STATISTICAL INFERENCES (2cr)

Chapter 10 One- and Two-Sample Tests of Hypotheses

Zhong Guan

Math, IUSB

Outline

- 10.4 Single Sample: Tests Concerning a Single Mean
 - Tests Concerning a Single Mean (Variance Known)
 Cases I and II: The z Test
 - Tests Concerning a Single Mean (Variance Unknown)
 - Cases I and II: The t Test

Outline

- 🚺 10.4 Single Sample: Tests Concerning a Single Mean
 - Tests Concerning a Single Mean (Variance Known)
 - Cases I and II: The z Test
 - Tests Concerning a Single Mean (Variance Unknown)
 - Cases I and II: The t Test

Three Cases

Step 1. State the hypotheses $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0$

- Step 2. Choose the distribution: If σ is known and either population is normal or $n \ge 30$, then use normal distribution;
- Step 3. Calculate p-value or find critical value. The test statistic is $z = \sqrt{n}(\bar{x} \mu_0)/\sigma$ Find the p-value:

- Step 1. State the hypotheses $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0$
- Step 2. Choose the distribution: If σ is known and either population is normal or $n \ge 30$, then use normal distribution;
 - Step 3. Calculate *p*-value or find critical value. The test statistic is $z = \sqrt{n}(\bar{x} \mu_0)/\sigma$ Find the *p*-value:

- Step 1. State the hypotheses $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0$
- Step 2. Choose the distribution: If σ is known and either population is normal or $n \geqslant 30$, then use normal distribution;
- Step 3. Calculate *p*-value or find critical value. The test statistic is $z=\sqrt{n}(\bar{x}-\mu_0)/\sigma$

Find the *p*-value:

- Step 1. State the hypotheses $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0$
- Step 2. Choose the distribution: If σ is known and either population is normal or $n \ge 30$, then use normal distribution;
- Step 3. Calculate p-value or find critical value. The test statistic is $z = \sqrt{n}(\bar{x} \mu_0)/\sigma$ Find the p-value:

Step 3. Find *p*-value or critical value. Find the critical value $z_{\alpha/2}$ for z:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . if $z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value. Find the critical value $z_{\alpha/2}$ for z:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 .

if $z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$, reject H_0 , otherwise, do not reject H_0 .

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

Step 3. Find *p*-value or critical value. Find the critical value $z_{\alpha/2}$ for z:

Step 4. Make decision:

If p-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . if $z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$, reject H_0 , otherwise, do not reject H_0 .

Example 1. Assume that the the thickness of spearmint gum manufactured for vending machines has a normal distribution with mean μ and $\sigma=0.1$. Test the null hypothesis $H_0:\mu=7.5$ hundredths of an inch against $H_1:\mu\neq7.5$ based on the 10 observations

Solution:

Step 1. Hypotheses: $H_0: \mu = 7.5$ $H_1: \mu \neq 7.5$

Step 2. This is Case I: $\sigma = 0.1$, n = 10 < 30, population is normal.

Example 1. Assume that the the thickness of spearmint gum manufactured for vending machines has a normal distribution with mean μ and $\sigma=0.1$. Test the null hypothesis $H_0: \mu=7.5$ hundredths of an inch against $H_1: \mu \neq 7.5$ based on the 10 observations

Solution:

Step 1. Hypotheses: $H_0: \mu = 7.5$ $H_1: \mu \neq 7.5$

Step 2. This is Case I: $\sigma = 0.1$, n = 10 < 30, population is normal.

Example 1. Assume that the thickness of spearmint gum manufactured for vending machines has a normal distribution with mean μ and $\sigma = 0.1$. Test the null hypothesis H_0 : $\mu = 7.5$ hundredths of an inch against $H_1: \mu \neq 7.5$ based on the 10 observations

Solution:

Step 1. Hypotheses: $H_0: \mu = 7.5$ $H_1: \mu \neq 7.5$

Step 2. This is Case I: $\sigma = 0.1$, n = 10 < 30, population is normal.

Step 3.

$$\bar{x} = 7.55, \quad \alpha = 0.05,$$
 $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = 1.581$

The p-value Approach:

$$p$$
-value = $2P(\bar{x} > 7.55) = 2P(z > 1.581) = 0.1139$

The Critical Value Approach: $z_{\alpha/2} = 1.96$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 . Since $|z| < z_{\alpha/2}$, we do not reject H_0 .

Step 3.

$$\bar{x} = 7.55, \quad \alpha = 0.05,$$
 $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = 1.581$

The *p*-value Approach:

$$p$$
-value = $2P(\bar{x} > 7.55) = 2P(z > 1.581) = 0.1139$

The Critical Value Approach: $z_{\alpha/2} = 1.96$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 . Since $|z| < z_{\alpha/2}$, we do not reject H_0 .

Step 3.

$$\bar{x} = 7.55, \quad \alpha = 0.05,$$

$$z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = 1.581$$

The *p*-value Approach:

$$p$$
-value = $2P(\bar{x} > 7.55) = 2P(z > 1.581) = 0.1139$

The Critical Value Approach: $z_{\alpha/2} = 1.96$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 . Since $|z| < z_{\alpha/2}$, we do not reject H_0 .

Step 3.

$$\bar{x} = 7.55, \quad \alpha = 0.05,$$
 $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = 1.581$

The *p*-value Approach:

$$p$$
-value = $2P(\bar{x} > 7.55) = 2P(z > 1.581) = 0.1139$

The Critical Value Approach: $z_{\alpha/2} = 1.96$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 .

Since $|z| < z_{\alpha/2}$, we do not reject H_0 .

Step 3.

$$\bar{x} = 7.55, \quad \alpha = 0.05,$$
 $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = 1.581$

The *p*-value Approach:

$$p$$
-value = $2P(\bar{x} > 7.55) = 2P(z > 1.581) = 0.1139$

The Critical Value Approach: $z_{\alpha/2} = 1.96$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 . Since $|z| < z_{\alpha/2}$, we do not reject H_0 .

Using Excel

ZTEST			- (X 🗸 j	£ =2*Z	=2*ZTEST(B5:F6,7.5,0.1)		
	Α	В	С	D	Е	F	G	
1	Two-Tailed Z-Test							
2	Example 1	:	H0: mu	= mu0 vs H1: mu != mu0				
3	mu0=	7.5	sigma=	0.1				
4	alpha=	0.05	n=	10				
5	Data:	7.65	7.6	7.65	7.7	7.55		
6		7.55	7.4	7.4	7.5	7.5		
7	x-bar=	7.55	z=	1.5811	C. V. =	1.95996		
8	Using Z-test		P-val=	=2*ZTEST(B5:F6,7.5,0.1)				
9				ZTEST(array, x, [sigma])				
10								

Using TI-84

```
Inpt:Data State
    ωο (μο )μο
culate Draw
```

The two-tailed z-test can be done by CI

- Construct a $100(1-\alpha)\%$ CI.
- If the hypothesized μ_0 is not contained in the 100(1 $-\alpha$)% CI, we reject H_0 at the significant level α ,
- otherwise we do not reject H_0 at the significant level α .

The two-tailed z-test can be done by CI

- Construct a $100(1-\alpha)\%$ CI.
- If the hypothesized μ_0 is not contained in the 100(1 $-\alpha$)% CI, we reject H_0 at the significant level α ,
- otherwise we do not reject H_0 at the significant level α .

The two-tailed z-test can be done by CI

- Construct a $100(1-\alpha)\%$ CI.
- If the hypothesized μ_0 is not contained in the 100(1 $-\alpha$)% CI, we reject H_0 at the significant level α ,
- otherwise we do not reject H_0 at the significant level α .

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0, \quad \text{or} \quad H_0: \mu \geqslant \mu_0, H_1: \mu < \mu_0$$

- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $z = \sqrt{n}(\bar{x} \mu_0)/\sigma$ Find the *p*-value:

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0$$
, or $H_0: \mu \geqslant \mu_0$, $H_1: \mu < \mu_0$

- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $z = \sqrt{n}(\bar{x} \mu_0)/\sigma$ Find the *p*-value:

Step 1. State the null and alternative hypotheses

 $H_0: \mu = \mu_0$, or $H_0: \mu \geqslant \mu_0$, $H_1: \mu < \mu_0$

Step 2. Choose the distribution;

Step 3. Find *p*-value or critical value; $z = \sqrt{n(\bar{x} - \mu_0)/\sigma}$ Find the *p*-value:

- Step 1. State the null and alternative hypotheses $H_0: \mu = \mu_0$, or $H_0: \mu \geqslant \mu_0$, $H_1: \mu < \mu_0$
- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $z = \sqrt{n}(\bar{x} \mu_0)/\sigma$

- Step 1. State the null and alternative hypotheses $H_0: \mu = \mu_0$, or $H_0: \mu \geqslant \mu_0$, $H_1: \mu < \mu_0$
- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $z = \sqrt{n}(\bar{x} \mu_0)/\sigma$ Find the *p*-value:

Step 3. Find *p*-value or critical value; The Critical Value Approach: Find critical value $-z_{\alpha}$ for z:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . If $z < -z_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value; The Critical Value Approach: Find critical value $-z_{\alpha}$ for z:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 .

If $z < -z_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value; The Critical Value Approach: Find critical value $-z_{\alpha}$ for z:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . If $z < -z_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Example 2. A health club claims that its members lose an average of 10 pounds or more within the 1st month after joining the club. A consumer agency wanted to test this claim.

A sample 36 members was selected and an average weight lost of 9.2 pounds was obtained. Assume the population standard deviation is known to be 2.4 pounds. What is your decision if $\alpha = 0.01$? What if $\alpha = 0.05$?

Step 1. Hypotheses

$$H_0: \mu \geqslant 10$$
 $H_1: \mu < 10$

Step 2. This is Case II. $\sigma = 2.4$, n = 36, use normal distribution.

Example 2. A health club claims that its members lose an average of 10 pounds or more within the 1st month after joining the club. A consumer agency wanted to test this claim. A sample 36 members was selected and an average weight lost of 9.2 pounds was obtained. Assume the population standard deviation is known to be 2.4 pounds. What is your decision if $\alpha = 0.01$? What if $\alpha = 0.05$?

Solution:

Step 1. Hypotheses:

$$H_0: \mu \geqslant 10$$
 $H_1: \mu < 10$

Step 2. This is Case II. $\sigma = 2.4$, n = 36, use normal distribution.

Example 2. A health club claims that its members lose an average of 10 pounds or more within the 1st month after joining the club. A consumer agency wanted to test this claim. A sample 36 members was selected and an average weight lost of 9.2 pounds was obtained. Assume the population standard deviation is known to be 2.4 pounds. What is your decision if $\alpha = 0.01$? What if $\alpha = 0.05$?

Solution:

Step 1. Hypotheses:

$$H_0: \mu \geqslant 10$$
 $H_1: \mu < 10$

Step 2. This is Case II. $\sigma = 2.4$, n = 36, use normal distribution.

Step 3.
$$\bar{x} = 9.2$$
, $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = -2.00$

The *p*-value Approach: The *p*-value is

p-value =
$$P(\bar{x} < 9.2) = 2P(z < -2.00) = 0.0228$$

The Critical Value Approach:

If $\alpha = 0.01$, then $-z_{\alpha} = -2.34$

If $\alpha = 0.05$, then $-z_{\alpha} = -1.64$.

Step 4. p-value > 0.01, we do not reject H_0 at the significant level 0.01.

But *p*-value < 0.05, we reject H_0 at the significant level 0.05

 $z > -z_{\alpha}$, we do not reject H_0 at the significant level 0.01.

 $z<-z_{\alpha}$, we reject H_0 at the significant level 0.05.

Step 3.
$$\bar{x} = 9.2$$
, $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = -2.00$
The *p*-value Approach: The *p*-value is

$$p$$
-value = $P(\bar{x} < 9.2) = 2P(z < -2.00) = 0.0228$

The Critical Value Approach:

If
$$\alpha = 0.01$$
, then $-z_{\alpha} = -2.34$.

If
$$\alpha = 0.05$$
, then $-z_{\alpha} = -1.64$.

Step 4. p-value > 0.01, we do not reject H_0 at the significant level 0.01.

But *p*-value < 0.05, we reject H_0 at the significant level 0.05

Step 3.
$$\bar{x} = 9.2$$
, $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = -2.00$
The *p*-value Approach: The *p*-value is

$$p$$
-value = $P(\bar{x} < 9.2) = 2P(z < -2.00) = 0.0228$

The Critical Value Approach:

If $\alpha = 0.01$, then $-z_{\alpha} = -2.34$.

If $\alpha = 0.05$, then $-z_{\alpha} = -1.64$.

Step 4. p-value > 0.01, we do not reject H_0 at the significant level 0.01.

But p-value < 0.05, we reject H_0 at the significant level 0.05

Step 3.
$$\bar{x} = 9.2$$
, $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = -2.00$
The *p*-value Approach: The *p*-value is

$$p$$
-value = $P(\bar{x} < 9.2) = 2P(z < -2.00) = 0.0228$

The Critical Value Approach:

If $\alpha = 0.01$, then $-z_{\alpha} = -2.34$.

If $\alpha = 0.05$, then $-z_{\alpha} = -1.64$.

Step 4. p-value > 0.01, we do not reject H_0 at the significant level 0.01.

But *p*-value < 0.05, we reject H_0 at the significant level 0.05

Step 3.
$$\bar{x} = 9.2$$
, $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = -2.00$
The *p*-value Approach: The *p*-value is

$$p$$
-value = $P(\bar{x} < 9.2) = 2P(z < -2.00) = 0.0228$

The Critical Value Approach:

If $\alpha = 0.01$, then $-z_{\alpha} = -2.34$.

If $\alpha = 0.05$, then $-z_{\alpha} = -1.64$.

Step 4. p-value > 0.01, we do not reject H_0 at the significant level 0.01.

But p-value < 0.05, we reject H_0 at the significant level 0.05.

Step 3.
$$\bar{x} = 9.2$$
, $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = -2.00$
The *p*-value Approach: The *p*-value is

$$p$$
-value = $P(\bar{x} < 9.2) = 2P(z < -2.00) = 0.0228$

The Critical Value Approach:

If $\alpha = 0.01$, then $-z_{\alpha} = -2.34$.

If $\alpha = 0.05$, then $-z_{\alpha} = -1.64$.

Step 4. p-value > 0.01, we do not reject H_0 at the significant level 0.01.

But p-value < 0.05, we reject H_0 at the significant level 0.05.

 $z > -z_{\alpha}$, we do not reject H_0 at the significant level 0.01.

 $z < -z_{\alpha}$, we reject H_0 at the significant level 0.05

Step 3.
$$\bar{x} = 9.2$$
, $z = (\bar{x} - \mu_0)/(\sigma/\sqrt{n}) = -2.00$
The *p*-value Approach: The *p*-value is

$$p$$
-value = $P(\bar{x} < 9.2) = 2P(z < -2.00) = 0.0228$

The Critical Value Approach:

If $\alpha = 0.01$, then $-z_{\alpha} = -2.34$.

If $\alpha = 0.05$, then $-z_{\alpha} = -1.64$.

Step 4. p-value > 0.01, we do not reject H_0 at the significant level 0.01.

But p-value < 0.05, we reject H_0 at the significant level 0.05.

 $z > -z_{\alpha}$, we do not reject H_0 at the significant level 0.01.

 $z < -z_{\alpha}$, we reject H_0 at the significant level 0.05.

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0$$
, or $H_0: \mu \leqslant \mu_0$, $H_1: \mu > \mu_0$.

- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $z = \sqrt{n}(\bar{x} \mu_0)/\sigma$ Find the *p*-value:

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0$$
, or $H_0: \mu \leqslant \mu_0$, $H_1: \mu > \mu_0$.

- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $z = \sqrt{n(\bar{x} \mu_0)/\sigma}$ Find the *p*-value:

Step 1. State the null and alternative hypotheses

 $H_0: \mu = \mu_0$, or $H_0: \mu \leqslant \mu_0$, $H_1: \mu > \mu_0$.

Step 2. Choose the distribution;

Step 3. Find *p*-value or critical value; $z = \sqrt{n}(\bar{x} - \mu_0)/\sigma$ Find the *p*-value:

- Step 1. State the null and alternative hypotheses $H_0: \mu = \mu_0$, or $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$.
- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $z = \sqrt{n}(\bar{x} \mu_0)/\sigma$

- Step 1. State the null and alternative hypotheses $H_0: \mu = \mu_0$, or $H_0: \mu \leqslant \mu_0$, $H_1: \mu > \mu_0$.
- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $z = \sqrt{n}(\bar{x} \mu_0)/\sigma$ Find the *p*-value:

Step 3. Find *p*-value or critical value. Find critical value z_{α} for z:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . If $z > z_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value. Find critical value z_{α} for z:

Step 4. Make decision:

If p-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 .

If $z > z_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value. Find critical value z_{α} for z:

Step 4. Make decision:

If p-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value. Find critical value z_{α} for z:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . If $z > z_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Outline

- 10.4 Single Sample: Tests Concerning a Single Mean
 - Tests Concerning a Single Mean (Variance Known)
 Cases Land II: The z Test
 - Tests Concerning a Single Mean (Variance Unknown)
 - Cases Land II: The t Test

σ is not Known

Step 1. State the hypotheses $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0$

- Step 2. Choose the distribution: If σ is unknown and either population is normal or $n \ge 30$, then use t distribution;
- Step 3. Calculate p-value or find critical value. The test statistic is $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1. Find the p-value:

- Step 1. State the hypotheses $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0$
- Step 2. Choose the distribution: If σ is unknown and either population is normal or $n \ge 30$, then use t distribution;
 - Step 3. Calculate *p*-value or find critical value. The test statistic is $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1. Find the *p*-value:

- Step 1. State the hypotheses $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0$
- Step 2. Choose the distribution: If σ is unknown and either population is normal or $n \ge 30$, then use t distribution;
- Step 3. Calculate *p*-value or find critical value. The test statistic is $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1.

Find the *p*-value:

- Step 1. State the hypotheses $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0$
- Step 2. Choose the distribution: If σ is unknown and either population is normal or $n \ge 30$, then use t distribution;
- Step 3. Calculate p-value or find critical value. The test statistic is $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1. Find the p-value:

Step 3. Find *p*-value or critical value. Find the critical value $t_{\alpha/2}$ for t:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . if $t > t_{\alpha/2}$ or $t < -t_{\alpha/2}$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value. Find the critical value $t_{\alpha/2}$ for t:

Step 4. Make decision:

If p-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 .

if $t > t_{\alpha/2}$ or $t < -t_{\alpha/2}$, reject H_0 , otherwise, do not reject H_0

Step 3. Find *p*-value or critical value. Find the critical value $t_{\alpha/2}$ for t:

Step 4. Make decision:

If p-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . if $t > t_{\alpha/2}$ or $t < -t_{\alpha/2}$, reject H_0 , otherwise, do not reject H_0 .

Example 1. A company that manufactures brackets for an auto maker selected 15 brackets from the production line and performs a torque test. The goal is for mean torque to equal 125. Let the toque have a normal distribution. The 15 observations are

Test H_0 : $\mu = 125$ against a two-tailed alternative hypothesis ($\alpha = 0.05$).

Solution:

- Step 1. Hypotheses: $H_0: \mu = 125$ $H_1: \mu \neq 125$
- Step 2. This is Case I: n = 15 < 30, population is normal, use t distribution.

Example 1. A company that manufactures brackets for an auto maker selected 15 brackets from the production line and performs a torque test. The goal is for mean torque to equal 125. Let the toque have a normal distribution. The 15 observations are

Test H_0 : $\mu =$ 125 against a two-tailed alternative hypothesis ($\alpha =$ 0.05).

Solution:

Step 1. Hypotheses: $H_0: \mu = 125$ $H_1: \mu \neq 125$

Step 2. This is Case I: n = 15 < 30, population is normal, use t distribution.

Example 1. A company that manufactures brackets for an auto maker selected 15 brackets from the production line and performs a torque test. The goal is for mean torque to equal 125. Let the toque have a normal distribution. The 15 observations are

Test H_0 : $\mu = 125$ against a two-tailed alternative hypothesis ($\alpha = 0.05$).

Solution:

- Step 1. Hypotheses: $H_0: \mu = 125$ $H_1: \mu \neq 125$
- Step 2. This is Case I: n = 15 < 30, population is normal, use t distribution.

Step 3.

$$t = (\bar{x} - \mu_0)/(s/\sqrt{n}) = 1.076$$

The p-value Approach:

$$p$$
-value = $2P(t > 1.076) = 0.3001$

The Critical Value Approach: $\alpha = 0.05$, $t_{\alpha/2} = 2.145$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 . Since $|t| < t_{\alpha/2}$, we do not reject H_0 .

Step 3.

$$t = (\bar{x} - \mu_0)/(s/\sqrt{n}) = 1.076$$

The *p*-value Approach:

$$p$$
-value = $2P(t > 1.076) = 0.3001$

The Critical Value Approach: $\alpha = 0.05$, $t_{\alpha/2} = 2.145$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 . Since $|t| < t_{\alpha/2}$, we do not reject H_0 .

Step 3.

$$t = (\bar{x} - \mu_0)/(s/\sqrt{n}) = 1.076$$

The *p*-value Approach:

$$p$$
-value = $2P(t > 1.076) = 0.3001$

The Critical Value Approach: $\alpha = 0.05$, $t_{\alpha/2} = 2.145$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 . Since $|t| < t_{\alpha/2}$, we do not reject H_0 .

Step 3.

$$t = (\bar{x} - \mu_0)/(s/\sqrt{n}) = 1.076$$

The *p*-value Approach:

$$p$$
-value = $2P(t > 1.076) = 0.3001$

The Critical Value Approach: $\alpha = 0.05$, $t_{\alpha/2} = 2.145$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 .

Since $|t| < t_{lpha/2}$, we do not reject H_0 .

Step 3.

$$t = (\bar{x} - \mu_0)/(s/\sqrt{n}) = 1.076$$

The *p*-value Approach:

$$p$$
-value = $2P(t > 1.076) = 0.3001$

The Critical Value Approach: $\alpha = 0.05$, $t_{\alpha/2} = 2.145$.

Step 4. Since the *p*-value $> \alpha$, we do not reject H_0 . Since $|t| < t_{\alpha/2}$, we do not reject H_0 .

P-value Value of *t*–Two-Tailed

Critical Value of *t*–Two-Tailed

Using Excel

Using TI-84

```
T-Test
 Inpt:Data
 Sx:9.597
 μ:Ευο (μο )μο
Calculate Draw
```

Using TI-84

```
.077510215
```

The two-tailed *t*-test can be done by CI

- Construct a 100(1 $-\alpha$)% CI using t distribution.
- If the hypothesized μ_0 is not contained in the 100(1 $-\alpha$)% CI, we reject H_0 at the significant level α ,
- otherwise we do not reject H_0 at the significant level α .

The two-tailed *t*-test can be done by CI

- Construct a $100(1 \alpha)$ % CI using t distribution.
- If the hypothesized μ_0 is not contained in the 100(1 $-\alpha$)% CI, we reject H_0 at the significant level α ,
- otherwise we do not reject H_0 at the significant level α .

The two-tailed *t*-test can be done by CI

- Construct a $100(1 \alpha)$ % CI using t distribution.
- If the hypothesized μ_0 is not contained in the 100(1 $-\alpha$)% CI, we reject H_0 at the significant level α ,
- otherwise we do not reject H_0 at the significant level α .

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0$$
, or $H_0: \mu \geqslant \mu_0$, $H_1: \mu < \mu_0$

- Step 2. Choose the distribution:
- Step 3. Find *p*-value or critical value; $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1, Find the *p*-value:

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0$$
, or $H_0: \mu \geqslant \mu_0$, $H_1: \mu < \mu_0$

- Step 2. Choose the distribution:
- Step 3. Find *p*-value or critical value; $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1, Find the *p*-value:

Step 1. State the null and alternative hypotheses

 $H_0: \mu = \mu_0$, or $H_0: \mu \geqslant \mu_0$, $H_1: \mu < \mu_0$

Step 2. Choose the distribution;

Step 3. Find *p*-value or critical value; $t = \sqrt{n}(\bar{x} - \mu_0)/s$, df = n - 1, Find the *p*-value:

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0$$
, or $H_0: \mu \geqslant \mu_0$, $H_1: \mu < \mu_0$

- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1, Find the *p*-value:

- Step 1. State the null and alternative hypotheses $H_0: \mu = \mu_0$, or $H_0: \mu \geqslant \mu_0$, $H_1: \mu < \mu_0$
- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1, Find the *p*-value:

Step 3. Find *p*-value or critical value; The Critical Value Approach: Find critical value t_{α} for t:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . If $t < -t_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value; The Critical Value Approach: Find critical value t_{α} for t:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 .

If $t < -t_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value; The Critical Value Approach: Find critical value t_{α} for t:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . If $t < -t_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0$$
, or $H_0: \mu \leqslant \mu_0$, $H_1: \mu > \mu_0$

- Step 2. Choose the distribution:
- Step 3. Find *p*-value or critical value; $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1, Find the *p*-value:

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0, \quad \text{or} \quad H_0: \mu \leqslant \mu_0, H_1: \mu > \mu_0$$

- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1, Find the *p*-value:

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0, \quad \text{or} \quad H_0: \mu \leqslant \mu_0, H_1: \mu > \mu_0$$

Step 2. Choose the distribution;

Step 3. Find *p*-value or critical value; $t = \sqrt{n}(\bar{x} - \mu_0)/s$, df = n - 1, Find the *p*-value:

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0, \quad \text{or} \quad H_0: \mu \leqslant \mu_0, H_1: \mu > \mu_0$$

- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1, Find the *p*-value:

Step 1. State the null and alternative hypotheses

$$H_0: \mu = \mu_0, \quad \text{or} \quad H_0: \mu \leqslant \mu_0, H_1: \mu > \mu_0$$

- Step 2. Choose the distribution;
- Step 3. Find *p*-value or critical value; $t = \sqrt{n}(\bar{x} \mu_0)/s$, df = n 1, Find the *p*-value:

Step 3. Find *p*-value or critical value. Find critical value t_{α} for t:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . If $t > t_0$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value. Find critical value t_{α} for t:

Step 4. Make decision:

If p-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 If $t > t_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value. Find critical value t_{α} for t:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 .

Step 3. Find *p*-value or critical value. Find critical value t_{α} for t:

Step 4. Make decision:

If *p*-value $< \alpha$, reject H_0 , otherwise, do not reject H_0 . If $t > t_{\alpha}$, reject H_0 , otherwise, do not reject H_0 .

Example 2. Let x be the Brinell hardness measurement of ductile iron subcritically annealed. Assume that x has a normal distribution with mean μ . Test $H_0: \mu=170$ against the alternative hypothesis that the mean hardness is greater than 170 based on the following 25 observations(Use significance level $\alpha=0.05$.)

```
170, 167, 174, 179, 179, 156, 163, 156, 187
156, 183, 179, 174, 179, 170, 156, 187,
179, 183, 174, 187, 167, 159, 170, 179
```

Solution:

Step 1. Hypotheses:

```
H_0: \mu = 170 \quad H_1: \mu > 170
```

Example 2. Let x be the Brinell hardness measurement of ductile iron subcritically annealed. Assume that x has a normal distribution with mean μ . Test $H_0: \mu=170$ against the alternative hypothesis that the mean hardness is greater than 170 based on the following 25 observations(Use significance level $\alpha=0.05$.)

```
170, 167, 174, 179, 179, 156, 163, 156, 187
156, 183, 179, 174, 179, 170, 156, 187,
179, 183, 174, 187, 167, 159, 170, 179
```

Solution:

Step 1. Hypotheses:

$$H_0: \mu = 170 \quad H_1: \mu > 170$$

- Step 2. This is Case I. s = 10.31, n = 25, σ is not known, use t distribution.
- Step 3. $\bar{x}=$ 172.52, s= 10.31, $t=(\bar{x}-\mu_0)/(s/\sqrt{n})=$ 1.2218, df= 24.

The *p*-value Approach:

$$p$$
-value = $P(t > 1.2218) = 0.1168$

The Critical Value Approach:

 $\alpha = 0.05, t_{\alpha} = 1.7109.$

- Step 4. p-value > 0.05, we do not reject H_0 at the significant level 0.05.
 - $t < t_{\alpha}$, we do not reject H_0 at the significant level 0.05

- Step 2. This is Case I. s = 10.31, n = 25, σ is not known, use t distribution.
- Step 3. $\bar{x} = 172.52$, s = 10.31, $t = (\bar{x} \mu_0)/(s/\sqrt{n}) = 1.2218$, df = 24.

The *p*-value Approach:

$$p$$
-value = $P(t > 1.2218) = 0.1168$

The Critical Value Approach: $\alpha = 0.05$, $t_{\alpha} = 1.7109$.

- Step 4. p-value > 0.05, we do not reject H_0 at the significant level 0.05.
 - $t < t_{\alpha}$, we do not reject H_0 at the significant level 0.05

- Step 2. This is Case I. s = 10.31, n = 25, σ is not known, use t distribution.
- Step 3. $\bar{x}=172.52,\,s=10.31,\,t=(\bar{x}-\mu_0)/(s/\sqrt{n})=1.2218,$ df=24.

The *p*-value Approach:

$$p$$
-value = $P(t > 1.2218) = 0.1168$

The Critical Value Approach: $\alpha = 0.05$, $t_{\alpha} = 1.7109$.

Step 4. p-value > 0.05, we do not reject H_0 at the significant level 0.05.

 $t < t_{\alpha}$, we do not reject H_0 at the significant level 0.05

- Step 2. This is Case I. s = 10.31, n = 25, σ is not known, use t distribution.
- Step 3. $\bar{x} = 172.52$, s = 10.31, $t = (\bar{x} \mu_0)/(s/\sqrt{n}) = 1.2218$, df = 24.

The *p*-value Approach:

$$p$$
-value = $P(t > 1.2218) = 0.1168$

The Critical Value Approach:

$$\alpha = 0.05, t_{\alpha} = 1.7109.$$

Step 4. p-value > 0.05, we do not reject H_0 at the significant level 0.05.

 $t < t_{\alpha}$, we do not reject H_0 at the significant level 0.05

- Step 2. This is Case I. s = 10.31, n = 25, σ is not known, use t distribution.
- Step 3. $\bar{x} = 172.52$, s = 10.31, $t = (\bar{x} \mu_0)/(s/\sqrt{n}) = 1.2218$, df = 24.

The *p*-value Approach:

$$p$$
-value = $P(t > 1.2218) = 0.1168$

The Critical Value Approach:

$$\alpha = 0.05, t_{\alpha} = 1.7109.$$

Step 4. p-value > 0.05, we do not reject H_0 at the significant level 0.05.

 $t < t_lpha$, we do not reject H_0 at the significant level 0.05

- Step 2. This is Case I. s = 10.31, n = 25, σ is not known, use t distribution.
- Step 3. $\bar{x} = 172.52$, s = 10.31, $t = (\bar{x} \mu_0)/(s/\sqrt{n}) = 1.2218$, df = 24.

The *p*-value Approach:

$$p$$
-value = $P(t > 1.2218) = 0.1168$

The Critical Value Approach:

$$\alpha = 0.05, t_{\alpha} = 1.7109.$$

- Step 4. p-value > 0.05, we do not reject H_0 at the significant level 0.05.
 - $t < t_{\alpha}$, we do not reject H_0 at the significant level 0.05.

P-value of t-Right-Tailed

Critical value of t—Right-Tailed

