Potencial efectivo

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

4 de septiembre de 2024

Agenda

- El potencial efectivo
- Las trayectorias
- ③ Ejemplos
 - Potencial $V = -\frac{k}{r^3}$
 - Potencial $V = \frac{1}{2}kr^2$
 - Potencial $V = -\frac{k}{r}$

ullet Para el problema de dos cuerpos con un potencial central V(r)

$$\mathcal{L} = \frac{1}{2}\mu\left(\dot{r}^2 + r^2\dot{\theta^2}\right) - V(r) \Rightarrow \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right) - \frac{\partial \mathcal{L}}{\partial r} = 0 \Rightarrow \mu \ddot{r} = -\frac{\partial V}{\partial r} + \frac{L^2}{\mu r^3}$$

• Para el problema de dos cuerpos con un potencial central V(r)

$$\mathcal{L} = \frac{1}{2}\mu\left(\dot{r}^2 + r^2\dot{\theta^2}\right) - V(r) \Rightarrow \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right) - \frac{\partial \mathcal{L}}{\partial r} = 0 \Rightarrow \mu \ddot{r} = -\frac{\partial V}{\partial r} + \frac{L^2}{\mu r^3}$$

• La fuerza radial $f(r) = -\frac{\partial V}{\partial r}$ entonces $\mu \ddot{r} = f(r) + \frac{L^2}{\mu r^3} \Rightarrow \mu \ddot{r} = f_{\rm ef}(r)$

- Para el problema de dos cuerpos con un potencial central V(r) $\mathcal{L} = \frac{1}{2}\mu\left(\dot{r}^2 + r^2\dot{\theta}^2\right) V(r) \Rightarrow \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right) \frac{\partial \mathcal{L}}{\partial r} = 0 \Rightarrow \mu \ddot{r} = -\frac{\partial V}{\partial r} + \frac{L^2}{\mu r^3}$
- La fuerza radial $f(r) = -\frac{\partial V}{\partial r}$ entonces $\mu \ddot{r} = f(r) + \frac{L^2}{\mu r^3} \Rightarrow \mu \ddot{r} = f_{\rm ef}(r)$
- La fuerza efectiva surge de las contribuciones de la fuerza central $f(r) = -\frac{\partial V}{\partial r}$ y el efecto no inercial $F_{ni} \equiv \frac{L^2}{\mu r^3} = \mu r \dot{\theta}^2$

- Para el problema de dos cuerpos con un potencial central V(r) $\mathcal{L} = \frac{1}{2}\mu\left(\dot{r}^2 + r^2\dot{\theta}^2\right) V(r) \Rightarrow \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right) \frac{\partial \mathcal{L}}{\partial r} = 0 \Rightarrow \mu \ddot{r} = -\frac{\partial V}{\partial r} + \frac{L^2}{\mu r^3}$
- La fuerza radial $f(r) = -\frac{\partial V}{\partial r}$ entonces $\mu \ddot{r} = f(r) + \frac{L^2}{\mu r^3} \Rightarrow \mu \ddot{r} = f_{\rm ef}(r)$
- La fuerza efectiva surge de las contribuciones de la fuerza central $f(r) = -\frac{\partial V}{\partial r}$ y el efecto no inercial $F_{ni} \equiv \frac{L^2}{\mu r^3} = \mu r \dot{\theta}^2$
- Se define una energía potencial efectiva, $V_{\rm ef}(r)\equiv V(r)+rac{L^2}{2\mu r^2}$, tal que $f_{\rm ef}(r)\equiv -rac{\partial V_{\rm ef}}{\partial r}$

- Para el problema de dos cuerpos con un potencial central V(r) $\mathcal{L} = \frac{1}{2}\mu\left(\dot{r}^2 + r^2\dot{\theta}^2\right) V(r) \Rightarrow \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right) \frac{\partial \mathcal{L}}{\partial r} = 0 \Rightarrow \mu \ddot{r} = -\frac{\partial V}{\partial r} + \frac{L^2}{\mu r^3}$
- La fuerza radial $f(r) = -\frac{\partial V}{\partial r}$ entonces $\mu \ddot{r} = f(r) + \frac{L^2}{\mu r^3} \Rightarrow \mu \ddot{r} = f_{\rm ef}(r)$
- La fuerza efectiva surge de las contribuciones de la fuerza central $f(r) = -\frac{\partial V}{\partial r}$ y el efecto no inercial $F_{ni} \equiv \frac{L^2}{\mu r^3} = \mu r \dot{\theta}^2$
- Se define una energía potencial efectiva, $V_{\rm ef}(r)\equiv V(r)+rac{L^2}{2\mu r^2}$, tal que $f_{\rm ef}(r)\equiv -rac{\partial V_{\rm ef}}{\partial r}$
- La energía total será $E = \frac{1}{2}\mu\dot{r}^2 + \frac{L^2}{2\mu r^2} + V(r) = \frac{1}{2}\mu\dot{r}^2 + V_{\rm ef}(r) = {\rm cte.}$

- Para el problema de dos cuerpos con un potencial central V(r) $\mathcal{L} = \frac{1}{2}\mu\left(\dot{r}^2 + r^2\dot{\theta^2}\right) V(r) \Rightarrow \frac{d}{dt}\left(\frac{\partial \mathcal{L}}{\partial \dot{r}}\right) \frac{\partial \mathcal{L}}{\partial r} = 0 \Rightarrow \mu \ddot{r} = -\frac{\partial V}{\partial r} + \frac{L^2}{\mu r^3}$
- La fuerza radial $f(r) = -\frac{\partial V}{\partial r}$ entonces $\mu \ddot{r} = f(r) + \frac{L^2}{\mu r^3} \Rightarrow \mu \ddot{r} = f_{\rm ef}(r)$
- La fuerza efectiva surge de las contribuciones de la fuerza central $f(r) = -\frac{\partial V}{\partial r}$ y el efecto no inercial $F_{ni} \equiv \frac{L^2}{\mu r^3} = \mu r \dot{\theta}^2$
- Se define una energía potencial efectiva, $V_{\rm ef}(r)\equiv V(r)+rac{L^2}{2\mu r^2}$, tal que $f_{\rm ef}(r)\equiv -rac{\partial V_{\rm ef}}{\partial r}$
- La energía total será $E=\frac{1}{2}\mu\dot{r}^2+\frac{L^2}{2\mu r^2}+V(r)=\frac{1}{2}\mu\dot{r}^2+V_{\rm ef}(r)={
 m cte.}$
- Una partícula de masa μ , moviéndose en la dimensión r con energía potencial $V_{\rm ef}(r)$.

• La condición $\dot{r}^2 \geq 0$ implica que este movimento ocurre para valores de r tales que $E \geq V_{\rm ef}(r)$

- La condición $\dot{r}^2 \ge 0$ implica que este movimento ocurre para valores de r tales que $E \ge V_{\rm ef}(r)$
- Los puntos de retorno están dados por la condición $\dot{r}=0$, i.e. $E=V_{\rm ef}(r)=\frac{L^2}{2\mu r^2}+V(r)\Rightarrow Er^2-V(r)r^2-\frac{L^2}{2\mu}=0$

- La condición $\dot{r}^2 \geq 0$ implica que este movimento ocurre para valores de r tales que $E \geq V_{\rm ef}(r)$
- Los puntos de retorno están dados por la condición $\dot{r}=0$, i.e. $E=V_{\rm ef}(r)=\frac{L^2}{2\mu r^2}+V(r)\Rightarrow Er^2-V(r)r^2-\frac{L^2}{2\mu}=0$
- Es una ecuación algebraica de segundo grado en r y pueden existir dos raíces reales, $r = r_{min}$, $r = r_{máx}$.

- si $r_{\text{máx}} < \infty$ \Rightarrow movimiento es finito, oscilatorio en r,
- si $r_{\text{máx}} \to \infty$ \Rightarrow movimiento sin retorno,
- si $r_{\min} = r_{\max} \Rightarrow \text{movimiento es circular.}$

1 Como $\dot{\theta}=\frac{L}{\mu r^2}\geq 0$, la velocidad angular $\dot{\theta}$ nunca cambia de signo.

- Como $\dot{\theta} = \frac{L}{\mu r^2} \geq 0$, la velocidad angular $\dot{\theta}$ nunca cambia de signo.
- **2** El ángulo θ siempre se incrementa en el tiempo y el movimiento siempre ocurre en una misma dirección sobre el plano (r, θ) .

- **1** Como $\dot{\theta} = \frac{L}{\mu r^2} \geq 0$, la velocidad angular $\dot{\theta}$ nunca cambia de signo.
- ② El ángulo θ siempre se incrementa en el tiempo y el movimiento siempre ocurre en una misma dirección sobre el plano (r, θ) .
- **3** Para encontrar la condición de choque r o 0, i.e. $r_{\mathsf{mín}} = 0$

- **1** Como $\dot{\theta} = \frac{L}{\mu r^2} \geq 0$, la velocidad angular $\dot{\theta}$ nunca cambia de signo.
- **2** El ángulo θ siempre se incrementa en el tiempo y el movimiento siempre ocurre en una misma dirección sobre el plano (r, θ) .
- **③** Para encontrar la condición de choque $r \rightarrow 0$, i.e. $r_{min} = 0$
- ① De la ecuación para la energía tenemos $\frac{1}{2}\mu\dot{r}^2 = E V(r) \frac{L^2}{2\mu r^2} > 0 \Rightarrow Er^2 V(r)r^2 \frac{L^2}{2\mu} > 0$

- Como $\dot{\theta} = \frac{L}{\mu r^2} \geq 0$, la velocidad angular $\dot{\theta}$ nunca cambia de signo.
- ② El ángulo θ siempre se incrementa en el tiempo y el movimiento siempre ocurre en una misma dirección sobre el plano (r, θ) .
- **3** Para encontrar la condición de choque $r \rightarrow 0$, i.e. $r_{min} = 0$
- ① De la ecuación para la energía tenemos $\frac{1}{2}\mu\dot{r}^2=E-V(r)-\frac{L^2}{2\mu r^2}>0\Rightarrow Er^2-V(r)r^2-\frac{L^2}{2\mu}>0$
- **3** Tomando el límite r o 0 tendremos lím $_{r o 0} \left[V(r) r^2 \right] < \frac{L^2}{2\mu}$

- **1** Como $\dot{\theta} = \frac{L}{\mu r^2} \geq 0$, la velocidad angular $\dot{\theta}$ nunca cambia de signo.
- **2** El ángulo θ siempre se incrementa en el tiempo y el movimiento siempre ocurre en una misma dirección sobre el plano (r, θ) .
- **③** Para encontrar la condición de choque r o 0, i.e. $r_{\mathsf{min}} = 0$
- ① De la ecuación para la energía tenemos $\frac{1}{2}\mu\dot{r}^2 = E V(r) \frac{L^2}{2\mu r^2} > 0 \Rightarrow Er^2 V(r)r^2 \frac{L^2}{2\mu} > 0$
- **3** Tomando el límite r o 0 tendremos lím $_{r o 0} \left[V(r) r^2 \right] < rac{L^2}{2\mu}$
- Consideremos un potencial atractivo de la forma $V(r)=-k/r^n$, entonces $\lim_{r\to 0}\left[V(r)r^2\right]<-\frac{L^2}{2\mu}\Rightarrow n>2$
 - $V(r) = -k/r^3$ permite caer al centro, $r_{min} = 0$
 - $V(r)=-k/r^2$, requiere $k>\frac{L^2}{2\mu}$ para caer al centro de atracción
 - V(r) = -k/r no permite alcanzar $r_{min} = 0$

Potencial $V = -\frac{k}{r^3}$

• Si el Potencial $V=-\frac{k}{r^3}$ el potencial efectivo será $V_{\rm ef}(r)=-\frac{k}{r^3}+\frac{L^2}{2\mu r^2}$

Potencial $V = -\frac{k}{\kappa^3}$

• Si el Potencial $V=-\frac{k}{r^3}$ el potencial efectivo será $V_{\rm ef}(r)=-\frac{k}{r^3}+\frac{L^2}{2ur^2}$

- ullet El potencial efectivo exhibe un máximo $V_{
 m ef\ (máx)}$ que representa una barrera de potencial si $E < V_{\rm ef \, (máx)}$. Los posibles movimientos son
 - $E = E_1 > V_{\text{ef (máx)}}$; movimiento existe $\forall r$.
 - $E = E_2 < V_{\text{ef (máx)}}$; hay dos puntos de retorno r_1 y r_2 que satisfacen $E = V_{\rm ef}$. El movimiento ocurre para $r \in [0, r_1]$ y para $r \ge r_2$. En Mecánica Clásica, el movimiento es imposible para $r \in [r_1, r_2]$.
 - E < 0; movimiento ocurre para $r \in [0, r_1]$.

• Si el Potencial $V=-rac{k}{2\,r^2}$, el efectivo será $V_{
m ef}(r)=-rac{k}{2\,r^2}+rac{L^2}{2\mu r^2}$

• Si el Potencial $V=-rac{k}{2\,r^2}$, el efectivo será $V_{
m ef}(r)=-rac{k}{2\,r^2}+rac{L^2}{2\mu r^2}$

• $V = -\frac{k}{2r^2}$ corresponde a un oscilador armónico tridimensional.

• Si el Potencial $V=-rac{k}{2\,r^2}$, el efectivo será $V_{
m ef}(r)=-rac{k}{2r^2}+rac{L^2}{2\mu r^2}$

- $V = -\frac{k}{2r^2}$ corresponde a un oscilador armónico tridimensional.
- $E \geq V_{\mathrm{ef}}\left(r
 ight)$ implica que existen puntos de retorno $r_{\mathrm{min}}, r_{\mathrm{máx}}
 eq 0;$

• Si el Potencial $V=-rac{k}{2\,r^2}$, el efectivo será $V_{
m ef}(r)=-rac{k}{2r^2}+rac{L^2}{2\mu r^2}$

- $V = -\frac{k}{2r^2}$ corresponde a un oscilador armónico tridimensional.
- $E \geq V_{\mathrm{ef}}\left(r
 ight)$ implica que existen puntos de retorno $r_{\mathrm{min}}, r_{\mathrm{máx}}
 eq 0;$
- Es un movimiento radial es oscilatorio.

• Si el Potencial $V=-rac{k}{2\,r^2}$, el efectivo será $V_{
m ef}(r)=-rac{k}{2\,r^2}+rac{L^2}{2\mu r^2}$

- $V = -\frac{k}{2r^2}$ corresponde a un oscilador armónico tridimensional.
- $E \geq V_{\rm ef}\left(r
 ight)$ implica que existen puntos de retorno $r_{\rm mín}, r_{\rm máx}
 eq 0;$
- Es un movimiento radial es oscilatorio.
- La fuerza radial $\mathbf{f} = -\frac{\partial V}{\partial r}\hat{\mathbf{r}} = -kr\hat{\mathbf{r}} = -kx\mathbf{i} ky\mathbf{j}$

• Si el Potencial $V=-rac{k}{2\,r^2}$, el efectivo será $V_{
m ef}(r)=-rac{k}{2r^2}+rac{L^2}{2\mu r^2}$

- $V = -\frac{k}{2r^2}$ corresponde a un oscilador armónico tridimensional.
- $E \geq V_{\rm ef}\left(r
 ight)$ implica que existen puntos de retorno $r_{\rm mín}, r_{\rm máx}
 eq 0$;
- Es un movimiento radial es oscilatorio.
- La fuerza radial $\mathbf{f} = -\frac{\partial V}{\partial r}\hat{\mathbf{r}} = -kr\hat{\mathbf{r}} = -kx\mathbf{i} ky\mathbf{j}$
- El movimiento radial es el resultado de dos oscilaciones simples, perpendiculares entre sí, con igual frecuencia $\omega_x^2 = \omega_y^2 = k/\mu$.

Potencial $V = -\frac{k}{r}$

• El potencial es $V=-\frac{k}{r}$, el efectivo $V_{\rm ef}=V(r)+\frac{L^2}{2\mu r^2}=-\frac{k}{r}+\frac{L^2}{2\mu r^2}$

Potencial $V = -\frac{k}{r}$

• El potencial es $V=-\frac{k}{r}$, el efectivo $V_{\rm ef}=V(r)+\frac{L^2}{2\mu r^2}=-\frac{k}{r}+\frac{L^2}{2\mu r^2}$

• El valor mínimo del potencial efectivo proviene de $\frac{\partial V_{\text{ef}}}{\partial r}\Big|_{r=r_0}=0$

Potencial $V = -\frac{k}{r}$

• El potencial es $V=-\frac{k}{r}$, el efectivo $V_{\rm ef}=V(r)+\frac{L^2}{2\mu r^2}=-\frac{k}{r}+\frac{L^2}{2\mu r^2}$

- El valor mínimo del potencial efectivo proviene de $\left. \frac{\partial V_{\rm ef}}{\partial r} \right|_{r=r_0} = 0$
- ullet Los posibles movimientos para diferentes valores de la energía E son:
 - $E=E_1>0 \Rightarrow r_{\mathsf{min}}>0$ y $r_{\mathsf{max}} \to \infty$; órbita abierta.
 - $E=E_2=0 \Rightarrow r_{\mathsf{m\'{i}n}}>0$ y $r_{\mathsf{m\'{a}x}} \to \infty$; órbita abierta.
 - $E = E_3 < 0 \Rightarrow r \in [r_{min}, r_{max}]$; movimiento radial oscilatorio.
 - $E = E_4 = V_{\text{ef (mín)}} < 0 \Rightarrow$; $r_{\text{mín}} = r_{\text{máx}} = r_0$; órbita circular con $r = r_0$.