Differential Essential Dimension

Colloquium, Florida State University
August 26, 2022
Man Cheung Tsui (2nd Year Postdoc)

In this talk

Fix a field *F* of characteristic zero, e.g., $F = \mathbb{C}$.

All fields appearing here contain *F*.

How much can we simplify ...

Quadratic:

$$x^2 + ax + b$$
 $\xrightarrow{x=y-a/2}$ $y^2 + c$ $(c = b - a^2/4)$

Cubic

$$x^{3} + ax^{2} + bx + c \xrightarrow{x=y-a/3} y^{3} + dy + \epsilon$$

$$y=(e/d)z \longrightarrow z^{3} + fz + f$$

Quintic:

$$x^5 + ax^4 + bx^3 + cx^2 + dx + e$$
 Hermite (1861) $y^5 + fy^3 + gy + g$

How much can we simplify ...

Quadratic:

$$x^2 + ax + b$$
 $\xrightarrow{x=y-a/2}$ $y^2 + c$ $(c = b - a^2/4)$

Cubic:

$$x^3 + ax^2 + bx + c$$
 $\xrightarrow{x=y-a/3}$ $y^3 + dy + e$ $\xrightarrow{y=(e/d)z}$ $z^3 + fz + f$

Quintic

$$x^5 + ax^4 + bx^3 + cx^2 + dx + e$$
 Hermite (1861) $y^5 + fy^3 + gy + g$

How much can we simplify ...

Quadratic:

$$x^2 + ax + b$$
 $\xrightarrow{x=y-a/2}$ $y^2 + c$ $(c = b - a^2/4)$

Cubic:

$$x^3 + ax^2 + bx + c$$
 $\xrightarrow{x=y-a/3}$ $y^3 + dy + e$ $\xrightarrow{y=(e/d)z}$ $z^3 + fz + f$

Quintic:

$$x^5 + ax^4 + bx^3 + cx^2 + dx + e$$
 Hermite (1861) $y^5 + fy^3 + gy + g$

q(y) is a Tschirnhaus transformation of p(x) over a field K and write $q(y) \sim p(x)$ if

{zeros of
$$p(x)$$
} $\xrightarrow{\exists \text{ polynomial transformation}}$ {zeros of $q(y)$ }.

Equivalently:

$$K[x]/(p(x)) \cong K[y]/(q(y)).$$

Translation:
$$p(x-a) \sim p(x)$$
 $(a \in K)$
Scaling: $p(bx) \sim p(x)$ $(b \in K^{\times})$

q(y) is a Tschirnhaus transformation of p(x) over a field K and write $q(y) \sim p(x)$ if

{zeros of
$$p(x)$$
} $\xrightarrow{\exists \text{ polynomial transformation}}$ {zeros of $q(y)$ }.

Equivalently:

$$K[x]/(p(x)) \cong K[y]/(q(y)).$$

Translation:
$$p(x-a) \sim p(x)$$
 $(a \in K)$
Scaling: $p(bx) \sim p(x)$ $(b \in K^{\times})$

q(y) is a Tschirnhaus transformation of p(x) over a field K and write $q(y) \sim p(x)$ if

{zeros of
$$p(x)$$
} $\xrightarrow{\exists \text{ polynomial transformation}}$ {zeros of $q(y)$ }.

Equivalently:

$$K[x]/(p(x)) \cong K[y]/(q(y)).$$

Translation:
$$p(x-a) \sim p(x)$$
 $(a \in K)$.
Scaling: $p(bx) \sim p(x)$ $(b \in K^{\times})$

Consider the general polynomial over F:

$$p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$$
 (a_i's algebraically independent over F).

$$\tau(n)$$
 := minimum number of algebraically independent coefficients of $q(y)$, for all $q(y) \sim p(x)$ over $F(a_0, ..., a_{n-1})$

Consider the general polynomial over F:

$$p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$$
 (a_i's algebraically independent over F).

$$\tau(n)$$
 := minimum number of algebraically independent coefficients of $q(y)$, for all $q(y) \sim p(x)$ over $F(a_0, ..., a_{n-1})$.

n	2	3	4	5	6	7
τ(n)	1	1		2	3	4
			(BR)	(Hermite and Klein)	(BR)	(A. Duncan, 2010)

$$\tau(4) = 2$$
, $\lfloor n/2 \rfloor \le \tau(n) \le n-3$ $(n \ge 5)$.

n	2	3	4	5	6	7
τ(n)	1	1	≤ 2	2	3	4
			(BR)	(Hermite and Klein)	(BR)	(A. Duncan, 2010)

$$\tau(4) = 2$$
, $\lfloor n/2 \rfloor \le \tau(n) \le n-3$ $(n \ge 5)$.

n	2	3	4	5	6	7
τ(n)	1	1	≤ 2	2	3	4
			(BR)	(Hermite and Klein)	(BR)	(A. Duncan, 2010)

$$\tau(4) = 2$$
, $\lfloor n/2 \rfloor \le \tau(n) \le n-3$ $(n \ge 5)$.

n	2	3	4	5	6	7
τ(n)	1	1	2	2	3	4
			(BR)	(Hermite and Klein)	(BR)	(A. Duncan, 2010)

$$\tau(4) = 2$$
, $\lfloor n/2 \rfloor \le \tau(n) \le n-3$ $(n \ge 5)$.

n	2	3	4	5	6	7
τ(n)	1	1	2	2	3	4
			(BR)	(Hermite and Klein)	(BR)	(A. Duncan, 2010)

$$\tau(4) = 2$$
, $\lfloor n/2 \rfloor \le \tau(n) \le n-3$ $(n \ge 5)$.

Polynomial:
$$p(x) = x^2 + ax + b$$
 $\xrightarrow{\text{Tschirnhaus}}$ $q(y) = y^2 + c$
Over: $K = F(a, b)$ \supset $K_0 = F(c)$

For a polynomial p(x) (up to Tschirnhaus transformation):

$$ed(p(x)) = \min_{K_0} trdeg(K_0/F)$$

over all fields $K_0 \supset F$ such that some $q(y) \sim p(x)$ has coefficients in K_0 .

 $\Rightarrow \tau(n) = ed(the general degree n polynomial)$

Polynomial:
$$p(x) = x^2 + ax + b$$
 $\xrightarrow{\text{Tschirnhaus}}$ $q(y) = y^2 + c$
Over: $K = F(a, b)$ \supset $K_0 = F(c)$

For a polynomial p(x) (up to Tschirnhaus transformation):

$$ed(p(x)) = \min_{K_0} trdeg(K_0/F)$$

over all fields $K_0 \supset F$ such that some $q(y) \sim p(x)$ has coefficients in K_0 .

 $\Rightarrow \tau(n) = ed(the general degree n polynomial).$

Polynomial:
$$p(x) = x^2 + ax + b$$
 $\xrightarrow{\text{Tschirnhaus}}$ $q(y) = y^2 + c$
Over: $K = F(a, b)$ \supset $K_0 = F(c)$

For a polynomial p(x) (up to Tschirnhaus transformation):

$$ed(p(x)) = \min_{K_0} trdeg(K_0/F)$$

over all fields $K_0 \supset F$ such that some $q(y) \sim p(x)$ has coefficients in K_0 .

$$\Rightarrow \tau(n) = \text{ed}(\text{the general degree } n \text{ polynomial}).$$

For an "algebraic object" X over a field K up to some relation ∼:

$$ed(X) = \min_{K_0} trdeg(K_0/F)$$

over all fields $K_0 \supset F$ such that some $Y \sim X$ has coefficients in K_0 .

Example. For non-degenerate quadratic forms of degree *n* up to linear change of variables,

$$q = \sum_{1 \le i \le j \le n} a_{ij} x_i x_j \xrightarrow{\text{diagonalize}} \sum_{i=1}^n b_i y^2$$

so $ed(q) \leq n$

For an "algebraic object" X over a field K up to some relation ∼:

$$ed(X) = \min_{K_0} trdeg(K_0/F)$$

over all fields $K_0 \supset F$ such that some $Y \sim X$ has coefficients in K_0 .

Example. For non-degenerate quadratic forms of degree n up to linear change of variables,

$$q = \sum_{1 \le i \le j \le n} a_{ij} x_i x_j \xrightarrow{\text{diagonalize}} \sum_{i=1}^n b_i y^2$$

so $ed(q) \leq n$.

Know:
$$S_n \supset \langle (12), (34), ... \rangle \cong (\mathbb{Z}/2\mathbb{Z})^{\lfloor n/2 \rfloor}$$

$$\Rightarrow \qquad \tau(n) = \operatorname{ed}(p(x)) = \operatorname{ed}(L/K)$$

$$\geq \operatorname{ed}(\operatorname{the}(\mathbb{Z}/2\mathbb{Z})^{\lfloor n/2 \rfloor} - \operatorname{subextension})$$

$$= \lfloor n/2 \rfloor.$$

Know: general polynomial p(x) (x) (x

Know:
$$S_n \supset \langle (12), (34), ... \rangle \cong (\mathbb{Z}/2\mathbb{Z})^{\lfloor n/2 \rfloor}$$
.

$$\Rightarrow \qquad \tau(n) = \operatorname{ed}(p(x)) = \operatorname{ed}(L/K)$$

$$\geq \operatorname{ed}(\operatorname{the}(\mathbb{Z}/2\mathbb{Z})^{\lfloor n/2 \rfloor} - \operatorname{subextension})$$

$$= \lfloor n/2 \rfloor.$$

Know: general polynomial p(x) \longrightarrow K $\downarrow S_n$ $\downarrow S_$

Know:
$$S_n \supset \langle (12), (34), ... \rangle \cong (\mathbb{Z}/2\mathbb{Z})^{\lfloor n/2 \rfloor}$$
.

$$\Rightarrow \tau(n) = \operatorname{ed}(p(x)) = \operatorname{ed}(L/K)$$

$$\geq \operatorname{ed}(\operatorname{the}(\mathbb{Z}/2\mathbb{Z})^{\lfloor n/2 \rfloor} - \operatorname{subextension})$$

$$= \lfloor n/2 \rfloor.$$

Know: general polynomial p(x) $\sim \sim \sim \sim K$ $\downarrow S_0$ $\downarrow S_0$

Know:
$$S_n \supset \langle (12), (34), ... \rangle \cong (\mathbb{Z}/2\mathbb{Z})^{\lfloor n/2 \rfloor}$$
.

$$\Rightarrow \qquad \tau(n) = \operatorname{ed}(p(x)) = \operatorname{ed}(L/K)$$

$$\geq \operatorname{ed}(\operatorname{the}(\mathbb{Z}/2\mathbb{Z})^{\lfloor n/2 \rfloor} - \operatorname{subextension})$$

$$= \lfloor n/2 \rfloor.$$

Differential equations

Differential fields

A differential field is a field F with a derivation $\partial : F \rightarrow F$.

Like
$$(F, \partial) = \left(\mathbb{C}(x), \frac{d}{dx}\right)$$
.

Z' = BZ is a gauge transformation of Y' = AY over F and write

$$Z' = BZ \sim Y' = AY$$

if Z = PY for some $P \in GL_n(F)$.

Consider the general matrix DE

$$Y' = AY$$

with the matrix entries A_{ij} and their higher derivatives algebraically independent over F.

 $\gamma(n) := \text{how few parameters } Y' = AY \text{ simplifies to using } \sim$

Z' = BZ is a gauge transformation of Y' = AY over F and write

$$Z' = BZ \sim Y' = AY$$

if Z = PY for some $P \in GL_n(F)$.

Consider the general matrix DE

$$Y' = AY$$

with the matrix entries A_{ij} and their higher derivatives algebraically independent over F.

 $\gamma(n) := \text{how few parameters } Y' = \text{AY simplifies to using } \sim 1$

Z' = BZ is a gauge transformation of Y' = AY over F and write

$$Z' = BZ \sim Y' = AY$$

if Z = PY for some $P \in GL_n(F)$.

Consider the general matrix DE

$$Y' = AY$$

with the matrix entries A_{ij} and their higher derivatives algebraically independent over F.

 $\gamma(n) := \text{how few parameters } Y' = AY \text{ simplifies to using } \sim$.

$$Y' = AY \sim$$

$$Z' = BZ, \quad B = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -b_0 & -b_1 & -b_2 & \cdots & -b_{n-1} \end{pmatrix}.$$

So $\gamma(n) \leq n$.

Theorem (T.)

$$\gamma(n) = n$$

Where does this Z' = BZ come from?

$$Z' = BZ \longleftrightarrow z^{(n)} + b_{n-1}z^{(n-1)} + \cdots + b_0z = 0.$$

Meaning of $\gamma(n) = n$:

"Homogeneous linear DE's are the most compact way to write DE's if you know nothing about the coefficients of your DE."

$$Y' = Y$$
 has solution $y = e^x$ in $\mathbb{C}((x))$.

$$K = \mathbb{C}(x, e^{x})$$

$$\mid \mathbb{G}_{m}$$

$$F = \mathbb{C}(x)$$

{Differential automorphism of
$$K/F$$
} = $\{e^x \mapsto C \cdot e^x, C \in \mathbb{C}^x\}$
 $\cong \mathbb{C}^x = \mathbb{G}_m(\mathbb{C}).$

$$Y' = Y$$
 has solution $y = e^x$ in $\mathbb{C}((x))$.

$$K = \mathbb{C}(x, e^{x})$$

$$\mid \mathbb{G}_{m}$$

$$F = \mathbb{C}(x)$$

{ Differential automorphism of
$$K/F$$
} = $\{e^x \mapsto C \cdot e^x, C \in \mathbb{C}^x \}$
 $\cong \mathbb{C}^x = \mathbb{G}_m(\mathbb{C}).$

$$Y' = Y$$
 has solution $y = e^x$ in $\mathbb{C}((x))$.

$$K = \mathbb{C}(x, e^{x})$$

$$\mid \mathbb{G}_{m}$$

$$F = \mathbb{C}(x)$$

{Differential automorphism of
$$K/F$$
} = { $e^x \mapsto C \cdot e^x$, $C \in \mathbb{C}^x$ } $\cong \mathbb{C}^x = \mathbb{G}_m(\mathbb{C})$.

$$Y' = Y$$
 has solution $y = e^x$ in $\mathbb{C}((x))$.

$$K = \mathbb{C}(x, e^{x})$$

$$\mid \mathbb{G}_{m}$$

$$F = \mathbb{C}(x)$$

{Differential automorphism of
$$K/F$$
} = { $e^x \mapsto C \cdot e^x$, $C \in \mathbb{C}^x$ }
 $\cong \mathbb{C}^x = \mathbb{G}_m(\mathbb{C})$.

$$Y' = Y$$
 has solution $y = e^x$ in $\mathbb{C}((x))$.

$$K = \mathbb{C}(x, e^{x})$$

$$\mid \mathbb{G}_{m}$$

$$F = \mathbb{C}(x)$$

{Differential automorphism of K/F} = {
$$e^x \mapsto C \cdot e^x$$
, $C \in \mathbb{C}^x$ }
 $\cong \mathbb{C}^x = \mathbb{G}_m(\mathbb{C}).$

	Polynomial of degree n	Linear or matrix DE, order n
Zero set	Finite set	C-Vector space
		Picard-Vessiot extension
	$\leq S_n$	$\leq GL_{n}(\mathbb{C})$

	Polynomial of degree n	Linear or matrix DE, order <i>n</i>
Zero set	Finite set	C-Vector space
	Galois extension	Picard-Vessiot extension
	$\leq S_n$	$\leq GL_n(\mathbb{C})$

	Polynomial of degree n	Linear or matrix DE, order n
Zero set	Finite set	C-Vector space
Extension L/K	Galois extension	Picard-Vessiot extension
	$\leq S_n$	$\leq GL_n(\mathbb{C})$

	Polynomial of degree n	Linear or matrix DE, order <i>n</i>
Zero set	Finite set	C-Vector space
Extension L/K	Galois extension	Picard-Vessiot extension
Galois group	$\leq S_n$	$\leq \mathrm{GL}_n(\mathbb{C})$

	Polynomial of degree n	Linear or matrix DE, order n
Zero set	Finite set	C-Vector space
Extension L/K	Galois extension	Picard-Vessiot extension
Galois group	$\leq S_n$	$\leq \operatorname{GL}_n(\mathbb{C})$
		(Linear algebraic group)

	Polynomial of degree n	Linear or matrix DE, order <i>n</i>
Zero set	Finite set	C-Vector space
Extension L/K	Galois extension	Picard-Vessiot extension
Galois group	$\leq S_n$	$\leq \mathrm{GL}_{n}(\mathbb{C})$
		(Linear algebraic group)

Know: general DE Y' = AY \longrightarrow K L_0 \exists ? $|GL_n(\mathbb{C})|$

$$\Rightarrow n \ge \gamma(n) = \operatorname{ed}^{\partial}(Y' = AY) = \operatorname{ed}^{\partial}(L/K)$$

$$\ge \operatorname{ed}^{\partial}(\operatorname{the} \mathbb{G}_{m}^{n}\operatorname{-subextension})$$

$$= n.$$

Know: general DE Y' = AY

$$\begin{array}{c|c}
L \\
GL_n(\mathbb{C}) \\
K & L_0 \\
\exists ? GL_n(\mathbb{C})
\end{array}$$

$$\Rightarrow n \ge \gamma(n) = \operatorname{ed}^{\partial}(Y' = AY) = \operatorname{ed}^{\partial}(L/K)$$

$$\ge \operatorname{ed}^{\partial}(\operatorname{the} \mathbb{G}_{m}^{n}\operatorname{-subextension})$$

$$= n.$$

Know: general DE Y' = AY

$$\begin{array}{c|c}
L \\
GL_n(\mathbb{C}) \\
K \\
\exists ? | GL_n(\mathbb{C})
\end{array}$$

$$\Rightarrow n \ge \gamma(n) = \operatorname{ed}^{\partial}(Y' = AY) = \operatorname{ed}^{\partial}(L/K)$$

$$\ge \operatorname{ed}^{\partial}(\operatorname{the} \mathbb{G}_{m}^{n}\operatorname{-subextension})$$

$$= n$$

Know: general DE Y' = AY \longrightarrow

$$\begin{array}{c|c}
L \\
GL_n(\mathbb{C}) \\
K \\
\exists ? | GL_n(\mathbb{C})
\end{array}$$

$$\Rightarrow n \ge \gamma(n) = \operatorname{ed}^{\partial}(Y' = AY) = \operatorname{ed}^{\partial}(L/K)$$

$$\ge \operatorname{ed}^{\partial}(\operatorname{the} \mathbb{G}_{m}^{n}\operatorname{-subextension})$$

$$= n.$$

$$p(y) = y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \dots + a_0y$$

$$y = e^{-\frac{1}{n} \int a_{n-1}z} \qquad q(z) = z^{(n)} + 0 \cdot z^{(n-1)} + b_{n-2}z^{(n-2)} + \dots + b_0z$$

Analogue of allowing $\sqrt[n]{\bullet}$.

$$p(y) = y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \dots + a_0y$$

$$\xrightarrow{y=e^{-\frac{1}{n}\int a_{n-1}z}} q(z) = z^{(n)} + 0 \cdot z^{(n-1)} + b_{n-2}z^{(n-2)} + \dots + b_0z$$

Analogue of allowing $\sqrt[n]{\bullet}$.

$$p(y) = y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \dots + a_0y$$

$$\xrightarrow{y=e^{-\frac{1}{n}\int a_{n-1}z}} q(z) = z^{(n)} + 0 \cdot z^{(n-1)} + b_{n-2}z^{(n-2)} + \dots + b_0z$$

Analogue of allowing $\sqrt[n]{\bullet}$.

$$p(y) = y^{(n)} + a_{n-1}y^{(n-1)} + a_{n-2}y^{(n-2)} + \dots + a_0y$$

$$y = e^{-\frac{1}{n} \int a_{n-1}z} \qquad q(z) = z^{(n)} + 0 \cdot z^{(n-1)} + b_{n-2}z^{(n-2)} + \dots + b_0z$$

Analogue of allowing $\sqrt[n]{\bullet}$.

Thanks! Questions?