Analog Multiplexers/Demultiplexers

The MC14051B, MC14052B, and MC14053B analog multiplexers are digitally–controlled analog switches. The MC14051B effectively implements an SP8T solid state switch, the MC14052B a DP4T, and the MC14053B a Triple SPDT. All three devices feature low ON impedance and very low OFF leakage current. Control of analog signals up to the complete supply voltage range can be achieved.

- Triple Diode Protection on Control Inputs
- · Switch Function is Break Before Make
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Analog Voltage Range (V_{DD} V_{EE}) = 3.0 to 18 V
 Note: V_{EE} must be ≤ V_{SS}
- · Linearized Transfer Characteristics
- Low-noise 12 nV/√Cycle, f ≥ 1.0 kHz Typical
- Pin-for-Pin Replacement for CD4051, CD4052, and CD4053
- For 4PDT Switch, See MC14551B
- For Lower R_{ON}, Use the HC4051, HC4052, or HC4053 High–Speed CMOS Devices

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage (Referenced to V _{EE} , $V_{SS} \ge V_{EE}$)	- 0.5 to + 18.0	V
V _{in} , V _{out}	Input or Output Voltage (DC or Transient) (Referenced to V _{SS} for Control Inputs and V _{EE} for Switch I/O)	– 0.5 to V _{DD} + 0.5	V
l _{in}	Input Current (DC or Transient), per Control Pin	± 10	mA
I _{sw}	Switch Through Current	± 25	mA
PD	Power Dissipation. per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8–Second Soldering)	260	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating: "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C

Ceramic "L" Packages: - 12 mW/°C From 100°C To 125°C

MC14051B MC14052B MC14053B

L SUFFIX CERAMIC CASE 620

P SUFFIX PLASTIC CASE 648

D SUFFIX SOIC CASE 751B

ORDERING INFORMATION

MC14XXXBCP Plastic
MC14XXXBCL Ceramic
MC14XXXBD SOIC

 $T_A = -55^{\circ}$ to 125°C for all packages.

Note: Control Inputs referenced to Vaa. Analog Inputs and Outputs reference to V⊏E. V⊏E must be ≤ Vaa.

ELECTRICAL CHARACTERISTICS

				– 55°C		25°C		125			
Characteristic	Symbol	V_{DD}	Test Conditions	Min	Max	Min	Тур#	Max	Min	Max	Unit
SUPPLY REQUIREMENTS	(Voltages F	Referenc	ed to V _{EE})								
Power Supply Voltage Range	V _{DD}	_	$V_{DD} - 3.0 \ge V_{SS} \ge V_{EE}$	3.0	18	3.0	_	18	3.0	18	V
Quiescent Current Per Package	I _{DD}	5.0 10 15	$\label{eq:control Inputs: Vin = VSS or VDD,} \\ Switch I/O: VEE \leq VI/O \\ \leq VDD, \mbox{ and } \\ \Delta V_{Switch} \leq 500 \mbox{ mV**} \\ \label{eq:control}$		5.0 10 20	_ _ _	0.005 0.010 0.015	5.0 10 20	_ _ _	150 300 600	μА
Total Supply Current (Dynamic Plus Quiescent, Per Package	ID(AV)	5.0 10 15	T _A = 25°C only (The channel component, (V _{in} – V _{out})/R _{on} , is not included.)		Typical	(0.	07 μΑ/kHz) f 20 μΑ/kHz) f 36 μΑ/kHz) f	+ I _{DD}			μА
CONTROL INPUTS — INHII	BIT, A, B, C	(Voltag	es Referenced to V _{SS})								
Low-Level Input Voltage	VIL	5.0 10 15	R _{on} = per spec, I _{off} = per spec	— — —	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	V
High-Level Input Voltage	VIH	5.0 10 15	R _{on} = per spec, I _{off} = per spec	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11		V
Input Leakage Current	l _{in}	15	V _{in} = 0 or V _{DD}	_	± 0.1	_	±0.00001	± 0.1	_	1.0	μА
Input Capacitance	C _{in}	_		_	_	_	5.0	7.5	_	_	pF
SWITCHES IN/OUT AND CO	OMMONS	OUT/IN	— X, Y, Z (Voltages Refere	enced to	VEE)						
Recommended Peak-to-Peak Voltage Into or Out of the Switch	V _{I/O}	_	Channel On or Off	0	V _{DD}	0	_	V _{DD}	0	V _{DD}	V _{PP}
Recommended Static or Dynamic Voltage Across the Switch** (Figure 5)	^{ΔV} switch	_	Channel On	0	600	0	_	600	0	300	mV
Output Offset Voltage	Voo	_	V _{in} = 0 V, No Load	_		_	10		_	_	μV
ON Resistance	R _{on}	5.0 10 15	$\begin{array}{l} \Delta V_{Switch} \leq 500 \text{ mV}^{**}, \\ V_{in} = V_{IL} \text{ or } V_{IH} \\ \text{(Control), and } V_{in} = \\ 0 \text{ to } V_{DD} \text{ (Switch)} \end{array}$	_ _ _	800 400 220	_ _ _	250 120 80	1050 500 280	_ _ _	1200 520 300	Ω
ΔON Resistance Between Any Two Channels in the Same Package	ΔR _{on}	5.0 10 15			70 50 45	_ _ _	25 10 10	70 50 45	_ _ _	135 95 65	Ω
Off-Channel Leakage Current (Figure 10)	l _{off}	15	V _{in} = V _{IL} or V _{IH} (Control) Channel to Channel or Any One Channel	_	± 100	_	± 0.05	± 100	1	±1000	nA
Capacitance, Switch I/O	C _{I/O}	_	Inhibit = V _{DD}	_	_	_	10	_	_	_	pF
Capacitance, Common O/I	C _{O/I}	_	Inhibit = V _{DD} (MC14051B) (MC14052B) (MC14053B)	_ _ _	_ _ _	_ _ _	60 32 17	_ _ _	_ _ _	_ _ _	pF
Capacitance, Feedthrough (Channel Off)	C _{I/O}	_	Pins Not Adjacent Pins Adjacent		_	_	0.15 0.47	_	_	_	pF

[#]Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

^{*} For voltage drops across the switch (ΔV_{switch}) > 600 mV (> 300 mV at high temperature), excessive V_{DD} current may be drawn, i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

 $\textbf{ELECTRICAL CHARACTERISTICS*} \ (C_L = 50 \ pF, \ T_A = 25 \ \underline{^{\circ}C}) \ (V_{EE} \le V_{SS} \ \underline{\text{unless otherwise indicated}})$

Characteristic Characteristic	Symbol	V _{DD} - V _{EE} Vdc	Typ # All Types	Max	Unit
Propagation Delay Times (Figure 6) Switch Input to Switch Output (R _L = 10 kΩ) MC14051	tPLH, tPHL				ns
t_{PLH} , $t_{PHL} = (0.17 \text{ ns/pF}) C_L + 26.5 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.08 \text{ ns/pF}) C_L + 11 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.06 \text{ ns/pF}) C_L + 9.0 \text{ ns}$		5.0 10 15	35 15 12	90 40 30	
MC14052 t_{PLH} , $t_{PHL} = (0.17 \text{ ns/pF}) C_L + 21.5 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.08 \text{ ns/pF}) C_L + 8.0 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.06 \text{ ns/pF}) C_L + 7.0 \text{ ns}$		5.0 10 15	30 12 10	75 30 25	ns
MC14053 t_{PLH} , t_{PHL} = (0.17 ns/pF) C_L + 16.5 ns t_{PLH} , t_{PHL} = (0.08 ns/pF) C_L + 4.0 ns t_{PLH} , t_{PHL} = (0.06 ns/pF) C_L + 3.0 ns		5.0 10 15	25 8.0 6.0	65 20 15	ns
Inhibit to Output ($R_L = 10 \text{ k}\Omega$, $V_{EE} = V_{SS}$) Output "1" or "0" to High Impedance, or High Impedance to "1" or "0" Level MC14051B	tPHZ, tPLZ, tPZH, tPZL	5.0	350	700	ns
		10 15	170 140	340 280	
MC14052B		5.0 10 15	300 155 125	600 310 250	ns
MC14053B		5.0 10 15	275 140 110	550 280 220	ns
Control Input to Output (R _L = 10 kΩ, V _{EE} = V _{SS}) MC14051B	tPLH, tPHL	5.0 10 15	360 160 120	720 320 240	ns
MC14052B		5.0 10 15	325 130 90	650 260 180	ns
MC14053B		5.0 10 15	300 120 80	600 240 160	ns
Second Harmonic Distortion (R _L = 10 K Ω , f = 1 kHz) V _{in} = 5 Vpp	_	10	0.07	_	%
Bandwidth (Figure 7) $(R_L = 1 \text{ k}\Omega, V_{in} = 1/2 \text{ (V}_{DD} - V_{EE}) \text{ p-p, } C_L = 50 \text{pF}$ $20 \text{ Log } (V_{out} / V_{in}) = -3 \text{ dB})$	BW	10	17	_	MHz
Off Channel Feedthrough Attenuation (Figure 7) $R_L = 1K\Omega, V_{\text{in}} = 1/2 \text{ (V}_{\text{DD}} - \text{V}_{\text{EE}}) \text{ p-p}$ $f_{\text{in}} = 4.5 \text{ MHz} - \text{MC}14051B$ $f_{\text{in}} = 30 \text{ MHz} - \text{MC}14052B$ $f_{\text{in}} = 55 \text{ MHz} - \text{MC}14053B$	_	10	– 50	_	dB
Channel Separation (Figure 8) (R _L = 1 kΩ, V _{in} = 1/2 (V _{DD} -V _{EE}) p-p, f_{in} = 3.0 MHz	_	10	- 50		dB
Crosstalk, Control Input to Common O/I (Figure 9) (R ₁ = 1 k Ω , R _L = 10 k Ω Control t _{TLH} = t _{THL} = 20 ns, Inhibit = V _{SS})	_	10	75	_	mV

^{*}The formulas given are for the typical characteristics only at 25°C.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{Out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{Out}) \le V_{DD}$.

circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} , V_{EE} , or V_{DD}). Unused outputs must be left open.

[#]Data labelled "Typ" is not lo be used for design purposes but In intended as an indication of the IC's potential performance.

Figure 1. Switch Circuit Schematic

TRUTH TABLE

Control Inputs									
	Select			ON Switches					
Inhibit	C*	В	Α	MC14051B	051B MC14052B			C1405	3B
0	0	0	0	X0	Y0	X0	Z0	Y0	X0
0	0	0	1	X1	Y1	X1	Z0	Y0	X1
0	0	1	0	X2	Y2	X2	Z0	Y1	X0
0	0	1	1	Х3	Y3	Х3	Z0	Y1	X1
0	1	0	0	X4			Z1	Y0	X0
0	1	0	1	X5			Z1	Y0	X1
0	1	1	0	X6			Z1	Y1	X0
0	1	1	1	X7			Z1	Y1	X1
1	х	Х	х	None	No	ne		None	

^{*} Not applicable for MC14052

Figure 2. MC14051B Functional Diagram

Figure 3. MC14052B Functional Diagram

Figure 4. MC14053B Functional Diagram

x = Don't Care

TEST CIRCUITS

Figure 5. ΔV Across Switch

Figure 6. Propagation Delay Times, Control and Inhibit to Output

A, B, and C inputs used to turn ON or OFF the switch under test.

Figure 7. Bandwidth and Off-Channel Feedthrough Attenuation

Figure 8. Channel Separation (Adjacent Channels Used For Setup)

Figure 9. Crosstalk, Control Input to Common O/I

NOTE: See also Figures 7 and 8 on Page 6–51.

Figure 10. Off Channel Leakage

Figure 11. Channel Resistance (RON) Test Circuit

TYPICAL RESISTANCE CHARACTERISTICS

Figure 12. $V_{DD} = 7.5 \text{ V}, V_{EE} = -7.5 \text{ V}$

Figure 13. $V_{DD} = 5.0 \text{ V}$, $V_{EE} = -5.0 \text{ V}$

Figure 14. V_{DD} = 2.5 V, V_{EE} = - 2.5 V

Figure 15. Comparison at 25°C, $V_{DD} = -V_{EE}$

PIN ASSIGMENT

	MC1405	1B		_	MC1405	2B			MC1405	3B	
Х4 [1 ●	16	^V DD	Y0 [1 •	16] V _{DD}	Y1 [1 ●	16	V _{DD}
Х6 [2	15] X2	Y2 [2	15] X2	Y0 [2	15	ΡY
х ф	3	14	X1	Υþ	3	14] X1	Z1 [3	14	Х
X7 [4	13] X0	Y3 [4	13] X	zΠ	4	13	X1
X5 [5	12] X3	Y1 [5	12] X0	Z0 [5	12) X0
INH [6	11] A I	INH [6	11] X3	INH [6	11) A
VEE [7	10	B v	/EE d	7	10] A	VEE [7	10	В
V _{SS} [8	9	p c v	/ss 🛭	8	9] B	V _{SS} [8	9] C

APPLICATIONS INFORMATION

Figure A illustrates use of the on–chip level converter detailed in Figures 2, 3, and 4. The 0–to–5 V Digital Control signal is used to directly control a 9 V_{p-p} analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS} . The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5$ V = logic high at the control inputs; $V_{SS} = GND = 0$ V = logic low.

The maximum analog signal level is determined by V_{DD} and V_{EE} . The V_{DD} voltage determines the maximum recommended peak above V_{SS} . The V_{EE} voltage determines the maximum swing below V_{SS} . For the example, $V_{DD} - V_{SS} = 5$ V maximum swing above V_{SS} ; $V_{SS} - V_{EE} = 5$ V maximum swing below V_{SS} . The example shows a \pm 4.5 V signal which allows a 1/2 volt margin at each peak. If voltage transients

above $V_{\mbox{DD}}$ and/or below $V_{\mbox{EE}}$ are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between V_{DD} and V_{EE} is 18.0 V. Most parameters are specified up to 15 V which is the *recommended* maximum difference between V_{DD} and V_{EE} .

Balanced supplies are not required. However, VSS must be greater than or equal to V_{EE} . For example, V_{DD} = + 10 V, V_{SS} = + 5 V, and V_{EE} – 3 V is acceptable. See the Table

Figure A. Application Example

Figure B. External Germanium or Schottky Clipping Diodes

POSSIBLE SUPPLY CONNECTIONS

V _{DD} In Volts	V _{SS} In Volts	V _{EE} In Volts	Control Inputs Logic High/Logic Low In Volts	Maximum Analog Signal Range In Volts
+ 8	0	- 8	+ 8/0	$+ 8 \text{ to } - 8 = 16 \text{ V}_{p-p}$
+ 5	0	- 12	+ 5/0	$+ 5 \text{ to} - 12 = 17 \text{ V}_{p-p}$
+ 5	0	0	+ 5/0	$+ 5 \text{ to } 0 = 5 \text{ V}_{p-p}$
+ 5	0	- 5	+ 5/0	$+ 5 \text{ to } - 5 = 10 \text{ V}_{p-p}$
+ 10	+ 5	- 5	+ 10/ + 5	+ 10 to – 5 = 15 V _{p–p}

OUTLINE DIMENSIONS

L SUFFIX CERAMIC DIP PACKAGE CASE 620-10 ISSUE V

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- ANSI Y14-3M, 1962.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN
 FORMED PARALLEL.
 DIMENSION F MAY NARROW TO 0.76 (0.030)
 WHERE THE LEAD ENTERS THE CERAMIC

_					
	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100) BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300	BSC	7.62	BSC	
М	0°	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

P SUFFIX

PLASTIC DIP PACKAGE CASE 648-08 ISSUE R

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10 °	
S	0.020	0.040	0.51	1.01	

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 VIA EM 1082
- 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006)
 PER SIDE.
- 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Marae registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.