MO8018 E – Tópicos em Redes de Computadores I

Prof. Edmundo

Long Term Evolution

LTE e LTE-Advanced

Adriana Pereira do Nascimento 09/10/2013

Agenda

- Introdução
- Características Técnicas
- Interoperabilidade
- LTE no Brasil
- LTE Advanced
- LTE x WiMAX
- Considerações Finais
- Dúvidas
- Artigo e Pergunta

- As primeiras gerações foram focadas no Tráfego de Voz.
- Início do Tráfego de Dados => surgiu o Projeto IMT-2000 da ITU (International Telecommunication Union) para definir os requisitos da terceira geração.
- Para minimizar o custo de migração das operadoras, surgiram duas linhas de evolução:
 - UMTS (Universal Mobile Telecomunication System) => Evoluiu do GSM Observação: a partir de 2000 a padronização passou do ETSI para o 3GPP
 - CDMA2000 => Evoluiu do IS-95
- Com a demanda crescente do tráfego de dados, surgiram novos Releases no 3GPP, visando maior Taxa de Dados e melhor experiência para o usuário.

- Para um tráfego de dados mais eficiente, o 3GPP definiu que a próxima geração utilizaria Comutação por Pacotes.
- Com essa mudança, duas frentes de pesquisa surgiram:
 - Programa LTE Long Term Evolution
 Focado na nova arquitetura de rede de acesso e interface aérea
 - Programa SAE Service Architecture Evolution
 Focado na evolução da arquitetura dos serviços
- Esses dois programas combinados formaram em 2008 a primeira definição do LTE.

EDGE

236 kbps

2004

2002

GPRS

48 kbps

2000

1998

GSM

9.6 kbps

1996

1994

1992

384 kbps

2006

2008

2010

2012

2014

2016

Especificações 3GPP

Release 99 - 2000

- Primeira rede 3G UMTS, incorporando interface aérea CDMA
- Voz e Dados simultaneamente
- Taxa de 2Mbps

Release 4 - 2001

- Originalmente chamado Release 2000
- Recursos adicionais para um Core all-IP

Release 5 - 2002

- HSDPA (High Speed Downlink Packet Acess)
- Taxas acima de 14 Mbps no downlink
- Introdução IMS (IP Multimedia Subsystem)

Release 6 - 2004

- HSUPA (High Speed Uplink Packet Acess)
- MBMS (Multimedia Broadcast Multicast Service)
- Melhorias IMS (IP Multimedia Subsystem)
- Operação Integrada com redes Wireless LAN

Release 7 - 2007

- HSPA+ (High Speed Packet Access Evolution)
- Focado em diminuir a latência, melhorar o QoS e aplicações real-time
- NFC (Near Field Communication)
- Evolução do EDGE

Especificações 3GPP

Release 8 - 2008

- Primeira versão do LTE
- Nova interface aérea baseada em OFDM e MIMO
- All-IP Core Network SAE (Service Architecture Evolution)
- Não compatível com Interfaces CDMA anteriores

Release 9 - 2009

- Melhorias do Release 8
- Fentocélulas LTE (Home eNodeB HeNodeB)
- Aprimoramento das SAEs
- Interoperabilidade WiMAX e LTE/UMTS

Release 10 - 2011

- LTE Advanced para cumprir os requerimentos IMT para 4G
- Compatível com LTE Rel.8
- Agregação de Portadora
- MIMO 8x8(downlink) 4x4(uplink)

Release 11 - 2012

- Introdução de novas frequências
- Melhorias na Agregação de Portadoras
- Interconexão de Serviços Avançada

Release 12 - Planejado para 2014

• Em desenvolvimento

O que é LTE?

- Long Term Evolution (LTE) é um novo padrão de tecnologia banda larga móvel, desenvolvido para ser adotado pelas operadoras de celular como evolução das redes 3G.
- Assim como a maioria das gerações anteriores da tecnologia celular móvel, o LTE é padronizado pelo 3GPP.
- LTE-Advanced considerado como 4G pelo IMT (International Mobile Telecommunications).
- O primeiro plano começou em 2004, onde Operadoras, Fornecedores e Institutos de Pesquisas trouxeram propostas para a evolução do UTRAN.
- O LTE promete uma banda larga ultra-rápida de baixa latência ao mesmo tempo. Uma proposta de espectro de banda flexível para as operadoras.
- Baseado em metas econômicas, melhor utilização do espectro e arquitetura simplificada.

Requisitos

Os principais requisitos de sistema e de desempenho para LTE podem ser resumidos em:

- ✓ Aumento da taxa de dados do usuário e taxa de bits na borda da célula para a uniformidade da prestação do serviço;
- ✓ Redução de atrasos na latência de transmissão e tempo de estabelecimento da conexão;
- Redução do custo por bit, proporcionando melhora na eficiência espectral;
- ✓ Maior flexibilidade na utilização do espectro;
- Arquitetura de rede simplificada;
- ✓ Mobilidade total, inclusive entre diferentes tecnologias;
- ✓ Razoável consumo de energia para o terminal móvel.

Objetivos

Latência

- < 100ms (C-Plane)
- < 5 ms (U-Plane)

Taxa de Dados

- 300 Mbps (DL)
- 50 Mbps (UL)

Cobertura

- 5 Km
- 30Km (degradação)

Mobilidade

- otimizado (< 15km/h)
- •Conexão até 500km/h

• 1,4/ 3/ 5/ 10/ 15/ 20 MHz

Handover

- 300ms (real-time)
- •500ms (non-real time)

Indústria LTE

Características Técnicas

Canalização

- Faixas de frequências divididas de acordo com os modos de operação:
- FDD (Frequency Division Duplex) = Um canal UL e um canal DL.
- TDD (*Time Division Duplex*) = UL e DL no mesmo canal, revezando no tempo.

FDD	
Banda	Freqüências UL/DL (MHz)
1	1920 - 1980 / 2110 - 2170
2	1850 - 1910 / 1930 - 1990
3	1710 - 1785 / 1805 - 1880
4	1710 - 1755 / 2110 - 2155
5	824 - 849 / 869 - 894
6	830 - 840 / 875 - 885
7	2500 - 2570 / 2620 - 2690
8	880 - 915 / 925 - 960
9	1750 - 1785 / 1845 - 1880
10	1710 - 1770 / 2110 - 2170
11	1428 - 1453 / 1476 - 1501
12	698 - 716 / 728 - 746
13	746 - 758 / 776 - 788
14	758 - 768 / 788 - 798
17	704 - 716 / 734 - 746
31	451 - 458 / 461 - 468

TDD	
Banda	Freqüências UL/DL (MHz)
33, 34	1900 - 1920 / 2010 - 2025
35, 36	1850 - 1910 / 1930 - 1990
37	1910 - 1930
38	2570 - 2620
39	1880 - 1920
40	2300 - 2400

Possibilidade de escalonamento da banda, variando de 1.4 MHz até 20 MHz.

Frequências em uso

Parâmetros do LTE

Parâmetros	Valore	S						
Largura de banda (Mhz)	1.4	3	5	10	15	20		
Duração do Sub-Frame	1 ms							
Espaçamento das sub-portadoras	15 kHz							
FFT size	128	256	512	1024	1536	2048		
Blocos de recurso	6	15	25	50	75	100		
Símbolos OFDM por <i>timeslot</i>	7 ou 6							
Esquemas de Modulação	BPSK, QPSK(sinalização), QPSK, 16QAM, 64QAM(dados)							
Esquemas de Codificação	Rate 1/3 Convolutional (sinalização), Rate 1/3 Turbo (dados)							

Arquitetura da rede

Arquitetura da rede - UE

A arquitetura interna do *User Equipment* para o LTE é identica à usada no UMTS e GSM. Resume-se em 3 importantes módulos:

- Mobile Termination (MT): Cuida de todas as funções de comunicação.
- Terminal Equipment (TE): Encerra o fluxo de dados.
- Universal Integrated Circuit Card (UICC): SIM Card para o LTE. Roda uma aplicação chamada Universal Subscriber Identity Module (USIM).
 - A USIM armazena dados específicos do usuário muito semelhante ao SIM Card 3G. Mantém as informações sobre o número de telefone do usuário, identidade rede doméstica e chaves de segurança.

Arquitetura da rede - eUTRAN

Arquitetura da rede - eUTRAN

- Responsável pela comunicação entre o UE e a EPC
- Tem apenas um componente: Estações Base Evoluídas eNodeB
 - Contempla toda Interface de Rádio, incluindo a Camada Física.
 - Substitui a NodeB + RNC existentes nas redes 3G.
 - Cada eNodeB controla usuários em uma ou mais células.
 - Provê todas as funções de gerenciamento de Rádio.
 - Comunica com a EPC utilizando a interface S1-MME.
 - Comunica com o Serving Gateway pela interface S1-U.
 - Comunica com outra eNodeB utilizando a interface X2.

Arquitetura da rede - EPC

Page ■ 22

Arquitetura da rede - EPC

O MME (Mobile Management Entity) :

- Responsável pelo Plano de Controle.
- Entidade de sinalização dentro da EPC.
- Controla a autenticação, mobilidade do usuário e estabelecimento de conexões.
- Responsável pelo UE no modo Idle.
- Comunica com outra MME pela interface S10.
 - Comunica com o HSS pela interface S6a.
 - Comunica com a eNodeB pela interface S1-MME.
 - Comunica com o S-GW pela interface S11.

O S-GW (Serving Gateway):

- Responsável pelo Plano do Usuário.
- Tranporta o tráfego de dados IP entre o UE e as redes externas.
- Ponto de interconexão entre a Interface de Rádio e à EPC.
- Serve o UE roteando a chegada e o envio de pacotes IP.
- Comunica com a MME pela interface S11.
 Comunica com o PDN-Gateway pela interface S5 (mesma rede) / S8 (redes diferentes).

Arquitetura da rede - EPC

PDN-Gateway / P-GW (Packet Data Network Gateway):

- Também é responsável pelo Plano do Usuário.
- Provê comunicação entre a EPC e uma rede externa.
- Roteia os pacotes de e para as PDNs.
- Aloca o endereçamento IP para o UE.
- Comunica com a rede IP externa pela interface Sgi.
 Comunica com o PCRF (Policy and Charging Rule Function) pela S7.
- PCRF (Policy and Charging Rule Function):
- Controla o QoS entre a EPC e o PDN externo.
- Comunica com o PDN-GW pela interface SGi.
 Comunica com o PDN Externo pela interface Rx.

• HSS (Home Subscriber Server):

- Base de dados permanente e central do usuário..
- Armazena os dados dos serviços e mobilidade para cada usuário.
- Comunica com a MME pela interface S6a.

Pilha de Protocolos LTE

Pilha de Protocolos LTE

NAS (Non Access Stratum) Protocols

- Atua entre o MME e a UE.
- Utilizado para fins de controle: conexão de rede, autenticação e gestão de mobilidade.
- Todas as mensagens NAS são cifradas e sua integridade é garantida pelo MME e UE.

RRC (Radio Resource Control)

- Na eNodeB toma decisões de handover com base em medições enviadas pelo UE.
- Envia mensagens de broadcast contendo informações do sistema e controla as medições dos parâmetros do UE como a periodicidade do Channel Quality Information (CQI).

PDCP (Packet Data Convergence Control)

- Responsável pela compressão / descompressão dos cabeçalhos dos pacotes IP dos usuários através do Robust Header Compression (ROHC).
- Permite uma eficiente utilização da largura de banda na interface aérea.
- Realiza também a criptografia dos dados tanto no plano do usuário quanto no plano de controle.

Pilha de Protocolos LTE

RLC (Radio Link Control)

- Utilizada para formatar e transportar os dados entre a UE e a eNodeB.
- Oferece a entrega sequencial das Service Data Units (SDUs) para as camadas superiores eliminando as informações duplicadas.

MAC (Medium Access Layer)

- Realiza o mapeamento entre os Canais Lógicos e Canais de Transporte.
- Multiplexação e Demultiplexação de fluxos da RLC.
- Scheduling dos Recursos de Radio no Downlink e Uplink.

PHY (Phisical Layer)

- Carrega as informações dos Canais de Transporte na interface aérea.
- Responsável pela Adaptação de Link, Controle de Potência no Uplink.
- HARQ, OFDMA e MIMO

Fluxo de Dados nas Camadas

Service Data Unit (SDU) = Pacote recebido por uma camada Protocol Data Unit (PDU) = Pacote de saída de uma camanda

Fluxo de Dados nas Camadas

- Um SDUs é submetido à camada PDCP.
- A camada PDCP comprime o cabeçalho e adiociona o cabeçalha dela. Envia então um PDU para a camada RLC.

Compressão de Cabeçalho PDCP:

- Remove o cabeçalho IP (mínimo de 20 bytes) do PDU e acrescenta um token de 1-4 bytes.
- A camada RLC faz então a segmentação desse SDU, adiciona o cabeçalho baseado no modo de operação dela e submete esse PDU à camada MAC.

Segmentação RLC:

- Se o SDU é grande ou a banda está limitada ele espalha em vários PDUs
- Se o SDU é pequeno ou a banda está livre ele junta vários SDUs em um PDU
- A camada MAC adiciona o cabeçalho e faz o "padding" para ajudar o tamanho do PDU. Submete então o PDU a Camada Física para os canais físicos.
- Os canais físicos transmitem esse dado dentro dos slots dos sub-frames.

Estrutura do Frame

Tipo 1 – FDD

7 Symbols = 1 Resource Block = 1 Slot

Tipo 2 – TDD

Tipos de Canais em LTE

O fluxo de informação que ocorre entre os diferentes protocolos são conhecidos como canais e sinais. O LTE utiliza 3 tipos que são distinguidos por qual informação carrega e pela maneira na qual a informação é processada.

Canais Lógicos

- Indica o tipo de informação que esta sendo transferido.
- Responde a pergunta: O que esta sendo transportado?
 Exemplo: canal de tráfego, canal de controle, broadcast do sistema.

Canais de Transporte

- Indica o método e as características da informação que esta sendo transferido.
- Responde a pergunta: Como esta sendo transportado?
 Exemplo: qual a codificação, opções de intervalo para transmitir os dados.

Canais Físicos

- Indica os dois extremos(finais) da transferência de informação.
- Responde a pergunta: Para quem esta sendo transportado?
 Exemplo: primeiro símbolo N no frame de DL

Tecnologia de Acesso - *Downlink*

Tecnologia de Acesso - *Uplink*

OFDMA vs SC-FDMA

MIMO

- Baseado nas técnicas de Diversidade de Antenas (SIMO e MISO).
 - Compensa a perca de SNR devido ao multipercurso, fazendo a combinação dos sinais que chegam e selecionando a melhor parte de cada um deles.
 - Com esse ganho de SNR no final, há o aumento na Taxa de Dados.

MIMO no LTE

Quando o SNR já é alto, o aumento na Taxa de Dados é minimo. No LTE, para se ter um aumento significativo nessa condição de SNR alto é utilizada a técnica MIMO chamada **Multiplexação Espacial**.

- Cada Transmissor envia o mesmo fluxo de dados para diferentes Receptores e esse fluxo é reconstruído separadamente pela UE.
- Comparada à reutilização do espectro, porém, os sinais ocupam diferentes espaço-tempo na mesma célula.
- No LTE cada conjunto de dados enviados na operação de Multiplexação Espacial é chamada de Camada (*Layer*) e em boas condições, cada *Layer* tem a capacidade de um Transmissor LTE com uma antena.
- Depende de 3 fatores:
 - Boa condição de dispersão.
 - eNodeB configurada corretamente com o mundo real.
 - UEs devem aproveitar as condições do multipercurso.

MIMO no LTE

No Release 8:

Modo 1 - Single Antenna Port
 Um único fluxo de dados é transmitido por uma única antena e recebido, ou por uma ou mais antenas.

Modo 2 - Transmit Diversity

Transmite o mesmo fluxo de informação em múltiplas antenas. Este modo é utilizado no LTE por padrão para os canais comuns tal como para os canais de controlo e de transmissão.

Modo 3 - Open-Loop Spatial Multiplexing

Transmite dois fluxos de informação através de duas ou mais antenas (até 4 no LTE). Não existe nenhuma informação de retorno por parte do UE.

Modo 4 - Closed-Loop Spatial Multiplexing

Tal como no Modo 3, transmite dois fluxos de informação através de duas palavras de código a partir de N antenas (até 4). A diferença é o PMI, que é uma informação de retorno do UE para o eNodeB.

MIMO no LTE

- Modo 5 Multi-User MIMO
 - Este modo é semelhante ao CL-SM mas os fluxos de informação são direccionados para UE's diferentes. Ou seja, múltiplos utilizadores partilham os mesmos recursos.
- Modo 6 Closed-Loop Rank-1 Spatial Multiplexing
 - Uma única palavra de código é transmitida por uma única camada espacial. Muitos consideram que é um retorno ao Modo 4 e tem sido associado ao beamforming.
- Modo 7 Single Antenna Port Beamforming.
 Modo de beamforming onde uma única palavra de código é transmitida numa única camada espacial.

No Release 9:

Modo 8 – Dual-Layer Beamforming.

No Release 10:

MIMO 8x8 no Downlink e 4x4 no Uplink.

MIMO

Qualidade de Serviço

- Implementado entre o UE e o PDN-Gateway através de "Bearer"
 - "Bearer": Conceito virtual que define como os dados do UE serão tratados quando estão trafegando na rede.

Qualidade de Serviço

Default Bearer:

- Estabelecido quando o UE é conectado na rede LTE.
- Cada Default Bearer recebe um endereço IP.

Dedicated Bearer:

- Provê um túnel dedicado para um ou mais tráfego específico.
- Age como uma camada adicional no topo da Default Bearer.

Non-GBR:

Sem Garantia de Taxa de Bit.

GBR:

Com Garantia de Taxa de Bit.

Qualidade de Serviço

QCI	Bearer Type	Priority	Packet Delay	Packet Loss	Example	
1	GBR	2	100 ms	10-2	VoIP call	
2		4	150 ms	10 ⁻³	Video call	
3		3	50 ms	10	Online Gaming (Real Time)	
4		5	300 ms		Video streaming	
5		1	100 ms	10-6	IMS Signaling	
6	Non CDD	6	300 ms	10	Video, TCP based services e.g. email, chat, ftp etc	
7	Non-GBR	7	100 ms	10 ⁻³ Voice, Video, Interactive gaming		
8		8	300 ms	10-6	Video, TCP based services e.g. email,	
9		9	300 1113	10	chat, ftp etc	

Interoperabilidade

Interoperabilidade

A interoperabilidade pode oferecer provedores de rede com a possibilidade de alternar entre redes alternativas de acesso sem fio.

Handover

Requisitos para o *Handover*:

- √ É importante que o QoS seja mantido, antes, durante e depois;
- Não pode esgotar a bateria;
- ✓ Deve ter continuidade dos serviços;
- Handoff deve ocorrer suavemente.

O *Handover* de uma rede pode ser decidido por duas maneiras:

- Avaliação da Rede: a rede decide se haverá um Handover.
- Avaliação do dispositivo: o dispositivo decide realizar o Handover daquela rede e informa sua decisão à rede. Nesse caso, a decisão final será da rede que se baseada na Gestão de Recursos de Radio.

Handover no LTE

Nas redes 3G e LTE a decisão é dada de maneira híbrida. Nesse caso, o dispositivo irá auxiliar no *Handover* avaliando as células vizinhas e reportando as medições para a rede, a qual irá decidir o tempo para o *Handover* e a célula de destino.

Os parâmentros de medidas e reporte são definidos pela rede.

No LTE existem 3 tipos de *Handover*:

- Intra-LTE: Ocorre entre os nós da rede LTE.
 - Usando a Interface x2.
 - Usando a Interface S1.
- Inter-LTE: Ocorre entres os nós de redes LTEs diferentes.
 - Usando a Interface S1 e trocando o S-GW.
 - Usando a Interface S1 não trocando o S-GW.
- Inter-RAT: Ocorre entre diferentes tecnologias de rádio, por exemplo GSM, UMTS e WiMAX.
 - Redes não-3GPP confiáveis.
 - Redes não-3GPP não confiáveis.

Fase de Preparação

Fase de Preparação

- Passo 1: O UE envia um relatório com a qualidade do link e qual a BS candidata do Handover. A eNodeB irá escolher qual handover utilizar baseadas nessas informações, identifica a BS e RNC para comutar, e começa a preparação do handover.
- Passos 2 e 3: A eNodeB envia uma requisição de Handover para a MME, envia a identificação do RNC e informação do controle de transmissão do sistema alvo. A MME identifica o SGSN conectado ao RNC alvo e envia as outras informações vinda da eNodeB para o SGSN em um sinal de requisição de realocação de encaminhamento.
- Passos 4 e 5: O SGSN encaminha a requisição de realocação para o RNC, junto com as informações de controle de transmissão enviadas nos passos anteriores. O RNC irá fazer a configuração de radio conforme essas informações e enviar uma resposta de realocação para o SGSN. Durante esse processo, um Bearer de Radio de Acesso 3G é preparado entre o SGSN e o RNC.
- Passo 6: O SGSN encaminhas a resposta de realocação para o MME, com o objetivo de notificar que aquele procedimento foi completado.
- Passo 7 e 8: O MME envia para o S-GW uma requisição para criar um tunnel de encaminhamento de dados. Com a inforação que o S-GW recebeu, ele estabelece um caminho de comunicação dele para o SGSN para encaminhamenti dis dados e envia a repsosta para a MME sobre criação de um tunnel de encaminhamento.

Fase de Execução

Fase de Preparação

- Passo 1 e 2: A MME envia um comando de handover para a eNodeB. Que por sua vez, quando recebe esse sinal, envia um comando de handover do LTE para o UE comutar de sistema. Note que quando a eNodeB recebe esse comando da MME, é inciado o encaminhamento dos pacotes de dados recebidos do S-GW. Então, os pacotes para o UE, que chegam no S-GW, são encaminhados para o UE pelo caminho: S-GW, eNodeB, S-GW, SGSN, RNC.
- Passos 3 a 6: O terminal comuta para o 3G quando a configuração de link de rádio estiver completa, e uma notificação que conectou ao 3G é enviada atraves cada link até da MME. Assim, a MME pode executar o passo 10, para liberar os recursos da eNodeB depois de um certo periodo de tempo.
- Passos 7: A MME informa ao SGSN que o encaminhamento de realocação foi completado. E por um periodo de tempo depois de receber esse sinal, o SGSN libera os recursos relativos ao encaminhamento de dados.
- Passo 8: O SGSN envia uam requisição para o S-GW para mudar o "bearer" de caminho de comunicação existente antes do handover, o S-GW e a eNodeB, para um entre o S-GW e o SGSN. Após essa mudança, o caminho de comunicação se torna: S-GW, SGSN, RNC, terminal; e a transmissão de dados para o sistema 3G alvo se inicia.
- Passo 9 e 10: O S-GW envia a resposta de modificar o "bearer" para o SGSN, indicando que o procedimento de handover foi completado. A MME também libera os recursos da eNodeB enquanto não for necessário.

LTE no Brasil

Frequências no Brasil

- Faixa de frequência de 700MHz ainda em utilização pela TV Analógica
- ANATEL realizou em 2012 uma licitação na faixa anteriormente destinada ao MMDS (2500 MHz - 2690 MHz) para a implantação de redes 4G

Faixa de 450MHz ofertada com a Faixa de 2,5GHz

Frequências no Brasil

Resultado da licitação:

Subfaixa	Largura de Banda	Transmis			
(MHz)	(MHz)	Estação Móvel	ERB	Operadora	
Р	10+10	2.500-2.510	2.620- 2.630	Claro (11 lotes); TIM (6 lotes); Oi (11 lotes)	
w	20+20	2.510-2.530	2.630- 2.650	Claro	
V1	10+10	2.530-2.540	2.650- 2.660	TIM	
V2	10+10	2.540-2.550	2.660- 2.670	Oi	
×	20+20	2.550-2.570	2.670- 2.690	Vivo	
Т	15	2.570-2.585*		-	
U	U 35		2.585-2.620*		

^{*} Sistemas TDD (Time Division Duplex) que utilizam a mesma subfaixa de frequências para transmissão nas duas direções.

Frequências no Brasil

LTE-Advanced

LTE-Advanced

- Release 10.
- Taxa de pico: 1 Gbps (downlink) e 500 Mbps (uplink).
- Taxa de transferência em média três vezes maior do que no LTE.
- Maior Flexibilidade do Espectro.
- Mobilidade igual a do padrão LTE.
- Assim como no LTE é totalmente baseada no protocolo IP.

 Agregação de portadora: múltiplas portadoras são agregadas e juntamente usadas para transmissão de/para um terminal único. Atécinco portadoras, mesmo de diferentes larguras de banda, podem ser agregadas, permitindo larguras de banda de transmissão até 100 MHz.

 NÓS Relays: um terminal pode comunicar com arede por meio de um nó de retransmissão que está conectado à uma estação doadora usando a tecnologia de interface do LTE.

Coordenação Multi-Ponto.

Aprimoração do MIMO.

LTE x WIMAX

	LTE (3GPP R8)	LTE-Advanced (3GPP R10)	WiMAX 802.16e (R1.0)	WiMAX 802.16m (R2.0)
Physical layer	DL:* OFDMA [†]	DL: OFDMA	DL: OFDMA	DL: OFDMA
	UL:* SC-FDMA [‡]	UL: SC-FDMA	UL: OFDMA	UL: OFDMA
Duplex mode	FDD and TDD§	FDD and TDD	TDD	FDD and TDD
User mobility	217 mph	217 mph	37 to 74 mph	217 mph
	(350 km/h)	(350 km/h)	(60 to 120 km/h)	(350 km/h)
Channel bandwidth	1.4, 3, 5, 10, 15, 20 MHz	Aggregate components of Release 8	3.5, 5, 7, 8.75, 10 MHz	5, 10, 20, 40 MHz
Peak data rates	DL: 302 Mbps (4 × 4 antennae) UL: 75 Mbps (2 × 4) at 20 MHz FDD	DL: 1 Gbps UL: 300 Mbps	DL: 46 Mbps (2 × 2) UL: 4 Mbps (1 × 2) at 10 MHz TDD 3:1 (downlink/uplink ratio)	DL > 350 Mbps (4 × 4) UL > 200 Mbps (2 × 4) at 20 MHz FDD
Spectral efficiency	DL: 1.91 bps/Hz (2 × 2)	DL: 30 bps/Hz	DL: 1.91 bps/Hz (2 × 2)	DL > 2.6 bps/Hz (4 × 2)
	UL: 0.72 bps/Hz (1 × 2)	UL: 15 bps/Hz	UL: 0.84 bps/Hz (1 × 2)	UL > 1.3 bps/Hz (2 × 4)
Latency	Link layer < 5 ms	Link layer < 5 ms	Link layer – 20 ms	Link layer < 10 ms
	Handoff < 50 ms	Handoff < 50 ms	Handoff – 35 to 50 ms	Handoff < 30 ms
VoIP capacity	80 users per sector/	>80 users per sector/	20 users per sector/	>30 users per sector/
	MHz (FDD)	MHz (FDD)	MHz (TDD)	MHz (TDD)

^{*}Downlink/uplink, *Orthogonal frequency-division multiple access, *Single-carrier frequency-division multiple access,

[§]Frequency-division duplexing and time-division duplexing

Considerações Finais

Considerações Finais

- Apesar de n\u00e3o ser considerada uma Tecnologia de 4G, em resumo o LTE tem como pontos fortes:
 - Nova Interface Aérea, Suporte a MIMO, Flexibilidade de Espectro, Grande Alcance, Altas Taxas, Latência Reduzida e Compatibilidade com outros Sistemas.
- Proporciona melhor experiência para o usuário final, e poderá atender a esse usuário mesmo em áreas mais remotas.
- O LTE-Advanced possui melhorias que facilitará a expansão dessa tecnologia no mercado.

Dúvidas?

Artigo e Pergunta

Artigo e Pergunta

XXXI SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES – SBrT2013, 1-4 DE SETEMBRO DE 2013, FORTALEZA, CE

Perspectivas e Desafios para Implantação do LTE 450 MHz em Áreas Rurais

Juliano J. Bazzo, Cristiano B. de Paula, Ralph R. Heinrich, Fabbryccio A. C. M. Cardoso, Luís Claudio P. Pereira e Fabrício L. Figueiredo

Questão:

Superadas as barreiras da Padronização e da Regulamentação, para implementar uma rede LTE em áreas rurais utilizando a frequência de 450MHz, é preciso ainda considerar alguns desafios. Quais são eles? Escolha um deles e explique-o em poucas linhas.

Adriana Pereira do Nacimento

dri.pnasc@gmail.com

Obrigada!!!