Gaussian Process for Regression homework 3

1.

(i)

(ii)

Training error

kernel1 RMS(train): 1.05224307499

kernel2 RMS(train): 6.65758954447

kernel3 RMS(train): 1.02884040382

kernel4 RMS(train): 1.03287726411

Testing error

kernel2 RMS(test): 6.74853909467

kernel3 RMS(test): 1.2860902333

kernel4 RMS(test): 1.37490152336

(iii)

theta 的值對 regression 來說影響很大,選擇適當的 theta 可以讓迴歸的 error 變比較小,如下一小題所做的結果

2.

(i)

(倒數第二列為 1)

(ii)

theta1 = 10.3564190024

theta2 = 6.0004741783

theta3 = 4.00010058199

theta4 = 5.00001060299

(iii)

(iv)

kernel5 RMS(train): 0.79930429837 kernel5 RMS(test): 1.10038401181

(v)

效果差不多, error: 0.8384

2.

(ii)

(iii)

(x,y 軸為降維後的 feature)

(不是 sepal length and sepal width)

(iv)

(x,y 軸為降維後的 feature)

(不是 sepal length and sepal width)

(v)使用 LDA 降維後·資料明顯分開許多·與前次作業所任選的 feature 有所差

異,效果當然也比任選的好上許多

3.

(i)k=2

		2	5	
ı	0.4664	0.8776	0.1105	
2	0.0730	0.1745	0.9819	
				_

K=3

	1	2	3	
1	0.5583	0.4909	0.6689	
2	0.7071	0.6988	0.1081	
3	0.8723	0.4842	0.0676	
4				

K=5

	1	2	3	
1	0.2478	0.7094	0.6598	
2	0.0038	0.6247	0.7809	
3	0.6685	0.1804	0.7215	
1	0.1627	0.7470	0.6446	
5	0.3632	0.8413	0.4003	
5				

K=20

	1	2	3	
1	0.7856	0.1399	0.6027	
2	0.3207	0.0421	0.9463	
3	0.0106	0.8295	0.5583	
4	0.3253	0.8488	0.4168	
5	0.1848	0.9377	0.2943	
6	0.6340	0.4769	0.6088	
7	0.5970	0.6306	0.4959	
8	0.6839	0.6613	0.3081	
9	0.5199	0.8525	0.0535	
0	0.4468	0.3875	0.8064	
1	0.4823	0.7519	0.4494	
2	0.7591	0.4237	0.4943	
3	0.1543	0.5434	0.8252	
4	0.4999	0.4488	0.7407	
5	0.1061	0.9943	0.0044	
6	0.5007	0.6650	0.5542	
7	0.5762	0.3841	0.7214	
8	0.6151	0.4620	0.6389	
9	0.1902	0.9585	0.2122	
20	0.6138	0.7717	0.1666	

(ii)

k=2

K=3

k=5

K=20

(iii)

k=2

k=3

k=5

k=20

