Лабораторная работа №3.4.5 Петля гистерезиса (Динамический метод)

Шилов Артем Витальевич

Сентябрь 2024

1 Обработка результатов

Данные нашей установки: $R_0=0,3~{\rm Om}, R_u=20~{\rm кOm}, C_u=20~{\rm mk}\Phi$

1.1 Феррит 1000 нм

Изначально заданные нам условия: $N_0=40$ Витков, $N_U=400$ Витков, S=3,0 см $^2,\,2\pi R=25$ см Данные полученные в ходе измерений:

I, mA	х, дел	у, дел
100	5,2	3,5
90	5	3,2
80	4,5	3
72	4	2,6
61,3	3,5	2,5
52,1	2,9	2,2
40,9	2,3	1,8
31,4	1,8	1,2
21	1,5	0,8
16	1,1	0,5

Изображение петли гистерезиса для феррита на ЭО:

Посчитаем искомые значения:

$$H=rac{IN_0}{2\pi R}=16~{
m A/m}, H_c=8~{
m A/m}$$
 $B=rac{R_uC_uU_{
m BMX}}{SN_U}=0.19~{
m T\pi}, B_s=0.9~{
m T\pi}$ $I_{
m s}\varphi=0.1~{
m A}, K_x=1, K_y=20$ $2x(c)=10.4~{
m дел},~2y(c)=7~{
m дел}$

Построим на основе наших измерений график:

1.2 Пермаллой

Изначально заданные нам условия: $N_0=35$ Витков, $N_U=220$ Витков, S=3,8 см $^2,\,2\pi R=24$ см Данные полученные в ходе измерений:

I, mA	х, дел	у, дел
96,3	4	4,3
89,9	3,8	3,4
83,2	3,5	2,5
76	3,3	2
71	3,1	1,5
64	3	1
50	2,8	0,7
41,7	2,3	0,5
35	2	0,3
24,5	1,5	0,2

Изображение петли гистерезиса для пермаллойа на ЭО:

Посчитаем искомые значения:

$$H=rac{IN_0}{2\pi R}=14\ {
m A/m}, H_c=24.4\ {
m A/m}$$
 $B=rac{R_uC_uU_{
m Bbix}}{SN_U}=0.27\ {
m T\pi}, B_s=1.72\ {
m T\pi}$ $I_{
m 9\Phi}=0.0963\ {
m A}, K_x=1, K_y=20$ $2x(c)=8\ {
m дел},\ 2y(c)=8.6\ {
m дел}$

Построим на основе наших измерений график:

1.3 Кремнистое железо

Изначально заданные нам условия: $N_0=40$ Витков, $N_U=400$ Витков, S=1,2 см $^2,~2\pi R=10$ см Данные полученные в ходе измерений:

I, mA	х, дел	у, дел
75	3,6	4
68	3,2	3,5
60	3	3
52,7	2,3	2,3
45	2	1,8
38,6	1,7	1,3
31,8	1,4	1
26	1	0,7
21,3	0,8	0,5
16	0,6	0,3

Изображение петли гистерезиса для кремнистого железа на ЭО:

Посчитаем искомые значения:

$$H = \frac{IN_0}{2\pi R} = 30 \text{ A/M}, H_c = 55 \text{ A/M}$$

$$B = \frac{R_u C_u U_{\text{вых}}}{SN_U} = 0.475 \text{ Тл}, B_s = 0.12 \text{ Тл}$$

$$I_{\text{эф}} = 0.075 \text{ A}, K_x = 1, K_y = 20$$

$$2x(c) = 7.2 \text{ дел}, \ 2y(c) = 8 \text{ дел}$$

Построим на основе наших измерений график:

1.4 Расчет постоянной времени цепи

$$au = RC = \frac{U_{\text{bx}}}{\Omega * U_{\text{BMX}}} = 0.32 \pm 0.09 \text{ c}$$

Расчитывай параметры цепи $\tau = R_u * C_u = 0.4$ с, что близко к полученному резульату.

2 Вывод

В рамках данной лабораторной работы были изучены петли гистерезиса для трех разных образцов, и для каждого из них были получены характерные величины, которые по порядку величины совпали с табличными значениями. Также была оценена применимость используемого метода в условиях нашего эксперимента. В результате было подтверждено, что условия применимости соблюдаются, а сам метод является эффективным для определения характерных параметров ферромагнитных материалов.