Using Algebraic Geometry

With 0 Figures

Anakin Dey

Last Edited on 7/25/24 at 19:18

Contents

1	Introduction	1
	1.1 Polynomials and Ideals	1

Preface

At the time of writing this, I am starting my PhD at The Ohio State University. Currently a large part of my interests in algebra are about algorithms as they relate to polynomials and algebraic geometry. I've been doing a bunch of problems from *Ideals, Varieties, and Algorithms* [CLO15]. However, it seems that *Using Algebraic Geometry* [CLO05] moves through the material faster as it assumes you know more algebra. So I've moved onto working through this books as well as trying to comprehend Sturmfel's *Algorithms in Invariant Theory* [Str08].

Chapter 1

Introduction

1.1 Polynomials and Ideals

Exercise 1.1 (CLO05 1.1.1):

- 1. Show that $x^2 \in \langle x y^2, xy \rangle$ in k[x, y].
- 2. Show that $\langle x y^2, xy, y^2 \rangle = \langle x, y^2 \rangle$.
- 3. Is $\langle x y^2, xy \rangle = \langle x^2, xy \rangle$? Why or why not?

Proof:

- 1. We have that $x(x-y^2) + y(xy) = x^2 xy^2 + xy^2 = x^2$.
- 2. It suffices to check for generators. We have that $x + (-1)(y^2) = x y^2$, y(x) = xy, and $y^2 = y^2$ showing that $\langle x y^2, xy, y^2 \rangle \subseteq \langle x, y^2 \rangle$. Then $x y^2 + y^2 = x$ and $y^2 = y^2$ shows the reverse containment and overall the ideals are equal.
- 3. We already know from 1. that x^2 lives in $\langle x-y^2, xy \rangle$. Since xy=xy, we overall have that $\langle x^2, xy \rangle \subseteq \langle x-y^2, xy \rangle$. It remains to check if $x-y^2 \in \langle x^2, xy \rangle$. However, notice that every element of $\langle x^2, xy \rangle$ is divisible by x while $x-y^2$ is clearly not divisible by x. Thus $x-y^2 \notin \langle x^2, xy \rangle$ and the two ideals are not equal.

Bibliography

- [CLO05] D.A. Cox, J. Little, and D. O'Shea. *Using Algebraic Geometry*. Springer-Verlag, 2005. ISBN: 0387207066. DOI: 10.1007/b138611. URL: http://dx.doi.org/10.1007/b138611.
- [CLO15] D.A. Cox, J. Little, and D. O'Shea. *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra*. Undergraduate Texts in Mathematics. Springer International Publishing, 2015. ISBN: 9783319167213. URL: https://books.google.com/books?id=yL7yCAAAQBAJ.
- [Str08] Bernd Strumfels. *Algorithms in Invariant Theory*. Springer Vienna, 2008. ISBN: 9783211774175. DOI: 10.1007/978-3-211-77417-5. URL: http://dx.doi.org/10.1007/978-3-211-77417-5.