Mathematics for Computing Functions

Contents

1	Sets	s of Numbers	2							
2	Arr	Arrow Diagrams								
3	Special Mathematical Functions									
	3.1	Mathematical Operators	3							
4	Exponential and Logarithms 5									
	4.1	Exercise	5							
	4.2	Onto Functions	5							
	4.3	Logarithms	6							
	4.4	Exponents	7							
5	One-to-One Functions and Onto Functions									
	5.1	Invertible Functions	8							
	5.2	Inverting a Function	8							
		5.2.1 Example	8							
6	Big	O-Notation	9							
7	Sec	tion 4 Functions	11							
	7.1	Invertible Functions	11							
	7.2		11							
	7.3		11							
		7.3.1 Special Cases	12							
	7.4	Exponentials Functions								
	7.5	-	12							
		-	12							

1 Sets of Numbers

- \bullet $\mathbb Z$ Set of all integers
- $\bullet \ \mathbb{Q}$ Set of all rational numbers
- \bullet $\mathbb R$ Set of all real numbers
- \mathbb{Z}^+ Set of all positive integers
- \mathbb{Z}^- Set of all negative integers
- \mathbb{R}^+ Set of all positive real numbers
- \mathbb{R}^- Set of all negative real numbers

2 Arrow Diagrams

- Domain
- Co-Domain
- Range

$$f(x)$$
: Domain \rightarrow Co-Domain

$$f(x): \mathbb{R} \to \mathbb{R}$$

Polynomial Functions (4.1.5)

Constants (P_0)

Linear Functions (P_1)

Quadratic Functions (P_2)

Cubic Functions (P_3)

Equality of Functions (4.1.6)

$$f(x) = g(x)$$

3 Special Mathematical Functions

3.1 Mathematical Operators

- The Square Root function
- The Floor and Ceiling functions
- The Absolute Value functions
- Root Functions
- Absolute Value Function
- Floor Function
- Ceiling Function

$$|3.14| = 3$$
 (1)

$$\lceil -4.5 \rceil = -5 \tag{2}$$

$$|-4| = 4 \tag{3}$$

For this course, only positive numbers have square roots. The square roots are positive numbers. (This statement is not strictly true. The square root

of a negative number is called a complex number. However this is not part of the course).

Negative numbers can have cube roots

$$-27 = -3 \times -3 \times -3$$

$$\sqrt[3]{-27} = -3$$

4 Exponential and Logarithms

Laws of Logarithms

• Law 1 : Multiplication of Logarithms

$$Log(a) \times Log(b) = Log(a+b)$$

• Law 2 : Division of Logarithms

$$\frac{Log(a)}{Log(b)} = Log(a-b)$$

• Law 3 : Powers of Logarithms

$$Log(a^b) = b \times Log(a)$$

4.1 Exercise

 $h(x): \mathbb{R} \to \mathbb{R} \ g(x): \mathbb{R} \to \mathbb{R}$

$$f(x) = sqrt(x)$$
$$g(x) = \sqrt{3}x + 2$$
$$h(x) = 2^{x}$$

- Is the function h(x) an *onto* function?
- determine the inverse function of h(x) and g(x)
- Simplify the following function.

$$j(x) = \log_4(h(6x))$$

4.2 Onto Functions

Definition: If every element in the co-domain of the function has an ancestor, the function is said to be "onto". An onto function has the property that the domain is equal to the co-domain.

Example 4.26 Page 53

Exponential and Logarithms

Rules

Expontials : Rules 4.18 Page 58 Logarithms : Rules 4.23 Page 61

$$log_a(a) = 1$$
$$log_a(b^c) = c \times log_a(b)$$

- $log_2(128) = 7$
- $log_2(1/4) = -2$
- $log_2(2) = 1$

$$log_a(b) = \frac{log_x(b)}{log_x(a)}$$

4.3 Logarithms

- Laws of Logarithms - Change of Base

$$Log_b(x) = a$$
$$b^a = x$$
$$Log_2(8) = 3$$
$$2^3 = 8$$

$$Log_b(x) \times Log_b(y) = Log_b(x+y)$$
$$Log_b(x^y) = y \times Log_b(x)$$

$$Log_y(x) = \frac{Log_b(x)}{Log_b(y)}$$

4.4 Exponents

- Rules of Exponents

$$(a^b)^c = a^{b \times c}$$

$$64^{2/3} = (4^3)^{2/3} = 4^{3 \times 2/3} = 4^2 = 16$$

$$(a^b) \times (a^c) = a^{b+c}$$

$$(3^2) \times (3^3) = 3^{2+3} = 3^5 = 243$$

Exercises

- (a) Complete the following table for the functions
 - i) $g(x) = \log_3 x$,
 - ii) $h(x) = \sqrt[3]{x}$.

x	1				81	
g(x)		1	2			5
h(x)				3.00		

Express your answers to 2 decimal places only.

5 One-to-One Functions and Onto Functions

5.1 Invertible Functions

- One-to-One Function
- Onto Function

Onto Functions: Range and Co-Domain are equivalent

5.2 Inverting a Function

- You are given f(x) in terms of x
- Re-arrange the equation so that x is given in terms of f(x)
- Replace x with $f^{-1}(x)$ and f(x) with x

5.2.1 Example

• Determine the inverse function of f(x). Re-arrange the equation so that x is given in terms of f(x)

$$f(x): \mathbb{R} \to \mathbb{R} \ f(x) = \sqrt{x+1}$$

• Square both sides of the equation.

$$[f(x)]^2 = x + 1$$

• Subtract 1 from both sides of the equation. We have the equation written in terms of x.

$$f(x)^2 - 1 = x$$

• Replace x with $f^{-1}(x)$ and f(x) with x

$$x^2 - 1 = f^{-1}(x)$$

• Re-arrange equation and specify domain and co-domain.

$$f(x): \mathbb{R} \to \mathbb{R} \ f^{-1}(x) = x^2 - 1$$

6 Big O-Notation

(b) Let S be the set of all 4 bit binary strings.

The function $f:S\to\mathbb{Z}$ is defined by the rule:

f(x) =the number of zeros in x

for each binary string $x \in S$. Find:

- 1. the number of elements in the domain
- 2. f(1000)
- 3. the set of pre-images of 1
- 4. the range of f.

(c)

- 4.a $\lfloor x y \rfloor = \lfloor x \rfloor \lfloor y \rfloor$
- 4.b
- 4.c

7 Section 4 Functions

7.1 Invertible Functions

A function is invertible if it fulfils two criteria

- The function is *onto*,
- The function is *one-to-one*.

State the conditions to be satisfied by a function $f: X \leftarrow Y$ for it to have an inverse function $f^{-1}: Y \leftarrow X$.

$$\lceil \frac{x^2+1}{4} \rceil$$
 where $f: A \to \mathbf{Z}$

- (i) Find f(4) and the ancestors of 3.
- (ii) Find the range of f.
- (iii) Is f invertible? Justify your answer

Given $f: \mathbf{R} \to \mathbf{R}$ where f(x) = 3x-1, define fully the inverse of the function f, i.e. f^{-1} . State the value of $f^{-1}(2)$

7.2 Precision Functions

- Absolute Value Function |x|
- Ceiling Function [x]
- Floor Function |x|

Question 1.2: State the range and domain of the following function

$$F(x) = \lfloor x - 1 \rfloor$$

7.3 Powers

$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

$$5^3 = 5 \times 5 \times 5 = 125$$

7.3.1 Special Cases

Anything to the power of zero is always 1

$$X^0 = 1$$
 for all values of X

Sometimes the power is a negative number.

$$X^{-Y} = \frac{1}{X^Y}$$

Example

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

7.4 Exponentials Functions

$$e^a \times e^b = e^{a+b}$$

$$(e^a)^b = e^{ab}$$

7.5 Logarithmic Functions

7.5.1 Laws for Logarithms

The following laws are very useful for working with logarithms.

1.
$$\log_b(X) + \log_b(Y) = \log_b(X \times Y)$$

2.
$$\log_b(X)$$
 - $\log_b(Y) = \log_b(X/Y)$

3.
$$\log_b(X^Y) = Y \log_b(X)$$

Question 1.3 Compute the Logarithm of the following

- $\log_2(8)$
- $\log_2(\sqrt{128})$
- $\log_2(64)$
- $\log_5(125) + \log_3(729)$
- $\log_2(64/4)$

•
$$a^x = y \log_a(y) = x$$

•
$$e^x = y \ln(y) = x$$

•
$$log_a(x \times y) = log_a(x) + log_a(y)$$

•
$$log_a(\frac{x}{y}) = log_a(x) - log_a(y)$$

•
$$log_a(\frac{1}{x}) = -log_a(x)$$

•
$$log_a(a) = 1$$

•
$$log_a(1) = 0$$

- \bullet $\lceil x \rceil$
- \bullet $\lfloor x \rfloor$

Sample value x	Floor $\lfloor x \rfloor$	Ceiling $\lceil x \rceil$	Fractional part $\{x\}$
12/5 = 2.4	2	3	2/5 = 0.4
2.7	2	3	0.7
-2.7	-3	-2	0.3
-2	-2	-2	0