Computational Physics Praktikum, WS 2012/13

Stationäre Schrödingergleichungen: Entwicklung in ein vollständiges Funktionensystem

Nils Schweinsberg

19. November 2012 Betreut durch E. van Dalen

Inhaltsverzeichnis

1	The	orie	
	1.1	Diskretisierung	
	1.2	Sphärische symmetrische Diskretisierung	
	1.3	Entwicklung der Lösung	
	1.4	Numerische Integration	
	1.5	Numerische Diagonalisierung	
2	Auswertung		
	2.1	Besselfunktionen	
	2.2	Diagonalisierung	
	2.3	Schrödingergleichung eines Nukleons	
	2.4	Numerische Stabilität	

1 Theorie

In diesem Versuch soll die stationäre Schrödingergleichung gelöst werden:

$$\hat{H}|\alpha\rangle = E_{\alpha}|\alpha\rangle \tag{1}$$

Aus den Eigenvektoren $|\alpha\rangle$ können anschließend die Wellenfunktionen berechnet werden:

$$\psi_{\alpha}(x) = \langle x | \alpha \rangle \tag{2}$$

1.1 Diskretisierung

Wählt man mit $|n\rangle$ (n = 1,2,3...) ein vollständiges Orthogonalsystem, so kann man den Eigenvektor $|\alpha\rangle$ in der so gewählten Basis darstellen:

$$|\alpha\rangle = \sum_{n=1}^{\infty} |n\rangle\langle n|\alpha\rangle = \sum_{n=1}^{\infty} c_{n\alpha}|n\rangle$$
 (3)

Multipliziert man die Schrödingergleichung von links mit dem Zustand $\langle m|$ erhält man mit den Koeffizienten $c_{n\alpha} = \langle n|\alpha\rangle$ die Diskretisierung:

$$\sum_{n=1}^{\infty} \langle m|\hat{H}|n\rangle \langle n|\alpha\rangle = E_{\alpha}\langle m|\alpha\rangle \tag{4}$$

Oder in kompakter Matrix-schreibweise mit $H_{mn} = \langle m|\hat{H}|n\rangle$:

$$\sum_{n=1}^{\infty} H_{mn} c_{n\alpha} = E_{\alpha} c_{m\alpha} \tag{5}$$

Für die Wellenfunktion gilt in dieser Darstellung:

$$\psi_{\alpha} = \langle x | \alpha \rangle = \sum_{n=1}^{\infty} c_{n\alpha} \langle x | n \rangle \tag{6}$$

Zur numerischen Berechnung muss man eine geeignete Näherung wählen, die sich auf N Basiszustände beschränkt. Die diskrete stationäre Schrödingergleichung lautet damit:

$$\sum_{n=1}^{N} H_{mn} c_{n\alpha} \approx E_{\alpha} c_{m\alpha} \tag{7}$$

Dieses Problem lässt sich durch diagonalisieren der $N \times N$ -Matrix H_{mn} numerisch lösen.

1.2 Sphärische symmetrische Diskretisierung

Durch die wahl des Wood-Saxon-Potentials als sphärisch symmetrisches Potential lässt sich der Winkelanteil der zugehörigen Wellenfunktionen durch Kugelfunktionen darstellen:

$$\langle x|n = \{ilm\}\rangle \propto Y_l^m(\theta,\phi)$$
 (8)

Der Radialanteil wird durch die sphärischen Besselfunktionen $j_l(x)$ angegeben. Notwendige Bedingung ist, dass diese auf dem Rand der Box (r = R) verschwinden:

$$j_l(k_{il}R) = 0 (9)$$

Die Impulse k_{il} sind somit diskretisiert (quantisiert). Die Besselfunktionen sind außerdem orthonormal mit dem jeweiligen Normierungsfaktor α_{il} :

$$\int_0^R r^2 (\alpha_{il} \cdot j_l(k_{il}r))(\alpha_{jl} \cdot j_l(k_{jl}r)) dr = \delta_{ij}$$
(10)

Der Normierungsfaktor beträgt:

$$\alpha_{il} = j\pi\sqrt{2/R^3}$$
 für $l = 0$ bzw. (11)

$$\alpha_{il} = \frac{\sqrt{2/R^3}}{j_{l-1}(k_{jl}R)} \qquad \text{für} \quad l > 0$$
 (12)

Als (vollständige) Orthonormalbasis erhält man somit:

$$f_{ilm} = \alpha_{il} j_l(k_{il}r) Y_l^m(\theta, \phi) \tag{13}$$

1.3 Entwicklung der Lösung

Es gilt, die Matrix H_{mn} zu diagonalisieren:

$$H_{mn} = \langle m|T|n\rangle + \langle m|V|n\rangle \tag{14}$$

$$\langle i'l'm'|T|ilm\rangle = \delta_{ii'}\delta_{ll'}\delta_{mm'}\frac{(\hbar c)^2}{2Mc^2}k_{il}^2$$
(15)

$$\langle i'l'm'|V|ilm\rangle = \delta_{ll'}\delta_{mm'}\alpha_{i'l}\alpha_{il} \int r^2V(r)j_l(k_{i'l}r)j_l(k_{il}r)\underline{r}$$
(16)

Der so konstruierte kinetische Teil T_{mn} ist bereits diagonal, der Potentialteil V_{mn} ist durch $V_{mn} \propto \delta_{ll'}\delta_{mm'}$ blockdiagonal. Es reicht also aus, für ein festes l die Matrix $H_{ii'}$

zu diagonalisieren. Zu beachten ist dabei, dass die so erhaltenen Zustände (2l+1)-fach entartet sind, da sie von m unabhängig sind.

Die Wellenfunktion kann damit in der in Gl. (13) definierten Basis entwickelt werden:

$$\psi_{\alpha}(\vec{x}) = \langle \vec{x} | \alpha \rangle = \sum_{ilm} \langle \vec{x} | ilm \rangle \langle ilm | \alpha \rangle = \sum_{n=\{ilm\}} c_{n\alpha} f_n(\vec{x})$$
 (17)

1.4 Numerische Integration

Um Integrale numerisch berechnen zu können ist die Diskretisierung in N äquidistante Abschnitte notwendig:

$$\int_0^R f(r)\mathbf{r} = \left(\frac{1}{2}f(r_0) + \sum_{i=1}^{N-1} f(r_i) + \frac{1}{2}f(r_N)\right) \Delta r$$
 (18)

Dabei ist $r_i = i\Delta r$ mit $i = 0 \dots N$ und $\Delta r = R/N$

1.5 Numerische Diagonalisierung

Zur numerischen Diagonalisierung der Hamilton-Matrix H wird das Jacobi-Verfahren für symmetrische, quadratische Matrizen verwendet. Dabei wird die Matrix H in der p-ten Zeile bzw. q-ten Spalte verändert:

$$H'_{pp} = c^2 H_{pp} + s^2 H_{qq} - 2scH_{pq}$$
 (19)

$$H'_{qq} = c^2 H_{qq} + s^2 H_{pp} + 2scH_{pq}$$
 (20)

$$H'_{pq} = H'_{qp} = (c^2 - s^2)H_{pq} + sc(H_{pp} - H_{qq})$$
(21)

Für die Werte mit $i \neq p,q$ gilt:

$$H'_{ni} = H'_{in} = cH_{pi} - sH_{qi} \tag{22}$$

$$H'_{qi} = H'_{iq} = cH_{qi} + sH_{pi} (23)$$

Die Variablen s und c werden so bestimmt, dass $H'_{pq} = 0$:

$$c = \frac{1}{\sqrt{t^2 + 1}} \tag{24}$$

$$s = tc (25)$$

$$t = \frac{\operatorname{sgn}(\theta)}{|\theta| + \sqrt{\theta^2 + 1}} \tag{26}$$

$$\theta = \frac{c^2 - s^2}{2sc} = \frac{H_{qq} - H_{pp}}{2H_{pq}} \tag{27}$$

Die Transformationsmatrix A erhält man, indem man diese Rotation mehrfach hintereinander ausführt, also:

$$A = A_{p_1q_1} \cdot A_{p_2q_2} \cdot \ldots \cdot A_{p_nq_n} \tag{28}$$

2 Auswertung

2.1 Besselfunktionen

In Aufgabe 1 sollten die sphärischen Bessel-Funktionen als Funktion von x berechnet werden und deren Nullstellen berechnet werden. Fig. 1 zeigt die ersten 10 Bessel-Funktionen. Die Nullstellen der ersten 100 Bessel-Funktionen befinden sich im Anhang im Unterordner "zero-points".

Ab der Bessel-Funktion j_{67} haben die Bessel-Funktionen im Intervall x=0...100 keine Nullstellen mehr, also insbesondere auch j_{125} nicht.

Die Wellenzahlen für $R=5\,\mathrm{fm}$ befinden sich ebenfalls im Anhang im Unterordner "wave-numbers".

Die Orthogonalität der Besselfunktionen konnte ebenfalls gezeigt werden, die Ergebnisse befinden sich im Anhang im Unterordner "otho". Es wurde dabei die Differenz zur Einheitsmatrix aufgetragen, also |M-1|.

Abbildung 1: Die ersten 10 sphärischen Bessel-Funktionen als Funktion von x

2.2 Diagonalisierung

In Aufgabe 2 sollten die Matrizen

$$A_{ij} = \frac{N}{i+j} + i + j \tag{29}$$

für $A \in \mathbb{R}^{N \times N}$ diagonalisiert werden. Dazu wurde das Jacobi-Verfahren verwendet. Die Ergebnisse befinden sich im Anhang im Unterordner "diag".

2.3 Schrödingergleichung eines Nukleons

In Aufgabe 3 sollte die Bewegung eines Nukleons im Wood-Saxon-Potential (Fig. 2) eines Atomkerns untersucht werden. Dazu wurden die stationären Lösungen der Schrödingergleichung berechnet. Für eine Box-Größe R=10 fm erhält man als Ergebnis für die Energien $E_{l,j}$:

$$E_{0.1} = -40.37 \text{ MeV}$$
 (30)

$$E_{0.3} = -4.12 \text{ MeV}$$
 (31)

$$E_{1,2} = -23.47 \text{ MeV}$$
 (32)

$$E_{2,2} = -5.43 \text{ MeV}$$
 (33)

Die genauen Energie-Werte für das jeweilige l befinden sich im Anhang im Unterordner "energy".

Mit diesen Lösungen wurden die Wellenfunktionen

$$\Psi_j(r) = \sum_{i} A_{ij} \cdot \alpha_{i,l} \cdot j_l(k_{i,l} \cdot r)$$
(34)

berechnet, wobei A die Transformationsmatrix aus dem Jacobi-Verfahren ist und $\alpha_{i,l}$ der Norm-Faktor zur Besselfunktion j_l und der i-ten Wellenzahl $k_{i,l}$. Das Ergebnis ist in Fig. 3 geplottet. Die genauen Werte befinden sich im Anhang im Unterordner "psi".

2.4 Numerische Stabilität

Zum überprüfen der numerischen Stabilität wurde die Boxgröße und die Zahl der Basisfunktionen angepasst. Es wurden Boxgrößen von R=5 fm,10 fm,15 fm gewählt und die Anzahl der Basisfunktionen $l_{\rm max}=5,10$ für jeden Wert jeweils variiert.

Für die stationären Energien $E_{l,j}$ erhält man für R=5 fm und $l_{\max}=5$:

$$E_{0.0} = -40.33 \text{ MeV}$$
 (35)

$$E_{0.1} = -1.22 \text{ MeV}$$
 (36)

$$E_{1,0} = -23.24 \text{ MeV}$$
 (37)

$$E_{2.0} = -4.35 \text{ MeV}$$
 (38)

Für R = 5 fm und $l_{\text{max}} = 10$ gilt:

Abbildung 2: Das im Versuch verwendete Wood-Saxon-Potential

Abbildung 3: Wellenfunktionen $\Psi_j(r)$ der stationären Lösungen

$$E_{0.0} = -40.34 \text{ MeV} \tag{39}$$

$$E_{0,1} = -1.22 \text{ MeV}$$
 (40)

$$E_{1.0} = -23.24 \text{ MeV}$$
 (41)

$$E_{2,0} = -4.35 \text{ MeV}$$
 (42)

Für R = 15 fm und $l_{\text{max}} = 5$ gilt:

$$E_{0,2} = -40.37 \text{ MeV} \tag{43}$$

$$E_{0.6} = -4.14 \text{ MeV}$$
 (44)

$$E_{1.6} = -23.47 \text{ MeV}$$
 (45)

$$E_{2,5} = -5.43 \text{ MeV}$$
 (46)

Für R = 15 fm und $l_{\text{max}} = 10$ gilt:

$$E_{0.2} = -40.37 \,\text{MeV}$$
 (47)

$$E_{0.6} = -4.14 \text{ MeV}$$
 (48)

$$E_{1,6} = -23.47 \text{ MeV}$$
 (49)

$$E_{2.5} = -5.43 \text{ MeV}$$
 (50)

Die stationären Energien $E_{j,l}$ ändern sich also nicht (nur unwesentlich) mit höherer Ordnung der Basisfunktionen für ein festes R. Auch die Werte der stationären Energien entsprechen bis auf kleine Abweichungen für R=5 fm bei den Energien $E_{0,1}$ und $E_{2,0}$ den Werten für R=10 fm. Für R=15 fm nahezu identisch. Lediglich die Ordnungen des jeweiligen stationären Zustandes ändert sich in Abhängigkeit der Boxgröße R.

Die Wellenfunktionen entsprechen im wesentlichen der Wellenfunktion für R=10 fm und $l_{\rm max}=3$ aus Aufgabenteil 2.3.a. Die Wellenfunktion zu R=15 fm und $E_{2,5}$ scheint sich jedoch invertiert zu haben.

Abbildung 4: Wellenfunktion $\psi_j(r)$ für R=5 fm und $l_{\rm max}=5$ (links) bzw. $l_{\rm max}=10$ (rechts)

Abbildung 5: Wellenfunktion $\psi_j(r)$ für R=15 fm und $l_{\rm max}=5$ (links) bzw. $l_{\rm max}=10$ (rechts)