Lösung 6 (Zyklische Blockcodes)

a) Der Parameter b muss für alle gültigen Generator- oder Checkpolynome 1 sein. Zusätzlich muss h(D) ein Faktor von $D^N - 1$ sein, d.h.:

$$D^{15} - 1 = h(D) \cdot g(D) \Rightarrow (D^{15} - 1) \mod h(D) = 0.$$

Für a = 0:

$$\frac{D^{15}}{D^{15}} + D^{13} + D^{11} + D^{10} + D^{7} + D^{5} + D^{11} + D^{10} + D^{11} + D^{10} + D^{7} + D^{5} + D^{11} + D^{10} + D^{11} + D^{10} + D^{11} + D^{10} + D^{$$

Für a = 1:

$$\frac{D^{15}}{D^{15} + D^{14} + D^{13}} + D^{11} + D^{10} + D^{7} + D^{5} \\ = \frac{D^{14} + D^{13}}{D^{14} + D^{13} + D^{11} + D^{10}} + D^{10} + D^{7} + D^{5} + D^{4} + D^{14} + D^{13} + D^{11} + D^{10} + D^{9} + D^{6} + D^{4} \\ = \frac{D^{12} + D^{11}}{D^{12} + D^{11} + D^{10}} + D^{9} + D^{7} + D^{6} + D^{5} + D^{4} + D^{2} + D^{6} + D^{5} + D^{4} + D^{2} + D^{6} + D^{5} + D^{6} + D^{6} + D^{5} + D^{6} + D^{$$

b) Das Generatorpolynom wurde bereits im Aufgabenteil a) berechnet:

$$g(D) = (D^{15} - 1) : h(D) = D^5 + D^4 + D^2 + 1$$

 $N = 15$
 $K = grad\{h(D)\} = 10$
 $N - K = grad\{g(D)\} = 5$
 $R = K/N = 10/15 = 2/3$

Damit g(D) und h(D) einen gültigen zyklischen Code bilden müssen sie Faktoren von D^N-1 sein, d.h. $D^{15}-1=h(D)\cdot g(D)$. Im Prinzip folgt dies direkt aus den Ergebnissen im Aufgabenteil a). Dennoch sei hier die vollständige Rechnung gegeben:

$$\begin{split} g(D) \cdot h(D) &= (D^5 + D^4 + D^2 + 1)h(D) = D^5 h(D) + D^4 h(D) + D^2 h(D) + h(D) \\ &= D^{15} + D^{14} + D^{13} + D^{11} + D^{10} + D^7 + D^5 \\ &+ D^{14} + D^{13} + D^{12} + D^{10} + D^9 + D^6 + D^4 \\ &+ D^{12} + D^{11} + D^{10} + D^8 + D^7 + D^4 + D^2 \\ &+ D^{10} + D^9 + D^8 + D^6 + D^5 + D^2 + 1 = D^{15} + 1 \end{split}$$

c) Nach Satz 4.24 aus dem Skript "... ist die Codedistanz d gleich dem kleinsten Gewicht aller Codewörter, die vom N-stelligen Nullvektor verschieden sind". Laut Aufgabe wird nur eine sinnvolle obere Schranke für t gesucht. Bei g(D) handelt es sich um das Codewort mit dem niedrigsten Grad $m \geq 1$. Also folgt aus $w(\vec{g}) = 4$ auch $t \leq \frac{d-1}{2} = \frac{3}{2}$. Die wir keine halben Fehler korrigieren können hat dieser Code also eine maximal mögliche Korrekturkapazität von 1.

Die Syndrome werden mit der Beziehung $S_i(D) = e_i(D) \mod g(D)$ bestimmt. Die folgende Syndromtabelle zeigt die Syndrome für alle Einzelfehlerpolynome:

$e_i(D)$	$S_i(D)$
1	1
D	D
D^2	D^2
D^3	D^3
D^4	D^4
D^5	$D^4 + D^2 + 1$
D^6	$D^4 + D^3 + D^2 + D + 1$
D^7	$D^3 + D + 1$
D^8	$D^4 + D^2 + D$
D^9	$D^4 + D^3 + 1$
D^{10}	$D^2 + D + 1$
D^{11}	$D^3 + D^2 + D$
D^{12}	$D^4 + D^3 + D^2$
D^{13}	$D^3 + D^2 + 1$
D^{14}	$D^4 + D^3 + D$

Die Syndrome können alle eindeutig auf das dazugehörige Fehlerpolynom abgebildet werden, daher kann dieser Code auch alle Einzelfehler korrigieren.

d) N-K < K, wir entscheiden uns daher für die zweite Coderschaltung aus dem Skript:

