NATURAL LANGUAGE PROCESSING IN

URGENCY DETECTION

- Humanitarian disasters: climate change, refugee crisis.
- Technology assisting: aid agencies and first responders
- Detecting *relevant* or *informative* tweets
- Sparseness of data, varying characteristics of disasters

- Expresses an actionable need that needs to be resolved in a short time frame.
- Information Retrieval (IR) problem
- Goal: flag messages that *express urgency* panic-ridden emotion
- Examples

Urgent and Non-Urgent example from a real-world dataset

Dataset

- Urgent sentences
- Non-Urgent sentences

Macedonia

- Four locals are trapped in the marketplace need help.
- Avalanche in Macedonia caused four deaths

- Humanitarian disasters: climate change, refugee crisis.
- Technology assisting: aid agencies and first responders
- Detecting *relevant* or *informative* tweets
- Sparseness of data, varying characteristics of disasters

- Expresses an actionable need that needs to be resolved in a short time frame.
 - Information Retrieval (IR) problem
- Goal: flag messages that *express urgency* panic-ridden emotion
- Examples

- Humanitarian disasters: climate change, refugee crisis.
- Technology assisting: aid agencies and first responders
- Detecting *relevant* or *informative* tweets
- Sparseness of data, varying characteristics of disasters

- Expresses an actionable need that needs to be resolved in a short time frame.
 - Information Retrieval (IR) problem
- Goal: flag messages that *express urgency* panic-ridden emotion
 - Examples

Role of Machine Learning

Algorithmic Logic

Algorithmic Logic: Transfer Learning for Urgency Detection

INPUT:

- Labeled dataset in target domain: Dt
- Labeled dataset in source domain: Dsl
- Unlabeled corpus in source domain: Dsu
- Pre-trained Wikipedia Embedding Model: Ww
- Up-sampling parameter: u

OUTPUT:

• Classifier for Urgency Detection: C

METHOD:

- 1) Train word embedding Ws on text in Dsu \cup Dsl;
- 2) Up-sample Dt by factor u and 'mix' with Dsl to get expanded training set, Dtrain : Dtu ∪ Dsl
- 3) Extract manual feature set Fm, source embedding feature set Fs (using Ws), and Wiki feature set Fw (using Ww) from each message in Dtrain;
- 4) Train linear regression models Cs, Cm and Cw on Fs, Fm and Fw resp. to get classifier;
- 5) Return final classifier model C : avg score(Cs, Cm, Cw);

- Humanitarian disasters: climate change, refugee crisis.
- Technology assisting: aid agencies and first responders
- Detecting *relevant* or *informative* tweets
- Sparseness of data, varying characteristics of disasters

Bottom-up Chart Parsing

- Expresses an actionable need that needs to be resolved in a short time frame.
- Information Retrieval (IR) problem
- Goal: flag messages that *express urgency* panic-ridden emotion
 - Examples

Role of Machine Learning

Algorithmic Logic

Bottom-up Chart Parsing

Grammar

- 1. $S \rightarrow NP VP$
- 2. $NP \rightarrow Det N$
- 3. $VP \rightarrow VG NP$
- 4. $VG \rightarrow V$

Lexicons

- 1. Esha: NP
- 2. plays: V
- 3. the: Det
- 4. piano: N

Sentence: 1 Esha 2 plays 3 the 4 piano 5

Grammar

Lexicons

- 1. $S \rightarrow NP VP$
- 2. $NP \rightarrow Det N$
- 3. $VP \rightarrow VG NP$
- $4. \qquad VG \to V$

- Esha: NP
 plays: V
- 2. plays: v
 3. the: Det
- 4. piano: N

(11) $(0, 4, S \rightarrow NP VP *)$			
	(10) $(1, 4, VP \rightarrow VG NP *)$		
	(5) $(1, 2, VP \rightarrow VG * NP)$	(9) $(2, 4, NP \rightarrow Det N *)$	
(2) $(0, 1, S \rightarrow NP * VP)$	(4) $(1, 2, VG \rightarrow V *)$	(7) $(2, 3, NP \rightarrow Det * N)$	
(1) "Esha" (0, 1, NP → "Esha" *)	(3) "plays" (1,2, V → "plays" *)	(6) "the" (2, 3, Det → "the" *)	(8) "piano" (3, 4, N → "piano" *)

REFERENCES

- 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341028/
- 2. https://arxiv.org/pdf/1907.06745.pdf
- 3. https://monkeylearn.com/blog/detecting-squeaky-wheel-urgency-in-customer-support-tickets/
- 4. https://www.unocha.org/sites/unocha/files/WHDT2018 web final spread.pdf
- 5. https://fasttext.cc/docs/en/pretrained-vectors.html
- 6. https://www.darpa.mil/program/low-resource-languages-for-emergent-incidents
- 7. https://hub.docker.com/r/ppplinday/emergence-detection