1 Sucesiones

Una sucesión de números es aquella que se obtiene por una regla específica, es decir, el número siguiente se obtiene sumando, restando o multiplicando el número previo.

Figura 1 Clasificación de las sucesiones.

2 Sucesiones geométricas

Son aquellas sucesiones en las que los números se obtienen multiplicando al anterior una cantidad fija r, también conocida como razón. El término general de una sucesión geométrica es la regla la cual nos va a permitir conocer esta secuencia de números.

Fórmula

Término general de una sucesión geométrica

$$a_n = a_1 \cdot r^{n-1}$$

donde:

 a_n es el término enésimo de la sucesión.

 a_1 es el primer término de la sucesión.

r es la razón de la sucesión, es decir, por lo que se multiplica cada uno de los términos para obtener el siguiente.

EJEMPLO

Dado el término general $a_n = 2 \cdot 3^{n-1}$, determina los primeros cuatro términos.

1) Asigna el valor a n de 1, 2, 3 y 4.

$$a_1 = 2 \cdot 3^{1-1} = 2 \cdot 1 = 2$$

$$a_2 = 2 \cdot 3^{2-1} = 2 \cdot 3 = 6$$

$$a_3 = 2 \cdot 3^{3-1} = 2 \cdot 9 = 18$$

$$a_4 = 2 \cdot 3^{4-1} = 2 \cdot 27 = 54$$

EJEMPLO

Determina el término general de la siguiente sucesión $-2, -6, -18, -54, -162, \dots$

1) Determina la razón de la sucesión, dividiendo cualquier término de la sucesión entre su antecesor.

$$r = \frac{-54}{-18} = 3$$

2) Identifica el primer término de la sucesión.

$$a_1 = -2$$

3) Sustituye los valores obtenidos en el paso 1 y 2 en la fórmula del término general de una sucesión geométrica.

$$a_n = a_1 \cdot r^{n-1}$$

$$a_n = -2 \cdot 3^{n-1}$$

EJEMPLO

Calcula el término a_{12} de la siguiente sucesión $-2, -10, -50, -250, -1250, \dots$

1) Determina la razón de la sucesión, dividiendo cualquier término de la sucesión entre su antecesor.

$$r = \frac{-50}{-10} = 5$$

2) Identifica el primer término de la sucesión.

$$a_1 = -2$$

3) Sustituye los valores obtenidos en el paso 1 y 2 en la fórmula del término general de una sucesión aritmética.

$$a_n = a_1 \cdot r^{n-1}$$

$$a_n = -2 \cdot 5^{n-1}$$

4) Sustituir el valor de n por 12 en el término general obtenido en el paso anterior.

$$a_{12} = -2 \cdot 5^{12-1} = -2 \cdot 5^{11} = -2 \cdot 48828125 = -97,656,250$$

Tercero de secundaria

2.1 Suma de una sucesión geométrica

Fórmula

Suma de términos de una sucesión geométrica

$$S_n = \frac{a_1(1-r^n)}{1-r}$$

donde:

 S_n es la suma de los primeros n términos de la sucesión.

 a_1 es el primer término de la sucesión.

r es la razón de la sucesión, es decir, por lo que se multiplica cada uno de los términos para obtener

n es la cantidad de términos en la sucesión.

EJEMPLO

Determina la suma de los primeros 6 términos dada la siguiente sucesión $3, 2, \frac{4}{3}, \frac{8}{9}, \dots$

1) Determina la razón de la sucesión, dividiendo cualquier término de la sucesión entre su antecesor.

$$r = \frac{4}{3} \div 2 = \frac{2}{3}$$

2) Identifica el primer término de la sucesión

$$a_1 = 3$$

3) Sustituye el valor de a_1 , n y de r en la fórmula de la suma de términos de una sucesión geométrica.

$$S_n = \frac{a_1(1 - r^n)}{1 - r}$$

$$S_6 = \frac{3\left(1 - \left(\frac{2}{3}\right)^6\right)}{1 - \frac{2}{3}}$$

$$S_6 = \frac{665}{81}$$