Listing of Claims:

1. (Previously Presented) A micromachined semiconductor sensor for monitoring gas content, the sensor comprising:

a housing defining at least two cavities;

a resonating structure positioned in each of the cavities, each of the resonating structures having a resonant frequency dependent upon an acoustic characteristic of a gas in its respective cavity;

means for exciting the resonating structures to generate output signals therefrom; and means for comparing the output signals from each of the resonating structures and outputting a comparison signal indicative of one or more differences between the resonant frequencies of the at least two structures and the relative gas content of the cavities.

2. (Original) A sensor according to claim 1, further comprising a passageway associated with each cavity; and

means for controlling flow of atmospheric gas into the cavities via their respective passageways.

3. (Previously Presented) A sensor according to claim 1, wherein the physical characteristic is density.

Amendment

U.S. Patent Application No. 10/701,075

- 4. (Original) A sensor according to claim 3, wherein each resonator structure includes at least one compliant element and at least one inertial element.
- 5. (Previously Presented) A sensor according to clam 1 wherein the physical characteristic is the speed of propagation of sound through the gas.
- 6. (Original) A sensor according to claim 5, wherein the resonator structure includes at least one spring element and at least one perforated mass element.
- 7. (Previously Presented) A sensor according to claim 1, further comprising at least one filter unit positioned to prevent entry of solid and liquid contaminants into at least one of the cavities.
- 8. (Canceled)
- 9. (Previously Presented) A sensor according to claim 1, wherein the means for exciting the resonating structures and for comparing the output signals is provided by at least one application specific integrated circuit (ASIC).

Amendment

U.S. Patent Application No. 10/701,075

- 10. (Original) A sensor according to claim 9, wherein the ASIC further comprises at least one of a component for self-diagnostics, a component for digital communication, and a component for advanced signal processing.
- 11. (Previously Presented) A sensor according to claim 1, further comprising a pressure equalization member positioned between the cavities.
- 12. (Previously Presented) A sensor according to claim 1, wherein each resonator structure is operable to produce a standing wave pattern.
- 13. (Previously Presented) A sensor according to claim 12, wherein each resonator structure is a Kundt resonator.
- 14. (Previously Presented) A sensor according to claim 1, wherein each resonator structure includes an element pair comprising a compliant element and an inertial element.
- 15. (Previously Presented) A sensor according to claim 14, wherein each resonator structure is a Helmholtz resonator.

Amendment

U.S. Patent Application No. 10/701,075

- 16. (Previously Presented) A sensor according to claim 1, wherein each resonator structure includes a microacoustic resonator.
- 17. (Previously Presented) A sensor according to claim 1, wherein said gas is located in the atmosphere surrounding said resonating structure.
- 18. (Previously Presented) A sensor according to claim 1, wherein said resonating structure does not interact with said gas at a molecular level.