

DIGITAL DESIGN AND COMPUTER ORGANIZATION Gate-Level Minimization: Karnaugh Maps

Team DDCO Department of Computer Science and Engineering

logic Introduction :Chapter 3: 3.1,3.2,3.3,3.5

Gate-level minimization is the design task of finding an optimal gate-level implementation of the Boolean functions describing a digital circuit.

Logic minimizations
Boolean Identities
K-map.(Karnaugh map)

Simplest algebraic expression is an algebraic expression with a **minimum number of terms** and with the **smallest possible number of literals in each term**. This expression produces a circuit diagram with a minimum number of gates and the minimum number of inputs to each gate.

Introduction

- The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.
- Boolean expressions may be simplified by algebraic means. However, this procedure of minimization is awkward because it lacks specific rules to predict each succeeding step in the manipulative process.
- The map method provides a simple, straightforward procedure for minimizing Boolean functions.
- This method may be regarded as a pictorial form of a truth table. The map method is also known as the *Karnaugh map* or *K-map*

Karnaugh Map

- **K-Map** is a **visual tool** used to simplify Boolean expressions.
- Introduced by **Maurice Karnaugh in 1953**, based on earlier work from 1881.
- Each square in the K-map represents a minterm of a Boolean function.
- A Boolean function can be expressed as a **sum of minterms** this makes it easy to map onto a K-map.
- Adjacent squares represent minterms that differ by only one literal.
- Uses our brain's pattern recognition ability to simplify logic.
- Groups of 1s (e.g., 1, 2, 4, 8...) are formed to find **common literals**, which helps in **minimization**.

Two-Variable K-Map

- There are four minterms for two variables; hence, the map consists of four squares, one for each minterm.
- The map is redrawn in (b) to show the relationship between the squares and the two variables x and y.
- The 0 and 1 marked in each row and column designate the values of variables. $m_1 + m_2 + m_3 = x'y + xy' + xy = x + y$

Two-Variable K-Map

Representation of functions in the map: The function x + y is represented in the map as follows:

Two-Variable K-Map

- The three squares could also have been determined from the intersection of variable x in the second row and variable y in the second column, which encloses the area belonging to x or y.
- In each example, the minterms at which the function is asserted are marked with a 1.

Three-Variable K-Map

- The characteristic of this sequence is that only one bit changes in value from one adjacent column to the next.
- The map drawn in part (b) is marked with numbers in each row and each column to show the relationship between the squares and the three variables.
- Gray code ensures that only one variable changes between each pair of adjacent cells.

Three-Variable K-Map

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6

$$m_5 + m_7 = xy'z + xyz = xz(y' + y) = xz$$

Three-Variable K-Map

a	Ь	C	y	minterm
0	0	0	0	ābc
0	0	1	0	ābc
0	1	0	0	ābc
0	1	1	1	ābc
1	0	0	1	ab̄c
1	0	1	0	abc
1	1	0	1	abc
1	1	1	1	abc

a bc	00	01	11	10
0	āБ̄ु	$\overline{a}\overline{b}c_{1}$	ābc ₃	ābē 2
1	a b c₄	abc	abc ₇	ab c 6

- Each square corresponds to a row of the truth table
- Any two adjacent squares differ only in one literal
- Achieved using two rows and binary order 00,01,11,10
- Notion of "wrap-around": far left and right squares are adjacent

K-Map Method

K-Map Implicants

- Implicant
 - K-Map area composed of squares containing 1's
 - Area is square or rectangular (wraparound allowed)
 - No. of squares in area is a power of two (1, 2, 4, . . .)
 - Each implicant corresponds to a product of literals
 - ★ Double the area, one less literal
- Prime implicant
 - Implicant having largest number of squares obeying above rules
- Essential prime implicant
 - Prime implicant containing a square not in any other prime implicant

K-Map Method

- Include all required prime implicants
 - Include all essential prime implicants
 - Include other prime implicants such that:
 - ★ Each square containing 1 is covered
 - Boolean formula is minimal (may not be unique)
- Convert required implicants to Boolean formula
 - Each implicant is a product of literals
 - Include literals which do not change over its area

K-Map Method

In choosing adjacent squares in a map, we must ensure that

- (1) all the minterms of the function are covered when we combine the squares,
- (2) the number of terms in the expression is minimized, and
- (3) there are no redundant terms (i.e., minterms already covered by other terms)

A prime implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.

If a minterm in a square is covered by only one prime implicant, that prime implicant is said to be essential.

The prime implicants of a function can be obtained from the map by combining all possible maximum numbers of squares.

- Prime implicants: green colour
- Essential prime implicants: blue colour
- Required prime implicants: dark red colour

a	Ь	C	y	minterm
0	0	0	0	ābc
0	0	1	0	ābc
0	1	0	0	ābc
0	1	1	1	ābc
1	0	0	1	ab̄c
1	0	1	0	abc
1	1	0	1	abc
1	1	1	1	abc

- Prime implicants: green colour
- Essential prime implicants: blue colour
- Required prime implicants: dark red colour

- Prime implicants: green colour
- Essential prime implicants: blue colour
- Required prime implicants: dark red colour

- Prime implicants: green colour
- Essential prime implicants: blue colour
- Required prime implicants: dark red colour

Three prime implicants

- Prime implicants: green colour
- Essential prime implicants: blue colour
- Required prime implicants: dark red colour

Three prime implicants

- Prime implicants: green colour
- Essential prime implicants: blue colour
- Required prime implicants: dark red colour

- Three prime implicants
- Two essential prime implicants

- Prime implicants: green colour
- Essential prime implicants: blue colour
- Required prime implicants: dark red colour

- Three prime implicants
- Two essential prime implicants

- Prime implicants: green colour
- Essential prime implicants: blue colour
- Required prime implicants: dark red colour

- Three prime implicants
- Two essential prime implicants
- Required prime implicants: bc, ac

- Prime implicants: green colour
- Essential prime implicants: blue colour
- Required prime implicants: dark red colour

- Three prime implicants
- Two essential prime implicants
- Required prime implicants: bc, ac
- Boolean formula:

$$f(a,b,c) = a\overline{c} + bc$$

Three Variable K-Map

$$F(x, y, z) = \Sigma(2, 3, 4, 5)$$

Three Variable K-Map

$$F(x, y, z) = \Sigma(3, 4, 6, 7)$$

 $F = yz + xz'$

Three Variable K-Map

$$F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$$

$$F = z' + xy'$$

Note:
$$y'z' + yz' = z'$$

Quick Pointers

- The number of adjacent squares that may be combined must always represent a number that is a power of two, such as 1, 2, 4, and 8.
- As more adjacent squares are combined, we obtain a product term with fewer literals.
- One square represents one minterm, giving a term with three literals.
- Two adjacent squares represent a term with two literals.
- Four adjacent squares represent a term with one literal.
- Eight adjacent squares encompass the entire map and produce a function that is always equal to 1.

For the Boolean function

$$F = A'C + A'B + AB'C + BC$$

- (a) Express this function as a sum of minterms.
- (b) Find the minimal sum-of-products expression.

sum-of-minterms form as

$$F(A, B, C) = \Sigma(1, 2, 3, 5, 7)$$

The sum-of-products expression, as originally given, has too many terms. It can be simplified, as shown in the map, to an expression with only two terms:

$$F = C + A'B$$

Four Variable K-Map

- The map minimization of four-variable Boolean functions is similar to the method used to minimize three-variable functions. Adjacent squares are defined to be squares next to each other.
- For example, m0 and m2 form adjacent squares, as do m3 and m11.
- The combination of adjacent squares that is useful during the simplification process is easily determined from inspection of the four-variable map:

Four Variable K-Map

m_0	m_1	<i>m</i> ₃	m_2
m_4	m_5	m_7	m_6
<i>m</i> ₁₂	<i>m</i> ₁₃	m ₁₅	m_{14}
m_8	m_9	m_{11}	m_{10}

Quick Pointers

- One square represents one minterm, giving a term with four literals.
- Two adjacent squares represent a term with three literals.
- Four adjacent squares represent a term with two literals.
- Eight adjacent squares represent a term with one literal.
- Sixteen adjacent squares produce a function that is always equal to 1.

$$F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$$
$$F = y' + w'z' + xz'$$

$$F = A'B'C' + B'CD' + A'BCD' + AB'C'$$

FIGURE 3.10

Map for Example 3.6, A'B'C' + B'CD' + A'BCD' + AB'C' = B'D' + B'C' + A'CD'

Simplification using Prime Implicants

(a)
$$F(w, x, y, z)$$

= $\Sigma(0, 2, 5, 7, 8, 10, 13, 15)$

Note: A'B'C'D' + A'B'CD' = A'B'D' AB'C'D' + AB'CD' = AB'D'A'B'D' + AB'D' = B'D'

(a) Essential prime implicants BD and B'D'

(b) Prime implicants CD, B'C, AD, and AB'

Another K-Map Example

K-Map Minimization Example

	a	b	y	
	0	0	1	
	0	1	0	
	1	0	1	
	1	1	1	
Two I	npu	t Tri	uth Table	

Another K-Map Example

K-Map Example (two inputs)

a	b	y
0	0	1
0	1	0
1	0	1
1	1	1

Two Input Truth Table

a b	0	1
0	1	0 1
1	1 2	1 3

Another K-Map Example

K-Map Example (two inputs)

a	Ь	y
0	0	1
0	1	0
1	0	1
1	1	1

Two Input Truth Table

Two prime implicants

K-Map Example (two inputs)

a	Ь	y
0	0	1
0	1	0
1	0	1
1	1	1

Two Input Truth Table

- Two prime implicants
- Two essential prime implicants

K-Map Example (two inputs)

a	Ь	y
0	0	1
0	1	0
1	0	1
1	1	1

Two Input Truth Table

- Two prime implicants
- Two essential prime implicants
- Two required prime implicants

K-Map Example (two inputs)

a	Ь	y
0	0	1
0	1	0
1	0	1
1	1	1

Two Input Truth Table

- Two prime implicants
- Two essential prime implicants
- Two required prime implicants
- Minimized Boolean formula:

$$f(a, b, c, d) = \overline{b} + a$$

K-Map Minimization Example

a	b	С	y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

K-Map Minimization Example

a	b	С	y	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	
Truth table				

a b	c 00	01	11	10
0	0 0	1 1	1 3	0 2
1	1 4	1 5	1 7	1 6

K-Map Minimization Example

a	b	С	y	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	
Truth table				

Two prime implicants

K-Map Minimization Example

a	Ь	C	y		
0	0	0	0		
0	0	1	1		
0	1	0	0		
0	1	1	1		
1	0	0	1		
1	0	1	1		
1	1	0	1		
1	1	1	1		
Tr	Truth table				

- Two prime implicants
- Two essential prime implicants

K-Map Minimization Example

Ь	C	y
0	0	0
0	1	1
1	0	0
1	1	1
0	0	1
0	1	1
1	0	1
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Truth table

- Two prime implicants
- Two essential prime implicants
- Two required prime implicants: c, a

K-Map Minimization Example

a	b	С	y		
0	0	0	0		
0	0	1	1		
0	1	0	0		
0	1	1	1		
1	0	0	1		
1	0	1	1		
1	1	0	1		
1	1	1	1		
Tr	Truth table				

Two prime implicants

bc_

a

00

Two essential prime implicants

01

- Two required prime implicants: c, a
- Minimal Boolean formula: f(a, b, c) = c + a

K-Map Minimization Example

a	Ь	C	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
Tr	uth	tabl	e

K-Map Minimization Example

b	С	y
0	0	0
0	1	1
1	0	1
1	1	0
0	0	0
0	1	1
1	0	1
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 0

Truth table

a b	c 00	01	11	10
0	0	1	0	1
1	0	1	1	1

K-Map Minimization Example

a	Ь	C	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
2000			0000

Truth table

Four prime implicants

K-Map Minimization Example

a	b	С	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
_			

Truth table

- Four prime implicants
- Two essential prime implicants

K-Map Minimization Example

a	Ь	C	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
33.00	-	•	-

Truth table

- Four prime implicants
- Two essential prime implicants
- Three required prime implicants: bc, bc along with either ca or ab
- Minimal Boolean formulas:

$$f(a, b, c) = \overline{b}c + b\overline{c} + ca$$

 $f(a, b, c) = \overline{b}c + b\overline{c} + ab$

K-Map Minimization Example

a	Ь	С	d	y
0	0	0	0	1
0	0	0	0	0
0	0	1	0	1
0	0	1	0	0
0	1	0	0	0
0	1	0	0	1
0	1	1	1	0
0	1	1	1	1
1	0	0	1	1
1	0	0	1	0
1	0	1	0	1
1	0	1	0	0
1	1	0	1	0
1	1	0	1	1
1	1	1	1	0
1	1	1	1	1

K-Map Example (four inputs)

a	Ь	С	d	y
0	0	0	0	1
0	0	0	0	0
0	0	1	0	1
0	0	1	0	0
0	1	0	0	0
0	1	0	0	1
0	1	1	1	0
0	1	1	1	1
1	0	0	1	1
1	0	0	1	0
1	0	1	0	1
1	0	1	0	0
1	1	0	1	0
1	1	0	1	1
1	1	1	1	0
1	1	1	1	1

Four Input Truth Table

K-Map Example (four inputs)

a	Ь	C	d	y
0	0	0	0	1
0	0	0	0	0
0	0	1	0	1
0	0	1	0	0
0	1	0	0	0
0	1	0	0	1
0	1	1	1	0
0	1	1	1	1
1	0	0	1	1
1	0	0	1	0
1	0	1	0	1
1	0	1	0	0
1	1	0	1	0
1	1	0	1	1
1	1	1	1	0
1	1	1	1	1
our	Inpu	ut Tru	uth T	able

 Two prime implicants

K-Map Example (four inputs)

a	Ь	C	d	y
0	0	0	0	1
0	0	0	0	0
0	0	1	0	1
0	0	1	0	0
0	1	0	0	0
0	1	0	0	1
0	1	1	1	0
0	1	1	1	1
1	0	0	1	1
1	0	0	1	0
1	0	1	0	1
1	0	1	0	0
1	1	0	1	0
1	1	0	1	1
1	1	1	1	0
1	1	1	1	1
our	Inni	ıt Trı	ith T	able

- Two prime implicants
- Two essential prime implicants

K-Map Example (four inputs)

a	Ь	С	d	y
0	0	0	0	1
0	0	0	0	0
0	0	1	0	1
0	0	1	0	0
0	1	0	0	0
0	1	0	0	1
0	1	1	1	0
0	1	1	1	1
1	0	0	1	1
1	0	0	1	0
1 1 1	0	1	0	1
1	0	1	0	0
1	1	0	1	0
1	1	0	1	1
	1	1	1	0
1	1	1	1	1
our	Inpi	ıt Trı	uth T	able

- Two prime implicants
- Two essential prime implicants
- Two required prime implicants: bd, bd

K-Map Example (four inputs)

0 0	0	0	1
		0	-
0		-	0
	1	0	1
0	1	0	0
1	0	0	0
1	0	0	1
1	1	1	0
1	1	1	1
0	0	1	1
0	0	1	0
0	1	0	1
0	1	0	0
1	0	1	0
1	0	1	1
1	1	1	0
1	1	1	1
	1 1 1 0 0 0 0 1 1 1	1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0	1 0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 1 1 1 1

- Two prime implicants
- Two essential prime implicants
- Two required prime implicants: bd, bd
- Minimized Boolean formula: f(a,b,c,d) =

$$f(a, b, c, d) = bd + \overline{b} \overline{d}$$

Gate-Level Minimization and Combinational logic Don't-care conditions.

- Functions that have unspecified outputs for some input combinations are called incompletely specified functions.
- In most applications, we simply don't care what value is assumed by the function for the unspecified minterms.
- For this reason, it is customary to call the unspecified minterms of a function don't-care conditions

K-MAPS

Don't Cares

Suppose we are asked to design a three input logic circuit all whose inputs can never be 1 simultaneously

guaranteed can't happen

а	b	С	У
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	X

Truth table

a bo	00	01	11	10
0	1	1	0	0
1	1	1	X	1

- Case 0: $y = \overline{b} + \frac{1}{6}a$
- Case 1: $y = \overline{b} + a$
- Either 0 or 1 can result in smaller formula
- So initially write X in truth table and K-Map

Don't Care

Output(s) we **don't care** about are denoted by X, can be treated as either 0 or 1

Don't Care / X has other use cases, discussed later

Gate-Level Minimization and Combinational logic Don't-care conditions.

(a)F(w, x, y, z)=
$$\sum$$
m(1,3,7,11,15)
+ d(1,2,5)

(b)F(w, x, y, z)= \sum m(1,3,7,11,15) + d(0,2,5)

Gate-Level Minimization and Combinational logic Product of sums simplification.

- The minimized Boolean functions derived from the map in all previous examples were expressed in sum-of-products form.
- With a minor modification, the product-of-sums form can be obtained.
- The procedure for obtaining a minimized function in product-of-sums form follows from the basic properties of Boolean functions.

Gate-Level Minimization and Combinational logic Product of sums simplification.

- The 1's placed in the squares of the map represent the minterms of the function.
- The minterms not included in the standard sum-of-products form of a function denote the complement of the function.
- From this observation, we see that the complement of a function is represented in the map by the squares not marked by 1's
- If we mark the empty squares by 0's and combine them into valid adjacent squares, we obtain a simplified sum-of-products expression of the complement of the function (i.e., of F).
- The complement of F gives us back the function F in product-of-sums form (a consequence of DeMorgan's theorem)

Gate-Level Minimization and Combinational logic

Product of sums simplification.

Gate implementations of the function

Gate-Level Minimization and Combinational logic Product of sums simplification.

Truth Table of Function $F(x, y, z) = \sum m(1,3,4,6)$.

x	y	z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Gate-Level Minimization and Combinational logic Product of sums simplification.

Map for the function $F(x, y, z) = \sum m(1,3,4,6)$.

Real-Life Applications of K-Maps

<u>Digital Circuits</u>: Karnaugh maps are widely used in the design of digital circuits. The simplified expressions obtained from K-Maps can be easily translated into logic gates, making it easier to design and implement the circuit.

<u>Computer memory</u>: K-Maps are used in the design of computer memory. The simplified expressions obtained from K-Maps help in reducing the size and complexity of the memory circuit.

<u>Communication systems</u>: K-Maps are used in the design of communication systems. The simplified expressions obtained from K-Maps help in reducing the complexity and improving the efficiency of the communication system.

Real-Life Applications of K-Maps

<u>Consumer electronics</u>: K-Maps are used in the design of consumer electronics such as televisions, radios, and other electronic devices. The simplified expressions obtained from K-Maps help in reducing the size and complexity of electronic devices.

<u>Automotive electronics</u>: K-Maps are used in the design of automotive electronics such as engine control units, braking systems, and other electronic systems. The simplified expressions obtained from K-Maps help in reducing the size and complexity of the electronic systems, making them more efficient and reliable. Used in <u>error detection</u> like <u>Parity Checkers</u>, <u>Cyclic Redundancy Check (CRC)</u> etc.

Try it Out

Minimize using K-Maps

- $f(a, b, c) = \Sigma(0, 3, 5)$
- $f(a, b, c) = \Sigma(0, 1, 2, 4, 5, 6)$
- $f(a, b, c) = \Sigma(0, 2, 3, 4, 6, 7)$
- $f(a, b) = \Sigma(0, 1, 2, 3)$
- $f(a, b, c, d) = \Sigma(0, 1, 5, 7, 15, 14, 10)$
- $g(w,x,y,z) = \Sigma(1,3,7,11,15) + d(0,2,5)$
- $s(w,x,y,z) = \Sigma(0,1,2,4,5,7,9) + d(03,8,15)$

THANK YOU

Team DDCO
Department of Computer Science and Engineering