Nov 8 Simple Security Protocols continued

Mutual Authentication Attack

Mutual Authentication

- Our one-way authentication protocol not secure for mutual authentication
- Protocols are subtle!
- The "obvious" thing may not be secure
- Also, if assumptions or environment changes, protocol may not work
 - o This is a common source of security failure
 - For example, Internet protocols

Symmetric Key Mutual Authentication

- Do these "insignificant" changes help?
- Yes!

Public Key Notation

- □ Encrypt M with Alice's public key: {M}_{Alice}
- □ Sign M with Alice's private key: [M]_{Alice}
- □ Then
 - $[\{M\}_{Alice}]_{Alice} = M$
- Anybody can do public key operations
- Only Alice can use her private key (sign)

Public Key Authentication via Encryption

- □ Is Alice authenticated? Bob? Is this secure?
- Trudy can get Alice to decrypt anything! (how?)
 - o Must have two key pairs (one for signature and one for encryption)

Public Key Authentication via Digital Signature

- □ Is this secure?
- Again ...Trudy can get Alice to sign (encrypt) anything!
 Must have two key pairs

Public Keys

- Never use the same key pair for encryption and signing
- One key pair for encryption/decryption
- A different key pair for signing/verifying signatures

Session Key

- Usually, a session key is required
 - Symmetric key for a particular session
- Can we authenticate and establish a shared symmetric key?
 - Key can be used for confidentiality
 - Key can be used for integrity
- □ In some cases, we may also require perfect forward secrecy (PFS)
 - o Discussed later...

Authentication & Session Key

- □ Is this secure?
- OK for key, but no mutual authentication
- □ Note that K is acting as Bob's nonce

Public Key Authentication and Session Key

- □ Is this secure?
- Mutual authentication but key is not secret!

Public Key Authentication and Session Key

- □ Is this secure?
- Seems to be OK
- Mutual authentication and session key!

Public Key Authentication and Session Key

- □ Is this secure?
- Seems to be OK
 - o Anyone can see $\{R,K\}_{Alice}$ and $\{R+1,K\}_{Bob}$

Perfect Forward Secrecy

- □ The concern...
 - o Alice encrypts message with shared key $K_{\scriptscriptstyle AB}$ and sends ciphertext to Bob
 - o Trudy records ciphertext and later attacks Alice's (or Bob's) computer to find K_{AB}
 - o Then Trudy decrypts recorded messages
- Perfect forward secrecy (PFS): Trudy cannot later decrypt recorded ciphertext
 - Even if Trudy gets key K_{AB} or other secret(s)
- □ Is PFS possible?

Perfect Forward Secrecy

- $lue{}$ Suppose Alice and Bob share key K_{AB}
- $\hfill\Box$ For perfect forward secrecy, Alice and Bob cannot use $K_{_{AB}}$ to encrypt
- $\hfill\Box$ Instead they must use a session key K_s and forget it after it's used

Naïve Session Key Protocol

- \square Trudy could also record $E(K_S, K_{AB})$
- $lue{}$ If Trudy gets K_{AB} , she gets K_{S}