IN THE SPECIFICATION

Please amend the specification as follows:

Page 11, paragraph beginning on line 15.

Figure 2 is a flow diagram illustrating an \underline{a} power control procedure 100 according to the present invention implemented at each base station 12. The flow diagram shown in Fig. 2 corresponds to the inner power control loop performed by the base stations 12. The power control procedure 100 is triggered when a power control command is received at the base station 12 (block 102). It should be noted that there is a time delay τ between the transmission of a power control command and the time that the power control command is decoded. Therefore, the base station 12 computes its transmit power at time k+1 based on the power control bit sent by the mobile station 50 at time $k+1-\tau$. That is, the value of $\Delta_f(k+1)$ depends on the power control bits sent at time $k+1-\tau$. If no power control command is received, for example, because the receiver is out of lock, $\Delta_f(k+1)$ is assumed to be 0. The computation of $\Delta_f(k+1)$ is shown in Equation 2 below:

Page 18, paragraph beginning on line 10.

The variables in Eq. (5) are defined as follows:

 $P_{\it REF}(\it n+1)$ is new reference power in dBp,

MinRefPower is the minimum reference power in dBp,

MaxRefPower is the maximum reference power in dBp,

 $\delta(n+1)$ is the adjustment term in dB applied at time k+1 n+1, and

n is the current time in frames.