Learned Convex Regularizers for Inverse Problems

Marko Lalovic

Mathematical Methods for Medical Imaging Seminar

July 12, 2022

Motivational Examples

Example: Find solution of y = Ax, $A : \mathbb{R}^n \to \mathbb{R}^m$, m < n

Motivational Examples - Continued

Examples:

- Generate realistic images in HD ¹
- Extract main building blocks of images ²

¹Tero Karras et al. "Progressive Growing of GANs for Improved Quality, Stability, and Variation", arxiv 2018

²Longfei Liu et al. "X-GANs: Image Reconstruction Made Easy for Extreme Cases", arxiv 2018 Marko Lalovic [.5em] Mathematical Methods

Introduction

Main ideas ³:

- Use deep learning to solve inverse problems
- With adaptation: enforce convexity on the learned regularizer
- Be pragmatic: lack of large amount of paired data

More motivation:

- Can show some convergence guarantees
- Design provable reconstruction algorithms
- This is still less explored and poorly understood

³Subhadip Mukherjee, Sören Dittmer, Zakhar Shumaylov, Sebastian Lunz, Ozan Öktem, Carola-Bibiane Schönlieb "Learned Convex Regularizers for Inverse Problems", arxiv 2021

Inverse Problems in Computed Tomography

ullet Estimate model parameters $oldsymbol{x}^* \in \mathbb{X}$ from data

$$oldsymbol{y} = \mathcal{A}(oldsymbol{x}^*) + oldsymbol{e} \in \mathbb{Y}$$

- Forward operator $\mathcal{A}: \mathbb{X} \to Y$
- ullet X, Y Hilbert spaces (after discretization, $\mathbb{X}=\mathbb{R}^n$ and $\mathbb{Y}=\mathbb{R}^m$)

Variational Reconstruction

$$\min_{\boldsymbol{x} \in \mathbb{X}} \mathcal{L}_{\mathbb{Y}} \left(\mathcal{A}(\boldsymbol{x}), \boldsymbol{y} \right) + \lambda \mathcal{R}(\boldsymbol{x})$$

Where:

- ullet $\mathcal{L}_{\mathbb{Y}}: \mathbb{Y} imes \mathbb{Y} o \mathbb{R}$ measures data fidelity
- ullet $\mathcal{R}: \mathbb{X} \to \mathbb{R}$ penalizes undesirable solutions

Classical Reconstruction Methods

- Image-size: 160 x 160, angles: 40 (20), degrees: 0 180 (90)
- ullet TV promotes sparsity in the image gradient: $\mathcal{R}(oldsymbol{x}) = \|
 abla oldsymbol{x}\|_1$

 $^{^{4} {\}it https://github.com/markolalovic/learned-convex-regularizers}$

Statistical Bayesian Formulation

• \pmb{x}^* and \pmb{y} are modeled as realizations of X and Y, which are \mathbb{X} - and \mathbb{Y} -valued random variables, respectively and

$$Y = \mathcal{A}(X) + \boldsymbol{e}$$

- Data likelihood: $\pi_{Y|X}(Y=y|X=\pmb{x}^*)=\pi_{\mathsf{noise}}\left(\pmb{y}-\mathcal{A}(\pmb{x}^*)\right)$
- Prior: $\pi_X(\boldsymbol{x})$
- Posterior distribution:

$$\pi_{X|Y}(\boldsymbol{x}|\boldsymbol{y}) = \frac{\pi_{Y|X}(\boldsymbol{y}|\boldsymbol{x})\,\pi_{X}(\boldsymbol{x})}{Z(y)}$$

Supervised Learning

- \bullet Training data: i.i.d. samples $\{\pmb{x}_i,\pmb{y}_i\}_{i=1}^N$ from the joint distribution $\pi_{X,Y}$
- Parametric reconstruction operator: $G_{\theta}: \mathbb{Y} \to \mathbb{X}, \ \theta \in \Theta$
- Loss function: $\mathcal{L}_{\mathbb{X}}: \mathbb{X} \times \mathbb{X} \to \mathbb{R}_+$
- $\bullet \ \, \mathsf{Risk minimization:} \ \, \min_{\theta \in \Theta} \mathbb{E}_{\pi_{X,Y}} \left[\mathcal{L}_{\mathbb{X}}(X,\mathcal{G}_{\theta}(Y)) \right]$
- \bullet Empirical risk minimization: $\min_{\theta \in \Theta} \sum\limits_{i=1}^N \mathcal{L}_{\mathbb{X}}(x_i, \mathcal{G}_{\theta}(y_i))$
- Example:
 - Using 0-1 loss and computing the mode, leads to so-called maximum a-posterior probability (MAP) estimate
 - Using Gibbs-type prior $\pi_X(\mathbf{x}) \propto \exp(-\lambda \mathcal{R}(\mathbf{x}))$ is equivalent to classical variational reconstruction framework.

Unsupervised Learning

Proposed Approach

Keep the variational framework and only try to learn a suitable regularizer from the training data

Where:

- ullet Training data: i.i.d. samples $\{m{x}_i\}_{i=1}^{N_X}$ from π_X and $\{m{y}_i\}_{i=1}^{N_Y}$ from π_Y
- Empirical risk minimization approach cannot be applied
- Statistical characterization is an open problem

Adversarial Learning

We want to:

- Train regularization functional
- To suppress characteristic artifacts in the reconstruction
- Because of the ill-posedness of the forward operator

How to do this:

- Minimize distributional distance between:
 - True images, for example by using phantom images
 - Naive reconstructions, by using the pseudo-inverse on the data

Wasserstein Distance

ullet The Wasserstein-1 distance between two distributions \mathbb{P}_1 and \mathbb{P}_2

$$\mathsf{Wass}(\mathbb{P}_1,\mathbb{P}_2) := \inf_{\gamma \in \Pi(\mathbb{P}_1,\mathbb{P}_2)} \|x_1 - x_2\| \, d\gamma(x_1,x_2)$$

Minimal path length to transport mass \mathbb{P}_1 to \mathbb{P}_2 ⁵

⁵(By Lambdabadger licensed under CC BY-SA 4.0)

Adversarial Regularizer

- Variational reconstruction: $\min_{x \in \mathbb{X}} \|\mathcal{A}(x) y\|_2^2 + \lambda \mathcal{R}_{\theta}(x)$
- Two-step sequential approach:
 - Learning:

$$\theta^* = \operatorname*{arg\,min}_{\theta} \mathbb{E}_{\pi_X} \left[\mathcal{R}_{\theta}(X) \right] - \mathbb{E}_{\mathcal{A}_{\#}^{\dagger} \pi_Y} \left[\mathcal{R}_{\theta}(X) \right]$$
 subject to $\mathcal{R}_{\theta} \in \mathbb{1}$ - Lipschitz

- Reconstruction: $\hat{x} = \operatorname*{arg\,min}_{{m{x}} \in \mathbb{X}} \left\| \mathcal{A}({m{x}}) {m{y}} \right\|_2^2 + \lambda \mathcal{R}_{\theta^*}({m{x}})$
- The 1-Lipschitz constraint is enforced by adding a gradient-penalty term

$$\lambda_{gp} \mathbb{E}_{\pi_{X^{(\epsilon)}}} \left[\left(\left\| \nabla R_{\theta} \left(X^{(\epsilon)} \right) \right\|_{2} - 1 \right)^{2} \right]$$

ullet $X^{(\epsilon)}$ is uniformly sampled on the line-segment between X and $\mathcal{A}^\dagger Y$

Importance of 1-Lipschitz Constraint

- ullet View $\mathcal{R}_{ heta}$ as a classifier that learns to discriminate π_X from $\pi_{\mathcal{A}_{\#}^{\dagger}\pi_Y}$
- Suppose the variational problem is solved via gradient-descent, starting with \mathbf{x}_0 such that $\nabla_{\mathbf{x}} \left(\| \mathcal{A}(\mathbf{x} \mathbf{y} \|_2^2 \right)_{\mathbf{x} = \mathbf{x}_0} = 0$
- ullet x_0 is a sample from $\pi_{\mathcal{A}_{\!\#}^\dagger\pi_Y}$ so $\mathcal{R}_{\! heta}(\pmb{x}_0)$ is large
- $\boldsymbol{x} = \boldsymbol{x}_0 \eta \nabla \mathcal{R}_{\theta}(\boldsymbol{x}_0)$
- ullet The output of $\mathcal{R}_{ heta}$ does not change much going from $oldsymbol{x}_0$ to $oldsymbol{x}_1$

$$|\mathcal{R}_{\theta}(\boldsymbol{x}_1) - \mathcal{R}_{\theta}(\boldsymbol{x}_0)| \le ||\boldsymbol{x}_1 - \boldsymbol{x}_0|| = \eta ||\nabla \mathcal{R}_{\theta}(\boldsymbol{x}_0)||_2 \le \eta$$

• Preventing learning sharp boundaries

Adversarial Convex Regularizer

• Let $\mathcal{R}_{\theta}(x) = \mathcal{R}'_{\theta}(x) + \rho_0 \|x\|_2^2$ where \mathcal{R}'_{θ} is convex and Lipschitz

Results:

- Existence and uniqueness: follow by strong-convexity
- Stability: $\hat{x}_{\lambda}(y)$ is continuous in y, in particular (\mathcal{A} is assumed to be linear and bounded, β_1 is the operator norm)

$$\left\|\hat{x}_{\lambda}(y^{\delta_1}) - \hat{x}_{\lambda}(y)\right\|_2 \le \frac{\beta_1 \delta_1}{\lambda \rho_0} \quad \text{if} \quad \left\|y^{\delta_1} - y\right\|_2 \le \delta_1$$

• Convergence: $\hat{x}_{\lambda}(y) \to x^{\dagger}$ if $\lambda \to 0$ and $\frac{\delta}{\lambda} \to 0$ when $\delta = \| {\pmb e} \|_2 \to 0$, where

$$x^{\dagger} = \operatorname*{arg\,min}_{x \in \mathbb{X}} \mathcal{R}_{\theta}$$
 subject to $\mathcal{A}(x) = y^0$

• Implies existence of convergent sub-gradient algorithm

Adversarial Convex Regularizer - Architecture

From convex theory:

- Let $f_i:\mathbb{R}\to\mathbb{R}$ be convex, then so is $\sum_i \beta_i f_i$ for $\beta_i\geq 0$
- Let $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ be convex, $f_1(x) \le f_1(y)$ whenever $x \le y \implies f_1 \circ f_2$ is convex:

$$f_2(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f_2(x_1) + (1 - \lambda)f(x_2)$$

$$\implies (f_1 \circ f_2)(\lambda x_1 + (1 - \lambda)x_2) \le f_1(\lambda f_2(x_1) + (1 - \lambda)f_2(x_2))$$

$$\le \lambda (f_1 \circ f_2)(x_1) + (1 - \lambda)(f_1 \circ f_2)(x_2)$$

Input Convex Neural Network (ICNN):

- $z^{(1)}(\mathbf{x}) = \phi\left(W_x^{(1)}x + b^{(1)}\right)$
- ϕ acts component-wise such as Rectified Linear Unit (ReLU) $x \mapsto \max(0, x)$ is convex and monotonically non-decreasing

Adversarial Convex Regularizer - Architecture Contd.

- $z^{(2)}(\boldsymbol{x}) = \phi\left(W_z^{(1)}z^{(1)}(x) + W_x^{(2)}x + b^{(2)}\right)$, $W_z^{(1)} \ge 0$, is convex in x
- $z^{(i+1)}(\mathbf{x}) = \phi\left(W_z^{(i)}z^{(i)}(x) + W_x^{(i+1)}x + b^{(i+1)}\right), i = 1, 2, \dots, L = 10$
- $\mathcal{R}_{\theta} = \sum_{j} z_{j}^{(L+1)}(x) + \rho'_{0} \sum_{k=1}^{M} ||U^{(k)}x||_{1} + \rho_{0} ||x||_{2}^{2}$
- $\sum_j z_j^{(L+1)}(x)$ is convex and filter-bank term is convex, norms are penalized to impose 1-Lipschitz condition
- The squared ℓ_2 term makes the regularizer strongly-convex

Convergence of sub-gradient method

• We have objective functional of the form:

$$J(\boldsymbol{x}) = \underbrace{\|\mathcal{A}(\boldsymbol{x}) - \boldsymbol{y}\|_2^2 + \lambda \rho_0 \|\boldsymbol{x}\|_2^2}_{f(\boldsymbol{x}) \text{ smooth, strongly-convex}} \quad + \underbrace{\lambda \mathcal{R}_{\theta}'(\boldsymbol{x})}_{\text{g}(\boldsymbol{x}) \text{ convex, Lipschitz}}$$

• The sub-gradient method

$$x_{k+1} = x_k - \eta_k \left(\nabla f(x_k) + u_k \right)$$
 where $u_k \in \partial g(x_k)$

- Converges:
 - Let $e_k = \|x_k \hat{x}\|_2^2$, derive the inequality $e_{k+1} \leq e_k \mathsf{Quant}.(\lambda, \rho_0, L_\nabla)$, if

$$\eta_k = \lambda \rho_0 \frac{\|x_k - \hat{x}\|_2^2}{\|\nabla f(x_k) + u_k\|_2^2}$$

 Take the limit on both sides, limit exists by monotonicity and boundedness from below

Limited-Angle CT Results

Not Regularized

Adversarial Regularizer

TV Regularized

Convex Adv. Regularizer

True Image

Marko Lalovic [.5em] Mathematical Methods

Learned Convex Regularizers

Open Questions

- Convex regularizers often underestimate the high-amplitude components of the true image
- The convexity does not seem to be a significant restriction
- There are 23 citations according to Google:

Wasserstein Distance - Justification

• The Kantorovich duality allows to equivalently characterize via

$$\mathsf{Wass}(\mathbb{P}_n,\mathbb{P}_r) := \sup_{f \in 1 - \mathsf{Lip}} \varepsilon_{U \sim \mathbb{P}_n} f(U) - \varepsilon_{U \sim \mathbb{P}_r} f(U)$$

ullet Denote now by f^* an optimizer of the dual formulation of the Wasserstein distance

Assumptions

- ullet Data Manifold Assumption (DMA): The measure \mathbb{P}_r is supported on a weakly compact set \mathcal{M}
- Denote by $P_{\mathcal{M}}: D \to \mathcal{M}, \ u \mapsto \arg\min_{v \in \mathcal{M}} \|u v\|$ the projection onto the data manifold
- Projection Assumption: $(P_{\mathcal{M}})_{\#}(\mathbb{P}_n) = \mathbb{P}_r$
- Corresponds to a low-noise assumption noise level low in comparison to manifold curvature

Manifold Lemma

Theorem

Assume DMA and low-noise assumption. Then the distance function to the data manifold

$$u \mapsto \min_{v \in \mathcal{M}} \|u - v\|_2$$

is a maximizer to the Wasserstein Loss

$$\sup_{f \in 1-\mathsf{Lip}} \mathbb{E}_{U \sim \mathbb{P}_n} f(U) - \mathbb{E}_{U \sim \mathbb{P}_r} f(U)$$

Approximating f^*

Idea from Wasserstein Generative Adversarial Networks (WGANs)

- Use a neural network (critic) to approximate f^*
- Train the network with the loss

$$\mathbb{E}_{U \sim \mathcal{P}_r} [\Psi_{Theta}(U)] - \mathbb{E}_{U \sim \mathcal{P}_n} [\Psi_{Theta}(U)] + \mu \cdot \mathbb{E} \left[(\|\nabla_u \Psi_{\Theta}(U)\|_* - 1)_+^2 \right]$$

• 1-Lipschitz constraint into penalty term (WGAN-GP)