1 Proprietà relazioni

1.1 seriale

 $\forall a \in A \ \exists b \in A(a,b) \in R$ Grafo: ogni vetice ha una freccia uscente Matrice: ogni riga ha almeno un "1"

1.2 riflessiva

 $\forall a \in A \ (a,a) \in R$ Grafo: ogni vetice ha un cappio Matrice: sulla diagonale ho tutti "1"

1.3 simmetrica

 $\forall a, b \in A \ (a, b) \in R \Rightarrow (b, a) \in R$

Grafo: Ogni freccia in una direzione ne ha una

della direzione opposta Matrice: $Mr = Mr^T$

1.4 antisimmetrica

 $\forall a,b \in A \ se \ (a,b) \in R \ e \ (b,a) \in R \Rightarrow a=b$ Grafo: Non ci devono essere doppie freccie Matrice: eccetto la diagonale, se in pos (i,j) c'è un 1, allora in posizione (j,i) ci deve essere 0

1.5 transitiva

 $\forall a,b,c\in A\ (a,b)\in Re\ (b,c)\in R\Rightarrow (a,c)\in R$ Grafo: se a è collegato a b e b è collegato a c anche a deve essere collegato a c Matrice: $Mr^2\subseteq Mr$

Osservazioni

- seriale
 riflessiva
- antisimmetrica ⇒ non simmetrica
- transitiva + simmetrica ⇒ riflessiva
- riflessiva ⇒ seriale
- transitiva + simmetrica + seriale ⇒ riflessiva

1.6 Relazioni di equivalenza

Una relazione si dice di equivalenza se è riflessiva, transitiva, simmetrica (tutti i possibili collegamenti in ogni componente connessa nel grafo)

1.7 Relazioni d'ordine

Una relazione si dice d'ordine se è riflessiva, transitiva, antisimmetrica (per esistere una ch d'ordine la relazione deve essere antisimmetrica, se facendo la chiusura riflessiva e transitiva rimane antisimmetrica ora è una ch d'ordine)

1.8 elementi estremali

• Massimo: $se \ \forall \ x \in A \ a \leq x$

• Minimo: $se \ \forall \ x \in A \ a > x$

• Minimale: $\forall x \in A \text{ se } x \leq a \Rightarrow x = a$

• Massimale: $\forall x \in A \text{ se } x \geq a \Rightarrow x = a$

Oss: Un minimo è minimale, un massimo è massimale (minimali e massimali esistono in relazioni d'ordine)

1.9 Maggiorante/minorante, sup/inf

Un elemento m si dice

- Maggiorante di B se $\forall b \in B \ b \leq m$
- $\bullet \;$ Minorante di B se $\forall b \in B \; b \geq m$
- Estremo sup di B se è il minimo dei maggioranti (se esiste)
- Estremo inf di B se è il massimo dei minoranti (se esiste)

1.10 funzioni in relazioni

Proprietà della funzionalità:

Grafo: un elemento punta solo ad un altro (possono esserci varie funzioni da una relazione, ma la relazione deve essere per forza seriale) Matrice: per avere una funz devo avere un 1 per riga

Funzione iniettiva (ha inversa destra): Matrice: in ogni colonna c'è al più un 1 Funzione suriettiva (ha inversa sinistra):

Matrice: in ogni colonna c'è almeno un 1

2 Logica proposizionale

2.1 sintassi

- Lettere enunciative: $A_1, A_2, ..., A_n$
- Connettivi: \neg , \wedge , \vee , \Longrightarrow , \Longleftrightarrow
- Simboli ausiliari: ();

2.2 formula ben formata

- 1. Ogni lettera enunciativa è una f.b.f.
- 2. Se A, B sono sono f.b.f. allora $(A \Longrightarrow B), (A \iff B), (A \land B), (A \lor B), (\neg A)$ sono f.b.f.
- 3. Nient'altro è una f.b.f.

Priorità connettivi: $\neg, \wedge, \vee, \Longrightarrow, \iff$ Significato connettivi

- $(A \implies B)$ Sempre vero se A=0, Se A=1 vero solo se anche B=1
- $(A \iff B)$ Vero se A=B
- $\bullet \ \ (A \implies B) = \neg A \lor B$
- $\bullet \ (A \iff B) = (A \implies B) \land (B \implies A)$

2.3 equivalenze

- $\bullet \ \ A \implies B = \neg B \implies \neg A$
- $(\neg A \land A) \lor B = B$
- $A \wedge (A \vee B) = A$
- $A \lor (A \land B) = A$
- $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$
- $A \lor (B \land C) = (A \lor B) \land (A \lor C)$
- Una f.b.f. A si dice soddisfacibile se esiste almeno una interpretazione che è modello di A
- Una f.b.f. A per cui ogni interpretazione è un modello si dice tautologia
- Una f.b.f. che non ammette modelli si dice insoddisfacibile
- Una f.b.f. B che ha gli stessi modelli di A si dice conseguenza semantica di A

2.4 risoluzione logica proposizionale

- Letterali: Una lettera enunciativa (A) o la sua negata $(\neg A)$
- Clausola: Insieme di letterali (disgiunzione di letterali) $(\{\neg A, B, C\}, \{B, C, D\})$
- 1. Portare in forma normale congiuntiva es: $(A \vee B \vee \neg C) \wedge (B \vee D \vee \neg A) \text{ (or tra lettere e and tra gruppi)}$
- 2. Convertire a letterali e clausole es: $\{A, B, \neg C\}, \{B, D, \neg A\}$ (ogni parentesi diventa una clausola con i propri letterali dentro)
- L'obiettivo è raggiungere la clausola vuota, abbinado una clausola con un'altra ed eliminando IL letterale che in una è normale e nell'altra è negato

3 Logica del primo ordine

3.1 sintassi

- Lettere funzionali: $P(x, y) = x \cdot y$ risultato della funzione (es moltiplicazione)
- $\bullet \;$ variabili/ costanti (es x,y/a,b)
- connettivi soliti
- quantificatori: ∃,∀

Per chiudere una formula del primo ordine si quantifica ogni variabile libera con il \forall Forma normale prenessa

Sposto tutti i quantificatori in testa (dopo aver chiuso la formula)

Forma di skolem

- la formula non deve più contenere ∃
- sostituisco le variabili precedute da \exists con tante lettere funzionali quanti \forall ci sono prima del \exists che devo togliere (le variabili che uso sono quelle dei \forall precedenti al \exists che ho tolto)

3.2 equivalenze

- $\bullet \quad \neg \forall x A(x) = \exists x \neg A(x)$
- $\bullet \quad \neg \exists x A(x) = \forall x \neg A(x)$
- $\bullet \ \forall A(x) \land B = \forall y (A(y) \land B(y))$
- (vale anche per ∃ e anche per ∨) (estraendo un quantificatore da ∨ o ∧ non lo cambio) (si rinomina la variabile per sicurezza)
- $\forall x A(x) \implies B = \exists y (A(y) \implies B)$
- $\forall xB \implies A(X) = \forall y(B \implies A(y))$
- estraendo un quantificatore da un \implies si cambia se lo si estrae dal primo termine, non si cambia se lo si estrae dal secondo termine

3.3 Forma a clausole

 $\forall x_1, ..., \forall x_n ((L_1 \lor L_2 \lor L_3) \land (...) \land ...)$

4 SPASS

4.1 struttura di un programma spass

list_of_symbols.

functions[(n_funz,arità),...,(cost,0)].
predicates[(n_predicato,arità),...].
end_of_list.

 $list_of_formulae(axioms).$

formula(...). end_of_list.

list_of_formulae(conjectures). congettura_da_verificare(...). end_of_list.

4.2 sintassi

- $\land = \text{and}(), \lor = \text{or}(), \neg = \text{not}()$
- \implies = implies(), \iff = equiv()
- $\forall = \text{forall}([x],...)$
- ∃ = exists([x],...)

spass lavora solo su formule chiuse

funzioni: ad esempio moltiplicazione (le costanti sono funzioni di arità 0)

predicati: ad esempio uccide, è presente, è incantato, commercia

Algebra

5.1 Strutture algebriche

• Le strutture algebriche sono una coppia (A,Ω) Dove $\Omega=\omega_1,...,\omega_K$ è un insieme di operazioni interne all'insieme A

tipi di strutture algebriche

- semigruppo (A,·) Dove · è un'operazione binaria che soddisfa la proprietà associativa (se l'operazione è commutativa il semigruppo si dice semigruppo commutativo)
- Monoide (M,*,e) Dove (M,*) è un semigruppo e e∈M è un elemento neutro (unico) all'operazione *
- **Gruppo** (G,*,e, $^{-1}$) Dove (G,*,e) è un monoide ed esiste l'inverso $\forall g \in G \ \exists h \in G$ tale che g*h=h*g=e (h è l'inverso destro e sinistro di g)
- Anello $(A,+,\cdot)$ Dove (A,+) è un gruppo commutativo con elementro neutro 0, e (A,\cdot) è un semigruppo
- Corpo e campo Un corpo è un anello $(A,+,\cdot,1)$ con identità tale che $(A\setminus\{0\},\cdot)$ è un gruppo, se questo gruppo è commutativo si parla di campo

Zero di un sermigruppo (S,·) (elemento assorbente)

è un elemento $z \in S$ tale che $\forall s \in S$

 $\cdot z = z \cdot s = z$

Divisori dello zero

In un anello $(A,+,\cdot)$ due elementi a,b a $\neq 0,b\neq 0$ si dicono divisori dello zero se a·b=0

In un anello privo di divisori dello zero valgono le leggi di cancellazione a sinistra e destra

Osservazione

Se il semigruppo moltiplicativo $(A \setminus \{0\}, \cdot)$ è un gruppo \implies l'anello non ha divisori dello zero

Quaternioni:corpo che non è un campo Definiti da: $H = \{a \cdot i + b \cdot j + c \cdot k + d \ a, b, c, d \in \Re\}$

5.2 Sottostrutture

Data (A,Ω) struttura algebrica e $H\subseteq A$, (H,Ω) è una sottostruttura algebrica se tutte le operazioni

di omega "si restringono" ad H: $* \in \Omega \ \forall h_1, h_2 \in H \ h_1 * h_2 \in H$

Quindi tutte le operazioni Ω sono chiuse in H

- 1. (H,·) è sottosemigruppo di un semigruppo (S,·) (H⊆ S) $\iff \forall a,b \in H \ a \cdot b \in H$ $: H \times \overline{H} \to H$
- 2. (H,\cdot,e) è sottomonoide del monoide (M,\cdot,e) \iff è un sottosemigruppo $\land e \in H$
- 3. $(H,\cdot,e, \ ^{-1})$ è un sottogruppo del gruppo $(G,\cdot,e, \ ^{-1}) \Longleftrightarrow \forall a,b \in H \ a \cdot b \in H \ \forall a \in H \ a^{-1} \in H$

Criterio per gruppi:

 (H,\cdot) è sottogruppo \iff $\forall a,b \in H \ a \cdot b^{-1} \in H$

- 4. $(H,+,\cdot)$ è un sottoanello di $(A,+,\cdot) \iff$: $(\mathrm{H},\!+)$ è un sottogruppo di $(\mathrm{A},\!+)$ (H,·) è un sottosemigruppo di (A,·)
- 5. $(H,+,\cdot)$ sottocampo/sottocorpo di $(A,+,\cdot)$ se è un sottoanello e (H $\setminus \{0\},\cdot$) è un sottogruppo di (A $\setminus \{0\},\cdot$)

Strategia: uso i criteri delle sottostrutture tramite strutture note

Strutture note:

- Campi:($\mathbb{Z}/5,+,\cdot$), ($\mathbb{Z},+,\cdot$), ($\mathbb{Q},+,\cdot$), ($\mathbb{R},+,\cdot$), ($\mathbb{C},+,\cdot$)
- Anelli: $(\mathbb{R}[x], +, \cdot)$ (polinomi in x), $(M_{nn}(\mathbb{R}),+,\cdot)$ (matrici quadrate), $(\mathbb{Z}/5,+,\cdot)$ (classi di equivalenza per numeri non primi (anelli con divisori deello
- Gruppi: $(GL_n(\mathbb{R}), +)$ (matrici con determinante $\neq 0$)
- Monoidi: $(\mathbb{N}, +, 0)$

Congruenza/strutture quoziente/omomorfismi

Data una struttura algebrica (A,Ω) una relazione $\rho \subseteq A \times A$ di equivalenza si dice **compatibile** per $\bullet \in A \times A$ di equivalenza si dice **compatibile** per $\in \Omega$ se:

 $\forall a_1, a_2, b_1, b_2 a_1 \rho b_1 = a_2 \rho b_2 \implies (a_1 * a_2) \rho (b_1 * b_2)$ Se ρ è compatibile con tutte le operazioni di Ω si chiama congruenza

Data (A,Ω) struttura e $\rho\subseteq A\times A$ congruenza allora per ogni operazione *
 $\in\Omega$ possiamo definire una nuova operazione interna $A \setminus \rho$

 $\begin{array}{l} *_{\rho}:A\setminus\rho\times A\setminus\rho\to A\setminus\rho\\ \text{Definita da } [a]_{\rho}*_{\rho}[b]_{\rho}:=[a*b]_{\rho}\\ \text{Nuova struttura algebrica: } (A\setminus\rho,\Omega_{\rho}) \ \text{dove} \end{array}$ $\Omega_{\rho} = \{ *_{\rho} \ * \in \Omega \}$

Un omomorfismo è una funzione f che preserva tutte le operazioni Ω_1 e Ω_2 tra le strutture (A_1, Ω_1) $e(A_2,\Omega_2)$

Tipi di omomorfismo in base a f:

- f iniettiva → monomorfismo
- f suriettiva → epimorfismo
- f biunivoca → isomorfismo

Criterio per gruppi

Dati (G,*) e (H,·) gruppi $f: G \to H$ è un omomorfismo $\iff \forall g_1, g_2 \quad f(g_1, g_2) = f(g_1) \cdot f(g_2)$

Criterio per anelli Dati $(A,+,\cdot)$ e (B,\oplus,\odot) anelli $\phi:A\to B$ è un

omomorfismo se: $\forall a, b \in A \quad \varphi(a+b) = \varphi(a) \oplus \varphi(b)$ $\forall a, b \in A \quad \varphi(a \cdot b) = \varphi(a) \odot \varphi(b)$

Sottogruppi normali(gruppi)/ ideali(anelli)

Un sottogruppo H di un gruppo (G,*) si dice normale se:

 $\forall g \in G, \forall h \in H \quad g^{-1} * h * g \in H \quad (\iff \forall g \in G)$

Osservazione: se G è commutativo \Longrightarrow tutti i sottogruppi sono normali $g^{-1}*h*g=g^{-1}*g*h=$ $h * e_G = \hat{h} \in H \quad \forall h \in h \quad \forall g \in G$

Proposizione: se ρ è una congruenza del gruppo (G, *) allora $[e_G]_{\rho}$ è un sottogruppo normale

Un ideale I di un anello $(A,+,\cdot)$ è un sottoanello di A che soddisfa l'assorbimento $\forall a \in A$:

Destra: $I \cdot A = \{x \cdot a : x \in I\} \subseteq I$ Sinistra: $I \cdot A = \{a \cdot x : x \in I\} \subseteq I$