南京航空航天大学

第1页 (共4页)

二〇一八~二〇一九学年 第11学期《自动控制原理》考试试题

考试日期: 2019年6月24日 试卷类型: A 试卷代号:

		Ъ	任号	学号]	姓名					
题号	-	=	三	四	五	六	七	八	九	+	总分
得分											

本题分数	16
得 分	

一、系统结构图如图 1 所示,求 E(s) 的表达式。

3	本题》	分数	16
	得	分	

二、已知某无零点的单位反馈系统闭环特征方程为 $2s^2+As+K=0$,单位斜坡输入r(t)作用之下,输出c(t)曲

线如图 2 所示,且系统超调量 σ % = 4.6%,

- 1. 试求A与K的取值;
- 2. 试求调节时间 $t_s(\Delta=5\%)$ 。

本题分数	18
得 分	

- 三、某反馈系统如图 3 所示,
- 1. 绘制a从0→ ∞ 变化的闭环系统根轨迹;
- 2. 当系统阶跃响应中含有 e^{-4t} sin ωt 的运动模态时,求对

应的a值。

本题分数	16
得 分	

四、已知某最小相位系统的开环对数幅频渐近线如图 4 所示,用奈氏判据判断系统稳定性,并求系统的相角裕度。

本题分	数	18
得	分	

五、已知采样系统的结构图如图 5 所示,试分析采样系统的稳定性,并求出r(t)=1(t)时的稳态输出 $c^*(\infty)$ 以及c(2T),其中T=1。

本题分数	16
得 分	

六、已知非线性系统的结构图如图 6 所示,图中非线性元件的描述函数为 $N(A) = \frac{4M}{\pi A} + K$,其中 M = 1, K = 0.5 。

要求:

- 1.分析周期运动的稳定性;
- 2.求出稳定周期运动的振幅 A 和频率 ω 以及 c(t) 表达式。

图 6

$$\begin{split} -\cdot, \quad E(s) = & \frac{1\cdot(1+G_2H_2)-G_2G_3H_3}{1+G_1H_1+G_2H_2+G_1G_2H_3+G_1G_2H_1H_2} \cdot R(s) \\ & + \frac{-G_2H_2}{1+G_1H_1+G_2H_2+G_1G_2H_3+G_1G_2H_1H_2} \cdot N(s) \end{split}$$

$$\equiv$$
 $A=20$, $K=100$. $t_s = \frac{3.5}{\xi \omega_n} = 0.7s$.

 $\Xi \times a=3.91$ °

$$\square$$
 \(\gamma = 180 + \varphi = \arctg(4) - \arctg(0.3) = 59\circ\)

五、系统稳定。
$$c^*(\infty)=1$$
 以及 $c(2T)=-6(e^{-1}-e^{-2})$

六、 产生稳定的周期振荡,
$$\omega = \sqrt{3}$$
 , $A = \frac{4}{1.5\pi}$, $c(t) = -A \sin \sqrt{3}t$ 。

南京航空航天大学

第1页 (共5页)

二〇一八~二〇一九学年 第II学期《自动控制原理》考试试题

考试日期: 2019年6月24日 试卷类型: B 试卷代号:

		到	生号	学号]	姓名					
题号	_	=	三	四	五	六	七	八	九	+	总分
得分											

本题分数	16
得 分	

一、系统结构图如图 1 所示, 求 C(s)的表达式。

图 1

本题分数	16
得 分	

- 二、已知系统的结构图如图 2 所示, $r(t) = 2 \cdot 1(t)$,
 - 1. 当 $k_f = 0$ 时,求出系统的超调量 σ %和调节时间 t_s ;
 - 2. 当 k_f 不等于零时,若要使系统的超调量 σ %=20%,试求

 k_f 应为多大?并求出此时的调节时间 t_s 的值;

3. 比较上述两种情况,说明内反馈 k_f s 的作用是什么?

三、设系统的闭环特征方程为 $s^2(s+a)+K(s+1)=0$, (a>0)

- 1. 当a = 10 时,绘制 K: $0 \sim \infty$ 变化时的系统闭环根轨迹,并求出系统阶跃响应分别为无超调、阻尼振荡时 K的取值范围;
 - 2. 若使根轨迹只具有一个非零分离点,求出此时 a 的取值?

本题分数	20
得 分	

四、如图 3 所示,最小相位系统开环对数幅频渐近特性为 $L'(\omega)$,串联校正装置对数幅频特性渐近特性为 $L_{c}(\omega)$ 。

- 1. 求未校正系统开环传递函数 $G_0(s)$ 及串联校正装置 $G_r(s)$;
- 2. 在图中画出校正后系统的开环对数幅频渐近特性 $L''(\omega)$,并求出校正后系统的相位裕度 γ'' ;
 - 3. 简要说明这种校正装置的特点。

本题分数	16
得 分	

五、采样系统如图 4 所示,其中T为采样周期。

图 4

- 1. 计算系统开环及闭环脉冲传递函数;
- 2. 确定闭环系统稳定的K值范围;
- 3. 讨论采样周期 T 对系统稳定性的影响;
- 4. 设采样周期 T = 1s ,当 $r(t) = t \cdot 1(t)$ 时,系统能否满足稳态误差小于 0.1 的要求?若不能,如何改变采样周期 T 之值,使其在稳定前提下满足稳态误差小于 0.1 的要求?

附 Z 变换表
$$Z\left(\frac{1}{s}\right) = \frac{z}{z-1}$$
, $Z\left(\frac{1}{s+a}\right) = \frac{z}{z-e^{-aT}}$ o

16

六、某单位负反馈非线性系统如图 5 所示,非线性环节的描述函数为 $N(A) = \frac{1}{A}e^{-j\frac{\pi}{3}}$,线性部分的传递函数如图 5 所示。试分析:

- 1. 系统是否存在自振;
- 2. 若产生自振,计算自振频率及振幅。

$$- \cdot C(s) = \frac{[G_1(s)G_2(s) + G_3(s)G_2(s) + G_3(s)G_2(s)G_1(s)H_1(s)]R(s) + [G_2(s) + G_2(s)G_1(s)H_1(s)]N(s)}{1 + G_1(s)H_1(s) + G_2(s)H_2(s) + G_1(s)G_2(s)H_3(s) + G_1(s)H_1(s)G_2(s)H_2(s)}$$

2.
$$k_f = 8.9$$
 $t_s = 1.085(s)$

2、 $k_f = 8.9$, $t_s = 1.085(s)$, Ξ 、 1、当 $31.25 \le K \le 32$ 时系统阶跃响应为无超调。当 0 < K < 31.25 及 K > 32 时系统阶跃响应 为阻尼振荡。2、要使系统只有一个非零分离点,则 $(a+3)^2-16a=0$ 即a=9,a=1(舍去)

$$\square \ \ 1 \ \ G_0(s) = \frac{100}{s(\frac{s}{10}+1)(\frac{s}{100}+1)} \ ; \ \ G_{\varepsilon}(s) = \frac{K_{\varepsilon}(\frac{s}{0.4}+1)}{s^{v}(\frac{s}{0.02}+1)}$$

2.
$$G(s) = G_0(s)G_c(s) = \frac{100(\frac{s}{0.4} + 1)}{s(\frac{s}{10} + 1)(\frac{s}{100} + 1)(\frac{s}{0.02} + 1)}$$

由低频到高频绘制渐近特性曲线,遇转折频率处,改变渐近线的斜率。得到对数幅频特 性曲线如图所示:

$$\gamma'' = 180^{\circ} - 90^{\circ} + \arctan \frac{5}{0.4} - \arctan \frac{5}{0.02} - \arctan \frac{5}{10} - \arctan \frac{5}{100} = 56.23^{\circ}$$

3、 根据幅频曲线可知,采用的是串联滞后校正装置。以截止频率减小,快速性降低为代价, 使得系统相角裕度增加。

$$\Xi \cdot 1 \cdot G(z) = Z \left[\frac{1 - e^{-rz}}{s} \cdot \frac{K}{s} \right] = K \left(1 - z^{-1} \right) \frac{Tz}{\left(z - 1 \right)^2} = \frac{KT}{z - 1}; \quad \Phi(z) = \frac{G(z)}{1 + G(z)} = \frac{KT}{z - 1 + KT};$$

2、系统闭环稳定时 $0 < K < \frac{2}{T}$; 3、由(2)可知,采样周期 T 越大,系统的稳定域越小。

$$4$$
、 $K_v = \lim_{z \to 1} (z-1)G(z) = KT$, $e_{ss} = \frac{T}{K_v} = \frac{1}{K} \le 0.1 \Rightarrow K \ge 10$,此时不满足稳定的条件

 $0 < K < \frac{2}{T}$,系统不能稳定工作,要使系统稳定而且达到误差要求,则 $\frac{2}{T} \ge 10 \Rightarrow T \le 0.2$ 。

六、系统存在自振的频率为 1.155rad/s,振幅为 11.246。