Research Student's Research Diary – Contents

1	Citation Test	2
2	Rectified Flow	3
3	Momentum + Cautious WD	4
4	General Fillipov From Scratch	5
5	Momentum + Cautious WD	6
6	General Fillipov From Scratch	7
7	Momentum + Cautious WD	8
8	General Fillipov From Scratch	9
9	Today is a New Day	10
10	Comprehensive LaTeX Command Test	11
	10.1 Mathematical Sets and Spaces	11
	10.2 Statistical Functions	11
	10.3 Math Operators	11
	10.4 Vectors and Bold Symbols	11
	10.5 Fractions and Derivatives	11
	10.6 Special Symbols	12
	10.7 Calculus and Analysis	12
	10.8 Color Commands (for text)	12
	10.9 Complex Mathematical Expression	12
	10.10 Delimited Commands Test	12
11	Testing Custom Commands	13
12	Today	14

RESEARCH STUDENT RESEARCH DIARY 2025 Research Diary

September 20

1 Citation Test

$$\mathbb{E}[x] + \nabla \boldsymbol{f} + \mathbb{R}^d.$$

$$\theta = \arg \min L(\theta, \mathcal{D}).$$

We have a citation [2] here. Solve this problem:

2 Rectified Flow

We have a figure here.

We have another citation here [1].

3 Momentum + Cautious WD

$$\dot{x} = -m - \mathbb{I}(mx \ge 0)x\tag{1}$$

$$\dot{m} = \nabla f(x) - m. \tag{2}$$

$$H(x,m) = f(x) + \frac{1}{2}m^2 + (mx)_+$$

Let us use $s \in [0,1]$ to denote the subgradient of $(mx)_+$ within H. Let $p \in [0,1]$ be the Flippiov variable of $\mathbb{I}(mx \geq 0)$ inside the velocity field. Note that s and p are different. We need to keep track of it in the derivation.

$$\dot{H}(s,p) = g\dot{x} + m\dot{m} + s(m\dot{x} + x\dot{m})$$

$$= -g(m+px) + m(g-m) + s(-m(m+px) + x(g-m))$$

$$= -pxg - m^2 + s(-m^2 + xg - (1+p)xm)$$

If α belongs to \dot{H} , we want that for each s, there exists p, such that

$$-pxg - m^2 + s(-m^2 + xg - (1+p)xm) = -\alpha.$$

So we have

$$p(-xg - sxm) - m^{2} + s(-m^{2} + xg - xm) = \alpha.$$
$$p = \frac{\alpha - (1+s)m^{2} + s(xg - xm)}{xg + sxm}.$$

At the non-smooth point, we have xm = 0, and it gives

$$p = \frac{\alpha - (1+s)m^2 + s(xg)}{xg}.$$

So p is in range of

$$\frac{\alpha-2m^2+xg}{xq}, \quad \frac{\alpha-m^2}{xq}.$$

If xg > 0, we have

$$m^2 \le \alpha \le m^2 + xg$$
$$\alpha \le 2m^2 \le \alpha + xg$$

So

$$2m^2 - xg \le \alpha \le 2m^2$$

$$\cap_s \cup_p \dot{H}(s,p).$$

For know the flippov system, the set valued Lie-derivation is defined as:

$$\mathcal{L}_v H = \{ \alpha \colon \exists p, \quad s.t. \quad \dot{H}(s, p) = \alpha \quad \forall s \in \partial H \}.$$

So we want to find the p such that the $\dot{H}(s,p)$ is independent with the choice of s.

So to make it independent on s, we want

$$-m^2 + xg - (1+p)xm = 0.$$

This gives

$$\dot{H} = -p(m^2 + (1+p)xm) - m^2$$

= -(1+p)m^2 - p(1+p)xm.

If xm < 0, we have p = 0, and hence $\dot{H} = -m^2$. Invariant set is $\{xm < 0, m = 0\}$.

If xm > 0, we have p = 1, and hence, $\dot{H} = -(2m^2 + 2(xm)_+)$. Invariant set is $\{xm = 0, m = 0\}$.

If xm = 0, we have $\dot{H} = -(1+p)m^2$. Invariant set is $\{xm = 0, m = 0\}$.

Hence, the invariant set is included in

$$\{xm\leq 0,\ m=0\}.$$

But since m = 0, we have $xm \leq 0$ anyway.

4 General Fillipov From Scratch

Theorem 1. Assume we have non-smooth function V(x) with clark generalized gradient, and let d be an update direction. We have

Proof.

$$\lim_{\epsilon \to 0^+} \frac{V(x + \epsilon d) - V(x)}{\epsilon} = \dots$$

Theorem 4.1 (Great Theorem). Yes, it is.

Proof. Yes. \Box

Theorem 4.2 (Great Theorem). This is the second.

Proof. This is the best. \Box

5 Momentum + Cautious WD

$$\dot{x} + \mathbb{R}^d + \nabla f + \mathbb{E}[x].$$

 \widehat{f}

$$\dot{x} = -m - \mathbb{I}(mx \ge 0)x\tag{3}$$

$$\dot{m} = \nabla f(x) - m. \tag{4}$$

$$H(x,m) = f(x) + \frac{1}{2}m^2 + (mx)_+$$

Let us use $s \in [0, 1]$ to denote the subgradient of $(mx)_+$ within H. Let $p \in [0, 1]$ be the Flippiov variable of $\mathbb{I}(mx \ge 0)$ inside the velocity field. Note that s and p are different. We need to keep track of it in the derivation.

$$\dot{H}(s,p) = g\dot{x} + m\dot{m} + s(m\dot{x} + x\dot{m})$$

$$= -g(m+px) + m(g-m) + s(-m(m+px) + x(g-m))$$

$$= -pxg - m^2 + s(-m^2 + xg - (1+p)xm)$$

If α belongs to \dot{H} , we want that for each s, there exists p, such that

$$-pxg - m^2 + s(-m^2 + xg - (1+p)xm) = -\alpha.$$

So we have

$$p(-xg - sxm) - m^2 + s(-m^2 + xg - xm) = \alpha.$$

$$p = \frac{\alpha - (1+s)m^2 + s(xg - xm)}{xg + sxm}.$$

At the non-smooth point, we have xm = 0, and it gives

$$p = \frac{\alpha - (1+s)m^2 + s(xg)}{xg}.$$

So p is in range of

$$\frac{\alpha - 2m^2 + xg}{xg}, \quad \frac{\alpha - m^2}{xg}.$$

If xg > 0, we have

$$m^2 \le \alpha \le m^2 + xg$$

$$\alpha \le 2m^2 \le \alpha + xg$$

So

$$2m^2 - xq \le \alpha \le 2m^2$$

$$\cap_s \cup_p \dot{H}(s,p).$$

For know the flippov system, the set valued Lie-derivation is defined as:

$$\mathcal{L}_v H = \{ \alpha \colon \exists p, \quad s.t. \quad \dot{H}(s, p) = \alpha \quad \forall s \in \partial H \}.$$

So we want to find the p such that the $\dot{H}(s,p)$ is independent with the choice of s.

So to make it independent on s, we want

$$-m^2 + xg - (1+p)xm = 0.$$

This gives

$$\dot{H} = -p(m^2 + (1+p)xm) - m^2$$

= -(1+p)m^2 - p(1+p)xm.

If xm < 0, we have p = 0, and hence $\dot{H} = -m^2$. Invariant set is $\{xm < 0, m = 0\}$.

If xm > 0, we have p = 1, and hence, $\dot{H} = -(2m^2 + 2(xm)_+)$. Invariant set is $\{xm = 0, m = 0\}$.

If xm = 0, we have $\dot{H} = -(1+p)m^2$. Invariant set is $\{xm = 0, m = 0\}$.

Hence, the invariant set is included in

$$\{xm \le 0, \quad m = 0\}.$$

But since m = 0, we have $xm \leq 0$ anyway.

6 General Fillipov From Scratch

Theorem 2. Assume we have non-smooth function V(x) with clark generalized gradient, and let d be an update direction. We have

Proof.

$$\lim_{\epsilon \to 0^+} \frac{V(x+\epsilon d) - V(x)}{\epsilon} = \dots$$

Theorem 6.1 (Great Theorem). Yes, it is.

Proof. Yes.
$$\Box$$

Theorem 6.2 (Great Theorem). This is the second.

Proof. This is the best.
$$\Box$$

7 Momentum + Cautious WD

$$\dot{x} = -m - \mathbb{I}(mx \ge 0)x \tag{5}$$

$$\dot{m} = \nabla f(x) - m. \tag{6}$$

$$H(x,m) = f(x) + \frac{1}{2}m^2 + (mx)_+$$

Let us use $s \in [0,1]$ to denote the subgradient of $(mx)_+$ within H. Let $p \in [0,1]$ be the Flippiov variable of $\mathbb{I}(mx \geq 0)$ inside the velocity field. Note that s and p are different. We need to keep track of it in the derivation.

$$\dot{H}(s,p) = g\dot{x} + m\dot{m} + s(m\dot{x} + x\dot{m})$$

$$= -g(m+px) + m(g-m) + s(-m(m+px) + x(g-m))$$

$$= -pxg - m^2 + s(-m^2 + xg - (1+p)xm)$$

If α belongs to \dot{H} , we want that for each s, there exists p, such that

$$-pxg - m^2 + s(-m^2 + xg - (1+p)xm) = -\alpha.$$

So we have

$$p(-xg - sxm) - m^{2} + s(-m^{2} + xg - xm) = \alpha.$$
$$p = \frac{\alpha - (1+s)m^{2} + s(xg - xm)}{xg + sxm}.$$

At the non-smooth point, we have xm = 0, and it gives

$$p = \frac{\alpha - (1+s)m^2 + s(xg)}{xq}.$$

So p is in range of

$$\frac{\alpha - 2m^2 + xg}{xq}, \quad \frac{\alpha - m^2}{xq}.$$

If xg > 0, we have

$$m^2 \le \alpha \le m^2 + xg$$
$$\alpha \le 2m^2 \le \alpha + xg$$

So

$$2m^2 - xg \le \alpha \le 2m^2$$

$$\cap_s \cup_p \dot{H}(s,p).$$

For know the flippov system, the set valued Lie-derivation is defined as:

$$\mathcal{L}_v H = \{ \alpha \colon \exists p, \quad s.t. \quad \dot{H}(s, p) = \alpha \quad \forall s \in \partial H \}.$$

So we want to find the p such that the $\dot{H}(s,p)$ is independent with the choice of s.

So to make it independent on s, we want

$$-m^2 + xg - (1+p)xm = 0.$$

This gives

$$\dot{H} = -p(m^2 + (1+p)xm) - m^2$$

= -(1+p)m^2 - p(1+p)xm.

If xm < 0, we have p = 0, and hence $\dot{H} = -m^2$. Invariant set is $\{xm < 0, m = 0\}$.

If xm > 0, we have p = 1, and hence, $\dot{H} = -(2m^2 + 2(xm)_+)$. Invariant set is $\{xm = 0, m = 0\}$.

If xm = 0, we have $\dot{H} = -(1+p)m^2$. Invariant set is $\{xm = 0, m = 0\}$.

Hence, the invariant set is included in

$$\{xm\leq 0,\ m=0\}.$$

But since m = 0, we have $xm \leq 0$ anyway.

8 General Fillipov From Scratch

Theorem 3. Assume we have non-smooth function V(x) with clark generalized gradient, and let d be an update direction. We have

Proof.

$$\lim_{\epsilon \to 0^+} \frac{V(x+\epsilon d) - V(x)}{\epsilon} = \dots$$

Theorem 8.1 (Great Theorem). Yes, it is.

Proof. Yes. \Box

Theorem 8.2 (Great Theorem). This is the second.

Proof. This is the best. \Box

RESEARCH STUDENT RESEARCH DIARY 2025 Research Diary

September 21

9 Today is a New Day

Dealing with math, code, people, self.

10 Comprehensive LaTeX Command Test

This document tests all custom commands defined in diary_commands.sty to verify the automatic command parsing system.

10.1 Mathematical Sets and Spaces

$$\mathbb{R}^d, \mathbb{C}^n, \mathbb{N}, \mathbb{P}, \mathbb{E}[X], \mathbb{D}$$

 $\mathcal{P}(\mathcal{A}), \mathcal{H}, \mathcal{X}, \mathcal{B}, \mathcal{F}, \mathbb{M}$

10.2 Statistical Functions

$$\operatorname{var}(X), \operatorname{Var}(X), \operatorname{cov}(X, Y), \operatorname{Cov}(X, Y)$$

 $\operatorname{corr}(X, Y), \operatorname{Corr}(X, Y), \operatorname{Pr}(A), \operatorname{Pr}(B)$
 $X \sim \mathcal{N}(\mu, \sigma^2), \operatorname{MSE}, \operatorname{KL}(P \parallel Q)$

10.3 Math Operators

$$x^* = \operatorname*{max}_{x \in \mathbb{R}} f(x)$$
$$y^* = \operatorname*{arg\,min}_{y \in \mathbb{C}} g(y)$$
$$\hat{\mu} = \operatorname{med}\{x_1, \dots, x_n\}$$
$$\hat{x} = \operatorname{mod}\{x_1, \dots, x_n\}$$

10.4 Vectors and Bold Symbols

$$egin{aligned} oldsymbol{x}, oldsymbol{y}, oldsymbol{ heta}, oldsymbol{eta}, oldsymbol{eta}, oldsymbol{z}, oldsymbol{z} \end{aligned}$$

10.5 Fractions and Derivatives

$$\frac{a+b}{c+d} = \frac{a+b}{c+d}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}$$

10.6 Special Symbols

$$a := b + c$$

10.7 Calculus and Analysis

$$\nabla f(x)$$
, $\mathbb{I}(A)$, trace (A) , diag (A)

10.8 Color Commands (for text)

Some red text, blue text, green text, magenta text, gray text.

TODO: This is a todo item

10.9 Complex Mathematical Expression

Combining multiple commands:

$$\mathbb{E}\left[\frac{\boldsymbol{x}^T\mathbf{A}\boldsymbol{x}}{\mathrm{trace}(\mathbf{B})}\right] = \argmax_{\boldsymbol{\theta} \in \mathbb{R}^d} \Pr\left(\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})\right)$$

Where we use the derivative:

$$\frac{\partial L(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \nabla L(\boldsymbol{\theta})$$

And the indicator function:

$$\mathbb{I}\left(\boldsymbol{x}\in\mathcal{X}\right)\cdot\mathrm{var}(Y)$$

10.10 Delimited Commands Test

Testing the \bb...\ee commands:

$$egin{aligned} oldsymbol{x} &= rg \max_{oldsymbol{w}} \mathbb{E}\left[rac{oldsymbol{w}^T oldsymbol{x}}{ ext{trace}(\mathbf{K})}
ight] \ & ext{subject to } oldsymbol{w} \in \mathbb{R}^d \end{aligned}$$

11 Testing Custom Commands

Testing \dd and \ind commands:

$$\dot{m} = \nabla f(x) - m$$

$$\mathbb{I}(mx \ge 0) = \mathbb{I}(mx \ge 0)$$

Testing \argmax and \argmin:

$$x^* = \operatorname*{arg\,max}_{x \in \mathbb{R}} f(x)$$

$$y^* = \operatorname*{arg\,min}_{y \in \mathbb{C}} g(y)$$

Testing \b ...\ee delimited commands:

$$x + y = z$$
$$a + b = c$$

Testing \bba...\eea:

$$\sum_{i=1}^{n} x_i = 0$$
 eq:test (7)

Testing \vv{x} and \V{y} :

$$x = y + x$$

12 Today

 $Cov(x), cov(x), Pr(x), \mathcal{N}(x).$

It is the best.

References

- [1] Li, X. L., Thickstun, J., Gulrajani, I., Liang, P., and Hashimoto, T. B. (2022). Diffusion-lm improves controllable text generation. arXiv preprint arXiv:2205.14217.
- [2] Smith, J. and Doe, J. (2024). Research Methods in Computer Science. Academic Press.