EX 10 DEVELOP VECTOR AUTO REGRESSION MODEL FOR MULTIVARIATE TIME SERIES DATA FOR FORECASTING

AIM: To develop a Vector Auto Regression (VAR) model for multivariate time series data and perform future forecasting based on the interdependencies between variables.

ALGORITHM:

- 1. Import the required libraries and load the multivariate time series dataset.
- 2. Preprocess the data handle missing values, convert the date column to datetime, and set it as the index.
- 3. Split the dataset into training and testing sets.
- 4. Perform the Augmented Dickey-Fuller (ADF) test to check for stationarity. If non-stationary, apply differencing.
- 5. Fit the VAR model using the training data.
- 6. Forecast future values for the required steps.
- 7. Plot and compare the forecasted values with the actual data.

PROGRAM:

1. Import Libraries and Load Dataset:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from statsmodels.tsa.api import VAR

from statsmodels.tsa.stattools import adfuller

Step 2: Read and Preprocess the Data

```
data = pd.read_csv('/content/weather.csv')
data['Date.Full'] = pd.to_datetime(data['Date.Full'])
df = data.groupby('Date.Full')[['Data.Temperature.Avg Temp', 'Data.Wind.Speed']].mean()
df = df.dropna()
```

→	Date.Full	Data.Temperature.Avg Temp	Data.Wind.Speed
	2016-01-03	34.841270	7.061492
	2016-01-10	35.139683	6.540159
	2016-01-17	33.800000	6.573746
	2016-01-24	32.266667	7.008984
	2016-01-31	40.790476	6.841746

Step 3: Check Stationarity Using ADF Test

```
for col in df.columns:
```

```
result = adfuller(df[col])
print(f'{col} ADF Statistic: {result[0]}')
print(f'p-value: {result[1]}')
```

Step 4: Make Data Stationary (Differencing)

```
df_diff = df.diff().dropna()
for col in df_diff.columns:
    result = adfuller(df_diff[col])
```

print(f'{col} ADF Statistic after differencing: {result[0]}') print(f'p-value: {result[1]}')

Data.Temperature.Avg Temp ADF Statistic after differencing: -1.4051816730164128

p-value: 0.5797894536591474

Data.Wind.Speed ADF Statistic after differencing: -8.761840901860639

p-value: 2.6611605942702708e-14

Step 5: Split into Training and Testing

Train the LSTM model

history = model.fit(X, y, epochs=20, batch size=32, verbose=1)

Step 6: Fit the VAR Model

model = VAR(train)

model fitted = model.fit(maxlags=15, ic='aic')

print(model_fitted.summary())

		AR					
		LS					
	Date: Tue, 22, Apr, 20						
	Time: 06:43:	58					
	No. of Equations: 2.0000	0 BTC:	2.06671				
	Nobs: 2.0000		0.757196				
	Log likelihood: -47.894		2.03709				
	AIC: 0.12388						
	AIC. 0.12300	4 Dec(Onlega_mile)	. 0.723362				
	Posults for agustion Data Tampon	atuna Aug Tamp					
	Results for equation Data.Temperature.Avg Temp						
		coefficient	std. error	t-stat	pro		
	const	-0.286639	1.054665	-0.272	0.78		
	L1.Data.Temperature.Avg Temp	-0.044873	0.458963	-0.098	0.92		
	L1.Data.Wind.Speed	0.846185	1.862183	0.454	0.65		
	L2.Data.Temperature.Avg Temp	0.747982	0.549430	1.361	0.17		
	L2.Data.Wind.Speed	1.533167	1.596727	0.960	0.33		
	L3.Data.Temperature.Avg Temp	0.231406	0.629186	0.368	0.71		
	L3.Data.Wind.Speed	0.930422	1.504739	0.618	0.53		
	L4.Data.Temperature.Avg Temp	-0.290123	0.564226	-0.514	0.60		
	L4.Data.Wind.Speed	-0.418270	1.454638	-0.288	0.77		
	L5.Data.Temperature.Avg Temp	-0.083262	0.469608	-0.177	0.85		
	L5.Data.Wind.Speed	-0.311610	1.315618	-0.237	0.81		
	L6.Data.Temperature.Avg Temp	0.362253	0.471029	0.769	0.44		
	L6.Data.Wind.Speed	0.270487	1.397037	0.194	0.84		
	L7.Data.Temperature.Avg Temp	0.182381	0.390052	0.468	0.64		
	L7.Data.Wind.Speed	-0.239690	1.381291	-0.174	0.86		
	L8.Data.Temperature.Avg Temp	-0.065413	0.358931	-0.182	0.85		
	L8.Data.Wind.Speed	0.442214	1.306304	0.339	0.73		
	L9.Data.Temperature.Avg Temp	0.124512	0.360131	0.346	0.73		
	L9.Data.Wind.Speed	1.431974	1.318030	1.086	0.27		
	L10.Data.Temperature.Avg Temp	-0.096779	0.244966	-0.395	0.69		
	L10.Data.Wind.Speed	0.597258	1.575467	0.379	0.76		

Step 7: Forecast Future Values

```
forecast_steps = len(test)
forecast_steps = len(test)
forecast = model_fitted.forecast(train.values, steps=forecast_steps)
forecast_df = pd.DataFrame(forecast, index=test.index,
columns=['Data.Temperature.Avg Temp', 'Data.Wind.Speed'])
print(forecast df.head())
```

Step 8: Reverse Differencing to Get Real Values

```
last_train_values = df.iloc[train_size - 1]
forecast_actual = forecast_df.cumsum() + last_train_values
print(forecast_actual.head())
```

₹	Date.Full	Data.Temperature.Avg Temp	Data.Wind.Speed
	2016-10-23	59.117526	4.970367
	2016-10-30	59.113091	5.963189
	2016-11-06	57.100919	6.620689
	2016-11-13	55.263095	5.945420
	2016-11-20	53.493798	6.702850

Step 9: Plot Actual vs Forecast Graph

```
plt.figure(figsize=(12,6))

plt.plot(df.index[-forecast_steps:], df['Data.Temperature.Avg Temp'][-
forecast_steps:], label='Actual Temperature')

plt.plot(forecast_actual.index, forecast_actual['Data.Temperature.Avg Temp'],
label='Forecasted Temperature', linestyle='dashed')

plt.legend()

plt.title("Temperature: Actual vs Forecasted")

plt.show()
```


RESULT:

The LSTM model successfully learned patterns from past temperature data and provided accurate forecasts for the upcoming days, visualized clearly using plots.