INFORMATION REPORT

CENTRAL INTELLIGENCE AGENCY

This material contains information affecting the National Defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C. Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

	C-O-N-F-I-D-E-N-T-	-I-A-L	25X1
COUNTRY	East Germany	REPORT	
SUBJECT	Catalogs Published of the VEB .' Werk fuer Fernmeldewesen and	DATE DISTR. 2 6 APR 1957	,
	VEB Sachsenwerk Radeberg	NO. PAGES	
		REQUIREMENT RD	4
DATE OF NFO.		REFERENCES	=W.
PLACE & DATE ACQ.			25X1
	SOURCE EVALUATIONS ARE DEFINITIVE. APP	PRAISAL OF CONTENT IS TENTATIVE.	

catalogs of products manufactured by the VEB Werk25X1 fuer Fernmeldewesen, Berlin-Oberschoeneweide. The material comprises the following:

Catalog of transmitter tubes manufactured by Werk fuer Fernmeldewesen (101 paa)

A. Catalog of transmitter tubes manufactured by Werk fuer Fernment in German, English, French and Spanish, January 1956 edition.

B. Catalogs of products manufactured by VEB Catalogsenwerk Radeberg, products are described:

Scheiben Kompemensator SK 761
Bildmustergenerator BG 255
Kabelmessdetektor KMD 615
Kabelmessdetektor KMD 616

Kabelmessdetektor KMD 616 Leistungsmesssender LMS 551 Leistungsmesssender LMS 523 A

Dezimeter-Feinwellenmesser DFW 304, 314, 324, 334, 344, 354 Frequenzvergleicher Hf 603

Roehrenvoltmeter MV 1

STATE

X ARMY

Tonfrequenzgenerator GF 2 (40 pages)

C-O-N-F-I-D-E-N-T-I-A-L

X NAVY XAIR X FBI Note: Washington distribution indicated by "X"; Field distribution by "#".)

25X1

INFORMATION REPORT INFORMATION REPORT

CENTRAL INTELLIGENCE AGENCY

This material contains information affecting the National Defense of the United States within the meaning of the Espionage Laws, Title

		C-O-N-F-I-D-E-N-	-T-I-A-L	25X1
COUNTRY	Eas	t Germany	REPORT	
SUBJECT	Wer	alogs Published of the VEB k fuer Fernmeldewesen and Sachsenwerk Radeberg	DATE DISTR. 2 6 APR 1957 NO. PAGES 1	
	O CO	Sachsenwerk hadeberg	REQUIREMENT NO. RD	
DATE OF INFO.			REFERENCES	25 X 1
PLACE & DATE ACQ.		SOURCE EVALUATIONS ARE DEFINITIVE.	APPRAICAL OF CONTENT IS TENTATIVE	25X1
		r Fernmeldewesen, Berlin-Öbersc	ogs of products manufactured by the hoeneweide. The material comprise	the VEB Werk
	ing	catalog of transmitter tubes m	anufactured by Werk fuer Fernmelo Spanish, January 1956 edition.	dewesen, printed
	В.	·	red by VEB Sachsenwerk Radeberg.	
		Scheiben Kompemensator SK 761 Bildmustergenerator BG 255 Kabelmessdetektor KMD 615 Kabelmessdetektor KMD 616 Leistungsmesssender LMS 551 Leistungsmesssender LMS 523 A Dezimeter-Feinwellenmesser DFW Frequenzvergleicher Hf 603	304, 314, 324, 334, 344, 354	
		Roehrenvoltmeter MV 1 Tonfrequenzgenerator GF 2 (40	pages)	25X1
· · · ·				

C-O-N-F-I-D-E-N-T-I-A-L

STATE	x	ARMY	х	NAVY	х	AIR	Х	FBI	AEC		
(Note: Washington distribution indicated by "X"; Field distribution by "#".)											

STAT

VEB WERK FÜR FERNMELDEWESEN

E

Der vorliegende Katalog soll allen Entwicklern. Konstrukteuren und Interessenten einen Überblick über unser Fertigungsprogramm für Senderöhren geben.

n der Einführung werden Aufbau, Wirkungsweise und Verwendungszweck dieser Röhren kurz erläutert. Anschließend wird eine Erklärung der im Katalog verwendeten Kurzzeichen gegeben. Dann folgen die "Allgemeinen Betriebsbedingungen und Betriebshinweise". Die einzelnen Typenblätter geben Aufschluß über die wichtigsten Daten der Röhre. Sie enthalten Maßbild, Sockelschema, Betriebs- und Grenzwerte sowie Kennlinien, soweit diese erforderlich sind. Dem Entwickler und Konstrukteur ist es dadurch möglich, die bei uns gefertigten Röhren näher kennenzulernen und sich ihrer bei der Konstruktion und beim Bau von Sendern und Schaltanlagen vorteilhaft zu bedienen.

Wir möchten besonders auf die neu entwickelten UKW-Senderöhren aufmerksam machen, die sich bereits bei der Bestückung von UKW- und Fernsehsendern sowie von Industriegeneratoren bewährt haben.

Darüber hinaus werden Informationsdaten von Röhren veröffentlicht, die sich zur Zeit noch in der Entwicklung befinden. Gekennzeichnet sind diese Röhren durch einen *), der sich hinter der jeweiligen Typenbezeichnung befindet.

Zu Auskünften und Ratschlägen steht die Anwendungstechnische Versuchsstelle unseres Werkes jederzeit zur Verfügung. VEB WERK FÜR FERNMELDEWESEN

I he present catalogue intends to give all development engineers, designers, and interested persons a survey over our transmitting valve production program.

Design, operation, and intended use of these valves are briefly described in the introduction. This is followed by an explanation of the abbreviations used in this catalogue, and the "General Working Conditions and Directions for Use". The separate type sheets give information on the main data of the valve, containing sketch of dimensions, diagram of base connection, operating and limit values, and characteristics, in so far as these are necessary. Thus development engineers and designers are able to obtain precise information on our valves, and to make an advantageous use of them in the design and construction of transmitters and switching appliances.

We would like to draw your attention to the newly developed V. H. F. transmitting valves, which have already stood the test in V. H. F. and television transmitters, as well as in industrial generators.

Details concerning valves being still developed are also issued. These are marked with an asterisk*) which is placed behind the respective type designation.

For further information and advice an experienced staff of engineers of our "Anwendungstechnische Versuchsstelle" (Experimental Department for Applying Methods) will be at your disposal. VEB WERK FÜR FERNMELDEWESEN

VEB WERK FÜR FERNMELDEWESEN

Par le présent catalogue nous voulons donner aux techniciens, constructeurs et intéressés un aperçu de notre programme de production de lampes d'émetteurs. L'introduction comprend une courte description de la construction, du fonctionnement et but d'emploi de ces lampes. Ensuite est donnée une explication des abréviations utilisées dans le catalogue. Puis vous trouvez les Conditions et Indications de

Les feuilles de type individuelles informent des données les plus importantes des lampes. Elles comprennent le dessin coté, le schéma de culottage, les valeurs effectives et limites ainsi que les caractéristiques en tant qu'elles sont nécessaires. Les techniciens et constructeurs ont ainsi la possibilité d'apprendre à mieux connaître les lampes que nous produisons et de s'en servir avantageusement lors de l'étude et de la construction d'émetteurs et d'installations de distribution.

Nous voulons attirer particulièrement l'attention sur les lampes d'émetteurs d'ondes ultra-courtes, nouvellement développées, qui ont déjà au mieux fait leurs preuves dans la garniture d'émetteurs d'ondes ultra-courtes et de télévision ainsi que de

En plus, nous publions des données d'information de lampes et tubes, actuellement encore en développement. Ces lampes et tubes sont désignés par un astérique, immédiatement à la suite de la désignation de type en question.

Le département technique d'application (Anwendungstechnische Versuchsstelle) de notre usine se tient à votre entière disposition pour vous donner tous conseils et VEB WERK FÜR FERNMELDEWESEN informations.

Este catálogo tiene por objeto de dar a ingenieros proyectistas, a constructores y a todos los interesados un resumen sobre nuestro programa de fabricación de válvulas emisoras. La introducción explica con pocas palabras la ejecución, el funcionamiento

y los campos de aplicación de estas válvulas. A continuación se da una explicación de las abreviaciones empleadas en el catálogo. Después siguen los « Consejos y las condiciones generales de servicio ».

Los folletos de los distintos tipos dan informes sobre los datos mas importantes de la válvula, conteniendo el croquis, el esquema de conexión del zócalo, los valores limites y de servicio así como las líneas características según sean necesarias. Al ingeniero proyectista y al constructor facilitan estos folletos el conocer a fondo nuestras válvulas y servirse de ellas ventajosamente para la construcción de apara-

Rogamos presten atención especial a nuestras válvulas emisoras de onda ultracorta nuevamente desarrolladas las cuales han sido ya aprobadas muy favorablemente al equipar emisoras de onda ultracorta y de televisión así como generadores industriales. Además se publican datos informativos sobre válvulas que aún se encuentran en desarrollo. Estas válvulas están marcadas por un asterisco detrás de la designación del tipo. Para cualquier información y consejo estará siempre a su entera disposición el

Departamento Técnico de Ensayos » (Anwendungstechnische Versuchsstelle) de VEB WERK FÜR FERNMELDEWESEN nuestra empresa.

Sanitized Copy Approved for Release 2010/02/17: CIA-RDP80T00246A034100330001-6

E

E

Inhaltsverzeichnis Index Sommaire Indice

Einfuhrung	E	1
Erklarung der Typenbezeichnungen	Ε	2
Erklarung der verwendeten Kurzzeichen	E	3
Allgemeine Betriebsbedingungen und Betriebshinweise	E	4
Introduction	E	5
Key to the Type Denotations	E	6
Key to the Applied and Abbreviated Signs	E	7
General Operating Conditions and Directions for Use	E	8
Introduction	E	9
Explication des désignations de types	E	10
Explication des abréviations utilisées	E	11
Conditions et indications de service générales	E	12
Introducción	E	13
Explicación de las designaciones de los tipos	Ε	14
Explicación de las abreviaciones empleadas	Ε	15
Consejos y condiciones generales de servicio	E	16

Typenblatter Leaflets Feuilles des types

Folletos de los tipos

SRS 552 (P 50) • (4) Sendepentode

Transmitting Pentode Pentode d'émetteurs Péntodo emisor

VEB WERK FÜR FERNMELDEWESEN

E

Doppeltetrode	SRS 4	4451 (ä	hnlich QQE 06/4	40) - (4)
Twin Tetrode		(si	milar to QQE 0	6/40)
Lampe bigrille push-pull		(s	imilaire à QQE	06/40)
Tétrodo doble		(p	arecido a QQE	06/40)
Sendetriode für Therapiezwecke	SRS	358 K	(TS 41 DK)	* (2)
Transmitting Triode for Therapeutic Applications				
Triode génératrice à fins de thérapie				
Triodo emisor para fines de terapía				
UKW-Sendetetrode	SRS	451	(HF 2815)	* (2)
V. H. F. Transmitting Tetrode				
Lampe bigrille d'émission O. U. C.				
Tétrodo emisor de onda ultracorta		•		
UKW-Sendetriode	SRL	351	(HF 2730)	* (2)
V. H. F. Transmitting Triode			`	
Triode d'émission O. U. C.	. •		•	
Triodo emisor de onda ultracorta				
UKW-Sendetetrode	SRL	452	(HF 2825)	* (2)
V. H. F. Transmitting Tetrode				
Tétrode d'émission O. U. C.				
Tétrodo emisor de onda ultracorta				

Sanitized Copy Approved for Release 2010/02/17 : CIA-RDP80T00246A034100330001-6

Sanitized Copy Approved for Release 2010/02/17: CIA-RDP80T00246A034100330001-6

Triode d'émission Triodo emisor

VEB WERK FOR FERNMELDEWESEN

Sendetriode
Transmitting Triode
Triode d'émission
Triodo emisor

Hochspannungs-Gleichrichterröhre
H. F. Rectifying Valve
Tube redresseur à haute tension
Válvula rectificadora de alta tensión

Übersichtstabelle Tabular Summary Tableau d'ensemble Sumario

E

- *) Anzahl der Blatter
- *) Number of sheets

- *) Nombre de feuilles
- *) Número de las hojas de papel

VEBWERK FÜR FERN MELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1 5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

Sanitized Copy Approved for Release 2010/02/17 : CIA-RDP80T00246A034100330001-6

E 1

1. Einführung

Aufbau und Wirkungsweise

Mit der Einführung des UKW-Rundfunks und des Fernsehfunks mußten geeignete Senderöhren entwickelt werden, da die normalen Großsenderöhren wegen der hohen Kapazitäten und Induktivitäten für kurze Wellenlängen nicht zu verwenden sind.

Die neuen UKW-Senderöhren unterscheiden sich von den sogenannten Großsenderöhren durch kleine Abmessungen, hohe mechanische Stabilität und durch besondere Formgebung der Elektrodenanschlüsse. Man ist bestrebt, die Röhren vollkonzentrisch aufzubauen, d. h. alle Elektrodenanschlüsse sind als konzentrische Scheiben oder Ringe ausgebildet, die sehr induktions- und verlustarm sind. Dieses Prinzip hat den Vorzug, den Einbau der Röhren in die Sender für hohe Frequenzen zu erleichtern, zumal es sich meist um konzentrische Leitungen bzw. Topfkreise handelt.

Für kleine Leistungen werden zur Zeit vorwiegend Tetroden in Katodenbasisschaltung verwendet, da diese Röhren einen günstigen Wirkungsgrad und eine hohe Verstärkung haben. Für die Endstufen größerer Sender werden im allgemeinen Trioden in Gitterbasisschaltung mit Druckluft- bzw. Wasserkühlung verwendet. Bei dieser Schaltung wird eine nicht unerhebliche Steuerleistung benötigt, die allerdings nicht verloren geht, sondern zum größten Teil zur Anode durchgereicht wird und in die Ausgangsleistung der Röhre eingeht.

Bei Röhren mit kleiner Ausgangsleistung (bis ca. 0,5 kW) genügt im allgemeinen die Strahlungskühlung, die durch geeignete Ausbildung der Anode noch gefördert werden kann. Bei dieser Kühlungsart treffen Wärmestrahlen auf ihrem Weg auch die Glaswand und werden dabei teilweise absorbiert. Die dadurch erhitzte Glaswand wird sodann durch die Umgebungsluft gekühlt.

Bei Senderöhren des Lang-, Mittel- und Kurzwellengebietes für größere Leistung, die am Schluß des Katalogs aufgeführt sind, wurden bis vor einigen Jahren die Anoden ausschließlich mit Wasser gekühlt. Dieses Kühlverfahren wird noch bei den UKW-Senderöhren angewendet, jedoch sind in den letzten Jahren die UKW-Senderöhren mit Luftkühlung in den Vordergrund gerückt. Die Vereinfachung der Kühlanlage und die Unabhängigkeit vom Aufstellungsort (Turm, Berg) sind für diese Entwicklung ausschlaggebend gewesen.

E 2

VEB WERK FÜR FERNMELDEWESEN

Anwendungsgebiete:

Sender-Anlagen:

Die bereits vielseitig erprobten und seit Jahren bewährten Groß-Senderöhren werden als HF-Verstärker, Treiber oder Modulator in Lang-, Mittel- und Kurzwellensendern verwendet.

Die neuentwickelten UKW-Senderöhren haben sich neben der Verwendung als HF-Verstärker in UKW- und Fernsehsendern, mit günstigem Wirkungsgrad auch in allen Stufen von Lang-, Mittel- und Kurzwellensendern durchgesetzt.

Industriegeneratoren:

Für Senderöhren und speziell für UKW-Senderöhren besteht in der metallverarbeitenden Industrie ein umfangreiches Anwendungsgebiet, z.B. in Hochfrequenzgeneratoren, zum Schmelzen, Glühen, Löten, Oberflächenhärten usw. Auch in der Kunststoff-Industrie wird HF-Wärme, erzeugt durch Röhrengeneratoren, zur Behandlung von Kunstharzen, Preßstoffen, Holz usw. benutzt.

Elektromedizinische Geräte:

Senderöhren bis ca. 1 kW Ausgangsleistung werden in der Elektromedizin z. B. in Heilgeräten der Kurzwellentherapie verwendet.

2. Erklärung der Typenbezeichnung

Mit dem 1. Januar 1955 wurde im Gebiet der Deutschen Demokratischen Republik eine einheitliche Kurzbezeichnung für Senderöhren eingeführt, die wir in diesem Katalog angewendet haben.

Danach bedeuten die ersten beiden Buchstaben:

SR = Senderöhre

GR = Gleichrichterröhre

VR = Verstärkerröhre

VEB WERK FUR FERNMELDEWESEN

E 3

Der dritte Buchstabe bedeutet:

S = strahlungsgekühlt

L = luftgekühlt

W = wassergekühlt.

Die erste Ziffer der folgenden Zahl gibt die Anzahl der Elektroden an. (Bei Doppelsystemen zwei Ziffern.)

2 = Diode

3 = Triode

4 = Tetrode (44-Doppeltetrode)

5 = Pentode

Die letzten zwei Ziffern sind laufende Nummern.

3. Erklärung der verwendeten Kurzzeichen

Uí	Heizspannung
Uek	Spannung zwischen Heizfaden und Katode
Uat	Steuergittervorspannung
û _{g1}	Stevergitterwechselspannung (HF-Scheitelwert)
Û _{st}	Steuerwechselspannung (HF-Scheitelwert)
Ûg1/g1′	Gitterwechselspannung zwischen den Steuergittern der beiden Systeme
U _{a2}	Schirmgitterspannung
U _{g2d}	Schirmgitterspannung bei voller Aussteuerung
Uazi	Schirmgitterkaltspannung
U.	Anodenspannung
Uad	Anodenspannung bei voller Aussteuerung
û _a	Anodenspitzenspannung
Ua saerr	Anodensperrspannung

E 3 VEB WERK FOR FERNMELDEWESEN

l _t	Heizstrom
t _k	Katodenstrom
i _k	Katodenspitzenstrom
l _{g1}	Steuergitterstrom
l _{g1d}	Steuergitterstrom bei voller Aussteuerung
l _{g2}	Schirmgitterstrom
l _{g2d}	Schirmgitterstrom bei voller Aussteuerung
l _a	Anodenstrom
lad	Anodenstrom bei voller Aussteuerung
. I _{a0}	Anodenruhestrom
ia	Anodenspitzenstrom
$R_{f,k}$	Außenwiderstand zwischen Heizfaden und Katode
R _{g1}	Gitterableitwiderstand
$\mathcal{X}_{\mathbf{a}}$	Anodenwechselstrom-Widerstand
R _{g1 (f)}	Gitterableitwiderstand (je System) bei fester Gittervorspannung
R _{g1 (k)}	Gitterableitwiderstand (je System) bei automatischer Gittervorspannung
R _{g3}	Bremsgitterwiderstand
R_i	Innenwiderstand
R _{:L}	Innenwiderstand an der Aussteuerungsgrenze
Ra	Außenwiderstand
$R_{\alpha'\alpha'}$	Außenwiderstand eines Gegentaktverstärkers zwischen beiden Anoden
Q_{g1}	Steuergitterverlustleistung
Q_{g2}	Schirmgitterverlustleistung

VEB WERK FOR FERNMELDEWESEN E 3

Q	Anodenverlustleistung
N,,	Steuerleistung
N.	Ausgangsleistung. Werte bei optimaler Einstellung am Röhrenausgang. Verluste in den Kreisen oder infolge falscher Abstimmung nicht eingerechnet.
C _{k/g}	Kapazität zwischen Katode und Steuergitter
C _{kig2}	Kapazität zwischen Katode und Schirmgitter
$c_{\mathbf{k}/\mathbf{a}}$	Kapazität zwischen Katode und Anode
C _{g1, g2}	Kapazität zwischen Steuergitter und Schirmgitter
Cg1/a	Kapazität zwischen Steuergitter und Anode
Cg2/a	Kapazität zwischen Schirmgitter und Anode
Cg11/g111	Kapazität zwischen Steuergitter des einen Systems und dem Steuergitter des anderen Systems
Cal/all	Kapazität zwischen der Anode des einen Systems und der Anode des anderen Systems
D	Durchgriff
D D ₂	Durchgriff Schirmgitterdurchgriff
_	•
D ₂	Schirmgitterdurchgriff
D ₂ " _{g2 g1}	Schirmgitterdurchgriff Schirmgitterverstärkungsfaktor
D ₂	Schirmgitterdurchgriff Schirmgitterverstärkungsfaktor Steilheit
D ₂ ^µ _{92 91} S k	Schirmgitterdurchgriff Schirmgitterverstärkungsfaktor Steilheit Klirrfaktor
D ₂ μ _{92 g1} S k	Schirmgitterdurchgriff Schirmgitterverstärkungsfaktor Steilheit Klirrfaktor Wirkungsgrad
D ₂ μ _{g2 g1} S k η	Schirmgitterdurchgriff Schirmgitterverstärkungsfaktor Steilheit Klirrfaktor Wirkungsgrad Wellenlänge
D ₂ ⁴ ₉ 2 91 S k 7 A	Schirmgitterdurchgriff Schirmgitterverstärkungsfaktor Steilheit Klirrfaktor Wirkungsgrad Wellenlänge Betriebsfrequenz

E 4

VEB WERK FOR FERNMELDEWESEN

4. Allgemeine Betriebsbedingungen und Betriebshinweise

Die angegebenen Daten, mit Ausnahme der Grenzwerte, sind Mittelwerte.

Mit entsprechenden Streuungen um die Mittelwerte muß gerechnet werden. Die Nennwerte der Heizung sind einzuhalten. Durch Netzspannungsschwankungen und Schaltmittelstreuungen darf bei thorierten Wolframkatoden die Heizspannung höchstens 3%, bei Oxydkatoden höchstens 5% vom Nennwert abweichen.

Die Grenzwerte dürfen mit Rücksicht auf die Betriebssicherheit und die Lebensdauer der Röhre unter keinen Umständen überschritten werden.

Bei Überschreiten der Grenzwerte bzw. Nichteinhalten der Betriebsbedingungen erlischt jeder Garantieanspruch.

Die Temperatur am Kühlkörper der Rohre darf nicht mehr als 250 C betragen.

Die Temperatur an den Glas-Metall-Einschmelzungen darf 180° C nicht übersteigen. Die Überwachungen dieser Bedingungen kann durch Thermoelemente, Thermosicherungen oder durch temperaturempfindliche Farben erfolgen.

Bei Unterschreiten der erforderlichen Kühlluft- bzw. Kühlwassermenge müssen Anodenspannung, Schirmgitterspannung (wenn vorhanden) sowie Heizung automatisch abgeschaltet werden.

Die Kühlluft muß durch ein Filter gereinigt werden, da sich sonst Schmutzschichten an den Kühlflügeln absetzen.

Alle Anschlüsse der Elektroden müssen flexibel sein, damit keine mechanischen Spannungen an den Glas-Metall-Einschmelzungen auftreten können.

Eine Einrichtung im Sender soll verhindern, daß Anoden und Schirmgitterspannungen an die Röhre gelegt werden, bevor der Heizfaden die volle Temperatur hat.

Ein Anodenschutzwiderstand ist zweckmäßigerweise einzubauen.

Beim Einstellen, Ausprobieren oder Abstimmen des Senders muß eine Überlastung der Röhre durch Verringern der Anodenspannung vermieden werden.

Ein Schnellrelais soll die Röhre vor Überlastungen schützen.

Die Röhren sind vor Erschütterungen (Druck, Stoß, Schlag usw.) zu bewahren.

VEBWERK FÜR FERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

VEB WERK FOR FERNMELDEWESEN

E 5

5. Introduction

Design and Operation

As a consequence of the introduction of V. H. F. broadcasting and of television, suitable transmitting valves had to be developed, because the normal large transmitting valves cannot be employed for short wave lengths, on account of their high capacitances and inductances.

The new V. H. F. transmitting valves differ from the so-callad large transmitting valves by their small dimensions, high mechanical stability, and a special shaping of the electrode connections. Efforts are made to design the valves fully concentric, which means that all electrode connections are arranged in the form of concentric disks or rings and are practically without loss and induction. This principle advantageously facilitates the mounting of the valves in high frequency transmitters, particularly because it deals mainly with concentric lines and closed resonators.

For lower output tetrodes in grounded cathode circuits are preferred at present, because they offer a better efficiency factor and an elevated amplification.

For the final stages of larger transmitters, triodes in grid basis connection, equipped with air or water cooling respectively, are usually employed. In the case of this connection a rather considerable control power is required which, however, is not lost, but to a large portion is fed through the anode and enters into the output power of the valve.

As for valves with a small output power (up to about 0,5 k.W.), the radiation cooling in general will be adequate and may still be advanced by means of a suitable design of the plate. In this method of cooling the heat radiation on its way also reaches the glass bulb of the valve, from which it is partly absorbed. As a result, the glass bulb is heated and then cooled by the surrounding air.

Until lately, the plates of transmitting valves with a larger output of the long, medium, and short wave range, listed at the end of the catalogue, were exclusively cooled with water, a cooling method still used in V. H. F. transmitting valves. Within the last years, however, the use of air cooled V. H. F. transmitting valves has gained ground. The simplification of the cooling plant and the independence on the mounting place (tower, hill) decided the issue of this development.

E 6

VEB WERK FOR FERNMELDEWESE

Fields of Application

Transmitting Installations

The larger transmitting valves, which have been tested in all-round conditions and have stood these tests for years, are applied as H. F. amplifiers, drivers, modulators or multipliers in the long, medium, and short wave transmitters.

The newly developed V. H. F. transmitting valves, apart from their application as H. F. amplifiers in V. H. F. and television transmitters, can also be employed with good efficiency in all stages of the long, medium, and short wave transmitters.

Industrial Generators

There is an extensive range of application for transmitting and especially for V. H. F. transmitting valves in the metal working industry, for example: in H. F. generators for melting, heating, soldering, surface hardening etc. H. F. heat which is generated in valve generators is also applied in the plastics industry for the treatment of synthetic resins, plastics, wood etc.

Electromedical Instruments

Transmitting valves up to about 1 k.W. output power are used in medical instruments, for example in short wave therapeutics.

6. Key to the Type Designations

On January 1st, 1955, a standard table of abbreviations for transmitting valves was introduced in the German Democratic Republic which we have applied in our catalogue.

The first two letters mean:

SR = Transmitting Valve

GR = Rectifier Valve

VR = Amplifier Valve

E 7

The third letter means:

S = Radiation Cooled

L = Air Cooled

W = Water Cooled

The first figure of the following numbers indicates the number of electrodes (two figures indicate double systems).

2 = Diode

3 = Triode

4 = Tetrode (44 Double Tetrode)

5 == Pentode

The last two figures are current numbers.

7. Key to the applied abbreviations

Ur	Filament Voltage
U _{ffk}	Filament/Cathode Voltage
U _{g1}	Control Grid Bias
Û _{a1}	Control Grid A. C. Voltage (H. F. Peak Value)
Û _{st}	Control A. C. Voltage (A. F. Peak Value)
Û _{91/91} ,	Grid A. C. Voltage between the control grids of the two systems
U _{a2}	Screen Grid Voltage
Uaza	Max. Signal Screen Voltage
UazL	Max. Screen Supply Voltage (Starting)
Ua	Plate Voltage
Uad	Max. Signal Plate Voltage
û <u>a</u>	Peak Plate Voltage
Ua sperr	Plate inverse Voltage

E 7 VEB WERK FOR FERNMELDEWESEN

Filament Current
Cathode Current
Cathode Peak Current
Control Grid Current
Max. Signal Control Current
Screen Grid Current
Max. Signal Grid Current
Plate Current
Max. Signal Plate Current
Zero Signal D. C. Plate Current
Plate Peak Current
Resistance between Heater and Cathode
Grid Leak
Plate A. C. Current Resistor
Grid Leak (each system) in the case of a fixed Grid Bias
Grid Leak (each system) in the case of automatic Grid Bias
Suppressor Grid Resistance
Dynamic Plate Resistance
Dynamic Plate Resistance to the modulation limit
Load Resistance
Load Resistance of a push-pull amplifier between plates
Control Grid Dissipation
Screen Grid Dissipation

VEB WERK FUR FERNMELDEWESEN E 7

Q _a	Plate Dissipation
N,	Control Power
N _~	Output Power. Values obtained by optimal adjustment on the output of the valve. Losses in the circuits, or resulting by incorrect synchronization is not calculated.
C _{k/g}	Capacitance between Cathode and Control Grid
C _{k/g2}	Capacitance between Cathode and Screen Grid
C _{k/a}	Capacitance between Cathode and Plate
C _{g1/g2}	Capacitance between Control Grid and Screen Grid
C _{g1/a}	Capacitance between Control Grid and Plate
C _{g2/a}	Capacitance between Screen Grid and Plate
C _{g1 [/g1 [[}	Capacitance between Control Grid of the one system and the control Grid of the other system
Cal/all	Capacitance between the plate of the one system and the plate of the other system
D	Reciprocal of Amplification Factor
D ₂	Reciprocal of Screen Grid Amplification Factor
μ _{g2/g1}	Screen Grid Amplification Factor
S	Mutual Conductance
k	Distortion Percentage
7	Degree of Operation
λ	Wave Length
f	Operating Frequency
f _e	Input Frequency
8	Band-Width
ws	Column of Water

E 8

VEB WERK FOR FERNMELDEWESEN

8. General Working Conditions and Directions for Use

With the exception of the limit values, the data given in the catalogue are mean values.

Corresponding leakage must be taken into consideration. The nominal values of the heating must be maintained. In consequence of line voltage fluctuations and switching equipment leakage, a maximum deviation of the filament voltage from the nominal value of \pm 3% for thoriated tungsten cathodes, and of \pm 5% for oxide cathodes is admissible. However, these tolerances are only permitted for a short time, otherwise a considerable reduction of service life will occur. Moreover, an alteration of the valve data may also take place.

With regard to the reliability of service and life of the valve, a surpassing of the limit values is by no means permitted. In the case of surpassings and non-observance of the working conditions, all claims of guarantee will be rejected.

The cooling body temperature of the valve must not amount to more than 250° C, and the temperature at the glass-metal seals must not exceed 180° C. These conditions may be controlled by means of thermo couples, thermo fuses, or colours sensitive to temperature.

When the necessary quantity of cooling air and cooling water respectively is not attained, the plate voltage, screen grid voltage (if available), and heating must be automatically switched off.

The cooling air must be purified by passing through a filter, otherwise dust particles will deposit on the cooling vanes.

All connections of the electrodes must be flexible, in order that mechanical tensions do not take place at the glass-metal seals.

A device in the transmitter shall prevent that plates and screen grid voltage are applied to the valve before the heating filament has reached its full temperature.

A plate protective resistance, well fit for the purpose, should be built in.

When adjusting, testing, or tuning the transmitter, the plate voltage must be reduced, in order to avoid an overload of the valve.

A rapid relay will afford protection against overloads.

The valves must be kept safe against shakes (pressure, shocks, blows etc.).

V E B W E R K F U R F E R N M E L D E W E S E N BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

VEB WERK FOR FERNMELDEWESEN

E9

9. Introduction

Construction et fonctionnement

L'introduction de la radio à ondes ultra-courtes et de la télévision exigea le développement de lampes d'émetteurs appropriées, attendu que les lampes d'émetteurs à grande puissance normales ne peuvent être employées pour les courtes longueurs d'ondes, par suite de leurs capacités et inductances élevées.

Les nouvelles lampes d'émetteurs à ondes ultra-courtes se distinguent des lampes d'émetteurs dites à grande puissance par petites dimensions, stabilité mécanique élevée et par la formation particulière des raccordements d'électrodes. On s'efforce à construire ces lampes entièrement concentriques, c'est à dire tous les raccordements d'électrodes sont produits comme disques ou bagues concentriques, très pauvres en induction et en pertes. Ce principe a l'avantage de faciliter le montage des lampes dans les émetteurs pour très hautes fréquences, d'autant plus qu'il s'agisse pour la plupart de circuits concentriques respectivement de circuits en forme de pots.

Pour les petites puissances, on emploie actuellement surtout des lampes bigrilles en couplage cathodique de base puisque ces lampes disposent d'un rendement favorable et d'une amplification élevée. Pour les étages finaux d'émetteur plus grands on emploie en général des triodes en couplage à circuit amplificateur avec grille à la masse à refroidissement à air comprimé respectivement à l'eau. Dans ce couplage on nécessite une puissance de contrôle assez forte, qui ne se perd toutefois pas, mais est passée pour la plus grande partie à l'anode et est absorbée dans la puissance de sortie des lampes.

Dans les lampes à petite puissance de sortie (jusqu'à environ 0,5 kW.) un réfroidissement par radiation suffit en général, pouvant encore être favorisé par une formation appropriée de l'anode. Dans ce genre de refroidissement, les rayons de chaleur touchent sur leur chemin aussi la paroi en verre et sont absorbés ainsi partiellement. La paroi en verre ainsi réchauffée est refroidie alors par l'air ambiant.

Dans les lampes d'émetteurs des gammes d'ondes longues, moyennes et courtes, prévues pour plus grandes puissances, mentionnées à la fin du présent catalogue, et jusqu'il y a quelques années, les anodes furent exclusivement refroidies à l'eau. Ce procédé de refroidissement est également utilisé pour les lampes d'émetteurs à ondes ultra-courtes, mais celles à refroidissement à l'air sont arrivées au premier plan au cours des dernières années. La simplification de l'installation de refroidissement et l'indépendance de l'emplacement (tour, montagne), ont été décisives pour ce développement.

E 10

VEB WERK FOR FERNMELDEWESEN

Domaines d'application:

Installations de postes émetteurs

Les lampes d'émetteurs à grande puissance, qui depuis de nombreuses années ont fait brillament leurs preuves sont utilisées comme amplificatrices haute fréquence, motrices ou modulatrices dans les émetteurs à ondes longues, moyennes et courtes.

A côté de l'emploi comme amplificatrices haute fréquence dans les émetteurs à ondes ultra-courtes et de télévision, avec un rendement favorable, les lampes d'émetteurs à ondes ultra-courtes nouvellement développées se sont imposées également dans tous les étages des émetteurs à ondes longues, moyennes et courtes.

Génératrices industrielles

Dans l'industrie travaillant les métaux, il existe un vaste domaine d'application pour les lampes d'émetteurs et spécialement les lampes génératrices à ondes ultra-courtes, par exemple dans les alternateurs à haute fréquence, pour fondre, rougir, souder, tremper les surfaces etc. Dans l'industrie des matières plastiques aussi, la chaleur haute fréquence, produite par générateurs à lampes est utilisée pour le traitement de résines artificielles, matières à presser, bois etc.

Appreils pour l'électro-médicine

Dans l'électro-pathologie, par exemple dans les appareils thérapeutiques de la thérapie à ondes courtes, on utilise des lampes génératrices jusqu'à environ 1 kW. de puissance de sortie.

10. Explication des désignation de types

Au 1^{er} janvier 1955, une abréviation standard pour lampes d'émetteurs a été introduite sur le territoire de la République Démocratique Allemande. Nous avons appliqué ces abréviations dans le présent catalogue.

D'après ces désignations, les deux premiers lettres signifient:

SR = lampe d'émetteur

GR = tube redresseur

VR = lampe amplificatrice

E 11

La troisième lettre signifie:

S = refroidie par rayons

L = refroidie par air

W = refroidie par eau

Le premier chiffre du nombre suivant donne le nombre d'électrodes (2 chiffres pour

systèmes doubles)

2 = diode

3 = triode

4 = tétrode (44 double-tétrode)

5 = pentode

Les deux derniers chiffres sont des nombres courants.

11. Explication des abréviations utilisées

Ur	Tension de chauffage
U _{ffk}	Tension entre filament de chauffage et cathode
U_{g1}	Tension auxiliaire de la grille de contrôle
0 _{g1}	Tension alternative de la grille de contrôle (amplitude haute fréquence)
0 _{st}	Tension alternative de contrôle (amplitude basse fréquence)
Û _{g1/g1} ,	Tension alternative de grille entre les grilles de commande des deux systèmes
U_{g2}	Tension de la grille-écran
Ug2d	Tension de la grille-écran à modulation entière
U _{g2L}	Tension froide de la grille-écran
U ₄	Tension anodique
U _{ad}	Tension anodique à modulation entière
0.	Tension anodique de crête
Ua sperr	Tension anodique de blocage

" 1/

E 11

VEB WERK FOR FERNMELDEWESEN

	Courant de chauffage
	Courant cathodique
	Courant cathodique de crête
	Courant de grille de contrôle
	Courant de grille de contrôle à modulation entière
	Courant de grille-écran
	Courant de grille-écran à modulation entière
	Courant anodique
	Courant anodique à modulation entière
	Courant anodique permanent
	Courant anodique de crête
	Résistance anodique entre filament de chauffage et cathode
	Résistance de grille
	Résistance anodique
(f)	Résistance de grille (pour chaque système) à tension de polarisation de grille fixe
(k)	Résistance de grille (pour chaque système) à tension de polarisation de grille automatique
1	Résistance de grille d'arrêt
	Résistance interne
ıL	Résistance interne à la limite de modulation
a	Résistance anodique
t _{ala} ,	Résistance anodique d'un amplificateur push-pull entre les deux anodes
Q _{g1}	Puissance des pertes de la grille de contrôle
Q _{g2}	Puissance des pertes de la grille-écran

VEB WERK FOR FERNMELDEWESEN

E 11

Q _a	Dissipation anodique
N _a	Puissance de commande
N _~	Puissance de sortie. Valeurs à réglage optimal à la sortie de lampe. Les pertes dans les circuits ou par suite de faux accordements non considérées
C _{k/g}	Capacité entre cathode et grille de contrôle
Ck/g2	Capacité entre cathode et grille-écran
C _{k/a}	Capacité entre cathode et anode
C _{01/g2}	Capacité entre grille de contrôle et grille-écran
C _{91/a}	Capacité entre grille de contrôle et anode
C _{02/a}	Capacité entre grille-écran et anode
C _{91 1/91 []}	Capacité entre grille de contrôle d'un des systèmes et celle de l'autre
Cai/aii	Capacité entre l'anode d'un des systèmes et celle de l'autre
D	Facteur de pénétration
D ₂	Facteur de pénétration de la grille-écran
-	Facteur d'amplification de la grille-écran
S	Pente
k	Coefficient de distorsion
η	Rendement
λ	Longueur d'ondes
f	Fréquence de service
f _e	Fréquence d'entrée
В	Largeur de bande
ws	Colonne d'eau

E 12

VEB WERK FÜR FERNMELDEWESEN

12. Conditions et indications de service générales

Les données indiquées, exception faite des valeurs limites, sont des valeurs moyennes.

Il doit être tenu compte des dispersions correspondantes autor des valeurs moyennes. Les valeurs nominales du chauffage sont à observer. La tension de chauffage de filaments de tungstène thoriés peut dévier au maximum de \pm 3%, celle de filaments à oxyde rapporté de \pm 5% au plus de la valeur nominale par suite de variations de la tension du réseau et de déviations des moyens de couplage. Toutefois, ces tolérances ne peuvent être exploitées que pendant une période très courte, sinon une réduction essentielle de la durabilité peut en résulter. En plus, les données techniques des tubes se modifient.

Eu égard à la sécurité de service et à la durabilité des tubes, les valeurs limites ne peuvent être dépassées en aucun cas.

Lors du dépassement des valeurs limites, respectivement de la non-observation des conditions de service toute revendication de garantie s'éteind.

La température au corps refroidisseur de la lampe ne peut dépasser 250° C.

La température aux points de soudure verre-métal ne peut dépasser 180° C.

La surveillance de cette condition peut se faire par thermo-éléments, thermo-fusibles ou par couleurs sensibles à la température.

Dans le cas où la quantité d'air ou d'eau de refroidissement requise ne serait pas atteinte la tension anodique, la tension de grille-écran (pour autant qu'il y en ait une) ainsi que le chauffage doivent être mis automatiquement hors circuit.

L'air de refroidissement doit être nettoyé par un filtre puisque sinon des couches de crasse se déposent sur les ailettes.

Tous les raccordements d'électrodes doivent être flexibles, afin que des tensions mécaniques ne puissent se produire aux points de soudure verre-métal.

Une installation dans l'émetteur empêchera que la tension anodique et celle de grille-écran soient placées à la lampe, avant que le filament cathode n'ait atteint la température entière.

Il est pratique de monter une résistance anodique.

Lors du réglage, de l'essai ou de l'accordement de l'émetteur, une surcharge du tube par réduction de la tension anodique sera évitée.

Un relais rapide protègera la lampe de surcharges. Les lampes sont à préserver de secousses (pression, coups, chocs, etc.)

E 13

13. Introducción

Ejecución y funcionamiento

Con la introducción de la radio de onda ultracorta y de la televisión ha sido necesario desarrollar válvulas emisoras adecuadas, por no poder usarse para ondas cortas las normales válvulas grandes de emisión a causa de sus altas capacidades e inductividades.

Las nuevas válvulas emisoras para ondas ultracortas se distinguen de las válvulas grandes emisoras por sus pequeñas dimensiones, su gran estabilidad mecánica y por la forma especial de los contactos de los electrodos. Se trata de ejecutar las válvulas del todo concéntricas lo que significa que todos los contactos de los electrodos tienen forma de placas o anillos concéntricas, con un mínimo de inducción y de pérdidas. Este principio tiene la ventaja de facilitar el montaje de las válvulas en emisoras de altas frecuencias por tratarse casi siempre de conductores concéntricos o de circuitos de espacio vacio.

Para potencias reducidas se emplean hoy día mayormente tétrodos en conexión de base de cátodo, por ofrecer estas válvulas un rendimiento favorable y un gran refuerzo. Para los escalones finales de emisoras mayores se usan generalmente triodos en conexión de base de rejilla con refrigeración por aire comprimido o por agua. Con esta conexión se necesita una potencia de regulación bastante alta, la cual sin embargo, no se pierde pues la mayor parte de ella pasa al ánodo entrando así en la potencia de salida de la válvula.

Para válvulas de potencia de salida reducida (hasta 0,5 kW aprox.) basta en general la refrigeración por irradiación que aún puede ser fomentada por una ejecución adecuada del ánodo. Con este método de refrigeración llegan los rayos de calor en su camino también hasta la pared de vidrio siendo allí absorbidos por parte. La pared de vidrio calentada de esta manera es luego refrigerada por el aire ambiente.

Los ánodos de las válvulas emisoras de la gama de ondas largas, medianas y cortas para mayores potencias se refrigeraban hasta hace pocos años exclusivamente por medio de agua. Una descripción de estas válvulas se encuentra en el final del catálogo. Este modo de refrigeración se emplea aún con válvulas emisoras de onda ultracorta, aunque en los últimos años se llevan ya la delantera las válvulas emisoras de onda ultracorta con refrigeración por aire. La sencillez del agregado de refrigeración y la independencia del sitio de instalación (torre, monte) han sido los momentos decisivos para este desarrollo.

F 14

VEB WERK FOR FERNMELDEWESEN

Campos de aplicación:

Instalaciones emisoras

Las válvulas grandes emisoras aprobadas ya hace años se emplean como reforzadores de alta frecuencia, válvulas motrices o moduladores, en emisoras de ondas largas, medianas y cortas.

Las válvulas de onda ultracorta nuevamente desarrolladas se emplean con buén rendimiento igual como reforzadores de alta frecuencia en emisoras de onda ultra-corta y de televisión, como también en todas las escalas de emisoras de ondas largas, medianas y cortas.

Generadores industriales

Un amplio campo de empleo para válvulas emisoras y especialmente para válvulas emisoras de onda ultracorta representa la industria metalúrgica, p. e. en generadores de alta frecuencia, para fundir, poner al rojo, soldar, para el endurecimiento superficial etc. También en la industria de materias sintéticas se necesita calor de alta frecuencia, producido por generadores de válvulas, para el tratamiento de resinas sintéticas, materias prensadas, maderas etc.

Aparatos de electro-medicina

Válvulas emisoras de una potencia de salida hasta 1 kW aprox. se emplean en la electro-medicina, p. e. en aparatos de electro-terapía de onda corta.

14. Explicación de las designaciones de los tipos

Con el 1º de Enero del 1955 se han fijado en el territorio de la República Democrática Alemana abreviaciones unitarias para válvulas emisoras las cuales hemos empleado en este catálogo.

Las dos primeras letras significan:

SR = Válvula emisora

GR = Válvula rectificadora

VR = Válvula reforzadora

VEB WERK FÜR FERNMELDEWESEN

E 15

la tercera letra significa:

S = refrigerada por irradiación

 $L={\sf refrigerada}$ por aire

W = refrigerada por agua

La primera cifra del número siguiente indica la cantidad de electrodos (en sistemas

dobles 2 cifras)

2 = diodo

3 = triodo

4 = tétrodo (44 = tetrodo doble)

5 = pentodo

Las últimas dos cifras son cifras corrientes.

15. Explicación de las abreviaciones empleadas

Uf	Tensión de caldeo
U _{f, k}	Tensión entre filamento y cátodo
Uat	Tensión preliminar de rejilla de regulación
Ûg1	Tensión alterna de rejilla de regulación (valor de amplitud de alta frecuencia)
Û _{s1}	Tensión alterna de regulación (valor de amplitud de alta frecuencia)
Û _{91/91} ,	Tensión alterna de rejilla entre las rejillas de regulación de los dos sistemas
Uaz	Tensión de rejilla de pantalla
Uaza	Tensión de rejilla de pantalla con plena carga
UgzL	Tensión fría de rejilla de pantalla
U.	Tensión del ánodo
Uad	Tensión del ánodo con plena carga
ů _a	Tensión máxima del ánodo
Ua sperr	Tensión de cierre del ánodo

E 15 VEB WERK FOR FERNMELDEWESEN

l,	Corriente de caldeo
l _k	Corriente del cátodo
1 _k	Corriente máxima del cátodo
l _{g1}	Corriente de rejilla de regulación
l _{g1 đ}	Corriente de rejilla de regulación con plena carga
l _{g2}	Corriente de rejilla de pantalla
l _{g2d}	Corriente de rejilla de pantalla con plena carga
l _a	Corriente del ánodo
lad	Corriente del ánodo con piena carga
l _{a0}	Corriente de reposo del ánodo
1 _a	Corriente máxima del ánodo
$R_{f/k}$	Resistencia exterior entre filamento y cátodo
R _{g1}	Resistencia de derivación de rejilla
N _a	Resistencia de corriente alterna del ánodo
R _{g1 (f)}	Resistencia de derivación de rejilla (por cada sistema) con tensión fija preliminar de rejilla
R _{g1 (k)}	Resistencia de derivación de rejilla (por cada sistema) con tensión automática preliminar de rejilla
R _{a3}	Resistencia de rejilla de freno
R,	Resistencia interior
RiL	Resistencia interior en el límite de plena carga
Ra	Resistencia exterior
$R_{\alpha,\alpha'}$	Resistencia exterior de un reforzador de contratiempo entre los dos ánodos
$\mathbf{Q}_{\mathbf{g}1}$	Potencia de pérdida de rejilla de regulación
Q ₉₂	Potencia de pérdida de rejilla de pantalla

VEB WERK FOR FERNMELDEWESEN

E 15

Q.	Potencia de pérdida del ánodo
N _{st}	Potencia de regulación
 N~	Potencia de salida. Valores con óptima graduación en la salida de la válvula, sin contar las pérdidas en los circuitos o por causa de graduación falsa
Ck/a	Capacidad entre cátodo y rejilla de regulación
Ck/g2	Capacidad entre cátodo y rejilla de pantalla
C _{k/a}	Capacidad entre cátodo y ánodo
C _{91/9} 2	Capacidad entre rejilla de regulación y rejilla de pantalla
Cg1/a	Capacidad entre rejilla de regulación y ánodo
Cg2/a	Capacidad entre rejilla de pantalla y ánodo
Cg11/g111	Capacidad entre rejilla de regulación de un sistema y rejilla de regulación del otro sistema
C _{al/all}	Capacidad entre el ánodo de un sistema y el ánodo del otro sistema
D	Transparencia de rejilla
D ₂	Transparencia de rejilla de pantalla
^{ji} g2 g1	Factor reforzador de rejilla de pantalla
S	Escarpadura
k	Distorsión
η	Rendimiento
λ	Longitud de ondas
ſ	Frecuencia de servicio
f.	Frecuencia de entrada
В	Anchura de gama
ws	Columna de agua

E 16

VEB WERK FOR FERNMELDEWESEN

16. Consejos y condiciones generales de servicio

Los datos indicados, con excepción de los valores límites, son valores medios.

Hay que contar con dispersiones correspondientes alrededor de estos valores. No se deben sobrepasar los valores nominales de caldeo. Tratándose de cátodos de tungsteno ajustados, las derivaciones de la tensión de caldeo originadas por las fluctuaciones de la tension de la red y por dispersiones en los medios de conexión no deben ser mas de 11/2 3% como máximo y con cátodos de óxido 11/2 5% a lo sumo. Sin embargo, estas tolerancias no deben emplearse mas que durante corto tiempo para evitar una abreviación considerable de la duración de las válvulas. Además cambiarían los datos de las válvulas indicados.

Los valores límites no han de sobrepasarse de ninguna manera con el fin de conseguir seguridad de servicio y duración de las válvulas.

Al sobrepasarse los valores límites y al no atender a las condiciones de servicio caduca la pretensión a garantias.

La temperatura en el cuerpo de refrigeración de la válvula no debe exceder a 250° C.

La temperatura en las fusiones de vidrio y metal no debe exceder a 180° C. La vigilancia de esta condición puede efectuarse por elementos térmicos, fusibles

térmicos o por colores sensibles a la temperatura. Al reducirse la cantidad de aire o de agua refrigerador necesaria hay que des-

conectar automáticamente la tensión anódica, la tensión de rejilla de pantalla (si existe), así como también el caldeo.

Es indispensable limpiar el aire refrigerador por medio de un filtro ya que de otra manéra se quedan capas de polvo en las aletas refrigeradores.

Todas las conexiones de los electrodos han de ser flexibles para evitar tensiones en las fusiones de vidrio y metal.

Un dispositivo en la emisora impide que la tensión anódica y de rejilla de pantalla sean eficaces en la válvula antes que el filamento de caldeo tenga toda la temperatura.

Se recomienda montar una resistencia de protección del ánodo.

Al graduar, probar o verificar la emisora hay que dar atención a que se evite toda sobrecarga de la válvula por disminuirse la tensión del ánodo.

La válvula queda protegida contra sobrecargas por medio de un relé rápido.

Las válvulas hay que proteger contra vibraciones (presión, choques, golpes etc.)

• _ -

VEB WERK FÜR FERNMELDEWESEN

SRS 552

SENDEPENTODE Transmitting Pentode Pentode d'émission Péntodo emisor

Beschreibung

Die Röhre SRS 552 ist eine strahlungsgekühlte Sendepentode für selbsterregten Schwingbetrieb, für HF-Verstärkung in UKW-Sendern, für Impulsbetrieb und für elektromedizinische Geräte.

Frühere Typenbezeichnung: P 50

Description

The valve SRS 552 is a transmitting pentode which is cooled by radiation. designed and applied for self-excited oscillation operation, for h.f. amplification in V. H. F. transmitters, for pulse operation as well as for electromedical instruments.

Previous denotation: P 50

Maßbild max. Abmessungen

Sketch of Measurements

Dessin coté Dimensions maxima

max, dimensions

Croquis medidas māx.

Description

La lampe SRS 552 est une pentode d'émission refroidie par radiation, pour service oscillant autoexitateur. pour amplification haute fréquence dans les émetteurs à ondes ultra-courtes, pour service à impulsions et appareils électrothérapiques.

Désignation de type antérieure: P 50

Base Connecting Schema As seen from below against the pins

Stifte gesehen

Schéma de culottage Culot vu d'en bas contre les broches

Sockelschaltschema

Sockel von unten gegen die

Esquema de conexión del zócalo

Zocało esto desde abajo nacia las elar jas

Descripción

La válvula SRS 552 es un péntodo emisor refrigerada por irradiación. para servicio oscilante de auto-excitación, para el refuerzo de alta frecuencia en emisoras de onda ultracorta. para servicio de impulsión y para aparatos de electro-medicina.

Designación anterior del tipo: P 50

SRS 552 VEB WERK FOR FERNMELDEWESEN WE

Allgemeine Daten General Data Données générales Datos generales

Heizung: Indirekt geheizte Oxydkatode		Gewicht: Weight:	
Heating: Indirectly heated oxide coated cathode			
Chauffage: filament à oxyde rapporté chauffé indirectement		Poids: Peso:	
Caldeo: Cátodo de óxido de caldeo indirecto		ca. 50 g	
U _f		12,6 V	
l _f	. ca.	0.7 A	
Statische Werte			
Statical Values			
Valeurs statiques			
Valores estáticos			
U _a	800	V	
U _{g2}	250	V	
l _a	50	mA	
U _{g1}	40	v	
\$	3,	5 mA/V	
D ₁	19	%	
μ92/91	5,	26	
		<u> </u>	

VEB WERK FOR FERNMELDEWESEN

SRS 552

Betriebswerte Typical Operating Conditions Valeurs de service Valores de servicio

Hochfrequenzverstärkung Lei Vorstufenmodulation $\lambda \ge 12$ m (Werte für annähernd gerade Schwinglinie)

H. F. Amplification in the case of sub-stage modulation $\lambda \geq 12$ m (values represent approximate straight line oscillation)

Amplification haute fréquence à modulation à faible niveau $\lambda \geq$ 12 m (valeur de ligne oscillante à peu près droite)

Refuerzo de alta frecuencia con modulación de escalón preliminar $\lambda \ge 12$ m (Valores para característica oscilante casi derecha)

Ua 1000 '	/ l _{ad} 100 r	mA $R_a = 0.00$
U _{g2} 300 \		mA 0 _{g1} <55 V
U _{a1}	_	mA N _~ 60 W

Hochfrequenzverstärkung (annähernd B-Betrieb)
H. F. Amplification (approximately B-Class Operation)

Amplification haute fréquence (à peu près service B)

Refuerzo de alta frecuencia (casi servicio B)

λ	≥ 4,5	≥ 6,5	≥ 12	m
 U _a	800	1000	1000	٧
U _{g:}	250	300	300	V
U _{g1}	80	—80	80	٧
l _{ad}	130	120	120	mΑ
l _{g:d}	10	10	10	mA
	6	5	2	mA
l _{gið} Ra	3,3	5	4,75	$\mathbf{k}\Omega$
	100	100	100	٧
0 ₉₁ N₃₁ ₋	3	1,5	0,5	W
N	60	70	80	W

SRS 552 VEB WERK FOR FERNMELDEWESEN

Gitterspannungsmodulation $\lambda \ge 12$ m	Trägerwerte Carrier Values	Oberstrichwerte Peak Power								
Grid Voltage Modulation $\lambda \ge 12$ m	Carrier values	Values								
Modulation par la tension de grille $\lambda \ge 12$ m	Valeurs porteu- ses	Valeurs de traits supérieurs								
Modulación de tensión de rejilla λ ≧ 12m	Valores porta- dores	Valores máx. de alta frecuencia								
	1000 V	1000 V								
U _a	300 V	300 V								
U _{g2}	—105 V	_80 V								
, U ₉₁	60 mA	120 mA								
lad	3 mA	10 mA								
l _{g2d}		3 mA								
l _{g1d} Ra	4,75 k Ω	4,75 kΩ								
•	100 V	100 V								
0 ₉₁ 0 ₃₁	≦25 ∨	_ v								
N ₄₁ ~	≦ 0,5 W	0,5 W								
N ₂	20 W	80 W								
14~										
Schwingbetrieb in Eigenerregung	Triodenschaltung Schirmgitter u. Anode verbunden (Bremsgitter an Erde)									
Oscillation operation in self-excitation $\lambda \ge 6.5 \text{ m}$	Triode Circuit screen grid and anode connected (suppressor grid to earth)									
Service oscillant en auto-excitation $\lambda \ge 6.5 \text{ m}$	Triode Grille-écran et anode reliés (grille d'arrêt à la terre)									
Servicio oscilante con auto-excitación $\lambda \geq 6.5 \text{ m}$	Conexión de triodo Rejilla de pantalla y ánodo conectados (Rejilla de freno en tierro)									
Ua 1000 V	0 _a	800 V								
U ₀₂ 250300 V		V								
U ₀₁ ≧—40 V		30 mA								
R_{g_1} 5 k Ω		20 %								
N ₂ 65 W	_	2 mA/V								
· · · · · · · · · · · · · · · · · · ·	Q _{a max}	40 W								

Gitter 1 und Schirmgitter verbunden (Bremsgitter an Erde)
Grid No. 1 and Screen Grid connected (suppressor grid to earth)

ce.....ca 14 pF

VEB WERK FOR FERNMELDEWESEN

SRS 552

Cg1 a 0.12 pF

Grille 1 et grille-écran reliées (grille d'arrêt à la terre) Rejilla 1 y rejilla de pantalla conectadas (Rejilla de freno en tierra) U_{a max} 1000 V D 0,35 S 5 mA/V Q_{a max}......40 W Grenzwerte Max. Ratings Valeurs limites Valores limites û_{a max} 3000 V U_{a max} 1000 V Q_{01 max} 1 Q_{a max} 40 W R_{g1 max} 20 kΩ Uag L max 800 V R_{g3 max} 20 k() Ik max 230 Q_{0" max} Uf k max 100 R_{f k max} 2,5 kΩ bei in the case o 800 V 1000 V chez con Ug2 dmax 250 . V 300 V 130 mA 120 mA Kapazitäten Capacitances Capacités Capacidades

ca..........ca 10 pF

SRS 552 VEB WERK FUR FERNMELDEWESEN

Betriebsbedingungen und Betriebshinweise

Die angegebene Nutzleistung ist die gesamte von der Röhre abgegebene Hochfrequenzleistung. Die erzielbare Antennenleistung ist um die Kreisverluste kleiner.

Der bei leistungsarmer Modulation im Steuerkreis zulässige Widerstand darf 20 kOhm nicht überschreiten, damit durch thermische Gitterströme keine merkbare Verlagerung des Trägers auftritt. Die Temperatur der Röhre im Dauerbetrieb darf 200°C nicht überschreiten.

Stipulations and Directions for Operation

The stipulated effective power is the complete h. f. power which is delivered from the valve. The produced aerial power is smaller as to that of the loss in the circuit.

When, for instance, the modulation is of a low power or performance, the admissible resistance which is included in the control grid must on no account exceed 20 kOhms, so that by thermal grid currents no perceptible extension of the carrier appears.

When in continual operation, the temperature of the valve must not surpass 200° C.

Conditions et indications de service

La puissance utile indiquée est la puissance haute fréquence totale livrée par la lampe. La puissance d'antenne obtenable est plus petite des pertes de circuit.

La resistance tolérée dans le circuit de commande à modulation plus pauvre en puissance, ne pourra dépasser 20 kOhms, afin qu'aucun déplacement sensible de la porteuse ne se produise par des courants de grille thermiques. En service continu, la températeure de la lampe ne peut dépasser 200° C.

Consejos y condiciones generales de servicio

La potencia efectiva indicada es la potencia total de alta frecuencia que transmite la válvula. La posible potencia de la antena se disminuye por las pérdidas en los circuitos. La resistencia admisible en el circuito de regulación con una modulación de poca potencia no debe exceder a 20 ohmios para que no se produzca un cambio del portador por corrientes de rejilla térmicas. La temperatura de la válvula en servicio permanente no debe exceder a 200 °C.

SRS 552 VEB WERK FOR FERNMELDEWESEN

Katalog E --- Ausgabe Januar 1956

VEBWERKFURFERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRÄHTWORT: OBERSPREEWERK BERLIN

VEB WERK FOR FERNMELDEWESEN

SRS 4451*

DOPPELTETRODE Double Tetrode Double-tétrode Tétrodo doble

Beschreibung

Die Doppeltetrode SRS 4451 ist eine strahlungsgekühlte Senderöhre und kann als HF-Verstärker, Oszillator, Frequenzvervielfacher und Modulator verwendet werden. Sie entspricht den Typen QQE 06/40, RS 1009 und 5894.

Description

The double tetrode SRS 4451 is a transmitting valve which is cooled by radiation. It can be applied as h.f. amplifier, oscillator, frequency multiplier and modulator. This valve corresponds to the types QQE 06/40, RS 1009 and 5894.

Description

La double — tétrode SRS 4451 est une lampe d'émetteur refroidie par radiation et peut être utilisée comme amplificatrice haute fréquence, oscillatrice, multiplicatrice de fréquence et modulatrice. Elle correspond aux types QQE 06/40, RS 1009 et 5894.

Descripción

El tétrodo doble SRS 4451 es una válvula emisora refrigerada por irradiación y puede emplearse como reforzador de alta frecuencia, oscilador, multiplicador de frecuencias y modulador. La válvula corresponde a los tipos QQE 06/40, RS 1009 y 5894.

Maßbild max. Abmessungen

Sketch of Measurements max.dimensions

Dessin coté
Dimensions maxima

Croquis medidas máx.

Sockelschaltschema Sockel von unten gegen die Stifte gesehen

As seen from below against the pins

Schéma de culottage Culot vu d'en bas contre les broches

Esquema
de conexión del
zócalo
Zócalo visto desde
abao hacia las clavijas

SRS 4451* VEB WERK FOR FERNMELDEWESEN

Gewicht:

Weight: Poids:

ca. 95 g

Peso:

Allgemeine Daten General Data Données générales Datos generales

Heizung: Indirekt geheizte Oxydkatode. Der Heizfaden ist in der Mitte angezapft. Die Hälften können parallel oder hintereinander geschaltet werden.

Heating: Indirectly heated oxide cathode. The filament is tapped in the middle — the half of which can be connected in series or as well in parallel.

Chauffage: filament à oxyde rapporté chauffé indirectement. Le filament de chauffage est branché au centre. Les moitiés peuvent être couplées en parallèle ou en série.

Caldeo: Cátodo de óxido de caldeo indirecto. El filamento de caldeo se ha embornado en su mitad. Las mitades pueden conectarse en paralelo o en serie.

Heizfadenschaltung: parallel hintereinander Filament Connection: Parallel in series
Couplage du filament: en parallèle en série
Conexión del filamento de caldeo: paralelo en serie

U1 6,3 V 12,6 V
U2 Ca. 1,8 A ca. 0,9 A

Statische Werte (ie System)

Statical Values (each system)	Valeurs (pour chaqu	statiques ue système)	Valores estáticos (por cada sistema)				
U _a	600 V	la	30 mA				
U ₉₂		s	4,5 mA/V				
U ₀₁		μ _{g2 g1} · · · · · ·	8 .2				

VEB WERK FOR FERNMELDEWESEN

SRS 4451*

Betriebswerte Typical Operating Conditions Valeurs de service Valores de servicio

Als HF-Verstärker, Gegentakt-C-Betrieb
As H, F. Amplifier, Push-Pull Class-C-Operation
Comme amplificatrice haute fréquence, service-C-push-pull
Como reforzador de alta frecuencia, servicio-C-de contratiempo

•	200	250	430	500	MHz
, ,	1,5	1,2	0.7	0,6	m
U _a	600	600	520	500	٧
U _{g2}	250	250	250	250	٧
U ₉ 2 U ₉ 1	—80	80	—80	_	٧
	_	_	_	20	kΩ
R _{g1}	200			_	٧
0 _{91 '91'}	2×100	2×100	2×100	2×100	mΑ
la 1	16	16	18	20	mΑ
102	2×2,5	2×2,5	2×2,8	2×2.3	mΑ
l ₉₁	4	4	4,5	5	W
Q ₉ 2 Q ₄	2×15	2×17,5	2×19	2×20	W
	90	85	66	60	W
N ~ η	75	71	64	60	90

Als NF-Verstärker und Modulator (B-Betrieb) ohne Gitterstrom As L. F. Amplifier and Modulator (Class B) without grid current Comme amplificatrice basse fréquence et modulatrice (service B) sans courant de grille

Como reforzador de baja frecuencia y modulador (servicio B) sin corriente de rejilla

U.	60	n	45	50	30) 0	V
	25		2		2:	50	٧
U ₉₂	2; 2;			7,5	-:	26	٧
Ug1		7,5 2,5		10		6.5	kΩ
Ra a	0	55	0	. 55	0	52	٧
0 _{91 91'} `	2×20	2×62	2×20	2 × 58	2×20	2 × 56	mΑ
-	0.9	23	1,4	27	2,2	30	mΑ
G 92	0.2	5,8	0.4	6.7	0.6	7,5	W
Q,	2×12	2×12	2×9	2×8.5	2×6	2×5.6	W
N _~	0	50	0	35	0	22,5	W
k		2,4	_	3,1	_	2.9	0.0
ŋ	· -	67.5	-	67.5	_	67	0,0

SRS 4451* VEB WERK FOR FERNMELDEWESEN

Als NF-Verstärker und Modulator (B-Betrieb) mit Gitterstrom
As L.F.Amplifier and Modulator (Class B) with grid-current
Comme amplificatrice basse fréquence et modulatrice (service B) avec courant de
grille

Como reforzador de baja frecuencia y modulador (servicio B) con corriente de rejilla

Ua	6	00	4	50	3	V	
. •		50	2	50	2	V	
U _{g2}	-					25	٧
Ugt Raa		8		6		4	kΩ
	0	78	0	76	0	75	٧
0 _{91 91} ,	2×25	2×100	2×25	2×97	2×25	2×94	mΑ
la La	1,2	26	1,9	28	2,8	30,5	mΑ
1 ₉ 2 1 ₋₄	0	2×2.6	0	2×2.6	0	2×2.6	mΑ
1 ₉₁ Q ₉₁	Ŏ	2×0,1	0	2×0,1	0	2×0.1	W
Q ₉₂	0.3	6.5	0,5	7	0,7	7,6	W
Q.	2×15	2×17	2×11,2	2×13,5	$2\times7,5$	2×9.7	W
N _~	ô	86	0	60	0	37	W
k	_	5	_	5	_	5	%
· 🕽		71.5	_	69	_	65,5	%

Grenzwerte
Max. Ratings
Valeurs limites
Valores limites

	V 4.0. 40	
f	250	500 MHz
U _{a max}	600	500 V
Ug2 max		v
U _{o1 max}		v
la max	2×110	mA
lk max	2×120	mA
I _{kn max}	2×700	mA
lat max	2x 5	mA
Q _{e mex}	2× 20	
Q _{92 max}		w
Q _{g1 mex}	2x 1	
Ret (f) mex		kΩ
Ret (k) mex	100	kΩ
Ue b man	100	V

Capacitanes	Kapazitäten Capacités	Capacidades	
je System	Ce	ca. 10,5	рF
each system	c _a	ca. 3,2	рF
pour chaque système por cada sistema	C _{g1 a}	ca. 📻 0,08	рF
in Gegentaktschaltung	C _{g1 [g []}	ca. 6,7	ρF
in push-pull circuit en couplage push-pull en conexión de contratiempo	Cal all	ca. 2,1	₽F

Betriebsbedingungen Stipulations for Operation Conditions de service Condiciones de servicio

Die Heizspannung darf höchstens \pm 5% vom Sollwert abweichen. Die Temperatur des Kolbens und der Durchführungen darf 180° C nicht überschreiten. Bei Betrieb mit Frequenzen über 150 MHz ist eine zusätzliche Kühlung des Kolbens und der Anodenanschlüsse durch einen schwachen Luftstrom erforderlich. Bei waagerechtem Einbau der Röhre muß die gedachte Fläche durch die beiden Anodenstifte waagerecht liegen.

The highest point that the filament voltage is permitted to deviate from the calculated value is \pm 5%. The temperature of the bulb and the 'lead outs' must not surpass 180° C. When operating with frequencies over 150 Mc/s, an additional cooling means for the bulb and plate connectors is necessary — this can be realized in the best way by help of a weak air current. If, for instance, the valve is mounted in a horizontal position, the provided surface must be horizontally situated between the two plate pins.

La tension de chauffage peut dévier de \pm 5% au maximum de la valeur nominale. La température de l'ampoule et des traversées ne peut dépasser 180° C. Lors de service avec des fréquences de plus de 150 mégacycles, un refroidissement supplémentaire de l'ampoule et des raccordements des anodes par un faible courant d'air est nécessaire. Lors de montage horizontal de la lampe, la surface imaginée par les deux broches d'anodes doit se trouver horizontale.

La tensión de caldeo no debe diferenciarse mas que por un \pm 5% del valor nominal a lo sumo. La temperatura de la ampolla y de las pasadas no debe exceder a 180° C. En un servicio con frecuencias mayores a 150 megaciclos es necesaria una refrigeración adicional de la ampolla y de las conexiones del ánodo por medio de una suave corriente de aire. Al montar la válvula horizontalmente tiene que quedar el plano imaginado horizontal por las dos clavijas del ánodo.

SRS 4451* VEB WERK FOR FERNMELDEWESEN

SRS 4451* VEB WERK FOR FERNMELDEWESEN

Katalog E — Ausgabe januar 1956

VEBWERKFURFERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

SRS 358 K VEB WERK FOR FERNMELDEWESEN

SENDETRIODE

Transmitting Triode Triode génératrice Triodo emisor

Beschreibung

Die Röhre SRS 358 K ist eine strahlungsgekühlte Kurzwellen-Sendetriode für Dauerstrichbetrieb und ist vorwiegend für Therapiegeräte bestimmt. Frühere Typenbezeichnung: TS 41

Description

This valve which bears the Type No. SRS 358 K is a short wave transmitting triode and cooled by radiation. for application of c. w. operation and is also predominantly determined for therapeutic instruments.

Previous denotation: TS 41

Description

La lampe SRS 358 K est une triode génératrice à ondes courtes, refroidie par radiation pour service à trait continu et destinée surtout pour appareils de thérapie.

Désignation de type antérieure: TS 41

Descripción

La válvula SRS 358 K es un triodo ¿ emisor de onda corta refrigerada por irradación para servicio continnuo máximo destinada sobretodo para aparatos de terapia.

Designación anterior del tipo: TS 41

Sockel von unten gesehen

SRS 358 K VEB WERK FOR FERNMELDEWESEN

Allgemeine Daten General Data Données générales Datos generales

Dutos generales	
Heizung: Direkt geheizte thorierte Wolframkathode Heating: Directly heated thoriated tungsten cathode Chauffage: Filament de tungstène thorié chauffé directement Caldeo: Catodo de tungsteno ajustado, de caldeo directo	Gewicht: Weight: Poids: Peso:
U _f	ca. 250 g
Statische Werte Statical Values Valeurs statiques Valores estáticos	
D in the case of Ua 1 1,5 kV	%
S in the case of Ua 1 kV	5 mA/V
Betriebswerte Typical Operating Conditions Valeurs de service Valores de servicio	
Dauerstrichbetrieb in Gegentaktschaltung ($\ell=6$ m) C. W. Operation in a push-pull circuit ($\ell=6$ m) Service à trait permanent en couplage push-pull ($\ell=6$ m) Servicio contínuo máx. en conexión de contratiempo ($\ell=6$ m)	n)
Ua 2000 V Ua eff Ia 150 mA Ia N_ ≥ 150 W N_	150 mA

VEB WERK FÜR FERNMELDEWESEN

SRS 358 K

Grenzwerte Max. Ratings Valeurs limites Valores límites

Ual max																						
U _{a max}					 				 				. '							2000	٧	,
Ua eff max									 											2500	٧	,
Q _{a max}	J													 						150	W	,
Q _{q max}									 								 			15	w	,

Kapazitäten Capacitances Capacités Capacidades

C _{g k}	••••••	ca. 8,0 pF
C _{a k}		ca. 1,5 pF
C		ca. 4.2 nF

Betriebsbedingungen Stipulations for Operation Conditions de service Condiciones de servicio

Die Temperatur des Glaskolbens darf an keiner Stelle 350°C überschreiten. The temperature of the glass bulb on the warmest point must not surpass 350°C. La température de l'ampoule en verre ne peut dépasser 350°C à aucun endroit. La temperatura de la ampolla de vidrio no debe exceder en ninguna parte a 350°C

Katalog E — Ausgabe januar 1956

VEB WERK FÜR FERNMELDEWESEN

BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

VEB WERK FÜR FERNMELDEWESEN

SRS 451

UKW-SENDETETRODE

V. H. F. Transmitting Tetrode Tétrode d'émetteur à ondes ultra-courtes Tétrodo emisor de onda ultracorta

Beschreibung

Die Röhre SRS 451 ist eine strahlungsgekühlte Sendetetrode für UKW- und a Fernsehsender. Der Schirmgitteranschluß ist konzentrisch herausgeführt. Frühere Typenbezeichnung HF 2815.

Description

The valve SRS 451 is a transmitting tetrode which is cooled by radiation. It can be employed for V. H. F. and TV transmitters. The grid cap or connector is concentric in design.

Previous denotation HF 2815.

Maßbild max. Abmessungen Sketch of Measurements max. dimensions Dessin coté Dimensions maxima Croquis medidas máx.

Description

La lampe SRS 451 est une tétrode d'émission, refroidie par radiation, pour émetteurs à ondes ultra-courtes et de télévision. Le raccordement de la grille-écran est sorti concentriquement.

Désignation de type antérieure: HF 2815.

Descripción

La válvula SRS 451 es un tétrodo emisor refrigerada por irradiación para emisoras de onda ultracorta y de televisión. La conexión de rejilla de pantalla es un saliente concéntrico.

Designación anterior del tipo: HF 2815.

Sockel van unten gegen die Stifte gesehen

Base seen from below against the pins

Culot vu d'en bas contre les broches

Zócalo visto desde abajo hacia las clavijas

SRS 451

VEB WERK FÜR FERNMELDEWESEN

Allgemeine Daten General Data Données générales Datos generalos

	Datos g	eneralos	
Heizung: Direkt geheizte : Heating: Directly heated t Chauffage: filament de tun Caldeo: Cátodo de tungste	horiated tungst gstène thorié ch	en cathode auffé directement	Gewicht: Weight: Poids: Peso:
Uf If Einschaltstromstoß Filament Staring Current Impulse Coup de courant de mise en circuit Incremento brusco de corriente al co		ca. 14 A	ca. 28 0 g
	Statical Valeurs	e Werte Values statiques estáticos	
D ₂ in the case of U _{g2} 40	kV 90500 ∨ 50 mA	14	%
S in the case of Ug2 50	kV 00 V	5	mA/V
т	Betrieb ypical Operat Valeurs d Valores d	ing Conditions le service	
Frequenzverdreifachung Service C-tri	C-Betrieb Tr ple fréquence	ebling of Frequency Class C-O Conexión triple servicio C	peration
f	72 MHz 2 kV 420 V 600 V	la	185 mA 35 mA 25 mA · 100 W

VEB WERK FUR FERNMELDEWESEN

SRS 451

Grenzwerte Max. Ratings Valeurs limites Valores límites

$\lambda \min$ 2,0	m U _{g2 max} 0,6 kV
bei U _{o max} in the case of free 100 MHz 3,5	I _{k max} 300 mA
U _{o max chez} f · 100 MHz 3,5	kV Q _{a max} 250 W
bei in the case of U _{amax} chez f · · 200 MHz 2.0	Q _{g½ max}
con chez 1 200 11112 2,0	Q _{g1 max} 10 W

Kapazitäten Capacitances Capacités Capacidades

c _{k g1} ca. 4,9 pF
c _{k g2} ca. 2,5 pF
c _{k a} ca. 0,04 pF
c _{g1 g2}
c _{g2 a} ca. 5,0 pF
c _{a1 a}

Hierzu gehören die "Allgemeinen Betriebsbedingungen"
Please refer to the "General Operating Conditions"
Voir à ce sujet les «Conditions générales de service...
Se ruega presten atención a las "condiciones generales de servicio"

SRS 451 VEB WERK FOR FERNMELDEWESEN

Ausgabe januar 1956

VEBWERK FÜR FERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE. OSTENDSTR. 1.—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

VEB WERK FÜR FERNMELDEWESEN

SRL 351

UKW-SENDETRIODE V. H. F. Transmitting Triode Triode d'émetteur à ondes ultra-courtes Triodo emisor de onda ultracorta

Beschreibung

Die Röhre SRL 351 ist eine luftgekühlte Sendetriode für UKW- und Fernsehsender sowie für Industriegeneratoren. Sie hat einen konzentrischen Gitteranschluß und ist dadurch besonders für Gitterbasisschaltung geeignet. Frühere Typenbezeichnung HF 2730.

Description

The valve SRL 351 is a transmitting triode which is cooled by air. It can be applied for V. H. F. and TV transmitters as well as for industrial generators. Owing to the design of the concentric grid connector, it is especially suitable for grounded grid circuits. Previous denotation: HF 2730.

Description

La lampe SRL 351 est une triode d'émission refroidie à l'air pour émetteurs à ondes ultracourtes et de télévision, ainsi que pour génératrices industrielles. Elle a un raccordement de grille concentrique et est ainsi particulièrement appropriée pour circuits amplificateurs avec grille à la masse. Désignation de type antérieure: HF 2730.

Descripción

La válvula SRL 351 es un triodo emisor refrigerada por aire para emisoras de onda ultracorta y de televisión así como para generadores industriales. Tiene una conexión de rejilla concéntrica prestándose por ello sobretodo para una conexión de base de rejilla. Designación anterior del tipo: HF 2730.

Zocalo visto desde abajo hacia las clavijas

Socket von unten gegen

SRL 351

VEB WERK FÜR FERNMELDEWESEN

Allgemeine Daten General Data Données générales Datos generales

ž	Datos generales			
,	Heizung: Direkt geheizte thorierte Wolframkatode Heating: Directly heated thoriated tungsten cathode Chauffage: filament de tungstène thorié directement cha Caldeo: Cátodo de tungsteno ajustado, de caldeo directo)		Gewicht: Weight: Poids: Peso: 1,1 kg
i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 a. 50	V A	
 	Einschaltstromstoß. Filament Starting Current Impulse:	70	A	
!	Statische Werte Statical Values Valeurs statiques Valores estáticos			
1	D in the case of U_a 2 4 kV			3.0 %
1	S in the case of U _a 2,5 kV chez I _a 1 A · · · · · · · · · · · · · · · · · ·			12 mA/V
1	Betriebswerte			
1	Typical Operating Conditio Valeurs de service Valores de servicio	ns		
	Als HF-Verstärker in Gitterbasisschaltun As H. F. Amplifier in Grounded Grid Circuits. Comme amplificatrice haute fréquence en couplage ar masse, service C Como reforzador de alta frecuencia en conexión de	nplifi	cateui	avec grille à la
	f 88 MHz N _{st}			250 W
1	Ua 4 kV From this, 60	W fur Ware	den Ste necessi	uervorgang notwendig ary for the process of
:	230 V control			our le procédé de
i	SOO mA commande			ara el proceso de regu-
1	I _g 100 mA lación		p	
-		=		

VEB WERK FUR FERNMELDEWESEN

SRL 351

N	1,2 kW	
Einschließlich durchgereichter Including the power which is d capacitances		anode circuit via the inductances and
y compris la puissance passée Incluso potencia transmitida		
	Grenzwerte	
Max. Ratings	Valeurs limites	Valores limites
² _{min} 1 m I _{k,max} 1,2 A	Q _{a max} 2 kW Q _{g max} 80 W	U _{a max} 4,5 kV beif 100 MHz
	Kapazitäten	
Capacitances	Capacités	Capacidades
c _{k.g} ca. 17 pF	c _{k a} ca. 0,16 pF.	c _{g a} ca. 8,0 pF
	Kühlung	
Cooling	Refroidissement	Refrigeración
Luftmenge bei $\mathbf{Q}_{a}=2kW$,	25 C Lufteintrittstempera ca. 2 m³/min	tur und 760 Torr Luftdruck:
Luftmenge bei $\mathbf{Q}_{\alpha}=1$ kW,	25° C Lufteintrittstempera ca. 1 m³/min	tur und 760 Torr Luftdruck:
Druckabfall am Kühler ca.	50 mm WS. Luftmengenmes Prandtischem Staurohr	sungen mit Rotamesser oder
Amount of air in the case of	$Q_a = 2 \text{ kW}, 25 \cdot \text{C}$ air inl r pressure: approx. 2 m ³ /n	et temperature and 760 Torr
 Amount of air in the case of 	$Q_a = 1 \text{ kW} \cdot 25 \text{ C air inl}$ r pressure: approx. 1 m ³ /n	et temperature and 700 Torr
Drop of pressure on the ra measured with a spe	diator approx. 50 mm WS ecial meter (Rotameter) or	Frandtl's pilot tube
Quantité d'air à $Q_a = 2 \text{ kW}$.	, température d'air d'entré	e 25 C et pression 760 Torr:
Quantité d'air à $Q_a = 1 \text{ kW}$.	, température d'air d'entré env. 1 m³/min.	e 25° C et pression 760 Torr:
Perte de pression au refroidi	sseur env. 50 mm CE. Mes stamètre ou tube de Prand	ures des quantités d'air avec tl.
Cantidad de aire con $Q_a = 2$	kW.25 Ctemperatura d	el aire de entrada y 760 Torr
Cantidad de aire con Q _a == 1	sión de aire: aprox. 2 m³/ kW, 25 C temperatura d	el aire de entrada y /60 Torr
Caida de presión en el refe	sión de aire: aprox. 1 m³/ igerador aprox. 50 mm co el medidor sistema "Roto "PrandII".	olumna de agua. Mediciones a" o el tubo de embalse de
Hierzu gehören die	e "Allgemeinen Betriebsbe	dingungen"
Voir à ce suiet les	"Genéral Operating Conc Conditions générales de s	ervice>
Se ruega presten a	tención a las "condiciones	generales de servicio"

SRL 351

VEB WERK FOR FERNMELDEWESEN

VEBWERK FUR FERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1-5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

Katalog E — Ausgabe Januar 1956

VEB WERK FÜR FERNMELDEWESEN

SRL 452

UKW-SENDETETRODE V. H. F Transmitting Tetrode Tétrode d'émetteur à ondes ultra-courtes Tétrodo emisor de onda ultracorta

Beschreibung

Die Röhre SRL 452 ist eine luftgekühlte Sendetetrode für UKW- und Fernsehsender sowie für Industriegeneratoren. Der Schirmgitteranschluß ist konzentrisch herausgeführt. Auf Wunsch kann diese Röhre auch mit Wasserkühlung geliefert werden.

Frühere Typenbezeichnung: HF 2825.

Description

This valve which bears the denotation SRL 452 is a transmitting tetrode which is cooled by air. It can be employed for V. H. F. and TV transmitters as well as for industrial generators. The grid connector is designed concentrically. At request, this valve is also available with water cooling.

Previous denotation: HF 2825.

Description

La lampe SRL 452 est une tétrode d'émission refroidie à l'air pour émetteurs à ondes ultra-courtes et de télévision, ainsi que pour génératrices industrielles. Le raccordement de grille-écran est sorti concentriquement. Sur demande cette lampe peut également être livrée à refroidissement à eau. Désignation de type antérieure: HF 2825.

Descripción

La válvula SRL 452 es un tétrodo emisor refrigerada por aire para emisoras de onda ultracorta y de televisión así como para generadores industriales. Deseándolo puede suministrarse esta válvula también con refrigeración por agua. Designación anterior del tipo: HF 2825.

VEB WERK FOR FERNMELDEWESEN **SRL 452**

Gewicht:

Allgemeine Daten General Data Données générales Datos generales

Heizung: Direkt geheizte thorierte Wolframkatode Heating: Directly heated thoriated tungsten cathode Chauffage: filament de tungstène thorié directement chauffé Caldeo: Cátodo de tungsteno ajustado, de caldeo directo					
U _f	ca. 2,7 kg				
Einschaltstromstoß Filament Starting Current Impulse:					
Statische Werte Statical Values Valeurs statiques Valores estáticos					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 15 %				
bei U_a 2 kV S in the case of U_{g2} 400 V	. 17 mA/V				
Betriebswerte Typical Operating Conditions Valeurs de service Valores de servicio					
Als HF-Verstärker in Katodenbasisschaltung, C-Betriet As H. F. Amplifier in Grounded Cathode Circuit, Class-C Op Comme amplificatrice haute fréquence en circuit avec cathode à la m Como reforzador de alta frecuencia en conexión de base de cáto	eration asse, service C				
	100 W 3,5 kW				

VEB WERK FÜR FERNMELDEWESEN

SRL 452

Max. Rat	ings			zwerte s limites	Valores límite	s
, min		2,5	5 m	Q _{c mc} , .	2.5	kW
U _{a ma} , bei f	30 MHz	6	kV	Q _{q2 max} .	220	W
Ua max bei f	100 MHz	5	kV	Q _{g1 max}	100	W
U _{g2 ma} ,	6	00	٧			
I _{k max}		2	Α			

Capacitances	,	•	ıcités	Capacidades		
C _{k a1}	ca. 15	pF	C _{g1 g2}		ca. 33	рF
C _{k g2}						
Cha			C _{q1} a		ca. 0,9) pF

	Kühlung	
Cooling	Refroidissement	Refrigeración

Luftmenge bei $\mathbf{Q}_a=2.5\,\mathrm{kW}$ 25 °C Lufteintrittstemperatur und 760 Torr Luftdruck : ca. 2.5 m³/min. Druckabfall am Kühler ca. 60 mm WS. Luftmengenmessungen mit Rotamesser oder Prandtlschem Staurohr.

Amount of air in the case of $\mathbf{Q}_a=2.5$ kW 25° C air inlet temperature and 760 Torr air pressure: approx. 2,5 m³/min. Drop of pressure on the radiator approx. 60 mm WS The amount of air can be measured with a special meter (Rotameter) or Prandtl's pilot tube.

Quantité d'air à $\mathbf{Q}_a=2.5\,\mathrm{kW}$, température d'air d'entrée 25° C. et pression de 760 Torr: environ 2,5 m³/min. Perte de pression au refroidisseur, env. 60 mm CE. Mesures des quantités d'air avec rotamètre ou tube de Prandtl.

Cantidad de aire con $\mathbf{Q}_a=2.5$ kW 25° C temperatura del aire de entrada y 760 Torr presión de aire: aprox. 2,5 m³/min. Caida de la presión en el refrigerador aprox. 60 mm columna de agua. Mediciones de la cantidad de aire con el medidor sistema "Rota" o el tubo de embalse de "Prandtl".

Hierzu gehören die "Allgemeinen Betriebsbedingungen" Please refer to the "General Operating Conditions" Voir à ce sujet les · Conditions générales de service Se ruega presten atención a las "condiciones generales de servicio"

Katalog E --- Ausgabe Januar 1956

VEBWERKFÜRFERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE. OSTENDSTR. 1--5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

SRL 452 VEB WERK FOR FERNMELDEWESEN

VEB WERK FOR FERNMELDEWESEN

SRL 352

UKW-SENDETRIODE V. H. F. Transmitting Triode Triode d'émetteur à ondes ultra-courtes Triodo emisor de onda ultracorta

Beschreibung

Die Röhre SRL 352 ist eine luftgekühlte Sendetriode für UKW- und Fernsehsender sowie für Industriegeneratoren. Sie hat einen konzentrischen Gitteranschluß und ist dadurch besonders für Gitterbasisschaltung geeignet. Frühere Typenbezeichnung: HF 2958.

Description

The valve SRL 352 is an air-cooled transmitting triode, which can be employed for V. H. F. and TV transmitters, as well as for industrial generators. Owing to the concentric design of the grid cap or connector, it is especially suitable for use with grounded grid circuits. Previous denotation: HF 2958.

Description

La lampe SRL 352 est une triode d'émission refroidie à l'air pour émetteurs à ondes ultra-courtes et de télévision. ainsi que pour génératrices industrielles. Elle a un raccordement de grille concentrique et est ainsi particulièrement appropriée pour circuits amplificateurs avec la grille à la masse. Désignation de type antérieure: HF 2958.

Descripción

La válvula SRL 352 es un triodo emisor refrigerada por aire para emisoras de onda ultracorta y de televisión así como para generadores industriales. Tiene una conexión de rejilla concéntrica prestándose por ello sobretodo para la conexión de base de rejilla. Designación anterior del tipo: HF 2958.

- 186 Sketch of Measurements may, dimensions Dessin coté Dimensions maxima - 101 • Croquis medidas mair

Maßbild

max. Abmessungen

Base seen from below against Culot vu d'en bas contre les broches

Zacata «isto desde abajo

hasia las clavijas

Sockel van unten gegen die

Stifte gesehen

SRL 352 VEB WERK FOR FERNMELDEWESEN WE

Allgemeine Daten General Data Données générales Datos generales

	Datos generales	
, _		Gewicht: Weight: Poids: Peso:
1 . *	7,0 V	ca. 2 kg
Statical Values	Statische Werte Valeurs statiques Valores e	estáticos
D in the case of Ua 2 Chez con Ia 1		4.0 %
S in the case of Ua 2,5 chez con Ia 1		18 mA/V
	Betriebswerte Typical Operating Conditions Valeurs de service Valores de servicio	
Als HF-Ver	rstärker in Gitterbasisschaltung, C-Betrieb	

Als HF-Verstärker in Gitterbasisschaltung, C-Betrieb
As H. F. Amplifier in Grounded Grid Circuit, Class-C Operation
Comme amplificatrice haute fréquence en circuit amplificateur avec la grille à la
masse, service C

VEB WERK FÜR FERNMELDEWESEN

SRL 352

Grenzwerte Max. Ratings Valeurs limites Valores límites

∄min		1,5	m
U _{a max}	bei f 🚄 30 MHz	6	k٧
U _{a max}	bei f ≤ 100 MHz	5	k٧
I _{k max}		2	Α
Q _{a max}		2,5	kW
۵		150	W

Kapazitäten Capacitances Capacités Capacidades

C_{gk}			٠				•	•		ca.	23	рŀ
Ca k										ca.	0,4	ρF
C										ca.	12	ρF

Kühlung Refroidissement

Cooling Refro

Refrigeración

Luftmenge bei $\mathbf{Q}_a=2.5$ kW, 25° C Lufteintrittstemperatur und 760 Torr Luftdruck ca. 2.0 m³/min. Druckabfall am Kühler ca. 60 mm WS. Luftmengenmessungen mit Rotamesser oder Prandtl'schem Staurohr.

Amount of air in the case of $\mathbf{Q}_a=2.5$ kW, 25° C air inlet temperature and 760 Torr air pressure: approx. $2.0\,\mathrm{m}^3/\mathrm{min}$. Drop of pressure on the radiator approx. $60\,\mathrm{mm}$ WS. The amount of air can be measured with a special meter (Rotameter) or Prandtl's pilot tube.

Quantité d'air à $\mathbf{Q}_a=2.5$ kW., température d'air d'entré 25° C. et pression de 760 Torr: env. 2,0 m³/min. Perte de pression au refroidisseur: env. 60 mm CE. Mesures des quantités d'air avec rotamètre ou lube de Prandtl.

Cantidad de aire con $Q_a=2.5~kW/25^\circ$ C temperatura de aire de entrada y 760 Torr presión de aire aprox. 2.0 m³/min. Caída de presión en el refrigerador aprox. 60 mm columna de agua. Mediciones de la cantidad de aire con el medidor sistema "Rota" o el tubo de embalse de "Prandtl".

Hierzu gehören die "Allgemeinen Betriebsbedingungen" Please refer to the "General Operating Conditions" Voir à ce sujet les «Conditions générales de service» Se regua presten atención a las "condiciones generales de servicio" SRL 352 VEB WERK FOR FERNMELDEWESEN

VEBWERK FUR FERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

(204) Ag 30 212 55 6 205

Katalog E --Ausgabe
Januar 1956

VEB WERK FOR FERNMELDEWESEN

SRL 353

UKW-SENDETRIODE

V. H. F. Transmitting Triode Triode d'émetteur à ondes ultra-courtes Triodo emisor de onda ultracorta

Beschreibung

Die Röhre SRL 353 ist eine luftgekühlte Sendetriode für UKW- und Fernsehsender sowie für Industriegeneratoren. Sie hat einen konzentrischen Gitteranschluß und ist dadurch besonders für Gitterbasisschaltung geeignet. Frühere Typenbezeichnung: HF 2780.L. q.

Description

The valve SRL 353 is an air-cooled transmitting triode, which can be employed for V. H. F. and TV transmitters, as well as for industrial generators. Owing to the concentric design of the grid cap or connector, it is especially suitable for use with grounded grid circuits.

circuits. Previous denotation: HF 2780 L.

Description

La lampe SRL 353 est une triode d'émission, refroidie à l'air pour émetteurs à ondes ultra-courtes et de télévision, ainsi que pour génératrices industrielles. Elle a un raccordement de grille concentrique et est ainsi particulièrement appropriée pour circuits amplificateurs avec grille à la masse.

Désignation antérieure de type: HF 2780 L.

Descripción

La válvula SRL 353 es un triodo emisor refrigerada por aire para emisoras de onda ultracorta y de televisión así como para generadores industriales. Tiene una conexión de rejilla concéntrica prestándose por ello sobretodo para una conexión de base de rejilla.

Designación anterior del tipo: HF 2780 L.

Maßbild max. Abmessungen

Sketch of Measurements max. dimensions

Dessin coté Dimensions maxima

Croquis medidas máx.

Sockel von unten gegen die Stifte gesehen

Base seen from below against the pins

Culot vu d'en bas contre les

Zócalo visto desde abajo hacia las clavijas

SRL 353 VEB WERK FOR FERNMELDEWESEN

Allgemeine Daten General Data Données générales Datos generales

	-	
!	Heizung: Direkt geheizte thorierte Wolframkatode Heating: Directly heated thoriated tungsten cathode Chauffage: filament en tungstène thorié, chauffé directement Caldeo: Cátodo de tungsteno ajustado, de caldeo directo	Gewicht: Weight: Poids: Peso: ca. 8,2 kc
	U _f	Cu. 0,2 Kg
	Einschaltstromstoß Filament Starting Current Impulse	
	Statische Werte Statical Values Valeurs statiques Valores estáticos	
: : : :	be: D in the case of U_a 35 kV 2,0 chez I_a 1 A 2,0 be: S in the case of U_a 3 kV 40 m	% A/V
	Betriebswerte Typical Operating Conditions Valeurs de service Valores de servicio	
	Als HF-Verstärker in Gitterbasisschaltung, C-Betrieb As H. F. Amplifier in Grounded Grid Circuit, Class-C Operation Comme amplificatrice haute fréquence en circuit amplificateur avec g masse, service C Como reforzador de alta frecuencia en conexión de base der rejilla,	grille à la
		≥ 12 kW
ì		

VEB WERK FÜR FERNMELDEWESEN

SRL 353

Max. Ratings	Grenzwerte Valeurs limites	Valores límites
		1,5 m
	1Hz	
	1Hz	
lk max		5 A
Q _{a max}		10 kW
Q _{g max}		400 W
	Kapazitäten	
Capacitances	Capacités	Capacidades
Ca +		ca. 0,8 pF

	Kühlung	
Cooling	Refroidissement	Refrigeración

Luftmenge bei $\mathbf{Q}_a = 10$ kW, 25° C Lufteintrittstemperatur und 760 Torr Luftdruck ca. 10 m³/min Druckabfall am Kühler ca. 60 mm WS. Luftmengenmessungen mit Rotamesser oder Prandtlschem Staurohr.

Amount of air in the case of $\mathbf{Q}_a=10$ kW, 25° C air inlet temperature and 760 Torr air pressure; approx. 10 m³/min. Drop of pressure on the radiator approx. 60 mm WS. The amount of air can be measured with a special meter (Rotameter) or Prandtl's p ilot tube.

Quantité d'air à $Q_a=10\,kW$., température d'air d'entrée 25° C et pression de 760 Torr: env. 10 m³/min. Perte de pression au refroidisseur, env. 60 mm. CE. Mesures des quantités d'air avec rotamètre ou tube de Prandtl.

Cantidad de aire con $\mathbf{Q}_a=10$ kW, 25° C temperatura del aire de entrada y 760 Torr presión de aire aprox. 10 m³/min. Caída de presión en el refrigerador aprox. 60 mm columna de agua. Mediciones de la cantidad de aire con el medidor sistema "Rota" o con el tubo de embalse de "Prandtl".

Hierzu gehören die "Allgemeinen Betriebsbedingungen" Please refer to the "General Operating Conditions" Voir à ce sujet les «Conditions générales de service» Se ruega presten atención a las "condiciones generales de servicio"

Katalog E — Ausgabe Januar 1956

VEBWERKFÜRFERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

SRL 353

VEB WERK FOR FERNMELDEWESEN

VEB WERK FOR FERNMELDEWESEN

SRW 353

UKW-SENDETRIODE V. H. F. Transmitting Triode Triode d'émetteur à ondes ultra-courtes Triodo emisor de onda ultracorta

Beschreibung

Die Röhre SRW 353 ist eine wasser-gekühlte Sendetriode für UKW- und Fernsehsender sowie für Industrie-generatoren. Sie hat einen konzentrischen Gitteranschluß und ist dadurch besonders für Gitterbasisschaltung geeignet.

Frühere Typenbezeichnung: HF 2780W

Description

The valve SRW 353 is a water-cooled transmitting triode, which can be employed for V.H.F. and TV transmitters, as well as for industrial generations. rators. Owing to the concentric design of the grid cap or connector, it is especially suitable for use with grounded grid circuits.

Previous denotation: HF 2780 W.

Description

La lampe SRW 353 est une triode d'émission refroidie à l'eau pour émetteurs à ondes ultra-courtes et de télévision, ainsi que pour génératrices industrielles. Elle a un raccordement de grille concentrique et est ainsi par-ticulièrement appropriée pour circuits amplificateurs avec grille à la masse. Désignation antérieure de type: HF 2780W.

Descripción

La válvula SRW 353 es un triodo emisor refrigerada por agua para emiso-ras de onda ultracorta y de televisión así como para generadores industri-ales. Tiene una conexión de rejilla concentrica prestándose por ello sobre-todo para una conexión de base de rejilla.

Designación anterior del tipo: HF 2780 W.

Croquis medidas máx.

Sockel von unten gegen die Stifte gesehen

Base seen from below against the pins

Culat vu d'en bas contre les broches

Zócalo visto desde abajo hacia las clavijas

SRW 353 VEB WERK FOR FERNMELDEWESEN

	Allgemeine Daten	
General Data	Données générales	Datos generales
Heating: Directly hea Chauffage: filament	eizte thorierte Wolframkatode ated thoriated tungsten cathode en tungstène thorié chauffé directement ungsteno ajustado, de caldeo directo	Gewicht: Weight: Poids: Peso:
lf		ca. 2,7 kg
	Statische Werte	
Statical Values		Valores estáticos
bel in the case of C chex con	J _a 35 kV ₃ 1 A ······	2,0 %
S in the case of Con	Ja 3 kV a 1 A · · · · · · · · · · · · · · · · · ·	40 mA/V
	Betriebswerte	
	Typical Operating Conditions	
Valeur	s de service Valores de se	rvicio
As H. F. Ar Comme amplificatri	dF-Verstärker in Gitterbasisschaltung, C-Bet mplifier in Grounded Grid Circuit, Class-C (ce haute fréquence en circuits amplificateu masse, service C e alta frecuencia en conexión de base de	Operation rs avec grille à la
f 88 MHz I _g 600 mA	$\begin{array}{llllllllllllllllllllllllllllllllllll$	l _a 3 A
As H. F. Amplifier in	rker in Katodenbasisschaltung, Selbsterregu Grounded Cathode Circuit, Self-Excitation, ice haute fréquence circuit cathode à la ma service C	Class-C Operation
Como reforzado	or de alta frecuencia en conexión de base de excitación, servicio C	el cátodo, auto-
f400 kl		,—300 \

VEB WERK FOR FERNMELDEWESEN

SRW 353

	Grenzwer	rte
Max. Ratings	Valeurs lim	nites Valores límites
i, min	5 A ($egin{aligned} U_{a\ max}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	Kapazität	ten
Capacitances	Capacité	és Capacidades
c _{g/k} ca. 59 pF	c _{a/k} ca.	0,8 pF
	Kühlung	g
Cooling	Refroidissen	ment Refrigeración
Kühlwasseraustrittstemperatu	ır	≥ 15 l/min ≤ 65° C max 5 atü
Temperature of the Cooling	Water at Outlet .	= 15 kW ≥ 15 l/min ≤ 65° C max 71,12 lbs/sq. in.
Température de sortie de l'ed	au de refroidissen	kW ≥ 15 l/min ment ≤ 65° C ≤ 5 kg/cm² eff.
Temperatura del agua de ref	rigeración de sal	: 15 kW ≥ 15 l/min lida ≤ 65° C

Hlerzu gehören die "Allgemeinen Betriebsbedingungen" Please refer to the "General Operating Conditions" Voir à ce sujet les «Conditions générales de service» Se ruega presten atención a las "condiciones generales de servicio"

Katalog E — Ausgabe Januar 1956

VEB WERK FÜR FERNMELDEWESEN

BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

SRW 353 VEB WERK FOR FERNMELDEWESEN

VEB WERK FOR FERNMELDEWESEN

SRL 354*

UKW-SENDETRIODE

V. H. F. Transmitting Triode Triode d'émetteur à ondes ultra-courtes Triodo emisor de onda ultracorta

Beschreibung

Die Röhre SRL 354 ist eine luftgekühlte Sendetriode für UKW- und Fernsehsender sowie für Industriegeneratoren. Sie ist vollkonzentrisch aufgebaut und daher besonders für Gitterbasisschaltung geeignet. Auf Wunsch kann diese Röhre auch mit Wasserkühlung geliefert werden.

Frühere Typenbezeichnung: HF 2826. 9

Description

The valve SRL 354 is an air-cooled transmitting triode for use with V. H. F. and TV transmitters, as well as for industrial generators. It is designed fully acconcentric, therefore especially suitable for grounded grid circuits. At request this valve is also available with water-cooling.

Previous denotation: HF 2826.

Description

La lampe SRL 354 est une triode d'émission refroidie à l'air pour émetteurs à ondes ultra-courtes et de télévision, ainsi que pour génératrices industrielles. Elle est de construction entièrement concentrique et ainsi particulièrement appropriée aux circuits amplificateurs avec grille à la masse. Sur demande cette lampe peut également être livrée avec refroidissement à l'eau.

Désignation antérieure de type: HF 2826.

Descripción

La válvula SRL 354 es un triodo emisor refrigerada por aire para emisoras de onda ultracorta y detelevisión así como para generadores industriales. Su ejecución es del todo concéntrica prestándose por ello sobretodo para una conexión de base de rejilla. Deseándolo puede suministrarse esta válvula también con refrigeración por agua. Designación anterior del tipo: HF 2826.

Jan 1

SRL 354* VEB WERK FOR FERNMELDEWESEN

General Data Heizung: Direkt geheizte thoriert Heating: Directly heated thoriate Chauffage: filament de tungstène Caldeo: Cátodo de tungsteno aju Uf Einschaltstromstoß Filament Starting Current Impulse Coup de courant de mise en circuit Incremento brusco de corriente al conectar	thorié, chauffé directement istado, de caldeo directo	Datos generales Gewicht: Weight: Poids: Peso: ca. 8,5 kg
	Statische Werte Valeurs statiques	Valores estáticos
Statical Values bet Ua 24 kV D chez Ia 1 A		2 %
S in the case of Ua 3 kV chez la 1 A	Betriebswerte	40 mA/V Valores de servicio
Typical Operating Condition HF-Verstärkung im Fernse Gitterbasisschaltung, B-Betrie gativer Modulation. Werte für pegel H. F. amplification in TV trained grounded grid circuits Operation with negative modulates for black level.	shsender, b mit ne- Schwarz- I'émetteur de ficateurs avec modul pour niveau Refuerzo de c de televisiór rejilla, servicativa. Valc	haute fréquence dans télévision, circuits ampli- grille à la masse service B ation négative. Valeurs du noir. alta frecuencia en emisoras n, conexión de base de cio B con modulación ne- pres para el nivel negro.
f 170 MHz la B 10 MHz la	1,2 kW N for synchr	u du noir 5,3 kW

VEB WERK FOR FERNMELDEWESEN

SRL 354*

HF-Verstärkung. Gitterbasisschaltung. C-Betrieb H. F. amplification, grounded grid circuits, class C-Operation Amplification haute fréquence, circuits amplificateurs avec grille à la masse, service C Refuerzo de alta frecuencia, conexión de base de rejilla, servicio C

f88 MHz U_g-250 V I_g0,55 A N_\sim \geq 10 kW U_a 6 kV I_a 2,6 A N_s 1......1,6 kW

	Grenzwerte	
Max. Ratings	Valeurs limites	Valores límites
λmin		1,3 m
U _{a max}	bei f ≤ 30 MHz	7 kV
	bei f ≤ 100 MHz	
Q _{a max}		10 kW
Q _{g max}	bei f ≤ 100 MHz	400 W
•	bei f == 200 MHz	350 W

	Kapazitäten	Canadadas
Capacitances	Capacités	Capacidades
c _{k/g} ca256 pF	c _{k/a} ca . 0,8 pF	c _{g/a} ca. 28 pF

Kühlung ling Refroidissement

Refrigeración

Luftmenge bei $\mathbf{Q}_a=10$ kW. 25° C Lufteintrittstemperatur und 760 Torr Luftdruck ca. 10 m³/min. Druckabfall at Kühler ca. 60 mm WS. Luftmengenmessungen mit Rotamesser oder Prandtlschem Staurohr.

Amount of air in the case of Q_a 10 kW, 25° C air inlet temperature and 760 Torr air pressure ca. 10 m³/min. Drop of pressure on the radiator approx. 60 mm WS. The amount of air can be measured with a special meter (Rotameter) or Prandtl's pilot tube.

Quantité d'air à $\mathbf{Q}_a=10\,\mathrm{kW}$, température de l'air d'entrée 25° C. et pression 760 Torr ca. 10 m³/min. Perte de pression au refroidisseur, env. 60 mm CE. Mesures des quantités d'air avec rotamètre ou tube de Prandtl.

Cantidad de aire con $\mathbf{Q}_a = 10$ kW, 25° C temperatura del aire de entrada y 760 Torr presión de aire ca. 10 m³/min. Caída de la presión en el refrigerador aprox. 60 mm columna de agua. Mediciones de la cantidad de aire con el medidor sistema "Rota" o el tubo de embalse de "Prandtl".

Hierzu gehören die "Allgemeinen Betriebsbedingungen" Please refer to the "General Operating Conditions" Voir à ce sujet les »Conditions générales de service» Se regua presten atención a las "condiciones generales de servicio."

SRL 354* VEB WERK FÜR FERNMELDEWESEN WF

SRL 354* VEB WERK FOR FERNMELDEWESEN

Katalog E — Ausgabe Januar 1956

VEBWERK FÜR FERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

SENDETRIODE

Transmitting Triode Triode génératrice Triodo emisor

Beschreibung

Die Röhre SRW 356 ist eine wassergekühlte Sendetriode mit großer Leistung für Rundfunksender in Gitterund Anodenspannungsmodulation sowie für Industriegeneratoren.

Frühere Typenbezeichnung: RS 558.

Description

The valve Type SRW 356 is a water-cooled transmitting triode with large output to be applied for broadcasting transmitters in grid and anode modulation, as well as for industrial generators.

Previous denotation: RS 558.

Maßbild max. Abmessungen Sketch of Measurements max. dimensions Dessin coté Dimensions maxima Croquis medidas máx.

Description

La lampe SRW 356 est une triode d'émission refroidie à l'eau à grande puissance pour émetteurs de radio en modulation par grille et anodique, ainsi que pour génératrices industrielles.

Désignation de type antérieure: RS 558.

Descripción

La válvula SRW 356 es un triodo emisor refrigerada por agua con gran potencia para emisores de radio en modulación de rejilla y de ánodo así como para generadores industriales. Designación anterior del tipo: RS 558.

SRW 356 VEB WERK FOR FERNMELDEWESEN WE

Allgemeine Daten General Data Données générales Datos generales

Heizung: Direkt geheizte, thorierte Wolframkatode Heating: Directly heated thoriated tungsten cathode Chauffage: filament de tungstène, thorié chauffé directement Caldeo: Cátodo de tungsteno ajustado, de caldeo directo U1	Gewicht: Weight: Poids: Peso: ca. 8 kg
Statische Werte Statical Values Valeurs statiques Valores estáticos	
D in the case of Chez Con Ia 1 A	. 1%
bel Ua 12 kV S in the case of Ua 2 kV chez Ia 3 A	. 30 mA/V
Betriebswerte Typical Operating Conditions Valeurs de service Valores de servicio	
Als HF-Verstärker im B-Betrieb H. F. Amplifier in Class-B Operation Comme amplificatrice haute fréquence en service B Como reforzador de alta frecuencia en servicio B	,
f 400 kHz la	
U _a 12 kV I _g	
U ₀ –90 V N _~	≧ 40 KW

VEB WERK FOR FERNMELDEWESEN SRW 356

Grenzwerte Max. Ratings Valeurs limites Valores límites

	vaiores	iimites	
λ _{min}			15 m
Min Ohne Modulation U _{a max} ohne Modulation U _{a max} without modulation U _{a max} sans modulation U _{a max} sin modulación			12 kV
$U_{a \text{ max}}$ bei Anodenspanno $U_{a \text{ max}}$ in the case of ano $U_{a \text{ max}}$ à modulation ano $U_{a \text{ max}}$ Con modulación o	ode modulation (dique (puissance	(max. carrier (porteuse max	output 26 kW) imum 26 kW.) 10 kV
Q _{a mūx}	25 kW	Q _{g max}	1 kW
·	Kapaz Capaci Capa Capaci	tances cités	
c _{k/g} ca. 83 pF	C _{k a}	. ca. 9 pF	c _{g a} ca. 36 pF
	Küh	-	Refrigeración
Cooling	Refroidi		. •
Kühlwassermenge bei Q Kühlwasseraustrittstempe Kühlwasserdruck	eratur		<u>2</u> 65°C
Amount of Cooling Wate Temperature of the Coo Pressure of the Cooling	r in the case of Q	_ == 25 kW itlet	≥ 25 l/min ≤ 65° C
Quantité d'eau de refroi Température de sortie d Pression de l'eau de refr	e l'eau de refroie	dissement	<u>2</u> 25 l/min <u>65° C</u> max 5 kg,cm² eff
Cantidad de aqua de ref	frigeración con G	Q _a = 25 kW de salida	

SRW 356 VEB WERK FÜR FERNMELDEWESEN

Betriebsbedingungen Stipulations for Operation Conditions de service Condiciones de servicio

Das Einschalten der Heizung erfolgt am vorteilhaftesten durch einen hand- oder motorgesteuerten Regeltransformator. Es kann aber auch in zwei Stufen nach folgenden Bedingungen vorgenommen werden:

1. Stufe: Max. Einschaltspannung $U_f = 9 V$

2. Stufe: Nach 10 sek. umschalten auf

Betriebsspannung

 $U_t = 18 \text{ V}$

Beim Betrieb der Röhre ist ein Anodenschutzwiderstand von 200 Ohm zu verwenden. Bei gittergesteuerten Gleichrichtern kann der Wert auf 100 Ohm verringert werden. Bei Fremdsteuerung muß die Röhre mit einer Trägersperre versehen werden, damit bei Überschlägen in der Röhre der Träger sofort gesperrt wird. Von besonderer Wichtigkeit ist, daß die Röhre in der Senderschaltung mit wirkungsvotlen Röhrenschutzmitteln (Ignitron, Ionotron) ausgestattet ist, die bei einem Röhrenüberschlag die Röhre wirksam schützen.

The switching-on of the heating is made in the most advantageous way by a manual or motor-controlled regulating transformer. It can also be carried out in two stages according to the following stipulations:

1st Stage: Max. Filament Starting Vol-

tage

 $U_f = 9 V$

2nd Stage: After 10 seconds switching

over to the operating voltage $U_f = 18 \text{ V}$

For a valve in operation, a plate protective resistor of 200 Ohms must be applied; the value can be reduced to 100 Ohms when a grid-controlled rectifier is used. By external control the valve must be provided with a carrier suppressor, in order to block the carrier at once in the case of punctures within the valve. A most important factor is, that the valve applied in the transmitting circuit should be provided with effective means of protection (ignitron or ionotron) efficiently guarding the valve when a puncture occurs.

La mise en circuit du chauffage se fait le plus favorablement par un transformateurrégulateur commandé à la main ou par moteur. Elle peut toutefois être faite en deux échelons d'après les conditions suivantes:

1. échelon: tension de mise en circuit $maximum U_f = 9 V$

2. échelon: commuter après 10 sec. sur

tension de service $U_f = 18 \text{ V}$

Lors de la mise en service de la lampe, une résistance de protection anodique de 200 Ohms sera employée. Dans les redresseurs commandés par grille, la valeur peut être réduite à 100 Ohms. Lors de commande étrangère, la lampe doit être pourvue d'un blocage de porteuse, afin que lors de décharge dans la lampe, la porteuse puisse être immédiatement arrêtée. Il est d'une importance capitale que la lampe soit garnie de moyens de protection efficaces (ignitron, ionotron), lesquels préservent efficacement la lampe lors de décharge.

La conexión del caldeo se efectúa del modo mas favorable por medio de un transformador de regulación accionado a mano o por motor. Mas también se puede efectuar esta conexión en dos escalones según las siguientes condiciones:

1. escalón: tensión máx. de conexión $U_f=9\ V$

2. escalón: después de 10 seg. conectar

a una tensión de servicio $U_f = 18 \text{ V}$

Durante el servicio de la válvula hay que emplear una resistencia de protección del ánodo de 200 ohmios. Tratándose de rectificadores regulados por rejilla puede disminuirse el valor a 100 ohmios. Con una regulación ajena tiene que equiparse la válvula con un cierre-portador para que el portador quede enseguida bloqueado al producirse cortocircuitos en la válvula. De gran importancia es que la válvula en conexión de emisoras esté equipada con medios eficaces de protección (ignitrono, ionotrono) para preservarla de daños por cortocircuitos.

SRW 356 VEB WERK FUR FERNMELDEWESEN

Katalog E — Ausgabe Januar 1956

VEBWERK.FURFERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

VEB WERK FOR FERNMELDEWESEN

SRW 357

SENDETRIODE Transmitting Triode Triode génératrice Triodo emisor

Beschreibung

Die Röhre SRW 357 ist eine wassergekühlte Sendetriode mit großer Leistung für Rundfunksender in Gitterund Anodenspannungsmodulation sowie für Industriegeneratoren.

Frühere Typenbezeichnung: RS 566.

Maßbild max. Abmessungen Sketch of Measurements max. dimensions Dessin coté Dimensions maxima Croquis medidas máx.

Description

This valve which is listed as Type SRW 357 is a water-cooled transmitting triode with large output applied for broadcasting receivers in grid and anode modulation, as well as in industrial generators.

Previous denotation: RS 566.

Description

La lampe SRW 357 est une triode d'émission refroidie à l'eau à grande puissance pour émetteurs de radio en modulation par grille et anodique, ainsi que pour génératrices industrielles.

Désignation de type antérieure: RS 566.

Descripción

La válvula SRW 357 es un triodo emisor refrigerada por agua con gran potencia para emisoras de radio en modulación de rejilla y de ánodo así como generadores industriales.

Designación anterior del tipo: RS 566.

SRW 357 VEB WERK FÜR FERNMELDEWESEN WF

	Données gé		Datos	s generales
General Data				•
Heizung: Direkt geheizte, the	orierte Wolfra	nkatode		Gewicht: Weight:
Heating: Directly heated thou	riated tungsten	carnode		Poids:
Chauffage: filament de tungs	tène, thorie di	reciement cha reldoo directo	Unie	Peso:
Caldeo: Cátodo de tungsteno	ajustado, de	raideo dilecto		ca. 18 kg
U _f			18 V	cu. To kg
U _f			200 A	
I _f			200 %	
	Statische	Werte		
Statical Values	Valeurs st		Valor	es estáticos
bei Ua 1012	≀kV	*		
D chez				2%
con Ia 2A				
bele.v.				
bel Ua 12 kV				50 mA/V
S chez la 6A				
	Betrieb:	werte		
Typical Operating Condit			e Valores	de servicio
Al	s HF-Verstärke	r im B-Betrie	b	
As H. I	F. Amplifier in	Class-B Oper	ation_	
Comme amp	lificatrice hau	te fréquence e	n service B	
Como refor	zador de alta	frecuencia en	servicio B	
1	400 kHz	ا		13 A
U _a	10 kV	la		5 A
	_140 V	N~		≧ 100 kW
Cally stances	ung, C-Betriet	. Katodenbasi	isschaltuna	
Selbsterreg	n, class C-Ope	ration, cathod	e base circuit	
Auto-excitation	on, service C. (ouplage de bo	se à cathode	
Auto-excitación	, servicio C, ac	oplamiento de	e base al cátoc	lo
	U _a			3,5 A
f400 kHz	•	13 A	-	≧ 100 kW
U _a 13 kV	1 _a	197	********	
5 7				

VEB WERK FOR FERNMELDEWESEN SRW 357

Grenzwerte Max. Ratings Valeurs limites Valores límites

λ _{min}		100	m
	ohne Modulation		
U _{a max}	without modulation	13	L۷
Ua max	sans modulation		~ *
	sin modulación		
Ua max	bei Anodenspannungsmodulation (max. Trägerleistung 65 kW)		
) 44	LV
Un max	à modulation de tension anodique (puissance porteuse maximum 65 kV	V) ''	~ ~
Uamax	con modulación de tenisón del ánodo (potencia máx. del portador 65 k	W)	
			kW
Q _a max		5	kW

Capacitances						١		•		z i i)				Capacidades						es					
C _{k/g}							 																ca.	. '	125		ρF	
Ck/a							 														٠		ca.	•	7,	>	рħ	
Caa							 																ca.		77		ρF	

Kühlung Cooling Refroidissement Refrigeración

Kühlwassermenge bei $\mathbf{Q}_{\mathbf{a}} = 120 \text{ k./} \dots$	≧ 100 l/min
Kühlwasseraustrittstemperatur	≤ 65° C
Kühlwasserdruck	max 5 atü
Amount of Cooling Water in the case of $Q_2 = 120 \text{ kW} \dots$	≥ 100 l/min
Output temperature of the Cooling Water	≦ 92, C
Pressure of the Cooling Water	max 71,12
•	lbs/sq. in.
Quantité d'eau de refroidissement à Q _a = 120 kW	≥ 100 l/min
Température de sortie de l'eau de refroidissement	≦ 65° C
Pression de l'eau de refroidissement	max 5 kg/cm²eff.
Cantidad de agua de refrigeración con $Q_a = 120 \text{ kW} \dots$	
Temperatura del agua de refrigeración de salida	≦ 65° C
Presión de agua de refrigeración	max 5 atm.

SRW 357 VEB WERK FÜR FERNMELDEWESEN

Betriebsbedingungen Stipulations for Operation Conditions de service Condiciones de servicio

Das Einschalten der Heizung erfolgt am vorteilhaftesten durch einen hand- oder motorgesteuerten Regeltransformator. Es kann aber auch in zwei Stufen nach folgenden Bedingungen vorgenommen werden:

1. Stufe: Max. Einschaltspannung

 $U_f = 9 V$

2. Stufe: Nach 10 sek. umschalten auf

Betriebsspannung

 $U_f = 18 \text{ V}$

Bei Schaltungen mit einem Modulationstransformator im Anodenkreis (Modulation in der Vorstufe oder Telegrafiebetrieb) soll der Anodenschutzwiderstand bei Verwendung von einem giftergesteuerten Gleichrichter mit Spannungsschaltung durch ein Schnellrelais 25 Ohm betragen. Die Spannung zum Sperren der Röhre in selbsterregtem Schwingbetrieb beträgt:

Ugi -- 2 kV mit Anodenlast, Ugi -- 5 kV ohne Anodenlast

Bei Fremdsteuerung muß die Röhre mit einer Trägersperre versehen werden, damit bei Überschlägen in der Röhre der Träger sofort gesperrt wird. Von besonderer Wichtigkeit ist, daß die Röhre in der Senderschaltung mit wirkungsvollen Röhrenschutzmitteln (Ignitron, Ionotron) ausgestattet ist, die bei einem Röhrenüberschlag die Röhre schützen.

The switching-on of the heating is done in the most advantageous way by a manual or motor controlled regulating transformer. It can also be realized in two stages according to the following stipulations:

131 Stage: Max. Filament Starting Voltage $U_f = 9 V$

2nd Stage: After 10 seconds switching

over to the operating voltage $U_f = 18 \text{ V}$

In the case of circuits which have a modulation transformer in the anode arrangement (modulation in the auxiliary stage or telegraphic operation), the plate protective resistor, when applied with a grid controlled rectifier, should load 25 Ohms with a voltage connection through a rapid relay.

The blocking voltage of the valve in self-excitation oscillation amounts to

Ugi - 2 kV with anode load, Ugi - 5 kV without anode load

In the case of external control, the valve must be provided with a carrier suppressor. in order that in the case of a puncture in the valve the carrier is at once blocked. A most important factor is that the valve which is applied in a transmitting circuit should be provided with effective protecting devices (ignitron or ionotron), guarding the valve when a puncture occurs.

Sanitized Copy Approved for Release 2010/02/17: CIA-RDP80T00246A034100330001-6

La mise en circuit du chauffage se fait le plus favorablement par un transformateurrégulateur commandé à la main ou par moteur. Elle peut toutefois être faite en deux échelons suivant les conditions suivantes:

1. échelon: tension de mise en circuit

maximum

 $U_i = 9 V$

2. échelon: commuter après 10 sec. sur

tension de service

 $U_f = 18 \text{ V}$

Lors de couplages avec un transformateur modulateur dans le circuit anodique (modulation à faible niveau ou service télégraphique) la résistance de protection anodique sera de 25 Ohms lors de l'emploi d'un redresseur commandé par grille avec couplage de tension par un relais rapide. La tension pour l'arrêt de la lampe en service oscillant auto-excitateur est de:

 $U_{g1} = 2$ kV, avec charge anodique, $U_{g1} = 5$ kV, sans charge anodique Lors d'excitation indépendante, la lampe doit être équipée d'un arrêt porteur, afin que le porteur soit immédiatement arrêté lors de décharge dans la lampe. Il est d'une importance capitale que la lampe soit garnie de moyens de protection efficaces (ignitron, ionotron), préservant la lampe lors de décharges.

La conexión del caldeo se efectúa del modo mas favorable por medio de un transformador de regulación accionado a mano o por motor. Mas también se puede efectuar esta conexión en dos escalones según las siguientes condiciones:

1. escalón: tensión máx. de conexión Uf = 9 V

2. escalón: después de 10 seg. conectar

a una tensión de servicio U_f = 18 V

Conectando por medio de un transformador de modulación en el circuito del ánodo (modulación en el escalón preliminar o servicio de telegrafía) debe de suponer la resistencia de protección del ánodo 25 ohmios al emplear un rectificador regulado por rejilla en conexión de tensión por medio de un relé rápido. La tensión para bloquear la válvula en servicio oscilante de auto-excitación es la siguiente:

 $U_{g_1} = 2 \text{ kV}$ con carga anódica, $U_{g_1} = 5 \text{ kV}$ sin carga anódica

Con una regulación ajena tiene que equiparse la válvula con un cierre-portador para que el portador quede enseguida bloqueado al producirse cortocircuitos en la válvula. De gran importancia es que la válvula en conexión de emisoras esté equipada con medios eficaces de protección (ignitrono, ionotrono) para preservarla de daños por cortocircuitos.

SRW 357 VEB WERK FÜR FERNMELDEWESEN

VEBWERKFURFERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

VEB WERK FÜR FERNMELDEWESEN

GRS 251

HOCHSPANNUNGS-GLEICHRICHTERRÖHRE

High Tension Rectifying Valve Tube redresseur haute tension Válvula rectificadora de alta tensión

Beschreibung

Die Röhre GRS 251 ist eine Hochvakuumröhre, die zum Gleichrichten hochgespannter Wechselströme verwendet werden kann.

Frühere Typenbezeichnung: AG 1006.

Description

The valve GRS 251 is of a high vacuum design, which can be employed for rectifying high tension alternating currents. Previous denotation: AG 1006.

Description

La lampe GRS 251 est un tube à vide poussé, pouvant être utilisé au redressement de courants alternatifs haute tension.

Désignation de type antérieure: AG 1006.

Descripción

La válvula GRS 251 es una válvula de alto vacio que puede emplearse para rectificar corrientes alternas de alta tensión.

Designación anterior del tipo: AG 1006

Sockel von unten gegen die Stifte gesehen

Base seen from below agains the pins

Culot vu d'en bas contre les

Zócalo visto desde abajo

Sanitized Copy Approved for Release 2010/02/17 : CIA-RDP80T00246A034100330001-6

GRS 251 VEB WERK FÜR FERNMELDEWESEN

Allgemeine Daten General Data Données générales Datos generales

	izung: Direkt geheizte Wolframkatode		Gewicht:							
	ating: Directly heated tungsten cathode	-4	Weight: Poids:							
	Chauffage: filament de tungstène chauffé directement Cátodo de tungsteno ajustado, de caldeo directo									
Cai										
' Uf		3 V	ca. 120 g							
. k		_. . ca. 3 A								
I	·									
1	Statische Werte	Kapazi								
	Statical Values	•	citances acités cidados							
	Valeurs statiques Valores estáticos	Capaci Capacio								
	valores estaticos	•								
Ř	≤ 1000 Ω	C _{k,a}	ca. 1 2 pF							
	•	A _								
,	Grenzwer Max. Ratir									
	Valeurs lim	•								
	Valores lim	ites								
	Oa sperr max bei 150 mA Spitzenstrom	25 kV								
i	Oa sperr max in the case of 150 mA pe									
	0 _{a sperr max} à 150 mA de courant de									
	0 _{a sperr max} con 150 A de corriente r									
		42 kV. Schaitelwagt:								
1	t _{a max} bis zu einer Spitzenspannung 300 mA	400 12 KV Schenerwert,								
	t _{a max} up to a peak voltage of 12	kV peak amplitude 300 i	πA							
	l _{a max} jusqu'à une tension de crête de	e 12 kV., amplitude de 300 i	nΑ							
	l _{a máx} hasta una tensión máx. de 12 k	V; valor de amplitud 300 (mA							
	Q _{a max}		w							
	- 1184									

VEB WERK FOR FERNMELDEWESEN

GRS 251

Betriebsbedingungen Stipulations for Operation Conditions de service Condiciones de servicio

Der angegebene Heizspannungswert ist auf ± 3% konstant zu halten. Überheizung führt zur schnellen Zerstörung des Glühfadens. Bei Unterheizung nimmt der innere Widerstand und damit die Elektronengeschwindigkeit zu. Ansteigende Anodenverlustleistung hat eine Überlastung der Anode zur Folge. Außerdem tritt an der Ventilanode eine Röntgenstrahlung auf. Diese kann, insbesondere bei starker Stromentnahme, sehr leicht ein Vielfaches der Toleranzdosis erreichen.

Typische Zeichen für eine Unterheizung sind:

- 1. Plötzlicher großer Spannungsabfall im Röhrenkreis
- Glühen und Röntgenstrahlenemission der Anode, evtl. Fluoreszieren des Glases im Röhrenkolben.

Bei Schaltungsanordnungen ist darauf zu achten, daß die Sockelhülse Katodenpotential besitzt.

The indicated filament value must be held constant on \pm 3%. Overheating will lead to quick damage of the incandescent filament, whereas in the case of underheating the internal resistance and thereby the electron velocity will incrase.

An increase of the plate dissipation results in overloading the plate, furthermore x-rays will appear on the valve anode.

This may easily produce a multiple of the tolerance dose, especially in the case of heavy current consumption.

The following are typical signs of underheating:

- 1. Sudden and large voltage drop in the valve circuit.
- 2. A glowing and x-ray emission of the plate, perhaps fluorescence of the glass in the bulb of the valve.

When arranging circuits, care must be taken that the base shell has a cathode potential.

GRS 251 VEB WERK FOR FERNMELDEWESEN

La valeur de tension de chauffage indiquée est à maintenir constante à \pm 3%. Le surchauffage conduit à la destruction rapide du filament. Lors de sous-chauffage la résistance intérieure et ainsi la vitesse d'électrons augmente. Une puissance de pertes anodiques croissante entraîne une surcharge de l'anode. En outre une radiation X est provoquée à l'anode à clapet. Celle-ci peut obtenir très facilement un multiple de la dose de tolérance, surtout à forte prise de courant.

Les signes caractéristiques d'un sous-chauffage sont:

- 1. Brusque et grande perte de tension dans le circuit de la lampe.
- 2. L'anode rougit et émet des rayons X, fluorescement éventuel du verre dans l'ampoule de la lampe.

Lors de dispositions de couplages il est à veiller à ce que la douille de socle dispose d'un potentiel de cathode.

El valor de tensión de caldeo indicado tiene que mantenerse constante en un \pm 3%. Un sobrecaldeo tiene por consecuencia una destrucción rápida del filamento. Con un subcaldeo se aumenta la resistencia interior y con ello también la velocidad de los electronos. Al aumentarse la potencia de pérdida del ánodo se produce una sobrecarga del ánodo. Además aparece una irradiación de rayos X en el ánodo de llave que puede alcanzar facilmente un múltiple de la dosis de tolerancias sobretodo con una toma grande de corriente.

Señales típicas de un subcaldeo son:

- 1. Caída grande y repentina de la tensión en el circuito de la válvula.
- 2. Incandescencia y emisión de rayos X del ánodo y fluorescencia eventual del vidrio en la ampolla de la válvula.

Al disponer las conexiónes hay que prestar aténción a que el casquillo del zócalo tenga potencial catódico.

VEB WERK FÜR FERNMELDEWESEN

GRS 251

GRS 251 VEB WERK FOR FERNMELDEWESEN

Katalog E — Ausgabe Januar 1956

VEBWERK FÜR FERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1-5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

E

Übersichtstabelle Tabular Summary Tableau d'ensemble Sumario

Senderöhren nach Ausgangsleistung und Verwendungszweck geordnet

Transmitting Valves

Adapted according to the Output Power as also to the Purpose of Application

Lampes d'émetteur classées suivant la puissance de sortie et le but d'emploi

Válvulas emisoras ordenadas según potencias de salida y objetos de empleo

	istungsklasse		Verwend	dungszweck	_			
Leistungsklasse		Lang-, Mittel-, Kurzwellensender	UKW- und Fernsehsender	Elektromedizinische Geräte	Industrie- generatoren			
Power		Purpose of Application						
		Long,- Medium, Short wave transmitters	VHF and TV transmitters	Electro-Medical Instruments	Industrial Generators			
Pulssance		But d'emploi						
		Emetteurs à ondes longues moyennes courtes	Emetteurs à ondes ultra-courtes et de télévision	Appareils pour l'électro- médicine	Génératrices Industrielles			
		Fin de empleo						
Potencia		Emisora de ondas largas medianas cortas	Emisoras de onda ultracorta y de televisión	Aparatos de electro-medicina	Generadores Industriales			
bis up to	100 W	SRS 552 (P 50)	SRS 552 (P 50)	SRS 552 (P 50)				
jusqu'à hasta			SRS 4451 (dhn lich QQE 06 40)	SRS 358 K (TS 41 DK)				
bis up to jusqu' à hasta	300 W		SRS 451 (HF 2815)	-	-			
pis nb to nb to pis	1 kW		SRL 351 (HF 2730)	_	SRL 351 (HF 2730)			

: E

VEB WERK FÜR FERNMELDEWESEN

		Verwendungszweck					
Leisto	ungsklasse	Lang-, Mittel-, Kurzwellensender	UKW- und Fernsehsender	Elektromedizinische Geräte	Industrie- generatoren		
Po⊮er		Purpose of Application					
		Long,- Medium, Short wave transmitters	VHF and TV transmitters	Electro-Medical Instruments	Industrial Generators		
Puissance		But d'emploi					
		Emetteurs à ondes longues moyennes courtes	Emetteurs à ondes ultra-courtes et de télévision	Appareils pour l'électro- médicine	Génératrices Industrielles		
		Fin de empleo					
Patencia		Emisora de ondas largas medianas cortas	Emisoras de onda ultracorta y de televisión	Aparatos de electro-medicina	Generadores Industriales		
bis up to	3 kW		SRL 452 (HF 2825)		SRL 452 (HF 2825)		
jusqu'à hasta			SRL 352 (HF 2958)		SRL 352 (HF 2958)		
bis up to jusqu' à hasta	10 kW		SRL 353 (HF 2780 L)	_	SRL 353 (HF 2780 L)		
			SRW 353 (HF 2780 W)		SRW 353 (HF 2780 W)		
			SRL 354 (HF 2826)	-	SRL 354 (HF 2826)		
	50 kW	SRW 356 (RS 558)	_	_	SRW 356 (RS 558)		
	und mehr and more et plus y plus	SRW 357 (RS 566)		- :	SRW 357 (RS 566)		

VEBWERKFURFERNMELDEWESEN BERLIN-OBERSCHÖNEWEIDE, OSTENDSTR. 1—5. FERNRUF: 63 21 61, 63 20 11 FERNSCHREIBER: WF BERLIN 1302. DRAHTWORT: OBERSPREEWERK BERLIN

Sanitized Copy Approved for Release 2010/02/17: CIA-RDP80T00246A034100330001-6 Scheiben-Kompensator SK 761 Annex Sanitized Copy Approved for Release 2010/02/17 : CIA-RDP80T00246A034100330001-6

Technische Daten

Frequenzbereich:

1000 ... 3000 MHz

(i. 10 . . . 30 cm)

Kompensierbarer Anpassungsfehler:

max. 20 " " bei 1000 MHz max. 30 " " bei 1500 MHz

max. 50 % bei 3000 MHz

Koaxialleitung:

Innenleiter:

5 mm Ø

Außenleiter:

16 mm Ø 70 Ohm

Wellenwiderstand: Anschluß:

ein Buchsenanschluß ähnlich Geräte-

buchse GB 029

ein Steckeranschluß ähnlich Kabel-

stecker KST 081

Abstimmung:

Längsverschiebung:

l_{max} ≥ 150 mm

Abstandsänderung der Trolitul-

scheiben durch Drehen der Hülse: a max

120 mm

Skalen:

Längsverschiebung:

Millimetereichung

Abstandsänderung der Trolitul-

scheiben:

1 11-Millimetereichung

Abmessung:

ca. 35,6 mm Ø x 463 mm

Gewicht:

co. 1150 g

Verwendungszweck, Aufbau und Wirkungsweise

Mit dem Scheiben-Kompensator SK 761 lassen sich Anpassungsfehler nachgeschalteter Zweipole (Abschlußwiderstände, Antennen, Kabel usw.) auskompensieren.

Wie das Prinzipschema zeigt, besteht das Gerät aus einer geschlitzten Koaxialleitung. Auf dieser Leitung ist eine Metallhülse verschiebbar und drehbar angebracht. Sie trägt im Inneren, von der Mitte beginnend, zwei

gegenläufige Gewinde. Durch diese Gewinde werden zwei Führungsringe mit entsprechenden Gewinden gegenläufig bewegt, wenn die Hülse gedreht wird. Jeder Führungsring ist durch die Schlitze der Koaxialleitung hindurch mit einer ringförmigen Trolitulscheibe verbunden. Diese Scheiben stellen eine zusätzliche Kapazität innerhalb der Koaxialleitung dar. Der Anpassungsfehler des nachgeschalteten Zweipols läßt sich durch geeignete Stellung der Scheiben kompensieren. (Meßmethode mittels verlustlosem Vierpol) Durch Längsverschiebung und Drehung der Hülse lassen sich sowohl die Lage der Scheiben in der Leitung als auch ihr gegenseitiger Abstand bequem einstellen. Für jede Einstellung ist eine Skala vorhanden, so daß die einmal festgestellte Lage der Scheiben leicht reproduziert werden kann. Die Einstellung in Längsrichtung läßt sich durch eine Rändelmutter fixieren. Als Indikator wird vor den Scheiben-Kompensator mit angeschlossenem Zweipol eine Meßleitung (z. B. Dezimeter-Meßleitung DML 112) geschaltet. Der Kompensator wird so eingestellt, daß die durch die Meßleitung angezeigte Welligkeit verschwindet.

Als Verbindungsstücke können gegebenenfalls die Teile VST 061 (Stecker-Stecker) oder VB 071 (Buchse-Buchse) verwendet werden. Für Meßaufbauten kann das Stativ ST 091 benutzt werden. Das Gerät wird in einem Etui geliefert.

Prinzipschema

Anderungen, insbesondere solche, die durch den technischen Fortschritt bedingt sind, vorbehalten.

VEB SACHSENWERK RADEBERG

Ruf: Dresden 5 t8 17, 5 t8 52, 5 34 44 - Radeberg 5 75 - Fernschreiber: Dresden 019 256

III-9-187 Ag 30 491 56 6. 2000

Sanitized Copy Approved for Release 2010/02/17 : CIA-RDP80T00246A034100330001-6 Bildmustergenerator **BG 255** Anom 3

Sanitized Copy Approved for Release 2010/02/17: CIA-RDP80T00246A034100330001-6

Technische Daten

Der Fernsehprüfgenerator hat folgende Ausgänge:

- 1. Zusammengesetztes Video-Gemisch negativ 1,0 Volt
- Zusammengesetztes Video-Gemisch negativ 2,0 Volt
- 3. Zusammengesetztes Video-Gemisch positiv 1,0 Volt
- 4. Synchronisationsgemisch positiv 1,5 Volt an 150 Ohm.
- 5. Austastgemisch positiv 1,5 Volt an 150 Ohm
- 6. Bildsynchronisationsimpuls 1,5 Volt an 150 Ohm
- 7. Zeilensynchronisationsimpuls 1,5 Volt an 500 Ohm
- 8. Eingang für fremdes Bildsignal.

Netzversorgung

Netzspannung: Leistungsaufnahme: 110 127 220 240 V, 50 Hz ca. 220 VA

Abmessungen und Gewicht

ca. 550 mm Breite: ca. 420 mm Höhe: ca. 320 mm Tiefe:

Gewicht:

38 kg ± 5" "

Röhrenbestückung

3 Stück 6 SA 7 5 Stück 6 AC 7 1 Stück EYY 13 20 Stück 6 H 8 M 3 Stück STV 150 40 z 5 Stück 6 H 6 3 Stück STV 150 20 5 Stück ECH 11

Verwendungszweck, Aufbau und Wirkungsweise

Das Gerät dient zum Prüfen und Instandsetzen von Fernsehempfängern und sonstigen Fernsehübertragungseinrichtungen. Es liefert ein vollständiges, der OIR- bzw. CCIR-Norm entsprechendes Impulsgemisch. Der eingebauten Mischstufe kann außer dem Schachbrettmuster mit eingesetzten Auflösungslinien (3,0 MHz) und anderen Prüfmustern eine fremde Bildmodulation zugeführt werden.

Bildmustererzeugung

- 1. Von dem Treppengenerator gelangt der Gradationskeil in die Videomischstufe (21 Querstreifen von schwarz bis weiß abgestuft).
- 2. Rechteckimpuls 50 Hz (Schwarz-Weiß-Sprung). Die eine Hälfte der Schirmbildfläche ist zusammenhängend waagerecht weiß, die andere schwarz.
- 3. Der Rechteckimpuls 250 Hz erzeugt abwechselnd schwarze und weiße waagerechte (horizontale) Balken, insgesamt 4 weiße.
- 4. Das Schachbrettmuster setzt sich zusammen aus 125 kHz-Rechteckimpulsen und aus niederfrequenten 250 Hz-Rechteckimpulsen, die durch Elektronenschalter so gelenkt werden, daß sie ein Schachbrettmuster aus gleich großen Quadraten ergeben. Abwechselnd mit vollkommen weißen Quadraten erscheinen im Schachbrettmuster Quadrate mit 5,0 MHz-Auflösungslinien, die eine genaue Überprüfung der Empfänger ermöglichen.

Anderungen, insbesondere solche, die durch den technischen Fortschritt bedingt sind, vorbehalten.

VEB SACHSENWERK RADEBERG

Ag 30 021 55

m 9 187 12. 55 2000

Sanitized Copy Approved for Release 2010/02/17: CIA-RDP80T00246A034100330001-6

22 3 1

Kabelmeßdetektor KMD 615

Annex 4

Technische Daten

Frequenzbereich: Eing ang swider stand:

Fehlanpassung:

Meßbereich: Meßgenauigkeit: 1200- 1460 MHz (20,5---25 cm) 70 Ohm (Koaxialleitung 5 16 mm)

 \bigcup_{\min} 08,0 Unar

1-15 W

: 20" .. bei Außentemperatur von ... 20 " C

30" "bei Außentemperatur von 10" bis + 30" C

ca. 320 x 125 x 60 mm

ca. 1 kg

Abmessungen: Gewicht:

Verwendungszweck, Aufbau und Wirkungsweise

Der Kabelmeßdetektor KMD 615 dient

- 1. als Indikator zum optimalen Auskoppeln von Dezimeter-Sendern,
- 2. zur Messung der Ausgangsleistung von oberwellenfreien Dezimeter-Sendern.

Der Kabelmeßdetektor besteht aus einer Koaxialleitung (4), welche mit einem Widerstand W weitgehend reflexionsfrei abgeschlossen ist. An den Innenleiter der Koaxialleitung ist eine Gleichrichter-Anordnung (6) lose kapazitiv angekoppelt, deren Richtstrom mit dem eingebauten Instrument J gemessen wird.

Abb. 1: Prinzipschema

C	_	· - 20) pF) pF	•	konstruktiv
W	1	1	1C)hm	0,05
W	2	100) C	hm	0,05

Als Abschlußwiderstand dient ein Silitstab (1), welcher in einen dafür berechneten Exponential-Konus (2) eingesetzt ist. Dieser ist zur Kühlung an der Außenseite mit Rippen versehen. Der Gleichstrom-Widerstand dieses Silitstabes beträgt 30 Ohm. Infolge des Skineffekts erhöht er sich im Frequenzbereich 1200 bis 1460 MHz auf 70 Ohm und entspricht damit dem Wellenwiderstand der Koaxialleitung. Die konischen Übergangsstücke (3) bilden einen reflexionsfreien Übergang von der Koaxialleitung (4) zum Abschlußwiderstand. Das entgegengesetzte Ende der Koaxialleitung trägt die Anschlußbuchse (5) zum Anschluß von HF-Kabeln.

In den Außenieiter der Koaxialleitung ist der Detektor-Einsatz (6) eingeschraubt. Er trägt die Platte (7), welche mit dem Innenleiter einen kleinen Kondensator C bildet. Dieser Kondensator C stellt mit dem konstruktiv bedingten Kondensator C 1 einen Spannungsteiler dar. Der Widerstand W 1 schließt den Gleichstromweg; sein Widerstand ist groß gegenüber demjenigen von C 1 bei hohen Frequenzen. Über den Dämpfungswiderstand W 2 wird die geteilte Spannung dem Detektor (Det) zugeführt. Der konstruktiv bedingte Kondensator C 2 schließt den HF-Stromkreis am Detektor-Einsatz und dient als Ladekondensator. Der Richtstrom wird mit dem Instrument J gemessen.

Detektor-Einsatz und Meßinstrument sind zum Schutze vor mechanischen Beschädigungen und zur elektrischen Abschirmung in ein Gehäuse eingebaut, welches mit der Koaxialleitung verschraubt ist.

Abb. 2: Mech. Aufbau des Kabelmeßdetektors KMD 615

Lieferumfang

Das Gerät wird in einem Futteral mit einer Beschreibung und Bedienungsanweisung geliefert.

Änderungen, insbesondere solche, die durch den technischen Fortschritt bedingt sind, vorbehalten.

VEB SACHSENWERK RADEBERG

B. Burden 1937 1932 1944 - Rodeberg 5.75 - Fernschreiber: Dresden 22.82

Ag 30 021 55

m 9 187 12, 55 2000

Andrew 5

Kabelmeßdetektor KMD 616

Annex

Technische Daten

Frequenzbereich: Eingangswiderstand:

Anpassung:

Meßbereich:

Meßgenauigkeit:

Abmessungen:

Gewicht:

1000 ... 1765 MHz (17 ... 30 cm)

Z 70 Ohm (Koaxialleitung 5/16 mm)

U_{min} , . 0,80

U max

8 W

± 20 % bei Außentemperatur

__{von} + 20 " C

± 30 " " bei Außentemperatur

von + 10" bis + 30" C

cg. $255 \times 150 \times 70$ mm

ca. 1 kg

Verwendungszweck, Aufbau und Wirkungsweise

Der Kabelmeßdetektor KMD 616 dient

- 1. als Indikator zum optimalen Auskoppeln von Dezimeter-Sendern,
- 2. zur Messung der Ausgangsleitung von oberwellenfreien Dezimeter-Sendern

Der Kabelmeßdetektor besteht aus einer Koaxialleitung, welche mit einem Widerstand weitgehend reflexionsfrei abgeschlossen ist. An den Innenleiter der Koaxialleitung ist eine Gleichrichter-Anordnung lose kapazitiv angekoppelt, deren Richtstrom mit dem eingebauten Instrument gemessen wird.

Als Abschlußwiderstand dient ein Kohleschichtwiderstand von 70 Ohm entsprechend dem Wellenwiderstand der Koaxialleitung. Die konischen Übergangsstücke bilden einen reflexionsfreien Übergang von der Koaxialleitung zum Abschlußwiderstand. Das entgegengesetzte Ende der Koaxialleitung trägt die Anschlußbuchse zum Anschluß von HF-Kabbeln.

In den Außenleiter der Koaxialleitung ist der Detektoreinsatz mit zwei Detektorpatronen eingeschraubt, welche eine Spannungsverdoppler-Anordnung bilden. Er trägt die Brücke, die mit dem Innenleiter den Koppelkondensator bildet. Durch die getroffene Anordnung hängt der Richtstrom linear von der HF-Leistung ab, so daß die Skala des Richtstrommessers linear in Watt geeicht werden konnte.

Detektor-Einsatz und Meßinstrument sind zum Schutze vor mechanischen Beschädigungen und zur elektrischen Abschirmung in ein Gehäuse eingebaut, welches mit der Koaxialleitung verschraubt ist.

Lieferumfang

Das Gerät wird in einem Futteral mit einer Beschreibung und Bedienungsanweisung geliefert.

VEB SACHSENWERK RADEBERG

Ruf Dresden 51317, 51852, 51844 - Radeberg 575 - Fernschreiber: Dresden 019266

III + 197 Ag 30 491 55 5 2000

Leistungs-Meßsender

LMS 551

Technische Daten

Wellenbereich:

Ausgangsleistung: $P_{max} \ge 5$ Watt, $P_{min} > 1$ Watt

(bei max. Auskopplung und 70 Ohm

Belastung)

Wellenwiderstand am Ausgang:

Modulation:

Modulationsart:

Z 70 Ohm Fremdmodulation

à - 30 bis 100 cm

Frequenzmodulation (von außen

anschaltbar)

Netzanschluß:

110/127/220/240 V, 50 Hz

ca. 95 VA

Leistungsaufnahme: Röhrenbestückung:

1 x LD 12 (OSW 2004)

2 x AZ 11

Abmessungen: Gewicht: 870 x 425 x 295 mm

ca. 42 kg

Verwendungszweck, Wirkungsweise und Aufbau

Mit dem Leistungs-Meßsender LMS 551 können Messungen an Empfängern, Abschlußwiderständen, Antennen, Resonanzkreisen usw. im Wellenbereich von $30-100~{\rm cm}$ vorgenommen werden.

Die große Leistungsabgabe des Senders in diesem Wellenbereich gestattet ferner das Überprüfen und Eichen von Leistungsmessern.

Der Leistungs-Meßsender besteht aus

dem HF-Teil

dem Netzteil und

dem Anzeige- und Bedienungsteil,

die in einem Gerät vereinigt sind.

Der nach dem Topfkreisprinzip aufgebaute Sender (HF-Teil) mit der Metallkeramikröhre LD 12 (OSW 2004) arbeitet in Gitterbasisschaltung. Die beiden ineinander geschalteten Schwingkreise, die miteinander im Gleichlauf arbeiten, bilden ein System, welches guten Wirkungsgrad und günstigste Rückkopplungsbedingungen für den gesamten Frequenzbereich gewährleistet.

Auf der einen Seite der Röhre sind die Schwingkreise, auf der anderen Seite ist ein Kühlluftgebläse zur Abführung der Verlustleistungswärme angebracht. Topfkreis mit Röhre und Motor mit Gebläse bilden zusammen ein Aggregat, das auf Rollen gelagert in einer Schienenführung läuft. Die Abstimmung erfolgt durch Verschiebung dieses Aggregates längs der Schiene, während die innerhalb der Schwingkreise befindlichen Kurzschlußschieber feststehen. Das Maß der Längsverschiebung wird an einer Linearskala abgelesen, die zusammen mit der zugehörigen Eichkurve die Frequenzeinstellung ergibt. Die jeweilige Frequenz des Senders wird durch die Abstimmung des Gitter-Anodenkreises bestimmt. Da der Gleichlauf der beiden Kurzschlußschieber im gesamten Frequenzbereich mit ausreichender Genauigkeit gewährleistet ist, kann auf eine besondere Einrichtung zum Nachstimmen des Gitter-Katodenkreises verzichtet werden.

Die Hochfrequenzspannung wird dem Gitter-Anodenkreis über eine veränderliche induktive Kopplung entnommen, die für jede Frequenz optimal
eingestellt werden kann und deren Maß ebenfalls an einer Skala abgelesen
wird. Die HF-Amplitude wird durch einen Meßdetektor, der kapazitiv an
den Senderausgang angekoppelt ist, gleichgerichtet und von einem Meßinstrument angezeigt. Sie läßt sich außerdem noch durch Änderung des
Anodenstromes mit einem Stufenschalter grob und mit einem Potentiometer
fein regeln. Mittels einer Druckknopftaste ist eine Unterbrechung der Anodenleitung und damit der HF-Spannung möglich. Über zwei Anschlußbuchsen

kann in die Anodenleitung ein Modulationsgerät zur Fremdmodulation des Senders eingeschaltet werden. Zur Abführung der durch die Verlustleistung der Senderöhre entstehenden Wärme dient ein durch einen Wechselstrommotor angetriebenes Gebläse.

Das Netzteil, das an Wechselspannungsnetze von 110 127 220 240 V, 50 Hz angeschlossen werden kann und mittels Spannungswahlschalter für diese Spannungen umschaltbar eingerichtet ist, liefert die notwendigen Betriebsspannungen. Es ist mit zwei in Doppelweg geschalteten Gleichrichterröhren (AZ 11) ausgerüstet.

Alle Anschluß- und Bedienungsorgane sowie die Meß- und Kontrollinstrumente sind auf der Frontplatte so übersichtlich angeordnet, daß eine verhältnismäßig einfache Bedienung ermöglicht wird.

Der Meßsender besteht aus Frontplatte und Chassis, die miteinander verschraubt in ein Blechgehäuse eingeschoben sind. HF- und Netzteil, die untereinander und mit dem Anzeige-Bedienungsteil durch Messer- bzw. Federleisten in Verbindung stehen, sind gesondert montiert. Auf diese Weise können HF- und Netzteil nach Lösen der mechanischen Verbindung am Chassis leicht ausgebaut oder ausgewechselt werden. Das mit Entlüftungsschlitzen versehene Gehäuse ist zur bequemeren Beförderung mit zwei Traggriffen versehen.

Lieferumfang

Das Gerät wird komplett einschließlich Betriebsröhren, Richtdetektor, Kleinglimmlampe, Sicherungen sowie einer Beschreibung mit Bedienungsanweisung und folgendem Zubehör geliefert:

1 Geräteschnur 1,5 m lang und

1 konzentrisches Kabel HFK 085 1,0 m lang.

Die mitgelieferten Ersatzteile werden gesondert berechnet und bestehen je Satz aus:

1 Röhre LD 12 (OSW 2004)

2 Röhren AZ 11

1 Richtdetektor ED 704

1 Kleinglimmlampe MR 220 V o. W.

5 Glasrohrfeinsicherungen 1 A 250 V

5 Glasrohrfeinsicherungen 2 A 250 V

Zusatzgeräte

Für den Leistungs-Meßsender können noch tolgende Zusatzgeräte bestellt werden:

1. Kalorimetrischer Leistungsmesser KLM 602

2. Verbindungsstecker mit Buchsen VB 071.

Änderungen, insbesondere solche, die durch den technischen Fortschritt bedingt sind, vorbehalten.

VEB SACHSENWERK RADEBERG

Ruf: Dresden 5 18 17, 5 18 52, 5 34 44 - Radeberg 5 75 - Fernschreiber: Dresden 22 82

Ag 30 021 55

III 9 187 12. 55 2000

Leistungs-Meßsender LMS 523 A

1

```
Technische Daten
1. Dezimeter-Sender, Impulsteil und Netzteil
                                         8,75. . 16,00 cm
  Wellenbereich:
                                   N<sub>max</sub> ... 5 W, N<sub>min</sub>
                                                          - 1 W
  Ausgangsleistung:
                                   bei maximaler Auskopplung und 70
                                   Ohm Belastung
                                        70 Ohm
   Wellenwiderstand:
                                    a) Eigenmodulation durch Rechteck-
   Modulation:
                                      impulse mit dem Verhältnis Impuls-
                                                      1:1 und einer
                                      dauer : Pause
                                      Folgefrequenz von 1000 Hz
                                    b) Fremdmodulation mit kurzen Recht-
                                       eckimpulsen von 0,5...2,5 µs Dauer
                                       bei Folgefrequenzen von 150...
                                       250 kHz, einem Eingangswiderstand
                                                  1000 Ohm und einer
                                       Eingangsspannung von 5...50 V
                                    c) Frequenzmodulation
                                    110 127 220 240 V, 50 Hz
    Netzanschluß:
                                    ca. 315 VA
    Leistungsaufnahme:
                                    1 x LD 12, 2 x AG 1006, 3 x 6 AC 7,
    Röhrenbestückung:
                                    1 x LV 3
 2. In das Gerät eingebaute Zusatzeinrichtungen
    a) Dezimeter-Feinwellenmesser
                                          8,75 ... 16,00 cm
       Wellenbereich:
                                     in cm und MHz nach Eichkurve
       Eichung:
       Fehler der Wellenlängen-
                                     ≤ ± 0,3 °/<sub>on</sub> in cm und MHz
       eichung:
                                     8 - 10-5
       Ablesegenauigkeit:
                                     Innenleiter eines Topfkreisresonators
       Abstimmung:
                                     wird mittels Mikrometertrieb bewegt
                                     kapazitiv
       Einkopplung der HF:
        Auskopplung des Meßkreises: induktiv
     b) Koaxialer Umschalter
        Schaltstellungen:
                                     max. 250 V (Impulse)
```

Schaltspannung:

Schaltleistung:

max. 10 W

Frequenzbereich:

bis 3500 MHz (bis 8,5 cm)

Wellenwiderstand:

Z 70 Ohm

Fehlanpassung:

bei 2000 MHz \leq 10% (λ = 15 cm)

bei 3000 MHz · 18 · (λ · 10 cm)

Spannungssicherheit:

ca. 3000 V

Verlustfaktor:

tg 8 2 · 10 · 4

wie Polystyrol

Mindestdämpfung zwischen

beiden Leitungen:

^bmin ≥ 70 db bei f

1500 MHz

c) Dezimeter-Leistungsmesser

Wellenbereich:

λ 8,75 . . . 16,00 cm

Meßbereich:

max 8 Watt

Abschlußwiderstand:

R 70 Ohm Z 70 Ohm

Wellenwiderstand:

2 70 01

Fehlanpassung:

- 18 %

3. Abmessungen und Gewicht des gesamten Gerätes

Abmessungen:

Höhe: ca. 640 mm

Breite: ca. 550 mm

Tiefe: ca. 630 mm

Gewicht:

ca. 99 kg

Verwendungszweck, Aufbau und Wirkungsweise

Mit dem Leistungs-Meßsender können Messungen an Empfängern, Abschlußwiderständen, Antennen, Resonanzkreisen usw. im Wellenbereich von 8,75 bis 16,00 cm vorgenommen werden.

Die große Leistungsabgabe des Senders ermöglicht ferner die Überprüfung und Eichung von Leistungsmessern in diesem Wellenbereich. Der in das Gerät eingebaute Wellenmesser gestattet in einfacher Weise ohne besondere Umschaltung die Messung der jeweils am Leistungs-Meßsender eingestellten Wellentänge.

Weiterhin erlaubt ein in das Gerät eingebauter Leistungsmesser die Durchführung von Leistungsmessungen.

Der Leistungs-Meßsender besteht aus 2 Schubkästen, die in einem Gestell untergebracht sind.

Der eine Schubkasten (oben) enthält:

- 1. das Netzteil für das HF-Teil und das Impulsteil
- das Impulsteil, bestehend aus Multivibrator, Trennstufe mit Begrenzerwirkung und Modulator
- 3. ein Anzeige- und Bedienungsteil

Der zweite Schubkasten enthält dos HF-Teil, bestehend aus dem eigentlichen Dezimetersender mit eingebautem Wellenmesser, Dezimeter-Umschalter, eingebautem Leistungsmesser und einem Anzeige- und Bedienungsteil.

Der Sender ist als Topfkreis aufgebaut, wobei der Gleichlauf des Gitter-Kathoden- und des Gitter-Anoden-Kreises durch eine Kurvenscheibe gewährleistet ist.

Die Abstimmung bzw. Frequenzeinstellung wird mit Hilfe einer Eichkurve und einer auf der Frontplatte angebrachten Linearskala vorgenommen.

Über 2 Anschlußbuchsen kann in die Anodenleitung ein Modulationstransformator zur Frequenz-Fremdmodulation des Senders eingeschaltet werden. Der an der Frontplatte des oberen Schubkastens angeordnete Stufenschalter gestattet die Einstellung folgender Betriebsarten:

- 1. Unmodulierte Dezifrequenz
- 2. Impuls-Eigenmodulation
- 3. Impuls-Fremdmodulation
- 4. Frequenz-Fremdmodulation

In der Stellung "Impuls-Eigenmodulation" des Stufenschalters erzeugt ein den oberen Schubkasten eingebautes Impulsteil in einem Multivibrator (2 x 6 AC 7) Rechteckimpulse mit dem Verhältnis Impulsdauer: Pause 1:1 und einer Folgefrequenz von 1000 Hz, die über eine Trennstufe (6 AC 7) mit Begrenzerwirkung einer Modulationsröhre (LV 3) zugeführt werden, die in entsprechender Weise die Oszillatorröhre LD 12 steuert.

In der Stellung "Impuls-Fremdmodulation" des Stufenschalters kann dem Impulstransformator im Impulsteil über 2 Buchsen von außen Fremdmodulation mit kurzen Rechteckimpulsen von 0,5...2,5 "s Dauer bei einer Folgefrequenz von 150...250 kHz, einem Eingangswiderstand von 1000 Ohm und einer Eingangsspannung von 5...50 V zugeführt werden. (Der Multivibrator tritt in dieser Stellung nicht in Wirksamkeit.)

In der Schalterstellung "Frequenz-Fremdmodulation" kann in die Anodenleitung ein Modulationstransformator zur Frequenz-Fremdmodulation des Senders eingeschaltet werden.

Über einen mit Kurbeldrehknopf und Getriebe versehenen Antrieb wird die jeweilige Stellung des Innenleiters mittels Zeiger auf einen inneren kreisrunden und einen äußeren ringförmigen Skalenring übertragen. Dabei dient die auf der inneren runden Scheibe angebrachte Skala zur Grob- und die äußere auf dem Ring angeordnete Skala zur Feinablesung.

Ein in einem Fenster vor den Skalen angebrachter Fadenzeiger ermöglicht eine einwandfrei Ablesung der Skalenwerte.

Die tatsächlich gemessene Wellenlänge ist aus der mitgelieferten Eichkurve ersichtlich.

Vor dem HF-Ausgang ist in die konzentrische Rohrleitung ein Dezimeter-Umschalter eingebaut, der über eine mit Drehknopf ausgestattete Welle von der Frontplatte aus betätigt wird.

Der Dezimeter-Umschalter gestattet einerseits die Herstellung einer Verbindung zwischen der konzentrischen Rohrleitung und dem HF-Ausgang und andererseits zwischen der Rohrleitung und dem zur Leistungsmessung dienenden mit eingebauten Thermoelement ausgestattetem Abschlußwiderstand.

Auf der Frontplatte befindet sich das Drehspulinstrument "HF-Leistung", an dem mit Hilfe einer Eichkurve die Leistung am Abschlußwiderstand abgelesen werden kann.

Das Netzteil, das an Wechselspannungsnetze von 110/127/220/240 V, 50 Hz angeschlossen werden kann und mittels Spannungswahlschalter für die Spannungen umschaltbar eingerichtet ist, liefert sämtliche Betriebsspannungen. Es ist mit zwei Gleichrichterröhren AG 1006 und 2 Trockengleichrichtern ausgerüstet.

Alle Anschluß- und Bedienungsorgane sowie die Meß- und Kontrollinstrumente sind auf der Frontplatte so übersichtlich angeordnet, daß eine verhältnismäßig einfache Bedienung ermöglicht wird.

Lieferumfang

Das Gerät wird komplett, einschließlich Röhren, Sicherungen, Geräteschnur, HF-Kabel und einer Beschreibung mit Bedienungsanweisung geliefert. Gegen gesonderte Berechnung können Ersatzteile mitgeliefert werden. Der vollständige Lieferungumfang mit Ersatzteilen ist aus dem Angebot der Absatz-Abteilung zu ersehen.

Prinzipschaltbild

- 1) Senderöhre
- 2) Gitter-Anodenkreis
- 3) Gitter-Kathodenkreis
- 4) HF-Auskopplung (veränderlich)
- 5) Meßkreis für HF-Spannungsanzeige
- 6) Weilenmesser
- 7) HF-Spannungsanzeige für HF-Ausgang und Resonanzanzeige für Feinwellenmesser
- 8) Abschlußwiderstand mit Thermoelement und Anzeige-Instrument
- 9) Koaxialer Umschalter
- 10) HF-Ausgang

Anderungen, insbesondere solche, die durch den technischen Fortschritt bedingt sind, vorbehalten.

VEB SACHSENWERK RADEBERG

III 9 157 Ag 30 491 56 5 2000

Dezimeter-Feinwellenmesser DFW 304, 314, 324, 334, 344, 354

Technische Daten

Type	Wellenbereich	Frequenzbereich		
DFW 304 DFW 314 DFW 324 DFW 334 DFW 344 DFW 354	100 85 cm 85 70 cm 70 55 cm 55 40 cm 40 25 cm 25 10 cm	300 353 MHz 353 429 MHz 429 546 MHz 546 750 MHz 750 1200 MHz 1209 3000 MHz		
Genauigkeit:	Fehler max. 0, bei 18—20 °C max. 0,15 °/, max. 0,2 °/,	1 º/o, bei DFW 354:		
Halbwertsbreite: Ablesegenauigkeit: Abstimmung:	, 1/100 mm Längenänderu schwerung n	ng bei kapazitiver Be- nittels Mikrometertrieb		
Einkopplung der H Auskopplung des I Bestückung:	 Meßkreises: induktiv 1 Germanium (Ersatzweise F	riiber Dipol induktiv induktiv 1 Germanium-Diode RG 302 (Ersatzweise RG 301 bzw. 303) 100 A Vollausschlag in cm und MHz nach Eichkurve ca. 380 x 170 x 140 mm ca. 4,5 kg ≤ 0,07		
Meßinstrument (Go Eichung: Maße: Gewicht: Temperaturkoeffizi	in cm und M ca. 380 x 170 ca. 4,5 kg			

Verwendungszweck, Wirkungsweise und Aufbau

٥

Die Dezimeter-Feinwellenmesser dienen als kompletter Satz zur Frequenzmessung mit großer Genauigkeit (0,1 %), im Wellenbereich von 10 bis 100 cm (3000...300 MHz). Die Wellenmesser sind als Topfkreis ausgebildet. Der Innenleiter der Topfkreise wird durch Längenänderung mittels Mikrometertrieb auf 2/4 der zu messenden Dezimeterwelle abgestimmt.

Die von einer Stabantenne aufgenommene Hochfrequenz wird über eine kleine Koppeischleife induktiv auf den Innenleiter des Topfkreises übertragen. Die Übertragung vom Innenleiter auf den Meßkreis bei Resonanz erfolgt ebenfalls induktiv mittels einer zweiten Koppelschleife. Durch eine Germanium-Diode wird die Hochfrequenz dann in einen Richtstrom verwandelt, der durch ein empfindliches Galvanometer angezeigt wird. Die Ablesung der Wellenlänge bzw. Frequenz geschieht aus einer Eichkurve.

Das Gerät besteht aus einem Abstimm- und Meßteil sowie einem Galvanometer, die gemeinsam auf eine Frontplatte montiert sind. Zwischen dem Abstimmkreis und dem Drehknopf befindet sich der Mikrometer-Antrieb, der die Aufgabe hat, die achsiale Verschiebung des in den Topfkreis hineinragenden Abstimmstabes zu bewirken. Der Antrieb überträgt gleichzeitig die jeweilige Stellung des Abstimmstabes mittels Zeiger auf eine feste Skala, die von 0—50 geteilt und bezeichnet ist. Eine über dem Antrieb angebrachte Skalentrommel mit 100 Teilstrichen am Umfang dient zur Feinabstimmung des Gerätes. Auf der Frontplatte sind Meßinstrument sowie die Skalen für Millimeter und Hundertstelmillimeter Ablesung sichtbar.

Die im Gehäusedeckel untergebrachte Stabantenne ist vor Inbetriebnahme in die hierfür an der Rückseite des Metallgehäuses vorgesehene Einführung einzuschrauben. Durch Drehung des seitlich angebrachten Knopfes wird

das Meßinstrument auf Maximalausschlag einreguliert und der dabei an der Skala und der Skalentrommel eingestellte Wert abgelesen. Auf Grund der abgelesenen Skalenwerte läßt sich dann mit der Eichkurve die gemessene Wellenlänge bzw. Frequenz feststellen.

Das Gerät ist in ein mit Deckel versehenes Metallgehäuse eingebaut. Es kann nach Lösen der Befestigungsschrauben an der Frontplatte und nach Abschrauben des Drehknopfes aus dem Gehäuse herausgenommen werden.

Lieferumfang

Die Dezimeter-Feinwellenmesser 304—354 werden als kompletter Satz einschließlich einer Beschreibung mit Bedienungsanweisung geliefert.

Änderungen, insbesondere solche, die durch den technischen Fortschritt bedingt sind, vorbehalten.

VEB SACHSENWERK RADEBERG

Ruf: Dresden 5 18 17, 5 18 52, 5 34 44 - Rodeberg 5 75 - Fernschreiber: Dresden 22 82

Ag 30/02: 55

..i ♥ 127 2, 55 2000

MESSGERATE

FREQUENZVERGLEICHER TYP Hf 603

Elektrische Werte

Ablenkempfindlichkeit bei max. Verstärkung

Meßplatten — senkrecht (Eingang: Prüffrequenz)

Empfindlichkeit/cm Bildhöhe: 100 Hz...300 kHz (1 MHz) etwa 40 mV

Zeitplatten — waagerecht (Eingang: "Ellipse fremd" und Buchsen: "Normal-

frequenz 100 Hz, 1 kHz, 10 kHz") Empfindlichkeit/cm Bildbreite: etwa 5mV

Eingangsscheinwiderstand an den Buchsen

"Prüffrequenz" bei 300 kHz: etwa 10 kOhm

"Normalfrequenz" bei 10 kHz; etwa 10 kOhm

"Ellipse fremd" bei 10 kHz: etwa 10 kOhm

Stromversorgung: 220 V; 50 Hz Leistungsaufnahme: etwa 90 VA

VEB FERNMELDEWERK LEIPZIG

Leipzig O 27. Melscherstraße 7

Drahtanschrift: Fernmeldewerk Leipzig - Fernruf: 64561 - Fernschreiber: FMW,LZG 5402

IV 10 15 Lp 14965 54 2500

TK 9-1040 K 1-1

Drudiblatt Nr. Mg 66

Annex 9

Bestückung

Röhren:

3 × EF 14 2 × EF 12

1 × ORP 1:100 2

1 × AZ 11

Stabilisator:

1 × StV 280'40

Sicherung:

1 X T 1:500 DIN 41:571

Abmessungen

Stahlgehäuse

 Breite (Einbau- bzw. Kastengerät):
 360 (380) mm

 Höhe (Einbau- bzw. Kastengerät):
 236 (256) mm

 Ticre (Gehäuse- bzw. Größtmaß):
 275 (325) mm

Gewicht etwa: 18 kg

Ergänzungsgerät

Normalfrequenzeinrichtung mit dekadisch gestaffelten Frequenzen oder ein Generator für definierte stabile Frequenzen.

Zubehör

Netzanschlußschnur 3050.205-00001.

Koaxiales Verbindungskabel 3050.206—00001 zum Verbinden des Frequenzvergleichers mit der Normalfrequenzeinrichtung bzw. mit dem Generator.

Der Frequenzvergleicher Typ Hf 603 dient zum Frequenzvergleich zweier Wechselspannungen mittels Kathodenstrahlröhre.

Insbesondere ist es möglich, durch Zuführung einer bzw. mehrerer dekadisch gestaffelter Normalfrequenzen den Frequenzvergleich in weiten Grenzen mit großer Genauigkeit durchzuführen. Infolge seiner einfachen Bedienbarkeit kann das Gerät vorteilhaft in Prüffeldern und Laboratorien der NF- und TF-Technik zur Überwachung der Meßfrequenzen benutzt werden.

Export-Information durch "DIA" Deutscher Innen- und Außenhandel — Elekt:otechnik, Berlin C 2, Liebknechtstraße 14 — Telegramme: Diaelektro — Ruf: 517283, 517285.86

Gonehmigt durch das Ministerium für Außenhandel und Innerdeutschen Handel der Deutschen Demokratischen Republik unter TRPT-Nr. 11 300.52

9/

ស្ត្រាស្ត្រ ខេត្ត ខេត

Röhrenvoltmeter

1. Anwendungsgebiet

Das Röhrenvoltmeter Typ MV 1 ist universeil zur Messung von Wechselspannungen im Tonfrequenzbereich bestimmt. Bei seiner großen Meßgenauigkeit, dem hohen Eingangswiderstand und umfassenden Meßbereich von unter 1 mV bis über 1 KV ist es ebensogut für das Laboratorium wie auch wegen seiner leichten Bedienbarkeit und hohen Konstanz für alle betrieblichen Messungen geeignet.

2. Wirkungsweise

Die zu messende Wechselspannung wird in einem zweistufigen Verstärker verstärkt und über Trockengleichrichter dem Drehspulinstrument zugeführt. Eine starke Gegenkopplung, in die auch das Gleichrichtersystem einbezogen ist, bewirkt praktisch vollkommene Unabhängigkeit der Anzeige von Netzspannungsschwankungen, normalem Röhrenaltern und Änderungen der Gleichrichter-Charakteristik. Die Genaufgkeit und zeitliche Konstanz des Gerätes ist infolgedessen so groß, daß sich eine Vorrichtung zur Nacheichung überhaupt erübrigt. Um jedoch den Alterungszustand der Verstärkerröhren jederzeit überprüfen zu können, wurde hierfür in der Schalterstellung "Konstrolle" eine Einrichtung vorgesehen, bei der die Gegenkopplung ausgeschaltet und eine dem Netz entnommene stabilisierte Eichspannung an den Eingang des Verstärkers gelegt wird. Der Instrumentenzeiger muß dann bei noch brauchbaren Röhren Innerhalb des durch kleine rote Marken gekennzelchneten Bereichs stehen.

M CLAMADO O O RABBRO O O RESOSO

Zur Erziehung eines müglichst hohen Eingangswiderstandes wird die Maßspannung unter Vermeidung cires Eingangspotentiometers dem Gitter der ersten Verstärkerröhre gleichstromentkoppelt unmittelbar zugeführt. Die Umschaltung der Henbereiche untereinander geschieht durch Änderung des Gegenkopplungsgrades, während der Übergang vom Millivoltauf den Voltbareich durch Vorschaltung eines genau geeichten kapazitiven Spannungstellers vorgenommen wird. Die Instrumentenanzeige ist dem artificialistich. Hittelweit der gleichgerichteten Meßspannung proportional, die Skala jedoch in üblicher Weise in Effektivwerten für sinusförmige Wechselspannung geeicht. 3. XuBerer Aufbau Das vollnetzbetriebene Gerit befindet sich in einem tragbaren Metaligehäuse; auf der Frontplatte ist links unten neben der Eingangsbuchse der Millivolt-Volt-Umschalter, darüber neben dem Instrument der Meßbereichschalter, beide mit der Raststellung "Kontrolle", angebracht. Das Instrument besitzt eine große ilnear unterteilte Skala und ist daher gut ablesbar. Auf der Rückseite ist die Netzsicherung von außen, der Röhrensatz und die Netzumschaltung 110/220 V nach Abnahme der Rückwand zugänglich. 4. Technische Daten a) Meßbereiche bei Schalterstellung "mV" 0...5/15/50/1500/1500 mV bel Schalterstellung "V" 0...5/15/50/150/500/1500 V b) Meßgenaulgkeit einschl. Frequenzgang, Einfluß der Raumtemperatur (+ 10...+ 30°C) und von Netzspannungsschwankungen ± 10 % ... ± 2 % v.E. 20 Hz . . . 100 kHz c) Frequenzbereich d) Eingangswiderstand (ohmsche Komponente) 1) Röhrenbestückung EF12 — EF12 — EZ11 i) Gehlusesbressungen ohne Griffe cs. 250 \times 170 \times 215 mm k) Gewickt 6 kg CLAMANN & GRAHNERT - DRESDEN

Tonfrequenzgenerator Typ GF 2

1. Anwendungsgebiet

Der Generator ist auf Grund folgender besonderer Vorzüge:

- a) höchste Frequenzgenauigkeit in allen Bereichen ohne Nacheichung,
- b) Unabhängigkeit der Ausgangsspannung von Netzspannungsänderungen und Röhren-wechsel, daher Entnahme verschiedener festgeeichter Spannungen möglich,
- c) kleiner Oberwellen- und Fremdspannungsgehalt,
- d) großer Frequenzumfang

für sämtliche Messungen und Untersuchungen im Tonfrequenzgebiet universell und im besontur samtiliene tressungen und Gitterweisungen im tolliegengebeste bei Frequenz- und Spannungs-deren für Verzerrungs- und Filtermessungen bestens geelgnet. Die Frequenz- und Spannungs-genaufgkeit erspart in vielen Fällen einen Frequenzmesser bzw. ein Röhrenvoltmeter. Bei seinen kleinen Abmessungen und der robusten Bauart ist er auch für Montagezwecke gut zu gebrauchen.

2. Wirkungsweise

Das Gerät enthält den eigentlichen Schwingungsgenerator, einen einstufigen Endverstärker und den Netzanschlußteil. Der Generator erzeugt die Schwingungen in einer aus zwei Röhren bestehenden Rückkopplungsschaltung nach dem RC-Prinzip; es werden somit grundstzlich die Nachteile des bisher üblichen Schwebungsverfahrens, wie Minahmeverzerrungen und Weglaufen der tiefen Frequenzen, Störeinflüsse durch restliche Hochfrequenz usw., vermieden. Innerhalb des gesamten Frequenzumfanges läßt sich jede Frequenz praktisch mit gleicher prozentualer Genaulgkeit und Konstanz einstellen, und zwar grob durch einen Bereichschalter mit 6 sich überlappenden Bereichen, fein innerhalb diesers Bereiche mittels Kurbeitriebes durch Zeigereinstellung auf einer zweiteiligen großen, geraden Skala. triebes durch Zeigereinstellung auf einer zweiteiligen großen, geraden Skala.

Zur Entnahme der Ausgangsspannungen sind zwei Gruppen von Anschlußbuchsen vorhanden, deren Amplitude von einem gemeinsamen Potentiometer geregelt wird.

geren Ampittude von einem geneinsanten rotentometer geregett wird.
Die erste liefert kleinere Spannungen, wie sie zur Spelsung von Verstärkereingängen u. a. benötigt werden, in dekadischer Abstufung und fester Eichung von 1 bis 1000 mV. Diese Werte beziehen sich auf die Endstellung des Amplitudenregiers, während Zwischenwerte durch Zurückdrehen des letzteren auf einer linearen Skala ebenfalls mit guter Genaufgkeit beliebig eingestellt werden können. Da dieser Buchsenreihe die Spannung unmittelbar vom Schwingteil zugeführt wird, werden hier hinsichtlich Frequenzgang und Klirrfaktor besonders gute Werte

37405 Mil III-9-5 1053 2 It 1685/53

Die zweite Buchsenreihe wird von der Endstufe gespeist und ist zur Entnehme einer größeren Leistung beschmet. Hierzu stehen zwei erdfreie Ausgänge von 2 Ohm und 200 Ohm (andere Werze seif Wunsch) sowie ein LC-Ausgang zur Verfügung. Die an diesen Buchsen bei Endressellung des Amplitudenregiers erreichbere Normalieistung ist so bemessen, daß der Klingkator bei alten Frequenzen in geringen Gerazen belatt. Darüber hinsus kann für Medfälle, bei denen ein etwal hoherer Klingkator (anterheit 30 Hz jedoch stärker anstelgend) ohne Bedeutung ist, die maximale Ausgangsleistung mittels eines Umschallers an der Geräterfückselte suf etwa den vierfachen Bezing erhöht werden.
Ein weiterer Umschalter an der Geräterfückselte bletet die Höglichkeit, für Spesialmessungen

Ein weiterer Umschalter an der Geräterückselte bietet die Möglichkeit, für Specialmessungen den Klirrfaktor des Schwingteils gegenüber dem an sich schon kleinen Normalwert noch bedeutend heraksusectzen (Stellung Kmin). Hierbei muß lediglich bei Betätigung des Frequenzbereichschalters ein wenn auch kurzzeitiges Einpendeln der Ausgangsspannung in Kauf genommen werden, während sie in der Normalstellung des Klirrfaktorschalters ihren Sollwert sofort und speriodisch erreicht.

3. XuBerer Aufbau

Das Gerät ist in einem mit Traggriffen verzehenen gefälligen Blechgehäuse untergebracht. Nach Abnahme der Rückwand sind Röhren, Sicherungen und die Netzumschaltung für 110 oder 220 V zugänglich. Auf der Vorderzeite befindet sich links unten der Frequenzbereichschalter, mit dem ein abwechseind in 2 Steinfenstern erscheinender Schieber zur Anzeige des jeweils gültigen Bereichs der dekadisch abzulezenden Doppelskala gekoppeit ist. Die gameinsame Amplitudenregelung erfolgt für sämtliche Ausgänge mit dem in der Mitte angebrachten Drehknopf; eine Teilung von 0 bis 1 erlaubt hierbei die Einstellung beliebiger Bruchteile der an den Millivoltbuchsen angegebenen geeichten Festspannungen.

a) Frequenzbereiche

4. Technische Daten

	50 250 Hz
•	160 800 Hz
	500 2 500 Hz
	1600 8 000 Hz
	5000 25 000 Hz
b) Skalengenauigkeit für alle Bereiche	± 1.5%
Daten für Millivoltausgang:	_
c) Ausgangsspennungen (regelbar)	$0 \dots 1 \text{ mV} r_1 = 10 \Omega$
	$0 \dots 10 \text{ mV} \qquad r_1 = 100 \ \Omega$
	0 100 mV r _i ⇒ 1000 Ω
	01000mV $r_i = 10000 \Omega$
d) Genauigkeit der Endwerte einschließlich	
Netzspannungseinfluß	± 3%
e) Einstellgenauigkeit für Zwischenwerte	± 3% vom Endwert
f) Frequenzgang Im gesamten Bereich	+ 2%
g) Klirrfaktor normal	ca. 0,8%
Stellung Kmin	ca. 0,2%
•	
Daten für Leistungsausgang:	
h) Maximale Ausgangsleistung	A 45 /4 VA/
normal / erhöht	ca. 0,25/1 W
i) Hierbei Klirrfaktor (800 Hz)	10/ 10 50/
Stellung "normal"	a. 1%/2.5%
Scellung "Kmin"	ca. 0,5%/2%
k) Optimaler Außenwiderstand ra=	2 Ohm/200 Ohm/10 kOhm (LC)
i) Innenwiderstand	ri atwa 0,2 ra
m) Frequenzgang (bei Nennlast)	± 5% zwischen 30 Hz und 16 kHz
Sonstiges:	\pm 15% zwischen 16 Hz und 25 kHz
n) Röhrenbestückung	EF 12 - EF 14 - EF 14 - EZ 11
u) Kontenbestuckung	0,5 A und 100 mA
o) Sicherungen	110/220 V 45 60 Hz, ca. 35 VA
p) Netz	ca. 280×170×215 mm
q) Gehäuseabmessungen ohne Griffe	a. 9 kg
r) Gewicht	