ELSEVIER

Contents lists available at ScienceDirect

Chemical Physics Letters

journal homepage: www.elsevier.com/locate/cplett

Movement of Ng₂ molecules confined in a C₆₀ cage: An ab initio molecular dynamics study

Munmun Khatua, Sudip Pan, Pratim K. Chattaraj*

Department of Chemistry and Centre for Theoretical Studies, Indian Institute of Technology, Kharagpur 721302, India

ARTICLE INFO

Article history: Received 12 May 2014 Received in revised form 25 June 2014 In final form 26 June 2014 Available online 8 July 2014

ABSTRACT

An ab initio molecular dynamics study on $Ng_2@C_{60}$ (Ng = He-Kr) systems is performed to analyze the movement of Ng_2 molecules inside a C_{60} cage. Within 500 fs time window, the He_2 undergoes precession encompassing translation, vibration and rotation readily whereas other Ng_2 molecules show usual vibration but the degrees of translation and rotation decrease with an increase in size of the Ng atoms. Increase in interaction between the Ng centers and cage carbons and an increased distortion of cage in moving from Ng units behave as single entity.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The long-established chemical principle that noble gases (Ng) are inert and do not take part in chemical bonding was abandoned after the synthesis of Xe⁺[PtF₆]⁻ by Bartlett [1,2]. Prompted by this synthesis within a short duration, a good number of Kr—Rn compounds [3,4] were synthesized, which further raised the interest of the researchers in this developing arena named Ng chemistry. The contributions of Räsänen and co-workers [3–5] in synthesizing successfully a series of compounds of type H(Ng)Y (Ng = Ar, Kr, Xe; Y = electron-withdrawing group) and that of Feldman et al. [6] in preparing Ng hydrides and other related Ng compounds are considered as significant in enriching this field. The Ng-compounds were also investigated theoretically by different researchers [7–14].

The study of chemical systems under unusual conditions like the endohedrally confined one has been a matter of great interest to the scientists. Ever since the discovery of fullerenes in 1985 [15], several methods were developed for producing endohedrally doped fullerenes since the space inside could hold atoms and even small molecules. Methods such as ion bombardment and high pressure/high-temperature techniques [16–22] were used but the yield was low (<1%) and so the 'molecular surgery' method was used where a hole is chemically opened on the surface of the fullerene cage, and a gas molecule is inserted reversibly through the orifice [23–30]. Komatsu et al. added groups to C₆₀ to create a

13-membered ring in the carbon cage [27] large enough to permit H_2 and H_2 to enter [28,29]. They then devised a sequence of reactions that closed the hole, trapping H_2 inside to produce $H_2@C_{60}$ in high yield [30]. Several theoretical and experimental [16,31–34] studies were also carried out on the endohedrally trapped N_2 compounds like $N_2 C_{60}$ and $N_2 C_{70}$. These unusual endohedrally trapped compounds are stable with a van der Waals type of interaction in most cases in that there is no chemical bond between the trapped atom and the carbon cage. Yet, they are very stable, since several C-C bonds must break to allow the atom to escape. In addition to the fullerene cages, inclusion of N_2 atoms in much smaller cages like $C_{10}H_{16}$, $C_{20}H_{20}$ and $M_0C_{18}F_6$ was also studied [35–38].

From a theoretical perspective, noble gas dimers (Ng₂) confined in a C₆₀ and other cages have revealed how the valence electrons of atoms, which have a fully occupied valence shell, change when they are confined to strong interatomic interactions at equilibrium geometry. The theoretical data suggest of a possible new type of inter-atomic interaction, which would provide material for further stimulating discussions about the nature of a chemical bond. Certain quantum-chemical studies about the endohedrally confined Ng dimers i.e. Ng_2 (Ng=He-Xe) in C_{60} fullerene cage [39–41] revealed that the Ng-Ng distances in Ng₂@C₆₀ are considerably shorter than those in free Ng dimers. All these $Ng_2@C_{60}$ systems are thermodynamically unstable toward the loss of Ng atoms. Krapp and Frenking [40] investigated whether the bonds in between two Ng atoms or in between Ng and C atoms in Ng₂@C₆₀ systems could be called a chemical bond. With the help of detailed bonding analysis and IUPAC definition of a chemical bond, they termed the Ng-Ng and Ng-C bonds for Ng = Ar-Xe as genuine chemical bonds whereas those in He₂@C₆₀ and Ne₂@C₆₀ are just weakly bonded

^{*} Corresponding author. *E-mail addresses*: pkc@chem.iitkgp.ernet.in, pratim.chattaraj@gmail.com
(P.K. Chattaraj).

Table 1The Ng—Ng distance (r_{Ng-Ng}, \dot{A}) , shortest Ng—C distance (r_{Ng-C}, \dot{A}) of the D_{3d} symmetric Ng₂@C₆₀ (Ng = He, Ne, Ar and Kr) systems at the M05-2X/6-311G(d) and BP86/TZVPP level and the distance (r_{cg}, \dot{A}) along the centers of C₆ rings along the Ng—Ng axis and along the centers of C₅ rings perpendicular to the Ng—Ng axis.

Systems	M05-2X/6-311G(d)		BP86/TZVPP		M05-2X/6-311G(d)	
	r(Ng—Ng)	r(Ng—C) shortest	r(Ng—Ng)	r(Ng—C) shortest	$r_{\rm cg}$ (C ₆)	$r_{\rm cg}\left({\rm C}_{\rm 5}\right)$
He ₂ @C ₆₀	2.035	2.640	1.953	2.696	6.488	6.613
Ne ₂ @C ₆₀	2.091	2.638	2.099	2.657	6.536	6.599
$Ar_2@C_{60}$	2.357	2.620	2.364	2.630	6.736	6.553
Kr ₂ @C ₆₀	2.449	2.630	2.460	2.637	6.837	6.533

van der Waals interactions. Further, based on the very small energy differences between differently oriented Ng2 units inside the C60 cages, they argued about a nearly free precession movement of Ng2 around its midpoint in the C60 cage, except for the Xe2 dimer. They particularly put stress on the He2@C60 for such a precession to occur. In an earlier study it was shown through the ab initio simulation that the He—He unit undergoes translation, rotation and vibration inside the cavity of $B_{12}N_{12}$ and $B_{16}N_{16}$ cages [42]. The ab initio simulation also revealed that although Ng entrapped $B_{12}N_{12}$ and $B_{16}N_{16}$ cages are thermodynamically unstable, they are kinetically stable at room temperature except Ne2@B12N12. However, Ne2@B12N12 was found to be kinetically stable at low temperature. Our objectives toward the present study include:

- To check the kinetic stability of these systems through ab initio molecular dynamics study since they are thermodynamically unstable.
- (2) Frenking et al. [40] argued about the free precession of the Ng₂ units inside the cage on the basis of the very small energy differences between differently oriented Ng₂ units. We need to check whether these Ng₂ units really precess inside the C₆₀ cage at room temperature and if yes then by what extent, up to 500 fs time scale.

- (3) To check whether these weakly interacting He₂ and Ne₂ systems can be termed as molecules we would like to analyze the Ng–Ng bond distance values at different time steps.
- (4) In order to check the applicability of maximum hardness principle and minimum electrophilicity principle during time evolution of these endohedrally trapped systems the variation of hardness and electrophilicity with time during simulation and their correlation with the change in energy of the systems are studied.

2. Computational details

We have considered the D_{3d} symmetric Ng₂@C₆₀ (Ng = He, Ne, Ar and Kr) systems since D_{3d} point group structures have lower energy than the other symmetric structures as shown by Frenking et al. [40], except for He₂@C₆₀. In case of He₂@C₆₀, the other symmetric structures are slightly lower in energy (0.02 kcal/mol) than that with D_{3d} symmetry. We have optimized these systems at the M05-2X/6-311G(d) level using Gaussian 09 program package [43]. The dynamics of all the Ng₂@C₆₀ (Ng = He, Ne, Ar and Kr) systems are investigated by using ab initio molecular dynamics [44], atom-centered density matrix propagation (ADMP) [45–47] technique as included in Gaussian 09 suite of program [43]. The dynamics

Figure 1. Optimized geometries of the D_{3d} symmetric Ng₂@C₆₀ (Ng = He, Ne, Ar and Kr) systems at the M05-2X/6-311G(d) level. (The Ng—C bonds are not shown for clarity of the structures; the distance along the centers of C₆ rings along the Ng—Ng axis and along the centers of C₅ rings perpendicular to the Ng—Ng axis are also shown.).

are performed at the DFT-D-B3LYP/6-311+G(d,p) level taking the optimized geometries at the M05-2X/6-311G(d) level. Boltzmann distribution is used to generate the initial nuclear kinetic energies of the systems. The temperature is maintained by using a velocity scaling thermostat throughout the simulation. Here all the simulations are carried out at 298 K. Default random number generator seed is used as implemented in GAUSSIAN 09 to initiate the initial mass weighted Cartesian velocity. For all the cases, trajectories up to 500 fs are generated (within the time gap of 1 fs). The electronegativity (χ) [48,49], hardness (η) [50,51] and electrophilicity (ω) [52] of the systems are calculated as:

$$\chi = -\mu = \frac{I + A}{2} \tag{1}$$

$$\eta = I - A \tag{2}$$

and

$$\omega = \frac{\mu^2}{2n} = \frac{\chi^2}{2n} \tag{3}$$

where *I* and *A* are the ionization potential and electron affinity of the system, respectively. Here *I* and *A* are computed using Koopmans' theorem [53]. Note that although Koopmans' theorem is strictly valid within the Hartree–Fock theory; however one may use the same in Kohn–Sham calculation with the help of Janak's theorem [54]. It is worth mentioning that the electron affinities computed from the LUMO energies would be even more approximate than the ionization potentials from HOMO energies [55].

3. Results and discussion

Table 1 shows the key structural parameters of the D_{3d} symmetric Ng₂@C₆₀ systems at the M05-2X/6-311G(d) level and those at the previously considered BP86/TZVPP level. The Ng-Ng bond distances and the shortest Ng-C bond distances are very much comparable at these two levels of theory. In case of $He_2@C_{60}$, the differences in the corresponding parameters are slightly more than that in the other systems. Figure 1 shows the optimized geometries of the D_{3d} symmetric Ng₂@C₆₀ systems at the M05-2X/6-311G(d) level. Now, the dynamical behavior of all these Ng₂@C₆₀ systems can be well understood by an ab initio molecular dynamics study. Since we are particularly interested in knowing the nature of movement of Ng₂ units at room temperature, we perform the dynamics study at 298 K. We have found that among these systems only He₂@C₆₀ undergoes almost free precession encompassing translation, rotation and vibration throughout the simulation time essentially due to the smaller size of He2. But in the remaining systems, the Ng2 units only undergo usual vibration with slight rotation and translation. In the D_{3d} point groups, each Ng centers in the Ng₂ unit are orientated toward the centers of the two oppositely faced C₆ rings. If we look at the movement of Ng₂ units through one face of the C₆ ring, the Ng₂ units are found to move mostly within the region made through connecting each C centers of the C₆ ring with the same of the oppositely faced C₆ ring. The Ng₂ units prefer to stay within this region to avoid severe steric repulsion caused when approached closer to the cage atoms. After 500 fs, the Ne₂ unit is found to make a 12.4° clock-wise rotation with respect to the Z-axis connecting the midpoint of Ng₂ unit and center of the C₆ ring whereas the same are found to be 12.7° and 7.8° for the Ng₂ units in Ar₂@C₆₀ and Kr₂@C₆₀, respectively as shown in Figure 2. Although after 500 fs, Ne₂ moves through an angle nearly equal to that of Ar₂ in intermediate time say after 458 fs, this angle is 14.6° (Figure 2) indicating its higher ability to rotate than Ar₂. Therefore, Ng₂ units other than He₂ cannot rotate easily. A longer time may be required for a significant rotation. Note that although here we see a net clock-wise rotation for $Ng_2@C_{60}$ cases (Ng = Ne-Ar) after 500 fs giving a sense about the unidirectional rotation of Ng₂ units

Figure 2. Orientation of the Ng₂ units (Ng = Ne, Ar and Kr) with respect to the *Z*-axis connecting the midpoint of Ng₂ unit and center of the C_6 ring (dotted line) of the C_{60} cage along the Ng—Ng axis at t = 500 fs and 458 fs (for Ne₂ unit only).

inside the C₆₀ cage one does not expect an unidirectional rotation in presence of thermal energy. It seems that after the current simulation time it shows the rotation in a particular direction but with a longer simulation time, it may show the rotation in different directions similar to $He_2@C_{60}$. [56] In fact, here we may connect this with the study of Alexandrova et al. [57] in which they controlled the direction of rotation of inner B₃ ring in B₁₃⁺, a Wankel-motor, by applying an external circularly polarized infrared laser. Otherwise, the B₃ ring rotates in both clockwise and anti-clockwise directions. Therefore, here also to facilitate a unidirectional rotation of Ng₂ units an external driving force at a particular direction will be needed. Note that although the precession of Ng2 units in C₆₀ cage and the fluxional behavior of the inner units in those so-called molecular Wankel-motors are quite different they have similarities due to the fact that in both cases the presence of strong bonds between the rotating unit and peripheral atoms will hinder such rotation. In Wankel-motors, the presence of multicenter-2ebond favors such fluxionality [58]. In cases of Ng₂@C₆₀, the He₂ and Ne₂ are interacting with the C₆₀ cage only through weak van der Waals interaction but the interaction gets stronger for the Ar and Kr cases [40]. This is due to the larger separation between two trapped Ng atoms in moving from He to Kr, the Ng atoms become closer to the cage C atoms producing stronger interaction. In fact Frenking et al. [40] termed the Ar/Kr-C bonding as some sort of true chemical bonds. This seems to be responsible for the fact that He₂ can rotate freely whereas the rotation gradually becomes hindered in moving from Ne to Kr. Another factor, which will have some effect in restricting the rotation of Ng2 units, is the distortion of C₆₀ cage in accommodating Ng₂ inside. It is found that in Ng₂@C₆₀ cages, the cage diameter expands along the Ng-Ng axis and contracts perpendicular to the Ng-Ng axis. This type of distortion is negligible in case of He but it gradually increases in moving

Figure 3. Snapshots at different time steps of He₂@C₆₀ system (time in fs).

from Ne to Kr. In C₆₀ cage, the distance between the centers of two oppositely faced C6 rings is 6.470 Å and the same between two oppositely faced C₅ rings is 6.619 Å. Note that in Ng₂@C₆₀, the distance (r_{cg}) along the centers of C_6 cages represents the diameter along the Ng-Ng axis and that along the centers of C5 rings represents the diameter perpendicular to the Ng–Ng axis. The $r_{\rm cg}$ values in Table 1 clearly show the changes in diameters in the Ng₂ trapped cages. In fact, in Kr₂@C₆₀ the diameter gets elongated by almost 0.4 Å along the Kr–Kr axis and contracted by \sim 0.1 Å perpendicular to the Kr-Kr axis. Such distortion of C₆₀ cage can also be understood by the preparation energy calculated by Frenking et al. [40] where they found very low preparation energy in cases of He (0.02 kcal/mol) and Ne (0.79 kcal/mol) which is considerably high for Ar (11.48 kcal/mol) and Kr (23.68 kcal/mol) cases. Therefore, in Ng₂@C₆₀, the rotation of Ng₂ units has to be accompanied by the rearrangement of such structural distortion. It is another reason behind the small rotation angle found in Ng₂@C₆₀ cases in 500 fs time window other than $He_2@C_{60}$. For these systems in much longer time we may find a considerable rotation.

Figure 3 presents the snapshots at different time steps of the He₂@C₆₀ system, which clearly depict the movement of He₂ units throughout the simulation. The occurrence of such precession movement within the cavity was also concluded by Krapp and Frenking [40], based on their study regarding the geometry and energy calculations of Ng₂@C₆₀ systems. Cerpa et al. [59] also referred to this free precession of He2 inside the C20H20 cage owing to the very low energy difference between the isomers having different He-He orientations. In another study [42] the precession of He₂ units within the $B_{12}N_{12}$ and $B_{16}N_{16}$ cages was reported. Therefore, here we have demonstrated that He₂ indeed undergoes precession encompassing translation, rotation and vibration. From the movie files provided in the electronic supplementary material one can see the movement of the Ng₂ units inside the cage. As previously mentioned by Frenking et al. [40] such free movement of He₂ unit inside the cage further justifies the observation from the experimental [60] and theoretical studies [41] on the ³He NMR of He₂@C₆₀ that He₂@C₆₀ almost has the same ³He chemical shift as

that of the He@C_{60} . The snapshots at different time steps of the $\text{Ne}_2@C_{60}$, $\text{Ar}_2@C_{60}$ and $\text{Kr}_2@C_{60}$ systems are presented in Figures S1, S2 and S3, respectively, in the supplementary material.

From the previous study [40], it is clear that the He $_2$ and Ne $_2$ are just weakly bonded species. Now, the question is whether they can be called a molecule or just a couple of atoms trapped in a cage. In fact Cross et al. [35] termed them as artificial molecule. Note that to bring two Ng atoms at a distance as that in the Ng $_2$ @C $_{60}$ complexes, one has to pay energy. It is 2.07 kcal/mol for He $_2$ and 6.38 kcal/mol for Ne $_2$ [40]. Therefore, if there is a scope then they should stay apart. But during the whole simulation process we have observed that the Ng $_2$ units move as a single entity within the cage which is clear from the movies provided in the supplementary material. The He $_2$ @C $_{60}$ case will be the best example to understand this since

Figure 4. Plot of Ng—Ng distance (in Å) vs. time (in fs) for Ng₂@C₆₀ systems (Ng = He, Ne. Ar. Kr).

 $\textbf{Figure 5.} \ \ \text{Time evolution of Energy (in a.u.), Hardness (in a.u.) and Electrophilicity (in a.u.) for Ng_2@C_{60} \ systems (Ng = He, Ne, Ar, Kr) (time in fs). \\$

there is maximum space available inside the cage to move around. The two He atoms are correlated to each other and follow each other and there seems to be no random movement. It is also evident from Figure 4 which presents the plots of Ng—Ng distances with time. Except the usual stretching and compression of He—He bonds not much abruptness appears in the plot. The equilibrium He—He bond distance in He2@C60 is 2.035 Å. It is found to vary within 2.2–1.6 Å. Therefore, they are not just two He atoms rather a single He2 molecule. It is also interesting to note from the natural population analysis (NPA) that the net NPA charges on the Ng atoms in the C60 cage are zero or close to zero and therefore no transfer of electron from the Ng atoms to the cage atoms takes place. The total Wiberg Bond Index (WBI) for each He atoms in He2@C60 is 0.0, for each Ne atoms in Ne2@C60 is 0.0003, for each Ar atoms in Ar2@C60 is 0.0146 and for each Kr atoms in Kr2@C60 is 0.0357.

The time evolution of energy, hardness and electrophilicity of the Ng₂@C₆₀ systems is presented in Figure 5. Oscillations in the energy plots of the Ng₂@C₆₀ systems are observed. The confined Ng atoms move within the C₆₀ cage and when they come near the walls of the cage distortion in the cage occurs. The oscillations

in the energy curves are due to these distortions, resulting in the increase in the nuclear kinetic energy. For smaller Ng atoms the distortion is less than the larger Ng atoms. However the energy oscillates within a fixed range for all the Ng₂@C₆₀ systems. It has already been established [40] that the endohedral confinement of Ng atoms is thermodynamically unstable toward the release of both the Ng atoms from the C_{60} cage. But we can see that throughout the simulation process all the structures remain intact and thus we can say that all the structures are at least kinetically stable. In the time evolution of hardness and electrophilicity plots (Figure 3) oscillations similar to energy plots are observed. According to maximum hardness principle (MHP) [61-64] and minimum electrophilicity principle (MEP) [65,66], an increase in hardness [50,51] and a decrease in electrophilicity [52] imply the increased stability of the system. In most of the cases, when energy increases, the hardness decreases and electrophilicity increases during simulation and vice versa. Comparing the hardness and electrophilicity of the Ng₂@C₆₀ systems in Figure 3, it is clear that the hardness decreases and electrophilicity increases in going from He to Kr entrapped systems i.e., stability of the systems decreases in the same order. With an

increase in size of Ng atoms, the system becomes less stable with respect to dissociation into empty cages and Ng atoms [41]. Therefore, very good correlation is found between the nature of changes in hardness and electrophilicity values and those in energy of the systems.

4. Conclusion

Through ab initio molecular dynamics study we have verified the conclusion drawn by Frenking et al. [40] regarding the nearly free precessional movement of Ng2 inside the C60 cage based on the low energy difference in different geometries of Ng₂@C₆₀ in which the Ng₂ are in different orientations. We have found that the He₂ unit indeed undergoes translation, vibration and rotation very readily. However, the degree of such movements is restricted with an increase in the size of Ng atoms. After 500 fs, Ne2, Ar2 and Kr2 are found to have a net clock-wise rotation of only 12.4°, 12.7° and 7.8°, respectively, with respect to the Z-axis connecting the midpoint of the Ng₂ unit and center of the C₆ ring. Therefore, in these cases, longer time period is needed to have a significant rotation. With an increase in size of the Ng atoms, the interaction with the Ng and cage carbon atoms increases. This seems to be one of the reasons which restrict such movements for the heavier analogs. Another reason is the distortion of the C_{60} cage in accommodating Ng atoms. The distortion is large for the larger Ng atoms whereas it is negligible for the He case. The rotation of Ng₂ units has to be accompanied by the elongation along the Ng-Ng axis resulting in a slower rate of rotation for the larger Ng-analogs. During the simulation, the Ng₂ units are found to move as single entities rather than two separate individual Ng atoms. This fact is even more transparent in case of He₂@C₆₀ in which there is enough space to stay apart from each other. Further, nice correlation is found among the nature of changes in hardness and electrophilicity values and those in energy of the systems during simulation.

Acknowledgements

PKC would like to thank DST, New Delhi for the J. C. Bose National Fellowship. MK and SP thank CSIR, New Delhi for their fellowships.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.cplett.2014.06.052.

References

- [1] N. Bartlett, Proc. Chem. Soc. 218 (1962).
- [2] L. Graham, O. Graudejus, N.K. Jha, N. Bartlett, Coord. Chem. Rev. 197 (2000) 321.
- [3] M. Pettersson, J. Lundell, M. Räsänen, J. Chem. Phys. 103 (1995) 205.
- [4] M. Pettersson, J. Lundell, L. Khriachtchev, M. Räsänen, J. Chem. Phys. 109 (1998) 618.
- [5] H. Tanskanen, L. Khriachtchev, J. Lundell, H. Kiljunen, M. Räsänen, J. Am. Chem. Soc. 125 (2003) 16361.
- [6] V.I. Feldman, F.F. Sukhov, A.Y. Orlov, Chem. Phys. Lett. 280 (1997) 507.
- [7] J.O.C. Jiménez-Halla, I. Fernández, G. Frenking, Angew. Chem. 121 (2009) 372;Angew. Chem. Int. Ed. 48 (2009) 366.
- [8] L.A. Mück, A.Y. Timoshkin, M.v. Hopffgarten, G. Frenking, J. Am. Chem. Soc. 131 (2009) 3942.
- [9] S. Pan, S. Jalife, J. Romero, A. Reyes, G. Merino, P.K. Chattaraj, Comput. Theor. Chem. 1021 (2013) 62.
- [10] S. Pan, D. Moreno, J.L. Cabellos, J. Romero, A. Reyes, G. Merino, P.K. Chattaraj, J. Phys. Chem. A 118 (2014) 487.

- [11] L. Khriachtchev, M. Raesaenen, R.B. Gerber, Acc. Chem. Res. 42 (2009) 183.
- [12] V.I. Feldman, A.V. Kobzarenko, A. Baranova, A.V. Danchenko, F.O. Sukhov, E. Tsivion, R.B. Gerber, J. Chem. Phys. 131 (2009) 151101.
- [13] D. Kurzydłowski, P. Ejgierd-Zaleski, W. Grochala, R. Hoffmann, Inorg. Chem. 50 (2011) 3832.
- [14] P. Antoniotti, E. Bottizzo, L. Operti, R. Rabezzana, S. Borocci, F. Grandinetti, J. Phys. Chem. Lett. 1 (2010) 2006.
- [15] H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, Nature 318 (1985)
- [16] M. Saunders, H.A. Jiménez-Vázquez, R.J. Cross, R.J. Poreda, Science 259 (1993) 1428.
- [17] T. Weiske, D.K. Böhme, J. Hrusák, W. Krätschmer, H. Schwarz, Angew. Chem. Int. Ed. Engl. 30 (1991) 884.
- [18] T. Weiske, J. Hrusák, D.K. Böhme, H. Schwarz, Chem. Phys. Lett. 186 (1991) 459.
- [19] M. Saunders, H.A. Jimenez-Vazquez, R.J. Cross, S. Mroczkowski, M.L. Gross, D.E. Giblin, R.J. Poreda, J. Am. Chem. Soc. 116 (1994) 2193.
- [20] M. Saunders, R.J. Cross, H.A. Jimenez-Vazquez, R. Shimshi, A. Khong, Science 271 (1996) 1693.
- [21] R. Shimshi, R.J. Cross, M. Saunders, J. Am. Chem. Soc. 119 (1997) 1163.
- [22] R.J. Cross, A. Khong, M. Saunders, J. Org. Chem. 68 (2003) 8281.
- [23] J.C. Hummelen, M. Prato, F. Wudl, J. Am. Chem. Soc. 117 (1995) 7003.
- [24] M.J. Arce, A.L. Viado, Y.Z. An, S.I. Khan, Y. Rubin, J. Am. Chem. Soc. 118 (1996) 3775
- [25] Y. Rubin, et al., Angew. Chem. Int. Ed. 40 (2001) 1543.
- [26] Y. Murata, M. Murata, K. Komatsu, J. Am. Chem. Soc. 125 (2003) 7152.
- [27] Y. Murata, M. Murata, K. Komatsu, Chem. Eur. J. 9 (2003) 1600.
- [28] C.M. Stanisky, J. Cross, R.J. Cross, M. Saunders, Y. Murata, M. Murata, K. Komatsu, J. Am. Chem. Soc. 127 (2005) 299.
- [29] K. Komatsu, M. Murata, Y. Murata, Science 307 (2005) 238.
- [30] M. Murata, Y. Murata, K. Komatsu, J. Am. Chem. Soc. 128 (2006) 8024.
- [31] M. Bühl, S. Patchkovskii, W. Thiel, Chem. Phys. Lett. 275 (1997) 14.
- [32] M.S. Syamala, R.J. Cross, M. Saunders, J. Am. Chem. Soc. 124 (2002) 6216.
- [33] A. Khong, et al., J. Am. Chem. Soc. 120 (1998) 6380.
- [34] T. Sternfeld, R.E. Hoffman, M. Saunders, R.J. Cross, M.S. Syamala, M. Rabinovitz, J. Am. Chem. Soc. 124 (2002) 8786.
- [35] T. Strenalyuk, A. Haaland, Chem. Eur. J. 14 (2008) 10223.
- [36] R.J. Cross, M. Saunders, H. Prinzbach, Org. Lett. 1 (1999) 1479.
- [37] H.A. Jiménez-Vázquez, J. Tamariz, R.J. Cross, J. Phys. Chem. A 105 (2001) 1315.
- [38] W. Zou, Y. Liu, W. Liu, T. Wang, J.E. Boggs, J. Phys. Chem. A 114 (1) (2010) 646.
- [39] R.B. Darzynkiewicz, G.E. Scuseria, J. Phys. Chem. A 101 (1997) 7141.
- [40] A. Krapp, G. Frenking, Chem. Eur. J. 13 (2007) 8256.
- [41] M. Straka, J. Vaara, J. Phys. Chem. A 110 (2006) 12338
- [42] M. Khatua, S. Pan, P.K. Chattaraj, J. Chem. Phys. 140 (2014) 164306.
- [43] M.J. Frisch, et al., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
- [44] D. Marx, J. Hutter, in: J. Grotendorst (Ed.), Proceedings of Modern Methods and Algorithms of Quantum Chemistry, John von Neumann Institute for Computing, Jurich, Germany, 2000.
- [45] H.B. Schlegel, J.M. Millam, S.S. Iyengar, G.A. Voth, A.D. Daniels, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 114 (2001) 9758.
- [46] S.S. Iyengar, H.B. Schlegel, J.M. Millam, G.A. Voth, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 115 (2001) 10291.
- [47] H.B. Schlegel, S.S. İyengar, X. Li, J.M. Millam, G.A. Voth, G.E. Scuseria, M.J. Frisch, J. Chem. Phys. 117 (2002) 8694.
- [48] P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793.
- [49] P.K. Chattaraj, J. Indian Chem. Soc. 69 (1992) 173.
- [50] R.G. Parr, R.A. Donnelly, M. Levy, W.E. Palke, J. Chem. Phys. 68 (1978) 3801.
- [51] P.K. Chattaraj, U. Sarkar, D.R. Roy, Chem. Rev. 106 (2006) 2065.
- [52] P.K. Chattaraj, D.R. Roy, Chem. Rev. 107 (2007) PR46.
- [53] T.A. Koopmans, Physica 1 (1933) 104.
- 54] J.F. Janak, Phys. Rev. B 18 (1978) 7165.
- [55] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.
- [56] Due to the large size here we have computed up to 500 fs.
- [57] J. Zhang, A.P. Sergeeva, M. Sparta, A.N. Alexandrova, Angew. Chem. Int. Ed. 51 (2012) 8512.
- [58] D. Moreno, et al., Chem. Commun. 50 (2014) 8140.
- [59] E. Cerpa, A. Krapp, R. Flores-Moreno, K.J. Donald, G. Merino, Chem. Eur. J. 15 (2009) 1985.
- [60] T. Sternfeld, R.E. Hoffman, M. Saunders, R.J. Cross, M.S. Syamala, M. Rabinovitz, J. Am. Chem. Soc. 124 (2002) 8786.
- [61] R.G. Pearson, J. Chem. Educ. 64 (1987) 561.
- 62] R.G. Parr, P.K. Chattaraj, J. Am. Chem. Soc. 113 (1991) 1854.
- [63] P.W. Ayers, R.G. Parr, J. Am. Chem. Soc. 122 (2000) 2010.
- [64] S. Pan, M. Solà, P.K. Chattaraj, J. Phys. Chem. A 117 (2013) 1843.
- [65] E. Chamorro, P.K. Chattaraj, P. Fuentealba, J. Phys. Chem. A 107 (2003) 7068.
- [66] R. Parthasarathi, M. Elango, V. Subramanian, P.K. Chattaraj, Theor. Chem. Acc. 113 (2005) 257.