

LIV Olimpiada Matemática Española

Primera Fase Primera sesión

Viernes tarde, 19 de enero de 2018

1. Determinar los números reales x>1 para los cuales existe un triángulo cuyos lados tienen longitudes

$$x^4 + x^3 + 2x^2 + x + 1$$
, $2x^3 + x^2 + 2x + 1$, $x^4 - 1$

- **2.** Sea n un número natural. Probar que si la última cifra de 7^n es 3, la penúltima es 4.
- 3. Sea AD la mediana de un triángulo ABC tal que $\angle ADB = 45^{\circ}$ y $\angle ACB = 30^{\circ}$. Determinar el valor de $\angle BAD$.

No está permitido el uso de calculadoras. Cada problema se puntúa sobre 7 puntos. El tiempo de cada sesión es de 3 horas y media.

LIV Olimpiada Matemática Española

Primera Fase Segunda sesión

Sábado mañana, 20 de enero de 2018

- 4. Probar que:
- 1. La suma de las distancias desde un punto de la superficie de la esfera inscrita en un cubo de \mathbb{R}^3 a todas las caras del mismo no depende del punto elegido.
- 2. Misma cuestión anterior para la suma de los cuadrados de las distancias.
- 3. Misma cuestión que las anteriores para la suma de los cubos de las distancias.
- **5.** Sean a, b, c números naturales primos, distintos dos a dos. Demostrar que el número

$$(ab)^{c-1} + (bc)^{a-1} + (ca)^{b-1} - 1$$

es un múltiplo del producto abc.

6. Se han coloreado 46 cuadrados unitarios de una cuadrícula 9×9 . ¿Hay, en la cuadrícula, alguna figura del tipo

(no necesariamente con la orientación que muestra el dibujo) con las tres casillas coloreadas?

No está permitido el uso de calculadoras. Cada problema se puntúa sobre 7 puntos. El tiempo de cada sesión es de 3 horas y media.