q1a.

```
% gsyn=5, Neighbor time diff (ms):7.3385
% gsyn=6, Neighbor time diff (ms):5.9643
% gsyn=7, Neighbor time diff (ms):4.9786
% gsyn=8, Neighbor time diff (ms):4.2
% gsyn=9, Neighbor time diff (ms):3.8083
% gsyn=10, Neighbor time diff (ms):3.6
% gsyn=11, Neighbor time diff (ms):3.3
% gsyn=12, Neighbor time diff (ms):3.0967
```

Network (q1a-q1c)


```
%function modified to accept gsyn
for gsyn=5:12
    [spiketimes]=ILIF_ExcNetwork(n,W,gsyn);
    spikes1 = extractSpikes(spiketimes,1,0);
    spikes2 = extractSpikes(spiketimes,2,0);
    spikesDiff = mean(spikes1-spikes2);

    disp(['gsyn=',num2str(gsyn),', Neighbor time diff(ms):',num2str(spikesDiff)]);

    title(['gsyn=',num2str(gsyn)]);
end
```

q1b.

```
% gsyn=1, Neighbor time diff (ms):NaN
% gsyn=2, Neighbor time diff (ms):NaN
% gsyn=3, Neighbor time diff (ms):NaN
% gsyn=4, Neighbor time diff (ms):10.8455
% gsyn=5, Neighbor time diff (ms):7.4571
```



```
%function modified to accept gsyn
for gsyn=1:5
    [spiketimes]=ILIF_ExcNetwork(n,W,gsyn);
    spikes1 = extractSpikes(spiketimes,1,0);
    spikes2 = extractSpikes(spiketimes,2,0);
    spikesDiff = mean(spikes1-spikes2);

    disp(['gsyn=',num2str(gsyn),', Neighbor time diff(ms):',num2str(spikesDiff)]);

    title(['gsyn=',num2str(gsyn)]);
end
```

q1c. The data shows that as synaptic strength increases, so does the spike propagation through the network. Also, for gsyn < 5, the network is either unstable or

q2a.								
•	taus=1							
		cell	frequency	before current pulse is	2.166			
	_			after current pulse is	2.130			
				before current pulse is	2.198			
	_			after current pulse is	2.157			
	_			before current pulse is	2.164			
				after current pulse is	2.229			
	_			before current pulse is	2.168			
	_			after current pulse is	2.341			
				before current pulse is	2.075			
				after current pulse is	2.290			
	taus=2	0011	rroquonoy	arour carrons parso is	2 • 2 5 0			
		cell	frequency	before current pulse is	2.445			
				after current pulse is	2.497			
	_			before current pulse is	2.062			
	_			after current pulse is	2.608			
	_			before current pulse is	2.354			
	_			after current pulse is	2.660			
	_			before current pulse is	2.687			
				after current pulse is	2.773			
	_			before current pulse is	2.292			
				after current pulse is	2.848			
	taus=3	CEII	rrequency	arter current purse is	2.040			
_		cell	frequency	before current pulse is	2.483			
				after current pulse is	2.868			
				before current pulse is	2.706			
	_			after current pulse is	2.650			
				before current pulse is	2.412			
	_			after current pulse is	3.429			
	_			before current pulse is	2.511			
	_			after current pulse is	3.510			
				before current pulse is	2.886			
				after current pulse is	2.749			
	taus=4	CCII	rrequeriey	arter carrent parse is	2.743			
		cel1	frequency	before current pulse is	2.776			
				after current pulse is	3.203			
				before current pulse is	2.259			
	_			after current pulse is	3.218			
	_			before current pulse is	3.305			
	_			after current pulse is	2.943			
	_			before current pulse is	2.943			
	_			after current pulse is	3.447			
				before current pulse is	2.869			
	average taus=5	cerr	rreducinch	after current pulse is	3.831			
		a o 1 1	from	hoforo gurront nulso i-	2 500			
	_			before current pulse is	3.506			
	_			after current pulse is	3.726			
6	Average	CETT	rrequency	before current pulse is	2.705			

ે	Average	cell	frequency	after current pulse is	4.821
0/0	Average	cell	frequency	before current pulse is	3.366
%	Average	cell	frequency	after current pulse is	3.645
%	Average	cell	frequency	before current pulse is	3.278
0/0	Average	cell	frequency	after current pulse is	3.952
0/0	Average	cell	frequency	before current pulse is	2.992
%	Average	cell	frequency	after current pulse is	4.828

Network (q2a-q2b)


```
%function modified to accept taus
allAv1 = [];
allAv2 = [];
allStd1 = [];
allStd2 = [];
for taus=1:5
    disp(['taus=',num2str(taus)]);
    curAv1 = [];
    curAv2 = [];
    for i=1:5
        [spiketimes,avcfreq1,avcfreq2]=WBnetwork(n,W,taus);
        curAv1(i) = avcfreq1;
        curAv2(i) = avcfreq2;
    end
    allAv1(taus) = mean(curAv1);
    allAv2(taus) = mean(curAv2);
    allStd1(taus) = std(curAv1);
    allStd2(taus) = std(curAv2);
end
```

q2b. As taus increases, so does the reverberatory activity in the network. This is evidenced by the increase in firing frequency (both before, and after stimulation). Firing frequency also appears to be influenced by the relative burstiness of the network as taus increases.

q3a. The following plots represent the taus epochs at which cluster quantity changes.

taus=1


```
for taus=50:5:75
    [spiketimes,freqs,nisis]=ILIFnetwork_clusters(n,W,taus);
    disp(['taus=',num2str(taus)]);
    saveas(1,['q3a_taus=',num2str(taus),'.png'],'png');
end
```

q3b. I found that taus=10 relates to a maximum of 3 clusters.

taus=10, clusters=1

q3c. As taus increases in this inhibitory network (with gsyn constant), cell firing frequency and cluster number decreases. Also shown, is that for a given taus, there is a maximum number of clusters in the cell firing pattern/network that can be achieved.