${\sf P}$ азложение z_k

Разложение функции Ламберта из статьи

Следующая формула взята из статьи "On the Lambert W Function" (DOI:10.1007/BF02124750), формула (4.20):

$$W_k(z) = \log z + 2\pi i k - \log(\log z + 2\pi i k) + \sum_{k=0}^{\infty} \sum_{m=1}^{\infty} c_{km} \log^m (\log z + 2\pi i k) (\log z + 2\pi i k)^{-k-m}$$
(1)

Для того, чтоб ветви функции Ламберта совпадали с общепринятыми, ветви $\log z$ необходимо так же брать привычными — с разрезом на отрицательных числах и нулевой мнимой частью при положительных z. Коэффициенты c_{km} определены в статье после формулы (4.18):

$$c_{km} = \frac{(-1)^k}{m!}c(k+m,k+1) \tag{2}$$

c(k+m,k+1) — это беззнаковые числа Стирлинга первого рода. В вольфраме они обозначаются как "Abs@StirlingS1[k+m, k+1]".

В нашей же задаче, требуется определить $z_k=\frac{i}{2}W_k(-2i\alpha\gamma)$. Обозначая $z=-2i\alpha\gamma$, k+m=n, получаем:

$$-2iz_{k} = W_{k}(z)$$

$$= \log z + 2\pi i k - \log(\log z + 2\pi i k) + \dots$$

$$\dots + \sum_{n=1}^{\infty} \sum_{m=1}^{n} \frac{(-1)^{n-m}}{m!} c(n, n-m+1) \frac{\log^{m}(\log z + 2\pi i k)}{(\log z + 2\pi i k)^{n}}$$
(3)

В такой форме наглядно видно разложение по малости остаточных членов. В дальнейшем будет видно, что большим параметром при разложении здесь является номер функции Ламберта — k. Ещё можно использовать знаковые числа Стирлинга $(s(n,k)=(-1)^{n-k}c(n,k)\Rightarrow (-1)^{n-m}c(n,n-m+1)=(-1)^{n+1}s(n,n-m+1))$, однако в этом нет пока необходимости.

Метод перевала с остаточными членами

Общая теория метода перевала

Следует быть осторожным при использовании чужих формул по методу перевала. Сейчас будет сформулировано утверждение под названием "Perron's formula" 1 . Это формула для нахождения интеграла через перевальную точку z_0 вдоль кривой наискорейшего спуска γ .

$$\int_{\gamma} e^{\lambda f(z)} dz = e^{\lambda f(z_0)} \sum_{n=0}^{\infty} \Gamma\left(n + \frac{1}{2}\right) \frac{c_{2n}}{\lambda^{n + \frac{1}{2}}}$$

$$c_{2n} = \frac{1}{(2n)!} \left[\left(\frac{d}{dz}\right)^{2n} \left\{ \frac{(z - z_0)^2}{f(z) - f(z_0)} \right\}^{n + \frac{1}{2}} \right]_{z = z_0}$$
(4)

¹Формула (2.5) в файле "Метод перевала с остаточными членами". Сразу рассмотрим более частный случай, имеющий непосредственное влияние на нашу задачу. А именно возьмём перевальную точку второго порядка m=2, положим функцию рядом с экспонентой под интегралом g(z)=1, будем считать, что контур проходит через перевальную точку, а не имеет в ней начало или конец, как это приведено в книге.

Если же использовать разложение функции f в ряд Тейлора, то можно получить "Campbell – Froman – Walles – Wojdylo formula"².

$$f(z) = f(z_0) + \sum_{p=0}^{\infty} a_p (z - z_0)^{p+2}$$

$$c_{2n} = \frac{1}{a_0^{n+\frac{1}{2}}} \sum_{j=0}^{2n} C_{-n-\frac{1}{2}}^j \hat{B}_{2n,j} (a_1, a_2, \dots, a_{2n-j+1})$$
(5)

Обобщённые числа Стирлинга

Они упоминаются в английской вики на странице о числах Стирлинга. Там же приводится ссылка на книгу Кометта, посвящённую комбинаторике. (см. papers)

$$\exp\left(u\left(\frac{t^r}{r!} + \frac{t^{r+1}}{(r+1)!} + \dots\right)\right) = \sum_{n = 0}^{\infty} S_r(n,k) u^k \frac{t^n}{n!}$$
(6)

Применение теории

Как упоминается в приложении к диплому:

$$\sum_{n=0}^{\infty} \frac{\alpha^n e^{i\gamma n^2}}{n!} = \frac{e^{\frac{i\pi}{4}}}{\sqrt{\pi\gamma}} \int_{-\infty}^{\infty} e^{-i\frac{x^2}{\gamma} + \alpha e^{2ix}} dx = \frac{e^{\frac{i\pi}{4}}}{\sqrt{\pi\gamma}} \int_{-\infty}^{\infty} e^{\frac{1}{\gamma} \left(-ix^2 + \alpha\gamma e^{2ix}\right)} dx \tag{7}$$

В таком виде очевидно, что в формуле 4 будут использоваться следующие замены: $\lambda \leadsto \frac{1}{\gamma}$, $f(x) \leadsto -ix^2 + \alpha \gamma e^{2ix} = -ix^2 - \frac{z}{2i}e^{2ix}$. (А так же вспомним обозначение из первой части $z=-2i\alpha\gamma$).

$$\frac{f(x) - f(z_k)}{(x - z_k)^2} = \sum_{p=0}^{\infty} \frac{f^{(p+2)}(z_k)}{(p+2)!} (x - z_k)^p$$

$$= \underbrace{\left(-i - ize^{2iz_k}\right)}_{a_0} - \sum_{p=1}^{\infty} \underbrace{\frac{(2i)^{p+1}ze^{2iz_k}}{(p+2)!}}_{a_1, a_2, \dots} (x - z_k)^p$$
(8)

Теперь мы готовы воспользоваться формулой 5 и выразить интеграл по перевальному контуру через z_k (а так же используем формулу 5.6 из моего диплома):

$$\int_{\gamma_k} e^{\frac{1}{\gamma} \left(-ix^2 + \alpha \gamma e^{2ix}\right)} dx = \exp\left(\frac{z_k (1 - iz_k)}{\gamma}\right) \sum_{n=0}^{\infty} \Gamma\left(n + \frac{1}{2}\right) c_{2n} \gamma^{n + \frac{1}{2}}$$

$$c_{2n} = \sum_{j=0}^{2n} C_{-n - \frac{1}{2}}^j \frac{1}{\left(-i - ize^{2iz_k}\right)^{n + j + \frac{1}{2}}} \hat{B}_{2n,j} \left(-\frac{(2i)^2 z e^{2iz_k}}{3!}, -\frac{(2i)^4 z e^{2iz_k}}{4!}, \dots, -\frac{(2i)^{2n - j + 2} z e^{2iz_k}}{(2n - j + 3)!}\right)$$
(9)

 $^{^{2}}$ формула (1.11) в книжке по методу перевала.

Для упрощения последнего выражения нам понадобиться пара свойств полиномов Белла. А именно можно использовать их однородность и экспоненциальные полиномы Белла:

$$\hat{B}_{2n,j}(\zeta x_1, \zeta x_2, \dots, \zeta x_{2n-j+1}) = \zeta^j \hat{B}_{2n,j}(x_1, x_2, \dots, x_{2n-j+1})$$

$$\hat{B}_{2n,j}(\zeta x_1, \zeta^2 x_2, \dots, \zeta^{2n-j+1} x_{2n-j+1}) = \zeta^{2n} \hat{B}_{2n,j}(x_1, x_2, \dots, x_{2n-j+1})$$

$$\hat{B}_{2n,j}(x_1, x_2, \dots, x_{2n-j+1}) = \frac{j!}{(2n)!} B_{2n,j}(x_1 1!, x_2 2!, \dots, x_{2n-j+1} (2n-j+1)!)$$
(10)

Из этого следует:

$$\hat{B}_{2n,j}\left(-\frac{(2i)^{2}ze^{2iz_{k}}}{3!}, -\frac{(2i)^{4}ze^{2iz_{k}}}{4!}, \dots, -\frac{(2i)^{2n-j+2}ze^{2iz_{k}}}{(2n-j+3)!}\right) = \frac{(-2ize^{2iz_{k}})^{j}(2i)^{2n}j!}{(2n)!}B_{2n,j}\left(\frac{1}{3\cdot 4}, \frac{1}{4\cdot 5}, \dots, \frac{(2n-j+1)!}{(2n-j+3)!}\right)$$
(11)

И вот тут нам как раз пригодятся обобщённые числа Стирлинга, потому что есть так же следующая формула:

$$next day$$
 (12)