Corso di Fisica - CdL in Informatica

Daniele Pani - daniele.pani@edu.unito.it 1 Aprile 2019

Formule Utili

- Legge di Coulomb: $F_e=k\frac{q\,q_0}{r^2}$, in notazione vettoriale $\vec{F_e}=k\frac{q\,q_0}{r^2}\,\frac{\vec{r'}}{\|\vec{r}\|}$ con $k=\frac{1}{4\pi\epsilon_0}$
- Campo Elettrico: $\vec{E} = \frac{\vec{F_e}}{q_0}$
- Principio di sovrapposizione: $\vec{E_{tot}} = \Sigma_i \vec{E_i}$ (lo stesso ragionamento vale per la forza elettrostatica)
- Energia potenziale: $\Delta U_e = q_0 \Delta V$ con il potenziale elettrico $V = k_r^q$
- Costante dielettrica nel vuoto: $\epsilon_0 = 8,85 \times 10^{-12} \, \frac{C^2}{N \cdot m^2}$
- Carica dell'elettrone: $e = -1, 6 \times 10^{-19} C$
- Massa dell'elettrone: $m_e = 9, 1 \times 10^{-31} \ kg$
- Massa del protone: $m_p = 1,67 \times 10^{-27} \ kg$

Esercizi

- 1. Determinare la forza elettrica tra due cariche puntiformi di $1\mu C$ ciascuna, poste ad una distanza di 1cm.
- 2. Due cariche sono una nove volte piu' grande dell'altra e sono poste nel vuoto. Sapendo che tra esse di instaura una forza repulsiva di natura elettrica di intensita' pari a 18N, calcolare il valore della carica. Cosa si puo' dire sul segno delle due cariche?
- 3. Determinare l'intensita' del campo elettrico generato da una carica elettrica di $4\mu C$ alla distanza di 20 cm. Come varia l'intensita' se la distanza raddoppia?
- 4. Due sferette identiche, di massa 63 mg, sono appese a fili di lunghezza l=12~cm. In equilibrio, l'angolo fra i due fili è di 38°. Quanto vale la carica delle palline?
- 5. Due cariche fisse, $q_1 = 8 \ nC$ e $q_2 = 12 \ nC$, distano fra loro 12 cm. Che lavoro si deve fare per portare una terza carica $q_3 = 20 \ nC$ a metà fra q_1 e q_2 ?
- 6. L'elettrone e il protone in un atomo di idrogeno si trovano ad una distanza media $r=0,53\times 10^{-10}~m$, che coincide con le dimensioni dell'atomo. Calcolare l'intensità della forza gravitazionale e della forza elettrica tra il protone e l'elettrone.

- 7. Consideriamo il piano xy. Nel punto $(x_0, 3y_0)$ vi è una carica elettrica q, nel punto (x_0, y_0) vi 'e una carica elettrica q e nel punto $(x_0, -y_0)$ vi è una carica elettrica -2q. Tutte le cariche sono puntiformi e $x_0 = y_0 = A$. Calcolare in funzione di A e E_0 :
 - a) la carica q sapendo che il campo elettrico nel punto $(x_0,0)$ vale $\vec{E} = E_0 \cdot \vec{j}$;
 - b) il potenziale elettrico nel punto $(x_0,0)$ sapendo che il potenziale all'infinito vale $V(\infty)=0$;
 - c) il vettore campo elettrico \vec{E} nel punto $(0, y_0)$;
 - d) il lavoro fatto dal campo elettrico per spostare una carica Q dal punto $(x_0, 0)$ al punto $(0, y_0)$.

[ESAME]

- 8. Siano date due cariche elettriche puntiformi $Q_A = 4q_0$ e Q_B poste rispettivamente nei punti A = (0,3d) e B = (3d,0) di un piano cartesiano. Una terza carica elettrica $Q_D = -q_0$, inizialmente ferma nel punto D = (3d,3d), viene spostata per effetto del campo elettrico dal punto D al punto P = (2d,d). Determinare in funzione dei parametri d e q_0 :
 - a) il valore di Q_B per il quale la forza che agisce su Q_D nel punto P è nulla;
 - b) la forza che agisce su Q_D quando inizialmente si trova nel punto D;
 - c) il lavoro compiuto dal campo elettrico per spostare Q_D dal punto dal D punto al punto P;
 - d) la velocit'a e l'accelerazione di Q_D quando si trova in P, assumendo che la massa della carica Q_D sia nota e valga m_D.

[ESAME]