Alpha forecasting in factor investing Discriminating the informational content of firm characteristics

B. Bordachar, P. de Surville et A. Vicini

3 février 2023

Table des matières

- 1 Présentation de l'article
 - Restitution dans la littérature
 - Objectifs et méthodes d'alpha forecasting
 - Résultats théoriques
- 2 Réplication du papier
 - Traitement et construction de la base de données
 - Simulation
 - Backtest
- 3 Extensions
 - Stratégie avec changement de régime
 - Simulation simplifiée dans 4 faits stylisés
- 4 Conclusion

- 1 Présentation de l'article
 - Restitution dans la littérature
 - Objectifs et méthodes d'alpha forecasting
 - Résultats théoriques
- 2 Réplication du papier
- 3 Extensions
- 4 Conclusion

- 1 Présentation de l'article
 - Restitution dans la littérature
 - Objectifs et méthodes d'alpha forecasting
 - Résultats théoriques

Question : "Qu'est-ce qui explique les rendements des actions et comment les prédire?"

- Théorie Moderne du Portefeuille de Markowitz (1952) :
 - Introduction du concept de diversification.
 - Suppose que les investisseurs achèteront toujours l'actif qui présente un rendement optimal par rapport à son niveau de risque.
- CAPM de Treynor, Sharpe, Lintner et Mossin (1960s) :
 - Lien entre rendement et risque systématique.
 - $E(R_{actif}) = R_F + \beta_{actif} \cdot [E(R_M) R_F]$ où $[E(R_M) R_F]$ représente la prime de risque du marché.
 - Limites du modèle : contraintes, biais et preuves à l'encontre de l'efficience du marché (Wojciechowski et Thompson, 2006).
- Extension du CAPM par E. Fama et K. French (1990s) :
 - Inclusion de facteurs systématiques.
 - Sensibilité d'une action à un facteur peut augmenter le rendement attendu.

Restitution dans la littérature

■ Investissement passif :

- Initialement concentré sur la capture du bêta du marché par le biais d'indices pondérés en fonction de la capitalisation boursière.
- Evolution avec Gander et al (2012) puis Lo (2016) pour finalement s'associer à un investissement facile et à moindre coût.

■ Investissement factoriel:

- Morningstar (1990) : cherche à expliquer les différences de style entre les gestionnaires d'actions en classant leurs portfeuille en neuf catégories.
- Russel (2000s) : premier à véritablement proposer de l'investissement factoriel
- Indices de style : bon marchés, simples, clairs et transparents avec surperformance potentielle.
- Popularisation de l'investissement factoriel mais questionnement sur sa rentabilité ("Is Smart Beta really Smart" (2014) de Malkiel, "How Can Smart Beta Go Horribly Wrong?" (2016) de Arnott, Beck, Kalesnik)

- 1 Présentation de l'article
 - Restitution dans la littérature
 - Objectifs et méthodes d'alpha forecasting
 - Résultats théoriques

Objectifs et méthodes d'alpha forecasting

- Objectifs : Améliorer les stratégies d'investissement factoriel grâce à l'utilisation de la valeur informationnelle de caractéristiques d'entreprises.
- Méthodes d'alpha forecasting :
 - Comparer les prévisions d'alphas selon deux approches : Grinold et Kahn (2000) avec une approche d'allocation naïve.
 - Grinold et Kahn (2000) :
 - . relient la volatilité résiduelle, les signaux bruts des rendements des actifs et le coefficient d'information pour prédire le rendement résiduel : $\alpha = \sigma * IC * Signaux$
 - . définissent l'alpha prévisionnel d'un titre comme la différence entre les rendements attendus conditionnels et inconditionnels : $\alpha_{GK,i,t} = E(R_{i,t}^*|g_{i,t-1}) E(R_{i,t}^*) \text{ avec } R_{i,t}^* \text{ le rendement de l'actif i au temps t et g le vecteur de dimension (M x 1) des signaux}$
- MacKinlay et Pàstor (2000) : Poids du portefeuille optimal orthogonal proportionnels aux alphas des entreprises

- 1 Présentation de l'article
 - Restitution dans la littérature
 - Objectifs et méthodes d'alpha forecasting
 - Résultats théoriques

Résultats théoriques

■ Portefeuilles multifactoriels :

- Atteignent les meilleures performances, le rendement de l'approche de Grinold et Kahn (GK) étant supérieur à l'approche naïve z-score (NZ).
- Long-only (LO): Le rendement du portefeuille multifactoriel LO de GK surperforme largement le marché et surperforme le portefeuille LO NZ.
- Long-short (LS): Le rendement du portefeuille multifactoriel LS de GK surperforme largement le marché et surpasse en fin de période le portefeuille LS NZ. CI positifs mais dispersion faible : pas de différence significative entre l'approche GK et NZ.
- Portefeuilles monofactoriels : aucune des deux approches n'est en mesure de surperformer de manière significative le portefeuille de référence.
- Conclusion : Possibilité de surperformer l'indice de référence avec des signaux et CI significatifs et proches de leur vraie valeur, l'estimation des CI étant le principal déterminant de la performance.

- 1 Présentation de l'article
- 2 Réplication du papier
 - Traitement et construction de la base de données
 - Simulation
 - Backtest
- 3 Extensions
- 4 Conclusion

2 Réplication du papier

- Traitement et construction de la base de données
 - Création et traitement des données
 - Statistiques descriptives et inférences
- Simulation
 - Simulation d'un nouvel univers
 - Construction des portefeuilles
 - Estimation des IC, alphas réalisés et IR
- Backtest
 - Performance des portefeuilles multifactoriels
 - Performance des portefeuilles multi et mono-factoriels
 - Portefeuilles quantiles

Création et traitement des données

- Echantillon de données de l'Europe Stoxx 600 (SXXP)
 - ▶ fréquence mensuelle de janvier 2008 à janvier 2023
 - ▶ téléchargement via l'API Bloomberg
- Taux obligataire 3-mois gouvernement euro comme taux sans risque
- Sélection des caractéristiques basée sur les facteurs du MSCI¹
 - ▶ Réduction à 3 ans des fenêtres glissantes (EPSGT, SPSGT et EVar)
 - ▶ Volatilité des rendements mensuels pour le momentum

Correction des biais

Utilisation de la composition historique de l'indice Replacement des données fondamentales au moment de leur publication

^{1.} MSCI Global Investable Market Value and Growth Index Methodology (2017)

Création et traitement des données

Factor	Characteristic	Definition
Growth	Earnings Growth 1 Year (EPSG1Y)	$\text{EPSG1Y}_t = \text{YoY EPS Growth}_t$
	Earnings Growth 3 Years Average (EPSG3Y)	$EPSG3Y_t = \frac{1}{3} \sum_{t=1}^{3} YoY EPS Growth_t$
	Internal Growth Rate (IGR)	$\begin{split} & \text{EPSG3Y}_t = \frac{1}{3} \sum_{t=1}^{3} \text{YoY EPS Growth}_t \\ & \text{IGR}_t = \frac{\text{TTM EPS}_t}{\text{BVPS}_t} - \frac{\text{TTM DPS}_t}{\text{BVPS}_t} \end{split}$
	${\bf EarningsGrowth\ Trend\ (EPSGT)}$	$\text{EPSGT}_t = \frac{\beta_{EPS}}{\frac{1}{2} \sum_{j=1}^{3} \text{EPS}_j }$
	Sales Growth Trend (SPSGT)	$\begin{aligned} & \text{SPSGT}_t = \frac{\frac{3}{3}\sum_{j=1}^{3} \text{SPS}_t }{\frac{1}{3}\sum_{j=1}^{3} \text{SPS}_t } \\ & \text{DivYld}_t = \frac{\text{TTM DPS}_t}{P_t} \\ & \text{EtP}_t = \frac{\text{TTM EPS}_t}{P_t} \end{aligned}$
Value	Dividend Yield (DivYld)	$\text{DivYld}_t = \frac{\text{TTM DPS}_t}{P_t}$
	Earnings to Price (EtP)	$\text{EtP}_t = \frac{\text{TTM EPS}_t^c}{\text{P}_t}$
	Book to Price (BtP)	$BtP_t = \frac{BVPS_t}{P_t}$
	Cash Flow to Enterprise Value (CFOtEV)	$\text{CFOtEV}_t = \frac{\text{TTM CFO}_t}{\text{EV}_t}$
Quality	Return on Equity (RoE)	$RoE_t = \frac{TTM EPS_t}{BVPS_t}$
	Debt to Equity (DtE)	$\text{DtEY}_t = \frac{\text{TD}_t}{\text{BV}_t}$
	Earnings Variability (EVar)	$\text{EVar}_t = \sqrt{\frac{1}{3} \sum_{t=1}^{3} (\text{YoY EPS Growth}_t - \overline{\text{YoY EPS Growth}}_t)^2}$
Momentum	6 Months Price Momentum (Pmom6M) 12 Months Price Momentum (Pmom12M)	n-Months Price $\mathrm{Momentum}_t = \frac{(\frac{P_{t-1}}{P_{t-n-1}} - 1) - R_{f,t}}{\sigma_t}$

Création et traitement des données

Figure – Nombre de données par date et facteur

Statistiques descriptives et inférences

		Mean	$_{ m SE}$	0.025-Qt.	0.975-Qt.
Factor	Characteristic				
Growth	EPSG1Y	-0.087	0.624	-1.018	1.429
	EPSG3Y	-0.241	0.411	-0.909	0.703
	IGR	1.514	0.961	0.168	3.936
	EPSGT	0.885	0.796	-0.280	2.838
	SPSGT	1.014	0.967	-0.223	3.576
Value	DivYld	0.153	0.874	-1.403	2.028
	EtP	0.769	0.661	-0.435	2.149
	BtP	-1.770	1.459	-5.282	0.450
	CFOtEV	-0.158	1.029	-1.891	2.135
Quality	RoE	1.796	1.080	0.170	4.404
	DtE	1.420	0.866	-0.511	2.879
	EVar	1.010	0.679	-0.306	2.345
Momentum	Pmom6M	1.625	1.433	-1.032	4.592
	Pmom12M	2.610	1.502	0.452	6.338

Table – Moyenne des IC et résultats du bootstrap

Statistiques descriptives et inférences

Figure - Correlation moyenne entre les caractéristiques des entreprises

Réplication du papier -Simulation

Plan

2 Réplication du papier

- Traitement et construction de la base de données
 - Création et traitement des données
 - Statistiques descriptives et inférences

■ Simulation

- Simulation d'un nouvel univers
- Construction des portefeuilles
- Estimation des IC, alphas réalisés et IR
- Backtest
 - Performance des portefeuilles multifactoriels
 - Performance des portefeuilles multi et mono-factoriels
 - Portefeuilles quantiles

Simulation d'un nouvel univers

Modèle de génération des simulations à facteur linéaire conditionnel :

$$\blacksquare \ R_{i,t}^* = \alpha_{i,t} + \beta_i R_{B,t}^* + \varepsilon_{i,t}$$

$$\begin{array}{ll} \blacktriangleright \ \alpha_{i,t} = \sigma_{\sigma_{i,t}} \ k_{CS,t} \ C_{CS,t}^{-1} \ z_{i,t-1} \\ \blacktriangleright \ z_{i,t-1} \sim N \left(0, C_{CS} \right) \end{array} \quad \begin{array}{ll} \blacktriangleright \ \varepsilon_{t} \sim N \left(0, \psi \right) \\ \blacktriangleright \ R_{B \ t}^{*} \sim N \left(\mu_{B}, \sigma_{B} \right) \end{array}$$

avec:

- k_{CS} (vecteur des IC) et C_{CS} (matrice de corrélation des signaux) sont tirés aléatoirement parmis l'ensemble des observations.
- ildet est la matrice de covariance des résidus de la regression des rendements observés contre les rendements du benchmark.
- \blacksquare μ_B et σ_B sont les maximum likelihood estimates des rendements observés du marché.

Simulation d'un nouvel univers

Figure – Exemple de performance d'univers simulé (avec benchmark en noir)

Simulation d'un nouvel univers

Figure - Corrélation movenne des Z-scores simulés

Construction des portefeuilles

Méthode d'estimation des α_{GK} et α_{NZ} :

$$\quad \blacksquare \ \hat{\alpha}_{GK,i,t} = \hat{k} \ \hat{C}^{-1} \ z_{i,t-1}$$

$$\hat{k} = \left(\hat{\mathrm{IC}}_1 \dots \hat{\mathrm{IC}}_M \right)$$

▶
$$\hat{IC}_m = \frac{1}{59} \sum_{t=1}^{59} \text{Corr} \left[\theta_t, z_{m,t-1}\right]$$

$$\hat{C} = \frac{1}{60} \sum_{t=1}^{60} C_t$$

ightharpoonup avec θ_t rendements résiduels de la regression temporelle des rendements des actons contre les rendements du benchmark

$$\hat{\alpha}_{NZ,i,t} = \sum_{m=1}^{M} z_{i,m,t-1}$$

Méthode de pondération des actifs proportionelle aux alphas :

$$\blacksquare a_A = \frac{\alpha}{1/\alpha}$$

▶ Portefeuille short :
$$a_{short} = \frac{\hat{\alpha}^-}{\mathbb{1}'\hat{\alpha}^-}$$
 ▶ Portefeuille long : $a_{long} = \frac{\hat{\alpha}^+}{\mathbb{1}'\hat{\alpha}^+}$ avec $\hat{\alpha}^- = max(-\hat{\alpha}, 0)$ avec $\hat{\alpha}^+ = max(\hat{\alpha}, 0)$

Estimation des IC, alphas réalisés et IR

Mesure de la précision des \hat{IC}

$$\blacksquare$$
 Biais : $\overline{(I\hat{C}_m-IC_m)}$

■ Précision :
$$\overline{\left(I\hat{C}_m - \mathrm{IC}\right)}^{2^{0.5}}$$

Calcul des alphas réalisés à partir des estimations :

$$\blacksquare \text{ GK} : \alpha_{A,GK,t} = a'_{A,GK,t-1}\alpha_t$$

$$\blacksquare \text{ NZ}: \alpha_{A,NZ,t} = a'_{A,NZ,t-1}\alpha_t$$

Calcul des coefficients d'informations :

■ GK:
$$IR_{A,GK,t} = \frac{\alpha_{A,GK,t}}{\sqrt{a'_{A,GK,t-1}} \psi a_{A,GK,t-1}}$$

$$\blacksquare \ \mathrm{NZ}: IR_{A,NZ,t} = \frac{\alpha_{A,NZ,t}}{\sqrt{a'_{A,NZ,t-1}} \ \psi \ a_{A,NZ,t-1}}$$

Estimation des IC, alphas réalisés et IR

	IC obs.	IC est.	Biais	Précision	IC obs. (>0)	IC est. (>0)	DHR
EPSG1Y	-0.009	-0.003	-0.012	0.015	49.4 %	56.6%	38.2%
EPSG3Y	-0.004	-0.003	-0.001	0.007	44.7%	37.7%	66.5%
IGR	0.013	0.019	-0.006	0.015	54.1%	81.9%	89.0%
EPSGT	0.005	0.009	-0.004	0.011	55.3%	77.1%	78.6%
SPSGT	-0.001	0.016	-0.017	0.023	52.9%	79.9%	11.3%
DivYield	0.003	0.003	0.000	0.012	45.9%	55.8%	57.9%
EtP	0.006	0.010	-0.004	0.011	54.1%	74.8%	83.2%
BtP	0.001	-0.017	0.018	0.027	50.6%	27.5%	19.5%
CFOtEV	0.005	0.000	0.005	0.015	48.2%	49.4%	49.8%
RoE	0.005	0.016	-0.011	0.019	50.6%	77.0%	84.8%
DtE	0.011	0.013	-0.002	0.016	51.8%	72.3%	80.3%
EVar	0.008	0.008	0.000	0.009	54.1%	72.4%	81.3%
Pmon12M	0.012	0.030	-0.018	0.026	50.6%	86.2%	94.9%
Pmon6M	0.014	0.019	-0.005	0.019	54.1%	76.8%	85.4%

Table – Résultats des estimations des coefficients d'information pour 1000 simulations

Estimation des IC, alphas réalisés et IR

			Mean	SE	0.025-Qt.	0.975-Qt.
Factor		Méthod				
Multifactor	$\overline{\alpha_A}$	NZ	3.34	1.77	-0.53	6.68
		GK	8.38	2.00	5.35	12.98
	$\overline{IR_A}$	NZ	4.32	2.27	-0.07	8.33
		GK	10.84	2.61	6.82	16.55
Growth	$\overline{\alpha_A}$	NZ	2.11	2.00	-2.14	5.73
		GK	4.27	1.80	1.00	7.86
	$\overline{IR_A}$	NZ	2.72	2.60	-2.64	7.48
		GK	5.49	2.32	1.23	9.76
Value	$\overline{\alpha_A}$	NZ	-0.17	2.25	-4.87	3.72
		GK	5.01	1.89	2.04	8.94
	$\overline{IR_A}$	NZ	-0.25	2.97	-6.23	4.94
		GK	6.52	2.49	2.63	11.37
Quality	$\overline{\alpha_A}$	NZ	2.71	2.95	-2.64	8.43
		GK	4.27	2.29	0.65	9.15
	$\overline{IR_A}$	NZ	3.46	3.81	-3.65	10.88
		GK	5.49	2.92	0.85	11.99
Momentum	$\overline{\alpha_A}$	NZ	3.08	2.30	-1.23	7.25
		GK	4.89	1.83	1.73	8.77
	$\overline{IR_A}$	NZ	4.03	2.94	-1.96	9.5
		GK	6.84	2.37	2.17	11.45

Table – Résultats des simulations d'alpha (en pourcentage) et d'IR des portefeuilles long-short GK et NZ

2 Réplication du papier

- Traitement et construction de la base de données
 - Création et traitement des données
 - Statistiques descriptives et inférences
- Simulation
 - Simulation d'un nouvel univers
 - Construction des portefeuilles
 - Estimation des IC, alphas réalisés et IR

■ Backtest

- Performance des portefeuilles multifactoriels
- Performance des portefeuilles multi et mono-factoriels
- Portefeuilles quantiles

Performance des portefeuilles multifactoriels

Figure – Performance cumulée des portefeuilles multifacteurs long-only

29/41

Figure – Performance cumulée des portefeuilles multifacteurs long-short

Performance des portefeuilles multi et mono-factoriels

		Alpha (%)	Information Ratio	Sharpe Ratio
Factor	Method			
Multif.	Long-Only NZ	0.05	0.017	0.511
	Long-Short NZ	0.89	0.155	0.169
	Long-Only GK	2.84	1.111	0.769
	Long-Short GK	8.07	1.432	1.125
Growth	Long-Only NZ	-0.58	-0.172	0.452
	Long-Short NZ	-1.34	-0.205	-0.014
	Long-Only GK	2.08	0.727	0.690
	Long-Short GK	4.03	0.968	1.152
Value	Long-Only NZ	-0.72	-0.136	0.444
	Long-Short NZ	-1.06	-0.137	0.081
	Long-Only GK	0.84	0.224	0.559
	Long-Short GK	4.29	0.538	0.371
Quality	Long-Only NZ	1.27	0.546	0.668
	Long-Short NZ	2.68	0.460	0.122
	Long-Only GK	0.84	0.308	0.601
	Long-Short GK	2.91	0.444	0.271
Momentum	Long-Only NZ	2.08	0.419	0.627
	Long-Short NZ	4.53	0.434	0.187
	Long-Only GK	1.81	0.397	0.611
	Long-Short GK	4.94	0.521	0.318

Table – Résultats du backtest

Performance des portefeuilles multi et mono-factoriels

		Alpha (%)
Multif.	Long-Only GK	2.94
	Long-Short GK	6.42
Growth	Long-Only GK	2.96
	Long-Short GK	4.49
Value	Long-Only GK	2.08
	Long-Short GK	2.99
Quality	Long-Only GK	-0.49
	Long-Short GK	1.10
Momentum	Long-Only GK	0.04
	Long-Short GK	1.55

Table – Alphas du portefeuille GK contre le portefeuille NZ

Portefeuilles quantiles

■ Construction de portefeuilles long-only dans lesquels les alphas prévus sont transformés pour ne recevoir que des valeurs alpha positives :

$$\alpha\text{-}score_i = \left\{ \begin{array}{ll} 1 + \hat{\alpha}_i & \text{si} & \hat{\alpha}_i \geq 0 \\ (1 - \hat{\alpha}_i)^{-1} & \text{sinon} \end{array} \right.$$

■ Alpha et ratio d'information pour les quantiles portfolios :

		Alpha (%)	Information ratio
Method	Quantile		
NZ	Q5	-2.52	-0.410
	Q4	0.96	0.343
	Q3	0.36	0.105
	Q2	-1.44	-0.475
	Q1	-0.96	-0.291
GK	Q5	-0.12	-0.023
	Q4	2.04	0.701
	Q3	-0.72	-0.268
	Q2	-0.72	-0.277
	Q1	-5.04	-1.245

Extensions

- 1 Présentation de l'article
- 2 Réplication du papier
- 3 Extensions
 - Stratégie avec changement de régime
 - \blacksquare Simulation simplifiée dans 4 faits stylisés
- 4 Conclusion

- 3 Extensions
 - Stratégie avec changement de régime
 - Simulation simplifiée dans 4 faits stylisés

Variation de la dispersion des IC

Figure - Dispersion des coefficients d'information

Modèle de la stratégie

- Objectif : Améliorer la performance en tenant compte de la variation de la dispersion des IC dans le temps
- Stratégie avec changement du modèle de prédiction

$$\hat{\alpha}_t = \begin{cases} \hat{\alpha}_{GK,t} & \text{si } \sigma_{IC} \ge \lambda \\ \hat{\alpha}_{NZ,t} & \text{sinon} \end{cases}$$

avec:

$$\begin{array}{l} \hat{\alpha}_{GK,t} \, = \hat{k} \; \hat{C}^{-1} \; z_{t-1} \\ \alpha_{NZ,t} \, = \sum_{m=1}^{M} z_{m,t-1} \end{array}$$

 \blacksquare Estimation du λ par optimisation séquentielle à l'aide d'arbres de décision entre 2014 et 2018

Performance de la stratégie

Figure – Backtest stratégie de changement de méthode

- 3 Extensions
 - Stratégie avec changement de régime
 - Simulation simplifiée dans 4 faits stylisés

Simulation simplifiée dans 4 faits stylisés

But : Mettre en lumière les différences de performances des stratégies Top-Down, Bottom-Up NZ et Bottom-Up GK.

- Définition des différentes configurations d'IC et de matrice de corrélation pour deux signaux x et y :
 - Faible corrélation : Corr[x, y] = 0.1.
 - Forte corrélation : Corr[x, y] = 0.9.

- Forte dispersion d'IC : IC(x) = 0.03 et IC(y) = 0.01.
- Faible dispersion d'IC : IC(x) = 0.03 et IC(y) = 0.01.
- Simulation des performances et calcul des alphas réalisés des stratégies dans 4 faits stylisés :
 - ► Faible corrélation & Faible dispersion d'IC.
 - ► Forte corrélation & Faible dispersion d'IC.

- ► Faible corrélation & Forte dispersion d'IC.
- ► Forte corrélation & Forte dispersion d'IC.

Simulation simplifiée dans 4 faits stylisés

Scénario	TD (%)	NZ BU (%)	GK BU (%)
Faible corrélation & Faible dispersion d'IC	2.79	3.76	3.75
Forte corrélation & Faible dispersion d'IC	1.79	2.42	2.75
Faible corrélation & Forte dispersion d'IC	2.83	2.91	2.89
Forte corrélation & Forte dispersion d'IC	1.87	1.91	4.56

Table – Résultats des alpha réalisés des 3 approches sur une simulation simplifiée ²

^{2.} Méthode tirée de Bottom-up versus top-down factor investing : an alpha forecasting perspective de Zurek & Heinrich (2020)

Conclusion

- 1 Présentation de l'article
- 2 Réplication du papier
- 3 Extensions
- 4 Conclusion