

Deep Learning & the Higgs Boson

Dr. Liza Mijović

Deep Learning & the Higgs Boson

Classification with Fully Connected and Adversarial Networks.

- Lecture1: The Higgs boson and event classification:
 - Event classification with a fully connected neural network (NN) with Keras API.
- Lecture2: Solving the background sculpting challenge:
 - Event classification with adversarial neural network (ANN).
 - Hands-on knowledge of manipulating neural networks in Tensorflow.
- Lecture3: Putting it all together:
 - Compare ANN classification performance to the fully connected network.

Lecture2: classification with adversarial neural network

- What were we doing in Lecture1?
 Classification with fully connected neural network.
- What is the issue with classification from Lecture1?
 The discriminant has an undesired bias.
- How do we solve this issue?
 Classification with adversarial neural network (ANN).

Reminder: Our Challenge

Classification: separate

- Signal with Higgs boson.
- Background with no Higgs boson.

Approach:

- use synthetic data.
- Introduce no bumps in the $m_{\gamma\gamma}$ distribution; these would hamper the background estimate.
 - \Rightarrow this lecture.

Reminder: What is in the data?

Two photons (γ) per event, with momenta p.

Signal, label=1

Background, label=0

Reminder: What is in the data?

- Momenta p are 4-dimensional (Lorentz) vectors.
- They are passed in cylindrical coordinates.

Lecture1: Classification

Fully connected deep neural network. **Inputs:**

- Features x: photon 4-vectors.
- Labels y: signal (1) or background (0).

Training:

- Combine 8 inputs into 1 classifier.
- Objective: minimise classifier loss L_{clf}.
- Training determines node weights $\theta_{\it clf}$.

Output:

• discriminant: $z = p_{clf}(y|x, \theta_{clf})$.

Lecture1: Classification Results

We can separate Signal from Background.

However: Background grows a bump at high discriminant values.

Lecture1: Classification Issue

We can separate Signal from Background.

However: Background grows a bump at high discriminant values.

This would prevent us from reliably estimating the background. Can we design classification which does not sculpt $m_{\gamma\gamma}$?

Adversarial Neural Network

Can we design classification which does not sculpt $m_{\gamma\gamma}$?

- Pit classifier network against adversary.
- Classifier tries to guess event label y (0 or 1) from inputs x.
- Adversary tries to guess $m_{\gamma\gamma}$ from classifier output.
- If possible, the classifier is penalised.

Di-photon mass decorrelation

Can we design classification which does not sculpt $m_{\gamma\gamma}$?

- Adversary: parametrises $d = m_{\gamma\gamma}$ conditional on classifier output; $p_{adv}(m_{\gamma\gamma}|z)$.
- Trained with: adversary loss $L_{adv}(\theta_{adv})$.
- Gradient minimising Lady is back-propagated to classifier: gradient reversal layer.

Di-photon mass decorrelation

Both networks trained simultaneously with a loss:

$$L = L_{clf}(\theta_{clf}) - \lambda L_{adv}(\theta_{clf}, \theta_{adv})$$

- Classifier: tries to guess event label (y = signal or background).
- Adversary: tries to guess $d = m_{\gamma\gamma}$.
- Trade-off controlled by parameter λ .

Aside: Generative adversarial network

Our Lecture: Adversarial Neural Network (ANN). Higgs classification.

Computer vision: Generative Adversarial Network (GAN). Synthetic image generation.

Hands-on work

Classification with fully connected network (NN) & adversarial network (ANN): Using data_200k.csv:

- Run git repository: code/final/ann_classification.ipynb
- Look through the notebook; do you understand how the ANN works?
- Share your understanding in survey (link).

Optional: after lecture:

run ann_classification.ipynb over data_2M.csv (∼ 3h running time on laptop).

Reminder:

- Download the data: https://cern.ch/dl23data
- Set up the environment: https://cern.ch/dl23code

Extra

Correlation

 $m_{\gamma\gamma}$ is not used as input feature to fully connected network (NN) classifier.

Q: Why does the background get sculpted?

A: Some of the input features are correlated to $m_{\gamma\gamma}$.

