# 1 ΣΕΠΤΕΜΒΡΙΟΥ 2024

# GEOSPATIAL DATA MANAGEMENT AND ANALYTICS

MICHALIS KOVAIOS

mixalis.koveos@gmail.com

# Πίνακας περιεχομένων

| Introduction                                             | 2  |
|----------------------------------------------------------|----|
| Q1: Data Extraction and Table Creation                   | 2  |
| Python Code:                                             | 2  |
| SQL Query:                                               | 3  |
| Results Screenshot:                                      | 4  |
| Q2: Updating Location Data                               | 5  |
| SQL Query:                                               | 5  |
| Results Screenshot:                                      | 5  |
| Q3: Deleting Out-of-Bounds Data                          | 5  |
| SQL Query:                                               | 5  |
| Results Screenshot:                                      | 6  |
| Q4: Removing Duplicate or Near-Duplicate Records         | 6  |
| SQL Query:                                               | 6  |
| Results Screenshot:                                      | 7  |
| Q5: Speed Calculation and Removing Outliers              | 7  |
| SQL Query:                                               | 7  |
| Results Screenshot:                                      | 8  |
| Q6: Filtering Data by Time                               | 9  |
| Python Code:                                             | 9  |
| Results Screenshot:                                      | 9  |
| Q7: Identifying Close Encounters Between Moving Vehicles | 10 |
| Python Code:                                             | 10 |
| Results Screenshot:                                      | 11 |
| Q8: Calculating Taxi Behavior Statistics                 | 12 |
| Python Code:                                             | 12 |
| Results Screenshot:                                      | 13 |
| Q9: Creating Trips and SpeedLimits Tables                | 13 |
| SQL Query:                                               | 14 |
| Results Screenshot:                                      | 16 |
| Results Screenshot:                                      | 16 |
| Q10: Identifying Speed Violations                        | 16 |
| SQL Query:                                               | 16 |
| Results Screenshot:                                      | 18 |
| Q11: Analyzing Trip Data                                 | 18 |
| SQL Query:                                               | 18 |

| Results Screenshot: | 19 |
|---------------------|----|
| Results Screenshot: | 20 |
| Q12: Kmeans         | 20 |
| SQL Query:          | 20 |
| Results Screenshot: | 24 |

### Introduction

This project focuses on managing and analyzing GPS data from yellow cabs in San Francisco. The dataset contains over 11 million records. The project involves tasks such as data extraction, database creation, data cleaning, and conducting spatial queries. Each task is broken down into distinct steps aimed at extracting valuable insights from the data.

# Q1: Data Extraction and Table Creation

In this task, we wrote a Python script to combine data from multiple TXT files into a single CSV file. Each TXT file represents data for a specific taxi, with information like latitude, longitude, occupancy status, and a timestamp. The script loops through all the TXT files in a specified folder, extracts the data, and writes it to the CSV file. We used basic error handling to skip any lines with missing or invalid data and simplified the code to make it easier to understand.

Also, we created a table called Positions to store information about taxi positions. Each record in the table contains details such as the taxi's unique identifier (taxi\_id), the time the position was recorded (timestamp), the latitude and longitude of the taxi's location, and whether the taxi was occupied at that time (occupancy). Additionally, we included a location column that stores the geographic point using the GEOMETRY type, which allows us to work with the actual spatial data more effectively. We used the EPSG:4326 coordinate system since it's commonly used for GPS coordinates. The primary key is a combination of taxi\_id and timestamp, ensuring each position is uniquely identified by both the taxi and the exact time.

To populate the table, we used the COPY command to quickly load data from a CSV file. This method is faster than inserting records one by one and helps with importing large datasets efficiently. By using GEOMETRY and bulk loading, the table is well-prepared for spatial queries, allowing us to easily analyze the movement of taxis based on their locations.

#### Python Code:

```
import os
import csv
input_folder = "E:/Downloads/GeoData"
output_file = 'C:/Users/Feuer_Frei/Desktop/TaxiData.csv'
with open(output_file, 'w', newline='') as csvfile:
    writer = csv.writer(csvfile)
```

```
for txt_file in os.listdir(input_folder):
    if txt_file.endswith(".txt"):
       full_path = os.path.join(input_folder, txt_file)
       taxi_id = os.path.splitext(txt_file)[0]
       with open(full_path, 'r') as f:
         for line in f:
            parts = line.strip().split()
            if len(parts) != 4:
              print(f"Skipping invalid line in {txt_file}: {line.strip()}")
              continue
            try:
              lat = float(parts[0])
              lon = float(parts[1])
              occ = int(parts[2])
              time = int(parts[3])
            except ValueError:
              print(f"Skipping line in {txt_file} due to invalid data.")
              continue
            writer.writerow([taxi_id, time, lat, lon, occ])
print(f"Data saved to {output_file}")
```

SQL Query:

writer.writerow(['taxi\_id', 'timestamp', 'latitude', 'longitude', 'occupancy'])

```
CREATE TABLE Positions (

taxi_id VARCHAR(50), Taxi identifier

timestamp BIGINT, Time the position was recorded

latitude DOUBLE PRECISION, Latitude

longitude DOUBLE PRECISION, Longitude coordinate

occupancy SMALLINT, Whether the taxi is occupied or not (1 or 0)

location GEOMETRY(Point, 4326), Geospatial point for the location (using EPSG:4326 for GPS)

PRIMARY KEY (taxi_id, timestamp) Composite primary key

);

COPY Positions(taxi_id, timestamp, latitude, longitude, occupancy)

FROM 'C:/Users/Feuer_Frei/Desktop/DataGeospatial.csv'

DELIMITER ','

CSV HEADER;
```

|    | taxi_id<br>[PK] character varying (50) | timestamp<br>[PK] bigint | double precision | double precision | occupancy<br>smallint | location geometry |
|----|----------------------------------------|--------------------------|------------------|------------------|-----------------------|-------------------|
| 1  | new_abboip                             | 1213084687               | 37.75134         | -122.39488       | 0                     | [null]            |
| 2  | new_abboip                             | 1213084659               | 37.75136         | -122.39527       | 0                     | [null]            |
| 3  | new_abboip                             | 1213084540               | 37.75199         | -122.3946        | 0                     | [null]            |
| 4  | new_abboip                             | 1213084489               | 37.7508          | -122.39346       | 0                     | [null]            |
| 5  | new_abboip                             | 1213084237               | 37.75015         | -122.39256       | 0                     | [null]            |
| 6  | new_abboip                             | 1213084177               | 37.75454         | -122.39227       | 0                     | [null]            |
| 7  | new_abboip                             | 1213084172               | 37.75901         | -122.3925        | 0                     | [null]            |
| 8  | new_abboip                             | 1213084092               | 37.77053         | -122.39788       | 0                     | [null]            |
| 9  | new_abboip                             | 1213084032               | 37.77669         | -122.39382       | 0                     | [null]            |
| 10 | new_abboip                             | 1213083971               | 37.78194         | -122.38844       | 0                     | [null]            |
| 11 | new_abboip                             | 1213083910               | 37.78999         | -122.38909       | 0                     | [null]            |
| 12 | new_abboip                             | 1213083855               | 37.79728         | -122.39609       | 0                     | [null]            |
| 13 | new_abboip                             | 1213083811               | 37.79838         | -122.40239       | 0                     | [null]            |
| 14 | new_abboip                             | 1213083736               | 37.79779         | -122.40647       | 0                     | [null]            |
| 15 | new_abboip                             | 1213083715               | 37.79779         | -122.40646       | 1                     | [null]            |
| 16 | new_abboip                             | 1213083655               | 37.79657         | -122.40521       | 1                     | [null]            |
| 17 | new_abboip                             | 1213083600               | 37.79305         | -122.40471       | 1                     | [null]            |
| 10 | rows: 1000 of 11219955 O               | uery complete (          | 27 70045         | 64, Col 1        | 1                     | feculf            |

This table displays the taxi position data after being extracted from the raw text files and stored in the database. Each row represents a unique record for a taxi, showing the taxi's unique identifier (taxi\_id), timestamp, latitude, longitude, occupancy status, and a geometry field (currently empty in this view).

# Q2: Updating Location Data

In this task, we updated the 'location' column in the Positions table to store the geographic point data based on the latitude and longitude values already present in the table. Specifically, we used the ST\_MakePoint function to create a Point geometry using the longitude and latitude of each record. The ST\_SetSRID function then assigns the Spatial Reference System Identifier (SRID) of 4326, which is the standard for GPS coordinates.

## SQL Query:

#### **UPDATE Positions**

SET location = ST\_SetSRID(ST\_MakePoint(longitude, latitude), 4326);

## Results Screenshot:

|    | taxi_id<br>[PK] character varying (50) | timestamp<br>[PK] bigint | double precision | longitude<br>double precision | occupancy<br>smallint | location geometry                                  |
|----|----------------------------------------|--------------------------|------------------|-------------------------------|-----------------------|----------------------------------------------------|
| 1  | new_abboip                             | 1213084687               | 37.75134         | -122.39488                    | 0                     | 0101000020E61000000C76C3B645995EC09C16BCE82BE0424  |
| 2  | new_abboip                             | 1213084659               | 37.75136         | -122.39527                    | 0                     | 0101000020E6100000C1C58A1A4C995EC0E3C281902CE0424  |
| 3  | new_abboip                             | 1213084540               | 37.75199         | -122.3946                     | 0                     | 0101000020E61000001AC05B2041995EC0A375543541E04240 |
| 1  | new_abboip                             | 1213084489               | 37.7508          | -122.39346                    | 0                     | 0101000020E61000003012DA722E995EC01CEBE2361AE04240 |
| 5  | new_abboip                             | 1213084237               | 37.75015         | -122.39256                    | 0                     | 0101000020E6100000F06DFAB31F995EC0158C4AEA04E04240 |
| 5  | new_abboip                             | 1213084177               | 37.75454         | -122.39227                    | 0                     | 0101000020E6100000EC4CA1F31A995EC00DC347C494E0424  |
| 7  | new_abboip                             | 1213084172               | 37.75901         | -122.3925                     | 0                     | 0101000020E610000085EB51B81E995EC022AB5B3D27E14240 |
| 3  | new_abboip                             | 1213084092               | 37.77053         | -122.39788                    | 0                     | 0101000020E6100000E1EEACDD76995EC01F4B1FBAA0E2424  |
| 9  | new_abboip                             | 1213084032               | 37.77669         | -122.39382                    | 0                     | 0101000020E6100000B020CD5834995EC0AC90F2936AE34240 |
| 10 | new_abboip                             | 1213083971               | 37.78194         | -122.38844                    | 0                     | 0101000020E6100000541D7233DC985EC095B7239C16E44240 |
| 11 | new_abboip                             | 1213083910               | 37.78999         | -122.38909                    | 0                     | 0101000020E6100000D74CBED9E6985EC062156F641EE54240 |
| 12 | new_abboip                             | 1213083855               | 37.79728         | -122.39609                    | 0                     | 0101000020E61000007311DF8959995EC0A0E062450DE64240 |
| 13 | new_abboip                             | 1213083811               | 37.79838         | -122.40239                    | 0                     | 0101000020E6100000328FFCC1C0995EC0E7E3DA5031E64240 |
| 14 | new_abboip                             | 1213083736               | 37.79779         | -122.40647                    | 0                     | 0101000020E61000008733BF9A039A5EC0B58993FB1DE64240 |
| 15 | new_abboip                             | 1213083715               | 37.79779         | -122.40646                    | 1                     | 0101000020E610000075C8CD70039A5EC0B58993FB1DE6424  |
| 16 | new_abboip                             | 1213083655               | 37.79657         | -122.40521                    | 1                     | 0101000020E6100000C780ECF5EE995EC0C47C7901F6E5424C |
| 17 | new_abboip                             | 1213083600               | 37.79305         | -122.40471                    | 1                     | 0101000020E61000004E97C5C4E6995EC0E10B93A982E54240 |
| 10 | now obboin                             | 1010000505               | 27 70045         | 100 40405                     | - 1                   | 0101000000000410000000000007040000000000           |

In this screenshot, the location column has been successfully updated to store the geographic point information in binary format using the GEOMETRY type. The latitude and longitude values have been converted into spatial points, allowing for more efficient spatial queries and analyses in subsequent tasks.

# Q3: Deleting Out-of-Bounds Data

Here, we deleted records from the Positions table where the latitude and longitude values fall outside a specified area. The query removes rows with latitudes outside 37.707 to 37.811 and longitudes outside -122.514 to -122.358. This ensures that we only keep records relevant to a specific geographic region, cleaning up outliers and focusing the dataset on a defined area.

# SQL Query:

**DELETE FROM Positions** 

WHERE latitude < 37.707 OR latitude > 37.811

|          | taxi_id<br>[PK] character varying (50) | timestamp<br>[PK] bigint | latitude<br>double precision | longitude<br>double precision | occupancy<br>smallint | location geometry                                     |
|----------|----------------------------------------|--------------------------|------------------------------|-------------------------------|-----------------------|-------------------------------------------------------|
| 1        | new_abboip                             | 1213084687               | 37.75134                     | -122.39488                    | 0                     | 0101000020E61000000C76C3B645995EC09C16BCE82BE04240    |
| 2        | new_abboip                             | 1213084659               | 37.75136                     | -122.39527                    | 0                     | 0101000020E6100000C1C58A1A4C995EC0E3C281902CE04240    |
| 3        | new_abboip                             | 1213084540               | 37.75199                     | -122.3946                     | 0                     | 0101000020E61000001AC05B2041995EC0A375543541E04240    |
| 4        | new_abboip                             | 1213084489               | 37.7508                      | -122.39346                    | 0                     | 0101000020E61000003012DA722E995EC01CEBE2361AE04240    |
| 5        | new_abboip                             | 1213084237               | 37.75015                     | -122.39256                    | 0                     | 0101000020E6100000F06DFAB31F995EC0158C4AEA04E04240    |
| 6        | new_abboip                             | 1213084177               | 37.75454                     | -122.39227                    | 0                     | 0101000020E6100000EC4CA1F31A995EC00DC347C494E04240    |
| 7        | new_abboip                             | 1213084172               | 37.75901                     | -122.3925                     | 0                     | 0101000020E610000085EB51B81E995EC022AB5B3D27E14240    |
| 8        | new_abboip                             | 1213084092               | 37.77053                     | -122.39788                    | 0                     | 0101000020E6100000E1EEACDD76995EC01F4B1FBAA0E24240    |
| 9        | new_abboip                             | 1213084032               | 37.77669                     | -122.39382                    | 0                     | 0101000020E6100000B020CD5834995EC0AC90F2936AE34240    |
| 10       | new_abboip                             | 1213083971               | 37.78194                     | -122.38844                    | 0                     | 0101000020E6100000541D7233DC985EC095B7239C16E44240    |
| 11       | new_abboip                             | 1213083910               | 37.78999                     | -122.38909                    | 0                     | 0101000020E6100000D74CBED9E6985EC062156F641EE54240    |
| 12       | new_abboip                             | 1213083855               | 37.79728                     | -122.39609                    | 0                     | 0101000020E61000007311DF8959995EC0A0E062450DE64240    |
| 13       | new_abboip                             | 1213083811               | 37.79838                     | -122.40239                    | 0                     | 0101000020E6100000328FFCC1C0995EC0E7E3DA5031E64240    |
| 14       | new_abboip                             | 1213083736               | 37.79779                     | -122.40647                    | 0                     | 0101000020E61000008733BF9A039A5EC0B58993FB1DE64240    |
| 15       | new_abboip                             | 1213083715               | 37.79779                     | -122.40646                    | 1                     | 0101000020E610000075C8CD70039A5EC0B58993FB1DE64240    |
| 16       | new_abboip                             | 1213083655               | 37.79657                     | -122.40521                    | 1                     | 0101000020E6100000C780ECF5EE995EC0C47C7901F6E54240    |
| 17       | new_abboip                             | 1213083600               | 37.79305                     | -122.40471                    | 1                     | 0101000020E61000004E97C5C4E6995EC0E10B93A982E54240    |
| Total ro | ws: 1000 of 9914327 Qu                 | ery complete 0           | 0:00:10.579 Ln 8             | 122 40405<br>31, Col 1        | 1                     | 01010000000610000000000007FADRO05FC00F2F005B200FF4040 |

This screenshot shows the cleaned dataset after irrelevant records were deleted based on latitude and longitude boundaries. Only taxi records within the specified geographic area are retained.

# Q4: Removing Duplicate or Near-Duplicate Records

We removed records where consecutive GPS positions for the same taxi were recorded less than 60 seconds apart. First, we created a common table expression (CTE) that compares each timestamp to the previous one for each taxi using the LAG function. Since all the data is in descending order for each taxi, this ensures we correctly identified the time differences between consecutive records. If the difference between two timestamps is less than 60 seconds, the record was deleted.

# SQL Query:

```
WITH CTE AS (

SELECT

taxi_id,

timestamp AS timestamp1,

LAG(timestamp) OVER (PARTITION BY taxi_id ORDER BY timestamp) AS timestamp2

FROM Positions
)

DELETE FROM Positions

WHERE (taxi_id, timestamp) IN (

SELECT taxi_id, timestamp1
```

```
FROM CTE

WHERE (timestamp1 - timestamp2) < 60
```

);

# Results Screenshot:

|         | taxi_id<br>[PK] character varying (50) | timestamp<br>[PK] bigint | double precision | longitude<br>double precision | occupancy<br>smallint | $[\mathfrak{a}]$ | location geometry                                |
|---------|----------------------------------------|--------------------------|------------------|-------------------------------|-----------------------|------------------|--------------------------------------------------|
| 1       | new_abboip                             | 1213084659               | 37.75136         | -122.39527                    | 0                     | 0101             | 000020E6100000C1C58A1A4C995EC0E3C281902CE042     |
| 2       | new_abboip                             | 1213084489               | 37.7508          | -122.39346                    | 0                     | 0101             | 000020E61000003012DA722E995EC01CEBE2361AE042     |
| 3       | new_abboip                             | 1213084237               | 37.75015         | -122.39256                    | 0                     | 0101             | 000020E6100000F06DFAB31F995EC0158C4AEA04E042     |
| 4       | new_abboip                             | 1213084172               | 37.75901         | -122.3925                     | 0                     | 0101             | 000020E610000085EB51B81E995EC022AB5B3D27E142     |
| 5       | new_abboip                             | 1213084092               | 37.77053         | -122.39788                    | 0                     | 0101             | 000020E6100000E1EEACDD76995EC01F4B1FBAA0E242     |
| 6       | new_abboip                             | 1213084032               | 37.77669         | -122.39382                    | 0                     | 0101             | 000020E6100000B020CD5834995EC0AC90F2936AE342     |
| 7       | new_abboip                             | 1213083971               | 37.78194         | -122.38844                    | 0                     | 0101             | 000020E6100000541D7233DC985EC095B7239C16E442     |
| 8       | new_abboip                             | 1213083811               | 37.79838         | -122.40239                    | 0                     | 0101             | 000020E6100000328FFCC1C0995EC0E7E3DA5031E642     |
| 9       | new_abboip                             | 1213083715               | 37.79779         | -122.40646                    | 1                     | 0101             | 000020E610000075C8CD70039A5EC0B58993FB1DE642     |
| 10      | new_abboip                             | 1213083600               | 37.79305         | -122.40471                    | 1                     | 0101             | 000020E61000004E97C5C4E6995EC0E10B93A982E54240   |
| 11      | new_abboip                             | 1213083535               | 37.78945         | -122.40405                    | 1                     | 0101             | 000020E6100000B9FC87F4DB995EC0E2E995B20CE542     |
| 12      | new_abboip                             | 1213083475               | 37.78833         | -122.40859                    | 1                     | 0101             | 000020E610000040DEAB56269A5EC0543A58FFE7E442     |
| 13      | new_abboip                             | 1213083384               | 37.78719         | -122.41689                    | 0                     | 0101             | 000020E6100000E2016553AE9A5EC07FDE54A4C2E442     |
| 14      | new_abboip                             | 1213083323               | 37.78477         | -122.42106                    | 0                     | 0101             | 000020E6100000D769A4A5F29A5EC0E370E65773E442     |
| 15      | new_abboip                             | 1213083263               | 37.7799          | -122.42184                    | 0                     | 0101             | 000020E61000004209336DFF9A5EC0401361C3D3E34240   |
| 16      | new_abboip                             | 1213083147               | 37.7748          | -122.42452                    | 0                     | 0101             | 000020E6100000DE1FEF552B9B5EC06C787AA52CE342     |
| 17      | new_abboip                             | 1213083083               | 37.77403         | -122.43021                    | 0                     | 0101             | 000020E6100000611A868F889B5EC0BB0F406A13E34240   |
| Total I | rows: 1000 of 5957058 Ou               | ery complete 0           | 0:00:12.086 Ln 9 | 99, Col 1                     | 0                     | 0101             | 0000000E410000000C64.000EE00EEC040680CBD01.4E040 |

This screenshot shows the dataset after removing duplicate or near-duplicate records where consecutive timestamps for the same taxi were recorded less than 60 seconds apart. This cleaning step ensures that only relevant and necessary data is kept for further analysis.

# Q5: Speed Calculation and Removing Outliers

We first added a new column speed\_kmh to the Positions table to store the calculated speed for each taxi. Then, we used a common table expression (CTE) to calculate the speed between consecutive GPS points for each taxi by finding the distance between locations and the time difference between timestamps. The speed was calculated in meters per second and then converted to kilometers per hour. Finally, we updated the Positions table with the calculated speeds and deleted any records where the calculated speed was unrealistically high, specifically greater than 120 km/h.

# SQL Query:

ALTER TABLE Positions ADD COLUMN speed\_kmh FLOAT;

```
WITH position_data AS (

SELECT

taxi_id,

timestamp AS timestamp1,
```

LAG(location) OVER (PARTITION BY taxi\_id ORDER BY timestamp) AS prev\_location,

LAG(timestamp) OVER (PARTITION BY taxi\_id ORDER BY timestamp) AS prev\_timestamp,

ST\_Distance(location::geography, LAG(location) OVER (PARTITION BY taxi\_id ORDER BY timestamp)::geography) AS distance\_meters,

(timestamp - LAG(timestamp) OVER (PARTITION BY taxi\_id ORDER BY timestamp)) AS time\_seconds

**FROM Positions** 

)

#### **UPDATE Positions**

SET speed\_kmh = (position\_data.distance\_meters / position\_data.time\_seconds) \* 3.6 -- Convert m/s to km/h

FROM position data

WHERE Positions.taxi\_id = position\_data.taxi\_id

AND Positions.timestamp = position\_data.timestamp1

AND position\_data.time\_seconds > 0;

**DELETE FROM Positions** 

WHERE speed\_kmh > 120;

#### Results Screenshot:

|          | taxi_id<br>[PK] character varying (50) | timestamp<br>[PK] bigint | latitude<br>double precision | longitude<br>double precision | occupancy<br>smallint | location geometry                                  | speed_kmh double precision |
|----------|----------------------------------------|--------------------------|------------------------------|-------------------------------|-----------------------|----------------------------------------------------|----------------------------|
| 537      | new_icdultha                           | 1211943168               | 37.75127                     | -122.40309                    | 1                     | 0101000020E61000000FD6FF39CC995EC0A33B889D29E04240 | 119.98832296039696         |
| 538      | new_oncixpi                            | 1211267983               | 37.74392                     | -122.39589                    | 1                     | 0101000020E61000000FB4024356995EC0906B43C538DF4240 | 119.92334742720001         |
| 539      | new_omluaj                             | 1212469860               | 37.73611                     | -122.40727                    | 0                     | 0101000020E610000015A930B6109A5EC018213CDA38DE4240 | 119.89926346342858         |
| 540      | new_egreosko                           | 1211047067               | 37.76024                     | -122.39232                    | 0                     | 0101000020E6100000456458C51B995EC0378E588B4FE14240 | 119.89612521148234         |
| 541      | new_idholv                             | 1211219564               | 37.77091                     | -122.39778                    | 1                     | 0101000020E61000002FC03E3A75995EC06614CB2DADE24240 | 119.88491312449182         |
| 542      | new_isvayd                             | 1211607545               | 37.7631                      | -122.40518                    | 1                     | 0101000020E6100000923F1878EE995EC0EFC9C342ADE14240 | 119.87801451470456         |
| 543      | new_ujtrud                             | 1212434687               | 37.76392                     | -122.39264                    | 0                     | 0101000020E61000007EC6850321995EC052616C21C8E14240 | 119.86419433890909         |
| 544      | new_egwicjuv                           | 1212992003               | 37.72276                     | -122.40098                    | 0                     | 0101000020E6100000689604A8A9995EC0B16D516683DC4240 | 119.8625512836             |
| 545      | new_eddreba                            | 1211334966               | 37.7991                      | -122.43511                    | 1                     | 0101000020E6100000670A9DD7D89B5EC0E71DA7E848E64240 | 119.85848878904999         |
| 546      | new_efghakdi                           | 1212692268               | 37.75649                     | -122.39225                    | 1                     | 0101000020E6100000C976BE9F1A995EC022E010AAD4E04240 | 119.84236449330338         |
| 547      | new_easnsvu                            | 1211476392               | 37.74655                     | -122.39399                    | 0                     | 0101000020E6100000DE3CD52137995EC0166A4DF38EDF4240 | 119.8340771347742          |
| 548      | new_elswcky                            | 1211074404               | 37.73903                     | -122.4005                     | 1                     | 0101000020E61000001283C0CAA1995EC0A661F88898DE4240 | 119.833478514              |
| 549      | new_ewufri                             | 1211431770               | 37.78349                     | -122.36279                    | 0                     | 0101000020E610000037548CF337975EC01C5F7B6649E44240 | 119.82662761834285         |
| 550      | new_eefayb                             | 1212220236               | 37.72822                     | -122.40318                    | 0                     | 0101000020E6100000AF997CB3CD995EC085251E5036DD4240 | 119.8251854648276          |
| 551      | new_ifanfadd                           | 1211669774               | 37.79157                     | -122.43607                    | 1                     | 0101000020E610000012312592E89B5EC0533F6F2A52E54240 | 119.8201291048696          |
| 552      | new_edglevi                            | 1212612319               | 37.74799                     | -122.39291                    | 1                     | 0101000020E61000005E11FC6F25995EC016DEE522BEDF4240 | 119.81369694441177         |
| 553      | new_itbadpi                            | 1212458337               | 37.71029                     | -122.39546                    | 0                     | 0101000020E610000013B875374F995EC0825660C8EADA4240 | 119.78644302240001         |
| Total ro | ws: 1000 of 5955069 Qu                 | ery complete 0           | 0:00:08.528 Ln               | 122 40225<br>124, Col 1       | 1                     | 010100000000100000000000000000000000000            | 110 700155404              |

Here, a new column speed\_kmh has been added to the taxi positions table, displaying the calculated speed for each taxi in kilometers per hour. These values are based on the distance between consecutive GPS points and the time difference between their timestamps. Taxis exceeding 120 km/h were identified and removed.

# Q6: Filtering Data by Time

In this part, we focused on filtering a large dataset of taxi trips to only look at data from May 17, 2008, between 8:00 PM and 9:00 PM. The key idea was to select the time period we were interested in by converting the times into Unix timestamps and using these to filter the rows. After narrowing down the data, we also looked at which vehicles were stationary (with a speed of 0) during this time. This gave us an understanding of how many taxis weren't moving within this time window.

# Python Code:

```
import pandas as pd

file_path = 'C:/Users/Feuer_Frei/Desktop/DataGeospatial_After_Q5.csv'
taxi_data = pd.read_csv(file_path)

start_time = 1211044800 #8:00 PM
end_time = 1211048400 #9:00 PM

may_17_evening = taxi_data[(taxi_data['timestamp'] >= start_time) & (taxi_data['timestamp'] <= end_time)]

output_filtered_file = 'C:/Users/Feuer_Frei/Desktop/Filtered_Data_17May_20_21.csv'
may_17_evening.to_csv(output_filtered_file, index=False)

stationary_cars = may_17_evening[may_17_evening['speed_kmh'] == 0]

num_stationary_cars = stationary_cars['taxi_id'].nunique()
```

#### **Results Screenshot:**

This screenshot shows the number of unique stationary vehicles during the selected time period, with a total of 536 taxis identified as stationary. The list of taxi\_ids is also displayed, indicating which vehicles were not in motion.

# Q7: Identifying Close Encounters Between Moving Vehicles

In this task, we worked with the filtered data from the previous step to find pairs of taxis that were moving and were very close to each other in space and time. First, we converted the location data into geometrical points so that we could use spatial analysis techniques. Then, we built a KD-Tree, which is a structure that lets us efficiently search for taxis that were within 5 meters of each other. We ensured the two vehicles were close not just in space but also in time by making sure the time difference between their positions was 60 seconds or less.

The KD-Tree is ideal for this task because it efficiently handles multidimensional data, like geographical coordinates, allowing us to quickly find nearby points without comparing every pair. In large datasets, this is much faster than brute-force methods, which would require checking every combination of points. Unlike other approaches, such as grid-based methods or brute-force searches, the KD-Tree organizes data in a hierarchical structure, making proximity queries more efficient. While methods like R-trees are also used for spatial searches, KD-Trees are particularly well-suited for this kind of fixed-radius search in Euclidean space.

# Python Code:

```
import pandas as pd
import geopandas as gpd
from shapely.wkb import loads
from scipy.spatial import cKDTree
import numpy as np
filtered file = 'C:/Users/Feuer Frei/Desktop/Filtered Data 17May 20 21.csv'
evening_data = pd.read_csv(filtered_file)
evening_data['geometry'] = evening_data['location'].apply(lambda loc: loads(bytes.fromhex(loc)))
geo_evening_data = gpd.GeoDataFrame(evening_data, geometry='geometry', crs="EPSG:4326")
moving_cars = geo_evening_data[geo_evening_data['speed_kmh'] > 0]
moving_cars_meters = moving_cars.to_crs(epsg=3857)
car_coords = np.array([(point.x, point.y) for point in moving_cars_meters['geometry']])
car_tree = cKDTree(car_coords)
close_car_pairs = car_tree.query_pairs(r=5)
nearby_cars = []
for i, j in close_car_pairs:
  time_diff = abs(moving_cars_meters.iloc[i]['timestamp'] - moving_cars_meters.iloc[j]['timestamp'])
```

```
if time_diff <= 60:
    nearby_cars.append({
        'car_1': moving_cars_meters.iloc[i]['taxi_id'],
        'car_2': moving_cars_meters.iloc[j]['taxi_id'],
        'distance_meters': 5, # Defined proximity threshold
        'time_difference_seconds': time_diff
    })

close_cars_df = pd.DataFrame(nearby_cars)</pre>
```

|        | vehicle_1      | vehicle_2    | distance_meters | time_difference_seconds |
|--------|----------------|--------------|-----------------|-------------------------|
| 0      | new_itpivoa    | new_itpivoa  | 5               | 60                      |
| 1      | new_ewbglo     | new_ewbglo   | 5               | 60                      |
| 2      | new_utwoab     | new_edodblea | 5               | 3                       |
| 3      | new_avdyab     | new_avdyab   | 5               | 60                      |
| 4      | new_avpavi     | new_avpavi   | 5               | 60                      |
|        |                |              |                 |                         |
| 163    | new_iorjtwav   | new_ochtin   | 5               | 25                      |
| 164    | new_orocdu     | new_orocdu   | 5               | 60                      |
| 165    | new_ucbiyaym   | new_ucbiyaym | 5               | 60                      |
| 166    | new_arcurbig   | new_utwoab   | 5               | 47                      |
| 167    | new_orocdu     | new_orocdu   | 5               | 60                      |
| 168 ro | ws × 4 columns |              |                 |                         |

This screenshot presents the pairs of taxis that were found to be within 5 meters of each other and had a time difference of 60 seconds or less. Each pair of vehicles is listed along with the calculated distance between them and the time difference in seconds.

# **Q8: Calculating Taxi Behavior Statistics**

In this task, we aimed to calculate some statistics for each taxi during the filtered time window. Specifically, we wanted to know how often the taxis sent location updates (measured by time gaps between consecutive records) and how fast they were going on average, as well as their fastest and slowest speeds. We grouped the data by taxi ID, sorted each group by time, and calculated the statistics for each taxi.

# Python Code:

```
import pandas as pd
# Group the filtered data by taxi ID
car_groups = may_17_evening.groupby('taxi_id')
# List to store stats for each car
car_stats = []
# Loop over each taxi group to calculate stats
for taxi_id, group in car_groups:
  # Sort the group by timestamp to analyze time intervals
  group_sorted = group.sort_values(by='timestamp')
  # Calculate time differences between consecutive records
  time_gaps = group_sorted['timestamp'].diff().dropna()
  min_gap = time_gaps.min()
  avg_gap = time_gaps.mean()
  max_gap = time_gaps.max()
  min_speed = group_sorted['speed_kmh'].min()
  avg_speed = group_sorted['speed_kmh'].mean()
  max_speed = group_sorted['speed_kmh'].max()
  car_stats.append({
    'taxi_id': taxi_id,
```

```
'min_time_gap': min_gap,
    'avg_time_gap': avg_gap,
    'max_time_gap': max_gap,
    'min_speed': min_speed,
    'avg_speed': avg_speed,
    'max_speed': max_speed
})

car_stats_df = pd.DataFrame(car_stats)
```

|        | taxi_id        | min_time_diff | mean_time_diff | max_time_diff | min_speed | mean_speed | max_speed  |
|--------|----------------|---------------|----------------|---------------|-----------|------------|------------|
| 0      | new_abboip     | 60.0          | 107.633333     | 250.0         | 0.251388  | 13.841708  | 77.978755  |
| 1      | new_abdremlu   | 60.0          | 98.909091      | 289.0         | 2.741534  | 25.189745  | 89.312042  |
| 2      | new_abgibo     | 60.0          | 97.440000      | 204.0         | 0.445693  | 22.331954  | 118.743719 |
| 3      | new_abjoolaw   | 60.0          | 108.588235     | 234.0         | 0.116904  | 16.085924  | 53.891579  |
| 4      | new_abniar     | 60.0          | 102.555556     | 168.0         | 1.124450  | 17.495361  | 80.519351  |
|        |                |               |                |               |           |            |            |
| 380    | new_utwoab     | 60.0          | 100.028571     | 228.0         | 0.000000  | 11.972821  | 32.412613  |
| 381    | new_uvburki    | 60.0          | 114.766667     | 199.0         | 0.240702  | 16.472410  | 37.251650  |
| 382    | new_uvigcho    | 60.0          | 113.866667     | 296.0         | 0.000000  | 31.544517  | 76.894023  |
| 383    | new_uvjeahot   | 60.0          | 101.074074     | 757.0         | 2.169475  | 31.091530  | 101.786370 |
| 384    | new_uvreoipy   | 60.0          | 98.958333      | 149.0         | 0.140475  | 20.146435  | 86.727696  |
| 385 ro | ws × 7 columns |               |                |               |           |            |            |

In this table, the time gap and speed statistics for each taxi are shown. The min\_time\_diff, mean\_time\_diff, and max\_time\_diff columns provide insights into the frequency of GPS updates for each taxi, while the min\_speed, mean\_speed, and max\_speed columns show the speed behavior over the recorded period.

# Q9: Creating Trips and SpeedLimits Tables

We created two new tables: Trips and SpeedLimits. The Trips table stores information about individual taxi trips, including the taxi ID, departure and arrival times (in Unix timestamp format), starting and ending locations (as geographical points), and the occupancy status (whether the taxi was occupied or free). We used a CTE to calculate when a taxi's occupancy status changed, marking the beginning and

end of a trip. The SpeedLimits table stores information about speed limits for different road segments, including the street name, type, speed limit, and geographical representation of the road as a MultiLineString.

We also created the SpeedLimits table to store information about speed limits for different road segments. Each record includes details such as the road's name, type, start and end points, speed limits (including special limits for school zones), and the geographical representation of the road as a MultiLineString. Finally, we used the COPY command to load data from a CSV file into the SpeedLimits table, ensuring we have accurate speed limit data for analysis.

# SQL Query:

```
CREATE TABLE Trips (
  trip_id SERIAL PRIMARY KEY,
  taxi_id VARCHAR(255),
  depart_time BIGINT, -- Χρονική στιγμή σε Unix format (BIGINT)
  arrival_time BIGINT, -- Χρονική στιγμή σε Unix format (BIGINT)
  depart_location GEOMETRY(Point, 4326),
  arrival_location GEOMETRY(Point, 4326),
  occupancy SMALLINT -- 0 = ελεύθερο, 1 = κατειλημμένο
);
WITH Trip_Segments AS (
  SELECT
    taxi_id, -- Μετατροπή σε INTEGER
    timestamp AS event_time_unix,
    location AS event_location,
    occupancy,
    LAG(occupancy) OVER (PARTITION BY taxi_id ORDER BY timestamp) AS previous_occupancy,
    LAG(timestamp) OVER (PARTITION BY taxi_id ORDER BY timestamp) AS previous_time_unix,
    LAG(location) OVER (PARTITION BY taxi_id ORDER BY timestamp) AS previous location
  FROM Positions
)
INSERT INTO Trips (taxi_id, depart_time, arrival_time, depart_location, arrival_location, occupancy)
SELECT
```

```
taxi_id,
  previous_time_unix AS depart_time,
  event_time_unix AS arrival_time,
  previous_location AS depart_location,
  event_location AS arrival_location,
  previous_occupancy AS occupancy
FROM Trip_Segments
WHERE previous_occupancy IS NOT NULL
AND occupancy != previous_occupancy;
CREATE TABLE SpeedLimits (
  objectid SERIAL PRIMARY KEY,
  cnn VARCHAR(50),
  street VARCHAR(100),
  st_type VARCHAR(50),
  from_st VARCHAR(100),
  to_st VARCHAR(100),
  speedlimit INTEGER,
  schoolzone BOOLEAN,
  schoolzone_limit INTEGER,
  analysis_neighborhood VARCHAR(100),
  geometry GEOMETRY(MultiLineString, 4326)
COPY SpeedLimits (objectid, cnn, street, st_type, from_st, to_st, speedlimit, schoolzone,
schoolzone_limit, analysis_neighborhood, geometry)
FROM 'E:/ModifiedDownloads/Filtered_Speed_Limits.csv' -- Update with the correct path
WITH (FORMAT csv, HEADER true, DELIMITER ',', NULL ", QUOTE "");
```



This table displays the generated Trips table, which stores the departure and arrival times, as well as the locations for each taxi trip. The occupancy field indicates whether the taxi was occupied during the trip, allowing for further analysis of taxi behavior.

## Results Screenshot:



This screenshot displays the SpeedLimits table, which includes information about speed limits for various road segments. Each record specifies the street name, segment type, speed limit, and geometry of the road segment.

# Q10: Identifying Speed Violations

In this task, we identified vehicles that violated speed limits on specific road segments. First, we created spatial indexes on both vehicle positions (location) and road segments (geometry) to optimize spatial queries. Then, we used a buffer of 50 meters around each road segment to approximate matching between vehicle positions and road segments. By checking if a vehicle's position fell within this buffer and if its speed exceeded the speed limit for that road segment, we identified speed violations.

# SQL Query:

CREATE INDEX idx\_positions\_location ON Positions USING GIST (location);

CREATE INDEX idx\_speedlimits\_geometry ON SpeedLimits USING GIST (geometry);

```
WITH Buffered_SpeedLimits AS (
  SELECT
    objectid,
    speedlimit,
    ST_Buffer(geometry::geography, 50)::geometry AS buffered_geometry -- Creating a 50 meter
buffer
  FROM SpeedLimits
),
Speed_Violations AS (
  SELECT
    p.taxi_id,
    p.timestamp,
    p.speed_kmh,
    s.speedlimit,
    p.speed_kmh - s.speedlimit AS speed_over_limit,
    s.objectid AS road_segment_id
  FROM Positions p
  JOIN Buffered_SpeedLimits s
  ON ST_Intersects(p.location, s.buffered_geometry) -- Match vehicle position to road segment using
buffer
  WHERE p.speed_kmh > s.speedlimit -- Only include records where the vehicle exceeds the speed
limit
)
SELECT
  taxi_id,
  timestamp,
  speed_kmh,
  speedlimit,
  speed_over_limit,
```

road\_segment\_id

FROM Speed\_Violations;

# Results Screenshot:

|           | taxi_id character varying (50) | timestamp<br>bigint | speed_kmh double precision | speedlimit integer | speed_over_limit double precision | road_segment_id integer |
|-----------|--------------------------------|---------------------|----------------------------|--------------------|-----------------------------------|-------------------------|
| 1         | new_uvburki                    | 1211029229          | 28.741392833657148         | 0                  | 28.741392833657148                | 27054                   |
| 2         | new_ackgrica                   | 1211659511          | 23.224943895882355         | 0                  | 23.224943895882355                | 27054                   |
| 3         | new_ideutgoa                   | 1212755245          | 17.181411921000002         | 0                  | 17.181411921000002                | 27054                   |
| 4         | new_ifanfadd                   | 1211900034          | 42.12730941917356          | 0                  | 42.12730941917356                 | 27054                   |
| 5         | new_upchimy                    | 1212865152          | 3.2032619734909087         | 0                  | 3.2032619734909087                | 27054                   |
| 6         | new_ecforj                     | 1211478144          | 36.31943673779105          | 0                  | 36.31943673779105                 | 27054                   |
| 7         | new_oquiat                     | 1212372304          | 23.82365418918261          | 0                  | 23.82365418918261                 | 27054                   |
| 8         | new_ujtrud                     | 1211625885          | 16.0972127934              | 0                  | 16.0972127934                     | 27054                   |
| 9         | new_oggluv                     | 1211540803          | 15.8411273934              | 0                  | 15.8411273934                     | 27054                   |
| 10        | new_udveoyx                    | 1212551047          | 21.65515201248555          | 0                  | 21.65515201248555                 | 27054                   |
| 11        | new_udveoyx                    | 1212551108          | 0.051996709770491804       | 0                  | 0.051996709770491804              | 27054                   |
| 12        | new_ednillo                    | 1211385904          | 13.946280451764705         | 0                  | 13.946280451764705                | 27054                   |
| 13        | new_eesbaj                     | 1211923639          | 10.512350591855423         | 0                  | 10.512350591855423                | 27054                   |
| 14        | new_ofikco                     | 1212340901          | 17.200272367500002         | 0                  | 17.200272367500002                | 27054                   |
| 15        | new_agivle                     | 1212959642          | 3.4747018674               | 0                  | 3.4747018674                      | 27054                   |
| 16        | new_urfhod                     | 1212868962          | 17.56522174556962          | 0                  | 17.56522174556962                 | 27054                   |
| 17        | new_ubjajo                     | 1211179488          | 20.019809746523077         | 0                  | 20.019809746523077                | 27054                   |
| Total rov | vs: 1000 of 15731935           | Query comple        | te 00:24:12.371 Ln 20      | 02, Col 1          | 1.4.700000000                     | 27054                   |

This table shows the result of the speed violation analysis, where each taxi's speed was compared against the road segment's speed limit. Any taxi exceeding the limit is recorded along with details such as the timestamp, speed, and the specific road segment where the violation occurred.

# Q11: Analyzing Trip Data

In this task, we calculated the percentage of trips where the taxi was occupied and analyzed the distribution of trip length and duration. We also calculated the average, minimum, and maximum trip lengths and durations for the occupied trips, providing valuable insights into the behavior of the taxi fleet.

# SQL Query:

ALTER TABLE Trips ADD COLUMN length FLOAT;

#### **SELECT**

COUNT(CASE WHEN occupancy = 1 THEN 1 END) AS occupancy\_true\_count,
COUNT(\*) AS total\_count,

```
(COUNT(CASE WHEN occupancy = 1 THEN 1 END) * 100.0 / COUNT(*)) AS occupancy_percentage FROM

Trips;
```

UPDATE Trips SET length = ST\_Distance(depart\_location::geography, arrival\_location::geography);

```
taxi_id,

AVG(length) AS average_length,

AVG(arrival_time - depart_time) AS average_duration,

MIN(length) AS min_length,

MAX(length) AS max_length,

MIN(arrival_time - depart_time) AS min_duration,

MAX(arrival_time - depart_time) AS max_duration

FROM

Trips

WHERE

occupancy = 1 -- Check for TRUE instead of 1

GROUP BY
```

# Results Screenshot:

taxi\_id;



This screenshot displays summary statistics of taxi occupancy, showing the total number of trips and the percentage of trips where the taxi was occupied.

|      | taxi_id<br>character varying (255) | average_length double precision | average_duration numeric | min_length double precision | max_length double precision | min_duration bigint | max_duration bigint |
|------|------------------------------------|---------------------------------|--------------------------|-----------------------------|-----------------------------|---------------------|---------------------|
| 1    | new_abboip                         | 521.7533794853501               | 194.5667107001321004     | 0                           | 8508.59595663               | 60                  | 3377                |
| 2    | new_abcoij                         | 603.592072787619                | 9353.3333333333333333    | 37.57585948                 | 5773.37584877               | 70                  | 131683              |
| 3    | new_abdremlu                       | 692.1927387870215               | 251.8340425531914894     | 0                           | 10155.3349674               | 60                  | 3752                |
| 4    | new_abgibo                         | 628.3678936247471               | 298.9154589371980676     | 1.76253018                  | 8530.84337475               | 60                  | 21806               |
| 5    | new_abjoolaw                       | 617.2614709180524               | 238.3927392739273927     | 7.38841357                  | 6918.96597486               | 61                  | 4059                |
| 6    | new_abmuyawm                       | 516.6561753374895               | 217.5937940761636107     | 0                           | 6908.67554512               | 61                  | 8594                |
| 7    | new_abniar                         | 601.5312820596782               | 232.2907444668008048     | 0.88132131                  | 8136.88209257               | 60                  | 13793               |
| 8    | new_abnovkak                       | 539.2421820750309               | 207.0932721712538226     | 0                           | 8429.67003802               | 61                  | 2839                |
| 9    | new_abtyff                         | 760.6424260304224               | 327.6204081632653061     | 1.41693161                  | 9557.11421067               | 60                  | 10752               |
| 10   | new_abwecnij                       | 539.1537052136316               | 212.5646766169154229     | 1.41707564                  | 9309.75487598               | 60                  | 6340                |
| 11   | new_abyalwif                       | 658.4498263179632               | 646.2065527065527066     | 2.21984586                  | 6859.35210514               | 61                  | 186263              |
| 12   | new_acdiyito                       | 560.2546701747029               | 1245.2868217054263566    | 0                           | 7717.22408182               | 60                  | 48334               |
| 13   | new_acduou                         | 486.70741484046204              | 197.5340179717586650     | 0                           | 10620.936016                | 61                  | 15663               |
| 14   | new_acgerl                         | 539.5682948930308               | 252.9800884955752212     | 0                           | 6075.83910466               | 62                  | 15320               |
| 15   | new_acitva                         | 542.2297676708745               | 436.0089686098654709     | 1.76172051                  | 10759.13255628              | 61                  | 21971               |
| 16   | new_ackgrica                       | 537.1638422865333               | 289.9197707736389685     | 2.08231134                  | 6759.19325515               | 61                  | 24726               |
| 17   | new_acpegho                        | 597.0668835081086               | 253.3993963782696177     | 2.08227717                  | 8607.47345373               | 60                  | 16017               |
| Tota | al rows: 534 of 534 Que            | ery complete 00:00:00.          | 301 Ln 251, Col 1        | 2.21004402                  | 0625 07522206               | 61                  | 0675                |

This table summarizes the trip length and duration statistics for each taxi. The average, minimum, and maximum lengths (in meters) and durations (in seconds) are calculated for each taxi during the analyzed period.

# Q12: Kmeans

In this analysis, we are using the **K-Means clustering algorithm** to group vehicle locations based on their geographic coordinates (latitude and longitude) in the city of San Francisco. The goal is to identify different clusters of vehicle activity, which can help in understanding patterns of movement and where vehicles tend to congregate.

First, we use the **elbow method** to determine the optimal number of clusters. The elbow method involves running K-Means for different values of KKK (the number of clusters) and calculating the **Within-Cluster Sum of Squares (WCSS)** for each. This helps identify the point where increasing the number of clusters does not significantly improve the fit, indicating the optimal KKK.

Once cluster number is chosen (in this case, 5), we apply K-Means clustering on the vehicle locations. The result is a series of clusters that represent different regions of activity within the city. We then visualize these clusters on a map, using **GeoPandas** to plot the locations and color-code them by their cluster assignment. To provide geographic context, we overlay the data on an **OpenStreetMap** basemap, which allows us to see how the clusters align with actual city streets and landmarks.

# SQL Query:

import pandas as pd

import geopandas as gpd

from sklearn.cluster import KMeans

```
import matplotlib.pyplot as plt

filtered_df = pd.read_csv('C:/Users/Feuer_Frei/Desktop/DataGeospatial_After_Q5.csv')

X = filtered_df[['latitude', 'longitude']]

wcss = []

for k in range(1, 11):
    kmeans = KMeans(n_clusters=k, random_state=0).fit(X)
    wcss.append(kmeans.inertia_)

plt.plot(range(1, 11), wcss)
plt.title('Elbow Method for Optimal K')
plt.xlabel('Number of Clusters (K)')
plt.ylabel('WCSS (Within-Cluster Sum of Squares)')
```

plt.show()



import pandas as pd
import geopandas as gpd
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import contextily as ctx

X = filtered\_df[['latitude', 'longitude']]

kmeans = KMeans(n\_clusters=5, random\_state=0).fit(X)

filtered\_df['cluster'] = kmeans.labels\_

gdf1 = gpd.GeoDataFrame(filtered\_df, geometry=gpd.points\_from\_xy(filtered\_df['longitude'], filtered\_df['latitude']), crs="EPSG:4326")

```
gdf1 = gdf1.to_crs(epsg=3857)

fig, ax = plt.subplots(figsize=(10, 10))

gdf1.plot(column='cluster', ax=ax, legend=True, cmap='viridis', markersize=5)

ctx.add_basemap(ax, source=ctx.providers.OpenStreetMap.Mapnik)

ax.set_xlim(gdf1.total_bounds[[0, 2]])

ax.set_ylim(gdf1.total_bounds[[1, 3]])

plt.title('Vehicle Clusters in San Francisco')

plt.xlabel('Longitude')

plt.ylabel('Latitude')
```



The clusters in the map show how vehicle activity is distributed across various regions of San Francisco, with each color representing a different concentration of vehicles. The yellow cluster is concentrated in the western part of the city, possibly indicating a residential or less congested area where vehicles are more spread out. The green cluster covers the southeastern area, which could be a mix of residential and commercial zones with moderate traffic. The blue cluster in the central area suggests medium vehicle density, likely following major roads or city center routes, while the purple cluster in the northeastern part points to a high-traffic area, possibly a business district. The cyan cluster in the eastern region may indicate more specialized vehicle movement, perhaps near industrial areas or ports.

However, it is important to note that the clusters do not align with actual road networks, as the K-Means algorithm uses straight-line distances between points. This limitation reduces the accuracy of the results, as vehicle movement in cities is restricted by streets and not by direct, Euclidean paths. As

| such, while the clusters provide insights vehicles travel along actual streets. | into vehicle | distribution, | they may | not fully | reflect how |
|---------------------------------------------------------------------------------|--------------|---------------|----------|-----------|-------------|
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |
|                                                                                 |              |               |          |           |             |