BD 2 - Decomposizione di Schemi

Luca Cosmo

Università Ca' Foscari Venezia

Anomalie

Schemi di scarsa qualità soffrono di anomalie, che vanno ad ostacolare le operazioni di inserimento, cancellazione ed aggiornamento dei dati.

<u>ID</u>	NomeUtente	CodiceLibro	Titolo	Data
8432	Rossi Carlo	XY188A	Decameron	07-07
6613	Pastine Maurizio	XY090C	Canzoniere	01-08
7115	Paolicchi Laura	XY101A	Vita Nova	05-08
6825	Paolicchi Luca	XY701B	Adelchi	14-01
6825	Paolicchi Luca	XY008C	Amleto	17-08

Decomposizione di Schemi

L'eliminazione di anomalie è tipicamente basata sulla decomposizione di schemi mal definiti in schemi più piccoli, equivalenti ma più disciplinati.

<u>ID</u>	NomeUtente
8432	Rossi Carlo
6613	Pastine Maurizio
7115	Paolicchi Laura
6825	Paolicchi Luca

ID	CodiceLibro	Titolo	Data
8432	XY188A	Decameron	07-07
6613	XY090C	Canzoniere	01-08
7115	XY101A	Vita Nova	05-08
6825	XY701B	Adelchi	14-01
6825	PXY008C	Amleto	17-08

Decomposizione di Schemi

Definition (Proiezione)

Dati uno schema R(T,F) e $Z \subseteq T$, la proiezione di F su Z è definita come l'insieme $\pi_Z(F) = \{X \to Y \in F^+ \mid X \cup Y \subseteq Z\}$.

Definition (Decomposizione)

Dato uno schema R(T,F), una sua decomposizione è un insieme di schemi $\rho = \{R_1(T_1,F_1),\ldots,R_n(T_n,F_n)\}$ tale che $\bigcup_i T_i = T, \ \forall i: T_i \neq \emptyset$ e $\forall i: F_i = \pi_{T_i}(F)$.

Visto che gli F_i sono determinati da F e dai T_i per proiezione, per leggibilità indicheremo una decomposizione di R(T,F) con la notazione più compatta $\rho = \{R_1(T_1), \ldots, R_n(T_n)\}.$

Proprietà delle Decomposizioni

Sebbene decomporre uno schema possa correggere le anomalie, non tutte le decomposizioni sono desiderabili:

- **perdita di informazione**: la decomposizione va ad introdurre dei dati spuri, che possono inficiare la correttezza di alcune query
- perdita di dipendenze: la decomposizione perde alcune dipendenze funzionali, andando ad alterare la semantica dei dati rappresentati

Proprietà desiderabili: una buona decomposizione dovrebbe eliminare le anomalie, ma preservare i dati e le dipendenze.

Decomposizioni con Perdita di Informazione

Prima della decomposizione: R

Proprietario	Telefono	Abitazione
Mario Rossi	423567	Via Torino, 155
Mario Rossi	542635	Dorsoduro, 1234

Dopo la decomposizione: R_1, R_2

Proprietario	Telefono
Mario Rossi	423567
Mario Rossi	542635

Proprietario	Abitazione
Mario Rossi	Via Torino, 155
Mario Rossi	Dorsoduro, 1234

Qual è il telefono del proprietario della casa in Via Torino, 155?

- $\pi_{Telefono}(\sigma_{Abitazione="ViaTorino,155"}(R)) = \{423567\}$

Decomposizioni che Preservano i Dati

In generale, un'operazione di decomposizione può introdurre nuovi dati, come formalizzato dal seguente teorema.

Theorem

Sia $\rho = \{R_1(T_1), \dots, R_n(T_n)\}$ una decomposizione di R(T, F), allora per ogni istanza r di R(T, F) si ha $r \subseteq \pi_{T_1}(r) \bowtie \dots \bowtie \pi_{T_n}(r)$.

Una decomposizione preserva i dati (non perde informazione) quando $r = \pi_{T_1}(r) \bowtie ... \bowtie \pi_{T_n}(r)$:

Definition (Decomposizione che Preserva i Dati)

La decomposizione $\rho = \{R_1(T_1), \dots, R_n(T_n)\}$ di R(T, F) preserva i dati sse per ogni istanza r di R(T, F) si ha $r = \pi_{T_1}(r) \bowtie \dots \bowtie \pi_{T_n}(r)$.

Decomposizioni che Preservano i Dati

Come possiamo verificare se una decomposizione preserva i dati?

Theorem

Sia $\rho = \{R_1(T_1), R_2(T_2)\}$ una decomposizione di R(T, F), si ha che ρ preserva i dati sse $T_1 \cap T_2 \to T_1 \in F^+$ oppure $T_1 \cap T_2 \to T_2 \in F^+$.

Questo permette di ricondurre il problema di determinare se una certa decomposizione binaria preserva i dati al problema dell'**implicazione**, che ha costo polinomiale.

Ricordiamo infatti che: $F \vdash X \rightarrow Y$ se e solo se $Y \subseteq X_F^+$.

Dimostrazione (\Leftarrow)

Sia $\rho = \{R_1(T_1), R_2(T_2)\}$ una decomposizione di R(T, F), dimostriamo che se $T_1 \cap T_2 \to T_1 \in F^+$ allora ρ preserva i dati.

Proof.

- I Sia r un'istanza valida di R(T,F) e $s=(\pi_{T_1}r)\bowtie(\pi_{T_2}r)$, dobbiamo dimostrare che per ogni $t\in s$ abbiamo anche $t\in r$.
- 2 Per definizione di s esistono due tuple $u, v \in r$ con $u[T_1] = t[T_1]$, $v[T_2] = t[T_2]$ e $u[T_1 \cap T_2] = v[T_1 \cap T_2] = t[T_1 \cap T_2]$.
- 3 Poichè $T_1 \cap T_2 \to T_1 \in F^+$, da $u[T_1 \cap T_2] = v[T_1 \cap T_2]$ otteniamo $u[T_1] = v[T_1]$ e quindi $t = v \in r$.

Il caso $T_1 \cap T_2 \to T_2 \in F^+$ è analogo.

Esempio 1

Si consideri R(A, B, C, D) con $F = \{A \rightarrow BC\}$.

La decomposizione binaria $\{R_1(A, B, C), R_2(A, D)\}$ preserva i dati:

- $T_1 = \{A, B, C\} \in T_2 = \{A, D\}$
- $T_1 \cap T_2 = \{A\}$
- $lacksquare A_F^+ = \{A, B, C\} = T_1$, quindi $T_1 \cap T_2 \rightarrow T_1 \in F^+$

Visualizzazione di questa proprietà nella prossima slide.

Esempio 1 - Preservazione dei Dati

Dipendenze funzionali: $F = \{A \rightarrow BC\}$

Dopo la decomposizione: R_1, R_2

Prima della decomposizione: R

Α	В	С	D
a_1	b_1	c_1	d_1
a_1	b_1	c_1	d_2
a_2	b_2	c_2	d_2

В	С
b_1	c_1
b_2	<i>c</i> ₂
	b_1

Α	D
a_1	d_1
a_1	d_2
a_2	d_2

In effetti abbiamo $R_1 \bowtie R_2 = R$. Attenzione: è solo un esempio!

Esempio 2

Si consideri R(A, B, C, D) con $F = \{A \rightarrow B, C \rightarrow D\}$.

La decomposizione binaria $\{R_1(A, B), R_2(C, D)\}$ non preserva i dati:

- $T_1 = \{A, B\} \ e \ T_2 = \{C, D\}$
- $T_1 \cap T_2 = \emptyset$
- lacksquare abbiamo quindi $\{T_1 \cap T_2 o T_1, T_1 \cap T_2 o T_2\} \cap F^+ = \emptyset$

Controesempio nella prossima slide.

Esempio 2 - Perdita di Informazione

Dipendenze funzionali: $F = \{A \rightarrow B, C \rightarrow D\}$

Dopo la decomposizione: R_1, R_2

Prima della decomposizione: R

Α	В	С	D
a_1	b_1	<i>c</i> ₁	d_1
a_2	b_2	c_2	d_2

$$\begin{array}{c|cc}
A & B \\
a_1 & b_1 \\
a_2 & b_2
\end{array}$$

$$\begin{array}{ccc}
C & D \\
c_1 & d_1 \\
c_2 & d_2
\end{array}$$

Abbiamo che $(a_1, b_1, c_2, d_2) \in R_1 \bowtie R_2$, ma $(a_1, b_1, c_2, d_2) \notin R$.

Decomposizioni con Perdita di Dipendenze

Prima della decomposizione: R

Proprietario	Telefono	Macchina
Mario Rossi	423567	CG153SE
Mario Rossi	423567	PT267MV
Mario Rossi	542635	PT267MV

Dopo la decomposizione: R_1, R_2

Proprietario	Telefono
Mario Rossi	423567
Mario Rossi	542635

Telefono	Macchina
423567	CG153SE
423567	PT267MV
542635	PT267MV

Supponiamo di voler inserire (Luca Bianchi, 421448, CG153SE)

- $lue{}$ nel primo caso violerei la dipendenza Macchina ightarrow Proprietario
- nel secondo caso non me ne posso accorgere, se non dopo giunzione

Decomposizioni che Preservano le Dipendenze

Una decomposizione preserva le dipendenze sse l'unione delle dipendenze indotte sui singoli schemi equivale alle dipendenze dello schema originale.

Definition (Decomposizione che Preserva le Dipendenze)

La decomposizione $\rho = \{R_1(T_1), \dots, R_n(T_n)\}$ di R(T, F) preserva le dipendenze se e solo se $\bigcup_i \pi_{T_i}(F) \equiv F$.

Come verificarlo algoritmicamente? Applichiamo la definizione:

- **I** Calcoliamo le proiezioni $\pi_{T_i}(F) = \{X \to Y \in F^+ \mid X \cup Y \subseteq T_i\}$
- **2** Verifichiamo se $\bigcup_i \pi_{T_i}(F) \equiv F$

Al momento non sappiamo risolvere nessuno dei due problemi! Iniziamo a ragionare sul secondo, che è più semplice...

Verificare l'Equivalenza

Rcordiamo che: $F \equiv G$, se e solo se $F^+ = G^+$.

Theorem

 $F \equiv G$ se e solo se $F \subseteq G^+$ e $G \subseteq F^+$.

Proof.

- Sia $F \equiv G$, allora $F^+ = G^+$ per definizione. Dato che si ha $F \subseteq F^+$ e $G \subseteq G^+$, ottengo $F \subseteq G^+$ e $G \subseteq F^+$ come desiderato.
- Poichè $F \subseteq G^+$, osservo che $F^+ \subseteq (G^+)^+ = G^+$. Analogamente da $G \subseteq F^+$ ottengo $G^+ \subseteq (F^+)^+ = F^+$. Concludo che $F^+ = G^+$.

Verificare l'Equivalenza

Theorem

 $F \equiv G$ se e solo se $F \subseteq G^+$ e $G \subseteq F^+$.

Sia $G = \bigcup_i \pi_{T_i}(F)$, per dimostrare che $F \equiv G$ osserviamo che:

- **1** $F \subseteq G^+$ è verificabile tramite il problema dell'implicazione, perchè equivale a verificare che per ogni $X \to Y \in F$ abbiamo $Y \subseteq X_G^+$

Ci manca quindi solo da calcolare $G = \bigcup_i \pi_{T_i}(F)$ per avere un algoritmo che verifica se le dipendenze sono preservate o meno.

Calcolo delle Proiezioni

Purtroppo non è possibile calcolare $G = \bigcup_i \pi_{T_i}(F)$ in modo efficiente, perchè il calcolo delle singole proiezioni $\pi_{T_i}(F)$ ha costo esponenziale.

Algoritmo

```
function PROJECT(F, T_i)

proj \leftarrow \emptyset

for all X \subset T_i do

Y \leftarrow X_F^+ \setminus X

proj \leftarrow proj \cup \{X \rightarrow Y \cap T_i\}

return proj
```

Riassunto

Alla luce di quanto discusso, possiamo verificare se la decomposizione $\rho = \{R_1(T_1), \dots, R_n(T_n)\}\$ di R(T, F) preserva le dipendenze tramite il seguente algoritmo:

- **1** Calcola le proiezioni $\pi_{T_i}(F)$ per ogni $i \in [1, n]$
- **2** Calcola $G = \bigcup_i \pi_{T_i}(F)$
- **3** Verifica che per ogni $X \to Y \in F$ si abbia $Y \subseteq X_G^+$

Tale algoritmo ha costo esponenziale a causa del calcolo delle proiezioni.

Esempio (1/2)

Siano R(A, B, C) e $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$. Vogliamo verificare se la decomposizione $\rho = \{R_1(A, B), R_2(B, C)\}$ preserva le dipendenze.

Calcoliamo $\pi_{AB}(F)$, considerando i due sottoinsiemi propri A e B:

- $lacksquare A_F^+ = ABC$, quindi $A o B \in \pi_{AB}(F)$
- $B_F^+ = BCA$, quindi $B \to A \in \pi_{AB}(F)$

Concludiamo quindi $\pi_{AB}(F) = \{A \rightarrow B, B \rightarrow A\}.$

Calcoliamo ora $\pi_{BC}(F)$, considerando i due sottoinsiemi propri B e C:

- $B_F^+ = BCA$, quindi $B \to C \in \pi_{BC}(F)$
- $C_F^+ = CAB$, quindi $C \to B \in \pi_{BC}(F)$

Concludiamo quindi $\pi_{BC}(F) = \{B \to C, C \to B\}.$

Esempio (2/2)

A questo punto possiamo calcolare:

$$G = \pi_{AB}(F) \cup \pi_{BC}(F) = \{A \rightarrow B, B \rightarrow A, B \rightarrow C, C \rightarrow B\}.$$

Iteriamo sulle dipendenze $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$ e verifichiamo che siano tutte derivabili da G:

- $A \rightarrow B$: abbiamo $B \in A_G^+ = ABC$
- $B \rightarrow C$: abbiamo $C \in B_G^+ = BAC$
- $C \rightarrow A$: abbiamo $A \in C_G^+ = CBA$

Concludiamo che la decomposizione in esame preserva le dipendenze.

Ottimizzare la Verifica

Per fortuna non ci interessa davvero calcolare $G = \bigcup_i \pi_{T_i}(F)$, ma ci basta verificare che per ogni $X \to Y \in F$ abbiamo $Y \subseteq X_G^+$. In effetti esiste un algoritmo che calcola X_G^+ in tempo polinomiale senza calcolare G.

Algoritmo

```
function FC(X, F, \rho)

res_{old} \leftarrow \emptyset

res_{new} \leftarrow X

while res_{new} \neq res_{old} do

res_{old} \leftarrow res_{new}

for all R_i(T_i) \in \rho do

res_{new} \leftarrow res_{new} \cup ((res_{new} \cap T_i)_F^+ \cap T_i)

return res_{new}
```

Ottimizzare la Verifica

Dati uno schema R(T, F) e $\rho = \{R_1(T_1), \dots, R_n(T_n)\}$, è quindi possibile verificare se ρ preserva le dipendenze tramite il seguente algoritmo.

Algoritmo

```
function PRESERVEDEPS(R(T,F), \rho)
for all X \to Y \in F do
if Y \not\subseteq FC(X,F,\rho) then return False
return True
```

La complessità dell'algoritmo ottimizzato è quindi polinomiale.

Esempio (1/3)

$$F = \{A \to B, B \to C, C \to A\} \text{ e } \rho = \{R_1(A, B), R_2(B, C)\}.$$

Partiamo dalla dipendenza $A \rightarrow B$:

- **1** Partiamo inizializzando $FC(A, F, \rho) = \{A\}$
- 2 Consideriamo $R_1(\{A,B\})$, abbiamo: $(\{A\} \cap \{A,B\})^+_F \cap \{A,B\} = A^+_F \cap \{A,B\} = \{A,B\}$, quindi aggiungiamo B a $FC(A,F,\rho)$
- Consideriamo $R_2(\{B,C\})$, abbiamo: $(\{A,B\}\cap\{B,C\})_F^+\cap\{B,C\}=B_F^+\cap\{B,C\}=\{B,C\}$, quindi aggiungiamo C a $FC(A,F,\rho)$
- 4 Otteniamo quindi $B \in FC(A, F, \rho) = \{A, B, C\}$

Esempio (2/3)

$$F = \{A \to B, B \to C, C \to A\} \text{ e } \rho = \{R_1(A, B), R_2(B, C)\}.$$

Passiamo alla dipendenza $B \rightarrow C$:

- **1** Partiamo inizializzando $FC(B, F, \rho) = \{B\}$
- 2 Consideriamo $R_1(\{A,B\})$, abbiamo: $(\{B\} \cap \{A,B\})_F^+ \cap \{A,B\} = B_F^+ \cap \{A,B\} = \{A,B\}$, quindi aggiungiamo A a $FC(B,F,\rho)$
- 3 Consideriamo $R_2(\{B,C\})$, abbiamo: $(\{A,B\}\cap\{B,C\})_F^+\cap\{B,C\}=B_F^+\cap\{B,C\}=\{B,C\}$, quindi aggiungiamo C a $FC(B,F,\rho)$
- 4 Otteniamo quindi $C \in FC(B, F, \rho) = \{A, B, C\}$

Esempio (3/3)

$$F = \{A \to B, B \to C, C \to A\} \text{ e } \rho = \{R_1(A, B), R_2(B, C)\}.$$

Passiamo infine alla dipendenza $C \rightarrow A$:

- **1** Partiamo inizializzando $FC(C, F, \rho) = \{C\}$
- **2** Consideriamo $R_1(\{A, B\})$, abbiamo: $(\{C\} \cap \{A, B\})_F^+ \cap \{A, B\} = \emptyset$, quindi per ora non aggiungiamo niente a $FC(C, F, \rho)$
- 3 Consideriamo $R_2(\{B,C\})$, abbiamo: $(\{C\} \cap \{B,C\})_F^+ \cap \{B,C\} = C_F^+ \cap \{B,C\} = \{B,C\}$, quindi aggiungiamo B a $FC(C,F,\rho)$
- 4 Consideriamo $R_1(\{A,B\})$, abbiamo: $(\{B,C\}\cap\{A,B\})^+_F\cap\{A,B\}=B^+_F\cap\{A,B\}=\{A,B\}$, quindi aggiungiamo A a $FC(C,F,\rho)$
- **5** Otteniamo quindi $A \in FC(C, F, \rho) = \{A, B, C\}$

Teorema

In generale la preservazione dei dati è indipendente dalla preservazione delle dipendenze. Esiste però un teorema che collega le due proprietà, che è particolarmente utile perchè applicabile a decomposizioni non binarie.

Theorem

Sia $\rho = \{R_1(T_1), \dots, R_n(T_n)\}$ una decomposizione di R(T, F) che preserva le dipendenze e tale che almeno uno degli insiemi di attributi T_j sia una superchiave per R(T, F), allora ρ preserva anche i dati.

Per gli studenti interessati: la dimostrazione è riportata nel testo.

Checkpoint

Punti Chiave

- La definizione di decomposizione
- Decomposizioni che preservano i dati e le dipendenze
- Tecniche algoritmiche per dimostrare che una certa decomposizione preserva i dati e le dipendenze (con costo polinomiale)

Materiale Didattico

Fondamenti di Basi di Dati: Sezione 5.3