Signa

Uma aplicação para ensinoaprendizagem da LIBRAS

Acadêmico: Júlio César Batista <julio.batista@outlook.com>
Orientador: Aurélio Hoppe <aurelio.hoppe@gmail.com>

Roteiro

- Motivação
- Trabalhos relacionados
- Objetivos
- Requisitos
- Leap Motion
- Reconhecimento de sinais estáticos
- Reconhecimento de sinais dinâmicos
- Operacionalidade da implementação
- Testes de usabilidade
- Conclusões e extensões
- Demonstração

Motivação

- De acordo com o IBGE, cerca de 5% da população brasileira possui alguma deficiência auditiva
- A LIBRAS é uma língua oficial do Brasil
- Permitir que as pessoas possam ter contato com a língua de sinais

Trabalhos relacionados

Características	Dispositivo de entrada	Arquitetura	Reconhecimento de gestos estáticos	Reconhecimento de gestos dinâmicos	Base de amostras
Nowiki et al. (2014)	Leap Motion	Stand-alone	SVMs	HMMs	5240

Trabalhos relacionados

Características	Dispositivo de entrada	Arquitetura	Reconhecimento de gestos estáticos	Reconhecimento de gestos dinâmicos	Base de amostras
Avola et al. (2014)	Leap Motion	Não informado	Não informado	Algoritmo de desenho a mão livre	Não informado

Trabalhos relacionados

Características	Dispositivo de entrada	Arquitetura	Reconhecimento de sinais estáticos	Reconhecimento de sinais dinâmicos	Base de amostras
Souza (2013)	Microsoft Kinect	Não informado	SVMs	HCRFs	14739

Objetivos do trabalho proposto

Desenvolver uma aplicação para auxiliar no ensinoaprendizagem da LIBRAS:

- Reconhecer sinais da LIBRAS utilizando o Leap Motion
- Reconhecer sinais estáticos utilizando SVMs
- Reconhecer sinais dinâmicos utilizando HMMs

Requisitos funcionais

- Exibir um modelo 3D da mão do usuário e do sinal que deve ser reproduzido
- Reconhecer sinais estáticos e dinâmicos da LIBRAS utilizando SVMs e HMMs
- Permitir que seja possível treinar os algoritmos de reconhecimento de sinais
- Prover feedback ao usuário informando que o sinal foi reconhecido corretamente

Classificação

Experimento: aquisição de dados

Objetivos:

- Verificar quais sinais podem ser reproduzidos com o Leap Motion
- Montar uma base de amostras para os algoritmos de reconhecimento

Experimento: aquisição de dados

Sinais selecionados:

- Alfabeto datilológico
- Números de 0 à 9
- Outros: comprar, nome, reais, querer, hoje, onde, poder, oi, tchau, tênis, boa noite, salto alto

Experimento: aquisição de dados

Resultados:

- 34 sinais podem ser reproduzidos
- 15 sinais não podem ser reproduzidos
- Sinais que não podem ser reproduzidos: d, f, g, h, k, m,
 n, p, r, t, y, 6, 7, comprar, boa noite
- Base de 197 amostras para treinar os algoritmos

Reconhecimento de sinais estáticos

Interpretação de um sinal estático

Reconhecimento de sinais estáticos

- Vetor normal da palma da mão
- Vetor de direção da mão
- Vetores de direção dos dedos
- Ângulos entre os dedos

Vetor normal da palma da mão e direção da mão

Direção dos dedos

Ângulos entre os dedos

Reconhecimento de sinais estáticos

Trabalhando com dados não separáveis linearmente, o truque do Kernel.

Kernel gaussiano

Kernel polinomial

Reconhecimento de sinais estáticos

Experimento: funções kernel

Função kernel	Número de classificações corretas	Percentual de acerto
Linear (c = 1)	59	81,94%
Linear (c = 3)	61	84,72%
Gaussiano (σ = 1,5)	58	80,55%
Gaussiano (σ = 5)	45	62,5%
Polinomial (d = 3, c = 1)	62	86,11%
Polinomial (d = 2, c = 1)	61	84,72%

Experimento: funções kernel

Custo / Kernel	Linear (c = 3)	Gaussiano (σ = 1,5)	Polinomial (d = 3, c = 1)
C = 0,1	53 (73,61%)	16 (22,22%)	62 (86,11%)
C = 2	61 (84,72%)	61 (84,72%)	62 (86,11%)
C = 10	61 (84,72%)	61 (84,72%)	62 (86,11%)

Experimento: validação cruzada

Sinal	Classificações corretas
А	4 (100%)
В	4 (100%)
С	4 (100%)
Е	4 (100%)
I	4 (100%)
L	4 (100%)

Sinal	Classificações corretas
0	0 (0%)
Q	4 (100%)
S	2 (50%)
U	4 (100%)
V	2 (50%)

Experimento: validação cruzada

Sinal	Classificações corretas
ZERO	3 (75%)
UM	4 (100%)
DOIS	4 (100%)
TRÊS	4 (100%)

Sinal	Classificações corretas
QUATRO	4 (100%)
CINCO	4 (100%)
NOVE	3 (75%)
TOTAL	62 (86,11%)

Experimento: desempenho

Tempo médio para preparar os dados	Tempo médio para treinar	Tempo médio para classificar
31 ms	285 ms	0,12 ms

Reconhecimento de sinais dinâmicos

Interpretação de um sinal dinâmico

Reconhecimento de sinais dinâmicos

Extração de características

- Vetor normal da palma da mão
- Vetor de direção da mão
- Vetores de direção dos dedos
- Ângulos entre os dedos
- Distância das mãos em relação ao primeiro frame

Extração de características

Distância das mãos em relação ao primeiro frame

Reconhecimento de sinais dinâmicos

Modelos Ocultos de Markov (HMM)

Modelos Ocultos de Markov (HMM)

Reconhecimento de sinais dinâmicos

Experimento: validação cruzada

Sinal	Classificações corretas
Ç	4 (100%)
J	0 (0%)
X	1 (25%)
Z	4 (100%)
OI	4 (100%)
TCHAU	4 (100%)

Sinal	Classificações corretas
NOME	3 (75%)
REAIS	4 (100%)
PODER	4 (100%)
QUERER	4 (100%)
SALTO ALTO	4 (100%)
TÊNIS	4 (100%)

Experimento: validação cruzada

Sinal	Classificações corretas
OITO	4 (100%)
ONDE	4 (100%)

Sinal	Classificações corretas
HOJE	4 (100%)
TOTAL	52 (86,66%)

Experimento: desempenho

Tempo médio para preparar os dados	Tempo médio para treinar	Tempo médio para classificar
103,66 ms	904 ms	3,7 ms

Reconhecimento de sinais dinâmicos

Fluxo para reconhecer um sinal dinâmico

Reconhecimento de sinais dinâmicos

Reconhecimento do primeiro e do último frame

Extração de características

- Vetor normal da palma da mão
- Vetor de direção da mão
- Vetores de direção dos dedos
- Ângulos entre os dedos
- Distância das mãos em relação ao primeiro frame
- Tipo do frame

Extração de características

Tipo do frame

Reconhecimento de sinais dinâmicos

Experimento: funções kernel

Função kernel	Número de classificações corretas	Percentual de acerto
Linear (c = 1)	110	91,66%
Linear (c = 3)	110	91,66%
Gaussiano (σ = 2,5)	10	88,33%
Gaussiano (σ = 5)	99	82,5%
Polinomial (d = 1, c = 1)	110	91,66%
Polinomial (d = 2, c = 1)	107	89,16%

Experimento: funções kernel

Custo / Kernel	Linear (c = 3)	Gaussiano (σ = 2,5)	Polinomial (d = 1, c = 1)
C = 0,1	104 (86,66%)	97 (80,83%)	104 (86,66%)
C = 2	109 (90,83%)	107 (89,16%)	109 (90,83%)
C = 10	109 (90,83%)	106 (88,33%)	109 (90,83%)

Experimento: validação cruzada

Sinal	Classificações corretas
Ç	8 (100%)
J	0 (0%)
X	8 (100%)
Z	8 (100%)
OI	8 (100%)
TCHAU	8 (100%)

Sinal	Classificações corretas
NOME	7 (87,5%)
REAIS	7 (87,5%)
PODER	8 (100%)
QUERER	8 (100%)
SALTO ALTO	8 (100%)
TÊNIS	8 (100%)

Experimento: validação cruzada

Sinal	Classificações corretas	
OITO	8 (100%)	
ONDE	8 (100%)	

Sinal	Classificações corretas	
HOJE	8 (100%)	
TOTAL	110 (91,66%)	

Experimento: desempenho

Tempo médio para preparar os dados	Tempo médio para treinar	Tempo médio para classificar
77,66 ms	6785 ms	0,28 ms

Operacionalidade

SIGNA

Importar sinal

Gravar sinal

Treinar algoritmos

Operacionalidade

SIGNA Principal Treinar algoritmos Gravar sinal Informe um sinal para importar Escolher arquivo c-4.json Descrição/Nome do sinal Importar

Metodologia

- Questionário de perfil
- Lista de tarefas
- Questionário de usabilidade

- Efetuado com 27 pessoas
- Pessoas da área da computação
- Pessoas da área da pedagogia com conhecimento da LIBRAS

Resultados: perfil

Sexo	44,4% feminino 55,6% masculino
Idade	11,1% de 15 à 20 anos 63,0% de 21 à 30 anos 22,2% de 31 à 40 anos 3,7% com mais de 40 anos
Escolaridade	0% ensino fundamental 0% ensino médio 63% superior incompleto 37% superior completo

Resultados: perfil

Conhece a LIBRAS?	40,7% sim 59,3% não
Já usou algum aplicativo com o intuito do aprendizado da LIBRAS?	3,7% sim 96,3% não
Qual o seu nível de conhecimento em informática?	14,8% básico 25,9% médio 59,3% avançado

Resultados: tarefas

Tarefa	Sim	Não
Conseguiu reproduzir o primeiro sinal?	85,2%	14,8%
Conseguiu reproduzir o segundo sinal?	66,7%	33,3%
Conseguiu reproduzir o terceiro sinal?	77,8%	22,2%
Conseguiu reproduzir o quarto sinal?	59,3%	40,7%
Conseguiu reproduzir o quinto sinal?	66,7%	33,3%
Conseguiu importar o primeiro sinal?	92,6%	7,4%
Conseguiu importar o segundo sinal?	70,4%	29,6%

Resultados: usabilidade

Você achou fácil de usar a aplicação?	100% sim 0% não
Qual a sua avaliação sobre a aplicação	37,0% ótima 51,9% boa 11,1% regular 0% ruim 0% péssima
Você acha que essa aplicação serve para o aprendizado da LIBRAS?	96,3% sim 3,7% não

Resultados

- Aproximadamente 30% dos sinais reproduzidos resultaram em falsos-positivos
- O reconhecimento de um sinal leva entre 3 e 20 segundos

Observações

- Dificuldade em executar sinais com duas mãos
- Alguns exemplos de sinais são difíceis de visualizar
- Utilizar um modelo de mão mais realístico
- Exibir os sinais que estão sendo reconhecidos enquanto o sinal esperado não é reconhecido

Conclusões

Características / Trabalhos	Nowiki et al. (2014)	Avola et al. (2014)	Souza (2013)	Batista (2015)
Dispositivo de entrada	Leap Motion	Leap Motion	Microsoft Kinect	Leap Motion
Arquitetura	Stand-alone	Não informado	Não informado	Cliente- servidor
Reconhecimento de gestos estáticos	SVMs	Não informado	SVMs	SVMs
Reconhecimento de gestos dinâmicos	HMMs	Algoritmo de desenho a mão livre	HCRFs	HMMs
Base de amostras	5240	Não informado	14739	197
Percentual de acerto	85%	Não informar	Não informado	86%

Conclusões

- Aproximadamente 86% de precisão no reconhecimento de sinais
- Menos de 5 segundos para classificar um sinal
- Aproximadamente 96% dos usuários acham que a aplicação pode ser utilizada no aprendizado da LIBRAS
- Foi desenvolvida uma API web para reconhecimento de sinais que pode ser utilizada por outros dispositivos

Extensões

Algumas sugestões de extensão:

- Utilizar técnicas de educação
- Melhorar a base de amostras
- Permitir o reconhecimento de frases e soletração

DEMONSTRAÇÃO