

安装指导手册 v2.1

目录

1.	总	、述	3
	1.1.	介绍	3
	1.2.	技术指标	3
	1.3.	性能	4
	1.4.	描述	5
	1.5.	重要的	5
2.	需	求	6
	2.1.	计算机系统	6
	2.2.	测量位置	6
	2.3.	固定支架	6
3.	安	'装	7
	3.1.	装配	7
	3.2.	方向调节	7
	3.3.	电源	8
	3.4.	角度估算	8
4.	设	增	8
	4.1.	软件	8
	4.2.	通讯	9
	4.3.	配置	10
	4.4.	连续 数据协议	12
5.	故	෭ 障处理	13
	5.1.	普通检查	13
6.	附	录	14
	6.1.	尺寸图	14
	6.2	估質入射角	14

1、总述

GS产品的设计依据先进的雷达测试技术。采用多普勒雷达原理测量车速和车辆的方向检测。本手册将提供指导用户如何安装和设置 GS 的产品。

1.1 介绍

GS产品是为测量车辆速度而设计出的雷达传感器。产品传输微波信号功率非常低,不容易受到雾、雨、雪、光线等环境因素的影响。产品可独立安装或集成到其它系统的内部。GS产品也可以配置为执行测量功能:如速度、超速和单方向感应触发,GS是封闭在一个紧凑的外壳里,能够承受IP65级的恶劣环境。

1.2 技术指标

工艺技术	固定多普勒雷达(CE 认证)	
工作频率	24.125 GHz	
等效全向辐射功率	20 dBm	
杂散	< -30 dBm	
波束宽度	12° x 24° (水平 vs 垂直)	
旁瓣抑制比	> 20 dBc	
极化	线性	
通讯	RS-232 通讯(RS-485 可选)	
工作温度	−25° C ~ 70° C	
潮湿度	95% (20 ~ 40 C)	
电源	12 ~ 24 VDC	
消耗电流	45mA max @ 12VDC	
电缆长度	1.7m (5.57ft)	
尺寸	110 x 80 x 46mm (4.4 x 3.2 x 1.9in)	
重量	0.35Kg(包括电缆和连接器)	

1.3 性能

车辆检测和方向测量	接近检测和/或后退的车辆[用户可选择] 最高可达距雷达 200 米的距离。
车速最快或最近	可以选择显示速度是最快的车辆还是最近的车辆 [用户可选]
灵敏度调整	10级灵敏度/增益水平[用户可选择]
余弦角补偿	从 0-59 度补偿余弦角[用户可选择]
波特率设置	9种不同的波特率从 2400 到 115200[用户可选择]
数据更新率	7种不同的数据更新率(从50毫秒到2秒)[用户可选择]
零抑制	当没有车辆在雷达检测范围内时,用户可以抑制零速度值 [用户可选择]
速度锁定	用户可以锁定速度,显示为其选定限值+20(公里/小时或英里)[用户可选择]
速度阈值	5-400 公里/小时或英里之间选择 [用户可选择]
速度测量单位	公里/小时或英里 [用户可选择]
安装高度	距路面 0.3 米到 3.5 米
检测遗漏	单线检测错检率 少于 1%
雷达波束内多车辆	能够解决一个以上的雷达波束内的车辆多速度
速度精度	+1 公里/小时;一(2 公里/小时+ 0.01*实际速度) 或
处/又/H/又	[+1 英里;一(1 英里+ 0.01*实际速度)]
速度检测范围	5公里/小时的最低速度,400公里/小时的最高速度
测量精度测试	机械的音叉
音叉速度公差	±1 公里/小时

1.4 描述

图 1:GS 产品的外壳、通讯电缆和电源输入

图 2:GS 内部视图

1.5 重要的

本产品产生/使用无线电频率,如果没有按照本说明书进行安装与使用,可能会 干扰或损坏其他电子设备的运行。

为了降低人接触交流高压产生的风险及引起的电击伤害,在连接到交流配线电源之前,务必关闭交流电源。

2. 需求

以下项目是在任何设置之前必需要的。本节将介绍在安装和设置之前必需的工具。

2.1 计算机系统

笔记本电脑或上网本的最低配置要求。

- Windows XP or Vista 操作系统
- 512 KB RAM
- 10MB 硬盘空间: 便于 GS 安装软件
- 光盘驱动器:便于安装 GS 软件
- RS232 / 485 通讯端口: 便于 GS 通讯

2.2 测量位置

以下是该选址准则

- GS 的正面应该有至少 100 米的清晰可见的路线。
- GS 的检测区域不应该有任何物体阻碍它的观察,如街道标记和树之类都可能影响 GS 的性能。

建议不安装在路口或交叉通行的桥梁边,迎面而来的车可能会混淆雷达。如果安装需要靠近路口或桥梁,配置 GS 的点应尽量少。

GS 必须装配足够的高度,避免人为交通或阻碍物。

2.3 固定支架

用户必须提供安装使用的支架以固定 GS, GS 机壳上提供用于扣紧在支架上的固定孔。安装支架和螺钉不包含在这个包里, (请参见附录 GS 安装孔位置和尺寸图)。

3 安装

3.1 装配

GS可以用四个 M4 螺钉固定到安装支架上,螺杆的长度应不超过 8 毫米。为便于安装过程中容易调整和对准安装支架,建议有一个可调(向上/向下及左右可调)。

GS 离地面安装高度应大约在 2 米,依据其应用可水平或垂直安装。

⊕

3.2 方向调整

经过安全支架锁紧在安装柱上之后,下面的方向指导,为获得最佳的检测性能进行调节。

GS产品必须面向对准预定的车辆目标,以获得最大的测量精度。

为了获得测试速度的最小失真,应尽可能靠近道路的地方进行测量,为了获得最 佳性能,入射角应小于5度,用户需要使用软件来进行补偿估算的入射角。

图 5:入射角

3.3 电源

GS 需要使用 12V 的直流电源,电源线位于 RS232 连接器的下方,这是一对红色 (12V 直流) 和黑色 (接地)线,用户需要连接这两条线到直流电源。

图 6:RS232 连接器与电源输入

3.4 角度估算

用户可能需要估算入射角以获得更精确的读数(如图 5 所示),这个估算的角度 将使用软件的角度补偿获得。(计算估计的角度,请参阅附录 6.2)。

4. 设置

GS 需要进行软件配置和使用前设置。本节提供了软件安装和 GUI(图形用户界面)设置拍摄的画面。

4.1 软件

在提供的包装盒中可找到 GS 安装软件光盘,插入 GS 软件光盘到 CD- ROM,在 CD - ROM 驱动器的文件夹会自动弹出。(或者可以点击启动>"我的电脑>光盘驱动器),复制文件名: GS_GUI.exe 到你的希望的文件夹,GS 软件就可以使用了。

4.2 通讯

- 1) 连接 GS 的 RS232 电缆到计算机
- 2) 连接 12V 直流电源后开启 GS 电源
- 3) 从计算机上双击 GS 软件,你将看到以下画面

图 7:GS 简单的选择

a) 串行通讯口

从计算机上选择与 GS 连接的串行通讯端口数.

b) 波特率

波特率可以选择 200, 2400, 4800, 9600, 19200, 38400, 57600 或 115200 位/ 秒

c) 配置文件

配置文件设置在工厂设置了不同的道路使用.默认有公路,弯曲线,邻里或学校区。用户没有选择权去改变其设置。

4) 单击连接,然后准备配置 GS

4.3 配置

用户可以点击高级选项旁的复选框,进入更高级的选项。您将会看到以下画面.

图8:GS 高级选项

高极选项

a) 目标

用户可以设置最近的目标或最快的目标。最近的目标意味着接收最强的反射 信号。最近的车辆通常反映最强烈的信号,但过一段时间后,更大的目标将可能反 映更强烈的信号。

最快的目标设定将检测到范围内最快移动的目标。

GS默认设置为最近的目标

b) 方向

GS 是能够检测靠近来和移出去两个方向。接近只检测靠近来的目标,而后退仅仅 检测移出去的目标.

GS 默认设置为在检测两个方向,双向的

c) SI 单位

用户可以设置为公里(千米每小时)的单位或 MPH(英里每小时)

d) 角度补偿

这个功能是正确的入射角。设定角度和 GS 会自动纠正和报告更准确的读数。

e) 零抑制

启用零抑制将不报告零速值,仅仅报告目标速度值。

f) 灵敏度

有 10 个级别的灵敏度(0-9)为用户进行调整。其灵敏度可提高到增加检测距 离,太高的灵敏度可能引起错误的读取信息;同时,太低的灵敏度可能引起没有任何 读数。

g) 更新率(毫秒)

用户可以设定的 GS 更新率。这是用户想要的更新率的 GS 报告,更新率可以设置从 50、100、200、250、500、1000、2000 毫秒。

h) 速度限制

这将设定GS的速度触发值和报告

i) 速度锁定

此复选框使 GS 将仅仅报告最大速度限制.其他比限制速度更高的速度将不报告。

用户需要点击写入设置保存 GS 设置。可以使用一个读取设定去检查设置的状态。

4.4 连续数据协议

GS的数据格式如图 2 所示。

该协议是xSSSDy,其中x和y表示的开始和结束的数据串。这三个数字是速度数据,SSS跟着开始位字节(即x),速度可参照状态位。D它是一个8位数据,状态字节如图4,状态字节提供了亮度和超速的处理信息。

	字节	数值 (ASCII)	注释
STX	1	x	开始
Speed	1	X00	速度第一位数字
Speed	1	0X0	速度第二位数字
Speed	1	00X	速度第三位数字
Status	1	D	状态
ETX	1	У	结束

图2:连接数据协议

例如,一辆车的速度是137千米/小时,数据格式为:

图3。数据输出格式样本。

	项目	状态标志	数值	默认
MSB	Bit 8	速度单位	0: KMH, 1: MPH	1
	Bit 7-6	方向	00:双向, 01:移出去, 10: 靠近来, 11: 停留	00
	Bit 5		当前没有使用	N/A
	Bit 4	超速模式	0:正常, 1: 超速	0
	Bit 3	速度锁定	0:没有锁定, 1: 速度锁定	0
	Bit 2	Mode	0: Amplitude, 1: fast speed	0
LSB	Bit 1		当前没有使用	N/A

图 4: 状态位描述

5 故障处理

本节将讨论一般常见故障和解决方案。

5.1 普通检查

	5.1			
现象	可能原因	解决方案	图例	
	没有电源或错 误的电源	检查电源或测量电源电压 至少为 12Vdc 。		
		检测目标对准交通流量, 确保正面角度正确。	00	
GS 没有输出报	不正确的角度 阻碍检测	确保检测范围内没有像标 记,树木等障碍物。		
告	电缆连接错误或没有连接	检查和连接电缆		
	坏的产品	替换坏的产品		
	阻碍检测	确保在检测范围内没有像 标记或其反射信号等的阻 碍。		
速度检测不正确	检测到错误的 预定目标	GS 不应该安装在路口或桥梁边,它可能获得无效的目标,移动 GS 远离这些地区或设置为较低的灵敏度。		
	错误的设置	GS 设置可能是错的,请 正确设置。		

6 附录

6.1 尺寸图

6.2 估算入射角

用户可以计算入射角来补偿数据。

入射角 θ° = sin⁻¹ (Opp / Hyp)