Implementation of RL Algorithms in OpenAl Gym

Douglas Trajano, Sirleno Vidaletti Master's Degree in Computer Science Pontifical Catholic University of Rio Grande do Sul - PUCRS

Problem Statement

We want to do a practical project that implements some reinforcement learning algorithms that we had learned in class and some variants of them.

The following is a list of the algorithms we will implement:

- Q-Learning
- Deep Q-Network (DQN)
 - Experience Replay
 - Prioritized Experience Replay

Q-Learning

Q-Learning is a model-free learning technique that can be used to find the optimal action-selection policy using a Q function.

Q-learning is an off-policy TD control algorithm. The learned action-value function, Q, directly approximates q_{*}, the optimal action-value function, independent of the policy being followed.

Deep Q-Network (DQN)

The **Deep Q-Network (DQN)** combines Q-Learning with deep neural networks to let RL work for complex, high-dimensional environments, like video games, or robotics.

A critical component of DQN-style algorithms is memory buffer.

In this project we will develop two approaches: **Experience Replay** and **Prioritized Experience Replay**.

Exploration vs Exploitation

The exploration-exploitation trade-off is a well-known problem in decision-making systems.

Exploration: Select random action.

Exploitation: Select best known action.

In this project we will implements the ϵ -greedy policy in our algorithms.

Environment

State observation is composed by RGB-arrays (images) representing the game's screen.

Available actions:

- do nothing
- jump

Environment

State observation is composed by a vector with 8 elements.

Available actions:

- do nothing
- fire left orientation engine
- fire main engine
- fire right orientation engine

Experiments

We hope to test the reinforcement learning algorithms in the Lunar Lander OpenAl Gym Environment as explained earlier.

At the end of the experiment, we will provide a report with the results of the experiments and the performance of each algorithm.

Experiment #1

Q-Learning

Experiment #2

Deep Q-Network (Experience Replay)

Experiment #3

Deep Q-Network (Prioritized Experience Replay)

Questions?