

Introduction to quantum computing and FiQCI – Deutsch Algorithm

Olli Mukkula – Application specialist at CSC

 Deutsch algorithm was invented by David Deutch in 1985. It was the first algorithm developed for quantum computers

Prof. David Deutsch - Creator of the first quantum algorithm

Source:

[https://www.daviddeutsch.org.uk/]

- Deutsch algorithm was invented by David Deutch in 1985. It was the first algorithm developed for quantum computers
- Deterministic algorithm with 100% success rate on noiseless quantum computer

Prof. David Deutsch - Creator of the first quantum algorithm

Source:

[https://www.daviddeutsch.org.uk/]

- Deutsch algorithm was invented by David Deutch in 1985. It was the first algorithm developed for quantum computers
- Deterministic algorithm with 100% success rate on noiseless quantum computer
- Solves the specific problem (Deutsch problem)
 exponentially faster than any classical algorithm

Prof. David Deutsch - Creator of the first quantum algorithm

Source:

[https://www.daviddeutsch.org.uk/]

• The Deutsch problem:

Consider a function $f:\{0,1\} \to \{0,1\}$ Is it true that f(0)=f(1)

• The Deutsch problem:

Consider a function $f:\{0,1\} \rightarrow \{0,1\}$ Is it true that f(0)=f(1)

There are four possible functions:

• The Deutsch problem:

Consider a function $f:\{0,1\} \to \{0,1\}$ Is it true that f(0)=f(1)

There are four possible functions:

Always zero f(0) = 0

$$f(1) = 0$$

• The Deutsch problem:

Consider a function $f:\{0,1\} \to \{0,1\}$ Is it true that f(0)=f(1)

• There are four possible functions:

Always zero

$$f(0) = 0$$
$$f(1) = 0$$

Always one

$$f(0) = 1$$
$$f(1) = 1$$

The Deutsch problem:

Consider a function $f:\{0,1\} \to \{0,1\}$ Is it true that f(0)=f(1)

There are four possible functions:

Always zero

$$f(0) = 0$$

$$f(1) = 0$$

Always one

$$f(0) = 1$$

Identity-function

$$f(0) = 0$$

$$f(1) = 1$$

• The Deutsch problem:

Consider a function $f:\{0,1\} \rightarrow \{0,1\}$ Is it true that f(0)=f(1)

There are four possible functions:

Always zero

$$f(0) = 0$$
$$f(1) = 0$$

Always one

$$f(0) = 1$$
$$f(1) = 1$$

Identity-function

$$f(0) = 0$$
$$f(1) = 1$$

NOT-function

$$f(0) = 1$$
$$f(1) = 0$$

• The Deutsch problem:

Consider a function $f:\{0,1\} \rightarrow \{0,1\}$ Is it true that f(0)=f(1)

There are four possible functions:

Is the function constant or varied?

Constant functions

Always zero

$$f(0) = 0$$

$$f(1) = 0$$

Always one

$$f(0) = 1$$

$$f(1) = 1$$

Varied functions

Identity-function

$$f(0) = 0$$

$$f(1) = 1$$

NOT-function

$$f(0) = 1$$

$$f(1) = 0$$

Deutsch Algorithm Introduction

Deutsch problem is a black box problem

- Deutsch problem is a black box problem
- Black box oracle:

- Deutsch problem is a black box problem
- Black box oracle:
 - Has an input and an output

- Deutsch problem is a black box problem
- Black box oracle:
 - O Has an input and an output
 - o Internal workings are unknown

• If function is $f(x) = \{0,1\}$ is a black box, it is non-reversible \circ Can't solve x based on the output

- If function is $f(x) = \{0,1\}$ is a black box, it is non-reversible \circ Can't solve x based on the output
- One can, however, determine what the function does by observing the output for different inputs

- If function is $f(x) = \{0,1\}$ is a black box, it is non-reversible \circ Can't solve x based on the output
- One can, however, determine what the function does by observing the output for different inputs
- Classically, one needs to evaluate function twice
 - \circ Once for x = 0
 - \circ Once for x = 1

- If function is $f(x) = \{0,1\}$ is a black box, it is generally non-reversible \circ Can't solve x based on the output
- One can, however, determine what the function does by observing the output for different inputs
- Classically, one needs to evaluate function twice
 - \circ Once for x = 0
 - \circ Once for x = 1
- Quantum computer only needs one evaluation!

• Function f(x) is not directly realizable with quantum computers

• Function f(x) is not directly realizable with quantum computers

• Using two qubits, we can build Quantum oracle U_f ('black box' quantum gate) that implements f(x)

• Function f(x) is not directly realizable with quantum computers

• Using two qubits, we can build Quantum oracle U_f ('black box' quantum gate) that implements f(x)

• Let's analyze the output state $|x \ y \oplus f(x)\rangle$ to see what it can tell us about the oracle

Operation ⊕ is called exclusive-OR (XOR

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Table of XOR operations

- Operation ⊕ is called exclusive-OR (XOR)
- We can calculate all the possible output states

	Output state: $U_f X y\rangle = x y \oplus f(x)\rangle$			
Initial state	f(0) = 0 $f(1) = 0$	f(0) = 1 $f(1) = 1$	f(0) = 0 $f(1) = 1$	f(0) = 1 $f(1) = 0$
00}	00>	01>	00>	01>
01>	01>	00>	01>	00>
10>	10>	11>	11>	10>
11>	11>	10>	10>	11>

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Operation ⊕ is called exclusive-OR (XOR)

Output state: $U_{\epsilon}|x|v\rangle = |x|v \oplus f(x)\rangle$

• We can calculate all the possible output states

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

Table of XOR operations

	Output 3t	acc. Of Ix y		
Initial state	f(0) = 0 $f(1) = 0$	f(0) = 1 $f(1) = 1$	f(0) = 0 $f(1) = 1$	f(0) = 1 $f(1) = 0$
00>	00>	01>	00>	01>
01>	01>	00>	01>	00>
10>	10>	11>	11>	10>
11>	11>	10>	10>	11>

• $y \oplus f(x)$ is identity on both qubits

- Operation ⊕ is called exclusive-OR (XOR)
- We can calculate all the possible output states

x	y	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

	Output state: $U_f(x y) = x y \oplus f(x)$			
Initial state	f(0) = 0 $f(1) = 0$	f(0) = 1 $f(1) = 1$	f(0) = 0 $f(1) = 1$	f(0) = 1 $f(1) = 0$
00>	00>	01>	00>	01>
01>	01>	00>	01>	00>
10>	10>	11>	11>	10>
11>	11>	10>	10>	11>

- $y \oplus f(x)$ is identity on both qubits
- $y \oplus f(x)$ is NOT (X-gate) on 2nd-qubit

- Operation ⊕ is called exclusive-OR (XOR)
- We can calculate all the possible output states

x	у	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

	Output state: $U_f x y\rangle = x y \oplus f(x)\rangle$			
Initial state	f(0) = 0 $f(1) = 0$	f(0) = 1 $f(1) = 1$	f(0) = 0 $f(1) = 1$	f(0) = 1 $f(1) = 0$
00>	00>	01>	00>	01>
01>	01>	00>	01>	00>
10>	10>	11>	11>	10>
11>	11>	10>	10>	11>

- $y \oplus f(x)$ is identity on both qubits
- $y \oplus f(x)$ is NOT (X-gate) on 2nd-qubit
- $y \oplus f(x)$ is CNOT targeted to 2nd qubit

- Operation ⊕ is called exclusive-OR (XOR)
- We can calculate all the possible output states

x	у	$x \oplus y$
0	0	0
0	1	1
1	0	1
1	1	0

	Output state: $U_f x y\rangle = x y \oplus f(x)\rangle$			
Initial state	f(0) = 0 $f(1) = 0$	f(0) = 1 $f(1) = 1$	f(0) = 0 $f(1) = 1$	f(0) = 1 $f(1) = 0$
00>	00>	01>	00>	01>
01>	01>	00>	01>	00>
10>	10>	11>	11>	10>
11>	11>	10>	10>	11>

- $y \oplus f(x)$ is identity on both qubits
- $y \oplus f(x)$ is NOT (X-gate) on 2nd-qubit
- $y \oplus f(x)$ is CNOT targeted to 2nd qubit
- y ⊕ f(x) is NOT-CNOT targeted to 2nd qubit

• Quantum oracle is reversible even if f(x) is non-reversible

- Quantum oracle is reversible even if f(x) is non-reversible
- Quantum oracle alone is not enough to tell if f(0) = f(1)

- Quantum oracle is reversible even if f(x) is non-reversible
- Quantum oracle alone is not enough to tell if f(0) = f(1)
- Deutsch algorithm uses quantum superposition and entanglement to solve the problem

- Quantum oracle is reversible even if f(x) is non-reversible
- Quantum oracle alone is not enough to tell if f(0) = f(1)
- Deutsch algorithm uses quantum superposition and entanglement to solve the problem
 - Oracle acts on superposition states with different phases.

- Quantum oracle is reversible even if f(x) is non-reversible
- Quantum oracle alone is not enough to tell if f(0) = f(1)
- Deutsch algorithm uses quantum superposition and entanglement to solve the problem
 - Oracle acts on superposition states with different phases.
 - o If f(x) is varied, the quantum oracle is two-qubit operation (CNOT or NOT-CNOT). Phase kickback will reverse the phase of the 1st qubit.

- Quantum oracle is reversible even if f(x) is non-reversible
- Quantum oracle alone is not enough to tell if f(0) = f(1)
- Deutsch algorithm uses quantum superposition and entanglement to solve the problem
 - Oracle acts on superposition states with different phases.
 - o If f(x) is varied, the quantum oracle is two-qubit operation (CNOT or NOT-CNOT). Phase kickback will reverse the phase of the 1st qubit.
 - o Reversing the superposition of the 1st qubit causes it flip if its phase was reversed

- Quantum oracle is reversible even if f(x) is non-reversible
- Quantum oracle alone is not enough to tell if f(0) = f(1)
- Deutsch algorithm uses quantum superposition and entanglement to solve the problem
 - Oracle acts on superposition states with different phases.
 - o If f(x) is varied, the quantum oracle is two-qubit operation (CNOT or NOT-CNOT). Phase kickback will reverse the phase of the 1st qubit.
 - o Reversing the superposition of the 1st qubit causes it flip if its phase was reversed
 - \circ Whether the 1st qubit was flipped reveals if f(x) is constant or varied

- Deutsch algorithm implementation:
 - 1. Allocate qubits (Flip the 2nd qubit with X-gate): $|0\rangle|1\rangle$

$$q_1 - x -$$

$$C \stackrel{1}{\neq}$$

- Deutsch algorithm implementation:
 - 1. Allocate qubits (Flip the 2nd qubit with X-gate): $|0\rangle|1\rangle$
 - 2. Apply Hadamard gates to create superposition: $\rightarrow \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$

- Deutsch algorithm implementation:
 - 1. Allocate qubits (Flip the 2nd qubit with X-gate): $|0\rangle|1\rangle$
 - 2. Apply Hadamard gates to create superposition: $\rightarrow \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$
 - 3. Apply our quantum oracle gate: $\rightarrow \left[\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$

- Deutsch algorithm implementation:
 - 1. Allocate qubits (Flip the 2nd qubit with X-gate): $|0\rangle|1\rangle$
 - 2. Apply Hadamard gates to create superposition: $\rightarrow \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$
 - 3. Apply our quantum oracle gate: $\rightarrow \left[\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$
 - 4. Apply Hadamard gate on 1st qubit: $\rightarrow (-1)^{f(0)} \Big[\frac{(1+(-1)^{f(0)\oplus f(1)})|0\rangle + (1-(-1)^{f(0)\oplus f(1)})|1\rangle}{2} \Big] \Big[\frac{|0\rangle |1\rangle}{\sqrt{2}} \Big]$

- Deutsch algorithm implementation:
 - 1. Allocate qubits (Flip the 2nd qubit with X-gate): $|0\rangle|1\rangle$
 - 2. Apply Hadamard gates to create superposition: $\rightarrow \left[\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$
 - 3. Apply our quantum oracle gate: $\rightarrow \left[\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}}\right]$
 - 4. Apply Hadamard gate on 1st qubit: $\rightarrow (-1)^{f(0)} \left[\frac{(1+(-1)^{f(0)\oplus f(1)})|0\rangle + (1-(-1)^{f(0)\oplus f(1)})|1\rangle}{2} \right] \left[\frac{|0\rangle |1\rangle}{\sqrt{2}} \right]$

5. Measure:

$$\circ |0\rangle$$
 if $f(0) = f(1)$

$$\circ |1\rangle$$
 if $f(0) \neq f(1)$

 To conclude: the Deutsch algorithm is a demonstration of a quantum computer solving a specific problem faster than what is possible with a classical computer

 To conclude: the Deutsch algorithm is a demonstration of a quantum computer solving a specific problem faster than what is possible with a classical computer

• Generalization for *n*-qubits is called *Deutsch-Jozsa algorithm*

 To conclude: the Deutsch algorithm is a demonstration of a quantum computer solving a specific problem faster than what is possible with a classical computer

• Generalization for *n*-qubits is called *Deutsch-Jozsa algorithm*

• It has <u>no practical use</u>, but it inspired the development of quantum algorithms for practically relevant problems