Quiz 2 • Graded

Student

SHAURYA JOHARI

Total Points

8 / 30 pts

Question 1

Question 1

4 / 6 pts

- + 6 pts Completely correct answer
- - + 0 pts No submission/incorrect submission/incorrect answer
 - **+ 2 pts** Part 1: $\{f(x) \in \mathbb{F}[x] : deg \, f(x) \leq 3, f(1) = 0\}$ has dimension ≤ 3
 - + 1 pt Part 1: In the proof by contradiction, argued that $\{A(x),B(x),C(x),D(x)\}$ is a basis of $\{f(x)\in\mathbb{F}[x]:deg\,f(x)\leq 3\}$.
 - + 3 pts Part 2 completely correct
 - + 0 pts Part 2 completely wrong/no submission
 - + 1 pt Part 2: Just mentioned correct example but did not provide any/correct justification
 - + 0 pts Click here to replace this description.
- **→ + 1 pt** Point adjustment

Question 2

3 / 9 pts

- + 9 pts Completely Correct Answer
- + 0 pts No Answer or Completely Wrong Answer
- \checkmark + 1 pt H_n is closed under scalar multiplication
- \checkmark + 2 pts H_n is closed under addition
 - **+ 2 pts** Finding a spanning set of H_2
 - + 1 pt The spanning set is Linearly Independent
 - + 1 pt Answering no to part (iii) with partially correct justification
 - + 3 pts Correctly justified the answer for part (iii)
 - **+ 2 pts** For writing correct basis of H_2 over $\mathbb R$ without any justification.
 - + 1 pt For writing three element of the basis in part 2 correctly
- 1 Incorrect
- 2 Does not belong to H_n

Question 3

Question 3 1 / 10 pts

- + 0 pts Completely Wrong Answer or No Answer
- + 10 pts Completely Correct Answer
- **+ 1 pt** W_{σ} is closed under scalar multiplication
- \checkmark + 1 pt W_{σ} is closed under addition
 - **+ 2 pts** Finding the dimension of W_σ correctly with some justification
 - **+ 2 pts** Finding the dimension of W_η correctly with some justification
 - **+ 2 pts** Finding the dimension of $W_\sigma \cap W_\eta$ correctly with some justification
 - **+ 2 pts** Finding the dimension of $W_\sigma + W_\eta$ correctly with proper justification
 - **+ 1 pt** Writing only $dim(W_\sigma+W_\eta)=dim(W_\sigma)+dim(W_\eta)-dim(W_\sigma\cap W_\eta)$

Question 4 0 / 5 pts

- + 5 pts Completely correct
- → + 0 pts Completely wrong/not attempted/no substantial progress
 - + 2 pts Invariance of rank/uniqueness of RREF
 - $\hbox{\bf +1 pt} \ \hbox{Mentioned that RREF has all rational entries without proper justification} \\$
 - + 1 pt Obtained integral solution from rational solution

MAHOL HANKH JOHAKS

Answer 4:

 $A = \widehat{\mathbb{L}}_{q_{ij}} \mathbb{I}_{mn} \Rightarrow Au = 0 \Rightarrow \forall i \in \mathcal{E}_{l,2} - m),$ $\sum_{q_{ij}} u_{ij} = 0$

⇒ qij 七八→

Quiz 2: MTH113M/MTH102A

Date: 05/02/2024 | Time: 7:00-7:40 pm | Total Marks: 30

ROLL: 230959 NAME: SHAURYA JOHARZ R. C denote the set of real numbers, complex numbers respectively. Answer ONLY in the specific space provided

(1) Let A(1) = B(1) = C(1) = D(1) = 0. Is the set $\{A(x), B(x), C(x), D(x)\}$ always linearly dependent over \mathbb{R} ?

(2) Let A(0) = B(0) = C(0) = D(0) = 1. Is the set $\{A(x), B(x), C(x), D(x)\}$ always linearly dependent over \mathbb{R} ?

Justify your answers.

[3+3=6]

 $P_{C}XIR$ = $A_0 + A_1X + A_2X^2 + A_3X^3$ is the vector sporce of all possible on polynamials over R with max degree = 3 Basis of space: {1, X, X2, X3}

EACED, BCCE, CCED, DCaDS is Linearly depondent => 3 p.g. rus ER st. (pA+ gB+ rC+ s Dex)= 08. p=q=r=s=0 ACRD = 90 ta, xta, 2 ta, x3 BCRD = botb x tb, x2 tb, x3.

Define 6. 8 D in similar fashion.

ASOD = BCOD = CED = DCI) = 03

ACO) = B(O) = CCO)=D(O)=1= Qo=bo=co=do=(1) This doesn't give restriction on other coefs wit The different polynomia) Coasbacada etc con be any values & 632 AJB, CAD are Linearly independent (2) is false

CD= ACD= 90 ta, ta, ta, ta, = 0 = 05= - (a, ta, ta)

Pat $\begin{bmatrix} a_0 & a_1 & a_2 & a_3 \\ b_0 & b_1 & b_2 & b_3 \\ c_0 & c_1 & c_2 & c_3 \\ d_0 & d_1 & d_2 d_3 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} \text{Infinite solns} \\ \text{for } cp_3 q_3 r_3 s_3 \end{bmatrix}$ = A,B,C,D are Linearly Dependant

Question 2. Let $M_n(\mathbb{C})$ denote the set of all $n \times n$ matrices whose entries are complex numbers. With respect to usual matrix addition and usual scalar multiplication $M_n(\mathbb{C})$ is a vector space over both \mathbb{C} and \mathbb{R} . For a matrix $A = (a_{ij}) \in M_n(\mathbb{C})$, define $\hat{A} := (\hat{a}_{ij})$, where \hat{a}_{ij} denotes the complex conjugate of of a_{ij} . Consider the set $H_n = [A \in M_n(\mathbb{C}) : A = \overline{A^*}]$, where

A: Is use transpose or A.

(i) Prove that H_n is a R-subspace of $M_n(\mathbb{C})$, when $M_n(\mathbb{C})$ considered as a vector space over \mathbb{R} .

(ii) For n=2, find a basis of the vector space H_0 over \mathbb{R} .

(iii) Is H_n a \mathbb{C} -subspace of $M_n(\mathbb{C})$, when $M_n(\mathbb{C})$ considered as a vector space over \mathbb{C} ? Justify your answer.

[3+3+3=9]

Answer 2: O belongs to Hn . 0 = 0 Also, if we choose C13C2ERS M1, M26Mn(6) S.t. M3 = 4 Mit czM2 (4 = 4 & c2 = c2) Then $\overline{M}_3 = \overline{c_1 M_1 t c_2 M_2} = \overline{c_1 M_1} + \overline{c_2 M_2} = c_1 M_1 t c_2 M_2 = M_3$ = M3=M3 = M GMHGM2 & MnCa) . Linear combination of any 2 matrices in MaCa) gives a 3rd matrix in MoCC) => Hn is a R-subspace of C

Bons. Note that i till Z=Z = ZEIR 2x2 Matrix = [a b] And the basis of H2 over IR is · Ai=Ai & E[0], [0], [0], [0] 3 aA, + bA, + cAs + dA4

gives a matrix from H& (asbudEIR)

Cars. No, given statement is false. Consider $\begin{bmatrix} 35i \end{bmatrix} = M. \quad \overline{M} = \begin{bmatrix} 3-5i \end{bmatrix} \neq M$ But $M = \begin{bmatrix} 30 \\ 00 \end{bmatrix} GD + GD \begin{bmatrix} 05 \\ 00 \end{bmatrix}$ = Mit iM2 where MijMzEH

Question 3. Let S_n denote the set of all permutations on the set $\{1,2,...,n\}$. (i) For a fix $\sigma \in S_n$. Consider the set $W_\sigma = \{(x_1,x_2,...,x_n) \in \mathbb{R}^n : (x_1,x_2,...,x_n) = (x_{\sigma(1)},x_{\sigma(2)},...,x_{\sigma(p)})\}$. Prove that W_σ is a subspace of \mathbb{R}^n with respect to usual addition and scalar multiplication. (ii) Consider $\sigma = \{13/4245$ and $\eta = \{03/445\}$ in S_n where $\{13\},\{23\}$, (45) are 2-cycles and (245) is the 3-cycle in S_5 . Find the dimensions of the four subspaces W_σ , W_η , $W_\sigma \cap W_\eta$ and $W_\sigma + W_\eta$.

Let TITE Wor . (CER) $T_{1} = (x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(n)})$ T2= Cyocas, your yours) Tit72= (2000 tyous, 2000tyous -- 2000styous)= Caty Jown (aty Joca -- caty Joan,) = (zoci) JEocas - Zocns) = 73 E Wo. Also cTi= (cxocns cxocns) = cdocis, doren doni) (ca;=di) Highest no of cycles acces Dimension of Wo: Class C2,45) 3 (Black En X Eys) Dimension of Wn: 61); 623; E45) 2 (E3, E45) Dimension of WonWy; 1 " Wot Wy: 4 Largest value of n-cycle=

Justification ?