Diagonalization

Diagonalization of a matrix

- 1 If AM = GM for all eigenvalues of an $n \times n$ matrix A then
 - The eigenvectors form a basis of Euclidean \mathbb{R}^n
 - The matrix $X = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix}$ of eigenvectors is nonsingular
 - $AX = \begin{bmatrix} A\mathbf{x}_1 & \cdots & A\mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1\mathbf{x}_1 & \cdots & \lambda_n\mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & \lambda_n \end{bmatrix} = X\Lambda$ with Λ diagonal, i.e., $A = X\Lambda X^{-1}$

Definition

The factorization $A = X \Lambda X^{-1}$ with Λ diagonal and X nonsingular is called a **diagonalization** of the matrix A

- Under the conditions 1 the diagonalization exists and A is said to be diagonalizable
- 2 If GM < AM for at least one eigenvalue A is said to be defective

Theorem

An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors.

The diagonalizing matrix X is not unique:

 The ordering of eigenpairs does not affect the product, as long as the ordering of the columns of X (eigenvectors) matches the ordering of the diagonal coefficients of Λ (eigenvalues)

$$\begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{x}_n & \cdots & \mathbf{x}_1 \end{bmatrix} \begin{bmatrix} \lambda_n & \cdots & \mathbf{x}_1 \end{bmatrix} \begin{bmatrix} \lambda_n & \cdots & \mathbf{x}_1 \end{bmatrix}^{-1}$$

It may be convenient to order the diagonal coefficients of Λ (eigenvalues) by decreasing magnitude

 The scaling of the columns of X (eigenvectors) does not affect the product

$$\begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & \mathbf{x}_n \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \frac{\mathbf{x}_n}{\alpha_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & \frac{\mathbf{x}_n}{\alpha_n} \end{bmatrix} \begin{bmatrix} \lambda_1 & \cdots & \frac{\mathbf{x}_n}{\alpha_n} \end{bmatrix}^{-1}$$

It may be convenient to rescale the columns of X to avoid fractions or to normalize them

Example 1.
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
 has eigenpairs $\left(3, \begin{bmatrix} -1 \\ 1 \end{bmatrix}\right)$ and $\left(1, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$.

Determine a diagonalization of *A*.

$$A = X \Lambda X^{-1}$$
 with $X = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$, $\Lambda = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ A is diagonalizable

Check
$$AX = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 1 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = X\Lambda \quad \checkmark$$

Properties of Eigenvalues and Eigenvenctors of symmetric matrices:

- A symmetric matrix has real eigenvalues and real orthogonal eigenvectors (w.r.t. Euclidean inner product)
- 2 A symmetric matrix is diagonalizable, even with repeated eigenvalues
- **3** The diagonalization of $A = A^T$ becomes

$$A = X\Lambda X^{-1} = Q\Lambda Q^T$$
 with Λ real and $Q^T = Q^{-1}$

For instance, in Example 1, X can be turned into an orthogonal matrix by normalizing its columns: $\begin{bmatrix} -1 & 1 \end{bmatrix}$ paraelize $\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$

$$X = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \xrightarrow{\text{normalize}} \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} = Q \quad (Q^{-1} = Q^{T})$$

Example 2. $A = \begin{bmatrix} 2 & 0 \\ -1 & 2 \end{bmatrix}$ has a single eigenpair $(2, \begin{bmatrix} 0 \\ 1 \end{bmatrix})$ (GM=1<2=AM). Determine a diagonalization of A.

A cannot be written $A = X \Lambda X^{-1}$, A is defective

Example 3.
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 has eigenpairs $\left(2, \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$ and $\left(2, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$. Determine a diagonalization of A .

$$A = X \Lambda X^{-1}$$
 with $X = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$, $\Lambda = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = A$ A is diagonalizable

Example 4.
$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$
 has eigenpairs $\left(2 + i, \begin{bmatrix} -i \\ 1 \end{bmatrix}\right)$ and $\left(2 - i, \begin{bmatrix} i \\ 1 \end{bmatrix}\right)$

$$\Rightarrow$$
 $A = X \wedge X^{-1}$ with $X = \begin{bmatrix} -i & i \\ 1 & 1 \end{bmatrix}$, $\Lambda = \begin{bmatrix} 2+i \\ 2-i \end{bmatrix}$ A is diagonalizable

Check

$$AX = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -i & i \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1-2i & 1+2i \\ 2+i & 2-i \end{bmatrix} = \begin{bmatrix} -i & i \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2+i \\ 2-i \end{bmatrix} = X\Lambda \quad \checkmark$$

- ullet A is diagonalizable on $\mathbb C$ but not on $\mathbb R$
- Real matrices with complex (conjugate) eigenvalues (and eigenvectors) always involve rotation

$$A = \sqrt{5} \begin{bmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix} = \sqrt{5} \begin{bmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \quad \text{with} \quad \begin{cases} \cos \theta = \frac{2}{\sqrt{5}} \\ \sin \theta = -\frac{1}{\sqrt{5}} \end{cases}$$

$$\text{matrix of rotation}$$

$$\text{of angle } \theta$$

$$\theta \approx -26.6^{\circ}$$

Matrix powers

A diagonalization makes it easier to evaluate powers of a matrix:

$$A = X \Lambda X^{-1} = X \begin{bmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{bmatrix} X^{-1} \quad \Rightarrow \quad A^k = X \Lambda^k X^{-1} = X \begin{bmatrix} \lambda_1^k \\ \ddots \\ \lambda_n^k \end{bmatrix} X^{-1}$$

Proof:
$$A^k = \underbrace{(X \wedge X^{-1}) \cdots (X \wedge X^{-1})}_{k \text{ times}} = X \wedge (X^{-1}X) \wedge (X^{-1}X) \cdots (X^{-1}X) \wedge X^{-1} = X \wedge^k X^{-1}$$

Example 5. Find a
$$2 \times 2$$
 matrix B **s.t.** $B^2 = A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.

From Example 1:
$$A = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}^{-1}$$
. Of the 4 possible choices

$$B = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \pm \sqrt{3} \\ \pm 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}^{-1}$$

satisfying $B^2 = A$ the matrix

$$A^{\frac{1}{2}} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{3} \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1+\sqrt{3}}{2} & \frac{1-\sqrt{3}}{2} \\ \frac{1-\sqrt{3}}{2} & \frac{1+\sqrt{3}}{2} \end{bmatrix}$$

is the only one to have positive eigenvalues.

Example 6. Find a general expression of A^n in terms of n for

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}.$$

From Example 1:
$$A = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}^{-1}$$
. Then

$$A^{n} = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3^{n} \\ 1^{n} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1+3^{n}}{2} & \frac{1-3^{n}}{2} \\ \frac{1-3^{n}}{2} & \frac{1+3^{n}}{2} \end{bmatrix}$$

In particular:

• **Check** For
$$n = 1$$
 we recover $A^1 = \begin{bmatrix} \frac{1+3}{2} & \frac{1-3}{2} \\ \frac{1-3}{2} & \frac{1+3}{2} \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = A$

• For
$$n = -1$$
 we get $A^{-1} = \begin{bmatrix} \frac{1+\frac{1}{3}}{2} & \frac{1-\frac{1}{3}}{2} \\ \frac{1-\frac{1}{3}}{2} & \frac{1+\frac{1}{3}}{2} \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$

• For
$$n = \frac{1}{2}$$
 we get $A^{\frac{1}{2}} = \begin{bmatrix} \frac{1+3^{\frac{1}{2}}}{2} & \frac{1-3^{\frac{1}{2}}}{2} \\ \frac{1-3^{\frac{1}{2}}}{2} & \frac{1+3^{\frac{1}{2}}}{2} \end{bmatrix} = \begin{bmatrix} \frac{1+\sqrt{3}}{2} & \frac{1-\sqrt{3}}{2} \\ \frac{1-\sqrt{3}}{2} & \frac{1+\sqrt{3}}{2} \end{bmatrix}$ (see Example 5)

Similar matrices

Definition

Two matrices A and B are **similar** iff $A = SBS^{-1}$ for a nonsingular matrix S

- Similar matrices represent the same linear transformation w.r.t. two different bases. S and S^{-1} are the transition matrices between the two bases.
- If A is diagonalizable, then the matrices $A = X \Lambda X^{-1}$ and Λ are similar

Properties of Eigenvalues and Eigenvectors of Similar Matrices:

If A and B are similar, then they have the same eigenvalues.

Proof: Let
$$B = S^{-1}AS$$
, then $\det(B - \lambda I) = \det(S^{-1}AS - \lambda I)$

A and B have the same characteristic polynomial and therefore the same eigenvalues.

If A is diagonalizable and B is similar to A, then B is diagonalizable and the diagonalizing matrix is $S^{-1}X$ (i.e. the eigenvectors of B are S^{-1} times the eigenvectors of A).

Proof: Let $A = X \Lambda X^{-1}$, then $B = S^{-1}AS = S^{-1}X \Lambda X^{-1}S = T \Lambda T^{-1}$, with $T = S^{-1}X$.

Example 7. Let
$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
 and $S = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$.

Determine a diagonalization of $B = S^{-1}AS$.

From Example 1:
$$A = X \Lambda X^{-1}$$
 with $X = \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$ and $\Lambda = \begin{bmatrix} 3 & 1 \\ & 1 \end{bmatrix}$

Then
$$B = S^{-1}X\Lambda X^{-1}S = T\Lambda T^{-1}$$
 with $T = S^{-1}X = \begin{bmatrix} \frac{1}{2} & \frac{3}{2} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$

Check
$$B = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ -2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}^{-1} \checkmark$$

