

Agents and Multi-Agent Systems

Multi-Agent Decision Making
Game Theory

2023/2024

Multi-Agent Decision Making

- How do we make collective decisions in societies where agents are selfinterested?
- That is, how do we reach agreements?
- Game theory: strategic interactions among rational agents
- Social choice theory: group decisions on possible outcomes
- Mechanism design: effective protocols for multi-agent systems
- Negotiation: finding mutually beneficial deals in the presence of conflicting objectives

Multi-Agent Decision-Making

GAME THEORY

Game Theory

- Game theory is the mathematical study of strategic decision making among independent, self-interested agents
 - Given the rules of the game, game theory studies strategic behavior of the agents in the form of a strategy
- The tools and techniques of game theory have found many applications in computational multi-agent systems research
- Types of games
 - Cooperative/non-cooperative, symmetric/asymmetric, zero-sum/win-win, simultaneous/sequential, perfect/imperfect information, complete/incomplete information, ...

Utilities

- Utility theory aims to quantify an agent's degree of preference across a set of available alternatives
- A utility function is a mapping from world states to real numbers
- World states (outcomes): $\Omega = \{\omega_1, \omega_2, ...\}$
- Utility function for agent $i: u_i: \Omega \to \mathbb{R}$

Preferences

- Preference ordering:
 - $-u_i(\omega_1) > u_i(\omega_2)$ or $\omega_1 >_i \omega_2$
 - agent i prefers outcome ω_1 to outcome ω_2
 - $-u_i(\omega_1) \ge u_i(\omega_2)$ or $\omega_1 \ge \omega_1$
- Properties:
 - Reflexivity: $\forall_{\omega \in \Omega} \ \omega \geqslant_i \ \omega$
 - Transitivity: If $\omega_1 \geqslant_i \omega_2$ and $\omega_2 \geqslant_i \omega_3$ then $\omega_1 \geqslant_i \omega_3$
 - Comparability: $\forall_{\omega_1,\omega_2\in\Omega}$ either $\omega_1\geqslant_i\omega_2$ or $\omega_2\geqslant_i\omega_1$

Utility is not Money

- The utility of money depends on how much money one already has
 - Linear utility for smaller amounts of money, logarithmic for larger amounts
 - marginal utility: utility for the next million dollars

- Utility function depends on agent's risk aversion attitude
 - Different curves for different people
- People are not entirely rational when making choices about money
 - Should agents behave like their human owners?
 - Rational agents would be better negotiators

Multi-Agent Encounter

- Simplified setting
 - Two agents i and j perform simultaneous actions from set Ac
 - Environment behavior (a state transformer function): $\tau: Ac \times Ac \rightarrow \Omega$
 - Actual outcome depends on the combination of actions chosen by all agents
- Consider two actions: $Ac = \{C, D\}$
 - $-\tau(D,D)=\omega_1$, $\tau(D,C)=\omega_2$, $\tau(C,D)=\omega_3$, $\tau(C,C)=\omega_4$
 - Depending on their preferences over these outcomes, agents may need to think strategically (consider what the other agent will do)
 - In other settings, the agent can decide regardless of what the other will do

Multi-Agent Encounter

- $\tau(D,D) = \omega_1$, $\tau(D,C) = \omega_2$, $\tau(C,D) = \omega_3$, $\tau(C,C) = \omega_4$
 - If $\omega_1 \geq_i \omega_3$, $\omega_1 \geq_i \omega_4$, $\omega_2 \geq_i \omega_3$, $\omega_2 \geq_i \omega_4$: for agent i, it is always better to execute action D, regardless of what agent j will do
- $\tau(D,D) = \omega_1$, $\tau(D,C) = \omega_1$, $\tau(C,D) = \omega_1$, $\tau(C,C) = \omega_1$
 - Neither agent has any influence the outcome will be the same no matter what the agents do
- $\tau(D,D) = \omega_1$, $\tau(D,C) = \omega_2$, $\tau(C,D) = \omega_1$, $\tau(C,C) = \omega_2$
 - The outcome depends solely on the actions performed by agent j it does not matter what agent i does

Normal-form Game

- A normal-form game is a tuple $\langle N, A, u \rangle$
 - N is a finite set of n players, indexed by i
 - $-A=A_1\times\cdots\times A_n$, where A_i is a finite set of actions available to player i
 - Each vector $a = (a_1, ..., a_n) \in A$ is called an action profile
 - $-u=(u_1,\ldots,u_n)$, where $u_i\colon A\to\mathbb{R}$ is a real-valued utility (or *payoff*) function for player i
 - For simplification, u_i maps directly from actions (instead of outcomes)
- Representation in a payoff matrix (2 agents, 2 actions)

		i				
		L)	С		
	D		$u_i(D,D)$		$u_i(C,D)$	
j	υ	$u_j(D,D)$		$u_j(C,D)$		
	С		$u_i(D,C)$		$u_i(C,C)$	
		$u_j(D,C)$		$u_j(C,C)$		

Example: the Prisoner's Dilemma

- 2 prisoners suspected of a crime are taken to separate interrogation rooms
 - If both cooperate by not confessing, each is jailed for one year
 - If both defect by confessing, each is jailed for two years
 - If only one confesses, that one is freed and the other one gets jailed for three years

		i					
			D			С	
	7		2			0	
j	D	2			5		
	C		5			3	
	С	0			3		

Example: Rock-Paper-Scissors

		Player 2				
		Rock	Paper	Scissor		
Player 1	Rock	0, 0	-1, <mark>1</mark>	1, - <mark>1</mark>		
	Paper	1, - <mark>1</mark>	0, 0	-1, <mark>1</mark>		
	Scissor	-1, <mark>1</mark>	1, - <mark>1</mark>	0, 0		

Dominant Strategy

- Strategy (or action) s_i is **dominant** for player i if, no matter what strategy s_j agent j chooses, i will do at least as well playing s_i as it would doing anything else
 - $-s_i$ is dominant if it is i's best response to all of agent j's strategies

			i		
		L)		С
	D		2		0
;		2		5	
J	C		5		3
	С	0		3	

- Generalizing to n agents:
 - Strategy $s \in S_i$ dominates strategy $s' \in S_i$ iff $\forall_{s_{-i} \in S_{-i}} u_i(s, s_{-i}) \ge u_i(s', s_{-i})$
 - where $s_{-i} = (s_1, ..., s_{i-1}, s_{i+1}, ..., s_n)$

Nash Equilibria

Nash (1951) defined one of the most important concepts in game-theory

Two strategies s_i and s_j are in (pure-strategy) Nash equilibrium if:

- assuming that agent i plays s_i , agent j can do no better than play s_j , and
- assuming that agent j plays s_i , agent i can do no better than play s_i
- Strategies s_i and s_j , which together form a strategy profile (s_i, s_j) , are the best response to each other
- Neither agent has any incentive to deviate from a Nash equilibrium
- → Not every interaction scenario has a pure strategy Nash equilibrium
- → Some scenarios have more than one pure strategy Nash equilibrium

Nash Equilibria

Coordination games

	Attack East City	Attack West City
Defend East City	(0,1)	(1,0)
Defend West City	(1,0)	(0,1)

Mixed Strategies

- A pure strategy determines the exact action to play
- A mixed strategy is an assignment of a probability to each pure strategy
 - Randomizes over the set of available actions according to some probability distribution
- Given a normal-form game $\langle N, A, u \rangle$, a **mixed strategy** for player i is a probability distribution $\rho_i \colon A_i \to [0,1]$, with $\sum_{a \in A_i} \rho_i(a) = 1$
 - $\rho = (\rho_1, ..., \rho_n)$ is a mixed strategy profile
- → Every game in which every player has a finite set of possible strategies has a Nash equilibrium in mixed strategies

Mixed Strategy Nash Equilibrium

- Example: Rock-Paper-Scissors
 - No dominant strategy
 - No pure-strategy Nash equilibrium

			Player 2	
		Rock	Paper	Scissor
Player 1	Rock	0, 0	-1, <mark>1</mark>	1, - <mark>1</mark>
	Paper	1, - <mark>1</mark>	0, 0	-1, <mark>1</mark>
	Scissor	-1, <mark>1</mark>	1, -1	0, 0

- Best strategy: play an action at random a mixed strategy
 - $\rho_i(rock) = 1/3, \rho_i(paper) = 1/3, \rho_i(scissors) = 1/3$
- This mixed strategy is in Nash equilibrium with itself
 - It is the best response if the opponent is using the same strategy
 - However: if we notice that the opponent favors an action (e.g. scissors) then we should favor another action (e.g. rock)
- → In general, it is tricky (and computationally expensive) to compute a game's mixed-strategy Nash equilibria

∈-Nash Equilibrium

 Players might not care about changing their strategies to a best response when the amount of utility that they could gain by doing so is very small

A strategy profile $s = (s_1, ..., s_n)$ is an ϵ -Nash Equilibrium if, for all agents i and for all strategies $s_i' \neq s_i$, $u_i(s_i, s_{-i}) \geq u_i(s_i', s_{-i}) - \epsilon$.

- ϵ -Nash equilibria always exist
 - Every Nash equilibrium is surrounded by a region of ϵ -Nash equilibria, for any $\epsilon>0$
- The argument that agents are indifferent to sufficiently small gains is convincing
- The concept of ϵ -Nash equilibria is computationally useful

Pareto Optimality

Italian polymath, 1848-1923

- Strategy profile s Pareto dominates strategy profile s' if for all $i \in N$, $u_i(s) \ge u_i(s')$, and there exists some $j \in N$ for which $u_j(s) > u_j(s')$
 - In a Pareto-dominated strategy profile some player can be made better off without making any other player worse off
- Strategy profile s is Pareto optimal (or Pareto efficient) if there does not exist another strategy profile s' that Pareto dominates s
 - There is no other outcome that improves one player's utility without making someone worse off
- A Pareto inefficient strategy profile 'wastes' some utility
 - Some other outcome would make someone better off to no one's expense!

Pareto Optimality

- Every game must have at least one Pareto optimum
- Some games will have multiple optima

Social Welfare Maximization

- Social welfare = total utility
- Measure how much utility, in total, is created by an outcome
 - Social welfare $sw(\omega) = \sum_{i \in Aq} u_i(\omega)$
 - We would like to maximize this value
- But this conflicts with individual points of view: different payoffs, thus different preferences regarding possible outcomes
- Maximizing total welfare is relevant in common-payoff games
 - The utility of the outcome is divided among the players
 - Example: climate change (or so we wish...)

Extensive-form Games

- Normal-form assumes players act simultaneously
- Extensive-form accommodates situations in which actions are played sequentially
- A perfect-information game in extensive form is a tree
 - Each node represents a choice point of one of the players
 - Each edge represents a possible action
 - Leaves represent final outcomes
- → In two-player, zero-sum games: the minimax algorithm (with alpha-beta pruning) can be used to compute the value of the game, i.e., a player's payoff in equilibrium (both agents using their best response strategies)

Extensive vs. Normal-form

Extensive-form

Pure strategies:

$$S_1 = \{(A, G), (A, H), (B, G), (B, H)\}\$$

 $S_2 = \{(C, E), (C, F), (D, E), (D, F)\}\$

Normal-form

	(C,E)	(C,F)	(D,E)	(D,F)
(A,G)	3, 8	3, 8	8, 3	8, 3
(A,H)	3, 8	3, 8	8, 3	8, 3
(B,G)	5, 5	2, 10	5, 5	2, 10
(B,H)	5, 5	1, 0	5, 5	1, 0

Every perfect-information game can be converted to an equivalent normal-form game

Extensive-form Games

- Every (finite) perfect-information game in extensive form has a purestrategy Nash equilibrium
 - Players take turns everyone gets to see everything that happened before making a move
 - It is never necessary to introduce randomness into action selection to find an equilibrium

	(C, E)	(C, F)	(D, E)	(\mathbf{D},\mathbf{F})
(A, G)	3, 8	3,8	8, 3	8, 3
(A, H)	3, 8	3,8	8, 3	8, 3
(B, G)	5, 5	2, 10	5, 5	2, 10
(B, H)	5, 5	1, 0	5, 5	1, 0

This theorem does not hold for imperfect-information games

Uncertainty

- Imperfect-information games (partially observable environment)
 - Need to act with partial knowledge
 - Partial or no knowledge of the actions taken by others
 - Limited memory of their own past actions
 - Choice nodes are partitioned into information sets
 - If two choice nodes are in the same information set, the agent cannot distinguish between them
- Incomplete-information games (unknown environment)
 - Players are uncertain about the game being played
 - Players might have private information that affects their payoffs
 - Probabilistic information about other agents payoffs
 - What moves are possible, how outcomes depend on actions
- Bounded rationality
 - Need to reason under computational limitations

Imperfect-information games*

- An imperfect-information game is an extensive-form game in which each agent's choice nodes are partitioned into information sets
 - An information set = {all the nodes you might be at}
 - The nodes in an information set are indistinguishable to the agent
 - The set of actions in those nodes is also the same
 - Agent i's information sets are I_{i1} , ..., I_{im} for some m, where
 - $I_{i1} \cup \cdots \cup I_{im} = \{all \ nodes \ where \ it \ is \ agent \ i's \ move\}$
 - $I_{ij} \cap I_{ik} = \emptyset$ for all $j \neq k$
 - X(h)=X(h') for all histories $h,h'\in I_{ij}$, where $X(h)=\{all\ available\ actions\ at\ h\}$
- A perfect-information game is a special case in which each I_{ij} contains just one node h

Imperfect-information games*

Example

- Agent 1 has two information sets:
 - $I_{11} = \{a\}$
 - $I_{12} = \{d, e\}$
 - in I_{12} , agent 1 doesn't know whether agent 2 moved to d or e
- Agent 2 has just one information set:
 - $I_{21} = \{b\}$

Examples: bridge, poker, battleship

- So far, we have assumed that:
 - everything relevant about the game being played is common knowledge to all the players:
 - the number of players,
 - the actions available to each, and
 - the payoff associated with each action
 - True even for imperfect-information games
 - the actual moves aren't common knowledge, but the game is
 - Thus "complete information" games
- We will now consider games of incomplete information
 - Players are uncertain about the game being played:
 - payoffs, who the other players are, what moves are possible, how outcome depends on the action, what opponent knows, and what he knows I know....

- A Bayesian Game is a class of games G that satisfies two fundamental conditions:
 - <u>Condition 1</u>: the games in G have the same number of agents, and the same strategy space for each agent. The only difference is in the payoffs of the strategies.

This condition isn't very restrictive

Example:

 Suppose we don't know whether player 2 only has strategies L and R, or also an additional strategy C:

If player 2 doesn't have strategy C, this is equivalent to having a strategy C that's dominated by the other strategies:

Game
$$G_1'$$
 U 1,1 0,-100 1,3
D 0,5 2,-100 1,13

- The Nash equilibria for G_1 are the same as the Nash equilibria for G_1
- We've reduced the problem to whether C's payoffs are those of G_1 or G_2

 Condition 2 (common prior): the probability distribution over the games in G is common knowledge (i.e., known to all the agents)

So a Bayesian game defines:

- the uncertainties of agents about the game being played,
- what each agent believes the other agents believe about the game being played
- the concept of a Nash equilibrium can be extended to Bayesian games: Bayes
 Nash equilibrium
 - The details are complicated, and we will skip them

Example: Auctions

 several kinds of auctions are incomplete-information, and can be modeled as Bayesian games

Cooperative Game Theory

- Problems with non-cooperative game theory
 - Binding agreements are not possible
 - E.g. binding commitment to cooperate in the Prisoner's dilemma
 - Utility is assigned to individuals as a result of individual action
 - Each agent is assumed to be an individual utility maximizer
- In many real-world situations, these assumptions do not hold –
 cooperative game theory addresses these limitations
- → In non-cooperative game theory, the basic modeling unit is the individual
- → In cooperative (or coalitional) game theory, the modeling unit is the group

Further Reading

- Wooldridge, M. (2009). *An Introduction to MultiAgent Systems*, 2nd ed., John Wiley & Sons: Chap. 11
- Shoham, Y. and Leyton-Brown, K. (2008). *Multiagent systems: Algorithmic, Game-Theoretic, and Logical Foundations*. Cambridge University Press: Chap. 3, 5