Московский Физико-Технический Институт (государственный университет)

Работа 5.4.2

Цель работы:

С помощью магнитного спектрометра исследовать энергетический спектр β - частиц при распаде ядер $^{137}\mathrm{Cs}$ и определить их максимальную энергию.

1 Описание работы

Бета-распадом называется самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд увеличивается или уменьшается на единицу. Бета-активные ядра встречаются во всей области значений массового числа A, начиная от единицы (свободный нейтрон) и кончая самыми тяжелыми ядрами. Период полураспада β - активных ядер изменяется от ничтожных долей секунды до 10^{18} лет. Выделяющаяся при единичном акте β - распада энергия варьируется от 18 кэВ до 13,4 МэВ.

В данной работе мы будем иметь дело с электронным распадом

$${}_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu} \tag{1}$$

при котором кроме электрона испускается антинейтрино. Освобождающаяся при β -распаде энергия делится между электроном, антинейтрино и дочерним ядром, однако доля энергии, передаваемой ядру, исчезающе мала по сравнению с энергией, уносимой электроном и антинейтрино. Практически можно считать, что эти две частицы делят между собой всю освобождающуюся энергию. Поэтому электроны могут иметь любое значение энергии от нулевой до некоторой максимальной, которая равна энергии, освобождающейся при β -распаде, являющейся важной физической величиной.

Вероятность dw того, что при распаде электрон вылетит с импульсом в интервале d^3p , а антинейтрино с импульсом в интервале d^3k , пропорциональна произведению этих дифференциалов. Но мы должны еще учесть закон сохранения энергии, согласно которому импульсы p и k электрона и антинейтрино связаны соотношением

$$E_e - E - ck = 0, (2)$$

где E_e - максимальная энергия электрона, кинетическая энергия электрона E связана с его импульсом обычным релятивистским соотношением

$$E = c\sqrt{p^2 + m^2c^2} - mc^2, (3)$$

а через ck обозначена энергия антинейтрино с импульсом k. Условие можно учесть введением в выражение для dw δ - функции

$$\delta(E_e - E - ck). \tag{4}$$

Таким образом, вероятность dw может быть записана в виде

$$dw = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\widetilde{\nu}}, \tag{5}$$

где D — некоторый коэффициент пропорциональности, $d\Omega_e$, $d\Omega_{\tilde{\nu}}$ — элементы телесных углов направлений вылета электрона и нейтрино. Вероятность dw непосредственно связана с β -спектром, поскольку для большого числа N_0 распадов число dN распадов с вылетом электрона и антинейтрино с импульсом соответственно от p до p+dp и от k до k+dk определяется соотношением

$$dN = N_0 dw (6)$$

Коэффициент D в формуле (5) можно считать для рассматриваемых нами так называемых разрешенных фермиевских типов распадов с хорошей точностью константой (разрешенными называются такие переходы, при которых не изменяются ни момент, ни четность состояния ядра). В этом случае величину dw из (6) можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино.

После умножения на полное число распадов N проинтегрированное выражение приобретает смысл числа электронов dN, вылетающих из ядра с импульсом, абсолютная величина которого лежит между p иp+dp:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp.$$
 (7)

Чтобы получить распределение электронов по энергиям, надо в (7) перейти от dp к dE:

$$dE = \frac{c^2 p}{E + mc^2} dp,\tag{8}$$

после чего выражающая форму β — спектра величина N(E)=dN/dE приобретает вид

$$\frac{dN}{dE} = N_0 B c p (E + mc^2) (E_e - E)^2 = N_0 B \sqrt{E(E + 2mc^2)} (E_e - E)^2 (E + mc^2)$$
(9)

где $B = (16\pi^2/c^4)D$. В нерелятивистском приближении, которое и имеет место с нашем случае, выражение (9) упрощается, и мы имеем

$$\frac{dN}{dE} \approx \sqrt{E}(E_e - E)^2. \tag{10}$$

Выражение (10) приводит к спектру, имеющему вид широкого колокола (рис 1). Кривая плавно отходит от нуля и столь же плавно, по параболе, касается оси абсцисс в области максимальной энергии электронов E_e .

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая γ -квант (энергия которого равна разности энергий начального и конечного уровней), либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными.

Рис. 1: Форма спектра β -частиц при разрешенных переходах

Конверсия чаще всего происходит на оболочках K или L. На спектре, представленном на рис. 1, видна монохроматическая линия, вызванная электронами конверсии. Ширина этой линии в нашем случае является чисто аппаратурной, по ней можно оценить разрешающую силу спектрометра.

2 Экспериментальная установка

Для определения энергии β -частиц в работе используется магнитный спектрометр, схема которого показана на рисунке 2 слева. Электроны испускаются радиоактивным источником и попадают в магнитное поле катушки, ось которой параллельна OZ. Траек-

Работа 5.4.2 3 XOД РАБОТЫ

тории электронов сходятся в одной точке — фокусе, где и установлен сцинтилляционный счетчик, сигналы которого усиливаются фотоумножителем и регистрируются пересчетным прибором. Фокусное расстояние f магнитной линзы связано с током в катушке I и импульсом p_e регистрируемых частиц следующим образом:

$$\frac{1}{f} \propto \frac{I^2}{p_e^2}$$

При неизменной геометрии установки, увеличивая и уменьшая силу тока, можно фокусировать электроны разных импульсов, причем

$$p_e = kI, (11)$$

где k — коэффициент пропорциональности, являющийся параметром установки.

Рис. 2: слева — схема β -спектрометра; справа — блок-схема установки для изучения спектра

В β -спектрометре установлены диафрагмы для ограничения углов вылета частиц из источника и свинцовый фильтр для защиты от прямого попадания γ -лучей.

Число частиц N, регистрируемых на установке, равно: $N \approx W \cdot \Delta p_e$, где Δp_e - разрешающая способность спектрометра. Дифференцируя выражение для форуса магнитной линзы, получим: $\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e$, то есть $\Delta p_e \propto p_e$. Таким образом, для количества частиц справедлива формула:

$$N = CW(p_e)p_e (12)$$

Здесь C - некоторая константа.

3 Ход работы

- 1. Включить пересчетный прибор, высоковольтный выпрямитель и вакуумметр. Если показания вакуумметра заметно превышают 0,1 Тор, включить форвакуумный насос и откачать спектрометр. Затем отключить насос, не забыв соединить его с атмосферой.
- 2. Установить рабочее напряжение на ФЭУ.
- 3. Для того, чтобы убедиться, что β -спектрометр действительно работает нужно убедиться, что скорость счета зависит от величины тока в катушке.
- 4. Выключить ток в линзе и с точностью 2-3% измерить фоновый счет спектрометра. Измерения фона повторить в середине и в конце опыта.

Работа 5.4.2 3 *ХОД РАБОТЫ*

5. Провести предварительные измерения, изменяя силу тока в фокусирующей катушке каждый раз на 0,3 A и записывая число счетов за 100 с. Затем уточнить измерения в области спада спектральной кривой и в районе конверсионного пика, изменяя ток с шагом в 0,1 A.