Contents

	Set-builder notation		
	0.1.1	Notation	1
	0.1.2	Class builder notation	1

0.1 Set-builder notation

0.1.1 Notation

NB. This should be later, the way they are described links to the axiom schema of specification.

We can use short-hand to describe sets.

$$\{x \in S : P(x)\}$$

This defines a set by a restriction. For example we will later be able to define natural numbers above 5 as:

$$\{x\in\mathbb{N}:x>5\}$$

0.1.2 Class builder notation

Emuneration can be done through set builder notation too

Can define sets formally! defintion doesn't just affect sets

$$\forall x (x \in C \leftrightarrow P(x))$$

NB: We're not saying C exists

Can then use examples of equiv class

$$\forall x (x \in C \leftrightarrow x = x)$$