```
In [ ]: #objectives:
```

#finding which states in India had the highest number of road accidents during each ye #finding whether there is a trend or pattern in the number of road accidents over the #finding how the accidents per lakh population change from 2017 to 2020 #finding whether there are any states with consistently high or low rates #finding whether there are any correlations between the number of road accidents and #finding whether there is any relationship between the number of persons killed and th #finding whether the states are consistently high or low rates? #finding the rate of persons killed per lakh population in each state from 2017 to 202 #finding the correlation between the number of persons killed and the number of vehicl #finding how many persons were injured in road accidents in each year from 2017 to 202 #finding whether the states with consistently high numbers of injuries #finding the correlation between the number of injuries and the number of vehicles or #finding how the road accidents per 10,000 vehicles change from 2016 to 2019? Are ther #finding how the road accidents per 10,000 vehicles change from 2016 to 2019? Are ther

In [16]: # Importing necessary libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Setting up Jupyter Notebook for inline plotting
%matplotlib inline

Setting up default plot styles
sns.set_style('darkgrid')

In [17]: import pandas as pd

Read the CSV file
data = pd.read_csv('C:/Users/BTM/Downloads/road accidents from 2017 to 2020.csv')
Display the first few rows of the DataFrame
data.head()

Out[17]:

	State	Road Accidents during 2018	Road Accidents during 2019	Road Accidents during 2020	Accidents Per Lakh Population - 2017	Total Number of Accidents Per Lakh Population - 2018	Total Number of Accidents Per Lakh Population - 2019	Total Number of Accidents Per Lakh Population - 2020	Acc 1 Veh
0	Andhra Pradesh	24475	21992	19509.0	28.7	27.1	24.2	21.5	
1	Arunachal Pradesh	277	237	134.0	18.0	20.5	17.3	9.8	
2	Assam	8248	8350	6595.0	21.6	24.6	24.7	19.5	
3	Bihar	9600	10007	8639.0	8.3	8.9	9.2	8.0	
4	Chhattisgarh	13864	13899	11656.0	51.2	51.8	51.4	43.1	

```
# Checking for duplicate rows
In [18]:
         duplicate rows = data.duplicated()
          # Counting the number of duplicate rows
          num duplicates = duplicate rows.sum()
          # Displaying the number of duplicate rows
          print("Number of duplicate rows:", num duplicates)
         Number of duplicate rows: 0
         # Checking for missing values
In [19]:
         missing_values = data.isnull().sum()
          # Displaying the columns with missing values
          columns with missing values = missing values[missing values > 0]
          print("Columns with missing values:")
          print(columns_with_missing_values)
         Columns with missing values:
         Road Accidents during 2020
                                                                   1
         Accidents Per Lakh Population - 2017
                                                                   1
         Total Number of Accidents Per Lakh Population - 2018
                                                                   1
         Total Number of Accidents Per Lakh Population - 2019
                                                                   1
         Total Number of Accidents Per Lakh Population - 2020
                                                                   1
         Accidents per 10,000 Vehicles - 2018
                                                                   1
         Accidents per 10,000 Vehicles - 2019
                                                                   1
         Persons Killed 2020
                                                                   1
         Persons Killed Per Lakh Population - 2017
                                                                   1
         Persons Killed Per Lakh Population - 2018
                                                                   1
         Persons Killed Per Lakh Population - 2019
                                                                   1
         Persons Killed Per Lakh Population - 2020
                                                                   1
         Persons Injured - 2020
                                                                   1
         Injury Per Lakh Population - 2017
                                                                   1
         Road Accidents per 10,000 Vehicles- 2017
                                                                   1
         Road Accidents per 10,000 Vehicles- 2018
                                                                   1
         Road Accidents per 10,000 Vehicles- 2019
                                                                   1
         dtype: int64
         # Calculate the mean of each column
In [20]:
          column_means = data.mean()
          # Replace missing values with column means
          data filled = data.fillna(column means)
          # Update the original dataset with the filled values
          data.update(data filled)
          # Display the updated dataset
          data.head()
         C:\Users\BTM\AppData\Local\Temp\ipykernel 26472\4107981681.py:2: FutureWarning: The d
         efault value of numeric only in DataFrame.mean is deprecated. In a future version, it
         will default to False. In addition, specifying 'numeric_only=None' is deprecated. Sel
         ect only valid columns or specify the value of numeric_only to silence this warning.
           column means = data.mean()
```

Out[20]:

Out[20]:		State	Road Accidents during 2018	Road Accidents during 2019	Road Accidents during 2020	Per Lakh Population	Total Number of Accidents Per Lakh Population - 2018	Accidents Per Lakh	Total Number of Accidents Per Lakh Population - 2020	Acc 1 Veh
	0	Andhra Pradesh	24475	21992	19509.0	28.7	27.1	24.2	21.5	
	1	Arunachal Pradesh	277	237	134.0	18.0	20.5	17.3	9.8	
	2	Assam	8248	8350	6595.0	21.6	24.6	24.7	19.5	
	3	Bihar	9600	10007	8639.0	8.3	8.9	9.2	8.0	
	4	Chhattisgarh	13864	13899	11656.0	51.2	51.8	51.4	43.1	
In [21]:		Remove the ata = data.c		index[-1])					
	#	Display the	modified	DataFrame	2					

Display the modified DataFrame
data.head()

Out[21]:	State	Road Accidents during 2018	Road Accidents during 2019	Road Accidents during 2020	Accidents Per Lakh Population - 2017	Total Number of Accidents Per Lakh Population - 2018	Total Number of Accidents Per Lakh Population - 2019	Total Number of Accidents Per Lakh Population - 2020	Acc 1 Veh
0	Andhra Pradesh	24475	21992	19509.0	28.7	27.1	24.2	21.5	
1	Arunachal Pradesh	277	237	134.0	18.0	20.5	17.3	9.8	
2	Assam	8248	8350	6595.0	21.6	24.6	24.7	19.5	
3	Bihar	9600	10007	8639.0	8.3	8.9	9.2	8.0	
4	Chhattisgarh	13864	13899	11656.0	51.2	51.8	51.4	43.1	

```
In [22]: # Adjust the display options
   pd.set_option('display.max_rows', None)
   pd.set_option('display.max_columns', None)

# Display the full DataFrame
data
```

Out[22]:

	State	Road Accidents during 2018	Road Accidents during 2019	Road Accidents during 2020	Accidents Per Lakh Population - 2017	Total Number of Accidents Per Lakh Population - 2018	Total Number of Accidents Per Lakh Population - 2019	Total Number of Accidents Per Lakh Population - 2020	V
0	Andhra Pradesh	24475	21992	19509.0	28.700000	27.100000	24.200000	21.500000	
1	Arunachal Pradesh	277	237	134.0	18.000000	20.500000	17.300000	9.800000	
2	Assam	8248	8350	6595.0	21.600000	24.600000	24.700000	19.500000	
3	Bihar	9600	10007	8639.0	8.300000	8.900000	9.200000	8.000000	
4	Chhattisgarh	13864	13899	11656.0	51.200000	51.800000	51.400000	43.100000	
5	Goa	3709	3440	2375.0	189.400000	175.200000	158.500000	109.400000	
6	Gujarat	18769	17046	13398.0	29.700000	28.900000	26.000000	20.400000	
7	Haryana	11238	10944	9431.0	39.800000	39.300000	37.700000	32.500000	
8	Himachal Pradesh	3110	2873	2239.0	43.200000	42.800000	39.300000	30.600000	
9	Jammu and Kashmir	5978	5796	4860.0	44.400000	46.800000	45.000000	37.700000	
10	Jharkhand	5394	5217	4405.0	15.100000	15.500000	14.800000	12.500000	
11	Karnataka	41707	40658	34178.0	67.100000	65.200000	63.100000	53.100000	
12	Kerala	40181	41111	27877.0	106.700000	110.900000	112.900000	76.600000	
13	Madhya Pradesh	51397	50669	45266.0	66.700000	63.400000	61.700000	55.100000	
14	Maharashtra	35717	32925	24971.0	29.200000	28.700000	26.200000	19.900000	
15	Manipur	601	672	432.0	21.800000	22.500000	24.900000	16.000000	
16	Meghalaya	399	482	214.0	23.800000	14.000000	16.700000	7.400000	
17	Mizoram	53	62	53.0	6.300000	4.800000	5.600000	4.800000	
18	Nagaland	430	358	500.0	21.900000	17.500000	14.500000	20.200000	
19	Odisha	11262	11064	9817.0	25.200000	25.900000	25.300000	22.400000	
20	Punjab	6428	6348	5203.0	21.200000	21.500000	21.100000	17.300000	
21	Rajasthan	21743	23480	19114.0	29.500000	28.700000	30.600000	24.900000	
22	Sikkim	180	162	138.0	29.700000	27.000000	24.100000	20.500000	
23	Tamil Nadu	63920	57228	45484.0	93.600000	90.900000	81.000000	64.400000	
24	Telangana	22230	21570	19172.0	37.144444	36.408333	34.102778	26.130556	
25	Tripura	552	655	466.0	12.900000	14.000000	16.400000	11.700000	
26	Uttarakhand	1468	1352	1041.0	14.700000	13.300000	12.100000	9.400000	

	State	Road Accidents during 2018	Road Accidents during 2019	Road Accidents during 2020	Accidents Per Lakh Population - 2017	Total Number of Accidents Per Lakh Population - 2018	Total Number of Accidents Per Lakh Population - 2019	Total Number of Accidents Per Lakh Population - 2020	V
27	Uttar Pradesh	42568	42572	34243.0	17.200000	18.700000	18.400000	14.800000	
28	West Bengal	12705	10158	9180.0	12.200000	13.300000	10.500000	9.500000	
29	Andaman and Nicobar Islands	254	230	141.0	32.900000	43.200000	38.300000	23.500000	
30	Chandigarh	316	305	159.0	17.600000	15.600000	14.400000	7.500000	
31	Dadra and Nagar Haveli	80	68	100.0	14.800000	17.100000	14.000000	20.600000	
32	Daman and Diu	76	69	20341.0	22.000000	20.300000	17.600000	0.000000	
33	Delhi	6515	5610	4178.0	29.600000	28.100000	23.600000	17.500000	
34	Lakshadweep	3	1	1.0	1.200000	3.600000	1.200000	1.200000	
35	Puducherry	1597	1392	969 0	94 200000	85 500000	71 600000	49 800000	

In [23]: # Display the names of the columns
column_names = data.columns
print(column_names)

```
Index(['State', 'Road Accidents during 2018', ' Road Accidents during 2019',
                                  'Road Accidents during 2020', 'Accidents Per Lakh Population - 2017',
                                 'Total Number of Accidents Per Lakh Population - 2018',
                                 'Total Number of Accidents Per Lakh Population - 2019',
                                 'Total Number of Accidents Per Lakh Population - 2020',
                                 'Accidents per 10,000 Vehicles - 2017',
                                 'Accidents per 10,000 Vehicles - 2018',
                                 'Accidents per 10,000 Vehicles - 2019'
                                 'Accidents per 10,000 Km of Roads - 2017',
                                 'Accidents per 10,000 Km of Roads - 2018', 'Persons Killed 2017',
                                 'Persons Killed 2018', 'Persons Killed 2019', 'Persons Killed 2020',
                                 'Share in Death- 2017', 'Share in Death- 2018', 'Share in Death- 2019', 'Share in Death- 2020', 'Persons Killed Per Lakh Population - 2017',
                                 'Persons Killed Per Lakh Population - 2018',
                                 'Persons Killed Per Lakh Population - 2019',
                                 'Persons Killed Per Lakh Population - 2020',
                                 'Persons Killed per 10,000 Vehicles - 2017',
                                 'Persons Killed per 10,000 Vehicles - 2018',
                                 'Persons Killed per 10,000 Vehicles - 2019',
                                 'Persons Killed per 10,000 Km of Roads - 2017',
                                 'Persons Killed per 10,000 Km of Roads - 2018',
                                 'Persons Injured - 2017', 'Persons Injured - 2018',
                                 'Persons Injured - 2019', 'Persons Injured - 2020',
                                 'Injury Per Lakh Population - 2017',
                                 'Injury Per Lakh Population - 2018',
                                 'Injury Per Lakh Population - 2019',
                                 'Injury Per Lakh Population - 2020',
                                 'Road Accidents per 10,000 Vehicles- 2016',
                                 'Road Accidents per 10,000 Vehicles- 2017',
                                 'Road Accidents per 10,000 Vehicles- 2018',
                                 'Road Accidents per 10,000 Vehicles- 2019',
                                 'Injury per 10,000 Km of Roads - 2016',
                                 'Injury per 10,000 Km of Roads - 2017',
                                 'Injury per 10,000 Km of Roads - 2018'],
                               dtype='object')
                  # Define the column names to be updated
In [24]:
                   columns to rename = ['Road Accidents during 2018', 'Road Accidents during 2019', 'Road Accidents during 2019', 'Road Accidents during 2019', 'Road Accidents during 2019', 'Road Accidents during 2018', 'Road Accidents during 2019', 'Road Accidents during 2018', 'Road Accidents during 2019', 'Road Accidents during 2019', 'Road Accidents during 2018', 'Road Accidents during 2019', 'Road Accidents during 2018', 'Road Accidents
                   # Define the corresponding new column names
                   new column names = ['Accidents 2018', 'Accidents 2019', 'Accidents 2020']
                   # Strip Leading and trailing whitespaces from column names
                   data.columns = data.columns.str.strip()
                   # Rename the selected columns
                   data.rename(columns=dict(zip(columns to rename, new column names)), inplace=True)
                   # Display the updated column names
```

print(data.columns)

```
Index(['State', 'Accidents_2018', 'Accidents_2019', 'Accidents_2020',
                 'Accidents Per Lakh Population - 2017',
                'Total Number of Accidents Per Lakh Population - 2018',
                'Total Number of Accidents Per Lakh Population - 2019',
                'Total Number of Accidents Per Lakh Population - 2020',
                'Accidents per 10,000 Vehicles - 2017',
                'Accidents per 10,000 Vehicles - 2018',
                'Accidents per 10,000 Vehicles - 2019'
                'Accidents per 10,000 Km of Roads - 2017',
                'Accidents per 10,000 Km of Roads - 2018', 'Persons Killed 2017',
                'Persons Killed 2018', 'Persons Killed 2019', 'Persons Killed 2020',
                'Share in Death- 2017', 'Share in Death- 2018', 'Share in Death- 2019', 'Share in Death- 2020', 'Persons Killed Per Lakh Population - 2017',
                'Persons Killed Per Lakh Population - 2018',
                'Persons Killed Per Lakh Population - 2019',
                'Persons Killed Per Lakh Population - 2020',
                'Persons Killed per 10,000 Vehicles - 2017',
                'Persons Killed per 10,000 Vehicles - 2018',
                'Persons Killed per 10,000 Vehicles - 2019',
                'Persons Killed per 10,000 Km of Roads - 2017',
                'Persons Killed per 10,000 Km of Roads - 2018',
                'Persons Injured - 2017', 'Persons Injured - 2018',
                'Persons Injured - 2019', 'Persons Injured - 2020',
                'Injury Per Lakh Population - 2017',
                'Injury Per Lakh Population - 2018',
                'Injury Per Lakh Population - 2019',
                'Injury Per Lakh Population - 2020',
                'Road Accidents per 10,000 Vehicles- 2016',
                'Road Accidents per 10,000 Vehicles- 2017',
                'Road Accidents per 10,000 Vehicles- 2018',
                'Road Accidents per 10,000 Vehicles- 2019',
                'Injury per 10,000 Km of Roads - 2016',
                'Injury per 10,000 Km of Roads - 2017',
                'Injury per 10,000 Km of Roads - 2018'],
               dtype='object')
In [7]: # Adjust the display options
         pd.set option('display.max rows', None)
         pd.set option('display.max columns', None)
         # Display the full DataFrame
         data
```

Out[7]:

	State	Road Accidents during 2018	Road Accidents during 2019	Road Accidents during 2020	Accidents Per Lakh Population - 2017	Total Number of Accidents Per Lakh Population - 2018	Total Number of Accidents Per Lakh Population - 2019	Total Number of Accidents Per Lakh Population - 2020	A V
0	Andhra Pradesh	24475	21992	19509.0	28.700000	27.100000	24.200000	21.500000	
1	Arunachal Pradesh	277	237	134.0	18.000000	20.500000	17.300000	9.800000	
2	Assam	8248	8350	6595.0	21.600000	24.600000	24.700000	19.500000	
3	Bihar	9600	10007	8639.0	8.300000	8.900000	9.200000	8.000000	
4	Chhattisgarh	13864	13899	11656.0	51.200000	51.800000	51.400000	43.100000	
5	Goa	3709	3440	2375.0	189.400000	175.200000	158.500000	109.400000	
6	Gujarat	18769	17046	13398.0	29.700000	28.900000	26.000000	20.400000	
7	Haryana	11238	10944	9431.0	39.800000	39.300000	37.700000	32.500000	
8	Himachal Pradesh	3110	2873	2239.0	43.200000	42.800000	39.300000	30.600000	
9	Jammu and Kashmir	5978	5796	4860.0	44.400000	46.800000	45.000000	37.700000	
10	Jharkhand	5394	5217	4405.0	15.100000	15.500000	14.800000	12.500000	
11	Karnataka	41707	40658	34178.0	67.100000	65.200000	63.100000	53.100000	
12	Kerala	40181	41111	27877.0	106.700000	110.900000	112.900000	76.600000	
13	Madhya Pradesh	51397	50669	45266.0	66.700000	63.400000	61.700000	55.100000	
14	Maharashtra	35717	32925	24971.0	29.200000	28.700000	26.200000	19.900000	
15	Manipur	601	672	432.0	21.800000	22.500000	24.900000	16.000000	
16	Meghalaya	399	482	214.0	23.800000	14.000000	16.700000	7.400000	
17	Mizoram	53	62	53.0	6.300000	4.800000	5.600000	4.800000	
18	Nagaland	430	358	500.0	21.900000	17.500000	14.500000	20.200000	
19	Odisha	11262	11064	9817.0	25.200000	25.900000	25.300000	22.400000	
20	Punjab	6428	6348	5203.0	21.200000	21.500000	21.100000	17.300000	
21	Rajasthan	21743	23480	19114.0	29.500000	28.700000	30.600000	24.900000	
22	Sikkim	180	162	138.0	29.700000	27.000000	24.100000	20.500000	
23	Tamil Nadu	63920	57228	45484.0	93.600000	90.900000	81.000000	64.400000	
24	Telangana	22230	21570	19172.0	37.144444	36.408333	34.102778	26.130556	
25	Tripura	552	655	466.0	12.900000	14.000000	16.400000	11.700000	
26	Uttarakhand	1468	1352	1041.0	14.700000	13.300000	12.100000	9.400000	

	State	Road Accidents during 2018	Road Accidents during 2019	Road Accidents during 2020	Accidents Per Lakh Population - 2017	Total Number of Accidents Per Lakh Population - 2018	Total Number of Accidents Per Lakh Population - 2019	Total Number of Accidents Per Lakh Population - 2020	A.
27	Uttar Pradesh	42568	42572	34243.0	17.200000	18.700000	18.400000	14.800000	
28	West Bengal	12705	10158	9180.0	12.200000	13.300000	10.500000	9.500000	
29	Andaman and Nicobar Islands	254	230	141.0	32.900000	43.200000	38.300000	23.500000	
30	Chandigarh	316	305	159.0	17.600000	15.600000	14.400000	7.500000	
31	Dadra and Nagar Haveli	80	68	100.0	14.800000	17.100000	14.000000	20.600000	
32	Daman and Diu	76	69	20341.0	22.000000	20.300000	17.600000	0.000000	
33	Delhi	6515	5610	4178.0	29.600000	28.100000	23.600000	17.500000	
34	Lakshadweep	3	1	1.0	1.200000	3.600000	1.200000	1.200000	
35	Puducherry	1597	1392	969.0	94.200000	85.500000	71.600000	49.800000	
36	Total	467044	449002	366138 0	35 800000	35 600000	33 800000	27 600000	

```
In [25]: #finding which states in India had the highest number of road accidents during each ye
         # Create a list to store the results
         results = []
         # Iterate over the years 2018 to 2020
         for year in range(2018, 2021):
             # Get the column name for road accidents in the current year
             column_name = f"Accidents_{year}"
             # Find the state with the highest number of road accidents in the current year
             state_with_highest_accidents = data[column_name].idxmax()
             # Get the actual number of road accidents for the state and year
             highest_accidents = data.loc[state_with_highest_accidents, column_name]
             # Get the state name corresponding to the index
             state_name = data.loc[state_with_highest_accidents, 'State']
             # Append the result to the list
             results.append((year, state name, highest accidents))
         # Display the results
          for result in results:
             year, state, accidents = result
             print(f"In {year}, {state} had the highest number of road accidents: {accidents}")
```

In 2018, Tamil Nadu had the highest number of road accidents: 63920 In 2019, Tamil Nadu had the highest number of road accidents: 57228 In 2020, Tamil Nadu had the highest number of road accidents: 45484.0

```
#finding whether there is a trend or pattern in the number of road accidents over the
In [26]:
         import matplotlib.pyplot as plt
          # Define the range of years
         years = range(2018, 2021)
         # Get the corresponding number of road accidents for each year
         accidents = [data[f'Accidents {year}'].sum() for year in years]
         # Plot the line graph
          plt.figure(figsize=(8, 6))
         plt.plot(years, accidents, marker='o')
         plt.xlabel('Year')
          plt.ylabel('Number of Road Accidents')
          plt.title('Trend of Road Accidents (2018-2020)')
         plt.xticks(years)
          plt.grid(True)
          plt.show()
```



```
# Plot the line chart
plt.figure(figsize=(10, 6))
for i in range(len(years)):
    plt.plot(years, accidents_per_lakh.iloc[i], label=years[i])
plt.xlabel('Year')
plt.ylabel('Accidents per Lakh Population')
plt.title('Change in Accidents per Lakh Population (2017-2020)')
plt.legend()
plt.grid(True)
plt.show()
```



```
# Calculate the accidents per lakh population for each year
In [28]:
         accidents per lakh 2017 = data['Accidents Per Lakh Population - 2017']
          accidents per lakh 2018 = data['Total Number of Accidents Per Lakh Population - 2018'
          accidents_per_lakh_2019 = data['Total Number of Accidents Per Lakh Population - 2019'
          accidents per lakh 2020 = data['Total Number of Accidents Per Lakh Population - 2020'
          # Calculate the change in accidents per lakh population from 2017 to 2020
          change_in_accidents = accidents_per_lakh_2020 - accidents_per_lakh_2017
          # Display the change in accidents per lakh population from 2017 to 2020
          print("Change in accidents per lakh population from 2017 to 2020:")
          print(change_in_accidents)
          # Calculate the average rate for each state
          average_rates = data[['Accidents Per Lakh Population - 2017',
                              'Total Number of Accidents Per Lakh Population - 2018',
                              'Total Number of Accidents Per Lakh Population - 2019',
                              'Total Number of Accidents Per Lakh Population - 2020']].mean(axi
         # Identify states with consistently high or low rates
          high_rate_states = average_rates[average_rates > average_rates.mean() + 2 * average_ra
          low_rate_states = average_rates[average_rates < average_rates.mean() - 2 * average_rat</pre>
```

```
# Get the names of states with consistently high or low rates
high_rate_states_names = data.loc[high_rate_states.index, 'State']
low_rate_states_names = data.loc[low_rate_states.index, 'State']
# Display the states with consistently high rates
print("\nStates with consistently high rates:")
print(high_rate_states_names)
# Display the states with consistently low rates
print("\nStates with consistently low rates:")
print(low_rate_states_names)
Change in accidents per lakh population from 2017 to 2020:
      -7.200000
1
      -8.200000
2
      -2.100000
3
      -0.300000
4
      -8.100000
5
     -80.000000
6
      -9.300000
7
      -7.300000
8
     -12.600000
9
      -6.700000
10
      -2.600000
11
     -14.000000
12
     -30.100000
13
     -11.600000
14
     -9.300000
15
      -5.800000
16
     -16.400000
17
     -1.500000
18
      -1.700000
19
      -2.800000
20
     -3.900000
21
     -4.600000
22
      -9.200000
23
     -29.200000
24
     -11.013889
25
      -1.200000
26
     -5.300000
27
     -2.400000
      -2.700000
28
29
      -9.400000
30
     -10.100000
31
      5.800000
32
     -22.000000
33
     -12.100000
34
       0.000000
35
     -44.400000
dtype: float64
States with consistently high rates:
5
         Goa
12
      Kerala
Name: State, dtype: object
States with consistently low rates:
Series([], Name: State, dtype: object)
```

```
#It seems that there are no states identified as consistently low rates in the provide
In [29]:
         #finding whether there are any correlations between the number of road accidents and t
In [30]:
         print(data.columns)
         Index(['State', 'Accidents_2018', 'Accidents_2019', 'Accidents_2020',
                 'Accidents Per Lakh Population - 2017',
                 'Total Number of Accidents Per Lakh Population - 2018',
                 'Total Number of Accidents Per Lakh Population - 2019',
                 'Total Number of Accidents Per Lakh Population - 2020',
                 'Accidents per 10,000 Vehicles - 2017',
                 'Accidents per 10,000 Vehicles - 2018',
                 'Accidents per 10,000 Vehicles - 2019'
                 'Accidents per 10,000 Km of Roads - 2017',
                 'Accidents per 10,000 Km of Roads - 2018', 'Persons Killed 2017',
                 'Persons Killed 2018', 'Persons Killed 2019', 'Persons Killed 2020',
                 'Share in Death- 2017', 'Share in Death- 2018', 'Share in Death- 2019',
                 'Share in Death- 2020', 'Persons Killed Per Lakh Population - 2017',
                 'Persons Killed Per Lakh Population - 2018',
                 'Persons Killed Per Lakh Population - 2019',
                 'Persons Killed Per Lakh Population - 2020',
                 'Persons Killed per 10,000 Vehicles - 2017',
                 'Persons Killed per 10,000 Vehicles - 2018',
                 'Persons Killed per 10,000 Vehicles - 2019',
                 'Persons Killed per 10,000 Km of Roads - 2017',
                 'Persons Killed per 10,000 Km of Roads - 2018',
                 'Persons Injured - 2017', 'Persons Injured - 2018',
                 'Persons Injured - 2019', 'Persons Injured - 2020',
                 'Injury Per Lakh Population - 2017',
                 'Injury Per Lakh Population - 2018',
                 'Injury Per Lakh Population - 2019',
                 'Injury Per Lakh Population - 2020',
                 'Road Accidents per 10,000 Vehicles- 2016',
                 'Road Accidents per 10,000 Vehicles- 2017',
                 'Road Accidents per 10,000 Vehicles- 2018'
                 'Road Accidents per 10,000 Vehicles- 2019',
                 'Injury per 10,000 Km of Roads - 2016',
                 'Injury per 10,000 Km of Roads - 2017'
                 'Injury per 10,000 Km of Roads - 2018'],
               dtype='object')
In [31]: import pandas as pd
         # Select the relevant columns
          accidents col = "Accidents 2020"
          vehicles col = "Accidents per 10,000 Vehicles - 2019"
          roads col = "Injury per 10,000 Km of Roads - 2018"
          relevant cols = [accidents col, vehicles col, roads col]
          # Create a new DataFrame with only the relevant columns
          data2 = data[relevant cols]
          # Calculate the correlations
          correlations = data2.corr()
         # Display the correlations
          print(correlations)
```

```
Accidents 2020 \
         Accidents 2020
                                                      1.000000
         Accidents per 10,000 Vehicles - 2019
                                                      0.466246
         Injury per 10,000 Km of Roads - 2018
                                                      0.362634
                                                Accidents per 10,000 Vehicles - 2019 \
         Accidents 2020
                                                                            0.466246
         Accidents per 10,000 Vehicles - 2019
                                                                            1.000000
         Injury per 10,000 Km of Roads - 2018
                                                                            0.209680
                                                Injury per 10,000 Km of Roads - 2018
         Accidents 2020
                                                                            0.362634
         Accidents per 10,000 Vehicles - 2019
                                                                            0.209680
         Injury per 10,000 Km of Roads - 2018
                                                                            1.000000
In [32]: #The correlation between "Road Accidents during 2020" and itself is 1.000000, which pe
         #The correlation between "Road Accidents during 2020" and "Accidents per 10000 Vehicle
         #The correlation between "Road Accidents during 2020" and "Injury per 10,000 Km of Roc
         #The correlation between "Accidents per 10,000 Vehicles - 2019" and itself is 1.000000
          #The correlation between "Accidents per 10,000 Vehicles - 2019" and "Injury per 10,000
          #The correlation between "Injury per 10,000 Km of Roads - 2018" and itself is 1.000000
In [14]:
         import pandas as pd
          # Create a new DataFrame with relevant columns
          persons_killed_data = data[['State', 'Persons Killed 2017', 'Persons Killed 2018', 'Pe
          # Calculate the total number of persons killed over the four-year period
          persons killed data["Total Persons Killed"] = persons killed data.iloc[:, 1:].sum(axis
          # Calculate the percentage change in the number of persons killed from 2017 to 2020
          persons_killed_data["Percentage Change"] = (persons_killed_data["Persons Killed 2020"]
          # Identify states with consistently high fatality rates
          high fatality states = persons killed data[persons killed data["Percentage Change"] >
          # Display the trend in the number of persons killed and states with consistently high
          print("Trend in the number of persons killed from 2017 to 2020:")
          print(persons_killed_data[["State", "Persons Killed 2017", "Persons Killed 2018", "Per
          print("\nStates with consistently high fatality rates:")
          print(high fatality states)
```

\

Trend in the number of persons killed from 2017 to 2020:

Tre	nd in the number of pe	ersons k	illed fro	m 2017	to 20	20:	
		State	Persons	Killed	2017	Persons	Killed 2018
0	Andhra F	radesh			8060		7556
1	Arunachal F	radesh			110		175
2		Assam			2783		2966
3		Bihar			5554		6729
4	Chhatt	isgarh			4136		4592
5		Goa			328		262
6	G	Gujarat			7289		7996
7		laryana			5120		5118
8	Himachal F	-			1203		1208
9	Jammu and k				926		984
10		rkhand			3256		3542
11		nataka			10609		10990
12		Kerala			4131		4303
13	Madhya F				10177		10706
14	•	ashtra			12264		13261
15		Nanipur		•	136		134
16		ghalaya			182		182
17	•	lizoram			60		45
18		ngaland			41		39
19	IVC	Odisha			4790		5315
20		Punjab			4463		4740
21	P.a.÷	jasthan			10444		10320
22	itaj	Sikkim		•	78		85
23	Tami	.1 Nadu			76 16157		12216
24		angana			6596		6603
25 26		ripura akhand			161 942		213 1047
26 27	Uttar F				20124		
							22256
28		Bengal			5769		5711
29	Andaman and Nicobar 1				21 107		19 98
30 31		ndigarh			43		54
	Dadra and Nagar						
32 33	Daman a	Delhi			36 1584		35 1690
34	Lakek	nadweep			1364		1696
35		ıcherry			233		226
36	Fuut	Total		1	47913		151417
30		TOTAL		1,	4/913		15141/
	Persons Killed 2019	Danconc	Killed 2	020			
0	7984	r ei 30113	7039.000				
1	127		73.000				
2	3208		2629.000				
3	7205		6699.000				
4	5003		4606.000				
5	297		223.000				
6	7390		6170.000				
7	5057		4507.000				
8	1146						
			893.000				
9	996		728.000				
10	3801		3044.000				
11	10958		9760.000				
12	4440		2979.000				
13	11249		11141.000 11560.000				
14	12788		11569.000				
15	156		127.000				
16	179		144.000				
17	48		42.000				
18	26		53.000	000			

```
19
                    5333
                                    4738.000000
20
                    4525
                                    3898.000000
21
                   10563
                                    9250.000000
                      73
                                      47.000000
22
                   10525
23
                                    8059.000000
24
                    6964
                                    6882.000000
25
                     239
                                     192.000000
26
                     867
                                     674.000000
27
                   22655
                                  19149.000000
28
                    5500
                                    4927.000000
29
                      20
                                      14.000000
30
                     104
                                      53.000000
                       49
31
                                      64.000000
32
                       28
                                    7317.444444
33
                    1463
                                    1196.000000
34
                       a
                                       0.000000
35
                     147
                                     145.000000
36
                  151113
                                 131714.000000
```

States with consistently high fatality rates:

```
3
                        Bihar
4
                 Chhattisgarh
13
              Madhya Pradesh
18
                     Nagaland
24
                    Telangana
25
                      Tripura
31
      Dadra and Nagar Haveli
32
               Daman and Diu
Name: State, dtype: object
```

C:\Users\BTM\AppData\Local\Temp\ipykernel_26472\299783874.py:7: SettingWithCopyWarnin
g:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us er guide/indexing.html#returning-a-view-versus-a-copy

persons_killed_data["Total Persons Killed"] = persons_killed_data.iloc[:, 1:].sum(a
xis=1)

C:\Users\BTM\AppData\Local\Temp\ipykernel_26472\299783874.py:10: SettingWithCopyWarni
ng:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

persons_killed_data["Percentage Change"] = (persons_killed_data["Persons Killed 202
0"] - persons_killed_data["Persons Killed 2017"]) / persons_killed_data["Persons Kill
ed 2017"] * 100

- In [33]: #Trend in the number of persons killed from 2017 to 2020:
 #The table displays the number of persons killed in road accidents for each state in t
 #Each row represents a state, and the columns represent the respective years.
 #The numbers in each cell represent the count of persons killed in road accidents for
 #States with consistently high fatality rates:
 #Bihar, Chattisgarh, Madhya Pradesh, Nagaland, Telangana, Tripura, Dadra and Nagar Haveli ar
- In [35]: #finding whether there is any relationship between the number of persons killed and th
 # Select relevant columns
 data2 = data[['State', 'Persons Killed 2020', 'Persons Killed Per Lakh Population 26

```
# Remove rows with missing values
         data2= data2.dropna()
         # Perform correlation analysis
          correlation population = data2['Persons Killed 2020'].corr(data['Persons Killed Per La
          # Print the correlation
          print("Correlation between Persons Killed and Population:", correlation_population)
         Correlation between Persons Killed and Population: 0.38376893251227645
         #The correlation coefficient measures the strength and direction of the linear relation
In [36]:
         #In this case, a correlation coefficient of 0.38376893251227645 suggests a weak positi
In [37]:
        #finding how the share of deaths in road accidents change from 2017 to 2020? and Are t
          # Extract relevant columns
         data2 = data[['State', 'Share in Death- 2017', 'Share in Death- 2018', 'Share in Death
          # Calculate change in share of deaths from 2017 to 2020
          data2['Change'] = data2['Share in Death- 2020'] - data['Share in Death- 2017']
          # Sort by the absolute change in descending order
          significant changes = data2.sort values('Change', ascending=False)
          # Display the DataFrame
          significant changes
         C:\Users\BTM\AppData\Local\Temp\ipykernel 26472\2622516805.py:6: SettingWithCopyWarni
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
         er_guide/indexing.html#returning-a-view-versus-a-copy
           data2['Change'] = data2['Share in Death- 2020'] - data['Share in Death- 2017']
```

Out[37]:

	State	Share in Death- 2017	Share in Death- 2018	Share in Death- 2019	Share in Death- 2020	Change
3	Bihar	3.8	4.4	4.8	4.4	0.6
13	Madhya Pradesh	6.9	7.1	7.4	7.4	0.5
4	Chhattisgarh	2.8	3.0	3.3	3.0	0.2
24	Telangana	4.5	4.4	4.6	4.6	0.1
18	Nagaland	0.0	0.0	0.0	0.0	0.0
17	Mizoram	0.0	0.0	0.0	0.0	0.0
15	Manipur	0.1	0.1	0.1	0.1	0.0
25	Tripura	0.1	0.1	0.2	0.1	0.0
29	Andaman and Nicobar Islands	0.0	0.0	0.0	0.0	0.0
31	Dadra and Nagar Haveli	0.0	0.0	0.0	0.0	0.0
32	Daman and Diu	0.0	0.0	0.0	0.0	0.0
34	Lakshadweep	0.0	0.0	0.0	0.0	0.0
16	Meghalaya	0.1	0.1	0.1	0.1	0.0
9	Jammu and Kashmir	0.6	0.6	0.7	0.5	-0.1
30	Chandigarh	0.1	0.1	0.1	0.0	-0.1
22	Sikkim	0.1	0.1	0.0	0.0	-0.1
1	Arunachal Pradesh	0.1	0.1	0.1	0.0	-0.1
35	Puducherry	0.2	0.1	0.1	0.1	-0.1
5	Goa	0.2	0.2	0.2	0.1	-0.1
19	Odisha	3.2	3.5	3.5	3.1	-0.1
0	Andhra Pradesh	5.4	5.0	5.3	5.3	-0.1
2	Assam	1.9	2.0	2.1	1.7	-0.2
26	Uttarakhand	0.6	0.7	0.6	0.4	-0.2
8	Himachal Pradesh	0.8	0.8	0.8	0.6	-0.2
10	Jharkhand	2.2	2.3	2.5	2.0	-0.2
33	Delhi	1.1	1.1	1.0	0.8	-0.3
20	Punjab	3.0	3.1	3.0	2.6	-0.4
7	Haryana	3.5	3.4	3.3	3.0	-0.5
28	West Bengal	3.9	3.8	3.6	3.3	-0.6
14	Maharashtra	8.3	8.8	8.5	7.7	-0.6
11	Karnataka	7.2	7.3	7.3	6.5	-0.7
12	Kerala	2.8	2.8	2.9	2.0	-0.8

	State	Share in Death- 2017	Share in Death- 2018	Share in Death- 2019	Share in Death- 2020	Change
6	Gujarat	4.9	5.3	4.9	4.1	-0.8
27	Uttar Pradesh	13.6	14.7	15.0	12.7	-0.9
21	Rajasthan	7.1	6.8	7.0	6.1	-1.0
23	Tamil Nadu	10.9	8.1	7.0	5.3	-5.6

```
#finding whether the states are consistently high or low rates?
In [38]:
          # Extract relevant columns
          data2= data[['State', 'Persons Killed Per Lakh Population - 2017', 'Persons Killed Per
          # Check consistency of rates across years
          consistently_high = []
          consistently_low = []
          for index, row in data2.iterrows():
              rates = row[1:].values
              if all(rate > 10 for rate in rates):
                  consistently_high.append(row['State'])
              elif all(rate < 1 for rate in rates):</pre>
                  consistently low.append(row['State'])
          # Calculate average rates for each year
          data2['Average Rate'] = data2.mean(axis=1)
          # Sort by average rate in descending order
          sorted_data2 = data2.sort_values('Average Rate', ascending=False)
          # Display the DataFrame
          sorted data2
          # Display states with consistently high rates
          print("States with consistently high rates (> 10 persons killed per lakh population):"
          print(consistently high)
          # Display states with consistently low rates (< 1 person killed per lakh population):
          print("States with consistently low rates (< 1 person killed per lakh population):")</pre>
          print(consistently_low)
         States with consistently high rates (> 10 persons killed per lakh population):
          ['Chhattisgarh', 'Goa', 'Haryana', 'Himachal Pradesh', 'Karnataka', 'Madhya Pradesh',
          'Odisha', 'Punjab', 'Rajasthan', 'Tamil Nadu']
         States with consistently low rates (< 1 person killed per lakh population):
         []
```

C:\Users\BTM\AppData\Local\Temp\ipykernel_26472\861939230.py:15: FutureWarning: Dropp
ing of nuisance columns in DataFrame reductions (with 'numeric_only=None') is depreca
ted; in a future version this will raise TypeError. Select only valid columns before
calling the reduction.
 data2['Average Rate'] = data2.mean(axis=1)
C:\Users\BTM\AppData\Local\Temp\ipykernel_26472\861939230.py:15: SettingWithCopyWarni
ng:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er guide/indexing.html#returning-a-view-versus-a-copy

In [39]: #finding the rate of persons killed per lakh population in each state from 2017 to 202
Select relevant columns
data2 = data[['State', 'Persons Killed Per Lakh Population - 2017', 'Persons Killed Per
Display the DataFrame
data2

data2['Average Rate'] = data2.mean(axis=1)

Out[39]:

	State	Persons Killed Per Lakh Population - 2017	Persons Killed Per Lakh Population - 2018	Persons Killed Per Lakh Population - 2019	Persons Killed Per Lakh Population - 2020
0	Andhra Pradesh	9.100000	8.40	8.80	7.700000
1	Arunachal Pradesh	8.300000	13.00	9.40	5.300000
2	Assam	8.500000	8.90	9.60	7.800000
3	Bihar	5.300000	6.30	6.70	6.200000
4	Chhattisgarh	15.800000	17.30	18.70	17.000000
5	Goa	16.200000	12.70	14.00	10.300000
6	Gujarat	11.500000	12.50	11.40	9.400000
7	Haryana	18.400000	18.10	17.70	15.500000
8	Himachal Pradesh	16.800000	16.80	15.80	12.200000
9	Jammu and Kashmir	7.400000	7.80	7.80	5.600000
10	Jharkhand	9.600000	10.30	10.90	8.600000
11	Karnataka	16.900000	17.30	17.10	15.200000
12	Kerala	11.500000	11.90	12.30	8.200000
13	Madhya Pradesh	12.900000	13.40	13.90	13.600000
14	Maharashtra	10.100000	10.80	10.30	9.200000
15	Manipur	5.200000	5.10	5.80	4.700000
16	Meghalaya	6.500000	6.40	6.30	5.000000
17	Mizoram	5.600000	4.10	4.40	3.800000
18	Nagaland	1.700000	1.60	1.10	2.100000
19	Odisha	11.200000	12.30	12.30	10.800000
20	Punjab	15.200000	16.00	15.10	12.900000
21	Rajasthan	14.100000	13.80	13.90	12.100000
22	Sikkim	11.900000	12.90	10.90	7.000000
23	Tamil Nadu	23.200000	17.40	15.00	11.400000
24	Telangana	10.083333	10.25	9.75	7.952778
25	Tripura	4.200000	5.50	6.10	4.800000
26	Uttarakhand	8.800000	9.60	7.90	6.100000
27	Uttar Pradesh	9.100000	9.90	9.90	8.300000
28	West Bengal	6.100000	6.00	5.70	5.100000
29	Andaman and Nicobar Islands	3.700000	3.30	3.40	2.300000

	State	Persons Killed Per Lakh Population - 2017	Persons Killed Per Lakh Population - 2018	Persons Killed Per Lakh Population - 2019	Persons Killed Per Lakh Population - 2020
30	Chandigarh	5.800000	5.00	5.10	2.500000
31	Dadra and Nagar Haveli	9.800000	11.90	10.50	13.200000
32	Daman and Diu	10.500000	9.70	7.50	0.000000
33	Delhi	7.200000	7.50	6.30	5.000000
34	Lakshadweep	0.000000	1.20	0.00	0.000000
35	Puducherry	13.400000	12.60	7.90	7.500000

67017822405

Correlation between Persons Killed and Accidents per 10,000 Km of Roads (2017): 0.080
29261980866093

In [44]: #For the correlation between persons killed and accidents per 10,000 vehicles (2017), #This indicates a weak positive correlation.

#It means that there is a slight tendency for an increase in the number of accidents per #However, the correlation is weak, suggesting that the relationship is not very strong #For the correlation between persons killed and accidents per 10,000 km of roads (2017) #This indicates a very weak negative correlation, close to zero.

#It means that there is almost no relationship between the number of accidents per 10, #The negative sign indicates a slight tendency for a decrease in the number of accidents.

```
In [45]: #finding how many persons were injured in road accidents in each year from 2017 to 202
# Select relevant columns
injured_data2 = data[['State', 'Persons Injured - 2017', 'Persons Injured - 2018', 'Pe
# Remove rows with missing values
injured_data2 = injured_data2.dropna()

# Calculate the total number of injured persons for each year
injured_data2['Total Injured'] = injured_data2['Persons Injured - 2017'] + injured_dat
# Sort the data by total number of injured persons
injured_data_sorted2 = injured_data2.sort_values('Total Injured', ascending=False)
```

Print the result
print(injured_data_sorted2)

		roau a	ccidents and	ilysis irom .	2017 10 2020		
	State	Pei	rsons In	jured -	2017 \		
23	Tamil Nadu				4571		
13	Madhya Pradesh			5	7532		
11	Karnataka				2961		
12	Kerala				2671		
14	Maharashtra				2128		
27	Uttar Pradesh				7494		
0	Andhra Pradesh				7475		
24	Telangana				3990		
21	Rajasthan			2	2071		
6	Gujarat			1	6802		
4	Chhattisgarh			1	2550		
19	Odisha			1	1198		
28	West Bengal			1	0091		
7	Haryana			1	0339		
9	Jammu and Kashmir				7419		
3	Bihar				6014		
2	Assam				6163		
33	Delhi				6604		
32	Daman and Diu				70		
8	Himachal Pradesh				5452		
10	Jharkhand				3918		
20	Punjab				4218		
35	Puducherry				1741		
5	Goa				1922		
26	Uttarakhand				1631		
15	Manipur		1027				
25	Tripura				718		
22	Sikkim				479		
18	Nagaland				375		
1	Arunachal Pradesh				316		
30	Chandigarh				302		
16	Meghalaya				354		
29	Andaman and Nicobar Islands				263		
31	Dadra and Nagar Haveli				60		
17	Mizoram				55		
34	Lakshadweep				1		
54	Laksiladweep				1		
	Dansans Induned 2010 Dan		Turkunad	2010	Danasana	Tradium and 2020	,
22	Persons Injured - 2018 Per	sons	injured		Persons	_	,
23	74537			67137		50551.000000	
13	54662			52816		46456.000000	
11	51562			50447		39492.000000	
12	45458			46055		30510.000000	
14	31365			28628		19914.000000	
27	29664			28932		22410.000000	
0	23456			24619		19675.000000	
24	23613			21999		18661.000000	
21	21547			22979		16769.000000	
6	17467			16258		12002.000000	
4	12715			13090		10505.000000	
19	11794			11177		8822.000000	
28	11997			9757		8314.000000	
7	10020			9362		7659.000000	
9	7845			7532		5894.000000	
3				7206			
2	6679 7375					7016.000000	
	7375			7473		5269.000000	
33	6086			5152		3662.000000	
32	94			74		19348.833333	
_							
8	5551			4904		3223.000000	
8 10							

20	3384	3812	2904.000000
35	1727	1619	1019.000000
5	1549	1448	880.000000
26	1571	1457	854.000000
15	1042	1055	663.000000
25	741	816	470.000000
22	370	318	218.000000
18	335	246	286.000000
1	323	309	185.000000
30	300	275	148.000000
16	205	222	220.000000
29	260	207	145.000000
31	66	105	119.000000
17	80	56	68.000000
34	3	1	1.000000

```
Total Injured
23 266796.000000
13 211466.000000
11 194462.000000
12
   164694.000000
   112035.000000
27
   108500.000000
     95225.000000
0
24
     88263.000000
21
     83366.000000
6
     62529.000000
4
     48860.000000
19
     42991.000000
28
     40159.000000
7
     37380.000000
9
     28690.000000
3
     26915.000000
2
     26280.000000
33
     21504.000000
32
     19586.833333
8
     19130.000000
10
     15006.000000
20
     14318.000000
35
      6106.000000
5
      5799.000000
26
      5513.000000
15
      3787.000000
25
      2745.000000
22
      1385.000000
18
      1242.000000
1
      1133.000000
30
      1025.000000
16
      1001.000000
29
       875.000000
31
       350.000000
17
       259.000000
         6.000000
```

```
In [46]: #finding whether the states with consistently high numbers of injuries
    # Select relevant columns
    injured_data = data[['State', 'Persons Injured - 2017', 'Persons Injured - 2018', 'Per
    # Remove rows with missing values
    injured_data = injured_data.dropna()
```

```
# Calculate the total number of injured persons for each year
          injured data['Total Injured'] = injured data.sum(axis=1)
          # Group the data by state and calculate the average number of injured persons
          grouped data = injured data.groupby('State')['Total Injured'].mean().reset index()
          # Sort the data by average number of injured persons
          grouped data sorted = grouped data.sort values('Total Injured', ascending=False)
         # Print the top states with consistently high numbers of injuries
          top states = grouped data sorted.head(5) # Change the number to display more states a
          print(top_states)
                      State Total Injured
         30
                 Tamil Nadu
                                  266796.0
         19 Madhya Pradesh
                                  211466.0
                                  194462.0
         16
                  Karnataka
         17
                     Kerala
                                  164694.0
         20
                Maharashtra
                                  112035.0
         C:\Users\BTM\AppData\Local\Temp\ipykernel_26472\1995225103.py:9: FutureWarning: Dropp
         ing of nuisance columns in DataFrame reductions (with 'numeric only=None') is depreca
         ted; in a future version this will raise TypeError. Select only valid columns before
         calling the reduction.
           injured data['Total Injured'] = injured data.sum(axis=1)
In [47]: #finding the rate of injuries per lakh population in each state from 2017 to 2020? Are
         # Select relevant columns
         injured data = data[['State', 'Persons Injured - 2017', 'Persons Injured - 2018', 'Per
          # Remove rows with missing values
          injured_data = injured_data.dropna()
          # Create a new DataFrame to store the rates of injuries per lakh population
          injury rates = injured data[['State']]
          # Calculate the average rate of injuries per lakh population for each state
          for year in range(2017, 2021):
             column name = f'Injury Per Lakh Population - {year}'
             injury_rates[f'Rate of Injuries {year}'] = injured_data[column_name]
          # Check for consistently high or low rates
          consistently high = []
          consistently low = []
          for state in injury rates['State']:
             rates = injury rates.loc[injury rates['State'] == state].drop('State', axis=1).val
             if all(rate > 0 for rate in rates):
                 consistently high.append(state)
             elif all(rate == 0 for rate in rates):
                  consistently low.append(state)
          # Print the rates of injuries per lakh population in each state from 2017 to 2020
          print(injury rates)
          # Print states with consistently high or low rates
          print('States with consistently high rates of injuries:', consistently high)
          print('States with consistently low rates of injuries:', consistently_low)
```

_	State	Rate of Injuries 2017		\
0	Andhra Pradesh	30.858651	26.152011	
1	Arunachal Pradesh	23.813112	24.086503	
2	Assam	18.783907	22.236628	
3	Bihar	5.724130	6.289551	
4	Chhattisgarh	47.926373	48.002869	
5	Goa	95.007415	74.903288	
6	Gujarat	26.446515	27.197845	
7	Haryana	37.099900	35.465260	
8	Himachal Pradesh	76.241085	77.033028	
9	Jammu and Kashmir	59.139099	61.942361	
10	Jharkhand	11.500191	11.527419	
11	Karnataka	84.182668	81.283203	
12	Kerala	118.950185	126.055127	
13	Madhya Pradesh	72.858518	68.291647	
14	Maharashtra	26.440840	25.515351	
15	Manipur	39.213440	39.380197	
16	Meghalaya	12.629326	7.238701	
17	Mizoram	5.121043	7.373272	
18	Nagaland	15.592516	13.786008	
19	Odisha	26.158662	27.343967	
20	Punjab	14.360616	11.422785	
21	Rajasthan	29.856339	28.773837	
22	Sikkim	73.353752	56.060606	
23	Tamil Nadu	106.942493	106.409982	
24	Telangana	38.350220	0.000000	
25	Tripura	18.567365	18.970814	
26	Uttarakhand	15.156584	14.430054	
27	Uttar Pradesh	12.414379	13.194027	
28	West Bengal	10.697098	12.613948	
29	Andaman and Nicobar Islands	46.714032	45.217391	
30	Chandigarh	16.245293	15.455951	
31	Dadra and Nagar Haveli	13.729977	14.601770	
32	Daura and Nagar Havell Daman and Diu	20.348837	26.183844	
	Daman and Did Delhi	30.160760		
33 34			27.021267	
	Lakshadweep	1.219512	3.614458	
35	Puducherry	100.461627	96.051168	
	Rate of Injuries 2019 Rate	of Injuries 2020		
0	27.254511	21.633003		
1	22.821270	13.533285		
2	22.296813	15.562973		
3	6.716188	6.473997		
	48.876111			
4		38.812532		
5	68.398677	40.552995		
6	25.054322	18.314716		
7	32.698823	26.408524		
8	67.557515	44.084257		
9	58.935837	45.732464		
10	10.943905	9.340099		
11	78.902340	61.313461		
12	127.079827	83.795661		
13	65.123735	56.561229		
14	23.026559	15.841096		
15	39.468762	24.573758		
16	7.762238	7.620367		
17	5.109489	6.148282		
18	10.024450	11.546225		
19	25.723820	20.159042		

9.647520

12.762823

20

```
21
                30.304109
                                       21.846298
22
                47.676162
                                       32.392273
23
                95.440976
                                       71.584746
24
                 0.000000
                                        0.000000
25
                20.679169
                                       11.800151
26
                13.233424
                                        7.673645
27
                12.681020
                                        9.670946
                10.176793
28
                                        8.603686
29
                35.204082
                                       24.126456
30
                                        6.974552
                13.560158
31
                22.435897
                                       24.485597
32
                19.786096
                                        0.000000
33
                22.241409
                                       15.374927
34
                 1.190476
                                        1.176471
35
                86.670236
                                       52.417695
States with consistently high rates of injuries: ['Andhra Pradesh', 'Arunachal Prades
h', 'Assam', 'Bihar', 'Chhattisgarh', 'Goa', 'Gujarat', 'Haryana', 'Himachal Prades
h', 'Jammu and Kashmir', 'Jharkhand', 'Karnataka', 'Kerala', 'Madhya Pradesh', 'Mahar
ashtra', 'Manipur', 'Meghalaya', 'Mizoram', 'Nagaland', 'Odisha', 'Punjab', 'Rajastha
n', 'Sikkim', 'Tamil Nadu', 'Tripura', 'Uttarakhand', 'Uttar Pradesh', 'West Bengal',
'Andaman and Nicobar Islands', 'Chandigarh', 'Dadra and Nagar Haveli', 'Delhi', 'Laks
hadweep', 'Puducherry']
States with consistently low rates of injuries: []
C:\Users\BTM\AppData\Local\Temp\ipykernel 26472\3801919201.py:14: SettingWithCopyWarn
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er guide/indexing.html#returning-a-view-versus-a-copy
  injury rates[f'Rate of Injuries {year}'] = injured data[column name]
C:\Users\BTM\AppData\Local\Temp\ipykernel_26472\3801919201.py:14: SettingWithCopyWarn
ing:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
  injury_rates[f'Rate of Injuries {year}'] = injured_data[column_name]
C:\Users\BTM\AppData\Local\Temp\ipykernel 26472\3801919201.py:14: SettingWithCopyWarn
ing:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
 injury_rates[f'Rate of Injuries {year}'] = injured_data[column_name]
C:\Users\BTM\AppData\Local\Temp\ipykernel 26472\3801919201.py:14: SettingWithCopyWarn
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er guide/indexing.html#returning-a-view-versus-a-copy
```

```
In [48]: #Is there any correlation between the number of injuries and the number of vehicles or
# Select relevant columns
data2 = data[['State', 'Persons Injured - 2017', 'Persons Injured - 2018', 'Persons Ir
```

injury rates[f'Rate of Injuries {year}'] = injured data[column name]

```
# Remove rows with missing values
data2 = data2.dropna()

# Calculate correlations
correlation_vehicles = data2[['Persons Injured - 2017', 'Persons Injured - 2018', 'Per
correlation_roads = data2[['Persons Injured - 2017', 'Persons Injured - 2018', 'Person
correlation_vehicles
correlation_roads
```

Out[48]:

	Persons Injured - 2017	Persons Injured - 2018	Persons Injured - 2019	Persons Injured - 2020	Accidents per 10,000 Km of Roads - 2017	Accidents per 10,000 Km of Roads - 2018
Persons Injured - 2017	1.000000	0.998051	0.996582	0.966530	0.248935	0.274104
Persons Injured - 2018	0.998051	1.000000	0.997944	0.964242	0.242427	0.269104
Persons Injured - 2019	0.996582	0.997944	1.000000	0.965645	0.235986	0.260523
Persons Injured - 2020	0.966530	0.964242	0.965645	1.000000	0.262805	0.303184
Accidents per 10,000 Km of Roads - 2017	0.248935	0.242427	0.235986	0.262805	1.000000	0.960231
Accidents per 10,000 Km of Roads - 2018	0.274104	0.269104	0.260523	0.303184	0.960231	1.000000

```
In [50]: #finding how the road accidents per 10,000 vehicles change from 2016 to 2019? Are ther
# Select relevant columns
data2 = data[['State', 'Road Accidents per 10,000 Vehicles- 2016', 'Road Accidents per

# Remove rows with missing values
data2 = data2.dropna()

# Calculate change in road accidents per 10,000 vehicles
data2['Change'] = data2['Road Accidents per 10,000 Vehicles- 2019'] - data2['Road Acci
# Sort by change in ascending order
sorted_data = data2.sort_values('Change')

# Print the states with significant changes
significant_changes = sorted_data[(sorted_data['Change'] > 0.5) | (sorted_data['Change'])
```

In [51]:

```
State
                                                                                                                                                  Change
22
                                                                                                      Sikkim -67.370320
8
                                                            Himachal Pradesh -26.665245
9
                                                         Jammu and Kashmir -22.532764
12
                                                                                                      Kerala -19.070573
                                                                     Madhya Pradesh -16.442752
13
15
                                                                                                  Manipur -15.241379
                                                                     Andhra Pradesh -15.075073
0
23
                                                                                      Tamil Nadu -14.057689
11
                                                                                         Karnataka -13.765088
               Andaman and Nicobar Islands -13.386220
29
25
                                                                                                  Tripura -12.995379
24
                                                                                         Telangana -12.159255
35
                                                                                     Puducherry -10.576442
5
                                                                                                                  Goa -10.317609
4
                                                                             Chhattisgarh -9.611281
10
                                                                                          Jharkhand -8.619442
19
                                                                                                     Odisha -8.543033
2
                                                                                                         Assam -8.489927
28
                                                                                 West Bengal -7.026115
21
                                                                                          Rajasthan -6.721790
14
                                                                                 Maharashtra -5.901194
26
                                                                                 Uttarakhand -5.535339
27
                                                                         Uttar Pradesh -4.635603
18
                                                                                             Nagaland -4.018524
                                                         Arunachal Pradesh -3.897627
1
33
                                                                                                         Delhi -3.590258
                                                                                                  Gujarat -3.489437
6
7
                                                                                                 Haryana -3.070041
3
                                                                                                         Bihar -2.766996
30
                                                                                     Chandigarh -2.144904
20
                                                                                                      Punjab -1.903183
31
                                    Dadra and Nagar Haveli
                                                                                                                                          3.937096
                                                                         Daman and Diu
32
                                                                                                                                  4.935799
#finding how the injuries per 10,000 km of roads change from 2016 to 2018? Are there of
 # Select relevant columns
 data2 = data[['State', 'Injury per 10,000 Km of Roads - 2016', 'Injury per 10,000 Km o
 # Remove rows with missing values
 data2 = data2.dropna()
 # Calculate change in injuries per 10,000 km of roads
 data2['Change'] = data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['Injury per 10,000 Km of Roads - 2018'] - data2['
 # Sort by change in ascending order
 sorted data = data2.sort values('Change')
```

significant_changes = sorted_data[(sorted_data['Change'] > 0.5) | (sorted_data['Change'])

Print the states with significant changes

print(significant_changes[['State', 'Change']])

	State	Change
35	Puducherry	-1714.548147
33	Delhi	-819.093311
9	Jammu and Kashmir	-799.196962
29	Andaman and Nicobar Islands	-608.055672
13	Madhya Pradesh	-533.174594
0	Andhra Pradesh	-447.370597
5	Goa	-418.329814
23	Tamil Nadu	-370.258891
22	Sikkim	-345.719408
12	Kerala	-333.534389
7	Haryana	-260.921441
24	Telangana	-223.650122
8	Himachal Pradesh	-185.524410
21	Rajasthan	-134.744246
6	Gujarat	-132.024927
20	Punjab	-121.936828
16	Meghalaya	-112.288345
11	Karnataka	-109.784370
10	Jharkhand	-103.743263
14	Maharashtra	-66.818259
15	Manipur	-52.974724
3	Bihar	-43.263050
1	Arunachal Pradesh	-41.835598
18	Nagaland	-36.813663
4	Chhattisgarh	-33.791392
17	Mizoram	-25.963261
19	Odisha	-25.789367
28	West Bengal	-22.147216
34	Lakshadweep	-3.254951
25	Tripura	6.427856
26	Uttarakhand	8.400237
27	Uttar Pradesh	12.190752
30	Chandigarh	12.421877
2	Assam	30.455660
31	Dadra and Nagar Haveli	355.332502
32	Daman and Diu	607.911449

In []: