Project Design Phase-II Technology Stack (Architecture & Stack)

Date	17 October 2022	
Team ID	PNT2022TMID47541	
Project Name	IoT Based Smart Crop Protection System for	
	Agriculture	
Maximum Marks	4 Marks	

Technical Architecture:

The Deliverable shall include the architectural diagram as below and the information as per the table 1 & table 2

Guidelines:

- 1. Connects all the IOT devices
- 2. Indicates sensor for motion detection
- 3. Indicates sensor for detecting soil moisture
- 4. Indicates sensor for detecting the humidity
- 5. Indicates sensor for detecting the temperature
- 6. Indicates water relay for switching on the motor
- 7. Indicates sensor for detecting the water level in tank
- 8. Indicates code for all the IoT sensors functioning to Arduino UNO
- 9. Indicates GPS/GPRS module to send messages to user
- 10. GPS/GPRS module sends message to satellite
- 11. Satellite sends message to user mobile phone
- 12. Indicates IBM Watson IoT Platform for consuming data, visualization and decision making.
- 13. Indicates object storage for storing data of the IoT devices
- 14. Connection between IBM Watson IoT Platform and Node-Red
- 15. Provides set of nodes to create User Interface
- 16. Indicates the protocol for connections between IoT devices to send and receive messages
- 17. Generates random data using clarifai
- 18. Indicates python code written for Cloudant DB
- 19. Indicates the web UI seen using mobile phone
- 20. Android app is installed in mobile phone
- 21. User uses the Mobile Phone to see the messages

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Mobile App	Android
2.	Application Logic-1	Logic for sensing the motion detection	Python/C++
3.	Application Logic-2	Logic for sensing the soil moisture	Python/C++
4.	Application Logic-3	Logic for sensing the humidity	Python/C++
5.	Application Logic-4	Logic for sensing the temperature	Python/C++
6.	Application Logic-5	Logic for switching on the motor if the moisture is low	Python/C++
7.	Application Logic-6	Logic for sensing the water level in the tank	Python/C++
8.	Application Logic-7	Logic for sending message to the user mobile	Python/C++
9.	External API-1	Purpose of the API is to access the current weather data	Weather API
10.	Cloud Database	Database Service on Cloud	IBM Cloudant DB
11.	File Storage	Storing the data	Object Storage
12.	Programming tool	Purpose of the tool is for wiring hardware and APIs	Node-Red

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Node-Red	IBM Cloud
2.	Scalable Architecture	3-tier Architecture	Technology used
3.	Performance	The client sends and receives two or more	5G Network
		messages per second	

References:

https://c4model.com/

https://developer.ibm.com/patterns/online-order-processing-system-during-pandemic/

https://www.ibm.com/cloud/architecture

https://aws.amazon.com/architecture

https://medium.com/the-internal-startup/how-to-draw-useful-technical-architecture-diagrams-2d20c9fda90d