FoP 3B Part II

Dr Budhika Mendis (b.g.mendis@durham.ac.uk)
Room 151

Lecture 10: Polarisation in Dielectrics

Dielectrics in capacitors

$$C = \frac{Q}{V} = \epsilon_0 \epsilon_r \frac{A}{d}$$
 capacitor plate area plate area plate separation dielectric constant

Material	Dielectric Constant	Material	Dielectric Constant
Vacuum	1	Benzene	2.28
Helium	1.000065	Diamond	5.7
Neon	1.00013	Salt	5.9
Hydrogen	1.00025	Silicon	11.8
Argon	1.00052	Methanol	33.0
Air (dry)	1.00054	Water	80.1
Nitrogen	1.00055	Ice (-30° C)	99
Water vapor (100° C)	1.00587	KTaNbO ₃ (0° C)	34,000

BaTiO₃ Ferroelectric PbTiO₃ 'perovskites'

- -Experimentally it is found that inserting a dielectric in a capacitor causes a smaller potential drop across the plates (charge is however conserved).
- -This is due to *polarisation* of the dielectric.

Aim of today's lecture

Definition: Dielectrics are insulator materials that can be polarised by an applied electric field.

► Develop the electrostatic framework used for describing dielectric media

Key concepts:

- -Polarisation in dielectrics
- -Microscopic vs macroscopic electric fields

Definition of polarisation

More 'complex' polarisations:

Unpolarised atom Electric field OFF

Polarised atom Electric field ON

Electric dipole moment defined by:

$$|\mathbf{\mu}| = qd$$

The direction of μ is from negative to positive charge.

Water molecule: *permanent* electric dipole

Torque due to electric field: $\tau = \mu \times E$

Potential energy due to electric field: $U = - \mu \cdot \mathbf{E}$

Dielectric media in an electric field (e.g. capacitor)

Electric field OFF

Electric field ON

- -Torque on permanent dipoles rotate them to the minimum energy configuration.
- -Define polarisation **P** as dipole moment per unit volume, i.e. $\mathbf{P} = N\mathbf{\mu}$, where *N* is the number density of dipoles.

Macroscopic electric field

Electric field due to a single dipole is given by*:

$$\mathbf{E}(\mathbf{r}) = \frac{3(\mathbf{\mu} \cdot \mathbf{r})\mathbf{r} - r^2\mathbf{\mu}}{4\pi\epsilon_o r^5}$$

For *uniform* polarisation **P** the collective effect of all dipoles can be modelled by a surface charge density (σ) *:

$$\sigma = \mathbf{P} \cdot \hat{\mathbf{n}} \qquad \text{Unit surface}$$
normal vector

A depolarisation field is therefore present:

$$E_1 = -\frac{\sigma}{\epsilon_o}$$
 (Gauss' law)

Internal field is $(E_{\text{ext}} - |E_1|)$.

* See for example Griffiths, *Introduction to Electrodynamics*, Chapters 3, 4 (non-examinable)

Macroscopic vs microscopic fields

 E_1 is a *macroscopic* electric field 'smoothed' over many dipoles. The local *microscopic* field at an individual dipole can however defer significantly from E_1 .

The polarisability (α) of a single dipole is defined as:

Q: What is the local electric field at a dipole?

Q: How do you calculate polarisability? (Clausius-Mossotti relation- next lecture)

Local electric field \mathbf{E}_{ext} split **Atomistic** Continuum Cavity split $\mathbf{E_3}$

Local electric field $\mathbf{E}_{local} = (\mathbf{E}_{ext} + \mathbf{E}_1) + \mathbf{E}_2 + \mathbf{E}_3$

Lorentz (E₂) and atomistic (E₃) fields

Lorentz field is given by*:

$$\mathbf{E}_2 = \frac{\mathbf{P}}{3\epsilon_o}$$

Atomistic field is given by:

$$\mathbf{E}_{3} = \sum_{\text{dipoles } i} \frac{3(\mathbf{\mu}_{i} \cdot \mathbf{r}_{i})\mathbf{r}_{i} - r_{i}^{2}\mathbf{\mu}_{i}}{4\pi\epsilon_{o}r_{i}^{5}}$$
$$= \mu \sum_{i} \frac{3x_{i}^{2} - r_{i}^{2}}{4\pi\epsilon_{o}r_{i}^{5}} = 0$$

For polarisation along *x* and *cubic* crystal.

... only the Lorentz field alters the microscopic field from the macroscopic field.

* See for example Griffiths, *Introduction to Electrodynamics*, Chapter 4 (non-examinable)

Local electric field

Local electric field $\mathbf{E}_{local} = (\mathbf{E}_{ext} + \mathbf{E}_1) + \mathbf{E}_2 + \mathbf{E}_3$

$$E_1 = -\sigma/\epsilon_0$$
, $E_2 = P/3\epsilon_0$, $E_3 = 0$ gives:

$$\mathbf{E}_{\text{local}} = \mathbf{E}_{\text{ext}} - \frac{\sigma}{\epsilon_o} + \frac{P}{3\epsilon_o}$$