

Master in Computer Vision Barcelona

Module 3: Machine learning for computer vision

Project: Bag of Visual Words Image Classification

Lecturer: Ramon Baldrich, ramon.baldrich@uab.cat

Credit to Marçal Rossinyol

S01 discussion

- Number of keypoints
 - The more the better
- Dense SIFT
 - Nearly nobody tried the role of scales!
- Codebook sizes / k-nn value
- k-nn and distances
 - Just slight differences found between point-wise distances
 - Which distance would work better for HISTOGRAMS?
- Dimensionality reduction
- Precompute stuff, store to disk!

Amount of points (kaze)

Some images from coast class

Train accuracy for LogReg: 0.9946836788942052 Test accuracy for LogReg: 0.7757125154894672

Train Accuracy: KNN = % 84, Logistic Regression = %92 Test Accuracy: KNN = % 79, Logistic Regression = %84

grade
8
9
6
10
9
9
8
9

S02

- We'll start with BoVW computed with Dense SIFT with a large enough codebook size
- We'll normalize descriptors
 - L2-norm, Power-norm, etc..
- Cross-validation
 - Sklearn functions: StratifiedkFold, GridsearchCV
- Spatial Pyramids
- SVM and kernels
 - Use sklearn standardScaler to project every dimension to [0, 1]!
 - linear kernel
 - RBF kernel
 - our own histogram intersection kernel
- OPTIONAL: Fisher Vectors (http://yael.gforge.inria.fr/tutorial/tuto_imgindexing.html)

Cross Validation

Hyperparamter optimization

Journal of Machine Learning Research 13 (2012) 281-305

Submitted 3/11; Revised 9/11; Published 2/12

Random Search for Hyper-Parameter Optimization

James Bergstra Yoshua Bengio

JAMES.BERGSTRA@UMONTREAL.CA YOSHUA.BENGIO@UMONTREAL.CA

Département d'Informatique et de recherche opérationnelle Université de Montréal Montréal, OC, H3C 3J7, Canada

Editor: Leon Bottou

Abstract

Grid search and manual search are the most widely used strategies for hyper-parameter optimization. This paper shows empirically and theoretically that randomly chosen trials are more efficient for hyper-parameter optimization than trials on a grid. Empirical evidence comes from a comparison with a large previous study that used grid search and manual search to configure neural networks and deep belief networks. Compared with neural networks configured by a pure grid search, we find that random search over the same domain is able to find models that are as good or better within a small fraction of the computation time. Granting random search the same computational budget, random search finds better models by effectively searching a larger, less promising configuration space. Compared with deep belief networks configured by a thoughtful combination of manual search and grid search, purely random search over the same 32-dimensional configuration space found statistically equal performance on four of seven data sets, and superior performance on one of seven. A Gaussian process analysis of the function from hyper-parameters to validation set performance reveals that for most data sets only a few of the hyper-parameters really matter, but that different hyper-parameters are important on different data sets. This phenomenon makes grid search a poor choice for configuring algorithms for new data sets. Our analysis casts some light on why recent "High Throughput" methods achieve surprising success-they appear to search through a large number of hyper-parameters because most hyper-parameters do not matter much. We anticipate that growing interest in large hierarchical models will place an increasing burden on techniques for hyper-parameter optimization; this work shows that random search is a natural baseline against which to judge progress in the development of adaptive (sequential) hyper-parameter optimization algorithms.

Keywords: global optimization, model selection, neural networks, deep learning, response surface modeling

1. Introduction

The ultimate objective of a typical learning algorithm \mathcal{A} is to find a function f that minimizes some expected loss L(x; f) over i.i.d. samples x from a natural (grand truth) distribution G_x . A learning algorithm A is a functional that maps a data set $X^{(train)}$ (a finite set of samples from G_X) to a function

Random Layout Unimportant parameter

Important parameter

Continuous hyperparameter: distribution over possible values

generate random variable

Discrete hyperparameter: list of discrete choices random selection (without replacement if all discrete)

Set the number of trials

Bergstra, James, and Yoshua Bengio. "Random search for hyper-parameter

Spatial Pyramids

Spatial Pyramids

Histogram Intersection kernel

def histogramIntersection(M, N):

$$K_{int}(A,B) = \sum_{i=1}^{m} \min\{a_i, b_i\}.$$

return K_int

Tasks to do

Improve the BoVW code with:

- Dense SIFT (with tiny steps and different scales!)
- L2-norm power norm
- SVM classifier
- StandardScaler
- Cross-validation
- Linear, RBF and histogram intersection kernels
- Spatial Pyramids
- Fisher Vectors (OPTIONAL)

Deliverable

- A single Python notebook file per group reporting all the work done,
 - with the different experiments,
 - o code,
 - o plots,
 - o explanations, etc.
 - EVERYTHING EXECUTED!

- To deliver by Monday 17th @ 10 A.M.
 - Please, state clearly your group.

Warning: provided code might not work out of the box depending on the used versions (OpenCV, numpy, sklearn...) do not panic, and read the documentation

