

Language Modeling

Introduction to N-grams

Probabilistic Language Models

- Today's goal: assign a probability to a sentence
 - Machine Translation:
 - P(high winds tonite) > P(large winds tonite)

Why?

- Spell Correction
 - The office is about fifteen **minuets** from my house
 - P(about fifteen minutes from) > P(about fifteen minuets from)
- Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)
- + Summarization, question-answering, etc., etc.!!

Probabilistic Language Modeling

 Goal: compute the probability of a sentence or sequence of words:

$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

Related task: probability of an upcoming word:

$$P(W_5 | W_1, W_2, W_3, W_4)$$

A model that computes either of these:

$$P(W)$$
 or $P(w_n|w_1,w_2...w_{n-1})$ is called a **language model**.

Better: the grammar But language model or LM is standard

How to compute P(W)

- How to compute this joint probability:
 - P(its, water, is, so, transparent, that)
- Intuition: let's rely on the Chain Rule of Probability

Dan Jurafsky S N L P

Reminder: The Chain Rule

Recall the definition of conditional probabilities

Rewriting:

More variables:

$$P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)$$

• The Chain Rule in General

$$P(x_1, x_2, x_3, ..., x_n) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)...P(x_n | x_1, ..., x_{n-1})$$

The Chain Rule applied to compute joint probability of words in sentence

$$P(w_1 w_2 \square w_n) = \prod_i P(w_i \mid w_1 w_2 \square w_{i-1})$$

P("its water is so transparent") =
 P(its) × P(water|its) × P(is|its water)
 × P(so|its water is) × P(transparent|its water is so)

How to estimate these probabilities

Could we just count and divide?

P(the | its water is so transparent that) = Count(its water is so transparent that the)

Count(its water is so transparent that)

- No! Too many possible sentences!
- We'll never see enough data for estimating these

Markov Assumption

Simplifying assumption:

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{ that})$

Or maybe

 $P(\text{the }|\text{ its water is so transparent that}) \approx P(\text{the }|\text{ transparent that})$

Markov Assumption

$$P(w_1 w_2 \square w_n) \approx \prod_i P(w_i \mid w_{i-k} \square w_{i-1})$$

 In other words, we approximate each component in the product

$$P(w_i | w_1 w_2 \square w_{i-1}) \approx P(w_i | w_{i-k} \square w_{i-1})$$

Simplest case: Unigram model

$$P(w_1 w_2 \square w_n) \approx \prod_i P(w_i)$$

Some automatically generated sentences from a unigram model

fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass

thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model

Condition on the previous word:

$$P(w_i | w_1 w_2 \square w_{i-1}) \approx P(w_i | w_{i-1})$$

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen

outside, new, car, parking, lot, of, the, agreement, reached this, would, be, a, record, november

N-gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
 - because language has long-distance dependencies:

"The computer which I had just put into the machine room on the fifth floor crashed."

But we can often get away with N-gram models

Language Modeling

Estimating N-gram Probabilities

Estimating bigram probabilities

The Maximum Likelihood Estimate

$$P(w_{i} | w_{i-1}) = \frac{count(w_{i-1}, w_{i})}{count(w_{i-1})}$$

$$P(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

An example

$$P({\tt I}|{\tt ~~}) = \frac{2}{3} = .67 \qquad P({\tt Sam}|{\tt ~~}) = \frac{1}{3} = .33 \qquad P({\tt am}|{\tt I}) = \frac{2}{3} = .67 \\ P({\tt~~ }|{\tt Sam}) = \frac{1}{2} = 0.5 \qquad P({\tt Sam}|{\tt am}) = \frac{1}{2} = .5 \qquad P({\tt do}|{\tt I}) = \frac{1}{3} = .33~~$$

More examples: Berkeley Restaurant Project sentences

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i'm looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i'm looking for a good place to eat breakfast
- when is caffe venezia open during the day

Raw bigram counts

• Out of 9222 sentences

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Raw bigram probabilities

Normalize by unigrams:

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Result:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Bigram estimates of sentence probabilities

```
P(<s> I want english food </s>) = P(I|<s>)
```

- \times P(want|I)
- × P(english|want)
- × P(food|english)
- \times P(</s>|food)
 - = .000031

What kinds of knowledge?

- P(english|want) = .0011
- P(chinese|want) = .0065
- P(to|want) = .66
- P(eat | to) = .28
- P(food | to) = 0
- P(want | spend) = 0
- P(i | <s>) = .25

Language Modeling

Evaluation and Perplexity

Evaluation: How good is our model?

- Does our language model prefer good sentences to bad ones?
 - Assign higher probability to "real" or "frequently observed" sentences
 - Than "ungrammatical" or "rarely observed" sentences?
- We train parameters of our model on a training set.
- We test the model's performance on data we haven't seen.
 - A **test set** is an unseen dataset that is different from our training set, totally unused.
 - An evaluation metric tells us how well our model does on the test set.

Extrinsic evaluation of N-gram models

- Best evaluation for comparing models A and B
 - Put each model in a task
 - spelling corrector, speech recognizer, MT system
 - Run the task, get an accuracy for A and for B
 - How many misspelled words corrected properly
 - How many words translated correctly
 - Compare accuracy for A and B

Difficulty of extrinsic (in-vivo) evaluation of N-gram models

- Extrinsic evaluation
 - Time-consuming; can take days or weeks
- So
 - Sometimes use intrinsic evaluation: perplexity
 - Bad approximation
 - unless the test data looks just like the training data
 - So generally only useful in pilot experiments
 - But is helpful to think about.

Intuition of Perplexity

- The Shannon Game:
 - How well can we predict the next word?

I always order pizza with cheese and _____

The 33rd President of the US was _____
I saw a

Unigrams are terrible at this game. (Why?)

anchovies 0.01
....
fried rice 0.0001

mushrooms 0.1

pepperoni 0.1

and 1e-100

- A better model of a text
 - is one which assigns a higher probability to the word that actually occurs

Perplexity

The best language model is one that best predicts an unseen test set

Gives the highest P(sentence)

Perplexity is the inverse probability of the test set, normalized by the number of words:

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$
$$= \sqrt[N]{\frac{1}{P(w_1 w_2 ... w_N)}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Minimizing perplexity is the same as maximizing probability

Perplexity as branching factor

- Let's suppose a sentence consisting of random digits
- What is the perplexity of this sentence according to a model that assign P=1/10 to each digit?

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= (\frac{1}{10}^N)^{-\frac{1}{N}}$$

$$= \frac{1}{10}^{-1}$$

$$= 10$$

Lower perplexity = better model

Training 38 million words, test 1.5 million words, WSJ

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Language Modeling

Smoothing: Add-one (Laplace) smoothing

The intuition of smoothing (from Dan Klein)

• When we have sparse statistics:

P(w | denied the)

3 allegations

2 reports

1 claims

1 request

7 total

P(w | denied the)

2.5 allegations

1.5 reports

0.5 claims

0.5 request

2 other

7 total

Add-one estimation

- Also called Laplace smoothing
- Pretend we saw each word one more time than we did
- Just add one to all the counts!

MLE estimate:

$$P_{MLE}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

Add-1 estimate:

$$P_{Add-1}(w_i \mid w_{i-1}) = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + V}$$

Maximum Likelihood Estimates

- The maximum likelihood estimate
 - of some parameter of a model M from a training set T
 - maximizes the likelihood of the training set T given the model M
- Suppose the word "bagel" occurs 400 times in a corpus of a million words
- What is the probability that a random word from some other text will be "bagel"?
- MLE estimate is 400/1,000,000 = .0004
- This may be a bad estimate for some other corpus
 - But it is the **estimate** that makes it **most likely** that "bagel" will occur 400 times in a million word corpus.

Berkeley Restaurant Corpus: Laplace smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigrams

$$P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Reconstituted counts

$$c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Compare with raw bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16