Mestrado Integrado em Engenharia Informática e Computação EIC0004 ANÁLISE MATEMÁTICA – 2016/2017 1º Semestre - RECURSO GLOBAL - 26 Janeiro 2017

Duração da prova: 2h

Teste sem consulta. Não é permitida a utilização de tabelas, formulários ou máquina de calcular com capacidade gráfica. Durante a realização da prova não é permitida a saída da sala. A desistência só é possível 30 minutos após o início do teste.

GRUPO I

1. Considere a figura seguinte que representa um depósito cilíndrico de combustível (como os que se encontram enterrados nos postos de venda ao público) em que o raio da secção transversal do depósito \acute{e} uma constante R.

Para um nível de combustível h inferior a R, a área da secção transversal de líquido é dada por:

$$A = R^2 \left[arccos \left(1 - \frac{h}{R} \right) - \left(\frac{R - h}{R^2} \right) \sqrt{R^2 - (R - h)^2} \right].$$

Considere o depósito cilíndrico com 4 metros de comprimento e raio R=1 metro. Enche-se o depósito à razão de 1 m³/hora. <u>Usando a regra de derivação em cadeia</u>, calcule a taxa de variação do nível de combustível $\frac{dh}{dt}$ quando o nível h atinge metade do raio R.

2. Esboce a região Q do plano limitada horizontalmente pelos gráficos das funções y =0 e $y = |\cos(x)|$ e verticamente pelas retas x = 0 e $x = \pi$. Determine a área da região Q.

GRUPO II

3. Calcule os seguintes integrais usando técnicas apropriadas:

a)
$$\int \frac{\sqrt{x^2-2}}{x} dx$$

a)
$$\int \frac{\sqrt{x^2 - 2}}{x} dx$$
 b) $\int \frac{2x + 1}{(x^2 + 1)(x - 1)} dx$ c) $\int \frac{\ln(\ln x)}{x} dx$

c)
$$\int \frac{\ln(\ln x)}{x} dx$$

- **4.** Considere a curva C de equação polar $r = 2 + sen\theta$
- a) Determine o domínio, eixos de simetria e esboce o gráfico da referida curva usando coordenadas polares.
- b) Identifique e calcule a área da região do plano interior à curva C.

GRUPO III

5. Calcule a solução geral da equação diferencial:

$$2y' = \frac{y}{x} - \frac{x}{v^2} \quad , \qquad x > 0$$

6. Utilizando as técnicas das transformadas de Laplace, resolva o seguinte problema de valor inicial:

$$y'' - y = \begin{cases} 4e^t, & 0 < t < \pi \\ 0, & t > \pi \end{cases}, \quad y(0) = y'(0) = 0$$

GRUPO IV

- 7. Investigue a convergência da série $\sum_{n=1}^{\infty} \left(\frac{3+n}{2^n} \right)$ justificando de forma conveniente.
- **8.** Considere a função f(x) de período 2π ,

$$f(x) = x^2, \qquad -\pi < x < \pi$$

- a) Esboce o gráfico da função no intervalo $-3\pi < x < 3\pi$.
- **b**) Calcule os coeficientes da série de Fourier de f(x): a_0 , a_n e b_n ; escreva a fórmula geral da série de Fourier de f(x).

Tabela de Transformadas de Laplace

	f(t)	$\mathcal{L}\left\{f\right\}$	Domínio		4 0000	s	
1	1	$\frac{1}{s}$	s > 0	7	$\cos(wt)$	$\overline{s^2 + w^2}$	s > 0
		<i>s</i>		8	$\sin\left(wt\right)$	$\frac{w}{s^2 + w^2}$	s > 0
2	t	$\frac{1}{s^2}$	s > 0		1 7 ()	s- + w- s	> 1 1
3	t^2	$\frac{2}{s^3}$	s > 0	9	$\cosh\left(at\right)$	$\overline{s^2 - a^2}$	s > a
	· ·		3 / 0	10	$\sinh\left(at\right)$	$\frac{a}{s^2 - a^2}$	s > a
4	$t^n, n \in \mathbf{N_0}$	$\frac{n!}{s^{n+1}}$	s > 0	11	$e^{at}t^n$	n!	
				11	e^-t	$(s-a)^{n+1}$	s > a
5	$e^{at}f(t)$	F(s-a)	$s > \gamma + a$	12	$e^{at}\cos\left(wt\right)$	$\frac{s-a}{(s-a)^2 + w^2}$	s > a
6	e^{at}	$\frac{1}{s-a}$	s > a	13	$e^{at}\sin(wt)$	$\frac{w}{(s-a)^2 + w^2}$	s > a
		s-u				$(s-a)^2+w^2$	

$$\mathcal{L}[t^n f(t)] = (-1)^n [F(s)]^{(n)}$$

$$\mathcal{L}[f'(t)] = s\mathcal{L}[f(t)] - f(0) \qquad \qquad \mathcal{L}[f''(t)] = s^2\mathcal{L}[f(t)] - sf(0) - f'(0)$$