Malware Classification through Computer Vision

Prasann Viswanathan Iyer 190070047

Introduction

- Static Malware classification without executing the programme
- Signature matching Standard Method but with limitations
 - Obfuscations in code
 - Exponentially growing number of signatures
- Machine Learning Approaches are more robust and scalable
- Feature Construction issues
 - Disassembly step
 - Binning the types of function calls, counting loops
 - Large Feature space requires reduction with PCA or K-PCA
- Aim is to consider Malware Classification as a Computer Vision problem

Methodology

- Convert Byte Code of Malware to images
 - Map Binary Code to integers in [0,255]
 - Convert to 2D image with dimensions based on size of Malware file
- Apply Transfer Learning via existing Deep Image Neural Networks
 - Inception
 - ResNet
 - o VGG
 - DenseNet
- Classic feature construction method and image method to Decision Forest
- Compare the classification performance

.bytes File to .png Conversion

- bytes file contains byte-wise representation of the malware .asm code
- Each byte represents a number from 0 to 255
 - To construct the R channel of the image we take bytes indexed 0 mod 3
 - To construct the G channel of the image we take bytes indexed 1 mod 3
 - To construct the B channel of the image we take bytes indexed 2 mod 3
- ullet Next we resize the 1D R,G,B arrays to 2D with height and width \propto file size
- My dataset consists of 4307 bytes files with sizes from 1Kb to 10Kb

Transfer Learning Models Used

Inception Network

- o global average pooling layers
- dense layer with 512 nodes ReLu activation
- o output dense layer with 9 nodes with softmax activation

VGG16 Network

- o flattened VGG16 model with 14 million fixed weights
- 2 dense layer with 512 nodes ReLu activation
- o output dense layer with 9 nodes with softmax activation

Evaluation and Interpretation

- Classification Metrics
 - Accuracy
 - True Positive Rate
 - False Positive Rate
 - o F1 score
- Local Interpretable Model-Agnostic explanation algorithm
 - o To understand the reason for our models prediction
- Conclude whether conversion to images assists in Malware Classification
 - With respect to both Classification Metrics and Model Performance Speed

Model Performance

- Accuracy (98.46% on Training and 90.6% on Test) 15
- Loss (0.0555 on Training and 0.3987 on Test)
- Precision 0.91
- Recall 0.91
- F1-Score 0.91

	precision	recall	f1-score	N Obs
0	0.94	0.89	0.91	251
1	0.92	0.90	0.91	107
2	0.87	0.92	0.90	66
3	0.00	0.00	0.00	2
4	0.71	0.85	0.77	88
5	1.00	1.00	1.00	1
6	0.96	0.93	0.94	235
7	0.92	0.96	0.94	112
accuracy			0.91	862
macro avg	0.79	0.81	0.80	862
weighted avg	0.91	0.91	0.91	862

Future Work Directions and Conclusion

- Additional topics not done primarily due to lack of computing abilities
- Training a model from scratch instead of transfer learning (article)
- benign file or a harmful file rather than according to their family
 - Unavailability of a suitable dataset for this
- I could improve performance if I knew which layers to include in the VGG16 model to prevent overfitting to some degree
- Super Pixel Validation technique

Being able to perform so well on RGB photos of malware byte code with only a little fine tweaking is amazing considering that the majority of these models were trained on photographs of dogs, cats, and other pets.

Thank You