Lecture Note 02 Data Handling & Manipulation

Dohyung Bang

Fall, 2021

Syllabus

Week	Date	Topic	Note
1	9/6(월)	R Basic - R 기초 문법 학습	
2	9/13(월)	R Basic – Data Manipulation I 과제#	
3	9/20(월) (추석)	<추석> (보충영상) R Basic - Data Manipulation II	과제#2
4	9/27(월)	Descriptive Analytics I - 데이터 요약하기/상관관계/차이검증	
5	10/4(월) (대체공휴일)	<대체공휴일> (보충영상) Descriptive Analytics II - 데이터 시각화	과제#3
6	10/11(월) (대체공휴일)	<대체공휴일> (보충영상) Supplementary Topic I - 외부 데이터 수집 (정적 컨텐츠 수집)	과제#4
7	10/18(월)	Predictive Analytics I – Linear regression & Logistic Regression	
8	10/25(월)	Predictive Analytics II - Clustering & Latent Class Analysis	시험 대체 수업
9	11/1(월)	Predictive Analytics III – Tree-based Model and Bagging (Random Forest)	
10	11/8(월)	Predictive Analytics IV – Association Rules	
11	11/15(월)	Supplementary Topic II - 외부 데이터 수집 (동적 컨텐츠 수집)	
12	11/22(월)	Prescriptive Analytics I – Linear Programming	과제#5
13	11/29(월)	Prescriptive Analytics II – Data Envelopment Analysis (DEA)	
14	12/6(월)	Prescriptive Analytics III – Integer Programming	과제#6
15	12/13(월)	Prescriptive Analytics IV – Simulation	Quiz
16	12/20(월)	Final Presentation	

Lecture 2-1

데이터, 변수, 그리고 "R"

자료(data)의 분류

자료(data)는 정형자료(Structured data)와 비정형자료(Unstructured data)로 나뉨

▶ 우리가 일상적으로 접하는
 자료는 대개 정형자료이나
 전체 자료 중 정형자료의
 비중은 20%가 채 되지 않으며,
 나머지 80%에 해당하는
 비정형자료를 의미있게
 분석하는 것이 매우 중요함

변수(Variable)란 모형에 전달되는 정보나 그 밖의 상황에 따라 바뀔 수 있는 값을 의미

변수(Variable) = 개체의 속성(Feature)

테이블 데이터의 구조

기능에 따른 변수(Variable) 분류

속성 및 형태에 따른 변수(Variable) 분류

척도(Scale)의 종류

명목척도 Nomial scale

데이터 항목의 속성을 단지 숫자로 식별하기 위한 목적 숫자의 크기 의미 X 서열화 X 특정 범주만을 의미함

Ex) 성별, 산업분류

서열척도 Ordinal scale

명목척도의 특성을 포함 크기 순의 서열화 O 순서에 관한 정보를 나타냄 (구체적인 차이에 관한 정 보는 포함 X)

Ex) 석차, 모스 경도

간격척도 Interval scale

값 간 간격이 고정된 척도 서열척도의 특성 포함 값 간의 차이가 의미 있음 값 간의 비율계산은 의미 X

Ex) 온도, 토익성적

비율척도 Ratio scale

크기의 비교가 가능 간격척도의 특성 포함 값 간 간격이 동일 비율계산이 가능

Ex) 길이, 무게, 시간, 나이

R에서 정의하는 "데이터"와 "변수"

R에서 정의하는 "변수"

	l 			
Numeric	• 실수 범위의 값으로 표현되는 연속형(continuous)인 숫자형 변수	Ex) 매출액, 온도, 확률값 등		
	1			
Integer	• 정수 범위의 값으로 표현되는 숫자형 변수로, 모든 Integer는 Numeric에 속함	Ex) 사람 수, 박스 수량, 주문 량 등		
Character	• 문자형 변수로 문자 외에 의미를 지니지 않음	Ex) "Male", "Female", "Apple" 등		
Factor	문자형이든, 숫자형이든 그 형태가 아니라 구분을 위한 별도의 의미를 지니는 변수로, 명목척도와 성격이 같음	Ex) "Male", "Female" or 1,2,3,4, 등번호		
Logical	• 논리형 변수는 TRUE와 FALSE 두가지로 구성되어 종종 쓰이며 Factor와 마찬가지로 TRUE이면 1, FALSE면 0과 같은 의미를 일반적으로 내포함	Ex) 구매 여부에 대해 구매했으면 TRUE, 구매 안했으면 FALSE		

R에서 정의하는 "데이터"

Vector

- 동일한 유형의 데이터로 구성된 1차원 데이터로, 하나의 행 또는 열만 있는 경우 Vector data라 부름
- 한 Vector에는 동일한 타입의 데이터만 포함될 수 있음

Matrix

- 둘 이상의 행 또는 열이 모이면 행렬이라고 부름
- 수학적/대수적 연산이 가능

Data Frame

• Matrix와 동일한 형태이나 오로지 데이터 분석을 위해 정의되는 형태이므로 수학적/대수적 연산은 불가하며, "변수명"이 붙음

List

• 여러 형태의 값 또는 데이터를 묶어 놓을 수 있는 데이터 형태로, 변수와 매트릭스, 매트릭스와 매트릭스, 데이터 프레임과 또 다른 리스트 등 여러 형태의 데이터 및 변수를 담을 수 있는 데이텨 형태

Array

• 3차원 이상의 데이터를 정의할 때 나타내는 데이터 타입으로, 이미지/영상 데이터의 경우 3,4차원 이상이기 때문에 Array로 주로 정의됨

R은 어떻게 작동하는가?

R script(.r) vs Markdown(.rmd)

> R stript(.r)

- R의 코드를 실행 및 작성하기 위한 가장 기본적인 코드 작성 단위
- 주석 처리 '#'를 해주지 않으면 모든 Line을 코드로 인식함

> R Markdown (.rmd)

- R을 이용한 상호작용 활동을 위해 만들어진 작성 확장자로 Markdown을 이용해 html 문서, Words 문서, PDF 문서 등을 생성할 수 있음
- 따로 코드 Chunk 처리를 해줘야만 코드가 실행되고, 나머지 부분은 문서 처럼 작성이 가능함
- 코드에 대한 주석, 상호작용을 위해 코드북은 Markdown을 주로 활용할 예정

R 함수에 대한 이해

ex)

Function(my_data, "option1_name", "option2_name")

Function(data = my_data, option2 = "option2_name", option1 = "option1_name")

R 함수의 Formula에 대한 이해

$$Y=aX_1+bX_2+c$$
Function $(Y\sim X_1+X_2)$, data = data)
 $(Y\sim X_1+X_2)$ data = data)
 $(Y\sim X_1+X_2)$ data = data)
 $(Y\sim X_1+X_2)$ data = data)

- ➤ Formula가 적용되는 함수
 - 인과모형(선형 회귀모형 및 분류모형)
 - 시각화 시 Group에 따른 차이 표현

Lecture 2-2

R 마크다운 문법 요소

R 마크다운 문법 기초(1/2)

🤰 설정 덩어리(set up chunk)

: 문서를 처음 생성하면 최초로 보이는 코드 덩어리로, 전체 문서의 기본 설정값 (Default)을 설정하는 코드 chunk임.

eval = FALSE / TRUE

- 코드를 실행하지 않는다. / 실행한다.

echo = FALSE / TRUE

- 코드를 보여주지 않는다. / 보여준다.

Include = FALSE / TRUE

- 실행 결과를 보여주지 않는다.

message = FALSE / TRUE

- 실행 때 나오는 메세지를 보여주지 않는다.

warning = FALSE / TRUE

- 실행 때 나오는 경고를 보여주지 않는다.

error = TRUE / FALSE

- 에러가 있어도 실행하고 에러코드를 보여준다.

fig.height = 10

- 그림 높이, R로 그린 그림에만 해당한다.

fig.width = 12

- 그림 너비, R로 그린 그림에만 해당한다.

fig.align = 'center'

- 그림 위치, R로 그린 그림에만 해당한다.

R 마크다운 문법 기초(2/2)

→️️️ 작업이 끝난 마크다운 문서를 지정해놓은 문서 템플릿으로 생성할 땐, '니트(Knit)'를 실행한다.

🧎 불릿(Bullet) 만들기

: 일반적으로 하이픈(-), 별표(*), 더하기(+) 혹은 숫자를 적용하면 텍스트 구분자가 생성됨

텍스트를 강조하고자 할 때, 다음과 같이 *을 이용하여 Bold 혹은 *Italic*을 표현할 수 있다.

```
20 **굵게(Bold)**
21
22 *이탤릭(Italic)*
23
24 `강조(Highlight)` 국게(Bold)
이탤릭(Italic)
강조(Highlight)
```