第4章:GLMのモデル選択(前半)

太田研究室 学部4年 和田

「良い」モデルは最大対数尤度のみでは 決定されない

パラメーター数(k)を多くすればする分、最大対数尤度は大きくなる

$$\log \lambda = \beta_1$$
$$k = 1$$

 $\log \lambda = \beta_1 + \beta_2 x + \dots + \beta_7 x^6$ k = 6

こちらの方がモデルとして 優れている ….とは限らない!

【理由】

- ・計算処理
- ・実際の現象と
- の乖離

最大対数尤度(=観測データへの 当てはまりの良さ)以外の、新し いモデルの選択基準:

<u>「そのモデルは良い<mark>予測</mark>をする</u>

のか?」

→「AIC」で判断可能

一つのデータに対し、考慮する説明変数のパターン(=候補となるモデル)はたくさんある

体のサイズ x_i も施肥の有無も、種子の量 y_i に影響しない

施肥の有無f_iのみが 種子の量y_iに影響す る

体のサイズ**x**_iのみが 種子の量**y**_iに影響す る

施肥の有無 f_i と、体のサイズ x_i の両方が、種子の量 y_i に影響する

一つのデータに対し、考慮する説明変数のパターン(=候補となるモデル)はたくさんある

図 4.2 第3章の例題データを説明する4種類のポアソン回帰

モデルのデータへのあてはまりの悪さ 一逸脱度しは、最大対数尤度の変形

- 逸脱度 = Deviance
- 統計モデルの、データへの「あてはまりの悪さ」の指標

$$D = -2 \log L$$

D=-2 logL * $logL(\{eta_j\})$ をlogL、 その最大対数尤度をlogL*と表記

glm()コマンドの出力結果に表示

名前	In English		定義
逸脱度 (D)	Deviance		$-2 log L^*$
最小の逸脱度	Minimum deviance		フルモデル(後述)をあてはめたときのD
残差逸脱度	Residual deviance		D-最小のD
最大の逸脱度	Maximum deviance		Nullモデル(後述)をあてはめたときのD
Null 逸脱度	Null deviance		最大のD-最小のD

フルモデル、Nullモデルはそれぞれ、パラメーター数を最大、最小(1)にした場合のモデルである①

「フルモデル」(full model) … 最もあてはまりがいいモデル

- 個々のデータに、一対一対応でパラメーターλが定まっている
 - 100個のデータがあれば100個のλを定めている

```
例:y_i = \{6,6,6,12,...\}のとき、i \in \{1,2,3\}のy_iは6なので、\{\lambda_1,\lambda_2,\lambda_3\} = \{6,6,6\}i = 4のy_4は12なので、\lambda_4 = 12...(以後同上)
```

フルモデルを当てはめた時の 逸脱度=最小のD(minimum deviance)

- (同じ回帰で)他のどのモデルを使った時よりも、必然的に対数 尤度は最大、逸脱度は最小になる
- 「現象を説明しうる理想のモデルを考えている」のではなく、 「現在のデータ(のみ)にモデルを近づけている」ので、モデル としての価値はない

フルモデル、Nullモデルはそれぞれ、パラメーター数を最大、最小(1)にした場合のモデルである②

「Null モデル」(Null model) ... 最もあてはまりが悪いモデル

- パラメーター数が1
 - つまり、この文脈においては $\lambda = e^{\beta_1}$
- パラメーターは、全ての説明変数から完全に独立である
- (同じ回帰で)他のどのモデルを使った時よりも、必然的に対数 尤度は最小、逸脱度は最大になる

Null モデルを当てはめた場合の逸脱度 = 最大のD (Maximum deviance)

種々の逸脱度の関係性は以下

AICの比較により「予測の良さ」を重視したモデル選択を行うことができる

AIC (Akaike's information criiterion)

- 「モデル選択基準」(model selection criterion)の一つ
- 予測の良さを重視する (あてはまりの良さ、ではない)
- 小さい方が「良い」モデル

$$AIC = -2{(最大対数尤度) - (最尤推定したパラメーター数)}$$

= $-2(logL^* - k)$
= $D + 2k$

残差逸脱度とパラメーター数が小さい時が「良い」モデル

(AICがモデル選択基準として有効である理由については次回)