平成19年度 日本留学試験(第1回)

試験問題

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコース <u>一つだけ</u>を選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の左上にある「解答コース」の「コース2」を〇で囲み、その下のマーク欄をマークしてください。選択したコースが正しくマークされていないと、採点されません。

T

問 1 2次関数 $f(x) = x^2 - ax + a^2$ の $0 \le x \le 1$ における最小値 m を求めよう。

f(x) は

$$f(x) = \left(x - \frac{a}{A}\right)^2 + \frac{B}{C}a$$

と変形できる。したがって、f(x) は

$$a \leq$$
 $oldsymbol{\mathsf{E}}$ のとき、 $x =$ $oldsymbol{\mathsf{F}}$ で最小となり、 $m = a$

$$\mathsf{E}$$
 $< a <$ H のとき、 $x = \frac{a}{\mathsf{I}}$ で最小となり、 $m = \frac{\mathsf{J}}{\mathsf{K}} a^\mathsf{L}$

$$oxed{\mathsf{H}} extstyle \leq a \ \mathcal{O}$$
とき, $x = oxed{\mathsf{M}} extstyle extstyle$

となる。

数学一16

問 2 数直線上の集合 A, B を

$$A = \{ x \mid |x - 1| \ge 9 \}, \quad B = \{ x \mid a + 3 \le x \le 2a \}$$

とする。ただし、 $B \neq \phi$ とする。

- (1) $A = \{x \mid x \leq \boxed{PQ} \text{ または} \boxed{RS} \leq x\}$ である。
- (2) $B \neq \phi$ であるから、a のとり得る値の範囲は

$$a \geqq \boxed{\mathsf{T}}$$

である。

(3) 集合 A, B に対して

実数xが「Aに属する」ことは「Bに属する」ための必要条件であるとする。このとき、aのとり得る値の範囲は

$$a \geqq \boxed{\mathsf{U}}$$

である。

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{V}$ ~ $oxed{Z}$ には何も書かないでください。

問 1 A \sim J には、下の \emptyset \sim \emptyset のうちから最も適するものを一つずつ選びなさい。

(1) a, b, c が実数のとき

$$(a-b)^{2}+(b-c)^{2}+(c-a)^{2}$$
 A 0

であるから

$$ab + bc + ca$$
 \bigcirc $\boxed{\mathbf{B}}$ $a^2 + b^2 + c^2$

が成り立つ。

(2) a, b, c が実数で, c > 0 とする。 さらに

$$a+b>c$$
, $b+c>a$, $c+a>b$

であるとき, $a^2 + b^2 + c^2$ と 2(ab + bc + ca) の大小を比べよう。

$$P = a^2 + b^2 + c^2 - 2(ab + bc + ca)$$
 とおくと

となる。次に、 $Q = (a-b)^2 - c^2$ 、 $R = c^2 - bc - ca$ とおくと

$$Q = (\boxed{\ \ \ \ \ \ \ \ \ \ \ } + c)(\boxed{\ \ \ \ \ \ \ \ } = -c(\boxed{\ \ \ \ \ \ \ \ \ } - c)$$

となる。ここで、① を用いれば

$$Q \quad \mathbf{G} \quad 0, \quad R \quad \mathbf{H} \quad 0$$

であるから

$$P \quad \boxed{1} \quad 0$$

である。よって

を得る。

$$\bigcirc 0$$
 0 $\bigcirc a+b$ $\bigcirc 2$ 2 $\bigcirc a-b$ $\bigcirc 4$

問 2 数列 $\{a_n\}$ は次の条件を満たしている。

$$a_n > 0$$
, $4\sqrt{S_n} = a_n + 4$ $(n = 1, 2, 3, \cdots)$

ただし、
$$S_n = \sum_{k=1}^n a_k$$
 とする。

- (1) $a_1 = \boxed{\mathsf{K}}$ $\mathsf{C} \mathsf{b} \mathsf{d}_{\circ}$
- (2) $a_n \geq a_{n+1}$ if

$$\begin{bmatrix} LM \end{bmatrix} a_{n+1} = (a_{n+1} + \begin{bmatrix} N \end{bmatrix})^2 - (a_n + \begin{bmatrix} O \end{bmatrix})^2$$

を満たすから

$$a_{n+1}-a_n=\boxed{\mathsf{P}}$$

である。

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{R}$ \sim $oxed{Z}$ には何も書かないでください。

問1 平面上に三角形 OAB があり

$$\angle AOB = 90^{\circ}$$
, $OA = 8$, $OB = 6$

である。この平面上の点 P に対して、 $\overrightarrow{OP} = x \overrightarrow{OA} + 2y \overrightarrow{OB}$ とする。

(1) P が三角形 OAB の重心であれば

$$x = \begin{array}{|c|c|c|}\hline A & y & \hline C & \hline D & \hline \end{array}$$

である。

(2) ∠AOB の二等分線と辺 AB との交点を C とすると

$$\overrightarrow{OC} = \begin{array}{|c|c|} \hline E \\ \hline F \\ \hline \end{array} \overrightarrow{OA} + \begin{array}{|c|c|} \hline G \\ \hline H \\ \hline \end{array} \overrightarrow{OB}$$

となるから、Pが ZAOB の二等分線上の点であれば

$$y = \frac{\boxed{1}}{\boxed{J}} x$$

である。

(3) Pが 〇 を通り辺 AB に垂直な直線上の点であれば

$$y = \frac{\boxed{\mathsf{K}}}{\boxed{\mathsf{L}}} x$$

である。

注) 重心: center of gravity, ∠AOB の二等分線: bisector of ∠AOB

問 2 x, y が $x \ge 1, y \ge 1$ であり

$$\log_2 x + \log_2 y = (\log_2 x)^2 + (\log_2 y)^2$$

を満たしている。このとき、 $\log_2 x = X$ 、 $\log_2 y = Y$ とおくと

$$X \ge \boxed{\mathbf{M}}$$
, $Y \ge \boxed{\mathbf{N}}$

であり、等式 ① は

$$\left(X - \frac{\boxed{\mathsf{Q}}}{\boxed{\mathsf{P}}}\right)^2 + \left(Y - \frac{\boxed{\mathsf{Q}}}{\boxed{\mathsf{R}}}\right)^2 = \frac{\boxed{\mathsf{S}}}{\boxed{\mathsf{T}}}$$

と変形される。したがって、xy のとり得る値の範囲は

$$oxed{U} \leq xy \leq oxed{V}$$
 および $xy = oxed{W}$

である。

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{X}$ \sim $oxed{Z}$ には何も書かないでください。

- 問 1 $f(x) = \sin x \cos^3 x$, $g(x) = \sqrt{4-x}$ とする。
 - (1) $f'(x) = \cos^4 x$ A $\sin^{ extbf{B}} x \cos^2 x$ g'(x) =CD $\text{E} \sqrt{4-x}$
 - (2) 曲線 y=g(x) の接線のうち、曲線 y=f(x) の点 $\left(\frac{\pi}{4},f(\frac{\pi}{4})\right)$ における接線と同じ傾きをもつものを ℓ とする。このとき、y=g(x) と ℓ の接点の座標は $\left(\begin{array}{c} \mathbf{F} \end{array}\right)$ であり、 ℓ の方程式は

$$y = \frac{\boxed{\text{HI}}}{\boxed{\text{J}}} x + \frac{\boxed{\text{K}}}{\boxed{\text{L}}}$$

である。

問2 a を実数とする。定積分

$$\int_0^1 \left(e^x - ax\right)^2 dx$$

を最小にする a の値とその定積分の最小値を求めよう。ただし,e は自然対数の底である。

不定積分 $\int \left(e^x-ax\right)^2 dx$ を求めると

$$\int (e^x - ax)^2 dx = \frac{1}{\boxed{\mathbf{M}}} e^{2x} - \boxed{\mathbf{N}} a(x-1)e^x$$
$$+ \frac{1}{\boxed{\mathbf{O}}} a^2 x^{\boxed{\mathbf{P}}} + C \quad (C は積分定数)$$

であるから

$$\int_0^1 \left(e^x - ax\right)^2 dx = \frac{1}{\boxed{\mathbf{Q}}} a^2 - \boxed{\mathbf{R}} a + \frac{1}{\boxed{\mathbf{S}}} e^2 - \frac{1}{\boxed{\mathbf{T}}}$$

を得る。したがって、a = U のとき、この定積分は最小になり、その最小値は

$$egin{array}{|c|c|c|c|}\hline V & e^2 - \hline X & Y \\\hline \hline W & e^2 - \hline Y & Y \\\hline \end{array}$$

である。

注) 積分定数: constant of integration ,自然対数の底: the base of the natural logarithm

- 計算欄 (memo) -

解答用紙の V の欄には何も書かないでください。

この問題冊子を持ち帰ることはできません。