

(11)Publication number:

07-285854

(43) Date of publication of application: 31.10.1995

(51)Int.CI.

A61K 9/70 A61K 31/135 A61K 31/135 A61K 31/135

(21)Application number : 06-075600

(71)Applicant: NITTO DENKO CORP

HOKURIKU SEIYAKU CO LTD

(22)Date of filing:

14.04.1994

(72)Inventor: YAMAMOTO KEIJI

NAKANO YOSHIHISA OTSUKA SABURO

(54) PERCUTANEOUSLY ABSORBABLE TYPE PHARMACEUTICAL PREPARATION

(57)Abstract:

PURPOSE: To obtain the subject pharmaceutical preparation excellent in adhesion to the skin and further percutaneous absorbability and persistence of pharmacodynamic effects of tulobuterol by blending a dissolved type tulobuterol and a crystalline type tulobuterol in a well-balanced state in a tacky agent.

CONSTITUTION: This percutaneously absorbable type pharmaceutical preparation is obtained by laminating a plaster layer containing tulobuterol having a saturation solubility or above in a tacky agent to one surface of a support. The content ratio of a dissolved type tulobuterol to a crystalline tulobuterol is 0.1–10, preferably 0.2–9, more preferably 1–5 and the content of the whole tulobuterol is 1–50wt.%, preferably 5–20wt.%. Furthermore, the ratio of the disappearance rate of the crystalline tulobuterol to that of the whole tulobuterol in the plaster layer is preferably 0.1–1.

LEGAL STATUS

[Date of request for examination]

16.09.1997

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2753800

[Date of registration]

06.03.1998

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-285854

(43)公開日 平成7年(1995)10月31日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	FΙ	技術表示箇所
A 6 1 K 9/70	3 4 1			
31/135	5 AAU	9454 – 4 C		
	ACD			
	ACF			
			審査讃求	未請求 請求項の数2 OL (全 6 頁)
(21)出願番号	特願平6-75600		(71)出願人	000003964
				日東電工株式会社
(22)出願日	平成6年(1994)4	月14日		大阪府茨木市下穂積1丁目1番2号
			(71)出願人	000242622
				北陸製薬株式会社
				福井県勝山市猪野口37号1番地1
			(72)発明者	山本 啓二
				大阪府茨木市下穂積1丁目1番2号 日東
				電工株式会社内
			(72)発明者	仲野 善久
				大阪府茨木市下穂積1丁目1番2号 日東
				電工株式会社内
			(74)代理人	弁理士 髙島 一
				最終頁に続く

(54) 【発明の名称】 経皮吸収型製剤

(57)【要約】

【構成】 粘着剤に対する飽和溶解度以上のツロブテロールを含有する膏体層が支持体の一方面に積層され、該膏体層中における溶解型ツロブテロールに対する結晶型ツロブテロールの含量比が0.1~10である経皮吸収型製剤。

【効果】 患者に与える貼付中の違和感および皮膚刺激性を低減させ、皮膚接着性の低下による端末の剥がれ、脱落を防止し、急激な薬物の血中濃度の上昇による重篤な副作用の発現を防止する。また、過剰に余分な薬物を育体層に含有させる必要がなく、経済性に優れる。持続的にかつ効率的にツロブテロールが皮膚面へ放出され、生体内へ長時間にわたって経皮吸収され、薬効の持続化が達成できるので、有効血中濃度の維持、すなわち薬効の持続性に優れる。投与回数(単位時間当たりの貼付回数)を減少できるので、皮膚刺激性が低減される。

1

【特許請求の範囲】

【請求項1】 粘着剤に対する飽和溶解度以上のツロブ テロールを含有する膏体層が支持体の一方面に積層さ れ、該膏体層中における溶解型ツロプテロールに対する 結晶型ツロプテロールの含量比が0.1~10であることを 特徴とする経皮吸収型製剤。

【請求項2】 該商体層中の全ツロブテロールの消失速 度に対する結晶型ツロブテロールの消失速度の比が0.1 ~1であることを特徴とする請求項1記載の経皮吸収型 製剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、皮膚面に貼付してツロ プテロールを皮膚から生体内へ連続的に投与するための 経皮吸収型製剤に関し、詳しくは、皮膚面に貼付した場 合に、皮膚接着性に優れるとともに、ツロブテロールの 有効血中濃度が長時間にわたって持続する経皮吸収型製 剤に関する。

[0002]

【従来の技術】ツロプテロールは、交感神経のβ2 受容 20 言い難い。 体を選択的に刺激することによる気管支拡張作用を有 し、気道狭窄を起こした患者の呼吸困難の軽減を目的と して、慢性気管支炎、気管支喘息などの治療に広く使用 されている。

【0003】ツロプテロールを生体内に投与する方法と しては、一般には錠剤、ドライシロップなどの経口投与 があるが、小児などに対する投与の困難性、急激な薬物 の血中濃度の上昇に伴う重篤な副作用の発現、および薬 効の持続性の欠如などの問題がある。そこで、本願出願 人は、これらの問題を解決するために、ツロプテロール 30 の貼付剤を既に提案している (特開平4-99720 号公報な ど参照)。貼付剤においては、薬物が経皮的に投与され るので、小児などに対しても投与が容易であり、速やか に皮膚から吸収される。また、薬効の持続性の付与およ び副作用発現の軽減を図ることができる。

[0004]

【発明が解決しようとする課題】ところで、ツロプテロ ールを貼付剤に含有させると、膏体層に対するツロブテ ロールの飽和溶解度の関係から、皮膚面に当接する膏体 層中のツロブテロールは結晶状態または溶解状態で存在 40 するようになる。この貼付剤を皮膚面に貼付した場合、 結晶状態のツロプテロール(以下「結晶型ツロプテロー ル」ともいう。) は経皮吸収に関与しないが、溶解状態 のツロブテロール(以下「溶解型ツロブテロール」とも いう。)は、膏体層に含まれる粘着剤中の官能基とのイ オン結合などによりトラップされない限り、速やかに皮 **膚へ移行して吸収される。したがって、膏体層中の溶解** 型ツロブテロールの含有量が多いほど、経皮吸収される ツロブテロール含量も多くなり、長時間薬効を持続させ

ロールの貼付剤の開発が行われているのが実情である。

【0005】しかしながら、このことは、言い換えれ ば、薬理作用の持続時間が、粘着剤に対するツロプテロ

ールの飽和溶解度によって制限されるということであ り、ツロプテロールの溶解度の低い粘着剤を使用した場 合には、充分な時間、ツロプテロールの有効血中濃度を 維持できないという問題を有する。

【0006】良好な薬効持続性を得るためには、ツロブ テロールを溶解させた膏体層を厚くするか、ツロプテロ ールの含有率を高めるか、あるいは皮膚面に当接する膏 体層の面積を大きくするなどの手段によって、投与量を 増大させることが必要となる。しかし、これらの手段を 講じた場合、患者に与える貼付中の違和感および皮膚刺 激性を増大させる、皮膚接着性が低下して、貼付中に貼 付剤の端末が剥がれたり、貼付剤が皮膚から脱落する、 急激に薬物の血中濃度が上昇して、重篤な副作用が発現 する、さらに、経皮吸収される薬物量よりも多くの薬物 を粘着剤中に含有させる必要があり、経済性に乏しいな どの問題を生ずることになり、必ずしも最良の方法とは

[0007]

【課題を解決するための手段】以上の実情に鑑み、本発 明者らは、粘着剤に対するツロプテロールの飽和溶解度 に関係なく、薬理効果を長時間持続させ得る経皮吸収型 製剤を開発すべく鋭意検討を重ねた結果、粘着剤中に溶 解型ツロブテロールと結晶型ツロブテロールとをパラン スよく配合することにより、ツロプテロールの速やかな 経皮吸収性および薬効持続性が良好となることを見出 し、本発明を完成する至った。

【0008】すなわち、本発明の経皮吸収型製剤は、粘 着剤に対する飽和溶解度以上のツロブテロールを含有す る膏体層が支持体の一方面に積層され、核膏体層中にお ける溶解型ツロプテロールに対する結晶型ツロプテロー ルの含量比が0.1~10であることを特徴とするものであ る。なお、結晶型ツロプテロールの含量比は、X線結晶 解析により算出した結晶型ツロブテロール含量と、膏体 層中の全ツロプテロール含量から結晶型ツロプテロール 含量を差し引いた溶解型ツロブテロール含量との比をと ることにより求められる。

【0009】本発明において膏体層中に含有されるツロ プテロールは、薬理効果を発揮するための薬物であり、 膏体層中で溶解型または結晶型として存在する。溶解型 ツロプテロールの濃度は、経皮吸収速度に直接的に影響 を与え、皮膚へ吸収されることにより減少する。使用す る粘着剤に対する飽和溶解度を越える過剰なツロブテロ ールは、結晶型ツロプテロールとして高体層中に分散さ れるので、膏体層中に含有させ得る溶解型ツロブテロー ルの量は、使用する粘着剤により適宜決定される。

【0010】一方、結晶型ツロプテロールは、貼付中に ることが可能になる。よって、通常は、溶解型ツロプテ 50 溶解することによって、皮膚に吸収されて減少した溶解

型ツロブテロールを膏体層中に供給し、補う機能を持 つ。その結果、長時間にわたり高い経皮吸収速度が保持 され、有効血中濃度が長時間維持される。

【0011】本発明の経皮吸収型製剤において、膏体層 中における溶解型ツロプテロールに対する結晶型ツロブ テロールの含量比は、下限が0.1 、好ましくは0.2 、さ らに好ましくは1であり、上限が10、好ましくは9、さ らに好ましくは5である。含量比が0.1 未満の場合に は、充分に薬効が持続せず、また含量比が10を越える場 合には、膏体層表面に多量の結晶型ツロプテロールが析 10 出するので、皮膚表面に接触する溶解型ツロブテロール 含量が減少することによって、経皮吸収速度が低くなる とともに、皮膚接着力が低下することになり、いずれの 場合も好ましくない。

【0012】膏体層中における溶解型および結晶型の全 ツロプテロールの含有率は、使用する粘着剤により適宜 決定されるが、通常1~50重量%、好ましくは5~20重 量%である。含有率が1%に満たない場合は、ツロブテ ロールによる薬効が充分に期待できなかったり、持続的 な薬効の発現が望めない場合がある。また、50重量%を 越えて含有させた場合は、増量による薬効および持続性 の向上が望めないだけでなく、膏体層の皮膚接着性が低 下する傾向を示し好ましくない。

【0013】また、本発明の経皮吸収型製剤において、 高い経皮吸収速度を長時間維持するためには、経皮吸収 による溶解型ツロプテロールの減少を補うべく、結晶型 ツロプテロールの再溶解が速やかに起こることが望まし い。すなわち、膏体層中の全ツロブテロールの消失速度 に対する結晶型ツロプテロールの消失速度の比は、下限 が0.1、好ましくは0.2、さらに好ましくは0.4 以上で あることが望ましい。消失速度の比が0.1 未満の場合に は、経皮吸収による溶解型ツロブテロールの減少に対す る結晶型ツロプテロールの再溶解が不充分となるので、 薬効の持続性の点で望ましくない。

【0014】なお、膏体層中の全ツロプテロールの消失 速度は、貼付前の膏体層中の薬剤含量から貼付後の膏体 層中の残存薬剤含量を差し引くことにより求められた皮 膚移行量から算出され、結晶型ツロブテロールの消失速 度は、貼付前および貼付後のX線結晶解析結果から算出 される。

【0015】膏体層に含まれる粘着剤としては、本発明 の目的を達成し得るものであれば特に限定されないが、 好ましくはポリイソプチレン/ポリプテン系、スチレン /ジエン/スチレンプロック共重合体、スチレン/プタ ジエン系、ニトリル系、クロロプレン系、ピニルピリジ ン系、ポリイソプチレン系、プチル系、イソプレンノイ ソプチレン系などからなるゴム系粘着剤、(メタ)アク リル酸アルキルエステルを50重量%以上重合して得られ るアクリル系粘着剤が例示される。ポリイソプチレン系

ンゴムを含有するいわゆるプチルゴムを用いても差し支 えなく、本発明の目的を充分に達成できるものである。

【0016】本発明において膏体層は、上記のツロブテ ロールと粘着剤とを主成分として構成されるが、さらに 熱可塑性樹脂などが含有されていてもよい。特に、ポリ イソプチレン系粘着剤を用いる場合には、熱可塑性樹脂 が含有されていることが望ましい。膏体層中にポリイソ プチレン系粘着剤とともに熱可塑性樹脂を含有させるこ とによって、膏体層中でツロブテロールが拡散移動する 際に適度な拡散障害として作用し、持続的にかつ効率的 にツロブテロールが皮膚面へ放出され、生体内へ長時間 にわたって経皮吸収され、薬効の持続化が達成できるの ものである。したがって、有効血中濃度の維持、すなわ ち薬効の持続性に優れるようになり、投与回数(単位時 間当たりの貼付回数)を減少できるので、皮膚刺激性が 低減されるものである。

【0017】このような熱可塑性樹脂としては、例えば 常温にて結晶状態であり、軟化点が50~250 ℃のものが 好ましく、具体的にはロジンまたはその誘導体、テルベ ン樹脂、テルペン・フェノール樹脂、石油樹脂、アルキ ル・フェノール樹脂、キシレン樹脂などの粘着付与性樹 脂が挙げられる。これらの樹脂は、一種または二種以上 を50重量%以下、好ましくは5~40重量%の範囲で配合 する。

【0018】但し、従来の貼付剤のように、薬物の溶解 用または放出用の担体(キャリヤー)としての鉱油を膏 体層に含有させることは好ましくない。その理由は、薬 物と鉱油もしくは鉱油中の不純物成分との相互作用によ り製剤中の薬物の経時的な安定性が低下することが懸念 され、また、液状物質である鉱油を薬物の担体として使 用するために、膏体層中からの薬物の放出が極めて速く なるので、急激な血中濃度の上昇に伴う重篤な副作用が 発現したり、貼付剤の利点である薬効の持続性が欠如す るという問題を生じ得るからである。

【0019】以上の構成からなる膏体層の厚さは、皮膚 面への長時間の貼着に耐えられるように、20~100 μ m、好ましくは20~50μmとするのが望ましい。

【0020】膏体層が積層される支持体としては、その 一方面にツロプテロールを含有する膏体層を形成、支持 できるものであれば特に限定されないが、通常は実質的 にツロプテロールに対して非移行性のものが用いられ、 特に皮膚面に貼着した際に、著しい違和感を生じない程 度に皮膚面の湾曲や動きに追従できる柔軟性を有するも のが好ましい。具体的には、ポリエチレン系、ポリプロ ピレン系、ポリエステル系、ポリ酢酸ピニル系、エチレ ン/酢酸ピニル共重合体、ポリ塩化ピニル系、ポリウレ タン系などのプラスチックフイルム、アルミニウム箔、 スズ箔などの金属箔、不織布、布、紙などからなる単層 フイルム、またはこれらの積層フイルムなどを用いるこ 粘着剤には、ポリイソプチレンを主成分としてイソプレ 50 とができる。このような支持体の厚さは、 $5\sim500~\mu$

m、好ましくは5~200 μmの範囲である。また、これらの支持体は、膏体層との密着性、投錨性を向上させるために、膏体層が積層される面にコロナ放電処理、プラズマ処理、酸化処理などを施すことが好ましい。

【0021】本発明の経皮吸収型製剤は、上記支持体の一方面に前記膏体層を形成してなるものであるが、皮膚面への貼付の直前までは膏体層の露出面に、シリコーン樹脂、フッ素樹脂などの塗布によって剥離処理を施した紙またはプラスチックフイルムなどの離型ライナーにて被覆、保護することが望ましい。

【0022】本発明の経皮吸収型製剤は、公知の方法により製造することができる。例えば、粘着剤と該粘着剤成分に対する飽和溶解度以上のツロプテロールとを良溶媒中で均一に溶解した後、この膏体溶液を支持体の一方面に塗布、乾燥させ、過剰なツロプテロールを再結晶させる。これにより、結晶型ツロプテロールが膏体中に均一に分散した製剤を得ることができる。

[0023]

【作用】本発明の経皮吸収型製剤においては、膏体層中における溶解型ツロブテロールに対する結晶型ツロブテ 20 ロールの含量比が特定範囲内にあるので、溶解型ツロブテロールが速やかに経皮吸収されるとともに、結晶型ツロブテロールが溶解型ツロブテロールの減少を補って、高い経皮吸収速度を長時間維持することができ、また患者に与える貼付中の違和感および皮膚刺激性が低減され、皮膚接着性に優れるものである。

[0024]

【実施例】以下、本発明を詳細に説明するため実施例および実験例を挙げるが、本発明はこれらによって何ら限定されるものではない。なお、以下の実施例において部 30 および%は、それぞれ重量部および重量%を意味する。

【0025】実施例1

高分子量ポリイソブチレン(粘度平均分子量990,000 、VISTANEX MML-80) 28.5部、低分子量ポリイソプチレン(粘度平均分子量60,000、HIMOL 6H) 43部、ポリプテン(粘度平均分子量1,260、HV-300) 8.5 部、および脂環族系石油樹脂(軟化点100℃、アルコンP-100) 20部をヘキサンに溶解して、ポリイソプチレン系粘着剤溶液(固形分濃度25%)を調製した。

【0026】この溶液に膏体層中のツロブテロール含有 40率が10%になるように添加、混合して充分に攪拌した後、離型ライナー上に乾燥後の厚さが20μmとなるように塗布、乾燥して、膏体層を形成した。次に、支持体としてポリエステルフイルム(厚さ12μm)を貼り合わせた後、室温で1週間放置することにより、本発明の経皮吸収型製剤を得た。

【0027】得られた経皮吸収型製剤において、膏体層中には溶解型ツロブテロールが4%存在し、残りの6%は結晶型ツロブテロールとして膏体層中および表面に分散していた。

【0028】 実施例2

育体層中のツロブテロール含有率が20%となるようにツロブテロールを添加、混合した以外は実施例1と同様にして、本発明の経皮吸収型製剤を得た。

【0029】得られた経皮吸収型製剤において、膏体層中には溶解型ツロプテロールが4%存在し、残りの16%は結晶型ツロプテロールとして膏体層中および表面に分散していた。

【0030】 実施例3

10 育体層中のツロブテロール含有率が44%となるようにツロブテロールを添加、混合した以外は実施例1と同様にして、本発明の経皮吸収型製剤を得た。

【0031】得られた経皮吸収型製剤において、膏体層中には溶解型ツロプテロールが4%存在し、残りの40%は結晶型ツロプテロールとして膏体層中および表面に分散していた。

【0032】 実施例4

育体層中のツロブテロール含有率が40%となるようにツロブテロールを添加、混合した以外は実施例1と同様にして、本発明の経皮吸収型製剤を得た。

【0033】得られた経皮吸収型製剤において、膏体層中には溶解型ツロプテロールが4%存在し、残りの36%は結晶型ツロプテロールとして膏体層中および表面に分散していた。

【0034】実施例5

育体層中のツロブテロール含有率が4.4 %となるように ツロブテロールを添加、混合した以外は実施例1と同様 にして、本発明の経皮吸収型製剤を得た。

【0035】得られた経皮吸収型製剤において、膏体層中には溶解型ツロプテロールが4%存在し、残りの0.4%は結晶型ツロプテロールとして膏体層中および表面に分散していた。

【0036】実施例6

不活性ガス雰囲気下でアクリル酸2-エチルヘキシル45 部、アクリル酸2-メトキシエチル25部、酢酸ビニル30 部を酢酸エチル中で重合させ、アクリル系粘着剤溶液を調製した。この溶液に膏体層中のツロプテロール含有率が15%になるように添加、混合し、実施例1と同様にして、本発明の経皮吸収型製剤を得た。

7 【0037】得られた経皮吸収型製剤において、膏体層中には溶解型ツロブテロールが12.5%存在し、残りの2.5 %は結晶型ツロブテロールとして膏体層中および表面に分散していた。

【0038】実施例7

高分子量ポリイソプチレン(粘度平均分子量2,100,000 、VISTANEX MML-140) 55部、低分子量ポリイソプチレン(粘度平均分子量60,000、HIMOL 6ED 15部、ポリプテン(粘度平均分子量1,260、HV-300) 10部、および脂環族系石油樹脂(軟化点100 ℃、アルコンP-100) 20 50 部をヘキサンに溶解して、ポリイソプチレン系粘着剤溶

液(固形分濃度25%)を調製した。

【0039】この溶液に膏体層中のツロプテロール含有 率が10%になるように添加、混合し、実施例1と同様に して、本発明の経皮吸収型製剤を得た。

【0040】得られた経皮吸収型製剤において、膏体層 中には溶解型ツロプテロールが2%存在し、残りの8% は結晶型ツロブテロールとして膏体層中および表面に分 散していた。

【0041】 実施例8

高分子量ポリイソプチレン(粘度平均分子量2,100,000 10 にして、経皮吸収型製剤を得た。 、VISTANEX MML-140) 60部、低分子量ポリイソプチレ ン (粘度平均分子量60,000、HIMOL 6H) 15部、ポリプテ ン (粘度平均分子量1,260 、HV-300) 10部、および脂環 族系石油樹脂(軟化点100 ℃、アルコンP-100)30 部をヘキサンに溶解して、ポリイソプチレン系粘着剤溶 液(固形分濃度25%)を調製した。

【0042】この溶液に膏体層中のツロプテロール含有 率が10%になるように添加、混合し、実施例1と同様に して、経皮吸収型製剤を得た。

中には溶解型ツロプテロールが1.5%存在し、残りの8.5 %は結晶型ツロプテロールとして育体層中および表面 に分散していた。

【0044】比較例1

育体層中のツロプテロール含有率が50%となるようにツ*

*ロプテロールを添加、混合した以外は実施例1と同様に して、経皮吸収型製剤を得た。

【0045】得られた経皮吸収型製剤において、膏体層 中には溶解型ツロプテロールが4%存在し、残りの46% は結晶型ツロブテロールとして膏体層中および表面に分 散していた。

【0046】比較例2

膏体層中のツロプテロール含有率が4.2 %となるように ツロブテロールを添加、混合した以外は実施例1と同様

【0047】得られた経皮吸収型製剤において、膏体層 中には溶解型ツロプテロールが4%存在し、残りの0.2 %は結晶型ツロプテロールとして膏体層中および表面に 分散していた。

【0048】実験例1

上記実施例および比較例にて得られた経皮吸収型製剤を 用いて、皮膚接着性およびウサギに投与した後の血中濃 度経時変化を表1および2に示した。

【0049】なお、膏体層中の全ツロプテロールの消失 【0043】得られた経皮吸収型製剤において、膏体層 20 速度は、貼付前の膏体層中の薬剤含量から、3,6,1 2,24時間貼付後の膏体層中の残存薬剤含量を差し引く ことにより求めた0~6時間,6~12時間および12~24 時間の薬剤放出速度の平均とした。

[0050]

【表1】

	含量 比 (結晶型/溶解型の	全含有率	有率 消失速度比		皮膚接着性※1	
	(結晶型/溶解型の 各含有率の比)	(重量%)	(結晶型/全)	0 時間	24時間	
実施例 1 2 3 4 5 5 6 7 8 时 2 2 2 比 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.5 (6/4) 4.0 (16/4) 1 0.0 (40/4) 9.0 (36/4) 0.1 (0.4/4) 0.2 (2.5/12.5) 4.0 (8/2) 5.7 (8.5/1.5) 1 1.5 (46/4) 0.0 5 (0.2/4)	1 0 2 0 4 4 4 0 4 4 1 5 1 0 1 0 5 0 4. 2	0. 5 3 0. 6 9 0. 4 5 0. 4 7 0. 6 0 0. 8 8 0. 1 6 0. 0 7 0. 3 0 0. 6 8	0000000040	0×00000Þ000	

【0051】※ 10cm² の大きさに切断した各製剤サン プルを胸部に貼付し、貼付初期および24時間後の皮膚接 着性を以下の基準により評価した。

○:端末剥がれがほとんどない。

△:端末剥がれが起こる。

×:貼付中に脱落する。

【0052】表1に示されるように、実施例1~8の経 皮吸収型製剤は、一部に端末剥がれが生ずるものの、ほ

ば皮膚接着性に優れ、24時間後の脱落は認められなかっ た。

【0053】これに対して、溶解型ツロプテロールに対 40 する結晶型ツロプテロールの含有率が11.5である比較例 1では、貼付中に端末が剥がれ、貼付中に脱落した。

[0054]

【表 2】

9

10

	血 中 渡 度 (n g/m²) ※2						
	2時間	4時間	6時間	8 時間	2 4 時間		
実施 2 3 4 5 6 7 8 比 2	56803518359 1.3.7.8.1.0.4.1.6.8.3.1.6.8.3.1.2	229.0.621996705.5 1.6.8.6.705.5	1 7. 5 2 3. 6 2 7. 9 2 7. 1 1 0. 6 1 2. 1 1 0. 9 3. 1 4. 0	39 117777799 1227.38521.	84.05001268 1111 7.		

【0055】※2:20cm² の大きさに切断した各製剤サンプルを除毛したウサギの背部に貼付し、経時的に採血して血漿中のツロプテロールをガスクロマトグラフにより測定した。

【0056】表2に示されるように、実施例1~8の経 皮吸収型製剤は、貼付初期の血中濃度の立ち上がりが良 好で、24時間後にもツロプテロールは血漿中に存在し た。

【0057】これに対して、溶解型ツロプテロールに対 発現を防止する。また、過剰に余分な薬物 する結晶型ツロプテロールの含有率が0.05である比較例 20 有させる必要がなく、経済性に優れている。 2は、薬効の持続性に乏しく、貼付24時間後にはツロプ 【0060】さらに、持続的にかつ効率的 テロールは血漿中に検出されなかった。 ールが皮膚面へ放出され、生体内へ長時間

【0058】また、全ツロブテロールの消失速度に対する結晶型ツロブテロールの消失速度の比が0.07である実施例8は、他の実施例の経皮吸収型製剤と比較して、薬効の持続性がやや劣っていた。

[0059]

【発明の効果】本発明の経皮吸収型製剤によれば、ツロプテロールを溶解させた膏体層を厚くする、ツロプテロールの含有率を高める、あるいは皮膚面に当接する膏体層の面積を大きくするなどの手段を講じることなく、ツロブテロールが効率よく経皮吸収される。したがって、患者に与える貼付中の違和感および皮膚刺激性を低減させ、皮膚接着性の低下による端末の剥がれ、脱落を防止し、急激な薬物の血中濃度の上昇による重篤な副作用の発現を防止する。また、過剰に余分な薬物を膏体層に含有させる必要がなく、経済性に優れている。

【0060】さらに、持続的にかつ効率的にツロブテロールが皮膚面へ放出され、生体内へ長時間にわたって経皮吸収され、薬効の持続化が達成できるので、有効血中濃度の維持、すなわち薬効の持続性に優れるようになる。また、投与回数(単位時間当たりの貼付回数)を減少できるので、皮膚刺激性が低減されるものである。

フロントページの続き

(72)発明者 大塚 三郎

大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内