

Max-Planck-Institut für Meteorologie Bundesstr. 53 D-20146 Hamburg

Deutscher Wetterdienst Frankfurter Str. 135 D-63067 Offenbach

ICON User's Guide

G. Zängl, D. Reinert, F. Prill, M. Giorgetta, L. Kornblueh, L. Linardakis, and S. Rast

assembled and edited by T. Schad, I. Kraut, D. Rieger, C. Walter, S. Gruber, K. Deetz, H. Vogel, and B. Vogel

Karlsruhe Institute of Technology

Institute for Meteorology and Climate Research (IMK-TRO) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen

November 3, 2014

Preface

This user guide was assembled and edited based on available documents on the ICON webpage by the persons mentioned at the front page. The content of the user guide follows the requirements of DWD.

Important hints:

In chapter 4 a list of the namelist parameters is given. New and inexperienced users should only modify the namelist parameters that are given in bold letters.

When results produced with ICON are published the following papers have to be cited in the list of references:

Zängl et al. (2014)

Information for authors:

Please read the README for further instructions and tamplates. $\,$

ICON User's Guide – 1.8.00 Contents

Contents

Contents

1	Guid	de for New Users 1
	1.1	Needed Software
	1.2	The Source Code
		1.2.1 Directory structure
	1.3	Configuration and Compilation
		1.3.1 Description of the Configuration Files
		1.3.2 Configuring and Compiling the Code
	1.4	Running the model (Test scripts for ICON)
		1.4.1 Principles of testing ICON
		1.4.2 Description of test script
		1.4.3 Usage
		1.4.4 Examples
	1.5	Running the Model (Idealized Cases)
		1.5.1 Jablonowski-Williamson test
		1.5.2 Mountain induced Rossby waves
	1.6	Running the Model (Real Case)
		1.6.1 Input Data
		1.6.2 Creating a Runscript
		1.6.3 Restart
		1.6.4 Make Runscript Environment
	1.7	Pre-built Grids and ExtPar Data
		1.7.1 Grid file nomenclature
	1.8	Grid Generation
		1.8.1 ICON atmosphere grids
		1.8.2 Information contained in grid files
		1.8.3 Viewing/plotting grids
2	Out	put 28
3		ualization 39
	3.1	icon_plot.ncl
		3.1.1 Requirements
		3.1.2 Customization
		3.1.3 Basic command line option
		3.1.4 Plot Types
		3.1.5 Regional plots
		3.1.6 Masking
		3.1.7 Data on other grids
		3.1.8 All options
	3.2	ncview/GrADS
	3.3	Other Possibilities 45

Contents

4	ICO	N Namelists Overview 47
	4.1	Namelist Annotation
	4.2	ICON Namelists
		4.2.1 Scripts, Namelist files and Programs
		4.2.2 Namelist parameters
	4.3	Namelist parameters for grid generation
		4.3.1 Namelist parameters defining the atmosphere grid 49
	4.4	Namelist parameters defining the atmospheric model
		4.4.1 coupling_nml
		4.4.2 diffusion_nml
		4.4.3 dynamics_nml
		4.4.4 echam_conv_nml
		4.4.5 echam_phy_nml
		4.4.6 gribout_nml
		4.4.7 grid_nml
		4.4.8 gridref_nml
		4.4.9 gw_hines_nml (Scope: lgw_hines = .TRUE. in echam_phy_nml) 66
		4.4.10 ha_dyn_nml
		4.4.11 initicon_nml
		4.4.12 interpol_nml
		4.4.13 io_nml
		4.4.14 les_nml (parameters for LES turbulence scheme; valid for inwp_turb=5) 78
		4.4.15 limarea_nml (Scope: l_limited_area=1 in grid_nml)
		4.4.16 lnd_nml
		4.4.17 ls_forcing_nml (parameters for large-scale forcing; valid for torus ge-
		ometry)
		4.4.18 master_model_nml (repeated for each model)
		4.4.19 master_nml
		4.4.20 meteogram_output_nml
		4.4.21 nonhydrostatic_nml (relevant if run_nml:iequations=3) 85
		4.4.22 nwp_phy_nml
		4.4.23 nwp_tuning_nml
		4.4.24 output_nml (relevant if run_nml/output='nml')
		4.4.25 parallel_nml
		4.4.26 radiation_nml
		4.4.27 run_nml
		4.4.28 sleve_nml (relevant if nonhydrostatic_nml:ivctype=2)
		4.4.29 time_nml
		4.4.30 transport_nml (used if run_nml/ltransport=.TRUE.)
		4.4.31 turbdiff_nml
	4 =	4.4.32 vdiff_nml
	4.5	Ocean-specific namelist parameters
		4.5.1 ocean_physics_nml
	4.0	4.5.2 sea_ice_nml (relevant if run_nml/iforcing=2 (ECHAM))
	4.6	Namelist parameters for testcases (NAMELIST ICON)
		4.6.1 ha_testcase_nml (Scope: ltestcase=.TRUE. and iequations=[0,1,2] in
		run_nml)
		4.6.2 nh_testcase_nml (Scope: ltestcase=.TRUE. and iequations=3 in run_nml) 126

Contents				
4.7	External data	134		
	4.7.1 extpar_nml (Scope: itopo=1 in run_nml)	134		
4.8	External packages	135		
4.9	Information on vertical level distribution	135		
Referer	ices	138		

1 Guide for New Users

This tutorial is meant for people with some knowledge and/or experience in modelling and Linux, but which have no experience with the ICON model. In the following we will describe in short how to compile and run ICON on your machine.

1.1 Needed Software

For some components ICON uses external libraries. Therefore you will need some additional software which should be installed on your machine. The following software needed to be installed on your machine:

 NetCDF: NetCDFis a set of software libraries and self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.

(Source: http://www.unidata.ucar.edu/software/netcdf/)

• GRIB: GRIB (GRIdded Binary) is a format defined by the WMO (World Meteorological Organization). The use of GRIB in ICON is optional. The ECMWF GRIB API is an application program interface accessible from C, FORTRAN and Python programs developed for encoding and decoding WMO FM-92 GRIB edition 1 and edition 2 messages. A useful set of command line tools is also provided to give quick access to GRIB messages. ICON requires GRIB2 format.

(Source: https://software.ecmwf.int/wiki/display/GRIB/Home)

- MPI: MPI is a library specification for message-passing, proposed as a standard by a broadly based committee of vendors, implementors, and users.
 (Source: http://www.mcs.anl.gov/research/projects/mpi/)
- OpenMP: Jointly defined by a group of major computer hardware and software vendors, the OpenMP API is a portable, scalable model that gives shared-memory parallel programmers a simple and flexible interface for developing parallel applications on platforms ranging from embedded systems and accelerator devices to multicore systems and shared-memory systems.

(Source: http://openmp.org/wp/)

1.2 The Source Code

You can obtain the source code on the website of DKRZ:

https://www.dkrz.de/

You can use the following commands to untar the ICON source code:

```
tar xfvz icon.tar.gz
```

This will create a folder icon-1.0 inside your current directory. Within the ICON User Guide, this folder will further on be called \$ICONDIR.

1.2.1 Directory structure

Within \$ICONDIR, you will find a set of subdirectories. The important subdirectories are described in the following.

build

Within the \$ICONDIR/build directory, a subdirectory with the name of your computer architecture is created at compilation. Within this subdirectory, a bin subdirectory containing the binary control_model and several further subdirectories containing the compiled module files are created at compilation.

config

Inside the \$ICONDIR/config directory, different machine dependent configuration are stored within the configuration files. You can find a description of how to use and set up such configuration files in chapter 1.3.

data

Within the \$ICONDIR/data directory, you will find divers input datasets. For example, there are the datasets "rrtmg_lw.nc" and "ECHAM6_CldOptProps.nc", which are necessary for the radiation scheme (see sec. 1.6.1).

doc

Within the \$ICONDIR/doc directory, several documentations for ICON are stored. There are according subdirectories for scientific (\$ICONDIR/doc/science), technical (\$ICONDIR/doc/technical) and programming style guides (\$ICONDIR/doc/style).

externals

Within the \$ICONDIR/externals directory, external libraries for ICON are stored. Currently, it is the mtime library which is used to convert different date time formats.

include

Within the \$ICONDIR/include directory, interfaces to libraries needed by ICON are stored. Currently, the interface to the CDI library is stored inside this directory.

run

Within the \$ICONDIR/run directory, namelist descriptor files as well as the full namelist documentation are stored. The namelist descriptor files can be used to generate runscripts. Further information can be found in 1.6.

src

Within the \$ICONDIR/src directory, the source code of ICON including the main program and ICON modules can be found. The modules are ordered in several subdirectories which are described in the following.

The main program control_model.f90 can be found inside the subdirectory \$ICONDIR/src/drivers. Additionally, this directory contains the modules for a hydrostatic and a nonhydrostatic setup.

The configuration of an ICON run is performed within the modules inside \$ICONDIR/src/configure_model and \$ICONDIR/src/namelists. Modules regarding the configuration of idealized test cases can be found inside \$ICONDIR/src/testcases.

The dynamics of ICON are inside \$ICONDIR/src/atm_dyn_iconam and the physical parameterizations inside \$ICONDIR/src/atm_phy_nwp. Parameterizations for the interactions with the surface can be found inside \$ICONDIR/src/lnd_phy_nwp.

Shared infrastructure modules for 3-D and 4-D variables can be found within \$ICONDIR/src/shared. The according routines for 2-D fields (e.g. external parameters) are stored within \$ICONDIR/src/shr_horizontal.

Modules handling the parallelization can be found in \$ICONDIR/src/parallel_infrastructure.

Input and output modules are stored in \$ICONDIR/src/io.

The modules for the grid generator, as described in chapter 1.8 can be found inside \$ICONDIR/src/grid_generator.

support

Within the \$ICONDIR/support directory, the CDI library is stored.

vertical_coord_table

Inside the \$ICONDIR/vertical_coord_tables directory, information files describing the relation between model layer and height are stored.

1.3 Configuration and Compilation

To ease up the compilation a configure-file is provided which should take over the main work. This Autoconf configuration is used to analyze the computer architecture (hardware and software) and set user specified preferences, e.g. the compiler. This preferences are read from config/mh-<0S>, where <0S> is the identified operating system. Operating systems are listed in the configure-files in \$ICONDIR/config/ with the according files mh-<0S>. If your machine is not listed you can add a config-file with your own <0S> based on the given mh-<0S> files. If different compilers are available, the mh-<0S> file may contain a case construct to distinguish them. If your <0S> is not recognized but is one of the listed <0S> you can invoke the configure file with the according option --host=\$HOST. Examples for the DWD CRAY system are given in the boxes.

1.3.1 Description of the Configuration Files

To add a specific compiler or change your compiler flags, you have to enter the \$ICONDIR/config/mh-<OS> according to your operating system <OS>. For the DWD CRAY, the compiler flags in mh-linux look like the following:

```
CRAY EXAMPLE: Compiler Flags inside mh-linux
    config_compiler=cray
        CC
   FC
                = ftn
                = "$FC"
   F77
                = -v -D__LOOP_EXCHANGE -D__MIXED_PRECISION -Df2cFortran
   FFLAGS
-e Z -em -hflex_mp=conservative -hfp1 -hadd_paren -r am -Ktrap=divz,ovf
    CFLAGS
                = -I${GRIB_API}/include -v -Df2cFortran
-DHAVE_CF_INTERFACE -DHAVE_LIBNETCDF -DHAVE_LIBGRIB
-DHAVE_LIBGRIB_API -O3 -D__SVN_VERSION="${SVNVERSION}"
                = "$FFLAGS"
   F77FLAGS
                = "-v"
    FCLIBS
    GEN_FLAGS
    FDEBUG
                = -g -R abc
    OMPFLAG
                = -mp
   DEFOPT
                = -D
   DEFCOPT
                = -D
   MODOPT
                = -I
   MODDIR
    ;;
```

The cray) in this example gives the name of this specific configuration. It can be addressed by a flag at configuration. For this example, the according command to choose this setting would be ./configure --with-fortran=cray (see section 1.3.2). Like this, you can create your own configuration by adding a new compiler.

CC, FC and F77 are the compiler directives for C-Compiler, FORTRAN2003-Compiler and FORTRAN77-Compiler. The according compiler flags are set via CFLAGS, FFLAGS and F77FLAGS. The variable to set an OpenMP flag is called OMPFLAG. Libraries are set via FCLIBS.

1.3.2 Configuring and Compiling the Code

To configure the source code go to \$ICONDIR and give:

```
./configure
./build_command
```

If you want to use another compiler than the default compiler you give:

```
./configure --with-fortran=<compiler>
./build_command
```

where <compiler> is {gcc,nag,intel,pgi,cray}.

```
CRAY EXAMPLE: Configure + Make
./configure --with-fortran=cray}
./build_command
```

Note, that CRAY compiler environment (cce) versions 8.2.x do not work with ICON. The CRAY configuration is expanded to the following:

```
CRAY EXAMPLE: Configuration

ftn -I../module -v -D__LOOP_EXCHANGE -D__MIXED_PRECISION -Df2cFortran -e

Z -em -hflex_mp=conservative -hfp1 -hadd_paren -r am -Ktrap=divz,ovf

-D__ICON__ <object files> -L/usr/local/pkg/grib_api/1.11.0/CRAY/lib

-L../lib -lsupport -lgrib_api_f90 -lgrib_api -lmtime $(LAPACK_LIB)

$(NETCDF_LIB) $(HDF5_LIB) $(SZIP_LIB) $(ZLIB_LIB) $(MPI_LIB)

$(METIS_LIB) $(PROFILE_LIB) $(SCT_LIB)
```

ICON is parallelized using MPI and OpenMP. You can control the parallelization to be used by giving:

```
./configure --with-mpi/--without-mpi --with-openmp/--without-openmp ./build_command
```

By default the options are set to --with-mpi --without-openmp. After a successful build, you will find the ICON executable named control_model inside \$ICONDIR/build/<0S>/bin/. The CRAY Fortran compiler is an exception, as the command includes automatically OpenMP. Therefore, although selecting -without-openmp, OpenMP is used.

If you wish to re-configure ICON it is advisable first to clean the old setup by giving:

make distclean

Some more details on configure options can be found in the help of the configure command:

./configure --help

1.4 Running the model (Test scripts for ICON)

1.4.1 Principles of testing ICON

The ICON developers use the buildbot tool in order to perform automated tests on selected ICON experiments at regular time intervals. The buildbot tool launches the respective test scripts on various computer platforms and documents success or failure on a special web site (https://buildbot.zmaw.de/icon/). The automated tests are performed on the newest model revision as available in the ICON repository. Furthermore, tests can be "forced", i.e. started by hand, at any time specifying a certain experiment and model revision of any branch of the repository. However, it is impossible to test two revisions against each other or to test a local revision. Here, we present new tests for ICON into which various experiments are integrated and which are designed such that they can either be used in the framework of the buildbot tool or be started manually without reference to buildbot (e.g. on a PC at MPI Hamburg). The tests are designed to trap certain technical errors and comprise the following experiments:

base test: Just a simple base run over a short time period for a specific experiment. This run will be called simulation A in the following.

update test: In addition to the model revision to test, the so-called "test revision", a "reference revision" can be specified. A short simulation A of the test revision over one hour is performed during which restart files are written. The same simulation is performed for the reference revision (simulation A'). The "update test" is said to be passed if there are no differences in the output of simulation A and A' using the "cdo diff" command on the time steps in the output specified by the user.

restart test: In addition to a base simulation A, a second simulation B restarts ICON at some time after the initial date. The "restart test" is said to be passed if there are no differences in the output for the time steps after the restart between the original and the restarted simulation using the "cdo diff" command.

nproma test: The nproma test performs a base simulation A and a simulation C with a different value of nproma. Instead of nproma of simulation A, a value of 17 is used in

simulation C or, if nproma = 17 for simulation A, nproma = 19 is used for simulation C. The nproma test is said to be passed if the "cdo diff" command does not find differences in the output.

mpi parallel test: The mpi parallel test performs a base simulation A and a simulation D with a reduced number of MPI threads compared to the base simulation A. If more than one threads are used on each node, the number of threads on each node is reduced by one. If only one thread is used on each node, the number of nodes is reduced by one. If only one process is used, no mpi parallel test is performed. The parallel test is said to be passed if the "cdo diff" command does not find differences between the output files.

openmp parallel test: The openmp parallel test performs a base simulation A and a simulation E with a reduced number of openmp threads compared to the base simulation A. If only one openmp thread was used, no openmp test is performed. The openmp parallel test is said to be passed if the "cdo diff" command does not find differences between the output files.

The testing procedure is such that tests can be combined. Furthermore, the test script can be asked to re—use existing runs without repeating these runs.

Only the following experiments are included into the test script:

atm_amip_test: Non-hydrostatic AMIP-like simulation but with transient solar irradiance using ECHAM physics.

atm_icoles_nested: Nonhydrostatic atmosphere only simulation with a regional grid refinement.

atm_jww_hs_test: Jablonowski Williamson baroclinic wave test for a hydrostatic atmosphere.

oce_omip_0160km: Ocean only experiment with a 160km resolution.

1.4.2 Description of test script

The test script icon-dev.checksuite is located in the run/checksuite.icon-dev directory of ICON and uses the following run script of the run directory for the experiments: (i) exp.atm_amip_test for the AMIP-type experiment atm_amip_test, (ii) exp.atm_icoles_nested for the atmosphere experiment with a grid refinement, (iii) exp.atm_jww_hs_test for the Jablonowski Williamson baroclinic wave test, and (iv) exp.oce_omip_0160km for the ocean only experiment oce_omip_0160km.

These run scripts contain all necessary namelist groups and links to files that contain the initial and boundary conditions. By the standard make_runscripts command invoked inside icon-dev.checksuite, this script is transformed into the actually used form that contains an additional suffix .run at the end of its name. Attention: icon-dev.checksuite generates the specific run script by default and overwrites those that are present. The script can be forced to use present runscripts. For the various test runs for each experiment, these .run files are copied and edited by sed.

Here follows a more detailed description of the script:

- icon-dev.checksuite: This script uses the make_runscripts command to produce exp.<exp_name>.run from the basic run script exp.<exp_name>. The default is that any existing run script is overwritten but there is an option to keep existing runscripts. These run scripts are then modified by sed commands in order to perform the various test runs. Once the test runs are finished, the function diff_results of icon-dev.checksuite is called to determine the differences between those runs.
- exp.<experiment>: These scripts contain all settings for the base simulation in one experiment. To date, the experiments <experiment> = atm_amip_test, atm_icoles_nested, atm_jww_hs_test, and oce_omip_160km can be used in the tests. The base script exp.<experiment> will be transformed by make_runscripts into a script that can actually run the ICON model. The resulting exp.<experiment>.run scripts will then be copied to exp.<experiment>_base.run, exp.<experiment>_restart.run, exp.<experiment>_nproma.run, exp.<experiment>_mpi.run, and exp.<experiment>_omp.run to perform simulations A, B, C, D, and E, described in section 1.4.1, respectively. The latter scripts are then modified by icon-dev.checksuite using sed according to the needs of the respective runs.
- diff_results. This function compares two simulations. The five arguments contain the base path of the model (.../icon-dev/ for example), and the name of the experiment to be compared (e.g. <experiment>_base) for the two experiments, respectively. The path of the models can be identical (e.g. for the restart or nproma tests that are performed on the same model revision). The fifth argument is the name of the test (update, restart, nproma, mpi, omp) and is only used to produce more legible output. However, the diff_results function needs further information that is provided by variables that are set in the main script: (i) the respective infix of the output files in variable TYPES (e.g. atm_phy), the output dates and time in variable DATES (e.g. 19780101T004000Z) as they figure on the output filenames, and the restart date in RESTART_DATE. These three variables can be set as arguments to the options -t, -d, and -s in a call to icon-dev.checksuite, respectively. The diff_results function checks for differences between two experiments by the cdo diff command. If the variable SUB_FILES is set to 'yes', e.g. by the use of the -u option in the call of icon-dev.checksuite, the variables of the respective outputfiles are subtracted from each other resulting in difference files

diff_<EXP2>_<TYPE>_<DATE>-<EXP1>_<TYPE>_<DATE>.nc
for <TYPE> in TYPES and <EXP[12]> one of <experiment>_base,
<experiment>_restart, <experiment>_nproma, <experiment>_mpi,
<experiment>_openmp, or <experiment>_update. The difference files are written to
the path of experiment EXP2.

1.4.3 Usage

There are three different ways to use the "check suite":

(i) Start on the command line: The test script icon-dev.checksuite can be called on the command line from the run/checksuite.icon-dev directory. All the below described options are available on the command line and the full functionality can be used via the command line options easily.

- (ii) Submit to queue: Like buildbot does, it is possible to run make_runscripts on a respective test experiment script located in icon_dev/run and to submit the resulting run script to the respective queuing system. E.g. from exp.test_atm_amip, the runscript exp.test_atm_amip.run is generated and can be submitted. exp.test_atm_amip is just a link to checksuite.icon-dev/check.atm_amip. In order to use the full functionality of icon-dev.checksuite, various environment variables have to be set in exp.test_atm_amip. This way of calling run/checksuite.icon-dev is good for testing on computers with a queuing system. To date, the exp.test_atm_amip and exp.check_oce_omip_160km are the only test scripts that are available.
- (iii) Buildbot: The script calling icon-dev.checksuit can be used by buildbot. In this case, it is important to check that the correct values of all the environment variables are set in the run scripts mentioned in paragraph (ii).

The calling syntax of icon-dev.checksuite is:

Description of options:

- -c: colour line output. Colour output should not be used when the script is called by build-bot.
- -d: dates for which outputfiles exist. The default depends on the experiment.
- -e: experiment on which tests have to be performed. Currently, the non-hydrostatic amip-like experiment atm_amip_test, the atmospheric experiment including a grid refinement atm_icoles_0160km, the Jablonowski Williamson baroclinic wave test on a hydrostatic atmosphere atm_jww_hs_test, and the ocean only experiment oce_omip_0160km are supported.
- -f: The argument yes forces to create run scripts even if they already exist (default), no creates run scripts only if they are not yet present.
- -h: display help
- -m: describes the test mode by its arguments that are one of b(ase), u(pdate), r(estart), n(proma), m(pi), o(mp), ur, un, um, uo, rn, rm, ro, nm, no, mo, urn, urm, uro, unm, uno, umo, rnm, rno, rmo, nmo, urnm, urno, urmo, unmo, rnmo, urnmo. The first five tests modes describe the sole base run, or the update—, restart—, nproma—, mpi—, and omptests, respectively. The last 26 acronyms describe combined tests where each single test is represented by its initial letter. The default test mode is rnmo.
- -o: The argument of this option can be either yes or no depending on whether existing test simulations shall be overwritten (-o yes) or will be re—used for the current tests (-o no). The default is -o yes, so all existing experiments are automatically overwritten if not specified otherwise.

- -r: The argument of this option gives the absolute path to the reference model. If the test mode includes an update test, it is mandatory. No default.
- -s: Restart date for the restart test as given by the time settings in the respective experiment.

 Default depends on the experiment.
- -t: "Types" (infixes) of output files that have to be compared. The infixes depend on the experiment and are set by default accordingly.
- -u: If files in the various test runs differ, calculate the difference by cdo sub.

Corresponding to the options on the command line, the following environment variables can be set in the exp.test_<experiment>:

```
-c: COLOUR='yes'|'no'. Not recommended in use with buildbot.
```

```
-d: DATES=<date_string>.
```

```
-e: EXPERIMENT=<name>.
```

```
-f: FORCE_MRS='yes'|'no'
```

```
-m: MD=<test_mode>
```

```
-o: OVERWRITE='yes'|'no'
```

-r: REFERENCE=<reference_model_path>

```
-s: RESTART_DATE=<restart_date>
```

-t: TYPES=<file_type_infixes>

-u: SUB_FILES='yes'|'no'

1.4.4 Examples

```
icon-dev.checksuite -o no -c -u -e oce_omip_160km
```

This command runs the rnmo, i.e. the restart, nproma, mpi and openmp test on the experiment oce_omip_160km. Existing runs are not overwritten (-o no), there is colour output (-c), and the difference files are calculated between the various test experiments and the base run (-u).

```
icon-dev.checksuite -c -f no -m ur -r <path>
```

This command performs the update and restart test (-m ur) on the atm_amip_test experiment, colour output ist switched on (-c), the reference model is given in <path>, the runscripts are not newly generated if they are already there (-f no).

1.5 Running the Model (Idealized Cases)

To shed light on the functionality and the quality of the dynamical core, setups for two test cases are presented in the following. Additionally, results of these test cases are shown. These tests are classified in short deterministic test cases (typically a simulation period of about 10-30 days) and tests in a climate mode (typically a multi-year period). This section concentrates on the first class, which starts from prescribed initial conditions (ideally provided in analytic form). The simulation results are either compared to analytic solutions (if available) or high-resolution reference solutions. For a list of available testcases, the reader is referred to the namelist section (4).

1.5.1 Jablonowski-Williamson test

The Jablonowski-Williamson Test (Jablonowski and Williamson, 2006) is a standard test for dynamical cores in global models and can be run for dry dynamics only - as it is intended for- but full physics can be also tested.

Input von Daniel Reinert is expected here.

Setup

For full physics, two additional namelist parameters are introduced in the testcase_nml to control the initial moisture in the atmosphere:

- Here rh_at_1000hpa to be set between 0 and 1. The default is set to 0.7 which gives a quite smooth start. If you really want to see early onsets of convection and microphysics you have to tune this parameter.
- qv_max is usually set to 20.e 3kg/kg and refers to the maximum value in the tropics.

Input Data

GRID

Results

The Jablonowski-Williamson steady-state test is based on a zonally symmetric, strongly baroclinic atmosphere. Initially, it is in a hydrostatic and geostrophic balance and therefore should remain stationary if no perturbation is imposed. Grid irregularities can disturb this stationary conditions and hence the test identifies the presence and magnitude of grid imprinting of a numerical model. For the Jablonowski-Williamson baroclinic wave test, a weak (and unbalanced) perturbation disturbs the initial wind. This test highlights the diffusivity (or effective resolution) of a dynamical core and the presence of phase speed errors in the advection of poorly resolved structures.

1.5.2 Mountain induced Rossby waves

In order to test the model dynamics in dry stage but with real or any complex topography one can choose the mountain induced Rossby wave test case and select different types of topography. The following namelist parameters give an example how to perform such an idealized simulation.

```
NAMELIST EXAMPLE for moutain induced Rossby waves
! nh_testcase_nml: idealized testcase specification
&nh_testcase_nml
nh_test_name
                      = 'mrw_nh' ! testcase selection
u0_mrw
                      = 20.0 ! initial u-component
                      = 2000.0 ! maximum mountain height
mount_height_mrw
                      = 1.5e06 ! half width of mountain
mount_half_width
mount_longctr_mrw_deg = 90.0 ! longitude: center of the mountain
mount_latctr_mrw_deg = 30.0
                                 ! latitude : center of the mountain
! run_nml: general switches
&run nml
ltestcase = .TRUE. ! idealized testcase runs
num_lev
        = 90
                     ! number of full levels (atm.) for each domain
lvert_nest = .TRUE. ! vertical nesting
          = 1000
                     ! number of time steps of this run
nsteps
dtime
           = 288
                     ! timestep in seconds
ldynamics = .TRUE. ! compute adiabatic dynamic tendencies
ltransport = .FALSE. ! compute large-scale tracer transport
ntracer
         = 0
                     ! number of advected tracers
iforcing = 0
                     ! forcing by parameterized processes
                     ! controls printout during runtime
msg_level = 7
ltimer
          = .FALSE. !monitoring the runtime of specific routines
           = "nml"
                     ! main switch for components of the model output
output
```

Initial conditions

Applying this namelist parameters the topography shown in Fig. 1.1 is used.

The v-component of the wind speed is is initialized with zero at all grid points, the initial conditions for the u-component are shown in Fig. 1.2.

Results after 16 days

The u-component after sixteen days of simulation at 700 hPa is shown in Fig. 1.3, the corresponding v-component is shown in Fig. 1.4, and Fig. 1.5 shows the vorticity.

Figure 1.1: Topography of the test case

Figure 1.2: Spatial distribution of the initialized u-component at 700 hPa

Input Data

With the exception of the grid file no further input files are necessary.

1.6 Running the Model (Real Case)

The ICON code, as checkout from the SVN repository, does not include runscripts. Instead the run directory (\$ICONDIR/run/) includes several descriptor files for building grids, defining experiments and post-processings. There exist three different types of descriptor files with prefixes grid, exp, post:

Figure 1.3: Spatial distribution of u-component after 16 days of simulation at 700 hPa

Figure 1.4: Spatial distribution of v-component after 16 days of simulation at 700 hPa

- grid.<name>: to configure the grid generator, see chapter 1.8 for more details. It is recommended to use pre-built grids. For details, see section 1.7.
- exp.<name>: to define the namelist, which determinate the experiments.
- post.<name>: to define post-processing.

1.6.1 Input Data

Generally ICON requires the following input data: Grid files, external parameters, initialization (DWD analysis or IFS), input fields for radiation.

Figure 1.5: Spatial distribution of the vorticity after 16 days of simulation at 700 hPa

Grid Files

In order to run ICON, it is necessary to have the horizontal grid information as an input parameter. This information is stored within so-called grid files. For a ICON run, one global grid file is necessary. Additionally, if you want to nest, grid files of the nested domains are necessary, too. To improve the performance of ICON, a (optional) reduced radiation grid for each domain may be used.

The naming of the ICON-Grid is as follows: The initial icosahedron grid is refined by < n >secting the edges, and further refinement is obtained by iteratively bisecting the created edges. The grid produced at the < k >refining iteration is named "R< n >B< k >". For further details, see the ICON Technical Documentation.

It is recommended to use pre-built grids. Further information can be found in chapter 1.7. For building own grids, the reader is referred to chapter 1.8. The names of the grid files have to be specified within the grid_nml:

```
&grid_nml
dynamics_grid_filename = "<INSERTFILENAME>"
radiation_grid_filename = "<INSERTFILENAME>"
```

External Parameters

ICON requires geographical localized datasets like the topographic height of the earth surface, the plant cover, the distribution of land and sea and, dependent on the schemes used, a variety of other so called external parameters. The EXTPAR software system (EXTPAR - External Parameter for Numerical Weather Prediction and Climate Application) is able to generate external parameters for the different models GME, COSMO, HRM and ICON. The software can run on a UNIX or Linux systems where the raw data is stored. It allows operators (experienced users) running the scripts to create new external parameters controlled

by user specifications like the model domain. For a more detailed overview of EXTPAR, the reader is referred to the User and Implementation Guide of EXTPAR.

The name of the EXTPAR file which has to be read by ICON can be specified as follows:

```
&extpar_nml
extpar_filename = "<INSERTFILENAME>"

If not specified explicitly, ICON uses the following file name:
"<path>extpar_<gridfile>".
```

<path> and <gridfile> are then replaced at runtime by ICON.

Initialization

For the initialization of ICON, input data from either DWD or IFS is needed.

In case of DWD (init_mode=1) a first guess and an analysis is required:

```
&initicon_nml
dwdfg_filename = "<INSERTFILENAME>"
dwdana_filename = "<INSERTFILENAME>"
```

If not specified explicitly, ICON uses the following file names:

```
"<path>dwdFG_R<n>B<k>_DOM<idom>.nc" and
```

<path>, <n>, <k> and <idom> are then replaced at runtime by ICON according to the chosen
gridfile (see 1.6.1). The variable <idom> is an index for the domain on which the calculations
are performed. <idom>=0000 is reserved for a reduced radiation grid, <idom>=0001 for the
global domain, higher numbers are used for nested domains. NETCDF as well as GRIB2
input can be used.

In case of IFS (init_mode=2) an analysis is required. It has to be in NetCDF:

```
&initicon_nml
ifs2icon_filename = "<INSERTFILENAME>"
```

If not specified explicitly, ICON uses the following file name:

```
"<path>ifs2icon_R<n>B<k>_DOM<idom>.nc".
```

<path>, <n>, <k> and <idom> are then replaced at runtime by ICON according to the chosen
gridfile (see 1.6.1). The variable <idom> is an index for the domain on which the calculations
are performed. <idom>=0000 is reserved for a reduced radiation grid, <idom>=0001 for the
global domain, higher numbers are used for nested domains.

Radiation

ICON requires input fields for the RRTM radiation scheme. The file names are specified as follows:

[&]quot;<path>dwdana_R<n>B<k>_DOM<idom>.nc".

```
&nwp_phy_nml
lrtm_filename = "<INSERTFILENAME>"
cldopt_filename = "<INSERTFILENAME>"

If not specified explicitly, ICON uses the following file names:
"rrtmg_lw.nc" and
"ECHAM6_CldOptProps.nc".
```

The files can be found within \$ICONDIR/data.

1.6.2 Creating a Runscript

To create a runscript, new users are advised to use the namelist descriptor file exp.nh-oper which contains recently recommended namelist settings. It might be necessary to account for the file names and paths of the input data. Additionally, machine dependent settings need to be added to this script to obtain a runscript. For some architectures, this step can be performed by using the make runscript environment as shown in 1.6.4. In the following, example settings for DWD CRAY are listed.

```
CRAY EXAMPLE: Namelists
<<Place your namelists e.g. from exp.nh_oper here>>
```

```
CRAY EXAMPLE: Submitting a job
aprun \
-n <<INSERT: Total number of MPI Tasks>> \
-N <<INSERT: MPI Tasks/Node>> \
<<INSERT: Hyperthreading e.g. 2 -> 20 physical -> 40 "virtual" cores>> \
-d <<INSERT: Threads/MPI Task>> \
-m <<INSERT: Amount of memory to use>> control_model
```

1.6.3 Restart

A restart of the model requires a restart file that has to be created by a previous model run. In the following the procedures and the corresponding namelist settings are explained.

Creating the initial restart file:

The first job in a series of model runs creates the first restart file. To do so we have to use the following namelist switches.

```
&master_nml
lrestart = .FALSE.
```

In addition we have to prescribe at which time interval the job should produce a restart file:

```
&io_nml
dt_checkpoint = "<Insert time in seconds>"
```

The ICON run then creates restart files for each domain 1, ..., n_dom, and for each restart output time step.

The filenames are generic and look like:

```
"<gridfile>_restart_<modeltype>_<timestamp>.nc",
```

An example would be:

```
"iconR2B06_D0M01_restart_atm_20110101T001200Z.nc" (NetCDF format)
```

This filename can be customized using the namelist parameter:

```
&mo_run_nml
restart_filename = "<INSERTFILENAME>"
```

This file contains:

- data
- namelists
- several attributes

Note: - ICON reads the namelists only once and assumes that these are identical for all domains. - Since we do not know about the total number of domains at startup, we have to ask the current restart file for the attribute "n_dom".

For each domain 1, ..., n_dom, a symbolic link is generated with the generic name:

```
"restart_<modeltype>_DOMxx.nc"
```

Note: - The domain-dependent suffix "...DOMxx" is also required for non-nested setups.

Running the model in the restart mode:

ICON has to be informed that you want to carry out a restart run:

```
&master_nml
lrestart = .TRUE.
```

The generic link "restart_<modeltype>_DOMxx.nc" is used by the restart run to point to the last written restart file of the previous model run.

Chain of restart runs

If a chain of restart runs is foreseen it is recommended to use the namelist parameter dt_restart.

```
&time_nml
dt_restart = "<Insert time in seconds>"
```

In this case only one restart file is produced by each model run and after writing the restart file the job stops.

Note:- dt_restart and dt_checkpoint have to be selected carefully.

Asynchronous restart:

The restart can be handled by separated processors. The number of restart processors can be chosen by the user. The corresponding namelist parameter is:

```
&parallel_nml
num_restart_procs = n
```

n is the number of processors used for restart.

1.6.4 Make Runscript Environment

A full listing of descriptor files you will find in \$ICON/run/.

After configuration and compiling (chapter 1.3) these descriptor files can be transformed into runscripts, which should include the necessary system dependent parameters and the execution section exec.icon (\$ICONDIR/run/exec.iconrun), which starts the actual integration. This transformation is done in \$ICONDIR by:

```
./make_runscripts
```

This transforms every existing descriptor file in \$ICONDIR/run/<type>.<name> into a ready-to-use run script \$ICONDIR/run/<type>.<name>.run

For illustration there exists also

```
./make_my_runscripts
```

which transforms a single descriptor file into a run script. This file is an exemplary file and you can see how to define run parameters.

An exemplary descriptor file for a operational run is exp.nh_oper.

Note: if you change, or create a descriptor you will need to (re)create the run script in order for the changes to take effect.

To run a script <type>.<name>.run, either for creating grids or making an experiment or doing post-processing, go to the ./run folder

```
cd run
```

and use the job submission command, which depends on your machine:

```
[<submit>] <type>.<name>.run
```

[<submit>] is something like: {llsubmit,qsub}

Note: <u>Before</u> (!) running an experiment, the ICON grids must be available to the model. For this purpose, either pre-built grids and ExtPar Data can be used (see Sec. 1.7) or create own grids (1.8). For a new user, it is suggested to use pre-built grids first.

1.7 Pre-built Grids and ExtPar Data

A list of grid files has been pre-built for the ICON model together with the corresponding reduced radiation grids and the external parameters.

1. The **primary storage** location for ICON grids is

```
blizzard:/pool/data/ICON/grids/public
```

- 2. Every 24h the contents of the primary storage directory are mirrored to DWD's HPC.
- 3. Every 24h the contents of the primary storage directory are mirrored to a public web site: http://icon-downloads.zmaw.de.

Each grid file consists of a NetCDF file and a GPG signature file (http://de.wikipedia.org/wiki/GNU_Privacy_Guard).

The signature file makes sure that a grid file is complete and verifies the authorship.

1.7.1 Grid file nomenclature

The grids are identified by

- a **centre** number
- a **subcentre** number
- a numberOfGridUsed which is simply an integer number, increased by one with every new 'official' grid.

The grid files and the external parameter files are named accordingly, e.g.,

```
icon_grid_0001_RxxByy_G.nc
icon_extpar_0001_RxxByy_G.nc
```

where the name components are as follows:

The numberOfGridUsed parameter is part of the file name (0001, ...) and makes this file name unique.

In general, a lookup table is required to find the actual file name to which a set of these parameters corresponds. This 'table file' is located under

```
http://icon-downloads.zmaw.de/dwd_grids.xml
```

(the table file itself is under version control: https://svn.zmaw.de/svn/icon_grid_table).

1.8 Grid Generation

1.8.1 ICON atmosphere grids

The ICON horizontal spherical grid is based on the projection of the icosahedron on the sphere. This is a 2-dimensional grid, representing the earth's surface. The ICON grids need to be created, stored as NetCDF files, and consequently used by the ICON model. Alternatively, already stored grids may be used.

The initial icosahedron grid is refined by <n>-secting the edges, and further refinement is obtained by iteratively bisecting the created edges. The grid produced at the <k>refining iteration is named "R<n>B<k>", and the corresponding NetCDF-file is "iconR<n>B<k>-grid.nc". The grid files, after their creation, are located in the ./grids folder. For more detailed information about horizontal ICON grids the reader is referred to the ICON technical documentation.

Examples of grids are in ./grids. More information can be found in: \$ICONDIR/doc/technical/icon_grid.pdf.

The example given below shows the namelist parameters for generating a global R2B6 grid.

```
EXAMPLE Grid Generation of a R2B6 grid
#!/bin/ksh
#-----
# Creation of atmosphere grids for ICON
#-----
# ICON grid generator namelist parameters
# For a complete list see Namelist_overview and Namelist_overview.pdf
             = Number of sections into which the edges of the original
                icosahedron are divided in the initial refinement step.
#
                (icosahedron = "grid -1" --> "nroot" grid = grid "0")
# grid_levels = Number of refinement steps applying edge bisection,
                follows the initial "nroot" refinement step.
#
                (grid "0" --> grid "1" --> ... --> grid "grid_levels")
# itype_optimize grid optimization method applied from grid level 1 onward.
                i | optimization | suffix fo grid output file
#
#
#
                0 | none
                                  l noo
                1 | Heikes Randall | hro
#
                4 | spring dynamics | spr
#
# beta_spring = Tuning parameter for spring dynamics to be chosen in the
               range [0.9,1.1]. Weights the target length between the
#
#
               grid points.
#-----
# First generate graphs
R=2
      # nroot (the first dissection will be a bisection)
B=6
      # highest grid level to reach (number of consequent bisections)
maxlev_optim=6 # highest grid level to apply optimizations
cat > NAMELIST_GRAPH << EOF
&graph_ini
 nroot = $\{R\}
 grid_levels = ${B}
EOF
echo global_graph_generator null > $commandFile
${start} ${run_commmand}
check_error $? "global_graph_generator"
```

```
#------
# Generate grids using the spring dynamics optimization
cat > NAMELIST_GRID << EOF
&grid_ini
    nroot = ${R}
    grid_levels = ${B}

/
&grid_options
    itype_optimize = 4    ! 1 = Heikes-Randall, 4 = spring dynamics
    maxlev_optim = $maxlev_optim    ! the maximum level to optimize
/
EOF</pre>
```

ICON gives the possibility to nest subdomain within a parent grid. The example below gives the namelist parameters for generating a nested grid (patch). The root bisection of the patch in this example starts with the fourth level of the bisections of the global model.

```
EXAMPLE Nested grid based on the global grid described before.
# Next the patches will be created.
# If the pathes are not needed then uncomment the next exit command
#exit
# ICON prepare_gridref namelist
# Parameter overview:
# grid_root: Number of root bisections
# start_lev: Grid level of global domain
            Total number of model domains (including the global one)
# n_dom:
#
# parent_id: List of parent domain ID's (starts at first nested domain,
            which has ID=2)
#
# l_circ:
            true = circular subdomains, false =
#
            rectangular (lat/lon) subdomains
#
# l_rotate: true: rotate center point into equator in case of l_circ=false
#
             this yields truly rectangular subdomains, whereas subdomains
#
            are conical otherwise because of the convergence of meridians
# NOTE:
            For subdomains crossing a pole, either l_circ=true
#
            or l_rotate=true is required
# l_plot:
            true: Generates GMT files for domain configuration
```

```
#
# NOTE:
           The following parameters have to be specified for each nested
           domain!
# radius:
           radius (deg) of nested domains (for l_circ=true)
# center_lon: Center longitude of nested domains
# center_lon: Center latitude of nested domains
# hwidth_lon: half-width longitude of nested domains (for l_circ=false)
# hwidth_lat: half-width latitude of nested domains (for l_circ=false)
#-----
# suffix of grid files which specifies optimization type
# (without optimization leave empty)
#OPTFIX=spr0.90_M4
# NOTE: _M4 means that maxlev_optim = 4 has to be set in the grid generator
# maxlev_optim is not needed for Heikes-Randall optimization
#-----
# Create plots of domain configuration
PLOTS=.false.
cat > NAMELIST_GRIDREF << EOF
&gridref_ini
 grid_root = 2
 start_lev = 4
 n_{dom}
         = 2
 parent_id = 1,
 l_circ
          = .true.
 l_rotate
           = .true.
 l_plot
           = .true.
           = 30.,
 radius
 center_lon = -90.,
 center_lat = 40.,
 hwidth_lon = 55.,
 hwidth_lat = 55.,
 bdy_indexing_depth = 14
EOF
```

1.8.2 Information contained in grid files

The ICON grids are treated as a general unstructured grid, so the grid NetCDF-files contain the full information of the location and the connectivity of all the grid entities (cells, edges and vertices). The grid nesting hierarchy information is also included.

Some basic variables that may be useful for plotting are:

```
double clon(cell)
                                 : longitude of cell centers [radian]
double clat(cell)
                                 : latitude of cell centers [radian]
double clon_vertices(cell, nv) : longitudes of the vertices of the cell [radian]
double clat_vertices(cell, nv) : latitudess of the vertices of the cell [radian]
                                 : longitude of edge midpoint [radian]
double elon(edge)
double elat(edge)
                                 : latitude of edge midpoint [radian]
double elon_vertices(edge, no)
                               : longitudes of the vertices of the edges [radian]
double elat_vertices(edge, no)
                               : latitudes of the vertices of the edges [radian]
double vlon(vertex)
                                : longitude of vertices [radian]
double vlat(vertex)
                                : latitude of vertices [radian]
double cell_area(cell)
                                : area of grid cell [m2]
double cell_elevation(cell)
                                 : elevation at the cell centers [m]
int
      cell_sea_land_mask(cell): sea (-2 inner, -1 boundary)
                                  land (2 inner, 1 boundary) mask for the cell
double edge_length(edge)
                                : lengths of edges of triangular cells [m]
double dual_edge_length(edge)
                                : lengths of dual edges (distances between
                                   triangular cell circumcenters) [m]
```

For a full listing of variables contained in a grid file, for instance in iconR2B04-grid.nc, use:

```
ncdump -h iconR2B04-grid.nc
```

or

cdo sinfov iconR2B04-grid.nc

1.8.3 Viewing/plotting grids

In order to plot an icon grid you should ensure that ncl-6.0 and cdo-1.5.4 is available on your machine. Then go to the \$ICONDIR/grids/ folder and give:

```
alias iplot="ncl $ICONDIR/scripts/postprocessing/tools/icon_plot.ncl
'altLibDir="$ICONDIR/scripts/postprocessing/tools/"'" iplot 'iFile="<grid file name>"'
'mapType="ortho"' 'varName="cell_sea_land_mask"' 'oType="png"' 'showGrid=True'
'lStrg="Cell sea land mask"' 'bStrg=""'
```

The above example will plot cell sea land mask. More details on plotting can be found at the Visualization chapter.

The \$ICONDIR/run/post.plot_icon_grids script can be used to plot nested grids. Go to \$ICONDIR/run/ folder and give:

./post.plot_icon_grids

A PDF-file with a plot of the iconR2B04_DOM01 and iconR2B05_DOM02 grids will appear on your screen. (Note that this process is time consuming.)

Discussion

Document last edited by $B\ Vogel$ on 27-06-2014.

2 Output

In general the user has to specify six individual quantities to generate output of the model. These are:

- 1. The time interval between two model outputs.
- 2. The name of the output file.
- 3. The name of the variable.
- 4. The type of the vertical output grid (e.g. pressure levels or model levels).
- 5. The type of the horizontal output grid (e.g. ICON grid or geographical coordinates).

ICON offers the possibility to write groups of variables. In the following we will present two examples to demonstrate the options the user has to prescribe these quantities. A detailed description of all namelist parameters available to organize the output is described in io_nml in the namelist section.

Example 1

We will begin with an individual variable which is written in NETCDF format on pressure levels and is interpolated to a horizontally regular lat-long grid:

```
NAMELIST EXAMPLE
&io_nml
filetype
                                   ! output format: 2=GRIB2, 4=NETCDFv2
                                  ! write output for domain 1
dom
                           = 0., 1.E7, 3600. ! start, end, interval in s.
output_bounds
                                  ! max. num. of time steps within one file
steps_per_file
mode
                                  ! 1: forecast mode (relative t-axis)
include_last
                           = .TRUE. ! include the last time step
                           = '<INSERTFILENAME>' ! file name base
output_filename
pl_varlist
                           = 'geopot' ! name of pressure level field
                                 ! output is transferred to lat long grid
remap
reg_lon_def
                           = 0.,0.5,359.5
                                            !start, incr., end, in deg.
                           = 90.,-0.5, -90. !start, incr., end, in deg.
reg_lat_def
```

Example 2

The flexibility of the options ICON offers is demonstrated in another example. Now we apply an alternative to define the runtime of ICON, write several variables, at the same time, in

one data set, on model levels, and on the original horizontal grid of ICON. In addition the example below shows the options when several model domains run at the same time and we want to produce output for all model domains.

```
NAMELIST EXAMPLE
&output_nml
dom
                                 -1 ! write all domains
steps_per_file
                                 5 ! max. num. of time steps within
  output_start
                   = "1978-01-01T00:00:00Z" ! ISO-format date+time
                   = "1979-01-02T00:00:00Z" ! ISO-format date+time
  output_end
  output_interval
                   = "PTO1H"
                                             ! ISO-format interval
  file_interval
                   = "PTO1D"
                                             ! ISO-format interval
  include_last
                   = .FALSE.
  output_filename
                               = '<INSERTFILENAME>'
                                                        ! file name base
 ml_varlist='u', 'group:precip_vars' ! Indiv. variable and variable group
                   = .TRUE. ! Output on the ICON horizontal grid
  output_grid
```

Variable groups

Next we explain the meaning of variable groups. Using the "group:" keyword for the namelist parameters ml_varlist, hl_varlist, pl_varlist, sets of common variables can be added to the output.

There exists a special syntax which allows to remove variables from the output list, e.g. if these undesired variables were contained in a previously selected group.

Typing "-<varname>" (for example "-temp") removes the variable from the union set of group variables and other selected variables. Note that typos are not detected but that the corresponding variable is simply not removed!

How to find variable names and contents of variable groups

Finding the correct names of the variables you may want to write to a data set is not an easy task and you should be aware of some pitfalls. We will help you to avoid the most obvious ones. First of all users that have already experience with the COSMO model should know that the names of the atmospheric variables in ICON are **not identical**.

The easiest way to identify the correct names of the variables you would like to write is to look into the following data sets:

```
atm_dyn_iconam/mo_nonhydro_state.f90
atm_phy_nwp/mo_nwp_phy_state.f90
lnd_phy_nwp/mo_nwp_lnd_state.f90
```

Now you may want to use the option of writing groups of variables and of course you may want to know which variable belongs to which group. Keep in mind that there is an option mentioned before to remove variables from the output of a group of variables.

The following table gives overview on the allocation of variables to individual variable groups.

If you want to translate the Fortran variables to the physical or mathematical ones again have a look to the Fortran files listed above.

```
**********
       nh_prog_vars
vn
rho
theta_v
exner
*********
       dwd_fg_atm_vars
vn
W
rho
theta_v
tke
u
pres_sfc
temp
pres
z_ifc
t_2m
td_2m
u_10m
v_10m
*********
       mode_dwd_fg_in
vn
W
rho
theta_v
tke
t_g
t_mnw_lk
t_wml_lk
h_ml_lk
t_bot_lk
c_t_{lk}
t_b1_lk
h_b1_lk
qv_s
w_i
w_so_ice
w_snow
rho_snow
t_snow_mult
rho_snow_mult
wliq_snow
wtot_snow
```

```
dzh_snow
gz0
*********
     atmo_ml_vars
W
tke
u
temp
pres
*********
     atmo_pl_vars
tke
u
temp
*********
     atmo_z1_vars
W
tke
u
temp
pres
*********
     mode_dwd_ana_in
u
٧
temp
pres
t_ice
h_ice
fr_seaice
w_so
t_snow
h_snow
freshsnow
*********
     atmo_derived_vars
omega
div
vor
*********
     land_vars
t_g
qv_s
w_i
w_p
```

```
w_s
t_so
w_so
w_so_ice
t_snow
w_snow
rho_snow
snowfrac
*********
       dwd_fg_sfc_vars
t_g
t_ice
h_ice
fr_seaice
w_i
t_so
w_so
w_so_ice
t_snow
w_snow
rho_snow
h_snow
freshsnow
t_snow_mult
rho_snow_mult
wliq_snow
wtot_snow
dzh_snow
gz0
*********
       mode_combined_in
t_g
t\_ice
h_ice
qv_s
fr_seaice
w_i
w_so
t_snow
w_snow
rho_snow
h_snow
freshsnow
*********
       mode_cosmode_in
t_g
t_ice
h_ice
qv_s
```

```
w_i
w_so
t_snow
w_snow
rho_snow
h_snow
freshsnow
*********
       dwd_fg_scf_vars
t_mnw_lk
t_{wml_lk}
h_ml_lk
t_bot_lk
c_t_{lk}
t_b1_lk
h_b1_lk
qv_s
*********
       land_tile_vars
t_g_t
t_s_t
w_i_t
w_p_t
w_s_t
t_so_t
w_so_t
w_so_ice_t
t_snow_t
w_snow_t
rho_snow_t
t_snow_mult_t
wtot_snow_t
wliq_snow_t
rho_snow_mult_t
dzh_snow_t
qv_s_t
h_snow_t
snowfrac_t
snowfrac_lc_t
*********
       snow_vars
t_snow
rho_snow
wliq_snow
wtot_snow
dzh_snow
*********
       multisnow_vars
t_snow_mult
```

```
rho_snow_mult
wliq_snow
wtot_snow
dzh_snow
*********
      precip_vars
rain\_gsp
snow_gsp
rain_con
snow_con
ice_gsp
graupel_gsp
hail_gsp
tot_prec
*********
      {\tt additional\_precip\_vars}
con_prec_rate_avg
gsp_prec_rate_avg
cape
clct
tot_cld_vi
*********
      pbl_vars
gust
shfl_s
lhfl_s
lhfl_bs
lhfl_pl
ghfl_s
tcm
tch
t_2m
qv_2m
td_2m
u_10m
v_10m
tkvm
tkvh
*********
      cloud_diag
clc
gc_dia
gi_dia
tot_cld
*********
      rad_vars
thb_s
sod_t
```

```
sou_t
sod_s
sou_s
thd_s
thu_s
sodird_s
sodifd_s
sodufu_s
albdif
albvisdiff
albnirdiff
sob_s_t
thb_s_t
flxdwswtoa
sob_s
sob_t
**********
       phys_tendencies
ddt_temp_radsw
ddt_temp_radlw
ddt_temp_turb
ddt_temp_drag
ddt_u_turb
ddt_u_sso
ddt_u_gwd
ddt_v_turb
ddt_v_sso
ddt_v_gwd:
*********
```

Data format

ICON offers the possibility to produce output either in NETCDF or GRIB2 format. This can be chosen by the namelist parameter filetype of the namelist &output_nml. New users are suggested to set filetype=4 in order to use NETCDF output.

In GRIB2, a variable is uniquely defined by the following set of metadata:

- Discipline (see GRIB2 code table 4.2)
- ParameterCategory (see GRIB2 code table 4.2)
- ParameterNumber (see GRIB2 code table 4.2)
- typeOfFirstfixedSurface and typeOfSecondFixedSurface (see GRIB2 code table 4.5)
- step Type (instant, accum, avg, max, min, diff, rms, sd, cov, ...)

A documentation of the official WMO GRIB2 code tables can be found on the website of WMO:

http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/LatestVERSION/WMO306_vI2_GRIB2_CodeFlag_en.pdf.

Time stamp format

The namelist parameters output_start, output_end, output_interval allow the specification of time stamps according to ISO 8601. The general format for time stamps is YYYY-MM-DDThh:mm:ss where Y: year, M: month, D: day for dates, and hh: hour, mm: minute, ss: second for time strings. The general format for durations is PnYnMnDTnHnMnS. See, for example, http://en.wikipedia.org/wiki/ISO_8601 for details and further specifications.

NOTE: as the mtime library underlaying the output driver currently has some restrictions concerning the specification of durations:

- 1. Any number n in PnYnMnDTnHnMnS must have two digits. For instance use "PT06H" instead of "PT6H"
- 2. In a duration string PnyearYnmonMndayDTnhrHnminMnsecS the numbers nxyz must not pass the carry over number to the next larger time unit: 0<=nmon<=12, 0<=nhr<=23, 0<=nmin<=59, 0<=nsec<=59.999. For instance use "PT01D" instead of "PT24H", or "PT01M" instead of "PT60S".

Soon the formatting problem will be resolved and the valid number ranges will be enlarged. (2013-12-16).

Extra output

- 1. In the namelist run_ctl set the number of fields with inextra_2d or inextra_3d. The logical variable for output lwrite_extra then will be set automatically. Note, the number of extra fields is limited by 9 each for 2D and 3D.
- 2. USE these variables in the module needed.
- 3. Implement the storage of wished fields by using the nonhydrostatic diagnostic type with p_diag%extra_2d/3d.

Example for the use of p_diag%extra_2d:

```
USE mo_global_variables, ONLY: inextra_2d
...
DO jc = i_startidx, i_endidx
p_diag\%extra_2d(jc,jb,1)= yxz(jc,jb)
ENDDO
```

Asynchronous output:

It is highly recommended that the asynchronous output option of ICON is applied. In short this option reserves a number of processors for output only. While writing the remaining processors continuously carry out calculations. Otherwise they would have to wait until output is finished. The corresponding namelist parameter is:

```
&parallel_nml
num_io_procs = n
```

n is the number of processors used for output.

ICON User's Guide – 1.8.00 CHAPTER 2. OUTPUT

Discussion

Document last edited by I. Kraut on 29.11.2013Document last edited by S Gruber on 08-01-2014Document last edited by B Vogel on 27-05-2014Document last edited by B Vogel on 30-06-2014

3 Visualization

Visualizing data on a non-regular grids is a task on its own, because the number of tools for solving such problem is very limited. NCL is one of them and we chose it as the main tool for ICON. You can find several examples of how to write simple plot scripts for ICON data sets on this website: http://www.ncl.ucar.edu/Applications/icon.shtml. The coordinate information is essential for writing your own plot scripts. ICON output files currently have three different types of them: cells, edges and vertices, e.g. tracers like temperature and salinity and surface elevation are defined on each cell center while the normal velocity is defined on edges.

3.1 icon_plot.ncl

For getting around the different coordinates and in order not to rewrite things there is a general plot scripts: icon_plot.ncl. It supports contour and vector plots, a combination of both via overlaying and vertical sections. Both atmosphere and ocean vertical coordinate systems can be handled by it: While ocean uses a plain depth axes, atmosphere model uses hybrid sigma pressure levels (hydrostatic) and free 3D height variable (non-hydrostatic).

The script icon_plot.ncl is a single NCL program, which provides multiple plot types for data on ICON's grid. It is located in the ICON-repository under source:/trunk/icon-dev/scripts/postprocessing/tools/icon_plot.ncl. Most of the functionality is implemented in a library: icon_plot_lib.ncl located in source:/trunk/icon-dev/scripts/postprocessing/tools/icon_plot_lib.ncl. Both files are installed into the /pool/data/ICON/tools which is the default lookup location for the library. For different location like an icon checkout, use altLibDir, e.g. altLibDir='"/home/user/src/icon-dev/tools"'.

3.1.1 Requirements

- NCL 5.2.1 is the minimum version of NCAR's plotting language (http://www.ncl.ucar.edu)
- CDO (https://code.zmaw.de/projects/cdo)

3.1.2 Customization

icon_plot.ncl optionally reads a configuration file named \$HOME/.icon_plot.rc where default options can be set. Actually it is handled like an ordinary ncl file. This can be used to customize the altLibDir setting, e.g.:

altLibDir="/home/ram/src/git/icon/scripts/postprocessing/tools"

```
oType="png"
```

3.1.3 Basic command line option

Required are options for

- 1. **Input/output files**: Use the variable iFile for defining the input and oFile for the output file. It's extension depends on the output type, which can be set with oType. If oFile is left out, the output file will inherit its name from the input file.
- 2. Variable selection: Depending on the plot mode you like to use, varName for scalar variables or vecVars for vector-variables must be uses.

Optional (default:0) parameter are

- 1. **Level selection**: Levels can only be selected by their index. That's why, the corresponding variables is called levIndex. Please note that it starts with 0, like any other NCL indices.
- 2. **Time selection**: Like levIndex, the variable **timeStep** can be used to select a certain time step, again starting from 0.

There are many more parameters (see 3.1.8) for mapping, transections, selecting regions and masking, but these are the most fundamental ones.

3.1.4 Plot Types

For flexibility the selection of a specific plot mode is implemented by combining certain options.

Contour plots

Contour plot are the default plot mode. If only the require parameters are set, e.g. iFile and varName, a simple contour plot is created with

```
ncl icon_plot.ncl 'varName="T"' 'iFile="iFILENAME"'
```

This is a basic temperature plot. Captions are set to basic information like variable name, time and level information and input filename.

Vector plots

Use vecVars instead of varName. To adjust the length of the reference vector, use the variable vecRefLength.

```
ncl icon_plot.ncl 'vecVars="U V"' 'iFile="iFILENAME"' vecRefLength=0.01
```


Prgr icon_plot.ncl: Wed Nov 30 14:28:49 CET 2011,ram

Figure 3.1: Example of contour plot

Prgr icon_plot.ncl: Wed Nov 30 14:39:10 CET 2011,ram

Figure 3.2: Example of vector plot

Overlay of scalar and vector variables

Contour and vector plots can be combined into a single plot by overlaying both. Following this approach, such an overlay plot will be created, if varName and vecVars are given:

ncl icon_plot.ncl 'varName="T"' 'iFile="iFILENAME"' 'vecVars="U V"'

Prgr icon_plot.ncl: Wed Nov 30 14:51:24 CET 2011,ram

Figure 3.3: Example of overlay plot

Vertical sections

Data for sections have to be interpolated first. This is done internally and you do not have to care about it. Section plot are created, if a start and and end point of a section is given. For this purpose, the variables secLC (section-left-corner) and secRC (section-right-corner) have to be used. Theses variable have to be (lon,lat) arrays like secLC=(/20.,30./).

Example call:

```
ncl icon_plot.ncl 'varName="T"' 'iFile="iFILENAME"' \
    'secLC=(/0,80/)' 'secRC=(/0,-80/)'
```

secPoints is an option to set the accuracy of the plot. The representing of the location of the section is suppressed by setting showSecMap=False. Its default value is True.

Prgr icon_plot.ncl: Wed Nov 30 15:05:50 CET 2011,ram

Figure 3.4: Example of vertical sections plot

Display the ICON grid

Set the parameter showGrid to True and for scalar variables, the ICON grid is represented instead of the contour plot. For large grids, this can take a long time.

3.1.5 Regional plots

Use the variables mapLLC (map-Lower-Left-Corner) and mapURC (map-Upper-Right-Corner) to select special regions of the earth. Here is a list of useful examples:

Table 3.1: Examples of useful regional plots

Trop. Atlantic	'mapLLC=(/-60, -25/)'	'mapURC=(/ 25,25/)'
North Polar	'mapLLC=(/-200, 20/)'	'mapURC=(/160,90/)'
North Atlantic	'mapLLC=(/-100,-15/)'	'mapURC=(/ 35,65/)'
Labrador/Panama	'mapLLC=(/-200, -5/)'	'mapURC=(/ 35,85/)'
North Atlantic/Eurasia	'mapLLC=(/ -80, -5/)'	'mapURC=(/ 75,85/)'
Asia	'mapLLC=(/ 20,-15/)'	'mapURC=(/160,85/)'

3.1.6 Masking

Masking can be done in two different ways:

1. Manually mask the data with CDO before running the plot scripts, i.e. use the ifthen operator or perform a division with the mask variable:

```
cdo div iconInput.nc -selname,mask_variable iconInput.nc maskedOutput.nc
```

2. Let the plot script perform the masking using the NCL's mask function. For this purpose, the commandline variables maskName and maskFile have to be used. If the mask variable is part of the regular input file, maskFile can be left out.

Both methods have their pros and cons. Whereas the second methods works fine for all types of horizontal representation, the first produces better results for vertical cross sections.

3.1.7 Data on other grids

Although icon_plot.ncl is implemented for ICON, it can be used for data an regular grids, too. In this case, internal interpolation is not performed.

3.1.8 All options

icon_plot.ncl has built-in documentation of all options. Use

ncl icon_plot.ncl help=True

3.2 ncview/GrADS

Neview (http://meteora.ucsd.edu/~pierce/neview_home_page.html) and GrADS (http://www.iges.org/grads/) can be used after converting icon data sets to a regular grid. This can easily be done with edo:

```
cdo -P 8 -r remapnn,r180x90 icon.nc regular_icon.nc
```

This uses nearest neighbor interpolation and hereby keeps the model values. When using a higher regular resolution the triangular icon grid keeps visible.

3.3 Other Possibilities

- $\bullet\,$ GMT is useful, when the grid should be visualized.
- ParaView is an alternative to display data on an unstructured grid. As a caveat, the model output has first to be converted into the vtk format.

Discussion

Document last edited by $I.\ Kraut$ on 29.11.2013. Note: -

4 ICON Namelists Overview

4.1 Namelist Annotation

Every ICON run generates annotated lists of namelist parameters during the setup. These lists are written to text files nml.atmo.log, nml.cpl.log, nml.ocean.log and have the following form:

```
NAMELIST IO_NML
OUT_EXPNAME 'case4 [...]' (truncated)
>> DEFAULT: 'IIIEEETTTT [...]' (truncated)
OUT_FILETYPE 2
LKEEP_IN_SYNC F
DT_DATA 43200.00000000000000000
DT_DIAG 1728000.00000000000
>> DEFAULT: 21600.00000000000
>> DEFAULT: 86400.000000000000
```

and so on.

The DEFAULT annotation denotes all those parameters that have been modified by the user; in this case the default value of the namelist parameter is stated together with the modified value. All other namelist parameters are listed only with their default values.

4.2. ICON NAMELISTS 48

4.2 ICON Namelists

4.2.1 Scripts, Namelist files and Programs

Run scripts starting the programs for the grid generation and the models are stored in run/. These scripts write namelist files containing the specified Fortran namelists. Programs are stored in < icon home>/build/<architecture>/bin/.

Table 4.1: Namelist files

Namelist file	Purpose	Made by script	Used by program
$NAMELIST_GRAPH$	Generate graphs	create_global_grids.run	grid_command
$NAMELIST_GRID$	Generate grids	create_global_grids.run grid_comman	grid_command
NAMELIST_GRIDREF	Gen. nested domains	create_global_grids.run	grid_command
NAMELISTICON	Run ICON models	exp.jname;.run	control_model

4.2.2 Namelist parameters

The following subsections tabulate all available Fortran namelist parameters by name, type, default value, unit, description, and scope:

- Type refers to the type of the Fortran variable, in which the value is stored: I=INTEGER, L=LOGICAL, R=REAL, C=character string
- Default is the preset value, if defined, that is assigned to this parameter within the programs.
- Unit shows the unit of the control parameter, where applicable.
- Description explains in a few words the purpose of the parameter.
- Scope explains under which conditions the namelist parameter has any effect, if its scope is restricted to specific settings of other namelist parameters.

Information on the file, where the namelist is defined and used, is given at the end of each table.

4.3 Namelist parameters for grid generation

4.3.1 Namelist parameters defining the atmosphere grid

graph_ini (NAMELIST_GRAPH)

Parameter	Type	Default	Unit	Default Unit Description	Scope
nroot	I	2		root subdivision of initial edges	
grid_levels	Ι	4		number of edge bisections following the root	
				subdivision	
lplane	П	FALSE.		switch for generating a double periodic planar	
				grid. The root level consists of 8 triangles.	

Defined and used in: src/grid_generator/mo_io_graph.f90

grid_ini (NAMELIST_GRID)

Parameter	Type	Default	Unit	Default Unit Description	Scope
nroot	I	2		root subdivision of initial edges	
$\operatorname{grid_levels}$	Ι	4		number of edge bisections following the root	
				subdivision	
lplane	ı	.FALSE.		switch for generating planar grid. The root	
				level consists of 8 triangles.	

Defined and used in: src/grid_generator/mo_grid_levels.f90

grid_options (NAMELIST_GRID)

Parameter	Type	Default	Unit	Description	Scope
${ m x_rot_angle}$	m R	0.0	deg	Rotation of the icosahedron about the x-axis	
				(connecting the origin and $[0^{\circ}E, 0^{\circ}N]$)	
y_rot_angle	R	0.0	deg	Rotation of the icosahedron about the y-axis	
				(connecting the origin and $[90^{\circ}E, 0^{\circ}N)$, done	
				after the rotation about the x-axis.	
z_rot_angle	$_{ m R}$	0.0	deg	rotation of the icosahedron about the z-axis	
				(connecting the origin and $[0^{\circ}E, 90^{\circ}N)$, done	
				after the rotation about the y-axis.	
itype_optimize	I	4		Grid optimization type	
				0: no optimization	
				1: Heikes Randall	
				2: equal area	
				3: c-grid small circle	
				4: spring dynamics	
$_{ m l-c_grid}$	Г	FALSE.		C-grid constraint on last level	

Parameter	Type	Default	Unit	Description	Scope
maxlev_optim	I	100		Maximum grid level where the optimization is	$i_{\text{-type-optimize}} = 1 \text{ or}$
				applied	4
beta_spring	m R	0.90		tuning factor for target grid length	$i_{type_optimize} = 4$

Defined and used in: src/grid_generator/mo_grid_levels.f90

plane_options (NAMELIST_GRID)

Type	Default	Unit	Description	Scope	
\mathbf{R}	10.0	km	length of triangle edge on plane	lplane=.TRUE.	

The number of grid points is generated by root level section and further bisections. The double periodic root level consists of 8 triangles. The spatial coordinates are $-1 \le x \le 1$, and $-\sqrt{3}/2 \le y \le \sqrt{3}/2$. Currently the planar option can only be used as an f-plane.

Defined and used in: src/grid_generator/mo_grid_levels.f90

gridref_ini (NAMELIST_GRIDREF)

Parameter	Type	Default	Unit	fault Unit Description Sc	Scope
grid_root	ı	2		root subdivision of initial edges	
start_lev	I	4		number of edge bisections following the root	
				subdivision	
n-dom	Ι	2		number of logical model domains, including the	
				global one	
$ ho_{-}$ phys $_{-}$ dom	I	mop-u		number of physical model domains, may be	
				larger than n_dom (in this case, domain	
				merging is applied)	

Parameter	Type	Default	Unit	Description Score	Scope
parent_id	I(n-phys-			ID of parent domain (first entry refers to first	
	dom-1			nested domain; needs to be specified only in	
				case of more than one nested domain per grid	
,	·			level)	
logical_id	I(n-phys-	i+1		logical grid ID of domain (first entry refers to	
	dom-1			first nested domain; needs to be specified only	
				in case of domain merging, i.e. n_dom <	
				n-phys-dom)	
l_plot	J	FALSE.		produces GMT plots showing the locations of	
				the nested domains	
l_circ	L	.FALSE.		Create circular (.T.) or rectangular (.F.)	
				refined domains	
l_rotate	J	.FALSE.		oint into the equator in case of	lcirc=.FALSE.
				1-circ = .FALSE.	
write_hierarchy	I	1		0: Output only computational grids	
				1: Output in addition parent grid of global	
				model domain (required for computing physics	
				on a reduced grid)	
				2: Output all grids back to level 0 (required for	
				hierarchical search algorithms)	
lsep_gridref_info	J	.FALSE.		.TRUE.: write fields describing parent-child	
				connectivities into separate grid files	
uuid_sourcefile	C(n-dom)	$C(n_{-dom})$ 'EMPTY'		If specified, provides the names of existing grid	
				files from which the unid shall be copied. If a	
				radiation grid is present, the first entry refers	
				to this grid.	
${ m bdy_indexing_depth}$	Ι	12		Number of cell rows along the lateral boundary	
				of a model domain for which the refin_ctrl fields	
				contain the distance from the lateral boundary;	
				needs to be enlarged when lateral boundary	
_				nudging is required for one-way nesting	_

Parameter	Type	Default Unit	Unit	Description	Scope
radius	R(n_dom-	30.	deg	radius of nested domain (first entry refers to	lcirc=.TRUE.
	1)			first nested domain; needs to be specified for	
				each nested domain separately)	
hwidth_lon	R(n_dom- 20	20.	deg	zonal half-width of refined domain (first entry	lcirc=.FALSE.
	1)			refers to first nested domain; needs to be	
				specified for each nested domain separately)	
hwidth lat	$R(n_{-dom-} 20.$	20.	deg	meridional half-width of refined domain (first	lcirc=.FALSE.
	1)			entry refers to first nested domain; needs to be	
				specified for each nested domain separately)	
center_lon	$R(n_{-dom-} 30.$	30.	deg	center longitude of refined domain (first entry	
	1)			refers to first nested domain; needs to be	
				specified for each nested domain separately)	
center_lat	$R(n_dom-90.$.06	deg	center latitude of refined domain (first entry	
	1)			refers to first nested domain; needs to be	
				specified for each nested domain separately)	

Defined and used in: src/grid_generator/mo_gridrefinement.f90

gridref_metadata (NAMELIST_GRIDREF)

Scope								
efault Unit Description	sets the number of grid used in the netcdf	header; the number of entries must be	n_dom+1 since the first number refers to the	radiation grid	centre running the grid generator	78: EDZW (DWD)	252: MPIM	subcentre to be assigned by centre, usually 0
Unit								
Ω	0 +				0			0
Type	+mop $-$ u $)$ I $ $	1)			I			П
Parameter	number_of_grid_used				centre			subcentre

Defined and used in: src/grid_generator/mo_gridrefinement.f90

4.4 Namelist parameters defining the atmospheric model

Namelist parameters for the ICON models are organized in several thematic Fortran namelists controling the experiment, and the properties of dynamics, transport, physics etc.

4.4.1 coupling_nml

Parameter	Type	Default Unit	Unit	Description Sc	Scope
name	C	blank		short name of the coupling field	
dt_coupling	I	0	ω	coupling time step / coupling interval	
dt_model	Ι	0	w	model time step	
lag	I	0	-	offset to coupling event in number of model	
				time steps	
1_time_average	Γ	.FALSE.		.TRUE.: time averaging between two coupling	
				events	
1_time_accumulation	П	.FALSE.		.TRUE.: accumulation of coupling fields in	
				time between two coupling events	
l_diagnostic	П	FALSE.		.TRUE.: simple diagnostics (min, max, avg) for	
				coupling fields is switched on	
l_activated	П	FALSE.		TRUE:: activate the coupling of the respective	
				coupling field	

Defined and used in: src/namelists/mo_coupling_nml.f90

4.4.2 diffusion_nml

Parameter	Type	Default	Unit	Description	Scope
lhdiff_temp	Г	TRUE.		Diffusion on the temperature field	
lhdiff_vn	Γ	TRUE.		Diffusion on the horizontal wind field	
lhdiff_w	Γ	TRUE.		Diffusion on the vertical wind field	
hdiff_order	I	4 (hy-		Order of ∇ operator for diffusion:	Options 2, 24 and 42
		dro)		-1: no diffusion	are allowed only in the
		5 (NH)		2: ∇^2 diffusion	hydrostatic atm model
				3: Smagorinsky ∇^2 diffusion	(iequations $= 1 \text{ or } 2 \text{ in}$
				4: ∇^4 diffusion	dynamics_nml).
				5: Smagorinsky ∇^2 diffusion combined with ∇^4	
				background diffusion as specified via	
				hdiff_efdt_ratio	
				24 or 42: $\nabla 2$ diffusion from model top to a	
				certain level (cf. k2-pres-max and k2-klev-max	
				below); ∇^4 for the lower levels.	
lsmag_3d	Γ	FALSE.		.TRUE.: Use 3D Smagorinsky formulation for	$hdiff_order=3 \text{ or } 5;$
				computing the horizontal diffusion coefficient	itype_vn_diffu=1
				(recommended at mesh sizes finer than 1 km if	
				the LES turbulence scheme is not used)	
itype_vn_diffu	I	1		Reconstruction method used for Smagorinsky	iequations=3,
				diffusion:	$hdiff_order=3 \text{ or } 5$
				1: u/v reconstruction at vertices only	
				2: u/v reconstruction at cells and vertices	
itype_t_diffu	I	2		Discretization of temperature diffusion:	iequations=3,
				1: $K_h \nabla^2 T$	hdiff_order=3 or 5
				$2: \nabla \cdot (K_h \nabla T)$	

Parameter	Type	Default	Unit	Description	Scope
k2-pres-max	R	-99.	Pa	Pressure level above which ∇^2 diffusion is	hdiff_order = 24 or 42 ,
				applied.	and dynam-
					$ics_nml:iequations = 1$
					or 2.
k2_klev_max	Н	0		Index of the vertical level till which (from the	$hdiff_{order} = 24 \text{ or } 42,$
				model top) ∇^2 diffusion is applied. If a positive	and dynam-
				value is specified for k2_pres_max, k2_klev_max	ics_nml:iequations = 1
				is reset accordingly during the initialization of	or 2.
				a model run.	
hdiff_efdt_ratio	$_{ m R}$	1.0		ratio of e-folding time to time step (or 2^* time	
		(hydro)		step when using a 3 time level time stepping	
		36.0		scheme) (for triangular NH model, values above	
		(NH)		30 are recommended when using hdiff_order=5)	
hdiff_w_efdt_ratio	$_{ m R}$	15.0		ratio of e-folding time to time step for diffusion	iequations=3
				on vertical wind speed	
hdiff_min_efdt_ratio	${ m R}$	1.0		minimum value of hdiff_efdt_ratio near model	iequations=3 .AND.
				top	hdiff_order=4
hdiff_tv_ratio	$_{ m R}$	1.0		Ratio of diffusion coefficients for temperature	
				and normal wind: $T: v_n$	
hdiff_multfac	$_{ m R}$	1.0		Multiplication factor of normalized diffusion	n_dom>1
				coefficient for nested domains	
hdiff_smag_fac	$_{ m R}$	0.15		Scaling factor for Smagorinsky diffusion	iequations=3
		(hydro)			
		0.015			
		(HN)			
		` ` `			

Defined and used in: src/namelists/mo_diffusion_nml.f90

4.4.3 dynamics_nml

This namelist is relevant if run_nml:ldynamics=.TRUE.

Parameter	Type	Default	Unit	Description	Scope
iequations	I	3		Equations and prognostic variables. Use	
				positive indices for the atmosphere and	
				negative indices for the ocean.	
				0: shallow water model	
				1: hydrostatic atmosphere, T	
				2: hydrostatic atm., θ -dp	
				3: non-hydrostatic atmosphere	
				-1: hydrostatic ocean	
idiv_method	Ι	1		Method for divergence computation:	
				1: Standard Gaussian integral.	
				Hydrostatic atm. model: for unaveraged normal	
				components	
				Non-hydrostatic atm. model: for averaged	
				normal components	
				2: bilinear averaging of divergence	
divavg_cntrwgt	R	0.5		Weight of central cell for divergence averaging	$idiv_method = 2$
Icoriolis	J	TRUE.		Coriolis force	
sw_ref_height	R	*6.0	m	Reference height of shallow water model used	
		2.94e4/g		for linearization in the semi-implicit time	
				stepping scheme	

Defined and used in: src/namelists/mo_dynamics_nml.f90

4.4.4 echam_conv_nml

Parameter	Type	Default	Unit	Description	Scope
iconv	I	1		Choice of cumulus convection scheme.	iforcing $= 2$.AND.
				1: Nordeng scheme	lconv = .TRUE.
				2: Tiedtke scheme	
				3: hybrid scheme	
ncvmicro	I	0		Choice of convective microphysics scheme.	iforcing $= 2$.AND.
					lconv = .TRUE.
lmfpen	T	TRUE.		Switch on penetrative convection.	iforcing $= 2$.AND.
					lconv = .TRUE.
lmfmid	П	.TRUE.		Switch on midlevel convection.	iforcing $= 2$.AND.
					lconv = .TRUE.
lmfdd	ı	.TRUE.		Switch on cumulus downdraft.	iforcing $= 2$.AND.
					lconv = .TRUE.
lmfdudv	ı	.TRUE.		Switch on cumulus friction.	iforcing $= 2$.AND.
					lconv = .TRUE.
cmftau	$_{ m R}$	10800.		Characteristic convective adjustment time	iforcing $= 2$.AND.
				scale.	lconv = .TRUE.
cmfctop	R	0.3		Fractional convective mass flux (valid range	iforcing $= 2$.AND.
				[0,1]) across the top of cloud	lconv = .TRUE.
cprcon	R	1.0e-4		Coefficient for determining conversion from	iforcing $= 2$.AND.
				cloud water to rain.	lconv = .TRUE.
cminbuoy	$_{ m R}$	0.025		Minimum excess buoyancy.	iforcing $= 2$.AND.
					lconv = .TRUE.
entrpen	R	1.0e-4		Entrainment rate for penetrative convection.	iforcing $= 2$.AND.
					lconv = .TRUE.
dlev	R	3.e4	Pa	Critical thickness necessary for the onset of	iforcing $= 2$.AND.
				convective precipitation.	lconv = .TRUE.

Defined and used in: src/namelists/mo_echam_conv_nml.f90

4.4.5 echam_phy_nml

Parameter	Type	Default	Unit	Description	Scope
lrad	L	.TRUE.		Switch on radiation.	iforcing $= 2$
lvdiff	L	TRUE.		Switch on turbulent mixing (i.e. vertical diffusion).	iforcing $= 2$
lconv	Γ	TRUE.		Switch on cumulus convection.	iforcing $= 2$
lcond	L	TRUE.		Switch on large scale condensation.	iforcing $= 2$
icover	I	1		1 = diagnostic Sunquist cloud cover scheme,	iforcing $= 2$
				2 = prognostic Tompkins cloud cover scheme.	Note: icover $=$.TRUE.
					runs, but has not been
					evaluated (yet) in
lgw_hines	Γ	TRUE.		TRUE. for atmospheric gravity wave drag by	iforcing $= 2$
				the Hines scheme	
Issodrag	L	TRUE.		.TRUE. for subgrid scale orographic drag	iforcing $= 2$
llandsurf	L	FALSE.		TRUE. for surface exchanges	iforcing $= 2$
					Not implemented yet
lice	Γ	.FALSE.		.TRUE. for sea-ice temperature calculation	iforcing $= 2$
					Not implemented yet
lmeltpond	Γ	.FALSE.		TRUE. for calculation of meltponds	iforcing $= 2$
					Not implemeted yet
lhd	ı	.FALSE.		.TRUE. for hydrologic discharge model	iforcing $= 2$
					Not implemented yet
lmlo	T	FALSE.		TRUE. for mixed layer ocean	iforcing $= 2$
					Not implemeted yet
Ijsbach	L	FALSE.		TRUE. for calculating the JSBACH land	iforcing $= 2$
				surface	Not implemeted yet
lamip	Γ	.FALSE.		.TRUE. for AMIP simulations	iforcing $= 2$
					Not implemented yet
dt_{-rad}	R	3600.	w	time interval of full radiation computation	$run_nml/iforcing =$
					iecham

Defined and used in: src/namelists/mo_echam_phy_nml.f90

filetype=2 filetype=2 filetype=2 filetype=2 filetype=2 filetype=2 $\overline{\text{Scope}}$ Local definition for ensemble products, (only set Output generating center. If this key is not set, Output generating Subcenter. If this key is not tries to set any of these other parameters to a namelist parameters. If, additionally, the user conflicting value, an error message is thrown. - GRIB2 code table backgroundProcess.table center information is taken from the grid file couple of defaults for the other gribout_nml Possible values are "none", "deterministic", set, subcenter information is taken from the Setting this different to "none" enables a generatingProcessIdentifier.table if value changed from default) generating Process Identifier Background process - GRIB2 code table MPIMET: 232 MPIMET: 98 ECMWF: 98 ECMWF: 0 Description "ensemble" DWD: 255 DWD: 78 grid file Unit Default "none" \vdash 7 \vdash 0 $I(n_dom)$ $\overline{\mathrm{Type}}$ ∇ numberOfForecastsIngeneratingSubcenter backgroundProcess generatingProcess generatingCenter Parameter Ensemble Identifier preset

4.4.6 gribout_nml

Parameter	Type	Default	Unit	Description	Scope
perturbationNumber	I	-1		Local definition for ensemble products, (only set	filetype=2
				if value changed from default)	
productionStatusOfPro-	П			Production status of data	${ m filetype=2}$
cessedData				- GKLB2 code table 1.3	
significanceOfReference-	I			Significance of reference time	filetype=2
)				- GRIB2 code table 1.2	
Time					
typeOfEnsembleForecast	I	-1		Local definition for ensemble products (only set	filetype=2
				if value changed from default)	
typeOfGeneratingPro-	I	Τ-		Type of generating process	filetype=2
cess				- GRIB2 code table 4.3	
typeOfProcessedData	I	-1		Type of data	filetype=2
				- GRIB2 code table 1.4	
localDefinitionNumber	I	-1		local Definition Number	filetype=2
				- GRIB2 code table	
				grib2LocalSectionNumber.78.table	
localNumberOfExperi-	I	П		local Number of Experiment	filetype=2
ment					
localTypeOfEnsemble-	Ι	-1		Local definition for ensemble products (only set	filetype=2
Forecast				if value changed from default)	
lspecialdate_invar	Γ	.FALSE.		Special reference date for invariant and	filetype = 2
				climatological fields	
				.TRUE.: set special reference date 0001-01-01,	
				00:00	
				.FASLE.: no special reference date	
ldate_grib_act	Г	TRUE.		GRIB creation date	filetype=2
				.TRUE.: add creation date	
				.FALSE.: add dummy date	
lgribout_24bit	Γ	.FALSE.		If TRUE, write thermodynamic fields ρ , θ_v , T ,	filetype=2
				p with 24bit precision instead of 16bit	

Defined and used in: src/namelists/mo_gribout_nml.f90

4.4.7 grid nml

Parameter	Type	Default	Unit	Description	Scope
cell_type	I	3		Cell type: not used	
lplane	П	FALSE.		planar option	
is_plane_torus	Г	FALSE.		f-plane approximation on triangular grid	
corio_lat	${ m R}$	0.0	\deg	Center of the f-plane is located at this	lplane=.TRUE. and
				geographical latitude	is_plane_torus=.TRUE.
grid_angular _velocity	m R	Earth's	rad/s	The angular velocity in rad per sec.	
l_limited_area	Г	.FALSE.			
lsep_grfinfo	Τ	FALSE.		If set to .TRUE., separate files are read in for	
				basic grid info and parent-child connectivities.	
				Requires lsep_gridref_info = .TRUE. in the grid	
				generator	
grid_rescale_factor	$_{ m R}$	1.0		The geometry and the timestep will be	
				multiplied by this factor.	
				The angular velocity will be divided by this	
				factor.	
Ifeedback	$L(n_{-dom})$	TRUE.		Specifies if feedback to parent grid is	n_dom>1
				performed. Setting lfeedback (1) =.false. turns	
				off feedback for all nested domains; to turn off	
				feedback for selected nested domains, set	
				feedback(1)=.true. and set ".false." for the	
				desired model domains	
ifeedback_type	I	2		1: incremental feedback	n_dom>1
				2: relaxation-based feedback	
				Note: vertical nesting requires option 2 to run	
				numerically stable over longer time periods	

Parameter	Type	Default	Unit	Description	Scope
start_time	R(n_dom)	0.	w	Time when a nested domain starts to be active	n_dom>1
				(namelist entry is ignored for the global	
end_time	$R(n_{-}dom)$	1.E30	w	Time when a nested domain terminates	n_dom>1
				(namelist entry is ignored for the global	
				domain)	
patch_weight	$R(n_{-dom})$	0.		If patch-weight is set to a value > 0 for any of	n_dom>1
				the first level child patches, processor splitting	
				will be performed, i.e. every of the first level	
				child patches gets a subset of the total number	
				or processors corresponding to its	
				patch_weight. A value of 0. corresponds to	
				exactly 1 processor for this patch, regardless of	
				the total number of processors. For the root	
				patch and higher level childs, patch-weight is	
				not used. However, patch-weight must be set to	
				0 for these patches to avoid confusion.	
lredgrid_phys	Γ	FALSE.		If set to .true. radiation is calculated on a	
				reduced grid (= one grid level higher)	
dynamics_grid_	C			Array of the grid filenames to be used by the	
filename				dycore. May contain the keyword <path></path>	
				which will be substituted by model_base_dir.	
${\bf dynamics_parent_}$	$I(n_{-dom})$	i-1		Array of the indexes of the parent grid	
grid_id				filenames, as described by the	
				dynamics-grid_filename array. Indexes start at	
				1, an index of 0 indicates no parent.	
radiation_grid_	C			Array of the grid filenames to be used for the	lredgrid_phys=.TRUE.
filename				radiation model. Filled only if the radiation	
				grid is different from the dycore grid. May	
				contain the keyword <path> which will be</path>	
				substituted by model_base_dir.	

Parameter	Type	Default	Unit	Description	Scope
$\mathbf{dynamics_radiation_g} \mid I(n_dom)$	I(ndom)	1 for i=1		Array of the indexes linking the dycore grids,	
				as described by the dynamics-grid_filename	
				array, and the radiation_grid_filename array. It	
				provides the link index of the	
				radiation_grid_filename, for each entry of the	
				dynamics_grid_filename array. Indexes start at	
				1, an index of 0 indicates that the radiation	
				grid is the same as the dycore grid. Only needs	
				to be filled when the radiation_grid_filename is	
				defined.	
create_vgrid	Γ	FALSE.		.TRUE.: Write vertical grid files containing	
				(vct_a, vct_b, z_ifc, and z_ifv.	
vertical_grid_filename	$C(n_{-dom})$			Array of filenames. These files contain the	
				vertical grid definition (vct_a, vct_b, z_ifc). If	
				empty, the vertical grid is created within ICON	
				during the setup phase.	
use_duplicated_	П	TRUE.		if .TRUE., the zero connectivity is replaced by	
connectivity				the last non-zero value	
use_dummy_cell_closure	J	.FALSE.		if .TRUE. then create a dummy cell and	
				connect it to cells and edges with no neighbor	

Defined and used in: src/namelists/mo_grid_nml.f90

1.4.8 gridref_nml

Scope	$n_{-dom}>1$		
Description	Interpolation method for grid refinement	(cell-based dynamical variables):	1: parent-to-child copying
Unit			
Default	2		
Γ	I		
Parameter	grf_intmethod_c		

Parameter	Type	Default	Unit	Description	Scope
grf_intmethod_ct	П	2		2: gradient-based interpolation Interpolation method for grid refinement	n_dom>1
				(cell-based tracer variables): 1: parent-to-child copying 2: gradient-based interpolation	
grf_intmethod_e	Н	9		Interpolation method for grid refinement (edge-based variables): 1: inverse-distance weighting (IDW) 2: RRF interpolation	n_dom>1
				3: combination gradient-based / IDW 4: combination gradient-based / RBF 5/6: comp. 26 3/4 reconcitively, but direct	
				of or same as of *, respectively, but uncer- interpolation of mass fluxes along nest interface edoes	
grf_velfbk	I	1		Method of velocity feedback:	n-dom>1
				1: average of child edges 1 and 2 2: 2nd-order method using RBF interpolation	
grf_scalfbk	П	2		Feedback method for dynamical scalar variables (T, p_{sfc}) :	n_dom>1
				1: area-weighted averaging 2: bilinear interpolation	
grf_tracfbk	I	2		Feedback method for tracer variables: 1: area-weighted averaging 2: bilinear internolation	n-dom>1
grf_idw_exp_e12	R	1.2		exponent of generalized IDW function for child edges 1/2	n_dom>1
grf_idw_exp_e34	R	1.7		exponent of generalized IDW function for child edges 3/4	n_dom>1
rbf_vec_kern_grf_e	П			RBF kernel for grid refinement (edges): 1: Gaussian 2: $1/(1+r^2)$	n_dom>1

Parameter	Type	Default	Unit	Description	Scope
				3: inverse multiquadric	
rbf_scale_grf_e	$ R(n_{-dom}) 0.5$	0.5		RBF scale factor for grid refinement (edges)	n_dom>1
denom_diffu_t	${ m R}$	135		Deniminator for lateral boundary diffusion of	n_dom>1
				temperature	
denom_diffu_v	$_{ m R}$	200		Deniminator for lateral boundary diffusion of	n_dom>1
				velocity	
l_mass_consvcorr	L	.FALSE.		.TRUE.: Apply mass conservation correction in all n-dom-1	n_dom>1
				feedback routine	
l_density_nudging	L	.FALSE.		.TRUE.: Apply density nudging near lateral	n_dom>1 .AND.
				nest boundary if grf_intmethod_e ≤ 4	leedback = .TRUE.
fbk_relax_timescale	R	10800		Relaxation time scale for feedback	n_dom;1 .AND.
					lfeedback = .TRUE.
					.AND. ifeedback_type
					= 2

Defined and used in: src/namelists/mo_gridref_nml.f90

4.4.9 gw_hines_nml (Scope: lgw_hines = .TRUE. in echam_phy_nml)

Parameter	Type	Default	Unit	Default Unit Description	Scope
lheatcal	Г	FALSE.		TRUE: compute drag, heating rate and	
				diffusion coefficient from the dissipation of gravity waves	
				.FALSE.: compute drag only	
emiss_lev	Ι	10		Index of model level, counted from the surface,	
				from which the gravity wave spectra are	
				emitted	
rmscon	$_{ m R}$	1.0	s/m	Root mean square gravity wave wind at the	
				emission level	

Parameter	Type	Default Unit	Unit	Description	Scope
kstar	R	5.0e-5	1/m	Typical gravity wave horizontal wavenumber	
m-min	${ m R}$	0.0	$1/\mathrm{m}$	Minimum bound in vertical wavenumber	
lrmscon_lat	Γ	FALSE.		.TRUE.: use latitude dependent rms wind	
				- —latitude— >= lat_rmscon: use rmscon	
				- —latitude— <= lat_rmscon_eq: use	
				rmscon_eq	
				- lat_rmscon_eq $<$ —latitude— $<$ lat_rmscon:	
				use linear interpolation between rmscon_eq and	
				rmscon	
				.FALSE.: use globally constant rms wind	
				rmscon	
lat_rmscon_eq	\mathbb{R}	5.0	deg N	rmscon_eq is used equatorward of this latitude	$lrmscon_lat = .TRUE.$
lat_rmscon	m R	10.0	deg N	rmscon is used polward of this latitude	$lrmscon_lat = .TRUE.$
rmscon_eq	\mathbf{R}	1.2	m/s	is used equatorward of latitude lat_rmscon_eq	$lrmscon_lat = .TRUE.$

Defined and used in: src/namelists/mo_gw_hines_nml.f90

4.4.10 ha dyn nml

This namelist is relevant if run_nml:ldynamics=.TRUE and dynamics_nml:iequations=IHS_ATM_TEMP or IHS_ATM_THETA.

Parameter	Type	Default Unit	Unit	Description	Scope
itime_scheme	I	14		Time integration scheme:	
				11: pure advection (no dynamics)	
				12: 2 time level semi implicit (not yet	
				implemented)	
				13: 3 time level explicit	
				14: 3 time level with semi implicit correction	
				15: standard 4th-order Runge-Kutta method	
				(4-stage)	

Parameter	Type	Default	Unit	Description	Scope
				16: SSPRK(5,4) scheme $(5-stage)$	
ileapfrog_startup	Ι	1		How to integrate the first time step when the	itime_scheme= $13 \text{ or } 14$
				leapfrog scheme is chosen. $1 = \text{Euler forward}$; 2	
				= a series of sub-steps.	
asselin_coeff	R	0.1		Asselin filter coefficient	itime_scheme= $13 \text{ or } 14$
si_2tls	R	9.0		weight of time step n+1. Valid range: [0,1]	$itime_scheme=12$
si_expl_scheme	Ι	2		scheme for the explicit part used in the 2 time	$itime_scheme=12$
				level semi-implicit time stepping scheme. $1 =$	
				Euler forward; $2 = Adams$ -Bashforth 2nd order	
si_cmin	R	30.0	s/m	semi implicit correction is done for eigenmodes	itime_scheme=14 and
				with speeds larger than si_cmin	lsi_3d=.FALSE.
si_coeff	R	1.0		weight of the semi implicit correction	itime_scheme=14
si_offetr	R	0.7			itime_scheme=14
si_rtol	R	1.0e-3		relative tolerance for GMRES solver	itime_scheme=14
lsi_3d	Г	FALSE.		3D GMRES solver or decomposistion into 2D	lshallow_water=.FALSE.
				problems	and itime_scheme=14
ldry_dycore	П	TRUE.		Assume dry atmosphere	$iequations \in \{1,2\}$
$ m lref_temp$	Γ	.FALSE.		Set a background temperature profile as base	iequations $\in \{1,2\}$
				state when computing the pressure gradient	
				force	

4.4.11 initicon nml

Parameter	Type	Default	Unit	Description	Scope
init_mode	I	2		1: start from DWD analysis	
				2: start from IFS analysis	
				3: combined mode: IFS atm $+$ GME soil	
				4: start from COSMO-DE forecast	
				5: start from DWD analysis with incremental	
				analysis update	
				6: start from DWD analysis with incremental	
				analysis update. NOTE: This is an extension of	
				mode 5 (i.e. for surface/soil) which, at the end,	
				will replace mode 5.	
dt_iau	R	10800	w	Time interval during which an incremental	init_mode=5,6
				analysis update (IAU) is performed	
dt_shift	R	0	œ	Time by which the actual model start time is	init_mode=5,6
				shifted ahead of the nominal date. Must be	
				NEGATIVE, usually -0.5 dt.iau.	
rho_incr_filter_wgt	R	0	∞	Vertical filtering weight on density increments	init_mode=5,6
type_iau_wgt	I	1		Weighting function for performing IAU	init_mode=5,6
				1: Top-Hat	
				2: SIN2	
nlevsoil_in	I	4		number of soil levels of input data	init_mode=2
zpbl1	R	500.0	m	bottom height (AGL) of layer used for gradient	
				computation	
zpbl2	R	1000.0	m	top height (AGL) of layer used for gradient	
				computation	
l_sst_in	ı	.TRUE.		Logical switch. If true, the surface temperature	init_mode=2
				of the water sea points is initialized with the	
				SST provided in the ifs2icon file. If false, it is	
				initialized with the skin temperature. If the	
				SST is not provided in the ifs2icon file, l_sst_in	
				is reset to false.	

Parameter	Type	Default	Unit	Description	Scope
lread_ana	Г	.TRUE.		If .FALSE., ICON is started from first guess	init_mode=1,3
				only. Analysis field is not required, and skipped	
				if provided.	
lconsistency_checks	Γ	.TRUE.		If .FALSE., consistency checks for Analysis and	init_mode=1,3,4,5,6
				First Guess fields are skipped. On default,	
				checks are performed for unidOfHGrid and	
				validity time.	
l_coarse2fine_mode	$L(n_{-dom})$	FALSE.		If true, apply corrections for coarse-to-fine	
				mesh interpolation to wind and temperature	
lp2cintp_incr	$L(n_{-dom})$	FALSE.		If true, interpolate atmospheric data	init_mode=5,6
				assimilation increments from parent domain.	
				Can be specified separately for each nested	
				domain; setting the first (global) entry to true	
				activates the interpolation for all nested	
				domains.	
ifs2icon_filename	C			Filename of IFS2ICON input file, default	init_mode=2
				" <path>ifs2icon_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<pre><idom>.nc". May contain the keywords <path></path></idom></pre>	
				which will be substituted by model_base_dir,	
				as well as nroot, jlev, and idom defining the	
				current patch.	
dwdfg_filename	C			Filename of DWD first-guess input file, default	init_mode=1,3,5,6
				" <path>dwdFG_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<pre><idom>.nc". May contain the keywords <path></path></idom></pre>	
				which will be substituted by model_base_dir,	
				as well as nroot, jlev, and idom defining the	
				current patch.	

Parameter	Type	Default	Unit	Description	Scope
dwdana_filename	C			Filename of DWD analysis input file, default	$init_mode=1,3,5,6$
				" <path>dwdana_R<nroot>B<jlev>_DOM</jlev></nroot></path>	
				<idom>.nc". May contain the keywords <path></path></idom>	
				which will be substituted by model_base_dir,	
				as well as nroot, jlev, and idom defining the	
				current patch.	
filetype	Ι	1		One of CDI's FILETYPE_XXX constants.	
		(undef.)		Possible values: 2 (=FILETYPE_GRB2), 4	
				(=FILETYPE_NC2). If this parameter has not	
				been set, we try to determine the file type by	
				its extension "*.grb*" or ".nc".	
ana_varlist	C			List of mandatory analysis fields that must be	init_mode=1,5,6
				present in the analysis file. If these fields are	
				not found, the model aborts. For all other	
				analysis fields, the FG-fields will serve as	
				fallback position.	
ana_varnames_map_	Ö			Dictionary file which maps internal variable	
file				names onto GRIB2 shortnames or NetCDF var	
				names. This is a text file with two columns	
				separated by whitespace, where left column:	
				ICON variable name, right column: GRIB2	
				short name.	

Parameter	Type	Default	Unit	Description	Scope
$latbc_varnames_map_$	C			Dictionary file which maps internal variable	
file				names onto GRIB2 shortnames or NetCDF var	
				names. This is a text file with two columns	
				separated by whitespace, where left column:	
				ICON variable name, right column: GRIB2	
				short name. This list contains variables that	
				are to be read asynchronously for boundary	
				data nudging in a HDCP2 simulation. All new	
				boundary variables that in the future, would be	
				read asynchronously. Need to be added to text	
				file dict.latbc in run folder.	

Defined and used in: src/namelists/mo_initicon_nml.f90

4.4.12 interpol_nml

Parameter	Type	Default Unit	Unit	Description	Scope
l_intp_c2l	Г	TRUE.		If .TRUE. directly interpolate scalar variables	
				from cell centers to lon-lat points, otherwise do	
				gradient interpolation and reconstruction.	
l_{-mono_c2l}	Г	TRUE.		Monotonicity can be enforced by demanding	
				that the interpolated value is not higher or	
				lower than the stencil point values.	
llsq_high_consv	Γ	TRUE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for high order	
				transport	
lsq_high_ord	Ι	3		polynomial order for high order reconstruction	
				1: linear	ihadv_tracer=4
				2: quadratic	

Parameter	Type	Default	Unit	Description	Scope
				30: cubic (no 3^{rd} order cross deriv.)	
llsq_lin_consv	Г	FALSE.		conservative (T) or non-conservative (F)	
				least-squares reconstruction for 2nd order	
				(linear) transport	
nudge_efold_width	$_{ m R}$	2.0		e-folding width (in units of cell rows) for lateral	
\$				boundary nudging coefficient	
nudge_max_coeff	H.	0.05		Maximum relaxation coefficient for lateral	
	,	(boundary nudging	
nudge_zone_width	П	∞		Total width (in units of cell rows) for lateral	
				boundary nudging zone. If i 0 the patch	
				boundary_depth_index is used.	
$ m rbf_dim_c2l$	I	10		stencil size for direct lon-lat interpolation: $4 =$	
				nearest neighbor, $13 = \text{vertex stencil}$, $10 =$	
				edge stencil.	
rbf_scale_mode_ll	I	2		Specifies, how the RBF shape parameter is	
				determined for lon-lat interpolation.	
				1 : lookup table based on grid level	
				2: determine automatically.	
				So far, this routine only estimates the smallest	
				value for the shape parameter for which the	
				Cholesky is likely to succeed in floating point	
				arithmetic.	
rbf_vec_kern_c	ı			Kernel type for reconstruction at cell centres:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_e	I	3		Kernel type for reconstruction at edges:	
				1: Gaussian	
				3: inverse multiquadric	
rbf_vec_kern_ll	I			Kernel type for reconstruction at lon-lat-points:	
				I: Gaussian	

Parameter	Type	Default	Unit	Unit Description	Scope
rbf_vec_kern_v	I	П		3: inverse multiquadric Kernel type for reconstruction at vertices:	
				1: Gaussian	
rbf_vec_scale_c	$R(n_{-dom})$	resolution-		o: inverse initial quadric Scale factor for RBF reconstruction at cell	
,		dependent		centres	
rbf_vec_scale_e	$ R(n_{-dom}) $	resolution-		Scale factor for RBF reconstruction at edges	
		dependent			
rbf_vec_scale_v	$R(n_{-dom})$	resolution-		Scale factor for RBF reconstruction at vertices	
		dependent			

Defined and used in: src/namelists/mo_interpol_nml.f90

4.4.13 io_nml

Parameter	Type	Default	Unit	Description	Scope
lkeep_in_sync	Т	.FALSE.		Sync output stream with file on disk after each	
				timestep	
dt_diag	${ m R}$	86400.	w	diagnostic integral output interval	
dt_checkpoint	$_{ m R}$	2592000	∞	Time interval for writing restart files. Note that	output /= "none"
				if the value of dt_checkpoint resulting from	(run_nml)
				model default or user's specification is longer	
				than time_nml:dt_restart, it will be reset (by	
				the model) to dt_restart so that at least one	
				restart file is generated during the restart cycle.	
inextra_2d	I	0		Number of extra 2D Fields for	dynamics_nml:iequations
				diagnostic/debugging output.	= 3 (to be done for 1,
					2)

Parameter	Type	Default	Unit	Description	Scope
inextra_3d	I	0		Number of extra 3D Fields for	dynamics_nml:iequations
				diagnostic/debugging output.	= 3 (to be done for 1, 2)
lflux_avg	Γ	TRUE.		if .FALSE. the output fluxes are accumulated	iequations=3
				from the beginning of the run	iforcing=3
				if .TRUE. the output fluxes are average values	
				from the beginning of the run, except of	
				TOT_PREC that would be accumulated	
itype_pres_msl	ц	1		Specifies method for computation of mean sea	
				level pressure (and geopotential at pressure	
				levels below the surface).	
				1: GME-type extrapolation,	
				2: stepwise analytical integration,	
				3: current IFS method,	
				4: IFS method with consistency correction	
$itype_rh$	ц	1		Specifies method for computation of relative	
				humidity	
				1: WMO-type: water only (e_s=e_s_water),	
				2: IFS-type: mixed phase (water and ice),	
				3: IFS-type with clipping $(rh \le 100)$	

Default Unit
File containing the mapping of variable names
to the internal ICON names. May contain the
keyword <pre><pre><pre><pre></pre></pre></pre></pre>
model_base_dir.
The format of this file:
One mapping per line, first the name as given
in the ml_varlist, hl_varlist, pl_varlist or
il_varlist of the output_nml namelists, then
the internal ICON name, separated by an
arbitrary number of blanks. The line may also
start and end with an arbitrary number of
blanks. Empty lines or lines starting with #
are treated as comments.
Names not covered by the mapping are used as
they are.

Parameter	Type	Default	Unit	Description	Scope
netcdf_dict	C			File containing the mapping from internal	output_nml namelists,
				names to names written to NetCDF. May	NetCDF output
				contain the keyword <pre><pre><pre>contain the keyword <pre><pre><pre>path></pre> which will be</pre></pre></pre></pre></pre>	
				substituted by model_base_dir.	
				The format of this file:	
				One mapping per line, first the name written	
				to NetCDF, then the internal name, separated	
				by an arbitrary number of blanks (inverse to	
				the definition of output_nml_dict). The line	
				may also start and end with an arbitrary	
				number of blanks. Empty lines or lines starting	
				with # are treated as comments.	
				Names not covered by the mapping are output	
				as they are.	
				Note that the specification of output variables,	
				e.g. in ml_varlist, is independent from this	
				renaming, see the namelist parameter	
				output_nml_dict for this.	
lzaxis_reference	Γ	TRUE.		FALSE: encode vertical axis as	GRIB2-output
				ZAXIS_HYBRID for 3D atmospheric fields	(ZAXIS_HYBRID will
				TRUE: encode vertical axis as	be removed after some
				ZAXIS_REFERENCE for 3D atmospheric	testing phase)
				fields	
restart_file_type	I	4		Type of restart file. One of CDI's	
				FILETYPE_XXX. So far, only 4	
				(=FILETYPE_NC2) is allowed	
use_set_event_to_simstep	L			Currently inactive	

Defined and used in: src/namelists/mo_io_nml.f90

4.4.14 les_nml (parameters for LES turbulence scheme; valid for inwp_turb=5)

Parameter	Type	Default	Unit	Description	Scope
188 1	B	300	×	sea surface temperature for idealized LES	nh test name=CBL
	9)	1	simulations	RICO
					$isrfc_type=5,4$
shfix	\mathbf{R}	-666	$\mathrm{Km/s}$	Kinematic sensible heat flux at surface	isrfctype = 2
lhflx	$_{ m R}$	-666	s/m	Kinematic latent heat flux at surface	$isrfc_type = 2$
isrfc_type	Ι	1		surface type	
				1 = TERRA land physics	
				2 = fixed surface fluxes	
				3 = fixed buoyancy fluxes	
				4 = RICO test case	
				5 = fixed SST	
ufric	\mathbf{R}	-666	s/m	friction velocity for idealized LES simulations	
is_dry_cbl	Γ	.FALSE.		switch for dry convective boundary layer	
				simulations	
smag_constant	\mathbf{R}	0.23		Smagorinsky constant	
turb_prandtl	m R	0.333333		turbulent Prandtl number	
bflux	$_{ m R}$	-666	$\mathrm{m}^2/\mathrm{s}^3$	buoyancy flux for idealized LES simulations	isrfc_type=3
				(Stevens 2007)	
tran_coeff	\mathbf{R}	666-	m/s	transfer coefficient near surface for idealized	$isrfc_{type}=3$
				LES simulation (Stevens 2007)	
vert_scheme_type	Ι	2		type of time integration scheme in vertical	
				diffusion	
				1 = explicit	
				2 = fully implicit	
sampl_freq_sec	R	09	w	sampling frequency in seconds for statistical	
				(1D and 0D) output	
avg_interval_sec	R	006	w	(time) averaging interval in seconds for 1D	
			_	statistical output	

Parameter	Type	Default	Unit	Description	Scope
expname	C	ICOLES		expname to name the statistical output file	
ldiag_les_out	Γ	.FALSE.		Control for the statistical output in LES mode	

Defined and used in: src/namelists/mo_les_nml.f90

4.4.15 limarea_nml (Scope: L_limited_area=1 in grid_nml)

Parameter	Type	Default	Unit	Description	Scope
itype_latbc	I	0		Type of lateral boundary nudging. Nudge from	
				0: the initial data,	
				1: IFS data analysis/forecast (if	
				initicon_nml:init_mode=4, we take	
				COSMO-DE data),	
				2: ICON output data (with the identical 3d	
				grid)	
dtime_latbc	R	10800.0	w	Time difference between two consecutive	itype_latbc ≥ 1
				boundary data.	
dt_latbc	C	PT03H		Time difference between two consecutive	itype_latbc ≥ 1
				boundary data in mtime format.	
nlev_latbc	I	0	w	Number of vertical levels in boundary data.	itype_latbc ≥ 1
latbc_filename	C			Filename of boundary data input file, default:	itype_latbc ≥ 1
				"prepiconR <nroot>B<jlev>_<y><m><d><h>nconR<nroot></nroot></h></d></m></y></jlev></nroot>	
				<y>, <m>, <d>, and <h> will be automatically</h></d></m></y>	
				replaced during the run-time. In case the time	
				span between two consecutive boundary data is	
				less than 1 hour, one can use <min> and <sec>.</sec></min>	
				These files must be located in the latbc_path	
				directory.	
latbc_path	C			Absolute path to boundary data.	itype_latbc ≥ 1

Defined and used in: src/namelists/mo_limarea_nml.f90

lmulti_snow=.TRUE. lmulti_snow=.true. init_mode=1 ntiles>1 ntiles>1 ntiles>1 ntiles>1 ntiles>1 Scope fraction threshold for creating a land grid point TRUE. take rho_snow-values from analysis file fraction threshold for creating a lake grid point fraction threshold for creating a sea grid point .TRUE.: consider snow-covered and snow-free fraction threshold for retaining the respective 2-4 = more advanced experimental methods TRUE. freezing temperature dependent on TRUE. for use of multi-layer snow model maximum depth of uppermost snow layer TRUE. soil model with melting process Type of snow-fraction diagnosis: 1 = based on SWE onlynumber of snow layers tile for a grid point number of tiles tiles separately water content Description Unit Ξ FALSE. TRUE. TRUE. TRUE. TRUE. Default 0.050.050.05 0.25Type **22 22 22 22** 1 1 H L \Box max_toplaydepth frlndtile_thrhld idiag_snowfrac lana_rho_snow lmulti_snow frlake_thrhld frlnd_thrhld frsea_thrhld Parameter lsnowtile nlev_snow lmelt_var ntiles lmelt

4.4.16 Ind_nml

Parameter	Type	Default	Unit	Description	Scope
itype_lndtbl	П	1		Table values used for associating surface	
				parameters to land-cover classes:	
				1 = defaults from extpar (GLC2000 and	
				GLOBCOVER2009)	
				2 = Tuned version based on IFS values for	
				globcover classes (GLOBCOVER2009 only)	
				3 = even more tuned version	
				(EXPERIMENTAL!!, GLOBCOVER2009	
				only)	
itype_root	I	2		root density distribution:	
				1 = constant	
				2 = exponential	
itype_evsl	I	2		type of bare soil evaporation parameterization	
				2 = Dickinson (1984)	
				3 = Noilhan and Platon (1989)	
itype_heatcond	П	1		type of soil heat conductivity	
				1 = constant soil heat conductivity	
				2 = moisture dependent soil heat conductivity	
itype_interception	I	1		type of plant interception	
				1 = effectively switched off (secirity minimum	
				of $1E - 6$ m for surface area index)	
				2 = Rain and snow interception (under	
				development)	
itype_hydbound	I	П		type of hydraulic lower boundary condition	
				1 = none	
				3 = ground water as lower boundary of soil	
				column	
Istomata	Γ	.TRUE.		If .TRUE., use map of minimum stomatal	
				resistance If FALSE use constant value of 150 s/m	
	_		_	II : I I I I I I I I I I I I I I I I I	_

Parameter	Type	Default	Unit	Description	Scope
12tls	Г	.TRUE.		If .TRUE., forecast with 2-Time-Level	
				integration scheme	
lseaice	Γ	TRUE.		TRUE. for use of sea-ice model	
llake	Γ	TRUE.		TRUE. for use of lake model	
sstice_mode	Ι	1		1: SST and sea ice fraction are read from the	iequations=3
				analysis and kept constant. The sea ice fraction	iforcing=3
				can be modified by the seaice model.	
				2: SST and sea ice fraction are updated daily,	
				based on climatological monthly means	
				3: SST and sea ice fraction are updated daily,	
				based on actual monthly means	
				4: SST and sea ice fraction are updated daily,	
				based on actual daily means, not yet	
				implemented	
sst_td_filename	C			Filename of SST input files for time dependent	$sstice_mode=2,3$
				SST. Default is	
				" <path>SST_<year>_imonth;_<gridfile>".</gridfile></year></path>	
				May contain the keyword <path> which will</path>	
				be substituted by model_base_dir	
ci_td_filename	Ö			Filename of sea ice fraction input files for time	$sstice_mode=2,3$
				dependent sea ice fraction. Default is	
				" <path>CI_<year>_<month>_<gridfile>".</gridfile></month></year></path>	
				May contain the keyword <path> which will</path>	
				be substituted by model_base_dir	

Defined and used in: src/namelists/mo_lnd_nwp_nml.f90

4.4.17 Is_forcing_nml (parameters for large-scale forcing; valid for torus geometry)

Parameter	$_{ m Type}$	Default	Unit	Default Unit Description	Scope
is_subsidence_moment	Τ	FALSE.		switch for enabling LS vertical advection due	is_plane_torus=.TRUE.
				to subsidence for momentum equations	
is_subsidence_heat	Γ	FALSE.		switch for enabling LS vertical advection due	is_plane_torus=.TRUE.
				to subsidence for thermal equations	
is_advection	Г	FALSE.		switch for enabling LS horizontal advection	is_plane_torus=.TRUE.
				(currently only for thermal equations)	
is-geowind	Γ	FALSE.		switch for enabling geostrophic wind	is_plane_torus=.TRUE.
is_rad_forcing	Γ	FALSE.		switch for enabling radiative forcing	is_plane_torus=.TRUE.
					inwp_rad=.FALSE.
is_theta	Γ	FALSE.		switch to indicate that the prescribed radiative	is_plane_torus=.TRUE.
				forcing is for potential temperature	is_rad_forcing=.TRUE.

Defined and used in: src/namelists/mo_ls_forcing_nml.f90

4.4.18 master_model_nml (repeated for each model)

Parameter	Type	Default	Unit	Default Unit Description	Scope
model_name	C			Character string for naming this component.	
model_namelist_	C			File name containing the model namelists.	
filename					
model_type	I	-1		Identifies which component to run.	
				1=atmosphere	
				2=ocean	
				3=radiation	
				99=dummy-model	
model_min_rank	I	0		Start MPI rank for this model.	
model_max_rank	I	-1		End MPI rank for this model.	
model_inc_rank	I	1		Stride of MPI ranks.	

4.4.19 master_nml

Parameter	Type	Default	Unit	Default Unit Description	Scope
lrestart	Г	.FALSE.		If .TRUE.: Current experiment is started from	
				a restart.	
model_base_dir	Ü			General path which may be used in file names	
				of other name lists: If a file name contains the	
				keyword " <path>", then this model_base_dir</path>	
				will be substituted.	

4.4.20 meteogram_output_nml

Parameter	Type	Default	Unit	Description	Scope
lmeteogram_enabled	$L(n_{-dom})$.FALSE.		Flag. True, if meteogram of output variables is	
				desired.	
zprefix	$C(n_{-dom})$	C(n_dom) "METEO		string with file name prefix for output file	
		${ m GRAM}$."			
ldistributed	$ L(n_{-}dom) $.TRUE.	.TRUE.		Flag. Separate files for each PE.	
n0_mtgrm	$I(n_{-dom}) 0$	0		initial time step for meteogram output.	
				Note: must be an integer multiple of $iadv_rcf$,	
				since meteogram output is written only at	
				advection time steps.	
ninc_mtgrm	I(n-dom)	1		output interval (in time steps)	
stationlist_tot		53.633,		list of meteogram stations (triples with lat, lon,	
		9.983,		name string)	
		'Ham-			
		burg'			

Defined and used in: src/namelists/mo_mtgrm_nml.f90

4.4.21 nonhydrostatic_nml (relevant if run_nml:iequations=3)

Parameter	Type	Default	Unit	Description	Scope
itime_scheme	I	4		Options for predictor-corrector time-stepping	
				scheme:	
				4: Contravariant vertical velocity is computed i	iequations=3
				in the predictor step only, velocity tendencies	
				are computed in the corrector step only (most	
				efficient option)	
				5: Contravariant vertical velocity is computed	
				in both substeps (beneficial for numerical	
				stability in very-high resolution setups with	
				extremely steep slops, otherwise no significant	
				impact)	
				6: As 5, but velocity tendencies are also	
				computed in both substeps (no apparent	
				benefit, but more expensive)	
rayleigh_type	I	2		Type of Rayleigh damping	
				1: CLASSICAL (requires velocity reference	
				state!)	
				2: Klemp (2008) type	
rayleigh_coeff	$R(n_{-dom})$	0.05 for		Rayleigh damping coefficient $1/\tau_0$ (Klemp,	
		i=1		Dudhia, Hassiotis: MWR136, pp.3987-4004);	
				higher values are recommended for R2B6 or	
				finer resolution	
damp_height	$R(n_{-}dom)$	45000	m	Height at which Rayleigh damping of vertical	
		for $i=1$		wind starts (needs to be adjusted to model top	
				height; the damping layer should have a depth	
				of at least 20 km when the model top is above	
				the stratopause)	

Parameter	Type	Default	Unit	Description	Scope
htop_moist_proc	R	22500.0	m	Height above which moist physics and	
				advection of cloud and precipitation variables	
				are turned off	
$hbot_qvsubstep$	\mathbf{R}	22500.0	m	Height above which QV is advected with	ihadv_tracer=22, 32, 42
				substepping scheme (must be at least as large	or 52
				as htop_moist_proc)	
vwind_offctr	R	0.15		Off-centering in vertical wind solver. Higher	
				values may be needed for R2B5 or coarser grids	
				when the model top is above 50 km.	
rhotheta_offctr	${ m R}$	-0.1		Off-centering of density and potential	
				temperature at interface level (may be set to	
				0.0 for R2B6 or finer grids)	
veladv_offctr	m R	0.25		Off-centering of velocity advection in corrector	
				step	
ivctype	I	2		Type of vertical coordinate:	
				1: Gal-Chen hybrid	
				2: SLEVE (uses sleve_nml)	
iadv_rcf	I	ಬ		reduced calling frequency (rcf) for	
				transport/diffusion/physics	
				1: no rcf (every dynamics-step)	
				n>1: transport every n-th step	
				Setting odd values (besides 1) requires	
				l.mest.rcf = .TRUE.	
lhdiff_rcf	Γ	TRUE.		.TRUE.: Compute diffusion only at advection	
				time steps (in this case, divergence damping is	
				applied in the dynamical core)	

Parameter	Type	Default	Unit	Description	Scope
lextra_diffu	L	.TRUE.		.TRUE.: Apply additional momentum diffusion at grid points close to the stability limit for	
				vertical advection (becomes effective extremely	
				fatery in practice, this is mostly an entergency fix for pathological cases with very large	
				orographic gravity waves)	
divdamp_fac	$_{ m R}$	0.0025		Scaling factor for divergence damping	$lhdiff_rcf = .TRUE.$
divdamp_order	Ι	4		Order of divergence damping:	$lhdiff_rcf = .TRUE.$
				2 = second-order divergence damping	
				4 = fourth-order divergence damping	
				24 = combined second-order and fourth-order	
				divergence damping and enhanced vertical	
				wind off-centering during the initial spinup	
				phase (does not allow checkpointing/restarting	
				earlier than 2.5 hours of integration)	
divdamp_type	Ι	3		Type of divergence damping:	$lhdiff_rcf = .TRUE.$
				2 = divergence damping acting on 2D	
				divergence	
				3 = divergence damping acting on 3D	
				divergence	
				32 = combination of 3D div. damping in the	
				troposphere with transition to 2D div. damping	
				in the stratosphere (recommended for data	
				assimilation cycle only!)	
l_nest_rcf	Г	TRUE.		Synchronize interpolation/feedback calls with	
				advection (transport) time steps. l_nest_rcf is	
				automatically reset to .FALSE. if iadv_rcf=1	
nest_substeps	Ι	2		Number of dynamics substeps for the child	
				patches.	
				DO NOT CHANGE!!! The code will not work	
_				correctly with other values	_

Parameter	Type	Default	Unit	Description	Scope
l-masscorr_nest	ı	.FALSE.		.TRUE.: Apply mass conservation correction	
				also in nested domain	
iadv_rhotheta	I	2		Advection method for rho and rhotheta:	
				1: simple second-order upwind-biased scheme	
				2: 2nd order Miura horizontal	
				3: 3rd order Miura horizontal (not	
				recommended)	
igradp_method	I	3		Discretization of horizontal pressure gradient:	
				1: conventional discretization with metric	
				correction term	
				2: Taylor-expansion-based reconstruction of	
				pressure (advantageous at very high resolution)	
				3: Similar discretization as option 2, but uses	
				hydrostatic approximation for downward	
				extrapolation over steep slopes	
				4: Cubic/quadratic polynomial interpolation	
				for pressure reconstruction	
				5: Same as 4, but hydrostatic approximation	
				for downward extrapolation over steep slopes	
l_zdiffu_t	ı	TRUE.		.TRUE.: Compute Smagorinsky temperature	hdiff_order=3/5 .AND.
				diffusion truly horizontally over steep slopes	$lhdiff_temp = .true.$
thslp_zdiffu	$_{ m R}$	0.025		Slope threshold above which truly horizontal	hdiff_order=3/5 .AND.
				temperature diffusion is activated	lhdiff_temp=.true.
					.AND. l_zdiffu_t=.true.
thhgtd_zdiffu	$_{ m R}$	200	m	Threshold of height difference between	hdiff_order=3/5 .AND.
				neighboring grid points above which truly	lhdiff_temp=.true.
				horizontal temperature diffusion is activated	.AND. l_zdiffu_t=.true.
				(alternative criterion to thslp_zdiffu)	

Parameter	Type	Default	Unit	Default Unit Description	Scope
exner_expol	R	1./3.		Temporal extrapolation (fraction of dt) of	
				Exner function for computation of horizontal	
				pressure gradient. This damps horizontally	
				propagating sound waves. For R2B5 or coarser	
				grids, values between $1/2$ and $2/3$ are	
				recommended.	
l-open-ubc	П	FALSE.		.TRUE.: Use open upper boundary condition	
				(rather than w=0) to allow vertical motions	
				related to diabatic heating to extend beyond	
				the model top	

Defined and used in: src/namelists/mo_nonhydrostatic_nml.f90

4.4.22 nwp_phy_nml

The switches for the physics schemes and the time steps can be set for each model domain individually. If only one value is specified, it is the remaining model domains. If the time steps are not an integer multiple of the advective time step (dtime*iadv_rcf), then the time step of copied to all child domains, implying that the same set of parameterizations and time steps is used in all domains. If the number of values given in the namelist is larger than 1 but less than the number of model domains, then the settings from the highest domain ID are used for the respective physics parameterization is automatically rounded to the next higher integer multiple of the advective time step.

Parameter	Type	Default	Unit	Description	Scope
inwp_gscp	I (max_	1		cloud microphysics and precipitation	run_nml:iforcing =
	dom)			0: none	inwp
				1: hydei (COSMO-EU microphysics, 2-cat ice: cloud ice. snow)	
				2: hydci-gr (COSMO-DE microphysics, 3-cat	
				ice: cloud ice, snow, graupel)	
				3: as 1, but with improved ice nucleation	
				scheme by C. Koehler	
				4: Two-moment microphysics by A. Seifert	
				9: Kessler scheme	
qi0	\mathbf{R}	0.0	kg/kg	cloud ice threshold for autoconversion	inwp_gscp=1
qc0	R	0.0	kg/kg	cloud water threshold for autoconversion	inwp_gscp=1
mu_rain	\mathbf{R}	0.0		shape parameter in gamma distribution for rain	inwp_gscp>0
mu_snow	R	0.0		shape parameter in gamma distribution for	inwp_gscp>0
				Snow	
icpl_aero_gscp	I	0		0: off	currently only for
				1: simple coupling between autoconversion and	$inwp_gscp = 1$
				Tegen aerosol climatology; requires irad_aero=6	
•	,	,		more advanced opinins are in preparation	
inwp_convection	I (max_	-		convection	run_nml:iforcing =
	dom)			0: none	inwp
				1: Tiedtke/Bechtold convection	
icapdcycl	I	0		Type of CAPE correction to improve diurnal	$inwp_convection = 1$
				cycle for convection:	
				0 = none (IFS default prior to autumn 2013)	
				1 = intermediate testing option	
				2 = correctoins over land and water now	
				operational at ECMWF	
				3 = correction over land as in 2 restricted to	
				the tropics, no correction over water (this	
				choice optimizes the NWP skill scores)	

Parameter	Type	Default	Unit	Description	Scope
icpl_aero_conv	I	0		0: off	
				1: simple coupling between autoconversion and	
				Tegen aerosol climatology; requires irad_aero=6	
${\rm inwp_cldcover}$	I (max			cloud cover scheme for radiation	run_nml:iforcing =
	dom)			0: no clouds (only QV)	inwp
				1: diagnostic cloud cover (by Martin Koehler)	
				2: prognostic total water variance (not yet	
				started)	
				3: clouds from COSMO SGS cloud scheme	
				4: clouds as in turbulence (turbdiff)	
				5: grid scale clouds	
inwp_radiation	I (max_	1		radiation	run_nml:iforcing =
	dom)			0: none	inwp
				1: RRTM radiation	
				2: Ritter-Geleyn radiation	
${ m inwp_satad}$	I	1		saturation adjustment	run_nml:iforcing =
				0: none	inwp
				1: saturation adjustment at constant density	
$inwp_turb$	I (max_			vertical diffusion and transfer	run_nml:iforcing =
	dom)			0: none	qwni
				1: COSMO diffusion and transfer	
				2: GME turbulence scheme	
				3: EDMF-DUALM (work in progress)	
				5: Classical Smagorinsky diffusion	
$inwp_sso$	$I~(\mathrm{max}_{-}$			subgrid scale orographic drag	run_nml:iforcing =
	dom)			0: none	inwp
				1: Lott and Miller scheme (COSMO)	
${ m inwp_gwd}$	I (max_			non-orographic gravity wave drag	run_nml:iforcing =
	dom)			0: none	inwp
				1: Orr-Ern-Bechtold-scheme (IFS)	

Parameter	Type	Default	Unit	Description	Scope
inwp_surface	I (max_	1		surface scheme	run_nml:iforcing =
	dom)			0: none	inwp
				1: TERRA	
ustart_raylfric	R	160.0	s/m	wind speed at which extra Rayleigh friction	-0 < bwg-gwd
				starts	
efdt_min_raylfric	R	10800.	w	minimum e-folding time of Rayleigh friction	$\operatorname{inwp_gwd} > 0$
				(effective for $u > ustart_raylfric + 90 m/s$)	
latm_above_top	L (max_	.FALSE.		.TRUE.: take into account atmosphere above	inwp_radiation > 0
	dom)			model top for radiation computation	
$itype_z0$	Ι	2		Type of roughness length data used for	$inwp_turb > 0$
				turbulence scheme:	
				1 = land-cover-related roughness including	
				contribution from sub-scale orography	
				2 = land-cover-related roughness only	
$\mathrm{dt_conv}$	R (max_	.009	∞	time interval of convection call	run_nml:iforcing =
	dom)			currently each subdomain has the same value	inwp
$\mathrm{dt_rad}$	R (max_	1800.	∞	time interval of radiation call	run_nml:iforcing =
	dom)			currently each subdomain has the same value	inwp
$ m dt_sso$	R (max_	1200.	∞	time interval of sso call	run_nml:iforcing =
	dom)			currently each subdomain has the same value	inwp
$\mathrm{dt_gwd}$	R (max_	1200.	∞	time interval of gwd call	run_nml:iforcing =
	dom)			currently each subdomain has the same value	inwp
lrtm_filename	C(:)	m ``rrtmg-		NetCDF file containing longwave absorption	
		lw.nc"		coefficients and other data for RRTMG_LW	
				k-distribution model.	
cldopt_filename	C(:)	"ECHAM		NetCDF file with RRTM Cloud Optical	
		6-CldOpt		Properties for ECHAM6.	
		Props.nc"			

Defined and used in: $src/namelists/mo_nwp_phy_nml.f90$

4.4.23 nwp_tuning_nml

Please note: These tuning parameters are NOT domain specific.

Parameter	Type	Default	Unit	Description	Scope
SSO (Lott and Miller)					
tune_gkwake	Я	1.333		low level wake drag constant	run_nml:iforcing = inwp
tune_gkdrag	R	0.1		gravity wave drag constant	run_nml:iforcing = inwp
GWD (Warner McIntyre)	(e)				
tune_gfluxlaun	R	2.50e-3		total launch momentum flux in each azimuth (rho o x F o)	run_nml:iforcing = inwp
Grid scale microphysics (one moment)	ics (one m	oment)			•
tune_zceff_min	R	0.075		Minimum value for sticking efficiency	run_nml:iforcing =
tune_v0snow	R	25.0		factor in the terminal velocity for snow	run_nml:iforcing =
					inwp
tune_zvz0i	R	1.25	s/ш	Terminal fall velocity of ice	run_nml:iforcing =
					inwp
Misc					
itune_albedo	I	0		MODIS albedo tuning	run_nml:iforcing =
				0: None	inwp
				1: dimmed sahara	$albedo_type=2$

Defined and used in: src/namelists/mo_nwp_tuning_nml.f90

4.4.24 output_nml (relevant if run_nml/output='nml')

Please note: There may be several instances of output_nml in the namelist file, every one defining a list of variables with separate attributes for output.

Parameter	Type	Default	Unit	Description S	Scope
dom	I(:)	-1		Array of domains for which this name-list is	
				used. If not specified (or specified as -1 as the	
				first array member), this name-list will be used	
				for all domains.	
				Attention: Depending on the setting of the	
				parameter l_output_phys_patch these are either	
				logical or physical domain numbers!	
file_interval	Ö	,e		Defines the length of a file in terms of an	
				ISO-8601 duration string. An example for this	
				time stamp format is given below. This	
				namelist parameter can be set instead of	
				steps_per_file.	
filename_format	Ö	see		Output filename format. Includes keywords	
		descrip-		path, output_filename, physdom, etc. (see	
		tion.		below). Default is	
				<pre><output_filename>_DOM<physdom>_<levtype>_</levtype></physdom></output_filename></pre>	
				<jfile></jfile>	
filetype	I	4		One of CDI's FILETYPE_XXX constants.	
				Possible values:	
				2=FILETYPE_GRB2,	
				4=FILETYPE_NC2,	
				5=FILETYPE_NC4	

Parameter	Type	Default	Unit	Description	Scope
m_levels	O	None		Model level indices (optional). Allowed is a comma- (or semicolon-) separated list of integers, and of integer ranges like "1020". One may also use the keyword "nlev" to denote the maximum integer (or, equivalently, "n" or "N"). Furthermore, arithmetic expressions like "(nlev - 2)" are possible. Basic example: m_levels = "1,3,510,20(nlev-2)"	
h_levels	R(:)	None	m	height levels	
p_levels	R(:)	None	Pa	pressure levels	
i_levels	R(:)	None	K	isentropic levels	
ml_varlist hl_varlist pl_varlist il_varlist include_last mode	C C C C C C C C C C C C C C C C C C C	None None None TRUE.		Name of model level fields to be output. Name of height level fields to be output. Name of pressure level fields to be output. Name of isentropic level fields to be output. Flag whether to include the last time step 1 = forecast mode, 2 = climate mode In climate mode the time axis of the output file is set to TAXIS_ABSOLUTE. In forecast mode it is set to TAXIS_RELATIVE. Till now the forecast mode only works if the output is at multiples of 1 hour	

Parameter	Type	Default	Unit	Description Scope	
taxis_tunit	I	2		Time unit of the TAXIS_RELATIVE time axis. mode=1	=1
				$1 = TUNIT_SECOND$	
				$2 = TUNIT_MINUTE$	
				$3 = TUNIT_HOUR$	
				For a complete list of possible values see cdi.inc	
output_bounds	$\mid \mathrm{R}(k*\ 3)$	None		Post-processing times: start, end, increment.	
				We choose the advection time step matching or	
				following the requested output time, therefore	
				we require output_bounds(3) <	
				dtime*iadv_rcf. Multiple triples are possible	
				in order to define multiple	
				starts/ends/intervals. See namelist parameters	
				output_start, output_end, output_interval	
				for an alternative specification of output events.	
output_time_unit	I	1		Units of output bounds specification.	
				1 = second	
				2 = minute	
				3 = hour	
				4 = day	
				5 = month	
				6 = year	
output_filename	C	None		Output filename prefix (which may include	
				path). Domain number, level type, file number	
				and extension will be added, according to the	
				format given in namelist parameter	
				"filename_format".	
output_grid	Г	.FALSE.		Flag whether grid information is added to	
				output.	

Parameter	Type	Default	Unit	Description	Scope
output_start	C(:)			ISO8601 time stamp for begin of output. An	
				example for this time stamp format is given	
				below. More than one value is possible in order	
				to define multiple start/end/interval triples.	
				See namelist parameter output_bounds for an	
				alternative specification of output events.	
output_end	C(:)	\r \r		ISO8601 time stamp for end of output. An	
				example for this time stamp format is given	
				below. More than one value is possible in order	
				to define multiple start/end/interval triples.	
				See namelist parameter output_bounds for an	
				alternative specification of output events.	
output_interval	C(:)	\r \r		ISO8601 time stamp for repeating output	
				intervals. We choose the advection time step	
				matching or following the requested output	
				time, therefore we require output_bounds(3)	
				< dtime*iadv_rcf. An example for this time	
				stamp format is given below. More than one	
				value is possible in order to define multiple	
				start/end/interval triples. See namelist	
				parameter output_bounds for an alternative	
				specification of output events.	
pe_placement_il	I(:)	-		Advanced output option: Explicit assignment	
				of output MPI ranks to the isentropic level	
				output file. At most stream_partitions_il	
				different ranks can be specified. See namelist	
				parameter pe_placement_ml for further details.	

Parameter	Type	Default	Unit	Description	Scope
pe-placement_hl	I(:)	-1		Advanced output option: Explicit assignment	
				of output MPI ranks to the height level output	
				file. At most stream_partitions_hl different	
				ranks can be specified. See namelist parameter	
				pe_placement_ml for further details.	
pe_placement_ml	I(:)	-1		Advanced output option: Explicit assignment	
				of output MPI ranks to the model level output	
				file. At most stream_partitions_ml different	
				ranks can be specified, out of the following list:	
				0 (num_io_procs - 1). If this namelist	
				parameters is not provided, then the output	
				ranks are chosen in a Round-Robin fashion	
				among those ranks that are not occupied by	
				explicitly placed output files.	
pe_placement_pl	I(:)	-1		Advanced output option: Explicit assignment	
				of output MPI ranks to the pressure level	
				output file. At most stream_partitions_pl	
				different ranks can be specified. See namelist	
				parameter pe_placement_ml for further details.	
ready_file	C	'default'		A ready file is a technique for handling	
				dependencies between the NWP processes. The	
				completion of the write process is signalled by	
				creating a small file with name ready_file.	
				Different output_nml's may be joined together	
				to form a single ready file event. The setting of	
				ready_file = "default" does not create a	
				ready file. The ready file name may contain	
				string tokens <pre><pre>cpath></pre>, <pre><datetime></datetime></pre>, <pre><ddhhmmss></ddhhmmss></pre></pre>	
				which are substituted as described for the	
			_	namens, parameter rremame-rorman.	_

Parameter	Type	Default	Unit	Description	Scope
reg_def_mode	I	0			remap=1
				interval size or the total *number* of intervals:	
				0: switch automatically between increment and	
				no. of grid points, 1: reg_lon/lat_def(2)	
				specifies increment, 2: reg_lon/lat_def(2)	
				specifies no. of grid points.	
remap	I	0		interpolate horizontally	
				0: none	
				1: to regular lat-lon grid	
north_pole	R(2)	0,90		definition of north pole for rotated lon-lat grids.	
$ m reg_lat_def$	R(3)	None		start, increment, end latitude in degrees.	remap=1
				Alternatively, the user may set the number of	
				grid points instead of an increment. Details for	
				the setting of regular grids is given below	
				together with an example.	
$ m reg_lon_def$	R(3)	None		The regular grid points are specified by three	remap=1
				values: start, increment, end given in degrees.	
				Alternatively, the user may set the number of	
				grid points instead of an increment. Details for	
				the setting of regular grids is given below	
				together with an example.	
steps_per_file	I	-1		Max number of output steps in one output file.	
				If this number is reached, a new output file will	
				be opened.	
steps_per_file_inclfirst	Γ	see		Defines if first step is counted wrt.	
		descr.		steps_per_file files count. The default is	
				.FALSE. for GRIB2 output, and .TRUE.	
				otherwise.	

Parameter	Type	Default	Unit	Description S	Scope
stream_partitions_hl	I	1		Splits height level output of this namelist into	
				several concurrent alternating files. See	
				namelist parameter stream_partitions_ml for	
				details.	
stream_partitions_il	I	1		Splits isentropic level output of this namelist	
				into several concurrent alternating files. See	
				namelist parameter stream_partitions_ml for	
				details.	
stream_partitions_ml	I	1		Splits model level output of this namelist into	
				several concurrent alternating files. The output	
				is split into N files, where the start date of	
				part i gets an offset of	
				$(i-1)*$ output_interval. The output interval	
				is then replaced by $N * \text{output_interval}$, the	
				include_last flag is set to .FALSE., the	
				steps_per_file_inclfirst flag is set to	
				.FALSE., and the steps_per_file counter is	
				set to 1.	
stream_partitions_pl	Ι	1		Splits pressure level output of this namelist	
				into several concurrent alternating files. See	
				namelist parameter stream_partitions_ml for	
				details.	

Defined and used in: src/io/shared/mo_name_list_output_init.f90

Interpolation onto regular grids: Horizontal interpolation onto regular grids is possible through the namelist setting remap=1, where the mesh is defined by the parameters

• reg_lon_def: mesh latitudes in degrees,

- reg_lat_def: mesh longitudes in degrees.
- north_pole: definition of north pole for rotated lon-lat grids.

The regular grid points in reg_lon_def, reg_lat_def are each specified by three values, given in degrees: start, increment, end. The mesh then contains all grid points $start + k * increment \le end$, where k is an integer. Instead of defining an increment it is also possible to prescribe the number of grid points.

- Setting the namelist parameter reg_def_mode=0: Switch automatically from increment specification to no. of grid points, when the reg_lon/lat_def(2) value is larger than 5.0.
- 1: reg_lon/lat_def(2) specifies increment
- 2: reg_lon/lat_def(2) specifies no. of grid points

For longitude values the last grid point is omitted if the end point matches the start point, e.g. for 0 and 360 degrees.

Examples

 $reg_lon_def = -30.,0.5,30.$ local grid with 0.5 degree increment:

global grid with 720x361 grid points:

 $reg_lon_def = 0.,720,360.$

90.,-0.5, -90.

reg_lat_def

= -90.360,90reg_lat_def The namelist parameters output_start, output_end, output_interval allow the specification of time stamps according to ISO 8601. The general format for time stamps is YYYY-MM-DDThh:mm:ss where Y: year, M: month, D: day for dates, and hh: hour, mm: minute, ss: second for time strings. The general format for durations is PnYnMnDTnHnMnS. See, for example, http://en.wikipedia.org/wiki/ISO_8601 or details and further specifications. Time stamp format:

NOTE: as the mtime library underlaying the output driver currently has some restrictions concerning the specification of durations:

- 1. Any number n in PnYnMnDTnHnMnS must have two digits. For instance use "PT06H" instead of "PT6H"
- In a duration string PnyearYnmonMndayDTnhrHnminMnsecS the numbers nxyz must not pass the carry over number to the next larger time unit: 0|=nmon|=12, 0|=nmin|=23, 0|=nmin|=59, 0|=nmin|=59.999. For instance use "P01D" instead of "PT24H", or "PT01M" instead

"S09Tq" fo

Soon the formatting problem will be resolved and the valid number ranges will be enlarged. (2013-12-16).

Examples

2013-10-27T13:41:00Z date and time representation (output_start, output_end)

duration (output_interval)

POODTOGHOOMOOS

Variable Groups: Using the "group:" keyword for the namelist parameters ml_varlist, hl_varlist, pl_varlist, sets of common variables can be added to the output:

output of all variables (caution: do not combine with mixed vertical interpolation)

group:atmo_ml_vars group:all

basic atmospheric variables on model levels

same set as atmo-ml-vars, but expect height

same set as atmo_ml_vars, but except pres

additional prognostic variables of the nonhydrostatic model

derived atmospheric variables

group:atmo_derived_vars

group:nh_prog_vars

group:atmo_pl_vars group:atmo_zl_vars group:rad_vars

group:precip_vars group:cloud_diag

group:phys_tendencies group:pbl_vars

group:snow_vars group:land_vars

group:multisnow_vars

group:additional_precip_vars group:dwd_fg_atm_vars

group:dwd_fg_sfc_vars

DWD first guess fields (atmosphere)

multi-layer snow variables

snow variables

DWD first guess fields (surface/soil)

Note:

There exists a special syntax which allows to remove variables from the output list, e.g. if these undesired variables were contained in a previously selected group.

Typing "-jvarname;" (for example "-temp") removes the variable from the union set of group variables and other selected variables. Note that typos are not detected but that the corresponding variable is simply not removed!

Keyword substitution in output filename (filename_format):

substituted by ISO-8601 date-time stamp in format YYYY-MM-DDThh:mm:ss.sssZ substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmss.sssZ If namelist is split into concurrent files: stream partition index of this file. substituted by ISO-8601 date-time stamp in format YYYYMMDDThhmmssZ If namelist is split into concurrent files: substituted by the file counter If namelist is split into concurrent files: number of stream partitions. substituted by relative day-hour-minute-second string substituted by level type "ML", "PL", "HL", "IL" substituted by relative hour-minute-second string substituted by output file counter substituted by output_filename substituted by physical patch ID substituted by model_base_dir like levtype, but in lower case ifile_partition output_filename npartitions total_index datetime3 datetime2 ${ t levtype_1}$ datetime ddhhmmss hhhmmss physdom levtype jfile path

(like in jfile), which an "unsplit" namelist would have produced

4.4.25 parallel_nml

Parameter	Type	Default	Unit	Description	Scope
nproma	I	1		chunk length	
n_ghost_rows	I	1		number of halo cell rows	
division_method	П	1		method of domain decomposition	
				0: read in from file	
				1: use built-in geometric subdivision	
				2: use METIS	
division_file_name	C			Name of division file	division_method = 0
ldiv_phys_dom	IJ	TRUE.		.TRUE.: split into physical domains before	$division_method = 1$
				computing domain decomposition (in case of	
				merged domains)	
				(This reduces load imbalance; turning off this	
				option is not recommended except for very	
				small processor numbers)	
$p_{-}test_{-}run$	ı	.FALSE.		.TRUE. means verification run for MPI	
				parallelization (PE 0 processes full domain)	
$1_{ m test_openmp}$	П	.FALSE.		if .TRUE. is combined with	$p_{-test_run} = .TRUE.$
				p_test_run=.TRUE. and OpenMP	
				parallelization, the test PE gets only 1 thread	
				in order to verify the OpenMP parallelization	
l_log_checks	ı	.FALSE.		if .TRUE. messages are generated during each	
				synchonization step (use for debugging only)	
$1_{ m fast_sum}$	T	.FALSE.		if .TRUE., use fast (not	
				processor-configuration-invariant) global	
				summation	
use_dycore_barrier	ı	.FALSE.		if .TRUE., set an MPI barrier at the beginning	
				of the nonhydrostatic solver (do not use for	
				production runs!)	

Parameter	Type	Default	Unit	Description	Scope
itype_exch_barrier	I	0		1: set an MPI barrier at the beginning of each	
				MPI exchange call	
				2: set an MPI barrier after each MPI WAIT call	
				3: 1+2 (do not use for production runs!)	
iorder_sendrecv	I	1		Sequence of send/receive calls:	
				1 = irecv/send	
				2 = isend/recv	
				3 = isend/irecv	
itype_comm	Ι	1		1: use local memory for exchange buffers	
				3: asynchronous halo communication for	
				dynamical core (currently deactivated)	
num_io_procs	I	0		Number of I/O processors (running exclusively	
				for doing I/O)	
${\tt num_restart_procs}$	I	0		Number of restart processors (running	
				exclusively for doing restart)	
num_pref_proc	I	0		Number of processors for prefetching of	itype_latbc ≥ 1
				boundary data asynchronously for a limited	
				area run (running exclusively for reading Input	
				boundary data. Maximum no of processors	
				used for it is limited to 1).	
pio-type	I	1		Type of parallel I/O. Only used if number of	
				I/O processors greater than number of	
				domains. Experimental!	
use_icon_comm	Г	FALSE.		Enable the use of MPI bulk communication	
				through the icon_comm_lib	
icon_comm_debug	Γ	FALSE.		Enable debug mode for the icon_comm_lib	
max_send_recv-	I	131072		Size of the send/receive buffers for the	
_buffer_size				icon_comm_lib.	
use_dp_mpi2io	П	.FALSE.		Enable this flag if output fields shall be	
				gathered by the output processes in DOUBLE	
				FRECISION.	

Scope					
Default Unit Description	(Advanced namelist parameter:) Number of	levels to be buffered by the asynchronous	restart process. The (asynchronous) restart is	capable of writing and communicating more	than one 2D slice at once.
Unit					
Default	1				
Type	I				
Parameter	restart_chunk_size				

Defined and used in: src/namelists/mo_parallel_nml.f90

4.4.26 radiation_nml

Parameter	Type	Default	Unit	Default Unit Description S	Scope
ldiur	Г	TRUE.		switch for solar irradiation:	
				.TRUE.:diurnal cycle,	
				.FALSE.:zonally averaged irradiation	
nmonth	I	0		0: Earth circles on orbit	
				1-12: Earth orbit position fixed for specified	
				month	
lyr-perp	L	FALSE.		.FALSE.: transient Earth orbit following	
				VSOP87	
				TRUE.: Earth orbit of year yr-perp of the	
				VSOP87 orbit is perpertuated	
Vr_Derp	ı	66666-		vear used for $lvr_perp = .TRUE$.	

Parameter	Type	Default	Unit	Description	Scope
isolrad	I	0		Insolation scheme	
				0: Use original SRTM insolation.	
				1: Use insolation from external file containing	
				the spectrally resolved insolation (monthly	
				means)	
				2: Use preindustrial insolation as in CMIP5	
				(average from 1844–1856)	
				3: Use insolation for AMIP-type CMIP5	
				simulation (average from 1979–1988)	
izenith	I	4		Choice of zenith angle formula for the radiative	
				transfer computation.	
				0: Sun in zenith everywhere	
				1: Zenith angle depends only on latitude	
				2: Zenith angle depends only on latitude. Local	
				time of day fixed at 07:14:15 for radiative	
				transfer computation ($\sin(\text{time of day}) = 1/\text{pi}$	
				3: Zenith angle changing with latitude and	
				time of day	
				4: Zenith angle and irradiance changing with	
				season, latitude, and time of day	
				(iforcing=inwp only)	
${ m albedo_type}$	I	1		Type of surface albedo	iforcing=inwp
				1: based on soil type specific tabulated values	
				(dry soil)	
				2: MODIS albedo	

Parameter	Type	Default	Unit	Description	Scope
irad_h2o	I	1		Switches for the concentration of radiative	Note: until further
irad_co2		2		agents	notice, please use
irad_ch4		3		0: 0.	$irad_h2o = 1$
irad_n2o		3		1: prognostic variable	$irad_{co2} = 2$
irad_o3		0		2: global constant	and 0 for all the other
irad_o2		2		3: externally specified	agents for
irad_cfc11		2		$irad_03 = 2$: ozone climatology from MPI	$run_nml/iforcing = 2$
irad_cfc12		2		irad_o3 = 4: ozone clim for Aqua Planet Exp irad_o3 = 6: ozone climatology with T5	(ECHAM).
				geographical distribution and Fourier series for seasonal cycle for run_nml/iforcing = 3 (NWP)	
				irad_o3 = 7: GEMS ozone climatology (from IFS) for run_nml/iforcing = 3 (NWP)	
vmr_co2	R	348.0e-6		Volume mixing ratio of the radiative agents	
$ m vmr_ch4$ $ m vmr_n2o$		1650.0e-9 306.0e-9			
vmr_o2		0.20946			
vmr_cfc11 vmr_cfc12		214.5e-12 371.1e-12			
irad aero	<u> </u>	2		Aerosols	
				1: prognostic variable 9. global constant	
				2. groom consound 3. externally specified	
				5: Tanre aerosol climatology for	
				6: Tegen aerosol climatology for	
lrad_aero_diag	Γ	.FALSE.		run_nml/iforcing = 3 (NWP) .AND. itopo =1 writes actual aerosol optical properties to output	

Scope	run_nml/iforcing=2	(ECHAM)			
Default Unit Description	Select dynamic greenhouse gases scenario (read	from file)	0 : select default gas volume mixing ratios -	1990 values (CMIP5)	1: transient CMIP5 scenario from file
Unit					
Default	0				
Type	I				
Parameter	ighg				

Defined and used in: src/namelists/mo_radiation_nml.f90

4.4.27 run_nml

Parameter	Type	Default	Unit	Description	Scope
nsteps	I	666-		Number of time steps of this run. Allowed	
				range is ≥ 0 ; setting a value of 0 allows writing	
				initial output (including internal remapping)	
				without calculating time steps.	
dtime	В	0.009	w	time step	
Itestcase	T	TRUE.		Idealized testcase runs	
ldynamics	T	.TRUE.		Compute adiabatic dynamic tendencies	
iforcing	Ι	0		Forcing of dynamics and transport by	
				parameterized processes. Use positive indices	
				for the atmosphere and negative indices for the	
				ocean.	
				0: no forcing	
				1: Held-Suarez forcing	
				2: ECHAM forcing	
				3: NWP forcing	
				4: local diabatic forcing without physics	
				5: local diabatic forcing with physics	
				-1: MPIOM forcing (to be done)	
ltransport	T	.FALSE.		Compute large-scale tracer transport	

Parameter	Type	Default	Unit	Description	Scope
ntracer	I	0		Number of advected tracers handled by the	
				large-scale transport scheme	
lvert_nest	П	.FALSE.		If set to .true. vertical nesting is switched on	
	,			(1.e. variable number of vertical levels)	
num_lev	I(max_dom)	31		Number of full levels (atm.) for each domain	lvert_nest=.TRUE.
nshift	I(max_	0		vertical half level of parent domain which	lvert_nest=.TRUE.
	dom)			coincides with upper boundary of the current	
				domain required for vertical refinement, which	
				is not yet implemented	
ltimer	L	TRUE.		TRUE: Timer for monitoring the runtime of	
				specific routines is on $(FALSE = off)$	
timers_level	I	1			
activate_sync_timers	Г	ĹΤΙ		TRUE: Timer for monitoring runtime of	
				communication routines $(FALSE = off)$	
msg_level	Ι	10		controls how much printout is written during	
				runtime.	
				For values less than 5, only the time step is	
				written.	
msg_timestamp	Γ	.FALSE.		If .TRUE., precede output messages by time	
				stamp.	
test_mode	I	0		Setting a value larger than 0 activates a	iequations $= 3$
				dummy mode in which time stepping is	
				changed into just doing iterations, and MPI	
				communication is replaced by copying some	
				value from the send buffer into the receive	
				buffer (does not work with nesting and reduced	
				radiation grid because the send buffer may	
	,	(then be empty on some PEs)	
debug_check_level	_	0		Setting a value larger than 0 activates debug	
		_		CHECKS.	_

output	Type	Detault	Unit	Description	Scope
	C(:)	"nml",		Main switch for enabling/disabling components	
		"totint"		of the model output. One or more choices can be set (as an array of string constants)	
				Possible choices are:	
				• "none": switch off all output;	
				• "nml": new output mode (cf. output_nml);	
				• "totint": computation of total integrals.	
				If the output namelist parameter is not set explicitly, the default setting "nml", "totint" is assumed.	
restart_filename	C			File name for restart/checkpoint files	
				(containing keyword substitution patterns	
				<pre><gridfile>, <idom>, <rsttime>, <mtype>). default:</mtype></rsttime></idom></gridfile></pre>	
				" <gridfile>_restart_<mtype>_<rsttime>.nc".</rsttime></mtype></gridfile>	
profiling_output	I	П		controls how profiling printout is written:	
				TIMER_MODE_DETAILED=1, TIMER_MODE_DETAILED=2.	
				TIMER_MODE_WRITE_FILES=3.	
lart	П	.FALSE.		Main switch which enables the treatment of	
				atmospheric aerosol and trace gases (The ART	
				package of KIT is needed for this purpose)	

Defined and used in: src/namelists/mo_run_nml.f90

4.4.28 sleve_nml (relevant if nonhydrostatic_nml:ivctype=2)

Parameter	Type	Default	Unit	Description	Scope
min_lay_thckn	R	20	m	Layer thickness of lowermost layer; specifying	
				zero or a negative value leads to constant layer	
				thicknesses determined by top-height and nlev	
max_lay_thckn	R	25000	m	Maximum layer thickness below the height	
				given by htop_thcknlimit (NWP	
				recommendation: 400 m)	
				Use with caution! Too ambitious settings may	
				result in numerically unstable layer	
				configurations.	
htop_thcknlimit	R	15000	m	Height below which the layer thickness does	
				not exceed max_lay_thckn	
top_height	R	23500.0	m	Height of model top	
stretch_fac	В	1.0		Stretching factor to vary distribution of model	
				levels; values <1 increase the layer thickness	
				near the model top	
decay_scale_1	В	4000	m	Decay scale of large-scale topography	
				component	
decay_scale_2	Я	2500	m	Decay scale of small-scale topography	
				component	
decay_exp	В	1.2		Exponent of decay function	
flat_height	Я	16000	m	Height above which the coordinate surfaces are	
				flat	
lread_smt	П	.FALSE.		read smoothed topography from file (TRUE)	
				or compute internally (FALSE)	

Defined and used in: src/namelists/mo_sleve_nml.f90

4.4.29 time_nml

Parameter	Type	Default	Unit	Description	Scope
calendar	ы			Calendar type: 0=Julian/Gregorian 1=proleptic Gregorian	
dt_restart	R	86400.*30.	w	2=30day/month, 360day/year Length of restart cycle in seconds. This	
				namelist parameter specifies how long the model runs until it saves its state to a file and	
				stops. Later, the model run can be resumed, s. t. a simulation over a long period of time can	
				be split into a chain of restarted model runs.	
				Note that the frequency of writing restart files	
				is controlled by io_nml:dt_checkpoint. Only	
				If the value of at_cneckpoint resulting from model default or user's specification is longer	
				than dt_restart, it will be reset (by the	
				model) to dt_restart so that at least one	
				restart file is generated during the restart	
				cycle. If dt_restart is larger than but not a	
				multiple of dt_checkpoint, restart file will not	
				be generated at the end of the restart cycle.	
ini_datetime_string	O	,2008-		Initial date and time of the simulation	
		09-01T			
•	(00:00:002			
end_datetime_string	ت ص	.2008-		End date and time of the simulation	
		$09-01^{\circ}\Gamma$			
		01:40:00Z			

ription Scope	TRUE., if time loop shall start with step 0	egardless whether we are in a standard run or	in a restarted run (which means re-initialized	
Pefault Unit Description	.TR	rega	in a	run $)$
Default	.FALSE.			
Type	Г			
Parameter	is_relative_time			

Length of the run If "nsteps" in run_nml is positive, then nsteps*dtime is used to compute the end date and time of the run.

Else the initial date and time, the end date and time, dt_restart, as well as the time step are used to compute "nsteps".

4.4.30 transport_nml (used if run_nml/ltransport=.TRUE.)

Parameter	Type	Default	Unit	Description	Scope	
lvadv_tracer	Τ	.TRUE.		TRUE: compute vertical tracer advection		
				FALSE: do not compute vertical tracer		
				advection		
ihadv_tracer	I(ntracer)	2		Tracer specific method to compute horizontal		
				advection:		
		5		0: no horiz. transport (note that the specific		
				tracer quantity q is kept constant and not		
				tracer mass ρq)		
				1: upwind (1st order)		
				2: Miura (2nd order, linear reconstr.)		
				3: Miura3 (quadr. or cubic reconstr.)	$lsq_high_ord \in [2,3]$	
				4: FFSL (quadr. or cubic reconstr.)	$lsq_high_ord \in [2,3]$	
				5: hybrid Miura3/FFSL (quadr. or cubic	$lsq_high_ord \in [2,3]$	
				reconstr.)		
				20: miura (2nd order, lin. reconstr.) with		
				subcycling		
				22: combination of miura and miura with		
				subcycling		
				32: combination of miura 3 and miura with		
				subcycling		
				42: combination of FFSL and miura with		
				subcycling		

Parameter	Type	Default	Unit	Description	Scope
				52: combination of hybrid FFSL/Miura3 with	
				subcycling	
				Subcycling means that the integration from	
				time step n to n+1 is splitted into substeps to	
				meet the stability requirements. For NWP	
				runs, substepping is generally applied above	
				$z = 22 \mathrm{km}$ (see	
				nonhydrostatic_nml/hbot_qvsubstep).	
ivadv_tracer	I(ntracer)	3		Tracer specific method to compute vertical	lvadv_tracer=TRUE
				advection:	
				0: no vert. transport (note that tracer mass ρq	
				instead of the specific tracer quantity q is kept	
				constant. This differs from the behaviour in	
				horizontal direction!)	
				1: upwind (1st order)	
				3: ppm_cfl (3^{rd} order, handles CFL > 1)	
				30: ppm (3rd order, $CFL \le 1$)	
iadv_tke	I	0		Type of TKE advection	inwp_turb=1
				0: no TKE advection	
				1: vertical advection only	
				2: vertical and horizontal advection	
lstrang	Γ	FALSE.		Time splitting method	
				TRUE: second order Strang splitting	
				FALSE: first order Godunov splitting	
ctracer_list	C			list of tracer names	run_nml/ltestcase=.TRUE
$itype_hlimit$	I(ntracer)	4		Type of limiter for horizontal transport:	
				0: no limiter	
				3: monotonous flux limiter	
				4: positive definite flux limiter	
itype_vlimit	I(ntracer)	1		Type of limiter for vertical transport:	
				0: no limiter	

Parameter	Type	Default	Unit	Description	Scope
				1: semi-monotone slope limiter	
				2: monotonous slope limiter	
				4: positive definite flux limiter	
niter_fct	Ι	1		number of iterations of monotone flux	$itype_hlimit = 3$
				correction procedure (experimental!)	
beta_fct	\mathbf{R}	1.005		factor of allowed over-/undershooting in	$itype_hlimit = 3$
				monotonous limiter	
iord_backtraj	I	1		order of backward trajectory calculation:	
				1: first order	
				2: second order (iterative; currently 1 iteration	ihadv_tracer='miura'
				hardcoded; experimental!)	
igrad_c_miura	I	1		Method for gradient reconstruction at cell	
				center for 2nd order miura scheme	
				1: Least-squares (linear, non-consv)	ihadv_tracer=2
				2: Green-Gauss	
ivefl_max	Ι	ಬ		determines stability range of vertical	ivadv_tracer=3
				PPM-scheme in terms of the maximum	
				allowable CFL-number	
llsq_svd	Γ	TRUE.		use QR decomposition (FALSE) or SV	
				decomposition (TRUE) for least squares design	
				matrix A	
lclip_tracer	Γ	.FALSE.		Clipping of negative values	
TOTIL - OF GOOD	1			Culphing of inclasive values	

Defined and used in: src/namelists/mo_advection_nml.f90

4.4.31 turbdiff_nml

Parameter	Type	Default	Unit	Description	Scope
imode_turb	I	1		Mode of solving the TKE equation for	
				atmosph. layers:	
				0: diagnostic equation	
				1: prognostic equation (current version)	
				2: prognostic equation (intrinsically positive definite)	
imode_tran	I	0		Same as imode_turb but only for the transfer	
				layer	
icldm_turb	I	2		Mode of water cloud representation in	
				turbulence for atmosph. layers:	
				-1: ignoring cloud water completely (pure dry	
				scheme)	
				0: no clouds considered (all cloud water is	
				evaporated)	
				1: only grid scale condensation possible	
				2: also sub grid (turbulent) condensation	
				considered	
icldm_tran	I	2		Same as <i>icldm_turb</i> but only for the transfer	
				layer	
itype_weld	Ι	2		type of water cloud diagnosis within the	icldm_turb=2 or
				turbulence scheme:	icldm_tran=2
				1: employing a scheme based on relative	
				humitidy	
				2: employing a statistical saturation adjustment	
itype_sher	I	0		Type of shear forcing used in turbulence:	
				0: only vertical shear of horizontal wind	
				1: previous plus horizontal shear correction	
				2: previous plus shear from vertical velocity	
				3: same as option 1, but (when combined with	
				Itkeshs=.TRUE.) scaling of coarse-grid	
				horizontal shear production term with $\frac{1}{\sqrt{Ri}}$	

Parameter	Type	Default	Unit	Description	Scope
ltkeshs	П	FALSE.		Include correction term for coarse grids in	itype_sher ≥ 1
				horizontal shear production term (needed at	
				non-convection-resolving model resolutions in	
				order to get a non-negligible impact)	
ltkesso	ı	FALSE.		Consider TKE-production by sub grid SSO	$inwp_sso = 1$
				wakes	
ltkecon	П	FALSE.		Consider TKE-production by sub grid	$inwp_conv = 1$
				convective plumes (inactive)	
ltkeshs	L	.FALSE.		Consider TKE-production by separated	
				horizontal shear eddies (inactive)	
ltmpcor	ı	.FALSE.		Consider thermal TKE sources in enthalpy	
				equation	
lsflend	Γ	TRUE.		Use lower flux condition for vertical diffusion	
				calculation (TRUE) instead of a lower	
				concentration condition (FALSE)	
lexpcor	L	.FALSE.		Explicit corrections of implicitly calculated	
				vertical diffusion of non-conservative scalars	
				that are involved in sub grid condensation	
				processes	
tur_len	$_{ m R}$	500.0	m	Asymptotic maximal turbulent distance	
				$(\kappa * tur_len \text{ is the integral turbulent master})$	
				length scale)	
pat-len	$_{ m R}$	100.0	m	Effective length scale of thermal surface	
				patterns controlling TKE-production by sub	
				grid kata/ana-batic circulations. In case of	
				$pat_len = 0$, this production is switched off.	
c_diff	$_{ m R}$	0.2		Length scale factor for vertical diffusion of	
				TKE. In case of c - $diff = 0$, TKE is not	
				diffused vertically.	

Parameter	Type	Default	Unit	Description S	Scope
a_stab	R	0.0	1	Factor for stability correction of turbulent	
				length scale. In case of $a_stab = 0$, the	
				turbulent length scale is not reduced for stable	
				stratification.	
a_hshr	R	0.20	П	Length scale factor for the separated horizontal 1-	ltkeshs=.TRUE.
				shear mode. In case of $a_hshr = 0$, this shear	
				mode has no effect.	
tkhmin	$_{ m R}$	0.75	$ m^2/s $	Scaling factor for minimum vertical diffusion	
				coefficient (proportional to $1/\sqrt{Ri}$) for heat	
				and moisture	
tkmmin	$_{ m R}$	0.75	$ m^2/s $	Scaling factor for minimum vertical diffusion	
				coefficient (proportional to $1/\sqrt{Ri}$) for	
				momentum	
itype_synd	I	2		Type of diagnostics of synoptic near surface	
				variables:	
				1: Considering the mean surface roughness of a	
				grid box	
				2: Considering a fictive surface roughness of a	
				SYNOP lawn	
rlam_heat	R	1.0	_	Scaling factor of the laminar boundary layer	
				for heat (scalars). The larger rlam heat, the	
				larger is the laminar resistance.	
rat_sea	$_{ m R}$	10.0	П	Ratio of laminar scaling factors for scalars over	
				sea and land. The larger rat_sea, the larger is	
				the laminar resistance for a sea surface	
				compared to a land surface.	
tkesmot	R	0.15	П	Time smoothing factor within $[0,1]$ for TKE.	
				In case of $tkesmot = 0$, no smoothing is active.	
fresmot	$_{ m R}$	0.0	Н	Vertical smoothing factor within $[0,1]$ for TKE	
				forcing terms. In case of $fremot = 0$, no	
		_		smoothing is active.	

Parameter	Type	Default	Unit	Description	Scope
imode_frcsmot	Ι	П		1 = apply vertical smoothing (if fresmot>0)	
				uniformity over time globe 3 - moderist routing consorthing to the tennion	
				z = restrict Vertical smoothing to the tropics	
				(reduces the moist bias in the tropics while	
				avoiding adverse effects on NWP skill scores in	
				the extratropics)	
impl_s	R	1.20	1	Implicit weight near the surface (maximal	
				value)	
$impl_t$	R	0.75	1	Implicit weight near top of the atmosphere	
				(minimal value)	
lconst_z0	ı	FALSE.		TRUE: horizontally homogeneous roughness	
				length z0	
$const_z0$	Я	0.001	m	value for horizontally homogeneous roughness	lconst_z0=.TRUE.
				length z0	
$itype_tran$	П	2		type of surface-atmosphere transfer	
lprfcor	L	FALSE.		using the profile values of the lowest main level	
				instead of the mean value of the lowest layer	
				for surface flux calculations	
lnonloc	Г	FALSE.		nonlocal calculation of vertical gradients used	
				for turbul. diff.	
lcpfluc	Г	FALSE.		consideration of fluctuations of the heat	
				capacity of air	

Defined and used in: src/namelists/mo_turbdiff_nml.f90

4.4.32 vdiff_nml

Parameter	Type	Default	Unit	Description	Scope	
lsfc_mon_flux	Т	TRUE.		Switch on surface momentum flux.	lvdiff = .TRUE.	
lsfc_heat_flux	L	TRUE.		Switch on surface sensible and latent heat flux.	lvdiff = .TRUE.	

Defined and used in: src/namelists/mo_vdiff_nml.f90

4.5 Ocean-specific namelist parameters

4.5.1 ocean_physics_nml

Parameter	Type	Default	Unit	Default Unit Description	Scope
i_sea_ice	I	1		0: No sea ice, 1: Include sea ice	
				.FALSE.: compute drag only	
richardson_factor_tracer	I	0.5e-5	s/m		
richardson_factor_veloc	I	0.5e-5	s/m		
l_constant_mixing	L	.FALSE.			

4.5.2 sea_ice_nml (relevant if run_nml/iforcing=2 (ECHAM))

Parameter	Type	Default	Unit	Description	Scope
i_ice_therm	I	2		Switch for thermodynamic model:	In an ocean run
				1: Zero-layer model	i_sea_ice must be $i=1$.
				2: Two layer Winton (2000) model	In an atmospheric run
				3: Zero-layer model with analytical forcing (for	the ice surface type
				diagnostics)	must be defined.
				4: Zero-layer model for atmosphere-only runs	
				(for diagnostics)	
i_ice_dyn	П	0		Switch for sea-ice dynamics:	
				0: No dynamics	
				1: FEM dynamics (from AWI)	
i_ice_albedo	Н	1		Switch for albedo model. Only one is	
				implemented so far.	

Parameter	Type	Default Unit	Unit	Description	Scope
i_Qio_type	I	2		Switch for ice-ocean heat-flux calculation	Defaults to 1 when
				method:	i_ice_dyn=0 and 2
				1: Proportional to ocean cell thickness (like	otherwise.
				MPI-OM)	
				2: Proportional to speed difference between ice	
				and ocean	
kice	I	1		Number of ice classes (must be one for now)	
hnull	R	0.5	m	Hibler's h_0 parameter for new-ice growth.	
hmin	R	0.05	m	Minimum sea-ice thickness allowed.	
ramp_wind	R	10	days	Number of days it takes the wind to reach	
				correct strength. Only used at the start of an	
				OMIP/NCEP simulation (not after restart).	

4.6 Namelist parameters for testcases (NAMELIST_ICON)

The ICON model code includes several experiments, so-called test cases, for the shallow water model as well as the 3-dimensional atmosphere. Depending on the specified experiment, initial conditions and boundary conditions are computed internally.

4.6.1 ha_testcase_nml (Scope: ltestcase=.TRUE. and iequations=[0,1,2] in run_nml)

Parameter	Type	Default	Unit	efault Unit Description	Scope
ctest_name	C	'JWw'		Name of test case:	
				'SW_GW': gravity wave	lshallow_water=.TRUE.
				'USBR': unsteady solid body rotation	lshallow_water=.TRUE.
				'Will_2': Williamson test 2	lshallow_water=.TRUE.
				'Will_3': Williamson test 3	lshallow_water=.TRUE.
				'Will_5': Williamson test 5	lshallow_water=.TRUE.
				'Will_6': Williamson test 6	lshallow_water=.TRUE.
				'GW': gravity wave $(nlev=20 only!)$	lshallow_water=.FALSE.

Parameter	Type	Default	Unit	Description	Scope
	10			'LDF': local diabatic forcing test without	lshallow_water=.FALSE.
				physics	and iforcing=4
				'LDF-Moist': local diabatic forcing test with	lshallow_water=.FALSE.,
				physics initalised with zonal wind field	and iforcing=5
				'HS': Held-Suarez test	lshallow_water=.FALSE.
				'JWs': Jablonowski-Will. steady state	lshallow_water=.FALSE.
				'JWw': Jablonowski-Will. wave test	lshallow_water=.FALSE.
				'JWw-Moist': Jablonowski-Will. wave test	lshallow_water=.FALSE.
				including moisture	
				'APE': aqua planet experiment	lshallow_water=.FALSE.
				'MRW': mountain induced Rossby wave	lshallow_water=.FALSE.
				'MRW2': modified mountain induced Rossby	lshallow_water=.FALSE.
				wave	
				'PA': pure advection	lshallow_water=.FALSE.
				'SV': stationary vortex	lshallow_water=.FALSE.,
					ntracer = 2
				'DF1': deformational flow test 1	
				'DF2': deformational flow test 2	
				'DF3': deformational flow test 3	
				'DF4': deformational flow test 4	
				'RH': Rossby-Haurwitz wave test	lshallow_water=.FALSE.
rotate_axis_deg	$_{ m R}$	0.0	deg	Earth's rotation axis pitch angle	ctest_name= 'Will_2',
					'Will_3', 'JWs', 'JWw',
gw_brunt_vais	R	0.01	1/s	Brunt Vaisala frequency	ctest_name= 'GW'
gw-u0	$_{ m R}$	0.0	s/m	zonal wind parameter	ctest_name= 'GW'
gw_lon_deg	R	180.0	deg	longitude of initial perturbation	ctest_name= 'GW'
gw_lat_deg	$_{ m R}$	0.0	deg	latitude of initial perturbation	ctest_name= 'GW'
jw-uptb	R	1.0	s/m	amplitude of the wave pertubation	ctest_name= 'JWw'
			(3)		
mountctr_lon_deg	R	0.06	deg	longitude of mountain peak	ctest_name='MRW(2)'

Parameter	Type	Default	Unit	Description	Scope
mountctr_lat_deg	R	30.0	deg	latitude of mountain peak	ctest_name='MRW(2)'
${ m mountctr_height}$	$_{ m R}$	2000.0	m	mountain height	ctest_name= 'MRW(2)'
mountctr_half_width	R	0.0000	m	mountain half width	ctest_name= 'MRW(2)'
mount_u0	R	20.0	$\mathrm{s/m}$	wind speed for MRW cases	ctest_name= 'MRW(2)'
rh_wavenum	I	4		wave number	ctest_name= 'RH'
rh_init_shift_deg	R	0.0	deg	pattern shift	ctest_name= 'RH'
ihs_init_type	I	1		Choice of initial condition for the Held-Suarez	ctest_name= 'HS'
				test. 1: the zonal state defined in the JWs test	
				case; other integers: isothermal state	
				(T=300 K, ps=1000 hPa, u=v=0.)	
lhs_vn_ptb	L	TRUE.		Add random noise to the initial wind field in	ctest_name= 'HS'
				the Held-Suarez test.	
$hs_vn_ptb_scale$	R	1.	$\mathrm{s/m}$	Magnitude of the random noise added to the	ctest_name= 'HS'
				initial wind field in the Held-Suarez test.	
lrh_linear_pres	Г	FALSE.		Initialize the relative humidity using a linear	ctest_name=
				function of pressure.	'JWw-Moist', 'APE',
					'LDF-Moist'
${ m rh}$ -at-1000hpa	R	0.75		relative humidity	ctest_name=
				0,1	'JWw-Moist', 'APE',
				at 1000 hPa	'LDF-Moist'
linit_tracer_fv	П	TRUE.		Finite volume initialization for tracer fields	ctest_name='PA'
ape_sst_case	C	'sst1'		SST distribution selection	ctest_name='APE'
				'sst1': Control experiment	
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst_qobs': Qobs SST distribution exp	
				'sst_ice': Control SST distribution with -1.8 C	
				above 64 N/S .	

Parameter	Type	Default	Unit	Default Unit Description	Scope
ildf_init_type	I	0		Choice of initial condition for the Local	ctest_name= 'LDF'
				diabatic forcing test. 1: the zonal state defined	
				in the JWs test case; other: isothermal state	
				(T=300 K, ps=1000 hPa, u=v=0.)	
ldf_symm	ı	TRUE.		Shape of local diabatic forcing:	ctest_name=
				.TRUE.: local diabatic forcing symmetric	'LDF', 'LDF-Moist'
				about the equator (at 0 N)	
				.FALSE.: local diabatic forcing asym. about	
				the equator (at 30 N)	

Defined and used in: src/testcases/mo_ha_testcases.f90

4.6.2 nh_testcase_nml (Scope: Itestcase=.TRUE. and iequations=3 in run_nml)

Scope	1													
Description S	ction	'zero': no orography	'bell': bell shaped mountain at 0E,0N	'schaer': hilly mountain at 0E,0N	'jabw': Initializes the full Jablonowski	Williamson test case.	'jabw_s': Initializes the Jablonowski	Williamson steady state test case.	'jabw_m': Initializes the Jablonowski	Williamson test case with a mountain instead	of the wind perturbation (specify	mount_height).	'mrw_nh': Initializes the full	Mountain-induced Rossby wave test case.
Unit														
Default	'jabw'													
Type	C													
Parameter	nh_test_name													

Type	Default	Unit	Description	Scope
			'mrw2_nh': Initializes the modified	
			mountain-induced Kossby wave test case. 'mwbr_const': Initializes the mountain wave	
			with two layers test case. The lower layer is	
			isothermal and the upper layer has constant	
			brunt valsala frequency. The interface has	
			constant pressure. 'PA': Initializes the pure advection test case.	
			' HS_nh ': Initializes the Held-Suarez test case.	
			At the moment with an isothermal atmosphere	
			at rest (T= 300 K, ps= 1000 hPa, u= v = 0 ,	
			topography=0.0).	
			'HS_jw': Initializes the Held-Suarez test case	
			with Jablonowski Williamson initial conditions	
			and zero topography.	
			' APE_nh ': Initializes the APE experiments.	
			With the jaby test case, including moisture.	
			'wk82': Initializes the Weisman Klemp test	$l_{\text{limited_area}} = TRUE.$
			case	
			'g_lim_area': Initializes a series of general	
			limited area test cases: itype_atmos_ana	
			determines the atmospheric profile,	
			itype-anaprof_uv determines the wind profile	
			and itype_topo_ana determines the topography	
			'dcmip_pa_12': Initializes Hadley-like	
			meridional circulation pure advection test case.	
			'dcmip_rest_200': atmosphere at rest test	lcoriolis = $.FALSE.$
			(Schaer-type mountain)	
			'dcmip_mw_2x': nonhydrostatic mountain	lcoriolis = .FALSE.
			waves triggered by Schaer-type mountain	

Parameter	Type	Default	Unit	Description	Scope
				'dcmip_gw_31': nonhydrostatic gravity waves triggered by a localized perturbation (nonlinear)	
				'dcmip_gw_32': nonhydrostatic gravity waves triggered by a localized perturbation (linear)	l_limited_area =.TRUE. and lcoriolis = .FALSE.
				'dcmip_tc_51': tropical cyclone test case with 'simple physics' parameterizations (not yet implemented)	lcoriolis = .TRUE.
				'dcmip_tc_52': tropical cyclone test case with with full physics in Aqua-planet mode	lcoriolis = .TRUE.
				'CBL': convective boundary layer simulations for LES package on torus (doubly periodic) grid	is_plane_torus=
dn-wj	Я	1.0	m/s	amplitude of the u-perturbation in jabw test case	nh_test_name='jabw'
u0_mrw	R	20.0	m/s	wind speed for mrw(2) and mwbr_const cases	nh_test_name= 'mrw(2)_nh' and 'mwbr_const'
mount_height_mrw	R	2000.0	m	maximum mount height in mrw(2) and mwbr_const	nh_test_name= 'mrw(2)_nh' and 'mwhr const'
mount_half_width	R	1500000.0	ш	half width of mountain in $mrw(2)$, $mwbr_const$ and bell	nh_test_name= 'mrw(2)_nh', 'mwbr_const' and 'bell'
mount_lonctr_mrw_deg	R	90.	deg	lon of mountain center in $mrw(2)$ and $mwbr_const$	nh_test_name= 'mrw(2)_nh' and 'mwbr_const'
mount_latetr_mrw_deg	R	30.	deg	lat of mountain center in mrw(2) and mwbr_const	nh_test_name= 'mrw(2)_nh' and 'mwbr_const'
temp_i_mwbr_const	R	288.0	X	temp at isothermal lower layer for mwbr_const case	nh_test_name= 'mwbr_const'

Parameter	Type	Default	Unit	Description	Scope
p_int_mwbr_const	R	70000.	Pa	pres at the interface of the two layers for	nh_test_name=
				mwbr_const case	'mwbr_const'
bruntvais_u_mwbr_const	R	0.025	1/s	constant brunt vaissala frequency at upper	nh_test_name=
				layer for mwbr_const case	'mwbr_const'
mount_height	R	100.0	m	peak height of mountain	nh_test_name= 'bell'
layer_thickness	R	0.666-	m	thickness of vertical layers	If layer_thickness < 0 ,
					the vertical level
					distribution is read in
					from externally given
					HYB_PARAMS_XX.
n_flat_level	Ι	2		level number for which the layer is still flat and	layer_thickness > 0
				not terrain-following	
0n-du	R	0.0	s/m	initial constant zonal wind speed	$nh_{test_name} = bell'$
nh_t0	$_{ m R}$	300.0	K	initial temperature at lowest level	$nh_test_name = 'bell'$
nh_brunt_vais	$_{ m R}$	0.01	1/s	initial Brunt-Vaisala frequency	$nh_test_name = 'bell'$
torus_domain_length	\mathbb{R}	1000000.0	m	length of slice domain	$nh_test_name = 'bell',$
					lplane=.TRUE.
rotate_axis_deg	R	0.0	deg	Earth's rotation axis pitch angle	nh_test_name= 'PA'
lhs_nh_vn_ptb	П	TRUE.		Add random noise to the initial wind field in	nh_test_name= 'HS_nh'
				the Held-Suarez test.	
lhs_fric_heat	Γ	FALSE.		add frictional heating from Rayleigh friction in	nh_test_name= 'HS_nh'
				the Held-Suarez test.	
hs_nh_vn_ptb_scale	R	1.	$\mathrm{s/m}$	Magnitude of the random noise added to the	nh_test_name= 'HS_nh'
				initial wind field in the Held-Suarez test.	
${ m rh}$ -at_1000hpa	R	0.7		relative humidity at 1000 hPa	nh_test_name= 'jabw',
					nh_test_name= 'mrw'
qv_max	\mathbb{R}	20.e-3	m kg/kg	specific humidity in the tropics	nh_test_name= 'jabw',
					nh_test_name= 'mrw'

Parameter	Type	Default	Unit	Description	Scope
ape_sst_case	C	'sst1'		SST distribution selection	nh_test_name='APE_nh'
				'sst1': Control experiment	
				'sst2': Peaked experiment	
				'sst3': Flat experiment	
				'sst4': Control-5N experiment	
				'sst_qobs': Qobs SST distribution exp.	
linit_tracer_fv	Γ	TRUE.		Finite volume initialization for tracer fields	pure advection tests,
					only
lcoupled_rho	Γ	.FALSE.		Integrate density equation 'offline'	pure advection tests,
					only
qv_max_wk	В	0.014	${ m Kg/kg}$	Kg/kg maximum specific humidity near	nh_test_name='wk82'
				the surface, range 0.012 - 0.016	
				used to vary the buoyancy	
u_infty_wk	R	20.	s/m	zonal wind at infinity height	nh_test_name='wk82'
				range 0 45.	
				used to vary the wind shear	
bub_amp	R	2.	K	maximum amplitud of the thermal	nh_test_name='wk82'
				perturbation	
bubctr_lat	Я	0.	\deg	latitude of the center of the thermal	nh_test_name='wk82'
				perturbation	
bubctr_lon	Я	.06	\deg	longitude of the center of the thermal	nh_test_name='wk82'
				perturbation	
bubctr_z	$_{ m R}$	1400.	m	height of the center of the thermal perturbation	$nh_test_name=`wk82'$
bub_hor_width	R	10000.	m	horizontal radius of the thermal perturbation	nh_test_name='wk82'
bub_ver_width	В	1400.	m	vertical radius of the thermal perturbation	nh_test_name='wk82'
itype_atmo_ana	I	1		kind of atmospheric profile:	$nh_test_name =$
				1 piecewise N constant layers	'g_lim_area'
				2 piecewise polytropic layers	

Parameter	Type	Default	Unit	Description	Scope
itype_anaprof_uv	I	1		kind of wind profile:	nh_test_name=
				1 piecewise linear wind layers	'g_lim_area'
				2 constant zonal wind	
				3 constant meridional wind	
itype_topo_ana	I	1		kind of orography:	nh_test_name=
				1 schaer test case mountain	'g_lim_area'
				2 gaussian_2d mountain	
				3 gaussian_3d mountain	
				any other no orography	
nlayers_nconst	I	1		Number of the desired layers with a constant	nh_test_name=
				Brunt-Vaisala-frequency	'g_lim_area' and
					itype_atmo_ana=1
p_base_nconst	$_{ m R}$	100000.	Pa	pressure at the base of the first N constant	nh_test_name=
				layer	'g_lim_area' and
					itype_atmo_ana=1
$theta0_base_nconst$	m R	288.	K	potential temperature at the base of the first N	nh_test_name=
				constant layer	'g_lim_area' and
					itype_atmo_ana=1
h_nconst	R(nlayers	0.,	m	height of the base of each of the N constant	nh_test_name=
	-nconst)	1500.,		layers	'g_lim_area' and
		12000.			itype_atmo_ana=1
$N_{-nconst}$	R(nlayers	0.01	1/s	Brunt-Vaisala-frequency at each of the N	nh_test_name=
	-nconst)			constant layers	'g_lim_area' and
					itype_atmo_ana=1
rh_nconst	R(nlayers	0.5	%	relative humidity at the base of each N	nh_test_name=
	-nconst)			constant layers	'g_lim_area' and
					itype_atmo_ana=1
$ m rhgr_nconst$	R(nlayers	0.	%	relative humidity gradient at each of the N	nh_test_name=
	_nconst)			constant layers	'g_lim_area' and
					itype_atmo_ana=1

Parameter	Type	Default	Unit	Description	Scope
nlayers_poly	I	2		Number of the desired layers with constant	nh_test_name=
				gradient temperature	'g_lim_area' and
					itype_atmo_ana=2
p_base_poly	$_{ m R}$	100000.	Pa	pressure at the base of the first polytropic layer	nh_test_name=
					'g_lim_area' and
					itype_atmo_ana=2
h-poly	R(nlayers	0.,	m	height of the base of each of the polytropic	nh_test_name=
	_poly)	12000.		layers	'g_lim_area' and
					itype_atmo_ana=2
t_{-} poly	R(nlayers	288.,	K	temperature at the base of each of the	nh_test_name=
	_poly)	213.		polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
rh_poly	R(nlayers	0.8, 0.2	%	relative humidity at the base of each of the	nh_test_name=
	_poly)			polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
rhgr-poly	R(nlayers	5.e-5, 0.	%	relative humidity gradient at each of the	nh_test_name=
	_poly)			polytropic layers	'g_lim_area' and
					itype_atmo_ana=2
nlayers_linwind	Ι	2		Number of the desired layers with constant U	nh_test_name=
				gradient	'g_lim_area' and
					itype_anaprof_uv=1
h_linwind	R(nlayers	0., 2500.	m	height of the base of each of the linear wind	nh_test_name=
	_linwind)			layers	'g-lim-area' and
					itype_anaprof_uv=1
u_linwind	R(nlayers	5, 10.	$\mathrm{s/m}$	zonal wind at the base of each of the linear	nh_test_name=
	_linwind)			wind layers	'g_lim_area' and
					itype_anaprof_uv=1
ugr_linwind	R(nlayers	0., 0.	1/s	zonal wind gradient at each of the linear wind	nh_test_name=
	_linwind)			layers	'g_lim_area' and
					itype_anaprof_uv=1

Parameter	Type	Default	Unit	Description	Scope
vel_const	R	20.	s/m	constant zonal/meridional wind	nh_test_name=
				$(itype_anaprof_uv=2,3)$	'g_lim_area' and
					itype_anaprof_uv=2,3
${ m mount_lonc_deg}$	$_{ m R}$.06	deg	longitud of the center of the mountain	$nh_test_name =$
					'g_lim_area'
mount_latc_deg	R	0.	deg	latitud of the center of the mountain	$nh_test_name =$
					'g_lim_area'
schaer_h0	\mathbf{R}	250.	m	h0 parameter for the schaer mountain	$nh_test_name =$
					'g_lim_area' and
					itype_topo_ana=1
schaer_a	\mathbf{R}	5000.	m	-a- parameter for the schaer mountain,	$nh_test_name =$
				also half width in the north and south side of	'g_lim_area' and
				the finite ridge to round the sharp edges	$itype_topo_ana=1,2$
schaer_lambda	\mathbf{R}	4000.	m	lambda parameter for the schaer mountain	$nh_test_name =$
					'g_lim_area' and
					itype_topo_ana=1
lshear_dcmip	Г	FALSE		run demip_mw_2x with/without vertical wind	$nh_test_name =$
				shear	'dcmip_mw_2x'
				FALSE: dcmip_mw_21: non-sheared	
				TRUE : dcmip_mw_22: sheared	
halfwidth_2d	$_{ m R}$	10000.	m	half lenght of the finite ridge in the north-south	$nh_test_name =$
				direction	'g_lim_area' and
					$itype_topo_ana=1,2$
m_height	$_{ m R}$	1000.	m	height of the mountain	$nh_test_name =$
					'g_lim_area' and
					itype_topo_ana=2,3
m_width_x	R	5000.	m	half width of the gaussian mountain in the	nh_test_name=
				east-west direction	'g_lim_area' and
				half width in the north-south direction in the rounding of the finite ridge (gaussian 2d)	itype_topo_ana=2,3
		_		rounding of the finite ridge (gaussian_2d)	

4.7. EXTERNAL DATA 134

Parameter	Type	Default	Unit	Description	Scope
m_width_y	\mathbf{R}	5000.	m	half width of the gaussian mountain in the	nh_test_name=
				north-south direction	'g_lim_area' and
					itype_topo_ana=2,3
gw_u0	В	0.	$\mathrm{s/m}$	maximum amplitude of the zonal wind	nh_test_name=
					'dcmip_gw_3X'
gw_clat	R	90.	\deg	Lat of perturbation center	nh_test_name=
					'dcmip_gw_3X'
gw-delta-temp	Я	0.01	K	maximum temperature perturbation	nh_test_name=
					'dcmip_gw_32'
ucbl(2)	R	0:0	$\mathrm{s/m}$	to prescribe initial zonal velocity profile for	nh_test_name=CBL
			and	convective boundary layer simulations where	
			1/s	u_cbl(1) sets the constant and u_cbl(2) sets the	
				vertical gradient	
vcbl(2)	R	0:0	$\mathrm{s/m}$	to prescribe initial meridional velocity profile	nh_test_name=CBL
			and	for convective boundary layer simulations	
			1/s	where $vcbl(1)$ sets the constant and $vcbl(2)$	
				sets the vertical gradient	
$ hinspace{th_cbl(2)}$	R	290:0:006	K	to prescribe initial potential temperature	nh_test_name=CBL
			and	profile for convective boundary layer	
			m K/m	simulations where $th_cbl(1)$ sets the constant	
				and $th_cbl(2)$ sets the gradient	

Defined and used in: src/testcases/mo_nh_testcases.f90

4.7 External data

4.7.1 extpar_nml (Scope: itopo=1 in run_nml)

Parameter	Type	Default Unit		Description	Scope
itopo	I	0		0: analytical topography/ext. data	
				1: topography/ext. data read from file	
$n_iter_smooth_topo$	$I(n_{-dom})$	0		iterations of topography smoother	itopo = 1
fac_smooth_topo	R	0.015625		pre-factor of topography smoother	n_iter_smooth_topo > 0
heightdiff_threshold	$ R(n_{-}dom) $ 3000.	3000.	m	height difference between neighboring grid	
				points above which additional local nabla2	
				diffusion is applied	
l_emiss	Γ	TRUE.		read and use external surface emissivity map	itopo = 1
extpar_filename	C			Filename of external parameter input file,	
				default: " <path>extpar_<gridfile>". May</gridfile></path>	
				contain the keyword <pre><pre>contain the keyword <pre><pre>contain</pre></pre></pre></pre>	
				substituted by model_base_dir.	
extpar_varnames_map_	Ö			Filename of external parameter dictionary,	
file				This is a text file with two columns separated	
				by whitespace, where left column: NetCDF	
				name, right column: GRIB2 short name. It is	
				required, if external parameter are read from a	
				file in GRIB2 format.	

Defined and used in: src/namelists/mo_extpar_nml.f90

4.8 External packages

4.9 Information on vertical level distribution

If no vertical sleve coordinate is chosen (ivctype /=2), the hydrostatic and nonhydrostatic models need hybrid vertical level information to generate the terrain following coordinates. The hybrid level specification is stored in <icon home>/hyb-params/HYB_PARAMS_<nlev>. The hydrostatic model assumes to get pressure based coordinates, the nonhydrostatic model expects height based coordinates. For further

Discussion

Document last edited by addyourname on insertdate Document last edited by S Gruber on 08-01-2014.

References 138

References

Jablonowski, C. and D. L. Williamson, 2006. A baroclinic instability test case for atmospheric model dynamical cores. *Quart. J. Roy. Meteor. Soc.*, 132, 2943–2975.

Zängl, G., D. Reinert, M.-P. Rípodas, and M. Baldauf, 2014. The ICON (ICOsahedral Nonhydrostatic) modelling framework of DWD and MPI-M: Description of the nonhydrostatic dynamical core. Q. J. R. Meteorol. Soc., in press.