Raghav Gnanasambandam

PHD CANDIDATE · ISE

Virginia Tech, Blacksburg, VA

□ raghavg@vt.edu | □ raghavg97 | □ raghav-g

Education_

Virginia Tech Blacksburg, VA

PHD IN INDUSTRIAL AND SYSTEMS ENGINEERING

Aug 2019 - present

• Manufacturing Systems Engineering Track

• Specialization: Intelligent Manufacturing

Advisor: Dr. Zhenyu (James) Kong

IIT Madras Chennai, India Aug 2014 - May 2019

DUAL DEGREE (B.TECH & M.TECH) IN MECHANICAL ENGINEERING

• Minor: Material Sciences • Advisor: Dr. Arunachalam N

Awards & Fellowships _____

2022 Winner, QCRE-Process Miner Industrial Data Challenge, IISE Annual Meeting \$2,000

2022 Travel Award, ISE at Virginia Tech \$ 1,000

2019 Graduate Fellowship, ISE at Virginia Tech

Publications ____

PUBLISHED

Bo Shen, Raghav Gnanasambandam, Rongxuan Wang, Zhenyu (James) Kong. 2022. Multi-task Gaussian process upper confidence bound for hyperparameter tuning and its application for simulation studies of additive manufacturing. IISE Transactions, DOI: 10.1080/24725854.2022.2039813.

Akhil V, Raghav Gnanasambandam, N Arunachalam, DS Srinivas. 2020. Image data-based surface texture characterization and prediction using machine learning approaches for additive manufacturing. Journal of Computing and Information Science in Engineering 20 (2), 021010.

Akhil V, N Arunachalam, Raghav Gnanasambandam, DS Srinivas. 2020. Surface texture characterization of selective laser melted Ti-6Al-4V components using fractal dimension and lacunarity analysis. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. November 2020. doi:10.1177/0954405420971081

In Review

Raghay Gnanasambandam, Bo Shen, Andrew Chung Chee Law, Zhenyu (James) Kong. Deep Gaussian Process Upper Confidence Bound for Optimizing Non-Stationary Functions and its Application in Additive Manufacturing. Submitted to IISE Transactions.

PREPRINTS

Raghav Gnanasambandam, Bo Shen, Jihoon Chung, Xubo Yue, Zhenyu (James) Kong. Self-scalable Tanh (Stan): Faster Convergence and Better Generalization in Physics-informed Neural Networks. arXiv preprint arXiv:2204.12589 (2022). To be submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence.

Presentations _____

INVITED TALKS

May 2022. Self-scalable Tanh (Stan) activation function for Physics-informed Neural Networks. Invited talk: IISE Annual Meeting, Seattle, WA.

October 2021. Deep Gaussian Process Upper Confidence Bound for Optimizing Non-Stationary Functions. Invited talk: Informs Annual Meeting, Anaheim, CA.

Teaching Experience _____

Spring '21	ISE 3004 Industrial Cost Control, Graduate Teaching Assistant	Virginia Tech
Fall '19 &	ISE 3214 Facilities & Logistics, Graduate Teaching Assistant	Virginia Tech
Fall '20		
Spring '20	ISE 2214 Manufacturing Processes Lab, Lab Instructor	Virginia Tech
Spring '19	ME 2400 Measurement, Instrumentation and Control, Teaching Assistant	IIT Madras
Fall '18	ME 2050 Machine Drawing Practice, Lab Instructor	IIT Madras

Service_____

2021-2022	Graduate Student Mentor, ISE Department	Virginia Tech
2022	Research Poster Judge, Undergraduate Poster Competition	Virginia Tech
2021	Student Volunteer, ISE Senior Symposium	Virginia Tech

PROFESSIONAL MEMBERSHIPS

Student Member, Institute of Industrial and Systems Engineers (IISE). Student Member, Institute for Operations Research and the Management Sciences (INFORMS).

PEER REVIEW

IEEE Transactions on Automation Science and Engineering