

Modelos Psicométricos: Tópicos Selectos Clase 2: Modelos TRI para Ítems Politómicos

Iwin Leenen y Ramsés Vázquez-Lira

Facultad de Psicología, UNAM

Programa de Licenciatura y Posgrado en Psicología Semestre 2019–2

Índice

- 1 Introducción
- 2 El Modelo de Crédito Parcial (Masters, 1982)
- 3 El Modelo de Respuesta Graduada (Samejima, 1969)
- 4 El Modelo de Respuesta Nominal (Bock, 1972)

Índice:

- 1 Introducción
 - Retomando unas ideas previas...
 - Una función característica para cada categoría de respuesta
 - El panorama de los modelos para ítems politómicos
- 2 El Modelo de Crédito Parcial (Masters, 1982
- 3 El Modelo de Respuesta Graduada (Samejima, 1969
- 4 El Modelo de Respuesta Nominal (Bock, 1972)

Retomando unas ideas previas...

El marco general de la TRI: Ideas básicas

La TRI incluye un gran número de modelos, los cuales tienen en común:

 Un modelo TRI es una teoría sobre el "comportamiento" de una persona respondiendo a un ítem.

En particular: Para cada una de las posibles categorías de respuesta en el ítem, el modelo especifica la probabilidad de que la persona conteste en esta categoría.

Retomando unas ideas previas...

El marco general de la TRI: Ideas básicas

La TRI incluye un gran número de modelos, los cuales tienen en común:

 Un modelo TRI es una teoría sobre el "comportamiento" de una persona respondiendo a un ítem.

En particular: Para cada una de las posibles categorías de respuesta en el ítem, el modelo especifica la probabilidad de que la persona conteste en esta categoría.

Ejemplo: Una pregunta de opción múltiple con 4 alternativas:

Opciones

Respuesta A

Respuesta I

Respuesta C

Respuesta D

Sin responder

La TRI incluye **un gran número** de modelos, los cuales tienen en común:

 Un modelo TRI es una teoría sobre el "comportamiento" de una persona respondiendo a un ítem.

En particular: Para cada una de las posibles categorías de respuesta en el ítem, el modelo especifica la probabilidad de que la persona conteste en esta categoría.

Opciones			
Respuesta A			
Respuesta B			
Respuesta C			
Respuesta D			
Sin responder			

La TRI incluye un gran número de modelos, los cuales tienen en común:

 Un modelo TRI es una teoría sobre el "comportamiento" de una persona respondiendo a un ítem.

En particular: Para cada una de las posibles categorías de respuesta en el ítem, el modelo especifica la probabilidad de que la persona conteste en esta categoría.

Opciones	Categoría		Modelo Tipo I
Respuesta A	А	~~ <u></u>	Prob. (A)
Respuesta B	В	~ →	Prob. (B)
Respuesta C	С	~ →	Prob. (C)
Respuesta D	D	~ →	Prob. (D)
Sin responder	0	~÷	Prob. (O)

La TRI incluye un gran número de modelos, los cuales tienen en común:

 Un modelo TRI es una teoría sobre el "comportamiento" de una persona respondiendo a un ítem.

En particular: Para cada una de las posibles categorías de respuesta en el ítem, el modelo especifica la probabilidad de que la persona conteste en esta categoría.

Opciones	Categoría		Modelo Tipo II
Respuesta A	Correcto (1)	~ →	Prob. (1)
Respuesta B			
Respuesta C	l(0)	~ →	Prob. (0)
Respuesta D	Incorrecto (0)	~~	
Sin responder			

- Un modelo TRI define:
 - una o más características numéricas de la persona
 - una o más características numéricas del ítem.

Estas características numéricas se llaman parámetros.

 El modelo especifica cómo se combinan los parámetros de la persona y del ítem para conocer las probabilidades de respuesta.

La probabilidad de que la persona p, al contestar el ítem i, responda en la categoría k:

 $Pr(Y_{pi} = k) = f(parámetro(s) de la persona p, parámetro(s) del ítem i)$

- Un modelo TRI define:
 - una o más características numéricas de la persona
 - una o más características numéricas del ítem.

Estas características numéricas se llaman parámetros.

 El modelo especifica cómo se combinan los parámetros de la persona y del ítem para conocer las probabilidades de respuesta.

La probabilidad de que la persona p, al contestar el ítem i, responda en la categoría k:

$$Pr(Y_{pi} = k) = f(parámetro(s) de la persona p, parámetro(s) del ítem i)$$

Las categorías de respuesta en los modelos de ítems dicotómicos

 Por definición, en los ítems dicotómicos se consideran dos categorías de respuesta.

Por ejemplo: "Correcto" vs. "Incorrecto"

"De acuerdo" vs. "En desacuerdo"

"Presente" vs. "Ausente"

etc.

- Por lo tanto, los modelos TRI para ítems dicotómicos consideran dos curvas características para cada ítem:
 - Una que describa la probabilidad de una respuesta correcta, de acuerdo, presente, etc.
 - Otra que describa la probabilidad de una respuesta incorrecta, en desacuerdo, ausente, etc.
- Sin embargo, solo hay una función "libre": Si se ha especificado la primera función característica, la segunda está completamente determinada.
- Por lo tanto, en los modelos TRI para ítems dicotómicos se suele graficar únicamente la curva característica de la respuesta correcta.
 En este sentido:

curva característica del ítem = curva característica de la respuesta correcta.

Las categorías de respuesta en los modelos de ítems dicotómicos

 Por definición, en los ítems dicotómicos se consideran dos categorías de respuesta.

Por ejemplo: "Correcto" vs. "Incorrecto"

"De acuerdo" vs. "En desacuerdo"

"Presente" vs. "Ausente"

etc.

- Por lo tanto, los modelos TRI para ítems dicotómicos consideran dos curvas características para cada ítem:
 - Una que describa la probabilidad de una respuesta correcta, de acuerdo, presente, etc.
 - Otra que describa la probabilidad de una respuesta incorrecta, en desacuerdo, ausente, etc.
- Sin embargo, solo hay una función "libre": Si se ha especificado la primera función característica, la segunda está completamente determinada.
- Por lo tanto, en los modelos TRI para ítems dicotómicos se suele grafica únicamente la curva característica de la respuesta correcta.
 En este sentido:

Una función característica para cada categoría de respuesta

Las curvas características de las categorías en el modelo de Rasch

La curva característica de la categoría "respuesta correcta" (1) del ítem j en el modelo de Rasch se da por:

$$f_{j1}(\theta) = \frac{\exp(\theta - \beta_j)}{1 + \exp(\theta - \beta_j)}$$

Las curvas características de las categorías en el modelo de Rasch

La curva característica de la categoría "respuesta incorrecta" (0) del ítem j en el modelo de Rasch se da por:

$$f_{j0}(\theta) = \frac{1}{1 + \exp(\theta - \beta_j)}$$

Una función característica para cada categoría de respuesta

Las curvas características de las categorías en el modelo de Rasch

La curva característica de la categoría "respuesta incorrecta" (0) del ítem j en el modelo de Rasch se da por:

$$f_{j0}(\theta) = \frac{1}{1 + \exp(\theta - \beta_j)}$$

Una función característica para cada categoría de respuesta

Las curvas características de las categorías en el modelo de Rasch

La curva característica de la categoría "respuesta incorrecta" (0) del ítem j en el modelo de Rasch se da por:

$$f_{j0}(\theta) = \frac{1}{1 + \exp(\theta - \beta_j)}$$

Las categorías de respuesta en los modelos de ítems dicotómicos

 Por definición, en los ítems dicotómicos se consideran dos categorías de respuesta.

Por ejemplo: "Correcto" vs. "Incorrecto"

"De acuerdo" vs. "En desacuerdo"

"Presente" vs. "Ausente"

etc.

- Por lo tanto, los modelos TRI para ítems dicotómicos consideran dos curvas características para cada ítem:
 - Una que describa la probabilidad de una respuesta correcta, de acuerdo, presente, etc.
 - Otra que describa la probabilidad de una respuesta incorrecta, en desacuerdo, ausente, etc.
- Sin embargo, solo hay una función "libre": Si se ha especificado la primera función característica, la segunda está completamente determinada.
- Por lo tanto, en los modelos TRI para ítems dicotómicos se suele grafical únicamente la curva característica de la respuesta correcta.
 En este sentido:

Una función característica para cada categoría de respuesta

Las categorías de respuesta en los modelos de ítems dicotómicos

 Por definición, en los ítems dicotómicos se consideran dos categorías de respuesta.

Por ejemplo: "Correcto" vs. "Incorrecto"

"De acuerdo" vs. "En desacuerdo"

"Presente" vs. "Ausente"

etc.

- Por lo tanto, los modelos TRI para ítems dicotómicos consideran dos curvas características para cada ítem:
 - Una que describa la probabilidad de una respuesta correcta, de acuerdo, presente, etc.
 - Otra que describa la probabilidad de una respuesta incorrecta, en desacuerdo, ausente, etc.
- Sin embargo, solo hay una función "libre": Si se ha especificado la primera función característica, la segunda está completamente determinada.
- Por lo tanto, en los modelos TRI para ítems dicotómicos se suele graficar únicamente la curva característica de la respuesta correcta.
 En este sentido:

curva característica del ítem = curva característica de la respuesta correcta.

Una función característica para cada categoría de respuesta

Las categorías de respuesta en los modelos de ítems politómicos

■ En general, para los ítems politómicos se consideran *m* categorías de respuesta.

Ejemplo 1:

La homosexualidad es natural y debe tolerarse.

A = "Totalmente en desacuerdo"

B = "En desacuerdo"

C = "Ligeramente en desacuerdo"

D = "Ni de acuerdo, ni en desacuerdo"

E = "Ligeramente de acuerdo"

F = "De acuerdo"

G = "Totalmente de acuerdo"

Ejemplo 2

¿Cuál es la capital de Australia

A = "Brisban

= "Canberra"

= "Melbourn

D = "Sidney

E = "Wellington

- Por lo tanto, los modelos TRI para ítems politómicos consideran, para cada ítem,
 m curvas características: Una para cada categoría de respuesta.
- Esta curva característica se llama "curva característica de la categoría" (CCC)
- Solo hay m 1 funciones "libres": Si se han especificado m 1 funciones características de la categoría del ítem, la función característica de la categoría m está completamente determinada.

Una función característica para cada categoría de respuesta

Las categorías de respuesta en los modelos de ítems politómicos

■ En general, para los ítems politómicos se consideran *m* categorías de respuesta.

Ejemplo 1: La homosexualidad es natural y debe tolerarse. A = "Totalmente en desacuerdo"

B = "En desacuerdo"

C = "Ligeramente en desacuerdo"

D = "Ni de acuerdo, ni en desacuerdo"

E = "Ligeramente de acuerdo"

F = "De acuerdo"

G = "Totalmente de acuerdo"

Ejemplo 2: ;Cuál es la capital de Australia?

A = "Brisbane" B = "Canberra"

C = "Melbourne"

D = "Sidney"

E = "Wellington"

- Por lo tanto, los modelos TRI para ítems politómicos consideran, para cada ítem, m curvas características: Una para cada categoría de respuesta.
- Esta curva característica se llama "curva característica de la categoría" (CCC)
- Solo hay m 1 funciones "libres": Si se han especificado m 1 funciones características de la categoría del ítem, la función característica de la categoría m está completamente determinada.

Una función característica para cada categoría de respuesta

Las categorías de respuesta en los modelos de ítems politómicos

■ En general, para los ítems politómicos se consideran *m* categorías de respuesta.

F' 14	E' 1.0
Ejemplo 1:	Ejemplo 2:
La homosexualidad es natural y debe tolerarse.	¿Cuál es la capital de Australia?
A = "Totalmente en desacuerdo"	A = "Brisbane"
B = "En desacuerdo"	B = "Canberra"
C = "Ligeramente en desacuerdo"	C = "Melbourne"
D = "Ni de acuerdo, ni en desacuerdo"	D = "Sidney"
E = "Ligeramente de acuerdo"	E = "Wellington"
F = "De acuerdo"	, and the second se
G = "Totalmente de acuerdo"	
m = 7	m = 5

- Por lo tanto, los modelos TRI para ítems politómicos consideran, para cada ítem m curvas características: Una para cada categoría de respuesta.
- Esta curva característica se llama "curva característica de la categoría" (CCC)
- Solo hay m 1 funciones "libres": Si se han especificado m 1 funciones características de la categoría del ítem, la función característica de la categoría m está completamente determinada.

Una función característica para cada categoría de respuesta

Las categorías de respuesta en los modelos de ítems politómicos

■ En general, para los ítems politómicos se consideran *m* categorías de respuesta.

Ejemplo 1: Ejemplo 2: La homosexualidad es natural v debe tolerarse. ¿Cuál es la capital de Australia? A = "Totalmente en desacuerdo" A = "Brisbane" B = "En desacuerdo" B = "Canberra" C = "Ligeramente en desacuerdo" C = "Melbourne" D = "Ni de acuerdo, ni en desacuerdo" D = "Sidney" E = "Ligeramente de acuerdo" E = "Wellington" F = "De acuerdo" G = "Totalmente de acuerdo" m = 7m = 5

- Por lo tanto, los modelos TRI para ítems politómicos consideran, para cada ítem, m curvas características: Una para cada categoría de respuesta.
- Esta curva característica se llama "curva característica de la categoría" (CCC)
- Solo hay m 1 funciones "libres": Si se han especificado m 1 funciones características de la categoría del ítem, la función característica de la categoría m está completamente determinada.

Una función característica para cada categoría de respuesta

Las categorías de respuesta en los modelos de ítems politómicos

■ En general, para los ítems politómicos se consideran *m* categorías de respuesta.

•	· · · · · · · · · · · · · · · · · · ·
Ejemplo 1:	Ejemplo 2:
La homosexualidad es natural y debe tolerarse.	¿Cuál es la capital de Australia?
A = "Totalmente en desacuerdo"	A = "Brisbane"
B = "En desacuerdo"	B = "Canberra"
C = "Ligeramente en desacuerdo"	C = "Melbourne"
D = "Ni de acuerdo, ni en desacuerdo"	D = "Sidney"
E = "Ligeramente de acuerdo"	E = "Wellington"
F = "De acuerdo"	· ·
G = "Totalmente de acuerdo"	
<i>m</i> = 7	m = 5
III = I	$III = \mathfrak{I}$

- Por lo tanto, los modelos TRI para ítems politómicos consideran, para cada ítem, m curvas características: Una para cada categoría de respuesta.
- Esta curva característica se llama "curva característica de la categoría" (CCC).
- Solo hay m 1 funciones "libres": Si se han especificado m 1 funciones características de la categoría del ítem, la función característica de la categoría m está completamente determinada.

Una función característica para cada categoría de respuesta

Las categorías de respuesta en los modelos de ítems politómicos

■ En general, para los ítems politómicos se consideran *m* categorías de respuesta.

Ejemplo 1: Ejemplo 2: ¿Cuál es la capital de Australia? La homosexualidad es natural v debe tolerarse. A = "Totalmente en desacuerdo" A = "Brisbane" B = "En desacuerdo" B = "Canberra" C = "Ligeramente en desacuerdo" C = "Melbourne" D = "Ni de acuerdo, ni en desacuerdo" D = "Sidney" E = "Wellington" E = "Ligeramente de acuerdo" F = "De acuerdo" G = "Totalmente de acuerdo" m = 7m = 5

- Por lo tanto, los modelos TRI para ítems politómicos consideran, para cada ítem, m curvas características: Una para cada categoría de respuesta.
- Esta curva característica se llama "curva característica de la categoría" (CCC).
- Solo hay m − 1 funciones "libres": Si se han especificado m − 1 funciones características de la categoría del ítem, la función característica de la categoría m está completamente determinada.

El panorama de los modelos para ítems politómicos

Panorama de los modelos TRI unidimensionales para ítems politómicos

En este curso, se introducirán modelos para:

- cuando las categorías están ordenadas:
 - El Modelo de Crédito Parcial (PCM; Masters, 1982);
 - El Modelo de Respuesta Graduada (GRM; Samejima, 1969);
- cuando las categorías no están ordenadas (categorías nominales):
 - El Modelo de Respuesta Nominal (NRM; Bock, 1972)

El panorama de los modelos para ítems politómicos

Panorama de los modelos TRI unidimensionales para ítems politómicos

En este curso, se introducirán modelos para:

- cuando las categorías están ordenadas:
 - El Modelo de Crédito Parcial (PCM; Masters, 1982);
 - El Modelo de Respuesta Graduada (GRM; Samejima, 1969);
- cuando las categorías no están ordenadas (categorías nominales):
 - El Modelo de Respuesta Nominal (NRM; Bock, 1972).

Índice:

- 1 Introducción
- 2 El Modelo de Crédito Parcial (Masters, 1982)
 - Una reparametrización del modelo de Rasch
 - La función característica en el modelo de crédito parcial
 - Estimación de parámetros en el modelo de crédito parcial
 - Adaptaciones y generalizaciones
- 3 El Modelo de Respuesta Graduada (Samejima, 1969)
- 4 El Modelo de Respuesta Nominal (Bock, 1972)

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{pi} = 0) = \frac{\exp(0\theta_p - \eta_{i0})}{\exp(0\theta_p - \eta_{i0}) + \exp(1\theta_p - \eta_{i1})}$$

$$\Pr(Y_{pi} = 1) = \frac{\exp(1\theta_p - \eta_{i1})}{(0\theta_p - \eta_{i1})}$$

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) = \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{\rho i} = 1) \ = \ \frac{\exp(1\theta_{\rho} - \eta_{i1})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})}$$

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) \; = \; \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \; = \; \frac{\exp(-\eta_{i0})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{\rho i} = 1) \ = \ \frac{\exp(1\theta_{\rho} - \eta_{i1})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(\theta_{\rho} - \eta_{i1})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) \ = \ \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(-\eta_{i0})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{\rho i} = 1) \ = \ \frac{\exp(1\theta_{\rho} - \eta_{i1})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(\theta_{\rho} - \eta_{i1})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$Pr(Y_{pi} = 0) = \frac{exp(-\eta_{i0})}{exp(-\eta_{i0}) + exp(\theta_p - \eta_{i1})}$$

$$Pr(Y_{pi} = 1) = \frac{exp(\theta_p - \eta_{i1})}{exp(-\eta_{i0}) + exp(\theta_p - \eta_{i1})}$$

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) \ = \ \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(-\eta_{i0})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{pi} = 1) = \frac{\exp(1\theta_{p} - \eta_{i1})}{\exp(0\theta_{p} - \eta_{i0}) + \exp(1\theta_{p} - \eta_{i1})} = \frac{\exp(\theta_{p} - \eta_{i1})}{\exp(-\eta_{i0}) + \exp(\theta_{p} - \eta_{i1})}$$

$$\Pr(Y_{pi} = 0) = \frac{\exp(-\eta_{i0}) \exp(\eta_{i0})}{[\exp(-\eta_{i0}) + \exp(\theta_p - \eta_{i1})] \exp(\eta_{i0})}$$

$$\Pr(Y_{pi} = 1) = \frac{\exp(\theta_p - \eta_{i1}) \exp(\eta_{i0})}{[\exp(-\eta_{i0}) + \exp(\theta_p - \eta_{i1})] \exp(\eta_{i0})}$$

Una reparametrización del modelo de Rasch

Derivando el modelo de Rasch...

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) \; = \; \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \; = \; \frac{\exp(-\eta_{i0})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{\rho i} = 1) \ = \ \frac{\exp(1\theta_{\rho} - \eta_{i1})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(\theta_{\rho} - \eta_{i1})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{pi} = 0) = \frac{\exp(-\eta_{i0}) \exp(\eta_{i0})}{\exp(-\eta_{i0}) \exp(\eta_{i0}) + \exp(\theta_p - \eta_{i1}) \exp(\eta_{i0})}$$

$$\Pr(Y_{pi} = 1) = \frac{\exp(\theta_p - \eta_{i1}) \exp(\eta_{i0})}{\exp(-\eta_{i0}) \exp(\eta_{i0}) + \exp(\theta_p - \eta_{i1}) \exp(\eta_{i0})}$$

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) \ = \ \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(-\eta_{i0})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{\rho i} = 1) \ = \ \frac{\exp(1\theta_{\rho} - \eta_{i1})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(\theta_{\rho} - \eta_{i1})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$Pr(Y_{pi} = 0) = \frac{exp(-\eta_{i0} + \eta_{i0})}{exp(-\eta_{i0} + \eta_{i0}) + exp(\theta_p - \eta_{i1} + \eta_{i0})}$$

$$Pr(Y_{pi} = 1) = \frac{exp(\theta_p - \eta_{i1} + \eta_{i0})}{exp(-\eta_{i0} + \eta_{i0}) + exp(\theta_p - \eta_{i1} + \eta_{i0})}$$

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) \ = \ \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(-\eta_{i0})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{pi} = 1) = \frac{\exp(1\theta_p - \eta_{i1})}{\exp(0\theta_p - \eta_{i0}) + \exp(1\theta_p - \eta_{i1})} = \frac{\exp(\theta_p - \eta_{i1})}{\exp(-\eta_{i0}) + \exp(\theta_p - \eta_{i1})}$$

$$Pr(Y_{pi} = 0) = \frac{exp(0)}{exp(0) + exp(\theta_p - \eta_{i1} + \eta_{i0})}$$

$$Pr(Y_{pi} = 1) = \frac{exp(\theta_p - \eta_{i1} + \eta_{i0})}{exp(0) + exp(\theta_p - \eta_{i1} + \eta_{i0})}$$

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) \ = \ \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(-\eta_{i0})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{pi} = 1) = \frac{\exp(1\theta_p - \eta_{i1})}{\exp(0\theta_p - \eta_{i0}) + \exp(1\theta_p - \eta_{i1})} = \frac{\exp(\theta_p - \eta_{i1})}{\exp(-\eta_{i0}) + \exp(\theta_p - \eta_{i1})}$$

$$Pr(Y_{pi} = 0) = \frac{1}{1 + exp(\theta_p - \eta_{i1} + \eta_{i0})}$$

$$Pr(Y_{pi} = 1) = \frac{exp(\theta_p - \eta_{i1} + \eta_{i0})}{1 + exp(\theta_p - \eta_{i1} + \eta_{i0})}$$

Una reparametrización del modelo de Rasch

Derivando el modelo de Rasch...

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) \ = \ \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(-\eta_{i0})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{\rho i} = 1) = \frac{\exp(1\theta_{\rho} - \eta_{i1})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} = \frac{\exp(\theta_{\rho} - \eta_{i1})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

Hagamos algunas manipulaciones algebraícas:

$$Pr(Y_{pi} = 0) = \frac{1}{1 + \exp[\theta_p - (\eta_{i1} - \eta_{i0})]}$$

$$\Pr(Y_{pi} = 1) = \frac{\exp[\theta_p - (\eta_{i1} - \eta_{i0})]}{1 + \exp[\theta_p - (\eta_{i1} - \eta_{i0})]}$$

Derivando el modelo de Rasch...

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) \ = \ \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \ = \ \frac{\exp(-\eta_{i0})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{pi} = 1) = \frac{\exp(1\theta_p - \eta_{i1})}{\exp(0\theta_p - \eta_{i0}) + \exp(1\theta_p - \eta_{i1})} = \frac{\exp(\theta_p - \eta_{i1})}{\exp(-\eta_{i0}) + \exp(\theta_p - \eta_{i1})}$$

Hagamos algunas manipulaciones algebraícas:

$$Pr(Y_{pi} = 0) = \frac{1}{1 + \exp(\theta_p - \beta_i)}$$
 si definimos: $\beta_i = \eta_{i1} - \eta_{i0}$

$$Pr(Y_{pi} = 1) = \frac{exp(\theta_p - \beta_i)}{1 + exp(\theta_p - \beta_i)}$$

Derivando el modelo de Rasch...

 Supongamos el siguiente modelo para ítems dicotómicos, que asocia un parámetro con cada categoría de respuesta.

Es decir, un parámetro η_{i0} (para la categoría 0) y otro parámetro η_{i1} (para la categoría 1):

$$\Pr(Y_{\rho i} = 0) \; = \; \frac{\exp(0\theta_{\rho} - \eta_{i0})}{\exp(0\theta_{\rho} - \eta_{i0}) + \exp(1\theta_{\rho} - \eta_{i1})} \; = \; \frac{\exp(-\eta_{i0})}{\exp(-\eta_{i0}) + \exp(\theta_{\rho} - \eta_{i1})}$$

$$\Pr(Y_{pi} = 1) = \frac{\exp(1\theta_p - \eta_{i1})}{\exp(0\theta_p - \eta_{i0}) + \exp(1\theta_p - \eta_{i1})} = \frac{\exp(\theta_p - \eta_{i1})}{\exp(-\eta_{i0}) + \exp(\theta_p - \eta_{i1})}$$

Hagamos algunas manipulaciones algebraícas:

$$Pr(Y_{\rho i} = 0) = \frac{1}{1 + \exp(\theta_{\rho} - \beta_{i})}$$
 si definimos: $\beta_{i} = \eta_{i1} - \eta_{i0}$

$$Pr(Y_{pi} = 1) = \frac{exp(\theta_p - \beta_i)}{1 + exp(\theta_p - \beta_i)}$$

¡Obtenemos el modelo de Rasch!

Una reparametrización del modelo de Rasch

Derivando el modelo de Rasch...

¿Qué aprendimos de la derivación anterior?

- En el modelo de Rasch, se puede interpretar el parámetro del ítem (β_i) como la diferencia entre parámetros para la categoría 1 (η_{i1}) y la categoría 0 (η_{i0}).
 ¡Ojo! Estos parámetros en si mismo no son estimables.
- Para llegar al modelo de Rasch, se deben asignar (en las ecuaciones inicales) coeficientes 0 y 1 a las categorías de respuesta incorrecta y correcta, respectivamente.
 - ¡Categorías ordenadas!

Una reparametrización del modelo de Rasch

Derivando el modelo de Rasch...

¿Qué aprendimos de la derivación anterior?

- En el modelo de Rasch, se puede interpretar el parámetro del ítem (β_i) como la diferencia entre parámetros para la categoría 1 (η_{i1}) y la categoría 0 (η_{i0}) .
 - ¡Ojo! Estos parámetros en si mismo no son estimables.
- Para llegar al modelo de Rasch, se deben asignar (en las ecuaciones inicales) coeficientes 0 y 1 a las categorías de respuesta incorrecta y correcta, respectivamente.
 - → ¡Categorías ordenadas!

Una reparametrización del modelo de Rasch

Derivando el modelo de Rasch...

¿Qué aprendimos de la derivación anterior?

- En el modelo de Rasch, se puede interpretar el parámetro del ítem (β_i) como la diferencia entre parámetros para la categoría 1 (η_{i1}) y la categoría 0 (η_{i0}).
 - ¡Ojo! Estos parámetros en si mismo no son estimables.
- Para llegar al modelo de Rasch, se deben asignar (en las ecuaciones inicales) coeficientes 0 y 1 a las categorías de respuesta incorrecta y correcta, respectivamente.
 - → ¡Categorías ordenadas!

Generalizando el modelo de Rasch...

 Supongamos el siguiente modelo para un ítem polotómico i con m categorías de respuestas (j = 0, 1, ..., m - 1), en el cual se asocia un parámetro η_{ij} con cada categoría de respuesta:

$$Pr(Y_{pi} = j) = \frac{\exp(j\theta_p - \eta_{ij})}{\sum\limits_{k=0}^{m-1} \exp(k\theta_p - \eta_{ik})}$$

Definamos parámetros β_{ii} para cada categoría j, excepto la categoría 0, de la siguiente forma:

$$\beta_{i1} = \eta_{i1} - \eta_{i0}$$

$$\beta_{i2} = \eta_{i2} - \eta_{i1}$$

$$\vdots$$

$$\beta_{i,m-1} = \eta_{i,m-1} - \eta_{i,m-2}$$

■ Entonces, se puede derivar que

$$\Pr(Y_{pi} = j) = \frac{\exp\left(j\theta_p - \sum_{h=1}^{j} \beta_{ih}\right)}{\sum\limits_{k=0}^{m-1} \exp\left[k\theta_p - \sum\limits_{h=1}^{k} \beta_{ih}\right]}$$

Generalizando el modelo de Rasch...

 Supongamos el siguiente modelo para un ítem polotómico i con m categorías de respuestas (j = 0, 1, ..., m - 1), en el cual se asocia un parámetro η_{ij} con cada categoría de respuesta:

$$Pr(Y_{pi} = j) = \frac{\exp(j\theta_p - \eta_{ij})}{\sum\limits_{k=0}^{m-1} \exp(k\theta_p - \eta_{ik})}$$

Definamos parámetros β_{ii} para cada categoría j, excepto la categoría 0, de la siguiente forma:

$$\beta_{i1} = \eta_{i1} - \eta_{i0}$$

$$\beta_{i2} = \eta_{i2} - \eta_{i1}$$

$$\vdots$$

$$\beta_{i,m-1} = \eta_{i,m-1} - \eta_{i,m-2}$$

Entonces, se puede derivar que

$$\Pr(Y_{\rho i} = j) = \frac{\exp\left(j\theta_{p} - \sum_{h=1}^{j} \beta_{ih}\right)}{\sum\limits_{k=0}^{m-1} \exp\left[k\theta_{p} - \sum_{h=1}^{k} \beta_{ih}\right]}$$

Generalizando el modelo de Rasch...

 Supongamos el siguiente modelo para un ítem polotómico i con m categorías de respuestas (j = 0, 1, ..., m - 1), en el cual se asocia un parámetro η_{ij} con cada categoría de respuesta:

$$\Pr(Y_{pi} = j) = \frac{\exp(j\theta_p - \eta_{ij})}{\sum\limits_{k=0}^{m-1} \exp(k\theta_p - \eta_{ik})}$$

Definamos parámetros β_{ij} para cada categoría j, excepto la categoría 0, de la siguiente forma:

$$\beta_{i1} = \eta_{i1} - \eta_{i0}$$

$$\beta_{i2} = \eta_{i2} - \eta_{i1}$$

$$\vdots$$

$$\beta_{i,m-1} = \eta_{i,m-1} - \eta_{i,m-2}$$

Entonces, se puede derivar que

$$\Pr(Y_{pi} = j) = \frac{\exp\left(j\theta_p - \sum_{h=1}^{j} \beta_{ih}\right)}{\sum\limits_{k=0}^{m-1} \exp\left[k\theta_p - \sum_{h=1}^{k} \beta_{ih}\right]}$$

Generalizando el modelo de Rasch...

Supongamos el siguiente modelo
para un ítem polotómico i con m categorías de respuestas (j = 0, 1, ..., m - 1),
en el cual se asocia un parámetro η_{ij} con cada categoría de respuesta:

$$\Pr(Y_{\rho i} = j) = \frac{\exp(j\theta_{\rho} - \eta_{ij})}{\sum\limits_{k=0}^{m-1} \exp(k\theta_{\rho} - \eta_{ik})}$$

Definamos parámetros β_{ij} para cada categoría j, excepto la categoría 0, de la siguiente forma:

$$\beta_{i1} = \eta_{i1} - \eta_{i0}$$

$$\beta_{i2} = \eta_{i2} - \eta_{i1}$$

$$\vdots$$

$$\beta_{i,m-1} = \eta_{i,m-1} - \eta_{i,m-2}$$

Entonces, se puede derivar que:

$$\Pr(Y_{pi} = j) = \frac{\exp\left(j\theta_p - \sum_{h=1}^{j} \beta_{jh}\right)}{\sum\limits_{k=0}^{m-1} \exp\left[k\theta_p - \sum_{h=1}^{k} \beta_{jh}\right]}$$

El Modelo de Crédito Parcial (PCM)

- El modelo que se acaba de derivar se llama el Modelo de Crédito Parcial.
 La propuesta inicial del modelo: Anderson (1977);
 La derivación (y el nombre de Crédito Parcial): Masters (1982).
- Entonces, la curva característica del ítem en el Modelo de Crédito Parcial se da por:

$$f_{ij}(\theta) = \frac{\exp\left(j\theta - \sum_{h=1}^{j} \beta_{ih}\right)}{\sum_{k=0}^{m-1} \exp\left[k\theta - \sum_{h=1}^{k} \beta_{ih}\right]},$$

donde f_{ij} es la probabilidad de responder en la categoría j del ítem i.

La función característica en el modelo de crédito parcial

El Modelo de Crédito Parcial (PCM)

$$f_{ij}(\theta) = \frac{\exp\left[j\theta - \sum_{h=1}^{j} \beta_{ih}\right]}{\sum_{k=0}^{2} \exp\left[k\theta - \sum_{h=1}^{k} \beta_{ih}\right]}$$

La función característica en el modelo de crédito parcial

El Modelo de Crédito Parcial (PCM)

$$f_{ij}(\theta) = \frac{\exp\left(j\theta - \sum_{h=1}^{j} \beta_{ih}\right)}{1 + \exp\left[\theta - \beta_{i1}\right] + \exp\left[2\theta - (\beta_{i1} + \beta_{i2})\right]}$$

La función característica en el modelo de crédito parcial

El Modelo de Crédito Parcial (PCM)

$$f_{i0}(\theta) = \frac{\exp\left(0\theta - \sum_{h=1}^{0} \beta_{ih}\right)}{1 + \exp\left[\theta - \beta_{i1}\right] + \exp\left[2\theta - (\beta_{i1} + \beta_{i2})\right]}$$

La función característica en el modelo de crédito parcial

El Modelo de Crédito Parcial (PCM)

$$f_{i0}(\theta) = \frac{1}{1 + \exp[\theta - \beta_{i1}] + \exp[2\theta - (\beta_{i1} + \beta_{i2})]}$$

La función característica en el modelo de crédito parcial

El Modelo de Crédito Parcial (PCM)

$$f_{i0}(\theta) = \frac{1}{1 + \exp[\theta - \beta_{i1}] + \exp[2\theta - (\beta_{i1} + \beta_{i2})]}$$

El Modelo de Crédito Parcial (PCM)

$$f_{i1}(\theta) = \frac{\exp\left(1\theta - \sum_{h=1}^{1} \beta_{ih}\right)}{1 + \exp\left[\theta - \beta_{i1}\right] + \exp\left[2\theta - (\beta_{i1} + \beta_{i2})\right]}$$

La función característica en el modelo de crédito parcial

El Modelo de Crédito Parcial (PCM)

$$f_{i1}(\theta) = \frac{\exp(\theta - \beta_{i1})}{1 + \exp[\theta - \beta_{i1}] + \exp[2\theta - (\beta_{i1} + \beta_{i2})]}$$

La función característica en el modelo de crédito parcial

El Modelo de Crédito Parcial (PCM)

$$f_{i1}(\theta) = \frac{\exp(\theta - \beta_{i1})}{1 + \exp[\theta - \beta_{i1}] + \exp[2\theta - (\beta_{i1} + \beta_{i2})]}$$

El Modelo de Crédito Parcial (PCM)

$$f_{i2}(\theta) = \frac{\exp\left(2\theta - \sum_{h=1}^{2} \beta_{ih}\right)}{1 + \exp\left[\theta - \beta_{i1}\right] + \exp\left[2\theta - (\beta_{i1} + \beta_{i2})\right]}$$

La función característica en el modelo de crédito parcial

El Modelo de Crédito Parcial (PCM)

$$f_{i2}(\theta) = \frac{\exp(2\theta - (\beta_{i1} + \beta_{i2}))}{1 + \exp[\theta - \beta_{i1}] + \exp[2\theta - (\beta_{i1} + \beta_{i2})]}$$

La función característica en el modelo de crédito parcial

El Modelo de Crédito Parcial (PCM)

$$f_{i2}(\theta) = \frac{\exp(2\theta - (\beta_{i1} + \beta_{i2}))}{1 + \exp[\theta - \beta_{i1}] + \exp[2\theta - (\beta_{i1} + \beta_{i2})]}$$

La función característica en el modelo de crédito parcial

El Modelo de Crédito Parcial (PCM)

$$f_{i2}(\theta) = \frac{\exp(2\theta - (\beta_{i1} + \beta_{i2}))}{1 + \exp[\theta - \beta_{i1}] + \exp[2\theta - (\beta_{i1} + \beta_{i2})]}$$

Índice:

- 1 Introducción
- 2 El Modelo de Crédito Parcial (Masters, 1982
- 3 El Modelo de Respuesta Graduada (Samejima, 1969)
- 4 El Modelo de Respuesta Nominal (Bock, 1972)

Índice:

- 1 Introducción
- 2 El Modelo de Crédito Parcial (Masters, 1982
- 3 El Modelo de Respuesta Graduada (Samejima, 1969
- 4 El Modelo de Respuesta Nominal (Bock, 1972)