# Relational Design Theory

Carla Teixeira Lopes

Bases de Dados Mestrado Integrado em Engenharia Informática e Computação, FEUP

Based on Jennifer Widom and Christopher Ré slides

### Agenda

Relational Design Overview

**Functional Dependencies** 

Closures, Superkeys and Keys

**Inferring Functional Dependencies** 

**Normal Forms** 

Decompositions

#### Normal Forms

1st Normal Form (1NF)
All tables are flat

2nd Normal Form (2NF)
Disused

3rd Normal Form (3NF)

Boyce-Codd Normal Form (BCNF)

4th and 5th Normal Forms
See text books



DB designs based on functional dependencies, intended to prevent data anomalies

### 1<sup>st</sup> Normal Form (1NF)

The domain of each attribute contains only atomic values and the value of each attribute contains only a single value from that domain

| Student | Courses       |  |  |
|---------|---------------|--|--|
| Mary    | {CS145,CS229} |  |  |
| Joe     | {CS145,CS106} |  |  |
|         | 0 0 0         |  |  |



| Student | Course |
|---------|--------|
| Mary    | CS145  |
| Mary    | CS229  |
| Joe     | CS145  |
| Joe     | CS106  |

## 2<sup>nd</sup> Normal Form (2NF)

1NF and no attribute not prime is functionally dependent on a proper subset of a candidate key

An attribute that is member of some key is prime

#### Student-Professor

| SID | PID | PName |
|-----|-----|-------|
| 1   | 3   | Smith |
| 2   | 2   | Bayer |

PID->PName



| SID | PID |
|-----|-----|
| 1   | 3   |
| 2   | 2   |

#### **Professor**

| PID | PName |
|-----|-------|
| 3   | Smith |
| 2   | Bayer |

### Boyce-Codd Normal Form

Relation R is in BCNF if, for each FD  $\bar{A} \to \bar{B}$ , either  $\bar{A} \to \bar{B}$  is trivial or  $\bar{A}$  is a (super)key

Why do we have a bad design when this doesn't happen?



### BCNF? Example #1

Student (SSN, sName, address, HScode, HSname, HScity, GPA, priority)

 $SSN \rightarrow sName$ , address, GPA

GPA → priority

HScode → HSname, HScity

Keys of the relation? {SSN, HScode}

Does every FD have a key on its left-hand side? No, none.

### BCNF? Example #2

Apply (SSN, cName, state, date, major) SSN, cName, state → date, major

Keys of the relation? {SSN, cName, state}

Does every FD have a key on its left-hand side? Yes.

## 3<sup>rd</sup> Normal Form (3NF)

Relation R is in 3NF if, for each nontrivial  $\bar{A} \to \bar{B}$ ,

 $\bar{A}$  is a (super)key or

 $\bar{B}$  consists of prime attributes only

A relation without nontrivial FDs is in 3NF.

### 3NF Example

```
Bookings (title, theater, city) theater \rightarrow city title, city \rightarrow theater
```

No booking of a movie in two theaters of the same city

Keys of the relation? {title, city}, {theater, title}

#### BCNF?

FD theater → city is a BCNF violation

#### 3NF?

FD theater  $\rightarrow$  city has only prime attributes on its right-side FD title, city  $\rightarrow$  theater has a key on its left-hand side and only prime attributes on its right-side

### Agenda

Relational Design Overview

**Functional Dependencies** 

Closures, Superkeys and Keys

**Inferring Functional Dependencies** 

Normal Forms

Decompositions

#### Decomposition of a relational schema

R1 and R2 are a decomposition of R  $(A_1, ..., A_n)$  if

$$R_1 = \pi_{B_1,\dots,B_n}(R)$$

$$R_2 = \pi_{C_1, \dots, C_n}(R)$$

$$\{B_1, \dots, B_n\} \cup \{C_1, \dots, C_n\} = \{A_1, \dots, A_n\}$$

$$\bar{B} \qquad \bar{C} \qquad \bar{A}$$

If: 
$$R_1 \bowtie R_2 = R$$

Lossless join property



# Natural Join (⋈)

#### Student

| sID | sName | GPA | HS |
|-----|-------|-----|----|
| 12  | Mary  | 3.5 | 90 |
| 23  | John  | 3.8 | 50 |

#### Apply

| sID | cName    | major | dec |
|-----|----------|-------|-----|
| 12  | Stanford | CS    | Υ   |
| 23  | MIT      | CS    | N   |



| sID | sName | GPA | HS | cName    | major | dec |
|-----|-------|-----|----|----------|-------|-----|
| 12  | Mary  | 3.5 | 90 | Stanford | CS    | Υ   |
| 23  | John  | 3.8 | 50 | MIT      | CS    | N   |

### Decomposition Example #1

Student (SSN, sName, address, HScode, HSname, HScity, GPA, priority)

S<sub>1</sub> (SSN, sName, address, HScode, GPA, priority)

S<sub>2</sub> (HScode, HSname, HScity)

Is it a correct decomposition?

$$\bar{B} \cup \bar{C} = \bar{A}$$
  
 $S_1 \bowtie S_2 = Student$ 

### Decomposition Example #2

```
Student (SSN, sName, address, HScode, HSname, HScity, GPA, priority)
```

S<sub>1</sub> (SSN, SName, address, HScode, HSname, HScity)

S<sub>2</sub> (SName, HSname, GPA, priority)

Is it a correct decomposition?

$$\bar{B} \cup \bar{C} = \bar{A}$$
  
 $S_1 \bowtie S_2 = Student$ ?

SName and HSname may not be unique

### BCNF decomposition algorithm

**Input:** relation R + FDs for R

Output: decomposition of R into BCNF relations with "lossless join"

Compute keys for R

Repeat until all relations are in BCNF:

Pick any R' with  $\overline{A} \to \overline{B}$  that violates BCNF

Decompose R' into  $R_1(\bar{A}, \bar{B})$  and  $R_2(\bar{A}, rest)$ 

Compute FDs for R<sub>1</sub> and R<sub>2</sub>

Compute keys for R<sub>1</sub> and R<sub>2</sub>



#### Student (SSN, sName, address, HScode, HSname, HScity, GPA, priority)

SSN  $\rightarrow$  sName, address, GPA; GPA  $\rightarrow$  priority; HScode  $\rightarrow$  HSname, HScity Key: {SSN, HScode}

Pick a BCNF violation HScode → HSname, HScity

Decompose Student

S1 (HScode, HSname, HScity) S2 (HScode, SSN, sName, address, GPA, priority)

Compute FDs and keys for S1

HScode → HSname, HScity

Key: {HScode}

Compute FDs and keys for S2

SSN → sName, address, GPA

GPA → priority

Key: {SSN, HScode}

S1 is in BCNF

\_ BCNF violations — → S2 is not in BCNF

#### Student (SSN, sName, address, HScode, HSname, HScity, GPA, priority)

SSN  $\rightarrow$  sName, address, GPA; GPA  $\rightarrow$  priority; HScode  $\rightarrow$  HSname, HScity Key: {SSN, HScode}

Pick a BCNF violation GPA → priority

Decompose S2 (HScode, SSN, sName, address, GPA, priority) S3 (GPA, priority) S4 (HScode, SSN, sName, address, GPA)

Compute FDs and keys for S3

GPA → priority

Key: {GPA}

S3 is in BCNF

Compute FDs and keys for S4
SSN → sName, address, GPA BCNF violation → S4 is not in BCNF
Key: {SSN, HScode}

#### Student (SSN, sName, address, HScode, HSname, HScity, GPA, priority)

SSN  $\rightarrow$  sName, address, GPA; GPA  $\rightarrow$  priority; HScode  $\rightarrow$  HSname, HScity Key: {SSN, HScode}

Pick a BCNF violation SSN → sName, address, GPA

Decompose S4 (HScode, SSN, sName, address, GPA) S5 (SSN, sName, address, GPA) S6 (SSN, HScode)

Compute FDs and keys for S5
SSN → sName, address, GPA
Key: {SSN}
S5 is in BCNF

Compute FDs and keys for S6
Key: {SSN, HScode}

S6 is in BCNF

Student (SSN, sName, address, HScode, HSname, HScity, GPA, priority)

SSN  $\rightarrow$  sName, address, GPA; GPA  $\rightarrow$  priority; HScode  $\rightarrow$  HSname, HScity Key: {SSN, HScode}

S1 (HScode, HSname, HScity) — Information about high schools

S3 (GPA, priority) — Information about GPA and priorities

S5 (SSN, sName, address, GPA) — Information about students

S6 (SSN, HScode) — Information about the high schools students went

### BCNF decomposition algorithm

Input: relation R + FDs for R

Output: decomposition of R into BCNF relations with "lossless join"

Compute keys for R

Repeat until all relations are in BCNF:

Pick any R' with  $\bar{A} \to \bar{B}$  that violates BCNF

Different answers depending on the chosen R'

Extend FD that is used for decomposition (if  $A \rightarrow B$  then  $A \rightarrow BA^+$ )

Decompose R' into  $R_1(\bar{A}, \bar{B})$  and  $R_2(\bar{A}, rest)$ 

Compute FDs for R<sub>1</sub> and R<sub>2</sub>

See "Projecting a set of FDs" slides

Compute keys for R<sub>1</sub> and R<sub>2</sub>

#### Exercise

#### Consider the following relation and FDs

Movie (title, year, studioName, president, presAddr)

title, year -> studioName studioName -> president president -> presAddr

Decompose into BCNF relations.

#### Kahoot time!

Any doubts?

### Readings

# Jeffrey Ullman, Jennifer Widom, A first course in Database Systems 3<sup>rd</sup> Edition

Section 3.1 – Functional Dependencies

Section 3.2 – Rules About Functional Dependencies

Section 3.3 – Design of Relational Database Schemas

Section 3.4 – Decomposition: The Good, Bad, and Ugly

Section 3.5 – Third Normal Form