Recordatorio sobre la forma canónica de Jordan

Cualquier matriz cuadrada $A \in \mathcal{M}_d$ es semejante a una matriz $J \in \mathcal{M}_d(\mathbb{C})$ que es diagonal por bloques:

$$J = \operatorname{diag} \{J_1, \dots, J_r\} = \begin{pmatrix} J_1 & O & \cdots & O \\ O & J_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & O \\ O & \cdots & O & J_r \end{pmatrix}$$

donde $J_k \in \mathcal{M}_{r_k}$. Además:

- Si $r_k = 1$ entonces $J_k = (\lambda_i)$ donde $\lambda_i \in \sigma(A)$.
- Si $r_k > 1$:

$$J_k = egin{pmatrix} \lambda_j & 1 & 0 & \cdots & 0 \ 0 & \lambda_j & \ddots & & dots \ dots & \ddots & \ddots & dots \ dots & \ddots & \ddots & dots \ dots & & \ddots & \lambda_j & 1 \ 0 & \cdots & \cdots & 0 & \lambda_i \end{pmatrix} \qquad ext{donde } \lambda_j \in \sigma(A)$$

Para calcular la matriz J tenemos en cuenta:

• La multiplicidad de cada valor propio:

$$m(\lambda_j)$$
 para cada $\lambda_j \in \sigma(A)$

• La dimensión de cada subespacio propio E_{λ_j} :

$$\dim E_{\lambda_i} = \dim \ker(A - \lambda_j I) = d - \operatorname{rango}(A - \lambda_j I)$$

• El índice de cada valor propio:

$$u(\lambda_j) = \min \left\{ k \in \mathbb{Z}^+ : \ker(A - \lambda_j I)^k = \ker(A - \lambda_j I)^{k+1} \right\}$$
donde $u(\lambda_j) > 1 \sin \dim E_{\lambda_j} < m(\lambda_j).$

- El orden de J_k siempre es menor o igual que $\nu(\lambda_j)$
- Existe al menos un bloque cuyo orden es exactamente $\nu(\lambda_j)$
- ullet Un valor propio λ_j puede aparecer en más de un bloque.
- La suma de los órdenes de los bloques asociados a λ_j coincide con $m(\lambda_j)$.

Puesto que A y J son semejantes, debe existir $P\in\mathcal{M}_d(\mathbb{C})$ invertible tal que

$$A = P \cdot J \cdot P^{-1}$$

Entonces se cumple:

$$e^{At} = P \cdot e^{Jt} \cdot P^{-1}$$
 donde $e^{Jt} = \text{diag}\left\{e^{J_1t}, \dots, e^{J_rt}\right\}$

Y además

$$\left\|\mathbf{e}^{Jt}\right\|_1 = \mathsf{máx}\left\{\left\|\mathbf{e}^{J_k t}\right\|_1 \ : \ k=1,\ldots,r\right\}$$

• Si $J_k = (\lambda_j)$ es simple (de orden 1) entonces $e^{J_k t} = (e^{\lambda_j t})$ y por tanto:

$$\left\|e^{J_k t}\right\|_1 = \left|e^{\lambda_j t}\right| = e^{\operatorname{Re}(\lambda_j)t}$$

• Si el orden de J_k es m > 1 entonces $J_k = \lambda_j I + N_k$ donde N_k es nilpotente y es fácil deducir que

$$e^{J_kt}=e^{\lambda_jt}egin{pmatrix}1&t&\cdots&rac{t^{m-1}}{(m-1)!}\0&1&\ddots&&dots\dots&\ddots&\ddots&dots\dots&\ddots&\ddots&dots\0&\cdots&\cdots&0&1\end{pmatrix}$$

Y por tanto, para $t \ge 0$:

$$\left\| e^{J_k t} \right\|_1 = \left| e^{\lambda_j t} \right| \left(1 + t + \dots + \frac{t^{m-1}}{(m-1)!} \right) = e^{\operatorname{Re}(\lambda_j) t} \left(1 + t + \dots + \frac{t^{m-1}}{(m-1)!} \right)$$

Como consecuencia:

$$\left\|e^{Jt}\right\|_1 = \mathsf{máx}\left\{e^{\mathsf{Re}(\lambda)t}\Big(1+t+\cdots+\frac{t^{\nu(\lambda)-1}}{(\nu(\lambda)-1)!}\Big) \ : \ \lambda \in \sigma(A)\right\}$$

Si denotamos

$$\mu = \max \{ \operatorname{Re}(\lambda) : \lambda \in \sigma(A) \}$$

У

$$\sigma_{\mu}(A) = \{ \lambda \in \sigma(A) : \operatorname{Re}(\lambda) = \mu \}$$

y

$$n = \max \{ \nu(\lambda) - 1 : \lambda \in \sigma_{\mu}(A) \}$$

Podemos concluir:

Lema

Existe T > 0 tal que para todo t > T

$$\left\|e^{Jt}\right\|_1 = \left(1 + t + \dots + \frac{t^n}{n!}\right)e^{\mu t}$$

Demostración del teorema

Sea J una forma canónica de Jordan de A. Existe $P \in \mathcal{M}_d(\mathbb{C})$ invertible tal que:

$$A = P \cdot J \cdot P^{-1}.$$

Entonces se cumple:

$$e^{At} = P \cdot e^{Jt} \cdot P^{-1}.$$

Si consideramos la norma matricial en $\mathcal{M}_d(\mathbb{C})$:

$$|||B|||:=\left\|P^{-1}\cdot B\cdot P\right\|_{1} \qquad \qquad B\in\mathcal{M}_{d}(\mathbb{C})$$

entonces

$$|||e^{At}||| = ||e^{Jt}||_1 = (1 + t + \dots + \frac{t^n}{n!})e^{\mu t}$$

donde $\mu = \max \{ Re(\lambda) : \lambda \in \sigma(A) \}$ y donde

$$n = \max \{ \nu(\lambda) - 1 : \lambda \in \sigma_{\mu}(A) \}.$$

• Si μ < 0 entonces

$$\lim_{t\to+\infty} \left(1+t+\cdots+\frac{t^n}{n!}\right) e^{\mu t} = 0$$

Y ya sabemos que si $|||e^{At}||| \to 0$ la ecuación (*) es asintóticamente estable.

② Si $\mu=0$ y $m(\lambda)=\dim E_{\lambda}$ para todo $\lambda\in\sigma_0(A)$ entonces n=0 y por tanto existe $T\geq 0$ tal que

$$|||e^{At}||| = 1$$
 $\forall t \geq T$

y en consecuencia $|||e^{At}|||$ está acotada en $[0,+\infty)$, luego (*) es estable. No es asintóticamente estable ya que

$$|||e^{At}||| \rightarrow 1 \neq 0.$$

Si μ = 0 y y existe λ ∈ σ₀(A) tal que m(λ) ≠ dim E_λ, entonces n ≥ 1 y por tanto existe T ≥ 0 tal que

$$|||e^{At}||| \ge 1 + t \qquad \forall t \ge T$$

y en consecuencia $|||e^{At}||| \to +\infty$, luego (*) es inestable.

• Si $\mu > 0$ entonces

$$\lim_{t\to+\infty} \left(1+t+\cdots+\frac{t^n}{n!}\right) e^{\mu t} = +\infty$$

Esto es, $|||e^{At}||| \to +\infty$ y en consecuencia (*) es inestable.