Universidade do Minho

18 de janeiro de 2018

Exame de recurso de

Computabilidade e Complexidade

Lic. Ciências da Computação

Duração: 2h30min

Este teste é constituído por 5 questões. Todas as respostas devem ser devidamente justificadas.

1. Seja $A = \{a, b\}$. Considere a máquina de Turing

$$\mathcal{T} = (\{0, 1, 2, 3, 4\}, A, A \cup \{\Delta\}, \delta, 0, 4, \Delta)$$

onde a função transição δ é definida pela tabela seguinte:

δ	a	b	Δ
0			$(1, \Delta, D)$
1	(1, a, D)	(1,b,D)	$(2, \Delta, E)$
2	(2,b,E)	(3,b,E)	
3	(3, a, E)	(3,b,E)	$(4, \Delta, C)$

A máquina \mathcal{T} calcula uma função parcial $g: A^* \to A^*$.

- a) Represente \mathcal{T} graficamente.
- **b)** Indique a sequência de configurações que podem ser computadas a partir da configuração $(0, \underline{\Delta}ab^2aba^2)$.
- c) Identifique o domínio Dom(g) da função g. Para cada elemento $u \in Dom(g)$, determine a palavra g(u).
- **2**. Considere o alfabeto $A = \{a, b, c\}$ e a linguagem $L = \{vcv : v \in \{a, b\}^*\}$.
 - a) Construa uma máquina de Turing com duas fitas que reconheça L e descreva informalmente a estratégia dessa máquina.
 - b) Diga, justificando, se o problema de decisão P(w): " $w \in L$?" é ou não decidível.
- **3**. Seja h a função obtida por recursão primitiva das funções $f: \mathbb{N}_0 \to \mathbb{N}_0, \ x \mapsto x^2 + 1$ e $g: \mathbb{N}_0^3 \to \mathbb{N}_0, \ (x,y,z) \mapsto x + y + z.$
 - a) Identifique a função h.
 - **b)** Mostre que h é uma função recursiva primitiva.
 - c) Determine a função M_g de minimização de g.

4. Seja $A = \{a, b\}$ e seja \mathcal{T} a seguinte máquina de Turing sobre A,

- a) Identifique a linguagem L reconhecida por \mathcal{T} .
- b) Determine a função de complexidade temporal da máquina \mathcal{T} .
- c) Mostre que $L \in DTIME(n)$.
- d) Sendo K a linguagem $K = (11)^*$ sobre o alfabeto $\{1\}$, mostre que $L \leq_p K$.
- 5. Diga, justificando, quais das afirmações seguintes são verdadeiras e quais são falsas.
 - a) Se L é uma linguagem recursivamente enumerável e K é uma linguagem recursiva, então $L\cap K$ é uma linguagem recursiva.
 - b) O problema "Dada uma máquina de Turing \mathcal{T} , será que \mathcal{T} aceita no máximo 10 palavras?" é decidível.
 - c) A função $f(n) = \frac{1}{3^n} + n^2$ é de ordem $\mathcal{O}(n^2)$.

(FIM)

$$\text{Cotação:} \begin{cases} \textbf{1.} & 3,25 \text{ valores } (1+1+1,25) \\ \textbf{2.} & 4 \text{ valores } (2,5+1,5) \\ \textbf{3.} & 3,5 \text{ valores } (1,5+1+1) \\ \textbf{4.} & 5,5 \text{ valores } (1,5+1,5+1+1,5) \\ \textbf{5.} & 3,75 \text{ valores } (1,25+1,25+1,25) \end{cases}$$