

THE UNIVERSITY OF TEXAS AT AUSTIN

EE381V LARGE SCALE OPTIMIZATION

Problem Set 0

Edited by \LaTeX

Department of Computer Science

STUDENT
Jimmy Lin

xl5224

COURSE COORDINATOR

Sujay Sanghavi

UNIQUE NUMBER

 $\overline{17350}$

RELEASE DATE

September 5, 2014

DUE DATE

September 11, 2014

TIME SPENT

10 hours

September 8, 2014

Table of Contents

1	Mat	tlab and Computational Assignment
	1.1	Algorithm 1: Least Square
		1.1.1 Small-scale dataset: Succeed
		1.1.2 Medium-scale dataset: Succeed
		1.1.3 Large-scale dataset: Failed
	1.2	Algorithm 2: optimization with LASSO
		1.2.1 Small-scale dataset: Succeed
		1.2.2 Medium-scale dataset: Succeed
		1.2.3 Large-scale dataset: Failed
	1.3	Orthogonal Matching Pursuit
		1.3.1 Small-scale Dataset: Succeed
		1.3.2 Medium-scale Dataset: Succeed
		1.3.3 Large-scale Dataset: Succeed
2	Line	ear Algebra Review
	2.1	More Range and Nullspace
		2.1.1 Smallest and Largest rank of $C = AB$
		2.1.2 Largest rank of $C = AB$
	2.2	Riesz Representation Theorem
	2.3	Polynomial Vector Spaces
		2.3.1 $Tp = 2p(t) - tp'(t)$: True
		2.3.2 $Tp = 2p(t) - 3tp'(t)$: True
		2.3.3 Characterization of Surjectivity: $a_0 \neq 0$
	2.4	Rank
		2.4.1 Show that $rank(A) \leq min\{m, n\}$
A	Coc	des Printout
	A.1	Sparse Recovery
		A.1.1 Algorithm 1: Least Square
		A.1.2 Algorithm 2: Optimization with LASSO
	A.2	Orthogonal Matching Pursuit
		A.2.1 OMP Routine
		A 2.2 Regression Scripts

Chapter 1

Matlab and Computational Assignment

1.1 Algorithm 1: Least Square

The command to invoke standarded least-squared regression:

>> algo1()

Note that algo 1.m includes scripts for all three datasets.

1.1.1 Small-scale dataset: Succeed

The brief summary of applying standarded least-squared regression on small-scale dataset is as follows:

- Total CPU time (secs) = 0.18
- CPU time per iteration = 0.02
- Regression Error $||X\beta y||$: 1.1698e-10
- Testing Error $||X_{test}\beta y_{test}||$: 23.058394 (pretty large)

1.1.2 Medium-scale dataset: Succeed

The brief summary of applying standarded least-squared regression on medium-scale dataset is as follows:

- Total CPU time (secs) = 43.95
- CPU time per iteration = 5.49
- Regression Error $||X\beta y||$: 3.2594e-09
- Testing Error $||X_{test}\beta y_{test}||$: 19.862394 (pretty large)

1.1.3 Large-scale dataset: Failed

This standarded least-square regression task is too large-scaled to be computed.

1.2 Algorithm 2: optimization with LASSO

The command to invoke least-squared regression with LASSO:

>> algo2()

Note that algo2.m includes scripts for all three datasets.

1.2.1 Small-scale dataset: Succeed

The brief summary of applying least-squared regression with LASSO on small-scale dataset is as follows:

- Total CPU time (secs) = 0.38
- CPU time per iteration = 0.02
- Regression Error: 6.7886e-10
- Testing Error: 0.144338
- Supports (non-zeros entries of β): 43 (500 atoms in total)

1.2.2 Medium-scale dataset: Succeed

The brief summary of applying least-squared regression with LASSO on medium-scale dataset is as follows:

- Total CPU time (secs) = 126.66
- CPU time per iteration = 4.87
- Regression Error: 4.4292e-09
- Testing Error: 0.078289
- Supports (non-zeros entries of β): 342 (5000 atoms in total)

1.2.3 Large-scale dataset: Failed

This least-square regression with LASSO task is too large-scaled to be computed.

Remarks: Least-squared regression with LASSO does outperfrom standarded least-squared regression in its prediction accuracy. Besides, it has higher computational complexity since it requires more iterations for convergence and each iteration cost more time to complete.

1.3 Orthogonal Matching Pursuit

The command to invoke regression with OMP preprocessing:

>> regress_omp()

1.3.1 Small-scale Dataset: Succeed

The brief summary of applying regression with OMP feature selection on small-scale dataset is as follows:

- Indices of Features selected by OMP (with order): 402, 235, 86, 11, 108.
- Elapsed time is 0.198106 seconds.
- Regression Error $||X\beta y||$: 5.3785e-02
- Testing Error $||X_{test}\beta y_{test}||$: 4.4208e-02

1.3.2 Medium-scale Dataset: Succeed

The brief summary of applying regression with OMP feature selection on medium-scale dataset is as follows:

- Indices of Features selected by OMP (with order): 577, 2760, 561, 3614, 3958.
- Elapsed time is 0.209093 seconds.
- Regression Error $||X\beta y||$: 2.1955e-01
- Testing Error $||X_{test}\beta y_{test}||$: 1.8219e-02

1.3.3 Large-scale Dataset: Succeed

The brief summary of applying regression with OMP feature selection on large-scale dataset is as follows:

- Indices of Features selected by OMP (with order): 17099, 29426, 35373, 22452, 43354.
- Elapsed time is 2.994790 seconds.
- Regression Error $||X\beta y||$: 6.9964e-01
- Testing Error $||X_{test}\beta y_{test}||$: 6.4437e-03

Note that Elapsed time is defined as OMP preprocessing and regression for selected atoms on that dataset, but not included computation for regression error and testing error.

Remarks: Least-squared regression on OMP feature selection performs much better than standarded least-squared regression and least-squared regression with LASSO. Besides, it has lower computational complexity since it allows the large-scale dataset (third dataset) to be regressed.

Chapter 2

Linear Algebra Review

2.1 More Range and Nullspace

2.1.1 Smallest and Largest rank of C = AB

Conditions: $A \in \mathbb{R}^{10 \times 10}$ with rank(A) = 5 and $B \in \mathbb{R}^{10 \times 10}$ with rank(B) = 5. Sylvester's rank inequality: $\forall A \in R^{m \times k}, B \in \mathbb{R}^{k \times n}$

$$rank(A) + rank(B) - k \le rank(AB)$$

Smallest rank of C = AB is rank(A) + rank(B) - k = 5 + 5 - 10 = 0. Largest rank of C = AB is min(rank(A), rank(B)) = min(5, 5) = 5.

2.1.2 Largest rank of C = AB

Conditions: $A \in \mathbb{R}^{10 \times 15}$ with rank(A) = 7 and $B \in \mathbb{R}^{15 \times 11}$ with rank(B) = 8. Largest rank of C = AB is min(rank(A), rank(B)) = min(7, 8) = 7.

2.2 Riesz Representation Theorem

Linear map $f: \mathbb{R}^n \to \mathbb{R}$ has two critical properties due to its linearity:

additivity:
$$f(x+y) = f(x) + f(y), \forall x, y \in dom(f)$$
 (2.1)

homogeneity:
$$f(\alpha x) = \alpha f(x), \forall \alpha \in \mathbb{R}, x \in dom(f)$$
 (2.2)

Let arbitrary vector $\mathbf{w} = (\alpha_1, \alpha_2, \dots, \alpha_n) \in \mathbb{R}^n$. Then we can denote \mathbf{w} as linear combination of standard basis

$$\mathbf{w} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_n \mathbf{e}_n \tag{2.3}$$

Now we start to show that $f(\mathbf{w})$ can be represented as inner product of \mathbf{w} and another vector.

$$f(\mathbf{w}) = f(\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \dots + \alpha_n \mathbf{e}_n)$$
 standard basis representation(2.3) (2.4)

$$= f(\alpha_1 \mathbf{e}_1) + f(\alpha_2 \mathbf{e}_2) + \dots + f(\alpha_n \mathbf{e}_n)$$
 additivity of linear map(2.1) (2.5)

$$= \alpha_1 f(\mathbf{e}_1) + \alpha_2 f(\mathbf{e}_2) + \dots + \alpha_n f(\mathbf{e}_n)$$
 additivity of linear map(2.2) (2.6)

$$= \langle (f(\mathbf{e}_1), f(\mathbf{e}_2), \dots, f(\mathbf{e}_n)), (\alpha_1, \alpha_2, \dots, \alpha_n) \rangle$$
 definition of inner product (2.7)

$$= \langle \mathbf{x}, \mathbf{w} \rangle$$

$$\mathbf{x} = (f(\mathbf{e}_1), f(\mathbf{e}_2), \dots, f(\mathbf{e}_n))$$
 (2.8)

Hence, we have successfully proved that

$$\forall \text{ linear map } f: \mathbb{R}^n \to \mathbb{R}, \exists \mathbf{x} \in \mathbb{R}^n, f(\mathbf{w}) = \langle \mathbf{x}, \mathbf{w} \rangle \tag{2.9}$$

2.3 Polynomial Vector Spaces

2.3.1 Tp = 2p(t) - tp'(t): True

T is represented by an upper bi-diagonal matrix with all diagonal entries being $a_0 = 2$ and sub-diagonal entries to be $a_1 = -1$. Obviously, the matrix is full-rank and hence the range is the entire (d+1)-dimensional space.

2.3.2
$$Tp = 2p(t) - 3tp'(t)$$
: True

T is represented by an upper bi-diagonal matrix with all diagonal entries being $a_0 = 2$ and sub-diagonal entries to be $a_1 = -3$. Obviously, the matrix is full-rank and hence the range is the entire (d+1)-dimensional space.

2.3.3 Characterization of Surjectivity: $a_0 \neq 0$

If $a_0 = 0$, the matrix representing T is not full-rank anymore. The dimensionality of range is not (d+1), which suggests that the vector q with highest degree d is not reachable by abitrary pair of Tp. This also indicates that if $a_0 = 0$, the corresponding mapping T is not surjective anymore: for every polynomial(vector) $q \in V$, there does not exist a polynomial(vector) $p \in V$ such that Tp = q. Mathematically,

$$a_0 = 0 \implies \forall q \in V, \exists p \in V, s.t. \ Tp = q$$
 (2.10)

2.4 Rank

- 2.4.1 Show that $rank(A) \leq min\{m, n\}$
- 2.4.2 Sylvester's rank inequality
- 2.4.3 Subadditivity
- 2.4.4 Frobenius Rank Inequality

Appendix A

Codes Printout

A.1 Sparse Recovery

A.1.1 Algorithm 1: Least Square

```
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
%%% Scripts invoking cvx least-square routines to
%%% solve problems using our three datasets.
\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}
%%% standard least-square for Small-scale dataset
cvx_begin
                variable b1(size(X1,2))
                 minimize( norm( X1*b1-y1 ) )
cvx_end
RegressionError1 = norm( X1*b1-y1 )
TestingError1 = norm( X1test*b1 - y1test )
%%% standard least-square for Medium-scale dataset
cvx_begin
                variable b2(size(X2,2))
                minimize ( norm ( X2*b2 - y2 ) )
cvx_end
RegressError2 = norm( X2*b2 - y2 )
TestError2 = norm(X2test*b2 - y2test)
%%% standard least-square for Large-scale dataset
cvx_begin
                 variable b3(size(X3,2))
                 minimize( norm( X3*b3-y3 ) )
cvx_end
RegressionError3 = norm( X3*b3 - y3 )
TestingError3 = norm( X3test*b3 - y3test)
```

A.1.2 Algorithm 2: Optimization with LASSO

```
%%% Scripts invoking cvx least-square routines to
%%% solve LASSO problems using our three datasets.
format short e
EPSILON = 10e-5;
%%% LASSO least-square for Small-scale dataset
cvx_begin
        variable b1(size(X1,2))
        minimize ( norm(X1*b1-y1) + norm(b1,1) )
cvx_end
RegressionError1 = norm( X1*b1-y1 )
TestingError1 = norm( X1test * b1 - y1test )
Support1 = sum(((b1 < EPSILON) + (b1 > -EPSILON)) < 2)
%%% LASSO least-square for Medium-scale dataset
cvx_begin
        variable b2(size(X2,2))
        minimize ( norm(X2*b2-y2) + norm(b2, 1))
cvx_end
RegressionError2 = norm( X2*b2-y2 )
TestingError2 = norm( X2test * b2 - y2test)
Support2 = sum((b2 < EPSILON) + (b2 > -EPSILON)) < 2)
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
%%% LASSO least-square for Large-scale dataset
cvx_begin
        variable b3(size(X3,2))
        minimize ( norm(X3*b3-y3) + norm(b3, 1) )
RegressionError3 = norm( X3*b3-y3 )
TestingError3 = norm( X3test * b3 - y3test)
Support3 = sum(((b3 < EPSILON) + (b3 > -EPSILON)) < 2)
```

A.2 Orthogonal Matching Pursuit

A.2.1 OMP Routine

```
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
%% Orthogonal matching Pursuit
function Iset = omp (X, y, SPARSITY)
%% INITIALIZATION
[target_feat_dot_prod, target_feat_idx] = max(X' * y);
Iset = [target_feat_idx];
%% AUGMENTATION
residual = y;
for iter = 1:(SPARSITY-1),
           \mbox{\ensuremath{\$}} perpendicular complement of y to X_i
           phi = X(:, Iset);
           P = phi * inv(phi'*phi) * phi';
           I = eye(size(P));
           residual = (I - P) * residual;
           % elect new atom and add to selected atom set
           [target_feat_dot_prod, target_feat_idx] = max(X' * residual);
           % NOTE that new feature(atom) will not pre-exist in Iset
           % This is theoreotically guaranteed by orthogonal projection
           Iset = [Iset, target_feat_idx];
end
```

A.2.2 Regression Scripts

```
%%% Invoke CVX least square regression after OMP
%%% feature selection
$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ$\circ
SPARSITY = 5; % SPARSITY parameter for OMP
%%% Small-scale dataset
tic
Iset1 = omp(X1, y1, SPARSITY);
subX1 = X1(:, Iset1);
cvx_begin
               variable sub_b1(SPARSITY);
               minimize(norm(subX1 * sub_b1 - y1))
toc
Tset.1
RegressionError1 = norm(subX1*sub_b1 - y1)
TestingError1 = norm(X1test(:,Iset1)*sub_b1 - y1test)
\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}
%%% Medium-scale dataset
Iset2 = omp(X2, y2, SPARSITY);
subX2 = X2(:, Iset2);
cvx_begin
              variable sub_b2(SPARSITY);
               minimize(norm(subX2 * sub_b2 - y2))
cvx end
toc
Tset.2
RegressionError2 = norm(subX2*sub_b2 - y2)
TestingError2 = norm(X2test(:,Iset2)*sub_b2 - y2test)
%%% Large-scale dataset
Iset3 = omp(X3, y3, SPARSITY);
subX3 = X3(:, Iset3);
cvx_begin
               variable sub_b3(SPARSITY);
              minimize(norm(subX3 * sub_b3 - y3))
cvx_end
toc
Tset.3
RegressionError3 = norm(subX3*sub_b3 - y3)
TestingError3 = norm(X3test(:,Iset3)*sub_b3 - y3test)
```