Специальные разделы криптологии

Савчук М.Н.

5 апреля 2015 г.

Глава 1

Алгоритм Шора для факторизации

1.1 Введение

Есть число N

$$N = a \cdot b, \qquad a \neq b$$

Задача факторизации: для числа $N=p_1^{\alpha_1}\cdots p_t^{\alpha_t}$

- либо получить каноническую форму
- либо получить нетривиальный делитель

Число $a \in \mathbb{Z}_N$ принадлежит показателю δ , если δ — минимальное число, для которого $a^{\delta} \equiv 1 \mod n$. Обозначаем $\delta_N(a)$.

Показатель существует только если a и N взаимно просты $(a \in \mathbb{Z}_N)$ и по сути является порядком a в группе $\mathbb{Z}_N : \delta_n(a) = ord_N(a)$. Если $gcd(a, N) \neq 1$, то мы нашли нетривиальный делитель.

Допустим, что для заданного $a \in \mathbb{Z}_N$ у нас есть оракул O_f , который возвращает показатель числа. Если этот оракул полиномиален, то можно факторизовать число (вероятностно)

Пусть
$$r$$
 — чётное и $gcd\left(a^{r/2}+1,N\right)=1$, где $O_{f}\left(a\right)=r$

$$a^r \ge 1 \mod N$$

$$\left(a^{r/2} - 1\right) \cdot \left(a^{r/2} + 1\right) \equiv 0 \mod N$$

Но $a^{r/2} \neq 1 \mod N$, потому что иначе r — не минимальное число (нарушение определения показателя). Значит, $\left(a^{r/2}-1\right)$ и N имеет нетривиальный общий делитель.

Важно: условие $\gcd\left(a^{r/2}+1,N\right)=1$ можно заменить на условие $a^{r/2}+1 \nmid N.$

Утверждение 1.1.1. Пусть $N=p_1^{\alpha_1}\cdots p_t^{\alpha_t}$ u

$$S = \left\{ a \in \mathbb{Z}_N : ord\left(a\right) mod2 = 0 \lor a^{ord\left(a\right)/2} + 1 \nmid N \right\}$$

$$|S| \le \frac{\varphi\left(N\right)}{2^k}$$

То есть, подходящих нам a очень мало.

1.2 Алгоритм факторизации с оракулом

1. Генерируем такое a, чтобы при $r = O_f\left(a\right)$ выполняюсь

$$r = 2 \cdot r_1, a^{r_{\alpha}} + 1 \nmid N$$

2. $gcd(a^{r_1}-1,N)$ — нетривиальный делитель.

Утверждение 1.2.1. В классической модели найти оракул O_f не получилось. Шору удалось построить его в квантовой модели.

Рассмотрим функцию $f: \mathbb{Z}_N \to \mathbb{Z}_N$

$$f(x) = a^x \mod N$$

Это почти непериодическая функция — её период не кратен N.

1.3 Квантовая система

У нас есть $|0\rangle$, $|1\rangle$; кубит находится в суперпозиции состояний $\alpha_1 \cdot |0\rangle + \alpha_2 |1\rangle$, над которыми можно выполнять унитарные операции в пространстве Гильберта $C \cdot \mathbb{Z}_2$.

Коэффициенты α_1, α_2 :

- $\alpha_1, \alpha_2 \in \mathbb{C}$,
- $|\alpha_1|^2 + |\alpha_2|^2 = 1$,
- $|\alpha_1|^2$ вероятность попасть в $|0\rangle$,
- $|\alpha_2|^2$ вероятность попасть в $|1\rangle$.

Рис. 1.1: Состояние кубита

К кубитам можно применять преобразование Уолша-Адамара

$$W(|0\rangle) = \frac{1}{\sqrt{2}} \cdot (|0\rangle + |1\rangle)$$

$$W\left(|1\rangle\right) = \frac{1}{\sqrt{2}} \cdot (|0\rangle - |1\rangle)$$

Рис. 1.2: Алгоритм Шора

Набор кубитов — одна из возможных интерпретаций квантово-механической системы. Другой вариант — N-уровневая система, в которое есть N состояний $|0\rangle, |1\rangle, \ldots, |N-1\rangle$, и эти состояния ортонормированы (то есть, при измерении выпадают только эти состояния и ничего среднего между ними).

Обозначения на рис. 1.2:

- ψ_i состояние системы,
- W_N преобразование Уолша (или преобразование Фурье),
- U_f стандартный оракул (базисный в квантовой модели),
- Q_N преобразование Фурье,
- стрелочка измерение.

Что происходит?

1.

$$|\psi_0\rangle = |0\rangle |0\rangle$$

2.

$$|\psi_1\rangle = W_N(|0\rangle) \otimes |0\rangle$$

Свойство: $W_N\left(|0\rangle\right)$ даёт равномерную суперпозицию (что Уолш, что Фурье), то есть

$$W_N\left(|0\rangle\right) = \frac{1}{\sqrt{N}} \cdot \left(|0\rangle + |1\rangle + \dots + |N-1\rangle\right)$$

3. Суперпозиция всех значений функции $f(x) = a^x \mod N$

$$|\psi_2\rangle = \frac{1}{\sqrt{N}} \cdot \left(|0\rangle \cdot \left|a^0 \mod N\right\rangle + |1\rangle \cdot \left|a^1 \mod N\right\rangle + \dots + |N-1\rangle \cdot \left|a^{N-1}\right\rangle \mod N\right)$$

4. Мы измерили второй регистр – там второй кубит принял некоторое значение $|y_0\rangle$

$$|\psi_0\rangle = \frac{1}{\sqrt{k}} \cdot (|x_0\rangle + |x_0 + r\rangle + \dots + |x_0 + (k-1) \cdot r\rangle) \cdot |y_0\rangle,$$

где $|x_0\rangle$ — все состояния $|x\rangle$, для которых $f\left(x\right)=y_0,\,k=\lfloor\frac{N}{r}\rfloor.$

5. Преобразование Фурье

$$Q_N(|k\rangle) = \frac{1}{\sqrt{N}} \cdot \sum_t \exp \frac{2 \cdot \pi \cdot i}{N} \cdot k \cdot t \cdot |t\rangle$$

Применяя его к первому регистру, получаем

$$|\psi_4\rangle = \sum_{S} c(S) \cdot |S\rangle \cdot |y_0\rangle,$$

где

$$c\left(S\right) = \begin{cases} \frac{\sqrt{N}}{r} &, S \equiv 0 \mod \frac{N}{r}, \\ 0 &, S \neq 0 \mod \frac{N}{r}. \end{cases}$$

Таким образом это будет или 0, или равномерная суперпозиция.

6. Измеряем первый регистр — можем получить тоьлко те S, у которых $c\left(S\right)\neq 0$, т.е. состояния вида $\left|\beta\cdot\frac{N}{r}\right>$, где β — неизвестная константа.

Таким образом мы знаем какое-то число S такое, что

$$S = \beta \cdot \frac{N}{r}.$$

Если $gcd\left(S,N\right)=1$ и $N\mid r,$ то всё, но у нас $N\nmid r!$ Поэтому на самом деле

$$\frac{S}{N} = \frac{\beta}{r},$$

и мы строим рациональные приближения при помощи цепных дробей. Итоговая сложность алгоритма Шора — $O\left(\log^3 N\right)$.

Оглавление

1	Алгоритм Шора для факторизации				
	1.1	Введение	3		
	1.2	Алгоритм факторизации с оракулом	4		
	1.3	Квантовая система	4		