Heartbeat Classification

MATTEO RAZZAI

Project objective

- The goal of this project is to recognize the type of a patient's heartbeats. The beats are described by some features extracted reading two leads of the patient's ECG.
- The type of an heartbeat can be: Normal beat(N), Supraventricular ectopic beat (S), Ventricular ectopic beat(V), Fusion beat (fusion between N beat and V beat) and Unknown beat (Q)
- The detection of the heartbeat's type can be very useful for recognize case of arrhythmia.

Dataset

- This dataset come from Holter tapes applied on more than 200 patients
- From these holter therapies come out 963654 samples, each of them regarding a single heartbeat
- There are 32 features, summarized in the following table, and other two regarding the heartbeat's type and the patient.

Feature Group	Lead II and V5
RR Intervals	Pre-RR, Post-RR
Heart beats interval	PQ, QT, ST interval QRS duration
Heart beats amplitude	P, T, R, S, Q peak
Morphology QRS	5 samples between onset and offset point of the QRS complex

Source: ECG Arrhythmia Classification Dataset | Kaggle

Datasets

Dataset	Number of records	Number of patients	Time of recording for patient	Number of Normal beats	Number of SVEB beats	Number of VEB beats	Number of Fusion beats	Number of Unknown beats
MIT-BIH ArrhythmiaDatab ase	100689	44	30 min	90083	7009	2779	803	15
INCART2- leadArrhythmiaD atabase	175729	75	30 min	153546	1958	20000	219	6
MIT-BIH Supraventricular Arrhythmia Database	184428	78	30 min	162195	12194	9937	23	79
Sudden Cardiac Death Holter Database	426591	12	12 hours	403528	1609	14723	211	6520

Preprocessing

df cardio.isna().sum() record 76217 76217 type 0 pre-RR 76217 0 post-RR 76217 0 pPeak 76217 0 tPeak 76217 0 rPeak 76217 0 sPeak 76217 0 qPeak 76217 0 qrs interval 76217 0 pq interval 76217 0 qt interval 76217 0 st interval 76217 0 qrs morph0 76217 76217 0 qrs morph1 0 qrs morph2 76217 0 qrs morph3 76217 0_qrs_morph4 76217 1 pre-RR 174615 1 post-RR 174615 1_pPeak 174615 1 tPeak 174615 1 rPeak 174615 1 sPeak 174615 1 qPeak 174615 1_qrs_interval 174615 1 pq interval 174615 1 qt interval 174615 1 st interval 174615 1_qrs_morph0 174615 1_qrs_morph1 174615 1_qrs_morph2 174615 1_qrs_morph3 174615 1 qrs morph4 174615

dtype: int64

Before

Handling with missing values

After

Attribute 'record'

```
df_cardio=df_cardio.rename(columns={'record':'patient'})
```

Patient's recording code

```
df_cardio['patient']=df_cardio['patient'].astype('category').cat.codes
```

Encoding 'type' feature

```
from sklearn.preprocessing import OrdinalEncoder,OneHotEncoder
enc=OrdinalEncoder()
X=df_cardio.drop('type',axis=1)
y=df_cardio['type']
encoded_class=enc.fit_transform(y.values.reshape(-1,1))

df_cardio['type']=encoded_class
df_cardio
```

Data Integration and Data Cleaning

- Fusion of the 4 datasets
- Encoding categorical features

Imbalanced Class

An atrial premature beats usually means the presence of a Supraventricular anomalies, and a premature ventricular contraction beats usually means the presence of a Ventricular anomalies.

The inconsistency of the heart rates between ECG recordings would reduce the classification performance of the RR interval features.

Z-score normalization

$$v' = \frac{v - \mu_A}{\sigma_A}$$

RR interval features were normalized, using the mean and the standard deviation of the values of that specific features for a specific patient.

Data Normalization

Handling RR-interval features

Normalization

	Feature	MI
1	0_pre-RR	0.267951
17	1_pre-RR	0.267835
18	1_post-RR	0.207661
2	0_post-RR	0.207591

Classification on dataset MIT-BIHArrhythmiaDatabase.csv

K-Nearest-Neighbors classifier

Pipeline	F1-score (N)	F1-score (SVEB)	F1-score (VEB)	F1-score (macro avg)
pipe_normal	0.897752	0.069725	0.394468	0.439789
pipe_smote	0.790652	0.094975	0.364399	0.384815
pipe_PCA	0.906342	0.246932	0.464344	0.481820
pipe_f30	0.794358	0.083933	0.370107	0.381427
pipe_f19	0.794009	0.137183	0.347129	0.394117

pipe 1	pipe 2	p-value
Pipe normal	Pipe smote	0.0037
Pipe smote	Pipe PCA	0.000035
Pipe normal	Pipe PCA	0.0201
Pipe_f30	Pipe_PCA	0.000025
Pipe_f19	Pipe_f30	0.733
Pipe_normal	Pipe_f19	0.07

AdaBoost classifier

Pipeline	F1-score (N)	F1-score (SVEB)	F1-score (VEB)	F1-score (macro avg)
pipe_normal	0.936992	0.199248	0.555593	0.530120
pipe_smote	0.867423	0.163976	0.474478	0.449714
pipe_PCA	0.821393	0.126328	0.430322	0.412356
pipe_f30	0.870194	0.152633	0.498226	0.461365
pipe_f19	0.869095	0.163587	0.424841	0.443797

pipe 1	pipe 2	p-value
Pipe normal	Pipe smote	0.0073
Pipe smote	Pipe PCA	0.2435
Pipe normal	Pipe PCA	0.00026
Pipe_f30	Pipe_smote	0.477
Pipe_f19	Pipe_smote	0.894
Pipe_normal	Pipe_f30	0.0044

DecisionTree classifier

Pipeline	F1-score (N)	F1-score (SVEB)	F1-score (VEB)	F1-score (macro avg)
pipe_normal	0.911661	0.141635	0.404338	0.446878
pipe_smote	0.864459	0.134598	0.346011	0.407286
pipe_PCA	0.868581	0.103693	0.304521	0.390795
pipe_f30	0.868581	0.103693	0.304521	0.390795
pipe_f19	0.873182	0.179294	0.357913	0.424004

pipe 1	pipe 2	p-value
Pipe normal	Pipe smote	0.0208
Pipe smote	Pipe PCA	0.1576
Pipe normal	Pipe PCA	0.00261
Pipe_f30	Pipe_smote	0.462
Pipe_f19	Pipe_smote	0.414
Pipe_normal	Pipe_f30	0.147

RandomForest classifier

Pipeline	F1-score (N)	F1-score (SVEB)	F1-score (VEB)	F1-score (macro avg)
pipe_normal	0.946720	0.285172	0.600983	0.563359
pipe_smote	0.934377	0.297163	0.591672	0.535853
pipe_PCA	0.934581	0.231283	0.556517	0.535899
pipe_f30	0.933537	0.309624	0.559328	0.559543

pipe 1	pipe 2	p-value
Pipe normal	Pipe smote	0.522
Pipe normal	Pipe PCA	0.209
Pipe normal	Pipe f30	0.965

Compare classifiers

Classifier	F1-score (N)	F1-score (SVEB)	F1-score (VEB)	F1-score (macro avg)
<u>RandomForest</u>	0.946720	0.285172	0.600983	0.563359
<u>AdaBoost</u>	0.936992	0.199248	0.555593	0.530120
KNN	0.906342	0.246932	0.464344	0.481820
DecisionTree	0.911661	0.141635	0.404338	0.446878

Classifier 1	Classifier 2 p-value	
KNN	DecisionTree	0.2076
KNN	AdaBoost	0.04
KNN	RandomForest	0.007
AdaBoost	RandomForest	0,12
DecisionTree	AdaBoost 0.0005	
DecisionTree	ecisionTree RandomForest 0,0000027	

Classifier	Time
KNN	151 sec
RandomForest	2661 sec
AdaBoost	883 sec
DecisionTree	379 sec

RandomForest AdaBoost

Compare results with paper

(Paper: DEVELOPMENT OF INTERPRETABLE MACHINE LEARNING MODELS TO DETECT ARRHYTHMIA BASED ON ECG DATA by Shourya Verma)

Project	Classifier	F1-score	Precision	Recall
НС	RandomForest	0.563	0.62	0.616
Paper		0.529	0.506	0.587
НС	AdaBoost	0.53	0.573	0.628
Paper		0.142	0.263	0.199

Comparison between different datasets

K-Nearest-Neighbors classifier

Dataset	F1-score (N)	F1-score (SVEB)	F1-score (VEB)	F1-score (macro avg)
MIT- BIHArrhythmia	0.906342	0.246932	0.464344	0.481820
Database				
INCART2-				
leadArrhythmi	0.985236	0.440093	0.785343	0.711076
aDatabase				
MIT-BIH				
Supraventricul	0.911202	0.376924	0.448321	0.548076
ar Arrhythmia				
Database				
Sudden Cardiac				
Death Holter	0.770739	0.003063	0.393542	0.376633
Database				
4 datasets	0.927160	0.322954	0.629596	0.572556
merged	3.027 100	0.022001	3.02000	0.072000

Confusion matrix comparison

Patient 1 of MIT-BIHArrhythmiaDatabase

KNN on MIT-BIHArrhythmiaDatabase

KNN on merged dataset

