T 7 7	A '	$\overline{}$
1 \	^	

КАФЕДРА №14

	ОТЧЕТ	
ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
профессор, д-р техн. наук	/	В.Р.Луцив
должность, уч. степень, звание	подпись/дата	инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №4

СИНТЕЗ РЕКУРСИВНОГО ЦФ ПО ЗАДАННОЙ ЕГО АЧХ

по курсу: ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

РАБОТУ ВЫПОЛІ	НИЛ		
СТУДЕНТ ГР.	1842	/	А.В.Герасимец
$\mathcal{N}_{\underline{0}}$			
		подпись/дата	инициалы, фамилия

Санкт-Петербург, 2020

1. Цель работы

Синтезировать рекурсивный ЦФ по заданной АЧХ.

2. Постановка задачи

- Тип ЦФ: ФВЧ
- Вид АЧХ(тип ЦФ): Баттерворта
- $F_0 = 60 \Gamma$ ц
- \bullet $R_p = 0.5 \div 1.5$ дБ
- $R_s = 15 \div 25$ дБ
- $F_d = 200 \Gamma$ ц

3. Ход работы

Задаем частоту дискретизации F_d и частоту среза F_0 (скаляр для ФВЧ). Определили частоту Найквиста, выбрали границы полос пропускания α_p и задерживания α_s ($\alpha_p < \alpha_s$), уровень пульсаций в полосе пропускания R_p и R_s - минимально необходимое затухание в полосе задерживания в дБ. С помощью функции [N1, α_{0s}] = buttord(α_p , α_s , R_p , R_s) определили порядок N фильтра и нормированной частоты среза α_{0s} . Вычисляем векторы коэффициентов b и а с помощью функции [b, a] = butter(N1, a0s, 'high'). Далее, по вычисленным векторам коэффициентов b И a фильтра определили реальную АЧХ синтезированного фильтра. Построили график рассчитанной АЧХ.

4. Результаты

6. Вывод

В ходе работы над лабораторной работы был синтезирован рекурсивный цифровой фильтр по заданной АЧХ. Получен график амплитудно-частотной характеристики фильтра высоких частот Баттерворта (АЧХ в пределах полос пропускания и задерживания изменяется монотонно).

7. Приложение

7.1. Листинг программы

```
Fd = 200; % частота дискретизации
F0 = 60; % частота среза(скаляр для ФВЧ)
ар= 61/100; % границы полос пропускания
as= 59/100; % границы полос задерживания
Rp = 1; % уровень пульсаций в полосе пропускания в децибелах
Rs = 20; % минимально необходимое затухание в полосе подавления в
децибелах
[N1, a0s] = buttord(ap, as, Rp, Rs); % определяются минимально
необходимый порядок N фильтра и нормированные частоты среза a0s
синтезированного фильтра
%N = N1; % реально применяемый порядок фильтра зависит от количества
срезов АЧХ
[b, a] = butter(N1, a0s, 'high'); % вычисляются векторы коэффициентов b и а
фильтра
v = freqz(b,a,100); % по вычисленным векторам коэффициентов b и а
фильтра определяется реальная АЧХ синтезированного фильтра
mod = abs(v); % возвращает модуль (абсолютное значение) комплексного
вектора vec.
plot(mod);
grid on;
title 'АЧХ фильтра Баттерворта, ФВЧ';
xlabel('Частота')
ylabel('Амплитуда')
xticks(0:20:100)
```