Kapitel 10

Ziele

- Das Prinzip der rekursiven Berechnungsvorschrift verstehen.
- Rekursive Methoden in Java implementieren können.
- Verschiedene Formen der Rekursion kennen lernen.
- Quicksort als rekursive Methode zur Sortierung eines Arrays formulieren können und verstehen.

Rekursive Algorithmen und Methoden

- Ein Algorithmus ist rekursiv, wenn in seiner (endlichen) Beschreibung derselbe Algorithmus wieder aufgerufen wird. Der Algorithmus ist dann selbstbezüglich definiert.
- Rekursive Algorithmen können in Java durch rekursive Methoden implementiert werden.
- Eine Methode ist rekursiv, wenn in ihrem Rumpf (Anweisungsteil) die Methode selbst wieder aufgerufen wird.

Die Fakultätsfunktion

Rekursive Definition der Fakultät:

$$0! = 1$$

$$n! = n * (n-1)! \quad \text{für alle natürlichen Zahlen } n \ge 1$$

$$7! = 7 * 2!$$

$$\text{Rekursive Methode:}$$

$$\text{public static int fact(int n) } \{$$

$$\text{if } (n == 0) \text{ return 1;}$$

$$\text{else return n * fact(n-1);}$$

rekursiver Aufruf!

$$\int_{\mathbb{R}} dt (3) = 3 = 4 + t(2) = 3 * (2 * 4 + t(1)) = 3 * (2 * (1 * 4 + t(2))) = 3 * (2 * (1 * 1)) = 3 * (2 * 1)$$
Returnion

Auswertung rekursiver Methodenaufrufe

Bei der Auswertung wird ein Stack für die Zwischenergebnisse der geschachtelten Methodenaufrufe aufgebaut, der am Ende gemäß des Rekursionsschemas rückwärts abgearbeitet wird.

Aufbau des Stacks zur Berechnung von fact (2)

Aufbau des Stacks zur Berechnung von fact (1)

Berechnung von fact (0)

fact(0)		if $n==0$) return (1);	fact(0)	
n	0	else return n*fact(n-1);	n	0
fact(1)	1*fact(0)		fact(1)	1*fact(0)
n	1		n	1
fact(2)	2*fact(1)		fact(2)	2*fact(1)
n	2		n	2
fact(3)	3*fact(2)		fact(3)	3*fact(2)
n	3		n	3
k			k	
	σ_3			σ_4

Berechnung von fact (1) und Abbau des Stacks

Berechnung von fact (2) und Abbau des Stacks

Berechnung von fact (3), Abbau des Stacks und Zuweisung des Ergebnisses

$$k = fact(3);$$

Terminierung

Der Aufruf einer rekursiven Methode **terminiert**, wenn nach endlich vielen rekursiven Aufrufen ein Abbruchfall erreicht wird.

Beispiel:

- Für alle natürlichen Zahlen n ≥ 0 terminiert der Methodenaufruf fact (n).
- Für alle negativen ganzen Zahlen n < 0 terminiert der Methodenaufruf fact (n) nicht.

Rekursion und Iteration (1)

Zu jedem rekursiven Algorithmus gibt es einen semantisch äquivalenten iterativen Algorithmus, d.h. einen Algorithmus mit Wiederholungs-anweisungen, der dasselbe Problem löst.

Beispiel:

```
static int factIterativ(int n) {
  int result = 1;
  while (n != 0) {
    result = result * n;
    n--;
  }
  return result;
}
```

Rekursion und Iteration (2)

- Rekursive Algorithmen sind häufig eleganter und übersichtlicher als iterative Lösungen.

 □ Tibruacui ← Culum
- Gute Compiler können aus rekursiven Programmen auch effizienten Code erzeugen; trotzdem sind iterative Programme meist schneller als rekursive.
- Für manche Problemstellungen kann es wesentlich einfacher sein einen rekursiven Algorithmus anzugeben als einen iterativen.
 (z.B. "Türme von Hanoi"; vgl. Übungen)

Fibonacci-Zahlen: rekursive Definition und Methode

Rekursive Definition der Fibonacci-Zahlen:

$$fib(0) = 1, fib(1) = 1,$$

fib (n) = fib (n-2)
$$f$$
+ (fib (n-1)) für alle natürlichen Zahlen n ≥ 2

Rekursive Methode:

Im when Prac get

Dentity: fib (n) = Ausahl her nen gebooknen Kanin chempaare in Jahr

Amabel: In jedem Jahr næ 22 haben ein-Ed aveijährige Prave gen om ein neuer Par seberlu.

Kaskade rekursiver Aufrufe

Die Zeit- und die Speicherplatzkomplexitäten der rekursiven Fibonacci-Funktion sind in jedem Fall exponentiell, in $O(2^n)$.

Fibonacci-Zahlen: Iterative Methode

```
static int fibIterativ(int n) {
   int f0 = 1;
   int f1 = 1;
   int f = 1;
   for (int i = 2; i \le n; i++) {
      f = f0 + f1;
      f0 = f1;
      f1 = f;
   return f;
```

Die Zeitkomplexität der iterativen Methode ist linear, d.h. in O(n). Die Speicherplatzkomplexität der iterativen Methode ist konstant, d.h. in O(1).

____ 5 Speiderlike

Formen der Rekursion

- Lineare Rekursion:
 In jedem Zweig (der Fallunterscheidung) kommt höchstens ein rekursiver
 Aufruf vor, z.B. Fakultätsfunktion fact.
- Kaskadenartige Rekursion:
 Mehrere rekursive Aufrufe stehen nebeneinander und sind durch
 Operationen verknüpft, z.B. Fibonacci-Zahlen fib.
- Verschachtelte Rekursion:
 Rekursive Aufrufe kommen in Parametern von rekursiven Aufrufen vor,
 z.B. Ackermann-Funktion.

Die Ackermann-Funktion

```
static int ack(int n, int m) {
   if (n == 0) return m + 1;
   else if (m == 0) return ack(n - 1, 1);
   else return ack(n - 1, ack(n, m - 1));
}
```

- Die Ackermann-Funktion ist eine Funktion mit exponentieller Zeitkomplexität, die extrem schnell wächst.
- Sie ist das klassische Beispiel für eine berechenbare, terminierende Funktion, die nicht primitiv-rekursiv ist (erfunden 1926 von Ackermann).

Beispiele:

```
ack(4,0) = 13

ack(4,1) = 65533

ack(4,2) = 2^{65536}-3 (eine Zahl mit 19729 Dezimalstellen).

ack(4,4) > Anzahl der Atome im Universum
```

Quicksort

- Einer der schnellsten Sortieralgorithmen (von C.A.R. Hoare, 1960).
- Idee: Falls das zu sortierende Array mindestens zwei Elemente hat:
 - Wähle irgendein Element aus dem Array als Pivot ("Dreh- und Angelpunkt"), z.B. das erste Element.
 - 2. Partitioniere das Array in einen linken und einen rechten Teil, so dass
 - alle Elemente im linken Teil kleiner-gleich dem Pivot sind und
 - alle Elemente im rechten Teil größer-gleich dem Pivot sind.
 - 3. Wende das Verfahren <u>rekursiv</u> auf die beiden Teilarrays an.
- Der Quicksort-Algorithmus folgt einem ähnlichen Lösungsansatz wie die binäre Suche. Diesen Lösungsansatz nennt man "Divide-and-Conquer" ("Teile und herrsche").

Quicksort: Beispiel

Quicksort in Java

```
static void quicksort(double[] a) {
   qsort(a, 0, a.length - 1);
 // Sortiert den Teilbereich a[from]...a[to] von a.
static void qsort(double[] a, int(from, int(to)) {
   if (from < to) { \mehr als ein Element zu sortieren
      double pivot = a[from]; //waehle erstes Element als Pivot
        //Partitionierung und Rückgabe des Grenzindex
      int gIdx = partition(a, from, to, pivot);
        //rekursiver Aufruf für den linken Teilarray
      qsort(a, from, gIdx);
        //rekursiver Aufruf für den rechten Teilarray
      qsort(a, qIdx + 1, to);
```

Partitionierung: Vorgehensweise

- Laufe von der unteren und der oberen Arraygrenze mit Indizes i und j nach innen und vertausche "nicht passende" Elemente a[i] und a[j] bis sich die Indizes treffen oder überkreuzt haben.
- Der zuletzt erreichte Index j wird als Grenzindex der Partitionierung zurückgegeben.
- Von unten kommend sind Elemente nicht passend, wenn sie größer-gleich dem Pivot sind.
- Von oben kommend sind Elemente nicht passend, wenn sie kleiner-gleich dem Pivot sind.

Bemerkung:

Gegebenenfalls werden auch gleiche Elemente vertauscht. Dies ist aus technischen Gründen nötig, damit der Index j so stoppt, dass der letzte Wert von j immer der richtige Grenzindex ist.

Partitionierung: Beispiel

Partitionierung in Java

```
static int partition(double[] a, int from, int to, double pivot) {
   int i = from - 1;
  int j = to + 1;
  while (i < j) {
      i++; //naechste Startposition von links
        //von links nach innen laufen solange Elemente kleiner als Pivot
     while (a[i] < pivot) i++;
      j--; //naechste Startposition von rechts
        //von rechts nach innen laufen solange Elemente größer als Pivot
     while (pivot < a[i]) i--;
      if (i < j) { //vertausche a[i] und a[j]
         double temp = a[i]; a[i] = a[j]; a[j] = temp;
   } //Ende while
   return j; //Rückgabe des Grenzindex
```

Partitionierungshierarchie des Quicksort

insgerant ~ bye !!

Junt 26

Zeitkomplexität von Quicksort (1)

- Beispiel: Das Array von oben hat die Länge 6.
 - Die Hierarchie der Partitionierungen stellt einen Baum dar mit 3 Etagen, wobei $3 = log_2(6) + 1$.
 - Alle Partitionierungen einer Etage benötigen zusammen maximal c * 6 Schritte (mit einer Konstanten c).
 - Folglich ist die Zeitkomplexität in diesem Fall durch 6 * log₂(6) beschränkt.

Allgemein:

- Wenn ein Array der Länge n immer wieder in zwei etwa gleich große Teile aufgeteilt wird, dann ist die Anzahl der Partitionierungs-Etagen durch log₂(n) beschränkt.
- Die Anzahl der Schritte pro Etage ist durch n beschränkt und damit die gesamte Zeitkomplexität in diesem Fall durch n * log₂(n).
- Man kann zeigen, dass die Zeitkomplexität des Quicksort im durchschnittlichen Fall von der Ordnung n * log₂(n) ist.

Zeitkomplexität des Quicksort (2)

Im **schlechtesten Fall** ist die Zeitkomplexität des Quicksort quadratisch, d.h. von der Ordnung n². Dieser Fall tritt z.B. ein, wenn das Array schon sortiert ist.

75 92	75	65	43	26	13		
Partitionierung							
75 92	75	65	43	26	13		
ng							
75 92	75	65	43	26	13		
nierung							
75 92	75	65	43	26	13		
tionierung							
75 92	75	65	43	26	13		
Partitionierung							
75 92	75	65	43	26	13		