

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА — Российский технологический университет»

РТУ МИРЭА

Институт искусственного интеллекта Базовая кафедра № 252 «Информационная безопасность»

КУРСОВАЯ РАБОТА

по дисциплине «Вероятностные методы в криптографии»

Студент гру	уппы <u>ККСО-03-19 Никишина А.А.</u>
	(учебная группа, фамилия, имя, отчество студента) (подпись студента)
Руководите.	ль курсовой работы <u>Катышев С.Ю.</u>
	должность, звание, ученая степень (подпись руководителя)
Работа предо	ставлена к защите «» <u>июня 2024</u> г.
Оценка	

Оглавление

Основные определения	3
Лабораторная работа №1	4
Задание:	4
Определения:	4
Алгоритмы, используемые для выполнения задания:	5
Вывод работы программы:	8
Лабораторная работа №2	11
Задание:	11
Определения:	11
Алгоритм, используемый для выполнения задания:	11
Вывод программы:	13
Лабораторная работа №3	15
Задание:	15
Определения	15
Алгоритм, используемый для выполнения задания:	16
Результат работы программы:	20
Лабораторная работа №4	25
Задание	25
Определения	25
Алгоритм, используемый для выполнения задания	26
Результат работы программы:	29
Приложение А	32

Основные определения

Вероятностное пространство

Произвольное Ω – пространство элементарных событий

Элементы $\omega \in \Omega$ – элементарное событие (взаимно исключающие)

Множество всех подмножеств $\Omega-2^{\Omega}=$ алгебра событий

Алгебра событий а называется σ -алгеброй, если $\bigcup_{n=1}^{\infty}A_n\in\mathbb{A}, \cap A_n\in\mathbb{A}, A_n\in\mathbb{A}$

Случайным элементарным событием называется любой элемент а

 $\Omega \in \mathbb{a}$ – достоверное событие

∅ ∈ 𝔻 - невозможное событие

Числовая функция $P: a \to [0,1]$ — называется вероятностной мерой (вероятностью), если:

- 1) P(A) > 0, для любого A из a
- 2) $P(\Omega)=1$
- 3) $A, B \in \mathbb{A}: A \cap B = \emptyset, \text{ TO } P(A \cup B) = P(A) + P(B)$
- 4) $A_1 > A_2 ... > A_n$, $\bigcap A_n = \emptyset$, $n \to \infty$, $\lim P(A_n) = 0$

 (Ω, \mathbb{A}, P) – вероятностное пространство.

Независимость

События $A_1, ..., A_n$ называются независимыми в совокупности, если $P(A_{i_1}, ..., A_{i_k}) = P(A_{i_1}) * ... * P(A_{i_k}), k = 1, ..., n, i = 1, ..., n$

События $A_1, ..., A_n$ называются независимыми попарно, если $P(A_i A_j) = P(A_i)P(A_j)$, где i,j=1,...,n

Случайная величина – произвольная функция на множестве элементарных событий: $\xi:\Omega \to R, \xi=\xi(\omega)$.

Индикатором события A называется двоичная случайная величина $I_A(\omega)$:

$$I_A(\omega)$$
: $\begin{cases} 1, \omega \in A \\ 0, \omega \notin A \end{cases}$

Независимость слсучайных величин

 ξ_1,\ldots,ξ_n называют независимыми в совокупности, если $\forall B_1,\ldots,B_n$

$$P\{\xi_1 \in B_1, ..., \xi_n \in B_n\} = P\{\xi_1 \in B_1\} ... P\{\xi_n \in B_n\}$$

Лабораторная работа №1

Задание:

- 1. Генерация случайной подстановки: $2^6 \rightarrow 2^6$ от 0 до 63;
- 2. Построить координаты функции подстановки (вектора значений)

$$f(x_1, \dots, x_6) \rightarrow y_1$$

•••

$$f(x_1,...,x_6) \rightarrow y_6$$

- 3. Найти вес функции;
- 4. Построить многочлен Жегалкина для каждой f;
- 5. Найти фиктивные переменные.

Определения:

 $\underline{\textit{Bec функции } f}$ — называется мощность её множества истинности (количество единиц, в данном случае)

<u>Многочлен Жегалкина</u> – полином, коэффициентами которого являются числа 0 и 1, в качестве операций умножения и сложения выступают соответственно конъюнкция и сумма по модулю 2 (XOR).

Например, для функции от 3 переменных полином Жегалкина выглядит следующим образом:

$$f(x_1 x_2, x_3) = a_0 \oplus a_1 x_1 \oplus a_2 x_2 \oplus a_3 x_3 \oplus a_{12} x_1 x_2 \oplus a_{13} x_1 x_3 \oplus a_{23} x_2 x_3$$
$$\oplus a_{123} x_1 x_2 x_3$$

 $a_0, ..., a_{123} \in \{0, 1\}$, могут быть равны либо 0 либо 1 в зависимости от того, какие значения принимает булева функция $f(x_1, x_2, x_3)$ на том или ином наборе значений переменных.

С помощью полинома Жегалкина можно представить любую булеву функцию, причем единственным образом. Поэтому можно сказать, что многочлен Жегалкина является одним способом представления булевых функции.

Таблица истинности операции ⊕ (исключающее ИЛИ, сложение по модулю 2)

X	у	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Говорят, что булева функция $f(x_1,...,x_6)$ существенно зависит от переменной x_i , если выполняется условие:

$$f(x_1,...,x_{i-1},0,x_{i+1},...x_n) \neq f(x_1,...,x_{i-1},1,x_{i+1},...x_n)$$

В этом случае также говорят, что переменная x_i существенная, в противном случае её называют фиктивной переменной.

Алгоритмы, используемые для выполнения задания:

1. Для генерации случайной подстановки генерируем список от 0 до 63 и перемешиваем его случайным образом. Вывод представлен на Рис.1. (Обозначение в коде: s)

Рисунок 1 – Случайная подстановка (биективное отображение)

Для дальнейших вычислений переводим данную подстановку к двоичному виду.

2. Построение координат функции подстановки (вектора значений)

Приведем алгоритм построения координат функции подстановки на примере первых 6 значений подстановки, пример приведен в Таблице:

$x_1 x_2 x_3 x_4 x_5 x_6$	f_1	f_2	f_3	f_4	f_5	f_6
000000	1	0	1	0	1	0
000001	1	0	1	0	0	0
000010	0	0	1	0	1	1
000011	1	1	1	1	1	1
000100	1	1	1	0	1	0
000101	1	1	0	0	1	0
	•••	•••	•••	•••	•••	•••
111111	0	1	1	0	0	1

Получается, что
$$f_1(x_1,x_2,x_3,x_4,x_5,x_6)=(1\ 1\ 0\ 1\ 1\ 1\ ...\ 0)$$

$$f_2(x_1,x_2,x_3,x_4,x_5,x_6)=(0\ 0\ 0\ 1\ 1\ 1\ ...\ 1)$$

$$f_3(x_1,x_2,x_3,x_4,x_5,x_6)=(1\ 1\ 1\ 1\ 1\ 0\ ...\ 1)$$

$$f_4(x_1,x_2,x_3,x_4,x_5,x_6)=(0\ 0\ 0\ 1\ 0\ 0\ ...\ 0)$$

$$f_5(x_1,x_2,x_3,x_4,x_5,x_6)=(1\ 0\ 1\ 1\ 1\ 1\ ...\ 0)$$

$$f_6(x_1,x_2,x_3,x_4,x_5,x_6)=(0\ 0\ 1\ 1\ 0\ 0\ ...\ 1)$$

3. Вес функции вычисляется, как количество единиц в векторе значений, приведем пример расчета веса функции f_1 :

$$f_1 = (1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0)$$

Количество единиц = 32 => Вес функции $f_1 = 32$

4. Построение многочлена Жегалкина производится по таблице истинности.

Первым блоком является непосредственно функция f. Каждый блок делим пополам в левую часть нового блока переписываем левую часть старого, а в правую часть — побитовое сложение по модулю 2 (XOR) правого блока. Затем каждый блок снова делим пополам и продолжаем так до тех пор, пока длина блоков не достигнет единицы.

Единицы в последней строке такого преобразования будут говорить нам о том линейное представление каких слагаемых будет содержать многочлен Жегалкина.

Приведем пример вычисления многочлена Жегалкина для некоторой абстрактной функции f

x_1	x_2	x_3	$f(x_1, x_2, x_3)$				Слагаемые
0	0	0	1	1	1	1	1
0	0	1	1	1	1	0	<i>x</i> ₃
0	1	0	1	1	0	0	x_2
0	1	1	0	0	1	1	x_2x_3
1	0	0	1	0	0	0	x_1
1	0	1	1	0	0	0	x_1x_3
1	1	0	0	1	1	1	x_1x_2
1	1	1	0	0	0	1	$x_1x_2x_3$

Таким образом, получается многочлен Жегалкина:

$$f(x_1, x_2, x_3) = 1 \oplus x_2 x_3 \oplus x_1 x_2 \oplus x_1 x_2 x_3$$

5. Нахождение фиктивных переменных происходит следующим образом:

- Функция принимает полином Жегалкина в виде списка (состоящего из 0 и 1) Если на какой-либо позиции стоит 1, то соответствующее произведение есть в многочлене Жегалкина.
- Возвращает список вида [x, x, x, x, x, x], где x = False соответствует переменным, которые не используются в полиноме Жегалкина, т.е. фиктивные.

Для того, чтобы выписать многочлен Жегалкина в виде полинома, функция принимает полином Жегалкина в виде строки

Фиктивная переменная отличается тем, что от неё не зависит значение функции, иными словами она представляет собой то, чего нет в многочлене Жегалкина. Если таковых нет, то все переменные считаются существенными.

Если на какой-либо позиции стоит единица => соответствующее произведение есть в многочлене Жегалкина. Выводит на экран полином Жегалкина в привычном виде.

Результат работы программы представлен ниже: вывод вектора значения функции, веса функции, полученного многочлена Жегалкина и информация о фиктивных и существенных переменных.

Вывод работы программы:

1. Генерация случайной подстановки V6->V6

S: 42 40 11 63 58 50 6 4 10 36 27 56 48 14 3 16 57 28 61 29 35 19 43 15 13 52 23 9 17 51 26 12 39 47 0 5 59 38 46 22 55 60 18 62 8 32 45 54 21 30 7 44 33 31 37 2 49 53 24 41 20 34 1 25

2. Вектора значений координатных функций

f1: 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

3. Вес координатных функций

/|f1|/=32

//f2// = 32

/|f3|/ = 32

/|f4|/ = 32

/|f5|/ = 32

//f6// = 32

4. Многочлен Жегалкина для координатных функций

f1: 1 + x2 + x1*x2 + x1*x2*x3 + x4 + x1*x4 + x2*x4 + x1*x2*x4 + x3*x4 + x2*x3*x4 + x1*x5 + x2*x5 + x1*x2*x5 + x1*x2*x5 + x1*x4*x5 + x2*x4*x5 + x3*x4*x5 + x2*x3*x4*x5 + x1*x2*x6 + x2*x3*x6 + x4*x6 + x1*x4*x6 + x2*x4*x6 + x1*x3*x4*x6 + x1*x2*x3*x4*x6 + x5*x6 + x1*x5*x6 + x3*x5*x6 + x1*x3*x5*x6 + x1*x3*x5*x6 + x1*x2*x3*x5*x6 + x

*f*2: 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1

f2: x1*x2 + x3 + x2*x3 + x1*x2*x3 + x2*x4 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4 + x1*x2*x3*x4 + x5 + x1*x2*x5 + x1*x3*x5 + x2*x3*x5 + x4*x5 + x1*x4*x5 + x1*x2*x4*x5 + x1*x3*x4*x5 + x1*x2*x3*x4*x5 + x1*x2*x3*x4*x5 + x1*x2*x3*x6 + x1*x2*x3*x6 + x1*x2*x3*x6 + x1*x2*x3*x6 + x1*x2*x3*x6 + x1*x2*x3*x5 +

f3: 1 + x1*x3 + x2*x3 + x1*x2*x3 + x1*x4 + x1*x2*x4 + x3*x4 + x1*x3*x4 + x2*x3*x4 + x1*x2*x3*x4 + x3*x5 + x1*x2*x3*x5 + x1*x2*x3*x5 + x1*x2*x3*x5 + x1*x2*x3*x5 + x1*x2*x3*x6 + x1*x2*x3*x6 + x1*x2*x3*x6 + x1*x4*x6 + x3*x4*x6 + x3*x4*x6 + x1*x4*x6 + x3*x4*x6 + x3*x4*x6 + x1*x4*x6 + x1*

x1*x3*x4*x6 + x2*x3*x4*x6 + x1*x2*x5*x6 + x1*x3*x5*x6 + x1*x2*x3*x5*x6 + x1*x4*x5*x6 + x3*x4*x5*x6 + x2*x3*x4*x5*x6

f4: 0 0 0 1 0 0 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0 0

f4: x1*x2 + x2*x3 + x1*x2*x3 + x1*x4 + x2*x3*x4 + x1*x2*x3*x4 + x1*x5 + x2*x5 + x1*x3*x5 + x1*x2*x3*x5 + x4*x5 + x2*x4*x5 + x3*x4*x5 + x1*x3*x4*x5 + x1*x2*x3*x4*x5 + x6 + x2*x6 + x3*x6 + x1*x3*x6 + x2*x3*x6 + x1*x2*x3*x6 + x1*x2*x3*x6 + x1*x2*x3*x6 + x1*x2*x3*x5*x6 + x1*x3*x4*x5*x6 + x1*x2*x3*x5*x6 + x1*x3*x4*x5*x6 + x1*x3*x4

f5: 1 + x1 + x1*x2 + x1*x3 + x1*x2*x4 + x3*x4 + x1*x3*x4 + x2*x3*x4 + x5 + x1*x5 + x1*x2*x5 + x3*x5 + x1*x3*x5 + x2*x4*x5 + x2*x3*x4*x5 + x1*x2*x3*x4*x5 + x1*x6 + x2*x6 + x1*x2*x6 + x1*x3*x6 + x2*x3*x6 + x1*x4*x6 + x2*x4*x6 + x1*x2*x5*x6 + x3*x5*x6 + x1*x2*x5*x6 + x

f6: x2 + x2*x3 + x1*x2*x4 + x2*x3*x4 + x5 + x1*x5 + x2*x5 + x1*x2*x5 + x1*x3*x5 + x2*x3*x5 + x1*x2*x3*x5 + x1*x2*x4*x5 + x6 + x1*x2*x6 + x1*x3*x6 + x2*x3*x6 + x1*x2*x4*x6 + x1*x2*x4*x6 + x1*x2*x4*x6 + x1*x3*x5*x6 + x2*x3*x5*x6 + x1*x3*x5*x6 + x1*x3*x4*x5*x6

5. Фиктивные переменные для координатных функций

f1: нет фиктивных переменных

f2: нет фиктивных переменных

f3: нет фиктивных переменных

f4: нет фиктивных переменных

f5: нет фиктивных переменных

f6: нет фиктивных переменных

Лабораторная работа №2

Задание:

- 1. Для f_k найти преобладание (нулей от единиц)
- 2. Проверить является ли f_k сильноравновероятностной
- 3. Выяснить, существуют ли запреты для f_k . Построить запрет

Определения:

 $P_2(n)$ множества всех булевых функций от n переменных

Говорят, что булева функция <u>имеет запрет</u> $y_1, ..., y_m \in \{0,1\}^m$, если система булевых уравнений: $f(x_1, ..., x_{n+i-1}) = y_i, i = 1, ..., m$ несовместна.

Несовместная система – система, которая не имеет решений.

<u>Минимальный элемент</u> – элемент, который встречается реже всего в функции.

Алгоритм, используемый для выполнения задания:

Буду рассматривать работу алгоритма на примере функции f_1 .

Вектор значений функции f[1]: [1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]

А для оставшихся функций результат будет представлен в выводе программы.

1) Чтобы найти преобладание, подсчитываем количество 1 в f[1].

$$pr = sum(f[1]) # pr = 32$$

И вычисляем по формуле $d(f) = 1 - \frac{pr}{2^{6-1}}$

Преобладание функции f[1] = 0

Т. к. функция f генерируется на s-боксе являющемся подстановкой с одним циклом – функция f по определению будет равновероятной. Это

11

доказывается в пункте 1, т.к. преобладание для всех функций f будет = 0 => частота встречаемости 0 и 1 одинакова. Если все элементы встречаются одинаково, то последовательность равновероятностная.

2) Найдём запреты длинной меньше или равной 20.

Согласно критерию Сумарокова: функция не имеет запретов, если функция является сильно равновероятной. Поэтому построив запрет или не найдя его – мы автоматически узнаем сильно равновероятная функция или нет.

Для построения запрета последовательно изменяем таблицу истинности добавляя ветки 0 и 1 для каждой строчки и каждого элемента функции. Приведём пример для построения запрета для функции длинны 3 $f = x_1x_2x_3$

X ₁	X_2	X ₃			f		
0	0	0	0	0 1 0	0	0	0 0 0
0	0	1	0	1 0 1	0	0	0 0
	Ů		1	0 1 0		0	0 1 0
0	1	0	0	1 0	0	0	0 0
0	1	1	0	0	0	0	0
	1	1	1	0 1 0	U	1	0 1 0
1	0	0	0	1 0	0	0	0
1	0	1	0	1 0 1	0	0	0 0 0
1	0	1	1	0	0	0	0
1	1	0	0	0 1 0	0	0	0 0 0
			0	0		0	0 0
1	1	1	1	0	1	1	0

Заметим, что выходную последовательность 101 нам не удастся встретить ни разу, следовательно, это и есть запрет функции f.

3) На каждой итерации происходит поиск последовательности среди значений f, которая встречается 0 раз. Если таковая последовательность нашлась, то она и будет запретом.

Если такой последовательности не найдено – добавляем новое ветвление таблицы. Делаем так до тех пор пока не будет найдена не встречающаяся последовательность или длинна последовательности превысит 20 – в этом случае будем считать, что у функции нет запрета.

Вывод полученный при выполнении лабораторной работы 2, основанный на результатах лабораторной работы 1.

Вывод работы программы представлен ниже, для экономии места представлен вывод лишь преобладания и запрета.

Вывод программы:

1. Преобладание нулей над единицами для координатных функций

f1: 0.000000

*f*2: 0.000000

f3: 0.000000

f4: 0.000000

f5: 0.000000

f6: 0.000000

2. Сильно равновероятность для координатных функций

И

3. Запреты для координатных функций

f1: запрет = 010010011001 функция НЕ сильно равновероятная

f2: 3anpem = 0011010010

функция НЕ сильно равновероятная

- f3: запрет = 11100000000 функция НЕ сильно равновероятная
- f4: запрет = 01010010 функция НЕ сильно равновероятная
- f5: запрет = 100111101001 функция НЕ сильно равновероятная
- f6: запрет = 0101100010 функция НЕ сильно равновероятная

Лабораторная работа №3

Задание:

- 1. Для f_i , $i = \{1, ..., 6\}$ найти все k, при которых f_i является корреляционно иммунной порядка k, эластичной порядка k;
- 2. Построить спектр булевой функции для f_i
- 3. Найти наилучшее линейное приближение для f_i
- 4. Выяснить, является ли f_i бент-функцией

Определения

<u>Корреляционная иммунность</u> булевых функций означает отсутствие какойлибо статистической зависимости значения данной функции от значений некоторого подможества её аргументов или от значений определенных функций её аргументов.

С геометрической точки зрения $\underline{корреляционно-иммунная функция}$ порядка k, зависящая от n переменных, удалена от всех аффинных функций, отличных от констант и зависящих от k и менее переменных, на расстояние 2^{n-1} , то есть совпадает c ними ровно на половине входных наборов.

Порядком корреляционной иммунности $\underline{cor(F)}$ вектора функции F называется минимальный порядок корреляционной иммунности. Для вычисления cor(F) нужно найти ненулевой вектор и минимального веса, на котором преобразование Уолша - Адамара хотя бы одной компоненты принимает ненулевое значение.

Функция от одной или нескольких переменных называется <u>аффинной</u>, если она может быть представлена как линейная комбинация этих переменных плюс константа.

Пусть $a=(a_1,...,a_6)$, $b=(b_1,...,b_6)$, тогда $(a,b)=a_1b_1+...+a_6b_b-$ скалярное произведение. Оно будет использоваться для нахождения линейной характеристики S-бокса.

<u>Линейное приближение</u> – приближение произвольной функции линейной функцией.

Статистическая структура двоичной функции

Определим для функции f(x)и линейной функции $(a, x) = a_1 x_1 + ... + a_n x_n$ параметр исходя из равенства $P(f(x) = (a, x)) = \frac{1}{2} + \frac{\Delta_a^f}{2^n}$

Набор чисел $\{\Delta_a^f\}$, a из F_2^n называется $\underline{cmamucmuческой\ cmpуктурой}$ двоичной функции f(x).

Статистическая структура показывает насколько отличаются от ½ вероятности совпадения значений функции f со значениями линейных функций(a,x). Способ нахождения коэффициентов описан далее по тексту.

Корреляция (от лат. correlatio), корреляционная зависимость — взаимозависимость двух или нескольких случайных величин. Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой(-их) переменной(-ых).

Алгоритм, используемый для выполнения задания:

1) В начале программой считаются коэффициенты Фурье по следующей формуле:

$$\overline{w_f}(\vec{u}) = \frac{1}{2^n} \sum_{\vec{x} \in V_n} f(\vec{x}) \chi_{\vec{u}}(\vec{x});$$
$$\chi_{\vec{u}}(\vec{x}) = (-1)^{\langle \vec{u}, \vec{x} \rangle}.$$

На последнем шаге получены коэффициенты Фурье для исследуемой функции f.

2) Далее считаются коэффициенты Уолша-Адамара:

$$\mathbf{w}_{\mathbf{f}}(\bar{\mathbf{u}}) = \begin{cases} 1 - 2\overline{w_f}(\bar{u}); \bar{u} = \bar{0} \\ -2\overline{w_f}(\bar{u}); \bar{u} \neq \bar{0} \end{cases}$$

Первый (нулевой) элемент считается по формуле: $1-2\overline{W}_f(\bar{u})$, $\bar{u}=\bar{0}$. В рассматриваемой функции получается, что 1 элемент коэффициентов Уолша-Адамара равен 1-2*0.5=0

Остальные коэффициенты Уолша-Адамара – коэффициенты Фурье, умноженные на -2.

3) Считаем коэффициенты статистической структуры: Коэффициенты вычисляются по формуле $\Delta_u^f = W_f(\bar{u})2^{n-1}$.

$x_1 \dots x_6$	$\Delta^{f_1}_{\overline{u}}$	$\Delta^{f_2}_{\overline{u}}$	$\Delta^{f_3}_{\overline{u}}$	$\Delta^{f_4}_{\overline{u}}$	$\Delta^{f_5}_{\overline{u}}$	$\Delta^{f_6}_{\overline{u}}$
000000	0	0	0	0	0	0
000001	2	2	2	8	-2	-8
000010	-10	-4	4	2	0	2

	_				_	_
000011	0	-2	-2	2	6	-2
000100	-2	-4	-8	-6	6	-4
000101	8	-2	6	2	-8	0
000110	0	4	0	-8	2	2
000111	-6	6	-2	0	-4	-6
001000	-2	6	-2	-6	-8	-4
001001	-12	4	0	2	2	0
001010	0	-6	-6	8	-4	-2
001011	-2	0	4	0	-2	-2
001100	4	2	-2	0	6	0
001101	2	0	4	0	4	0
001110	2	2	-2	2	-2	6
001111	0	-8	4	-6	4	2
010000	-6	4	0	0	-8	12
010001	4	2	-6	4	-6	0
010010	-4	8	-8	2	0	2
010011	-2	-10	2	-2	-6	2
010100	0	4	0	6	-6	-4
010101	2	2	6	2	0	4
010110	-2	4	4	-4	-2	-2
010111	0	2	2	-8	-4	2
011000	0	2	2	2	0	0
011001	6	-4	-4	-2	-2	8
011010	-10	-2	2	0	-4	-2
011011	4	0	-4	-4	2	-6
011100	-2	10	2	4	2	0
011101	-4	4	0	0	4	4
011110	0	2	-2	-2	2	2
011111	-2	4	4	2	-4	2
100000	4	-2	-6	6	-2	0
100001	-2	0	-4	2	-8	0
100010	-2	2	2	4	2	6
100011	0	4	-4	0	4	2
100100	-2	2	-6	0	4	0
100101	0	4	-8	-4	2	-4
100110	4	10	-2	2	4	10
100111	6	-4	-4	6	-6	2
101000	-6	-4	-4	4	2	0
101001	0	2	-2	0	0	4
101010	0	0	4	6	2	6
101011	-2	-2	-2	-6	-8	-2
101100	-4	-8	-4	2	0	0
	•		•		•	•

101101	-6	-2	2	6	2	0
101110	-2	0	0	0	4	-6
101111	-4	-2	6	4	-2	-2
110000	2	2	2	6	2	4
110001	4	0	4	-2	0	0
110010	0	-2	-2	-4	-2	6
110011	-6	-4	0	4	4	6
110100	-4	2	-6	4	-4	-8
110101	6	0	-8	4	-2	0
110110	6	2	10	6	4	-2
110111	0	0	0	-2	-2	2
111000	0	0	0	-4	-2	4
111001	6	2	2	-4	0	-4
111010	2	-4	-4	6	6	-2
111011	0	6	-2	-2	0	2
111100	2	0	0	-2	-8	0
111101	0	2	6	-2	-2	-4
111110	0	0	0	-4	4	6
111111	-2	-6	-2	-4	2	-2

4) Проверяем корреляционную иммунность и эластичность функции:

Функция корреляционно иммунна порядка k, если все коэффициенты Уолша-Адамара для векторов веса k равны нулю, поэтому для начала проверяем коэффициенты Уолша-Адамара при векторах, содержащих 1 единицу. Если все коэффициенты при них равны 0, то функция корреляционно иммунна порядка 1. Если хоть один не равен 0, то функция корреляционно иммунна порядка 0 (т.е. не корреляционно иммунна).

Для $f_i, i \in \{1, \dots, 6\}$ проверяем вектора 000001, 000010, 000100, 001000, 010000, 100000:

$$W_f(000001) \neq 0$$
 (иначе $\Delta_{(000001)}^f$ = 0) \Rightarrow функция не корреляционно иммунна

Эластичная порядка k функция — это сбалансированная корреляционно иммунная порядка k функция, иными словами она корреляционно имунна порядка k и преобладание равно 0.

Получается, порядок эластичности не может быть больше порядка корреляционной иммунности, но добавляется требование сбалансированности (т.е. преобладание равно нулю).

Функции f_i , $i \in \{1, ..., 6\}$ не является корреляционно иммунными, а значит, не являются эластичными.

5) Проверим, является ли функция бент-функцией:

Функция должна быть от чётного количества переменных и все коэффициенты Уолша-Адамара должны быть равны по модулю.

Функции $f_i, i \in \{1, ..., 6\}$ является функцией от 6 переменных, но ее коэффициенты Уолша-Адамара не равны по модулю (иначе коэффициенты статистической структуры были бы равны по модулю) \Rightarrow не является бентфункцией.

6) Считаем наилучшее линейное приближение

Для нахождения наилучшего линейного приближения функции от наименьшего числа переменных, в столбце коэффициентов статистической структуры выбирается наибольшее по модулю, и на основе соответствующей строки таблицы истинности строится функция (если коэффициент отрицательный, то добавляется слагаемое \oplus 1).

Пример:

$$u = 001 -> g = x_3$$

 $u = 010 -> g = x_2$
 $u = 110 -> g = x_1 \oplus x_2$

Из всех этих значений находится максимальный.

Далее считается соответствующий линейный многочлен.

Перевод числа в двоичный вид (001001) и с помощью цикла перевод в вид многочлена: $f_1 = x_3 \oplus x_6 \oplus 1$

Данный полином является наилучшим линейным приближением от наименьшего числа переменных.

Узнаем, с какой вероятностью результаты исходной функции и данного многочлена совпадут по формуле:

$$\Delta_u^f = \ 2^6 \left(P(f(\bar{x}) = <\bar{u}, \bar{x} >) - \frac{1}{2} \right)$$
, где нужно найти P
$$P(f_i(\bar{x}) = <\bar{u}, \bar{x} >) = \frac{1}{2^6} \max \left(\left| \Delta_u^{f_i} \right| \right) + \frac{1}{2}$$

Для f_1 :

$$P(f(\bar{x}) = < \bar{u}, \bar{x} >) = 0.6875$$

Результат работы программы:

1. Корреляционная иммунность и эластичность для координатных функций

f1: функция НЕ корреляционно иммунна порядка 1 функция НЕ эластична

f2: функция НЕ корреляционно иммунна порядка 1 функция НЕ эластична

f3: функция НЕ корреляционно иммунна порядка 1 функция НЕ эластична

f4: функция НЕ корреляционно иммунна порядка 1 функция НЕ эластична

f5: функция НЕ корреляционно иммунна порядка 1 функция НЕ эластична

f6: функция HE корреляционно иммунна порядка I

2. Построение спектра булевых функций для координатных функций

x1x6 del(f1) del(f2) del(f3) del(f4) del(f5) del(f6)								
000000 0	0	0	0	0	0			
000001 2	2	2	8	-2	-8			
000010 -10	-4	4	2	0	2			
000011 0	-2	-2	2	6	-2			
000100 -2	-4	-8	-6	6	-4			
000101 8	-2	6	2	-8	0			
000110 0	4	0	-8	2	2			
000111 -6	6	-2	0	-4	-6			
001000 -2	6	-2	-6	-8	-4			
001001 -12	4	0	2	2	0			
001010 0	-6	-6	8	-4	-2			
001011 -2	0	4	0	-2	-2			
001100 4	2	-2	0	6	0			
001101 2	0	4	0	4	0			
001110 2	2	-2	2	-2	6			
001111 0	-8	4	-6	4	2			
010000 -6	4	0	0	-8	12			
010001 4	2	-6	4	-6	0			
010010 -4	8	-8	2	0	2			
010011 -2	-10	2	-2	-6	2			
010100 0	4	0	6	-6	-4			
010101 2	2	6	2	0	4			
010110 -2	4	4	-4	-2	-2			
010111 0	2	2	-8	-4	2			
011000 0	2	2	2	0	0			
011001 6	-4	-4	-2	-2	8			
011010 -10	-2	2	0	-4	-2			
011011 4	0	-4	-4	2	-6			

111101 0 2 6 -2 -2 -4 111110 0 0 0 -4 4 6 111111 -2 -6 -2 -4 2 -2

3. Нахождение наилучшего линейного приближения для координатных булеых функций

$$f1: g_1(x) = x3 + x6 + 1$$

f2:
$$g_1(x) = x^2 + x^5 + x^6 + 1$$

 $g_2(x) = x^2 + x^3 + x^4$
 $g_3(x) = x^1 + x^4 + x^5$

$$f3: \quad g_1(x) = x1 + x2 + x4 + x5$$

f4:
$$g_{-}1(x) = x6$$

 $g_{-}2(x) = x4 + x5 + 1$
 $g_{-}3(x) = x3 + x5$
 $g_{-}4(x) = x2 + x4 + x5 + x6 + 1$

f5:
$$g_{-}1(x) = x4 + x6 + 1$$

 $g_{-}2(x) = x3 + 1$
 $g_{-}3(x) = x2 + 1$
 $g_{-}4(x) = x1 + x6 + 1$
 $g_{-}5(x) = x1 + x3 + x5 + x6 + 1$
 $g_{-}6(x) = x1 + x2 + x3 + x4 + 1$

f6:
$$g_1(x) = x^2$$

- 4. Является ли координатная функция бент-функцией
- f1: данная координатная функция НЕ является бент-функцией
- f2: данная координатная функция HE является бент-функцией
- f3: данная координатная функция НЕ является бент-функцией

- f4: данная координатная функция НЕ является бент-функцией
- f5: данная координатная функция HE является бент-функцией
- f6: данная координатная функция HE является бент-функцией

Лабораторная работа №4

Задание

Сгенерировать гамму в генераторе из 6 регистров, в котором функция усложнения берется из прошлых работ. Потом корреляционным методом по гамме восстановить начальное состояние регистров

Определения

Рассмотрим преобразование f(X): $GF(2)^n \to GF(2)^n$

n – четное, $GF(2)^n$ – множество n-мерных двоичных векторов

Преобразование является биекцией и полученный вектор формируется некоторым генератор псевдослучайных последовательностей со свойством равновероятной последовательности. Функция f — функция усложнения.

Комбинирующий генератор — усложнение фильтрующего генератора и построен на ЛРС-1,...,ЛРС-т над P, т>0 и комбинирующей функции $f(x_1,...,x_T)$.

Комбинирующий генератор представлен на Рисунке ниже.

Линейная сложность последовательности - минимальная длина ЛРС (линейного регистра сдвига), который способен сгенерировать данную последовательность.

Фильтрующие и комбинирующие генераторы относятся к схемам с равномерным движением регистра (все регистры сдвигаются ровно на один знак каждый такт работы).

Алгоритм, используемый для выполнения задания

Регистры сдвига линейной обратной связи (РСЛОС) имеют следующие многочлены обратной связи:

$$h_1(x) = x^7 \oplus x \oplus 1$$

$$h_2(x) = x^{11} \oplus x^2 \oplus 1$$

$$h_3(x) = x^{13} \oplus x \oplus 1$$

$$h_4(x) = x^{17} \oplus x^2 \oplus 1$$

$$h_5(x) = x^{19} \oplus x \oplus 1$$

$$h_6(x) = x^{23} \oplus x^2 \oplus 1$$

А их начальное состояние имеет вид:

Регистр 1: 1 1 1 0 0 0 1

Регистр 2: 0 1 0 1 1 0 0 0 1 1 0

Регистр 3: 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Регистр 4: 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1

Регистр 5: 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1

Регистр 6: 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0

Согласно корреляционному анализу, найдём вероятность линейных приближений по формуле:

$$Pf(x) = g(x) = 1/2 + \Delta_{f_g}/2^n$$

где Δ_{f_g} – коэффициент стат структуры линейной функции g.

Линейные приближения функции будут иметь вид:

$$g_1(x_1,...,x_6) = x_1$$

$$g_2(x_1,...,x_6) = x_2$$

• • •

$$g_6(x_1,...,x_6) = x_6$$

Поскольку функция f вырабатывает ключевую гамму, тогда

$$f\left(x_1^{(t)}, \dots, x_6^{(t)}\right) = \gamma_t, t \in \mathbb{N}$$

В этом обозначении $x_1^{(t)}$, ..., $x_6^{(t)}$ - t-ое значение гаммы из РСЛОС с многочленами обратной связи $h_1(x)$, ..., $h_6(x)$. Соответственно:

$$P\{\gamma_t = x_1^{(t)}\} = \frac{1}{2} + \frac{2}{64} = 0.531250$$

...

$$P\{\gamma_t = x_6^{(t)}\} = \frac{1}{2} + \frac{6}{64} = 0.593750$$

Построим статистический критерий для различения двух гипотез о распределении случайной величины:

$$\xi_t = x_t \oplus \gamma$$

 H_0 : $\xi \sim \beta(q_0)$ – начальное состояние ложное.

 H_1 : $\xi \sim \beta(q_1)$ — начальное состояние соответствует истинному ключу, где $q_0 = \frac{1}{2}$.

Тогда гипотеза H_1 для случайных величин будет иметь вид следующие обозначения:

$$\xi_1 = x_1 \oplus \gamma \sim \beta(q_1)$$

• • •

$$\xi_6 = x_6 \oplus \gamma \sim \beta(q_6)$$

Для различия двух гипотез выберем вероятность ошибок первого и второго рода. В нашем случае $\alpha=\beta=0.000001$. Также воспользуемся квантиль $\chi_{(1-\alpha)}$ и $\chi_{(1-\beta)}$ для стандартного нормального распределения.

Так как значения $(1-\alpha)$ и $(1-\beta)$ выходят за пределы таблицы стандартного нормального распределения — будем досчитывать таблицу программно вычисляя интеграл $\int_0^x e^{-\frac{y^2}{2}} dy$.

Объем материала (меньше или равен длине γ), необходимый для того, чтобы различить теории, считаем по формуле:

$$T = \frac{\left(\chi_{(1-\alpha)}\sqrt{q(1-q)} + \chi_{(1-\beta)}\sqrt{p(1-p)}\right)^2}{(q-p)^2}$$
$$T = 28925$$

А для вычисления границы критерия С формулой:

$$C = \chi_{(1-\beta)} \sqrt{(Tp(1-p))} + T(1-p)$$

$$C = 14010.1$$

При вычислении в качестве р используем $1-q_1$, а в качестве q: $q_0=0.5$ С этой константой будет сравниваться количество несовпадений.

Далее перебираем начальное заполнение генератора. Начальное заполнение неизвестно, известно только строение генератора. Вырабатываем T значений.

Сравниваем полученные значения с выработанными ранее значениями у и считаем количество несовпадений. Если оно меньше константы C, то записываем число в возможное заполнение.

При подборе кандидатов использовались следующие параметры:

№	α	β	$\xi(1-\alpha)$	$\xi(1-\beta)$	p	q	Т	С
1	0.0000001	0.0000001	5.320000	5.320000	0.468750	0.5	28925.02	14010.1
•••	•••	•••	•••	•••	•••	•••	•••	•••
6	0.0000001	0.0000001	5.320000	5.320000	0.406250	0.5	3163.33	1432.06

В регистре 1 было принято положительное решение по 1 кандидату:

1110001

• • •

В регистре 6 было принято положительное решение по 1 кандидату: 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0

Так как в каждом регистре было одобрено по одному кандидату имеем единственное возможное заполнение ключа:

С программной реализацией можно ознакомиться в приложении А.

Результат работы программы:

Подбираем функцию f удовлетворяющую условиям...

Регистр 1: 1 1 1 0 0 0 1

Регистр 2: 0 1 0 1 1 0 0 0 1 1 0

Регистр 3: 0 0 0 0 0 1 0 0 0 0 0 0 0

Регистр 4: 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1

Регистр 5: 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1

Регистр 6: 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0

q1 = 0.531250 p1 = 0.421875

```
q2 = 0.625000 p2 = 0.421875
q3 = 0.531250 p3 = 0.421875
q4 = 0.625000 \quad p4 = 0.421875
q5 = 0.593750 p5 = 0.421875
q6 = 0.593750 p6 = 0.421875
             Подибираем кандидатов в регистр 1
             Fa(0.999999900)=5.320000, Fb(0.999999900)=5.320000
                                                                                                                                                                      alp=0.000000100, bet=0.000000100, X(1-
a)=5.320000, X(1-b)=5.320000, p=0.468750, q=0.5, T=28925.025107
             T = 28925
             C = 14010.1
                          прогресс: 128/128
                                                                                                               положительное решение по: 1 кандитату(-ам)
                          candidate 1: 1 1 1 0 0 0 1
             Успешно!
             Подибираем кандидатов в регистр 2
             Fa(0.999999900) = 5.320000, \\ Fb(0.999999900) = 5.320000 \\ alp = 0.000000100, \\ bet = 0.000000100, \\ X(1-1) + 10.000000100, \\ X(1-1) + 10.0000000100, \\ X(1-1) + 10.000000100, \\ X(1-1) + 10.000000100, \\ X(1-1) + 10.0000000100, \\ X(1-1) + 10.00000000000100, \\ X(1-1) + 10.0000000100, \\ X(1-1) + 10.00000000100, \\ X(1-1) + 10.00000000000000, \\ X(1-1) + 10.000000000000, \\ X(1-1) + 10.0000000000, \\ X(1-1) + 10.00000000, \\ X(1-1) + 10.0000000, \\ X(1-1) + 10.0000000, \\ X(1-1) + 10.000000, \\ X(1-1) + 10.000000, \\ X(1-1) + 10.000000, \\ X(1-1) + 10.00000, \\ X(1-1) + 10.00000, \\ X(1-1) + 10.00000, \\ X(1-1) + 10.0000, \\ X(1-1) + 1
a)=5.320000, X(1-b)=5.320000, p=0.375000, q=0.5, T=1754.292191
            T = 1754.29
             C = 765.734
                          прогресс: 2048/2048
                                                                                                                  положительное решение по: 1 кандитату(-ам)
                          candidate 1: 0 1 0 1 1 0 0 0 1 1 0
             Успешно!
             Подибираем кандидатов в регистр 3
             Fa(0.999999900)=5.320000, Fb(0.999999900)=5.320000
                                                                                                                                                                         alp=0.000000100, bet=0.000000100, X(1-
a)=5.320000, X(1-b)=5.320000, p=0.468750, q=0.5, T=28925.025107
             T = 28925
             C = 14010.1
                          прогресс: 8192/8192
                                                                                                                  положительное решение по: 1 кандитату(-ам)
                          candidate 1: 0 0 0 0 0 1 0 0 0 0 0 0 0
             Успешно!
```

Подибираем кандидатов в регистр 4

 $Fa(0.999999900) = 5.320000, Fb(0.999999900) = 5.320000 \quad alp = 0.000000100, bet = 0.000000100, X(1-a) = 5.320000, X(1-b) = 5.320000, p = 0.375000, q = 0.5, T = 1754.292191$

T = 1754.29

C = 765.734

прогресс: 131072/131072 положительное решение по: 1 кандитату(-ам)

candidate 1: 0 0 0 1 1 1 0 0 1 1 1 1 0 1 0 1 1

Успешно!

Подибираем кандидатов в регистр 5

Fa(0.99999900)=5.320000, Fb(0.999999900)=5.320000 alp=0.000000100, bet=0.000000100, X(1-a)=5.320000, X(1-b)=5.320000, p=0.406250, q=0.5, T=3163.326155

T = 3163.33

C = 1432.06

прогресс: 524288/524288 положительное решение по: 1 кандитату(-ам)

candidate 1: 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 1 1

Успешно!

Подибираем кандидатов в регистр 6

 $Fa(0.999999900) = 5.320000, \ Fb(0.999999900) = 5.320000 \qquad alp = 0.000000100, \ bet = 0.000000100, \ X(1-a) = 5.320000, \ X(1-b) = 5.320000, \ p = 0.406250, \ q = 0.5, \ T = 3163.326155$

T = 3163.33

C = 1432.06

прогресс: 8388608/8388608 положительное решение по: 1 кандитату(-ам)

candidate 1: $0\ 0\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0$

Успешно!

Алгоритм ошибся на 0 бит

Приложение А. Программная реализация доступна по ссылке: https://disk.yandex.ru/d/3xldk_jpKwOHfQ

