Topología Algebraica

Ejercicios para Entregar - Práctica 1 Guido Arnone

Sobre los Ejercicios

Elegí resolver los ejercicios (3), (5), y (). Por completitud, incluyo el ejercicio (4) al comienzo ya que lo ulilizaré en la resolución de (3). Con la intención de hacer más legibles a las resoluciones, algunos argumentos están escritos en forma de lemas que preceden a cada ejercicio.

Lema 1. Sea K un complejo simplicial y $v \in V_K$. Entonces $st(v)^o \cap V_K = \{v\}$

Demostración. Si $v \in V_K$, luego $\{v\} \ni v$ es un símplex y $\{v\}^o = \{v\}$ así que $v \in st(v)^o$. Recíprocamente si $w \in st(v)^o \cap V_k$, existe $\sigma \ni v$ con $w \in \sigma^o \subset \sigma$. Por lo tanto, al w ser un vértice $\{w\}$ debe ser una cara de σ . Por otro lado, como $\{w\} \subset \sigma^o$ y éste último es justamente quitar las caras propias de σ , necesariamente $\{w\} = \sigma$. Como $\sigma \ni v$ y el único tal símplex de dimensión 0 es $\sigma = \{v\}$, luego w = v. □

Lema 2. Sea K un complejo simplicial y sean $\sigma_1, \ldots, \sigma_k$ símplices de K. Si $\bigcap_{i=1}^k \sigma_i^o \neq \emptyset$, entonces $\sigma_1 = \cdots = \sigma_k$.

Demostración. Hacemos inducción en k. Tomamos el caso base k=2, pues de ser k=1 esto es claro. Por el absurdo, sean $\sigma \neq \tau \in K$ tales que $\sigma^o \cap \tau^o \neq \emptyset$. Luego $\sigma \cap \tau \supset \sigma^o \cap \tau^o \neq \emptyset$ y es así que $\sigma \cap \tau < \sigma, \tau$, pues al ser los símplices distintos la intersección es una cara propia. Por definición de σ^o es $\sigma \cap \tau \subset (\sigma^o)^c$, y pasando al complemento la contención $\sigma^o \cap \tau^o \subset \sigma^o$ obtenemos $\sigma^o \cap \tau^o \subset \sigma \cap \tau \subset (\sigma^o)^c \subset (\sigma^o \cap \tau^o)^c$, lo que es una contradicción. Ahora, supongamos que el resultado es válido para $2 \le k-1$. Como $\bigcap_{i=1}^k \sigma_i^o \neq \emptyset$, en particular sabemos que $\bigcap_{i=1}^{k-1} \sigma_i^o \neq \emptyset$. Por inducción, $\sigma_1 = \sigma_j$ si $j \in [k-1]$. Podemos ahora reescribir la intersección inicial como $\sigma_1^o \cap \sigma_k^o \neq \emptyset$, y usando el paso inicial vemos por último que $\sigma_1 = \sigma_k$. □

Ejercicio 4. Sea K un complejo simplicial y $\mathcal{U} = \{st(v)^o, v \in V_K\}$ el cubrimiento por stars abiertos de los vértices. Probar que $N(\mathcal{U})$ es isomorfo a K.

Demostración. Consideremos la función entre vértices dada por

$$\iota : V_K \to N(\mathcal{U})$$
$$\nu \longmapsto st(\nu)^o$$

Observemos que ι es un morfismo simplicial: sea $\sigma = \{\nu_0, \ldots, \nu_n\} \in K$ y veamos que $\{\iota(\nu_0), \ldots, \iota(\nu_n)\} = \{st(\nu_0)^o, \ldots, st(\nu_n)^o\} \in N(\mathcal{U})$. Como $\sigma \ni \nu_i$ para cada $i \in [\![n]\!]_0$, en cada caso es $\sigma^o \subset st(\nu_i)^o$ y por lo tanto,

$$\sigma^{o} \subset \bigcap_{i=0}^{n} st(v_{i})^{o} \neq \emptyset.$$

Esto último dice que, en efecto, $\{st(v_0)^o, \ldots, st(v_n)^o\} \in N(\mathcal{U})$. Afirmamos ahora que ι es biyectiva: la suryectividad se deduce de que los vértices del nervio son precisamente los stars abiertos de algún $v \in K$, así que alcanza con mostrar la inyectividad. En efecto, si $v, w \in K$ son tales que $st(v)^o = st(w)^o$, por el Lema 1 luego $\{v\} = st(v)^o \cap V_K = st(w)^o \cap V_k = \{w\}$. Tenemos entonces la inversa de ι ,

$$j: st(\nu)^o \in N(\mathcal{U}) \mapsto \nu \in K.$$

Veamos que j también es simplicial: sea $\mathfrak{S}=\{st(\nu_0)^o,\ldots,st(\nu_n)^o\}\in N(\mathcal{U})$ un símplex. Por definición es $\bigcap_{i=0}^n st(\nu_i)^o\neq\emptyset$. En particular, tenemos un punto $x\in st(\nu_i)^o$ para cada $i\in [\![n]\!]_0$ y entonces existen símplices $\sigma_i\ni\nu_i$ con $x\in\sigma_i$ de forma que $\bigcap_{i=0}^n\sigma_i^o\ni x$. Luego como esta última intersección es no vacía, el Lema 2 nos asegura que $\sigma:=\sigma_0=\cdots=\sigma_n$. Como para cada $i\in [\![n]\!]_0$ es $\nu_i\in\sigma_i=\sigma$, luego $\{\nu_0,\ldots,\nu_n\}\subseteq\sigma$. Como K es un complejo simplicial y cada ν_i es un vértice, necesariamente éstos forman una cara de σ que en particular es un símplex:

$$\{j(st(v_0)^o), \dots, j(st(v_n)^o)\} = \{v_0, \dots, v_n\} \in K.$$

Habiendo visto que tanto ι como j son simpliciales y tanto $j\iota=1_K$ como $\iota j=1_{N(\mathcal{U})}$, concluimos entonces que en efecto K y $N(\mathcal{U})$ son isomorfos.

Lema 3. Sea K un complejo simplicial finito, de forma que su realización geométrica resulta un espacio métrico. Sean ahora $v \in K$ y $\sigma = \{v_0, \dots, v_k\} \in K$. Entonces,

- a) $\operatorname{diam}(|\sigma|) \leq \max_{0 \leq i,j \leq k} d(\nu_i, \nu_j)$
- b) $\operatorname{diam}(\operatorname{st}(v)^{\circ}) \leq 2 \max_{\sigma \in K} \operatorname{diam}(|\sigma|)$
- c) Existe $0 < \eta < 1$ que sólo depende de la dimensión de K tal que

$$\max_{\sigma \in K'} diam(|\sigma|) \leq \eta \max_{\sigma \in K} diam(|\sigma|).$$

d) Si definimos $\Gamma_n := \max_{\nu \in K^{(n)}} diam(st(\nu)^o)$, entonces $\Gamma_n \xrightarrow{n \to \infty} 0$.

Demostración. Hacemos cada inciso por separado,

a) Sean $x=\sum_{i=0}^k t_i \nu_i$, $y=\sum_{j=0}^k s_j \nu_j \in |\sigma|$ combinaciones convexas de los vértices de σ . Luego,

$$\begin{split} d(x,y) &= \left\| \sum_{i=0}^k t_i \nu_i - \sum_{j=0}^k s_j \nu_j \right\| = \left\| \sum_{i=0}^k t_i \nu_i - \sum_{i=0}^k t_i \sum_{j=0}^k s_j \nu_j \right\| = \left\| \sum_{i=0}^k t_i \left(\nu_i - \sum_{j=0}^k s_j \nu_j \right) \right\| \\ &\leq \sum_{i=0}^k t_i \left\| \nu_i - \sum_{j=0}^k s_j \nu_j \right\| = \sum_{i=0}^k t_i \left\| \sum_{j=0}^k s_j \nu_i - \sum_{j=0}^k s_j \nu_j \right\| = \sum_{i=0}^k t_i \left\| \sum_{j=0}^k s_j (\nu_i - \nu_j) \right\| \\ &\leq \sum_{i=0}^k t_i \sum_{j=0}^k s_j \| \nu_i - \nu_j \| \leq \sum_{i=0}^k t_i \sum_{j=0}^k s_j \max_{0 \leq r,s \leq k} d(\nu_r,\nu_s) \\ &= \max_{0 \leq r,s \leq k} d(\nu_r,\nu_s) \sum_{i=0}^k t_i \sum_{j=0}^k s_j = \max_{0 \leq r,s \leq k} d(\nu_r,\nu_s). \end{split}$$

b) Sean $x,y \in st(v)^o$. Luego existen $\sigma_1, \sigma_2 \ni v$ tales que $x \in \sigma_1^o \subset \sigma_1$ e $y \in \sigma_2^o \subset \sigma_2$. Por lo tanto,

$$d(x,y) \leq d(x,\nu) + d(\nu,y) \leq diam(\sigma_1) + diam(\sigma_2) \leq 2 \max_{\sigma \in K} diam(\sigma).$$

c) Sea $\tilde{\sigma}=\{\widehat{\sigma_0},\ldots,\widehat{\sigma_k}\}\in K'.$ Por definición de la subdivisión baricéntrica, sabemos que $\sigma_i<\sigma_{i+1}$ para cada $i\in [k-1]_0$ y si $0\leq i< j\leq k$, entonces $\sigma_i=\{\nu_1,\ldots,\nu_r\}$ y $\sigma_j=\{\nu_1,\ldots,\nu_r,\nu_{r+1},\ldots,\nu_{r+s}\}$. Ahora, notemos que si $\nu_k\in\sigma_i$ luego es $0\leq k\leq r+s$ y entonces

$$\begin{split} \|\nu_k - \widehat{\sigma_j}\| &= \|\nu_k - \frac{1}{1+r+s} \sum_{l=0}^{r+s} \nu_l\| = \|\frac{1}{1+r+s} \sum_{l=0}^{r+s} (\nu_k - \nu_l)\| \\ &= \|\frac{1}{1+r+s} \sum_{l=0,l \neq k}^{r+s} (\nu_k - \nu_l)\| \leq \frac{1}{1+r+s} \sum_{l=0,l \neq k}^{r+s} \|(\nu_k - \nu_l)\| \\ &\leq \frac{r+s}{1+r+s} \operatorname{diam}(\sigma_j) \leq \frac{r+s}{1+r+s} \max_{\sigma \in K} \operatorname{diam}(|\sigma|), \end{split}$$

ya que el k-ésimo término de la sumatoria resulta $0 = v_k - v_k$. Por lo tanto,

$$\begin{split} d(\widehat{\sigma_j},\widehat{\sigma_i}) &= \left\| \frac{1}{r+1} \sum_{j=0}^r \nu_i - \widehat{\sigma_j} \right\| = \left\| \frac{1}{r+1} \sum_{j=0}^r (\nu_i - \widehat{\sigma_j}) \right\| \\ &\leq \frac{1}{r+1} \sum_{i=0}^r \|\nu_i - \widehat{\sigma_j}\| \leq \frac{r+s}{1+r+s} \max_{\sigma \in K} diam(|\sigma|). \end{split}$$

Ahora, como K tiene dimensión n, necesariamente es $r+s \le n$, y luego $\frac{r+s}{1+r+s} \le \frac{n}{1+n} < 1$. Por lo tanto, dado cualquier símplex $\tilde{\sigma}$ es

$$diam(\tilde{\sigma}) \leq \max_{0 \leq i,j \leq k} d(\widehat{\sigma_i},\widehat{\sigma_j}) \leq \frac{n}{1+n} \max_{\sigma \in K} diam(|\sigma|).$$

Tomando máximo en $\tilde{\sigma}$, vemos que alcanza con tomar $\eta=\frac{n}{1+n}\in(0,1)$ y que este último depende únicamente de dim K.

d) Como para todo n>1 sabemos que dim $K^{(n)}=\dim K^{(n-1)}$, luego existe $0<\eta<1$ por el ítem (c) tal que

$$0 \leq \max_{\sigma \in K^{(n)}} diam(|\sigma|) \leq \eta \max_{\sigma \in K^{(n-1)}} diam(|\sigma|) \leq \dots \leq \eta^n \max_{\sigma \in K} diam(|\sigma|).$$

Finalmente usando (b), obtenemos:

$$0 \leq \Gamma_n \leq 2 \max_{\sigma \in K^{(n)}} diam(|\sigma|) \leq 2 \eta^n \max_{\sigma \in K} diam(|\sigma|) \rightarrow 0.$$

Ejercicio 3. Sea X un espacio topológico y $U = \{U_i\}_{i \in I}$ un cubrimiento por abiertos de X. El nervio de U es el complejo simplicial N(U) cuyos vértices son los abiertos del cubrimiento y los símplices son los subconjuntos finitos no vacíos de U, $s = \{U_{i_0}, \ldots, U_{i_n}\}$ tales que $\bigcap U_{i_k} \neq \emptyset$. Notar que efectivamente N(U) es un complejo simplicial. Se dice que un espacio topológico X tiene dimensión $\leq n$ si todo cubrimiento abierto de X admite un refinamiento abierto cuyo nervio es un complejo simplicial de dimensión $\leq n$. Decimos que dim X = n si dim $X \leq n$ y dim $X \not\leq n-1$. Probar que:

- a) Si $A \subseteq X$ es cerrado entonces dim $A \le \dim X$.
- b) Los espacios discretos tienen dimensión 0.
- c) El intervalo I tiene dimensión 1.
- d) Si K complejo simplicial finito y dim K = n entonces dim $|K| \le n$. (En realidad vale la igualdad, se verá más adelante).

Demostración. Probamos cada inciso por separado.

a) Sea $A\subseteq X$ cerrado, $n:=\dim X$ y $\mathcal{U}=\{U_i\}_{i\in I}$ un cubrimiento por abiertos de A. Existe entonces para cada $i\in I$ un abierto V_i de X tal que $U_i=V_i\cap A$, y es entonces que la colección $\mathcal{O}=\{V_i\}_{i\in I}\cup \{A^c\}$ cubre X por abiertos, ya que A es cerrado. Por hipótesis, tenemos entonces un refinamiento $\tilde{\mathcal{O}}=\{O_j\}_{j\in J}$ de \mathcal{O} tal que $N(\tilde{\mathcal{O}})$ es un complejo simplicial de dimensión menor o igual que n. Afirmamos ahora que $\tilde{\mathcal{U}}=\{O_j\cap A\}_{j\in J}$ es refinamiento de \mathcal{U} : tenemos que

$$\bigcup_{j\in J} O_j\cap A=A\cap \bigcup_{j\in J} O_j=A\cap X=A,$$

y dado $j \in J$ luego $O_j \cap A$ es abierto en A pues O_j es abierto en X. Por úlimo, si $O_j \cap A \neq \emptyset$ luego $O_j \not\subset A^c$ y existe $i_j \in I$ con $O_j \subset V_{i_j}$ y entonces $O_j \cap A \subset V_{i_j} \cap A = U_{i_j} \in \mathcal{U}$. En cualquier caso, $O_j \cap A$ es subconjunto de algún elemento de \mathcal{U} . Para terminar, veamos que dim $N(\tilde{\mathcal{U}}) \leq n$. Sea $\sigma = \{O_{j_0} \cap A, \ldots, O_{j_k} \cap A\}$ un símplex del nervio de $\tilde{\mathcal{U}}$. Luego,

$$\emptyset \neq \bigcap_{i=0}^k A \cap O_{j_i} \subset \bigcap_{i=0}^k O_{j_i}$$

y entonces $\{O_{j_0},\ldots,O_{j_k}\}$ es un símplex de $N(\tilde{\mathcal{O}})$. Como este último tiene dimensión a lo sumo n, es

$$\dim \sigma = k \le \dim N(\tilde{\mathcal{O}}) \le n$$

y en consecuencia, dim $N(\tilde{\mathcal{U}}) \le n$.

- b) Sea $X = \{x_{\alpha}\}_{{\alpha} \in \Lambda}$ discreto y $\mathcal U$ un cubrimiento de X por abiertos. Afirmamos que el conjunto $\mathcal O := \{\{x\} : x \in X\}$ es un refinamiento de $\mathcal U$. Los elementos de $\mathcal O$ son abiertos pues X es discreto. Por otro lado si $\{x\} \in \mathcal O$, entonces como $\mathcal U$ es cubrimiento de X existe $U \in \mathcal U$ tal que $x \in U$. Equivalentemente es $\{x\} \subset U$, y así probamos que el primero es subconjunto de algún abierto de $\mathcal U$. Basta entonces probar que el nervio de $\mathcal O$ es de dimensión 0. Como los simplices de $N(\mathcal O)$ consisten de abiertos de $\mathcal O$ cuya intersección sea no vacía, alcanza con ver que cualesquiera dos abiertos de $\mathcal O$ son disjuntos. Esto es claro: si $\{x\} \neq \{y\} \in \mathcal O$, entonces $x \neq y$ y $\{x\} \cap \{y\} = \mathcal O$.
- c) Veamos en primer lugar que dim I \leq 0. Sea $\mathcal{U} = \{[0, \frac{2}{3}), (\frac{1}{3}, 0]\}$ cubrimiento de I. Cualquier refinamiento de \mathcal{U} tiene entonces al menos 2 elementos. Si I tuviese dimensión cero, existiría un refinamiento \mathcal{O} de \mathcal{U} cuyo nervio es de dimensión cero. Esto diría que los abiertos de \mathcal{O} son disjuntos y por conexión conluiríamos entonces que $1 = \#\mathcal{O} \geq 2$, lo que es absurdo.

Probemos ahora que dim $I \le 1$. Notemos que esto es una conclusión inmediata del siguiente ítem pues I es la realización geométrica de un complejo simplicial de dimensión 1. Además, el ítem (d) no utiliza este ítem y por lo tanto no hay peligro de un argumento circular. De todas maneras, a continuación proponemos otro argumento que sólo utiliza la caracterización de los abiertos de \mathbb{R} .

Sea $\mathcal{U}=\{U_i\}_{i\in I}$ un cubrimiento por abiertos de I. Como los abiertos de \mathbb{R} son unión numerable de intervalos abiertos y disjuntos, luego para cada $i\in I$ existen conjuntos $J_i\subset \mathbb{N}$ e intervalos $\{I_j^i\}_{j\in J_i}$ abiertos (en I) y disjuntos tales que $U_i=\bigcup_{j\in J_i}I_j^i$. Por compacidad tenemos luego intervalos $I_1,\ldots,I_n\in\{I_j^i\}_{i\in I,j\in J_i}$ tales que $\bigcup_{i=1}^N I_i=I$ y, por construcción, cada intervalo es subconjunto de algún abierto U_i . Obtuvimos así un refinamiento $\mathcal{O}_0=\{I_1,\ldots,I_n\}$ de \mathcal{U} . Construimos a continuación un refinamiento \mathcal{O} de \mathcal{U} de la siguiente forma: tomamos primero los intevalos de \mathcal{O}_0 . A los que no sean abiertos (como intervalos) les quitamos los extremos: estos seguirán siendo abiertos en I, pues sólo pueden provenir de alguno de la forma [0,1], $(\mathfrak{a},1]$ o $[0,\mathfrak{b})$. Luego, dados J_0 , $J_1\in\mathcal{O}_0$ con $s\in J_s$ para $s\in\{0,1\}$, agregamos entornos $E_0:=[0,\epsilon)$, $E_1:=(1-\epsilon,1]$ a \mathcal{O} con $0<\epsilon\ll 1$ tal que estos sean disjuntos y estén contenidos en I_0 y I_1 respectivamente. Esto garantiza que \mathcal{O} cubre a I_0 y que volvemos a cubrir sus extremos. Finalmente, de existir algún intervalo que esté contenido en la unión de otros, seleccionamos alguno de ellos y lo quitamos. Repetimos el proceso hasta que no haya más intervalos de este tipo, lo cual es posible pues hay finitos intervalos en total. Como removemos intervalos de uno, \mathcal{O} sigue siendo refinamiento pues sigue cubriendo a I.

Afirmamos ahora que $N(\mathcal{O})$ es de dimensión a lo sumo 1, o equivalentemente, que no hay tres intervalos de \mathcal{O} cuya intersección sea no vacía. Supongamos que sí y sean $\{J_i\}_{1\leq i\leq 3}\subset \mathcal{O}$ de intersección no vacía y tales que el interior de J_i en \mathbb{R} es $(\mathfrak{a}_i,\mathfrak{b}_i)^1$. Como los intervalos no se contienen entre sí, existen dos de ellos distintos con el menor extremo izquierdo y mayor extremo derecho, que suponemos son J_1 y J_3 respectivamente. Así, $J_1\cap J_3=(\mathfrak{a}_3,\mathfrak{b}_1)$. Como

¹Esto evita tratar por separado la posible elección de E₀ o E₁, ya que al ser los únicos dos intervalos semiabiertos, el argumento que sigue funciona aún si $a_1 \in J_1$ o $b_3 \in J_3$. Siempre tenemos que tanto J_2 como $J_1 \cap J_3$ son intervalos abiertos, y no hace falta que las desigualdades entre a_1 y a_2 o b_2 y b_3 sean estrictas.

 $J_2 \not\subseteq J_1$ debe ser $b_2 > b_1$, y similarmente como $J_2 \not\subseteq J_3$ tenemos que $a_2 < a_3$. Si ahora $s \in J_2$, entonces $a_1 \le a_2 < s < b_2 \le b_3$. Si $s \not\in J_1$, luego $s > b_1 > a_3$ y consecuentemente $s \in J_3$. En cualquier caso, $s \in J_1 \cup J_3$. Esto implica que $J_2 \subset J_1 \cap J_3$, lo que es absurdo: no hay entonces tres intervalos cuya intersección sea no vacía. Dado un cubrimiento arbitrario encontramos un refinamiento cuyo nervio es de dimensión a lo sumo 1, lo que completa la demostración.

d) Sea K un complejo simplicial de dimensión n y $\mathcal U$ un cubrimiento por abiertos de K. Como K es finito, es compacto, y por lo tanto existe un número de Lebesgue $\mu > 0$ para el cubrimiento. Por el Lema 3, existe $\mathfrak m \in \mathbb N$ tal que la $\mathfrak m$ -ésima subdivisión baricéntrica $K^{(\mathfrak m)}$ de K verifica diam $(\mathfrak st(\nu)^o) < \mu$ para cada $\nu \in K^{(\mathfrak m)}$. Como éstos cubren a $|K^{(\mathfrak m)}| = |K|$ por abiertos y tienen diámetro menor a μ , cada star abierto está contenido en algún abierto de $\mathcal U$. Es decir, $\mathcal S = \{\mathfrak st(\nu)^o\}_{\nu \in K^{(\mathfrak m)}}$ refina a $\mathcal U$. Por otro lado, el ejercicio (4) asegura que $N(\mathcal S) \simeq K^{(\mathfrak m)}$ como complejos simpliciales y en particular, dim $N(\mathcal S) = \dim K^{(\mathfrak m)} = \dim K = \mathfrak n$. Esto prueba que todo cubrimiento por abiertos de |K| tiene un refinamiento cuyo nervio es de dimensión a lo sumo $\mathfrak n$, es decir, hemos visto en efecto que dim $|K| \leq \mathfrak n$.

Lema 4. Sea X un espacio topológico, R una relación en X y X/R el espacio cociente. Notamos $q: X \to X/R$ a la proyección. Si U, V son abiertos saturados disjuntos en X, entonces q(U) y q(V) son abiertos disjuntos en X/R. En particular, si $[x] \neq [y] \in X/R$ y existen $U \ni x, V \ni y$ abiertos saturados disjuntos, los abiertos q(U) y q(V) separan a [x] de [y].

Demostración. Ya sabemos que los abiertos de X/R son precisamente las imágenes por q de abiertos saturados, resta ver entonces que $q(U) \cap q(V) = \emptyset$. Si no fuera así existirían $z \in U$ y $w \in V$ con q(z) = q(w). En particular, tendríamos que $z \sim w$ y como U es saturado, luego $w \in U$. Sin embargo esto contradice que U y V son disjuntos. □

Ejercicio 5. Sea $A \subset X$ subespacio cerrado y $f: A \to B$ continua. Denotemos con $B \cup_f X$ al espacio de adjunción. Probar que si

- B y X son Hausdorff,
- Para todo $x \in X \setminus A$, existe un entorno cerrado de x en X que no interseca a A y
- $A \subset X$ es retracto de entorno,

entonces $B \cup_f X$ es Hausdorff.

Demostración. Recordemos que B ∪_f X = B ⊔ X/ ~, con ~ la relación generada por la identificación $a \sim f(a)$ para cada $a \in A$. Sea ahora $g : X \sqcup B \to X \cup_f B$ la proyección al cociente. Notemos además que por construcción, si $x \in X \setminus A$ e $y \in B \setminus f(A)$ entonces $[x] = \{x\}$, $[y] = \{y\}$. Es decir, en el cociente sólo se identifican puntos de A y f(A). Más aún, los elementos de f(A) no se relacionan entre sí, y cada $a \in A$ está relacionado a su imagen por f. Esto dice que $X \setminus A \sqcup B$ es un sistema de representantes para esta relación y

$$q^{-1}([x]) = \begin{cases} \{x\} \operatorname{si} x \in X \setminus A \text{ ó } x \in B \setminus f(A) \\ \{x\} \sqcup f^{-1}(x) \operatorname{si} x \in f(A) \end{cases}$$

Ahora, sean [x] e [y] puntos del espacio de adjunción con $x,y \in X \setminus A \sqcup B$. Queremos ver que siempre existen abiertos disjuntos $\mathcal{U} \ni [x]$ y $\mathcal{V} \ni [y]$. Para esto, podemos separar en casos según a que espacio pertenecen los representantes, y por el Lema 4, alcanza con ver que en cada caso tenemos abiertos saturados disjuntos $U \ni x, V \ni y$.

• Caso 1: $x, y \in X \setminus A$. Como tanto x como y están en el complemento de A en X, tenemos entornos cerrados de cada punto que no intersecan a A. Es decir, existen abiertos O_x, O_y y cerrados F_x, F_y tales que $x \in O_x \subset F_x \subset X \setminus A$ e $y \in O_y \subset F_y \subset X \setminus A$. Por otro lado, como X es T_2 , existen abiertos $U_x \ni x$ y $V_y \ni y$ tales que $U_x \cap V_y = \emptyset$. Definimos luego los abiertos $U := U_x \cap O_x$ e $V := V_y \cap O_y$ que contienen a x e y respectivamente. Éstos son saturados pues están contenidos en $X \setminus A$ donde no hay identificaciones no triviales y finalmente son disjuntos pues $U \cap V \subset U_x \cap V_y = \emptyset$.

- Caso 2: $x \in X \setminus A$, $y \in B$. Como en el caso anterior, tenemos $x \in O_x \subset F_x \subset X \setminus A$ con O_x abierto $y \in F_x$ cerrado en X. Luego, $x \in O_x$ $y \in F_x \cup B$ y son abiertos disjuntos en $x \cup B$. Veamos que éstos son saturados. Para $O_x \subset X \setminus A$ podemos utilizar el argumento del Caso 1. Por último, sea $z \in F_x \cup B$ $y \in Z \cap W$ con $w \neq z$. Como en B no hay identificaciones entre puntos distintos, tenemos tres casos: si $w \in A$ entonces f(z) = f(w) o f(x) $y \in f(x)$ entonces f(x) entonce
- - ► $f(w) = f(z) con w \in A, z \in A \cap (fr)^{-1}(U)$. Aquí es

$$fr(w) = f(w) = f(z) = fr(z) \in fr((fr)^{-1}(U)) \subset U,$$

y entonces $w \in (fr)^{-1}(U)$.

- ▶ $f(w) = z \operatorname{con} w \in A, z \in U$. Como $\operatorname{fr}(w) = f(w) = z \in U$, tenemos que $w \in (\operatorname{fr})^{-1}(U)$.
- $\blacktriangleright w = f(z) \operatorname{con} w \in f(A), z \in A \cap (\operatorname{fr})^{-1}(U). \operatorname{Luego} w = f(z) = \operatorname{fr}(z) \in \operatorname{fr}((\operatorname{fr})^{-1}(U)) \subset U.$

En todo momento w es un elemento de $(fr)^{-1}(U) \sqcup U$ y por lo tanto éste es saturado.

Habiendo encontrado en cada caso abiertos saturados y disjuntos de $X \sqcup B$ que contienen a x e y respectivamente, concluimos entonces que $X \cup_f B$ es Hausdorff.