

AMENDMENTS TO THE CLAIMS**Listing of Claims**

Claims 1 to 3 canceled.

1 4. (currently amended) The method according to claim 3, A method for
2 controlling at least one of an automated clutch and an automated transmission in a
3 motor vehicle, wherein the method is performed by an electronic clutch
4 management system and comprises the steps of:
5 determining a start-up function that depends on predetermined input
6 parameters which include at least one of the group consisting of accelerator pedal
7 angle, engine rpm-rate, transmission input rpm-rate, and engine torque;
8 delivering a target value for a clutch torque as an output parameter of the
9 start-up function;
10 dividing the start-up function substantially into at least two phases by
11 means of a factor calculation, wherein in a first phase of said two phases the engine
12 rpm-rate is substantially matched regulated to follow a targeted target value
13 (a_start) of a starting rpm-rate in order to regulate the starting rpm rate, and in a
14 second phase of said two phases, the engine rpm-rate is synchronized with the
15 transmission input rpm-rate.

Claims 5 to 7 canceled

1 8. (currently amended) ~~The method according to claims 7, wherein one~~
2 ~~of said plurality of contributions comprises~~ A method for controlling at least one of
3 an automated clutch and an automated transmission in a motor vehicle, wherein the
4 method is performed by an electronic clutch management system and comprises
5 the steps of:

6 determining a start-up function that depends on predetermined input
7 parameters which include at least one of the group consisting of accelerator pedal
8 angle, engine rpm-rate, transmission input rpm-rate, and engine torque;
9 delivering a target value for a clutch torque as an output parameter of the
10 start-up function; wherein the step of determining the target value for the clutch
11 torque comprises determining a torque contribution in accordance with a global
12 control function, said torque contribution being determined as a combination of
13 contributing factors that are functions of at least one of the transmission input rpm-
14 rate and the engine rpm-rate and further include an engine-torque-dependent
15 contribution (KME*Me).

1 9. (currently amended) The method according to claim 8, wherein said
2 engine-torque-dependent contribution is weighted with an rpm-ratio (SR)
3 ~~conforming to the equation SR = n_trsm/n_eng, wherein n_trsm represents the~~
4 ~~transmission input rpm-rate and n_eng represents the engine rpm-rate, so that when~~
5 ~~synchronism is achieved at the clutch, the engine-torque-dependent portion is~~

6 substantially fully effective.

1 10. (original) The method according to claim 9, wherein the weighted
2 engine-torque-dependent contribution (SR^*KME^*Me) is subject to a limitation of its
3 time gradient.

1 11. (currently amended) The method according to claim 10, wherein
2 ~~said plurality of contributions~~ combination of contributing factors is supplemented by
3 at least one controller contribution in order to ensure the performance of phase-
4 specific tasks in the start-up function.

1 12. (currently amended) The method according to claim 9, wherein at
2 ~~lower~~ values of the rpm-ratio (SR) below 0.7 priority is given to regulating a start-up
3 rpm-rate (n_{start}) in accordance with a target value and wherein said start-up rpm-
4 rate is determined by means of a characteristic curve at least as a function of an
5 accelerator pedal angle.

1 13. (original) The method according to claim 12, wherein the start-up
2 rpm-rate is further processed through a filter.

1 14. (original) The method according to claim 13, wherein said filter
2 comprises a low-pass filter.

1 15. (original) The method according to claim 13, wherein the filter is
2 initialized with the engine rpm-rate (n_eng) if the engine rpm-rate (n_eng) in neutral
3 gear considerably exceeds an idling rpm-rate.

1 16. (original) The method according to claim 11, wherein a weighted
2 difference ($f_1(SR) * (n_{start} - n_{eng})$) with a weight factor $f_1(SR)$ being a function of
3 the rpm-ratio (SR) is converted through a proportional/integrating controller into a
4 contribution to a target value for the clutch torque (M_Rtrgt).

1 17. (currently amended) The method according to claim 9, wherein at
2 higher values of the rpm-ratio (SR) above 0.6 priority is given to attaining
3 synchronism and a proportional/integrating controller is used, wherein a weighted
4 difference ($f_2(SR) * (n_{eng} - n_{trsm})$) with a weight factor $f_2(SR)$ being a function of
5 the rpm-ratio (SR) serves as an input signal to the proportional/integrating controller
6 and is converted into a contribution to a target value for the clutch torque M_Rtrgt.

1 18. (original) The method according to claim 16, wherein a first
2 weighted difference ($f_1(SR) * (n_{start} - n_{eng})$) and a second weighted difference
3 ($f_2(SR) * (n_{start} - n_{eng})$) with weight factors $f_1(SR)$ and $f_2(SR)$ being functions of
4 the rpm-ratio (SR) are each converted by their own proportional/integrating
5 controller into a contribution to a target value for the clutch torque (M_Rtrgt), and

6 wherein the respective integrating portions of the two proportional/integrating
7 controllers are implemented by a joint integrator.

1 19. (original) The method according to claim 18, wherein an additional
2 integrator is used in addition to the joint integrator.

1 20. (currently amended) The method according to claim 19, wherein the
2 additional integrator is arranged in series with the joint integrator, and wherein the
3 additional integrator uses a ~~comparatively small~~ smaller amplification parameter
4 ($KI3$) than the joint integrator.

1 21. (original) The method according to claim 19, wherein the target
2 value for the clutch torque (M_{Rtrgt}) determined as the output quantity is subject to
3 a limitation.

1 22. (original) The method according to claim 21, wherein in limiting the
2 target value for the clutch torque (M_{Rtrgt}) at least in a first phase where the target
3 value for the clutch torque (M_{Rtrgt}) is low, a new start-up function is matched to an
4 existing start-up function, and the new start-up function is allowed to diverge from
5 the existing start-up function only in a second phase where the target value for the
6 clutch torque (M_{Rtrgt}) increases.

1 23. (currently amended) The method according to claims 22, wherein in
2 limiting the target value for the clutch torque (M_Rtrgt), each integrator is subjected
3 to a measure to avoid ~~the a~~ so-called wind-up.

1 24. (original) The method according to claim 23, wherein after limiting
2 the target value for the clutch torque (M_Rtrgt), an integral portion (M_I) is
3 calculated according to the equation:

4 $M_I = M_Rtrgt_lim - M_glob - M_D + M_P1 + M_P2$, wherein

5 M_Rtrgt_lim = limited target value for the clutch torque

6 M_D = damping torque portion

7 M_P1 = proportional torque portion of the proportional/integrating controller in the
8 first phase, and

9 M_P2 = proportional torque portion of the proportional/integrating controller in the
10 second phase.

1 25. (original) The method according to claim 24, wherein the damping
2 torque portion (M_D) is used in determining the start-up function.

1 26. (original) The method according to claim 24, wherein the damping
2 torque portion (M_D) is used in at least one of regulating the starting rpm-rate
3 during the first phase and synchronizing the engine rpm-rate with a transmission
4 rpm-rate during the second phase.

1 27. (original) The method according to one of claim 26, wherein at least
2 one of the transmission input rpm-rate (n_trsm) and the engine rpm-rate (n_eng) is
3 disregarded in determining the start-up function.

1 28. (original) The method according to claim 22, wherein a throttle-
2 valve-dependent portion (K(α)) is used in determining the start-up function.

1 29. (original) The method according to claims 28, wherein the target
2 value for the clutch torque (M_Rtrgt) conforms to the equation:
3 $M_{Rtrgt} = K(\alpha) * f(n_{eng})$, wherein $f(n_{eng})$ represents a function of the engine
4 rpm-rate.

1 30. (original) The method according to one of claim 29, wherein the
2 time derivative of the clutch torque (M_Rtrgt) conforms to the equation:

3
$$\frac{d}{dt} M_{Rtrgt} = f(n_{eng}) * \frac{dK(\alpha)}{d\alpha} * \frac{d\alpha}{dt} + K(\alpha) * \frac{df(n_{eng})}{dn_{eng}} * \frac{dn_{eng}}{dt},$$

5 wherein n_eng represents the engine rpm-rate and K(α) represents the throttle-
6 valve-dependent portion.

1 31. (original) The method according to claim 30, wherein at least one of

2 the throttle-valve-dependent portion ($K(\alpha)$) and the engine-rpm-rate-dependent
3 portion $f(n_{eng})$ is subject to a limitation of its respective time gradient.

1 32. (original) The method according to claim 31, wherein the time
2 gradient $dK(\alpha)/dt$ is subject to a limitation designed to reduce the influence of $K(\alpha)$
3 in such a way that undesired accelerations of the vehicle are avoided.

1 33. (original) The method according to claim 30, wherein a drop in the
2 target value for the clutch torque (M_{Rtrgt}) during an engine-load change as a
3 result of an abrupt depression of the gas pedal is avoided by imposing a limitation
4 on the time gradient ($dK(\alpha)/dt$).

1 34. (original) The method according to claim 30, wherein a sudden
2 closing of the clutch during an engine-load change as a result of an abrupt let-up on
3 the gas pedal is avoided by imposing a limitation on the time gradient ($dK(\alpha)/dt$).