

Statistical Geophysics

Chapter 2

Descriptive Statistics 2

Descriptive Statistics 2

Numerical Summary Measures

Background

- The numerical summaries presented in this section can be subdivided into measures of location, spread and shape.
 - Location refers to the central tendency of the data values.
 - Spread denotes the degree of variation or dispersion around the center.
 - Measures of shape tell you the amount and direction of departure from symmetry and how tall and sharp the central peak of the data is.
- Let X be the variable of interest. Suppose a sample of size n is given with observed values x_1, \ldots, x_n .

Mode

- The mode, x_{mod}, is the most frequently occurring value or category of X.
- The mode is the most important measure of location for categorical variables.
- The mode of the sample {1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17} is 6.
- Given the list of data {1,1,2,4,4} the mode is not unique the data set may be said to be bimodal, while a set with more than two modes may be described as multimodal.

Arithmetic mean

• The arithmetic mean or average of a sample is

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i ,$$

for which it holds that $\sum_{i=1}^{n} (x_i - \bar{x}) = 0$.

• For frequency data with different observed values a_1, \ldots, a_k and relative frequencies f_1, \ldots, f_k the mean is

$$\bar{x} = \sum_{i=1}^k a_i f_i .$$

- The mean is a meaningful measure for metric data.
- It is not a robust statistic, meaning that it is strongly affected by outliers.

Median

- The sorted, or ranked, data values from a particular sample are called the order statistics of that sample.
- Given x_1, x_2, \ldots, x_n the order statistics $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$ for this sample are the same numbers, sorted in ascending order.
- Equal proportions of the data fall above and below the median, x_{med}. Formally,

$$x_{med} = \begin{cases} x_{(\frac{n+1}{2})} & \text{if } n \text{ is odd} \\ \frac{1}{2}(x_{(n/2)} + x_{(n/2+1)}) & \text{if } n \text{ is even} \end{cases}$$

• The median is a resistant measure of location and is meaningful for variables that possess at least an ordinal scale of measurement.

Quantiles

- A sample quantile, x_p , is a number having the same units as the data, which exceeds that proportion of the data given by the subscript p, with 0 .
- Computation:

$$x_{p} = \begin{cases} x_{(\lfloor np \rfloor + 1)} & \text{if } np \text{ is not an integer} \\ \frac{1}{2}(x_{(np)} + x_{(np+1)}) & \text{if } np \text{ is an integer} \end{cases}$$

where |np| is the largest integer not greater than np.

• Commonly used quantiles: $x_{0.5} = x_{med}$; $x_{0.25}$: first (or lower) quartile; $x_{0.75}$: third (or upper) quartile.

Variance

• The empirical variance of x_1, \ldots, x_n is

$$\tilde{s}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$
.

• Since $E(\tilde{s}^2) = \sigma^2(n-1)/n$, an unbiased estimator for the population variance, σ^2 , is the sample variance

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
.

- The standard deviation, s, is obtained as $s = +\sqrt{s^2}$.
- Both s^2 and s are not resistant measures of dispersion.

Variance decomposition

• k groups $(x_{11}, x_{21}, \dots, x_{n_1, 1}), \dots, (x_{1k}, x_{2k}, \dots, x_{n_k, k})$ with

$$\bar{x}_j = \frac{1}{n_i} \sum_{i=1}^{n_j} x_{ij}$$
, $(j=1,\ldots,k)$

and

$$\tilde{s}_{n_j}^2 = \frac{1}{n_i} \sum_{i = j}^{n_j} (x_{ij} - \bar{x}_j)^2 , \quad (j = 1, \dots, k) .$$

Then

$$\tilde{s}_n^2 = \frac{1}{n} \sum_{j=1}^k n_j (\bar{x}_j - \bar{x})^2 + \frac{1}{n} \sum_{j=1}^k n_j \tilde{s}_{n_j}^2$$

with $n = \sum_{i=1}^k n_i$ and $\bar{x} = \frac{1}{n} \sum_{i=1}^k n_i \bar{x}_i$.

Coefficient of variation

- The coefficient of variation is a normalized measure of dispersion of a frequency distribution.
- It is defined as

$$v=rac{s}{ar{x}},\quad ar{x}>0$$
.

 The CV is independent of scale and can be used to compare different dispersions.

Range

- The range of a set of data is the difference between the largest and smallest values, $x_{(n)} x_{(1)}$.
- It is the size of the smallest interval which contains all the data and provides an indication of statistical dispersion.
- The range can sometimes be misleading when there are extremely high or low values.
- Example: The range of the sample $\{8, 11, 5, 9, 7, 6, 3616\}$ is 3616 5 = 3611.

Interquartile range

- The most common resistant measure of dispersion is the interquartile range (IQR).
- The IQR is defined as

$$IQR = x_{0.75} - x_{0.25}$$
.

 The IQR is a good index of the spread in the central part of a data set, since it simply specifies the range of the central 50% of the data.

Median absolute deviation

- The IQR does not make use of a substantial fraction of the data.
- The median absolute deviation (MAD) is easiest to understand by imagining the transformation $y_i = |x_i x_{0.5}|$.
- The MAD is then just the median of the transformed (y_i) values:

$$MAD = median(y_i) = median|x_i - x_{0.5}|$$
.

 The MAD is analogous to computation of the standard deviation, but using operations that do not emphasize outlying data.

Skewness and kurtosis

- Skewness and kurtosis measures are often used to describe shape characteristics of a distribution.
- Skewness tells you whether the distribution is symmetric or skewed to one side.
- If the bulk of the data is at the left (right) and the right (left) tail is longer, we say that the distribution is skewed right (left) or positively (negatively) skewed.
- The height and sharpness of the peak relative to the rest of the data are measured by the kurtosis. Higher values indicate a higher, sharper peak; lower values indicate a lower, less distinct peak.

Skewness and kurtosis II

 The moment coefficients of skewness, g₁, and kurtosis, g₂, are typically defined as

$$g_1 = \frac{m_3}{m_2^{3/2}}$$
 and $g_2 = \frac{m_4}{m_2^2} - 3$,

where the rth sample central moment of a sample of size n is defined as

$$m_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r$$
.

 The sample central moments are not unbiased estimates of the population central moments.

Skewness and kurtosis III

- To remove the bias in g_1 and g_2 corrections need to be applied.
- The sample skewness, G_1 , and kurtosis, G_2 , are defined as

$$G_1 = \frac{\sqrt{n(n-1)}}{n-2}g_1$$
 and $G_2 = \frac{n-1}{(n-2)(n-3)}[(n+1)g_2+6]$.

- $G_1 = 0$ for symmetric distributions; $G_1 > 0$ ($G_1 < 0$) for distributions that are right-skewed (left-skewed).
- G₂ = 0 for mesokurtic distributions; G₂ > 0 (G₂ < 0) for distributions that are leptokurtic (platykurtic).

Statistical Geophysics

Chapter 2

Boxplots

Graphical summary of location measures

- The boxplot, or box-and-whisker plot, is a very widely used graphical tool.
- It is a simple plot of five numbers: the minimum, $x_{(1)}$, the lower quartile, $x_{0.25}$, the median, $x_{0.5}$, the upper quartile, $x_{0.75}$, and the maximum, $x_{(n)}$.
- Using these five numbers, the boxplot presents a sketch of the distribution of the underlying data.

Boxplot: Example II

Figure: Boxplot for the January 1987 Ithaca (left) and Canandaigua (right) maximum temperature data (n = 31)

Boxplot: modified version

- The following quantities (called fences) can be used for identifying extreme values in the tails of the distribution:
 - lower inner fence: $x_{0.25} 1.5 \times IQR$;
 - upper inner fence: $x_{0.75} + 1.5 \times IQR$;
 - lower outer fence: $x_{0.25} 3 \times IQR$;
 - upper outer fence: $x_{0.75} + 3 \times IQR$.
- Outlier detection criteria: A point beyond an inner fence on either side is considered a mild outlier. A point beyond an outer fence is considered an extreme outlier.

Design of a boxplot

Boxplot: Example II

Figure: Boxplot for the earthquake magnitudes in South Carolina, 1987-1996 (n = 4843).

Boxplots for variables by group

Figure: Boxplot of miles per gallon by car cylinder for car mileage data (n = 32).

Boxplots

Exploratory techniques for paired data

Scatterplots

Figure: Scatterplot matrix of iris data (n = 150).

Pearson correlation

- Often an abbreviated, single valued measure of association between two variables is needed.
- The term correlation coefficient is used to mean the Pearson product-moment coefficient of linear correlation between two variables X and Y. Formally,

$$r_{XY} = \frac{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2}} ,$$

where $\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$ is the sample covariance of X and Y.

 The heart of the Pearson correlation is the covariance between X and Y in the numerator. The denominator is in effect just a scaling constant.

Pearson correlation II

•
$$-1 \le r_{XY} \le 1$$

- Interpretation:
 - $r_{XY} > 0$: positive linear correlation.
 - $r_{XY} < 0$: negative linear correlation.
 - $r_{XY} = 0$: no linear correlation.
- It is computationally easier to calculate

$$r_{XY} = \frac{\sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n \bar{x}^2\right) \left(\sum_{i=1}^{n} y_i^2 - n \bar{y}^2\right)}}.$$

Spearman rank correlation

- A robust measure of association is the Spearman rank correlation coefficient.
- The Spearman correlation is simply the Pearson correlation coefficient computed using the ranks of the data. Formally,

$$r_{SP} = \frac{\sum (\text{rank}(x_i) - \overline{\text{rank}}_X)(\text{rank}(y_i) - \overline{\text{rank}}_Y)}{\sqrt{\sum (\text{rank}(x_i) - \overline{\text{rank}}_X)^2 \sum (\text{rank}(y_i) - \overline{\text{rank}}_Y)^2}} \ ,$$

where $\overline{\operatorname{rank}}_X$ and $\overline{\operatorname{rank}}_Y$ are the averages of the ranks of X and Y, respectively.

• The Spearman correlation can be used for variables that are measured on an ordinal scale.

Spearman rank correlation II

- In cases of ties (a particular data value appears more than once)
 all of these equal values are assigned their average rank.
- $-1 \le r_{SP} \le 1$
- Interpretation:
 - $r_{SP} > 0$: Y tends to increase when X increases.
 - r_{SP} < 0: Y tends to decrease when X increases.
 - r_{SP} = 0: No tendency for Y to either increase or decrease when X increases.
- If there are no ties, r_{SP} can be computed as

$$r_{SP} = 1 - \frac{6 \sum d_i^2}{(n^2 - 1)n}$$
,

where d_i is the difference in ranks between the *i*th pair of data values.

Association between categorical variables

- Suppose two variables X and Y with observed tuples $(x_1, y_1), \ldots, (x_n, y_n)$ are given.
- The k ($k \le n$) different characteristics of X are denoted by a_1, \ldots, a_k . The m ($m \le n$) different characteristics of Y are denoted by b_1, \ldots, b_m .

	<i>b</i> ₁	 b _m	\sum
a ₁	n ₁₁	 n _{1m}	<i>n</i> _{1.}
a_2	<i>n</i> ₂₁	 n_{2m}	<i>n</i> _{2.}
:	:	÷	:
a_k	n_{k1}	 n _{km}	$n_{k.}$
\sum	n _{.1}	 n _{.m}	n

Table: $(k \times m)$ -contingency table of absolute frequencies for two

Association between categorical variables II

• The conditional frequency distribution of Y given $X = a_i$, $Y|X = a_i$, is

$$f_Y(b_1|a_i) = \frac{n_{i1}}{n_{i.}}, \dots, f_Y(b_m|a_i) = \frac{n_{im}}{n_{i.}}$$
.

• The conditional frequency distribution of X given $Y = b_j$, $X|Y = b_j$, is

$$f_X(a_1|b_j) = \frac{n_{1j}}{n_j}, \dots, f_X(a_k|b_j) = \frac{n_{kj}}{n_j}.$$

• Postulate of empirical independence:

$$\frac{\tilde{n}_{ij}}{n_i} = \frac{n_{.j}}{n} \Rightarrow \tilde{n}_{ij} = \frac{n_{i.}n_{.j}}{n}$$
,

where \tilde{n}_{ij} is the absolute frequency one would expect under the assumption of no association between X and Y.

Association between categorical variables III

Association measure:

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{(n_{ij} - \tilde{n}_{ij})^2}{\tilde{n}_{ij}} \ , \qquad \chi^2 \in [0, \infty) \ .$$

Contingency coefficient:

$$K = \sqrt{\frac{\chi^2}{n + \chi^2}} ,$$

which can take values between 0 and $K_{max} = \sqrt{(M-1)/M}$ with $M = \min\{k, m\}$.

• The adjusted contingency coefficient is

$$\mathcal{K}^* = \frac{\mathcal{K}}{\mathcal{K}_{\text{max}}} \ , \qquad \mathcal{K}^* \in [0,1] \ .$$