Parameters used by the TensCol algorithm for the GCP and ECP

Table 1
Parameters used in TensCol for the GCP instances

Instance	V	k	D	ρ	α	β	λ	μ	nb_{iter}	η	σ_0
DSJC125.1	125	5	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJC125.5	125	36	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJC125.9	125	17	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJC250.1	250	8	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJC250.5	250	28	200	200	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJC250.9	250	44	200	100	1.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJC500.1	500	12	200	200	2.5	1.2	10^{-5}	10^{-7}	5	0.001	0.0
DSJC500.5	500	48	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJC500.9	500	126	200	100	1.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJC1000.1	1000	20	200	200	2.5	1.2	10^{-5}	10^{-7}	5	0.001	0.0
DSJC1000.5	1000	84	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJC1000.9	1000	224	200	100	1.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJR500.1	500	12	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJR500.1c	500	85	200	10	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
DSJR500.5	500	122	200	2	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
$le450_{-}15a$	450	15	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
le450_15b	450	15	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
$le450_15c$	450	15	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
$le450_{-}15d$	450	15	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
le450_25a	450	25	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
le450_25b	450	25	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
le450_25c	450	25	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
$le450_{-}25d$	450	25	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
flat300_26_0	300	26	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
flat300_28_0	300	31	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
flat1000_76_0	1000	83	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
R125.1	125	5	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
R125.5	125	36	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
R250.1	250	8	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
R250.5	250	65	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
R1000.1	1000	20	200	1	2.5	1.2	10^{-3}	10^{-6}	5	0.001	0.0
R1000.1c	1000	98	200	10	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
R1000.5	1000	235	200	2	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
R1000.5	1000	234	200	10	1.5	1.1	10^{-5}	10^{-6}	10	0.001	0.0
school1	385	14	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
school1_nsh	352	14	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0
latin_square_10	900	98	200	100	2.5	1.2	10^{-5}	10^{-6}	5	0.001	0.0

Table 2 Parameters used in TensCol for the ECP instances (1/2)

Instance	V	k	D	ρ	α	λ	ν	nb_{iter}	η	σ_0
DSJC125.1	125	5	200	200	2.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJC125.5	125	17	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJC125.9	125	44	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJC250.1	250	8	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\mathrm{DSJC250.5}$	250	29	200	200	2.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJC250.9	250	72	200	100	1.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJC500.1	500	13	200	200	2.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJC500.5	500	51	200	200	2.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJC500.9	500	129	200	200	1.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJR500.1	500	12	200	1	1.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJR500.5	500	122	200	1	1.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJC1000.1	1000	21	200	200	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\mathrm{DSJC1000.5}$	1000	92	200	200	2.5	10^{-5}	10^{-5}	5	0.001	0.01
DSJC1000.9	1000	251	200	200	1.5	10^{-5}	10^{-5}	5	0.001	0.01
R125.1	125	5	200	2	2.5	10^{-5}	10^{-5}	5	0.001	0.01
R125.5	36	36	200	2	2.5	10^{-5}	10^{-5}	5	0.001	0.01
R250.1	250	8	200	2	2.5	10^{-5}	10^{-5}	5	0.001	0.01
R250.5	250	65	200	10	2.5	10^{-5}	10^{-5}	5	0.001	0.01
R1000.1	1000	20	200	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
R1000.5	1000	239	200	2	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$le450_5a$	450	5	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\rm le450_5b$	450	5	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$le450_5c$	450	5	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\rm le450_5d$	450	5	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\rm le450_15a$	450	15	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\rm le450_15b$	450	15	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\rm le450_15c$	450	15	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\rm le450_15d$	450	15	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$le450_25a$	450	25	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\rm le450_25b$	450	25	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$le450_25c$	450	25	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\rm le450_25d$	450	25	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01

Table 3 Parameters used in TensCol for the ECP instances (2/2)

meters used in TensCol for the ECP instances (2/2)										
Instance	V	k	D	ρ	α	λ	ν	nb_{iter}	η	σ_0
wap01a	2368	46	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
wap02a	2464	47	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
wap03a	4730	51	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
wap04a	5231	51	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
wap05a	905	50	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
wap06a	947	45	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
wap07a	1809	49	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
wap08a	1870	47	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
${\rm flat}300_28.0$	300	28	200	200	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$\mathrm{flat}1000_50.0$	1000	28	200	200	2.5	10^{-5}	10^{-5}	5	0.001	0.01
${\rm flat} 1000_60.0$	1000	92	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
${\rm flat} 1000_76.0$	1000	91	200	200	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$latin_square_10$	900	103	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$latin_square_10$	900	102	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
C2000.5	2000	172	200	2	2.5	10^{-5}	10^{-5}	5	0.001	0.01
C2000.9	2000	431	200	2	2.5	10^{-5}	10^{-5}	5	0.001	0.01
mulsol.i.1	197	49	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
mulsol.i.2	188	36	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
fpsol2.i.1	496	65	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
fpsol2.i.2	451	47	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
fpsol2.i.3	425	55	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
inithx.i.1	864	54	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
inithx.i.2	645	35	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
inithx.i.3	621	36	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
zeroin.i.1	211	49	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
zeroin.i.2	211	36	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
zeroin.i.3	206	36	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
myciel6	95	7	200	2	2.5	10^{-5}	10^{-5}	5	0.001	0.01
myciel7	191	8	200	2	2.5	10^{-5}	10^{-5}	5	0.001	0.01
4 _FullIns_3	114	7	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
4 _FullIns_4	690	8	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
4 _FullIns_5	4146	9	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
1_Insertions_6	607	7	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$2_Insertions_5$	597	6	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$3_Insertions_5$	1406	6	200	1	2.5	10^{-5}	10^{-5}	5	0.001	0.01
school1	385	15	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
$school1_nsh$	352	14	200	100	2.5	10^{-5}	10^{-5}	5	0.001	0.01
qg.order40	1600	40	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
qg.order60	3600	60	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
ash331GPIA	662	4	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
ash608GPIA	1216	4	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
ash958GPIA	1916	4	20	1	2.5	10^{-4}	10^{-5}	5	0.001	0.01
	L		L							