

## **List of Errata**

## Handbook of Integral Equations, CRC Press, 1998 by A. D. Polyanin and A. V. Manzhirov

Page 42: Equation 2:

**Was:** ... $f(a) = f'_x(a) = f_{xx}(x) = 0$ .

**Correct:** ... $f(a) = f'_{x}(a) = f_{xx}(a) = 0$ .

Page 217: Equation 2, the solution in Item  $2^{\circ}$ :

Was:

$$y(x) = \frac{1}{\pi^2 \sqrt{(x-a)(b-x)}} \left[ \dots + \frac{1}{\pi \ln\left[\frac{1}{4}(b-a)\right]} \dots\right]$$

**Correct:** 

$$y(x) = \frac{1}{\pi^2 \sqrt{(x-a)(b-x)}} \left[ \dots + \frac{1}{\ln\left[\frac{1}{4}(b-a)\right]} \dots\right]$$

Page 428: Line 2:

**Was:** ... if f(x) is measurable and

**Correct:** ... if f(x, t) is measurable and

Page 465: Fig. 2, formula in the third box from top:

Was:  $\widetilde{y}(p) = \frac{\widetilde{f}(p)}{1 - \widetilde{K}(p)} \equiv \widetilde{f}(p) - \frac{\widetilde{K}(p)}{1 - \widetilde{K}(p)} \widetilde{f}(p)$ 

Correct:  $\widetilde{y}(p) = \frac{\widetilde{f}(p)}{1 - \widetilde{K}(p)} \equiv \widetilde{f}(p) + \frac{\widetilde{K}(p)}{1 - \widetilde{K}(p)} \widetilde{f}(p)$ 

Table 5, row 5, column 2: Page 477:

Was:  $Ax^nx^{\lambda}$ 

Correct:  $Ax^{\lambda} \ln^{n} x$ 

Page 733:

Section 6.2, row 4 in the table, column 3: Was:  $\frac{\pi}{2a}e^{-au}$  (the integral is understood in the sense of Cauchy principal value)

Correct:  $\frac{\pi}{2a}e^{-au}$ 

Section 6.2, row 5 in the table, column 3: Page 733:

Was:  $\frac{\pi \sin(au)}{}$ 

Correct:  $\frac{\pi \sin(au)}{2u}$  (the integral is understood in the sense of Cauchy principal value)

Page 761: Last line:

**Was:** . . . ( $| \arg |z < \pi)$ .

**Correct:** . . . ( $|\arg z| < \pi$ ).

Page 762: Formula on the third line from top:

Was:

$$\psi(z) = \frac{\ln \Gamma(z)}{dz} = \frac{\Gamma'_z(z)}{\Gamma(z)}.$$

**Correct:** 

$$\psi(z) = \frac{d \ln \Gamma(z)}{dz} = \frac{\Gamma'_z(z)}{\Gamma(z)}.$$

Page 762: line 14

**Was:** where  $C = -\psi(1) = 0.5572...$  is the Euler constant. **Correct:** where  $C = -\psi(1) = 0.5772...$  is the Euler constant.

Remark. A similar misprint also appears at some other places of the book.

Page 763: Section 10.5, Last displayed formula:

Was:

$$B_x(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt,$$

**Correct:** 

$$B_x(p,q) = \int_0^x t^{p-1} (1-t)^{q-1} dt,$$

Page 763: Line right before Section 10.6:

**Was:** where Re x > 0 and Re y > 0. **Correct:** where Re p > 0 and Re q > 0.