This article was downloaded by: [155.246.103.35] On: 06 April 2017, At: 13:30 Publisher: Institute for Operations Research and the Management Sciences (INFORMS) INFORMS is located in Maryland, USA

Management Science

Publication details, including instructions for authors and subscription information: http://pubsonline.informs.org

Crowdsourcing New Product Ideas over Time: An Analysis of the Dell IdeaStorm Community

Barry L. Bayus,

To cite this article:

Barry L. Bayus, (2013) Crowdsourcing New Product Ideas over Time: An Analysis of the Dell IdeaStorm Community. Management Science 59(1):226-244. http://dx.doi.org/10.1287/mnsc.1120.1599

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article's accuracy, completeness, merchantability, fitness for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or support of claims made of that product, publication, or service.

Copyright © 2013, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management science, and analytics.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

Vol. 59, No. 1, January 2013, pp. 226-244 ISSN 0025-1909 (print) | ISSN 1526-5501 (online)

http://dx.doi.org/10.1287/mnsc.1120.1599 © 2013 INFORMS

Crowdsourcing New Product Ideas over Time: An Analysis of the Dell IdeaStorm Community

Barry L. Bayus

Kenan-Flagler Business School, University of North Carolina, Chapel Hill, North Carolina 27599, barry_bayus@unc.edu

Several organizations have developed ongoing crowdsourcing communities that repeatedly collect ideas for new products and services from a large, dispersed "crowd" of nonexperts (consumers) over time. Despite its promises, little is known about the nature of an individual's ideation efforts in such an online community. Studying Dell's IdeaStorm community, serial ideators are found to be more likely than consumers with only one idea to generate an idea the organization finds valuable enough to implement, but they are unlikely to repeat their early success once their ideas are implemented. As ideators with past success attempt to again come up with ideas that will excite the organization, they instead end up proposing ideas similar to their ideas that were already implemented (i.e., they generate less diverse ideas). The negative effects of past success are somewhat mitigated for ideators with diverse commenting activity on others' ideas. These findings highlight some of the challenges in maintaining an ongoing supply of quality ideas from the crowd over time.

Key words: innovation; marketing; ideation; creativity; fixation

History: Received June 24, 2011; accepted May 4, 2012, by Kamalini Ramdas, entrepreneurship and innovation. Published online in Articles in Advance November 5, 2012.

Introduction

Downloaded from informs.org by [155.246.103.35] on 06 April 2017, at 13:30 . For personal use only, all rights reserved

The need for innovation is consistently a top business priority among CEOs (Andrew et al. 2010, Jaruzelski and Dehoff 2010) and a key issue in academic research (Krishnan and Ulrich 2001, Hauser et al. 2006). Given the need for a continual stream of new products and services, firms have traditionally relied on an internal staff of professional inventors to generate ideas (Ernst et al. 2000, Schulze and Hoegl 2008). Despite these investments in traditional innovation activities, however, firms continue to be disappointed with their innovation outcomes (Andrew et al. 2010, Jaruzelski and Dehoff 2010).

Many organizations are now outsourcing their ideation efforts in an attempt to get fresh ideas into their innovation process. One approach that is receiving substantial attention is "crowdsourcing," a neologism created by Wired magazine contributor Jeff Howe (Howe 2008). As he defines it, crowdsourcing is the act of taking a task once performed by an employee and outsourcing it to a large, undefined group of people external to the company in the form of an open call. Several organizations have implemented online crowdsourcing systems that gather ideas for new products and services from a large, dispersed "crowd" of nonexperts (e.g., consumers). Community members can typically propose new product ideas as well as comment on the ideas of others. These Web-enabled systems for ideas have been called the new and improved Suggestion Box 2.0 (Weiss 2006).

Some crowdsourcing applications take the form of a one-time contest or multistage tournament (Terwiesch and Xu 2008, Terwiesch and Ulrich 2009). For example, consider the recent Betacup Challenge, which received a lot of offline and online press attention. This contest was created to reduce the number of nonrecyclable cups that are thrown away every year by creating a more convenient alternative to the reusable coffee cup (Bostwick 2010). More than 400 ideas were submitted by several hundred individuals from all over the world between April and June 2010 with the winner receiving \$10,000 (Elliott 2010). The LED Emotionalize Your Light competition, on the other hand, was a three month contest in 2009 with two stages (Bullinger et al. 2010). Sponsored by Osram (a subsidiary of Siemens), participants were invited to propose ideas for LED solutions with a wellness or well-being focus. Almost 600 ideas were submitted during the first phase (with three winners splitting $\in 5,000$), of which 10 ideas moved into the second improvement phase (where three winners split €2,000). The limited empirical research on innovation contests include descriptive case studies (e.g., Bullinger et al. 2010) as well as studies of the relationship between individual and contest characteristics and the number of ideators/solvers in a contest (Yang et al. 2009) or problem solving effectiveness (Jeppesen and Lakhani 2010, Boudreau et al. 2011).

Other crowdsourcing applications, and the type considered in this paper, involve individuals generating ideas repeatedly over time. For example, Dell (computer hardware) and Starbucks (coffee) were recently in the headlines for their ongoing efforts in having a large consumer community suggest, discuss, and vote on thousands of new product and service ideas (Sullivan 2010). Unlike one-time challenges where ideators typically only submit one idea during a limited timeframe and a winner is selected based on the "best" submitted idea, participants in these ongoing crowdsourcing communities are usually asked to keep on proposing any big or small ideas that might improve the organization's products and services (Dell's IdeaStorm has been collecting consumer ideas since February 2007 and Starbucks' MyStarbucksIdea since March 2008). With the exception of a few case studies (Howe 2008, Di Gangi and Wasko 2009, Di Gangi et al. 2010), there is a dearth of published empirical studies involving this type of crowdsourcing community.

Companies are very interested in ongoing crowdsourcing communities because consumers presumably have specialized knowledge about their own problems with existing products, and they are intrinsically motivated to freely contribute their ideas (von Hippel 2005, Fuller 2010). Moreover, under the right conditions, individuals can generate ideas that an organization finds valuable enough to implement (Kavadias and Sommer 2009, Magnusson 2009, Poetz and Schreier 2012, Girotra et al. 2010). In addition to an almost limitless source of ideas, possible benefits from these ongoing communities include direct contact with customers as well as consumer input into the innovation process that is better, faster, and cheaper than traditional market research (Boutin 2006, Howe 2008). Both Dell and Starbucks report that they have already implemented a few hundred consumer ideas submitted through their crowdsourcing communities. Despite its intriguing promises, however, very little is known about the nature of an individual's ideation efforts in a crowdsourcing community over time. Understanding the key factors that drive the repeated generation of ideas that an organization wants to implement is necessary to fully appreciate the potential of these crowdsourcing communities and thus, their effectiveness. Here, an ideator's past participation in the community is of interest, and a key question is whether ideators with past success in proposing ideas that are implemented continue to generate the types of ideas an organization desires to implement.

In this paper, two years of publicly available data from Dell's IdeaStorm community are used to study the nature of a crowdsourced idea generation process over time. Although the majority of ideators only propose a single idea, very few of their ideas are implemented (Lotka 1926). Instead, most of the implemented ideas are proposed by serial ideators (i.e., individuals submitting ideas on at least two separate occasions). Building on the established theory around cognitive fixation (Jansson and Smith 1991, Smith 2003, Burroughs et al. 2008), an individual's past success in generating implemented ideas is shown to have *negative* effects on their subsequent likelihood of proposing another idea the organization wants to implement. As ideators with past success attempt to repeatedly come up with ideas that will excite the organization, they instead end up proposing ideas similar to their ideas that were already implemented (i.e., they generate less diverse ideas). Although there are no sure-fire ways to overcome fixation effects, the brainstorming literature suggests that context shifting by interacting with diverse others can increase the quality of an individual's output (Dugosh et al. 2000, Nijstad et al. 2002, Smith 2003). Following this line of reasoning, the diversity of an individual's past commenting activity is found to have positive effects on an individual's subsequent likelihood of generating another idea the organization finds valuable enough to implement. Thus, the negative effects of past success are somewhat mitigated for ideators that comment on a diverse set of others' ideas.

2. New Product Ideas from the Crowd

Before developing the theoretical framework for this study, let us consider some of the ideas from Dell's IdeaStorm crowdsourcing community, listed in Table 1. These ideas span a diverse range of topics (categories) and typically include information about customer needs (problem information) as well as ways of satisfying these needs (solution information). Because they are voluntarily offered, ideas from the crowd often show a low degree of elaboration and thus can sometimes be vague and immature (Magnusson 2009, Di Gangi and Wasko 2009, Di Gangi et al. 2010). In addition, it should not be surprising if some of the proposed ideas are already known to the organization. For example, several consumer ideas in Table 1 are currently offered by Dell (e.g., Dell has offered gift cards for many years and has had its own magazine *Power Solutions* since well before 2005). Clearly, these ideas are not novel (as will be discussed later, all ideas tagged as being already offered are dropped from the analysis in this study).

Several ideas from the crowd seem to be very creative. Creative ideas are both novel (relatively new compared to other available ideas) and *potentially* useful to an organization in the short or long run (Amabile 1996, Shalley et al. 2004, George 2007, Burroughs et al. 2008). From Table 1, "Have

Table 1 Selected Ideas from IdeaStorm (Ideator; Category; Date Submitted/Date Implemented)

Already offered

Dell Technology and Applications Magazine (tonyman262; advertising and marketing; February 20, 2007)

Offer a student discount (dormlord52; education; July 9, 2007)

Contribute to Ubuntu (darkproteus66; Linux; April 24, 2008)

Wireless headphones for mp3 (cargwella; accessories; July 1, 2008)

Gift vouchers (sh; advertising and marketing; December 9, 2008)

Laptop cover (matchew; accessories; January 5, 2009)

Not implemented

Have Michael Dell in the Dell commercials (carap; advertising and marketing; February 16, 2007)

Have Firefox preinstalled as default browser (robinjfisher; software; February 18, 2007)

Dell EV: Design and sell an electric car (dhart; new product ideas; February 21, 2007)

Dell should sponsor American Idol (guardianxps; advertising and marketing; March 24, 2007)

Biodegradable computers (reg; desktops and laptops; March 30, 2007)

Dell—Offer the blank keyboard (jorge; accessories; June 2, 2007)

Start offering Dell products to general public in Poland (lukasz_wisniewski; Dell; November 12, 2007)

Add an automatic spell check to IdeaStorm (jervis961; IdeaStorm; February 10, 2008)

Make it easier to clean the fans on laptops (pwl2706; laptops; July 10, 2008)

Discount coupons for top IdeaStorm users (bbr; advertising and marketing; July 16, 2008)

Can we get Studio hybrid with Ubuntu? (arhere; Linux; August 1, 2008)

IdeaStorm Live!! (aikiwolfe; advertising and marketing; November 6, 2008)

Advertise on www.Hulu.com (jervis961; advertising and marketing; November 30, 2008)

Buy Lenovo (jervis961; Dell; January 9, 2009)

Partially implemented

No extra software option (ootleman; software; February 16, 2007/July 20, 2007)

Preinstalled Linux; Ubuntu; Fedora; openSUSE; Multiboot (dhart; desktops and laptops; February 16, 2007/July 20, 2007)

Multitouch screen (wkornewald; monitors and displays; March 8, 2007/July 17, 2008)

Offer more configurations with 64-bit Windows Vista (hbruun; desktops and laptops; February 21, 2008/November 18, 2008)

Implemented

Rugged laptop for Marine use (hawk473vt; laptops; February 17, 2007/March 9, 2009)

Implemented: Ubuntu Dell is Le\$\$ than Windows Dell (thebittersea; Linux; May 5, 2007/May 24, 2007)

Invest in miniprojectors (badblood; new product ideas; July 23, 2007/September 25, 2008)

Vostro 1,500 with 7,200 RPM hard drive option (liraco; servers and storage; August 21, 2007/April 15, 2008)

Dell community member awards (jervis961; Dell community; August 27, 2007/October 1, 2007)

Post a video of your global mobility event (jervis961; advertising and marketing; August 8, 2008/August 21, 2008)

You ask us questions (brokencrystal; IdeaStorm; August 19, 2008/January 5, 2010)

Children's PC (jotje; education; October 7, 2008/August 11, 2009)

Note. Idea categories include accessories (keyboards, etc.), Adamo, advertising and marketing, broadband and mobility, Dell, Dell community, Dell website, desktops, desktops and laptops, digital nomads, dimension, education, enterprise, environment, gaming, IdeaStorm, Inspiron, laptop power, laptops, Latitude, Linux, monitors and displays, netbooks, new product ideas, operating systems, Optiplex, PartnerStorm, Precision workstations, printers and ink, retail, sales strategies, servers and storage, service and support, simplify and save, small business, software, Studio, Vostro, and XPS.

Michael Dell in the Dell commercials," "Advertise on www.Hulu.com," and "Buy Lenovo" all have their own underlying logic—and all were not implemented by Dell! Thus, creativity alone is not enough. Consider, for example, that the vast majority of really creative ideas have no commercial value (Levitt 1963, Silverberg and Verspagen 2007) and that many patented ideas end up on one of the numerous weird and wacky patent websites (Czarnitzki et al. 2011). Achieving the organization's innovation goals requires that some ideas are actually valuable enough to be implemented (Mumford and Gustafson 1988, West 2002, Franke et al. 2006). In the words of Levitt (1963, p. 79), "Ideas are useless unless used. The proof of their value is in their implementation." Consequently, this study focuses on quality ideas, i.e., ideas that an organization does not already offer (new

ideas) and considers valuable enough to implement. It is worth noting that unlike the prior literature that relies on subjective rater assessments of idea quality (e.g., Magnusson 2009, Girotra et al. 2010, Kornish and Ulrich 2011, Poetz and Schreier 2012), the present study considers ideas that were actually implemented by an organization (see also Strobe et al. 2010).

Although many people only link innovation with radical breakthroughs that may change a company's existing way of doing business, it is important to recognize that innovation also encompasses ideas for incremental improvements to existing products and services (Mumford and Gustafson 1988, Shalley et al. 2004, Robinson and Schroeder 2005, Vandenbosch et al. 2006). In most cases, the implemented incremental improvements are considered to be quick wins by the organization (Dahl et al. 2011, Silverman 2011).

For example, the suggestion by jervis961 in Table 1 to post a video from one of Dell's global events can probably be considered to be an incremental idea implementing it made sense to Dell, it was not too costly, and it probably increased goodwill among some customers. On the other hand, some of the crowd generated ideas are highly valuable (Bjelland and Wood 2008, Jouret 2009, Killian 2009). For example, the idea by dhart listed in Table 1 ("Preinstalled Linux; Ubuntu; Fedora; openSUSE; Multiboot") generated thousands of votes and hundreds of comments within Dell's community. Because of the tremendous support for offering computer systems with Ubuntu (an open source Linux desktop operating system), Dell quickly surveyed their customers about preferred distribution options (more than 100,000 people completed the survey). Working through the associated production issues, Dell began selling three computer systems with Ubuntu 7.04 preinstalled a few months later (Menchaca 2007). This idea was tagged as partially implemented because the original idea called for the preinstallation of a wide variety of open source software that is not as yet offered.

A unique feature of IdeaStorm is that implemented ideas are publicly identified (e.g., see Table 1). Almost half of all implemented ideas involve changes in the styling, design, and hardware of Dell products. Another third of the implemented ideas deal with open source software, the IdeaStorm community, and website. The remainder of the implemented ideas concern other suggestions involving the environment, service and support, and retail operations. Not surprisingly, implementation costs vary considerably across ideas. Unfortunately, there is no available information on the costs or organizational impact associated with each implemented idea. But what is known is that very few ideas, including ideas that may seem like only small improvements, pass Dell's internal quality screening process (Dell reports on their IdeaStorm website that less than 4% of all submitted ideas have been fully or partially implemented). Thus, whether or not an idea is actually implemented is the key success outcome considered in this study.

3. The Theoretical Framework

In this section, the theoretical framework that guides the empirical study is discussed. A common theme in the new product literature is the importance of novel combinations and rearrangements of ideas, components, products, technologies, strategies, etc. (Simonton 2003, Fleming and Szigety 2006). Additionally, research in cognitive psychology supports the notion that quality ideas result from new and original arrangements of elements from existing knowledge bases (Ward 1994, Dahl and Moreau 2002).

The larger and more diverse an individual's domain-relevant knowledge base, the more alternative ideas can be obtained by combining, recycling, recombining, and further developing these pieces of information (Amabile 1988, 1996; Hargadon and Sutton 1997; Fleming and Szigety 2006). To generate an idea the organization finds valuable enough to implement, an individual must access relevant information, often from diverse knowledge bases (Amabile 1988, 1996). Indeed, high-quality ideas are rare because of the difficulty individuals have in accessing this information (Fleming and Szigety 2006). Research indicates that there are both positive and negative factors that can influence the retrieval of pertinent information during the idea generation process.

3.1. Negative Effects of Past Success

There is a large and growing literature in cognitive psychology and creativity taking the position that past experience is detrimental to future ideation efforts. In particular, experimental research finds that a pervasive impediment to accessing relevant and diverse knowledge bases is cognitive fixation (Jansson and Smith 1991, Smith et al. 1993, Ward 1994, Smith 2003, Cardoso and Badke-Schaub 2011)—people tend to fixate on the principles and features of prior examples, leading to ideas that are less original (Smith et al. 1993, Marsh et al. 1996). Although Dahl and Moreau (2002) find that individuals generate less novel ideas when examples are provided, they also find that these ideas are less valuable (consumers have relatively low willingness to pay for the suggested designs). As defined by Smith (2003, p. 16), fixation is "something that blocks or impedes the successful completion of various types of cognitive operations, such as those involved in remembering, solving problems, and generating creative ideas." Also called unconscious plagiarism (or cryptomnesia), individuals are often unaware that they are fixating on the characteristics of past examples (Marsh and Landau 1995, Marsh et al. 1999). Research into cognitive fixation goes back to early experiments by Maier (1931), Duncker (1945), and Birch and Rabinowitz (1951) that demonstrate that individuals have great difficulty in deviating from previously successful problem solving strategies even when a problem requires a new solution approach. In other words, past experience can limit the knowledge and heuristics used in the ideation process, leading to lower quality ideas.

Jansson and Smith (1991) were the first researchers to demonstrate fixation effects in the product design process. Individuals in their experiments were asked to come up with as many ideas as they could to solve various design problems (e.g., measuring cup for the blind, spill-proof coffee cup, medical monitoring device). Subjects in the control group received

only a one-page problem statement, whereas subjects in the fixation group also received a second page with an example diagram of a possible design for the problem. They found that the design solutions generated by the fixation group were much more likely to include features of the example designs than the control group. Moreover, the fixation group also tended to include flawed aspects of the example designs that violated the problem statement. These general findings have been confirmed in many other situations, including those involving novices and experts (Jansson and Smith 1991), externally provided examples and examples generated by the individual themselves (Ward 1994), exemplars in the form of pictures as well as detailed verbal descriptions (Purcell and Gero 1992), and non-Western, nonindustrialized cultures with limited technology (German and Barrett 2005). Fixation means that the entire solution space is not completely explored (i.e., providing design examples may restrict an individual from seeing other alternatives or better solutions). In this case, individuals do not sufficiently access their diverse knowledge bases, reducing their chances of coming up with an idea that an organization wants to implement. These studies demonstrate that product designs tend to conform to the provided examples. Although the proposed ideas are less original, they can also be less useful (especially because the proposed designs may include undesirable features carried over from the examples). Because these ideas are not novel (and sometimes not useful), they are less likely to be implemented by an organization.

Purcell and Gero (1992, 1996) extend the Jansson and Smith (1991) experiments by showing that fixation effects only occur with example designs that include principles that are already familiar. Furthermore, Perttula and Sipila (2007) find that fixation effects are highest when the exemplars contain features that are commonly known. These studies suggest that cognitive fixation is related to an individual's established knowledge base—people are more likely to become fixated when prior examples are familiar. This is particularly relevant in a crowdsourcing setting where an organization publicly identifies only a few ideas that are implemented. Here, an individual's own¹ implemented ideas are clearly very familiar and thus are highly salient exemplars of the types of ideas that the organization desires (Weiner 1985,

¹ A similar line of reasoning can be used to hypothesize the effects of others' implemented ideas. However, unlike the case of own implemented ideas (in which Dell informs the original ideator), there are no good measures of whether an individual is even aware of others' ideas after their implementation in the Dell IdeaStorm data used in this study (e.g., there are very few comments on an idea after it is implemented). This presents an opportunity for future research.

Lindsley et al. 1995). Similarly, the examples in the published experiments are highly salient to subjects because very few are used.

Taken together, this discussion suggests that an individual's past success in proposing implemented ideas is detrimental to their subsequent ideation efforts. This literature and research findings are summarized in the following hypothesis.

HYPOTHESIS 1 (H1). An individual's likelihood of proposing an implemented idea is negatively related to their past success in generating implemented ideas.

Various explanations that have been suggested to account for the negative effects of cognitive fixation are reviewed by Marsh et al. (1996) and Perttula and Liikkanen (2006). One rationale that is generally consistent with reported experimental findings is a variant of Ward's (1994) structured imagination theory. According to this theory, people unconsciously summarize the general features of known exemplars by creating a new mental category such as "ideas desired by Dell." Further examples (i.e., implemented ideas) help to define (or redefine) this new category. This seems to be consistent with the crowdsourcing experiences of the top contributor to Dell's IdeaStorm website (Jervis 2010):

Users sometimes have ideas that would force Dell to go outside their comfort zone and go in a direction where Dell would take the lead.... This mindset has caused Dell to often only partially implement a user's idea or just not get it right (Dell doesn't really discuss or clarify ideas with users in most cases). Sometimes the result is that the user will narrow their focus in future ideas based on the part that Dell did adopt. In essence they become less innovative and fall more into line with the safe approach Dell usually follows. [emphasis added]

Thus, previous implemented ideas may influence what individuals believe to be "acceptable" ideas. In agreement with this explanation, Dahl and Moreau (2002) find that prior examples structure the form of subsequent ideas (i.e., ideas tend to conform to the high-level aspects of prior examples). If this mechanism is at work, then individuals with past success in generating implemented ideas will propose ideas that will be related to their previous implemented ideas, i.e., their subsequent ideas will be less diverse. This discussion is summarized in the following hypothesis.

HYPOTHESIS 2 (H2). An individual's likelihood of proposing diverse ideas (i.e., ideas that differ from their previous implemented ideas) is negatively related to their past success in generating implemented ideas.

3.2. Positive Effects of Past Commenting Activity

Research generally recognizes that interaction and idea exchange among individuals can facilitate the

retrieval of relevant and diverse knowledge during the idea generation process (Hinsz et al. 1997, Kohn and Smith 2011). Here, interactions typically involve one-on-one or group discussions and commenting activity. A fundamental belief in brainstorming is that interacting with diverse others can stimulate associations in memory that lead to higher quality ideas (Osborn 1953). In traditional brainstorming studies, these interactions include face-to-face as well as computer mediated discussions. Several researchers confirm that interactions with diverse others involving the sharing of information and ideas has a positive effect on ideation efforts (Amabile 1996, Perry-Smith and Shalley 2003). These general results have been found in offline and online settings (Nijstad and Stroebe 2006). Interactions and communication with diverse others helps individuals to generate various alternatives, revise their own knowledge, and refine their ideas, making it more likely that an organization wants to implement the proposed ideas (Perry-Smith and Shalley 2003, Perry-Smith 2006).

Although there are no sure-fire methods to overcome fixation effects, the literature suggests that context shifting by making use of others' perspectives and ideas can increase the quality of an individual's output (Dugosh et al. 2000, Nijstad et al. 2002, Smith 2003). Prior research shows that sharing diverse ideas can stimulate other ideas or categories of ideas when individuals are motivated to directly attend to the stimulus ideas (Dugosh et al. 2000, Dugosh and Paulus 2005, Rietzschel et al. 2007, Kohn et al. 2011). In crowdsourcing communities, ideas are shared online among members via reading, voting, and commenting. Because detailed information is available,² this study focuses on an individual's commenting activity. Although their motivations to participate in crowdsourcing communities vary, individuals that actively interact by commenting on others' ideas generally perceive more benefits, tend to feel a greater sense of community membership, and take their contributions seriously (Preece et al. 2004). Thus, it seems reasonable to assume that commenters first attend to the focal ideas of their comments by reading them. Interacting with others via online comments also has been shown to promote active and critical thinking (Garrison et al. 2001, Schellens and Valcke 2005). Ideators that comment on a diverse set of other members' ideas should develop a better understanding of consumer needs, leading to ideas that are more likely to be valuable to the organization and thus have greater chances of being implemented.

At the same time, arguments from the previous section might suggest that cognitive fixation on others'

ideas can impede ideation efforts. However, unlike a traditional brainstorming situation in which a small group generates relatively few ideas in a fixed time period, in an ongoing crowdsourcing community thousands of ideas are proposed (few of which are deemed by the organization to be valuable enough to be implemented) over time (typically there are several days between idea generation and commenting activity). As compared to an ideator's own ideas that are actually implemented, the large number of others' ideas in a crowdsourcing community is not expected to be as salient. Moreover, fixation is generally reduced when there is time between idea generation sessions (i.e., because of incubation effects, Smith 2003, Linsey et al. 2010). Finally, Dugosh et al. (2000) find that the ideation efforts of individuals separately exposed to others' ideas (via a tape recording) was higher than interacting groups (which discussed each other's ideas)—suggesting that fixation is less important when individuals are asynchronously exposed to others' ideas. Thus, idea exchange via commenting in a crowdsourcing community is not likely to be influenced by fixation effects.

Taken together, this discussion suggests that there will be a positive relationship between the diversity of an individual's commenting activity and their subsequent chances of proposing an idea that the organization finds valuable enough to implement. The following hypothesis summarizes these arguments.

HYPOTHESIS 3 (H3). An individual's likelihood of proposing an implemented idea is positively related to the diversity of their past comments on others' ideas.

Flexibility (or breadth) is traditionally considered to be an important dimension of creativity (Torrance 1966, Guilford 1967); e.g., breadth of attention has been found to be beneficial for innovation outcomes (Friedman et al. 2003). Moreover, Nijstad et al. (2002) find that individuals generate more diverse ideas after attending to stimulus ideas from a diverse set of categories. Together, these studies suggest that individuals commenting on a wide set of others' ideas will tend to generate more diverse ideas that will differ from their previously implemented ideas. Thus, the following hypothesis is offered.

HYPOTHESIS 4 (H4). An individual's likelihood of proposing diverse ideas (i.e., ideas that differ from their previous implemented ideas) is positively related to the diversity of their past comments on others' ideas.

4. Data

Data for this study come from the publicly available information on Dell's IdeaStorm website. According to their website, "The goal is for you, the customer, to tell Dell what new products and services you'd like

² Unfortunately, within the IdeaStorm community studied in this paper there are no complete data on the ideators that only read ideas, nor on voter IDs or voting dates.

to see Dell develop" (http://www.ideastorm.com/, accessed April 1, 2009). IdeaStorm has won a number of awards, including the 2008 PR Innovation of the Year and the 2008 Award for Collaboration and Co-Creation by the Society for New Communications Research. IdeaStorm is lauded as being an excellent, best-in-class crowdsourcing application (Howe 2008, Sullivan 2010).

To participate, individuals must join the IdeaStorm community (at no cost) by selecting an anonymous username (you do not have to be a Dell customer to join). Like most crowdsourcing applications, information on demographics and personal characteristics are not collected (the IdeaStorm community is a "large, undefined" crowd). Ideastorm members can propose ideas as well as comment and vote on the ideas of others. Anyone submitting an idea agrees to give Dell a royalty-free license to use the idea with no restrictions.

In addition to titling their idea and giving a description, consumers can tag their idea based on 39 different categories (e.g., new product ideas, laptops, sales strategies). Each idea can be classified in up to three categories; typically, however, ideas are assigned a single category. Similar to prior research (Ward 1994, Audia and Goncalo 2007), these idea categories are an objective measure of the extent to which an idea differs from an individual's previous ideas. A list of these categories is in Table 1.

The IdeaStorm review team reads each idea within 48 hours of posting to ensure that it meets Dell's terms of use. This team has educated Dell executives and employees how to best utilize IdeaStorm to find and act on ideas, and how to communicate the status of any ideas they use so this can be reported on the Idea-Storm website. Answering a query by a user about how decisions on ideas are made, Dell's IdeaStorm manager states that "the formal governance process consists of a senior-level idea review team that reviews the top ideas on IdeaStorm and works them through the right departments for further study or implementation" (Dell_Admin1 2007). This manager goes on to note that there are two additional informal governance processes: "One is a top-down process: a weekly summary of the top ideas and major discussion threads is sent to our executive leadership team, who discuss and monitor the status of those ideas. Another is a bottom-up process: employees in a number of departments review ideas that relate to their area of expertise." Most of Dell's departments have identified a category expert who serves as a business champion for IdeaStorm. This champion helps vet ideas and communicates with the IdeaStorm review team regarding the status of ideas in their department. Additionally, community members are vigilant in monitoring the ideas that Dell eventually adopts, informing the IdeaStorm team when one of their ideas (or even the ideas of other members) is implemented. To cut down on duplicate ideas (Kornish and Ulrich 2011), contributors are encouraged to first search the IdeaStorm site for similar ideas. In addition, the IdeaStorm team and community members patrol the website for duplicate ideas (which are then merged together). Thus, there is every reason to believe that Dell considers IdeaStorm to be an integral part of the way they do business (Killian 2009).

IdeaStorm was officially launched in February 2007. Information on all of the ideas proposed between its inception and June 2009 was collected. To allow a time buffer for community activity around an idea to stabilize, ideas generated during the last four months were dropped from the analysis. Over the two-year period from February 2007 to February 2009, the available data include 4,285 individuals who generated a total of 8,801 ideas.3 During the same period, 348 ideas (or about 4% of all ideas proposed) were implemented. Individuals that have an idea accepted by Dell (about 5% of all ideators) receive a pen in an engraved box (Sullivan 2010); no monetary compensation is awarded.4 Implemented ideas are also publicly discussed by Dell administrators in their "Ideas in Action" blog, and are appropriately tagged on the IdeaStorm website. Overall, Dell seems to be happy with the general quality of ideas (Killian 2009).

Descriptive information on the IdeaStorm population is in Figure 1. Almost 85% (Figure 1: 3,589/4,285) of all ideators only offered an idea on a single occasion (note that an individual can submit more than one idea during the same day). Consistent with H1, Dell implemented 11.9% (Figure 1: 110/923) of the ideas from serial ideators with one or two implemented ideas versus only 7.0% (Figure 1: 95/1,356) of the ideas from serial ideators with more than two implemented ideas (z = 4.02; p < 0.00). Furthermore, in line with H2, about 23% of the ideas proposed by serial ideators with more than two implemented ideas were in new categories (as compared to 67% of the ideas from serial ideators with one or two implemented ideas and 83% of ideas from serial ideators with no implemented ideas).

In agreement with the literature (Simonton 2003, 2004), the chances an individual generates an implemented idea is directly related to their ideation efforts. As indicated in Figure 2, most of the implemented

³ Ninety-four ideas (around 1% of all submitted ideas) already offered by Dell (including 42 people) were dropped from the analysis because they are not novel.

⁴ According to their terms of service, Dell can acquire any intellectual property rights associated with the materials submitted to IdeaStorm for \$1,000. However, there is no evidence that Dell has ever exercised this option.

Figure 1 IdeaStorm Population (February 2007–February 2009)

ideas are proposed by serial ideators—only 4% of the one-time ideators in IdeaStorm had their idea implemented, and over 15% of serial ideators (who had an average of over six ideas per individual) had at least one idea eventually implemented (z = 11.46; p < 11.46

0.00). Importantly, serial ideators do not seem to be motivated by an early success (e.g., only about 6% of serial ideators had their first or second idea implemented, and less than half of these individuals proposed a subsequent idea after one of their ideas was

Figure 2 Ideator Productivity

Figure 3 Number of Ideas over Time in IdeaStorm

peak of almost 1,200 ideas during the first month, the

implemented). Ideators that submit more than one idea in the same day also are significantly more likely to generate an idea that Dell finds valuable enough to implement (Figure 2). As suggested by Figure 2, ideation efforts and community participation seem to go hand in hand—serial ideators and ideators with multiple submission days are also more likely to comment on others' ideas. Furthermore, active community participation via commenting seems to be associated with serial ideators rather than ideators with an implemented idea (54% of serial ideators with an implemented idea, and 47% of serial ideators with no implemented ideas, commented on at least one idea, whereas only 27% of one-time ideators with an implemented idea, and 22% of one-time ideators with no implemented ideas, commented on at least one idea).

Monthly counts of proposed ideas are shown in Figure 3. During the first few weeks after the website was unveiled, ideas poured into IdeaStorm. From a

number of suggested ideas rapidly declined over the next six months, eventually steadying at a constant level. As shown in Figure 4, the number of individuals proposing ideas exhibits a similar exponentially declining time pattern. Figure 4 also suggests that a large fraction of the ideas in any month are generated by new members. The reason for this is that most people offer just one idea (although one person suggested more than 250 ideas).

Monthly counts of proposed ideas that were implemented are also shown in Figure 3. Not surprisingly, the number of implemented ideas is closely related to the total number of submitted ideas. As a result, the monthly proportion of implemented ideas is relatively constant over time. Although few consumers propose more than one idea that is implemented (although one person did suggest more than 25 ideas that were eventually implemented), the majority of individuals (almost 95%) never propose an idea that Dell

Figure 4 Number of Ideators over Time in IdeaStorm

Figure 5 Cumulative Number of Ideas over Time in IdeaStorm

found valuable enough to implement during this twoyear period. Over one-third of the implemented ideas from one-time ideators were submitted in the first month after IdeaStorm was initiated (less than 10% of the implemented ideas from serial ideators were proposed in the initial month).

Finally, Figure 5 confirms that the majority of implemented ideas come from serial ideators. During the first few months after IdeaStorm began operations, many ideators offered a single idea that was implemented by Dell. But after six months, the number of implemented ideas suggested by serial ideators was double those by one-time ideators.

5. The Empirical Study

In this section, the hypotheses developed earlier are formally examined. To do this, an unbalanced panel data set was constructed based on two years of daily⁵ IdeaStorm data at the individual level (February 2007–February 2009). Here, observations are only included in the estimation sample if an individual i proposed an idea not already offered by Dell in day t. Definitions for all the variables are in Table 2.

5.1. Measures

5.1.1. Dependent Variables. Because H1 and H3 concern an individual's likelihood of proposing an implemented idea, an appropriate dependent measure to test these hypotheses is y_{it} , a binary⁶ variable

where a value of one indicates that individual i proposed an idea in day t that was eventually implemented (otherwise zero), i.e., $y_{it} = 1$ if individual iproposed an implemented idea in day t. H2 and H4 involve an individual's likelihood of proposing diverse ideas (ideas that differ from their previous implemented ideas). In this case, the dependent variable analyzed is a count (that takes on positive integer values) y_{it} , defined to be the number of ideas proposed by individual i in day t that are not in the same categories as their prior implemented ideas. Importantly, both of these dependent measures are (1) publicly available from the IdeaStorm website, (2) objective (they do not rely on subjective assessments), and (3) consistent with the related literature (Ward 1994, Dugosh et al. 2000, Nijstad et al. 2002, Smith 2003, Audia and Goncalo 2007).

5.1.2. Past Success. The measure of past success in this research is based on the cumulative number of implemented ideas proposed by individual i before day t. In practice, however, it can take some time after an idea was initially submitted to decide if it merits implementation. Updates posted as comments (which are dated) are used to determine the specific date when an idea was implemented. For example, on May 29, 2008, jervis961 proposed an idea titled "Don't put the Dell logo upside down on the Mini Inspiron" (it seems that the earlier logo on the cover looked upside down when viewed by someone using the laptop). However, it was not until September 4, 2008, that vida_k (the new Dell IdeaStorm manager at the time) posted a comment "Changed status to **IMPLEMENTED**" under this idea. In this case, past success in generating implemented ideas (defined as the cumulative number of implemented ideas proposed by individual i that were known to be implemented before day t) is constructed based on implementation dates, not submission dates. As the previously

⁵ Prior studies also have aggregated Internet activity data to the daily level (Park and Fader 2004).

⁶ In less than 0.2% of all observations, an individual proposed more than one implemented idea in the same day (eight observations had two and two observations had three implemented ideas). For the IdeaStorm data, count model estimation results parallel those of the logit model to be discussed.

Table 2 Variable Definitions and Summary Statistics for Serial Ideators

Variable	Definition	μ	σ	Min	Max
Implemented ideas	=1 if individual <i>i</i> proposed an idea in day <i>t</i> that was eventually implemented (0 otherwise)	0.06	0.23	0	1
Number of proposed ideas not in already implemented categories	Number of ideas proposed by individual <i>i</i> in day <i>t</i> that are not in the same categories as their prior implemented ideas	1.73	1.10	0	10
Past success in generating implemented ideas	Cumulative number of implemented ideas proposed by individual i that were known to be implemented before day t	0.74	2.43	0	27
Diversity of past commenting activity	$-\sum_{j} p_{j} \ln(p_{j})$, where p_{j} is the proportion of others' ideas in category j individual i commented on before day t	1.67	1.11	0	3.04
Age	Time in the IdeaStorm community of individual i at day t (days)	123.43	167.98	0	739
Diversity of past ideas	$-\sum_{j} p_{j} \ln(p_{j})$, where p_{j} is the proportion of (own) ideas in category j individual i proposed before day t	1.64	0.84	0	2.95
Past experience in generating ideas	Cumulative number of ideas generated by individual <i>i</i> before day <i>t</i>	28.58	51.37	1	252
Ideator with ≤ 2 implemented ideas	=1 if individual i had a total of \leq 2 implemented ideas; 0 otherwise	0.75	0.44	0	1
Ideator with > 2 implemented ideas	=1 if individual i had a total of $>$ 2 implemented ideas; 0 otherwise	0.25	0.44	0	1

Notes. N = 3,498. Includes 696 serial ideators; see Figures 1 and 2.

proposed ideas are filtered, there is a slight upward trend over time in the number of reported ideas that were implemented—the mean time between submission and reported implementation is just over six months.

Because the measure of success in this study is determined by the company (i.e., ideas they implement), an alternative explanation for H1 is that Dell "spreads the love around" by systematically ensuring that any individual does not have multiple implemented ideas, no matter the quality of the proposed ideas. Although this possibility cannot be ruled out with the available data, there are two main reasons against this argument. First, it is clearly not in Dell's best interest to do this because of the implementation and opportunity costs involved. Second, there is no evidence that Dell does this, especially because Idea-Storm is an important input into their new product development process.⁷

5.1.3. Past Commenting Activity. Idea exchange within the IdeaStorm community is measured based on an individual's previous activity in commenting on the ideas of other community members. Like ideas, comments are tracked by commenter and date. Across all the categories in which they commented on others' ideas, almost 75% of the time ideators made a comment in a category before submitting their first idea in that category. This is consistent with the notion that commenting activity generally precedes ideation efforts across categories. To construct *diversity of past commenting activity* (defined using an entropy measure over the idea categories: $-\sum_j p_j \ln(p_j)$, where p_j is the proportion of others' ideas in category j individual i

commented on before day *t*; Harrison and Klein 2007), comment dates were compared with dates of submitted ideas.

Control Variables. Several variables to control for possible effects due to other individual or situational factors are also included in the analysis (see Table 2). To control for the possibility that success is simply because of greater cumulative productivity (Simonton 2003, 2004), prior experience in generating ideas (defined as the cumulative number of ideas generated by individual i before day t) is included in the analysis. An individual's age (defined as an individual's time in the IdeaStorm community) is used to control for any effects of aging on output. To control for the possible effects of the diversity of an ideator's own ideas, diversity of past ideas (defined using an entropy measure over an individual's own ideas) is included in the analysis. Category dummies are included to control for any inherent differences in the propensity for implemented ideas across topics, and monthly time dummies are used to account for any other unobserved time-varying effects.

Seminal work in creativity argues that an individual's productivity in generating quality ideas is highly related to their total output (Simonton 2003, 2004). Thus, the absolute number of ideas generated by an individual in a day should be positively related to their likelihood of proposing an implemented idea in that day. The standard approach of including the number of ideas generated by individual i in day t as an exposure constraint⁸ is followed in this study. Across all consumers in the IdeaStorm data set, 495 (over 10%) had two or more ideas in a single day (one person proposed 20 ideas in the same day).

⁷ For example, there is no evidence that the ideas of IdeaStorm top contributors (i.e., individuals listed on the IdeaStorm leaderboard) are systematically discounted (e.g., over 6% of the top 20 contributors' ideas were implemented versus only about 3% of the ideas of everyone else; z=5.53, p<0.00).

⁸ Including this constraint (the coefficient of ln(*Number of ideas*) = 1) controls for possible differences across ideators in sheer quantity of ideas proposed in a single day (Cameron and Trivedi 2009).

⁹ The submission date is assumed to be the same as the date when the idea was conceived. Although it cannot be completely ruled

5.2. Estimation Approach

Panel logit models are used to estimate the effects of the explanatory variables when the dependent variable is binary and panel Poisson¹⁰ models are used when the dependent variable is a count (Cameron and Trivedi 2009). The individual-effects logit model is $\Pr(y_{it} = 1) = \Lambda(\alpha_i + \beta \mathbf{x}_{it} + \gamma z_i)$, where y_{it} is the dependent variable (that takes on the values of 0 or 1) and $\Lambda(w) = e^w/(1 + e^w)$; the individual-effects Poisson model assumes that y_{it} (that takes on values of positive integers) is Poisson distributed with mean $\Lambda(v) = e^v$. Here, x_{it} are all the variables that vary over individuals and time, z_i are the variables that describe the individuals but do not vary over time, and α_i captures all the unobserved differences between ideators that are stable over time and not otherwise accounted for by z_i .

Based on a Hausman type test (see Allison 2005), fixed-effects models are preferred over random effects models for the IdeaStorm data. It is worth noting that the conclusions to be discussed are generally robust to random effects models. Because of the large number of panels (individuals), estimation of the fixed-effects models is accomplished using a conditional maximum likelihood estimator where all timeinvariant individual effects α_i are conditioned out of the model using an individual's total count (Cameron and Trivedi 2009). Importantly, a fixed-effects model removes any unobserved, time-invariant heterogeneity across ideators. Although this approach allows the individual specific effects to be correlated with the independent variables (and thus is less likely to be biased), a conditional fixed-effects model has some important caveats. In particular, ideators that have $y_{it} = 0$ (or 1 for a logit model) for all t are eliminated from the estimation sample because of the conditioning, and time-invariant variables z_i (including the constant) cannot be estimated. In other words, one-time ideators are not included in the estimation sample; instead, serial ideators are used to estimate the Poisson models and serial ideators with one or more implemented ideas are used to estimate the logit models (see Figure 1). It is worth noting that the relatively large number of zeroes (i.e., 85% of the ideas from serial ideators are not implemented) in the data does not lead to a sampling bias in favor of the proposed hypotheses. Instead, the large number of zero observations will make it more difficult to find statistical support for the hypotheses. More important,

out, there is no evidence that individuals actually generate many ideas over the course of several days and then submit them in batches during one day. Active IdeaStorm members log in to the community every day and use automatic activity updates through their IdeaStorm dashboard, RSS, Twitter, and Facebook feeds.

Cramer et al. (1999) report that parameter estimates are quite robust to relatively large imbalances in samples sizes involving zero observations.

5.3. Results

Descriptive statistics for all the variables are in Table 2. Because all of the explanatory variables (with the exception of the diversity measures and dummy variables) are highly skewed, their log transforms are used in the estimations.

Estimation results are in Tables 3 and 4. These models provide very good fits to the IdeaStorm data as indicated by the significant Wald chi-square statistics. In general, the estimated coefficients for the time dummies do not reveal any significant pattern. The results for the category dummies across models suggest that ideas related to the Dell community, website, IdeaStorm, retail operations, printers, Precision workstations and Vostro computers have significantly higher chances of being implemented. Although the details are not shown here, there is no evidence that ideators systematically propose more ideas in these categories over time.

As shown in Table 3 (Model 1), the negative and significant estimated coefficient for past success in generating implemented ideas strongly supports H1 whereas the positive and significant estimated coefficient for diversity of past commenting activity is in line with H3. Model 2 demonstrates that these results are robust to an alternative, stricter definition of implemented ideas. Here, ideas that were implemented very quickly (possibly because the proposed idea was already being considered by Dell or was an error) or very slowly (possibly because the proposed idea involved technology that Dell was already waiting for) are not considered. For example, the bitter sea proposed an idea about pricing differences between systems that was implemented within one month because, as it turns out, there was an error on the website (see Table 1). An idea proposed by hawk473vt in February 2007 that Dell should develop a rugged laptop for marine use was tagged as being implemented more than two years later (see Table 1). In this case, however, Dell had already signaled their intentions of developing a rugged product line by introducing a semi-rugged laptop (ATG D620) in January 2007, which was eventually followed by their XFR product line (that exceeds military standards) in 2008 and 2009. Trimmed implemented ideas, therefore, only include implemented ideas with implementation times of between 30 days and one year.

¹¹ Only information after February 2007 (see Figure 3) was also considered in a separate analysis not reported here. Not surprisingly, very similar conclusions to those that will be discussed in this section are obtained.

¹⁰ Panel Poisson models generally provide a more stable fit to the IdeaStorm data than panel negative binomial models.

Table 3 Panel Logistic Fixed-Effects Regression Results for Implemented Ideas

Variables	Model 1	Model 2 (Trimmed)	Model 3
Explanatory variables			_
In(Past success in generating implemented ideas) × Ideator with ≤2 implemented ideas × Ideator with >2 implemented ideas	-1.08** (0.36)	-1.36** (0.51)	-4.81** (1.62) -1.00** (0.37)
Diversity of past commenting activity × Ideator with ≤2 implemented ideas × Ideator with >2 implemented ideas	0.69* (0.30)	0.85* (0.40)	0.66* (0.31) -0.09 (0.45)
Controls	0.40** (0.45)	0.04 (0.10)	0.47** (0.45)
In(Age) Diversity of past ideas	-0.49** (0.15) -0.53 (0.44)	-0.34 (0.19) -0.72 (0.58)	-0.47** (0.15) -0.28 (0.45)
In(Past experience in generating ideas)	0.42 (0.35)	0.58 (0.45)	0.47 (0.35)
Time dummies Category dummies	Included Included	Included Included	Included Included
Log-likelihood	-289.40	-177.06	-284.36
χ^2 (df)	152.68** (61)	103.59** (61)	162.76** (63)
N	1,539ª	1,354 ^b	1,539ª

Note. Standard errors are in parentheses.

Additional robustness analyses are also shown in Table 3 (Model 3). Here, estimation results for subsamples of ideators with few and many implemented ideas are reported. To do this, past success in generating implemented ideas and diversity of past commenting activity are multiplied by dummy variables for whether the individual had ≤ 2 or > 2implemented ideas (see Table 2). Strong support for H1 is again found, indicating that the detrimental effects of past success are not only observed for serial ideators with many implemented ideas but also for those with relatively few implemented ideas. These results suggest that the negative effects of past success are not simply due to the fact that many ideas are not implemented. Interestingly, strong support for H3 only comes from serial ideators with few implemented ideas. The reason for this seems to be that IdeaStorm members with a lot of past success already have a relatively high diversity of commenting activity and thus there is little variance on this measure for them (the diversity measure of ideators with > 2implemented ideas is almost twice as large as that of ideators with < 2 implemented ideas; t = 26.27, p < 0.00). This is consistent with the significantly lower estimated coefficient for the effects of past success for serial ideators with many implemented ideas (Wald $\chi^2 = 5.69$; p < 0.02), i.e., the negative effects of past success are somewhat mitigated for serial ideators who already are engaged in diverse commenting activity.

As shown in Table 4 (Model 1), the negative and significant estimated coefficient for past success in generating implemented ideas strongly supports H2. This result in consistent with Ward's (1994) structured

imagination theory that ideators in an ongoing crowdsourcing community tend to fixate on their past success by generating less diverse ideas that are similar to their previous implemented ideas. Model 2 demonstrates that these results are robust to an alternative dependent measure involving ideas in any new category for the individual (defined to be the number of ideas proposed by individual *i* in day *t* that are in new categories for them, i.e., this is their first idea in that category).

There is no support for H4 because of the insignificant coefficient estimates for diversity of past commenting activity in Table 4 (Models 1 and 2). This result suggests that serial ideators with diverse commenting activity do not in turn propose more diverse idea themselves. A possible reason for this finding comes from a study of "deep exploration" during brainstorming by Rietzschel et al. (2007). Rather than increasing the breadth (i.e., diversity) of idea generation, past commenting activity may instead be related to increased depth of idea generation in relatively few categories and thus should lead to productivity gains in the number of ideas generated (see also Dugosh et al. 2000, Nijstad et al. 2002). This possibility is explored by estimating the relationship between the explanatory variables and a dependent variable involving the number of additional ideas proposed by individual i in day t. As shown in Table 4 (Model 3), the coefficient estimate for *diversity of com*menting activity is positive and significant. Thus, there is strong evidence that serial ideators with diverse commenting activity propose more ideas, some of which are eventually implemented by Dell.

^aIncludes 102 serial ideators with >0 implemented ideas and >0 ideas not implemented; see Figures 1 and 2.

blncludes 65 serial ideators with >0 implemented ideas and >0 ideas not implemented; see Figures 1 and 2.

^{*}Significant at the 0.05 level (two-tailed); **significant at the 0.01 level (two-tailed).

Table 4 Panel Poisson Fixed-Effects Regression Results for Diverse Ideas

Variables	Model 1 (Implemented ideas)	Model 2 (Ideas)	Model 3 (Additional ideas)	
Explanatory variables				
In(Past success in generating implemented ideas)	-0.34** (0.06)	-0.60** (0.14)	0.09 (0.13)	
Diversity of past commenting activity	-0.03 (0.03)	-0.01 (0.04)	0.29** (0.10)	
Controls	,	, ,	,	
In(<i>Age</i>)	-0.01 (0.02)	0.04 (0.02)	-0.09 (0.06)	
Diversity of past ideas	-0.15*(0.06)	-0.38**(0.08)	-0.12 (0.16)	
In(Past experience in generating ideas)	0.24** (0.05)	-0.15 (0.08)	-0.09 (0.12)	
Time dummies	Included	Included	Included	
Category dummies	Included	Included	Included	
Log-Likelihood	-3,345.41	-2,178.64	-1,140.28	
χ^2 (df)	361.15** (61)	678.21** (61)	1,015.07** (61)	
N	3,498 ^a	3,498 ^a	2,349 ^b	

Note. Standard errors are in parentheses.

6. Discussion

In this research, the nature of a crowdsourced idea generation process over time is empirically investigated. Two years of panel data involving several thousand ideas and individuals are studied in the context of Dell's IdeaStorm ongoing crowdsourcing community. Most consumers only propose a single idea and few of these are ideas the organization wants to implement (Figure 1). Instead, serial ideators account for the largest share of implemented ideas (Figures 2 and 5). Among serial ideators, past success in generating implemented ideas is found to have detrimental effects on their subsequent likelihood of proposing another idea the organization eventually implements (Table 3). Past success is also shown to be negatively related to the number of diverse ideas proposed (Table 4). Thus, as serial ideators with past success attempt to come up with ideas that will excite Dell, they instead end up proposing less diverse ideas that are similar to their ideas that were already implemented. In addition, the diversity of commenting activity on others' ideas is found to have positive effects on an individual's subsequent likelihood of generating another implemented idea, but is not related to the number of diverse ideas proposed (Table 4). Instead, commenting activity seems to be related to an increase in the quantity of ideas proposed (Table 4).

These findings are in stark contrast to a plausible alternate perspective involving individual differences. Specifically, some ideators may simply be better at generating quality ideas (e.g., Terwiesch and Ulrich 2009, Giotra et al. 2010), suggesting that past success should be *positively* related to an individual's chances of proposing another implemented idea. This perspective would also be consistent with the empirical literature showing that past cumulative

knowledge is positively related to creativity (Weisberg 1999, Simonton 2004). For IdeaStorm, a Web-based crowdsourcing community where individuals generate ideas repeatedly over time, this is not the case. Instead, there is strong empirical evidence that past success is *negatively* related to the likelihood that an ideator proposes another quality idea. This finding is consistent with experimental research on cognitive fixation (Jansson and Smith 1991, Burroughs et al. 2008)—people tend to fixate on the principles and features of their prior ideas that have been implemented, thus generating less diverse ideas (i.e., they propose ideas that are similar to those that have already been implemented).

The panel analyses in the present study extend the existing literature by considering the key individuallevel factors associated with idea generation in a crowdsourcing community. In particular, an individual's past success and past commenting activity are shown to directly relate to their chances of proposing another successfully implemented idea. In contrast to the research on the patenting activity of inventors (Audia and Goncalo 2007, Conti et al. 2010), the present study empirically demonstrates that individuals in the crowd are unlikely to generate additional implemented ideas once some of their ideas are implemented. Methodological and/or contextual differences between studies may account for these distinct results. Methodologically, research involving patents only considers granted patents—i.e., these studies ignore patent applications that were never granted, 12 meaning that they do not explain the differences between successful and unsuccessful patenting activity. Contextually,

^aIncludes 696 serial ideators; see Figures 1 and 2.

bIncludes 286 serial ideators with >0 additional proposed ideas; see Figures 1 and 2.

^{*}Significant at the 0.05 level (two-tailed); **significant at the 0.01 level (two-tailed).

¹² Audia and Goncalo (2007) note that up to half of all patent applications are rejected.

Figure 6 Proportion of New IdeaStorm Members That Become Serial Ideators

professionals (employees) are expected (and often rewarded) to continually generate patents as part of their job whereas ideas are voluntarily contributed in crowdsourcing communities. In the case of patenting therefore, organizational learning theories suggest that past success will be positively related to future productivity (March 1991).

6.1. Implications

This research involving an analysis of individual-level ideation efforts is a first step toward addressing the key question of whether the supply of quality ideas can be sustained by an ongoing crowdsouring community over time. In the case of Dell's IdeaStorm, the majority of implemented ideas come from serial ideators. As suggested by the declining proportion of new IdeaStorm members that become serial ideators shown in Figure 6, Dell's future supply of quality ideas may be drying up. Currently, management closely tracks the site's activity (number of ideas, comments, votes), but not member statistics. As suggested by Figure 4, Dell should be monitoring the total number of individuals proposing an idea as well as the total number of individuals proposing an idea for the first time. Similar values for these metrics indicate that new members are not becoming serial ideators, which will ultimately lead to a reduction in the number of ideas offered by the crowd that the organization finds valuable enough to implement.

Furthermore, as their ideas are implemented and externally recognized, serial ideators become less likely to subsequently propose further ideas the organization wants to implement. Ideators with past success tend to propose less diverse ideas because they focus on the general aspects of their previously implemented ideas. This suggests that an organization like Dell should attempt to (1) entice new members into

the community who are unencumbered by past success, and (2) convert these ideators into serial ideators. Even then, serial ideators tend to only generate implemented ideas over a relatively short period of time.

At the same time, however, the diversity of a serial ideator's commenting activity is found to mitigate the negative effects of past success (i.e., diversity of past commenting activity is positively related to the likelihood of proposing an implemented idea). Thus, commenting activity by serial ideators (particularly across categories) should be encouraged and made as easy as possible because it is associated with the generation of ideas the organization finds valuable enough to implement. More generally, it is known that successful online communities have active members that continually make contributions (Tedjamulia et al. 2005). Ongoing research suggests that the engagement of community members depends on individual personality characteristics (e.g., intrinsic motivation, personal goals, need to achieve, group identity, personal responsibility) as well as feedback and reinforcers such as financial and social rewards (Tedjamulia et al. 2005). For example, individuals that are intrinsically motivated and passionate about the organization and community are most likely to propose ideas and comment on others' ideas. In IdeaStorm, this seems to be serial ideators with many implemented ideas as they are also actively engaged in commenting on others' ideas. Research also finds that individuals who go on to become long-lived, highly engaged members experience significantly better treatment (e.g., they receive thoughtful comments on their initial ideas) from the moment they join the community (Backstrom et al. 2008). Thus, to ensure that there is active and diverse participation, organizations should pay close attention to the how the community is structured and managed.

Although there are no sure-fire ways to overcome fixation effects (Smith 2003), published research suggests that the use of analogies can help (Dahl and Moreau 2002, Linsey et al. 2010, Cardoso and Badke-Schaub 2011). Various engineering related design-by-analogy methods are reviewed by Linsey et al. (2010). Interestingly, there is also some evidence that fixation can be reduced by simply instructing individuals to not focus on prior examples (Chrysikou and Weisberg 2005). Thus, ongoing crowdsourcing communities might introduce explicit instructions for ideators to use analogies and to not focus on their prior ideas that were implemented.

Finally, it is interesting to note that Dell has recently introduced Storm Sessions to its IdeaStorm community—a place where community members can participate in "hyper-focused idea-generation sessions." These brainstorming sessions center on a specific topic (question) and last for a relatively short amount of time (e.g., a couple of weeks). Although only a dozen or so sessions have been completed to date and participation has been relatively low, these sessions have the potential to reduce fixation effects by getting ideators to shift their attention away from their own previously implemented ideas.

6.2. Limitations and Future Research

Although Dell's IdeaStorm represents the gold standard for new product idea crowdsourcing applications, the generalizability of the specific results from this study may be limited. Future research might, therefore, attempt to confirm the roles of past success and commenting activity found in this study in other settings besides computer hardware and software. The present study is also limited to the publicly available data on the IdeaStorm website. More refined measures of community activity (e.g., comment and vote valence), idea creativity (e.g., perceptions of novelty, usefulness, and feasibility), and idea diversity (e.g., based on the idea's description and content) might lead to other hypotheses and, consequently, a deeper understanding of the nature of crowdsourced ideation over time.

The IdeaStorm data only allow the effects of an individual's own implemented ideas to be studied. It would be very interesting to also consider the possible effects of others' implemented ideas (which would necessitate a measure of whether ideators attend to others' implemented ideas). Do ideators also fixate on the general characteristics of others' implemented ideas, leading to less valuable ideas? The theory of cognitive fixation and structured imagination has not so far considered the possible effects of different exemplar sources.

In all likelihood, commenting activity by itself is a conservative measure of community member interactions. Although the potential differences between simply reading someone else's idea versus also commenting on that idea could not be examined here, the brainstorming literature indicates that innovation outcomes are improved when individuals directly attend to these other stimulus ideas (Dugosh et al. 2000, Dugosh and Paulus 2005, Kohn et al. 2011). Future research might, therefore, examine whether other community activities like voting can also mitigate the negative effects of fixation on prior success. Recent experimental research also confirms that building off the ideas of others can be beneficial in the idea generation process (Kohn et al. 2011). Thus, it would be interesting to see if collaboration during the ideation process is helpful in repeatedly generating quality ideas over time.

The marketing literature has a long-standing interest in methods for improving idea generation (e.g., Goldenberg et al. 2001, Toubia 2006) but is generally silent on "best" approaches for idea selection. From the present study, it is clear that the crowd can generate ideas an organization finds valuable enough to implement. However, much less is known about whether consumers are effective in selecting ideas that can be implemented (West 2002, Rietzschel et al. 2010). And, next to nothing is known about idea selection in crowdsourcing applications where ideas are publicly submitted and rated by consumers over time.

Finally, improving our understanding of reward and feedback mechanisms in ongoing crowdsourcing communities presents an excellent opportunity for future research. For example, several crowdsourcing systems, such as Threadless and Innocentive, offer monetary rewards for innovative ideas, yet report that very few individuals win more than once (Jeppesen and Lakhani 2010). At the same time, thousands of software programmers willingly contribute their time to various open source software projects for no tangible rewards (Shah 2006). Future research might analyze secondary data involving actual crowdsourcing applications and/or construct experimental scenarios to determine the proper rewards and feedback to maintain (or increase) the crowd's output quantity and quality over time (e.g., Toubia 2006).

6.3. Conclusions

Organizations are very interested in the crowdsourcing model because consumers presumably have specialized knowledge about their own problems with existing products, and they are intrinsically motivated to freely contribute their ideas for new products and services. Many companies and entrepreneurs have rushed to develop and implement crowdsourcing communities, even though very little is known about their effectiveness. Most crowdsourcing communities have not been in existence very long, so there is no established history of successes and failures.

This empirical study of Dell's IdeaStorm community reveals that serial ideators are more likely than consumers with only one idea to generate an idea the organization finds valuable enough to implement but are unlikely to repeat their early success once some of their ideas are implemented. The negative effects of past success, however, are somewhat mitigated for individuals that have diverse commenting activity. These findings highlight some of the difficulties in maintaining an ongoing supply of quality ideas from the crowd over time and emphasize the need for more research on crowdsourcing communities.

Acknowledgments

Comments from participants in research workshops at the University of North Carolina at Chapel Hill, the Wharton School at the University of Pennsylvania, North Carolina State University, University of South Carolina, Yale University, Santa Clara University, Temple University, Harvard University, and the University of Southern California helped to improve this research during its evolution. The author thanks Teresa Amabile, Federico Rossi, Raffaele Conti, Tarun Kushwaha, Susan Cohen, Katherine Barringer, and the journal review team for their very helpful comments on earlier drafts. The author also thanks Junhee Kim for his research assistance. The financial support of the Marketing Science Institute and Wharton Interactive Media Initiative is greatly appreciated, as well as the Richard H. Jenrette Business Education Fund.

References

- Allison PD (2005) Fixed Effects Regression Methods for Longitudinal Data Using SAS (SAS Institute, Cary, NC).
- Amabile T (1988) A model of creativity and innovation in organizations. Staw B, Cummings L, eds. *Research in Organizational Behavior*, Vol. 10 (JAI Press, Greenwich, CT), 123–167.
- Amabile T (1996) Creativity in Context (Westview Press, Boulder, CO).
- Andrew JP, Manget J, Michael DC, Taylor A, Zablit H (2010) Innovation 2010: A return to prominence and the emergence of a new world order. Report, Boston Consulting Group, Bethesda, MD. Accessed July 11, 2010, http://www.bcg.com/ documents/file42620.pdf.
- Audia P, Goncalo J (2007) Past success and creativity over time: A study of inventors in the hard disk drive industry. *Management Sci.* 53(1):1–15.
- Backstrom L, Kumar R, Marlow C, Novak J, Tomkins A (2008) Preferential behavior in online groups. *Proc. Internat. Conf. Web Search and Web Data Mining* (ACM, New York), 117–128.
- Birch H, Rabinowitz H (1951) The negative effect of previous experience on productive thinking. *J. Experiment. Psych.* 41(2):121–125.
- Bjelland O, Wood R (2008) An inside view of IBM's "Innovation Jam." Sloan Management Rev. 50(1):32–40.
- Bostwick W (2010) Starbucks sponsors coffee-cup redesign contest. *New York Times* (March 16), http://www.fastcompany.com/1585666/starbucks-sponsors-coffee-cup-redesign-contest.
- Boudreau K, Lacetera N, Lakhani K (2011) Incentives and uncertainty in innovation contests: An empirical analysis. *Management Sci.* 57(5):843–863.

- Boutin P (2006) Crowdsourcing: Consumers as creators. *Business Week* (July 13), http://www.businessweek.com/innovate/content/jul2006/id20060713_755844.htm.
- Bullinger A, Neyer A, Rass M, Moeslein K (2010) Community-based innovation contests: Where competition meets cooperation. *Creativity and Innovation Management* 19(3):290–303.
- Burroughs J, Moreau CP, Mick D (2008) Toward a psychology of consumer creativity. Haugtvedt C, Herr P, Kardes F, eds. *Handbook of Consumer Psychology* (Erlbaum, New York), 1011–1038.
- Cameron A, Trivedi P (2009) Microeconometrics: Methods and Applications (Cambridge University Press, New York).
- Cardoso C, Badke-Schaub P (2011) Editorial—Fixation or inspiration: Creative problem solving in design. *J. Creative Behav.* 45(2):77–82.
- Chrysikou E, Weisberg R (2005) Following the wrong foot-steps: Fixation effects of pictorial examples in a design problem-solving task. *J. Experiment. Psych.: Learn., Memory and Cognition* 31(5):1134–1148.
- Conti R, Gambardella A, Mariani M (2010) Learning to be Edison? Individual inventive experience and breakthrough inventions. Presentation, DRUID Summer Conference, June 16–18, Imperial College London Business School, London. Accessed June 10, 2011, http://www2.druid.dk/conferences/viewpaper.php?id=501970&cf=43.
- Cramer M, Franses P, Slagter E (1999) Censored regression analysis in large samples with many zero observations. Research Report 9939/A, Econometric Institute, Rotterdam, The Netherlands. Accessed October 7, 2011, http://repub.eur.nl/res/pub/1608/feweco19991109155424.pdf.
- Czarnitzki D, Hussinger K, Schneider C (2011) Wacky patents meet economic indicators. *Econom. Lett.* 113(2):131–134.
- Dahl A, Lawrence J, Pierce J (2011) Building an innovation community. Res.-Tech. Management 54(5):19–27.
- Dahl D, Moreau P (2002) The influence and value of analogical thinking during new product ideation. *J. Marketing Res.* 39(1):47–60.
- Dell_Admin1 (2007) Who makes decisions about ideas on Idea-Storm? How does is all work? Accessed March 12, 2010, http:// www.ideastorm.com/ideaView?id=0877000000008o2AAA.
- Di Gangi P, Wasko M (2009) Steal my idea! organizational adoption of user innovations from a user innovation community: A case study of Dell IdeaStorm. *Decision Support Systems* 48(1): 303–312.
- Di Gangi P, Wasko M, Hooker R (2010) Getting customers' ideas to work for you: Learning from Dell how to succeed with online user innovation communities. *MIS Quart. Executive* 9(4):213–228.
- Dugosh K, Paulus P (2005) Cognitive and social comparison processes in brainstorming. *J. Experiment. Soc. Psych.* 41(3):313–320.
- Dugosh K, Paulus P, Roland E, Yang H (2000) Cognitive stimulation in brainstorming. *J. Personality Soc. Psych.* 79(5):722–735.
- Duncker K (1945) On problem solving. *Psych. Monographs* 58(5):1–110.
- Elliott S (2010) Starbucks hopes there is no Java Jive from contest. *New York Times* (June 17), http://www.mediadecoder.blogs.nytimes.com/2010/06/17/starbucks-hopes-there-is-no-java-jive-from-contest-results/?scp=1&sq=jovoto&st=cse.
- Ernst H, Leptien C, Vitt J (2000) Inventors are not alike: The distribution of patenting output among industrial R&D personnel. *IEEE Trans. Engrg. Management* 47(2):184–199.
- Fleming L, Szigety M (2006) Exploring the tail of creativity: An evolutionary model of breakthrough invention. *Adv. Strategic Management* 23:335–359.
- Franke N, von Hippel E, Schreier M (2006) Finding commercially attractive user innovations: A test of lead-user theory. *J. Product Innovation Management* 23(4):301–315.

- Friedman R, Fishbach S, Forster A, Werth L (2003) Attentional priming effects on creativity. *Creativity Res. J.* 15(2/3):277–286.
- Fuller J (2010) Refining virtual co-creation from a consumer perspective. Calif. Management Rev. 52(2):98–122.
- Garrison D, Anderson R, Archer W (2001) Critical thinking, cognitive presence, and computer conferencing in distance education. *Amer. J. Distance Ed.* 15(1):7–23.
- George J (2007) Creativity in organizations. *Acad. Management Ann.* 1(1):439–477.
- German T, Barrett H (2005) Functional fixedness in a technologically sparse culture. *Psych. Sci.* 16(1):1–5.
- Girotra K, Terwiesch C, Ulrich K (2010) Idea generation and the quality of the best idea. *Management Sci.* 56(4):591–605.
- Goldenberg J, Lehmann D, Mazursky D (2001) The idea itself and the circumstances of its emergence as predictors of new product success. *Management Sci.* 47(1):69–84.
- Guilford J (1967) The Nature of Human Intelligence (McGraw-Hill, New York).
- Hargadon A, Sutton R (1997) Technology brokering and innovation in a product design firm. *Admin. Sci. Quart.* 42(4):716–749.
- Harrison D, Klein K (2007) What's the difference? Diversity constructs as separation, variety, or disparity in organizations. *Acad. Management Rev.* 32(4):1199–1228.
- Hauser J, Tellis G, Griffin A (2006) Research on innovation: A review and agenda for marketing science. *Marketing Sci.* 25(6):687–717.
- Hinsz V, Tindale R, Vollrath D (1997) The emerging conceptualization of groups as information processors. *Psych. Bull.* 121(1):43–64.
- Howe J (2008) Crowdsourcing: Why the Power of the Crowd Is Driving the Future of Business (Crown Business, New York).
- Jansson D, Smith S (1991) Design fixation. Design Stud. 12(1):3-11.
- Jaruzelski B, Dehoff K (2010) The global 1000: How the top innovators keep winning. *Strategy* + *Bus.* 61(Winter):1–14.
- Jeppesen L, Lakhani K (2010) Marginality and problem-solving effectiveness in broadcast search. *Organ. Sci.* 21(5):1016–1033.
- Jervis C (2010) Personal email communication with the author on May 3.
- Jouret G (2009) Inside Cisco's search for the next big idea. *Harvard Bus. Rev.* 87(9):43–45.
- Kavadias S, Sommer S (2009) The effects of problem structure and team diversity on brainstorming effectiveness. *Management Sci.* 55(1):1899–1913.
- Killian V (2009) "IdeaStorm," presentation during PDMA Carolinas panel on "What the crowd can do for you: Crowdsourcing and wisdom of crowds," April 23.
- Kohn N, Smith S (2011) Collaborative fixation: Effects of others' ideas on brainstorming. *Appl. Cognitive Psych.* 25(3):359–371.
- Kohn N, Paulus P, Choi Y (2011) Building on the ideas of others: An examination of the idea combination process. *J. Experiment. Soc. Psych.* 47(3):554–561.
- Kornish L, Ulrich K (2011) Opportunity spaces in innovation: Empirical analysis of large samples of ideas. *Management Sci.* 57(1):107–128.
- Krishnan V, Ulrich K (2001) Product development decisions: A review of the literature. *Management Sci.* 47(1):1–21.
- Levitt T (1963) Creativity is not enough. *Harvard Bus. Rev.* 41(3):72–83.
- Linsey J, Teng I, Fu K, Cagan J, Wood K, Schuun C (2010) A study of design fixation, its mitigation and perception in engineering design faculty. J. Mechanical Design 132(4):1–12.
- Lindsley D, Brass D, Thomas J (1995) Efficacy-performing spirals: A multi-level analysis. Acad. Management Rev. 20(3):645–678.
- Lotka A (1926) The frequency distribution of scientific productivity. J. Washington Acad. Sci. 16(12):317–323.

- Magnusson P (2009) Exploring the contributions of involving ordinary users in ideation of technology-based services. *J. Product Innovation Management* 26(5):578–593.
- Maier N (1931) Reasoning in humans. J. Comparative Psych. 12(2):181–194.
- March J (1991) Exploration and exploitation in organizational learning. *Organ. Sci.* 2(1):71–87.
- Marsh R, Landau J (1995) Item availability in cryptomnesia: Assessing its role in two paradigms of unconscious plagarism. J. Experiment. Psych.: Learn., Memory and Cognition 21(6):1568–1582.
- Marsh R, Landau JJ, Hicks J (1996) How examples may (and may not) constrain creativity. *Memory and Cognition* 24(3):669–680.
- Marsh R, Ward T, Landau J (1999) The inadvertent use of prior knowledge in a generative cognitive task. *Memory and Cognition* 27(1):94–105.
- Menchaca L (2007) Dell offers three consumer systems with Ubuntu 7.04. *Direct2Dell* (May 24), http://en.community.dell.com/dell-blogs/Direct2Dell/b/direct2dell/archive/2007/05/24/15994 .aspx.
- Mumford M, Gustafson S (1988) Creativity syndrome: Integration, application, and innovation. *Psych. Bull.* 103(1):27–43.
- Nijstad B, Stroebe W (2006) How the group affects the mind: A cognitive model of idea generation in groups. *Personality Soc. Psych. Rev.* 20(3):186–213.
- Nijstad B, Stroebe W, Lodewijkx H (2002) Cognitive stimulation and interference in groups: Exposure effects in an idea generation task. *J. Experiment. Soc. Psych.* 38(6):535–544.
- Osborn A (1953) Applied Imagination: Principles and Procedures of Creative Thinking (Charles Scribner's Sons, New York).
- Park Y, Fader P (2004) Modeling browsing behavior at multiple websites. *Marketing Sci.* 23(3):280–303.
- Perry-Smith J (2006) Social yet creative: The role of social relationships in facilitating individual creativity. *Acad. Management J.* 49(1):85–101.
- Perry-Smith J, Shalley C (2003) The social side of creativity: A static and dynamic social network perspective. *Acad. Management Rev.* 28(1):89–106.
- Perttula M, Liikkanen L (2006) Exposure effects in design idea generation: Unconscious conformity or a product of sampling probability? *NordDesign* (August 16–18), http://i.org.helsinki.fi/lassial/files/publications/071209-Exposure_effects_in_design.pdf.
- Perttula M, Sipila P (2007) The idea exposure paradigm in design idea generation. *J. Engrg. Design* 18(1):93–102.
- Poetz M, Schreier M (2012) The value of crowdsourcing: Can users really compete with professionals in generating new product ideas? *J. Product Innovation Management* 29(2):245–256.
- Preece J, Nonnecke B, Andrews D (2004) The top five reasons for lurking: Improving community experiences for everyone. *Comput. Human Behav.* 20(2):201–233.
- Purcell A, Gero J (1992) Effects of examples on the results of a design activity. *Knowledge-Based Systems* 5(1):82–91.
- Purcell A, Gero J (1996) Design and other types of fixation. *Design Stud.* 17(4):363–383.
- Rietzschel E, Nijstad B, Stroebe W (2007) Relative accessibility of domain knowledge and creativity: The effects of knowledge activation on the quantity and originality of generated ideas. *J. Experiment. Soc. Psych.* 43(6):933–946.
- Rietzschel E, Nijstad B, Stroebe W (2010) The selection of creative ideas after individual idea generation: Choosing between creativity and impact. *British J. Psych.* 101(1):47–68.
- Robinson A, Schroeder D (2005) Big results from small ideas. Indust. Management 47(3). Accessed April 12, 2012, http://www .findarticles.com/p/articles/mi_hb3081/is_3_47/ai_n29202280/.

- Schellens T, Valcke M (2005) Collaborative learning in asynchronous discussion groups: What about the impact on cognitive processing? *Comput. Human Behav.* 21(6):957–975.
- Schulze A, Hoegl M (2008) Organizational knowledge creation and the generation of new product ideas: A behavioral approach. *Res. Policy* 37(10):1742–1750.
- Shalley C, Zhou J, Oldham G (2004) Effects of personal and contextual characteristics on creativity: Where should we go from here? J. Management 30(6):933–958.
- Shah S (2006) Motivation, governance, and the viability of hybrid forms in open source software development. *Management Sci.* 52(7):1000–1014.
- Silverberg G, Verspagen B (2007) The size distribution of innovations revisited: An application of extreme value statistics to citation and value measures of patent significance. *J. Econometrics* 139(2):318–339.
- Silverman R (2011) For bright ideas, ask the staff. Wall Street Journal (October 17), http://www.online.wsj.com/article/SB10001424052970204774604576631063939483984.html.
- Simonton D (2003) Scientific creativity as constrained stochastic behavior: The integration of product, person and process perspectives. *Psych. Bull.* 129(4):475–494.
- Simonton D (2004) Creativity in Science: Chance, Logic, Genius, and Zeitgeist (Cambridge University Press, New York).
- Smith S (2003) The constraining effects of initial ideas. Paulus P, Nijstad B, eds. Group Creativity: Innovation Through Collaboration (Oxford University Press, Oxford, UK), 15–31.
- Smith S, Ward T, Schumacher J (1993) Constraining effects of examples in a creative generation task. *Memory and Cognition* 21(6):837–845.
- Strobe W, Nijstad B, Rietzschel E (2010) Beyond productivity loss in brainstorming groups: The evolution of a question. *Adv. Experiment. Soc. Psych.* 43:157–203.
- Sullivan E (2010) A group effort: More companies are turning to the wisdom of the crowd to find ways to innovate. *Marketing News* (February 28):22–28.

- Tedjamulia S, Dean D, Olsen D, Albrecht C (2005) Motivating content contributions to online communities: Toward a more comprehensive theory. *Proc. 38th Annual Hawaii Internat. Conf. System Sci.* (IEEE Computer Society, Washington, DC).
- Terwiesch C, Ulrich K (2009) Innovation Tournaments: Creating and Selecting Exceptional Opportunities (Harvard University Press, Cambridge, MA).
- Terwiesch C, Xu Y (2008) Innovation contests, open innovation, and multi-agent problem solving. *Management Sci.* 54(9): 1529–1543.
- Torrance E (1966) *The Torrance Tests of Creative Thinking* (Personnel Press, Princeton, NJ).
- Toubia O (2006) Idea generation, creativity, incentives. *Marketing Sci.* 25(5):411–425.
- Vandenbosch B, Saatcioglu A, Fay S (2006) Idea management: A systemic view. *J. Management Stud.* 43(2):259–288.
- von Hippel E (2005) Democratizing Innovation (MIT Press, Cambridge, MA).
- Ward T (1994) Structured imagination: The role of conceptual structure in exemplar generation. *Cognitive Psych.* 27(1):1–40.
- Weiner B (1985) An attributional theory of achievement motivation and emotion. *Psych. Rev.* 92(4):548–573.
- Weisberg R (1999) Creativity and knowledge: A challenge to theories. Sternberg RJ, ed. *Handbook of Creativity* (Cambridge University Press, New York), 226–250.
- Weiss T (2006) The suggestion box 2.0. Forbes (December 12), http://www.forbes.com/2006/12/12/leadership-innovation-software-lead-innovation-cx_tw_1212ideas.html.
- West M (2002) Ideas are ten a penny: It's team implementation not idea generation that counts. *Appl. Psych.: An Internat. Rev.* 51(3):411–424.
- Yang Y, Chen P, Pavlou P (2009) Open innovation: An empirical study of online contests. *Proc. 30th Internat. Conf. Inform Systems* (Association for Information Systems, Altanta).

