RESEARCHING PROJECT "SOIL PH METER DESIGN"

[4TH WEEK REPORT]

LECTURER: HEL CHANTHAN
BY: NHIM CHANRENGSEY

2019-2020

OUTLINE

- Amplifier(Operational amplifier):
 - > Inverting Op-Amp
 - Non-Inverting Op-Amp
 - Summing amplifier
 - Differential amplifier
 - > Op-amp as Integrator
 - Op-amp as Differentiator
- Missing and Difficulty

AMPLIFIER

- Why do we have to built filter?
 - ➤ Because we need to increase or decrease input.(Gain >1, Gain<1)
- How can filter help in our circuit?
 - Because of our sensor generate small voltage input, so microcontroller is hard to analyze result to show output.
- How can we apply filter to our circuit?
 - We need read sensor's datasheet for output and micro-controller's ADC input that can generate to output.
- * How can we built filter for our sensor?
 - We have to know Gain and bandwidth for our sensor to microcontroller then we can built Amplifier for it.
- ✓ We use Operational Amplifier (Op-Amp) for built our Amplifier.

OPERATIONAL AMPLIFIER

Circuit symbol of the operational amplifier:

- 2 input and 1 output
- Most of the operational amplifiers consist of two power supplies (positive and negative power supply)

Vout = A(V1-V2)

Vout = A.V2

Vout = A.Vin (high gain)

Value of gain is used in range of 10^5 to 10^6 . Example Vin = 1mV so Vout = 1m x 10^5 = 100V.

OPERATIONAL AMPLIFIER

Ideal of the operational amplifier Characteristics:

- ► Input Impendent: $R_{in} = ∞(MΩ)$
- \triangleright Output Impendent: $R_{out} = O(\Omega)$
- \triangleright Open-loop Gain(A = ∞)
- \triangleright $V_{out} = 0$ when $V_{in} = 0$;
- ➤ Infinite Bandwidth and Slew Rate
- Infinite CMRR(Common mode rejection ratio)

OP-AMP 741 Specification

Parameters	Values		
Input Impendent	2ΜΩ		
Output Impendent	75Ω		
Open-loop Gain	10 ⁵		
Offset Voltage	1mV		
Slew Rate	0.5 V/μs		
CMRR	70 – 90 dB		

 $R_{in} = \infty$ and $R_{out} = 0 \Rightarrow BW = (0 - \infty) = \infty$ => $A = \infty \Rightarrow V_{out} = 0$;

INVERTING OP-AMP

By KCL:
$$I_{in} = If$$

For $I_{in} = \frac{V_{in} - Vx}{R_{in}}$ and $I_f = \frac{V_x - V_{out}}{R_f}$; $Vx = 0$

$$\Rightarrow \frac{V_{in}}{R_{in}} = -\frac{V_{out}}{R_f} \Rightarrow \frac{V_{out}}{V_{in}} = -\frac{R_f}{R_{in}}$$
So $Gain(A_v) = \frac{V_{out}}{V_{in}} = -\frac{R_f}{R_{in}}$
Thus $V_{out} = -Av.Vi_n$

Example:
$$R_{in} = R_f = 1k$$

And $V_{in} = 2V \Rightarrow A_v = -1 \Rightarrow V_{out} = -2V$

NON-INVERTING OP-AMP

By
$$V^{+} = V^{-} \Rightarrow V_{1} = V_{in}$$

For $V_{1} = \frac{R_{2}}{R_{2} + Rf} \times V_{out}$ and $V_{out} = \frac{R_{2} + Rf}{R_{2}} \times Vin$
So $Gain(A_{v}) = \frac{V_{out}}{V_{1}} = \frac{R_{2} + Rf}{R_{2}} = 1 + \frac{R_{f}}{R_{in}}$
Thus $V_{out} = Av.Vi_{n} = \left(1 + \frac{Rf}{R2}\right).Vi_{n}$

Example:
$$R_2 = R_f = 1k$$

And $V_{in} = 2V \Rightarrow A_v = 2 \Rightarrow V_{out} = 4V$

SUMMING AMPLIFIER (INVERTING OP-AMP)

By KCL:
$$I_F = I_1 + I_2 + I_3 = -\left[\frac{V1}{Rin} + \frac{V2}{Rin} + \frac{V3}{Rin}\right]$$

$$\frac{V_{out}}{R_f} = If$$

then, -Vout =
$$\left[\frac{R_F}{Rin}V1 + \frac{R_F}{Rin}V2 + \frac{R_F}{Rin}V3\right]$$

$$ightharpoonup$$
 Case: R1 = R2 = R3 = R_F => R_{in} = R_F Thus V_{out} = - (V1+V2+V3)

Case: R1
$$\neq$$
 R2 \neq R3 \Rightarrow $\frac{R_F}{R_1} \neq \frac{R_F}{R_2} \neq \frac{R_F}{R_3}$ Thus $V_{out} = -(AV1 + BV2 + CV3)$

> Case: R1 = R2 = R3 =
$$R_{in} \neq R_F$$
 Thus Vout = $-\frac{R_F}{R_{in}}(V1 + V2 + V3)$

SUMMING AMPLIFIER (NON-INVERTING OP-AMP)

$$I_{R1} + I_{R2} = 0 (KCL)$$

$$\frac{V_1 - V^+}{R_1} = \frac{V_2 - V^+}{R_2} = 0$$

$$\therefore \left(\frac{V_1}{R_1} - \frac{V^+}{R_1}\right) + \left(\frac{V_2}{R_2} - \frac{V^+}{R_2}\right) = 0$$

If we make the two input resistances equal in value, then $R_1 = R_2 = R$.

$$V+ = \frac{\frac{V_1}{R} + \frac{V_2}{R}}{\frac{1}{R} + \frac{1}{R}} = \frac{\frac{V_1 + V_2}{R}}{\frac{2}{R}}$$
Thus
$$V+ = \frac{V_1 + V_2}{2}$$

The standard equation for the voltage gain of a non-inverting summing amplifier circuit is given as:

$$A_{V} = \frac{V_{OUT}}{V_{IN}} = \frac{V_{OUT}}{V+} = 1 + \frac{R_{A}}{R_{B}}$$

$$\therefore V_{\text{OUT}} = \left[1 + \frac{R_{\text{A}}}{R_{\text{B}}}\right] V +$$

Thus:
$$V_{\text{OUT}} = \left[1 + \frac{R_A}{R_B}\right] \frac{V_1 + V_2}{2}$$

- Case $R_A = R_B$ Thus $V_{out} = V1 + V2$.
- \Leftrightarrow Case R1 \neq R2 and RA \neq RB:

Vout =
$$(1 + \frac{RA}{RB})(\frac{R2}{R1 + R2} \times V1 + \frac{R1}{R1 + R2} \times V2)$$

DIFFICULTY AND MISSING

❖ Difficulty:

- Many resource to read and learn
- Don't have enough time.
- Missing:
 - Lately work

PLANNING FOR 1ST MONTH

Week	Monday	Tuesday	Wednesday	Thursday	Friday	Goal
1 st Week	Research	Meeting	Learn Amplifier	Presentation	Learn Filter	Learn Filter
2 nd Week			REST DAYS			
3 rd Week	Learn Filter	Learn Filter	Learn Filter	Learn Filter	Learn Filter	Learn Filter
4 th Week	Learn Amplifier	Learn Amp Meeting	Learn Amplifier	Presentation Learn Amp	Learn Amplifier	Learn Amplifier

Start: 10/08/2020

PLANNING FOR 2ND MONTH

Week	Monday	Tuesday	Wednesday	Thursday	Friday	Goal
5 th Week	Build Filter pH & LCD	Meeting Build Filter	Filter Build filter	Presentation Build Amp	Build Amplifier	Design Amplifier
6 th Week	Build Amplifier	Meeting Learn stm32	Learn STM32 Test LCD/pH	Presentation Write Code	Write Code STM32	Start STM32
7 th Week	Write Code STM32	Meeting Write Code	Write Code STM32	Presentation Write code	Finish STM32 Code	Finish STM32 Code
8 th Week	Draw case for hardware	Meeting Draw case	Draw case for hardware	Presentation Draw case	Print 3D case	Build case Finish Job

Start: 06/09/2020

