Exp. No. 3 Experiment/Subject Qualitative Analysis of conting/25/2023 Name Emmeen Key lash Ramesh Lab Partner Locker/ Desk No.	Course & Cham 213 Section No. 203
Qualitative Analysis of Cations	
Reference "an experiments in thinking scientifelly Sardella J Chem Ed. 69 933 (1992)	"D-J
Purpose! Anatyze whereon Solution that may contains	o Bara
Purpose: analyze known and unknown solution may	
Experient so we can be precaution such rection. Material: Fe ³⁺ , Ni ²⁺ Mg ²⁺ , Cu ²⁺	
Procedure: In each experiment, wrage four test	according
to pose lab manual picture. First row of tubes will correpords to rows on to	ble.
First column of test tube is corrending to coli the data tables	

Exp. No.	Experiment/Subject		Date	
Name		Lab Partner	Locker/ Desk No.	Course & Section No.
disst &	low tables. 2. do lation. 3-put solution septe	the same 4 drops of (It the same	of the (Fe (No)). for another test of reation cipitates.	takes (5-16) Pirt test take takes (5-16)
Solution for 2 to the solution	in the vial 3. Waste contain	ion - 1- Try Find the 2- Repart Same	step as the refully powr at declean test tube	Re unknown Known solution.
Signature		Date Witn	ess/TA	Date

		A	B	B 日	E
1	0-25M Fe(No3)3	7.5%. Nal mix little yellow und orange.	Na Fel (N) 2 mostification who sittle gaton for see blue and little porticul	Dime Highyloxim Aggar yellow Bridge with Michanount of Prostricles	IM NaOH Iittle dan orage.
2.	0.1 M Ni(No3)2	Clear/No Color	yreen with some particles.	particles	mor particle that sticked in the truble
3.	0.1 M Mg (NO3)2	Clear/No color	color but no particles	clean, non punticles	Bizac with
4	0.1M (u(No3)2	bithrof particles skiwith tube.	boown with high particles.	but some farticles	little blue little particles
5	Unknocon	mad brown with more portical	dark browwith higher particles	clean non particles	blue and blue and anount

Signature	Date	Witness/TA 100	Date

Discussion: Cu (NO3)2 is the unknown liquid that was given to my instructor. I was able to identify the unknown chemical through the similar types of reactions that occurred in the five known chemicals, such as Fe (NO3)3, Ni (NO3)2, Mg (NO3)2, and Cu (NO3)2, which are reacted based on different chemicals that were added. Unknown and Cu(NO3)2 have similar reactions with other chemicals such as 7.5% NaI will react and form a yellowish liquid with some precipitate, Na4Fe(CN)6 is reacted and forms dark brown with a higher amount of precipitate, Dimethylglyoxime doesn't change it apprentices or create precipitate, and 1 M NaOH reacts and changes its color of light blue with no precipitate. These are reactions that include the unknown chemical CU(NO3)2.

Conclusion: The experiment's purpose is to deter the known and unknown ions so that precautions can be performed before the experiments. Gones were achieved by observing serval types of chemicals react to the known to determine the unknown. And see if it can be a precaution before an experiment that will be conducted in the future. Expect that chemicals can change their physical appearance and form some or higher level of precipitation. The most of solutions reacted and changed their colors but some of them were clear when they reacted with 0.25 Dimethylglyoximes. The Unknown had related the same types of reaction as CU(NO3)2 which has been predicted as the unknown solution. In future experiments, there Needs to be careful and mindful about the types of chemicals that react and strictly follow the table content.

1. Balance and classify the following reactions: combination (C), decomposition (D), single replacement (SR), double replacement (DR) or combustion (CB).

Classification

a.
$$_{1}C_{3}H_{8}(g) + _{5}O_{2}(g) \rightarrow _{3}CO_{2}(g) + _{4}H_{2}O(l)$$

b.
$$2 \text{ K (s)} + 2 \text{ H}_2\text{O (l)} \rightarrow 2 \text{ KOH (aq)} + 1 \text{ H}_2\text{ (g)}$$

c.
$$1 \text{ MgSO}_4 \text{ (aq)} + 1 \text{ Na}_2\text{CO}_3 \text{ (aq)} \rightarrow 1 \text{ MgCO}_3 \text{ (s)} + 1 \text{ Na}_2\text{SO}_4 \text{ (aq)}$$

d.
$$\underline{\hspace{0.1cm}}$$
 Cl₂ (g) + $\underline{\hspace{0.1cm}}$ NaI (s) \rightarrow $\underline{\hspace{0.1cm}}$ NaCl (s) + $\underline{\hspace{0.1cm}}$ I₂ (s)

e.
$$\underline{2}$$
 NaNO₃ (s) \rightarrow $\underline{2}$ NaNO₂ (s) + $\underline{1}$ O₂ (g)

$$f. \quad \underline{\ \ }^{1} \ H_{2}\left(g\right) + \underline{\ \ }^{1} \ Cl_{2}\left(g\right) \rightarrow \underline{\ \ }^{2} \ HCl\left(g\right)$$

$$g. \quad \underline{^{3}} Ca(C_{2}H_{3}O_{2})_{2} \ (aq) + \underline{^{2}} H_{3}PO_{4} \ (aq) \rightarrow \underline{^{1}} Ca_{3}(PO_{4})_{2} \ (s) + \underline{^{6}} HC_{2}H_{3}O_{2} \ (aq)$$

h.
$$2$$
 $H_2O_2(l) \rightarrow 2$ $H_2O(l) + 1$ $O_2(g)$

j.
$$\underline{1}$$
 BaCl₂ (aq) + $\underline{1}$ K₂CrO₄ (aq) \rightarrow $\underline{1}$ BaCrO₄ (s) + $\underline{2}$ KCl (aq)

2. Balance each of the following equations. Then write the total (complete) ionic equation for each reaction. Finally write the net ionic equation for each reaction. *Remember: insoluble substances are not present as separate ions in solution.*

a.
$$\underline{\hspace{0.5cm}}^{\hspace{0.5cm}} Pb(NO_3)_2 (aq) + \underline{\hspace{0.5cm}}^{\hspace{0.5cm}} NaOH (aq) \rightarrow \underline{\hspace{0.5cm}}^{\hspace{0.5cm}} Pb(OH)_2 (s) + \underline{\hspace{0.5cm}}^{\hspace{0.5cm}} NaNO_3 (aq)$$

Complete Ionic equation: Pb+2(aq)+2NOs-(aq)+2O-2(aq)+2h+(aq) ---> Pb(OH2)(s)+ 2Na+ +2No-3

Net ionic equation:

b.
$$2 \text{Na}_3\text{PO}_4 \text{ (aq)} + 1 \text{Ca}(\text{NO}_3)_2 \text{ (aq)} \rightarrow 1 \text{Ca}_3(\text{PO}_4)_2 \text{ (s)} + 1 \text{Na}_3\text{NO}_3 \text{ (aq)}$$

Complete Ionic equation: 2Na+3+2PO-3 4+ 3Ca+2+3NO-3--->CA3(PO4)2+6Na+6NO3-

Net ionic equation: CI- + Ag +--> AgCI

c.
$$\underline{1}$$
 NaCl (aq) + $\underline{1}$ AgNO₃ (aq) $\rightarrow \underline{1}$ AgCl (s) + $\underline{1}$ NaNO₃ (aq)

Complete Ionic equation: Na+ + Cl- + Ag+ + NP-3---> AgCl + Na+ + NO-3

Net ionic equation: Cl- + Ag--> AgCl

d.
$$_{1}$$
Na₂SO₄ (aq) + $_{2}$ AgNO₃ (aq) $\rightarrow _{1}$ Ag₂SO₄ (s) + $_{2}$ NaNO₃ (aq)

Complete Ionic equation: Na2+ + SO4 -2 + 2Ag+ + 2NO3- --> AgCL+ NA+ + No3-

Net ionic equation: SO4 -2 + 2Ag+--> Ag SO4

e.
$$\frac{1}{1}$$
 Na₂CO₃ (aq) + $\frac{1}{1}$ BaCl₂ (aq) \rightarrow $\frac{1}{1}$ BaCO₃ (s) + $\frac{1}{2}$ NaCl (aq)

Complete Ionic equation: Na2+ + CO3-3 + Ba+2 + Cl2- ---> BCO3+ 2NA+ 2Cl-

Net ionic equation: Co-2 3 + Ba +2 --> BaCO3

f.
1
 Na₂CO₃ (aq) + 2 HCl (aq) \rightarrow 2NaCl (aq) + 1 H₂O (l) + 1 CO₂ (g)

Complete Ionic equation: Na2+ + C03-2 + 3H+ 2Cl---> 2NA+ 2Cl- + H20 + CO2

Net ionic equation: CO3-2 + 2H+ --> H2O+ CO2