



AEROSPACE MEDICAL RESEARCH LABORATORY AEROSPACE MEDICAL DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

009 850

#### NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from Aerospace Medical Research Laboratory. Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Documentation Center should direct requests for copies of this report to:

Defense Documentation Center Cameron Station Alexandria, Virginia 22314

## TECHNICAL REVIEW AND APPROVAL

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

HENNINGE. VON GIERKE

Biodynamics and Bionics Division

Aerospace Medical Research Laboratory

AIR FORCE/56780/19 December 1977 - 300

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                         | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1. REPORT NUMBER AMRL-TR-75-50, Vol. 108                                          | 3. RECIPIENT'S CATALOG NUMBER                                  |
| 4. TITLE (and Subtitle)                                                           | 5. TYPE OF REPORT & PERIOD COVERED                             |
| USAF BIOENVIRONMENTAL NOISE DATA HANDBOOK:<br>A/M32C-4 Air Conditioner            | Volume 108 of a series                                         |
| A/M32C-4 AIr Conditioner                                                          | 6. PERFORMING ORG. REPORT NUMBER                               |
| 7. AUTHOR(a)                                                                      | B. CONTRACT OR GRANT NUMBER(*)                                 |
| Nick A. Farinacci, Capt, USAF, BSC                                                |                                                                |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS Aerospace Medical Research Laboratory | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| Aerospace Medical Division, Air Force Systems                                     | 7231-04-33                                                     |
| Command, Wright-Patterson AFB OH 45433                                            | 62202F 7231-04-36                                              |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                           | 12. REPORT DATE December 1976                                  |
| Same as above                                                                     | 13. NUMBER OF PAGES                                            |
| 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)        | 15. SECURITY CLASS. (of this report)                           |
|                                                                                   | Unclassified                                                   |
|                                                                                   | 15a. DECLASSIFICATION/DOWNGRADING                              |

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Noise

Noise Environments

Bioenvironmental Noise

Ground Support Equipment

A/M32C-4 Air Conditioner

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The A/M32C-4 Air Conditioner is an electric motor driven unit providing heating or cooling to aircraft cockpits or electronic equipment during ground maintenance. This report provides measured data defining the bioacoustic environments produced by this unit operating inside a large aircraft hanger at normal rated conditions. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech

Form

### **PREFACE**

This report was prepared by the Biodynamic Environment Branch, Aerospace Medical Research Laboratory, under Project/Task 723104, Measurement and Prediction of Noise Environments of Air Force Operations.

The author acknowledges the efforts of Mr. Robert T. England and Mr. Robert G. Powell who conducted the field measurements, and Mr. John N. Cole who established the data analysis requirements and assisted in the preparation of this report. Mr. Henry Mohlman and Mr. David Eilerman of the University of Dayton assisted in the mechanics of data processing, and Mrs. Norma Peachey typed and prepared the graphics.



# **Table of Contents**

|                                                                                                                                                                                                  | Page              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| INTRODUCTION                                                                                                                                                                                     | 3                 |
| NEAR-FIELD NOISE                                                                                                                                                                                 | 4                 |
| List of Tables                                                                                                                                                                                   |                   |
| NEAR-FIELD NOISE  1. Measurement Location and Test Condition for Operator Noise Measurements  2. Measured Sound Pressure Level 1/3 Octave Band Octave Band 1 3. Measures of Human Noise Exposure | 4<br>6-14<br>5-23 |
| List of Figures                                                                                                                                                                                  |                   |
| NEAR-FIELD NOISE  1. Measurement Locations                                                                                                                                                       | 5                 |

#### INTRODUCTION

The A/M32C-4 Air Conditioner is an electric motor-driven unit providing heating or cooling to aircraft cockpits or electronic equipment during ground maintenance.

This volume provides measured data defining the bioacoustic environments produced by this unit. Such data are essential to evaluate ear protection requirements, limiting personnel exposure times, voice communication capabilities, and annoyance problems associated with operations of the A/M32C-4 air conditioner.

This volume is one of a series published by the Aerospace Medical Research Laboratory (AMRL) under the same report number (AMRL-TR-75-50) as a multi-volume handbook that quantifies the noise environments produced at flight/ground crew locations and in surrounding communities by operations of Air Force aircraft and ground support equipment. The far-field, community-type, noise data in the handbook describe the noise produced during ground operations of aircraft, ground support equipment, and other ground-based equipment or facilities.

Volume 1 of this handbook discusses the objectives and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc. Volume 2 provides a method and data for adjusting the handbook's far-field noise data, which are for standard meteorological conditions (15C temperature, 70% rel humidity, 0.760 meters Hg barometric pressure) to derive comparable data for other meteorological conditions. Refer to Volumes 1 and 2 (references 1 and 2) for such information because it is not repeated in other handbook volumes.

A cumulative index lists those aerospace systems contained in the handbook, and identifies the specific volumes containing each type of environmental noise data available (i.e., inflight/flight crew and passenger noise, near-field/ground crew noise, far-field/community noise). Volume numbers are assigned sequentially as individual volumes are published. This index is periodically updated as individual volumes are published, and is available upon request from AMRL/BBE, Wright-Patterson AFB, OH 45433. Organizations on the distribution list for the handbook will automatically receive a copy of the updated index as it is generated.

Direct any questions concerning the technical data in this report and other handbook volumes to: AMRL/BBE, Wright-Patterson AFB, OH 45433; Autovon 78-53675 or 78-53664; Commercial (513) 255-3675 or (513) 255-3664.

- 1. Cole, John N., USAF Bioenvironmental Noise Data Handbook, Volume 1: Organization, Content and Application, AMRL-TR-75-50 (1), Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio, 1975.
- 2. Cole, John N., USAF Bioenvironmental Noise Data Handbook, Volume 2: Procedure to Evaluate Effects of Non-standard Meteorological Conditions on Far-Field Noise, AMRL-TR-75-50 (2), AMRL, WPAFB, OH, 1975.

#### **NEAR-FIELD NOISE**

#### **MEASUREMENTS**

A standard A/M32C-4 Air Conditioner was operated inside, and approximately in the center of a large aircraft hanger (190.5 m long  $\times$  95.1 m wide  $\times$  18.3 m high) on a concrete floor at normal rated conditions. The hanger walls and ceiling were not acoustically treated. No aircraft were in the vicinity of the unit while being measured. No far-field acoustic data were acquired because of the relatively close proximity of the hanger walls.

Figure 1 identifies 36 noise measurement locations at a height of 1.5 meters above the concrete apron (nominal ear level of ground crew). The 0 degree reference direction passes through the tow bar. These locations are in the acoustic near-field of the source where the sound wave fronts generally do not spherically diverge and the source appears to be spatially distributed (i.e., not a point source). Consequently, these near-field data cannot be extrapolated to longer distances but do properly define the levels at locations close to the unit.

Near-field measurements were also made at ear level at the operator control panel. Table 1 lists the numeric/alphabetic designators used on the data pages in this report to identify the operator measurement location and test conditions. The designator 1/A means operator location 1 and test condition A. Such a descriptor is essential in many handbook volumes that involve multiple combinations of locations/conditions. It is used in this report to maintain format consistency.

#### RESULTS

The measured data presented in Table 2 define the sound pressure levels (SPL) produced by the A/M32C-4 unit at the 37 specified, near-field locations. This table includes the overall, 1/3 octave band, and octave band levels. From these data one can calculate the variety of measures in Table 3 which are widely used to assess the effects of noise on personnel and their performance.

For data at other intermediate near-field locations (i.e., for radial distances less than 4 meters) you can interpolate between the 36 measured data points.

#### TABLE 1

# MEASUREMENT LOCATION AND TEST CONDITION FOR OPERATOR NOISE MEASUREMENTS

A/M32C-4 Air Conditioner, Edwards AFB, 22 Sep 1972

Measurement Location

1 Operator Control Panel

Operation

A Vent Cycle
B Cooling Cycle
C Heat Cycle



Figure 1. Measurement Locations

| AAM326-4 AIR CONDITIONE ( VENT CYCLE ) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TABLE:     | MEASURED SOUND PRESSURE LEVEL<br>1/3 OCTAVE BAND | SSURE | LEVEL  | (08)  |     |     |     |      |     |     |     | DENTIF |           | CATION: |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------|-------|--------|-------|-----|-----|-----|------|-----|-----|-----|--------|-----------|---------|---|
| FREQ DISTANCE (M1-> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOISE      | CE/SUBJECT:                                      | ٥.    | PERATI | . NC  |     |     | ~-  |      |     |     |     | S C C  | 22        | 066-02  |   |
| FREQ DISTANCE (H)-> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AZH32C-4   | . AIR CONDITIONER                                |       | VENT   | SYCLE |     |     |     |      |     |     |     | 1 26   | 26 AUG 74 |         | - |
| FREQ DISTANCE (M)-> 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I NEAR FIE | HANGER)                                          |       |        |       |     |     |     |      |     |     |     | ) PAG  | E F1      |         |   |
| FREQ DISTANCE (M)-> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                  |       |        |       |     |     |     |      |     |     |     |        |           |         |   |
| (HZ)         ANGLE (DEG)>         0         20         40         60         80         100         120         140         160         180         26           25         64         64         64         65         65         65         64         64         66         67         69         66         67         66         67         66         66         66         67         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         67         66         67         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66         66 <th>FREG</th> <th>DISTANCE (M) -&gt;</th> <th>4</th> <th>4</th> <th>*</th> <th>4</th> <th>4</th> <th>4</th> <th>4</th> <th>4</th> <th>4</th> <th>4</th> <th>4</th> <th></th> <th>,</th> <th>-</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FREG       | DISTANCE (M) ->                                  | 4     | 4      | *     | 4   | 4   | 4   | 4    | 4   | 4   | 4   | 4      |           | ,       | - |
| 25 62<br>40 64<br>64<br>64<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (HZ)       | ANGLE (DEG)>                                     |       | 20     | 0,    | 9   | 80  | 100 | 120  | 140 | 160 | 180 | 200    | 220       | 240     |   |
| 31.5 64< 64< 64< 64< 65< 65< 65< 65< 65< 66< 64< 64< 64< 64< 64< 64< 66< 67< 66< 67< 69< 65< 65< 65< 65< 65< 65< 65< 65< 65< 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52         |                                                  | 62    |        |       |     | 61< |     |      | 624 |     |     |        |           |         | - |
| \$\begin{array}{cccccccccccccccccccccccccccccccccccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31.5       |                                                  | 944   | >49    | >+9   | >49 | 9   | >69 | >69  | 9   | >49 | >49 | 9      | 634       | 624     | ^ |
| 50         68         63         67         65         67         66         67         67         66         67         67         66         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         67         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77         77<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04         |                                                  | > 49  | 62<    | 63<   | >49 | >99 | >99 | >29  | 6.8 | >69 | >59 | >49    | >49       | >49     | - |
| 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05 1       |                                                  | 89    | 634    | 29    | 65  | 29  | 99  | 29   | 29  | 29  | 99  | 959    | > 49      | 634     | - |
| 80         73         72         68         68         70         71         71         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72         72<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63         |                                                  | 14    | 72     | 11    | 89  | 99  | 89  | 69   | 7.0 | 72  | 72  | 7.0    | 69        | 29      | - |
| 125 93 70 77 75 72 72 71 70 72 125 160 172 100 172 125 160 184 184 76 79 82 87 160 185 89 89 81 84 76 77 77 77 77 77 77 77 77 77 77 77 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80         |                                                  | 73    | 72     | 68    | 99  | 20  | 7.1 | 71   | 11  | 7.5 | 72  | 73     | 20        | 69      | ^ |
| 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100        |                                                  | 7.1   | 7.0    | 69    | 7.0 | 72  | 72  | 72   | 7.1 | 7.0 | 72  | 14     | 72        | 73      | ^ |
| 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125        |                                                  | 93    | 68     | 81    | 84  | 81  | 48  | 92   | 62  | 82  | 87  | 9.0    | 88        | 81      | ^ |
| 200 210 210 210 210 210 210 210 210 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160        |                                                  | 82    | 81     | 25    | 11  | 15  | 7.8 | 734  | 73  | 92  | 80  | 85     | 80        | 7.      | - |
| 250 315 400 831 84 87 87 88 88 87 87 88 87 87 87 87 87 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200        |                                                  | 73    | 73     | 7     | 73  | 75  | 11  | 11   | 72  | 25  | 75  | 80     | 7.8       | 11      | - |
| \$155   74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 250        |                                                  | 9 .   | 4.     | 7.    | 43  | 81  | 28  | 18   | 92  | 7.  | 16  | 81     | 28        | 77      | - |
| \$\begin{array}{c ccccccccccccccccccccccccccccccccccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 315        |                                                  | *     | *      | 22    | 9 6 | 000 | 28  | 82   | 81  | 9 9 | 27  | 7      | 21        | 21      |   |
| 630 63 64 63 67 79 81 62 61 77 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                  | 10    | 2 8 2  | 8 2   | 5 4 |     | 22  | 9 90 | 28  | 7.0 | 14  | 72     | 7 4       | 10      | • |
| 1000 85 87 93 93 88 94 93 91 86 81 1250 80 80 84 82 81 79 81 82 81 75 72 12 1250 80 84 82 81 79 81 82 81 75 72 72 72 72 72 74 74 77 79 79 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69 74 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 630        |                                                  |       |        | 8 6   | 8 2 | 50  |     | 200  |     | 11  | 1 2 | 75     | 22        | 11      | - |
| 1000         80         81         82         81         79         81         82         81         79         77         71         70         79         79         77         70         70         70         70         70         70         70         70         70         71         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         70         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 800        |                                                  | 85    | 87     | 93    | 93  | 88  | 16  | 93   | 91  | 96  | 81  | 87     | 87        | 88      | - |
| 1250 80 84 82 80 78 80 84 77 71 160 77 71 75 76 76 76 79 79 74 69 74 67 75 75 76 76 76 76 76 76 76 76 76 76 76 76 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000       |                                                  | 9.0   | 81     | 82    | 81  | 79  | 81  | 82   | 81  | 22  | 72  | 7.4    | 25        | 92      | ^ |
| 1600     77     79     79     77     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     76     69       3150     80     80     83     81     76     81     76     81     77     70       4000     77     77     79     79     73     74     74     77     71     61       8000     83     86     85     79     76     76     77     71     61       10000     70     73     73     74     74     77     77     71     61       10000     83     86     85     79     76     76     77     77     71     65       10000     70     73     73     70     68     70     77     71     65       10000     83     86     85     79     76     76     77     77     71     65       10000     70     73     73     76     76     76     76     76 <t< td=""><td>1250</td><td></td><td>8 0</td><td>9.4</td><td>82</td><td>80</td><td>28</td><td>80</td><td>80</td><td>94</td><td>11</td><td>7.1</td><td>7.1</td><td>74</td><td>75</td><td>-</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1250       |                                                  | 8 0   | 9.4    | 82    | 80  | 28  | 80  | 80   | 94  | 11  | 7.1 | 7.1    | 74        | 75      | - |
| 2500 73 75 76 75 73 76 78 79 74 67 315 2500 74 67 75 75 75 75 75 76 76 76 69 81 76 69 81 76 69 81 76 69 81 76 69 81 77 79 81 77 70 70 85 89 89 89 89 89 89 89 89 89 89 89 89 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1600       |                                                  | 11    | 4      | 62    | 11  | 92  | 92  | 62   | 62  | 1.  | 69  | 20     | 20        | 74      | ^ |
| 2590<br>3150<br>4000<br>4000<br>65 69 68 70 79 70 77 77 77 71 61<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>6300<br>63 | 0002       |                                                  | 7.3   | 21     | 9 1   | 1.5 | 5   | 9 1 | 28   | 62  | *   | 19  | 19     | 60        | 0.2     |   |
| 4010 85 89 89 86 80 83 80 77 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0067       |                                                  | 17    | 2 6    | 2.2   | *   | *   | 200 | 2.   | 91  | 9:  | 50  | 6      | 0         | 7       |   |
| 5000 72 74 75 72 75 75 76 78 72 61 61 62 61 6300 77 77 79 79 73 74 74 77 77 71 61 61 62 61 70 70 77 71 61 61 62 61 70 70 77 71 61 65 70 70 70 70 70 70 70 70 70 70 70 70 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0007       |                                                  | ) d   | 0 40   | 2 0   | 10  | 0 0 | 9 9 | 2 6  | 1 8 | 11  | 2.2 | 100    | 12        | 22      | • |
| 6300<br>83 86 85 79 76 77 77 71 61<br>10000<br>00VERALL 96 96 97 95 93 96 96 95 91 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2000       |                                                  | 22    | 17     | 75    | 22  | 22  | 200 | 26   | 7.8 | 12  | 2 5 |        | 20        | 2 4     | • |
| 8000<br>10000<br>0VERALL 83 68 85 79 76 77 77 71 65<br>70 72 73 67 56<br>90 95 91 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6300       |                                                  | 77    | 62     | 62    | 73  | 7.  | 7.4 | 77   | 11  | 11  | 61  | 9      | 63        | 65      | - |
| 10000 70 73 73 70 68 70 72 73 67 56 OVERALL 96 96 97 95 93 96 96 95 91 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0008       |                                                  | 83    | 98     | 85    | 62  | 19  | 92  | 11   | 11  | 7.1 | 65  | 49     | 6.8       | 7.0     | - |
| OVERALL 96 96 97 95 93 96 96 95 91 90 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10000      |                                                  | 20    | 73     | 73    | 2.0 | 6.8 | 7.0 | 72   | 73  | 29  | 96  | 55     | 28        | 28      | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OVERALI    |                                                  | 96    | 96     | 40    | o o | 20  | 90  | 90   | a d | 5   | 0   | 20     | 60        | 5       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                  |       |        |       |     | 2   | 96  | 0 1  | 66  | 1,  |     | 2      |           | 1,      | 1 |

< LEVEL CORRECTED TO REMOVE BACKGROUND/ELECTRONIC NOISE.

| 2 1/3 OCTAVE BAND                                                      | 330RE | רבאבר      |            |      |     |             |     |      |     |            | OMEG  |           |        |
|------------------------------------------------------------------------|-------|------------|------------|------|-----|-------------|-----|------|-----|------------|-------|-----------|--------|
| NOISE SOURCE/SUBJECT:                                                  | Ů.    | OPERATION: | . NO       |      |     |             |     |      |     |            | RUN   | 2 2       | 20-330 |
| A/M32C-4 AIR CONDITIONER<br>NEAR FIELD NOISE LEVELS<br>(INSIDE HAMGER) |       | VENT       | VENT CYCLE |      |     |             |     |      |     |            | 26 AI | 26 AUG 74 |        |
|                                                                        |       |            |            |      |     |             |     |      |     |            |       | :         |        |
| FREQ DISTANCE (M) ->                                                   | 4 6   | 40         | 4          | 10   | 4 5 | 0.0         | 20  | ~ 5  | ~ 5 | ~          | 25    | 25        | 12     |
| ANGLE                                                                  | 707   | 0          | 200        | 25.0 | 240 | •           | 0.7 | 7    |     | 6          | 001   | 150       | 1      |
| 52                                                                     |       |            |            |      |     | <b>65</b> < | 634 | 634  | 999 | · 65<      | >99   | >99       | 9      |
| 31.5                                                                   | 624   | 944        | 654        | 634  | 634 | 702         | >69 | 7.1  | >69 | 684<br>684 | 2.0   | 11        | 2.5    |
| 20 0                                                                   | 624   | 624        | 614        | 624  | >19 | 67          | 67  | 89   | 69  | 202        | 1.2   | ::        | 1.1    |
| 63                                                                     | 65    | >99        | 89         | 7.1  | 72  | 72          | 7.1 | 72   | 72  | 72         | 73    | 15        | 73     |
| 80                                                                     | >99   | 29         | 69         | 7.0  | 72  | 73          | 7.1 | 69   | 69  | 73         | 92    | 11        | 92     |
| 100                                                                    | 20    | 71         | 71         | 71   | 7.7 | 73          | 73  | 4 6  | 2 4 | 1 4        | 22    | 77        | 76     |
| 150                                                                    | 75    | 0 60       | 9 6        | 75   | 82  | 833         | 82  | 50   | 25  | 22         | 82    | 85        | 2 80   |
| 200                                                                    | 22    | 72         | 2          | 73   | 72  | 92          | 78  | 7.8  | 80  | 82         | 81    | 83        | 80     |
| 250                                                                    | 11    | 18         | 14         | 11   | 73  | 82          | 81  | 83   | 87  | 98         | 98    | 87        | 86     |
| 315                                                                    | 73    | 15         | 73         | 73   | 72  | 7.8         | 85  | 83   | 94  | 85         | 68    | 88        | 82     |
| 0001                                                                   | 73    | 73         | 22         | 15   | 75  | 40          | 83  | e 00 | 96  | 87         | 87    | 06        | 00     |
| 200                                                                    | 19    | 24         | - 4        | 2 0  | 6 4 | , a         | 60  | 0 0  | † o | 0 0        | 00    | 00        | 9 0    |
| 000                                                                    | 98    | 85         | 68         | 9 80 | 80  | 8 2         | 85  | 95   | 8 6 | 8 2        | 94    | 91        | 86     |
| 1000                                                                   | 15    | 15         | 11         | 77   | 92  | 83          | 83  | 87   | 83  | 83         | 9.4   | 98        | 87     |
| 1250                                                                   | 14    | 14         | 92         | 75   | 92  | 98          | 85  | 87   | 98  | 85         | 98    | 85        | 91     |
| 1600                                                                   | 72    | 2.0        | 72         | 72   | 72  | 42          | 81  | 81   | 82  | 80         | 83    | 87        | 98     |
| 2000                                                                   | 20    | 69         | 20         | 20   | 69  | 7.8         | 22  | 62   | 7.8 | 7.8        | 82    | 83        | 86     |
| 2500                                                                   | 69    | 68         | 68         | 69   | 69  | 11          | 78  | 80   | 7.8 | 4          | 83    | 85        | 90     |
| 3150                                                                   | 73    | 72         | 22         | 14   | 78  | 91          | 98  | 89   | 83  | 82         | 81    | 98        | 89     |
| 0004                                                                   | 92    | 92         | 80         | 80   | 82  | 46          | 95  | 93   | 68  | 98         | 83    | 87        | 98     |
| 2000                                                                   | 49    | 63         | 69         | 29   | 69  | 62          | 80  | 80   | 92  | 11         | 82    | 9.4       | 85     |
| 6300                                                                   | 99    | 65         | 68         | 7.0  | 72  | 85          | 98  | 83   | 4   | 2.8        | 81    | 85        | 85     |
| 8000                                                                   | 7.1   | 20         | 73         | 17   | 78  | 91          | 93  | 89   | 9.4 | 82         | 81    | 9.4       | 85     |
| 10000                                                                  | 61    | 23         | 61         | 63   | 99  | 22          | 62  | 80   | 73  | 7.1        | 22    | 81        | 81     |
| OVERALL                                                                | 9.0   | 92         | 95         | 95   | 93  | 100         | 66  | 100  | 96  | 96         | 96    | 66        | 101    |

|                          |     | E BAND      |      |     |     |     |     |     |     |     | ) OMEGA 3.2       |
|--------------------------|-----|-------------|------|-----|-----|-----|-----|-----|-----|-----|-------------------|
| NOISE SOURCE/SUBJECT!    | 90  | OPERATIONS  | . N. |     |     |     |     |     |     |     | 03                |
| A/H32C-4 AIR CONDITIONER |     | VENT CYCLE  | *CLE |     |     | -   |     |     |     |     | ) 26 AUG 74       |
| NEAR FIELD NOISE LEVELS  | _   |             |      |     |     | -   |     |     |     |     | •                 |
| (INSIDE HANGER)          | -   |             |      |     |     | -   |     |     |     |     | ) PAGE F3         |
| DISTANCE (M) ->          |     | ~           | 8    | 2   | 2   | 2   | 2   | 8   | 8   | 2   | OPERATOR LOCATION |
| FREQ ANGLE (DEG)>        | 160 | 180         | 200  | 220 | 240 | 260 | 280 | 300 | 320 | 340 | TEST CONDITION    |
|                          |     |             |      |     |     |     | •   |     |     |     | 1/A               |
| 25                       | 62< | 63<         | >02  | >19 | >99 | 624 |     | >99 | 72  |     | 704               |
| 31.5                     |     | <b>65</b> < | >19  | 68  | >69 | >69 | >69 | 73  | 25  |     | 7.4               |
| 04                       | 7.1 | 68          | 69   | 7.0 | 69  | 68  | >99 | >99 | 68  |     | 7.0               |
| 50                       | 7.1 | 69          | 70   | 29  | 29  | 99  | 65  | 65  | 68  |     | 69                |
| 63                       | 74  | 73          | 72   | 72  | 7.1 | 68  | 6.8 | 20  | 7.4 |     | 75                |
| 80                       | 92  | 77          | 16   | 16  | 14  | 72  | 7.7 | 7.1 | 73  |     | 7.4               |
| 100                      | 75  | 11          | 7.8  | 7.8 | 7.8 | 11  | 74  | 14  | 73  |     | 92                |
| 125                      | 87  | 92          | 35   | 89  | 46  | 63  | 96  | 91  | 89  |     | 68                |
| 160                      | 94  | 88          | 87   | 86  | 87  | 87  | 81  | 84  | 82  |     | 82                |
| 200                      | 62  | 7.8         | 83   | 85  | 98  | 85  | 7.8 | 7.8 | 78  |     | 9.0               |
| 250                      | 62  | 7.8         | 85   | 98  | 87  | 87  | 84  | 84  | 83  |     | 83                |
| 315                      | 7.8 | 62          | 81   | 19  | 9.4 | 84  | 82  | 79  | 62  |     | 81                |
| 700                      | 78  | 83          | 82   | 19  | 80  | 80  | 80  | 81  | 81  |     | 8.8               |
| 500                      | 81  | 77          | 80   | 85  | 94  | 81  | 81  | 87  | 88  |     | 91                |
| 630                      | 80  | 62          | 78   | 84  | 82  | 81  | 84  | 80  | 87  |     | 68                |
| 800                      | 82  | 82          | 90   | 93  | 96  | 95  | 88  | 68  | 88  |     | 88                |
| 1000                     | 11  | 25          | 78   | 81  | 83  | 81  | 81  | 80  | 81  |     | 86                |
| 1250                     | 7.8 | 92          | 77   | 7.8 | 83  | 82  | 85  | 11  | 81  |     | 88                |
| 1600                     | 92  | 72          | 71   | 92  | 19  | 7.8 | 92  | 92  | 7.8 |     | 9.6               |
| 2000                     | 75  | 7.1         | 71   | 92  | 78  | 16  | 73  | 72  | 77  |     | 81                |
| 2500                     | 77  | 72          | 69   | 75  | 7.8 | 92  | 73  | 7.1 | 14  |     | 79                |
| 3150                     | 7.8 | 73          | 7.1  | 75  | 62  | 4   | 7.8 | 80  | 82  |     | 91                |
| 0000                     | 77  | 42          | 73   | 92  | 81  | 81  | 81  | 84  | 68  |     | 96                |
| 5000                     | 73  | 29          | 49   | 29  | 20  | 69  | 68  | 68  | 72  |     | 81                |
| 6300                     | 7.1 | 99          | 63   | 89  | 72  | 72  | 20  | 7.0 | 92  |     | 87                |
| 8000                     | 7.1 | 20          | 99   | 7.1 | 7.8 | 77  | 75  | 92  | 82  |     | 46                |
| 10000                    | 9   | 60          | 58   | 62  | 69  | 49  | 49  | 49  | 69  |     | 82                |
| OVERALL                  | 93  | 95          | 96   | 16  | 100 | 98  | 95  | 96  | 46  |     | 102               |

| A/M32C-4<br>NEAR FIEL<br>(INSIDE H |                                            |     |            |               |     |     |      |           |          |     |             |        |           |        |
|------------------------------------|--------------------------------------------|-----|------------|---------------|-----|-----|------|-----------|----------|-----|-------------|--------|-----------|--------|
| A/M32C-4<br>NEAR FIEL<br>(INSIDE H | SOURCE/SUBJECT:                            | ō,  | OPERATIONS |               |     |     | ~ -  |           |          |     |             | R GN   | 1 1       | 066-02 |
| (INSIDE H                          | AIR CONDITIONER                            |     | COOLIN     | COOLING CYCLE | w.  |     | - ^  |           |          |     |             | 1 26 4 | 26 AUG 74 |        |
|                                    | NEAR FIELD NOISE LEVELS<br>(INSIDE HANGER) |     |            |               |     |     | ••   |           |          |     |             | ) PAGE | ¥         |        |
|                                    | ;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;  |     |            |               |     |     |      |           |          |     |             |        |           |        |
| FREG                               | DISTANCE (M) ->                            | 4   | *          | 4             | 3   | 4   | 3    | 4         | 4        | *   | 4           | 4      | 4         | 4      |
| (HZ)                               | ANGLE (DEG)>                               |     | 20         | 04            | 09  | 80  | 100  | 120       | 140      | 160 | 180         | 200    | 220       | 240    |
| 55                                 |                                            | >69 | 999        | >49           | 63< | 66  | 999  | <b>65</b> | > 19     | 714 | <b>65</b> < | >49    | 614       | 634    |
| 31.5                               |                                            | 73  | 72         | 17            | 72  | 7.0 | >69  | 7.1       | >99      | >69 | >69         | 684    | >29       | >99    |
| 04                                 |                                            | >19 | >19        | 89            | 9   | 202 | 7.0  | 20        | 69       | 11  | 7.1         | 20     | 69        | 674    |
| 50                                 |                                            | 68  | 20         | 20            | 72  | 11  | 2.0  | 7.1       | 7.0      | 73  | 72          | 73     | 7.1       | 89     |
| 63                                 |                                            | 8.0 | 62         | 92            | 14  | 73  | 73   | 73        | 14       | 78  | 80          | 7.8    | 11        | 73     |
| 80                                 |                                            | 62  | 22         | 92            | 1.4 | 7.4 | 73   | 73        | 11       | 62  | 82          | 80     | 7.8       | 73     |
| 100                                |                                            | 78  | 11         | 92            | 15  | 7.8 | 92   | 75        | 22       | 62  | 83          | 83     | 83        | 82     |
| 125                                |                                            | 95  | 16         | 91            | 95  | 98  | 8 9  | 88        | 82       | 9.4 | 87          | 95     | 89        | 81     |
| 160                                |                                            | 48  | 94         | 81            | 82  | 7.8 | 80   | 4         | 11       | 62  | 82          | 9.4    | 80        | 25     |
| 200                                |                                            | 20. | 11         | 92            | 11  | 62  | 80   | 4         | 78       | 7.8 | 80          | 83     | 81        | 81     |
| 250                                |                                            | 80  | 62         | 28            | 81  | 82  | 9 0  | 80 0      | 2.8      | 28  | 23          | 83     | 82        | 80     |
| 515                                |                                            | ::  | 0 0        | 90            | 9 0 | 83  | 62   | 62        | <b>*</b> | 61  | = ;         | 9      | 2         | 2 :    |
| 004                                |                                            | 200 | 200        | 2 3           | 0 a | 200 | # P  | 0 4       | 4 0      | 22  | 2 4         | 9 7    |           | 19     |
| 630                                |                                            | 2 4 | . 6        | 5 5           | 2 6 | 2 0 | 0 00 | 8 2       | 8 2      | . « | . «         | 7.8    |           |        |
| 800                                |                                            | 91  | 90         | 26            | 95  | 95  | 102  | 101       | 95       | 96  | 98          | 85     | 90        | 8 4    |
| 1000                               |                                            | 82  | 83         | 98            | 84  | 85  | 87   | 98        | 83       | 8.0 | 8.2         | 11     | 6.2       | 62     |
| 1250                               |                                            | 81  | 87         | 94            | 7 8 | 83  | 82   | 82        | 87       | 82  | 92          | 92     | 62        | 4      |
| 1600                               |                                            | 82  | 80         | 81            | 62  | 8.2 | 11   | 82        | 80       | 77  | 73          | 72     | 14        | 92     |
| 2000                               |                                            | 15  | 11         | 11            | 7.8 | 92  | 11   | 79        | 80       | 11  | 7.1         | 11     | 73        | 73     |
| 2500                               |                                            | 73  | 92         | 22            | 77  | 92  | 4    | 80        | 82       | 8.0 | 72          | 7.1    | 7.2       | 14     |
| 3150                               |                                            | 81  | 85         | 85            | 81  | 7.8 | 4    | 81        | 82       | 80  | 72          | 73     | 1.4       | 75     |
| 0005                               |                                            | 85  | 88         | 88            | 87  | 80  | 7.8  | 81        | 83       | 7.8 | 74          | 22     | 15        | 75     |
| 2000                               |                                            | 73  | 75         | 92            | 73  | 72  | 91   | 11        | 18       | 75  | 69          | 49     | 65        | 69     |
| 6300                               |                                            | 11  | 81         | 81            | 11  | 77  | 9/   | 11        | 7.8      | 74  | 49          | 49     | 24        | 89     |
| 8000                               |                                            | 81  | 96         | 85            | 82  | 80  | 75   | 92        | 11       | 74  | 29          | 9      | 20        | 72     |
| 10000                              |                                            | 73  | 47         | 47            | 7.0 | 89  | 7.0  | 72        | 73       | 69  | 28          | 25     | 60        | 09     |
| OVERALL                            |                                            | 98  | 66         | 100           | 66  | 96  | 103  | 102       | 86       | 93  | 93          | 96     | 95        | 95     |

| 2 1/2                              | 1/3 OCTAVE BAND          |     |            |               |     |             |      |     |     |     |     | OMEG   | m      | 2      |
|------------------------------------|--------------------------|-----|------------|---------------|-----|-------------|------|-----|-----|-----|-----|--------|--------|--------|
| NOISE SOURCE                       | SOURCE/SUBJECT:          | ΰ.  | OPERATION: | . NC          |     |             | ~    |     |     |     |     | RUN    | 2 2    | 000-00 |
| A/H32C-4 AIR CON                   | AIR CONDITIONER          |     | COOLI      | COOLING CYCLE | LE  |             |      |     |     |     |     | 1 26 4 | AUG 74 |        |
| NEAR FIELD NOIS<br>(INSIDE HANGER) | D NOISE LEVELS<br>ANGER) |     |            |               |     |             | ••   |     |     |     |     |        | F.5    | 77     |
|                                    |                          |     |            |               |     |             |      |     |     |     |     |        |        |        |
| FREG                               | DISTANCE (M) ->          |     | 4          | 4             | 1   | 4           | 2    | ~   | •   | 2   | 2   | 2      | 2      | ~      |
| (HZ)                               |                          | 260 | 280        | 300           | 320 | 340         | 0    | 20  | 04  | 09  | 80  | 100    | 120    | 140    |
| 25                                 |                          |     | 63<        | 634           | 999 | <b>65</b> < | 714  | 704 | >69 | >69 | >69 | 704    | 724    | 714    |
| 31.5                               |                          | >99 | 684        | >69           | 7.1 | 72          | 92   | 7.8 | 92  | 16  | 73  | 73     | 14     | 73     |
| 0.4                                |                          | 65  | >19        | >19           | 999 | 9           | 7.0  | 7.0 | 71  | 73  | 14  | 7.4    | 75     | 74     |
| 20                                 |                          | 29  | 29         | 89            | 69  | 69          | 73   | 73  | 12  | 1.4 | 14  | 22     | 73     | 75     |
| 63                                 |                          | 73  | 7.1        | 72            | 92  | 78          | 80   | 62  | 11  | 11  | 7.8 | 92     | 7.8    | 80     |
| 9.0                                |                          | 7.1 | 73         | 75            | 15  | 28          | 81   | 80  | 62  | 92  | 77  | 7.8    | 2.8    | 7.8    |
| 100                                |                          | 19  | 19         | 7.8           | 19  | 80          | 80   | 11  | 80  | 80  | 80  | 4      | 80     | 80     |
| 125                                |                          | 98  | 85         | 88            | 88  | 76          | 91   | 98  | 81  | 83  | 68  | 88     | 9.6    | 90     |
| 160                                |                          | 28  | 11         | 80            | 28  | 82          | 82   | 80  | 62  | 62  | 83  | 85     | 96     | 82     |
| 200                                |                          | 80  | 11         | 11            | 22  | 2.2         | 90   | 80  | 62  | 92  | 10  | 93     | 94     | 8      |
| 052                                |                          | 81  | 62         | 9 6           | 6,7 | 81          | 80 0 | 28  | 96  | 90  | 87  | 82     | 80 6   | 80 0   |
| 313                                |                          | 2   | 10         | 0 8           | 0 8 |             | 20   | *   | † L | 60  | 0   |        | 2 .    | 0 0    |
| 000                                |                          | 0 8 | 2 6        | 0 0           | 9 6 | 9           | 90   | 200 | 60  | 0 0 | 90  | 000    | 16     | 0      |
| 000                                |                          | 9 0 | 9 0        |               | - 0 | 70          | 0 0  | 0 0 | 60  | 000 | 900 | 0 0    | 9 6    | 0 0    |
|                                    |                          | 0 0 | 2 8        | 0 0           | 0 0 | * C         | 0 0  | 90  | 9 7 | 0 0 | 0 0 | 16     | 16     | 107    |
| 1000                               |                          | 62  | 8          | 2             | . « | 200         |      | 87  | 0   | 8 0 |     | ~ «    | 6      | 6      |
| 1250                               |                          | 80  | 62         | 80            | 7.8 | 8.0         | 87   | 87  | 68  | 90  | 87  | 88     | 88     | 63     |
| 1600                               |                          | 75  | 7.4        | 75            | 75  | 92          | 81   | 84  | 85  | 93  | 83  | 83     | 87     | 87     |
| 2000                               |                          | 14  | 73         | 73            | 73  | 73          | 80   | 81  | 82  | 80  | 80  | 94     | 84     | 87     |
| 2500                               |                          | 73  | 73         | 72            | 73  | 73          | 7.8  | 13  | 82  | 82  | 81  | 83     | 98     | 9.0    |
| 3150                               |                          | 16  | 29         | 78            | 11  | 82          | 92   | 91  | 95  | 85  | 83  | 85     | 88     | 90     |
| 0004                               |                          | 62  | 80         | 80            | 81  | 86          | 76   | 96  | 96  | 87  | 85  | 85     | 98     | 87     |
| 2000                               |                          | 99  | 99         | 99            | 89  | 17          | 62   | 81  | 81  | 77  | 82  | 83     | 96     | 98     |
| 6300                               |                          | 68  | 7.0        | 11            | 75  | 11          | 98   | 87  | 89  | 82  | 82  | 81     | 85     | 85     |
| 8000                               |                          | 7.1 | 14         | 75            | 80  | 95          | 95   | 95  | 95  | 9.4 | 80  | 80     | 83     | 8      |
| 10000                              |                          | 61  | 61         | 62            | 99  | 69          | 8 0  | 81  | 62  | 14  | 7.1 | 15     | 80     | 80     |
| OVERALL                            |                          | 93  | 93         | 95            | 96  | 44          | 101  | 103 | 103 | 86  | 86  | 102    | 102    | 105    |

| 2 1/3 OCTAVE BAND        |     |            |                |     |     |     |     |     |     |     |                   |
|--------------------------|-----|------------|----------------|-----|-----|-----|-----|-----|-----|-----|-------------------|
| J                        |     |            |                |     |     |     |     |     |     |     | TEST 71-020-330   |
| NOISE SOURCE/SUBJECT:    | ٠.  | OPERATIONS | 1 NO           |     |     |     |     |     |     |     | 90                |
| AZM32C-4 ATP CONDITIONED |     | 6001       | COOL THE CYCLE | 4   |     | •   |     |     |     |     | 1 26 AUG 74       |
| NEAR FIFTO NOTSE LEVELS  |     |            |                |     |     | •   |     |     |     |     |                   |
| (INSIDE HANGER)          | -   |            |                |     |     | -   |     |     |     |     | ) PAGE F6         |
| DISTANCE (M) ->          | ~   | N          | ~              | ~   | ~   | ~   | ~   | ~   | 8   | 8   | OPERATOR LOCATION |
| tel                      | -   | 180        | 200            | 220 | 240 | 260 | 280 | 300 | 320 | 340 | TEST CONDITION    |
|                          |     |            |                |     |     |     |     |     |     |     | 1/8               |
| 25                       | 14  | 14         | 714            | 674 | >69 | 684 | 684 | 684 | 73  |     | 7.4               |
| 31.5                     | 73  | 14         | 75             | 7.0 | 72  | 7.1 | 72  | 75  | 7.8 |     | 61                |
| 07                       | 15  | 75         | 25             | 73  | 73  | 7.1 | 7.0 | 11  | 7.1 |     | 7.2               |
| 20                       | 11  | 92         | 11             | 14  | 7.4 | 73  | 73  | 73  | 73  |     | 7.3               |
| 63                       | 82  | 81         | 82             | 80  | 80  | 80  | 79  | 7.8 | 7.8 |     | 81                |
| 0.80                     | 83  | 85         | 83             | 79  | 28  | 11  | 92  | 18  | 62  |     | 62                |
| 100                      | 82  | 82         | 88             | 87  | 87  | 98  | 81  | 81  | 82  |     | 62                |
| 125                      | 91  | 95         | 91             | 9.0 | 95  | 95  | 88  | 91  | 9.0 |     | 06                |
| 160                      | 85  | 87         | 87             | 98  | 87  | 88  | 82  | 83  | 85  |     | 83                |
| 200                      | *   | 83         | 87             | 87  | 87  | 86  | 80  | 81  | 80  |     | 82                |
| 250                      | 83  | 81         | 98             | 88  | 88  | 98  | 82  | 84  | 83  |     | 06                |
| 315                      | 82  | 85         | 81             | 7 0 | 88  | 82  | 10  | 82  | 85  |     | 10                |
| 007                      | 83  | 83         | 83             | 81  | 82  | 82  | 82  | 80  | 82  |     | 88                |
| 500                      | 83  | 80         | 81             | 98  | 80  | 82  | 84  | 84  | 87  |     | 93                |
| 630                      | 87  | 4          | 81             | 82  | 94  | 83  | 87  | 85  | 90  |     | 92                |
| 800                      | 88  | 87         | 16             | 16  | 90  | 95  | 91  | 90  | 95  |     | 91                |
| 1000                     | 81  | 4          | 81             | 83  | 82  | 83  | 82  | 85  | 78  |     | 06                |
| 1250                     | 82  | 80         | 80             | 82  | 87  | 83  | 85  | 80  | 9.4 |     | 06                |
| 1600                     | 11  | 14         | 14             | 7.8 | 80  | 80  | 78  | 11  | 80  |     | 986               |
| 2000                     | 92  | 73         | 72             | 11  | 82  | 7.8 | 92  | 73  | 7.8 |     | 82                |
| 2500                     | 62  | 72         | 72             | 92  | 62  | 11  | 17  | 73  | 75  |     | 81                |
| 3150                     | 80  | 72         | 72             | 92  | 81  | 79  | 81  | 80  | 80  |     | 95                |
| 0000                     | 7.8 | 73         | 72             | 11  | 82  | 82  | 48  | 98  | 94  |     | 86                |
| 5000                     | 73  | 29         | 65             | 89  | 7.0 | 7.0 | 69  | 69  | 72  |     | 82                |
| 6300                     | 7.1 | 69         | 69             | 69  | 72  | 72  | 72  | 14  | 7.8 |     | 06                |
| 8000                     | 72  | 71         | 68             | 72  | 75  | 16  | 92  | 11  | 9.4 |     | 16                |
| 10000                    | 99  | 9          | 29             | 62  | 49  | 69  | 69  | 99  | 69  |     | 40                |
| OVERALL                  | 47  | 44         | 66             | 66  | 6   | 100 | 46  | 47  | 86  |     | 104               |

| 7 1/3 UCIAV             | TAVE BAND    |          |            |      |     |     |     |     |     |     |            | _      |           |        |
|-------------------------|--------------|----------|------------|------|-----|-----|-----|-----|-----|-----|------------|--------|-----------|--------|
| 7                       |              |          |            |      |     |     |     |     |     |     |            | OMEGA  | 3.        | 20-330 |
| NOISE SOURCE/SUBJE      | BJECT :      | 0        | RA         | . N  |     |     | -   |     |     |     |            | S. S.  |           |        |
| A/M32C-4 AIR            | CONDITIONER  |          | HEAT CYCLE | YCLE |     |     |     |     |     |     |            | 1 26   | 26 AUG 74 |        |
| NEAR FIFTO NOTSE LEVELS | ISE LEVELS   |          |            |      |     |     | -   |     |     |     |            |        |           |        |
| (INSIDE HANGER)         | R)           |          |            |      |     |     | -   |     |     |     |            | ) PAGE | F7        |        |
|                         |              |          |            |      |     |     |     |     |     |     |            |        |           |        |
| FRED DIS                | TANCE (M) -> | t        | 1          | 1    | 4   | 1   | 4   | 1   | 4   | 4   | 4          | 1      | •         | 4      |
|                         | ANGLE (DEG)> |          | 50         | 9    | 09  | 80  | 100 | 120 | 140 | 160 | 180        | 200    | 220       | 240    |
| 25                      |              | 704      | >99        | 63<  | 624 | 63< | 634 |     | 634 | 614 | 624        | 634    | >49       |        |
| 31.5                    |              | 684      | >99        | >19  | >29 | 68  | >19 | 684 | 684 | 674 | 67×        | >69    | >99       | 99     |
| 04                      |              | <b>9</b> | 634        | >99  | >29 | 69  | 68  | 69  | 99  | 69  | 89         | 2.0    | >29       | 99     |
| 20                      |              | 29       | 99         | 29   | 69  | 89  | 69  | 69  | 69  | 70  | 2.0        | 69     | 69        | 99     |
| 63                      |              | 75       | 75         | 73   | 7.0 | 69  | 72  | 7.1 | 72  | 75  | 15         | 1.     | 73        | 71     |
| 80                      |              | 92       | 75         | 20   | 7.0 | 7.0 | 73  | 73  | 72  | 14  | 92         | 11     | 14        | 71     |
| 100                     |              | 73       | 72         | 77   | 73  | 75  | 92  | 15  | 73  | 73  | 14         | 11     | 92        | 75     |
| 125                     |              | 95       | 91         | 94   | 89  | 83  | 98  | 79  | 83  | 85  | 91         | 93     | 06        | 78     |
| 160                     |              | 87       | 83         | 78   | 82  | 92  | 4   | 92  | 11  | 62  | <b>3 6</b> | 96     | 82        | 73     |
| 200                     |              | 22       | 25         | 73   | 47  | 7.8 | 4   | 80  | 75  | 92  | 7.8        | 83     | 00        | 78     |
| 250                     |              | 62       | 92         | 82   | 81  | 98  | 84  | 83  | 80  | 92  | 82         | 84     | 83        | 80     |
| 315                     |              | 91       | 92         | 80   | 80  | 84  | 85  | 85  | 82  | 7.8 | 15         | 74     | 9,        | 16     |
| 004                     |              | 84       | 81         | 80   | 83  | 82  | 85  | 88  | 87  | 82  | 8.2        | 75     | 80        | 79     |
| 200                     |              | 82       | 62         | 81   | 8 1 | 82  | 81  | 78  | 81  | 11  | 11         | 16     | 80        | 79     |
| 630                     |              | 84       | 87         | 87   | 85  | 83  | 9.4 | 85  | 94  | 81  | 7.8        | 80     | 80        | 82     |
| 800                     |              | 06       | 06         | 96   | 96  | 91  | 96  | 98  | 90  | 88  | 88         | 88     | 89        | 69     |
| 1000                    |              | 81       | 82         | 84   | 94  | 84  | 84  | 85  | 82  | 11  | 11         | 11     | 7.8       | 78     |
| 1250                    |              | 80       | 98         | 84   | 83  | 81  | 83  | 81  | 98  | 80  | 75         | 73     | 11        | 79     |
| 1600                    |              | 92       | 81         | 80   | 7.8 | 7.8 | 11  | 81  | 81  | 92  | 14         | 73     | 73        | 77     |
| 2000                    |              | 14       | 77         | 28   | 7.8 | 75  | 7.8 | 80  | 80  | 9,  | 7.0        | 20     | 72        | 73     |
| 2500                    |              | 73       | 75         | 11   | 91  | 92  | 4   | 81  | 82  | 62  | 7.1        | 69     | 7.1       | 7.4    |
| 3150                    |              | 81       | 85         | 94   | 82  | 80  | 80  | 81  | 83  | 80  | 7.1        | 7.1    | 72        | 76     |
| 4000                    |              | 85       | 90         | 87   | 88  | 84  | 82  | 82  | 83  | 62  | 73         | 72     | 15        | 79     |
| 2000                    |              | 73       | 92         | 92   | 14  | 74  | 77  | 7.8 | 80  | 75  | 65         | 63     | 65        | 99     |
| 6300                    |              | 18       | 81         | 61   | 15  | 22  | 47  | 77  | 7.8 | 73  | 49         | 63     | 65        | 99     |
| 9000                    |              | 84       | 88         | 86   | 81  | 7.8 | 11  | 62  | 62  | 73  | 29         | 99     | 69        | 71     |
| 10000                   |              | 7.1      | 73         | 15   | 2.0 | 69  | 1.1 | 73  | 74  | 99  | 58         | 96     | 65        | 59     |
| OVERALL                 |              | 86       | 98         | 86   | 66  | 96  | 86  | 66  | 96  | 93  | 95         | 96     | 95        | 93     |

| . 7             | IVS OCIANE SAND           |     |            |            |     |     |     |     |     |     |     | OMEGA  | A 3.   | 2   |
|-----------------|---------------------------|-----|------------|------------|-----|-----|-----|-----|-----|-----|-----|--------|--------|-----|
| NOISE SOURC     | SOURCE/SUBJECT:           | Ξ.  | OPERATIONS | ONE        |     |     | ~ - |     |     |     |     | RUN    | 80     | 250 |
| A/H32C-4        | ATP CONDITIONER           |     | HFAT       | HEAT CYCIF |     |     | •   |     |     |     |     | 1 26 1 | AUG 74 |     |
| NEAR FIFE       | NEAR FIFTO NOTSF I FVFI S |     |            |            |     |     |     |     |     |     |     |        |        |     |
| (INSIDE HANGER) | TANGER                    |     |            |            |     |     | -   |     |     |     |     | ) PAGE | F.8    |     |
|                 |                           |     |            |            |     |     |     |     |     |     |     |        |        |     |
| 6850            | OTSTANCE (M) ->           | 4   | 4          | 4          | 4   | 4   | ~   | •   | •   | •   | •   | •      | •      | ^   |
| (HZ)            | DE                        | 260 | 280        | 300        | 320 | 340 | . 0 | 20  | 0,  | 99  | 80  | 100    | 120    | 140 |
| 25              |                           |     |            | 644        |     | 616 | 704 | 666 | 674 | 674 | 666 | 694    | 704    | 70. |
| 31.5            |                           | 664 | 999        | 674        | 684 | 684 | 73  | 74  | 73  | 72  | 0   | 72     | 73     | 7.1 |
| 0+              |                           | 654 | >99        | 249        | 634 | 624 | 69  | 68  | 202 | 7.1 | 14  | 14     | 14     | 73  |
| 20              |                           | 65  | 7.0        | > 49       | 65  | 99  | 7.0 | 69  | 20  | 7.1 | 73  | 73     | 73     | 72  |
| 63              |                           | 69  | 7.8        | 20         | 73  | 75  | 75  | 14  | 74  | 75  | 14  | 75     | 16     | 16  |
| 80              | •                         | 69  | 72         | 72         | 73  | 16  | 92  | 92  | 72  | 72  | 22  | 78     | 78     | 11  |
| 100             |                           | 14  | 75         | 14         | 14  | 73  | 92  | 11  | 77  | 92  | 92  | 62     | 62     | 77  |
| 125             |                           | 89  | 95         | 90         | 9.0 | 93  | 95  | 36  | 88  | 94  | 81  | 68     | 89     | 88  |
| 160             |                           | 81  | 84         | 82         | 82  | 95  | 85  | 9.4 | 82  | 80  | 80  | 9.2    | 98     | 86  |
| 200             |                           | 7.8 | 14         | 75         | 92  | 75  | 7.8 | 79  | 62  | 83  | *8  | 83     | 9.4    | 82  |
| 250             |                           | 81  | 62         | 62         | 7.8 | 92  | 91  | 91  | 78  | 68  | 88  | 98     | 91     | 90  |
| 315             |                           | 11  | 7.8        | 14         | 25  | 75  | 84  | 86  | 84  | 98  | 88  | 9.0    | 91     | 85  |
| 004             |                           | 11  | 11         | 81         | 62  | 79  | 87  | 87  | 86  | 90  | 88  | 68     | 93     | 86  |
| 200             |                           | 4   | 81         | 78         | 82  | 81  | 93  | 89  | 90  | 89  | 88  | 98     | 85     | 85  |
| 630             |                           | 81  | 80         | 83         | 9.4 | 82  | 88  | 93  | 95  | 85  | 88  | 68     | 9.0    | 88  |
| 800             |                           | 90  | 91         | 88         | 91  | 98  | 98  | 89  | 96  | 85  | 88  | 95     | 100    | 46  |
| 1000            |                           | 19  | 81         | 62         | 80  | 82  | 85  | 87  | 9.6 | 85  | 98  | 88     | 90     | 89  |
| 1250            |                           | 11  | 7.8        | 80         | 62  | 80  | 87  | 9.0 | 89  | 88  | 88  | 68     | 89     | 92  |
| 1600            |                           | 15  | 14         | 92         | 25  | 91  | 83  | 98  | 85  | 9.4 | 83  | 85     | 87     | 87  |
| 2000            |                           | 73  | 72         | 73         | 14  | 72  | 80  | 82  | 82  | 90  | 80  | 84     | 98     | 87  |
| 2500            |                           | 72  | 71         | 7.1        | 7.1 | 72  | 78  | 80  | 82  | 81  | 82  | 85     | 98     | 92  |
| 3150            |                           | 11  | 73         | 92         | 75  | 83  | 89  | 89  | 06  | 84  | 83  | 85     | 88     | 91  |
| 0004            |                           | 4   | 11         | 80         | 83  | 98  | 93  | 93  | 95  | 68  | 88  | 87     | 87     | 88  |
| 2000            |                           | 29  | 99         | 99         | 69  | 7.1 | 80  | 80  | 82  | 78  | 7.8 | 94     | 85     | 87  |
| 6300            |                           | 99  | 99         | 69         | 72  | 73  | 98  | 88  | 98  | 81  | 11  | 81     | 86     | 86  |
| 8000            |                           | 7.1 | 72         | 14         | 7.8 | 80  | 95  | 16  | 91  | 87  | 80  | 91     | 85     | 86  |
| 10000           |                           | 61  | 09         | 62         | 65  | 99  | 11  | 80  | 80  | 73  | 72  | 92     | 80     | 82  |
| OVERALL         |                           | 70  | 90         | ò          | u   | ,   | ,   | 400 | 103 | 80  | 4   | 100    | 200    |     |

| ,               | 1/3 OCTAVE BAND          |      |            |            |     |     |      |     |     |     |     |                   |
|-----------------|--------------------------|------|------------|------------|-----|-----|------|-----|-----|-----|-----|-------------------|
| 1               |                          |      |            |            |     | -   |      | -   |     |     |     | ) TEST 71-020-330 |
| NOISE SOUR      | SOURCE/SUBJECT :         | -    | OPERATION: | * NO       |     |     |      |     |     |     |     | 2 RUN 09          |
| A/H32C-4        | A/M32C-4 AIR CONDITIONER |      | HEAT       | HEAT CYCLE |     |     |      |     |     |     |     | 1 26 AUG 74       |
| (INSIDE HANGER) |                          |      |            |            |     |     |      |     |     |     |     | ) PAGE F9         |
|                 | DISTANCE (M) ->          | ~    | ~          | ~          | ~   | ~   | 8    | ~   | ~   | ~   | 2   | OPERATOR LOCATION |
| FREQ<br>(HZ)    | W                        | 160  | 180        | 200        | 220 | 240 | 260  | 280 | 300 | 320 | 340 | TEST CONDITION    |
| 25              |                          | 714  | 714        | 714        | 546 | 654 | 6.36 | 544 | , A | 75  |     | 7.8               |
| 31.5            |                          | 72   | 7.1        | 12         | 674 | >69 | 202  | 72  | 25  | 25  |     | 2.0               |
| 104             |                          | 71   | 72         | 17         | 20  | 11  | 72   | 69  | 69  | 7.1 |     | 73                |
| 20              |                          | 14   | 73         | 11         | 20  | 20  | 89   | 88  | 89  | 72  |     | 7.2               |
| 63              |                          | 11   | 11         | 92         | 14  | 11  | 10   | 7.1 | 11  | 15  |     | 77                |
| 00              |                          | 11   | 79         | 18         | 92  | 75  | 73   | 73  | 1.4 | 22  |     | 7.8               |
| 100             |                          | 11   | 78         | 80         | 80  | 79  | 29   | 11  | 11  | 92  |     | 79                |
| 125             |                          | 80   | 95         | 46         | 91  | 96  | 96   | 91  | 95  | 93  |     | 16                |
| 160             |                          | 98   | 68         | 69         | 9 . | 96  | 60   | 85  | 88  | 86  |     | 900               |
| 200             |                          | 9 1  | 2 3        | 65         | # t | 9 0 | 9 0  | 90  | 0.0 | 5.3 |     | 0 00              |
| 215             |                          |      | * *        | 0 6        | 0 0 | 2 2 | 0 0  | t 1 | 0 0 | 100 |     | 10                |
| 004             |                          | M 60 | 8 0        | 85         | 85  | 9 6 |      | 3 0 | 9 6 | 200 |     | 91                |
| 200             |                          | 84   | 13         | 81         | 85  | 82  | 7 80 | 85  | 98  | 88  |     | 92                |
| 630             |                          | 98   | 83         | 81         | 88  | 83  | 87   | 68  | 83  | 9.6 |     | 92                |
| 800             |                          | 95   | 89         | 93         | 96  | 96  | 91   | 87  | 88  | 95  |     | 91                |
| 1000            |                          | 82   | 8.0        | 81         | 9.4 | 85  | 83   | 82  | 81  | 83  |     | 88                |
| 1250            |                          | 81   | 80         | 11         | 82  | 9 4 | 48   | 87  | 79  | 84  |     | 91                |
| 1600            |                          | 62   | 14         | 14         | 82  | 81  | 80   | 11  | 92  | 79  |     | 86                |
| 2000            |                          | 11   | 73         | 73         | 43  | 62  | 62   | 92  | 14  | 78  |     | 82                |
| 2500            |                          | 9    | 73         | 12         | 79  | 80  | 7.8  | 15  | 73  | 15  |     | 61                |
| 3150            |                          | 4    | 75         | 72         | 80  | 79  | 80   | 7.8 | 7.8 | 82  |     | 93                |
| 0004            |                          | 18   | 7.8        | 74         | 11  | 81  | 83   | 82  | 82  | 96  |     | 98                |
| 2000            |                          | 14   | 99         | 99         | 99  | 7.1 | 20   | 20  | 20  | 72  |     | 82                |
| 6300            |                          | 73   | 99         | 49         | 99  | 70  | 72   | 14  | 14  | 14  |     | 68                |
| 8000            |                          | 72   | 99         | 29         | 69  | 22  | 7.8  | 80  | 81  | 80  |     | 95                |
| 10000           |                          | 29   | 9          | 28         | 09  | 49  | 65   | 65  | 99  | 69  |     | 83                |
|                 |                          |      |            |            |     |     |      |     |     |     |     |                   |

< LEVEL CORRECTED TO REMOVE BACKGROUND/ELECTRONIC NOISE.

| TABLE: H                        | MEASURED SOUND PRESSURE LEVEL (08)<br>OCTAVE BAND                      | SSURE | - LEVEL    | (08)       |    |     |     |     |     |     |      | ) IDEN        | IDENTIFICATION: OMEGA 3.2 | TIONS  |
|---------------------------------|------------------------------------------------------------------------|-------|------------|------------|----|-----|-----|-----|-----|-----|------|---------------|---------------------------|--------|
| NOISE SOURCE/SUBJEC             | CE/SUBJECT :                                                           | ű.    | OPERATIONS | ONE        |    |     | ~ - |     |     |     |      | S S           | 10                        | 000-00 |
| A/M32C-4<br>NEAR FIE<br>(INSIDE | A/M32C-4 AIR CONDITIONER<br>NEAR FIELD NOISE LEVELS<br>(INSIDE HANGER) |       | VENT       | VENT CYCLE |    |     |     |     |     |     | 1975 | ) 26<br>) PAG | 26 AUG 74<br>PAGE J1      |        |
| i                               |                                                                        |       |            |            |    |     |     |     |     |     |      |               |                           |        |
| (HZ)                            | ANGLE (DEG)>                                                           | 40    | 50         | <b>,</b> 3 | 60 | 80  | 100 | 120 | 140 | 160 | 180  | 200           | 220                       | 240    |
| 31.5                            |                                                                        | 89    | 99         | 67         | 29 | 69  | 69  | 69  | 2.0 | 68  | 67   | 68            | 67                        | 99     |
| 63                              |                                                                        | 11    | 25         | 73         | 72 | 73  | 73  | 74  | 1.4 | 75  | 75   | 75            | 73                        | 72     |
| 125                             |                                                                        | 93    | 69         | 82         | 85 | 82  | 85  | 7.8 | 80  | 83  | 88   | 90            | 89                        | 82     |
| 250                             |                                                                        | 29    | 28         | 80         | 82 | 9.4 | 84  | 84  | 82  | 80  | 29   | 84            | 82                        | 81     |
| 200                             |                                                                        | 98    | 98         | 98         | 85 | 94  | 98  | 89  | 98  | 81  | 80   | 7.8           | 4                         | 82     |
| 1000                            |                                                                        | 87    | 68         | 76         | 93 | 89  | 16  | 76  | 95  | 87  | 82   | 87            | 88                        | 68     |
| 2000                            |                                                                        | 79    | 81         | 82         | 80 | 29  | 81  | 83  | 84  | 62  | 73   | 73            | 74                        | 16     |
| 0004                            |                                                                        | 87    | 96         | 90         | 87 | 81  | 85  | 9.4 | 85  | 8.0 | 15   | 74            | 75                        | 18     |
| 8000                            |                                                                        | 84    | 87         | 98         | 81 | 80  | 62  | 80  | 80  | 52  | 29   | 99            | 69                        | 72     |
| OVERALL                         |                                                                        | 96    | 96         | 26         | 95 | 93  | 96  | 96  | 96  | 91  | 9.0  | 93            | 95                        | 91     |

| 2 00               | AND                      | 000 | PRESSURE LEVEL |            |     |     |     |    |     |    |     | OME   | GA 3.     | OMEGA 3.2 |
|--------------------|--------------------------|-----|----------------|------------|-----|-----|-----|----|-----|----|-----|-------|-----------|-----------|
| NOISE SOURCE/SUBJE | SOURCE/SUBJECT:          | -   | OPERATION      | LONI       |     |     | -   |    |     |    |     | S RUN | 02        | RUN 02    |
| A/M32C-4           | A/H32C-4 AIR CONDITIONER |     | VENT           | VENT CYCLE |     |     |     |    |     |    |     | 1 26  | 26 AUG 74 |           |
| (INSIDE HANGER)    | ANGER)                   |     |                |            |     |     |     |    |     |    |     | ) PAG | E 32      |           |
|                    |                          |     |                |            |     |     |     |    |     |    |     |       |           |           |
| FREG               | DISTANCE (M) ->          | +   | 4              | 4          | 4   | *   | 2   | 2  | 2   | ~  | 2   | 2     | 2         | 2         |
| (HZ)               | ANGLE (DEG)>             | 260 | 280            | 300        | 320 | 340 | 0   | 20 | 0,  | 09 | 80  | 100   | 120       | 140       |
| 31.5               |                          | 99  | 99             | 99         | 99  | 69  | 73  | 72 | 73  | 73 | 72  | 74    | 14        | 74        |
| 63                 |                          | 2.0 | 2.0            | 72         | 14  | 25  | 92  | 75 | 75  | 75 | 92  | 7.8   | 79        | 79        |
| 125                |                          | 83  | 88             | 98         | 78  | 9.0 | 91  | 89 | 85  | 81 | 81  | 96    | 88        | 98        |
| 250                |                          | 81  | 81             | 11         | 62  | 11  | 84  | 85 | 98  | 69 | 83  | 91    | 91        | 88        |
| 200                |                          | 80  | 82             | 82         | 83  | 82  | 91  | 91 | 93  | 89 | 90  | 90    | 95        | 8         |
| 1000               |                          | 87  | 98             | 68         | 88  | 82  | 68  | 68 | 16  | 89 | 68  | 95    | 93        | 66        |
| 2000               |                          | 75  | 14             | 75         | 75  | 75  | 82  | 84 | 85  | 84 | 9.4 | 87    | 90        | 92        |
| 0000               |                          | 7.8 | 11             | 81         | 81  | 84  | 96  | 93 | 96  | 90 | 88  | 87    | 90        | 92        |
| 8000               |                          | 72  | 72             | 1,4        | 11  | 62  | 95  | 46 | 06  | 85 | 94  | 94    | 88        | 83        |
| OVERALI            |                          | 0   | 92             | 00         | 00  |     | 400 | 00 | 100 | 90 | 90  | 80    | 00        | • 0 •     |

| 7 00                                                  | OCTAVE BAND                                                            | SSUKE | LEVEL      | (08)       |     |     |     |     |     |         |      | ) IDENTIFICATIONS<br>) OMEGA 3.2 |
|-------------------------------------------------------|------------------------------------------------------------------------|-------|------------|------------|-----|-----|-----|-----|-----|---------|------|----------------------------------|
| NOISE SOURCE/SUBJECT                                  | E/SUBJECT#                                                             | 2.    | OPERATIONS | I NO       |     |     | ^   |     |     |         |      | RUN 03                           |
| A/M32C-4 AIR CO<br>NEAR FIELD NOIS<br>(INSIDE MANGER) | A/M32C-4 AIR CONDITIONER<br>NEAR FIELD NOISE LEVELS<br>(INSIDE HANGER) |       | VENT       | VENT CYCLE |     |     |     |     | 301 | W 5 W 8 | 15.5 | 26 AUG 74<br>) PAGE J3           |
|                                                       | DISTANCE (M) ->                                                        | 2     | 2          | 8          | 2   | 2   | ~   | ~   | 2   | 2       | 8    | OPERATOR LOCATION                |
| FREQ<br>(HZ)                                          | ANGLE (DEG)                                                            | 160   | 180        | 200        | 220 | 240 | 260 | 280 | 300 | 320     | 340  | TEST CONDITION                   |
| 31.5                                                  |                                                                        | 73    | 7.1        | 73         | 73  | 73  | 72  | 2.0 | 7.4 | 77      |      | 11                               |
| 63                                                    |                                                                        | 19    | 79         | 7.8        | 7 8 | 92  | 14  | 73  | 1.2 | 11      |      | 7.8                              |
| 125                                                   |                                                                        | 68    | 93         | 93         | 91  | 95  | 96  | 88  | 92  | 8       |      | 06                               |
| 250                                                   |                                                                        | 83    | 83         | 88         | 89  | 90  | 90  | 87  | 96  | 85      |      | 98                               |
| 200                                                   |                                                                        | 85    | 85         | 85         | 88  | 87  | 85  | 87  | 88  | 91      |      | 16                               |
| 1000                                                  |                                                                        | 9 4   | 84         | 90         | 46  | 96  | 95  | 90  | 90  | 8       |      | 92                               |
| 2000                                                  |                                                                        | 81    | 92         | 22         | 9.0 | 83  | 81  | 19  | 7.8 | 82      |      | 87                               |
| 0000                                                  |                                                                        | 81    | 77         | 15         | 7.8 | 83  | 83  | 83  | 85  | 90      |      | 16                               |
| 8000                                                  |                                                                        | 42    | 11         | 68         | 73  | 29  | 7.8 | 22  | 11  | 83      |      | 56                               |
| OVERALL                                               |                                                                        | 26    | 95         | 96         | 4   | 100 | 80  | 90  | 90  | 0.7     |      | 102                              |

| 7                                                        |                        |                       |    |           |               |     |     |     |     |     |     |     | NO O | OMEGA 3.2            | 2 2     |
|----------------------------------------------------------|------------------------|-----------------------|----|-----------|---------------|-----|-----|-----|-----|-----|-----|-----|------|----------------------|---------|
| NOISE SOURCE/SUBJECT:                                    | E/SUBJECT              | =                     |    | OPERATION | ı N           |     |     |     |     |     |     |     | 2 2  |                      | 66 - 00 |
| A/M32C-4 AIR CONI<br>NEAR FIELD NOISE<br>(INSIDE HANGER) | AIR CONDI<br>O NOISE ( | UDITIONER<br>E LEVELS |    | COOLI     | COOLING CYCLE | J.E |     |     |     |     |     |     | ) 26 | 26 AUG 74<br>PAGE J4 |         |
| FREG                                                     | DISTANCE               | ÷ €                   | t  | 3         | 4             | ,   | •   | 3   |     | 3   |     | ,   | *    | •                    | •       |
| CHZ                                                      | ANGLE (DEG) 3          | 1EG1                  | 0  | 20        | 0,            | 9   | 90  | 100 | 120 | 140 | 160 | 180 | 200  | 220                  | 240     |
| 31.5                                                     |                        |                       | 75 | 14        | 73            | **  | 7.4 | 73  | 74  | 72  | 75  | 1,4 | 73   | 72                   | 7.0     |
| 63                                                       |                        |                       | 83 | 81        | 62            | 7.8 | 11  | 77  | 11  | 62  | 82  | 78  | 82   | 91                   | 11      |
| 125                                                      |                        |                       | 96 | 96        | 91            | 95  | 87  | 68  | 88  | 84  | 98  | 68  | 93   | 06                   | 85      |
| 250                                                      |                        |                       | 83 | 83        | 83            | 78  | 88  | 6 9 | 88  | 85  | 9.4 | 9 4 | 98   | 85                   | 84      |
| 200                                                      |                        |                       | 90 | 90        | 36            | 69  | 87  | 91  | 96  | 90  | 85  | 83  | 81   | 85                   | 84      |
| 1000                                                     |                        |                       | 92 | 92        | 98            | 96  | 93  | 102 | 101 | 95  | 88  | 87  | 98   | 91                   | 86      |
| 2000                                                     |                        |                       | 80 | 83        | 83            | 83  | 81  | 82  | 85  | 96  | 83  | 11  | 92   | 18                   | 79      |
| 0004                                                     |                        |                       | 98 | 90        | 90            | 88  | 82  | 83  | 85  | 98  | 83  | 92  | 11   | 7.8                  | 78      |
| 8000                                                     |                        |                       | 83 | 87        | 87            | 83  | 82  | 79  | 90  | 81  | 78  | 69  | 68   | 72                   | 74      |
|                                                          |                        |                       |    | 1         |               |     | ,   |     | 1   |     |     | 1   | ,    |                      | 1       |

| 2                                                       | OCTAVE BAND                     | 9                     |     | ביינים בי | 90            |          |      |     |     |     |     |    | ONG         | DOMEGA 3.2 | 110N1  |
|---------------------------------------------------------|---------------------------------|-----------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|------|-----|-----|-----|-----|----|-------------|------------|--------|
| NOISE SOURCE/SUBJECT                                    | CE/SUBJEC                       | 07.                   | ~.  | OPERATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . NO          |          |      | ^ ′ |     |     |     |    |             | 1 05       | 156-02 |
| A/M32C-4 AIR CON<br>NEAR FIELD NOISE<br>(INSIDE HANGER) | AIR COND<br>LD NOISE<br>HANGER) | NOITIONER<br>E LEVELS |     | C000LI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COOLING CYCLE | J.E      | dva. |     |     |     |     |    | 26<br>P P P | 26 AUG 74  |        |
|                                                         |                                 |                       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |          |      |     |     |     |     |    |             |            |        |
| FREG                                                    | DISTANC                         | CE (M) ->             | +   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t             | <b>t</b> | t    | 2   | 2   | 2   | 2   | 2  | 2           | 2          | 2      |
| (HZ)                                                    | ANGLE                           | ANGLE (DEG)>          | 260 | 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300           | 320      | 340  | 0   | 20  | 0+  | 60  | 80 | 100         | 120        | 140    |
| 31.5                                                    |                                 |                       | 7.0 | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72            | 73       | 73   | 7.8 | 79  | 82  | 7.8 | 11 | 77          | 7.8        | 77     |
| 63                                                      |                                 |                       | 16  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77            | 79       | 81   | 83  | 83  | 82  | 81  | 81 | 81          | 81         | 83     |
| 125                                                     |                                 |                       | 87  | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89            | 89       | 95   | 95  | 87  | 85  | 96  | 90 | 90          | 91         | 95     |
| 250                                                     |                                 |                       | 94  | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 83            | 82       | 83   | 9.0 | 89  | 87  | 91  | 91 | 91          | 93         | 91     |
| 200                                                     |                                 |                       | 87  | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87            | 98       | 87   | 91  | 96  | 46  | 95  | 95 | 76          | 95         | 95     |
| 1000                                                    |                                 |                       | 86  | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91            | 91       | 68   | 95  | 95  | 96  | 93  | 95 | 66          | 26         | 103    |
| 2000                                                    |                                 |                       | 4   | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78            | 7.8      | 42   | 85  | 98  | 88  | 98  | 98 | 88          | 91         | 93     |
| 0004                                                    |                                 |                       | 81  | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82            | 82       | 87   | 96  | 96  | 66  | 68  | 88 | 89          | 91         | 93     |
| 8000                                                    |                                 |                       | 73  | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16            | 82       | 83   | 93  | 93  | 46  | 98  | 83 | 94          | 88         | 88     |
| OWEGALE                                                 |                                 |                       | 20  | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | u             | 9        | 0.0  | ,   | 107 | 103 | •   | 0  |             |            |        |

| TABLE: ME                         | MEASURED SOUND PRESSURE LEVEL (08)<br>OCTAVE BAND | SSUR | E LEVEL   | (08)          |     |     |     |     |     |     |     | ) IDENTIFICATIONS<br>) ONEGA 3.2 |
|-----------------------------------|---------------------------------------------------|------|-----------|---------------|-----|-----|-----|-----|-----|-----|-----|----------------------------------|
| NOISE SOURCE/SUBJE                | E/SUBJECT:                                        | ٠,   | OPERATION | . NO          |     |     | ~ ′ |     |     |     |     | ) TEST 71-020-330<br>) RUN 06    |
| A/H32C-4 AIR CONINEAR FIELD NOISE | AIR CONDITIONER<br>D NOISE LEVELS<br>AANGER)      |      | COOLI     | COOLING CYCLE | 31E |     |     |     |     |     |     | 26 AUG 74                        |
|                                   | DISTANCE (M) ->                                   | 2    | 2         | 2             | 8   | 2   | 2   | 2   | 8   | ~   | 8   | OPERATOR LOCATION                |
| FREQ<br>(HZ)                      | ANGLE (DEG)>                                      | 160  | 180       | 200           | 220 | 240 | 260 | 280 | 300 | 320 | 340 | TEST CONDITION                   |
| 31.5                              |                                                   | 62   | 62        | 62            | 75  | 92  | 75  | 25  | 11  | 80  |     | 82                               |
| 63                                |                                                   | 98   | 87        | 98            | 83  | 83  | 82  | 81  | 81  | 82  |     | 85                               |
| 125                               |                                                   | 95   | 76        | 46            | 95  | 96  | 96  | 06  | 95  | 91  |     | 91                               |
| 250                               |                                                   | 88   | 87        | 90            | 91  | 95  | 91  | 87  | 87  | 87  |     | 92                               |
| 200                               |                                                   | 89   | 98        | 98            | 8   | 87  | 87  | 89  | 88  | 95  |     | 96                               |
| 1000                              |                                                   | 90   | 88        | 95            | 95  | 93  | 96  | 26  | 91  | 93  |     | 95                               |
| 2000                              |                                                   | 82   | 8.2       | 8.2           | 82  | 85  | 83  | 81  | 4   | 83  |     | 99                               |
| 0004                              |                                                   | 82   | 92        | 75            | 80  | 85  | 84  | 96  | 87  | 85  |     | 100                              |
| 8000                              |                                                   | 15   | 73        | 20            | 1.4 | 11  | 7.8 | 11  | 62  | 85  |     | 96                               |
| OVERALL                           |                                                   | 16   | 46        | 66            | 66  | 66  | 100 | 16  | 46  | 86  |     | 104                              |

| 7                                                     |                                                                        |    |           |            |     |     |     |     |     |     |     | OME           | ONEGA 3.2            | ONEGA 3.2 |
|-------------------------------------------------------|------------------------------------------------------------------------|----|-----------|------------|-----|-----|-----|-----|-----|-----|-----|---------------|----------------------|-----------|
| NOISE SOURCE/SUBJECT                                  | SE/SUBJECT:                                                            | -  | OPERATION | . NO       |     |     |     |     |     |     |     | R GEN         | 0.1.0                | 166-02    |
| A/M32C-4 AIR CO<br>NEAR FIELD NOIS<br>(INSIDE HANGER) | A/M32C-4 AIR CONDITIONER<br>NEAR FIELD NOISE LEVELS<br>(INSIDE HANGER) |    | HEAT      | HEAT CYCLE |     |     |     |     |     |     |     | ) 26<br>) PAG | 26 AUG 74<br>PAGE J7 |           |
| FREQ                                                  | DISTANCE (M) ->                                                        | t  | •         | t          | t   | t   | t   | t   | t   | t   | t   | £             | *                    | •         |
| (HZ)                                                  | ANGLE (DEG)>                                                           | 0  | 20        | 0+         | 09  | 9.0 | 100 | 120 | 140 | 160 | 180 | 200           | 220                  | 240       |
| 31.5                                                  |                                                                        | 73 | 2.0       | 11         | 7.1 | 72  | 7.1 | 72  | 11  | 72  | 7.1 | 73            | 11                   | 69        |
| 63                                                    |                                                                        | 62 | 7.8       | 75         | 14  | 14  | 92  | 92  | 92  | 28  | 29  | 29            | 77                   | 14        |
| 125                                                   |                                                                        | 96 | 91        | 85         | 9.0 | 84  | 87  | 82  | 84  | 98  | 26  | 76            | 91                   | 80        |
| 250                                                   |                                                                        | 81 | 80        | 83         | 84  | 88  | 88  | 88  | 9.4 | 82  | 48  | 87            | 85                   | 83        |
| 200                                                   |                                                                        | 88 | 89        | 88         | 88  | 87  | 88  | 91  | 68  | 85  | 82  | 82            | 94                   | 85        |
| 1000                                                  |                                                                        | 91 | 95        | 96         | 26  | 95  | 26  | 86  | 95  | 89  | 88  | 88            | 06                   | 90        |
| 2000                                                  |                                                                        | 62 | 83        | 83         | 82  | 81  | 83  | 85  | 98  | 82  | 92  | 92            | 11                   | 80        |
| 0004                                                  |                                                                        | 87 | 91        | 83         | 89  | 98  | 85  | 85  | 87  | 83  | 75  | 75            | 11                   | 81        |
| 8000                                                  |                                                                        | 85 | 68        | 87         | 82  | 80  | 80  | 82  | 82  | 11  | 69  | 69            | 11                   | 72        |
| OVEDAL                                                |                                                                        | 0  |           |            | 0   |     |     |     |     |     | -   |               |                      |           |

| 2 00                                                    | OCTAVE BA                      | SOUND PRESSURE LEVEL | ESSUR | E LEVE     | (08)       |     |     |     |     |     |    |     | ) IDEN      | IDENTIFICATION:      | TIONS  |
|---------------------------------------------------------|--------------------------------|----------------------|-------|------------|------------|-----|-----|-----|-----|-----|----|-----|-------------|----------------------|--------|
| NOISE SOURCE/SUBJE                                      | OURCE/SUBJE                    | CT:                  | -     | OPERATION: | EON:       |     |     | ^   |     |     |    |     | ) TES       | TEST 71-020-330      | 20-330 |
| A/M32C-4 AIR CON<br>NEAR FIELD NOISE<br>(INSIDE HANGER) | AIR CON<br>LD NOISE<br>HANGER) | DITIONER<br>E LEVELS |       | HEAT       | HEAT CYCLE |     |     |     |     |     |    |     | 26<br>1 PAG | 26 AUG 74<br>PAGE J8 |        |
|                                                         |                                |                      |       |            |            |     |     |     |     |     |    |     |             |                      |        |
| FREQ                                                    | DISTAN                         | 1CE (M) ->           |       | 4          | +          | *   | 3   | 2   | 2   | 2   | 2  | 2   | 2           | 2                    | 2      |
| (ZH)                                                    | ANGLE                          | (DEG)>               | 260   | 280        | 300        | 320 | 340 | 0   | 20  | 04  | 9  | 80  | 100         | 120                  | 140    |
| 31.5                                                    |                                |                      | 69    | 69         | 2.0        | 69  | 7.0 | 92  | 75  | 75  | 75 | 92  | 77          | 11                   | 92     |
| 63                                                      |                                |                      | 73    | 62         | 75         | 92  | 4   | 4   | 7.8 | 11  | 11 | 62  | 81          | 81                   | 80     |
| 125                                                     |                                |                      | 89    | 92         | 90         | 91  | 46  | 93  | 93  | 68  | 85 | 9.4 | 9.0         | 91                   | 90     |
| 250                                                     |                                |                      | 84    | 82         | 81         | 81  | 80  | 95  | 36  | 87  | 91 | 91  | 95          | 16                   | 95     |
| 200                                                     |                                |                      | 84    | 48         | 86         | 87  | 98  | 95  | 95  | 96  | 93 | 93  | 93          | 95                   | 91     |
| 1000                                                    |                                |                      | 91    | 91         | 68         | 91  | 88  | 91  | 76  | 46  | 91 | 95  | 96          | 100                  | 66     |
| 2000                                                    |                                |                      | 7.8   | 11         | 7.8        | 7.8 | 7.8 | 98  | 88  | 88  | 87 | 98  | 89          | 91                   | 76     |
| 000%                                                    |                                |                      | 81    | 7.8        | 81         | 83  | 87  | 96  | 16  | 26  | 90 | 90  | 90          | 91                   | 93     |
| 8000                                                    |                                |                      | 72    | 73         | 22         | 62  | 81  | 93  | 68  | 35  | 88 | 82  | 85          | 89                   | 83     |
| OVERALL                                                 |                                |                      | 76    | 96         | 76         | 9.5 | 96  | 101 | 102 | 103 | 80 | 80  | 100         | 103                  | 102    |

| <b>5</b> 00                                             | OCTAVE BAND                                  |     |            | 3          |     |     |     |     |     |     |     | ) OMEGA 3.2              |
|---------------------------------------------------------|----------------------------------------------|-----|------------|------------|-----|-----|-----|-----|-----|-----|-----|--------------------------|
| NOISE SOURCE/SUBJE                                      | E/SUBJECT :                                  | -   | OPERATION: | . NO       |     |     | ~ - |     |     |     |     | RUN 09                   |
| A/M32C-4 AIR CON<br>NEAR FIELD NOISE<br>(INSIDE HANGER) | AIR CONDITIONER.<br>D NOISE LEVELS<br>ANGER) |     | HEAT       | HEAT CYCLE |     |     |     |     |     |     |     | ) 26 AUG 74<br>) PAGE J9 |
|                                                         | DISTANCE (M) ->                              | 2   | 2          | 2          | 8   | 2   | 2   | 2   | 8   | 8   | 2   | OPERATOR LOCATION        |
| FREQ<br>(HZ)                                            | ANGLE (DEG)>                                 | 160 | 180        | 200        | 220 | 240 | 260 | 280 | 300 | 320 | 340 | TEST CONDITION           |
| 31.5                                                    |                                              | 16  | 16         | 75         | 72  | 74  | 7.4 | 14  | 11  | 62  |     | 82                       |
| 63                                                      |                                              | 81  | 82         | 80         | 4   | 11  | 75  | 92  | 92  | 62  |     | 81                       |
| 125                                                     |                                              | 90  | 96         | 96         | 92  | 26  | 46  | 95  | 95  | 46  |     | 95                       |
| 250                                                     |                                              | 68  | 87         | 90         | 9.0 | 95  | 91  | 88  | 87  | 48  |     | 92                       |
| 200                                                     |                                              | 89  | 88         | 87         | 91  | 87  | 89  | 91  | 89  | 95  |     | 96                       |
| 1000                                                    |                                              | 95  | 90         | 46         | 96  | 96  | 95  | 91  | 89  | 93  |     | 95                       |
| 2000                                                    |                                              | 83  | 7.8        | 11         | 85  | 95  | 84  | 81  | 62  | 83  |     | 88                       |
| 0004                                                    |                                              | 82  | 80         | 92         | 82  | 83  | 85  | 83  | 84  | 88  |     | 66                       |
| 8000                                                    |                                              | 92  | 20         | 69         | 7.1 | 92  | 62  | 81  | 81  | 81  |     | 96                       |
| OVEDAL                                                  |                                              | 20  | 0          | 0          | 0   | ,   |     |     |     | 0   |     |                          |

| 3                                                                                                 |                                          |               |                                    |       |                          |      |         |      |           |        | ) OMEGA | 4      | 2      |
|---------------------------------------------------------------------------------------------------|------------------------------------------|---------------|------------------------------------|-------|--------------------------|------|---------|------|-----------|--------|---------|--------|--------|
| NOISE SOURCE/SUBJECT:                                                                             | 0                                        | OPERATION:    | . NO                               |       |                          | -    |         |      |           |        | RUN     | 01     | 20-330 |
| A/M32C-4 AIR CONDITIONER<br>NEAR FIELD NOISE LEVELS                                               | S.E.                                     | VENT          | CACLE                              |       |                          |      |         |      |           |        | 26      | AUG 74 |        |
| (INSIDE HANGER)                                                                                   | ~                                        |               |                                    |       |                          | -    |         |      |           |        | ) PAGE  | H      |        |
| DISTANCE (M) -><br>ANGLE (DEG)>                                                                   | <b>30</b>                                | 50            | 14                                 | 4 9   | 1.0                      | 100  | 120     | 140  | 160       | 180    | 200     | 220    | 240    |
| HAZARD/PROTECTION C-WEIGHTED OVERALL SC A-WEIGHTED OVERALL SC MAXIMUM PERMISSIBLE I NO PROTECTION | SOUND LEVEL<br>SOUND LEVEL<br>TIME (T IN |               | (OASLC IN<br>(OASLA IN<br>MINUTES) | 080   | A A T                    | SURE | PER DAY | CAFR | 161-35,   | , JULY | 133     |        |        |
|                                                                                                   | 96                                       | 96            | 96                                 | 96    | 95                       | 96   | 96      | 95   | 91        | 90     | 63      | 92     | 91     |
| OASLA                                                                                             | 95                                       | 95            | 96                                 | 16    | 91                       | 95   | 36      | 96   | 68        | 9.4    | 87      | 88     | 89     |
| SECTION OF SECTION                                                                                | 120                                      | 2             | 9                                  | 92    | 143                      | 11   | 17      | 82   | 202       | 0 8 4  | 582     | 0 42   | 202    |
| בא אאם                                                                                            | 73                                       | 7.1           | 20                                 | 69    | 29                       | 7.0  | 7.0     | 89   | 99        | 68     | 2.0     | 69     | 99     |
|                                                                                                   |                                          | 960           | 096                                | 960   | 096                      | 096  | 960     | 960  | 096       | 096    | 096     | 960    | 960    |
| AMERICAN OPTICAL 1700 F                                                                           | EAR MUFF                                 | (A)           | 44                                 | 24    | 63                       | 7    | 79      | S    | 0 9       | 23     | 4       | 44     | 9      |
| 1                                                                                                 | 960                                      | 960           | 960                                | 96    | 960                      | 96.0 | 960     | 96.0 | 96.0      | 960    | 960     | 960    | 960    |
| V-51R EAR PLUGS                                                                                   |                                          |               |                                    |       |                          |      | ;       |      | ;         | ; ;    |         |        |        |
| CASEA                                                                                             | 100                                      | 0 4           | 1 0                                | 0 40  | 1000                     | 1 0  | 1 0     | 6 0  | * 0       | 100    | * 00    | 0 0    | 0 0    |
| PTICAL 1700                                                                                       | EAR MUFF                                 | v             |                                    | EAR   | PLUGS                    | 306  | 906     | 206  | 200       | 100    | 200     | 9      | 300    |
| OASLA*                                                                                            | 53                                       | 24            | 25                                 | 26    | 53                       | 21   | 25      | 55   | 20        | 4.7    | 51      | 51     | 25     |
| UP COMMU                                                                                          | NICATION UNI                             | _             | 196                                | 96    | 196                      | 960  | 960     | 960  | 960       | 960    | 996     | 96     | 96     |
| OASLA*                                                                                            | 69                                       | 29            | 29                                 | 99    | 63                       | 29   | 29      | 99   | 62        | 58     | 61      | 61     | 62     |
| -                                                                                                 | 960                                      | 960           | 096                                | 096   | 960                      | 096  | 960     | 960  | 960       | 960    | 960     | 196    | 960    |
| COMMUNICATION<br>PREFERRED SPEECH INTE<br>PSIL                                                    | INTERFERENCE<br>84                       | E LEVEL<br>85 | L (PSIL<br>87                      | 8 H   | 08)                      | 87   | 60      | 87   | <b>60</b> | 8.2    | 62      | 0      | 82     |
| ANNOYANCE<br>PERCEIVED NOISE LEVEL                                                                | TONE.                                    | CORREC        | TED (P                             | NLT I | CORRECTED (PNLT IN PNDB) |      |         |      |           |        |         |        |        |
| PNLT C                                                                                            | 110<br>3                                 | 113           | 113                                | 117   | 107                      | 110  | 110     | 108  | 105       | 100    | 103     | 104    | 105    |

| ~                                                                                                     |                    |                    |                                    |          |         |      |         |      |         |      | OMEGA | •        | 2      |
|-------------------------------------------------------------------------------------------------------|--------------------|--------------------|------------------------------------|----------|---------|------|---------|------|---------|------|-------|----------|--------|
| NOISE SOURCE/SUBJECT:                                                                                 | 0                  | OPERATIONS         | . NO                               |          |         | -    |         |      |         |      | RUN   | 20       | 20-330 |
| A/H32C-4 AIR CONDITIONER                                                                              |                    | VENT               | CYCLE                              |          |         |      |         |      |         |      | 1 26  | AUG 74   |        |
| NEAR FIELD NOISE LEVELS<br>(INSIDE HANGER)                                                            |                    |                    |                                    |          |         | ~~   |         |      |         |      | PAGE  | -        |        |
| DISTANCE (M)-><br>ANGLE (DEG)>                                                                        | 560                | 280                | 300                                | 320      | 340     | 0.0  | 20 50   | 2 04 | 2 60    | 80   | 2 100 | 2<br>120 | 140    |
| HAZARD/PROTECTION<br>C-WEIGHTED OVERALL SOUND<br>A-WEIGHTED OVERALL SOUND<br>MAXIMUM PERMISSIBLE TIME | LEV                |                    | COASLC IN<br>COASLA IN<br>MINUTES) | N DBC)   | A A T A | SURE | PER DAY | (AFR | 161-35, | JULY | 52    |          |        |
| NO PROTECTION                                                                                         | 0                  | 6                  | 6                                  | 0        | 6       | 9    | 9       | 9    | 96      | 96   | 8     | 0        | :      |
| OASLA                                                                                                 | 80 60              | 87                 | 90                                 | 90       | 8 8     | 66   | 86      | 66   | 92      | 96   | 92    | 96       | 101    |
|                                                                                                       | 240                | 285                | 170                                | 170      | 240     | 36   | 45      | 36   | 11      | 85   | 20    | 42       | 52     |
| MINIMUM OPL EAR MUFFS                                                                                 | ,                  |                    | ;                                  | ,        | •       | i    | ;       | ;    |         | ;    | ;     | ;        | ;      |
| UASLA                                                                                                 | 600                | 000                | 100                                | 9        | 200     | *    | *       | 2    |         | 7    | 2     | *        | *      |
| AMERICAN OPTICAL 1700 EA                                                                              | 4                  | 960                | 096                                | 96       | 196     | 969  | 960     | 960  | 996     | 960  | 960   | 960      | 960    |
|                                                                                                       | 09                 | 63                 | 62                                 | 61       | 65      | 69   | 69      | 68   | 99      | 99   | 89    | 69       | 68     |
| -                                                                                                     | 096                | 960                | 960                                | 960      | 096     | 096  | 096     | 096  |         | 096  | 096   | 096      | 960    |
| V-51R EAR PLUGS                                                                                       | 6.1.               | 77                 | 99                                 | 9        | 63      |      | ;       | *    |         |      |       |          | 36     |
| C#3C#                                                                                                 | 96.0               | 000                | 000                                | 960      | 0,00    | 1 0  | 1 0     | 040  | 600     | 96.0 | 040   | 2 6      | 96.0   |
| AMERICAN OPTICAL 1700 EA                                                                              | - 12               | S PLUS             | V-51R                              | EAR      | PLUGS   | 200  | 200     | 200  |         | 200  | 200   | 2        | 200    |
|                                                                                                       | 20                 | 20                 | 25                                 | 55       | 20      | 25   | 25      | 66   | 54      | 24   | 58    | 58       | 62     |
|                                                                                                       | 096                | 096                | 960                                | 096      | 096     | 096  | 096     | 096  |         | 096  | 096   | 960      | 960    |
| H-133 GROUND COMMUNICATION UNIT                                                                       | ON UNIT            |                    | 62                                 | 62       | 62      | 7.1  | 69      | 17   | 99      | 99   | 69    | 7.0      | 74     |
| _                                                                                                     | 096                | 096                | 096                                | 096      | 096     | 960  | 096     | 096  |         | 096  | 096   | 960      | 096    |
| COMMUNICATION<br>PREFERRED SPEECH INTER<br>PSIL                                                       | INTERFERENCE<br>81 | E LEVEL<br>80      | L (PSIL<br>82                      | IN<br>82 | 08)     | 80   | 88      | 4    | 87      | 87   | 91    | 95       | 46     |
| LEVEL,                                                                                                | Ä                  | CORRECTED (PNLT IN | TEO (F                             | NLT I    | N PNDB) |      |         |      |         |      |       |          |        |
| PNLT C                                                                                                | 103                | 103                | 106                                | 106      | 107     | 118  | 116     | 117  | 113     | 111  | 112   | 113      | 117    |

| ~                                                                         |              |           |                          |         |        |          |         |      |         |          |                                            |
|---------------------------------------------------------------------------|--------------|-----------|--------------------------|---------|--------|----------|---------|------|---------|----------|--------------------------------------------|
| NOISE SOURCE/SUBJECT:                                                     | -            | OPERATION | . NO                     |         |        | ^-       |         |      |         |          | ) RUN 03                                   |
| A/H32C-4 AIR CONDITIONER                                                  |              | VENT      | CYCLE                    |         |        |          |         |      |         |          | 1 26 AUG 74                                |
| NEAR FIELD NOISE LEVELS<br>(INSIDE HANGER)                                |              |           |                          |         |        | ^^       |         |      |         |          | ) PAGE H3                                  |
| DISTANCE (M) -><br>ANGLE (DEG)>                                           | 160          | 180       | 200                      | 220     | 240    | 260      | 280     | 300  | 320     | 340 3    | OPERATOR LOCATION<br>TEST CONDITION<br>1/A |
| HAZARD/PROTECTION<br>C-WEIGHTED OVERALL SOUND<br>A-WEIGHTED OVERALL SOUND |              | LEVEL (OA | COASLC IN                | 080     | AT EAR |          |         |      |         |          |                                            |
| IBLE                                                                      |              |           | MINUTES)                 | FOR ONE |        | EXPOSURE | PER DAY | LAFR | 161-35, | JULY 73) | 73)                                        |
|                                                                           | 93           | 95        | 96                       | 16      | 66     | 98       | 76      | 96   | 96      |          | 101                                        |
| DASLA                                                                     | 89           | 88        | 91                       | 16      | 96     | 46       | 95      | 93   | 95      |          | 101                                        |
|                                                                           | 202          | 240       | 143                      | 82      | 9      | 82       | 120     | 101  | 7.1     |          | 52                                         |
| MINIMUM OPL EAR MUFFS                                                     | 10           | 7.2       | 74.                      | 7.2     | 7.6    | 77       | 20      | 7.4  | 13      |          | 76                                         |
| UNSLA                                                                     | 0 90         | 2 0       | 0 0                      | 0 90    | 060    | 96.0     | 9 9     | 040  | 96.0    |          | 8                                          |
| AMERICAN OPTICAL 1700 EAR                                                 | R MUFF       |           | 200                      | 200     | 200    | 9        | 200     | 200  |         |          | Ř                                          |
|                                                                           |              | 99        | 69                       | 68      | 7.0    | 69       | 69      | 89   | 29      |          | 71                                         |
| -                                                                         | 960          | 960       | 960                      | 960     | 096    | 960      | 960     | 096  | 096     |          | 096                                        |
| V-51R EAR PLUGS                                                           |              |           |                          |         |        |          |         |      |         |          |                                            |
| OASLA*                                                                    | 49           | 49        | 68                       | 7.1     | 73     | 7.0      | 68      | 69   | 20      |          | 12                                         |
|                                                                           | 960          |           | 960                      |         |        | 096      | 096     | 096  | 096     |          | 096                                        |
| AMERICAN OF ICAL 1700 EA                                                  | EAK MUFFS    | 2 2 2     | V-51K                    | FAR     | PLU6S  |          | 7       | u    | U       |          | 6                                          |
| CASEA.                                                                    | 0 0          | 100       | 1                        | 0 90    | 600    | 0 0      | 000     | 000  | 040     |          | 06.0                                       |
| H-133 GROUND COMMUNICATION UNIT                                           | NONO         | 11        | 200                      | 200     | 200    | 200      | 200     | 200  | 200     |          | 96                                         |
| OASLA*                                                                    | 62           | 63        | 65                       | 29      | 69     | 67       | 79      | 65   | 99      |          | 72                                         |
| _                                                                         | 096          | 096       | 096                      | 096     | 096    | 196      | 096     | 096  | 096     |          | 096                                        |
| COMMUNICATION<br>PREFERRED SPEECH INTER                                   | INTERFERENCE |           |                          | Z       | 08)    |          |         |      |         |          |                                            |
|                                                                           | 83           | 82        | 83                       | 87      | 89     | 98       | 85      | 85   | 87      |          | 91                                         |
| ANNOYANCE<br>PERCEIVED NOISE LEVEL, TONE                                  | TONE         | CORREC    | CORRECTED (PNLT IN PNDB) | ALT IN  | PND8)  |          |         |      |         |          |                                            |
|                                                                           | 104          | 103       | 107                      | 109     | 112    | 109      | 108     | 110  | 114     |          | 120                                        |
| •                                                                         |              | 2         | 1                        | 1       | ,      | 4        | ~       | 4    | 1       |          | ,                                          |

| •                                  |                                         |                     |         |         |        |      |         |      |         |        | ) OMEGA | •       | .2         |
|------------------------------------|-----------------------------------------|---------------------|---------|---------|--------|------|---------|------|---------|--------|---------|---------|------------|
| NOISE SOURCE/SUBJECT:              | -                                       | OPERATIONS          | ž       |         |        | -    |         |      |         |        | ) TEST  | _       | 71-020-330 |
| ACHINE ATP CONDITIONS              | •                                       | SAT 1003            | G CYCLF | u       |        | •    |         |      |         |        | 36      | AUG. 74 |            |
| NEAR FIELD NOISE LEVELS            |                                         |                     |         | •       |        | •    |         |      |         |        | 2       |         |            |
| (INSIDE HANGER)                    | -                                       |                     |         |         |        | -    |         |      |         |        | ) PAGE  | # 3     |            |
| TOWARD TO                          |                                         |                     |         |         | •      |      |         |      |         | 4      |         |         | •          |
| ANGLE (DEG)>                       |                                         | 20                  | , ;     | 09      | 80     | 100  | 120     | 140  | 160     | 180    | 200     | 220     | 240        |
| HAZARD/PROTECTION                  | -                                       |                     |         | 1000    | AT EAG |      |         |      |         |        |         |         |            |
| A-WEIGHTED OVERALL SO              | SOUND                                   | LEVEL COASLA        | LAIN    |         | AT EAR |      |         |      |         |        |         |         |            |
| MISSIBL                            | TINE (1                                 |                     | _       | FOR ONE |        | SURE | PER DAY | CAFR | 161-35, | , JULY | 73)     |         |            |
| OASLC                              | 96                                      | 96                  | 100     | 66      | 96     | 103  | 102     | 86   | 93      | 93     | 96      | 95      | 91         |
| DASLA                              | 95                                      | 96                  | 66      | 46      | 76     | 102  | 101     | 16   | 91      | 68     | 88      | 91      | 89         |
|                                    | 7.1                                     | 09                  | 36      | 20      | 82     | 21   | 52      | 20   | 143     | 202    | 540     | 143     | 202        |
| MINIMUM OPL EAR MUFFS              | 75                                      |                     | 74      | 7.4     | 7.     | 76   | 75      | 7    | 9       | 20     | 2.2     | **      | 67         |
| 1                                  | 960                                     | 040                 | 000     | 040     | 96.    | 0 40 | 0.40    | 90   | 0 90    | 0 40   | 0 90    | 96.0    | 96         |
| AMERICAN OPTICAL 1700 E            | EAR MUF                                 | FFS                 | 200     | 200     | 200    | 200  | 200     | 200  | 200     | 900    | 200     | 2       |            |
|                                    |                                         |                     | 69      | 89      | 99     | 2.0  | 69      | 69   | 49      | 65     | 68      | 99      | 62         |
| -                                  | 096                                     | 960                 | 096     | 096     | 096    | 960  | 096     | 096  | 960     | 096    | 096     | 960     | 96         |
| V-51R EAR PLUGS                    |                                         | ;                   | 1       | 1.2     |        | ,    | ;       | ;    | 99      |        |         |         | 1          |
| CHOCK                              | 0 30                                    | 1 0                 | 000     | 2 40    | 0 0    |      | 200     | 2 4  | 0 0     | 000    | 100     | 000     | 200        |
| AMERICAN OPTICAL 1700 E            | EAR MUFFS                               | FFS PLUS            | V-51R   | EAR     | PLUGS  | 906  | 200     | 200  | 300     | 100    | 200     | 200     | 300        |
|                                    |                                         |                     | 61      | 59      | 26     | 65   | 63      | 65   | 53      | 52     | 55      | 24      | 51         |
|                                    | 960                                     | 960                 | 096     | 096     | 960    | 960  | 096     | 096  | 096     | 096    | 096     | 096     | 960        |
| H-133 GROUND COMMUNICATION UNIT    | ION C                                   |                     |         |         |        |      |         |      |         |        |         |         |            |
| OASLA*                             | 29                                      | 69                  | 7.1     | 69      | 99     | 14   | 73      | 69   | 49      | 62     | 63      | 49      | 62         |
| -                                  | 096                                     | 096                 | 096     | 096     | 096    | 960  | 096     | 196  | 096     | 096    | 096     | 096     | 960        |
| COMMUNICATION                      | 200000000000000000000000000000000000000 |                     | 17.00   | :       | 6      |      |         |      |         |        |         |         |            |
| 37 55                              | 87                                      | 88                  |         | 8 3     | 87     | 92   | 95      | 06   | 85      | 82     | 81      | 18      | 83         |
| ANNOYANCE<br>DEDCETVED NOTSE LEVEL | TONE                                    | SUND NT TINGS COTTO | 60      | -       | 9070   |      |         |      |         |        |         |         |            |
| DRRECTION                          | 08)                                     |                     |         |         |        |      |         |      |         |        |         |         |            |
|                                    | 111                                     | 113                 | 113     | 113     | 109    | 115  | 115     | 111  | 107     | 103    | 104     | 106     | 103        |
|                                    | ~                                       | ~                   | 2       | •       | •      |      |         | ,    | •       | •      | •       | ,       | •          |

\* BASED ON CALCULATED SPL SPECTRUM UNDER PROTECTIVE DEVICE.

| 3                                                                 |                 |            |                         |           |         |      |          |      |         |          | ) OMEGA  | A -       | 20-3 |
|-------------------------------------------------------------------|-----------------|------------|-------------------------|-----------|---------|------|----------|------|---------|----------|----------|-----------|------|
| NOISE SOURCE/SUBJECT:                                             |                 | OPERATION: | * NO                    |           |         |      |          |      |         |          | RUN .    | 02        |      |
| A/M32C-4 AIR CONDITION                                            | ER              | COOLING    | NG CYCLE                | ш         |         | •    |          |      |         |          | 1 26     | 26 AUG 74 |      |
| ELD N<br>HANG                                                     | s               |            |                         |           |         |      |          |      |         |          | PAGE     | E .       |      |
| DISTANCE (H) -><br>ANGLE (DEG)>                                   | * 5 ¢           | 7 F S 8 0  | 300                     | 320       | 340     | 00   | 20<br>50 | 6 °  | 2<br>60 | 80<br>80 | 2<br>100 | 2<br>120  | 140  |
| HAZARD/PROTECTION<br>G-WEIGHTED OVERALL S<br>A-METCHTED OVERALL S | SOUND LE        |            | COASLC IN               | 4 08C) AT | AT EAR  |      |          |      |         |          |          |           |      |
| SIBLE                                                             |                 | (T IN MIN  | -                       | FOR ON    | E EXPO  | SURE | PER DAY  | CAFR | 161-35, | JULY     | 73)      |           |      |
|                                                                   | 93              | 93         | 95                      | 95        | 26      | 100  | 102      | 103  | 86      | 86       | 102      | 101       | 105  |
| OASLA                                                             | 90              | 91         | 92                      | 92        | 93      | 100  | 102      | 103  | 16      | 96       | 100      | 100       | 104  |
|                                                                   | 170             | 143        | 120                     | 120       | 101     | 30   | 21       | 18   | 20      | 09       | 30       | 30        | 15   |
| MINIMUM OPL EAR MUFFS                                             | 0               | 3          |                         | ,         | 3.6     |      | :        | ;    | :       | i        |          | *         | ,    |
| UASLA                                                             | 600             | 600        | 2 5                     | 2 3       | 250     | 9,0  | 920      |      | 523     | *        | 0        | 2         | 200  |
| AMFRICAN OPTICAL 1700                                             | FAR MIFE        | ,          | 200                     | 961       | 196     | 960  | 196      | 960  | 960     | 196      | 960      | 196       | 96   |
|                                                                   | 19              |            | 65                      | 65        | 7.0     | 7.1  | 7.1      | 7.1  | 99      | 69       | 2.0      | 7.1       | 72   |
| _                                                                 | 960             | 960        | 096                     | 960       | 960     | 096  | 960      | 960  | 096     | 096      | 096      | 960       | 960  |
| V-51R EAR PLUGS                                                   |                 | ;          | ,                       | :         | ;       | ;    |          | 1    | ;       | i        | 1        | :         |      |
| UASLAT                                                            | 900             | 200        | 000                     | 000       | 200     | 5 5  | 9,0      | 2    | 225     | 15       | 200      | 25        | 000  |
| AMFRICAN OPTICAL 1700                                             | FAR MUFFS       | FE PLUS    |                         |           | Pi 1165 | 200  | 300      | 200  | 200     | 200      | 206      | 206       | 206  |
|                                                                   |                 |            | 55                      |           |         | 66   | 61       | 62   | 28      | 25       | 62       | 61        | 99   |
| 1                                                                 | 960             | σ.         | 960                     | 096       | 960     | 096  | 096      | 096  | 096     | 096      | 096      | 960       | 960  |
| DASLA*                                                            | HONICALIUN UNIT |            | 79                      | 65        | 99      | 7.2  | 7.3      | 75   | 9       | 8.8      | 72       | 12        | 11   |
| -                                                                 | 960             | 960        | 960                     | 960       | 960     | 960  | 960      | 960  | 960     | 096      | 960      | 960       | 960  |
| COMMUNICATION<br>PREFERRED SPEECH INT                             | CH INTERFERENCE | NCE LEVEL  |                         | Z         | (80     |      |          |      |         |          |          |           |      |
| PSIL                                                              | 9.4             | 9 4        | 85                      | 85        | 85      | 68   | 93       | 76   | 06      | 06       | 46       | 16        | 96   |
| ANNOVANCE  PERCEIVED NOISE LEVEL,                                 | L, TONE         |            | CORRECTED (PNLT IN PNOB | NLT IN    | PN08)   |      |          |      |         |          |          |           |      |
| 2                                                                 | 105             | 107        | 107                     | 107       | 111     | 118  | 121      | 120  | 112     | 111      | 115      | 114       | 119  |

| NOISE SOURCE/SUBJECT:  A/M32C-4 AIR CONDITIONER ( COOLING NEAR FIELD NOISE LEVELS ( INSIDE HANGER)  OISTANCE (M)-> 2 2 2 2 2 2 AMGLE (DEG)> 160 180 20 | פל כל                    |                 |                |         |      |         |                   |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|----------------|---------|------|---------|-------------------|-----------|
| TIONER ( EVELS ( (M) -> 2 EG)> 160                                                                                                                     | ING CYCLI                |                 |                | •       |      |         | •                 | RUN 06    |
| NCE (M) -> 2<br>(DEG)> 160                                                                                                                             |                          |                 |                |         |      |         |                   | 26 AUG 74 |
|                                                                                                                                                        |                          | 2 2 2 2 2 2 4 0 | 2 2 0 260      | 280     | 300  | 320     | 2 OPER<br>340 TES | 1 737     |
|                                                                                                                                                        | 2                        | 74 (280)        | 64             |         |      |         |                   |           |
| SOUND LEVEL<br>E TIME (T IN                                                                                                                            | (OASLA IN (MINUTES) FO   | MA              | EXPOSURE       | PER DAY | CAFR | 161-35, | 161-35, JULY 73)  |           |
| 26                                                                                                                                                     | . 98                     | 66              | -              |         | 16   | 86      |                   | 103       |
| OASLA 93 90                                                                                                                                            | 95                       |                 | 71 60          | 9 6     | 9 %  | 96      |                   | 103       |
| EAR MUFFS                                                                                                                                              |                          |                 |                |         |      |         |                   |           |
|                                                                                                                                                        | 75                       |                 | 76 77          | 22      | 23   | 1.      |                   | 7.8       |
| 096                                                                                                                                                    |                          | 96 096          | 196 196        |         | 960  | 196     |                   | 096       |
| DASIA* 68 69                                                                                                                                           | 7.0                      | 69              | 71 72          | 67      | 84   | 84      |                   | 7.8       |
| 6 096                                                                                                                                                  |                          |                 | 0.             | 6       | 960  | 960     |                   | 096       |
|                                                                                                                                                        |                          |                 |                |         | ;    |         |                   |           |
| UASLA*                                                                                                                                                 | 27.5                     |                 | 71 73          |         | 2 5  | 2,0     |                   | 9 5       |
| FFS                                                                                                                                                    | 45U                      | EAR PLUC        | 960 960<br>068 | 206     | 206  | 206     |                   | 196       |
| 55                                                                                                                                                     | 58                       |                 |                | 95      | 26   | 58      |                   | 62        |
| T 960 960 HELD SOUND COMMINICATION INTI                                                                                                                | 096                      |                 | 096 096        |         | 960  | 096     |                   | 096       |
| 0ASLA* 66 65                                                                                                                                           |                          |                 |                | 19      | 99   | 19      |                   | 75        |
| 6                                                                                                                                                      | 096                      | 96 096          | 096 096        | 6       | 960  | 096     |                   | 096       |
| NCE                                                                                                                                                    |                          | IN 08)          |                |         |      |         |                   |           |
| PSIL 87 84                                                                                                                                             | 98                       | 89              | 88 88          | 1 87    | 98   | 83      |                   | 93        |
| ANNOYANCE PERCEIVED NOISE LEVEL, TONE CORRECTIONS CORRECTION (C.T.M. DO)                                                                               | CORRECTED (PNLT IN PNDB) | LT IN P         | (80)           |         |      |         |                   |           |
|                                                                                                                                                        | 110                      | 110 11          | 110 112        | 110     | 112  | 111     |                   | 122       |

| ~                                                                      |                                          |               |                                      |                                 |       |      |         |      |         |      | OMEGA  | -       | 3.2  |
|------------------------------------------------------------------------|------------------------------------------|---------------|--------------------------------------|---------------------------------|-------|------|---------|------|---------|------|--------|---------|------|
| NOISE SOURCE/SUBJECT:                                                  | Ů,                                       | OPERATIONS    | . NO                                 |                                 |       |      |         |      |         |      | RUN    | -       | 5-02 |
| A/M32C-4 AIR CONDITIONER NEAR FIELD NOISE LEVELS                       | SER                                      | HEAT          | CYCLE                                |                                 |       |      |         |      |         |      | 92     | 2       |      |
| (INSIDE HANGER)                                                        | -                                        |               |                                      |                                 |       | ^    |         |      |         |      | ) PAGE | E #7    |      |
| DISTANCE (M) -><br>ANGLE (DEG)>                                        | <b>7</b> 0                               | <b>50</b>     | 13                                   | 4.0                             | 30    | 100  | 120     | 101  | 160     | 160  | 200    | \$ 22.0 | 240  |
| TO/PROTECTION C-WEIGHTED OVERALL A-WEIGHTED OVERALL AXIMUM PERMISSIBLE | SOUND LEVEL<br>SOUND LEVEL<br>TIME (T IN |               | COASLC IN<br>COASLA IN<br>MINUTES) F | V DBC) A<br>V DBA) A<br>FOR ONE |       | SURE | PER DAY | CAFR | 161-35, | JULY | 13     |         |      |
| NO PROTECTION<br>DASLC                                                 | 86                                       | 16            | 98                                   | 66                              | 95    | 98   | 66      | 96   |         | 76   | 96     | 95      | 93   |
| DASLA                                                                  | 76                                       | 96            | 16                                   | 98                              | 36    | 16   | 96      | 95   | 91      | 68   | 68     | 91      | 91   |
|                                                                        | 82                                       | 09            | 20                                   | 45                              | 85    | 20   | 45      | 11   |         | 202  | 202    | 143     | 143  |
| MINIMUM QPL EAR MUFFS<br>OASLA*                                        | 75                                       | 73            | 7.7                                  | 7.3                             | 20    | 72   | 73      | 7.0  |         | 72   | 73     | 7.1     | 67   |
|                                                                        | .096                                     | 960           | 960                                  | 096                             | 960   | 96   | 960     | 960  | 096     | 096  | 096    | 960     | 96   |
| AMERICAN OPTICAL 1700                                                  | EAR MUFF                                 | S             | 9                                    | 13                              | u     | 23   | 13      | 9    |         | 13   | 4      | 99      | 3    |
| 1                                                                      | 096                                      | 960           | 960                                  | 960                             | 960   | 960  | 960     | 960  |         | 096  | 960    | 960     | 960  |
| V-51R EAR PLUGS                                                        | 6                                        | 2.0           | 73                                   | 7.6                             | 7.    | 74   | 75      | 7.0  |         | 9    | 4      | 67      | 5.7  |
| _                                                                      | 960                                      | CD.           | 960                                  | 960                             | 960   | 96 0 | 960     | 960  |         | 960  | 960    | 960     | 960  |
| AMERICAN OPTICAL 1700                                                  | EAR MUFFS                                | S PLUS        | V-51                                 |                                 | PLUGS |      |         |      |         |      |        |         |      |
| OASLA*                                                                 | 980                                      | 960           | 960                                  | 95.0                            | 922   | 96.9 | 961     | 950  | 53      | 53   | 53     | 750     | 53   |
| H-133 GROUND COMMUNICA                                                 | UNICATION UNIT                           |               | 69                                   | 69                              | 99    | 69   | 202     | 67   | 49      | 63   | 3      | 3       | 2    |
| -                                                                      | 096                                      | 960           | 096                                  | 096                             | 096   | 096  | 096     | 960  | 960     | 096  | 096    | 960     | 960  |
| COMMUNICATION<br>PREFERRED SPEECH INT<br>PSIL                          | INTERFERENCE<br>86                       | E LEVEL<br>88 | L (PSIL<br>89                        | X 6                             | 08)   | 6    | 91      | 6    | 8 5     | 82   | 82     | *       | 80   |
| ANNOYANCE<br>PERCEIVED NOISE LEVEL,                                    | TONE                                     | CORREC        | TE0 (1                               | CORRECTED (PNLT IN PNDB         | PND8  |      |         |      |         |      |        |         |      |
| PNLT PNLT                                                              | 111                                      | 114           | 113                                  | 113                             | 109   | 112  | 113     | 110  | 107     | 105  | 104    | 106     | 106  |

| S MOTOR SOURCE VOIR JECT .                                                         |                | OPFRATTONS               | 1            |          |       | -    |           |      |         |     | ONEGA<br>TEST | 13 H   | 71-020-330 |
|------------------------------------------------------------------------------------|----------------|--------------------------|--------------|----------|-------|------|-----------|------|---------|-----|---------------|--------|------------|
| The source sooned                                                                  |                |                          |              |          |       | •    |           |      |         |     |               |        |            |
| A/H32C-4 AIR CONDITI                                                               | DITIONER       | HEAT                     | CYCLE        |          |       |      |           |      |         |     | 92 (          | AUG 74 |            |
| (INSIDE HANGER)                                                                    | ~              |                          |              |          |       | -    |           |      |         |     | ) PAGE        | E E    |            |
| DISTANCE (M) -><br>ANGLE (DEG)>                                                    | E (M) -> 4     | 280                      | 300          | 320      | 340   | 00   | 20        | 2 94 | 60      | 80  | 100           | 120    | 2 140      |
| HAZARD/PROTECTION<br>C-WEIGHTED OVERALL<br>A-WEIGHTED OVERALL<br>MAXIMIN PERMISSIR | SOUND          | LEVEL COA                | COASLC IN    | 1 08C) A |       | 3017 | PF is DAY | AFR  | 161-35. | 1   | 82            |        |            |
| NO PROTECTION                                                                      |                | -                        |              |          |       |      |           |      |         |     |               |        |            |
| OASLC                                                                              | ***            | 96                       | 160          | 95       | 96    | 100  | 101       | 102  | 98      | 98  | 100           | 103    | 102        |
| 1                                                                                  | 143            | 120                      | 143          | 101      | 120   | 36   | 30        | 21   | 20      | 20  | 36            | 21     | 21         |
| MINIMUM QPL EAR MUFFS                                                              |                |                          |              |          |       |      |           |      |         |     |               |        |            |
| OASLA*                                                                             | 7.0            | 72                       | 71           | 72       | 73    | 77   | 22        | 92   |         | 73  | 75            | 11     | 76         |
|                                                                                    |                | 096                      | 960          | 096      | 096   | 096  | 096       | 960  | 096     | 096 | 096           | 960    | 960        |
| AMERICAN OPTICAL 1700                                                              | O EAK MUFF     | 5 67                     | 99           | 99       | 89    | 7.1  | 22        | 7.1  | 64      | 89  | 2.0           | 12     | 7.0        |
| 1                                                                                  | 960            | 960                      | 960          | 960      | 960   | 960  | 960       | 960  | 096     | 096 | 960           | 80     | 960        |
| V-51R EAR PLUGS                                                                    |                |                          |              | ,        |       |      |           |      |         |     |               | . 1    |            |
| OASLA                                                                              | 89             | 99                       |              | 69       | 29    | 7.3  | 47        | 92   |         | 7.5 | 2             | 2      | 16         |
| AMERICAN OPTICAL 1700                                                              | EAR            | S PLUS                   | 960<br>V-51R | EAR      | PLUGS | 96   | 196       | 960  | 960     | 960 | 960           | 96     | 96         |
|                                                                                    |                | 55                       |              | 55       | 54    | 69   | 9         | 62   | 25      | 25  | 09            | 79     | 62         |
|                                                                                    | 096            |                          | 960          | 096      | 960   | 096  | 096       | 960  |         | 096 | 096           | 960    | 960        |
| H-133 GROUND COMMONI                                                               | UNICATION UNIT |                          | 79           | 65       | 99    | 7.1  | 72        | 73   |         | 89  | 7.1           | 1,4    | 75         |
| -                                                                                  | 096            | 096                      | 960          | 960      | 096   | 096  | 096       | 096  | 960     | 096 | 096           | 960    | 960        |
| COMMUNICATION<br>PREFERRED SPEECH I                                                | INTERFERENCE   |                          |              | Z        | 08)   |      |           |      |         |     |               |        |            |
| PSIL                                                                               | 9,6            | 19                       | \$           | 82       | 4 9   | 9.0  | 95        | 76   | 06      | 90  | 93            | 96     | 95         |
| ANNOYANCE<br>PERCEIVED NOISE LE                                                    | LEVEL, TONE    | CORRECTED (PNLT IN PNDB) | TEO CP       | NLT IN   | PNDB) |      |           |      |         |     |               |        |            |
|                                                                                    | 106            | 107                      | 106          | 108      | 110   | 111  | 118       | 119  | 114     | 113 | 114           | 117    | 117        |

| TABLE: MEASURES OF HUMAN NOISE EXPOSURE  3                                       | E EXPOS    | URE                      |         |       |           |         |      |         |      | IFICATI<br>A 3.2                           |
|----------------------------------------------------------------------------------|------------|--------------------------|---------|-------|-----------|---------|------|---------|------|--------------------------------------------|
| NOISE SOURCE/SUBJECT:                                                            | OPERATION: | . NO                     |         |       | ~         |         |      |         |      | -) TEST 71-020-330<br>) RUN 09             |
| de la constitución de la contrata                                                |            |                          |         |       |           |         |      |         |      | 1 26 AIN 74                                |
| NEAD FIFTO NOTOF I FUEL O                                                        | 4 2 4      | MEAN CTOLE               |         |       |           |         |      |         |      | 1 20 400 14                                |
| (INSIDE HANGER)                                                                  |            |                          |         |       | ^         |         |      |         |      | ) PAGE H9                                  |
| DISTANCE (M)-> 2<br>ANGLE (DEG)> 160                                             | 180        | 200                      | 220     | 2 40  | 2 5 5 6 0 | 280     | 300  | 320     | 340  | OPERATOR LOCATION<br>TEST CONDITION<br>1/C |
|                                                                                  |            |                          | 200     |       |           |         |      |         |      |                                            |
| A-WEIGHTED OVERALL SOUND<br>A-MEIGHTED OVERALL SOUND<br>MAXIMUM PERMISSIBLE TIME | LEVEL COA  | COASLA IN                |         |       | SURE      | PER DAY | CAFR | 161-35, | JULY | ( 73)                                      |
| NO PROTECTION                                                                    | 86         | 66                       | 66      | 101   | 66        | 46      | 86   | 66      |      | 103                                        |
| OASLA                                                                            | 95         | 16                       | 26      | 97    | 95        | 16      | 93   | 96      |      | 103                                        |
|                                                                                  | 120        | 85                       | 20      | 20    | 7.1       | 85      | 101  | 9       |      | 1.6                                        |
| MINIMUM OPL EAR MUFFS                                                            | 75         | 76                       | 12      | 11    | 11        | 7.3     | 75   | 75      |      | 62                                         |
| 1 960                                                                            | 096        | 960                      | 096     | 960   | 096       | 960     | 096  | 096     |      | 096                                        |
| PTICAL 1700 EAR                                                                  | S          |                          |         |       |           |         |      |         |      |                                            |
| OASLA* 67                                                                        | 20         | 17                       | 69      | 72    | 72        | 89      | 2    | 20      |      | 12                                         |
| V-51R EAR PLUGS                                                                  | 360        | 106                      | 96      | 363   | 196       | 960     | 960  | 960     |      | 196                                        |
|                                                                                  | 69         | 7.1                      | 73      | 73    | 7.1       | 20      | 69   | 72      |      | 92                                         |
| 6                                                                                | g          |                          | 096     | 000   | 960       | 096     | 096  | 960     |      | 096                                        |
| PTICAL 1700 EAR                                                                  | FS PLUS    | V-51                     | R EAR F | 2 nes |           | ,       | -    | 1       |      |                                            |
| OASLA* 56                                                                        | 25         | 250                      | 650     | 090   | 250       | 99      | 25   | 80 50   |      | 2 6 6                                      |
| H-133 GROUND COMMINICATION UNIT                                                  | 300        | 300                      | 300     | 200   | 200       | 200     | 200  | 200     |      | 0.06                                       |
| OASLA* 67                                                                        |            | 29                       | 69      | 7.0   | 89        | 99      | 99   | 89      |      | 7.4                                        |
| 6                                                                                | 096        | 096                      | 096     | 096   | 096       | 096     | 960  | 960     |      | 096                                        |
| COMMUNICATION                                                                    |            |                          | :       | 9     |           |         |      |         |      |                                            |
| 37666                                                                            | 85         | 86                       | 06      | 89    | 8 8       | 8       | 96   | 68      |      | 93                                         |
| LEVEL                                                                            |            | CORRECTED (PNLT IN PNDB) | WLT IN  | PNDB) |           |         |      |         |      |                                            |
| LT 10 TO TO THE TO                           | 101        | 109                      | 111     | 112   | 110       | 109     | 109  | 112     |      | 122                                        |
|                                                                                  | 2          | 7                        | -       | 1     | c         | •       | •    |         |      |                                            |