woco	工作指导书\	WX7.3-002	
FMEA 控制程序 FMEA Control			04-22/E
批准 Approved by		发布 Released by	过程拥有者 Process owner
			ME

1. 目的

FMEA 控制程序是在项目初期预测可能出现的缺陷,以便制定计划及早加以排除,确保产品不至失效或不将失效产品交付给顾客。

2a. 适用范围 Scope

本文件仅适用于 Woco 无锡工厂内部, 材料,设备变更后进行的生产,新产品生产及产品质量特性发生较大波动时,应进行 FMEA 控制。

2b. 涉及职能部门 Department Involved

相关部门 Dept.	地点 Lacation
工艺部	Wuxi Woco
质量部	Wuxi Woco
研发项目部	Wuxi Woco
供应链	Wuxi Woco
梅村工厂生产部	Wuxi Woco
硕放工厂生产部	Wuxi Woco

3. 职责

- 3.1 项目经理召集由销售,质量,工艺,生产,采购,维护等相关人员组成 PFMEA 多功能小组。
- 3.2 产品的 DFMEA 由沃可总部实施。
- 3.3 产品的 PFMEA 由工艺部召集多功能小组成员进行编辑。
- 3.4 工艺部负责 PFMEA 及相关评审的记录保存。

4. 工作流程

4.1 FMEA 的基本要求

- 4.1.1 过程 PFMEA 应以 DFMEA 作为输入。
- 4.1.2 过程 PFMEA 应包含产品及过程特殊特性,其中过程包括从原材料入库到完成品送货到客户,包括返工、返修、Bypass。
 - 4.1.3 过程 PFMEA 应以过程流程图作为输入。

4.1.4 过程 PFMEA 应以过去的类似品问题点为输入。

4.1.5 特殊特性的管控方式优先为 3 种, 第一优先考虑防错, 第二优先考虑 100%自动探测、报废, 第三是 SPC 加上定期的 CMK。其他的控制方式在前三种无法实现下再考虑。

4.2 分析步骤

- 4.2.1 选定分析的产品, 当以下情况时应编制或更新 PFMEA。
 - a. 新产品,新过程(PFMEA应在项目开发的 phase1 阶段启动,以后不断更新)
 - b. 产品更改, 过程更改(在更新实施前应完成)
 - C. 生产场地变更(在变更前应完成)
 - d. 发生质量问题或客户书面投诉
 - e. 安全事项
 - f. 风险降低活动
- 4.2.2 编制过程流程图,确定进行 FMEA 的过程。
- 4.2.3 潜在失效模式的预测。
- 4.2.4 进行过程 FMEA 分析, 填写过程 FMEA 分析表。
- 4.2.5 风险等级评估与降低。根据如下规则确定 AP 等级:

- 4.2.6 制定风险降低措施。
- 4.2.7 纠正后重新评估风险等级。
- 4.2.8 对纠正效果进行跟踪验证。

4.3 PFMEA 风险降低和年度评审

4.4.1 计划性的主动实施--每年一次

a.主动风险降低

多功能小组基于 PFMEA 的过程风险识别,对排序高风险项目进行评估并计划性的优先主动改进;

- b. 逆向 PFMEA 检查
- 在生产工位上评估包括 PFMEA 的所有要求都在现场进行了适当控制且措施有效:
- ▶ 文件的一致性检查, PFMEA、控制计划和作业指导书要求的一致性;
- ▶ 核对 PFMEA 的预防和探测措施都落实在生产现场且被有效实施:
- ▶ 识别工厂现场新的失效模式/潜在失效模式,如来源于快反问题、变化点、客户反馈及内部过程问题相关的内容,并更新 PFMEA;

4.4.2 被动风险降低

根据质量问题(客户关注问题、内部质量表现)评估 PFMEA,降低风险。

4.4.3 团队行动的完整记录,包含但不限于以下记录:

相关的会议纪要:

相关的评审记录;

评审发现问题跟踪解决记录;

PFMEA 文件更新记录;

问题解决报告;

相关文件的更新:

现场改善/验证, 逆向 PFMEA 检查和改善记录;

4.4 PFMEA 评分表

工作指导书 Working instruction

WX7.3-002

FMEA 控制程序

04-22/E

	过程一般评估标准严重度(S)					
S	影响	对您的工厂的影响 根	据以下标准对潜在失效影响进行评级	对最终用户的影响(在已知情况下)		
10	高	失效可能会导致从事生产或组装作业的工人面临 健康和/或安全风险	失效可能会导致从事生产或组装作业的工人面临 严重的健康和/或安全风险	影响到车辆和I或其他车辆的操作安全性,驾驶员、乘客、交通参与者或行人的健康状况。		
9		失效可能会导致厂内不符合法规	失效可能会导致厂内不符合法规	不符合法规		
8	· 较高	●生产运行100%会受到影响,产品不得不报废。	●生产线停工超过一个完整的班次; ●可能停止发货; ●要求现场返修或更换(装配线到终端用户),不符合法规除外。	在预期使用寿命内,失去正常驾驶所必需的车辆 主要功能。		
7	牧向	●产品可能需要进行分拣,其中一部分(少于 100%)会报废; ●主要过程有偏差; ●生产过程速度降低或增加劳动力;	●生产线停工从1小时起到一个完整的班次; ●可能停止发货; ●需要使用现场返修或更换(装配线到终端用 户),并且不符合法规。	在预期使用寿命内,降低正常驾驶所必需的车辆 主要功能。		
6		100%的产品可能需要线下返工后才能被接受	生产线停工超过一个小时	失去车辆次要功能		
5	较低	部分产品可能需要线下返工后才能被接受	●少于100%的受到影响; ●极有可能出现额外的缺陷产品; ●需要分拣; ●生产线没有停工	降低车辆次要功能		
4		100%的产品可能需要在工位上返工后才能继续加工	●缺陷产品会触发重大应对计划的启动;可能不会 出现额外的瑕疵产品; ●不需要分拣	外观、声音、振动、粗糙度或触感令人感觉非常 不舒服。		
3	低		部分产品可能需要在工位上返工后才能继续加工	●缺陷产品会触发次要应对计划的启动; ●可能不会出现额外的缺陷产品; ●不需要分拣	外观、声音、振动、粗糙度或触感令人感觉一般 性的不舒服。	
2		会导致过程、操作或操作人员的不方便	●缺陷产品不会触发应对计划的启动; ●可能不会出现额外的缺陷产品; ●不需要分拣; ●需要向供应商提供反馈	外观、声音、振动、粗糙度或触感令人感觉略微 感觉不舒服。		
1	非常低	没有可觉察到的影响。	没有可觉察到的影响或没有影响。	没有可觉察到的影响。		

工作指导书 Working instruction

WX7.3-002

FMEA 控制程序

04-22/E

过程的潜在频度(0)

根据以下标准对潜在失效起因进行的评级。在确定最佳预估频度时应考虑预防控制。频度是在评估时进行的预估定性评级,可能不能反映真实的频度。频度评级得分是在FMEA (正在评估 的过程)范围内进行的相对评级数值。针对多个频度评级中的预防控制而言,可以使用最能反映控制有效性的评级。

О	对失效起因发生的 预测	控制类型	每干件产品/车辆的故障率 (备选)	基于时间的失效起因预测 (备选)	预防类型	
10	极高	无	≥干分之一百 ≥十分之一 (10%)	每次	没有预防控制。	
9	非常高	行为控制	千分之五十 二十分之一 (5%)	几乎每次	预防控制在防止失效起因出现的方面起到的作用很小。	
8	*************************************	13万分元申3	千分之二十 五十分之一 (2%)	每班超过一次] 则则还物任则正大XX起区伍现的分面,趁到的F开放外。	
7	高		干分之十 百分之一 (1%)	每日超过一次	预防控制在防止失效起因出现的方面可以起到一定的作	
6	同	行为或技术控制	干分之二 五百分之一 (2‰)	每周超过一次	用。	
5	ф	行为蚁权不控制	千分之0.5 二千分之一 (500PPM)	每月超过一次	预防控制在防止失效起因出现的方面可以起到有效的作	
4			干分之0.1 万分之一 (100PPM)	每年超过一次	用。	
3	低	最佳实践:	干分之0.01 十万分之一 (10PPM)	每年一次	预防控制在防止失效起因出现的方面可以起到高度有效	
2	非常低	行为或技术控制	干分之0.001 百万分之一 (1PPM)	每年少于一次	的作用。	
1	极低	技术控制	通过预防控制避免失效	从未发生	预防控制在预防失效起因设计(例如:零件形状)或过程(如夹具或模具设计)而发生的失效起因方面极其有效。 预防控制的目的 - 失效模式不会因失效起因而实际发生。	

行为措施(依靠持有证书或未持有证书的操作人员、技术工人、团队领导等)---使用合格的人员;技术措施(依靠机械设备、工具寿命、工具材料等)---过程设计,硬件保障,防错装置;

应用最佳实践(夹具、工装设计、校准程序、防错验证、预防性维护、作业指导书、统计流程控制表、过程监视、产品设计等)---过程控制;

注: 频度可根据产品确认活动降低。

用干	用于过程设计验证的潜在探测度(D)					
	根据检测方法成熟度和探测机会对探测控制进行评级。					
D	探测能力	探测方法成熟度	成熟度 探测机会		探测方法说明	
10	-非常低	尚未建立或有已知的测试或检验方法。	不能或无法探测到失效模式。	不可能发现	不能探测或没有检 查	
9	WITH	测试或检验方法不太可能探测到失效模式。	通过任意或不定时的审核很难探测到失效模式。	抽样检验	只能通过间接或随 机检查来实现控制	
8			可以探测失效模式或失效起因的人工检验(视觉、触觉、听觉)方法,或使用人工检验(计数型或计量型)方式。	人工探测,不一定能 发现	目测检查	
7	低		以设备为基础的检验方式(采用光学、蜂鸣器等装置的自动化或半自动化方式),或使用可以 探测 失效模式或失效起因的检验设备,例如坐标测械机。	设备辅助探测, 不一定能报警	双重目测检查	
6		测试或检验方法已经经过证实为有效和可靠(例如,工厂在测试或检验方法已经经过证实为有效和可靠(例	可以 检验 失效模式或失效起因(包括产品样本检验)的人工检验(视觉、触觉、听觉)方法,或使用人工测量(计数型或计量型)方式。	人工检验,不一定能 隔离	控制图的方法,如 SPC控制	
5	中		以设备为基础的检验方式(采用光学、蜂鸣器等装置的半自动化方式),或使用可以探测失效模式或失效起因(包括产品样本检验)的检验设备,例如坐标测械机。	设备辅助探测,自动报警	离开工位后的 100%检查	
4		7/4/17-19-14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	以设备为基础的 自动化探测 方法,其可以在 下游 探测到失效模式,进而避免进一步加工、或系统可以识别差异产品并允许其在过程中自动前进,直至到达指定的不合格品卸载区。差异产品将在一个有效的系统内受到监视,避免这些产品从工厂内流出。	后工序自动探测到不 合格结果,并自动有 效隔离 (后工序不接受)	后工序检查或在作 业准备时或首件检 验	
3	古同	备经验),测量可重复性和再现性结果可以接受 等。	以设备为基础的自动化探测方法,其可以在 工位上 探测到失效模式,进 而避免进一步加工、或系统可以识别差异产品并允许其在过程中自动前 进,直至到达指定的不合格品卸载区。差异产品将在一个有效的系统内 受到监视,避免这些产品从工厂内流出。	本工序自动探测到不 合格结果,并自动有 效隔离 (本工序不传递)	本工位探测或后续 多工位验收/探测	
2		探测方法已经经过证实为有效或可靠 (例如工厂 在探测方法、防错确认措施方面具备经验等)。	以设备为基础的探测方法,其可以探测失效起因并避免出现失效模式 (差异零件)。	本工序自动探测失效 起因并 本工序不制造	本工位自动检测并 自动剔除	
1	非常高	根据设计或加工过程而不会实际出现失效模式,或者探测方法经过实践验证总是能够探测到失效模式或失效起因。 不可能发生 本工位防错			本工位防错	

woco	工作指导书 Working instruction	
FMEA 控制程序		04-22/E

5. 相关文件 Accompanying documents (only if no process flow is described)

文件类型 Doc type	编号 Number (without Index)	标题 Title
Form	F7.300201	PFMEA 分析表
Form	F7.300202	PFMEA 评审计划
Form	F7.300203	PFMEA 评审记录

6. 修订(版本变更)

版本	日期	部门	姓名	原因
А	05-2016	QM	Zhou wuxiong	初建
В	02-2019	PR	Wilson zou	完善打分机制和评审机制
С	04-2020	QA	Jiang ting	新增风险降低和年度评审
D	09-2020	QA	Jiang ting	更新打分规则(依据第五版 PFMEA)
E	04-2022	ME	Zhou Wuxiong	更新探测方法的说明