Lectures et exercices théoriques

William McCausland 2020-04-05

Avant l'intra

Cours 1

Lectures

- 1. Tsay, 3e édition:
 - a. 1.1 rendements

Exercices

- 1. Pour les deux placements décrits à la diapo "Fonctions linéaires vs mélanges, un exemple", calculez la moyenne et la variance du rendement.
- 2. Étudiez la preuve du théorème de variance totale et prouvez le théorème de covariance totale : pour variables aléatoires X, Y et Z telles que les moments suivants existent,

$$Cov[X, Y] = E[Cov[X, Y|Z]] + Cov[E[X|Z], E[Y|Z]].$$

- 3. Trouvez $Var[\mu]$ dans l'Application II de la loi des espérances itérées. Il y a deux façons. Vous pouvez confirmer que les deux façons donnent le même résultat. Les deux façons :
 - a. Trouvez $Var[\mu]$ directement comme $E[\mu^2] E[\mu]^2$
 - b. Trouvez $\text{Var}[\mu]$ indirectement avec les expressions de $E[R], E[R^2]$ et Var[R] sous "Calcul de quelques moments".

Cours 2

Lectures avant le cours

- 1. Tsay, 3e édition:
 - a. 1.2.2 la loi des rendements
 - b. 1.2.3 rendements multivariés
 - c. 1.2.5 propriétés empiriques des rendements
 - d. 2.1 stationnarité
 - e. 2.2 corrélation et la fonction d'autocorrélation
 - f. 2.3 le bruit blanc et les séries temporelles linéaires

Autres lectures

- 1. L'article de Cont (2001) que j'ai mis sur StudiUM.
- 2. Tsay, 3e édition:
 - a. 1.2.1 lois statistiques et leurs moments

Exercices

- 1. La v.a. X suit une loi qui est un mélange de deux lois gaussiennes, chacune avec probabilité 0.5 : $N(\mu, \sigma^2)$ et $N(-\mu, \sigma^2)$. Calculez l'aplatissement K_x et $\lim_{\sigma^2 \downarrow 0} K_x$.
- 2. Trouvez l'asymétrie et l'aplatissement d'un mélange général de deux v.a. gaussiennes. Le site suivant donne les quatres premiers moments non centraux d'une v.a. $N(\mu, \sigma^2)$: https://fr.wikipedia.org/wiki/Loi normale#Moments.
- 3. Le prix d'un actif le 4 janvier est de 14.50 dollars. Le prix de l'actif le 15 fevrier est de 13.15. Quel est le rendement simple annualisé et le log rendement annualisé?
- 4. On observe un échantillon X_1, \ldots, X_T , où $X_t \sim \operatorname{iid} N(\mu, \sigma^2)$. Si on fait les tests 1 et 2 de la diapo "Attention : tests multiples!" quelle est la probabilité d'au moins un rejet, comme fonction de α ?

Cours 3

Lectures avant le cours

- 1. Tsay, 3e édition:
 - a. 2.4 Intro (avant 2.4.1)
 - b. 2.5 Intro (avant 2.5.1)
 - c. 2.6 Intro (avant 2.6.1)

Autres lectures

- 1. Tsay, 3e édition:
 - a. 2.4 (modèles AR)
 - b. 2.5 (modèles MA)
 - c. 2.6 (modèles ARMA)
 - d. 2.8.1 et 2.8.2 (pour faire l'exercise 2.4)

Exercices

- 1. Ecrivez les équations Yule-Walker pour un process AR(3) et pour un processus ARMA(1,1).
- 2. Trouvez la fonction d'autocorrélation pour un processus MA(3).
- 3. Considérez le process AR(3) suivant :

$$r_t = 1.9r_{t-1} - 1.4r_{t-2} + 0.45r_{t-3} + a_t$$
.

- a. Trouvez les racines du polynome caracteristique du processus.
- b. Est-ce que la condition de stationnarité tient?
- 4. Trouvez ψ_1, ψ_2, ψ_3 de la représentation MA infinie pour un ARMA(1,2) général.

Cours 4

Lectures avant le cours

- 1. Tsay, 3e édition:
 - a. Chapitre 3 jusqu'à l'introduction de 3.4 (avant 3.4.1)

Autres lectures

- 1. Tsay 3e édition:
 - a. Sections 1.2.2 (Distributions des rendements)
 - b. Sections 1.2.4 (Fonction de vraisemblance des rendements)
 - c. Section 3.4.1 (Propriétés des modèles ARCH)
 - d. Section 3.4.2 (Faiblesses des modèles ARCH)

Exercices

- 1. Mettons que r_t suit un modèle ARMA(1,3) avec moyenne zéro. Au moment t, trouvez les prévisions de r_{t+1} et de r_{t+2} qui minimisent l'erreur moyenne carrée. Trouvez la variance de l'erreur de prévision dans les deux cas.
- 2. Mettons que r_t suit un GARCH(1,1) gaussien avec moyenne zéro. Calculez la variance, l'asymétrie et l'aplatissement de r_t . Vous pouvez vérifier la variance et l'aplatissement en comparant vos résultats aux résultats à la page 132 de Tsay.

Cours 5

Lectures avant le cours

- 1. Dans Tsay, 3e édition:
 - a. 3.5 intro (avant 3.5.1) (Modèle GARCH)
 - b. 3.8 intro, 3.8.1 (Modèle EGARCH)
- 2. Au site web suivant : https://fr.wikipedia.org/wiki/Maximum_de_vraisemblance
 - a. Sections Exemple, Principe, Définitions, Propriétés, Exemples

Autres lectures

- 1. Dans Tsay, 3e édition:
 - a. 3.5.1 (exemple GARCH)

Exercices

- 1. Trouvez la moyenne et la variance de $\ln \sigma_t^2$ pour un modèle EGARCH(1,1)
- 2. Faites des prévision du rendement r_{T+1} pour une modèle AR(1)-GARCH(1,1). Quelle est la variance conditionnelle des erreurs de prévision? Exprime le résultat en termes des paramètres, de r_T et de σ_T^2 .

Cours 6

Lectures avant le cours

- 1. Dans Tsay, 3e édition:
 - a. 3.12 (Modèle de volatilité stochastique)
 - b. 12.3 intro, 12.3.1 (inférence bayésienne, lois postérieures)

Autres lectures

Exercices

- 1. Trouvez la loi *a posteriori* quand les observations sont iid Poisson(λ) et la loi *a priori* de λ est la loi Gamma($\bar{\alpha}, \bar{\beta}$), où $\bar{\alpha}$ et $\bar{\beta}$ sont des hyperparamètres fixes.
- 2. Trouvez la loi a posteriori conditionnelle de h dans le modèle gaussien.
- 3. Prenez le modèle de volatilité stochastique. L'exercice est de trouver comment construire la densité prédictive $f(y_{T+1}|y_1,\ldots,y_T)$ sur une grille de points.
 - a. Montrez que

```
f(y_{T+1}|y_1,\ldots,y_T) = E[f(\log h_{T+1}|\log h_T,\theta,y_1,\ldots,y_T) \cdot f(y_{T+1}|\log h_{T+1},\log h_T,\theta,y_1,\ldots,y_T)],
```

- où l'espérance est par rapport à la loi conditionnelle de (θ, h_T) sachant y_1, \ldots, y_T .
- b. Écrivez les densités $f(\log h_{T+1}|\log h_T, \theta, y_1, \dots, y_T)$ et $f(y_{T+1}|\log h_{T+1}, \log h_T, \theta, y_1, \dots, y_T)$ en utilisant les équations d'état et d'observation.
- c. Comment peut-on approximer la densité prédictive $f(y_{T+1}|y_1,...,y_T)$ sur une grille à partir d'un échantillon de la loi de θ , $\log h_T|y_1,...,y_T$? Indice: comme étape intermédiaire, créez un échantillon de la loi de θ , $\log h_T$, $\log h_{T+1}|y_1,...,y_T$.

Après l'intra

Cours 7

Lectures

- 1. CLM 5.0, 5.1, 5.2, 5.3
- 2. CLM 5.7.1 (anomalies)
- 3. CLM 6.0, 6.1 (APT)

Exercices

1. Prouvez les 5 résultats des diapos 16 et 17, « Résultats I » et « Résultats II »

Voici des suggestions pour les 5 résultats :

- 1. Le résultat dépend de l'unicité de la solution $g + \mu_p h$. Si vous n'en servez pas, la solution est incorrecte.
- 2. Exprimez $\sigma_p^2 \equiv (g + \mu_p h)\Omega(g + \mu_p h)$ et minimisez. Écrivez le résultat en terms de μ , Ω .
- 3. La covariance entre le rendement du portefeuille $g + \mu_p h$ et celui du portefeuille $g + \mu_q h$ est $(g + \mu_p h)\Omega(g + \mu_q h)$.
- 4. Servez-vous du troisième résultat pour trouver le μ_{op} unique, en termes de μ_p , qui donne $\text{Cov}[R_p, R_{op}] = 0$
- 5. La covariance entre le rendement du portefeuille p sur le FMV et le portefeuille arbitraire ω est $(g + \mu_p h)\Omega\omega$. Écrivez-la en forme $\lambda \mu_i + \gamma$, où $\mu_i = E[R_i]$, et λ et γ sont des fonctions de μ_p, A, B, C, D . Écrivez l'équation pour deux cas spéciaux, i = op et i = p, pour obtenir (5.2.19) dans le manuel CLM.

Cours 8, 9

Lectures avant le premier cours

1. CLM 8 intro, 8.1 avant 8.1.1

Autres lectures

- 1. CLM 8.1 (FAS)
- 2. CLM 8.2 (CCAPM, utilité isoélastiques, casse-têtes empiriques)
- 3. CLM 8.4 Utilité Epstein-Zin, utilité non-séparable
- 4. CLM A.2 GMM

Exercices

- 1. Considérez le milieu introduit à la diapo "Absence d'arbitrage et le FAS". Il y a S=2 états et 2 actifs. Le premier actif a un rendement net R_f dans les deux états et coûte 100 \$. Le deuxième actif a un rendement net R_1 dans le permier état et un rendement net R_2 dans le deuxième et coûte 500 \$.
 - a. Donnez les matrices X et G et le vecteur q en termes de R_f , R_1 et R_2 .
 - b. Donnez une condition nécessaire et suffisante sur R_f , R_1 et R_2 pour la complétion du marché.
 - c. Supposant que le marché est complet, trouvez le vecteur des prix d'états et donnez une condition supplémentaire sur R_f , R_1 et R_2 pour l'absence d'arbitrage.
 - d. Si les états sont équiprobable ($\pi_1 = \pi_2 = 0.5$) trouvez le facteur d'actualisation stochastique.
- 2. Considérez le problème à la diapo "Un problème à deux périodes sans incertitude".
 - a. Démontrez que si $(C_t^{(i)}, C_{t+1}^{(i)})$ est une solution du problème pour un consommateur avec revenu m_i , i = 1, 2, que $(C_t^{(1)} + C_t^{(2)}, C_{t+1}^{(1)} + C_{t+1}^{(2)})$ est une solution du problème pour un consommateur avec revenu $m_1 + m_2$.
 - b. Généralisez le problème à trois périodes. Le taux d'intérêt R est constant et la pondération de $U(C_{t+2})$ est δ^2 . Démontrez que pour la solution (C_t, C_{t+1}, C_{t+2}) , les ratios C_{t+2}/C_t et C_{t+1}/C_t ne dépendent pas du revenu m.

Questions (Cours 9)

- 1. Regardez l'expression pour $r_{f,t+1}$ dans le modèle CCAPM avec préférences Epstein-Zin. Pourquoi est-ce la moyenne historique de $r_{f,t+1}$ est plus cohérente avec ce modèle, par rapport au modèle avec préférences isoélastique, quand γ est très élevé?
- 2. Regardez l'expression pour la prime de risque associée à l'actif i dans le même modèle. Quelle est la prime de risque associée au marché (ou portefeuille agrégé)? Pourquoi est-ce que les préférences E-Z aident à capturer la prime historique des actions, par rapport aux préférences isoélastique?
- 3. Supposons qu'on utilise la méthode GMM pour estimer les paramètres δ et γ du modèle CCAPM avec utilité isoélastique. On observe $w_t = (C_t, C_{t+1}, R_{t+1}, Z_t), t = 1, \ldots, T$.
 - a. Pour quoi est-ce qu'on ne devrait pas utiliser, comme élément de Z_t , une variable qui n'est pas observée à t+1?
 - b. Mettons que Z_t comprend une variable observée à t mais qui n'aide pas à prévoir la consommation future C_{t+1} . Quelles sont les implications pour l'inférence GMM?
- 4. Si la fonction de moment $g(w_t, \theta)$ (un vecteur) a un élément qui est une fonction de w_t mais pas de θ , quelles sont les implications pour l'estimation est les tests.

Cours 10

Lectures

- CLM 10.1, 11.1 (Obligations)
- CLM 3.1, 3.2 (Données de haute fréquence)
- Tsay 5.1, 5.2 (Données de haute fréquence)

Exercices

1. Dérivez les équations (11.1.21) et (11.1.23) dans CLM.

2. Terminez la preuve de

$$\mathrm{Cov}[r_{At}^{\circ},r_{A,t-k}^{\circ}] = -\pi_A^k \mu_A^2.$$

3. Dans le modèle de rebond acheteur/vendeur, supposez qu'un achat (au cours vendeur) est plus probable quand le prix latent augmente. Plus spécifiquement, supposez qu'avec probabilité 1/2, $P_t^* \sim (P_{t-1}^* + \mu, \sigma^2)$ et $P_t = P_t^* + S/2$ et qu'avec probabilité 1/2, $P_t^* \sim (P_{t-1}^* - \mu, \sigma^2)$ et $P_t = P_t^* - S/2$. Trouvez $E[\Delta P_t]$, puis $Cov[\Delta P_t, \Delta P_{t-1}]$.

Questions

Tableau de P_{nt}

$\overline{n\backslash t}$	0	1	2
1	0.990	0.985	0.990
2	0.980	0.975	
3	0.960		

- 1. Pour le tableau de prix d'obligations ci-haut :
 - a. À quelle période le prix P_{12} est-il observé?
 - b. Trouvez les valeurs de Y_{02} et y_{02} .
 - c. Trouvez la valeur du rendement "holding period" $R_{3,2}$. À quelle période est-il observé?
 - d. Trouvez la structure à terme à la période t = 0.
 - e. Trouvez la valeur du cours à terme F_{20} . À quelle période est-il observé?

Cours 11

Lectures

• Tsay 5.4.1, 5.5, Appendix B du chapitre 5.

Questions

1. Considérez un mélange de deux distributions exponentielles, avec densité

$$f(t) = \pi \lambda_1 \exp(-\lambda_1 t) + (1 - \pi) \lambda_2 \exp(-\lambda_2 t).$$

Supposons que $\lambda_2 > \lambda_1$. Soit h(t) le taux d'incidence pour le mélange.

- a. Trouvez h(0).
- b. Trouvez $\lim_{t\to\infty} h(t)$.
- c. Montrez que la fonction h(t) est décroissante. Une généralisation utile : le mélange de plusieurs distributions, ayant chacune un taux d'incidence faiblement décroissant, a un taux d'incidence faiblement décroissant.
- 2. Considérez une variable aléatoire qui est la somme de deux variables iid exponentielles avec taux d'incidence λ . Soit h(t) le taux d'incidence pour la somme. (Indice : la somme est une variable aléatoire Gamma $(2, \lambda)$).
 - a. Trouvez h(0).
 - b. Trouvez $\lim_{t\to\infty} h(t)$.
 - c. Montrez que h(t) est croissant. Une généralisation utile : une somme de variables aléatoires indépendentes, ayant chacune un taux d'incidence faiblement croissant, a un taux d'incidence faiblement croissant.)
- 3. Considérez le modèle ACD suivant :

$$x_i = \psi_i \epsilon_i, \quad \psi_i = \omega + \gamma x_{i-1} + \lambda \psi_{i-1}, \quad \epsilon_i \sim \operatorname{iid} \operatorname{Exp}(1).$$

Supposons que x_i est faiblement stationnaire. Soit $\gamma=0.15,\,\lambda=0.80,\,\omega=0.75s.$

- a. Si x_i est faiblement stationnaire, quelles sont sa moyenne et sa variance inconditionnelle?
- b. Si $x_i = 8s$ et $\psi_i = 20s$, quelle est la loi conditionnelle de x_{i+1} ? Quelles sont sa moyenne et sa variance conditionnelle?
- 4. Pour les valeurs estimées des diapos "Résultats empiriques I" quelle est la probabilité que le prix de la prochaine transaction égale le prix de la précédente? Supposons que $x_i\beta=0.13$ et $\sigma_i^2(w_i)=1.4$.

Cours 12

Lectures

• Tsay 7 (intro), 7.1, 7.2, 7.3, 7.4