УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>М3202</u>	К работе допущен
Студент <u> Кочубеев Николай</u>	Работа выполнена
Преподаватель Тимофеева Эльвира	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.10

Изучение свободных затухающих электромагнитных колебаний

1. Цель работы.

Изучение основных характеристик свободных затухающих колебаний

- 2. Задачи, решаемые при выполнении работы.
 - 1. Изучить период колебаний в контуре при разных сопротивлениях
 - 2. Вычислить критическое сопротивление
 - 3. Понять отличие слабозатухающих и быстро затухающих колебаний
- 3. Объект исследования.

Колебательный контур

4. Метод экспериментального исследования. Измерение изменения показателей при изменении сопротивления и емкости.

5. Рабочие формулы и исходные данные.

Исходные данные:

 $L = 10 \text{ мГн} \pm 10\%$ (индуктивность катушки)

 $C_1 = 0.022 \text{ мк}\Phi \pm 10\%$ (емкость конденсатора 1)

 $C_2 = 0.033 \text{ мк}\Phi \pm 10\%$ (емкость конденсатора 2)

 $C_3 = 0.047 \ {
m MK}\Phi \ \pm 10\%$ (емкость конденсатора 3) $C_4 = 0.47 \ {
m MK}\Phi \ \pm 10\%$ (емкость конденсатора 4)

 $\lambda = \frac{\frac{R}{L}\pi}{\sqrt{\frac{1}{L}R^2}}$ (ед. логарифмический декремент через параметры элементов контура)

 $\lambda = \frac{1}{n} \ln \left(\frac{U_i}{U_{i+1}} \right)$ (ед. логарифмический декремент через амплитуду колебаний напряжения)

 $\lambda pprox \pi R \sqrt{\frac{c}{L}}$ (ед, логарифмического декремента от сопротивления при . $\beta << \omega_0$)

 $R=R_{m}+R_{0}$ (Ом, Полное сопротивление, $R_{m}-$ сопротивления магазина, R_{0} собственного сопротивления контура)

 $R_0 = -R_m|_{\lambda=0}$ (Ом, собственное сопротивление контура) $T = \frac{2\pi}{\sqrt{\frac{1-R^2}{L}}}$ (мс, период затухающих колебаний)

 $Q = \frac{2\pi}{1-e^{-2\lambda}}$ (ед, добротность контура, *формула 1)

 $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$ (ед, добротность контура, *формула 2 при $\beta << \omega_0$, (β коэффициент затухания))

 $R_{\kappa p} = 2\sqrt{\frac{L}{C}}$ (Ом, критическое сопротивление контура расчетное) $T = 2\pi\sqrt{LC}$ (с, период по ф. Томсона при $\beta << \omega_0$) $S_{\overline{x}} = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n(n-1)}}$ (среднее квадратическое отклонение, n – количество измерений) $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$ (среднее арифметическое значение измеряемой величины, x_i — измерение) $\Delta_{\overline{x}} = t_{\alpha,n} s_{\overline{x}}$ (доверительный интервал случайной погрешности, $t_{\alpha,n}$ – коэффициент Стьюдента)

6. Измерительные приборы.

•••••••••••••••••••••••••••••••••••••				
№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Блок генератора напряжений ГН1			
2	Осциллограф ОЦЛ2			
3	Стенд с объектом исследования С3-ЭМ01			
4	Проводники Ш4/Ш2 (4 шт), Ш2/Ш2 (3 шт),2Ш4/BNC (2 шт)			

7. Схема установки (перечень схем, которые составляют Приложение 1)

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Rм, Ом	Т, мс	2U _і , дел	2U _{i+n,} дел	n	λ	Q	R, Ом	L, мГн
0	0,1	6,4	2,3	3	0,341	12,71	55,8	5,81
10	0,1	6	2	3	0,366	12,11	65,8	7,02
20	0,1	5,8	1,8	3	0,39	11,60	75,8	8,20
30	0,09	5,5	1,4	3	0,456	10,50	85,8	7,69
40	0,09	5,3	1,1	3	0,524	9,68	95,8	7,26
50	0,08	5,2	0,8	3	0,624	8,81	105,8	6,24
60	0,08	5,1	0,7	3	0,662	8,56	115,8	6,64
70	0,08	5	0,6	3	0,707	8,30	125,8	6,87
80	0,08	4,9	1,2	2	0,745	8,11	135,8	7,21
90	0,08	4,7	1	2	0,774	7,98	145,8	7,70
100	0,08	4,4	0,8	2	0,852	7,68	155,8	7,26
200	0,08	3,2	0,8	1	1,386	6,70	255,8	-
300	0,07	2,4	0,5	1	1,567	6,57	355,8	-
400	0,07	1,5	0,2	1	2,015	6,40	455,8	-

С, мкФ	Тэксп, мс	Т _{теор} , мс	$\delta T = -1 + \frac{T_{\text{эксп}}}{T_{\text{reop}}}, \%$
0,022	0,1	0,08	26,5
0,033	0,12	0,10	25
0,047	0,14	0,11	21,8
0,47	0,44	0,37	18,3

 $R_{KP} = 1000 \ OM$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

4)
$$y = 0.055x + 0.3069 \rightarrow R_0 = x_{(y=0)} = 55.8 \text{ Om}$$

Наклон:
$$0.055 = tg(\propto) \rightarrow \propto = 3.1^{\circ}$$

5)
$$\lambda \approx \pi R \sqrt{\frac{C}{L}} \rightarrow L = \frac{\pi^2 R^2 C}{\lambda^2}$$

$$L_{cp} = 11^{-1} \, * \sum_{i=1}^{11} L_i = 7,08 \, \mathrm{m}$$
Гн

6)
$$T_0 = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}} = 0.079 \text{ MC}$$

$$T_{200} = 0.081 \text{ MC}$$

$$T_{400} = 0.086 \text{ MC}$$

7)
$$Q_{(R_m=10)} = \frac{1}{R + R_M} \sqrt{\frac{L_{cp}}{C_1}} = 8,624$$

$$Q_{(R_m=40)} = 5,923$$

8)
$$R_{\kappa p \mu \tau_1} = 2 \sqrt{\frac{L_{cp}}{C_1}} = 1134,77 \ Om$$

$$R_{\text{крит}_2} = R_{\text{пр}} + R_0 = 1155,00 \text{ Ом}$$

9)
$$T_{\text{теор (при C}_1)} = \frac{2\pi}{\sqrt{\frac{1}{L_{cp}C_1} - \frac{R^2}{4L_{cp}^2}}} = 0.079 \text{ MC}$$

$$T_{\text{теор (при C}_2)} = 0.096 \text{ мс}$$

$$T_{\text{теор}\,(\pi p \mu \, C_3)} = 0$$
,115 мс

$$T_{\text{теор (при C}_4)} = 0.372 \text{ мс}$$

$$T_{T_{OMC\;(\Pi P^{\mu}\;C_{1})}}=2\pi\sqrt{L_{cp}C_{1}}=0$$
,082 мс

$$T_{\text{Томс (при C}_2)} = 0,100 \text{ мс}$$

$$T_{\text{Томс (при C}_3)} = 0,119 \text{ мс}$$

$$T_{\text{Томс (при C}_4)} = 0,387 \text{ мс}$$

$$\beta = \frac{R_0}{2L_{cp}} = 399$$

$$\omega_0 = \frac{1}{\sqrt{L_{cp}C_1}} = 25338\,\Gamma\text{ц}$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

5)
$$\Delta L_{cp_1} = L_{min} - L_{cp} = 1,02$$
 мΓн
 $\Delta L_{cp_2} = L_{cp} - L_{min} = 1,27$ мΓн
 $\Delta L_{cp_1} < \Delta L_{cp_2} \rightarrow \Delta L_{cp} = 1,27$ мΓн

9)
$$\delta T_1 = -1 + \frac{T_{\text{эксп}}}{T_{\text{reop}}} * 100\% = 26,6\%$$

$$\delta T_2 = 25\%$$

$$\delta T_3 = 21,7\%$$

$$\delta T_4 = 18,3\%$$

11. Графики (перечень графиков, которые составляют Приложение 2).

12. Окончательные результаты.

5)
$$L_{ct} = 10 \text{ м}\Gamma\text{H}$$

$$L_{cp}=7$$
,08 м Γ н

$$L_{cp} < L_{cT}$$

6)
$$T_0 = 0.079 \text{ MC}$$

$$T_{200} = 0.081 \text{ MC}$$

$$T_{400} = 0.086 \text{ MC}$$

$$T_{{\scriptscriptstyle Taб\pi_0}}=0$$
,100 мс

$$T_{\text{табл}_{200}} = 0,080 \text{ мс}$$

$$T_{{\scriptscriptstyle Ta6}\pi_{400}} = 0,070 \;{\rm Mc}$$

$$T_0 < T_{\text{табл}_0}$$

$$T_{200} \approx T_{\text{табл}_{200}}$$

$$T_{400} > T_{\text{табл}_{400}}$$

7)
$$Q_{(R_m=10)} = \frac{1}{R + R_M} \sqrt{\frac{L_{cp}}{C_1}} = 8,624$$

$$Q_{(T_{10})}=12,\!105$$

$$Q_{(T_{10})} > Q_{(R_m = 10)}$$

$$Q_{(R_m=40)} = 5,923$$

$$Q_{(T_{40})} = 9,675$$

$$Q_{(T_{40})} > Q_{(R_m = 40)}$$

8)
$$R_{\mathrm{Kp}_1} = 1134,87 \,\mathrm{Om}$$

$$R_{{
m Kp}_2} = 1155~{
m Om}$$

$$R_{\mathrm{\kappa p_1}} < R_{\mathrm{\kappa p_2}}$$

9)
$$T_{\text{Teop}(C_1-C_4)} \approx T_{\text{Tomc}(C_1-C_4)}$$

$$\beta \ll \omega_0$$

13. Выводы и анализ результатов работы.

- 5) Из-за особенностей эксперимента получается, что индуктивность стенда больше, чем средняя индуктивность.
- 6) Что-то больше, что-то меньше, а что-то примерно равно...
- 9) ф. Томпсона можно использовать, но будет точнее для С около 1 мкФ.

Вывод: я изучил основные характеристики свободных затухающих колебаний и научился работать с осциллографом. Произведя все вычисления и измерения, я увидел, что период от роста сопротивления сильно не меняется, а добротность контура уменьшается. Чем выше сопротивление, тем сильнее затухают колебания, следовательно, число колебаний уменьшается, а логарифмический декремент растет.

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

университет итмо

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа М3202 К работе допущен ундене

Студент Кочубеев Николай Работа выполнена 30.09 21 жудень

Преподаватель Тимофеева Эльвира Отчет принят

Рабочий протокол и отчет по лабораторной работе № 3.10

Изучение свободных затухающих электромагнитных колебаний

8. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

RM, OM	Т, мс	20і, дел	2Uі+п, дел	n	λ	Q	R, OM	L, мГн
0	0,1	6,4	\$2,4	3				
10	0,1	6	2	3				
20	0,1	5,8	1,8	3				
30	0,09	5,5	1,4	3				
40	0,09	5,3	1,1	3				
50	0,08	5,25	0,8	3				
60	0,08	5,15	0,6	3				
70	0,08	5	0,6	3				
80	0,08	4,9	1,2	2				
90	0,08	4,7	1	2				
100	0,08	9,4	0,8	2				
200	0,07	3,2	0,8	1				
300	0,09	2,4	0,6	1			1	
400	0,07	1,5	0,2	1				

Ry = 1000 Qu

С, мкФ	Тэксп, МС	Ттеор, мс	$\delta T = -1 + \frac{T_{3KCR}}{T_{reop}}, \%$
0922 + 10%	0,09		
0,033 ± 10%	0,12		
0,041 ± 10%	0,14		
0,47 ± 10%	0.44		

30.09.21

14. Замечания преподавателя (исправления, также помещают в этот пункт).	вызванные замечаниями	преподавателя,