Discrete Mathematics

HW [[

a | 6 means] h & Z so that Math 251, Mon 16-Nov-2020 -- Mon 16-Nov-2020 ak = 6. But then Fall 2020 a. kc = bc? albandblc then 3k, kz & 2 Monday, November 16th 2020 W ak = b and bk2 = C Wk 12, Mo So a k, k2 = c? Topic:: Modular arithmetic Read:: Rosen 4.1 WW ModularArithmetic due Tues.

 $a \mid b \rightarrow a \mid (bc)$

This chapter: investigate (number theory \ -- integers, primes, congruences, etc.

$$|3|52$$
 since $4 \in \mathbb{Z}$ and $(13)(4) = 52$

Definition 1: Let a, b be integers. We say a **divides** b, or $a \mid b$, precisely when there exists an integer c so that ac = b. When the negation of $a \mid b$ holds—that is, when no integer c exists so that ac = b—we write $a \nmid b$.

Recall that the Fundamental Theorem of Arithmetic, which we proved using strong induction, says every positive integer $a \ge 2$ is either prime or the product of primes:

$$a=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}.$$

If *a*, *b* are positive integers with prime factorizations

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$
 and $b = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$

(where, as needed, some α_j , β_j may be zero), then among all common divisors d of a and b (i.e, numbers which satisfy $(d \mid a) \land (d \mid b)$), the **greatest common divisor** is

$$\gcd(a,b) = p_1^{\min(\alpha_1,\beta_1)} p_2^{\min(\alpha_2,\beta_2)} \cdots p_k^{\min(\alpha_k,\beta_k)}.$$

Likewise, among all common multiples m of a and b (i.e., numbers which satisfy $a \mid m$ and $b \mid m$), the **least common multiple** is

$$\operatorname{lcm}(a,b) = p_1^{\max(\alpha_1,\beta_1)} p_2^{\max(\alpha_2,\beta_2)} \cdots p_k^{\max(\alpha_k,\beta_k)}.$$

Which among the following appear to be true claims? To F?

• Let $n, d \in \mathbb{Z}^+$, and $A = \{a \in \mathbb{Z}^+ : (a \le n) \land (d \mid a)\}$. Then $|A| = \lceil n/d \rceil$.

• $\forall a \in \mathbb{Z}^+$, $\forall b \in \mathbb{Z}^+$, $\forall c \in \mathbb{Z}^+$, f of $a \mid b$ is $a \mid b$.

• $(a \mid b) \land (b \mid c) \rightarrow a \mid c$.

• $(a \mid b) \land (a \mid c) \rightarrow a \mid (b + c)$.

• $(a \mid b) \land (a \mid c) \rightarrow a \mid (b + c)$.

• $(a \mid b) \land (a \mid c) \rightarrow a \mid (bc)$.

• $(a \mid b) \land (a \mid c) \rightarrow \forall m, n \in \mathbb{Z}, a \mid (mb + nc)$.

$$a|b \Rightarrow k \in \mathbb{Z}$$
 so that $ak_1 = 6$ $a(mk_1 + nk_2) = mb + nc$

Theorem 1 (Division Algorithm): Let a be an integer and d a positive integer. There exist unique integers q, r with $0 \le r < d$ such that

$$a = dq + r$$
.

Note that

-59%5 = 1 -59 = (-12)(5)+

- The remainder r is the output of the mod function:
- If, at the end of a calculation, you intend to perform the mod function, it can be inserted at various additive/multiplicative points along the way:

$$(37)(63) - 58^4 \mod 11 = (37 \mod 11)(63 \mod 11) - (58 \mod 11)^4 \mod 11$$
$$= (4)(8) \mod 11 - (3)^4 \mod 11$$
$$= 32 \mod 11 - 81 \mod 11$$
$$= 10 - 4 = 6.$$

It doesn't work reliably in exponents, however:

 $6^{17} \mod 13 = 6 \cdot (6^2 \mod 13)^8 \mod 13 = 6 \cdot 10^8 \mod 13$ $= 6 \cdot (10000 \mod 13)^2 \mod 13 = 6 \cdot 3^2 \mod 13 = 2,$

but

Modular congruence

Definition 2: Let $a, b \in \mathbb{Z}$ and $m \ge 2$ be an integer. We say that a and b are congruent **modulo** m, abbreviating this as $a \equiv b \pmod{m}$, precisely when $m \mid (a - b)$.

Theorem 2: The following are equivalent: = i.e., if any one of these is true, then all three are.

- 1. $a \equiv b \pmod{m}$
- 2. $a \mod m = b \mod m$
- 3. $\exists k \in \mathbb{Z} \text{ such that } a = b + km$

MATH 251 Notes

$$|7 = 3 \pmod{7}$$
 ? $|7+36 = 3+29 \pmod{7}$ $|7+36 = 29 \pmod{7}$

Theorem 3: If
$$a \equiv b \pmod{m}$$
 and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Note: It is this theorem which justifies the insertion of mod functions in additive/multiplicative operations above.

Example: Find $2^{8888} \mod 5$.

Note: The theorem above does *not* say that $ac \equiv bc \pmod (m)$ allows you to conclude $a \equiv b \pmod m$.

Equivalence classes modulo m; \mathbb{Z}_m

If you pick a modulus m, the Division Algorithm ensures that the range of the mod function $f: \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = n \mod m$ is $\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}$. That is, all integers a are equivalent to some element in \mathbb{Z}_m modulo m. For instance, relative to modulus m = 5 all the numbers

$$\ldots$$
, -7 , -2 , 3 , 8 , 13 , \ldots

are equivalent, belonging to the class with representative 3. There are just 5 classes when m = 5 into which all integers fall, and the five elements of $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ act as their representatives:

...,
$$-10$$
, -5 , -0 , 5 , 10 ,... represented by 0
..., -9 , -4 , 1 , 6 , 11 ,... represented by 1
..., -8 , -3 , 2 , 7 , 12 ,... represented by 2
..., -7 , -2 , 3 , 8 , 13 ,... represented by 3
..., -6 , -1 , 4 , 9 , 14 ,... represented by 4

We make \mathbb{Z}_m into something more than just a set of objects by giving it addition and multiplication as follows:

$$a \cdot_m b = ab \mod m$$
, and $a +_m b = a + b \mod m$.

Write out addition and multiplication tables for \mathbb{Z}_5 . Use it to solve the congruence equation $4x + 3 \equiv 2 \pmod{5}$.

Math 251, Mon 16-Nov-2020 -- Mon 16-Nov-2020 Discrete Mathematics Fall 2020

Monday, November 16th 2020

Wk 12, Mo

Topic:: Modular arithmetic

Read:: Rosen 4.1

HW[[WW ModularArithmetic due Tues.

This chapter: investigate number theory---integers, primes, congruences, etc.

qu (36,55) = 2°.3°.5°.11°

Commen Jenen?

= lem (15,24)

Divisors and multiples

2/12

Definition 1: Let a, b be integers. We say a **divides** b, or $a \mid b$, precisely when there exists an integer c so that ac = b. When the negation of $a \mid b$ holds—that is, when no integer c exists so that ac = b—we write $a \nmid b$. 5 / 12

Recall that the Fundamental Theorem of Arithmetic, which we proved using strong induction, says every positive integer $a \ge 2$ is either prime or the product of primes: 3 + T

$$a=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}.$$

If *a*, *b* are positive integers with prime factorizations

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$
 and $b = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$

(where, as needed, some α_j , β_j may be zero), then among all common divisors \underline{d} of \underline{a} and \underline{b} (i.e, numbers which satisfy $(d \mid a) \land (d \mid b)$, the greatest common divisor is

$$\underline{\gcd(a,b)} = p_{1}^{\min(\alpha_{1},\beta_{1})} p_{2}^{\min(\alpha_{2},\beta_{2})} \cdots p_{k}^{\min(\alpha_{k},\beta_{k})}.$$

Likewise, among all common multiples m of a and b (i.e., numbers which satisfy $a \mid m$ and $b \mid m$), the **least common multiple** is

$$\underline{\operatorname{lcm}}(a,b) = p_1^{\max(\alpha_1,\beta_1)} p_2^{\max(\alpha_2,\beta_2)} \cdots p_k^{\max(\alpha_k,\beta_k)}.$$

$$15 = 2 \cdot 3 \cdot 5 \cdot 5$$

$$24 = 2^3 \cdot 3 \cdot 5$$

Which among the following appear to be true claims?

Which among the following appear to be true claims?

• Let
$$n, d \in \mathbb{Z}^+$$
, and $A = \{a \in \mathbb{Z}^+ : (a \le n) \land (d \mid a)\}$. Then $|A| = \lceil n/d \rceil$.

• $\forall a \in \mathbb{Z}^+$, $\forall b \in \mathbb{Z}^+$, $\forall c \in \mathbb{Z}^+$, Count number of multiples

• $(a \mid b) \rightarrow a \le \sqrt{b}$.

• $(a \mid b) \land (b \mid c) \rightarrow a \mid c$.

• $(a \mid b) \land (b \mid c) \rightarrow a \mid c$.

• $(a \mid b) \land (a \mid c) \rightarrow a \mid (b + c)$.

• $(a \mid b) \land (a \mid c) \rightarrow a \mid (b + c)$.

$$\uparrow \circ (a \mid b) \rightarrow a \mid (bc).$$
 $\exists k^{e} \downarrow \text{ such that } ah = b \quad S_{o} \quad (kc)a = bc$

Theorem 1 (Division Algorithm): Let a be an integer and d a positive integer. There exist unique integers q, r with $0 \le r < d$ such that

$$a=dq+r.$$

Note that

 $\frac{3r.2}{5\sqrt{17}}$ 17 = 3.5 + 2 venedades $0 \le 2 \le 5$ venedades

- The remainder r is the output of the mod function: $r = a \mod d$.
- If, at the end of a calculation, you intend to perform the mod function, it can be inserted at various additive/multiplicative points along the way:

$$(37)(63) - 58^{4} \mod 11 = (37 \mod 11)(63 \mod 11) - (58 \mod 11)^{4} \mod 11$$

$$= (4)(8) \mod 11 - (3)^{4} \mod 11$$

$$= 32 \mod 11 - 81 \mod 11$$

$$= 10 - 4 = 6.$$

It doesn't work reliably in exponents, however:

but

Not you!

 $6^{17 \mod 13} \mod 13 = 6^4 \mod 13 = 9.$

Is $17 \equiv 3 \pmod{5}$? No, since $5 \nmid (17-3)$ $17 \equiv 3 \pmod{7}$? Yes since $7 \mid (17-3)$

Modular congruence

Definition 2: Let $a, b \in \mathbb{Z}$ and $m \ge 2$ be an integer. We say that a and b are congruent **modulo** m, abbreviating this as $a \equiv b \pmod{m}$, precisely when $m \mid (a - b)$.

Theorem 2: The following are equivalent: (If you know one is true, you know all 3 are)

- 1. $a \equiv b \pmod{m}$
- 2. $a \mod m = b \mod m$
- 3. $\exists k \in \mathbb{Z} \text{ such that } a = b + km$

Theorem 3: If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$ and $ac \equiv bd \pmod{m}$.

Note: It is this theorem which justifies the insertion of mod functions in additive/multiplicative operations above.

Example: Find $2^{8888} \mod 5$.

Note: The theorem above does *not* say that $ac \equiv bc \pmod (m)$ allows you to conclude $a \equiv b \pmod m$.

Equivalence classes modulo m; \mathbb{Z}_m

If you pick a modulus m, the Division Algorithm ensures that the range of the \mod function $f: \mathbb{Z} \to \mathbb{Z}$ given by $f(n) = n \mod m$ is $\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}$. That is, all integers a are equivalent to some element in \mathbb{Z}_m modulo m. For instance, relative to modulus m = 5 all the numbers

$$\dots, -7, -2, 3, 8, 13, \dots$$

are equivalent, belonging to the class with representative 3. There are just 5 classes when m = 5 into which all integers fall, and the five elements of $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$ act as their representatives:

...,
$$-10$$
, -5 , -0 , 5 , 10 ,... represented by 0
..., -9 , -4 , 1 , 6 , 11 ,... represented by 1
..., -8 , -3 , 2 , 7 , 12 ,... represented by 2
..., -7 , -2 , 3 , 8 , 13 ,... represented by 3
..., -6 , -1 , 4 , 9 , 14 ,... represented by 4

We make \mathbb{Z}_m into something more than just a set of objects by giving it addition and multiplication as follows:

$$a \cdot_m b = ab \mod m$$
, and $a +_m b = a + b \mod m$.

Write out addition and multiplication tables for \mathbb{Z}_5 . Use it to solve the congruence equation $4x + 3 \equiv 2 \pmod{5}$.

$$(37)(63) - 58^{4} \quad \text{mod 11} = (37)(63) \quad \text{mod 11} - 58^{4} \quad \text{mod 11}$$

$$= (37)(63) \quad \text{mod 11} - (58 \quad \text{mod 11}) \quad \text{mod 11}$$

$$= (37 \quad \text{mod 11}) \quad \text{mod 11} - (58 \quad \text{mod 11}) \quad \text{mod 11}$$