III B. Tech II Semester Regular Examinations, June-2022 MEMS AND ITS APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

UNIT-I

a) Explain the basic building blocks of MEMS with neat diagrams. [8M]
 b) Describe the role of quantum physics in the design of MEMS and [7M]

Microsystems.

(OR)

2. a) Give one application of MEMS in automobiles. Illustrate its [8M] working with neat sketches.

b) Write a technical note on application of MEMS and [7M] Microsystems in

(i) Biomedical Industry and

(ii) Aerospace industry.

UNIT-II

3. a) Explain the principle of operation of MEMS pressure sensors [8M] with neat diagrams.

b) Demonstrate the working of thermocouple with neat diagram.

[7M]

(OR)

4. a) List some of the piezoelectric materials and piezoresistive [8M] materials. Differentiate between them based on their property.

b) With block diagram explain the functionality of

[7M]

- (i) Micro gripper
- (ii) Micro motors

UNIT-III

5. a) Derive equations for acceleration a, time t and power density [8M] P/V based on the Trimmer force scaling vector? What information does the force scaling vector provide to the MEMS designer?

b) Why electrostatic actuation is preferred over electromagnetic [7M] actuation in micro motors?

(OR)

6. a) With reference to scaling of electrostatic forces explain why [8M] electrostatic actuation is preferred over electromagnetic actuation in micro motors.

b) Compare the properties of Silicon, SiO2 and SiC.

[7M]

R19

SET - 1

TIN	TT	117
UIV		- I V

1.	a)	Explain in detail about Micro systems labrication process.	[8M]
	b)	Demonstrate about physical vapour deposition.	[7M]
		(OR)	
8.	a)	Explain with figures the steps in surface micromachining. Discuss the various fabrication challenges associated with surface micromachining.	[8M]
	b)	With neat diagrams explain the different etching processes in	[7M]
	,	detail.	
		<u>UNIT-V</u>	
9.	a)	Demonstrate the working principle of RF MEMS in	[8M]
		(i) RF communication and	
		(ii) Global positioning systems.	
	b)	Explain with near diagrams any two applications of RF MEMS.	[7M]
		(OR)	
10.	a)	Illustrate about PIN diode RF switches with neat circuit diagram.	[8M]
	b)	Explain the various contact mechanisms for RF switches.	[7M]

SET - 2

III B. Tech II Semester Regular Examinations, June-2022 MEMS AND ITS APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**

		All Questions Carry Equal Marks	
		UNIT-I	
1.	a)	List the types of micro sensors available in the market. With a neat sketch explain the working principal of any two types of	[8M]
	b)	sensors. Explain MEMS history and development and its application in an health care industry.	[7M]
		(OR)	
2.	a)	Describe the concept miniaturization of MEMS. Distinguish between micro sensors and micro actuators.	[8M]
	b)	Explain why atomic structure of matter is considered as a decisive factor in micro system.	[7M]
		<u>UNIT-II</u>	
3.	a)	Explain in detail about MEMS chemical sensors.	[8M]
	b)	Discuss on electrostatic actuation model with neat diagram.	[7M]
		(OR)	
4.	a)	Illustrate the mathematical description of piezoelectric effect with relevant diagrams.	[8M]
	b)	State the constraints in pumping fluids in micro channels. What pumping scheme is usually used in micro fluidics? Give one example.	[7M]
		<u>UNIT-III</u>	
5.	a)	With reference to scaling of electromagnetic forces, derive the expressions for electromagnetic potential energy and force.	[8M]
	b)	Explain in detail about scaling in electricity.	[7M]
		(OR)	
6.	a)	Suggest at least one of the properties and applications of the following MEMS Materials. Silicon, Silicon nitride, Poly silicon, Quartz, Nickel, P Type silicon, gold, conductive polymers.	[8M]
	b)	What is meant by packaging? What are the special	[7M]

UNIT-IV

requirements for packaging materials? Which material is used

7. a) Explain in detail about chemical vapour deposition techniques. [8M]
b) Discuss the criteria for selecting materials for the masks used in etching. [7M]

1 of 2

for packaging?

(**SET - 2**)

(OR)

		(OK)	
8.	a)	Explain with neat sketches, various process steps in bulk	[8M]
		micromachining process to fabricate a pressure sensor.	
	b)	Describe steps of fabrication of a square tube using LIGA	[7M]
		process.	
		UNIT-V	
9.	a)	What are the advantages of using RF MEMS as compared to	[8M]
		traditional units and systems?	
	b)	What is a phase shifter? Explain the principle of operation of a	[7M]
	•	switched-line phase shifter.	
		(OR)	
10.	a)	Explain the RF design consideration to be taken into account	[8M]
	,	while designing RF switch.	
	b)	List out the integrating and biasing issues for RF switches.	[7M]
	~)		[]

III B. Tech II Semester Regular Examinations, June-2022 MEMS AND ITS APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks *****

UNIT-I 1. What are main components of Microsystems? Explain each a) [8M]component briefly. Describe the evolution of Micro fabrication. b) [7M] (OR) 2. Summarize the applications of Microsystems in different a) [8M]industries. What are MEMS and Microsystems? How will you classify them b) [7M] from the conventional systems? UNIT-II 3. Explain in detail about MEMS biosensors. [8M]a) Describe the operating principle of two types of micro motors [7M] b) with suitable schematics. (OR) With suitable diagrams explain the working principle of Micro 4. [8M]a) valves and micro pumps also discuss their various applications with regard to actuation. Explain the principle of operation of micro-accelerometer with a b) [7M] neat schematic diagram. UNIT-III 5. With suitable diagram explain the principles of piezoelectric [8M] a) micro cantilever beam. Describe in detail about pressure sensors. List the properties and applications of piezoelectric materials. b) [7M] (OR) Explain scaling in heat conduction and heat convection. 6. a) [8M]State three relevant properties of silicon carbide and silicon b) [7M] nitride for use in Microsystems. UNIT-IV Demonstrate the steps involved in photolithography. State the 7. [8M]a) chemicals used in each of the stages along with the operating conditions.

switch?

8.

9.

10.

b)

R19

SET - 3

[7M]

b) State various chemical vapor deposition techniques. Explain in [7M] brief the techniques of chemical vapor deposition for MEMS device fabrication. (OR) Describe the role of sacrificial layers in surface micromachining [8M] a) with figures. Give examples of two sacrificial materials used in micro system fabrication. Explain in detail about epitaxial deposition. b) [7M] **UNIT-V** Illustrate about various actuation methods used in RF [8M]a) switching. Explain the working of RF based communication system. b) [7M] (OR) Demonstrate the reconfigurable antenna using RF MEMS a) [8M]

Explain the fabrication of MEMS capacitive switch.

R19

SET - 4

[7M]

III B. Tech II Semester Regular Examinations, June-2022 MEMS AND ITS APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks ******

		UNIT-I	
1.	a)	What is MEMS? What are the types of MEMS transducers? Give advantages and disadvantages of MEMS.	[8M]
	b)	Distinguish between Microelectronics and Microsystems. (OR)	[7M]
2.	a)	Illustrate about Intelligent Microsystems with neat diagram.	[8M]
	b)	Demonstrate the multi-disciplinary nature of Microsystems engineering.	[7M]
		<u>UNIT-II</u>	
3.	a)	Describe the principle of operation of acoustic sensors and actuators with neat diagrams.	[8M]
	b)	Explain with neat diagram actuation using shape memory alloys.	[7M]
		(OR)	
4.	a)	Explain the concept of cantilever piezoelectric actuator model with neat diagram.	[8M]
	b)	Outline the working principle of micro-values and micro fluids.	[7M]
		<u>UNIT-III</u>	
5.	a)	With reference to scaling of electrostatic forces explain why electrostatic actuation is preferred over electromagnetic actuation in micro motors.	[8M]
	b)	Describe about scaling in Electromagnetic forces.	[7M]
	,	(OR)	. ,
6.	a)	Demonstrate the oxide growth process in silicon with relevant figures.	[8M]
	b)	Explain scaling in fluid mechanics. What are the advantages of piezoelectric pumping?	[7M]
		<u>UNIT-IV</u>	
7.	a)	With a neat diagram explain in detail about ion implantation	[8M]

1 of 2

Explain in detail about the process of oxidation.

b)

and diffusion.

R19

SET - 4

1	$\mathbf{\Omega}$	D١
ı	V.	\mathbf{r}

8.	a)	State two advantages of LIGA process over other micro	[8M]
		machining techniques. Explain with block diagram the steps in	
		LIGA process. State atleast one commonly used chemical in	
		each of the steps.	
	b)	Demonstrate the thin film deposition techniques.	[7M]
	•	<u>UNIT-V</u>	
9.	a)	Describe about RF MEMS and MEMS inductors.	[8M]
	b)	Explain the potential applications of RF MEMS in wireless	[7M]
	·	communication?	
		(OR)	
10.	a)	Draw and explain the equivalent circuit of RF MEMS switch?	[8M]
	b)	Discuss electromagnetic modeling of RF shunt switch?	[7M]
