Aluno: Pedro Sobota

Exercícios

Q 1.
$$A = [0, 1]$$
. $A_i = ?$

$$A_i = (0, 1).$$

Q 2.
$$A = (0, 1)$$
. $A_i = ?$

$$A_i = (0,1).$$

O interior de um aberto é o próprio conjunto.

Todo ponto em A tem vizinhança contida em A.

Q 3.
$$A = \mathbb{N}$$
. $A_i = ?$

$$A_i = \{2, 3, \dots\}.$$

Para $B = \{1, 2, 3\}, B_i = \{2\}, e para C = \{n, n+1,\}, C_i = \{n+1, n+2,\}.$

Q 4.
$$A = (0,1)$$
. $A_e = ?$

$$A_e = (-\infty, 0) \cup (1, \infty).$$

Nenhum ponto em A_e tem vizinhança com intersecção não-vazia com A.

Q 5.
$$A = \mathbb{Q}$$
. $A_e = ?$

$$A_e = \emptyset$$
.

Q 6. $A_e = (CA)_i$. Demonstrar.

Se A é aberto:

- ullet O complemento de A é fechado e o interior do complemento é aberto.
- \bullet O exterior de A é aberto.

Se A é fechado:

- ullet O complemento de A é aberto e o interior do complemento é o próprio complemento.
- \bullet O exterior de A é aberto.

$$CA = x \notin A$$
.

$$(CA)_i = x \mid x \notin A \land \exists O(x) \not\subset A.$$

• $x \notin A$ é implicado por $\exists O(x) \not\subset A$.

$$A_e = x | \exists O(x) \not\subset A \Rightarrow$$

$$A_e = (\mathcal{C}A)_i$$
.

Q 7.
$$A = (0, 1)$$
. $\partial A = ?$

$$\partial A = \{0, 1\}.$$

Todos os pontos de A têm vizinhança sem intersecção com $\mathcal{C}A$, então $\partial A \subset \mathcal{C}A$.

Q 8.
$$A = \mathbb{N}$$
. $\partial A = ?$

$$CA = \mathbb{R} - \mathbb{N} = \dots \cup (-1, 0) \cup (0, 1) \cup \dots$$

$$\partial A = \{..., -1, 0, 1, ...\}.$$

Q 9.
$$A = \mathbb{Q}$$
. $\partial A = ?$

$$CA = \mathbb{R} - \mathbb{Q}. \ (?)$$

Q 10.
$$A = (0,1)$$
. $\bar{A} = ?$

$$\bar{A} = [0, 1] = A \cup A' = (0, 1) \cup \{0, 1\}.$$

Q 11.
$$A = (-\infty, 0] \cup \{1, 2\}$$
. $\bar{A} = ?$

Os pontos limite de $(-\infty,0]$ são $(-\infty,0]$. Os pontos limite de $\{1,2\}$ são \varnothing , pois nenhum ponto tem toda vizinhança furada com intersecção com $\{1,2\}$. Então $\bar{A} = (-\infty,0]$.

Ou

O interior de $(-\infty,0]$ é $(-\infty,0)$. Como $\{1,2\}$ não está contido em $(-\infty,0]$, seu interior importa, e é \varnothing pois há vizinhança de todos os pontos em $\{1,2\}$ sem intersecção com $\{1,2\}$. O ponto limite de $(-\infty,0]$ é $\{0\}$, então $\bar{A} = (-\infty,0) \cup \{0\} = (-\infty,0]$.

Q 12. A = [0, 1]. Quais são os pontos isolados de $A(A_I)$?

$$A_I = \varnothing$$
.

Nenhum ponto em A tem vizinhança sem intersecção com A.

Q 13. A = (0,1). Quais são os pontos isolados de $A(A_I)$?

 $A_I = \varnothing$.

Idem.

Q 14. $A = \mathbb{N}$. Quais são os pontos isolados de $A(A_I)$?

 $A_I = \mathbb{N}$.

Todos os pontos de $\mathbb N$ têm vizinhança sem intersecção com $\mathbb N.$

Q 15. $A = \mathbb{Q}$. Quais são os pontos isolados de $A(A_I)$?

 $A_I = \mathbb{Q}$. Como \mathbb{Q} é denso em \mathbb{R} , qualquer intervalo em \mathbb{Q} contém pontos de \mathbb{Q} .

Q 16. $A = (-\infty, 0] \cup \{1, 2\}$. Quais são os pontos isolados de $A(A_I)$?

 $(-\infty,0]_I=\varnothing$, pois todo ponto não tem vizinhança sem intersecção com $(-\infty,0]$. $\{1,2\}_I=\{1,2\}$, pois todos os pontos têm vizinhanças sem intersecção com $\{1,2\}$. $A_I=\{1,2\}$.

Q 17.
$$A = \left\{ \frac{1}{n}, n \in \mathbb{N} \right\}$$
. $A' = ?$

$$\lim_{n\to\infty}\frac{1}{n}=0.$$

Para todo $\varepsilon > 0$, $(-\varepsilon, \varepsilon) \cap A \neq \emptyset$, então $0 \in A'$.

Para qualquer $n < \infty$, existe $\varepsilon \in \mathbb{R}$ tal que $(n - \varepsilon, n + \varepsilon) \cap A = \emptyset$.

Por exemplo, para $\varepsilon = \frac{1}{2}$, qualquer $(n - \varepsilon, n + \varepsilon) \cap A = \varnothing$.

Então A' = 0.

Proposições

P 1. O fecho de um conjunto fechado é o próprio conjunto.

P 2. O interior de um conjunto aberto é o próprio conjunto.

P 3. O fecho de um conjunto aberto é a união do próprio conjunto com seus pontos-limite.

- **P** 4. $(a,b) = [a,b]_i$.
- P 5. A união de um aberto com seu fecho é igual à união de seu fecho com o interior de seu fecho.
- P 6. Um ponto isolado é um ponto não-limite.
- P 7. Um conjunto discreto é formado por apenas pontos isolados.
- P 8. Um conjunto aberto é formado por apenas pontos limite. (?)
- P 9. Se um conjunto é discreto não é aberto, e vice-versa.
- P 10. Um conjunto aberto é uma vizinhança (aberta) de cada um de seus pontos.
- P 11. Um conjunto aberto é a união dos conjuntos abertos que contêm cada um de seus pontos.
- P 12. Os pontos limite de um aberto são seus pontos fronteira.
- P 13. O exterior de um conjunto aberto é aberto.
- P 14. O interior do complemento de um conjunto aberto é igual ao interior do complemento de seu fecho. (Questão 6)
- O interior do complemento do fecho de um conjunto aberto é igual ao complemento do fecho, então a proposição pode ser reduzida a
- O interior do complemento de um conjunto aberto é igual ao complemento de seu fecho.
- x tal que existe vizinhança contida no complemento =x tal que x não pertence ao fecho
- x tal que existe vizinhança contida no complemento = x tal que \neg (toda vizinhança furada tem intersecção)
- x tal que existe vizinhança sem intersecção = x tal que existe vizinhança furada sem intersecção,
- sempre verdade porque uma vizinhança não ter intersecção \Leftrightarrow a vizinhança furada de mesmo centro não ter intersecção.