Euclid's Algorithm for Greatest Common Divisor

<u>Under The Supervision of</u> <u>Dr. Swapnil Lokhande</u>

Group Members:

Name: PRASAD KAPURE ID:202151115

Name: SNEHAL NALAWADE ID: 202151160

Name: BARAIYA POOJAN ID:202151185

Name: PATEL UTKARSH ID:202152329

Name: SHIVANI MEENA ID: 202152340

Contents:

- 1. Introduction
- 2. Divisor

Divisor definition

Code: find out divisors of given number

Code: find out number of divisors

3. Common divisor

Common divisor definition

Code: find out common divisor

Code: find out number of common divisor

4. Greatest Common divisors(GCD)

GCD definition

Code: find out GCD using different algorithms

Euclid's GCD algorithm

Proof of Euclid's GCD algorithm

Time complexity analysis of Euclid's GCD

algorithm

Introduction

In this Project, we discuss about greatest common Divisor of two numbers and what are the efficient techniques to calculate the GCD of two numbers . One of those techniques is Euclid's GCD algorithm, which was invented by Euclid of Alexandria , who was a Greek mathematician born in 300 BC. We also compute the time complexity of Euclid's GCD algorithm . We will compare the time complexity of brute force algorithm vs Euclid's GCD algorithm.

Divisor

What is Divisor?

A divisor is a number that divides another number either completely or with a remainder.

A divisor is represented in a division equation as:

Dividend ÷ Divisor = Quotient.

On dividing 20 by 4, we get 5. Here 4 is the number that divides 20 completely into 5 parts and is known as the divisor. Its division equation is

Similarly, if we divide 20 by 5, we get 4. Thus, both 4 and 5 are divisors of 20.

For an integer P, we say set S is a set of all divisors of N if

 $S=\{ x \mid P \mod x = 0 \&\& x \le P \&\& x \in N \}$

```
For examples
```

```
divisors(144) = { 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144}
```

Code 1: Print all divisors of given number(Brute force)

```
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
    if(n%i==0)
    printf("%d",i);
}</pre>
```

Input: 36

Output: 1 2 3 4 6 9 12 18 36

Time complexity: **O(n)**

Code 2: Print all divisors of given number

```
int n;
cin>>n;
for(int i=1;i<=sqrt(n);i++)
{
     if(n%i==0)
     {
        if(i*i!=n)
        printf("%d",i);
        else
        printf("%d %d",i,n/i);
     }
}
Input: 36
Output: 1 36 2 18 3 12 4 9 6</pre>
```

Time complexity: O(n^(1/2)

	Code 1	Code 2
Advantage	Give a all divisors in sorted order	It takes only sqrt(n) steps. Suppose n=36 steps=6.
Disadvantage	It take n steps. Suppose n=36 steps=36.	Give a all divisors in non-sorted order

Code 3: Print number of divisor

```
int a;
cin>>a;
int answer=0;
for(int i=1;i<=sqrt(a);i++)
{
    if(a%i==0)
    {
        if(i*i!=a)
            answer=answer+2;
        else
            answer++;
        }
}</pre>
```

printf("%d",answer);

Input: 12

Output: 6

Time complexity: O(n^(1/2))

Common divisors

For two number a and b we say x is a common divisor of a and b if

a mod x=0 and b mod x=0

For example

Divisor(12)={1, 2, 3, 4, 6, 12}

Divisor(18)={1, 2, 3, 6, 9, 18}

Common Divisor(12,18)={1, 2, 3, 6}

Code 1: Print all common divisors of given number (Brute force)

```
int a,b;
cin>>a>>b;
for(int i=1;i<=min(a,b);i++)
{
    if(a%i==0 && b%i==0)
    printf("%d",i);
}
Input : 12 and 18
Output: 1 2 3 6
Time complexity : O(n)</pre>
```

Code 2: Print all common divisors of given number

```
int a,b;
cin>>a>>b;
map<int,bool>mp1;
```

```
map<int,bool>mp2;
if(a>b)
swap(a,b);
for(int i=1;i<=sqrt(a);i++)</pre>
  {
    if(a%i==0)
     {
       mp1[i]=true;
       mp1[a/i]=true;
     }
  }
  for(int i=1;i<=sqrt(b);i++)</pre>
  {
    if(b%i==0)
     {
       mp2[i]=true;
       mp2[b/i]=true;
```

```
}
}
for(int i=1;i<=sqrt(a);i++)</pre>
{
  if(mp1[i])
  {
     if(mp2[i])
     printf("%d",i);
     if(i*i!=a && mp1[a/i] && mp2[a/i])
     printf("%d ",a/i);
  }
}
```

Input: 12 and 18

Output: 1 2 6 3

Time complexity: O(n^(1/2))

	Code 1	Code 2	
Advantage	Give a all	It takes only	
	common	sqrt(max(a,b))	
	divisors in	steps.	
	sorted order		
Disadvantage	It take min(a,b)	Give a all	
	steps.	common	
		divisors in non-	
		sorted order	

Code 3: Print number of common divisor

```
int a,b;
cin>>a>>b;
map<int,bool>mp1;
map<int,bool>mp2;
if(a>b)
swap(a,b);
for(int i=1;i<=sqrt(a);i++)
    {
      if(a%i==0)</pre>
```

```
{
     mp1[i]=true;
     mp1[a/i]=true;
   }
}
for(int i=1;i<=sqrt(b);i++)</pre>
{
  if(b%i==0)
   {
     mp2[i]=true;
     mp2[b/i]=true;
   }
}
int answer=0;
for(int i=1;i<=sqrt(a);i++)</pre>
{
   if(mp1[i])
```

```
{
      if(mp2[i])
      answer++;
      if(i*i!=a && mp1[a/i] && mp2[a/i])
      answer++;
    }
  }
Printf("%d",answer);
Input: 12 and 18
Output: 4
Time complexity : O(n^(1/2))
```

Greatest Common divisors

For two numbers a and b let S be the set of common divisors of a and b then

- G = maximum integer in set S is called the GCD of a and b .
- G = max(s), where max(s) is the greatest integer in set S.
- In short, the greatest among common divisors of a and be is called a Greatest common divisors of a and b.

```
If a = 12 and b = 8, then GCD(12,8) = 4.
```

Code 1: Find GCD (divisor method)

```
int a,b;
cin>>a>>b;
if(a>b)
swap(a,b);
```

```
map<int,bool>mp1;
map<int,bool>mp2;
for(int i=1;i<=sqrt(a);i++)</pre>
{
  if(a%i==0)
  {
    mp1[i]=true;
    mp1[a/i]=true;
  }
}
for(int i=1;i<=sqrt(b);i++)</pre>
{
  if(b%i==0)
  {
    mp2[i]=true;
    mp2[b/i]=true;
  }
```

```
}
int GCD=1;
for(int i=1;i<=sqrt(a);i++)</pre>
{
  if(mp1[i])
  {
    if(mp2[i])
     {
       if(i>GCD)
       GCD=i;
     }
    if(i*i!=a && mp1[a/i] && mp2[a/i])
     {
       if(a/i>GCD)
       GCD=a/i;
     }
  }
```

```
printf("%d",GCD);
  Input: 45 and 30
  Output: 15
  Time complexity: O(n^(1/2))
Code 2: Brute Force
int a,b;
  cin>>a>>b;
  int GCD=1;
  for(int i=1;i<=min(a,b);i++)</pre>
  {
    if(a%i==0 && b%i==0)
    GCD=i;
  }
  printf("%d",GCD);
```

}

Input: 45 and 30

Output: 15

Time complexity: O(n)

Code 3 : Find GCD (using prime Foctors)

```
18=2*3*3

12=2*2*3

GCD(12,18)=2*3=6

int a,b;

cin>>a>>b;

vector<int>v1;

vector<int>v2;

while(a%2==0)

{

v1.push_back(2);

a=a/2;
```

```
}
for(int i=3;i<=sqrt(a);i=i+2)</pre>
{
  while(a%i==0)
  {
    v1.push_back(i);
    a=a/i;
  }
}
if(a>2)
v1.push_back(a);
while(b%2==0)
{
  v2.push_back(2);
  b=b/2;
}
for(int i=3;i<=sqrt(b);i=i+2)</pre>
```

```
{
  while(b%i==0)
  {
    v2.push_back(i);
    b=b/i;
  }
}
if(b>2)
v2.push_back(b);
int GCD=1;
int pointer1=0;
int pointer2=0;
int size1=v1.size();
int size2=v2.size();
while(pointer1<size1 && pointer2<size2)</pre>
{
  if(v1[pointer1]==v2[pointer2])
```

```
{
      GCD=GCD*v1[pointer1];
      pointer1++;
      pointer2++;
    }
    else if(v1[pointer1]<v2[pointer2])</pre>
    pointer1++;
    else
    pointer2++;
  }
  printf("%d",GCD);
Input: 96 and 144
Output: 48
Time complexity: O(n)
```

```
GCD property1 : GCD(a,b)=GCD(a-b,b) (a>=b)
: GCD(a,b)=GCD(a,b-a) (b>=a)
```

Code 4 : Find GCD (using property1)

```
If a and b both are same stop using property1
```

This number is GCD

```
GCD(12,18)=GCD(12,6)
```

GCD(12,6)=GCD(6,6) (STOP)

GCD=6

```
int a,b;
cin>>a>>b;
while(a!=b)
{
  if(a>b)
```

```
a=a-b;
else
b=b-a;
}
printf("%d",a);
GCD property2 : GCD(a,b)=GCD(a%b,b) (a>=b)
: GCD(a,b)=GCD(a,b%a) (b>=a)
```

Code 5 : Find GCD (using property2)(Euclid's algorithm)

Euclid's GCD algorithm:

```
• Input: two integers x and y.
```

- Output : GCD(x,y)
- 1. let x > y and if x < y then swap x and y.
- 2. while b is not zero do as follows -

```
a. Temporary_variable = x mod y;
b. x = y;
c. y = Temporary_variable;
d. finally x is nothing but a GCD of input values of x and y
```

CODE:

```
int a,b;
cin>>a>>b;
while(a!=0 && b!=0)
{
    if(a>b)
    a=a%b;
    else
    b=b%a;
}
if(a==0)
```

```
printf("%d",b);
else
printf("%d",a);
Input: 96 and 144
Output: 48
```

Proof of Euclid's GCD Algorithm:

Time complexity: O(log(min(a,b))

For two integers a and b Euclid's algorithms works as follows

```
a > b

a = b*q + r0 (by division algorithm)

b = r0*q1 + r1

r0 = r1*q2 + r2

...

rn = (rn+1*qn+2) + 0 (algorithm terminates)
```

• First we show that the algorithm terminates.

Since ri+2 < ri+1, we have

- $r0 > r1 > r2 > \cdots > rn > rn+1 = 0$.
- This shows that the remainders are monotonically strictly decreasing positive integers until the last one, which is rn+1 = 0.
 Therefore the algorithm stops after no more than b divisions.
- We prove by induction the claim that for each i in $0 \le i \le n$ we have gcd(a, b) = gcd(ri, ri+1).
- For the base step i = 0, we have gcd(a, b) = gcd(r0, r1) by definition of r0 = a and r1 = b. For each i in $0 \le i < n$ we have gcd(ri, ri+1) = gcd(ri+1, ri+2).
- This shows that if gcd(a, b) = gcd(ri, ri+1),
 then gcd(a, b) = gcd(ri+1, ri+2), which is the induction step.
- This ends the proof of the claim. Now use the

claim with i = n: gcd(a, b) = gcd(rn, rn+1). But rn+1 = 0 and rn is a positive integer by the way the Euclidean algorithm terminates. Every positive integer divides 0. If rn is a positive integer, then the greatest common divisor of rn and 0 is rn. Thus, the Euclidean algorithm correctly computes the greatest common divisor of its input a and b as gcd(a, b) = rn.

Time Complexity of Euclid's algorithm:

The time complexity of this algorithm is O(log(min(a,b));

The time complexity of brute force algorithm is O(min(a,b));

a	b	Brute force algorithm (steps)	Euclid's algorithm (steps)
10	20	10	2
100	16563	100	6
1000	165156	1000	9
10000	1561627	10000	14
100000	56167466	100000	17

This table clearly shows how efficient Euclid's algorithm is !