Тема. Додавання векторів

<u>Мета:</u> ознайомитися зі способами додавання і віднімання векторів, вчитися обчислювати і знаходити графічно суму і різницю векторів

Пригадайте

- Що таке вектор?
- Які характеристики може мати вектор?
- Як обчислити координати вектора?
- Які вектори називають рівними?
- Як відкласти вектор, рівний даному?
- Які вектори називають колінеарними?

Ознайомтеся з інформацією

Відкладімо від довільної точки A вектор \overline{AB} , рівний вектору a. Далі від точки B відкладімо вектор \overline{BC} , рівний вектору b. Вектор \overline{AC} називають сумою векторів \overline{a} і \overline{b} (рис. 1) і записують: \overline{a} + \overline{b} = \overline{AB} .

Описаний алгоритм додавання двох векторів називають **правилом трикутника**.

Рис. 1. До правила трикутників.

За правилом трикутника можна додавати й колінеарні вектори. На рисунку 2 вектор \overline{AC} дорівнює сумі колінеарних векторів \overline{a} і \overline{b} .

Рис. 2. Приклади додавання колінеарних векторів

Додавання векторів на основі їхніх координат можна зробити на основі такої теореми: якщо координати векторів \overline{a} і \overline{b} дорівнюють, відповідно, $(\overline{a_1}; \overline{a_2})$ і $(\overline{b_1}; \overline{b_2})$, то координати вектора $\overline{a} + \overline{b}$ дорівнюють $(\overline{a_1 + b_1}; \overline{a_2 + b_2})$.

Властивості додавання векторів аналогічні властивостям додавання чисел. Для будь-яких векторів \overline{a} , \overline{b} і \overline{c} виконуються рівності:

- 1) $\overline{a} + \overline{0} = \overline{a}$;
- 2) $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ переставна властивість;
- 3) (\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c}) сполучна властивість.

У фізиці часто доводиться додавати вектори, відкладені від однієї точки. Так, якщо до тіла прикладено сили $\bar{F_1}$ і $\bar{F_2}$ (рис. 3), то рівнодійна цих сил дорівнює сумі $\bar{F_1}$ та $\bar{F_2}$.

Рис. 3. Приклад додавання векторів сил, прикладених до тіла

Аби знаходити суми двох неколінеарних векторів, відкладених від однієї точки, зручно користуватися **правилом паралелограма** для додавання векторів.

Відкладімо від довільної точки A вектор \overline{AB} , рівний вектору \overline{a} , і вектор \overline{AD} , рівний вектору \overline{b} . Побудуймо паралелограм ABCD (рис. 4). Тоді шукана сума \overline{a} та \overline{b} дорівнює вектору \overline{AC} .

Рис. 4. До означення правила паралелограма

Останнє правило називають **правилом многокутника**. Якщо кілька векторів-доданків (рис. 5) відкладено так, що початок другого вектора збігається з кінцем першого, початок третього — з кінцем другого і т. д., то початок вектора-суми є початком першого вектора, а кінець — кінцем останнього. Тобто $\overline{A_1A_2} + \overline{A_2A_3} + \ldots + \overline{A_{n-1}A_n} = \overline{A_1A_n}$.

На рисунку — візуалізація цього правила під час додавання векторів \overline{a} , $\overline{b},\overline{c},\overline{d}.$

Рис. 5. Побудова суми векторів за правилом многокутника

Перегляньте відео за посиланням:

https://youtu.be/jARpt9uFrQg

Розв'язування задач

Задача 1

Дано трикутник ABC. Виразіть вектор \overline{BC} через вектори \overline{CA} і \overline{AB} .

Розв'язання

$$\begin{aligned} \overline{CA} + \overline{AB} &= \overline{CB} \\ \overline{BC} &= -\overline{CB} \\ \overline{BC} &= -\overline{CB} &= -(\overline{CA} + \overline{AB}) \end{aligned}$$

Відповідь: $\overline{BC} = -(\overline{CA} + \overline{AB})$.

Задача 2

Дано вектори \overline{a} (4; -5) і \overline{b} (-1; 7). Знайдіть координати векторів \overline{a} + \overline{b} та $|\overline{a}$ + \overline{b} |.

Розв'язання

$$\overline{a} + \overline{b} = (\overline{4 + (-1)}; -5 + \overline{7}) = (\overline{3}; \overline{2})$$

 $|\overline{a} + \overline{b}| = \sqrt{3^2 + 2^2} = \sqrt{13}$

Відповідь: \overline{a} + \overline{b} = $(\overline{3}; \overline{2})$; $|\overline{a} + \overline{b}| = \sqrt{13}$.

Задача 3

Катет рівнобедреного прямокутного трикутника ABC ($\angle C = 90^{\circ}$) дорівнює 4 см. Знайдіть $|\overline{AC} + \overline{CB}|$.

Розв'язання

$$\overline{AC}$$
 + \overline{CB} = \overline{AB} , тоді $|\overline{AC}$ + $\overline{CB}|$ = $|\overline{AB}|$.
За теоремою Піфагора: $AB^2 = AC^2 + CB^2$; $AB^2 = 4^2 + 4^2$; $AB^2 = 16 + 16$; $AB^2 = 32$; $AB = \sqrt{32} = 4\sqrt{2}$ см. $|\overline{AB}| = 4\sqrt{2}$ см.

Відповідь: $|\overline{AC} + \overline{CB}| = 4\sqrt{2}$ см.

Пригадайте

- Як можна додати вектори графічно?
- Як можна додати вектори, знаючи їх координати?

Домашне завдання

- Опрацювати конспект і §8 підручника
- Розв'язати (письмово): №4, 5:
- 4. Знайдіть суму векторів $\vec{c} + \vec{d}$, якщо:

1)
$$\vec{c}(4; -7)$$
, $\vec{d}(-2; 5)$;

1)
$$\vec{c}(4; -7)$$
, $\vec{d}(-2; 5)$; 2) $\vec{c}(4; -7)$, $\vec{d}(-6; 7)$.

5. Дано вектори \vec{a} і \vec{b} . Побудуйте вектор $\vec{c} = \vec{a} + \vec{b}$

Фото виконаних робіт надсилайте у HUMAN або на електронну пошту nataliartemiuk.55@gmail.com

Джерела

- Істер О.С. Геометрія: 9 клас. Київ: Генеза, 2017
- https://lms.e-school.net.ua/