Property: Constant in Limit

Assume that the following limit exists $\lim_{x\to a} f(x)$ and define \mathcal{L} to be it's value, then for any $c\in\mathbb{R}$

$$\lim_{x \to a} \left[cf(x) \right] = c \lim_{x \to a} f(x)$$

Proof

• If c = 0 then using the fact that the limit of a constant is that constant itself, we have:

$$\lim_{x \to a} \left[0f\left(x \right) \right] = \lim_{x \to a} 0 = 0 = 0 \lim_{x \to a} f\left(x \right)$$

• If $c \neq 0$, we must prove that for any $\varepsilon_c \in \mathbb{R}^{>0}$ there exists δ_c such that for all $x_c \in \text{dom}(f)$

$$|x_c - a| < \delta_c \Rightarrow |cf(x_c) - c\mathcal{L}| < \varepsilon_c$$

- Notice that if we were to let ε in the original definition be equal to $\frac{\varepsilon_c}{|c|}$ then we could multiply the equation after the implication on both sides by |c| (so that we can absorb it into the absolute value).
- Let $\varepsilon_c \in \mathbb{R}^{>0}$ since the original limit holds for any epsilon, bind ε to $\frac{\varepsilon_c}{|c|}$ and we get δ such that for all $x \in \text{dom}(f)$, the following holds:

$$|x - a| \le \delta \Rightarrow |f(x) - \mathcal{L}| \le \frac{\varepsilon_c}{|c|}$$
 (\alpha)

• Take $\delta_c = \delta$, let $x_c \in \text{dom}(f)$ and bind x in the original definition to x_c , and assume that $|x_c - a| \le \delta_c$, because of our choice for δ_c we satisfy α 's hypothesis with x replaced by x_c and we get

$$|f(x_c) - \mathcal{L}| \le \frac{\varepsilon_c}{c} \Leftrightarrow |c| |f(x) - \mathcal{L}| \le \varepsilon_c$$

• Since for any $a, b \in \mathbb{R}$ we have |ab| = |a| |b| we can conclude with distributivity in \mathbb{R} that

$$|cf(x_c) - c\mathcal{L}| \le \varepsilon_c$$

As required.