H1 Trasformazioni Spaziali

H2 Introduzione

Nel nostro contesto definiamo le **trasformazioni spaziali** come funzioni applicate a punti o vettori:

$$f(p) = q$$
$$f(\vec{v}) = \vec{w}$$

Una trasformazione di un punto p restituisce un nuovo punto q, una trasformazione di un vettore \vec{v} restituisce un nuovo vettore \vec{w} .

Vediamo ora alcuni esempi di trasformazioni.

H₃ Traslazione - intro

$$fegin{pmatrix} x\y\z \end{pmatrix} = egin{pmatrix} x\y\z \end{pmatrix} + egin{pmatrix} t_x\t_y\t_z \end{pmatrix} = egin{pmatrix} x+t_x\y+t_y\tz \end{pmatrix}$$

Quello che facciamo è spostare un punto sommandogli componente per componente il vettore di traslazione $\begin{pmatrix} t_x \\ t_y \end{pmatrix}$

componente il **vettore di traslazione** $\begin{pmatrix} t_x \\ t_y \\ t_z \end{pmatrix}$.

<u>NOTA</u>: **non** ha senso applicare la traslazione ai vettori, in quanto essi non hanno posizione! Quindi la funzione di traslazione su un vettore, restituisce lo stesso vettore.

H₃ Scalatura isotropica (uniforme) - intro

$$f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \gamma \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \gamma \cdot x \\ \gamma \cdot y \\ \gamma \cdot z \end{pmatrix}$$

Moltiplico ogni componente di un punto o di un vettore per uno stesso scalare γ , in modo da scalare l'oggetto allo stesso modo lungo le tre dimensioni.

H₃ Scalatura anisotropica (non uniforme) - intro

$$fegin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} \gamma_x \ \gamma_y \ \gamma_z \end{pmatrix} \cdot egin{pmatrix} x \ y \ z \end{pmatrix} = egin{pmatrix} \gamma_x \cdot x \ \gamma_y \cdot y \ \gamma_z \cdot z \end{pmatrix}$$

Moltiplico ogni componente di un punto o di un vettore per uno scalare γ diverso, come per la traslazione.

<u>NOTA</u>: è possibile applicare la scalatura sia ai punti che ai vettori, in quanto ad esempio ingrandire un oggetto significa sia allontanare tra di loro i punti, sia quindi incrementare le distanze dell'oggetto.

H₃ Simmetria speculare - intro

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ -z \end{pmatrix}$$

H₃ Rotazione di 90° in senso antiorario attorno all'asse z - intro

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -y \\ x \\ z \end{pmatrix}$$

La funzione è chiara una volta osservata la geometria della cosa:

quindi su un oggetto qualsiasi:

H2 Rappresentazione matriciale

Tutte le trasformazioni viste finora, sono rappresentabili come visto sotto forma di funzione. In realtà vi è un modo diverso per rappresentare tutte le trasformazioni che abbiamo visto, che risulta nel nostro contesto più efficace ed efficiente: la **rappresentazione matriciale**.

Per introdurre tale rappresentazione, dovremo rappresentare in modo un po' diverso i punti e i vettori in modo da poterli distinguere e per poter applicare operazioni più complesse su di essi.

H₃ Coordinate omogenee

Aggiungiamo alla scrittura di punti e vettori una nuova coordinata w che opera nel seguente modo:

$$\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$
 è un punto $(w = 1)$
$$\begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix}$$
 è un vettore $(w = 0)$ (1)

Siamo passati dalle coordinate cartesiane alle **coordinate omogenee**, le quali non tengono conto delle trasformazioni di scalatura degli oggetti. Infatti in generale avremo:

$$p = egin{pmatrix} wx \ wy \ wz \ w \end{pmatrix} \mathrm{con} \; w
eq 0$$

dove p è un generico punto espresso in coordinate omogenee. Questo significa che per i punti vale ad esempio:

$$\begin{pmatrix}
20 \\
10 \\
30 \\
10
\end{pmatrix} = \begin{pmatrix}
4 \\
2 \\
6 \\
2
\end{pmatrix} = \begin{pmatrix}
2 \\
1 \\
3 \\
1
\end{pmatrix}
\implies \begin{pmatrix}
2 \\
1 \\
3
\end{pmatrix}$$
coordinate omogenee

invece per rappresentare i vettori l'unica scrittura possibile è quella dove w=0:

$$\begin{pmatrix}
2 \\
1 \\
3 \\
0
\end{pmatrix} \implies \begin{pmatrix}
2 \\
1 \\
3
\end{pmatrix}$$
coordinate cartesiane

A parte un caso specifico nel momento in cui analizzeremo il <u>pipeline di</u> <u>trasformazione</u>, ci basterà il caso (1) per rappresentare punti e vettori.

H₃ Trasformazioni come matrici

Esprimendo punti e vettori come coordinate omogenee, è ora possibile rappresentare le trasformazioni viste in precedenza come matrici 4×4 .

H₄ Traslazione

La funzione di traslazione di un punto sarà espressa così in coordinate omogenee:

$$fegin{pmatrix} x\ y\ z\ 1 \end{pmatrix} = egin{pmatrix} x+t_x\ y+t_y\ z+t_z\ 1 \end{pmatrix}$$

Per ottenere l'output di tale funzione, possiamo moltiplicare (prodotto riga per colonna) il punto per una matrice 4×4 :

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{t : t : t : t : t : t : T} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x + t_x \\ y + t_y \\ z + t_z \\ 1 \end{pmatrix}$$

Se applicata a un vettore, ci aspettiamo che restituisca lo stesso vettore, e infatti:

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{patrice distractions T}} \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix} = \begin{pmatrix} x + 0 \\ y + 0 \\ z + 0 \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix}$$

Per ottenere la trasformazione inversa, moltiplico per la matrice inversa, che per la traslazione è:

$$T^{-1} = egin{pmatrix} 1 & 0 & 0 & -t_x \ 0 & 1 & 0 & -t_y \ 0 & 0 & 1 & -t_z \ 0 & 0 & 0 & 1 \end{pmatrix}$$

 T^{-1} funziona anche logicamente, in quanto sto invertendo i valori di traslazione di T.

H4 Scalatura isotropica

La funzione di scalatura isotropica di un punto sarà espressa così in coordinate omogenee:

$$fegin{pmatrix} x \ y \ z \ 1 \end{pmatrix} = egin{pmatrix} \gamma \cdot x \ \gamma \cdot y \ \gamma \cdot z \ 1 \end{pmatrix}$$

Sotto forma di matrice:

$$\underbrace{ \begin{pmatrix} \gamma & 0 & 0 & 0 \\ 0 & \gamma & 0 & 0 \\ 0 & 0 & \gamma & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} }_{ \ \ \, } \quad \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} \gamma \cdot x \\ \gamma \cdot y \\ \gamma \cdot z \\ 1 \end{pmatrix}$$

Se applicata a un vettore:

$$\begin{pmatrix}
\gamma & 0 & 0 & 0 \\
0 & \gamma & 0 & 0 \\
0 & 0 & \gamma & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\quad
\begin{pmatrix}
x \\
y \\
z \\
0
\end{pmatrix} =
\begin{pmatrix}
\gamma \cdot x \\
\gamma \cdot y \\
\gamma \cdot z \\
0
\end{pmatrix}$$

H4 Scalatura anisotropica

La funzione di scalatura anisotropica di un punto sarà espressa così in coordinate omogenee:

$$fegin{pmatrix} x \ y \ z \ 1 \end{pmatrix} = egin{pmatrix} \gamma_x \cdot x \ \gamma_y \cdot y \ \gamma_z \cdot z \ 1 \end{pmatrix}$$

Sotto forma di matrice:

$$egin{pmatrix} egin{pmatrix} \gamma_x & 0 & 0 & 0 \ 0 & \gamma_y & 0 & 0 \ 0 & 0 & \gamma_z & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} & egin{pmatrix} x \ y \ z \ 1 \end{pmatrix} = egin{pmatrix} \gamma_x \cdot x \ \gamma_y \cdot y \ \gamma_z \cdot z \ 1 \end{pmatrix}$$

matrice di scalatura non uniforme S

Se applicata a un vettore:

$$egin{pmatrix} egin{pmatrix} \gamma_x & 0 & 0 & 0 \ 0 & \gamma_y & 0 & 0 \ 0 & 0 & \gamma_z & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} & egin{pmatrix} x \ y \ z \ 0 \end{pmatrix} = egin{pmatrix} \gamma_x \cdot x \ \gamma_y \cdot y \ \gamma_z \cdot z \ 0 \end{pmatrix}$$

Per ottenere la trasformazione inversa, moltiplico per la matrice inversa, che per la scalatura (anche quella uniforme) è:

$$S^{-1} = egin{pmatrix} 1/\gamma_x & 0 & 0 & 0 \ 0 & 1/\gamma_y & 0 & 0 \ 0 & 0 & 1/\gamma_z & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

 S^{-1} è l'inversa della scalatura anche logicamente, in quanto si fa il reciproco dei fattori di scala della matrice S.

H4 Simmetria speculare

La funzione di simmetria speculare di un punto sarà espressa così in coordinate omogenee:

$$f\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ -z \\ 1 \end{pmatrix}$$

Sotto forma di matrice:

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
x \\
y \\
z \\
1
\end{pmatrix} =
\begin{pmatrix}
x \\
y \\
-z \\
1
\end{pmatrix}$$

Applicata ai vettori:

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{matrice dissipare M}} \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix} = \begin{pmatrix} x \\ y \\ -z \\ 0 \end{pmatrix}$$

Per ottenere la trasformazione inversa, moltiplico per la matrice inversa, che per la simmetria speculare è:

$$M^{-1} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

che è uguale alla matrice M, ma logicamente è corretto in quanto non faccio altro che invertire ancora l'asse z.

H4 Rotazione di 90° in senso antiorario attorno all'asse z

La funzione di rotazione di 90° in senso antiorario attorno a z di un punto sarà espressa così in coordinate omogenee:

$$f\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} -y \\ x \\ z \\ 1 \end{pmatrix}$$

Sotto forma di matrice:

$$\underbrace{\begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{1} \quad \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} -y \\ x \\ z \\ 1 \end{pmatrix}$$

Applicata ai vettori:

$$\begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z \\
0
\end{pmatrix} = \begin{pmatrix}
-y \\
x \\
z \\
0
\end{pmatrix}$$

H3 Rotazioni generiche

Per indicare un generica rotazione lungo un asse, è più facile usare le **coordinate polari**. Ad esempio continuando a considerare la rotazione antioraria intorno a z:

Il punto (x, y) espresso in coordinate polari sarà (ρ, α) , e vale che:

$$x = \rho \cos \alpha$$
$$y = \rho \sin \alpha$$

Per arrivare al punto (x', y') è necessario sommare l'angolo β a α , quindi:

$$x' = \rho \cos(\alpha + \beta) = \rho \cos \alpha \cos \beta - \rho \sin \alpha \sin \beta = x \cos \beta - y \sin \beta$$

 $y' = \rho \sin(\alpha + \beta) = \rho \cos \alpha \sin \beta + \rho \sin \alpha \cos \beta = x \sin \beta + y \cos \beta$

Quindi, una funzione di rotazione antioraria generica intorno a z di un punto sarà:

$$fegin{pmatrix} x \ y \ z \ 1 \end{pmatrix} = egin{pmatrix} x\cos eta - y\sin eta \ x\sin eta + y\cos eta \ z \ 1 \end{pmatrix}$$

Sotto forma di matrice, avremo:

$$\underbrace{\begin{pmatrix} \cos\beta & -\sin\beta & 0 & 0 \\ \sin\beta & \cos\beta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{cons}} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{pmatrix} x\cos\beta - y\sin\beta \\ x\sin\beta + y\cos\beta \\ z \\ 1 \end{pmatrix}$$

Applicata ai vettori:

$$\underbrace{\begin{pmatrix} \cos\beta & -\sin\beta & 0 & 0 \\ \sin\beta & \cos\beta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\text{cos}\,\beta} \begin{pmatrix} x \\ y \\ z \\ 0 \end{pmatrix} = \begin{pmatrix} x\cos\beta - y\sin\beta \\ x\sin\beta + y\cos\beta \\ z \\ 0 \end{pmatrix}$$

matrice di rotazione generica su z

Ricapitolando, le rotazioni antiorarie attorno agli assi saranno:

• attorno all'asse x:

$$R_{x,eta} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & \coseta & -\sineta & 0 \ 0 & \sineta & \coseta & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

attorno all'asse y:

$$R_{y,eta} = egin{pmatrix} \coseta & 0 & -\sineta & 0 \ 0 & 1 & 0 & 0 \ \sineta & 0 & \coseta & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

• attorno all'asse z:

$$R_{z,eta} = egin{pmatrix} \coseta & -\sineta & 0 & 0 \ \sineta & \coseta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Se volessimo ottenere rotazioni in senso orario, basterà invertire le rotazioni in senso antiorario appena viste, e nelle rotazioni vale che:

$$R^{-1} = R^T$$

in quanto sono matrici ortogonali.

Quindi ad esempio per ottenere una rotazione in senso orario lungo l'asse z avremo:

$$R_{z,eta}^{-1} = egin{pmatrix} \coseta & \sineta & 0 & 0 \ -\sineta & \coseta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

H2 Trasformazioni affini

Tutte le trasformazioni viste finora e altre sono dette **trasformazioni affini** (o **lineari**). Le trasformazioni affini sono rappresentabili come matrici 4×4 come visto, per poi moltiplicare punti e vettori espressi in coordinate omogenee. Il vantaggio delle trasformazioni affini è che preservano l'**associatività** del prodotto tra matrici. Quindi:

$$M_A \cdot (M_B \cdot p) = (M_A \cdot M_B) \cdot p \tag{2}$$

Ciò è assai importante, in quanto significa che applicare una trasformazione M_B a un punto (o vettore) p e poi applicare al risultato un'altra trasformazione M_B , equivale a combinare le due trasformazioni M_A e M_B e poi applicare il risultato a p. È importante notare che il prodotto riga per colonna è sì associativo, ma non è commutativo, quindi:

$$M_A \cdot M_B \neq M_B \cdot M_A \tag{3}$$

Per la proprietà (2) quindi è possibile esprimere una sequenza di trasformazioni attraverso un'unica matrice moltiplicandole fra loro, ma per (3) l'ordine dei prodotti conta, e quindi conta l'ordine con cui cumuliamo le trasformazioni. Ciò è sensato anche logicamente, in quanto prima ruotare e poi traslare un oggetto avrà un risultato diverso che prima traslarlo e poi ruotarlo!

In ogni caso, questo ci consente di memorizzare più trasformazioni complesse in un'unica matrice 4×4 .

Ad esempio per ruotare e poi traslare un oggetto, dovremo ottenere una nuova matrice M nel seguente modo:

$$M = T \cdot R$$

per fare il contrario, invertiamo il prodotto:

$$M = R \cdot T$$

H4 Ruolo del determinante di una trasformazione

Calcolare il determinante di una matrice di trasformazione ci da' un'informazione talvolta utile, cioè:

det(M) = fattore di scala del volume della trasformazione M

Ad esempio, è possibile verificare che la rotazione o la traslazione hanno det=1, e infatti sono trasformazioni che non aumentano o riducono il volume dell'oggetto a cui sono applicate, mentre la scalatura avrà $det=\gamma_x\cdot\gamma_y\cdot\gamma_z$, e infatti il volume di un oggetto scalato cambia!

H2 Cambio di sistema di riferimento

Le trasformazioni possono essere viste da un altro punto di vista: non è l'oggetto a essere trasformato, ma il sistema di riferimento! Questo punto di vista è confermato anche da una diversa visione del calcolo del prodotto riga per colonna visto finora. Possiamo infatti scriverlo come combinazione lineare:

Questo si lega al concetto di *spazio vettoriale*, in quanto posso esprimere univocamente ogni vettore v di tale spazio vettoriale come combinazione lineare dai 3 vettori di base a_x, a_y, a_z :

$$v = a_x x + a_y y + a_z z$$

cioè:

$$v = \left(egin{array}{cccc} a_x & a_y & a_z \ \end{array}
ight) \left(egin{array}{c} x \ y \ z \ 0 \end{array}
ight)$$

In modo simile, ogni punto p dello spazio definito dai vettori di base a_x, a_y, a_z e dall'origine o è ottenibile nel seguente modo:

$$p = a_x x + a_y y + a_z z + o$$

cioè:

$$p = \left(egin{array}{cccc} a_x & a_y & a_z & o \ & & & \end{array}
ight) \left(egin{array}{c} x \ y \ z \ 1 \end{array}
ight)$$

Le colonne della matrici di trasformazione descrivono quindi i 3 assi e il punto di origine del sistema di partenza secondo le coordinate del sistema di arrivo.

Ad esempio:

possiamo traslare il punto in rosso (e quindi tutti gli altri punti) nel seguente modo:

$$\begin{pmatrix} 1 & 0 & 0 & 7 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1.5 \\ 2.2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 8.5 \\ 5.2 \\ 0 \\ 1 \end{pmatrix}$$

otteniamo geometricamente:

se manteniamo in evidenza il sistema di riferimento di partenza:

notiamo che il punto di origine o del vecchio sistema di riferimento ha coordinate (7,3,0,1), che è proprio il vettore colonna dell'origine nella trasformazione. Invece gli assi non sono cambiati, e infatti anche le prime 3 colonne della trasformazione sono colonne identità.

Facciamo un esempio in cui gli assi variano, ad esempio una rotazione. Partendo dalla seguente situazione:

Possiamo ruotare il punto rosso (e quindi tutti gli altri punti) nel seguente modo:

$$\begin{pmatrix} 0.7 & -0.7 & 0 & 0 \\ 0.7 & 0.7 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -5.0 \\ 1.0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -4.4 \\ -2.8 \\ 0 \\ 1 \end{pmatrix}$$

otteniamo geometricamente:

se manteniamo in evidenza il sistema di riferimento di partenza:

notiamo che l'asse
$$x$$
 di partenza è adesso il vettore $\begin{pmatrix} 0.7\\0.7\\0\\0\end{pmatrix}$ mentre y è $\begin{pmatrix} -0.7\\0.7\\0\\0\end{pmatrix}$,

che sono proprio le prime 2 colonne della trasformazione. L'asse z e l'origine o non sono invece variati, infatti le colonne corrispondenti sono colonne identità.