

Recent Advances in 3D Computer Vision SDF-Tracking

Leonardo Lerchenfeld

Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions

Erik Bylow, Jürgen Sturm, Christian Kerl, Fredrik Kahl and Daniel Cremers

https://www.youtube.com/watch?v=MzLdRFSrtul

SDF-Tracking

- 1. Introduction and Problem Motivation
- 2. Notation and Coordinate Systems
- 3. Approach
- 4. Experimental Results
- 5. Summary
- 6. Discussion
- 7. References

Signed Distance Function (SDF)

Introduction and Problem Motivation

- **3D SLAM** is useful for
 - Robotics
 - Computer Vision
 - > Architecture
- **RGB-D sensors** output depth images
- RGB-D SLAM is accurate but no real-time
- Kinect Fusion in real-time but not as accurate
- **→**SDF-Tracking

Notation

RGB-D Sensor				
Function for color images	$I_{RGB}: \mathbb{R}^2 \to \mathbb{R}^3$			
Function for depth images	$I_d \colon \mathbb{R}^2 \to \mathbb{R}$			
Camera and Global Coordinates				
3D point	$x \in \mathbb{R}^3$			
Rotation of the camera	$R \in SO(3)$			
And the translation	$\mathbf{t} \in \mathbb{R}^3$			
from Camera to Global coordinates	$x_{ij}^G = Rx_{ij} + \mathbf{t}$			
Camera Coordinates and the image plane coordinates				
focal length and the optical center	f_x , f_y , c_x , c_y			

Coordinate Systems

→ Pixel coordinates	$\pi(x, y, z) = \left(\frac{f_x x}{z} + c_x, \frac{f_y y}{z} + c_y\right)^T$
→ Camera coordinates	$\rho(i,j,z) = \left(\frac{(i-c_x)z}{f_x}, \frac{(j-c_y)z}{f_y}, z\right)^T$
→ Global coordinates	$x_{ij}^G = Rx_{ij} + \mathbf{t}$

Approach

Representation	Distance and	Data Fusion	Color	Camera Tracking
of the SDF	Weighting	and 3D	and	
	Functions	Reconstruction	Mesh	
Voxel grids	Projective distance	Optimal SDF ψ	Surface	Rotation R
	Weighting functions		Color	Translation t

Representation of the SDF

- Voxel grid of resolution m
- 6 channels
 - D: averaged distance
 - W: sum of all weights
 - R: red
 - G: green
 - B: **b**lue
 - Wc: color weights
- $[0, ..., m-1]^3 \rightarrow \mathbb{R}$

Representation	Distance and	Data Fusion	Color	Camera Tracking
of the SDF	Weighting	and 3D	and	
	Functions	Reconstruction	Mesh	
Voxel grids	Projective distance	Optimal SDF ψ	Surface	Rotation R
	Weighting functions		Color	Translation t
The state of the s	x • • • •			

Projective Distances

Point-To-Point

Point-To-Plane

$$d_{point-to-point}(\boldsymbol{x}) = z - I_d(i,j)$$

$$d_{point-to-plane}(\mathbf{x}) = (\mathbf{y} - \mathbf{x})^T \mathbf{n}(i,j)$$

Weighting Functions

Representation of the SDF	Distance and Weighting	Data Fusion and 3D	Color and	Camera Tracking
	Functions	Reconstruction	Mesh	
Voxel grids	Projective distance	Optimal SDF ψ	Surface	Rotation R
	Weighting functions		Color	Translation t

Data Fusion and 3D Reconstruction

SDF

$$\psi: \mathbb{R}^3 \to \mathbb{R}$$

Error Function

$$L(\psi) = \sum_{i=1}^{n} \frac{1}{2} w_i (\psi - d_i)^2$$

Optimal SDF

$$\psi = \frac{\sum_{i=1}^{n} w_i d_i}{\sum_{i=1}^{n} w_i}$$

Running Average

$$D \leftarrow \frac{WD + w_{n+1}d_{n+1}}{W + w_{n+1}}$$

$$W \leftarrow W + w_{n+1}$$

Representation	Distance and	Data Fusion	Color	Camera Tracking
of the SDF	Weighting	and 3D	and	
	Functions	Reconstruction	Mesh	
Voxel grids	Projective distance	Optimal SDF ψ	Surface	Rotation R
	Weighting functions		Color	Translation t
	x • • • •			

Color and Mesh

$$(r,g,b)^{T} = I_{RGB}(i,j)$$

$$G \leftarrow \frac{W_{c}G + w_{c}^{n+1}g}{W_{c} + w_{c}^{n-1}}$$

$$w_{c}^{n+1} = w_{n+1}cos\theta$$

Marching cubes algorithm

Representation of the SDF	Distance and Weighting	Data Fusion and 3D	Color and	Camera Tracking
Voxel grids	Functions Projective distance	Reconstruction Optimal SDF ψ	Surface	Rotation R
S. C. S.	Weighting functions	φ	Color	Translation t

Camera Tracking

$$(x, y, z)^T = \rho(i, j, I_d(i, j))$$

Camera coordinates

$$x_{ij}^G = Rx_{ij} + t$$

$$\psi \colon \mathbb{R}^3 \to \mathbb{R}$$

$$\psi_{ij}(\boldsymbol{\xi}) = \psi \big(\mathbf{R} \mathbf{x}_{ij} + \mathbf{t} \big)$$

Global coordinates

Twist Coordinates:

$$\boldsymbol{\xi} = (\omega_1, \omega_2, \omega_3, v_1, v_2, v_3)$$

Gauss-Newton Method

$$E(\boldsymbol{\xi}) = E(\boldsymbol{R}, \boldsymbol{t}) = \sum_{i,j} \psi_{ij}(\boldsymbol{\xi})^2$$

$$\psi(\xi) \approx \psi(\xi^{k}) + \nabla \psi(\xi^{k})^{T} (\xi - \xi^{k})$$

$$1 \times 1 \qquad 1 \times 6 \qquad 6 \times 1$$

$$\sum_{i,j} \psi_{ij}(\xi)^{2} \approx \sum_{i,j} \psi_{ij} (\xi^{k})^{2} + 2\psi_{ij} (\xi^{k}) \nabla \psi_{ij} (\xi^{k})^{T} (\xi - \xi^{k}) + (\nabla \psi_{ij} (\xi^{k})^{T} (\xi - \xi^{k}))^{2}$$

$$\frac{d}{d\boldsymbol{\xi}}E_{approx}(\boldsymbol{\xi}) = \sum_{i,j} 2\psi_{ij}(\boldsymbol{\xi^k}) \nabla \psi_{ij}(\boldsymbol{\xi^k}) + 2\left(\nabla \psi_{ij}(\boldsymbol{\xi^k}) \nabla \psi_{ij}(\boldsymbol{\xi^k})^T (\boldsymbol{\xi} - \boldsymbol{\xi^k})\right) = 0$$

$$b + A(\xi - \xi^k) = 0$$

$$\xi^{k+1} = \xi^k - A^{-1}b$$

Experimental Results

Experimental Results

- Almost drift-free for small scenes
- Architects can use it for planning
- Navigation of robots

Parameter Study

- Truncation $\delta = 0.3$ m
- Weighting function
- Absolute trajectory error in m

Dataset	F1 T	eddy	F1 Desk	
	RMSE	Max	RMSE	Max
Exp. Weight Linear Weight Constant Weight	0.088 m 0.083 m 0.093 m	0.213 m 0.285 m 0.242 m	0.038 m 0.038 m 0.040 m	0.088 m 0.089 m 0.089 m
Narrow Exp. Narrow Linear Narrow Constant	0.170 m 0.382 m 0.379 m	0.414 m 0.688 m 0.694 m	0.038 m 0.044 m 0.044 m	0.083 m 0.085 m 0.209 m

Method	Res.	Teddy	Desk	Desk2	Household	Floor	360	Room	Plant
KinFu	256	0.156	0.057	0.42	0.064	Failed	0.913	Failed	0.598
*Plane	256	0.072	0.087	0.078	0.053	0.811	0.533	0.163	0.047
*Point	256	0.086	0.038	<u>0.061</u>	<mark>0.039</mark>	0.641	0.420	0.121	0.047
KinFu	512	0.337	0.068	0.635	0.061	Failed	0.591	0.304	0.281
*Plane	512	0.101	0.059	0.623	0.053	0.640	0.206	0.105	0.041
*Point	512	0.08	0.035	0.062	0.04	0.567	0.119	<u>0.078</u>	0.043
RGB-D S	LAM	0.111	0.026	0.043	0.059	0.035	0.071	0.101	0.061

- Point-To-Point metric better
- Similar performance compared to RGB-D SLAM
- Clearly outperforms KinectFusion

Runtime and Memory Consumption

Res.	RAM on the GPU		
	SDF	Color grid	
512	1 GB	2 GB	
256	128 MB	256 MB	
	Runtime	Comparison	
	Pose optimization O(i*j)	Data fusion O(m³)	
512	31.1 ms	21.6 ms	
256	19.4 ms	3.7 ms	= 23 ms
KinFu (256)			20 ms
RGB-D SLAM			100 – 250 ms

- For m=256, in real-time on 30 fps
- Speed as KinFu
- Faster than RGB-D SLAM

Summary

Representation	Distance and	Data Fusion	Color	Camera Tracking
of the SDF	Weighting	and 3D	and	
	Functions	Reconstruction	Mesh	
Voxel grids	Projective distance	Optimal SDF ψ	Surface	Rotation R
	Weighting functions		Color	Translation t
	x • • • •			

Discussion

Advantages +	Drawbacks -	
RGB-D SLAM: feature extra	ction & bundle adjustment	
Very accurate	No real-time	
Kinect Fusion: vir	tual camera & ICP	
Real time	Not as accurate	
	Memory consumption	
SDF-Tracking: direc	t estimation on SDF	
Real-time	Memory consumption	
Very accurate	RGB values are not used for tracking	

Questions?

Representation	Distance and	Data Fusion	Color	Camera Tracking
of the SDF	Weighting	and 3D	and	
	Functions	Reconstruction	Mesh	
Voxel grids	Projective distance	Optimal SDF ψ	Surface	Rotation R
	Weighting functions		Color	Translation t
	x • • • •			

References

- E. Bylow, J. Sturm, C. Kerl, F. Kahl, D. Cremers. **Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Function**. In Robotics: Science and Systems, 2013
- E. Bylow, C. Olsson, F. Kahl (2014). **Robust camera tracking by combining color and depth measurements**. In 2014 22nd international conference on pattern recognition (ICPR).
- B. Curless and M. Levoy. **A volumetric method for building complex models from range images**. In SIGGRAPH, 1996.
- C. Steger, M. Ulrich, C. Wiedemann. **Machine Vision Algorithms and Applications**. WILEY-VCH Verlag, 2008. Pages 182-183
- S. Osher and R. Fedkiw. **Level Set Methods and Dynamic Implicit Surfaces**. Springer, 2003. Page 20