# Lecture 1 – Functions, Exponential & Logarithms

# **Section 1.1 – Functions**

A set is a collection of objects of some type, and the objects are called elements of the set.

| Notation <mark>or</mark><br>Terminology | Meaning                                                         | Example                         |
|-----------------------------------------|-----------------------------------------------------------------|---------------------------------|
| $a \in S$                               | $\boldsymbol{a}$ is an element of $\boldsymbol{S}$              | $3 \in \mathbb{Z}$              |
| $a \notin S$                            | $\boldsymbol{a}$ is not an element of $\boldsymbol{S}$          | $\frac{3}{2} \notin \mathbb{Z}$ |
| $S \subset T$                           | S is a <i>subset</i> of T Every element of S is an element of T | $\mathbb{Z} \subset \mathbb{R}$ |
| Constant                                | A letter or symbol that represents a specific element of a set. | $5, \sqrt{2}, \pi$              |
| Variable                                | A letter or symbol that represents any element of a set.        | Let $x$ denote any $\mathbb{R}$ |

#### **Definition of a** *Function*

A *function* is a relation between two variables such that to matches each element of a first set (called *domain*) to an element of a second set (called *range*) in such way that no element in the first set is assigned to two different elements in the second set.

The *domain* of the function is the set of all values of the independent variable for which the function is defined.

The *range* of the function is the set of all values taken on by the dependent variable.

### The **Domain** of a Function

**1.** Rational function:  $\frac{f(x)}{h(x)}$   $\Rightarrow$  **Domain**:  $h(x) \neq 0$ 

**Example:**  $f(x) = \frac{1}{x-3}$  **Domain:**  $x \neq 3$ 

**2.** Irrational function:  $\sqrt{g(x)}$   $\Rightarrow$  **Domain**:  $g(x) \ge 0$ 

**Example**:  $g(x) = \sqrt{3-x} + 5$  **Domain**:  $x \le 3$ 

**3.** Otherwise: *Domain* all real numbers

**Example**:  $f(x) = x^3 + |x|$  **Domain**: All real numbers,  $\mathbb{R}$ , or  $(-\infty, \infty)$ 

(1) & (2)  $\rightarrow$  Find the domain:  $f(x) = \frac{x+1}{\sqrt{x-3}}$   $\Rightarrow$  *Domain:* x > 3

### **Example**

Let  $g(x) = \frac{\sqrt{4+x}}{1-x}$ . Find the domain of g.

#### **Solution**

$$\begin{cases} 4+x \ge 0 \Rightarrow x \ge -4 \\ 1-x \ne 0 \Rightarrow x \ne 1 \end{cases} \rightarrow \underline{\begin{bmatrix} -4, 1 \end{bmatrix} \cup \begin{pmatrix} 1, \infty \end{pmatrix}}$$

#### **Difference Quotients**

$$\frac{f(x+h)-f(x)}{(x+h)-x}$$

The difference quotient is given by:  $\frac{f(x+h) - f(x)}{h}$ 



### Example

For the function f given by  $f(x) = 2x^2 - 3x$ , find the difference quotient  $\frac{f(x+h) - f(x)}{h}$ 

#### **Solution**

$$\frac{f(x+h)}{h} - \frac{f(x)}{h}$$

$$= \frac{2(x+h)^2 - 3(x+h) - (2x^2 - 3x)}{h}$$

$$= \frac{2x^2 + 4xh + 2h^2 - 3x - 3h - 2x^2 + 3x}{h}$$

$$= \frac{4xh + 2h^2 - 3h}{h}$$

$$= \frac{4xh}{h} + \frac{2h^2}{h} - \frac{3h}{h}$$

$$= 4x + 2h - 3$$

#### Even and Odd Functions

Given the function f(x) then find f(-x) and simplify:

- If  $f(-x) = f(x) \Rightarrow f$  is **even**, or
- If  $f(-x) = -f(x) \Rightarrow f$  is **odd**
- Neither

### Example

Decide whether each function is even, odd, or neither

a) 
$$f(x) = 8x^4 - 3x^2$$
  
 $f(-x) = 8(-x)^4 - 3(-x)^2$   
 $= 8x^4 - 3x^2$   
 $= f(x)$ 

Function is Even

b) 
$$f(x) = 6x^3 - 9x$$
$$f(-x) = 6(-x)^3 - 9(-x)$$
$$= -6x^3 + 9x$$
$$= -\left(6x^3 - 9x\right)$$
$$= -f(x)$$

Function is *Odd* 

c) 
$$f(x) = 3x^2 + 5x$$
  
 $f(-x) = 3(-x)^2 + 5(-x)$   
 $= 3x^2 - 5x$ 

Function is *Neither* 

### **Piecewise-Defined Functions**

Function are sometimes described by more than one expression, we call such functions *piecewise-defined functions*.

## Example

Graph each function

$$f(x) = \begin{cases} 2x+5 & \text{if} \quad x \le -1 \\ x^2 & \text{if} \quad |x| < 1 \\ 2 & \text{if} \quad x \ge 1 \end{cases}$$

#### **Solution**



# **Composition of Functions**

The composite function  $f \circ g$  , the composite of f and g, is defined as

$$(f \circ g)(x) = f(g(x))$$

Where x is in the domain of g and g(x) is in the domain of f





### Example

Let  $f(x) = x^2 - 1$  and g(x) = 3x + 5

- a) Find  $(f \circ g)(x)$  and the domain of  $f \circ g$
- b) Find  $(g \circ f)(x)$  and the domain of  $g \circ f$
- c) Find (f(g))(2) in two different ways: first using the functions f and g separately and second using the composite function  $f \circ g$ .

#### **Solution**

a) 
$$(f \circ g)(x) = f(g(x))$$
  
 $= f(3x+5)$   
 $= (\_)^2 - 1$   
 $= (3x+5)^2 - 1$   
 $= 9x^2 + 30x + 25 - 1$   
 $= 9x^2 + 30x + 24$ 

**Domain**:  $(3x+5) \rightarrow \mathbb{R}$ 

**Domain**:  $\left(9x^2 + 30x + 24\right) \rightarrow \mathbb{R}$ 

**Domain** of  $f \circ g$ :  $\mathbb{R}$ 

b) 
$$(g \circ f)(x) = g(f(x))$$
  

$$= g(x^2 - 1)$$

$$= 3(x^2 - 1) + 5$$

$$= 3x^2 - 3 + 5$$

$$= 3x^2 + 2$$
Domain:  $(3x^2 + 2) \to \mathbb{R}$ 

**Domain** of  $g \circ f : \mathbb{R}$ 

c) 
$$g(2) = 3(2) + 5 = 11$$
  
 $(f \circ g)(2) = f(g(2))$   
 $= f(11)$   
 $= 11^2 - 1$   
 $= 120$   
 $(f \circ g)(x) = 9x^2 + 30x + 24$   
 $(f \circ g)(2) = 9(2)^2 + 30(2) + 24 = 120$ 

### Example

Let  $f(x) = x^2 - 16$  and  $g(x) = \sqrt{x}$ 

- a) Find  $(f \circ g)(x)$  and the domain of  $f \circ g$
- b) Find  $(g \circ f)(x)$  and the domain of  $g \circ f$

#### **Solution**

a) 
$$(f \circ g)(x) = f(g(x))$$
  

$$= f(\sqrt{x})$$

$$= (\sqrt{x})^2 - 16$$

$$= x - 16$$
Domain:  $(x - 16) \to \mathbb{R}$ 

**Domain** of  $f \circ g : x \ge 0$ 

**b)** 
$$(g \circ f)(x) = g(f(x))$$
  
 $= g(x^2 - 16)$   
 $= \sqrt{x^2 - 16}$   
**Domain**  $: (x^2 - 1) \to \mathbb{R}$   
 $= \sqrt{x^2 - 16}$   
**Domain**  $: (\sqrt{x^2 - 16}) \to |x| \ge 4$   
**Domain** of  $g \circ f : |x| \ge 4$  or  $(-\infty, -4] \cup [4, \infty)$ 

# Exercises

### **Section 1.1 – Functions**

(1-80) Find the Domain

1. 
$$f(x) = 7x + 4$$

**2.** 
$$f(x) = |3x - 2|$$

3. 
$$f(x) = 3x + \pi$$

**4.** 
$$f(x) = \sqrt{7}x + \frac{1}{2}$$

5. 
$$f(x) = -2x^2 + 3x - 5$$

**6.** 
$$f(x) = x^3 - 2x^2 + x - 3$$

7. 
$$f(x) = x^2 - 2x - 15$$

8. 
$$f(x) = 4 - \frac{2}{x}$$

**9.** 
$$f(x) = \frac{1}{x^4}$$

**10.** 
$$g(x) = \frac{3}{x-4}$$

11. 
$$y = \frac{2}{x-3}$$

**12.** 
$$y = \frac{-7}{x-5}$$

13. 
$$f(x) = \frac{x+5}{2-x}$$

**14.** 
$$f(x) = \frac{8}{x+4}$$

**15.** 
$$f(x) = \frac{1}{x+4}$$

**16.** 
$$f(x) = \frac{1}{x-4}$$

**17.** 
$$f(x) = \frac{3x}{x+2}$$

**18.** 
$$f(x) = x - \frac{2}{x-3}$$

**19.** 
$$f(x) = x + \frac{3}{x - 5}$$

**20.** 
$$f(x) = \frac{1}{2}x - \frac{8}{x+7}$$

**21.** 
$$f(x) = \frac{1}{x-3} - \frac{8}{x+7}$$

**22.** 
$$f(x) = \frac{1}{x+4} - \frac{2x}{x-4}$$

**23.** 
$$f(x) = \frac{3x^2}{x+3} - \frac{4x}{x-2}$$

**24.** 
$$f(x) = \frac{1}{x^2 - 2x + 1}$$

**25.** 
$$f(x) = \frac{x}{x^2 + 3x + 2}$$

**26.** 
$$f(x) = \frac{x^2}{x^2 - 5x + 4}$$

**27.** 
$$f(x) = \frac{1}{x^2 - 4x - 5}$$

**28.** 
$$g(x) = \frac{2}{x^2 + x - 12}$$

**29.** 
$$h(x) = \frac{5}{\frac{4}{x} - 1}$$

**30.** 
$$y = \sqrt{x}$$

**31.** 
$$f(x) = \sqrt{8-3x}$$

**32.** 
$$y = \sqrt{4x+1}$$

**33.** 
$$y = \sqrt{7 - 2x}$$

**34.** 
$$f(x) = \sqrt{8-x}$$

**35.** 
$$f(x) = \sqrt{3-2x}$$

**36.** 
$$f(x) = \sqrt{3+2x}$$

**37.** 
$$f(x) = \sqrt{5-x}$$

**38.** 
$$f(x) = \sqrt{x-5}$$

**39.** 
$$f(x) = \sqrt{6-3x}$$

**40.** 
$$f(x) = \sqrt{3x-6}$$

**41.** 
$$f(x) = \sqrt{2x+7}$$

**42.** 
$$f(x) = \sqrt{x^2 - 16}$$

**43.** 
$$f(x) = \sqrt{16 - x^2}$$

**44.** 
$$f(x) = \sqrt{9 - x^2}$$

**45.** 
$$f(x) = \sqrt{x^2 - 25}$$

**46.** 
$$f(x) = \sqrt{x^2 - 5x + 4}$$

**47.** 
$$f(x) = \sqrt{x^2 + 5x + 4}$$

**48.** 
$$f(x) = \sqrt{x^2 + 3x + 2}$$

**49.** 
$$f(x) = \sqrt{x^2 - 3x + 2}$$

**50.** 
$$f(x) = \sqrt{x-4} + \sqrt{x+1}$$

**51.** 
$$f(x) = \sqrt{3-x} + \sqrt{x-2}$$

**52.** 
$$f(x) = \sqrt{1-x} + \sqrt{4-x}$$

**53.** 
$$f(x) = \sqrt{1-x} - \sqrt{x-3}$$

**54.** 
$$f(x) = \sqrt{x+4} - \sqrt{x-1}$$

$$55. \quad f(x) = \frac{\sqrt{x+1}}{x}$$

**56.** 
$$g(x) = \frac{\sqrt{x-3}}{x-6}$$

**57.** 
$$f(x) = \frac{\sqrt{x+4}}{\sqrt{x-1}}$$

$$58. \quad f(x) = \frac{\sqrt{5-x}}{x}$$

$$59. \quad f(x) = \frac{x}{\sqrt{5-x}}$$

**60.** 
$$f(x) = \frac{1}{x\sqrt{5-x}}$$

**67.** 
$$f(x) = \frac{\sqrt{x-2}}{\sqrt{x+2}}$$

**75.** 
$$f(x) = \frac{4x}{6x^2 + 13x - 5}$$

**61.** 
$$f(x) = \frac{x+1}{x^3 - 4x}$$

**68.** 
$$f(x) = \frac{\sqrt{2-x}}{\sqrt{x+2}}$$

**76.** 
$$f(x) = \frac{\sqrt{2x-3}}{x^2 - 5x + 4}$$

$$62. \quad f(x) = \frac{\sqrt{x+5}}{x}$$

**69.** 
$$f(x) = \frac{x-4}{\sqrt{x-2}}$$

77. 
$$f(x) = \frac{x^2}{\sqrt{x^2 - 5x + 4}}$$

$$63. \quad f(x) = \frac{x}{\sqrt{x+5}}$$

**70.** 
$$f(x) = \frac{1}{(x-3)\sqrt{x+3}}$$

**78.** 
$$f(x) = \frac{x+2}{\sqrt{x^2+5x+4}}$$

**64.** 
$$f(x) = \frac{1}{x\sqrt{x+5}}$$

**71.** 
$$f(x) = \sqrt{x+2} + \sqrt{2-x}$$

**79.** 
$$f(x) = \frac{\sqrt{x+2}}{\sqrt{x^2+3x+2}}$$

**65.** 
$$f(x) = \frac{x+3}{\sqrt{x-3}}$$

72. 
$$f(x) = \sqrt{(x-2)(x-6)}$$
  
73.  $f(x) = \sqrt{x+3} - \sqrt{4-x}$ 

**80.** 
$$f(x) = \frac{\sqrt{2x+3}}{x^2+6x+5}$$

**66.** 
$$f(x) = \frac{\sqrt{x+3}}{\sqrt{x-3}}$$

**74.** 
$$f(x) = \frac{\sqrt{4x-3}}{x^2-4}$$

(81 – 97) Find and simplify the difference quotient  $\frac{f(x+h)-f(x)}{h}$  for the given function

**81.** 
$$f(x) = 9x + 5$$

**88.** 
$$f(x) = -5x - 7$$

**93.** 
$$f(x) = 2x^2 - x - 3$$

**82.** 
$$f(x) = 6x + 2$$

**89.** 
$$f(x) = 2x^2$$

**94.** 
$$f(x) = x^2 - 2x + 5$$

**83.** 
$$f(x) = 4x + 11$$

**90.** 
$$f(x) = 5x^2$$

**95.** 
$$f(x) = 3x^2 - 2x + 5$$

**84.** 
$$f(x) = 3x - 5$$
  
**85.**  $f(x) = -2x - 3$ 

**91.** 
$$f(x) = 3x^2 - 4x$$

**96.** 
$$f(x) = -2x^2 - 3x + 7$$

**86.** 
$$f(x) = -4x + 3$$

**92.** 
$$f(x) = 2x^2 - 3x$$

**97.** 
$$f(x) = \sqrt{x-3}$$

**87.** 
$$f(x) = 3x - 6$$

**98.** Let f(x) = 4x - 3 and g(x) = 5x + 7. Find each of the following and give the domain

a) 
$$(f+g)(x)$$

b) 
$$(f-g)(x)$$

c) 
$$(fg)(x)$$

$$d$$
)  $\left(\frac{f}{g}\right)(x)$ 

**99.** Let  $f(x) = 2x^2 + 3$  and g(x) = 3x - 4. Find each of the following and give the domain

a) 
$$(f+g)(x)$$
 b)  $(f-g)(x)$  c)  $(fg)(x)$ 

$$b) \quad (f-g)(x)$$

c) 
$$(fg)(x)$$

d) 
$$\left(\frac{f}{g}\right)(x)$$

**100.** Let  $f(x) = x^2 - 2x - 3$  and  $g(x) = x^2 + 3x - 2$ . Find each of the following and give the domain

a) 
$$(f+g)(x)$$

b) 
$$(f-g)(x)$$
 c)  $(fg)(x)$ 

c) 
$$(fg)(x)$$

d) 
$$\left(\frac{f}{g}\right)(x)$$

- **101.** Let  $f(x) = \sqrt{4x-1}$  and  $g(x) = \frac{1}{x}$ . Find each of the following and give the domain

  - a) (f+g)(x) b) (f-g)(x) c) (fg)(x)
- d)  $\left(\frac{f}{g}\right)(x)$
- **102.** Find (f+g)(x), (f-g)(x),  $(f \cdot g)(x)$ , and (f/g)(x) and the domain of  $f(x) = \sqrt{3-2x}$ ,  $g(x) = \sqrt{x+4}$
- **103.** Find (f+g)(x), (f-g)(x),  $(f \cdot g)(x)$ , and (f/g)(x) and the domain of  $f(x) = \frac{2x}{x-4}, \quad g(x) = \frac{x}{x+5}$
- **104.** Let  $f(x) = \sqrt{4x-1}$  and  $g(x) = \frac{1}{x}$ . Find each of the following and give the domain
  - e) (f+g)(x) f) (f-g)(x) g) (fg)(x)
- h)  $\left(\frac{f}{g}\right)(x)$

- **105.** Given that f(x) = x + 1 and  $g(x) = \sqrt{x + 3}$ 
  - a) Find (f+g)(x)
  - b) Find the domain of (f+g)(x)
  - c) Find: (f+g)(6)
- **106.** Given that  $f(x) = x^2 4$  and g(x) = x + 2
  - a) Find (f+g)(x) and its domain
  - b) Find (f/g)(x) and its domain
- **107.** Find  $(f \circ g)(x)$ ,  $(g \circ f)(x)$ , f(g(-2)) and g(f(3))

$$f(x) = 2x^2 + 3x - 4$$
,  $g(x) = 2x - 1$ 

**108.** Find  $(f \circ g)(x)$ ,  $(g \circ f)(x)$ , f(g(-2)) and g(f(3))

$$f(x) = x^3 + 2x^2$$
,  $g(x) = 3x$ 

**109.** Find  $(f \circ g)(x)$ ,  $(g \circ f)(x)$ , f(g(-2)) and g(f(3))

$$f(x) = |x|, \quad g(x) = -7$$

(110-139) For the given function; find:

- a) Find  $(f \circ g)(x)$  and the **domain** of  $f \circ g$
- b) Find  $(g \circ f)(x)$  and the **domain** of  $g \circ f$

**110.** f(x) = x - 3 and g(x) = x + 3

- **111.**  $f(x) = \frac{2}{3}x$  and  $g(x) = \frac{3}{2}x$
- **112.** f(x) = x 1 and  $g(x) = 3x^2 2x 1$
- **113.** f(x) = 3x 2 and  $g(x) = x^2 5$
- **114.**  $f(x) = x^2 2$  and g(x) = 4x 3
- **115.**  $f(x) = 4x^2 x + 10$  and g(x) = 2x 7
- **116.**  $f(x) = \sqrt{x}$  and g(x) = x + 3
- **117.**  $f(x) = \sqrt{x}$  and g(x) = 2 3x
- **118.** f(x) = 3x + 2 and  $g(x) = \sqrt{x}$
- **119.**  $f(x) = x^4$  and  $g(x) = \sqrt[4]{x}$
- **120.**  $f(x) = x^n$  and  $g(x) = \sqrt[n]{x}$
- **121.**  $f(x) = x^2 3x$  and  $g(x) = \sqrt{x+2}$
- **122.**  $f(x) = \sqrt{x-2}$  and  $g(x) = \sqrt{x+5}$
- **123.**  $f(x) = x^2 + 2$  and  $g(x) = \sqrt{3-x}$
- **124.**  $f(x) = x^5 2$  and  $g(x) = \sqrt[5]{x+2}$
- **125.**  $f(x) = 1 x^2$  and  $g(x) = \sqrt{x^2 25}$

- **126.** f(x) = 2x + 3 and  $g(x) = \frac{x-3}{2}$
- **127.** f(x) = 4x 5 and  $g(x) = \frac{x + 5}{4}$
- **128.**  $f(x) = \frac{4}{1-5x}$  and  $g(x) = \frac{1}{x}$
- **129.**  $f(x) = \frac{1}{x-2}$  and  $g(x) = \frac{x+2}{x}$
- **130.**  $f(x) = \frac{1}{1+x}$  and  $g(x) = \frac{1-x}{x}$
- **131.**  $f(x) = \frac{3x+5}{2}$  and  $g(x) = \frac{2x-5}{3}$
- **132.**  $f(x) = \frac{x-1}{x-2}$  and  $g(x) = \frac{x-3}{x-4}$
- **133.**  $f(x) = \frac{6}{x-3}$  and  $g(x) = \frac{1}{x}$
- **134.**  $f(x) = \frac{6}{x}$  and  $g(x) = \frac{1}{2x+1}$
- **135.** f(x) = 3x 7 and  $g(x) = \frac{x + 7}{3}$
- **136.**  $f(x) = \frac{2x+3}{x-4}$  and  $g(x) = \frac{4x+3}{x-2}$
- **137.**  $f(x) = \frac{2x+3}{x+4}$  and  $g(x) = \frac{-4x+3}{x-2}$
- **138.** f(x) = x + 1 and  $g(x) = x^3 5x^2 + 3x + 7$
- **139.** f(x) = x 1 and  $g(x) = x^3 + 2x^2 3x 9$

**140.** Given that f(x) = 2x - 5 and  $g(x) = x^2 - 3x + 8$ , find  $(f \circ g)(x)$ ,  $(g \circ f)(x)$  and their domain then find  $(f \circ g)(7)$ 

**141.** Given that  $f(x) = \sqrt{x}$  and g(x) = x - 1, find

- a)  $(f \circ g)(x) = f(g(x))$
- b)  $(g \circ f)(x) = g(f(x))$
- c)  $(f \circ g)(2) = f(g(2))$

**142.** Given that  $f(x) = \frac{x}{x+5}$  and  $g(x) = \frac{6}{x}$ , find

a) 
$$(f \circ g)(x) = f(g(x))$$

b) 
$$(g \circ f)(x) = g(f(x))$$

c) 
$$(f \circ g)(2) = f(g(2))$$

(143 - 167) Determine whether f is even, odd, or neither

**143.** 
$$f(x) = 3x^4 + 2x^2 - 5$$

**144.** 
$$f(x) = 8x^3 - 3x^2$$

**145.** 
$$f(x) = \sqrt{x^2 + 4}$$

**146.** 
$$f(x) = 3x^2 - 5x + 1$$

**147.** 
$$f(x) = \sqrt[3]{x^3 - x}$$

**148.** 
$$f(x) = |x| - 3$$

**149.** 
$$f(x) = x^3 - \frac{1}{x}$$

**150.** 
$$f(x) = -x^3 + 2x$$

**151.** 
$$f(x) = x^5 - 2x^3$$

**152.** 
$$f(x) = .5x^4 - 2x^2 + 6$$

**153.** 
$$f(x) = .75x^2 + |x| + 4$$

**154.** 
$$f(x) = x^3 - x + 9$$

**155.** 
$$f(x) = x^4 - 5x + 8$$

**156.** 
$$f(x) = x^3 + x$$

**157.** 
$$g(x) = x^2 - x$$

**158.** 
$$h(x) = 2x^2 + x^4$$

**159.** 
$$f(x) = 2x^2 + x^4 + 1$$

**160.** 
$$f(x) = \frac{1}{5}x^6 - 3x^2$$

**161.** 
$$f(x) = x\sqrt{1-x^2}$$

**162.** 
$$f(x) = x^2 \sqrt{1-x^2}$$

**163.** 
$$f(x) = 5x^7 - 6x^3 - 2x$$

**164.** 
$$f(x) = 5x^6 - 3x^2 - 7$$

**165.** 
$$f(x) = x^2 + 6$$

**166.** 
$$f(x) = 7x^3 - x$$

**167.** 
$$h(x) = x^5 + 1$$

**168.** 
$$f(x) = \begin{cases} 2+x & \text{if } x < -4 \\ -x & \text{if } -4 \le x \le 2 \\ 3x & \text{if } x > 2 \end{cases}$$
 Find:  $f(-5)$ ,  $f(-1)$ ,  $f(0)$ , and  $f(3)$ 

Find: 
$$f(-5)$$
,  $f(-1)$ ,  $f(0)$ , and  $f(3)$ 

**169.** 
$$f(x) = \begin{cases} -2x & \text{if } x < -3 \\ 3x - 1 & \text{if } -3 \le x \le 2 \\ -4x & \text{if } x > 2 \end{cases}$$
 Find:  $f(-5)$ ,  $f(-1)$ ,  $f(0)$ , and  $f(3)$ 

Find: 
$$f(-5)$$
,  $f(-1)$ ,  $f(0)$ , and  $f(3)$ 

170. 
$$f(x) = \begin{cases} x^3 + 3 & \text{if } -2 \le x \le 0 \\ x + 3 & \text{if } 0 < x < 1 \end{cases}$$
 Find:  $f(-5)$ ,  $f(-1)$ ,  $f(0)$ , and  $f(3)$ 
$$4 + x - x^2 \quad \text{if } 1 \le x \le 3$$

**171.** 
$$h(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & \text{if } x \neq 3 \\ 6 & \text{if } x = 3 \end{cases}$$
 Find:  $h(5)$ ,  $h(0)$ , and  $h(3)$ 

**172.** Graph the piecewise function defined by  $f(x) = \begin{cases} 3 & \text{if } x \le -1 \\ x - 2 & \text{if } x > -1 \end{cases}$ 

173. Sketch the graph 
$$f(x) = \begin{cases} x+2 & \text{if } x \le -1 \\ x^3 & \text{if } -1 < x < 1 \\ -x+3 & \text{if } x \ge 1 \end{cases}$$

174. Sketch the graph 
$$f(x) = \begin{cases} x-3 & \text{if } x \le -2 \\ -x^2 & \text{if } -2 < x < 1 \\ -x+4 & \text{if } x \ge 1 \end{cases}$$