Properties of Regular Languages

Closure properties for Regular Languages (RL)

This is different from Kleene closure

- Closure property:
 - If a set of regular languages are combined using an operator, then the resulting language is also regular
- Regular languages are <u>closed</u> under:
 - Union, intersection, complement, difference
 - Reversal
 - Kleene closure
 - Concatenation
 - Homomorphism
 - Inverse homomorphism

RLs are closed under union

- IF L and M are two RLs THEN:
 - ➤ they both have two corresponding regular expressions, R and S respectively
 - >(L U M) can be represented using the regular expression R+S
 - Therefore, (L U M) is also regular

L1: DFA start with a and end with b

L2: DFA start with b and end with a

L1 U L2: DFA start with a or b and end with a or b // all strings begin and end with different symbols.

Closure Under Concatenation

R and S is a regular expression whose language is L and M respectively

L.M: R.S Which is regular

Concatenation of two DFA

L1: DFA with all strings start with a

L2: DFA with all strings end with b

L1.L2: DFA with all strings that start with a then end with b

Closure Under Kleene Closure

• R is a regular expression whose language is L.

Then R* is also a regular expression

RLs are closed under intersection

• A quick, indirect way to prove:

By DeMorgan's law:

$$\overline{L} \cup \overline{M} = (L \cap M)$$

- Since we know RLs are closed under union and complementation, they are also closed under intersection
- A more direct way would be construct a finite automaton for L ∩ M

DFA construction for L \(\Omega\) M

- $A_L = DFA$ for $L = \{Q_L, \sum, q_L, F_L, \delta_L\}$
- $A_M = DFA$ for $M = \{Q_M, \sum, q_M, F_M, \delta_M \}$
- Build $A_{L \cap M} = \{Q_L \times Q_M, \sum, (q_L, q_M), F_L \times F_M, \delta\}$ such that:
 - $\delta((p,q),a) = (\delta_L(p,a), \delta_M(q,a))$, where p in Q_L, and q in Q_M
- This construction ensures that a string w will be accepted if and only if w reaches an accepting state in <u>both</u> input DFAs.

DFA construction for L \(\Omega\) M

Example: Product DFA for Intersection

DFA of L1 = $\{w \text{ in } \{a,b\}^* \mid where w \text{ has even number of a's} \}$

DFA of L2 = $\{w \text{ in } \{a,b\}^* \mid where w \text{ has odd number of b's} \}$

L1 \cap L2: {w in {a,b}*| where w has even number of a's and odd number of b's}

Closed under set difference

• Observation: L - M = L \cap \overline{M}

Therefore, L - M is also regular

Example: DFA for Difference (A-B)

Make the final states, the pairs where A-state is final but B-state is not

Notice: difference is the empty language

L1: DFA accept set of strings a's and b's where number of a's is divisible by 3

L2: DFA accept all strings with even number of b's over input {a,b}

L1 - L2: DFA accept set of strings a's and b's where number of a's is divisible by 3 and the number of b's is not even (number of b's is odd)

RLs are closed under complementation

- If L is an RL over Σ , then $\overline{L} = \Sigma^* L$
- To show L is also regular, make the following construction

Convert every final state into non-final, and every non-final state into a final state

RLs are closed under reversal

Reversal of a string w is denoted by w^R

• E.g., w=00111, w^R=11100

Reversal of a language:

• LR = The language generated by reversing all strings in L

<u>Theorem:</u> If L is regular then L^R is also regular

ε-NFA Construction for L^R

If L is regular, L^R is regular (proof using regular expressions)

- Let E be a regular expression for L
- Given E, how to build E^R?
- Basis: If $E = \varepsilon$, \emptyset , or a, then $E^R = E$
- Induction: Every part of E (refer to the part as "F") can be in only one of the three following forms:
 - 1. $F = F_1 + F_2$ • $F^R = F_1^R + F_2^R$
 - 2. $F = F_1 F_2$
 - $F^R = F_2^R F_1^R$
 - 3. $F = (F_1)^*$
 - $(F^R)^* = (F_1^R)^*$

Example: Reversal of a RE

Let E = 01* + 10*.
E^R = (01* + 10*)^R = (01*)^R + (10*)^R
= (1*)^R0^R + (0*)^R1^R
= (1^R)*0 + (0^R)*1
= 1*0 + 0*1.

Homomorphisms

• A *homomorphism* is a function on strings that works by substituting a particular string for each symbol.

• Example: h(0) = ab; h(1) = b.