Summary results of the theoritical model

${\bf Contents}$

1	Introduction						
2	Ma	Materials & Methods					
3	Res	\mathbf{sults}		1			
	3.1 Model with global competition		el with global competition	. 1			
		3.1.1	Pair approximation model with 3 states	. 1			
		3.1.2	Cellular automata with 4 states	. 1			
	3.2 Model with local competition		el with local competition	. 1			
		3.2.1	Équations de colonisation	. 1			
		3.2.2	Pair approximation with 3 states	. 2			
		3.2.3	Cellular automata with 4 states	. 6			
		3.2.4	Cellular automata with 4 states	. 6			
4	Dis	cussio	n	8			
1	\mathbf{I}	ntro	duction				
2	N	/Iate	rials & Methods				
3	F	Resul	ts				
3.	1	Mod	el with global competition				
3.	1.1	Pair a	approximation model with 3 states				
3.	1.2	Cellul	lar automata with 4 states				
3.	2	Mod	el with local competition				
3.	2.1	Équat	cions de colonisation				
			$w_{\{0,+_n\}} = \left(\delta_n \rho_{+_N} + (1 - \delta_n) q_{+_n 0}\right) \left(b_n - c_n q_{+_n +_n} - c_{pn} q_{+_p 0}\right)$	(1)			
			$w_{\{0,+_p\}} = \left(\delta_p \rho_{+_p} + (1 - \delta_p) q_{+_p 0}\right) \left(b_p - c_p q_{+_p 0} - c_{np} q_{+_n 0} - g(1 - q_{+_n 0}n)\right)$	(2)			

3.2.2 Pair approximation with 3 states

There are 3 states: nurse, protégée and empty

• Parameters used

Table 1: Listes des paramètres utilisées et de leur valeurs

	Min	Max
del	0.10	0.1
m	0.02	0.1
n	0.00	1.0
b	0.40	0.8
cn	0.20	0.2
ср	0.20	0.2
cnp	0.10	0.1
cpn	0.10	0.9
g	0.00	0.9

- Coexistence
- Effect of mortality
- Effect of competitive ability of the protégée
- Co-occurences
- Statistics

Which parameter combination gives positive co-occurrences (i.e. Cnp >= 1.1) between two species when the density of the two species is superior to 0?

```
##
                                        b
                                                          cnp
          m
                           n
##
            :0.02
                                         :0.4000
                                                            :0.1
    Min.
                    Min.
                            :1
                                 Min.
                                                    Min.
##
    1st Qu.:0.02
                    1st Qu.:1
                                 1st Qu.:0.5000
                                                    1st Qu.:0.1
                                 Median :0.6000
##
    Median:0.02
                    Median:1
                                                    Median:0.1
                                                            :0.1
##
    Mean
            :0.02
                    Mean
                            :1
                                 Mean
                                         :0.5786
                                                    Mean
##
    3rd Qu.:0.02
                    3rd Qu.:1
                                 3rd Qu.:0.6000
                                                    3rd Qu.:0.1
##
    Max.
            :0.02
                            :1
                                 Max.
                                         :0.8000
                                                    Max.
                                                            :0.1
                    Max.
##
         cpn
                                             Cnp
                              :0.500
##
    Min.
            :0.6000
                      Min.
                                        Min.
                                                :1.100
##
    1st Qu.:0.7500
                      1st Qu.:0.700
                                        1st Qu.:1.114
##
    Median :0.8500
                      Median : 0.750
                                        Median :1.135
            :0.8173
                              :0.753
                                                :1.148
##
    Mean
                      Mean
                                        Mean
                      3rd Qu.:0.850
##
    3rd Qu.:0.9000
                                        3rd Qu.:1.176
            :0.9000
                              :0.900
    Max.
                      Max.
                                        Max.
                                                :1.263
```

The positive co-occurences arises when the grazing pressure and the competition of the nurse on the protégée is also high. A longer lifespan seems also promote coexistence.

• The dynamic of co-occurences

Figure 1: Green light: nurse alone, green dark: coexistence, black: protégée alone

Figure 2: Green light: nurse alone, green dark: coexistence, black: protégée alone

3.2.3 Cellular automata with 4 states

There are 4 states: nurse, protégée, empty and degraded

• Parameters used

Same as pair approximation! But we add f = 0.9, r = 0.01, d = 0.1.

• Results

No positive co-occurrence occurs! Fuck, fuck, fuck. Futhermore, the use of a low mortality (m = 0.02) made the vegetal cover very high.

```
##
                                                                c 2
      rho_nurse
                        rho_protege
                                                 c 1
##
    Min.
            :0.05173
                       Min.
                               :0.05017
                                           Min.
                                                   :0.2
                                                          Min.
                                                                  :0.2
    1st Qu.:0.44111
                        1st Qu.:0.14060
                                           1st Qu.:0.2
                                                          1st Qu.:0.2
##
##
    Median : 0.60916
                       Median :0.30831
                                           Median:0.2
                                                          Median:0.2
            :0.59733
                               :0.32992
                                                   :0.2
##
    Mean
                       Mean
                                           Mean
                                                          Mean
                                                                  :0.2
##
    3rd Qu.:0.80218
                       3rd Qu.:0.47437
                                           3rd Qu.:0.2
                                                          3rd Qu.:0.2
##
    Max.
            :0.91649
                       Max.
                               :0.90126
                                           Max.
                                                   :0.2
                                                          Max.
                                                                  :0.2
                            c_12
##
         c_21
                                            b
                                                              m
##
    Min.
            :0.1000
                      Min.
                              :0.1
                                     Min.
                                             :0.4000
                                                        Min.
                                                                :0.02
    1st Qu.:0.2500
                                      1st Qu.:0.6000
                                                        1st Qu.:0.02
##
                      1st Qu.:0.1
##
    Median :0.4000
                      Median:0.1
                                     Median :0.7000
                                                        Median:0.02
##
    Mean
            :0.4452
                              :0.1
                                             :0.6991
                                                                :0.02
                      Mean
                                     Mean
                                                        Mean
##
    3rd Qu.:0.6500
                      3rd Qu.:0.1
                                      3rd Qu.:0.8000
                                                        3rd Qu.:0.02
                                                                :0.02
##
    Max.
            :0.9000
                              :0.1
                                             :0.9000
                      Max.
                                     Max.
                                                        Max.
##
                        clus_2_1
          g
##
                            :0.6072
    Min.
            :0.00
                    Min.
##
    1st Qu.:0.15
                    1st Qu.:0.6738
                    Median :0.6886
##
    Median:0.25
##
    Mean
            :0.28
                    Mean
                            :0.6847
    3rd Qu.:0.40
                    3rd Qu.:0.6980
##
##
    Max.
            :0.80
                    Max.
                            :0.7740
```

- Coexistence
- Effect of the competition of the protégée on the nurse

We can see that the inter competition of the protégée on the nurse doesn't have a great impact on the size of the area of coexistence. I think it is because I put a too weak mortality. It's may be on of the reason why I don't have positive co-occurrence between the two species.

Stability

3.2.4 Cellular automata with 4 states

3.2.4.1 Model with local competition: intraspecific competition and interspecific facilitation Here, I tested the effect of interspecific facilitation for etablishment on the co-occurrence between the two species. I did it by setting the intercompetition to negative values and intracompetition to 0.3.

• Parameters used

Figure 4: Green light: nurse alone, green dark: coexistence, black: protégée alone

Table 2: Listes des paramètres utilisées et de leur valeurs

	Min	Max
$\overline{\mathrm{del}}$	0.1	0.1
\mathbf{m}	0.1	0.1
n	0.0	1.0
b	0.2	0.9
c1	0.3	0.3
c2	0.3	0.3
c12	-1.0	0.0
c21	-1.0	0.0
g	0.0	0.3

Coexistence

```
c2
##
      rho.nurse
                       rho.protege
                                                 c1
            :0.1639
##
    Min.
                      Min.
                              :0.06739
                                          Min.
                                                  :0.3
                                                          Min.
                                                                  :0.3
                                          1st Qu.:0.3
##
    1st Qu.:0.2853
                       1st Qu.:0.15039
                                                          1st Qu.:0.3
    Median :0.3486
                      Median :0.19472
                                          Median:0.3
                                                          Median:0.3
##
##
    Mean
            :0.3331
                      Mean
                              :0.19566
                                          Mean
                                                  :0.3
                                                          Mean
                                                                 :0.3
##
    3rd Qu.:0.3978
                       3rd Qu.:0.24051
                                          3rd Qu.:0.3
                                                          3rd Qu.:0.3
            :0.4272
                              :0.29314
##
    Max.
                                                  :0.3
                                                                  :0.3
                      Max.
                                          Max.
                                                          Max.
##
         c21
                             c12
                                                  b
##
    Min.
            :-1.0000
                                           Min.
                                                   :0.3000
                       Min.
                               :-1.0000
##
    1st Qu.:-1.0000
                        1st Qu.:-1.0000
                                           1st Qu.:0.3000
##
    Median :-1.0000
                       Median :-1.0000
                                           Median :0.3500
##
    Mean
            :-0.9444
                        Mean
                               :-0.9444
                                                   :0.3472
                                           Mean
##
    3rd Qu.:-1.0000
                        3rd Qu.:-1.0000
                                            3rd Qu.:0.3875
##
    Max.
            :-0.5000
                        Max.
                               :-0.5000
                                           Max.
                                                   :0.4000
##
          \mathbf{m}
                                         clus.2.1
                           :0.0000
##
    Min.
            :0.1
                   Min.
                                      Min.
                                              :1.005
##
    1st Qu.:0.1
                   1st Qu.:0.0500
                                      1st Qu.:1.008
##
    Median:0.1
                   Median :0.1000
                                      Median :1.039
##
    Mean
            :0.1
                   Mean
                           :0.1167
                                      Mean
                                              :1.046
    3rd Qu.:0.1
                   3rd Qu.:0.2000
                                      3rd Qu.:1.063
##
    Max.
            :0.1
                   Max.
                           :0.3000
                                      Max.
                                              :1.133
```

We see that coexistence occurs but obsviously, in the state diagram, we lost the part where the protégée survive alone because the intercompetition is below 0.

• Stability

4 Discussion

Figure 5: