LA CHROMATINE

Pr B.AIT ABDELKADER
CPMC

Introduction

Le noyau définit la **cellule eucaryote** (ευ = beau et κάρυον = noyau) Une **cellule procaryote** n'a pas de noyau (πρό = avant et κάρυον = noyau)

Attention, bien que le Globule rouge n'ait plus de noyau, il reste une cellule eucaryote!

Introduction

Le noyau est un organite!

Il est plutôt **sphérique** et mesure entre **5 et 20 μm**.

Sa taille est variable selon le type de cellule et le moment.

Il est limité par une **enveloppe** composée de **deux membranes poreuses**.

Introduction

Le noyau contient

- → Chromatine
- → Nucléole
- → Enzymes de fonctionnement de l'ADN

Organisation de l'ADN nucléaire des eucaryotes La chromatine

Chromosome en métaphase

- > ADN + protéines = chromatine
- chromatine: 1/3 ADN + 2/3 protéines (histones 50%, autres 50%)
- condensation chromosomique
- → 1 chromosome = 1 filament d 'ADN double brin (chr 1 ≈ 263 10⁶ pb!)
- hétérochromatine et euchromatine

I. La Chromatine | Définition

Chromatine = ADN + Histones + Protéines de charpente (non histones)

- → Donne la structure des chromosomes
- → Permet d'empaqueter 2,5m d'ADN en 5/6 µm!!
- → Rend accessible l'ADN aux différentes enzymes (donc permet la réplication, la transcription de l'ADN...)

I. La Chromatine | Définition

Hétéro chromatine		Euchromatine	
Localisation	A la périphérie (en général)	Plutôt centrale, boules entre les zones d'hétérochromatine	
Structure	Très condensée	Peu condensée	
Fonctionnalité	Non accessible aux ARN polymérases donc pas transcrite	Donc accessible aux ARN polymérases => transcrite	

I. La Chromatine | Définition

L'hétérochromatine constitutive

- → Totalement inactive et ce de façon irréversible
- → Centromères, télomères, Chromosome X
- → « Charpente » du chromosome

L'hétérochromatine facultative

- → Inactive et ce de façon réversible
- → Se transforme en euchromatine
- → En dehors des constrictions

I. La Chromatine | Condensation de l'ADN

I. La Chromatine | Condensation de l'ADN

L'unité de base de la chromatine est le nucléosome. C'est grosso modo un cylindre de protéines entouré par de l'ADN.

Le nucléosome isolé est composé de 146 pdb qui sont enroulées autour d'un octamère d'histones (enroulement inférieur à 2 tours)

→ 54 pdb servent à relier les octamères entre eux (ADN de liaison)

L'octamère d'histones est composé de deux tétramères : 2 [H_{2A} + H_{2B}] et 2 [H₃ + H₄]

L'ADN des cellules eucaryotes

Les histones

5 types d'histones interviennent dans le chromatine : H_{2A}, H_{2B}, H₃, H₄, et H₁
Ce sont des protéines très basiques du fait d'un grand nombre de résidus Arg et Lys dans leur structure. Elles sont riches en charge positive et pourront établir des liaisons avec les phosphates.

I. La Chromatine | le nucléofilament

Les nucléosomes sont reliés entre eux par de l'ADN de liaison. 54 pdb.

On obtient alors une sorte de collier de perles

→ la fibre nucléosomique = nucléofilament = fibre de 11nm = fibre de 10 nm

I. La Chromatine | la fibre chromosomique

Dans une cellule, le nucléofilament est compacté: il est replié sur lui-même et forme des zigzag.

C'est un autre type d'histone, l'histone H1 qui permet cette compaction. Il vient se clipser sur l'octamère et empêche ainsi son déroulement.

On obtient ainsi la chromatine = fibre de 30 nm = fibre chromosomique.

HISTONE H1

H1 a un domaine globulaire qui entre en interaction avec les brins

D'ADN d'entrée de sortie de la particule centrale

Grande dynamique d'association et de dissociation

Baisse de l'association au DNA suivant l'acétylation des nucléosomes

ASSEMBLAGE DES HISTONES

- •Assemblage durant la phase S, immédiatement après que la synthèse de DNA ait eu lieu avec les anciennes et les nouvelles histones qui viennent d'être synthétisées
- **Dépôt de tétramères d'H3-H4** <u>acétvlés</u> (partie N-termilal) médiés par **CAF1** (chromatin assembly factor) localisée au niveau des fourches grâce à sa liaison avec **PCNA** (proliferating cell nuclear antigen).

Puis les deux dimères de H2Aet H2B sont ajoutés (médié par Nap1 : nucléosome assembly protein 1).

 Puis maturation, formation et organisation des octamères régulièrement espacés

LE MODÈLE DE COMPACTION « SOLENOID »

cette organisation d'ordre supérieur des nucléosomes evoquant un modèle de solénoïde.

Les solénoïdes impliquent six nucléosomes consécutifs disposés dans un tour d'hélice qui peuvent se condenser en une structure de superenroulement avec un pas de 11 nm.

Cette structure devrait être maintenue par les interactions histone-histone

COMPACTION DE LA FIBRE CHROMATINIENNE

Figure 2. Hierarchical Models for Kttotic Chromosome Organization

Compaction de la fibre de 30nm plusieurs centaines de fois pour devenir un chromosome grâce à deux enzymes ATP dépendantes : la Topoisomérase 2 et le complexe Condensin

COMPACTION DE L'ADN : DE L'INTERPHASE À LA MÉTAPHASE

Structure	Longueur par cellule	Largeur	Rapport de compaction
Molécule d'ADN	2m (2 x 10 ⁶ [im)	2nm	1
Fibre chromatinienne	0,28m (2,8 x 10 ⁵ [im)	10nm	7
Solenoid	0,04m (4x 10 ⁴ [im)	30nm	50
Boudes	1mm (10 ³ [im)	0,26mm	2000
Chromosomes	200[im (2 x 10 ²)	2mm (2000nm)	10000

interphase

métaphase

Génome : 3 millions de paires de bases. 30000 gènes

Compactage des nucléosomes dans des structures tertiaires compliquées et permettent les processus de transcription, duplication, réparation, recombinaisons

Structure Tertiaire de l'ADN

Différents niveaux d'organisation de l'ADN pour former un chromosome

ADN double brin

Nucléosome

Fibre de chromatin

Section d'un chromosome en métaphase

Chromosome entier

génome diploïde (46 chr) vs génome haploïde (22 autosomes + X ou Y)

ADN répété dispersé

SINE

(short interspersed nuclear elements)

- > 500 000/génome haploïde
- ≈ 300 pb
- séquences alu, MIR
- rétrotransposons

LINE

(long interspersed nuclear elements)

- > 100 000/génome haploïde
- LINE-1 : ≈ 6-7 kpb
- LINE-2, 3

- THE-1 : ≈ 2 kpb

Eléments LTR

(long terminal repeat) ≈ 400 000 copies

Transposons d'ADN

≈ 300 000 copies

ADN répété en tandem

MODIFICATIONS ÉPIGÉNÉTIQUES DE L'ADN

• ÉPIGÉNÉTIQUE :

 Changement dans l'expression des gènes qui est transmis après le division cellulaire mais qui n'est pas occasionnée par des modifications dans la séquence de l'ADN

LES MODIFICATIONS POST TRADUCTIONNELLES

L'ACÉTYLATION DES HISTONES

- Neutralisation de la charge positive des histones
- Cibles : les lysines des différentes Histones
- Entraîne l'altération de l'interaction entre Histone et ADN et favorise l'accessibilité aux facteurs de transcription (l'acétylation diminue le caractère basique des histones)
- Catalysée par des Histones Acétyltransférases (HATs)
- De nombreux coactivateurs transcriptionnels (CBP/p300) ont des propriétés intrinsèques HAT.
- Action inverse : dé-acétylation par des Histones Déacétylases (HDACs)

L'UBIQUITINALATION DES HISTONES

Cibles: H3, H2A, H2B

Surtout H2A en lysine 119

Nécessaire pour la méthylation de H2B

Action inverse par deubiquitinase

LA PHOSPHORYLATION DES HISTONES

- Souvent phosphorylées durant le cycle cellulaire par différentes kinases
- H2A: lors de l'atteinte de la structure du DNA
- H3S10 et H3S28: durant la mitose par les AURORA (condensation des chromosomes)
- H4S1 associée à la compaction de l'ADN dans les cellules germinales

LA MÉTHYLATION DES HISTONES

- Méthylation sur les résidus lysines et arginines d'H3 et d'H4
- Mono; di; tri méthylation
- Méthylation des résidus arginines sont liés à l'action des enzymes
 1/ Coactivator Arginine Methyltransférase (CARM1)
- 2/ PRotein Arginin Methyltransferase 1 (PRMT1)
- Méthylation des résidus lysines : H3K4, H3K9, H3K27, H3K36, H3K79 et la H4K4

ENZYMES IMPLIQUÉES DANS LE CODE DES HISTONES

ENZYMES PROVIDING REVERSIBLE HISTONE MODIFICATION MARKS

Acetylation: HATs - CBP, p300, GCN5, ATF2, Tip 60, HBO1...

Deacetylation: HDACs- class I and II

Méthylation:

Lysine: SET-domain and non-SET domain HMTases

Arginine: PRMT family, CARM1

- *Déméthylation:* LSD1

Ubiquitination: ubiquitin conjugase, Ring factors

De-Ubiquitination: SAGA-associated Ubp10

VARIANTS D'HISTONE

- Il existe de nombreux variants d'histone
- Homomorphes (séquences proches de la canonique) H2A1, H2A2, H3.1, H3.2, H3.3)
- Hétéromorphes (différentes de la canonique)
 H2AX, H2AZ, macroH2A (mH2A), H2A Barr body-deficient (H2A.Bbd)
 and centromeric protein A (CENP-A)

SYSTEME DE REMODELAGE DE LA CHROMATINE

- Système permettant d'augmenter l'accessibilité de l'ADN aux protéines (transcription, réparation, réplication ...) en cassant la structure nucléosomale
- Mécanismes biochimiques impliquant de l'ATP : ATPases éléments centrales de ces systèmes
- 4 grandes familles
- **a/ SWI/SNF**: (transcriptional replication and repression)
- **b/ ISWI**: (régulation de Poll et 2, assemblage de la chromatine, replication)
- c/ CHD : Chromodomain : histone déacetylase
- d/ INO80
- Certains sont capables de favoriser la transcription, d'autres facilitent l'accès à des facteurs de transcription, ou encore certains sont impliqués dans la condensation de la chromatine

AUTRES PROTÉINES DE LA CHROMATINE

- HMG
- HP1
- PROTAMINE
- MECP2

HMG (HIGHT MOBILITY GROUP)

- Protéines de faible poids moléculaire
- Protéines neutres (charges acides et basiques)
- 3 classes
- **HMGB** (29 kDa)
- **HMGN** (10-12 kDa)
- HMGA

CONCLUSION

- Physiologie de le chromatine
- Compaction
- Protection
- Transcription
- Diversité phénotypique cellulaire