# 全国青少年信息学奥林匹克竞赛模拟赛

# NOI 2025

uyom

时间: 2025 年 6 月 19 日 7:40 ~ 12:40

| 题目名称             | 树                 | 序列               | 俄罗斯方块            |  |
|------------------|-------------------|------------------|------------------|--|
| 题目类型             | 传统型               | 传统型              | 提交答案型            |  |
| 目录               | tree              | seq              | block            |  |
| 可执行文件名           | tree              | seq              | block            |  |
| 输入文件名            | tree.in           | seq.in           | block.in         |  |
|                  |                   |                  |                  |  |
| 输出文件名            | tree.out          | seq.out          | block.out        |  |
| 输出文件名<br>每个测试点时限 | tree.out<br>3.0 秒 | seq.out<br>4.0 秒 | block.out<br>N/A |  |
|                  |                   |                  |                  |  |
| 每个测试点时限          | 3.0 秒             | 4.0 秒            | N/A              |  |

#### 提交源程序文件名

| 对于 C++ 语言 | tree.cpp | seq.cpp | block.cpp |
|-----------|----------|---------|-----------|
|-----------|----------|---------|-----------|

#### 编译选项

| 对于 C++ 语言 | )2 -lm |
|-----------|--------|
|-----------|--------|

## 注意事项(请仔细阅读)

- 1. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 3. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。
- 4. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格进行分隔。
- 5. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 6. 程序可使用的栈空间大小与该题内存空间限制一致。
- 7. 在终端下可使用命令 ulimit -s unlimited 将栈空间限制放大,但你使用的栈空间大小不应超过题目限制。
- 8. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

## 树 (tree)

#### 【题目描述】

小 A 有一棵包含了 n 个节点的树,定义 f(l,r) 表示包含了 [l,r] 中所有点的最小连 通块大小,这里连通块的大小为该连通块的点数。

小 B 有 q 个询问,对于每次小 B 给出了两个整数 l,r  $(l \leq r)$ ,你需要求出  $\sum_{l \leq i \leq j \leq r} f(i,j)$ 。

#### 【输入格式】

从文件 tree.in 中读入数据。

第一行一个整数 n。

接下来 n-1 行,每行两个整数表示了树的一条边。

第 n+1 行一个整数 q,表示询问个数。

接下来 q 行,每行两个整数表示了一次询问。

#### 【输出格式】

输出到文件 tree.out 中。

一共q行,每行一个整数,第i行一个整数表示第i个询问的答案。

#### 【样例1输入】

```
1
6

2
1
2

3
1
3

4
1
4

5
6
6

7
3
8

8
1
3

9
4
6

10
2
5
```

#### 【样例1输出】

```
1
11

2
14

3
27
```

## 【样例 2】

见选手目录下的 tree/tree2.in 与 tree/tree2.ans。

#### 【样例 3】

见选手目录下的 tree/tree3.in 与 tree/tree3.ans。

### 【数据范围】

对于 10% 的数据满足,  $n,q \le 500$ 。

对于 20% 的数据满足,  $n,q \le 2000$ 。

对于 30% 的数据满足,  $n, q \le 7000$ 。

对于 60% 的数据满足,  $n, q \le 5 \times 10^4$ 。

另有 10% 的数据满足,q=1。

另有 10% 的数据满足, 树是一条链。

另有 10% 的数据满足,树的生成方式为: 先生成一个 1 到 n 的排列 p,然后第 i 条 树边为  $(p_{i+1},p_{\lceil\frac{i}{6}\rceil})$ 。

对于 100% 的数据满足, $1 \le n \le 10^5, 1 \le q \le 5 \times 10^5, 1 \le l \le r \le n$ 。

# 序列 (seq)

#### 【题目描述】

我们定义一个长度为 n 的排列 P 是美丽的,当且仅当对于所有区间 [l,r] 以下两个条件有**至少一个满足**:

- 不存在一个整数 k(l < k < r) 满足  $P_l < P_k > P_r$ 。
- 不存在一个整数 k(l < k < r) 满足  $P_l > P_k < P_r$ 。

给出一个长度为 n 的**随机生成**的排列 p, 小 B 将重新排列这个排列 p, 使得排列 p 变得美丽, 小 B 想知道她最少需要修改的位置数量为多少。

#### 【输入格式】

从文件 seq.in 中读入数据。

第一行一个整数 n。

第二行 n 个整数  $p_1, p_2, \ldots, p_n$ 。

#### 【输出格式】

输出到文件 seq.out 中。

输出一行一个整数,表示最少需要修改的位置数。

#### 【样例1输入】

1 6

5 4 6 1 3 2

#### 【样例1输出】

1 2

#### 【样例1解释】

可以修改为[1,4,6,5,3,2]。

#### 【样例 2】

见选手目录下的 seq/seq2.in 与 seq/seq2.ans。

## 【数据范围】

对于 100% 的数据, $1 \le n \le 10^4$ , p 是个排列, 且随机生成。各测试点的附加限制如下表所示:

| 测试点编号 | $n \leq$ |
|-------|----------|
| 1     | 10       |
| 2     | 16       |
| 3     | 20       |
| 4     | 20       |
| 5     |          |
| 6     | 500      |
| 7     |          |
| 8     |          |
| 9     | 1000     |
| 10    |          |
| 11    | 1500     |
| 12    | 2000     |
| 13    | 3000     |
| 14    | 4000     |
| 15    | 5000     |
| 16    | 6000     |
| 17    | 7000     |
| 18    | 8000     |
| 19    | 9000     |
| 20    | 10000    |
|       |          |

## 俄罗斯方块(block)

#### 【题目描述】

俄罗斯方块是个众所周知的游戏。

在游戏中,由四个方块组成的碎片从上面掉落,游戏的目标是将碎片落在相应的位置,形成尽可能多的完全填满的行。当一行被方块完全填满时,这一行的方块消失,上面的方块掉落,从而为下落的碎片提供更多空间。

由于原游戏过于复杂, 我们进行了一些简化。

在这个问题中,一共有九种碎片,每个碎片都由不超过三个方块组成,下图是所有碎片的类型和编号。



这个游戏的目标和俄罗斯方块是一样的。游戏中每个碎片将会落入一个 9 × 9 的区域。但与俄罗斯方块不同的是,在这个游戏中碎片不能旋转,且一旦开始下落,碎片就不能向左或向右移动。这意味着玩家只能在某个碎片开始下落的时候,指定一个列的编号,这个碎片中打 × 的方块将会落在该列上。

每次游戏有 N 个碎片,你需要将尽可能多的碎片放入区域中,且碎片不能超过区域 顶端或进行非法操作。你的得分将与成功放入的碎片数有关。

形式化地说,我们维护一个计数器,这个计数器的初值为 0,该游戏过程如下:

- 1. 玩家选择当前碎片最左边方块所在的列;
- 2. 如果选择的列合法 (例如对于第 5 种碎片,选择落在第 8 列是不合法的),这个碎片会向下掉落,直到碰到障碍物为止,否则游戏结束;
  - 3. 如果碎片完全落在区域内,则计数器的值加一,否则游戏结束;
- 4. 接下来检查是否有被方块完整填满的行,如果有,这一行的所有方块消失,上面的方块则在不改变相对位置的情况下向下移动;
  - 5. 如果还有碎片,则回到第1步,否则游戏结束。

### 【输入格式】

这是一道提交答案题,共有 5 组输入数据,这些数据命名为  $block1.in \sim block5.in$ 。输入文件第一行为一个整数 N,代表游戏共有 N 个碎片。

接下来 N 行,第 i 行一个  $1 \sim 9$  的整数,代表第 i 个下落的碎片种类。

输入文件保证存在一种方案, 使得 N 个碎片全部落入区域中。

#### 【输出格式】

对于每组输入,请提交对应的输出文件  $block1.out \sim block5.out$ 。

输出文件最多包含 N 行,第 i 行包含一个整数,代表第 i 个下落的碎片中,最左边方块落在的列的编号。

## 【样例】

下面是一个简单的游戏例子:

20 个碎片按如下顺序掉落: 5,4,1,6,7,6,4,4,7,9,5,5,6,8,3,4,3,7,4,2。前 17 个碎片掉落的列号如下: 1,2,2,4,8,8,7,4,8,6,1,1,4,8,3,7,7, 此时游戏局面如下(没有行被消除):

|   |   |   | ő |   |   | Q | Q |   |
|---|---|---|---|---|---|---|---|---|
|   |   | 0 | 0 |   |   | P |   |   |
| L | L | L | M |   |   | P | N | N |
| K | K | K | M | M |   | P | N | I |
|   | С |   | Н |   | J | J | I | I |
|   | В |   | Н |   |   | J | F |   |
|   | В |   | Н |   |   | G | F | F |
|   | В |   | D |   |   | G |   | Е |
| Α | A | A | D | D |   | G | Е | Е |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

现在计数器的值为17,你需要下落第7种碎片。

只有2种使得游戏不结束的掉落方案:落在第1列或是第5列。

落在第1列后的结果如下图:

|   | B<br>B |          | H<br>D |          |   | G<br>G | F      | F<br>E |
|---|--------|----------|--------|----------|---|--------|--------|--------|
| _ | В      | $\vdash$ | Н      | $\vdash$ | , | ,<br>I | F      | _      |
| K | K      | K        | M<br>H | M        | J | P      | N<br>I | I      |
| L | L      | L        | M      |          |   | P      | N      | N      |
| R | R      | 0        | 0      |          |   | P      |        |        |
|   | R      |          |        |          |   | Q      | Q      |        |

落在第5列后的结果如下图(有一行被填满后消失):

|   |   |   |   |   |   | Q | Q |   |
|---|---|---|---|---|---|---|---|---|
|   |   | 0 | 0 |   | R | P |   |   |
| K | K | K | М | М |   | P | N | I |
|   | С |   | Н | Г | J | J | I | I |
|   | В | П | Н | Г |   | J | F |   |
|   | В | П | Н | Г |   | G | F | F |
|   | В |   | D |   |   | G |   | Е |
| Α | A | A | D | D |   | G | E | Е |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

## 【评分方式】

设你在测试点游戏结束时的计数器的值为 X,则该测试点的得分为:  $15 \times \frac{\min(2 \times X, N)}{N} + 5 \times \frac{\max(2 \times X - N, 0)}{N}$  。

## 【提示】

下发了一个可视化工具 visual.html,选手可自行根据需要使用。