IMBALANCED DATA E APLICAÇÕES

Quando os dados são extremamente desbalanceados, classificadores "normais" não funcionam!

Dados Desbalanceados: algumas áreas onde encontramos problemas reais.

- Predição de Acidentes automotivos (tráfego);
- Classificação de Dados Biomédicos;
- Detecção de Fraudes;
- Classificação de Imagens Médicas;
- Detecção de Faltas;
- Detecção de Anomalias;
- Diagnóstico Médico;
- Detecção de Vazamento de combustíveis;
- Muitas outras áreas.

Um conjunto de dados é considerado desbalanceado quando uma classe possui mais de 50% dos exemplos. Quando isto ocorre, muitos classificadores tendem a classificar de forma correta apenas os exemplos da classe majoritária (TOMAŠEV; MLADENIC´, 2013). A degradação da classificação é mais intensa nos casos em que o nível de desbalanceamento é acima de 90% .(NAPIERALA; STEFANOWSKI,2016; PRATI; BATISTA; SILVA, 2015).

Métrica para dados não balanceados (IR): Imbalance Ratio (IR):é a razão entre o número de exemplos da classe minoritária pelo número total de exemplos do conjunto de dados do treinamento (NAPIERALA; STEFANOWSKI, 2016).

2 Foundations on Imbalanced Classification

Fig. 2.1 Example of a two-class imbalanced problem with ratio 1:100

Alguns estudos já realizados:

 Table 2.1 Applications of ML and DM where the class imbalance problem is present

Table 2.1 Applications of ML and DM where the class intollance problem is present								
Year	Domain	Subcategory	Application	Data-level	Internal	Cost-sensitive	Ensemble	Reference
1997		Satellite radar	Detection of oil spills in		×	1	+	[40]
1991	Liigineering	images	satellite radar images		_			[HO]
1997	Engineering	Satellite radar	Detection of oil spills in	×	+	+	+	[41]
	Lingmeering	images	satellite radar images					[[11]
1998	Engineering	Satellite radar	Detection of oil spills in	×	×		+	[42]
	Linginicering	images	satellite radar images	^				[42]
2012	Information	Software	Software defect	×	1		×	[72]
2012	technology	Software	prediction					[12]
	teemiorogy		prediction					
2013	Bioinformatics	Protein	MicroRNA precursor	×			×	[45]
		identification	classification					
2014	Medicine	Quality control	Prediction of the			×	×	[91]
			post-operative life					
			expectancy in lung cancer					
			patients					
2014	Bioinformatics	Protein	Five datasets that	×				[85]
		identification	represent four different					
			bioinformatics					
			applications. These					
			include miRNA					
			identification, protein localization prediction,					
			promoter identification					
			from DNA sequences,					
			kinase substrate					
			prediction from protein					
			phosphorylation					
			profiling.					
2014	Information technology	Text mining	Text categorization	×			×	[82]
2014	Bioinformatics	Cell recognition	Mitotic cells recognition in Hep-2 images	×			×	[35]
2014	Medicine	Diagnosis	Lung nodule detection	×			×	[11]
2014	Information technology	Software	Software defect prediction	×		×	×	[62]
2014	Security	Video surveillance	Face re-identification	×			×	[60]
2014	Information technology	Network analysis	Botnet traffic detection	×		×	×	[30]

2014	Information technology	Network analysis	Network traffic classification				×	[80]
2015	Medicine	Diagnosis	Breast cancer classification from thermogram images			×	×	[38]
2015	Information technology	Software	Software defect prediction				×	[43]
2015	Bioinformatics	Protein identification	Contact map prediction in protein structure prediction	×			×	[78]
2015	Business management	Finance	Stock market prediction, credit card/loans approval, fraud detection		×			[64]
2015	Medicine	Diagnosis	Automatic polyp detection	×			×	[6]
2015	Medicine	Quality control	Prediction of long stay patients in emergency department				×	[4]
2015	Bioinformatics	Protein identification	Protein data classification				×	[18]
2015	Medicine	Diagnosis	Diagnosis of diabetes mellitus	×				[14]
2016	Business management	Customer relationship management	Customer churn prediction	×				[3]
2016	Medicine	Diagnosis	Breast cancer malignancy classification				×	[39]
2016	Medicine	Diagnosis	Bleeding detection in endoscopic video	×			×	[20]
2016	Education	High school	Early dropout detection	×	×			[53]
2016	Security	Video surveillance	Face re-identification		×		×	[68]
2016	Engineering	Semiconductors	Fault detection in semiconductors	×		×	×	[44]
2016	Medicine	Diagnosis	Thyroid nodule classification	×				[1]
2016	Medicine	Diagnosis	Breast cancer classification from Magnetic Resonance Images (MRIs)				×	[52]
2016	Security	Biometric authentication	Multimodal biometric authentication				×	[77]

2017	Engineering	Energy	Short-term voltage stability assessment	×	×		[90]
2017	Business management	Customer relationship management	Customer churn prediction	×	×	×	[89]
2017	Information technology	Network analysis	Mobile malware detection	×	×		[15]
2017	Engineering	Semiconductors	Fault detection in semiconductors	×		×	[32]
2017	Medicine	Quality control	Prediction of the survival status of poly-trauma patients	×			[65]
2017	Medicine	Prognosis	Prediction of bone fractures to prevent osteoporosis	×			[5]
2017	Medicine	Diagnosis	Prediction of chronic kidney disease progression	×			[16]
2017	Medicine	Prognosis	Donor-recipient matching prediction in liver transplantation	×			[58]
2017	Security	Video surveillance	Still-to-video face recognition		×		[8]
2017	Medicine	Diagnosis	Detection of microaneurysm			×	[61]
2018	Engineering	Rotating machinery	Fault diagnosis in wind turbines	×	×	×	[63]
2018	Information technology	Computer vision	Object recognition in images			×	[87]
2018	Engineering	Rotating machinery	Fault diagnosis in wind turbines		×		[73]
2018	Security	Video surveillance	Face re-identification			×	[69]
2018	Engineering	Rotating machinery	Fault diagnosis in wind turbines			×	[83]

Separando apenas as áreas da saúde e correlatas temos as seguintes aplicações:

- 1. Classificação de MicroRNA;
- 2. Predição da expectativa de vida de pacientes operados de câncer de pulmão;
- 3. Detecção de nódulos no pulmão;
- 4. Classificação de câncer de mama através de imagens;
- 5. Detecção automática de pólipos;
- 6. Predição do tempo de permanência de pacientes na emergência;

- 7. Diagnóstico de Diabetes;
- 8. Classificação de malignidade de câncer de Mama;
- 9. Detecção de sangramento em imagens de endoscopia;
- 10. Classificação de nódulos na tireoide;
- 11. Classificação de cancer de mama através de imagens de ressonancia magnética;
- 12. Descoberta de compatibilidade entre doador e receptor de fígado para transplante;
- 13. Detecção de microaneurisma;