一. (10%) 求 $C^{2\times 2}$ 的子空间 V_1,V_2 的交空间 $V_1 \cap V_2$ 及和空间 V_1+V_2 的基和维数,其

$$\label{eq:power_power} \div, \ V_1 = \left\{ \begin{pmatrix} x & y \\ x & y \end{pmatrix} | \ x,y \in C \right\}, V_2 = \left\{ \begin{pmatrix} x & y \\ -y & -x \end{pmatrix} | \ x,y \in C \right\}.$$

二. (10%) 欧氏空间 R[x], 中的内积定义为: 对 $\forall \varphi(x), \psi(x) \in R[x]$,

$$< \varphi(x), \psi(x) > = \int_{-1}^{1} \varphi(x) \psi(x) dx \, \circ \, \varphi \, \alpha = 1 \, , \quad \beta = x \, , \quad \eta = x^{2} \, , \quad W = L(\alpha, \beta) \, \circ$$
 求 $\eta \in W$ 中的正投影,即求 $\eta_{0} \in W$,使得 $\|\eta - \eta_{0}\| = \min_{\xi \in W} \|\eta - \xi\|$.

三. (20%)在 2×2 矩阵空间 $C^{2 \times 2}$ 上定义线性变换 f 如下:对任意矩阵 $X \in C^{2 \times 2}$,

$$f(X) = \begin{pmatrix} a & 2a \\ 3a & 4a \end{pmatrix}$$
, 其中, $a 为 X$ 的迹 $tr(X)$ 。

- 1. 求f在 $C^{2\times 2}$ 的基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵M;
- 2. 分别求 f 的值域 R(f) 及核子空间 K(f) 的基及维数;
- 3. x f 的特征值及相应的特征子空间的基;
- 4. 问:是否存在 $C^{2\times 2}$ 的基,使得f在这组基下的矩阵为对角阵?为什么?
- 四. (10%) 根据参数 a,b 不同的值,讨论矩阵 $A = \begin{pmatrix} 1 & a & 7 \\ 0 & 2 & b \\ 0 & 0 & 1 \end{pmatrix}$ 的 Jordan 标准形,并求矩

阵 $(A-I)^{100}$ 的秩。

五. (14%) 假设矩阵
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 2 \\ 1 & 0 & 1 \end{pmatrix}$$
.

- 1. 求A的广义逆矩阵 A^+ ;
- 2. 求一个次数不超过 2 的多项式 $f(\lambda)$, 使得 $f(A) = Ae^{At}$.
- 六. (10%) 假设 f 是 n 维酉空间 V 上的线性变换,若对任意 $\alpha,\beta\in V$,有 $(f(\alpha),\beta)=(\alpha,f(\beta))\,.$
 - 1. 证明: ΔV 的标准正交基下, f 的矩阵为 Hermite 矩阵;
 - 2. 证明:存在V的一组标准正交基,使得f的矩阵为对角阵。
- 七. (8%) 假设 $s \times n$ 矩阵 A 的秩为 r, 证明 $\|A\|_2 \le \|A\|_F \le \sqrt{r} \|A\|_2$ 。

- 八. (8%)假设 A^+ 是 $A \in C^{s\times n}$ 的广义逆矩阵,证明: $C^n = K(A) \oplus R(A^+)$,其中, $K(A), R(A^+)$ 分别表示矩阵 A 的核空间和 A^+ 的值域.
- 九. (12%) 假设 A, B 都 n 阶 Hermite 矩阵.
 - 1. 如果 A 是正定的,证明:存在可逆矩阵 C,使得 C^HAC , C^HBC 都是对角阵;
 - 2. 如果 A,B 都是半正定的,并且 A 的秩 r(A)=n-1,证明:存在可逆矩阵 C,使得 C^HAC,C^HBC 都是对角阵。