

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2021

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 16 pages. *Hierdie nasienriglyne bestaan uit 16 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking guidelines.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

	$x^{2}-2x-24=0$ $(x-6)(x+4)=0$ $x=6 \text{ or } x=-4$	✓ factors $ \checkmark x = 6 $ $ \checkmark x = -4 $ (3)
1.1.2	$2x^{2} - 3x - 3 = 0$ $x = \frac{3 \pm \sqrt{(-3)^{2} - 4(2)(-3)}}{2(2)}$ $x = \frac{3 \pm \sqrt{33}}{4}$ $x = 2,19 \text{ or } x = -0,69$	✓ substitution into the correct formula $ ✓ x = 2,19 \checkmark x = -0,69 $ (3)
1.1.3	$x^{2} + 5x \le -4$ $x^{2} + 5x + 4 \le 0$ $(x+4)(x+1) \le 0$ Critical values: $x = -4$ or $x = -1$	✓ standard form ✓ critical values
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓✓ answer (4)
1.1.4	$\sqrt{x+28} = 2-x$ $(\sqrt{x+28})^2 = (2-x)^2$ $x+28 = 4-4x+x^2$ $x^2 - 5x - 24 = 0$ $(x-8)(x+3) = 0$ $x \neq 8 \qquad \text{or} \qquad x = -3$	✓ squaring both sides ✓ standard form ✓ factors ✓ answers with selection (4)

1.2	2y = 3 + x			
1.2			✓equation 1	
	x = 2y - 3 (1) 2xy + 7 = $x^2 + 4y^2 $ (2)		1	
	$2xy + 7 = x^{2} + 4y^{2} \dots (2)$ $2y(2y-3) + 7 = (2y-3)^{2} + 4y^{2}$		Z 1 22 2	
			✓ substitution ✓ simplification	
	$4y^{2}-6y+7=4y^{2}-12y+9+4y^{2}$		Simplification	
	$4y^2 - 6y + 2 = 0$			
	$ 2y^{2} - 3y + 1 = 0 (2y - 1)(y - 1) = 0 $		✓ standard form	
	, , , ,			
	$y = \frac{1}{2}$ or $y = 1$		$\checkmark y$ – values	
	x = -2 or $x = -1$		\checkmark y − values \checkmark x − values	
				(6)
	ODIOE		OR/OF	
	OR/OF		ONOF	
	2y = 3 + x			
	$y = \frac{3}{2} + \frac{x}{2}$ (1)		✓equation 1	
			• equation 1	
	$2xy + 7 = x^2 + 4y^2 \dots (2)$			
	$2x\left(\frac{3}{2} + \frac{x}{2}\right) + 7 = x^2 + 4\left(\frac{3}{2} + \frac{x}{2}\right)^2$		✓substitution	
			Substitution	
	$3x + x^2 + 7 = x^2 + 9 + 6x + x^2$			
	$\begin{vmatrix} 3x + x + 7 = x + 9 + 6x + x \\ x^2 + 3x + 2 = 0 \end{vmatrix}$		✓ simplification	
	(x+3)(x+1)=0		✓standard form	
	x = -2 or $x = -1$		$\checkmark x$ – values	
	$y = \frac{1}{2}$ or $y = 1$		✓y – values	
	$y = \frac{1}{2} \text{ or } y = 1$			(6)
1.3	$\frac{n}{-} = \frac{p}{-}$		$\checkmark \frac{n}{m} = \frac{p}{n}$	
	$\begin{array}{ccc} m & n \\ & & \end{array}$		$ \begin{array}{cc} m & n \\ \checkmark n^2 = mp \end{array} $	
	$n^2 = mp$ $\Delta = b^2 - 4ac$		$\mathbf{v} n = mp$	
	$\Delta = b^2 - 4ac$ $\Delta = n^2 - 4mp \text{ , but } n^2 = mp$			
	$\Delta = n^2 - 4mp$, but $n^2 - mp$ $\Delta = n^2 - 4n^2$ OR/OF	$\Delta = mp - 4mp$	() 2 2 2	
	$\Delta = n^2 - 4n$ $\Delta = -3n^2$	$\Delta = mp - 4mp$ $\Delta = -3mp$	$\checkmark \Delta = -3n^2 \text{ or } -3mp$	
	$n^2 > 0$	mp > 0		
	$\begin{array}{c} n > 0 \\ \therefore -3n^2 < 0 \end{array}$	$\therefore -3mp < 0$		
	511	Jiip \0		
	$\therefore \Delta < 0 \Rightarrow x$ is a non-real number		✓ Δ < 0	
				(4)
				[2.4]
				[24]

2.1	$\frac{90}{x} = \frac{81}{90}$ $81x = 8100$ $x = 100$	$\checkmark \frac{90}{x} = \frac{81}{90}$ $\checkmark \text{ answer} \tag{2}$
	OR/OF	OR/OF
	$x = 90 \times \frac{10}{9}$	$\checkmark \frac{10}{9}$
	x = 100	✓ answer (2)
2.2	$S_n = \frac{a(1-r^n)}{r}$	
	$S_{n} = \frac{a(1-r^{n})}{1-r}$ $S_{n} = \frac{100(1-(0.9)^{n})}{1-0.9}$ $S_{n} = \frac{100(1-(0.9)^{n})}{0.1}$	✓ r = 0,9 ✓ substitution into correct formula
	$S_n = \frac{100(1 - (0.9)^n)}{0.1}$ $\therefore S_n = 1 \ 000(1 - (0.9)^n)$	(2)
2.3	$S_{\infty} = \frac{a}{1 - r}$	
	$S_{\infty} = \frac{100}{1 - \frac{9}{10}}$	✓ substitution
	$S_{\infty} = 1000$	✓ answer (2)
	OR/OF	OR/OF
	$S_{\infty} = \lim_{n \to \infty} \left[1 \ 000 \left(1 - \left(0, 9 \right)^n \right) \right]$	$ S_{\infty} = \lim_{n \to \infty} \left[1 000 \left(1 - \left(0.9 \right)^n \right) \right] $
	$S_{\infty} = 1000$	✓ answer (2)
		[6]

OUESTION 3

QUES	TION 3	
3.1	-82	✓ answer (1)
3.2	-145; -122; -101;	
	23 21	
	-2 -2	
	2a = -2 : $a = -1$	$\checkmark 2a = -2$
	3a + b = 23 : $3(-1) + b = 23$: $b = 26$	$\checkmark 3(-1) + b = 23$ $\checkmark -1 + 26 + c = -145$
	a+b+c=-145 : $-1+26+c=-145$: $c=-170$	
	$\therefore T_n = -n^2 + 26n - 170$	(3)
	OR/OF	OR/OF
		$\checkmark 2a = -2$
	2a = -2 : $a = -1$	$\checkmark 2a = -2$ $\checkmark c = -145 + (-2) - 23$
	c = -145 + (-2) - 23 = -170	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$\therefore T_n = -n^2 + bn - 170$	/ 145 1 1 150
	-145 = -1 + b - 170	$\checkmark -145 = -1 + b - 170$
	b=26	(3)
	$\therefore T_n = -n^2 + 26n - 170$	
3.3	$T_n = a + (n-1)d$	
	$T_n = bn + c$ or $= 23 + (n-1)(-2)$	$\checkmark T_n = -2n + 25$
	$T_n = -2n + 25$ = $25 - (n - 1)(-2)$	
	-2n+25=-121	$\checkmark T_n = -121$
	-2n = -146	(70
	n = 73	$\sqrt{n} = 73$ $\sqrt{\text{answer}}$
	Between T_{73} and T_{74}	(4)
	OR/OF	OR/OF
	$T_{n+1} - T_n = -(n+1)^2 + 26(n+1) - 170 - (-n^2 + 26n - 170)$	(T. 2 . 25
	-121 = -2n + 25	$\checkmark T_n = -2n + 25$
		$\checkmark T_n = -121$
	n = 73	$\checkmark n = 73$
2.4	Between T_{73} and T_{74}	✓ answer (4)
3.4	$n = \frac{-b}{2a} = \frac{-26}{2(1)} = 13$	√ 13
		$\int T = 1$
	$T_{13} = -1$	$\checkmark T_{13} = -1$
	∴ add 2	\checkmark add 2 (3)
	OR/OF	OR/OF
	$T_n' = -2n + 26 = 0$	(12)
	n = -2n + 20 = 0 n = 13	√ 13
	$T_{13} = -(13)^2 + 26(13) - 170 = -1$	$\int T - 1$
	$\begin{array}{c} T_{13} = (13) + 20(13) + 170 = 1 \\ \therefore \text{ add } 2 \end{array}$	$ \begin{array}{c} \checkmark T_{13} = -1 \\ \checkmark \text{ add } 2 \end{array} \tag{3} $
	2	✓ add 2 (3) [11]
		[11]

		1
4.1	a=5 and/ en $d=2$	$\checkmark a \text{ and } d$
	$T_{51} = 5 + (51 - 1)(2)$	✓ substitution into
	=105	correct formula
	-103	✓ answer
		(3)
4.2	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	
	51 51	✓ substitution into
	$S_{51} = \frac{51}{2} [2(5) + (51 - 1)2]$ or/of $S_{51} = \frac{51}{2} [5 + 105]$	correct formula
		✓ answer
	= 2805 $= 2805$	(2)
4.3	5 000	()
	$\sum_{n=1}^{\infty} (2n+3) = 5+7+9+\dots+10\ 003$	✓ expansion (1)
4.4	$T_1 = -3$ $T_{4999} = -2(4999) - 1 = -9999$	$\checkmark T_1 = -3$
		$\checkmark T_{4999} = -9999$
	5000 4999	- 4999
	$\therefore \sum_{n=0}^{\infty} (2n+3) + \sum_{n=0}^{\infty} (-2n-1)$	
	= (5 + 7 + 9 + + 9999 + 10001 + 10003) +	✓both expansions
	(-3 - 5 - 7 - 9 9 999)	
	= 10 001 + 10 003 -3	
	= 20 001	✓ answer (A)
	- 20 001	(4)
	OD/OF	OD/OF
	OR/OF	OR/OF
	4.000	
	$S_{4999} = \frac{4999}{2} [2(-3) + (4999 - 1)(-2)] = -24999999$	$\checkmark T_1 = -3$
	$\begin{bmatrix} 3_{4999} - \\ 2 \end{bmatrix}$	$\checkmark S_{4999} = -249999999$
		4 999
	5000	
	$S_{5000} = \frac{5000}{2} ((2)(5) + (5000 - 1)(2)) = 25020000$	
	<u> </u>	$\checkmark S_{5000} = 25020000$
	5,000	
	$\sum_{n=0}^{3000} (2n+3) + \sum_{n=0}^{4999} (-2n-1) = 25\ 020\ 000 - 24\ 999\ 999$	
	$=20\ 001$	✓ answer (A)
	- 20 001	
		(4)
		[10]
		[10]

5.1 $x = 3$	$\checkmark x = 3$
y = 2	$\checkmark y = 2$
$5.2 x \in R, x \neq 3$	(2) ✓answer (1)
OR/OF	OR/OF
$x \in (-\infty; 3) \cup (3; \infty)$	✓answer (1)
OR/OF	OR/OF
x < 3 or $x > 3$	✓answer (1)
$ 0 = \frac{-1}{x - 3} + 2 $ $ -2x + 6 = -1 $	✓ y = 0
$x = \frac{7}{2}$	✓ answer
x-int: $\left(\frac{7}{2};0\right)$	(2)
5.4 y-int: $\left(0; \frac{7}{3}\right)$	$\checkmark x = 0$ $\checkmark \frac{7}{3}$ (2)
2,33 2 0 3,5	✓ asymptotes ✓ intercepts with the axes ✓ shape (3)
	[10]

6.1	$f(x) = \log_4 x$	
	$2 = \log_4 k$	✓ substitution of $(k; 2)$
	$4^2 = k$	
	$\therefore k = 16$	✓ answer
		(2)
6.2	$-1 = \log_4 x \therefore x = \frac{1}{4}$	$\checkmark x = \frac{1}{4}$
	$-1 = \log_4 x \therefore x = \frac{1}{4}$ $\frac{1}{4} \le x \le 16 \text{or/of} x \in \left[\frac{1}{4}; 16\right]$	✓ answer (2)
6.3	$f(x) = \log_4 x$	
	$y = \log_4 x$	
	$x = \log_4 y$	\checkmark swopping x and y
	$y = 4^x$	✓answer
		(2)
6.4	x < 0	√√answer
	ODIOE	(2)
	OR/OF	OR/OF
	$x \in (-\infty; 0)$	√√answer
	• • •	(2)
		[8]

QUESTION 7

7.1	D(4 · 0)	(D(4 : 0)
7.1	B(-4;0)	$\checkmark B(-4; 0)$ $\checkmark D(6; 0)$ (2)
7.2	D(6; 0)	$\checkmark D(6;0) \tag{2}$
1.2	$f(x) = x^2 - 2x - 24$	
	$x_{tp} = \frac{-b}{2a}$ OR/OF $2x - 2 = 0$ OR/OF $x = \frac{-4 + 6}{2}$	
	$x = \frac{-(-2)}{2(1)}$	
	2(1)	
	$\therefore x_{tp} = 1$	$\checkmark x_{tp} = 1$
	$y_{tp} = f(1)$	ip
	•	
	$=1^2-2(1)-24$	
	=-25	
	C(1; -25)	$\checkmark y_{tp} = -25 \tag{2}$
7.3	$y \ge -25$	\checkmark answer (1)
7.5	y = 23	
	OR/OF	OR/OF
	$y \in [-25 ; \infty)$	✓ answer (1)
7.4.1	14.040 0.25 1	✓ answer
	$m_{AE} = \tan 14,04^{\circ} = 0,25 = \frac{1}{4}$	(1)
7.4.2		
1.4.2	$m_{\text{tang}} = -4$	$\sim m_{\rm tang} = -4$
	f'(x) = 2x - 2	✓ $f'(x) = 2x - 2$
	2x-2=-4	✓ equating
	$ \begin{aligned} 2x - 2 &= -4 \\ x_T &= -1 \end{aligned} $	$\checkmark x_T = -1$
	$y_T = -21$	$\checkmark y_T = -21 \tag{5}$
7.5		
	$m_{line} = \frac{1}{4}$	$\checkmark m_{line} = \frac{1}{4}$
	1, 1, 1	·
	$y+9=\frac{1}{4}(x+3)$ OR/OF $-9=\frac{1}{4}(-3)+c$	\checkmark substitution m and
		K(-3;-9)
	$y+9=\frac{1}{4}x+\frac{3}{4}$ $c=-\frac{33}{4}=-8,25$	
	$y = \frac{1}{4}x - \frac{33}{4}$ OR/OF $y = 0,25x - 8,25$	$\checkmark y = \frac{1}{4}x - \frac{33}{4}$
	_	4 4
	$x^2 - 2x - 24 = \frac{1}{4}x - \frac{33}{4}$	
	· ·	✓ equating
	$4x^2 - 8x - 96 = x - 33$	(-4 11 f.
	$4x^2 - 9x - 63 = 0$	✓ standard form
	(4x - 21)(x + 3) = 0	
	$\therefore x = \frac{21}{4} = 5,25$ or $x \neq -3$	✓ answer with selection
	4 5,25 51 37 5	(6)
		[17]
		[1/]

		т ,	-
8.1	$A = P(1-i)^n$	✓ correct formula	
	$A = 980 \ 000(1 - 0.092)^{7}$	✓ substitution	
	A = R498 685,82	✓ answer (A)	(3)
8.2	$A = P(1+i)^n$		
	$116\ 253,50 = 75000 \left(1 + \frac{0,068}{4}\right)^{4n}$	$\checkmark \frac{0,068}{4}$	
	$116\ 233,30 = 73000 \left(1 + \frac{1}{4}\right)$	✓ substitution in	
	4-	correct formula	
	$1,550\ 046\ 667 = (1,017)^{4n}$		
	$\log(1,550\ 046\ 667) = 4n\log(1,017)$		
	$4n = \frac{\log(1,550\ 046\ 667)}{\log(1,017)} \text{ or } 4n = \log_{1,017}(1,550\ 046\ 667)$	✓ correct use of logs	;
	4n = 25,99		
8.3.1	n = 6,50 years	✓ answer	(4)
8.3.1	$F = \frac{x[(1+i)^n - 1]}{i}$	0.0835	
		$\checkmark i = \frac{0,0835}{12}$	
	$450\ 000 = \frac{x \left[\left(1 + \frac{0,0835}{12} \right)^{60} - 1 \right]}{0,0835}$		
	$450\ 000 = \frac{12}{0.0025}$	✓ substitution into correct formula	
	$\frac{0,0835}{12}$	correct formula	
	$x = R6\ 068,69$	✓answer	(3)
8.3.2(a)	$P = \frac{x\left[1 - \left(1 + i\right)^{-n}\right]}{x}$		
		$\sqrt{n} = 48$ in P-formu	la
	$11.058.85 \left 1 - \left(1 + \frac{0.12}{1} \right)^{-4 \times 12} \right $		14
	$P = \frac{11058,85 \left[1 - \left(1 + \frac{0,12}{12} \right)^{-4 \times 12} \right]}{0.12}$	✓ substitution into	
	<u>0,12</u>	correct formula	
	12 P = R419 948,32	✓answer (A)	
	1 - 1417 740,32		(3)
	OR/OF	OR/OF	
	Balance = $A - F$		
	$= P(1+i)^n - \frac{x[(1+i)^n - 1]}{i}$		
	$= 1 \ 050 \ 000 \left(1 + \frac{0.12}{12}\right)^{12 \times 21} - \frac{11 \ 058.85 \left[\left(1 + \frac{0.12}{12}\right)^{12 \times 21} - 1\right]}{0.12}$	$\checkmark n = 252 \text{ in both}$ formulae	
	12	✓ subst into correct formulae	
	=R12 887 702,20 - R12 467 749,81	✓answer (A)	(3)
	=R419 952,39		(3)

11 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

		[16]
	OR/OF Interest paid = 11 058,85 × 21 × 12 – (1 050 000 – 419 948,32) = 2 786 830,20 – 630 051,68 = R2 156 778,52	OR/OF ✓ 11 058,85×21×12 ✓ 1 050 000 – Balance Outstanding ✓ answer (3)
	Total paid = 11 058,85×21×12 = 2 786 830,20 Loan Paid = 1 050 000 – 419 952,39 = 630 047,61 Interest paid = 2 786 830,20 – 630 047,61 = R2 156 782,59	✓ 11 058,85×21×12 ✓ 1 050 000 – Balance Outstanding ✓ answer (3)
	Loan Paid = 1 050 000 – 419 948, 32 = 630 051, 68 Interest paid = 2 786 830, 20 – 630 051, 68 = R2 156 778, 52 OR/OF	✓ 1 050 000 – Balance Outstanding ✓ answer (3) OR/OF
8.3.2(b)	Total paid = $11\ 058,85 \times 21 \times 12 = 2\ 786\ 830,20$	✓ 11 058,85×21×12

9.1	f(x+h)-f(x)		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$f'(x) = \lim_{h \to 0} \frac{2(x+h)^2 - 3(x+h) - (2x^2 - 3x)}{h}$	✓substitution	
	$f'(x) = \lim_{h \to 0} \frac{2x^2 + 4xh + 2h^2 - 3x - 3h - 2x^2 + 3x}{h}$	$\checkmark 2x^2 + 4xh + 2h^2 - 3x - 3h$	
	$=\lim_{h\to 0}\frac{4xh+2h^2-3h}{h}$	$\checkmark 4xh + 2h^2 - 3h$	
	$=\lim_{h\to 0}\frac{h(4x+2h-3)}{h}$	✓ factorisation	
	$=\lim_{h\to 0} (4x+2h-3)$		
	$\therefore f'(x) = 4x - 3$	✓answer	(5)
	OR/OF	OR/OF	
	$f(x) = 2x^2 - 3x$		
	$f(x+h) = 2(x+h)^2 - 3(x+h)$	✓substitution	
	$f(x+h) = 2x^2 + 4xh + 2h^2 - 3x - 3h$	$\checkmark 2x^2 + 4xh + 2h^2 - 3x - 3h$	
	$f(x+h) - f(x) = 4xh + 2h^2 - 3h$		
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
	$= \lim_{h \to 0} \frac{4xh + 2h^2 - 3h}{h}$	$\checkmark 4xh + 2h^2 - 3h$	
	$=\lim_{h\to 0}\frac{h(4x+2h-3)}{h}$	✓ factorisation	
	$=\lim_{h\to 0} (4x+2h-3)$		
	$\therefore f'(x) = 4x - 3$	✓answer	(5)
9.2.1	$y = 4x^5 - 6x^4 + 3x$		
	dy	$\checkmark 20x^4$	
	$\frac{dy}{dx} = 20x^4 - 24x^3 + 3$	$\checkmark -24x^3$	
	- 	√3	(3)

9.2.2	$D_x \left[\frac{-\sqrt[3]{x}}{2} + \left(\frac{1}{3x} \right)^2 \right]$	
	$D_{x} \left[\frac{-x^{\frac{1}{3}}}{2} + \frac{x^{-2}}{9} \right]$	$\checkmark \frac{-x^{\frac{1}{3}}}{2} \checkmark \frac{x^{-2}}{9}$
	$D_x \left[-\frac{1}{2} x^{\frac{1}{3}} + \frac{1}{9} x^{-2} \right]$	
	$= -\frac{1}{6}x^{-\frac{2}{3}} - \frac{2x^{-3}}{9}$	$\checkmark -\frac{1}{6}x^{-\frac{2}{3}} \checkmark -\frac{2x^{-3}}{9}$
	$= -\frac{1}{6x^{\frac{2}{3}}} - \frac{2}{9x^{3}}$	(4)
		[12]

10.1 $h(x) = ax^3 + bx^2$ $h'(x) = 3ax^2 + 2bx$ h'(4) = 0 48a + 8b = 0 6a + b = 0(1) h(4) = 32 64a + 16b = 32 4a + b = 2(2) (1)-(2): $6a + b = 0$ 4a + b = 2 2a = -2 a = -1 4(-1) + b = 2 b = 6 10.2 $h(x) = -x^3 + 6x^2$ $-x^3 + 6x^2 = 0$ x = 0 or $x = 6\therefore A(6; 0)(x) = 4x + b = 2(x) + (4) = 0(x) + (4)$
$h'(4) = 0$ $48a + 8b = 0$ $6a + b = 0 (1)$ $h(4) = 32$ $64a + 16b = 32$ $4a + b = 2 (2)$ $(1) - (2): 6a + b = 0$ $4a + b = 2$ $2a = -2$ $a = -1$ $4(-1) + b = 2$ $b = 6$ $10.2 h(x) = -x^3 + 6x^2$ $-x^3 + 6x^2 = 0$ $x^2(-x + 6) = 0$ $x = 0 or x = 6$ $\therefore A(6; 0)$ (3) $10.3.1 0 < x < 4 or 0 \le x \le 4$
$48a + 8b = 0 \\ 6a + b = 0 \\(1)$ $h(4) = 32 \\ 64a + 16b = 32 \\ 4a + b = 2 \\(2)$ $(1) - (2): 6a + b = 0 \\ 4a + b = 2$ $2a = -2 \\ a = -1$ $4(-1) + b = 2 \\ b = 6$ $10.2 h(x) = -x^3 + 6x^2 \\ -x^3 + 6x^2 = 0 \\ x^2(-x + 6) = 0 \\ x = 0 \text{ or } x = 6 \\ A(6; 0)$ (3) $10.3.1 0 < x < 4 \text{or} 0 \le x \le 4$ $ \checkmark h(4) = 32 \\ \checkmark 64a + 16b = 32 \text{ or } 4a + b = 2$ (5) $\checkmark -x^3 + 6x^2 = 0 \\ \checkmark \text{ factors}$
$48a + 8b = 0$ $6a + b = 0 (1)$ $h(4) = 32$ $64a + 16b = 32$ $4a + b = 2 (2)$ $(1) - (2): 6a + b = 0$ $4a + b = 2$ $2a = -2$ $a = -1$ $4(-1) + b = 2$ $b = 6$ $10.2 h(x) = -x^3 + 6x^2$ $-x^3 + 6x^2 = 0$ $x^2(-x + 6) = 0$ $x = 0 or x = 6$ $\therefore A(6; 0)$ (3) $10.3.1 0 < x < 4 or 0 \le x \le 4$
$h(4) = 32$ $64a + 16b = 32$ $4a + b = 2$ (2) $(1)-(2): 6a + b = 0$ $4a + b = 2$ $2a = -2$ $a = -1$ $4(-1) + b = 2$ $b = 6$ $10.2 h(x) = -x^3 + 6x^2$ $-x^3 + 6x^2 = 0$ $x^2(-x + 6) = 0$ $x = 0 \text{ or } x = 6$ $\therefore A(6; 0)$ (3) $10.3.1 0 < x < 4 \text{ or } 0 \le x \le 4$
$64a+16b=32 4a+b=2(2)$ $(1)-(2): 6a+b=0 4a+b=2$ $2a=-2 a=-1$ $4(-1)+b=2 b=6$ $10.2 h(x)=-x^3+6x^2 -x^3+6x^2=0 x^2(-x+6)=0 x=0 or x=6 \therefore A(6;0) $ (5) $7-x^3+6x^2=0 \sqrt{-x^3+6x^2}=0 -x^$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$4a + b = 2 \qquad(2)$ $(1) - (2): 6a + b = 0$ $4a + b = 2$ $2a = -2$ $a = -1$ $4(-1) + b = 2$ $b = 6$ $10.2 \qquad h(x) = -x^3 + 6x^2$ $-x^3 + 6x^2 = 0$ $x^2(-x + 6) = 0$ $x = 0 \text{ or } x = 6$ $\therefore A(6; 0)$ $10.3.1 \qquad 0 < x < 4 \qquad \text{or } 0 \le x \le 4$ (5) $\checkmark - x^3 + 6x^2 = 0$ $\checkmark \text{ factors}$ $\checkmark A(6; 0)$ $\checkmark A(6; 0)$ (3)
$a = -1$ $4(-1) + b = 2$ $b = 6$ $10.2 h(x) = -x^{3} + 6x^{2}$ $-x^{3} + 6x^{2} = 0$ $x^{2}(-x + 6) = 0$ $x = 0 \text{ or } x = 6$ $\therefore A(6; 0)$ $10.3.1 0 < x < 4 \text{ or } 0 \le x \le 4$ (5) $\checkmark - x^{3} + 6x^{2} = 0$ $\checkmark \text{ factors}$ $\checkmark A(6; 0)$ $\checkmark A(6; 0)$
$a = -1$ $4(-1) + b = 2$ $b = 6$ $10.2 h(x) = -x^{3} + 6x^{2}$ $-x^{3} + 6x^{2} = 0$ $x^{2}(-x + 6) = 0$ $x = 0 \text{ or } x = 6$ $\therefore A(6; 0)$ $10.3.1 0 < x < 4 \text{ or } 0 \le x \le 4$ (5) $\checkmark - x^{3} + 6x^{2} = 0$ $\checkmark \text{ factors}$ $\checkmark A(6; 0)$ $\checkmark A(6; 0)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$b = 6$ $10.2 h(x) = -x^3 + 6x^2$ $-x^3 + 6x^2 = 0$ $x^2(-x+6) = 0$ $x = 0 or x = 6$ $\therefore A(6; 0)$ $10.3.1 0 < x < 4 or 0 \le x \le 4$ (3)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$x^{2}(-x+6) = 0$ $x = 0 \text{ or } x = 6$ $\therefore A(6;0)$ $10.3.1 0 < x < 4 \text{or} 0 \le x \le 4$ $\checkmark \text{ factors}$ $\checkmark A(6;0)$ $\checkmark A(6;0)$ (3)
$x^{2}(-x+6) = 0$ $x = 0 \text{or} x = 6$ $\therefore A(6;0)$ $10.3.1 0 < x < 4 \text{or} 0 \le x \le 4$ $\checkmark \text{critical values}$ (3)
$A(6;0)$ $10.3.1 0 < x < 4 \text{or} 0 \le x \le 4$ (3) $\checkmark \text{critical values}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10.3.1 $0 < x < 4$ or $0 \le x \le 4$ \checkmark critical values
$\sqrt{notation}$ (2)
OR/OF OR/OF
Continue to the second
$x \in (0; 4)$ or $x \in [0; 4]$ \checkmark critical values \checkmark notation (2)
$ \begin{array}{c cccc} \hline 10.3.2 & x > 2 \\ \hline \end{array} $
$\checkmark \text{ notation} \tag{2}$
OR/OF OR/OF
$x \in (2; \infty)$
✓ notation (2)
$ 10.4 f(x) = h(x-1) = -(x-1)^3 + 6(x-1)^2 $ $\checkmark k < 32$
f(0) = 7
$7 < k < 32$ or $k \in (7; 32)$
(3)
[15]

11	$Time = \frac{20}{}$	$\checkmark \frac{20}{}$
	$\frac{1}{x}$	x
	$Cost = (water cost per hour \times time) + (kms \times R/km)$	
	$C(x) = 1.6 \times \left(\frac{20}{x}\right) + 20\left(1.2 + \frac{x}{4000}\right)$	$\checkmark 1,6 \times \left(\frac{20}{x}\right)$
	22	$\checkmark 20 \left(1,2 + \frac{x}{4000}\right)$
	$C(x) = \frac{32}{x} + 24 + \frac{x}{200}$	$\checkmark C(x) = \frac{32}{x} + 24 + \frac{x}{200}$ $\checkmark C'(x) = -\frac{32}{x^2} + \frac{1}{200}$ $\checkmark C'(x) = 0$
	$C'(x) = -\frac{32}{x^2} + \frac{1}{200} = 0$	$\checkmark C'(x) = -\frac{32}{x^2} + \frac{1}{200}$
	λ 200	$\checkmark C'(x) = 0$
	$x^2 = 6400$	
	x = 80 km/h	✓ answer (A)
		(7)
		[7]

12.1.1	No, because $P(A \text{ and } B) \neq 0$	✓ answer and reason (1)
12.1.2(a)	P(A and B) = 0,3 P(only B) = 0,2 P(A and B) = P(A)×P(B) $0,3 = P(A) \times 0,5$ P(A) = 0,6 P(only A) = 0,3	✓ $P(A \text{ and } B) = P(A) \times P(B)$ ✓ 0.5 ✓ $P(A) = 0.6$ ✓ answer (4)
12.1.2(b)	$ \begin{array}{ c c c c } \hline A & & & & & & & & & & & \\ \hline 0,3 & & & & & & & & & & \\ \hline 0,3 & & & & & & & & & \\ \hline 0,2 & & & & & & & & \\ \hline \end{array} $	
	P(not A or not B) = $0, 2+0, 2+0, 3=0, 7$	✓ method ✓ answer (2)
	OR/OF	OR/OF
	P(not A or not B) = 1 - P(A and B) = 1 - 0.3 = 0.7	✓ method ✓ answer
	OR/OF	OR/OF
	P(A' or B') = P(A') + P(B') - P(A' and B') = 0,4 + 0,5 - 0,2 = 0,7	✓ method ✓ answer (2)

12.2.1	P(novel) =	$\frac{3}{12} = \frac{1}{4}$			✓answer	(1)
12.2.2	12! = 479 (001 600		✓✓ answer	(2)	
12.2.3	5 (Poetry)	3! (Novels all together)	8! (Arrangements of rest of the books including the novels)	4 (Drama)	✓ 5 × 4 ✓ 3!= 6 ✓ 8!	
	P(start with novels togother) $= \frac{5 \times 3! \times 8}{12!}$ $= \frac{1}{99}$	ether)	d with drama AN	D all	$\checkmark \frac{5 \times 3! \times 8! \times 4}{12!} = \frac{1}{99} \text{ (A)}$	(4)
						[14]

TOTAL/TOTAAL: 150