THE EFFECT OF A CUT-OFF STRATEGY ON THE ALPHA-PRIME MEASURE

J. de Leeuw

In probabilistic concept learning experiments (de Klerk & Oppe 1966) stimuli are constructed in such a way that their projections on the loglikelihood axis X are distributed as follows (de Leeuw 1968)

$$f(x) = \frac{P}{\sqrt{2 \pi \alpha}} \exp \left\{ -\frac{1}{2} \left(\frac{x + \frac{1}{2} \alpha}{\sqrt{\alpha}} \right)^2 \right\} + \frac{(1 - P)}{\sqrt{2 \pi \alpha}} \exp \left\{ -\frac{1}{2} \left(\frac{x - \frac{1}{2} \alpha}{\sqrt{\alpha}} \right)^2 \right\}$$

Suppose that the subject classifies the stimuli according to the following rule: a stimulus is a positive instance of the concept if x > a, otherwise it is a negative instance of the concept. This strategy generates two distributions on the X-axis

$$g_1(x) = \begin{cases} K_1 f(x) & (x < a) \\ 0 & (x > a) \end{cases}$$

$$g_2(x) = \begin{cases} K_2 f(x) & (x > a) \\ 0 & (x < a) \end{cases}$$

Now define

$$\alpha' = \frac{\chi_2 - \chi_1}{\sqrt{\frac{1}{2}(\chi_1^2 + \chi_2^2)}}$$

with

and

The parameter ∞ ' is a function of the a priori probability P, the Mahanalobis distance ∞ and the place of the cut-off value a on the continuum.

Some definitions

$$k = (2 \text{ T})^{-\frac{1}{2}}$$

$$z_{1} = \frac{a + \frac{1}{2} \text{ C}}{\sqrt{\text{C}}}$$

$$z_{2} = \frac{a - \frac{1}{2} \text{ C}}{\sqrt{\text{C}}}$$

$$y_{1} = k \exp(-\frac{1}{2}z_{1}^{2})$$

$$y_{2} = k \exp(-\frac{1}{2}z_{2}^{2})$$

$$p_{1} = k \exp(-\frac{1}{2}x_{2}^{2}) dx$$

$$p_{2} = k \exp(-\frac{1}{2}x_{2}^{2}) dx$$

$$p_{2} = k \exp(-\frac{1}{2}x_{2}^{2}) dx$$

- 3 **-**

$$K_1 = \frac{1}{\int_{a}^{a} f(x)dx} = \frac{1}{Pp_1 + (1-P)p_2}$$

Because

$$\int_{-\infty}^{a} f(x)dx = kP \int_{-\infty}^{z_1} \exp(-\frac{1}{2}x^2)dx + k(1-P) \int_{-\infty}^{z_2} \exp(-\frac{1}{2}x^2)dx =$$

$$= Pp_1 + (1-P)p_2$$

Of course

$$\int_{a}^{+\infty} f(x)dx = 1 - \int_{-\infty}^{\pi} f(x)dx = 1 - Pp_{1} + (1-P)p_{2} = P(1-p_{1}) + (1-P)(1-p_{2})$$

which implies

$$K_2 = \frac{1}{P(1-p_1) + (1-P)(1-p_2)}$$

Where

$$T_{1} = k \int_{-\infty}^{z_{1}} (x \sqrt{\alpha} - \frac{1}{2}\alpha) \exp(-\frac{1}{2}x^{2}) dx =$$

$$= k \sqrt{\alpha} \int_{-\infty}^{z_{1}} x \exp(-\frac{1}{2}x^{2}) dx - \frac{1}{2}k\alpha \int_{-\infty}^{z_{1}} \exp(-\frac{1}{2}x^{2}) dx =$$

$$= -y_{1} \sqrt{\alpha} - \frac{1}{2}\alpha p_{1}$$

$$T_{2} = k \int_{-\infty}^{z_{2}} (x \sqrt{\alpha} + \frac{1}{2}\alpha) \exp(-\frac{1}{2}x^{2}) dx =$$

$$= -y_{2} \sqrt{\alpha} + \frac{1}{2}\alpha p_{2}$$

In the same way

$$h_2 = K_2 PT_3 + K_2 (1-P)T_4$$

where

$$T_{3} = y_{1} \sqrt{\alpha} - \frac{1}{2} \propto (1 - p_{1}) = y_{1} \sqrt{\alpha} - \frac{1}{2} \propto + \frac{1}{2} \propto p_{1}$$

$$T_{4} = y_{2} \sqrt{\alpha} + \frac{1}{2} \propto (1 - p_{2}) = y_{2} \sqrt{\alpha} + \frac{1}{2} \propto - \frac{1}{2} \propto p_{2}.$$

$$\int_{1}^{2} + \int_{1}^{2} = \int_{-\infty}^{a} x^{2} g_{1}(x) dx =$$

$$= K_{1} P \int_{-\infty}^{x^{2}} x^{2} f_{1}(x) dx + K_{1}(1-P) \int_{-\infty}^{a} x^{2} f_{2}(x) dx =$$

$$= K_{1} P T_{5} + K_{1}(1-P) T_{6}$$

$$T_{5} = k \int_{-\infty}^{z_{1}} (x \sqrt{\alpha - \frac{1}{2}\alpha})^{2} \exp(-\frac{1}{2}x^{2}) dx =$$

$$= k \alpha \int_{-\infty}^{z_{1}} x^{2} \exp(-\frac{1}{2}x^{2}) dx + \frac{1}{4}k \alpha^{2} \int_{-\infty}^{z_{1}} \exp(-\frac{1}{2}x^{2}) dx +$$

$$= -k\alpha \sqrt{\alpha} \int_{-\infty}^{z_{1}} \exp(-\frac{1}{2}x^{2}) dx$$

Now

$$k \int_{-\infty}^{z_1} x^2 \exp(-\frac{1}{2}x^2) dx = -z_1 y_1 + k \int_{-\infty}^{z_1} \exp(-\frac{1}{2}x^2) dx = -z_1 y_1 + p_1.$$

Thus

$$T_5 = -z_1 y_1 \propto + p_1 \propto + \frac{1}{4} \alpha^2 p_1 + y_1 \propto \sqrt{\alpha}$$

$$T_6 = -z_2 y_2 \propto + p_2 \alpha + \frac{1}{4} \propto p_2 - y_2 \propto \sqrt{\alpha}$$

In the same way

$$\chi_{2}^{2} + \chi_{2}^{2} = K_{2}PT_{7} + K_{2}(1-P)T_{8}$$

where

$$T_{7} = \alpha + \alpha z_{1}y_{1} - \alpha p_{1} - y_{1}\alpha \sqrt{\alpha + \frac{1}{4}}\alpha^{2} - \frac{1}{4}\alpha^{2}p_{1}$$

$$T_{8} = \alpha + \alpha z_{2}y_{2} - \alpha p_{2} + y_{2}\alpha \sqrt{\alpha + \frac{1}{4}}\alpha^{2} - \frac{1}{4}\alpha^{2}p_{2}$$

- 6 -

In the special case that a = 0 and $P = \frac{1}{2}$ we have the following simplifications:

$$z_1 = -z_2 = dof^z$$
 $p_1 = 1 - p_2 = dof^p$
 $K_1 = K_2 = 2$
 $y_1 = y_2 = dof^y$
 $y_1 = y_2 = dof^y$

- 7 -

Take the limit case $\sqrt{\alpha} \rightarrow \infty$, then $y_1, y_2 \rightarrow 0$; $p_1 \rightarrow 1$; $p_2 \rightarrow 0$; $\mathbb{X}_{1} \to \mathbb{P}^{-1}$; $\mathbb{K}_{2} \to (1-\mathbb{P})^{-1}$; $\mathbb{T}_{1} \to -\frac{1}{2} \propto$; $\mathbb{T}_{4} \to +\frac{1}{2} \propto$; $\mathbb{T}_{2}, \mathbb{T}_{3}, \mathbb{T}_{6}, \mathbb{T}_{7} \to 0$; $T_5, T_8 \rightarrow \frac{1}{4} \propto ^2 + \propto$.

In other words $\alpha \rightarrow \sqrt{\alpha}$.

lmi s'= \(\frac{8}{\pi-2} \sim 2.6472. - 8 -

In table I and figure I values of α' for various values of d' are given, in the special case that a = 0. Obviously the conclusion from these results is that for small values of d' ($\langle 1 \rangle$ the α '-measure does not even give ordinal information about the distance of the populations. For intermediate values of d' (1 < d' < 5) the \propto '-scale is a strictly monotone transformation of the d'-scale, and for d' > 5 the two measures are numerically identical (that is to say: within the usual limits of precision, see section 7).

- 9 -

In table II the X '-values are given for some values of a, in the special case that d' = 2. The conclusion seems to be, that the location of the cut-off value (i.e. the response bias) has but little effect en ∞ ', even in the most perverse cases (a = -4). Eosults for the more plausible case that a = $-\frac{1}{4}$ d' are given in table III for various values of d'.

- 10 -

In the case of a cut-off strategy the confusion matrix for the two concepts and the two responses becomes

(Note that the a priori probabilities of the concepts are irrelevent for this confusion matrix). The two parameters of Luce's choice model for forced-choice detection experiments (Luce 1959, 1963) are given by

As is pointed out by Luce the negative logarithm of \ref{point} can be compared with the d'-parameter of signal detection theory. The Tanner & Swets \ref{point} -parameter is defined as

$$\beta = \frac{f_1(a)}{f_2(a)} = \exp\left\{-\frac{1}{2}(\frac{a+\frac{1}{2}\alpha}{\sqrt{\alpha}})^2 + \frac{1}{2}(\frac{a-\frac{1}{2}\alpha}{\sqrt{\alpha}})^2\right\} = \exp(-a)$$

or

$$-\ln \beta = a$$

This makes it reasonable to compare the logarithm of b with a. Both \uparrow and b are measured on ratio scales, which means that the unit of measurement is arbitrary. We have taken all logarithms to the tase 10, and we have scaled $-\log \uparrow$ and \log b afterwards by minimizing some least squares criterion.

- 11 -

In the special case that a=0 we have the following simplifications

which means that $\log b = 0 = -\ln \beta = a$ (as it should be).

- 12 -

In table IV and figure II values of $-A\log \eta$ for various values of d'are given, in the special case that a=0. If we compare these results with those in table I and figure I, it is clear that η does a better job than χ ', especially in the lower regions of the scale. In table V and figures IIIa and IIIb, the same cases are treated as in table II. These figures suggest that η is more sensitive to extreme response bias, but in the more moderate cases treated in table III this effect is neglectable (table VI, figures IVa and IVb).

INTERI: CASE a=0 AND $P=\frac{1}{2}$

≛*	η_2	X	α'
- · <u>·</u>	3.3799	0.0600	2.6600
C.2	0.1604	0.1212	2.6469
1.3	3.2422	0.1825	2.6542
I . #	0.3254	0.2460	2.6455
1:5	0.4114	0.3105	2.6499
3.6	0.5001	0.3772	2.6516
0.7	0.5923	0.4463	2.6543
3.8	0.6888	0.5176	2.6615
0.9	0.7895	0.5922	2.6663
1.0	0.8958	0.6690	2.6780
4.5	1.5186	1.0998	2.7616
2.0	2.3332	[*] 1.5988	2.9187
2.5	3.3780	2.1459	3.1483
3.0	4.6758	2.7179	3.4407
5.0	12.5200	4.9497	5.0589
10.0	50.0000	10.0000	10.0000

TABLE II: CASE d'=2 AND $P=\frac{1}{2}$

2	h_1	1/2	X 2	X 2 2	$\bar{\mathbf{x}}^{1}$	∞^{1}
-4.0000	- 5.0475	0.4389	0.7827	6.2198	1.8712	2.9320
-3.0000	-4.2701	0.7974	1.0657	5.2545	1.7777	2.8506
-2.0000	-3.5582	1.2594	1.4434	4.2540	1.6878	2.8544
-1.0000	-2.9178	1.7818	1.9304	3.3320	1.6221	2.8972
0.0000	- 2.3332	2.3332	2.5562	2.5562	1.5988	2.9187

TABLE III: CASE $a = -\frac{1}{4}d$! AND $P = \frac{1}{2}$							
<u> </u>	71	η_2	X 1	X 2/2	$\bar{\chi}^{1}$	ox'	
0.5	-0.4517	0.3726	0.0930	0.0985	0.3095	2.6633	
1.0	-1.0589	0.7439	0.3890	0.5139	0.6719	2.6831	
1.5	-1.8747	1.1895	0.9845	1.4790	1.1099	2.7608	
2.0	-2.9178	1.7818	1.9305	3.3320	1.6221	2.8972	
3.0	-5.6311	3.6430	5.0302	11.1356	2.8430	3.2621	
10.0	-50.1740	49.5560	95.6711	131.0593	10.6474	9.3666	
1) -	$\sqrt{\frac{1}{1/\sqrt{2}}}$. 21					

1)
$$\bar{y} = \sqrt{\frac{1}{2}(\chi^2 + \chi^2)}$$

TABLE IV: CASE a=0

<u> </u>	5	7	-A ₁ log
: <u>.</u> :	0.5199	0.9234	0.0847
1.2	0.5398	0.8525	0.1697
0.3	0.5596	0.7870	0.2547
2.4	○ . 5793	0.7262	0.3402
0.5	0.5987	0.6703	0.4254
0.6	0.6179	0.6184	0.5111
0.7	0.6368	0.5704	0.5971
8.0	0.6554	0.5258	0.6838
0.9	0.6736	0.4846	0.7683
1.0	0.6915	0.4461	0.8587
1. 5	0.7734	0.2930	1.3056
2.3	0.8413	0.1886	1.7744
2.5	0.8944	0.1181	2.2723
3.0	0.9332	0.0716	2.8045
5.0	0.9938	0.0062	5.4066
10.0	1.0000	0.0000	

TABLE V: CASE d'=2

a	P ₁	P2	h	ъ	$-A_2\log\eta$	A_3 logb
-4.COOO	0.1587	0.0013	0.0831	0.0141	2.4577	-4.0843
-3.0000	0.3085	0.0062	0.1183	0.0529	2.1087	-3.0377
-2.0000	0.5000	0.0228	0.1526	0.1526	1.8571	-1.8016
-1.0000	0.6915	0.0668	0.1786	0.3942	1.7018	-0.8922
0.0000	0.8413	0.1587	0.1887	1.0000	1.6474	0.0000

THREE VI: CASE $a = -\frac{1}{4}d$!

<u>.</u> 1	P ₁	P_2	7	Ъ	$-A_4\log \eta$	A ₅ logb
0.5	0.5500	0.3540	0.6696	0.8184	0.4474	-0.2498
4.0	0.5987	0.2266	0.4432	0.6611	0.9076	-0.5100
<u></u>	0.6460	0.1304	0.2867	0.5231	1.3935	-0.8080
2,0	0.6915	0.0668	0.1787	0.4005	1.9078	-1.1411
3.0	0.7734	0.0122	0.0600	0.2052	3.1377	-1.9750
10.0	0.9938	0.0000	0.0000	0.0000	0	- 0

Note:

 $A_2 = 2.4491$; $A_2 = 2.2068$; $A_3 = 2.2748$; $A_4 = 2.8715$; $A_5 = 2.5681$ cf: $1/\log e = 2.3003$.

Figure I.

Figure II.

Figure IIIb.

Figure IVa.

Figure IVb.

- Tex, L.F.W. & Oppe, S. (1966): Probabilistic Concept Learning, Report No. E 013-66, Psychological Institute of Leiden.
- Te Leer, J. (1968): Probabilistic Concept Learning. Research Note RN 002-68, Psychological Institute of Leiden.
- Large E.C. (1959): Individual choice behaviour, New York, Wiley.
- Last. E.D. (1963): Detection and Rocognition. In Luce, R.D., Bush, R.R. & Galanter, E. (eds.) Handbook of Mathematical Psychology, volume I, New York, Wiley.