### **Logic Circuit (2015)**

# Unit 4. Application of Boolean Algebra Minterm and Maxterm Expansions

Spring 2015

School of Electrical Engineering

Prof. Jong-Myon Kim

# Objectives – To Learn

#### Topics introduced in this chapter

- ⇒ Conversion of English Sentences to Boolean Equations
- ⇒ Combinational Logic Design Using a Truth Table
- ⇒ Minterm and Maxterm Expansions
- ⇒ General Minterm and Maxterm Expansions
- □ Incompletely Specified Functions (Don't care term)
- ⇒ Examples of Truth Table Construction
- ⇒ Design of Binary Adders (Full Adder) and Subtracters

## Conversion of English Sentences to Boolean Eq.

### Steps in designing a single-output combinational switching circuit

- ⇒ Find switching function which specifies the desired behavior of the circuit
- ⇒ Find a simplified algebraic expression for the function
- ⇒ Realize the simplified function using available logic elements

1. F is 'true' if A and B are both 'true' → F=AB

## Conversion of English Sentences to Boolean Eq.

1. The alarm will ring(Z) iff the alarm switch is turned on(A) **and** the door is not closed(B'), **or** it is after 6PM(C) and window is not closed(D')

2. Boolean Equation

$$Z = AB' + CD'$$

3. Circuit realization



## Combinational Logic Design Using a Truth Table

#### - Combinational Circuit with Truth Table



| ABC f |   |   |   |  |  |
|-------|---|---|---|--|--|
| 0 0   | 0 | 0 | 1 |  |  |
| 0 0   | 1 | 0 | 1 |  |  |
| 0 1   | 0 | 0 | 1 |  |  |
| 0 1   | 1 | 1 | 0 |  |  |
| 1 C   | 0 | 1 | 0 |  |  |
| 1 C   | 1 | 1 | 0 |  |  |
| 1 1   | 0 | 1 | 0 |  |  |
| 1 1   | 1 | 1 | 0 |  |  |
| (b)   |   |   |   |  |  |

When expression for  $f=1 \rightarrow$ 

$$f = A'BC + ABC + ABC + ABC + ABC$$

## Combinational Logic Design Using a Truth Table

Original equation →

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

Simplified equation →

$$f = A'BC + AB' + AB = A'BC + A = A + BC$$

Circuit realization →

$$C$$
  $A$   $A$ 

## Combinational Logic Design Using a Truth Table

#### - Combinational Circuit with Truth Table



| ABC   | f | f' |  |  |  |
|-------|---|----|--|--|--|
| 0 0 0 | 0 | 1  |  |  |  |
| 0 0 1 | 0 | 1  |  |  |  |
| 0 1 0 | 0 | 1  |  |  |  |
| 0 1 1 | 1 | 0  |  |  |  |
| 1 0 0 | 1 | 0  |  |  |  |
| 1 0 1 | 1 | 0  |  |  |  |
| 1 1 0 | 1 | 0  |  |  |  |
| 1 1 1 | 1 | 0  |  |  |  |
| (b)   |   |    |  |  |  |

When expression for  $f=0 \rightarrow$ 

$$f = (A + B + C)(A + B + C')(A + B' + C)$$
$$f = (A + B)(A + B' + C) = A + BC$$

When expression for  $f'=1 \rightarrow$  and take the complement of f

$$f' = A'B'C' + A'B'C + A'BC'$$

$$f = (A+B+C)(A+B+C')(A+B'+C)$$

# Minterm and Maxterm Expansions

- *Minterm* of *n* variables is a product of *n* literals in which each variable appears exactly once in either true (A) or complemented form(A'), but not both. ( $\rightarrow$  m<sub>0</sub>)
- -Minterm expansion,
- -Standard Sum of Product →

$$f = A'BC + AB'C' + AB'C + ABC' + ABC'$$

$$f(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$f(A,B,C) = \sum m(3,4,5,6,7)$$

| Row No. | АВС   | Minterms     | Maxterms            |
|---------|-------|--------------|---------------------|
| 0       | 000   | $A'B'C'=m_0$ | $A+B+C=M_0$         |
| 1       | 001   | $A'B'C=m_1$  | $A + B + C' = M_1$  |
| 2       | 010   | $A'BC'=m_2$  | $A + B' + C = M_2$  |
| 3       | 011   | $A'BC = m_3$ | $A + B' + C' = M_3$ |
| 4       | 100   | $AB'C'=m_4$  | $A'+B+C=M_4$        |
| 5       | 101   | $AB'C = m_s$ | $A'+B+C'=M_{5}$     |
| 6       | 110   | $ABC' = m_6$ | $A'+B'+C=M_6$       |
| 7       | 1 1 1 | $ABC = m_7$  | $A'+B'+C'=M_7$      |

# Minterm and Maxterm Expansions

- Maxterm of n variables is a sum of n literals in which each variable appears exactly once in either true (A) or complemented form(A'), but not both.( $\rightarrow$  M<sub>0</sub>)

- Maxterm expansion,
- Standard Product of Sum →

$$f = (A + B + C)(A + B + C')(A + B' + C)$$

$$f(A,B,C) = M_0 M_1 M_2$$

$$f(A,B,C) = \prod M(0,1,2)$$

# Minterm and Maxterm Expansions

$$f(A, B, C) = m_3 + m_4 + m_5 + m_6 + m_7$$

$$f' = m_0 + m_1 + m_2 = \sum m(0,1,2)$$

$$f(A,B,C) = M_0 M_1 M_2$$
  $f' = \prod M(3,4,5,6,7) = M_3 M_4 M_5 M_6 M_7$ 

#### - Minterm and Maxterm expansions are complement each other

$$f' = (m_3 + m_4 + m_5 + m_6 + m_7)' = m'_3 m'_4 m'_5 m'_6 m'_7 = M_3 M_4 M_5 M_6 M_7$$
$$f' = (M_0 M_1 M_2)' = M'_0 + M'_1 + M'_2 = m_0 + m_1 + m_2$$

P89 Example

# **General Minterm and Maxterm Expansions**

| АВС   | F                          |
|-------|----------------------------|
| 0 0 0 | $a_0$                      |
| 0 0 1 | $a_1$                      |
| 0 1 0 | $a_2$                      |
| 0 1 1 | $a_3$                      |
| 100   | $a_4$                      |
| 101   | $a_5$                      |
| 1 1 0 | $a_{\scriptscriptstyle 6}$ |
| 1 1 1 | $a_7$                      |

-General truth tablefor 3 variables- a<sub>i</sub> is either '0' or '1'

- Minterm expansion for general function

$$F = a_0 m_0 + a_1 m_1 + a_2 m_2 + \dots + a_7 m_7 = \sum_{i=0}^7 a_i m_i$$

 $a_i$ =1, minterm  $m_i$  is present

 $a_i$ =0, minterm  $m_i$  is not present

- Maxterm expansion for general function

$$F = (a_0 + M_0)(a_1 + M_1)(a_2 + M_2)...(a_7 + M_7) = \prod_{i=0}^{7} (a_i + M_i)$$

 $a_i$ =1,  $a_i$  +  $M_i$ =1, Maxterm  $M_i$  is not present  $a_i$ =0, Maxterm is present

## **General Minterm and Maxterm Expansions**

$$F' = \left[\prod_{i=0}^{7} (a_i + M_i)\right]' = \sum_{i=0}^{7} a'_i M'_i = \sum_{i=0}^{7} a'_i m_i$$

→ All minterm which are not present in F are present in F '

$$F' = \left[\sum_{i=0}^{7} a_i m_i\right]' = \prod_{i=0}^{7} (a'_i + m'_i) = \prod_{i=0}^{7} (a'_i + M_i)$$

→ All maxterm which are not present in F are present in F '

$$F = \sum_{i=0}^{2^{n}-1} a_{i} m_{i} = \prod_{i=0}^{2^{n}-1} (a_{i} + M_{i})$$

$$F' = \sum_{i=0}^{2^{n}-1} a'_{i} m_{i} = \prod_{i=0}^{2^{n}-1} (a'_{i} + M_{i})$$

## **General Minterm and Maxterm Expansions**

#### If i and j are different, $m_i m_i = 0$

$$f_1 = \sum_{i=0}^{2^n-1} a_i m_i$$
  $f_2 = \sum_{j=0}^{2^n-1} b_j m_j$ 

$$f_1 f_2 = (\sum_{i=0}^{2^n - 1} a_i m_i) (\sum_{j=0}^{2^n - 1} b_j m_j) = \sum_{i=0}^{2^n - 1} \sum_{j=0}^{2^n - 1} a_i b_j m_i m_j = \sum_{i=0}^{2^n - 1} a_i b_i m_i$$

#### Example

$$f_1 = \sum m(0,2,3,5,9,11)$$
 and  $f_2 = m(0,3,9,11,13,14)$ 

$$f_1 f_2 = \sum_{m \in \{0,3,9,11\}} m (0,3,9,11)$$

# Conversion between Minterm and Maxterm Expansions of F and F'

|                         | Minterm<br>Expansion<br>of f | Maxterm<br>Expansion<br>of f | Minterm<br>Expansion<br>of f' | Maxterm<br>Expansion<br>of f' |
|-------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|
| $f = \sum m(3,4,5,6,7)$ |                              | $\prod M$ (0,1,2)            | $\sum m(0,1,2)$               | $\prod M(3,4,5,6,7)$          |
| f=<br>∏M(0,1,2)         | $\sum m(3,4,5,6,7)$          |                              | $\sum m(0,1,2)$               | $\prod M(3,4,5,6,7)$          |

# **Incompletely Specified Functions**



If  $N_1$  output does not generate all possible combination of A,B,C, the output of N2(F) has 'don't care' values.

#### Truth Table with Don't Cares

| АВС   | F |
|-------|---|
| 0 0 0 | 1 |
| 0 0 1 | X |
| 0 1 0 | 0 |
| 0 1 1 | 1 |
| 100   | 0 |
| 101   | 0 |
| 110   | X |
| 1 1 1 | 1 |

# **Incompletely Specified Functions**

#### Finding Function:

Case 1: assign '0' on X's

$$F = A'B'C'+A'BC+ABC = A'B'C'+BC$$

Case 2: assign '1' to the first X and '0' to the second 'X'

$$F = A'B'C' + A'B'C + A'BC + ABC = A'B' + BC$$

Case 3: assign '1' on X's

$$F = A'B'C' + A'B'C + A'BC + ABC' + ABC = A'B' + BC + AB$$

→ The case 2 leads to the simplest function

# **Incompletely Specified Functions**

- Minterm expansion for incompletely specified function



- Maxterm expansion for incompletely specified function

$$F = \prod M(2,4,5) \prod D(1,6)$$

$$ABC | F$$

$$000 | 1$$

$$001 | X$$

$$010 | 0$$

$$011 | 1$$

$$100 | 0$$

$$101 | 0$$

$$110 | X$$

$$111 | 1$$

# **Examples of Truth Table Construction**

#### Example 1 : Binary Adder

| а | b | Sum |       |
|---|---|-----|-------|
| 0 | 0 | 0 0 | 0+0=0 |
| 0 | 1 | 0 1 | 0+1=1 |
| 1 | 0 | 0 1 | 1+0=1 |
| 1 | 1 | 10  | 1+1=2 |



$$X = AB, Y = A'B + AB' = A \oplus B$$

## Design of Binary Adders and Subtracters

#### Parallel Adder for 4 bit Binary Numbers



10110 (carries) 1011 +1011 10110

Parallel adder composed of four full adders ← Carry Ripple Adder (slow!)



## Design of Binary Adders and Subtracters



$$Sum = X'Y'C_{in} + X'YC'_{in} + XY'C'_{in} + XYC_{in}$$

$$= X'(Y'C_{in} + YC'_{in}) + X(Y'C'_{in} + YC_{in})$$

$$= X'(Y \oplus C_{in}) + X(Y \oplus C_{in})' = X \oplus Y \oplus C_{in}$$

#### Truth Table for a Full

| X | Y | $C_{in}$ | Cout | Sun |
|---|---|----------|------|-----|
| 0 | 0 | 0        | 0    | 0   |
| 0 | 0 | 1        | 0    | 1   |
| 0 | 1 | 0        | 0    | 1   |
| 0 | 1 | 1        | 1    | 0   |
| 1 | 0 | 0        | 0    | 1   |
| 1 | 0 | 1        | 1    | 0   |
| 1 | 1 | 0        | 1    | 0   |
| 1 | 1 | 1        | 1    | 1   |

$$C_{out} = X'YC_{in} + XY'C_{in} + XYC'_{in} + XYC_{in}$$

$$= (X'YC_{in} + XYC_{in}) + (XY'C_{in} + XYC_{in}) + (XYC'_{in} + XYC_{in})$$

$$= YC_{in} + XC_{in} + XY$$



## Design of Binary Adders and Subtracters

When 1's complement is used, the end-around carry is accomplished by connecting C4 to C0 input.



Overflow(V) when adding two signed binary number

$$V = A'_3 B'_3 S_3 + A_3 B_3 S'_3$$

## **Subtracters**

#### Binary Subtracter using full adder

- -Subtraction is done by adding the 2's complemented number to be subtracted
- -Example: A B



# Parallel Subtractors using Full Subtracter



Truth Table for a Full Subtracter

| хi | yi | bi | bi+1 | di |  |
|----|----|----|------|----|--|
| 0  | 0  | 0  | 0    | 0  |  |
| 0  | 0  | 1  | 1    | 1  |  |
| 0  | 1  | 0  | 1    | 1  |  |
| 0  | 1  | 1  | 1    | 0  |  |
| 1  | 0  | 0  | 0    | 1  |  |
| 1  | 0  | 1  | 0    | 0  |  |
| 1  | 1  | 0  | 0    | 0  |  |
| 1  | 1  | 1  | 1    | 1  |  |