Variância e Valor Esperado

$$egin{aligned} Var(X) &= E[(X-EX)^2] = E(X^2) + E(X)^2 \ Var(aX+b) &= a^2 Var(X) \ E[aX+b] &= aE[X] + b \ E[x] &= \int_{\infty}^{\infty} x f(x) dx \end{aligned}$$

Convergência

Definição: Dizemos que uma sequência de variáveis aleatórias Z_n converge para b, se para todo $\epsilon > 0$, temos que:

$$\lim |Pr(|Z_n - b| < \epsilon) = 1$$

Teorema de Bayes e Probabilidade Condicional

Probabilidade Condicional de B dado A:

$$Pr(B|A) = Pr(A \cap B)Pr(B)$$
 $Pr(B|A) = rac{Pr(A|B)Pr(B)}{Pr(A|B)Pr(B) + Pr(A|ar{B})Pr(ar{B})}$

Teorema Central do Limite (TCL)

Para qualquer distribuição de X, com média μ e variância σ^2 , então para $n \to \infty$:

$$(ar{X_n}-\mu)/\sigma_{ar{X}} o N(0,1)$$

N(0,1): Normal padronizada ou Distribuição Normal Padrão.

$$ar{X_n}^{ ilde{}} N(\mu, \sigma^2/n)$$

Ps:. X pode ser qualquer variável aleatória, seja ela discreta ou contínua.

Lei dos Grandes Números (LGN)

Sejam $(X_1, X_2, ..., X_n)$ variáveis aleatórias independentes e identicamente distribuidas com média μ , então:

$$ar{X_n} = rac{1}{n} \sum x_i
ightarrow \mu$$

$$Pr(\lim_{n o\infty}ar{X_n}=\mu)=1$$

Inferência Frequentista

Em uma abordagem frequencista à inferência, parâmetros desconhecidos são frequentemente, mas nem sempre tratados como se tivessem valores fixos, mas desconhecidos que não podem ser tratados como variados aleatórios em qualquer sentido e assim não há como associar probabilidades a eles.

Inferência Bayesiana

Trata tudo como variável aleatória:

$$\xi(heta|ar{x}) = rac{\xi(heta)f_n(ar{x}| heta)}{f(ar{x})} = rac{\xi(heta)\prod_{i=1}^n f(x_i| heta)}{\int \xi(heta)\prod_{i=1}^n f(x_i| heta)d heta}, \; ar{x}(x_1,x_2,\ldots,x_n)$$

Com variáveis discretas:

$$\xi(heta|ar{x}) = rac{\xi(heta)f_n(ar{x}| heta)}{\sum_{ heta} \xi(heta)\prod_i f_n(ar{x}| heta)}$$

Priori e Posteriori: $\xi(\theta)$ & $\xi(\theta|x)$

$$\xi(heta|x) = rac{\xi(heta)\prod_{i=1}^n f_n(x_i| heta)}{g_n(x)}$$

Função de Verossimilhança: $f(x_1, x_2, \dots, x_n | \theta)$

$$\xi(\theta|x) \propto f(x|\theta)\xi(\theta)$$

Distribuição Uniforme

$$egin{align} f(x| heta_1, heta_2)&=rac{1}{ heta_2- heta_1},\; heta_2> heta_1\ E[x]&=rac{a+b}{2}\ Var[x]&=rac{(b-a)^2}{12}\ f_n(x| heta_1, heta_2)&=rac{1}{(heta_2- heta_1)^n} \end{aligned}$$

Distribuição Binomial

k = número de sucessos

$$egin{align} f(x| heta,k) &= inom{n}{k} heta^k (1- heta)^{n-k} \ E[x] &= p \leftrightarrow heta \ E[x^2] &= n^2 p^2 + n p (1-p) \leftrightarrow n^2 heta^2 + n heta (1- heta) \ Var[x] &= n p (1-p) \leftrightarrow n heta (1- heta) \ f_n(x| heta) &= \prod_{i=1}^n inom{n}{x_i} heta^y (1- heta)^{n-y}, \,\, y = \sum_1^n x_i \ \end{array}$$

Distribuição Geométrica

$$f(x| heta) = (1- heta)^k heta \ E[x] = rac{1-p}{p} \leftrightarrow rac{1- heta}{ heta} \ Var[x] = rac{1-p}{p^2} \leftrightarrow rac{1- heta}{ heta^2}$$

Distribuição de Bernoulli

$$egin{align} f(x| heta) &= heta^x (1- heta)^{1-x}, \; x \in \{0,1\} \ &E[x] &= p \leftrightarrow heta \ &Var[x] &= p(1-p) \leftrightarrow heta(1- heta) \ &f_n(x| heta) &= heta^y (1- heta)^{n-y}, \; y = \sum_1^n x_i \ & \end{array}$$

Distribuição Exponencial

$$egin{align} f(x| heta) &= heta e^{- heta x}, \; heta > 0, \; x > 0 \ &E[x] &= rac{1}{\lambda} \leftrightarrow rac{1}{ heta} \ &Var[x] &= rac{1}{p^2} \leftrightarrow rac{1}{ heta^2} \ &f_n(x| heta) &= heta^n e^{- heta y}, \; y &= \sum_1^n x_i \ & \end{array}$$

Distribuição de Poisson

$$egin{align} f(x| heta) &= rac{e^{- heta} heta^x}{x!}, \; heta > 0 \ &E[x] &= \lambda \leftrightarrow heta \ &Var[x] &= \lambda \leftrightarrow heta \ &f_n(x| heta) &= rac{e^{-n heta} heta^y}{\prod x_i!}, \; y = \sum_1^n x_i \ & \end{aligned}$$

Distribuição Normal(μ , σ^2)

$$f(x|\mu,\sigma^2)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{(x-\mu)^2}{2\sigma^2}}
onumber$$
 $E[x]=\mu
onumber$ $Var(x)=\sigma^2$

Distribuição Gamma(α, β)

$$egin{aligned} f(x|lpha,eta) &= rac{eta^lpha}{\Gamma(lpha)} x^{lpha-1} e^{-eta x}, \; x > 0 \ & \xi(heta) \propto heta^{lpha-1} e^{-eta heta} \ & E[x] &= mcute{e}dia = rac{lpha}{eta} \end{aligned}$$

Distribuição Gamma-Inversa(α , β)

$$f(x|lpha,eta)=rac{eta^lpha}{\Gamma(lpha)}x^{-lpha-1}e^{-rac{eta}{x}}$$

Distribuição Beta (α, β)

$$egin{align} f(x|lpha,eta) &= rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)} x^{lpha-1} (1-x)^{eta-1}, \,\, 0 < x < 1 \ &\quad \xi(heta) \propto heta^{lpha-1} (1- heta)^{eta-1} \ &\quad E[x] = m cute{e} dia = rac{lpha}{lpha+eta} \end{split}$$

Funções de Perda: $L(\theta, \delta)$

Perda Quadrática:

$$L(\theta, \delta) = (\delta - \theta)^2$$

Perda Absoluta:

$$L(heta,\delta)=|\delta- heta|$$

Estimador de Bayes: $heta_{bayes} = E[heta|ar{x}]$

Definição: Estimador que minimiza a função de perca a posteriori.

$$E[L(heta,\delta(ar{x}))|ar{x}] = \int_{\Omega} L(heta,\delta) \xi(heta,x)$$

- Na perda quadrátca: θ_{bayes} = média da posteriori
- Na perda absoluta: θ_{bayes} = mediana da posteriori

Exemplos:

 $Gamma(\alpha, \beta)$:

$$\delta^* = rac{lpha + nar{x}}{eta + n} = rac{lpha + y}{eta + n}, \; y = \sum_1^n x_i$$

 $Beta(\alpha, \beta)$:

$$\delta^* = \frac{\alpha}{\alpha + \beta}$$

Se x_1, \ldots, x_n é uma distribuição de poisson $x_i | \theta \sim P(\theta)$ e a priori for uma distribuição Gamma $\theta \sim G(\alpha, \beta)$ então a posteriori também é uma distribuição Gamma.

Se x_1, \ldots, x_n é uma distribuição uniforme $x_i | \theta \sim U(0, \theta)$ e a priori for uma distribuição de Pareto $\theta \sim Pa(\theta_0, a)$ então a posteriori também é uma distribuição de Pareto.

Estimador Consistente

Definição: Um estimador δ é dito consistente quando: $\delta_n o \theta$, para $n o \infty$

EMV ou MLE: θ_{EMV}

Definição: O estimador de máxima verossimilhança (EMV) de uma amostra é aquele que maximiza a função de verossimilhança $L(\theta)=f_n(\bar{x}|\theta)$.

$$\hat{\theta} = argmax \ L_x(\theta)$$

Ps:. Maximizar $L(\theta)$ é o mesmo que maximizar $logL(\theta)$: "deriva e iguala a 0".

$$(\log L(\theta))' = 0$$

Ps:. Maximizar $L(\theta)$ também é o mesmo que minimizar $-L(\theta)$.

Exemplos:

Uniforme:

$$\hat{ heta_2} = max\{x_1, x_2, \ldots, x_n\}$$

$$\hat{ heta_1} = min\{x_1, x_2, \ldots, x_n\}$$

Quando $\theta_1 = 0$: intervalo $[0, \theta]$

$$\hat{ heta} = max(X_1, X_2, \dots, X_n)$$

Prova:

$$L(heta) = f_n(ar{x}| heta_1, heta_2) = rac{1}{(heta_2- heta_1)^n}$$

 $L(\theta)$ é maximizado quando $(\theta_2 - \theta_1)$ é mínimo.

$$\hat{ heta_1} = max\{x_1, x_2, \dots, x_n\}$$

$$\hat{ heta_2} = min\{x_1, x_2, \ldots, x_n\}$$

Quando $\theta_1 = 0$:

$$L(heta) = f_n(ar{x}| heta) = rac{1}{(heta)^n \ \mathbb{I}(\{x_1,x_2,\ldots,x_n\} \leq heta)}$$

 $L(\theta)$ é maximizado quando θ é máximo.

Binomial:

$$\hat{ heta}=ar{x_n}$$

Prova:

$$egin{align} L(heta) &= f_n(ar{x}| heta) = \prod_{i=1}^n inom{n}{x_i} heta^y (1- heta)^{n-y}, \; y = \sum_1^n x_i \ log \; L(heta) &= \sum_{i=1}^n \log igg(inom{n}{x_i}igg) + y \log(heta) + (n- heta) \log(1- heta) \ &(log \; L(heta))' = 0 \Leftrightarrow = rac{y}{ heta} - (n-y)rac{1}{1- heta} = 0 \ &y(1- heta) = heta(n-y) \Leftrightarrow y - heta extstyle = heta n - heta extstyle \ &y = heta n \Leftrightarrow heta = rac{y}{n} = rac{\sum_1^n x_i}{n} = ar{x_n} \ & \end{cases}$$

Exponencial:

$$\hat{ heta} = rac{1}{ar{x_n}}$$

Prova:

$$egin{align} L(heta) &= f_n(ar{x}| heta) = heta^n e^{- heta y}, \; y = \sum_1^n x_i \ log \; L(heta) &= n \; log(heta) - heta y = n \; log(heta) - heta \sum_1^n x_i \ &(log \; L(heta))' = 0 \leftrightarrow rac{n}{ heta} - \sum_1^n x_i = 0 \ &rac{n}{ heta} = \sum_1^n x_i \leftrightarrow heta = rac{n}{\sum_1^n x_i} = rac{1}{ar{x_n}} \ & \end{cases}$$

Bernoulli:

$$\hat{\theta} = \bar{x_n}$$

Prova:

$$egin{align} L(heta) &= f_n(ar{x}| heta) = heta^y (1- heta)^{n-y}, \; y = \sum_1^n x_i \ log \; L(heta) &= y \; log(heta) + (n-y)(log(1- heta)) \ (log \; L(heta))' &= 0 \Leftrightarrow rac{y}{ heta} - rac{n-y}{(1- heta)} = 0 \ rac{y}{ heta} &= rac{n-y}{1- heta} \Leftrightarrow y(1- heta) = heta(n-y) \ y - heta y &= n heta - heta y \ heta &= rac{y}{n} = rac{\sum_1^n x_i}{n} = ar{x_n} \ \end{pmatrix}$$

Poisson:

$$\hat{\theta} = \bar{x_n}$$

Prova:

$$egin{aligned} L(heta) &= f_n(ar{x}| heta) = rac{e^{-n heta} heta^y}{\prod x_i!}, \; y = \sum_1^n x_i \ log \; (L(heta)) &= y \; log(heta) - n heta - \log(\prod x_i!) \ &(log \; L(heta))' = 0 \leftrightarrow rac{y}{ heta} - n = 0 \ &rac{y}{ heta} = n \leftrightarrow rac{\sum_1^n x_i}{n} = n \leftrightarrow heta = ar{x_n} \end{aligned}$$

Normal:

ullet $\hat{ heta}=\{\hat{\mu},\hat{\sigma^2}\}$:

$$\hat{\mu} = ar{X_n}$$
 $\hat{\sigma^2} = rac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$

Prova:

It is easy to see that,

$$\log L_n(\mu, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 + constant$$
$$= -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \bar{X}_n)^2 - \frac{n}{2\sigma^2} (\bar{X}_n - \mu)^2.$$

To maximize the above expression w.r.t μ and σ^2 we proceed as follows. For any (μ, σ^2) we have,

$$\log L_n(\mu, \sigma^2) \le \log L_n(\bar{X}_n, \sigma^2),$$

showing that we can choose $\hat{\mu}_{MLE} = \bar{X}_n$.

It then remains to maximize $\log L_n(\bar{X}_n, \sigma^2)$ with respect to σ^2 to find $\hat{\sigma}_{MLE}^2$.

Now,

$$\log L_n(\bar{X}_n, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

Differentiating the left-side w.r.t σ^2 gives,

$$-\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} n \, \hat{\sigma}^2 = 0 \,,$$

where $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$. The above equation leads to,

$$\hat{\sigma}_{MLE}^2 = \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$

$$R(heta,\delta)=E_ heta[(\delta(ar{X})- heta)^2]$$

Um estimador bom, terá um risco baixo.

$$R(heta,\delta) = var_{ heta}(\delta(ar{X})) + vicute{s}_{ heta}(ar{\delta})$$
 $vicute{s}(\hat{ heta}) = E(\hat{ heta}) - g(heta)$

Estimador θ não envieasado:

$$egin{aligned} vicute{e}s(\hat{ heta}) &= 0
ightarrow E(\hat{ heta}) = heta \ vicute{e}s(\hat{ heta})
ightarrow R(heta,\delta) = var_{ heta}(\delta(ar{X})) \end{aligned}$$

- Lembrete: Nem sempre um estimador não-viesado existe.
- Lembrete 2: Nem sempre um estimador não-viesado é um bom estimador.

Método dos Momentos (MM)

Definição: Estimador que usa os momentos, dependendo da distribuição são usados 1 ou 2 momentos. Caso haja mais parâmetros, os próximos momentos serão informados.

Primeiro Momento:

- $\mu_1(\theta) = E[x] = \mu = m\acute{e}dia$
- $m_1 = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x_n}$

Segundo Momento:

- $\mu_2(\theta) = E[x^2]$
- $m_2 = \frac{1}{n} \sum_{i=1}^n x_i^2$

Outros momentos para n parâmetros:

- $\mu_n(\theta) = E[x^n]$
- $m_n = \frac{1}{n} \sum_{i=1}^n x_i^n$

Resolver o sistema de n equações:

- $\bullet \ \ \mu_1(\theta)=m_1$
- $\bullet \ \ \mu_2(\theta)=m_2$

.

• $\mu_n(heta)=m_n$

Suficiência

Definição: Dizemos que uma estatística $T(\theta)$ é suficiente para calcular a verossimilhança. Então também é suficiente para calcular qualquer inferência que dependa apenas dos dados da função de verossimilhança, como EMV e qualquer coisa baseada em distribuição a posteriori.

Em outras palavras, a distribuição condicional da amostra dado o valor da estatística não depende de θ .

$$f(X_1, X_2, \dots, X_n | T = t, \theta) = f(X_1, X_2, \dots, X_n | T = t, \theta'), \forall \theta, \theta' \in \Omega$$

Para cada t, a distribuição condicional de X_1, X_2, \dots, X_n dado T = t e θ é a mesma para todos os θ . Então T é uma estatística suficiente para θ .

Suficiência Conjunta

Definição: Quando a estatística suficiente não é representada por um único valor, e sim um vetor de valores. $T=t_1,\ldots$ e $T_k=t_k$ não depende de θ .

- Vale o teorema da fatorização.
- Exemplos: Normal e Uniforme.

Suficiência Mínima

Definição: Uma estatística T é dita *mínima suficiente* se T é suficiente **e** é função de qualquer outra estatística suficiente. Analogamente, um vetor $T = \{T_1, T_2, \dots, T_k\}$ é dito *minimamente suficiente conjunto* se é função de qualquer outro vetor de estatísticas suficientes.

Definição: Uma estatística T é *mínima suficiente* se para cada estatística T' e para todo $x,y\in X$, T(x)=T(y) sempre que T'(x)=T'(y). Em outras palavras, T é uma função de T'.

Teorema (slide 96): Os estimadores de Bayes e de máxima verossimilhança (EMV) são estatísticas minimamente suficientes.

Prova:

• EMV: Se T é uma estatística suficiente para θ e existe uma EMV única de θ , então a EMV deve ser uma função de T.

$$f_x(x|\theta) \propto v[r(x),\theta]$$

• Bayes: Escrever a perda esperada a posteriori explicitamente usando a verossimilhança na forma do TF.

Teorema da Fatorização

Definição: Se T é suficiente para θ podemos escrever a verossimilhança como o produto entre uma função que não depende de θ e uma função que só depende de X através de T.

$$f_n(x|\theta) = u(x) \cdot v(T(x,\theta))$$

Em outras palavras:

- u depende apenas de x (e não de θ).
- v depende de θ e x, mas depende de x apenas através de T.

Erro Quadrático Médio (EQM) ou (MSE)

$$EQM(\hat{\theta}) = E_{\theta}[(\hat{\theta} - \theta)^2]$$

$$EQM(\hat{ heta}) = Var_{ heta}(\hat{ heta}) + vi\acute{e}s(\hat{ heta})^2$$

Estimador Condicionado

$$\delta_0(T) = E_{\theta}[\delta(X)|T]$$

Teorema de Rao-Blackwell

Definição: O teorema Rao-Blackwell diz que todo estimador condicionado em uma estatística suficiente é admissível.

Seja $\delta(X)$ um estimador, T uma estatística suficiente para θ e seja $\delta_0(T)$ um estimador condicionado, então:

$$R(\theta, \delta_0) \leq R(\theta, \delta)$$

Melhoramento de Blackwell ou Rao-Blackwellização

O teorema de Rao-Blackwell (às vezes chamado de teorema de Rao-Blackwell-Kolmogorov ou Rao-Blackwellization) é uma maneira de melhorar a eficiência dos estimadores iniciais. Estimadores são variáveis *aleatórias observáveis* usadas para estimar quantidades. Por exemplo, a média amostral (observável) é um estimador para a média populacional (desconhecida).

O melhoramento de Blackwell condiciona a estatística suficiente.

Admissibilidade e Dominância

Relação de dois estimadores: Um estimador δ é dito inadmissível se existe outro estimador δ_0 tal que $R(\theta, \delta_0) \leq R(\theta, \delta)$ para todo $\theta \in \Omega$ e existe $\theta' \in \Omega$ tal que $R(\theta', \delta_0) \leq R(\theta', \delta)$.

- Dizemos que δ_0 domina $\delta: R(\theta, \delta_0) \leq R(\theta, \delta)$
- O estimador δ_0 é admissível se e somente se não há estimador que o domine.

Informação de Fisher : $I(\theta)$

$$l(x|\theta) = \log f(x|\theta)$$

 $f(x|\theta)$ é diferenciável em θ :

$$l'(x| heta) = rac{\partial l(x| heta)}{\partial heta}$$

$$l''(x| heta) = rac{\partial^2 l(x| heta)}{\partial heta^2}$$

Fórmula da informação de Fisher:

$$I_n(heta) = E_{ heta}[l'(x| heta)^2] = -E_{ heta}[l''(x| heta)] = Var_{ heta}(l'(x| heta))$$

• Lembrete: A informação de Fisher sempre é positiva.

Seja X_1, X_2, \ldots, X_n uma amostra aleatória e seja $I_n(\theta) = -E_{\theta}[l''(x|\theta)]$, então:

$$I_n(\theta) = nI(\theta)$$

 $I(\theta)$ é a informação de Fisher aplicada em apenas *uma* observação, então usa: $f(x|\theta)$. $I_n(\theta)$ é a informação de Fisher aplicada para várias observações, então usa: $f_n(x|\theta)$.

Exemplos:

Bernoulli:

$$rac{1}{p(1-p)} \leftrightarrow rac{1}{ heta(1- heta)}$$

Prova:

$$f(x| heta)= heta^x(1- heta)^{1-x},\; x=1\;ou\;x=0$$
 $l(x| heta)=\log f(x| heta)=x\;\log(heta)\;+\;(1-x)\;\log(1- heta)$ $l'(x| heta)=rac{x}{ heta}-rac{1-x}{1- heta}$ $l''(x| heta)=-rac{x}{ heta^2}-rac{1-x}{(1- heta)^2}$

Sabemos que $E[x] = \theta$, então:

$$I(heta) = -E_ heta[\lambda''(x| heta)] = rac{E[x]}{ heta^2} + rac{1 - E[x]}{(1 - heta)^2}$$
 $I(heta) = rac{ heta}{ heta^2} + rac{1 - heta}{(1 - heta)^2} = rac{1}{ heta} + rac{1}{1 - heta} = rac{1 - heta + heta}{ heta(1 - heta)} = rac{1}{ heta(1 - heta)}$

Binomial:

$$\frac{n}{p(1-p)} \leftrightarrow \frac{1}{\theta(1-\theta)}$$

Prova:

$$f_n(x| heta) = \prod_{i=1}^n inom{n}{x_i} heta^y (1- heta)^{n-y}, \ y = \sum_1^n x_i$$
 $l(x| heta) = \log f(x| heta) = \sum_{i=1}^n \log inom{n}{x_i} + y \log(heta) + (n- heta) \log(1- heta)$
 $l'(x| heta) = \frac{y}{ heta} - (n-y)\frac{1}{1- heta}$
 $l''(x| heta) = -\frac{y}{ heta^2} - \frac{n-y}{(1- heta)^2}$
 $I_n(heta) = -E_ heta[\lambda''(x| heta)] = \frac{E[y]}{ heta^2} + \frac{1}{(1- heta)^2}E[n-y]$
 $I_n(heta) = \frac{n heta}{ heta^2} + \frac{n-n heta}{(1- heta)^2} = \frac{n heta(1- heta)^2 + (n-n heta) heta^2}{ heta^2(1- heta)^2}$
 $I_n(heta) = \frac{n heta - 2 heta^2 + p heta^3 + n heta^2 - p heta^3}{ heta^2(1- heta)^2} = \frac{n p heta}{ heta^2(1- heta)^2}$
 $I_n(heta) = \frac{n}{ heta(1- heta)} \leftrightarrow I(heta) = \frac{1}{ heta(1- heta)}$

Exponencial:

$$rac{1}{\lambda^2} \leftrightarrow rac{1}{ heta^2}$$

Prova:

$$f(x| heta)= heta e^{- heta x},\; heta>0,\; x>0$$
 $l(x| heta)=\log f(x| heta)=\log(heta)- heta x$ $l'(x| heta)=rac{1}{ heta}-x$ $l''(x| heta)=-rac{1}{ heta^2}$

Sabemos que $E[x]=rac{1}{ heta}$, mas a função já independe de x então:

$$I(heta) = -E_ heta[\lambda''(x| heta)] = -\left(-rac{1}{ heta^2}
ight) = rac{1}{ heta^2}$$

Poisson

$$\frac{1}{\lambda} \leftrightarrow \frac{1}{\theta}$$

Prova:

$$egin{align} f_n(ar{x}| heta) &= rac{e^{-n heta} heta^y}{\prod x_i!}, \; y = \sum_1^n x_i, \; , \; heta > 0 \ &l(x| heta) = \log f_n(x| heta) = y \; log(heta) - n heta - \log(\prod x_i!) \ &l'(x| heta) = -n + rac{y}{ heta} \ &l''(x| heta) = rac{-y}{ heta^2} \ &I_n(heta) = -E_ heta[\lambda''(x| heta)] = rac{1}{ heta^2} E\left[\sum_1^n x_i
ight] \ & I_n(heta) = -E_ heta[\lambda''(x| heta)] = rac{1}{ heta^2} E\left[\sum_1^n x_i
ight] \ &I_n(heta) = -E_ heta[\lambda''(x| heta)] = rac{1}{ heta^2} E\left[\sum_1^n x_i
ight] \ &I_n(heta) = -E_ heta[\lambda''(x| heta)] = rac{1}{ heta^2} E\left[\sum_1^n x_i
ight] \ &I_n(heta) = -E_ heta[\lambda''(x| heta)] = rac{1}{ heta^2} E\left[\sum_1^n x_i
ight] \ &I_n(heta) = -E_ heta[\lambda''(x| heta)] = rac{1}{ heta^2} E\left[\sum_1^n x_i
ight] \ &I_n(heta) = -E_ heta[\lambda''(x| heta)] = rac{1}{ heta^2} E\left[\sum_1^n x_i
ight] \ &I_n(heta) = -E_ heta[\lambda''(x| heta)] = rac{1}{ heta^2} E\left[\sum_1^n x_i
ight] \ &I_n(heta) = -E_ heta[\lambda''(x| heta)] = -E_ heta[\lambda''(x| he$$

Sabemos que E[x]= heta, então:

$$I_n(heta) = rac{1}{ heta^2} n heta = rac{n}{ heta} \leftrightarrow I(heta) = rac{1}{ heta}$$

Normal

 μ desconhecido e σ^2 é dado

$$I(\mu) = E[I''(x|\mu)] = \frac{1}{\sigma^2}$$

Prova:

$$l''(x|\mu) = -rac{1}{\sigma^2}$$

Sabemos que $E[x]=\mu$, mas já é idependente de μ então basta trocar o sinal:

$$I(heta) = -E_{ heta}[\lambda''(x| heta)] = rac{1}{\sigma^2}$$

Cramer-Ráo e Eficiência

O limite de Cramér-Rao afirma que o inverso da informação de Fisher é um limite inferior na variância de qualquer estimador não enviesado de θ . ($\hat{\theta}$)

Information Inequality:

$$Var_{ heta}(\delta) \geq rac{[m'(heta)]^2}{nI(heta)}$$

$$m(heta) = E_ heta[\hat{ heta}]$$

Definição: Um estimador é dito eficiente se ele atinge a cota de Cramer-Ráo.

$$Var_{ heta}(\delta) = rac{[m'(heta)]^2}{nI(heta)}$$

Exemplo: Seja X_1, X_2, \dots, X_n uma amostra aleatória de uma distribuição de Poisson, $\bar{x_n}$ é um estimador eficiente de θ .

• Se $\hat{ heta}$ é um estimador não-viesado, então $m(heta) = heta \leftrightarrow m'(heta) = 1$

$$Var_{ heta}(\delta) \geq rac{1}{nI(heta)}$$

Distribuição Assintótica

Propriedades assintóticas são aquelas válidas apenas para grandes amostras, ou para amostras com tamanho $n \to \infty$. A distribuição amostral de um estimador é diferente para tamanhos de amostras diferentes. A distribuição da média amostral para amostras de qualquer população é definida pelo Teorema do Limite Central (TCL).

O Teorema nos garante que quando o tamanho da amostra cresce, a distribuição assintótica será aproximadamente normal. Então, para qualquer que seja a distribuição que tenha gerado os dados amostrais, sabemos que o estimador convergirá para a distribuição normal, sendo esta a distribuição assintótica do estimador.

Definição: $\hat{\theta}$ é um estimador assintoticamente não viesado de θ se $\lim_{n \to \infty} E(\hat{\theta}) = \theta$.

Bônus

Propriedades de Logarítmo

$$\log(mn) = log(m) + log(n)$$

$$\log\left(\frac{m}{n}\right) = \log(m) - \log(n)$$

$$log(m^a) = a \log(m)$$
 $\log e^x = x$

Propriedades de Derivadas:

$$(x^n)' = n \ x^{n-1}$$
 $(fg)' = f'g + fg'$
 $(e^x)' = e^x$
 $(e^{cx})' = ce^{cx}$
 $(\log x)' = \frac{1}{x}$
 $(c^x)' = c^x \log c$