

Exercice 1 - Mouvement RT *

B2-12

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir 2.

Exercice 2 - Mouvement RT *

B2-12

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4} \operatorname{rad} \operatorname{et} \lambda(t) = 20 \, \mathrm{mm}.$

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Exercice 3 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir 4.

Exercice 4 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Exercice 5 - Mouvement RT *

B2-13

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Déterminer V(B,2/0) par dérivation vectorielle.

Question 2 Déterminer $\overline{V(B,2/0)}$ par composition.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}\ au\ point\ B.$

Question 4 Déterminer $\Gamma(B,2/0)$.

1.
$$\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$$

1.
$$V(B,2/0) = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$$
.
2. $V(B,2/0) = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$.

3.
$$\{\mathcal{V}(2/0)\}=\begin{cases} \dot{\theta}(t)k_0 \\ \dot{\lambda}(t)\overrightarrow{i_1}+\lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{cases}$$

4.
$$\overrightarrow{\Gamma(B,2/0)} = (\ddot{\lambda}(t) - \lambda(t)\dot{\theta}(t)^2) \overrightarrow{i_1}$$

$$(\dot{\lambda}(t)\dot{\theta}(t) + \dot{\lambda}(t)\dot{\theta}(t)) \overrightarrow{j_1} .$$

Corrigé voir 6.

Exercice 6 - Mouvement RT * B2-13

Question 1 Déterminer $\overline{V(B,2/0)}$ par dérivation vectorielle.

$$\overrightarrow{V(B,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\lambda(t)\overrightarrow{i_1}\right]_{\mathcal{R}_0} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}.$$

Question 2 Déterminer $\overline{V(B,2/0)}$ par composition.

$$\overrightarrow{V(B,2/0)} = \overrightarrow{V(B,2/1)} + \overrightarrow{V(B,1/0)}.$$

$$\forall P, \overrightarrow{V(P,2/1)} = \dot{\lambda}(t)\overrightarrow{i_1}.$$

Par ailleurs $\overrightarrow{V(B,1/0)} = \overrightarrow{V(A,1/0)} + \overrightarrow{BA} \wedge \overrightarrow{\Omega(1/0)} =$ $-\lambda(t)\overrightarrow{i_1}\wedge\dot{\theta}(t)\overrightarrow{k_0} = \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}.$

Au final, $\overrightarrow{V(B,2/0)} = \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1}$.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}\ au\ point\ B.$

$$\{\mathcal{V}(2/0)\} = \left\{ \begin{array}{l} \dot{\theta}(t)\overrightarrow{k_0} \\ \dot{\lambda}(t)\overrightarrow{i_1} + \lambda(t)\dot{\theta}(t)\overrightarrow{j_1} \end{array} \right\}_B.$$

Question 4 *Déterminer* $\Gamma(B,2/0)$.

$$\overrightarrow{\Gamma(B,2/0)} \ = \ \frac{\mathrm{d}}{\mathrm{d}\,t} \left[\overrightarrow{V(B,2/0)} \right]_{\mathcal{R}_0} \ = \ \overrightarrow{\lambda}(t) \overrightarrow{i_1} \ + \ \dot{\lambda}(t) \dot{\theta} \ \overrightarrow{j_1} \ +$$

Exercice 7 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Réaliser le paramétrage du mécanisme.

Corrigé voir 8.

Exercice 8 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Question 1 Réaliser le paramétrage du mécanisme.

Exercice 9 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Réaliser le paramétrage du mécanisme.

Corrigé voir 10.

Exercice 10 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Question 1 Réaliser le paramétrage du mécanisme.

Exercice 11 - Mouvement RT *

B2-14

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un vérin électrique positionné entre **1** et **2** permet d'actionner le solide **2**

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir 12.

Exercice 12 - Mouvement RT *

B2-14

C1-05 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \Re_0 .

Exercice 13 - Mouvement RT *

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de 1;
- G₂ = B désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un moteur électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un vérin électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir

Exercice 14 - Mouvement RT *

B2-14

B2-15

C1-05 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Exercice 15 - Mouvement RT *

B2-14

B2-15

C2-07 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de 1;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un vérin électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le couple moteur et l'effort à fournir par le vérin pour maintenir le système à l'équilibre.

Question 3 Donner les actions mécaniques dans chacune des liaisons.

Corrigé voir 16.

Exercice 16 - Mouvement RT *

B2-14

B2-15

C2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le couple moteur et l'effort à fournir par le vérin pour maintenir le système à l'équilibre.

Question 3 Donner les actions mécaniques dans chacune des liaisons.

Exercice 17 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overline{AG_1} = L_1 \overline{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

RESULTAT A VERIFIER!!!!! Par ailleurs, on donne $\{ \mathcal{V}(2/0) \} = \left\{ \begin{array}{l} \dot{\theta}(t) \overrightarrow{k_0} \\ \dot{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \end{array} \right\}_B \text{ et } \overrightarrow{\Gamma(B, 2/0)} = \\ (\ddot{\lambda}(t) - \lambda(t) \dot{\theta}(t)^2) \overrightarrow{i_1} + (\dot{\lambda}(t) \dot{\theta}(t) + \dot{\lambda}(t) \dot{\theta}(t)) \overrightarrow{j_1}.$

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en A.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir 18.

Exercice 18 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en A.

On a
$$\{\mathscr{D}(1/0)\} = \left\{\begin{array}{c} \overrightarrow{R_d(1/0)} \\ \overleftarrow{\delta(A, 1/0)} \end{array}\right\}_A$$
. Calculons $\overrightarrow{R_d(1/0)}$

$$\overrightarrow{R_d(1/0)} = m_1 \overrightarrow{\Gamma(G_1, 1/0)}$$

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0}$

Exercice 19 - Mouvement RT *

C2-09

La Martinière

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$; $\overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\lambda}(t) \overrightarrow{\lambda}(t) \overrightarrow{\lambda}(t) \right]_{\mathscr{R}_0} \cdot \overrightarrow{\lambda}(t)$
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

Un moteur électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un vérin électrique positionné entre **1** et **2** permet d'actionner le solide **2**

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème de la résultante dynamique au solide **2** en projection sur $\overrightarrow{i_1}$.

Question 2 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique à l'ensemble 1+2 au point A en projection sur $\overrightarrow{k_0}$.

Eléments de correction :

- 1. $F_v m_2 g \sin \theta = m_2 (\ddot{\lambda}(t) \lambda(t)\dot{\theta}^2(t))$.
- 2. $C_m (m_1 L_1 + m_2 \lambda(t)) g \cos \theta(t) = C_1 \ddot{\theta}(t) + m_1 L_1^2 \ddot{\theta}(t) + C_2 \ddot{\theta}(t) + 2m_2 \lambda(t) \dot{\lambda}(t) \dot{\theta}(t) + m_2 \lambda^2(t) \ddot{\theta}(t)$.

Corrigé voir 20.

Exercice 20 - Mouvement RT * C2-09

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème de la résultante dynamique au solide **2** en projection sur $\overrightarrow{i_1}$.

On isole le solide 2.

On réalise le BAME :

- liaison glissière : $\{\mathcal{T}(1 \to 2)\}$ tel que $\overrightarrow{R(1 \to 2)} \cdot \overrightarrow{i_1} = 0$;
- pesanteur sur 2 : $\{\mathcal{T}(\text{pes} \to 2)\} = \left\{\begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array}\right\}_B$ $\text{avec} -m_2 g \overrightarrow{j_0} \cdot \overrightarrow{i_1} = -m_2 g \sin \theta;$
- action du vérin $\{\mathcal{T}(\text{Vérin} \to 2)\} = \left\{\begin{array}{c} F_{\nu} \overrightarrow{i_1} \\ \overrightarrow{0} \end{array}\right\}$.

On applique le théorème de la résultante dynamique au solide 2 en projection sur $\overrightarrow{i_1}: \overrightarrow{R(1 \to 2)} \cdot \overrightarrow{i_1} + \left(-m_2 g \overrightarrow{j_0}\right) \cdot \overrightarrow{i_1} + F_v \overrightarrow{i_1} \cdot \overrightarrow{i_1} = \overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$.

Calcul de $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1} :$ $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[\overrightarrow{AG_2} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1} = m_2 \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[\lambda(t) \overrightarrow{i_1} \right]_{\mathscr{R}_0} \cdot$ $\overrightarrow{i_1} = m_2 \frac{\mathrm{d}}{\mathrm{d}t} \left[\dot{\lambda}(t) \overrightarrow{i_1} + \lambda(t) \dot{\theta}(t) \overrightarrow{j_1} \right]_{\mathscr{R}_0} \cdot \overrightarrow{i_1}$ $= m_2 \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \overrightarrow{j_1} + \dot{\lambda}(t) \dot{\theta}(t) \overrightarrow{j_1} + \lambda(t) \ddot{\theta}(t) \overrightarrow{j_1} - \lambda(t) \dot{\theta}^2(t) \overrightarrow{i_1} \right)$ $\overrightarrow{i_1} = m_2 \left(\ddot{\lambda}(t) - \lambda(t) \dot{\theta}^2(t) \right)$

Au final, l'application du TRD à 2 en projection sur $\overrightarrow{i_1}$ donne :

$$F_{\nu} - m_2 g \sin \theta = m_2 (\ddot{\lambda}(t) - \lambda(t) \dot{\theta}^2(t)).$$

Question 2 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique à l'ensemble 1+2 au point A en projection sur $\overline{k_0}$. On isole le solide 1+2.

On réalise le BAME :

- liaison pivot : $\{\mathcal{T}(0 \to 1)\}\$ tel que $\overrightarrow{\mathcal{M}(A, 0 \to 1)} \cdot \overrightarrow{k_0} = 0.$
- pesanteur sur 2 : $\{\mathscr{T}(\text{pes} \to 2)\} = \left\{ \begin{array}{c} -m_2 g \overrightarrow{j_0} \\ \overrightarrow{0} \end{array} \right\}_B$ avec $\overrightarrow{\mathscr{M}}(A, \text{pes} \to 2) \cdot \overrightarrow{k_0} = \left(\overrightarrow{AB} \wedge -m_2 g \overrightarrow{j_0}\right) \cdot \overrightarrow{k_0} = \left(\lambda(t)\overrightarrow{i_1} \wedge -m_2 g \overrightarrow{j_0}\right) \cdot \overrightarrow{k_0} = -m_2 g \lambda(t) \cos \theta(t);$
- pesanteur sur 1: $\{\mathscr{T}(\text{pes} \to 1)\} = \left\{\begin{array}{c} -m_1 g \ \overrightarrow{j_0} \end{array}\right\}_{G_1}$ avec $\overrightarrow{\mathscr{M}}(A, \text{pes} \to 1) \cdot \overrightarrow{k_0} = \left(\overrightarrow{AG_1} \wedge -m_1 g \ \overrightarrow{j_0}\right) \cdot \overrightarrow{k_0} = \left(L_1 \overrightarrow{i_1} \wedge -m_1 g \ \overrightarrow{j_0}\right) \cdot \overrightarrow{k_0} = -m_1 g L_1 \cos \theta(t);$
- action du moteur $\{\mathcal{T}(\text{Moteur} \to 1)\} = \left\{\begin{array}{c} \overrightarrow{0} \\ C_m \overrightarrow{k_0} \end{array}\right\}_A$.

On applique le théorème du moment dynamique au solide 1+2 en projection sur $\overrightarrow{k_0}$: $\overline{\mathscr{M}(A,0 \to 1)} \cdot \overrightarrow{k_0} + \overline{\mathscr{M}(A,\operatorname{pes} \to 2)} \cdot \overrightarrow{k_0} + \overline{\mathscr{M}(A,\operatorname{pes} \to 1)} \cdot \overrightarrow{k_0} + C_m \overrightarrow{k_0} = \overline{\delta(A,1+2/0)} \cdot \overrightarrow{k_0}$.

Calcul de $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{k_0} = \overrightarrow{\delta(A, 1/0)} \cdot \overrightarrow{k_0} + \overrightarrow{\delta(A, 2/0)} \cdot \overrightarrow{k_0}$

$$\begin{split} & \underset{\overline{\delta}(A,1/0)}{\operatorname{Calcul}} \operatorname{de} \, \overline{\delta(A,1/0)} \cdot \overrightarrow{k_0} : \\ & \underset{\overline{\delta}(A,1/0)}{\operatorname{de}} \cdot \overrightarrow{k_0} = \left(\overline{\delta(G_1,1/0)} + \overrightarrow{AG_1} \wedge \overrightarrow{R_d(1/0)} \right) \cdot \overrightarrow{k_0} = \\ & \left(\frac{\operatorname{d}}{\operatorname{d}t} \left[\overline{\sigma(G_1,1/0)} \right]_0 + m_1 \overline{AG_1} \wedge \frac{\operatorname{d}^2}{\operatorname{d}t^2} \left[\overline{AG_1} \right]_0 \right) \cdot \overrightarrow{k_0} \\ & = \left(\frac{\operatorname{d}}{\operatorname{d}t} \left[\overline{\sigma(G_1,1/0)} \right]_0 \cdot \overrightarrow{k_0} + \left(m_1 \overline{AG_1} \wedge \frac{\operatorname{d}^2}{\operatorname{d}t^2} \left[\overline{AG_1} \right]_0 \right) \cdot \overrightarrow{k_0} \right) \\ & = \left(\frac{\operatorname{d}}{\operatorname{d}t} \left[\overline{\sigma(G_1,1/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_1 L_1 \overrightarrow{i_1} \wedge \left(L_1 \ddot{\theta}(t) \overrightarrow{j_1} - L_1 \dot{\theta}^2(t) \overrightarrow{i_1} \right) \right) \cdot \overrightarrow{k_0} \right) \\ & \operatorname{car} \, \frac{\operatorname{d}}{\operatorname{d}t} \left[\overrightarrow{k_0} \right]_0 = \overrightarrow{0} \, . \\ & = C_1 \ddot{\theta}(t) + m_1 L_1^2 \ddot{\theta}(t) \end{split}$$

$$\begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \right]_0 + m_2 \overline{AB} \wedge \frac{\mathrm{d}^2}{\mathrm{d}t^2} [AB]_0 \end{pmatrix} \cdot \overrightarrow{k_0} \\ = \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \right]_0 \cdot \overrightarrow{k_0} + \left(m_2 \overline{AB} \wedge \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[\overline{AB} \right]_0 \right) \cdot \overrightarrow{k_0} \end{pmatrix} \\ = \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_2 \overline{AB} \wedge \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[\overline{AB} \right]_0 \right) \cdot \overrightarrow{k_0} \end{pmatrix} \\ = \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \\ + \left(m_2 \overline{AB} \wedge \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[\overline{AB} \right]_0 \right) \cdot \overrightarrow{k_0} \end{pmatrix} \\ = \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \\ + \left(m_2 \overline{AB} \wedge \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[\overline{AB} \right]_0 \right) \cdot \overrightarrow{k_0} \end{pmatrix} \\ = \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \\ + \left(m_2 \overline{AB} \wedge \frac{\mathrm{d}^2}{\mathrm{d}t^2} \left[\overline{AB} \right]_0 \right) \cdot \overrightarrow{k_0} \end{pmatrix} \\ = \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \\ + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \end{pmatrix} \\ = \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \\ + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \end{pmatrix} \\ = \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \\ + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \right) \\ = \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \\ + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \right) \\ = \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t} \left[\overline{\sigma(B,2/0)} \cdot \overrightarrow{k_0} \right]_0 + \left(m_2 \lambda(t) \overrightarrow{i_1} \wedge \left(\ddot{\lambda}(t) \overrightarrow{i_1} + \dot{\lambda}(t) \dot{\theta}(t) \right) \right) \cdot \overrightarrow{k_0} \right) \\ + \left(m_2 \lambda(t) \overrightarrow{k_0} \right) \left(m_2 \lambda(t) \overrightarrow{k_0} \right) \right) \cdot (\overline{k_0} \wedge \overline{k_0})$$

$$= C_2 \ddot{\theta}(t) + m_2 \lambda(t) (\dot{\lambda}(t)\dot{\theta}(t) + \dot{\lambda}(t)\dot{\theta}(t) + \lambda(t)\ddot{\theta}(t)).$$

$$C_{m}-m_{1}gL_{1}\cos\theta(t)-m_{2}g\lambda(t)\cos\theta(t) = C_{1}\ddot{\theta}(t)+m_{1}L_{1}^{2}\ddot{\theta}(t)+C_{2}\ddot{\theta}(t)+m_{1}L_{1}^{2}\ddot{\theta}(t)+C_{2}\ddot{\theta}(t)+m_{2}L_{1}^{2}\ddot{\theta}(t)+C_{2}\ddot{\theta}(t)+m_{2}L_{1}^{2}\ddot{\theta}(t)+C_{2}\ddot{\theta}(t)+m_{2}L_{1}^{2}\ddot{\theta}(t)+C_{2}\ddot{\theta$$