Costruzione di Motori per Aeromobili – 01 SRZ MT

Laurea in Ingegneria Aerospaziale - A.A. 2021/2022

i dzione di Motori per Acromobili – o i ortz ivi i

Fatica

Esercitazione n° 1

Redigere una breve relazione tecnica e raccogliere in allegato i fogli

ES. 1 - Diagramma di Wöhler - Dipendenza della vita a fatica dalla tensione alternata.

1ª parte. Costruite una curva di Wöhler (σ_m = 0), in scala bi-logaritmica, sapendo che nella zona di vita a termine vale il modello σ_a^{k} ·N=C, che il limite di fatica alternata è σ_{D-1} = 250 MPa (N ≥ 10⁶) e che il carico unitario di rottura è R_m = 600 MPa. Calcolate la costante C e l'esponente k.

 2^a parte. Usando la curva di Wöhler ricavata nella 1^a parte dell'esercizio, calcolate la durata della vita a fatica N di 2 provini di sezione circolare con diametro D = 7 mm, sollecitati con trazione alternata di ampiezza rispettivamente $P_{a1} = 10$ kN e $P_{a2} = 15$ kN.

[C = 2.18495×10^{20} ; k = 5.98; N₁ = $7.94 \cdot 10^5$; N₂ = $7.03 \cdot 10^4$]

ES. 2 - Diagramma di Haigh - Dipendenza della vita a fatica dalla tensione media.

1ª parte.

Costruite il diagramma di Haigh per un materiale con le seguenti proprietà meccaniche: R_m = 1180 MPa, $R_{p0.2}$ = 880 MPa, σ_{D-1} = 480 MPa (vita illimitata).

2ª parte.

Una barra a sezione circolare è sollecitata da carico di trazione variabile, con un andamento sinusoidale (è necessaria questa ipotesi?), tra $P_{max} = 5 \cdot 10^5$ N e $P_{min} = 1 \cdot 10^5$ N. <u>Visualizzando il procedimento sul diagramma di Haigh</u>, costruito nella 1ª parte dell'esercizio, determinate il diametro della barra necessario per garantire un coefficiente di sicurezza S = 1.5 rispetto al limite di proporzionalità e S = 3 a fatica per vita infinita.

Usando lo stesso diagramma calcolate il coefficiente di sicurezza a fatica nel caso di sollecitazione $\sigma_m = -200 \text{ MPa}$ e $\sigma_a = 200 \text{ MPa}$.

 $[D \cong 44 \text{ mm}; S = 2.4]$

ES. 3 - Parametri che influenzano la vita a fatica di un componente: effetto scala, finitura superficiale.

Un albero, in acciaio 50CrMo4 (EN 10083 - $R_{m,N}$ = 1100 MPa, $R_{e,N}$ = 900 MPa, K_A = 1) - diametro d = 30 mm - rugosità R_a = 3.2 μ m, è sollecitato da un momento flettente con componente media M_{fm} = 600 Nm e componente alternata M_{fa} = 200 Nm. Disegnate il diagramma di Haigh per il componente e calcolate il coefficiente di sicurezza a fatica (si assuma la retta di lavoro σ_m = cost).

[S = 4.5 con retta di lavoro σ_m = cost]

ES. 4 - Effetto di intaglio

Un albero è sollecitato da torsione alternata, M_t =500 Nm, e flessione alternata, M_t =350 Nm. Sull'albero è lavorato uno spallamento, D=40 mm - d=36 mm - raggio di raccordo dell'intaglio r=2 mm. L'albero è rettificato (fine) e costruito in acciaio bonificato 50CrMo4 (EN 10083 - $R_{m,N}$ = 1100 MPa, $R_{e,N}$ = 900 MPa, K_A = 1).

Si valuti l'effetto di intaglio.

Si disegni il diagramma di Haigh e si trovi il coefficiente di sicurezza a fatica per vita infinita.

[S = 2.5]

Fatica

ES. 5 - Effetto combinato di flessione e torsione in alberi rotanti - Dipendenza del coefficiente di sicurezza dalle condizioni di carico.

Un albero, R_m = 900 MPa, $R_{p0.2}$ = 750 MPa, σ_{D-1} = 400 MPa, è sollecitato simultaneamente da flessione e di torsione, ambedue con una componente media e una alternata. Nel punto più sollecitato le tensioni effettive sono: σ_m = 150 MPa, σ_a = 80 MPa, τ_m = 100 MPa, τ_a = 30 MPa.

Calcolate il coefficiente di sicurezza a fatica nei due casi

- componente alternata proporzionale alla componente media,
- componente media costante.

 $[S(\sigma_m/\sigma_{a,eq}=cost) = 2.5; S(\sigma_m = cost) = 3.5]$

ES. 6 - Accumulo di danno

Data la sequenza di tensioni (alternate) $\sigma_{a,1}$ = 450 MPa per N₁/N = 0.08, $\sigma_{a,2}$ = 380 MPa per N₂/N = 0.24, $\sigma_{a,3}$ = 310 MPa per N₃/N = 0.40, $\sigma_{a,4}$ = 290 MPa per N₄/N = 0.08 e $\sigma_{a,5}$ = 200 MPa per N₅/N = 0.2 calcolate il numero di cicli totali prima della rottura N_{tot}, utilizzando il modello di Miner. Utilizzate il materiale e relativa curva di Wöhler tracciata nell'Es. 1.1.

 $[N_{tot} = 1.37 \cdot 10^5]$

ES. 7 - Effetto di carichi ad ampiezza diversa e con diverso valore medio. (Fatigue – Chapter 4)

Durante una missione tipo un disco di turbina è sollecitato da carichi variabili nel tempo. L'andamento della tensione normale circonferenziale nel punto A (critico per il cedimento a fatica) che ne consegue è diagrammato nella figura sottostante.

Calcolate il numero di missioni che il disco può sopportare prima della sua sostituzione.

Materiale: R_m = 900 MPa, $R_{p0.2}$ = 750 MPa, σ_{D-1} = 400 MPa.

 $[N_M = 7.84 \cdot 10^4]$

Fatica

ES. 8 - Valutazione del limite di fatica con il metodo stair-case.

La tabella 1 riassume i risultati di una campagna di prove di fatica su un acciaio. Dai risultati sperimentali determinate il limite di fatica σ_D per probabilità di sopravvivenza al 50%, 90% e al 97.5%.

Tabella 1

σ_{a}	Ordine delle prove d = 10 N/mm ² x: rotta o: non rotta																			
N/mm ²	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
490	Х						Х				Х									
480		Х				0		х		0		х		х		х				х
470			Х		0				0				0		0		Х		0	
460	**********			0														0		

	Es	ito	i	n _i	i*n _i	i ² *n _i	
	х	0					
Σ							
	Σn	Σn		N=Σ n _i	A=Σ i*ni	B=Σ i2*ni	

Formule in accordo alla normativa UNI

$$\sigma_D = \sigma_0 + d\left(\frac{A}{N} \pm 0.5\right)$$

Deviazione standard:

$$s = 1.62 d \left(\frac{N \cdot B - A^2}{N^2} + 0.029 \right).$$

$$\sigma_{D(90\%)} = \sigma_{D(50\%)} + X_{(90\%)} \cdot s.$$

 σ_0 : tensione minima per l'evento meno frequente (rottura, non rottura).

 μ : valor medio.

s: deviazione standard.

d: $\Delta\sigma_a$

Nota: Nell'equazione di σ_D , il segno tra parentesi dipende dall'evento meno probabile.

Se runout → +

Se rottura → -

$$[\sigma_D = \sigma_{D(50\%)} = 475 \text{ MPa}; \sigma_{D(90\%)} = 465 \text{ MPa}; \sigma_{D(97.5\%)} = 460 \text{ MPa}]$$

Fatica

Fatica

Coefficienti di intaglio per albero con spallamento

Fatica

Effetto della finitura superficiale

Effetto del materiale

