

High Reliability Isolated Dual-Channel Gate Driver

Datasheet (EN) 1.1

Product Overview

NSI6602V is a family of high reliability isolated dualchannel gate driver ICs which can be designed to drive power transistor up to 2MHz switching frequency. Each output could source 6A and sink 8A peak current with fast 33ns propagation delay and 6ns maximum delay matching.

The NSI6602V provides 1600Vrms isolation per UL1577 in 4-mm x 4-mm LGA13 package, 2500Vrms isolation per UL1577 in 5-mm x 5-mm LGA13 package, 3000Vrms isolation in SOP16 package, and 5700Vrms isolation in SOW16 or SOW14 package. System robustness is supported by 150kV/us typical common-mode transient immunity (CMTI).

The driver operates with a maximum supply voltage of 25V, while the input-side accepts from 3V to 18V supply voltage. Under voltage lock-out (UVLO) protection is supported by all the power supply voltage pins.

Key Features

- Isolated dual channel driver
- Input side supply voltage: 3V to 18V
- Driver side supply voltage: up to 25V with UVLO
- 6A peak source and 8A peak sink output
- High CMTI: ±150kV/us typical
- 33ns typical propagation delay
- 6ns maximum delay matching
- · 8ns maximum pulse width distortion
- Programmable deadtime
- · Accepts minimum input pulse width 20ns
- Operation temperature: -40°C~125°C
- RoHS & REACH Compliant

Safety Regulatory Approvals

- UL recognition:
 - LGA13 (4x4mm): 1600V_{rms} for 1 minute per UL1577
 - LGA13 (5x5mm): 2500V_{ms} for 1 minute per UL1577
 - SOW16/SOW14: 5700V_{rms} for 1 minute per UL1577
 - SOP16: 3000V_{rms} for 1 minute per UL1577
- DIN EN IEC 60747-17 (VDE 0884-17)
- CSA component notice 5A
- CQC certification per GB4943.

Applications

- Isolated DC-DC and AC-to-DC power supplies in server, telecom, and industry
- DC-to-AC solar inverters
- Motor drives and EV charging
- UPS and battery chargers

Functional Block Diagram

Figure 0.1 NSI6602V Block Diagram

NSI6602V

INDEX

1. F	PIN CONFIGURATION AND FUNCTIONS	3
2. <i>I</i>	ABSOLUTE MAXIMUM RATINGS	4
3. F	RECOMMENDED OPERATING CONDITIONS	5
4. 1	THERMAL INFORMATION	5
5. \$	SPECIFICATIONS	6
5.1	. ELECTRICAL CHARACTERISTICS	6
5.2		
5.3	3. Typical Performance Characteristics	7
5.4	l. Parameter Measurement Information	11
6. H	HIGH VOLTAGE FEATURE DESCRIPTION	13
6.1	Insulation Characteristics	13
6.2		
6.3		
7. F	FUNCTION DESCRIPTION	18
7.1	. Overview	18
7.2		
7.3	· · ·	
7.4	- Programmable Deadtime (DT pin)	19
7	7.4.1. Pulling the DT Pin to VDDI	19
7	7.4.2. DT Pin Left Open or Connected to a Programming Resistor between DT and GND Pins	19
7.5	5. ESD Protection	20
8. <i>i</i>	APPLICATION NOTE	21
8.1	. Typical Application Circuit	21
8.2	PCB Layout	21
9. F	PACKAGE INFORMATION	22
10.	ORDERING INFORMATION	28
11.	TAPE AND REEL INFORMATION	29
12.	REVISION HISTORY	31

1. Pin Configuration and Functions

Figure 1.1 NSI6602V LGA13 Package

Figure 1.2 NSI6602V SOW16/ SOP16 Package

Figure 1.3 NSI6602V SOW14 Package

Table 1.1 NSI6602V Pin Configuration and Description

	PIN	NO.		SYMBOL	FUNCTION
LGA13	SOW16	SOP16	SOW14	SYMBUL	FUNCTION
1	4	4	4	GND	Input-side ground reference.
2	1	1	1	INA	TTL compatible input signal for channel A with internal pull down to GND. It is recommended to connect this pin to GND if not used.
3	2	2	2	INB	TTL compatible input signal for channel B with internal pull down to GND. It is recommended to connect this pin to GND if not used.
4, 7	3,8	3,8	3,8	VDDI	Input-side supply voltage. It is recommended to place a bypass capacitor from this pin to GND as close as possible.
5	5	5	5	DISABLE	Disables the isolator inputs and driver outputs if asserted high, enables if asserted low or left open. It is recommended to connect this pin to GND if not used.
6	6	6	6	DT	Programmable deadtime control. To allow the outputs overlapping by connecting DT to VDDI. Place a $1k\Omega$ to $200k\Omega$ resistor (RDT) between DT and GND to adjust deadtime following: tDT (ns) = 10 x RDT ($k\Omega$). It is recommended to parallel a low ESR capacitor, e.g., 2.2nF or above.
8	9	9	9	GNDB	Ground for output channel B
9	10	10	10	OUTB	Output gate driver for channel B
10	11	11	11	VDDB	Supply voltage for channel B
11	14	14	12	GNDA	Ground for output channel A
12	15	15	13	OUTA	Output gate driver for channel A
13	16	16	14	VDDA	Supply voltage for channel A
/	7,12,13	7,12,13	7	NC	Not connected

2. Absolute Maximum Ratings

Parameters	Symbol	Min	Max	Unit
Input Side Supply Voltage	VDDI to GNDI	-0.3	24	V
Output Side Supply Voltage	VDDA to GNDA, VDDB to GNDB	-0.3	30	V
Input Signal Voltage	INA, INB, DIS, DT to GNDI -0.3 V _{VDDI} +0.3	V		
Input Signal Voltage	INA, INB, DIS, DT to GNDI, Transient for 50ns	-5	-0.3 24 -0.3 30 -0.3 V _{VDDI} +0.3 -5 V _{VDDA} +0.3	V
Output Signal Valtage	OUTA to GNDA, OUTB to GNDB	VDDI to GNDI -0.3 24 VDDA to GNDA, VDDB to GNDB -0.3 30 INA, INB, DIS, DT to GNDI -0.3 V _{VDDI} +0.3 NB, DIS, DT to GNDI, Transient for 50ns -5 V _{VDDI} +0.3 OUTA to GNDA, OUTB to GNDB -0.3 V _{VDDA} +0.3 to GNDA, OUTB to GNDB, Transient for -2 V _{VDDA} +0.3	V	
Output Signal Voltage	OUTA to GNDA, OUTB to GNDB, Transient for 200ns	-2		V

Parameters	Symbol	Min	Max	Unit
Channel A to Channel B Voltage	GNDA to GNDB in LGA13 (5 x 5) package		700	V
	GNDA to GNDB in SOP16&SOW16 package		1500	V
	GNDA to GNDB in SOW14 package	A13 (5 x 5) package 700 V P16&SOW16 package 1500 V SOW14 package 1850 V -40 150 °C	V	
Junction Temperature	T _J	-40	150	°C
Storage Temperature	$T_{\rm stg}$	-65	150	°C

3. ESD RATINGS

	Ratings	Value	Unit
	Human body model (HBM), per AEC-Q100-002-RevD		
Electrostatic discharge	All pins	±4.0	kV
Electrostatic discharge	Charged device model (CDM), per AEC-Q100-011-RevB		
	All pins	±1500	V

4. Recommended Operating Conditions

Parameters	Symbol	Min	Max	Unit
Input Side Supply Voltage	VDDI to GNDI	3	18	V
Driver Side Supply Voltage	VDDA to GNDA, VDDB to GNDB	V _{VDDA_ON} , V _{VDDB_ON}	25	V
Input Signal Voltage	INA, INB, DIS, DT	0	V_{VDDI}	V
Ambient Temperature	Ta	-40	125	°C

5. Thermal Information

Parameters	Symbol	LGA13	SOW16/SOW14	SOP16	Unit
Junction-to-ambient thermal resistance ¹⁾	R_{JA}	209.5	97.0	150.5	°C/W
Junction-to-case(top) thermal resistance ²⁾	R _{JC} (top)	48.4	23.3	21.2	°C/W
Junction-to-top characterization parameter ³⁾	Ψ _{JT}	41.8	35.8	52.3	°C/W
Junction-to-board characterization parameter ³⁾	Ψ_{JB}	31.9	39.0	55.6	°C/W

- 1) Standard JESD51-3 Low Effective Thermal Conductivity Test Board (1s) in an environment described in JESD51-2a.
- 2) Standard JESD51-3 Low Effective Thermal Conductivity Test Board (1s) by transient dual interface test method described in JESD51-14.
- 3) Obtained by Simulating in an environment described in JESD51-2a.

6. Specifications

6.1. Electrical Characteristics

VDDI=3.3V or 5V, VDDA=VDDB=15V, Ta=-40°C to 125°C. Unless otherwise noted, Typical values are at Ta=25°C.

Parameter	Symbol	Min	Тур	Max	Unit	Comments
Input Side Supply						
VDDI Quiescent Current	I _{VDDIQ}		1.0	2	mA	INA=0, INB=0
VDDI Operating Current	I _{VDDI}		1.6		mA	Input frequency 500kHz
VDDI UVLO Rising Threshold	V _{VDDI_ON}	2.5	2.7	2.9	٧	
VDDI UVLO Falling Threshold	V _{VDDI_OFF}	2.3	2.5	2.7	V	
VDDI UVLO Hysteresis	$V_{\text{VDDI_HYS}}$		0.2		٧	
Output Side Supply						
VDDA/B Quiescent Current, per Channel	Ivddaq, Ivddbq		1	2	mA	INA=0, INB=0
VDDA/B Operation Current, per Channel	IVDDA, IVDDB		3		mA	100pF, 500kHz, VDDx=15V
VDDA/B UVLO Rising Threshold	Vvdda_on, Vvddb_on	5.7	6.15	6.5	٧	NSI6602VA (6V)
VDDA/B UVLO Falling Threshold	V _{VDDA_OFF} , V _{VDDB_OFF}	5.4	5.85	6.2	٧	
VDDA/B UVLO Hysteresis	V _{VDDA_HYS} , V _{VDDB_HYS}		0.3		V	
VDDA/B UVLO Rising Threshold	Vvdda_on, Vvddb_on	8.1	8.5	8.9	V	NSI6602VB (8V)
VDDA/B UVLO Falling Threshold	V _{VDDA_OFF} , V _{VDDB_OFF}	7.6	8.0	8.4	٧	
VDDA/B UVLO Hysteresis	Vvdda_hys, Vvddb_hys		0.5		٧	
VDDA/B UVLO Rising Threshold	Vvdda_on, Vvddb_on	12.7	13.2	13.7	٧	NSI6602VC (12V)
VDDA/B UVLO Falling Threshold	V _{VDDA_OFF} , V _{VDDB_OFF}	11.7	12.2	12.7	٧	
VDDA/B UVLO Hysteresis	V _{VDDA_HYS} , V _{VDDB_HYS}		1		V	
VDDA/B UVLO Rising Threshold	Vvdda_on, Vvddb_on	3.9	4.2	4.4	V	NSI6602VD (4V)
VDDA/B UVLO Falling Threshold	V _{VDDA_OFF} , V _{VDDB_OFF}	3.5	3.8	4.1	٧	
VDDA/B UVLO Hysteresis	V _{VDDA_HYS} , V _{VDDB_HYS}		0.4		٧	
Input Side Characteristic						
Input Pin Pull Down Resistance, INA, INB	RINA_PD, RINB_PD		100		kΩ	
Input Pin Pull Down Resistance, DIS (EN)	$R_{ extsf{DIS_PD}}$		100		kΩ	
Logic High Input Threshold	V _{INA_H} , V _{INB_H} , V _{DIS_H}		1.8	2	V	
Logic Low Input Threshold	V _{INA_L} , V _{INB_L} , V _{DIS_L}	0.8	1.1		٧	
Input Hysteresis	VINA_HYS, VINB_HYS, VDIS_HYS		0.7		V	

Parameter	Symbol	Min	Тур	Max	Unit	Comments
Output Side Characteristic						
Logic High Output Voltage	V _{VDDA} -V _{OUTA_H} , V _{VDDB} - V _{OUTB_H}		0.1		V	I _{out} = 100mA
Logic Low Output Voltage	V _{OUTA_L} , V _{OUTB_L}		35		mV	I _{out} = -100mA
Output Source Resistance	R _{OUTA_} H, R _{OUTB_} H		1		Ω	I _{out} = 100mA
Output Sink Resistance	Routa_L, Routb_L		0.35		Ω	I _{out} = -100mA
Peak Output Source Current	I _{OUTA+} , I _{OUTB+}		6		А	
Peak Output Sink Current	louta-, loutb-		8		А	

6.2. Switching Characteristics

VDDI=3.3V or 5V, VDDA=VDDB=15V, Ta=-40°C to 125°C. Unless otherwise noted, Typical values are at Ta=25°C.

Parameter	Symbol	Min	Тур	Max	Unit	Comments
Minimum Pulse Width	t _{PWmin}		15	20	ns	
Propagation Delay	t _{PDHL} , t _{PDLH}		33	45	ns	
Pulse Width Distortion t _{PDLH} -t _{PDHL}	t _{PWD}			8	ns	
Channel to Channel Delay Matching	t _{DMLH} , t _{DMHL}			6	ns	
Programmed Deadtime	t _{DT}	160	200	240	ns	$t_{DT}(ns)=10*R(k\Omega); Test for R = 20k\Omega$
Output Rise Time (10% to 90%)	$t_{\scriptscriptstyle{R}}$		15		ns	CL=1.8nF, VDDx=15V
Output Fall Time (90% to 10%)	t _F		15		ns	CL=1.8nF, VDDx=15V
Shutdown Time from Disable True	t _{DIS}		50	80	ns	
Recovery Time from Disable False	t _{EN}		50	80	ns	
VDDI Power-up Time Delay (Time from VDDI = V _{VDDI_ON} to OUTA/B = INA/B)	t _{start_} VDDI		12		us	INA or INB tied to VDDI
VDDA/B Power-up Time Delay (Time from VDDA/B = V _{VDD_ON} to OUTA/B = INA/B)	t _{start_} VDDA , t _{start_} VDDB		18		us	INA or INB tied to VDDI C _{OUTA/B} =1.8nF
Common Mode Transient Immunity	CMTI	100	150		kV/us	verified by design

6.3. Typical Performance Characteristics

VDDI=3.3V or 5V, VDDA=VDDB=15V, TA = 25°C. Output has no load unless otherwise noted.

Figure 6.1 VDDI Quiescent Current vs Temperature

Figure 6.3 VDDA/B Quiescent Current vs Temperature

Figure 6.5 Output Resistance vs Temperature

Figure 6.2 VDDI Operating Current vs Temperature

Figure 6.4 VDDA/B Operating Current vs Temperature

Figure 6.6 Typical Rise Time & Fall Time vs Temperature

Figure 6.7 VDDI UVLO Threshold vs Temperature

Figure 6.9 6V VDDA/B UVLO Threshold vs Temperature

Figure 6.11 INA/INB/DIS Threshold vs Temperature

Figure 6.8 VDDI UVLO Hysteresis vs Temperature

Figure 6.10 6V VDDA/B UVLO Hysteresis vs Temperature

Figure 6.12 Propagation Delay vs Temperature

Figure 6.13 Propagation Delay Matching vs Temperature

Figure 6.15 Disable & Enable Time vs Temperature

Figure 6.17 VDDI power up delay vs Temperature

Figure 6.14 Pulse Width Distortion vs Temperature

Figure 6.16 VDDA/B power up delay vs Temperature

Figure 6.18 Deadtime (RDT=20k Ω) vs Temperature

Figure 6.19 Peak current vs Temperature

6.4. Parameter Measurement Information

Figure 6.20 Propagation Delay and Channel to Channel Delay Match Time, connect DT to VDDI

Figure 6.21 Channel to Channel Delay Match Test Circuit

Figure 6.22 Disable Time and Enable Time

Figure 6.23 Deadtime, Determined by RDT

Figure 6.24 Common-Mode Transient Immunity Test Circuit

7. High Voltage Feature Description

7.1. Insulation Characteristics

Description	Test Condition	l	Unit			
			LGA 13 (5x5)	SOW16/14	SOP16	
Min. External Air Gap (Clearance)		CLR	3.5	8	4	mm
Min. External Tracking (Creepage)		CPG	3.5	8	4	mm
Distance through the Insulation		DTI		28		um
Comparative Tracking Index	DIN EN 60112 (VDE 0303- 11)	СТІ	>600			
Material Group	IEC 60664-1			1		
	For Rated Mains Voltage ≤ 150Vrms		I to III	I to IV	I to IV	
Overvoltage Category per IEC60664-	For Rated Mains Voltage ≤ 300Vrms		l to II	I to IV	I to III	
Overvoltage Category per IEC60664-1	For Rated Mains Voltage ≤ 600Vrms		ı	I to IV	l to II	
	For Rated Mains Voltage ≤ 1000Vrms		/	l to III	/	
Climatic Category				40/125/21		
Pollution Degree	per DIN VDE 0110, Table 1			2		
Maximum Warking Indiation Valtage	AC voltage	V	560	1000	700	V_{RMS}
maximum working isolation voltage	DC voltage	V_{IOWM}	792	1414	4 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	V_{DC}
Maximum Repetitive Isolation Voltage		V_{IORM}	792	1414	990	V_{peak}
	Method a, after Input/output safety test subgroup 2/3, Vini=V _{IOTM} , t _{ini} = 60s, V _{pd(m)} =1.2*V _{IORM} , t _m =10s.		/		/	pC
Material Group Overvoltage Category per IEC60664-1 Climatic Category Pollution Degree Maximum Working Isolation Voltage Maximum Repetitive Isolation	Method a, after environmental tests subgroup 1, Vini=V _{IOTM} , t _{ini} =60s, V _{pd(m)} =1.6*V _{IORM} , t _m =10s	q_{pd}	/	<5	/	pC
	Method b, routine test (100% production) and preconditioning (type test); V _{ini} =1.2*V _{IOTM} , t _{ini} =1s, V _{pd (m)} =1.875*V _{IORM} , t _m =1s		/		/	рC

Description	Test Condition	Symbol	ν	/alue		Unit
	(method b1) or $V_{pd(m)}$ =Vini, t_m = t_{ini} (method b2)					
	$\label{eq:method_a} \begin{array}{ll} \text{Method} & \text{a,} & \text{after} \\ \text{Input/output safety test} \\ \text{subgroup 2/3,} \\ \text{Vini=V}_{\text{IOTM}}, & t_{\text{ini}} = 60\text{s,} \\ \text{V}_{\text{pd(m)}} = 1.2^* \text{V}_{\text{IORM}}, t_{\text{m}} = 10\text{s} \end{array}$			/		pC
Apparent Charge	$\begin{array}{llllllllllllllllllllllllllllllllllll$	q_{pd}	<5	/	<5	pC
	Method b, routine test (100% production) and preconditioning (type test); V _{ini} =1.2*V _{IOTM} , t _{ini} =1s V _{pd(m)} =1.5*V _{IORM} , t _m =1s			/	4242 V 3500 V	pC
	(method b1) or $V_{pd(m)}$ =Vini, t _m =t _{ini} (method b2)					
Maximum Transient Isolation Voltage	t = 60 sec	V_{IOTM}	3535	8000	4242	V_{peak}
Maximum impulse voltage	Tested in air, 1.2/50-us waveform per IEC62368-1	V_{imp}	/	6000	3500	V _{PEAK}
Maximum Surge Isolation Voltage	Test method per IEC62368-1, 1.2/50us waveform, VIOSM ≥ VIMP × 1.3	V _{IOSM}	3500	10000	6000	V_{peak}
	VIO = 500 V, Tamb = 25 °C			>10 ¹²	•	Ω
Isolation Resistance	VIO = 500 V, Tamb = T _s	R _{IO}		>109		Ω
	VIO = 500 V, 100 °C ≤ Tamb ≤ 125 °C			>1011		Ω
Isolation Capacitance	f=1MHz	Cıo		1.2		pF
Insulation Specification per UL1577			1			1
Withstand Isolation Voltage	$V_{TEST} = 1.2 \times V_{ISO}$, $t = 1$ sec, 100% production test	V _{ISO}	2500	5700	3000	V _{rms}

7.2. Safety-Limiting Values

Basic isolation safety-limiting values as outlined in VDE-0884-11 of NSI6602Vx-xLAR (LGA13)

Description	Test Condition	Side	Value	Unit
Safety Supply Power	$R_{\theta JA} = 209.5 \text{ °C/W}^{1)}, T_J = 150 \text{ °C}, T_A = 25 \text{ °C}$	Input	12	mW
		Driver A, Driver B	293	mW

		Total	598	mW
Safety Supply Current	$R_{\theta JA} = 209.5 \text{ °C/ W}^1$, VDDA/B = 12V, $T_J = 150 \text{ °C}$, $T_A = 25 \text{ °C}$	Driver A, Driver B	24.4	mA
	$R_{\theta JA} = 209.5 ^{\circ}\text{C} / W^{1)}, \text{VDDA/B} = 25\text{V}, T_{J} = 150 ^{\circ}\text{C}, T_{A} = 25 ^{\circ}\text{C}$	Driver A, Driver B	11.7	mA
Safety Temperature ²⁾			150	°C

- 1) Calculate with the junction-to-air thermal resistance, R_{BJA}, of LGA13 package (*Thermal Information Table*) which is that of a device installed on a low effective thermal conductivity test board (1s) according to JESD51-3.
- 2) The maximum safety temperature has the same value as the maximum junction temperature (T_J) specified for the device.

Figure 7.1 NSI6602Vx-DLAR Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-17.

Reinforced isolation safety-limiting values as outlined in VDE-0884-11 of NSI6602Vx-xSWxR (SOW16/SOW14)

Description	Test Condition	Side	Value	Unit
			12	mW
Safety Supply Power	$R_{\theta JA} = 97 \text{ °C/W}^{1)}, T_J = 150 \text{ °C}, T_A = 25 \text{ °C}$	Driver A, Driver B	638	mW
		Total	1288	mW
Safaty Supply Current	$R_{\theta JA} = 97 ^{\circ}\text{C} / W^{1)}, \text{VDDA/B} = 12\text{V}, \text{T}_{J} = 150 ^{\circ}\text{C}, \text{T}_{A} = 25 ^{\circ}\text{C}$	Driver A, Driver B	53.1	mA
Safety Supply Current	$R_{\theta JA} = 97 \text{ °C/ W}^{1)}$, VDDA/B = 25V, $T_J = 150 \text{ °C}$, $T_A = 25 \text{ °C}$	Driver A, Driver B	25.5	mA
Safety Temperature ²⁾			150	°C

- 1) Calculate with the junction-to-air thermal resistance, R_{0JA}, of SOW16/SOW14 package (*Thermal Information Table*) which is that of a device installed on a low effective thermal conductivity test board (1s) according to JESD51-3.
- 2) The maximum safety temperature has the same value as the maximum junction temperature (T_J) specified for the device.

Figure 7.2 NSI6602x-DSWR Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-17. Basic isolation safety-limiting values as outlined in VDE-0884-11 of NSI6602Vx-xSPNR (SOP16)

Description	Test Condition	Side	Value	Unit
		Input	12	mW
Safety Supply Power	$R_{\theta JA} = 150.5 \text{ °C/W}^{1)}, T_J = 150 \text{ °C}, T_A = 25 \text{ °C}$	Driver A, Driver B	409	mW
		Total	830	mW
Safaty Supply Current	$R_{\theta JA} = 150.5~^{\circ}\text{C}/~\text{W}^{1)}, \text{VDDA/B} = 12\text{V}, \text{T}_{J} = 150~^{\circ}\text{C}, \text{T}_{A} = 25~^{\circ}\text{C}$	Driver A, Driver B	34.0	mA
Safety Supply Current	$R_{\theta JA} = 150.5 \text{ °C/ W}^{1)}, VDDA/B = 25V, T_J = 150 \text{ °C}, T_A = 25 \text{ °C}$	Driver A, Driver B	16.3	mA
Safety Temperature ²⁾			150	°C

- 1) Calculate with the junction-to-air thermal resistance, R_{0JA}, of SOP16 package (*Thermal Information Table*) which is that of a device installed on a low effective thermal conductivity test board (1s) according to JESD51-3.
- 2) The maximum safety temperature has the same value as the maximum junction temperature (T_J) specified for the device.

Figure 7.3 NSI6602Vx-DSPNR Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-17.

7.3. Safety-Related Certifications

The NSI6602Vx-xLAR(LGA13 5x5mm) are approved or pending approval by the organizations listed in table.

U	IL	VDE	coc
UL1577 Component Recognition Program	Approved under CSA Component Acceptance Notice 5A	Certified according to DIN VDE V 0884-17	Certified according to GB4943.1
Single Protection, 2500Vrms Isolation voltage	Single Protection, 2500Vrms Isolation voltage	Basic Insulation at V _{IORM} =792V _{PEAK} V _{IOSM} =3500V _{PEAK} V _{IOTM} =3535V _{PEAK}	Basic insulation
E500602	E500602	File(pending)	CQC21001289933

The NSI6602Vx-xSWxR(SOW16/SOW14) are approved or pending approval by the organizations listed in table.

U	IL .	VDE	coc
UL 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice 5A	Certified according to DIN EN IEC 60747-17 (VDE 0884-17)	Certified according to GB4943.1
Single Protection, 5700Vrms Isolation voltage	Single Protection, 5700Vrms Isolation voltage	Reinforced insulation at V _{IORM} =1414V _{PEAK} V _{IOSM} =10000V _{PEAK} V _{IOTM} =8000V _{PEAK}	Reinforced insulation
E500602	E500602	40052820	CQC21001289932

The NSI6602Vx-xSPNR(SOP16) are approved or pending approval by the organizations listed in table.

U	L	VDE	cQc
UL 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice 5A	Certified according to DIN VDE V 0884-17	Certified according to GB4943.1
Single Protection, 3000Vrms Isolation voltage	Single Protection, 3000Vrms Isolation voltage	Basic insulation at V _{IORM} =990V _{PEAK} V _{IOSM} =6000V _{PEAK} V _{IOTM} =4242V _{PEAK}	Basic insulation
E500602	E500602	40057024	CQC21001289932

8. Function Description

8.1. Overview

NSI6602V is a high reliability dual channel isolated gate driver which could be designed in variety switching power and motor drive topologies. NSI6602V has some useful protections, such as under voltage lock out (UVLO) for both input and output supply, a disable pin, deadtime control, default low output as input is floating. The functional circuit block diagram is shown as below:

Figure 8.1 Functional Block Diagram

8.2. Undervoltage Lockout (UVLO)

The NSI6602V has an internal under voltage lock out (UVLO) protection on both input and output supply circuit blocks. The driver output is held low by an active clamp circuit when the supply voltage of VDDI or VDDA/VDDB is lower than V_{VDD_ON} at power-up status or lower than V_{VDD_OFF} after power-up, regardless of the status of the input pins.

The VDDI and VDDA/B ULVO protections have hysteresis (V_{VDD_HYS}) to prevent chatter noise from VDD supply and allow small drops in supply power which are usually happened in startup.

8.3. Input and Output Logic Table

When the device is power up, setting the DIS pin high can shut down both outputs simultaneously. Left open or grounding the DIS pin can allow the device operating normally.

VDDI	VDDA/B	DIS	1	N	OUT		NOTE ¹⁾
status	status	DIS	Α	В	Α	В	NOIE
PU	PU	L or O	L	Н	L	Н	If Deadtime function is used, output transits
PU	PU	L or O	Н	L	Н	L	to high after the deadtime expires.
PU	PU	L or O	Н	Н	Н	Н	DT pin is pulled to VDDI.
PU	PU	L or O	Н	Н	L	L	DT is left open or programmed with R_{DT} .
PU	PU	L or O	L	L	L	L	
PU	PU	L or O	0	0	L	L	
PU	PU	Н	Х	Х	L	L	
PU	PD	Х	Х	Х	L	L	
PD	PU	Х	Х	Х	L	L	

Table 8.1 Output status vs Input and Power status

8.4. Programmable Deadtime (DT pin)

8.4.1. Pulling the DT Pin to VDDI

This allows outputs match inputs completely and no deadtime is asserted.

8.4.2. DT Pin Left Open or Connected to a Programming Resistor between DT and GND Pins

If the DT pin is left open, the deadtime duration (t_{DT}) is set to <35ns. t_{DT} can be programmed by placing a resistor, R_{DT} , between the DT pin and GND. The appropriate R_{DT} value can be determined from Equation 1, where R_{DT} is in $k\Omega$ and t_{DT} in ns:

$$t_{DT} \approx 10 \times R_{DT} \tag{1}$$

The recommended value of R_{DT} is between from $1k\Omega$ to $200k\Omega$. The steady state voltage at DT pin is about 0.8V and the DT pin current will be less than 10uA when R_{DT} = $100k\Omega$. It is also recommended to parallel a ceramic capacitor, for example 2.2nF, with R_{DT} to achieve better noise immunity.

The programmed deadtime is activated by the input signal's falling edge to prevent shoot-through when the device is designed in an application of high side and low side driver. The details of input and output logic with deadtime are shown as Figure 7.2:

¹⁾ PD= Power Down; PU= Power Up; H= Logic High; L= Logic Low; O= Left Open; X= Irrelevant.

Figure 8.2 Input and Output Logic with the Programmed Deadtime

Condition	Result
A: INA goes high, and INB goes low.	OUTB goes low immediately, then OUTA goes high after the programmed deadtime which is assigned at INB goes low.
B: INA goes low, and INB goes high.	OUTA goes low immediately, then OUTB goes high after the programmed deadtime which is assigned at INA goes low.
C: INB goes low, then INA goes high after deadtime.	OUTB goes low immediately, then OUTA goes high immediately when INA goes high.
D: INA goes low, then INB goes high before deadtime.	OUTA goes low immediately, then OUTB goes high after deadtime
E: INA goes high, INB is still high.	OUTB goes low immediately and OUTA keeps low.
F: INA is still high, INB goes low.	OUTA goes high after deadtime while INB is low and OUTB keeps low.
G: INA is still high, INB goes high after deadtime	OUTA goes low immediately and OUTB keeps low.
H: INA goes low then goes high before deadtime while INB is still high.	OUTA keeps low and OUTB keeps low because deadtime control.

8.5. ESD Protection

Figure 7.3 shows the multiple diodes involved in the ESD protection part of NSI6602V.

Figure 8.3 ESD Structure

9. Application Note

9.1. Typical Application Circuit

The circuit shows a typical half-bridge configuration by using the driver NSi6602V which could be used in several popular power converter topologies such as half-bridge/full bridge / LLC isolated topologies, buck-boost topologies and 3-phase motor drive applications.

Figure 9.1 Typical Half-Bridge Application Schematic

9.2. PCB Layout

PCB layout is important to get optimal performance. Some key guidelines are given as below:

- Low-ESR and low-ESL bypass capacitors should be placed close to the device between pin VDDI to GND and pin VDDA/B to GNDA/B.
- There is high frequency switching current that charges and discharges the gate of external power transistor, leading to EMI and ring issues. The parasitic inductance of this loop should be minimized, by decreasing loop area and placing NSI6602V close to power transistor.
- Large amount of copper should be placed at VDDA/B pin and GNDA/B pin for thermal dissipation.
- To ensure isolation performance between primary and secondary side, the space under the device should keep free from any plane, trace, pad or via.

10. Package information

Figure 10.1 LGA13 5-mm x 5-mm Package Shape and Dimension

Figure 10.2 LGA13 5-mm x 5-mm Package Board Layout Example(mm)

Figure 10.3 LGA13 4-mm x 4-mm Package Shape and Dimension

*	* CONTROLLING DIMENSION : MM						
	SYMBOL	MILLIMETER					
		MIN.	NOM.	MAX.			
	Α			2.65			
	A1	0.10	-	030			
	A2	2.25	2.30	2.35			
	АЗ	0.97	1.02	1.07			
	Ь	0.35		0.43			
	С	0.23		0.32			
	D	10.20	10.30	10.40			
	E	10.10	10.30	10.50			
	E1	7.40	7.50	7.60			
	е	1.27 bsc					
	L1	1.40 bsc					
	L	0.55		0.85			
	Υ		0.10				

NOTES

1.0 COPLANARITY APPLIES TO LEADS, CORNER LEADS AND DIE ATTACH PAD.

Figure 10.4 SOW16 Package Shape and Dimension

Figure 10.5 SOW16 Package Board Layout Example(mm)

* CONTROLLING DIMENSION : MM						
SYMBOL	SYMBOI MILLIMETER					
	MIN.	NOM.	MAX.			
Α			2.65			
A1	0.10		030			
A2	2.25	2.30	2.35			
A3	0.97	1.02	1.07			
b	0.35		0.43			
С	0.23		0.32			
D	10.20	10.30	10.40			
Е	10.10	10.30	10.50			
E1	7.40	7.50	7.60			
е	1.27 bsc					
L1	1.40 bsc					
L	0.55 0.85					
Υ		0.10				

NOTES

1.0 COPLANARITY APPLIES TO LEADS, CORNER LEADS AND DIE ATTACH PAD.

Figure 10.6 SOW14 Package Shape and Dimension

Figure 10.7 SOW14 Package Board Layout Example(mm)

* CONTROLLING DIMENSION : MM

SYMBOL	MIL	LIMETE	R		INCH	
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25		1.45	0.049		0.057
b	0.36		0.49	0.014		0.019
С	0.19		0.25	0.007		0.010
D	9.80	9.90	10.0	0.386	0.390	0.394
Е	3.80	3.90	4.00	0.150	0.154	0.158
HE	5.80		6.20	0.228		0.244
Q	0.60		0.70	0.024		0.028
е	1	.27 b	sc	0	.050	bsc
L	1	.05 b	sc	C	.041	bsc
Lp	0.40		1.00	0.016		0.039
Υ		0.10			0.004	
А3		0.25			0.010	
Ζ	0.30		0.70	0.012		0.028
θ	0,		8*	0,		8*

Figure 10.8 SOP16 Package Shape and Dimension

Figure 10.9 SOP16 Package Board Layout Example(mm)

NSI6602V

Figure 10.10 Solder Mask Details(mm)

11.Ordering Information

Part No.	Isolation Rating(kV _{RMS})	Driver- side UVLO TYP.	Temperature	Auto- motive	Body Size (mm)	Package	MSL	SPQ
NSI6602VA-DLAR	2.5	6V	-40 to 125℃	NO	5X5X0.91	LGA13(5x5mm)	3	3000
NSI6602VA-DLAMR	1.6	6V	-40 to 125℃	NO	4X4X0.91	LGA13(4x4mm)	3	3000
NSI6602VA-DSWR	5.7	6V	-40 to 125°C	NO	10.3X7.5X2. 65	SOW16	2	1000
NSI6602VA-DSWKR	5.7	6V	-40 to 125°C	NO	10.3X7.5X2. 65	SOW14	2	1000
NSI6602VA-DSPNR	3.0	6V	-40 to 125°C	NO	9.9X3.9X1.7 5	SOP16	2	2500
NSI6602VB-DLAR	2.5	8V	-40 to 125°C	NO	5X5X0.91	LGA13(5x5mm)	3	3000
NSI6602VB-DLAMR	1.6	8V	-40 to 125°C	NO	4X4X0.91	LGA13(4x4mm)	3	3000
NSI6602VB-DSWR	5.7	8V	-40 to 125°C	NO	10.3X7.5X2. 65	SOW16	2	1000
NSI6602VB-DSWKR	5.7	8V	-40 to 125℃	NO	10.3X7.5X2. 65	SOW14	2	1000
NSI6602VB-DSPNR	3.0	8V	-40 to 125℃	NO	9.9X3.9X1.7 5	SOP16	2	2500
NSI6602VC-DLAR	2.5	13V	-40 to 125℃	NO	5X5X0.91	LGA13(5x5mm)	3	3000
NSI6602VC-DLAMR	1.6	13V	-40 to 125℃	NO	4X4X0.91	LGA13(4x4mm)	3	3000
NSI6602VC-DSWR	5.7	13V	-40 to 125℃	NO	10.3X7.5X2. 65	SOW16	2	1000
NSI6602VC-DSWKR	5.7	13V	-40 to 125℃	NO	10.3X7.5X2. 65	SOW14	2	1000
NSI6602VC-DSPNR	3.0	13V	-40 to 125℃	NO	9.9X3.9X1.7 5	SOP16	2	2500
NSI6602VD-DLAR	2.5	4V	-40 to 125℃	NO	5X5X0.91	LGA13(5x5mm)	3	3000
NSI6602VD-DLAMR	1.6	4V	-40 to 125℃	NO	4X4X0.91	LGA13(4x4mm)	3	3000
NSI6602VD-DSWR	5.7	4V	-40 to 125°C	NO	10.3X7.5X2. 65	SOW16	2	1000
NSI6602VD-DSWKR	5.7	4V	-40 to 125℃	NO	10.3X7.5X2. 65	SOW14	2	1000
NSI6602VD-DSPNR	3.0	4V	-40 to 125°C	NO	9.9X3.9X1.7 5	SOP16	2	2500

12. Tape and Reel Information

Figure 12.1 Tape Information

Figure 12.2 LGA13 Reel Information

- 1. 10 sprocket hole pitch cumulative tolerance ±0.20. 2. Carrier camber is within 1 mm in 250 mm. 3. Material: Black Conductive Polystyrene Alloy. 4. All dimensions meet EIA-481 requirements.

- 6. Packing length per 22" reel: 378 Meters.(N=122)
 7. Component load per 13" reel: 1000 pcs.

Figure 12.3 SOW16/SOW14 Reel Information

Figure 12.4 SOP16 Reel Information

Figure 12.5 Quadrant Designation for Pin1 Orientation in Tape

13. Revision History

Revision	Description	Date
1.0	Initial version	2023/7/10
1.1	Update the MSL value	2023/8/17

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as any warranty or authorization of, express or implied, including but not limited to accuracy, completeness, merchantability, fitness for a particular purpose or infringement of any third party's intellectual property rights.

You are solely responsible for your use of Novosense' products and applications, and for the safety thereof. You shall comply with all laws, regulations and requirements related to Novosense's products and applications, although information or support related to any application may still be provided by Novosense.

The resources are intended only for skilled developers designing with Novosense' products. Novosense reserves the rights to make corrections, modifications, enhancements, improvements or other changes to the products and services provided. Novosense authorizes you to use these resources exclusively for the development of relevant applications designed to integrate Novosense's products. Using these resources for any other purpose, or any unauthorized reproduction or display of these resources is strictly prohibited. Novosense shall not be liable for any claims, damages, costs, losses or liabilities arising out of the use of these resources.

For further information on applications, products and technologies, please contact Novosense (www.novosns.com).

Suzhou Novosense Microelectronics Co., Ltd