COMPENDIO DE FÓRMULAS ESENCIALES DE CIRCUITOS ELÉCTRICOS

Resumen de Análisis en Corriente Alterna

8 de octubre de 2025

1. Números Complejos (\mathbb{C})

Un **número complejo Z** es una entidad $\mathbf{Z} = \mathbf{a} + \mathbf{j}\mathbf{b}$ compuesta por una parte real (a) y una parte imaginaria (b). Son esenciales para representar fasores en Circuitos de Corriente Alterna (CA).

1.1. Formas de Expresión

Forma	Expresión	Uso Principal	
Cartesiana (Rectangular)	$\mathbf{Z} = \mathbf{a} + \mathbf{j}\mathbf{b}$	Suma y Resta.	
Polar (Módulo-Argumental)	$\mathbf{Z} = \mathbf{Z} \angle \theta$	Multiplicación y División.	
Exponencial	$\mathbf{Z} = \mathbf{Z} \mathbf{e}^{\mathbf{j} heta}$	Cálculo y Análisis de Sistemas	
		(Fórmula de Euler : $e^{j\theta} = \cos\theta +$	
		$j\sin\theta$).	

1.2. Módulo y Argumento (Conversión $\mathbf{Z} = \mathbf{a} + \mathbf{j}\mathbf{b}$ a $\mathbf{Z} = |\mathbf{Z}|\angle\theta$)

Característica	Fórmula	Descripción
Módulo (Z)	$ \mathbf{Z} = \sqrt{\mathbf{a^2 + b^2}}$	Longitud del vector en el plano complejo.
Argumento (θ)	$\theta = \arctan\left(\frac{\mathbf{b}}{\mathbf{a}}\right)$	Ángulo con respecto al eje real positivo (Ajustar
		según el cuadrante de $a y b$).

1.3. Operaciones Fundamentales

$$\mathrm{Sean}~\mathbf{Z_1} = \mathbf{a_1} + \mathbf{j}\mathbf{b_1} = |\mathbf{Z_1}| \angle \theta_1 \ \mathrm{y}~\mathbf{Z_2} = \mathbf{a_2} + \mathbf{j}\mathbf{b_2} = |\mathbf{Z_2}| \angle \theta_2 \mathrm{:}$$

■ Suma / Resta: (Forma Cartesiana)

$$\mathbf{Z_1} \pm \mathbf{Z_2} = (\mathbf{a_1} \pm \mathbf{a_2}) + \mathbf{j}(\mathbf{b_1} \pm \mathbf{b_2})$$

• Multiplicación: (Forma Polar)

$$\mathbf{Z_1Z_2} = (|\mathbf{Z_1}||\mathbf{Z_2}|) \angle (\theta_1 + \theta_2)$$

■ **División:** (Forma Polar)

$$\frac{\mathbf{Z_1}}{\mathbf{Z_2}} = \left(\frac{|\mathbf{Z_1}|}{|\mathbf{Z_2}|}\right) \angle (\theta_1 - \theta_2)$$

2. Diagramas de Bode

El Diagrama de Bode es una representación gráfica de la Función de Transferencia $T(\omega)$ de un sistema, que muestra la variación de la amplitud y la fase con la frecuencia angular (ω) .

2.1. Fórmulas de Conversión y Reglas Logarítmicas

Módulo en Decibelios (dB):

$$|\mathbf{T}(\omega)|_{\mathbf{dB}} = \mathbf{20} \log_{10} |\mathbf{T}(\omega)|$$

■ Regla de Suma de Módulos (Productos):

$$|\mathbf{T_1}\mathbf{T_2}|_{\mathbf{dB}} = |\mathbf{T_1}|_{\mathbf{dB}} + |\mathbf{T_2}|_{\mathbf{dB}}$$

• Regla de Suma de Argumentos (Productos):

$$\arg(\mathbf{T_1T_2}) = \arg(\mathbf{T_1}) + \arg(\mathbf{T_2})$$

■ Frecuencia de Corte/Esquina (ω_0): Es la frecuencia donde la pendiente del módulo cambia, típicamente $|T(\omega_0)| = 1/\sqrt{2}$ (o -3 dB).

2.2. Comportamiento Asintótico (Factores Elementales)

La función de transferencia $T(\omega)$ se descompone en factores elementales para dibujar las asintotas de Bode.

Cuadro 1: Comportamiento de los Factores Elementales en Diagramas de Bode

Factor	Forma General	Módulo (Pendiente
Ganancia Constante	K	$0~\mathrm{dB/d\acute{e}cada}$
Polos/Ceros en el Origen	$(j\omega)^{\pm N}$	$\pm 20 N \text{ dB/década}$
Polo/Cero Real (Primer Orden)	$\left(1+j\frac{\omega}{\omega_0}\right)^{\pm 1}$	$\pm 20 \text{ dB/d\'ecada (a partir}$
Polo/Cero Complejo (Segundo Orden)	$\left[\left(1 + 2\zeta j \frac{\omega}{\omega_n} - \left(\frac{\omega}{\omega_n} \right)^2 \right)^{\pm 1} \right]$	$\pm 40~\mathrm{dB/d\acute{e}cada}$ (a partir

2.3. Interpretación

- Polo: Introduce una pendiente de -20 dB/década.
- Cero: Introduce una pendiente de +20 dB/década.
- **Diagrama Total:** Se obtiene sumando algebraicamente las pendientes y las fases de todos los factores.