Classification Metrics

Business Case : Spam vs Not Spam

You are working in Google & your Task is : to create an email spam detection model

Here,

Not spam ⇒ Class 0 (Negative class) Spam ⇒ Class 1 (Positive class)

Is model accuracy of 93% a good one?

Assume, we have

Dumb model ⇒ predicts every mail as not spam

Imbalanced Data

Seems good

Let's increase the not spam data to 1100

Dumb Model Accuracy = 1100/1200 x 100 = 91.67%

Observe:

- ⇒ As number of not spam samples increase, bad model accuracy also increases.
- ⇒ But, model is not able to classify spam emails

Issue with Accuracy as metric

- When data is imbalanced ⇒ Accuracy is bad metric
- 2. Fails to capture class wise (granular) performance.

Failing to classify spam data

Points to remember

Accuracy is bad metric for imbalance data

How to overcome the issues of accuracy?

Need: Metric which measures number of data points being

- 1. Correctly predicted in each class
- 2. Incorrectly predicted in each class

Count of data points where:

1 ⇒
$$y = 0$$
 & $\hat{y} = 0$
2 ⇒ $y = 0$ & $\hat{y} = 1$
3 ⇒ $y = 1$ & $\hat{y} = 0$
4 ⇒ $y = 1$ & $\hat{y} = 1$

Terminologies:

==> create 2 x 2 matrix s.t.

Count of data points where:

True Neg (TN)
$$\Rightarrow$$
 $y = 0 \& \hat{y} = 0$

False Positive (FP) \Rightarrow $y = 0 \& \hat{y} = 1$

False Negative (FN) \Rightarrow $y = 1 \& \hat{y} = 0$

True Positive (TP) \Rightarrow $y = 1 \& \hat{y} = 1$

Hacks to remember TP, TN, FP, FN

Confusion matrix for Multi-class

2 x 2 matrix ⇒ confusion matrix for 2 classes

confusion matrix for K classes? ⇒ k x k matrix

Confusion matrix for Dumb model Given: Dumb Model , Test Data 400 data points 40 span

Observe:

- ⇒ Both TP and FP = 0 for dumb model
- ⇒ correctly classified 360 samples as not spam (TN = 360)
- ⇒ incorrectly classified 40 spam as not-spam (FN = 40)

Confusion matrix for ideal model

Given: Test Data
400 data points
360 not 40 spam

Observe:

- ⇒ ideal model will correctly classify each datapoint (TN = 360, TP = 40)
- ⇒ FP is also called as Type 1 error
- ⇒ FN is also called as Type 2 error
- ⇒ FP = FN = 0 i.e there are no errors / misclassification

How to find accuracy using confusion matrix ??

Given: confusion matrix i.e TN, FN, FP, TP

To find: Accuracy

Accuracy = Correct predictions / total samples

$$= TP + TN / (TP + TN + FP + FN)$$

Points to remember

⇒ Accuracy is bad metric for imbalance data

⇒ Confusion matrix:

Confusion matrix still doesn't solve the issues of accuracy

- ⇒ Consider 2 scenarios
 - 1. Receiving a spam email in inbox
- 2. Missing out an offer letter email (by categorizing it as spam)

Which amongst the two scenarios is more hazardous?

⇒ 2nd case (having offer letter in spam)

FP or FN: Having an offer letter email categorised as spam

Actual : not spam (class 0) \longmapsto False Positive (FP)

Predicted: spam (class 1)

Conclusion: FP is dangerous

Need: Minimize FP

Metric Needed : FP decreases , TP increases

Need: Metric which measures FP & TP

Metric: # times model correctly predicted class 1 / # times model predicted class 1

Metric

Intuitively,

- It tells how precise model is to detect spam mail

Precision for dumb model

Confusion matrix =

Precision = TP / (TP + FP)
= 0 / (0 + 0) Moth error
(undefined)
= 0 / (0 + 0 +
$$10^{-6}$$
) = 0
Add small value

Precision for ideal model

Confusion matrix =

Note: Range of precision [0, 1]

Points to remember

- ⇒ Accuracy is bad metric for imbalance data
- ⇒ Confusion matrix:

- ⇒ FP Type 1 error , FN Type 2 error
- ⇒ Precision = TP / (TP + FP)
- ⇒ Precision minimizes FP

Case: Screening Test to identify Cancer/Non - Cancer patients

Model : Classify Cancer and Non - Cancer patients

Class 1 - Cancer

Class 0 - Non Cancer

2 scenarios:

- A healthy patient is considered as cancerous.
- 2. A cancer patient is considered healthy

Which among the two is more dangerous?

⇒ 2nd case :

Cancer patient declared as healthy ⇒ dangerous (life / death scenarios)

Non- Cancer patient declared as cancer ⇒ can be rectified as procedure proceeds

FP or FN : Cancer patient declared as healthy?

Actual: Cancer (Class 1)

Predicted: Healthy (Class 0)

⇒ FN

Need: Metric which minimizes FN decreases and increase TP

Metric: # times model correctly predicted class 1 / total number of samples belonging to class 1 (cancer class)

Metric:

$$TP/(TP+FN) \Rightarrow RECALL$$

Out of all the positive class data, how many are correctly predicted by model

Recall for dumb model

Recall for ideal model

Note: Range of recall \Rightarrow [0,1]

Hack to remember Precision and Recall

Precision =

Correctly predicted class 1 / total samples predicted as class 1

TP / (TP + FP)

Recall =

Correctly predicted class 1 / total samples actual class 1

Hack to remember Precision and Recall

Precision = TP / (TP + FP)

To remember denominator:

Recall = TP / (TP + FN)

Points to remember

- ⇒ Accuracy is bad metric for imbalance data
- ⇒ Confusion matrix:

- ⇒ FP Type 1 error, FN Type 2 error
- ⇒ Precision = TP / (TP + FP)
- ⇒ Precision minimizes FP
- ⇒ Recall = TP / TP + FN
- ⇒ Recall minimizes FN

Task : Classify credit card transaction : fraud or legitimate

2 scenarios

- Predicting a transaction as legit when it is actually fraud ⇒ FN
 (can lead to financial loss)
- 2. Predicting transactions as fraud when it is legit ⇒ FP (can lead to inconvenience to cardholder)

Here, both FP and FN are important

We train 3 different models s.t.

Results:

	Precision	Recall	
M1	0.30	0.80	
M2	0.20	0.90	
M3	0.70	0.40	

Which model among M1, M2 and M3 is the best?

Which model among M1, M2 and M3 is the best?

- ⇒ Based on precision⇒ M3 is the best model
- ⇒ Based on recall⇒ M2 is the best model

Which one to choose??

i NEED : a way to combine precision and recall

Will simple average (arithmetic mean) work?

	Precision	Recall	Avg (pr + re / 2)
M1	0.30	0.80	0.55
M2	0.20	0.90	0.55
МЗ	0.70	0.40	0.55

Will Harmonic mean work?

HM of (Precision, Recall) =
$$\frac{2}{\frac{1}{\rho r. + 1}} = \frac{2 \rho r. re.}{\rho r. + re.}$$

Note:

——— This HM of precision and recall is called F1 score

Best model

F1 Score of bad model

For bad model,

F1 score for ideal model

For ideal model,

Conclusion : Range of F1 \Rightarrow [0, 1]

Points to remember

- ⇒ Accuracy is bad metric for imbalance data
- ⇒ Confusion matrix:

- ⇒ FP Type 1 error , FN Type 2 error
- ⇒ Precision = TP / (TP + FP)
- ⇒ Precision minimizes FP
- \Rightarrow Recall = TP / TP + FN
- ⇒ Recall minimizes FN

Points to remember

⇒ F1 Score combines precision and recall

Precision + recall

