پاسخ تمرین ها پاسخ سری ها سری سوم

مبانی برنامه نویسی (دکتر ابریشمی) - مهره۱۴۰

مزایای استفاده از زیرالگوریتم ها

جلوگیری از تکرار اضافی الگوریتم ها ساده شدن عیب یابی و اشکال زدایی الگوریتم بالا رفتن خوانایی برنامه

امکان تقسیم کار به چند بخش و واگذاری آن به افراد مختلف

fof...fof(x)

</>>

برای نوشتن الگوریتم ابتدا خود، مسئله را حل میکنیم. مسئله را به چند زیر مسئله تقسیم میکنیم.

fof(x)

fof(x)

fofof(x)

fkf(x,k)

f(x) زيرالگوريتم

$$f \leftarrow x * x + 2 * x + 2 \quad .1$$

2. برگشت

زیرالگوریتم fkf(x,k)

$$i \leftarrow 1, y \leftarrow x$$
 .1

دستورات ۳ تا زمانی که
$$(i \leq k)$$
 دستورات ۳ تا ۶ داد .2

$$y \leftarrow f(y)$$
 .3

$$i \leftarrow i + 1$$
 .4

$$fkf \leftarrow y$$
 .5

الگوريتم اصلي

- 1. x و k را بخوان.
- $result \leftarrow fkf(x,k)$.2
 - 3. *result* را چاپ کن.
 - 4. پایان.

02 اعداد دست یافتنی

زيرالگوريتم removeRightZeros(x)

$$y \leftarrow x$$
 .1

د. تا زمانی که
$$(y \neq 0)$$
 و $(y \neq 0)$ دستور ۳ را تکرار کن: 2

$$y \leftarrow y/10$$
 .3

$$removeRightZeros \leftarrow y$$
 .4

 $f \leftarrow removeRightZeros(x+1)$.1 2. برگشت

زيرالگوريتم isReproducted(x,A)

$$i \leftarrow 1$$
 .1

دستورات ۳ تا زمانی که $(i \leq 1000)$ دستورات ۳ تا ۴ را تکرار کن: 2

و برگشت is
$$Reproducted \leftarrow 1$$
 و برگشت $x = A(i)$.3

$$i \leftarrow i + 1$$
 .4

$$isReproducted \leftarrow 0$$
 .5

6. برگشت

الگوريتم اصلي

- 1. x را بخوان.
- 2. آرایه A را ه ه ۱ عضو در نظر بگیرید.
 - $count \leftarrow 0$, $repeated \leftarrow 0$.3
- دستورات α تا زمانی که $(repeated \neq 1)$ دستورات α تا γ
 - $y \leftarrow f(y)$.5
 - $repeated \leftarrow isReproducted(y,A)$.6
 - آنگاه: اگر repeated = 0
 - $count \leftarrow count + 1$
 - $A(count) \leftarrow y$

8. پايان

مبنای آینه ای

زيرالگوريتم bBaseToDecimal(a,b)

$$result \leftarrow 0, pow \leftarrow 1$$
 .1

دستورات ۳ تا زمانی که
$$(a \neq 0)$$
 دستورات ۳ د تا زمانی که $(a \neq 0)$

$$result \leftarrow result + (a\%10) * pow$$
 .3

$$a \leftarrow a/10$$
 .4

$$pow \leftarrow pow * b$$
 .5

$$bBaseToDecimal \leftarrow result$$
 .6

زيرالگوريتم decimalToCBase(c,d)

$$result \leftarrow 0, pow \leftarrow 1$$
 .1

دستورات ۳ تا زمانی که
$$(d \neq 0)$$
 دستورات ۳ تا ۵ را تکرار کن:

$$result \leftarrow result + (d\%c) * pow .3$$

$$d \leftarrow d/c$$
 .4

$$pow \leftarrow pow * 10$$
 .5

$$DecimalToCBase \leftarrow result$$
 .6

7. برگشت

زيرالگوريتم isPalindrome(x)

$$result \leftarrow 0, y \leftarrow x$$
 .1

دستورات ۳ تا زمانی که
$$(y > 0)$$
 دستورات ۳ تا ۴ دا تکرار کن: 2

$$result \leftarrow result * 10 + (a\%10)$$
 .3

$$y \leftarrow y/10$$
 .4

$$isPalindrome \leftarrow 1$$
 آنگاه $result = x$.5

$$isPalindrome \leftarrow 0$$
 در غیر اینصورت

6. **برگشت**

الگوريتم اصلي

- c ،b ،a 1. را بخوان.
- $d \leftarrow bBaseToDecimal(a,b)$.2
- $x \leftarrow decimalToCBase(c,d)$.3
- "YES" آنگاه چاپ کنisPalindrome(x) = 1.4
- در غیر اینصورت چاپ کن "NO"

5. پایان.