扭摆一实验内容

一、基本量的测量

- 1. 用钢卷尺测量铜丝的长度 1, 测量三次, 记录数据并计算平均值;
- 2. 用钢卷尺测量圆台上外孔与圆台中心之间的距离 s_1 以及内孔与圆台中心之间的距离 s_2 ,测量三次,记录数据并计算平均值。

二、 测量空圆台的转动惯量

对空圆台施以扭转力矩,摆盘将往复振动,用数字计时仪多次测量振动 20 个周期的时间 $T_0(20)$,计算圆台的振动周期 T_0 。

	表	1 空圆	台的扭转	ξ 周期 T_0	单位: s						
次数	1	2	3	4	5	6	7	8	9	10	
$T_0(20)$											
$\overline{T_0}$	计算	平均值:	•		•	•	•			•	

三、 测量圆环的转动惯量

将圆环放置到圆台上,对加载圆环的圆台施以扭转力矩,用数字计时仪测量振动 20 个周期的时间 $T_1(20)$,计算得加载圆环后的振动周期 T_1 。

		表 2 加	载圆环后	問期 T_1	单位: s						
次数	1	2	3	4	5	6	7	8	9	10	
$T_1(20)$)										
T_1	计算	平均值:									

四、 测量圆柱的转动惯量

1、去掉圆环,将两个圆柱分别对称安装在圆台上外孔的位置处,用同样的方法测量并计算加载圆柱后振动周期 T_2

	表 3	圆柱加	载到外孔	转周期 T	T ₂						
次数	1	2	3	4	5	6	7	8	9	10	
$T_2(20)$											
T_2	计算平均值:										

2、将两个圆柱分别对称安装在圆台上内孔的位置处,测量并计算加载圆柱后振动周期 T_2

表 4 周柱加裁到内孔时的扫转周期 **7**

	14. ¬	四江加北	グエルルコリロ	H 1 H 1 1TT 4	十匹。3					
次数	1	2	3	4	5	6	7	8	9	10
$T_3(20)$										
T_3	计算平均值:									

单位. c

扭摆一数据处理

一、钢丝的扭转转动模量F

根据理论公式 $F=rac{\pi d^4}{32l}\cdot G$, 计算钢丝的扭转转动模量, 其中: d 是钢丝的直径, l 是钢丝的长度, G 是钢丝的切变模量。

二、圆台的转动惯量 J_0

根据公式 $J_0 = \frac{F \cdot T_0^2}{4\pi^2}$, 计算空圆台绕钢丝的转动惯量 J_0 , 其中: T_0 圆台的扭转周期, 由表 1 计算得到。

三、圆环的转动惯量 J_1

- 1、根据公式 $J_1=J-J_0$, 计算圆环的转动惯量 J_1 。其中: J 为圆环加载到空圆台的转动惯量 $J=\frac{F\cdot T_1^2}{4\pi^2}\ ,\ T_1$ 为圆台的扭转周期,由表 2 计算得到。
- 2、根据理论公式 $J_{1}' = \frac{1}{2} m_{\text{FF}} (r_{\text{Pl}}^{2} + r_{\text{Pl}}^{2})$,计算圆环的转动惯量 J_{1}' ,其中 m_{FF} 为圆环的质量, r_{Pl} ,分别是圆环的内外半径。
 - 3、计算相对误差

比较
$$J_1$$
 和 J_1' , 计算相对误差 $E_1 = \frac{\left|J_1 - J_1'\right|}{J_1'} \times 100\%$ 。

四、圆柱的转动惯量J。

- 1、根据公式 $J_2=J-J_0$,计算圆柱的转动惯量 J_2 。其中:J 为圆柱加载到空圆台外孔时的转动惯量 $J=\frac{F\cdot T_2^2}{4\pi^2}\ ,\ T_2$ 圆柱加载到外孔时的扭转周期,由表 3 计算得到。
- 2、根据平行轴定量: $J_2' = 2 \times \left(\frac{1}{2} m_{kl} r_{kl}^2 + m_{kl} s_1^2\right)$, 计算圆柱的转动惯量 J_2' , 其中 m_{kl} 为圆柱的质量, r_{kl} 是圆柱半径, s_1 为外孔与旋转轴之间的距离。
 - 3、计算相对误差

比较
$$J_2$$
和 J_2' ,计算相对误差 $E_2 = \frac{\left|J_2 - J_2'\right|}{J_2'} \times 100\%$ 。

五、验证平行移轴定理

- 1、圆柱位于外孔时转动惯量 J_2 ,同上"四"中的计算。
- 2、圆柱位于内孔时转动惯量 J_3 : $J_3=J-J_0$, 其中: J 为圆柱加载到空圆台上内孔上的转动惯量 $J=\frac{F\cdot T_3^2}{4\pi^2}\,,\ T_3$ 圆柱加载到内孔时的扭转周期,由表 4 计算得到。
- 3、计算圆柱加载在内外孔时转动惯量的差 $\Delta J = J_2 J_3$ 。
- 4、根据平行移轴定理, $\Delta J' = 2m_{\rm t}(s_1^2 s_2^2)$,其中 $s_1 \, s_2 \,$ 分为外孔、内孔与旋转轴之间的距离。
- 5、计算相对误差 $E_3 = \frac{\left|\Delta J \Delta J'\right|}{\Delta J'} \times 100\%$ 。