Virtual Clusters and Resource Management:

Migration of Memory, Files and Network Resources & Dynamic Deployment of Clusters

Y. V. Lokeswari AP/ CSE

SSN College of Engineering

Reference: Distributed and Cloud Computing
K. Hwang, G. Fox and J. Dongarra

K. Hwang, G. Fox and J. Dongarra

Design Issues of Virtual Cluster

- **Live Migration Of VMs**
- Memory, File system and Network Migration
- **Dynamic Deployment of Virtual Clusters**

Outline

- **Memory Migration**
- **File System Migration**
- Network Migration
- Live Migrations of VMs between 2 Xen enabled Hosts.
- **Dynamic Deployment of Virtual Clusters**

Memory Migration

- **Memory Migration** is in the range of hundreds of megabytes to few gigabytes.
- In Internet Suspend-Resume (ISR) technique memory states are likely to overlap in suspended and resumed instances of VM.
- ISR exploits **Temporal Locality**
- Temporal Locality refers that memory states differ **only** by the **amount** of **work** done **since VM** is last **suspended** and before being **initiating migration**.
- Each file in a file system must be represented as a tree of small sub-files.
- The **copy** of tree **exist** in both **suspended** and **resumed** VM
- This ensures that **transmission only** for the **files** which have been **changed**.

File System Migration

- In VM migration, system should provide VM with consistent and location independent view of file system available on all host.
- Provide each VM with its own virtual disk which the file system is mapped.
- Now transport the contents of Virtual disk along with other VM states.
- If the disk capacity is very high, maintain global file system across all machines where VM can be located.
- Instead of having a **distributed file system**, every VM will have access only to its **local file system**.
- **Copy** the **virtual disk** contents to VM's **local file system** for resumed VM.
- Spatial Locality: Transmit only difference between two file systems at suspending and resuming locations

Network Migration

- Migrating VM should maintain all open connections without relying on forwarding or redirection mechanisms.
- To locate and communicate with VM, each VM is assigned with Virtual IP address, distinct from IP address of host.
- VMM maintains mapping of Virtual IP with Virtual MAC address.
- If source and destination machines of VM migration are in a single LAN, migrating host advertise that IP is moved to new location, which reconfigure all peers to send files to new location.

Copy Strategies in Live Migration

- Live migration means moving VM from one physical machine to another, while keeping OS environment and applications unbroken.
- Pre-copy: VM could be migrated without suspending VM and keep applications running during migration.
- First transfer copies all the pages and copies only modified memory pages on subsequent iterations until writeable working set becomes small..
- Drawback: This consumes large amount of network bandwidth to transfer dirty pages in each round.
- When the network bandwidth is limited, total migration time increases to 10 minutes.
- Solution: We can set maximum number of iterations.

Copy Strategies in Live Migration

- A Checkpointing/recovery and trace/replay approach is proposed to enable fast VM migration. This reduces downtime and total migration time.
- Post-Copy: All memory pages are transferred only once during the whole migration process.
- Advantage: Total migration time is reduced.
- Drawback: Downtime is higher because latency of fetching pages from source node before VM is resumed on target.
- **Solution**: Memory **compression** and **decompression** algorithms can be applied to **reduce memory overhead**.

Live Migration of VM in Xen environment

FIGURE 3.22

Live migration of VM from the DomO domain to a Xen-enabled target host.

Dynamic Deployment of Virtual Clusters

Virtual Cluster Projects

Table 3.5 Experimental Results on Four Research Virtual Clusters

Project Name	Design Objectives	Reported Results and References
Cluster-on-Demand at Duke Univ. Cellular Disco at Stanford Univ.	Dynamic resource allocation with a virtual cluster management system To deploy a virtual cluster on a shared-memory multiprocessor	Sharing of VMs by multiple virtual clusters using Sun GridEngine [12] VMs deployed on multiple processors under a VMM called Cellular Disco [8]
VIOLIN at Purdue Univ.	Multiple VM clustering to prove the advantage of dynamic adaptation	Reduce execution time of applications running VIOLIN with adaptation [25,55]
GRAAL Project at INRIA in France	Performance of parallel algorithms in Xen-enabled virtual clusters	75% of max. performance achieved with 30% resource slacks over VM clusters

COD Project @ DUKE Univ

FIGURE 3.23

COD partitioning a physical cluster into multiple virtual clusters.

(Courtesy of Jeff Chase, et al, HPDC-2003 [12])

Cluster-on-Demand (COD Project) at Duke University

- The COD (Cluster-on-Demand) project is a virtual cluster management system for dynamic allocation of servers from a computing pool to multiple virtual clusters.
- The vClusters run a **batch schedule** from **Sun's GridEngine** on a web server cluster.
- The COD system can respond to load changes in restructuring the virtual clusters dynamically.
- The Duke researchers used the **Sun GridEngine** scheduler to demonstrate that dynamic virtual clusters are an enabling abstraction for advanced resource management in computing utilities such as grids.

Cluster-on-Demand (COD Project) at Duke University

FIGURE 3.24

Cluster size variations in COD over eight days at Duke University.

VIOLIN Project at Purdue University

FIGURE 3.25

VIOLIN adaptation scenario of five virtual environments sharing two hosted clusters; Note that there are more idle squares (blank nodes) before and after the adaptation.

(Courtesy of P. Ruth, et al. [24,51])

VIOLIN Project at Purdue University

- The Purdue VIOLIN Project applies live VM migration to reconfigure a virtual cluster environment.
- Its purpose is to achieve **better resource utilization** in executing multiple **cluster jobs** on multiple **cluster domains**
- A virtual execution environment is able to relocate itself across the infrastructure.
- The adaptation is **transparent** to both users of virtual environments and administrations of infrastructures.

Summary

- **Memory Migration**
- **File System Migration**
- **■** Network Migration
- Live Migrations of VMs between 2 Xen enabled Hosts.
- **Dynamic Deployment of Virtual Clusters**

Thank You