Jméno: Jáchym Löwenhöffer

1. (0.1 %) Latinský čtverec velikosti n je pole $n \times n$ takové, že každý prvek z množiny libovolných n prvků (obvykle se používá A, B, C, \ldots , proto "latinský") je v každém sloupci a v každém řádku přesně jednou. Například

A	В	C
В	C	A
C	A	В

je latinský čtverec velikosti 3.

Napiš funkci, která dostane pole (seznam seznamů) velikosti $n \times n$, kde prvky jsou čísla od 1 do n a určí, zda se jedná o latinský čtverec.

2. (0.01 %) [* celkem hard] Napiš funkci, která pro dané $n \leq 7$ určí počet všech různých latinských čtverců velikosti n.

Hint: Ani to nezkoušej na papíře. Pro n=7 jich je 61,479,419,904,000.

3. (0.001 %) Řecko-latinský čtverec velikosti n je pole $n \times n$ obsahující na každém místě dvojici prvků ze součinu dvou disjunktních množin velikosti n tak, že každý prvek z jedné množiny je v každém sloupci a v každém řádku právě jednou a navíc je každá dvojice prvků právě jednou v celém čtverci. Například

$A\alpha$	$B\beta$	$C\gamma$
$B\gamma$	$C\alpha$	$A\beta$
$C\beta$	$A\gamma$	$B\alpha$

je řecko-latinský čtverec velikosti 3. Jsou to jakoby dva přes sebe přeložené latinské čtverce tak, aby odpovídající dvojice v každém políčku byly unikátní.

Dva latinské čtverce nazveme vzájemně ortogonální (kolmé), když jejich přeložení přes sebe je řeckolatinský čtverec.

Napiš funkci, která dostane dva latinské čtverce jako pole $n \times n$ čísel od 1 do n a určí, zda jsou vzájemně ortogonální.

4. (0.0001 %) [** extra hard] Napiš funkci, která pro dané $n \le 6$ určí počet všech (neuspořádáných) dvojic vzájemně ortogonálních latinských čtverců.