Zarządzanie sieciami komputerowymi

Część 2 wykładu

SKO2

Mapa wykładu

- □ Wprowadzenie do zarządzania sieciami
- ☐ Standardy X.500, X.700 i TMN
- □ Protokół SNMP
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - **O RMON**
 - Komunikaty protokołu SNMP
 - Problem prezentacji i kodowanie ASN
 - Ochrona informacji w SNMP
- Usługi katalogowe
 - O DNS, NIS/NIS+
 - O LDAP

Remote MONitoring

- RMON to baza MIB
- □ RMON gromadzi informacje dla całej podsieci
 - MIB-2 pozwala najwyżej na informacje lokalne dla 1 urządzenia
- □ RMON-1 dotyczy warstwy łącza danych
- 🗖 RMON-2 dotyczy wszystkich wyższych warstw
- □ Standardy: RFC 1271, RFC 1757, RFC 1513
- Urządzenia monitorujące RMON zwane są próbnikami, agentami RMON

Funkcje monitorowania RMON

- □ 9 grup
 - statystyki
 - wykorzystanie i błędy
 - historia
 - próbki danych statystycznych z przeszłości
 - alarmy
 - · ustalanie progów i okresów próbkowania
 - hosty
 - pomiary ruchu do i z hosta

Funkcje monitorowania RMON

- □ 9 grup
 - pierwszych N hostów
 - raport o pierwszych N hostach z grupy hostów
 - macierz ruchu
 - statystyki dla par komunikujących się węzłów
 - filtry
 - mechanizm wybierający ramki/pakiety odpowiadające wzorcowi
 - przechwytywanie pakietów
 - sposób buforowania odfiltrowanych pakietów
 - o zdarzenia
 - umożliwia rejestrowania pułapek wraz z czasem wystąpienia

Remote MONitoring MIB

Mapa wykładu

- □ Wprowadzenie do zarządzania sieciami
- ☐ Standardy X.500, X.700 i TMN
- □ Protokół SNMP
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - O RMON
 - Komunikaty protokołu SNMP
 - Problem prezentacji i kodowanie ASN
 - Ochrona informacji w SNMP
- Usługi katalogowe
 - O DNS, NIS/NIS+
 - O LDAP

Protokół SNMP

- Protokół pobierający dane z bazy MIB (od agenta SNMP).
- Może być wykorzystywany przez:
 - linię komend (snmpwalk),
 - GUI (MIB Browser), lub
 - większą aplikację (n.p. Sun Net Manager) zwaną
 Network Management Software (NMS).
- NMS składa się z mniejszych aplikacji służących do zarządzania siecią wraz z interfejsem graficznym (diagramy, wykresy itd)
- NMS działa na hoście zwanym Network Management Station (także NMS), na którym może działać wiele różnych aplikacji NMS.

Protokół SNMP

Dwa rodzaje komunikacji w protokole:
żądanie-odpowiedź (synchroniczne)
komunikaty o zdarzeniach (asynchroniczne)

Protokół SNMP v1,2: rodzaje komunikatów

<u>Komunikat</u>	<u>Funkcja</u>	
GetRequest GetNextRequest GetBulkRequest (v2)	Menedżer do agenta: "daj mi dane" (instację, następną na liście, blok)	
InformRequest	Menedżer do menedżera: oto wartość z MIB	
SetRequest	Menedżer do agenta: ustaw wartość w MIB	
Response	Agent do Menedżera: wartość, odpowiedź na żądanie	
Trap	Agent do Menedżera: informuje menedżera o zdarzeniu SKO2	

Zarządzanie-10

Protokół SNMP v1,2: formaty komunikatów

SNMP v2 oraz v2c

- Protokół SNMPv2c enkapsułuje komunikaty protokołu SNMPv2 w komunikatach protokołu SNMPv1
- SNMPv2 ma nowy komunikat: GetBulkRequest
- SNMPv2 wprowadza 64-bitowe liczniki do bazy MIB

SNMP v3

- Dodaje funkcje ochrony informacji: poufność, integralność
- Dodaje lepsze uwierzytelnienie (użytkownik i hasło) zamiast "community"
- □ Dodaje funkcjonalność kontroli dostępu za pomocą perspektyw (ang. views)

Różnice w wersjach SNMP

	Wersja 1	Wersja 2c	Wersja 3
Powiadomienia	Nie	Tak	Tak
RMON/Zdarzenia	Nie	Tak	Tak
Uwierzytelnienie	Community	Community	Użytkownik
Poufność	Nie	Nie	Tak
Obsługa w NMS	Powszechnie	Dobra	Ograniczona

SNMP a CMIP (TMN)

	Internet/SNMP	OSI/CMIP
Model	Przepytywanie i zdarzenia	Zdarzenia
Agent	Mała złożoność	Duża złożoność
Model informacji	zmienne brak dziedziczenia	obiekty dziedziczenie
Bezpieczeństwo community uwierzytelnienie poufność kontrola dostępu	v1 v2 tak tak nie tak:MD5 nie tak:DES nie nie	nie hasło dla asocjacji opcjonalne tak
nazwy wystąpień	jednoznaczne u jednego agenta zależne od typu obiektu	globalnie jednoznaczne

Mapa wykładu

- □ Wprowadzenie do zarządzania sieciami
- ☐ Standardy X.500, X.700 i TMN
- □ Protokół SNMP
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - O RMON
 - Komunikaty protokołu SNMP
 - Problem prezentacji i kodowanie ASN
 - Ochrona informacji w SNMP
- Usługi katalogowe
 - O DNS, NIS/NIS+
 - O LDAP

Problem prezentacji

<u>Pytanie:</u> czy do komunikacji wystarcza idealna kopia informacji z pamięci do pamięci?

Odpowiedź: nie zawsze!

```
struct {
                                           test.code
                test.code
                                                           a
 char code;
                           0000001
                   test.x
  int x;
                           0000011
                                                       00000011
                                               test x
  } test;
                                                       00000001
test.x = 256;
test.code='a'
                                                  format na hoście 2
                       format na hoście 1
```

problem: różne formaty danych, konwencje przechowywania

Problem prezentacji "z życia wzięty":

podstarzała hipiska z lat 60

Problem prezentacji: możliwe rozwiązania

- 1. Nadawca poznaje format odbiorcy. Nadawca tłumaczy na format odbiorcy. Nadawca wysyła.
 - analogie w życiu codziennym?
 - za i przeciw?
- 2. Nadawca wysyła. Odbiorca poznaje format nadawcy. Odbiorca tłumaczy na swój własny format
 - analogie w życiu codziennym?
 - za i przeciw?
- 3. Nadawca tłumaczy na format niezależny od hosta (standardowy). Wysyła. Odbiorca tłumaczy na swój własny format.
 - analogie w życiu codziennym?
 - za i przeciw?

Rozwiązywanie problemu prezentacji

- 1. Przetłumacz z formatu lokalnego na format standardowy
- 2. Wyślij informacje w standardowym formacie
- 3. Przetłumacz z formatu standardowego na format lokalny

ASN.1: Abstract Syntax Notation 1

- □ Standard ISO X.680
 - używany szeroko w Internecie
 - jest jak jedzenie warzyw: wiadomo, że to "dla zdrowia"!
- definiuje typy danych, konstruktory obiektów
 - o podobnie jak SMI
- BER: Basic Encoding Rules
 - określają, jak obiekty zdefiniowane w ASN.1 mają być komunikowane
 - o każdy przesyłany obiekt ma Typ, Długość, i Wartość

Pomyst: komunikowane dane same się identyfikują

- T: typ danych, jeden z typów zdefiniowanych w ASN.1
- L: długość danych w bajtach
- <u>V</u>: wartość danych, kodowana według standardu ASN.1

Wartość znacznika	Тур	
1	Boolean	
2	Integer	
3	Bitstring	
4	Octet string	
5	Null	
6	Object Identifier	
9	Real	

Kodowanie TLV:

Mapa wykładu

- □ Wprowadzenie do zarządzania sieciami
- ☐ Standardy X.500, X.700 i TMN
- □ Protokół SNMP
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - O RMON
 - Komunikaty protokołu SNMP
 - Problem prezentacji i kodowanie ASN
 - Ochrona informacji w SNMP
- Usługi katalogowe
 - O DNS, NIS/NIS+
 - O LDAP

Ochrona informacji w SNMP

- □ Gdzie jest stosowany SNMP
 - Najpopularniejszy protokół zarządzania siecią
 - Hosty, ściany ogniowe, rutery, przełączniki...UPS, zasilacze, karty ATM -- wszechobecny
- "Jeden z największych koszmarów bezpieczeństwa w dzisiejszych sieciach"

Luki bezpieczeństwa w SNMPv1

- Warstwy transportu i sieci
 - Modyfikacja informacji
 - Zablokowanie dostępu do usługi (DoS)
 - Powtarzanie
- Uwierzytelnienie
 - o w oparciu o host
 - w oparciu o "community"
- □ Informacje ujawniane przez SNMP
 - Tablice rutingu
 - Topologia sieci
 - Rozkłady ruchu w sieci
 - Reguly filtrujące pakiety

Transport SNMP

- □ SNMP używa UDP
 - Zawodne komunikaty nie muszą docierać do celu
 - O Nadawca segmentu i pakietu może łatwo zostać sfałszowany
 - Łatwo zablokować usługę, bez ujawniania swojego adresu IP
 - Łatwo zmodyfikować pakiet
 - Łatwo nagrać pakiet i go powtórnie wysłać

Wady uwierzytelnienia SNMP

- W oparciu o hosta
 - Zawodzi z powodu transportu UDP
 - Zatruwanie schowków DNS
- □ W oparciu o "community"
 - wspólne hasło
 - przesyłane otwartym tekstem
 - Łatwe do odgadnięcia, lub brutalnego złąmania
 - Stosuje się domyślne wartości community

```
---- Simple Network Management Protocol (Version 1)
      🔏 SNMP:
        SNMP:
              SNMP Version = 1
       SNMP:
              Community
                             = private
      🔏 SNMP: Command
                             = Get response
                             = 1951030046
      SNMP:
              Request ID
      🛂 SNMP: Error status = 0 (No error)
      🖥 SNMP: Error index 🦠
                             = N
      🔏 SNMP:
       SNMP: Object = {1.3.6.1.2.1.1.4.0} (sysContact.0)
      SNMP: Value | = Cisco NOC / 888-555-1234
      NMP:
'00000000 ·
           08
                                     2a d1
                                                  0.8
                                                             00
              00
                 20
                     a8.
                        8a ba
                              00
                                  50
                                            e8 54
                                                      00
                                                         45
|00000010:
           0.0
                           00
                               ff
                                     fa
                                        29
                                               12
                                                   56
                                                                 `¼u..ÿ.ú
                                            ac
                                                      7e.
                                                         ac
                                     89
                                            30
                                               42
                                                   02
                                                      01
00000020:
           56
                    a.1
                               00
                                  4c
                                        a.5
                                                         00
              4a.
                               74
                                     a2
                                         34
                                                   74
1000000030
              70
                     69
                        76
                           61
                                  65
                                            02
                                               04
                                                      4a.
                                                         5Ъ
                                                             1e
                                                                .private¢
00000040:
           02
                 00
                     02
                        01
                           00
                               30
                                  26
                                     30
                                         24
                                            06
                                               08
                                                   2Ъ
                                                      06
                                                         01
                                                             02
                                                                      . 0&0
                                         63
```

73

35

2d

6f

31

20

4e 4f

32 33 34

43

20

 \setminus Expert λ Decode igwedge Matrix λ Host Table λ Protocol Dist. λ Statistics ig/

04

38

00

38

100000050:

00000060:

01

2f

01

20

38

18

2d

43

35

69

35

....Cis

Z 888-555

Popularne wartości domyślne

- public
- o private
- o write
- "all private"
- o monitor
- manager
- security
- o admin
- o lan

- default
- password
- o tivoli
- openview
- community
- o snmp
- o snmpd
- system
- o itd itd itd...

Bezpieczeństwo RMON i RMON2

- ☐ te same wady, co SNMPv1
- dodatkowe niebezpieczeństwa poprzez wprowadzenie obiektów "action invocation"
- □ zbiera wiele informacji o całej podsieci

Ochrona informacji SNMPv3 - zestawienie

- □ szyfrowanie: DES lub AES szyfruje komunikat SNMP
- uwierzytelnienie: oblicz, wyślij Message Integrity Check: MIC(m,k): wartość funkcji haszującej z wiadomości (m), tajnego klucza (k)
- ochrona przed atakiem przez powtórzenia: używać jednorazowych indentyfikatorów
- kontrola dostępu przez perspektywy
 - jednostka SNMP utrzymuje bazę danych z prawami dostępu, politykami dla różnych użytkowników
 - baza danych jest sama zarządzanym obiektem!

Perspektywy SNMP

Perspektywy SNMP

Ochrona informacji w SNMP

Wersja	Poziom	Uwierzytelnienie	Szyfrowanie
SNMPv1		community	
SNMPv2c		community	
SNMPv3	no Auth No Priv	użytkownik i hasło	
SNMPv3	authNoPriv	MD5 lub SHA	
SNMPv3	authPriv	MD5 lub SHA	DES-56, AES

Ograniczanie nadużyć w SNMP

- □ SNMP powinno być dostępne tylko dla NMS
- □ Należy używać list kontroli dostępu (ang. Access Control List, ACL)
- Gdy tylko jest to możliwe, należy używać SNMPv3
- Należy ograniczyć dane widoczne przez SNMP za pomocą "perspektyw"

Mapa wykładu

- □ Wprowadzenie do zarządzania sieciami
- ☐ Standardy X.500, X.700 i TMN
- □ Protokół SNMP
 - Structure of Management Information: SMI
 - Management Information Base: MIB
 - RMON
 - Komunikaty protokołu SNMP
 - Problem prezentacji i kodowanie ASN
 - Ochrona informacji w SNMP
- Protokoły katalogowe
 - O DNS, NIS/NIS+, domeny Microsoft, X.500
 - LDAP

<u>Usługi katalogowe</u>

- Usługa "katalogowa" jest strukturalizowanym repozytorium informacji o ludziach lub zasobach w organizacji
 - zywkle, baza danych z dostępem do sieci
 - zapytania i odpowiedzi zawierają małą ilość informacji
 - · modyfikacje są znacznie rzadsze niż zapytania
 - usługa katalogowa implementuje oraz umożliwia kontrolę praw dostępu
 - zarówno do samej usługi katalogowej, jak i do innych zasobów i usług
 - struktura umożliwia zadawanie zapytań poprzez nazwy (identyfikatory) obiektów

<u>Katalogi</u>

- □ Typowe przykłady:
 - książki telefoniczne
 - listy adresowe (email, listy adresów IP, itd)
- Każdy wpis jest dostępny przez klucz:
 - znając imię i nazwisko, wyszukujemy telefon
 - uwaga: taki klucz nie jest unikalny a powinien
 - o znając imię i nazwisko, wyszukujemy adres e-mail

<u>Aplikacje</u>

- Niektóre aplikacje po prostu udostępniają interfejs do usługi katalogowej.
 - o elektroniczna książka telefoniczna.
- Inne aplikacje używają usługi katalogowej do przechowywania informacji konfigurującej, pomocniczych baz danych, itd.

Struktura informacji

- □ Zwykle, informacja w katalogu ma strukturę hierarchiczną (lecz nie zawsze).
- Struktura danych (hierarchia) jest często użyteczna w wyszukiwaniu danych i stanowi (minimalną) relację pomiędzy rekordami.

Struktury usług katalogowych

Model administracyjny	Struktura katalogu w oparciu o:
Geograficzny	Lokalizację geograficzną
Strukturalny	Strukturę organizacji
Biznesowy Research Sales	Funkcje organizacji
Hybrydowy	 Lokalizację dla głównych jednostek Strukturę organizacji dla mniejszych jednostek

Przykład: DNS

- Domain Name System jest przykładem usługi katalogowej:
- hierarchiczna struktura
- □ dla każdego rekordu, jest jednoznaczny klucz (nazwa DNS) i grupa atrybutów:
 - o adres IP
 - serwer poczty
 - o informacje o hoście
 - o itd...
- przykłady użycia DNS przez inne aplikacje/usługi
 - Realtime Blackhole List (RBL): filtrowanie spamu
 - o rekordy SRV: zawierają host udostępniający usługę

NIS/NIS+

- Network Information Service (NIS), znane wcześniej jako Yellow Pages
- □ Tworzą domenę w sieci lokalnej (jak w MS)
 - o identyfikowana przez unikalną nazwę
- NIS płaska struktura, informacje na serwerze
 NIS, każdy host ma klienta
 - ypbind wyszukuje serwery
- Serwer ma bazę danych, tworzoną na podstawie plików konfiguracyjnych
 - /etc/ethers, hosts, networks, protocols, services, aliases
- □ NIS może zastąpić DNS
 - o nsswitch.cons kolejność tłumaczenia nazw (NIS, DNS)

NIS/NIS+

- □ NIS+: tylko Solaris
- Architektura hierarchiczna, rozproszona
 - skalowalność: dowolnie duże domeny
- □ Bardziej złożone struktury danych
 - tabele wielokolumnowe
 - NIS tylko 2 kolumny
- Mechanizm bezpieczeństwa
 - NIS nie ma uwierzytelnienie klienta/serwera
 - NIS+: uwierzytelnienie, szyfrowanie DES
 - NIS+: określenie poziomów dostępu (NIS: brak!)
- □ Lepiej zapomnieć o NIS, jeśli można użyć NIS+

Domeny Microsoft

- □ Active Directory: usługa katalogowa Microsoft
 - o implementuje standard LDAP
 - o rozszerza znacznie funkcjonalność LDAP
 - zamknięty system
- Posiada rozbudowane funkcje
 - kontroli dostępu
 - replikacji
 - zarządzania zaufaniem

- X.500 jest usługą katalogową, która jest już w użyciu od dawna
 - Używa stosu protokołów OSI
 - używa warstw wyższych (niż transport) stosu OSI
 - Ciężka usługa (protokół)
 - bardzo rozbudowana
 - bardzo szczegółowa
 - bardzo kosztowna w implementacji

LDAP

- □ Powstało kilka lekkich implementacji X.500 najnowszą jest LDAP:
 - Lightweight Directory Access Protocol
 - Używa TCP (lecz można go przenieść na inne protokoły).
 - 90% funkcjonalności X.500
 - 10% kosztu

LDAP i Uniwersytet w Michigan

- LDAP powstał na Uniwersytecie w Michigan.
- □ LDAP może być "nakładką" (ang. *frontend*) do X.500 lub samodzielnie.
- LDAP jest dostępny komercyjnie od szeregu producentów

Definicja LDAP

- □ RFC 1777:
 - sposób reprezentacji danych
 - określa operacji i ich realizację przy pomocy protokołu żądanie/odpowiedź.
- □ RFC 1823: Application Programming Interface (stat się standardem)

Udostępnione API – nie potrzeba programowania gniazd!

Reprezentacja danych w LDAP

- Każdy rekord ma jednoznaczny klucz nazywany distinguished name (w skrócie DN).
- Klucz DN (RFC 1779) ma być używany przez ludzi (nie tylko komputery).
- Każdy DN jest ciągiem składników.
 - Każdy składnik jest łańcuchem znaków zawierającym parę atrybut=wartość.

Przykładowy DN

```
CN=Adam Wierzbicki,
OU=SK,
O=PJWSTK,
C=PL
```

Zwykle pisany jest w jednej linii.

Hierarchia

- Jak nazwy DNS, klucz DN może być interpretowany jako część hierarchii.
- Ostatni składnik klucza DN jest na najwyższym poziomie w hierarchii.

CN=Krzysztof Kalinowski,OU=MM,O=PJWSTK,C=PL

Przykładowa hierarchia

Składniki mogą zawierać dowolne atrybuty, ale istnieje standardowa hierarchia (dla globalnej przestrzeni nazw LDAP):

C nazwa kraju

O nazwa organizacji

OU nazwa części organizacji

CN nazwa własna

L nazwa lokalizacji

ST stan lub region

STREET adres

Operacje LDAP

- Dodanie, usunięcie, modyfikacja rekordu
- Zmiana klucz rekordu (dn).
- Wyszukiwanie (główna operacja)
 - Wyszukaj w części katalogu rekordy, które spełniają określone kryteria.

<u>Uwierzytelnienie</u>

- Uwierzytelnienie LDAP może używać prostych haseł (otwarty tekst) lub Kerberos.
- LDAP V3 obsługuje inne techniki uwierzytelnienia, w tym używające kluczy publicznych.

Bibliografia o LDAP

- □dokumentacja serwera LDAP firmy Netscape
- publikacje o LDAP z Uniwersytetu Michigan
- □www.openldap.org
- □RFC: 1777, 1773, 1823, ...

Podsumowanie zarządzania sieciami

- □ Zarządzanie sieciami stanowi obecnie 80% kosztu utrzymania sieci
- Zarządzanie sieciami to bardziej sztuka, niż nauka
 - o co mierzyć, monitorować?
 - Jak reagować na awarie?
 - Jak filtrować, korelować powiadomienia o awariach?
 - Jak wygodnie i bezpiecznie zarządzać kontami, uprawnieniami, hasłami?
 - Jak zarządzać usługami w sieci?