EXEMPLO 2–19 Condução de calor em uma parede plana com geração de calor

Uma extensa parede plana de 2L de espessura é submetida a uma geração de calor uniforme (Fig. 2–61). Determine a expressão para a variação de temperatura na parede se (a) $T_1 > T_2$ e (b) $T_1 = T_2$.

SOLUÇÃO Uma parede plana é submetida à geração de calor uniforme. Determinar a expressão para a variação de temperatura da parede para $T_1 > T_2$ e $T_1 = T_2$.

Suposições 1 A condução de calor é constante. 2 A condução de calor é unidimensional. 3 A condutividade térmica é constante. 4 A geração de calor é uniforme.

Análise Começamos com a equação geral de condução de calor para coordenadas retangulares,

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{e}_{ger} = \rho c \frac{\partial T}{\partial t}$$

Para condução de calor constante unidimensional e condutividade térmica constante, a equação geral de condução de calor é simplificada para

$$\frac{d^2T}{dx^2} + \frac{\dot{e}_{\rm ger}}{k} = 0$$

Integrando duas vezes, temos a solução geral para equação diferencial de segunda ordem como

$$T(x) = -\frac{\dot{e}_{ger}}{2k}x^2 + C_1x + C_2$$

(continua)

FIGURA 2–61 Esquema para o Exemplo 2–19.

(continuação)

(a) Para o caso de condições de contorno assimétricas $T_1 > T_2$, aplicando as condições de contorno, temos

$$x = -L$$
: $T(-L) = T_1 = -\frac{\dot{e}_{ger}}{2k}L^2 - C_1L + C_2$

$$x = L$$
: $T(L) = T_2 = -\frac{\dot{e}_{ger}}{2k}L^2 + C_1L + C_2$

Note que, nesse problema, o sistema de coordenadas é colocado no meio da parede plana,(x=0), onde x à direita da linha do centro é considerada positiva, e, à esquerda, negativa. Na análise de problemas de parede plana com geração de calor, essa observação é normalmente adotada a fim de obter o melhor efeito de geração de calor no perfil da temperatura. Resolvendo para constantes C_1 e C_2 , temos

$$C_1 = \frac{T_2 - T_1}{2L}$$
 e $C_2 = \frac{\dot{e}_{ger}}{2k}L^2 + \frac{T_1 + T_2}{2}$

Substituindo as expressões C_1 e C_2 na solução geral, a variação da temperatura na parede é

$$T(x) = \frac{\dot{e}_{ger}L^2}{2k} \left(1 - \frac{x^2}{L^2} \right) + \frac{T_2 - T_1}{2} \left(\frac{x}{L} \right) + \frac{T_1 + T_2}{2}$$
 (a)

(b) Para o caso das condições de contorno simétricas, substituindo $T_1=T_2$ da equação acima, temos

$$T(x) = \frac{\dot{e}_{ger}L^2}{2k} \left(1 - \frac{x^2}{L^2} \right) + T_1$$
 (b)

Discussão A Eq. (a) mostra que a variação da temperatura na parede para o caso de condições de contorno assimétricas com $T_1 > T_2$ não é simétrica e a temperatura máxima ocorre à esquerda da linha do centro. Note que na Eq. (a) a temperatura se reduz à solução do Exemplo 20–10 (Eq. 2–56) para condução de calor em parede plana sem geração de calor através de $\dot{e}_{\rm ger}=0$ e realiza a transformação de coordenadas apropriadas. No caso de condições de contorno simétricas ($T_1=T_2$), a Eq. (b) mostra que a variação da temperatura na parede é simétrica e a temperatura máxima ocorre na linha do centro. Isso é comparável com os resultados apresentados no Exemplo 2–16 para a variação de temperatura em um aquecedor de resistência cilíndrico.