WUOLAH

Soluciones-2015.pdf Exámenes Geometría III

- 2° Geometría III
- Facultad de Ciencias
 Universidad de Granada

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad

Soluciones del examen de Geometría III, Grado en Matemáticas (UGR) celebrado el 3 de febrero de 2015

Profesor: Miguel Ortega Titos

1.— Se consideran los subespacios afines S_1 , S_2 de \mathbb{R}^4 dados por:

$$S_1: \begin{cases} x_1 - x_2 - x_3 = 0, \\ x_1 + x_3 + x_4 = 2, \end{cases}$$

$$S_2 = (1, 0, \lambda, 0) + L(\{(0, 1, -1, 1), (1, 0, -1, 1)\})$$

Calcular la suma afín $S_1 \vee S_2$ y la intersección $S_1 \cap S_2$ en función del parámetro $\lambda \in \mathbb{R}$.

Solución: En primer lugar, calculamos las ecuaciones implícitas de S_2 . En un primer paso, calculamos las ecuaciones de \overrightarrow{S}_2 . Para ello, consideramos la matriz

$$A = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & -1 & 1 \end{pmatrix}.$$

Como (x_1, x_2, x_3, x_4) ha de ser combinación lineal de los otros dos vectores, entoces el rango de A ha de ser igual a dos, así que extraemos los dos siguientes determinantes:

$$0 = \left| \begin{array}{ccc} x_1 & x_2 & x_3 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{array} \right|, \quad 0 = \left| \begin{array}{ccc} x_1 & x_2 & x_4 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array} \right|.$$

Desarrollando, obtenemos

$$\vec{S}_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 = 0, x_1 + x_2 - x_4 = 0\}.$$

Imponiendo ahora que $(1,0,\lambda,0) \in S_2$, tenemos

$$S_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 = 1 + \lambda, x_1 + x_2 - x_4 = 1\}.$$

Con esto, calculamos la intersección $S_1 \cap S_2$:

$$S_1 \cap S_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 = 1 + \lambda, x_1 + x_2 - x_4 = 1, x_1 - x_2 - x_3 = 0, x_1 + x_3 + x_4 = 2\}.$$

Escribimos el sistema en forma matricial y lo simplificamos por el método de Gauss:

$$\begin{pmatrix} 1 & -1 & -1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 2 \\ 1 & 1 & 1 & 0 & 1+\lambda \\ 1 & 1 & 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 & (3+\lambda)/2 \\ 0 & 0 & 0 & 0 & -(1+\lambda)/2 \end{pmatrix}$$

<u>Caso $\lambda \neq -1$ </u>: La última ecuación se habría transformado en $0 = -(1 + \lambda)/2 \neq 0$, por lo que el sistema es incompatible. Esto significa que $S_1 \cap S_2 = \emptyset$.

Caso $\lambda = -1$: La última ecuación es ahora 0 = 0, así que el sistema es compatible inderminado con un grado de libertad, es decir, dim $S_1 \cap S_2 = 1$. Esto significa que $S_1 \cap S_2$ es una recta de ecuaciones

$$S_1 \cap S_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 - x_2 - x_3 = 0, \ x_2 + 2x_3 + x_4 = 2, x_3 + x_4 = 1\}.$$

Para calcular $S_1 \vee S_2$, ya sabemos por los cálculos anteriores que tenemos que distinguir los casos $\lambda = -1$ y $\lambda \neq -1$. De todas maneras, de los cálculos anteriores (prescindiendo de los términos independientes), sabemos que las ecuaciones homogéneas de $\vec{S}_1 \cap \vec{S}_2$ son $x_1 + x_2 + x_3 = 0$, $x_1 + x_2 - x_4 = 0$, $x_1 - x_2 - x_3 = 0$, $x_1 + x_3 + x_4 = 0$, que ya sabemos que se reducen a $x_1 - x_2 - x_3 = 0$, $x_2 + 2x_3 + x_4 = 0$, $x_3 + x_4 = 0$. Por tanto, dim $\vec{S}_1 \cap \vec{S}_2 = 1$.

Caso $\lambda \neq -1$: Como sabemos que $S_1 \cap S_2 = \emptyset$, entonces dim $S_1 \vee S_2 = \dim S_1 +$

 $\overline{\dim S_2 + 1 - \dim \overrightarrow{S}_1 \cap \overrightarrow{S}_2} = 2 + 2 + 1 - 1 = 4. \text{ Es decir, } S_1 \vee S_2 = \mathbb{R}^4.$ $\underline{\operatorname{Caso} \lambda = -1:} \text{ Ahora, } \dim S_1 \vee S_2 = \dim S_1 + \dim S_2 - \dim S_1 \cap S_2 = 2 + 2 - 1 = 3. \text{ Recordemos que } \overrightarrow{S_1 \vee S_2} = \overrightarrow{S}_1 + \overrightarrow{S}_2. \text{ Como sí conocemos una base de } \overrightarrow{S}_2,$ vamos a calcular una base de \vec{S}_1 . De las ecuaciones de S_1 obtenemos las de \vec{S}_1 $\{(x_1, x_2, x_3, x_4) \in \mathbb{R} : x_1 - x_2 - x_3 = 0, x_1 + x_3 + x_4 = 0\}$. Así, tenemos $x_3 = x_1 - x_2$, $x_4 = -2x_1 + x_2$, por lo que $(x_1, x_2, x_3, x_4) = x_1(1, 0, 1, -2) + x_2(0, 1, -1, 1)$. La base buscada de \vec{S}_1 es $\{(1,0,1,-2),(0,1,-1,1)\}$. Por tanto,

Finalmente, tomando un punto de S_2 , digamos p = (1, 0, -1, 0), tenemos

$$S_1 \vee S_2 = (1, 0, -1, 0) + L(\{(1, 0, 1, -2), (0, 1, -1, 1), (1, 0, -1, 1)\}).$$

2.— Se considera la aplicación:

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1/3 & -2/3 & -2/3 \\ -2/3 & 1/3 & -2/3 \\ -2/3 & -2/3 & 1/3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

- 1. Justificar que f es una aplicación afín de \mathbb{R}^3
- 2. Justificar que es una isometría afín de \mathbb{R}^3 .
- 3. En su caso, clasificar dicha isometría.

Solución: En primer lugar, f se puede escribir como f(p) = b + Mp, donde M es la matriz

$$M = \begin{pmatrix} 1/3 & -2/3 & -2/3 \\ -2/3 & 1/3 & -2/3 \\ -2/3 & -2/3 & 1/3 \end{pmatrix},$$

y $b^t = (1, 1, 1)$ es el vector de términos independientes. Esto significa que la apliación asociada $\overrightarrow{f}: \mathbb{R}^3 \to \mathbb{R}^3$, $\overrightarrow{f}(v) = Mv$, es claramente lineal, luego f es una apliación afín.

En segundo lugar, mediante un cálculo directo se comprueba que $MM^t = I_3$ (la matriz identidad de orden 3), por lo que f es un movimiento rígido de \mathbb{R}^3 .

Para clasificar f, veamos primero si es directo o inverso. Para ello calculamos det M=-1, por lo que es inverso. A simple vista, se ve que la matriz es simétrica, luego diagonalizable. Esto significa que la aplicación lineal asociada es diagonalizable. Con ambos datos, f puede ser una simetría respecto de un plano o la simetría respecto de un punto (también llamada simetría central). Como la matriz M es distinta de menos la identidad, entonces f ha de ser una simetría respecto de un plano. Solamente queda calcular su plano de simetría, que es igual al conjunto de puntos fijos:

$$P_f = \{ p = (x, y, z) \in \mathbb{R}^3 : Mp^t + b = p^t \} = \{ (x, y, z) \in \mathbb{R}^3 : x + y + z = 3/2 \}.$$

4.— Clasificar la siguiente cónica de \mathbb{R}^2 en función del parámetro $\lambda \in \mathbb{R}$:

$$x^2 + y^2 + 2\lambda xy + 2x + 2y + 1 = 0.$$

Solución: Consideremos las dos matrices asociadas a la cónica:

$$\tilde{M} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & \lambda \\ 1 & \lambda & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & \lambda \\ \lambda & 1 \end{pmatrix}.$$

Como det $M=1-\lambda^2$ y det $\tilde{M}=-(\lambda-1)^2$, aparecen tres casos, según las raíces de las ecuaciones det M=0 y det $\tilde{M}=0$.

<u>Caso $\lambda = 1$ </u> Es claro que los rangos son $r = \text{rango}(M) = R = \text{rango}(\tilde{M}) = 1$. La ecuación queda $0 = x^2 + y^2 + 2xy + 2x + 2y + 1 = (x+y)^2 + 2(x+y) + 1 = (x+y+1)^2$. Es decir, se reduce a la recta afín de ecuación x + y + 1 = 0. Dicho de otro modo, la cónica es la recta doble de ecuación $(x + y + 1)^2 = 0$.

<u>Caso $\lambda = -1$ </u> Ahora, los rangos son r = rango(M) = 1, $R = \text{rango}(\tilde{M}) = 3$. Es inmediato que esta cónica es una parábola.

Caso $\lambda \neq \pm 1$ Ahora, los rangos son r = rango(M) = 2, $R = \text{rango}(\tilde{M}) = 3$, por lo que la cónica es o bien el vacío, o bien una elipse, o bien una hipérbola. Calculamos los valores propios de M:

$$P_M(a) = \begin{vmatrix} 1-a & \lambda \\ \lambda & 1-a \end{vmatrix} = a^2 - 2a + (1-\lambda^2).$$

Si $|\lambda| > 1$, entonces $1 - \lambda^2 < 0$. Usando el Teorema de Descartes, el polinomio $P_M(a)$ tendrá entonces una raíz positiva y una negativa. En este caso, la cónica es una hipérbola.

Si $|\lambda| < 1$, entonces $1 - \lambda^2 > 0$. Usando el Teorema de Descartes, el polinomio $P_M(a)$ tendrá entonces dos raíces positivas. Pero en este caso, det $\tilde{M} = -(1 - \lambda)^2 < 0$, luego \tilde{M} admite al menos un valor propio negativo (recordemos que det \tilde{M} es igual al producto de los tres valores propios). Por tanto, no puede ser el vacío, y es una elipse.

Alternativamente, el polinomio característico de \tilde{M} es

$$P_{\tilde{M}}(a) = \begin{vmatrix} 1-a & 1 & 1\\ 1 & 1-a & \lambda\\ 1 & \lambda & 1-a \end{vmatrix} = -a^3 + 3a^2 + (\lambda^2 - 1)a - (\lambda - 1)^2.$$

Comienzo 1 de Junio. Fin 30 de Junio.

1.5 horas de Lunes a Viernes.

Como $|\lambda| < 1$, por el Teorema de Descartes, el polinomio $P_{\tilde{M}}(a)$ admite dos raíces positivas y una negativa. Por tanto, la cónica es una elipse.

5.– Encontrar una proyectividad $f: \mathbb{P}^3 \to \mathbb{P}^3$ tal que:

1.
$$f(H_{\infty}) = H_{\infty}$$

1.
$$f(H_{\infty}) = H_{\infty}$$
, y
2. $f((0:1:1:1)) = (-1:1:-1:1)$.

 H_{∞} es el hiperplano del infinito asociado al embebimiento canónico $\mathbb{R}^3 \to \mathbb{P}^3$. **Solución:** Sea $\pi: \mathbb{R}^4 \setminus \{0\} \to \mathbb{P}^3$ la proyección. Recordemos que si denotamos $\mathbf{i}: \mathbb{R}^3 \to \mathbb{R}^4$ a la aplicación $\mathbf{i}(x_1, x_2, x_3) = (x_1, x_2, x_3, 1)$, para todo $(x_1, x_2, x_3) \in \mathbb{R}^3$, entonces el plano del infinito es $H_{\infty} = \pi(\mathbf{i}(\mathbb{R}^3))$. Necesitamos, pues, una aplicación lineal invectiva $\hat{f}: \mathbb{R}^4 \to \mathbb{R}^4$ que cumpla las dos siguientes condiciones:

$$\hat{f}(\mathbf{i}(\mathbb{R}^3)) = \mathbf{i}(\mathbb{R}^3), \quad \hat{f}(0,1,1,1) = (-1,1,-1,1).$$

Como observación, se podía haber tomado cualquier múltiplo no nulo de (-1, 1, -1, 1). Sea $B_o = \{e_1, e_2, e_3, e_4\}$ la base usual de \mathbb{R}^4 . Para construir una aplicación lineal, necesitamos definir la imagen de una base del espacio. Ampliamos $\{(0,1,1,1)\}$ a una base sencilla de \mathbb{R}^4 de manera que los tres nuevos vectores pertenezcan al conjunto $\mathbf{i}(\mathbb{R}^3)$. Por ejemplo, escogemos

$$B = \{(1,0,0,1), (0,1,0,1), (0,0,1,1), (0,1,1,1)\}.$$

Con las datos anteriores, construimos \hat{f} por linealidad imponiendo las siguientes

$$\hat{f}(1,0,0,1) = (1,0,0,1), \ \hat{f}(0,1,0,1) = (0,1,0,1), \ \hat{f}(0,0,1,1) = (0,0,1,1),$$

$$\hat{f}(0,1,1,1) = (-1,1,-1,1).$$

Usando el cambio de notación $(1,0,0,1) = e_1 + e_4$, $(0,1,0,1) = e_2 + e_4$, $(0,0,1,1) = e_1 + e_4$ $e_3 + e_4$, $(0, 1, 1, 1) = e_2 + e_3 + e_4$, $(-1, 1, -1, -1) = -e_1 + e_2 - e_3 + e_4$, como \hat{f} va a ser lineal, obtenemos el siguiente sistema de ecuaciones

$$\hat{f}(e_1) + \hat{f}(e_4) = e_1 + e_4,$$

$$\hat{f}(e_2) + \hat{f}(e_4) = e_2 + e_4,$$

$$\hat{f}(e_3) + \hat{f}(e_4) = e_3 + e_4,$$

$$\hat{f}(e_2) + \hat{f}(e_3) + \hat{f}(e_4) = -e_1 + e_2 - e_3 + e_4.$$

Un cálculo sencillo devuelve

$$\hat{f}(e_1) = -3e_3, \ \hat{f}(e_2) = -e_1 + e_2 - 2e_3, \ \hat{f}(e_3) = -e_1 - e_3, \ \hat{f}(e_4) = e_1 + e_3 + e_4.$$

Por tanto, una solución es $\hat{f}:\mathbb{R}^4\to\mathbb{R}^4$, la única aplicación lineal cuya matriz respecto de la base usual es

$$M_{B_o}(\hat{f}) = \begin{pmatrix} 0 & -1 & -1 & 1\\ 0 & 1 & 0 & 0\\ -2 & -2 & -1 & 2\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Nótese que det $M_{B_o}(\hat{f}) = -2$, por lo que \hat{f} es inyectiva. Recordando que π : $\mathbb{R}^4 \setminus \{0\} \to \mathbb{P}^3$ es la proyección, entonces la proyectividad buscada es la única aplicación $f: \mathbb{P}^3 \to \mathbb{P}^3$ tal que $\pi \circ \hat{f} = f \circ \pi$. Finalmente, si $[(x, y, z, 1)] \in H_{\infty}$, entonces

$$\begin{array}{l} f([x,y,z,1])=\pi(\hat{f}(x,y,z,1))=\pi(-y-z+1,y,-2x-2y-z+2,1)\in H_{\infty}. \text{ Además,} \\ f((0:1:1:1))=\pi(\hat{f}(0,1,1,1))=\pi(-1,1,-1,1)=[(-1,1,-1,1)]. \end{array}$$

