Estatística para Cursos de Engenharia e Informática

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Cap. 2 – O planejamento de uma pesquisa

APOIO:

Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC)

Departamento de Informática e Estatística – UFSC (INE/CTC/UFSC)

Etapas usuais de uma pesquisa empírica

BARBETTA, REIS e BORNIA - Estatística para Cursos de Engenharia e Informática. Atlas, 2004

Dois tipos de pesquisas empíricas

• DE LEVANTAMENTO

Características de interesse de uma população são levantadas (observadas ou medidas), mas sem manipulação.

• EXPERIMENTAL

Grupos de indivíduos (ou animais, ou objetos) são manipulados para se avaliar o efeito de diferentes tratamentos.

Pesquisas de levantamento

Ilustração de um levantamento por amostragem

Perguntas que precisam ser respondidas no planejamento de um levantamento

- O quê?
 - características a serem observadas → VARIÁVEIS
- Quem?
 - os elementos a serem pesquisados → POPULAÇÃO
- Como?
 - o instrumento de coleta de dados → QUESTIONÁRIO / ENTREVISTA ESTRUTURADA

População x amostra

- População: conjunto dos elementos que se deseja estudar.
- Amostra: subconjunto da população.
- Amostragem: processo de seleção da amostra

Amostragem e Inferência estatística

universo do estudo (população)

dados observados

Censo ou amostragem

Relação entre tamanho da população e tamanho da amostra para garantir determinada margem de erro

Tipos de amostragens aleatórias

- Amostragem aleatória simples
- Amostragem sistemática
- Amostragem estratificada
- Amostragem por conglomerados

Ex. de amostragem aleatória simples

População

01. Aristóteles	02. Anastácia	03. Arnaldo	04. Bartolomeu	05. Bernardino
06. Cardoso	07. Carlito	08. Cláudio	09. Ermílio	10. Ercílio
11. Ernestino	12. Endevaldo	13. Francisco	14. Felício	15. Fabrício
16. Geraldo	17. Gabriel	18. Getúlio	19. Hiraldo	20. João da Silva
21. Joana	22. Joaquim	23. Joaquina	24. José da Silva	25.José de Souza
26. Josefa	27. Josefina	28. Maria José	29. Maria Cristina	30. Mauro
31. Paula	32. Paulo Cesar			

Seleção de uma amostra aleatória simples com n = 5:

Números aleatórios: 20 10 07 01 32.

Amostra: {João da Silva, Ercílio, Carlito, Aristóteles, Paulo Cezar }

Planejamento de experimentos

• Estudo experimental: Manipula-se de forma planejada certas *variáveis independentes* ou *fatores* (*A*, *B*, *C*, ...) para verificar o efeito que esta manipulação provoca numa certa *variável dependente* ou *resposta Y*

Exemplo

- Verificar quais são os fatores que mais interferem na resistência à compressão (Y) de um concreto. Os fatores a serem estudados podem ser:
 - tempo de hidratação (A);
 - Relação água/cimento (B);
 - a qualidade do cimento (C) e
 - o uso de aditivos (D).

Exemplo

- Uma empresa de informática quer verificar o tipo de equipamento adequado ao usuário. A resposta Y pode ser o tempo de resposta e os fatores podem ser:
 - o processador (A);
 - a quantidade de memória RAM (B);
 - a quantidade de memória fixa (C) e
 - o tipo de carga de trabalho a ser executada (D).

Modelo geral de um processo ou sistema

Planejamento de experimentos

- Planejar o experimento para se ter informações suficientes (em termos dos objetivos da pesquisa) com o menor número possível de ensaios.
- Analisar os dados de forma compatível com o projeto experimental realizado.

Estratégias no planejamento de experimentos

- reconhecer, estabelecer e delimitar claramente o problema;
- identificar os possíveis fatores que podem afetar o problema em estudo;
- verificar quais fatores que poderão ser mantidos fixos e, portanto, não terão os seus efeitos avaliados no estudo experimental;
- Identificar, para cada fator, o intervalo de variação e os níveis que entrarão no estudo;
- escolher um projeto experimental adequado, isto é, saber como combinar os níveis dos fatores de forma que se possa resolver o problema proposto com o menor custo possível;
- escolher a resposta adequada, ou seja, a variável Y que mede adequadamente o resultado (a qualidade, o desempenho, etc.) do processo e
- o planejamento de como será a análise dos dados do experimento.

Conceitos básicos

- Unidade experimental
- Bloco
- Fatores
- Tratamentos
- Replicações (repetições)
- Aleatorização

Exemplo de aleatorização

 Deseja-se estudar a produção Y por m² de uma certa cultura, considerando 3 diferentes dosagens (a, b e c) de um certo fertilizante. Dispõe-se de 6 canteiros para o experimento e, portanto, pode-se fazer 2 replicações.

Números aleatórios: 2450 0455 0324 1641 2196

Ensaio: 1 2 3 4 5 6

Tratamento: a a b b c c

Canteiro: 2 4 5 3 1 6

(ordem aleatória)

(PROJETO COMPLETAMENTE ALEATORIZADO)

Exemplo de projeto fatorial

Projeto experimental para três fatores: fatorial 3 x 3 x 3 ou 3³

Ver exemplo aplicativo e como calcular os efeitos de cada fator no livro

Exemplo de projeto fatorial

Projeto experimental para 4 fatores: fatorial 2⁴ com 4 replicações

BARBETTA, REIS e BORNIA - Estatística para Cursos de Engenharia e Informática. Atlas, 2004

Exemplo de projeto fatorial

Projeto experimental para 4 fatores: fatorial 2⁴ com 1 fracionamento

Projetos fracionados: usados quando o número de fatores em estudo é grande.

Ver exemplo aplicativo, comentários e como calcular os efeitos de cada fator no livro