关联分析:基本概念和算法

第六章讲义

Tan,Steinbach,Kumar 的幻灯片由 Michael Hahsler 改编

话题

·定义

·挖掘频繁项集(APRIORI) ·简明项集表示· 查找频繁项集的替代方法 ·关联规则生成

·支持分布·模式评估

关联规则挖掘

·给定一组交易,找出可以预测交易的规则 基于交易中其他项目的发生,一个项目的发生

市场一篮子交易

时间项目		
1	面包、牛奶	
2	面包、尿布、啤酒、鸡蛋	
3	牛奶、尿布、啤酒、可乐	
4	面包、牛奶、尿布、啤酒	
5	面包、牛奶、尿布、可乐	

关联规则示例

```
 \left\{ \begin{array}{ccc} & & \\ & & \\ \\ & & \\ \end{array} \right\} \rightarrow \left\{ \begin{array}{ccc} & & \\ & & \\ \end{array} \right\} \rightarrow \left\{ \begin{array}{ccc} & & \\ & & \\ \end{array} \right\},
```

暗示意味着同时发生,而不是因果关系!

定义:频繁项集

·项目集个或多个项目的集合

·示例:{牛奶、面包、尿布}

- k 项集

·包含k个项目的项目集

支持计数()

- -项集的出现频率
- **-**例如 ({牛奶、面包、尿布}) = 2支持
- -包含项集的事务的分数
- -例如 s({牛奶、面包、尿布})
 - = ({牛奶、面包、尿布})/|T|=2/5

频繁项集

-支持度大于或等于minsup阈值的项集

时间项目		
1	面包、牛奶	
2	面包、尿布、啤酒、鸡蛋	
3	牛奶、尿布、啤酒、可乐	
4	面包、牛奶、尿布、啤酒	
5	面包、牛奶、尿布、可乐	

定义:关联规则

·关联规则

- -形式的隐含表达X → Y,其中 X 和 Y 是项集
- -示例: { , } → { }

·规则评估指标

-支持

·交易中包含的部分 X和Y

-信心 (c)

·测量 Y 中项目的频率 出现在交易中 包含 X

时间项目

- 1 面包、牛奶
- 2 面包、尿布、啤酒、鸡蛋
- 3 牛奶、尿布、啤酒、可乐
- 4 面包、牛奶、尿布、啤酒
- 5 面包、牛奶、尿布、可乐

例子:

$$c(X \rightarrow Y) = \frac{\sigma(X \cup Y)}{\sigma(X)} = \frac{s(X \cup Y)}{s(X)}$$

话题

·定义

·挖掘频繁项集(APRIORI)·简明项集表示·

查找频繁项集的替代方法·关联规则生成

·支持分布·模式评估

关联规则挖掘任务

·给定一组交易T,关联规则的目标 挖掘是找到所有具有-support ≥ minsup阈值-confidence ≥ minconf阈值的规则

·蛮力方法: -列出所有可能 的关联规则-计算每个规则的支持度和置 信度-修剪未通过minsup和minconf阈值的规则 计算上禁止!

矿业协会规则

时间项	ill
1	面包、牛奶
2	面包、尿布、啤酒、鸡蛋
3	牛奶、尿布、啤酒、可乐
4	面包、牛奶、尿布、啤酒
5	面包、牛奶、尿布、可乐

规则示例:

```
\{ +奶、尿布 \} \rightarrow \{ 啤酒 \} (s=0.4, c=0.67) 
\{ +奶、啤酒 \} \rightarrow \{ R\pi \} (s=0.4, c=1.0) 
\{ R\pi、啤酒 \} \rightarrow \{ +M \} (s=0.4, c=0.67) 
\{ \P\pi \} \rightarrow \{ +M \}, R\pi \} (s=0.4, c=0.67) 
\{ R\pi \} \rightarrow \{ +M \}, R\pi \} (s=0.4, c=0.5) 
\{ +M \} \rightarrow \{ R\pi \}, R\pi \} (s=0.4, c=0.5)
```

观察:

- ·上述所有规则都是同一项目集的二元分区: {牛奶、尿布、啤酒}
- ·源自相同项集的规则具有相同的支持度,但可以具有不同的置信度
- ·因此,我们可以将支持度和置信度要求解耦

矿业协会规则

- ・两步法: 1.频繁项
 - 集生成
 - -生成所有支持 minsup 的项集
 - 2.规则生成
 - -从每个频繁项集生成高置信度规则,其中每个规则是频繁项集的二分 法

·频繁的项集生成仍然是计算的 昂贵的

频繁项集生成

减少候选人人数

先验原则:

-如果一个项集是频繁的,那么它的所有子集也必须是频繁的 频繁

由于支持度量的以下性质,Apriori 原则成立:

$$\forall$$
 , :($\subseteq \Rightarrow \geqslant$ () ()

- -项目集的支持永远不会超过其子集的支持
- -这被称为支持的反单调特性

说明先验原理

Figure 6.4. An illustration of support-based pruning. If $\{a,b\}$ is infrequent, then all supersets of $\{a,b\}$ are infrequent.

说明先验原理

项目(1-项目集)

物品	数数
面包	4
可乐	2
牛奶	4
啤酒	3
尿布	4
蛋	1

	170
物品集	数数
{面包、牛奶}	3
{面包,啤酒}	2
{面包,尿布}	3
{牛奶、啤酒}	2
{牛奶,尿布}	3
<u>{啤酒,尿布}</u>	3

对(2项集)

(无需生成 涉及可口可乐的候选人 或鸡蛋)

最低支持=3

三胞胎(3项集)

如果考虑每个子集,
6C1 + 6C2 + 6C3 = 41
使用基于支持的修剪,
6 + 6 + 1 = 13

物品集	数数
	3

Machine Translated by Google

先验算法

·方法:

- -让 k=1
- -生成长度为1的频繁项集
- -重复直到没有新的频繁项集被识别
 - ·从长度为k的频繁项集生成长度为(k+1)的候选项集
 - ·修剪包含不频繁的长度为 k 的子集的候选项目集
 - ·通过扫描数据库统计每个候选者的支持度
 - ·剔除不常出现的候选人,只留下经常出现的候选人

影响复杂性的因素

·最無支持關實際變響

-这可能会增加候选人的数量和频繁的最大长度 项集

·数据集的维度(项目数)

- -需要更多空间来存储每个项目的支持计数
- -如果频繁项的数量也增加,计算和 I/O 成本也可能增加

・数据库大小

-由于 Apriori 进行多次传递,算法的运行时间可能会增加交易数量

平均交易宽度

- -交易宽度随着更密集的数据集而增加
- -这可能会增加频繁项集的最大长度和哈希树的遍历(事务中的子集数量随其宽度 增加)

话题

·定义

·挖掘频繁项集(APRIORI)·简明项集表示·

查找频繁项集的替代方法·关联规则生成

·支持分布·模式评估

最大频繁项集

一个项目集是最大频繁的,如果它的直接超集都不是频繁的

Figure 6.16. Maximal frequent itemset.

封闭项目集

·如果项目集的直接超集都没有与项目集相同的支持,则项目集是封闭的(只能有较小的支持 -> 参见

APRIORI 原则)

时间	项目	
12	{A,B}	
34	{B,C,D}	
5	{A B C D}	
	{A,B,D}	
	{A B C D}	

物品集	支持
{一种}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{广告}	3
{公元前}	3
{B,D}	4
{光盘}	3

物品集	支持
{A,B,C}	2
{A,B,D}	3
{A,C,D}	2
{B,C,D}	3
{A B C D}	2

最大与封闭项集

最大与封闭频繁项集

最大与封闭项集

Figure 6.18. Relationships among frequent, maximal frequent, and closed frequent itemsets.

话题

·定义

·挖掘频繁项集(APRIORI)·简明项集表示·

查找频繁项集的替代方法·关联规则生成

·支持分布·模式评估

频繁项集生成的替代方法

·项集格的遍历 -等效类

(a) Prefix tree.

(b) Suffix tree.

频繁项集生成的替代方法

· 数据库的表示:水平与垂直数据布局

Horizontal Data Layout

TID	Items
1	a,b,e
2	b,c,d
3	c,e
4	a,c,d
5	a,b,c,d
6	a,e
7	a,b
8	a,b,c
9	a,c,d
10	b

Vertical Data Layout

а	b	С	d	е
1	1	2	2	1
4	2	3	4	3
5	5	4	5	6
6	7	8	9	
7	8	9		
8	10			
9				

Figure 6.23. Horizontal and vertical data format.

替代算法

- ·FP-增长
 - -使用数据库的压缩表示,使用 FP树
 - -一旦构建了 FP-tree,它使用递归 分治法挖掘频繁项集
- · ECLAT
 - -存储交易 ID 列表(垂直数据布局)。
 - -执行快速 tid-list 交集(按位异或)来计数 项集频率

话题

·定义

·挖掘频繁项集(APRIORI)·简明项集表示·

查找频繁项集的替代方法·关联规则生成

·支持分布·模式评估

规则生成

·给定一个频繁项集L,找出所有非空子集 X=f L和Y=L-f使得X→Y满足最小置信度要求

$$c(X \rightarrow Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

-如果 {A,B,C,D} 是频繁项集,候选规则:

$ABC \rightarrow D$,	美国→C,	$ACD \rightarrow B$,	$BCD \rightarrow A$,
A →BCD,	B→ACD,	C →ABD,	D →ABC
AB→CD,	交流→BD,	公元→公元前,	公元前→公元,
BD →交流,	$CD \rightarrow AB$		

如果 |L| = k,则有2k – 2 个候选关联规则(忽略 L → 和 → L)

规则生成

- ·如何有效地从频繁项集中生成规则?
 - -一般来说,信心没有反单调 财产

c(ABC → D) 可以大于或小于 c(AB → D)

- -但是从相同项集生成的规则的置信度 具有反单调性
- -例如,L = {A,B,C,D}:

$$c(ABC \rightarrow D)$$
 $c(AB \rightarrow CD)$ $c(A \rightarrow BCD)$

·置信度是 RHS 上的项目数量的反单调规则

Apriori 算法的规则生成

话题

·定义

·挖掘频繁项集(APRIORI) ·简明项集表示· 查找频繁项集的替代方法 ·关联规则生成

·支持分布·模式评估

支持分配的效果

·许多真实数据集的支持分布有偏差

支持分配的效果

- ·如何设置合适的minsup阈值?
 - -如果minsup设置得太高,我们可能会错过包含有趣稀有物品(例如,昂贵的产品)的项目集
 - -如果minsup设置得太低,计算量很大,并且项集的数量非常大

· 使用单一的最小支持阈值可能不是 有效的

话题

·定义

·挖掘频繁项集(APRIORI) ·简明项集表示· 查找频繁项集的替代方法 ·关联规则生成

·支持分布·模式评估

模式评估

· 关联规则算法往往会产生过多的规则。其中许多是-无趣或

-冗余

· 兴趣度测量可用于修剪/排列派生模式

·如果 $\{A,B\} \rightarrow \{D\}$ 具有相同或更高的置信度,则可以认为规则 $\{A,B,C\} \rightarrow \{D\}$ 是冗余的。

兴趣度测量的应用

计算兴趣度测量

·给定规则X → Y,计算规则兴趣度所需的信息可以从列联表中获得

X → Y的列联表

f11	f10	f1 +
f01	f00	佛+
f+1	f+0	T

f11:支持 X 和 Y

f10:支持 X 而不是 Y

f01:支持非 X 和 Y

f00:支持非 X 非 Y

用于定义各种度量

例如,支持、信心、提升、基尼, J-测量等

信心不足

	咖啡咖啡		
茶	15	5	20
茶	75	5	80
	90	10	100

关联规则:茶→咖啡

支持 = P(咖啡、茶) = 15/100 = 0.15

信心= P (咖啡|茶)= 15/20 = 0.75

但是 P (咖啡)= 90/100 = 0.9

尽管信心很高,但规则具有误导性

P(咖啡|茶) = 75/80 = 0.9375

统计独立性

· 1000 名学生- 600 名学生会游泳 (S) - 700 名学生会骑车 (B) - 450 名学生会游 泳和骑车 (S,B)

- P(S,B) = 450/1000 = 0.45 (观察到的关节概率)
- P(S) P(B) = 0.6 0.7 = 0.42 (预计独立)
- P(S,B) = P(S) P(B) => 统计独立性
- P(S,B) > P(S) P(B) => 正相关
- P(S,B) < P(S) P(B) => 负相关

基于统计的措施

·将统计相关性考虑到规则的措施: X → Y

$$= \frac{(|)}{()} = \frac{(,)}{()}$$

$$= (,,)^{-}()$$

$$\Phi = \frac{(,)^{-}()}{\sqrt{()[1-()]()[1-]()}}$$

$$\frac{(,)^{-}()}{()[1-()]()[1-]()}$$

示例:提升/利息

	咖啡咖啡		
茶	15	5	20
 茶	75	5	80
	90	10	100

关联规则:茶→咖啡

Conf(茶 → 咖啡)= P(咖啡|茶) = P(咖啡,茶)/P(茶) = .15/.2 = 0.75

但是 P(咖啡) = 0.9

提升(茶→咖啡) = P(Coffee,Tee)/(P(Coffee)P(Tee)) = .15/(.9 x .2) = 0.8333

注意: Lift < 1,因此咖啡和茶呈负相关

Machine Translated by Google			
	#	Measure	Formula
文献中提出了很多	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
措施	2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j}\max_{k}P(A_{j},B_{k})+\sum_{k}\max_{j}P(A_{j},B_{k})-\max_{j}P(A_{j})-\max_{k}P(B_{k})}}{2-\max_{j}P(A_{j})-\max_{k}P(B_{k})}$
14%0	3	Odds ratio (α)	$\frac{P(A,B)P(A,B)}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
<u> </u>	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
有些措施适用于某些应	6	Kappa (κ)	$\frac{\stackrel{\bullet}{P(A,B)} + \stackrel{\bullet}{P(\overline{A},\overline{B})} - \stackrel{\bullet}{P(A)} \stackrel{\bullet}{P(B)} - \stackrel{\bullet}{P(\overline{A})} \stackrel{\bullet}{P(\overline{B})}}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})} \\ \stackrel{\bullet}{\sum_{i} \sum_{j} P(A_{i},B_{j}) \log \frac{P(A_{i},B_{j})}{P(A_{i})P(\overline{B}_{j})}}$
用,但不适用于其他应用	7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i)P(B_j)}}{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$
	8	J-Measure (J)	$\max\Big(P(A,B)\log(\tfrac{P(B A)}{P(B)}) + P(A\overline{B})\log(\tfrac{P(\overline{B} A)}{P(\overline{B})}),$
			$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(\overline{A})})$
	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
我们应该使用什么标准			$-P(B)^2-P(\overline{B})^2,$
来确定衡量标准是好是			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
坏?			$-P(A)^2-P(\overline{A})^2$
	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
基于Apriori样式支持的	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
情况如何?	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
修剪?它如何影响这些	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
措施?	16	Piatetsky-Shapiro's (PS)	$\dot{P}(A,B) - P(A)P(B)$
	17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})}}{\frac{P(A,B)}{P(A)+P(B)-P(A,B)}} \times \frac{\frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}}{\frac{P(A,B)}{P(A)+P(B)-P(A,B)}}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

比较不同的措施

列联表的 10 个 示例: 示例f11 f10 f01 f00

E1 8123 83 424 1370

E2 8330 2 622 1046

E3 9481 94 127 298

E4 3954 3080 5 2961

E5 2886 1363 1320 4431

E6 1500 2000 500 6000

E7 4000 2000 1000 3000

E8 4000 2000 2000 2000

E9 1720 7121 5 1154

E10 61 2483 4 7452

使用各种度量的列联表排名:

支持与信心

	100				4.	-	-	_	-					_					501		
#	φ	λ	α	Q	Y	κ	M	J	G	8	c	L	V	I	IS	PS	\boldsymbol{F}	AV	S	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	3	7
																			•		

基于支持的修剪

· 大多数关联规则挖掘算法使用支持度量来修剪规则和项集

·研究支持修剪对相关性的影响 项集

- -生成 10,000 个随机列联表
- -计算每个表的支持和成对相关性
- -应用基于支持的修剪并检查删除的表

基于支持的剪枝效果

基于支持的剪枝消除了大部分负相关项集

主观兴趣度测量

· 客观度量: -基于从 数据计算的统计数据的排名模式-例如,21 种关联度量(支持、置信度、拉普拉斯、基尼、互信息、Jaccard 等)。

·主观衡量:

-根据用户的解释对模式进行排名

·如果模式与用户的期望相矛盾,那么它在主观上是有趣的 (Silberschatz 和 Tuzhilin) ·如果模式是可操作的,那么它在 主观上是有趣的 (银宝&涂之林)

意外带来的趣味

·需要对用户的期望建模(领域知识)

· 需要将用户的期望与来自数据的证据结合起来 (即提取的模式)

关联规则申请

·市场篮子分析 营销与零售。例如,频繁项集提供有关"购买此商品的其他客 户也购买了 X"的信息

- ·探索性数据分析 在非常大(=许多事务)、高维(=许多项目)数据中查找 相关性
- ·入侵检测 支持度低但提升度非常高的规则
- ·构建基于规则的分类器 类关联规则 (CAR)