Related Rates Released Questions

AB-6 1999

6. In the figure above, line ℓ is tangent to the graph of $y = \frac{1}{x^2}$ at point P, with coordinates $\left(w, \frac{1}{w^2}\right)$, where w > 0. Point Q has coordinates (w, 0). Line ℓ crosses the x-axis at the point R, with coordinates (k, 0).

- (a) Find the value of k when w = 3.
- (b) For all w > 0, find k in terms of w.
- (c) Suppose that w is increasing at the constant rate of 7 units per second. When w = 5, what is the rate of change of k with respect to time?
- (d) Suppose that w is increasing at the constant rate of 7 units per second. When w=5, what is the rate of change of the area of $\triangle PQR$ with respect to time? Determine whether the area is increasing or decreasing at this instant.

AP® CALCULUS AB 2002 SCORING GUIDELINES

Question 5

A container has the shape of an open right circular cone, as shown in the figure above. The height of the container is 10 cm and the diameter of the opening is 10 cm. Water in the container is evaporating so that its depth h is changing at the constant rate of $\frac{-3}{10}$ cm/hr.

(The volume of a cone of height h and radius r is given by $V = \frac{1}{3}\pi r^2 h$.)

- (a) Find the volume $\,V$ of water in the container when $\,h=5\,$ cm. Indicate units of measure.
- (b) Find the rate of change of the volume of water in the container, with respect to time, when h = 5 cm. Indicate units of measure.
- (c) Show that the rate of change of the volume of water in the container due to evaporation is directly proportional to the exposed surface area of the water. What is the constant of proportionality?

2002 SCORING GUIDELINES (Form B)

Question 6

Ship A is traveling due west toward Lighthouse Rock at a speed of 15 kilometers per hour (km/hr). Ship B is traveling due north away from Lighthouse Rock at a speed of 10 km/hr. Let x be the distance between Ship A and Lighthouse Rock at time t, and let y be the distance between Ship B and Lighthouse Rock at time t, as shown in the figure above.

- (a) Find the distance, in kilometers, between Ship A and Ship B when x=4 km and y=3 km.
- (b) Find the rate of change, in km/hr, of the distance between the two ships when x = 4 km and y = 3 km.
- (c) Let θ be the angle shown in the figure. Find the rate of change of θ , in radians per hour, when x = 4 km and y = 3 km.

2003 SCORING GUIDELINES

Question 5

A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the figure above. Let h be the depth of the coffee in the pot, measured in inches, where h is a function of time t, measured in seconds. The volume V of coffee in the pot is changing at the rate of $-5\pi\sqrt{h}$ cubic inches per second. (The volume V of a cylinder with radius r and height h is $V = \pi r^2 h$.)

- (a) Show that $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$.
- (b) Given that h = 17 at time t = 0, solve the differential equation $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$ for h as a function of t.
- (c) At what time t is the coffeepot empty?

2007 SCORING GUIDELINES

Question 5

t (minutes)	0	2	5	7	11	12
r'(t) (feet per minute)	5.7	4.0	2.0	1.2	0.6	0.5

The volume of a spherical hot air balloon expands as the air inside the balloon is heated. The radius of the balloon, in feet, is modeled by a twice-differentiable function r of time t, where t is measured in minutes. For 0 < t < 12, the graph of r is concave down. The table above gives selected values of the rate of change, r'(t), of the radius of the balloon over the time interval $0 \le t \le 12$. The radius of the balloon is 30 feet when

t=5. (Note: The volume of a sphere of radius r is given by $V=\frac{4}{3}\pi r^3$.)

- (a) Estimate the radius of the balloon when t = 5.4 using the tangent line approximation at t = 5. Is your estimate greater than or less than the true value? Give a reason for your answer.
- (b) Find the rate of change of the volume of the balloon with respect to time when t = 5. Indicate units of measure.
- (c) Use a right Riemann sum with the five subintervals indicated by the data in the table to approximate $\int_0^{12} r'(t) dt$. Using correct units, explain the meaning of $\int_0^{12} r'(t) dt$ in terms of the radius of the balloon
- (d) Is your approximation in part (c) greater than or less than $\int_0^{12} r'(t) dt$? Give a reason for your answer.

2008 SCORING GUIDELINES

Question 3

Oil is leaking from a pipeline on the surface of a lake and forms an oil slick whose volume increases at a constant rate of 2000 cubic centimeters per minute. The oil slick takes the form of a right circular cylinder with both its radius and height changing with time. (Note: The volume V of a right circular cylinder with radius r and height h is given by $V = \pi r^2 h$.)

- (a) At the instant when the radius of the oil slick is 100 centimeters and the height is 0.5 centimeter, the radius is increasing at the rate of 2.5 centimeters per minute. At this instant, what is the rate of change of the height of the oil slick with respect to time, in centimeters per minute?
- (b) A recovery device arrives on the scene and begins removing oil. The rate at which oil is removed is R(t) = 400√t cubic centimeters per minute, where t is the time in minutes since the device began working. Oil continues to leak at the rate of 2000 cubic centimeters per minute. Find the time t when the oil slick reaches its maximum volume. Justify your answer.
- (c) By the time the recovery device began removing oil, 60,000 cubic centimeters of oil had already leaked. Write, but do not evaluate, an expression involving an integral that gives the volume of oil at the time found in part (b).