Lecture 1.3

Phylogenetic Data

Mark de Bruyn

Phylogenetic data

- · Select data to optimise signal:noise
 - Slowly evolving markers for deep evolutionary events
 - Rapidly evolving markers for recent evolutionary events
- Homoplasy
 - Taxa share similarities that do not reflect evolutionary history
- Take advantage of existing resources

Phylogenetic data

1. Data preparation

- · Taxon and gene sampling
- Sequence alignment (if needed)
- Data filtering

2. Phylogenetic inference

- Model selection
- · Estimation of tree
- · Further analysis and interpretation

2

Data types

- Sequence data
 - Nucleotides
 - Amino acids
- Binary data (presence/absence of genomic features)
- Microsatellites (repeat numbers)
- Single-nucleotide polymorphisms (SNPs)
- Reduced-representation sequences
- Morphological characters

Current Biology

Volume 25, Issue 19, 5 October 2015, Pages R922-R92

Review

Morphological Phylogenetics in the Genomic Age

Sequence Data

Commonly used DNA sequence loci

Mitochondrial genome

- · Maternally inherited
- Protein-coding genes (e.g. COI)
- rRNA genes (e.g. 12S, 16S)
- Control region

Sequence data

Coding sequences

- Ribosomal RNA
- Protein-coding genes

Non-coding sequences

- Intergenic sites
- Introns
- Amino acid sequences

6

Commonly used DNA sequence loci

Nuclear genome

- 1. **Microsatellites (STRs)**: highly polymorphic, mutation model, size homoplasy
- 2. **EPICs**: highly variable, indels
- 3. **Anonymous loci**: highly variable, no ascertainment bias, neutral?
- 4. **NPCLs**: conserved, lack indels, 'ancient' events
- 5. **rRNA 'arrays'**: tandemly duplicated, variable conservation

['array' = 3 rDNA coding segments (18S, 5.8S, 28S), 2 internal transcribed spacer elements ITS-1 & 2, external transcribed spacer (ETS) and non-transcribed spacer (NTS)]

7

8

Gaps and missing data

- Delete sites with any missing data
 - Potential loss of informative data
 - Problematic in analyses of data supermatrices
- Treat gaps as unresolved data
 - Gap is simultaneously A, C, G, and T
 - Most common approach
- Treat gaps as a 5th (nucleotide) or 21st (amino acid) state
 - Not appropriate when there are long gaps
- Code gaps as binary characters

9

Mutational saturation

- · Some sites can evolve very rapidly
 - 3rd codon positions
 - · Loop regions in RNA
- Multiple hits can erode phylogenetic signal
- Various ways of testing for saturation (e.g. ISS DAMBE)

Saturated sites can be removed to improve signal:noise

Gaps and missing data

- · Impact of missing data remains poorly understood
- · Filter data according to chosen threshold of missing data

		Gene 1	Gene 2	Gene 3	Gene 4	Gene 5
	Taxon 1					
	Taxon 2					
	Taxon 3					
	Taxon 4					
	Taxon 5					
	Taxon 6			Maximise taxon sampling		

Maximise gene sampling

10

Mutational saturation

- Plot transitions and transversions
 - Transitions occur more frequently than transversions
 - Can plot in various ways

- Xia's method (I_{ss})
 - When sequences are fully saturated ($I_{SS} = 1$), expected base frequencies at each site are equal to the global frequencies
 - Compare I_{SS} with critical value calculated via simulation

Duchêne, Ho, & Holmes (2015) BMC Evol Biol

Xia et al. (2003) Mol Phylogenet Evol 12

Partition-homogeneity test

- Unlinked loci can have different gene trees
- Test for phylogenetic congruence across markers
- · Partition-homogeneity (incongruence length difference) test

High-Throughput Data

Single-nucleotide polymorphisms

- Single sites sampled from throughout the genome
- More common in intraspecific (population) studies
- · Issues to consider:
 - Recombination

SNPs are usually unlinked so they are likely to have different (gene) trees

· Ascertainment bias

SNPs are selected for variability and this can mislead estimates of population sizes, rates, and other parameters

16

Reduced-representation sequences

- Markers identified by cutting genome with restriction enzymes
- Process creates binary data and short sequences
- Examples include RADseg and DArTseg
- Issues to consider:
 - Recombination Markers are usually unlinked so they are likely to have different (gene) trees
 - · Missing data Typically a large proportion of missing data

Leaché et al. (2015) Syst Biol 17

Whole genome sequencing

- Typically NOT (yet) the entire genome
- Many challenges: Jarvis et al Science 2014 >400 years of computing using a single processor
- · Issues to consider
 - Loci are single copy?
 - Selectively neutral?
 - · Sampled loci have independent gene trees?
 - Historical recombination?

Ultra-conserved elements

- Genomic elements perfectly conserved in mammals (>200 bp)
- Gene 'deserts' long range regulators?
- Flanking regions: phylogenetic markers varying in conservation
- Purifying selection?
 - Increase rate of lineage sorting: gene trees ≈ spp. trees
 - Inference of historical demographic parameters problematic N_o

Useful references

19