Kryptografia z elementami algebry

Laboratorium 2, arytmetyka krzywej eliptycznej miniprojekt nr 2

1. Zaimplementuj algorytm (funkcję), która generuje losową krzywą eliptyczną nad \mathbb{F}_p . **Dane:** $p = 3 \pmod{4}$ duża liczba pierwsza (ok. 300 bitów)

Wynik: $A, B \in \mathbb{F}_p$ takie, że $E: Y^2 = X^3 + AX + B$ jest krzywą nad \mathbb{F}_p

2. Zaimplementuj algorytm (funkcję), który znajduje losowy punkt na krzywej eliptycznej nad \mathbb{F}_p .

Dane: $A, B, p = 3 \pmod{4}$ takie, że $E: Y^2 = X^3 + AX + B$ jest krzywą nad \mathbb{F}_p **Wynik:** $P = (x, y) \in E(\mathbb{F}_p)$

- 3. Zaimplementuj algorytm (funkcję), który oblicza punkt przeciwny do danego punktu. **Dane:** $P = (x, y) \in E(\mathbb{F}_p)$ **Wynik:** $-P = (x, -y) \in E(\mathbb{F}_p)$
- 4. Zaimplementuj algorytm (funkcję), która oblicza $P\oplus Q$ sumę punktów krzywej eliptycznych. Zaimplementuj wszystkie przypadki.

Dane: $P = (x_1, y_1), Q = (x_2, y_2) \in E(\mathbb{F}_p)$

Wynik: $R = (x_3, y_3) \in E(\mathbb{F}_p)$ taki, że $R = P \oplus Q$.

5. Zaimplementuj algorytm (funkcję), który oblicza n-tą wielokrotność punktu P.

Dane: $n \in N, P \in E(\mathbb{F}_p)$

Wynik: $Q \in E(\mathbb{F}_p)$ taki, że Q = nP.