Week 3 Questions

$Dr\ M\ L\ Mackenzie$

February 2018

Introduction

We are going to use the same data as for the last two weeks of the 'Weekly Questions' to primarily look at polynomials and B-splines.

id	year	assets		capex	
Min. : 1050				in. :-401	.609
1st Qu.: 10391	1st Qu.:1999	1st Qu.:	59.32 1s	st Qu.: 1	.572
Median : 25390	Median:2004	Median : 2	216.73 Me	edian : 8	3.203
Mean : 54440	Mean :2004	Mean : 14	134.82 Me	ean : 74	.055
3rd Qu.:104598	3rd Qu.:2009	3rd Qu.: 9		rd Qu.: 40	
Max. :270705	Max. :2014	Max. :800)33.55 Ma	ax. :7150	0.000
ltd	ebitda		ppe		
Min. : 0.00	O Min. :-113		ı. : (0.00	
1st Qu.: 0.00	0 1st Qu.:	2.293 1st	Qu.: 15	5.13	
Median: 3.12	9 Median : :	21.395 Med	lian : 67	7.45	
Mean : 293.97	6 Mean : 19	99.175 Mea	n : 768	3.24	
3rd Qu.: 100.00	0 3rd Qu.: 1	23.826 3rd	l Qu.: 341	1.80	
Max. :24380.70	0 Max. : 77	23.890 Max	:59762	2.83	
sales	ads				
Min. : 0.0	5 Min. : (0.000 Min.	: 0.0	000	
1st Qu.: 58.3	5 1st Qu.: (0.537 1st	Qu.: 0.0	000	
Median: 229.8			an : 3.9		
Mean : 1453.5			i : 43.0		
3rd Qu.: 992.4	7 3rd Qu.: 18	8.500 3rd	Qu.: 23.2	247	
Max. :108465.0	0 Max. :2840	0.000 Max.	:3146.8	329	
bookval	mv			tobins	;Q
Min. : 0.04	Min. : (0.10 Min.	: 1.00	Min. :	0.00004
1st Qu.: 34.52	1st Qu.: 60	0.49 1st G	u.:15.00	1st Qu.:	1.23689
Median: 128.56	Median: 27	5.95 Media	n:36.00	Median :	2.10815
Mean : 654.89	Mean : 1759	9.15 Mean	:29.35	Mean :	3.21056
3rd Qu.: 482.49	3rd Qu.: 123	1.72 3rd G	u.:38.00	3rd Qu.:	3.58202
Max. :41466.76	Max. :5017	4.89 Max.	:49.00	Max. :1	.93.71598
ltdratio	capexratio	rdr	ratio	adsrat	io
Min. :0.00000	Min. :-0.259	973 Min.	:0.0000	Min. :0	0.00000
1st Qu.:0.00000	1st Qu.: 0.01	781 1st Qu	1.:0.0000	1st Qu.:0	.005603
Median :0.03931	Median: 0.03	282 Median	ı:0.0290	Median :0	.014364
Mean :0.11473	Mean : 0.056	643 Mean	:0.0908	Mean : 0	.032936
3rd Qu.:0.19905	3rd Qu.: 0.058	886 3rd Qu	1.:0.1159	3rd Qu.:0	0.035927
Max. :0.85654	Max. : 5.04	205 Max.	:7.0207	Max. :1	.757624
pperatio	ebitdaratio				
Min. :0.0000	Min. :-4.0670	08			
1st Qu.:0.1830	1st Qu.: 0.046	78			
Median :0.3484	Median : 0.113				
Mean :0.4367	Mean : 0.089	21			
3rd Qu.:0.6103	3rd Qu.: 0.1748				
Max. :3.7330	Max. : 1.508				

Polynomial-based models

```
deg <- 2

polyfit2 <- lm(tobinsQ ~ poly(ltdratio, degree = deg) + poly(capexratio,
    degree = deg) + poly(rdratio, degree = deg) + poly(adsratio,
    degree = deg) + poly(pperatio, degree = deg) + poly(ebitdaratio,
    degree = deg) + poly(year, degree = deg) + poly(assets, degree = deg) +
    poly(capex, degree = deg) + poly(ltd, degree = deg) + poly(ebitda,
    degree = deg) + poly(ppe, degree = deg) + poly(sales, degree = deg) +
    poly(ads, degree = deg) + poly(rd, degree = deg) + poly(bookval,
    degree = deg) + poly(mv, degree = deg) + as.factor(indclass),
    data = newdat)

stepfit2 <- step(polyfit2, trace = 0)
pander(Anova(polyfit2))</pre>
```

Table 1: Anova Table (Type II tests)

	Sum Sq	Df	F value	Pr(>F)
poly(ltdratio, degree = deg)	4358	2	95.9	4.43e-42
poly(capexratio, degree = deg)	69.1	2	1.52	0.2187
poly(rdratio, degre = deg)	469.3	2	10.33	3.306e-05
poly(adsratio, degree = deg)	155.9	2	3.43	0.0324
poly(pperatio, degree = deg)	203.9	2	4.486	0.01128
poly(ebitdaratio, degree = deg)	2418	2	53.2	9.698e-24
poly(year, degree = deg)	918.4	2	20.21	1.724 e - 09
poly(assets, degree = deg)	700.5	2	15.41	2.06e-07
poly(capex, degree = deg)	25.59	2	0.5631	0.5695
poly(ltd, degree = deg)	87.51	2	1.926	0.1458
poly(ebitda, degree = deg)	1509	2	33.21	4.113e-15
poly(ppe, degree = deg)	564.2	2	12.41	4.107e-06
poly(sales, degree = deg)	410.2	2	9.027	0.0001209
poly(ads, degree = deg)	225.4	2	4.959	0.00703
poly(rd, degree = deg)	1583	2	34.82	8.223 e-16
poly(bookval, degree = deg)	7988	2	175.8	4.411e-76
poly(mv, degree = deg)	33044	2	727.1	1.438e-300
${ m as.factor(indclass)}$	5579	40	6.138	5.158e-31
Residuals	305631	13450	NA	NA

pander(Anova(stepfit2))

Table 2: Anova Table (Type II tests)

	Sum Sq	Df	F value	Pr(>F)
$\frac{1}{\text{poly(ltdratio, degree = deg)}}$	4376	2	96.27	3.057e-42
poly(rdratio, degre = deg)	533.4	2	11.74	8.083e-06
poly(adsratio, degree = deg)	192.1	2	4.226	0.01463
poly(pperatio, degree = deg)	175.5	2	3.861	0.02107
poly(ebitdaratio, degree = deg)	2420	2	53.24	9.318e-24
poly(year, degree = deg)	1019	2	22.42	1.901e-10
poly(assets, degree = deg)	902	2	19.84	2.479e-09
poly(ebitda, degree = deg)	1650	2	36.31	1.877e-16

	Sum Sq	Df	F value	$\Pr(>F)$
poly(ppe, degree = deg)	622.8	2	13.7	1.136e-06
poly(sales, degree = deg)	396.9	2	8.732	0.0001622
poly(ads, degree = deg)	255.4	2	5.619	0.003637
poly(rd, degree = deg)	1572	2	34.58	1.049e-15
poly(bookval, degree = deg)	10420	2	229.3	1.245e-98
poly(mv, degree = deg)	33920	2	746.3	4.36e-308
${ m as.factor(indclass)}$	5615	40	6.177	2.673e-31
Residuals	305797	13456	NA	NA

pander(vif(polyfit2))

	GVIF	Df	GVIF^(1/(2*Df))
poly(ltdratio, degree = deg)	1.941	2	1.18
poly(capexratio, degree = deg)	1.587	2	1.122
poly(rdratio, degre = deg)	2.119	2	1.207
poly(adsratio, degree = deg)	1.513	2	1.109
poly(pperatio, degree = deg)	2.605	2	1.27
poly(ebitdaratio, degree = deg)	1.717	2	1.145
poly(year, degree = deg)	1.211	2	1.049
poly(assets, degree = deg)	918	2	5.504
poly(capex, degree = deg)	22.95	2	2.189
poly(td, degree = deg)	39.68	2	2.51
poly(ebitda, degree = deg)	36.05	2	2.45
poly(ppe, degree = deg)	39.79	2	2.512
poly(sales, degree = deg)	14.59	2	1.954
poly(ads, degree = deg)	4.043	2	1.418
poly(rd, degree = deg)	3.696	2	1.387
poly(bookval, degree = deg)	144	2	3.464
poly(mv, degree = deg)	8.955	2	1.73
${ m as.factor(indclass)}$	12.79	40	1.032

pander(vif(stepfit2))

	GVIF	Df	GVIF^(1/(2*Df))
poly(ltdratio, degree = deg)	1.68	2	1.139
poly(rdratio, degre = deg)	1.855	2	1.167
poly(adsratio, degree = deg)	1.466	2	1.1
poly(pperatio, degree = deg)	2.518	2	1.26
poly(ebitdaratio, degree = deg)	1.714	2	1.144
poly(year, degree = deg)	1.178	2	1.042
poly(assets, degree = deg)	130.3	2	3.378
poly(ebitda, degree = deg)	34.1	2	2.416
poly(ppe, degree = deg)	21.54	2	2.154
poly(sales, degree = deg)	12.3	2	1.873
poly(ads, degree = deg)	3.781	2	1.394
poly(rd, degree = deg)	3.14	2	1.331
poly(bookval, degree = deg)	63.64	2	2.824
poly(mv, degree = deg)	8.568	2	1.711
as.factor(indclass)	10.37	40	1.03

```
require(pander)
pander(AIC(polyfit2, stepfit2))
```

	df	AIC
polyfit2	76	80703
${f step fit 2}$	70	80698

pander(BIC(polyfit2, stepfit2))

	df	BIC
polyfit2	76	81274
${ m stepfit2}$	70	81224

```
par(mfrow = c(1, 2))
residualPlots(polyfit2, terms = ~1)
```

Test stat Pr(>|t|) Tukey test 27.454

residualPlots(stepfit2, terms = ~1)

Test stat Pr(>|t|) Tukey test 27.261

```
par(mfrow = c(2, 2))
plot(newdat$tobinsQ, fitted(stepfit2))
abline(0, 1)
plot(fitted(stepfit2), residuals(stepfit2))
abline(h = 0)
hist(residuals(stepfit2))
acf(residuals(stepfit2))
```


Histogram of residuals(stepfit2)

Series residuals(stepfit2)

ncvTest(stepfit2)

Runs Test - Two sided

data: residuals(stepfit2)
Standardized Runs Statistic = -62.334, p-value < 2.2e-16
par(mfrow = c(2, 2))</pre>

termplot(stepfit2, se = T, partial.resid = TRUE)


```
deg <- 3
polyfit3 <- lm(tobinsQ ~ poly(ltdratio, degree = deg) + poly(capexratio,
    degree = deg) + poly(rdratio, degree = deg) + poly(adsratio,
    degree = deg) + poly(pperatio, degree = deg) + poly(ebitdaratio,
    degree = deg) + poly(year, degree = deg) + poly(assets, degree = deg) +
    poly(capex, degree = deg) + poly(ltd, degree = deg) + poly(ebitda,
    degree = deg) + poly(ppe, degree = deg) + poly(sales, degree = deg) +
    poly(ads, degree = deg) + poly(rd, degree = deg) + poly(bookval,
    degree = deg) + poly(mv, degree = deg) + as.factor(indclass),
    data = newdat)

stepfit3 <- step(polyfit3, trace = 0)
pander(Anova(polyfit3))</pre>
```

Table 7: Anova Table (Type II tests)

	Sum Sq	Df	F value	Pr(>F)
$\frac{1}{\text{poly(ltdratio, degree = deg)}}$	4985	3	77.9	5.973e-50
poly(capexratio, degree = deg)	133.9	3	2.093	0.09886
poly(rdratio, degre = deg)	481.7	3	7.528	4.976e-05
poly(adsratio, degree = deg)	168.1	3	2.627	0.04859
poly(pperatio, degree = deg)	291.9	3	4.562	0.003377
poly(ebitdaratio, degree = deg)	5299	3	82.8	4.497e-53
poly(year, degree = deg)	520	3	8.126	2.105e-05
poly(assets, degree = deg)	982.5	3	15.35	5.721e-10
poly(capex, degree = deg)	223.1	3	3.486	0.01508

	Sum Sq	Df	F value	Pr(>F)
$\frac{1}{1} \operatorname{poly}(\operatorname{ltd}, \operatorname{degree} = \operatorname{deg})$	304.8	3	4.762	0.002548
poly(ebitda, degree = deg)	2608	3	40.76	3.275 e-26
poly(ppe, degree = deg)	1210	3	18.92	3.084e-12
poly(sales, degree = deg)	130.6	3	2.041	0.1058
poly(ads, degree = deg)	184.3	3	2.88	0.03451
poly(rd, degree = deg)	1029	3	16.08	1.975e-10
poly(bookval, degree = deg)	12470	3	194.9	1.053e-123
poly(mv, degree = deg)	41184	3	643.6	0
${f as.factor(indclass)}$	4140	40	4.852	6.527e-22
Residuals	286549	13433	NA	NA

pander(Anova(stepfit3))

Table 8: Anova Table (Type II tests)

	Sum Sq	Df	F value	Pr(>F)
${}$ poly(ltdratio, degree = deg)	4985	3	77.9	5.973e-50
poly(capexratio, degree = deg)	133.9	3	2.093	0.09886
poly(rdratio, degre = deg)	481.7	3	7.528	4.976e-05
poly(adsratio, degree = deg)	168.1	3	2.627	0.04859
poly(pperatio, degree = deg)	291.9	3	4.562	0.003377
poly(ebitdaratio, degree = deg)	5299	3	82.8	4.497e-53
poly(year, degree = deg)	520	3	8.126	2.105e-05
poly(assets, degree = deg)	982.5	3	15.35	5.721e-10
poly(capex, degree = deg)	223.1	3	3.486	0.01508
poly(ltd, degree = deg)	304.8	3	4.762	0.002548
poly(ebitda, degree = deg)	2608	3	40.76	3.275 e-26
poly(ppe, degree = deg)	1210	3	18.92	3.084e-12
poly(sales, degree = deg)	130.6	3	2.041	0.1058
poly(ads, degree = deg)	184.3	3	2.88	0.03451
poly(rd, degree = deg)	1029	3	16.08	1.975e-10
poly(bookval, degree = deg)	12470	3	194.9	1.053e-123
poly(mv, degree = deg)	41184	3	643.6	0
${ m as.factor(indclass)}$	4140	40	4.852	6.527e-22
Residuals	286549	13433	NA	NA

pander(AIC(polyfit3, stepfit3))

	df	AIC
polyfit3	93	79865
${f step fit 3}$	93	79865

pander(BIC(polyfit3, stepfit3))

	df	BIC
polyfit3	93	80564
stepfit3	93	80564

```
par(mfrow = c(1, 2))
residualPlots(polyfit3, terms = ~1)

Test stat Pr(>|t|)
Tukey test  35.332     0
residualPlots(stepfit3, terms = ~1)
```



```
Test stat Pr(>|t|)
Tukey test 35.332 0

par(mfrow = c(2, 2))
plot(newdat$tobinsQ, fitted(stepfit3))
abline(0, 1)
plot(fitted(stepfit3), residuals(stepfit3))
abline(h = 0)
hist(residuals(stepfit3))
acf(residuals(stepfit3))
```


Histogram of residuals(stepfit3)

Series residuals(stepfit3)

ncvTest(stepfit3)

```
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 41794.4 Df = 1 p = 0
runs.test(residuals(stepfit3))
```

Runs Test - Two sided

data: residuals(stepfit3)
Standardized Runs Statistic = -61.853, p-value < 2.2e-16</pre>

B-spline based models

```
deg <- 2
bsfit3 <- lm(tobinsQ ~ bs(ltdratio, degree = deg, knots = mean(ltdratio)) +
    bs(capexratio, degree = deg, knots = mean(capexratio)) +
    bs(rdratio, degree = deg, knots = mean(rdratio)) + bs(adsratio,
    degree = deg, knots = mean(adsratio)) + bs(pperatio, degree = deg,
    knots = mean(pperatio)) + bs(ebitdaratio, degree = deg, knots = mean(ebitdaratio)) +
    bs(year, degree = deg, knots = mean(year)) + bs(assets, degree = deg,
    knots = mean(assets)) + bs(capex, degree = deg, knots = mean(capex)) +
    bs(ltd, degree = deg, knots = mean(ltd)) + bs(ebitda, degree = deg,
    knots = mean(ebitda)) + bs(ppe, degree = deg, knots = mean(ppe)) +</pre>
```

```
bs(sales, degree = deg, knots = mean(sales)) + bs(ads, degree = deg,
knots = mean(ads)) + bs(rd, degree = deg, knots = mean(rd)) +
bs(bookval, degree = deg, knots = mean(bookval)) + bs(mv,
degree = deg, knots = mean(mv)) + as.factor(indclass), data = newdat)

stepfitbs3 <- step(bsfit3, trace = 0)
pander(Anova(bsfit3))</pre>
```

Table 11: Anova Table (Type II tests)

	$\operatorname{Sum}\operatorname{Sq}$	Df	F value	Pr(>F)
bs(ltdratio, degree = deg, knots = mean(ltdratio))	1811	3	31.4	3.202e-20
bs(capexratio, degree = deg, knots)	185.5	3	3.217	0.02182
= mean(capexratio))				
bs(rdratio, degre = deg, knots = mean(rdratio))	101.7	3	1.765	0.1516
bs(adsratio, degree = deg, knots =	89.28	3	1.548	0.1997
mean(adsratio))				
bs(pperatio, degree = deg, knots = mean(pperatio))	41.93	3	0.7272	0.5356
bs(ebitdaratio, degree = deg, knots)	2880	3	49.94	4.317e-32
= mean(ebitdaratio))				
bs(year, degree = deg, knots = mean(year))	72.86	3	1.264	0.285
bs(assets, degree = deg, knots =	838.2	3	14.54	1.884 e - 09
mean(assets))		_		
bs(capex, degree = deg, knots = mean(capex))	80.34	3	1.393	0.2427
$\operatorname{bs}(\operatorname{ltd}, \operatorname{degree} = \operatorname{deg}, \operatorname{knots} = \operatorname{mean}(\operatorname{ltd}))$	366.5	3	6.356	0.0002662
bs(ebitda, degree = deg, knots = mean(ebitda))	1012	3	17.55	2.294e-11
bs(ppe, degree = deg, knots = mean(ppe))	503.3	3	8.73	8.806e-06
$\operatorname{bs(sales, degree = deg, knots = mean(sales))}$	417.1	3	7.235	7.576e-05
bs(ads, degree = deg, knots = mean(ads))	119.9	3	2.079	0.1006
bs(rd, degree = deg, knots = mean(rd))	606.5	3	10.52	6.601 e-07
bs(bookval, degree = deg, knots = mean(bookval))	23693	3	410.9	2.056e-255
bs(mv, degree = deg, knots = mean(mv))	66171	3	1148	0
$\operatorname{mean}(\operatorname{mv}))$ as.factor(indclass)	1641	40	2.135	4.093 e-05
as.factor(indelass) Residuals	258170	$\frac{40}{13433}$	2.133 NA	4.095e-05 NA

pander(Anova(stepfitbs3))

Table 12: Anova Table (Type II tests)

	Sum Sq	Df	F value	Pr(>F)
bs(ltdratio, degree = deg, knots =	1837	3	31.84	1.686e-20
$\operatorname{mean}(\operatorname{ltdratio}))$				
bs(capexratio, degree = deg, knots)	149	3	2.584	0.0515
= mean(capexratio))				
bs(ebitdaratio, degree = deg, knots)	3514	3	60.92	4.138e-39
= mean(ebitdaratio))				
bs(assets, degree = deg, knots =	988.1	3	17.13	4.235e-11
mean(assets))	222.0	0		0.000040
bs(td, degree = deg, knots =	330.9	3	5.737	0.000643
$\operatorname{mean}(\operatorname{ltd}))$	1040	9	10.09	1 105 11
bs(ebitda, degree = deg, knots =	1040	3	18.03	1.125e-11
$mean(ebitda)) \\ bs(ppe, degree = deg, knots =$	716.6	3	12.42	4.137e-08
$\operatorname{mean}(\operatorname{ppe})$	710.0	9	12.42	4.1376-00
bs(sales, degree = deg, knots =	445.5	3	7.724	3.752e-05
mean(sales))	110.0	· ·	21	0.1020 00
bs(rd, degree = deg, knots =	554.2	3	9.608	2.474e-06
mean(rd)				
bs(bookval, degree = deg, knots =	24054	3	417	4.768e-259
mean(bookval))				
bs(mv, degree = deg, knots =	68757	3	1192	0
$\mathrm{mean}(\mathrm{mv}))$				
${ m as.factor(indclass)}$	1940	40	2.523	3.867e-07
Residuals	258628	13451	NA	NA

pander(AIC(bsfit3, stepfitbs3))

	df	AIC
bsfit3	93	78455
stepfitbs3	75	78443

pander(BIC(bsfit3, stepfitbs3))

	$\mathrm{d}\mathrm{f}$	BIC
bsfit3	93	79153
stepfitbs3	75	79006

```
par(mfrow = c(1, 2))
residualPlots(bsfit3, terms = ~1)
```

Test stat Pr(>|t|)
Tukey test 59.46 0


```
Test stat Pr(>|t|)
Tukey test 58.571 0

par(mfrow = c(2, 2))

termplot(bsfit3, se = T, ylim = "free")
```


hist(residuals(stepfitbs3))
acf(residuals(stepfitbs3))
ncvTest(stepfitbs3)

Non-constant Variance Score Test Variance formula: ~ fitted.values Chisquare = 44797.37 Df = 1 p = 0

runs.test(residuals(stepfitbs3))

Runs Test - Two sided

data: residuals(stepfitbs3)
Standardized Runs Statistic = -55.885, p-value < 2.2e-16</pre>

Histogram of residuals(stepfitbs3)

Series residuals(stepfitbs3)


```
deg <- 3
bsfit4 <- lm(tobinsQ ~ bs(ltdratio, degree = deg, knots = quantile(ltdratio[ltdratio >
    min(ltdratio)])[2:3]) + bs(capexratio, degree = deg, knots = quantile(capexratio[capexratio >
    min(capexratio)])[2:3]) + bs(rdratio, degree = deg, knots = quantile(rdratio[rdratio >
    min(rdratio)])[2:3]) + bs(adsratio, degree = deg, knots = quantile(adsratio[adsratio >
    min(adsratio)])[2:3]) + bs(pperatio, degree = deg, knots = quantile(pperatio[pperatio >
   min(pperatio)])[2:3]) + bs(ebitdaratio, degree = deg, knots = quantile(ebitdaratio[ebitdaratio >
   min(ebitdaratio)])[2:3]) + bs(year, degree = deg, knots = quantile(year[year >
    min(year)])[2:3]) + bs(assets, degree = deg, knots = quantile(assets[assets >
   min(assets)])[2:3]) + bs(capex, degree = deg, knots = quantile(capex[capex >
   min(capex)])[2:3]) + bs(ltd, degree = deg, knots = quantile(ltd[ltd >
    min(ltd)])[2:3]) + bs(ebitda, degree = deg, knots = quantile(ebitda[ebitda >
   min(ebitda)])[2:3]) + bs(ppe, degree = deg, knots = quantile(ppe[ppe >
   min(ppe)])[2:3]) + bs(sales, degree = deg, knots = quantile(sales[sales >
   min(sales)])[2:3]) + bs(ads, degree = deg, knots = quantile(ads[ads >
   min(ads)])[2:3]) + bs(rd, degree = deg, knots = quantile(rd[rd >
    min(rd)])[2:3]) + bs(bookval, degree = deg, knots = quantile(bookval[bookval >
   min(bookval)])[2:3]) + bs(mv, degree = deg, knots = quantile(mv[mv >
    min(mv)])[2:3]) + as.factor(indclass), data = newdat)
stepfitbs4 <- step(bsfit4, trace = 0)</pre>
par(mfrow = c(2, 2))
termplot(stepfitbs4, se = T, ylim = "free")
```


Table 15: Anova Table (Type II tests)

	Sum Sq	Df	F value	Pr(>F)
bs(ltdratio, degree = deg, knots =	3429	5	40.77	8.888e-42
${ m quantile}({ m ltdratio}[{ m ltdratio}>$				
$\min(\operatorname{ltdratio})])[2:3])$				
bs(capexratio, degree = deg, knots =	54.21	5	0.6447	0.6656
m quantile (capexratio [capexratio >				
$\min(\text{capexratio})])[2:3])$				
bs(rdratio, degree = deg, knots =	132.1	5	1.571	0.1644
m quantile(rdratio[rdratio>				
$\min(\text{rdratio})])[2\text{:}3])$				
bs(adsratio, degree = deg, knots =	91.92	5	1.093	0.3618
m quantile (adsratio [adsratio >				
$\min(\operatorname{adsratio})])[2:3])$				
bs(pperatio, degree = deg, knots =	57.45	5	0.6832	0.6362
m quantile(pperatio[pperatio>				
$\min(\operatorname{pperatio})])[2:3])$				
bs(ebitdaratio, degree = deg, knots =	3039	5	36.14	6.783e-37
m quantile (ebit daratio [ebit daratio >				
$\min(ext{ebitdaratio})])[2:3])$				
bs(year, degree = deg, knots =	611.6	5	7.273	8.193e-07
quantile(year[year > min(year)])[2:3])				

	Sum Sq	Df	F value	Pr(>F)
bs(assets, degree = deg, knots =	5245	5	62.37	1.625e-64
quantile(assets[assets])				
$\min(\mathrm{assets})])[2:3])$				
bs(capex, degree = deg, knots =	259.8	5	3.089	0.008645
quantile(capex[capex >				
$\min(\operatorname{capex})])[2{:}3])$				
bs(td, degree = deg, knots =	401.5	5	4.775	0.0002314
$\operatorname{quantile}(\operatorname{ltd}[\operatorname{ltd} > \min(\operatorname{ltd})])[2:3])$				
bs(ebitda, degree = deg, knots =	2650	5	31.51	5.083e-32
m quantile(ebitda[ebitda>				
$\min(ext{ebitda})])[2\text{:}3])$				
bs(ppe, degree = deg, knots =	1723	5	20.5	1.909e-20
$\operatorname{quantile}(\operatorname{ppe}[\operatorname{ppe} > \min(\operatorname{ppe})])[2:3])$				
bs(sales, degree = deg, knots =	262.2	5	3.118	0.008137
quantile(sales[sales > min(sales)])[2:3])				
bs(ads, degree = deg, knots =	232.7	5	2.768	0.01671
quantile(ads[ads > min(ads)])[2:3])				
bs(rd, degree = deg, knots =	486.8	5	5.789	2.405e-05
$\mathrm{quantile}(\mathrm{rd}[\mathrm{rd} > \min(\mathrm{rd})])[2\text{:}3])$				
bs(bookval, degree = deg, knots =	44053	5	523.9	0
quantile(bookval[bookval >				
$\min(\mathrm{bookval})])[2:3])$				
bs(mv, degree = deg, knots =	68811	5	818.3	0
$\mathrm{quantile}(\mathrm{mv}[\mathrm{mv} > \mathrm{min}(\mathrm{mv})])[2:3])$				
as.factor(indclass)	1298	40	1.929	0.0003886
Residuals	225348	13399	NA	NA

pander(Anova(stepfitbs4))

Table 16: Anova Table (Type II tests)

	Sum Sq	Df	F value	Pr(>F)
bs(ltdratio, degree = deg, knots =	3374	5	40.02	5.567e-41
m quantile(ltdratio[ltdratio>				
$\min(\operatorname{ltdratio})])[2:3])$				
bs(ebitdaratio, degree = deg, knots =	3158	5	37.45	2.822e-38
${ m quantile}({ m ebitdaratio}[{ m ebitdaratio}>$				
$\min(\mathrm{ebitdaratio})])[2:3])$				
bs(year, degree = deg, knots =	763.6	5	9.056	1.315e-08
quantile(year[year > min(year)])[2:3])				
bs(assets, degree = deg, knots =	6174	5	73.22	6.583e-76
quantile(assets[assets>				
$\min(\mathrm{assets})])[2:3])$				
bs(capex, degree = deg, knots =	225.7	5	2.677	0.02007
$ ext{quantile}(ext{capex}[ext{capex}>$				
$\min(\operatorname{capex})])[2{:}3])$				
bs(td, degree = deg, knots =	382.9	5	4.54	0.0003876
$\operatorname{quantile}(\operatorname{ltd}[\operatorname{ltd} > \min(\operatorname{ltd})])[2:3])$				
bs(ebitda, degree = deg, knots =	2895	5	34.34	5.375e-35
m quantile(ebitda[ebitda>				
$\min(ext{ebitda})])[2\text{:}3])$				

	Sum Sq	Df	F value	Pr(>F)
bs(ppe, degree = deg, knots =	1633	5	19.37	2.889e-19
$\mathrm{quantile}(\mathrm{ppe}[\mathrm{ppe} > \min(\mathrm{ppe})])[2\text{:}3])$				
bs(sales, degree = deg, knots =	448.2	5	5.316	6.963 e-05
quantile(sales[sales > min(sales)])[2:3])				
bs(ads, degree = deg, knots =	209.8	5	2.488	0.02928
quantile(ads[ads > min(ads)])[2:3])				
bs(rd, degree = deg, knots =	786.8	5	9.331	6.914e-09
quantile(rd[rd > min(rd)])[2:3])				
bs(bookval, degree = deg, knots =	45926	5	544.7	0
quantile(bookval[bookval>				
$\min(\text{bookval})])[2:3])$				
bs(mv, degree = deg, knots =	76835	5	911.2	0
quantile(mv[mv > min(mv)])[2:3])				
Residuals	226974	13459	NA	NA

pander(AIC(bsfit4, stepfitbs4))

	df	AIC
bsfit4	127	76684
${ m stepfitbs 4}$	67	76661

pander(BIC(bsfit4, stepfitbs4))

	df	BIC
bsfit4	127	77638
${ m step fitbs 4}$	67	77164

par(mfrow = c(1, 2))


```
residualPlots(bsfit4, terms = ~1)

    Test stat Pr(>|t|)
Tukey test 85.44 0

residualPlots(stepfitbs4, terms = ~1)
```



```
Test stat Pr(>|t|)
Tukey test 83.616 0

par(mfrow = c(2, 2))
plot(newdat$tobinsQ, fitted(stepfitbs4))
abline(0, 1)
plot(fitted(stepfitbs4), residuals(stepfitbs4))
abline(h = 0)
hist(residuals(stepfitbs4))
acf(residuals(stepfitbs4))
```


Runs Test - Two sided

data: residuals(stepfitbs4)
Standardized Runs Statistic = -50.278, p-value < 2.2e-16</pre>

Questions

1. Which of the following is FALSE?

- 符合
- The models fitted here are inappropriate in that they do not return fitted values which conform to the natural (hard) boundary of the response range. One possible remedy to this is to use a link function which prevents negative predictions being returned.
- Interestingly, while the covariates that were dropped as part of the stepwise selection procedure which resulted in polyfit2 did not have concerning GVIF^(1/(2*Df)) values (e.g. greater than 5), the omission of those variables resulted in a reduction of these GVIF^(1/(2*Df)) values for some of the other covariates.
- Despite the use of quadratic polynomials, the **stepfit2** model still shows evidence of ill-fitting behaviour; the Tukey's test for non-additivity for the **stepfit2** model has a small test statistic and a small *p*-value.
- The differences in the stepfit2 model compared with the polyfit2 model are not suprising when we consider the p-values exhibited by the terms in the polyfit2 model.
- 2. TRUE or FALSE? Both the AIC and BIC indicate that the stepfit2 model is a better model than the polyfit2 model. While the difference in the number of parameters between these two models is 6, the cost of including these parameters in the model (as quantified using the penalty for the AIC/BIC) outweigh the fit benefits of including these parameters.
- 3. Which of the following is FALSE?
 - In keeping with all models fitted to date for these data, the largest response values are underpredicted.
 - For all models fitted with graphical diagnostics shown in this document, there is evidence of non-constant error variance both visually and quantified numerically using the Breusch-Pagan test.
 - For all models fitted with graphical diagnostics shown in this document, there is evidence of non-normality in the errors.
 - For all models fitted with graphical diagnostics shown in this document, there is no evidence of correlation in the errors both visually and quantified numerically using the runs test.
- 4. Which of the following is FALSE?
 - Due to overplotting, the partial relationships for the stepfit2 model are largely obscured.
 - Despite the stepfit3 model having 23 additional parameters compared with the stepfit2 model, both the AIC and BIC scores favour the stepfit3 model (even though the BIC has a larger penalty than the AIC in this case).
 - While the stepwise model selection results based on the AIC for the quadratic polynomial-based model resulted in the loss of three covariates (compared to the 'full' model), these covariates were retained in the model when cubic polynomials were used instead. This reminds us that model selection does not depend on how each covariate (i.e. in what form) enters the model.
 - The model selection results for the **stepfit3** model and the associated *p*-values for each term are not surprising since the stepwise results are based on the AIC and it is entirely possible to have terms retained under the AIC (or BIC) when the *p*-values are in excess of 5%.
- 5. Which of the following is FALSE?
 - The model fitted using quadratic B-splines fitted with one internal knot at the mean for each covariate returned a better model fit than the corresponding model (with the same covariates) fitted using cubic polynomicals instead. This is true even though both models estimated the same number of parameters which indicates the gains that can be made when parameters are used more wisely.
 - While some covariates in the bsfit3 model were omitted when subjected to stepwise selection based on the AIC, the stepfitbs3 model retained at least one covariate with a p-value > 5%.
 - The stepwise results for the model fitted using quadratic B-splines fitted with one internal knot at the mean resulted in the loss of 5 covariates from the model and still the AIC and BIC scores

- suggest the model is favoured when these are omitted.
- There are some differences apparent in the fitted functions using B-splines with knots placed at the mean compared with those with knots placed at quantiles.
- 6. TRUE or FALSE? While knots placed at quantiles and using degree 3 B-splines 'cost' an additional 2 parameters per covariate in this case (compared with a model with degree 2 B-splines and one internal knot placed at the mean of each covariate), the stepwise selected model for the model fitted with splines with knots of this sort, still indicated this model was preferred over the model selected when a knot was placed at the mean for each covariate.
- 7. TRUE or FALSE? There was a substantial loss of model covariates when B-splines were fitted with knots placed at quantiles compared to the loss in the number of covariates seen with other less complicated models when subjected to stepwise selection. Despite this loss, all terms which remained were statistically significant at the 5% level.