Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет информационных технологий и программирования Кафедра компьютерных технологий

Рыбак Андрей Викторович

Представление структур данных индуктивными семействами и доказательства их свойств

Научный руководитель: ассистент кафедры ТП Я. М. Малаховски

 ${
m Caнкт-}\Pi{
m eтep}{
m бург}$ 2014

Содержание

Введен	ие
Глава 1	. Обзор предметной области
1.1	Структуры данных
	1.1.1 Функциональные структуры данных
1.2	Индуктивные семейства и зависимые типы
1.3	Agda
1.4	Выводы по главе 1
Список	литературы

Введение

Структуры данных используются в программировании повсеместно для упрощения хранения и обработки данных.

Практика показывает, что тривиальные структуры данных хорошо выражаются в форме индуктивных семейств. Мы хотим узнать насколько хорошо эта практика работает и для более сложных структур.

Чисто функциональные структуры данных.

Глава 1. Обзор предметной области

В <...> структуры данных позволяют хранить и обрабатывать множество однотипных и/или логически связанных данных в вычислительной технике. Задача (?) структур данных — облегчить написание программ для программистов и ускорить обработку данных.

1.1. Структуры данных

Структуры данных используются в программировании для абстрагирования обработки связанных и однородных данных.

Часто используемые структуры данных ... включаются в стандартные библиотеки языков программирования. Существует несколько различных Основные из них:

• foobar

1.1.1. Функциональные структуры данных

... В отличие от ...

1.2. Индуктивные семейства и зависимые типы

Индуктивные семейства — это типы данных, которые могут зависеть от типов и значений. Например, тип векторов индексированных длиной

module VecSample where

data \mathbb{N} : Set where

 ${\sf zero}: \mathbb{N}$

 $\operatorname{succ}:\mathbb{N}\to\mathbb{N}$

data $Vec A : \mathbb{N} \to Set$ where

nil: Vec A zero

$$\mathsf{cons} : \forall \ \{n\} \to A \to \mathsf{Vec} \ A \ n \to \mathsf{Vec} \ A \ (\mathsf{succ} \ n)$$

Такое определение позволяет нам описать функцию head для такого списка, которая не может бросить исключение:

$$\mathsf{head} : \forall \ \{A\} \ \{n\} \to \mathsf{Vec} \ A \ (\mathsf{succ} \ n) \to A$$

У аргумента функции head тип Vec A (succ n), то есть вектор, в котором есть хотя бы один элемент. Это позволяет произвести сопоставление с образцом только по конструктору cons:

$$\mathsf{head}\ (\mathsf{cons}\ a\ as) = a$$

Одной из областей применения индуктивных семейств являются системы интерактивного доказательства теорем.

Индуктивные семейства позволяют формализовывать математические структуры, кодируя утверждения о структурах в них самих, тем самым перенося сложность из доказательств в определения.

1.3. AGDA

Agda [1] — чистый функциональный язык программирования с зависимыми типами. В Agda есть индуктивные семейства. В Agda также есть параметризованные модули, mixfix операторы, В коде на Agda широко используются символы Unicode.

В фигурных скобках — неявные аргументы, которые

1.4. Выводы по главе 1

Рассмотрены некоторые существующие подходы к Описаны различные Кратко описана Кратко описаны особенности языка программирования Agda.

Список литературы

 $1. \quad Agda\ language.\ http://wiki.portal.chalmers.se/agda/pmwiki.php.$