$A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \\ a_2 & b_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \\ a_2 & b_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \\ a_2 & b_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \\ b_2 & a_2 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_1 \end{bmatrix}$ $A = \begin{bmatrix} a_1 & b_1 \\ b_2 & a_2 \end{bmatrix}$ A =

PAPCO

Subject:

det (s) = a, (-1) | or br o | + 0 + 0 + bs (-1) | ar br o | br an o |

det(13) = a, \[\alpha_{\gamma}(-1) \\ | \branchet{\alpha_{\gamma} \branchet{\brancheta_{\gamma}}} \] - b_{\gamma} \[\brancheta_{\gamma}(-1) \\ | \brancheta_{\gamma} \\ \alpha_{\gamma}(-1) \\ | \brancheta_{\gamma} \\ \alpha_{\gamma}(-1) \\ \]

det(3) = a1 ax (arbir-brbr) - bxb1 (arair-brbr)

det(3) = (arar-brbp) (aras-bibs)