Lógica y Computabilidad

Verano 2023 Primer Parcial

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

	Nombre y Apellido:	Nota:			
⊳ Resolver cada ejercicio en una hoja separada .					
⊳ Poner nombre y LU en todas las hojas.					
⊳ Sólo puede usarse una hoja de apuntes personales.	Libreta Universitaria:	Ej. 1	Ej. 2	Ej. 3	Ej. 4
\triangleright Se debe justificar <u>todas</u> las respuestas.		Ü	Ü		Ü
⊳ El parcial se aprueba con al menos 2 ejercicios				.	
complementamente bien resueltos.				.	
				.	

Ejercicio 1. Dada una función $g: \mathbb{N}^2 \to \mathbb{N}$ y k_1 y k_2 constantes, definimos la función $h: \mathbb{N} \to \mathbb{N}$ de la siguiente manera:

$$h(0) = k_1$$

$$h(1) = k_2$$

$$h(t+2) = g(\max\{h(t), h(t+1)\}, t+1)$$

- a) Demostrar que si g es primitiva recursiva, h también lo es.
- b) Considerar la función g definida por:

$$g(x,y) = \begin{cases} 1 & \text{si } \Phi_x(y) \downarrow \\ 0 & \text{si no} \end{cases}$$

- i. ¿Es g una función primitiva recursiva?
- ii. (opcional); Existen valores de k_1 y k_2 para los cuales h es primitiva recursiva?

Ejercicio 2. a) Considerar la función $f: \mathbb{N} \to \mathbb{N}$ definida por

$$f(x) = \begin{cases} 1 & \text{si } x \text{ es par} \\ \uparrow & \text{si no} \end{cases}$$

Escribir un programa en el lenguaje S que compute f.

b) Sea P el siguiente pseudo-programa en el lenguaje \mathcal{S} .

$$Y \leftarrow X_1$$
 [A] IF $X_2 = 0$ GOTO E
$$Y \leftarrow Y + 1$$

$$Y \leftarrow Y + 1$$

$$X_2 \leftarrow X_2 - 1$$
 GOTO A

Dar fórmulas para $\Psi_P^{(1)}, \Psi_P^{(2)}, \Psi_P^{(3)}$.

c) Sea P un programa en \mathcal{S} que no tiene ninguna instrucción del tipo IF $V \neq 0$ GOTO L Demostrar que $\Psi_P(x) \leq |\#(P) + 1|$ para todo $x \in \mathbb{N}$.

Ejercicio 3. Para cada $n \in \mathbb{N}$ definimos una función total $g_n : \mathbb{N} \to \mathbb{N}$ de la siguiente manera:

$$g_n(x) = \begin{cases} t+1 & \text{si } |x+1| = n \text{ y } \Phi_x(2023) \downarrow \text{ en exactamente } t \text{ pasos} \\ 0 & \text{si no} \end{cases}$$

Siendo $g(n,x)=g_n(x)$, jes $g:\mathbb{N}^2\to\mathbb{N}$ una función computable?

Ejercicio 4. a) Para cada $k \in \mathbb{N}$ definimos el siguiente conjunto:

$$A_k = \{z | \Phi_k(x) = z \text{ para algún } x \in \mathbb{N} \}$$

Luego, definimos $A = \bigcup_{k \in \mathbb{N}} A_k$.

- i. ¿Son todos los A_k computables? ¿Son todos los A_k c.e.?
- ii. ¿Es A computable? ¿Es A un conjunto c.e.?
- b) Decidir si el siguiente conjunto es computable, c.e. o co-c.e:

$$\{x: \Phi_x(0) \downarrow y \ \Phi_x(0) = 314\}$$