Χ	Υ	Θ ₁	Θ ₂	dX/dt	dY/dt	dΘ₁/dt	dΘ₂/dt	T (sec)
5	5	0	Pi/2	0	t	0.2t	-0.20t	0-1
5	5.5	0.1	1.465	0	t	0.2t	-0.22t	1-2
5	7.0	0.41	1.07	0	t			2-3

 $a_1=5$ $a_2=5$

 $X=5, Y=5+0.5t^2$

$$\begin{bmatrix} \dot{p}_x \\ \dot{p}_y \end{bmatrix} = \begin{bmatrix} -a_1 \sin \theta_1 - a_2 \sin(\theta_1 + \theta_2) & -a_2 \sin(\theta_1 + \theta_2) \\ a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2) & a_2 \cos(\theta_1 + \theta_2) \end{bmatrix} \begin{bmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{bmatrix}$$

JACOBIAN MATRIX

$$\cos \theta_2 = \frac{p_x^2 + p_y^2 - a_1^2 - a_2^2}{2a_1 a_2} \tag{1}$$

and

$$\sin \theta_2 = \pm \sqrt{1 - \cos^2 \theta_2} \tag{2}$$

Now we can write the solution for θ_2 :

$$\theta_2 = atan2(\sin\theta_2, \cos\theta_2) \tag{3}$$

The solution for θ_1 is

$$\theta_1 = atan2(p_y, p_x) - atan2(a_2 \sin \theta_2, a_1 + a_2 \cos \theta_2)$$
(4)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

