PRINTABLE VERSION

Quiz 11

You scored 80 out of 100

Question 1

Your answer is CORRECT.

The congruence equation " $17 \equiv -73 \mod 30$ " means

- a) \bigcirc 17 and \bigcirc 73 have the same remainder when they are divided by 30.
- **b)** \bigcirc 17 and 30 have the same remainder when they are divided by -73 .
- \mathbf{c}) \mathbf{c} \mathbf{c} 30 have the same remainder when they are divided by 17.
- d) \bigcirc 17 and \bigcirc 73 have the same quotient when they are divided by 30.

Ouestion 2

Your answer is CORRECT.

The integers 92 and -28 are congruent mod n for which value of n?

- a) 0 = 92
- **b)** \bigcirc n = -28
- **c)** \bigcirc n = 16
- d) There are no values of n for which these two integers are congruent (except n = 1).
- **e)** \odot n = 15

Ouestion 3

Your answer is CORRECT.

Consider the following proposition:

Proposition. If $a \equiv b \mod n$, then $a^2 \equiv b^2 \mod n$.

If you were writing a direct proof of this proposition, which of the following statements could be used as your first line?

a) \bigcirc Suppose (a - b)|n.

- b) \odot Suppose n|(a-b).
- c) \bigcirc Suppose a | n and a | b.
- d) \bigcirc Suppose n divides a and b.
- e) \bigcirc Suppose n|a and b|a.

Ouestion 4

Your answer is INCORRECT.

Is the following statement true or false?

 $\forall x, y, a, b \in Z, n \in N^*, (x \equiv a \mod n \land y \equiv b \mod n) \Rightarrow (x + y) \equiv (a + b) \mod n.$ (Note: for this problem N^* refers to the positive natural numbers $N^* = N - \{0\} = \{1, 2, 3, \ldots\}$.)

- a) This statement is true.
- b) This statement is false.

Ouestion 5

Your answer is INCORRECT.

A (direct) proof for a Proposition is presented below. Read through the proof and then determine which Proposition was proven.

Undefined control sequence \square

- a) O If you add up six consecutive integers, then the result is equivalent to 1 mod 6.
- **b)** If $x \in Z$ then $\sum_{i=0}^{5} x + i \not\equiv 0 \mod 6$.
- c) The sum of 6 consecutive integers is never congruent to 0 mod 6.
- d) Technically no proposition was proven true since there is an algebraic mistake in Line (3).

Question 6

Your answer is CORRECT.

Use the Euclidean Algorithm to find the inverse of $-25 \mod 10$ (if it exists).

a) -1/25 is an inverse.

b) ○ -5 is an inverse.
c) ○ -10/25 is an inverse.
d) ○ 2 is an inverse.

e) \bigcirc -25 does not have an inverse mod 10 because $gcd(-25, 10) \neq 1$.

Question 7

Your answer is CORRECT.

Of the options provided below, determine the one that best completes this sentence: "The modular equation $16x \equiv 11 \mod 17$ "

- a) o has no solutions.
- **b)** has exactly one solution.
- c) has multiple solutions.

Question 8

Your answer is CORRECT.

Which steps should one take when solving a congruence equation $ax \equiv b \mod n$? A helpful summary is presented below, only one step is missing:

Steps for solving $ax \equiv b \mod n$.

Step 1.

Step 2. If $gcd(a, n) \mid b$, then proceed to step 3, otherwise there are no solutions.

Step 3. Use work from Step 1 to calculate one solution $x_0 \in Z$.

Step 4. Add $\frac{n}{\gcd(a, n)}$ to x_0 to create other solutions.

Of the following options, which could be used for the missing Step 1?

- a) Step 1. Use the Euclidean Algorithm to compute gcd(b, n).
- b) Step 1. Divide n by b.
- c) Step 1. Use the Euclidean Algorithm to compute gcd(b, n).
- d) Step 1. Multiply both sides by 1/a.
- e) Step 1. Use the Euclidean Algorithm to compute gcd(a, n).

Question 9

Your answer is CORRECT.

Find a solution to the congruence equation $13x \equiv -14 \mod 5$.

- a) x = 14/13 is a solution.
- c) x = 5 is a solution.
- d) x = 5 is a solution.
- e) x = 5/13 is a solution.

Question 10

Your answer is CORRECT.

Find a solution to the congruence equation $14x \equiv 18 \mod 43$.

- a) x = 720 is a solution.
- **b)** There are no solutions.
- c) x = 22 is a solution.
- d) x = 21 is a solution.
- e) x = 0 is a solution.