第三章 运算方法与运算器

- 运算器用于数值运算及加工处理数据
- 它是由CPU中的算术逻辑单元(ALU)、通用寄存器(GR)等部件构成
- 运算器的结构取决于指令系统、数据的表示方法、运算方法及所选用的硬件。

3.1 定点数运算

- 3.1.1 加减运算
 - 1. 加减运算方法
 - 补码加法
 补码加法的运算法则为:
 [X+Y]_补=[X]_补+[Y]_补
 - 补码减法
 补码减法的运算法则为:
 [X-Y]_补 = [X]_补 + [-Y]_补 = [X]_补 + [[Y]_补]_{求补}

定点数加减运算

例3.1 若两个定点整数63和35, 利用补码加法求 63+35=?

解:根据题意,用8位二进制补码表示63和35:

 $[63]_{\vec{k}} = 001111111$

 $[35]_{\vec{k}} = 00100011$

则 [63 + 35] = 01100010

定点数加减运算

例3.2 若两个定点整数-63和-35, 利用补码加法 求-63+(-35)=?

解:根据题意,用8位二进制补码表示-63和-35:

 $[-63]_{\dot{\imath}\dot{\backprime}} = 11000001$

 $[-35]_{\vec{k}}$ = 11011101

则 [-63 + (-35)] = 10011110

定点数加减运算

```
例3.3 若两个定点整数63和35,利用补码减法求63-35=?
  解:根据题意,用8位二进制补码表示63和35:
      [63]_{\vec{*}} = 001111111
      [35]_{\vec{*}} = 00100011
  而[63 – 35]_{i} = [63]_{i} + [-35]_{i};
  同时, [-35]<sub>补</sub> = [[35]<sub>补</sub>]<sub>求补</sub> = 11011101, 从而求出:
           00111111
         + 11011101
          100011100
 得到[63 – 35]<sub>补</sub> = 00011100。
```

• 补码加减运算规则

- ① 参加运算的操作数用补码表示;
- ②符号位参加运算;
- ③ 若进行相加,则两个数的补码直接相加; 若进行相减运算,则对减数求补(连同符号位 一起变反加1)后与被减数相加;
- ④ 运算结果用补码表示。

2. 溢出判断

溢出

例3.4 若两个定点整数63和85, 利用补码加法 求63+85=?

解:根据题意,若用8位二进制补码表示63和85:

[63]
$$_{\hat{*}\hat{\vdash}} = 00111111$$
 00111111
[85] $_{\hat{*}\hat{\vdash}} = 01010101$ $+01010101$ 10010100

- 两个正数(63和85)相加的结果变成一个负数(符号位为1)。出现这种错误结果是由于 在相加的过程中产生了溢出。
- 原因就在于运算的结果超出了所规定的数值范围。

例3.6 设负整数X= -1111000, Y= -10010, 若 用8位补码表示,则[X]_补=10001000, [Y]_补 =11101110, 求[X+Y]_补。

解: 计算[X]_补+[Y]_补

1 0001000

+ 1 1101110

0 1110110

两个负数相加,结果为一个正数,显然也是错 误的。

- 只有当两个同符号的数相加(或者是相异符号数相减)时,运算结果才有可能溢出。而在异符号的数相加(或者是同符号数相减)时,永远不会产生溢出。
- 只要运算结果超出所能表示的数据范围,就会 发生溢出。发生溢出时,运算结果肯定是错误 的。只要发现运算结果产生溢出,就必须采取 措施防止溢出发生。最简单有效的方法就是增 加补码的二进制编码长度。

• 溢出的判定

- (1) 双符号位判决法
 - 若补码采用两位表示符号,即00表示正号、 11表示负号,一旦发生溢出,则两个符号位 就一定不一致,利用判别两个符号位是否一 致便可以判定是否发生了溢出。
 - ✓ 若运算结果两符号分别用S₂S₁表示,则判别 溢出的逻辑表示式为:

$$VF = S_2 \oplus S_1$$

例 设两正整数X=+1000001, Y= +1000011, 若用双符号位的8位补码表示,则 $[X]_{i}=001000001$, $[Y]_{i}=001000011$, 求 $[X+Y]_{i}$ 。

解: 计算[X]_补+[Y]_补
00 1000001
+ 00 1000011

01 0000100

式中,由于结果的S2和S1 不一致, VF=S2 ⊕ S1=1,溢出发生。 例 x = +0.1100, y = +0.1000, 求 x + y。

解:

$$[x]_{i} = 00.1100, [y]_{i} = 00.1000$$

 $[x]_{i} = 00.1100$
 $+ [y]_{i} = 00.1000$

两个符号位出现"01",表示已溢出, 即结果大于+1。

01.0100

例 x = -0.1100, y = -0.1000, x + y

解:

$$[x]_{i}=11.0100, [y]_{i}=11.1000$$

$$[x]_{i}=11.0100$$

$$+[y]_{i}=11.1000$$

$$10.1100$$

两个符号位出现"10",表示已溢出, 即结果小于-1。

• 溢出的判定

(2) 进位判决法

若 C_{n-1} 为最高数值位向最高位(符号位)的进位, C_n 表示符号位的进位,则判别溢出的逻辑表示式为: $VF = C_{n-1} \oplus C_n$

(3) 根据运算结果的符号位和进位标志判别 该方法适用于两同号数求和或异号数求差时 判别溢出。溢出的逻辑表达式为:

VF = SF ⊕ CF

例 设两正整数X=+1000001, Y=+1000011, 采用8位补码表示,则 $[X]_{\Lambda}$ =0 1000001, $[Y]_{\Lambda}$ =0 1000011, $x[X+Y]_{\Lambda}$ 。

解: 计算[X]_补+[Y]_补
0 1000001
+ 0 1000011
1 0000100

式中,由于 $C_{n-1}=1$, $C_n=0$, $VF=C_{n-1} \oplus C_n=1$,溢出发生。

• 溢出的判定

(4)根据运算前后的符号位进行判别 若用Xs、Ys、Zs分别表示两个操作数及运 算结果的符号位,当两同号数求和或异号 数求差时,就有可能发生溢出。溢出是否 发生可根据运算前后的符号位进行判别, 其逻辑表达式为:

$$VF = Xs \cdot Ys \cdot Zs + Xs \cdot Ys \cdot Zs$$

3. 一位全加器

设:一位全加器的输入为X_i和Y_i 低一位对该位的进位为C_i 全加器的结果和进位用Z_i和C_{i+1}表示

一位全加器逻辑框图:

一位全加器逻辑表达式:

4. N位加法器

(1) 行波进位(串行进位)加法器

分析: 当 M=0 时,
$$Z = X + Y$$

当 M=1 时, $Z = X + (\overline{Y} + 1)$
= $X - Y$

功能: 加/减法器

(2) 先行进位加法器

$$C_{i+1} = G_i + P_i \cdot C_i$$

从式中可知,只要有输入Xi和Yi就能求出 G_i 和 P_i ,在已知输入 C_i 的情况下,便可以获得 C_{i+1}

$$\begin{split} &C_{i+1} = G_i + P_i C_i \\ &C_{i+2} = G_{i+1} + P_{i+1} C_{i+1} = G_{i+1} + P_{i+1} G_i + P_{i+1} P_i C_i \\ &C_{i+3} = G_{i+2} + P_{i+2} C_{i+2} = G_{i+2} + P_{i+2} G_{i+1} + P_{i+2} P_{i+1} G_i + P_{i+2} P_{i+1} P_i C_i \\ &C_{i+4} = G_{i+3} + P_{i+3} C_{i+3} \\ &= \frac{G_{i+3} + P_{i+3} G_{i+2} + P_{i+3} P_{i+2} G_{i+1} + P_{i+3} P_{i+2} P_{i+1} G_i}{G^*_{i+3} + P^*_{i+3} C_i} + \frac{P_{i+3} P_{i+2} P_{i+1} P_i C_i}{G^*_{i+3} + P^*_{i+3} C_i} \end{split}$$

$$C_{i+1} = G_i + P_i C_i$$
 $C_{i+2} = G_{i+1} + P_{i+1} C_{i+1} = G_{i+1} + P_{i+1} G_i + P_{i+1} P_i C_i$
 $C_{i+3} = G_{i+2} + P_{i+2} C_{i+2} = G_{i+2} + P_{i+2} G_{i+1} + P_{i+2} P_{i+1} G_i + P_{i+2} P_{i+1} P_i C_i$
 $C_{i+4} = G_{i+3} + P_{i+3} C_{i+3}$
 $= G_{i+3} + P_{i+3} G_{i+2} + P_{i+3} P_{i+2} G_{i+1} + P_{i+3} P_{i+2} P_{i+1} G_i + P_{i+3} P_{i+2} P_{i+1} P_i C_i$
 $= G^*_{i+3} + P^*_{i+3} C_i$
 $= G^*_{i+3} + P^*_{i+3} C_i$

三级门的延时

四位先行进位链电路

利用输入信号X_i、X_{i+1}、X_{i+2}、X_{i+3}和Y_i、Y_{i+1}、Y_{i+1}、Y_{i+2}、Y_{i+3}以及C_i,通过与或逻辑电路的组合就可以同时将上面四个进位信号产生出来。

将这些先行形成的进位信号并行地加到加法器上,则加法器就不必等待进位产生,从而大大地提高了加法器的速度。也就是说在进行加法运算之前,各位加法器所需要的进位已经产生出来。这将加快加法运算的速度,这就是先行进位的来由。

(3) 先行进位加法器的级联

由74181和74182构成组内组间均并行进位的16位ALU

5. 移码加减运算

定点整数移码的加减运算法则:

- ①对两移码求和差时,首先对该两移码求和差;
- ②然后,对结果进行修正——将结果的符号取 反。这样,就可以得到正确的结果。

6. BCD数加法器 (课后学习)

• 8421 BCD码

8421 BCD码只利用了四位二进制编码的0000 到1001这十种来表示十进制数的0到9。剩余 的六种: 1010, 1011, 1100, 1101, 1110, 1111对用于表示十进制数来说是非法的。一 旦在定义的BCD运算中出现这六种编码, 结 果一定是错误的。

 8421 BCD码加法运算也可以用多位全加器实现,在 运算过程中有可能产生上面提到的错误结果。

 8421 BCD码加法运算也可以用多位全加器实现,在 运算过程中有可能产生上面提到的错误结果。

> a: 0110 b: 0110 + 0010 + 0111 1000 1101

校正

运算中低四位相加的结果>9或有由bit3向bit4的进位,则结果加06H;

本章作业3-1

第17(1)(2)、18(2)、19(2)题

注:本次作业与下次作业3-2一起交

3.1.2 乘法运算

1. 原码一位乘法运算

- 原码一位乘法的法则:
 - ①乘积的符号为被乘数的符号位与乘数的符号 位相异或;
 - ②乘积的绝对值为被乘数的绝对值与乘数的绝 对值之积。即

$$[X]_{\emptyset} \times [Y]_{\emptyset} = (X_0 \oplus Y_0)(|X| \times |Y|)$$

• 手工乘法运算

例 若[X]_原 = 0.1101,[Y]_原 = 1.1011,求两者之积。

解: 乘积的符号为0 ⊕1 =1

手算过程如下:

1101 × 1011 1101 部分积 1101 部分积 0000 部分积 1101 部分积 . 10001111

综上, 乘积的原码为: 1.10001111

• 机器实现思路: 部分积, 右移, 4位累加

例 [X]_原 = 0.1101, [Y]_原 = 1.1011, 求两者之积。

 $M: |X| = 1101, |Y| = 1011, X_S \oplus Y_S = 0 \oplus 1 = 1$

例 [X]_原 = 0.1101, [Y]_原 = 1.1011, 求两者之积。

 $M: |X| = 1101, |Y| = 1011, X_S \oplus Y_S = 0 \oplus 1 = 1$

		D				A			操作
0	0	0	0	0	1	0	1	1	$A_0 = 1, +X$

例 [X]_原 = 0.1101, [Y]_原 = 1.1011, 求两者之积。

 $M: |X| = 1101, |Y| = 1011, X_S \oplus Y_S = 0 \oplus 1 = 1$

		I	D		A			A ₀	操作
0 + 0	0	0	0	0	1	0	1	1	$A_0 = 1, +X$
+ 0	1	1	0	1					
0	1	1	0	1					

]	D				A	A ₀	操作
+ 0	0 1	0 1	0	0 1	1	0	1	1	$A_0 = 1, +X$
0	1 0	1 1	0 1	1 0	1	1	0	1	→右移一次

]	D		1 0		A	Ao	操作
0	0	0	0	0	1	0	1	1	$A_0 = 1, +X$
+ 0	1	1	0	1					
0	1	1	0	1					
0	0	1	1	0	1	1	0	1	→右移一次
+ 0	1	1	0	1					$A_0 = 1, +X$
1	0	0	1	1	1	1	0	1	

		I)				A	A ₀	操作
0	0	0	0	0	1	0	1	1	$A_0 = 1, +X$
+ 0	1	1	О	1					
0	1	1	0	1					
О	0	1	1	0	1	1	0	1	→右移一次
+ 0	1	1	0	1					$A_0 = 1, +X$
1	0	0	1	1	1	1	0	1	
0	1	0	0	1	1	1	1	0	→右移一次

]	D				A	A ₀	操作
+ 0	0 1	0 1	0	0 1	1	0	1	1	$A_0 = 1, +X$
0 0 + 0	1 0 1	1 1 1	0 1 0	1 0 1	1	1	0	1	→右移一次 A ₀ =1, +X
1 0 0	0 1 0	0 0 0	1 0 0	1 1 0	1	1	0	1 0	→右移一次 A ₀ =0, +0
0	1	0	0	1	1	1	1	0	

]	D				A	A ₀	操作
0 + 0	0	0	0	0	1	0	1	1	$A_0 = 1, +X$
0 0 + 0	1 0	1 1 1	0 1 0	1 0 1	1	1	0	1	→右移一次 A ₀ =1, +X
1 0 0	0 1 0	0 0 0	1 0 0	1 1 0	1	1	0	1 0	→右移一次 A ₀ =0, +0
0	1 0	0	0	1 0	1	1 1	1	0	→右移一次

3			I	D				A	A ₀	操作
	+ 0	0 1	0 1	0 0	0 1	1	0	1	1	$A_0=1, +X$
	0 0 0	1 0 1	1 1 1	0 1 0	1 0 1	1	1	0	1	→右移一次 A ₀ =1, +X
**	1 0 0	0 1 0	0 0 0	1 0 0	1 1 0	1	1	0	1 0	→右移一次 A ₀ =0, +0
	0 + 0	1 0 1	0 1 1	0 0 0	1 0 1	1	1 1	1	0	→右移一次 A ₀ =1,+X
	1	0	0	0	1	1	1	1	1	,

]	D				A	A ₀	操作
0 + 0	0	0	0	0	1	0	1	1	$A_0=1, +X$
0 0 + 0	1 0 1	1 1 1	0 1 0	1 0 1	1	1	0	1	→右移一次 A ₀ =1, +X
1 0 0	0 1 0	0 0 0	1 0 0	1 1 0	1	1	0	1	→右移一次 A ₀ =0, +0
0 0 + 0	1 0 1	0 1 1	0 0 0	1 0 1	1	1	1	0	→右移一次 A ₀ =1,+X
1 0	0 1	0 0	0	1 0	1 1	1	1 1	1	→右移一次

 $M: |X| = 1101, |Y| = 1011, X_S \oplus Y_S = 0 \oplus 1 = 1$

]	D				A	A ₀	操作									
0	0	0	0	0	1	0	1	1	$A_0 = 1, +X$									
+ 0	1	1	0	1		<u> </u>												
0 + 0	0	1	1	0	1	1	0	1	→右移一次 A ₀ =1, +X									
1 0 0	0 1 0	0 0 0	1 0 0	1 1 0	1	1	0	1′ 0	→右移一次 A ₀ =0, +0									
0 0 + 0	1 0 1	0 1 1	0 0 0	1 0 1	1	1	1	0	→右移一次 A ₀ =1,+X									
1 0	0	0 0	0 0	1 0	1	1 1	1 1	1	→右移一次									
拼接往	守号	后利	只为:	<u> </u>	,	拼接符号后积为: <u>1</u> . <u>1 0 0 0 1 1 1 1</u>												

西安电子科技大学软工专业 2025年

• 实现流程

• 原码一位乘法器框图

D 部分积(初始清0), A 乘数, B 被乘数 D, A 乘积

• 原码二位乘法运算(了解):

Y_{i+1}	Y _i	C	操作
0	0	0	+0, 右移2次, C = 0
0	0	1	+ X , 右移2次, C = 0
0	1	0	+ X , 右移2次, C = 0
0	1	1	+2 X ,右移2次,C = 0
1	0	0	+2 X , 右移2次, C = 0
1	0	1	- X , 右移2次, C = 1
1	1	0	- X , 右移2次, C = 1
1	1	1	+0, 右移2次, C=1

原码二位乘法的法则表

2. 补码一位乘法运算

布斯(Booth)法

假定被乘数X和乘数Y均为用补码表示的纯小数,分别为:

$$[X]_{ih} = X_0 . X_{-1}X_{-2}...X_{-(n-1)}$$

 $[Y]_{ih} = Y_0 . Y_{-1}Y_{-2}...Y_{-(n-1)}$ 附加位

其中 X_0 、 Y_0 是它们的符号位。

则布斯法补码一位乘法的算法公式为:

$$[X \cdot Y]_{\frac{2}{n}} = [X]_{\frac{2}{n}} \cdot [(Y_{-1} - Y_{0})2^{0} + (Y_{-2} - Y_{-1})2^{-1}$$

$$+ (Y_{-3} - Y_{-2})2^{-2} + \dots + (Y_{-(n-1)} - Y_{-(n-2)})2^{-(n-2)}$$

$$+ (0 - Y_{-(n-1)})2^{-(n-1)}]$$

$$Y' = (Y_{-1} - Y_0). (Y_{-2} - Y_{-1}) (Y_{-3} - Y_{-2}) \dots (Y_{-(n-1)} - Y_{-(n-2)})^{\frac{1}{2}} (O - Y_{-(n-1)})$$

$$\mathbb{N}: \quad [X \cdot Y]_{\frac{1}{2}} = [X]_{\frac{1}{2}} \cdot Y'$$

$\mathbf{Y_i}$ $\mathbf{Y_{i-1}}$	$\mathbf{Y}_{i-1} - \mathbf{Y}_{i}$	操作
0 0	0	+0,右移一次
0 1	1	+ [X] _补 ,右移一次
1 0	- 1	+ [-X] _补 ,右移一次
1 1	0	+0,右移一次

乘数相邻两位的操作规律

• 布斯法的运算法则:

- ①乘数与被乘数均用补码表示,连同符号位一起参加运算。
- ②乘数最低位后增加一个附加位(可用A₋₁表示),初始设定为0。
- ③从附加位开始,依据上表所示的操作规律, 完成运算。

解: $[X]_{i} = 00.1010$, $[Y]_{i} = 11.0011$,

符	中		Ι)			£	4			A_{-1}	操作
0	0	0	0	0	0	1	0	0	1	1	0	

符	号		I)			A				A_{-1}	操作
О	0	О	О	0	0	1	О	0	1	1	0	
1	1	О	1	1	О							+ [-x] *
1	1	0	1	1	0							

符	号		I)			Ā	A			A_{-1}	操 作
0	0	0	0	0	0	1	0	0	1	1	0	
1	1	0	1	1	О							+ [-x] *h
1	1	О	1	1	О							
1	1	1	О	1	1	0	1	О	О	1	1	右移一位

	符	号		I)			A	4			A_{-1}	操作
	0	0	О	О	О	0	1	О	О	1	1	0	
	1	1	О	1	1	О	L						+ [-x] *
•	1	1	О	1	1	0							
	1	1	1	О	1	1	0	1	О	О	1	1	右移一位
	О	О	О	О	О	О							+0
	1	1	1	0	1	1			,				

ぞ	子号		I)			Ā	4			A_{-1}	操作
0	О	0	0	0	0	1	0	0	1	1	0	
1	1	О	1	1	О	ļ	2					+ [-x] *
1	1	0	1	1	0							
1	1	1	О	1	1	О	1	О	О	1	1	右移一位
О	0	О	О	О	О							+0
1	1	1	О	1	1			7				
1	1	1	1	О	1	1	О	1	0	0	1	右移一位

解: $[X]_{i} = 00.1010$, $[Y]_{i} = 11.0011$,

符	号		I)			£	4			A-1	操作
0	0	0	О	0	О	1	О	О	1	1	0	
1	1	О	1	1	О							+ [-x] *
1	1	О	1	1	0							
1	1	1	О	1	1	О	1	О	О	1	1	右移一位
О	О	О	О	О	О							+0
1	1	1	О	1	1			1				
1	1	1	1	О	1	1	О	1	О	0	1	右移一位
О	0	1	О	1	О							+ [x] *
0	0	0	1	1	1			ļ,				

符	号		I)			A	4			A-1	操作
0	О	О	О	О	О	1	О	0	1	1	0	
1	1	О	1	1	О							+ [-x] *
1	1	О	1	1	0							
1	1	1	О	1	1	О	1	О	О	1	1	右移一位
О	О	О	О	О	О							+0
1	1	1	О	1	1			3				
1	1	1	1	О	1	1	О	1	О	0	1	右移一位
О	О	1	О	1	О							+ [X] *h
0	О	О	1	1	1			l,				
О	О	О	О	1	1	1	1	0	1	О	0	右移一位

解: $[X]_{\dot{i}_1} = 00.1010$, $[Y]_{\dot{i}_1} = 11.0011$,

符	号		Ι)			£	4			$A_{\textbf{-1}}$	操作
0	0	О	О	0	0	1	0	О	1	1	0	
1	1	0	1	1	0	ļ	2					+ [-x] *
1	1	О	1	1	О							
1	1	1	О	1	1	О	1	О	О	1	1	右移一位
О	О	О	О	О	О							+0
1	1	1	О	1	1			1				
1	1	1	1	О	1	1	О	1	О	0	1	右移一位
О	О	1	О	1	О							+ [X] *
0	0	О	1	1	1			ļ,				
O	О	О	О	1	1	1	1	0	1	0	0	右移一位
О	О	О	О	О	О							+0
О	0	О	О	1	1			l.		1		

解: $[X]_{\dot{\uparrow}} = 00.1010$, $[Y]_{\dot{\uparrow}} = 11.0011$,

•	符	号		I)			A	A			A-1	操作
	О	О	0	О	О	О	1	0	О	1	1	0	
	1	1	О	1	1	О							+ [-x] *
	1	1	О	1	1	0							
	1	1	1	О	1	1	О	1	О	О	1	1	右移一位
	О	О	О	О	О	О							+0
	1	1	1	О	1	1			1				
	1	1	1	1	О	1	1	О	1	О	О	1	右移一位
	О	О	1	О	1	О							+ [x] *h
	О	0	0	1	1	1			ļ _,				
	О	О	О	О	1	1	1	1	О	1	O	0	右移一位
	0	О	О	О	О	О							+0
	0	0	О	О	1	1							
	О	О	О	О	О	1	1	1	1	О	1	О	右移一位

解: $[X]_{i} = 00.1010$, $[Y]_{i} = 11.0011$,

-	符	号		I)			A	A			A-1	操作
	0	О	0	О	О	О	1	О	О	1	1	0	
_	1	1	О	1	1	О	ļ						+ [-x] *
	1	1	О	1	1	О							
	1	1	1	О	1	1	О	1	О	О	1	1	右移一位
	0	О	О	О	О	О							+0
	1	1	1	О	1	1			3				
	1	1	1	1	О	1	1	О	1	О	0	1	右移一位
	o	О	1	О	1	О							+ [X] *h
	0	0	О	1	1	1			ļ,				
	o	О	О	О	1	1	1	1	0	1	0	0	右移一位
	0	О	О	О	О	О							+0
	0	О	0	О	1	1			l.		1		
	0	О	О	О	О	1	1	1	1	О	1	О	右移一位
	1	1	О	1	1	О							+ [-x] *
	1	1	0	1	1	1					l ₁		

解: $[X]_{i} = 00.1010$, $[Y]_{i} = 11.0011$,

•	符	号		I)			1	4			A-1	操作
•	О	О	О	О	0	О	1	0	О	1	1	0	
_	1	1	О	1	1	О	L	3					+ [-x] *
	1	1	О	1	1	О							
	1	1	1	О	1	1	О	1	О	О	1	1	右移一位
	О	О	О	О	О	О							+0
	1	1	1	О	1	1		Ī	1				
	1	1	1	1	О	1	1	О	1	О	0	1	右移一位
	О	О	1	О	1	О							+ [X] *\
	О	0	О	1	1	1			l				
	О	О	О	О	1	1	1	1	0	1	0	0	右移一位
	О	О	О	О	О	О							+0
	О	О	О	О	1	1			l.,				
	О	О	О	О	О	1	1	1	1	О	1	О	右移一位
	1	1	О	1	1	О							+ [-x] *
	1	1	0	1	1	1							
	1	1	1	0	1	1	1	1	1	1	0		右移一位

解: $[X]_{i} = 00.1010$, $[Y]_{i} = 11.0011$,

符	号		I)			£	4			A_{-1}	操作
0	0	О	О	О	О	1	О	О	1	1	0	
1	1	О	1	1	О	L	3					+ [-x] *
1	1	О	1	1	О							
1	1	1	О	1	1	0	1	О	О	1	1	右移一位
О	О	О	О	О	О							+0
1	1	1	О	1	1		<u></u>	7				
1	1	1	1	О	1	1	О	1	О	0	1	右移一位
О	О	1	О	1	О							+ [X] *h
0	0	О	1	1	1			l				
О	О	О	О	1	1	1	1	0	1	0	0	右移一位
О	О	О	О	О	О							+0
0	0	О	О	1	1							
О	О	О	О	О	1	1	1	1	О	1	О	右移一位
1	1	0	1	1	О							+ [-x] *
1	1	О	1	1	1					l		
1	1	1	О	1	1	1	1	1	1	0		右移一位

解: $[X]_{\stackrel{?}{\uparrow}} = 00.1010$, $[Y]_{\stackrel{?}{\uparrow}} = 11.0011$,

而[-X]_补 = 11.0110。

符	号		1)			4	4			A_{-1}	操作
О	0	О	О	О	0	1	О	О	1	1	0	
1	1	О	1	1	О	L	,					+ [-x] *
1	1	О	1	1	0							
1	1	1	О	1	1	О	1	О	О	1	1	右移一位
О	О	О	О	О	О							+0
1	1	1	0	1	1		<u></u>	,				
1	1	1	1	О	1	1	0	1	О	0	1	右移一位
О	О	1	О	1	О							+ [x] *h
0	0	0	1	1	1			ļ,				
О	О	О	О	1	1	1	1	0	1	0	0	右移一位
О	О	О	О	О	О							+0
О	0	О	0	1	1			l.,				
О	О	О	О	О	1	1	1	1	О	1	О	右移一位
1	1	О	1	1	О							+ [-x] *h
1	1	О	1	1	1					ļ		
1	1	1	О	1	1	1	1	1	1	0		右移一位

 $[X \cdot Y] *= 1.011111110$

•运算过程

• 补码乘法器框图(课后学习)

阵列乘法器 (课后学习)

阵列乘法器(原码一位乘)
 设X=X₃X₂X₁X₀, Y=Y₃Y₂Y₁Y₀, 计算X·Y=?

			Х3	X_2	X_1	X_0
		X	Y ₃	Y_2	Y_1	Y_0
			X ₃ Y ₀	X ₂ Y ₀	X_1Y_0	X ₀ Y ₀
		$X_3 Y_1$	$X_2 Y_1$	X_1Y_1	X_0Y_1	
	X ₃ Y ₂	$X_2 Y_2$	X_1Y_2	X_0Y_2		
X3 Y3	$X_2 Y_3$	X_1Y_3	$X_0 Y_3$			
Z ₆	\mathbb{Z}_5	Z ₄	\mathbb{Z}_3	Z_2	Z_1	Z ₀

3.1.3 除法运算

1. 原码除法运算

- 原码除法的法则
- ①除数≠0;定点纯小数时,|被除数|<|除数|; 定点纯整数时,|被除数|>|除数|。
- ②与原码乘法类似的是原码除法商的符号和商的值也是分别处理的。
- ③商的符号等于被除数的符号与除数的符号相异或,商的值就等于被除数的绝对值除以除数的绝对值。
- ④最后将商的符号与商的值拼接在一起就得到原码除 法的商。

• 手工除法过程

解:由题意可知,假定被除数X和除数Y均为正数。 未来商的符号也为正。

• 恢复余数法

- 符号位单独处理。
- 对于定点纯小数,被除数左移一位, 减除数,

若够减, 上商为1; 若不够减,上商为0,同时加除数 (恢复余数)。

- 余数左移一位,减除数,若够减,上商为1;
 若不够减,上商为0,同时加除数(恢复余数)。
- 重复上述过程直到除尽或精度达到要求。
- 拼接商符得到商,即可获得除法的结果。

例

若被除数X = -0.10001011, 除数Y = 0.1110,

试利用原码恢复余数法求 商及余数。

解:该例满足

|X| < |Y|,

且 | Y | ≠0

已知[X]_原 = 1.10001011,

 $[Y]_{\text{R}} = 0.1110$.

商符 = 1 ⊕ 0 = 1;

绝对值相除见表。

符	号		被除数(余数)								操作
0	0	1	0	0	0	1	0	1	1	0	

例

若被除数X = -0.10001011, 除数Y = 0.1110,

试利用原码恢复余数法求 商及余数。

解:该例满足

|X| < |Y|,

且 | Y | ≠0

已知[X]_原 = 1.10001011,

 $[Y]_{\text{R}} = 0.1110$.

商符 = 1 ⊕ 0 = 1;

绝对值相除见表。

	符	号	被除数 (余数)								商	操作
ľ	0	0	1	0	0	0	1	0	1	1	0	
	0	1	0	0	0	1	0	1	1	0		左移一位

若被除数X = -0.10001011, 除数Y = 0.1110, 试利用原码恢复余数法求 商及余数。

12/2011 200
解:该例满足
X < Y ,
且 Y ≠0
已知[X] _原 = 1.10001011,
[Y] _原 = 0.1110。
商符=1⊕0=1;
绝对值相除见表。

符	号		Ì	披除	数	(余	数)			商	操作
0 0 1	0 1 1	1 0 0	0 0 0	0 0 1	0 1 0	1	0 1	1	0	0	左移一位 Y
0	0	0	0	1	1	0	1	1	0	1	够减,商为1

若被除数X = -0.10001011, 除数Y = 0.1110, 试利用原码恢复余数法求 商及余数。

解:该例满足 |X|<|Y|, 且|Y|≠0 已知[X]_原 = 1.10001011, [Y]_原 = 0.1110。 商符=1⊕0=1;

符	号		ì	披除	数	(余	数)			商	操作
0 0 1	0 1 1	1 0 0	0	0 0 1	1	1	0	1	0	0	左移一位 Y
0	0	0	0 1	1 1	1	0 1	1 1	1	0	1	够减,商为1 左移一位

若被除数X = -0.10001011, 除数Y = 0.1110, 试利用原码恢复余数法求 商及余数。

解:该例满足

|X| < |Y|,

且 | Y | ≠0

已知[X]_原 = 1.10001011,

 $[Y]_{\text{R}} = 0.1110$.

商符 = 1 ⊕ 0 = 1;

符	号		Ì	披除	数	(余	数)			商	操作
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	0	1	0	1	1	0		左移一位
1	1	0	0	1	0						- Y
0	0	0	0	1	1	0	1	1	0	1	够减,商为1
0	0	0	1	1	0	1	1	0	1		左移一位
1	1	0	0	1	0						- Y
1	1	1	0	0	0	1	1	0	1	0	不够减,商为0

若被除数X = -0.10001011, 除数Y=0.1110, 试利用原码恢复余数法求 商及余数。 解:该例满足 |X| < |Y|且 | Y | ≠0 已知[X]_原 = 1.10001011, $[Y]_{\text{R}} = 0.1110$. 商符=1⊕0=1;

符	号		Ì	披除	数	(余	数)			商	操作
0 0 1	0 1 1	1 0 0	0 0 0	0 0 1	0 1 0	1 0	0	1	0	0	左移一位 Y
0 0 1	0 0 1	0 0 0	0 1 0	1 1 1	1 0 0	0	1	0	0	1	够减,商为1 左移一位 Y
1 0	1 0	1	0 1	0 1	0	1	1	0	1	0	不够减, 商为0 + Y

若被除数X = -0.10001011, 除数Y=0.1110, 试利用原码恢复余数法求 商及余数。 解:该例满足 |X| < |Y|且 | Y | ≠0 已知[X]_原 = 1.10001011, $[Y]_{\text{R}} = 0.1110$. 商符=1⊕0=1;

符	号		Ì	披除	数	(余	数)			商	操作
0 0 1	0 1 1	1 0 0	0 0 0	0 0 1	0 1 0	1 0	0	1	0	0	左移一位 Y
0 0 1	0 0 1	0 0 0	0 1 0	1 1 1	1 0 0	0 1	1	0	0	1	够减,商为1 左移一位 Y
1 0	1 0	1 1	0 1	0 1	0	1	1	0	1	0	不够减, 商为0 + Y
0	0	0	1	1	0	1	1	0	1	0	恢复余数

若被除数X = -0.10001011, 除数Y = 0.1110, 试利用原码恢复余数法求 商及余数。 解:该例满足

| X | < | Y | , 且 | Y | ≠0 已知[X]_原 = 1.10001011, [Y]_原 = 0.1110。 商符 = 1 ⊕ 0 = 1;

符	号		Ì	披除	数	(余	数)			商	操作
0	0	1	0	0	0	1	0	1	1	0	
0	1	0	0	0	1	0	1	1	0		左移一位
1	1	0	0	1	0						- Y
0	0	0	0	1	1	0	1	1	0	1	够减,商为1
0_	0	0	1	1	0	1	_1	0	1		左移一位
1	1	0	0	1	0						- Y
1	1	1	0	0	0	1	1	0	1	0	不够减,商为0
0	0	1	1	1	0						+ Y
0	0	0	1	1	0	1	1	0	1	0	恢复余数
0	0	1	1	0	1	1	0	1	0		左移一位

若被除数X = -0.10001011, 除数Y = 0.1110, 试利用原码恢复余数法求 商及余数。

解:该例满足

|X| < |Y|,

且 | Y | ≠0

已知[X]_原 = 1.10001011,

 $[Y]_{\text{R}} = 0.1110$.

商符 = 1 ⊕ 0 = 1;

符	号		Ì	披除	数	(余	数)			商	操作
0	0	1	0	0	0	1	0	1	1	0	+12_lb
0 1	1 1	0	0	0 1	1	0	1	1	0		左移一位 - Y
0	0	0	0	1	1	0	1	1	0	1	够减,商为1
0_	0_	0_	_1_	1	0	1	1	0	1		左移一位
1	1	0	0	1	0						- Y
1	1	1	0	0	0	1	1	0	1	0	不够减,商为0
0	0	1	1	1	0						+ Y
0	0	0	1	1	0	1	1	0	1	0	恢复余数
0	0	1	1	0	1	1	0	1	0		左移一位
1	1	0	0	1	0						- Y
1	1	1	1	1	1	1	0	1	0	0	不够减,商为0

若被除数X = -0.10001011, 除数Y = 0.1110, 试利用原码恢复余数法求 商及余数。

解:该例满足 |X|<|Y|, 且|Y|≠0 已知[X]_原 = 1.10001011, [Y]_原 = 0.1110。 商符 = 1 ⊕ 0 = 1; 绝对值相除见表。

符	号		Ì	披除	数	(余	数)			商	操作
0	0	1	0	0	0	1	0	1	1	0	Litte D.
0	1 1	0	0	0	1	0	1	1	0		左移一位 - Y
		_		1	1	0	1	1	Λ	1	
0	0	0	0	1	0	0	1	0	0	1	够减,商为1 左移一位
1	1	0	0	1	0			V	1		- Y
1	1	1	0	0	0	1	1	0	1	0	不够减,商为0
0	0	1	1	1	0						+ Y
0	0	0	1	1	0	1	1	0	1	0	恢复余数
0	0	1	1	0	1	1	0	1	0		左移一位
1	1	0	0	1	0						- Y
1	1	1	1	1	1	1	0	1	0	0	不够减, 商为0
0	0	1	1	1	0						+ Y
0	0	1	1	0	1	1	0	1	0	0	恢复余数

若被除数X = -0.10001011, 除数Y=0.1110, 试利用原码恢复余数法求 商及余数。 解:该例满足 |X| < |Y|且 | Y | ≠0 已知[X]_原 = 1.10001011, $[Y]_{\text{R}} = 0.1110$. 商符=1⊕0=1;

符号	被除数(余数)	商操作
0 0 0 1	1 0 0 0 1 0 1 <u>1</u> 0 0 0 1 0 1 1 0	┃ ┃ 左移一位
1 1	0 0 1 0	- Y
0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 够减,商为1 左移一位
1 1	0 0 1 0	- Y
1 1	1 0 0 0 1 1 0 1	0 不够减,商为0
0 0	1 1 1 0 0 1 1 0 1	+ Y 0 恢复余数
0 0 1 1	1 1 0 1 1 0 1 0 0 0 1 0	左移一位
1 1 0 0	1 1 1 1 1 0 1 0 1 1 1 0	0 不够减, 商为0 + Y
0 0	<u>1 1 0 1 1</u> 0 1 0	0 恢复余数
0 1	1 0 1 1 0 1 0 0	左移一位

若被除数X = -0.10001011, 除数Y = 0.1110, 试利用原码恢复余数法求 商及余数。

解:该例满足 |X|<|Y|, 且|Y|≠0 已知[X]_原 = 1.10001011, [Y]_原 = 0.1110。 商符 = 1 ⊕ 0 = 1; 绝对值相除见表。

符号	被除数 (余数)	商操作
0 0	1 0 0 0 1 0 1 <u>1</u>	_0
0 1	0 0 0 1 0 1 1 0	左移一位
1 1	0 0 1 0	Y
0 0	0 0 1 1 0 1 1 0	1 够减,商为1
0 0	0 1 1 0 1 1 0 1	左移一位
1 1	0 0 1 0	
1 1	1 0 0 0 1 1 0 1	0 不够减,商为0
0 0	1 1 1 0	+ Y
0 0 0 0 1 1	0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0	0 恢复余数 左移一位 - Y
1 1	1 1 1 1 1 0 1 0	0 不够减,商为0
0 0	1 1 1 0	+ Y
0 0	1 1 0 1 1 0 1 0	0 恢复余数
0 1	1 0 1 1 0 1 0 0	左移一位
1 1	0 0 1 0	Y
0 0	1 1 0 1 0 1 0 0	1 够减,商为1

若被除数X = -0.10001011, 除数Y = 0.1110,

试利用原码恢复余数法求 商及余数。

解:该例满足

|X| < |Y|,

且 | Y | ≠0

已知[X]_原 = 1.10001011,

[Y]_原 = 0.1110。

商符 = 1 ⊕ 0 = <u>1</u>;

绝对值相除见表。

商 = <u>1.1001</u>

余数 = 1.1101 × 2⁻⁴

符号	i.		Ì	披除	数	(余	数)			商	操作
0	0	1 0	0	0	0	1	0 1	1	1	0	左移一位
	1	0	0	1	1	0	1	1	0	1	— Y 够减,商为1
0 (0	0	1 0	1	0	1	1	0	1		左移一位 Y
	1	1 1	0	0 1	0	1	1	0	1	0	不够减,商为0 + Y
	0	0	1	1 0	0	1	1	0	1	0	恢复余数 左移一位
1	1	0	0	1	0						- Y
	1	1	1 1	1	1	1	0	1	0	0	不够减,商为0 + Y
	0	1	1	0	1	1	0	1	0	0	恢复余数
	1 1	1	0	1 1	1 0	0	1	0	0		左移一位 - Y
0 (0	1	1	0	1	0	<u>\</u> 1	0	0	1	够减,商为1

西安电子科技大学软工专业 2025年

• 加减交替法

假定第i次余数减除数(用B表示)得的余数为R,

当R≥0时, 商1, 应左移一位, 即 2R, 然后(第i+1次)减去除数, 就是 2R -B

当R<0时, 商0, 应恢复余数, 即 R+B, 再左移一位, 即 2(R+B), 然后(第i+1次)减去除数,就是 2(R+B)-B = 2R +B

- 即当第i次余数减除数的余数R<0时,不用加除数 来恢复余数,而只是将其左移一次,变为2R,到 第i+1次运算时将其加除数,也就是2R+B。
- 加减交替法的运算法则
 - ①若余数R≥0,则商上1,左移一次,减除数;
 - ②若余数R<0,则商上0,左移一次,加除数。

•	符	号		À	波除	数	(余	数)			商	操作
	0	0	1	0	0	0	1	0	1	1	0	

符	号		剂	波除	数	(余	数)			商	操作
0	0	1	0	0	0	1	0	1	1	О	
0	1	0	0	0	1	O	1	1	0		左移一位

符	号		À	波除	数	(余	数)			商	操作
0	0	1	0	0	0	1	0	1	1	0	左移—位
0	1	0	0	0 1	0	0	1	1			左移一位

符	号		À	波除	数	(余	数)			商	操作
0	0	1	0	0	O	1	0	1	1	0	
0	1	0	0	0 1	1	0	1	1	0		左移一位
1	1	О	0	1	O						- Y
0	0	0	0	1	1	0	1	1	0	1	R≥0,商为1

	符	号		ì	波除	数	(余	数)			商	操作
	0 0 1		0	0	0 0 1	1	1 0	0	1 1	1 0	0	左移一位
•	0	0	0	0 1	1 1	1 0	0 1	1 1	1 0	0	1	R≥0,商为1 左移一位

ぞ	于号	<u>-</u>		À	波除	数	(余	数)			商	操作
0	()	1	0	0	O	1	0	1	1	0	
0	1	L	O	O	O	1	O	1	1	0		左移一位
_ 1]	l	0	О	1	О						- Y
0	()	О	0	1	1	0	1	. 1	0	1	R≥0,商为1
0	()	0	1	1	O	1	1	0	1		左移一位
1	1	l	0	О	1	О						- Y

符	号		À	波除	数	(余	数)			商	操作
0	O	1	О	O	O	1	O	1	1	О	
О	1	О	0	O	1	O	1	1	0		左移一位
1	1	О	O	1	O						- Y
0	О	О	О	1	1	0	1	1	0	1	R≥0,商为1
О	0	0	1	1	0	1	1	0	1		左移一位
_ 1	1	О	О	1	О						- Y
1	1	1	0	0	0	1	1	0	1	0	R<0,商为0

符	号		À	波除	数	(余	数)			商	操作
0 0 1	0 1 1	1 0 0	0 0 0	0 0 1	0 1 0	1 0	0 1	1 1	1 0	0	左移一位
0 0 1	0 0 1	0 0 0	0 1 0		1 0 0	0	1	1 0	0	1	R≥0,商为1 左移一位
1 1	1 1	1 0	0	0	0 1	1 1	1 0	0 1	1 0	0	R<0,商为0 左移一位

符号	被除数(余数)	商操作
0 0 0 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 左移一位
0 0 0 0 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 R≥0,商为1 左移一位 Y
1 1 1 1 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 R<0,商为0 左移一位 + Y

符	号		À	波除	数	(余	数)			商	操作
0 0 1	0 1 1	1 0 0	0 0 0	0 0 1	0 1 0	1 0	0	1	0	0	左移一位
0 0 1	0 0 1	0 0 0	0 1 0	1 1 1	1 0 0	0	1	0	0	1	R≥0,商为1 左移一位
1 1 0	1 1 0	1 0 1	0 0 1	0 0 1	0 1 0	1 1	1 0	0	1	0	R<0,商为0 左移一位 + Y
1	1	1	1	1	1	1	0	1	0	0	R<0,商为0

符	号		À	波除	数	(余	数)			商	操作
0	0	1	О	O	O	1	O	1	1	0	
0	1	0	O	O	1	O	1	1	0		左移一位
_ 1	1	О	О	1	О						- Y
0	0	О	0	1	1	0	1	1	0	1	R≥0,商为1
0	0	0	1	1	O	1	1	0	1		左移一位
_ 1	1	О	О	1	О			į			- Y
1	1	1	О	0	О	1	1	0	1	0	R<0,商为0
1	1	0	O	O	1	1	0	1	0		左移一位
0	О	1	1	1	О						+ Y
1	1	1	1	1	1	1	0	1	0	0	R<0,商为0
1	1	1	1	1	1	0	1	0	0		左移一位

符	号		À	皮除	数	(余	数)			商	操作
0	0	1	О	О	O	1	О	1	1	О	
0	1	0	0	0	1	O	1	1	0		左移一位
_ 1	1	О	О	1	О						- Y
0	0	О	О	1	1	0	1	1	0	1	R≥0,商为1
0	O	0	1	1	0	1	1	0	1		左移一位
_ 1	1	О	О	1	О						- Y
1	1	1	0	0	0	1	1	0	1	0	R<0,商为0
1	1	0	0	0	1	1	0	1	0		左移一位
0	О	1	1	1	O						+ Y
1	1	1	1	1	1	1	0	1	0	О	R<0,商为0
1	1	1	1	1	1	0	1	0	0		左移一位
0	О	1	1	1	О						+ Y

解: [X]_原 = 1.10001011, [Y]_原 = 0.1110, 商符 = 1 ⊕ 0 = 1。

符号		被除数(余数)							商	操作	
0	O	1	O	O	O	1	0	1	1	О	
0	1	0	O	O	1	O	1	1	0		左移一位
1	1	О	О	1	0						- Y
0	O	О	O	1	1	0	1	1	0	1	R≥0,商为1
0	O	0	1	1	O	1	1	0	1		左移一位
_ 1	1	О	О	1	0						- Y
1	1	1	0	0	0	1	1	0	1	0	R<0,商为0
1	1	0	O	0	1	1	0	1	0		左移一位
0	О	1	1	1	О						+ Y
1	1	1	1	1	1	1	0	1	0	O	R<0,商为0
1	1	1	1	1	1	0	1	0	0		左移一位
О	О	1	1	1	О						+ Y
0	0	1	1	0	1	0	1	0	0	1	R≥0,商为1

商 = 1.1001 余数 = ?

问题:

当加减交替法运算结束时,如果末位商 为0,这时的余数是错误的「负数」。 如何获得正确的余数?

• 加减交替法除法器

2. 补码除法运算(课后学习)

补码加减交替除法运算规则: (推导过程略)

- (1)被除数[X]_补与除数[Y]_补同号,商为正,做减运算, 若余数[R₁]_补与[Y]_补同号,则溢出; 被除数[X]_补与除数[Y]_补异号,商为负,做加运算, 若余数[R₁]_补与[Y]_补异号,则溢出。
- (2) 若余数[R_i]_补与除数[Y]_补同号,上商'1',左移一位, 减除数;

若余数[R_i]_补与除数[Y]_补异号,上商'0',左移一位, 加除数。

- (3) 重复步骤(2),连同符号位在内,共做n-1次(n 为字长),末位采用恒置'1'法。
- (4) 商的符号位与数值位均在运算中产生。

阵列除法器 (课后学习)

本章作业3-2 (第4次作业)

第20 (1) 题

第22(1)题 (只用原码加减交替法)

注:与上次作业3-1一起交

本章作业3-1

第17(1)(2)、18(2)、19(2)题

注:本次作业与下次作业3-2一起交