a) Entradas: Vector A

Número comprendido entre -12 y 12 representado en Ca2. Para el número máximo en modulo, se necesitan 4 bits 12_{10} = 1100_2 , por lo que se usaran 5, siendo el de más peso el signo, A = Sa a3 a2 a1 a0 Salidas: Vector Z

Parte entera de la raíz cuadrada del módulo de A (= parte entera($|A|^{1/2}$)), por tanto no hay signo. La parte entera de la raíz cuadrada del número máximo (12 o -12) es 3_{10} =11₂, por lo que se necesitan solo 2 bits Z = z1 z0

b) Los números menores que -12₁₀ y mayores que 12₁₀ no entrarán por lo que nos darán las x's del problema

término	Α	Sa	a3	a2	a1	a0	z1	z0	Parte entera(A ^{1/2})
0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	1	0	1	1
2	2	0	0	0	1	0	0	1	1
3	3	0	0	0	1	1	0	1	1
4	4	0	0	1	0	0	1	0	2
5	5	0	0	1	0	1	1	0	2
6	6	0	0	1	1	0	1	0	2
7	7	0	0	1	1	1	1	0	2
8	8	0	1	0	0	0	1	0	2
9	9	0	1	0	0	1	1	1	3
10	10	0	1	0	1	0	1	1	3
11	11	0	1	0	1	1	1	1	3
12	12	0	1	1	0	0	1	1	3
13	13	0	1	1	0	1	Х	Х	No entran
14	14	0	1	1	1	0	Х	Х	No entran
15	15	0	1	1	1	1	Х	Х	No entran
16	-16	1	0	0	0	0	Χ	Χ	No entran
17	-15	1	0	0	0	1	Χ	Χ	No entran
18	-14	1	0	0	1	0	Χ	Χ	No entran
19	-13	1	0	0	1	1	Х	Χ	No entran
20	-12	1	0	1	0	0	1	1	3
21	-11	1	0	1	0	1	1	1	3
22	-10	1	0	1	1	0	1	1	3
23	-9	1	0	1	1	1	1	1	3
24	-8	1	1	0	0	0	1	0	2
25	-7	1	1	0	0	1	1	0	2
26	-6	1	1	0	1	0	1	0	2
27	-5	1	1	0	1	1	1	0	2
28	-4	1	1	1	0	0	1	0	2
29	-3	1	1	1	0	1	0	1	1
30	-2	1	1	1	1	0	0	1	1
31	-1	1	1	1	1	1	0	1	1

c) Por tanto las soluciones serán

```
\begin{split} z1 &= \Sigma_{\text{m}}(4,5,6,7,8,9,10,11,12,20,21,22,23,24,25,26,27,28) + \Phi(13,14,15,16,17,18,19) \\ &= \Pi_{\text{M}}(0,1,2,3,29,30,31) \cdot \Phi(13,14,15,16,17,18,19) \\ \text{Mintermino } 4 &= /\text{Sa}\cdot/\text{a3}\cdot\text{a2}\cdot/\text{a1}\cdot/\text{a0} \qquad \text{Maxtermino } 0 = (\text{Sa} + \text{a3} + \text{a2} + \text{a1} + \text{a0}) \end{split}
```

$$\begin{split} z0 &= \Sigma_{m}(1,2,3,9,10,11,12,20,21,22,23,29,30,31) + \Phi(13,14,15,16,17,18,19) \\ &= \Pi_{M}(0,4,5,6,7,8,24,25,26,27,28)) \cdot \Phi(13,14,15,16,17,18,19) \end{split}$$

Mintermino 1 = $\sqrt{3}\cdot/a2\cdot/a1\cdot a0$

Maxtermino 0 = (Sa + a3 + a2 + a1 + a0)

d) Si resuelvo con maxterminos

Por tanto,

 $z1 = (a3+a2) \cdot (/a3+/a2+/a1) \cdot (/a3+/a2+/a0)$ $z0 = (a2+a1+a0) \cdot (/Sa+/a3+a1+a0) \cdot (Sa+a3+/a2) \cdot (/Sa+a2)$

e)

