**4.6** For the linear circuit shown in Fig. 4.74, use linearity to complete the following table.

| Experiment | $V_s$ | $V_o$ |
|------------|-------|-------|
| 1          | 12 V  | 4 V   |
| 2          |       | 16 V  |
| 3          | 1 V   |       |
| 4          |       | -2 V  |



**Figure 4.74** For Prob. 4.6.

**4.12** Determine  $v_o$  in the circuit of Fig. 4.80 using the superposition principle.



**Figure 4.80** For Prob. 4.12.

**4.22** For the circuit in Fig. 4.90, use source transformation to find *i*.



Figure 4.90

For Prob. 4.22.

**4.30** Use source transformation on the circuit shown in Fig 4.98 to find  $i_x$ .



Figure 4.98

For Prob. 4.30.

**4.34** Using Fig. 4.102, design a problem that will help other students better understand Thevenin equivalent circuits.



## **Figure 4.102**

For Probs. 4.34 and 4.49.

**4.52** For the transistor model in Fig. 4.118, obtain the Thevenin equivalent at terminals *a-b*.



Figure 4.118

For Prob. 4.52.

\*4.60 For the circuit in Fig. 4.126, find the Thevenin and Norton equivalent circuits at terminals *a-b*.



**Figure 4.126** For Probs. 4.60 and 4.81.

\*4.75 For the circuit in Fig. 4.141, determine the value of *R* such that the maximum power delivered to the load is 3 mW.



Figure 4.141 For Prob. 4.75.

**4.78** Use *PSpice or MultiSim* to solve Prob. 4.52.