Konvolution derivations

da1sypetals.iota@gmail.com

1. Notations

- Let $a \in \mathbb{T}(...) \Leftrightarrow a \in \mathbb{R}^{...}$.
- Let $[n] = \{0, 1, ..., n\}$.

2. Convolution

- Taking the easily understandable definition of convolution in CNNs in deep learning, convolution is defined as such:
 - 1. Operands:
 - kernel $k_c \in \mathbb{T}(a_k, a_k, c_{\text{in}})$, where $c = 0, 1, \dots \, c_{\text{out}} 1$;
 - input $x \in \mathbb{T}(b, c_{\text{in}}, h, w)$.
 - 2. Operation:

$$\begin{aligned} y &= x * k \\ \Leftrightarrow y(b, c_o, h, w) &= \sum_{c_i \in [c_{\text{in}}]} \sum_{(u, v) \in [a_k]^2} x(b, c_i, h, w) \cdot k_{c_o}(u, v, c_i) \end{aligned}$$

3. Konvolution

- We define the operation of *konvolution* as follows:
 - 1. Operands:
 - kernel Φ_c is a matrix of function with shape $(a_k,a_k,d,c_{\mathrm{in}})$, where $c=0,1,\ldots\,c_{\mathrm{out}}-1$;
 - input $x \in \mathbb{T}(b, c_{\text{in}}, h, w)$.
 - 2. Operation:

$$\begin{aligned} y &= x \boxtimes \Phi \\ \Leftrightarrow y(b, c_o, h, w) &= \sum_{c_i \in [c_{\text{in}} - 1]} \sum_{(u, v) \in [a_k - 1]^2} \phi_{c_o}^{(u, v, c_i)} \{x(b, c_i, h, w)\} \end{aligned}$$

where $\phi_{c_o}^{(u,v,c_i)}=\Phi_c(a_k,a_k,d,c_{\rm in}).$ Resembling KAN, we use $\phi(x)$ instead of $w\cdot x$ to operate on an element.

4. Implementations

- Bare implementation include:
 - 1. For each (scalr) element x, we first compute polynomial bases:

$$p(x) \in \mathbb{T}(d+1)$$

2. Then we compute their weighted sum

$$y(b, c_o, h, w) = \sum_{\delta = 0}^{d} \sum_{c_i \in [c_{\text{in}} - 1]} \sum_{(u, v) \in [a_k - 1]^2} p_{\delta}(b, c_i, h, w) \cdot \kappa_{c_o}(\delta, c_i, u, v)$$

• However, the latter operation can be absorbed into convolution operation by:

$$\begin{split} y(b, c_o, h, w) &= \sum_{(\delta, c_i) \in [c_{\text{in}}] \times [d]} \sum_{(u, v) \in [a_k]^2} p_{\delta}(b, c_i, h, w) \cdot \kappa_{c_o}(\text{ch}(\delta, c_i), u, v) \\ &= x_{\text{expand}} * \kappa \end{split}$$

where p=p(x), $x_{\rm expand}\in \mathbb{T}(b,c_{\rm in}\cdot (d+1),h,w)$ integrates all polynomial bases into the expanded map, and ${\rm ch}(\delta,c_i)=\delta\cdot c_{\rm in}+c_i$.

 By this means, we can make use of the high-performance built-in convolution module in PyTorch framework.