(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004 年6 月10 日 (10.06.2004)

PCT

(10) 国際公開番号 WO 2004/048571 A1

(51) 国際特許分類7:

C12N 15/12,

15/09, C07K 16/32, 16/18, G01N 33/53

(21) 国際出願番号:

PCT/JP2003/014919

(22) 国際出願日:

2003年11月21日(21.11.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2002-339241

2002年11月22日(22.11.2002) JP

- (71) 出願人 (米国を除く全ての指定国について): 中 外製薬株式会社 (CHUGAI SEIYAKU KABUSHIKI KAISHA) [JP/JP]; 〒115-8543 東京都 北区 浮間 5 丁 目 5番 1号 Tokyo (JP). ファーマロジカルズ・リサー チ プライベート リミテッド (PHARMALOGICALS RESEARCH PTE. LTD.) [SG/SG]; 258500 シンガポー ル ネイピア ロード 6 エイ アネックス ブロック # 3-3 2 グレンイーグル ホスピタル Singapore (SG).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 土屋 政幸 (TSUCHIYA,Masayuki) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目135番地 中外製薬株式会社内 Shizuoka (JP). 鈴木 雅実 (SUZUKI,Masami) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5番地 中外製薬株式会社内 Shizuoka (JP). 吉田 賢二 (YOSHIDA,Kenji) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5番地 中外製薬株式会社内 Shizuoka (JP). 藤井 悦子 (FU,JII,Etsuko) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目 1 3 5番

地 中外製薬株式会社内 Shizuoka (JP). 松原 亨一(MATSUBARA,Kouichi) [SG/SG]; 258500 シンガポール ネイピア ロード 6 エイ アネックス ブロック#3-32 グレンイーグル ホスピタル ファーマロジカルズ・リサーチ プライベート リミテッド内 Singapore (SG). 角田 浩行 (TSUNODA,Hiroyuki) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門 1 丁目135番地中外製薬株式会社内 Shizuoka (JP).

- (74) 代理人: 清水 初志, 外(SHIMIZU,Hatsushi et al.); 〒 300-0847 茨城県 土浦市 卸町 1-1-1 関鉄つくばビル 6 階 Ibaraki (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: ANTIBODY AGAINST LESION TISSUE

(54)発明の名称: 病巣組織に対する抗体

(57) Abstract: It is intended to provide a method of isolating a polynucleotide encoding an antibody against a lesion which involves the following steps: (a) the step of isolating B cells infiltrating into the target lesion; and (b) the step of obtaining a polynucleotide encoding an antibody from the thus isolated B cells. As examples of the lesion, cancer tissues and so on can be cited. Thus, an antibody gene can be obtained without resort to cloning B cells. As a result, it also becomes possible to obtain a gene encoding a human-origin antibody wherein cloning can be hardly effected. By using a cancer tissue as the lesion, a gene of an antibody against cancer can be obtained.

(57)要約: 次の工程を含む、病巣に対する抗体をコードするポリヌクレオチドの単離方法が提供された。(a) 目的とする病巣に浸潤したB細胞を単離する工程、および(b)単離したB細胞から、抗体をコードするポリヌク ロレオチドを得る工程 病巣としては、癌組織などを示すことができる。B細胞のクローン化に頼ることなく抗体遺 伝子を取得できる。その結果、クローン化が難しいヒト由来の抗体をコードする遺伝子を取得することもできる。 ・病巣として癌組織を用い、癌に対する抗体の遺伝子を取得することができる。

- 1 -

明細書

病巣組織に対する抗体

技術分野

本発明は、病巣組織に対する抗体、並びにその製造方法に関する。

背景技術

癌組織におけるリンパ球の浸潤は広く知られている(文献 1 / Hurliamnn et al. (1985) Int J Cancer 35:753; 文献 2 / Whiteside et al. (1986) Cancer Immun ol Immunother 23:169; 文献 3 / Wolf et al. (1986) Otolaryngol Head Neck Surg 95:142; 文献 4 / Husby et al (1976) J Clin Invest 57:1471; 文献 5 / Vose et al. (1979) Int J Cancer 24:579)。実験的および臨床的なデータは、癌組織におけるリンパ球の浸潤が癌に対する宿主の免疫反応の関与を示唆している(文献 5 / Rosenberg et al. (1988) New Engl J Med 319:1676; 文献 6 / Van Pel et a l. (1995) Immunol Reviews 145:229; 文献 7 / Kreider et al. (1984) Cancer M etastasis Rev 3:53)。

癌に対する宿主の免疫防御システムにおいて、細胞傷害性T細胞(CTL)は直接癌細胞を殺すエフェクター細胞である(文献 8 / Nobholz and MacDonald (1983) Annu Rev Immunol 1:273)。また、B細胞の最終分化形態であるプラズマ細胞の産生する抗体のうち、いくつかのものは癌細胞と結合する能力を有するのではないかと推察されている(文献 9 / Roitt et al. (1969) Lancet 2: 367; 文献 1 0 / Borsos (1971) Progress in Immunology: p841. New York, Academic Press; 文献 1 1 / Kodera and Bean (1975) Int J Cancer 16:579)。

たとえば癌組織に浸潤するB細胞は抗体を発現し、その抗体は癌細胞上の抗原に選択的に結合することが示されている(文献 $1\ 2$ / Punt et al. (1994) Cancer Im

munol Immunother 38:225; 文献 1 3 / Zhang et al. (1995) Cancer Res 55:358 4)。このことは、浸潤B細胞が発現する抗体による癌抗原の同定が可能であることを示している。もしもこのような反応性を有する抗体を得ることができれば、癌の治療および診断に有用である。

癌細胞に結合した抗体は、補体系もしくは抗体依存的な細胞傷害機能を作動することにより癌細胞を破壊する。しかし実際には、癌組織に浸潤したB細胞によって産生された抗体がどのような特異性を有するのか、どのような可変領域のレパートリーを持つのかに関しての報告は少ない。

癌組織に浸潤するB細胞が発現する抗体についての解析が難しい理由の一つとして、浸潤B細胞によって産生される抗体の単離が困難なことを示すことができる。一般に抗体の解析には、抗体産生細胞のクローニングが必要である。抗体産生細胞のクローニングのための手法として、Epstein-Barr ウィルス(EBV)によるヒトB細胞の不死化法が知られている。しかしEBV感染によってヒト抗体産生細胞を株化できる確率は非常に低い(文献14/Henderson et al (1977) Virology 76:152; 文献15/Aman et al (1984) J Exp Med 159:208)。

マウス抗体の産生細胞株を樹立するために確立されたハイブリドーマ法も、抗体産生細胞のクローン化のための手法の一つである。ハイブリドーマ法は、抗原特異的なB細胞を不死化したミエローマ細胞と融合し、抗体発現細胞を株化する方法である。しかしながら、いまのところヒトB細胞に関しては効率のよい融合パートナー細胞が見つかっていない。マウスのハイブリドーマ細胞の場合に有効なマウスミエローマ細胞をヒトB細胞の融合パートナーとして用いた場合、ヒト染色体の欠落が優先的に起こるためヒトハイブリドーマ細胞の形質は不安定であり、抗体産生株の株化にはつながらない(文献16/Winter and Milstein (1991) Nature 349:293)。このように、現在のところ、ヒト由来の抗体産生細胞を株化することは、技術的に困難である。

更にクローン化された抗体産生細胞と同様の抗原結合活性を持つ抗体を作り出

すための組換えDNA技術、すなわち抗体遺伝子のクローニングと組換え抗体蛋白質の調製法が確立されつつある(文献17/Marks et al. (1991) J Mol Biol 2 22:581; 文献18/Larrick et al. (1992) Immunol Reviews 130:69)。抗体遺伝子の可変領域をコードする遺伝子をクローニングすることにより、Fv、scFv、Fab、IgG、あるいはIgMなどの抗体遺伝子を作成することができる(文献19/Skerra et al. (1988) Science 240:293; 文献20/Bird et al. (1988) Science 242:42 3; 文献21/Better et al. (1988) Science 240:1041)。最も小さい組換え抗体分子であるscFvは、重鎖可変領域、軽鎖可変領域をリンカーで連結した構造を持っている。

クローン化されたB細胞は、言うまでもなく単一の抗体遺伝子を発現している。 したがって、この細胞から軽鎖可変領域および重鎖可変領域をクローニングすれ ば、B細胞が産生している抗体と同様の活性を有する抗体を再構成することができ る。しかし末梢血に存在するB細胞や癌組織に浸潤しているB細胞は、多様な抗体 を産生する細胞集団 (ポリクローナル) である(文献22/Kotlan et al. (1999) Immunol Lett 65:143; 文献23/Hansen et al. (2001) Pro Natl Acad Sci US A 98:12659)。したがって、このような細胞集団から抗体遺伝子をクローニングし ヒト抗体として再構成することは容易ではない。

発明の開示

本発明はポリクローナルな細胞集団に含まれる抗体産生細胞から、特定の反応性を有する抗体をコードするポリヌクレオチドを取得するための方法の提供を課題とする。

一般に、遺伝子組み換え技術を利用して抗体遺伝子をクローニングするためには、何らかの手法によってクローン化されたB細胞が必要であった。この制約が、たとえば癌組織に浸潤したB細胞が産生する抗体の取得を困難とする原因となっていた。本発明者らは、B細胞のクローン化に頼らず、抗体遺伝子の取得を可能とす

る方法を探索した。そして、細胞集団から単離された細胞のmRNAが、クローニングソースとして利用できるのではないかと考えた。一般にヒト抗体遺伝子のクローニングに用いられるのは末梢血に含まれるB細胞である。しかし末梢血のB細胞群は多様な反応性を有する抗体を産生するポリクローナルな集団であるため、特定の反応性を有する抗体を選択的に単離する目的には不向きであると考えられた。

マイクロダイセクションとは、組織切片のような不均一な細胞集団で構成された試料から、特定の細胞を切り出して単離するための手法である。たとえば紫外線レーザーで目的とする細胞の周囲を切り取り、細胞を単離するためのシステムが実用化されている。このシステムはレーザーマイクロダイセクション(Laser Mi crodissection; LMD)システムと呼ばれ、既に市販されている。LMDは、細胞に与える損傷が小さく、しかも目的とする細胞を高い精度で取得することができる技術として普及した。LMDを用いれば、特定の細胞の遺伝子を取得し、その遺伝子をPC Rによって増幅することができる。

本発明者らは、癌組織中に浸潤したB細胞であれば、高い確率で癌細胞に対して反応性を有する抗体を産生すること、そして浸潤B細胞をLMDシステムなどを利用して単離することにより、癌細胞に結合する抗体をコードするポリヌクレオチドを効率的に単離することが可能になるのではないかと考えた。そして実際に病巣組織に浸潤したB細胞をクローニングソースとして利用し、抗体をコードするポリヌクレオチドが得られることを明らかにして本発明を完成した。すなわち本発明は、以下の抗体遺伝子の単離方法、この遺伝子によってコードされる抗体の作製方法、該方法により得られた抗体に関する。

- [1] 以下の工程を含む病巣組織に対する抗体をコードするポリヌクレオチドの 単離方法
 - (a) 病巣組織に浸潤しているB細胞を単離する工程、および
 - (b) 単離したB細胞から、抗体をコードするポリヌクレオチドを取得する 工程

- [2] 病巣組織が癌組織である[1] に記載の方法。
- [3] (a) 病巣組織に浸潤しているB細胞を単離する工程が、病巣組織の切片からB細胞を含む領域を切り出す工程を含む、[1] に記載の方法。

- 5 -

- [4] (b) 抗体をコードするポリヌクレオチドを取得する工程が、抗体可変領域をコードする遺伝子を増幅する工程を含む [1] に記載の方法。
- [5] [1] に記載の方法によって単離された、抗体をコードするポリヌクレオ チド。
- [6] 抗体をコードするポリヌクレオチドが、抗体の可変領域をコードするポリ ヌクレオチドを含むことを特徴とする [5] に記載のポリヌクレオチド。
- 〔7〕〔5〕に記載のポリヌクレオチドを含む発現ベクター。
- [8] [5] に記載のポリヌクレオチド、または [7] に記載の発現ベクターを 含む宿主細胞。
- [9] [8] に記載の宿主細胞を培養し、発現産物である抗体を回収する工程を 含む抗体の製造方法。
- 〔10〕〔9〕に記載の方法により製造された抗体。
- 〔11〕〔5〕に記載のポリヌクレオチドによってコードされる抗体。
- 〔12〕更に次の工程を含む〔9〕に記載の抗体の製造方法。
 - (1) [9] に記載の方法によって得られた抗体を病巣組織に接触させる工程、
 - (2) 前記病巣組織と抗体との結合を検出する工程、および
 - (3) 前記病巣組織に結合する抗体を選択する工程

本発明は、次の工程を含む、病巣に対する抗体をコードするポリヌクレオチド の単離方法に関する。

- (a) 病巣に浸潤したB細胞を単離する工程、および
- (b) 単離したB細胞から、抗体をコードするポリヌクレオチドを得る工程 病巣に浸潤したB細胞は、その病巣に対する抗体を産生している可能性が高い。

つまり病巣部分は、その病巣を認識する抗体を産生するB細胞を集積していると言うことができる。したがって、病巣に浸潤した細胞集団から単離されたB細胞に由来する抗体遺伝子は、病巣に対する抗体の産生に有用である。本発明において、病巣に対する抗体とは、病巣を構成する抗原、あるいは病巣が産生する抗原性物質を認識する抗体を言う。このような抗体は、病巣の診断や治療に有用である。また、病巣が自己免疫疾患に起因する場合には、自己免疫疾患のエピトープの解析において重要な情報を与える。

本発明の方法においては、免疫システムによって異物として認識されるあらゆる病巣を利用することができる。たとえば、次のような病巣は、本発明におけるB細胞の取得のための病巣として好ましい。これらの病巣は、自然発生的に生じた病巣と言うことができる。自然発生的に生じた病巣は、当該病巣の治療を目的としてヒトからも得ることができる。

固形癌の病巣

動脈硬化の病巣

炎症性疾患の病巣

感染性病原体によって形成された病巣

自己免疫疾患の病巣

一方本発明においては、人為的に構成された病巣を利用することもできる。た とえば、次のような病巣は、人為的にもたらされた病巣である。人為的にもたら された病巣は、たとえば免疫動物から得ることができる。人為的な病巣を利用す ることによって、任意の抗原に対する抗体のポリヌクレオチドを得ることができ る。

免疫動物に人為的に移植された異種の細胞や組織

免疫動物に人為的に移植された外来遺伝子を発現する細胞や組織

本発明における好ましい病巣として、癌組織を示すことができる。すなわち本 発明は、以下の工程を含む癌細胞に対する抗体をコードするポリヌクレオチドの

- 7 -

単離方法に関する。

- (a) 癌組織に浸潤しているB細胞を単離する工程、および
- (b) 単離したB細胞から、抗体をコードするポリヌクレオチドを得る工程本発明における癌組織は、限定されない。具体的には、乳癌組織、肺癌組織、肝臓癌組織、大腸癌組織、膵臓癌組織、あるいは前立腺癌組織などを示すことができる。中でもB細胞の浸潤が多く見られる癌は、本発明における望ましい癌組織である。B細胞の浸潤が多く見られる癌として、乳癌、肺癌、およびメラノーマを示すことができる。癌組織は、外科的な切除により採取される。たとえばバイオプシーによって採取された癌組織を本発明における癌組織として用いることができる。また、外科的な摘出術によって患者から摘出された組織も、癌組織として有用である。これらの組織は、抗体遺伝子の取得のために摘出されたものであっても良いし、あるいは組織病理学的な検査や、外科的な治療を目的として摘出された組織を利用することもできる。

本発明において、癌組織に浸潤しているB細胞を単離する方法は任意である。B 細胞の好ましい単離方法として、マイクロダイセクションを示すことができる。マイクロダイセクションは、組織切片から特定の細胞を切り取るための技術である。たとえば、凍結組織切片からLaser Microdissection (LMD)システムを使って、目的の細胞を単離することができる。紫外線レーザーによって組織切片を切り取ることができるシステムが既に市販されている。このシステムを利用すれば、顕微鏡観察下でコンピューターを使って画像中で切り取る領域を指定することにより、組織切片から任意の領域を切り取ることができる。

このとき、標本を顕微鏡で観察し、B細胞が密集している部分を選択すれば、多くのB細胞を単離することができる。あるいはB細胞の密度の低い領域を切り出せば、少ないB細胞を容易に取得できる。実施例に示すように、単一の細胞を取得することさえ可能である。

本発明においては、任意の病理標本からB細胞を単離することができる。たとえ

ば、凍結薄切標本は、本発明における望ましい病理標本である。病理標本として、 新鮮な組織のみならず、パラホルムアルデヒド(PFA)等で固定された標本を用いる こともできる。したがって、たとえば保存された病理標本から、本発明の方法に よって抗体の遺伝子を取得することも可能である。このように、本発明の方法は、 幅広いクローニングソースを選択できる。すなわち本発明は、多様な抗体遺伝子 を容易に取得できる方法である。

マイクロダイセクションは、PCR法等を利用した、組織中の特定の細胞の遺伝子解析のために利用されているシステムである。しかし、抗体遺伝子の取得のためにマイクロダイセクションを利用した報告は無い。本発明者らは、病巣に浸潤したB細胞の集団が、目的とする反応性を有する抗体を産生している可能性が高い細胞集団として利用できることに着目した。そして更に、このような細胞集団の中から抗体産生細胞を取得してクローニングソースとして利用することにより、抗体遺伝子の取得を可能とした。

より具体的には、顕微鏡観察下での病理解析に基づいて、癌組織に浸潤し抗体を産生するB細胞、あるいはプラズマ細胞を取り出すことができる。B細胞、あるいはプラズマ細胞は、トルイジンブルー等で染色することによって識別することができる。この方法によって、従来の末梢血や癌部・非癌部の混じった組織分画よりB細胞やプラズマ細胞を取り出してくる方法に比べて、はるかに高い確率で癌細胞を認識する抗体の遺伝子を単離することができる。

本発明において、細胞の単離とは、異質な細胞が混在している細胞集団から、B 細胞を分離することを言う。本発明における細胞の単離は、抗体遺伝子を有する細胞が抗体遺伝子の混入を伴わない他の細胞と共存する場合を含む。たとえば実施例に示すように、抗体を産生しないことが明らかなキャリア細胞を、抗体産生細胞に加えることができる。キャリア細胞は、目的とするmRNAの抽出を助けるために混合される。つまり、他の細胞が混在している場合であっても、限られた数の抗体産生細胞のみが含まれている場合には、当該抗体産生細胞は単離された状

態にあると言うことができる。

本発明において単離するB細胞の数は任意である。具体的には、たとえば $1\sim1$ 000、通常 $1\sim50$ 、好ましくは20以下、より好ましくは5以下、更に好ましくは1個の細胞を単離する。

1個の細胞を単離すれば、重鎖と軽鎖の組み合せを維持した状態で抗体遺伝子を取得できる可能性が高まる。機能的な抗体分子を再構成するには、重鎖と軽鎖の組み合せを維持した状態でその遺伝子を取得することは重要な条件である。抗体遺伝子のクローニングにおいて、モノクローナルな抗体産生細胞をクローニングソースに用いることは、重鎖と軽鎖の組み合せを確実に再構成するために必要な条件であった。しかし1個の細胞から取得した抗体遺伝子を使って、反応性の異なる複数の抗体を比較するためには、遺伝子のクローニングを繰り返す必要がある。複数の抗体の比較は、より目的に合った特性を有する抗体を取得するために有効である。

逆に、複数の細胞を単離してクローニングソースとした場合には、取得された 抗体遺伝子の重鎖と軽鎖の組み合せを特定することはできない。しかし複数の細 胞に由来する抗体遺伝子を同時に取得することができる。つまり、抗体遺伝子の ライブラリーを得ることができる。このようなライブラリーから、抗体活性を指 標とするスクリーニングによって、目的とする反応性を有する抗体の遺伝子を取 得することができる。スクリーニングによって選択された抗体遺伝子の重鎖と軽 鎖の組み合せが同一の細胞に由来しているかどうかを確認することはできない。 しかし、遺伝子が同一の細胞に由来するかどうかに関わらず、必要な反応性を有 する抗体を得ることがきれば目的は達成される。

本発明の方法においては、病巣に浸潤している任意の抗体産生細胞をクローニングソースとして利用することができる。通常、末梢血を循環しているB細胞の分化レベルは多様である。分化の初期には、B細胞は μ 鎖を抗原受容体として細胞表面に有する。抗原刺激に基づく分化と活性化を経ることにより、B細胞は成熟しIg

G分泌細胞へと分化する。B細胞の分化の最終段階にある細胞はプラズマ細胞 (pla sma cell;形質細胞) と呼ばれる。プラズマ細胞は、毎秒2000分子のIgGを産生している。したがって、プラズマ細胞を単離すれば、より多くのmRNAが取得できることになる。

病巣に浸潤したB細胞は、一般に分化が進んだ状態にあるものが多く見出される。しかも浸潤B細胞は、病巣に対する抗体を産生している可能性が高い。したがって、病巣から単離されるB細胞をクローニングソースとして利用することによって、抗体の特異性は必然的に病巣に集中する。更に、分化が進んだB細胞、あるいはプラズマ細胞は、抗体遺伝子の発現レベルがきわめて高い状態にある。したがって、このような細胞をクローニングソースとして利用することは、抗体遺伝子を取得できる可能性を高めることにつながる。このように病巣に浸潤したB細胞を利用することによって、比較的少数の細胞を用いながら、高い確率で目的とする抗体遺伝子を取得することが可能となる。

分離されたB細胞から抗体遺伝子を単離するために、抗体遺伝子を増幅することができる。遺伝子の増幅方法は、公知である。たとえば、PCR法は抗体遺伝子の増幅方法として好ましい。以下に、PCR法を利用した抗体遺伝子の単離方法について説明する。

まず単離されたB細胞からmRNAを抽出する。抽出されたmRNAを鋳型としてcDNAを合成し、cDNAライブラリーを得る。mRNAの抽出やcDNAライブラリーの合成には市販のキットを用いるのが便利である。本発明においては、少数のB細胞に由来するmRNAが利用される。実際には、少数の細胞のみから得られるmRNAは極めて微量なので、それを直接精製すると収率が低い。したがって通常は、抗体遺伝子を含まないことが明らかなキャリアRNAを添加した後に精製される。あるいは一定量のRNAを抽出できる場合には、抗体産生細胞のRNAのみでも効率よく抽出することができる。たとえば10以上、あるいは30以上、好ましくは50以上の抗体産生細胞からのRNA抽出には、キャリアRNAの添加は必要でない場合がある。

得られたcDNAライブラリーを鋳型として、PCR法によって抗体遺伝子が増幅される。抗体遺伝子をPCR法によって増幅するためのプライマーが公知である。たとえば、論文(J. Mol. Biol. (1991) 222, 581-597)やWebサイト(http://www.mrc-cpe.cam.ac.uk/vbase-ok.php?menu=901)の開示に基づいて、ヒト抗体遺伝子増幅用のプライマーをデザインすることができる。これらのプライマーは、イムノグロブリンのサブクラスごとに異なる塩基配列となる。したがって、サブクラスが不明のcDNAライブラリーを鋳型とするときには、あらゆる可能性を考慮してPCR法を行う。

具体的には、たとえばヒトIgGをコードする遺伝子の取得を目的とするときには、重鎖として γ 1 \sim γ 5、軽鎖として κ 鎖と λ 鎖をコードする遺伝子の増幅が可能なプライマーを利用することができる。IgGの可変領域遺伝子を増幅するためには、一般に3'側のプライマーにはヒンジ領域に相当する部分にアニールするプライマーが利用される。一方5'側のプライマーには、各サブクラスに応じたプライマーを用いることができる。

重鎖と軽鎖の各サブクラスの遺伝子増幅用プライマーによるPCR産物は、それぞれ独立したライブラリーとする。こうして合成されたライブラリーを利用して、重鎖と軽鎖の組み合せからなるイムノグロブリンを再構成することができる。再構成されたイムノグロブリンの、病巣に対する結合活性を指標として、目的とする抗体をスクリーニングすることができる。

たとえば癌組織に対する抗体の取得を目的とするとき、本発明の抗体は癌細胞に結合することが好ましい。抗体の癌細胞への結合は、特異的であることがさらに好ましい。癌に結合する抗体は、たとえば次のようにしてスクリーニングすることができる。

- (1)本発明の方法によって得られた抗体を癌細胞に接触させる工程、
- (2)前記癌細胞と抗体との結合を検出する工程、および
- (3)前記癌細胞に結合する抗体を選択する工程

抗体と癌細胞との結合を検出する方法は公知である。具体的には、癌の固定標本に対して被験抗体を反応させ、次に抗体を認識する標識抗体を反応させる。洗浄後に固定標本上の標識抗体が検出されたときには、当該被験抗体の癌への結合を証明できる。標識には、ペルオキシダーゼやβーガラクトシダーゼ等の酵素活性蛋白質、あるいはFITC等の蛍光物質を利用することができる。抗体の結合活性を評価するための癌組織としては、B細胞を取得した病巣を構成する癌組織そのものであっても良いし、あるいは異なる個体から採取された同じ臓器の癌組織や癌由来の細胞株を用いることもできる。更に、異なる臓器に由来する癌組織や癌由来の細胞株を利用することによって、異なる種類の癌に共通して反応する抗体をスクリーニングすることもできる。

本発明において、抗体の癌組織に対する反応性が、正常組織との反応性と比較して、有意に高いとき、その抗体は癌に特異的に結合する抗体であると言う。本発明の抗体の反応性を比較するには、一般に、同種の組織が用いられる。すなわち、癌組織と当該癌組織が由来する臓器の正常組織との間で、抗体の反応性が比較される。癌組織に対する反応性が確認できる条件下で、正常組織に対する結合活性が検出できないとき、この抗体は、癌組織に対して特異的な反応性を有すると言うことができる。

結合活性を指標とする抗体のスクリーニング方法として、ファージベクターを利用したパニング法を用いることもできる。上記のように抗体遺伝子を重鎖と軽鎖のサブクラスのライブラリーとして取得した場合には、ファージベクターを利用したスクリーニング方法が有利である。実施例に記載するように、重鎖と軽鎖の可変領域をコードする遺伝子は、適当なリンカー配列で連結することによってシングルチェインFv(scFv)とすることができる。scFvをコードする遺伝子をファージベクターに挿入すれば、scFvを表面に発現するファージを得ることができる。このファージを目的とする抗原と接触させて、抗原に結合したファージを回収すれば、目的の結合活性を有するscFvをコードするDNAを回収することができる。こ

の操作を必要に応じて繰り返すことにより、目的とする結合活性を有するscFvを 濃縮することができる。

本発明において抗体をコードするポリヌクレオチドは、抗体の全長をコードしていてもよいし、あるいは抗体の一部をコードしていてもよい。抗体の一部とは、抗体分子の任意の部分を言う。以下、抗体の一部を示す用語として、抗体断片を用いる場合がある。本発明における好ましい抗体断片は、抗体の相補鎖決定領域(complementarity determination region;CDR)を含む。更に好ましくは、本発明の抗体断片は、可変領域を構成する3つのCDRの全てを含む。

たとえば、抗体の可変領域をコードするポリヌクレオチドは、本発明の抗体断 片として好ましい。可変領域をコードするポリヌクレオチドを取得することがで きれば、定常領域をコードするポリヌクレオチドと連結することによって、完全 なイムノグロブリン分子を再構成することができる。抗体の定常領域は、同じク ラスの抗体であればほぼ同じ構造を有している。つまり定常領域の構造は抗原結 合活性には影響しない。したがって、可変領域の構造を明らかにすることができ れば、既に取得されている定常領域との接合によって、その抗体と同様の活性を 有する抗体を再構成することができる。

本発明の抗体は、人為的に構造を改変した遺伝子組換え型抗体を含む。たとえばヒトではなくマウスのような異種動物から本発明の方法によって取得された抗体遺伝子は、ヒトの定常領域遺伝子との接合によって、マウスーヒトキメラ (Chimeric) 抗体とすることができる。あるいはマウスのような異種動物の可変領域を構成するCDRを、ヒト可変領域に移植することによって、マウスの可変領域をヒト化するための方法も公知である。

本発明における抗体をコードするポリヌクレオチドは、DNA、RNA、あるいは両者のキメラ分子であることができる。更に、その塩基配列が維持されていれば、PNA等の人工的な構造を含むこともできる。B細胞から単離された抗体をコードする遺伝子の塩基配列に基づいて、同じ塩基配列を有するポリヌクレオチドを合成す

る方法は公知である。

本発明のポリヌクレオチドは、B細胞から単離された抗体をコードする遺伝子と同一の配列若しくは相同性の高い配列を有することができる。ここで相同性が高いとは、通常70%以上の相同性を有し、好ましくは80%以上の相同性を有し、さらに好ましくは90%以上の相同性を有し、特に好ましくは95%以上の相同性を有することを示す。

本発明は、上記の方法によって得られた抗体をコードするポリヌクレオチドに関する。本発明のポリヌクレオチドは、任意の発現ベクターに組み込むことができる。発現ベクターで適当な宿主を形質転換し、抗体発現細胞とすることができる。抗体発現細胞を培養し発現産物を回収すれば、当該遺伝子によってコードされる抗体を取得することができる。以下に、上記の方法によって単離された抗体遺伝子の発現について説明する。

抗体遺伝子を一旦単離した後、適当な宿主に導入して抗体を作製する場合には、適当な宿主と発現ベクターの組み合わせを使用することができる。真核細胞を宿主として使用する場合、動物細胞、植物細胞、真菌細胞を用いることができる。動物細胞としては、(1) 哺乳類細胞、例えば、CHO, COS, ミエローマ、BHK (baby hamster kidney), HeLa, Vero, (2) 両生類細胞、例えば、アフリカツメガエル卵母細胞、あるいは(3) 昆虫細胞、例えば、sf9, sf21, Tn5などが知られている。植物細胞としては、ニコティアナ (Wicotiana) 属、例えばニコティアナ・タバカム(Wicotiana tabacum)由来の細胞が知られており、これをカルス培養すればよい。真菌細胞としては、酵母、例えば、サッカロミセス(Saccharomyces)属、例えばサッカロミセス・セレビシエ(Saccharomyces serevisiae)、糸状菌、例えば、アスペルギルス(Aspergillus)属、例えばアスペスギルス・ニガー(Aspergillus nige r)などが知られている。原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、大腸菌(E. coli)、枯草菌が知られている。これらの細胞に、目的とする抗体遺伝子を形質転換により導入し、形質転換された細胞をin vi

troで培養することにより抗体が得られる。

また、本発明の方法により得られた抗体は、その抗体断片や抗体修飾物であってよい。例えば、抗体断片としては、Fab、F(ab')2、Fv、またはH鎖若しくはL鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)が挙げられる。具体的には、抗体を酵素、例えば、パパイン、ペプシンで処理し、抗体断片を生成させることによって、抗体断片を得ることができる。または、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させる(例えば、Co, M. S. et al., J. Immunol., 1994, 152, 2968-2976.、Better, M. & Horwitz, A. H., Methods in Enzymology, 1989, 178, 476-496, Academic Press, Inc.、 Plueckthun, A. & Skerra, A., Methods in Enzymology, 1989, 178, 476-496, Academic Press, Inc.、 Lamoyi, E., Methods in Enzymology, 1989, 178, 476-496, Academic Press, Inc.、 Lamoyi, E., Methods in Enzymology, 1989, 121, 663-669.、Bird, R. E. et al., TIBTECH, 1991, 9, 132-137. 参照)。

scFvは、抗体のH鎖V領域とL鎖V領域とを連結することにより得られる。このscFvにおいて、H鎖V領域とL鎖V領域は、リンカー、好ましくはペプチドリンカーを介して連結される(Huston, J. S. et al., Proc. Natl. Acad. Sci. U.S.A, 1988, 85, 5879-5883.)。scFvにおけるH鎖V領域およびL鎖V領域は、本明細書に抗体として記載されたいずれの抗体由来であってもよい。

V領域を連結するペプチドリンカーとしては、例えば12-19残基からなる任意の一本鎖ペプチドが用いられる。scFvをコードするDNAは、前記抗体のH鎖またはH鎖V領域をコードするDNA、およびL鎖またはL鎖V領域をコードするDNAのうち、それらの配列のうちの全部又は所望のアミノ酸配列をコードするDNA部分を鋳型とし、その両端を規定するプライマー対を用いてPCR法により増幅し、次いで、さらにペプチドリンカー部分をコードするDNA、およびその両端が各々H鎖、L鎖と連結されるように規定するプライマー対を組み合わせて増幅することにより得られる。また、一旦scFvをコードするDNAが作製されると、それらを含有する発現ベクター、

および該発現ベクターにより形質転換された宿主を常法に従って得ることができる。また、その宿主を用いることにより、常法に従ってscFvを得ることができる。

これらの抗体断片は、前記と同様にして遺伝子を取得し、宿主により産生させることができる。抗体修飾物として、ポリエチレングリコール (PEG) 等の各種分子と結合した抗体を使用することもできる。また抗体に放射性同位元素、化学療法剤、細菌由来トキシン等の細胞傷害性物質、あるいは標識物質などを結合することも可能である。このような抗体修飾物は、得られた抗体に化学的な修飾を施すことによって得ることができる。抗体の修飾方法はこの分野においてすでに確立されている。本発明における「抗体」にはこれらの抗体修飾物も包含される。

さらに、本発明における抗体は二重特異性抗体(bispecific antibody)であってもよい。二重特異性抗体は抗原分子上の異なるエピトープを認識する抗原結合部位を有する二重特性抗体であってもよいし、一方の抗原結合部位が抗原を認識し、他方の抗原結合部位が放射性物質、化学療法剤、細胞由来トキシン等の細胞障害性物質を認識してもよい。この場合、抗原を発現している細胞に直接細胞障害性物質を作用させ癌細胞に特異的に障害を与え、癌細胞の増殖を抑制することが可能である。二重特異性抗体は2種類の抗体のHL対を結合させて作製することもできるし、異なるモノクローナル抗体を産生するハイブリドーマを融合させて、二重特異性抗体産生融合細胞を作製し、得ることもできる。さらに、遺伝子工学的手法により二重特異性抗体を作製することも可能である。

前記のように発現、産生された抗体は、通常のタンパク質の精製で使用されている公知の方法により精製することができる。例えば、プロテインAカラムなどのアフィニティーカラム、クロマトグラフィーカラム、フィルター、限外濾過、塩析、透析等を適宜選択、組み合わせることにより、抗体を分離、精製することができる(Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)。

抗体の抗原結合活性(Antibodies A Laboratory Manual. Ed Harlow, David Lan

e, Cold Spring Harbor Laboratory, 1988)の測定には公知の手段を使用することができる。例えば、ELISA(酵素結合免疫吸着検定法)、EIA(酵素免疫測定法)、RIA(放射免疫測定法)あるいは蛍光免疫法などを用いることができる。

本発明の抗体を製造するための発現系を構築するための手順および宿主に適合した組換えベクターの構築は遺伝子工学の分野において慣用の技術を用いて行うことができる(例えば、Sambrook et al., Molecular Cloning, Cold Spring Harb or Labolatories (1989)等参照)。宿主細胞としては、細菌等の原核生物、並びに、酵母、動物細胞、昆虫細胞及び植物細胞等の真核細胞等、本発明の軽鎖又は軽鎖を含む抗体を発現できる細胞であればいずれも用いることができる。特に、グリコシル化の点から考えると哺乳動物細胞が好ましい。

発現ベクターは、遺伝情報の転写及び翻訳を制御するプロモーター、ターミネーター等のユニットを含む必要がある。例えば、大腸菌等のエシェリシア属の微生物を宿主細胞とする場合、プラスミドベクターとしてpBR、pUC系プラスミドを利用することができlac、trp、tac、trc、λファージPL、PR等に由来するプロモーターが利用可能である。また、ターミネーターとしてはtrpA由来、ファージ由来、rrnBリボソーマルRNA由来のものを用いることができる。

枯草菌等のバチルス属の微生物を宿主とする場合については、pUB110系、pC194 系等のプラスミドが知られており、場合により遺伝子を染色体にインテグレートすることもできる。プロモーター・ターミネーターとしてapr、npr、amy等由来のものが利用できる。

イセス属(例えば、Streptomyces lividans, S. virginiae等; pIJ486、pKC1064、pUWL-KS等)、エンテロバクター属、エルウィニア属、クレビシエラ属、プロテウス属、サルモネラ属(Salmonella typhimurium等)、セラチア属(Serratia marcescans)、シゲレラ属に属する微生物が挙げられる。

真核微生物の発現系としては、Saccharomyces cerevisiaeを宿主とし、YRp系、YEp系、YCp系、YIp系のプラスミドを用いた系が知られている。また、ADH、GAPDH、PHO、GAL、PGK、ENO等のプロモーター・ターミネーターが利用可能である。その他、クライベロマイセス属(例えば、Kluyveromyces lactis等;2μm系、pKD1系、pGK11系、KARS系等のプラスミド)、シゾサッカロマイセス属(例えば、Schizosaccharomyces pombe等;pAUR224等)、チゴサッカロマイセス属(例えば、Zygosaccharomyces rouxii等;pSB3、及び、S. cerevisiae由来PHO5プロモーター等)、ハンゼヌラ属(例えば、Hansenula polymorpha等)、ピキア属(例えば、Pichia pastoris等)、カンディダ属(例えば、Candida maltosa, Candida tropicalis, Candida utilis, Candida albicans等)、アスペルギルス属(例えば、Aspergillus oryzae, Aspergillus niger等)、及びトリコデルマ属(例えば、Trichoderma reesei等)等を本発明の発現ベクター系において用いることができる。

その他、植物細胞を宿主として用いることもできる。例えば、綿、トウモロコシ、ジャガイモ、トマト、ダイズ、ペチュニア、及びタバコ等由来の植物細胞を宿主とすることができる。特に良く知られた系としてNicotina tabacum由来の細胞を用いたものが知られており、これをカルス培養すればよい。植物を形質転換する際には、例えば、pMON530等の発現ベクターを用い、該ベクターをAgrobacterium tumefaciens等の細菌に導入する。この細菌をタバコ(例えば、Nicotina tabacum)に感染させると、所望のポリペプチドをタバコの葉等から得ることができる。カイコ(Bombyx mori)、カ(Aede aegypti, Aedes albopictus)、ショウジョウバエ(Drosophila melanogaster)等の昆虫細胞を宿主として用いることも可能である。例えば、カイコを用いる場合、抗体をコードするDNAをバキュロウイルスベクター

等に挿入し、該ウイルスをカイコに感染させることによりカイコの体液から目的のポリペプチドを得ることができる(Nature 315: 592-594 (1985))。

動物細胞を宿主として用いる場合には、例えば、pME18S(Med.immunol. 20: 27-32 (1990))、pEF-BOS(Nucleic Acids Res. 18: 5322 (1990))、pCDM8(Nature 32 9: 840-842 (1987)、pRSVneo、pSV2-neo、pcDNAI/Amp(Invitrogen)、pcDNAI、pA MoERC3Sc、pCDM8(Nature 329: 840 (1987))、pAGE107(Cytotechnology 3: 133 (1990))、pREP4(Invitrogen)、pAGE103(J.Biochem. 101: 1307 (1987))、pAMoA、pA S3-3、pCAGGS(Gene 108: 193-200 (1991))、pBK-CMV、pcDNA3.1(Invirtogen)、pZ eoSV(Stratagene)等が発現ベクターとして挙げられる。

プロモーターとしては、サイトメガロウイルスのIE遺伝子のプロモーター及びエンハンサー、SV40の初期プロモーター、RSV、HIV及びMMLV等のレトロウイルスのLTR、メタロチオネインβ-アクチン、伸長因子1、HSP等の動物細胞由来の遺伝子のプロモーター等を挙げることができる。その他、上述のようにウイルスベクターを用いることもできる。ウイルスベクターとしては、レトロウイルス、アデノウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、シンビスウイルス、センダイウイルス、SV40、HIV等のDNA及びRNAウイルスが挙げられる。

動物細胞宿主としては、マウス・ミエローマ細胞(例えば、SP2/0、NS0等)、ラット・ミエローマ細胞(例えば、YB2/0等)、マウス・ハイブリドーマ細胞、Nmalwa細胞(KJM-1細胞等も含む)、ヒト胎児腎臓細胞(293細胞等)、ヒト白血病細胞(BALL-1等)、CHO細胞、COS細胞(COS-1、COS-7等)、ハムスター胎児腎臓細胞(BHK等)、マウスセルトリ細胞(TM4等)、アフリカミドリザル腎臓細胞(VER0-76等)、HBT637細胞、HeLa細胞、ウサギ腎臓細胞(MDCK等)、ヒト肝臓細胞(HepG2等)、マウス乳癌細胞(MMT060562細胞)、TRI細胞、MRC細胞、FS3細胞等がある。

発現ベクターの導入方法としては、宿主及びベクターの種類に依存するが、細胞に抗体をコードするDNAを導入できる方法であれば、いずれも用いることができ

る。原核細胞へベクターを導入する方法としては、カルシウムイオンを用いる方法(Proc. Natl. Acad. Sci. USA 69: 2110 (1972))、プロトプラスト法(特開昭63-248 29号公報)、エレクトポーレーション法(Gene 17: 107 (1982); Molecular&Genera 1 Genetics 168: 111 (1979))等がある。酵母への導入方法としては、エレクトポレーション法(Methods in Enzymology, 194: 182 (1990))、スフェロプラスト法 (Proc. Natl. Acad. Sci. USA 81: 4889 (1984))、酢酸リチウム法(J. Bacteriol. 15 3: 163 (1983))等がある。植物細胞についてはAgrobacterium法(Gene 23: 315 (1983); W089/05859等)や、超音波処理による方法(W091/00358)等が知られている。動物細胞へベクターを導入する方法としてはエレクトポレーション(Cytotechnology 3:133 (1990))、リン酸カルシウム法(特開平2-227075号公報)、リポフェクション法(Proc. Natl. Acad. Sci. USA 84: 7413 (1987); Virology 52: 456 (1973))、リン酸-カルシウム共沈法、DEAE-デキストラン法、微小ガラス管を用いたDNAの直接注入法等が挙げられる。

上述のようにして取得された形質転換体は、例えば、以下の方法で培養することができる。

形質転換体が原核生物や真核微生物である場合は、培地は該生物が資化し得る炭素源、窒素源、無機塩類等の生育に必要な物質を含有し、形質転換体の効率的な培養を可能にするものであれば天然培地、合成培地のいずれでもよい。培養は好気的条件、嫌気的条件のいずれで行ってもよく、生育温度、培地のpH、生育時間等の条件は、用いる形質転換体の種類に応じ適宜当業者により決定され得るものである。また、誘導性のプロモーターを用いた発現ベクターについては、必要に応じてインデューサーを培地に添加すればよい。例えば1acプロモーターを有するベクターは、IPTGの添加によって発現が誘導される。あるいはtrpプロモーターであれば、IAAがインデューサーとして用いられる。

昆虫細胞を宿主細胞として用いる場合には、培地としてはTNM-FH培地(Pharming en)、Sf-900 II SFM培地(Life Technologies)、ExCel1400及びExCel1405(JRH Bio

sciences)、Grace's Insect Medium(Nature 195: 788 (1962))等を用いることができ、必要に応じゲンタマイシン等の抗生物質を添加してもよい。

形質転換体が動物細胞である場合には、一般に使用されているRPMI1640培地(The Journal of American Medical Association 199: 519 (1967))、EagleのMEM培地(Science 122: 501 (1952))、DMEM培地(Virology 8: 396 (1959))、199培地(Proceeding of the Society for the Biological Medicine 73: 1 (1950))、または、これらの培地にBSA等を添加した培地を使用することができる。培養は通常の条件、例えば、pH6~8、30~40℃、5%CO2存在下で行うことができる。この際、必要に応じカナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。

このようにして得られた本発明の抗体は、宿主細胞内、または、シグナル配列 を用いて細胞外に分泌させた場合には培地等から単離し、実質的に純粋なポリペ プチドとして精製することもできる。本発明の抗体は、一般的にポリペプチドの 分離や精製に使用される方法を適宜選択し、必要に応じて組み合せることによっ て、分離あるいは精製することができる。このような手法としては、クロマトグ ラフィー、フィルター、限外濾過、塩析、溶媒沈澱、溶媒抽出、蒸留、免疫沈降、 SDS-ポリアクリルアミドゲル電気泳動、等電点電気泳動、透析、再結晶等を示す ことができる。クロマトグラフィーとしては、アフィニティークロマトグラフィ 一、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆 相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Charcterization: A Laboratoy Course Manual, Dan iel R. Marshak et al. eds., Cold Spring Harbor Laboratory Press (1996); An tibodies: A Laboratoy Course Manual, Harlow and David Lane eds., Cold Spr ing Harbor Laboratory Press (1988))。これらのクロマトグラフィーは、HPLCや FPLC等の液相クロマトグラフィーを用いて行うことができる。また、抗原への結 合性を利用して精製することも可能である。

図面の簡単な説明

図1は、凍結薄切標本より約200個のプラズマ細胞またはB細胞を切り出した様 子を示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。右の写真において白く抜けている部分が切り出された部分を示す。

図2は、凍結薄切標本より切り出した約200個のプラズマ細胞またはB細胞に発 現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent21 00を用いた電気泳動により解析した結果を示す写真および図である。図左の電気 泳動の結果は、左側から順に分子量マーカー、重鎖可変領域(VH6/7-JHmix)、およ び軽鎖可変領域(Vκ2-Jκmix)の増幅産物の電気泳動結果である。右のグラフはAg ilent2100による泳動時間の測定結果を示す。縦軸が蛍光強度、横軸が泳動時間 (秒)である。

図3は、凍結薄切標本より切り出した約200個のプラズマ細胞またはB細胞に発 現していた抗体遺伝子重鎖可変領域の塩基配列決定し、そのコードするアミノ酸 配列に関してClustalXによる多重アライメントを行った結果を示す図である。図 中、アライメントの上の行に、保存性の高い位置を示した。保存性の高さを示す ために以下の3つの文字'*', ':' および '.'を用いた。

- ' *****' 全配列に同一のアミノ酸残基が保存されていた位置
- 全配列に以下に示すいずれかの保存性の高いグループのアミノ酸残基が保存 されていた位置

STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW

全配列に以下に示すいずれかの保存性の低いグループのアミノ酸残基が保存 されていた位置

CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK,

NDEQHK. NEQHRK, FVLIM, HFY

図4は、凍結薄切標本より切り出した約200個のプラズマ細胞またはB細胞に発 現していた抗体遺伝子κ鎖可変領域の塩基配列決定し、そのコードするアミノ酸 配列に関してClustalXによる多重アライメントを行った結果を示す図である。

図5は、凍結薄切標本より5個のプラズマ細胞またはB細胞を切り出した様子を 示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut) である。右の写真において白く抜けている部分が切り出された部分を示す。

図6は、凍結薄切標本より切り出した5個のプラズマ細胞またはB細胞に発現し ていた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を 用いた電気泳動により解析した結果を示す写真および図である。図左の電気泳動 の結果は、左側から順に、それぞれ以下のプライマーセットによる増幅結果を示 している。

分子量マーカー、

重鎖可変領域(VH6/7-THmix)、

軽鎖可変領域(V κ 1-J κ mix)、

軽鎖可変領域(V κ 2-J κ mix)、

軽鎖可変領域(Vκ3-Jκmix)、

軽鎖可変領域(V κ 4/5-J κ mix)、および

軽鎖可変領域(Vκ6-Jκmix)、

右のグラフはAgilent2100による泳動時間の測定結果を示す。縦軸が蛍光強度、 横軸が泳動時間(秒)である。

図7は、凍結薄切標本より1個のプラズマ細胞を切り出した様子を示す写真で ある。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。右 の写真において白く抜けている部分が切り出された部分を示す。

図8は、凍結薄切標本より切り出した1個のプラズマ細胞に発現していた抗体 遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気 泳動により解析した結果を示す図である。図中、縦軸が蛍光強度、横軸が泳動時 間(秒)である。

図9は、凍結薄切標本より1個のプラズマ細胞を切り出した様子を示す写真で

ある。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。左の写真で矢印で示したのが切り取られる細胞である。右の写真において白く抜けている部分が切り出された部分を示す。

- 24 -

図10は、凍結薄切標本より切り出した1個のプラズマ細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す図である。図中、縦軸が蛍光強度、横軸が泳動時間(秒)である。

図11は、凍結薄切標本より1個のプラズマ細胞を切り出した様子を示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。左の写真で矢印で示したのが切り取られる細胞である。右の写真において白く抜けている部分が切り出された部分を示す。

図12は、凍結薄切標本より切り出した1個のプラズマ細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す写真および図である。図左の電気泳動の結果は、左側から順に、それぞれ以下のプライマーセットによる増幅結果を示している。分子量マーカー、

重鎖可変領域(VH6/7-JHmix)、

軽鎖可変領域(Vκ1-Jκmix)、

軽鎖可変領域(Vκ2-Jκmix)、

軽鎖可変領域(Vκ3-Jκmix)、

軽鎖可変領域(Vκ4/5-Jκmix)、および

軽鎖可変領域(Vκ6-Jκmix)、

右のグラフはAgilent2100による泳動時間の測定結果を示す。縦軸が蛍光強度、 横軸が泳動時間(秒)である。

図13は、凍結薄切標本より1個のプラズマ細胞を切り出した様子を示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。

左の写真で矢印で示したのが切り取られる細胞である。右の写真において白く抜けている部分が切り出された部分を示す。

図14は、凍結薄切標本より切り出した単一のプラズマ細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す図である。図中、縦軸が蛍光強度、横軸が泳動時間(秒)である。

図15は、PFA固定後の凍結薄切標本より1個のプラズマ細胞を切り出した様子を示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。左の写真で丸で囲まれた細胞が切り取られる細胞である。右の写真において白く抜けている部分が切り出された部分を示す。

図16は、PFA固定後凍結薄切標本より切り出した1個のプラズマ細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す図である。図中、縦軸が蛍光強度、横軸が泳動時間(秒)である。

発明を実施するための最良の形態

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。

[実施例1] LMDによる癌組織に浸潤する単一B細胞の単離

ヒト新鮮組織(乳癌組織)を適当な大きさに細切後、OCT compound (Tissue-te k) を用いて凍結ブロックを作製した。必要に応じて凍結前にparaformaldehyde-l ysine-periodate等の固定液にて固定した。次に各凍結ブロックより薄切標本を作製し、LMD用スライド(松浪硝子株式会社)上に貼り付けた。凍結薄切標本は風乾後acetone等の固定液を用いて固定し、トルイジンブルー(武藤化学薬品株式会社)等の染色を施した。染色後Laser microdissection system (Leica AS-LMD) にて形質細胞を切り出し、回収バッファー (QIAGEN RNeasy Mini Kit添付RLT溶液)に

回収した。切り出し前、切り出し後の形質細胞像を図に示した(図1、図5、図7、図9、図11、図13、および図15)。いずれの図においても図の左に切りだし前、右に切りだし後の状態を示した。更に、切り出し前の写真(左)において細胞を特定できる場合には、切り出される細胞を矢印等で示した。

[実施例2] RNA調製およびcDNA合成

LMDにより薄切標本より切り取られた 1 から約5個のB細胞の懸濁液と抗体遺伝子を発現していない約300細胞のキャリア細胞懸濁液と混合し、この混合液よりRNea sy Mini Kit (QIAGEN)を用いて製造者の指示に従いトータルRNAを調製した。薄切標本より切り取られた細胞数が50以上の場合には、キャリア細胞を添加せずにトータルRNAの調製を行った。RNA溶出画分35 μ Lすべてを鋳型にSensiscript Revers e Transcriptase (QIAGEN)を用いて製造者の指示に従いcDNAを合成した。cDNA合成反応は80 μ Lスケールで、40ng のオリゴdTプライマー(Promega)、0.8 μ gのランダムへキサマー(Invitrogen)を逆転写反応プライマーに用い、37℃で1時間反応させた。合成されたcDNAをすぐにPCR反応に移さない場合には、-80℃にて保存した。

[実施例3] ヒト抗体可変領域のクローニング

ヒト抗体遺伝子可変領域をクローニングするPCRプライマーを文献J. Mol. Biol. (1991) 222, 581-597およびMedical Research Council (MRC)のWEBサイト "V BAS E" (http://www.mrc-cpe.cam.ac.uk/vbase-ok.php?menu=901) を参考にデザイン した。その塩基配列を以下(配列番号:97~配列番号:150)に示した。VH およびJHの頭文字で始まるプライマーは重鎖可変領域をクローニングするプライマーに相当し、VKとJK、VLとJLの頭文字で始まるプライマーはそれぞれ軽鎖 κ 鎖、軽鎖 λ 鎖を増幅するためのプライマーに相当する。

VH1a 5'-CAGGT (GT) CAGCTGGTGCAGTCTGG-3'

VH1b 5'-CAGGTCCAGCTTGTGCAGTCTGG-3'

VH1c 5'-(GC) AGGTCCAGCTGGTACAGTCTGG-3'

- VH1d 5'-CA (AG) ATGCAGCTGGTGCAGTCTGG-3'
- VH2a 5'-CAGATCACCTTGAAGGAGTCTGGT-3'
- VH2b 5'-CAGGTCACCTTGA (AG) GGAGTCTGGT-3'
- VH3a 5'-GA (AG) GTGCAGCTGGTGGAGTCTGG-3'
- VH3b 5'-CAGGTGCAGCTGGTGGAGTCTGG-3'
- VH3c 5'-GAGGTGCAGCTGTTGGAGTCTGG-3'
- VH4a 5'-CAG (CG) TGCAGCTGCAGGAGTCGGGC-3'
- VH4b 5' -CAGGTGCAGCTACAGCAGTGGGGC-3'
- VH5a 5'-GA (AG) GTGCAGCTGGTGCAGTCTGGA-3'
- VH6a 5'-CAGGTACAGCTGCAGCAGTCAGGT-3'
- VH7a 5'-CAGGT (CG) CAGCTGGTGCAATCTGG-3'
- JH1245 5'-TGAGGAGACGGTGACCAGGGT (GT) CC-3'
- JH3 5'-TGAAGAGACGGTGACCATTGTCCC-3'
- JH6 5'-TGAGGAGACGGTGACCGTGGTCCC-3'
- VK1a 5'-(AG) ACATCCAGATGACCCAGTCTCCA-3'
- VK1b 5'-G(AC) CATCCAGTTGACCCAGTCTCCA-3'
- VK1c 5'-GCCATCC (AG) GATGACCCAGTCTCCA-3'
- VK1d 5'-GTCATCTGGATGACCCAGTCTCCA-3'
- VK2a 5'-GATATTGTGATGACCCAGACTCCA-3'
- VK2b 5'-GAT (AG) TTGTGATGACTCAGTCTCCA-3'
- VK3a 5'-GAAATTGTGTTGAC (AG) CAGTCTCCA-3'
- VK3b 5'-GAAATAGTGATGACGCAGTCTCCA-3'
- VK3c 5'-GAAATTGTAATGACACAGTCTCCA-3'
- VK4a 5'-GACATCGTGATGACCCAGTCTCCA-3'
- VK5a 5'-GAAACGACACTCACGCAGTCTCCA-3'
- VK6a 5'-GAAATTGTGCTGACTCAGTCTCCA-3'

- VK6b 5'-GATGTTGTGATGACACAGTCTCCA-3'
- JK1 5' -ACGTTTGATTTCCACCTTGGTCCC-3'
- JK24 5' -ACGTTTGATCTCCA (CG) CTTGGTCCC-3'
- JK3 5'-ACGTTTGATATCCACTTTGGTCCC-3'
- JK5 5' -ACGTTTAATCTCCAGTCGTGTCCC-3'
- VL1a 5'-CAGTCTGTGCTGACTCAGCCACCC-3'
- VL1b 5' -CAGTCTGTG (CT) TGACGCAGCCGCCC-3'
- VL2 5' -CAGTCTGCCCTGACTCAGCCT (CG) -3'
- VL3a 5'-TCCTATG(AT)GCTGACTCAGCCACCC-3'
- VL3b 5'-TCCTATGAGCTGACACAGC(CT)ACCC-3'
- VL3c 5'-TCTTCTGAGCTGACTCAGGACCCT-3'
- VL3d 5'-TCCTATGAGCTGATGCAGCCACCC-3'
- VL4a 5'-CAGCCTGTGCTGACTCAATCATCC-3'
- VL4b 5' -CAGCTTGTGCTGACTCAATCGCCC-3'
- VL4c 5'-CTGCCTGTGCTGACTCAGCCCCCG-3'
- VL5a 5'-CAGCCTGTGCTGACTCAGCCA(CT)CT-3'
- VL5c 5'-CAGGCTGTGCTGACTCAGCCGGCT-3'
- VL6 5' -AATTTTATGCTGACTCAGCCCCAC-3'
- VL7 5' -CAG (AG) CTGTGGTGACTCAGGAGCCC-3'
- VL8 5'-CAGACTGTGGTGACCCAGGAGCCA-3'
- VL4_9 5'-C (AT) GCCTGTGCTGACTCAGCCACCT-3'
- VL10 5'-CAGGCAGGGCTGACTCAGCCACCC-3'
- JL1 5'-ACCTAGGACGGTGACCTTGGTCCC-3'
- JL23 5' -ACCTAGGACGGTCAGCTTGGTCCC-3'
- JL7 5'-ACCGAGGACGGTCAGCTGGGTGCC-3'

重鎖可変領域、κ鎖可変領域、λ鎖可変領域のクローニングを行う目的で、

別々にそれぞれの遺伝子サブセットに対するプライマー混合液とTaq DNA polymer ase Core Kit (QIAGEN) の組み合わせでPCR増幅を行った。重鎖、 κ 鎖を増幅するためにそれぞれ5つのプライマー混合液をつくり、このプライマー混合液を用いて10種類の反応液を調製した。混合液におけるプライマーの組み合せを表1に示した。 4μ Lの鋳型cDNAを含む終濃度1x反応緩衝液、1xQ solution (QIAGEN)、0.4m M dNTP、 0.4μ Mのforwardおよびreverse-wardプライマー、2U Taq DNAポリメラーゼを含む反応混合液 20μ Lを調製した。反応混合液をアプライドバイオシステムズPE9700にセットし40サイクルの増幅反応を行った。増幅サイクルは、9.4 \mathbb{C} 1.0 秒の変性のあと5.0 \mathbb{C} 3.0 秒のアニーリング、7.2 \mathbb{C} 3.0 秒の伸長反応からなる。

表 1

プライマーセット	forward				reverse			
VH1-JH MIX	VH1a	VH1b	VH1c	VH1d	JH1245		JH6	·
VH2-JH MIX	VH2a	VH2b			JH1245	JH3	JH6	
VH3/5-JH MIX	VH3a	VH3b	VH3c	VH3d	JH1245	JH3	JH6	
VH4-JH MIX	VH4a	VH4b			JH1245		JH6	
VH6/7-JH MIX	VH6a	VH7a			JH1245		JH6	
VK1-JK MIX	VK1a	VK1b	VK1c	VK1d	JK1	JK24	JK3	JK5
VK2-JK MIX	VK2a	VK2b			JK1	JK24	JK3	JK5
VK3-JK MIX	VK3a	VK3b	VK3c		JK1	JK24	JK3	JK5
VK4/5-JK MIX	VK4a	VK5a			JK1	JK24	JK3	JK5
VK6-JK MIX	VK6a	VK6b			JK1	JK24	JK3	JK5

反応後の生成産物をラボチップDNA7500 /Agilent2100を用いて解析した。増幅結果を図に示した(図2、図6、図8、図10、図12、図14、および図16)。増幅産物は、QIAGEN PCR Purification Kitを用いて精製した。PCR反応産物量が少ない場合には、アガロース電気泳動を行い、抗体遺伝子可変領域に相当する分子量領域を切り出し、再増幅した。得られたDNA断片をpGEM-T Easy (Prome ga)にクローニングし、大腸菌DH5αを形質転換した。組換えプラスミドの挿入配

- 30 -

列の塩基配列を決定し、抗体遺伝子が増幅されていることを確認した。決定され た塩基配列は配列番号:1~配列番号:54 (重鎖)、および配列番号:55~ 配列番号:84 (軽鎖) に示した。更に決定されたアミノ酸配列をアライメント した結果を図3および図4に示した。アライメントの結果、本発明の方法によっ て複数クローンの抗体遺伝子が取得されていることが確認できた。しかし単離さ れた可変領域のアミノ酸配列の種類が多様でないことから、存在していたB細胞は 特定の抗原刺激を受けて増殖した細胞群である可能性が高いことが示された。

[実施例4] 一本鎖抗体分子の調製

一本鎖抗体遺伝子作成のためのリンカー配列をMarksらの方法(J. Mol. Biol. (1991) 222, 581-597)に従って作成した。作成に用いた鋳型DNA配列およびプライ マーの塩基配列を以下に示した。PCR増幅によって合成されたリンカー断片をアガ ロースゲル電気泳動により確認し、この断片を含むバンドを切り出して精製した。 鋳型DNA配列(template linker)/配列番号:151

CATCCAGATGACCCAGTCTCC-3'

プライマーの塩基配列:

Reverse JH for linker/配列番号:152~155

1 LJH1_2 5'-GCACCCTGGTCACCGTCTCCTCAGGTGG-3'

2 LJH3 5'-GGACAATGGTCACCGTCTCTTCAGGTGG-3'

3 LJH4_5 5'-GAACCCTGGTCACCGTCTCCTCAGGTGG-3'

4 LTH6 5' -GGACCACGGTCACCGTCTCCTCAGGTGG-3'

Reverse VK for linker/配列番号:156~161

5 LVK1 5'-GGAGACTGGGTCATCTGGATGTCCGATCCGCC-3'

6 LVK2 5' -GGAGACTGAGTCATCACAACATCCGATCCGCC-3'

7 LVK3 5'-GGAGACTGCGTCAACACAATTTCCGATCCGCC-3'

8 LVK4 5'-GGAGACTGGGTCATCACGATGTCCGATCCGCC-3' 9 LVK5 5'-GGAGACTGCGTGAGTGTCGTTTCCGATCCGCC-3'

10 LVK6 5'-GGAGACTGAGTCAGCACAATTTCCGATCCGCC-3'

Reverse VL for linker/配列番号:162~168

11 LVL1 5'-GGCGGCTGCGTCAACACAGACTGCGATCCGCCACCGCCAGAG-3'

12 LVL2 5'-GCAGGCTGAGTCAGAGCAGACTGCGATCCGCCACCGCCAGAG-3'

13 LVL3a 5'-GGTGGCTGAGTCAGCACATAGGACGATCCGCCACCGCCAGAG-3'

14 LVL3b 5'-GGGTCCTGAGTCAGCTCAGAAGACGATCCGCCACCGCCAGAG-3'

15 LVL4 5'-GGCGGTTGAGTCAGTATAACGTGCGATCCGCCACCGCCAGAG-3'

16 LVL5 5'-GACGGCTGAGTCAGCACAGACTGCGATCCGCCACCGCCAGAG-3'

17 LVL6 5'-TGGGGCTGAGTCAGCATAAAATTCGATCCGCCACCGCCAGAG-3'

単一のB細胞のmRNAから合成したcDNAを鋳型としてPCR増幅した重鎖可変領域、 κ 鎖可変領域もしくは λ 鎖可変領域、リンカー配列を混ぜ、以下(配列番号: 1 $69\sim182$)に示したプライマーセットを用いてPCRを行った。軽鎖が κ 鎖の場合にはVHプライマーとJKプライマーの組み合わせ、軽鎖が λ 鎖の場合にはVHプライマーとJLプライマーの組み合わせの反応液を調製した。KOD plus DNA polymera se (TOYOBO)を用いて製造者の指示に従い反応液を調製した。プライマー添加前の 7サイクルの94℃15秒の変性および68℃ 1分の伸長反応を行い、その後プライマー を添加し20サイクルの94℃15秒の変性および68℃ 1分の伸長反応を行った。

VH1BACKNco 5'-AGTATTGACCATGGCCCAGGTGCAGCTGGTGCAGTCTGG-3'

VH2BACKNco 5'-AGTATTGACCATGGCCCAGGTCAACTTAAGGGAGTCTGG-3'

VH3BACKNco 5'-AGTATTGACCATGGCCGAGGTGCAGCTGGTGGAGTCTGG-3'

VH4BACKNco 5' -AGTATTGACCATGGCCCAGGTGCAGCAGCTCGGG-3'

VH5BACKNco 5'-AGTATTGACCATGGCCCAGGTGCAGCTGTTGCAGTCTGC-3'

VH6BACKNco 5'-AGTATTGACCATGGCCCAGGTACAGCTGCAGCAGTCAGG-3'

JK1FOREco 5'-TAATGAATTCACGTTTGATTTCCACCTTGGTCCC-3'

JK2FOREco 5'-TAATGAATTCACGTTTGATCTCCAGCTTGGTCCC-3'

- 32 -

JK3FOREco 5'-TAATGAATTCACGTTTGATATCCACTTTGGTCCC-3'

JK4FOREco 5'-TAATGAATTCACGTTTGATCTCCACCTTGGTCCC-3'

JK5FOREco 5'-TAATGAATTCACGTTTAATCTCCAGTCGTGTCCC-3'

JL1FOREco 5'-TAATGAATTCACCTAGGACGGTGACCTTGGTCCC-3'

JL2_3FOREco 5'-TAATGAATTCACCTAGGACGGTCAGCTTGGTCCC-3'

JL4_5FOREco 5'-TAATGAATTCACCTAAAACGGTGAGCTGGGTCCC-3'

増幅産物をアガロースゲル電気泳動により確認した後、相当する遺伝子断片を含むバンドを切り出して精製した。切り出した断片を制限酵素で切断し、発現ベクターへに挿入した。発現ベクターは、挿入された断片をT7プロモーターの制御下で発現し、かつ組み換え体のC末端にFLAGタグを付加できるようデザインした。得られた発現ベクターで、大腸菌DH5αを形質転換した。発現プラスミドの挿入配列をDNAシーケンシングにより確認し、続いてこの発現プラスミドにより大腸菌BL21(DE3)株を形質転換した。

本実施例において構築した一本鎖抗体の塩基配列とその翻訳アミノ酸配列を配列番号:183~配列番号:188に示した。70-6scFv(配列番号187-188)は単一のB細胞より単離した重鎖(配列番号:93-94)および軽鎖(配列番号:95-96)から作成した一本鎖抗体である。一方、70-5AscFv(配列番号:183-184)、および70-5BscFv(配列番号:185-186)は、5個のB細胞より得られた重鎖と軽鎖を組み合せて作成した一本鎖抗体である。70-5AscFvと70-5BscFvを構成する重鎖の塩基配列およびアミノ酸配列は配列番号:91-92に、また軽鎖が由来する塩基配列およびアミノ酸配列は配列番号:85-88に示した。

組換え一本鎖抗体を、大腸菌培養上清より調製した。対数増殖期にある形質転換細胞に対して 30° C、0.5mM isopropyl- β -thiogalactopyranoside添加により組換え抗体の発現を誘導した。終夜培養後、培養液を遠心し培養上清と細胞とを分離した。上清を濾過後、Anti-FLAG M2アフィニティーカラム(Sigma)に供し、組換

え蛋白質をカラムに吸着させた。カラムを洗浄後、0.1M Glycine (pH3.5)で組換え蛋白質を溶出した。溶出液をPD10カラム(アマシャムバイオテク)へと供し0.01% Tween20を含むPBSへとすぐに緩衝液を置換した。蛋白質の存在をSDS-PAGE後のクマシー染色もしくは抗FLAG抗体によるウェスタンブロッティングにより確認した。 [実施例3] 免疫染色

癌組織瞬間凍結組織切片を1%パラフォルムアルデヒド・PBS溶液で10分間固定した。内在性のペルオキシダーゼ活性を0.3%過酸化水素水でブロックした。組換え抗体の非特異的な結合が起こらないようにするために、組換え抗体を含む溶液とインキュベーションする前に10%胎児ウシ血清でブロッキングした。1%BSA,0.1% tween-20を含むPBS中に組換え抗体を含む溶液を希釈し、この溶液を組織切片とインキュベーションした。結合した組換え抗体をペルオキシダーゼ共役抗FLAG抗体(FLAG)による過酸化水素水存在下での3,3-diamino-benzidine-tetra hydrochlorideのブラウン色沈殿物変換により検出した。抗体添加前後に、0.1% twee n-20を含むPBSを用いて室温5分で3度洗浄した。組織切片はヘマトキシリンでカウンター染色し、マウンティングを行う前にエタノールおよびキシレンを用いて脱水した。抗体染色の陰性対照として組換え抗体添加段階を除いて同様の作業を行った。

産業上の利用の可能性

本発明によって、B細胞のクローン化に頼ることなく、病巣に対する抗体をコードするポリヌクレオチドを単離することができる。本発明の方法は、B細胞のクローン化に依存しないため、クローン化が難しいヒトの抗体産生細胞由来の遺伝子も容易に取得できる。

本発明に基づいて、癌組織に浸潤したB細胞から、癌組織を認識する抗体をコードする遺伝子を単離することができる。癌細胞を認識する抗体は、癌の診断や治療において有用である。本発明を利用すれば、ヒトの抗体産生細胞からも容易に

抗体遺伝子を取得できる。癌の診断や治療において、癌組織を認識するヒトの抗 体遺伝子が取得された意義は大きい。

抗体を利用した癌の診断や治療においては、ヒトへ抗体が投与される。たとえば抗体を用いた癌の診断においては、追跡可能な標識を有する抗体分子が投与され、抗体の局在部分に癌が存在することが示される。癌の治療においては、標的治療(target threrapy)に抗体が利用される。すなわち抗がん剤を結合した抗体が、患者に投与される。ヒト抗体はヒトに投与したときに高い安全性を期待できる。また異種蛋白質として認識されにくいため、血中濃度を長期間に渡って安定に維持することができる。

なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。

- 35 -

請求の範囲

- 1. 以下の工程を含む病巣組織に対する抗体をコードするポリヌクレオチドの単離方法。
 - (a) 病巣組織に浸潤しているB細胞を単離する工程、および
 - (b) 単離したB細胞から、抗体をコードするポリヌクレオチドを取得する工程
- 2. 病巣組織が癌組織である請求項1に記載の方法。
- 3. (a) 病巣組織に浸潤しているB細胞を単離する工程が、病巣組織の切片から B細胞を含む領域を切り出す工程を含む、請求項1に記載の方法。
- 4. (b) 抗体をコードするポリヌクレオチドを取得する工程が、抗体可変領域 をコードする遺伝子を増幅する工程を含む請求項1に記載の方法。
- 5. 請求項1に記載の方法によって単離された、抗体をコードするポリヌクレオ チド。
- 6. 抗体をコードするポリヌクレオチドが、抗体の可変領域をコードするポリヌ クレオチドを含むことを特徴とする請求項5に記載のポリヌクレオチド。
- 7. 請求項5に記載のポリヌクレオチドを含む発現ベクター。
- 8. 請求項5に記載のポリヌクレオチド、または請求項7に記載の発現ベクター を含む宿主細胞。
- 9. 請求項8に記載の宿主細胞を培養し、発現産物である抗体を回収する工程を含む抗体の製造方法。
- 10. 請求項9に記載の方法により製造された抗体。
- 11. 請求項5に記載のポリヌクレオチドによってコードされる抗体。
- 12. 更に次の工程を含む請求項9に記載の抗体の製造方法。
 - (1)請求項9に記載の方法によって得られた抗体を病巣組織に接触させる工程、

- 36 -

- (2) 前記病巣組織と抗体との結合を検出する工程、および
- (3) 前記病巣組織に結合する抗体を選択する工程

1/16

-- DHGL-GDQASWFDPWGQGTTVTVSS 122 QVQLVQSGGGVVQPGRSLRLSCAASGFSFSSY--GHHVVRQAPGKGLEWVAVIMYD--GSYKYYAESVKGRFIISRDNSKNTLYLQMNSLAAEDTAVYYCAR----DRGS-VEMATIADYWGQGTLVTVSS 122 -- DRGS-VEMATIADYWGQGTLVTVSS 122 DSG--VVTAAYFDYWGQGTLVTVSS 123 QVQLVQSGAEVKKPGASVKVSCQASGYHFTGF--YMHHVRQAPGQGLEMHGMMNTN--SGATGYAHKKQDRVTLTRDTSISTGYHELGGLTSDDTAVYYCAR-----TQEVYYYAMDVWGQGTHVTVSS 120 TQEVYYYAMDVWGQGTMVTVSS 120 TQEVYYYANDVWGQGTMVTVSS 120 TQEVYYYANDVWGQGTTVTVSS 120 ---TQEVYYYANDVWGQGTLVTVSS 120 ----TQEVYYYAMDVWGQGPMVTVSS 120 QVQLVQSGAEVRKPGTTVTISCKVSGHNFIDH--YMHWVQQAPGKGLDMMGLIDPE--DGQIRYSERFEGRVTITADKSTDTTYLEVSGLRSEDTAVYFCTT------DLGDLNYMNPGHRLL--- 113 QVQLVQSGAEVRKPCTTVTISCKVSGHNFIDH--YMHWVQQAPCKGLDHMGLIDPE--DGQIKYSERFEGRVTITADKSIDTYLEVSGLASEDTAVYFCTT------DLGDLNYWGQGTLVTVSS 116 QVQLVQSCAELKTPGSSVRFSCKASGGSFSNY--AITWVRQAPGQGLEHMGRIIPI--FGIPNYAQEFQGRVTITADDSTTTVYHELSSLRSEDTAVYYCAR----DNSIGAPDTWWFDPWGQGPRSPSP- 122 QVQLVQSGAEGKKPGESIKISCQGSGYIFSIV --HIAWVRQRPGKCIERHGIIYPG--DSDIKYSPSFQGHVTISADTSHNTAYLQHNTIKASDTAMYYCARHKGTRFGEVLAVGNWPDPHGQGTLVTVSS 127 QVQLVQSGGGVVQPGRSLRLSCAASGFTFSSN--GMHVVRQAPGKGLEWVAVIHYD--GSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR----DHGL-GDQASHFDPMGQGTLVTVSS İ --DRGS-VEMATIADYWGQGTLVTVSS QVQLVQSGAEVTKPGASVTVSCQASGTHFTGF--YHHVVRQAPGQGLEHHGHRNTN--SGATGYAHTFQDRVTLIRDTSISTGYMELGGLTSDDTAVYYCAR-----TQEVYYYANDVMGQGTHVTVSS DHGL-GDQASWPDPWGQGTLVTVSS -DHGL-GDQASWFDPWGQGTLVTVS--DHGL-GDQASWFDPWGQGTLVTVSS -DWGSGTYHKFALDVWGQGTMVTVSS ----TQEVYYYAMDVWGQGTMVTVSS --QLVQSGAEVKKPGASVKVSCQASGTHFTGF--YHHYVRQAPGQGLEHNGHMITN--SGATGYAHKFQDRVTLITADTSISTGYMELGGLTSDDTAVYYCAR------TQEVYYYANDVMGQGTMVTVS--VQLVQSGARVKKPGASVKVSCQASGYMFTGF--YMHWVRQAPGQGLEMMGHMNTN--SGATGYAHKFQDRVTLIRDTSISTGYMELGGLTSDDTAVYYCAR-----TQEVTYYAMDVLGPRDNGHRL-QVQLVQSGABVKKSGASVKVSCKASGYTFTGH--FIHWYRQAPGQGLEMMGHINPN--VGVTNYAQKFQGRVTHIRDTSISTAYIELRRLRSDDTAVYYCVRES--DTAAVAYYYHGMDVWGQMSPSL---QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSAAMHHIRQSPSRCLEMLGRTYYR-SKMYNDYTVSVKSRITIKPDTSKNQFSLQLNSVTPEDTAVYYCAR----SQEEHRSLDDAFDIMDHGHRLL--- $1, \dots, 10, \dots, 20, \dots, 30, \dots, 40, \dots, 40, \dots, 50, \dots, 60, \dots, 70, \dots, 80, \dots, 90, \dots, 100, \dots, 110, \dots, 120, \dots, 130$ QVQLVQSGAEVKKPGASVKVSCQASGYMFTGF--YMHWVRQAPGQGLEMMGMMNTN--SGATGYAHKFQDRVTLTRDTSISTGYMELGGLTSDDTAVYYCAR-----QVQLVQSGABVKKPGASVKVSCQASGYMFTGF--YMHVVRQAPGQGLEMHGMMTN--SGATGYAHKRQDRVTLTRDTSISTGYMELGGLTSDDTAVYYCAR----QVQLVQSGGGVVQPGRSLRLSCAASGFSFSSY--GMHWVRQAPGRGLEWVAVIMYD--GSYKYYAESVKGRFIISRDNSKWTLYLQIMSLRAEDTAVYYCAR--QVQLAQSGGGVVQPGRSLRLSCAASGFSFSSY--GMHWVRQAPGKGLEWVAVIRYD--GSYKYYAESVKGRFIISRDNSKNTLYLQMNSLRAEDTAVYYCAR--QVQLVQSGGGLVQPGRSLRLSCTTSGFTFSDY--ALSWVRQAPGRGLEWYGFIRNKIYGGTTDYAASVKGRFTISRDDSKSIAYLQMNSLKTEDSAVYYCTR--QVQLVQSGGDHVXPGGSLRLSCAASGFPFANA--HHYHFRQAPGKGLEHVGRIKSRPSGGATEFAAPVEGRFSISRDDSKNTHDLQHNSLRTDDTAVYYCTT--QVQLVQSGGGVVQPGRSLRLSCAASGFTFSSN --GMHVVRQAPGRGLEWVAVIMYD--GSNKYYADSVRGRFTISRDNSKWTLYLQNASLRAEDTAVYYCAR-QVQLVQSGAEVTKPGASVTVSCQASGYHPTGF--YMHHVRQAPGQGLEHMGHMNTN--SGATGYAHTRQDRVTLTRDTSISTGYMELGGLISDDTAVYYCAR-QVQLVQSGAEAKKPGASVKVSCQASGYNFTGF--YMHWVRQAPGQGLEMMGNMNTN--SGATGYAHKFQDRVTLIRDTSISTGYMELGGLTSDDTAVYYCAR-QVQLVQSGGGVVQPGRSLRLSCAASGFIFSSN--GMHYVRQAPGKGLEMVAVIMYD--GSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR--VQLVQSGAEVKKPGASVKVSCQASGYMFTGF--YMHWVRQAPGQGLEMMGMMYTN--SGATGYAHKFQDRVTLTRDTSISTGYMELGGLTSDDTAVYYCAR-QVQLVQSGAEVKKPGASVXVSCQASGYMFTGF -- YMHWVRQAPGQGLEHMGHMNTN --SGATGYAHKFQDRVTLTRDTSISTGYMELGGLTSDDTAVYYCAR -QVQLVQSGGGVVQPGRSLRLSCAASGF1FSSN --GMHWVRQAPGKGLEWVAVIHYD --GSNRYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR. -GSNKYYADSVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYYCAR QVQLVQSGGGVVQPGRSLRLSCAASGFTFSSN - - GMHYVRQAPGRGLEMVAVIHYD - -GSNRYYADSVRGRFTISRDNSKNTIYLQMNSLRAEDTAVYYCAR. VOLVOSGGGVVQPGRSLRLSCAASGFTFSSN - GMHTVTQAPGKGLEWVAVINYD-VH20 VH34 VH36 VHIO VH22 VH30 VH35 VH25 用7 VH6 VH2 VH27 **JH21**

DIVMTQTPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISTLQAEDVAVYYCQQYYSTPPTFSQGTKVEIKR 114 DIVMTQTPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYMASTRESGVPDRFSGSGGGGGTDFTLTISTLQAEDVAVYYCQQYYSTPPTRGQGTKVEIKR 114 DLVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWHQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISTLQAEDVAVYYCQQYYSTPPTFGQGTKVDI-- 112 DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISTLQAEDVAVYYCQQYYSTPPTFGQGTKVDIKR 114 DIVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGGGGGTDFTLTISTLQAEDVAVYYCQQYYSTPPTFGQGTKVEIKR 114 DIVMTOSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGGGGGTDFTLTISTLQAEDVAVYYCQQYYSTPPTFGQGTKLEIKR 114 DVVMTQSPDSLIVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWAPTRESGVPDRFSGSGGGGGTDFTLTISSLQAEDVAVYYCQQYYSTPPTFGQGTKVEIKR 114 DVVMTQSPDSLAVSLGERATINCKSSQGVLHKSNNKNYLAWYQQKPGQPPKLLIHWASTREFGVPDRLSGSGSATDFTLTISSLQAEDVAVYYCQQYYAVPLTFGQGTRLEIKR 114∣ DVVMTQSPDSLAVPLGERATINCKSSQSVLHKSNNKNHLAWYQQKPGQPPKLLIHWASTREFGVPDRLSGSGSATDFTLTINSLQAEDAAVYYCQQYYAVPLTFGQGTRLEIKR 114 DVVMTQSPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIHWASTREFGVPDRLSGSGSATDFTLTISSLQAEDVAVYVCQQYYAVPLTFGQGTRLEIKR 114 DVVMTQSPLSLPVTPGEPASISCRSSQSLLDSDDGNTYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCWQRIEPPYTFGQGTKVEIKR 114 DIVMTQTPDSLAVSLGERATINCKSSQSVLYSSNNKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISTLQAEDVAVYYCQQYYSTPPTFGQGTKVEIKR DVVMTQTPDSLAVSLGERATINCKSSQSVLHKSNNKNYLAWYQQKPGQPPKLLIHWASTREFGVPDRLSGSGSATDFTLTISSLQAEDVAVYYCQQYYAVPLTFGQGTRLEIKR DIVMTQSPLSLPVTPGEPASISCRSSQSLLDSDDGNTYLDNYLQKPGQSPQLLIYTLSYRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPYTFGQGTKVDIKR ; DIVMTQTPLSLPVTPGEPASISCRSSQSLLDSDDGNTYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQATQL-YTFGQGTKVEIKR 🖰 ** *** * * * * VK18

図 5

5/16

6/16

7/16

9/16

10/16

図11

図12

図13

14/16

図14

図15

16/16

1/141

SEQUENCE LISTING

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA PharmaLogicals Research Pte., Ltd.

<120> Antibody against focus tissue

<130> C1-A0230P

<150> JP 2002-339241

<151> 2002-11-22

<160> 188

<170> PatentIn version 3.1

<210> 1

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (360)

<223>

<400> 1

cag gtg cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

48

144

tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc 96
Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg

2/141

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

gga tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe

50 55 60

cag gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac 240 Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr 65 70 75 80

atg gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt

288

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys

85

90

95

gcg aga acc cag gag gtt tac tac gct atg gac gtc tgg ggc caa 336 Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln 100 105 110

ggg cca atg gtc acc gtc tct tca

Gly Pro Met Val Thr Val Ser Ser

115 120

<210> 2

<211> 120

<212> PRT

<213> Homo sapiens

<400> 2

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe 20 25 30

3/141

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe 50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr 65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

Gly Pro Met Val Thr Val Ser Ser 115 120

<210> 3

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)...(366)

<223>

<400> 3

cag gtc cag ctg gtg caa tct gga gga ggc gtg gtc cag cct ggg agg 48 Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttc agt agc aat Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn

96

4/141

20 25 30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg 144 Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 gca gtt ata tgg tat gat gga agt aat aaa tac tat gca gac tcc gtg 192 Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60 aag ggc cga ttc acc atc tcc aga gac aat tcc aag aac aca ctg tat 240 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80 ctg caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt 288 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 gcg aga gat cac ggc ctt ggt gat caa gcc tcc tgg ttc gac ccc tgg 336 Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp 100 105 110 366

ggc cag gga acc ctg gtc acc gtc tcc tca
Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 4

<211> 122

<212> PRT

<213> Homo sapiens

<400> 4

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

5/141

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 5

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (366)

<223>

<400> 5

cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg 48

1 5 10 15

6/141

			Leu		tgt Cys			Ser					Ser			96
			20				4-	25				1	30	,		- 44
					cgc Arg											144
					gat							-	_			192
міа	50	116	тр	lyr	Asp	55	ser	ASN	Lys	ıyr	60	Ala	Asp	ser	val	
					atc Ile 70						_			_		240
ctg	caa	atg	aac	agc	ctg	aga	gcc	gag	gac	acg	gct	gtg	tat	tac	tgt	288
Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
					ctt Leu								_			336
					gtc Val											366

<210> 6

<211> 122

<212> PRT

<213> Homo sapiens

<400> 6

7/141

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg

1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 7

<211> 340

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (339)

<223>

<400> 7

8/141

		ctg Leu									48
		atc Ile 20									96
		 tgg Trp						_		_	144
		 gac Asp			_	_					192
		gtc Val									240
		agc Ser								_	288
		ttg Leu 100							_		336
ctc Leu	а					,					340

<210> 8

<211> 113

<212> PRT

9/141

<213> Homo sapiens

<400> 8

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Arg Lys Pro Gly Thr 1 5 10 15

Thr Val Thr Ile Ser Cys Lys Val Ser Gly His Asn Phe Ile Asp His
20 25 30

Tyr Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Asp Trp Met 35 40 45

Gly Leu Ile Asp Pro Glu Asp Gly Gln Thr Lys Tyr Ser Glu Arg Phe 50 55 60

Glu Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Asp Thr Thr Tyr 65 70 75 80

Leu Glu Val Ser Gly Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95

Thr Thr Asp Leu Gly Asp Leu Asn Tyr Trp Asn Pro Gly His Arg Leu 100 105 110

Leu

<210> 9

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (366)

10/141

<223>

<400	0> 9	9											
		cag Gln										2	1 8
		aga Arg							_	_		9	96
		cac His 35										14	14
		ata Ile			_			_	_			19	92
		cga Arg					_			_		24	10
		atg Met									_	28	38
		gat Asp										33	36
		gga Gly 115			_							36	66

11/141

<210> 10

<211> 122

<212> PRT

<213> Homo sapiens

<400> 10

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 11

⟨211⟩ 381

<212> DNA

<213> Homo sapiens

<22	0>															
<22	1>	CDS														
<22	2>	(1).	. (38	1)												
<22	3>															
						•										
<40	0>	11														
cag	gtc	cag	ctg	gtg	caa	tct	gga	gct	gag	ggg	aaa	aag	ccg	gga	gag	48
														Gly		
1				5					10					15		
tct	ctg	aag	atc	tcc	tgt	cag	ggt	tct	gga	tac	aca	ttt	agc	aat	tac	96
Ser	Leu	Lys	Ile	Ser	Cys	Gln	Gly	Ser	Gly	Tyr	Thr	Phe	Ser	Asn	Tyr	
			20					25					30			
tgg	atc	gcc	tgg	gtg	cgc	cag	agg	ccc	ggg	aaa	ggc	ctg	gag	tgg	atg	144
Trp	Ile	Ala	Trp	Val	Arg	Gln	Arg	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Met	
		35					40					45				
ggg	atc	atc	tat	cct	ggt	gac	tct	gat	atc	aaa	tac	agt	ccg	tcc	ttc	192
Gly	Ile	Ile	Tyr	Pro	Gly	Asp	Ser	Asp	Ile	Lys	Tyr	Ser	Pro	Ser	Phe	
	50	·				55					60					
caa	ggc	cat	gtc	acc	atc	tca	gcc	gac	acg	tcc	atg	aac	acc	gcc	tac	240
Gln	Gly	His	Val	Thr	Ile	Ser	Ala	Asp	Thr	Ser	Met	Asn	Thr	Ala	Tyr	
65					70					75					80	
ctg	cag	tgg	aac	acc	ctg	aag	gcc	tcg	gac	acc	gcc	atg	tac	tac	tgt	288
Leu	Gln	Trp	Asn	Thr	Leu	Lys	Ala	Ser	Asp	Thr	Ala	Met	Tyr	Tyr	Cys	
				85					90					95		
gcg	aga	cat	aaa	ggg	acc	agg	ttc	ggg	gag	gtt	ttg	gcg	gtt	ggc	aac	336
Ala	Arg	His	Lys	Gly	Thr	Arg	Phe	Gly	Glu	Val	Leu	Ala	Val	Gly	Asn	
			100					105					110			
tgg	ttc	gac	ccc	tgg	ggc	cag	gga	acc	ctg	gtc	acc	gtc	tcc	tca		381
Trp	Phe	Asp	Pro	${ t Trp}$	Gly	Gln	G1y	Thr	Leu	Val	Thr	Val	Ser	Ser		

13/141

115 120 125

<210> 12

<211> 127

<212> PRT

<213> Homo sapiens

<400> 12

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Gly Lys Lys Pro Gly Glu

5 10 15

Ser Leu Lys Ile Ser Cys Gln Gly Ser Gly Tyr Thr Phe Ser Asn Tyr 20 25 30

Trp Ile Ala Trp Val Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp Met 35 40 45

Gly Ile Ile Tyr Pro Gly Asp Ser Asp Ile Lys Tyr Ser Pro Ser Phe 50 55 60

Gln Gly His Val Thr Ile Ser Ala Asp Thr Ser Met Asn Thr Ala Tyr 65 70 75 80

Leu Gln Trp Asn Thr Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95

Ala Arg His Lys Gly Thr Arg Phe Gly Glu Val Leu Ala Val Gly Asn 100 105 110

Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125

<210> 13

<211> 368

<21	2>	DNA										
<21	3>	Homo	sap	iens								
<22 <22 <22 <22	1> 2>	CDS (1).	. (36	6)								
<40	0>	13										
		cag Gln									4	8
		aaa Lys									9	6
		acc Thr 35									14	4
		atc Ile									192	2
		aga Arg			4						240	Э
		ctg Leu									288	3
		gat Asp									336	3

15/141

tgg ggc cag gga cca cgg tca ccg tct cct ca Trp Gly Gln Gly Pro Arg Ser Pro Ser Pro 115 120 368

<210> 14

<211> 122

<212> PRT

<213> Homo sapiens

<400> 14

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Leu Lys Thr Pro Gly Ser 1 5 10 15

Ser Val Lys Phe Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Asn Tyr 20 25 30

Ala Ile Thr Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Arg Ile Ile Pro Ile Phe Gly Ile Pro Asn Tyr Ala Gln Glu Phe 50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Asp Ser Thr Thr Thr Val Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Asp Asn Ser Ile Gly Ala Pro Asp Thr Trp Trp Phe Asp Pro
100 105 110

Trp Gly Gln Gly Pro Arg Ser Pro Ser Pro 115 120

<21	<0>	15															
<21	1>	360															
<21	2>	DNA															
<21	3>	Homo	sap	iens													
<22	0>																
<22	1>	CDS															
<22	2>	(1).	. (36	0)													
<22	3>																
<40	0>	15															
cag	gtc	cag	ctg	gtg	caa	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	gcc	48	
Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala		
1				5					10					15			
tca	gtg	aag	gtc	tcc	tgt	cag	gct	tct	gga	tac	atg	ttc	acc	ggc	ttc	96	
Ser	Val	Lys	Val	Ser	Cys	Gln	Ala	Ser	Gly	Tyr	Met	Phe	Thr	Gly	Phe		
			20					25					30				
		cac														144	
Tyr	Met	His	Trp	Val	Arg	Gln		Pro	Gly	Gln	Gly		Glu	Trp	Met		
		35					40					45					
				•													
		atg														192	
стх		Met	Asn	Inr	Asn		GTA	Ala	Thr	Gly		Ala	His	Lys	Phe		
	50					55					60						
00 C	an a	0.00	a+ o	000	o+ ~	000		~~ ^		.						0.40	
		agg														240	
65	пър	Arg	Val	1111		1111	Arg	ASP	1111		тте	ser	inr	GIY			
00					70					75					80		
at.o	gag	ctg	gge	gar	cta	202	to+	as a	g a a	200	go o	a+~	to+	+0+	+ ~+	000	
		Leu														288	
1200	JIU	Lou	JIY	85	₽Ġſſ	TIIT	PGT	nsp	90	1111	ura	val	I y I	1yr 95	Cys		
				σ					σv					$\sigma \sigma$			

17/141

gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336 Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln 100 105 110

ggg aca atg gtc acc gtc tct tca

Gly Thr Met Val Thr Val Ser Ser

115

120

<210> 16

<211> 120

<212> PRT

<213> Homo sapiens

<400> 16

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe 50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr 65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

18/141

Gly Thr Met Val Thr Val Ser Ser 115 120

65

70

<210> 17 <211> 365 <212> DNA <213> Homo sapiens <220> <221> **CDS** <222> (1)...(363)<223> <400> 17 cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg 48 Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15 tee etg aga ete tee tgt gea gee tet gga tte ace tte agt age aat 96 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn 20 25 30 ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg 144 Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45 gca gtt ata tgg tat gat gga agt aat aaa tac tat gca gac tcc gtg 192 Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60 aag ggc cga ttc acc atc tcc aga gac aat tcc aag aac aca ctg tat 240 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr

75

ctg caa atg aac agc ctg agg gcc gag gac acg gct gtg tat tac tgt

80

288

19/141

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat cac ggc ctt ggt gat caa gcc tcc tgg ttc gac ccc tgg
Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp

100
105
110

ggc cag gga acc ctg gtc acc gtc tcc tc

Gly Gln Gly Thr Leu Val Thr Val Ser

115 120

<210> 18

<211> 121

<212> PRT

<213> Homo sapiens

<400> 18

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

20/141

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp 100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser 115 120

<210> 19

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (366)

<223>

<400> 19

cag gtc cag ctg gcg caa tct gga gga ggc gtg gtc cag cct ggg agg
Gln Val Gln Leu Ala Gln Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

48

96

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc agc ttc agt agc tat
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Tyr
20 25 30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

35

40

45

gca gtt ata tgg tat gat gga agc tat aaa tac tat gca gaa tcc gtg

Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Tyr Tyr Ala Glu Ser Val

50 55 60

aag ggc cga ttc atc tcc aga gac aat tcc aag aac acc ctg tat

Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr

21/141

65 70 75 80

ctg caa atg aac agc ctg aga gcc gag gac acg gct gtc tat tac tgt

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys

85 90 95

gcg aga gat cgg ggg tcg gtg gag atg gct aca atc gcg gac tac tgg 336 Ala Arg Asp Arg Gly Ser Val Glu Met Ala Thr Ile Ala Asp Tyr Trp 100 105 110

ggc cag gga acc ctg gtc acc gtc tcc tca

Gly Gln Gly Thr Leu Val Thr Val Ser Ser

115

120

<210> 20

<211> 122

<212> PRT

<213> Homo sapiens

<400> 20

Gln Val Gln Leu Ala Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg

1 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Tyr Tyr Ala Glu Ser Val 50 55 60

Lys Gly Arg Phe IIe IIe Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

22/141

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Arg Gly Ser Val Glu Met Ala Thr Ile Ala Asp Tyr Trp 100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 21

⟨211⟩ 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (366)

<223>

<400> 21

cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg 48 Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg 1 5 10 15

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc agc ttc agt agc tat 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg

144
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

35

40

45

gca gtt ata tgg tat gat gga agt tat aaa tac tat gca gaa tcc gtg
Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Tyr Tyr Ala Glu Ser Val
50 55 60

23/141

		cga Arg														240
		atg Met														288
		gat Asp										-	_			336
		gga Gly 115		_	_		_									366
<210 <211 <212 <213	1> : 2> :	22 122 PRT Homo	sapi	iens												
<400)> '	22														
		Gln	Leu	Val 5	Gln	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg	
Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Ser	Phe	Ser 30	Ser	Tyr	
Gly	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	G1y	Lys	G1y	Leu 45	Glu	Trp	Val	
Ala	Val	Ile	Trp	Tyr	Asp	Gly 55	Ser	Tyr	Lys	Tyr	Tyr 60	Ala	Glu	Ser	Val	

24/141

Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Arg Gly Ser Val Glu Met Ala Thr Ile Ala Asp Tyr Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 23

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (366)

<223>

<400> 23

cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg
Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

48

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc agc ttc agt agc tat 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

35

40

45

25/141

gca	gtt	ata	tgg	tat	gat	gga	agt	tat	aaa	tac	tat	gca	gaa	tcc	gtg	192
Ala	Val	Ile	Trp	Tyr	Asp	Gly	Ser	Tyr	Lys	Tyr	Tyr	Ala	Glu	Ser	Val	
	50					55					60					
			ttc													240
	GTÀ	Arg	Phe	11e		Ser	Arg	Asp	Asn		Lys	Asn	Thr	Leu		
65					70					75					80	
ctg	caa	atg	aac	agc	ctg	aga	gcc	gag	gac	acg	gct	gtc	tat	tac	tgt	288
_															Cys .	
				85					90					95		
gcg	aga	gat	cgg	ggg	tcg	gta	gag	atg	gct	aca	atc	gcg	gac	tac	tgg	336
Ala	Arg	Asp	Arg	Gly	Ser	Val	Glu	Met	Ala	Thr	Ile	Ala	Asp	Tyr	Trp	
			100					105					110			
									,							0.00
			acc													366
ату	GIII	115	Thr	Leu	Val	Ш	120	ser	ser							
		110					120									
<210	> 2	24														
<211	.>]	122														
<212	;> I	PRT														
<213	> I	lomo	sapi	ens												
<400		24		17 7	01	a	01	01	a i	77 7	77 7	0 1	T	0.7		
	Val	GIn	Leu	val 5	GIn	Ser	Gly	GLÿ		Val	Val	GIn	Pro		Arg	
1				อ					10					15		
Ser	Leu	Arg	Leu	Ser	Cvs	Ala	Ala	Ser	G1v	Phe	Ser	Phe	Ser	Ser	Tvr	
		- 6	20		, -			25	- - J				30		·· •	
Gly	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	
		35					40					45				

26/141

Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Tyr Tyr Ala Glu Ser Val 50 55 60

Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Arg Gly Ser Val Glu Met Ala Thr Ile Ala Asp Tyr Trp 100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 25

<211> 370

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (369)

<223>

<400> 25

cag gta cag ctg cag cag tca ggt cca gga ctg gtg aag ccc tcg cag
Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
1 5 10 15

48

acc ctc tca ctc acc tgt gcc atc tcc ggg gac agt gtc tct agc aac 96
Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
20 25 30

agt gct gct tgg cac tgg atc agg cag tcc cca tcg aga ggc ctt gag 144

27/141

Ser Ala Ala Trp His Trp Ile Arg Gln Ser Pro Ser Arg Gly Leu Glu 35 40 45

tgg ctg gga agg aca tac tac agg tcc aag tgg tat aat gat tat aca

192

Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Thr

50

55

60

gtg tct gtg aaa agt cga ata acc atc aag cca gac aca tcc aag aac 240 Val Ser Val Lys Ser Arg Ile Thr Ile Lys Pro Asp Thr Ser Lys Asn 65 70 75 80

cag ttc tcc ctg cag ctg aac tct gtg act ccc gag gac acg gct gtg

Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val

85

90

95

tat tac tgt gca aga tca cag gaa gag cac cgg tcg ttg gat gat gct

Tyr Tyr Cys Ala Arg Ser Gln Glu Glu His Arg Ser Leu Asp Asp Ala

100

105

110

ttt gat atc tgg gac cac ggt cac cgt ctc ctc a

Phe Asp Ile Trp Asp His Gly His Arg Leu Leu

115. 120

<210> 26

<211> 123

<212> PRT

<213> Homo sapiens

<400> 26

Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln 1 5 10 15

Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn 20 25 30

28/141

Ser Ala Ala Trp His Trp Ile Arg Gln Ser Pro Ser Arg Gly Leu Glu 35 40 45

Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Thr 50 55 60

Val Ser Val Lys Ser Arg Ile Thr Ile Lys Pro Asp Thr Ser Lys Asn 65 70 75 80

Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val 85 90 95

Tyr Tyr Cys Ala Arg Ser Gln Glu Glu His Arg Ser Leu Asp Asp Ala 100 105 110

Phe Asp Ile Trp Asp His Gly His Arg Leu Leu 115 120

<210> 27

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (360)

<223>

<400> 27

cag gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc 48 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

96

tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe

29/141

20 25 30

tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg 144 Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 gga tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt 192 Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe 50 55 60 cag gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac 240 Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr 65 70 75 80 atg gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt 288 Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95 gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336 Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln 100 105 110 ggg aca atg gtc acc gtc tct tca 360 Gly Thr Met Val Thr Val Ser Ser 115 120

<210> 28

<211> 120

<212> PRT

<213> Homo sapiens

<400> 28

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

30/141

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe 50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr 65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

Gly Thr Met Val Thr Val Ser Ser 115 120

<210> 29

<211> 348

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)...(348)

<223>

<400> 29

cag gtc cag ctg gtg caa tct ggg gct gag gtg agg aag ccc ggg acg Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Arg Lys Pro Gly Thr

48

1 5 10 15

31/141

		atc Ile 20						_	96
		tgg Trp							144
		gac Asp							192
		gtc Val							240
		agc Ser							288
		ttg Leu 100							336
-	tcc Ser 115								348

<210> 30

<211> 116

<212> PRT

<213> Homo sapiens

<400> 30

32/141

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Arg Lys Pro Gly Thr 1 5 10 15

Thr Val Thr Ile Ser Cys Lys Val Ser Gly His Asn Phe Ile Asp His
20 25 30

Tyr Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Asp Trp Met 35 40 45

Gly Leu Ile Asp Pro Glu Asp Gly Gln Thr Lys Tyr Ser Glu Arg Phe 50 55 60

Glu Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Asp Thr Thr Tyr 65 70 75 80

Leu Glu Val Ser Gly Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95

Thr Thr Asp Leu Gly Asp Leu Asn Tyr Trp Gly Gln Gly Thr Leu Val
100 105 110

Thr Val Ser Ser 115

<210> 31

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (366)

<223>

<400> 31

33/141

						gtg Val				48
						ttc Phe				96
						aag Lys				144
						tac Tyr				192
						tcc Ser 75				240
						acg Thr				288
						tcc Ser		_		336
_		acc Thr								366

<210> 32

<211> 122

<212> PRT

34/141

<213> Homo sapiens

<400> 32

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn 20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp 100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 33

<211> 368

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (366)

35/141

<223>

<400)> :	33								
		cag Gln								48
		aag Lys								96
		cac His 35								144
		atc Ile		_	 _		_	-	_	192
		agg Arg								240
		ctg Leu								288
		gaa Glu			 					 336
_		tgg Trp 115				ca				368

36/141

<210> 34

<211> 122

<212> PRT

<213> Homo sapiens

<400> 34

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Ser Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly His
20 25 30

Phe Ile His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Ile Asn Pro Asn Val Gly Val Thr Asn Tyr Ala Gln Lys Phe 50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75 80

Ile Glu Leu Arg Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Val Arg Glu Ser Asp Thr Ala Ala Val Ala Tyr Tyr His Gly Met 100 105 110

Asp Val Trp Gly Gln Trp Ser Pro Ser Leu 115 120

<210> 35

<211> 375

<212> DNA

<213> Homo sapiens

37/141

	<220)>																
٠	<22	1> (CDS															
	<222	2>	(1)	(37	5)													
	<223	3>																
	<400)> ;	35															
	cag	gtc	cag	ctg	gtg	caa	tct	ggg	gga	gac	tgg	gta	aag	cct	ggg	ggg	48	
	Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Gly	Asp	Trp	Val	Lys	${\tt Pro}$	Gly	Gly		
	1				5					10					15			
	tcc	ctt	aga	ctc	tcc	tgt	gca	gcg	tct	gga	ttc	cct	ttc	gct	aat	gcc	96	
	Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Pro	Phe	Ala	Asn	Ala		
				20					25					30				
	tgg	atg	tat	tgg	ttc	cgc	cag	gct	cca	ggg	aag	ggg	ctg	gag	tgg	gtt	144	
	Trp	Met	Tyr	Trp	Phe	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val		
			35					40					45					
	ggc	cgt	att	aaa	agc	aaa	cca	agt	ggt	ggg	gct	aca	gag	ttc	gct	gca	192	
	Gly	Arg	Ile	Lys	Ser	Lys	Pro	Ser	Gly	Gly	Ala	Thr	Glu	Phe	Ala	Ala		
		50					55					60						
	ссс	gtg	gaa	ggt	aga	ttc	agc	atc	tcc	aga	gac	gat	tcg	aaa	aac	acg	240	
	Pro	Val	Glu	G1y	Arg	Phe	Ser	Ile	Ser	Arg	Asp	Asp	Ser	Lys	Asn	Thr		
	65					70					7 5					80		
	atg	gat	ctg	caa	atg	aat	agc	ctg	aga	acc	gac	gac	aca	gcc	gta	tat	288	
						Asn												
					85					90					95	-		
	tat	tgt	acc	aca	gat	tgg	ggt	tcg	ggg	acc	tat	cat	aag	ttt	gct	tta	336	
						Trp												
	•			100	-	-	•		105		•		•	110				
	gat	gtc	tgg	ggc	caa	ggg	aca	atg	gtc	acc	gtc	tct	tca				375	
						Gly		_	_		_							

38/141

115 120 125

<210> 36

<211> 125

<212> PRT

<213> Homo sapiens

<400> 36

Gln Val Gln Leu Val Gln Ser Gly Gly Asp Trp Val Lys Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Phe Ala Asn Ala 20 25 30

Trp Met Tyr Trp Phe Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Gly Arg Ile Lys Ser Lys Pro Ser Gly Gly Ala Thr Glu Phe Ala Ala 50 55 60

Pro Val Glu Gly Arg Phe Ser Ile Ser Arg Asp Asp Ser Lys Asn Thr 65 70 75 80

Met Asp Leu Gln Met Asn Ser Leu Arg Thr Asp Asp Thr Ala Val Tyr 85 90 95

Tyr Cys Thr Thr Asp Trp Gly Ser Gly Thr Tyr His Lys Phe Ala Leu 100 105 110

Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 120 125

<210> 37

<211> 357

39/141

<212		ONA														
<213	3> I	lomo	sapi	iens												
<220)>															
<22]	(> (CDS														
<222	2>	(1)	(357	7)												
<223	3>															
<400)> 3	37														
gtg	cag	ctg	gtg	caa	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	gcc	tca	48
Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala	Ser	
1				5					10					15		
gtg	aag	gtc	tcc	tgt	cag	gct	tct	gga	tac	atg	ttc	acc	ggc	ttc	tat	96
Val	Lys	Val	Ser	Cys	Gln	Ala	Ser	Gly	Tyr	Met	Phe	Thr	Gly	Phe	Tyr	
			20					25					30			
atg	cac	tgg	gtg	cga	cag	gcc	cct	gga	caa	ggg	ctt	gag	tgg	atg	gga	144
Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met	Gly	
		35					40					45				
tgg	atg	aac	act	aac	agt	ggt	gcc	aca	ggc	tat	gca	cac	aag	ttt	cag	192
Trp	Met	Asn	Thr	Asn	Ser	Gly	Ala	Thr	Gly	Tyr	Ala	His	Lys	Phe	Gln	
	50					55					60					
gac	agg	gtc	acc	ctg	acc	agg	gac	acg	tcc	atc	agc	aca	ggc	tac	atg	240
Asp	Arg	Val	Thr	Leu	Thr	Arg	Asp	Thr	Ser	Ile	Ser	Thr	Gly	Tyr	Met	
65					70					75					80	
gag	ctg	ggc	ggc	ctg	aca	tct	gac	gac	acg	gcc	gtg	tat	tat	tgt	gcg	288
Glu	Leu	Gly	G1y	Leu	Thr	Ser	Asp	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	Ala	
				85					90					95		
aga	acc	cag	gag	gtt	tac	tac	tac	gct	atg	gac	gtc	tgg	ggc	caa	ggg	336
Arg	Thr	Gln	Glu	Val	Tyr	Tyr	Tyr	Ala	Met	Asp	Val	Trp	Gly	Gln	Gly	
			100					105					110			

40/141

aca atg gtc acc gtc tct tca Thr Met Val Thr Val Ser Ser 115 357

⟨210⟩ 38

<211> 119

<212> PRT

<213> Homo sapiens

<400> 38

Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser 1 5 10 15

Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe Tyr
20 25 30

Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly 35 40 45

Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe Gln 50 55 60

Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr Met 65 70 75 80

Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln Gly
100 105 110

Thr Met Val Thr Val Ser Ser 115

41/141

(210)>	39														
<21	1>	360														
<212	2>	DNA														,
<213	3>	Homo	sap	iens												
<220)>															
<22	(>	CDS														
<222	2>	(1).	(360))												
<223	3>															
<400)>	39														
cag	gtg	cag	ctg	gtg	caa	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	gcc	48
Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala	
1				5					10					15		
tca	gtg	aag	gtc	tcc	tgt	cag	gct	tct	gga	tac	atg	ttc	acc	ggc	ttc	96
Ser	Val	Lys	Val	Ser	Cys	Gln	Ala	Ser	Gly	Tyr	Met	Phe	Thr	Gly	Phe	
			20					25					30			
tat	atg	cac	tgg	gtg	cga	cag	gcc	cct	gga	caa	ggg	ctt	gag	tgg	atg	144
Tyr	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met	
		35					40					45				
gga	tgg	atg	aac	act	aac	agt	ggt	gcc	aca	ggc	tat	gca	cac	aag	ttt	192
		Met														
	50					55					60					
cag	gac	agg	gtc	acc	ctg	acc	agg	gac	acg	tcc	atc	agc	aca	ggc	tac	240
Gln	Asp	Arg	Val	Thr	Leu	Thr	Arg	Asp	Thr	Ser	Ile	Ser	Thr	Gly	Tyr	
65					70					75					80	
atg	gag	ctg	ggc	ggc	ctg	aca	tct	gac	gac	acg	gcc	gtg	tat	tat	tgt.	288
		Leu			_			-	_	_	_				•	200
			•	85			-	•	90					95	•	

42/141

gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336
Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

ggg aca atg gtc acc gtc tct tca

Gly Thr Met Val Thr Val Ser Ser

115 120

<210> 40

<211> 120

<212> PRT

<213> Homo sapiens

<400> 40

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe 50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr 65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

43/141

Gly Thr Met Val Thr Val Ser Ser 115 120

<210> 41 <211> 360 <212> DNA <213> Homo sapiens <220> <221> **CDS** <222> (1)...(360)<223> <400> 41 cag gtc cag ctg gtg caa tet ggg gct gag gcg aag aag cet ggg gcc 48 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Ala Lys Lys Pro Gly Ala 1 5 10 15 tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc 96 Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe 20 25 30 144 tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 192 gga tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe 50 55 60

atg gag ctg ggc ctg aca tct gac gac acg gcc gtg tat tat tgt 288

75

cag gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr

70

65

240

80

44/141

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336 Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln 100 105 110

ggg acc acg gtc acc gtc tcc tca

Gly Thr Thr Val Thr Val Ser Ser

115 120

<210> 42

<211> 120

<212> PRT

<213> Homo sapiens

<400> 42

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Ala Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe 50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr 65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95

45/141

Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

Gly Thr Thr Val Thr Val Ser Ser 115 120

<210> 43

<211> 369

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (369)

<223>

<400> 43

cag gtc cag ctg gtg caa tct ggg gga ggc ttg gta cag cca ggg cgg 48
Gln Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Pro Gly Arg
1 5 10 15

96

tcc ctg aga ctc tcc tgt aca act tct gga ttc acc ttt agt gat tat
Ser Leu Arg Leu Ser Cys Thr Thr Ser Gly Phe Thr Phe Ser Asp Tyr
20 25 30

gct ttg agc tgg gtc cgc cag gct cca ggg agg ggg ctg gag tgg gta 144
Ala Leu Ser Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Val
35 40 45

ggt ttc att aga aat aaa att tat ggt ggg aca aca gat tac gcc gca 192 Gly Phe Ile Arg Asn Lys Ile Tyr Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60

tct gtg aaa ggc aga ttc acc atc tca aga gat gat tcc aaa agt atc 240 Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ile

46/141

65 70 75 80

gcc tat ctg caa atg aac agc ctg aaa acc gag gac tca gcc gtc tat

Ala Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Ser Ala Val Tyr

85 90 95

tac tgt act aga gat tcg ggt gtg gtg act gct gcc tac ttt gac tac

Tyr Cys Thr Arg Asp Ser Gly Val Val Thr Ala Ala Tyr Phe Asp Tyr

100

105

110

tgg ggc cag ggc acc ctg gtc acc gtc tcc tca

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

115
120

<210> 44

<211> 123

<212> PRT

<213> Homo sapiens

<400> 44

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Pro Gly Arg

1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Thr Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30

Ala Leu Ser Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Val 35 40 45

Gly Phe Ile Arg Asn Lys Ile Tyr Gly Gly Thr Thr Asp Tyr Ala Ala 50 55 60

Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ile 65 70 75 80

47/141

Ala Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Ser Ala Val Tyr 85 90 95

Tyr Cys Thr Arg Asp Ser Gly Val Val Thr Ala Ala Tyr Phe Asp Tyr
100 105 110

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 45

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (366)

<223>

<400> 45

cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg
Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg

5 10 15

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttc agt agc aat

96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn

20
25
30

48

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val

35

40

45

gca gtt ata tgg tat gat gga agt aat aaa tac tat gca gac tcc gtg

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val

50 55 60

48/141

			ttc Phe													240
			aac Asn													288
			cac His 100													336
			acc Thr													366
<210 <211 <212 <213	l> 1 2> I	16 122 PRT Homo	sapi	lens												
<400 Gln 1		46 Gln	Leu	Val 5	Gln	Ser	Gly	Gly	Gly 10	Val	Val	Gln	Pro	Gly 15	Arg	
Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Asn	
Gly	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val	
Ala	Val	Ile	Trp	Tyr	Asp	Gly 55	Ser	Asn	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Val	

49/141

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ser Ser 115 120

<210> 47

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (360)

<223>

<400> 47

cag gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

48

tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc 96
Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg

144

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met

35

40

45

50/141

gga	t.øø	atg	aac	act	aac	agt.	øøt.	gee	aca	ማ ማር	tat.	gca	cac	aao	ttt	192
		Met														102
cag	gac	agg	gtc	acc	ctg	acc	agg	gac	acg	tcc	atc	agc	aca	ggc	tac	240
Gln 65	Asp	Arg	Val	Thr	Leu 70	Thr	Arg	Asp	Thr	Ser 75	Ile	Ser	Thr	Gly	Tyr 80	
		ctg								-					_	288
Met	Glu	Leu	Gly	G1y 85	Leu	Thr	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
		acc Thr	_		_				_	_	_	_				336
	6		100	010	,	-,-	-,-	105	1110	Me	пор	, al	110	u 1,	G111	
		atg Met														360
		115					120									
<210)> 4	18														
<211		20														
<212 <213		PRT Iomo	sapi	ens.												
<400	> 4	18							•							
	Val	Gln	Leu		G1n	Ser	Gly	Ala		Val	Lys	Lys	Pro		Ala	
1				5					10					15		
Ser	Val	Lys	Val 20	Ser	Cys	Gln	Ala	Ser 25	Gly	Tyr	Met	Phe	Thr 30	Gly	Phe	
Гуr	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met	

40

45

35

51/141

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe 50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr 65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

Gly Thr Met Val Thr Val Ser Ser 115 120

<210> 49

<211> 353

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (351)

<223>

<400> 49

cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc tca gtg
Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val
1 5 10 15

48

aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc tat atg 96
Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe Tyr Met
20 25 30

cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg gga tgg 144

52/141

His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Trp 35 40 45

atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt cag gac

Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe Gln Asp
50 55 60

agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac atg gag

Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr Met Glu

70

75

80

ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt gcg aga 288 Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg 85 90 95

acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa ggg aca

Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln Gly Thr

100

105

110

atg gtc acc gtc tct tc 353
Met Val Thr Val Ser
115

<210> 50

<211> 117

<212> PRT

<213> Homo sapiens

<400> 50

Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val 5 10 15

Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe Tyr Met 20 25 30

53/141

His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Trp 35 40 45

Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe Gln Asp 50 55 60

Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr Met Glu 65 70 75 80

Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg 85 90 95

Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln Gly Thr
100 105 110

Met Val Thr Val Ser 115

<210> 51

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)...(360)

<223>

<400> 51

cag gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc 96 Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe

54/141

20 25 30

tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg 144 Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45 gga tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt 192 Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe 50 55 60 cag gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac 240 Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr 65 70 75 80 atg gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt 288 Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95 gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336 Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln 100 105 110 gga acc ctg gtc acc gtc tct tca 360 Gly Thr Leu Val Thr Val Ser Ser

<210> 52

<211> 120

<212> PRT

<213> Homo sapiens

115

<400> 52

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

120

55/141

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe 50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr 65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 53

<211> 357

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (357)

<223>

<400> 53

gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc tca Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser 1 5 10 15 48

56/141

	aag Lys		Ser	_	_			Gly					Gly			96
o+~		+~~	20	0.550		~~~	oo+	25		~~~	a++		30	o+~	~~~	144
	cac His	Trp					Pro					Glu				144
		35					40					45				100
	atg Met					Gly					Ala					192
	50					55					60					
	agg Arg															240
65					70					7 5					80	
	ctg Leu															288
		,	,	85			•	-	90			•	•	95		
_	acc	-		-												336
Arg	Thr	GIN	100	vai	lyr	lyr	lyr	105	мег	ASP	vai	Leu	110	Pro	Arg	
gac	aat	ggt	cac	cgt	ctc	ttc										357
Asp	Asn	Gly 115	His	Arg	Leu	Phe										

<210> 54

<211> 119

<212> PRT

<213> Homo sapiens

<400> 54

57/141

Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser 1 5 10 15

Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe Tyr
20 25 30

Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly 35 40 45

Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe Gln 50 55 60

Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr Met 65 70 75 80

Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala 85 90 95

Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Leu Gly Pro Arg
100 105 110

Asp Asn Gly His Arg Leu Phe 115

<210> 55

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (342)

<223>

<400> 55

58/141

	att Ile							_		48
	agg Arg									96
	aac Asn									144
	cct Pro 50						_		_	192
	gac Asp									240
	agc Ser									288
	tat Tyr									336
aaa Lys										342

<210> 56

<211> 114

<212> PRT

59/141

<213> Homo sapiens

<400> 56

Asp Ile Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110

Lys Arg

<210> 57

<211> 337

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (336)

60/141

<223>

<400)> {	57															
gat	ctt	gtg	atg	act	cag	tct	cca	gac	tcc	ctg	gct	gtg	tct	ctg	ggc		48
Asp	Leu	Val	Met	Thr	Gln	Ser	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	Gly		
1				5					10					15			
gag	agg	gcc	acc	atc	aac	tgc	aag	tcc	agc	cag	agt	gtt	tta	tac	agc		96
Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Val	Leu	Tyr	Ser		
			20					25					30				
tcc	aac	aat	aag	aac	tac	tta	gct	tgg	cac	cag	cag	aaa	cca	gga	cag		144
Ser	Asn	Asn	Lys	Asn	Tyr	Leu	Ala	Trp	His	Gln	Gln	Lys	Pro	Gly	Gln		
		35					40	•				45					
cct	cct	aaa	ctg	ctc	att	tac	tgg	gca	tct	acc	cgg	gaa	tcc	ggg	gtc		192
Pro		Lys	Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Thr	_	Glu	Ser	Gly	Val		
	50					55					60						
	_	_		agt													240
	Asp	Arg	Phe	Ser		Ser	GLy	Ser	Gly		Asp	Phe	Thr	Leu			
65					70					75					80		
																	000
	_		_	cag	_	_	_		_	_			_	_			288
TIE	Ser	Inr	Leu	Gln	Ala	GIU	Asp	vaı		vaı	ıyr	lyr	cys		Gin		
				85					90					95			
+0+	+0+	og+	a a t	oot.	000	200	+ +c	aac	000	aac	200	990	at c	ro+	atc	9	337
		-		Pro												a	331
ı yı.	1 y T	DGI.	100	110	110	1111	1 116	105	GTII	ату	TIII	гуs	110	ush	TTE		
			100					100					110				

<210> 58

<211> 112

<212> PRT

<213> Homo sapiens

61/141

<400> 58

Asp Leu Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp His Gln Gln Lys Pro Gly Gln 35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Asp Ile 100 105 110

<210> 59

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (342)

<223>

<400> 59

gat att gtg atg act cag tct cca gac tcc ctg gct gtg tct ctg ggc

62/141

Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly	
					aac Asn											96
					tac Tyr											144
					att Ile							_			_	192
					ggc Gly 70											240
					gct Ala											288
					ccg Pro	_						_		_		336
aaa Lys	cgt Arg															342

⟨210⟩ 60

<211> 114

<212> PRT

<213> Homo sapiens

63/141

<400> 60

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110

Lys Arg

<210> 61

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (342)

<223>

64/141

<400)> 6	31														
	att Ile															48
1	110	, 632	1100	5	0111	201	120	Dou	10	200	110			15	-1,	
gag	ccg	gcc	tcc	atc	tcc	tgc	agg	tct	agt	cag	agc	ctc	ttg	gat	agt	96
Glu	Pro	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	Gln	Ser	Leu	Leu	Asp	Ser	
			20					25					30			
gat	gat	gga	aac	acc	tat	ttg	gac	tgg	tac	ctg	cag	aag	cca	ggg	cag	144
Asp	Asp	Gly	Asn	Thr	Tyr	Leu	Asp	Trp	Tyr	Leu	Gln	Lys	Pro	G1y	Gln	
		35					40					45				
tct	cca	cag	ctc	cta	atc	tat	acg	ctt	tcc	tat	cgg	gcc	tct	gga	gtc	192
Ser	Pro	Gln	Leu	Leu	Ile	Tyr	Thr	Leu	Ser	Tyr	Arg	Ala	Ser	Gly	Val	
	50					55	-				60					
cca	gac	agg	ttc	agt	ggc	agt	ggg	tca	ggc	act	gat	ttc	aca	ctg	aaa	240
Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Lys	
65					70					75					80	
atc	agc	agg	gtg	gag	gct	gag	gat	gtt	gga	gtt	tat	tac	tgc	atg	caa	288
Ile	Ser	Arg	Val	Glu	Ala	Glu	Asp	Val	Gly	Val	Tyr	Tyr	Cys	Met	Gln	
				85					90					95		
cgt	ata	gag	ttt	cct	tac	act	ttt	ggc	cag	ggg	acc	aaa	gtg	gat	atc	336
Arg	Ile	Glu	Phe	Pro	Tyr	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Asp	Ile	
			100					105					110			
aaa	cgt															342
	Arg															

<210> 62

65/141

<211> 114

<212> PRT

<213> Homo sapiens

<400> 62

Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp Ser 20 25 30

Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln 35 40 45

Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Tyr Arg Ala Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys 65 70 75 80

Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln 85 90 95

Arg Ile Glu Phe Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Asp Ile 100 105 110

Lys Arg

<210> 63

<211> 342

<212> DNA

<213> Homo sapiens

<220>

66/141

<221> **CDS** <222> (1)...(342)<223> <400> 63 48 gat gtt gtg atg act cag tct cca ctc tcc ctg ccc gtc acc cct gga Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly 5 10 15 1 gag ccg gcc tcc atc tcc tgc agg tct agt cag agc ctc ttg gat agt 96 Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp Ser 20 25 30 144 gat gat gga aac acc tat ttg gac tgg tac ctg cag aag cca ggg cag Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln 35 40 45 192 tet eea eag ete eta ate tat aeg ett tee tat egg gee tet gga gte Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Tyr Arg Ala Ser Gly Val 50 55 60 240 cca gac agg ttc agt ggc agt ggg tca ggc act gat ttc aca ctg aaa Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys 70 75 80 65 atc agc agg gtg gag gct gag gat gtt gga gtt tat tac tgc atg caa 288 Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln 85 90 95 336 cgt ata gag ttt cct tac act ttt ggc cag ggg acc aag gtg gaa atc Arg Ile Glu Phe Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110

aaa cgt Lys Arg

67/141

<210> 64

<211> 114

<212> PRT

<213> Homo sapiens

<400> 64

Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp Ser 20 25 30

Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln 35 40 45

Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Tyr Arg Ala Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys 75 80

Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln 85 90 95

Arg Ile Glu Phe Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

Lys Arg

<210> 65

<211> 339

<212> DNA

68/141

<213	3>]	Homo	sapi	iens										
<220 <221 <222 <223	l> (2>	CDS (1)	(339	9)										
<400)>	65												
		gtg Val					_		_					48
		gcc Ala						-		_	_	_		96
		gga Gly 35											1	44
		cag Gln							_				1	92
		agg Arg									_		2	40
		agg Arg								_			2	88
		caa Gln											3	36

69/141

cgt 339

Arg

<210> 66

<211> 113

<212> PRT

<213> Homo sapiens

<400> 66

Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp Ser 20 25 30

Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln 35 40 45

Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Tyr Arg Ala Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys 65 70 75 80

Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln 85 90 95

Ala Thr Gln Leu Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105 110

Arg

70/141

<210> 67 <211> 342 <212> DNA <213> Homo sapiens <220> <221> **CDS** <222> (1)...(342)<223> <400> 67 gat att gtg atg act cag tet eca gae tee etg get gtg tet etg gge 48 Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly 1 5 10 15 gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96 Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30 144 tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45 cct cct aaa ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg gtc 192 Pro Pro Lýs Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60 240 cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80 288 atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95 tat tat agt act cct ccg acg ttc ggc caa ggg acc aag ctg gag atc 336

71/141

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile 100 105 110

aaa cgt 342

Lys Arg

<210> 68

<211> 114

<212> PRT

<213> Homo sapiens

<400> 68

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile 100 105 110

Lys Arg

72/141

<21	<0>	69														
<21	1>	342														
<21	2>	DNA														
<21	3>	Homo	sap	iens												
<220	0>															
<22	1>	CDS														
<222	2>	(1).	. (34	2)												
<22:	3>															
<400	>	69														
gat	gtt	gtg	atg	act	cag	act	cca	gac	tcc	ctg	gct	gtg	tct	ctg	ggc	48
Asp	Val	Val	Met	Thr	Gln	Thr	Pro	Asp	Ser	Leu	Ala	Val	Ser	Leu	G1y	
1				5					10					15		
gag	agg	gcc	acc	atc	aac	tgc	aag	tcc	agc	cag	agt	gtt	tta	cac	aag	96
Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	Gln	Ser	Val	Leu	His	Lys	
			20					25					30			
																•
		aat														144
Ser	Asn	Asn	Lys	Asn	Tyr	Leu		Trp	Tyr	Gln	Gln	Lys	Pro	G1y	Gln	
		35					40					45				
		aaa														192
Pro		Lys	Leu	Leu	lle		Trp	Ala	Ser	Thr		Glu	Phe	Gly	Val	
	50					55					60					
+	~~~		-+-								4-		,	a		0.40
		cga														240
65	ASP	Arg	Leu	ser.		ser	дту	ser	Ата		ASP	Pne	ınr	Leu		
UU					70					75					80	
atc	age	agc	cta	ഭമന	art	ແລລ	asc	ata	സാ	ata	to+	tac	† c+	nan	622	288
		Ser														400

73/141

85 90 95

tat tat gct gtt cct ctc acc ttc ggc caa ggg aca cga ctg gag att

Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile

100

105

110

aaa cgt Lys Arg

<210> 70

<211> 114

<212> PRT

<213> Homo sapiens

<400> 70

Asp Val Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu His Lys 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val 50 55 60

Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile

74/141

100 105 110

Lys Arg

65

70

<210> 71 <211> 342<212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)...(342)<223> <400> 71 48 gat att gtg atg acc cag acg cca gac tcc ctg gct gtg tct ctg ggc Asp Ile Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly 1 5 10 15 96 gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30 tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144 Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45 cct cct aaa ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg gtc 192 Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60 240 cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr

75

80

75/141

			_								tat Tyr					288
tat Tyr	_										acc Thr					336
aaa Lys																342
<210 <211 <212 <213	> :	72 114 PRT Homo	sapi	iens												
<400 Asp 1		72 Val	Met	Thr 5	Gln	Thr	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly	
Glu .	Arg	Ala	Thr 20	Ile	Asn	Cys	Lys	Ser 25	Ser	Gln	Ser	Val	Leu 30	Tyr	Ser	
Ser .	Asn	Asn 35	Lys	Asn	Tyr	Leu	Ala 40	Trp	Tyr	Gln	Gln	Lys 45	Pro	Gly	Gln	
Pro :	Pro 50	Lys	Leu	Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	G1u	Ser	Gly	Val	
Pro .	Asp	Arg	Phe	Ser	Gly 70	Ser	Gly	Ser	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80	

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln

76/141

85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Ser Gln Gly Thr Lys Val Glu Ile 100 105 110

Lys Arg

<210> 73

⟨211⟩ 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (342)

<223>

<400> 73

gat gtt gtg atg act cag tct cca gac tcc ctg act gtg tct ctg ggc
Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Thr Val Ser Leu Gly
1 5 10 15

48

96

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag

144

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln

35

40

45

cct cct aag ctg ctc att tac tgg gca cct acc cgg gaa tcc ggg gtc

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Pro Thr Arg Glu Ser Gly Val

50 55 60

77/141

cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80 288 atc agc agc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95 336 tat tat agt act cct ccg acg ttc ggc cag ggg acc aag gtg gaa atc Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110 342 aaa cgt Lys Arg

<210> 74

<211> 114

<212> PRT

<213> Homo sapiens

<400> 74

Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Thr Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Pro Thr Arg Glu Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr

78/141

65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

Lys Arg

<210> 75

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (342)

<223>

<400> 75

gat gtt gtg atg act cag tct cca gac tcc ctg gct gtg tct ctg ggc
Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

48

96

gag agg gcc acc atc aac tgc aag tcc agc cag ggt gtt tta cac aag
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Gly Val Leu His Lys
20 25 30

tcc aac aat aag aac tat tta gct tgg tac cag cag aaa cca gga cag

144

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln

35

40

45

cct cct aaa ttg ctc att cac tgg gct tct acc cgg gaa ttc ggg gtc 192

79/141

Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val 50 55 60

cct gac cga ctc agt ggc agc ggg tct gcg aca gat ttc act ctc acc

Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr

70

75

80

atc agc agc ctg cag gct gaa gac gtg gca gtc tat tac tgt cag caa 288

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

tat tat gct gtt cct ctc acc ttc ggc caa ggg aca cga ctg gag att

Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile

100

105

110

aaa cgt Lys Arg

<210> 76

<211> 114

<212> PRT

<213> Homo sapiens

<400> 76

Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Gly Val Leu His Lys
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val

80/141

50 55 60

Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile 100 105 110

Lys Arg

<210> 77

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (342)

<223>

<400> 77

gat att gtg atg acc cag acg cca gac tcc ctg gct gtg tct ctg ggc 48
Asp Ile Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144 Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln

81/141

35 40 45

cct cct aaa ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg gtc 192 Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60 cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80 atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa 288 Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95 tat tat agt act cct ccg acg ttc ggc caa ggg acc aag gtg gaa atc 336 Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110 342 aaa cgt

aaa cgt
Lys Arg

<210> 78

<211> 114

<212> PRT

<213> Homo sapiens

<400> 78

Asp Ile Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln

82/141

35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110

Lys Arg

<210> 79

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (342)

<223>

<400> 79

gat gtt gtg atg act cag tct cca gac tcc ctg gct gtg cct ctg ggc

Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Pro Leu Gly

1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta cac aag

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu His Lys

20 25 30

83/141

		aag Lys									144
		ttg Leu									192
_	_	ctc Leu	-								240
	_	ctg Leu	_	_	_		_				288
	_	gtt Val 100									336
cgt Arg											342

<210> 80

<211> 114

<212> PRT

<213> Homo sapiens

<400> 80

Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Pro Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu His Lys

84/141

20 25 30

Ser Asn Asn Lys Asn His Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45

Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val 50 55 60

Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Asn Ser Leu Gln Ala Glu Asp Ala Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile 100 105 110

Lys Arg

<210> 81

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (342)

<223>

<400> 81

gat att gtg atg act cag tct cca gac tcc ctg gct gtg tct ctg ggc
Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly

5 10 15

48

85/141

gag	agg	gcc	acc	atc	aac	tgc	aag	tcc	agc	cag	agt	gtt	tta	tac	agc	96
Glu	Arg	Ala	Thr 20	Ile	Asn	Cys	Lys	Ser 25	Ser	Gln	Ser	Val	Leu 30	Tyr	Ser	
			_				gct Ala 40									144
			_				tgg Trp	_				_			_	192
							ggg Gly									240
							gat Asp									288
							ttc Phe									336
aaa Lys	_															342

<210> 82

<211> 114

<212> PRT

<213> Homo sapiens

<**400**> 82

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly

86/141

1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Asp Ile 100 105 110

Lys Arg

<210> 83

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (342)

<223>

<400> 83

gat gtt gtg atg act cag tct cca gac tcc ctg gct gtg tct ctg ggc

87/141

Asp 1	Val	val	Met	Thr 5	Gin	Ser	Pro	Asp	Ser 10	Leu	Ala	val	ser	Leu 15	Gly		
		_							agc Ser							96	3
									tac Tyr							144	1
									tct Ser							192	2
									gcg Ala							240)
									gca Ala 90							288	3
									caa Gln							336	3
aaa Lys	cgt Arg															342	2

<210> 84

<211> 114

<212> PRT

<213> Homo sapiens

88/141

<400> 84

Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val 50 55 60

Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile 100 105 110

Lys Arg

⟨210⟩ 85

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (342)

<223>

89/141

<400)> (35														
Asp			atg Met	Thr					Ser					Leu		48
1				5		4		4	10				44.	15		0.0
			acc Thr												_	96
			20					25					30			
			aag													144
per.	ASII	35	Lys	ASII	Tyr	Leu	40	тър	Tyr	GIII	GIII	45	LTO	GIY	GIII	
cct	cct	aaa	ctg	ctc	att	tac	tgg	gca	tct	acc	cgg	gaa	tcc	ggg	gtc	192
Pro	Pro 50	Lys	Leu	Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val	
			 .					1 .1		.0.	. 1	.	,	1		0.40
			ttc Phe													240
65					70				-	75					80	
atc	agc	acc	ctg	cag	gct	gaa	gat	gtg	gca	gtt	tat	tac	tgt	cag	caa	288
Ile	Ser	Thr	Leu	Gln 85	Ala	Glu	Asp	Val	Ala 90	Val	Tyr	Tyr	Cys	Gln 95	Gln	
tat	tat	agt	act	cct	ccg	acg	ttc	ggc	caa	ggg	acc	aag	gtg	gaa	atc	336
Tyr	Tyr	Ser	Thr 100	Pro	Pro	Thr	Phe	Gly 105	Gln	Gly	Thr	Lys	Val 110	Glu	Ile	
	a ==+						·									940
aaa Lys	Arg															342
-	_															

<210> 86

90/141

<211> 114

<212> PRT

<213> Homo sapiens

<400> 86

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110

Lys Arg

<210> 87

<211> 327

<212> DNA

<213> Homo sapiens

<220>

91/141

<221> **CDS** <222> (1)...(327)<223> <400> 87 48 gaa att gtg ctg act cag tct cca ggc acc ctg tct ttg tct cca ggg Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly 5 10 15 1 96 gaa aga gcc acc ctc tcc tgc aag gcc agt cag agt ttt agc agc aac Glu Arg Ala Thr Leu Ser Cys Lys Ala Ser Gln Ser Phe Ser Ser Asn 20 25 30 tac tta gcc tgg tac cag cag aaa cct ggc cag gct ccc agg ctg ctc 144 Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45 atc tat ggt gca tcc agc agg gcc act ggc atc cca gac agg ttc agt 192 Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60 240 ggc agt aaa tot ggg aca gac tto act oto acc atc agc aga otg gag Gly Ser Lys Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 75 65 70 80 cct gaa gat ttt gca gtg tat tac tgt cag cag tat gtt acc tca ccg 288 Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Val Thr Ser Pro

tac act ttt ggc ctg ggg acc aag gtg gag atc aaa cgt

Tyr Thr Phe Gly Leu Gly Thr Lys Val Glu Ile Lys Arg

100

105

90

95

<210> 88 <211> 109

85

92/141

<212> PRT

<213> Homo sapiens

<400> 88

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Lys Ala Ser Gln Ser Phe Ser Ser Asn 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser 50 55 60

Gly Ser Lys Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu 65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Val Thr Ser Pro 85 90 95

Tyr Thr Phe Gly Leu Gly Thr Lys Val Glu Ile Lys Arg 100 105

<210> 89

<211> 325

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (324)

<223>

93/141

							•	00/	т.	± 1						
<400)> 8	39														
gat	gtt	ggg	atg	aca	cag	tct	tca	gcc	acc	cta	tct	ttg	tct	cca	ggg	48
Asp	Val	Gly	Met	Thr	${\tt Gln}$	Ser	Ser	Ala	Thr	Leu	Ser	Leu	Ser	${\tt Pro}$	Gly	
1				5					10					15		
gaa	aga	gcc	acc	ctc	tcc	tgc	agg	gcc	agt	cag	agg	att	agc	agt	tat	96
Glu	Arg	Ala	Thr	Leu	Ser	Cys	Arg	Ala	Ser	Gln	Arg	Ile	Ser	Ser	Tyr	
			20					25					30			
tta	gcc	tgg	tac	caa	cag	aaa	cct	ggc	cag	gct	ccc	aga	ctc	ctc	atc	144
Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ala	Pro	Arg	Leu	Leu	Ile	
		35					40					45				
tat	gag	gca	gtc	aaa	agg	gcc	act	ggc	atc	cca	gcc	agg	ttc	agt	ggc	192
Tyr	Glu	Ala	Val	Lys	Arg	Ala	Thr	Gly	Ile	Pro	Ala	Arg	Phe	Ser	Gly	
	50					55					60					
agt	ggg	tct	ggg	aca	gag	ttc	acc	ctc	acc	atc	aac	agc	cta	gag	cct	240
Ser	Gly	Ser	Gly	Thr	Glu	Phe	Thr	Leu	Thr	Ile	Asn	Ser	Leu	Glu	Pro	
65					70					75					80	
gaa	gat	ttt	gca	gtt	tat	ttc	tgt	cag	cag	cgt	ggc	agc	tgt	cct	ggg	288
Glu	Asp	Phe	Ala	Val	Tyr	Phe	Cys	Gln	Gln	Arg	Gly	Ser	Cys	Pro	Gly	
				85					90					95		
acg	ttc	ggc	cag	ggg	acc	aag	ctg	gag	atc	aaa	cgt	t				325

acg ttc ggc cag ggg acc aag ctg gag atc aaa cgt t

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg

100

105

<210> 90

<211> 108

<212> PRT

<213> Homo sapiens

<400> 90

94/141

Asp Val Gly Met Thr Gln Ser Ser Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Arg Ile Ser Ser Tyr 20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45

Tyr Glu Ala Val Lys Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly 50 55 60

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Asn Ser Leu Glu Pro 65 70 75 80

Glu Asp Phe Ala Val Tyr Phe Cys Gln Gln Arg Gly Ser Cys Pro Gly 85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg 100 105

<210> 91

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (366)

<223>

<400> 91

cag gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala

. 48

1 5 10 15

95/141

gtg Val								96
atg Met								144
tgg Trp 50								192
ggc Gly								240
gag Glu								288
 aga Arg								336
 cag Gln								366

<210> 92

<211> 122

<212> PRT

<213> Homo sapiens

<400> 92

96/141

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Lys Tyr Ala Gln Lys Phe 50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Gly Tyr Asp Ile Leu Thr Gly Tyr Gly Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 93

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (360)

<223>

<400> 93

97/141

			ctg Leu							48
	_		ctc Leu 20					_	_	96
			tgg Trp							144
la			aag Lys							 192
/S			ttc Phe							240
			aac Asn							288
			cgt Arg 100							336
		_	gtc Val	_						360

<210> 94

<211> 120

<212> PRT

98/141

<213> Homo sapiens

<400> 94

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45

Ala Asn Ile Lys Gln Asp Gly Ser Glu Lys Tyr Tyr Val Asp Ser Val 50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80

Leu Gln Met Asn Thr Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Arg Leu Trp Thr Gln Gly Phe Phe Asp Tyr Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser 115 120

<210> 95

<211> 339

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (339)

99/141

<223>

<400)> 9	95															
gac	atc	gtg	atg	acc	cag	tct	cca	gac	tcc	ctg	gct	gtg	tct	ctg	ggc	4	8
Asp	Ile	Val	Met	Thr	Gln	${\tt Ser}$	Pro	Asp	${\tt Ser}$	Leu	Ala	Val	Ser	Leu	Gly		
1				5					10					15			
gag	agg	gcc	acc	atc	aac	tgc	aag	tcc	agc	cag	agt	gtt	tta	tac	agc	9	6
Glu	Arg	Ala	Thr	Ile	Asn	Cys	Lys	Ser	Ser	${\tt Gln}$	Ser	Val	Leu	Tyr	Ser		
			20					25					30				
tcc	aac	aat	aag	aac	tac	tta	gct	tgg	tac	cag	cag	aaa	cca	gga	cag	14	4
Ser	Asn	Asn	Lys	Asn	Tyr	Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln		
		35					40					45					
cct	cct	aac	ctg	ctc	att	tac	tgg	gca	tct	acc	cgg	gaa	tcc	ggg	gtc	19	2
Pro	Pro	Asn	Leu	Leu	Ile	Tyr	Trp	Ala	Ser	Thr	Arg	Glu	Ser	Gly	Val		
	50					55					60						
cct	gac	cga	ttc	agt	ggc	agc	ggg	tct	ggg	aca	gat	ttc	act	ctc	acc	24	0
Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr		
65					70					75		-			80		
atc	agc	agc	ctg	cag	gct	gaa	gat	gtg	gca	gtt	tat	tac	tgt	cag	caa	28	8
Ile	Ser	Ser	Leu	Gln	Ala	Glu	Asp	Val	Ala	Val	Tyr	Tyr	Cys	Gln	Gln		
				85					90					95			
tat	tat	act	act	ccg	tgg	acg	ttc	ggc	caa	ggg	acc	aag	gtg	gaa	atc	33	6
Tyr	Tyr	Thr	Thr	Pro	Trp	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile		
			100					105					110				
aaa																339	9
Lys																	

100/141

<210> 96

<211> 113

<212> PRT

<213> Homo sapiens

<400> 96 ·

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser 20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45

Pro Pro Asn Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr 65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95

Tyr Tyr Thr Thr Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110

Lys

<210> 97

<211> 23

<212> DNA

101/141

/	n	2	Λ	`
\	4	4	v	1

<223> Artificially Synthesized Primer Sequence

<400> 97

caggtkcagc tggtgcagtc tgg

23

- <210> 98
- ⟨211⟩ 23
- <212> DNA
- <213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 98

caggtccagc ttgtgcagtc tgg

23

- <210> 99
- <211> 23
- <212> DNA
- <213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 99

saggtccagc tggtacagtc tgg

23

- <210> 100
- <211> 23
- <212> DNA
- <213> Artificial

	$1\ 0\ 2\ /\ 1\ 4\ 1$	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	100	
caratg	cagc tggtgcagtc tgg	23
<210>	101	
<210>	24	
<212>	DNA AntiGini I	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	101	
cagatca	acct tgaaggagtc tggt	24
/010 \	100	
<21 0 >	102	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	102	
caggtca	acct tgarggagtc tggt	24

<210> 103 <211> 23 <212> DNA <213> Artificial

103/141

	103/141	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	103	
gargtg	cagc tggtggagtc tgg	23
(010)	104	
<210>	104	
<211>		
	DNA	
(213)	Artificial	
<220>		
	Artificially Synthesized Primer Sequence	
,,		
<400>	104	
caggtg	cagc tggtggagtc tgg	23
<210>	105	
<211>	23	
<212>		
<213>	Artificial	
<220>		
	Artificially Synthesized Primer Sequence	
14407	In olliotally Symphosized Illmer Sequence	
<400>	105	
gaggtg	cagc tgttggagtc tgg	23

<210> 106 <211> 24 <212> DNA <213> Artificial

104/141

<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	106	
cagstgo	cage tgcaggagte ggge	24
<210>	107	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	107	
caggtg	cagc tacagcagtg gggc	24
<210>	108	
<211>	24	
<212>		
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>		
gargtg	cagc tggtgcagtc tgga	24
<210>	109	
<211>	24	

<212> DNA

•	$1\ 0\ 5\ /\ 1\ 4\ 1$	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	109	
caggta	cagc tgcagcagtc aggt	24
<210>	110	
<211>	23	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	110	
caggts	cage tggtgcaate tgg	~ ~
	oago tgg tg caa to tgg	23
		23
/010\		23
<210>	111	23
<211>	111 24	23
<211> <212>	111 24 DNA	23
<211> <212>	111 24	23
<211> <212> <213>	111 24 DNA	23
<211> <212> <213> <220>	111 24 DNA Artificial	23
<211> <212> <213> <220>	111 24 DNA	23
<211> <212> <213> <223> <223>	111 24 DNA Artificial Artificially Synthesized Primer Sequence	23
<211><212><213><213><220><223><400>	111 24 DNA Artificial Artificially Synthesized Primer Sequence 111	23

<210> 112 <211> 24 <212> DNA <213> Artificial

106/141

<220>		
<223>	Artificially Synthesized Primer Sequence	
\0207	na tilicially Synthesized filmer Sequence	
<400>	112	
	gacg gtgaccattg teec	24
-88		21 .
<210>	113	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	113	
tgagga	gacg gtgaccgtgg tccc	24
<210>	114	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	114	
racatc	caga tgacccagtc tcca	24
/01 / \	442	
<210>	115	
<211>	24	
<212>	DNA	

 $\langle 213 \rangle$ Artificial

107/141

<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	115	
gmcatc	cagt tgacccagtc tcca	24
/010 \	110	
<210>	116	
<211>	24	
<212>		
<213>	Artificial	
<220>		
	Artificially Synthesized Primer Sequence	
\443/	Artificially Synthesized Frimer Sequence	
<400>	116	
gccatc	crga tgacccagtc tcca	24
_		
<210>	117	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	117	
gtcatc	tgga tgacccagte teca	24
<210>	118	
<211>	24	
<212>	DNA	
<213>	Artificial	

108/141

<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	118	
gatatt	gtga tgacccagac tcca	24
<210>	119	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	110	
	gtga tgactcagtc tcca	24
8	,	
<210>	120	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	120	
gaaatt	gtgt tgacrcagtc tcca	24
<210>	121	
<211>		
<212>		
<213>	Artificial	

109/141

<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	121	
gaaata	gtga tgacgcagtc tcca	24
<210>	122	
<211>	24	
<212>		
	Artificial	
1207		
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	122	
gaaatt	gtaa tgacacagtc tcca	24
<210>	123	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
(400)	100	
<400>	123	Ω.4
gacate	gtga tgacccagtc tcca	24
<210>	124	
<211>		

<212> DNA

110/141

<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	124	
gaaacg	acac teacgeagte teca	24
<210>	125	
<211>		
	DNA	
	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	125	
gaaatt	gtgc tgactcagtc tcca	24
<210>	126	
<211>	24	
	DNA	
(213)	Artificial	
<220>		
	Artificially Synthesized Primer Sequence	
<400>	126	
gatgtt	gtga tgacacagtc tcca	24
/A - 1		
<210>	127	
<211>	24	

<212> DNA

111/141

	111/141	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	127	
acgttt	gatt tccaccttgg tccc	24
<210>	128	
<211>	24	
<212>	DNA	
	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	128	
acgttt	gatc tccascttgg tccc	24
<210>	129	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	129	
acgttt	gata tccactttgg tccc	24

<210> 130 <211> 24 <212> DNA <213> Artificial

112/141

<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	130	
acgttt	aatc tccagtcgtg tccc	24
<210>	131	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	191	
	gtgc tgactcagcc accc	24
Cag ve v		
<210>	132	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	132	
cagtct	gtgy tgacgcagcc gccc	24
/010\	199	
<210> <211>	133 22	
<211><212>	DNA	
VATA/	N/#7	

113/141

<220>		
⟨223⟩	Artificially Synthesized Primer Sequence	
<400>	133	
cagtct	gccc tgactcagcc ts	22
(010)		
<210>		
<211>		
<212>		
⟨213⟩	Artificial	
<220>		
	Artificially Synthesized Primer Sequence	
	and differently by noneblace farmer bequesites	
<400>	134	
tcctat	gwgc tgactcagcc accc	24
<210>		
<211>		
<212>		
<213>	Artificial	
/000 \		
<220>	Antificially Complesized Drimer Contents	
<223>	Artificially Synthesized Primer Sequence	
<400>	135	
	gagc tgacacagcy accc	24
<210>	136	
<211>	24	
<212>	DNA	

	1 1 4 / 1 4 1	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	136	
tcttct	gage tgactcagga ccct	24
<210>	197	
	137	
<211>		
<212>		
⟨213⟩	Artificial	
<220>		
	Artificially Synthesized Primer Sequence	
<400>	137	
tcctat	gage tgatgeagee acce	24
<210>	138	
<211>		
<212>		
	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	138	
cagcct	gtgc tgactcaatc atcc	24

<210> 139 <211> 24 <212> DNA <213> Artificial

115/141

	110/141	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	139	
cagctt	gtgc tgactcaatc gccc	24
<210>	140	
<211>		
<211>		
	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	140	
, ,		
ctgcct	gtgc tgactcagcc cccg	24
ctgcct	gtgc tgactcagcc cccg	24
		24
<210>	141	24
<210> <211>	141 24	24
<210> <211> <212>	141 24 DNA	24
<210> <211> <212>	141 24	24
<210> <211> <212>	141 24 DNA	24
<210> <211> <212> <213> <223>	141 24 DNA	24
<210> <211> <212> <213> <223>	141 24 DNA Artificial	24
<210> <211> <212> <213> <223>	141 24 DNA Artificial Artificially Synthesized Primer Sequence	24
<210><211><212><213><213><220><223><	141 24 DNA Artificial Artificially Synthesized Primer Sequence	24
<210><211><212><213><213><220><223><	141 24 DNA Artificial Artificially Synthesized Primer Sequence	
<210><211><212><213><213><220><223><	141 24 DNA Artificial Artificially Synthesized Primer Sequence	

<210> 142 <211> 24 <212> DNA <213> Artificial

116/141

<220> <223>	Artificially Synthesized Primer Sequence	
<400>	142	
cagget	gtgc tgactcagcc ggct	24
<210>	143	
<211>	24	
<212>	DNA	
	Artificial	
<220>		
	Artificially Synthesized Primer Sequence	
<400>	143	
aatttt	atgc tgactcagcc ccac	24
<210>	144	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
	144	
cagrct	gtgg tgactcagga gccc	24
(010)	145	
<210>	145	
<211>	24	

<212> DNA

117/141

<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	145	
cagact	gtgg tgacccagga gcca	24
<210>	146	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	146	
cwgcct	gtgc tgactcagcc acct	24
<210>	147	
<211>		
<212>		
	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	147	
caggca	gggc tgactcagcc accc	24
<210>	148	
	24	
<212>	DNA	
⟨213⟩	Artificial	

118/141

<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	148	
acctag	gacg gtgaccttgg tccc	24
<210>	149	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
	Antificially Counthering Decimen Course	
\443/	Artificially Synthesized Primer Sequence	
<400>	149	
acctag	gacg gtcagcttgg tccc	24
<210>	150	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223 <i>></i>	Artificially Synthesized Primer Sequence	
<400>	150	
accgag	gacg gtcagctggg tgcc	24
<210>	151	
(211)		
<212>		

119/141

<220>		
<223>	Template Linker Sequence	
<400>	151	
ggaca	atggt caccgtctct tcaggtggtg gtggttcggg tggtggtggt tcgggtggtg	60
gcgga	tegga catecagatg acceagtete e	91
<210>	152	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>		
gcacc	ctggt caccgtctcc tcaggtgg	28
<210>	153	
<211>	28	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	153	
	atggt caccgtctct tcaggtgg	28
88404		20
<210>	154	
<211>	28	
<212>	DNA	

120/141

<220>

<223> Artificially Synthesized Primer Sequence

<400> 154

gaaccetggt caccgtetee teaggtgg

28

<210> 155

<211> 28

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 155

ggaccacggt caccgtctcc tcaggtgg

28

<210> 156

<211> 32

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 156

ggagactggg tcatctggat gtccgatccg cc

32

<210> 157

<211> 32

121/141

	121/141	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	157	
ggagac	tgag tcatcacaac atccgatccg cc	32
	158	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	158	
ggagac	tgcg tcaacacaat ttccgatccg cc	32
<210>	159	
<211>	32	
<212>	DNA	
<213>	Artificial	
<220>	,	
	Artificially Synthesized Primer Sequence	
<400>	159	
		32
ggagac	tggg tcatcacgat gtccgatccg cc	J
(010)	100	
<210>	160	
<211>	32	

122/141

	122/141				
<213>	Artificial				
<220>					
	Artificially Synthesized Primer Sequence				
<400>	160				
ggagac	ggagactgcg tgagtgtcgt ttccgatccg cc 32				
<210>	161				
<211>					
<212>	DNA				
<213>	Artificial				
<220>					
⟨223⟩	Artificially Synthesized Primer Sequence				
<400>	161				
	tgag tcagcacaat ttccgatccg cc	32			
<210>					
<211> <212>					
	Artificial				
(210)					
<220>					
<223>	Artificially Synthesized Primer Sequence				
<400>	162	40			
ggcggctgcg tcaacacaga ctgcgatccg ccaccgccag ag 42					
<210>	163				

<211> 42 <212> DNA

	$1\ 2\ 3\ /\ 1\ 4\ 1$					
<213>	Artificial					
<220>						
<223>	Artificially Synthesized Primer Sequence					
<400>	163					
gcaggctgag tcagagcaga ctgcgatccg ccaccgccag ag 42						
<210>	164					
<211>	42					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Artificially Synthesized Primer Sequence					
<400>	164					
ggtggctgag tcagcacata ggacgatccg ccaccgccag ag						
<210>	165					
<211>	42					
<212>	DNA					
<213>	Artificial					
<220>						
<223>	Artificially Synthesized Primer Sequence					
<400>	165					
	tgag tcagctcaga agacgatccg ccaccgccag ag	42				
	aggiorigag reagereaga agaegareeg eeaeegeeag ag					

<210> 166 <211> 42

124/141

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 166

ggcggttgag tcagtataac gtgcgatccg ccaccgccag ag

42

<210> 167

<211> 42

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 167

gacggctgag tcagcacaga ctgcgatccg ccaccgccag ag

42

<210> 168

<211> 42

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 168

tggggctgag tcagcataaa attcgatccg ccaccgccag ag

42

<210> 169

<211> 39

125/141

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 169

agtattgacc atggcccagg tgcagctggt gcagtctgg

39

<210> 170

<211> 39

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 170

agtattgacc atggcccagg tcaacttaag ggagtctgg

39

<210> 171

<211> 39

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 171

agtattgacc atggccgagg tgcagctggt ggagtctgg

39

<210> 172

<211> 39

126/141

	120/111				
<213>	Artificial				
<220>					
	Artificially Synthesized Primer Sequence				
<400>	172				
agtatt	agtattgacc atggcccagg tgcagctgca ggagtcggg 39				
<210>	173				
<211>	39				
<212>	DNA				
<213>	Artificial				
<220>					
	Artificially Synthesized Primer Sequence				
<400>	173				
agtatt	agtattgacc atggcccagg tgcagctgtt gcagtctgc				
<210>	174				
<211>	39				
<212>	DNA				
<213>	Artificial				
<220>					
	Artificially Synthesized Primer Sequence				
240 0 \	174				
<400>	174	00			
agtatt	agtattgacc atggcccagg tacagctgca gcagtcagg 39				

<210> 175 <211> 34 <212> DNA

127/141

	121/141	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	175	
taatga	attc acgtttgatt tccaccttgg tccc	34
/010\	176	
<210>	176	
<211> <212>	34 DNA	
	Artificial	
\213/	ALTITICIAL	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	176	
taatga	attc acgtttgatc tccagcttgg tccc	34
<210>	177	
<211>		
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	177	
taatga	attc acgtttgata tccactttgg tccc	34

<210> 178 <211> 34

<212> DNA

	$1\ 2\ 8\ \diagup\ 1\ 4\ 1$	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	178	
taatga	attc acgtttgatc tccaccttgg tccc	34
<210>	179	
<211>	34	
	DNA	
<213>	Artificial	
<220>		
	Artificially Synthesized Primer Sequence	
<400>	179	
taatga	attc acgtttaatc tccagtcgtg tccc	34
<210>	180	
<211>	34	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Artificially Synthesized Primer Sequence	
<400>	180	
	attc acctaggacg gtgaccttgg tccc	34
_		

<210> 181 <211> 34

<212> DNA

129/141

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 181

taatgaattc acctaggacg gtcagcttgg tccc

34

<210> 182

<211> 34

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 182

taatgaattc acctaaaacg gtgagctggg tccc

34

<210> 183

<211> 861

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (861)

<223>

<400> 183

atg aaa tac ctg ctg ccg acc gct gct gct ggt ctg ctg ctc ctc gct

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala

1 5 10 15

130/141

			atg Met					96
			ggg Gly					144
			ggc Gly 55					 192
			tgg Trp					240
			aag Lys					288
			gcc Ala					336
_			tac Tyr					384
			ccc Pro 135					432
			tcg Ser					480

131/141

			atg Met				Asp				_	Ser	_	528
 			165	 	.		170					175	.	E70
	-		acc Thr		_	_				_	_			576
			aag Lys			_				_				624
			ctg Leu				_		Α.					672
			ttc Phe					_						720
			ctg Leu 245											768
			act Thr											816
	_	_	gaa Glu	_		_	_	_	_	_	_	tga		861

<210> 184

<211> 286

<212> PRT

132/141

<213> Homo sapiens

<400> 184

Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu Leu Leu Leu Ala 1 5 10 15

Ala Gln Pro Ala Met Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly
20 25 30

Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala 35 40 45

Ser Gly Tyr Thr Phe Thr Gly Tyr Tyr Met His Trp Val Arg Gln Ala 50 55 60

Pro Gly Gln Gly Leu Glu Trp Met Gly Trp Ile Asn Pro Asn Ser Gly 65 70 75 80

Gly Thr Lys Tyr Ala Gln Lys Phe Gln Gly Arg Val Thr Met Thr Arg 85 90 95

Asp Thr Ser Ile Ser Thr Ala Tyr Met Glu Leu Ser Arg Leu Arg Ser 100 105 110

Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Ile Leu Thr 115 120 125

Gly Tyr Gly Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val 130 135 140

Ser Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly 145 150 155 160

Ser Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu 165 170 175

133/141

Gly Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr 180 185 190

Ser Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly 195 200 205

Gln Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly 210 215 220

Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu 225 230 235 240

Thr Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln 245 250 255

Gln Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu 260 265 270

Ile Lys Arg Arg Glu Phe Asp Tyr Lys Asp Asp Asp Lys 275 280 285

<210> 185

<211> 846

<212> DNA

<213> Homo sapiens

<220>

<221> **CDS**

<222> (1)...(846)

<223>

<400> 185

atg aaa tac ctg ctg ccg acc gct gct gct ggt ctg ctg ctc ctc gct Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala 1 5 10

48

15

134/141

	ccg Pro									96
_	gtg Val 35									144
	tac Tyr									192
	caa Gln						_		2	240
	aag Lys								4	288
	tcc Ser								3	336
	acg Thr 115					_	_		3	384
	ggc Gly							_	Ź	132
	ggt Gly								4	180

1 3 5 / 1 4 1

tcg	gaa	att	gtg	ctg	act	cag	tct	cca	ggc	acc	ctg	tct	ttg	tct	cca	528
Ser	Glu	Ile	Val	Leu	Thr	Gln	Ser	Pro	G ₁ y	Thr	Leu	Ser	Leu	Ser	Pro	
				165					170					175		
ggg	gaa	aga	gcc	acc	ctc	tcc	tgc	aag	gcc	agt	cag	agt	ttt	agc	agc	576
	Glu															
01)	014	т. Б	180		БСС	501	0,0	185	2114	DOI	0111	SOI	190	501	DOI	
			100					100					130			
aac	tac	tta	gee	† σ σ	tac	cag	cag	ลลล	cct	gge	റമര	act	ccc	200	cta	624
															7	021
Л	Tyr		нта	тъ	TYL	GIII		гуѕ	LTO	GLY	GIII		110	Arg	Leu .	
		195					200			•		205				
4			,		4				,		,					C.77.0
	atc							_								672
Leu	Ile	Tyr	Gly	Ala	Ser	Ser	Arg	Ala	Thr	Gly	Ile	Pro	Asp	Arg	Phe	
	210					215					220					
agt	ggc	agt	aaa	tct	ggg	aca	gac	ttc	act	ctc	acc	atc	agc	aga	ctg	720
Ser	Gly	Ser	Lys	Ser	G1y	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Arg	Leu	
225					230					235					240	
gag	cct	gaa	gat	ttt	gca	gtg	tat	tac	tgt	cag	cag	tat	gtt	acc	tca	768
G1u	Pro	Glu	Asp	Phe	Ala	Val	Tyr	Tyr	Cys	Gln	G1n	Tyr	Val	Thr	Ser	
				245					250					255		
ccg	tac	act	ttt	ggc	cag	ggg	acc	aag	gtg	gag	atc	aaa	cgt	cgt	gaa	816
	Tyr															
			260	•		•		265				•	270			
ttc	gac	tac	aag	gat	gac	gac	gat	aag	tga							846
	Asp							_	- 3-							
- 110		275	<i>د</i> ر د	p	-10 _D	71010	280	<i>د</i> ر د								
		410					200									

<210> 186

⟨211⟩ 281

136/141

<212> PRT

<213> Homo sapiens

<400> 186

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly
20 25 30

Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala 35 40 45

Ser Gly Tyr Thr Phe Thr Gly Tyr Tyr Met His Trp Val Arg Gln Ala 50 55 60

Pro Gly Gln Gly Leu Glu Trp Met Gly Trp Ile Asn Pro Asn Ser Gly 65 70 75 80

Gly Thr Lys Tyr Ala Gln Lys Phe Gln Gly Arg Val Thr Met Thr Arg 85 90 95

Asp Thr Ser Ile Ser Thr Ala Tyr Met Glu Leu Ser Arg Leu Arg Ser 100 105 110

Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Ile Leu Thr 115 120 125

Gly Tyr Gly Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val 130 135 140

Ser Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly 145 150 155 160

Ser Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro 165 170 175

137/141

Gly Glu Arg Ala Thr Leu Ser Cys Lys Ala Ser Gln Ser Phe Ser Ser 180 185 190

Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu 195 200 · 205

Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe 210 215 220

Ser Gly Ser Lys Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu 225 230 235 240

Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Val Thr Ser 245 250 255

Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Glu 260 265 270

Phe Asp Tyr Lys Asp Asp Asp Asp Lys 275 280

<210> 187

<211> 852

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1).. (852)

<223>

<400> 187

atg aaa tac ctg ctg ccg acc gct gct gct ggt ctg ctg ctc ctc gct Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala

138/141

1			5			10					15		
												ggg Gly	96
		gtc Val											144
		acc Thr											192
		ggg Gly						_		-		•	240
		tat Tyr											288
		aag Lys 100								_	•	_	336
		gct Ala				 _	_	_	_			•	384
		gac Asp		Trp			_	-		_			432
	_	ggt Gly											480

139/141

					_		_								
145			150					155					160		
		acc Thr												5	528
		atc Ile 180		_		_	_	_	_			•		5	576
		aac Asn												6	52 4
		ctc Leu												6	572
		agt Ser												7	'20
		cag Gln								_	_			7	68
		ccg Pro 260									_			8	16
		gac Asp				-	_	_	tga					8	52

<210> 188

140/141

⟨211⟩ 283

<212> PRT

<213> Homo sapiens

<400> 188

Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu Leu Leu Leu Ala 1 5 10 15

Ala Gln Pro Ala Met Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly
20 25 30

Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala 35 40 45

Ser Gly Phe Thr Phe Ser Ser Tyr Trp Met Ser Trp Val Arg Gln Ala 50 55 60

Pro Gly Lys Gly Leu Glu Trp Val Ala Asn Ile Lys Gln Asp Gly Ser 65 70 75 80

Glu Lys Tyr Tyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg 85 90 95

Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln Met Asn Thr Leu Arg Ala 100 105 110

Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Arg Leu Trp Thr Gln
115 120 125

Gly Phe Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 130 135 140

Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Asp 145 150 155 160

Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly Glu

141/141

165 170 175

Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser Ser 180 185 190

Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro 195 200 205

Pro Asn Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val Pro 210 215 220

Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile 225 230 235 240

Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln Tyr 245 250 255

Tyr Thr Thr Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
260 265 270

Arg Glu Phe Asp Tyr Lys Asp Asp Asp Asp Lys 275 280

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/14919

	SIFICATION OF SUBJECT MATTER C1 ⁷ C12N15/12, C12N15/09, C07F	K16/32, C07K16/18, G01N	33/53							
According t	o International Patent Classification (IPC) or to both na	ational classification and IPC								
	S SEARCHED									
	ocumentation searched (classification system followed C1 ⁷ C12N15/12, C12N15/09, C07F		33/53							
	tion searched other than minimum documentation to the									
	lata base consulted during the international search (nam Plus (STN), BIOSIS/WPI (DIALOG)	ne of data base and, where practicable, sear	rch terms used)							
C. DOCU	MENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.							
Х	Akihiro ABE, "DNA o Mochiita Kogen ni Taisuru Men'eki Yudo Shuyo o Model ni", Sankyo Sei Shinko Zaidan Kenkyu Hokokush pages 213 to 219	o B Saibosei Akusei imei Kagaku Kenkyu	1-12							
$\frac{\lambda}{X}$	VARSHA PATKI et al., Evidence clonality in the blood and journal with rheumatoid arthritis., A (1997), Vol.815, pages 472 to	oints of patients Ann.N.Y.Acad.Sci.	1,3-6 2,7-12							
Y	Howard Ratech, Rapid cloning globulin heavy chain genes fr Lines using anchored polymera BIOCHEMICAL AND BIOPHYSICAL FIONS (1992), Vol.182, No.3, p	rom human B-cell ase chain reaction., RESEARCH COMMUNICAT-	1-12							
× Furth	er documents are listed in the continuation of Box C.	See patent family annex.								
"A" docum conside "E" earlier date "L" docum cited to special "O" docum means "P" docum than th Date of the a	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date or understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document of particular relevance; the claimed invention cannot be considered novel or									
	nailing address of the ISA/ nese Patent Office	Authorized officer								
Facsimile N	ο.	Telephone No.								

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP03/14919

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	JP 06-141884 A (Yoshihide HAGIWARA), 24 May, 1994 (24.05.94), (Family: none)	1-12
Y	Shingo ICHINOMIYA et al., "VII. Men'eki Saibo 2. Laser Microdissection o Riyo shita Men'eki Soshiki no Atarashii Kaisekiho", Annual Review Men'eki 2002(2001), pages 147 to 179	1-12
Y	Lin LUO et al., Gene expression profiles of laser-captured adjacent neuroal subtypes., Nature Medicine (1999), Vol.5, No.1, pages 117 to 122	1-12
Y	Tetsuhiko TACHIKAWA et al., "Laser Microdissection-ho no Gan Chiryo eno Oyo", Hematology & Oncology (2001), Vol.42, No.6, pages 565 to 571	1-12
		-
		·
		4

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1⁷ C12N15/12, C12N15/09, C07K16/32, C07K16/18, G01N33/53

B. 調査を行った分野

調査を行った最小限資料 (国際特許分類 (IPC))

Int. C1⁷ C12N15/12, C12N15/09, C07K16/32, C07K16/18, G01N33/53

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

JSTPlus (STN), BIOSIS/WPI (DIALOG)

C. 関連すると認められる文献

 12.4		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	安部明弘, DNAを用いた腫よう特異的抗原に対する免疫誘導 B細胞性悪性腫ようをモデルに, 三共生命科学研究振興財団研究報告集(1998), Vol. 11, p. 213-219	1-12
$\frac{X}{Y}$	VARSHA PATKI, et.al., Evidence for B cell oligoclonality in the blood and joints of patients with rheumatoid arthritis., Ann N Y Acad Sci (1997), Vol. 815, p. 472-474	1, 3-6 2, 7-12

X C欄の続きにも文献が列挙されている。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 15.12.03	国際調査報告の発送日 13.01.04
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915	特許庁審査官 (権限のある職員) 4N 9839 鈴木 美葉子 印
東京都千代田区霞が関三丁目4番3号	電話番号 03-3581-1101 内線 3488

C (続き). 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	Howard Ratech, Rapid cloning of rearranged Immunoglobulin heavy chain genes from human B-cell lines using anchored polymerase chain reaction., BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS (1992), Vol. 182, No. 3, p. 1260-1263	1-12
Y	JP 06-141884 A(萩原義秀)1994.05.24 (ファミリーなし)	1-12
Y	一宮慎吾, et. al., VII. 免疫細胞 2. レーザーマイクロダイセクションを利用した免疫組織の新しい解析法, Annual Review 免疫2002(2001), p. 147-179	1-12
Y	Lin LUO, et. al., Gene expression profiles of laser-captured adjacent neuroal subtypes., Nature Medicine (1999), Vol. 5, No. 1, p. 117-122	1-12
Y	立川哲彦, et. al., Laser Microdissection法の癌治療への応用, 血液・腫瘍科(2001), Vol. 42, No. 6, p. 565-571	1-12