Métodos espectrais de alta ordem na resolução de equações diferenciais

Monografia apresentada
AO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA
DA
UNIVERSIDADE DE SÃO PAULO
PARA
OBTENÇÃO DO TÍTULO
DE
BACHAREL EM MATEMÁTICA APLICADA E COMPUTACIONAL

Augusto Carillo Ferrari

Orientador: Prof. Dr. Nelson Mukgayar Kuhl

Coorientador: Dr. Paulo José Saiz Jabardo

São Paulo, dezembro de 2015

Agradecimentos

A elaborar

Sumário

Lista de Figuras Lista de Tabelas		Vii	
		ix	
1	Introdução	1	
	1.1 História		
	1.2 Julia	1	
2	Capítulo I	3	
	2.1 Método espectral	3	
3	Conclusões	5	
\mathbf{R}	eferências Bibliográficas	7	

Lista de Figuras

Lista de Tabelas

Capítulo 1

Introdução

1.1 História

O método espectral surgiu como uma ferramenta de alto poder computacional em mecânica de fluídos, proposto em 1994 por Blinova, implementado em 1954 por Sylberman, praticamente abandonado no meio da década de 60 e ressurgindo em 1969-1970 por Orzszag e Eliason, Manchenhauer e Rasmussen, foi desenvolvido para aplicações especializadas. No entanto, somente em 1977 foi formalizado matematicamente por Gottlieb e Orszag em 1980. Originalmente o método espectral foi promovido por meteorologistas no estudo de modelos globais de tempo e especialistas em dinâmica de fluídos estudando turbulências isotrópicas. Desde a década de 80 até hoje o estudo na área de CFD (Computational Fluid Dynamics- dinâmica dos fluidos computacional) tem crescido lado a lado ao avanço computacional que o tornou possível.

1.2 Julia

Para a implementação do método usaremos como ferramenta de estudo a linguagem de alto nível, *Julia*, que por ser dinâmica e de excelente desempenho computacional será essencial para execução dos cálculos. Apesar de nova, a linguagem criada no MIT vem sendo rapidamente acolhida pela comunidade científica e assim, com seu código open-source, ele é diariamente atualizado e possui um número de bibliotecas em crescente ascensão.

2 INTRODUÇÃO 1.2

Capítulo 2

Capítulo I

2.1 Método espectral

A ideia geral do método espectral é a aproximação de uma função qualquer, $f(x) : \mathbb{R} \to \mathbb{R}$, usando um polinômio de alta ordem n, $P_n(x)$. Sabendo os pontos (x_k, y_k) , definimos então o polinômio:

$$P(x_k) = y_k, k = 1, ..., N (2.1)$$

Para uma equação com 2 pontos (x_1, x_2, y_1, y_2) podemos definir um Polinômio de grau 1 que obedece $P(x_k) = y_k, k = 1, 2$. Assim, para N+1 pontos, podemos aproximar por um polinômio de grau menor ou igual que N.

Podemos usar diversos polinômios, um dos mais conhecidos é o polinômio de Lagrange :

$$P(x) = \sum_{k=1}^{N} \frac{x - x_j}{x_k - x_j} y_k$$
 (2.2)

4 CAPÍTULO I 2.1

Capítulo 3

Conclusões

 $\begin{array}{c} \text{test test test} \\ [\text{Ard} 14] \end{array}$

CONCLUSÕES 3.0

Referências Bibliográficas

[Ard14] Luca Ardito. Energy-aware Software. Tese de Doutorado, Politecnico di Torino, 2014. 5