

UNIFORM BOUNDS OF BASE CHANGE CONDUCTORS AND LINK WITH THE GENERALIZED SZPIRO CONJECTURE

HUAJUN LU

ABSTRACT. The difference between the Faltings height of an abelian variety A defined over a number field k and its stable height is measured by the so-called base change conductor. In this paper, we give a uniform bound of the base change conductor in terms of the dimension of A and the degree of k . This allows us to reduce the generalized Szpiro conjecture to the semi-stable case.

1. INTRODUCTION

Let A be an abelian variety of dimension g defined over a number field k of degree d . Let \mathcal{O}_k be the ring of integers of k and let \mathcal{A} be the Néron model of A over $\mathrm{Spec} \mathcal{O}_k$. Let $\epsilon : \mathrm{Spec} \mathcal{O}_k \rightarrow \mathcal{A}$ be the zero section of \mathcal{A} and let $\Omega_{\mathcal{A}}^1$ be the sheaf of relative differentials of \mathcal{A} over \mathcal{O}_k . A global section ω of $\Omega_{\mathcal{A}}^1$ can be seen as a top degree differential form which is invariant under the translations on A . The *Faltings height* of A is defined by

$$h_{\mathrm{Fal}}(A) = \frac{1}{[k : \mathbb{Q}]} (\log \#(\Omega / \omega \mathcal{O}_k) - \sum_{\sigma : k \hookrightarrow \mathbb{C}} \log \|\omega\|_{\sigma}),$$

where $\Omega = \Gamma(\mathrm{Spec} \mathcal{O}_K, \epsilon^* \wedge^g \Omega_{\mathcal{A}}^1)$, σ runs over all embeddings of k in \mathbb{C} and the norm of ω with respect to σ is defined as in [Fal83]:

$$\|\omega\|_{\sigma}^2 = \left(\frac{\sqrt{-1}}{2} \right)^g \int_{A_{\sigma}(\mathbb{C})} \omega \wedge \bar{\omega}, \quad \forall \sigma : k \hookrightarrow \mathbb{C}.$$

The Faltings height of A does not depend on the choice of ω by the product formula of algebraic numbers.

A central problem on the Faltings height is the generalized Szpiro conjecture, which claims the following: Given a number field k and an integer g , there are constants $c_1(k, g)$ and $c_2(k, g)$, depending only on k and g , such that for every abelian variety A over k of dimension g , the Faltings height $h_{\mathrm{Fal}}(A)$ satisfies

$$h_{\mathrm{Fal}}(A) \leq c_1(k, g) \log N_{k/\mathbb{Q}}(\mathcal{F}_{A/k}) + c_2(k, g)$$

Key words and phrases. Faltings height, base change conductors, abelian varieties, uniform bounds.

MSC 2010: 11G10, 11G50, 14G40.

where $\mathcal{F}_{A/k}$ is the conductor of A [BK94] and $N_{k/\mathbb{Q}}$ denotes the absolute norm map of k/\mathbb{Q} .

To help study the Faltings height, a closed related notion is that of *stable height*. It is defined as follows. By the semi-stable reduction theorem of Grothendieck, there exists a finite field extension l/k such that $A_l = A \times_{\text{Spec } k} \text{Spec } l$ has semi-stable reduction. The Faltings height $h_{\text{Fal}}(A_l)$ does not depend on the choice of l and is called the *stable height* of A . Let P be the set of primes of \mathcal{O}_k at which A does not have semi-stable reduction. For each prime \mathfrak{p} of \mathcal{O}_k , let $N\mathfrak{p}$ be the cardinality of the residue field of \mathcal{O}_k at \mathfrak{p} . Then we have

$$h_{\text{Fal}}(A_l) - h_{\text{Fal}}(A) = \frac{-1}{[k : \mathbb{Q}]} \sum_{\mathfrak{p} \in P} c(A, \mathfrak{p}) \log(N\mathfrak{p})$$

for some positive rational number $c(A, \mathfrak{p})$, $\mathfrak{p} \in P$ uniquely determined by A and \mathfrak{p} . Following Chai and Yu ([Chai00] and [CY01]), we will refer to the numerical invariants $(c(A, \mathfrak{p}))_{\mathfrak{p} \in P}$ as the *base change conductor* of A . We will also call $c(A, \mathfrak{p})$ the local base change conductor of A at \mathfrak{p} .

In view of the generalized Szpiro conjecture, a natural question is to ask whether the local base change conductor $c(A, \mathfrak{p})$ is uniformly bounded. In this paper, we give a positive answer to this question. More precisely, our main result is the following.

Theorem 1.1. *There is a function $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ having the following property: For every number field k of degree $d = [k : \mathbb{Q}]$ and every abelian variety A of dimension g over k , the local base change conductors $c(A, \mathfrak{p})$ all satisfy $c(A, \mathfrak{p}) \leq f(d, g)$.*

In fact, our proof will give an explicit construction of a possible choice for f . As an application, we will show that the generalized Szpiro conjecture can be reduced to the semi-stable case (cf. Theorem 3.4).

The proof of our main theorem makes use of some local analysis on Lie algebras and Weil restrictions as well as a theorem of Raynaud. A key step is to prove a bound for the base change conductor of a Weil restriction in the local case.

2. SOME REVIEWS ON WEIL RESTRICTION

Let $\pi : S' \rightarrow S$ be a finite and locally free morphism of schemes. Let X' be a quasi-projective S' -scheme. Then the functor $R_{S'/S}(X')$ from the category of S -schemes to the category of sets defined by

$$R_{S'/S}(X') : \text{Sch}/S \rightarrow (\text{Sets}); \quad T \mapsto \text{Hom}_{S'}(T \times_S S', X')$$

is representable by a quasi-projective S -scheme (cf. [BLR90], §7.6, Theorem 4), called the *Weil restriction* of X' with respect to π . By abuse of notation, we also denote by $R_{S'/S}(X')$ this representing scheme. If there is no confusion about π , we call it the Weil restriction of X' for short. It is clear

that if X' is a group scheme over S' , then $R_{S'/S}(X')$ is a group scheme over S .

If $\pi : S' \rightarrow S$ is a finite and flat morphism of connected Dedekind schemes, Néron models behave well with respect to Weil restrictions. More precisely, let K and K' be the function fields of S and S' respectively and let $\mathcal{A}' \rightarrow S'$ be an abelian scheme which is the Néron model of its generic fiber $A' = \mathcal{A}' \times_{S'} \text{Spec } K'$. Then by [BLR90], §7.6, Proposition 6, the Weil restriction $\mathcal{A} = R_{S'/S}(\mathcal{A}')$ exists and is the Néron model of its generic fiber $\mathcal{A} \times_S \text{Spec } K = R_{K'/K}(A')$.

Example 2.1 Let $S' = \text{Spec } L$ and $S = \text{Spec } K$ where L/K is a finite separable field extension. Let X be a quasi-projective K -scheme. For later use, let us recall the description of the Weil restriction $Y = R_{L/K}(X_L)$ of X_L via Galois descent.

Let F/K be a finite Galois extension with Galois group Γ and assume there is a K -embedding $L \hookrightarrow F$. Let Λ be the set of K -embeddings of L in F . To each $\tau \in \Lambda$, we associate an F -scheme

$$X'_\tau = X_L \times_{(L,\tau)} \text{Spec } F = X \times_K \text{Spec } F = X_F.$$

The schemes $X'_\tau, \tau \in \Lambda$ are all the same as F -schemes but they have different L -scheme structures. Let $Y' = \prod_{\tau \in \Lambda} X'_\tau$ be the fiber product of the X'_τ 's over $\text{Spec } F$.

Let us assume that $X = \text{Spec } A$ is affine. Then we can define a semi-linear Γ -action on Y' by

$$\gamma(\bigotimes_{\tau \in \Lambda} a_\tau) = \bigotimes_{\tau \in \Lambda} a'_\tau \text{ with } a'_{\gamma\tau} = (id \otimes \gamma)(a_\tau)$$

for any $\gamma \in \Gamma$ and $a_\tau = a \otimes x \in A \otimes_K F = A'_\tau$ with $a \in A$ and $x \in F$. Let $Y = Y'/\Gamma$ be the quotient of Y' by Γ . Then Y is the Weil restriction of X_L by the theory of Galois descent ([KMRT98], Page 329).

In general, since X is separated and quasi-compact, we can find a finite affine open covering $\{U_i, i = 1, \dots, n\}$ of X such that $U_{ij} = U_i \cap U_j$ are also affine. Then the Weil restriction $R_{L/K}(X_L)$ of X_L can be obtained by gluing $R_{L/K}(U_i \times_K \text{Spec } L)$ along $R_{L/K}(U_{ij} \times_K \text{Spec } L)$.

3. UNIFORM BOUNDS OF BASE CHANGE CONDUCTORS

We shall prove our main results in this section. To start with, let us recall the definition of base change conductors.

Let $K = k_{\mathfrak{p}}$ be the completion of a number field k at a finite prime \mathfrak{p} . Let A be an abelian variety of dimension g over K with Néron model \mathcal{A} over the ring of integers \mathcal{O}_K of K . Let L/K be a finite field extension such that A_L has semi-stable reduction. Let \mathcal{A}' be the Néron model of A_L over the ring of integers \mathcal{O}_L of L . By the universal property of Néron model, there exists a unique morphism $\phi : \mathcal{A} \times \text{Spec } \mathcal{O}_L \longrightarrow \mathcal{A}'$ which extends the canonical isomorphism between the generic fibers. Let ϵ denote the zero section of

the abelian scheme $\mathcal{A}/\mathcal{O}_K$ or $\mathcal{A}'/\mathcal{O}_L$ and let $\Omega_{\mathcal{A}}^1$ (resp. $\Omega_{\mathcal{A}'}^1$) be the sheaf of relative differentials of $\mathcal{A}/\mathcal{O}_K$ (resp. $\mathcal{A}'/\mathcal{O}_L$). Then the quotient

$$\frac{\Gamma(\mathrm{Spec} \mathcal{O}_K, \epsilon^* \wedge^g \Omega_{\mathcal{A}}^1) \otimes \mathcal{O}_L}{\Gamma(\mathrm{Spec} \mathcal{O}_L, \epsilon^* \wedge^g \Omega_{\mathcal{A}'}^1)}$$

is an \mathcal{O}_L -module of finite length. We define

$$c(A) = \frac{1}{e(L/k_{\mathfrak{p}})} \mathrm{length}_{\mathcal{O}_L} \left(\frac{\Gamma(\mathrm{Spec} \mathcal{O}_K, \epsilon^* \wedge^g \Omega_{\mathcal{A}}^1) \otimes \mathcal{O}_L}{\Gamma(\mathrm{Spec} \mathcal{O}_L, \epsilon^* \wedge^g \Omega_{\mathcal{A}'}^1)} \right)$$

where $e(L/K)$ is the ramification index of L/K . One verifies that the number $c(A)$ is independent of the choice of L .

Note that the module $\Gamma(\mathrm{Spec} \mathcal{O}_K, \epsilon^* \Omega_{\mathcal{A}}^1)$ may be viewed as the module of the translation invariant differential forms on \mathcal{A} and is dual to the Lie algebra $\mathrm{Lie}(\mathcal{A})$ of \mathcal{A} . Hence we can rewrite

$$c(A) := \frac{1}{e(L/K)} \mathrm{length}_{\mathcal{O}_L} \frac{\mathrm{Lie}(\mathcal{A}')}{\mathrm{Lie}(\mathcal{A}) \otimes \mathcal{O}_L}.$$

Proposition 3.1. *With notation as above, assume that L/K is a Galois extension and put $B = R_{L/K}(A_L)$. Then we have*

$$c(A) \leq c(B) \leq \delta_{L/K} \dim A,$$

where $\delta_{L/K}$ is the normalized K -valuation (i.e. the set of the values of the valuation is \mathbb{Z}) of the discriminant of L/K .

Proof. Let Γ be the Galois group of L/K and let F be another copy of L . Applying the result in Example 2.1 to $X = A$, we get $B_F = \prod_{\tau \in \Lambda} A_{F,\tau}$ and $\mathrm{Lie}(B_F) = \bigoplus_{\tau \in \Lambda} \mathrm{Lie}(A_{F,\tau})$. On the other side, by the functoriality of Lie algebras and Weil restrictions, we have $\mathrm{Lie}(B_F) = \mathrm{Lie}(B) \otimes_K F = \mathrm{Lie}(A_L) \otimes_K F$. Hence we have an isomorphism

$$\Psi : \mathrm{Lie}(A_L) \otimes_K F \rightarrow \bigoplus_{\tau \in \Lambda} \mathrm{Lie}(A_{F,\tau}) \quad t \otimes x \mapsto (x\tau_*(t))_{\tau}, \quad t \in \mathrm{Lie}(A_L), x \in F,$$

where $\tau_* : \mathrm{Lie}(A_L) \rightarrow \mathrm{Lie}(A_F)$ is induced by $\tau : L \rightarrow F$.

Let \mathcal{O}_F be the ring of integers of F . Let \mathcal{A} (resp. $\mathcal{B}, \mathcal{A}', \mathcal{B}'$) be the Néron model of A (resp. B, A_L, B_F) over \mathcal{O}_K (resp. $\mathcal{O}_K, \mathcal{O}_L, \mathcal{O}_F$). Since $B_F = \prod_{\tau \in \Lambda} A_{F,\tau}$, we have $\mathcal{B}' = \prod_{\tau \in \Lambda} \mathcal{A}'_{\mathcal{O}_F, \tau}$ and $\mathrm{Lie}(\mathcal{B}') = \bigoplus_{\tau \in \Lambda} \mathrm{Lie}(\mathcal{A}'_{\mathcal{O}_F, \tau})$. By the universal property of Néron models, there is a morphism $\phi : \mathcal{B} \times_{\mathcal{O}_K} \mathrm{Spec} \mathcal{O}_F \rightarrow \mathcal{B}'$ extending the isomorphism of generic fibers. Then the morphism ϕ induces a morphism $\phi_{\mathcal{B}} : \mathrm{Lie}(\mathcal{B}) \otimes_{\mathcal{O}_K} \mathcal{O}_F \rightarrow \mathrm{Lie}(\mathcal{B}')$ which can be identified with the restriction of Ψ on $\mathrm{Lie}(\mathcal{B}) \otimes_{\mathcal{O}_K} \mathcal{O}_F$. Note that we may identify Λ with Γ and write $\phi_{\mathcal{B}}$ as

$$\phi_{\mathcal{B}} : \mathrm{Lie}(\mathcal{A}'_{\mathcal{O}_F}) \otimes_{\mathcal{O}_K} \mathcal{O}_F \rightarrow \bigoplus_{\gamma \in \Gamma} \mathrm{Lie}(\mathcal{A}'_{\mathcal{O}_F, \gamma}) \quad t \otimes x \mapsto (\gamma_*(t)x)_{\gamma}.$$

Then the cokernel of $\phi_{\mathcal{B}}$ is killed by the different ideal $\mathfrak{D}_{\mathcal{O}_L/\mathcal{O}_K}$ of \mathcal{O}_L over \mathcal{O}_K by Proposition 3.3 of [LL] applied to $M = \mathrm{Lie}(\mathcal{B}')$ and $L = F$.

Hence we have

$$c(B) = \frac{1}{e(L/K)} \text{length}_{\mathcal{O}_L} \text{Coker } \phi_{\mathcal{B}} \leq \frac{[L : K] \dim A}{e(L/K)} \text{length}_{\mathcal{O}_L} \mathfrak{D}_{\mathcal{O}_L/\mathcal{O}_K} \leq \delta_{L/K} \dim A.$$

For each τ let p_τ be the canonical projection of $B_F = \Pi_{\tau \in \Lambda} A_{F,\tau}$ onto the τ -component and let $v = \sum_{\tau \in \Lambda} p_\tau$. Then v is Γ -invariant, hence $v : B \rightarrow A$ is defined over K . By considering the morphism between Néron models induced by v we get a commutative diagram of Lie algebras:

$$\begin{array}{ccc} \text{Lie}(\mathcal{B}) \otimes \mathcal{O}_L & \longrightarrow & \text{Lie}(\mathcal{A}) \otimes \mathcal{O}_L \\ \phi_{\mathcal{B}} \downarrow & & \downarrow \phi_{\mathcal{A}} \\ \text{Lie}(\mathcal{B}') & \xrightarrow{v_*} & \text{Lie}(\mathcal{A}'), \end{array}$$

where both horizontal morphisms are induced by v .

By Example 2.1, we have $\text{Lie}(\mathcal{B}') = \bigoplus_{\tau \in \Lambda} \text{Lie}(\mathcal{A}'_\tau)$ and $v_*((x_\tau)_\tau) = \sum_{\tau \in \Lambda} x_\tau$ for any $(x_\tau)_\tau \in \bigoplus_{\tau \in \Lambda} \text{Lie}(\mathcal{A}')_\tau$. Hence v_* is surjective and consequently the map from $\text{Coker}(\phi_{\mathcal{B}})$ to $\text{Coker}(\phi_{\mathcal{A}})$ induced by v_* is surjective. Since $c(B) = \frac{1}{e(L/K)} \text{length}_{\mathcal{O}_L} \text{Coker}(\phi_{\mathcal{B}})$ and $c(A) = \frac{1}{e(L/K)} \text{length}_{\mathcal{O}_L} \text{Coker}(\phi_{\mathcal{A}})$, we get $c(A) \leq c(B)$. This completes the proof of the proposition. \square

Remark 3.2 The bound given above is not sharp in general. When A has potential ordinary reduction, Chai [Chai00] proved that $\chi(A)/4 \leq c(A) \leq \chi(A)/2$ where $\chi(A)$ is the Artin conductor of A .

Now let A be an abelian variety over a number field k . Recall that the *base change conductor* of A/k is determined as follows: Let P be the set of primes of the ring of integers \mathcal{O}_k of k at which A does not have semi-stable reduction. For each $\mathfrak{p} \in P$, let $c(A, \mathfrak{p})$ be the number $c(A_{k_{\mathfrak{p}}})$ defined earlier for the abelian variety $A_{k_{\mathfrak{p}}}$ over the local completion $k_{\mathfrak{p}}$. Then the base change conductor of A/k is $(c(A, \mathfrak{p}))_{\mathfrak{p} \in P}$.

We are now ready to prove our main result, Theorem 1.1, which states that $c(A, \mathfrak{p})$ can be uniformly bounded by a number $f(d, g)$ depending only on the degree d of the number field k and the dimension g of the abelian variety A .

Proof of Theorem 1.1. Let n be a positive integer and let $A[n]$ be the kernel of the multiplication-by- n map on A . Let $k(A[n])$ be the composition field of the residue fields of the points of $A[n]$. A theorem of Raynaud([SGA7], Proposition 4.7) asserts that if $n \geq 3$, then $A_{k(A[n])}$ has semi-stable reduction away from n . In particular, for $n = 15$ and $l = k(A[15])$, A_l has semi-stable reduction everywhere and we have

$$[l : k] \leq f_1(g) := |GL_{2g}(\mathbb{Z}/3\mathbb{Z})| * |GL_{2g}(\mathbb{Z}/5\mathbb{Z})|.$$

Let \mathfrak{p} be a prime of k , \mathfrak{P} a prime of l lying over \mathfrak{p} and let $G_{\mathfrak{P}}$ be the decomposition group of $\mathfrak{P}|p$. Then the ramification filtration of $G_{\mathfrak{P}}$ has length at most $v_{l_{\mathfrak{P}}}(p)/(p-1)$ ([Ser79], §IV.2, Exercice 3c) where $v_{l_{\mathfrak{P}}}$ is the

normalized \mathfrak{P} -valuation of $l_{\mathfrak{P}}$. Then the normalized \mathfrak{P} -adic valuation of the different of $l_{\mathfrak{P}}/k_{\mathfrak{P}}$ is smaller than $|G_{\mathfrak{P}}|v_{l_{\mathfrak{P}}}(p)/(p-1)$ by [Ser79], Chap IV, Proposition 4. So the local base change conductor $c(A, \mathfrak{p})$ of A at \mathfrak{p} is smaller than $g|G_{\mathfrak{P}}|^2v_{k_{\mathfrak{P}}}(p)/(p-1)$ by Proposition 3.1. Hence the function $f(d, g) := f_1^2(g)dg + 1$ has the desired property. \square

Proposition 3.3. *The generalized Szpiro conjecture is equivalent to the following statement:*

There exist positive functions $c_1(d, g)$, $c_2(d, g)$ and $c_3(d, g)$, in variables d and g , such that for every number field k of degree d and every abelian variety A/k of dimension g , one has

$$(1) \quad h_{Fal}(A) \leq c_1(d, g) \log N_{k/\mathbb{Q}}(\mathcal{F}_{A/k}) + c_2(d, g) \log \Delta_{k/\mathbb{Q}} + c_3(d, g),$$

where $\mathcal{F}_{A/k}$ is the conductor of A and $\Delta_{k/\mathbb{Q}}$ is the discriminant of k/\mathbb{Q} .

Proof. We need only to show that the generalized Szpiro conjecture implies the inequality (1).

Let $B = R_{k/\mathbb{Q}}(A_k)$, then by Theorem 1.1 we have

$$h_{Fal}(B) \geq h_{Fal}(B_l) = d h_{Fal}(A_l) \geq d(h_{Fal}(A_k) - f(d, g) \log N_{k/\mathbb{Q}}(\mathcal{F}_{A/k})),$$

where $l = k(A[15])$, $f(d, g)$ is the same as in Theorem 1.1 and the equality $h_{Fal}(B_l) = d h_{Fal}(A_l)$ holds since $B_l \cong A_l^d$.

Hence we have

$$h_{Fal}(A) \leq \frac{1}{d}h_{Fal}(B) + f(d, g) \log N_{k/\mathbb{Q}}(\mathcal{F}_{A/k}).$$

By the generalized Szpiro conjecture, there are constants $c'_1(dg), c'_2(dg)$ depending only on dg (and \mathbb{Q}) such that

$$h_{Fal}(B) \leq c'_1(dg) \log \mathcal{F}_{B/\mathbb{Q}} + c'_2(dg).$$

By Proposition 1 in [Mil72], we have $\mathcal{F}_{B/\mathbb{Q}} = N_{k/\mathbb{Q}}(\mathcal{F}_{A/k})\Delta_{k/\mathbb{Q}}^d$. Combining the above inequalities proves the proposition. \square

Theorem 3.4. *The generalized Szpiro conjecture is true if and only if the inequality (1) holds for all abelian varieties A over k which have semi-stable reduction over k .*

Proof. We just need to show if the inequality (1) holds for all abelian varieties over k which have semi-stable reduction, then it holds for all abelian varieties (with possibly different choice of $c_i(d, g), i = 1, 2, 3$).

Let A be a g -dimension abelian variety over k and let $l = k(A[15])$. Since l/k is unramified outside the places above 3 and 5 and the degree $[l : k]$ is bounded by a function of g , $\log(\Delta_{l/\mathbb{Q}}) - \log(\Delta_{k/\mathbb{Q}})$ is bounded from above by a function in variables d and g . By Theorem 1.1, we have $h_{Fal}(A) \leq h_{Fal}(A_l) + f(d, g) \log N_{k/\mathbb{Q}}(\mathcal{F}_{A/k})$. It then follows that $h_{Fal}(A)$ satisfies the inequality 1 provided that the same inequality holds for all abelian varieties with semi-stable reduction. \square

Acknowledgements. I would like to express my gratitude to Professor Marc Hindry who kindly purposed the problem to me with useful suggestions. I also thank Doctor Yong Hu for his useful comments.

REFERENCES

- [BLR90] S. BOSCH, W. LÜTKEBOHMERT AND M. RAYNAUD, Néron Models, Ergeb. Math. Grenz., **21**, Springer-Verlag, New York (1990).
- [BK94] A. BRUMER, K. KRAMER, *The conductor of an abelian variety*, Compositio Math. **92** (1994) No. 2, 227-248 .
- [Chai00] C-L. CHAI, *Néron models for semiabelian varieties: congruence and change of base field*, Asian J. Math. vol. **4** (2000), No. 4, 715-736.
- [CY01] C-L. CHAI AND J-K. YU, *Congruences of Néron models for tori and the Artin conductor*, With an appendix by E. de Shalit, Ann. of Math. **154** (2001), 347-382.
- [SGA7] A. GROTHENDIECK, *Modèles de Néron et monodromie*, in Groupes de Monodromie en Géometrie Algébrique, SGA7 I, A. Grothendieck, ed., Lecture Notes in Math. **288**, Springer, Berlin-Heidelberg-New York, 1972, 313-523.
- [Fal83] G. FALTINGS, *Endlichkeitssätze für abelsche Varietäten über Zahlkörpern*, Invent. Math. **73** (1983), no. 3, 349-366.
- [KMRT98] M. KNUS, A. MERKURJEV, M. ROST, AND J-P. TIGNOL, The Book of Involutions, AMS Colloquium Publications, Vol. **44**, 1998.
- [LL] Q. LIU, AND H. LU, *Congruences of models of elliptic curves*, preprinted.
- [Mil72] J.S. MILNE, *On the Arithmetic of Abelian Varieties*, Invent. Math. **17** (1972). 177-190.
- [Ser79] J-P. SERRE, Local Fields, Grad. Texts in Math. **67**, Springer-Verlag, New York (1979).

ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, BEIJING, 100190, CHINA
E-mail address: huajun@amss.ac.cn