李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)・课程资料包 @ShowMeAl

视频

课件

筆记

代码

中英双语字幕 一键打句下载 官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

nttps://www.bilibili.com/video/BV1fM4y137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 深度学习

Auto-encoder 生成式对抗网络

学习率 自注意力机

卷积神经网络 GAN

神经网络压缩 强化学习 元学习 Transformer 批次标准化

Awesome Al Courses Notes Cheatsheets 是 ShowMeAl 资料库的分 支系列,覆盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提 供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**包页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复 [添砖加页]

Hung-yi Lee

李宏毅

Sophisticated Input

Input is a vector

Input is a set of vectors

One-hot Encoding

cat =
$$[0 \ 0 \ 1 \ 0 \ 0 \dots]$$

$$dog = [0 \ 0 \ 0 \ 1 \ 0 \dots]$$

elephant =
$$[0 \ 0 \ 0 \ 1 \dots]$$

Word Embedding

To learn more: https://youtu.be/X7PH3NuYW0Q (in Mandarin)

• Graph is also a set of vectors (consider each **node**

Graph is also a set of vectors (consider each node

as **a vector**)

$$H = [1 \ 0 \ 0 \ 0 \ \dots]$$

$$C = [0 \ 1 \ 0 \ 0 \ 0 \dots]$$

$$O = [0 \ 0 \ 1 \ 0 \ 0 \dots]$$

What is the output?

• Each vector has a label.

Example Applications

What is the output?

• Each vector has a label.

The whole sequence has a label.

Example Applications

What is the output?

• Each vector has a label.

focus of this lecture

The whole sequence has a label.

Model decides the number of labels itself.

seq2seq

Sequence Labeling

FC Fully-connected

Is it possible to consider the context?

FC can consider the neighbor

How to consider the whole sequence?

a window covers the whole sequence?

https://arxiv.org/abs/1706.03762₁₂

Can be either input or a hidden layer

Find the relevant vectors in a sequence

Additive

$$\alpha'_{1,i} = exp(\alpha_{1,i}) / \sum_{j} exp(\alpha_{1,j})$$

$$q^1 = W^q a^1 \qquad k^2 = W^k a^2$$

$$k^2 = W^k a^2$$

$$k^3 = W^k a^3$$

$$k^4 = W^k a^4$$

$$k^1 = W^k a^1$$

Self-attention Extract information based on attention scores

$$v^2 = W^v a^2 \qquad v^3 = W^v a^3 \qquad v^4 = W^v a^4$$

Can be either input or a hidden layer

$$\alpha_{1,1} = \begin{bmatrix} \mathbf{k^1} & \mathbf{q^1} \\ \mathbf{q^1} & \alpha_{1,2} = \end{bmatrix} \mathbf{k^2} \mathbf{q^1}$$

$$\alpha_{1,3} = \begin{bmatrix} \mathbf{k^3} & \mathbf{q^1} & \alpha_{1,4} = \begin{bmatrix} \mathbf{k^4} & \mathbf{q^1} \end{bmatrix}$$

$$\alpha_{1,1} = \begin{bmatrix} \mathbf{k^1} & \mathbf{q^1} & \alpha_{1,2} = \begin{bmatrix} \mathbf{k^2} & \mathbf{q^1} \end{bmatrix}$$

$$\alpha_{1,3} = \mathbf{k^3} \mathbf{q^1} \quad \alpha_{1,4} = \mathbf{k^4} \mathbf{q^1}$$

$$\begin{array}{c}
\alpha_{1,1} \\
\alpha_{1,2} \\
\alpha_{1,3}
\end{array} = \begin{array}{c}
k^1 \\
k^2 \\
k^3
\end{array}$$

$$\begin{array}{c}
q^1 \\
k^4
\end{array}$$

Multi-head Self-attention Different types of relevance

Multi-head Self-attention Different types of relevance

Multi-head Self-attention Different types of relevance

$$\begin{vmatrix} b^i \\ b^{i,1} \end{vmatrix}$$

Positional Encoding

Each column represents a positional vector e^i

- No position information in self-attention.
- Each position has a unique positional vector e^i
- hand-crafted
- learned from data

Table 1. Comparing position representation methods

https://arxiv.org/abs/ 2003.09229

Methods	Inductive	Data-Driven	Parameter Efficient
Sinusoidal (Vaswani et al., 2017)	✓	X	✓
Embedding (Devlin et al., 2018)	×	✓	×
Relative (Shaw et al., 2018)	×	✓	✓
This paper	✓	✓	✓

Many applications ...

Transformer

https://arxiv.org/abs/1706.03762

BERT

https://arxiv.org/abs/1810.04805

Widely used in Natural Langue Processing (NLP)!

Self-attention for Speech

10_{ms}

Speech is a very long vector sequence.

If input sequence is length L

Self-attention for Image

Source of image: https://www.researchgate.net/figure/Color-image-representation-and-RGB-matrix_fig15_282798184

DEtection Transformer (DETR)

https://arxiv.org/abs/2005.12872

Self-attention v.s. CNN

CNN: self-attention that can only attends in a receptive field

> CNN is simplified self-attention.

Self-attention: CNN with learnable receptive field

Self-attention is the complex version of CNN.

Self-attention v.s. CNN

On the Relationship between Self-Attention and Convolutional Layers

https://arxiv.org/abs/1911.03584

Self-attention v.s. CNN

Good for more data

Self-attention

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale https://arxiv.org/pdf/2010.11929,pdf

Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention https://arxiv.org/abs/2006.16236

To learn more about RNN

https://youtu.be/xCGidAeyS4M (in Mandarin)

https://youtu.be/Jjy6ER0bHv8
(in English)

Self-attention for Graph

Consider **edge**: only attention to connected nodes

This is one type of **Graph Neural Network (GNN)**.

Self-attention for Graph

To learn more about GNN ...

https://youtu.be/eybCCtNKwzA (in Mandarin)

https://youtu.be/M9ht8vsVEw8 (in Mandarin)

To Learn More ...

Long Range Arena: A Benchmark for Efficient Transformers

https://arxiv.org/abs/2011.04006

Efficient Transformers: A Survey https://arxiv.org/abs/2009.06732

李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)・课程资料包 @ShowMeAl

视频

课件

筆记

代码

中英双语字幕 一键打句下载 官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

nttps://www.bilibili.com/video/BV1fM4y137M4

课件 & 代码·博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 深度学习 Auto-encoder 生成式对抗网络

自注意力机

学习率

神经网络压缩 强化学习 元学习 Transformer 批次标准化

Awesome Al Courses Notes Cheatsheets 是 ShowMeAl 资料库的分 支系列,覆盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提 供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**包页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复 [添砖加页]