- (1) (a) x + y is even
 - (b) If x + y is odd, then either x is even or y is even.
 - (c) There exist x and y, Both x and y are odd, but x+y is not even. $\neg(P\Rightarrow Q)\Longleftrightarrow P\wedge\neg Q$

(Note that there is an implicit universal quantifier in the original statement.)

- (d) $(\exists m \in \mathbb{Z} \ni x = 2m+1) \land (\exists n \in \mathbb{Z} \ni y = 2n+1)) \implies (\exists k \in \mathbb{Z} \ni x + y = 2k).$
- (2) (a) Not decidable
 - (b) True
 - (c) False
 - (d) False
- (3) (a) The number 3 is an element of A, so the set $\{3\}$ consisting of this single element is a subset of A. Therefore $\{3\} \in \mathcal{P}(A)$. The number 13 is not in A, so $\{13\} \notin \mathcal{P}(A)$.
 - (b) There are 32 such elements.

Given any subset X of A, for each $a \in A$, the answer to "whether a lies in X" is YES or NO. Therefore, as a runs through all elements in A, we have $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$ possible combinations of answers, each combination corresponding to a distinct subset X.

Now suppose $3 \notin X$. The answer to "3 lies X" must then be NO for all such X. Thus the possible combinations reduce to $2 \times 2 \times 1 \times 2 \times 2 \times 2 = 32$.

- (4) (a) For any $b \in B$, there exists $a \in A$ such that f(a) = b.
 - (b) Let $A = \{1, 2\}$ and $B = \{3\}$. Define f(1) = f(2) = 3.
- (5) (a) True

<u>Proof</u> To show $\overline{A \cup B} \subseteq A \cap B$, let $x \in \overline{A \cup B}$. Then $x \notin \overline{A} \cup \overline{B}$, and thus $x \notin \overline{A}$ and $x \notin \overline{B}$. In other words, $x \in A$ and $x \in B$. Therefore $x \in A \cap B$.

On the other hand, given any $y \in A \cap B$, we have $y \in A$ and $y \in B$, that is, $y \notin \overline{A}$ and $y \notin \overline{B}$. Therefore $y \notin \overline{A} \cup \overline{B}$, which means $y \in \overline{A} \cup \overline{B}$. Hence $A \cap B \subseteq \overline{A} \cup \overline{B}$.

- (b) True $\underline{\text{Proof}}$ By definition, $f^{-1}(B) = \{a \in A \mid f(a) \in B\}$. Since B is the codomain of f, $f(a) \in B$ for all a. Hence $f^{-1}(B) = A$.
- (c) False Let $A = \{1\}$ and $B = \{2,3\}$. Define f(1) = 2. Consider $X = \{1\} \subseteq A$. Then $A \setminus X = \emptyset$ and so $f(A \setminus X) = \emptyset$. On the other hand, $f(X) = \{2\}$ so that $B \setminus f(X) = \{3\}$, which is not empty.