Dynamic Voronoi Diagrams

B. Zolotov, Young Researchers Seminar

Voronoi Diagrams

Voronoi Diagrams

- Every point belongs to the region of the closest site.
- Have clear applications everywhere.
- Can be generalized for other metrics.

Explicit Dynamic Voronoi Diagrams

There can be $\Omega(n)$ changes in coordinates per addition of a site, so time better than O(n) is impossible.

Implicit Dynamic Voronoi Diagrams

(= Nearest neighbor query)

- Kaplan, Mulzer, Roditty, Seiferth, Sharir 2020
- Chan, 2010

Combinatorial Dynamic Voronoi Diagrams

Maintain the graph of the Voronoi diagram.

Maybe there is a sublinear algorithm for inserting a site; the coordinates of all the vertices can be output in O(n).

Flarb

When inserting a new site into a Voronoi diagram, you basically throw out everything inside new site's cell and replace it with a cycle.

This is called a flarb.

The point is, you do not need to change every cell to implement a flarb.

Combinatorial changes

Only those cells need combinatorial changes whose Voronoi circles enclose the new site.

Chan's polylog structure

Given a set of points in \mathbb{R}^3 , find extreme of them in given direction: polylog time for addition and queries.

- Smallest enclosing circle
- Width of a set; convex layers
- Report a circle containing q

Potential function

$$\Phi = \lambda \cdot \sum \min \left\{ \operatorname{size}(f_i), \sqrt{n} \right\}$$

When a flarb is applied, all cells that undergo combinatorial changes reduce in size.

\sqrt{n} lower bound

VD for several points and a line

Relabel operation

Beach line and D—S sequences This configuration of parabolas corresponds to the sequence fabacdafqhqkqf.

D—S sequences and trees fabacdafghgkgf

The order of relabels

Possible set of relabels

Nodes that are relabelled form a union of subtrees, whose roots are children of a single node *R*.

Relabels and sizes of nodes

When relabels are applied, only two nodes of the tree can increase in size:

the new one and R.

Inserts the length

An *insert* is a relabel that does not reduce the size of the node it is applied to.

- When an insert is applied to a sequence,
 the length of the sequence increases by 1.
- When a relabel that is not an insert is applied to a sequence, the length of the sequence may decrease, but by at most 2.

Potential function

$$\Phi = 3 \cdot \sum^{m} \min \left\{ \operatorname{size}(s_i), 2\sqrt{n} \right\} - \operatorname{length}(S).$$

This accounts for the changes in the sizes of nodes and in the length of the sequence.

Further research

It suspiciously seems like you can only have significantly less than \sqrt{n}

relabels per letter...