Problem 1

Solution:

a. Quantitative: mpg" "cylinders" "displacement" "horsepower" "weight" "acceleration" "year"

Qualitative: "origin" "name"

b. Range of each quantitative Variables

mpg1 mpg2 cylinders1 cylinders2 displacement1 9.0 46.6 3.0 8.0 68.0 displacement2 horsepower1 horsepower2 weight1 weight2 46.0 5140.0 455.0 230.0 1613.0 acceleration1 acceleration2 year1 year2 8.0 24.8 70.0 82.0

c. Mean and Standard deviation

Variables	Mean	Standard Deviation
mpg	23.445918	7.805007
cylinders	5.471939	1.705783
displacement	194.411990	104.644004
horsepower	104.469388	38.491160
weight	2977.584184	849.402560
acceleration	15.541327	2.758864
vear	75.979592	3.683737

d.	mpg	cylinders	displacement	horsepower	weight	acceleration	year
min	11.00	3.00	68.00	46.00	1649.00	8.50	70.00
max	46.60	8.00	455.00	230.00	4997.00	24.80	82.00
mean	24.40	5.37	187.24	100.72	2935.97	15.73	77.15
sd	7.87	1.65	99.68	35.71	811.30	2.69	3.11

Showing decreasing trend which means negatively correlated.

Showing decreasing trend which means negatively correlated.

From this plot we can see a strong linear increasing trend in between these two predictors. Positively correlated.

f. Yes, year, acceleration, and origin would be good predictors of mpg.

Problem 2
Solution: Scatter plot

Problem 3

Solution:

1. < HS Grad 2. HS Grad 3. Some College 4. College Grad 5. Advanced Degree

1. Industrial	190	636	342	274	102
2. Information	78	335	308	411	324

Problem 4

Solution:

Correlation: 0.594998

After repeating 50 times

Theoretical value should be approximately 0.60.

```
R-Code
##########Problem 1############
Auto=read.csv ("Auto.csv")
fix(Auto)
Auto=read.csv ("Auto.csv", header =T,na.strings ="?")
fix(Auto)
dim(Auto)
Auto=na.omit(Auto)
dim(Auto)
names(Auto)
head(Auto)
attach(Auto)
sapply(Auto, class)
summary(Auto)
Auto$origin <- factor(Auto$origin, levels=1:3, labels=c("U.S.", "Europe", "Japan"))
sapply(Auto, class)
quantitative <- sapply(Auto, is.numeric)
quantitative
x=c("mpg"=range(mpg),"cylinders"=range(cylinders),"displacement"=range(displacement)
,"horsepower"=range(horsepower)
,"weight"=range(weight)
,"acceleration"=range(acceleration)
,"year"=range(Auto[,7]))
```

```
mpgms=c(mean=mean(mpg), standarddeviation=sd(mpg))
cylindersms=c(mean=mean(cylinders), standarddeviation=sd(cylinders))
displacementms=c(mean=mean(displacement), standarddeviation=sd(displacement))
horsepowerms=c(mean=mean(horsepower), standarddeviation=sd(horsepower))
weightms= c(mean=mean(weight), standarddeviation=sd(weight))
accelarationms=c(mean=mean(acceleration), standarddeviation=sd(acceleration))
yearms= c(mean=mean(Auto[,7]), standarddeviation=sd(Auto[,7]))
MeanandStad=c(mpgms,cylindersms,displacementms,horsepowerms,weightms,accelarationms,yearms)
MeanandStad
newmsd <- sapply(Auto[-10:-85, quantitative], function(x) round(c(range(x), mean(x), sd(x)), 2))
rownames(newmsd) <- c("min", "max", "mean", "sd")</pre>
newmsd
pairs(Auto)
plot(Auto$mpg ,Auto$displacement)
plot(Auto$mpg ,Auto$horsepower)
plot(Auto$horsepower,Auto$displacement)
```

summary(Auto)

```
##########Problem 2########
require(ISLR)
data(Wage)
  head(Wage)
 plot(Wage$age, Wage$wage)
levels(Wage$education)
gp1 = (Wage$education == "1. < HS Grad")</pre>
   points(Wage[gp1,2], Wage[gp1,11], pch = 16, col="darkgreen")
gp2 = (Wage$education == "2. HS Grad")
points(Wage[gp2,2], Wage[gp2,11], pch = 15, col="red")
gp3 = (Wage$education == "3. Some College")
points(Wage[gp3,2], Wage[gp3,11], pch = 14, col="blue")
gp4 = (Wage$education == "4. College Grad" )
points(Wage[gp4,2], Wage[gp4,11], pch = 13, col="pink")
gp5 = (Wage$education == "5. Advanced Degree")
```

points(Wage[gp5,2], Wage[gp5,11], pch = 12, col="orange")

```
mytable=table(Wage$jobclass, Wage$education)
ftable(mytable)
#####Problem 4#######
X=rnorm(100)
Y=rnorm(100)
var1= 2*X+Y
var2= 2*X-Y
corr=cor(var1,var2)
corr
#########2nd Part###
nrep=50
for(i in 1:nrep){
X=rnorm(100)
Y=rnorm(100)
var1= 2*X+Y
var2= 2*X-Y
corl[i]=cor(var1,var2)
}
plot(corl)
```

#######Problem 3#######