Some points

A sufficient condition for a system to have frequency response, it to be stable.

(Y Y)

Solving a differential equation using Fourier transform approach gives only **stable** solution.

$$h(t) * h_i(t) = \delta(t)$$

$$H(jw).H_I(jw) = 1 \to H_I(jw) = \frac{1}{H(jw)}$$

Provided that H(jw) is not zero for all w

Some points

$$\frac{1}{jw+a} \stackrel{\mathcal{F}^{-1}}{\to} ?$$

$$\frac{1}{jw+a} \stackrel{\mathcal{F}^{-1}}{\to} ? \qquad a > 0 \stackrel{\mathcal{F}^{-1}}{\to} e^{-at} u(t)$$

$$x(t) \xrightarrow{\mathcal{F}} X(jw)$$

 $x(-t) \xrightarrow{\mathcal{F}} X(-jw)$

$$x(t) = e^{-at}u(t), \quad a > 0 \xrightarrow{\mathcal{F}} \frac{1}{jw + a}$$

$$x(-t) = e^{at}u(-t), \quad a > 0 \xrightarrow{\mathcal{F}} \frac{1}{-jw + a}$$

$$\frac{1}{+jw - a} \xrightarrow{\mathcal{F}^{-1}} -e^{at}u(-t)$$

Spring 2011

信號與系統 Signals and Systems

Chapter SS-4
The Discrete-Time Fourier Series

Feng-Li Lian NTU-EE Feb11 – Jun11

Figures and images used in these lecture notes are adopted from "Signals & Systems" by Alan V. Oppenheim and Alan S. Willsky, 1997

Fourier Series Representation of DT Periodic Signals

Basic Idea:

 To represent signals as linear combinations of basic signals

Key Properties:

1. The set of basic signals can be used to construct a broad and useful class of signals

2. The response of an LTI system to each signal should be simple enough in structure to provide us with a convenient representation for the response of the system to any signals constructed as linear combination of basic signals Harmonically related complex exponentials

$$\phi_k[n] = e^{jkw_0n} = e^{jk(\frac{2\pi}{N})n}, \qquad k = 0, \pm 1, \pm 2, \dots$$

$$\phi_{k+N}[n] = e^{j(k+N)\left(\frac{2\pi}{N}\right)n} = e^{jk\left(\frac{2\pi}{N}\right)n}e^{jN\left(\frac{2\pi}{N}\right)n}$$

$$\Rightarrow \phi_k[n] = \phi_{k+N}[n] = \cdots = \phi_{k+rN}[n]$$

The Fourier Series Representation:

$$x[n] = \sum_{k=< N>} a_k \phi_k[n] = \sum_{k=< N>} a_k e^{jkw_0 n} = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

Periodicity of Fourier Coefficients

$$x[n] = \sum_{k=< N>} a_k \phi_k[n] = \sum_{k=< N>} a_k e^{jkw_0 n} = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

$$x[n] = a_0 \phi_0[n] + a_1 \phi_1[n] + \dots + a_{N-1} \phi_{N-1}[n]$$

= $a_1 \phi_0[n] + a_1 \phi_1[n] + \dots + a_{N-1} \phi_{N-1}[n] + a_N \phi_N[n]$

Since, $\phi_0[n]$ and $\phi_N[n]$ are the same, a_0 and a_N are identical

Procedure of Determining the Coefficients:

$$x[n] = \sum_{k=< N>} a_k \phi_k[n] = \sum_{k=< N>} a_k e^{jkw_0 n} = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

$$n = 0 \qquad \sum_{k=0}^{N-1} a_k = x[0]$$

$$n = 1 \qquad \sum_{k=0}^{N-1} a_k e^{jk\frac{2\pi}{N}} = x[1]$$

$$n = 2 \qquad \sum_{k=0}^{N-1} a_k e^{jk\frac{2\times 2\pi}{N}} = x[2]$$

:

$$n = N - 1 \qquad \sum_{k=0}^{N-1} a_k e^{jk \frac{(N-1) \times 2\pi}{N}} = x[N-1]$$

Procedure of Determining the Coefficients:

Fourier Series Representation of DT Periodic Signals

We have a geometric series, where its start term is 1 and the common ratio is equal to $e^{jmrac{2\pi}{N}}$

$$\frac{1}{N} \sum_{n=0}^{N-1} e^{jm\frac{2\pi}{N}n} = \frac{1}{N} \frac{1 - \left(e^{jm\frac{2\pi}{N}}\right)^N}{1 - e^{jm\frac{2\pi}{N}}} = 0$$

Procedure of Determining the Coefficients:

$$\sum_{n=\langle N\rangle} x[n]e^{-jr\left(\frac{2\pi}{N}\right)n} = \sum_{n=\langle N\rangle} \sum_{k=\langle N\rangle} a_k e^{j(k-r)\left(\frac{2\pi}{N}\right)n}$$

$$\sum_{n=\langle N\rangle} x[n]e^{-jr\left(\frac{2\pi}{N}\right)n} = \sum_{k=\langle N\rangle} a_k \sum_{n=\langle N\rangle} e^{j(k-r)\left(\frac{2\pi}{N}\right)n}$$

$$= a_r N$$

$$\Rightarrow a_r = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jr\left(\frac{2\pi}{N}\right)n}$$

In Summary:

• The synthesis equation:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jkw_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

• The analysis equation:

$$\begin{aligned} a_k &= \frac{1}{N} \sum_{n = < N >} x[n] e^{-jk w_0 n} = \frac{1}{N} \sum_{n = < N >} x[n] e^{-jk \left(\frac{2\pi}{N}\right) n} \\ a_k &= a_{k+N} \end{aligned}$$

• $\{a_k\}$: the Fourier series coefficients or the spectral coefficients of x[n]

• Example 3.10:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jkw_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

$$x[n] = \sin \omega_0 n,$$

periodic only if $2\pi/\omega_0$ is an integer or a ratio of integers.

$$\omega_0 = \frac{2\pi}{N}, \qquad x[n] = \frac{1}{2j}e^{j(2\pi/N)n} - \frac{1}{2j}e^{-j(2\pi/N)n}.$$

$$a_1=\frac{1}{2i}, \quad a_{-1}=-\frac{1}{2i},$$

• Example 3.10:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jkw_0 n} = \sum_{k=\langle N \rangle} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

$$x[n] = \sin \omega_0 n,$$

periodic only if $2\pi/\omega_0$ is an integer or a ratio of integers.

M and N do not have any common factors.

$$\omega_0 = \frac{2\pi M}{N}$$

$$x[n] = \frac{1}{2j} e^{jM(2\pi/N)n} - \frac{1}{2j} e^{-jM(2\pi/N)n},$$

$$a_M = (1/2j), a_{-M} = (-1/2j),$$

• Example 3.11:

$$x[n] = 1 + \sin\left(\frac{2\pi}{N}\right)n + 3\cos\left(\frac{2\pi}{N}\right)n + \cos\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)$$

$$\Rightarrow x[n] = 1 + \frac{1}{2j} \left[e^{j\left(\frac{2\pi}{N}\right)n} - e^{-j\left(\frac{2\pi}{N}\right)n} \right] + \frac{3}{2} \left[e^{j\left(\frac{2\pi}{N}\right)n} + e^{-j\left(\frac{2\pi}{N}\right)n} \right]$$
$$+ \frac{1}{2} \left[e^{j\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)} + e^{-j\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)} \right]$$

$$\Rightarrow x[n] = 1 + \left(\frac{3}{2} + \frac{1}{2j}\right) e^{j\left(\frac{2\pi}{N}\right)n} + \left(\frac{3}{2} - \frac{1}{2j}\right) e^{-j\left(\frac{2\pi}{N}\right)n}$$

$$+ \frac{1}{2} e^{j(\frac{\pi}{2})} e^{j2(\frac{2\pi}{N})n} + \frac{1}{2} e^{-j(\frac{\pi}{2})} e^{-j2(\frac{2\pi}{N})n}$$

• Example 3.11:

$$\Rightarrow \begin{cases} a_0 &= 1 \\ a_1 &= \left(\frac{3}{2} + \frac{1}{2j}\right) = \frac{3}{2} - \frac{1}{2}j \\ a_{-1} &= \left(\frac{3}{2} - \frac{1}{2j}\right) = \frac{3}{2} + \frac{1}{2}j \\ a_2 &= \frac{1}{2}j \\ a_{-2} &= -\frac{1}{2}j \\ a_k &= 0, \text{ others in } < N > \end{cases}$$

$$a = |a|e^{j \checkmark a}$$

$$a = |a| \left[\cos(\checkmark a) + j \sin(\checkmark a) \right]$$

$$a = b + jc = \sqrt{b^2 + c^2} \left[\frac{b}{\sqrt{b^2 + c^2}} + j \frac{c}{\sqrt{b^2 + c^2}} \right]$$

• Example 3.12:

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk \left(\frac{2\pi}{N}\right)n}$$

$$x[n] = \left\{ egin{array}{ll} 1, & -N_1 \leq n \leq N_1 \\ 0, & ext{others in } < N > \end{array}
ight.$$

$$a_{k} = \frac{1}{N} \sum_{n=-N_{1}}^{N_{1}} \mathbf{1} \cdot e^{-jk\left(\frac{2\pi}{N}\right)n} = \frac{1}{N} \sum_{n=-N_{1}}^{N_{1}} \left(e^{-jk\left(\frac{2\pi}{N}\right)}\right)^{n}$$

$$= \frac{1}{N} \left[\left(\cdot\right)^{-N_{1}} + \left(\cdot\right)^{-N_{1}+1} + \cdots + \left(\cdot\right)^{N_{1}}\right]$$

$$= \frac{1}{N} \left(\cdot\right)^{-N_{1}} \left[\frac{1 - \left(\cdot\right)^{(2N_{1}+1)}}{1 - \left(\cdot\right)}\right] \quad (\cdot) \neq 1$$

$$= \frac{1}{N} \left(\cdot\right)^{-N_{1}} \left[1 + \left(\cdot\right)^{1} + \cdots + \left(\cdot\right)^{2N_{1}}\right]$$

• Let
$$m = n + N_1$$
 or $n = m - N_1$

$$a_k = \frac{1}{N} \sum_{m=0}^{2N_1} e^{-jk(\frac{2\pi}{N})(m-N_1)} = \frac{1}{N} e^{jk(\frac{2\pi}{N})N_1} \sum_{m=0}^{2N_1} e^{-jk(\frac{2\pi}{N})m}$$

• Example 3.12:

• $k = 0, \pm N, \pm 2N, ...$

$$a_k = \frac{2N_1 + 1}{N}$$

• $k \neq 0, \pm N, \pm 2N, \dots$

$$= e^{-j\theta/2} e^{j\theta/2} - e^{-j\theta/2} e^{-j\theta/2}$$

$$= e^{-j\theta/2} \left(e^{j\theta/2} - e^{-j\theta/2} \right)$$

$$a_k = \frac{1}{N} e^{jk(\frac{2\pi}{N})N_1} \left(\frac{1 - e^{-jk(\frac{2\pi}{N})(2N_1 + 1)}}{1 - e^{-jk(\frac{2\pi}{N})}} \right)$$

$$= \frac{1}{N} \frac{e^{-jk(\frac{2\pi}{2N})} \left[e^{jk(\frac{2\pi}{2N})(2N_1+1)} - e^{-jk(\frac{2\pi}{2N})(2N_1+1)} \right]}{e^{-jk(\frac{2\pi}{2N})} \left[e^{jk(\frac{2\pi}{2N})} - e^{-jk(\frac{2\pi}{2N})} \right]}$$

$$= \frac{1}{N} \frac{\sin\left[\left(\frac{2\pi}{N}\right)k(N_1 + \frac{1}{2})\right]}{\sin\left[\left(\frac{\pi}{N}\right)k\right]}$$

- Example 3.12:
 - $2N_1 + 1 = 5$

$$a_k = \frac{1}{N} \frac{\sin\left[\left(\frac{2\pi}{N}\right)k(N_1 + \frac{1}{2})\right]}{\sin\left[\left(\frac{\pi}{N}\right)k\right]}$$

• N = 10

• *N* = 20

• *N* = 40

Examples 3.5 (CT) & 3.12 (DT):

$$Ta_k = T \frac{\sin(k\frac{\pi}{8})}{k\pi}$$

$$a_k=rac{1}{N}rac{\sin\left[\left(rac{2\pi}{N}
ight)k(N_1+rac{1}{2})
ight]}{\sin\left[\left(rac{\pi}{N}
ight)k
ight]}$$

$$a_k = \frac{2N_1 + 1}{N}$$

Partial Sum:

$$x[n] = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

• If N is odd

$$\widehat{x}[n] = \sum_{k=-M}^{M} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

• If N is even

$$\widehat{x}[n] = \sum_{k=-M+1}^{M} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

Section	Property	
	Linearity	
	Time Shifting	
	Frequency Shifting	
	Conjugation	
	Time Reversal	
	Time Scaling	
	Periodic Convolution	
3.7.1	Multiplication	
3.7.2	First Difference Running Sum	
	Conjugate Symmetry for Real Signals	
	Symmetry for Real and Even Signals	
	Symmetry for Real and Odd Signals	
	Even-Odd Decomposition for Real Signals	
3.7.3	Parseval's Relation for Periodic Signals	

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\begin{bmatrix} a_k \\ b_k \end{bmatrix}$ Periodic with period N
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$Ax[n] + By[n]$ $x[n - n_0]$ $e^{jM(2\pi/N)n}x[n]$ $x^*[n]$ $x[-n]$ $x[n/m]$, if n is a multiple of m	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi/N)n_0}$ a_{k-M} a_{-k}^* a_{-k} 1 (viewed as periodic)
Time Scaling	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$\frac{1}{m}a_k$ (viewed as periodic) with period mN
Periodic Convolution	$\sum_{r=\langle N\rangle} x[r]y[n-r]$	Na_kb_k
Multiplication	x[n]y[n]	$\sum_{l=\langle N angle} a_l b_{k-l}$
First Difference	x[n] - x[n-1]	$(1 - e^{-jk(2\pi/N)})a_k$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\text{finite valued and periodic only} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi lN)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$egin{cases} a_k &= a_{-k}^* \ \Re e\{a_k\} &= \Re e\{a_{-k}\} \ \Im m\{a_k\} &= -\Im m\{a_{-k}\} \ a_k &= a_{-k} \ orall a_k &= - ot < a_{-k} \end{cases}$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_c[n] = \mathcal{E}_{v}\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}_{d}\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\Re e\{a_k\}$ $j \Im m\{a_k\}$
	Parseval's Relation for Periodic Signals	
	$\frac{1}{N} \sum_{n=(N)} x[n] ^2 = \sum_{k=(N)} a_k ^2$	

- In Summary:
 - The synthesis equation:

$$x[n] = \sum_{k=< N>} a_k e^{jk w_0 n} = \sum_{k=< N>} a_k e^{jk \left(\frac{2\pi}{N}\right) n}$$
...

• The analysis equation:

$$a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jkw_0 n} = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\left(\frac{2\pi}{N}\right)n}$$

$$\coprod_{\bullet_{\Pi \Pi^{\bullet}}} \bigsqcup_{\bullet_{\Pi \Pi^{\bullet}} \coprod_{-8} \prod_{-4} \prod_{0} \bigoplus_{4} \prod_{18} \coprod_{\bullet_{\Pi \Pi^{\bullet}}} \bigsqcup_{\bullet_{\Pi \Pi^{\bullet}}} \coprod_{\bullet_{\Pi \Pi^{\bullet}}} \coprod_{\bullet_{18}}$$

$$a_k = a_{k+N}$$

•
$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$
: DT Fouries series pair

Linearity:

$$x[\mathbf{n}] = \sum_{k = \langle N \rangle} a_k e^{jkw_0 \mathbf{n}}$$

• x[n], y[n]: periodic signals with period N

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

$$\Rightarrow z[n] = Ax[n] + By[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k = Aa_k + Bb_k$$

Time Shifting:

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$\Rightarrow x[n-n_0] \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jkw_0n_0}a_k = e^{-jk\left(\frac{2\pi}{N}\right)n_0}a_k$$

Multiplication:

• x[n], y[n]: periodic signals with period N

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$
 $x[n] = \sum_{l=< N>} a_l e^{jlw_0 n}$ $y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$ $y[n] = \sum_{m=< N>} b_m e^{jmw_0 n}$

 $\Rightarrow x[n]y[n]$: also periodic with N

$$x[n]y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} d_k = \sum_{l=< N>} a_l b_{k-l}$$

⇒ a periodic convolution

• First Difference:

$$x[n] = \sum_{l=< N>} a_k e^{jkw_0 n}$$

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$\Rightarrow x[n-n_0] \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jkw_0n_0}a_k = e^{-jk\left(\frac{2\pi}{N}\right)n_0}a_k$$

$$\Rightarrow x[n-1] \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jkw_0}a_k = e^{-jk\left(\frac{2\pi}{N}\right)}a_k$$

$$x[n] - x[n-1] \overset{\mathcal{FS}}{\longleftrightarrow} \left(1 - e^{-jk\left(rac{2\pi}{N}
ight)}
ight) a_k$$

- Parseval's relation for DT periodic signals:
 - As shown in Problem 3.57:

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{jkw_0 n}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jkw_0 n}$$

$$\frac{1}{N_{k=\langle N \rangle}} \left| x[n] \right|^2 = \sum_{k=\langle N \rangle} \left| a_k \right|^2$$

 Parseval's relation states that the total average power in a periodic signal equals the sum of the average powers in all of its harmonic components (only N distinct harmonic components in DT)

• Example 3.13:

$$\Rightarrow b_k = \begin{cases} \frac{1}{5} \frac{\sin(3\pi k/5)}{\sin(\pi k/5)}, & \text{for } k \neq 0, \pm 5, \pm 10, \dots \\ \frac{3}{5}, & \text{for } k = 0, \pm 5, \pm 10, \dots \end{cases}$$

$$\Rightarrow c_k = \begin{cases} 0, & \text{for } k \neq 0, \pm 5, \pm 10, \dots \\ 1, & \text{for } k = 0, \pm 5, \pm 10, \dots \end{cases}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk w_0 n}$$

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$x_1[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

$$x_2[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k$$

$$x[n] = x_1[n] + x_2[n]$$

$$\Rightarrow a_k = b_k + c_k$$

• Example 3.14:

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jkw_0 n}$$

Suppose we are given the following facts about a sequence x[n]:

- 1. x[n] is periodic with period N = 6.
- **2.** $\sum_{n=0}^{5} x[n] = 2$.
- 3. $\sum_{n=2}^{7} (-1)^n x[n] = 1$.
- **4.** x[n] has the minimum power per period among the set of signals satisfying the preceding three conditions.

• Example 3.14:

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk w_0 n}$$

$$\sum_{n=0}^{5} x[n] = 2.$$

$$a_0 = 1/3$$

$$(-1)^n = e^{-j\pi n} = e^{-j(2\pi/6)3n}$$
$$\sum_{n=2}^7 (-1)^n x[n] = 1$$

$$a_3 = 1/6$$

$$P = \sum_{k=0}^{5} |a_k|^2.$$
 $x[n] = a_0 + a_3 e^{j\pi n} = (1/3) + (1/6)(-1)^n,$ $x[n]$

■ The Response of an LTI System:

- On pages 12-14

$$in o \operatorname{LTI} o out \ \left\{ egin{array}{ll} \operatorname{CT:} & e^{st} \longrightarrow H(s)e^{st} \\ \operatorname{DT:} & z^n \longrightarrow H(z)z^n \end{array}
ight.$$
 $H(s) = \int_{-\infty}^{+\infty} h(t)e^{-st}dt \qquad \Rightarrow ext{ the impulse response} \\ H(z) = \int_{-\infty}^{+\infty} h[k]z^{-k} \qquad \Rightarrow ext{ the system functions} \end{array}$

• If s = jw or $z = e^{jw}$:

$$H(jw) = \int_{-\infty}^{+\infty} h(t)e^{-jwt}dt$$

$$H(e^{jw}) = \sum_{n=-\infty}^{+\infty} h[n]e^{-jwn}$$

⇒ the frequency response

In Summary:

$$in \to egin{array}{c} \operatorname{LTI} \\ \operatorname{H}(s/z/w) \end{array} o out \qquad \qquad \boxed{ \begin{aligned} a &= |a|e^{j \not \searrow a} \\ H &= |H|e^{j \not \searrow H} \end{aligned} }$$

$$(\ s_i=jw_i \ \text{or} \ z_i=e^{jw_i}\) \qquad \left\{ \begin{array}{l} \mathsf{CT:} \quad e^{s_it}\longrightarrow H(s_i)e^{s_it} \\ \\ \mathsf{DT:} \quad z_i^n\longrightarrow H(z_i)z_i^n \end{array} \right.$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0t} \longrightarrow y(t) = \sum_{k=-\infty}^{+\infty} a_k H(jkw_0) e^{jkw_0t}$$

$$x[n] = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)n} \longrightarrow y[n] = \sum_{k=< N>} a_k H(e^{j\left(\frac{2\pi}{N}\right)k}) e^{jk\left(\frac{2\pi}{N}\right)n}$$

- Frequency-Selective Filters:
 - Select some bands of frequencies and reject others

CT ideal lowpass filter

$$H(jw) = \left\{ egin{array}{ll} 1, & |w| \leq w_c \ 0, & |w| > w_c \end{array}
ight.$$

CT ideal highpass filter

$$H(jw) = \left\{egin{array}{ll} 0, & |w| < w_c \ 1, & |w| \geq w_c \end{array}
ight.$$

CT ideal bandpass filter

$$H(jw) = \left\{ egin{array}{ll} 1, & \emph{$w_{c1} \leq |w| \leq w_{c2}$} \\ 0, & ext{otherwise} \end{array}
ight.$$

- Frequency-Selective Filters:
 - Select some bands of frequencies and reject others

DT ideal lowpass filter

DT ideal highpass filter

DT ideal bandpass filter

A Simple RC Lowpass Filter:

$$\Rightarrow RC \frac{d}{dt}v_c(t) + v_c(t) = v_s(t)$$

$$\Rightarrow RC \frac{d}{dt} \left[H(jw)e^{jwt} \right] + H(jw)e^{jwt} = e^{jwt}$$

$$\Rightarrow RC jw H(jw)e^{jwt} + H(jw)e^{jwt} = e^{jwt}$$

$$\Rightarrow H(jw)e^{jwt} = \frac{1}{1 + RCjw}e^{jwt}$$

First-Order Recursive DT Filters:

$$y[n] - ay[n-1] = x[n]$$

• If $x[n] = e^{jwn}$, then $y[n] = H(e^{jw})e^{jwn}$

where $H(e^{jw})$: the frequency response

$$\Rightarrow H(e^{jw}) e^{jwn} - a H(e^{jw}) e^{jw(n-1)} = e^{jwn}$$

$$\Rightarrow \left[1 - a \ e^{-jw}\right] H(e^{jw}) \ e^{jwn} = e^{jwn}$$

$$\Rightarrow H(e^{jw}) = \frac{1}{1 - a e^{-jw}}$$

First-Order Recursive DT Filters:

$$H(e^{jw}) = \frac{1}{1-a \ e^{-jw}}$$

$$y[n] = ay[n-1] + x[n]$$

lowpass filter: 0 < a < 1

highpass filter: -1 < a < 0a = 0.6a = -0.6

• First-Order Recursive DT Filters:

$$y[n] = ay[n-1] + x[n]$$

lowpass filter: 0 < a < 1

highpass filter: -1 < a < 0

a > 1

$$a < -1$$

Modulation

