$footline[frame \ number] \ text \ margin \ left=20pt, text \ margin \ right=20pt \ \ structurefg=minesste$

INFORMED SEARCH ALGORITHMS

Chapter 4, Sections 1–2

Outline

- ♦ Best-first search
- \diamondsuit A* search
- \Diamond Heuristics

Review: Tree search

```
function Tree-Search (problem,
fringe) returns a solution, or failure
  fringe \leftarrow Insert(Make-Node(Initial-State[problem]),
fringe)
   loop do
      if fringe is empty then return
failure
     node \leftarrow \text{Remove-Front}(fringe)
           if Goal-Test[problem]
applied to STATE(node) succeeds re-
turn node
     fringe \leftarrow InsertAll(Expand(node,
problem), fringe)
```

A strategy is defined by picking the **order** of node expansion

Best-first search

Idea: use an evaluation function for each node

- estimate of "desirability"
- ⇒ Expand most desirable unexpanded node

Implementation:

fringe is a queue sorted in decreasing order of desirability

Special cases:

greedy search

A* search

Romania with step costs in km

Straight-line distance	
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Greedy search

Evaluation function h(n) (heuristic)

 $= \mbox{estimate of cost from } n \mbox{ to the} \\ \mbox{closest goal}$

E.g., $h_{\rm SLD}(n)=$ straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal

Complete??

<u>Complete</u>?? No-can get stuck in loops, e.g., with Oradea as goal,

 ${\sf lasi} \to {\sf Neamt} \to {\sf lasi} \to {\sf Neamt} \to \\ {\sf Complete} \ {\sf in} \ {\sf finite} \ {\sf space} \ {\sf with} \ {\sf repeated-state} \\ {\sf checking}$

Time??

Complete?? No-can get stuck in loops, e.g.,

 ${\sf lasi} \to {\sf Neamt} \to {\sf lasi} \to {\sf Neamt} \to \\ {\sf Complete} \ {\sf in} \ {\sf finite} \ {\sf space} \ {\sf with} \ {\sf repeated-state} \\ {\sf checking}$

<u>Time??</u> $O(b^m)$, but a good heuristic can give dramatic improvement

Space??

Complete?? No-can get stuck in loops, e.g.,

 ${\sf lasi} \to {\sf Neamt} \to {\sf lasi} \to {\sf Neamt} \to \\ {\sf Complete} \ {\sf in} \ {\sf finite} \ {\sf space} \ {\sf with} \ {\sf repeated-state} \\ {\sf checking}$

Time?? $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal??

Complete?? No-can get stuck in loops, e.g.,

 ${\sf lasi} \to {\sf Neamt} \to {\sf lasi} \to {\sf Neamt} \to \\ {\sf Complete} \ {\sf in} \ {\sf finite} \ {\sf space} \ {\sf with} \ {\sf repeated-state} \\ {\sf checking}$

Time?? $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$ —keeps all nodes in memory

Optimal?? No

A^* search

Idea: avoid expanding paths that are already expensive

Evaluation function f(n) = g(n) + h(n)

 $g(n) = \cos t$ so far to reach n

h(n) =estimated cost to goal from n

 $f(n) = {\it estimated total cost of path through} \ n \ {\it to goal}$

A* search uses an admissible heuristic i.e., $h(n) \leq h^*(n)$ where $h^*(n)$ is the **true** cost from n.

(Also require $h(n) \ge 0$, so h(G) = 0 for any goal G.)

E.g., $h_{\rm SLD}(n)$ never overestimates the actual road distance

Theorem: A* search is optimal

\mathbf{A}^* search example

$\overline{{f A}^*}$ search example

Optimality of A* (standard proof)

Suppose some suboptimal goal G_2 has been generated and is in the queue. Let n be an unexpanded node on a shortest path to an optimal goal G_1 .

$$f(G_2) = g(G_2)$$
 since $h(G_2) = 0$
> $g(G_1)$ since G_2 is suboptimal
 $\geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion

Optimality of A* (more useful)

Lemma: A^* expands nodes in order of increasing f value*

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers)

Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Complete??

Time??

<u>Time</u>?? Exponential in [relative error in $h \times length$ of soln.]

Space??

<u>Time</u>?? Exponential in [relative error in $h \times length of soln.]$

Space?? Keeps all nodes in memory

Optimal??

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

<u>Time??</u> Exponential in [relative error in $h \times length of soln.]$

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

 A^* expands all nodes with $f(n) < C^*$

 A^* expands some nodes with $f(n) = C^*$

 A^* expands no nodes with $f(n) > C^*$

Proof of lemma: Consistency

A heuristic is consistent if

$$h(n) \leq c(n,a,n') + h(n') \xrightarrow[c(n,a,n')]{h(n)}$$
 If h is consistent, we have
$$f(n') = g(n') + h(n')$$

$$= g(n) + c(n,a,n') + h(n')$$

$$\geq g(n) + h(n)$$

$$= f(n)$$

I.e., f(n) is nondecreasing along any path.

Admissible heuristics

E.g., for the 8-puzzle:

```
h_1(n) = \text{number of misplaced tiles}
```

$$h_2(n) = \mathsf{total} \ \mathsf{Manhattan} \ \mathsf{distance}$$

(i.e., no. of squares from desired

location of each tile)

$$\frac{h_1(S)}{h_2(S)} = ??$$

Admissible heuristics

E.g., for the 8-puzzle:

 $h_1(n) = \text{number of misplaced tiles}$

 $h_2(n) = \text{total Manhattan distance}$

(i.e., no. of squares from desired

location of each tile)

$$\frac{h_1(S)}{h_2(S)}$$
 = ?? 6 $\frac{h_2(S)}{h_2(S)}$ = ?? 4+0+3+3+1+0+2+1 = 14

Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

$$d=14$$
 IDS = 3,473,941 nodes $A^*(h_1)=539$ nodes $A^*(h_2)=113$ nodes $d=24$ IDS $\approx 54,000,000,000$ nodes $A^*(h_1)=39,135$ nodes $A^*(h_2)=1,641$ nodes

Given any admissible heuristics h_a , h_b ,

$$h(n) = \max(h_a(n), h_b(n))$$

is also admissible and dominates h_a , h_b

Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the

problem

If the rules of the 8-puzzle are relaxed so that a tile can move **anywhere**, then $h_1(n)$ gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Key point: the optimal solution cost of a relaxed problem is no greater than the optimal solution cost of the real problem

Relaxed problems contd.

Well-known example: travelling salesperson problem (TSP)

Find the shortest tour visiting all cities exactly once

Minimum spanning tree can be computed in ${\cal O}(n^2)$

and is a lower bound on the shortest (open) tour

Summary

Heuristic functions estimate costs of shortest paths

Good heuristics can dramatically reduce search cost

Greedy best-first search expands lowest h

- incomplete and not always optimal

 A^* search expands lowest g + h

- complete and optimal
- also optimally efficient (up to tie-breaks, for forward search)

Admissible heuristics can be derived from exact solution of relaxed problems