Angular separation

Let P_1 and P_2 be points in polar coordinates such that

$$P_1 = r_1 \hat{\mathbf{e}}_r + \theta_1 \hat{\mathbf{e}}_\theta + \phi_1 \hat{\mathbf{e}}_\phi, \quad P_2 = r_2 \hat{\mathbf{e}}_r + \theta_2 \hat{\mathbf{e}}_\theta + \phi_2 \hat{\mathbf{e}}_\phi$$

The angular separation θ_{12} between P_1 and P_2 is

$$\cos \theta_{12} = \cos \theta_1 \cos \theta_2 + \sin \theta_1 \sin \theta_2 \cos(\phi_1 - \phi_2)$$

$$= \frac{r_1^2 + r_2^2 - r_{12}^2}{2r_1r_2}$$

$$= \frac{x_1x_2 + y_1y_2 + z_1z_2}{r_1r_2}$$

where

$$r_{12}^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2$$

and

$$x_1 = r_1 \sin \theta_1 \cos \phi_1$$

$$x_2 = r_2 \sin \theta_2 \cos \phi_2$$

$$y_1 = r_1 \sin \theta_1 \sin \phi_1$$

$$y_2 = r_2 \sin \theta_2 \sin \phi_2$$

$$z_1 = r_1 \cos \theta_1$$

$$z_2 = r_2 \cos \theta_2$$