(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property **Organization**

International Bureau

(43) International Publication Date 23 December 2004 (23.12.2004)

PCT

(10) International Publication Number WO 2004/111621 A1

(51) International Patent Classification7: G01N 21/65, G01J 3/44, G06T 5/00, A61B 5/103, G02B 7/28

(21) International Application Number:

PCT/IB2004/050911

(22) International Filing Date: 15 June 2004 (15.06.2004)

(25) Filing Language: **English**

(26) Publication Language: English

(30) Priority Data: 03101806.2

19 June 2003 (19.06.2003)

(71) Applicant (for all designated States except US): KONIN-KLLIKE PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): VAN BEEK, Michael, C. [NL/NL]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (74) Agent: COHEN, Julius, S.; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,

[Continued on next page]

(54) Title: ANALYSIS APPARATUS AND METHOD COMPRISING AUTO-FOCUSING MEANS

(57) Abstract: The present invention relates to an analysis apparatus, in particular a spectroscopic analysis apparatus, for analyzing an object, such as blood of a patient, and a corresponding analysis method. To aim the confocal detection volume inside a blood vessel orthogonal polarized spectral imaging (OPS imaging) is used to locate blood capillaries in the skin. Image processing means (ipm) determining image characteristics, which indicate if an imaging system (img) for imaging the object is focused on the object (obj) to be analyzed, from a detected image. Said image processing means (ipm) are preferably adapted for determining the amplitudes of spatial frequencies corresponding to typical characteristics of the object (obj) from a detected image, or for determining the maximum contrast present in a detected image. Based on the determined image characteristics, auto-focusing means (afm) control the focusing means (mo) to change the focusing accordingly, whereafter the object is imaged and the same image characteristics are determined again from a the new image. This is preferably repeatedly done until the object (obj) substantially lies in a detection plane (dp) onto which the focusing means (mo) are focused. Thus, continuous autofocusing with high accuracy can be achieved.

WO 2004/111621 A1

PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

- with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.