תרגילים 9: סיבוכיות

B -ו A ו- V_2 ו- V_1 נתונות שתי בעיות V_2 ו- V_3 מעל אותו אלפיביט V_3 , שני אלגוריתמי אימות V_2 ו- V_3 עבור V_3 ו- V_3 (בהתאמה) הרצים בזמן פולינומיאלי.

- את נכונה הבניה. $A \cup B$ עבור הבעיה עבור אימות את האלגוריתם את האלגוריתם אימות עבור הבעיה $A \cup B$
 - ב) הוכיחו כי אלגוריתם שבניתם בסעיף א' רץ בזמן פולינומיאלי.

שאלה 2 בעיית PARTITION מוגדרת באופן הבא:

-ט כך A_2 ו- A_1 ו- A_1 ו- A_1 לשתי קבוצת חלוקה של א קיימת האם קיימת האם אור האם $A=\{a_1,a_2,\ldots,a_n\}$

- $A_1 \cap A_2 = \emptyset \bullet$
- $A_1 \cup A_2 = A \bullet$
- $\sum_{a_i \in A_1} a_i = \sum_{a_i \in A_2} a_i = \frac{1}{2} \sum_{a_i \in A} a_i \bullet$

. בזמן פולינומיאלי. אי-דטרמיניסטית המכריעה אי-דטרמיניסטית פולינומיאלי. בנו מכונט טיורינג אי-דטרמיניסטית המכריעה אי

שאלה 3 נתונה בעיה A ונתון אלגוריתם M_A המכריע עת A בזמן פולינומיאלי. נגדיר את הבעיה . $B = \{ww \mid w \in A\}$

- . בני את נכונות המכריע את האלגוריתם את במילים את האכריע את והמכריע את המכריע את אלגוריתם של המכריע את והמכריע את של המכריע את והמכריע את אלגוריתם המכריע את אלגוריתם המכריע את האלגוריתם המכריע את המכריע את אלגוריתם המכריע את האלגוריתם המכריע את המכריע את
 - ב) האם האלגוריתם שבניתם רץ בזמן פולינומיאלי? הסבירו.

שאלה 4 קבעו אם הטענה הבאה נכונה, לא נכונה או שקולה לשאלה פתוחה:

קיים אלגוריתם המקבל כקלט גרף לא מכוון G ומכריע בזמן פולינומיאלי האם G מכיל קבוצה בלתי תלויה בגודל 1000.

תשובות

<u>שאלה 1</u>

:ארעיון (א

 $w \in A \cup B$ - מקבל בקלט זוג (w,y) ורוצה לבדוק האם v

(w,y) אוג על הזוג V_1 את מריץ את V_1 אר

.אם V מקבל אזי אז קיבל אם V_1

. אחרת, V_2 את מריץ את (w,y) ועונה כמוה על אחרת, אחרת,

האלגוריתם

:(w,y) על קלט =V

(w,y) על V_1 את מריץ (1

- . אם $V \Leftarrow V$ מקבל \bullet
- . ועונה כמוה על (w,y) אם V_2 את מריץ מריץ על $V \Leftarrow$ דוחה V_1

נכונות

 $w \in A \cup B$ אם

 $w \in B$ או $w \in A \Leftarrow$

(w,y) או מקבל את האוג (w,y) או מקבל את האוג עדות y כך ש- y

(w,y) איימת עדות V כך ש- V מקבל את הזוג \Leftarrow

 $w \notin A \cup B$ אם

 $w \notin B$ וגם $w \notin A \Leftarrow$

(w,y) וגם V_2 דוחה את הזוג (w,y) וואה את הזוג V_1 את הזוג (w,y)

(w,y) דוחה את הזוג V ,y דוחה \Leftarrow

 V_1 נסמן p_1 הפולינום של (ב

 $\cdot V_2$ נסמן p_2 הפולינום של

.|w| אזי זמן הריצה של V חסום על ידי ולינו $O\left(p_1\left(|w|\right)+p_2\left(|w|\right)\right)$ ידי חסום על אזי זמן הריצה אזי זמן אזי זמן אזי זמן אזי

PARTITION בזמן פולינומיאלי. M בזמן פולינומיאלי.

 $:\langle A
angle$ על קלט =M

- \bullet אם כן \Rightarrow מקבלת.
 - אם לא ⇒ דוחה.

נכונות הבנייה

 $\langle A \rangle \in PARTITION$ אם

$$\sum\limits_{a_i\in A_1}a_i=\sum\limits_{a_i\in A_2}a_i=\frac{1}{2}\sum\limits_{a_i\in A}a_i$$
כך ש
- על הא ו- A_1 ל- ל- A ל ל- של קיימת חלוקה של \Leftarrow

- A ותבדוק שהסכום שלה שווה חצי הסכום של החבחר את A_1 ותבחר את A_1 הסכום של
 - $.\langle A \rangle$ את קבל בה תקבל את M בה ריצה ל

 $\langle A \rangle \notin PARTITION$ אם

$$\sum\limits_{a_i\in A_1}a_i=\sum\limits_{a_i\in A_2}a_i=\frac{1}{2}\sum\limits_{a_i\in A}a_i$$
 כך ש- לא קיימת חלוקה של A_1 ל- A ל- ל- A ל- ל- לא קיימת חלוקה של ל- ל- A_1

- ותבחוק ותבחו A_1 ריצה תבחר תת-קבוצה Aעל M של ריצה בכל בכל \Leftarrow
 - $.\langle A \rangle$ את תדחה M , $\langle A \rangle$ על M של ריצה בכל \Leftarrow

 $\langle A \rangle$ אמן בגודל בגודל פולינומיאלי אול הריצה אמן זמן מולינומיאלי של

שאלה 3

$$:\!\!w'=\sigma_1\ldots\sigma_n$$
 על קלט $=M_B$

$$w'$$
 על M_A אם מריץ מריץ $w'=arepsilon$ (1

- . מקבל $M_B \Leftarrow M_B$ מקבל \bullet
- דוחה. $M_B \Leftarrow$ דוחה M_A דוחה.
 - $i \leftarrow 1$ (2

$$(i=rac{n}{2}$$
 נאו לבדוק האם $\sigma_1\cdots\sigma_i=\sigma_{i+1}\cdots\sigma_n$ נאו בודק האם (3

- $.\sigma_1 \cdots \sigma_i$ על את את מריץ את \Leftarrow סריץ אם סרי
 - . מקבל מקבל מקבל מקבל מקבל מקבל M_{B}
 - דוחה. $M_B \Leftarrow M_B$ דוחה. \circ
 - $i \leftarrow i+1$ (4
 - .(3) -אם i < n חוזר ל- (5).
 - . אחרת $M_B \Leftarrow$ אחרת

נכונות

אם $w' \in B$ אני מקרים:

.w' את מקבלת $M_B \Leftarrow \varepsilon \in A$ וגם $w' = \varepsilon \bullet$

|w'|

- w' את דוחה את את $M_B \Leftarrow arepsilon
 otin A$ וגם w' = arepsilon ullet
 - שני מקרים $\Leftarrow w' \neq \varepsilon$

$$w'$$
 את דוחה את הוח $M_B \Leftarrow \sigma_1 \cdots \sigma_i
eq \sigma_{i+1} \cdots \sigma_n$ מתקיים $i = \frac{|w'|}{2}$ עבור ס

$$w'$$
 אבל $M_B \Leftarrow \sigma_1 \cdots \sigma_i \notin A$ אבל $\sigma_1 \cdots \sigma_i = \sigma_{i+1} \cdots \sigma_n$ דוחה את מתקיים $\sigma_i = \frac{|w'|}{2}$ אבל ס

 M_A נסמן ב- p_A הפולינום של

בזמן $\sigma_1\cdots\sigma_i=\sigma_{i+1}\cdots\sigma_n$ בזמן בדיקה עושים ובכל איטרציות ובכל איטרציות איטרציום לכל היותר ואיטרציום בל איטרציה עושים ב $p_A\left(|w'|\right)$ בזמן איטרצים את איטרצים את $O\left(|w'|\right)$

ולכן זמן הריצה הוא

$$O\left(\left|w'\right|^2 + p_A\left(\left|w'\right|\right)\right)$$

שאלה 4 הטענה נכונה.

ניתן לבנות אלגוריתם שיעבור על כל התתח-קבוצות בגודל 1000 קודקודים מ-G ויבדוק לכל תת-קבוצה האם היא קבוצה בלתי תלויה בזמן פולינומיאלי ויחזיר תשובה בהתאם.

. מכיוון שמספר התת-קבוצות בגודל 1000 שווה $pprox 2^{1000} pprox$ שזה קבוע, זמן הריצה של האלגוריתם פולינמיאלי.