Par	In bax
1) 1	1) 1
2) $\frac{1}{2} + 1$	2) <u>0+1</u> +1
3) $\frac{7}{2}$	$\frac{1}{2}$
$1) \left(\frac{0}{2}\right)^2 + 0 - \frac{0}{2}\left(\frac{0}{2} + 1\right)$	$1) \left(\frac{n+2}{2}\right)^2 + n+1 - \left(\frac{n+1}{2}\right)\left(\frac{n+1}{2}+1\right)^{-1}$
$5) \left(\frac{\alpha}{2}\right)^2 + \frac{\alpha}{2} - \frac{\alpha}{2} \left(\frac{\alpha}{2} + 1\right)$	$5)\left(\frac{n+2}{2}\right)+\left(\frac{n+1}{2}\right)-\left(\frac{n+1}{2}\right)\left(\frac{n+1}{2}+1\right)$
6) %	6) 0+1
$\frac{1}{2}\left(\frac{1}{2}+1\right)$	$(\frac{1}{2})^{\binom{n+1}{2}\binom{n+1}{2}+1}$
$\left(\frac{n}{2}\right)^2$	3) (1/4) 2 -
9) 0,	9) 1+1

6)	%
----	---

$$7)$$
 $\frac{1}{2}\left(\frac{1}{2}+1\right)$

$$8) \left(\frac{0}{2}\right)^2$$

$$2) \frac{1+1}{2} + 1$$

$$3)$$
 $\frac{1+1}{2}$

$$1) \left(\frac{n+2}{2}\right)^2 + n+1 = \left(\frac{n+1}{2}\right)\left(\frac{n+1}{2}+1\right)$$

$$5)\left(\frac{n+2}{2}\right)^{2}+\left(\frac{n+1}{2}\right)-\frac{\binom{n+1}{2}}{\binom{n+1}{2}+1}$$

$$6) \quad \frac{0+1}{2}$$

$$7) \qquad \left(\frac{n+1}{2}\right)\left(\frac{n+1}{2}+1\right)$$

9)
$$\frac{n+1}{2}$$

	Instrucción	Costo
1 i	←1	c ₁
2 v	vhile i<=n	c ₂
3	/k ← i	c ₃
4	while k<=n	c ₄
5	k← k+2	c ₅
.6	k ← 1	c ₆
7	while k<=i	c ₇
8	k ← k+1	c ₈
9	i ← i+2	c ₉

while
$$i = 0$$

 $n \neq 0$: $1, 3, 5, 7, ..., n-1$, $n+1$ $\frac{n}{2} + 1$ $\frac{n}{2} + 1 = 5$
 $n \neq 0$: $1, 3, 5, 7, ..., n + 2$ $\frac{n+2}{2} + 1$ $n=7$ $\frac{7+1}{2} + 1 = 5$

$$\frac{0+1}{2}+1$$

Caso par

(k2i)	
(K-1)	23
while k<=n	c ₄
• k ← k+2	c ₅

$$\frac{1}{2} + 2 - C \qquad C = \frac{i+1}{2}$$

$$\sum_{i=1}^{\infty} \frac{1}{2} + 2 - 0$$

$$C=3$$
 $\frac{0}{2}-1$

$$\sum_{C=1}^{n} \frac{1}{z} + z - C = \sum_{C=1}^{2} \frac{1}{z} + \sum_{C=1}^{2} z - \sum_{C=1}^{2} \frac{1}{z}$$

$$\left(\frac{1}{z}\right)^{2} + \left(\frac{1}{z}\right)^{2} + \frac{1}{z}$$

$$\frac{0}{2} + 1 - C = \sum_{c=1}^{\frac{1}{2}} \frac{1}{c} + 1 - C = \left(\frac{0}{2}\right)^{2} + \frac{0}{2} - \frac{0}{2} \left(\frac{1}{2} + 1\right)$$

	K	
1	1 2	· 2
3	1239	6
5	123456	g
7	22345678	
	1224 0-1 0	

6	$k \leftarrow 1$	c ₆
7	while k<=i	c ₇
8	k ← k+1	c ₈

C

$$C \to \frac{1}{2} + \frac{1}{2} + \frac{1}{6} + \frac{1}{2} + \frac{1}{2}$$

$$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} +$$

k⊢i	c ₃
while k-n	c ₄
\(\hbar{k+2} \)	c ₅

$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{3}$, $\frac{3}{5}$,, $\frac{6}{1}$	+1
3 2 8 S, N, N+2 N+	1
5 3 S, ~ n, n+2	
4 1	<u> </u>
0+3	
0.0+1	

$$\frac{n+1}{2} + 2 + \frac{n+1}{2} + \frac{n+1}{2} - 1 + \dots + \frac{n+1}{2}$$

$$\frac{n+1}{2} + 2 - C \qquad C = 1, \dots, \frac{n+1}{2}$$

$$\frac{n+1}{2} + 2 - C = \left(\frac{n+2}{2}\right)^2 + n+1 - \left(\frac{n+1}{2}\right)\left(\frac{n+1}{2} + 1\right)$$

$$C = 1$$

$$\frac{n+2}{2} + 1 + C = \left(\frac{n+2}{2}\right) + \frac{n+1}{2} - \left(\frac{n+1}{2}\right)\left(\frac{n+1}{2} + 1\right)$$

$$C = 1$$