Companison of number of consputation for divert computation of DFT" Vs * FFT Algorithm" 1) Number of computation for direct computation of N-point DET Wehave the equation for the N-point DFT

(direct computation)

N-1 2R1 XCK) = 5 xcn e - 1 21 kn N=0 ; k=0,1...N-1 By expanding the equation for $\chi(0) = \chi(0) = \int_{n=0}^{\infty} \chi(n) = \int_{n=0}^{\infty} \frac{\partial R}{\partial x} \cdot 0 \cdot n$ 0.CN-1) X(N-1) WN expanding. $\chi(0) = \chi(0).N_N + \chi(1) N_N +$ complen x' complen x'h compten N-1 compler Addition. computation of N-point DFT, only a single value 1=0. In direct considering we have N _ 5 no, of complex multiplication N-1 - s no of complex Addition.

Considering all the N values of k. N. N=N² suo of complen x h and. N.(N-1) —> no. of consplen t^{th} . 2 No. of computation in Radix-2 III In the case of vadix-2 FFT $N=2^{m}$ \longrightarrow M= $\log_2 N$ - and there will be m-stages of conjutation. _ and each stage have N butterfly. Consider a réngle bretterfly. a b - Wi Noof calculation in one butter fly. no of complex $t^n \rightarrow 2$. wo of complex $x^h \longrightarrow 1$.. Potal word complex +" = m x N x 2. = [leg2N] × N ×2 = N 20g 2 N

Potal wo of complex $X^h = m \times \frac{N}{2} \times 1$ $= \left[\log_2 N\right] \times \frac{N}{2} = \frac{N}{2} \log_2 N$ - A comparison of the wo of complex addition.

	-					1
N	m		computation	Radix-2 FFT		Speed
	N.	no of courten	ho of complex x^h . N^2 .	complen to	no of complex xh.	Improorend factor
	(Negal)	= N(N-1)	N ² .	N logan	N Org N	= N logaN
4	2	12	16	8	4	16 = 4
8	3	56	64	24	12	64 =5.33
16	4	. 44 1 1 1 1				d.
32	5			2.	9	
64	6		-	- 3		
128	7				.0	
રડિ	હ			8 3	***	
512	9	- Wester			hin -	

Deind the number of complex multiplications and additions sinvolved in the calculation of 1024 DET using Odivect computation and Dradix-2 FET algorithm.

(KTU Dec 2018)