Capítulo 1

Gas de Bose

Para Bose debe cumplirse $\mu < {\rm \ todo \ } e {\rm \ y \ como \ } e \geq 0$ eso dice que

$$\mu < 0$$

Pero si en un sistema tiene e_0 como mínimo y $e_0>0$ entonces, ¿puede ser $\mu>0$? Aparentemente sí (al menos recordando que la restricción sale de la serie).

Ya lo entendí esto: pero no para partícula libre.

Además $\langle n_e \rangle \geq 0,$ el número de partículas debe ser positivo.

$$\beta pV = \log(\Xi) = \sum_{e} -\log(1-\,\mathrm{e}^{-\beta(e-\mu)})$$

$$\beta p = \sum_{e \neq 0} \frac{-\log(1 - e^{-\beta(e - \mu)})}{V} - \frac{\log(1 - z)}{V}$$

El último término será negligible para todo z, incluso con $z\to 1$ pues en ese caso $V\to\infty$ mucho más rápido

$$\langle n_0 \rangle = \frac{1}{z^{-1} - 1} = \frac{z}{1 - z}$$

y $\langle n_0 \rangle / V$ es finito incluso con $z \to 1$, entonces

$$\begin{split} \langle n_0 \rangle - z \, \langle n_0 \rangle - z &= 0 \qquad z = \frac{\langle n_0 \rangle}{1 + \langle n_0 \rangle} \\ 1 - z &= \frac{1}{1 + \langle n_0 \rangle} \end{split}$$

$$-\frac{\log(1-z)}{V} = \frac{\log(1+\langle n_0 \rangle)}{V}$$

y dado que $\log(\langle n_0 \rangle) \ll \langle n_0 \rangle$ despreciamos $\log(1-z)/V$.

Como $0 > \mu$ entonces $e^{\beta \mu} \equiv z < 1$

En Bose la fugacidad está acotada

$$\frac{N}{V} = \frac{1}{\lambda^3} g_{3/2}(z) + \frac{1}{V} \left(\frac{z}{1-z}\right)$$

$$\frac{\lambda^3}{v} = g_{3/2}(z) + \frac{\lambda^3}{V} n_0$$

$$\underbrace{\frac{N}{V}}_{\text{densidad total}} = \underbrace{\frac{1}{\lambda^3} g_{3/2}(z)}_{\text{densidad en los excitados}} + \underbrace{\frac{1}{V} \left(\frac{z}{1-z}\right)}_{\text{densidad en lef fundamenta}}$$

Por otro lado como 0 < z < 1 entonces $g_{3/2}(z)$ está acotada

$$g_{3/2}(1) = \sum_{i=1}^{\infty} \frac{1}{j^{3/2}} = 2.612$$

Con $z \approx 1$ da

$$\frac{\lambda^3}{v} = g_{3/2}(1) + \lambda^3 \frac{n_0}{V}$$

cuando se aumenta N necesariamente las partículas se apilan en el fundamental; es una fracción macroscópica pués $V \to \infty$ y entonces $n_0 \to \infty$.

Se da con

$$\frac{\lambda^3}{v} = \frac{\lambda^3}{V} N = \frac{h^3}{(2\pi mkT)^{3/2}} \frac{N}{V} > 2.612$$

Destaco en esta expresión T baja dividiendo y n alta multiplicando.

El condensado de Bose surge cuando se saturan los excitados; ello pasa con Tbaja, N/Valta y $\mu \to 0$

GRAFIQUETE

El condensado de Bose podemos pensarlo como la coexistencia de dos fluidos (e=0 y $e\neq 0$). Podemos definir un T_c,v_c desde

$$\frac{\lambda^3}{v} = g_{3/2}(1) = 2.612 = \frac{h^3}{(2\pi mkT)^{3/2}} \frac{1}{v}$$

que lleva a que para un dado v tenemos una cierta T_c y para una cierta T tenemos un dado v_c dados ambos por

$$T_c^{3/2} = \frac{h^3}{(2\pi m k T)^{3/2}} \frac{1}{v} \frac{1}{g_{3/2}(1)} \qquad v_c = \frac{\lambda^3(T)}{g_{3/2}(1)}$$

De esta forma si $T < T_c$ y $v < v_c$ se tiene la condensación de Bose

$$\lambda^3 \frac{N}{V} = g_{3/2}(1) + \lambda^3 \frac{N_0}{V}$$

que es válida a partir de la condensación ($T < T_c$)

$$N = \frac{(2\pi mk)^{3/2}}{h^3} T^{3/2} g_{3/2}(1) V + N_0 = N \left(\frac{T}{T_c}\right)^{3/2} + N_0$$

$$N_e = N \left(\frac{T}{T_c}\right)^{3/2}$$

$$N_o = N \left(1 - \left(\frac{T}{T_c} \right)^{3/2} \right), \label{eq:No}$$

que es válida por supuesto con $T < T_c$. A partir de haber alcanzado la condensación z=1, añadir partículas (N++) o reducir el volumen (V--) hace que $N_e/V \to 0$ pues $V \to \infty$

DIBUJO con observaciones

Cuando v/λ^3 es chico se saturan los N_e y entonces $z \to 1$.

Cuando v/λ^3 es grande no hay condensado y entonces $\lambda^3/v\approx z$ o bien $1/(v/\lambda^3)\approx z$.

Para la presión tendremos

$$\beta p = \frac{1}{\lambda^3} g_{5/2}(z)$$

 ${\rm con} \; z = 1 (T < T_c)$

$$\frac{p}{kT} = \frac{(2\pi mkT)^{3/2}}{h^3} g_{5/2}(1) = \frac{1}{v(T_c/T)^{3/2} g_{3/2}(1)} g_{5/2}(1)$$

$$p = 1.34 \frac{(2\pi m)^{3/2}}{h^3} (kT)^{5/2} \qquad \frac{pV}{NkT} = 0.513 \left(\frac{T}{T_c}\right)^{3/2}$$

 $\operatorname{con} z = 1(T = T_c)$

$$\beta p = \frac{g_{5/2}(1)}{g_{3/2}(1)v} = \frac{0.513}{v}$$

$$p = 0.513 \frac{NkT}{V}$$
 es aprox. $1/2p$ gas ideal clásico

 $con z \lesssim 1(T > T_c)$

$$\beta p = \frac{1}{v} \frac{g_{5/2}(z)}{g_{3/2}(z)}$$

pero no podemos expandir en el virial porque λ^3/v no es chico. Con $z\approx 0 (T\gg T_C)$

$$\beta pv = \frac{pV}{NkT} = \sum_{l=0}^{\infty} a_l \left(\frac{\lambda^3}{v}\right)^{l-1}$$

usando toda la serie y procediendo en modo análogo a Fermi se obtienen

$$\begin{cases} a_1 = 1 \\ a_2 = -0.17678 \\ a_3 = -0.00330 \end{cases}$$

$$\frac{pV}{NkT} = 1 - 0.17678 \left(\frac{\lambda^3}{v}\right) - 0.00330 \left(\frac{\lambda^3}{v}\right)^2$$

DIBUJO

El virial vale en $\lambda^3/v\ll 1$ (alta Ty baja N/V)

A bajas T se comportan de modo muy diferente, $p_{\, \mathrm{Fermi}} \, > 0$ y $p_{\, \mathrm{Bose}} \, pprox 0$

1.1 Análisis del gas ideal de Bose

• $\lambda^3/v \ll 1$ y entonces $z \ll 1$ $[T \gg T_c]$

$$\begin{split} \beta pV &= \sum_{l=1}^\infty a_l \left(\frac{\lambda^3}{v}\right)^{l-1} = \frac{g_{5/2}(z)}{g_{3/2}(z)} \\ \beta pV &\approx 1 - \frac{\lambda^3}{v} \frac{1}{2^{5/2}} \qquad \qquad U = \frac{3}{2} pV = \frac{3}{2} NkT \left(1 - \frac{\lambda^3}{v} \frac{1}{2^{5/2}}\right) \end{split}$$

• $\lambda^3/v \approx 1$ y entonces z < 1 $[T > T_c]$

$$\beta pV = \frac{g_{5/2}(z)}{g_{3/2}(z)}$$

• $\lambda^3/v = 2.612$ y entonces z = 1 $T = T_c$

$$\beta pV = \frac{g_{5/2}(z)}{g_{3/2}(z)} \approx \frac{1.34}{2.612} \approx 0.513$$

+ $\lambda^3/v\gg 1$ y entonces z=1 [$T< T_c$] y hay que considerar el fundamental

 ${\bf Con} \ z = 1 \ {\bf y} \ T < T_c \\ {\bf expresamos} \ {\bf todo} \ {\bf en} \ {\bf t\acute{e}rminos}$

de (T/T_c) .

que lleva a

$$\left(1 - \frac{N_0}{N}\right) = \left(\frac{T}{T_c}\right)^{3/2}$$

puesto que T_c es tal que

$$\begin{split} \frac{h^3}{(2\pi mkT_c)^{3/2}} \frac{N}{V} &= g_{3/2}(1) = \frac{\lambda^3}{v} \left(\frac{T}{T_c}\right)^{3/2} \\ \beta pV &= \frac{g_{5/2}(z)}{g_{3/2}(z)} \left(\frac{T}{T_c}\right)^{3/2} = 0.513 \left(\frac{T}{T_c}\right)^{3/2} \\ \frac{\lambda^3}{v} \left(\frac{T}{T_c}\right)^{3/2} &= g_{3/2}(1) \quad \Rightarrow \quad \frac{1}{\lambda^3} = \frac{1}{v} \left(\frac{T}{T_c}\right)^{3/2} \frac{1}{g_{3/2}(1)} \end{split}$$

Desde la expresión de la energía U=3/2pV y $C_V=\frac{\partial}{\partial T}(3/2pV)$ y entonces

•
$$T < T_c$$

$$C_V = \frac{\partial}{\partial T} \left(\frac{3}{2} Nk \left(\frac{T}{T_c} \right)^{3/2} 0.513 \right) = \frac{15}{4} Nk \left(\frac{T}{T_c} \right)^{3/2} 0.513 \qquad C_V \propto T^{3/2}$$

•
$$T = T_a$$

$$C_V = Nk \, 0.513 \frac{15}{4} = Nk1.92375$$

•
$$T > T_c$$

$$C_V = \left(\frac{15}{4} \frac{g_{5/2}(z)}{g_{3/2}(z)} - \frac{9}{4} \underbrace{\frac{g_{3/2}(z)}{g_{1/2}(z)}}_{\text{3 on } z=1}\right)$$

 C_V es continuo.

•
$$T\gg T_c$$

$$C_V = Nk \frac{3}{2} \frac{\partial}{\partial T} \left(T \sum_{l=1}^{\infty} a_l \left(\frac{\lambda^3}{v} \right)^{l-1} \right)$$

$$C_V = Nk\frac{3}{2}\left(1 + 0.0884\left(\frac{\lambda^3}{v}\right) + ...\right)$$

DIBUJO

1.2 Cuánticos IV -reubicar-

algunos temitas sueltos:

números de ocupación

gas de Fermi $p y c_v$

gas de Fermi $p y c_v$

Condensado de Bose

El coeficiente lineal del virial $1/2^{5/2}=0.1767767$ sale considerando las $f_{\nu}(z)$ hasta orden uno y tirando términos más allá.

El requerimiento $\mu < 0$ viene de que el fundamental n_0 no puede tener población negativa

 $e^{-\beta\mu} - 1 > 0 \qquad \Rightarrow \quad \mu < 0$

$$n_0 = \frac{1}{e^{\beta(e_0 - \mu)} - 1} = \frac{1}{e^{-\beta\mu} - 1} \ge 0$$

Con $\mu \to 0^-$ tenemos $n \to \infty$

En el caso del condensado establecemos desde

$$\frac{\lambda^3(T)}{v} = g_{3/2}(1)$$

que lleva para T_c (para vfijo) o v_c (para Tfija) versiones evaluadas de la anterior ecuación.

Para la población de los estados excitados

$$\begin{split} p_x &= \frac{h}{V^{1/3}} n_x \Rightarrow \mathbf{p} = \frac{h}{V^{1/3}} \mathbf{n} \\ \frac{n_{e_i}}{V} &= \frac{1}{V} \frac{1}{z^{-1} \operatorname{e}^{\beta e_i} - 1} \leq \frac{1}{V(\operatorname{e}^{\beta e_i} - 1)} = \frac{1}{V(\sum_{l=1}^{\infty} (\beta e_i)^l / l!)} \end{split}$$

pués $z^{-1} = 1/z \le 1$

$$\beta e = \frac{\beta p^2}{2m} = \frac{\beta}{2m} \frac{h^2}{V^{2/3}} (n_x^2 + n_y^2 + n_z^2)$$

$$\frac{2m}{V^{1/3} \beta h^2(\sum_{l=1} \dots)} \to 0 \quad \text{si} \quad V \to \infty$$

y entonces

$$\frac{n_e}{V} \to 0 \quad \text{ si } \quad V \to \infty$$

Esto significa que si V es muy grande, en el condensado se tenderá a que todas las partículas se hallen en e=0 pues

$$\frac{N_e}{N} \to 0 \qquad \qquad \frac{N_0}{N} \to 1$$

¿El condensado BE requiere población de los niveles o Vtotal de algún tipo? Tenia unas consultas agarradas con clip: ¿porqué hay una cúspide en C_n ? ¿transiciones? Véamoslo en la ecuación de N,

$$\frac{\lambda^3 N}{V} = g_{3/2}(1) + \frac{\lambda^3}{V} \frac{z}{1 - z}$$

y si $z \to 1$ de forma que $z/(1-z) \gg 1$ entonces $g_{3/2}(1)$ es despreciable de modo que

$$\frac{\lambda^3 N}{V} \approx \frac{\lambda^3}{V} \frac{z}{1-z} = \frac{\lambda^3 N_0}{V}$$

y se da que $N \sim N_0$.

En Bose se da 0 < z < 1

DIBUJITOS

Con $z\ll 1$ es $\lambda^3/v\approx z$ y entonces $z\approx 1/(v/\lambda^3)$. Con z=1 es $\lambda^3/v=2.612$ n pero si $\lambda^3/v>2.612$ entonces z no se mueve y sigue en su valor 1.

1.2.1 Cuánticos 5 - Cuánticos 5b - reubicar-

presión gas de Bose

 C_V gas de Bose

Condensado de Bose \rightarrow transición de fase de primer orden

límite clásico función de partición

cálculo de $Tr(e^{-\beta A}) = Q_N(V,T)$

diferencia con el caso clásico

potencial efectivo

Ver la transición de fase con el tema del calor latente. ¿Cómo era lo de Clayperon?