Devoir surveillé n°3

Durée: 3 heures, calculatrices et documents interdits

I. Une partie de $\mathcal{P}(E)$.

Soit E et F deux ensembles non vides, $f: E \to F$ une application et $\mathcal{S} = \{X \subset E \mid f^{\leftarrow}(f(X)) = X\}$. Pour C un ensemble, on note $\mathcal{P}(C)$ l'ensemble des parties de C.

- 1) Pour $A \subset E$, montrer que $A \subset f^{\leftarrow}(f(A))$.
- **2)** Pour $A \subset E$, montrer que $f^{\leftarrow}(f(A)) \in \mathcal{S}$.
- 3) Montrer que S est stable par intersection et réunion.
- 4) Soit $X \in \mathcal{S}$ et $A \subset E$ tels que $X \cap A = \emptyset$. Montrer que $X \cap f^{\leftarrow}(f(A)) = \emptyset$.
- 5) Soit $X, Y \in \mathcal{S}$. Montrer que $E \setminus X$ et $Y \setminus X$ appartiennent à \mathcal{S} .
- **6)** Montrer que l'application $\varphi : \begin{cases} \mathcal{S} \to \mathcal{P}(f(E)) \\ A \mapsto f(A) \end{cases}$ est une bijection.

II. Une équation différentielle.

On considère l'équation différentielle

$$y'' + \frac{2y'}{\operatorname{th}(x)} + y = 0. \tag{\mathscr{E}}$$

- 1) Question préliminaire. Justifier que $\frac{\operatorname{sh}(x)}{x} \xrightarrow[x \to 0]{} 1$.
- 2) Sur quel ensemble E peut-on chercher à résoudre (\mathscr{E}) ? Écrire cet ensemble comme une union d'intervalles ouverts.
- 3) Soit $y: E \to \mathbb{R}$ une solution de l'équation (\mathscr{E}). On pose alors

$$z: E \rightarrow \mathbb{R}$$

$$x \mapsto y'(x) + \frac{y(x)}{\operatorname{th}(x)}$$

a) Montrer que z est solution de l'équation différentielle linéaire :

$$z' + \frac{z}{\operatorname{th}(x)} = 0. \tag{\mathscr{F}}$$

- **b)** Résoudre l'équation (\mathscr{F}) sur \mathbb{R}_+^* .
- c) Résoudre l'équation (\mathscr{F}) sur \mathbb{R}_{-}^{*} .

Indication : on essaiera de chercher un argument rigoureux évitant de dupliquer les arguments donnés pour résoudre la question précédente.

d) En déduire qu'il existe $a, b, a', b' \in \mathbb{R}$ tel que, pour tout $x \in E$,

$$y(x) = \begin{cases} \frac{ax+b}{\sinh(x)} & \text{si} \quad x > 0\\ \frac{a'x+b'}{\sinh(x)} & \text{si} \quad x < 0 \end{cases}.$$

- e) Réciproquement, montrer que toutes les fonctions de cette forme sont bien solution de (\mathscr{E}) .
- 4) Parmi les solutions de (\mathscr{E}) , les quelles admettent-elles une limite finie en 0? Le cas échéant, la quelle?

III. Étude d'une fonction complexe.

On considère la fonction complexe

$$f: z \mapsto \frac{z+1}{\bar{z}+2}.$$

- 1) Déterminer le domaine de définition de f, que l'on notera Δ_f .
- 2) a) Soit $z \in \Delta_f$. Montrer que |f(z)| = 1 si et seulement si |z+1| = |z+2|.
 - b) En déduire une expression explicite de $f^{\leftarrow}(\mathbb{U})$.
- **3)** Montrer que $f^{\leftarrow}(\mathbb{R}) = \Delta_f \cap \left(\mathbb{R} \cup \left\{ z \in \mathbb{C} \mid \operatorname{Re}(z) = -\frac{3}{2} \right\} \right)$.
- **4)** a) Pour chaque $z \in f^{\leftarrow}(\mathbb{R})$, que vaut f(z)? Déterminer alors $f(f^{\leftarrow}(\mathbb{R}))$.
 - b) L'application $f: \Delta_f \to \mathbb{C}$ est-elle injective? Bijective?
- 5) Résoudre l'équation f(z) = 1. Que peut-on en déduire?

Dans la suite du problème, on considèrera la fonction $g = f_{|\mathbb{U}}$, c'est-à-dire

$$g : \mathbb{U} \to \mathbb{C} .$$

$$z \mapsto \frac{z+1}{\bar{z}+2} .$$

- **6)** Soit u un nombre complexe de module 1, justifier que $g(u) = \frac{u^2 + u}{2u + 1}$.
- 7) a) Résoudre pour $u \in \mathbb{U}$ l'équation $g(u) = \frac{1+3i}{5}$.
 - b) Résoudre pour $u \in \mathbb{U}$ l'équation g(u) = i.
- 8) L'application g est-elle surjective?
- 9) a) Soit $u \in \mathbb{U}$, soit $t \in]-\pi,\pi]$ vérifiant $u = e^{it}$. On pose

$$v = \frac{u+1}{2u+1}.$$

Exprimer $|v|^2$ en fonction de $\cos(t)$ (uniquement!).

- **b)** Étudier sur $]-\pi,\pi]$ la fonction $\varphi:t\mapsto \frac{1+\cos(t)}{5+4\cos(t)}$.
- c) Conclure quant à l'injectivité de g.

— FIN —