NYC Ride Hailing Optimization – Fare Amount, Pickup Points and Collision Predictive Analytics

Amol Wadwalkar, Jagannadh Commuri, Sriram Ayyagari, Suresh Kadavath, Promodh N Ravichandran

Motivation

- Traditional Taxi drivers lack the datadriven insights available to Uber/Lyft
- Unavailability of such insights put Taxi drivers in a significant disadvantage to improve their profit margin and compete with the Tech Giants.
- Our tool will help taxi drivers to maximize profit and reduce risk of collision.

Machine Learning Algorithms

- Fast Forest Quantile Regression to predict fare amount distribution over quantiles - uses Random Forest of decision trees with bagging.
- Multi Class Decision Jungle to predict pickup counts and collision probability - uses an ensemble of decision directed acyclic graphs. Provides lower memory footprint and better generalization at the cost of higher training time and is also resilient to noisy features

Data

- Datasets were downloaded from
 - NYCTLC Taxi dataset
 - NYC Open Data Collision dataset
 - Five-Thirty-Eight Uber dataset
- Dataset Characteristics
 - Size after data cleaning and feature selection – 15 GB
 - 180 mil records not temporal

Innovation

- Provide a website with datapoints impacting profitability and safety.
- Incorporate collision prediction while displaying high pickup zones and price per trip, to avoid pickup zones with a high probability of collision
- Ability to check prediction for any location within NYC and for any day and hour for better day planning

Data Visualization Algorithms

• H3 – Hexagonal hierarchical geospatial Indexing system – using hexagons provides the benefit of equidistant neighbours as compared to squares or triangles and have a property of expanding ring of neighbours.

Architecture

Pickup Points Visualization

Collision Visualization

Combined Weighted Visualization

Experiments

- Linear regression with cross-validation model had a very low coefficient of determination (0.2 - 0.4). So we used the Multiclass Decision Jungle model which provided accuracy of prediction as 80%.
- Tableau was evaluated for visualization, but due to the licensing cost involved and absence of H3 support, JS was finalized.

Results

Prediction	Mean	Median	Min	Max	StdDev
Pickup	25.2 I	26.82	3.25	33.7I	7.51
Fare	2.49	2.70	0.66	2.78	0.76
Collision(R)	0.001	0.0008	0.00	0.12	0.001
Collision(O)	0.19	0.187	0.04	0.40	0.04
Collision(Y)	0.8	0.81	0.60	0.95	0.04

Technology Stack

