Homework Assignment 2 Solution

Exercise 2.3 (5 points)

sub \$t0, \$s3, \$s4 sll \$t0, \$t0, 2 add \$t0, \$s6, \$t0 lw \$t1, 0(\$t0) sw \$t1, 32(\$s7)

Exercise 2.4 (5 points)

B[g] = A[f] + A[1+f];

Exercise 2.5 (5 points)

SII \$t0, \$s0, 2 add \$t0, \$s6, \$t0 sII \$t1, \$s1, 2 add \$t1, \$s7, \$t1 lw \$s0, 0(\$t0) lw \$t0, 4(\$t0) add \$t0, \$t0, \$s0 sw \$t0, 0(\$t1)

Exercise 2.16 (5 points)

r-type

Assembly instruction: sub \$v1, \$v1, \$v0 Hexadecimal representation: 0x00621822

Binary representation: 00000000011000100001100000100010

Exercise 2.17 (5 points)

i-type

Assembly instruction: lw \$v0, 4(\$at) Hexadecimal representation: 0x8C220004

Exercise 2.18 (15 points)

2.18.1

opcode would be 8 bits, rs, rt, rd fields would be 7 bits each

2.18.2

opcode would be 8 bits, rs and rt fields would be 7 bits each

2.18.3

more registers \rightarrow more bits per instruction \rightarrow could increase code size more registers \rightarrow less register spills \rightarrow less instructions more instructions \rightarrow more appropriate instruction \rightarrow decrease code size more instructions \rightarrow larger opcodes \rightarrow larger code size

Exercise 2.19 (15 points)

2.19.1

0xBABEFEF8

2.19.2

0x0000AAA0

2.19.3

0x00005545

Exercise 2.20 (5 points)

```
sll $t1, $t1, 6
srl $t1, $t1, 6
srl $t0, $t0, 11
sll $t0, $t0, 26
or $t1, $t1, $t0
```

Exercise 2.23 (5 points)

t2 = 3

Exercise 2.24 (5 points)

jump: no, beq: no

the jump target is limited by 28-bit byte address segment and the branch target has offset limited by 16-bit

Exercise 2.26 (15 points)

2.26.1

20

2.26.2

```
i = 10;
do {
B += 2;
i = i - 1;
} while (i > 0)
```

2.26.3

 $5\times N$ or $5\times N+2$ are both acceptable answers