Једначина провођења топлоте

Бошко Андрић 26/2020 Лука Филиповић 83/2020

17. јануар 2024.

Садржај

1	Увод	2
2	Поставка проблема	2
3	Метода коначних разлика	2
	3.1 Дискретизација топлотне једначине	3
	3.2 Гранични и почетни услови	3
	3.3 Итеративно Решавање	3

1 Увод

Провођење топлоте, основни феномен у области физике, често се изучава кроз математичко моделирање користећи парцијалне диференцијалне једначине. Овај пројекат има за циљ истраживање и решавање једначине провођења топлине у једној и две димензије примењујући нумеричку методу коначних разлика.

Наша пажња усмерена је на динамику температуре унутар штапа или шипке, односно плоче, са почетним и граничним условима који често карактеришу реалне сценарије. Овај приступ нам омогућава дубље разумевање утицаја различитих параметара, као што је термална дифузивност, на промене температуре током времена и простора.

2 Поставка проблема

Поставка Проблема - Једна Димензија

У овом пројекту истраживања провођења топлоте у једној димензији, анализираћемо динамику температуре у штапу дужине L. Примењиваћемо једначину провођења топлоте изражену као:

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$$

,где је T температура, t време, x просотрна координата, а α термална дифузивност. Задаћемо почетни услов T(x,0)=f(x), као и граничне услове $T(0,t)=T_0$ и $T(L,t)=T_L$. Циљ је пратити како се температура мења унутар штапа током времена.

Поставка Проблема - Две Димензије

У случају две димензије, истраживање провођења топлоте обавићемо у блоку димензија L_x по x координати и L_y по y координати. Једначина провођења топлоте сада ће бити изражена као:

$$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

Почетни услов ће бити T(x,y,0)=f(x,y), а гранични услови могу бити задати за оба просторна правца x и y. На пример, $T(0,y,t)=T_0$, $T(L_x,y,t)=T_L$, $T(x,0,t)=T_0$, $T(x,L_y,t)=T_L$. Исто тако, циљ је пратити промене температуре унутар блока током времена.

3 Метода коначних разлика

Метода коначних разлика је нумеричка техника која се користи за решавање парцијалних диференцијалних једначина. У нашем пројекту, применили смо методу коначних разлика на једначину провођења топлоте како бисмо добили апроксимацију решења.

3.1 Дискретизација топлотне једначине

Први корак у примени методе коначних разлика је дискретизација топлотне једначине. Ми смо дискретизовали простор и време, користећи одговарајуће кораке (Δx и Δt).

За једначину провођења топлоте у једној димензији, дискретизовали смо други производ по простору и први производ по времену помоћу централних разлика:

$$\frac{T_i^{n+1} - T_i^n}{\Delta t} = \alpha \frac{T_{i+1}^n - 2T_i^n + T_{i-1}^n}{(\Delta x)^2}$$

Овде, индекс i представља просторну координату, а индекс n временску координату.

Аналогно и за једначину провођења топлоте у две димензије:

$$\frac{T_{i,j}^{n+1} - T_{i,j}^n}{\Delta t} = \alpha \left(\frac{T_{i+1,j}^n - 2T_{i,j}^n + T_{i-1,j}^n}{(\Delta x)^2} + \frac{T_{i,j+1}^n - 2T_{i,j}^n + T_{i,j-1}^n}{(\Delta y)^2} \right)$$

3.2 Гранични и почетни услови

Након дискретизације, морамо узети у обзир и граничне услове. За граничне услове у једној димензији, користили смо претходно задате температуре на крајевима штапа $(T_0$ и $T_L)$:

$$T_0 = T_0$$

$$T_L = T_L$$

Што се тиче почетних услова, користили смо задату почетну температуру f(x).

У случају једначине провођења топлоте у две димензије, корисимо следеће граничне услове:

$$T_{0,j} = T_0$$

$$T_{L_x,j} = T_{L_x}$$

$$T_{i,0} = T_1$$

$$T_{i,L_y} = T_{L_y}$$

3.3 Итеративно Решавање

Након дискретизације и узимања у обзир граничних и почетних услова, решавање једначине провођења топлоте своди се на итеративни процес. Користили смо одговарајуће алгоритме за ажурирање температуре у сваком кораку времена, усмеравајући се ка конвергенцији ка стабилном решењу.