Act-2001 – Exemples au dépannage

Etienne Marceau, Ph.D. A.S.A.

Professeur titulaire (École d'actuariat, ULaval), Co-directeur (Laboratoire ACT&RISK)

École d'actuariat

École d'actuariat, U.Laval

8 février 2017

Définition

Définition de X:

$$X = \left\{ \begin{array}{l} \sum_{k=1}^{M} B_k, & M > 0 \\ 0, & M = 0 \end{array} \right.$$

- *M* : nombre de sinistres
- B_k : montant du kième sinistre

Espérance

Soit les v.a. M et B tel que $E[M] < \infty$ et $E[B] < \infty$ Espérance de X :

$$E[X] = E[E[X|M]] = E[M \times E[B]] = E[M]E[B]$$

Variance

Soit les v.a. M et B tel que $E\left[M^{j}\right]<\infty$ et $E\left[B^{j}\right]<\infty$, pour j=1,2 Variance de X:

$$Var(X) = E_M [Var(X|M)] + Var_M (E[X|M])$$

= $E[M] Var(B) + Var(M) (E[B])^2$.

Algorithme de simulation

On vise à simuler une réalisation $X^{(j)}$ de X

- Simuler une réalisation $M^{(j)}$ de M.
- ② Si $M^{(j)} = 0$, alors $X^{(j)} = 0$.
- **3** Si $M^{(j)} > 0$, alors ...
 - Simuler les réalisations $B_1^{(j)}$, ..., $B_{M^{(j)}}^{(j)}$ de B_1 , ..., $B_{M^{(j)}}$.
 - ② Calculer $X^{(j)} = B_1^{(j)} + ... + B_{M^{(j)}}^{(j)}$.

Transformée de Laplace-Stieltes

Soit les v.a. M et B avec la fgp P_M et la transformée de L-S L_B Transformée de L-S de X :

$$L_X(t) = E\left[E\left[e^{-tX}|M\right]\right] = P_M(L_B(t))$$

Loi Poisson composée

Exemple #1

Soit $M \sim Pois(\lambda = 1.5)$ et $B \sim Gamma(\alpha = 2, \beta = \frac{1}{500})$.

- **1** Calculer E[X] et Var(X).
- ② Calculer $F_X(x)$, pour x = 0, 500, 1000, 1500, 2000, 5000 (note : prendre $k^* = 1000$). Tracer la courbe.
- **1** Utiliser un outil d'optimization numérique en R (et si nécessaire) pour évaluer $VaR_{\kappa}(X)$, pour $\kappa=0.01,0.1,0.5,0.9,0.99$
- **1** Évaluer $TVaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
- Évaluer $E\left[(X-x)_+\right]$, pour x=0, 500, 1000, 1500, 2000, 5000. Refaire avec $VaR_{\kappa}\left(X\right)$, pour $\kappa=0.01,0.1,0.5,0.9,0.99$. Valider la relation

$$extit{TVaR}_{\kappa}\left(X
ight) = extit{VaR}_{\kappa}\left(X
ight) + rac{1}{1-\kappa} extit{E}\left[\left(X - extit{VaR}_{\kappa}\left(X
ight)
ight)_{+}
ight].$$

• Produire m = 1000000 réalisations $X^{(j)}$ (j = 1, 2, ..., m) de X. Évaluer approximativement les quantités dans les items précédents.

Loi binomiale négative composée

Exemple #2

Soit
$$M \sim BinNeg \left(r=2, q=\frac{4}{7}\right)$$
 et $B \sim Gamma \left(\alpha=2, \beta=\frac{1}{500}\right)$.

- **1** Calculer E[X] et Var(X).
- ② Calculer $F_X(x)$, pour x = 0, 500, 1000, 1500, 2000, 5000 (note : prendre $k^* = 1000$). Tracer la courbe.
- **1** Utiliser un outil d'optimization numérique en R (et si nécessaire) pour évaluer $VaR_{\kappa}(X)$, pour $\kappa=0.01,0.1,0.5,0.9,0.99$
- **1** Évaluer $TVaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
- Évaluer $E\left[(X-x)_+\right]$, pour x=0, 500, 1000, 1500, 2000, 5000. Refaire avec $VaR_{\kappa}\left(X\right)$, pour $\kappa=0.01,0.1,0.5,0.9,0.99$. Valider la relation

$$TVaR_{\kappa}\left(X
ight)=VaR_{\kappa}\left(X
ight)+rac{1}{1-\kappa}\mathsf{E}\left[\left(X-VaR_{\kappa}\left(X
ight)
ight)_{+}
ight].$$

• Produire m = 1000000 réalisations $X^{(j)}$ (j = 1, 2, ..., m) de X. Évaluer approximativement les quantités dans les items précédents.

Loi binomiale composée

Exemple #3

Soit $M \sim Binom (n = 30, q = 0.05)$ et $B \sim Gamma (\alpha = 2, \beta = \frac{1}{500})$.

- **1** Calculer E[X] et Var(X).
- ② Calculer $F_X(x)$, pour x = 0, 500, 1000, 1500, 2000, 5000 (note : prendre $k^* = 1000$). Tracer la courbe.
- **1** Utiliser un outil d'optimization numérique en R (et si nécessaire) pour évaluer $VaR_{\kappa}(X)$, pour $\kappa=0.01,0.1,0.5,0.9,0.99$
- **1** Évaluer $TVaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
- Évaluer $E\left[(X-x)_+\right]$, pour x=0, 500, 1000, 1500, 2000, 5000. Refaire avec $VaR_{\kappa}\left(X\right)$, pour $\kappa=0.01,0.1,0.5,0.9,0.99$. Valider la relation

$$TVaR_{\kappa}\left(X
ight)=VaR_{\kappa}\left(X
ight)+rac{1}{1-\kappa}E\left[\left(X-VaR_{\kappa}\left(X
ight)
ight)_{+}
ight].$$

• Produire m = 1000000 réalisations $X^{(j)}$ (j = 1, 2, ..., m) de X. Évaluer approximativement les quantités dans les items précédents.

Loi Poisson composée

Exemple #4

Soit $M \sim Pois$ ($\lambda = 1.5$) et $B \sim Pareto$ ($\alpha = 2.5$, $\lambda = 1500$).

- Calculer E[X] et Var(X).
- **2** Produire m = 1000000 réalisations $X^{(j)}$ (j = 1, 2, ..., m) de X.
- Évaluer approximativement les quantités suivantes :
 - **1** $F_X(x)$, pour x = 0, 500, 1000, 1500, 2000, 5000.
 - **2** $E[(X-x)_+]$, pour x=0, 500, 1000, 1500, 2000, 5000.
 - **3** $VaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
 - **1** $TVaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
 - Tracer les 4 courbes pour ces quantités.

Loi binomiale négative composée

Exemple #5

Soit $M \sim BinNeg$ $(r = 2, q = \frac{4}{7})$ et $B \sim Pareto$ $(\alpha = 2.5, \lambda = 1500)$.

- ① Calculer E[X] et Var(X).
- ② Produire m = 1000000 réalisations $X^{(j)}$ (j = 1, 2, ..., m) de X.
- Évaluer approximativement les quantités suivantes :
 - **1** $F_X(x)$, pour x = 0, 500, 1000, 1500, 2000, 5000.
 - **2** $E[(X-x)_{+}]$, pour x=0, 500, 1000, 1500, 2000, 5000.
 - **3** $VaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
 - **4** $TVaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
 - Tracer les 4 courbes pour ces quantités.

Loi Poisson composée

Exemple #6

Soit $M \sim \textit{Pois}\left(\lambda = 1.5\right)$ et

$$B \sim LNorm (\mu = ln (1000) - 0.32, \sigma = 0.8)$$
.

- Calculer E[X] et Var(X).
- Produire m = 1000000 réalisations $X^{(j)}$ (j = 1, 2, ..., m) de X.
- Évaluer approximativement les quantités suivantes :
 - **1** $F_X(x)$, pour x = 0, 500, 1000, 1500, 2000, 5000.
 - **2** $E[(X-x)_+]$, pour x=0, 500, 1000, 1500, 2000, 5000.
 - **3** $VaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
 - **4** $TVaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
 - Tracer les 4 courbes pour ces quantités.

Loi binomiale négative composée

Exemple #7

Soit
$$M \sim \textit{BinNeg}\left(r=2, q=\frac{4}{7}\right)$$
 et

$$B \sim LNorm (\mu = ln (1000) - 0.32, \sigma = 0.8)$$
.

- Calculer E[X] et Var(X).
- Produire m = 1000000 réalisations $X^{(j)}$ (j = 1, 2, ..., m) de X.
- Évaluer approximativement les quantités suivantes :
 - **1** $F_X(x)$, pour x = 0, 500, 1000, 1500, 2000, 5000.
 - **2** $E[(X-x)_+]$, pour x=0, 500, 1000, 1500, 2000, 5000.
 - **3** $VaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
 - **4** $TVaR_{\kappa}(X)$, pour $\kappa = 0.01, 0.1, 0.5, 0.9, 0.99$.
 - Tracer les 4 courbes pour ces quantités.