15.05.2012 Abgabe: 22.05.2012

10.00 Uhr, Tutorenfächer

Aufgabenblatt 4

zur Analysis II

10. Berechnung von Taylorpolynomen

(4+2+2 Punkte)

Bestimmen Sie die Taylorpolynome vom Grade n um den Punkt $x_0=0$ von

(i)
$$f(x) = \frac{1}{1+x}$$
, (ii) $g(x) = \frac{1}{\sqrt{1-x}}$, (iii) $h(x) = xe^x$.

11. Gleichmäßige Konvergenz von Funktionenfolgen

(2+2+2+2 Punkte)

Bestimmen Sie für die folgenden Funktionenfolgen den punktweisen Limes

$$f(x) := \lim_{n \to \infty} f_n(x)$$
 usw.

(falls er existiert), und prüfen Sie, welche der Folgen gleichmäßig konvergiert.

(i)
$$f_n(x) = e^{-nx^2}$$
 auf $[-1, 1]$.

(ii)
$$g_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$$
 auf $[0, \infty)$.

(iii)
$$h_n(x) = n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right)$$
 auf $[a, \infty)$ mit reellem $a > 0$.

(iv)
$$k_n(x) = \arctan(nx)$$
 auf $(-\infty, \infty)$.

12. Gleichmäßige Konvergenz von Reihen

(2+2+4 Punkte)

Untersuchen Sie folgende Funktionenreihen auf gleichmäßige Konvergenz.

(i)
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^{\alpha}}$$
 für $x \in \mathbb{R}$ und festes $\alpha > 1$.

(ii)
$$\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)} \text{ für } x \in \mathbb{R}.$$

(iii)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2} \text{ für } x \in \mathbb{R}.$$