

RTL_EXERCISE_1 BOUND FLASHER
Author Nhóm 7 Date 2024/03/8 Version 1.1

Contents

1. Interface	2
2. Functional implementation.	3
3. Internal implementation.	5
3.1. Overall.	5
3.2. State Machine	6
4. History	7

1. Interface

Figure 1: the figure of Bound Flasher System

Signal	Width	In/Out	Description	
Clk	1	In	Flick Signal	
Reset	1	In	Reset Signal	
Flick	1	In	Clock Signal	
LED	16	Out	16 LEDS	

Table 1: Description of signals in Bound Flasher

2. Functional implementation.

- Implement a 16-bits LEDs system
- System's Operation base on three input signal
 - Reset
 - Clock
 - Flick
- The system specification
 - Clock signal is provided for system inspire of function status. The function operate state's transition at positive edge of the clock signal.
 - Reset signal:
 - o LOW-ACTIVE Reset = 0: System is restarted to Initial State.
 - HIGH-ACTIVE Reset = 1: System is started with initial state.
- Flick signal: special input for controlling state transfer.
- At the initial state, all lamps are OFF. If flick signal is ACTIVE, the flasher start operating:
 - The lamps are turned ON gradually from LEDs [0] to LEDs [15].
 - The LEDSs are turned OFF gradually from LEDs [15] to LEDs [5].
 - The LEDSs are turned ON gradually from LEDs [5] to LEDs [10].
 - The LEDSs are turned OFF gradually from LEDs [10] to LEDs [0].
 - The LEDSs are turned ON gradually from LEDs [0] to LEDs [5].
 - Finally, the LEDs are turned OFF gradually from LEDSs [5] to LEDSs [0], return to initial state.
- Additional condition: At each kickback point (LEDs [5] and LEDs [0]), if flick signal is
 ACTIVE, the LEDs will go back and repeat that STATE. For simple, kickback point is considered only when the LEDs are turned OFF gradually, except final state.

- Some insulations:
 - When flick = 0 at kickback points

• When flick = 1 at kickback points (lamp[5])

3. Internal implementation.

3.1. Overall.

Figure 3.1: Block diagram of Bound Flasher

Signal	Width	Type	Description	
Flick	1	Input	Nếu tín hiệu ở mức cao khi đèn led bị tắt dần về các kickback point, trạng thái sẽ quay trở về trạng thái trước đó	
Reset	1	Input	Dùng để reset hệ thống	
Clk	1	Input	Dùng để phát tín hiệu	
Led	16	Output	LED đầu ra	
Count	4	Reg	Số đếm biểu thị LED được bật	
Next state	3	Reg	Trạng thái hiện tại của máy trạng thái	
Current state	3	Reg	Trạng thái tiếp theo được quyết định bởi máy trạng thái	
isUpCount	1	Reg	Tín hiệu thông báo việc đếm lên hay xuống	
isCounting	1	Reg	Tín hiệu thông báo có hành động đếm	

Table 3.1: Data path of Bound Flasher Description

Components	Description	
FSM	Khối này quyết định trạng thái tiếp theo của hệ thống.Nguye	
Counter	Bộ đếm số đếm trạng thái của đèn LED	
LED pattern decoder	Bộ dịch số đếm thành trạng thái đèn LED	
D-FF Current State	D-Flip Flop lưu trạng thái hiện tại của FSM	

Table 3.2: Components of Bound Flasher Description

3.2. State Machine

Figure 3.2: State Machine of Bound Flasher

Variable Name	Description
count	Lưu giá trị đèn LED đang mở (ON) (count = 1: ON, count = 0: OFF); giúp xác định
	state tiếp theo
flick	Tín hiệu input quyết định state tiếp theo nếu state hiện tại là "Turn OFF to LED[5]"
	hoặc "Turn OFF to LED[0]" và đang ở kickback point
reset	Tín hiệu input để quyết định đưa state hiện tại về trạng thái "INIT State"
LED[i]	Tín hiệu output xác định LED hiển thị

Table 3.3: variable name of State machine

State	Description
INIT State	Trạng thái khởi tạo.
Turn ON to LED[15]	Trạng thái 1 của hệ thống: "The LEDs are turned ON gradually from LEDs [0] to LEDs [15]".
Turn OFF to LED[5]	Trạng thái 2 của hệ thống: "The LEDs are turned OFF gradually from LEDs [15] to LEDs [5]" và trạng thái khi ở tại kickback point LED[5].
Turn ON to LED[10]	Trạng thái 3 của hệ thống: "The LEDs are turned ON gradually from LEDs [5] to LEDs [10]".
Turn OFF to LED[0]	Trạng thái 4 của hệ thống: "The LEDs are turned OFF gradually from LEDs [10] to LEDs [0]" và trạng thái khi ở tại kickback point LED[0].
Turn ON to LED[5]	Trạng thái 5 của hệ thống: "The LEDs are turned ON gradually from LEDs [0] to LEDs [5]"

Table 3.4: state name of State machine

4. History

Date	Author	ID	Description
2024/03/29	Nguyễn Trường Thịnh	2110564	
	Phạm Hồng My Sa	2112173	
	Nguyễn Tấn Hào	2013053	
	Danh Sơn Hà	2013037	
2024/03/29	Phạm Hồng My Sa	2112173	Sửa sơ đồ FSM
2024/04/06	Nguyễn Tấn Hào	2013053	Sửa block diagram của Bound Flasher

