Física Quântica I / Mecânica Quântica

Introdução com uma experiência emblemática

Vítor M. Pereira

Departamento de Física | Universidade do Minho

2021/22 — 2º Sem

Lição 1

Uma brutal inevitabilidade da realidade física

O majestoso edifício da física clássica por volta de 1900

- Mecânica, Eletrodinâmica, Termodinâmica, Teoria cinética (gases).
- Vinha sendo perturbada com dificuldades fenomenológicas crescentes e insanáveis.

créditos: Quantum theory, a graphic guide

SOLVAY CONFERENCE 1927

colourized by pastincolour.com

		A. PIC	CARD E.	HENRIOT	P. EHRENFES	ST Ed. HERSEN T	h. DE DONDER	E. SCHRÖDINGE	R E. VERSCHAFFE	LT W. PAULI	W. HEISENBERG	R.H FOWLER	R L. BRILLOUIN
P. DEBYE		M. KNUDSE	N	W.L. BRA	GG	H.A. KRAMERS	P.A.M. DIRAC	A.H. COMPTO	N L. de BRO	GLIE	M. BORN	N.	BOHR
1.	LANG	MUIR	M. PLANCK	1	Mme CURIE	H.A. LORENTZ		A. EINSTEIN	P. LANGEVIN	Ch.E. GUY	re C.T.	R. WILSON	O.W. RICHARDSON
Absents : Sir W.H. BRAGG, H. DESLANDRES et E. VAN AUBEL													

[- reunião do gabinete de crise da física -]

Radiação de corpo negro e a hipótese de Planck

- Planck introduz uma regra de quantização *ad-hoc*: $E = n h \nu$
- h emerge como cunho de características incontornavelmente quânticas:

$$h = 6.63 \times 10^{-34} \,\mathrm{m^2 kg/s}, \qquad \hbar \equiv \frac{h}{2\pi} = 1.05 \times 10^{-34} \,\mathrm{m^2 kg/s}$$

Efeito fotoelétrico

- A experiência de Philipp Lenard
- Interpretação de Einstein e o conceito de fotão: $E=\hbar\omega$

Espectro de absorção/emissão de gases

- Ocorre apenas para um conjunto discreto e precisamente definido de frequências.
- Bohr postula a quantization da energia (estabilidade átomica): $E_n = -\frac{R_H}{n^2}$

Ondas de matéria de De Broglie (dualidade partícula-onda)

- Ondas EM ($\omega = ck$) vs fotões: E = pc \longrightarrow $= \hbar k = h/\lambda$
- Postula comprimento de onda característico de uma partícula como $\lambda_B \equiv h/p$
- λ_B permite na prática averiguar a necessidade de tratamento quântico (vs clássico)

Uma abertura, descrição clássica

Duas aberturas, descrição clássica

Partículas clássicas particles particles screen with optical optical screen (front view)

Ondas clássicas

Partículas quânticas

Partículas quânticas (1 fenda)

Partículas quânticas (2 fendas)

Interferência de partículas!?... É mesmo real!?

Completamente! Dois exemplos:

- Travessia de fotões individuais num setup 2-fendas: link
- Travessia de eletrões individuais num setup 2-fendas: link

Resultados da experiência de Tonomura *et al.* à medida que o tempo passa e mais eletrões chegam ao detector:

American Journal of Physics 57, 117 (1989)

Visualização recomendada

Uma descrição inspiradora nesta aula online, pelo Prof. R. Shankar (Yale University).

OK... What's the point?

É uma experiência emblemática dos aspetos e caraterísticas centrais da mecânica quântica, muitos deles contra-intuitivos com a experiência diária do mundo macroscópico:

- Propriedades dos sistemas quânticos sem análogo clássico:
 - Seu destino/evolução é determinado por um vector de estado ou função de onda, $\psi(r)$;
 - ψ determina a probabilidade de encontrar o sistema num dado estado num determinado momento;
 - ψ incorpora *toda* a informação sobre o estado do sistema;
 - Sobreposição linear de estados é uma característica intrínseca de sistemas quânticos:
 - Incerteza entre certos pares de grandezas físicas é inevitável;
 - Resultados de medidas experimentais apenas podem ser caracterizados em termos probabilísticos; $|\psi|^2$ determina essas probabilidades em cada caso;
 - Em geral, o estado do sistema n\u00e3o \u00e9 precisamente especific\u00e1vel at\u00e0 ao momento em que se realiza uma medic\u00e3o;
 - O processo de medição modifica radicalmente ψ .
- ② A evolução de um sistema quântico é governada pela eq. de Schrödinger. Para uma partícula num potencial simples V(r), tem a forma

$$i\hbar \frac{\partial \psi(\mathbf{r},t)}{\partial t} = -\frac{\hbar^2 \mathbf{\nabla}^2}{2m} \psi(\mathbf{r},t) + V(\mathbf{r})\psi(\mathbf{r},t)$$

Erwin Schrödinger (1887-1961)

O nosso plano para o semestre

- Para nos tornarmos "praticantes" de mecânica quântica não é suficiente conhecer a equação de onda de Schrödinger para uma partícula.
- A teoria quântica decorre de postulados, métodos e "linguagem" diferentes do familiar em física clássica, com os quais nos precisamos de familiarizar.
- É uma teoria abrangente mas matematicamente rigorosa, assente na "maguinaria" e nas "ferramentas" de álgebra linear que descrevem espaços vetoriais.

A compreensão e a prática de MQ exige familiaridade e "à vontade" com as técnicas de "navegação" nestes espaços vetoriais.