STATISTICAL INFERENCES (2cr) Chapter 8 Sampling Distributions & Data Descriptions

Zhong Guan

Math, IUSB

Outline

- 8.1 Random Sampling
 - Basic terminology
- 2 8.2 Some Important Statistics
 - Measure of Central Tendency for the Sample
 - Range and The Sample Variance
 - Quartiles & Box plot
 - Relative Frequency and Histogram

Outline

- 8.1 Random Sampling
 - Basic terminology
- 2 8.2 Some Important Statistics
 - Measure of Central Tendency for the Sample
 - Range and The Sample Variance
 - Quartiles & Box plot
 - Relative Frequency and Histogram

- Population: A well-defined collection of all possible observations with which we are concerned.
- For instance, the population of U.S. registered voters as of November 1 in the most recent presidential election year.
- "Population f(x)" means a population whose observations are values of random variable having distribution f(x).
- Sample: a subset of a population. It is often denoted as X₁, X₂,..., X_n.
- For instance, a random sample of size 1000 from the above list of U.S. registered voters.

- Population: A well-defined collection of all possible observations with which we are concerned.
- For instance, the population of U.S. registered voters as of November 1 in the most recent presidential election year.
- "Population f(x)" means a population whose observations are values of random variable having distribution f(x).
- Sample: a subset of a population. It is often denoted as X₁, X₂,..., X_n.
- For instance, a random sample of size 1000 from the above list of U.S. registered voters.

- Population: A well-defined collection of all possible observations with which we are concerned.
- For instance, the population of U.S. registered voters as of November 1 in the most recent presidential election year.
- "Population f(x)" means a population whose observations are values of random variable having distribution f(x).
- Sample: a subset of a population. It is often denoted as X₁, X₂,..., X_n.
- For instance, a random sample of size 1000 from the above list of U.S. registered voters.

- Population: A well-defined collection of all possible observations with which we are concerned.
- For instance, the population of U.S. registered voters as of November 1 in the most recent presidential election year.
- "Population f(x)" means a population whose observations are values of random variable having distribution f(x).
- **Sample:** a subset of a population. It is often denoted as X_1, X_2, \dots, X_n .
- For instance, a random sample of size 1000 from the above list of U.S. registered voters.

- Population: A well-defined collection of all possible observations with which we are concerned.
- For instance, the population of U.S. registered voters as of November 1 in the most recent presidential election year.
- "Population f(x)" means a population whose observations are values of random variable having distribution f(x).
- Sample: a subset of a population. It is often denoted as X_1, X_2, \dots, X_n .
- For instance, a random sample of size 1000 from the above list of U.S. registered voters.

- Parameter: characteristic of a population.
- For instance, p =percentage of Democratic voters in the above list of U.S. registered voters.
- Statistic: characteristic of a sample, an estimate of the parameter.
- For instance, \hat{p} = percentage of Democratic voters in the above sample.
- A Parameter is to a Population as a Statistic is to a Sample.
- In statistics, we often rely on a sample to draw inferences about the population.

- Parameter: characteristic of a population.
- For instance, p =percentage of Democratic voters in the above list of U.S. registered voters.
- Statistic: characteristic of a sample, an estimate of the parameter.
- For instance, \hat{p} = percentage of Democratic voters in the above sample.
- A Parameter is to a Population as a Statistic is to a Sample.
- In statistics, we often rely on a sample to draw inferences about the population.

- Parameter: characteristic of a population.
- For instance, p =percentage of Democratic voters in the above list of U.S. registered voters.
- Statistic: characteristic of a sample, an estimate of the parameter.
- For instance, \hat{p} = percentage of Democratic voters in the above sample.
- A Parameter is to a Population as a Statistic is to a Sample.
- In statistics, we often rely on a sample to draw inferences about the population.

- Parameter: characteristic of a population.
- For instance, p =percentage of Democratic voters in the above list of U.S. registered voters.
- Statistic: characteristic of a sample, an estimate of the parameter.
- For instance, \hat{p} = percentage of Democratic voters in the above sample.
- A Parameter is to a Population as a Statistic is to a Sample.
- In statistics, we often rely on a sample to draw inferences about the population.

- Parameter: characteristic of a population.
- For instance, p =percentage of Democratic voters in the above list of U.S. registered voters.
- Statistic: characteristic of a sample, an estimate of the parameter.
- For instance, \hat{p} = percentage of Democratic voters in the above sample.
- A Parameter is to a Population as a Statistic is to a Sample.
- In statistics, we often rely on a sample to draw inferences about the population.

- Parameter: characteristic of a population.
- For instance, p =percentage of Democratic voters in the above list of U.S. registered voters.
- Statistic: characteristic of a sample, an estimate of the parameter.
- For instance, \hat{p} = percentage of Democratic voters in the above sample.
- A Parameter is to a Population as a Statistic is to a Sample.
- In statistics, we often rely on a sample to draw inferences about the population.

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water safety	Water in the well	Water in test cube	bacterial counts in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water safety	Water in the well	Water in test cube	bacterial counts in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water safety	Water in the well	Water in test cube	bacterial counts in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water safety	Water in the well	Water in test cube	bacterial counts in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water safety	Water in the well	Water in test cube	bacterial counts in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water safety	Water in the well	Water in test cube	bacterial counts in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water safety	Water in the well	Water in test cube	bacterial counts in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer	20 cancer	Average
	patients	patients	
Water	Water in	Water in	bacterial counts
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water	Water in	Water in	bacterial counts
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water safety	Water in the well	Water in test cube	bacterial counts in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water safety	Water in the well	Water in test cube	bacterial counts in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer	20 cancer	Average
Caricei	patients	patients	cancer size
Water	Water in	Water in	bacterial counts
safety	the well	test cube	in unit volume
Pseudorandom	The complete		Distribution of
			pseudorandom
			numbers
Unomployment	Entire labor	One million	rate of
			unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water safety	Water in the well	Water in test cube	bacterial counts in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer	20 cancer	Average
Cancer	patients	patients	cancer size
Water	Water in	Water in	bacterial counts
safety	the well	test cube	in unit volume
Pseudorandom			Distribution of
			Distribution of
numbers			pseudorandom
numbers		Subsequence One million	pseudorandom

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer patients	20 cancer patients	Average cancer size
Water	Water in	Water in	bacterial counts
safety	the well	test cube	in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor	One million	rate of
			unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer	20 cancer	Average
Cancer	patients	patients	cancer size
Water	Water in	Water in	bacterial counts
safety	the well	test cube	in unit volume
Pseudorandom	The complete		Distribution of
numbers	•	Subsequence	pseudorandom
generator	sequence		numbers
Unemployment	Entire labor	One million	rate of
			unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer	20 cancer	Average
Cancer	patients	patients	cancer size
Water	Water in	Water in	bacterial counts
safety	the well	test cube	in unit volume
Pseudorandom	The complete		Distribution of
numbers	sequence	Subsequence	pseudorandom
generator	sequence		numbers
Unemployment	Entire labor	One million	rate of
			unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer	20 cancer	Average
Cancer	patients	patients	cancer size
Water	Water in	Water in	bacterial counts
safety	the well	test cube	in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer	20 cancer	Average
Cancer	patients	patients	cancer size
Water	Water in	Water in	bacterial counts
safety	the well	test cube	in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer	20 cancer	Average
Cancer	patients	patients	cancer size
Water	Water in	Water in	bacterial counts
safety	the well	test cube	in unit volume
Pseudorandom	The complete		Distribution of
numbers	sequence	Subsequence	pseudorandom
generator	sequence		numbers
Unemployment	Entire labor	One million	rate of
Onemployment	force	force	unemployment

CONCERN	POPULATION	SAMPLE	PARAMETER/ STATISTIC
Election	All voters	Gallup poll	% of votes for candidate A
Cancer	All cancer	20 cancer	Average
Cancer	patients	patients	cancer size
Water	Water in	Water in	bacterial counts
safety	the well	test cube	in unit volume
Pseudorandom numbers generator	The complete sequence	Subsequence	Distribution of pseudorandom numbers
Unemployment	Entire labor force	One million force	rate of unemployment

Random Sample

• **Definition:** If $X_1, X_2, ..., X_n$ are n random observations from population f(x), and are independent, that is, they have joint distribution

$$f(x_1,\ldots,x_n)=f(x_1)\cdots f(x_n)$$

then $X_1, X_2, ..., X_n$ is said to be a **random sample** of a **size** n from the population f(x).

- When we use capital letters, we treat $X_1, X_2, ..., X_n$ as n independent random variables having the same distribution f(x);
- When we use lower case letters, we treat x₁, x₂,...,x_n as the numerical values of the *n* independent random variables:

• **Definition:** If $X_1, X_2, ..., X_n$ are n random observations from population f(x), and are independent, that is, they have joint distribution

$$f(x_1,\ldots,x_n)=f(x_1)\cdots f(x_n)$$

then $X_1, X_2, ..., X_n$ is said to be a **random sample** of a size n from the population f(x).

- When we use capital letters, we treat $X_1, X_2, ..., X_n$ as n independent random variables having the same distribution f(x);
- When we use lower case letters, we treat x₁, x₂,..., x_n as the numerical values of the n independent random variables:

• **Definition:** If $X_1, X_2, ..., X_n$ are n random observations from population f(x), and are independent, that is, they have joint distribution

$$f(x_1,\ldots,x_n)=f(x_1)\cdots f(x_n)$$

then $X_1, X_2, ..., X_n$ is said to be a **random sample** of a size n from the population f(x).

- When we use capital letters, we treat $X_1, X_2, ..., X_n$ as n independent random variables having the same distribution f(x);
- When we use lower case letters, we treat $x_1, x_2, ..., x_n$ as the numerical values of the n independent random variables;

• **Definition:** If $X_1, X_2, ..., X_n$ are n random observations from population f(x), and are independent, that is, they have joint distribution

$$f(x_1,\ldots,x_n)=f(x_1)\cdots f(x_n)$$

then $X_1, X_2, ..., X_n$ is said to be a **random sample** of a size n from the population f(x).

- When we use capital letters, we treat $X_1, X_2, ..., X_n$ as n independent random variables having the same distribution f(x);
- When we use lower case letters, we treat x₁, x₂,..., x_n as the numerical values of the n independent random variables;

Example 2. The number of traffics during weekday 11:30am to 12:30pm at an intersection of a city has Poisson distribution with mean λ .

- A random sample of size 20, $X_1, X_2, ..., X_{20}$ are 20 independent random variables having the same Poisson distribution $P(\lambda)$.
- The sample values x_1, x_2, \dots, x_{20} are actually observed data values in 20 weekdays.

Example 2. The number of traffics during weekday 11:30am to 12:30pm at an intersection of a city has Poisson distribution with mean λ .

- A random sample of size 20, $X_1, X_2, ..., X_{20}$ are 20 independent random variables having the same Poisson distribution $P(\lambda)$.
- The sample values x₁, x₂,..., x₂₀ are actually observed data values in 20 weekdays.

Example 2. The number of traffics during weekday 11:30am to 12:30pm at an intersection of a city has Poisson distribution with mean λ .

- A random sample of size 20, $X_1, X_2, ..., X_{20}$ are 20 independent random variables having the same Poisson distribution $P(\lambda)$.
- The sample values x_1, x_2, \dots, x_{20} are actually observed data values in 20 weekdays.

Statistic Any function of random variables constituting a random sample is called a **statistic**, which is free of any unknown parameter.

Example 0. The number of traffics during weekday 11:30am to 12:30pm at an intersection of a city has Poisson distribution $P(\lambda)$ with mean λ .

• The mean value of a random sample of size 20, $X_1, X_2, ..., X_{20}$ is a statistic:

$$\bar{X} = \frac{1}{20}(X_1 + \dots + X_{20})$$

The mean value of the actual observed sample values x_1, x_2, \dots, x_{20} is denoted by

Statistic Any function of random variables constituting a random sample is called a **statistic**, which is free of any unknown parameter.

Example 0. The number of traffics during weekday 11:30am to 12:30pm at an intersection of a city has Poisson distribution $P(\lambda)$ with mean λ .

• The mean value of a random sample of size 20, $X_1, X_2, ..., X_{20}$ is a statistic:

$$\bar{X} = \frac{1}{20}(X_1 + \dots + X_{20})$$

The mean value of the actual observed sample values x_1, x_2, \dots, x_{20} is denoted by

Statistic Any function of random variables constituting a random sample is called a **statistic**, which is free of any unknown parameter.

Example 0. The number of traffics during weekday 11:30am to 12:30pm at an intersection of a city has Poisson distribution $P(\lambda)$ with mean λ .

• The mean value of a random sample of size 20, $X_1, X_2, ..., X_{20}$ is a statistic:

$$\bar{X} = \frac{1}{20}(X_1 + \cdots + X_{20})$$

The mean value of the actual observed sample values x_1, x_2, \dots, x_{20} is denoted by

Statistic Any function of random variables constituting a random sample is called a **statistic**, which is free of any unknown parameter.

Example 0. The number of traffics during weekday 11:30am to 12:30pm at an intersection of a city has Poisson distribution $P(\lambda)$ with mean λ .

• The mean value of a random sample of size 20, $X_1, X_2, ..., X_{20}$ is a statistic:

$$\bar{X} = \frac{1}{20}(X_1 + \cdots + X_{20})$$

• The mean value of the actual observed sample values x_1, x_2, \dots, x_{20} is denoted by

Measure of Central Tendency for the Sample Range and The Sample Variance Quartiles & Box plot Relative Frequency and Histogram

Outline

- 8.1 Random SamplingBasic terminology
- 8.2 Some Important Statistics
 - Measure of Central Tendency for the Sample
 - Range and The Sample Variance
 - Quartiles & Box plot
 - Relative Frequency and Histogram

Measures for a distribution

Mean is the average value

$$Sample \ Mean = \frac{Sum \ of \ values}{Number \ of \ values}$$

Let $X_1, X_2, ..., X_n$ be a sample of size n. Let $x_1, x_2, ..., x_n$ be the values of the sample data.

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

- Uniqueness: For any data set, there is only one arithmetic mean.
- Simplicity: Easy to calculate.
- Non-robustness: A single extreme value in a sample could cause undesirable result. Isolated extreme values are called outliers.

- Uniqueness: For any data set, there is only one arithmetic mean.
- Simplicity: Easy to calculate.
- Non-robustness: A single extreme value in a sample could cause undesirable result. Isolated extreme values are called *outliers*.

- Uniqueness: For any data set, there is only one arithmetic mean.
- Simplicity: Easy to calculate.
- Non-robustness: A single extreme value in a sample could cause undesirable result. Isolated extreme values are called <u>outliers</u>.

- Uniqueness: For any data set, there is only one arithmetic mean.
- Simplicity: Easy to calculate.
- Non-robustness: A single extreme value in a sample could cause undesirable result. Isolated extreme values are called <u>outliers</u>.

- (1) Sort the data values in increasing order.
- (2) If the number of values is odd, then the middle term is the median.
- (3) If the number of values is even, then the average of the two middle terms is the median.

- (a) Data set 1: 7, 2, -1, 5, 9, 2, 4.
- (b) Data set 2: 1.2, 0.7, 3.5, 1.6, 0.3, 2.4.

- (1) Sort the data values in increasing order.
- (2) If the number of values is odd, then the middle term is the median.
- (3) If the number of values is even, then the average of the two middle terms is the median.

- (a) Data set 1: 7, 2, -1, 5, 9, 2, 4.
- (b) Data set 2: 1.2, 0.7, 3.5, 1.6, 0.3, 2.4.

- (1) Sort the data values in increasing order.
- (2) If the number of values is odd, then the middle term is the median.
- (3) If the number of values is even, then the average of the two middle terms is the median.

- (a) Data set 1: 7, 2, -1, 5, 9, 2, 4.
- (b) Data set 2: 1.2, 0.7, 3.5, 1.6, 0.3, 2.4.

- (1) Sort the data values in increasing order.
- (2) If the number of values is odd, then the middle term is the median.
- (3) If the number of values is even, then the average of the two middle terms is the median.

- (a) Data set 1: 7, 2, -1, 5, 9, 2, 4.
- (b) Data set 2: 1.2, 0.7, 3.5, 1.6, 0.3, 2.4.

- (1) Sort the data values in increasing order.
- (2) If the number of values is odd, then the middle term is the median.
- (3) If the number of values is even, then the average of the two middle terms is the median.

- (a) Data set 1: 7, 2, -1, 5, 9, 2, 4.
- (b) Data set 2: 1.2, 0.7, 3.5, 1.6, 0.3, 2.4.

- (1) Sort the data values in increasing order.
- (2) If the number of values is odd, then the middle term is the median.
- (3) If the number of values is even, then the average of the two middle terms is the median.

- (a) Data set 1: 7, 2, -1, 5, 9, 2, 4.
- (b) Data set 2: 1.2, 0.7, 3.5, 1.6, 0.3, 2.4.

- Uniqueness: For any data set, there is only one median.
- Simplicity: Easy to calculate.
- Robustness: It is not drastically affected by extreme values.

- Uniqueness: For any data set, there is only one median.
- Simplicity: Easy to calculate.
- Robustness: It is not drastically affected by extreme values.

- Uniqueness: For any data set, there is only one median.
- Simplicity: Easy to calculate.
- Robustness: It is not drastically affected by extreme values.

- Uniqueness: For any data set, there is only one median.
- Simplicity: Easy to calculate.
- Robustness: It is not drastically affected by extreme values.

The mode of a dataset is the value that has the highest frequency.

Example 2: Find the mode of each data set

(a) Find the mode of the 50 students status data

Table 2.2	Status of 50 Students									
J	F	SO	SE	J	J	SE	J	J	J	
F	F	J	F	F	F	SE	SO	SE	J	
J	F	SE	SO	SO	F	J	F	SE	SE	
SO	SE	J	SO	SO	J	J	SO	F	SO	
SE	SE	F	SE	J	SO	F	J	SO	SO	

- (b) The speeds(mph) of 8 cars stopped on I-95 for speeding: 77, 82, 74, 81, 79, 84, 74, 78.

Z. Guan

The mode of a dataset is the value that has the highest frequency.

Example 2: Find the mode of each data set.

(a) Find the mode of the 50 students status data

Table 2.2	Status	Status of 50 Students									
J	F	SO	SE	J	J	SE	J	J	J		
F	F	J	F	F	F	SE	SO	SE	J		
J	F	SE	SO	SO	F	J	F	SE	SE		
SO	SE	J	SO	SO	J	J	SO	F	SO		
SE	SE	F	SE	J	SO	F	J	SO	SO		

- (b) The speeds(mph) of 8 cars stopped on I-95 for speeding: 77, 82, 74, 81, 79, 84, 74, 78.
- (c) The ages of 10 randomly selected students are: 21, 19,

The mode of a dataset is the value that has the highest frequency.

Example 2: Find the mode of each data set.

(a) Find the mode of the 50 students status data.

Table 2.2	Status of 50 Students								
J	F	SO	SE	J	J	SE	J	J	J
F	F	J	F	F	F	SE	SO	SE	J
J	F	SE	SO	SO	F	J	F	SE	SE
SO	SE	J	SO	SO	J	J	SO	F	SO
SE	SE	F	SE	J	SO	F	J	SO	SO

- (b) The speeds(mph) of 8 cars stopped on I-95 for speeding: 77, 82, 74, 81, 79, 84, 74, 78.
- (c) The ages of 10 randomly selected students are: 21, 19, 27, 22, 29, 19, 25, 21, 22, 30.

The mode of a dataset is the value that has the highest frequency.

Example 2: Find the mode of each data set.

(a) Find the mode of the 50 students status data.

Table 2.2	Status of 50 Students								
J	F	SO	SE	J	J	SE	J	J	J
F	F	J	F	F	F	SE	SO	SE	J
J	F	SE	SO	SO	F	J	F	SE	SE
SO	SE	J	SO	SO	J	J	SO	F	SO
SE	SE	F	SE	J	SO	F	J	SO	SO

- (b) The speeds(mph) of 8 cars stopped on I-95 for speeding: 77, 82, 74, 81, 79, 84, 74, 78.
- (c) The ages of 10 randomly selected students are: 21, 19, 27, 22, 29, 19, 25, 21, 22, 30.

The mode of a dataset is the value that has the highest frequency.

Example 2: Find the mode of each data set.

(a) Find the mode of the 50 students status data.

Table 2.2	Status of 50 Students								
J	F	SO	SE	J	J	SE	J	J	J
F	F	J	F	F	F	SE	SO	SE	J
J	F	SE	SO	SO	F	J	F	SE	SE
SO	SE	J	SO	SO	J	J	SO	F	SO
SE	SE	F	SE	J	SO	F	J	SO	SO

- (b) The speeds(mph) of 8 cars stopped on I-95 for speeding: 77, 82, 74, 81, 79, 84, 74, 78.
- (c) The ages of 10 randomly selected students are: 21, 19, 27, 22, 29, 19, 25, 21, 22, 30.

Relationships

Relationships

Relationships

Trimmed mean

Because mean value is not robust, easily impacted by outlier. If outliers present we can use either median or the following trimmed mean.

The k% trimmed mean is the mean of the data values after cutting off k% of the values from each end of the sorted data. Example 3: The following are the money spent (in dollars) on books in 2015 by 10 randomly selected students from a small college.

890 1354 1861 1644 87 5403 1429 1993 938 2176 Find the 10% trimmed mean.

Trimmed mean

Because mean value is not robust, easily impacted by outlier. If outliers present we can use either median or the following trimmed mean.

The k% trimmed mean is the mean of the data values after cutting off k% of the values from each end of the sorted data.

Example 3: The following are the money spent (in dollars) on books in 2015 by 10 randomly selected students from a small college.

890 1354 1861 1644 87 5403 1429 1993 938 2176 Find the 10% trimmed mean.

Trimmed mean

Because mean value is not robust, easily impacted by outlier. If outliers present we can use either median or the following trimmed mean.

The k% trimmed mean is the mean of the data values after cutting off k% of the values from each end of the sorted data. Example 3: The following are the money spent (in dollars) on books in 2015 by 10 randomly selected students from a small college.

890 1354 1861 1644 87 5403 1429 1993 938 2176 Find the 10% trimmed mean.

Trimmed mean

Solution The sorted data are

87 890 938 1354 1429 1644 1861 1993 2176 5403

Number of 10% value equals n * k/100 = 10 * 10/100 = 1. So we drop one value from each end and we have the trimmed data

890 938 1354 1429 1644 1861 1993 2176

Then the 10% trimmed mean is \$1535.625=(890 + 938+ 1354+

1429+ 1644+ 1861 +1993+ 2176)/8.

Outline

- 8.1 Random SamplingBasic terminology
- 8.2 Some Important Statistics
 - Measure of Central Tendency for the Sample
 - Range and The Sample Variance
 - Quartiles & Box plot
 - Relative Frequency and Histogram

Range

$$Range = Max - Min$$

Let X_1, X_2, \dots, X_n be a sample size n. Let x_1, x_2, \dots, x_n be the values of the sample data.

Sample Variance
$$S^2 = \frac{\sum (X_i - \bar{X})^2}{n-1}$$

The Value of Sample Variance
$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

The Value of Sample Standard Deviation
$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

Let X_1, X_2, \dots, X_n be a sample size n. Let x_1, x_2, \dots, x_n be the values of the sample data.

Sample Variance
$$S^2 = \frac{\sum (X_i - \bar{X})^2}{n-1}$$

The Value of Sample Variance
$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

The Value of Sample Standard Deviation
$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

Let $X_1, X_2, ..., X_n$ be a sample size n. Let $x_1, x_2, ..., x_n$ be the values of the sample data.

Sample Variance
$$S^2 = \frac{\sum (X_i - \bar{X})^2}{n-1}$$

The Value of Sample Variance
$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

The Value of Sample Standard Deviation
$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

Let $X_1, X_2, ..., X_n$ be a sample size n. Let $x_1, x_2, ..., x_n$ be the values of the sample data.

Sample Variance
$$S^2 = \frac{\sum (X_i - \bar{X})^2}{n-1}$$

The Value of Sample Variance
$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

The Value of Sample Standard Deviation
$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$$

Short-Cut Formulas

Sample Variance
$$s^2 = \frac{\sum x_i^2 - n\bar{x}^2}{n-1}$$

Sample Standard Deviation
$$s = \sqrt{s^2}$$

Short-Cut Formulas

Sample Variance
$$s^2 = \frac{\sum x_i^2 - n\bar{x}^2}{n-1}$$

Sample Standard Deviation
$$s=\sqrt{s^2}$$

Table 3.6	
x	
46.5	
18.0	
16.0	
7.8	
7.2	

n = 5

Table 3.6	
x	
46.5	
18.0	
16.0	
7.8	
7.2	
$\Sigma x = 95.5$	

n = 5

Table 3.6	
x	
46.5	
18.0	
16.0	
7.8	
7.2	
$\Sigma x = 95.5$	

$$n = 5$$

$$\bar{x} = \frac{\sum x_i}{n} = 95.5/5 = 19.1$$

Table 3.6		
x	x^2	
46.5	2162.25	
18.0	324.00	
16.0	256.00	
7.8	60.84	
7.2	51.84	
$\Sigma x = 95.5$		

$$\bar{X} = \frac{\sum X_i}{n} = 95.5/5 = 19.1$$

Table 3.6	
x	x^2
46.5	2162.25
18.0	324.00
16.0	256.00
7.8	60.84
7.2	51.84
$\Sigma x = 95.5$	$\Sigma x^2 = 2854.93$

$$n = 5$$

$$\bar{X} = \frac{\sum X_i}{n} = 95.5/5 = 19.1$$

Table 3.6		
x	x^2	
46.5	2162.25	
18.0	324.00	
16.0	256.00	
7.8	60.84	
7.2	51.84	
$\Sigma x = 95.5$	$\Sigma x^2 = 2854.93$	

$$\bar{x} = \frac{\sum x_i}{n} = 95.5/5 = 19.1$$

$$s^2 = \frac{\sum x_i^2 - n\bar{x}^2}{n-1}$$

Table 3.6	
x	x^2
46.5	2162.25
18.0	324.00
16.0	256.00
7.8	60.84
7.2	51.84
$\Sigma x = 95.5$	$\Sigma x^2 = 2854.93$

n=5

$$\bar{x} = \frac{\sum x_i}{n} = 95.5/5 = 19.1$$

 $s^2 = \frac{\sum x_i^2 - n\bar{x}^2}{n-1}$
= (2854.93 - 5*19.1^2)/4

Table 3.6	
x	x^2
46.5	2162.25
18.0	324.00
16.0	256.00
7.8	60.84
7.2	51.84
$\Sigma x = 95.5$	$\Sigma x^2 = 2854.93$

$$n=5$$

$$\bar{x} = \frac{\sum x_i}{n} = 95.5/5 = 19.1$$

$$s^2 = \frac{\sum x_i^2 - n\bar{x}^2}{n-1}$$

$$= (2854.93 - 5*19.1^2)/4$$

$$= 257.72$$

Table 3.6	
x	x^2
46.5	2162.25
18.0	324.00
16.0	256.00
7.8	60.84
7.2	51.84
$\Sigma x = 95.5$	$\Sigma x^2 = 2854.93$

n=5

$$\bar{x} = \frac{\sum x_i}{n} = 95.5/5 = 19.1$$

$$s^2 = \frac{\sum x_i^2 - n\bar{x}^2}{n-1}$$
= (2854.93 - 5*19.1^2)/4
= 257.72
 $s = \sqrt{257.72} = 16.0536$

Calculation using TI-83/84

Calculation using TI-83/84

Calculation using Excel

	А	В	С
1	Data	Average	
2			
3	2	=average(A	3:A8)
4	3		
5	5		
6	7		
7	11		
8	13		

Calculation using Excel

	Α	В	С
1	Data	Average	
2			
3	2	6.833333	
4	3		
5	5		
6	7		
7	11		
8	13		

Outline

- 1 8.1 Random Sampling
 - Basic terminology
- 8.2 Some Important Statistics
 - Measure of Central Tendency for the Sample
 - Range and The Sample Variance
 - Quartiles & Box plot
 - Relative Frequency and Histogram

- First quartile: Q₁ the 25th percentile:
- Second quartile: Q_2 the 50th percentile, also the median;
- Third quartile: Q_3 the 75th percentile
- 5 number summary: Min, Q₁, Q₂, Q₃, Max.

- First quartile: Q_1 the 25th percentile;
- Second quartile: Q_2 the 50th percentile, also the median;
- Third quartile: Q₃ the 75th percentile;
- 5 number summary: Min, Q₁, Q₂, Q₃, Max.

- First quartile: Q₁ the 25th percentile;
- Second quartile: Q₂ the 50th percentile, also the median;
- Third quartile: Q₃ the 75th percentile
- 5 number summary: Min, Q₁, Q₂, Q₃, Max

- First quartile: Q₁ the 25th percentile;
- Second quartile: Q_2 the 50th percentile, also the median;
- Third quartile: Q_3 the 75th percentile;
- 5 number summary: Min, Q₁, Q₂, Q₃, Max

- First quartile: Q₁ the 25th percentile;
- Second quartile: Q₂ the 50th percentile, also the median;
- Third quartile: Q_3 the 75th percentile;
- 5 number summary: Min, Q₁, Q₂, Q₃, Max.

Interquartile-range:

$$IQR = Q_3 - Q_1;$$

Using TI-83

- First input the data as a list by Pressing button STAT and select "1: Edit..." then press ENTER.
- Second, Press button STAT, then choose "CALC" and "1-Var Stats" then ENTER.
- Press ENTER again you will get \bar{x} , $S_X = s$, $\sigma_X = \sigma$, and 5-number summary minX, Q_1 , $Med = Q_2$, Q_3 and maxX.

Interquartile-range:

$$IQR = Q_3 - Q_1;$$

Using TI-83

- First input the data as a list by Pressing button STAT and select "1: Edit..." then press ENTER.
- Second, Press button STAT, then choose "CALC" and "1-Var Stats" then ENTER.
- Press ENTER again you will get \bar{x} , $S_X = s$, $\sigma_X = \sigma$, and 5-number summary minX, Q_1 , $Med = Q_2$, Q_3 and maxX.

Interquartile-range:

$$IQR = Q_3 - Q_1;$$

Using TI-83

- First input the data as a list by Pressing button STAT and select "1: Edit..." then press ENTER.
- Second, Press button STAT, then choose "CALC" and "1-Var Stats" then ENTER.
- Press ENTER again you will get \bar{x} , $S_X = s$, $\sigma_X = \sigma$, and 5-number summary minX, Q_1 , $Med = Q_2$, Q_3 and maxX.

Simplified Method for Finding Quartiles

Step 1. Sort the data in increasing order;

- Step 2. Q_2 is the median of the complete data.
- Step 3. Q_1 is the median of the subdataset that are smaller than or equal to Q_2 , and
- Step 4. Q_3 is the median of the subdataset that are greater than or equal to Q_2 .

Simplified Method for Finding Quartiles

- Step 1. Sort the data in increasing order;
- Step 2. Q_2 is the median of the complete data.
- Step 3. Q_1 is the median of the subdataset that are smaller than or equal to Q_2 , and
- Step 4. Q_3 is the median of the subdataset that are greater than or equal to Q_2 .

Simplified Method for Finding Quartiles

- Step 1. Sort the data in increasing order;
- Step 2. Q_2 is the median of the complete data.
- Step 3. Q_1 is the median of the subdataset that are smaller than or equal to Q_2 , and
- Step 4. Q_3 is the median of the subdataset that are greater than or equal to Q_2 .

Simplified Method for Finding Quartiles

- Step 1. Sort the data in increasing order;
- Step 2. Q_2 is the median of the complete data.
- Step 3. Q_1 is the median of the subdataset that are smaller than or equal to Q_2 , and
- Step 4. Q_3 is the median of the subdataset that are greater than or equal to Q_2 .

Simplified Method for Finding Quartiles

- Step 1. Sort the data in increasing order;
- Step 2. Q_2 is the median of the complete data.
- Step 3. Q_1 is the median of the subdataset that are smaller than or equal to Q_2 , and
- Step 4. Q_3 is the median of the subdataset that are greater than or equal to Q_2 .

Example

City	Number of Car Thefts
Phoenix-Mesa, Arizona	40,769
Washington, D.C.	33,956
Miami, Florida	21,088
Atlanta, Georgia	29,920
Chicago, Illinois	42,082
Kansas City, Kansas	11,669
Baltimore, Maryland	13,435
Detroit, Michigan	40,197
St. Louis, Missouri	18,215
Las Vegas, Nevada	18,103
Newark, New Jersey	14,413
Dallas, Texas	26,343

- (a) Find the values of the three quartiles. Where does the number of car thefts of 40,197 fall in relation to these quartiles?
- (b) Find the interquartile range

Example

City	Number of Car Thefts
Phoenix-Mesa, Arizona	40,769
Washington, D.C.	33,956
Miami, Florida	21,088
Atlanta, Georgia	29,920
Chicago, Illinois	42,082
Kansas City, Kansas	11,669
Baltimore, Maryland	13,435
Detroit, Michigan	40,197
St. Louis, Missouri	18,215
Las Vegas, Nevada	18,103
Newark, New Jersey	14,413
Dallas, Texas	26,343

- (a) Find the values of the three quartiles. Where does the number of car thefts of 40,197 fall in relation to these quartiles?
- (b) Find the interquartile range

Example

City	Number of Car Thefts
Phoenix-Mesa, Arizona	40,769
Washington, D.C.	33,956
Miami, Florida	21,088
Atlanta, Georgia	29,920
Chicago, Illinois	42,082
Kansas City, Kansas	11,669
Baltimore, Maryland	13,435
Detroit, Michigan	40,197
St. Louis, Missouri	18,215
Las Vegas, Nevada	18,103
Newark, New Jersey	14,413
Dallas, Texas	26,343

- (a) Find the values of the three quartiles. Where does the number of car thefts of 40,197 fall in relation to these quartiles?
- (b) Find the interquartile range.

Solution of Example

- (a) The three quartiles are $Q_1 = 16,258$, $Q_2 = 23,715.5$, and $Q_3 = 37,076.5$. The number of car thefts of 40,197 falls in the top 25%.
- (b) The interquartile range: $IQR = Q_3 Q_1 = 37,076.50 16,258 = 20,818.50$ car thefts.

Solution of Example

- (a) The three quartiles are $Q_1 = 16,258$, $Q_2 = 23,715.5$, and $Q_3 = 37,076.5$. The number of car thefts of 40,197 falls in the top 25%.
- (b) The interquartile range: $IQR = Q_3 Q_1 = 37,076.50 16,258 = 20,818.50$ car thefts.

Solution of Example

- (a) The three quartiles are $Q_1 = 16,258$, $Q_2 = 23,715.5$, and $Q_3 = 37,076.5$. The number of car thefts of 40,197 falls in the top 25%.
- (b) The interquartile range: $IQR = Q_3 Q_1 = 37,076.50 16,258 = 20,818.50$ car thefts.

Example: The following data are the incomes(in thousands of dollars) for a sample of 12 households.

35, 29, 44, 72, 34, 64, 41, 50, 54, 104, 39, 58 Construct a box-and-whisker plot.

```
Solution: (1) The sorted data:
```

(2)
$$Q_2 = (44 + 50)/2 = 47$$
, $Q_1 = (35 + 39)/2 = 37$,

$$Q_3 = (58 + 64)/2 = 61$$

(3)
$$IQR = Q_3 - Q_1 = 61 - 37 = 24$$

(4)
$$1.5 \times IQR = 1.5 \times 24 = 36$$
.

(4)
$$3 \times IQR = 3 \times 24 = 72$$
.

Example: The following data are the incomes(in thousands of dollars) for a sample of 12 households.

35, 29, 44, 72, 34, 64, 41, 50, 54, 104, 39, 58

Construct a box-and-whisker plot.

Solution: (1) The sorted data:

29, 34, 35, 39, 41, 44, 50, 54, 58, 64, 72, 104

- (2) $Q_2 = (44 + 50)/2 = 47$, $Q_1 = (35 + 39)/2 = 37$,
- $Q_3 = (58 + 64)/2 = 61$
- (3) $IQR = Q_3 Q_1 = 61 37 = 24$.
- (4) $1.5 \times IQR = 1.5 \times 24 = 36$.
- (4) $3 \times IQR = 3 \times 24 = 72$.

Example: The following data are the incomes(in thousands of dollars) for a sample of 12 households.

35, 29, 44, 72, 34, 64, 41, 50, 54, 104, 39, 58

Construct a box-and-whisker plot.

(2)
$$Q_2 = (44 + 50)/2 = 47$$
, $Q_1 = (35 + 39)/2 = 37$,

$$Q_3 = (58 + 64)/2 = 61$$

(3)
$$IQR = Q_3 - Q_1 = 61 - 37 = 24$$
.

(4)
$$1.5 \times IQR = 1.5 \times 24 = 36$$
.

(4)
$$3 \times IQR = 3 \times 24 = 72$$
.

Example: The following data are the incomes(in thousands of dollars) for a sample of 12 households.

35, 29, 44, 72, 34, 64, 41, 50, 54, 104, 39, 58

Construct a box-and-whisker plot.

(2)
$$Q_2 = (44 + 50)/2 = 47$$
, $Q_1 = (35 + 39)/2 = 37$,

$$Q_3 = (58 + 64)/2 = 61$$

(3)
$$IQR = Q_3 - Q_1 = 61 - 37 = 24$$
.

(4)
$$1.5 \times IQR = 1.5 \times 24 = 36$$
.

(4)
$$3 \times IQR = 3 \times 24 = 72$$
.

Example: The following data are the incomes(in thousands of dollars) for a sample of 12 households.

35, 29, 44, 72, 34, 64, 41, 50, 54, 104, 39, 58

Construct a box-and-whisker plot.

(2)
$$Q_2 = (44 + 50)/2 = 47$$
, $Q_1 = (35 + 39)/2 = 37$,

$$Q_3 = (58 + 64)/2 = 61$$

(3)
$$IQR = Q_3 - Q_1 = 61 - 37 = 24$$
.

(4)
$$1.5 \times IQR = 1.5 \times 24 = 36$$
.

(4)
$$3 \times IQR = 3 \times 24 = 72$$

Example: The following data are the incomes(in thousands of dollars) for a sample of 12 households.

35, 29, 44, 72, 34, 64, 41, 50, 54, 104, 39, 58

Construct a box-and-whisker plot.

(2)
$$Q_2 = (44 + 50)/2 = 47$$
, $Q_1 = (35 + 39)/2 = 37$,

$$Q_3 = (58 + 64)/2 = 61$$

(3)
$$IQR = Q_3 - Q_1 = 61 - 37 = 24$$
.

(4)
$$1.5 \times IQR = 1.5 \times 24 = 36$$
.

(4)
$$3 \times IQR = 3 \times 24 = 72$$
.

Outline

- 8.1 Random SamplingBasic terminology
- 8.2 Some Important Statistics
 - Measure of Central Tendency for the Sample
 - Range and The Sample Variance
 - Quartiles & Box plot
 - Relative Frequency and Histogram

Measure of Central Tendency for the Sample Range and The Sample Variance Quartiles & Box plot Relative Frequency and Histogram

Relative Frequency and Histogram

To describe continuous-type data, we group the data values into classes (intervals) and count the (relative) frequency of the data values in each class.

- Find Min & Max values and range R = Max Min;
- Find k non-overlapping intervals (class intervals) of equal length h by the endpoints (class boundaries)

$$c_0 < c_1 < c_2 < \cdots < c_{k-1} < c_k$$

The endpoints should contain one more decimal place than the data values and $c_0 \lesssim Min < Max \lesssim c_k$.

- ③ Find the **class mark** for each class: the midpoint of the class interval: $m_i = \frac{c_{i-1} + c_i}{2}$
- Calculate relative frequency (density) for each class

$$h(x) = \frac{f_i}{n(c_i - c_{i-1})}$$
, for $c_{i-1} < x \le c_i$, $i = 1, 2, ..., k$.

Suggested $k \approx R/h$, $h = 2IQR/n^{1/3}$.

- Find Min & Max values and range R = Max Min;
- Find k non-overlapping intervals (class intervals) of equal length h by the endpoints (class boundaries)

$$c_0 < c_1 < c_2 < \cdots < c_{k-1} < c_k$$

The endpoints should contain one more decimal place than the data values and $c_0 \lesssim Min < Max \lesssim c_k$.

- 3 Find the **class mark** for each class: the midpoint of the class interval: $m_i = \frac{c_{i-1} + c_i}{2}$
- Calculate relative frequency (density) for each class

$$h(x) = \frac{f_i}{n(c_i - c_{i-1})}$$
, for $c_{i-1} < x \leqslant c_i$, $i = 1, 2, ..., k$.

Suggested $k \approx R/h$, $h = 2IQR/n^{1/3}$.

- Find Min & Max values and range R = Max Min;
- Find k non-overlapping intervals (class intervals) of equal length h by the endpoints (class boundaries)

$$c_0 < c_1 < c_2 < \cdots < c_{k-1} < c_k$$

The endpoints should contain one more decimal place than the data values and $c_0 \lesssim Min < Max \lesssim c_k$.

- **3** Find the **class mark** for each class: the midpoint of the class interval: $m_i = \frac{c_{i-1} + c_i}{2}$
- Calculate relative frequency (density) for each class

$$h(x) = \frac{f_i}{n(c_i - c_{i-1})}$$
, for $c_{i-1} < x \leqslant c_i$, $i = 1, 2, ..., k$.

Suggested $k \approx R/h$, $h = 2IQR/n^{1/3}$

- Find Min & Max values and range R = Max Min;
- Find k non-overlapping intervals (class intervals) of equal length h by the endpoints (class boundaries)

$$c_0 < c_1 < c_2 < \cdots < c_{k-1} < c_k$$

The endpoints should contain one more decimal place than the data values and $c_0 \lesssim Min < Max \lesssim c_k$.

- **3** Find the **class mark** for each class: the midpoint of the class interval: $m_i = \frac{c_{i-1} + c_i}{2}$
- Calculate relative frequency (density) for each class

$$h(x) = \frac{f_i}{n(c_i - c_{i-1})}, \text{ for } c_{i-1} < x \leqslant c_i, \quad i = 1, 2, \dots, k.$$

5 Suggested $k \approx R/h$, $h = 2IQR/n^{1/3}$.

- Find Min & Max values and range R = Max Min;
- Find k non-overlapping intervals (class intervals) of equal length h by the endpoints (class boundaries)

$$c_0 < c_1 < c_2 < \cdots < c_{k-1} < c_k$$

The endpoints should contain one more decimal place than the data values and $c_0 \lesssim Min < Max \lesssim c_k$.

- **3** Find the **class mark** for each class: the midpoint of the class interval: $m_i = \frac{c_{i-1} + c_i}{2}$
- Calculate relative frequency (density) for each class

$$h(x) = \frac{f_i}{n(c_i - c_{i-1})}$$
, for $c_{i-1} < x \leqslant c_i$, $i = 1, 2, ..., k$.

5 Suggested $k \approx R/h$, $h = 2IQR/n^{1/3}$.

```
8.05 8.31 8.51 8.56 8.66 8.76 8.85 8.90 9.20 9.34 8.24 8.36 8.51 8.57 8.69 8.79 8.85 8.93 9.21 9.40 8.27 8.38 8.51 8.58 8.69 8.79 8.85 8.98 9.21 9.41 8.27 8.41 8.55 8.58 8.71 8.82 8.88 9.08 9.25 9.42 8.29 8.43 8.56 8.59 8.73 8.82 8.88 9.15 9.26 9.63
```

- ① n = 50, Min = 8.05, Max = 9.63, R = Max Min = 1.58, IQR = 0.4475;
- 2 $h = \lceil 2 \frac{IQR}{n^{1/3}} \rceil = 0.25. \ k = \lceil \frac{R}{h} \rceil = 7.$
- Ohoose $c_0 = 7.995$. $c_i = c_0 + ih$, i = 1, ..., k. The class boundaries are 7.995 8.245 8.495 8.745 8.995 9.245 9.495 9.745
- Oalculate frequency f_i and density $h(x)_{i} \rightarrow \{a, b, c\} \rightarrow \{a, b\} \rightarrow \{a, b\}$

```
8.05 8.31 8.51 8.56 8.66 8.76 8.85 8.90 9.20 9.34 8.24 8.36 8.51 8.57 8.69 8.79 8.85 8.93 9.21 9.40 8.27 8.38 8.51 8.58 8.69 8.79 8.85 8.98 9.21 9.41 8.27 8.41 8.55 8.58 8.71 8.82 8.88 9.08 9.25 9.42 8.29 8.43 8.56 8.59 8.73 8.82 8.88 9.15 9.26 9.63
```

- **1** n = 50, Min = 8.05, Max = 9.63, R = Max Min = 1.58, IQR = 0.4475;
- 2 $h = \lceil 2 \frac{IQR}{n^{1/3}} \rceil = 0.25. \ k = \lceil \frac{R}{h} \rceil = 7.$
- Ohoose $c_0 = 7.995$. $c_i = c_0 + ih$, i = 1, ..., k. The class boundaries are 7.995 8.245 8.495 8.745 8.995 9.245 9.495 9.745

```
8.05 8.31 8.51 8.56 8.66 8.76 8.85 8.90 9.20 9.34 8.24 8.36 8.51 8.57 8.69 8.79 8.85 8.93 9.21 9.40 8.27 8.38 8.51 8.58 8.69 8.79 8.85 8.98 9.21 9.41 8.27 8.41 8.55 8.58 8.71 8.82 8.88 9.08 9.25 9.42 8.29 8.43 8.56 8.59 8.73 8.82 8.88 9.15 9.26 9.63
```

- n = 50, Min = 8.05, Max = 9.63, R = Max Min = 1.58, IQR = 0.4475;
- **2** $h = \lceil 2 \frac{IQR}{n^{1/3}} \rceil = 0.25. \ k = \lceil \frac{R}{h} \rceil = 7.$
- ① Choose $c_0 = 7.995$. $c_i = c_0 + ih$, i = 1, ..., k. The class boundaries are 7.995 8.245 8.495 8.745 8.995 9.245 9.495 9.745
- O Calculate frequency f_i and density $h(x)_{i} \rightarrow \{0\}_{i} + \{0\}$

```
8.05 8.31 8.51 8.56 8.66 8.76 8.85 8.90 9.20 9.34 8.24 8.36 8.51 8.57 8.69 8.79 8.85 8.93 9.21 9.40 8.27 8.38 8.51 8.58 8.69 8.79 8.85 8.98 9.21 9.41 8.27 8.41 8.55 8.58 8.71 8.82 8.88 9.08 9.25 9.42 8.29 8.43 8.56 8.59 8.73 8.82 8.88 9.15 9.26 9.63
```

- n = 50, Min = 8.05, Max = 9.63, R = Max Min = 1.58, IQR = 0.4475;
- 2 $h = \lceil 2 \frac{IQR}{n^{1/3}} \rceil = 0.25. \ k = \lceil \frac{R}{h} \rceil = 7.$
- **3** Choose $c_0 = 7.995$. $c_i = c_0 + ih$, i = 1, ..., k. The class boundaries are 7.995 8.245 8.495 8.745 8.995 9.245 9.495 9.745
- Calculate frequency f_i and density $h(x)_{i} \rightarrow \{a\} \rightarrow \{a\}$

```
8.05 8.31 8.51 8.56 8.66 8.76 8.85 8.90 9.20 9.34 8.24 8.36 8.51 8.57 8.69 8.79 8.85 8.93 9.21 9.40 8.27 8.38 8.51 8.58 8.69 8.79 8.85 8.98 9.21 9.41 8.27 8.41 8.55 8.58 8.71 8.82 8.88 9.08 9.25 9.42 8.29 8.43 8.56 8.59 8.73 8.82 8.88 9.15 9.26 9.63
```

- n = 50, Min = 8.05, Max = 9.63, R = Max Min = 1.58, IQR = 0.4475;
- 2 $h = \lceil 2 \frac{IQR}{n^{1/3}} \rceil = 0.25. \ k = \lceil \frac{R}{h} \rceil = 7.$
- **3** Choose $c_0 = 7.995$. $c_i = c_0 + ih$, i = 1, ..., k. The class boundaries are 7.995 8.245 8.495 8.745 8.995 9.245 9.495 9.745
- Calculate frequency f_i and density h(x)

```
8.05 8.31 8.51 8.56 8.66 8.76 8.85 8.90 9.20 9.34 8.24 8.36 8.51 8.57 8.69 8.79 8.85 8.93 9.21 9.40 8.27 8.38 8.51 8.58 8.69 8.79 8.85 8.98 9.21 9.41 8.27 8.41 8.55 8.58 8.71 8.82 8.88 9.08 9.25 9.42 8.29 8.43 8.56 8.59 8.73 8.82 8.88 9.15 9.26 9.63
```

- n = 50, Min = 8.05, Max = 9.63, R = Max Min = 1.58, IQR = 0.4475;
- 2 $h = \lceil 2 \frac{IQR}{n^{1/3}} \rceil = 0.25. \ k = \lceil \frac{R}{h} \rceil = 7.$
- **3** Choose $c_0 = 7.995$. $c_i = c_0 + ih$, i = 1, ..., k. The class boundaries are 7.995 8.245 8.495 8.745 8.995 9.245 9.495 9.745
- **3** Calculate frequency f_i and density h(x)

Measure of Central Tendency for the Sample Range and The Sample Variance Quartiles & Box plot Relative Frequency and Histogram

Frequency Table

	Frequency Table					
	Class	iss Interval Frequency Rel. Freq. Clas				
i	c(i-1)	c(i)	fi	h(x)	Mark	
1	7.995	8.245	2	0.16	8.12	
2	8.245	8.495	8	0.64	8.37	
3	8.495	8.745	15	1.2	8.62	
4	8.745	8.995	13	1.04	8.87	
5	8.995	9.245	5	0.4	9.12	
6	9.245	9.495	6	0.48	9.37	
7	9.495	9.745	1	0.08	9.62	

Histogram

Example 7. Heights of 5000 female students

Laura Barrad	Harana Barrad	F	Class	Del Care
Lower Bound	Upper Bound	Frequency	Class	Rel. Freq.
XL	XU	f	Mark	Density
59	60	0	59.5	0
60	61	90	60.5	0.018
61	62	170	61.5	0.034
62	63	460	62.5	0.092
63	64	750	63.5	0.15
64	65	970	64.5	0.194
65	66	760	65.5	0.152
66	67	640	66.5	0.128
67	68	440	67.5	0.088
68	69	320	68.5	0.064
69	70	220	69.5	0.044
70	71	180	70.5	0.036
71	72	0	71.5	0
Total		5000		1

Relative frequency density for class i with frequency f_i is

 $\frac{f_i}{Nw}$

where w is the class width

Step 1: Make a frequency table in Excel:

Lower Bound	Upper Bound	Frequency	Class	Rel. Freq.
XL	XU	f	Mark	Density
59	60	0	59.5	0
60	61	90	60.5	0.018
61	62	170	61.5	0.034
62	63	460	62.5	0.092
63	64	750	63.5	0.15
64	65	970	64.5	0.194
65	66	760	65.5	0.152
66	67	640	66.5	0.128
67	68	440	67.5	0.088
68	69	320	68.5	0.064
69	70	220	69.5	0.044
70	71	180	70.5	0.036
71	72	0	71.5	0
Total		5000		1

Step 2: Highlight column "Relative Frequency Density", then insert a 2-d column chart:

Step 3: Edit the chart: reduce the gap width to 0% and replace "the Horizontal (Category) Axis Lable" with the "class mark" column.

Step 4: Right click the chart and choose "Select Data...", add a new series using "Relative Frequency Density" column.

Step 5: Right click the chart on the new column chart(one of the dark red bars) and choose "Change Series Chart Type...", select a line chart.

Relative Frequency Density Histogram and Polygon

Relative Frequency Density Histogram and Polygon

Total area of all shaded rectangles equals 1.

The smooth curve is called the *probability density function* of random variable X, Height of randomly selected female, student. $S_{3,3,3}$

Relative Frequency Density Histogram and Polygon

Total area of all shaded rectangles equals 1. The smooth curve is called the *probability density function* of random variable *X*, Height of randomly selected female student.