

Robotique avancée

_

Simulation robotique

_

Du moteur physique à la simulation de systèmes

Déroulement

- 1 cours 2h
 - Introduction aux notions de simulation en robotique
 - aujourd'hui
- 2 TP 3h+4h
 - Mini projet sur la simulation
 - Groupe 1: 03/12 pm et 07/01 pm
 - Groupe 2: 16/12 am et 09/01 am
- 1 TD 2h
 - Séance de questions / réponses
 - Le 17/12 am

Déroulement

Evaluation

- 1 mini projet à réaliser en TP
- Je suis le client et vous propose une étude avec un cahier des charges
- Vous me livrez un rapport d'étude de faisabilité

Programme

- Généralités sur la simulation en robotique
- Les solutions de simulations
 - Les différents softs de simulation
- Présentation du projet
 - Cahier des charges
 - Fournitures d'entrée
 - Livraison

• La simulation numérique :

 Est un outil d'aide à la décision des problèmes complexes

 Rend accessible l'étude, l'analyse et l'évaluation de situations trop risquées

- Objectif de la simulation
 - Représenter un système pour évaluer ou prédire son comportement

Objectif de la simulation

- Représenter un système pour évaluer ou prédire son comportement
 - Exemple : chute libre d'un solide
 - Système à simuler : un solide (position, vitesse au cours du temps)
 - Entrées : conditions initiales (z₀, v₀, g)
 - Paramètres : temps
 - Sorties : Conditions courantes (z_t, v_t)
 - Equations cinématiques du système
 - Accélération : $a_t = g$
 - Vitesse : $v_t = \int_0^t a(u)du = gt + v_0$
 - Position : $z_t = \int_0^t v(u) du = \frac{1}{2}gt^2 + v_0t + z_0$

Simulation présente dans tous les domaines

- Simulation présente dans tous les domaines
 - Anticiper et prévoir les états du système simulé
 - Météo

- Simulation présente dans tous les domaines
 - Anticiper et prévoir les états du système simulé
 Traffic

- Simulation présente dans tous les domaines
 - Anticiper et prévoir les états du système simulé
 - Modéliser un nouveau système pour apprendre
 - Formation pilote

- Simulation présente dans tous les domaines
 - Anticiper et prévoir les états du système simulé
 - Modéliser un nouveau système pour apprendre
 - Formation armée

- Simulation présente dans tous les domaines
 - Anticiper et prévoir les états du système simulé
 - Modéliser un nouveau système pour apprendre
 - Formation chirurgie

- Simulation présente dans tous les domaines
 - Anticiper et prévoir les états du système simulé
 - Modéliser un nouveau système pour apprendre
 - Formation industrie

- Simulation présente dans tous les domaines
 - Anticiper et prévoir les états du système simulé
 - Modéliser un nouveau système pour apprendre
 - Comprendre les erreurs d'un système a postériori
 - Accident, médecine légale

- Simulation présente dans tous les domaines
 - Anticiper et prévoir les états du système simulé
 - Modéliser un nouveau système pour apprendre
 - Comprendre les erreurs d'un système a postériori
 - Philae

- Dualité modélisation / simulation
 - Modélisation
 - (Re) créer un système existant pour pouvoir représenter son comportement
 - Système incomplet ou complexe : phase d'apprentissage obligatoire
 - → Machine learning

- Dualité modélisation / simulation
 - Modélisation
 - (Re) créer un système existant pour pouvoir représenter son comportement
 - Système incomplet ou complexe : phase d'apprentissage obligatoire
 - → Machine learning
 - Système connu : réalisation d'une maquette numérique
 - → Robotique, conception de systèmes

Dualité modélisation / simulation

Modélisation

- (Re) créer un système existant pour pouvoir représenter son comportement
- Système incomplet ou complexe : phase d'apprentissage obligatoire
 - → Machine learning
- Système connu : réalisation d'une maquette numérique
 - → Robotique, conception de systèmes

Simulation

- Tester le comportement d'un système dans des conditions spécifiques
 - Inférence d'un modèle de classification en Deep learning
 - Evaluation des capacités du système

- Plusieurs catégories
 - Les softs propriétaires ou assimilés
 - Modélisation d'une cellule robotisée
 - Détection de collision, gestion des E/S, gestion de capteurs
 - Emulateur propriétaire
 - Editeur / compilateur du langage propriétaire
 - SRS : Staubli

- Plusieurs catégories
 - Les softs propriétaires ou assimilés
 - Modélisation d'une cellule robotisée
 - Détection de collision, gestion des E/S, gestion de capteurs
 - Emulateur propriétaire
 - Editeur / compilateur du langage propriétaire
 - RobotStudio: ABB

- Plusieurs catégories
 - Les softs propriétaires ou assimilés
 - Modélisation d'une cellule robotisée
 - Détection de collision, gestion des E/S, gestion de capteurs
 - Emulateur propriétaire
 - Editeur / compilateur du langage propriétaire
 - KukaSim Pro : Kuka

- Plusieurs catégories
 - Les softs propriétaires ou assimilés
 - Les softs génériques
 - Workspace
 - ABB, Adept, Fanuc, Mitsubishi, Melfa, Motoman, Kawasaki, Kuka, Nachi, Panasonic, Siemens

- Plusieurs catégories
 - Les softs propriétaires ou assimilés
 - Les softs génériques
 - V-Rep
 - Très générique, proche de la réalité
 - API C, Java, Python, Lua, ROS, ...
 - Modélisations directes et inverses, building blocks, ...

- Plusieurs catégories
 - Les softs propriétaires ou assimilés
 - Les softs génériques
 - Gazebo:
 - Compatible ROS
 - Moteur physique
 - Rendu réalistes
 - Communauté active

- Plusieurs catégories
 - Les softs propriétaires ou assimilés
 - Les softs génériques
 - WeBots:
 - Compatible ROS
 - Moteur physique
 - Rendu réalistes
 - Communauté active

- Plusieurs catégories
 - Les softs propriétaires ou assimilés
 - SRS : Staubli
 - RobotStudio: ABB
 - KukaSim Pro : Kuka
 - Les softs génériques
 - Workspace
 - V-Rep
 - Gazebo
 - Webots

Conclusion

Avantages de la simulation

- Réduction des coûts de déploiement des systèmes
- Permet de tester les alternatives à moindre coûts
- Evaluation des limites et performances du système

Inconvénients

- Le comportement humain ne peut pas être simulé
- Une application ne peut simuler que ce pour quoi elle a été programmée !!!

Break

10 min

- Cahier des charges
 - Entreprise en pleine évolution
 - Approvisionnement d'une chaine de production pour le tri des composants moteur produits
 - Besoin d'automatisation de cette chaine pour :
 - La gestion du convoyeur
 - L'identification des pièces à trier
 - La localisation des bacs de tri
 - Evaluation et chiffrage d'une solution intégrée
 - Identification des capteurs nécessaires
 - Preuve de concept / maquette du système
 - Critère
 - Système minimal
 - DBFI (Démonstration de Bon Fonctionnement Industriel)
 - Contrôle du convoyeur et identification de la pièce à saisir par le robot
 - Identification de la position de dépose de la pièce

- Fournitures en entrée
 - Modèle Gazebo / ROS de la cellule à instrumenter
 - Documentation des interfaces:
 - Composants:
 http://wiki.ros.org/ariac/Tutorials/GEARInterface
 - Capteurs: http://wiki.ros.org/ariac/Tutorials/SensorInterface
 - Configuration: http://wiki.ros.org/ariac/Tutorials/HelloWorld

- Livraison attendue
 - Rapport d'étude du projet
 - Fichier de configuration du système
 - Script de démonstration

