Термодинамика и структурные параметры при синглет-триплетном переходе $R^+(S) = R^+(T)$

N₂	Reaction	ΔE, kJ/mol	ΔG, kJ/mol	LUMO, Eh		Ring Deviation *, Å	
140				(S)	(T)	(S)	(T)
1	$CH_3^+(S) = CH_3^+(T)$	339.69	319.18	-0.486590	-0.544280		
2	$C_2H_5^+(S) = C_2H_5^+(T)$	353.31	322.99	-0.324030	-0.496720		
3	$1-CH_3-C_2H_4^+(S) = 1-CH_3-C_2H_4^+(T)$	369.06	344.18	-0.347960	-0.466640		
4	$1,1-(CH_3)_2-C_2H_3^+(S) = 1,1-(CH_3)_2-C_2H_3^+(T)$	380.03	366.22	-0.321560	-0.428030		
5	Pyridine- $2^+(S)$ = Pyridine- $2^+(T)$	171.29	161.87	-0.343690	-0.430750	0.0005	0.0012
6	Pyridine- $3^+(S) = Pyridine-3^+(T)$	102.55	98.03	-0.341510	-0.416460	0.0011	0.2607
7	$Pyridine-4^{+}(S) = Pyridine-4^{+}(T)$	86.19	86.91	-0.368060	-0.411220	0.0005	0.0002
8	$Pyrazine-2^{+}(S) = Pyrazine-2^{+}(T)$	174.54	166.91	-0.355910	-0.435720	0.0007	0.2523
9	Pyrimidine- $2^+(S)$ = Pyrimidine- $2^+(T)$	134.83	130.87	-0.342040	-0.413720	0.0003	0.0019
10	Pyrimidine- $4^+(S)$ = Pyrimidine- $4^+(T)$	177.22	172.47	-0.360100	-0.434950	0.0026	0.0000
11	Pyrimidine- $5^+(S)$ = Pyrimidine- $5^+(T)$	34.72	37.11	-0.381390	-0.413310	0.0004	0.0002
12	$1,2,3$ -Triazine- $4^+(S) = 1,2,3$ -Triazine- $4^+(T)$	304.54	311.86	-0.365020	-0.422920	Break**	0.0000
13	$1,2,3$ -Triazine- $5^+(S) = 1,2,3$ -Triazine- $5^+(T)$	99.74	91.46	-0.393150	-0.439120	0.0029	0.0001
14	$1,2,4$ -Triazine- $3^+(S) = 1,2,4$ -Triazine- $3^+(T)$	58.25	59.07	-0.368740	-0.414170	0.0001	0.0009
15	$1,2,4$ -Triazine- $5^+(S) = 1,2,4$ -Triazine- $5^+(T)$	151.86	147.82	-0.369260	-0.440980	0.0003	0.0012
16	$1,2,4$ -Triazine- $6^+(S) = 1,2,4$ -Triazine- $6^+(T)$	66.21	64.13	-0.389840	-0.420710	0.0015	0.0016
17	$1,3,5$ -Triazine- $2^+(S) = 1,3,5$ -Triazine- $2^+(T)$	160.62	156.47	-0.365090	-0.440040	0.0001	0.0003
18	N -O-Pyridine-2 $^+$ (S) = N -O-Pyridine-2 $^+$ (T)	-91.84	-89.42	-0.387160	-0.385440	0.4951	0.0012
19	N -O-Pyridine-3 $^+$ (S) = N -O-Pyridine-3 $^+$ (T)	-49.84	-47.15	-0.377790	-0.388810	0.2439	0.0009
20	$N-O-Pyridine-4^+(S) = N-O-Pyridine-4^+(T)$	-78.67	-75.51	-0.382040	-0.381640	0.4161	0.0000
21	$Ph^+(S) = Ph^+(T)$	79.70	79.37	-0.353450	-0.410940	0.0000	0.0000

N₂	Reaction	ΔE, kJ/mol	ΔG, kJ/mol	LUMO, Eh		Ring Deviation *, Å	
145				(S)	(T)	(S)	(T)
22	$4-NO_2-Ph^+(S) = 4-NO_2-Ph^+(T)$	68.20	63.99	-0.375810	-0.422680	0.0002	0.0037
23	$4-CH_3O-Ph^+(S) = 4-CH_3O-Ph^+(T)$	-15.95	-11.25	-0.341610	-0.361220	0.2471	0.0000
24	$Pyrrole-2^{+}(S) = Pyrrole-2^{+}(T)$	-59.24	-58.71	-0.376060	-0.377920	0.5921	0.0002
25	$Pyrrole-3^+(S) = Pyrrole-3^+(T)$	-55.33	-57.37	-0.368370	-0.382350	0.4555	0.0006
26	$Pyrazole-3^+(S) = Pyrazole-3^+(T)$	8.17	8.35	-0.409800	-0.429440	0.0012	0.0017
27	$Pyrazole-4^+(S) = Pyrazole-4^+(T)$	-22.42	-23.38	-0.397020	-0.419130	0.0041	0.0002
28	$Pyrazole-5^+(S) = Pyrazole-5^+(T)$	-51.41	-54.17	-0.410820	-0.424260	0.4261	0.0005
29	$1,3,5-(CH_3)_3$ -Pyrazole- $4^+(S) = 1,3,5-(CH_3)_3$ -Pyrazole- $4^+(T)$	-31.86	-31.99	-0.342360	-0.361090	0.2741	0.0001
32	$Imidazole-2^+(S) = Imidazole-2^+(T)$	-50.15	-49.46	-0.402920	-0.406700	0.5496	0.0003
33	$Imidazole-4^+(S) = Imidazole-4^+(T)$	-39.22	-40.95	-0.406090	-0.403750	0.0023	0.0012
34	$Imidazole-5^+(S) = Imidazole-5^+(T)$	-65.62	-64.46	-0.389650	-0.403480	0.0298	0.0007
35	$1H-1,2,3-Triazole-4^+(S) = 1H-1,2,3-Triazole-4^+(T)$	-18.80	-23.65	-0.429960	-0.443080	0.0003	0.0010
36	$1H-1,2,3-Triazole-5^+(S) = 1H-1,2,3-Triazole-5^+(T)$	-188.05	-209.49	-0.431980	-0.401420	0.0004	Break**
37	1H-1,2,4-Triazole-3 ⁺ (S) = 1H-1,2,4-Triazole-3 ⁺ (T)	13.47	10.65	-0.425940	-0.451180	0.0002	0.0013
38	$1H-1,2,4-Triazole-5^+(S) = 1H-1,2,4-Triazole-5^+(T)$	-35.80	-33.09	-0.440850	-0.450940	0.2600	0.0004
39	$2H-1,2,3-Triazole-4^+(S) = 2H-1,2,3-Triazole-4^+(T)$	1.45	-2.20	-0.434110	-0.461460	0.0001	0.0006
40	$4H-1,2,4-Triazole-3^{+}(S) = 4H-1,2,4-Triazole-3^{+}(T)$	-10.57	-13.90	-0.415010	-0.445670	0.0004	0.0002
41	Tetrazole- $5^+(S)$ = Tetrazole- $5^+(T)$	282.00	280.14	-0.365710	-0.475980	0.0000	0.0012
42	$Furan-2^+(S) = Furan-2^+(T)$	-67.52	-67.17	-0.401650	-0.405900	0.5993	0.0019
43	$Furan-3^+(S) = Furan-3^+(T)$	-68.46	-69.73	-0.404520	-0.410180	0.4382	0.0003
44	Thiophene- $2^+(S)$ = Thiophene- $2^+(T)$	-37.26	-37.64	-0.371020	-0.395210	0.6611	0.0012
45	Thiophene- $3^+(S)$ = Thiophene- $3^+(T)$	5.17	5.36	-0.367640	-0.401770	0.0000	0.0003

^{*} Ring Deviation - суммарное отклонение атомов от плоскости цикла (ангстрем);

^{**} Break - разрыв цикла или связи C-NN;

- 1. Синглет-триплетный переход рассматриваемых катионов сопровождается изменением энергии Гиббса в диапазоне от -210 до +370 кДж/моль, примерно для половины систем энергетически выгоден переход в триплетное состояние. Для термодинамических расчетов важно учитывать этот фактор.
- 2. В случаях нарушения плоскости цикла в исходных частицах, при переходе в триплетное состояние происходит восстановление плоской структуры.
- 3. Для систем где цикл восстанавливает плоское строение, переход в триплетное состояние становится энергетически выгодным.
- 4. В триплетном состоянии почти все катионы имеют плоское строение, за исключением Pyridine- 3^+ (T) и Pyrazine- 2^+ (T).
- 5. В большинстве систем при переходе в триплетное состояние происходит уменьшение значения LUMO.