Spike Extraction and Stimulus Decoding in the Primary Visual Cortex

Anatoly Buchin and Reza Eghbali

September 3, 2016

Introduction

• The Brain is noisy, so are the measurements

What is the noise? What is the signal?

[Neil et al. 2011]

Outline

Spike extraction from the Ca signal in mice V1

Decoding of drifting grating orientation

Spike inference algorithm: ML spike

Spike inference results

Spike inference results

stimulus

- ▶ SVM classifier for decoding direction of drifting gratings
- ▶ Shuffled over different repeats of the stimulus.

stimuli			
direction	tf (Hz)	$cell_{ extsf{-}1}$	cell_2
90°	2	4	2
90°	2	3	0
90°	2		1
90°	2	2	2

- ▶ SVM classifier for decoding direction of drifting gratings
- ▶ Shuffled over different repeats of the stimulus.

stimuli			
direction	tf (Hz)	$cell_{ extsf{-}1}$	cell_2
90°	2	0	2
90°	2	3	0
90°	2	2	
90°	2	4	2

- ▶ SVM classifier for decoding direction of drifting gratings
- ▶ Shuffled over different repeats of the stimulus.

stimuli			
direction	tf (Hz)	$cell_{ extsf{-}1}$	cell_2
90°	2	0	0
90°	2	3	2
90°	2	2	2
90°	2	4	1

► Cre_line: Cux2-CreERT2, Imaging Depth = 275

- ► Cre_line: Cux2-CreERT2, Imaging Depth = 275
- $\blacktriangleright \ \mbox{8 labels are} \ \{0, 45, 90, 135, 180, 225, 270, 315\}$

- ► Cre_line: Cux2-CreERT2, Imaging Depth = 275
- ightharpoonup 8 labels are $\{0, 45, 90, 135, 180, 225, 270, 315\}$
- ▶ Chance performance: 12.5%

▶ Cre_line: Cux2-CreERT2, Imaging Depth = 275
▶ 8 labels are {0, 45, 90, 135, 180, 225, 270, 315}

Chance performance: 12.5%

Direction Selectivity Index

$$DSI = \frac{R_{pref} - R_{null}}{R_{pref} + R_{null}}$$

lacktriangle Use the k cells with the largest DSI to decode direction.

Conclusions

- Spike trains could be efficiently inferred from noisy Ca-imaging
- Rate-based decoding is ~10% more accurate than Cabased
- Trial-shuffling does not significantly change the decoder performance

Linear Fisher Information

Linear Fisher Information

