연소 및 발

2018. 03. 00

CONTENTS

- I 연소의 개요
- Ⅲ 가연물 및 점화원
- Ⅲ 연소의 형태
- IV 인화점 및 발화점
- V 연소 범위 및 연소 속도
- VI 자연발화
- Ⅶ 이론산소량 및 이론공기량
- Ⅷ 증기 비중
- IX 기출문제

출제 포인트

- 이 섹션에서는 표면연소, 분해연소, 증발연소, 자기연소 등의 의미와 종류에 대해서는 꾸준히 출제되고 있다.
- 주요 가연물의 인화점과 발화점은 필히 외워두도록 한다.
- 가연물과 점화원, 정전기, 연소범위와 속도, 자연발화 등에서 골고루 출제되고 있다.
- 특별히 어려운 내용은 없으므로 이 단원에서 확실히 점수를 확보할 수 있도록 한다.

연소의 개요

- 정의
 - 가연물이 점화원에 의해 공기 중의 산소와 반응하여 열과 빛을 수반 하는 산화현상을 말한다.
- 연소의 3요소 및 4요소

■ 3요소 : 가연물, 산소공급원, 점화원

■ 4요소 : 가연물, 산소공급원, 점화원, 연쇄반응

• 고온체의 색과 온도

색	온도	색	온도
담암적색	522°C	황적색	1,100°C
암적색	700°C	백색(백적색)	1,300℃
적색	850°C	휘백색	1,500°C
휘적색 (주황색)	950℃		

- 가연물이 되기 쉬운 조건
 - 산소와의 친화력이 클 것
 - 발열량이 클 것
 - 표면적이 넓을 것(기체 > 액체 > 고체)
 - 열전도율이 적을 것(기체 < 액체 <고체)
 - 활성화 에너지가 작을 것
 - 연쇄반응을 일으킬 수 있을 것
- 가연물이 될 수 없는 물질
 - 더 이상 산소와 화학 반응을 일으키지 않는 물질 : 물, 이산화탄소, 산화알루미늄, 산화규소, 오산화인, 삼산화황, 삼산화크롬, 산화안티몬 등
 - 흡열반응 물질 : 질소, 질소산화물
 - 주기율표상 0족 물질 : 헬륨, 네온, 아르곤, 크립톤, 크세논, 라돈

- 점화원
 - 전기불꽃, 마찰열, 불꽃, 정전기, 고열 등
 - 점화에너지의 크기는 최소한 가연물의 활성화 에너지의 크기보다 커야 한다.
 - 화학적으로 반응성이 큰 가연물일수록 점화에너지가 작아도 된다.
 - 점화원의 종류

분류	종류
화학적 에너지	연소열, 자연발열, 분해열, 용해열
전기적 에너지	저항열, 유도열, 유전열, 아크열, 정전기열, 낙뢰에 의 한 열
기계적 에너지	마찰열, 압축열, 마찰스파크
원자력 에너지	핵분열, 핵융합

■ 전기불꽃 에너지

$$E = \frac{1}{2}QV = \frac{1}{2}CV^2$$
 Q: 전기량, V: 방전전압, C: 전기용량

- 산소공급원
 - 공기
 - 산화제 : 제 1류, 제 6류 위험물
 - 자기연소성물질 : 제 5류 위험물

• 정전기

- 정전기 발생에 영향을 주는 요인
 - ❖물체의 특성: 대전서열에서 먼 위치에 있을수록 정전기의 발생 증가
 - ❖접촉면적 및 압력 : 접촉면적이 클수록, 접촉압력이 증가할수록 정전기의 발생 증가
 - ❖물질의 표면상태 : 표면이 수분이나 기름 등으로 오염될수록 발생 증가하며, 표면이 원활할수록 감소
 - ❖ 분리속도 : 전하의 완화시간이 길수록, 분리속도가 빠를수록 정전기의 발생 증가
 - ❖ 접촉의 이력 : 처음 접촉과 분리가 일어날 때 정전기 발생이 최대이며, 접촉과 분리가 반복됨에 따라 감소

- 정전기
 - 인화성 액체의 정전기 발생 요인
 - ❖ 유속이 빠를때 → 최대유속제한
 - ❖ 배관내 유체의 점도가 클 때
 - ❖심한 와류가 생성될 때
 - ❖비전도성 부유물질이 많을 때
 - ❖흐름의 낙차가 클 때
 - ❖ 필터를 통과할 때
 - 정전기 발생 방지 방법
 - ❖ 발생을줄이는 방법 : 물질 간의 마찰 감소, 전도성 재료 사용, 유속 제한, 제전재 사용
 - ❖ 정전기 축적 방지 : 접지, 실내공기 이온화, 실내 습도를 상대습도 70% 이상으로 유지

연소의 형태

- 고체의 연소
 - 표면연소
 - ❖ 열분해에 의해 가연성가스를 발생하지 않고 그 자체가 연소하는 형태
 - ❖목탄, 코크스, 금속분, 마그네슘 등
 - 분해연소
 - ❖ 열분해에 의한 가연성가스가 공기와 혼합하여 연소하는 형태
 - ❖ 목재, 종이, 석탄, 섬유, 플라스틱, 중유 등
 - 증발연소
 - ❖ 물질의 표면에서 증발한 가연성가스와 공기 중의 산소가 화합하여 연소하는 형태
 - ❖ 파라핀(양초), 나프탈렌, 유황등
 - 자기연소
 - ❖ 공기 중의 산소가 아닌 그 자체의 산소에 의해서 연소하는 형태
 - ❖ 질산에스테르류, 셀룰로이드류, 니트로화합물류, 히드라진유등

연소의 형태

- 기체의 연소
 - 확산연소, 예혼합연소, 폭발연소
- 액체의 연소
 - 액면연소, 등화연소, 분무연소, 증발연소(석유, 가솔린, 알코올)

- 인화점
 - 액체 표면의 근처에서 불이 붙는 데 충분한 농도의 증기를 발생하는 최저 온도
 - 가연성 물질을 공기 중에서 가열할 때 가연성 증기가 연소범위 하한 에 도달하는 최저온도

- 인화점
 - 주요 가연물의 인화점
 - ❖특수인화물〈제1석유류
 - 〈 알코올류 〈 제2석유류
 - 〈제3석유류〈제4석유류
 - 〈 동식물유류

물질명	인화점	물질명	인화점
이소펜탄	-51℃	에탄올	13℃
디에틸에테르	-45℃	에틸벤젠	15℃
아세트알데히드	-38℃	클로로벤젠 스틸렌	32℃
산화프로필렌	-37℃	테레핀유 클로로아세톤	35℃
이황화탄소	-30℃	아세트알데 히드	38℃
아세톤, 트리메 틸알루미늄	-18°C	초산(아세트산)	40℃
벤젠	-11℃	등유	30~60℃
초산메틸	-10℃	경유	50~70℃
아세트산에틸	-4℃	아닐린	75°C
메틸에틸케톤	-1℃	니트로벤젠	88℃
톨루엔	4.5℃	에틸렌글리콜	111°C
메틸알코올	11°C		

- 발화점(착화점, 발화온도, 착화온도)
 - 의미
 - ❖물질을 공기 중에서 가열할 때 불이 붙거나 폭발을 일으키는 최저온도
 - 발화점이 낮아지는 요건
 - ❖ 산소와의 친화력이 클 때
 - ❖ 산소의 농도가 높을 때
 - ❖ 발열량이 클 때
 - ❖ 압력이 높을 때
 - ❖화학적 활성도가 클 때
 - ❖ 열전도율이 낮을 때
 - ❖습도가 낮을 때
 - ❖활성화 에너지가 적을 때
 - 발화점이 달라지는 요인
 - ❖ 가연성 가스와 공기의 조성비
 - ❖ 발화를 일으키는 공간의 형태와 크기
 - ❖ 가열 속도와 가열 시간
 - ❖ 발화원의 재질과 가열 방식

- 발화점(착화점, 발화온도, 착화온도)
 - 주요 가연물의 발화점

물질명	발화점	물질명	발화점
황린	34℃	트리니트로톨루엔	300℃
이황화탄소	120℃	마그네슘	400℃
삼황화린	100℃	에틸알코올	423℃
오황화린	142℃	아세트산	427℃
디에틸에테르	180℃	산화프로필렌	449℃
아세트알데히드	185℃	초산메틸	454℃
유황	232.2℃	메틸알코올	464℃
등유	250℃	톨루엔	480℃
적린	260℃	아세톤	561℃
가솔린, 피크르산	300℃	벤젠	720°C

연소범위 및 연소속도

- 연소범위(폭발범위)
 - 가연물이 기체상태에서 공기와 혼합하여 연소가 일어나는 범위(연소 하한값부터 연소상한값까지)
 - 연소하한이 낮을수록, 연소상한이 높을수록 위험
 - 연소범위가 넓을수록 폭발 위험이 큼
 - 온도가 높아지면 연소범위가 넓어짐
 - 압력이 높아지면 하한값은 크게 변하지 않지만 상한값은 커진다.

연소범위 및 연소속도

• 주요 물질의 연소범위

기체 또는 증기	연소범위 (vol%)	기체 또는 증기	연소범위 (vol%)	
아세틸렌	2.5~82	시안화수소	12.8~27	
수소	4.1~75	암모니아	15.7~27.4	
일산화탄소	12.5~75	아세톤	2.6~12.8	
아세트알데히드	4.1~57	메탄	5.0~15	
에틸에테르	1.7~48	에탄	3.0~12.5	
산화프로필렌	2.5~38.5	프로판	2.1~9.5	
에틸렌	3.0~33.5	휘발유	1.4~7.6	
메틸알코올	7.3~36	톨루엔	1.3~6.7	
에틸알코올	4.3~19			

연소범위 및 연소속도

- 연소속도에 영향을 미치는 요인
 - 가연물의 온도
 - 가연물질과 접촉하는 속도
 - 산화반응을 일으키는 속도
 - 촉매
 - 압력
- 연소의 확대
 - 전도 : 고체의 열 전달 방법으로 접촉하고 있는 물체를 통해 열을 전달. 금속류의 열전도도가 높다.
 - 대류 : 액체 기체의 열 전달 방법으로 열을 포함하고 있는 물질이 직접 이동해서 열을 전달
 - 복사: 태양열처럼 매개물질 없이 열을 전달하는 방식으로 가장 빠른 열 전달 방법

자연발화

• 자연발화의 형태

구분	종류
분해열에 의한 발화	셀룰로이드, 니트로셀룰로오스
산화열에 의한 발화	석탄, 건성유
발효열에 의한 발화	퇴비, 먼지
흡착열에 의한 발화	목탄, 활성탄
중합열에 의한 발화	시안화수소, 산화에프틸렌

- 자연발화의 발생조건
 - 주위의 온도가 높을 것
 - 습도가 높을 것
 - 표면적이 넓을 것
 - 발열량이 클 것
 - 열전도율이 작을 것

자연발화

- 자연발화에 영향을 주는 요인
 - 열의 축적 · 열의 축적이 쉬울수록 자연발화하기 쉽다.
 - 열의 전도율 : 열의 전도율이 작을수록 자연발화하기 쉽다.
 - 퇴적 방법 : 열축적이 용이하게 적재되어 있으면 자연발화하기 쉽다.
 - 통풍 : 통풍이 잘 되지 않으면 열축적이 용이하여 자연발화하기 쉽다.
 - 발열량 : 발열량이 클수록 자연발화하기 쉽다.
 - 습도 : 습도가 높으면 자연발화하기 쉽다.

• 자연발화 방지법

- 통풍(공기유통)이 잘 되게 한다.
- 저장실의 온도를 낮춘다.
- 습도를 낮게 유지한다.
- 열의 축적을 방지한다.
- 정촉매 작용을 하는 물질을 피한다.
 - ❖ 정촉매 : 반응속도를 빠르게 하는 물질
 - ❖ 부촉매 : 반응속도를 느리게 하는 물질

자연발화

- 준자연발화
 - 가연물이 공기 또는 물과 반응하여 급격히 발열, 발화하는 현상
 - 연소 반응속도가 빠름
 - 종류
 - ❖ 황린(P₄) : 공기와 반응하여 발화
 - ❖ 금속칼륨(K), 금속나트륨(Na): 물 또는 습기와 접촉시 급격히 발화
 - ❖ 알킬알루미늄 : 공기 또는 물과 반응하여 발화

이론산소량 및 이론 공기량

- 이론산소량(O₀)
 - 중량단위 $O_0 = 2.67C + 8.0 \left(H \frac{O}{8} \right) + S$ = 2.67C + 8.0H + (S O)[kg/kg]
 - ❖(C, H, O, S: 1kg 중 각 원소별 중량(kg)
 - ❖ O/8 : 수분으로 존재하여 연소할 수 없는 수소량
 - 부피단위 $O_0 = 1.87C + 5.6 \left(H \frac{O}{8} \right) + 0.7S$ $= 1.87C + 5.6H 0.7(S O) \left[Nm^3 / kg \right]$

이론산소량 및 이론 공기량

- 이론공기량(A₀)
 - 중량단위

$$A_0 = \frac{O_0}{0.23}$$

$$= \frac{1}{0.23} (2.67C + 8H - O + S) [kg / kg]$$

$$A_0 = \frac{O_0}{0.21}$$

$$= \frac{1}{0.21} \left(1.87C + 5.6 \left(H - \frac{O}{8} \right) + 0.7S \right) \left[Sm^3 / kg \right]$$

증기비중

- 어떤 온도와 압력에서 같은 부피의 공기 무게와 비교한 값
- 증기 비중이 1보다 크면 공기보다 무겁고 1보다 작으면 공기 보다 가볍다.

1. 고온체의 색깔과 온도관계에서 다음 중 가장 낮은 온도의 색깔은? (13-02)

① 적색

② 암적색 ③ 휘적색 ④ 백적색

2. 연소 시 온도에 따른 불꽃의 색상이 잘못된 것은? (11-01)

① 적색 : 약 850°C ② 황적색 : 약 1100°C

③ 휘적색 : 약 1200℃ ④ 백적색 : 약 1300℃

3. 가연물의 구비조건으로 옳지 않은 것은? (15-02)

① 열전도율이 클 것 ② 연소열량이 클 것

③ 화학적 활성이 강할 것 ④ 활성화 에너지가 작을 것

4. 가연물이 되기 쉬운 조건으로 가장 거리가 먼 것은? (14-04)

① 열전도율이 클수록

② 활성화에너지가 작을수록

③ 화학적 친화력이 클수록 ④ 산소와 접촉이 잘 될수록

5. 전기불꽃 에너지 공식에서 ()안에 것은? (10-04)

$$E = \frac{1}{2}() = \frac{1}{2}()$$

- ① QV, CV ② QC, CV
- (3) QV, CV²

- (4) QC, QV²
- 6. 최소 착화에너지를 측정하기 위해 콘덴서를 이용하여 불꽃 방전 실험을 하고 자 한다. 콘덴서의 전기 용량을 C, 방전전압을 V, 전기량을 Q 라 할 때 착화에 필요한 최소 전기 에너지 E를 옳게 나타낸 것은? (08-04) ① $E = \frac{1}{2}CQ^2$ ② $E = \frac{1}{2}C^2V$ ③ $E = \frac{1}{2}QV^2$ ④ $E = \frac{1}{2}CV^2$

- 7. 다음 중 가연물이 될 수 있는 것은? (15-01)

 - (1) CS_2 (2) H_2O_2 (3) CO_2

(4) He

- 8. 다음 중 가연성 물질이 아닌 것은? (15-02)
 - (1) $C_2H_5OC_2H_5$ (2) $KCIO_4$ (3) $C_2H_4(OH)_2$ (4) P_4

- 고체가연물에 있어서 덩어리 상태보다 분말일 때 화재 위험성이 증가하는 이 유는? (11-01)
 - ① 공기와의 접촉면적이 증가하기 때문이다.
 - ② 열전도율이 증가하기 때문이다.
 - ③ 흡열반응이 진행되기 때문이다.
 - ④ 활성화에너지가 증가하기 때문이다.
- 10.점화원 역할을 할 수 없는 것은? (11-01)
 - 기화열

- ② 산화열
 - ③ 정전기불꽃 ④ 마찰열

- 11.산소공급원으로 작용할 수 없는 위험물은? (11-01)

- ① 과산화칼륨 ② 질산나트륨 ③ 과망간산칼륨 ④ 알킬알루미늄
- 12. 가연물의 주된 연소형태에 대한 설명으로 옳지 않은 것은? (14-01)
 - ① 유황의 연소형태는 증발연소이다. ② 목재의 연소형태는 분해연소이다.
- - ③ 에테르의 연소형태는 표면연소이다. ④ 숯의 연소형태는 표면연소이다.

- 13. 중유의 주된 연소 형태는? (14-02)
 - ① 표면연소 ② 분해연소 ③ 증발연소 ④ 자기연소

- 14. 고체의 일반적인 연소형태에 속하지 않는 것은? (13-02)
 - ① 표면연소 ② 확산연소 ③ 자기연소 ④ 증발연소

- 15. 고체가연물의 연소형태에 해당하지 않는 것은? (12-01)
 - ① 등심연소 ② 증발연소 ③ 분해연소 ④ 표면연소

- 16. 고체연소에 대한 분류로 옳지 않은 것은? (14-04)
 - ① 혼합연소 ② 증발연소 ③ 분해연소 ④ 표면연소

- 17. 고체 연소형태에 관한 설명 중 틀린 것은? (08-04)
 - ① 목탄의 주된 연소 형태는 표면연소이다.
 - ② 목재의 주된 연소형태는 분해연소이다.
 - ③ 나프탈렌의 주된 연소형태는 증발연소이다.
 - ④ 양초의 주된 연소형태는 자기연소이다.

18.	기체의 연소 형태에 하 ① 표면연소		④ 확산연소
19.	주된 연소형태가 분해 ① 금속분		④ 피크르산
20.	일반적인 연소형태가 . ① 플라스틱		④ 피크린산
21.	다음 물질의 연소 중 3 ① 석탄	나는 것은? (07-01) ③ 목재	④ 유황
22.	주된 연소형태가 나머 ① 유황		④ 全

23.	연소형태가	나머지	셋과 다른	하나는?	(11-04)
-----	-------	-----	-------	------	---------

목탄

② 메탄올 ③ 파라핀 ④ 유황

24. 주된 연소형태가 증발 연소에 해당하는 물질은? (10-04)

황

 ② 금속분
 ③ 목재

④ 피크르산

25. 가연성 물질이 공기 중에서 연소할 때의 연소형태에 대한 설명으로 틀린 것 은? (09-04)

- ① 공기와 접촉하는 표면에서 연소가 일어나는 것을 표면연소라 한다.
- ② 유황의 연소는 표면연소이다.
- ③ 산소공급원을 가진 물질 자체가 연소하는 것을 자기연소라 한다.
- ④ TNT의 연소는 자기연소이다.

26. 다음 중 인화점이 20℃ 이상인 것은? (15-01)

① CH_3COOCH_3 ② CH_3COCH_3 ③ CH_3COOH ④ CH_3CHO

27. 다음 물질 중 인화점이 가장 낮은 것은? (14-04)

① 디에틸에테르 ② 이황화탄소 ③ 아세톤

④ 벤젠

28. 다음 위험물 중에서 인화점이 가장 낮은 것은? (13-01)

29. 다음 중 인화점이 가장 낮은 것은? (13-02)

(1) $C_6H_5NH_2$ (2) $C_6H_5NO_2$ (3) C_5H_5N (4) $C_6H_5CH_3$

30. 다음 물질 중 인화점이 가장 낮은 것은? (11-01)

① 톨루엔 ② 아닐린 ③ 피리딘 ④ 에틸렌글리콜

31. 다음 중 인화점이 가장 높은 것은? (15-01)

① $CH_3COOC_2H_5$ ② CH_3OH ③ CH_3COOH ④ CH_3COCH_3

32. 다음 위험물 중 인화점이 가장 낮은 것은? (10-01)

이황화탄소
 에테르
 벤젠

④ 아세톤

- 33. 다음 물질 중 인화점이 가장 낮은 것은? (08-02)

 - (1) CS_2 (2) $C_2H_5OC_2H_5$ (3) CH_3COCI

4 CH₃OH

- 34. 다음 물질 중 인화점이 가장 낮은 것은? (08-04)
 - 톨루엔

- ② 아세톤
- ③ 벤젠

④ 디에틸에테르

- 35. 착화점에 대한 설명으로 가장 옳은 것은? (10-04)
 - ① 외부에서 점화하지 않더라도 발화하는 최저온도
 - ② 외부에서 점화했을 때 발화하는 최저온도
 - ③ 외부에서 점화했을 때 발화하는 최고온도
 - ④ 외부에서 점화하지 않더라도 발화하는 최고온도
- 36. 다음 중 착화점에 대한 설명으로 가장 옳게 것은? (13-02)
 - ① 연소가 지속될 수 있는 최저의 온도
 - ② 점화원과 접촉했을 때 발화하는 최저 온도
 - ③ 외부의 점화원 없이 발화하는 최저 온도
 - ④ 액체 가연물에서 증기가 발생할 때의 온도

- 37. 가연물을 가열 할 때 점화원 없이 가열된 열만 가지고 스스로 연소가 시작되는 최저 온도는? (08-01)
 - 연소점

② 발화점

③ 인화점

④ 분해점

- 38. 연소이론에 관한 용어의 정의 중 틀린 것은? (10-01)
 - ① 발화점은 가연물을 가열할 때 점화원 없이 발화하는 최저의 온도이다.
 - ② 연소점은 5초 이상 연소상태를 유지할 수 있는 최저의 온도이다.
 - ③ 인화점은 가연성 증기를 형성하여 점화원이 가해졌을 때 가연성 증기가 연소범위 하한에 도달하는 최저의 온도이다.
 - ④ 착화점은 가연물을 가열할 때 점화원 없이 발화하는 최고의 온도이다.
- 39. 연소 이론에 대한 설명으로 가장 거리가 먼 것은? (11-01)
 - ① 착화온도가 낮을수록 위험성이 크다.
 - ② 인화점이 낮을수록 위험설이 크다.
 - ③ 인화점이 낮은 물질은 착화점도 낮다.
 - ④ 폭발 한계가 넓을수록 위험성이 크다.

40. 다음 물질 중 발화점이 가장 낮은 것은? (15 [.]	04)
---	-----

41. 다음 중 발화점이 가장 낮은 것은? (11-02)

황

② 황린 ③ 적린 ④ 삼황화린

42. 다음 중 착화온도가 가장 낮은 것은? (10-01)

① 황린 ② 황 ③ 상황화인 ④ 오황화인

43. 다음 위험물 중 착화온도가 가장 낮은 것은? (10-04)

① 황린

② 삼황화린 ③ 마그네슘 ④ 적린

44. 다음 중 발화점이 가장 높은 것은? (07-01)

① 등유

② 벤젠 ③ 디에틸에테르 ④ 휘발유

45.	다음	중	메탄올의	연소범위에	가장	가까운	것은?	(14-02)
------------	----	---	------	-------	----	-----	-----	---------

① 약 1.4 ~ 5.6%

② 약 7.3 ~ 36%

③ 약 20.3 ~ 66%

④ 약 42.0 ~ 77%

46. 다음 중 연소범위가 가장 넓은 위험물은? (13-01)

① 휘발유

- ② 톨루엔 ③ 에틸알코올 ④ 디에틸에테르

47. 다음 제4류 위험물 중 연소범위가 가장 넓은 것은? (09-02)

- ① 아세트알데히드 ② 산화프로필렌 ③ 휘발유 ④ 아세톤

48. 다음 중 가연성 물질이 아닌 것은? (09-04)

- ① 수소화나트륨 ② 황화린 ③ 과산화나트륨 ④ 적린

49. 연소범위에 대한 일반적인 설명 중 틀린 것은? (08-04)

- ① 연소범위는 온도가 높아지면 넓어진다.
- ② 공기 중에서 보다 산소 중에서 연소범위는 넓어진다.
- ③ 압력이 높아지면 상한 값은 변하지 않으나 하한 값은 커진다.
- ④ 연소범위 농도 이하에서는 연소되기 어렵다.

50.	다음	중	연소속도와	의미가	같은	것은?	(08-02)
-----	----	---	-------	-----	----	-----	---------

① 중화속도

- ② 환원속도 ③ 착화속도 ④ 산화속도

51. 다음 중 화학적 에너지원이 아닌 것은? (15-02)

- ① 연소열
 ② 분해열
 ③ 마찰열

④ 융해열

52. 다음 중 자기연소를 하는 위험물은? (10-02)

- ① 톨루엔 ② 메틸알코올 ③ 디에틸에테르 ④ 니트로글리세린

53. 물질의 자연발화를 방지하기 위한 조치로서 가장 거리가 먼 것은? (12-02)

- ① 퇴적할 때 열이 쌓이지 않게 한다. ② 저장실의 온도를 낮춘다.
- ③ 촉매 역할을 하는 물질과 분리하여 저장한다. ④ 저장실의 습도를 높인다.

54. 자연발화 방지법에 대한 설명 중 틀린 것은? (11-02)

① 습도가 낮은 것을 피할 것

- ② 저장실의 온도가 낮을 것
- ③ 퇴적 및 수납할 때 열이 축적되지 않을 것
- ④ 통풍이 잘 될 것

- 55. 다음 중 일반적으로 자연발화의 위험성이 가장 낮은 장소는? (15-02)
 - ① 온도 및 습도가 높은 장소 ② 습도 및 온도가 낮은 장소
 - ③ 습도는 높고 온도는 낮은 장소 ④ 습도는 낮고 온도는 높은 장소

- 56. 자연발화의 방지법으로 가장 거리가 먼 것은? (12-02)

 - ③ 열이 쌓이지 않도록 유의한다. ④ 저장실의 온도를 낮춘다.
 - ① 통풍을 잘 하여야 한다. ② 습도가 낮은 곳을 피한다.
- 57. 자연발화를 방지하는 방법으로 가장 거리가 먼 것은? (12-04)
 - ① 통풍이 잘되게 할 것
 - ③ 저장실의 온도를 낮게 할 것
- ② 열의 축적을 용이하지 않게 할 것
 - ④ 습도를 높게 할 것
- 58. 자연발화가 일어날 수 있는 조건으로 가장 옳은 것은? (13-01)
 - ① 주위의 온도가 낮을 것 ② 표면적이 작을 것
- - ③ 열전도율이 작을 것 ④ 발열량이 작을 것
- 59. 다음 중 자연 발화의 인자가 아닌 것은? (09-01)

- ① 발열량 ② 수분 ③ 열의 축적 ④ 증발잠열

Thank you