AIDA-T

Agrobotic Intelligent Data Analyzer for Tomatoes

Автономная робототехническая система интеллектуального мониторинга и диагностики томатов в промышленных теплицах

> Робот в теплице с томатами

Проблема и актуальность

Ключевые проблемы тепличного производства:

- \times **Трудозатратный контроль:** Агрономы тратят до 8-12 часов на обход 1 га теплиц
- Позднее выявление болезней: Потери урожая до 30% при несвоевременной диагностике
- Дефицит экспертов: Нехватка квалифицированных агрономов и фитопатологов
- × **Субъективность оценки:** Человеческий фактор при визуальном контроле

Масштаб проблемы:

- 150+ крупных тепличных комплексов в России
- Рынок защищенного грунта: 280 млрд (2024)
- Рост рынка роботизации АПК: +25-30% в год

Предлагаемое решение

AIDA-T — комплексное решение для теплиц

Ключевые возможности:

- Круглосуточный мониторинг без участия человека
- Автономная навигация по гибридной системе: бетон + рельсы
- ИИ-диагностика заболеваний с точностью 86-87%
- Оценка урожайности в реальном времени
- Высокая точность позиционирования $\pm 1,5$ мм на пиксель

Ожидаемый эффект:

- Снижение трудозатрат на 70%
- Повышение урожайности на 15-20%
- Окупаемость за 2,5-3 года

Робот AIDA-T

Архитектура системы AIDA-T

Программно-аппаратный комплекс

- 1. Гибридная ходовая система:
 - Меканум-колеса для бетонных дорожек
 - Рельсовые колеса для движения между рядами
 - Активная амортизация для стабилизации
- 2. Система технического зрения:
 - Регулируемая камерная мачта 0,1-3,0 м
 - Промышленные Ethernet-камеры
 - Многоракурсное сканирование
- 3. ИИ-алгоритмы:
 - CNN для диагностики заболеваний
 - RANSAC + PointNet для оценки объема
 - Автономная навигация на ROS2

Ключевые инновации проекта

Технические прорывы AIDA-T:

1. Уникальная мобильность

- Первая в мире гибридная ходовая система для теплиц
- Автономный переход между типами поверхностей

2. Сверхточное позиционирование

- Активная амортизация с компенсацией вибраций
- ullet Точность $\pm 1,5$ мм против $\pm 5-10$ мм у аналогов

3. Продвинутый ИИ

- Параллельные алгоритмы оценки урожайности
- Специализированная CNN для теплиц

4. Полная автономность

- 12+ часов непрерывной работы
- Самодиагностика и восстановление

Научно-технический задел

Имеющийся задел:

Экспериментальный:

- Датасет 15,000 изображений томатов
- CNN с точностью 83% на лабораторных образцах
- Макет меканум-платформы до 100 кг
- Алгоритмы RANSAC/PointNet с ошибкой 12%

Технический:

- 3D-модель прототипа + симуляция
- Модульная архитектура на ROS2
- Пользовательский интерфейс

Планы по защите ИС:

- 2 заявки на полезные модели
- Регистрация программы для ЭВМ
- Патент на способ оценки объема плодов

Сравнение с конкурентами

Параметр	AIDA-T	Bosch	Iron Ox	Агроробот
Точность диагностики	86-87%	75-80%	70-75%	65-70%
Ошибка оценки объема	15%	15-20%	12-15%	н/д
Точность позицион-я	±1.5 мм	±5 мм	±3 мм	±10 мм
Ходовая система	Гибридная	Колесная	Рельсовая	Стационар
Автономность	12+ ч	4-6 ч	6-8 ч	н/д
Страна	Россия	Германия	США	Россия
Стоимость	15-20 млн	\$150-200k	\$120-180k	1.5-2 млн

Конкурентные преимущества:

- Полное импортозамещение
- Лучшие технические характеристики
- Конкурентная цена

Рынок и потребители

Объем и динамика рынка:

Рынок роботизации АПК России:

• 2024: 15 млрд

• Рост: +25-30% в год

• 2030: 65-75 млрд

Доступный рынок для AIDA-T:

• 2025: 2,1 млрд

• 2030: 4,8 млрд

Целевая доля: 3-5%

Целевые потребители:

- Первичный: Крупные тепличные комбинаты (150 предприятий)
- **Вторичный:** Средние тепличные хозяйства (300 предприятий)
- Перспективный: НИИ и вузы (250 организаций)

Бизнес-модель и коммерциализация

Модель монетизации:

Структура доходов:

- **70%** Продажа оборудования (15-20 млн /система)
- **25%** Сервисное обслуживание (1,2-1,6 млн /год)
- 5% Дополнительные услуги (обучение, консалтинг)

Прогноз продаж:

- 2026: 3 системы = 53 млн
- 2028: 15 систем = 263 млн
- 2030: 40 систем = 700 млн

Стратегия выхода на рынок:

- 2025-2026: Пилоты с топ-агрохолдингами
- 2026-2028: Масштабирование, дилерская сеть
- 2028-2030: Экспорт в СНГ и Азию

Команда проекта

Основная команда:

Давиденко Сергей Александрович

- Роль: Руководитель проекта
- Аспирант Сколтеха, Chief Robotics Engineer в Сбербанк
- Победитель УМНИК-2021, 10+ лет в робототехнике

Осиненко Павел Валерьевич

- Роль: Научный руководитель
- Доктор техн. наук, доцент Сколтеха
- Хабилитация TU Chemnitz (2025)
- 50+ публикаций, 7 проектов (1,8 млн €)

Рякин Илья Сергеевич

- Роль: CV разработчик
- 6 лет опыта в компьютерном зрении

Планируемые специалисты:

- Hardware инженер
- ML-исследователь

Опыт команды:

- Успешная реализация проекта УМНИК-2021
- Модернизация платформы Cobot Magic
- Публикации в IEEE, IROS
- 15+ лет опыта в робототехнике

Партнеры:

- Тепличные комплексы для испытаний
- Письма заинтересованности от 3 агрохолдингов

Спасибо за внимание!

Вопросы?

sergei.davidenko@skoltech.ru +7 918 544 81 41