厦门大学高等代数教案 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

习题 4.3 同构

1. 设 $\varphi: V \to U$ 是同构映射, V_1, V_2 是 V 的子空间. 求证:

$$\varphi(V_1 + V_2) = \varphi(V_1) + \varphi(V_2), \quad \varphi(V_1 \cap V_2) = \varphi(V_1) \cap \varphi(V_2).$$

证明 (1) 对任何 $\beta \in \varphi(V_1 + V_2)$, 存在 $\alpha = \alpha_1 + \alpha_2 \in V_1 + V_2$, 其中 $\alpha_1 \in V_1$, $\alpha_2 \in V_2$ 使得 $\beta = \varphi(\alpha) = \varphi(\alpha_1 + \alpha_2)$. 又因为 φ 是线性映射, 所以 $\beta = \varphi(\alpha_1 + \alpha_2) = \varphi(\alpha_1) + \varphi(\alpha_1) \in \varphi(V_1) + \varphi(V_2)$, 所以 $\varphi(V_1 + V_2) \subseteq \varphi(V_1) + \varphi(V_2)$;

对任何 $\gamma \in \varphi(V_1) + \varphi(V_2)$, 存在 $\alpha_1 \in V_1$, $\alpha_2 \in V_2$ 使得 $\gamma = \varphi(\alpha_1) + \varphi(\alpha_2)$. 又因为 φ 是线性映射,所以 $\gamma = \varphi(\alpha_1) + \varphi(\alpha_2) = \varphi(\alpha_1 + \alpha_2) \in \varphi(V_1 + V_2)$, 所以 $\varphi(V_1) + \varphi(V_2) \subset \varphi(V_1 + V_2)$; 综上, $\varphi(V_1 + V_2) = \varphi(V_1) + \varphi(V_2)$;

- (2) 由 $\varphi(V_1 \cap V_2) \subseteq \varphi(V_1)$, $\varphi(V_1 \cap V_2) \subseteq \varphi(V_2)$, 得 $\varphi(V_1 \cap V_2) \subseteq \varphi(V_1) \cap \varphi(V_2)$; 而对任何 $\beta \in \varphi(V_1) \cap \varphi(V_2)$, 存在 $\alpha_1 \in V_1$, $\alpha_2 \in V_2$ 使得 $\beta = \varphi(\alpha_1) = \varphi(\alpha_2)$, 因为 φ 是单射, 所以 $\alpha_1 = \alpha_2 \in V_1 \cap V_2$, 则 $\beta \in \varphi(V_1 \cap V_2)$, 得 $\varphi(V_1) \cap \varphi(V_2) \subseteq \varphi(V_1 \cap V_2)$; 综上, $\varphi(V_1 \cap V_2) = \varphi(V_1) \cap \varphi(V_2)$. \square
- 2. 设 $\varphi: V \to U$ 是同构映射, S 是 V 的子集合. 求证: $\varphi(\langle S \rangle) = \langle \varphi(S) \rangle$. 证明 设 $\langle S \rangle$ 的基为 $\xi_1, \xi_2, \cdots, \xi_n$, 因为 φ 是同构映射,所以 $\varphi(\xi_1), \varphi(\xi_1), \cdots, \varphi(\xi_n)$ 是 $\langle \varphi(S) \rangle$ 的基,即得 $\varphi(\langle S \rangle) = \varphi(\langle \xi_1, \xi_2, \cdots, \xi_n \rangle) = \langle \varphi(\xi_1), \varphi(\xi_1), \cdots, \varphi(\xi_n) \rangle = \langle \varphi(S) \rangle$. \square
 - 3. 证明 $F^{2\times 2} \cong F^4$, 并写出同构映射.

证明 因为 $F^{2\times 2}$, F^4 都是 F 上的线性空间,且 $\dim F^{2\times 2}=\dim F^4=4$, 所以 $F^{2\times 2}\cong F^4$; 同构映射取为 φ :

$$F^{2\times 2} \to F^4, \quad \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \mapsto (a, b, c, d)^T.$$

4. 设 A 是 n 阶可逆阵,定义 $\varphi_A: F^n \to F^n, X \mapsto AX$, 求证: φ_A 是同构映射.

证明 一方面,设 $\varphi_A(X_1) = \varphi_A(X_2)$,即 $AX_1 = AX_2$. 因为 A 可逆,所以 $X_1 = X_2$,即 φ_A 是单射.另一方面,对任何 $X \in F^n$,存在 $A^{-1}X \in F^n$,使得 $\varphi_A(A^{-1}X) = AA^{-1}X = X$,即 φ_A 是满射,所以 φ_A 是双射.

又对任何 $X_1, X_2 \in F^n$, $k_1, k_2 \in F$, 有 $\varphi_A(k_1X_1 + k_2X_2) = A(k_1X_1 + k_2X_2) = k_1(AX_1) + k_2(AX_2) = k_1\varphi_A(X_1) + k_2\varphi_A(X_2)$; 所以 φ_A 是线性映射;

综上, φ_A 是同构映射. \square

5. 在 F^2 中, 令 $\varphi: F^2 \to F^2$, $(a,b)^T \mapsto (2b,-a)^T$, 则 φ 是同构映射.

证明 对任何 $(a,b)^T \in F^2$, 存在唯一 $(-b,\frac{a}{2})^T \in F^2$, 使得 $\varphi((-b,\frac{a}{2})^T) = (a,b)^T$, 所以 φ 是双射;

对任何 $(a,b)^T$, $(c,d)^T \in F^2$, $k_1,k_2 \in F$, 有 $\varphi(k_1(a,b)^T + k_2(c,d)^T) = \varphi((k_1a + k_2c,k_1b + k_2d)^T) = (2(k_1b + k_2d)^T, -(k_1a + k_2c))^T = k_1(2b,-a)^T + k_2(2d,-c)^T = k_1\varphi((a,b)^T) + k_2\varphi((c,d)^T)$; 所以 φ 是线性映射;

综上, φ 是同构映射. □

(万琴解答)