Elements of DeFi

https://web3.princeton.edu/elements-of-defi/

Professor Pramod Viswanath

Princeton University

Lecture 7: Improving CFMMs

Last Lecture: CFMMs and their properties

- Look at CFMMs from trader's perspective
 - Pricing
 - Slippage
 - Arbitrage
 - Relation with curvature
- Look at CFMMs from liquidity provider's perspective
 - Impermanent Loss
 - Arbitrage Loss
 - Picking the bonding curve
 - Fees

This lecture: Improving CFMMs

- Make CFMMs more capital efficient
 - LP's POV : Concentrated liquidity move liquidity around
 - Trader's POV: DEX aggregators Batching + Routing avoid arbitrage losses

Private CFMMs – to avoid MEV

CFMMs as derivatives

Recall: CFMMs

CFMM: Constant Function Market Makers

Use Bonding Curves to constrain reserves

$$\psi(x,y) = \psi(x + \Delta_x, y - \Delta_y)$$
OR
 $\psi(x,y) = constant$

Slope of the tangent = Price

Recall: Problems - Capital Inefficiency

Capital inefficiency: Less capital efficiency than LOBs - why?

- LPs cannot move liquidity around
- Was possible in LOBs

Capital Inefficiency leads to Arbitrage Loss

Arbitrage loss:

- increases with volatility (recall in the tradfi case, more volatility gave more profit) -> Fees have to give a return and cover these losses
- LPs are sitting ducks easily fleeced by arbitrageurs
- "If I see a Uniswap LP in the wild, I go up to them, shake their hand and thank them for their service"
 - Mark Twain (probably)

Capital Efficiency in LOBs

 How is capital efficiency achieved in LOBs?

 LPs can move/cancel orders around without paying fees

 Not possible in a fixed bonding curve CFMMs

Same liquidity serves all prices

Solution: Concentrated Liquidity

- Allow LPs to specify range of prices
- Divide price range into "buckets"
- LPs choose how much liquidity to allocate to which bucket

Measuring liquidity

 Before we look at how to enable LPs to distribute liquidity, need a good measure

 Constant Product MMs – has many favorable properties

 L is a good measure of liquidity – indicates depth of the market

Measuring liquidity

- Also, L is additive why?
- We know that:

$$xy = L^2$$
$$p = \frac{y}{x}$$

Express x, y in terms of p,L

$$x = \frac{L}{\sqrt{p}}$$
Reserves are linear in L

Why is this useful?

Easy to combine LPs at any price

Switching curves

 Need to switch across curves with different liquidity

CPMMs also make this easy

 Prices along the line through origin are the same – why?

Switch curves along those lines!

Example 1: Switching

- LP1 only allocates liquidity for price > 1
- LP2 only allocates liquidity for price < 1

 Reserves only move along the solid curve, switch at p = 1

Example 2: Overlap

- LP1 only allocates liquidity for price > 0.3
- LP2 only allocates liquidity for price < 1
- What happens when 0.3 < price < 1?

 Reserves only move along the solid curves, switch at p = 0.3 and p = 1

Improving capital efficiency

- So far, we have only looked at the mechanics of how concentrated liquidity would be implemented
- Goal was to improve capital efficiency

i.e. Are LPs able to enable the same market with the less

investment?

Improving capital efficiency: example

- LP1 only allocates liquidity for price > 1
- LP2 only allocates liquidity for price < 1
- How much reserves do they need to invest at p = 1?

- LP1 normally gives (2 ETH, 2 USD)
- LP2 normally gives (4 ETH, 4 USD)

Improving capital efficiency: example

- LP1 normally gives
 - (2 ETH, 2 USD)
- LP2 normally gives
 - (4 ETH, 4 USD)
- But, LP1 not active when p < 1
- Does not need USD reserves!

- LP1's real reserves :
 - (2 ETH, 0 USD)
- LP2's real reserves :
 - (0 ETH, 4 USD)

Improving capital efficiency: example

- LP1's real reserves :
 - (2 ETH, 0 USD)
- LP2's real reserves :
 - (0 ETH, 4 USD)

- LP1 follows: (x)(y + 2) = 4
- LP2 follows: (x + 4)(y) = 16

Improving capital efficiency

 Previous example – tells us an LP need only invest a small amount of (ETH,USD) when their chosen price range is smaller

In practice, LP come in with the (ETH,USD) and a price range

Smart contracts tells LP their operating curve (value of L)

 For the same investment, LPs get a better curve (larger L) than in simple CPMMs

General Formula

• When LP wants to invest (x, y) between prices p_u and p_l

- When multiple LPs, simply add their liquidities
- Fees distributed in proportion to liquidities
- What would the price be at (x, y)? slope of the curve

Properties: LP's Perspective

Today's Lab -Liquidity Provision in Uniswap v3

$$\left(x + \frac{L}{\sqrt{p_l}}\right)(y + L\sqrt{p_u}) = L^2$$

Suppose an LP comes in with wealth (x, y) of (ETH,USD) tokens

- When price range is narrower:
 - For the same investment, liquidity *L* increases market depth increases
 - For the same investment, LPs get a larger share of fees
- Cap on impermanent loss
- Tradeoff: investment is inactive (earns no fees) when price outside range – smaller range makes this more likely
- LPs need to keep predicting where price would be in the future to maximize fee revenue

Properties: Trader's Perspective

$$\left(x + \frac{L}{\sqrt{p_l}}\right)(y + L\sqrt{p_u}) = L^2$$

- Trader faces less slippage when market is deeper (large L)
- If LPs allocate liquidity where the price is most likely to be, then traders get a deep market always

Open problems: Concentrated Liquidity

- Best algorithm to move liquidity around?
 - Given the price history, anticipate where price would be
 - Maximize LP profit
 - Note that LPs have to pay gas fees for moving liquidity around need to balance that with higher share of fees being obtained
- Just-In-Time liquidity:
 - LP sandwiches trades between allocating and pulling out liquidity atomic!
 - LP gets most of the share of fees
 - Other passive LPs lose out
 - Is this good or bad?
 - Good for traders, Bad for other LPs

Recall: Front Running

MEV : Sandwich Attack

- User wants to do a normal trade :
 - Buy 50 ETH, (has to pay 100 USD normally)

- If miner sees a large buy txn,
 - Introduce a buy txn just before it: buy 10 ETH
 - Put the txn
 - Introduce a sell txn just after it : sell 10 ETH
- Miner gets profit with no risk: 39 USD
- User gets a worse price: 139 USD

Solutions to Front Running

- Main cause behind frontrunning?
 - Ordering of transactions enforced by third party
 - Transaction Value and Direction (Buy/Sell) is public

- Make order of transactions irrelevant how?
- Batch transactions everyone gets the same price within a batch

- Make transactions opaque how?
- Private CFMMs no one can see contents of transaction

Batching trades

Collect all trades within a block into a batch

ENFORCING THIS GETS RID OF FRONTRUNNING AND ARBITRAGE OPPORTUNITIES

- Compute a uniform clearing price -
- All trades executed at the same price

Batching trades

- What would be a fair clearing price be in this case?
- Buyers not willing to go above 1k USD/ETH
- Sellers not willing to go below 0.9k USD/ETH

Clearing price = 0.95k

Batching trades

- Some orders are only satisfied partially
- Use CFMMs to route remaining liquidity
- Choose the route that gives the best price to trader

PRICE OF ETH = 1.1k USD

Batching trades: the general case

COMPUTING SUCH CLEARING PRICES IS NP-HARD IN **GENERAL**

CAN USE APPROXIMATIONS

Trades between different pairs of tokens?

Batch and compute a clearing price

AND MULTI-HOP ARBITRAGE
OPPORTUNITIES

GETS RID OF FRONTRUNNING

Trades with the same pair should be executed at the same price

Private CFMMs

Provide exchange services privately

ZK cryptography

• Example: Penumbra

LECTURE ENDS