COMPSCI 514: ALGORITHMS FOR DATA SCIENCE

Andrew McGregor Lecture 12

Distributional JL Lemma: Let $\pmb{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1-\delta$

$$(1-\epsilon)\|y\|_2 \le \|\mathbf{M}y\|_2 \le (1+\epsilon)\|y\|_2.$$

1

Distributional JL Lemma: Let $\pmb{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1-\delta$

$$(1-\epsilon)\|y\|_2 \le \|\mathbf{M}y\|_2 \le (1+\epsilon)\|y\|_2.$$

ullet Let $ilde{y} = oldsymbol{M} y$ and $oldsymbol{M}_j$ be the j^{th} row of $oldsymbol{M}$

1

Distributional JL Lemma: Let $\pmb{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1-\delta$

$$(1-\epsilon)\|y\|_2 \le \|\mathbf{M}y\|_2 \le (1+\epsilon)\|y\|_2.$$

- Let $\tilde{y} = \mathbf{M}y$ and \mathbf{M}_j be the j^{th} row of \mathbf{M}
- For any j, $\tilde{y}_j = \langle \mathbf{M}_j, y \rangle$.

Distributional JL Lemma: Let $\pmb{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1-\delta$

$$(1 - \epsilon) \|y\|_2 \le \|\mathbf{M}y\|_2 \le (1 + \epsilon) \|y\|_2.$$

- Let $\tilde{y} = My$ and M_j be the j^{th} row of M
- For any j, $\tilde{y}_j = \langle \mathbf{M}_j, y \rangle$. Last time, we deduced that

$$\tilde{y}_j^2 = (y_1^2 + \ldots + y_d^2)/m = \|y\|_2^2/m$$
 and so $\mathbb{E}[\|\tilde{y}\|_2^2] = \|y\|_2^2$

1

Distributional JL Lemma: Let $\pmb{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1-\delta$

$$(1 - \epsilon) \|y\|_2 \le \|\mathbf{M}y\|_2 \le (1 + \epsilon) \|y\|_2.$$

- Let $\tilde{y} = My$ and M_j be the j^{th} row of M
- For any j, $\tilde{y}_j = \langle \pmb{M}_j, y \rangle$. Last time, we deduced that $\tilde{y}_j^2 = (y_1^2 + \ldots + y_d^2)/m = \|y\|_2^2/m \text{ and so } \mathbb{E}[\|\tilde{y}\|_2^2] = \|y\|_2^2$
- Main idea: $\tilde{y}_j = \langle \pmb{M}_j, y \rangle$ is a weighted sum of independent random variables each with mean 0 and variance 1/m. Haven't yet used the fact we were using Gaussians and that $\tilde{y}_j^2 \sim \mathcal{N}(0, \|y\|_2^2/m)$.

1

Distributional JL Lemma: Let $\pmb{M} \in \mathbb{R}^{m \times d}$ have independent $\mathcal{N}(0,1/m)$ entries. If we set $m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$, then for any $y \in \mathbb{R}^d$, with probability at least $1-\delta$

$$(1 - \epsilon) \|y\|_2 \le \|\mathbf{M}y\|_2 \le (1 + \epsilon) \|y\|_2.$$

- Let $\tilde{y} = My$ and M_j be the j^{th} row of M
- For any j, $\tilde{y}_j = \langle \pmb{M}_j, y \rangle$. Last time, we deduced that $\tilde{y}_j^2 = (y_1^2 + \ldots + y_d^2)/m = \|y\|_2^2/m \text{ and so } \mathbb{E}[\|\tilde{y}\|_2^2] = \|y\|_2^2$
- Main idea: $\tilde{y}_j = \langle \pmb{M}_j, y \rangle$ is a weighted sum of independent random variables each with mean 0 and variance 1/m. Haven't yet used the fact we were using Gaussians and that $\tilde{y}_i^2 \sim \mathcal{N}(0, \|y\|_2^2/m)$.
- Remains to show that $\|\tilde{y}\|_2^2$ is tightly concentrated around $\|y\|_2^2$.

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$ilde{y_j} \sim \mathcal{N}(0, \|y\|_2^2/m)$$
 and $\mathbb{E}[\| ilde{y}\|_2^2] = \|y\|_2^2$

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$\tilde{y}_j \sim \mathcal{N}(0, \|y\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{y}\|_2^2] = \|y\|_2^2$

 $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}_j^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$\tilde{y}_j \sim \mathcal{N}(0, \|y\|_2^2/m)$$
 and $\mathbb{E}[\|\tilde{y}\|_2^2] = \|y\|_2^2$

 $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}_j^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$ilde{y}_j \sim \mathcal{N}(0, \|y\|_2^2/m)$$
 and $\mathbb{E}[\| ilde{y}\|_2^2] = \|y\|_2^2$

 $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}_j^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting ${\bf Z}$ be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$$

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$ilde{y_j} \sim \mathcal{N}(0, \|y\|_2^2/m)$$
 and $\mathbb{E}[\| ilde{y}\|_2^2] = \|y\|_2^2$

 $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}_j^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting ${\bf Z}$ be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:

$$(1 - \epsilon) \|y\|_2^2 \le \|\tilde{y}\|_2^2 \le (1 + \epsilon) \|y\|_2^2.$$

So Far: Each entry of our compressed vector \tilde{y} is Gaussian with :

$$ilde{y}_j \sim \mathcal{N}(0, \|y\|_2^2/m)$$
 and $\mathbb{E}[\| ilde{y}\|_2^2] = \|y\|_2^2$

 $\|\tilde{y}\|_2^2 = \sum_{i=1}^m \tilde{y}_j^2$ a Chi-Squared random variable with m degrees of freedom (a sum of m squared independent Gaussians)

Lemma: (Chi-Squared Concentration) Letting ${\bf Z}$ be a Chi-Squared random variable with m degrees of freedom,

$$\Pr[|\mathbf{Z} - \mathbb{E}\mathbf{Z}| \ge \epsilon \mathbb{E}\mathbf{Z}] \le 2e^{-m\epsilon^2/8}.$$

If we set
$$m = O\left(\frac{\log(1/\delta)}{\epsilon^2}\right)$$
, with probability $1 - O(e^{-\log(1/\delta)}) \ge 1 - \delta$:
$$(1 - \epsilon)\|y\|_2^2 \le \|\tilde{y}\|_2^2 \le (1 + \epsilon)\|y\|_2^2.$$

Gives the distributional JL Lemma and thus the classic JL Lemma!

JL LEMMA IS ESSENTIALLY OPTIMAL

• Recall that we say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$.

- Recall that we say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$.
- What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space?

- Recall that we say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$.
- What is the largest set of mutually orthogonal unit vectors in *d*-dimensional space? Answer: *d*.

- Recall that we say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$.
- What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d.
- How large can a set of unit vectors in *d*-dimensional space be that have all pairwise dot products $|\langle x,y\rangle| \leq \epsilon$?

- Recall that we say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$.
- What is the largest set of mutually orthogonal unit vectors in d-dimensional space? Answer: d.
- How large can a set of unit vectors in d-dimensional space be that have all pairwise dot products $|\langle x,y\rangle| \leq \epsilon$? Answer: $2^{\Omega(\epsilon^2 d)}$.

An exponentially large set of random vectors will be nearly pairwise orthogonal with high probability!

Claim: $2^{O(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x,y\rangle| \leq \epsilon$ (be nearly orthogonal).

Claim: $2^{O(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x,y\rangle| \leq \epsilon$ (be nearly orthogonal).

Claim: $2^{O(\epsilon^2 d)}$ random *d*-dimensional unit vectors will have all pairwise dot products $|\langle x, y \rangle| \le \epsilon$ (be nearly orthogonal).

Proof: Let x_1, \ldots, x_t have independent random entries $\pm \frac{1}{\sqrt{d}}$.

• What is $||x_i||_2$? Every x_i is always a unit vector.

Claim: $2^{O(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y \rangle| \le \epsilon$ (be nearly orthogonal).

- What is $||x_i||_2$? Every x_i is always a unit vector.
- What is $\mathbb{E}[\langle x_i, x_j \rangle]$?

Claim: $2^{O(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y \rangle| \le \epsilon$ (be nearly orthogonal).

- What is $||x_i||_2$? Every x_i is always a unit vector.
- What is $\mathbb{E}[\langle x_i, x_j \rangle]$? $\mathbb{E}[\langle x_i, x_j \rangle] = 0$

Claim: $2^{O(\epsilon^2 d)}$ random d-dimensional unit vectors will have all pairwise dot products $|\langle x, y \rangle| \le \epsilon$ (be nearly orthogonal).

- What is $||x_i||_2$? Every x_i is always a unit vector.
- What is $\mathbb{E}[\langle x_i, x_j \rangle]$? $\mathbb{E}[\langle x_i, x_j \rangle] = 0$
- By a Bernstein bound, $\Pr[|\langle x_i, x_j \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$.

Claim: $2^{O(\epsilon^2 d)}$ random *d*-dimensional unit vectors will have all pairwise dot products $|\langle x, y \rangle| \le \epsilon$ (be nearly orthogonal).

Proof: Let x_1, \ldots, x_t have independent random entries $\pm \frac{1}{\sqrt{d}}$.

- What is $||x_i||_2$? Every x_i is always a unit vector.
- What is $\mathbb{E}[\langle x_i, x_j \rangle]$? $\mathbb{E}[\langle x_i, x_j \rangle] = 0$
- By a Bernstein bound, $\Pr[|\langle x_i, x_i \rangle| \ge \epsilon] \le 2e^{-\epsilon^2 d/6}$.
- If $t = \frac{1}{2}e^{\epsilon^2d/12}$, using a union bound over $\binom{t}{2} \leq \frac{1}{8}e^{\epsilon^2d/6}$ possible pairs, with probability $\geq 3/4$ all will be nearly orthogonal.

We won't prove it but this is essentially optimal: In d dimensions, there can be at most $2^{O(\epsilon^2 d)}$ nearly orthogonal unit vectors.

Recall: The Johnson Lindenstrauss lemma states that if $\mathbf{M} \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $x_1, \ldots, x_n \in \mathbb{R}^d$ with high probability, for all i, j: $(1 - \epsilon) \|x_i - x_j\|_2^2 \leq \|\mathbf{M}x_i - \mathbf{M}x_j\|_2^2 \leq (1 + \epsilon) \|x_i - x_j\|_2^2.$

Recall: The Johnson Lindenstrauss lemma states that if $M \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $x_1, \ldots, x_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|x_i - x_j\|_2^2 \le \|\mathbf{M}x_i - \mathbf{M}x_j\|_2^2 \le (1 + \epsilon) \|x_i - x_j\|_2^2.$$

Implies: If x_1, \ldots, x_n are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then

$$\frac{\mathbf{M}x_1}{\|\mathbf{M}x_1\|_2}, \dots, \frac{\mathbf{M}x_n}{\|\mathbf{M}x_n\|_2}$$

are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ).

Recall: The Johnson Lindenstrauss lemma states that if $M \in \mathbb{R}^{m \times d}$ is a random matrix (linear map) with $m = O\left(\frac{\log n}{\epsilon^2}\right)$, for $x_1, \ldots, x_n \in \mathbb{R}^d$ with high probability, for all i, j:

$$(1 - \epsilon) \|x_i - x_j\|_2^2 \le \|\mathbf{M}x_i - \mathbf{M}x_j\|_2^2 \le (1 + \epsilon) \|x_i - x_j\|_2^2.$$

Implies: If x_1, \ldots, x_n are nearly orthogonal unit vectors in d-dimensions (with pairwise dot products bounded by $\epsilon/8$), then

$$\frac{\mathbf{M}x_1}{\|\mathbf{M}x_1\|_2}, \dots, \frac{\mathbf{M}x_n}{\|\mathbf{M}x_n\|_2}$$

are nearly orthogonal unit vectors in m-dimensions (with pairwise dot products bounded by ϵ). Algebra is a bit messy but a good exercise to partially work through. Proof uses the fact that

$$||x_i - x_j||_2^2 = ||x_i||_2^2 + ||x_j||_2^2 - 2\langle x_i, x_j \rangle$$
.

Claim 1: *n* nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there can be at most $2^{O(\epsilon^2 m)}$ nearly orthogonal unit vectors.

Claim 1: *n* nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there can be at most $2^{O(\epsilon^2 m)}$ nearly orthogonal unit vectors.

• For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.

Claim 1: *n* nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there can be at most $2^{O(\epsilon^2 m)}$ nearly orthogonal unit vectors.

- For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- I.e., $n = 2^{\log n} \le 2^{O(\epsilon^2 m)}$ and so $m = \Omega\left(\frac{\log n}{\epsilon^2}\right)$.

Claim 1: *n* nearly orthogonal unit vectors can be projected to $m = O\left(\frac{\log n}{\epsilon^2}\right)$ dimensions and still be nearly orthogonal.

Claim 2: In m dimensions, there can be at most $2^{O(\epsilon^2 m)}$ nearly orthogonal unit vectors.

- For both of these to hold it must be that $n \leq 2^{O(\epsilon^2 m)}$.
- I.e., $n = 2^{\log n} \le 2^{O(\epsilon^2 m)}$ and so $m = \Omega\left(\frac{\log n}{\epsilon^2}\right)$.
- Tells us that the JL lemma is optimal up to constants.

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_1,\ldots,\mathbf{X}_n$ falling in [-1,1]. Let $\mu=\mathbb{E}[\sum \mathbf{X}_i]$, $\sigma^2=\mathrm{Var}[\sum \mathbf{X}_i]$, and $s\leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq s\sigma\right) \leq 2 \exp\left(-\frac{s^{2}}{4}\right).$$

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_1,\ldots,\mathbf{X}_n$ falling in [-1,1]. Let $\mu=\mathbb{E}[\sum \mathbf{X}_i],\ \sigma^2=$ Var $[\sum \mathbf{X}_i]$, and $s\leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq s\sigma\right) \leq 2 \exp\left(-\frac{s^{2}}{4}\right).$$

Can plot this bound for different s:

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_1, \ldots, \mathbf{X}_n$ falling in [-1,1]. Let $\mu = \mathbb{E}[\sum \mathbf{X}_i]$, $\sigma^2 = \text{Var}[\sum \mathbf{X}_i]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq s\sigma\right) \leq 2 \exp\left(-\frac{s^{2}}{4}\right).$$

Can plot this bound for different s:

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_1, \ldots, \mathbf{X}_n$ falling in [-1,1]. Let $\mu = \mathbb{E}[\sum \mathbf{X}_i]$, $\sigma^2 = \text{Var}[\sum \mathbf{X}_i]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n} \mathbf{X}_{i} - \mu\right| \geq s\sigma\right) \leq 2 \exp\left(-\frac{s^{2}}{4}\right).$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_1, \ldots, \mathbf{X}_n$ falling in [-1,1]. Let $\mu = \mathbb{E}[\sum \mathbf{X}_i]$, $\sigma^2 = \text{Var}[\sum \mathbf{X}_i]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n}\mathbf{X}_{i}-\mu\right|\geq s\sigma\right)\leq 2\exp\left(-rac{s^{2}}{4}
ight).$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

$$\mathcal{N}(0,\sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

Bernstein Inequality (Simplified): Consider independent random variables $\mathbf{X}_1, \ldots, \mathbf{X}_n$ falling in [-1,1]. Let $\mu = \mathbb{E}[\sum \mathbf{X}_i]$, $\sigma^2 = \text{Var}[\sum \mathbf{X}_i]$, and $s \leq \sigma$. Then:

$$\Pr\left(\left|\sum_{i=1}^{n}\mathbf{X}_{i}-\mu\right|\geq s\sigma\right)\leq 2\exp\left(-rac{s^{2}}{4}
ight).$$

Can plot this bound for different s:

Looks a lot like a Gaussian (normal) distribution.

$$\mathcal{N}(0, \sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

$$\mathcal{N}(0,\sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

$$\mathcal{N}(0,\sigma^2)$$
 has density $p(x)=rac{1}{\sqrt{2\pi\sigma^2}}\cdot e^{-rac{x^2}{2\sigma^2}}.$

Exercise: Using this can show that for $\mathbf{X} \sim \mathcal{N}(0, \sigma^2)$: for any $s \geq 0$,

$$\Pr(|\mathbf{X}| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^2}{2}}.$$

$$\mathcal{N}(0,\sigma^2)$$
 has density $p(x)=rac{1}{\sqrt{2\pi\sigma^2}}\cdot \mathrm{e}^{-rac{x^2}{2\sigma^2}}.$

Exercise: Using this can show that for $\mathbf{X} \sim \mathcal{N}(0, \sigma^2)$: for any $s \geq 0$,

$$\Pr(|\mathbf{X}| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^2}{2}}.$$

Essentially the same bound that Bernstein's inequality gives!

$$\mathcal{N}(0,\sigma^2)$$
 has density $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{x^2}{2\sigma^2}}$.

Exercise: Using this can show that for $\mathbf{X} \sim \mathcal{N}(0, \sigma^2)$: for any $s \geq 0$,

$$\Pr(|\mathbf{X}| \geq s \cdot \sigma) \leq O(1) \cdot e^{-\frac{s^2}{2}}.$$

Essentially the same bound that Bernstein's inequality gives!

Central Limit Theorem Interpretation: Bernstein's inequality gives a quantitative version of the CLT. The distribution of the sum of *bounded* independent random variables can be upper bounded with a Gaussian (normal) distribution.

Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.

Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.

 Why is the Gaussian distribution is so important in statistics, science, ML, etc.?

Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity.

- Why is the Gaussian distribution is so important in statistics, science, ML, etc.?
- Many random variables can be approximated as the sum of a large number of small and roughly independent random effects.
 Thus, their distribution looks Gaussian by CLT.