DAG

Sheet 4

Víctor Ruiz

1. Definition 9.2 in Ziegler's Lectures on Polytopes constructs the linear map

$$P \stackrel{\pi^c}{\longrightarrow} Q^c := \left\{ \begin{pmatrix} \pi(x) \\ cx \end{pmatrix} : x \in P \right\} \subset \mathbb{R}^{q+1}$$

from a projection $\pi: P \subset \mathbb{R}^p \to Q \subset \mathbb{R}^q$ and a linear function $c \in (\mathbb{R}^q)^*$. Is it possible to give an algorithm to determine the set of lower faces $\mathcal{L}^{\downarrow}(Q^c)$ of Q^c from just the set of facet normals of Q, the projection π , and the linear function c, without running a convex hull algorithm on Q^c ?

2. Show that

$$\int_{P} f(x) \, \mathrm{d}x = \operatorname{vol}(P) \cdot f(p_0)$$

for any polytope P, where $p_0 = \frac{1}{\text{vol}(P)} \int_P x \, dx$ denotes the barycenter of P.

- 3. Complete the proof of Theorem 9.6 in Ziegler's Lectures on Polytopes.
- 1. It is not possible, since we cannot obtain Q^c (or $\mathcal{L}^{\downarrow}(Q^c)$) just from Q, π and c. For example, take q=1, Q any 1-polytope (any interval), $\pi(x,y)=x$ and c=(0,1), then π^c is the identity in P, so $Q^c=P$, but we are not given P, so it's impossible to get Q^c or just $\mathcal{L}^{\downarrow}(Q^c)$.
- 2. Directly from the linearity of f and the linearity property of the integral:

$$\operatorname{vol}(P)f(p_0) = \operatorname{vol}(P)f\left(\frac{1}{\operatorname{vol}(P)} \int_P x \, \mathrm{d}x\right) = f\left(\int_P x \, \mathrm{d}x\right) = \int_P f(x) \, \mathrm{d}x$$

- 3. I will enumerate the parts of the sketch of Ziegler's proof which are not clear and I'll explain them:
 - (i) $\Sigma(P,Q)$ is convex.

