目 录

主要符号表	
第一章补充习题	4
第二章补充习题	
第三章补充习题	
第四章补充习题	
第五章补充习题	
第六章补充习题	
第七章补充习题	
第九章补充习题	
第十一章补充习题	
附录: 上海交通大学 2009-2010 学年《经	矩阵理论》考试题31

主要符号表

```
实数域,复数域,有理数域,整数(环),自然数集
\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}, \mathbb{N}
                  虚数单位 \sqrt{-1}
                  复数\lambda的实部
Re(\lambda)
                  复数\lambda的虚部
Im(\lambda)
\bar{\lambda}
                  复数 λ 的共轭
                  充分必要条件
\forall
                  对所有 (任意)
\exists
                  存在有
                  证毕
\partial f(x)
                  多项式 f(x) 的次数
A^{-1}
                  矩阵 A 的逆矩阵
A^{\dagger}
                  矩阵 A 的 Moore-Penrose 广义逆矩阵
A^i
                  矩阵 A 的 i 次方或矩阵 A 的第 i 行
                  矩阵 A 的第 j 列
A_i
A^{(i,j)}
                  矩阵 A 的 \{i,j\} 广义逆
vec(A)
                  矩阵 A 的列展开
                  矩阵 A 的行展开
rvec(A)
A^T
                  矩阵 (或向量)A 的转置
A^*
                  矩阵 (或向量)A 的共轭转置
A > 0
                  矩阵 A 为正定矩阵或 A 为正矩阵即 A 的所有元素均大于零
A \ge 0
                  矩阵 A 为半正定矩阵或 A 为非负矩阵即 A 的所有元素均非负
                  矩阵 A 与 B 的张量积 (也称为 Kronecker 积)
A \otimes B
                  矩阵 A 的伴随矩阵
\operatorname{adj} A
r(A)
                  矩阵 A 的秩
                  矩阵 A 的迹
\operatorname{tr} A
\sigma(A)
                  矩阵 A 的谱
                  矩阵 A 的谱半径
\rho(A)
                  矩阵 A 的范数
||A||
                 矩阵 A 的 l_p 范数 (p=1,2,\infty)
||A||_1, ||A||_2, ||A||_{\infty}
                  复数 A 的模或矩阵 A 的行列式 (偶尔也表示 A 的绝对值矩阵) 或集合 A 的元数
|A|
C_n^r
                  从n个不同元素中取出r个元素的组合数
                  矩阵的 k 阶不变因子
d_k(\lambda)
                  Kronecker 符号, 即 \delta_{ij} = 1 如果 i = j; \delta_{ij} = 0 如果 i \neq j
\delta_{ij}
\operatorname{diag}(\lambda_1,...,\lambda_n)
                  对角线元为 \lambda_1, ..., \lambda_n 的对角矩阵
                  (0,...,0,1,0,...,0)
                                    第 i 个分量为1的基本行向量
                 (0,...,0,1,0,...,0)^T 第 j 个分量为 1 的基本列向量
e_j
                  在 (i,j) 处为 1 其余位置为零的矩阵
E_{ij}
                  矩阵 A 的 Hermite 标准形
H_A
                  单位矩阵, m 阶单位矩阵
I, I_m
J
                  矩阵的 Jordan 标准形
J_k(\lambda)
                  对角线为 \lambda 的 k 阶标准 Jordan 块
N(A)
                  矩阵 A 的零空间
N(A^T)
                  矩阵 A 的左零空间 (矩阵 A^* 的零空间)
R(A)
                  矩阵 A 的列空间 (像空间)
R(A^T)
```

矩阵 A 的行空间 (矩阵 A^* 的像空间)

(x,y)向量 x 与向量 y 的内积 向量 x 与向量 y 正交 (垂直) $x \perp y$

 \mathbb{R}^n 实数域上 n 维有序数组构成的线性空间 \mathbb{C}^n 复数域上 n 维有序数组构成的线性空间 \mathbb{F}^n 数域 \mathbb{F} 上 n 维有序数组构成的线性空间 数域 \mathbb{F} 上 n 阶方阵全体构成的线性空间 $M_n, M_n(\mathbb{F})$ $\mathbb{R}^{m \times n}$ 全体 $m \times n$ 阶实矩阵构成的线性空间 $\mathbb{C}^{m \times n}$ 全体 $m \times n$ 阶复矩阵构成的线性空间

 $\mathbb{F}^{m \times n}$ 数域 \mathbb{F} 上全体 $m \times n$ 阶矩阵构成的线性空间 C[a,b]区间 [a, b] 上全体实变量连续函数构成的线性空间

由向量 $\alpha_1, ..., \alpha_k$ 生成的子空间 $\operatorname{Span}\{\alpha_1,...,a_k\}$ 子空间 (或矩阵)U 与 W 的直和 $U \oplus W$

子空间 (或矩阵) U_1, \cdots, U_s 的直和

 $\sum_{i=1}^{s} \oplus U_i \\ V/U$ 线性空间 V 关于子空间 U 的商空间 线性空间 V 上的恒等变换 (单位变换) 1_V

线性空间 V 上的零变换 0_V 线性空间 V 的维数 $\dim V$ 线性变换 σ 的秩 $r(\sigma)$ $\eta(\sigma)$ 线性变换 σ 的零度 线性变换 σ 的伴随变换 σ^* 线性变换 σ 的像空间 $\operatorname{Im}(\sigma)$ 线性变换 σ 的核空间 $Ker(\sigma)$

由线性空间 V 到 W 的线性变换全体构成的集合 $\operatorname{Hom}(V,W)$

 V^* 线性空间 V 的对偶空间

 $\operatorname{End} V$ 由线性空间 V 到自身的线性变换全体构成的集合

 W^{\perp} 子空间 W 的正交补

 V_{λ} 由对应于特征值 λ 的特征向量生成的特征子空间

子空间 U 上的正交投影变换 (矩阵) P_U $\text{Proj}_U \alpha$ 向量 α 在子空间或向量 U 上的投影向量

 $\sigma|_{U}$ 线性变换 σ 在子空间 U 上的限制

线性变换 $\sigma_1, \cdots, \sigma_s$ 的直和 $\oplus \sigma_i$ $U \otimes V$ 线性空间 U 与 V 的张量积 线性变换 σ 与 τ 的张量积 $\sigma \otimes \tau$ $E\{x\}$ 随机变量 x 的数学期望

特征值 x 的广义特征子空间或随机变量 x 的能量 E_x

第一章"矩阵"补充习题

1. 计算:

$$(1) \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix}^{n}; \quad (2) \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}^{n}; \quad (3) \begin{pmatrix} a & 1 & & & \\ & a & 1 & & \\ & & a & 1 & \\ & & & a & 1 \\ & & & & a \end{pmatrix}^{n}.$$

- 2. 证明: 与任意 n 阶方阵可交换的矩阵必是纯量矩阵 λI .
- 3. 利用初等变换求 $A^{-1}B$ 及 CA^{-1} , 其中

$$A = \begin{pmatrix} 4 & 5 & 0 \\ 2 & 3 & 1 \\ 2 & 7 & -3 \end{pmatrix}, B = \begin{pmatrix} 4 & 5 & 0 & 10 \\ 2 & 3 & 1 & -1 \\ 2 & 7 & 9 & -3 \end{pmatrix}, C = \begin{pmatrix} 4 & 5 & 0 \\ 2 & 3 & 1 \\ 2 & 7 & 9 \\ -2 & 3 & 7 \end{pmatrix}.$$

- 4. 设 $A, B \in M_n$, 证明: adj(AB) = adj(B)adj(A).
- 5. 证明: 对任意矩阵 A, 有 $r(A^*A) = r(AA^*) = r(A)$.
- 6. 证明: 对任意 n 阶矩阵 A, 有 $r(A^n) = r(A^{n+1})$.
- 7. 设 ω 是 n 次本原单位根 (可设 $\omega = e^{2\pi i/n} = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$), 试求 Fourier ¹矩阵

$$\begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(n-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{pmatrix}$$

的逆矩阵.

8. 设 $A = (a_{ij})_{n \times n}$ 是可逆的对称实矩阵. 证明: 二次型

$$f(x_1, x_2, \dots, x_n) = \begin{vmatrix} 0 & x_1 & \dots & x_n \\ -x_1 & a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ -x_n & a_{n1} & \dots & a_{nn} \end{vmatrix}$$

的矩阵是 A 的伴随矩阵.

- 9. 证明矩阵秩的 Frobenius² 不等式: $r(AB) + r(BC) \le r(B) + r(ABC)$.
- 10. 证明行初等变换不改变矩阵的列向量之间的线性关系.
- 11. 设 $A \in \mathbb{R}^n$ 阶矩阵, 对任意 $x \in \mathbb{R}^n$ 均有 $Ax \neq x$, 证明 I A 可逆并求其逆.
- 12. 设 n 阶矩阵 A 可逆, x 与 y 是 n 维列向量. 如果 $(A + xy^*)^{-1}$ 可逆, 证明 **Sherman-Morrison**³ 公式:

$$(A + xy^*)^{-1} = A^{-1} - \frac{A^{-1}xy^*A^{-1}}{1 + y^*A^{-1}x}.$$

¹J.Fourier(1768-1830), 著名法国数学家与物理学家, 发现了三角级数, Fourier 变换, 热传导方程, 热传导定律和温室效应

²F.G.Frobenius(1849-1917), 德国著名数学家.

³J.Shermann(1927-2007) 和 W.Morrison(1910-1961) 均为美国统计学家, 该公式发表于 1949 年.

(提示: 可用上题的结论.)

13. 设 n 阶矩阵 A 可逆, B, C, D 分别是 $n \times m$, $m \times n$, $m \times m$ 矩阵. 证明

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| = |A||D - CA^{-1}B|.$$

- 14. (1) 设矩阵 A, C 均可逆, 求分块矩阵 $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ 的逆矩阵.
- (2) 设矩阵 A 可逆, $D-CA^{-1}B$ 也可逆, 证明分块矩阵 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ 可逆并求其逆.
- 15. 设矩阵 A 与 A BC 均可逆, 试用 A , A^{-1} , B , C 表示 (A BC) $^{-1}$. (提示: 研究分块矩阵 $\begin{pmatrix} A & B \\ C & I \end{pmatrix}$ 的逆矩阵.)
- 16. 设 $\Omega = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$ 为 2n 阶分块矩阵. 一个 2n 阶复矩阵 M 称为是**辛矩阵** 如果 $M^T\Omega M = \Omega$. 证明:
- (1) 2n 阶辛矩阵的全体构成一个群, 即辛矩阵的逆矩阵仍是辛矩阵, 两个辛矩阵的乘积仍是辛矩阵;
 - (2)任何辛矩阵的行列式均为1. (提示:利用分块矩阵.)
- 17. 证明第三种初等矩阵 (即 $I + aE_{ij}$, $i \neq j$, $a \neq 0$) 彼此相似. 又, 第一种初等矩阵是否彼此相似?
 - 18. 设矩阵 A 满足方程 $A^2 A + 2I = 0$, 问 A 可以对角化吗? 为什么? 将本题一般化.
 - 19. 证明:(1) Hermite 矩阵的特征值均为实数, 且属于不同特征值的特征向量彼此正交.
 - (2) Hermite 矩阵 A 是正定矩阵 \iff 存在可逆下三角矩阵 L 使得 $A = LL^*$.
- 20. 设 f(x,y) 是 \mathbb{C}^n 上的对称**双线性函数** (即 f(x,y)=f(y,x) 且关于两个变元 x 与 y 均是线性的).
 - (1)给出 f(x,y)的一般表达式;
 - (2) 证明方程 f(x,x) = 0 总有非零解;
- (3) 设 f(x,y) 非退化 (即若 $f(x,\alpha) = 0, \forall x \in \mathbb{C}^n$, 则 $\alpha = 0$), 证明存在线性无关的向量 α, β 使得 $f(\alpha, \beta) = f(\beta, \alpha) = 0$ 且 $f(\alpha, \beta) = 1$.
- 22. 设 x 是矩阵 A 的一个特征向量 x, 证明相应于 x 的特征值为 x*Ax/x*x(此商称为 Rayleigh⁴ 商,是研究特征值的重要工具). 据此研究 n 元二次型 x*Ax 与 A 的特征值的关系.
- 23. Vandermonde (范德蒙德)⁵ 行列式对应的矩阵称为 Vandermonde 矩阵. 研究 Vandermonde 矩阵是否可以对角化.
- 24. 设 $I = I_2$, 试求整数矩阵方程 $X^2 = \pm I$ 的所有解. 试一般地讨论方程 $X^n = I_n$ 的解 (这样的整数矩阵称为周期矩阵), 其中 n 为某自然数. (提示: 利用特征多项式.)

⁴Rayleigh 爵士, 全名 J.Strutt(1842-1919), 英国数学家.

⁵A.Vandermonde(1735-1796), 法国数学家.

第二章"线性空间与线性变换"补充习题

1. 设 $V = \mathbb{R} \setminus \{-1\}$. 利用普通加法和普通乘法定义 V 上的加法 " \diamond " 如下:

$$a \diamond b = a + b + ab$$
.

证明 \diamond 满足线性空间的加法的全部条件. 进一步, 构造实数与 V 中向量的一个"数乘" \heartsuit , 使 得 $(V, \diamond, \heartsuit)$ 是 \mathbb{R} 上的线性空间. 请给出该线性空间的一组基.

- 2. 请将上题的集合 $V = \mathbb{R} \setminus \{-1\}$ 做一适当调整, 使其在加法 "♣" 下成为加群, 其中 " $a \clubsuit b = a + b + xab$ ", x 是某固定的实数. 试设计一个与加法 "♣" 和谐的数乘运算 "♠", 使得 $(V, \clubsuit, \spadesuit)$ 构成实线性空间. 请给出该线性空间的一组基.
 - 3. 设 $A = \{a_1, a_2, \dots, a_n\}$ 是非空有限集合.
 - (1) 证明: $\dim_{\mathbb{F}} \mathbb{F}^A = n$;
 - (2) 求 \mathbb{F}^A 的一组基:
 - (3) 描述函数空间 \mathbb{F}^A 的结构并推广到 A 是无限集合的情形.
- 4. 证明线性空间的替换定理: 设 $J = \{\alpha_1, \alpha_2, \cdots, \alpha_s\}$ 与 $K = \{\beta_1, \beta_2, \cdots, \beta_t\}$ 是 n 维线性空间 V 的两个向量组, 其中 J 线性无关. 如果每个 $\alpha_j \in J$ 都可由 K 线性表示, 则 $s \leq t$; 且可将 K 中的某 s 个向量换成 $\alpha_1, \alpha_2, \cdots, \alpha_s$,使得新的向量组生成的子空间与 K 生成的子空间相同.
 - 5. 证明有限维线性空间的任意两个基所含向量的个数相同.
 - 6. 证明过渡矩阵必是可逆矩阵.
- 7. 证明 1, x-1, $(x-1)^2$, \cdots , $(x-1)^n$ 是 $\mathbb{R}[x]_{n+1}$ 的一组基, 并求多项式 $f(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$ 在该组基下的坐标.
 - 8. 设 V 是有限维线性空间, 证明并解释下面的维数公式:

$$\dim V = \max\{m \mid 0 = V_0 \subset V_1 \subset \cdots \subset V_{m-1} \subset V_m = V, V_i \not\in V_{i+1} \text{ has } \}$$

9. 设

$$A = \left(\begin{array}{rrr} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{array}\right),$$

求 A 的四个相关子空间.

- 10. 设 V 是所有 n 阶实数矩阵按矩阵的加法和数乘作成的实线性空间, U 是 V 中所有迹为零的矩阵的集合. 证明 U 是 V 的子空间, 并求 U 的维数和一个补空间.
 - 11. 设 $A \in n$ 阶方阵. 证明
- (1) A 可以唯一地表示成一个对称矩阵和一个反对称矩阵的和. 试用子空间的直和分解理论解释这一结果:
- (2) A 可以唯一地表示成一个 Hermite 矩阵和一个反 Hermite 矩阵的和. 试用子空间的直和分解理论解释这一结果:
 - (3)解释定义域为 ℝ 的任意实函数可以唯一地表示成一个偶函数与一个奇函数的和:
 - (4)请举一个类似于上面 (1)-(3) 的例子并解释之.

12. 证明数域 \mathbb{F} 上的一元多项式的欧几里德带余除法: 设 f(x), g(x) 是任意两个多项式, 其中 $g(x) \neq 0$, 则存在唯一一对多项式 g(x) 与 f(x) 使得

$$f(x) = g(x)q(x) + r(x)$$

其中 r(x) = 0 或 $\partial r(x) < \partial g(x)$. 试用线性空间的理论解释这一结果.

- 13. (1) 设 f 是定义在实数域上的加性函数. 证明: 如果 f 是连续的,则它一定是齐次的,从而是线性变换:
 - (2) 试将(1) 中的结论推广到一般情形.
 - 14. 若 $\sigma(\alpha_1)$, $\sigma(\alpha_2)$, ..., $\sigma(\alpha_s)$ 线性相关, 证明或否定 α_1 , α_2 , ..., α_s 也线性相关.
 - 15.(1) 设 $\sigma \in \text{Hom}(U, V)$ 是可逆线性变换, 证明其逆唯一, 且若 $\tau = \sigma^{-1}$, 则 $\sigma = \tau^{-1}$:
 - (2) 计算2维实线性空间 € 的所有自同构.
- 16. 设 $\sigma \in \text{End}V$ 是两个不同的线性变换. 设 σ 在某组基下的矩阵为 A. 证明或否定: 存在 $\tau \in \text{End}V$, $\tau \neq \sigma$, 使得 τ 在另一组基下的矩阵也是 A.
 - 17. 习题 1 与 2 中的实线性空间各是几维的? 试分别建立它们与某 \mathbb{R}^n 之间的同构变换.
 - 18. 设 U 与 V 均是有限维线性空间, 证明 $\dim_{\mathbb{F}} \operatorname{Hom}(U,V) = (\dim_{\mathbb{F}} U)(\dim_{\mathbb{F}} V)$.
- 19. 分别求导数运算 $\partial: f(x) \mapsto f'(x)$ 在标准基 $1, x, x^2, \dots, x^{n-1}$ 与基 $1, (x-a), (x-a)^2, \dots, (x-a)^{n-1}$ 下的矩阵. 问 ∂ 的行列式与迹是多少? 解释之.
- 20. 设 V 是数域 \mathbb{F} 上的 n 阶矩阵全体, σ 是将 V 中任意元素的严格下三角部分变为 0 的映射. 判断 σ 是否为 V 的线性变换. 若是, 求其核与像; 并任选 V 的一组基, 求 σ 在该组基下的矩阵.
- 21. (1) 设 $\sigma, \tau \in \text{End}V$ 分别是线性空间 V 的同构变换和幂零变换, 证明 $\sigma + \tau$ 是 V 的同构变换;
 - (2) 设 A, D 是可逆矩阵, B, C 是幂零矩阵, 证明分块矩阵 $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ 可逆.
- 22. 设 V 是数域 \mathbb{F} 上的 n 阶矩阵全体, A 是 V 中一个固定元素, P 是 V 中一个固定的可逆矩阵, σ 是左乘 A 的映射, τ 是左乘 P 逆右乘 P 的映射. 判断 σ 与 τ 是否为 V 的线性变换. 若是, 求其核与像. 并任选 V 的一组基, 计算 σ 与 τ 在该组基下的矩阵.

 - (1)σ 的核与像空间的基与维数;
 - $(2)\sigma$ 的行列式与迹.
- 24. 设 V 是 n 维内积空间, U 是 V 的子空间. 令 $W = \{\alpha \in V \mid (\alpha, \beta) = 0, \forall \beta \in U\}$. 证 明 W 是 V 的子空间且 $V = U \oplus W$.
 - 25. 设 $V = \mathbb{R}[x]_n$, 其上的内积为

$$(f(x), g(x)) = \int_0^1 f(x)g(x) dx.$$

设 $U = \{f(x) \in V \mid f(0) = 0\}.$

- (1) 证明 $U \in V$ 的一个 n-1 维子空间, 并求 U 的一组基;
- (2) 当 n=3 时, 求 U 的正交补 U^{\perp} .

- 26. 在欧氏空间 \mathbb{R}^n 中求一个超平面 W, 使得向量 $e_1 + e_2$ 在 W 中的最佳近似向量为 e_2 .
- 37. 证明: 函数 f(x) 的 Fourier 级数中的系数 a_n , b_n (n > 0) 恰好是 f(x) 与诸基向量 $\cos nx$, $\sin nx$ 的内积.
- 28. 试任意构造维数大于 5 的一个线性空间 V 以及 V 的一个线性映射 σ , 使得 σ 的核的维数等于 5. 进一步, 试将 V 改造成内积空间, 求 $\mathrm{Im}\sigma$ 的正交补空间. 再构造一个线性变换 τ , 使得 $\mathrm{Ker}\tau=\mathrm{Im}\sigma$, $\mathrm{Im}\tau=\mathrm{Ker}\sigma$.
 - 29. 设 α_0 是欧氏空间 V 中的单位向量, $\sigma(\alpha) = \alpha 2(\alpha, \alpha_0)\alpha_0, \alpha \in V$. 证明
 - $(1)\sigma$ 是线性变换;
 - $(2)\sigma$ 是正交变换.
- 30. 证明: 欧氏空间 V 的线性变换 σ 是反对称变换 (即 $(\sigma(\alpha), \beta) = -(\alpha, \sigma(\beta))$) $\iff \sigma$ 在 V 的标准正交基下的矩阵是反对称矩阵.
 - 31. 设 σ 是实平面 \mathbb{R}^2 上的线性变换, 其关于标准基的矩阵为

$$P = \begin{pmatrix} c & s \\ s & -c \end{pmatrix}$$

其中 $c^2 + s^2 = 1$. 证明 σ 是反射变换, 并计算其对称轴.

- 32. 设 $\sigma \in \text{End}\mathbb{R}^2$. 记单位正方形 $S = \{(x,y): 0 \leq x,y \leq 1\}$ 在 σ 下的图形 为 $G = \sigma(S) = \{\sigma(x,y): (x,y) \in S\}$. 回答下列问题:
 - (1) 列出 G 所有可能的形状;
 - (2) 如果 G 仍为正方形, σ 应满足什么条件?
 - (3) 如果 σ 可逆, 则 G 是什么形状?
- 33. (1) 设 $\sigma \in \text{End}\mathbb{R}^2$. 设 C 是一个二次曲线 (即抛物线, 椭圆或双曲线). 计算 $\sigma(C)$ 所有可能的形状 (可设 C 的方程均为标准方程);
- (2) 设 P 是一个平面 n 次代数曲线 (即 C 的方程是 n 次多项式), 计算 $\sigma(Q)$ 所有可能的形状:
 - (3) 分别对指数函数, 对数函数, 三角函数研究其曲线在 σ 下的图像;
- (4) 设 $\sigma \in \operatorname{End}\mathbb{R}^3$. 设 Q 是一个二次曲面. 计算 $\sigma(Q)$ 所有可能的形状 (可设 Q 的方程均为标准方程).
- 34. (1) 如何在酉空间中定义 Hermite 矩阵对应的 Hermite 变换? 导出 Hermite 变换的一个判断准则;
 - (2) 在酉空间中定义伴随变换与自伴变换, 并导出伴随变换的基本性质.
 - 35. 设 A, B 均为 n 阶矩阵. 设 σ 是 $\mathbb{F}^{n \times n}$ 上的一个线性变换, 其中

$$\sigma:\ X\mapsto\,\sigma(X)=AXB^T.$$

证明 σ 关于标准基 $E_{11}, \dots, E_{1n}, E_{21}, \dots, E_{2n}, E_{n1}, \dots, E_{nn}$ 的矩阵是 $B \otimes A$.

36. (复数,位似与旋转矩阵)设 σ 是 \mathbb{C} 到自身的线性变换,其定义为

$$\sigma: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto A \begin{pmatrix} x \\ y \end{pmatrix},$$

其中

$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

将 $(x,y)^T$ 记为普通复数 x+yi, 证明 $\sigma((x,y)^T)=(a+b\mathrm{i})(x+y\mathrm{i})$. 请解释之.

37. 设 $\sigma: X \mapsto AX + XB$ 是 $M_n(\mathbb{C})$ 的线性变换. 证明 σ 是同构 \iff A 和 -B 没有相同的特征值.

38. 设 $A \in \mathbb{F}^{m \times n}$. 对任意 $x \in \mathbb{F}^m, y \in \mathbb{F}^m$, 定义

$$f(x,y) = x^T A y.$$

则 f(x,y) 称为 \mathbb{F} 上的一个 $m \times n$ 维的双线性函数, A 称为该双线性函数的矩阵. \mathbb{F} 上的 $m \times n$ 维双线性函数的全体记为 $\mathcal{B}(m,n)$.

- (1)证明 $\mathcal{B}(m,n)$ 按照普通加法与数乘运算构成 \mathbb{F} 上的线性空间;(对照第一章第五节思考题 6)
 - (2) 计算 $\mathcal{B}(m,n)$ 的维数与一组基.
- 39. 设 U 与 W 是线性空间 V 的两个子空间, $\alpha, \beta \in V$. 记 $\alpha + U = \{x \in V | x = \alpha + u, \exists u \in U\}$. 证明:
 - $(1) \alpha + U = P_{U^{\perp}}(\alpha) + U;$
 - (2) $(\alpha + U) + (\beta + W) = (\alpha + \beta) + (U + W);$
 - $(3) (\alpha + U) \cap (\beta + W) \neq \emptyset \iff \alpha \beta \in U + W.$

第三章"内积空间、等距变换"补充习题

- 1. 设 $a_i, 1 \le i \le n$ 是正实数, x_i, y_i 是任意实数, 证明或否定 $(\sum_{i=1}^n a_i x_i y_i)^2 \le (\sum_{i=1}^n a_i x_i^2)(\sum_{i=1}^n a_i y_i^2)$.
- 2. 复数域 \mathbb{C} 是实数域 \mathbb{R} 上的 2 维线性空间. 是否存在 \mathbb{C} 上的一个内积, 使得 i与 1+i 成为 \mathbb{C} 的一组标准正交基, 为什么?
- 3. 试构造实线性空间 \mathbb{R}^3 上的一个内积, 使得向量组 $e_1, e_1 + e_2, e_1 + e_2 + e + 3$ 是一组标准 正交基. 问此时 e_2 与 e_3 的长度各是多少? 它们的夹角又是多少?
 - 4. 试尽可能一般性地讨论上面的问题 2 与 3.
- 5. 设 $V = \{$ 所有正实数 $\}$, 由第二章习题 1(教材第 45 页) 知V 在"加法" $x \oplus y = xy$ 与"数乘" $k \bullet x = x^k$ 下作成一个实线性空间. 试构造V 上的内积使其成为欧氏空间. 证明你构造的欧氏空间与 \mathbb{R}^1 同构.
- 6. 称两个欧氏空间 U 与 V 同构, 如果存在同构线性变换 $\sigma \in Hom(U,V)$ 使得 $(\sigma(\alpha), \sigma(\beta)) = (\alpha, \beta)$. 试证明两个欧氏空间同构当且仅当它们有相同的维数, 即两个欧氏空间同构当且仅当它们作为实线性空间同构. 因此有限维实线性空间上的任何两个内积都是"一样"的.
- 7. 设 $\alpha = (1, -2, -4)^T \in \mathbb{R}^3$. 试求 α 在子空间 $W = \{x = (x_1, x_2, x_3)^T \in \mathbb{R}^3 | x_1 + x_2 3x_3 = 0$ 中的最佳近似.
 - 8. 设z = f(x,y) 是 \mathbb{R}^3 中的一个曲面. 现有如下观测值:

$$f(1,1) = -1.1$$
, $f(2,1) = 0.2$, $f(3,1) = 0.9$, $f(1,2) = 0.9$, $f(2,2) = 2.0$, $f(3,2) = 3.1$.

试求 z = f(x, y) 的平面最小二乘近似 (即求形如 z = ax + by + c 的近似).(使用 Matlab 较快.)

9. 求方程组 Ax = b的最小二乘解, 其中

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 5 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}.$$

- 10. 正交变换保持内积与长度. 以"×"记 \mathbb{R}^3 中两个向量的外积. 试问 \mathbb{R}^3 上的正交变换保持外积吗? 即是否有 $\sigma(\alpha \times \beta) = \sigma(\alpha) \times \sigma(\beta)$?
 - 11. 设V是次数小于3的实多项式作成的实线性空间, 定义其上的内积为

$$(f(x), g(x)) = \int_0^1 f(x)g(x)dx.$$

试构造 V到 \mathbb{R}^3 的一个保持内积的线性变换.

12. 证明欧氏空间中的平行四边形法则:

$$(u+v)^2 + (u-v)^2 = 2(u^2 + v^2).$$

- 13. 验证: 若 $(\alpha, \beta)_1$ 与 $(\alpha, \beta)_2$ 是欧氏空间 V 的两个不同的内积, 则 $(\alpha, \beta) = (\alpha, \beta)_1 + (\alpha, \beta)_2$ 也是 V 的一个内积. 试创造一种新办法再构造 V 的一种内积.
 - 14. 对 $x = (x_1, x_2)^T$, $y = (y_1, y_2)^T$, 规定

$$(x,y) = ax_1y_1 + bx_1y_2 + bx_2y_1 + cx_2y_2.$$

证明 (x,y) 是 \mathbb{R}^2 的内积 $\iff a > 0, ac > b^2$.

15. 设 $V = \{a\cos t + b\sin t, \ \mbox{其中}\, a, b \mbox{为任意实数}\}$ 是实二维线性空间. 对任意 $f,g \in V,$ 定义

$$(f,g) = f(0)g(0) + f(\frac{\pi}{2})g(\frac{\pi}{2}).$$

证明 (f,g) 是 V 上的内积, 并求 $h(t) = 3\cos(t+7) + 4\sin(t+9)$ 的长度.

16. 设欧氏空间 $\mathbb{R}[x]_2$ 中的内积为

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx.$$

- (1) 求基 $1, t, t^2$ 的度量矩阵;
- (2) 用矩阵乘法形式计算 $f(x) = 1 x + x^2$ 与 $g(x) = 1 4x 5x^2$ 的内积.
- 17. 设 $a_i, 1 \le i \le n$ 是正实数, x_i, y_i 是任意实数, 证明或否定不等式

$$\left(\sum_{i=1}^{n} a_i x_i y_i\right)^2 \le \left(\sum_{i=1}^{n} a_i x_i^2\right) \left(\sum_{i=1}^{n} a_i y_i^2\right).$$

- 18. (1) 复数域 \mathbb{C} 是实数域 \mathbb{R} 上的 2 维线性空间. 是否存在 \mathbb{C} 上的一个内积, 使得 i 与 1 + i 成为 \mathbb{C} 的一组标准正交基. 为什么?
- (2) 试构造实线性空间 \mathbb{R}^3 上的一个内积, 使得向量组 $e_1, e_1 + e_2, e_1 + e_2 + e_3$ 是一组标准 正交基. 问此时 e_2 与 e_3 的长度各是多少? 它们的夹角又是多少?
 - 19. 试尽可能一般性地讨论习题 18 中的问题.
- 20. 在欧氏空间 \mathbb{R}^4 中,求三个向量 $\alpha_1 = (1,0,1,1)^T$, $\alpha_2 = (2,1,0,-3)^T$ 和 $\alpha_3 = (1,-1,1,-1)^T$ 所生成的子空间的一个标准正交基.
 - 21. 定义任意内积空间 V 中两个向量 α 与 β 的距离为

$$d(\alpha, \beta) = \|\alpha - \beta\|.$$

证明如上定义的函数 $d(\alpha, \beta)$ 确实定义了 V 上一个距离, 即满足下列三个条件:

- (d1) 对称性: $d(\alpha, \beta) = d(\beta, \alpha)$;
- (d2) 非负性: $d(\alpha, \beta) \geq 0$, 且等号成立 $\iff \alpha = \beta$;
- (d3) 三角不等式: $d(\alpha, \beta) + d(\beta, \gamma) \ge d(\alpha, \gamma)$.
- 22. 设 2 维欧氏空间 V 的一组基为 α_1, α_2 , 其度量矩阵为

$$A = \left(\begin{array}{cc} 5 & 4 \\ 4 & 5 \end{array}\right).$$

试求 V 的一个标准正交基到 α_1, α_2 的过渡矩阵.

- 23. 设 n 维内积空间 V 的一个基为 $\alpha_1,\alpha_2,\cdots,\alpha_n$, 该基的度量矩阵为 A. 设 $\alpha,\beta\in V$ 在该基下的坐标分别为 x 与 y.
 - (1) 证明 $(\alpha, \beta) = x^T A \bar{y}$. 特别, 当 V 为欧氏空间时, $(\alpha, \beta) = x^T A y$.
 - (2)证明(1)中内积的矩阵乘法形式与选取的基无关.

- 24. 设 $V = M_n(\mathbb{R})$ 或 $M_n(\mathbb{C})$. 设 $A = (a_{ij}), B = (b_{ij}) \in V$.
- (1)证明 $(A, B) = tr(AB^*)$ 是 V 的一个内积;
- (2) 按 (1) 的内积, 矩阵 A 的长度是多少? 哪些是单位向量?
- (3) 证明或否定: 基本矩阵 E_{ij} , $1 \le i, j \le n$ 是 V 的一组标准正交基;
- (4) 求 $M_2(\mathbb{R})$ 的一组由可逆矩阵构成的标准正交基.
- 25. 设线性空间 $V = \mathbb{R}^2$ 是欧氏空间 (未必是通常的欧氏空间). 设 $\alpha_1 = (1,1)^T$, $\alpha_2 = (1,-1)^T$ 与 $\beta_1 = (0,2)^T$, $\beta_2 = (6,12)^T$ 是 V 的两组基. 设诸 α_i 与 β_k 的内积分别为

$$(\alpha_1, \beta_1) = 1, (\alpha_1, \beta_2) = 15, (\alpha_2, \beta_1) = -1, (\alpha_2, \beta_2) = 3.$$

- (1) 求两组基的度量矩阵;
- (2) 求 V 的一个标准正交基.
- 26. 设 n 维欧氏空间 V 的一组基为 $\alpha_1, \alpha_2, \cdots, \alpha_n$. 证明:存在正定矩阵 C,使得由

$$(\beta_1, \beta_2, \cdots, \beta_n) = (\alpha_1, \alpha_2, \cdots, \alpha_n)C$$

确定的向量组 $\beta_1, \beta_2, \cdots, \beta_n$ 是 V 的一个标准正交基.

- 27. 设 A 是**反对称**实矩阵 (即 $A^{T} = -A$), 证明:
- (1) A 的特征值为0或纯虚数;
- (2) 设 $\alpha + \beta i$ 是 A 的属于一个非零特征值的特征向量, 其中 α, β 均为实向量, 则 α 与 β 正交.
 - 28. 设 A 是 Hermite 矩阵. 如果对任意向量 x 均有 $x^*Ax = 0$, 则 A = 0.

29. 设
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
. 定义 \mathbb{R}^2 上的二元 (向量) 函数 $< x, y >$ 如下:

$$\langle x, y \rangle = x^T A y.$$

此二元函数与普通内积的差别是什么?以此二元函数为基础,建立相应的长度,角度等概念,研究其中的正交与平行的定理.

第四章"特征值与特征向量"补充习题

1. 计算 A^n , 其中A分别是

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix}.$$

并由第一个计算结果推出 Fibonacci 数列的通项公式.

- 2. 设 4 阶矩阵 A 的特征值为 5, 3 和 -2, 并且已知对应 λ 的特征子空间是 2 维的, 能否判断 A 是可对角化的? 为什么?
- 3. 设 5 阶矩阵 A 有 2 个特征值, 且相应的两个特征子空间分别是 2 维与 3 维的, 能否判断 A 是可对角化的? 为什么?
 - 4. 对任意 n 阶方阵, 试尽可能一般性地讨论上面的问题 2 与 3.
 - 5. 证明, \overline{H}_n 所矩阵 \overline{H}_n 个线性无关的特征向量, 则 \overline{H}_n 也有 \overline{H}_n 个线性无关的特征向量.
- 6. 设 $V = F[x]_3$ 是次数小于 3 的多项式全体作成的线性空间, 问求导运算作为线性变换是否可以对角化?
 - 7. 证明 Hermite 矩阵的特征值均为实数, 特别, 实对称矩阵的特征值均为实数.
 - 8. 证明, Hermite 矩阵可以酉对角化, 而实对称矩阵可以正交对角化.
 - 9. 判断矩阵 A 是否可以对角化, 其中

$$A = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}.$$

10. 设 A 是 n 阶实对称矩阵, 证明存在 \mathbb{R}^n 的一组标准正交基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 和实数 $\alpha_1, \alpha_2, \cdots, \alpha_n$, 使得

$$A = a_1 \alpha_1 \alpha_1^T + a_2 \alpha_2 \alpha_2^T + \dots + a_n \alpha_n \alpha_n^T.$$

- 11. 设 $\alpha = (a_1, \dots, a_n)^T$, $\beta = (b_1, \dots, b_n)^T$, x 为任意常数, $A = xI_n + \alpha\beta^T$.
- (1) 直接计算行列式 |A|;
- (2) 利用 Sylvester 降幂公式计算行列式 |A|;
- (3) 利用特征值计算行列式 |A|.
- 12. 设 A 的特征值为 0, 1, 对应的特征向量为 $(1,2)^T$, $(2,-1)^T$. 判断 A 是否为对称矩阵 并求 A.
 - 13. 求下列矩阵的最小多项式并指出其中可以对角化的矩阵:

$$(1) \left(\begin{array}{ccc} 3 & 2 \\ 4 & 5 \end{array}\right); (2) \left(\begin{array}{ccc} 2 & 3 & 2 \\ 0 & 5 & 4 \\ 0 & -2 & -1 \end{array}\right); (3) \left(\begin{array}{ccc} 4 & 6 & 0 \\ -3 & -5 & 0 \\ 3 & 6 & 1 \end{array}\right); (4) \left(\begin{array}{ccc} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & 6 & 1 \end{array}\right).$$

- 14. 试构造两个同阶矩阵, 使得它们
- (1) 具有相同的特征多项式与不同的最小多项式;
- (2) 具有相同的最小多项式与不同的特征多项式;
- (3) 证明矩阵的最小多项式存在且唯一.
- 15. 设 n 阶矩阵 A 的特征值均为实数. 证明:
- (1) A 的特征多项式的 n-k 次项的系数等于 A 的所有 k 阶主子式之和;
- (2) 若 A 的所有一阶主子式之和与所有二阶主子式之和都等于零,则 A 是幂零矩阵.
- 16. 设 n 阶矩阵 A 的主对角元全是 1, 且其特征值均为非负数, 证明 |A| < 1.

- 17. 设 AB = BA, 证明 A 与 B 有公共的特征向量. 该结论的逆命题成立吗?
- 19. 设 A是实三对角矩阵 (即 $a_{ij}=0$ 如果|i-j|>1), 且对所有 $i=1,2,\cdots,n-1$ 有 $a_{i,i+1}a_{i+1,i}>0$. 证明 A的特征值均为实数.
 - 19. 由盖尔园定理证明严格对角占优矩阵是可逆矩阵.
 - 20. 证明谱半径估计的一般形式 (请自行写成另一种等价形式):

$$\rho(A) \le \min_{p_1, p_2, \dots, p_n > 0} \max_{1 \le i \le n} \frac{1}{p} \sum_{j=1}^n p_j |a_{ij}|.$$

第五章 "λ-矩阵与Jordan标准形"补充习题

1. 设 $\alpha \neq \beta$, 试求矩阵

$$\begin{pmatrix} \alpha & a & b & c \\ 0 & \alpha & d & e \\ 0 & 0 & \beta & x \\ 0 & 0 & 0 & \beta \end{pmatrix}$$

的相似分块对角矩阵.

2. 证明实数域上的 Schur 三角化定理: 设 $A \in M_n(\mathbb{R})$, 则存在正交矩阵 Q 使得

$$Q^{T}AQ = \begin{pmatrix} A_{1} & * & \\ & A_{2} & \\ & & \ddots & \\ & 0 & & A_{k} \end{pmatrix}$$

其中每个 A_i 或者是 1 阶实矩阵或者是形如 $\begin{pmatrix} a_i & b_i \\ -b_i & a_i \end{pmatrix}$ 的 2 阶实矩阵 $(b_i \neq 0)$.

(提示: 首先, 如果 λ 是 A 的非实数特征值, $Ax = \lambda x$, 则 $A\bar{x} = \bar{\lambda}\bar{x}$, 由此可知 x 与 \bar{x} 线性 无关, 进而 Rex 与 Imx 线性无关, 将其正交化后构造正交矩阵, 再利用归纳法.)

- 3. 设 a 是复常数, $V = \{e^{ax} f(x) | f(x) \in \mathbb{C}_n[x]\}$ 是 n 维复线性空间.
- (1) 证明求导运算 $\partial: \alpha \mapsto \frac{d\alpha}{dx}$ 是 V 上的线性变换;
- (2) 求 ∂ 的 Jordan 标准形.
- 4. 设 σ 是 \mathbb{R}^3 的线性变换, 设 $x = (x_1, x_2, x_3)^T$, $\sigma(x) = (-2x_2 2x_3, -2x_1 + 3x_2 x_3, -2x_1 x_2 + 3x_3)^T$. 试求 \mathbb{R}^3 的一个基, 使得 σ 在该基下的矩阵尽可能简单.
- 5. 已知 $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$,线性空间 $V = \{X = (x_{ij}) \in M_2(\mathbb{R}) \mid \text{tr } X = 0\}$ 的线性变换 σ 为 $\sigma(X) = B^T X X^T B$, $X \in V$. 试求 V 的一个基,使得 σ 在该基下的矩阵尽可能简单.
- 6. 设 A 的特征值为 0, 1, 对应的特征向量为 $(1,2)^T$, $(2,-1)^T$. 判断 A 是否为对称矩阵并求 A.
 - 7. 利用矩阵的 Jordan 标准形定理证明 **Fitting**⁶ **引理**(对照第二章公式 (??)):
 - 设 V 为 n 维线性空间, $\sigma \in \text{End}V$, 则 $V = \text{Im}(\sigma^n) \oplus \text{Ker}(\sigma^n)$.
 - 8. 两个矩阵的和与积的 Jordan 标准形是否等于它们的 Jordan 标准形的和与积?

下面的 9-12 题展示了如何利用广义特征子空间来得到矩阵的 Jordan 标准形, 其中设 $|\lambda I - A| = \prod_{i=1}^{s} (\lambda - \lambda_i)^{n_i}$ 是 n 阶矩阵 A 的特征多项式, $\sigma(A) = \{\lambda_1, \lambda_2, \cdots, \lambda_s\}$, g_i 为 λ_i 的几何重数.

- 9. 证明广义特征子空间 $E_{\lambda_i} = \{x \in \mathbb{C}^n \mid (A \lambda I)^{n_i} x = 0\}.$
- 10. 证明 $\dim_{\mathbb{C}} E_{\lambda_i} = n_i$, 从而 $\mathbb{C}^n = \sum_{\lambda \in \sigma(A)} \oplus E_{\lambda}$.(此即"谱定理".)

⁶H. Fitting(1906-1938), 德国数学家.

- 11. 证明存在 $\alpha_j \in E_{\lambda_i}$, $1 \leq j \leq g_i$, 使得 $\bigcup_{1 \leq j \leq g_i} \{\alpha_j, (A \lambda_i I)\alpha_j, \cdots, (A \lambda_i I)^{m_j 1}\alpha_j\}$ 构成 E_{λ_i} 的一组基 (称为由诸向量 α_j 生成的循环基), 从而 E_{λ_i} 是 A 的不变子空间.
- 12. 由每个广义特征子空间的循环基构成的 \mathbb{C}^n 的基称为Jordan基. 证明 A 在 \mathbb{C}^n 的Jordan基下的矩阵是其Jordan 标准形 (即将 A 看成是线性变换 $x \mapsto Ax$).
 - 13. 求下列矩阵的 Jordan 标准形:

14. 求下列矩阵的 Jordan 标准形, 并求变换矩阵 P 使 $P^{-1}AP = J$:

$$(1) \begin{pmatrix} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7 \end{pmatrix}; (2) \begin{pmatrix} 3 & 2 & 1 \\ 0 & 4 & 0 \\ -1 & 2 & 5 \end{pmatrix}; (3) \begin{pmatrix} 2 & 2 & 2 & 1 \\ -1 & -1 & -3 & -2 \\ 1 & 2 & 5 & 3 \\ -1 & -2 & -4 & -2 \end{pmatrix}.$$

15. 试判断下面 4 个矩阵, 哪些是相似的:

$$A = \begin{pmatrix} -3 & 3 & -2 \\ -7 & 6 & -3 \\ 1 & -1 & 2 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 & -1 \\ -4 & 4 & -2 \\ -2 & 1 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 0 & -1 & -1 \\ -3 & -1 & -2 \\ 7 & 5 & 6 \end{pmatrix}, \ D = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

- 16. (1) 证明不等于零的幂零矩阵一定不相似于对角矩阵;
- (2) 设 A 具有唯一特征值但 A 不是对角矩阵. 证明 A 一定不相似于对角矩阵.
- 17. 证明任何复矩阵 A 可唯一地分解为 A = D + N, 其中 D 为可对角化矩阵, N 是幂零矩阵, 且 DN = ND.(此称为矩阵的 Jordan-Chevalley 7 分解.) 以此解释上题的结论.

18. 设
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$
.

- (1) 求 A 的特征值及 A^{100} ;
- (2) A 的 Jordan-Chevalley 分解是什么?

19. 设
$$p(\lambda) = (-1)^n [\lambda^n - a_{n-1}\lambda^{n-1} - a_{n-2}\lambda^{n-2} - \dots - a_1\lambda - a_0]$$
. 称矩阵

$$C = \begin{pmatrix} a_{n-1} & a_{n-2} & \cdots & a_1 & a_0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

为多项式 $p(\lambda)$ 的友矩阵. 设 n 阶矩阵 A 的特征多项式为 $(-1)^n p(\lambda)$.

- (1) 计算 C 的特征多项式:
- (2) 研究 C 与 A 是否相似.

⁷C.Chevalley(1909-1984), 著名法国数学家, 生于南非, 拥有美法两国国籍, 对当代数学的众多分支有重要贡献.

- 20. 设 V 是由函数 e^x , xe^x , x^2e^x , e^{2x} 的线性组合生成的线性空间. 定义 V 的一个线性算子如下: T(f) = f'. 求 T 的 Jordan 标准形及 Jordan 基.
 - 21. 如果矩阵 A 的特征多项式和最小多项式相同, 问 A 的 Jordan 标准形有何特点?
- 22. (酉矩阵与离散 Fourier 变换) 设 σ 是 \mathbb{C}^n 的循环位移变换, 即 $\sigma((x_1, x_2, \dots, x_n)^T) = (x_2, x_3, \dots, x_n, x_1)^T$. 证明:
 - (1) σ 的特征值恰好为方程 $\lambda^n=1$ 的所有根 $\lambda_j=e^{\frac{2\pi \mathrm{i}}{n}j}, 1\leq j\leq n$;
 - $(2)\sigma$ 的属于特征值 λ_j 的特征向量为 $\alpha_j = (\lambda_j, \lambda_j^2, \dots, \lambda_j^n)^T$, 且 $\|\alpha_j\| = \sqrt{n}$;
 - $(3)\alpha_1, \cdots, \alpha_n$ 是 \mathbb{C}^n 的一组正交基;
- (4) 任何向量 $x=(x_1,x_2,\cdots,x_n)^T$ 均是 σ 的特征向量 α_j 的线性组合 $x=\sum\limits_{j=1}^n a_j\alpha_j,$ 即 $x_k=\sum\limits_{j=1}^n a_je^{\frac{2\pi i}{n}j};$
 - (5) 上面的系数 $a_j = (x, \alpha_j)/n = \frac{1}{n} \sum_{k=1}^n x_k e^{-\frac{2\pi i}{n} jk};$
 - (6) 研究 σ 与第一章习题 7中的 Fourier 矩阵的关系, 并由此再求该矩阵的逆.
- 24. 证明 **Hadamard**⁸ 不等式:对任意 n 阶矩阵 $A = (a_{ij})$ 有 $|A| \leq \prod_{i=1}^{n} (\sum_{i=1}^{n} |a_{ij}|^2)^{1/2}$. 并由此证明:
 - (1) 若 A 是正定矩阵, 则 $|A| \leq \prod_{i=1}^{n} a_{ii}$;
 - (2) 设 C 是非负实数, 若 $|a_{ij}| \le C, 1 \le i, j \le n, 则 |A| \le C^n n^{n/2}$;
- (3) 设 $a_{ij}=\pm 1, 1\leq i, j\leq n$, 则由 (2) 可知 $|A|\leq n^{n/2}$. 如果等号成立, 则称 A 是一个 **Hadamard 矩阵**. 证明 A 是 **Hadamard 矩阵** $\iff A^TA=nI_n \iff A$ 的列两两正交.
- 25. 设数列 $a_0=0, a_1=1, a_2, \cdots, a_n, \cdots$ 满足条件 $a_{n+1}=xa_{n-1}+a_n, n\geq 1$, 试求 a_n 的通项公式, 其中 x 为实参数. (当 x=1 时, 此数列即为 **Fibonacci 数列**.)
- 26. 设 A 是 n 阶矩阵, 称满足条件 $y^TA=\lambda y^T$ 的向量 y 为 A 的属于特征值 λ 的左特征向量. 证明: A 的相应于特征值 λ 的左特征向量与相应于特征值 μ 的特征向量正交 $(\lambda\neq\mu)$.
- 27. (无限维线性空间的线性变换的特征值与特征向量) 无限次可导的实函数全体构成一个无限维实线性空间, 记为 C^{∞} . 定义 C^{∞} 上的线性变换 $\partial = \frac{d}{dt}$:

$$\partial: f(x) \mapsto f'(x).$$

试求 ∂ 的谱 $\sigma(\partial)$ 与特征向量. 比较你的结论与有限维线性空间的相应结论.

28. 设 A 是非负矩阵, 证明方程 $(I - A)P = \gamma$ 对任何非负向量 γ 总有正向量解 $P \iff \rho(A) < 1.$ (提示: 如果 $(I - A)^{-1} \ge 0$, 则 $\rho(A) < 1.$)

 $^{^8}$ J.Hadamard(1865-1963), 著名法国数学家, 对数学的诸多分支有重要贡献, 组合学中有著名的 **Hadamard 猜想**: 对每个正整数 k, 均存在 4k 阶的 Hadamard 矩阵.

⁹Leonardo Pisano 或 Leonardo Bonacci(1170-1250), 意大利数学家, 被称为中世纪最具天赋的西方数学家.

第六章"特殊矩阵"补充习题

1. 判断下列矩阵能否酉对角化, 如能, 则求一个酉矩阵 U, 使 U^*AU 为对角形:

$$(1) \ A = \begin{pmatrix} -1 & \mathbf{i} & 0 \\ -\mathbf{i} & 0 & -\mathbf{i} \\ 0 & \mathbf{i} & -1 \end{pmatrix}; \ (2) \ A = \begin{pmatrix} 0 & \mathbf{i} & 1 \\ -\mathbf{i} & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \ (3) \ A = \begin{pmatrix} \mathbf{i} & \mathbf{i} & 0 \\ \mathbf{i} & 1 & 0 \\ 0 & \mathbf{i} & \mathbf{i} \end{pmatrix}.$$

- 2. 证明正规矩阵与其共轭转置具有相同的化零空间. 该结论一般地成立吗?
- 3. 证明两个正规矩阵相似的充要条件是特征多项式相同.
- 4. 设 A 是 n 阶正规矩阵, x 是任意复数. 证明
- (1)A xI 也是正规矩阵;
- (2) 对于任何向量 x, 向量 Ax 与 A*x 的长度相同;
- (3)A 的任一特征向量都是 A^* 的特征向量;
- (4)A 的属于不同特征值的特征向量正交.
- 5. 设 A 是正规矩阵, 证明
- (1) A 是 Hermite 矩阵 \iff A 的特征值全为实数;
- (2) A 是酉阵 \iff A 的特征值的模都是 1;
- (3) A 是幂等阵 \iff A 的特征值只能是0与1;
- (4) 若 A 的全部特征值为 λ_1 , λ_2 , ..., λ_n , 则 AA^* 与 A^*A 的全部特征值为 $|\lambda_1|^2$, $|\lambda_2|^2$, ..., $|\lambda_n|^2$. 此结论对非正规矩阵成立吗?
 - 6. 设 A 是正规矩阵, 证明
 - (1) 若 A 是幂等阵, 则 A 是 Hermite 矩阵;
 - (2) 若 $A^3 = A^2$, 则 $A^2 = A$;
 - (3) 若 A 又是 Hermite 阵, 而且也是一个幂幺阵 (即 $A^k = I$), 则 A 是对合阵 (即 $A^2 = I$).
- 7. 证明特征值的极大极小定理: 设 A 是 Hermite 矩阵, 其全部特征值为 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, 则:

$$\lambda_k = \min_{\substack{w_i \in \mathbb{C}^n \\ 1 < i < n-k \\ 1 < i < n-k}} \max_{\substack{0 \neq x \perp w_i \\ 1 < i < n-k \\ 1}} \frac{x^* A x}{x^* x} = \max_{\substack{w_i \in \mathbb{C}^n \\ 1 < i < n-k \\ 1 < i < n-k \\ 1}} \min_{\substack{0 \neq x \perp w_i \\ 1 < i < n-k \\ 1}} \frac{x^* A x}{x^* x}.$$

特别地,

$$\lambda_{\max} = \lambda_n = \max_{x \neq 0, x \in \mathbb{C}^n} \frac{x^* A x}{x^* x} = \max_{x^* x = 1} x^* A x,$$

$$\lambda_{\min} = \lambda_1 = \min_{x \neq 0, x \in \mathbb{C}^n} \frac{x^* A x}{x^* x} = \min_{x^* x = 1} x^* A x.$$

- 8. (1) 计算 2 阶实正规矩阵 $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ 将哪些正方形变为了矩形?
- (2) 证明矩阵 $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ 是非正规矩阵, 说明它不能将任何正方形变为矩形;
- (3) 试给出3阶实正规矩阵的几何意义.
- 9. 设 P, Q 各为 m 阶及 n 阶方阵, 证明: 若 m+n 阶方阵 $A=\begin{pmatrix}P&B\\0&Q\end{pmatrix}$ 是酉矩阵, 则 P, Q 也酉矩阵, 且 B 是零矩阵.

10. 证明 **Sylvester 惯性定律**, 即两个 Hermite 矩阵合同 \iff 它们具有相同的惯性指标, 即相同的正负特征值 (因此 0 特征值) 的个数.

11. 已知正交矩阵
$$A = \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ 1 & 2 & 2 \\ 2 & -2 & 1 \end{pmatrix}$$
 表示一个旋转, 求其旋转轴与旋转角.

12. 若 3×3 矩阵 S 表示一个反射,则存在一个正交矩阵 C,使得 $C^{-1}SC=\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

当
$$S = \frac{1}{9} \begin{pmatrix} 7 & 4 & -4 \\ 4 & 1 & 8 \\ -4 & 8 & 1 \end{pmatrix}$$
 时, 求这样的矩阵 C .

- 13. 设 $A, B \in \mathbb{C}^{m \times n}$. 证明: $A^*A = B^*B \iff$ 存在酉矩阵 U 使得 B = UA.
- 14. 设变换 σ : $\sigma x = x a(x, w)w$, $\forall x \in \mathbb{R}^n$, 其中 w 为长度为 1 的向量, 问 a 取何值时, σ 为正交变换? 如果 w 是任意向量, 你的结论又如何?
 - 15. 证明矩阵 A 可以对角化 \iff 存在 Hermite 正定矩阵 P 使得 $P^{-1}AP$ 是正规矩阵.

16. 设
$$A,B\in\mathbb{C}^{m\times n}$$
. 证明: $x\in N(A)\cap N(B)\Longleftrightarrow \left(egin{array}{c}A\\B\end{array}\right)x=0.$

第七章"矩阵分析初步"补充习题

- 1. 设 $\|\cdot\|$ 是酉空间 \mathbb{C}^n 的向量范数, 证明向量范数的下列基本性质:
- (1) 零向量的范数为零;
- (2) 当 x 是非零向量时: $\left\| \frac{x}{\|x\|} \right\| = 1;$
- (3)||-x|| = ||x||;
- $(4) ||x|| ||y||| \le ||x y||.$
- 2. 证明: 若 $x \in \mathbb{C}^n$, 则
- $(1) \|x\|_2 \le \|x\|_1 \le \sqrt{n} \|x\|_2; \qquad (2) \|x\|_{\infty} \le \|x\|_1 \le n \|x\|_{\infty}; \qquad (3) \|x\|_{\infty} \le \|x\|_2 \le \sqrt{n} \|x\|_{\infty}.$
 - 3.(1) 试构造 \mathbb{R}^2 上的一个向量范数, 使得该范数不是任何 p- 范数;
 - (2) 画出你构造的范数的单位圆;
 - (3) 试对 \mathbb{R}^3 做 (1) 与 (2), 并比较你的单位球与 1- 范数和 ∞- 范数的单位球:
- (4) 证明当 $0 时, <math>l_p$ 范数仍然满足向量范数的前两个条件, 但不满足三角不等式. 在平面上画出 p = 1/2, 3/2 时的单位圆, 并就 p < 1 与 $p \ge 1$ 的一般情形作比较.
 - 4. 证明 Minkowski 不等式

$$\left(\sum_{j=1}^{n} |x_j + y_j|^p\right)^{1/p} \le \left(\sum_{j=1}^{n} |x_j|^p\right)^{1/p} + \left(\sum_{j=1}^{n} |y_j|^p\right)^{1/p}, \quad p \ge 1.$$

5.(1)证明由内积诱导的向量范数满足平行四边形恒等式 或极化恒等式

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

- (2)解释上式的意义;
- (3)证明:如果一个向量范数满足平行四边形恒等式,则该范数一定是由某内积诱导的范数:
 - (4) 由 (3) 的结论判断哪些 l_n 范数是由内积诱导的, 并给出一个由内积诱导的新范数.
 - 6. 设 V = C[0,1] 是闭区间 [0,1] 上全体实连续函数组成的无限维实线性空间. 证明

$$||f||_{\infty} = \max_{0 \le x \le 1} |f(x)|$$

与

$$||f||_1 = \int_0^1 |f(x)| dx$$

均是 V 中的范数. 它们等价吗? 为什么?

- 7. 证明赋范线性空间中的单位球均为凸集, 即若 x,y 属于单位球, 则 $\alpha x + \beta y$ 也属于单位球, 其中 α,β 为正数且 $\alpha+\beta=1$. 解释这种现象.
 - 8. 验证矩阵的极大列和范数与极大行和范数均满足次乘性.
- 9. 设矩阵 A 的 F- 范数等于 a, U 是酉矩阵, 问 AU 与 UA 的 F- 范数各是多少? 请总结你的计算.

- 10. 证明矩阵的 1- 范数, 2- 范数和 ∞- 范数分别是向量的 1- 范数, 2- 范数和 ∞- 范数的诱导范数 (因此与之相容).
- 11. 证明: (1) 矩阵仿照向量的 1- 范数是矩阵范数, 但与向量的 1- 范数不相容, 试求与其相容的向量范数:
 - (2)矩阵仿照向量的 ∞- 范数是向量范数但不是矩阵范数.
 - 12. (1) 证明 $\|A\|_2 = (\rho(A^*A))^{1/2}$ 定义了一个矩阵范数, 称为 A 的**谐范数**;
 - (2) 试求一个与矩阵的谱范数相容的向量范数:
 - (3) 证明若 A 是正规矩阵, 则 A 的谱范数就是其谱半径 $\rho(A)$;
- (4) 设 V 是由全体 Hermite 矩阵构成的复线性空间, 证明谱半径给出 V 上的一个向量范数. 该范数是矩阵范数吗?
- 13. 试构造两种矩阵范数使得一个矩阵 A 的两种范数分别为 2 与 1/3. 能否使所有非零矩阵的两种范数之积等于 1?
 - 14. (1) 证明向量范数的代数性质: 有限种向量范数的任意正线性组合仍是向量范数;
 - (2) 设 $\|\cdot\|_{\alpha}$ 与 $\|\cdot\|_{\beta}$ 是两种向量范数或矩阵范数, p > 0. 判断

$$[(\|\cdot\|_{\alpha})^p + (\|\cdot\|_{\beta})^p]^{1/p}$$

是否为向量范数或矩阵范数?

- (3) 判断矩阵范数是否有与向量范数相同的代数性质 (1)?
- 15. 利用特征值的定义直接证明矩阵 A 的谱半径不超过矩阵 A 的任何一种矩阵范数. 此结论可以换成矩阵的任何一种向量范数吗?
 - 16. 设 T 为正交矩阵, 又 $A \in \mathbb{R}^{n \times n}$. 证明:
 - $(1) |||T|||_2 = 1;$
 - $(2) ||A||_2 = ||TA||_2;$
 - (3) 试解释上面的两个结果.
- 17. 设 A, B 为 n 阶矩阵, 其中 A 可逆而 B 不可逆, 设 $\|\cdot\|$ 是任何一种矩阵范数. 定义 A 的条件数 $Cond(A) = \|A\| \|A^{-1}\|$. 证明: $\|A B\| \ge 1/\|A^{-1}\|$. 解释这个结果.
 - 18. 设 U,V 是任意维实或复赋范线性空间, $\sigma \in \text{Hom}(U,V)$. 证明公式

$$\|\sigma\| = \sup_{0 \neq x \in U} \frac{\|\sigma(x)\|}{\|x\|}$$

定义了线性空间 Hom(U,V) 上的一个与 U 中向量范数相容的向量范数.

19. 设 U,V 是任意赋范线性空间 (不必有限维), $\sigma \in \text{Hom}(U,V)$. 证明: σ 连续 \iff σ 有界.

20.
$$\overset{\sim}{\nabla} A_k = \begin{pmatrix} \frac{1}{k^2} & \frac{k^2 + k}{k^2 + 1} \\ 2 & (1 - \frac{2}{k})^k \end{pmatrix}, \, \overset{\sim}{\nabla} \lim_{k \to \infty} A_k.$$

- 21. 设 $\lim_{k\to\infty} A_k = A$.
- (1) 如果 A_k 均为正定矩阵, 问 A 有何特点?
- (2) 如果 A_k 均为正规矩阵, 问 A 有何特点?
- (3) 如果 A_k 均为可逆矩阵, 问 A 有何特点?

22. 若 $\lim_{n\to\infty} A^n = B$, 则 B 为幂等矩阵.

23. 设
$$A = \begin{pmatrix} 2 & -\frac{1}{2} \\ 2 & 0 \end{pmatrix}$$
, 求 $\sum_{k=0}^{\infty} \frac{A^k}{2^k}$.

24. 设
$$A = \begin{pmatrix} -0.6 & 1 & 0.8 \\ 0 & 0.2 & 0 \\ -0.6 & 1 & 0.8 \end{pmatrix}$$
. 试判断 A 是否幂收敛.

(2) 已知
$$J = \begin{pmatrix} -2 & & & \\ & 1 & 1 & \\ & & 1 & \\ & & & 2 \end{pmatrix}$$
, 求 e^J , $\sin J$, $\cos J$.

26. 对下列方阵 A, 求矩阵函数 e^{At} :

$$(1) A = \begin{pmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{pmatrix}, \quad (2) A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -8 & -12 & -6 \end{pmatrix}, \quad (3) A = \begin{pmatrix} -2 & 1 & 3 \\ 0 & -3 & 0 \\ 0 & 2 & -2 \end{pmatrix}.$$

- 27. 求下列两类矩阵的矩阵函数: $\cos A$, $\sin A$, e^A :
- (1)A 为幂等矩阵;
- (2)A 为对合矩阵 (即 $A^2 = I$).

28. 设函数矩阵
$$A(t) = \begin{pmatrix} \sin t & \cos t & t \\ \frac{\sin t}{t} & e^t & t^2 \\ 1 & 0 & t^3 \end{pmatrix}$$
, 其中 $t \neq 0$. 计算 $\lim_{t \to 0} A(t)$, $\frac{\mathrm{d}}{\mathrm{d}t} A(t)$, $\frac{\mathrm{d}^2}{\mathrm{d}t^2} A(t)$.

29. 设函数矩阵
$$A(t) = \begin{pmatrix} e^{2t} & te^t & t^2 \\ e^{-t} & 2e^{2t} & 0 \\ 3t & 0 & 0 \end{pmatrix}$$
, 计算 $\int_0^1 A(t) dt$ 和 $\frac{d}{dt} \int_0^{t^2} A(s) ds$.

- 30. 证明: (1) 若 A 为实反对称矩阵, 则 e^A 为正交矩阵;
- (2) 若 A 为 Hermite 阵, 则 e^{iA} 为酉矩阵.
- 31. 证明 Lagrange 插值公式并利用线性空间的直和分解理论解释之.
- 32. (1) 设 $J_n(\lambda)$ 是一个 n 阶 Jordan 块, 求 $\sin Jt$, $\cos Jt$;
- (2) 对任意 n 阶矩阵 A, 导出 $\sin At$ 与 $\cos At$ 的一般表达式.

(2) 设
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, 求 e^{At} , $\sin At$, $\cos At$.

34. 设 N 是 n 阶幂零块, 验证 $\frac{\mathrm{d}e^{Nt}}{\mathrm{d}t} = Ne^{Nt}$ 并计算 $\int_0^t e^{Ns} \mathrm{d}s$.

35. (1) 设
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$
, 计算积分 $\int_0^t e^{As} ds$;

- (2) 设 $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, 计算 $e^A \ni e^{At}$; (3) 设 $A^2 = A$, 计算 $e^{At} \ni \int_0^t e^{As} ds$.
- 36. 设 $A^2 A + 2I = 0$, 计算 e^{At} 与 $\int_0^t e^{As} ds$.

第八章"矩阵函数的应用"补充习题

1. 求下列微分方程组的通解:

$$(1) \ x'(t) = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} x(t); \quad (2) \ x'(t) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} x(t).$$

2. 求下列微分方程组 x'(t) = Ax(t) 满足初始条件 x(0) 的解:

$$(1) \ A = \begin{pmatrix} 1 & 12 \\ 3 & 1 \end{pmatrix}, \ x(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \quad (2) \ A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 2 & 0 & 1 \end{pmatrix}, \ x(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

3.(1)求解微分方程组

$$x'(t) = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{pmatrix} x(t) + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^{2t}.$$

(2) 求 x'(t) = Ax(t) + Bu(t) 满足初始条件 x(0) 的解, 其中

$$A = \begin{pmatrix} -6 & 1 & 0 \\ -11 & 0 & 1 \\ -6 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix}, u(t) = 1, x(0) = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

- 4. 求方程 $y''' + 6y'' + 11y' + 6y = e^{-t}$ 满足 y(0) = y'(0) = y''(0) = 0 的解.
- 5.(1) 证明微分方程 $x'(t) = Ax(t) + \gamma e^{at}$ 有形如 $x(t) = \beta e^{at}$ 的解 \iff $(\alpha I A)\beta = \gamma$, 其中 β , γ 都是 n 维向量, $a \in \mathbb{C}$;
 - (2) 解 $x'(t) = Ax(t) + e^{2t}C$, 其中

$$A = \begin{pmatrix} 3 & 1 \\ 2 & 2 \end{pmatrix}, C = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, x(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

- 6. (1) 设定常系统的系统矩阵 A 是对角矩阵, 试给出该系统可控性的一个判断准则;
- (2) 设定常系统的系统矩阵 A 是一个 Jordan 块, 试给出该系统可控性的一个判断准则;
- (3) 设单输入定常系统的系统矩阵 A 是 Frobenius 标准形 (即首一多项式的友矩阵形式), 而其控制矩阵 B 为标准向量 e_n , 证明该系统是可控的. 这样的定常系统称为可控标准形.
 - 7. 根据你在上题中给出的判断准则, 研究下面几个定常系统的可控性.

$$\begin{aligned} &(1)A = \left(\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right), \, B = (1,1)^T; \, (2)A = \left(\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right), \, B = (1,0)^T; \\ &(3)A = \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right), \, B = (c,d)^T; \, (4)A = \left(\begin{array}{cc} a & 1 \\ 0 & a \end{array} \right), \, B = (c,d)^T. \end{aligned}$$

- 8. (1) 设定常系统的系统矩阵 A 是对角矩阵, 试给出该系统可测性的一个判断准则;
- (2) 设定常系统的系统矩阵 A 是一个 Jordan 块, 试给出该系统可测性的一个判断准则;
- (3) 设定常系统的系统矩阵 A 是 Frobenius 标准形的转置矩阵, 而其输出矩阵 C 为标准行向量 e_n^T , 证明该系统是可测的. 这样的定常系统称为可测标准形.

9. 根据你在上题中给出的判断准则, 研究下面几个定常系统的可测性.

$$(1)A = \left(\begin{array}{cc} a & 1 \\ 0 & a \end{array}\right), \ C = (c,d)^T; \ (2)A = \left(\begin{array}{ccc} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{array}\right), \ C = (c,d,f)^T.$$

第九章"矩阵的分解"补充习题

1. 设 A = LU, 其中 L 与 U 分别为下三角矩阵与上三角矩阵, 证明存在单位下三角矩阵 L' 与上三角矩阵 U' 使得 A = L'U'.

2. 证明矩阵
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 不存在三角分解.

3. 读
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ 2 & 1 \end{pmatrix}, b = \begin{pmatrix} 12 \\ 6 \\ 8 \end{pmatrix}.$$

- (1) 求 R(A) 的标准正交基;
- (2) 写出 A 的 QR 分解;
- (3) 求 Ax = b 的最小二乘解;
- (4) 证明 $u_1 = (0,1,0)^T$, $u_2 = (\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})^T$, 也是 R(A) 的标准正交基, 其中 R(A) 为 A 的列空间.
 - 4. 求下列矩阵的 QR 分解:

$$(1) A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}; (2) A = \begin{pmatrix} 2 & 2 & 1 \\ 0 & 2 & 2 \\ 2 & 1 & 2 \end{pmatrix}; (3) A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

- 5. 设 $A, B \in \mathbb{C}^{m \times n}$. 证明矩阵分解引理: $A^*A = B^*B \iff$ 存在酉矩阵 U 使得 B = UA.
- 6. 计算第4题中各矩阵的奇异值分解和相应的四个子空间.
- 7. 设 $A \in \mathbb{C}^{m \times n}$, 证明:

$$\sigma_{\min}(A) = \min\{(x^*A^*Ax)^{1/2}, x^*x = 1\}, \quad \ \sigma_{\max}(A) = \max\{(x^*A^*Ax)^{1/2} : x^*x = 1\}.$$

- 8. 设变换 σ : $\sigma x = x a(x, w)w$, $\forall x \in \mathbb{R}^n$, 其中 w 为长度为1的向量, 问 a 取何值时, σ 为正交变换? 如果 w 是任意向量, 你的结论又如何?
- 9. 设 $A \in \mathbb{C}^{m \times n}$ 的秩为 r > 0, A 的奇异值分解为 $A = U \operatorname{diag}(s_1,...,s_r,0,...,0)V^*$, 求矩阵 $B = \left(\begin{array}{c} A \\ A \end{array} \right)$ 的奇异值分解.
 - 10. (1) 证明矩阵的极分解的唯一性;
 - (2) 计算 Jordan 块 $J_n(\lambda)$ 的极分解.
- 11. 证明任意 n 阶矩阵 A 均可表示成 $A = Pe^{iH}$, 其中 P 是半正定矩阵, H 是 Hermite 矩阵. 研究这种分解的唯一性.
 - 12. 试对任意矩阵定义其极分解, 并由此计算任意向量 $x \in \mathbb{C}^n$ 的极分解.
 - 13. 设 $x, y, \alpha, \beta \in \mathbb{C}^n$, 且 $x^*y = \alpha^*\beta = 0$. 设 $A = x\alpha^* + y\beta^*$, 求 A 的 F- 范数.
 - 14. 证明矩阵 A 可以对角化 \iff 存在 Hermite 正定矩阵 P 使得 $P^{-1}AP$ 是正规矩阵.
 - 15. 研究正交三角分解, 谱分解, 极分解和奇异值分解之间的关系.

16. 设
$$A, B \in \mathbb{C}^{m \times n}$$
. 证明: $x \in N(A) \cap N(B) \iff \begin{pmatrix} A \\ B \end{pmatrix} x = 0$.

17. 证明奇异值的极大极小定理: 设 $A \in \mathbb{C}^{m \times n}$ 的奇异值为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$, 则:

$$\sigma_k = \min_{\substack{w_i \in \mathbb{C}^n \\ 1 \leq i \leq n-k}} \; \max_{\substack{0 \neq x \perp w_i \\ 1 \leq i \leq n-k}} \; \frac{\|Ax\|_2}{\|x\|_2} = \max_{\substack{w_i \in \mathbb{C}^n \\ 1 \leq i \leq n-k}} \; \min_{\substack{0 \neq x \perp w_i \\ 1 \leq i \leq n-k}} \; \frac{\|Ax\|_2}{\|x\|_2}.$$

特别地,

$$\sigma_{\max} = \sigma_1 = \max_{x \neq 0, x \in \mathbb{C}^n} \frac{\|Ax\|_2}{\|x\|_2} = \max_{x^*x = 1} \|Ax\|_2,$$

$$\sigma_{\min} = \sigma_n = \min_{x \neq 0, x \in \mathbb{C}^n} \frac{\|Ax\|_2}{\|x\|_2} = \min_{x^*x = 1} \|Ax\|_2.$$

- 18. 证明: 对任意同阶矩阵 A, B 均有 $\sigma_{\max}(A+B) \leq \sigma_{\max}(A) + \sigma_{\max}(B)$.
- 19. (矩阵的低秩近似) 设矩阵 $A_{m \times n}$ 的秩为 r, 其奇异值分解为 $A = UDV^*, U = (u_1, \dots, u_m), V = (v_1, \dots, v_n)$. 对任意 k < r, 定义矩阵

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^*, k < r.$$

证明:

$$\min_{r(B)=k} |||A - B|||_1 = |||A - A_k|||_1 = \sigma_{k+1}, k < r$$

以及

$$\min_{r(B)=k} |||A - B|||_F^2 = |||A - A_k|||_F^2 = \sigma_{k+1}^2 + \sigma_{k+1}^2 + \dots + \sigma_r^2.$$

20. (同时奇异值分解) 设 A,B 是两个 $m \times n$ 矩阵. 证明存在酉矩阵 U,V 以及非负对角矩阵 D,Λ 使得 $A=UDV^*,B=U\Lambda V^* \iff A^*B$ 与 AB^* 均是正规矩阵. 该结论对三个或更多的矩阵成立吗?

第十一章"矩阵的广义逆"补充习题

- 1. 设 P 是投影矩阵, 证明 P^* , I P, $T^{-1}PT(T)$ 为任意一个非奇异矩阵) 均为投影矩阵.
- 2. 设 P₁, P₂ 均为投影矩阵, 证明:
- (1) $P = P_1 + P_2$ 是投影矩阵 \iff $P_1P_2 = P_2P_1 = 0$;
- (2) $P = P_1 P_2$ 是投影矩阵 \iff $P_1P_2 = P_2P_1 = P_2$.
- 3. 设 \mathbb{R}^3 的子空间 L 由向量 $e = (1,0,0)^T$ 生成.
- (1) 若子空间 M 由 $\alpha = (1,1,0)^T$ 和 $\beta = (1,1,1)^T$ 生成, 求投影矩阵 $P_{L,M}$ 和向量 $x = (2,3,1)^T$ 沿着 M 到 L 上的投影;
 - (2) 求正交投影矩阵 P_L 和向量 $x = (2,3,1)^T$ 在 L 上的正交投影.
 - 4. 证明 $\begin{pmatrix} A \\ 0 \end{pmatrix}^{\dagger} = (A^{\dagger}, 0).$
 - 5. 设 $A \in \mathbb{C}^{m \times n}$, 又 $U \in \mathbb{C}^{m \times m}$ 和 $V \in \mathbb{C}^{n \times n}$ 均为酉矩阵. 证明 $(UAV)^{\dagger} = V^*A^{\dagger}U^*$.
 - 6. 设 H 为幂等 Hermite 矩阵, 证明 $H^{\dagger} = H$.
 - 7. 证明 $A^{\dagger} = A \iff A^2$ 为幂等 Hermite 矩阵且 $r(A^2) = r(A)$.
 - 8. 证明: 若 A 是正规矩阵, 则 $A^{\dagger}A = AA^{\dagger}$, 且 $(A^n)^{\dagger} = (A^{\dagger})^n$, 其中 n 为正整数.
 - 9. 计算基本矩阵 E_{ij} 的 Moore-Penrose 广义逆和 1- 广义逆.
- 10. (1) 设 A 是 $m \times n$ 矩阵, B 是 $m \times r$ 矩阵, 则等式 $AA^-B = B \iff$ 存在矩阵 D 使 B = AD:
 - (2) 设 $A \neq m \times n$ 矩阵, $B \neq r \times m$ 矩阵, 则等式 $BA^-A = B \iff$ 存在矩阵 $D \notin B = DA$.
 - 11. 证明:(1) 如果矩阵 A 的左逆唯一, 则 A 必是可逆矩阵, 于是左逆等于右逆;
- (2) 设矩阵 A 存在左逆但不唯一, 则 A 有无穷多个左逆. 类似地, 如果存在两个右逆, 则必存在无穷多个右逆.
 - 12. 证明: $(AB)^{\dagger} = B^{\dagger}A^{\dagger} \iff A^{\dagger}ABB^*A^* = BB^*A^* BB^{\dagger}A^*AB = A^*AB$ 同时成立.
 - 13. 计算下列矩阵的 {1,2}- 逆:

(1)
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
; (2) $A = \begin{pmatrix} i & 0 \\ 1 & i \\ 0 & 1 \end{pmatrix}$.

14. 计算下列矩阵的 {1,3}- 逆:

$$(1) A = \begin{pmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 2 & 2 \\ -1 & 1 & 0 & 1 \end{pmatrix}; (2) A = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 0 & -2 \\ -1 & 1 & 1 \\ 3 & -1 & -3 \end{pmatrix}.$$

15. 计算下列矩阵的 {1,4}- 逆:

$$(1) \left(\begin{array}{ccc} 1 & 1 \\ 2 & 2 \\ -1 & -1 \end{array} \right); \quad (2) \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 0 \end{array} \right).$$

- 16. (1) 哪些矩阵的 {1,2}- 逆等于它的转置矩阵?
- (2) 哪些矩阵的 {1,4}- 逆等于它的转置矩阵?
- 17. 试求一个计算秩为1的矩阵的各种广义逆的公式.
- 18. 不可逆的方阵可否有可逆的 {1,2}- 逆或 {1,3}- 逆或 {1,4}- 逆?
- 19. 哪些不可逆的方阵有唯一的 {1,2}- 逆或 {1,3}- 逆或 {1,4}- 逆?
- 20. 是否存在矩阵其 {1,2}- 逆或 {1,3}- 逆或 {1,4}- 逆不唯一但只有有限个?
- 21. 设正规矩阵 A 仅有一个非零特征值 λ .
- (1) 证明 $A^{\dagger} = \lambda^{-2}A$;
- (2) 试求 A 的 {1,2}- 逆, {1,3}- 逆及 {1,4}- 逆的表达式;

(3) 根据 (1) 与 (2) 计算矩阵
$$\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix}$$
 的各种广义逆.

- 22. 设 L, M 是 \mathbb{C}^n 的子空间. 证明:
- (1) $P_{L+M} = (P_L + P_M)(P_L + P_M)^{\dagger} = (P_L + P_M)^{\dagger}(P_L + P_M);$
- (2) $P_{L\cap M} = 2P_L(P_L + P_M)^{\dagger} P_M = 2P_M(P_L + P_M)^{\dagger} P_L.$
- 23. 证明: $A^{\dagger} = A^{(1,4)}AA^{(1,3)}$

24. 设
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
, $b = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$. 求 $Ax = b$ 的最小范数解.

25. 已知
$$A = \begin{pmatrix} 1 & 2 & -1 \\ -1 & -2 & 1 \end{pmatrix}$$
, $b = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$. 求矛盾方程组 $Ax = b$ 的最小二乘解.

25. 设
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
.

- (1) 当 $b = (1, 1, 1, 1)^T$ 时, 方程组 Ax = b 是否相容?
- (2) 当 $b = (1,0,1,0)^T$ 时, 方程组 Ax = b 是否相容?

若方程组相容, 求其通解和最小范数解; 若方程组不相容, 求其最小范数的最小二乘解.

- 26. 证明线性方程组 Ax = b 有解 \iff $AA^{\dagger}b = b$. 这里 $A \in \mathbb{C}^{m \times n}, b \in \mathbb{C}^m$.
- 27. 判断矩阵方程 AXB = C 是否有解, 有解时求其解, 其中

$$(1) A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}; B = \begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 1 \end{pmatrix}; C = \begin{pmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ -1 & 1 & -1 \end{pmatrix};$$

$$(2) A = \begin{pmatrix} 1 & -1 & 0 & -1 \\ 0 & 0 & 2 & 2 \\ -1 & 1 & 0 & 1 \end{pmatrix}; B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 2 \\ 1 & 0 & 2 \end{pmatrix}; C = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix}.$$

- 28. 相容方程组 Ax=a 的通解 $x=A^{\dagger}a+(I-A^{\dagger}A)y(\forall y)$ 还可以表示为 $A^{\dagger}a+N(A)$ 的陪集形式. 证明:
 - (1) 这个表示是**正交表示**, 即向量 $A^{\dagger}b$ 与向量 $(I A^{\dagger}A)y$ 正交, $\forall y$;

- (2) 方程组 Ax = a 与 Bx = b 有公共解 $\iff A^{\dagger}a B^{\dagger}b \in N(A) + N(B)$;
- (3) 设方程组 Ax = a 与 Bx = b 有公共解. 试用陪集形式表示其解.
- 29. 设 A, B, C, D 均为 n 阶矩阵, 且矩阵方程 AX = B 与 XC = D 均有解. 证明:
- (1) 两个方程有公共解 \iff AD = BC;
- (2) 设两个方程有公共解. 试利用广义逆矩阵表示它们的公共通解.(提示: 可先研究齐次方程.)
 - 30. 证明约束优化问题 $\min\{x^Tx\}, Ax = b$ 具有唯一解, 并求该解.
 - 31. 证明约束优化问题 $\min\{\operatorname{tr}(X^TX) 2\operatorname{tr}(X)\}, XA = 0$ 的解为 $\hat{X} = I AA^{\dagger}$.
 - 32. 设 U 与 W 是线性空间 V 的两个子空间, $\alpha, \beta \in V$. 设 $(\alpha + U) \cap (\beta + W) \neq \emptyset$. 证明:
 - $(1) (\alpha + U) \cap (\beta + W) = \alpha + P_U (P_U + P_W)^{\dagger} (\beta \alpha) + (U \cap W);$
 - $(2) (\alpha + U) \cap (\beta + W) = \alpha + (P_{U^{\perp}} + P_{W^{\perp}})^{\dagger} P_{W^{\perp}} (\beta \alpha) + (U \cap W);$
 - $(3) (\alpha + U) \cap (\beta + W) = \alpha + (I P_W P_U)^{\dagger} P_{W^{\perp}} (\beta \alpha) + (U \cap W).$
 - (提示:参考第二章补充习题 39.)

上海交通大学 2009-2010 学年第一学期《矩阵理论》试卷

	姓名	_ 学号	矩阵3	理论分班号	_ 成绩			
	本试卷共四道大题, 总分 100 分. 其中 A* 表示矩阵 A 的共轭转置.							
	一. 单项选择题 (每题3分, 共15分)							
	$U = \{(a, b) \mid a \in A \}$		$y + z = 0$, $W = {(z + z) = 0}$	$(x, y, z)^T \in \mathbb{R}^3 \mid x$	$= y = \frac{z}{-2} \}.$			
则(` ,	$-\dim U = () $ (B) 1	(C) 2	(D) 3				
则上	甲 $(U+W)^{\perp}$ 乙 $(U+W)^{\perp}$ 丙 $(U\cap W)^{\perp}$ 丁 $(U\cap W)^{\perp}$ 二述等式成立的	$T=U^{\perp}+W^{\perp};$ $T=U^{\perp}\cap W^{\perp};$ $T=U^{\perp}+W^{\perp};$ $T=U^{\perp}\cap W^{\perp}.$ $T=U^{\perp}\cap W^{\perp}.$	`子空间. 给出下列 (C) 乙与丙		与丁			
		, ,	. ,	, ,	$i(x-1)(x-2)^2$,则	矩		
阵	,	的最小多项式为(•	, , ,				
	$(\mathbf{A})(x-1)^2(x$	(B)(x-1)	$(C)(x-2)^2$	$(x-1)^2(x-2)^2$	$(D)(x-1)^3(x-2)$	$(2)^{3}$		
	4. 设 A 为 n 阶可逆矩阵, $\rho(A)$ 是其谱半径, $\ \bullet \ $ 是一种矩阵范数, 则必有 ((A) $\ A^{-1} \ = 1/\ A\ $ (B) $\ A^5 \ \le \ A\ ^5$ (C) $\ A^5 \ \ge \ A\ ^5$ (D) $\ A \ \ge \rho(A^*A)$							
)	5. 设 n 阶矩	阵 $A = (a_{ij})$ 的特	征值与奇异值分别	为 $\lambda_1, \cdots, \lambda_n$ 与	σ_1,\cdots,σ_n ,则必有	(
,	$(\mathbf{A})\sum_{i=1}^{n} \lambda_{i} =$	$\sum_{i=1}^{n} \sigma_i $	$(B)\sum_{i=1}^{n} \lambda$	$\lambda_i ^2 = \sum_{i=1}^n \sigma_i ^2$				
	$(\mathbf{C})\sum_{i=1}^{n} \lambda_{i} ^{2} =$	$= \sum_{i,j=1}^{n} a_{ij} ^2$	$(D)\sum_{i=1}^{n} \epsilon$	$\sigma_i ^2 = \sum_{i,j=1}^n a_{ij} ^2$				
	二. 填空题 (每题 3 分, 共 15 分)							
为_	6. 设 $(x,y,z)^T \in \mathbb{R}^3$, $\sigma((x,y,z)^T) = (2x-y,2x)^T$, 则 σ 关于标准基 - 标准基的矩阵 ————————————————————————————————————							
	8. 设 $A = \frac{1}{3}$	$\begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix},$	则正交变换 $x\mapsto Ax$	的旋转轴上的单	单位向量为	<u>_</u> .		

9. 设
$$A$$
 为 3 阶矩阵, $e^{At} = \begin{pmatrix} e^t & te^t & te^t \\ 0 & e^t & 0 \\ 0 & 0 & e^t \end{pmatrix}$, 则矩阵 $\lambda E - A$ 的初等因子为______.

- 10. 设 A 是秩为 $r \ge 1$ 的 n 阶正交投影矩阵, $B = E \cos A$, 则 B 的特征多项式为______.
 - 三. 计算题 (每题 15分, 共60分)
- 11. 设 $V = \mathbb{R}[x]_n$ 是次数小于 n 的全体实系数多项式构成的实线性空间. 定义 V 上的线性变换 σ 如下:

$$\sigma: f(x) \mapsto xf'(x) - f(x), \quad \forall f(x) \in V.$$

- (1) 求 σ 的特征值与特征向量;
- (2) 求 σ 的核空间 $Ker(\sigma)$ 与像空间 $Im(\sigma)$ 的各一组基;
- (3) 判断 $V = \text{Ker}(\sigma) \oplus \text{Im}(\sigma)$ 是否成立? 说明理由.
- 12. 设 $V = \mathbb{R}^2$ 是实线性空间, $(x, y)^T \in V$, $e_1 = (1, 0)^T$, $e_2 = (0, 1)^T$.
- (1) 求 V 上的一个内积 (\bullet , \bullet) 使得向量组 $e_1, e_1 + e_2$ 是一组标准正交基;
- (2) 在该内积下, 计算 e_2 与 $e_1 e_2$ 的长度;
- (3) 设 σ 是 V 的一个等距变换, $\sigma(e_1) = e_1 + e_2$. 求 $\sigma((x,y)^T)$? 这样的等距变换唯一吗?

$$13. \ \ \mathcal{U} \ \ A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array} \right).$$

- (1) 求 A 的 Jordan 标准形 J(不必计算变换矩阵 P);
- (2) 设 $n \ge 3$, 计算 $A^n A^{n-2}$ 与 $A^2 E$;
- $(3) \, \, \, \, \, \, \, \, \int_0^t (E A^{-2}) e^{As} ds.$
- 14. 设 $A \in \mathbb{C}^{n \times n}$ 的秩为 r > 0, A 的奇异值分解为 $A = U \operatorname{diag}(\sigma_1, ..., \sigma_r, 0, ..., 0) V^*$, 其中 $\sigma_1 > \cdots > \sigma_r$, $U = (u_1, \cdots, u_n)$, $V = (v_1, \cdots, v_n)$ 是两个酉矩阵, $u_i, v_i \in \mathbb{C}^n$, $1 \le i \le n$. 设矩阵 $B = \begin{pmatrix} A \\ A \end{pmatrix}$.
 - (1) 求 B 的奇异值分解;
 - (2) 求 B*B 的谱分解;
 - (3) 求 B*B 的 Moore-Penrose 广义逆.
 - 四.证明题 (每题10分,共10分)
 - 15. 设 σ 是 \mathbb{C}^6 上的线性变换, 其特征多项式为 $(\lambda-1)(\lambda-2)^2(\lambda-3)^3$. 证明:
 - (1) 存在 σ 的三个不变子空间 U_i , 使得 dim $U_i = i$, i = 1, 2, 3, 且 $\mathbb{C}^6 = U_1 \oplus U_2 \oplus U_3$;
 - (2) 对有限维线性空间上的任意线性变换, 推广(1)中的结论.