

一、组合逻辑电路的概述

• 1、逻辑电路的分类

$$Y = ((A+B)'+(A'+B')')'$$

$$Y = (A+B)(A'+B')$$

$$Y = AB' + A'B$$

任意时刻,输出Y只与

当前的输入A和B有关

• 2、逻辑功能的描述

对于任何一个多输入、多输出的组合逻辑电路,都可以用下图表示。

• 3、集成电路的分类

小规模集成电路

• 各种类型的门电路

中规模集成电路

• 编码器、译码器、数据选择器、加法器、数值比较器等

大规模集成电路

· 可编程逻辑器件PLD

二、组合逻辑电路的分析方法

组合逻辑电路的分析,目的是得到电路的逻辑功能。

逻辑函数 推导

从输入端到输出端逐级写出逻辑函数式,得到表示输出与输入关系的逻辑函数式。

逻辑函数 化简

 用公式或卡诺图化简法将得到的逻辑函数式进行 化简,使逻辑关系简单明了。

逻辑函数转换

 为使电路的逻辑功能更加直观,还可将逻辑函数 式转换为真值表的形式。 • 例1: 分析下图逻辑电路的逻辑功能

$$S = (A \oplus B) \oplus C$$

$$CO = (A \oplus B)C + AB$$

	161						
A	В	C	$A \oplus B$	$S = A \oplus B \oplus C$	(A ⊕ B)C	AB	со
0	0	0	0	0	0	0	0
0	0	1	0	1	053	350	0
0	1	0	TOE	1	0 -	0	30
0	131	1	1	TEN DEST	1	0	Ti
1	05	300	01	1	0	0	0
1	0	STS	Mal .	0	1	0	1
1	1	0	0	0	0	1	1
1	1	1	20	夏 前 >	0	1	1

Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, which is

• 例2: 分析下图逻辑电路的逻辑功能

逻辑

$$\begin{cases} Y_2 = ((DC)'(DBA)')' = DC + DBA \\ Y_1 = ((D'CB)'(DC'B')'(DC'A')')' = D'CB + DC'B' + DC'A' \\ Y_0 = ((D'C')'(D'B')')' = D'C' + D'B' \end{cases}$$

1	榆)	1	输出					
D	C	B	A	<i>Y</i> ₂	Y_1	Y_0			
0	0	0	0	0	20	1			
0	0	0	1	0	0	1			
0	0	1	0	0	0	15			
0	0	Mar.	1	0	0	1			
0	1	0	0	0	0	1			
0	1	0	015	0	0	1			
0	1	1	0	0.5	Par I	0			
0	1	-1	1	0	1	0			

	渝	SOS	输出				
D	C	B	A	Y2	Y_1	Y_0	
1	0	0	0	0	SI'S	-0	
1	0	0	1	0	N	0	
1	0	1	0	0	1	00	
ST	30	1	1	1	0	0	
1	43	0	0	1	0	0	
1	1	0	1	1	0	0	
1	1	1	0	1 :	0	0	
1	1	1	1	1	0	0	

DCBA小于等于5, $Y_0=1$; 6~10之间, $Y_1=1$; 大于等于11, $Y_2=1$

三、组合逻辑电路的基本设计方法

• 1、进行逻辑抽象

确定输入变量 和输出变量

- 引起事件的原因定义输入变量
- 事件的结果定义为输出变量

定义逻辑状态 的含义

- 对输入、输出变量进行编码
- 明确0、1所代表的具体含义

列出真值表

• 根据给定的因果关系,列出真值表

• 2、写出逻辑函数式

写出逻辑函数式

• 将真值表转换为逻辑函数式

• 3、逻辑函数的化简或变换

逻辑函数的化简

• 最简: 乘积项最少、乘积项因子最少

逻辑函数的变换

• 根据门电路类型,对函数式进行变换

• 4、画出逻辑电路图

画出逻辑电路图

• 画出用门电路组成的逻辑电路图

• 5、设计验证与工艺设计

设计验证

• 验证是否符合设计要求

工艺设计

将逻辑电路实现为具体电路装置,所需要的一系列工艺设计工作

• 组合逻辑电路设计的流程

• 例3: 设计一个监视交通信号灯状态的逻辑电路

定变量

- 输入变量: 红灯R、黄灯A、绿灯G
- · 输出变量: 电路工作状态 Z

明含义

· 输入变量 RAG: 灯亮为1; 灯不亮为0

UNE STORES

· 输出变量 Z: 正常为 0, 故障为 1

正常状态 Z=0

故障状态 Z=1

希	输入变量									
R	A	G	Z							
0	0	0	1							
0	0	1	0							
0	1	0	0							
0	1	1	1							
1	0	0	0							
1	0	1	1							
1	1	0	1							
1	1	1	1							

写函数

$$Z = R'A'G' + R'AG$$
$$+RA'G + RAG' + RAG$$

R'A'G'

R'AG

RA'G

RAG'

RAG

与或非 形式

$$Z = R'A'G' + RA + RG + AG$$
$$= (RA'G' + R'AG' + R'A'G)'$$

四、普通编码器

1、引言

将输入的每一个高、低电平信号,编码成一个对应的二进制代码。

• 2、普通编码器的设计

定变量

- ・ 输入变量: $I_{\theta}(000)$ 、 $I_{1}(001)$ 、....、 $I_{7}(111)$
- 输出变量: 三位二进制数Y, Y, Y,

明含义

- 输入变量:有输入为1,无输入为0
- 输出变量: 1 为有输出, 0 为无输出

列表格

		弁	俞	,	λ	4	俞 出	4			
I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	Y ₂	Y_1	Y_{o}	
1	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	0	0	1	0	
0	0	0	1	0	0	0	0	0	1	1	
0	0	0	0	1	0	0	0	1	0	0	
0	0	0	0	0	1	0	0	1	0	1	$ \square \rangle I_0' I_1' I_2' I_3' I_4' I_5 $
0	0	0	0	0	0	1	0	1	1	0	
0	0	0	0	0	0	0	1	1	1	1	$I_0^{\prime}I_1^{\prime}I_2^{\prime}I_3^{\prime}I_4^{\prime}I_5^{\prime}I_6^{\prime}$

写函数

$$\begin{split} Y_0 &= I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_3^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} + I_0^{'} I_1^{'} I_3^{'} I$$

普通编码器: 任何时刻只允许有一个编码信号输入。

$$Y_0 = \vec{I_0} \vec{I_1} \vec{I_2} \vec{I_3} \vec{I_4} \vec{I_5} \vec{I_6} \vec{I_7} + \vec{I_0} \vec{I_1} \vec{I_2} \vec{I_3} \vec{I_4} \vec{I_5} \vec{I_6} \vec{I_7} + \vec{I_0} \vec{I_1} \vec{I_2} \vec{I_3} \vec{I_4} \vec{I_5} \vec{I_6} \vec{I_7} + \vec{I_0} \vec{I_1} \vec{I_2} \vec{I_3} \vec{I_4} \vec{I_5} \vec{I_6} \vec{I_7}$$

化简前

$$I_1 = 1$$

其他全 = 0

$$I_1 = 1$$

其他至少有一个 = 1

化简后

$$I_1 = 1$$

五、优先编码器

• 1、普通编码器与优先编码器

普通编码器

任何时刻只允许输 入一个编码信号

优先编码器

- 允许同时输入两个以上的编码信号
- 只对其中优先权最高的一个进行编码

• 2、优先编码器的设计

定变量

- · 输入变量: I₀'(000号)、I₁'(001号)、.....、I₇'(111号)
- 输出变量: Y₂' Y₁' Y₀'

明含义

- 输入变量:有输入为0,无输入为1
- 输出变量: 0 为有输出, 1 为无输出

列表格

 I_7 '优先权最高... I_0 '优先权最低

		有	俞)	λ			有	俞 出	4	的一
I_0	I_1	I_2	I_3	I_4	I_5	I_6	<i>I</i> ₇ '	Y2'	Y_1	Y_0	
×	×	×	×	X	×	×	0	0	0	0	\Rightarrow
×	×	×	×	×	×	0	1	0	0	1	
X	×	×	×	×	0	1	1	0	1	0	
X	×	×	×	0	1	1	1	0	1	1	
X	×	×	0	1	1	1	1	1	0	0	\Rightarrow
X	×	0	1	1	1	1	1	1	0	1	100
×	0	1	1	1	1	1	1	1	1	0	
0	1	1	1	1	1	1	1	1	1	1	

只对优先权最高 的一个进行编码

写函数

$$Y_0' = (I_7 + I_5 I_6' I_7' + I_3 I_4' I_5' I_6' I_7' + I_1 I_2' I_3' I_4' I_5' I_6' I_7')'$$

$$Y_1' = (I_7 + I_6 I_7' + I_3 I_4' I_5' I_6' I_7' + I_2 I_3' I_4' I_5' I_6' I_7')'$$

$$Y_2 = (I_7 + I_6 I_7 + I_5 I_6 I_7 + I_4 I_5 I_6 I_7)'$$

做化简

$$Y_{0} = I_{7} + I_{5}I_{6}I_{7} + I_{3}I_{4}I_{5}I_{6}I_{7} + I_{1}I_{2}I_{3}I_{4}I_{5}I_{6}I_{7}$$

$$A B A' B A' B A' B A'$$

$$Y_{0} = I_{7} + I_{5}I_{6} + I_{3}I_{4}I_{5}I_{6} + I_{1}I_{2}I_{3}I_{4}I_{5}I_{6}$$

$$Y_{0} = I_{7} + \left(I_{5} + I_{3}I_{4}I_{5} + I_{1}I_{2}I_{3}I_{4}I_{5}\right)I_{6}$$

$$A B A' B A'$$

$$Y_{0} = I_{7} + \left(I_{5} + I_{3}I_{4} + I_{1}I_{2}I_{3}I_{4}\right)I_{6}$$

$$Y_{0} = I_{7} + \left(I_{5} + I_{3}I_{4} + I_{1}I_{2}I_{3}I_{4}\right)I_{6}$$

$$Y_{0} = I_{7} + I_{5}I_{6} + I_{3}I_{4}I_{6} + I_{1}I_{2}I_{3}I_{4}I_{6}$$

$$Y_{0} = I_{7} + I_{5}I_{6} + \left(I_{3} + I_{1}I_{2}I_{3}\right)I_{4}I_{6}$$

$$Y_{0} = I_{7} + I_{5}I_{6} + \left(I_{3} + I_{1}I_{2}I_{3}\right)I_{4}I_{6}$$

$$Y_{0} = I_{7} + I_{5}I_{6} + \left(I_{3} + I_{1}I_{2}I_{3}\right)I_{4}I_{6}$$

$$Y_{0} = I_{7} + I_{5}I_{6} + \left(I_{3} + I_{1}I_{2}I_{3}\right)I_{4}I_{6}$$

$$Y_{0} = I_{7} + I_{5}I_{6} + \left(I_{3} + I_{1}I_{2}I_{3}\right)I_{4}I_{6}$$

 $Y_0 = I_7 + I_5 I_6 + I_3 I_4 I_5 + I_1 I_7 I_4 I_6$

A + A'B = A + B

化简得:

A'

$$\begin{cases} Y_2' = (I_4 + I_5 + I_6 + I_7)' \\ Y_1' = (I_2 I_4' I_5' + I_3 I_4' I_5' + I_6 + I_7)' \\ Y_0' = (I_1 I_2' I_4' I_6' + I_3 I_4' I_6' + I_5 I_6' + I_7)' \end{cases}$$

3、优先编码器实例 74HC148

选通输出端 低电平有效

$$S'=1$$

不工作 所有输出锁定为高电平

$$S'=0$$

正常工作 输入有效

74HC148功能表

		3	输		λ					输 出					不工作
s,	I_{ϱ}	I_1	I_2	I_3	I_4	I_5	I_6	<i>I</i> ₇ '	Y2'	Y_1	Y_{θ}	Ys'	Y_{EX}	1 箱	出均为高电平
1	×	×	×	×	×	×	×	×	1	1	1	i	2012		工 <i>ಓ</i>
0	1	1	1	1	1	1	1	1	1	1	1	0	10	>	工作 无信号输入
0	×	×	×	×	×	×	×	0	0	0	0	1	0		
0	×	×	×	×	×	×	0	1	0	0	1	1	0		
0	×	×	×	×	×	0	1	1	0	1	0	1	0		C. C.
0	×	×	×	×	0	1	1	1	0	1	1	100	0	2	工作
0	×	×	×	0	1	1	1	1	1	0	0	i	0		有信号输入
0	×	×	0	1	1	1	1	1	1	0	1	1	0		100
0	×	0	1	1	1	1	1	1	1	1	0	1	0		HEED BAY
0	0	1	1	1	1	1	1	1	1	1 .	1	1	0	10000	三个111的输出 i过 <i>Ys'Y_{EX}'</i> 区分

· 例3: 用两片8线-3线优先编码器74HC148接成16线-4线优 先编码器

将 A_0 '~ A_{15} '等16个低电平输入编码为0000~1111的4位二进制代码。

六、二-十进制优先编码器

1、引言

将输入的每一个高、低电平信号,编码成对应的十进制BCD码。

• 2、优先编码器的设计

定变量

- · 输入变量: I₀'(0号)、I₁'(1号)、....、I₉'(9号)
- 输出变量: Y₃' Y₂' Y₁' Y₀' (BCD码为反码形式)

明含义

- 输入变量:有输入为0,无输入为1
- · 输出变量: 0 为有输出, 1 为无输出

عايرا

	列表格					'优	先权	又最	高	.I₀'∜	光先权	7最低	€	只对优先权最高		
			输		- 22	入					输	出		的一个进行编码		
I ₀ '	I_1	<i>I</i> ₂ '	I_3	I_4	<i>I</i> ₅ '	<i>I</i> ₆ '	<i>I</i> ₇ '	I_8	Ig'	Y3'	Y2'	Y_1	Y ₀ '			
×	×	X	×	X	×	X	X	×	0	0	1	1	0	BCD码: 1001		
×	×	×	×	×	X	X	X	0	1	0	1	1	1 [$I_{8}I_{9}^{'}$		
×	×	×	×	×	×	×	0	1	1	1	0	0	0			
×	×	×	×	X	×	0	1	1	1	1	0	0	1	$I_6I_7I_8I_9$		
×	×	×	×	×	0	1	1	1	1	1	0	1	0			
×	X	×	×	0	1	1	1	1	1	1	0	1	1 [$I_4 I_5 I_6 I_7 I_8 I_9$		
×	×	×	0	1	1	1	1	1	1	1	1	0	0			
×	×	0	1	1	1	1	1	1	1	1	1	0	1	$I_2I_3I_4I_5I_6I_7I_8I_9$		
×	0	1	1	1	1	1	1	1	1	1	1	1	0			
×	1	1	1	1	1	1	1	1	1	1	1	1	1 [$I_1I_2I_3I_4I_5I_6I_7I_8I_9$		
$Y_0^{'}$	=1	$_{8}I_{9}^{'}$	$+I_6$	$I_7^{'}I_8^{'}$	I_9	+ I,	$I_5^{\prime}I_6^{\prime}$	$I_7^{\prime}I_8^{\prime}$	$I_9^{'}$	+ //3	$I_4^{'}I_5^{'}I_6^{'}$	$I_7^{'}I_8^{'}I$	' I	I ₁ A ₂ I ₃ I ₄ I ₅ I ₆ I ₇ I _{8 9} ' ' I		

· [I

写函数

$$\begin{split} Y_0^{'} &= I_8^{'} I_9^{'} + I_6^{'} I_7^{'} I_8^{'} I_9^{'} + I_4^{'} I_5^{'} I_6^{'} I_7^{'} I_8^{'} I_9^{'} \\ &+ I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} I_8^{'} I_9^{'} + I_1^{'} I_2^{'} I_3^{'} I_4^{'} I_5^{'} I_6^{'} I_7^{'} I_8^{'} I_9^{'} \\ \end{split}$$

$$\begin{split} Y_{1}^{'} &= I_{9} + I_{8}I_{9}^{'} + I_{5}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{4}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} \\ &+ I_{1}I_{2}^{'}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{1}^{'}I_{2}^{'}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} \end{split}$$

$$\begin{split} Y_{2}^{'} &= I_{9} + I_{8}I_{9}^{'} + I_{3}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{2}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} \\ &+ I_{1}I_{2}^{'}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{1}^{'}I_{2}^{'}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} \\ \end{split}$$

$$\begin{split} Y_{3}^{'} &= I_{7}I_{8}^{'}I_{9}^{'} + I_{6}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{5}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{4}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{3}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} \\ &+ I_{2}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{1}I_{2}^{'}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{1}I_{2}^{'}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} \\ &+ I_{1}I_{2}^{'}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{1}I_{2}^{'}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{1}I_{2}^{'}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} \\ &+ I_{1}I_{2}^{'}I_{3}^{'}I_{4}^{'}I_{5}^{'}I_{6}^{'}I_{7}^{'}I_{8}^{'}I_{9}^{'} + I_{1}I_{2}^{'}I_{3}^{'}I_{8}^{'}I_{9}^{'} + I_{1}I_{2}^{'}I_{3}^{'}I_{8}^{'}I_{9}^{'} + I_{1}I_{2}^{'}I_{3}^{'}I_{8}^{'}I_{9}^{'} + I_{1}I_{2}^{'}I_{3}^{'}I_{8}^{'}I_{9}^{'} + I_{1}I_{2}^{'}I_{3}^{'}I$$

做化简

· 3、二-十进制优先编码器实例74HC147

七、二进制译码器

1、引言

将每个输入的二进制代码译成对应的输出高、低电平信号。

• 2、二进制译码器的设计

定变量

- 输入变量: 三位二进制数A₂ A₁ A₀
- · 输出变量: Y₀(000)、Y₁(001)、.....、Y₇(111)

明含义

- 输入变量:有输入为1,无输入为0
- 输出变量: 1 为有输出, 0 为无输出

列表格

4	俞 ノ	\			车	ń	Ł	H		
A_2	A_1	A_0	Y ₇	Y ₆	Y ₅	Y4	Y ₃	Y ₂	Y ₁	Y ₀
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

写函数

输出为A₂A₁A₀ 的全部最小项

$$Y_0 = A_2' A_1' A_0' = m_0$$

$$Y_1 = A_2' A_1' A_0 = m_1$$

$$Y_2 = A_2' A_1 A_0' = m_2$$

$$Y_3 = A_2 A_1 A_0 = m_3$$

$$Y_4 = A_2 A_1 A_0 = m_4$$

$$Y_5 = A_2 A_1 A_0 = m_5$$

$$Y_6 = A_2 A_1 A_0 = m_6$$

$$Y_7 = A_2 A_1 A_0 = m_7$$

· 3、CMOS门电路组成的二进制译码器74HC138

• 附加控制端

S=1,正常工作 正常译码功能

其他控制输入组合

S=0,禁止工作 输出锁定高电平

	4.4		i					N.				
	输						输			出		
S_1	S2'+S3'	A_2	A_1	A_{0}	Y,'	Y_6	Y_5	Y4'	Y3'	Y2'	Y_1	Y_{θ}
0	×	×	×	×	1	1	1	1	1	17	31	, 1
×	1	×	×	×	1	1	1	1	1	1	Ý	1
1	0	0	0	00	1	1	1	1	1	1	1	0
1	25.0	0	0	1	1	1	1	1	1	1	0	1
1	0	0	1	0	1	1	1	1	1	0	1	1
1	0	0	n, 1	1	1	1	1	1	0	1	1	1
1	0	15	30	0	1	1	1	0	1	1	1	1
1	0	1	05	1	1	1	0	1	1	1	1	1
1	0	1	1	0	1	0	1	1	1	1	1	1
1	0	1	1	1	0	1	1	1	1	1	1	1

不工作 输出均为 高电平

工作 正常译码 功能 · 例4: 用3线-8线译码器74HC138组成4线-16线译码器。

将4位二进制代码 $D_3D_2D_1D_0$ 译成16个独立的低电平信号 $Z_0'\sim Z_{15}'$

WENNING.

4、译码器设计组合逻辑电路

逻辑抽象

• 定变量、明含义、列表格

逻辑函数式

写函数

选器件

· 译码器地址输入端个数 M≥逻辑函数变量个数 n

函数的化简或变换

• 逻辑函数变换为最小项之和的形式

逻辑电路图

• 画电路,将输出端对应的最小项相加

例5: 利用74HC138设计一个多输出的组合逻辑电路

输出逻辑函数
$$\begin{cases} Z_1 = AC' + A'BC + AB'C \\ Z_2 = BC + A'B'C \end{cases}$$

$$Z_1 = AC' + A'BC + AB'C$$

$$Z_2 = BC + A'B'C$$

$$Z_1 = A(B+B')C' + A'BC + AB'C$$
 $Z_2 = (A+A')BC + A'B'C$

$$Z_2 = (A + A')BC + A'B'C$$

$$Z_1 = A'BC + AB'C' + AB'C' + ABC'$$
 $Z_2 = A'B'C + A'BC + ABC'$
011 100 101 110 001 011 111

$$Z_2 = A'B'C + A'BC + ABC$$

$$Z_1 = m_3 + m_4 + m_5 + m_6$$

$$Z_2 = m_1 + m_3 + m_7$$

$$Z_1 = \left(m_3 m_4 m_5 m_6\right)'$$

$$Z_2 = \left(m_1 m_3 m_7\right)'$$

$$Z_1 = \left(m_3 m_4 m_5 m_6\right)'$$

$$Z_2 = \left(m_1 m_3 m_7\right)'$$

- 例6: 设计一个数值比较电路
 - 比较两个二进制数 A(a₁a₀) 和 B(b₁b₀)
 - 要求分别给出A-B≥2、B-A≥2和 |A-B| < 2 的输出信号

定变量

- 输入变量: a₁、a₀、b₁、b₀
- · 输出变量: Z₁(A-B≥2)、Z₂(B-A≥2)、Z₃(|A-B|<2)

明含义

- 输入变量:有输入为1,无输入为0
- 输出变量: 1 为有输出, 0 为无输出

列表格

	输	入		有	俞 E	Ħ		输	入	输出			
<i>a</i> ₁	a_0	b ₁	\boldsymbol{b}_0	Z_1	Z_2	Z_3	<i>a</i> ₁	a_0	b ₁	\boldsymbol{b}_{0}	Z_1	Z_2	Z_3
0	0	0	0	0	0	1	1	0	0	0	1	0	0
0	0	0_	1	0	0	1	1	0	0	1	0	0	1
0	0	1	0	0	1	0 ¦	1	0	1	0	0	0	1
0	0	1	1	0	1	0	1	0	1	1	0	0	1
0	1	0	0	0	0	1	1	1	0	0	1	0	0
0	1	0	1	0	0	1	1	1	0	1	1	0	0
0	1	1	0	0	0	1	1	1	1	0	0	0	1
0	1	1	1	0	1	0	1	1	1	1	0	0	1

做变换 写函数

$$Z_1 = m_8 + m_{12} + m_{13} = (m_8' m_{12}' m_{13}')'$$
 $Z_3 = (Z_1 + Z_2)'$

$$Z_2 = m_2 + m_3 + m_7 = (m_2 m_3 m_7)$$

4线-16线译码器

$$\begin{cases} Z_{1} = (m_{8}m_{12}m_{13})' \\ Z_{2} = (m_{2}m_{3}m_{7})' \\ Z_{3} = (Z_{1} + Z_{2})' \end{cases}$$

八、二-十进制译码器

1、引言

将输入的BCD码的10个代码译成10个高低电平输出信号。

· 2、二-十进制译码器实例74HC42

拒绝伪码:输入BCD码以外伪码(1010~1111),输出均为高电平。

九、显示译码器

1、七段字符显示器

用于以十进制数码的形式,直观的显示数字系统内的运行数据。

半导体(LED) 数码管

液晶显示器(LCD)

· 2、半导体数码管BS201A

· 3、BCD-七段显示译码器的设计

显示译码器作用:将BCD代码译成数码管所需驱动信号。

定变量

- · 输入变量: 四位二进制数 A₃ A₂ A₁ A₀
- 输出变量: $Y_a(a)$ 、 $Y_b(b)$ 、.....、 $Y_g(g)$

明含义

- 输入变量:有输入为1,无输入为0
- 输出变量: 1 为有输出, 0 为无输出

列表格

	输		入				输		出			
数字	A_3	A_2	A_1	A_0	Ya	Y_b	Y	Y_d	Y	Y_f	Y_g	
0	0	0	0	0	1	1	1	1	1	1	0	
1	0	0	0	1	0	1	1	0	0	0	0	
2	0	0	1	0	1	1	0	i	1	0	1	
3	0	0	1	1	1	1	1	1	0	y 0,	1	450
4	0	1	0	0	0	1	1	0	0	12	1	正常输入
5	0	1	0	1	1	0	1	1	0	1	1E	正帝初八
6	0	1	1	0	0	0	1	1	1	1	1	73
1	0	1	1	1	1	PoBs	21	0	0	0	0	(A)
8	310	0	0	0	1	1	ST.	21	1	1	1	
9	10	50	0	1	1	1	1	C0%	350	1	1	B 99
10	10	0	Va.	0	0	0	0	1	1	0	1	E L
11	1	0	T	120	0	0	1	1	0	0	1	Total Inc.
12	1	1	0	0 8	0	1	0	0	. 0	1	1	ALTII to 3
13	1	1	0	1	1	0	0	1	0	1	1	伪码输入
14	1	1	1	0	0	0	0	1	L1	1/2	1	TO APEL PR
15	1	1	1	1	0	0	0	0	0	0	0	CONTRACTOR OF STREET

写函数

卡诺图上采用"合并0后求反"的方法,获得 $Y_a \sim Y_g$ 的与或非形式

$$\begin{cases} Y_{a} = (A_{3}^{'}A_{2}^{'}A_{1}^{'}A_{0} + A_{3}A_{1} + A_{2}A_{0}^{'})' \\ Y_{b} = (A_{3}A_{1} + A_{2}A_{1}A_{0}^{'} + A_{2}A_{1}^{'}A_{0}^{'})' \\ Y_{c} = (A_{3}A_{2} + A_{2}^{'}A_{1}A_{0}^{'})' \\ Y_{d} = (A_{2}A_{1}A_{0} + A_{2}A_{1}^{'}A_{0}^{'} + A_{2}^{'}A_{1}^{'}A_{0})' \\ Y_{e} = (A_{2}A_{1}^{'} + A_{0})' \\ Y_{f} = (A_{3}^{'}A_{2}^{'}A_{0} + A_{2}^{'}A_{1} + A_{1}A_{0})' \\ Y_{g} = (A_{3}^{'}A_{2}^{'}A_{1}^{'} + A_{2}A_{1}A_{0})' \end{cases}$$

· 4、BCD-七段显示译码器实例7448

① 灯测试输入LT' (Lamp Test)

用于检查数码管各段能否正常发光。

② 灭零输入 RBI'(Ripple Blanking Input)

当数码管显示0时,用于把不希望显示的 0 熄灭。

③ 灭零输出 RBO'(Ripple Blanking Output)

当数码管显示0,且灭零输入RBI'=0时,用于指示是否灭零成功

④ 灭灯输入 BI' (Blanking Input)

用于熄灭数码管。

BI'=0

无论何种输入状态, 数码管均<mark>熄灭</mark>。

BI'=1

不起作用

例7: 利用RBI'和RBO',实现多位显示系统的灭零控制 0 1 0 0 从高位开始灭零 从低位开始灭零 不需要灭零 7448 7448 7448 7448 7448 7448 7448 RBI RBO RBI RBO RBI RBO RBI RBO RBI RBO RBI 灭零成功, 继续灭零 灭零成功, 继续灭零 灭零 灭零 灭零失败,停止灭零 灭零失败, 停止灭零