Ub. Copy, 20/05/22 (Morning.)

[This question paper contains 7 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 1174

A

Unique Paper Code

: 32347611

Name of the Paper

: Data Mining

Name of the Course

: B.Sc. (Hons.) Computer

Science

Semester

: VI

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Question No. 1 (Section A) is compulsory.
- Attempt any 4 Questions from Nos. 2 to 8 (Section B).
- 4. Parts of a question must be answered together.

Section A

1. (a) How are accuracy rate and error calculated for evaluation of a classification model? (2)

2.

(b)	Briefly describe the aggregation technique in da	a-
		(2)
(c)	Normalize the age of four students, given by t	he
	values {18, 21, 22, 25}.	(2)
(d)	Explain briefly the significance of dimensional	ity
		(2)
(e)	What is an outlier in context of a dataset?	(2)
(f)	What kind of Association Rules do you think wor	ıld
	be stronger and more interesting - the rules w	ith
	high support and low confidence or the rules w	ith
	low support and high confidence? Why?	(3)
(g)	Define the use of sampling in data mining? Na	me
	two sampling methods.	(3)
(h)	What are the three factors that affect t	he
	computational complexity of Apriori algorithm	?
		(3)
(i)	Distinguish between the following type of cluster schemes:	ing
	(i) Exclusive vs. Fuzzy Clustering	
	(ii) Complete vs. Partial Clustering	(4)

4	3	
(j)	What do you understand by the term missing of in data mining? Briefly describe two methods	
	dealing with missing data.	(4)
(k)	Define the terms scalability and heterogene	ity?
	What challenges do they pose while mining	the
	data?	(4)
(1)	Define precision and recall metrics used	for
	classification.	(4)
	Section B	
(a)	Explain discretization and binarization in cont	ext
	of data pre-processing.	(4)
(b)	Consider a categorical attribute Custor	ner
	satisfaction {unsatisfactory, poor, neutral, govery good}	od,
	(i) Convert the above categorical attribute	e to
	three binary attributes.	(2)
	(ii) Convert the same attribute to f	ive
	asymmetric binary attributes.	(2)
(c)	State the Apriori Principle.	(2)

3. For the given employee table, identify the type of each attribute (nominal, ordinal, interval-scaled, ratio-scaled), giving justification for your choice. For each attribute that has missing values, briefly state how will you handle missing values therein. (10)

Emp_id	Gender	Age	Home _pin _code	Date_ of_ joining	Desig.	Contact_No	Email_id
1001	M	32	232322	16/4/10	Captain	981828706	b@gma.com
1002	F	31	222321	21/3/11	Captain	981121072	f@gma.com
1003	F	34	243431	23/4/08	Major	992665007	??
1004	M	??	232432	21/5/09	Captain	987654390	r/agma.com
1005	M	35	454656	13/4/07	Colonel	981123456	d@gma.com
1006	??	36	465645	04/5/05	Colonel	786789564	a@gma.com
1007	F	30	234123	09/7/12	Captain	885678909	??
1008	M	32	676878	18/7/10	Major	??	x@gma.com
1009	M	33	565768	24/6/11	Colonel	989967890	e@gma.com
1010	M	30	498976	05/9/12	Major	??	d@gma.com

4. (a) Consider the following dataset where each data object has a class label along with five features associated with it.

Class	Cap Shape	Bruises	Odour	Stalk Shape	Habitat
Edible	Flat	Yes	anise	Tapering	grasses
poisonous	Convex	Yes	pungent	enlargening	grasses
Edible	Convex	Yes	almond	enlargening	grasses
Edible	Convex	Yes	almond	Tapering	meadows
Edible	Flat	Yes	anise	enlargening	woods
Edible	flat	No	none	enlargening	urban
poisonous	conical	Yes	pungent	enlargening	urban
Edible	flat	Yes	anise	enlargening	meadows
poisonous	convex	Yes	pungent	enlargening	urban

Consider the following pair of rules:

- (Odour = pungent) and (habitat = urban)
 → (Class = poisonous)
- $(Bruises = yes) \rightarrow (Class = edible)$
- (i) Are the two rules mutually exclusive?

 Justify your answer. (2)
- (ii) Calculate coverage and accuracy for each of the rules. (4)
- (b) Consider the one-dimensional labeled data set given below:

X:	0.5	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
Y:	-	-	+	+	-	-	+	+	-	-

Classify the data point x = 4.0 according to the 5-nearest neighbours, using the majority voting scheme. (4)

5. (a) What are the three conditions needed to be satisfied by a distance measure, so that it can be established as a distance metric? (3)

7

- (b) Show whether Euclidean Distance, used for finding distance between two data objects o₁(x₁, y₁) and o₂(x₂, y₂), can be treated as a distance metric.
- (c) With the help of a diagram, explain the usage of a dendrogram. (1)
- 6. Consider a transaction database D, consisting of nine transactions, as shown in the following table. Suppose the minimum support is set at 45% and the minimum confidence is set at 70%, show clearly the steps for finding out frequent itemsets of all sizes using the Apriori algorithm. Also generate the strong association rules from the frequent itemsets of size 3. (10)

TID	List of Items
T1	A,B,C,F
T2	B,D
T3	B,C
T4	A,B,C
T5	A,C,F
T6	B,C,F
T7	A,D
T8	A,B,C,E,F
T9	A,B,C

- 7. Consider a dataset of images of dogs and cats. Suppose there are 500 images of dogs and cats each. The classification model predicts 340 correct images of dogs and 410 correct images of cat. Perform the operations that follow:
 - (a) Draw the confusion matrix for this problem.
 - (b) Compute the classifier accuracy, error and sensitivity. (4+6)
- 8. Given the following data points: 4, 9, 18, 13, 11, 2, 6, 25, k = 3 and initial centroids $\mu_1 = 5$, $\mu_2 = 10$ and $\mu_3 = 15$. Show clearly the clusters and new cluster centres obtained after each iteration of K-means algorithm for two iterations of the algorithm.

(10)