EMA2: Lecture contents, week 1

1. Ordinary differential equations

Definition.

Ordinary differential equation of order n (ODE) is any equation of the form $F(x, y, y', \dots, y^{(n)}) = 0$, where F is a function of n+2 variables in which $y^{(n)}$ really appears. Its solution on an (open) interval I is any function y = y(x) on interval I that has all derivatives up to order n on I and $\forall x \in I$ satisfies $F(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$.

Let y, v be some solutions of a given ODE on open intervals I, J respectively. We say that v is an extension of y if $I \subset J$, $I \neq J$ and v = y on I.

We say that a solution y of a given ODR on some open interval is a **maximal solution** if it cannot be extended, that is, if there is no other solution that would be an extention of y.

Example.

The equation $\frac{\sin(y''') + xy'}{(y'')^2 + 1} - e^{x+y'} = \frac{y}{x^2 + 1}$ is an ODE of order 3.

Example.

The equation (*) $\frac{y'}{x} = 3x$ is an ODE of order 1. For instance the function $y(x) = x^2 + 1$ is a solution of (*) on an interval $(13, \infty)$. For any $C \in \mathbb{R}$, the function $y(x) = x^2 + C$ is a maximal solution of (*) on intervals $(-\infty, 0)$ and on $(0,\infty)$.

If we want a solution that satisfies the coindition y(-1) = 3, we get $y(x) = x^2 + 2$, $x \in (-\infty, 0)$.

Definition.

If the set of all solutions of a given ODE on a certain open interval can be expressed using one formula with parameters, we say that it is a **general solution** of this ODE. One solution, obtained by a concrete choice of these parameters, is then called a particular solution.

Definition.

 $F(x, y, y', \dots, y^{(n)}) = 0.$ Consider an ODE of order n

Cauchy problem or Initial Value Problem for this equation is a problem of the form

(1) $F(x, y, y', \dots, y^{(n)}) = 0;$

(2) $y(x_0) = y_0, y'(x_0) = y_1, \ldots, y^{(n-1)}(x_0) = y_{n-1}, \text{ where } x_0, y_0, y_1, \ldots, y_{n-1} \text{ are some fixed}$ real numbers (initial conditions).

Definition.

Consider a Cauchy problem with initial conditions at some x_0 .

We say that this problem is **uniquely solvable** if for every two solutions u, v of this problem there exists a neighborhood U of x_0 such that u = v on U.

We say that this problem is uniquely solvable on an interval I (containing x_0) if for any two solutions u, v of this problem on intervals I_u, I_v containing I one has that u = v on I.

Informally: A "nice" ODE has as many parameters in its solution as its order. The Cauchy conditions then make sense, we get n equations with n unknown parameters.

General algorithm for solving a Cauchy problem: 1. find a general solution, 2. apply initial conditions to that general solution and determine constants.

Integration is actually a way to solve ODE F' = f, but in general finding a general solution is a big problem, we restrict our attention to some very nice equations.

1.1. ODE of order 1

Definition.

By a separable ODE of order 1 we mean any ODE that can be expressed in the form y' = g(x)h(y) for some functions g, h.

Fact.

Consider a separable ODE of order 1, y' = g(x)h(y). If y_0 satisfies $h(y_0) = 0$ and I is an open interval satisfying $I \subset D(g)$, then the function $y(x) = y_0$ is a solution to the given ODE on I (so-called **stationary solution**).

Theorem. (existence)

Consider a separable ODE of order 1, y' = g(x)h(y). Consider open intervals $I \subset D(g)$ and $J \subset D(h)$. If g is continuous on I, h is continuous on J and $h \neq 0$ on J, then there is a solution to the given equation on I.

Let G(x) be an antiderivative of g(x) on I and H(y) be an antiderivative of $\frac{1}{h(y)}$ on J. If H has an inverse function H_{-1} , then a general solution of the given equation on I can be expressed as $y(x) = H_{-1}(G(x) + C).$

Practical way of solving: If an equation can be separated, then we do so moving x and y to opposite sides of the equation and then integrate:

$$\frac{dy}{dx} = g(x)h(y) \implies \frac{dy}{h(y)} = g(x) dx \implies \int \frac{dy}{h(y)} = \int g(x) dx \implies H(y) = G(x) + C,$$

then $y(x) = H_{-1}(G(x) + C)$ if it is possible.

Equation $x^5y' = -\frac{2}{y}$ with conditions a) y(1) = 3; b) y(-1) = -1; c) y(0) = 2; d) $y(1) = \frac{\sqrt{15}}{4}$.

1) General solution: Condition
$$y \neq 0$$
.
$$x^{5} \frac{dy}{dx} = -\frac{2}{y} \iff y \, dy = -\frac{2}{x^{5}} \iff \int y \, dy = -\int \frac{2}{x^{5}} \iff \frac{1}{2}y^{2} = \frac{1}{2}\frac{1}{x^{4}} + C \iff y^{2} = \frac{1}{x^{4}} + C.$$

Thus
$$y(x) = \pm \sqrt{\frac{1}{x^4} + C}, x \neq 0.$$

Note: Formally $y' = -\frac{1}{x^5} \frac{2}{y}$, hence for instance $g(x) = -\frac{1}{x^5}$, $h(y) = \frac{2}{y}$. Both functions are continuous on intervals $(-\infty,0)$ and $(0,\infty)$, therefore there will be solutions there and Cauchy problems will be solvable uniquely. The equation $h(y) = \frac{2}{y} = 0$ does not have a solution, hence no stationary solution.

- 2) Initial conditions.
- a) In order to get y(1) = 3 > 0 we choose the version $y(x) = +\sqrt{\frac{1}{x^4}} + C$.

We substitute: $3 = \sqrt{\frac{1}{1} + C} = \sqrt{1 + C}$, hence C = 8. What interval?

Condition: $x \neq 0$, two possible intervals, but we want the one that contains $x_0 = 1$.

Solution: $y(x) = \sqrt{\frac{1}{x^4} + 8}, x \in (0, \infty).$

b) In order to get y(-1) = -1 < 0 we choose the version $y(x) = -\sqrt{\frac{1}{x^4} + C}$.

We substitute: $-1 = -\sqrt{\frac{1}{1} + C} = \sqrt{1 + C}$, hence C = 0. What interval?

Condition: $x \neq 0$, two possible intervals, but we want the one that contains $x_0 = -1$.

Solution: $y(x) = -\sqrt{\frac{1}{x^4}} = -\frac{1}{x^2}, x \in (-\infty, 0).$

c) The initial condition y(0) = 2 has $x_0 = 0$, this is not possible.

There is no solution.

d) In order to get $y(1) = \frac{\sqrt{15}}{4} > 0$ we choose the version $y(x) = +\sqrt{\frac{1}{x^4} + C}$

We substitute: $\frac{\sqrt{15}}{4} = \sqrt{\frac{1}{1} + C} = \sqrt{1 + C}$, hence $C = -\frac{1}{16}$. What interval?

Conditions: $x \neq 0$ and |x| < 2, two possible intervals but we want the one containing $x_0 = 1$. Solution: $y(x) = \sqrt{\frac{1}{x^4} - \frac{1}{16}}, x \in (0, 2)$.

ODE come from applications, thus we also use different variables, for instance t for time, then the derivative is also denoted as \dot{y} , \ddot{y} , often we have x as a function!

Example.

General solution of $\dot{x} = 2tx^2$. Here t is variable, x function. We separate:

 $\frac{dx}{dt} = 2tx^2 \iff \frac{dx}{x^2} = 2t dt \iff \int \frac{dx}{x^2} = \int 2t dt \iff -\frac{1}{x} = t^2 - C,$ hence $x(t) = \frac{1}{C - t^2}, x \neq \pm C$. For values C > 0 possible solutions exist on $(-\infty, C)$, on (-C, C) and on (C, ∞) . For C = 0 solutions exist on $(-\infty, 0)$ and on $(0, \infty)$. If one gets C < 0, then solutions exist on $I\!\!R$.

Since one can have $h(x) = x^2 = 0$ for x = 0, we also have stationary solution x(t) = 0, $t \in \mathbb{R}$.