Universidade Federal de São Carlos

Centro de Ciências Exatas e de Tecnologia Departamento de Computação 027359 - Arquitetura e Organização de Computadores 1 Prof. Luciano Neris

Exercícios 02

- 1. Descrever qual o artifício usado pela instrução beq ou bne para executar um desvio dentro de um programa.
- 2. Para que serve o circuito de extensão de sinal de 16 para 32 bits no MIPS?
- 3. Dado um circuito digital com 3 entradas e 1 saída, cuja tabela-verdade é dada pela tabela abaixo, resolva:
 - a) obter a expressão booleana de co;
 - b) desenhar o circuito digital resultante usando portas lógicas.

a b c _i	Co
000	0
001	0
010	0
011	1
100	0
101	1
110	1
111	1

- 4. Um circuito lógico digital pode ser construído de forma a ser equivalente a uma porta xor. Assim:
 - a) Gere a tabela verdade de uma porta xor;
 - b) Obtenha a expressão booleana da saída;
 - c) Desenhe o circuito a partir da expressão obtida
- 5. Dada a instrução slt \$7, \$2, \$6, dar o conteúdo do registrador \$7, após a sua execução, se o conteúdo de \$2 é igual a 1 e de \$6 é igual a 3.
- 6. Dada a instrução bne \$7, \$0, L1, verificar se a instrução seguinte é sequencial, ou do endereço L1, dado o conteúdo de \$7 igual a 1.
- 7. Considerando que não existe instrução de subtração imediata e que as variáveis são guardadas em registradores e os vetores em memória, escrever a instrução, ou menor conjunto de instruções em Assembly do MIPS, que realiza as operações em código C seguintes:
 - a) a = a 1
 - b) a = 0
 - c) v[10] = 0 (elemento 10 do vetor v, sendo início de v dado pelo registrador \$4)
 - d) se a < b salta para L1
 - e) se a > 0 salta para L1
- 8. Dada a instrução add \$4, \$5, \$6 mostrar, em binário, o conteúdo dos campos rs, rt e rd no diagrama da figura abaixo.

ор	rs	rt	rd	shamt	function
000000				00000	100000

9. Dada a instrução lw \$4, 5 (\$3) mostrar o conteúdo, em binário, dos campos no diagrama da figura abaixo.

ор	op rs rt/rd		16 bits de endereço		

10. Dada a instrução bne \$3, \$4, 5 mostrar o conteúdo em binário dos campos no diagrama da figura abaixo.

ор	rs	rt	16 bits de desvio de endereço		

11. O Dado trecho de código abaixo em Assembly do MIPS, executá-lo passo a passo mostrando os valores de registradores a cada iteração, dado o conteúdo inicial dos registradores e de parte da memória indicados na figura seguinte. Mostrar o conteúdo da memória no final da execução. O texto começando com #, na metade direita das instruções abaixo é comentário:

L1: muli \$14, \$2, 4 # \$14 = i x 4

add \$3, \$4, \$14 #\$3 = endereço de A [i]

sw \$0,0(\$3) # A [i] = 0

addi \$2,\$2,1 # i=i+1

slt \$7,\$2,\$6 # \$7 = (i < n)

bne \$7, \$0, L1 # se (i < n) vai para L1

	Registradores					Memória	Memória
/	Valores iniciais	Iteração 1	Iteração 2	Iteração 3		valores iniciais	valores finais
\$0	0				0	х	
\$1	х						
\$2	0				64	х	
\$3	0				68	20	
\$4	68				72	10	
\$5	х				76	30	
\$6	3				80	х	
\$7	1				84	х	
\$8	х				88	х	
						x	
\$14	3					х	
						х	
\$31	х					х	
ΨΟΙ						х	
						х	
						х	
						х	
					2 ³² -4	x	

- 12. Escrever um programa em Assembly do MIPS que faz a soma de dois vetores A e B, colocando o resultado em A, ou seja, A [i] = A[i] + B[i] , para i = 0, .. n-1. Considerar \$4, o ponteiro para o início do vetor A, e \$5 o ponteiro para o início do vetor B. Usar \$t0 e \$t1 como registradores temporários.
- 13. A operação slt resulta em 1 se a < b e 0, caso contrário. Como seria possível construir uma ULA com uma operação slt modificada, em que resulte em -1 se a < b e 0, caso contrário?
- 14. Fazer a adição dos números -126 e -64 em binário, e verificar se ocorre overflow.
- 15. Realizar a adição binária bit a bit dos números naturais 17 e 18, em 8 bits.
- 16. Representar o número -63 em palavra de 16 bits em complemento de dois.