

Denoising Menggunakan Deconvolution, Non-local Means, dan Tensor decomposition

Adyatma Ruliff Brahmantyo 535210047

1. Masukkan gambar dengan noise dan tanpa noise

2. Pilih metode yang digunakan

Deconvolution

Atur parameter yang digunakan

Penjelasan

Sigma / variance = akan mempengaruhi nilai dari gaussian kernel, yang mana akan berpengaruh ke hasil convolution

Kernel size = ukuran kernel atau ukuran untuk melakukan proses convolution

K = seberapa kuat parameter denoise, semakin besar semakin blur, semakin kecil semakin bernoise

Non Local-Means

Atur parameter yang digunakan

Penjelasan

search window size = ukuran di mana akan dilakukan pencarian nilai pixel untuk melakukan denoise

Patch Size = ukuran patch atau ukuran yang akan didenoise

h = seberapa kuat parameter denoise, semakin
besar semakin hilang detailnya, semakin kecil
semakin bernoise

Tensor Decomposition

Atur parameter yang digunakan

Penjelasan

Tensor Rank = seberapa banyak gambar akan dipecah dan didenoise

Algoritma

Deconvolution

Hasil denoising

Runtime: 0.02322 seconds

PSNR: 54.73226 dB

6

Algoritma

Non-local Means

Hasil denoising

Runtime: 0.20935 seconds

PSNR: 30.19590 dB

Algoritma

Tensor Decomposition

Hasil denoising

Runtime: 0.24226 seconds

PSNR: 70.17075 dB

8

CATATAN