CPSC 121 - PROPOSITIONAL LOGIC PROOFS - SOLUTIONS

Problem 1. Prove b using a formal propositional logic proof given the five numbered premises below.

- [1] $\sim p \lor q \to p$
- [2] $\sim r \rightarrow \sim p$
- [3] $\sim (r \wedge \sim a)$
- $[4] \sim a \vee b$
- [5] $q \lor s \to t$

Solution. Proof of *b*:

[6]	$\sim (\sim p \lor q) \lor p$	Def. of Implication from [1]
[7]	$(\sim \sim p \land \sim q) \lor p$	De Morgan's Law from [6]
[8]	$(p \land \sim q) \lor p$	Double Negation Law from [7]
[9]	p	Absorption Law from [8]
[10]	r	Modus Tollens from [2] and [9]
[11]	$\sim r \vee \sim \sim a$	De Morgan's Law from [3]
[12]	$\sim r \vee a$	Double Negation Law from [11]
[13]	a	Elimination from [10] and [12]
[14]	b	Elimination from [4] and [13]
		QED

Problem 2. Decide whether the following argument is valid or not. If you think it is invalid, provide a truth value assignment that proves your claim. Otherwise provide a proof for it.

- [1] $p \rightarrow q$
- [2] $m \vee s$
- [3] $\sim s \rightarrow \sim r$
- $[4] \sim q \vee s$
- $[5] \sim s$
- $[6] \sim p \land m \to u$

 \cdot $\sim u$

Solution. The argument is invalid. Here gives an assignment that makes the premises true but the conclusion false.

$$m = T, p = F, q = F, r = F, s = F, u = T$$

Approach I. Let's try to prove $\sim u$ from the premises [1] to [6] and see what we get. Proof of u:

[7] m Elimination from [2] and [5] [8] $\sim r$ Modus Ponens from [3] and [5] [9] $\sim q$ Elimination from [4] and [5] [10] $\sim p$ Modus Tollens from [1] and [9] [11] $\sim p \wedge m$ Conjunction from [7] and [10] [12] u Modus Tollens from [6] and [11]

QED

We have proved u instead of $\sim u$ from the premises [1] to [6]. Thus we know that

- the argument of $\sim u$ is invalid, or
- the premises [1] to [6] are self-contradictory.

To make the premises [1] to [6] true, at least we need to make [5], [7], [8], [9], [10] and [12], i.e. $\sim s, m, \sim r, \sim q, \sim p$ and u, true. Then, s = F, m = T, r = F, q = F, p = F and u = T. Using this truth assignment, we can verify that the premises [1] to [6] are true but the conclusion, $\sim u$, is false.

Approach II. Here we show how we get this assignment.

- (1) To make [5] true, s = F.
- (2) Given s = F, to make [2] true, m = T. Analogously, to make [4] true, q = F.
- (3) Given s = F, to make [3] true, r = F.
- (4) Given q = F, to make [1] true, p = F.
- (5) Given p = F and m = T, to make [6] true, u = T.
- (6) u = T makes the conclusion, $\sim u$, false. Thus the argument above is invalid, which can be verified by the assignment s = F, m = T, q = F, r = F, p = F, u = T.

Problem 3. Steve has bizarre powers of observation, and noticed the following facts during a staff meeting, while the TAs were nibbling on their food:

- Adam and Winnie did not both eat sandwiches.
- If Thiabaud forgot to bring his lunch, then either Adam ate a sandwich, or Yves did not eat an orange (or both).
- Winnie ate a sandwich.
- If Cindy forgot to eat her banana and Adam did not eat a sandwich, then Thiabaud forgot to bring his lunch.
- If Adam did not eat a sandwich then Yves ate an orange.

Steve thinks that Cindy did not forget to eat her banana, but he is not certain.

- (1) Name each simple proposition above, e.g.: t:Thiabaud forgot to bring his lunch.
- (2) Rewrite the bulleted statements using propositional logic and your propositions from the previous part.
- (3) Using your statements in the previous part as premises, prove that Cindy did not forget to eat her banana. Be sure to list and number your steps and to give a justification for each step, citing the previous step(s) it depends on.

Solution

- (1) (a) a: Adam ate a sandwich
 - (b) w: Winnie ate a sandwich
 - (c) t: Thiabaud forgot to bring his lunch
 - (d) y: Yves ate an orange
 - (e) q: Cindy forgot to eat her banana

$$(2) \begin{array}{ccc} [1] & \sim (a \wedge w) \\ [2] & t \to (a \vee \sim y) \\ [3] & w \\ [4] & (q \wedge \sim a) \to t \\ \underline{[5]} & \sim a \to y \\ \hline \vdots & \sim q \end{array}$$

(3) Proof of $\sim q$:

[6]	$\sim a \lor \sim w$	De Morgan's Law from [1]
[7]	$\sim a$	Elimination from [3] and [6]
[8]	y	Modus Ponens from [7] and [5]
[9]	$\sim a \wedge y$	Conjunction from [7] and [8]
[10]	$\sim (\sim \sim a \lor \sim y)$	De Morgan's Law from [9]
[11]	$\sim (a \lor \sim y)$	Double Negation Law from [10]
[12]	$\sim t$	Modus Tollens from [11] and [2]
[13]	$\sim (q \wedge \sim a)$	Modus Tollens from [12] and [4]
[14]	$\sim q \vee \sim \sim a$	De Morgan's Law from [13]
[15]	$\sim q \vee a$	Double Negation Law from [14]
[16]	$\sim q$	Elimination from [7] and [15]
-		QED