Fourier Coefficients of Beurling Functions and a Class of Mellin Transform Formally Determined by its Values on the Even Integers

F. Auil

Abstract. It is a well-known fact that Riemann Hypothesis will follows if the function identically equal to -1 can be arbitrarily approximated in the norm $\|.\|$ of $L^2([0,1],dx)$ by functions of the form $f(x)=\sum_{k=1}^n a_k\,\rho\left(\frac{\theta_k}{x}\right)$, where $\rho(x):=x-[x]$, and $a_k\in\mathbb{C},\ 0<\theta_k\leqslant 1$ satisfies $\sum_{k=1}^n a_k\,\theta_k=0$. Parsevall Identity $\|f(x)+1\|^2=\sum_{n\in\mathbb{Z}}|c(n)|^2$ is a possible tool to compute or estimate this norm. In this note we give an expression for the Fourier coefficients c(n) of f+1, when f is a function defined as above. As an application, we derive an expression for $M_f(s):=\int_0^1(f(x)+1)\,x^{s-1}\,dx$ as a series that only depends on $M_f(2k),\ k\in\mathbb{N}$. We remark that the Fourier coefficients c(n) depend on $M_f(2k)$ which, for a function f defined as above, can be expressed also in terms of the a_k 's and θ_k 's. Therefore, a better control on these parameters will allow to estimate $M_f(2k)$ and therefore eventually to handle $\|f+1\|$ via our expression for the Fourier coefficients and Parsevall Identity.

1 Introduction

Denote as [x] the "integer part of x", i.e. the greatest integer less than or equal to x and define the "fractional part" function by $\rho(x) = x - [x]$. When f is a function of the form

$$f_N(x) := \sum_{k=1}^N a_k \, \rho\left(\frac{\theta_k}{x}\right),\tag{1}$$

where $N \in \mathbb{N}$, $a_k \in \mathbb{C}$ and $0 < \theta_k \leq 1$ for all $k \in \mathbb{N}$, an elementary computation shows

$$\int_0^1 (f_N(x) + 1) \, x^{s-1} \, dx = \frac{\sum_{k=1}^N a_k \, \theta_k}{s-1} + \frac{1}{s} \left(1 - \zeta(s) \, \sum_{k=1}^N a_k \, \theta_k^s \right); \tag{2}$$

for $\sigma > 0$, where, as usual, we denote $s = \sigma + it$. See, for instance, [1, p. 253] for a proof. We will assume that function f_N (1) satisfies also the additional condition

$$\sum_{k=1}^{N} a_k \, \theta_k = 0. \tag{3}$$

Identity (2) is the starting point of a theorem by Beurling. See [1, p. 252] for a proof and further references. As in the proof of (the easy half of) Beurling's Theorem, application of Schwarz inequality to the left side of (2) allows to show that a sufficient condition for Riemann Hypothesis is that ||f(x) + 1|| be done arbitrarily small for a convenient choice of a_k and θ_k , where ||.|| denotes the norm in $L^2([0,1], dx)$.

Just for reference, we will call a function f_N as in (1) as an approximation or Beurling function, and the sequence $\{f_N\}_{N\in\mathbb{N}}$ is called an approximation sequence. We remark that approximation sequences do not necessarily converge to -1 in $L^2([0,1],dx)$; see the excellent work [2] on this topic. For abuse of notation and language, when f_N is a Beurling function we will call $f_N + 1$ also a Beurling function.

A method to compute $||f_N + 1|| := \left(\int_0^1 |f_N(t) + 1|^2 dt\right)^{1/2}$ would be to use not this definition but the Parsevall Identity $||f_N + 1||^2 = \sum_{n \in \mathbb{Z}} |c(N, n)|^2$. In the Sec. 2 we give an expression for the Fourier coefficients c(N, n) of the Beurling function $f_N + 1$.

In this note, unless explicit statement on contrary, we assume condition (3) on a Beurling function. At a certain point we will assume also that $\theta_k = 1/b_k$ where $b_k \in \mathbb{N}$ and $|a_k| \leq 1$. This restriction on the θ_k 's is not serious at all after Theorem 1.1 in [3]. On the other hand, the restriction on the a_k 's include some of the so-called *natural approximations* considered in [2].

2 The Fourier Coefficients for a Beurling function

For convenience we define $F_N := f_N(x) + 1$. We extend F_N to an *odd* function in [-1,1]. Therefore, $\int_{-1}^1 F_N(x) \cos(n\pi x) dx = 0$, and

$$c(N,n) := \int_{-1}^{1} F_{N}(x) \sin(n\pi x) \, dx = 2 \int_{0}^{1} F_{N}(x) \sin(n\pi x) \, dx$$

$$= 2 \left[\int_{0}^{1} \sin(n\pi x) \, dx + \sum_{k=1}^{N} a_{k} \int_{0}^{1} \rho\left(\frac{\theta_{k}}{x}\right) \sin(n\pi x) \, dx \right]$$

$$= 2 \left[-\frac{\cos(n\pi x)}{n\pi} \Big|_{0}^{1} + \sum_{k=1}^{N} a_{k} \left(\sum_{j=1}^{\infty} \int_{\frac{\theta_{k}}{j+1}}^{\frac{\theta_{k}}{j}} \rho\left(\frac{\theta_{k}}{x}\right) \sin(n\pi x) \, dx + \int_{\theta_{k}}^{1} \rho\left(\frac{\theta_{k}}{x}\right) \sin(n\pi x) \, dx \right) \right]$$

$$= 2 \left[\frac{1}{n\pi} (1 - \cos(n\pi)) + \sum_{k=1}^{N} a_k \left(\sum_{j=1}^{\infty} \theta_k \int_{\frac{\theta_k}{j+1}}^{\frac{\theta_k}{j}} \frac{\sin(n\pi x)}{x} dx - j \int_{\frac{\theta_k}{j+1}}^{\frac{\theta_k}{j}} \sin(n\pi x) dx + \theta_k \int_{\theta_k}^{1} \frac{\sin(n\pi x)}{x} dx \right) \right]$$

$$= \frac{2}{n\pi} (1 - \cos(n\pi)) + 2 \sum_{k=1}^{N} a_k \left(\theta_k \int_{0}^{1} \frac{\sin(n\pi x)}{x} dx - \sum_{j=1}^{\infty} j \int_{\frac{\theta_k}{j+1}}^{\frac{\theta_k}{j}} \sin(n\pi x) dx \right)$$

$$= \frac{2}{n\pi} (1 - \cos(n\pi)) + 2 \left(\sum_{k=1}^{N} a_k \theta_k \right) \left(\int_{0}^{1} \frac{\sin(n\pi x)}{x} dx \right) - 2 \sum_{k=1}^{N} a_k \sum_{j=1}^{\infty} j \left(\frac{-\cos(n\pi x)}{n\pi} \right) \right|_{\frac{\theta_k}{j+1}}^{\frac{\theta_k}{j}}$$

Denote the first term in last line by $A_1 := \frac{2}{n\pi}(1 - \cos(n\pi))$, and note that the second term vanishes because (3), hence

$$c(N,n) = A_1 + \frac{2}{n\pi} \sum_{k=1}^{N} a_k \sum_{j=1}^{\infty} j \left[\cos\left(\frac{n\pi\theta_k}{j}\right) - \cos\left(\frac{n\pi\theta_k}{j+1}\right) \right]. \tag{4}$$

Now, if L is any natural number, replacing in (4) the expression for the L-th Taylor approximation for $\cos x$ given by

$$\cos x = \sum_{l=0}^{L} (-1)^l \frac{x^{2l}}{(2l)!} + \frac{1}{L!} \int_0^x \cos^{(L+1)}(t) (x-t)^L dt,$$
 (5)

we get

$$c(N,n) = A_1 + \frac{2}{n\pi} \sum_{k=1}^{N} a_k \sum_{j=1}^{\infty} j \left(\sum_{l=0}^{L} (-1)^l \frac{(n\pi\theta_k)^{2l}}{(2l)!} \left[\frac{1}{j^{2l}} - \frac{1}{(j+1)^{2l}} \right] + R(L,j,n,k) \right)$$

$$= A_1 + \frac{2}{n\pi} \sum_{k=1}^{N} a_k \left(\sum_{l=1}^{L} (-1)^l \frac{(n\pi\theta_k)^{2l}}{(2l)!} \sum_{j=1}^{\infty} j \left[\frac{1}{j^{2l}} - \frac{1}{(j+1)^{2l}} \right] + \sum_{j=1}^{\infty} j R(L,j,n,k) \right);$$
(6)

where

$$R(L, j, n, k) := \frac{1}{L!} \int_0^{\frac{n\pi\theta_k}{j}} \cos^{(L+1)}(t) \left(\frac{n\pi\theta_k}{j} - t\right)^L dt - \frac{1}{L!} \int_0^{\frac{n\pi\theta_k}{j+1}} \cos^{(L+1)}(t) \left(\frac{n\pi\theta_k}{j+1} - t\right)^L dt.$$
 (7)

Now, observe that

$$\sum_{j=1}^{\infty} j \left[\frac{1}{j^{2l}} - \frac{1}{(j+1)^{2l}} \right] = \lim_{J \to \infty} \sum_{j=1}^{J} \left[\frac{j}{j^{2l}} - \frac{j+1-1}{(j+1)^{2l}} \right]$$

$$= \lim_{J \to \infty} \left(\sum_{j=1}^{J} \left[\frac{j}{j^{2l}} - \frac{j+1}{(j+1)^{2l}} \right] + \sum_{j=1}^{J} \frac{1}{(j+1)^{2l}} \right)$$

$$= \lim_{J \to \infty} \left(1 - \frac{J+1}{(J+1)^{2l}} + \sum_{j=2}^{J+1} \frac{1}{j^{2l}} \right) = 1 + \sum_{j=2}^{\infty} \frac{1}{j^{2l}} = \zeta(2l); \quad (8)$$

Substituting (8) in (6) and denoting $R(L, n, k) := \sum_{j=1}^{\infty} j R(L, j, n, k)$, we get

$$c(N,n) = A_1 + \frac{2}{n\pi} \sum_{k=1}^{N} a_k \left(\sum_{l=1}^{L} (-1)^l \frac{(n\pi\theta_k)^{2l}}{(2l)!} \zeta(2l) + R(L,n,k) \right)$$

$$= A_1 + \frac{2}{n\pi} \sum_{l=1}^{L} (-1)^l \frac{(n\pi)^{2l}}{(2l)!} \zeta(2l) \left(\sum_{k=1}^{N} a_k \theta_k^{2l} \right) + \sum_{k=1}^{N} a_k R(L,n,k).$$
(9)

If we denote $M_g(s) := \int_0^1 g(x) x^{s-1} dx$, then by (2), under condition (3), we have

$$\sum_{k=1}^{N} a_k \,\theta_k^{2l} = \frac{1}{\zeta(2l)} \left(1 - (2l) \, M_{F_N}(2l)\right). \tag{10}$$

Substituting now (10) in (9) we get

$$c(N,n) = A_1 + \frac{2}{n\pi} \sum_{l=1}^{L} (-1)^l \frac{(n\pi)^{2l}}{(2l)!}$$

$$- \frac{2}{n\pi} \sum_{l=1}^{L} (-1)^l \frac{(n\pi)^{2l}}{(2l)!} (2l) M_{F_N}(2l) + \sum_{k=1}^{N} a_k R(L,n,k)$$

$$= A_1 + \frac{2}{n\pi} \sum_{l=1}^{L} (-1)^l \frac{(n\pi)^{2l}}{(2l)!}$$

$$+ 2 \sum_{l=1}^{L} (-1)^{l-1} \frac{(n\pi)^{2l-1}}{(2l-1)!} M_{F_N}(2l) + \sum_{k=1}^{N} a_k R(L,n,k). \quad (11)$$

This is an exact expression valid for all $L \in \mathbb{N}$ but a better expression arises in the limit $L \to \infty$. In this case, the first term cancels the second and is not difficult to prove the following

Lemma 1 For each $k \in \mathbb{N}$ assume $|a_k| \leq 1$ and $\theta_k = 1/b_k$ with $b_k \in \mathbb{N}$. Then, for any fixed N and n in \mathbb{N} is $\lim_{L \to \infty} \sum_{k=1}^{N} a_k R(L, n, k) = 0$.

(The proof will be given in Sec. 4). Therefore, the final expression for the Fourier coefficient is

$$c(N,n) = 2\sum_{l=1}^{\infty} (-1)^{l-1} \frac{(n\pi)^{2l-1}}{(2l-1)!} M_{F_N}(2l).$$
(12)

3 An Expression for the Mellin Transform

Directly from (12) we have

$$M_{F_N}(s) = \int_0^1 F_N(x) \, x^{s-1} \, dx = \int_0^1 \left(\sum_{n=1}^\infty c(N, n) \sin(n\pi x) \right) \, x^{s-1} \, dx$$
$$= \sum_{n=1}^\infty \left(\int_0^1 \sin(n\pi x) \, x^{s-1} \, dx \right) \, 2 \sum_{l=1}^\infty (-1)^{l-1} \frac{(n\pi)^{2l-1}}{(2l-1)!} \, M_{F_N}(2l). \quad (13)$$

The last expression gives the value of $M_{F_N}(s)$ in term of its values in the even integers $M_{F_N}(2l)$.

Note also that under the hypothesis of Lemma 1 we have $\left|\sum_{k=1}^{N} a_k \theta_k^{2l}\right| \leqslant \zeta(2l)$, and this combined with (10), or (2), gives an estimation on the Mellin transform

$$|M_{F_N}(2l)| \leqslant \frac{1+\zeta^2(2l)}{2l}.$$
 (14)

As in the derivation of relation (18) in Sec. 4, a better control on the a_k 's and θ_k 's will allows to control $M_{F_N}(2l)$ via (10), and therefore to control $||f_N(x)| + 1||$ via (12) and Parsevall Identity.

4 Proof of Lemma 1

For sake of brevity, denote $I(j) := (1/L!) \int_0^{\frac{n\pi\theta_k}{j}} \cos^{(L+1)}(t) \left(\frac{n\pi\theta_k}{j} - t\right)^L$. From (7) we have

$$R(L, n, k) := \sum_{j=1}^{\infty} j R(L, j, n, k) = \lim_{J \to \infty} \sum_{j=1}^{J} j I(j) - (j+1-1) I(j+1)$$

$$= \lim_{J \to \infty} \left(\sum_{j=1}^{J} [j I(j) - (j+1) I(j+1)] + \sum_{j=1}^{J} I(j+1) \right)$$

$$= \lim_{J \to \infty} \left(I(1) - (J+1) I(J+1) + \sum_{j=1}^{J} I(j+1) \right)$$

$$= \lim_{J \to \infty} \left(\sum_{j=1}^{J+1} I(j) - (J+1) I(J+1) \right). \quad (15)$$

Using the elementary estimative

$$|I(j)| \leqslant \frac{1}{L!} \frac{-\left(\frac{n\pi\theta_k}{j} - t\right)^{L+1}}{L+1} \bigg|_{0}^{\frac{n\pi\theta_k}{j}} = \frac{1}{j^{L+1}} \frac{(n\pi\theta_k)^{L+1}}{(L+1)!},\tag{16}$$

for any $L \in \mathbb{N}$ we have

$$|R(L,n,k)| \leqslant \lim_{J \to \infty} \frac{(n\pi\theta_k)^{L+1}}{(L+1)!} \left(\sum_{i=1}^{J+1} \frac{1}{j^{L+1}} + \frac{1}{(J+1)^L} \right) = \frac{(n\pi\theta_k)^{L+1}}{(L+1)!} \zeta(L+1). \quad (17)$$

Therefore, for any $N \in \mathbb{N}$,

$$\left| \sum_{k=1}^{N} a_k R(L, n, k) \right| \leqslant \sum_{k=1}^{N} |R(L, n, k)| \leqslant \frac{(n\pi)^{L+1}}{(L+1)!} \zeta(L+1) \sum_{k=1}^{N} \theta_k^{L+1}$$

$$= \frac{(n\pi)^{L+1}}{(L+1)!} \zeta(L+1) \sum_{k=1}^{N} \frac{1}{b_k^{L+1}} \leqslant \frac{(n\pi)^{L+1}}{(L+1)!} \zeta^2(L+1). \quad (18)$$

Now the assertion of Lemma 1 follows observing that $\zeta(L+1)$ remains close to 1 for large L and the first factor in the right side of (18) goes to zero because is the (L+1)-th term of the (convergent) series for $\exp(n\pi)$.

References

- [1] Donoghue W. F. *Distributions and Fourier Transforms*, Academic Press, New York, 1969.
- [2] L. Bez-Duarte, Arithmetical Aspects of Beurling's Real Variable Reformulation of the Riemann Hypothesis. arXiv:math.NT/0011254v1
- [3] L. Bez-Duarte, A Strengthening of the Nyman-Beurling Criterion for the Riemann Hypothesis. arXiv:math.NT/0202141v2

Fernando Auil

Instituto de Física Universidade de São Paulo Caixa Postal 66318 CEP 05315-970 São Paulo - SP Brasil

E-mail: auil@fma.if.usp.br