HWs

Eric Liu

CONTENTS

CF	HAPTER 1 GENERAL ANALYSIS HW	Page 2
1.1	HW1	2
1.2	HW2	16
1.3	Brunn-Minkowski Inequality	23
CI	HAPTER 2 COMPLEX ANALYSIS HW	Page 26
2.1	HW1	26
2.2	Exercise 1	29
CF	HAPTER 3 PDE INTRO HW	Page 31
3.1	HW1	31
3.2	HW2	34
3.3	1.2 First Order Linear Equations	35
3.4	1.4 Initial and Boundary Condition	40
3.5	1.5 Well Posed Problems	41
3.6	Types of Second-Order Equations	44
3.7	PDE HW 3	46
CF	HAPTER 4 DIFFERENTIAL GEOMETRY HW	PAGE 48
4.1	HW1	48
4.2	Appendix	52
4.3	Example: $S^1, \mathbb{R} \setminus \mathbb{Z}$ diffeomorphism	53

Chapter 1

General Analysis HW

1.1 HW1

Question 1

Show \mathbb{R}^n is complete.

Proof. Let \mathbf{x}_k be an arbitrary Cauchy sequence in \mathbb{R}^n . We are required to show \mathbf{x}_k converge in \mathbb{R}^n . For each k, denote \mathbf{x}_k by $(x_{(1,k)}, \ldots, x_{(n,k)})$. We claim that for each $i \in \{1, \ldots, n\}$

$$x_{(i,k)}$$
 is a Cauchy sequence

Fix i and $\epsilon > 0$. To show $x_{(i,k)}$ is a Cauchy sequence, we are required to find $N \in \mathbb{N}$ such that for all $r, m \geq N$ we have

$$\left| x_{(i,r)} - x_{(i,m)} \right| \le \epsilon$$

Because \mathbf{x}_k is a Cauchy sequence in \mathbb{R}^n , we know there exists $N \in \mathbb{N}$ such that for all $r, m \geq N$, we have

$$|\mathbf{x}_r - \mathbf{x}_m| < \epsilon$$

Fix such N and arbitrary $r, m \geq M$. Observe

$$|x_{(i,r)} - x_{(i,m)}| \le \sqrt{\sum_{j=1}^{n} |x_{(j,r)} - x_{(j,m)}|^2} = |\mathbf{x}_r - \mathbf{x}_m| < \epsilon$$

We have proved that for each $i \in \{1, ..., n\}$, the real sequence $x_{(i,k)}$ is Cauchy. We now claim that for each $i \in \{1, ..., n\}$, we have

$$\limsup_{r \to \infty} x_{(i,r)} \in \mathbb{R} \text{ and } \lim_{k \to \infty} x_{(i,k)} = \limsup_{r \to \infty} x_{(i,r)}$$

Again fix i. Because $x_{(i,k)}$ is a Cauchy sequence, we know there exists some N such that for all $r, m \geq N$, we have

$$\left| x_{(i,r)} - x_{(i,m)} \right| < 1$$

This implies that for all $r \geq N$, we have

$$x_{(i,r)} < x_{(i,N)} + 1 (1.1)$$

Equation 1.1 then tell us

$$x_{(i,N)} + 1$$
 is an upper bound of $\{x_{(i,r)} : r \ge N\}$

Then by definition of sup, we have

$$\sup\{x_{(i,r)} : r \ge N\} \le x_{(i,N)} + 1 \in \mathbb{R}$$

This then implies $\limsup_{r\to\infty} x_{(i,r)} \in \mathbb{R}$. We now prove

$$\lim_{k \to \infty} x_{(i,k)} = \limsup_{r \to \infty} x_{(i,r)} \tag{1.2}$$

Fix $\epsilon > 0$. We are required to find N such that

$$\forall k \ge N, \left| x_{(i,k)} - \limsup_{r \to \infty} x_{(i,r)} \right| \le \epsilon$$

Because $\{x_{(i,k)}\}_{k\in\mathbb{N}}$ is a Cauchy sequence, we can let N_0 satisfy

$$\forall k, m \ge N_0, \left| x_{(i,k)} - x_{(i,m)} \right| < \frac{\epsilon}{2}$$

Because $\sup\{x_{(i,k)}:k\geq N'\} \setminus \limsup_{r\to\infty} x_{(i,r)}$ as $N'\to\infty$, we know there exists $N_1>N_0$ such that

$$\limsup_{r \to \infty} x_{(i,r)} - \frac{\epsilon}{2} < \sup\{x_{(i,k)} : k \ge N_0\} \le \limsup_{r \to \infty} x_{(i,r)} + \frac{\epsilon}{2}$$

Then because $\limsup_{r\to\infty} x_{(i,r)} - \frac{\epsilon}{2}$ is strictly smaller than the smallest upper bound of $\{x_{(i,k)}: k \geq N_1\}$, we see $\limsup_{n\to\infty} x_{(i,r)} - \frac{\epsilon}{2}$ is not an upper bound of $\{x_{(i,k)}: k \geq N_1\}$. This implies the existence of some N such that $N \geq N_1$ and

$$\limsup_{r \to \infty} x_{(i,r)} - \frac{\epsilon}{2} < x_{(i,N)} \le \limsup_{r \to \infty} x_{(i,r)} + \frac{\epsilon}{2}$$

Now observe that for all $k \geq N$, because $N \geq N_1 \geq N_0$

$$\limsup_{r \to \infty} x_{(i,r)} - \epsilon < x_{(i,N)} - \frac{\epsilon}{2} < x_{(i,k)} < x_{(i,N)} + \frac{\epsilon}{2} \leq \limsup_{r \to \infty} x_{(i,r)} + \epsilon$$

This implies for all $k \geq N$, we have

$$\left| x_{(i,k)} - \limsup_{r \to \infty} x_{(i,r)} \right| \le \epsilon$$

We have just proved Equation 1.2. Lastly, to close out the proof, we show

$$\lim_{k \to \infty} \mathbf{x}_k = \left(\lim_{k \to \infty} x_{(1,k)}, \dots, \lim_{k \to \infty} x_{(n,k)}\right)$$
 (1.3)

Fix $\epsilon > 0$. For each $i \in \{1, \ldots, n\}$, let N_i satisfy

$$\forall r \ge N_i, \left| x_{(i,r)} - \lim_{k \to \infty} x_{(i,k)} \right| \le \frac{\epsilon}{\sqrt{n}}$$

Observe that for all $r \ge \max_{i \in \{1,...,n\}} N_i$, we have

$$\left| \mathbf{x}_r - \left(\lim_{k \to \infty} x_{(1,k)}, \dots, \lim_{k \to \infty} x_{(n,k)} \right) \right| = \sqrt{\sum_{i=1}^n \left| x_{(i,r)} - \lim_{k \to \infty} x_{(i,k)} \right|^2}$$

$$\leq \sqrt{\sum_{i=1}^n \frac{\epsilon^2}{n}} = \epsilon$$

We have proved Equation 1.3.

Question 2

Show \mathbb{Q} is dense in \mathbb{R} .

Proof. Fix $x \in \mathbb{R}$ and $\epsilon > 0$. To show \mathbb{Q} is dense in \mathbb{R} , we have to find $q \in \mathbb{Q}$ such that $|x - q| < \epsilon$.

Let $m \in \mathbb{N}$ satisfy $\frac{1}{m} < \epsilon$. Let n be the largest integer such that $n \leq mx$. Because n is the largest integer such that $n \leq mx$, we know mx - n < 1, otherwise we can deduce $n + 1 \leq mx$, which is impossible, since n + 1 is an integer and n is the largest integer such that $n \leq mx$. We now see that

$$\frac{n}{m} \in \mathbb{Q} \text{ and } \left| x - \frac{n}{m} \right| = \frac{mx - n}{m} < \frac{1}{m} < \epsilon$$

Theorem 1.1.1. (Distance Formula) Given two subsets A, B of a metric space, we have

$$d(A,B) = \inf_{\substack{b \in B \\ 4}} d(A,b)$$

Proof. Fix arbitrary $b \in B$. It is clear that

$$d(A,B) \le d(A,b)$$

It then follows $d(A, B) \leq \inf_{b \in B} d(A, b)$. Fix arbitrary $a \in A$ and $b_0 \in B$. Observe that

$$d(a,b_0) \ge d(A,b_0) \ge \inf_{b \in B} d(A,b)$$

It then follows $\inf_{b \in B} d(A, b) \leq d(A, B)$.

Question 3

Let E_1, E_2 be non-empty sets in \mathbb{R}^n with E_1 closed and E_2 compact. Show that there are points $x_1 \in E_1$ and $x_2 \in E_2$ such that

$$d(E_1, E_2) = |x_1 - x_2|$$

Deduce that $d(E_1, E_2)$ is positive if such E_1, E_2 are disjoint.

Proof. Because

- (a) $f(x) \triangleq d(E_1, x)$ is a continuous function on \mathbb{R}^n .
- (b) E_2 is compact.

It now follows by EVT there exists some $x_2 \in E_2$ such that

$$d(E_1, x_2) = \min_{x \in E_2} d(E_1, x) = \inf_{x \in E_2} d(E_1, x) = d(E_1, E_2)$$

where the last equality is proved above. We can now reduce the problem into finding x_1 in E_1 such that

$$d(x_1, x_2) = d(E_1, x_2)$$

For each $n \in \mathbb{N}$, let t_n satisfy

$$t_n \in E_1 \text{ and } d(t_n, x_2) < d(E_1, x_2) + \frac{1}{n}$$

Clearly, t_n is a bounded sequence. Then by Bolzano-Weierstrass Theorem, there exists a convergence subsequence t_{n_k} . Now, because E_1 is closed, we know

$$x_1 \triangleq \lim_{k \to \infty} t_{n_k} \in E_1$$

It then follows from the function $f(x) \triangleq d(x, x_2)$ being continuous on \mathbb{R}^n such that

$$d(x_1, x_2) = \lim_{k \to \infty} d(t_{n,k}, x_2) = d(E_1, x_2)$$

Question 4

Prove that the distance between two nonempty, compact, disjoint sets in \mathbb{R}^n is positive.

Proof. The proof follows from the result in last question while acknowledging compact is closed.

Question 5

Prove that if f is continuous on [a, b], then f is Riemann-integrable on [a, b].

Proof. Let $\overline{\int_a^b} f dx$ and $\underline{\int_a^b} f dx$ respectively denote the upper and lower Darboux sums. We prove that

$$\overline{\int_{a}^{b}} f dx = \int_{a}^{b} f dx$$

Fix ϵ . We reduce the problem into proving the existence of some partition $\{a = x_0, x_1, \dots, x_n = b\}$ such that

$$\sum_{i=1}^{n} \left[M_i - m_i \right] (x_i - x_{i-1}) \le \epsilon$$

where

$$M_i \triangleq \sup_{t \in [x_{i-1}, x_i]} f(t) \text{ and } m_i \triangleq \inf_{t \in [x_{i-1}, x_i]} f(t)$$

Because f is continuous on the compact interval [a, b], we know f is uniformly continuous on [a, b]. Let δ satisfy

$$|x - y| < \delta \text{ and } x, y \in [a, b] \implies |f(x) - f(y)| < \frac{\epsilon}{b - a}$$

Let n satisfy $\frac{b-a}{n} < \delta$. We claim the partition

$$\{a = x_0, x_1, \dots, x_n = b\}$$
 where $x_i \triangleq a + \frac{i(b-a)}{n}$ suffices

Now, by EVT, we know that for each i, there exists some $t_{i,M}, t_{i,m} \in [x_{i-1}, x_i]$ such that

$$f(t_{i,m}) = m_i$$
 and $f(t_{i,M}) = M_i$

Then because

$$|t_{i,m} - t_{i,M}| \le x_i - x_{i-1} \le \frac{b-a}{n} < \delta$$

We know $M_i - m_i < \frac{\epsilon}{b-a}$. This now give us

$$\sum_{i=1}^{n} \left[M_i - m_i \right] (x_i - x_{i-1}) < \sum_{i=1}^{n} \frac{\epsilon}{(b-a)} (x_i - x_{i-1})$$

$$= \frac{\epsilon}{b-a} \sum_{i=1}^{n} (x_i - x_{i-1})$$

$$= \frac{\epsilon}{b-a} (b-a) = \epsilon$$

Question 6

Find $\limsup_{n\to\infty} E_n$ and $\liminf_{n\to\infty} E_n$ where

$$E_n \triangleq \begin{cases} \left[\frac{-1}{n}, 1\right] & \text{if } n \text{ is odd} \\ \left[-1, \frac{1}{n}\right] & \text{if } n \text{ is even} \end{cases}$$

Proof. Fix arbitrary $n \in \mathbb{N}$. Let $p, q \geq n$ respectively be odd and even. We see

$$[0,1] \subseteq E_p$$
 and $[-1,0] \subseteq E_q$

This now implies

$$[-1,1] \subseteq \bigcup_{k \ge n} E_k$$

Then because n is arbitrary, it follows

$$\limsup_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} \bigcup_{k \ge n} E_k = [-1, 1]$$

Again, fix arbitrary $n \in \mathbb{N}$ and $\epsilon > 0$. Let p, q respectively be even and odd integers greater than $\max\{n, \frac{1}{\epsilon}\}$. We now see

$$\epsilon \not\in [-1, \frac{1}{p}] = E_p \text{ and } -\epsilon \not\in [\frac{-1}{q}, 1] = E_q$$

Because ϵ is arbitrary and clearly $0 \in E_k$ for all k, we now see

$$\bigcap_{k>n} E_k = \{0\}$$

Then because n is arbitrary, we see

$$\liminf_{n \to \infty} E_n = \bigcup_{n=1}^{\infty} \bigcap_{k \ge n} E_k = \{0\}$$

Question 7

Show that

$$(\limsup_{n\to\infty} E_n)^c = \liminf_{n\to\infty} (E_n)^c$$

and

$$E_n \searrow E \text{ or } E_n \nearrow E \implies \limsup_{n \to \infty} E_n = \liminf_{n \to \infty} E_n = E$$

Proof. Fix arbitrary $x \in (\limsup_{n \to \infty} E_n)^c$. We can deduce

$$\exists n, x \not\in \bigcup_{k \ge n} E_k$$

This implies

$$\exists n, x \in \bigcap_{k \ge n} E_k^c$$

Then we see

$$x\in\bigcup_{n=1}^{\infty}\bigcap_{k\geq n}E_k^c=\liminf_{n\to\infty}E_n^c$$

We have proved $(\limsup_{n\to\infty} E_n)^c \subseteq \liminf_{n\to\infty} E_n^c$. We now prove the converse. Fix arbitrary $x\in \liminf_{n\to\infty} E_n^c$. We can deduce

$$\exists n, x \in \bigcap_{k \ge n} E_k^c$$

This implies

$$\exists n, x \not\in \bigcup_{k \ge n} E_k$$

Then we see

$$x \not\in \bigcap_{n=1}^{\infty} \bigcup_{k>n} E_k = \limsup_{n \to \infty} E_n$$

Theorem 1.1.2. (Equivalent Definition for Limit Superior) If we let E be the set of subsequential limits of a_n

$$E \triangleq \{L \in \overline{\mathbb{R}} : L = \lim_{k \to \infty} a_{n_k} \text{ for some } n_k\}$$

The set E is non-empty and

$$\max E = \limsup_{n \to \infty} a_n$$

Proof. Let $n_1 \triangleq 1$. Recursively, because

$$\sup_{j \ge n_k} a_k \ge \limsup_{n \to \infty} a_n > \limsup_{n \to \infty} a_n - \frac{1}{k} \text{ for each } k$$

We can let n_{k+1} be the smallest number such that

$$a_{n_{k+1}} > \limsup_{n \to \infty} a_n - \frac{1}{k}$$

It is straightforward to check $a_{n_k} \to \limsup_{n \to \infty} a_n$ as $k \to \infty$. Note that no subsequence can converge to $\limsup_{n \to \infty} a_n + \epsilon$ because there exists N such that $\sup_{k \ge N} a_k < \limsup_{n \to \infty} a_n + \epsilon$.

Question 8

Show that

$$\limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} a_n$$

Proof. Note that $-a_{n_k}$ converge if and only if a_{n_k} converge. Then if we respectively define E and E^- to be the set of subsequential limits of a_n and $-a_n$, we see

$$E^- = \{ -L \in \mathbb{R} : L \in E \}$$

We now see

$$\lim_{n \to \infty} \sup(-a_n) = \max E^- = -\min E = -\liminf_{n \to \infty} a_n$$

Question 9

Show that

$$\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n \tag{1.4}$$

Proof. Fix arbitrary ϵ . Let N_a, N_b respectively satisfy

$$\sup_{n \geq N_a} a_n \leq \limsup_{n \to \infty} a_n + \frac{\epsilon}{2} \text{ and } \sup_{n \geq N_b} b_n \leq \limsup_{n \to \infty} b_n + \frac{\epsilon}{2}$$

Let $N \triangleq \max\{N_a, N_b\}$. We now see that

$$\limsup_{n \to \infty} (a_n + b_n) \le \sup_{n \ge N} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n + \epsilon$$

The result then follows from ϵ being arbitrary.

Question 10

$$a_n, b_n$$
 is bounded non-negative $\implies \limsup_{n \to \infty} (a_n b_n) \le (\limsup_{n \to \infty} a_n) (\limsup_{n \to \infty} b_n)$ (1.5)

Proof. There are three cases we should consider

- (a) Both $\limsup_{n\to\infty} a_n$ and $\limsup_{n\to\infty} b_n$ equal 0.
- (b) Between $\limsup_{n\to\infty} a_n$ and $\limsup_{n\to\infty} b_n$, only one of them equals 0.
- (c) Neither $\limsup_{n\to\infty} a_n$ nor $\limsup_{n\to\infty} b_n$ equals to 0.

In the first case, because a_n, b_n are both non-negative, we can deduce

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$$

which implies

$$\lim_{n\to\infty} \sup(a_n b_n) = \lim_{n\to\infty} a_n b_n = 0 = \lim_{n\to\infty} a_n \lim_{n\to\infty} b_n$$

For second case, WOLG, suppose $\limsup_{n\to\infty} a_n = 0$. Fix arbitrary ϵ . We can let N satisfy

$$\sup_{n \ge N} a_n < \frac{\epsilon}{\sup_{n \in \mathbb{N}} b_n}$$

Since for all $n \geq N$, we have

$$a_n b_n \le \frac{b_n \epsilon}{\sup_{k \in \mathbb{N}} b_k} \le \epsilon$$

We now see

$$\limsup_{n \to \infty} (a_n b_n) \le \sup_{n \ge N} a_n b_n \le \epsilon$$

The result

$$\limsup_{n\to\infty} a_n b_n = 0 = \limsup_{n\to\infty} a_n \limsup_{n\to\infty} b_n$$

then follows from ϵ being arbitrary.

Lastly, for the last case, let N_a, N_b respectively satisfy

$$\sup_{n \ge N_a} a_n \le \limsup_{n \to \infty} a_n \sqrt{1 + \epsilon} \text{ and } \sup_{n \ge N_b} b_n \le \limsup_{n \to \infty} b_n \sqrt{1 + \epsilon}$$

Let $N \triangleq \max\{N_a, N_b\}$, because for each $n \geq N$, we have

$$a_n b_n \le (\sup_{k \ge N_a} a_k)(\sup_{k \ge N_b} b_k) \le (1 + \epsilon)(\limsup_{n \to \infty} a_n)(\limsup_{n \to \infty} b_n)$$

It then follows that

$$\limsup_{n \to \infty} (a_n b_n) \le \sup_{n \ge N} (a_n b_n) \le (1 + \epsilon) (\limsup_{n \to \infty} a_n) (\limsup_{n \to \infty} b_n)$$

The result then follows from ϵ being arbitrary.

Question 11

Show that if either a_n or b_n converge, the equalities in Equation 1.4 and Equation 1.5 both hold true.

Proof. WOLG, suppose $\lim_{n\to\infty} a_n = L \in \mathbb{R}$. We then see

$$(a_{n_k} + b_{n_k})$$
 converge $\iff b_{n,k}$ converge

Let $E_{a,b}$ and E_b respectively be the set of subsequential limits of $(a_n + b_n)$ and b_n . We now have

$$E_{a,b} = \{L + L_b \in \mathbb{R} : L_b \in E_b\}$$

This give us

$$\lim_{n \to \infty} \sup (a_n + b_n) = \max E_{a,b} = L + \max E_b = \lim_{n \to \infty} \sup a_n + \limsup_{n \to \infty} b_n$$

Now, additionally, suppose a_n, b_n are both bounded and nonnegative. Again because

$$a_{n_k}b_{n,k}$$
 converge $\iff b_{n,k}$ converge

We see

$$E_{a,b} = \{L(L_b) \in \mathbb{R} : L_b \in E_b\}$$

This give us

$$\limsup_{n \to \infty} (a_n b_n) = \max E_{a,b} = L \max E_b = (\limsup_{n \to \infty} a_n) (\limsup_{n \to \infty} b_n)$$

Question 12

Give example for which inequality in Equation 1.4 and Equation 1.5 are not equalities.

Proof. If

$$a_n \triangleq \begin{cases} 1 & \text{if } n \text{ is odd} \\ -1 & \text{if } n \text{ is even} \end{cases}$$
 and $b_n \triangleq \begin{cases} -1 & \text{if } n \text{ is odd} \\ 1 & \text{if } n \text{ is even} \end{cases}$

we have

$$\limsup_{n \to \infty} (a_n + b_n) = 0 < 2 = \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$$

Let L > 1 and

$$a_n \triangleq \begin{cases} L - \frac{1}{k} & \text{if } n = 2k - 1\\ (L - \frac{1}{k})^{-1} & \text{if } n = 2k \end{cases}$$
 and $b_n \triangleq \begin{cases} (L - \frac{1}{k})^{-1} & \text{if } n = 2k - 1\\ (L - \frac{1}{k}) & \text{if } n = 2k \end{cases}$

We have

$$\limsup_{n \to \infty} a_n b_n = 1 < L^2 = \limsup_{n \to \infty} a_n \limsup_{n \to \infty} b_n$$

Question 13

Give an example of a decreasing sequence of nonempty closed sets in \mathbb{R}^n whose intersection is empty.

Proof.

$$F_n \triangleq [n, \infty)$$
 suffices

Question 14

Given an example of two disjoint, nonempty closed sets in E_1 and E_2 in \mathbb{R}^n for which $d(E_1, E_2) = 0$.

Proof. Let

$$E_1 \triangleq \{n - \frac{1}{n} \in \mathbb{R} : n \in \mathbb{N} \text{ and } n \geq 2\} \text{ and } E_2 \triangleq \{n - \frac{1}{2n} \in \mathbb{R} : n \in \mathbb{N} \text{ and } n \geq 2\}$$

To see $E_1 \cap E_2 = \emptyset$, suppose $n - \frac{1}{n} = k - \frac{1}{2k}$ where n, k are two natural numbers greater than 2. We then see $\frac{1}{n} - \frac{1}{2k} = n - k$, which is impossible, since

$$\left| \frac{1}{n} - \frac{1}{2k} \right| < \max\{\frac{1}{2k}, \frac{1}{n}\} < 1$$

The fact E_1, E_2 are closed follows from both of them being totally disconnected. Now observe that for all ϵ , there exists large enough n such that

$$(n+\frac{1}{n})-(n+\frac{1}{2n})<\frac{1}{n}<\epsilon$$

This implies $d(E_1, E_2) = 0$.

Question 15

If f is defined and uniformly continuous on E, show there is a function \overline{f} defined and continuous on \overline{E} such that $\overline{f} = f$ on E.

Proof. Define \overline{f} on E by $\overline{f} = f$. For each $x \in \overline{E} \setminus E$, associate x with a sequence $t_{n,x}$ in E converging to x. We now claim that for each $x \in \overline{E} \setminus E$ the limit

$$\lim_{n\to\infty} f(t_{n,x}) \text{ converge in } \mathbb{R}$$

Fix ϵ . Because f is uniformly continuous on E, we know there exists δ such that

$$a, b \in E \text{ and } |a - b| \le \delta \implies |f(a) - f(b)| < \epsilon$$

Because $t_{n,x}$ converge, we know $t_{n,x}$ is Cauchy, then we know there exists N such that $|t_{n,x}-t_{m,x}|<\delta$ for all n,m>N, we then see that for all n,m>N, we have

$$|f(t_{n,x}) - f(t_{m,x})| < \epsilon$$

This implies $\{f(t_{n,x})\}_{n\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{R} , thus converge in \mathbb{R} .

Define

$$\overline{f}(x) \triangleq \lim_{n \to \infty} f(t_{n,x}) \text{ for all } x \in \overline{E} \setminus E$$

We are required to show \overline{f} is also continuous on $\overline{E} \setminus E$. Fix ϵ and $x \in \overline{E} \setminus E$. Let δ satisfy

$$a, b \in E \text{ and } |a - b| \le \delta \implies |f(a) - f(b)| < \frac{\epsilon}{3}$$

We claim

$$\sup_{t \in B_{\frac{\delta}{2}}(x) \cap \overline{E}} \left| \overline{f}(t) - \overline{f}(x) \right| \le \epsilon$$

Fix $t \in B_{\frac{\delta}{2}}(x) \cap \overline{E}$. There are two possibilities

- (a) $t \in E$
- (b) $t \in \overline{E} \setminus E$

If $t \in E$, let n satisfy

$$|f(t_{n,x}) - \overline{f}(x)| < \frac{\epsilon}{3} \text{ and } |t_{n,x} - x| < \frac{\delta}{2}$$

Because

$$|t_{n,x} - t| \le |t_{n,x} - x| + |t - x| < \delta$$

we can deduce $|f(t_{n,x}) - f(t)| < \frac{\epsilon}{3}$. This now give us

$$\left| f(t) - \overline{f}(x) \right| \le \left| f(t_{n,x}) - f(t) \right| + \left| f(t_{n,x}) - \overline{f}(x) \right| < \epsilon$$

If $t \in \overline{E} \setminus E$. Write y = t and let $t_{n,y}$ be the associated sequence in E. Because $y \in B_{\frac{\delta}{2}}(x)$, we know there exists $t_{n,y}$ such that

$$t_{n,y} \in B_{\frac{\delta}{2}}(x) \text{ and } |f(t_{n,y}) - \overline{f}(y)| < \frac{\epsilon}{3}$$

Again, let m satisfy

$$t_{m,x} \in B_{\frac{\delta}{2}}(x)$$
 and $|f(t_{m,x}) - \overline{f}(x)| < \frac{\epsilon}{3}$

We know $|t_{n,y}-t_{m,x}| \leq \delta$ because they both belong to $B_{\frac{\delta}{2}}(x)$. We can now deduce

$$\left|\overline{f}(y) - \overline{f}(x)\right| = \left|\overline{f}(y) - f(t_{n,y})\right| + \left|f(t_{n,y}) - f(t_{m,x})\right| + \left|f(t_{m,x}) - \overline{f}(x)\right| < \epsilon$$

which finish the proof.

Question 16

If f is defined and uniformly continuous on a bounded set E, show that f is bounded on E.

Proof. By last question, we can extend f to a continuous \overline{f} onto \overline{E} . Now because \overline{E} is compact and $|\overline{f}|$ is continuous on \overline{E} , by EVT, there exists $a \in \overline{E}$ such that

$$\sup_{x \in E} |f(x)| \le \max_{x \in \overline{E}} |f(x)| = f(a)$$

1.2 HW2

Question 17

Construct a two-dimensional Cantor set in the unit square $[0,1]^2$ as follows. Subdivide the square into nine equal parts and keep only the four closed corner squares, removing the remaining region (which form a cross). Then repeat this process in a suitably scaled version for the remaining squares, ad infinitum. Show that the resulting set is perfect, has plane measure zero, and equals $\mathcal{C} \times \mathcal{C}$.

Proof. Let $C'_n \subseteq \mathbb{R}^2$ be the result after the *n*th stage of removal, and let $C_n \subseteq \mathbb{R}$ be the result after the *n*th stage of removal in the construction of the classical ternary Cantor set. It is clear that

$$C'_n = C_n \times C_n$$
 for all n

It then follows

$$\bigcap_{n} \mathcal{C}'_{n} = \bigcap_{n} \mathcal{C}_{n} \times \mathcal{C}_{n} = \mathcal{C} \times \mathcal{C}$$

The fact that $\mathcal{C} \times \mathcal{C}$ has plane measure zero follows from Lemma 1.2.1. Fix $(a, b) \in \mathcal{C} \times \mathcal{C}$. Because \mathcal{C} is perfect, there exists some $b' \in \mathcal{C}$ such that

$$0 < |b' - b| < \epsilon$$

To see that C' is perfect, one see that

$$(a,b) \neq (a,b')$$
 and $(a,b') \in \mathcal{C}' \times \mathcal{C}'$ and $|(a,b) - (a,b')| = |b'-b| < \epsilon$

Question 18

Construct a subset of [0,1] in the same manner as the Cantor set, except that at the kth stage, each interval removed has length $\delta 3^{-k}$, $0 < \delta < 1$. Show that the resulting set is perfect, has measure $1 - \delta$, and contains no intervals.

Proof. Let $C'_n \subseteq \mathbb{R}$ be the result after the *n*th stage of removal according to the description. Clearly, each C'_n has 2^n amount of connected component, we then can compute the length of $C' \triangleq \bigcap C'_n$ to be

$$1 - \sum_{k=1}^{\infty} 2^{k-1} \delta 3^{-k} = 1 - \frac{\frac{\delta}{3}}{1 - \frac{2}{3}} = 1 - \delta$$

Since each C'_n has 2^n amount of connected component of equal length and $C'_n \subseteq [0, 1]$, we know the length of each connected component of C'_n must not be greater than $\frac{1}{2^n}$. It then follows that no interval [a, a + h] can be contained by all C'_n because if [a, a + h] is a subset of some connected component of C'_k of some k, then the measure h = |[a, a + h]| must be smaller than $\frac{1}{2^k}$, which is false when k is large enough.

Question 19

If E_k is a sequence of sets with $\sum |E_k|_e < \infty$, show that $\limsup_{n \to \infty} E_n$ has measure zero.

Proof. Note that

$$\sum_{k=N}^{\infty} |E_k|_e = \left(\sum_{k=1}^{\infty} |E_k|_e - \sum_{k=1}^{N-1} |E_k|_e\right) \to 0 \text{ as } N \to \infty$$

and note for all N we have

$$\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k \subseteq \bigcup_{k=N}^{\infty} E_k$$

Then for arbitrary ϵ , if we let N satisfy $\sum_{k=N}^{\infty} |E_k|_e < \epsilon$, we see that

$$\left|\limsup_{n\to\infty} E_n\right|_e = \left|\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} E_k\right|_e \le \left|\bigcup_{k=N}^{\infty} E_k\right|_e \le \sum_{k=N}^{\infty} |E_k|_e < \epsilon$$

Question 20

If E_1, E_2 are measurable, show that

$$|E_1 \cup E_2| + |E_1 \cap E_2| = |E_1| + |E_2|$$

Proof. Observe the following expression of each set in disjoint union

(a)
$$E_1 = (E_1 \setminus E_2) \sqcup (E_1 \cap E_2)$$

(b)
$$E_2 = (E_2 \setminus E_1) \sqcup (E_1 \cap E_2)$$

(c)
$$E_1 \cup E_2 = (E_1 \setminus E_2) \sqcup (E_1 \cap E_2) \sqcup (E_2 \setminus E_1)$$

It now follows

$$|E_1 \cup E_2| + |E_1 \cap E_2| = |E_1 \setminus E_2| + |E_1 \cap E_2| + |E_1 \cap E_2| + |E_2 \setminus E_1|$$

= $|E_1| + |E_2|$

Lemma 1.2.1. Given two subsets Z_1, Z_2 of \mathbb{R} , if $|Z_1| = 0$, then $|Z_1 \times Z_2| = 0$.

Proof. Let $A_n \triangleq [n, n+1)$. Because

$$Z_1 \times Z_2 = \bigsqcup_{n \in \mathbb{Z}} Z_1 \times (A_n \cap Z_2)$$

To show $|Z_1 \times Z_2| = 0$, we only have to $|Z_1 \times (A_n \cap Z_2)| = 0$ for all $n \in \mathbb{Z}$. In other words, we can WOLG suppose Z_2 is bounded.

Now, fix ϵ . We are required to find an countable closed cube cover $Q_n \times C_n$ for $Z_1 \times Z_2$ such that $\sum_n |Q_n \times C_n| < \epsilon$. Let $C_n = C$ for all n where C is a compact interval containing Z_2 , and let Q_n be a countable compact interval cover for Z_1 such that $\sum |Q_n| < \frac{\epsilon}{|C|}$. It then follows $\sum_n |Q_n \times C_n| = \sum_n |Q_n| |C| < \epsilon$.

Theorem 1.2.2. (Product of Finite Measure Set) If E_1 and E_2 are measurable subset of \mathbb{R} and $|E_1|, |E_2| < \infty$, then $E_1 \times E_2$ is measurable in \mathbb{R}^2 and

$$|E_1 \times E_2| = |E_1| |E_2|$$

Proof. Write $E_1 \triangleq H_1 \sqcup Z_1$ and $E_2 \triangleq H_2 \sqcup Z_2$ where $H_1, H_2 \in F_\sigma$ and $|H_1| = |E_1|$ and $|H_2| = |E_2|$. Now observe

$$E_1 \times E_2 = (H_1 \times H_2) \cup (Z_1 \times E_2) \cup (E_1 \times Z_2)$$

Note that if we write $H_1 = \bigcap F_{1,n}$ and $H_2 = \bigcap F_{2,n}$, we see $H_1 \times H_2 = \bigcap F_{1,n} \times F_{2,n} \in F_{\sigma}$ in \mathbb{R}^2 , it now follows from Lemma 1.2.1 that $E_1 \times E_2$ is measurable.

Now, let S_n be a decreasing sequence of open set containing E_1 such that $|S_n \setminus E_1| < \frac{1}{n}$, and let T_n be a decreasing sequence of open set containing E_2 such that $|T_n \setminus E_2| < \frac{1}{n}$. In other words,

$$E_1 = S \setminus Z_1 \text{ and } E_2 = T \setminus Z_2 \text{ where } \begin{cases} S \triangleq \bigcap S_n \\ T \triangleq \bigcap T_n \\ |Z_1| = |Z_2| = 0 \end{cases}$$

We now have

$$S \times T = (E_1 \times E_2) \cup (Z_1 \times E_2) \cup (E_1 \times Z_2)$$

This then implies $|S \times T| = |S \times T|_e \le |E_1 \times E_2|_e + |Z_1 \times E_2|_e + |E_1 \times Z_2|_e = |E_1 \times E_2|$, where the last inequality follows from Lemma 1.2.1. The reverse inequality is clear, since $E_1 \times E_2 \subseteq S \times T$. We have proved $|E_1 \times E_2| = |S \times T|$.

Now, for each n, write

$$S_n = \bigcup_{k \in \mathbb{N}} I_{k,S_n} \text{ and } T_n = \bigcup_{k \in \mathbb{N}} I_{k,T_n}$$

where $(I_{k,S_n})_k$ and $(I_{k,T_n})_k$ are non-overlapping compact interval. It then follows that

$$|S_n \times T_n| = \sum_{i,j} |I_{i,S_n} \times I_{j,T_n}| = \sum_{i,j} |I_{i,S_n}| \times |I_{j,T_n}| = \sum_i |I_{i,S_n}| \sum_j |I_{j,T_n}| = |S_n| |T_n|$$

Write $S \triangleq \bigcap_{n \in \mathbb{N}} S_n$ and $T \triangleq \bigcap_{n \in \mathbb{N}} T_n$. Because

- (a) Each $S_n \times T_n$ is open.
- (b) $|S_n \times T_n| = |S_n| |T_n|$ is bounded $(: |S_n| \setminus |E_1| < \infty)$.
- (c) $S_n \times T_n \setminus S \times T$

We can now deduce

$$|E_1 \times E_2| = |S \times T| = \lim_{n \to \infty} |S_n \times T_n|$$
$$= \lim_{n \to \infty} |S_n| |T_n|$$
$$= |E_1| |E_2|$$

Question 21

If E_1 and E_2 are measurable subset of \mathbb{R} , then $E_1 \times E_2$ is a measurable subset of \mathbb{R}^2 and $|E_1 \times E_2| = |E_1| |E_2|$

Proof. Define

$$A_n \triangleq \{x \in \mathbb{R} : n \le x < n+1\}$$

Because

$$E_1 = \bigcup_{n \in \mathbb{Z}} E_1 \cap A_n \text{ and } E_2 = \bigcup_{k \in \mathbb{Z}} E_2 \cap A_k$$

We can deduce

$$E_1 \times E_2 = \bigcup_{n,k \in \mathbb{Z}} (E_1 \cap A_n) \times (E_2 \cap A_k)$$

Note that Theorem 1.2.2 tell us $(E_1 \cap A_n) \times (E_2 \cap A_k)$ is measurable, which implies $E_1 \times E_2$ is measurable. Theorem 1.2.2 also tell us $|(E_1 \cap A_n) \times (E_2 \cap A_k)| = |E_1 \cap A_n| |E_2 \cap A_k|$, which allow us to deduce

$$|E_1 \times E_2| = \sum_{n,k \in \mathbb{Z}} |(E_1 \cap A_n) \times (E_2 \cap A_k)| = \sum_{n,k \in \mathbb{Z}} |E_1 \cap A_n| |E_2 \cap A_k|$$
$$= \sum_{n \in \mathbb{Z}} |E_1 \cap A_n| \sum_{k \in \mathbb{Z}} |E_2 \cap A_k| = |E_1| |E_2|$$

Question 22

Give an example that shows that the image of a measurable set under a continuous transformation may not be measurable. See also Exercise 10 of Chapter 7.

Proof. Consider the Cantor-Lebesgue function denoted by $f:[0,1] \to [0,1]$ and denote the classical ternary Cantor set by \mathcal{C} . Let V be a Vitali set contained by [0,1]. Because $f(\mathcal{C}) = [0,1]$, we know there exists $E \subseteq \mathcal{C}$ such that f(E) = V. Such E is measurable since $|E|_e \leq |\mathcal{C}| = 0$, yet its continuous image V = f(E) is by definition non-measurable.

Question 23

Show that there exists disjoint E_1, E_2, \ldots such that $|\bigcup E_k|_e < \sum |E_k|_e$ with strict inequality.

Proof. Let V be a Vitali Set contained by [0,1]. Enumerate $[0,1] \cap \mathbb{Q}$ by x_n . Define

$$E_n \triangleq \{v + x_n \in \mathbb{R} : v \in V\}$$
 for all n

The sequence E_n is disjoint, since if $p \in E_n \cap E_m$, then there exists some pair v_n, v_m belong to V such that

$$v_n + x_n = p = v_m + x_m (1.6)$$

which is impossible, since Equation 1.6 implies that $v_n \neq v_m$ and v_n, v_m are of difference of a rational number.

Now, note that for arbitrary n and $v \in V$, because $v \in V \subseteq [0,1]$ and $x_n \in [0,1]$, we have $v + x_n \in [0, 2]$. This implies

$$\bigsqcup_{n} E_n \subseteq [0,2] \text{ and } \left| \bigsqcup_{n} E_n \right|_e \le 2$$

Because V is non-measurable by definition, we know $|V|_e > 0$, and since outer measure is translation invariant, we can now deduce

$$\sum_{n} |E_n|_e = \sum_{n} |V|_e = \infty > 2 \ge \left| \bigsqcup_{n} E_n \right|_e$$

Question 24

Show that there exists decreasing sequence E_k of sets such that

- (a) $E_k \searrow E$. (b) $|E_k|_e < \infty$. (c) $\lim_{k \to \infty} |E_k|_e > |E|_e$

Proof. Let V be a Vitali Set contained by [0,1]. Enumerate $[0,1] \cap \mathbb{Q}$ by x_n . Define

$$V + x_n \triangleq \{v + x_n \in \mathbb{R} : v \in V\}$$

In last question, we have proved that $V + x_n$ is pairwise disjoint. Define for all $n \in \mathbb{N}$

$$E_n \triangleq \bigsqcup_{k > n} V + x_k$$

Observe that

$$E_k \searrow \bigcap E_n = \varnothing$$

which implies $|\bigcap E_n|_e = 0$, but

$$\lim_{n \to \infty} |E_n|_e = \lim_{n \to \infty} \left| \bigsqcup_{k > n} V + x_k \right| \ge \lim_{n \to \infty} |V + x_n| = |V| > 0$$

Question 25

Let Z be a subset of \mathbb{R} with measure zero. Show that the set $\{x^2 : x \in Z\}$ also has measure zero.

Proof. Fix $Z_n \triangleq Z \cap [-n, n]$. Since

$$\left| \{x^2 : x \in Z\} \right| \le \sum_{n=1}^{\infty} \left| \{x^2 : x \in Z_n\} \right|_e$$

We only have to prove

$$\left|\left\{x^2:x\in Z_n\right\}\right|_e=0 \text{ for all } n$$

Fix ϵ, n . Let I_k be a compact interval cover of Z_n such that $\sum |I_k| < \frac{\epsilon}{2n}$. We shall suppose $I_k \subseteq [-n, n]$, since if not, we can just let $I'_k \triangleq I_k \cap [-n, n]$.

Now, define

$$I_k^2 \triangleq \{x^2 : x \in I_k\}$$

Clearly, I_k^2 are all compact intervals, and if we write $I_k \triangleq [a_k, b_k]$, we have the following inequalities

$$\begin{cases} 0 \le a_k \le b_k \implies |I_k^2| = b_k^2 - a_k^2 = |I_k| (b_k + a_k) \le 2n |I_k| \\ a_k \le 0 \le b_k \implies |I_k^2| = \max\{a_k^2, b_k^2\} \le (b_k - a_k)^2 = |I_k| (b_k - a_k) \le 2n |I_k| \\ a_k \le b_k \le 0 \implies |I_k^2| = a_k^2 - b_k^2 = |I_k| (-a_k - b_k) \le 2n |I_k| \end{cases}$$

Note that $\{I_k^2\}_{k\in\mathbb{N}}$ is a compact interval cover of $\{x^2:x\in Z_n\}$, we now see

$$\left| \left\{ x^2 : x \in Z_n \right\} \right|_e \le \sum_k \left| I_k^2 \right| \le 2n \sum_k \left| I_k \right| < \epsilon$$

1.3 Brunn-Minkowski Inequality

Abstract

This HW assignment require us to prove Brunn-Minkowski Inequality for rectangles, whose proof relies on the AM-GM inequality.

Theorem 1.3.1. (Brunn-Minkowski Inequality for Rectangles) Suppose $A, B \subseteq \mathbb{R}^n$ are two compact subset of \mathbb{R}^n . If we define their Minkowski Sum A + B to be

$$A + B \triangleq \{a + b \in \mathbb{R}^n : a \in A \text{ and } b \in B\}$$

then we have the following inequality

$$|A|^{\frac{1}{n}} + |B|^{\frac{1}{n}} \le |A + B|^{\frac{1}{n}}$$

Proof. Suppose

$$A = \prod_{j=1}^{n} [a_j, a_j + h_{a;j}]$$
 and $B = \prod_{j=1}^{n} [b_j, b_j + h_{b;j}]$

We first claim

$$A + B = \prod_{j=1}^{n} [a_j + b_j, a_j + b_j + h_{a;j} + h_{b;j}]$$
(1.7)

Fix arbitrary $x \in A + B$. By definition, we know there exists some $p \in A$ and $q \in B$ such that x = p + q. Since $p \in A$ and $q \in B$, we have

$$a_{i} \leq p_{j} \leq a_{i} + h_{a:j}$$
 and $b_{i} \leq q_{i} \leq b_{j} + h_{b:j}$ for all $j \in \{1, \ldots, n\}$

It then follows that

$$a_j + b_j \le p_j + q_j \le a_j + b_j + h_{a,j} + h_{b,j}$$
 for all $j \in \{1, \dots, n\}$

Then because x = p + q, we know

$$x_j = p_j + q_j \in [a_j + b_j, a_j + b_j + h_{a;j} + h_{b;j}]$$
 for all $j \in \{1, \dots, n\}$

This implies

$$x \in \prod_{j=1}^{n} [a_j + b_j, a_j + b_j + h_{a;j} + h_{b;j}]$$

Because x is arbitrary selected from A + B, we have in fact proved

$$A + B \subseteq \prod_{j=1}^{n} [a_j + b_j, a_j + b_j + h_{a;j} + h_{b;j}]$$

We now fix arbitrary $x \in \prod_{j=1}^n [a_j + b_j, a_j + b_j + h_{a,j} + h_{b,j}]$. For each $j \in \{1, \ldots, n\}$, define

$$y_j \triangleq \begin{cases} a_j + h_{a;j} & \text{if } x_j \ge a_j + b_j + h_{a;j} \\ x_j - b_j & \text{if } x_j < a_j + b_j + h_{a;j} \end{cases} \text{ and } z_j \triangleq x_j - y_j$$

Fix arbitrary $j \in \{1, ..., n\}$. If $x_j < a_j + b_j + h_{a,j}$, by definition of y_j , we have

$$y_j = x_j - b_j < (a_j + b_j + h_{a;j}) - b - j = a_j + h_{a;j}$$

and since $x_j \ge a_j + b_j$, we also have

$$y_j = x_j - b_j \ge a_j$$

We have proved that

$$x_j < a_j + b_j + h_{a;j} \implies y_j \in [a_j, a_j + h_{a;j}]$$

Note that

$$x_j \ge a_j + b_j + h_{a;j} \implies y_j = a_j + h_{a;j} \in [a_j, a_j + h_{a;j}]$$

We now have

$$y_j \in [a_j, a_j + h_{a;j}]$$

Again, if $x_j \ge a_j + b_j + h_{a;j}$, by definition

$$b_{i} \leq x_{i} - a_{i} - h_{a;i} = x_{i} - y_{i} = z_{i}$$

and since $x_j \leq a_j + b_j + h_{a;j} + h_{b;j}$, we also have

$$z_j = x_j - a_j - h_{a;j} \le b_j + h_{b;j}$$

We have proved that

$$x_{i} \ge a_{i} + b_{i} + h_{a;i} \implies z_{i} \in [b_{i}, b_{i} + h_{b;i}]$$

Note that

$$x_j < a_j + b_j + h_{a;j} \implies z_j = x_j - y_j = x_j - (x_j - b_j) = b_j \in [b_j, b_j + h_{b;j}]$$

In conclusion, we have proved $y_j \in [a_j, a_j + h_{a;j}]$ and $z_j \in [b_j, b_j + h_{b;j}]$ for all $j \in \{1, \ldots, n\}$, since j is arbitrary selected from $\{1, \ldots, n\}$. It now follows from $A = \prod_{j=1}^{n} [a_j, a_j + h_{a;j}], B = \prod_{j=1}^{n} [b_j, b_j + h_{b;j}]$ if we define $y \triangleq (y_1, \ldots, y_n), z \triangleq (z_1, \ldots, z_n)$, then we have

$$y \in A$$
 and $z \in B$ and $x = y + z \in A + B$

We have proved

$$\prod_{j=1}^{n} [a_j + b_j, a_j + b_j + h_{a;j} + h_{b;j}] \subseteq A + B$$

Thus Equation 1.7 is proved.

Now, by direct computation, we know that

$$|A + B| = \prod_{j=1}^{n} (h_{a;j} + h_{b;j})$$
 and $|A| = \prod_{j=1}^{n} h_{a;j}$ and $|B| = \prod_{j=1}^{n} h_{b;j}$

This then give us

(a)
$$|A + B|^{\frac{1}{n}} = (\prod_{j=1}^{n} h_{a,j} + h_{b,j})^{\frac{1}{n}}$$
.

(b)
$$|A|^{\frac{1}{n}} = (\prod_{j=1}^{n} h_{a,j})^{\frac{1}{n}}$$
.

(c)
$$|B|^{\frac{1}{n}} = (\prod_{j=1}^{n} h_{b,j})^{\frac{1}{n}}$$
.

It is clear that to prove $|A|^{\frac{1}{n}} + |B|^{\frac{1}{n}} \leq |A+B|^{\frac{1}{n}}$, we only have to prove

$$\frac{|A|^{\frac{1}{n}}}{|A+B|^{\frac{1}{n}}} + \frac{|B|^{\frac{1}{n}}}{|A+B|^{\frac{1}{n}}} \le 1$$

Note that by AM-GM inequality, we have

$$\frac{|A|^{\frac{1}{n}}}{|A+B|^{\frac{1}{n}}} = \left(\prod_{j=1}^{n} \frac{h_{a;j}}{h_{a;j} + h_{b;j}}\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{j=1}^{n} \frac{h_{a;j}}{h_{a;j} + h_{b;j}}$$

Similarly by AM-GM inequality, we have

$$\frac{|B|^{\frac{1}{n}}}{|A+B|^{\frac{1}{n}}} = \left(\prod_{j=1}^{n} \frac{h_{b;j}}{h_{a;j} + h_{b;j}}\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{j=1}^{n} \frac{h_{b;j}}{h_{a;j} + h_{b;j}}$$

We then can deduce

$$\frac{|A|^{\frac{1}{n}} + |B|^{\frac{1}{n}}}{|A + B|^{\frac{1}{n}}} \le \frac{1}{n} \sum_{j=1}^{n} \frac{h_{a;j} + h_{b;j}}{h_{a;j} + h_{b;j}} = 1$$

Our proof is finished.

Chapter 2

Complex Analysis HW

2.1 HW1

Theorem 2.1.1.

$$(1+i)^n, \frac{(1+i)^n}{n}, \frac{n!}{(1+i)^n}$$
 all diverge as $n \to \infty$

Proof. Note that

$$|(1+i)^n|=2^{\frac{n}{2}}\to\infty \text{ as } n\to\infty$$

This implies (1+i) is unbounded, thus diverge.

Note that

$$\left| \frac{(1+i)^n}{n} \right| = \frac{(\sqrt{2})^n}{n}$$

Observe

$$\frac{(\sqrt{2})^n}{n} = \frac{[(\sqrt{2}-1)+1]^n}{n} = \frac{\sum_{k=0}^n \binom{n}{k} (\sqrt{2}-1)^k}{n}$$
$$\geq \frac{\binom{n}{2} (\sqrt{2}-1)^2}{n} = (n-1) [\frac{(\sqrt{2}-1)^2}{2}] \to \infty \text{ as } n \to \infty$$

This implies $\frac{(1+i)^n}{n}$ is unbounded, thus diverge.

Note that

$$\left| \frac{n!}{(1+i)^n} \right| = \frac{n!}{(\sqrt{2})^n}$$

Note that for all $k \geq 8$, we have

$$\frac{k}{\sqrt{2}} \ge \frac{\sqrt{8}}{\sqrt{2}} = 2$$

This implies

$$\frac{n!}{(\sqrt{2})^n} = \prod_{k=1}^n \frac{k}{\sqrt{2}} = \frac{7!}{(\sqrt{2})^7} \prod_{k=8}^n \frac{k}{\sqrt{2}} \ge \frac{7!}{(\sqrt{2})^7} \prod_{k=8}^n 2 \ge \frac{7!2^{n-8+1}}{(\sqrt{2})^7} \to \infty$$

which implies $\frac{n!}{(1+i)^n}$ is unbounded, thus diverge.

Theorem 2.1.2.

$$n!z^n$$
 converge $\iff z=0$

Proof. If z=0, then $n!z^n=0$ for all n, which implies $n!z^n\to 0$. Now, suppose $z\neq 0$. Let $M\in\mathbb{N}$ satisfy $|z|>\frac{1}{M}$. Observe

$$|n!z^n| = \left| \prod_{k=1}^n kz \right| = \left| \prod_{k=1}^{2M-1} kz \right| \left| \prod_{k=2M}^n kz \right| \ge \left| \prod_{k=1}^{2M-1} kz \right| \left| \prod_{k=2M}^n 2Mz \right| \ge \left| \prod_{k=1}^{2M-1} kz \right| 2^{n-2M+1} \to \infty$$

This implies $n!z^n$ is unbounded, thus diverge.

Theorem 2.1.3.

$$u_n \to u \implies v_n \triangleq \sum_{k=1}^n \frac{u_k}{n} \to u$$

Proof. Because

$$\sum_{k=1}^{n} \frac{u_k}{n} = \sum_{k \le \sqrt{n}} \frac{u_k}{n} + \sum_{\sqrt{n} < k \le n} \frac{u_k}{n}$$

It suffices to prove

$$\sum_{k \le \sqrt{n}} \frac{u_k}{n} \to 0 \text{ and } \sum_{\sqrt{n} < k \le n} \frac{u_k}{n} \to u \text{ as } n \to \infty$$

Because u_n converge, we can let M bound $|u_n|$. Observe

$$\left| \sum_{k \le \sqrt{n}} \frac{u_k}{n} \right| \le \sum_{k \le \sqrt{n}} \left| \frac{u_k}{n} \right| \le \sum_{k \le \sqrt{n}} \frac{M}{n} \le \frac{M\sqrt{n}}{n} = \frac{M}{\sqrt{n}} \to 0 \text{ as } n \to 0 \text{ (done)}$$

Because

$$\sum_{\sqrt{n} < k \le n} \frac{u_k}{n} = \frac{n - \lceil \sqrt{n} \rceil + 1}{n} \sum_{\sqrt{n} < k \le n} \frac{u_k}{n - \lceil \sqrt{n} \rceil + 1}$$

and

$$\lim_{n \to \infty} \frac{n - \lceil \sqrt{n} \rceil + 1}{n} = 1$$

We can reduce the problem into proving

$$\lim_{n \to \infty} \sum_{\sqrt{n} < k \le n} \frac{u_k}{n - \lceil \sqrt{n} \rceil + 1} = u$$

Fix ϵ . Let N satisfy that for all $n \geq N$, we have $|u_n - u| < \epsilon$. Then for all $n \geq N^2$, we have

$$\left| \left(\sum_{\sqrt{n} < k \le n} \frac{u_k}{n - \lceil \sqrt{n} \rceil + 1} \right) - u \right| = \left| \sum_{\sqrt{n} < k \le n} \frac{u_k - u}{n - \lceil \sqrt{n} \rceil + 1} \right|$$

$$\leq \sum_{\sqrt{n} < k \le n} \frac{|u_k - u|}{n - \lceil \sqrt{n} \rceil + 1}$$

$$\leq \sum_{\sqrt{n} < k \le n} \frac{\epsilon}{n - \lceil \sqrt{n} \rceil + 1} = \epsilon \text{ (done)}$$

2.2 Exercise 1

Let R be a complex algebra with 1_A and $a \in R$. Given a complex polynomial

$$f(Z) = a_0 + a_1 Z + \dots + a_n Z^n,$$

we define the evaluation of f at a by

$$f(a) = a_0 1_A + a_1 a + \dots + a_n a^n$$
.

Question 26

Let $R = \mathbb{C}$ and a = 1 + i. Given $f(Z) = Z^3$. Evaluate f(a).

Proof.
$$f(a) = (1+i)^3 = 2i(1+i) = -2 + 2i$$

Question 27

Let $R = M_{2\times 2}(\mathbb{C})$ be the algebra of 2×2 complex matrices. Take

$$a = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

and g(Z) = 3 + 2Z. Evaluate g(a).

Proof.

$$g(a) = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 2 & -2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ 2 & 5 \end{bmatrix}$$

Question 28

Let R be the algebra of complex valued periodic functions of period 2π , i.e., $a \in R$ is a continuous function $a : \mathbb{R} \to \mathbb{C}$ so that $a(x+2\pi) = a(x)$. Let $e(x) = \cos x + i \sin x$ and

$$h(Z) = 1 + Z + Z^2 + \dots + Z^9.$$

Find h(e).

Proof. Note that

$$(\cos x + i\sin x)(\cos y + i\sin y) = (\cos x\cos y - \sin x\sin y) + i(\sin x\cos y + \cos x\sin y)$$
$$= \cos(x+y) + i\sin(x+y)$$
$$29$$

This give us

$$h(e) = \sum_{k=0}^{9} \cos(kx) + i\sin(kx)$$

Chapter 3

PDE intro HW

3.1 HW1

Theorem 3.1.1.

Show $u \mapsto u_x + uu_y$ is non-linear

Proof. See that

$$2u \mapsto 2u_x + 4uu_y \neq 2(u_x + uu_y) \tag{3.1}$$

Theorem 3.1.2.

Solve
$$(1+x^2)u_x + u_y = 0$$

Proof. The characteristic curve has the derivative

$$\frac{dy}{dx} = \frac{1}{1+x^2}$$

The solution to this ODE is

$$y = \arctan x + C$$

We now see that the solution to the PDE in Equation 3.1 is

 $u = f((\arctan x) - y)$ where $f : \mathbb{R} \to \mathbb{R}$ is an arbitrary smooth function

A characteristic curve is as followed.

Theorem 3.1.3.

Solve
$$au_x + bu_y + cu = 0$$
 (3.2)

Proof. Fix

$$\begin{cases} x' \triangleq ax + by \\ y' \triangleq bx - ay \end{cases}$$

This map is clearly a diffeomorphism. Compute

$$\begin{cases} u_x = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial x} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial x} = a u_{x'} + b u_{y'} \\ u_y = \frac{\partial u}{\partial x'} \frac{\partial x'}{\partial y} + \frac{\partial u}{\partial y'} \frac{\partial y'}{\partial y} = b u_{x'} - a u_{y'} \end{cases}$$

Plugging it back into the PDE in Equation 3.2, we have

$$cu + (a^2 + b^2)u_{x'} = 0 (3.3)$$

If $c = a^2 + b^2 = 0$, then all smooth functions are solution. If $a^2 + b^2 = 0$ but $c \neq 0$, then clearly the only solution is $u = \tilde{0}$. If $a^2 + b^2 \neq 0$ but c = 0, then $u_{x'} = \tilde{0}$, which implies u = f(y') where y' = bx - ay and f can be arbitrary smooth function.

Now, suppose $a^2 + b^2 \neq 0 \neq c$, note that the PDE in Equation 3.3 is just an ODE of the form

$$y + \frac{a^2 + b^2}{c}y' = 0$$
32

The general solution to this ODE is

$$y = Ce^{\frac{-ct}{a^2 + b^2}}$$

In other words, the general solution of the PDE in Equation 3.3 is

$$u = Ce^{\frac{-cx'}{a^2+b^2}} = Ce^{\frac{-c(ax+by)}{a^2+b^2}}$$

3.2 HW2

Question 29

Consider hear flow in a long circular cylinder where the temperature depends only on t and on the distance r to the axis of the cylinder. Here $r = \sqrt{x^2 + y^2}$ is the cylindrical coordinate. From the three dimensional hear equation derive the equation $u_t = k(u_{rr} + \frac{u_r}{r})$

Proof. Write the three dimensional hear equation by

$$u_t = k\Delta u$$

Note that the Laplacian Δu when written in cylindrical coordinate is

$$\Delta u = u_{rr} + \frac{u_r}{r} + \frac{u_{\theta\theta}}{r^2} + u_{zz}$$

Because the premise says that u is constant in z and θ , we know $u_{\theta\theta} = u_{zz} = 0$

$$\Delta u = u_{rr} + \frac{u_r}{r}$$

This give us

$$u_t = k(u_{rr} + \frac{u_r}{r})$$

3.3 1.2 First Order Linear Equations

(Principle of Geometric Method) Given a first order homogeneous linear PDE with the form

$$u_x + g(x, y)u_y = 0$$

We know if a curve $\gamma(x) = (x, y)$ satisfy

$$\gamma'(x) = c_x(1, g(x, y))$$
 for some c_x

Then

$$(u \circ \gamma)'(x) = 0$$
 for all x

Since

$$\gamma'(x) = (1, \frac{dy}{dx})$$

To find γ , we only wish to solve

$$\frac{dy}{dx} = g(x, y)$$

Question 30

Solve

$$(1+x^2)u_x + u_y = 0$$

Proof. The ODE

$$\frac{dy}{dx} = \frac{1}{1+x^2}$$

has general solution $y = \arctan x + C$, so

$$u(x,y) = f(y - \arctan x)$$

Question 31

Solve

$$\begin{cases} yu_x + xu_y = 0\\ u(0,y) = e^{-y^2} \end{cases}$$

In which region of the xy plane is the solution uniquely determined?

Proof. We are required to solve the ODE

$$\frac{dy}{dx} = \frac{x}{y}$$

Separating the variables and integrate

$$\int yy'dx = \int xdx \implies \frac{y^2}{2} = \frac{x^2}{2} + C$$

This now implies

$$u(x,y) = f(y^2 - x^2)$$

Initial Condition then give us

$$u = e^{x^2 - y^2}$$

Question 32

Solve the equation

$$u_x + u_y = 1$$

Proof. Clearly $u = \frac{x}{2} + \frac{y}{2}$ is a solution. We now solve the PDE

$$v_x + v_y = 0$$

Solving the ODE

$$\frac{dy}{dx} = 1$$

we have

$$y = x + C$$
$$36$$

Thus the general solution is

$$u = \frac{x}{2} + \frac{y}{2} + f(y - x)$$

Question 33

Solve

$$\begin{cases} u_x + u_y + u = e^{x+2y} \\ u(x,0) = 0 \end{cases}$$

Proof. Let $\gamma(x) = x + C$, we have

$$(u \circ \gamma)' + (u \circ \gamma) = e^{3x + 2C}$$

We now solve the ODE

$$y' + y = e^{3x + 2C}$$

The particular solution is clearly

$$y = \frac{1}{4}e^{3x + 2C}$$

Thus the general solution is

$$y = \frac{e^{3x+2C}}{4} + \tilde{C}e^{-x}$$

We then now know

$$(u \circ \gamma)(x) = \frac{e^{3x+2C}}{4} + \tilde{C}e^{-x}$$
 (3.4)

In other words,

$$u(x, x + C) = \frac{e^{3x+2C}}{4} + \tilde{C}e^{-x}$$

Putting in the initial conditions, we have

$$0 = u(-C, 0) = \frac{e^{-C}}{4} + \tilde{C}e^{C}$$

This implies

$$\tilde{C} = \frac{-e^{-2C}}{4}$$

Putting the back into Equation 3.4, we have

$$u(x, x + C) = \frac{e^{3x+2C} - e^{-x-2C}}{4}$$

So

$$u(x,y) = \frac{e^{3x+2(y-x)} - e^{-x-2(y-x)}}{4}$$

Question 34

Use the coordinate method to solve the equation

$$u_x + 2u_y + (2x - y)u = 2x^2 + 3xy - 2y^2$$

Proof. Let

$$\begin{cases} \xi \triangleq 2x - y \\ \eta \triangleq x + 2y \end{cases}$$

We see

$$\begin{cases} u_{\xi} = \frac{2}{5}u_x - \frac{1}{5}u_y \\ u_{\eta} = \frac{1}{5}u_x + \frac{2}{5}u_y \end{cases}$$

We then can rewrite

$$5u_{\eta} + \xi u = \xi \eta \tag{3.5}$$

which clearly have particular solution

$$u = \eta - \frac{5}{\xi}$$

To solve the linear homogeneous PDE

$$5u_{\eta} + \xi u = 0$$

Observe that for all fixed ξ , the PDE is just an ODE whose solution is exactly $u = C_{\xi}e^{\frac{-\xi\eta}{5}}$. We now know the general solution for PDE 3.5 is exactly

$$u = \eta - \frac{5}{\xi} + f(\xi)e^{\frac{-\xi\eta}{5}}$$

Then

$$u = x + 2y - \frac{5}{2x - y} + e^{\frac{-(2x - y)(x + 2y)}{5}} f(2x - y)$$

3.4 1.4 Initial and Boundary Condition

Question 35

Find a solution of

$$\begin{cases} u_t = u_{xx} \\ u(x,0) = x^2 \end{cases}$$

Proof. Clearly $u = x^2 + 2t$ suffices.

3.5 1.5 Well Posed Problems

Question 36

Consider the ODE

$$\begin{cases} u'' + u = 0 \\ u(0) = 0 \text{ and } u(L) = 0 \end{cases}$$

Is the solution unique? Does the answer depend on L?

Proof. We know the general solution space is exactly spanned by $\cos x$ and $\sin x$. Because

- (a) u(0) = 0.
- (b) $\sin 0 = 0$
- (c) $\cos 0 = 1$

we know the solution of our original ODE must be of the form

$$u(x) = C\sin x$$

This implies that the solution is unique if and only if $2\pi \not\equiv L \pmod{2\pi}$

Question 37

Consider the ODE

$$\begin{cases} u'' + u' = f \\ u'(0) = u(0) = \frac{1}{2}(u'(l) + u(l)) \end{cases}$$

where f is given.

- (a) Is the solution unique?
- (b) Does a solution necessarily exist, or is there a condition that f must satisfy for existence?

Proof. The solution space of linear homogeneous ODE u'' + u' = 0 is spanned by e^{-x} and constant. If we add in the initial condition u'(0) = u(0), then the solution space become the subspace spanned by $e^{-x} - 2$. One can check that if $u \in \text{span}(e^{-x} - 2)$, then

$$u(0) = \frac{1}{2}(u'(l) + u(l))$$
 for all $l \in \mathbb{R}$

We now know the solution of the original ODE is not unique, since any solution added by $e^{-x} - 2$ is again a solution.

Integrating both side on [0, l], we see that given the boundary conditions, f must satisfy

$$\int_0^l f(x)dx = 0$$

Question 38

Consider the Neumann problem

$$\Delta u = f(x, y, z)$$
 in D and $\frac{\partial u}{\partial n} = 0$ on bdy D

- (a) What can we add to any solution to get another solution?
- (b) Use the divergence Theorem and the PDE to show that

$$\iiint_D f(x, y, z) dx dy dz = 0$$

is a necessary condition for the Neumann problem to have a solution.

Proof. Clearly, constants suffices, and observe

$$\iiint_D f dx dy dx = \iiint_D \Delta u dx dy dz = \iiint_D \nabla \cdot (\nabla u) dx dy dz = \iint_{\text{bdy } D} \nabla u \cdot \mathbf{n} dS = 0$$

Question 39

Consider the equation

$$u_x + yu_y = 0$$

with the boundary condition $u(x,0) = \phi(x)$.

- (a) $\phi(x) = x \implies$ no solution exists
- (b) $\phi(x) = 1 \implies$ multiple solutions exist.

Proof. Using the geometric method, we see the characteristic curve is exactly $y = \tilde{C}e^x$. Thus the general solution is of the form

$$u(x,y) = f(e^{-x}y)$$

The boundary condition implies

$$\phi(x) = u(x,0) = f(0)$$

The result then follows.

3.6 Types of Second-Order Equations

Consider the constant coefficient Linear PDE

$$u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + a_1u_x + a_2u_y + a_0u = 0$$

Ignoring the term with order less than 2, we have

$$u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} = 0$$

Or equivalently

$$(\partial_x + a_{12}\partial_y)^2 u + (a_{22} - a_{12}^2)\partial_{yy} u = 0$$

Now, if we set

$$x \triangleq \xi \text{ and } y \triangleq a_{12}\xi + (|a_{22} - a_{12}^2|)^{\frac{1}{2}}\eta$$

we see that

$$\begin{cases} a_{22} - a_{12}^2 > 0 \implies u_{\xi\xi} + u_{\eta\eta} = 0 & \text{(Elliptic)} \\ a_{22} - a_{12}^2 = 0 \implies u_{\xi\xi} = 0 & \text{(Parabolic)} \\ a_{22} - a_{12}^2 < 0 \implies u_{\xi\xi} - u_{\eta\eta} = 0 & \text{(Hyperbolic)} \end{cases}$$

More generally, if we are given

$$a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} = 0$$

then the discriminant is exactly

$$a_{11}a_{22} - a_{12}^2$$

Question 40

What is the type of each of the following equations.

(a)
$$u_{xx} - u_{xy} + u_{yy} + \dots + u = 0.$$

(b)
$$9u_{xx} + 6u_{xy} + u_{yy} + u_x = 0$$

Question 41

Find the regions in the xy plane where the equation

$$(1+x)u_{xx} + 2xyu_{xy} - y^2u_{yy} = 0$$

is elliptic, hyperbolic, or parabolic. Sketch them.

Proof. The discriminant is exactly

$$(xy)^{2} - (1+x)(-y^{2}) = x^{2}y^{2} + xy^{2} + y^{2}$$
$$= y^{2}(x^{2} + x + 1)$$
$$= y^{2}[(x + \frac{1}{2})^{2} + \frac{3}{4}]$$

It then follows that the equation is parabolic if and only if y = 0, and hyperbolic if and only if $y \neq 0$.

Question 42

Reduce the elliptic equation

$$u_{xx} + 3u_{yy} - 2u_x + 24u_y + 5u = 0$$

to the form

$$v_{xx} + v_{yy} + cv = 0$$

by a change of dependent variable

$$u \triangleq ve^{\alpha x + \beta y}$$

then a change of scale

$$y' = \gamma y$$

Question 43

Consider the equation $3u_y + u_{xy} = 0$.

- (a) What is its type?
- (b) Find the general solution. (Hint: Substitute $v = u_y$).
- (c) With the auxiliary conditions $u(x,0) = e^{-3x}$ and $u_y(x,0) = 0$, does a solution

exist? Is it unique?

3.7 PDE HW 3

Question 44

Find a solution of

$$\begin{cases} u_t = u_{xx} \\ u(x,0) = x^2 \end{cases}$$

Proof. Clearly $u = x^2 + 2t$ suffices.

Question 45

Consider the ODE

$$\begin{cases} u'' + u = 0 \\ u(0) = 0 \text{ and } u(L) = 0 \end{cases}$$

Is the solution unique? Does the answer depend on L?

Proof. We know the general solution space is exactly spanned by $\cos x$ and $\sin x$. Because

- (a) u(0) = 0.
- (b) $\sin 0 = 0$
- (c) $\cos 0 = 1$

we know the solution of our original ODE must be of the form

$$u(x) = C \sin x$$

This implies that the solution is unique if and only if $2\pi \not\equiv L \pmod{2\pi}$

Question 46

Find the regions in the xy plane where the equation

$$(1+x)u_{xx} + 2xyu_{xy} - y^2u_{yy} = 0$$

is elliptic, hyperbolic, or parabolic. Sketch them.

Proof. The discriminant is exactly

$$(xy)^{2} - (1+x)(-y^{2}) = x^{2}y^{2} + xy^{2} + y^{2}$$
$$= y^{2}(x^{2} + x + 1)$$
$$= y^{2}[(x + \frac{1}{2})^{2} + \frac{3}{4}]$$

It then follows that the equation is parabolic if and only if y=0, and hyperbolic if and only if $y\neq 0$.

48

Chapter 4

Differential Geometry HW

4.1 HW1

Abstract

In this HW, we give precise definition to \mathbb{P}^n and $\mathbb{R}P^n$, and we rigorously show

- (a) $\mathbb{R}P^n$ has a smooth structure.
- (b) \mathbb{P}^n is homeomorphic to $\mathbb{R}P^n$
- (c) \mathbb{P}^n has a smooth structure.

Note that in this PDF, brown text is always a clickable hyperlink reference.

Define an equivalence relation on $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$ by

$$\mathbf{x} \sim \mathbf{y} \iff \mathbf{y} = \lambda \mathbf{x} \text{ for some } \lambda \in \mathbb{R}^*$$

Let $\mathbb{R}P^n \triangleq (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}) \setminus \sim$ be the quotient space and let

$$V_i \triangleq \{\mathbf{x} \in \mathbb{R}^{n+1} : \mathbf{x}^i \neq 0\}$$
 for each $1 \leq i \leq n+1$

By definition, it is clear that

either
$$\pi^{-1}(\pi(\mathbf{x})) \subseteq V_i$$
 or $\pi^{-1}(\pi(\mathbf{x})) \subseteq V_i^c$

Then if we define $\phi_i: V_i \to \mathbb{R}^n$ by

$$\phi_i(\mathbf{x}) \triangleq \left(\frac{\mathbf{x}^1}{\mathbf{x}^i}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^i}, \frac{\mathbf{x}^{i+1}}{\mathbf{x}^i}, \dots, \frac{\mathbf{x}^{n+1}}{\mathbf{x}^i}\right)$$

because $\pi(\mathbf{x}) = \pi(\mathbf{y}) \implies \phi_i(\mathbf{x}) = \phi_i(\mathbf{y})$, we can well induce a map

$$\Phi_i: U_i \triangleq \pi(V_i) \subseteq \mathbb{R}P^n \to \mathbb{R}^n; \pi(\mathbf{x}) \mapsto \phi_i(\mathbf{x})$$

Note that one has the equation

$$\Phi_i(\pi(\mathbf{x})) = \phi_i(\mathbf{x}) \text{ for all } \mathbf{x} \in V_i$$

Theorem 4.1.1. (Real Projective Space with a differentiable atlas) We have

 $\mathbb{R}P^n$ with atlas $\{(U_i, \Phi_i) : 1 \leq i \leq n+1\}$ is a differentiable manifold

Proof. We are required to prove

- (a) (U_i, Φ_i) are all charts.
- (b) $\{(U_i, \Phi_i) : 1 \leq i \leq n+1\}$ form a differentiable atlas.
- (c) $\mathbb{R}P^n$ is Hausdorff.
- (d) $\mathbb{R}P^n$ is second-countable.

Because $\pi^{-1}(U_i) = V_i$ and V_i is clearly open in $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$, we know $U_i \subseteq \mathbb{R}P^n$ is open. Note that clearly, $\Phi_i(U_i) = \mathbb{R}^n$. To show (U_i, Φ_i) is a chart, it remains to show that Φ_i is a homeomorphism between U_i and \mathbb{R}^n . It is straightforward to check Φ_i is one-to-one on U_i . This implies Φ_i is a bijective between U_i and \mathbb{R}^n .

Fix open $E \subseteq \mathbb{R}^n$. We see

$$\pi^{-1}(\Phi_i^{-1}(E)) = \phi_i^{-1}(E)$$

Then because $\phi_i: V_i \to \mathbb{R}^n$ is clearly continuous, we see $\phi_i^{-1}(E)$ is open in $\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$, and it follows from definition of quotient topology $\Phi_i^{-1}(E) \subseteq \mathbb{R}P^n$ is open. Then because U_i is open in $\mathbb{R}P^n$, we see $\Phi_i^{-1}(E)$ is open in U_i . We have proved $\Phi_i: U_i \to \mathbb{R}^n$ is continuous.

Define $\Psi_i : \mathbb{R}^n \to V_i$ by

$$\Psi(\mathbf{x}^1,\ldots,\mathbf{x}^n) = (\mathbf{x}^1,\ldots,\mathbf{x}^{i-1},1,\mathbf{x}^i,\ldots,\mathbf{x}^n)$$

Observe that for all $\mathbf{x} \in \Phi_i(U_i)$, we have

$$\Phi_i^{-1}(\mathbf{x}) = \pi(\Psi_i(\mathbf{x}))$$

It then follows from $\Psi_i: \mathbb{R}^n \to V_i$ and $\pi: \mathbb{R}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{R}P^n$ are continuous that $\Phi_i^{-1}: \mathbb{R}^n \to \mathbb{R}P^n$ is continuous.

We have proved that (Ψ_i, U_i) are all charts. Now, because V_i clearly cover \mathbb{R}^{n+1} , we know U_i also cover $\mathbb{R}P^n$. We have proved $\{(U_i, \Phi) : 1 \leq i \leq n+1\}$ form an atlas. The fact $\mathbb{R}P^n$ is second-countable follows.

Fix $(\mathbf{x}_1, \dots, \mathbf{x}_n) \in \Phi_i(U_i \cap U_j)$. We compute

$$\begin{split} \Phi_{j} \circ \Phi_{i}^{-1}(\mathbf{x}^{1}, \dots, \mathbf{x}^{n}) &= \Phi_{j} \Big([(\mathbf{x}^{1}, \dots, \mathbf{x}^{i-1}, 1, \mathbf{x}^{i}, \mathbf{x}^{i+1}, \dots, \mathbf{x}^{n})] \Big) \\ &= \begin{cases} \left(\frac{\mathbf{x}^{1}}{\mathbf{x}^{j}}, \dots, \frac{\mathbf{x}^{j-1}}{\mathbf{x}^{j}}, \frac{\mathbf{x}^{j+1}}{\mathbf{x}^{j}}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^{j}}, \frac{1}{\mathbf{x}^{j}}, \frac{\mathbf{x}^{i}}{\mathbf{x}^{j}}, \dots, \frac{\mathbf{x}^{n}}{\mathbf{x}^{j}} \right) & \text{if } j < i \\ \left(\frac{\mathbf{x}^{1}}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^{i-1}}{\mathbf{x}^{j-1}}, \frac{1}{\mathbf{x}^{j-1}}, \frac{\mathbf{x}^{i}}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^{j-2}}{\mathbf{x}^{j-1}}, \frac{\mathbf{x}^{i}}{\mathbf{x}^{j-1}}, \dots, \frac{\mathbf{x}^{n}}{\mathbf{x}^{j-1}} \right) & \text{if } j > i \end{cases} \end{split}$$

This implies our atlas is indeed differentiable.

Before we prove $\mathbb{R}P^n$ is Hausdorff, we first prove that $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n$ is an open mapping. Let $U \subseteq \mathbb{R}^{n+1} \setminus \{0\}$ be open. Observe that

$$\pi^{-1}(\pi(U)) = \{ t\mathbf{x} \in \mathbb{R}^{n+1} : t \neq 0 \text{ and } \mathbf{x} \in U \}$$

Fix $t_0 \mathbf{x} \in \pi^{-1}(\pi(U))$. Let $B_{\epsilon}(\mathbf{x}) \subseteq U$. Observe that

$$B_{|t_0|\epsilon}(t_0\mathbf{x}) \subseteq t_0B_{\epsilon}(\mathbf{x}) \subseteq t_0U \subseteq \pi^{-1}(\pi(U))$$

This implies $\pi^{-1}(\pi(U))$ is open. (done)

Now, because π is open, to show $\mathbb{R}P^n$ is Hausdorff, we only have to show

$$R_{\pi} \triangleq \{(\mathbf{x}, \mathbf{y}) \in (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})^2 : \pi(\mathbf{x}) = \pi(\mathbf{y})\}$$
 is closed

Define $f: (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})^2 \to \mathbb{R}$ by

$$f(\mathbf{x}, \mathbf{y}) \triangleq \sum_{i \neq j} (\mathbf{x}^i \mathbf{y}^j - \mathbf{x}^j \mathbf{y}^i)^2$$

Note that f is clearly continuous and $f^{-1}(0) = R_{\pi}$, which finish the proof.

Alternatively, we can characterize $\mathbb{R}P^n$ by identifying the antipodal pints on $S^n \triangleq \{\mathbf{x} \in \mathbb{R}^{n+1} : |\mathbf{x}| = 1\}$ as one point

$$\mathbf{x} \sim \mathbf{y} \iff \mathbf{x} = \mathbf{y} \text{ or } \mathbf{x} = -\mathbf{y}$$

and let $\mathbb{P}^n \triangleq S^n \setminus \sim$ be the quotient space.

Theorem 4.1.2. (Equivalent Definitions of Real Projective Space)

 $\mathbb{R}P^n$ and \mathbb{P}^n are homeomorphic

Proof. Define $F: \mathbb{P}^n \to \mathbb{R}P^n$ by

$$\{\mathbf{x}, -\mathbf{x}\} \mapsto \{\lambda \mathbf{x} : \lambda \in \mathbb{R}^*\}$$

It is straightforward to check that F is well-defined and bijective. Define $f: S^n \to \mathbb{R}P^n$ by

$$f = \pi \circ id$$

where $id: S^n \to \mathbb{R}^{n+1} \setminus \{0\}$ and $\pi: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n$ are continuous. Check that

$$f = F \circ p$$

where $p: S^n \to \mathbb{P}^n$ is the quotient mapping. It now follows from the universal property that F is continuous, and since \mathbb{P}^n is compact and $\mathbb{R}P^n$ is Hausdorff, it also follows that F is a homeomorphism between $\mathbb{R}P^n$ and \mathbb{P}^n .

Knowing that $F: \mathbb{P}^n \to \mathbb{R}P^n$ is a homeomorphism and $\mathbb{R}P^n$ is a smooth manifold, we see that \mathbb{P}^n is Hausdorff and second-countable, and if we define the atlas

$$\{(F^{-1}(U_i), \Phi_i \circ F) : 1 \le i \le n+1\}$$

We see this atlas is indeed smooth, since

$$(\Phi_i \circ F) \circ (\Phi_j \circ F)^{-1} = \Phi_i \circ \Phi_i^{-1}$$

4.2 Appendix

Theorem 4.2.1. (Homeomorphism between Compact Space and Hausdorff Space) Suppose

- (a) X is compact.
- (b) Y is Hausdorff.
- (c) $f: X \to Y$ is a continuous bijective function.

Then

f is a homeomorphism between X and Y

Proof. Because closed subset of compact set is compact and continuous function send compact set to compact set, we see for each closed $E \subseteq X$, $f(E) \subseteq Y$ is compact. The result then follows from $f(E) \subseteq Y$ being closed since Y is Hausdorff.

Theorem 4.2.2. (Hausdorff and Quotient) If $\pi: X \to Y$ is an open mapping, and we define

$$R_{\pi} \triangleq \{(x,y) \in X^2 : \pi(x) = \pi(y)\}$$

Then

 R_{π} is closed $\iff Y$ is Hausdorff

Proof. Suppose R_{π} is closed. Fix some x, y such that $\pi(x) \neq \pi(y)$. Because R_{π} is closed, we know there exists open neighborhood U_x, U_y such that $U_x \times U_y \subseteq (R_{\pi})^c$. It is clear that $\pi(U_x), \pi(U_y)$ are respectively open neighborhood of $\pi(x)$ and $\pi(y)$. To see $\pi(U_x)$ and $\pi(U_y)$ are disjoint, assume that $\pi(a) \in \pi(U_x) \cap \pi(U_y)$. Let $a_x \in U_x$ and $a_y \in U_y$ satisfy $\pi(a_x) = \pi(a) = \pi(a_y)$, which is impossible because $(a_x, a_y) \in (R_{\pi})^c$. CaC

Suppose Y is Hausdorff. Fix some x, y such that $\pi(x) \neq \pi(y)$. Let U_x, U_y be open neighborhoods of $\pi(x), \pi(y)$ separating them. Observe that $(x, y) \in \pi^{-1}(U_x) \times \pi^{-1}(U_y) \subseteq (R_\pi)^c$

4.3 Example: $S^1, \mathbb{R} \setminus \mathbb{Z}$ diffeomorphism

Equip $S^1 \triangleq \{(x,y) \in \mathbb{R}^2 : |(x,y)| = 1\}$ with the standard four projection chart smooth atlas as one of them being

$$V \triangleq \{(x,y) \in \mathbb{R}^2 : y > 0\} \text{ and } \phi_V : V \to \mathbb{R}; (x,y) \mapsto x$$

Let $p: \mathbb{R} \to \mathbb{R} \setminus \mathbb{Z}$ be the quotient map and let

$$U_0 \triangleq p((0,1))$$
 and $U_1 \triangleq p((\frac{-1}{2},\frac{1}{2}))$

which are both open as one can readily check. Define $\phi_0: U_0 \to (0,1)$ by

$$\phi_0(p(t)) \triangleq t_0 \text{ where } t_0 \in (0,1) \text{ and } p(t_0) = p(t)$$

and $\phi_1: U_1 \to (-\frac{1}{2}, \frac{1}{2})$ by

$$\phi_1(p(t)) \triangleq t_0 \text{ where } t_0 \in (-\frac{1}{2}, \frac{1}{2}) \text{ and } p(t_0) = p(t)$$

Clearly, the function $G: \mathbb{R} \setminus \mathbb{Z} \to S^1$ well-defined by $G(p(x)) \triangleq (\cos 2\pi x, \sin 2\pi x)$ is a homeomorphism, as one can check that

- (a) G is a continuous bijection. (Using Universal property of quotient map)
- (b) $\mathbb{R} \setminus \mathbb{Z}$ is compact. (by finite sub-cover definition)
- (c) S^1 is Hausdorff.

We now compute that $\phi_V \circ G \circ \phi_0^{-1}$ is defined on whole (0,1), and is exactly

$$\phi_V \circ G \circ \phi_0^{-1}(t) \triangleq \cos 2\pi t \text{ smooth}$$