

Pratical Assignment 2

General Info

- Deadline
 - Submission: December 7, 23:59
 - Submit your report/codes on Blackboard
- Penalty: -0.5/week
- ▶ Bonus: 0.5/group for the highest PA grades
- Can work with a group(max. 2 persons)
 - Register your team on Blackboard

General Info

- ▶ How to evaluate your PA? Average grade over all the sections.
 - Following the guidelines (sec.1)
 - Algorithm level (sec.2)
 - Code Reproducibility (sec.3)
 - Experimental Results (sec.4)
 - Presentation (sec.5)
 - Code (sec.6)
 - Overall impression (sec.7)
- Formula:
 - $\qquad \qquad \left(\frac{1}{7}\sum_{i=1}^{7}\sec[i]\right) + penalty + bonus$
- Other:
 - ▶ Plagiarism check: if report copies more than 30%, PA grade is 0.

Black-Box Optimization

- Function $f(x): \mathbb{R}^n \to \mathbb{R}$
- The analytic form is unknown, only f(x) can be evaluate

Using Evolution Strategy to solve black box functions

Five black box functions

- $f(x) \rightarrow \min_{x \in \mathbb{R}^n} f(x)$
 - ▶ $-100 < x_i < 100$, for all i in {1, ..., N}
 - ▶ N = 30
- Black-box problems can be found in PA2.zip, to be downloaded from blackboard.

```
Name 🔺
                                           >> x = rand(1,30) * 200 - 100
 bbf1.m
 bbf1.mat
                                           x =
 bbf2.m
 bbf2.mat
                                             Columns 1 through 15
 bbf3.m
 bbf3.mat
                                              77.3024 -94.2652 -2.0197 -66.4146 95.7361 42.5389
                                                                                                       0.0943
 bbf4.m
 bbf4.mat
                                             Columns 16 through 30
 bbf5.m
 bbf5.mat
                                             63.5094 44.4879 -70.0269 31.9211 3.7190 94.5949 29.7983
 🏝 test.m
                                           >> bbf1(x)
                                           ans =
                                              1.2494e+05
                                           >> bbf2(x)
                                           ans =
                                              6.2058e+05
                                           >> bbf3(x)
                                           ans =
                                             1.0616e+09
                                           >> bbf4(x)
                                           ans =
                                            125.9323
                                           >> bbf5(x)
Details
                                           ans =
```


Example settings

- Dimensionality: 30
- Lowerbounds and upperbounds: -100, 100
- Multiple independent runs: 20
- Evaluation budget: 10000
- To run your ES on *bbf1* with N=30, $lb=[-100]^N$, $ub=[100]^N$, and a budget of 10,000 function evaluations, you type

```
[xopt, fopt] =
studentnumber1_studentnumber2_es(@bbf1, 30,
-100 * ones(1,30), 100 * ones(1,30), 10000)
```

▶ The *bbf* functions expect an *N*-dimensional row vector *x* as input (i.e., a vector with a single row and *N* columns).

What to submit

- A runnable MATLAB code, containing your implementation of the algorithm
- A readable report that summaries how you implement it, followed a simple experimental comparison.

MATLAB code

Your ES implementation should consist of a single .m file named studentnumber1_studentnumber2_es.m (replacing studentnumber1 and studentnumber2 by your own studentnumbers) and should be structured as follows:

```
function [xopt, fopt] =
studentnumber1_studentnumber2_es(@function, dimension,
lowerbounds, upperbounds, budget)
...
end
```


What to report

Final solution quality after 10,000 function evaluations, averaged over 20 runs

	ES configuration A		ES configuration B	
Benchma rk	Avg	Std dev	Avg	Std dev
I				
2				
3				
4				
5				

What to report

- Convergence rate plot:
 - Optional: Comparison among different parameter settings,
 e.g., population size, selection scheme...

Figure 1: Convergence plot using 10,000 function evaluations, averaged over 20 runs