

P-values

- The p-value is the smallest level of significance at which the H₀ would be rejected
 - p(data|H₀) = p-value
- If p-value $\leq \alpha$, then reject H₀ at level α If p-value > α , then do not reject H₀ at level α
- The lower the p-value, the stronger your evidence in support of alternative hypothesis

Example: p-Value

- The mean water volume is expected to be 20 Oz. Determine the mean water volume differs from 20 Oz assuming that the population STD to be 2 Oz
- A sample of size 36 finds the sample mean water volume to be 19 Oz
 - What is the p-value?
 - What is your conclusion?

Solution

- o Step 1: Establish hypothesis
 - H_0 : μ = 20 Oz
 - H_a: μ ≠ 20 Oz
- Step 2: Determine appropriate statistical test and sampling distribution
 - a two-tailed test
 - σ is known: use z-distribution
- Step 3: Specify the Type I error rate (significance level)
 - $\alpha = 0.01$

- o Step 4: Gather data
 - n = 36, $\bar{X} = 19$
- Step 5: Calculate test statistic
 - $\mu_0 = 20 \text{ Oz}$, $\sigma = 2 \text{ Oz}$

•
$$z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{19 - 20}{\frac{2}{\sqrt{36}}} = -3$$

- o Step 6: Calculate p-value
 - $\Phi(|z|) = \Phi(3)$
 - P-value = 2×(1-.9987) = 2×.0013 = .0026 < 0.01
- Step 7: State statistical conclusion
 - P-value < 0.01 Reject H₀

	Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
	0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
	0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
	0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
	0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
	0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
	0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
ı	0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
	0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
	0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
	0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
	1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
	1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
	1.2	.8849	.8869	.8888.	.8907	.8925	.8944	.8962	.8980	.8997	.9015
	1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
	1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
	1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
	1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
	1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
	1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
	1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
	2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
	2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
	2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
	2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
	2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
	2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
	2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
	2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
	2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
	2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
	3.0-	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
	3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
	3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
	3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
	3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

P-values

- **o** H_0 : $\mu = \mu_0$
- Our test statistic is: $z = \frac{\overline{X} \mu_0}{\sigma / \sqrt{n}}$

Alternative	Rejection region for
Hypothesis	level α test
H_a : $\mu > \mu_0$	$P = p(Z>z)= 1-\Phi(z)$
H_a : $\mu < \mu_0$	$P = p(Z < z) = \Phi(z)$
H_a : $\mu \neq \mu_0$	$P = 2 (1-\Phi(z))$

Example: p-Value

- The mean water volume is expected to be 20 Oz. Determine the mean water volume differs from 20 Oz
- A sample of size 36 finds the sample mean water volume to be 19 Oz and the sample STD to be 2 Oz
 - What is the p-value?
 - What is your conclusion?

Solution

- Step 1: Establish hypothesis
 - H_0 : $\mu = 20 \text{ Oz}$
 - H_a: μ ≠ 20 Oz
- Step 2: Determine appropriate statistical test and sampling distribution
 - a two-tailed test
 - σ is unknown, n<40: use t-distribution
- Step 3: Specify the Type I error rate (significance level)
 - $\alpha = 0.01$

Solution, Cnt'd

- Step 4: Gather data
 - n = 36, \bar{X} = 19
- Step 5: Calculate test statistic
 - μ_0 = 20 Oz, s = 2 Oz

•
$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} = \frac{19 - 20}{\frac{2}{\sqrt{36}}} = -3$$

- o Step 6: Find the p-Value (See Table A.8)
 - t = -3.0, df=35
 - p-value = $2p(X>|-3|) = 2\times0.002=0.004 < 0.01$
- o Step 7: State statistical conclusion
 - P-value < 0.01: Reject H₀

_	t v	19	20	21	22	23	24	25	26	27	28	29	30	35	40	60	120	$\infty(=z)$
	0.0	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500
	0.1	.461	.461	.461	.461	.461	.461	.461	.461	.461	.461	.461	.461	.460	.460	.460	.460	.460
	0.2	.422	.422	.422	.422	.422	.422	.422	.422	.421	.421	.421	.421	.421	.421	.421	.421	.421
	0.3	.384	.384	.384	.383	.383	.383	.383	.383	.383	.383	.383	.383	.383	.383	.383	.382	.382
	0.4	.347	.347	.347	.347	.346	.346	.346	.346	.346	.346	.346	.346	.346	.346	.345	.345	.345
	0.5	.311	.311	.311	.311	.311	.311	.311	.311	.311	.310	.310	.310	.310	.310	.309	.309	.309
	0.6	.278	.278	.278	.277	.277	.277	.277	.277	.277	.277	.277	.277	.276	.276	.275	.275	.274
	0.7	.246	.246	.246	.246	.245	.245	.245	.245	.245	.245	.245	.245	.244	.244	.243	.243	.242
	0.8	.217	.217	.216	.216	.216	.216	.216	.215	.215	.215	.215	.215	.215	.214	.213	.213	.212
	0.9	.190	.189	.189	.189	.189	.189	.188	.188	.188	.188	.188	.188	.187	.187	.186	.185	.184
	1.0	.165	.165	.164	.164	.164	.164	.163	.163	.163	.163	.163	.163	.162	.162	.161	.160	.159
	1.1	.143	.142	.142	.142	.141	.141	.141	.141	.141	.140	.140	.140	.139 .119	.139	.138	.137	.136
	1.2	.122	.122	.122	.121	.121	.121	.121	.120	.102	.102	.102	.102	.101	.101	.099	.098	.097
	1.3 1.4	.105	.089	.088	.088	.087	.087	.087	.087	.086	.086	.086	.086	.085	.085	.083	.082	.081
	1.5	.075	.075	.074	.074	.074	.073	.073	.073	.073	.072	.072	.072	.071	.071	.069	.068	.067
	1.6	.063	.063	.062	.062	.062	.061	.061	.061	.061	.060	.060	.060	.059	.059	.057	.056	.055
	1.7	.053	.052	.052	.052	.051	.051	.051	.051	.050	.050	.050	.050	.049	.048	.047	.046	.045
	1.8	.044	.043	.043	.043	.042	.042	.042	.042	.042	.041	.041	.041	.040	.040	.038	.037	.036
	1.9	.036	.036	.036	.035	.035	.035	.035	.034	.034	.034	.034	.034	.033	.032	.031	.030	.029
	2.0	.030	.030	.029	.029	.029	.028	.028	.028	.028	.028	.027	.027	.027	.026	.025	.024	.023
	2.1	.025	.024	.024	.024	.023	.023	.023	.023	.023	.022	.022	.022	.022	.021	.020	.019	.018
	2.2	.020	.020	.020	.019	.019	.019	.019	.018	.018	.018	.018	.018	.017	.017	.016	.015	.014
	2.3	.016	.016	.016	.016	.015	.015	.015	.015	.015	.015	.014	.014	.014	.013	.012	.012	.011
	2.4	.013	.013	.013	.013	.012	.012	.012	.012	.012	.012	.012	.011	.011	.011	.010	.009	.008
	2.5	.011	.011	.010	.010	.010	.010	.010	.010	.009	.009	.009	.009	.009	.008	.008	.007	.006
	2.6	.009	.009	.008	.008	.008	.008	.008	.008	.007	.007	.007	.007	.007	.007	.006	.005	.005
	2.7	.007	.007	.007	.007	.006	.006	.006	.006	.006	.006	.006	.006	.005	.005	.004	.004	.003
	2.8	.006	.006	.005	.005	.005	.005	.005	.005	.005	.005	.005	.004	.004	.004	.003	.003	.003
	2.9	.005	.004	.004	.004	.004	.004	.004	.004	.004	.004	.004	.003	.002	002	.003	.002	.002
	3.0					.003	.002	.002	.002	.002	.002	.002	.002	.002	.002	.001	.001	.001
	3.1 3.2	.003	.003	.003	.003	.003	.002	.002	.002	.002	.002	.002	.002	.002	.002	.001	.001	.001
	3.3	.002	.002	.002	.002	.002	.002	.002	.002	.002	.002	.002	.001	.001	.001	.001	.001	.000
	3.4	.002	.002	.002	.002	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.000	.000
	3.5	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.001	.000	.000	.000
	3.6	.001	.001	.001	.001	.001	.001	:001	.001	.001	.001	.001	.001	.000	.000	.000	.000	.000
	3.7	.001	.001	.001	.001	.001	.001	.001	.001	.000	.000	.000	.000	.000	.000	.000	.000	
	3.8	.001	.001	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
	3.9	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
	4.0	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000

- o H₀: $\mu = \mu_0$ o Our test statistic is: $t = \frac{\overline{x} \mu_0}{s / \sqrt{n}}$

Alternative Hypothesis	Rejection region for level α test
H _a : μ > μ ₀	P = p(X>t)
H _a : μ < μ ₀	P = p(X < t)
H_a : $\mu \neq \mu_0$	P = 2p(X> t)

Relationship between CI and Hypothesis Test

- The mean water volume is expected to be 20 Oz. Determine the mean water volume differs from 20 Oz
- A sample of size 36 finds the sample mean water volume to be 19 Oz and the sample STD to be 2 Oz
 - What is 99% two-sided CI?
 - Compare the result with the p-Value

Relationship between CI and Hypothesis Test

o 99% two-sided CI for the water volume

$$\bar{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}} = \bar{x} \pm t_{0.005, 36-1} \frac{s}{\sqrt{n}}$$
$$= 19 \pm 2.724 \frac{2}{\sqrt{36}}$$
$$= 19 \pm 0.908$$

• μ_0 = 20 is not contained within this CI, which is consistent with the hypothesis testing problem having a p-value of 0.004, so that the null hypothesis is rejected at size α =0.01

	df/α =	.40	.25	.10	.05	.025	.01	.005	.001	.0005
	1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	318.309	636.619
	2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.599
	3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924
	4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610
	5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869
	6	0.265	0.718	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.785	5.408
=	8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	4.501	5.041
	9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4.781
	10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587
	11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.025	4.437
	12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.930	4.318
	13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.852	4.221
	14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.787	4.140
	15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.733	4.073
	16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.686	4.015
	17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.646	3.965
	18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.610	3.922
	19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.579	3.883
	20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.552	3.850
	21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.527	3.819
	22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.505	3.792
	23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.485	3.768
	24	0.256	0.685	1.318	1.711	2.064	2,492	2.797	3.467	3.745
	25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.450	3.725
	26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.435	3.707
	27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.421	3.690
	28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.408	3.674
	29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.396	3.659
	30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.385	3.646
	35 -	0.255	0.682	1.306	1.690	2.030	2.438	2.724	3.340	3.591
	40	0.255	0.681	1.303	1.684	2.021	2.423	2,704	3.307	3.551
	50	0.255	0.679	1.299	1.676	2.009	2.403	2.678	3.261	3.496
	60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	3.232	3.460
	120	0.254	0.677	1.289	1.658	1.980	2.358	2.617	3.160	3.373
	inf.	0.253	0.674	1.282	1.645	1.960	2.326	2.576	3.090	3.291
					2.516	2.500			2.109-0	31891

Example Hypothesis Testing

- The mean length of a part is expected to be 30mm
- Determine the mean length differs from 30 mm assuming that the population STD of 2mm
- A sample of size 36 finds the sample mean length to be 29 mm
- Is this difference statistically significant at a significance level of .05?

Solution

- o Step 1: Establish hypothesis
 - H_0 : $\mu = 30$ mm
 - H_a : $\mu \neq 30$ mm
- Step 2: Determine appropriate statistical test and sampling distribution
 - a two-tailed test
 - σ is known: use z-distribution
- Step 3: Specify the Type I error rate (significance level)
 - $\alpha = 0.05$

• • • | 5

Solution, Cnt'd

- o Step 4: State the decision rule
 - If $z > = z_{.025}$), reject H_0
 - If z < = $-z_{0.25}$, reject H₀
- Step 5: Gather data
 - n = 36, \bar{X} = 29
- o Step 6: Calculate test statistic
 - μ_0 = 30mm, σ = 2mm
 - $z = \frac{\bar{x} \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{29 30}{\frac{2}{\sqrt{36}}} = -3$
- Step 7: State statistical conclusion
 - Z = -3 < -1.96: reject the H₀ at the 5% level
 - It is very unlikely that the mean is actually 30 mm

Example: p-Value

- The mean length of a part is expected to be 30mm. Determine the mean length differs from 30 mm assuming that the population STD of 2mm
- A sample of size 36 finds the sample mean length to be 29 mm
 - What is the p-value?

Solution

- o Step 1: Establish hypothesis
 - H_0 : $\mu = 30$ mm
 - H_a: μ ≠ 30mm
- Step 2: Determine appropriate statistical test and sampling distribution
 - a two-tailed test
 - σ is known: use z-distribution
- Step 3: Specify the Type I error rate (significance level)
 - $\alpha = 0.05$

• • •

Solution, Cnt'd

- o Step 4: Gather data
 - n = 36, \bar{X} = 29
- o Step 5: Calculate test statistic
 - μ_0 = 30mm, σ = 2mm
 - $z = \frac{\bar{x} \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{29 30}{\frac{2}{\sqrt{36}}} = -3$
- o Step 6: Calculate p-value
 - $\Phi(|z|) = \Phi(3) = .9987$
 - P-value = 2×(1-.9987) = 2×.0013 = .0026
- Step 7: State statistical conclusion
 - P-value < 0.05: Reject H₀