numpy

November 7, 2018

1 Python for Data Science

numpy

2 numpy

- If you analyze data, a lot of your work will involve numbers / matrices.
- numpy is a data collection optimized for this work
- Without numpy much fewer scientists would have switched to Python
 - Convenience (for matrix operations)
 - Speed
- Many other libraries have adopted and extended the API of numpy
 - scipy
 - pandas

3 numpy is fast

Array Memory Layout

4 Why are numpy ndarray faster than lists

Remember how python lists can contain any type:

This can be inefficient!

5 numpy - Topics For Today

- Creating arrays: Various constructors for numpy ndarrays
- Attributes of arrays: Determining the size, shape, memory consumption, and data types of arrays
- Indexing of arrays: Getting and setting the value of individual array elements
- *Slicing of arrays*: Getting and setting smaller subarrays within a larger array
- Fancy Indexing: Getting and setting multiple arbitrary elements at once
- *Reshaping of arrays*: Changing the shape of a given array
- Joining and splitting of arrays
- Arithmetic Operations: +, -, *, ...
- Aggregation functions: min, max, sum, ...
- Loading/Saving
- Linear Algebra: Matrix Multiplication

6 Creating Arrays

```
In [4]: np.array([1, 4, 2, 5, 3])
```


Array indexing

```
Out[4]: array([1, 4, 2, 5, 3])
```

Numpy arrays allow one type only - constructors up-cast types

```
In [5]: np.array([3.14, 4, 2, 3])
Out[5]: array([3.14, 4. , 2. , 3. ])
```

6.1 Specifying data types at array creation time

```
In [8]: np.array([1, 2, 3, 4], dtype='float32')
Out[8]: array([1., 2., 3., 4.], dtype=float32)
```

6.2 Creating two-dimensional arrays

6.3 Creating Arrays from Scratch

6.4 Constant Value Arrays

```
In [16]: np.zeros(10, dtype=int)
Out[16]: array([0, 0, 0, 0, 0, 0, 0, 0, 0])
```

```
In [28]: # Create a 3x5 floating-point array filled with ones
        np.ones((2, 3), dtype=float)
Out[28]: array([[1., 1., 1.],
                [1., 1., 1.]])
In [29]: np.full((3, 4), 3.14)
Out[29]: array([[3.14, 3.14, 3.14, 3.14],
                [3.14, 3.14, 3.14, 3.14],
                [3.14, 3.14, 3.14, 3.14])
6.5 Linearly Spaced Values
In [19]: # something like builtin range function
        np.arange(0, 20, 2)
Out[19]: array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])
In [20]: # Create an array of five values evenly spaced between 0 and 1
        np.linspace(0, 1, 5)
Out[20]: array([0. , 0.25, 0.5 , 0.75, 1. ])
In [39]: # Create a 3x3 array of values uniformly distributed between 0 and 1
        np.random.random((2, 3))
Out[39]: array([[0.5488135, 0.71518937, 0.60276338],
                [0.54488318, 0.4236548, 0.64589411]])
In [40]: # Normally distributed random values, mean 0 and standard deviation 1
        np.random.normal(0, 1, (2, 3))
Out[40]: array([[ 0.95008842, -0.15135721, -0.10321885],
                [ 0.4105985 , 0.14404357, 1.45427351]])
In [41]: # Create a 3x3 array of random integers in the interval [0, 10)
        np.random.randint(0, 10, (2, 3))
Out[41]: array([[8, 1, 5],
                [9, 8, 9]])
```

6.6 Some Array Data Types

Data type	Description
bool_	Boolean (True or False) stored as a byte

Data type	Description
int_	Default integer
	type (same as C
	long; normally
	either int64 or
	int32)
int8	Byte (-128 to 127)
int16	Integer (-32768 to
	32767)
int32	Integer
	(-2147483648 to
	2147483647)
int64	Integer (-
	922337203685477580
	to
	922337203685477580
uint8	Unsigned integer
	(0 to 255)
uint16	U nsigned integer
	(0 to 65535)
uint32	Unsigned integer
	(0 to 4294967295)
uint64	Unsigned integer
	(0 to
	184467440737095516
float_	Shorthand for
	float64.
float16	Half precision
	float: sign bit, 5
	bits exponent, 10
	bits mantissa
float32	Single precision
	float: sign bit, 8
	bits exponent, 23
	bits mantissa
float64	Double precision
	float: sign bit, 11
	bits exponent, 52
	bits mantissa

6.7 More Array Data Types

- Complex numbers
 - not the most relevant data type for data scientists
- Structured arrays with compound types
 - see e.g. Jake VanderPlas' Python Data Science Handbook chapter

- these types of data are best stored and dealt with in a pandas DataFrame

7 Array Attributes

7.1 Basic Attributes

- ndim: the number of dimensions
- shape: the size of each dimension
- size: the total size of the array
- dtype: data type of array elements
- itemsize: size (in bytes) of each element
- nbytes: size (in bytes) of entire array

7.2 Array Indexing and Slicing

Arrays are indexed like this:

```
x[index]
and sliced like this:
x[start:stop:step]
With defaults start=0, stop=size of dimension, step=1.
```

7.2.1 One Dimensional Arrays

Indexing is just the same as python list indexing:

```
In [7]: x1
```

```
Out[7]: array([4, 3, 6, 9, 8, 1])
In [8]: x1[0]
Out[8]: 4
In [9]: x1[-1]
Out[9]: 1
```

7.2.2 Slicing

You can extract subarrays using standard python List slicing:

```
In [50]: x = np.arange(10)
    x

Out[50]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [51]: x[:5] # first five elements

Out[51]: array([0, 1, 2, 3, 4])
In [52]: x[5:7] # subarray in the middle

Out[52]: array([5, 6])
In [53]: x[::3] # every third element

Out[53]: array([0, 3, 6, 9])
```

7.2.3 Two Dimensional Arrays

Items can be accessed using a comma-separated tuple of indices:

7.2.4 Slicing Two Dimensional Arrays

Same as with lists and one-dimensional arrays:

```
In [57]: x2
Out[57]: array([[1, 5, 3, 9],
                [7, 2, 9, 8],
                [5, 0, 2, 8]])
In [58]: x2[0,:] # entire first row
Out[58]: array([1, 5, 3, 9])
In [59]: x2[0] # same as x2[0, :]
Out[59]: array([1, 5, 3, 9])
In [60]: x2[:,0] # entire first column
Out[60]: array([1, 7, 5])
In [61]: x2
Out[61]: array([[1, 5, 3, 9],
                [7, 2, 9, 8],
                [5, 0, 2, 8]])
In [62]: x2[:2, :3] # two rows, three columns
Out[62]: array([[1, 5, 3],
                [7, 2, 9]])
In [63]: x2[:3, ::2] # all rows, every other column
Out[63]: array([[1, 3],
                [7, 9],
                [5, 2]])
In [64]: x2[::-1, ::-1] # reversing both dimensions
Out[64]: array([[8, 2, 0, 5],
                [8, 9, 2, 7],
                [9, 3, 5, 1]])
```


Array indexing

7.3 Subarrays are Views - Not Copies

Remember: Lists slices are copies

This is different for subarrays: Those slices are **views**

7.4 Boolean Indexing

You can efficiently index arrays using boolean masks

```
In [115]: grid > 5
Out[115]: array([False, False, False, False, True, True, True, True])
In [117]: grid[grid > 5]
Out[117]: array([6, 7, 8, 9])
```

7.5 Fancy Indexing

Can give you arbitrary subsets of arrays given a set of indices

8 Reshaping

Often you need to change the shape of an array; this is done with reshape

```
In [67]: grid = np.arange(1, 10)
         grid
Out[67]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])
In [68]: grid = grid.reshape((3, 3))
         grid
Out[68]: array([[1, 2, 3],
                [4, 5, 6],
                [7, 8, 9]])
In [69]: row_vector = np.arange(3).reshape((1, 3))
         row_vector
Out[69]: array([[0, 1, 2]])
In [70]: column_vector = np.arange(3).reshape((3, 1))
         column_vector
Out[70]: array([[0],
                [1],
                [2]])
```

9 Concatenation

10 Splitting

```
In [76]: x = [1, 2, 3, 99, 99, 3, 2, 1]
        x1, x2, x3 = np.split(x, [3, 5])
        print(x1, x2, x3)
[1 2 3] [99 99] [3 2 1]
```

11 Repeated Executions Are Slow In Python

12 Fast Vectorized Computations with UFuncs

- Python's defacult implementation CPython is slow for repeated executions
- This is mostly due to the fact that it's not compiled down to bytecode
- Major Bottlenecks are: type-checking and function dispatches
- Various attempts to address this weakness:
 - PyPy, just-in-time compiled implementation of Python
 - Cython, converts Python code to compilable C code
 - Numba, converts snippets of Python code to fast LLVM bytecode.
- None of these have reached broad adoption
- numpy is fast since it allows to *vectorize* operations through NumPy's *universal functions* (ufuncs)
- For many tasks you can use plain python and numpy for efficient computations

12.1 Most arithmetic operations are available as ufuncs

12.2 ufunc Arithmetic Operators and Shortcuts

Operator	Equivalent ufunc	Description
+	np.add	Addition (e.g., $1 + 1 = 2$)
_	np.subtract	Subtraction (e.g., $3 - 2 = 1$)

Operator	Equivalent ufunc	Description
_	np.negative	Unary negation (e.g., -2)
*	np.multiply	Multiplication (e.g., $2 * 3 = 6$)
/	np.divide	Division (e.g., $3 / 2 = 1.5$)
//	np.floor_divide	Floor division (e.g., $3 // 2 = 1$)
**	np.power	Exponentiation (e.g., $2 ** 3 = 8$)
%	np.mod	Modulus/remainder (e.g., 9 % 4 = 1)

13 Aggregation Functions

When working with large data sets, aggregations help to understand your data:

- Summing all values
- Min/Max
- Quantiles
- Mean/Median

Again, python itself is slow at that, but numpy is fast

Function Name	NaN-safe Version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mean	np.nanmean	Compute mean of elements
np.std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance

Function Name	NaN-safe Version	Description
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true

13.0.1 Multi dimensional aggregates

Maximum height:

193

13.1 Example: What is the Average Height of US Presidents?

```
In [112]: print("25th percentile:
                                    ", np.percentile(heights, 25))
         print("Median:
                                    ", np.median(heights))
                                    ", np.percentile(heights, 75))
          print("75th percentile:
25th percentile:
                    174.25
Median:
                    182.0
75th percentile:
                    183.0
In [113]: %matplotlib inline
          import matplotlib.pyplot as plt
          import seaborn; seaborn.set() # set plot style
          plt.hist(heights)
         plt.title('Height Distribution of US Presidents')
          plt.xlabel('height (cm)')
         plt.ylabel('number');
```

Height Distribution of US Presidents

13.2 Fast Sorting in NumPy: np.sort and np.argsort

14 Saving and Loading Arrays

15 Linear Algebra

- For scientists, an important reason to use numpy is linear algebra:
 - Matrix arithmetic
 - Matrix multiplication
 - Solving linear systems
 - Matrix decompositions
- We will only talk about the functionalities, not the math concepts
- But we will need all of these tools in later sessions and lectures

15.1 Matrix Multiplication

15.2 Example: Generating Correlated Gaussian Data

We draw isotropic gaussian variables:

```
X \in R^{2,100} \sim \mathcal{N}(0,1)
```


Then we rotate the data by $\theta = 45$ degrees

```
In [179]: theta = 45
    R = np.array([[np.cos(theta),-np.sin(theta)],[np.sin(theta),np.cos(theta)]])
    RSX = R @ S @ X
    plt.scatter(RSX[0,:],RSX[1,:])
    plt.xlim([-5,5]);plt.ylim([-5,5])
Out [179]: (-5, 5)
```


And now back to the original uncorrelated data

$$X = (RS)^{-1}RS \ X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} X$$

Out[206]: (-5, 5)

Or with taking the inverse matrix square root of the data $X = (RSX(RSX)^\top))^{-1/2} X$

16 Exercises

All code should be placed in a file assignment_03.py with all functions and classes in the top level name space, such that they can be imported by

```
from assignment_03 import *
```

16.1 Creating 1D Arrays

Write a function assignment_03_01 that creates a one dimensional numpy array with the numbers [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30].

```
def assignment_03_01(...
    return result
```

16.2 Creating 2D Arrays

Write a function assignment_03_02 that creates a numpy array with 4 rows and 5 columns. The content of the array should be 1 for all cells initially. Then, the function should multiply each column by its column index plus 1 and then subtracts its row index.

```
def assignment_03_02(...
    return result
```

16.3 Creating 2D Arrays

Write a function assignment_03_03 that expects a numpy array with 4 rows and 5 columns. Then, extract the bold-faced subarray and return it

16.4 Manipulating 2D Arrays

Write a function assignment_03_04 that creates a numpy array with 100000 rows and 2 columns. The first column should contain Gaussian distributed variables with mean 1 and standard deviation 2 and the second column should contain Gaussian distributed variables with mean -2 and standard deviation 0.5.