

AP2120

General Description

The AP2120 series are positive voltage regulator ICs fabricated by CMOS process. Each of these ICs consists of a voltage reference, an error amplifier, a resistor network for setting output voltage, a current limit circuit for current protection.

The AP2120 series feature high supply voltage ripple rejection, low dropout voltage, low noise, high output voltage accuracy, and low current consumption which make them ideal for use in various battery-powered devices.

The AP2120 series have 1.2V, 1.3V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.2V, 3.3V, 3.6V, 4.0V and 5.0V versions.

The AP2120 are available in standard SOT-23, SOT-89 and TO-92 packages.

Features

- Low Dropout Voltage at I_{OUT}=100mA: 200mV
 Typical (Except 1.2V, 1.3V and 1.5V Versions)
- Low Quiescent Current: 25μA Typical
- High Ripple Rejection: 65dB Typical (f=1kHz)
- Output Current: More Than 150mA (250mA Limit)
- Extremely Low Noise: 15μVrms@V_{OUT}=1.2V, 1.3V, 1.5V (10Hz to 100kHz)
- Excellent Line Regulation: 4mV Typical
- Excellent Load Regulation: 12mV Typical
- High Output Voltage Accuracy: ±2%
- Excellent Line Transient Response and Load Transient Response
- Compatible with Low ESR Ceramic Capacitor (as Low as 1µF)

Applications

- Mobile Phones, Cordless Phones
- Wireless Communication Equipment
- Portable Games
- Cameras, Video Recorders
- Sub-board Power Supplies for Telecom Equipment
- Battery Powered Equipment

Figure 1. Package Types of AP2120

Pin Configuration

Figure 2. Pin Configuration of AP2120 (Top View)

Pin Description

	Pin Number				
SOT-23 (N)	SOT-23 (NA)	SOT-89/ TO-92	Pin Name	Function	
1	3	1	GND	Ground	
2	2	3	V _{OUT}	Regulated Output Voltage	
3	1	2	V _{IN}	Input Voltage	

Mar. 2013 Rev. 1. 4

Functional Block Diagram

Figure 3. Functional Block Diagram of AP2120

Ordering Information

Package	Temperature Range	Output Voltage	Part Number	Marking ID	Packing Type
		1.2V(N)	AP2120N-1.2TRG1	GR4	Tape & Reel
		1.3V(N)	AP2120N-1.3TRG1	GR5	Tape & Reel
		1.5V(N)	AP2120N-1.5TRG1	GR6	Tape & Reel
		1.8V(N)	AP2120N-1.8TRG1	GR7	Tape & Reel
		2.5V(N)	AP2120N-2.5TRG1	GR8	Tape & Reel
SOT-23	40 . 0500	2.8V(N)	AP2120N-2.8TRG1	GR9	Tape & Reel
801-23	-40 to 85°C	3.0V(N)	AP2120N-3.0TRG1	GS2	Tape & Reel
		3.2V(N)	AP2120N-3.2TRG1	GS3	Tape & Reel
		3.3V(N)	AP2120N-3.3TRG1	GS4	Tape & Reel
		3.6V(N)	AP2120N-3.6TRG1	GZ8	Tape & Reel
		4.0V(N)	AP2120N-4.0TRG1	GZ9	Tape & Reel
		5.0V(N)	AP2120N-5.0TRG1	GS5	Tape & Reel
		3.3V(NA)	AP2120NA-3.3TRG1	GZ1	Tape & Reel
SOT-23	-40 to 85°C	3.6V(NA)	AP2120NA-3.6TRG1	GAA	Tape & Reel
		4.0V(NA)	AP2120NA-4.0TRG1	GBA	Tape & Reel
		1.2V	AP2120R-1.2TRG1	G13Q	Tape & Reel
SOT-89	40 (0500	1.3V	AP2120R-1.3TRG1	G17Q	Tape & Reel
301-09	-40 to 85°C	1.5V	AP2120R-1.5TRG1	G22Q	Tape & Reel
		1.8V	AP2120R-1.8TRG1	G27Q	Tape & Reel

Mar. 2013 Rev. 1. 4

AP2120

Ordering Information (Continued)

Package	Temperature Range	Output Voltage	Part Number	Marking ID	Packing Type
		2.5V	AP2120R-2.5TRG1	G28Q	Tape & Reel
		2.8V	AP2120R-2.8TRG1	G31Q	Tape & Reel
		3.0V	AP2120R-3.0TRG1	G33Q	Tape & Reel
SOT-89	40 to 050C	3.2V	AP2120R-3.2TRG1	G37Q	Tape & Reel
301-69	-40 to 85°C	3.3V	AP2120R-3.3TRG1	G41Q	Tape & Reel
		3.6V	AP2120R-3.6TRG1	G42Q	Tape & Reel
		4.0V	AP2120R-4.0TRG1	G43Q	Tape & Reel
		5.0V	AP2120R-5.0TRG1	G70Q	Tape & Reel
		1.2V	AP2120Z-1.2G1	2120Z-1.2G1	Bulk
		1.2V	AP2120Z-1.2TRG1	2120Z-1.2G1	Ammo
		1.3V	AP2120Z-1.3G1	2120Z-1.3G1	Bulk
		1.3V	AP2120Z-1.3TRG1	2120Z-1.3G1	Ammo
		1.5V	AP2120Z-1.5G1	2120Z-1.5G1	Bulk
		1.5V	AP2120Z-1.5TRG1	2120Z-1.5G1	Ammo
		1.8V	AP2120Z-1.8G1	2120Z-1.8G1	Bulk
		1.8V	AP2120Z-1.8TRG1	2120Z-1.8G1	Ammo
		2.5V	AP2120Z-2.5G1	2120Z-2.5G1	Bulk
		2.5V	AP2120Z-2.5TRG1	2120Z-2.5G1	Ammo
		2.8V	AP2120Z-2.8G1	2120Z-2.8G1	Bulk
TO-92	40 + 0500	2.8V	AP2120Z-2.8TRG1	2120Z-2.8G1	Ammo
10-92	-40 to 85°C	3.0V	AP2120Z-3.0G1	2120Z-3.0G1	Bulk
		3.0V	AP2120Z-3.0TRG1	2120Z-3.0G1	Ammo
		3.2V	AP2120Z-3.2G1	2120Z-3.2G1	Bulk
		3.2V	AP2120Z-3.2TRG1	2120Z-3.2G1	Ammo
		3.3V	AP2120Z-3.3G1	2120Z-3.3G1	Bulk
		3.3V	AP2120Z-3.3TRG1	2120Z-3.3G1	Ammo
		3.6V	AP2120Z-3.6G1	2120Z-3.6G1	Bulk
		3.6V	AP2120Z-3.6TRG1	2120Z-3.6G1	Ammo
		4.0V	AP2120Z-4.0G1	2120Z-4.0G1	Bulk
		4.0V	AP2120Z-4.0TRG1	2120Z-4.0G1	Ammo
		5.0V	AP2120Z-5.0G1	2120Z-5.0G1	Bulk
		5.0V	AP2120Z-5.0TRG1	2120Z-5.0G1	Ammo

BCD Semiconductor's products, as designated with "G1" suffix in the part number, are RoHS compliant and Green.

AP2120

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Va	llue	Unit
Input Voltage	V _{IN}	6	5.5	V
Enable Input Voltage	V _{CE}	-0.3 to	V _{IN} +0.3	V
Output Current	I _{OUT}	3	00	mA
Junction Temperature	T_{J}	1	50	°C
Storage Temperature Range	T _{STG}	-65 to 150		°C
Lead Temperature (Soldering, 10sec)	T_{LEAD}	2	60	°C
		SOT-23	250	
Thermal Resistance (Note 2)	$ heta_{ m JA}$	SOT-89	165	°C/W
		TO-92 180		
ESD (Human Body Model)	ESD	2000		V
ESD (Machine Model)	ESD	2	00	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, $T_{J(max)}$, the junction-to-ambient thermal resistance, θ_{JA} , and the ambient temperature, T_{A} . The maximum allowable power dissipation at any ambient temperature is calculated using: $P_{D(max)} = (T_{J(max)} - T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	$V_{\rm IN}$	2	6	V
Operating Junction Temperature Range	$T_{ m J}$	-40	85	°C

AP2120

Electrical Characteristics AP2120-1.2 Electrical Characteristics

 $(V_{IN}\!\!=\!\!2.2V,\,T_{J}\!\!=\!\!25^{o}C,\,C_{IN}\!\!=\!\!1\mu\text{F},\,C_{OUT}\!\!=\!\!1\mu\text{F},\,\textbf{Bold}\,\text{typeface applies over -40°C}\!\!\leq\!\!T_{J}\!\!\leq\!\!85^{o}C,\,\text{unless otherwise specified.})$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =2.2V 1mA≤I _{OUT} ≤30mA	1.176	1.2	1.224	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V _{IN} =2.2V 1mA≤I _{OUT} ≤80mA		12	40	mV
Line Regulation	V _{RLINE}	2.2V\leqV _{IN\leq} 6V I _{OUT} =30mA		4	16	mV
		I _{OUT} =10mA		700	900	mV
Dropout Voltage	$ m V_{DROP}$	I _{OUT} =100mA		700	900	
Diopout voltage		I _{OUT} =150mA		700	900	
		I _{OUT} =200mA		700	900	
Quiescent Current	I_Q	V _{IN} =2.2V, I _{OUT} =0mA		25	50	μA
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =2.2V		65		dB
Output Voltage	$\Delta V_{OUT}/\Delta T$	I _{OUT} =30mA		±120		μV/°C
Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	1001 Journ		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C, I _{OUT} =0 10Hz ≤f≤100kHz		15		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-1.3 Electrical Characteristics

 $(V_{IN}=2.3V, T_J=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F, \textbf{Bold}$ typeface applies over $-40^{o}C \le T_J \le 85^{o}C$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =2.3V 1mA≤I _{OUT} ≤30mA	1.274	1.3	1.326	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V _{IN} =2.3V 1mA≤I _{OUT} ≤80mA		12	40	mV
Line Regulation	V _{RLINE}	2.3V≤V _{IN} ≤6V I _{OUT} =30mA		4	16	mV
		I _{OUT} =10mA		600	800	mV
Dropout Voltage	$V_{ m DROP}$	I _{OUT} =100mA		600	800	
Diopout voltage		I _{OUT} =150mA		600	800	
		I _{OUT} =200mA		600	800	
Quiescent Current	I_Q	V _{IN} =2.3V, I _{OUT} =0mA		25	50	μA
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =2.3V		65		dB
Output Voltage	$\Delta V_{OUT}/\Delta T$	I _{OUT} =30mA		±130		μV/°C
Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	1001 30mr		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C, I _{OUT} =0 10Hz ≤f≤100kHz		15		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-1.5 Electrical Characteristics

 $(V_{IN}=2.5V, T_J=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F, \textbf{Bold}$ typeface applies over $-40^{o}C \le T_J \le 85^{o}C$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =2.5V 1mA≤I _{OUT} ≤30mA	1.47	1.5	1.53	V
Input Voltage	V_{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V_{IN} =2.5V 1mA \leq I _{OUT} \leq 80mA		12	40	mV
Line Regulation	V_{RLINE}	$ \begin{array}{c} 2.3 \text{V} \leq \text{V}_{\text{IN}} \leq 6 \text{V} \\ \text{I}_{\text{OUT}} = 30 \text{mA} \end{array} $		4	16	mV
		I _{OUT} =10mA		400	600	mV
Dropout Voltage	$V_{ m DROP}$	I _{OUT} =100mA		400	600	
Diopout voltage		I _{OUT} =150mA		400	600	
		I _{OUT} =200mA		400	600	
Quiescent Current	I_Q	V _{IN} =2.5V, I _{OUT} =0mA		25	50	μΑ
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =2.5V		65		dB
Output Voltage	$\Delta V_{ m OUT}/\Delta T$	I _{OUT} =30mA		±150		μV/°C
Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	2001 301111		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C, I _{OUT} =0 10Hz ≤f≤100kHz		15		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-1.8 Electrical Characteristics

 $(V_{IN}=2.8V, T_J=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F, \textbf{Bold}$ typeface applies over $-40^{o}C \le T_J \le 85^{o}C$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =2.8V 1mA≤I _{OUT} ≤30mA	1.764	1.8	1.836	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V _{IN} =2.8V 1mA≤I _{OUT} ≤80mA		12	40	mV
Line Regulation	V _{RLINE}	2.3V\leqV _{IN\leq} 6V I _{OUT} =30mA		4	16	mV
		I _{OUT} =10mA		20 40	40	mV
Dropout Voltage	V_{DROP}	I _{OUT} =100mA		200	300	
		I _{OUT} =150mA		300	500	
Quiescent Current	I_Q	V _{IN} =2.8V, I _{OUT} =0mA		25	50	μA
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =2.8V		65		dB
Output Voltage	$\Delta V_{OUT}/\Delta T$	I _{OUT} =30mA		±180		μV/°C
Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	10UT-30IIIA		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C 10Hz ≤f≤100kHz		30		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-2.5 Electrical Characteristics

 $(V_{IN}=3.5V, T_J=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F, \textbf{Bold}$ typeface applies over $-40^{o}C \le T_J \le 85^{o}C$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V_{IN} =3.5V 1mA \leq I _{OUT} \leq 30mA	2.45	2.5	2.55	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V_{IN} =3.5V 1mA \leq I _{OUT} \leq 80mA		12	40	mV
Line Regulation	V _{RLINE}	3V≤V _{IN} ≤6V I _{OUT} =30mA		4	16	mV
		I _{OUT} =10mA		20	40	
Dropout Voltage	V_{DROP}	I _{OUT} =100mA		200	300	mV
		I _{OUT} =150mA		300	500	
Quiescent Current	I_Q	V _{IN} =3.5V, I _{OUT} =0mA		25	50	μА
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =3.5V		65		dB
Output Voltage	$\Delta V_{ m OUT}/\Delta T$	I _{OUT} =30mA		±250		μV/°C
Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	10UT-20IIIA		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C 10Hz ≤f≤100kHz		30		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-2.8 Electrical Characteristics

 $(V_{IN}=3.8V, T_J=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F, \textbf{Bold}$ typeface applies over $-40^{o}C \le T_J \le 85^{o}C$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V_{IN} =3.8V 1mA \leq I _{OUT} \leq 30mA	2.744	2.8	2.856	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V_{IN} =3.8V 1mA \leq I _{OUT} \leq 80mA		12	40	mV
Line Regulation	V _{RLINE}	$3.3V \le V_{IN} \le 6V$ $I_{OUT} = 30mA$		4	16	mV
		I _{OUT} =10mA		20	40	
Dropout Voltage	V_{DROP}	I _{OUT} =100mA		200	300	mV
		I _{OUT} =150mA		300	500	
Quiescent Current	I_Q	V _{IN} =3.8V, I _{OUT} =0mA		25	50	μA
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =3.8V		65		dB
Output Voltage	$\Delta V_{ m OUT}/\Delta T$	I -20m A		±280		μV/°C
Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA		±100		ppm/°C
Short Current Limit	I_{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C 10Hz ≤f≤100kHz		30		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-3.0 Electrical Characteristics

 $(V_{IN}=4V, T_J=25^{\circ}C, C_{IN}=1\mu F, C_{OUT}=1\mu F,$ **Bold** typeface applies over $-40^{\circ}C \le T_J \le 85^{\circ}C$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V_{IN} =4V 1mA \leq I _{OUT} \leq 30mA	2.94	3.0	3.06	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V_{IN} =4V 1mA \leq I $_{OUT}$ \leq 80mA		12	40	mV
Line Regulation	V _{RLINE}	$3.5V \le V_{IN} \le 6V$ $I_{OUT} = 30 \text{mA}$		4	16	mV
		I _{OUT} =10mA		20	40	
Dropout Voltage	V_{DROP}	I _{OUT} =100mA		200	300	mV
		I _{OUT} =150mA		300	500	
Quiescent Current	I_Q	V _{IN} =4V, I _{OUT} =0mA		25	50	μA
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =4V		65		dB
Output Voltage	$\Delta V_{ m OUT}/\Delta T$	I =20m A		±300		μV/°C
Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C 10Hz ≤f≤100kHz		30		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-3.2 Electrical Characteristics

 $(V_{IN}=4.2V, T_J=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F, \textbf{Bold}$ typeface applies over $-40^{o}C \le T_J \le 85^{o}C$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =4.2V 1mA≤I _{OUT} ≤30mA	3.136	3.2	3.264	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V_{IN} =4.2V 1mA≤ I_{OUT} ≤ 80mA		12	40	mV
Line Regulation	V _{RLINE}	$3.7V \le V_{IN} \le 6V$ $I_{OUT} = 30 \text{mA}$		4	16	mV
		I _{OUT} =10mA		20	40	mV
Dropout Voltage	V_{DROP}	I _{OUT} =100mA		200	300	
		I _{OUT} =150mA		300	500	
Quiescent Current	I_Q	V _{IN} =4.2V, I _{OUT} =0mA		25	50	μA
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =4.2V		65		dB
Output Voltage Temperature Coefficient	$\Delta V_{ m OUT}/\Delta T$	I =20m A		±320		μV/°C
	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C 10Hz ≤f≤100kHz		30		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-3.3 Electrical Characteristics

 $(V_{IN}=4.3V, T_J=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F, \textbf{Bold}$ typeface applies over $-40^{o}C \le T_J \le 85^{o}C$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =4.3V 1mA≤I _{OUT} ≤30mA	3.234	3.3	3.366	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V_{IN} =4.3V $1 \text{mA} \le I_{OUT} \le 80 \text{mA}$		12	40	mV
Line Regulation	V _{RLINE}	$3.8V \le V_{IN} \le 6V$ $I_{OUT} = 30 \text{mA}$		4	16	mV
Dropout Voltage		I _{OUT} =10mA		20	40	
	V_{DROP}	I _{OUT} =100mA		200	300	mV
		I _{OUT} =150mA		300	500	
Quiescent Current	I_Q	V _{IN} =4.3V, I _{OUT} =0mA		25	50	μA
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =4.3V		65		dB
Output Voltage Temperature Coefficient	$\Delta V_{OUT}/\Delta T$	I _{OUT} =30mA		±330		μV/°C
	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	1001-2011W		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C 10Hz ≤f≤100kHz		30		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-3.6 Electrical Characteristics

 $(V_{IN}\!\!=\!\!4.6V,T_{J}\!\!=\!\!25^{o}C,C_{IN}\!\!=\!\!1\mu\text{F},C_{OUT}\!\!=\!\!1\mu\text{F},\textbf{Bold} \text{ typeface applies over -}40^{o}C\!\!\leq\!\!T_{J}\!\!\leq\!\!85^{o}C,\text{ unless otherwise specified.})$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =4.6V 1mA≤I _{OUT} ≤30mA	3.528	3.6	3.672	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V_{IN} =4.6V 1mA \leq I _{OUT} \leq 80mA		12	40	mV
Line Regulation	V _{RLINE}	4.6V≤V _{IN} ≤6V I _{OUT} =30mA		4	16	mV
	$ m V_{DROP}$	I _{OUT} =10mA		20	40	
Dropout Voltage		I _{OUT} =100mA		200	300	mV
		I _{OUT} =150mA		300	500	
Quiescent Current	I_Q	V _{IN} =4.6V, I _{OUT} =0mA		25	50	μΑ
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =4.6V		65		dB
Output Voltage Temperature Coefficient	$\Delta V_{OUT}/\Delta T$	I _{OUT} =30mA		±330		μV/°C
	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	10UT-30IIIA		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C 10Hz ≤f≤100kHz		30		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-4.0 Electrical Characteristics

 $(V_{IN}=5.0V, T_J=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F, \textbf{Bold}$ typeface applies over -40°C≤T_J≤85°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =5.0V 1mA≤I _{OUT} ≤30mA	3.92	4.0	4.08	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V_{IN} =5.0V 1mA \leq I _{OUT} \leq 80mA		12	40	mV
Line Regulation	V _{RLINE}			4	16	mV
		I _{OUT} =10mA		20	40	
Dropout Voltage	V_{DROP}	I _{OUT} =100mA		200	300	mV
		I _{OUT} =150mA		300	500	
Quiescent Current	I_Q	V _{IN} =5.0V, I _{OUT} =0mA		25	50	μΑ
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =5.0V		65		dB
Output Voltage Temperature Coefficient	$\Delta V_{OUT}/\Delta T$	I -20 A		±330		μV/°C
	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	I _{OUT} =30mA		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C 10Hz ≤f≤100kHz		30		μVrms

AP2120

Electrical Characteristics (Continued) AP2120-5.0 Electrical Characteristics

 $(V_{IN}=6.0V, T_J=25^{o}C, C_{IN}=1\mu F, C_{OUT}=1\mu F, \textbf{Bold}$ typeface applies over $-40^{o}C \le T_J \le 85^{o}C$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	V _{IN} =6.0V 1mA≤I _{OUT} ≤30mA	4.9	5.0	5.1	V
Input Voltage	V _{IN}				6	V
Output Current	I _{OUT}	V _{IN} -V _{OUT} =1V	150			mA
Load Regulation	V _{RLOAD}	V_{IN} =4.3V 1mA \leq I _{OUT} \leq 80mA		12	40	mV
Line Regulation	V _{RLINE}			4	16	mV
	$ m V_{DROP}$	I _{OUT} =10mA		20	40	mV
Dropout Voltage		I _{OUT} =100mA		200	300	
		I _{OUT} =150mA		300	500	
Quiescent Current	I_Q	V _{IN} =6.0V, I _{OUT} =0mA		25	50	μА
Power Supply Rejection Ratio	PSRR	Ripple 0.5Vp-p, f=1kHz V _{IN} =6.0V		65		dB
Output Voltage	$\Delta V_{ m OUT}/\Delta T$	I _{OUT} =30mA ±330	±330		μV/°C	
Temperature Coefficient	$(\Delta V_{OUT}/V_{OUT})/\Delta T$	1001-2011A		±100		ppm/°C
Short Current Limit	I _{LIMIT}	V _{OUT} =0V		50		mA
RMS Output Noise	V _{NOISE}	T _A =25°C 10Hz ≤f≤100kHz		30		μVrms

Typical Performance Characteristics

Figure 4. Output Voltage vs. Output Current

Figure 5. Output Voltage vs. Case Temperature

Figure 6. Quiescent Current vs. Input Voltage

Figure 7. Quiescent Current vs. Output Current

Typical Performance Characteristics (Continued)

Figure 8. Quiescent Current vs. Case Temperature

Figure 9. Dropout Voltage vs. Output Current

Figure 10. Dropout Voltage vs. Case Temperature

Figure 11. Load Transient (I_{OUT} =0 to 150mA)

Typical Performance Characteristics (Continued)

Figure 12. Line Transient (Condition: V_{IN} =2.5V to 3.5, I_{OUT} =10mA)

Figure 13. PSRR vs. Frequency

Figure 14. Start-up

AP2120

Typical Application

Note: Filter capacitors are required at the AP2120's input and output. $1\mu F$ capacitor is required at the input. The minimum output capacitance required for stability should be more than $1\mu F$ with ESR from 0.01Ω to 100Ω . Ceramic capacitors are recommended.

Figure 15. Typical Application of AP2120

Mechanical Dimensions

SOT-23 Unit: mm(inch)

Mechanical Dimensions (Continued)

SOT-89 Unit: mm(inch)

Unit: mm(inch)

HIGH SPEED, EXTREMELY LOW NOISE LDO REGULATOR

Mechanical Dimensions (Continued)

TO-92 (Bulk Packing)

Mechanical Dimensions (Continued)

TO-92 (Ammo Packing) Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarter

BCD (Shanghai) Micro-electronics Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, P. R.C. Tel: +86-021-2416-2266, Fax: +86-021-2416-2277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203,Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District Shenzhen 518057, China

Tel: +86-0755-8660-4900 Fax: +86-0755-8660-4958

Taiwan Office (Hsinchu) BCD Semiconductor (Taiwan) Company Limited 8F, No.176, Sec. 2, Gong-Dao 5th Road, East District HsinChu City 300, Taiwan, R.O.C Tel: +886-3-5160181, Fax: +886-3-5160181

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yishan Road, Shanghai 200233, China Tel: +021-6485-1491, Fax: +86-021-5450-0008

Taiwan Office (Taipei)

BCD Semiconductor (Taiwan) Company Limited 3F, No.17, Lane 171, Sec. 2, Jiu-Zong Rd., Nei-Hu Dist., Taipei(114), Taiwan, R.O.C Tel: +886-2-2656 2808

Fax: +886-2-2656-2806/26562950

BCD Semiconductor Corp. 48460 Kato Road, Fremont, CA 94538, USA Tel: +1-510-668-1950 Fax: +1-510-668-1990

BCD Semiconductor Limited Korea office. Room 101-1112, Digital-Empire II, 486 Sin-dong, Yeongtong-Gu, Suwon-city, Gyeonggi-do, Korea Tel: +82-31-695-8430