Modulo: Approfondimenti sui Sistemi Aritmetici di un computer: tipo reale

[P2\_03]

Unità didattica: Errori di roundoff

[3-AT]

**Titolo:** Accuratezza statica e dinamica del S. A. Standard IEEE 754

Argomenti trattati:

- ✓ Misure di errore (errore assoluto ed errore relativo) e loro
  significato
- Errore di roundoff di rappresentazione (accuratezza statica)
- ✓ Errore di roundoff delle operazioni aritmetiche floating point (accuratezza dinamica)
- ✓ Ottimalità del S.A. Standard: massima accuratezza statica e massima accuratezza dinamica

Prerequisiti richiesti: Rappresentazione dei numeri floating-point



Tipo Reale Floating-Point

# orof. M. Rizzardi)



Errore di roundoff

statico

dinamico

risultato di operazioni aritmetiche

rappresentazione in memoria

### Misure di errore

Se x indica il valore esatto ed  $\tilde{x}$  una sua approssimazione ( $\tilde{x}=fl(x)$ ), per misurare l'accuratezza di  $\tilde{x}$  rispetto ad x si usano:

Errore assoluto 
$$E_A(\tilde{x}) = |x - \tilde{x}|$$

$$E_R(\tilde{x}) = \left| \frac{x - \tilde{x}}{x} \right|$$
 per  $x \neq 0$ 

## Quali informazioni danno gli errori $E_A$ ed $E_R$ sul grado di approssimazione 3

Errore assoluto E significative corrette

... cosa significa ???

Se  $\tilde{x}$  è un'approssimazione di x corretta a decimali, allora si ha  $|x-\tilde{x}| < 10^{-p}$ 

### Proprietà 2

Se  $\hat{x}$  è un'approssimazione di x corretta a p significative, allora si ha

### Esempio: proprietà 1

$$x = 12.34999$$
 $y = \tilde{x} = 12.34$  p=2 cifre decimality correcte

Errore assolute in 
$$y = E_A(y) = 9.9900e-003 < 10^{-2} = 10^{-p}$$

$$x = 12.34999$$

$$=$$
  $\tilde{x}$   $=$   $12.35$  p=1 cifra decimale corretta



Errore assoluto in 
$$y = E_A(y) = 1.0000e-005 < 10^{-4} = 10^{-p}$$
???

### Esempio: proprietà 2

$$x = 12.34999$$

$$y = \tilde{x} = 12.34 \text{ p=4 cifre significative corrette}$$

Errore relativo = 
$$E_R(y)$$
 = 8.0891e-004 <  $10^{-3}$  =  $10^{-p+1}$ 

$$x = 12.34999$$

$$y = \tilde{x} = 12.35$$
 p=3 cifre significative corrette

Errore relativo = 
$$E_R(y)$$
 = 8.0972e-007 <  $10^{-6}$  =  $10^{-p+1}$  ???

Anche se le due proprietà precedenti valgono per una sola implicazione (=>), nella pratica si suppone l'equivalenza (←⇒), nel senso che dall'ordine di grandezza degli errori si hanno informazioni sulle cifre (decimali o significative) corrette di un'approssimazione rispetto al corrispondente valore esatto.

### **Esempio:** il seguente programma

```
#include <stdio.h>
#include <math.h> // per pow() e atan() [arcotangente]
void main()
{double double_x, rel_err, ass_err; float float_x; char i;
 for (i=-4; i<5; i=i+2)
     {\text{double}_x=4*atan(1.0)*pow(10,i);}
      float_x=(float) double_x;
      ass err=fabs(double x-float x);
      rel err=ass err/fabs(double x);
      printf("double = %22.16e\n",double_x);
      printf("single = %22.16e\n",float_x);
      printf("errore assoluto = %8.3e\n",ass err);
      printf("errore relativo = %8.3e\n",rel err);
      puts("\n\n");
```

calcola gli errori di rappresentazione del tipo float ...



### Errore di rappresentazione (tipo float)

| Errore ass. | Errore rel. |
|-------------|-------------|
| 4.76e-012   | 1.51e-008   |
| 1.61e-009   | 5.15e-008   |
| 8.74e-008   | 2.78e-008   |
| 5.88e-006   | 1.87e-008   |
| 7.54e-004   | 2.40e-008   |

### Perché l'errore relativo ha sempre lo stesso ordine di grandezza?

Perché dipende dalle cifre significative della mantissa (nel tipo float del C la precisione è di 24 bit)!

Perché l'ordine di grandezza è 10-8?

### $precisione = numero di cifre_{\beta} significative rappresentate$

rappresentazione (binaria) fl.p. a bit implicito su t bit per la mantissa



Nell'Aritmetica Standard l'epsilon macchina

$$\epsilon_{\rm mach} = 2^-$$

è tale che x-fl(x)  $\ge \frac{\varepsilon_{\text{mach}}}{2}$ 

### Qual'è la precisione binaria?

$$-\log_2\left(\frac{|x-f(x)|}{|x|}\right) \ge -\log_2\left(\frac{\varepsilon_{\text{mach}}}{2}\right) = t+1$$

### $precisione = numero di cifre_{\beta} significative rappresentate$

rappresentazione (binaria) fl.p. a bit implicito su t bit per la mantissa



precisione (binaria) = t+1

### Qual'è la precisione decimale equivalente?

$$-\log_{10}\left(\frac{|x-f(x)|}{|x|}\right) \ge -\log_{10}\left(\frac{\varepsilon_{\text{mach}}}{2}\right) \left(\varepsilon_{\text{mach}} = 2^{-t}\right)$$

# β=2, bit implicito precisione decimale equivalente float t=23 bit s.p. $-\log_{10}(...)\approx6.9\approx7\div8$ cifre decimali double t=52 bit d.p. $-\log_{10}(...)\approx15.9\approx16\div17$ cifre decimali

perciò l'errore relativo nel tipo float è sempre dell'ordine di 10-8

# ... a che serve? È inutile visualizzare più cifre della precisione decimale equivalente

| iormato- | s.p.                      | a.p.            |
|----------|---------------------------|-----------------|
| %f       | 0.666667                  | 0.666667        |
| %e       | 6.666667e-001             | 6.666667e-001   |
| %8.3f    | 0.667                     | 0.667           |
| %8.3e    | 6.667e-001                | 6.667e-001      |
| %21.15f  | 0.666666686534882         | 0.6666666666667 |
| %21.15e  | <b>6.666666</b> 865348816 | 6.666666666666  |
| %ZI.13E  | e-001                     | e-001           |



## $\frac{|x-fl(x)|}{|x-fl(x)|}$ | accuratezza statica

### Errore di roundoff di rappresentazione

È l'errore introdotto nel passare da un numero reale x a precisione infinita al suo rappresentante floating-point in memoria fl(x)

Dipende dalla precisione del Sistema Aritmetico Floating-point e dallo schema di rounding utilizzato

Proprietà  $\forall a \in \mathbb{R}$ , matematica:  $\forall \varepsilon > 0 \longrightarrow a + \varepsilon > a$ 

Nel Sistema Aritmetico Floating-point non vale!

$$\forall a \in \mathbf{F}(\beta, t, E_{\min}, E_{\max}),$$
 $\exists \epsilon > 0 : a \oplus \epsilon = a$ 
Addizione floating-point

Fissato un numero floating-point **a**: qual è il più piccolo numero floating-point che dà contributo nell'addizione floating-point con **a**, cioè

$$ulp(a) = min\{0 < \epsilon \in F(\beta,t,E_{\min},E_{\max}) : a \oplus \epsilon > a\}$$
  
 $u.l.p. = Unit in the Last Place$ 

```
#include <stdio.h>
                            Approssimazione di ulp(1)
void main()
  float eps, epsp1; int n;
    eps=1; n=0;
                                        genera successione
    epsp1=eps+1;
                                               {2<sup>-n</sup>}
    while (epsp1>1)
    { eps=eps/2; n++;
                             calcola \{1+2^{-n}\}
      epsp1=eps+1;
    eps=2.0f*eps; n--;
printf("num. divisioni per 2=%d\nepsilon=%e \n",n,eps);
                          num. divisioni per 2=23
                          epsilon=1.192093e-007
```

u.l.p.(1) = Epsilon macchina  $\varepsilon_{mach}$ 

$$\mathbf{\varepsilon}_{mach} = min\{0 < \mathbf{\varepsilon} \in \mathbf{F}(\beta, t, \mathbf{E}_{min}, \mathbf{E}_{max}) : 1 \oplus \mathbf{\varepsilon} > 1\}$$

dove 

sta per addizione floating-point







```
#include <stdio.h>
void main()
{ float eps; int n;
    eps=1; n=0;
    while (eps+1>1)
        eps=eps/2; n++;
    eps=2.0f*eps; n--;
printf("num. divisioni per 2=%d\nepsilon=%e \n",n,eps);
}
```

Se si elimina la variabile di appoggio epsp1 dal programma ...



num. divisioni per 2=63 epsilon=1.084202e-019



Senza la variabile di appoggio epsp1, il ciclo while viene eseguito nei registri dell'unità aritmetica che hanno un campo mantissa maggiore di quello della memoria:

precisione\_registro = precisione\_formato IEEE std Extended

(cioè del tipo long double del C).



 $x = s \times (\ell.m) \times 2^e \longrightarrow ulp(x) = \varepsilon_{mach} \cdot 2^e$ 

ulp(x)

Nel S.A. Std., se x è un numero reale rappresentabile e fl(x) indica il corrispondente numero floating point;



Mediante il bit implicito e lo schema del round to nearest, il *S.A. IEEE Std 754* assicura la massima accuratezza nella rappresentazione in memoria dei numeri reali (*massima accuratezza statica*).

Come assicurare nelle operazioni aritmetiche risultati di massima accuratezza (massima accuratezza dinamica)?

### accuratezza dinamica

Si dimosta che nei registri dell'unità aritmetica per assicurare risultati di massima accuratezza (massima accuratezza dinamica) sono sufficienti:

- ☐ 1 bit per rappresentare il bit implicito (ℓ)
- 2 guard-bit (g) oltre la mantissa
- □ 1 sticky-bit \*
  - \* sticky bit = bit che vale 1 se per esso transita almeno un bit=1



### registri ALU

In tal modo con *registri lunghi* (*t*+3+ 1 *sticky*) *bit* si ottengono gli stessi risultati aritmetici che si otterrebbero con registri di lunghezza ... "infinita" (economia di costi).

### Esempio 1: uso dei guard bit





**3f7fffff** 

nei registri, dopo l'allineamento degli operandi

| x                   | 0 | 011 1111 1  | 1 | 000 0000 0000 0000 0000 0000 | 0 | 0 | 0 |
|---------------------|---|-------------|---|------------------------------|---|---|---|
| y                   | 0 | 011 1111 1  | 0 | 111 1111 1111 1111 1111      | 1 | 0 | 0 |
| x-y                 | 0 | 011, 1111 1 | 0 | 000 0000 0000 0000 0000      | 1 | 0 | 0 |
| <i>x</i> - <i>y</i> | 0 | 011 0011 1  | 1 | 000 0000 0000 0000 0000 0000 | 0 | 0 | 0 |

normalizzazione

```
/ psembro r. cancerrazione in s.b. v /
                                                                                     P2_03_03.<mark>26</mark>
      #include <stdio.h>
                                 Esempio 1: uso dei guard bit
      #include <math.h>
      #define MAX LEN 32
 5
      void mostra 32 bit(int num, short bit[32])
          char k;
          for (k=0; k<32; k++) bit[k]=0;
          for (k=0; k<32; k++)
10
              bit[k] = num & 1;
               num = num >> 1;
11
12
                                                                                    g-Point
13
          for (k=31; k>=0; k--)
14
              (k==31 | k==23) ? printf("%1d ",bit[k]) : printf("%1d",bit[k]);
15
          puts("\n");
16
                                         x = 1.000000
                                                                   hex = 3f800000
17
                                           18
      int main()
19
          union sp
              float f;
20
                                           = 9.999999e-001
                                                                   hex = 3f7fffff
21
              int
                  n;
                                            01111110 1111111111111111111111111
22
          } x, y, z;
23
          short bit[MAX LEN];
24
                                         z = 5.960464e-008
                                                                   hex = 33800000
25
          x. f=1.0 f;
                                         26
          y. f=1.0 f-(float) pow(2.0, -24);
27
          z.f=x.f-y.f;
                                                                                     Rizzardi
28
          printf("\nx = %e\thex = %08x\n\n", x. f, x. n); mostra 32_bit(x. n, bit);
29
30
          printf("\ny = \ensuremath{\$e}\thex = \ensuremath{\$08x\n\n",y.f,y.n}); mostra 32 bit(y.n, bit);
                                                                                     (prof. M.
          printf("\nz = \ensuremath{\$\epsilon}\thex = \ensuremath{\$08x\n\n",z.f,z.n}); mostra 32 bit(z.n, bit);
31
32
33
      return 0;
                           attenzione: cosa cambia se si usa il formato £?
34
```

guard

### Esempio 2: uso dello sticky bit

cancellazione in s.p. x-y



nei registri, dopo l'allineamento degli operandi .

| inci registri, dopo ramineamento degil operanar |   |            |   | <b>+</b>                                    |   |   |   |
|-------------------------------------------------|---|------------|---|---------------------------------------------|---|---|---|
| x                                               | 0 | 011 1111 1 |   | 000 0000 0000 0000 0000                     | 0 | 0 | 0 |
| y                                               | 0 | 011 1111 1 | 0 | 000 0000 0000 0000 0000 0000                | 0 | 1 | 1 |
| <i>x</i> - <i>y</i>                             | 0 | 011 1111 1 | 0 | 111 1111 1111 1111 1111 1111 1111 1111 1111 | 1 | 0 | 1 |
| x-y                                             | 0 | 011 1111 0 | 1 | 111 1111 1111 1111 1111                     | 0 | 1 | 0 |

🖛 = normalizzazione

Senza lo sticky-bit, nemmeno un registro a lunghezza doppia avrebbe fornito un risultato di massima accuratezza!

```
/* Esempio 2a: cancellazione in s.p. x-y */
                                                                       P2_03_03.28
#include <stdio.h>
                         Esempio 2a: uso dello sticky bit
#include <math.h>
#define MAX LEN 32
void mostra 32 bit(int num, short bit[32])
   char k;
   for (k=0; k<32; k++) bit[k]=0;</pre>
   for (k=0; k<32; k++)
        bit[k] = num & 1;
        num = num >> 1;
                                                                      ng-Point
   for (k=31; k>=0; k--)
       (k==31 | k==23) ? printf("%1d ",bit[k]) : printf("%1d",bit[k]);
   puts("\n");
                          x = 1.000000e+000
                                                       hex = 3f800000
                          int main()
   union sp
                                                      hex = 33000001
                          y = 2.980233e-008
       float f;
                          int
            n;
   } x, y, z;
                          z = 9.999999e-001
                                                       hex = 3f7fffff
   short bit[MAX LEN];
                            x. f=1.0 f;
   y. f = (1.0 f + (float) pow(2.0, -23)) * (float) pow(2.0, -25);
                                                                      (prof. M. Rizzardi)
   z.f=x.f-y.f;
   printf("\nx = %e\thex = %08x\n\n", x.f, x.n); mostra 32 bit(x.n, bit);
   printf("\ny = %e\thex = %08x\n\n", y, f, y, n); mostra 32 bit(y, n, bit);
   printf("\nz = %e\thex = %08x\n\n", z.f, z.n); mostra 32 bit(z.n, bit);
return 0;
```

1

5 6

8 9

10

11

12

13

14 15

16 17

18

19

20

21

22

23

24

25

26

27

28 29

30

31

32 33

```
#include <stdio.h>
     #include <math.h> versione 2: passo ... passo (simulazione senza sticky bit)
     #define MAX LEN 32
                              Passo passo ...
     void mostra 32 bit(int num, s
                              x = 1.0000000e+000 hex = 3f800000
        char k;
        for (k=0; k<32; k++) bit[]
                              8
        for (k=0; k<32; k++)
            bit[k] = num & 1; num
                              y = 2.980233e-008 hex = 33000001
10
11
        for (k=31; k>=0; k--)
                              (k==31 \mid k==23) ? pri:
12
        puts("\n");
13
                              Allinea y a x
14
15
     int main()
                              y = 8.881785e-016 hex = 26800001
16
        union sp
                              float f;
            int
                n;
        } x, y, z;
                              z = 1.000000e + 000 hex = 3f800000
        short bit[MAX LEN];
                              puts("\nPasso passo ...\n");
        x. f=1.0 f;
        printf("\nx = %e\thex = %08x\n\n", x. f, x. n); mostra 32 bit(x. n, bit);
268
        y. f = (1.0 f + (float) pow(2.0, -23)) * (float) pow(2.0, -25);
        printf("\ny = %e\thex = %08x\n\n", y. f, y. n); mostra 32 bit(y. n, bit);
        puts("Allinea y a x");
        y. f=y.f*(float)pow(2.0, -25); // allinea y a x
        printf("\ny = %e\thex = %08x\n\n", y.f, y.n); mostra 32 bit(y.n, bit);
         z.f=x.f-v.f;
        printf("\nz = %e\thex = %08x\n\n", z.f, z.n); mostra 32 bit(z.n, bit)
```

Rizzardi)

(prof. M.

### Gli esempi sull'uso dei guard bit e dello sticky bit continuano a valere anche quando si usano variabili long double

### Esempio 2a

**Esempio 2b** 

### Passo passo ...

### Allinea y a x

### Esercizi

Scrivere delle function C per calcolare rispettivamente l'epsilon macchina della singola, della doppia precisione e della precisione long double, visualizzando ad ogni passo i singoli bit.

### eps+1 =10000000 n=0eps+1 =01111111 n=1eps+1 =01111111 n=2n=3eps+1 =01111111 0001000000000000000000 eps+1 =n=401111111 eps+1 =01111111 00001000000000000000000 n=5eps+1 =00000100000000000000000 n=601111111 eps+1 =01111111 n=7n=8eps+1 =01111111 0000001000000000000000 n= 9 n=10 n=11 n=12 n=13 n=14 n=15 0000000100000000000000 n=9eps+1 =01111111 000000001000000000000 eps+1 =01111111 eps+1 =01111111 000000000100000000000 eps+1 =01111111 000000000010000000000 eps+1 =01111111 000000000001000000000 eps+1 =01111111 000000000000100000000 n=15 eps+1 =01111111 0000000000000100000000 n=16 01111111 0000000000000010000000 eps+1 =n=17eps+1 =01111111 0000000000000001000000 n=18eps+1 =01111111 0000000000000000100000 n=19eps+1 =01111111 0000000000000000010000 01111111 n=20eps+1 =0000000000000000001000 eps+1 =01111111 0000000000000000000100 n=21n=22eps+1 =01111111 n=23eps+1 =01111111 00000000000000000000000000000001

Scrivere una function C per calcolare dalla definizione l'ULP(x) dove x è il parametro reale float di input. [liv. 3]

Tipo Reale

[liv. 2]

Generando in modo random i bit<sup>(\*)</sup> di un numero reale x (double x), determinare i bit della corrispondente variabile flx (float flx; flx=(float) x). Se il numero x è rappresentabile nel tipo *float* calcolarne l'errore assoluto  $E_A$  e relativo  $E_R$  (considerando come esatto il double x e come approssimante il float flx) dalle formule

$$\boldsymbol{E}_{\boldsymbol{A}}(\mathrm{flx}) = |\mathrm{x} - \mathrm{flx}|$$
  $\boldsymbol{E}_{\boldsymbol{R}}(\mathrm{flx}) = \frac{|\mathrm{x} - \mathrm{flx}|}{|\mathrm{x}|}$ 

(\*) La funzione C rand(), in stdlib.h, restituisce un intero pseudorandom minore o uguale di RAND\_MAX (= 32767<sub>10</sub> = 7fff<sub>16</sub> = 0111 1111 1111 1111<sub>2</sub> - massimo intero positivo su 16 bit).

### Come generare a caso i 64 bit di una variabile double?

- Generando i **singoli bit random**:
  - come resto della divisione per 2 [... come?];
  - associando 0 agli interi < 16384 e 1 agli interi > 16383;
- Generando 4 sequenze random di 16 bit (4 × 16 = 64) [... come?]

vedere: Uso di rand ( ) in Materiale di supporto