

O O O O Organização de Computadores Digitais

Capítulo 2 - Evolução e Desempenho dos Computadores

o o o Tópicos

- o Primórdios
- Primeira Geração
 - O computador ENIAC
 - Máquina de von Neumann
 - Computadores Comerciais
- Segunda Geração
 - o Transístores
- Terceira Geração
 - Circuitos Integrados
 - o A lei de Moore
- o Últimas Gerações

Primórdios

 Em 1642, Blaise Pascal (1633-1662) construiu uma máquina de calcular mecânica que podia somar e subtrair

Dispositivo inteiramente mecânico, usava várias engrenagens, acionado por uma alavanca.

Primórdios

 1671 - Gottfried Wilhelm Leibnitz (filósofo e um dos formuladores do cálculo integral, 1646-1716) projetou a primeira máquina de multiplicação e divisão, além de soma e subtração.

Equivalente às calculadoras de bolso que efetuam as quatro operações.

Gisele S. Craveiro EACH - USP

0 0 0 Primórdios

- 1834 Babbage inventou a precursora dos computadores digitais de hoje, a Máquina Analítica.
- Usava a base 10, máquina
 "mecânica", trabalhava a vapor.
- Por seu trabalho na máquina analítica, Babbage é considerado um dos pioneiros dos computadores.

0 0 0 Máquina Analítica de Babbage

- Anteviu os passos que até hoje são a base do funcionamento de um computador, possuindo 4 componentes:
- Unidade de entrada alimentação de dados, através de cartões perfurados;
- o Unidade de saída saída impressa e perfurada em cartões:
- o Unidade de memória 1000 palavras de 50 dígitos DECIMAIS, capaz de armazenar variáveis e resultados.
- o Unidade de computação aceitava operandos da memória, operações - soma, subtração, multiplicação

Década de 1930

- o Tentativas de substituir as partes mecânicas dos computadores por partes elétricas.
- O uso de relés era uma forma de fazer essas substituições, mas o alto custo, tamanho físico e baixo desempenho eram as desvantagens desses tipos de máquinas.

0 0 0 A Guerra e os Computadores

o A primeira máquina de cálculos a relês, o chamado Z-1, foi construído pelo alemão Konrad Zuse (1910-1995) em 1936.

A Guerra e os Computadores

- Nos Estados Unidos, a Marinha, em conjunto com a Universidade de Harvard e a IBM, construiu em 1944 o Mark I, primeiro computador de uso geral.
- Mark I ocupava 120 m3, tinha milhares de relês e fazia um barulho infernal. Uma multiplicação de números de 10 dígitos levava 3 segundos para ser efetuada.

Primeira Geração

Válvulas (1945 - 1955)

000 ENIAC

- Electronic Numerical Integrator And Computer
 - University of Pennsylvania
 - Eckert e Mauchly
- Usado para calcular a trajetória de armas
- O projeto foi começado em 1943 e concluído em 1946
 - Muito tarde para ser usado na II guerra mundial
- Foi usado até 1955

ENIAC

- Decimal (não usava o sistema binário)
- Cada digito era representado por um anel de 10
- o válvulas
- o 20 acumuladores de 10 dígitos
- o 18,000 válvulas
- 30 toneladas
- 140 metros quadrados
- 140 kW de potência
- 5,000 adições por segundos
- o Programado manualmente com interruptores

o o o von Neumann/Turing

- A tarefa de carregar e de modificar um programa no ENIAC era extremamente tediosa
- Conceito de programa armazenado
- A memória principal armazena o programa e os dados
- A UAL (ALU) opera sobre dados binários
- A unidade de controle interpreta e executa instruções vindas da memória
- A unidade de controle supervisiona o equipamento de entrada e saída
- Princeton Institute for Advanced Studies
 - o IAS
- EDVAC concluído em 1952

Estrutura da máquina de von Neumann

000 IAS - Detalhes

- Dados e instruções armazenados na memória
- Números e instruções representados em código binário
- o 1000 \times 40 bit palavras
 - Números binários
 - o Instruções de 2 x 20 bit
- Registradores (na CPU)
 - Memory Buffer Register
 - Memory Address Register
 - Instruction Register
 - Instruction Buffer Register
 - Program Counter
 - Accumulator
 - Multiplier Quotient

000

Estrutura do IAS - detalhes

0 0 0 Instruções no IAS

Palavra de número

Palavra de instrução

0 0 0 As instruções do IAS

- A unidade de controle do IAS operava a partir da busca de instruções na memória e execução destas instruções de forma sequencial
- O IAS tinha 21 instruções (representadas pelos opcodes):
 - transferência de dados
 - re-direccionamento de sequências de instruções
 - o implementação de comandos condicionais
 - o aritmética
 - modificação de endereços

o o o Instruções no IAS

Exemplos de instruções:

opcode: 00001010

representação simbólica: LOAD MQ

descrição: transfere o conteúdo do registrador MQ

para o acumulador AC

opcode: 00000101

representação simbólica: ADD M(X)

descrição: Soma M(X) à AC e coloca o resultado

em AC

O O O Computadores Comerciais

- 1947 Eckert-Mauchly Computer Corporation
- UNIVAC I (Universal Automatic Computer)
 - o Aplicações científicas e comerciais
- Usado pelo 'US Bureau of Census' em 1950
- Finais de 1950 UNIVAC II
 - Mais rápido
 - Mais memória

O O O IBM

- Maior fabricante de equipamento de processamento de cartões perfurados
 - 1953 IBM 701
 - O primeiro computador de programa armazenado da IBM
- Usado para cálculo científico
- 1955 IBM 702
 - Aplicações de negócio
- Deram origem às series 700/7000

Segunda Geração

Transístores (1955 - 1965)

Transistores

- Substituíram as válvulas
- Mais pequenos
- Mais baratos
- Menos calor dissipado
- Feito a partir de silício
- o Inventado em 1947 pelos laboratórios Bell
 - William Shockley et al.
 - Revolucionou a indústria eletrônica nos anos 50

Computadores baseados em O O O Transístores

- Computadores de segunda geração
- o A NCR & RCA produziram pequenas máquinas de que funcionavam com transístores
- o IBM 7000
- o DEC 1957
 - Produziu o PDP-1

Terceira Geração

Circuitos Integrados (1965 - 1980)

0 0 0 Circuitos integrados

- Durante a década de 50 e o início dos anos 60
 - Os computadores eram compostos por transístores, resistores, capacitores, ...
 - Fabricados separadamente
 - Encapsulados em seus próprios recipientes
 - Soldados ou ligados com fios
- O processo era caro e incômodo
- Em 1958 a microelectrônica revolucionou os equipamentos electrônicos com a invenção do circuito integrado

0 0 0 Microeletrônica

- "electrônica pequena"
- Um computador é feito de portas, células de memória e interligações.
- Estes componentes podem ser feitos num semicondutor
- ex. numa pastilha de silício (silicon wafer)

0 0 0 Características

- transistores e outros componentes eletrônicos miniaturizados montados em um único chip;
- maior confiabilidade (não tem partes móveis);
- muito menores (equipamento mais compacto e mais rápido pela proximidade dos circuitos);
- baixo consumo de energia (miniaturização dos componentes)
- custo de fabricação muito menor.

Primeiros CIs: 10 ou 20 transistores em um chip (SSI - Small-Scale Integration). Final dos anos 60: de 20 a 200 transistores em um chip (MSI - Medium-Scale Integration). Final dos anos 70: até 5000 transistores em um chip (LSI - Large-Scale Integration).

000 A Lei de Moore

- Gordon Moore co-fundador da Intel
- Aumento da densidade de componentes num chip
- Moore observou que o número de transistores que podiam ser impressos numa única pastilha dobrava a cada ano
- Previu que esse crescimento permaneceria num próximo futuro
- Para a surpresa de muitos, esse crescimento continuou ano após ano e década após década
- Desde 1970, a taxa de crescimento abrandou um pouco
- O número de transístores duplica todos os 18 meses

000 Implicações da Lei de Moore

Avanços na tecnologia (transistores/CHIPS)

Novos mercados, novas empresas

- 1. O custo de um chip permaneceu quase inalterado
- Custo de implementação da lógica do computador e da memória caiu de maneira dramática
- 2. Maior densidade dos componentes
- Implica caminhos elétricos mais curtos, dando origem a um maior desempenho
- 3. Menor dimensão dos computadores
- Aumenta a flexibilidade
- 4. Interligações em circuitos integrados
- Aumentam a confiabilidade

Aumento do número de 0 0 0 transístores da CPU

IBM 360 series

- o 1964
- Substituiu a serie 7000
 - Não se manteve compatível
- A primeira "família" planejada de computadores
 - o Conjunto de instruções idênticos ou similares
 - E/S idênticas ou similares
 - Aumento em velocidade
 - Aumento do numero de portas de E/S (i.e. mais terminais)
 - Aumento do tamanho da memória
 - Aumento do custo

0 0 0 Caraterísticas de uma família

- o Conjunto de instruções iguais ou similares
 - o possibilita que um programa que seja executado em uma máquina possa ser executada em outra da mesma família
- Sistema operacional idêntico ou similar
- Aumento de velocidade de processamento
- Aumento de portas de I/O
- Aumento de memória
- Aumento do Custo

000 DEC PDP-8

- No mesmo ano do lançamento do System/360
 (1964) a DEC lança o PDP-8
- O primeiro minicomputador
- O PDP-8 coloca a DEC como segunda maior indústria de computadores atrás apenas da IBM
- Não necessitava de uma sala com ar condicionado
- Suficientemente pequeno para ser colocado numa bancada de laboratório ou colocado no interior de outros equipamentos
- Custo: \$16,000
- Mais de \$100k+ para um IBM 360

O O O Estrutura do Barramento

Barramento Omnibus do PDP-8

96 caminhos de sinais separados, usados para transportar sinais de controle, endereços e dados. Foi o precursor do sistema de barramento atual.

Gerações Posteriores

Aumento da densidade de componentes por chip (1980 - ...)

0 0 0 Geração de Computadores

- o Integração de muito grande escala (1978 até hoje)
 - 100,000 100,000,000 componentes numa só pastilha
- Integração de ultra grande escala (Ultra large scale integration)
 - Mais de 100,000,000 componentes numa só pastilha

0 0 0 Memória semicondutora

- Descobriu-se que a tecnologia do circuito integrado poderia ser também usada para construir memórias
- Fairchild (1970) produziu a primeira memória semicondutora
- Tamanho de um único
 - i.e. 1 bit de armazenamento magnético
- Uma pastilha podia guardar 256 bits
- Leitura não-destrutiva
- Muito mais rápida do que as memórias anteriores
- A capacidade duplica aproximadamente todos os anos
 - 10 gerações: 1K, 4K, 16K, 64K, 256K, 1M, 4M, 16M, 64M, 256M numa única pastilha

Características da DRAM e dos 0 0 0 processadores

0 0 0

Uso da memória DRAM

0 0 0 Microprocessadores

- o 1971 Intel 4004
 - O primeiro microprocessador
 - Todos os componentes da numa só pastilha
 - 4 bit
- Foi seguido em 1972 pelo Intel 8008
 - 8 bit
- Desenvolvidos para aplicações específicas
- 1974 Intel 8080
 - o O primeiro microprocessador de uso genérico da Intel

Evolução - Resumo dos primórdios até a década de 1970

	Ano	Concepção	Nome	Marco histórico
2º Geração 1º Geração Era mecânica	1834	Babbage	Máquina Analítica	Primeira tentativa de construir um computador digital
	1936	Zuse	Z1	Primeira máquina de cálculo a relays
	1943	Gov. Británico	Colossus	Primeiro computador electrónico
	1944	Aiken	Mark I	Primeiro computador de utilização geral
	1946	Eckert/Mauchie	ENIAC I	Início da história dos computadores modernos
	1949	Wilkes	EDSAC	Primeiro computador com programa em memória
	1951	MIT	Whirtwind I	Primeiro computador de tempo real
	1951	Eckert/Mauchie	UNIVACI	Primeiro computador comercializado
	1952	von Neumann	IAS	Arquitectura da maioria das máquinas actuais
	1960	DEC	PDP-1	Primeiro mini-computador (foram vendidos 50)
	1961	IBM	1401	Primeira máquina para pequenos negócios
	1962	IBM	7094	Dominou o cálculo científico nos anos 60
	1963	Burroughs	B5000	Primeira máquina para linguagens de alto nivel
	1964	IBM	360	Primeira linha de equipamentos
	1964	CDC	6600	Primeira máquina para computação paralela interna.
	1965	DEC	PDP-8	Primeiro mini-computador vendido em grande volume (50000)
.0	1970	DEC	PDP-11	Dominou o mercado dos mini-computadores nos anos 70
Geneção	1974	INTEL	8080	Primeiro CPU monolítico de usa geral
ီ ါ	1974	CRAY	CRAY-1	Primeiro super-computador
e [1978	DEC	VAX	Primeiro mini-computador de 32 bits

o o o Evolução

Apple I

IBM PC

Apple II

Osborne I

Meados da Década de 1980

o Arquitetura RISC (Reduced Instruction Set Computer) em substituição a Arquitetura CISC (Complex Instruction Set Computer)

Anos 1990

o Processadores Superescalares (execução de várias instruções simultaneamente)

o o o Evolução dos Computadores

2002

- O Pentium 4 é construído com uma tecnologia de 0,13 micrômetros e possui 55 milhões de transistores.
- O supercomputador japonês Earth Simulator criado pela NEC para simular mudanças no clima do planeta possui 5104 processadores e ocupa uma área equivalente a três quadras de tênis. Seu desempenho esta em torno de 35 teraflops, realiza 35,86 trilhões de cálculos por segundo.

Earth Simulator - Japão

2003 AMD lança o processador Opteron

- O Opteron é o primeiro processador para a arquitetura CISC capaz de trabalhar a 64 bits utilizando as instruções IA-32 (conhecidas também pelo nome x86).
- Possui transistores de 0,13 mícron, possuindo no total 100 milhões de transistores.
- Pode endereçar até 1 TeraByte de memória RAM.
- Suporta até 8 processadores na mesma placa-mãe.

2005 Intel lança processador Pentium Extreme

- Multi-núcleos (multi core)
- Processador dual-core
 - o dois núcleos de execução completos em um único processador físico, ambos funcionando na mesma frequência.
- Hyper-Threading
 - Suporte ao "Multi-Threading", têm a capacidade de enviar múltiplos threads ao processador.

000 Recursos na Web

- http://www.intel.com
- http://www.amd.com
- http://www.ibm.com
- http://www.top500.org
- http://www.princeton.edu/~jdonald/research/cmp/
- o http://tcsc.ic.uff.br/blog/9