Econ6190 Section 9

Oct. 25, 2024

Yiwei Sun

3. Consider a sample of data $\{X_1, \ldots X_n\}$, where

$$X_i = \mu + \sigma_i e_i, i = 1 \dots n,$$

where $\{e_i\}_{i=1}^n$ are iid and $\mathbb{E}[e_i] = 0$, $\operatorname{var}(e_i) = 1$, $\{\sigma_i\}_{i=1}^n$ are n finite and positive constants, and $(\mu) \in \mathbb{R}$ is the parameter of interest.

(a) Let

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$

be the sample mean estimator. Under what condition is $\hat{\mu}_1$ a consistent estimator of μ ? Under what condition is $\hat{\mu}_1 - \mu = O_p(\frac{1}{\sqrt{n}})$?

(a) consistency:
$$\hat{M}_1 \stackrel{P}{\longrightarrow} \mu$$
.

In general, $P(|\hat{M} - \mu| > \delta) \leq \frac{E[(\hat{M} - \mu)^2]}{\delta^2}$, $\forall \delta > 0$

If $\hat{u_i}$ is unbiased, we know by chebysher inequality, if $var(\hat{u_i}) \rightarrow 0$, then \hat{u}_i is consistent. (equivalent as showing $msE(\hat{u}) \rightarrow 0$)

1) check if in is unbiased

check if
$$\hat{u}_{i}$$
 is unbiased.

$$E[\hat{u}_{i}] = E[\frac{1}{n}\sum_{i=1}^{n}X_{i}] = \frac{1}{n}\sum_{i=1}^{n}E[X_{i}] \quad \text{constant. but vary by } i$$

$$= \frac{1}{n}\sum_{i=1}^{n}E[u+\sigma_{i}e_{i}] \quad \text{constant. not indexed by } i$$

$$= u + \frac{1}{n}\sum_{i=1}^{n}E[e_{i}]$$

$$= u + \frac{1}{n}\sum_{i=1}^{n}E[e_{i}]$$

$$= u + \frac{1}{n}\sum_{i=1}^{n}E[e_{i}]$$

$$= u + \frac{1}{n}\sum_{i=1}^{n}E[e_{i}]$$

=> un is an unbiased estimator for u.

2) Derive condition for $var(\hat{\mu}) \rightarrow 0$.

$$var(\hat{n}) = var(\frac{1}{n}\sum_{i=1}^{n}(n+\sigma_{i}e_{i}))$$

$$= var(n+\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}e_{i})$$

$$= var(\frac{1}{n}\sum_{i=1}^{n}\sigma_{i}e_{i})$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} Var \left(\underbrace{\sigma_i e_i} \right) \quad \text{where cov} \left(e_i, e_j \right) = 0, \text{ blc iid}$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sigma_i^2 var \left(e_i \right)$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sigma_i^2 \cdot \sigma_i^2 \cdot$$

By chebysher inequality, \hat{n} , \hat{P}_{μ} if \hat{n} , \hat{E}_{μ} , \hat{r} or equivalently \hat{n} , \hat{E}_{μ} , \hat{r} = o(1).

$$\hat{\mathcal{L}}_{i} - \mathcal{L} = O_{P} \left(\sqrt{MSE(\hat{\mathcal{L}}_{i})} \right)$$

$$= O_{P} \left(\sqrt{\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma_{i}^{2}} \right)$$

$$= O_{P} \left(\sqrt{\frac{1}{n} \left(\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2} \right)} \right)$$

If O(1), asymptotically bounded, then $\hat{u}_1 - u = O_P(\frac{1}{\sqrt{n}})$

Alternatively,
$$\omega_{TS}$$
: $\hat{\mathcal{M}}_{1} - \mathcal{M} = O_{P}(\frac{1}{\sqrt{n}}) \iff \sqrt{n}(\hat{\mathcal{M}}_{1} - \mathcal{M}) = O_{P}(1)$

$$\sqrt{n}(\hat{\mathcal{M}}_{1} - \mathcal{M}) = O_{P}(\sqrt{n} \cdot \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{n}{n}} \cdot \frac{n}{\sqrt{n}} \cdot \frac{n}{\sqrt{n}})$$

$$= O_{P}(\sqrt{\frac{n}{n}} \cdot \frac{n}{\sqrt{n}} \cdot \frac{n}{\sqrt{n}} \cdot \frac{n}{\sqrt{n}})$$

$$= O_{P}(\sqrt{\frac{n}{n}} \cdot \frac{n}{\sqrt{n}} \cdot \frac{n}{\sqrt{n}} \cdot \frac{n}{\sqrt{n}})$$
as long as bounded
$$= O_{P}(1)$$

(b) Let

$$\hat{\mu}_2 = \frac{\frac{1}{n} \sum_{i=1}^n \frac{X_i}{\sigma_i^2}}{\frac{1}{n} \sum_{i=1}^n \frac{1}{\sigma_i^2}}$$

be an alternative estimator of μ . Under what condition is $\hat{\mu}_2$ a consistent estimator of μ ? Under what condition is $\hat{\mu}_2 - \mu = O_p(\frac{1}{\sqrt{n}})$?

Similarly to (a), check if his is unbiased.

$$E[\hat{M_2}] = E\left[\frac{\frac{1}{N_{i=1}^{N}}\frac{X_i}{\hat{\nabla}_{i}^{2}}}{\frac{1}{N_{i=1}^{N}}\frac{X_i}{\hat{\nabla}_{i}^{2}}}\right] = \frac{1}{\frac{1}{N_{i=1}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\nabla}_{i}^{2}}}E\left[\frac{1}{N_{i=1}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\nabla}_{i}^{2}}\right]$$

$$= \frac{1}{\frac{1}{N_{i=1}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\nabla}_{i}^{2}}}\frac{1}{N_{i=1}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\nabla}_{i}^{2}}E[X_{i}]$$

$$= \frac{1}{N_{i=1}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\nabla}_{i}^{2}}E[X_{i}]$$

$$= \frac{1}{N_{i=1}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\nabla}_{i}^{2}}E[X_{i}]$$

$$= \frac{1}{N_{i=1}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\nabla}_{i}^{2}}E[X_{i}]$$

$$= \frac{1}{N_{i}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}$$

$$= \frac{1}{N_{i}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}$$

$$= \frac{1}{N_{i}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}$$

$$= \frac{1}{N_{i}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}$$

$$= \frac{1}{N_{i}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}$$

$$= \frac{1}{N_{i}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}$$

$$= \frac{1}{N_{i}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}$$

$$= \frac{1}{N_{i}^{N}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}\frac{\hat{\Sigma}_{i}^{2}}{\hat{\Sigma}_{i}^{2}}\frac{\hat{\Sigma}_{i}^{2}}\frac{\hat{\Sigma}_{i}}{\hat{\Sigma}_{i}^{2}}\frac{\hat{\Sigma}_{i}^{2}}\hat{\Sigma}_{i}^{2}\frac{\hat{\Sigma}_{i}^{2}}\hat{\Sigma}_{i}^{2}}\frac{\hat{\Sigma}_{i}^{2}}{\hat{\Sigma}_{i}^{2}}\frac{\hat{\Sigma}_{i}^{2}}\hat{\Sigma}_{i}^{2}\frac{\hat{\Sigma}_{i}^{2}}\frac{\hat{\Sigma}_{i}^{2}}\hat{\Sigma}_{i}^{2}\frac{\hat{\Sigma}_{i}^{2}}\frac{\hat{\Sigma}_{i}^{2}}\hat{\Sigma}_{i}^{2}\frac{\hat$$

Find variance of
$$\hat{\Omega}_{z}$$

$$var(\hat{\Omega}_{z}) = var\left(\frac{1}{n}\sum_{i=1}^{2}\frac{x_{i}}{\sigma_{i}^{2}}\right)^{iid} = \frac{1}{(\sqrt{n}\sum_{i=1}^{2}\frac{1}{\sigma_{i}^{2}})^{2}} \cdot \frac{1}{n^{2}}\sum_{i=1}^{n}var(x_{i})$$

$$var(x_{i}) = var(u+\sigma(e))$$

$$= \sigma_{i}^{2}var(e)$$

$$= \frac{1}{\sum_{i=1}^{n}\frac{1}{\sigma_{i}^{2}}}$$

$$= 0_{P}\left(\sqrt{nse(\hat{\Omega}_{z})}\right)$$

$$= 0_{P}\left(\sqrt{\frac{1}{n}}\cdot\frac{\frac{1}{n}}{\frac{1}{n}}\right)$$

$$= 0_{P}\left(\sqrt{\frac{1}{n}}\cdot\frac{\frac{1}{n}}{\frac{1}{n}}\right)$$

$$= 0_{P}\left(\sqrt{\frac{1}{n}}\cdot\frac{\frac{1}{n}}{\frac{1}{n}}\right)$$

$$= 0_{P}\left(\sqrt{\frac{1}{n}}\cdot\frac{\frac{1}{n}}{\frac{1}{n}}\right)$$

$$= 0_{P}\left(\sqrt{\frac{1}{n}}\cdot\frac{\frac{1}{n}}{\frac{1}{n}}\right)$$

- 5. Let $\{X_1 \dots X_n\}$ be a sequence of i.i.d random variables with mean μ and and variance σ^2 . Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$.
 - (a) If $\mu \neq 0$, how would you approximate the distribution of $(\bar{X})^2$ in large samples as $n \to \infty$?
 - (b) If $\mu = 0$, how would you approximate the distribution of $(\bar{X})^2$ in large samples as $n \to \infty$?

** When you see questions about = approximating distribution", = asymptotic distribution" of an estimator, assume looking for a hondegenerate dist. After appropriate rescaling.

(a) Define $h(x) = x^2$, we want to derive the asymptotic dist. Of $h(\bar{x})$ [you can directly apply results of delta method].

Theorem [Delta Method]

If $\sqrt{n}(\hat{u}-u) \stackrel{d}{\to} \xi$, and $h(\cdot)$ cont. diff. in a n-bhd of u. then $\sqrt{n}(h(\hat{u})-h(u)) \stackrel{d}{\to} \mathbf{H}^{\mathsf{T}}\xi$,

where $\mathbf{H} = \frac{\partial}{\partial u} h(u) \Big|_{u=u}$.

In particular, if $\sqrt{n}(\hat{u}-u) \stackrel{d}{\to} w(0,V)$, then

$$\sqrt{h(h(\hat{\mu})-h(\mu))} \stackrel{d}{\to} \mathcal{N}(0, H^{\mathsf{T}} \vee H)$$

If u and h are both scalar, then $\operatorname{In}(h(\hat{u})-h(u)) \xrightarrow{d} \mathcal{N}(0, (\frac{\partial}{\partial u}h(u)|_{u=u})^2 V).$

In this Problem, $\frac{\partial}{\partial x}h(x)|_{x=\mu} = z\mu$ and by cut, $\sqrt{n}(\bar{x}-\mu) \xrightarrow{d} \mathcal{N}(0,\sigma^2)$ $= \sqrt{n}((\bar{x})^2 - \mu^2) \xrightarrow{d} \mathcal{N}(0, 4\mu^2\sigma^2)$

[or you can work out delta method step by step]

By first-order Taylor expansion:

$$h(\bar{x}) = h(\mu) + \frac{\partial h(x)}{\partial x}\Big|_{x=\tilde{x}}(\bar{x}-\mu)$$
, for some \tilde{x} in between \bar{x} and μ .

- By CIT, we know that $\sqrt{n}(\bar{x}-\mu) \stackrel{d}{\to} \mathcal{N}(0,\sigma^2)$ for iid data
- Since $\hat{x} \stackrel{P}{\to} \mu$, by WLLN, and \hat{x} is between \hat{x} and $\mu \Rightarrow \hat{x} \stackrel{P}{\to} \mu$. Since h'(x) = zx is continuous, By CMT, $h'(\hat{x}) \stackrel{P}{\to} h'(\mu)$.

$$= D \int_{\overline{h}} ((\bar{x})^2 - \mu^2) = \int_{\overline{h}} (h(\bar{x}) - h(\mu))$$

$$= h'(\hat{x}) \int_{\overline{h}} (\bar{x} - \mu)$$
Rearrange (1)
and multiply by $\int_{\overline{h}} h'(\mu) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$

$$\xrightarrow{d}$$
 $h'(\omega) \mathcal{N}(0, \Gamma^2)$

Still normal with mean $\mathbb{E}[h'(u) \cdot 0] = 0$ Variance $(h'(u))^2 \sigma^2 = 4\mu^2 \sigma^2$ $4\mu^2$

$$\Rightarrow \mathcal{M}((\bar{x})^2 - \mu^2) \xrightarrow{d} \mathcal{M}(0, 4\mu^2\sigma^2) \cdots \otimes$$

(b) Apply
$$\textcircled{R}$$
 when $M=0$, $\sqrt{n}(\bar{\chi}^2-0) \overset{d}{\to} \mathcal{N}(0,0)$
 $\Rightarrow \sqrt{n}(\bar{\chi})^2 \overset{d}{\to} 0 \iff \sqrt{n}(\bar{\chi})^2 = op(1)$
 $\Rightarrow \text{ need a different normalization factor}$
CLT for $\bar{\chi}$ still hold: $\sqrt{n}(\bar{\chi}-0) \overset{d}{\to} \mathcal{N}(0,\sigma^2)$

$$\Rightarrow \sqrt{n} \, \overline{\chi} \, \stackrel{d}{\Rightarrow} \, \mathcal{W}(0, \sigma^2)$$

$$\Rightarrow \frac{\sqrt{n}}{\sigma} \, \overline{\chi} \, \stackrel{d}{\Rightarrow} \, \mathcal{W}(0, 1)$$
By CMT, $\left(\frac{\sqrt{n}}{\sigma} \, \overline{\chi}\right)^2 \stackrel{d}{\Rightarrow} \left(\mathcal{W}(0, 1)\right)^2$

$$\Rightarrow \frac{\sqrt{n}}{\sigma^2} (\overline{\chi})^2 \stackrel{d}{\Rightarrow} \chi_1^2$$