Листок 1

Задача 1.

- (а) Приведите пример, показывающий, что на неограниченной области принцип максимума для гармонической функции не выполняется.
- (b) Покажите, что для ограниченного решения u уравнения $\Delta u \lambda u = f$ на \mathbb{R}^d , где $\lambda > 0$ и f ограниченная функция, выполняется неравенство

$$\sup_{\mathbb{R}^d} |u| \le \lambda^{-1} \sup_{\mathbb{R}^d} |f|.$$

(c) Пусть к условиям пункта (b) дополнительно известно, что $|f(x)-f(y)| \leq C|x-y|^{\alpha}$, где C>0 и $\alpha\in(0,1)$. Докажите, что

$$|u(x) - u(y)| \le \lambda^{-1}C|x - y|^{\alpha}.$$

Задача 2. Пусть $Lu = \operatorname{tr}(AD^2u) + \langle b, \nabla u \rangle + cu$, где $A \geq 0$, $c \leq 0$.

- (a) Докажите, что в точке x_0 максимума функции u выполнено неравенство $Lu(x_0) \le 0$.
- (b) Пусть $a^{11}>0$, коэффициенты ограничены и Ω ограниченная область. Предположим, что $Lu\geq 0$. Докажите, что $\sup_\Omega u\leq \sup_{\partial\Omega} u$.
- (c) Приведите пример, показывающий, что в пунктах (a) и (b) нельзя отказаться от условия $c \leq 0$.
- **Задача 3.** В условиях предыдущей вместо условия $c \leq 0$ предположим, что $LV \leq 0$ для некоторой положительной функции V. Пусть $a^{11}>0$ и Ω ограниченная область. Докажите, что если $Lu \geq 0$ в Ω и $u \leq 0$ на $\partial\Omega$, то $u \leq 0$ в Ω .
- Задача 4. Пусть u положительная гармоническая функция на Ω . Применяя метод Бернштейна к функции $\ln u$ докажите неравенство Харнака:

$$\sup_{B} u \le C \inf_{B} u,$$

где B – замкнутый шар в Ω , а константа C зависит лишь от B и Ω , но не зависит от u.

- **Задача 5.** Пусть $L : C^{\infty}(\mathbb{R}^d) \to \mathcal{F}(\mathbb{R}^d)$, где $\mathcal{F}(\mathbb{R}^d)$ множество вещественнозначных функций. Предположим, что L линейное отображение и $Lu(x_0) \leq 0$, если x_0 точка локального максимума функции u. Докажите, что $Lu = \operatorname{tr}(AD^2u) + \langle b, \nabla u \rangle + cu$, где $A \geq 0$, c < 0.
- Задача 6. Пусть $\Delta u + H(x, \nabla u) \lambda u = f$ на \mathbb{R}^d , где функция H липшицева, H(x,0) = 0, $\lambda > 0$ и f ограниченная функция. С помощью принципа максимума оцените $\sup |u|$ для ограниченного решения u. Предполагая, что $|f(x) f(y)| \leq C|x-y|$, получите аналогичную оценку для u.
- **Задача 7.** Скажем, что $u \in C(\overline{\Omega})$ является субгармонической функцией в обобщенном смысле, если

$$\int_{\Omega} u(x)\Delta v(x) dx \ge 0 \quad \forall v \in C_0^{\infty}(\Omega), \quad v \ge 0.$$

Докажите, что это определение эквивалентно определению, данному на лекции: для всякого шара B в Ω и всякой гармонической функции v на B из неравенства $u \leq v$ на ∂B следует неравенство $u \leq v$ на B.

1