ELABORATO 1 - INTEGRALE

LO BRUTTO FABIO / MAIONE PAOLO

DEFINIZIONE DEL PROBLEMA

Si vuole progettare un algoritmo in OpenMP per risolvere l'integrale definito tra a e b di una funzione y = f(x) su p thread.

In particolare si utilizza l'infrastruttura S.C.o.P.E. per permette l'esecuzione del software in un ambiente parallelo. Tuttavia, a differenza degli elaborati MPI, il software è eseguibile anche su una macchina multicore locale.

DESCRIZIONE DELL'ALGORITMO

In particolare l'algoritmo implementato nel file *elaborato_1.c*, consiste nell'elaborazione dell'integrale parziale in parallelo con la **formula trapezoidale composita** sul sotto intervallo di ampiezza

$$h = \frac{(b-a)}{\text{num intervalli}}$$

$$T_{n+1}(f) = \frac{h}{2} \left(f(a) + f(b) + 2 \sum_{i=1}^{n} f(a+ih) \right)$$

Questa formula è realizzata attraverso un ciclo for parallelizzato su p thread utilizzando le direttive e le clausole fornite da OpenMP.

Inoltre l'algoritmo progettato comprende anche il caso in cui il numero degli intervalli non è multiplo del numero di thread p a disposizione.

Si è scelto di misurare i tempi di esecuzione nel thread 0 (master) usando la primitiva omp get wtime() prima e dopo il calcolo parallelo scegliendo il minimo tra 3 misurazioni ripetute.

Infine, si osservi che i controlli di robustezza del software sono stati interamente delegati al master thread.

INPUT, OUTPUT E CONDIZIONI DI ERRORE

- **Input**: la funzione *f* da integrare, i due estremi dell'intervallo a e b, il numero di intervalli num_intervalli.
- Output: l'approssimazione dell'integrale definito tra a e b di f.

• **Condizioni di errore**: l'estremo b non deve essere minore di a, il numero di intervalli deve essere un intero positivo non minore del numero di thread.

ESEMPIO DI FUNZIONAMENTO

Nell'immagine seguente vi è un esempio di funzionamento con p=8 thread, $f(x) = \frac{x}{x^2 + 5}$,

con a=0 e b=1 e con num intervalli = 100000.

%esempio di funzionamento
funzionamento

```
Esempio di funzionamento con 8 processori, in [0,1] con 100000 intervalli
```

```
ธงบบบาริษัตนา-studenti elaborato_lj$ cat elaborato_1.err
63000769@ui-studenti elaborato_lj$ cat elaborato_1.out
     100
                                is running on node(s):
     200
                                   3.scope.unina.it
     300
    400
                                   originating queue is studenti
executing queue is studenti
    500
                                : working directory is /homes/DIS/CALCPAR/2019/M63000769/elaborati_open_mp/elaborato_1
: execution mode is PBS_BATCH
                                   job identifier is 3929375.torque02.scope.unina.it job name is elaborato 1
    600
                                 : node file is /var/spool/pbs/aux//3929375.torque02.scope.unina.it:
current home directory is /homes/DIS/CALCPAR/2019/M63000769
: PATH = /usr/lib64/openmpi/1.2.7-gcc/pin:/usr/kerberos/bin:/opt/exp_soft/unina.it/intel/composer_xe_2013_spl.3.174/bin/intel64:/opt
soft/unina.it/intel/composer_xe_2013_spl.3.174/bin/intel64:/opt/exp_soft/unina.it/intel/composer_xe_2013_spl.3.174/bin/intel64:/opt/exp_soft/unina.it/intel/composer_xe_2013_spl.3.174/bin/intel64
/opt/exp_soft/unina.it/intel/composer_xe_2013_spl.3.174/bin/intel64
/opt/exp_soft/unina.it/intel/composer_xe_2013_spl.3.174/bin/intel64
/opt/exp_soft/unina.it/intel/composer_xe_2013_spl.3.174/bin/intel64
/opt/exp_soft/HAD00P/hadoop-1.0.3/bin:/opt/exp_soft/unina.it/intel/composer_xe/bin/intel64/:/opt/exp_soft/unina.it/MPJExpres
-v0_38/bin:/homes/DIS/CALCPAR/2019/M63000769/bin
    700
     800
                                read 0] L'integrale è pari a 0.0911607783962367.
tempo di esecuzione totale è stato di 0.0091370000009192 secondi.
    900
                                    000769@ui-studenti elaborato_1]$
000769@ui-studenti elaborato_1]$
1000
                                                200
                                                                                400
                                                                                                                 600
                                                                                                                                                 800 1000
                                                                                                                                                                                                               1200
                                                                                                                                                                                                                                               1400
                                                                                                                                                                                                                                                                                1600
```

ESEMPI DI ERRORE

Nelle successivi immagini, invece, sono mostrati i messaggi di errore al verificarsi delle condizioni sopra citate.

%un esempio per ciascuna condizione di errore errori

Errore: numero di intervalli non è un intero

Errore: numero di intervalli non è positivo

Errore: intervallo [a,b] non coerente

Errore: numero di intervalli è minore del numero di thread

ANALISI DELLE PRESTAZIONI (T(p), S(p), E(p))

Di seguito per brevità si indicherà con p il numero di thread e con N il numero di intervalli.

Tempo di esecuzione - T(p)

Si è scelto di misurare i tempi di esecuzione usando la primitiva omp_get_wtime() prima e dopo il calcolo parallelo.

Per ciascuna misurazione (al variare di N da 10k a 100M e al variare di p da 2 a 8) è stato considerato il minimo tra 3 esecuzioni ripetute, eseguite in momenti diversi.

Di seguito si riportano i risultati in forma di tabelle e grafici.

%esecuzione script per tabelle e grafici
tempi

Tempi									
TEMPI									
	10000	100000	1000000	10000000	100000000				
2	0,0029639999993378	0,003940000002331	0,02041799999279	0,1501430000062100	1,442007000004230				
4	0,0032320000027539	0,004165999998804	0,01060400000279	0,0808800000013434	0,720618000000831				
8	0,0056699999986449	0,007055999997142	0,01172599999356	0,0471789999937755	0,367989999995350				

Warning: Image is too big to fit on screen; displaying at 67%

Per considerazioni più di dettaglio su questi risultati si rimanda alla sezione Conclusioni.

Speed up ed Efficienza - S(p) ed E(p)

Si è calcolato, inoltre, il tempo di riferimento T(1) che corrisponde al tempo di esecuzione su un processo single-thread.

A partire dai tempi misurati nella sezione precedente e da T(1) è stato calcolato lo speed-up al variare di N e p.

%esecuzione script per tabelle e grafici speedup

Speedup									
SPEEDUP									
	10000	100000	1000000	10000000	100000000				
2	0,1370	0,8698	1,6521	1,9518	1,9867				
4	0,1256	0,8226	3,1811	3,6233	3,9754				
8	0,0716	0,4857	2,8767	6,2115	7,7849				

Warning: Image is too big to fit on screen; displaying at 67%

Infine si è calcolata l'efficienza rapportando lo speed up S(p) al numero di thread p.

%esecuzione script per tabelle e grafici efficienza

Efficienza								
10000	100000	1000000	10000000	100000000				
0,0685	0,4349	0,8260	0,9759	0,9933				
0,0314	0,2057	0,7953	0,9058	0,9939				
0,0090	0,0607	0,3596	0,7764	0,9731				
	0,0685 0,0314	0,0685 0,4349 0,0314 0,2057	10000 100000 1000000 0,0685 0,4349 0,8260 0,0314 0,2057 0,7953	10000 100000 1000000 1000000 0,0685 0,4349 0,8260 0,9759 0,0314 0,2057 0,7953 0,9058				

Warning: Image is too big to fit on screen; displaying at 67%

Conclusioni

Dai grafici appena presentati si possono trarre alcune considerazioni.

Analizzando l'efficienza si nota come da $N=10^4$ a $N=10^7$ l'efficienza ottimale si ha per 2 thread. Nel caso $N=10^4$ l'efficienza è estremamente bassa, probabilmente a causa del fatto che la creazione e la terminazione dei thread genera un enorme overhead rispetto alla dimensione del problema.

Invece nel caso di N=108 l'ottimo è in corrispondenza di 4 thread.

Si possono fare ulteriori considerazioni notando che, per N fissato, l'efficienza peggiora dopo un certo valore di p (ciò verifica sperimentalmente la legge di Amdahl), e che, in generale, all'aumentare sia di N che di p, l'efficienza migliora (verificando la legge di Gustafson).

Analoghe considerazioni per i tempi e lo speedup.

ANALISI DELL' ACCURATEZZA

Confrontando i risultati ottenuti sul cluster Scope e quelli ottenuti su MATLAB si ottengono i seguenti errori relativi. I livelli di accuratezza sono stati misurati fissando a 8 il numero di thread, e facendo variare la dimensione del problema num_intervalli. Gli estremi di integrazione scelti sono a=0, b=5.

Per i test è stata usata la seguente funzione integranda:

$$f(x) = 1 + \sin(10x) * \frac{x}{x^2 + 5}$$

%grafico della funzione integranda grafico

%esecuzione script per i test di accuratezza
accuratezza

```
F = function_handle with value:
    @(x)1+sin(10.*x).*(x./(x.^2+5))
risultato_matlab =
    4.983979125364205
err_rel_10k_intervalli =
    1.259469664462556e-08
err_rel_100k_intervalli =
    5.915098092282934e-09
err_rel_1M_intervalli =
    5.848306046909409e-09
```

- err_rel_10M_intervalli = 5.847643830851800e-09
- err_rel_100M_intervalli =
 - 5.847607833100552e-09