## Equações diferenciais lineares

#### EDUARDO S. DOBAY

27 de julho de 2010

#### Sumário

|     |                                                             | 1                     |
|-----|-------------------------------------------------------------|-----------------------|
| 1.1 | Equações homogêneas                                         | 1                     |
| 1.2 | Equações inomogêneas                                        | 3                     |
|     |                                                             | 3                     |
| 2.1 | Mais sobre equações homogêneas                              | 53                    |
| 2.2 | Equações inomogêneas                                        | 6                     |
| 2.3 | Equações inomogêneas de 1ª ordem revisitadas                | 10                    |
| Equ | $\mathbf{n}$ ações de ordem $n$                             | 11                    |
| 3.1 | Exemplo: 2 <sup>a</sup> ordem                               | 12                    |
| 3.2 | O método da variação dos parâmetros, novamente              | 14                    |
|     |                                                             |                       |
| J.0 |                                                             |                       |
|     | 1.1<br>1.2<br>Equ<br>2.1<br>2.2<br>2.3<br>Equ<br>3.1<br>3.2 | 1 - 3 - 4 - 6 - 4 - 4 |

# 1 Equações de primeira ordem

Uma equação diferencial ordinária de primeira ordem é uma relação do tipo

$$F(t, y(t), y'(t)) = 0, (1.1)$$

da qual se busca determinar a função  $y:I\to\mathbb{C}$ , diferenciável, definida num certo intervalo  $I\subset\mathbb{R}$ . A equação diz-se *ordinária* pois a função procurada é uma função de uma variável apenas, e de *primeira ordem* pois não aparecem na equação derivadas de y de ordem superior à primeira.

Vamos trabalhar com um tipo bastante especial de equação diferencial: as equações diferenciais lineares, ou seja, aquelas em que só aparecem termos com y e y' elevadas à primeira potência, sem produtos entre elas. Equações desse tipo podem ser escritas na forma

$$y'(t) - p(t)y(t) = f(t),$$
 (1.2)

sendo p(t) e f(t) funções conhecidas, definidas no intervalo I. Exigimos de p e f, a princípio, apenas que sejam integráveis.

## ■ 1.1 Equações homogêneas

Vamos primeiro estudar o caso em que f(t)=0, ou seja, a equação diferencial reduz-se a

$$y'(t) - p(t)y(t) = 0. (1.3)$$

Nesse caso, quando a equação diferencial não envolve termos que não contenham y ou sua derivada, dizemos que a equação é **homogênea**. Esse caso é de particular importância pois, nessas condições, combinações lineares de soluções da equação são

também soluções: se  $y_1(t)$  e  $y_2(t)$  satisfazem a equação e  $c_1$  e  $c_2$  são constantes, então  $y(t) = c_1 y_1(t) + c_2 y_2(t)$  também satisfaz a equação, devido à linearidade da derivada. Esse fato também é conhecido como **princípio de superposição**.

Denotemos por D o operador que associa a uma função (diferenciável) a sua derivada: (Df)(x) = f'(x). Se definirmos o operador diferencial L = D - p(t), agindo sobre um espaço V de funções y(t), diferenciáveis no intervalo I, da seguinte maneira:

$$(Ly)(t) = y'(t) - p(t)y(t)$$

a equação diferencial equivale à simples expressão Ly=0. Observe que o operador L é linear e que o conjunto de soluções da equação nada mais é que o *núcleo* desse operador. Isso, por si só, diz que o conjunto de soluções constitui um espaço vetorial (mais especificamente, um subespaço de V) e que, portanto, toda combinação linear de soluções é também solução.

Para buscar soluções da equação, vamos definir  $P(t) = \int p(t) dt$  como uma primitiva da função p. Observe que, dessa forma, a função  $g(t) = e^{-P(t)}$  tem como derivada  $g'(t) = -P'(t)e^{-P(t)} = -p(t)g(t)$ . Multiplicando (1.3) por g(t) (o que é possível pois g é uma função exponencial e, portanto, não se anula), teremos

$$y'(t)g(t) - y(t)p(t)g(t) = 0$$
$$y'(t)g(t) + y(t)g'(t) = 0$$
$$(y(t)g(t))' = 0$$

A função g(t) é chamada de fator integrante, pois permite que transformemos a equação numa derivada perfeita e assim possamos simplesmente integrá-la. Daqui concluímos que y(t)g(t) deve ser igual a uma constante C, e portanto y(t) = C/g(t), ou seja,

$$y(t) = Ce^{P(t)} (1.4)$$

Note que há duas indeterminações nessa expressão: a constante C e a primitiva P(t) de p. Lembre-se de que uma função tem infinitas primitivas — se P(t) é uma primitiva, então  $\tilde{P}(t) = P(t) + k$ , também é, qualquer que seja a constante k. Observe, no entanto, que a constante k pode ser absorvida à constante C:

$$Ce^{P(t)} = Ce^{\tilde{P}(t)-k} = Ce^{\tilde{P}(t)}e^{-k} = (Ce^{-k})e^{\tilde{P}(t)} = \tilde{C}e^{\tilde{P}(t)}$$

Então, na verdade, essas duas indeterminações são uma só. Podemos, por exemplo, escolher a primitiva que se anula em um certo instante  $t_0 \in I$ , de modo que  $y(t_0) = Ce^{P(t_0)} = C$ . Essa escolha é conveniente se desejarmos resolver a equação com uma condição do tipo  $y(t_0) = y_0$ , que dessa forma se traduz na solução

$$y(t) = y_0 \exp\left(\int_{t_0}^t p(t') dt'\right).$$
 (1.5)

Note que, independentemente da primitiva escolhida, todas as soluções da equação diferencial são múltiplas umas das outras, ou seja, o espaço de soluções tem dimensão 1. Assim, uma solução qualquer pode ser escrita como um múltiplo  $y(t) = c_1 y_1(t)$  da função  $y_1(t) = \exp\left(\int p(t) dt\right)$ . Isso equivale a dizer que  $y_1$  constitui, sozinha, uma base do espaço de soluções.

<sup>&</sup>lt;sup>1</sup>Para ser mais preciso: o operador D associa a uma função f uma função Df que coincide com a derivada f' de f. A notação (Df)(x) indica que estamos tomando a função Df que resulta da aplicação de D à função f e calculando-a no ponto x.

Repare também que, quando p(t) é constante,  $p(t) = \lambda$ , a primitiva de p(t) que se anula em  $t_0$  é simplesmente  $P(t) = \lambda(t - t_0)$ . Portanto, as soluções de  $y' - \lambda y = 0$  podem ser escritas como  $y(t) = y_0 e^{\lambda(t-t_0)}$ , ou seja, são sempre múltiplas de  $y_1(t) = e^{\lambda t}$ .

### ■ 1.2 Equações inomogêneas

Uma maneira simples de resolver a equação Ly = f, para  $f \neq 0$ , é totalmente análoga ao que foi feito para o caso homogêneo: multiplicamos a equação (1.2),

$$y'(t) - p(t)y(t) = f(t),$$

pelo fator integrante  $g(t)=e^{-P(t)},$  sendo P(t) uma primitiva de p(t), e chegamos à equação

$$(y(t)e^{-P(t)})' = e^{-P(t)}f(t)$$

Integrando os dois lados da equação, obtemos

$$y(t)e^{-P(t)} = \int_{t_0}^t e^{-P(s)} f(s) ds + C,$$

e a solução pode ser escrita como

$$y(t) = Ce^{P(t)} + e^{P(t)} \int_{t_0}^t e^{-P(s)} f(s) ds$$
 (1.6)

Note que o primeiro termo da solução (vamos denominá-lo  $y_h(t)$ ) corresponde à solução geral da equação homogênea Ly=0. Portanto, se considerarmos o segundo termo,  $y_i(t)=y(t)-y_h(t)$ , teremos  $Ly_i=L(y-y_h)=Ly-Ly_h=f-0=f$ , ou seja, o segundo termo sozinho também é solução da equação inomogênea. Em outras palavras, somando uma solução qualquer da equação homogênea a uma solução da equação inomogênea, caímos novamente numa solução da equação inomogênea. Mais adiante, quando olharmos para as equações de  $2^a$  ordem, veremos com mais detalhes a importância desse fato.

Observe também que o fator  $e^{P(t)}$  pode entrar na integral do segundo termo em (1.6), e portanto ficamos com um fator  $e^{P(t)-P(s)}$  dentro da integral. Esse fator não depende da particular primitiva de p que escolhemos, já que a diferença P(t) - P(s) nada mais é que a integral definida de p(t) de s a t, de acordo com o Teorema Fundamental do Cálculo. Assim, o termo  $y_i(t)$  independe da primitiva escolhida; ele só depende do extremo que adotamos na integral que é explicitada em (1.6).

Vale lembrar também, como no caso das equações homogêneas, que, caso p(t) seja constante  $(p(t) = \lambda)$ , a primitiva de p(t) que se anula em  $t_0$  é simplesmente  $P(t) = \lambda(t - t_0)$ , e a solução da equação inomogênea pode ser escrita como

$$y(t) = Ce^{\lambda t} + e^{\lambda t} \int_{t_0}^t e^{-\lambda s} f(s) ds$$
 (1.7)

# 2 Equações de segunda ordem

Consideremos um operador  $L = D^2 + p(t)D + q(t)$  definido num certo espaço V de funções  $u: I \to \mathbb{C}$  duas vezes diferenciáveis, sendo  $I \subset \mathbb{R}$  um intervalo. p(t) e q(t)

são funções (conhecidas) definidas nesse mesmo intervalo, e das quais não precisamos exigir muita coisa.

Consideraremos primeiramente equações diferenciais lineares homogêneas de  $2^a$  ordem, do tipo Ly=0, para uma função y=y(t), que podem ser escritas mais explicitamente na forma

$$\ddot{y}(t) + p(t)\dot{y}(t) + q(t)y(t) = 0. (2.1)$$

Uma solução dessa equação é uma função y(t), definida no intervalo I, que satisfaça essa igualdade. Observe que o operador L, da mesma maneira que o operador L definido para equações de primeira ordem, é linear e, portanto, as soluções da equação constituem um subespaço vetorial de V, ou seja, continua valendo o princípio de superposição.

É um fato bem conhecido (e cuja demonstração não vem ao caso) que esse espaço tem dimensão 2. Isso significa que uma solução qualquer da equação Ly=0 pode ser escrita em termos de duas funções linearmente independentes  $y_1$  e  $y_2$ :  $y(t)=c_1y_1(t)+c_2y_2(t)$ . Essa é dita a **solução geral** da equação. Veja que ela não determina uma única função, mas sim uma família de funções, com dois parâmetros "livres"  $c_1$  e  $c_2$ .

Frequentemente estamos interessados não na solução geral, mas em uma solução específica, que não dependa desses parâmetros, como é o caso das equações de movimento da mecânica clássica. Imagine um caso simples: uma bola é lançada verticalmente no instante  $t_0$  e queremos determinar sua trajetória subsequente, ou seja, uma função do tempo, y(t), que representa a posição da bola em cada instante. A trajetória é caracterizada por três fatores: a equação de movimento da bola (que traduz as forças que estão sendo aplicadas), e sua posição  $y(t_0)$  e velocidade  $\dot{y}(t_0)$  iniciais — essas duas são as **condições iniciais** do problema.

Apenas a equação de movimento (no caso da bola que cai sob a aceleração da gravidade, g, a equação de movimento seria  $\ddot{y}(t)=g$ ) não é suficiente para caracterizar completamente o movimento da bola. Todas as bolas lançadas verticalmente de qualquer altura, com qualquer velocidade inicial, têm essa mesma equação de movimento; a solução geral da equação de movimento contém todas as trajetórias possíveis para qualquer condição inicial. Para obter a trajetória da nossa bola específica, precisamos impor as condições iniciais sobre a solução geral.

Em geral, as condições iniciais são vínculos sobre a função e/ou suas derivadas em um ponto  $t_0$ , e o fato de usarmos a palavra *inicial* sugere fortemente que a região de interesse para a solução seja o conjunto dos instantes  $t > t_0$ . Isso não nos impede de encontrar a solução para  $t < t_0$ : poderíamos, no exemplo anterior do lançamento da bola, ter dado o instante em que a bola cai no chão (adotando o chão como y = 0) e a velocidade com que isso ocorre, e a partir daí encontrar o movimento anterior da bola.

Outro tipo de vínculo que se pode usar são as chamadas **condições de contorno** ou de **fronteira**, que se referem a vínculos em dois pontos — em boa parte dos casos, estamos interessados na solução num intervalo [a,b] e desejamos fixar a solução nos pontos a e b, que são a fronteira do intervalo. Por exemplo, poderíamos especificar a altura da qual a bola parte no instante  $t_0$  e a velocidade com que ela cai no chão no instante  $t_1$ , ainda na mesma situação do exemplo anterior, e a partir desses dados também é possível determinar a trajetória da bola entre o lançamento e a colisão com o chão.

Em qualquer um desses casos, para determinar uma solução do problema, precisamos de duas condições sobre a função e sua primeira derivada para definir os dois parâmetros  $c_1$  e  $c_2$ . Vimos que uma maneira de fazer isso é fornecer o valor da função e de sua primeira derivada num certo ponto  $t_0$ , ou seja, as condições iniciais:

$$y(t_0) = y_0$$
  
 $\dot{y}(t_0) = v_0$  (2.2)

Veja que isso realmente nos dá uma solução única para o problema. Impondo essas duas condições sobre a solução geral  $y(t) = c_1y_1(t) + c_2y_2(t)$ , temos

$$c_1 y_1(t_0) + c_2 y_2(t_0) = y_0$$
  

$$c_1 \dot{y}_1(t_0) + c_2 \dot{y}_2(t_0) = v_0$$
(2.3)

ou, em forma matricial,

$$\begin{bmatrix} y_1(t_0) & y_2(t_0) \\ \dot{y}_1(t_0) & \dot{y}_2(t_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ v_0 \end{bmatrix}$$
 (2.4)

Como  $y_1$  e  $y_2$  são linearmente independentes, as colunas da matriz do lado esquerdo são linearmente independentes, o que significa que a matriz pode ser invertida, dando uma solução única para  $c_1$  e  $c_2$ .

O determinante dessa matriz é chamado **wronskiano** do conjunto das duas funções  $\{y_1, y_2\}$  no ponto  $t_0$ , e denotado  $W(t_0) = y_1(t_0)\dot{y}_2(t_0) - \dot{y}_1(t_0)y_2(t_0)$ . A matriz em si é denominada matriz wronskiana, e denotada  $W(t_0)$ . Assim, invertendo a matriz, podemos escrever explicitamente quem são  $c_1$  e  $c_2$ :

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \frac{1}{W(t_0)} \begin{bmatrix} \dot{y}_2(t_0) & -y_2(t_0) \\ -\dot{y}_1(t_0) & y_1(t_0) \end{bmatrix} \begin{bmatrix} y_0 \\ v_0 \end{bmatrix}$$
 (2.5)

## ■ 2.1 Mais sobre equações homogêneas

Vamos agora construir uma propriedade bastante interessante do wronskiano. Para isso, vamos calcular sua derivada W'(t):

$$W(t) = y_1(t)\dot{y}_2(t) - \dot{y}_1(t)y_2(t)$$
(2.6)

$$W'(t) = y_1(t)\ddot{y}_2(t) - \ddot{y}_1(t)y_2(t) + \dot{y}_1(t)\dot{y}_2(t) - \dot{y}_1(t)\dot{y}_2(t)$$

$$W'(t) = y_1(t)\ddot{y}_2(t) - \ddot{y}_1(t)y_2(t)$$
(2.7)

Substituindo as segundas derivadas de acordo com a equação diferencial satisfeita por  $y_1$  e  $y_2$ , teremos

$$W'(t) = y_2(t)[p(t)\dot{y}_1(t) + q(t)y_1(t)] - y_1(t)[p(t)\dot{y}_2(t) + q(t)y_2(t)]$$
  
=  $p(t)[\dot{y}_1(t)y_2(t) - y_1(t)\dot{y}_2(t)]$ 

Identificando o termo entre colchetes como -W(t), temos que W satisfaz a equação diferencial

$$W'(t) = -p(t)W(t), (2.8)$$

cuja solução será

$$W(t) = W(t_0) \exp\left(-\int_{t_0}^t p(t') dt'\right).$$
 (2.9)

Essa expressão nos permite determinar o wronskiano diretamente a partir da equação diferencial, sem conhecer suas soluções. Uma das utilidades disso é encontrar uma segunda solução da equação diferencial quando já conhecemos uma das soluções: se W(t) e  $y_1(t)$  são conhecidos, (2.6) é uma equação diferencial linear de 1ª ordem para  $y_2(t)$ , que pode ser resolvida diretamente.

### ■ 2.2 Equações inomogêneas

Estudaremos agora as soluções da equação Ly = f, na qual L é o mesmo operador diferencial  $L = D^2 + p(t)D + q(t)$  e f(t) é outra função já conhecida. Nesse caso dizemos que a equação é inomogênea pois o lado direito da equação não é mais zero. Equações inomogêneas aparecem, por exemplo, quando um oscilador harmônico é forçado por uma força externa dependende do tempo, como um motor que faz a mola oscilar numa certa frequência. Ou, num caso mais simples, quando o oscilador está na vertical e portanto sob a ação da força constante da gravidade que aponta para baixo, na mesma direção do movimento da mola.

Certamente deve continuar havendo uma família de soluções y(t) para o problema Ly=f, pois, se pensarmos em um sistema físico, a trajetória deve depender de algum modo da condição inicial. No entanto, a função f atrapalha um pouco as coisas: perdemos o princípio de superposição; as soluções não formam mais um espaço vetorial. O que vale é um "princípio de superposição" um pouco diferente: se temos duas funções  $y_a$  e  $y_b$  tais que  $Ly_a=f_a$  e  $Ly_b=f_b$  (note que as funções do lado direito são diferentes!), então  $y=y_a+y_b$  é solução de  $Ly=f_a+f_b$ . Esta propriedade é útil para encontrarmos soluções "por partes": se a função f do lado direito da equação é uma soma  $f=\sum f_k$  e sabemos achar cada uma das soluções de  $Ly_k=f_k$ , podemos tomar como solução a soma  $y=\sum y_k$ .

Devemos olhar agora para outra coisa: a diferença entre duas soluções. Sejam  $y_a$  e  $y_b$  duas soluções quaisquer da equação Ly = f. Como o operador L é linear, temos

$$L(y_a - y_b) = Ly_a - Ly_b = f - f = 0$$

e portanto as duas soluções diferem por uma função que é solução do problema homogêneo associado. Ou seja, se conhecemos todos os elementos do espaço solução do problema homogêneo e uma solução particular (mas qualquer) do problema inomogêneo, podemos fabricar todas as soluções do problema inomogêneo.

Em suma, se conhecermos uma solução particular  $y_p$  de Ly = f e a base  $\{y_1, y_2\}$  do espaço solução de Ly = 0, a solução geral de Ly = f será dada por

$$y(t) = y_p(t) + c_1 y_1(t) + c_2 y_2(t)$$
(2.10)

Agora nosso problema fica reduzido a achar uma solução qualquer de Ly = f. Em alguns casos, dependendo das funções p e q e da forma de f, pode haver algumas técnicas simples para isso: em alguns casos é possível "chutar" um tipo de solução com coeficientes indeterminados e encontrar os coeficientes apropriados substituindo o chute na equação (isso é conhecido às vezes como m'etodo dos coeficientes indeterminados); em casos bem especiais, podemos fazer uma mudança de variável de modo a deixar a equação homogênea novamente.

Embora muitos dos casos que aparecem na prática possam ser resolvidos por técnicas bastante simples, há um método bem geral para achar uma solução particular. É o **método da variação dos parâmetros** (ou *método da variação das* 

constantes), que consiste em supor que a solução particular possa ser escrita na forma

$$y_p(t) = u_1(t)y_1(t) + u_2(t)y_2(t),$$
 (2.11)

ou seja, como se fosse uma solução da equação homogênea, com as constantes  $c_1$  e  $c_2$  trocadas por funções  $u_1(t)$  e  $u_2(t)$ . Essa condição não é muito restritiva, já que as funções  $u_1$  e  $u_2$  são, a princípio arbitrárias. Vamos substituir  $y_p$  na equação diferencial  $Ly_p = f$ , ou, explicitamente,

$$\ddot{y}_p(t) + p(t)\dot{y}_p(t) + q(t)y_p(t) = f(t), \tag{2.12}$$

para descobrir que condições essas funções  $u_1$  e  $u_2$  devem satisfazer. Calculemos primeiro as derivadas de  $y_p$ :

$$y_p = u_1 y_1 + u_2 y_2 \tag{2.13}$$

$$\dot{y}_p = u_1 \dot{y}_1 + u_2 \dot{y}_2 + \dot{u}_1 y_1 + \dot{u}_2 y_2 \tag{2.14}$$

$$\ddot{y}_p = u_1 \ddot{y}_1 + u_2 \ddot{y}_2 + \dot{u}_1 \dot{y}_1 + \dot{u}_2 \dot{y}_2 + (\dot{u}_1 y_1 + \dot{u}_2 y_2)' \tag{2.15}$$

Reagrupando alguns termos para calcular  $Ly_p = \ddot{y}_p + p\dot{y}_p + qy_p$ , obtemos

$$\ddot{y}_{p} + p\dot{y}_{p} + qy_{p} = u_{1}\underbrace{(\ddot{y}_{1} + p\dot{y}_{1} + qy_{1})}_{=0} + u_{2}\underbrace{(\ddot{y}_{2} + p\dot{y}_{2} + qy_{2})}_{=0} + p(\dot{u}_{1}y_{1} + \dot{u}_{2}y_{2}) + (\dot{u}_{1}y_{1} + \dot{u}_{2}y_{2})' + (\dot{u}_{1}\dot{y}_{1} + \dot{u}_{2}\dot{y}_{2})$$
(2.16)

Os dois termos destacados se anulam pois  $y_1$  e  $y_2$  são soluções da equação homogênea. Em virtude da equação diferencial, o lado direito deve ser igual a f:

$$p(\dot{u}_1y_1 + \dot{u}_2y_2) + (\dot{u}_1y_1 + \dot{u}_2y_2)' + \dot{u}_1\dot{y}_1 + \dot{u}_2\dot{y}_2 = f$$
(2.17)

Note que temos duas incógnitas  $u_1$  e  $u_2$ , mas nosso único vínculo, a equação diferencial, só nos dá uma equação nessas incógnitas. Para determinar  $u_1$  e  $u_2$  unicamente, precisamos de um outro vínculo. Veja que (2.17) nos tenta a fazer uma escolha muito conveniente: anular o termo entre parênteses que aparece duas vezes na equação. Essa é uma escolha arbitrária que, analogamente a uma escolha de calibre para os potenciais eletromagnéticos, não altera a realidade da nossa solução, e portanto é uma escolha lícita. Adotando essa condição, temos então duas equações diferenciais para  $u_1$  e  $u_2$ , sendo a primeira devida à nossa "escolha de calibre" e a segunda devida a (2.17):

$$y_1(t)\dot{u}_1(t) + y_2(t)\dot{u}_2(t) = 0 (2.18)$$

$$\dot{y}_1(t)\dot{u}_1(t) + \dot{y}_2(t)\dot{u}_2(t) = f(t) \tag{2.19}$$

ou, então, em forma matricial,

$$\begin{bmatrix} y_1(t) & y_2(t) \\ \dot{y}_1(t) & \dot{y}_2(t) \end{bmatrix} \begin{bmatrix} \dot{u}_1(t) \\ \dot{u}_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ f(t) \end{bmatrix}$$
 (2.20)

Ao lado esquerdo temos a matriz wronskiana W(t) que, como já vimos anteriormente, é invertível e tem seu determinante denotado por W(t). Assim, teremos

$$\begin{bmatrix} \dot{u}_1(t) \\ \dot{u}_2(t) \end{bmatrix} = \frac{1}{W(t)} \begin{bmatrix} \dot{y}_2(t) & -y_2(t) \\ -\dot{y}_1(t) & y_1(t) \end{bmatrix} \begin{bmatrix} 0 \\ f(t) \end{bmatrix} = \frac{f(t)}{W(t)} \begin{bmatrix} -y_2(t) \\ y_1(t) \end{bmatrix}$$
(2.21)

Para encontrar  $u_1(t)$  e  $u_2(t)$  explicitamente, basta integrar o lado direito da equação. Note que a adição de uma constante arbitrária de integração a qualquer das  $u_j(t)$  resulta na adição a  $y_p(t)$  de um múltiplo das soluções da equação homogênea, e portanto não nos dá nenhuma informação nova. Escolhendo a constante de integração tal que a solução particular se anule no instante inicial, teremos

$$u_1(t) = -\int_{t_0}^t \frac{y_2(s)}{W(s)} f(s) ds \qquad u_2(t) = \int_{t_0}^t \frac{y_1(s)}{W(s)} f(s) ds \qquad (2.22)$$

E, portanto, teremos como solução particular

$$y_p(t) = \int_{t_0}^t \frac{1}{W(s)} \Big[ y_1(s)y_2(t) - y_1(t)y_2(s) \Big] f(s) ds$$
 (2.23)

Definimos como G(t, s) e denominamos **função de Green** o termo do integrando que multiplica f, ou seja,

$$G(t,s) = \frac{1}{W(s)} \Big[ y_1(s)y_2(t) - y_1(t)y_2(s) \Big], \tag{2.24}$$

de modo que a solução particular adquire a forma

$$y_p(t) = \int_{t_0}^t G(t, s) f(s) ds$$
 (2.25)

Note que essa solução particular, além de se anular no instante inicial, tem derivada nula no instante inicial: levando em conta a condição de calibre, a expressão de  $\dot{y}_p$  em (2.14) torna-se

$$\dot{y}_p(t) = u_1(t)\dot{y}_1(t) + u_2(t)\dot{y}_2(t), \tag{2.26}$$

que se anula em  $t = t_0$  por conta das integrais, em (2.22), que definem  $u_1$  e  $u_2$ .

A luz da expressão em (2.25) para  $y_p(t)$ , fica mais claro o papel da função de Green: ela indica o quanto a presença da função f no instante s afeta a solução no instante t. Note, porém, que, se estivermos resolvendo o problema para  $t < t_0$ , essa interpretação gera um problema de causalidade: a solução no instante t é afetada pela função f nos instantes s > t, ou seja, ela "recebe informação do futuro"!

Com isso, podemos achar a solução do problema completo

$$Ly = f y(t_0) = y_0 \dot{y}(t_0) = v_0$$

simplesmente aplicando as condições iniciais à solução geral do problema homogêneo  $(y_h(t) = c_1y_1(t) + c_2y_2(t))$  e somando-lhe a solução particular  $y_p(t)$ . Utilizando a expressão dos  $c_i$  de (2.5), teremos

$$y_h(t) = y_0 \left[ \frac{y_1(t)\dot{y}_2(t_0) - \dot{y}_1(t_0)y_2(t)}{W(t_0)} \right] + v_0 \left[ \frac{y_1(t_0)y_2(t) - y_1(t)y_2(t_0)}{W(t_0)} \right]$$
(2.27)

Observe que nessa equação também podemos enxergar a presença da função de Green. O segundo termo entre colchetes é exatamente a função de Green  $G(t, t_0)$ . O primeiro termo está relacionado à derivada da função de Green: veja que

$$\frac{\partial G}{\partial s}(t,s) = -\frac{W'(s)}{W(s)}G(t,s) + \frac{1}{W(s)}\left[\dot{y}_1(s)y_2(t) - y_1(t)\dot{y}_2(s)\right]$$
(2.28)

$$\frac{\partial G}{\partial t}(t,s) = \frac{1}{W(s)} \Big[ y_1(s)\dot{y}_2(t) - \dot{y}_1(t)y_2(s) \Big]$$
 (2.29)

e, portanto, podemos escrever  $y_h(t)$  de duas maneiras diferentes:

$$y_h(t) = -y_0 \left[ \frac{\partial G}{\partial s}(t, t_0) + \frac{W'(t_0)}{W(t_0)} G(t, t_0) \right] + v_0 G(t, t_0)$$
 (2.30)

$$y_h(t) = \frac{W(t)}{W(t_0)} \left[ y_0 \frac{\partial G}{\partial t}(t_0, t) + v_0 G(t_0, t) \right]$$
 (2.31)

Adotando a interpretação causal da função de Green, vemos que a primeira expressão parece se referir a instantes posteriores a  $t_0$ , e a segunda a instantes anteriores a  $t_0$ .

### Cálculo da função de Green: oscilador harmônico

Calcularemos a função de Green para a equação diferencial do oscilador harmônico, que é uma equação diferencial linear de 2<sup>a</sup> ordem, do tipo

$$\ddot{y} + 2\gamma\dot{y} + \omega_0^2 y = 0 \tag{2.32}$$

Há três casos de interesse a analisar, de acordo com as raízes do polinômio característico dessa equação:

1. Quando  $\omega_0 > \gamma$ , temos a situação de **amortecimento subcrítico**: o polinômio tem duas raízes imaginárias conjugadas,  $\lambda_1 = -\gamma - i\omega$  e  $\lambda_2 = -\gamma + i\omega$ , sendo  $\omega = \sqrt{\omega_0^2 - \gamma^2}$ . As funções  $y_1(t) = e^{\lambda_1 t}$  e  $y_2(t) = e^{\lambda_2 t}$  constituem uma base para o espaço de soluções. Assim, temos

$$W(t) = \begin{vmatrix} e^{\lambda_1 t} & e^{\lambda_2 t} \\ \lambda_1 e^{\lambda_1 t} & \lambda_2 e^{\lambda_2 t} \end{vmatrix} = (\lambda_2 - \lambda_1) e^{(\lambda_1 + \lambda_2)t}$$

$$G(t, s) = \frac{e^{-(\lambda_1 + \lambda_2)s}}{\lambda_2 - \lambda_1} \left[ e^{\lambda_1 s + \lambda_2 t} - e^{\lambda_1 t + \lambda_2 s} \right] = \frac{1}{\lambda_2 - \lambda_1} \left[ e^{\lambda_2 (t - s)} - e^{\lambda_1 (t - s)} \right]$$

Substituindo os valores de  $\lambda_1$  e  $\lambda_2$ , teremos

$$G(t,s) = e^{-\gamma(t-s)} \frac{e^{i\omega(t-s)} - e^{-i\omega(t-s)}}{2i\omega}$$

$$G(t,s) = \frac{1}{\omega} e^{-\gamma(t-s)} \operatorname{sen}[\omega(t-s)]$$

2. Quando  $\omega_0 < \gamma$ , temos a situação de **amortecimento supercrítico**: o polinômio tem duas raízes reais,  $\lambda_1 = -\gamma - \beta$  e  $\lambda_2 = -\gamma + \beta$ , sendo  $\beta = \sqrt{\gamma^2 - \omega_0^2}$ . Continuamos tendo uma base gerada por  $y_1(t) = e^{\lambda_1 t}$  e  $y_2(t) = e^{\lambda_2 t}$ , e, aproveitando as contas do caso anterior,

$$G(t,s) = e^{-\gamma(t-s)} \frac{e^{\beta(t-s)} - e^{-\beta(t-s)}}{2\beta}$$

$$G(t,s) = \frac{1}{\beta} e^{-\gamma(t-s)} \operatorname{senh}[\beta(t-s)]$$

3. Quando  $\omega_0 = \gamma$ , temos a situação de **amortecimento crítico**: o polinômio tem uma raiz real dupla  $-\gamma$ . A solução  $y_1(t) = e^{-\gamma t}$  não mais gera o espaço de soluções; devemos completar a base com  $y_2(t) = te^{-\gamma t}$ , e teremos

$$W(t) = \begin{vmatrix} e^{-\gamma t} & te^{-\gamma t} \\ -\gamma e^{-\gamma t} & (1 - \gamma t)e^{-\gamma t} \end{vmatrix} = e^{-2\gamma t}$$
$$G(t, s) = e^{2\gamma t} \left[ te^{-\gamma (t+s)} - se^{-\gamma (t+s)} \right] = (t - s)e^{-\gamma (t-s)}$$
$$G(t, s) = (t - s)e^{-\gamma (t-s)}$$

### ■ 2.3 Equações inomogêneas de 1ª ordem revisitadas

Seja o operador diferencial L = D - p(t). Obtivemos anteriormente, para o problema Ly = f, a solução (1.6):

$$y(t) = Ce^{P(t)} + e^{P(t)} \int_{t_0}^t e^{-P(s)} f(s) ds$$

Essa solução tem a mesma forma  $y(t) = y_h(t) + y_p(t)$  da solução que construímos para as equações de 2ª ordem: o primeiro termo,  $y_h(t)$ , é a solução (geral) da equação homogênea  $Ly_h = 0$ ; o segundo,  $y_p(t)$ , é uma solução particular (arbitrária) de  $Ly_p = f$ .

Se considerarmos a condição inicial  $y(t_0) = y_0$ , a forma de solução coincidirá inclusive em termos de condições iniciais. Com a escolha (arbitrária) do extremo inferior  $t_0$  da integral em (1.6), a solução particular  $y_p(t)$  se anula no instante inicial. Se também escolhermos P(t) como a primitiva que se anula no instante  $t_0$ , ou seja,

$$P(t) = \int_{t_0}^t p(s) \, ds,$$

a exponencial  $e^{P(t)}$  valerá 1 no instante  $t_0$ , fazendo com que a solução homogênea  $y_h(t)$  tenha o valor C no instante  $t_0$ , e portanto podemos identificar C com  $y_0$ .

Outra maneira de obter a solução, que nada mais é que o método da variação dos parâmetros para ordem 1, é supor que a solução particular da equação inomogênea tenha a forma  $y_p(t) = u(t)y_h(t)$ , sendo  $y_h(t)$  solução da equação homogênea e u(t) uma função arbitrária a determinar. Substituindo esse  $ansatz^2$  na equação diferencial, teremos

$$y_p = uy_h$$

$$y'_p = u'y_h + uy'_h$$

$$Ly_p = y'_p - py_p = u'y_h + u\underbrace{(y'_h - py_h)}_{=0} = f,$$

sendo o termo destacado nulo em virtude da equação diferencial  $Ly_h = 0$ . Assim, u(t) satisfaz a equação diferencial

$$u'(t)y_h(t) = f(t),$$
 (2.33)

<sup>&</sup>lt;sup>2</sup>Ansatz, palavra alemã que significa tentativa, geralmente indica uma tentativa de solução (um "chute") que, substituída na equação, revela (ou não) ser o resultado correto e as condições nas quais aquela é realmente a solução.

cuja solução é imediata:

$$u(t) = \int \frac{f(t)}{y_h(t)} dt \tag{2.34}$$

A solução particular é, então, dada por

$$y_p(t) = y_h(t) \int_{t_0}^t \frac{f(s)}{y_h(s)} ds,$$

ou, usando a expressão explícita para  $y_h(t) = e^{P(t)}$ ,

$$y_p(t) = e^{P(t)} \int_{t_0}^t e^{-P(s)} f(s) ds,$$
 (2.35)

que reproduz a solução encontrada pelo outro método. Podemos reescrever essa solução de forma a evidenciar uma função de Green para o problema de 1ª ordem:

$$G(t,s) = e^{P(t)-P(s)} = \exp\left(\int_{s}^{t} p(t') dt'\right)$$
 (2.36)

$$y_p(t) = \int_{t_0}^t G(t, s) f(s) ds$$
 (2.37)

# $oldsymbol{3}$ Equações de ordem n

Considere uma equação diferencial linear de ordem n, com coeficientes constantes e homogênea, da forma

$$y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_1y'(t) + a_0y(t) = 0$$
(3.1)

Em termos de operadores diferenciais agindo sobre a função y, essa equação assume a seguinte forma (Ly)(t) = 0:

$$[(D^{n} + a_{n-1}D^{n-1} + \dots + a_{1}D + a_{0}I)y](t) = 0,$$
(3.2)

na qual o operador L que age sobre a função y é um polinômio em D, ou seja, L = p(D), com  $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ . Esse polinômio é denominado **polinômio característico** da equação diferencial. Podemos fatorar (em  $\mathbb{C}$ ) esse polinômio em n fatores lineares, correspondendo a n raízes complexas (não necessariamente distintas); como esse polinômio é mônico (o coeficiente do termo de maior grau é 1), podemos escrever essa fatoração como

$$p(x) = (x - \lambda_1)(x - \lambda_2) \cdots (x - \lambda_n),$$

na qual  $\lambda_1, \ldots, \lambda_n$  são as raízes (não necessariamente distintas) de p. Assim, a equação diferencial Ly=0 pode ser escrita na forma

$$(D - \lambda_n I) \cdots (D - \lambda_2 I)(D - \lambda_1 I)y = 0$$
(3.3)

(Observe que a fatoração só pode ser feita quando os coeficientes são constantes; caso contrário, o operador diferencial também agiria sobre os coeficientes!)

A fatoração da equação permite que trabalhemos com ela muito mais facilmente. Vamos definir as funções

$$x_{1} = y$$

$$x_{2} = \dot{x}_{1} - \lambda_{1}x_{1}$$

$$x_{3} = \dot{x}_{2} - \lambda_{2}x_{2}$$

$$\vdots$$

$$x_{n} = \dot{x}_{n-1} - \lambda_{n-1}x_{n-1}$$
(3.4)

Veja que essas funções aparecem naturalmente na equação diferencial:

$$(D - \lambda_n I) (D - \lambda_{n-1} I) \cdots (D - \lambda_2 I) \underbrace{(D - \lambda_1 I) \underbrace{y}_{x_2}}_{x_3} = 0$$

Dessa maneira, convertemos a equação de ordem n em n equações de ordem 1:

$$\dot{x}_1 = \lambda_1 x_1 + x_2 
\dot{x}_2 = \lambda_2 x_2 + x_3 
\vdots 
\dot{x}_{n-1} = \lambda_{n-1} x_{n-1} + x_n 
\dot{x}_n = \lambda_n x_n$$
(3.5)

Esse sistema pode ser resolvido com facilidade: da última equação, de 1ª ordem e homogênea,  $x_n$  sai quase de graça; substituindo  $x_n$  na penúltima equação, temos uma equação de 1ª ordem inomogênea, cuja solução também é simples. Podemos assim resolver as n equações de baixo para cima, substituindo o resultado de cada uma na anterior, até chegar à primeira, da qual sairá a função procurada,  $y \equiv x_1$ .

Observe nesse sistema de equações que, a cada equação resolvida, ganhamos uma constante de integração (lembre-se do método de resolução de equações de  $1^{\rm a}$  ordem), de modo que a solução final  $x_1 \equiv y$  dependerá de n constantes arbitrárias; essa será a solução geral da nossa equação diferencial de ordem n. Constatamos, então, que o espaço de soluções da equação Ly=0 tem dimensão n, coincidindo (como não poderia deixar de ser) com o que já obtivemos para equações de ordem 1 e 2.

Note que, caso a equação em (3.1) fosse inomogênea, ou seja, tivéssemos a equação Ly = f para uma função f(t) conhecida, poderíamos adotar o mesmo método de resolução, com a diferença de que a última equação de (3.5) também seria inomogênea, a saber,  $\dot{x}_n = \lambda_n x_n + f$ .

## ■ 3.1 Exemplo: 2<sup>a</sup> ordem

Para exemplificar, vamos resolver dessa maneira as equações diferenciais lineares de  $2^a$  ordem com coeficientes constantes  $(\ddot{y}+a\dot{y}+by=0)$ . Se o polinômio característico  $p(x)=x^2+ax+b$  tem as duas raízes complexas  $\lambda_1$  e  $\lambda_2$  (que se relacionam com a e b pela conhecida fórmula de Bhaskara), podemos escrever a equação na forma

fatorada  $(D - \lambda_2)(D - \lambda_1)y = 0$ . Definindo  $x_1 = y$  e  $x_2 = \dot{x_1} - \lambda_1 x_1$ , teremos o sistema de duas equações

$$\dot{x}_1 = \lambda_1 x_1 + x_2 
\dot{x}_2 = \lambda_2 x_2$$
(3.6)

Resolvendo a segunda equação, teremos  $x_2(t) = c_2 e^{\lambda_2 t}$ . A primeira equação, inomogênea, tem sua solução dada pela expressão (1.7):

$$x_1(t) = c_1 e^{\lambda_1 t} + e^{\lambda_1 t} \int_{t_0}^t e^{-\lambda_1 s} x_2(s) \, ds = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_1 t} \int_{t_0}^t e^{(\lambda_2 - \lambda_1) s} \, ds \tag{3.7}$$

A integral do lado direito de (3.7) é muito simples, mas é necessário dividi-la em duas situações: caso as raízes  $\lambda_1$  e  $\lambda_2$  sejam diferentes e caso sejam iguais.

Caso as raízes sejam iguais (abandonaremos o índice neste caso e escreveremos  $\lambda_1 = \lambda_2 \equiv \lambda$ ), o integrando em (3.7) é constante e igual a 1; logo, a solução para  $x_1(t)$  será

$$x_1(t) = c_1 e^{\lambda t} + c_2 e^{\lambda t} (t - t_0)$$

e, renomeando as constantes  $(C_1 = c_1 - c_2 t_0, C_2 = c_2)$ , teremos a solução geral escrita na forma

$$y(t) = C_1 e^{\lambda t} + C_2 t e^{\lambda t} \tag{3.8}$$

Ou seja, quando as duas raízes do polinômio característico coincidem (e são iguais a  $\lambda$ ), podemos tomar como base o conjunto das funções  $\{e^{\lambda t}, te^{\lambda t}\}$ .

Caso  $\lambda_1 \neq \lambda_2$ , teremos

$$x_1(t) = c_1 e^{\lambda_1 t} + c_2 e^{\lambda_1 t} \frac{1}{\lambda_2 - \lambda_1} \left[ e^{(\lambda_2 - \lambda_1)t} - e^{(\lambda_2 - \lambda_1)t_0} \right]$$

Renomeando as constantes convenientemente  $(C_2 = \frac{c_2}{\lambda_2 - \lambda_1})$  e  $C_1 = c_1 - C_2 e^{(\lambda_2 - \lambda_1)t_0}$ , a solução adquire a forma final

$$y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}, (3.9)$$

que nos diz que uma base de soluções para a equação diferencial é  $\{e^{\lambda_1 t}, e^{\lambda_2 t}\}$ , em que  $\lambda_1$  e  $\lambda_2$  são as raízes do polinômio característico da equação.

## Outras representações do espaço de soluções

Ainda na situação em que as raízes são distintas, é interessante analisar o caso em que elas têm uma parte imaginária; caso os coeficientes da equação sejam reais (grande maioria dos casos), as raízes são necessariamente conjugadas, ou seja, podem ser escritas como  $\lambda_1 = \gamma - i\omega$  e  $\lambda_2 = \gamma + i\omega$ , com  $\gamma$  e  $\omega$  reais. Nesse caso, a solução geral pode ser escrita como

$$y(t) = e^{\gamma t} \left( C_1 e^{-i\omega t} + C_2 e^{i\omega t} \right)$$

Lembrando da fórmula de Euler,  $e^{i\theta} = \cos \theta + i \sin \theta$ , teremos

$$y(t) = e^{\gamma t} \left[ (C_1 + C_2) \cos \omega t + (C_2 - C_1) \sin \omega t \right]$$

e, renomeando  $A = C_1 + C_2$  e  $B = C_2 - C_1$ , a solução pode ser escrita como

$$y(t) = e^{\gamma t} \left( A \cos \omega t + B \sin \omega t \right). \tag{3.10}$$

Isto nos dá uma outra base de soluções para o problema:  $\{e^{\gamma t}\cos\omega t, e^{\gamma t}\sin\omega t\}$ . Essa base é geralmente usada no problema do oscilador harmônico, tanto no caso subamortecido, quanto no caso sem amortecimento, no qual as raízes são puramente imaginárias ( $\gamma = 0$ ) e a base se reduz à conhecida  $\{\cos\omega t, \sin\omega t\}$ .

### ■ 3.2 O método da variação dos parâmetros, novamente

Vamos considerar uma equação diferencial linear de ordem n, não necessariamente com coeficientes constantes, e inomogênea:

$$y^{(n)}(t) + a_{n-1}(t)y^{(n-1)}(t) + \dots + a_1(t)y'(t) + a_0(t)y(t) = f(t), \tag{3.11}$$

que também pode, de maneira equivalente, ser expressa como Ly = f, para o operador  $L = D^n + a_{n-1}(t)D^{n-1} + \cdots + a_1(t)D + a_0(t)$ . Suporemos conhecida uma base  $\{y_1, \ldots, y_n\}$  do espaço de soluções de Ly = 0. Nosso objetivo aqui será construir um método de encontrar uma solução particular da equação Ly = f, o que, como já vimos, permite que encontremos todas as soluções da equação. (Vimos isso no contexto de equações de  $2^a$  ordem, mas o raciocínio utilizado para obtermos essa conclusão não dependia da ordem da equação com a qual estávamos tratando.)

A solução geral do problema homogêneo associado é do tipo  $y(t) = c_1 y_1(t) + \cdots + c_n y_n(t)$ . Procuraremos, então, soluções particulares da forma

$$y_p(t) = u_1(t)y_1(t) + \dots + u_n(t)y_n(t) = \sum_{j=1}^n u_j(t)y_j(t),$$
 (3.12)

na qual  $u_1, \ldots, u_n$  são funções, a princípio arbitrárias. Nossa "escolha de calibre" desta vez será um pouco mais complicada, pois, mais uma vez, a equação diferencial só nos dá um vínculo entre as n funções  $u_1, \ldots, u_n$ ; precisamos de mais n-1 vínculos para termos um sistema de equações determinado. Vamos exigir, analogamente ao caso de  $2^a$  ordem, que as derivadas de  $y_p$  até ordem n-1 tenham a forma

$$y_p^{(k)}(t) = \sum_{j=1}^n u_j(t) y_j^{(k)}(t), \ 1 \le k \le n - 1, \tag{3.13}$$

ou seja, proibiremos as derivadas de  $u_j$  de figurar na expressão das derivadas de  $y_p$ . Calculando sucessivamente as derivadas de  $y_p$ , teremos

$$y_p'(t) = \sum_{j=1}^n u_j'(t)y_j(t) + \sum_{j=1}^n u_j(t)y_j'(t),$$

que nos leva a anular a primeira somatória. Continuando a derivada (apenas para a segunda somatória), temos

$$y_p''(t) = \sum_{j=1}^n u_j'(t)y_j'(t) + \sum_{j=1}^n u_j(t)y_j''(t),$$

que nos leva, novamente, a anular a primeira somatória. Perceba que assim sucede até o final:

$$y_p^{(n-1)} = \frac{d}{dt} y_p^{(n-2)} = \frac{d}{dt} \left[ \sum_{j=1}^n u_j y_j^{(n-2)} \right] = \underbrace{\sum_{j=1}^n u_j' y_j^{(n-2)}}_{=0} + \sum_{j=1}^n u_j y_j^{(n-1)}$$
$$y_p^{(n)} = \sum_{j=1}^n u_j' y_j^{(n-1)} + \sum_{j=1}^n u_j y_j^{(n)}$$
(3.14)

Resumindo, as condições que adotamos até aqui foram as seguintes:

$$\sum_{j=1}^{n} u'_{j} y_{j} = 0, \quad \sum_{j=1}^{n} u'_{j} y'_{j} = 0, \quad \dots, \quad \sum_{j=1}^{n} u'_{j} y_{j}^{(n-2)} = 0$$

Agora, substituindo  $y_p$  e suas derivadas na equação diferencial, teremos

$$y_p^{(n)} + \sum_{k=1}^{n-1} a_k y_p^{(k)} = f$$

$$\sum_{j=1}^n u_j' y_j^{(n-1)} + \sum_{j=1}^n u_j y_j^{(n)} + \sum_{k=1}^{n-1} a_k \sum_{j=1}^n u_j y_j^{(k)} = f$$

$$\sum_{j=1}^n u_j' y_j^{(n-1)} + \sum_{j=1}^n u_j \underbrace{\left[ y_j^{(n)} + \sum_{k=1}^{n-1} a_k y_j^{(k)} \right]}_{=0} = f$$

O termo destacado na última equação anula-se pois ele corresponde justamente ao operador L aplicado a  $y_j$ , e todos os  $y_j$  são soluções da equação homogênes  $Ly_j = 0$ . Agora sim temos n equações independentes que permitem encontrar os  $u'_j$ :

$$\sum_{j=1}^{n} u'_{j} y_{j} = 0, \quad \sum_{j=1}^{n} u'_{j} y'_{j} = 0, \quad \dots, \quad \sum_{j=1}^{n} u'_{j} y_{j}^{(n-2)} = 0, \quad \sum_{j=1}^{n} u'_{j} y_{j}^{(n-1)} = f \quad (3.15)$$

Ou, em forma matricial,

$$\begin{bmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)} & y_2^{(n-2)} & \cdots & y_n^{(n-2)} \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{bmatrix} \begin{bmatrix} u'_1 \\ u'_2 \\ \vdots \\ u'_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ f \end{bmatrix}$$
(3.16)

A matriz que aparece do lado esquerdo da equação é a matriz wronskiana  $\mathbb{W}(t)$  relativa ao conjunto de funções  $\{y_1, \ldots, y_n\}$ ; como esse conjunto é uma base (portanto é linearmente independente), a matriz possui inversa, e podemos usá-la para isolar o vetor coluna  $U' := (u'_1, \ldots, u'_n)$ :

$$U' = (u'_1, \dots, u'_n) = \mathbb{W}^{-1}(0, \dots, 0, f)$$

A multiplicação pelo vetor coluna (0, ..., 0, f) extrai a última coluna da inversa (multiplicada por f). Vamos encontrá-la pela fórmula da inversa em termos dos cofatores:

$$A^{-1} = \frac{1}{\det A} (\cot A)^T.$$

A última coluna da inversa será formada pelos cofatores da última linha de W (note a transposição na fórmula!), ou seja, os elementos  $(cof W)_{nj}$ ). O elemento  $(cof W)_{nj}$  será o determinante da matriz obtida de W eliminando-se a última linha e a j-ésima coluna, multiplicado pelo sinal  $(-1)^{n+j}$  (que também pode ser escrito como  $(-1)^{n-j}$ ). Denotemos esse determinante por  $W_j$ . Note que esse determinante

equivale ao wronskiano das n-1 funções que restam quando se retira  $y_j$  do conjunto  $\{y_1, \ldots, y_n\}$ . Assim, teremos (lembre-se de que det  $\mathbb{W} = W$ )

$$U' = \frac{f}{W} ((-1)^{n-1} W_1, (-1)^{n-2} W_2, \dots, -W_{n-1}, W_n)$$

ou, componente por componente,

$$u_j'(t) = (-1)^{n-j} \frac{W_j(t)}{W(t)} f(t)$$
(3.17)

Essa equação pode ser integrada diretamente para obtermos as funções  $u_j(t)$ :

$$u_j(t) = (-1)^{n-j} \int_{t_0}^t \frac{W_j(s)}{W(s)} f(s) \, ds \tag{3.18}$$

ou para obtermos a solução particular em sua forma final:

$$y_p(t) = \sum_{j=1}^n u_j(t)y_j(t) = \sum_{j=1}^n (-1)^{n-j}y_j(t) \int_{t_0}^t \frac{W_j(s)}{W(s)} f(s) ds$$
 (3.19)

Com isso, podemos escrever a solução particular em termos de uma função de Green:

$$y_p(t) = \int_{t_0}^t G(t, s) f(s) ds$$
 (3.20)

$$G(t,s) = \frac{(-1)^n}{W(s)} \sum_{j=1}^n (-1)^j y_j(t) W_j(s)$$
(3.21)

### ■ 3.3 A exponencial de uma matriz e a forma canônica de Jordan

## ♦ Esta seção ainda está incompleta!

Com as funções  $x_1, \ldots, x_n$  que definimos, transformamos uma equação diferencial de ordem n (para a função  $y \equiv x_1$ ) num sistema de n equações de primeira ordem (3.5) envolvendo as funções  $x_1, \ldots, x_n$ . Esse sistema pode ser escrito de forma matricial: se definirmos o vetor coluna  $X = (x_1, \ldots, x_n)$ , o sistema pode ser escrito de maneira matricial:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & 1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 1 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & 0 & \lambda_{n-1} & 1 \\ 0 & \cdots & & 0 & \lambda_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \tag{3.22}$$

representada abreviadamente como  $\dot{X}=AX$ , em que A é a matriz  $(n\times n)$  em (3.22).

Repare na semelhança entre a equação  $\dot{X}=AX$  e as equações de 1ª ordem que já vimos:  $\dot{y}=\lambda y$ , cuja solução era do tipo  $y(t)=y_0e^{\lambda t}$ . Seria possível definir uma matriz " $e^{At}$ " de forma que a solução para a equação matricial seja  $X(t)=e^{At}X_0$ , na qual  $X_0$  é um vetor coluna?

A resposta é afirmativa: dada uma matriz A, definimos a exponencial  $e^{At}$  pela mesma série que define a exponencial de um número complexo:

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad \Rightarrow \quad e^{At} = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^n = I + \sum_{n=1}^{\infty} \frac{t^n}{n!} A^n$$
 (3.23)

Para mostrar que isso realmente fornece a solução, precisamos primeiro verificar que essa série realmente faz sentido (isto é, se ela converge); não é difícil demonstrar esse fato, mas a demonstração não é muito interessante do ponto de vista dos nossos objetivos. Vamos apenas verificar que  $X(t) = e^{At}X_0$  satisfaz a equação  $\dot{X} = AX$ . Derivando termo a termo, temos

$$X(t) = e^{At} X_0 = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^n X_0 = X_0 + \sum_{n=1}^{\infty} \frac{t^n}{n!} A^n X_0$$
$$\dot{X}(t) = \sum_{n=1}^{\infty} \frac{nt^{n-1}}{n!} A^n X_0 = A\left(\sum_{n=1}^{\infty} \frac{t^{n-1}}{(n-1)!} A^{n-1} X_0\right) = A\sum_{n=0}^{\infty} \frac{t^n}{n!} A^n X_0 = AX(t)$$

Calcular a exponencial de uma matriz em geral não é uma tarefa fácil. No entanto, há vários casos em que a conta se simplifica bastante:

1. Se A é **diagonal**,  $A = \text{diag}(\lambda_1, \dots, \lambda_n)$ , suas potências  $A^k$  são facilmente calculáveis: simplesmente se eleva cada elemento da diagonal à potência k. Assim, na expansão de  $e^A$  para cada elemento  $\lambda_j$  da diagonal, aparecerá exatamente a série da exponencial  $e^{\lambda_j}$ ; como consequência, teremos

$$e^A = \operatorname{diag}(e^{\lambda_1}, \dots, e^{\lambda_n}).$$

2. Ainda que A não seja diagonal, mas seja diagonalizável, ou seja, caso exista uma matriz P invertível tal que  $P^{-1}AP = B$  seja diagonal, a exponencial de A é bastante simples. Ao calcular uma potência  $A^k$ , teremos

$$A^{k} = (PBP^{-1})^{k} = \underbrace{PBP^{-1} \cdot PBP^{-1} \cdots PBP^{-1}}_{k \text{ veres}} = PB^{k}P^{-1},$$

pois os fatores  $P^{-1}P$  que aparecem no meio da expansão se cancelam. Dessa maneira, na exponencial de A, os fatores P e  $P^{-1}$  aparecem em volta de todos os termos, de modo que podem ser colocados em evidência, restando no meio a exponencial de B, que é facilmente calculada pois B é diagonal:

$$e^A = Pe^B P^{-1}.$$

3. Se A é **nilpotente**, ou seja, existe algum número r tal que  $A^r = 0$  (a matriz tem alguma potência igual à matriz nula), então a série que define a exponencial  $e^A$  pára na última potência não-nula de A: se definirmos r como o menor inteiro tal que  $A^r = 0$  (r é denominado *indice de nilpotência* de A), então a série é truncada no termo de  $A^{r-1}$ . Com isso, só precisamos calcular as primeiras r-1 potências de A:

$$e^{A} = I + A + \frac{1}{2!}A^{2} + \dots + \frac{1}{(r-1)!}A^{r-1}.$$

4. Se todas as matrizes fossem diagonalizáveis ou nilpotentes, nossos problemas estariam resolvidos; mas existem matrizes que não são nem diagonalizáveis nem nilpotentes. Porém, toda matriz pode ser escrita como a soma de uma matriz M diagonalizável (em  $\mathbb C$ ) com uma matriz N nilpotente, como consequência do teorema da **decomposição de Jordan**. Esse teorema também afirma algo bem importante: essas duas matrizes comutam, ou seja, MN = NM. Com isso, dada uma matriz A em sua decomposição de Jordan A = M + N, temos

$$e^A = e^{M+N} = e^M e^N,$$

e tanto  $e^M$  quando  $e^N$  são calculáveis de acordo com os itens anteriores. Onde entra o fato de que M e N comutam? Na passagem  $e^{M+N}=e^Me^N$ , que fizemos silenciosamente — ela só pode ser feita quando M e N comutam. Caso contrário, teríamos também (pela comutatividade da soma)  $e^Me^N=e^{M+N}=e^{N+M}=e^Ne^M$ , o que não vale em geral para matrizes que não comutam!

Veja que a matriz A do nosso sistema em (3.22) tem uma forma muito simples: na diagonal principal aparecem as raízes do polinômio característico, a diagonal acima da principal é preenchida por uns, e as entradas restantes são nulas. Podemos decompô-la como soma de duas matrizes: uma matriz diagonal  $M = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$  e uma matriz N que tem a supradiagonal preenchida por uns (com o restante das entradas nulo). Veja que temos A = M + N com M diagonal e N nilpotente; no entanto, essa  $n\tilde{ao}$  é a forma da decomposição de Jordan, pois M e N  $n\tilde{ao}$  comutam! É fácil verificar que MN é uma matriz com os elementos  $(\lambda_1, \ldots, \lambda_{n-1})$  na supradiagonal; NM tem na supradiagonal os elementos  $(\lambda_2, \ldots, \lambda_n)$ . Elas só coincidem caso todos os  $\lambda_i$  sejam iguais!

Esta seção ainda está incompleta!