SAMPLE MIDTERM 1-STOCHASTIC PROCESSES

PIERRE C BELLEC

- This document in PDF: https://github.com/bellecp/CC-BY-SA-teaching-material/blob/master/stochastic_processes/midterm-sample-exam-1.pdf
- Source code (markdown/latex): https://github.com/bellecp/CC-BY-SA-teaching-material/blob/master/stochastic_processes/midterm-sample-exam-1.md
- License: CC-BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0/

Length: 1h and 20 minutes.

Problem 1: Unicity of the optimal coupling. Consider two distributions on $\{1, 2, 3, 4\}$ given by

$$\mu = \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$$
 and $\nu = \left(\frac{1}{8}, \frac{3}{8}, \frac{1}{8}, \frac{3}{8}\right)$.

- 1. Provide an optimal coupling of (μ, ν) as a 4×4 matrix (it does not matter whether you provide the matrix or its transpose).
- 2. Provide another optimal coupling of (μ, ν) , **different** than the one obtained in question 1. Highlight (with color, a circle or otherwise) the entries of the matrix that are different from your answer in question 1. Conclude that the optimal coupling is not always unique.
- 3. Provide, as a 4×4 matrix, the coupling of (μ, ν) for which the two coordinates are independent.

Problem 2: A metropolis chain. Consider a connected undirected graph G = (V, E). We consider a base chain on $\mathcal{X} = V \times V$ that consists of two particles moving as a simple random walk on the graph, independently of each other. In other words

$$\Psi((u_1, u_2), (v_1, v_2)) = 1/(|N(u_1)| |N(u_2)|)$$
 if both $v_1 \in N(u_1), v_2 \in N(u_2)$,

and

$$\Psi((u_1, u_2), (v_1, v_2)) = 0 \text{ if } v_1 \notin N(u_1) \text{ or } v_2 \notin N(u_2),$$

for any four vertices u_1, u_2, v_1, v_2 , where $N(v) \subset V$ is the set of neighbors of a vertex v and |N(v)| the cardinality of N(v). (A vertex v is not a neighbor of itself so that $v \notin N(v)$ always holds.) We are interested in constructing a Markov Chain on $\mathcal{X} = V \times V$ with stationary distribution

$$\forall (u_1, u_2) \in V \times V,$$
 $\pi((u_1, u_2)) = \begin{cases} 0 & \text{if } u_1 = u_2, \\ 1/Z & \text{if } u_1 \neq u_2, \end{cases}$

where Z > 0 is a normalizing constant not depending on u_1, u_2

1. Is the base chain symmetric? (Prove or disprove).

2. If you apply the Metropolis scheme to construct a Chain with stationary distribution π from the base chain Ψ , what is the acceptance probability

$$a((u_1, u_2), (v_1, v_2))$$

to accept a move from the base chain? Clearly write and simplify $a((u_1, u_2), (v_1, v_2))$ and verify that the detailed balance equations are satisfied.

Problem 3: Two irreducible and aperiodic chains that move independently will eventually meet. Consider a transition matrix P and the transition matrix Q over the set $\mathcal{X} \times \mathcal{X}$ defined by

$$Q((x_1, x_2), (y_1, y_2)) = P(x_1, y_1)P(x_2, y_2).$$

In words, in the chain Q, each coordinate is updated independently according to P. Denote by $(X_t, Y_t)_{t\geq 0}$ a Markov chain valued in $\mathcal{X} \times \mathcal{X}$ with transition matrix Q (X_t is the first coordinate, Y_t is the second coordinate).

We assume that P is a periodic and irreducible, so that by a result of Chapter 1, there exists an integer r>0 and positive real $\epsilon>0$ such that

$$\forall t \ge r, \forall x, y \in \mathcal{X}, \quad P^t(x, y) = \mathbf{P}_x[X_t = y] \ge \epsilon > 0.$$

- 1. Show that Q is irreducible.
- 2. Show that Q is a periodic. In the next question you may use without proof the following fact:

Fact I: if \bar{P} is an irreducible transition matrix of a Markov Chain $(M_t)_{t\geq 0}$ on a set $\bar{\mathcal{X}}$, then there exists an integer $\bar{r}>0$ and real number $\bar{\epsilon}\in(0,1)$ such that for any integer $k\geq 1$,

$$\mathbf{P}_{\bar{x}}(\tau_{\bar{y}}^+ > k\bar{r}) \le (1 - \bar{\epsilon})^k \quad \text{where} \quad \tau_{\bar{y}}^+ = \min\{t \ge 1 : M_t = \bar{y}\},$$

for any two states $\bar{x}, \bar{y} \in \bar{\mathcal{X}}$.

3. Using the Markov Chain $(X_t, Y_t)_{t\geq 0}$ from the previous page, show that

$$\forall k \ge 1, \quad \max_{x,y \in \mathcal{X}} \|P^{kr}(x,\cdot) - P^{kr}(y,\cdot)\|_{TV} \le \alpha^k$$

for some $\alpha \in (0,1)$ and some integer r > 0.

4. (Extra credit question, if you have time). Prove Fact I above.