Vv186 Mid1 Review

Yahoo

2016年12月26日

1 Properties of continuous function at a certain point

- 1. Let $\Omega \subset \mathbb{R}$ be some set and $f : \to \mathbb{R}$ a function that is continuous at some point $x_0 \in \Omega$ and $f(x_0) > 0$. Then there exists $\delta > 0$ such that f(x) > 0 for any $x \in (x_0 \delta, x_0 + \delta) \subset \Omega$.
- 2. Let $\Omega \subset \mathbb{R}$ be some set and $f :\to \mathbb{R}$ a function that is continuous at some point $x_0 \in \Omega$. Then there exists $\delta > 0$ such that f is bounded on $(x_0 \delta, x_0 + \delta) \subset \Omega$.

2 Properties of continuous function on a closed interval

- 1. Let a < b and f: $[a, b] \to \mathbb{R}$ be a continuous function. Then f is bounded on [a, b].
- 2. Let a < b and f: $[a, b] \to \mathbb{R}$ be a continuous function with f(a) < 0 < f(b). Then there exists some $x \in [a, b]$ such that f(x) = 0.
- 3. Let a < b and $f: [a, b] \to \mathbb{R}$ be a continuous function. Then for $y \in [\min\{f(a), f(b)\}, \max\{f(a), f(b)\}]$ there exists some $x \in [a, b]$ such that y = f(x).
- 4. Let a < b and $f:[a,b] \to \mathbb{R}$ be a continuous function $\to \mathbb{R}$ with ran $f \subset [a,b]$. Then f has a fixed point, i.e., there exists some $x \in [a,b]$ such that f(x)=x.
- 5. Let a < b and $f:[a,b] \to \mathbb{R}$ be a continuous function $\to \mathbb{R}$. Then there exists a $y \in [a,b]$ such that $f(x) \le f(y)$ for all $x \in [a,b]$.

3 Inverse Function

- 1. Basic concepts:
 - Injectivity: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

- Surjectivity: For all y there exists a x such that f(x) = y. (ran f = Codomain)
- Bijectivity: Injectivity and surjectivity.
- 2. A bijective function has an inverse function.
- 3. A strictly increasing and continuous function has an inverse function that is also strictly increasing and continuous.
- 4. A continuous and bijective function must be strictly monotonic.

4 Uniformly continuous function

1. Definition:

$$\forall \underset{\varepsilon>0}{\exists} \forall \underset{\delta>0}{\forall} |x-y| < \delta \ \Rightarrow |f(x) - f(y)| < \varepsilon$$

- 2. A uniformly continuous function is continuous.
- 3. A continuous function on a closed interval is uniformly continuous.
- 4. The sum of two uniformly continuous function is still uniformly continuous.
- 5. The product of two uniformly continuous function is *not* necessarily uniformly continuous. (Counterexample: f(x)=g(x)=x on $[0,+\infty)$)
- 6. The product of two uniformly continuous function on a compact interval is uniformly continuous. (Example: f(x)=g(x)=x on [0,1])

5 Outlook

- 1. The image of a continuous function on a closed interval is also a closed interval.
- 2. A close and bounded set is called compact.
- 3. A continuous function on a compact set is uniformly continuous, bounded and has maximum and minimum value. Also, the image is also compact.

6 Operation on uniformly continuous function

- 1. The sum of two uniformly continuous function is still uniformly continuous.
- 2. The product of two uniformly continuous function is *not* necessarily uniformly continuous. (Counterexample: f(x)=g(x)=x on $[0,+\infty)$)
- 3. The product of two uniformly continuous function on a compact interval is uniformly continuous. (Example: f(x)=g(x)=x on [0,1])

7 Exercise

1. Find the root of the function

$$p(x) = 2x^3 - 3x^2 - 3x + 2 = 0$$

- 2. Suppose f(x) is continuous on [0,2] and f(0)=f(2). Show that there exists $x,y \in [0,2]$ such that y-x=1 and f(x)=f(y).
- 3. Show that f(x) is uniformly continuous on domain $X \Leftrightarrow \text{For any two sequences } x_n, \ y_n \text{ in } X,$ if $\lim_{x \to \infty} (x_n y_n) = 0$, then $\lim_{x \to \infty} (f(x_n) f(y_n)) = 0$.
- 4. Show that if f is uniformly continuous on (0, 1), then $\lim_{x \searrow 0} f(x)$ exists.

8 Solution

1. By calculation, we can find

X	-2	0	1	3
p(x)	-20	2	-2	20

Therefore, by Intermediate Value Theorem we know that p(x)=0 has three roots.

2. Let F(x)=f(x+1)-f(x), then F(x) is continuous on [0,1]. Moreover,

$$F(0) = f(1) - f(0) = f(1) - f(2) = -(f(2) - f(1)) = -F(1)$$

(a) If F(1)=F(0)=0, then we simply have x=0 and y=1 such that

$$f(0) = f(1)$$

(b) If $F(1)\neq 0$, then we apply the Intermediate Value Theorem to [0,1]: there must have a $x_0 \in [0,1]$ such that

$$F(x_0) = f(x_0 + 1) - f(x_0) = 0$$

Then we have $x = x_0$ and $y = x_0 + 1$.

 $3. \Rightarrow :$

Since f(x) is uniformly continuous o X, then we have

$$\forall \exists \forall x \in \mathbb{Z} \forall |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

For this δ , since $\lim_{x\to\infty} (x_n - y_n) = 0$, then

$$\exists N, \forall n > N : |x_n - y_n| < \delta \implies |f(x_n) - f(y_n)| < \varepsilon$$

Therefore, $\lim_{n\to\infty} (f(x_n) - f(y_n)) = 0$.

⇐:

Suppose f(x) is not uniformly continuous o X, then we have

$$\exists_{\varepsilon>0} \forall_{\delta>0} \exists_{x,y\in I} |x-y| < \delta \ \Rightarrow |f(x) - f(y)| \ge \varepsilon$$

Take $\delta = \frac{1}{n}$, then there exists x_n , y_n such that

$$|x_n - y_n| < \frac{1}{n} |f(x_n) - f(y_n)| \ge \varepsilon$$

Therefore, $\lim_{x\to\infty} (x_n - y_n) = 0$ but $f(x_n) - f(y_n)$ does not converge to 0, which leads to a contradiction.

4. Since f(x) is uniformly continuous on (0,1), then we simply have

$$\forall \exists_{\varepsilon > 0} \forall_{\delta_0 > 0} \forall_{x,y \in I} |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Suppose (x_n) is a sequence in (0,1) and converges to 0. We simply want the sequence $(f(x_n))$ also converges, so we check whether $(f(x_n))$ is Cauchy in the normal modulus metric space. Since (x_n) is a convergent sequence, then (x_n) is Cauchy

$$\forall \delta \exists M : \forall m, n > M : |x_n - x_m| < \delta$$

We simply let $\delta = \delta_0$, then we have

$$|f(x_n) - f(y_n)| < \varepsilon$$

which means $(f(x_n))$ is Cauchy and then convergent in the normal modulus metric space.

However, we still need to prove that no matter what (x_n) we choose, we simply have one unique limit of $(f(x_n))$. The proof can be simplified with the result in (3).

Suppose there are two sequences (x_n) and (y_n) in (0,1) that both converge to 0. Then we simply know that

$$\lim_{x \to \infty} (x_n - y_n) = \lim_{x \to \infty} x_n - \lim_{x \to \infty} y_n = 0 - 0 = 0$$

However, f(x) is uniformly continuous on (0,1). Then by (3) we simply know that

$$\lim_{x \to \infty} \left(f(x_n) - f(y_n) \right) = 0$$

Since both $\lim_{x\to\infty} f(x_n)$ and $\lim_{x\to\infty} f(y_n)$ exist (We have already proved it), then

$$\lim_{x \to \infty} f(x_n) = \lim_{x \to \infty} f(y_n)$$

To sum, for any (x_n) in (0,1) that converges to 0, $\lim_{x\to\infty} f(x_n)$ exists and is unique. Therefore, $\lim_{x\searrow 0} f(x)$ exists.

References

[1] Horst, Hohberger, "vv186_main", sjtu-umich.instructure.com/courses/Vv 186 FA2106/files Retrieved 2016-10-25.