CS2040S

AY20/21 sem 2 github.com/jovyntls

ORDERS OF GROWTH

definitions

$$T(n) = O(f(n))$$
 if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) \leq cf(n)$

$$T(n) = \Omega(f(n))$$
 if $\exists c, n_0 > 0$ such that for all $n > n_0, T(n) \geq cf(n)$

$$T(n) = \Theta(f(n)) \\ \iff T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n))$$

properties

Let T(n) = O(f(n)) and S(n) = O(g(n))

• addition: T(n) + S(n) = O(f(n) + g(n))

• multiplication: T(n) * S(n) = O(f(n) * g(n))

• composition: $f_1 \circ f_2 = O(g_1 \circ g_2)$

· only if both functions are increasing

• if/else statements: $cost = max(c1, c2) \le c1 + c2$

• max: $\max(f(n), g(n)) \leq f(n) + g(n)$

notable

• $\sqrt{n} \log n$ is O(n)

• $O(2^{2n}) \neq O(2^n)$

• $O(\log(n!)) = O(n \log n) \to \text{sterling's approximation}$

• $T(n-1) + T(n-2) + \cdots + T(1) = 2T(n-1)$

space complexity

the maximum space incurred at any time at any point

· NOT the maximum space incurred altogether!

 assumption: once we exit the function, we release all memory that was used

SORTING

overview

· BubbleSort - compare adjacent items and swap

· SelectionSort - takes the smallest element, swaps into place

 InsertionSort - from left to right: swap element leftwards until it's smaller than the next element. repeat for next element

• tends to be faster than the other $O(n^2)$ algorithms

 MergeSort - mergeSort first half; mergeSort second half; merge

QuickSort

• partition algorithm: O(n)

• first element as partition. 2 pointers from left to right

· left pointer moves until element > pivot

 \cdot right pointer moves until element < pivot

· swap elements until left = right.

• then swap partition and left=right index.

optimisations of QuickSort

• array of duplicates: $O(n^2)$ without 3-way partitioning

• stable if the partitioning algo is stable.

· extra memory allows quickSort to be stable.

choice of pivot

• worst case $O(n^2)$: first/last/middle element

• worst case $O(n \log n)$: median/random element • split by fractions: $O(n \log n)$

· choose at random: runtime is a random variable

quickSelect

• O(n) - to find the k^{th} smallest element

· after partitioning, the partition is always in the correct position

TREES

binary search trees (BST)

• a BST is either empty, or a node pointing to 2 BSTs.

• tree balance depends on order of insertion

• balanced tree: $O(h) = O(\log n)$

• for a full-binary tree of size $n, \exists k \in \mathbb{Z}^+$ s.t. $n = 2^k - 1$

BST operations

• height, h(v) = max(h(v.left), h(v.right))

• leaf nodes: h(v) = 0

· modifying operations

• search, insert - O(h)

• delete - O(h)

· case 1: no children - remove the node

 case 2: 1 child - remove the node, connect parent to child

 case 3: 2 children - delete the successor; replace node with successor

query operations

• $\operatorname{searchMin} - O(h)$ - recurse into left subtree

• $\operatorname{searchMax} - O(h)$ - recurse into right subtree

• successor - O(h)

• if node has a right subtree: searchMin(v.right)

 else: traverse upwards and return the first parent that contains the key in its left subtree

AVL Trees

height-balanced

• \iff |v.left.height - v.right.height| ≤ 1

each node is augmented with its height - v.height = h(v)

ullet space complexity: O(LN) for N strings of length L

rebalancing

[case 1] B is balanced: right-rotate

[case 2] B is left-heavy: right-rotate

[case 3] B is right-heavy: left-rotate(v.left), right-rotate(v)

updating nodes after rotation

· insertion: max. 2 rotations

· deletion: recurse all the way up

· rotations can create every possible tree shape.

Trie

• search, insert - O(L) (for string of length L)

space: O(size of text · overhead)

interval trees

• search(key) $\Rightarrow O(\log n)$

· if value is in root interval, return

• if value > max(left subtree), recurse right

• else recurse left (go left only when can't go right)

• all-overlaps $\Rightarrow O(k \log n)$ for k overlapping intervals

orthogonal range searching

• binary tree; leaves store points, internal nodes store max value in left subtree

• buildTree(points[]) $\Rightarrow O(n \log n)$ (space is O(n))

• query(low, hight) $\Rightarrow O(k + \log n)$ for k points

• v=findSplit() $\Rightarrow O(\log n)$ - find node b/w low & high

• leftTraversal (v) \Rightarrow O(k) - either output all the right subtree and recurse left, or recurse right

• rightTraversal(v) - symmetric

• insert(key), insert(key) $\Rightarrow O(\log n)$

• 2D_query() $\Rightarrow O(\log^2 n + k)$ (space is $O(n \log n)$) • build x-tree from x-coordinates; for each node, build a y-tree from y-coordinates of subtree

• 2D_buildTree(points[]) $\Rightarrow O(n \log n)$

kd-Tree

• stores geometric data (points in an (x, y) plane)

• alternates splitting (partitioning) via x and y coordinates

• construct(points[]) $\Rightarrow O(n \log n)$

• search(point) $\Rightarrow O(h)$

• searchMin() $\Rightarrow T(n) = 2T(\frac{n}{4}) + O(1) \Rightarrow O(\sqrt{n})$

(a, b)-trees

e.g. a (2, 4)-tree storing 18 keys

- rules
- 1. (a,b)-child policy where $2 \le a \le (b+1)/2$

	# keys		# children	
node type	min	max	min	max
root	1	b-1	2	b
internal	a-1	b - 1	a	b
leaf	a-1	b - 1	0	0

- 2. an internal node has 1 more child than its number of keys
- 3. all leaf nodes must be at the same depth from the root
- terminology (for a node z)
- ullet key range range of keys covered in subtree rooted at z
- ullet keylist list of keys within z
- treelist list of z's children
- max height = $O(\log_a n) + 1$
- min height = $O(\log_b n)$
- search(key) $\Rightarrow O(\log n)$
- = $O(\log_2 b \cdot \log_a n)$ for binary search at each node
- insert(key) $\Rightarrow O(\log n)$
- split() a node with too many children
- 1. use median to split the keylist into 2 halves
- 2. move median key to parent; re-connect remaining nodes
- (if the parent is now unbalanced, recurse upwards; if the root is reached, median key becomes the new root)

- delete(key) $\Rightarrow O(\log n)$
 - if the node becomes empty, merge(y, z) join it with its left sibling & replace it with their parent

• if the combined nodes exceed max size: share(y, z) = merge(y, z) then split()

B-Tree

- (B, 2B)-trees $\Rightarrow (a, b)$ -tree where a = B, b = 2B
- possible augmentation: use a linkedList to connect between each level

Merkle Trees

- binary tree nodes augmented with a hash of their children
- same root value = identical tree

HASH TABLES

• disadvantage: no successor/predecessor operation

hashing

Let the m be the table size; let n be the number of items; let cost(h) be the cost of the hash function

- load(hash table), $\alpha = \frac{n}{}$
- = average number of items per bucket
- = expected number of items per bucket

hashing assumptions

- simple uniform hashing assumption
- every key has an equal probability of being mapped to every bucket
- keys are mapped independently
- · uniform hashing assumption
- every key is equally likely to be mapped to every permutation, independent of every other key.
- · NOT fulfilled by linear probing

properties of a good hash function

- 1. able to enumerate all possible buckets $h: U \to \{1..m\}$ • for every bucket $i, \exists i$ such that h(key, i) = i
- 2. simple uniform hashing assumption

hashCode

rules for the hashCode() method

- always returns the same value, if the object hasn't changed
- 2. if two objects are equal, they return the same hashCode rules for the equals method

• reflexive - x.equals(x) => true

- symmetric x.equals(x) \Rightarrow true
- transitive x.equals(y), y.equals(z) \Rightarrow x.equals(z)
- · consistent always returns the same answer
- null is null x.equals(null) => false

chaining

- · time complexity
- insert(key, value) $O(1 + cost(h)) \Rightarrow O(1)$
 - ullet for n items: expected maximum cost

$$\cdot = O(\log n)
\cdot = \Theta(\frac{\log n}{\log(\log(n))})$$

- search(key)
 - worst case: $O(n + cost(h)) \Rightarrow O(n)$
 - expected case: $O(\frac{n}{m} + cost(h)) \Rightarrow O(1)$
- total space: O(m+n)

open addressing - linear probing

- redefined hash function: $h(k, i) = h(k, 1) + i \mod m$
- delete(key)
- use a tombstone value DON'T set to null
- performance
- if the table is $\frac{1}{4}$ full, there will be clusters of size $\Theta(\log n)$
- expected cost of an operation, $E[\#probes] \leq \frac{1}{1-\alpha}$ (assume $\alpha < 1$ and uniform hashing)
- advantages
 - saves space (use empty slots vs linked list)

- better cache performance (table is one place in memory)
- rarely allocate memory (no new list-node allocation)
- · disadvantages
- · more sensitive to choice of hash function (clustering)
- more sensitive to load (as lpha
 ightarrow 1, performance degrades)

double hashing

for 2 functions
$$f, g$$
, define $h(k, i) = f(k) + i \cdot g(k) \mod m$

- if g(k) is relatively prime to m, then h(k,i) hits all buckets
- ullet e.g. for $g(k)=n^k,\, n$ and m should be coprime.

table size

assume chaining & simple uniform hashing let $m_1=$ size of the old hash table; $m_2=$ size of the new hash table; n= number of elements in the hash table

- growing the table: $O(m_1 + m_2 + n)$
- rate of growth

table growth	resize	insert n items
increment by 1	O(n)	$O(n^2)$
double	O(n)	O(n), average $O(1)$
square	$O(n^2)$	O(n)

PROBABILITY THEORY

- if an event occurs with probability p, the expected number of iterations needed for this event to occur is $\frac{1}{p}$.
- for random variables: expectation is always equal to the probability
- linearity of expectation: E[A = B] = E[A] + E[B]

UNIFORMLY RANDOM PERMUTATION

- for an array of n items, every of the n! possible permutations are producible with probability of exactly $\frac{1}{n!}$
- the number of outcomes should distribute over each permutation uniformly. (i.e. $\frac{\#\ of\ outcomes}{\#\ of\ permutations} \in \mathbb{N}$)
- probability of an item remaining in its initial position $=\frac{1}{n}$
- KnuthShuffle $\Rightarrow O(n)$ for every element in array A, swap it with a random index in array A.

sort best average worst stable? memory bubble $\Omega(n)$ $O(n^2)$ $O(n^2)$ O(1)selection $\Omega(n^2)$ $O(n^2)$ $O(n^2)$ × O(1) $O(n^2)$ $O(n^2)$ insertion $\Omega(n)$ \checkmark O(1) $\Omega(n \log n)$ $O(n \log n)$ $O(n \log n)$ O(n)merge quick $\Omega(n \log n)$ $O(n \log n)$ $O(n^2)$

searching

		Searching		
sorting invariants		search	average	
sort	invariant (after k iterations)	linear	O(n)	
bubble	largest k elements are sorted	binary	$O(\log n)$	
selection	smallest k elements are sorted	quickSelect	O(n)	
insertion	first k elements are in order	interval	$O(\log n)$	
merge	_	all-overlaps	$O(k \log n)$	
quick	partition is in the right position	1D range	$O(k + \log n)$	
		2D range	$O(k + \log^2 n)$	

data structures assuming O(1) comparison cost

data structure	search	insert	
sorted array	$O(\log n)$	O(n)	
unsorted array	O(n)	O(1)	
linked list	O(n)	O(1)	
tree (kd/(a, b)/binary)	$O(\log n)$ or $O(h)$	$O(\log n)$ or $O(h)$	
trie	O(L)	O(L)	
dictionary	$O(\log n)$	$O(\log n)$	
symbol table	O(1)	O(1)	
chaining	O(n)	O(1)	
open addressing	$\frac{1}{1-\alpha} = O(1)$	O(1)	

orders of growth

$$T(n) = 2T(\frac{n}{2}) + O(n) \qquad \Rightarrow O(n \log n)$$

$$T(n) = T(\frac{n}{2}) + O(n) \qquad \Rightarrow O(n)$$

$$T(n) = 2T(\frac{n}{2}) + O(1) \qquad \Rightarrow O(n)$$

$$T(n) = T(\frac{n}{2}) + O(1) \qquad \Rightarrow O(\log n)$$

$$T(n) = 2T(n-1) + O(1) \qquad \Rightarrow O(n(\log n)$$

$$T(n) = 2T(\frac{n}{2}) + O(n \log n) \qquad \Rightarrow O(n(\log n)^2)$$

$$T(n) = 2T(\frac{n}{4}) + O(1) \qquad \Rightarrow O(\sqrt{n})$$

$$T(n) = T(n-c) + O(n) \qquad \Rightarrow O(n^2)$$