Notizen

9. März 2016

$$\begin{array}{ll} \nu & \text{...kinematische Viskosit\"{a}t} \\ \eta & \text{...dynamische Viskosit\"{a}t} \\ \eta_{Luft} & = 17, 1 \cdot 10^{-6} \, \mathrm{Pa} \cdot \mathrm{s} \\ \eta_{Wasser}(20^{\circ}C) & = 10^{-3} \, \mathrm{Pa} \cdot \mathrm{s} \end{array}$$

$$\eta=\nu\varrho$$

$$\nu_{Luft} = 14, 2 \cdot 10^{-6} \frac{\text{m}^2}{\text{s}}$$

$$\nu_{Wasser} = 1 \cdot 10 - 6 \frac{\text{m}^2}{\text{s}}$$

$$R_e = \frac{UL}{\nu} \Rightarrow R_{e,Wasser} \approx 14 \cdot R_{e,Luft}$$

(für gleiche Größe und gleiche Anströmgeschwindigkeit)

Körper	Re	Aufhängung	C_w	$V_{schlepp}$ (20cm breit)	Quelle
Quader a)	$1,7\cdot 10^5$	Mit Klavierdraht an einem T-Träger	0,8-1,2	$0.85~\mathrm{m/s}$	Nakaguchi (1978)
Zylinder b)	$1 \cdot 10^5$	schwebende Magnetaufhängung ohne Beeinflussung der Strömung	0,85	$0.5~\mathrm{m/s}$	Y. Kawamura: Wind Tunnel Ex- periment of Bluff Body Aerodynamic ()
Kugel c)	$1 \cdot 10^5$	*wie Zylinder*	0,5	$0.5~\mathrm{m/s}$	*wie zylinder*
Zylinder d)	$9,4\cdot10^4$	Hängt an 4 senk- rechten Drähten (2 vorne, 2 hinten). Widerstandskraft aus Pendelauslen- kung bestimmt	0,2-0,6	$0.47~\mathrm{m/s}$	T. Morel: The effect of base slant on the flow pat- tern and drag of 3D bodies with blunt ends
Ahmed-Body e)	$1,4\cdot 10^6$	auf 2 Stiften unter dem Objekt, in Bodennähe und Bodenabstand	0,2-0,4	$7~\mathrm{m/s}$	T. Morel *wie Zy-linder d)*

