DATA MINING ONLINE NEWS POPULARITY

Sachin Kant Misra
Prashant Bhowmik
Jagpreet Singh Sethi
Renee Champagne

ONLINE NEWS POPULARITY

- ✓ Introduction
- ✓ Problem Statement
- ✓ Dataset Overview
- ✓ Data Cleaning and Pre-Processing
- ✓ Data Modeling and Conclusions
- ✓ Problem I: To predict the number of Mashable article shares
- ✓ Problem 2: To predict binary target variable 'Popularity'
- ✓ Problem 3: To predict ordinal outcome for 'Popularity_level'
- ✓ Visualization using Tableau
 - ❖ Insight I: How is the distribution of News articles in the month − January
 - Insight 2: Before shopping on Black Friday, people read and share lot of articles.
 - Insight 3: New York is the city of Business
- ✓ Model Implementation on Amazon Web Server

INTRODUCTION - MASHABLE WEBSITE

What's New

Mobile ad blocking is real, but new data suggests it might not matter

1.2K SHARES / 5 hours ago

Pied Piper is still the underdog in 'Silicon Valley' Season 3

652 SHARES / 5 hours ago

Extended Sandy Hook lawsuit might just be what the plaintiffs need

What's Rising

YouTube stars raise money

What's Hot

PROJECT AIM

- > To predict the number of shares of Mashable article.
- To predict the popularity status of the article

Popular (Yes)	Popular (No)
Share > 1400	Shares < 1400

To predict an ordinal outcome for popularity levels

PopularLevel (Low)		PopularLevel (High)
Share < I 100	Shares between 1100 and 2100	Shares > 2100

Visualize the dataset for various kinds of trend/insights found among the attributes of the Mashable article using tableau.

DATASET OVERVIEW

- > The data set was acquired on 8th January' 2015.
- > Total 39644 instances and 71 attributes.
 - 64 are independent predictors
 - 4 are non-predictive variables
 - 3 are target variables (Shares, Popularity, Popularity_Level)

DATA CLEANING-EXTRACT YEAR & MONTH

Extracting Year and Month from "url" attribute:

We have used excel formula e.g. "=MID(A2,21,4)" to extract year and "=MID(A2,26,2)" to extract month from the "url" attribute.

DATA CLEANING-CREATE DUMMY VAR

2. Sparsing 'Weekdays' attribute into Dummy variables:

We have used excel formula e.g. "=INDEX(AJ\$1:AO\$1,MATCH(MAX(AJ2:AM2),AJ2:AM2,0))" to sparse the categorical variable "Weekday" into dummy variable sets.

Dur	Dummy Variables			Catego	rical Va	riables -		
	AI	AJ	AK	AL	AM	AN	AO	AP
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Weekday
	0	1	0	0	0	0	0	Tuesday
	0	0	1	0	0	0	0	Wednesday

DATA CLEANING-CREATE DUMMY VAR

Sparsing 'article_type' attribute into Dummy variables:

We have used excel formula e.g. "=INDEX(P\$1:U\$1,MATCH(MAX(P2:U2),P2:U2,0))" to sparse the categorical variable "Weekday" into dummy variable sets.

Dummy	y Variables 🥿	Categorical Variables -			<u> </u>	
Р	Q	R	S	T	U	V
Lifestyle	Entertainment	Business	Social Media	Technology	World	article_type
0	0	1	0	0	0	Business
0	0	0	0	1	0	Technology
0	1	0	0	0	0	Entertainment
0	0	0	1	0	0	Social Media

DATA CLEANING — CREATE POPULARITY LEVELS

4. Target variable 'popularity' and 'popularity_level' based on attribute 'shares':

We have used below excel formulae to create two more categorical target variable e.g.

- (I) "=IF(BQ>1400,1,0)" for 'popularity' where value = '1' for shares>1400 and value = '0' otherwise.
- (II) "=IF(BQ>2100,1,(IF(BQ=>1100 and <=2100),2,3))" for 'popularity' where value = '1' for shares >2100 and value = '2' for shares between 1100 and 2100 and value = '3' for shares < 1100.

BQ	BR	BS
shares	popularity	popularity_level
459	0	3
1400	0	2
6400	1	1

OBJECTIVE 1 - PREDICT SHARES

Approach I: Use Kitchen Sink Model on Linear Regression algorithm

Results:

R-Squared		Evaluation Criteria: MSE
0.0242	0.0199	51610069

OBJECTIVE 1 - PREDICT SHARES

Approach 2: Use Kitchen Sink Model on Decision Tree algorithm

Parameters used and Results:

Depth	Leaf Size	No. of Rules	Interval Target Criteria	Evaluation Criteria: MSE
6	5	5	ProfF	51237007

OBJECTIVE 1 - PREDICT SHARES

Approach 3: Use Principal Component Analysis and Linear Regression algorithm

Parameters used and Results:

EigenValue	Cumulative Cut Off	Interval Target Criteria	R-Sq	Adj R-Sq	Evaluation Criteria: MSE
Correlation	0.8	ProfF	0.0143	0.0136	51482431

OBJECTIVE 1 – PREDICT SHARES

Approach 4: Use Principal Component Analysis and Decision Tree algorithm

Parameters used and Results:

Depth	Leaf Size	No. of Rules	Interval Target Criteria	EigenValue	Cumulative Cut Off	Evaluation Criteria: MSE
6	5	5	ProfF	Correlation	8.0	52753115

OBJECTIVE I — CONCLUSION

- Adjusted R-Square is very low in all our approaches (Approx 2%)
- Only 2% of variance in target variable ('shares') can be explained which is too less to make predictions.
- Similar is the case with stock price prediction example from the book 'Data Science for Business', where exact stock price value prediction cannot be made. In such situations, we use a threshold value on continuous target variable and try to predict 'SURGE' or 'PLUNGE' in the stock price.
- Thus, we'll predict popularity of Mashable article with a threshold
 - Popular [Shares > 1400]
 - Not Popular [Shares < 1400]

OBJECTIVE 2 – PREDICT POPULARITY

Approach I: Use Kitchen Sink Model on Logistic Regression and Decision Tree algorithm

Logistic Regression Results:

False -ve	False +ve	Rate	Evaluation Criteria: Accuracy
1492	1271	0.35	65%

False -ve	False +ve	Rate	Evaluation Criteria: Accuracy
1379	1471	0.36	64%

OBJECTIVE 2 – PREDICT POPULARITY

Approach 2: Use Variable Selection on Logistic Regression, Decision Tree & Gradient Boosting algorithm

Logistic Regression Results:

FN	FP		Evaluation Criteria: Accuracy
1488	1441	0.37	63%

Decision Tree Results:

FN	FP		Evaluation Criteria: Accuracy
1325	1530	0.36	64%

Gradient Boosting Results:

FN	FP	MISC_ Rate	Evaluation Criteria: Accuracy
1545	1451	0.38	62%

OBJECTIVE 2 – PREDICT POPULARITY

Approach 3: Use Principal Component Analysis on Logistic Regression, Decision Tree & Gradient Boosting algorithm

Logistic Regression Results:

FN	FP	Rate	Evaluation Criteria: Accuracy
1533	1450	0.38	62%

Decision Tree Results:

FN	FP	MISC_ Rate	Evaluation Criteria: Accuracy
1235	1757	0.38	62%

Gradient Boosting Results:

FN	FP		Evaluation Criteria: Accuracy
1400	1545	0.37	63%

OBJECTIVE 2 – CONCLUSION

- Although with a kitchen sink model, we achieved ~65% accuracy using logistic regression, the model seems too complex.
- On compromising only ~1% accuracy, we built models using variable selection technique i.e. filtering input variables on R-Sq (for continuous) and Chi-Sq (for categorical). Thus, simplifying our model.
- Considering the fact that the value of False Negative is more alarming as compared to False Positive.
 Our selected model should have least FP value i.e. a cost-effective model for business strategy.
- As a result, we prefer **Decision Tree with Variable Selection** dimensionality reduction technique over any other model for prediction of binary target variable popularity.

OBJECTIVE 3 – PREDICT ORDINAL POPULARITY_LEVEL

Approach I: Use Kitchen Sink Model on Logistic Regression and Decision Tree algorithm

Logistic Regression Results:

False -ve	False +ve	Rate	Evaluation Criteria: Accuracy
757	2207	0.52	48%

False -ve	False +ve	Rate	Evaluation Criteria: Accuracy
869	2164	0.53	47%

OBJECTIVE 3 – PREDICT ORDINAL POPULARITY_LEVEL

Approach 2: Use Variable Selection on Logistic Regression & Decision Tree algorithm

Logistic Regression Results:

FN	FP	MISC_ Rate	Evaluation Criteria: Accuracy
748	2304	0.53	47%

FN	FP		Evaluation Criteria: Accuracy
850	2234	0.53	47%

OBJECTIVE 3 – PREDICT ORDINAL POPULARITY_LEVEL

Approach 3: Use Principal Component Analysis on Logistic Regression and Decision Tree algorithm

Logistic Regression Results:

FN	FP	MISC_ Rate	Evaluation Criteria: Accuracy
748	2433	0.54	46%

FN	FP	MISC_ Rate	Evaluation Criteria: Accuracy
811	2387	0.54	46%

OBJECTIVE 3 – CONCLUSION

- Although with a kitchen sink model, we achieved ~48% accuracy using logistic regression, the model seems too complex.
- On compromising only ~1% accuracy, we built models using variable selection technique i.e. filtering input variables on R-Sq (for continuous) and Chi-Sq (for categorical). Thus, simplifying our model.
- Considering the fact that the value of False Negative is more alarming as compared to False Positive.
 This rules out the option of choosing Decision Tree over Logistic Regression.
- As a result, we prefer Logistic Regression with Variable Selection dimensionality reduction technique over any other model for prediction of Ordinal target variable popularity_level (High, Medium, Low)

TABLEAU VISUALIZATION - 1

Public Tableau: https://public.tableau.com/profile/jagpreet#!/vizhome/book I_I 0486/dashboard I

<u>Insight I:</u> CES Conference by CNET in Jan makes people share more tech articles.

- □ No. of shares in Jan 2014 is double than in Jan 2013.
- ☐ Mobile device is preferred to read Mashable articles.
- ☐ Cities California, Texas, New York and Massachusetts has most of the authors.
- ☐ Most authors post during night hours.
- ☐ In Jan, people share maximum

 Technology related articles because
 the company CNET organizes CES
 product launch conference annually in
 the month of January.
- ☐ Henceforth, people stay active and share more articles on technology in Jan.

TABLEAU VISUALIZATION - 2

Public Tableau: https://public.tableau.com/profile/jagpreet#!/vizhome/book I_I0486/dashboard I

<u>Insight2</u>: Christmas holiday and Black Friday week, make people visit Lifestyle related Mashable article even more.

- ☐ Authors in Wyoming publish more Lifestyle related articles.
- ☐ Such articles are shared more during last few months of a year.
- Festive like Christmas Holiday, Black Friday and Labor Day bring heavy discount on shopping, this makes people visit Lifestyle related Mashable articles even more.

TABLEAU VISUALIZATION - 3

Public Tableau: https://public.tableau.com/profile/jagpreet#!/vizhome/book1_10486/dashboard1

Insight 3: New York is the city with maximum business-minded crowd

- Most of the authors in New York publish articles on Mashable.com during night.
- ☐ People working in NY love to read and share "Business" centric Mashable articles,
- Henceforth, New York has maximum number of businessminded crowd.

MODEL IMPLEMENTATION

http://biasvariance.com/datamining (DEPLOYED ON AMAZON WEB SERVICES)

Data Mining Project @ USF

Spring 2016

Submitted by:

Jagpreet Singh Sethi, Sachin Kant Misra, Prashant Bhowmik, Renee Champagne

Model Used: Decision Tree with Variable Selection

Online News Popularity of Mashable Articles

Model to check popularity of an article
Enter number of words in your article:
Is your article technology related 1=Yes, 0=No:
Is your article Social Media related 1=Yes, 0=No:
Did the author published article on weekend 1=Yes, 0=No:
Enter the LDA_02 Value:
Is the article related to entertainment 1=Yes, 0=No:
Submit

MODEL IMPLEMENTATION

http://biasvariance.com/datamining (DEPLOYED ON AMAZON WEB SERVICES)

Congratulations! Your Article will be Popular. Well Done!

Thank you!