Georg-August-Universität Göttingen

On the influence of morphological operators on testing for a region of interest

A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE IN MATHEMATICS

Author: Examiners:

Dominik Blank Prof. Dr. Axel Munk

Dr. Robin RICHTER

Göttingen, July 19, 2020

Abstract

Morphological operations play an important role in fingerprint recognition. In this thesis, we quantify their impact for a simplified statistical model.

Contents

Lis	st of symbols	2			
1 Introduction					
2	Testing for a rectangular region of interest	10			
	2.1 Definitions	10			
	2.2 Statistical model	12			
	2.3 Bound for the probability of a type I error	14			
	2.4 Analysis of the probability of a type II error	21			
3	Binary morphological operations	27			
	3.1 Definition of opening & closing	28			
	3.2 Examples	35			
4	Main results				
5	Simulation results	49			
6	Discussion	53			
A	Additional proofs				
В	3 Simulations				
\mathbf{C}	Algorithms	60			
R€	References 6				

List of symbols

$\mathbb{R}^{m \times n}$	Set of real m-by-n matrices
$\{0,1\}^{m \times n}$	Set of binary m -by- n matrices
$\mathcal{V}_c^{m,n}$	Set of matrices in $\{0, \pm c\}^{m \times n}$, that contain a rectangular
	region of interest with a checkerboard pattern
$\mathcal{H}_0(i,j)$	Set of matrices in $\mathcal{V}_c^{m,n}$, such that the null hypothesis at
	(i,j) is true
$\mathcal{H}_1(i,j)$	Set of matrices in $\mathcal{V}_c^{m,n}$, such that the alternative hy-
	pothesis at (i, j) is true
Δ^+, Δ^-	Forward and backward discrete derivative operator
F, V, \dots	Matrices in $\mathbb{R}^{m \times n}$
$\mathfrak{I},\mathfrak{K},\ldots$	Matrices in $\{0,1\}^{m\times n}$
$\Omega, \Lambda, \Theta, \dots$	Subsets of \mathbb{Z}^2
Ψ,Φ,\dots	Structuring elements, subsets of \mathbb{Z}^2
.	ℓ^2 -norm
\ominus, \oplus	Morphological erosion & dilation operator
○, ●	Morphological opening & closing operator

1 Introduction

Fingerprint analysis has played an important role in biometric identification for more than a century with a variety of applications ranging from border control to smartphone development [Hen00]. By comparing the characteristic features of two fingerprints, called minutiae, the likelihood of them originating from the same individual can be determined. Complementary to the study of matching algorithms, the usage of image preprocessing techniques to improve the performance of these matching algorithms has become a beneficial field of study. One important preprocessing step of many automated matching algorithms is the extraction of the so-called region of interest (ROI) of the fingerprint aiming at dividing a given fingerprint image into the ROI or foreground, that contains the fingerprint and thus the minutia, and the background containing no information about the fingerprint, see [Mal+09]. Automated extraction of the ROI is often achieved by the use of thresholding methods, see [THG16], and morphological operators, see [THG16; BG01; Liu+11]. While the thresholding methods provide a binarization of the image to categorize pixels into ROI and background, the use of morphological operators aims at minimizing errors such as falsely classifying a background pixel as ROI or vice versa. The usage of these morphological operators relies on prior information of the fingerprint image, such as convexity and oscillatory behaviour within the ROI.

We interpret the thresholding techniques via statistical testing. When thresholding, one applies some operator and compares the outcome to a threshold, for an example see [AB96]. This is the same procedure as calculating a test statistic and performing a one- or two-sided hypothesis test. In this sense, falsely classifying a background pixel as a foreground pixel and vice versa can be seen as a type I and II error of a statistical test. To this end, the application of morphological operators is an attempt to lower the error rates of the statistical test.

The interplay of thresholding techniques with post-processing via morphological operators, incorporating prior knowledge, has, to the best of the author's knowledge, not been addressed. This thesis aims at providing a first step to-

wards understanding this interplay by assessing the change of error rates through application of morphological operators.

Our goal is the study of the improvements of the error probabilities for a specific pixel. We limit our research to a simplified model, for which we can bound the probability of a type I error after thresholding. This model assumes a rectangular region of interest with a checkerboard pattern surrounded by a constanst gray background, see Figure 1. We analyze the impact of morphological opening and closing, since these operators only rely on a neighbourhood of the specific pixel we are considering. The model still exhibits convexity of the ROI and an oscillatory pattern within the ROI, as in a fingerprint image.

Since we are interested in the change of the error probabilities for a specific pixel, we do not consider methods to test for the whole rectangle, but develop a test for each pixel to decide whether or not it is part of the rectangular region of interest.

The statistical model Let $m, n \in \mathbb{N}$ and $c \in \mathbb{R} \setminus \{0\}$. We assume we are given a noisy image following the statistical model

$$F(i,j) = \underbrace{c + V(i,j)}_{=:\tilde{V}(i,j)} + \varepsilon_{i,j} \tag{1}$$

for all $(i, j) \in \Omega := \{1, ..., m\} \times \{1, ..., n\}$. We assume, that the values of V alternate between c and -c along the rows and columns of the region of interest, and call the set of all such images $\mathcal{V}_c^{m,n}$. We assume the noise terms $\varepsilon_{i,j} \sim \mathcal{N}(0, \sigma^2)$ to be i.i.d. normally distributed random variables for some $\sigma > 0$.

For visualization we use grayscale images and take c=127.5. Then the values of the image \tilde{V} alternate between 0 and 255 along the region of interest, which translates to black and white in a grayscale image. This gives the region of interest of \tilde{V} a classical checkerboard pattern, see Figure 1 for an example. Notably, we make two simplifications in our statistical model. First, we assume the variance σ of the noise terms to be known beforehand. Second,

Figure 1: Example of a matrix, that contains a rROI with a checkerboard pattern. The top left corner of the rROI is (4,3) and the bottom right corner is (8,8). Here we have m=n=12.

we ignore the limitations of grayscale images and let the images in our model take all values in the real numbers.

The image F is the observed data we are given. The goal is to develop a statistical test for every pixel to determine whether or not the pixel belongs to the region of interest of V and as such reconstructing the unknown V from the noisy data. The pixel (i,j) belonging to the ROI is equivalent to $\min\{\|\Delta^+V(i,j)\|, \|\Delta^-V(i,j)\|\} \neq 0$, where Δ^+ and Δ^- denote the forward and backward discrete derivative operator, respectively. Thus, we get the

null and alternative hypotheses

$$H_0(i,j) : \min\{\|\Delta^+V(i,j)\|, \|\Delta^-V(i,j)\|\} = 0,$$

$$H_1(i,j) : \min\{\|\Delta^+V(i,j)\|, \|\Delta^-V(i,j)\|\} \neq 0.$$

We use

$$T(i,j) := \min\{\|\Delta^{+}F(i,j)\|, \|\Delta^{-}F(i,j)\|\}$$

as a test statistic for each pixel $(i, j) \in \Omega$. Based on the null hypotheses, we define the sets

$$\mathcal{H}_0(i,j) \coloneqq \left\{ V \in \mathcal{V}_c^{m,n} \mid \min\{\|\Delta^+V(i,j)\|, \|\Delta^-V(i,j)\|\} = 0 \right\}.$$

Then $H_0(i,j)$ is true, if and only if $V \in \mathcal{H}_0(i,j)$. In the following, we denote by $\mathbb{P}_V(\ldots)$ the probability of an event given a *fixed* image V.

Let $V \in \mathcal{H}_0(i,j)$. Then we have $\|\Delta^+V(i,j)\| = 0$ or $\|\Delta^-V(i,j)\| = 0$. Based on this fact, we define two subsets of $\mathcal{H}_0(i,j)$ by

$$\begin{split} \mathcal{H}_0^+(i,j) &\coloneqq \left\{ V \in \mathcal{V}_c^{m,n} \mid \|\Delta^+ V(i,j)\| = 0 \right\}, \\ \mathcal{H}_0^-(i,j) &\coloneqq \left\{ V \in \mathcal{V}_c^{m,n} \mid \|\Delta^- V(i,j)\| = 0 \right\} \end{split}$$

and get $\mathcal{H}_0(i,j) = \mathcal{H}_0^+(i,j) \cup \mathcal{H}_0^-(i,j)$. The union is not necessarily disjoint. For $V \in \mathcal{H}_0^+(i,j)$ we can bound the probability of a type I error by

$$\mathbb{P}_V(T(i,j) \ge t) \le \mathbb{P}_V(\|\Delta^+ F(i,j)\| \ge t)$$

and for $V \in \mathcal{H}_0^-(i,j)$ by

$$\mathbb{P}_V(T(i,j) \ge t) \le \mathbb{P}_V(\|\Delta^- F(i,j)\| \ge t).$$

The right hand side of both inequalities is the same function, which can be computed explicitly. Using a trial and error algorithm, we can find a threshold t_{α} for a given statistical significance $\alpha \in (0, 1)$, such that

$$\mathbb{P}_V(T(i,j) \ge t_\alpha) \le \alpha$$

for every $(i, j) \in \Omega$ and $V \in \mathcal{H}_0(i, j)$.

Since this is independent of the specific V, it holds for all images V under which the null hypothesis for the pixel (i, j) is true and thus we can bound the probability of falsely categorizing a background pixel as a foreground pixel by a given statistical significance $\alpha \in (0, 1)$.

Main results After having established our statistical testing procedure and how a suitable threshold can be computed, we aim at researching the changes of the error probabilities under morphological opening and closing. To this end, let $\mathfrak{I} \in \{0,1\}^{m \times n}$ be a binary matrix and $\Psi \subseteq \mathbb{Z}^2$ be a *structuring element*, see [Shi10]. We denote by $\mathfrak{I} \circ \Psi$ the opening of the binary matrix \mathfrak{I} by Ψ and by $\mathfrak{I} \bullet \Psi$ the closing of the binary matrix \mathfrak{I} by Ψ .

As the region of interest in our case is rectangular, we use a square structuring element. Using such a square structuring element yields an exponential improvement of probability of a type I error after morphological opening compared to the probability before opening is applied. Applying morphological closing after opening will worsen this probability, but only polynomially. This yields an overall improvement of the probability of a type I error, when applying morphological opening and closing. This result is formalized in the following theorem.

Theorem 1.1. Let $m, n \in \mathbb{N}$, $c \in \mathbb{R} \setminus \{0\}$ and $\Omega = \{1, ..., m\} \times \{1, ..., m\}$. Assume we are given data

$$F(i, j) = c + V(i, j) + \varepsilon_{i,j}$$

for all $(i,j) \in \Omega$, where the unknown V contains a rectangular region of interest with a checkerboard pattern and $\varepsilon_{i,j} \sim \mathcal{N}(0,\sigma^2)$ are i.i.d. normal distributed random variables for some $\sigma > 0$.

Let $\alpha \in (0,1)$ and t_{α} a threshold, such that $\mathbb{P}_{V}(\|\Delta^{+}F(i,j)\| \geq t_{\alpha}) \leq \alpha$ for every $V \in \mathcal{H}_{0}^{+}(i,j)$ and $\mathbb{P}_{V}(\|\Delta^{-}F(i,j)\| \geq t_{\alpha}) \leq \alpha$ for every $V \in \mathcal{H}_{0}^{-}(i,j)$. Let \mathfrak{I}_{α} be the binary image defined by

$$\mathfrak{I}_{\alpha}(i,j) = \mathbb{1}_{\{T(i,j) \ge t_{\alpha}\}}$$

for all $(i, j) \in \Omega$.

Let $\varphi \in \mathbb{N}$ be odd. Let $\Phi_{\varphi} = \{-\frac{\varphi-1}{2}, -\frac{\varphi-3}{2}, \dots, \frac{\varphi-3}{2}, \frac{\varphi-1}{2}\}$ and $\Psi_{\varphi} = \Phi_{\varphi} \times \Phi_{\varphi}$ be a structuring element. Let $(i, j) \in \Omega$ and $V \in \mathcal{H}_0(i, j)$. Then the following inequalities hold:

$$\mathbb{P}_{V}\left((\mathfrak{I}_{\alpha} \circ \Psi_{\varphi})(i,j) = 1\right) \le \varphi \alpha^{\frac{\varphi+1}{2}} \tag{2}$$

$$\mathbb{P}_{V}\left(\left((\mathfrak{I}_{\alpha}\circ\Psi_{\omega})\bullet\Psi_{\omega}\right)(i,j)=1\right)\leq\varphi^{3}\alpha^{\frac{\varphi+1}{2}}\tag{3}$$

We are also interested in the change of the probability of a type II error, when morphological opening and closing are applied. Morphological opening increases this probability polynomially. The application of morphological closing, when applied after opening, does not lower the probability, since the pixels are not independent anymore. This is formalized in the following theorem.

Theorem 1.2. Let $m, n \in \mathbb{N}$, $c \in \mathbb{R} \setminus \{0\}$ and $\Omega = \{1, ..., m\} \times \{1, ..., m\}$. Assume we are given data

$$F(i,j) = c + V(i,j) + \varepsilon_{i,j}$$

for all $(i,j) \in \Omega$, where the unknown V contains a rectangular region of interest with a checkerboard pattern and $\varepsilon_{i,j} \sim \mathcal{N}(0,\sigma^2)$ are i.i.d. normal distributed random variables for some $\sigma > 0$.

Let t be a threshold, such that

$$\mathbb{P}_V\left(T(i,j) \le t\right) \le \beta$$

for all $V \in \mathcal{H}_1(i,j)$. Let \mathfrak{I} be the binary image defined by

$$\mathfrak{I}(i,j) = \mathbb{1}_{\{T(i,j) \ge t\}} \tag{4}$$

for all $(i, j) \in \Omega$.

Let $\varphi \in \mathbb{N}$ be odd. Let $\Phi_{\varphi} = \{-\frac{\varphi-1}{2}, -\frac{\varphi-3}{2}, \dots, \frac{\varphi-3}{2}, \frac{\varphi-1}{2}\}$ and $\Psi_{\varphi} = \Phi_{\varphi} \times \Phi_{\varphi}$ be a structuring element. Let $(i, j) \in \Omega$ and $V \in \mathcal{H}_1(i, j)$.

Denote by $\Lambda = \{\kappa_1, \ldots, \kappa_2\} \times \{\lambda_1, \ldots, \lambda_2\}$ the rROI contained in V. Let

 $\min\{\kappa_2 - \kappa_1 + 1, \lambda_2 - \lambda_1 + 1\} \ge \varphi$. Then the following inequalities hold:

$$\mathbb{P}_V\left((\mathfrak{I} \circ \Psi_{\varphi})(i,j) = 0\right) \le \varphi^2 \beta \tag{5}$$

$$\mathbb{P}_V\left(\left((\mathfrak{I} \circ \Psi_{\varphi}) \bullet \Psi_{\varphi}\right)(i,j) = 0\right) \le \varphi^2 \beta \tag{6}$$

Outline of the thesis In Section 2.1 we introduce definitions and notation of the aforementioned images and properties. With the introduced terminology we develop a statistical test for every pixel determining whether or not it is part of the region of interest in Section 2.2. After having established the statistical test, we proof in Section 2.3 that we can bound the probability of a type I error by a given statistical significance and analyze the probability of a type II error in the statistical test in Section 2.4. In Section 3 the two morphological operators, that we study in this thesis, are introduced, along with some examples of their application. From there, we proceed to proof the main theorems of this thesis in Section 4. We compare our theoretical results to simulations in Section 5 and discuss possible further research in Section 6.

2 Testing for a rectangular region of interest

2.1 Definitions

Assume that the noise-free image V in our statistical model has a rectangular region of interest with a checkerboard pattern, cf. equation (1) and Figure 1. In the following we give formal definitions of these properties.

Definition 2.1. Let $m, n \in \mathbb{N}$, $c \in \mathbb{R} \setminus \{0\}$ and $V \in \{0, \pm c\}^{m \times n}$. We say that V contains a rectangular region of interest with a checkerboard pattern, if

$$V(i,j) = \begin{cases} c, & \text{if } (i,j) \in \{\kappa_1, \dots, \kappa_2\} \times \{\lambda_1, \dots, \lambda_2\} \text{ and } i+j \equiv \kappa_1 + \lambda_1 \mod 2 \\ -c, & \text{if } (i,j) \in \{\kappa_1, \dots, \kappa_2\} \times \{\lambda_1, \dots, \lambda_2\} \text{ and } i+j \not\equiv \kappa_1 + \lambda_1 \mod 2 \\ 0, & \text{if } (i,j) \notin \{\kappa_1, \dots, \kappa_2\} \times \{\lambda_1, \dots, \lambda_2\} \end{cases}$$

$$(7)$$

for some $(\kappa_1, \lambda_1), (\kappa_2, \lambda_2) \in \mathbb{N}^2$ with $1 \le \kappa_1 \le \kappa_2 \le m$ and $1 \le \lambda_1 \le \lambda_2 \le m$ and all $(i, j) \in \{1, \dots, m\} \times \{1, \dots, n\}$. The set of all such V is denoted by $\mathcal{V}_c^{m,n}$.

We call $\Lambda = {\kappa_1, \ldots, \kappa_2} \times {\lambda_1, \ldots, \lambda_2}$ a rectangular region of interest (rROI) and say that V contains the rROI Λ .

Furthermore, we call (κ_1, λ_1) the top left corner and (κ_2, λ_2) the bottom right corner of Λ .

Hence, the top left corner of the region of interest of V takes the value c and then the values of V alternate between +c and -c along the rows and columns of the region of interest. This is similar to the classical checkerboard pattern.

Remark 2.2. Any matrix $V \in \mathcal{V}_c^{m,n}$ is uniquely defined by the top left and bottom right corner of Λ . Hence, a rROI $\Lambda = \{\kappa_1, \ldots, \kappa_2\} \times \{\lambda_1, \ldots, \lambda_2\}$ corresponds to a unique element $V \in \mathcal{V}_c^{m,n}$, that contains the rROI Λ .

Remark 2.3. To adjust to boundary issues, we use a periodic boundary condition, i.e. we extend V to all of \mathbb{Z}^2 by setting $V(i,j) = V(i \mod m, j \mod n)$ for all $(i,j) \in \mathbb{Z}^2$.

In Figure 1 we see an example of such a matrix. To visualize these types of matrices, we take c = 127.5 and plot the grayscale image V + c. Thus, gray pixels represent V = 0, white pixels represent V = c and black pixels represent V = -c.

We also need the forward and backward discrete derivative operator, whose definitions we give below, to establish our statistical test.

Definition 2.4. Let $m, n \in \mathbb{N}$ and let $V \in \mathbb{R}^{m \times n}$. Define the set of possible indices $\Omega := \{1, \ldots, m\} \times \{1, \ldots, m\}$. Let $(i, j) \in \Omega$. The forward and backward discrete derivative of V evaluated at (i, j) are defined as

$$\Delta^{+}V(i,j) = \begin{pmatrix} V(i+1,j) - V(i,j) \\ V(i,j+1) - V(i,j) \end{pmatrix}$$
 (8)

and

$$\Delta^{-}V(i,j) = \begin{pmatrix} V(i-1,j) - V(i,j) \\ V(i,j-1) - V(i,j) \end{pmatrix}, \tag{9}$$

respectively.

The following lemma shows, that the euclidean norm of these operators evaluated at a pixel $(i,j) \in \Omega$ for matrices $V \in \mathcal{V}_c^{m,n}$ can only take specific values.

Lemma 2.5. Let $m, n \in \mathbb{N}$ and $c \in \mathbb{R} \setminus \{0\}$. Let $V \in \mathcal{V}_c^{m,n}$. For any $(i, j) \in \Omega$ we have

$$\|\Delta^{+}V(i,j)\|, \|\Delta^{-}V(i,j)\| \in \{0, c, \sqrt{2}c, \sqrt{5}c, \sqrt{8}c\}.$$
 (10)

Proof. Let $(i,j) \in \Omega$. We have assumed, that $V \in \mathcal{V}_c^{m,n}$. Thus, V only takes values in $\{0, \pm c\}$ and we obtain $\Delta^+V(i,j), \Delta^-V(i,j) \in \{0, \pm c, \pm 2c\}^2$. Taking the euclidean norm of all possible combinations yields

$$\|\Delta^+V(i,j)\|, \|\Delta^-V(i,j)\| \in \{0, c, 2c, \sqrt{2}c, \sqrt{5}c, \sqrt{8}c\}.$$

We can narrow this list down even more. By assumption, V contains a rectangular region of interest Λ with a checkerboard pattern. This only

Position of pixels (i, j) , $(i + 1, j)$, $(i, j + 1)$	$\mid \mathbf{V}(\mathbf{i}+1,\mathbf{j}) - \mathbf{V}(\mathbf{i},\mathbf{j}) $	$\mid \mathbf{V}(\mathbf{i},\mathbf{j}+1) - \mathbf{V}(\mathbf{i},\mathbf{j}) $	$\ \mathbf{\Delta}^{+}\mathbf{V}(\mathbf{i},\mathbf{j})\ $
$(i,j),(i+1,j),(i,j+1)\notin \Lambda$	0	0	0
$(i,j), (i+1,j) \notin \Lambda \text{ and } (i,j+1) \in \Lambda$	0	c	c
$(i,j),(i,j+1) \notin \Lambda \text{ and } (i+1,j) \in \Lambda$	c	0	c
$(i,j) \in \Lambda \text{ and } (i+1,j), (i,j+1) \notin \Lambda$	c	c	$\sqrt{2}c$
$(i,j), (i+1,j) \in \Lambda \text{ and } (i,j+1) \notin \Lambda$	2c	c	$\sqrt{5}c$
$(i,j),(i,j+1) \in \Lambda \text{ and } (i+1,j) \notin \Lambda$	c	2c	$\sqrt{5}c$
$(i,j), (i+1,j), (i,j+1) \in \Lambda$	2c	2c	$\sqrt{8}c$

Table 1: Possible locations of the pixels (i, j), (i + 1, j), (i, j + 1) and the corresponding values of |V(i + 1, j) - V(i, j)|, |V(i, j + 1) - V(i, j)| and $||\Delta^+V(i, j)||$, respectively.

allows for the combinations of |V(i+1,j)-V(i,j)| and |V(i,j+1)-V(i,j)| listed in Table 1.

Other cases are not possible and thus $\|\Delta^+V(i,j)\| \in \{0,c,\sqrt{2}c,\sqrt{5}c,\sqrt{8}c\}$. By analogous deduction, we also obtain $\|\Delta^-V(i,j)\| \in \{0,c,\sqrt{2}c,\sqrt{5}c,\sqrt{8}c\}$.

2.2 Statistical model

Let $m, n \in \mathbb{N}$, $c \in \mathbb{R} \setminus \{0\}$ and $\Omega = \{1, \dots, m\} \times \{1, \dots, n\}$. Assume we are given noisy data

$$F(i,j) = c + V(i,j) + \varepsilon_{i,j}$$
(11)

for all $(i, j) \in \Omega$, where $V \in \mathcal{V}_c^{m,n}$ is unknown and $\varepsilon_{i,j} \sim \mathcal{N}(0, \sigma^2)$ are i.i.d. normal distributed random variables for some $\sigma > 0$.

Let Λ be the rectangular region of interest contained in V. In the following we specify a statistical test to determine for each individual pixel whether $(i,j) \in \Lambda$ or $(i,j) \notin \Lambda$.

By the assumption, that V contains a rROI, it follows, that V(i,j) = 0 if and only if $(i,j) \notin \Lambda$. Let (κ_1, λ_1) and (κ_2, λ_2) be the top left and bottom right corner of Λ , respectively. Now, if $(i,j) \notin \Lambda$, it follows that $i \notin {\kappa_1, \ldots, \kappa_2}$ or $j \notin {\lambda_1, \ldots, \lambda_2}$. We have to distinguish four cases here:

(I)
$$i < \kappa_1 \Rightarrow (i, j - 1) \notin \Lambda \text{ and } (i - 1, j) \notin \Lambda$$

 $\Rightarrow V(i, j - 1) = V(i - 1, j) = 0$

(II)
$$j < \lambda_1 \Rightarrow (i-1,j) \notin \Lambda \text{ and } (i,j-1) \notin \Lambda$$

 $\Rightarrow V(i-1,j) = V(i,j-1) = 0$

(III)
$$i > \kappa_2 \Rightarrow (i, j+1) \notin \Lambda \text{ and } (i+1, j) \notin \Lambda$$

$$\Rightarrow V(i, j+1) = V(i+1, j) = 0$$

(IV)
$$j > \lambda_2 \Rightarrow (i+1,j) \notin \Lambda \text{ and } (i,j+1) \notin \Lambda$$

 $\Rightarrow V(i+1,j) = V(i,j+1) = 0$

We have $\|\Delta^-V(i,j)\| = 0$ in the first two cases and $\|\Delta^+V(i,j)\| = 0$ in the latter two cases. Thus, $(i,j) \notin \Lambda$ implies $\min\{\|\Delta^+V(i,j)\|, \|\Delta^-V(i,j)\|\} = 0$.

On the other hand, we have assumed, that Λ has a checkerboard pattern. Thus $\|\Delta^-V(i,j)\|$, $\|\Delta^+V(i,j)\| \neq 0$ for $(i,j) \in \Lambda$. This yields the equivalence

$$(i,j) \notin \Lambda \Leftrightarrow \min\{\|\Delta^+V(i,j)\|, \|\Delta^-V(i,j)\|\} = 0.$$

Using this equivalence, we test for each individual pixel (i, j) the null hypothesis

$$H_0(i,j) : \min\{\|\Delta^+ V(i,j)\|, \|\Delta^- V(i,j)\|\} = 0$$
(12)

against the alternative hypothesis

$$H_1(i,j) : \min\{\|\Delta^+V(i,j)\|, \|\Delta^-V(i,j)\|\} \neq 0$$
 (13)

using the test statistic

$$T(i,j) := \min\{\|\Delta^+ F(i,j)\|, \|\Delta^- F(i,j)\|\},$$
 (14)

which is based on the given noisy data.

To extract the rROI, we classify pixels as foreground, if we reject the null hypothesis, i.e. if $T(i,j) \geq t$ for some threshold $t \in \mathbb{R}^+$. The choice of the threshold is examined in Section 2.3.

For convenience, we want to define some subsets of $\mathcal{V}_c^{m,n}$. For every $(i,j)\in\Omega$

we define the set of images, for which the null hypothesis $H_0(i,j)$ is true as

$$\mathcal{H}_0(i,j) := \left\{ V \in \mathcal{V}_c^{m,n} \mid \min\{\|\Delta^+ V(i,j)\|, \|\Delta^- V(i,j)\|\} = 0 \right\}.$$
 (15)

Then $H_0(i,j)$ is true, if and only if $V \in \mathcal{H}_0(i,j)$. Furthermore, we define two subsets of this set as

$$\mathcal{H}_0^+(i,j) := \left\{ V \in \mathcal{V}_c^{m,n} \mid \|\Delta^+ V(i,j)\| = 0 \right\},\tag{16}$$

$$\mathcal{H}_0^-(i,j) := \left\{ V \in \mathcal{V}_c^{m,n} \mid \|\Delta^- V(i,j)\| = 0 \right\}. \tag{17}$$

Then $\mathcal{H}_0(i,j) = \mathcal{H}_0^+(i,j) \cup \mathcal{H}_0^-(i,j)$, where the union is not necessarily disjoint.

2.3 Bound for the probability of a type I error

Having established our hypotheses and test statistic, we want to examine the choice of the threshold $t \in \mathbb{R}^+$ in the testing procedure. We reject the null hypothesis, if $T(i,j) \geq t$ for some threshold $t \in \mathbb{R}^+$. We want to choose t such, that the probability of falsely classifying a background pixel as foreground is bounded from above by a given statistical significance $\alpha \in (0,1)$. Such a threshold will be denoted as t_{α} .

As a reminder, we use the notation $\mathbb{P}_V(\ldots)$ for the probability of an event for some fixed image V. This will allow us to analyze the probabilities of falsely categorizing a pixel. Using this notation, we want to find a threshold t_{α} , such that $\mathbb{P}_V(T(i,j) \geq t_{\alpha}) \leq \alpha$ for every $V \in \mathcal{H}_0(i,j)$. A first step towards finding such a threshold is the following lemma.

Lemma 2.6. Let $(i, j) \in \Omega$ and $t \in \mathbb{R}^+$. Assume that F follows the statistical model given in (11) and let T(i, j) be defined as in (14). Let $V \in \mathcal{V}_c^{m,n}$. Then

$$\mathbb{P}_{V}(T(i,j) \ge t) \le \min \left\{ \mathbb{P}_{V}(\|\Delta^{+}F(i,j)\| \ge t), \mathbb{P}_{V}(\|\Delta^{-}F(i,j)\| \ge t) \right\}.$$
 (18)

Proof. Let $t \in \mathbb{R}^+$. We have

$$\mathbb{P}_{V}(T(i,j) \ge t) = \mathbb{P}_{V}(\min\{\|\Delta^{+}F(i,j)\|, \|\Delta^{-}F(i,j)\|\} \ge t)$$

$$= \mathbb{P}_{V}(\{\|\Delta^{+}F(i,j)\| \ge t\} \cap \{\|\Delta^{-}F(i,j)\| \ge t\})$$

$$\le \mathbb{P}_{V}(\|\Delta^{+}F(i,j)\| \ge t).$$

Analogously, we obtain

$$\mathbb{P}_V(T(i,j) \ge t) \le \mathbb{P}_V(\|\Delta^- F(i,j)\| \ge t).$$

Combining these two inequalities yields the result and thus finishes the proof of the lemma. \Box

The second step is given in the following theorem, where we calculate the cumulative distribution functions of $\mathbb{P}_V(\|\Delta^+ F(i,j)\| \leq t)$ for $V \in \mathcal{H}_0^+(i,j)$ and $\mathbb{P}_V(\|\Delta^- F(i,j)\| \leq t)$ for $V \in \mathcal{H}_0^-(i,j)$, which turn out to be the same.

Theorem 2.7. Let $(i,j) \in \Omega$ and $t \in \mathbb{R}^+$. Assume that F follows the statistical model given in (11). Let $V_1 \in \mathcal{H}_0^+(i,j)$ and $V_2 \in \mathcal{H}_0^-(i,j)$. Then

$$\mathbb{P}_{V_1}(\|\Delta^+ F(i,j)\| \le t) = p_{\sigma}(t) = \mathbb{P}_{V_2}(\|\Delta^- F(i,j)\| \le t)$$
(19)

where

$$p_{\sigma}(t) := \frac{1}{\sqrt{3}} \left(\frac{3}{2} - \frac{3}{2} \exp\left(-\frac{t^2}{3\sigma^2}\right) I_0\left(\frac{t^2}{6\sigma^2}\right) \right) - \sqrt{3}$$
$$-\frac{2 - \sqrt{3}}{2} Q_1\left(\frac{2 - \sqrt{3}}{6} \frac{t}{\sigma}, \frac{2 + \sqrt{3}}{6} \frac{t}{\sigma}\right)$$
$$+\frac{2 + \sqrt{3}}{2} Q_1\left(\frac{2 + \sqrt{3}}{6} \frac{t}{\sigma}, \frac{2 - \sqrt{3}}{6} \frac{t}{\sigma}\right)$$
(20)

with I_0 being the modified Bessel function of the first kind [GR07, p. 910-911] and Q_M denoting the Marcum Q-function [Nut74].

Proof. We start by proving the first equality of equation (19). By assumption, $V_1 \in \mathcal{H}_0^+(i,j)$ and thus $\|\Delta^+V_1(i,j)\| = 0$. By definition of Δ^+ we get the equivalence

$$\|\Delta^+ V_1(i,j)\| = 0 \Leftrightarrow V_1(i+1,j) - V_1(i,j) = V_1(i,j+1) - V_1(i,j) = 0.$$

We write out the term $\mathbb{P}_{V_1}(\|\Delta^+ F(i,j)\| \leq t)$, which we call q(t), and use the

equivalence above to obtain

$$q(t) := \mathbb{P}_{V_1}(\|\Delta^+ F(i,j)\| \le t)$$

$$= \mathbb{P}_{V_1}\left((c + V_1(i+1,j) + \varepsilon_{i+1,j} - c - V_1(i,j) - \varepsilon_{i,j})^2 + (c + V_1(i,j+1) + \varepsilon_{i,j+1} - c - V_1(i,j) - \varepsilon_{i,j})^2 \le t^2\right)$$

$$= \mathbb{P}_{V_1}\left((\varepsilon_{i+1,j} - \varepsilon_{i,j})^2 + (\varepsilon_{i,j+1} - \varepsilon_{i,j})^2 \le t^2\right)$$

$$= \mathbb{P}\left((\varepsilon_{i+1,j} - \varepsilon_{i,j})^2 + (\varepsilon_{i,j+1} - \varepsilon_{i,j})^2 \le t^2\right)$$

$$= \mathbb{P}\left(\sqrt{(\varepsilon_{i+1,j} - \varepsilon_{i,j})^2 + (\varepsilon_{i,j+1} - \varepsilon_{i,j})^2} \le t\right)$$

where we dropped the index V_1 , since the probability does no longer depend on the chosen V_1 .

To proceed, we need to determine the distribution of the random variable $\sqrt{(\varepsilon_{i+1,j} - \varepsilon_{i,j})^2 + (\varepsilon_{i,j+1} - \varepsilon_{i,j})^2}$ conditioned on $\varepsilon_{i,j} = \epsilon$ for some fixed $\epsilon \in \mathbb{R}$. We define the random variables

$$X_1 = \varepsilon_{i+1,j} - \epsilon \sim \mathcal{N}(-\epsilon, \sigma^2),$$

$$X_2 = \varepsilon_{i,j+1} - \epsilon \sim \mathcal{N}(-\epsilon, \sigma^2)$$

and obtain

$$\mathbb{P}\left(\sqrt{(\varepsilon_{i+1,j} - \varepsilon_{i,j})^2 + (\varepsilon_{i,j+1} - \varepsilon_{i,j})^2} \le t \mid \varepsilon_{i,j} = \epsilon\right) \\
= \mathbb{P}\left(\sqrt{(\varepsilon_{i+1,j} - \epsilon)^2 + (\varepsilon_{i,j+1} - \epsilon)^2} \le t\right) \\
= \mathbb{P}\left(\sqrt{\left(\frac{X_1}{\sigma}\right)^2 + \left(\frac{X_2}{\sigma}\right)^2} \le \frac{t}{\sigma}\right).$$

Since X_1 and X_2 are independent, the square root inside has a non-central Chi distribution with two degrees of freedom and non-centrality parameter

$$\lambda = \sqrt{\left(\frac{-\epsilon}{\sigma}\right)^2 + \left(\frac{-\epsilon}{\sigma}\right)^2} = \frac{\sqrt{2}|\epsilon|}{\sigma}.$$

This yields

$$\sqrt{\left(\frac{X_1}{\sigma}\right)^2 + \left(\frac{X_2}{\sigma}\right)^2} \sim \chi_2\left(\frac{\sqrt{2}|\epsilon|}{\sigma}\right)$$

and consequently

$$\frac{\sqrt{(\varepsilon_{i+1,j} - \varepsilon_{i,j})^2 + (\varepsilon_{i,j+1} - \varepsilon_{i,j})^2}}{\sigma} \mid \varepsilon_{i,j} = \epsilon \sim \chi_2\left(\frac{\sqrt{2}|\epsilon|}{\sigma}\right).$$

Up to this point, we assumed $\varepsilon_{i,j}$ to be fixed, however it is itself a normal distributed random variable with zero mean and standard deviation σ . Thus, we have a compound probability distribution and obtain

$$q(t) = \mathbb{P}\left(\frac{\sqrt{(\varepsilon_{i+1,j} - \varepsilon_{i,j})^2 + (\varepsilon_{i,j+1} - \varepsilon_{i,j})^2}}{\sigma} \le \frac{t}{\sigma}\right)$$

$$= \int_0^{\frac{t}{\sigma}} \int_0^{\infty} \underbrace{x \exp\left(-\frac{x^2}{2} - \frac{\eta^2}{\sigma^2}\right) I_0\left(\frac{\sqrt{2}\eta}{\sigma}x\right)}_{\text{pdf of absolute value of } \mathcal{N}(0,\sigma^2)} \underbrace{\frac{2}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\eta^2}{2\sigma^2}\right)}_{\text{pdf of absolute value of } \mathcal{N}(0,\sigma^2)} d\eta dx$$

$$= \frac{2}{\sqrt{2\pi\sigma^2}} \int_0^{\frac{t}{\sigma}} x \exp\left(-\frac{x^2}{2}\right) \int_0^{\infty} \exp\left(-\frac{3}{2\sigma^2}\eta^2\right) I_0\left(\frac{\sqrt{2}x}{\sigma}\eta\right) d\eta dx,$$

where I_0 is the modified Bessel function of the first kind. We can solve the inner integral first. For $\nu > -1$, $\alpha > 0$ the following equality holds.¹

$$\int_0^\infty \exp\left(-\alpha\eta^2\right) I_\nu(\beta\eta) d\eta = \frac{\sqrt{\pi}}{2\sqrt{\alpha}} \exp\left(\frac{\beta^2}{8\alpha}\right) I_{\frac{1}{2}\nu}\left(\frac{\beta^2}{8\alpha}\right)$$
(21)

In our case, we have $\nu = 0 > -1$, $\alpha = \frac{3}{2\sigma^2} > 0$ and $\beta = \frac{\sqrt{2}x}{\sigma}$, which yields

$$\int_0^\infty \exp\left(-\frac{3}{2\sigma^2}\eta^2\right) I_0\left(\frac{\sqrt{2}x}{\sigma}\eta\right) d\eta = \frac{\sqrt{\pi}}{2\sqrt{\frac{3}{2\sigma^2}}} \exp\left(\frac{\frac{2x^2}{\sigma^2}}{8\frac{3}{2\sigma^2}}\right) I_0\left(\frac{\frac{2x^2}{\sigma^2}}{8\frac{3}{2\sigma^2}}\right)$$
$$= \frac{\sqrt{\pi}\sigma}{\sqrt{6}} \exp\left(\frac{x^2}{6}\right) I_0\left(\frac{x^2}{6}\right).$$

¹I.S. Gradshteyn and I.M. Ryzhik. *Table of Integrals, Series, and Products.* 7th. Academic Press, 2007, p. 699

Plugging this in, we obtain

$$q(t) = \frac{2}{\sqrt{2\pi\sigma^2}} \int_0^{\frac{t}{\sigma}} x \exp\left(-\frac{x^2}{2}\right) \frac{\sqrt{\pi\sigma}}{\sqrt{6}} \exp\left(\frac{x^2}{6}\right) I_0\left(\frac{x^2}{6}\right) dx$$
$$= \frac{1}{\sqrt{3}} \int_0^{\frac{t}{\sigma}} x \exp\left(-\frac{x^2}{2}\right) \exp\left(\frac{x^2}{6}\right) I_0\left(\frac{x^2}{6}\right) dx$$
$$= \frac{1}{\sqrt{3}} \int_0^{\frac{t}{\sigma}} x \exp\left(-\frac{x^2}{3}\right) I_0\left(\frac{x^2}{6}\right) dx.$$

To proceed, we need to integrate by parts to replace the modified Bessel function I_0 with order zero by a modified Bessel function I_1 with order one.²

$$q(t) = \frac{1}{\sqrt{3}} \left[-\frac{3}{2} \exp\left(-\frac{x^2}{3}\right) I_0\left(\frac{x^2}{6}\right) \right]_0^{\frac{t}{\sigma}} + \frac{1}{2\sqrt{3}} \int_0^{\frac{t}{\sigma}} \exp\left(-\frac{x^2}{3}\right) x I_1\left(\frac{x^2}{6}\right) dx$$
$$= \frac{1}{\sqrt{3}} \left(\frac{3}{2} - \frac{3}{2} \exp\left(-\frac{t^2}{3\sigma^2}\right) I_0\left(\frac{t^2}{6\sigma^2}\right) \right) + \frac{1}{2\sqrt{3}} \int_0^{\frac{t}{\sigma}} \exp\left(-\frac{x^2}{3}\right) x I_1\left(\frac{x^2}{6}\right) dx$$

In the next step we substitute $y = x^2$ in the remaining integral, which leaves us with

$$q(t) = \frac{1}{\sqrt{3}} \left(\frac{3}{2} - \frac{3}{2} \exp\left(-\frac{t^2}{3\sigma^2} \right) I_0 \left(\frac{t^2}{6\sigma^2} \right) \right) + \frac{1}{4\sqrt{3}} \int_0^{\frac{t^2}{\sigma^2}} \exp\left(-\frac{y}{3} \right) I_1 \left(\frac{y}{6} \right) dy.$$

We want to solve the remaining integral. Let $p \neq b$ and $s = \sqrt{p^2 - b^2}$, $u = \sqrt{a(p-s)}$ and $v = \sqrt{a(p+s)}$. Then³

$$\int_0^a \exp(-px) I_M(bx) dx = \frac{1}{sb^M} \left((p-s)^M (1 - Q_M(u,v)) - (p+s)^M (1 - Q_M(v,u)) \right),$$
(22)

where Q_M denotes the Marcum Q-function. The Marcum Q-function is only defined for $M \geq 1$, which made the integration by parts necessary. Applying this equation with M = 1 to the integral yields

$$\int_0^{\frac{t^2}{\sigma^2}} \exp\left(-\frac{y}{3}\right) I_1\left(\frac{y}{6}\right) dy = 2\sqrt{3}(2-\sqrt{3}) \left(1 - Q_1\left(\frac{2-\sqrt{3}}{6}\frac{t}{\sigma}, \frac{2+\sqrt{3}}{6}\frac{t}{\sigma}\right)\right)$$

²Frank Olver et al. NIST Handbook of Mathematical Functions. Jan. 2010, p. 251

³Albert H. Nuttall. "Some integrals involving the Q_M -function". In: (1974)

$$-2\sqrt{3}(2+\sqrt{3})\left(1-Q_1\left(\frac{2+\sqrt{3}}{6}\frac{t}{\sigma},\frac{2-\sqrt{3}}{6}\frac{t}{\sigma}\right)\right).$$

Plugging this in, we obtain the final result

$$q(t) = \frac{1}{\sqrt{3}} \left(\frac{3}{2} - \frac{3}{2} \exp\left(-\frac{t^2}{3\sigma^2}\right) I_0\left(\frac{t^2}{6\sigma^2}\right) \right) + \frac{1}{4\sqrt{3}} \int_0^{\frac{t^2}{\sigma^2}} \exp\left(-\frac{y}{3}\right) I_1\left(\frac{y}{6}\right) dy$$

$$= \frac{1}{\sqrt{3}} \left(\frac{3}{2} - \frac{3}{2} \exp\left(-\frac{t^2}{3\sigma^2}\right) I_0\left(\frac{t^2}{6\sigma^2}\right) \right)$$

$$+ \frac{2\sqrt{3}}{4\sqrt{3}} (2 - \sqrt{3}) \left(1 - Q_1\left(\frac{2 - \sqrt{3}}{6} \frac{t}{\sigma}, \frac{2 + \sqrt{3}}{6} \frac{t}{\sigma}\right) \right)$$

$$- \frac{2\sqrt{3}}{4\sqrt{3}} (2 + \sqrt{3}) \left(1 - Q_1\left(\frac{2 + \sqrt{3}}{6} \frac{t}{\sigma}, \frac{2 - \sqrt{3}}{6} \frac{t}{\sigma}\right) \right)$$

$$= \frac{1}{\sqrt{3}} \left(\frac{3}{2} - \frac{3}{2} \exp\left(-\frac{t^2}{3\sigma^2}\right) I_0\left(\frac{t^2}{6\sigma^2}\right) \right) - \sqrt{3}$$

$$- \frac{2 - \sqrt{3}}{2} Q_1\left(\frac{2 - \sqrt{3}}{6} \frac{t}{\sigma}, \frac{2 + \sqrt{3}}{6} \frac{t}{\sigma}\right)$$

$$+ \frac{2 + \sqrt{3}}{2} Q_1\left(\frac{2 + \sqrt{3}}{6} \frac{t}{\sigma}, \frac{2 - \sqrt{3}}{6} \frac{t}{\sigma}\right)$$

$$= p_{\sigma}(t).$$

This finishes the proof of the first equality of equation (20). Analogously, we can proof $\mathbb{P}_{V_2}(\|\Delta^- F(i,j)\| \leq t) = p_{\sigma}(t)$, finishing the proof of Theorem 2.7.

Corollary 2.8. Let $(i,j) \in \Omega$ and $t \in \mathbb{R}^+$. Assume that F follows the statistical model given in (11) and let T(i,j) be defined as in (14). Then

$$\mathbb{P}_V(T(i,j) \ge t) \le 1 - p_\sigma(t) \tag{23}$$

for every $V \in \mathcal{H}_0(i,j)$.

Proof. Since $V \in \mathcal{H}_0(i,j)$, we have $V \in \mathcal{H}_0^+(i,j)$ or $V \in \mathcal{H}_0^-(i,j)$. In the first case, by Lemma 2.6 and Theorem 2.7 we have

$$\mathbb{P}_{V}(T(i,j) \ge t) \le \min \left\{ \mathbb{P}_{V}(\|\Delta^{+}F(i,j)\| \ge t), \mathbb{P}_{V}(\|\Delta^{-}F(i,j)\| \ge t) \right\}$$

$$\leq \mathbb{P}_V(\|\Delta^+ F(i,j)\| \geq t)$$

= 1 - $p_{\sigma}(t)$.

The second case is proven analogously.

Let $\alpha \in (0,1)$ be given. According to Corollary 2.8 any threshold t_{α} with $1 - p_{\sigma}(t_{\alpha}) \leq \alpha$ bounds the probability of a type I error in our statistical test below the given statistical significance α . Since the function $p_{\sigma}(t)$ does not depend on V, the threshold is independent of the specific V.

Note, that finding inverse functions of the modified Bessel function of the first kind I_{ν} and of the Marcum Q-function Q_{M} is not feasible and consequently there is no way to compute an inverse function of $p_{\sigma}(t)$. Thus, we cannot provide a closed form to calculate the threshold, but we can compute a threshold t_{α} numerically with a trial and error algorithm, see Algorithm 1. To this end, we note, that $p_{\sigma}(t_{\alpha} \cdot \sigma) = p_{1}(t_{\alpha})$. Hence, it is sufficient to calculate a threshold t_{α} for $\sigma = 1$. A MATLAB implementation of this algorithm can be found in Appendix C. In Figure 2 the cumulative distribution function $p_{1}(t)$ is plotted. For $\alpha = 0.05$ and $\alpha = 0.01$ the thresholds have been numerically computed.

Algorithm 1: Computation of a threshold for a given statistical significance

```
Input: \alpha \in (0,1)
Output: t_{\alpha} and \alpha_{real}, s.t. p_1(t_{\alpha}) = 1 - \alpha_{real} \ge 1 - \alpha

1 t_{\alpha} = 0;
2 t_{inc} = 0.0001;
3 while p_1(t_{\alpha}) < 1 - \alpha do
4 color t_{\alpha} + t_{inc};
5 color \alpha_{real} = 1 - p_1(t_{\alpha});
6 end while
```


Figure 2: Plot of the cumulative distribution function $p_1(t)$. The numerically computed thresholds $t_{0.05} = 3.2452$ and $t_{0.01} = 4.2703$ are marked.

2.4 Analysis of the probability of a type II error

Through Corollary (2.8) we bound the probability of falsely classifying a background pixel as a foreground pixel below a given statistical significance. In the following, we are interested in upper and lower bounds for the probability of a type II error, that is falsely classifying a foreground pixel as a background pixel.

To this end, we define a subset of $\mathcal{V}_c^{m,n}$ for every pixel. Let $(i,j) \in \Omega$. We define the set of images, for which the alternative hypothesis $H_1(i,j)$ is true as

$$\mathcal{H}_1(i,j) := \left\{ V \in \mathcal{V}_c^{m,n} \mid \min\{\|\Delta^+ V(i,j)\|, \|\Delta^- V(i,j)\|\} \neq 0 \right\}.$$
 (24)

A first step towards bounds for the probability of a type II error is achieved in the following lemma.

Theorem 2.9. Let $(i,j) \in \Omega$ and $t \in \mathbb{R}^+$. Assume that F follows the statistical model given (11) and let T(i,j) and $H_1(i,j)$ be defined as in (14) and (13). Let $V, V_1, V_2 \in \mathcal{H}_1(i,j)$. Assume V_1 is such, that $\|\Delta^+V_1(i,j)\| = \sqrt{2}c$ and V_2 such, that $\|\Delta^+V_2(i,j)\| = \sqrt{8}c$. Then the following inequalities hold:

$$\mathbb{P}_{V}\left(T(i,j) \le t\right) \le 2 \cdot \mathbb{P}_{V_{1}}\left(\|\Delta^{+}F(i,j)\| \le t\right) \tag{25}$$

$$\mathbb{P}_V\left(T(i,j) \le t\right) \ge \mathbb{P}_{V_2}\left(\|\Delta^+ F(i,j)\| \le t\right) \tag{26}$$

Proof. By assumption $V \in \mathcal{H}_1(i,j) \subseteq \mathcal{V}_c^{m,n}$. By design of our statistical test, if $H_1(i,j)$ is true, then $(i,j) \in \Lambda$, where Λ denotes the rROI contained in V. As can be seen from Table 1 in the proof of Lemma 2.5, $(i,j) \in \Lambda$ implies

$$\|\Delta^+V(i,j)\|, \|\Delta^-V(i,j)\| \in \{\sqrt{2}c, \sqrt{5}c, \sqrt{8}c\}.$$

Hence, we can rewrite the set $\mathcal{H}_1(i,j)$ as

$$\mathcal{H}_1(i,j) = \left\{ V \in \mathcal{V}_c^{m,n} \mid \|\Delta^+ V(i,j)\|, \|\Delta^- V(i,j)\| \in \{\sqrt{2}c, \sqrt{5}c, \sqrt{8}c\} \right\}.$$

Using this knowledge, we can start bounding the probability of a type II error in our testing procedure, which we call β , from above by

$$\begin{split} \beta(t) &\coloneqq \mathbb{P}_{V}\left(T(i,j) \leq t\right) \\ &= \mathbb{P}_{V}\left(\min\left\{\|\Delta^{+}F(i,j)\|, \|\Delta^{-}F(i,j)\|\right\} \leq t\right) \\ &= \mathbb{P}_{V}\left(\left\{\|\Delta^{+}F(i,j)\| \leq t\right\} \cup \left\{\|\Delta^{-}F(i,j)\| \leq t\right\}\right) \\ &\leq \mathbb{P}_{V}\left(\|\Delta^{+}F(i,j)\| \leq t\right) + \mathbb{P}_{V}\left(\|\Delta^{-}F(i,j)\| \leq t\right). \end{split}$$

This upper bound depends on the actual value of $\|\Delta^+V(i,j)\|$, which is unknown. In both terms we take a $V^* \in \mathcal{H}_1(i,j)$ that maximizes the probability and obtain

$$\beta(t) \leq \max_{V^* \in \mathcal{H}_1(i,j)} \mathbb{P}_{V^*} \left(\|\Delta^+ F(i,j)\| \leq t \right) + \max_{V^* \in \mathcal{H}_1(i,j)} \mathbb{P}_{V^*} \left(\|\Delta^- F(i,j)\| \leq t \right)$$

$$= 2 \cdot \max_{V^* \in \mathcal{H}_1(i,j)} \mathbb{P}_{V^*} \left(\|\Delta^+ F(i,j)\| \leq t \right)$$

where we used the equality

$$\max_{V^* \in \mathcal{H}_1(i,j)} \mathbb{P}_{V^*} \left(\|\Delta^+ F(i,j)\| \le t \right) = \max_{V^* \in \mathcal{H}_1(i,j)} \mathbb{P}_{V^*} \left(\|\Delta^- F(i,j)\| \le t \right).$$

The maximum is attained for any $V^* \in \mathcal{H}_1(i,j)$ with $\|\Delta^+ V^*(i,j)\| = \sqrt{2}c$. Thus we get by $\|\Delta^+ V_1(i,j)\| = \sqrt{2}c$, that

$$\beta(t) \leq 2 \cdot \max_{V^* \in \mathcal{H}_1(i,j)} \mathbb{P}_{V^*} \left(\|\Delta^+ F(i,j)\| \leq t \right)$$
$$= 2 \cdot \mathbb{P}_{V_1} \left(\|\Delta^+ F(i,j)\| \leq t \right),$$

which proves inequality (25).

For the lower bound consider

$$\beta(t) = \mathbb{P}_V \left(T(i,j) \le t \right)$$

$$= \mathbb{P}_V \left(\min\{ \|\Delta^+ F(i,j)\|, \|\Delta^- F(i,j)\| \} \le t \right)$$

$$\geq \mathbb{P}_V \left(\|\Delta^+ F(i,j)\| \le t \right).$$

Again, this lower bound depends on the value of $\|\Delta^+V(i,j)\|$, which is unknown, and we bound this further by

$$\beta(t) \ge \mathbb{P}_V \left(\|\Delta^+ F(i,j)\| \le t \right)$$

$$\ge \min_{V^* \in \mathcal{H}_1(i,j)} \mathbb{P}_{V^*} \left(\|\Delta^+ F(i,j)\| \le t \right).$$

The minimum is attained for any $V^* \in \mathcal{H}_1(i,j)$ with $||\Delta^+V^*(i,j)|| = \sqrt{8}c$. Hence,

$$\beta(t) \ge \min_{V^* \in \mathcal{H}_1(i,j)} \mathbb{P}_{V^*} \left(\|\Delta^+ F(i,j)\| \le t \right)$$
$$= \mathbb{P}_{V_2} \left(\|\Delta^+ F_2(i,j)\| \le t \right)$$

which proves inequality (26) and finishes the proof.

The previous theorem is the equivalent to Lemma 2.6 for the probability of a type II error. We would like to write these bounds in terms of well-known functions like we did in Theorem 2.7. This would require more generalized versions of equalities (21) and (22), which, to the best of the author's knowledge, are not known.

We can write down the compound probability distribution of the upper and lower bound from Theorem 2.9. The results are given in the following theorem.

Theorem 2.10. Let $(i,j) \in \Omega$ and $t \in \mathbb{R}^+$. Assume that F follows the statistical model given (11) and let T(i,j) and $H_1(i,j)$ be defined as in (14) and (13). Let $V_1, V_2 \in \mathcal{H}_1(i,j)$. Assume V_1 is such, that $\|\Delta^+ V_1(i,j)\| = \sqrt{2}c$ and V_2 such, that $\|\Delta^+ V_2(i,j)\| = \sqrt{8}c$. Then the following equalities hold:

$$\mathbb{P}_{V_{1}}\left(\|\Delta^{+}F(i,j)\| \leq t\right) \\
= \frac{1}{\sqrt{2\pi\sigma^{2}}} \int_{0}^{\frac{t}{\sigma}} x \exp\left(-\frac{x^{2}}{2}\right) \int_{-\infty}^{\infty} \exp\left(-\frac{(c-\eta)^{2}}{\sigma^{2}} - \frac{\eta^{2}}{2\sigma^{2}}\right) I_{0}\left(\frac{\sqrt{2}x}{\sigma}(c-\eta)\right) d\eta dx \\
\mathbb{P}_{V_{2}}\left(\|\Delta^{+}F(i,j)\| \leq t\right) \\
= \frac{1}{\sqrt{2\pi\sigma^{2}}} \int_{0}^{\frac{t}{\sigma}} x \exp\left(-\frac{x^{2}}{2}\right) \int_{-\infty}^{\infty} \exp\left(-\frac{(2c-\eta)^{2}}{\sigma^{2}} - \frac{\eta^{2}}{2\sigma^{2}}\right) I_{0}\left(\frac{\sqrt{2}x}{\sigma}(2c-\eta)\right) d\eta dx \\
(28)$$

Proof. From the analysis of possible combinations of |V(i+1,j)-V(i,j)| and |V(i,j+1)-V(i,j)| in Table 1 we can deduce the equivalences

$$|V(i+1,j) - V(i,j)| = |V(i,j+1) - V(i,j)| = c \Leftrightarrow ||\Delta^+V(i,j)|| = \sqrt{2}c,$$

$$|V(i+1,j) - V(i,j)| = |V(i,j+1) - V(i,j)| = 2c \Leftrightarrow ||\Delta^+V(i,j)|| = \sqrt{8}c.$$

We start with the first equality and proceed as in the proof of Theorem 2.7.

$$\begin{split} & \mathbb{P}_{V_{1}} \left(\| \Delta^{+} F(i,j) \| \leq t \right) \\ & = \mathbb{P}_{V_{1}} \left((c + V_{1}(i+1,j) + \varepsilon_{i+1,j} - c - V_{1}(i,j) - \varepsilon_{i,j})^{2} \right. \\ & + \left. (c + V_{1}(i,j+1) + \varepsilon_{i,j+1} - c - V_{1}(i,j) - \varepsilon_{i,j})^{2} \leq t^{2} \right) \\ & = \mathbb{P}_{V_{1}} \left((V_{1}(i+1,j) - V_{1}(i,j) + \varepsilon_{i+1,j} - \varepsilon_{i,j})^{2} \right. \\ & + \left. (V_{1}(i,j+1) - V_{1}(i,j) + \varepsilon_{i,j+1} - \varepsilon_{i,j})^{2} \leq t^{2} \right). \end{split}$$

We can replace $\varepsilon_{i+1,j}$ and $\varepsilon_{i,j}$ by $-\varepsilon_{i+1,j}$ and $-\varepsilon_{i,j}$ or $\varepsilon_{i,j+1}$ and $\varepsilon_{i,j}$ by $-\varepsilon_{i,j+1}$ and $-\varepsilon_{i,j}$, respectively, without changing the probability. Thus, we can assume without loss of generality

$$V_1(i+1,j) - V_1(i,j) = V_1(i,j+1) - V_1(i,j) = c.$$

This yields

$$\mathbb{P}_{V_1}\left(\|\Delta^+ F(i,j)\| \le t\right) = \mathbb{P}_{V_1}\left((c + \varepsilon_{i+1,j} - \varepsilon_{i,j})^2 + (c + \varepsilon_{i,j+1} - \varepsilon_{i,j})^2 \le t^2\right).$$

We define the following random variables

$$\xi = c - \varepsilon_{i,j} \sim \mathcal{N}\left(c, \sigma^2\right),$$

$$X_1 = \xi + \varepsilon_{i+1,j} \sim \mathcal{N}\left(\xi_1, \sigma^2\right)$$

$$X_2 = \xi + \varepsilon_{i,j+1} \sim \mathcal{N}\left(\xi_2, \sigma^2\right)$$

and obtain

$$\mathbb{P}_{V_1}\left(\|\Delta^+ F(i,j)\| \le t\right) = \mathbb{P}_{V_1}\left(\sqrt{\left(\frac{X_1}{\sigma}\right)^2 + \left(\frac{X_2}{\sigma}\right)^2} \le \frac{t}{\sigma}\right).$$

Since X_1 and X_2 are independent, the square root inside has a non-central Chi distribution with two degrees of freedom and non-centrality parameter

$$\lambda = \sqrt{\left(\frac{c - \varepsilon_{i,j}}{\sigma}\right)^2 + \left(\frac{c - \varepsilon_{i,j}}{\sigma}\right)^2} = \frac{\sqrt{2}|c - \varepsilon_{i,j}|}{\sigma}.$$

This yields

$$\sqrt{\left(\frac{X_1}{\sigma}\right)^2 + \left(\frac{X_2}{\sigma}\right)^2} \sim \chi_2\left(\frac{\sqrt{2}|c - \varepsilon_{i,j}|}{\sigma}\right).$$

Since $\varepsilon_{i,j}$ is a normal distributed random variable with zero mean and standard deviation σ , we have a compound probability distribution:

$$\mathbb{P}_{V_1}\left(\left(\|\Delta^+ F(i,j)\| \le t\right)\right)$$

$$\begin{split} &= \mathbb{P}_{V_1} \left(\sqrt{\left(\frac{X_1}{\sigma}\right)^2 + \left(\frac{X_2}{\sigma}\right)^2} \leq \frac{t}{\sigma} \right) \\ &= \int_0^{\frac{t}{\sigma}} \int_{-\infty}^{\infty} \underbrace{x \exp\left(-\frac{x^2}{2} - \frac{|c - \eta|^2}{\sigma^2}\right) I_0\left(\frac{\sqrt{2}|c - \eta|}{\sigma}x\right)}_{\text{pdf of } \chi_2\left(\frac{\sqrt{2}|c - \eta|}{\sigma}\right) \text{ for fixed } \eta} \underbrace{\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\eta^2}{2\sigma^2}\right)}_{\text{pdf of } \mathcal{N}(0, \sigma^2)} \mathrm{d}\eta \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \int_0^{\frac{t}{\sigma}} x \exp\left(-\frac{x^2}{2}\right) \int_{-\infty}^{\infty} \exp\left(-\frac{(c - \eta)^2}{\sigma^2} - \frac{\eta^2}{2\sigma^2}\right) I_0\left(\frac{\sqrt{2}x}{\sigma}(c - \eta)\right) \mathrm{d}\eta \mathrm{d}x, \end{split}$$

where we used the symmetry of I_0 . The second equality can be proven analogously.

These results are not as strong as the results from Theorem 2.7, as we do not have a closed form for the bounds for the probability of a type II error. We can simulate random variables V_1 and V_2 as defined in Theorem 2.9 and in this way obtain empirical estimates of upper and lower bounds for the probability of a type II error depending on the standard deviation σ of the noise term in the statistical model (11).

Figure 3 shows the result of this simulation for the thresholds $t_{0.05} = 3.2452$ and $t_{0.01} = 4.2703$, that were computed in Section 2.3. A *MATLAB* implementation of the simulation can be found in Appendix C.

Theorem 2.10 also yields a second way to numerically obtain upper and lower bounds for the probability of a type II error by numerically integrating the right hand side of equations (27) and (28).

Figure 3: Simulated bounds for the probability of a type II error. We use the thresholds $t_{0.05}=3.2452$ for $\alpha=0.05$ and $t_{0.01}=4.2703$ for $\alpha=0.01$. (Sample size: 1.000.000)

3 Binary morphological operations

We now introduce morphological operations. Since the output of the testing procedure is binary, it is sufficient to only consider binary morphological operations. In particular, we will only study the impact of binary opening and binary closing. These operataions are frequently used in the preprocessing of fingerprint images and, as we discuss in Section 3.2, exhibit properties, that make them a good tool for the reduction of falsely classified pixels.

Morphological opening and closing only depend on a limited and fixed number of pixels. In contrast to that, the *convex hull* is a morphological operation, also commonly used in fingerprint analysis, depending on all pixels of

an image, making it harder to study on a pixel-by-pixel basis.

3.1 Definition of opening & closing

Morphological binary opening and closing are closely related operations. They are both defined as a composition of binary erosion and binary dilation, defined below. It should be noted, that we focus on morphological operations in image processing and thus the definitions might differ from those in other contexts. The definitions of the basic morphology operations are taken from [Shi10].

Definition 3.1 ([Shi10, p. 64-68]). Let $\Theta, \Psi \subseteq \mathbb{Z}^2$.

1. The binary erosion of Θ by Ψ is defined as

$$\Theta \ominus \Psi = \left\{ x \in \mathbb{Z}^2 \mid x + b \in \Theta \text{ for every } b \in \Psi \right\}.$$

2. The binary dilation of A by Ψ is defined as

$$\Theta \oplus \Psi = \left\{ c \in \mathbb{Z}^2 \mid c = a + b \text{ for some } a \in \Theta \text{ and } b \in \Psi \right\}.$$

The set Ψ is called a *structuring element*.

Working with images we translate the definition of binary opening and closing from being operations on subsets of \mathbb{Z}^2 to being operations on matrices $\mathfrak{I} \in \{0,1\}^{m \times n}$.

Definition 3.2. Let $m, n \in \mathbb{N}$, $\mathfrak{I} \in \{0, 1\}^{m \times n}$, $\Omega = \{1, \dots, m\} \times \{1, \dots, n\}$ and $\Psi \subseteq \mathbb{Z}^2$ be a structuring element. We call

$$\Theta_{\mathfrak{I}} := \{(i,j) \in \Omega \mid \mathfrak{I}(i,j) = 1\} \subseteq \mathbb{Z}^2$$

the index set of the binary matrix \Im .

1. The erosion of the binary matrix \Im by the structuring element Ψ is

defined by

$$(\mathfrak{I} \ominus \Psi)(i,j) = \begin{cases} 1, & \text{if } (i,j) \in \Theta_{\mathfrak{I}} \ominus \Psi, \\ 0, & \text{if } (i,j) \notin \Theta_{\mathfrak{I}} \ominus \Psi, \end{cases}$$
(29)

for every $(i, j) \in \Omega$.

2. The dilation of the binary matrix \Im by the structuring element Ψ is defined by

$$(\mathfrak{I} \oplus \Psi)(i,j) = \begin{cases} 1, & \text{if } (i,j) \in \Theta_{\mathfrak{I}} \oplus \Psi, \\ 0, & \text{if } (i,j) \notin \Theta_{\mathfrak{I}} \oplus \Psi, \end{cases}$$
(30)

for every $(i, j) \in \Omega$.

By definition, erosion and dilation of a binary matrix are binary matrices as well, i.e. $\mathfrak{I} \ominus \Psi, \mathfrak{I} \oplus \Psi \in \{0,1\}^{m \times n}$.

We want to express $\mathfrak{I} \oplus \Psi$ and $\mathfrak{I} \oplus \Psi$ in terms of \mathfrak{I} . This is done in the following lemma.

Lemma 3.3. Let $m, n \in \mathbb{N}$, $\mathfrak{I} \in \{0, 1\}^{m \times n}$ and $\Psi \subseteq \mathbb{Z}^2$ be a structuring element. Let $(i, j) \in \Omega$. Then the following equalities hold:

$$(\mathfrak{I} \ominus \Psi)(i,j) = \prod_{(k,\ell)\in\Psi} \mathfrak{I}(i+k,j+\ell)$$
(31)

$$(\mathfrak{I} \oplus \Psi)(i,j) = 1 - \prod_{(k,\ell) \in \Psi} (1 - \mathfrak{I}(i-k,j-\ell))$$
 (32)

where we extend the matrix \Im to all of \mathbb{Z}^2 by setting $\Im(k,\ell)=0$ for $(k,\ell)\notin\Omega$.

Proof. Let $\Theta_{\mathfrak{I}}$ be the index set of the binary matrix \mathfrak{I} . By definition of binary erosion and using basic properties of set theory, we obtain

$$(\mathfrak{I} \ominus \Psi)(i,j) = 1 \Leftrightarrow (i,j) \in \Theta_{\mathfrak{I}} \ominus \Psi$$
$$\Leftrightarrow \forall (k,\ell) \in \Psi : (i,j) + (k,\ell) \in \Theta_{\mathfrak{I}}$$
$$\Leftrightarrow (i,j) \in \bigcap_{(k,\ell) \in \Psi} (\Theta_{\mathfrak{I}} - (k,\ell))$$

where we define the sets $\Theta_{\mathfrak{I}}-(k,\ell) := \{a-(k,\ell) \mid a \in \Theta_{\mathfrak{I}}\}\$ for any $(k,\ell) \in \mathbb{Z}^2$.

The sets $\Theta_{\mathfrak{I}} - (k, \ell)$ are related to the matrix \mathfrak{I} through the equivalence

$$(i,j) \in (\Theta_{\mathfrak{I}} - (k,\ell)) \Leftrightarrow \mathfrak{I}(i+k,j+\ell) = 1.$$
 (33)

Using (33), we obtain

$$(\mathfrak{I} \ominus \Psi)(i,j) = 1 \Leftrightarrow (i,j) \in \bigcap_{(k,\ell) \in \Psi} (\Theta_{\mathfrak{I}} - (k,\ell))$$
$$\Leftrightarrow \prod_{(k,\ell) \in \Psi} \mathfrak{I}(i+k,j+\ell) = 1.$$

The functions on both sides of this equivalence only take values in $\{0, 1\}$. Thus, we end up with

$$(\mathfrak{I} \ominus \Psi)(i,j) = \prod_{(k,\ell) \in \Psi} \mathfrak{I}(i+k,j+\ell).$$

This proves the first equality.

The proof of the second equality is similar. First we use the definition of binary dilation and basic set theory properties to get the equivalence

$$(\mathfrak{I} \oplus \Psi)(i,j) = 1 \Leftrightarrow (i,j) \in \Theta_{\mathfrak{I}} \oplus \Psi$$
$$\Leftrightarrow \exists (k,\ell) \in \Psi : (i,j) - (k,\ell) \in \Theta_{\mathfrak{I}}$$
$$\Leftrightarrow (i,j) \in \bigcup_{(k,\ell) \in \Psi} (\Theta_{\mathfrak{I}} + (k,\ell)).$$

The property $(i,j) \in \bigcup_{(k,\ell)\in\Psi}(\Theta_{\mathfrak{I}}+(k,\ell))$ is satisfied, if $\mathfrak{I}(i-k,j-\ell)=1$ for some $(k,\ell)\in\Psi$. This observation yields the equivalence

$$(\mathfrak{I} \oplus \Psi)(i,j) = 1 \Leftrightarrow (i,j) \in \bigcup_{(k,\ell) \in \Psi} (\Theta_{\mathfrak{I}} + (k,\ell))$$
$$\Leftrightarrow \prod_{(k,\ell) \in \Psi} (1 - \mathfrak{I}(i-k,j-\ell)) = 0.$$

Since $\mathfrak I$ is binary, $\prod_{(k,\ell)\in\Psi}(1-\mathfrak I(i-k,j-\ell))$ only takes values in $\{0,1\}$.

Hence, we have the equivalence

$$\begin{split} (\Im \oplus \Psi)(i,j) &= 1 \Leftrightarrow \prod_{(k,\ell) \in \Psi} (1 - \Im(i-k,j-\ell)) = 0 \\ \Leftrightarrow 1 - \prod_{(k,\ell) \in \Psi} (1 - \Im(i-k,j-\ell)) = 1. \end{split}$$

Again, since both sides only take values in $\{0,1\}$, this yields a full equality

$$(\mathfrak{I} \oplus \Psi)(i,j) = 1 - \prod_{(k,\ell) \in \Psi} (1 - \mathfrak{I}(i-k,j-\ell)).$$

Remark 3.4. The extension of \mathfrak{I} to all of \mathbb{Z}^2 is necessary, because in the products on the right hand sides of equations (31) and (32), we might reach indices outside of Ω .

After having defined binary erosion and dilation, we now can define binary opening and closing. Again, we start by defining it for subsets of \mathbb{Z}^2 and then proceed to define it for binary matrices $\mathfrak{I} \in \{0,1\}^{m \times n}$.

Definition 3.5 ([Shi10, p. 68-69]). Let $\Theta, \Psi \subseteq \mathbb{Z}^2$.

1. The binary opening of Θ by a structuring element Ψ is defined as

$$\Theta \circ \Psi = (\Theta \ominus \Psi) \oplus \Psi.$$

2. The binary closing of Θ by a structuring element Ψ is defined as

$$\Theta \bullet \Psi = (\Theta \oplus \Psi) \ominus \Psi.$$

The definitions for matrices are done the same way, as they were done for erosion and dilation of binary matrices.

Definition 3.6. Let $m, n \in \mathbb{N}$, $\mathfrak{I} \in \{0, 1\}^{m \times n}$, $\Psi \subseteq \mathbb{Z}^2$ be a structuring element and $\Theta_{\mathfrak{I}}$ be the index set of \mathfrak{I} .

1. The opening of the binary matrix \Im by the structuring element Ψ is defined by

$$(\mathfrak{I} \circ \Psi)(i,j) = \begin{cases} 1, & \text{if } (i,j) \in \Theta_{\mathfrak{I}} \circ \Psi, \\ 0, & \text{if } (i,j) \notin \Theta_{\mathfrak{I}} \circ \Psi, \end{cases}$$
(34)

for every $(i, j) \in \Omega$.

2. The closing of the binary matrix \Im by the structuring element Ψ is defined by

$$(\mathfrak{I} \bullet \Psi)(i,j) = \begin{cases} 1, & \text{if } (i,j) \in \Theta_{\mathfrak{I}} \bullet \Psi, \\ 0, & \text{if } (i,j) \notin \Theta_{\mathfrak{I}} \bullet \Psi, \end{cases}$$
(35)

for every $(i, j) \in \Omega$.

We need to show, that opening and closing of a binary matrix are also concatenations of erosion and dilation of binary matrices.

Lemma 3.7. Let $m, n \in \mathbb{N}$, $\mathfrak{I} \in \{0,1\}^{m \times n}$ and $\Psi \subseteq \mathbb{Z}^2$ be a structuring element. We have the following connections between opening and closing and erosion and dilation of binary matrices:

$$(\mathfrak{I} \circ \Psi) = (\mathfrak{I} \ominus \Psi) \oplus \Psi \tag{36}$$

$$(\mathfrak{I} \bullet \Psi) = (\mathfrak{I} \oplus \Psi) \ominus \Psi \tag{37}$$

Proof. To prove these relations, we first show, that $\Theta_{\mathfrak{I} \oplus \Psi} = \Theta_{\mathfrak{I}} \oplus \Psi$ and $\Theta_{\mathfrak{I} \oplus \Psi} = \Theta_{\mathfrak{I}} \oplus \Psi$. By defintion of the index set of a binary matrix, we have

$$\Theta_{\mathfrak{I} \oplus \Psi} = \{ (i, j) \in \Omega \mid (\mathfrak{I} \oplus \Psi)(i, j) = 1 \}$$
$$= \{ (i, j) \in \Omega \mid (i, j) \in \Theta_{\mathfrak{I}} \oplus \Psi \}$$
$$= \Theta_{\mathfrak{I}} \oplus \Psi.$$

The second equality is proven analogously. Using this equality, we obtain

$$(\mathfrak{I} \circ \Psi)(i,j) = 1 \Leftrightarrow (i,j) \in \Theta_{\mathfrak{I}} \circ \Psi$$
$$\Leftrightarrow (i,j) \in (\Theta_{\mathfrak{I}} \ominus \Psi) \oplus \Psi$$

$$\Leftrightarrow (i,j) \in \Theta_{\Im \ominus \Psi} \oplus \Psi$$
$$\Leftrightarrow ((\Im \ominus \Psi) \oplus \Psi)(i,j) = 1$$

and thus prove the first relation. The proof of the second relation is analogous. $\hfill\Box$

After we established this connection, we can use the equalities deduced in Lemma 3.3 for erosion and dilation to derive similar equalities for opening and closing of a binary matrix.

Lemma 3.8. Let $m, n \in \mathbb{N}$, $\mathfrak{I} \in \{0, 1\}^{m \times n}$ and $\Psi \subseteq \mathbb{Z}^2$ be a structuring element. Let $(i, j) \in \Omega$. Then the following equalities hold:

$$(\mathfrak{I} \circ \Psi)(i,j) = 1 - \prod_{(k,\ell) \in \Psi} \left(1 - \left(\prod_{(\tilde{k},\tilde{\ell}) \in \Psi} \mathfrak{I}(i-k+\tilde{k},j-\ell+\tilde{\ell}) \right) \right)$$
(38)

$$(\mathfrak{I} \bullet \Psi)(i,j) = \prod_{(k,\ell) \in \Psi} \left(1 - \prod_{(\tilde{k},\tilde{\ell}) \in \Psi} (1 - \mathfrak{I}(i+k-\tilde{k},j+\ell-\tilde{\ell})) \right)$$
(39)

where by convention matrix entries of \mathfrak{I} that lie outside of Ω are set to be $\mathfrak{I}(k,\ell)=0$.

Proof. We can use the previous lemma, as well as equations (32) and (31) to obtain the first equality

$$\begin{split} (\Im \circ \Psi)(i,j) &= ((\Im \ominus \Psi) \oplus \Psi)(i,j) \\ &= 1 - \prod_{(k,\ell) \in \Psi} (1 - (\Im \ominus \Psi)(i-k,j-\ell)) \\ &= 1 - \prod_{(k,\ell) \in \Psi} \left(1 - \left(\prod_{(\tilde{k},\tilde{\ell}) \in \Psi} \Im(i-k+\tilde{k},j-\ell+\tilde{\ell})\right)\right). \end{split}$$

Using the same lemma and equations also yields the second equality

$$\begin{split} (\mathfrak{I} \bullet \Psi)(i,j) &= ((\mathfrak{I} \oplus \Psi) \ominus \Psi)(i,j) \\ &= \prod_{(k,\ell) \in \Psi} (\mathfrak{I} \oplus \Psi)(i+k,j+\ell) \end{split}$$

$$= \prod_{(k,\ell)\in\Psi} \left(1 - \prod_{(\tilde{k},\tilde{\ell})\in\Psi} (1 - \Im(i + k - \tilde{k}, j + \ell - \tilde{\ell}))\right).$$

This finishes the proof.

Using the previous lemma, we can deduce the following equalities of sets of matrices $\mathfrak{I} \in \{0,1\}^{m \times n}$.

Lemma 3.9. Let $m, n \in \mathbb{N}$ and $\Psi \subseteq \mathbb{Z}^2$ be a structuring element. Let $(i, j) \in \Omega$. Then the following equalities hold:

$$\left\{ \mathfrak{I} \in \{0,1\}^{m \times n} \mid (\mathfrak{I} \circ \Psi)(i,j) = 1 \right\} \\
= \bigcup_{(k,\ell) \in \Psi} \bigcap_{(\tilde{k},\tilde{\ell}) \in \Psi} \left\{ \mathfrak{I} \in \{0,1\}^{m \times n} \mid \mathfrak{I}(i-k+\tilde{k},j-\ell+\tilde{\ell}) = 1 \right\} \\
\left\{ \mathfrak{I} \in \{0,1\}^{m \times n} \mid (\mathfrak{I} \bullet \Psi)(i,j) = 1 \right\} \\
= \bigcap_{(k,\ell) \in \Psi} \bigcup_{(\tilde{k},\tilde{\ell}) \in \Psi} \left\{ \mathfrak{I} \in \{0,1\}^{m \times n} \mid \mathfrak{I}(i+k-\tilde{k},j+\ell-\tilde{\ell}) = 1 \right\} \\
(41)$$

Proof. Using equation (38), we obtain the equality

$$\begin{split} \left\{ \mathfrak{I} \in \{0,1\}^{m \times n} \mid (\mathfrak{I} \circ \Psi)(i,j) = 1 \right\} \\ &= \left\{ \mathfrak{I} \in \{0,1\}^{m \times n} \mid 1 - \prod_{(k,\ell) \in \Psi} \left(1 - \left(\prod_{(\tilde{k},\tilde{\ell}) \in \Psi} \mathfrak{I}(i-k+\tilde{k},j-\ell+\tilde{\ell}) \right) \right) = 1 \right\} \\ &= \left\{ \mathfrak{I} \in \{0,1\}^{m \times n} \mid \prod_{(k,\ell) \in \Psi} \left(1 - \left(\prod_{(\tilde{k},\tilde{\ell}) \in \Psi} \mathfrak{I}(i-k+\tilde{k},j-\ell+\tilde{\ell}) \right) \right) = 0 \right\}. \end{split}$$

Consider, that $\prod_{(k,\ell)\in\Psi}\left(1-\left(\prod_{(\tilde{k},\tilde{\ell})\in\Psi}\Im(i-k+\tilde{k},j-\ell+\tilde{\ell})\right)\right)=0$, if and only if $1-\left(\prod_{(\tilde{k},\tilde{\ell})\in\Psi}\Im(i-k+\tilde{k},j-\ell+\tilde{\ell})\right)=0$ for any $(k,\ell)\in\Psi$. Thus, we obtain

$$\begin{split} \left\{ \mathfrak{I} \in \{0,1\}^{m \times n} \mid (\mathfrak{I} \circ \Psi)(i,j) = 1 \right\} \\ &= \left\{ \mathfrak{I} \in \{0,1\}^{m \times n} \mid \prod_{(k,\ell) \in \Psi} \left(1 - \left(\prod_{(\tilde{k},\tilde{\ell}) \in \Psi} \mathfrak{I}(i-k+\tilde{k},j-\ell+\tilde{\ell}) \right) \right) = 0 \right\} \end{split}$$

$$\begin{split} &= \bigcup_{(k,\ell) \in \Psi} \left\{ \Im \in \{0,1\}^{m \times n} \mid 1 - \left(\prod_{(\tilde{k},\tilde{\ell}) \in \Psi} \Im(i - k + \tilde{k}, j - \ell + \tilde{\ell}) \right) = 0 \right\} \\ &= \bigcup_{(k,\ell) \in \Psi} \left\{ \Im \in \{0,1\}^{m \times n} \mid \prod_{(\tilde{k},\tilde{\ell}) \in \Psi} \Im(i - k + \tilde{k}, j - \ell + \tilde{\ell}) = 1 \right\}. \end{split}$$

For fixed $(k,\ell) \in \Psi$, we have $\prod_{(\tilde{k},\tilde{\ell}) \in \Psi} \Im(i-k+\tilde{k},j-\ell+\tilde{\ell}) = 1$, if and only if $\Im(i-k+\tilde{k},j-\ell+\tilde{\ell}) = 1$ for all $(\tilde{k},\tilde{\ell}) \in B$. This yields

$$\begin{split} \left\{ \Im \in \{0,1\}^{m \times n} \mid (\Im \circ \Psi)(i,j) = 1 \right\} \\ &= \bigcup_{(k,\ell) \in \Psi} \left\{ \Im \in \{0,1\}^{m \times n} \mid \prod_{(\tilde{k},\tilde{\ell}) \in \Psi} \Im(i-k+\tilde{k},j-\ell+\tilde{\ell}) = 1 \right\} \\ &= \bigcup_{(k,\ell) \in \Psi} \bigcap_{(\tilde{k},\tilde{\ell}) \in \Psi} \left\{ \Im \in \{0,1\}^{m \times n} \mid \Im(i-k+\tilde{k},j-\ell+\tilde{\ell}) = 1 \right\}, \end{split}$$

proving the first equality. The second equality can be proven analogously.

3.2 Examples

In the following Figures, we display examples of binary opening and closing to depict the effects these operators have on a binary image. Note, that pixels with value one are black and pixels with value zero are white. Meanwhile, pixels that were changed by the morphological operators from one to zero will be displayed as light gray and pixels that were changed from zero to one will be displayed as dark gray.

In Figure 4 we see an example of binary morphological opening, whose effect we want to examine. We use a 3×3 pixel structuring element.

Edges of the larger connected region have been smoothed, making morphological opening a great tool for the smoothing of edges and outlier elimination [Shi10, p. 69].

Figure 5 shows an example of binary morphological closing with a 3×3 pixel structuring element.

Morphological closing is frequently used as a tool to fill gaps in binary images,

(a) Binary image.

(c) Image after binary opening, i.e. erosion and dilation. The dark gray pixels were set to one again.

(b) Result of binary erosion of the image with a 3×3 pixel structuring element. The light gray pixels are now set to zero.

(d) Result of opening. Outliers have been eliminated and edges have been smoothed.

Figure 4: Example of binary morphological opening.

see Fig. 5 and [Shi10, p. 69].

Altogether, both morphological opening and closing are effective tools to smooth edges. Morphological opening achieves this by eliminating outliers, while morphological closing fills gaps.

(a) Binary image.

(c) Image after binary closing, i.e. dilation and erosion. The light gray pixels are set to zero again.

(b) Image after binary dilation with a 3×3 pixel structuring element. The dark gray pixels are now set to one.

(d) Result of closing. The gaps between pixels have been filled.

Figure 5: Example of binary morphological closing.

4 Main results

In the following, we consider the effect of morphological opening and closing on the upper bounds for the error probabilities in the statistical test developed in Section 2.2. Note, that under morphological opening and closing we have $\Theta \circ \Psi \subseteq \Theta \subseteq \Theta \bullet \Psi$ for any structuring element Ψ . From this fact we deduce, that morphological opening will lower the probability of a type I error, but increase the probability of a type II error. Morphological closing, on the other hand, has the opposite effect. While this serves as a qualitative argument for the employment of these operators, we aim at quantifying this change of the probabilities by proving upper bounds for the error probabilities after morphological opening and closing have been applied.

We use a square structuring element, since we have the prior information, that the region of interest in the image is rectangular.

The changes of the upper bound for the probability of a type I error after opening and after opening and closing with a square structuring element are quantified in the following theorem.

Theorem 4.1. Let $m, n \in \mathbb{N}$, $c \in \mathbb{R} \setminus \{0\}$ and $\Omega = \{1, \dots, m\} \times \{1, \dots, n\}$. Assume that F follows the statistical model given in (11).

For a statistical significance $\alpha \in (0,1)$, let t_{α} be a threshold, such that $\mathbb{P}_{V}(\|\Delta^{+}F(\tilde{i},\tilde{j})\| \geq t_{\alpha}) \leq \alpha$ for every $(\tilde{i},\tilde{j}) \in \Omega$ and $V \in \mathcal{H}_{0}^{+}(\tilde{i},\tilde{j})$ and $\mathbb{P}_{V}(\|\Delta^{-}F(\tilde{i},\tilde{j})\| \geq t_{\alpha}) \leq \alpha$ for every $(\tilde{i},\tilde{j}) \in \Omega$ and $V \in \mathcal{H}_{0}^{-}(\tilde{i},\tilde{j})$, cf. (16) and (17).

Let \mathfrak{I}_{α} be the binary image defined by

$$\mathfrak{I}_{\alpha}(\tilde{i},\tilde{j}) = \mathbb{1}_{\{T(\tilde{i},\tilde{j}) \ge t_{\alpha}\}} \tag{42}$$

for all $(\tilde{i}, \tilde{j}) \in \Omega$.

Let $(i, j) \in \Omega$ and let T(i, j) be the test statistic defined in (14) and $H_0(i, j)$ be the null hypothesis defined in (12).

Let $\varphi \in \mathbb{N}$ be odd and define the set $\Phi_{\varphi} = \left\{-\frac{\varphi-1}{2}, -\frac{\varphi-3}{2}, \dots, \frac{\varphi-3}{2}, \frac{\varphi-1}{2}\right\}$ and the structuring element $\Psi_{\varphi} = \Phi_{\varphi} \times \Phi_{\varphi}$. Then for $V \in \mathcal{H}_0(i,j)$ the following inequalities hold:

$$\mathbb{P}_V\left((\mathfrak{I}_\alpha \circ \Psi_\varphi)(i,j) = 1\right) \le \varphi \alpha^{\frac{\varphi+1}{2}} \tag{43}$$

$$\mathbb{P}_V\left(\left((\mathfrak{I}_\alpha \circ \Psi_\varphi) \bullet \Psi_\varphi\right)(i,j) = 1\right) \le \varphi^3 \alpha^{\frac{\varphi+1}{2}} \tag{44}$$

Proof. We start with the proof of inequality (43). We aim to find an upper bound for the probability

$$\mathbb{P}_V\left((\mathfrak{I}_\alpha \circ \Psi_\varphi)(i,j) = 1\right)$$

for $V \in \mathcal{H}_0(i,j)$.

As discussed in Section 2.1, any matrix $V \in \mathcal{V}_c^{m,n}$ is uniquely defined by the top left corner (κ_1, λ_1) and bottom right corner (κ_2, λ_2) of the rROI $\Lambda = {\kappa_1, \ldots, \kappa_2} \times {\lambda_1, \ldots, \lambda_2}$ contained in V, where Λ is defined as in Definition 2.1.

Since $V \in \mathcal{H}_0(i,j)$ we have $(i,j) \notin \Lambda$ implying, that $i < \kappa_1$ or $j < \lambda_1$ or $i > \kappa_2$ or $j > \lambda_2$. These four cases are not mutually exclusive. As deducted in Section 2.2, the first two cases imply $\|\Delta^-V(i,j)\| = 0$ and the latter two imply $\|\Delta^+V(i,j)\| = 0$.

Based on this knowledge, we can split up the sets $\mathcal{H}_0^+(i,j)$ and $\mathcal{H}_0^-(i,j)$ as defined in (16) and (17) by defining the sets

$$\begin{split} \mathcal{H}_{0}^{(1)}(i,j) &\coloneqq \left\{ V \in \mathcal{V}_{c}^{m,n} \mid V(\tilde{i},\tilde{j}) = 0 \text{ for all } (\tilde{i},\tilde{j}) \in \{1,\ldots,i\} \times \{1,\ldots,n\} \right\}, \\ \mathcal{H}_{0}^{(2)}(i,j) &\coloneqq \left\{ V \in \mathcal{V}_{c}^{m,n} \mid V(\tilde{i},\tilde{j}) = 0 \text{ for all } (\tilde{i},\tilde{j}) \in \{1,\ldots,m\} \times \{1,\ldots,j\} \right\}, \\ \mathcal{H}_{0}^{(3)}(i,j) &\coloneqq \left\{ V \in \mathcal{V}_{c}^{m,n} \mid V(\tilde{i},\tilde{j}) = 0 \text{ for all } (\tilde{i},\tilde{j}) \in \{i,\ldots,m\} \times \{1,\ldots,n\} \right\}, \\ \mathcal{H}_{0}^{(4)}(i,j) &\coloneqq \left\{ V \in \mathcal{V}_{c}^{m,n} \mid V(\tilde{i},\tilde{j}) = 0 \text{ for all } (\tilde{i},\tilde{j}) \in \{1,\ldots,m\} \times \{j,\ldots,n\} \right\}. \end{split}$$

Note, that $\mathcal{H}_0^-(i,j) = \mathcal{H}_0^{(1)}(i,j) \cup \mathcal{H}_0^{(2)}(i,j)$ and $\mathcal{H}_0^+(i,j) = \mathcal{H}_0^{(3)}(i,j) \cup \mathcal{H}_0^{(4)}(i,j)$. Furthermore, this implies $\mathcal{H}_0(i,j) = \bigcup_{u=1}^4 \mathcal{H}_0^{(u)}(i,j)$. Assume the first case, i.e. $V \in \mathcal{H}_0^{(1)}(i,j)$. It follows, that

$$\|\Delta^- V(i,1)\| = \dots = \|\Delta^- V(i,n)\| = 0.$$

implying $V \in \bigcap_{\tilde{j}=1}^n \mathcal{H}_0^-(i, \tilde{j})$.

In a first step, we use equation (40) and the fact, that $\Psi_{\varphi} = \Phi_{\varphi} \times \Phi_{\varphi}$ to write the left hand side of inequality (43) as

$$\begin{split} \mathbb{P}_{V}\left((\mathfrak{I}_{\alpha}\circ\Psi_{\varphi})(i,j)=1\right) \\ &=\mathbb{P}_{V}\left(\bigcup_{(k,\ell)\in\Psi_{\varphi}}\bigcap_{(\tilde{k},\tilde{\ell})\in\Psi_{\varphi}}\left\{\mathfrak{I}_{\alpha}(i-k+\tilde{k},j-\ell+\tilde{\ell})=1\right\}\right) \\ &=\mathbb{P}_{V}\left(\bigcup_{k,\ell\in\Phi_{\varphi}}\bigcap_{\tilde{k},\tilde{\ell}\in\Phi_{\varphi}}\left\{\mathfrak{I}_{\alpha}(i-k+\tilde{k},j-\ell+\tilde{\ell})=1\right\}\right). \end{split}$$

Using sub-additivity we can bound this from above by writing it as a sum over $\ell \in \Phi_{\varphi}$ to get

$$\mathbb{P}_V\left((\mathfrak{I}_{\alpha} \circ \Psi_{\alpha})(i,j) = 1\right)$$

$$\leq \sum_{\ell \in \Phi_{\varphi}} \mathbb{P}_{V} \left(\bigcup_{k \in \Phi_{\varphi}} \bigcap_{\tilde{k}, \tilde{\ell} \in \Phi_{\varphi}} \left\{ \mathfrak{I}_{\alpha}(i - k + \tilde{k}, j - \ell + \tilde{\ell}) = 1 \right\} \right).$$

By dropping every term except for $\tilde{k}=k$ in the intersection inside, we obtain

$$\begin{split} & \mathbb{P}_{V}\left((\mathfrak{I}_{\alpha} \circ \Psi_{\varphi})(i,j) = 1\right) \\ & \leq \sum_{\ell \in \Phi_{\varphi}} \mathbb{P}_{V}\left(\bigcup_{k \in \Phi_{\varphi}} \bigcap_{\tilde{k} = k, \tilde{\ell} \in \Phi_{\varphi}} \left\{\mathfrak{I}_{\alpha}(i-k+\tilde{k},j-\ell+\tilde{\ell}) = 1\right\}\right) \\ & = \sum_{\ell \in \Phi_{\varphi}} \mathbb{P}_{V}\left(\bigcup_{k \in \Phi_{\varphi}} \bigcap_{\tilde{\ell} \in \Phi_{\varphi}} \left\{\mathfrak{I}_{\alpha}(i,j-\ell+\tilde{\ell}) = 1\right\}\right). \end{split}$$

The events inside the probability do not depend on $k \in \Phi_{\varphi}$ anymore, which yields

$$\bigcup_{k \in \Phi_{\varphi}} \bigcap_{\tilde{\ell} \in \Phi_{\varphi}} \left\{ \Im_{\alpha}(i, j - \ell + \tilde{\ell}) = 1 \right\} = \bigcap_{\tilde{\ell} \in \Phi_{\varphi}} \left\{ \Im_{\alpha}(i, j - \ell + \tilde{\ell}) = 1 \right\}.$$

Plugging this in, we obtain

$$\mathbb{P}_V\left((\mathfrak{I}_\alpha\circ\Psi_\varphi)(i,j)=1\right)\leq \sum_{\ell\in\Phi_\varphi}\mathbb{P}_V\left(\bigcap_{\tilde{\ell}\in\Phi_\varphi}\left\{\mathfrak{I}_\alpha(i,j-\ell+\tilde{\ell})=1\right\}\right).$$

We have defined the binary \mathfrak{I}_{α} by setting $\mathfrak{I}_{\alpha}(\tilde{i},\tilde{j}) = \mathbb{1}_{\{T(\tilde{i},\tilde{j}) \geq t_{\alpha}\}}$. Using this definition and the definition of T(i,j) we can rewrite the upper bound as

$$\begin{split} &\sum_{\ell \in \Phi_{\varphi}} \mathbb{P}_{V} \left(\bigcap_{\tilde{\ell} \in \Phi_{\varphi}} \left\{ \mathfrak{I}_{\alpha}(i, j - \ell + \tilde{\ell}) = 1 \right\} \right) \\ &= \sum_{\ell \in \Phi_{\varphi}} \mathbb{P}_{V} \left(\bigcap_{\tilde{\ell} \in \Phi_{\varphi}} \left\{ T(i, j - \ell + \tilde{\ell}) \ge t_{\alpha} \right\} \right) \\ &= \sum_{\ell \in \Phi_{\varphi}} \mathbb{P}_{V} \left(\bigcap_{\tilde{\ell} \in \Phi_{\varphi}} \left\{ \left\| \Delta^{+} F(i, j - \ell + \tilde{\ell}) \right\| \ge t_{\alpha} \right\} \cap \left\{ \left\| \Delta^{-} F(i, j - \ell + \tilde{\ell}) \right\| \ge t_{\alpha} \right\} \right) \right). \end{split}$$

In the case $V \in \mathcal{H}_0^{(1)}(i,j)$, the values of $\|\Delta^+V(i,j-\ell+\tilde{\ell})\|$ are unknown. Thus, we do not know the distribution of the random variables $\|\Delta^+F(i,j-\ell+\tilde{\ell})\|$ and we drop the events $\left\{\|\Delta^+F(i,j-\ell+\tilde{\ell})\| \geq t_\alpha\right\}$ to obtain

$$\begin{split} & \mathbb{P}_{V}\left((\mathfrak{I}_{\alpha} \circ \Psi_{\varphi})(i,j) = 1\right) \\ & \leq \sum_{\ell \in \Phi_{\varphi}} \mathbb{P}_{V}\left(\bigcap_{\tilde{\ell} \in \Phi_{\varphi}} \left(\left\{\|\Delta^{+}F(i,j-\ell+\tilde{\ell})\| \geq t_{\alpha}\right\} \cap \left\{\|\Delta^{-}F(i,j-\ell+\tilde{\ell})\| \geq t_{\alpha}\right\}\right)\right) \\ & \leq \sum_{\ell \in \Phi_{\varphi}} \mathbb{P}_{V}\left(\bigcap_{\tilde{\ell} \in \Phi_{\varphi}} \left\{\|\Delta^{-}F(i,j-\ell+\tilde{\ell})\| \geq t_{\alpha}\right\}\right). \end{split}$$

Define a subset $\tilde{\Phi}_{\varphi} = \left\{-\frac{\varphi-1}{2}, -\frac{\varphi-5}{2}, \dots, \frac{\varphi-5}{2}, \frac{\varphi-1}{2}\right\}$ of Φ_{φ} . Since $\Delta^- F(i,j)$ only depends on the pixels (i,j), (i-1,j) and (i,j-1), the set $\left\{\|\Delta^- F(i,j-\ell+\tilde{\ell})\| \mid \tilde{\ell} \in \tilde{\Phi}_{\varphi}\right\}$ is a set of independent random variables for fixed $\ell \in \Phi_{\varphi}$, see Figure 6. We drop the terms in $\Phi_{\varphi} \setminus \tilde{\Phi}_{\varphi}$ and use the independence to obtain

$$\begin{split} \mathbb{P}_{V}\left((\mathfrak{I}_{\alpha}\circ\Psi_{\varphi})(i,j)=1\right) &\leq \sum_{\ell\in\Phi_{\varphi}}\mathbb{P}_{V}\left(\bigcap_{\tilde{\ell}\in\Phi_{\varphi}}\left\{\|\Delta^{-}F(i,j-\ell+\tilde{\ell})\|\geq t_{\alpha}\right\}\right) \\ &\leq \sum_{\ell\in\Phi_{\varphi}}\mathbb{P}_{V}\left(\bigcap_{\tilde{\ell}\in\tilde{\Phi}_{\varphi}}\left\{\|\Delta^{-}F(i,j-\ell+\tilde{\ell})\|\geq t_{\alpha}\right\}\right) \\ &= \sum_{\ell\in\Phi_{\varphi}}\prod_{\tilde{\ell}\in\tilde{\Phi}_{\varphi}}\mathbb{P}_{V}\left(\|\Delta^{-}F(i,j-\ell+\tilde{\ell})\|\geq t_{\alpha}\right). \end{split}$$

Since $V \in \mathcal{H}_0^{(1)}(i,j)$, we have

$$V \in \bigcap_{\tilde{j}=1}^{n} \mathcal{H}_{0}^{-}(i,\tilde{j}) \subseteq \bigcap_{\ell \in \Phi_{\varphi}, \tilde{\ell} \in \tilde{\Phi}_{\varphi}} \mathcal{H}_{0}^{-}(i,j-\ell+\tilde{\ell}).$$

By assumption, $\mathbb{P}_V(\|\Delta^- F(i,j)\| \ge t_\alpha) \le \alpha$ for $V \in \mathcal{H}_0^-(i,j)$ yielding the upper bound

$$\mathbb{P}_{V}\left((\mathfrak{I}_{\alpha} \circ \Psi_{\varphi})(i,j) = 1\right) \leq \sum_{\ell \in \Phi_{\varphi}} \prod_{\tilde{\ell} \in \tilde{\Phi}_{\ell,\alpha}} \mathbb{P}_{V}\left(\|\Delta^{-}F(i,j-\ell+\tilde{\ell})\| \geq t_{\alpha}\right)$$

Figure 6: The random variable $\|\Delta^- F(i,j)\|$ only depends on the green pixels, $\|\Delta^- F(i,j-2)\|$ depends on the red pixels and $\|\Delta^- F(i,j+2)\|$ on the blue pixels. Since these are all distinct from another, the random variables are independent.

$$\leq \sum_{\ell \in \Phi_{\varphi}} \prod_{\tilde{\ell} \in \tilde{\Phi}_{\varphi}} \alpha$$
$$= |\Phi_{\varphi}| \alpha^{|\tilde{\Phi}_{\varphi}|}$$
$$= \varphi \alpha^{\frac{\varphi+1}{2}}.$$

This proves the first inequality for $V \in \mathcal{H}_0^{(1)}(i,j)$. The other three cases can be proven analogously by swapping the roles of k or \tilde{k} with ℓ or $\tilde{\ell}$, respectively and/or by replacing Δ^- by Δ^+ . This finishes the proof of the first inequality.

For the proof of the second inequality, we exploit our prior knowledge on V again. As already stated in the proof of the first inequality, we have, that $H_0(i,j)$ is equivalent to $(i,j) \notin \Lambda$, which is equivalent to at least one of the cases $V \in \mathcal{H}_0^{(u)}(i,j)$ for $u \in \{1,2,3,4\}$.

Again, we assume the first case, i.e. $V \in \mathcal{H}_0^{(1)}(i,j)$. This implies, that the null hypotheses $H_0(\tilde{i},1),\ldots,H_0(\tilde{i},n)$ are true for all $\tilde{i} \in \{1,\ldots,i\}$. It also implies

$$\|\Delta^{-}V(\tilde{i},1)\| = \dots = \|\Delta^{-}V(\tilde{i},n)\| = 0$$

for all $\tilde{i} \in \{1, \dots, i\}$.

Set $k_0 = -\frac{\varphi-1}{2}$ and $\ell_0 = 0$. Then $(k_0, \ell_0) \in \Psi_{\varphi}$ and we get that the null hypotheses $H_0(i+k_0-\tilde{k},j+\ell_0-\tilde{\ell})$ are true for all $\tilde{k}, \tilde{\ell} \in \Phi_{\varphi}$. Hence, we have $V \in \bigcap_{\tilde{k},\tilde{\ell}\in\Phi_{\varphi}} \mathcal{H}_0(i+k_0-\tilde{k},j-\tilde{\ell})$ as well as $\|\Delta^-V(i+k_0-\tilde{k},j+\ell_0-\tilde{\ell})\| = 0$ for all $\tilde{k},\tilde{\ell}\in\Phi_{\varphi}$.

Define $\mathfrak{K}_{\alpha} = \mathfrak{I}_{\alpha} \circ \Psi_{\varphi}$. We use equation (41) and $\Psi_{\varphi} = \Phi_{\varphi} \times \Phi_{\varphi}$ to write the left hand side of inequality (44) as

$$\begin{split} &\mathbb{P}_{V}\left((\mathfrak{K}_{\alpha} \bullet \Psi_{\varphi})(i,j) = 1\right) \\ &= \mathbb{P}_{V}\left(\bigcap_{(k,\ell) \in \Psi_{\varphi}} \bigcup_{(\tilde{k},\tilde{\ell}) \in \Psi_{\varphi}} \left\{\mathfrak{K}_{\alpha}(i+k-\tilde{k},j+\ell-\tilde{\ell}) = 1\right\}\right) \\ &= \mathbb{P}_{V}\left(\bigcap_{k,\ell \in \Phi_{\varphi}} \bigcup_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \left\{\mathfrak{K}_{\alpha}(i+k-\tilde{k},j+\ell-\tilde{\ell}) = 1\right\}\right). \end{split}$$

By dropping every term in the intersection except for $k = k_0$ and $\ell = \ell_0$ we can bound this from above by

$$\begin{split} \mathbb{P}_{V}\left((\mathfrak{K}_{\alpha} \bullet \Psi_{\varphi})(i,j) = 1\right) &= \mathbb{P}_{V}\left(\bigcap_{k,\ell \in \Phi_{\varphi}} \bigcup_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \left\{\mathfrak{K}_{\alpha}(i+k-\tilde{k},j+\ell-\tilde{\ell}) = 1\right\}\right) \\ &\leq \mathbb{P}_{V}\left(\bigcup_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \left\{\mathfrak{K}_{\alpha}(i+k_{0}-\tilde{k},j+\ell_{0}-\tilde{\ell}) = 1\right\}\right) \\ &= \mathbb{P}_{V}\left(\bigcup_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \left\{\mathfrak{K}_{\alpha}(i+k_{0}-\tilde{k},j-\tilde{\ell}) = 1\right\}\right). \end{split}$$

Using sub-additivity to write this as the sum over all $\tilde{k}, \tilde{\ell} \in \Phi_{\varphi}$ yields

$$\mathbb{P}_V\left((\mathfrak{K}_\alpha \bullet \Psi_\varphi)(i,j) = 1\right) \leq \sum_{\tilde{k},\tilde{\ell} \in \Phi_\omega} \mathbb{P}_V\left(\mathfrak{K}_\alpha(i+k_0-\tilde{k},j-\tilde{\ell}) = 1\right).$$

Plugging in the definition of \mathfrak{K}_{α} we obtain

$$\mathbb{P}_{V}\left((\mathfrak{K}_{\alpha} \bullet \Psi_{\varphi})(i,j) = 1\right) \leq \sum_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \mathbb{P}_{V}\left((\mathfrak{I}_{\alpha} \circ \Psi_{\varphi})(i+k_{0}-\tilde{k},j-\tilde{\ell}) = 1\right).$$

As discussed, we have $V \in \bigcap_{\tilde{k},\tilde{\ell}\in\Phi_{\varphi}} \mathcal{H}_0(i+k_0-\tilde{k},j-\tilde{\ell})$. Thus, we can use inequality (43) to get the upper bound

$$\mathbb{P}_{V}\left((\mathfrak{K}_{\alpha} \bullet \Psi_{\varphi})(i,j) = 1\right) \leq \sum_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \mathbb{P}_{V}\left((\mathfrak{I}_{\alpha} \circ \Psi_{\varphi})(i+k_{0}-\tilde{k},j-\tilde{\ell}) = 1\right) \\
\leq \sum_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \varphi \alpha^{\frac{\varphi+1}{2}} \\
= \varphi^{3} \alpha^{\frac{\varphi+1}{2}}.$$

This proves the inequality for $V \in \mathcal{H}_0^{(1)}(i,j)$. The other cases are proven analogously by taking $k_0 = 0, \ell_0 = -\frac{\varphi-1}{2}$ in the second case, $k_0 = \frac{\varphi-1}{2}, \ell_0 = 0$ in the third case and $k_0 = 0, \ell_0 = \frac{\varphi-1}{2}$ in the fourth case. In the second and fourth case, the roles of Δ^+ and Δ^- are swapped. This finishes the proof of the second inequality and thus the proof of the theorem.

Remark 4.2. We require the threshold t_{α} in Theorem 4.1 to satisfy stronger conditions than $\mathbb{P}_{V}(T(i,j) \geq t_{\alpha}) \leq \alpha$ for every $V \in \mathcal{H}_{0}(i,j)$. Since the methods developed in Section 2.3 yield thresholds, that meet these stronger requirements, we use them to achieve better bounds in Theorem 4.1.

Let us consider the probability of a type II error in the statistical test. In Section 2.4 we numerically calculated bounds for this probability. Similar to the previous theorem, we aim at quantifying the change of the upper bound after morphological opening and closing are applied.

We will need the additional assumption, that the region of interest is sufficiently large, i.e. larger than the structuring element. Otherwise, even if

there are no errors in the binarization through the statistical test, morphological opening will classify all pixels as background and thus the probability of a type II error cannot be bound anymore.

Theorem 4.3. Let $m, n \in \mathbb{N}$, $c \in \mathbb{R} \setminus \{0\}$ and $\Omega = \{1, \ldots, m\} \times \{1, \ldots, n\}$. Assume that F follows the statistical model given in (11). Let t be a threshold, such that

$$\mathbb{P}_V\left(T(\tilde{i},\tilde{j}) \le t\right) \le \beta$$

for some $\beta \in (0,1)$ and all $(\tilde{i},\tilde{j}) \in \Omega$ and $V \in \mathcal{H}_1(\tilde{i},\tilde{j})$, cf. (24). Let \Im be the binary image defined by

$$\mathfrak{I}(\tilde{i}, \tilde{j}) = \mathbb{1}_{\{T(\tilde{i}, \tilde{j}) \ge t\}} \tag{45}$$

for all $(\tilde{i}, \tilde{j}) \in \Omega$.

Let $(i, j) \in \Omega$ and let T(i, j) be the test statistic defined in (14) and $H_1(i, j)$ be the alternative hypothesis defined in (13).

Let $\varphi \in \mathbb{N}$ be odd and define the set $\Phi_{\varphi} = \left\{-\frac{\varphi-1}{2}, -\frac{\varphi-3}{2}, \dots, \frac{\varphi-3}{2}, \frac{\varphi-1}{2}\right\}$ and the structuring element $\Psi_{\varphi} = \Phi_{\varphi} \times \Phi_{\varphi}$.

Denote by $\Lambda = {\kappa_1, ..., \kappa_2} \times {\lambda_1, ..., \lambda_2}$ the rROI contained in V. Let $\min{\{\kappa_2 - \kappa_1 + 1, \lambda_2 - \lambda_1 + 1\}} \ge \varphi$. Then for $V \in \mathcal{H}_1(i, j)$ the following inequalities hold:

$$\mathbb{P}_V\left((\mathfrak{I} \circ \Psi_{\varphi})(i,j) = 0\right) \le \varphi^2 \beta \tag{46}$$

$$\mathbb{P}_V\left(((\mathfrak{I} \circ \Psi_\varphi) \bullet \Psi_\varphi)(i,j) = 0\right) \le \varphi^2 \beta \tag{47}$$

Proof. We start by proving inequality (46). We use a similar approach as in Theorem 4.1 by finding indices $(k_0, \ell_0) \in \Psi_{\varphi}$, such that the alternative hypotheses $H_1(i - k_0 + \tilde{k}, j - \ell_0 + \tilde{\ell})$ are true for all $\tilde{k}, \tilde{\ell} \in \Phi_{\varphi}$. Figure 7 shows, that we can find such indices even for the case of a corner pixel. A constructive proof can be found in Appendix A.

The alternative hypotheses $H_1(i-k_0+\tilde{k},j-\ell_0+\tilde{\ell})$ being true for all $\tilde{k},\tilde{\ell}\in\Phi_{\varphi}$ implies $V\in\bigcap_{\tilde{k},\tilde{\ell}\in\Phi_{\varphi}}\mathcal{H}_1(i-k_0+\tilde{k},j-\ell_0+\tilde{\ell})$.

(1,1)	(1, 2)						
(2,1)							
÷							
		(i,j)					
			(i -	k_0, j -	$-\ell_0)$		

Figure 7: White pixels represent background, light gray pixels represent foreground. The indices $(k_0, \ell_0) \in \Psi_{\varphi}$ are chosen, such that for all $\tilde{k}, \tilde{\ell} \in \Phi_{\varphi}$ the pixels $(i - k_0 + \tilde{k}, j - \ell_0 + \tilde{\ell})$ belong to the foreground. These pixels are marked as dark gray.

We start by using equation (40) and $\Psi_{\varphi} = \Phi_{\varphi} \times \Phi_{\varphi}$ to write the left hand side of inequality (46) as

$$\mathbb{P}_{V}\left((\mathfrak{I} \circ \Psi_{\varphi})(i,j) = 0\right) = \mathbb{P}_{V}\left(\bigcap_{(k,\ell) \in \Psi_{\varphi}} \bigcup_{(\tilde{k},\tilde{\ell}) \in \Psi_{\varphi}} \left\{\mathfrak{I}(i-k+\tilde{k},j-\ell+\tilde{\ell}) = 0\right\}\right)$$

$$= \mathbb{P}_{V}\left(\bigcap_{k,\ell \in \Phi_{\varphi}} \bigcup_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \left\{\mathfrak{I}(i-k+\tilde{k},j-\ell+\tilde{\ell}) = 0\right\}\right).$$

We drop every term in the intersection except $k = k_0, \ell = \ell_0$ to bound this

by

$$\mathbb{P}_{V}\left((\mathfrak{I} \circ \Psi_{\varphi})(i,j) = 0\right) = \mathbb{P}_{V}\left(\bigcap_{k,\ell \in \Phi_{\varphi}} \bigcup_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \left\{\mathfrak{I}(i-k+\tilde{k},j-\ell+\tilde{\ell}) = 0\right\}\right) \\
\leq \mathbb{P}_{V}\left(\bigcup_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \left\{\mathfrak{I}(i-k_{0}+\tilde{k},j-\ell_{0}+\tilde{\ell}) = 0\right\}\right).$$

We use sub-additivity to write this as the sum over all $\tilde{k}, \tilde{\ell} \in \Phi_{\varphi}$ and obtain

$$\mathbb{P}_V\left((\mathfrak{I} \circ \Psi_{\varphi})(i,j) = 0\right) \leq \sum_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \mathbb{P}_V\left(\mathfrak{I}(i-k_0 + \tilde{k},j-\ell_0 + \tilde{\ell}) = 0\right).$$

Using the fact, that $V \in \bigcap_{\tilde{k},\tilde{\ell}\in\Phi_{\varphi}} \mathcal{H}_1(i-k_0+\tilde{k},j-\ell_0+\tilde{\ell})$ as well as the definition of \Im and the choice of the threshold t we get the upper bound

$$\mathbb{P}_{V}\left((\mathfrak{I} \circ \Psi_{\varphi})(i,j) = 0\right) \leq \sum_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \mathbb{P}_{V}\left(\mathfrak{I}(i-k_{0}+\tilde{k},j-\ell_{0}+\tilde{\ell}) = 0\right)
= \sum_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \mathbb{P}_{V}\left(T(i-k_{0}+\tilde{k},j-\ell_{0}+\tilde{\ell}) \leq t\right)
\leq \sum_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \beta
= |\Phi_{\varphi}|^{2}\beta
= \varphi^{2}\beta.$$

This finishes the proof of the first inequality.

For the proof of the second inequality, define $\mathfrak{K} = \mathfrak{I} \circ \Psi_{\varphi}$. By the properties of morphological closing we have $(\mathfrak{K} \bullet \Psi_{\varphi})(i,j) \geq \mathfrak{K}(i,j)$ yielding

$$\mathbb{P}_{V}\left((\mathfrak{K} \bullet \Psi_{\varphi})(i,j) = 0\right) \leq \mathbb{P}_{V}\left(\mathfrak{K}(i,j) = 0\right) = \mathbb{P}_{V}\left((\mathfrak{I} \circ \Psi_{\varphi})(i,j) = 0\right).$$

Since $V \in \mathcal{H}_1(i,j)$, we can apply inequality (46) and obtain the upper bound

$$\mathbb{P}_{V}\left((\mathfrak{K} \bullet \Psi_{\varphi})(i,j) = 0\right) \leq \mathbb{P}_{V}\left((\mathfrak{I} \circ \Psi_{\varphi})(i,j) = 0\right)$$

$$<\varphi^2\beta$$
.

This proves the second inequality and thus finishes the proof.

Remark 4.4. The bounds in the previous theorem hold for all pixels within the region of interest, i.e. also for the edges and corners of the region of interest.

For pixels with a sufficient distance from the edges of the region of interest, we can also prove the upper bound

$$\mathbb{P}_V\left(((\mathfrak{I}\circ\Psi_\varphi)\bullet\Psi_\varphi)(i,j)=0\right)\leq \varphi^{10}\beta^4.$$

A proof can be found in Appendix A. This only improves the bound for very small values of β .

We employ morphological closing to reduce the number of type II errors. This is not represented in the upper bound in inequality (47). The simulation results displayed in Section 5 and Appendix B show, that the amount of type II errors after opening and after opening and closing behave similarly, when the standard deviation of the noise increases. An improvement through closing can only be observed for a certain range of standard deviations.

This behaviour is due to the pixels not being independent anymore, after morphological opening has been applied. In some cases, the amount of type II errors is greatly increased through opening and the application of closing only reverts this to a very small extent, cf. Figure ??.

Based on these observations, an improvement of the upper bound in inequality (47) without improving the upper bound in (46) seems unlikely. Note, that any improvements of the upper bound in inequality (46) can immediately be applied to the upper bound in inequality (47) as well.

5 Simulation results

For simulation, we randomly generated 5 images with a rectangular region of interest with a checkerboard pattern for each image size 128×128 , 256×256 and 512×512 pixels. For each image we randomly generated 50 different noise terms.

In Figure 8 we see the proportion of falsely classified pixels after binarization through the statistical test, opening and closing. After binarization, the proportion of background pixels that were falsely classified as foreground is below the chosen statistical significance $\alpha=0.05$. It is almost constant across all values of the standard deviation σ . We performed opening and closing with a 3×3 pixel structuring element. Opening reduces the proportion of falsely classified background pixels to almost zero. Applying closing does not change that.

In contrast to that, the proportion of falsely classified foreground pixels is almost zero for low standard deviations σ but greatly increases, as σ increases. For high values of σ opening greatly increases the proportion of falsely classified foreground pixels. Closing fixes this only to a certain extent. For values up to $\sigma = 65$ for 128×128 pixels, $\sigma = 67$ for 256×256 pixels and $\sigma = 68$ for 512×512 pixels it reduces the proportion of type II errors below that of binarization. For higher values of σ this improvement can not be observed and the effect of closing becomes negligible.

Using a relaxed statistical significance $\tilde{\alpha} = \left(\frac{\alpha}{\varphi^3}\right)^{\frac{2}{\varphi+1}}$ to calculate the thresholding parameter $t_{\tilde{\alpha}}$, yields

$$\mathbb{P}_{V}\left(\left((\mathfrak{I}_{\tilde{\alpha}}\circ\Psi_{\varphi})\bullet\Psi_{\varphi}\right)(i,j)=1\right)\leq\varphi^{3}\left(\left(\frac{\alpha}{\varphi^{3}}\right)^{\frac{2}{\varphi+1}}\right)^{\frac{\varphi+1}{2}}\leq\alpha$$

by inequality (44). This way, we can bound the probability of a type I error after opening and closing below a given statistical significance α . The results of this approach are displayed in Figure 9. The proportion of type I errors after opening and closing is below the given statistical significance, while the number of type II errors for higher values of σ has decreased. This allows

the proportion of type II errors after opening and closing to be lower than that of binarization up to $\sigma=74$ for 128×128 pixels, $\sigma=77$ for 256×256 pixels and $\sigma=79$ for 512×512 pixels.

Simulations for larger structuring elements as well as for $\alpha=0.01$ and the code used for the simulation can be found in the appendix.

(a) Proportion of type I errors for images with size 128×128 .

(b) Proportion of type II errors for images with size 128×128 .

(c) Proportion of type I errors for images with size 256×256 .

(d) Proportion of type II errors for images with size 256×256 .

(e) Proportion of type I errors for images with size 512×512 .

(f) Proportion of type II errors for images with size 512×512 .

Figure 8: Proportion of type I & II errors after binarization, opening and closing. The x-axes display the standard deviation σ and the y-axes the proportion of falsely classified pixels. For sizes 128×128 , 256×256 , 512×512 the images were randomly generated with 5 images per size. For each image 50 different noises were randomly generated. We used a 3×3 pixel structuring element and chose $\alpha = 0.05$.

(a) Proportion of type I errors for images with size 128×128 .

(b) Proportion of type II errors for images with size 128×128 .

(c) Proportion of type I errors for images with size 256×256 .

(d) Proportion of type II errors for images with size 256×256 .

(e) Proportion of type I errors for images with size 512×512 .

(f) Proportion of type II errors for images with size 512×512 .

Figure 9: Proportion of type I & II errors after binarization, opening and closing. The x-axes display the standard deviation σ and the y-axes the proportion of falsely classified pixels. For sizes 128×128 , 256×256 , 512×512 the images were randomly generated with 5 images per size. For each image 50 different noises were randomly generated. We used a 3×3 pixel structuring element and chose a relaxed statistical significance $\tilde{\alpha} = \left(\frac{0.05}{3^3}\right)^{\frac{2}{3+1}}$.

6 Discussion

Theorems 4.1 and 4.3 give us a better understanding of the effects of morphological opening and closing on the error probabilities, when testing for a region of interest. The results were obtained by exploiting the prior knowledge of some properties of the region of interest. Namely, we used the fact, that the region of interest is rectangular and has a checkerboard pattern. Especially the exponent $\frac{\varphi+1}{2}$ in inequality (43) is of high interest. It is worth noting, that we were able to get this exponent, because we chose a perfectly fitting structuring element, i.e. we used a square structuring element for a rectangular region of interest. The choice of the structuring element is substantial. A different shaped structuring element could lead to no improvements of the error probabilities, but since we have $\Theta \circ \Psi \subseteq \Theta$ for any structuring element Ψ , the probability of a type I error can not get worse through morphological opening.

Generalizations of the results from Sections 2.2 and 2.3 to convex regions of interest with a checkerboard pattern are possible. Since these regions of interest are not necessarily rectangular, it is not possible to choose a structuring element, that is well suited for all cases. This means, that the results from Section 4 can not be easily generalized. For shapes of the region of interest, where the structuring element can be chosen to be well suited for all cases, results similar to Theorems 4.1 and 4.3 seem possible.

We consider the setting of Theorem 4.1 again, i.e. a rectangular region of interest. For a background pixel to be falsely identified as foreground after opening, at least $\frac{\varphi+1}{2}$ many pixels background pixels have to be falsely categorized by the binarization through the statistical test. This is the *minimum number of independent points in a structuring element* that can lead to a false categorization of a background pixel. With this connection in mind, the techniques to prove the main results of this thesis might present themselves useful for the aforementioned other shapes of the region of interest.

It is also important to note, that the main results of this thesis only considered the categorization of a single pixel. Since we perform tests for all pixels at once, the analysis of techniques from multiple testing in connection with

morphological operations would be an interesting field of study to expand the results of this thesis. When researching the connection between multiple testing and morphological operations, one might consider morphological operators, that go beyond the scope of this thesis. Namely, the convex hull operator is of high interest in the extraction of the region of interest of a fingerprint.

A Additional proofs

Theorem A.1. Let $m, n \in \mathbb{N}$, $c \in \mathbb{R} \setminus \{0\}$ and $\Omega = \{1, ..., m\} \times \{1, ..., n\}$. Assume that F follows the statistical model given in (11) and let T(i, j) be the test statistic as defined in (14) and $H_1(i, j)$ be the alternative hypothesis as defined in (13). Let t be a threshold, such that

$$\mathbb{P}_V\left(T(i,j) \le t\right) \le \beta$$

for all $V \in \mathcal{H}_1(i,j)$. Let \mathfrak{I} be the binary image defined by

$$\Im(i,j) = \mathbb{1}_{\{T(i,j) \ge t\}} \tag{48}$$

for all $(i, j) \in \Omega$.

Let $\varphi \in \mathbb{N}$ be odd. Let $\Phi_{\varphi} = \{-\frac{\varphi-1}{2}, -\frac{\varphi-3}{2}, \dots, \frac{\varphi-3}{2}, \frac{\varphi-1}{2}\}$ and $\Psi_{\varphi} = \Phi_{\varphi} \times \Phi_{\varphi}$ be a structuring element.

Denote by $\Lambda = {\kappa_1, \ldots, \kappa_2} \times {\lambda_1, \ldots, \lambda_2}$ the rROI contained in V. Let $\min{\{\kappa_2 - \kappa_1 + 1, \lambda_2 - \lambda_1 + 1\}} \ge \varphi$. Let $V \in \mathcal{H}_1(i, j)$ and $(i, j) \in \Omega$ be such, that

$$i - 2\varphi + 2 \ge \kappa_1,$$

$$i + 2\varphi - 2 \le \kappa_2,$$

$$j - 2\varphi + 2 \ge \lambda_1,$$

$$j + 2\varphi - 2 \le \lambda_2.$$

$$(49)$$

Then the following inequality holds:

$$\mathbb{P}_V\left(((\mathfrak{I} \circ \Psi_{\varphi}) \bullet \Psi_{\varphi})(i,j) = 0\right) \le \varphi^{10}\beta^4 \tag{50}$$

Proof. The assumptions on $(i,j) \in \Omega$ assure, that the alternative hypotheses $H_1(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s})$ are true for all $k,\ell,r,s,\tilde{k},\tilde{\ell},\tilde{r},\tilde{s}\in\Phi_{\varphi}$. Using equalities (40) and (41) and $\Psi_{\varphi}=\Phi_{\varphi}\times\Phi_{\varphi}$ yields

$$\mathbb{P}_V\left(((\mathfrak{I}\circ\Psi_\varphi)\bullet\Psi_\varphi)(i,j)=0\right)$$

$$= \mathbb{P}_{V} \left(\bigcup_{(k,\ell) \in \Psi_{\varphi}} \bigcap_{(\tilde{k},\tilde{\ell}) \in \Psi_{\varphi}} \bigcap_{(r,s) \in \Psi_{\varphi}} \bigcup_{(\tilde{r},\tilde{s}) \in \Psi_{\varphi}} \{ \Im(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0 \} \right)$$

$$= \mathbb{P}_{V} \left(\bigcup_{k,\ell \in \Phi_{\varphi}} \bigcap_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \bigcap_{r,s \in \Phi_{\varphi}} \bigcup_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \{ \Im(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0 \} \right).$$

By sub-additivity we obtain

$$\begin{split} & \mathbb{P}_{V}\left(((\mathfrak{I} \circ \Psi_{\varphi}) \bullet \Psi_{\varphi})(i,j) = 0\right) \\ & = \mathbb{P}_{V}\left(\bigcup_{k,\ell \in \Phi_{\varphi}} \bigcap_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \bigcap_{r,s \in \Phi_{\varphi}} \bigcup_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \{\mathfrak{I}(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0\}\right) \\ & \leq \sum_{k,\ell \in \Phi_{\varphi}} \mathbb{P}_{V}\left(\bigcap_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \bigcap_{r,s \in \Phi_{\varphi}} \bigcup_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \{\mathfrak{I}(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0\}\right). \end{split}$$

We can pull the two intersections together and get

$$\begin{split} & \mathbb{P}_{V} \left(((\mathfrak{I} \circ \Psi_{\varphi}) \bullet \Psi_{\varphi})(i,j) = 0 \right) \\ & \leq \sum_{k,\ell \in \Phi_{\varphi}} \mathbb{P}_{V} \left(\bigcap_{\tilde{k},\tilde{\ell} \in \Phi_{\varphi}} \bigcap_{r,s \in \Phi_{\varphi}} \bigcup_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \{ \mathfrak{I}(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0 \} \right) \\ & = \sum_{k,\ell \in \Phi_{\varphi}} \mathbb{P}_{V} \left(\bigcap_{\tilde{k},\tilde{\ell},r,s \in \Phi_{\varphi}} \bigcup_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \{ \mathfrak{I}(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0 \} \right). \end{split}$$

We drop every term in the intersection besides $r + \tilde{k}, s + \tilde{\ell} \in \{-(\varphi - 1), \varphi - 1\}$. This yields

$$\mathbb{P}_{V}\left(\left((\mathfrak{I} \circ \Psi_{\varphi}) \bullet \Psi_{\varphi}\right)(i,j) = 0\right) \\
\leq \sum_{k,\ell \in \Phi_{\varphi}} \mathbb{P}_{V}\left(\bigcap_{\tilde{k},\tilde{\ell},r,s \in \Phi_{\varphi}} \bigcup_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \{\mathfrak{I}(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0\}\right) \\
\leq \sum_{k,\ell \in \Phi_{\varphi}} \mathbb{P}_{V}\left(\bigcap_{r+\tilde{k},s+\tilde{\ell} \in \{-(\varphi-1),\varphi-1\}} \bigcup_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \{\mathfrak{I}(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0\}\right).$$

Figure 10: The black area are the pixels that contribute to $(\mathfrak{I} \circ \Psi_{\varphi}) \bullet \Psi_{\varphi})(i, j)$. The blue squares are mutually independent. The red pixels are the pixels that we reduce the intersection in the proof to.

The sets $\bigcup_{\tilde{r},\tilde{s}\in\Phi_{\varphi}} \{\Im(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s})=0\}$ are mutually independent for $r+\tilde{k},s+\tilde{\ell}\in\{-(\varphi-1),\varphi-1\}$ and fixed $k,\ell\in\Phi_{\varphi}$, see Figure 10. Thus we obtain

$$\begin{split} & \mathbb{P}_{V}\left(\left((\mathfrak{I} \circ \Psi_{\varphi}) \bullet \Psi_{\varphi} \right)(i,j) = 0 \right) \\ & \leq \sum_{k,\ell \in \Phi_{\varphi}} \mathbb{P}_{V} \left(\bigcap_{r + \tilde{k}, s + \tilde{\ell} \in \{ -(\varphi - 1), \varphi - 1\}} \bigcup_{\tilde{r}, \tilde{s} \in \Phi_{\varphi}} \{ \mathfrak{I}(i + k - \tilde{k} - r + \tilde{r}, j + \ell - \tilde{\ell} - s + \tilde{s}) = 0 \} \right) \end{split}$$

$$= \sum_{k,\ell \in \Phi_{\varphi}} \prod_{r+\tilde{k},s+\tilde{\ell} \in \{-(\varphi-1),\varphi-1\}} \mathbb{P}_{V} \left(\bigcup_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \{ \Im(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0 \} \right).$$

Again, by using sub-additivy, we get

$$\begin{split} & \mathbb{P}_{V}\left(\left((\mathfrak{I} \circ \Psi_{\varphi}) \bullet \Psi_{\varphi}\right)(i,j) = 0\right) \\ & \leq \sum_{k,\ell \in \Phi_{\varphi}} \prod_{r+\tilde{k},s+\tilde{\ell} \in \{-(\varphi-1),\varphi-1\}} \mathbb{P}_{V}\left(\bigcup_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \{\mathfrak{I}(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0\}\right) \\ & = \sum_{k,\ell \in \Phi_{\varphi}} \prod_{r+\tilde{k},s+\tilde{\ell} \in \{-(\varphi-1),\varphi-1\}} \sum_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \mathbb{P}_{V}\left(\{\mathfrak{I}(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0\}\right). \end{split}$$

We have assumed, that $(i,j) \in \Omega$ is such, that the alternative hypotheses $H_1(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s})$ are true for all $k,\ell,r,s,\tilde{k},\tilde{\ell},\tilde{r},\tilde{s}\in\Phi_{\varphi}$. Using this assumption and the fact, that $\mathbb{P}_V(T(i,j)\leq t)\leq \beta$ for $\mathcal{H}_1(i,j)$ we obtain

$$\begin{split} & \mathbb{P}_{V}\left(\left((\mathfrak{I} \circ \Psi_{\varphi}) \bullet \Psi_{\varphi}\right)(i,j) = 0\right) \\ & \leq \sum_{k,\ell \in \Phi_{\varphi}} \prod_{r+\tilde{k},s+\tilde{\ell} \in \{-(\varphi-1),\varphi-1\}} \sum_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \mathbb{P}_{V}\left(\{\mathfrak{I}(i+k-\tilde{k}-r+\tilde{r},j+\ell-\tilde{\ell}-s+\tilde{s}) = 0\}\right) \\ & \leq \sum_{k,\ell \in \Phi_{\varphi}} \prod_{r+\tilde{k},s+\tilde{\ell} \in \{-(\varphi-1),\varphi-1\}} \sum_{\tilde{r},\tilde{s} \in \Phi_{\varphi}} \beta \\ & = \sum_{k,\ell \in \Phi_{\varphi}} \prod_{r+\tilde{k},s+\tilde{\ell} \in \{-(\varphi-1),\varphi-1\}} \varphi^{2}\beta \\ & = \sum_{k,\ell \in \Phi_{\varphi}} (\varphi^{2}\beta)^{4} \\ & = \varphi^{2}(\varphi^{2}\beta)^{4} \\ & = \varphi^{10}\beta^{4}. \end{split}$$

This finishes the proof.

B Simulations

Blub

C Algorithms

```
[t, alpha_real] = Threshold(alpha, increment)
3 % Set initial guess for t:
| t = 0;
5 | alpha\_real = 1;
  while alpha_real >= alpha
       t = t + increment;
       alpha_real = 1 - CDF(t, 1);
10 end
11
12 end
  function y = CDF(x, sigma)
16 % Initialize output array:
 y = zeros(size(x));
19 % Compute pdf values:
  for i = 1 : size(x, 1)
       for j = 1 : size(x, 2)
           y(i, j) = (1 / sqrt(3)) * (3 / 2 - (3 / 2) * exp(-x(i, j)))
      j)^2 / (3 * sigma^2) * besseli(0, x(i, j)^2 / (6 * sigma^2))
       - \operatorname{sqrt}(3) \dots
               -((2 - \operatorname{sqrt}(3)) / 2) * \operatorname{marcumq}(((2 - \operatorname{sqrt}(3)) / 2)
      * (x(i, j) / sigma), ((2 + sqrt(3)) / 2) * (x(i, j) / sigma))
               + ((2 + sqrt(3)) / 2) * marcumq(((2 + sqrt(3)) / 2)
24
      * (x(i, j) / sigma), ((2 - sqrt(3)) / 2) * (x(i, j) / sigma))
       end
25
26 end
28 end
```

Listing 1: *MATLAB* implementation of a trial and error algorithm to find a threshold for the statistical test.

```
function [lowerBound, upperBound] = PowerSim(t_alpha, nr_noise,
     max sigma, c bg)
3 % Simulate random variable:
4 RV = RVSim(nr_noise, max_sigma, c_bg);
6 % Initialize output vectors:
7 lowerBound = zeros (1, max_sigma);
s upperBound = zeros(1, max_sigma);
10 % Estimate lower and upper bound for the probability of a type
      II error:
11 for sigma = 1: max_sigma
      lowerBound(1, sigma) = sum(RV.('D2c2c')(:, sigma) <= sigma *
       t_alpha) / nr_noise;
      upperBound(1, sigma) = \min(2 * sum(RV.('Dcc')(:, sigma) \le 
      sigma * t_alpha) / nr_noise, 1);
14 end
16 end
18 function RV = RVSim(nr_noise, max_sigma, c_bg)
19
20 % Initialize structure to save results:
_{21}|RV = struct;
23 % Initialize matrices to store simulation results:
24 RV.('dcc') = zeros(nr_noise, max_sigma);
25 RV.('d2c2c') = zeros(nr_noise, max_sigma);
27 % Generate realizations of a standard normal distribution:
28 | eps1 = randn(nr_noise, 1);
_{29} | \text{eps2} = \text{randn}(\text{nr\_noise}, 1);
|eps| = randn(nr_noise, 1);
31
32 for sigma = 1 : max_sigma
      % Calculate random variables:
33
      RV.('Dcc')(:, sigma) = sqrt((c_bg + sigma * eps1 - sigma *
      eps).^2 + (c_bg + sigma * eps2 - sigma * <math>eps).^2);
```

```
RV.('D2c2c')(:, sigma) = sqrt((2 * c_bg + sigma * eps1 - sigma * eps).^2 + (2 * c_bg + sigma * eps2 - sigma * eps).^2)
;

end

end

end
```

Listing 2: MATLAB implementation of simulation algorithm to simulate upper and lower bounds for the probability of a type II error in the statistical test.

```
[V, tlc, brc] = ROI_Generator(m, n, min_size)
2 % m: height/vertical size of the output matrix
3 % n: width/horizontal size of the output matrix
4 % min_size: minimal size of the ROI (optional)
6 % Check whether a minimal size was given:
7 if (~exist('min_size', 'var'))
      \min_{\text{size}} = 0;
9 end
11 % Set the background grayvalue:
12 c bg = 127.5;
14 % Initialize the picture with constant background:
_{15}|V = ones(m, n) * c_bg;
17 % Generate random bounds for the ROI:
tlc(1) = randi(m - min_size);
19 | tlc(2) = randi(n - min_size);
20 brc(1) = randi([tlc(1) + min_size m]);
  brc(2) = randi([tlc(2) + min\_size n]);
23 % Generate ROI pattern:
  for i = tlc(1):brc(1)
      for j = tlc(2):brc(2)
          if \mod(i+j, 2) == 0
              V(i, j) = 0;
          elseif mod(i+j, 2) == 1
              V(i, j) = 2 * c_bg;
          end
      end
31
32 end
34 end
```

Listing 3: MATLAB implementation of an algorithm to randomly generate images with a rectangular region of interest with a checkerboard pattern.

```
| function I = ROI_Detection(F, t_alpha, sigma)
2 % F: square, noisy input image that contains a rectangular ROI
3 % t_alpha: threshold based on statistical significance alpha
4 % sigma: standard deviation of the noise
6 \% Determine height and width of the input picture:
7 \mid [m, n] = size(F);
9 % Calculate the euclidean norm of the vertical and horizontal
      discrete
10 % derivatives:
11 D_plus = discreteDerivative(F, m, n, 'plus');
12 D_minus = discreteDerivative(F, m, n, 'minus');
13
14 % Calculate test statistic:
_{15}|T = \min(D_{plus}, D_{minus});
16
17 % Create thresholded binary matrix:
_{18}|I = T >= t_alpha * sigma;
19
20 end
22 function D = discreteDerivative (F, m, n, direction)
23 \% Determine direction of discrete derivative:
24 switch direction
      case 'plus'
          shift = 0;
      case 'minus'
           shift = 1;
29 end
31 % Initialize d1, d2:
32 % d1: vertical discrete derivative
33 % d2: horizontal discrete derivative
_{34}|D1 = ones(m, n);
_{35}|D2 = ones(m, n);
37 % Calculate d1:
|D1(1 + shift : m - 1 + shift , :) = F(2 - shift : m - shift , :) -
```

Listing 4: *MATLAB* implementation of the testing procedure to test for a rectangular region of interest with a checkerboard pattern.

```
1 % Set mode for normal or relaxed statistical significance
     approach:
purple = 'relaxed';
4 8 Set parent folder to store the .csv files:
5 folder = 'C:\ Users\Domin\Dropbox\Masterarbeit\ROI-Detection\
     SIMULATION\CSV_TestCases\';
7 % Reset RNG seed:
s rng('default')
10 % Load input:
11 load('inputErrorTestCases.mat');
12
13 %
15 \% Determine range of standard deviations:
sigma_range = 1 : max_sigma;
18 % Loop over statistical significances:
  for alpha = alphas
20
      % Loop over side lenghts of the structuring element:
21
      for phi = phis
          % Determine if normal or relaxed statistical
     significance is used:
          switch mode
25
              case 'normal'
26
                   alpha_use = alpha;
              case 'relaxed'
                   alpha_use = power(alpha / phi^3, 2 / (phi + 1));
          end
          % Calculate total number of pixels and errors:
32
          cases = CalculateErrorTestCases(dims, nr_pictures, cases
33
      , alpha_use, phi, max_nr_noise, max_sigma);
```

```
34
          % Loop over dimensions:
35
          for i = 1 : size(dims, 2)
37
              % Generate name of the substructure of the dimension
38
              dim_name = strcat('pxl', num2str(dims(i)), 'x',
39
     num2str(dims(i)));
40
              % Extract total number of pixels and errors:
              total = cases.(dim_name).('total');
42
              err = cases.(dim_name).('err');
              err_o = cases.(dim_name).('err_o');
              err_oc = cases.(dim_name).('err_oc');
46
              %
48
              % Write to .csv file:
49
              csvwrite(strcat(folder, mode, '\alpha', num2str(
     alpha), '\phi', num2str(phi), '\dim', num2str(dims(i)), '\
     resultsErrorTestCasesTypeI.csv'), [sigma_range' (err(:, 1) /
     total(1))])
              csvwrite(streat(folder, mode, '\alpha', num2str(
     alpha), '\phi', num2str(phi), '\dim', num2str(dims(i)), '\
     resultsErrorTestCasesTypeI_o.csv'), [sigma_range' (err_o(:,
     1) / total(1))])
              csvwrite(strcat(folder, mode, '\alpha', num2str(
     alpha), '\phi', num2str(phi), '\dim', num2str(dims(i)), '\
     resultsErrorTestCasesTypeI_oc.csv'), [sigma_range' (err_oc(:,
      1) / total(1))))
              csvwrite(strcat(folder, mode, '\alpha', num2str(
     alpha), '\phi', num2str(phi), '\dim', num2str(dims(i)), '\
     resultsErrorTestCasesTypeII.csv'), [sigma_range' (err(:, 2) /
      total(2))])
              csvwrite(strcat(folder, mode, '\alpha', num2str(
54
     alpha), '\phi', num2str(phi), '\dim', num2str(dims(i)), '\
     resultsErrorTestCasesTypeII_o.csv'), [sigma_range' (err_o(:,
```

```
2) / total(2))])

csvwrite(strcat(folder, mode, '\alpha', num2str(
alpha), '\phi', num2str(phi), '\dim', num2str(dims(i)), '\
resultsErrorTestCasesTypeII_oc.csv'), [sigma_range' (err_oc
(:, 2) / total(2))])

end
end
end
end
```

Listing 5: MATLAB implementation of the algorithm counting the errors for the randomly generated test images.

References

- [AB96] "Felix Abramovich and Yoav Benjamini". ""Adaptive thresholding of wavelet coefficients"". In: "Computational Statistics & Data Analysis" "22"."4" ("1996"), "351 -361". ISSN: "0167-9473". DOI: "https://doi.org/10.1016/0167-9473(96)00003-5". URL: "http://www.sciencedirect.com/science/article/pii/0167947396000035".
- [BG01] Asker Bazen and Sabih Gerez. "Segmentation of Fingerprint Images". In: 12 (Dec. 2001).
- [GR07] I.S. Gradshteyn and I.M. Ryzhik. *Table of Integrals, Series, and Products.* 7th. Academic Press, 2007.
- [Hen00] E. R. Henry. "Classification and uses of finger prints". In: (1900).
- [Liu+11] Eryun Liu et al. "Fingerprint segmentation based on an AdaBoost classifier". In: Frontiers of Computer Science in China 5 (June 2011), pp. 148–157. DOI: 10.1007/s11704-011-9134-x.
- [Mal+09] Davide Maltoni et al. *Handbook of fingerprint recognition*. Springer Science & Business Media, 2009.
- [Nut74] Albert H. Nuttall. "Some integrals involving the Q_M -function". In: (1974).
- [Olv+10] Frank Olver et al. NIST Handbook of Mathematical Functions. Jan. 2010.
- [Shi10] Frank Y Shih. Image processing and pattern recognition: fundamentals and techniques. John Wiley & Sons, 2010.
- [THG16] Duy Hoang Thai, Stephan Huckemann, and Carsten Gottschlich. "Filter Design and Performance Evaluation for Fingerprint Image Segmentation". In: *PLOS ONE* 11.5 (May 2016), pp. 1–31. DOI: 10.1371/journal.pone.0154160. URL: https://doi.org/10.1371/journal.pone.0154160.