Deep Generative Models

Changyou Chen

Department of Computer Science and Engineering Universitpy at Buffalo, SUNY changyou@buffalo.edu

April 16, 2019

A minimax objective function:

$$\min_{\boldsymbol{\theta}_g} \max_{\boldsymbol{\theta}_d} \left[\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log D_{\boldsymbol{\theta}_d}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \log \left(1 - D_{\boldsymbol{\theta}_d}(G_{\boldsymbol{\theta}_g}(\mathbf{z}))\right) \right]$$

- What does an optimal solution of GAN look like?
 - A local minimum/maximum?
 - ▶ Or · · · ·

A minimax objective function:

$$\min_{\boldsymbol{\theta}_g} \max_{\boldsymbol{\theta}_d} \left[\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log D_{\boldsymbol{\theta}_d}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \log \left(1 - D_{\boldsymbol{\theta}_d}(G_{\boldsymbol{\theta}_g}(\mathbf{z}))\right) \right]$$

 The optimal solution for the min-max procedure is a saddle point of the GAN objective.

$$\min_{\boldsymbol{\theta}_g} \max_{\boldsymbol{\theta}_d} \left[\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log D_{\boldsymbol{\theta}_d}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \log \left(1 - D_{\boldsymbol{\theta}_d}(G_{\boldsymbol{\theta}_g}(\mathbf{z})) \right) \right]$$

Training

for number of training iterations do

for k steps do

- ullet Sample minibatch of m noise samples $\{oldsymbol{z}^{(1)},\ldots,oldsymbol{z}^{(m)}\}$ from noise prior $p_g(oldsymbol{z})$.
- Sample minibatch of m examples $\{ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)} \}$ from data generating distribution $p_{\text{data}}(\boldsymbol{x})$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

No best rule for choosing k.

$$\min_{\boldsymbol{\theta}_g} \max_{\boldsymbol{\theta}_d} \left[\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log D_{\boldsymbol{\theta}_d}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \log \left(1 - D_{\boldsymbol{\theta}_d}(G_{\boldsymbol{\theta}_g}(\mathbf{z})) \right) \right]$$

Training

for number of training iterations do

for k steps do

- ullet Sample minibatch of m noise samples $\{oldsymbol{z}^{(1)},\ldots,oldsymbol{z}^{(m)}\}$ from noise prior $p_g(oldsymbol{z})$.
- Sample minibatch of m examples $\{ \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)} \}$ from data generating distribution $p_{\text{data}}(\boldsymbol{x})$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by ascending its stochastic gradient (improved objective):

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))$$

end for

• No best rule for choosing *k*.

A minimax objective function:

$$\min_{\boldsymbol{\theta}_g} \max_{\boldsymbol{\theta}_d} \left[\mathbb{E}_{\mathbf{X} \sim p_{\text{data}}} \log D_{\boldsymbol{\theta}_d}(\mathbf{X}) + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \log \left(1 - D_{\boldsymbol{\theta}_d}(G_{\boldsymbol{\theta}_g}(\mathbf{z}))\right) \right]$$

Which one is the solution?

A minimax objective function:

$$\min_{\boldsymbol{\theta}_g} \max_{\boldsymbol{\theta}_d} \left[\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log D_{\boldsymbol{\theta}_d}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \log \left(1 - D_{\boldsymbol{\theta}_d}(G_{\boldsymbol{\theta}_g}(\mathbf{z}))\right) \right]$$

- Jointly training two networks is challenging, can be unstable:
 - ► Can have many saddle points ⇒ many unstable sub-optima.

A minimax objective function:

$$\min_{\boldsymbol{\theta}_g} \max_{\boldsymbol{\theta}_d} \left[\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log D_{\boldsymbol{\theta}_d}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \log \left(1 - D_{\boldsymbol{\theta}_d}(G_{\boldsymbol{\theta}_g}(\mathbf{z}))\right) \right]$$

- Jointly training two networks is challenging, can be unstable:
 - Can have many saddle points ⇒ many unstable sub-optima.
- Choosing objectives with better loss landscapes helps training, or designing better training algorithms, are active areas of research.

- $D_{\theta_d}(\mathbf{x})$: Discriminator (parameterized by θ_d) takes input as an image \mathbf{x} , and outputs likelihood in [0, 1] to tell if it is a real image or not.
- $G_{\theta_g}(\mathbf{z})$: Generator (parameterized by θ_g) takes input as a random noise \mathbf{z} , and outputs an image.

Denton et al, 2015

GAN: Generated Samples

 Generator and discriminator as MLPs (left); Generator as deconvolutional NN, discriminator as a CNN (right).

Nearest neighbor from training set

GAN: Generated Samples

 Generator and discriminator as MLPs (left); Generator as deconvolutional NN, discriminator as a CNN (right).

Generated samples (CIFAR-10)

Nearest neighbor from training set

 Not great, as the generator and discriminator need to be carefully designed.

Theoretical Properties of GANs

Recap: A Two-Player Game

A minimax objective function:

$$\min_{\boldsymbol{\theta}_g} \max_{\boldsymbol{\theta}_d} \left[\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log D_{\boldsymbol{\theta}_d}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \log \left(1 - D_{\boldsymbol{\theta}_d}(G_{\boldsymbol{\theta}_g}(\mathbf{z}))\right) \right]$$

What is under going in GANs

Distribution matching between data distribution $p_{\text{data}}(\mathbf{x})$ and generator distribution $p_g(x)$.

GAN as Distribution Matching

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution (D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black, dotted line) p_x from those of the generative distribution p_g (G) (green, solid line). The lower horizontal line is the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution p_g on transformed samples. G contracts in regions of high density and expands in regions of low density of p_g . (a) Consider an adversarial pair near convergence: p_g is similar to p_{data} and D is a partially accurate classifier. (b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to $D^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_g(x)}$. (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a point at which both cannot improve because $p_g = p_{\text{data}}$. The discriminator is unable to differentiate between the two distributions, i.e. $D(x) = \frac{1}{2}$.

Objective Reformulation

$$\min_{\boldsymbol{\theta}_g} \max_{\boldsymbol{\theta}_d} \left[\underbrace{\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \log D_{\boldsymbol{\theta}_d}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \log \left(1 - D_{\boldsymbol{\theta}_d}(G_{\boldsymbol{\theta}_g}(\mathbf{z}))\right)}_{V(G,D)} \right]$$

$$\Rightarrow V(G,D) = \int_{\mathbf{x}} p_{\text{data}(\mathbf{x})} \log(D(\mathbf{x})) d\mathbf{x} + \int_{\mathbf{z}} p(\mathbf{z}) \log(1 - D(G(\mathbf{z}))) d\mathbf{z}$$

$$\stackrel{\text{change of r.v.}}{\Rightarrow} V(G,D) = \int_{\mathbf{x}} \left(p_{\text{data}(\mathbf{x})} \log(D(\mathbf{x})) + p_g(\mathbf{x}) \log(1 - D(\mathbf{x})) \right) d\mathbf{x}$$

Underlying assumption

The mapping G_{θ_q} is invertible:

Not generally satisfied in DNN, but just use in practice.

Global Optimality of p_q

$$V(G, D) = \int_{\mathbf{x}} \left(\rho_{\mathsf{data}(\mathbf{x})} \log(D(\mathbf{x})) + \rho_{g}(\mathbf{x}) \log(1 - D(\mathbf{x})) \right) d\mathbf{x}$$

Theorem

For G fixed, the optimal discriminator is

$$D_G^*(\mathbf{x}) = rac{
ho_{data}(\mathbf{x})}{
ho_{data}(\mathbf{x}) +
ho_g(\mathbf{x})}$$

Objective Reformulation

$$V(G, D) = \int_{\mathbf{x}} \left(\rho_{\mathsf{data}(\mathbf{x})} \log(D(\mathbf{x})) + \rho_{g}(\mathbf{x}) \log(1 - D(\mathbf{x})) \right) d\mathbf{x}$$

The GAN objective can be reformulated as

$$\min_{G} C(G) \triangleq \min_{G} \max_{D} V(G, D)$$

$$= \min_{G} \left\{ \underbrace{\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_{g}(\mathbf{x})} \right] + \mathbb{E}_{\mathbf{x} \sim p_{g}} \left[\log \frac{p_{g}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_{g}(\mathbf{x})} \right]} \right\}$$

Global Optimality of GAN

Theorem

The global minimum of the virtual training criterion C(G) is achieved if and only if $p_g = p_{data}$. At that point, C(G) achieves the value $-\log 4$, i.e.,

$$\min_{G} C(G) = -\log 4.$$

Jensen-Shannon Divergence

Definition (Jensen-Shannon Divergence)

The Jensen-Shannon divergence between two distributions $p_1(x)$ and $p_2(x)$ is defined as:

$$\textit{JSD}(p_1 \| p_2) \triangleq \frac{1}{2} \left(\textit{KL}\left(p_1 \| \frac{p_1 + p_2}{2}\right) + \textit{KL}\left(p_2 \| \frac{p_1 + p_2}{2}\right) \right)$$

Jensen-Shannon Divergence

Definition (Jensen-Shannon Divergence)

The Jensen-Shannon divergence between two distributions $p_1(x)$ and $p_2(x)$ is defined as:

$$\textit{JSD}(p_1 \| p_2) \triangleq \frac{1}{2} \left(\textit{KL}\left(p_1 \| \frac{p_1 + p_2}{2}\right) + \textit{KL}\left(p_2 \| \frac{p_1 + p_2}{2}\right) \right)$$

The training criterion C(G) of GAN can be written in terms of the Jensen-Shannon divergence:

$$egin{aligned} &C(G) = -\log(4) + 2JSD\left(p_{\mathsf{data}} \| p_g
ight) \ \Rightarrow &G^* = rg\min_{G} C(G) = rg\min_{G} JSD\left(p_{\mathsf{data}} \| p_g
ight) \end{aligned}$$

Jensen-Shannon Divergence

Definition (Jensen-Shannon Divergence)

The Jensen-Shannon divergence between two distributions $p_1(x)$ and $p_2(x)$ is defined as:

$$\textit{JSD}(p_1 \| p_2) \triangleq \frac{1}{2} \left(\textit{KL}\left(p_1 \| \frac{p_1 + p_2}{2}\right) + \textit{KL}\left(p_2 \| \frac{p_1 + p_2}{2}\right) \right)$$

The training criterion C(G) of GAN can be written in terms of the Jensen-Shannon divergence:

$$egin{aligned} &C(G) = -\log(4) + 2JSD\left(p_{\mathsf{data}} \| p_g
ight) \ \Rightarrow &G^* = rg\min_G C(G) = rg\min_G JSD\left(p_{\mathsf{data}} \| p_g
ight) \end{aligned}$$

Distribution matching!

Convergence of the Algorithm

Intuitively not necessary converge

- Hard to say which one is the global optima.
- Not able to reach the globally optimal saddle point.

Convergence of the Algorithm

Intuitively not necessary converge

Theorem

If G and D have enough capacity, and at each step of Algorithm 1, the discriminator is allowed to reach its optimum given G, and p_g is updated so as to improve the criterion

$$\mathbb{E}_{\mathbf{x} \sim p_{data}} \log D_G^*(\mathbf{x}) + \mathbb{E}_{\mathbf{x} \sim p_g} \log \left(1 - D_G^*(\mathbf{x})\right) \;,$$

then p_g converges to p_{data} .

$$V(G, D) = \int_{X} \left(\rho_{\mathsf{data}(\mathbf{x})} \log(D(\mathbf{x})) + \rho_{g}(\mathbf{x}) \log(1 - D(\mathbf{x})) \right) d\mathbf{x}$$

GAN objective

$$egin{aligned} \min_{G} C(G) & riangleq \min_{G} \max_{D} V(G, D) \ & = -\log(4) + 2 \min_{G} JSD\left(p_{ ext{data}} \| p_g
ight) \ & = -\log(4) + \min_{G} \mathit{KL}\left(p_{ ext{data}} \| rac{p_{ ext{data}} + p_g}{2}
ight) + \mathit{KL}\left(p_g \| rac{p_{ ext{data}} + p_g}{2}
ight) \end{aligned}$$

GAN objective

$$\begin{split} & \min_{G} C(G) \triangleq \min_{G} \max_{D} V(G, D) \\ & = -\log(4) + 2 \min_{G} JSD\left(p_{\text{data}} \| p_g\right) \\ & = -\log(4) + \min_{G} \textit{KL}\left(p_{\text{data}} \| \frac{p_{\text{data}} + p_g}{2}\right) + \textit{KL}\left(p_g \| \frac{p_{\text{data}} + p_g}{2}\right) \end{split}$$

Alternative GAN objective in the space of probability distributions

$$\min_{p_g} \mathcal{F}(p_g) \triangleq \min_{p_g} \textit{KL}\left(p_{\text{data}} \| \frac{p_{\text{data}} + p_g}{2}\right) + \textit{KL}\left(p_g \| \frac{p_{\text{data}} + p_g}{2}\right) \;.$$

$$\mathcal{F}(\emph{p}_g) = \emph{KL}\left(\emph{p}_{data} \| rac{\emph{p}_{data} + \emph{p}_g}{2}
ight) + \emph{KL}\left(\emph{p}_g \| rac{\emph{p}_{data} + \emph{p}_g}{2}
ight) \; .$$

- To ensure global optima, we need to prove $\mathcal{F}(p_g)$ is convex w.r.t. p_g .
 - If convex, we can find the global optima (*i.e.*, $p_g = p_{data}$) by doing gradient descent on p_g .
 - Convexity in space of distributions!
- Specifically, we need to prove for two distributions p_1 and p_2 and $\lambda \in [0, 1]$:

$$\mathcal{F}(\lambda p_1 + (1 - \lambda)p_2) \le \lambda \mathcal{F}(p_1) + (1 - \lambda)\mathcal{F}(p_2)$$

$$\mathcal{F}(\emph{p}_g) = \emph{KL}\left(\emph{p}_{data} \| rac{\emph{p}_{data} + \emph{p}_g}{2}
ight) + \emph{KL}\left(\emph{p}_g \| rac{\emph{p}_{data} + \emph{p}_g}{2}
ight) \; .$$

- To ensure global optima, we need to prove $\mathcal{F}(p_g)$ is convex w.r.t. p_g .
 - If convex, we can find the global optima (*i.e.*, $p_g = p_{data}$) by doing gradient descent on p_g .
 - Convexity in space of distributions!
- Specifically, we need to prove for two distributions p_1 and p_2 and $\lambda \in [0, 1]$:

$$\mathcal{F}(\lambda p_1 + (1-\lambda)p_2) \leq \lambda \mathcal{F}(p_1) + (1-\lambda)\mathcal{F}(p_2).$$

$$egin{aligned} \mathcal{F}(p_g) &= \mathit{KL}\left(p_{data} \| rac{p_{data} + p_g}{2}
ight) + \mathit{KL}\left(p_g \| rac{p_{data} + p_g}{2}
ight) \ . \ \Rightarrow & \mathcal{F}(\lambda p_1 + (1-\lambda)p_2) \leq \lambda \mathcal{F}(p_1) + (1-\lambda)\mathcal{F}(p_2) \end{aligned}$$

• Let $p = \lambda p_1 + (1 - \lambda)p_2$, we need to prove:

$$\begin{split} & \textit{KL}\left(p_{\text{data}} \| \frac{p_{\text{data}} + p}{2}\right) + \textit{KL}\left(p \| \frac{p_{\text{data}} + p}{2}\right) \\ \leq & \lambda \textit{KL}\left(p_{\text{data}} \| \frac{p_{\text{data}} + p_1}{2}\right) + (1 - \lambda) \textit{KL}\left(p_{\text{data}} \| \frac{p_{\text{data}} + p_2}{2}\right) \\ & + \lambda \textit{KL}\left(p_1 \| \frac{p_{\text{data}} + p_1}{2}\right) + (1 - \lambda) \textit{KL}\left(p_2 \| \frac{p_{\text{data}} + p_2}{2}\right) \end{split}$$

$$\begin{split} & \textit{KL}\left(p_{data}\|\frac{p_{data}+p}{2}\right) + \textit{KL}\left(p\|\frac{p_{data}+p}{2}\right) \\ \leq & \lambda \textit{KL}\left(p_{data}\|\frac{p_{data}+p_{1}}{2}\right) + (1-\lambda)\textit{KL}\left(p_{data}\|\frac{p_{data}+p_{2}}{2}\right) \\ & + \lambda \textit{KL}\left(p_{1}\|\frac{p_{data}+p_{1}}{2}\right) + (1-\lambda)\textit{KL}\left(p_{2}\|\frac{p_{data}+p_{2}}{2}\right) \end{split}$$

Lemma (Convexity of KL divergence)

Let a_1 , b_1 and a_2 , b_2 be probability distributions over x, and $\lambda \in (0,1)$. Define $a = \lambda a_1 + (1 - \lambda) a_2$, $b = \lambda b_1 + (1 - \lambda) b_2$. Then

$$KL(a||b) \le \lambda KL(a_1||b_1) + (1-\lambda)KL(a_2||b_2)$$

$$KL(a||b) \le \lambda KL(a_1||b_1) + (1-\lambda)KL(a_2||b_2)$$

 $p = \lambda p_1 + (1-\lambda)p_2$

Proof of

$$\textit{KL}\left(p_{\text{data}}\|\frac{p_{\text{data}}+p}{2}\right) \leq \lambda \textit{KL}\left(p_{\text{data}}\|\frac{p_{\text{data}}+p_1}{2}\right) + (1-\lambda)\textit{KL}\left(p_{\text{data}}\|\frac{p_{\text{data}}+p_2}{2}\right)$$

$$KL(a||b) \le \lambda KL(a_1||b_1) + (1-\lambda)KL(a_2||b_2)$$

 $p = \lambda p_1 + (1-\lambda)p_2$

Proof of

$$\textit{KL}\left(p_{\text{data}}\|\frac{p_{\text{data}}+p}{2}\right) \leq \lambda \textit{KL}\left(p_{\text{data}}\|\frac{p_{\text{data}}+p_1}{2}\right) + (1-\lambda)\textit{KL}\left(p_{\text{data}}\|\frac{p_{\text{data}}+p_2}{2}\right)$$

Proof.

Let $a_1 = a_2 = p_{\text{data}}$, $b_1 = \frac{p_{\text{data}} + p_1}{2}$, $b_2 = \frac{p_{\text{data}} + p_2}{2}$. Substituting these into the *KL* inequality, we get the conclusion.

$$KL(a||b) \le \lambda KL(a_1||b_1) + (1-\lambda)KL(a_2||b_2)$$

 $p = \lambda p_1 + (1-\lambda)p_2$

$$\textbf{Proof of } \textit{KL}\left(p \| \frac{p_{\text{data}} + p}{2}\right) \leq \lambda \textit{KL}\left(p_1 \| \frac{p_{\text{data}} + p_1}{2}\right) + (1 - \lambda) \textit{KL}\left(p_2 \| \frac{p_{\text{data}} + p_2}{2}\right)$$

$$KL(a||b) \le \lambda KL(a_1||b_1) + (1-\lambda)KL(a_2||b_2)$$

 $p = \lambda p_1 + (1-\lambda)p_2$

$$\text{Proof of } \textit{KL}\left(p\|\frac{p_{\text{data}}+p}{2}\right) \leq \lambda \textit{KL}\left(p_1\|\frac{p_{\text{data}}+p_1}{2}\right) + (1-\lambda)\textit{KL}\left(p_2\|\frac{p_{\text{data}}+p_2}{2}\right)$$

Proof.

Let $a_1 = p_1$, $a_2 = p_2$, $b_1 = \frac{p_{\text{data}} + p_1}{2}$, $b_2 = \frac{p_{\text{data}} + p_2}{2}$. Substituting these into the *KL* inequality, we get the conclusion.

Conclusion

$$\mathcal{F}(\rho_g) = \textit{KL}\left(\rho_{\text{data}} \| \frac{\rho_{\text{data}} + \rho_g}{2} \right) + \textit{KL}\left(\rho_g \| \frac{\rho_{\text{data}} + \rho_g}{2} \right) \text{ is convex w.r.t. } \rho_g :$$

- Global optima of $p_g = p_{\text{data}}$ can be obtained by optimizing $\mathcal{F}(p_g)$ with sub-gradient descent on the space of probability distributions:
 - Sub-gradient descent on the space of probability distributions corresponds to gradient descent on the parameter space of G.

Important

- Before optimizing p_g from $\mathcal{F}(p_g)$, we have assume the discriminator D is optimal given G, i.e., $D^* = \frac{p_{\text{data}}(\mathbf{x})}{p_{\text{data}}(\mathbf{x}) + p_g(\mathbf{x})}$.
- This is why we need to do SGD for several steps for discriminator in the algorithm in each round.

Convexity of KL divergence

Let a_1 , b_1 and a_2 , b_2 be probability distributions over x, and $\lambda \in (0,1)$. Define $a = \lambda a_1 + (1 - \lambda)a_2$, $b = \lambda b_1 + (1 - \lambda)b_2$. Then

$$KL(a||b) \le \lambda KL(a_1||b_1) + (1-\lambda)KL(a_2||b_2)$$

Convexity of KL divergence

Let a_1 , b_1 and a_2 , b_2 be probability distributions over x, and $\lambda \in (0, 1)$. Define $a = \lambda a_1 + (1 - \lambda)a_2$, $b = \lambda b_1 + (1 - \lambda)b_2$. Then

$$KL(a||b) \le \lambda KL(a_1||b_1) + (1-\lambda)KL(a_2||b_2)$$

Lemma (Log sum inequality)

Let a_1, \dots, a_n and b_1, \dots, b_n be nonnegative numbers. The log sum inequality states that

$$\left(\sum_{i} a_{i}\right) \log \frac{\sum_{i} a_{i}}{\sum_{i} b_{i}} \leq \sum_{i} a_{i} \log \frac{a_{i}}{b_{i}}$$

$$KL(a||b) \leq \lambda KL(a_1||b_1) + (1-\lambda)KL(a_2||b_2)$$

$$\left(\sum_i a_i\right) \log \frac{\sum_i a_i}{\sum_i b_i} \leq \sum_i a_i \log \frac{a_i}{b_i}$$

Proof.

Let
$$p_1 = \lambda a_1$$
, $p_2 = (1 - \lambda)a_2$, $q_1 = \lambda b_1$, $q_2 = (1 - \lambda)b_2$.

$$KL(a||b) = \int (\lambda a_{1}(x) + (1 - \lambda)a_{2}(x)) \log \frac{\lambda a_{1}(x) + (1 - \lambda)a_{2}(x)}{\lambda b_{1}(x) + (1 - \lambda)b_{2}(x)} dx$$

$$= \int (p_{1}(x) + p_{2}(x)) \log \frac{p_{1}(x) + p_{2}(x)}{q_{1}(x) + q_{2}(x)} dx$$

$$\leq \int \left(p_{1}(x) \log \frac{p_{1}(x)}{q_{1}(x)} + p_{2}(x) \log \frac{p_{2}(x)}{q_{2}(x)}\right) dx$$

$$= \int \left(\lambda a_{1}(x) \log \frac{\lambda a_{1}(x)}{\lambda b_{1}(x)} + (1 - \lambda)a_{2}(x) \log \frac{(1 - \lambda)a_{2}(x)}{(1 - \lambda)b_{2}(x)}\right) dx$$

$$= \lambda KL(a_{1}||b_{1}) + (1 - \lambda)KL(a_{2}||b_{2})$$

Announcement

Final exam

- 3:30-5:30PM, May 16, Filmor 355
- Semi-open-book: you are only allowed to bring in one A4 paper, write down whatever you want for your reference in the exam.

Project presentation

- Starting from May 2.
- Each group take turns to do a 10 minute project presentation, talk about what your project is, and what your results are.
 - Even if you haven't finished your project, you should present whatever you got so far.
- Detailed schedule will be released later.