Tribhuvan University
Institute of Science and Technology
Department of Computer Science and Technology

Data Structure and Algorithms Micro-Syllabus

S.No.	Unit	Hours	Total Hours	Marks
1	Concept and Definition of Data Structures a. Information and its meaning b. Array in C c. The array as an ADT d. One dimensional array e. Two dimensional array f. Multi-dimensional array g. Structure h. Union i. Pointer	4	4	5
2	Algorithm a. Concept and Definition b. Design of algorithm c. Characteristic of algorithm d. Big O notation	2	2	3
3	The Stack a. Concept and Definition • Primitive Operations • Stack as an ADT • Implementing PUSH and POP operation • Testing for overflow and underflow conditions b. The Infix, Postfix and Prefix • Concept and Definition • Evaluating the postfix operation • Converting from infix to postfix c. Recursion • Concept and Definition • Implementation of:	3	8	11
4	Queues a. Concept and Definition b. Queue as ADT c. Implementation of Insert and Delete operation of • Linear Queue • Circular Queue d. Concept of Priority Queue	1 2 1	4	5
5	 Linked List a. Concept and Definition b. Inserting and deleting nodes c. Linked implementation of a stack (PUSH / POP) d. Linked implementation of a queue (Insert / Remove) e. Circular List • Stack as a circular list (PUSH / POP) 	1 2 2	6	8

	Queue as a circular list (Insert / Remove)			
	f. Doubly Linked List (Insert / Remove)	1		
	1. Doubly Efficed List (Hiscit/ Remove)			
6	Tree		7	9
0	15 6 11		/)
	b. Binary Tree			
	c. Introduction and application	1		
	d. Operation			
	e. Types of Binary Tree	1		
	• Complete	1		
	• Strictly			
	Almost Complete	1		
	f. Huffman algorithm	1		
	g. Binary Search Tree			
	 Insertion 	2		
	• Deletion			
	 Searching 			
	h. Tree traversal	2		
	Pre-order traversal			
	In-order traversal			
	Post-order traversal			
7	Sorting		5	7
′	a. Introduction	2		'
	b. Bubble Sort			
	c. Insertion			
	d. Selection	2		
	e. Quick	2		
	f. Merge			
	g. Comparison and Efficiency of sorting	1		
	g. Comparison and Efficiency of sorting	1		
8	Coording		5	7
0	Searching a. Introduction	2]	/
		2		
	b. Sequential Searching			
	c. Binary Search	2		
	d. Comparison and Efficiency of Searching	1		
	e. Hashing	1		
	Probing (Linear and Quadratic)			
	Cont		1	
9	Graph		4	5
	a. Introduction	1		
	b. Representation of Graph	1		
	• array			
	• linked list			
	c. Traversal			
	 Depth First Search 	2		
	Breadth First Search			
	d. Minimum spanning Tree			
	Kruskal's algorithm	1		

Text Book:

Data Structures using C and C++, Y. Langsam, M. J. Augenstein, A. M. Tenenbaum

Reference Book:

The Design and Analysis of Algorithm, Nitin Upadhyay, SK Kataria & Sons

Prerequisite: C