otpod Documentation

Release 0.0.1

Antoine Dumas

CONTENTS

1	Contents:				
	1.1	Documentation of the API	1		
		1.1.1 Data analysis	1		
		1.1.2 POD model	(
	1.2	Examples	(
2	2 Indices and tables		7		
In	dex		ç		

CHAPTER

ONE

CONTENTS:

1.1 Documentation of the API

This is the user manual for the Python bindings to the otpod library.

1.1.1 Data analysis

UnivariateLinearModelAnalysis Linear regression analysis with residuals hypothesis tests.

UnivariateLinearModelAnalysis

class UnivariateLinearModelAnalysis (*args)

Linear regression analysis with residuals hypothesis tests.

Available constructors:

UnivariateLinearModelAnalysis(inputSample, outputSample)

UnivariateLinearModelAnalysis(inputSample, outputSample, noiseThres, saturationThres, resDistFact, box-Cox)

Parameters inputSample : 2-d sequence of float

Vector of the defect sizes, of dimension 1.

outputSample: 2-d sequence of float

Vector of the signals, of dimension 1.

noiseThres: float

Value for low censored data. Default is None.

saturationThres: float

Value for high censored data. Default is None

resDistFact: openturns.DistributionFactory

Distribution hypothesis followed by the residuals. Default is openturns.NormalFactory.

boxCox: bool or float

Enable or not the Box Cox transformation. If boxCox is a float, the Box Cox transformation is enabled with the given value. Default is False.

Notes

This method automatically:

- •computes the Box Cox parameter if boxCox is True,
- •computes the transformed signals if boxCox is True or a float,
- •builds the univariate linear regression model on the data,
- •computes the linear regression parameters for censored data if needed,
- •computes the residuals,
- •runs all hypothesis tests.

Methods

drawBoxCoxLikelihood([name])	Draw the loglikelihood versus the Box Cox parameter.
<pre>drawLinearModel([model, name])</pre>	Draw the linear regression prediction versus the true data.
drawResiduals([model, name])	Draw the residuals versus the defect values.
<pre>drawResidualsDistribution([model, name])</pre>	Draw the residuals histogram with the fitted distribution.
drawResidualsQQplot([model, name])	Draw the residuals QQ plot with the fitted distribution.
getAndersonDarlingPValue()	Accessor to the Anderson Darling test p-value.
<pre>getBoxCoxParameter()</pre>	Accessor to the Box Cox parameter.
getBreuschPaganPValue()	Accessor to the Breusch Pagan test p-value.
getCramerVonMisesPValue()	Accessor to the Cramer Von Mises test p-value.
getDurbinWatsonPValue()	Accessor to the Durbin Watson test p-value.
getHarrisonMcCabePValue()	Accessor to the Harrison McCabe test p-value.
getIntercept()	Accessor to the intercept of the linear regression model.
getKolmogorovPValue()	Accessor to the Kolmogorov test p-value.
getR2()	Accessor to the R2 value.
<pre>getResiduals()</pre>	Accessor to the residuals.
<pre>getResidualsDistribution()</pre>	Accessor to the residuals distribution.
getSlope()	Accessor to the slope of the linear regression model.
getStandardError()	Accessor to the standard error of the estimate.
getZeroMeanPValue()	Accessor to the Zero Mean test p-value.
printResults()	Print results of the linear analysis.
saveResults(name)	Save all analysis test results in a file.

drawBoxCoxLikelihood(name=None)

Draw the loglikelihood versus the Box Cox parameter.

Parameters name: string

name of the figure to be saved with *transparent* option sets to True and *bbox_inches='tight'*. It can be only the file name or the full path name. Default is None.

Returns fig: matplotlib.figure

Matplotlib figure object.

ax: matplotlib.axes

Matplotlib axes object.

Notes

This method is available only when the parameter *boxCox* is set to True.

drawLinearModel (model='uncensored', name=None)

Draw the linear regression prediction versus the true data.

Parameters model: string

The linear regression model to be used, either *uncensored* or *censored* if censored threshold were given. Default is *uncensored*.

name: string

name of the figure to be saved with *transparent* option sets to True and *bbox_inches='tight'*. It can be only the file name or the full path name. Default is None

Returns fig: matplotlib.figure

Matplotlib figure object.

ax: matplotlib.axes

Matplotlib axes object.

drawResiduals (model='uncensored', name=None)

Draw the residuals versus the defect values.

Parameters model: string

The residuals to be used, either *uncensored* or *censored* if censored threshold were given. Default is *uncensored*.

name: string

name of the figure to be saved with *transparent* option sets to True and *bbox_inches='tight'*. It can be only the file name or the full path name. Default is None.

Returns fig: matplotlib.figure

Matplotlib figure object.

ax: matplotlib.axes

Matplotlib axes object.

drawResidualsDistribution (model='uncensored', name=None)

Draw the residuals histogram with the fitted distribution.

Parameters model: string

The residuals to be used, either *uncensored* or *censored* if censored threshold were given. Default is *uncensored*.

name: string

name of the figure to be saved with *transparent* option sets to True and *bbox_inches='tight'*. It can be only the file name or the full path name. Default is None.

Returns fig: matplotlib.figure

Matplotlib figure object.

ax: matplotlib.axes

Matplotlib axes object.

drawResidualsQQplot (model='uncensored', name=None)

Draw the residuals QQ plot with the fitted distribution.

Parameters model: string

The residuals to be used, either *uncensored* or *censored* if censored threshold were given. Default is *uncensored*.

name: string

name of the figure to be saved with *transparent* option sets to True and *bbox_inches='tight'*. It can be only the file name or the full path name. Default is None.

Returns fig: matplotlib.figure

Matplotlib figure object.

ax: matplotlib.axes

Matplotlib axes object.

getAndersonDarlingPValue()

Accessor to the Anderson Darling test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getBoxCoxParameter()

Accessor to the Box Cox parameter.

Returns lambdaBoxCox: float

The Box Cox parameter used to transform the data. If the transformation is not enabled None is returned.

getBreuschPaganPValue()

Accessor to the Breusch Pagan test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getCramerVonMisesPValue()

Accessor to the Cramer Von Mises test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getDurbinWatsonPValue()

Accessor to the Durbin Watson test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getHarrisonMcCabePValue()

Accessor to the Harrison McCabe test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getIntercept()

Accessor to the intercept of the linear regression model.

Returns intercept: openturns.NumericalPoint

The intercept parameter for the uncensored and censored (if so) linear regression model.

getKolmogorovPValue()

Accessor to the Kolmogorov test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

getR2()

Accessor to the R2 value.

Returns R2: openturns.NumericalPoint

Either the R2 for the uncensored case or for both cases.

getResiduals()

Accessor to the residuals.

Returns residuals: openturns.NumericalSample

The residuals computed from the uncensored and censored linear regression model. The first column corresponds with the uncensored case.

getResidualsDistribution()

Accessor to the residuals distribution.

Returns distribution: list of openturns. Distribution

The fitted distribution on the residuals, computed in the uncensored and censored (if so) case.

getSlope()

Accessor to the slope of the linear regression model.

Returns slope: openturns.NumericalPoint

The slope parameter for the uncensored and censored (if so) linear regression model.

getStandardError()

Accessor to the standard error of the estimate.

Returns stderr: openturns.NumericalPoint

The standard error of the estimate for the uncensored and censored (if so) linear regression model.

getZeroMeanPValue()

Accessor to the Zero Mean test p-value.

Returns pValue: openturns.NumericalPoint

Either the p-value for the uncensored case or for both cases.

printResults()

Print results of the linear analysis.

saveResults (name)

Save all analysis test results in a file.

Parameters name: string

Name of the file or full path name.

Notes

The file can be saved as a csv file. Separations are made with tabulations.

If *name* is the file name, then it is saved in the current working directory.

1.1.2 POD model

```
UnivariateLinearRegressionPOD doc
```

UnivariateLinearRegressionPOD

```
\begin{array}{c} \textbf{class} \ \textbf{UnivariateLinearRegressionPOD} \ (*args) \\ & \text{doc} \end{array}
```

Methods

```
run() Bla bla bla
```

```
run ()
Bla bla bla

Parameters sdfs: float
dfsdf
oko: bool
ture
```

1.2 Examples

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex
- search

D	P
drawBoxCoxLikelihood() (UnivariateLinearModelAnalysis method), 2	printResults() (UnivariateLinearModelAnalysis method), 5
drawLinearModel() (UnivariateLinearModelAnalysis method), 3	R
drawResiduals() (UnivariateLinearModelAnalysis method), 3	run() (UnivariateLinearRegressionPOD method), 6
drawResidualsDistribution() (UnivariateLinearModel-Analysis method), 3	S saveResults() (UnivariateLinearModelAnalysis method),
drawResidualsQQplot() (UnivariateLinearModelAnalysis method), 4	5
-	U
G	UnivariateLinearModelAnalysis (class in otpod), 1
getAndersonDarlingPValue() (UnivariateLinearModel-Analysis method), 4	UnivariateLinearRegressionPOD (class in otpod), 6
getBoxCoxParameter() (UnivariateLinearModelAnalysis method), 4	
getBreuschPaganPValue() (UnivariateLinearModelAnalysis method), 4	
getCramerVonMisesPValue() (UnivariateLinearModel-Analysis method), 4	
getDurbinWatsonPValue() (UnivariateLinearModelAnalysis method), 4	
getHarrisonMcCabePValue() (UnivariateLinearModel- Analysis method), 4	
getIntercept() (UnivariateLinearModelAnalysis method),	
getKolmogorovPValue() (UnivariateLinearModelAnalysis method), 5	
getR2() (UnivariateLinearModelAnalysis method), 5	
getResiduals() (UnivariateLinearModelAnalysis method), 5	
getResidualsDistribution() (UnivariateLinearModelAnalysis method), 5	
getSlope() (UnivariateLinearModelAnalysis method), 5	
getStandardError() (UnivariateLinearModelAnalysis method), 5	
getZeroMeanPValue() (UnivariateLinearModelAnalysis method), 5	