Objectifs

 Comprendre l'approche générale pour développer une IA pour un jeu à deux adversaires

- Comprendre et pouvoir appliquer l'algorithme minimax
- Comprendre et pouvoir appliquer l'algorithme d'élagage alpha-bêta
- Savoir traiter le cas de décisions imparfaites en temps réel

Rappel sur A*

- Notion d'état (nœud)
- État initial
- Fonction de transition (successeurs)
- Fonction de but (configuration finale)

Vers les jeux avec adversité ...

- Q: Est-il possible d'utiliser A* pour des jeux entre deux adversaires ?
 - On pourrait définir un état pour le jeu (échecs : position de toutes les pièces)
 - La fonction de but pourrait identifier les configurations telles que le joueur a gagné
 - Quelle est la fonction de transition ?
- R : Non. Pas directement.
- Q : Quelle hypothèse est violée dans les jeux ?
- R: Dans les jeux, l'environnement est multi-agent. Le joueur adverse peut modifier l'environnement.

Relation entre les joueurs

- Dans un jeu, des joueurs peuvent être :
 - Coopératifs
 - » ils veulent atteindre le même but
 - Des adversaires en compétition
 - » un gain pour les uns est une perte pour les autres
 - » cas particulier : les jeux à somme nulle (zero-sum games)
 - jeux d'échecs, de dame, tic-tac-toe, Connect 4, etc.

Mixte

» il y a tout un spectre entre les jeux purement coopératifs et les jeux avec adversaires (ex. : alliances)

Hypothèses

- Nous aborderons les :
 - jeux à deux adversaires
 - jeux à tour de rôle
 - jeux à **somme nulle**
 - jeux avec environnement complètement observés
 - jeux déterministes (sans hasard ou incertitude)