

2022-05-04

2022-05-03

2022-05-02

2022-04-29

2022-04-28

2022-04-27

2022-04-26

2022-04-22

2022-04-21

2022-04-20

2022-04-19

2022-04-15

2022-04-14

2022-04-13

2022-04-12

2022-04-11

2022-04-08

2022-04-07

2022-04-06

2022-04-05

2022-04-04

2022-04-01

2022-03-31

2022-03-30

2022-03-29

2022-03-28

2022-03-24

DoExercises:

Esercizi per il corso di Probabilità e Statistica

Esercizi Soluzioni Riepilogo Voti

	2022-06-01	Soluzioni all'esercizio del 2022-04-
5.	2022-05-31	Si consideri il lancio di una moneta, di cui non si sa se sia equilibrata
-	2022-05-30	N.B. Dire che la moneta è equilibrata significa che testa e croce sono
-	2022-05-27	Quesiti e soluzioni
-	2022-05-26	Quesito 1 La moneta è equilibrata?
	2022-05-25	L'evento in questione è $H=\{(T,C),(C,T)\}=\{(T,C)\}\cup\{(C,T)\}$
6	2022-05-24	Se la moneta fosse equilibrata avremmo
_	2022-05-23	
3	2022-05-20	dove con P_m indichiamo la probabilità relativa al lancio di una sola m
	2022-05-19	 La risposta corretta è: FALSE La risposta inserita è: FALSE
	2022-05-18	Quesito 2
	2022-05-17	Ora che sappiamo cosa aspettarci, giochiamo. Supponiamo che la pr
-	2022-05-16	Sappiamo che $2\cdot P_m(T)\cdot P_m(C)=0.455$, quindi, siccome $P_m(T)$ $P_m(C)\leq P_m(T)$, deve essere $P_m(C)=0.35$ e dunque $P_m(T)=0.35$
-	2022-05-13	 La risposta corretta è: 0.65 La risposta inserita è: 0.65
	2022-05-12	Quesito 3
-	2022-05-11	Giochiamo ancora e questa volta lanciamo la moneta tre volte. Ci dice
-	2022-05-10	L'evento accaduto è
	2022-05-09	La probabilità che i primi due esiti siano T è $P(T)^2$, perciò
	2022-05-06	
	2022-05-05	La risposta corretta è: 0.5882353

4-04 creato per luigi.miazzo

ta o truccata. Ci viene detto che, lanciando la moneta due volte, la probabilità di ottenere esattamente una testa "T" e una croce "C" (non necessariamente in questo ordine) è 0.455.

no equiprobabili.

(C,T). Possiamo vederlo come evento in uno spazio prodotto, quindi, in termini di lanci di una moneta, come $(\{T\} imes \{C\}) \cup (\{C\} imes \{T\})$.

$$P(H) = P(\{T\} imes \{C\}) + P(\{C\} imes \{T\}) = 2 \cdot P_m(T) \cdot P_m(C) = rac{1}{2},$$

moneta. Basta quindi confrontare 0.455 con 1/2.

probabilità di fare croce $P_m(C)$ sia minore o uguale della probabilità $P_m(T)$ di fare testa. Tiriamo la moneta ed esce T. Qual è la probabilità di ottenere nuovamente T rilanciando la moneta?

 $T(T)=1-P_m(C)$, $2\cdot P_m(C)^2-2\cdot P_m(C)+0.455=0$, le cui due radici sono $P_1=0.35$ e $P_2=0.65$. Una di queste è $P_m(C)$ e l'altra è (per simmetria) $P_m(T)$, ma dal momento che abbiamo assunto che =0.65. Per concludere dobbiamo solo ricordare che il secondo lancio della moneta è indipendente dal primo.

dicono che almeno due su tre sono T. Qual è la probabilità che i primi esiti due siano T (non escludendo la possibilità che lo sia anche il terzo)?

$$H = \{\{T,T,C\}, \{C,T,T\}, \{T,C,T\}, \{T,T,T\}\}$$

$$P\left(ext{primi due sono } T|P(H)
ight) = rac{P(T)^2}{P(T)^3 + 3 \cdot P(T)^2 \cdot P(C)}$$

- La risposta inserita è: 10/17