Lecture 2: Analysis of Algorithms

Sunghyun Cho Professor Division of Computer Science chopro@hanyang.ac.kr

HANYANG UNIVERSITY

Contents

- Analysis?
- Experimental Analysis
- Theoretical Analysis
- 7 Important Functions
- Primitive Operations
- Comparison of Algorithms
- Big-Oh Notation
- Asymptotic Algorithm Analysis

Lecture Objectives (cont'd)

Key Words

Algorithm Analysis

3

HANYANG UNIVERSITY

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on <u>the worst</u> <u>case</u> running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

HANYANG UNIVERSITY

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results

HANYANG UNIVERSITY

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

HANYANG UNIVERSITY

5

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

7

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm arrayMax(A, n)Input array A of n integers Output maximum element of A

 $\begin{array}{l} \textit{currentMax} \leftarrow A[0] \\ \textit{for } i \leftarrow 1 \; \textit{to} \; n-1 \; \textit{do} \\ \textit{if } A[i] > \textit{currentMax} \; \textit{then} \\ \textit{currentMax} \leftarrow A[i] \\ \textit{return } \textit{currentMax} \end{array}$

RANYANG UNIVERSITY

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...])

Input ...

Output ...

- Method call
 - var.method (arg [, arg...])
- Return value return expression
- Expressions
 - ← Assignment (like = in Java)
 - = Equality testing
 (like == in Java)
 - n² Superscripts and other mathematical formatting allowed

HANYANG UNIVERSITY

Seven Important Functions

- Seven functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear ≈ n
 - N-Log-N ≈ $n \log n$
 - Quadratic ≈ n^2
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate

9

Functions Graphed Using "Normal" Scale

11

HANYANG UNIVERSITY

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)

- Examples:
 - Evaluating an expression
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method
 - Returning from a method

HARYANG UNIVERSITY

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A, n) # operations
currentMax \leftarrow A[0] 2
for i \leftarrow 1 to n - 1 do 2n
if A[i] > currentMax then 2(n - 1)
currentMax \leftarrow A[i] 2(n - 1)
\{ increment counter i \} 2(n - 1)
return currentMax 2
```

13

HANYANG UNIVERSITY

Estimating Running Time

- Algorithm arrayMax executes 8n 2 primitive operations in the worst case. Define:
 - a = Time taken by the fastest primitive operation
 - b =Time taken by the slowest primitive operation
- Let T(n) be worst-case time of arrayMax. Then $a (8n-2) \le T(n) \le b(8n-2)$
- Hence, the running time T(n) is bounded by two linear functions

HARYANG UNIVERSITY

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

HANYANG UNIVERSITY

Why Growth Rate Matters

if runtime is	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
c n	c (n + 1)	2c n	4c n
c n lg n	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n²	~ c n ² + 2c n	4c n²	16c n ²
c n³	~ c n ³ + 3c n ²	8c n ³	64c n ³
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples • when problem size doubles

HANYANG UNIVERSITY

15

Comparison of Two Algorithms

insertion sort is $n^2 / 4$

merge sort is 2 n lg n

sort a million items?

insertion sort takes roughly 70 hours

while

merge sort takes roughly 40 seconds

This is a slow machine, but if 100 x as fast then it's 40 minutes versus less than 0.5 seconds

17 HANYANG UNIVERSITY

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - -10^2 **n** + 10^5 is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

HANYANG UNIVERSITY

Big-Oh Notation

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that
 - $f(n) \leq cg(n)$ for $n \geq n_0$
- **Example:** 2n + 10 is O(n)
 - $-2n+10 \le cn$
 - (c-2) n ≥ 10
 - n ≥ 10/(c 2)
 - Pick c = 3 and $n_0 = 10$

19

Big-Oh Example

- Example: the function n^2 is not O(n)
 - $n^2 \le cn$
 - $-n \leq c$
 - The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

■ 7n-2

7n-2 is O(n) $need\ c>0\ and\ n_0\geq 1\ such\ that\ 7n-2\leq c\bullet n\ for\ n\geq n_0$ this is true for c=7 and $n_0=1$

- $3n^3 + 20n^2 + 5$ $3n^3 + 20n^2 + 5$ is $O(n^3)$ need c > 0 and $n_0 \ge 1$ such that $3n^3 + 20n^2 + 5 \le c \cdot n^3$ for $n \ge n_0$ this is true for c = 4 and $n_0 = 21$
- 3 log n + 5

3 log n + 5 is O(log n) need c > 0 and $n_0 \ge 1$ such that 3 log n + 5 \le c•log n for n \ge n₀ this is true for c = 8 and n₀ = 2

21

HANYANG UNIVERSITY

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- If f(n) is a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

23

HANYANG UNIVERSITY

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm arrayMax executes at most 8n 2 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The i-th prefix average of an array X is average of the first (i + 1) elements of X:

$$A[i] = (X[0] + X[1] + ... + X[i])/(i+1)$$

Computing the array A of prefix averages of another array X has applications to financial analysis

25

HANYANG UNIVERSITY

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition

```
Algorithm prefixAverages1(X, n)
   Input array X of n integers
   Output array A of prefix averages of X
                                                     #operations
   A \leftarrow new array of n integers
                                                         n
   for i \leftarrow 0 to n-1 do
                                                         n
        s \leftarrow X[0]
                                                         n
        for i \leftarrow 1 to i do
                                               1 + 2 + ... + (n - 1)
                                               1 + 2 + \ldots + (n-1)
                 s \leftarrow s + X[i]
        A[i] \leftarrow s / (i+1)
                                                        n
                                                         1
   return A
```

Arithmetic Progression

- The running time of prefixAverages1 is O(1 + 2 + ... + n)
- The sum of the first n integers is n(n+1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in $O(n^2)$ time

27

HANYANG UNIVERSITY

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum

Algorithm prefixAverages2(X, n)	
Input array X of n integers	
Output array A of prefix averages of X	#operations
$A \leftarrow$ new array of n integers	n
$s \leftarrow 0$	1
for $i \leftarrow 0$ to $n-1$ do	n
$s \leftarrow s + X[i]$	\boldsymbol{n}
$A[i] \leftarrow s / (i+1)$	n
return A	1

 \bullet Algorithm *prefixAverages2* runs in O(n) time

Math you need to Review

- Summations
- Linear Function
- Logarithms and Exponents
- Quadratic, Cubic, and other Polynomials
- Proof techniques
- Basic probability

29

properties of logarithms:

$$log_b(xy) = log_b x + log_b y$$

 $log_b(x/y) = log_b x - log_b y$
 $log_b xa = alog_b x$
 $log_b a = log_x a/log_x b$

properties of exponentials:

$$a^{(b+c)} = a^b a^c$$

 $a^{bc} = (a^b)^c$
 $a^b / a^c = a^{(b-c)}$
 $b = a^{\log_a b}$
 $b^c = a^{c*\log_a b}$

HANYANG UNIVERSITY

