Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting

S. Acinas⁽³⁾, L. Buri⁽¹⁾, G. Giubergia⁽¹⁾, F. Mazzone^(1,2), E. Schwindt⁽⁴⁾

February 10, 2015

(1) Depto de Matemtica. Universidad Nacional de Río Cuarto.

(2) CONICET

(3) Instituto de Matemtica Aplicada San Luis (CONICET-UNSL) y Depto de Matemtica, Universidad Nacional de La Pampa.

(4) Universit d'Orlans, Laboratoire MAPMO, CNRS.

Introduction

This work is concerned with the existence of periodic solutions of the problem

$$\begin{cases}
\frac{d}{dt}D_{y}\mathcal{L}(t, \boldsymbol{u}(t), \dot{\boldsymbol{u}}(t)) = D_{\boldsymbol{x}}\mathcal{L}(t, \boldsymbol{u}(t), \dot{\boldsymbol{u}}(t)) & \text{a.e. } t \in (0, T) \\
\boldsymbol{u}(0) - \boldsymbol{u}(T) = \dot{\boldsymbol{u}}(0) - \dot{\boldsymbol{u}}(T) = 0
\end{cases}$$
(1)

where T > 0, $\boldsymbol{u} : [0,T] \to \mathbb{R}^d$ is absolutely continuous and the Lagrangian $\mathcal{L} : [0,T] \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a Carathéodory function satisfying the conditions

$$|\mathcal{L}(t, \boldsymbol{x}, \boldsymbol{y})| \leq a(|\boldsymbol{x}|) \left(b(t) + \Phi\left(\frac{|\boldsymbol{y}|}{\lambda} + f(t)\right)\right),$$
 (2)

$$|\mathcal{L}(t, \boldsymbol{x}, \boldsymbol{y})| \leq a(|\boldsymbol{x}|) \left(b(t) + \Phi\left(\frac{|\boldsymbol{y}|}{\lambda} + f(t)\right) \right),$$

$$|D_{\boldsymbol{x}}\mathcal{L}(t, \boldsymbol{x}, \boldsymbol{y})| \leq a(|\boldsymbol{x}|) \left(b(t) + \Phi\left(\frac{|\boldsymbol{y}|}{\lambda} + f(t)\right) \right),$$

$$(3)$$

$$|D_{\boldsymbol{y}}\mathcal{L}(t,\boldsymbol{x},\boldsymbol{y})| \leq a(|\boldsymbol{x}|)\left(c(t) + \varphi\left(\frac{|\boldsymbol{y}|}{\lambda} + f(t)\right)\right).$$
 (4)

In these inequalities we assume that $\lambda > 0$ and

 $1. a \in C(\mathbb{R}^+, \mathbb{R}^+),$

2. Φ is a N-function, i.e. Φ is given by

$$\Phi(t) = \int_0^t \varphi(\tau) \ d\tau, \quad \text{for } t \ge 0,$$

where $\varphi: \mathbb{R}^+ \to \mathbb{R}^+$ is a right continuous non decreasing function satisfying $\varphi(0) = 0$, $\varphi(t) > 0$ for t > 0and $\lim_{t\to\infty}\varphi(t)=+\infty$. We denote by L_d^{Φ} the Orlicz space associated to the N-function Φ of functions defined on [0, T] taking values in \mathbb{R}^d .

3. $b \in L^1([0,T])$ and $c \in L_1^{\Psi}$, where Ψ is la complemnetary N-function of Φ .

 $4. f \in E_1^{\Phi}$, where the subspace $E_d^{\Phi} = E_d^{\Phi}([0,T])$ is defined as the closure in L_d^{Φ} of the subspace L_d^{∞} of all \mathbb{R}^d -valued essentially bounded functions.

We introduce the action integral

$$I(\boldsymbol{u}) = \int_0^T \mathcal{L}(t, \boldsymbol{u}(t), \dot{\boldsymbol{u}}(t)) dt.$$
 (5)

Differentiability of action integrals in Orlicz spaces

We define

$$\Pi(E_d^{\Phi}, r) := \{ \boldsymbol{u} \in L_d^{\Phi} | d(\boldsymbol{u}, E_d^{\Phi}) < r \}.$$

Theorem 2.1. Let \mathcal{L} be a Carathéodory function satisfying (2), (3) and (4). Then the following statements hold:

1. The action integral given by (5) is finitely defined on $\mathcal{E}_d^{\Phi}(\lambda) := W^1 L_d^{\Phi} \cap \{ \boldsymbol{u} | \boldsymbol{\dot{u}} \in \Pi(E_d^{\Phi}, \lambda) \}$.

2. The function I is Gâteaux differentiable on $\mathcal{E}_d^{\Phi}(\lambda)$ and its derivative I' is demicontinuous from $\mathcal{E}_d^{\Phi}(\lambda)$ into $|W^1L_d^{\Phi}|^*$. Moreover, I' is given by the following expression

$$\langle I'(\boldsymbol{u}), \boldsymbol{v} \rangle = \int_0^T \left\{ D_{\boldsymbol{x}} \mathcal{L}(t, \boldsymbol{u}, \dot{\boldsymbol{u}}) \cdot \boldsymbol{v} + D_{\boldsymbol{y}} \mathcal{L}(t, \boldsymbol{u}, \dot{\boldsymbol{u}}) \cdot \dot{\boldsymbol{v}} \right\} dt.$$
 (6)

3. If $\Psi \in \Delta_2$ then I' is continuous from $\mathcal{E}_d^{\Phi}(\lambda)$ into $\left[W^1L_d^{\Phi}\right]^*$ when both spaces are equipped with the strong topology.

Theorem 2.2. Let $\mathbf{u} \in \mathcal{E}_d^{\Phi}(\lambda)$ be a T-periodic function. The following statements are equivalent:

 $(a) I'(\boldsymbol{u}) \in \left(W^1 L_T^{\Phi}\right)^{\perp}.$

(b) $D_{\boldsymbol{y}}\mathcal{L}(t,\boldsymbol{u}(t),\boldsymbol{\dot{u}}(t))$ is an absolutely continuous function and \boldsymbol{u} solves the following boundary value problem

$$\begin{cases}
\frac{d}{dt}D_{\boldsymbol{y}}\mathcal{L}(t,\boldsymbol{u}(t),\boldsymbol{\dot{u}}(t)) = D_{\boldsymbol{x}}\mathcal{L}(t,\boldsymbol{u}(t),\boldsymbol{\dot{u}}(t)) & a.e. \ t \in (0,T) \\
\boldsymbol{u}(0) - \boldsymbol{u}(T) = D_{\boldsymbol{y}}\mathcal{L}(0,\boldsymbol{u}(0),\boldsymbol{\dot{u}}(0)) - D_{\boldsymbol{y}}\mathcal{L}(T,\boldsymbol{u}(T),\boldsymbol{\dot{u}}(T)) = 0.
\end{cases}$$
(7)

Moreover if $D_{\mathbf{y}}\mathcal{L}(t, x, y)$ is T-periodic with respect to the variable t and strictly convex with respect to \boldsymbol{y} , then $D_{\boldsymbol{y}}\mathcal{L}(0,\boldsymbol{u}(0),\dot{\boldsymbol{u}}(0)) - D_{\boldsymbol{y}}\mathcal{L}(T,\boldsymbol{u}(T),\dot{\boldsymbol{u}}(T)) = 0$ is equivalent to $\dot{\boldsymbol{u}}(0) = \dot{\boldsymbol{u}}(T)$.

Coercivity discussion

$$\mathcal{L}(t, \boldsymbol{x}, \boldsymbol{y}) \ge \alpha_0 \Phi\left(\frac{|\boldsymbol{y}|}{\Lambda}\right) + F(t, \boldsymbol{x}), \tag{8}$$

where $\alpha_0, \Lambda > 0$ and $F : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ is a Carathéodory function, i.e. $F(t, \boldsymbol{x})$ is measurable with respect to t for every fixed $\boldsymbol{x} \in \mathbb{R}^d$ and it is continuous at \boldsymbol{x} for a.e. $t \in [0, T]$. We need to assume

$$|F(t, \boldsymbol{x})| \leq a(|\boldsymbol{x}|)b_0(t)$$
, for a.e. $t \in [0, T]$ and for every $\boldsymbol{x} \in \mathbb{R}^d$. (9)

The coercivity of the action integral I is related to the coercivity of the functional

$$J_{C,\nu}(\boldsymbol{u}) := \rho_{\Phi} \left(\frac{\boldsymbol{u}}{\Lambda} \right) - C \|\boldsymbol{u}\|_{L^{\Phi}}^{\nu}, \tag{10}$$

for $C, \nu > 0$. If $\Phi(x) = |x|^p/p$ then $J_{C,\nu}$ is clearly coercive for $\nu < p$. For more general Φ the situation is more interesting.

Lemma 3.1. Let Φ and Ψ be complementary N-functions. Then:

1. If $C\Lambda < 1$, then $J_{C,1}$ is coercive.

2. If $\Psi \in \Delta_2$ globally, then there exists a constant $\alpha_{\Phi} > 1$ such that, for any $0 < \mu < \alpha_{\Phi}$,

$$\lim_{\|\boldsymbol{u}\|_{L^{\Phi}} \to \infty} \frac{\rho_{\Phi}\left(\frac{\boldsymbol{u}}{\Lambda}\right)}{\|\boldsymbol{u}\|_{L^{\Phi}}^{\mu}} = +\infty. \tag{11}$$

In particular, the functional $J_{C,\mu}$ is coercive for every C>0 and $0<\mu< a_{\Phi}$. The constant α_{Φ} is one of the so-called Matuszewska-Orlicz indices (see [?, Ch. 11]).

3. If $J_{C,1}$ is coercive with $C\Lambda > 1$, then $\Psi \in \Delta_2$.

Theorem 3.2. Let \mathcal{L} be a lagrangian function satisfying (2), (3), (4), (8) and (9). We assume the following conditions:

1. There exist a non negative function $b_1 \in L_1^1$ and a constant $\mu > 0$ such that for any $x_1, x_2 \in \mathbb{R}^d$ and a.e. $t \in [0, T]$

$$|F(t, \mathbf{x_2}) - F(t, \mathbf{x_1})| \le b_1(t)(1 + |\mathbf{x_2} - \mathbf{x_1}|^{\mu}).$$
 (12)

We suppose that $\mu < \alpha_{\Phi}$, with α_{Φ} as in Lemma 3.1, in the case that $\Psi \in \Delta_2$; and, we suppose $\mu = 1$ if Ψ is an arbitrary N-function.

$$\int_0^T F(t, \boldsymbol{x}) dt \to \infty \quad as \quad |\boldsymbol{x}| \to \infty. \tag{13}$$

3. $\Psi \in \Delta_2$ or, alternatively, $\alpha_0^{-1} T \Phi^{-1} (1/T) \|b_1\|_{L^1} \Lambda < 1$.

Then the action integral I is coercive.

Lemma 3.3. Suppose that F satisfies condition (A) and (13), $F(t,\cdot)$ is differentiable and convex a.e. $t \in [0,T]$. Then, there exists $\mathbf{x}_0 \in \mathbb{R}^d$ such that

$$\int_0^T D_{\boldsymbol{x}} F(t, \boldsymbol{x}_0) \ dt = 0. \tag{14}$$

Theorem 3.4. Let \mathcal{L} be as in Theorem 3.2 and let F be as in Lemma 3.3. Moreover, assume that $\Psi \in \Delta_2 \text{ or, alternatively } \alpha_0^{-1} T \Phi^{-1}(1/T) a(|\mathbf{x}_0|) \|b_0\|_{L^1} \Lambda < 1, \text{ with a and } b_0 \text{ as in } (9) \text{ and } \mathbf{x}_0 \in \mathbb{R}^d \text{ any } \mathbf{x}_0 \in \mathbb{R}^d$ point satisfying (14). Then I is coercive.

The main result

Theorem 4.1. Let Φ and Ψ be complementary N-functions. Suppose that the Carathéodory function $\mathcal{L}(t, \boldsymbol{x}, \boldsymbol{y})$ is strictly convex at \boldsymbol{y} , $D_{\boldsymbol{y}}\mathcal{L}$ is T-periodic with respect to T and (2), (3), (4), (8), (9) and (13)are satisfied. In addition, assume that some of the following statements hold (we recall the definitions and properties of α_0 , b_1 , \mathbf{x}_0 and b_0 from (8), (12), (14) and (??) respectively):

1. $\Psi \in \Delta_2 \ and \ (12)$.

2. (12) and $\alpha_0^{-1}T\Phi^{-1}(1/T)\|b_1\|_{L^1}\Lambda < 1$.

3. $\Psi \in \Delta_2$, F satisfies condition (A) and $F(t,\cdot)$ is convex a.e. $t \in [0,T]$.

4. As item 3 but with $\alpha_0^{-1}T\Phi^{-1}(1/T) a(|\mathbf{x}_0|) ||b_0||_{L^1}\Lambda < 1 \text{ instead of } \Psi \in \Delta_2$.

Then, problem (1) has a solution.