

BEST AVAILABLE COPY

Cash \$
This Form Based on PTO/SB/21

TRANSMITTAL FORM		Application Number	10/791,790
<small>(to be used for all correspondence after initial filing)</small> 		Filing Date	March 4, 2004
		First Named Inventor	MAKINO et al.
		Group Art Unit	2816
		Examiner Name	LE, DINH THANH
		Attorney Docket Number	11-231

ENCLOSURES (check all that apply)		
<input checked="" type="checkbox"/> Fee Transmittal Form <input checked="" type="checkbox"/> Fee Attached <input type="checkbox"/> Amendment / Response <input type="checkbox"/> After Final <input type="checkbox"/> Affidavits/declaration(s) <input type="checkbox"/> Extension of Time Request <input type="checkbox"/> Express Abandonment Request <input type="checkbox"/> Information Disclosure Statement <input type="checkbox"/> Certified Copy of Priority Document(s) <input type="checkbox"/> Response to Missing Parts/ Incomplete Application <input type="checkbox"/> Response to Missing Parts under 37 CFR 1.52 or 1.53	<input type="checkbox"/> Assignment Papers <small>(for an Application)</small> <input type="checkbox"/> Drawing(s) <input type="checkbox"/> Licensing-related Papers <input type="checkbox"/> Petition Routing Slip (PTO/SB/69) and Accompanying Petition <input type="checkbox"/> To Convert a Provisional Application <input type="checkbox"/> Power of Attorney, Revocation <input type="checkbox"/> Change of Correspondence Address <input type="checkbox"/> Terminal Disclaimer <input type="checkbox"/> Small Entity Statement <input type="checkbox"/> Request of Refund	<input type="checkbox"/> After Allowance Communication to Group <input type="checkbox"/> Appeal Communication to Board of Appeals and Interferences <input type="checkbox"/> Appeal Communication to Group <small>(Appeal Notice, Brief, Reply Brief)</small> <input type="checkbox"/> Proprietary Information <input type="checkbox"/> Status Letter <input checked="" type="checkbox"/> Additional Enclosure(s) <small>(please identify below):</small> <input checked="" type="checkbox"/> Request for Certificate of Correction <input checked="" type="checkbox"/> Copy of original Letters Patent <input checked="" type="checkbox"/> Certificate of Correction
	Remarks <i>Certificate</i> <i>AUG 22 2006</i> <i>of Correction</i>	

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT	
Firm or Individual name	Posz Law Group, PLC
Signature	
Date	August 17 2006

23 LUUB

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Effective May 2004.

Fees pursuant to the Consolidated Appropriations Act, 2005 (H.R. 4818).

FEE TRANSMITTAL For FY 2006

Applicant claims small entity status. See 37 CFR 1.27

TOTAL AMOUNT OF PAYMENT		(\$)	100
-------------------------	--	------	-----

Complete if Known

Application Number	10/791,790
Filing Date	March 4, 2004
First Named Inventor	MAKINO et al.
Examiner Name	LE, Dinh Thanh
Art Unit	2816
Attorney Docket No.	11-231

METHOD OF PAYMENT (check all that apply)

- Check Credit Card Money Order None Other (please identify): _____
- Deposit Account Deposit Account Number: 50-1147 Deposit Account Name: **POSZ LAW GROUP, PLC.**

For the above-identified deposit account, the Director is hereby authorized to: (check all that apply)

- Charge fee(s) indicated below Charge fee(s) indicated below, except for the filing fee
- Charge any additional fee(s) or underpayments of fee(s) under 37 CFR 1.16 and 1.17 Credit any overpayments

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

FEE CALCULATION

1. BASIC FILING, SEARCH, AND EXAMINATION FEES

Application Type	FILING FEES		SEARCH FEES		EXAMINATION FEES		Fees Paid (\$)
	Fee (\$)	Small Entity	Fee (\$)	Small Entity	Fee (\$)	Small Entity	
Utility	300	150	500	250	200	100	_____
Design	200	100	100	50	130	65	_____
Plant	200	100	300	150	160	80	_____
Reissue	300	150	500	250	600	300	_____
Provisional	200	100	0	0	0	0	_____

2. EXCESS CLAIM FEES

Fee Description

Each claim over 20 (including Reissues)

Each independent claim over 3 (including Reissues)

Multiple dependent claims

Total Claims	Extra Claims	Fee (\$)	Fee Paid (\$)	Small Entity	Fee (\$)
- 20 or HP =	x	=		50	25

HP = highest number of total claims paid for, if greater than 20.

Indep. Claims	Extra Claims	Fee (\$)	Fee Paid (\$)	Multiple Dependent Claims	Fee (\$)	Fee Paid (\$)
- 3 or HP =	x	=				

HP = highest number of independent claims paid for, if greater than 3.

3. APPLICATION SIZE FEE

If the specification and drawings exceed 100 sheets of paper (excluding electronically filed sequence or computer listings under 37 CFR 1.52(e)), the application size fee due is \$250 (\$125 for small entity) for each additional 50 sheets or fraction thereof. See 35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s).

Total Sheets	Extra Sheets	Number of each additional 50 or fraction thereof	Fee (\$)	Fee Paid (\$)
- 100 =	/ 50 =	(round up to a whole number) x	=	

4. OTHER FEE(S)

Non-English Specification, \$130 fee (no small entity discount)

Other (e.g., late filing surcharge): Certificate of Correction Fee (\$100)

\$100

SUBMITTED BY

Signature		Registration No. (Attorney/Agent) 37,701	Telephone (703)707-9110
Name (Print/Type)	DAVID G. POSZ	Date August 17, 2006	

This collection of information is required by 37 CFR 1.136. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 30 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

23 Lubb

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

Filing Date: March 4, 2004.

Fees pursuant to the Consolidated Appropriations Act, 2005 (H.R. 4818).

FEE TRANSMITTAL For FY 2006

Applicant claims small entity status. See 37 CFR 1.27

TOTAL AMOUNT OF PAYMENT	(\$)	100
--------------------------------	------	-----

Complete if Known

Application Number	10/791,790
Filing Date	March 4, 2004
First Named Inventor	MAKINO et al.
Examiner Name	LE, Dinh Thanh
Art Unit	2816
Attorney Docket No.	11-231

METHOD OF PAYMENT (check all that apply)

- Check Credit Card Money Order None Other (please identify): _____
- Deposit Account Deposit Account Number: 50-1147 Deposit Account Name: POSZ LAW GROUP, PLC.

For the above-identified deposit account, the Director is hereby authorized to: (check all that apply)

- Charge fee(s) indicated below Charge fee(s) indicated below, except for the filing fee
- Charge any additional fee(s) or underpayments of fee(s) under 37 CFR 1.16 and 1.17 Credit any overpayments

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

FEE CALCULATION**1. BASIC FILING, SEARCH, AND EXAMINATION FEES**

<u>Application Type</u>	<u>FILING FEES</u>		<u>SEARCH FEES</u>		<u>EXAMINATION FEES</u>		
	<u>Fee (\$)</u>	<u>Small Entity</u>	<u>Fee (\$)</u>	<u>Small Entity</u>	<u>Fee (\$)</u>	<u>Small Entity</u>	<u>Fees Paid (\$)</u>
Utility	300	150	500	250	200	100	_____
Design	200	100	100	50	130	65	_____
Plant	200	100	300	150	160	80	_____
Reissue	300	150	500	250	600	300	_____
Provisional	200	100	0	0	0	0	_____

2. EXCESS CLAIM FEES**Fee Description**

<u>Total Claims</u>	<u>Extra Claims</u>	<u>Fee (\$)</u>	<u>Fee Paid (\$)</u>	<u>Small Entity</u>	<u>Fee (\$)</u>	<u>Fee (\$)</u>
- 20 or HP =	x	=			50	25
HP = highest number of total claims paid for, if greater than 20.					200	100
					360	180

<u>Total Claims</u>	<u>Extra Claims</u>	<u>Fee (\$)</u>	<u>Fee Paid (\$)</u>	<u>Multiple Dependent Claims</u>	<u>Fee (\$)</u>	<u>Fee Paid (\$)</u>
- 20 or HP =	x	=				
HP = highest number of total claims paid for, if greater than 20.						

<u>Indep. Claims</u>	<u>Extra Claims</u>	<u>Fee (\$)</u>	<u>Fee Paid (\$)</u>	<u>Multiple Dependent Claims</u>	<u>Fee (\$)</u>	<u>Fee Paid (\$)</u>
- 3 or HP =	x	=				
HP = highest number of independent claims paid for, if greater than 3.						

3. APPLICATION SIZE FEE

If the specification and drawings exceed 100 sheets of paper (excluding electronically filed sequence or computer listings under 37 CFR 1.52(e)), the application size fee due is \$250 (\$125 for small entity) for each additional 50 sheets or fraction thereof. See 35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s).

<u>Total Sheets</u>	<u>Extra Sheets</u>	<u>Number of each additional 50 or fraction thereof</u>	<u>Fee (\$)</u>	<u>Fee Paid (\$)</u>
- 100 =	/ 50 =	(round up to a whole number) x	=	

4. OTHER FEE(S)

Non-English Specification, \$130 fee (no small entity discount)	<u>Fees Paid (\$)</u>
Other (e.g., late filing surcharge): Certificate of Correction Fee (\$100)	\$100

SUBMITTED BY

Signature		Registration No. (Attorney/Agent) 37,701	Telephone (703)707-9110
Name (Print/Type)	DAVID G. POSZ		Date August 17, 2006

This collection of information is required by 37 CFR 1.136. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 30 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

AUG 23 2006

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): MAKINO et al.

Serial No.: 10/791,790

Filed: March 4, 2004

Title: **SWITCHED-CAPACITOR LOW-PASS FILTER AND SEMICONDUCTOR PRESSURE SENSOR APPARATUS INCORPORATING THE FILTER**

Patent No.: 7,049,883

Issued: May 23, 2006

Atty. Dkt: 11-231

Commissioner for Patents

Date: August 17, 2006

Alexandria, VA 22313-1450

Mail Stop: Certificate of Corrections

REQUEST FOR CERTIFICATE OF CORRECTION

Sir:

Applicants hereby request that the above-identified Letters Patent be corrected to correct Claims 5 and 6 in columns 13 and 14 of the patent. Specifically, claims 5 and 6 of the Letters Patent should be corrected to read:

In claim 5, column 13, line 18, reading “an inverting input terminal” should be corrected to read as “a non-inverting input terminal”.

In claim 6, column 14, line 11, reading “a non-inverting input terminal” should be corrected to read as “an inverting input terminal”.

Applicants also request that the attached Certificate of Correction be attached to all copies of the Letters Patent.

To facilitate the above request, a copy of the original letters patent is enclosed.

In accordance with C.F.R. §1.20(a), applicants are providing a check for \$100 for the issuance of the requested Certificate of Correction for the above-identified patent. Authorization is hereby given to charge any fee deficiencies or credit any overpayment to Deposit Account 50-1147.

Respectfully submitted,

David G. Posz

Reg. No. 37,701
08/18/2006 SDENB0B1 00000118 7049883

01 FC:1811

100.00 OP

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

Page 1 of 1

PATENT NO. : 7,049,883

APPLICATION NO.: 10/791,790

ISSUE DATE : May 23, 2006

INVENTOR(S) :
(1) Takanori Makino
(2) Seiki Aoyama

It is certified that an error appears or errors appear in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claims

Correct Claims 5 and 6 in columns 13 and 14 of the original Letters Patent to read as:

- 1) In claim 5, column 13, line 18, "an inverting input terminal"; should read "a non-inverting input terminal".
- 2) In claim 6, column 14, line 11, "a non-inverting input terminal"; should read "an inverting input terminal".

MAILING ADDRESS OF SENDER (Please do not use customer number below):

POSZ LAW GROUP, PLC.
12040 South Lakes Drive, Suite 101
Reston, Virginia 20191

This collection of information is required by 37 CFR 1.322, 1.323, and 1.324. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 1.0 hour to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Attention Certificate of Corrections Branch, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

AUG 23 2000

US007049883B2

(12) United States Patent
Makino et al.(10) Patent No.: US 7,049,883 B2
(45) Date of Patent: May 23, 2006

(54) SWITCHED-CAPACITOR LOW-PASS FILTER AND SEMICONDUCTOR PRESSURE SENSOR APPARATUS INCORPORATING THE FILTER

(75) Inventors: Takanori Makino, Oogaki (JP); Seiki Aoyama, Toyohashi (JP)

(73) Assignee: Denso Corporation, Kariya (JP)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 70 days.

(21) Appl. No.: 10/791,790

(22) Filed: Mar. 4, 2004

(65) Prior Publication Data

US 2004/0174209 A1 Sep. 9, 2004

(30) Foreign Application Priority Data

Mar. 6, 2003 (JP) 2003-059879
Dec. 25, 2003 (JP) 2003-429828

(51) Int. Cl.

H03K 5/00 (2006.01)

(52) U.S. Cl. 327/558; 327/554

(58) Field of Classification Search 327/552-559,
327/337, 84, 94

See application file for complete search history.

(56)

References Cited

U.S. PATENT DOCUMENTS

5,245,344 A 9/1993 Sooch
6,191,648 B1 * 2/2001 Lewicki 327/554
6,573,785 B1 * 6/2003 Callicotte et al. 330/9

FOREIGN PATENT DOCUMENTS

JP 63-219219 9/1988
JP A-563-299406 12/1988
JP 9-27731 1/1997
JP 9-199994 7/1997
JP 2001-165797 6/2001
JP 2002-39888 2/2002

* cited by examiner

Primary Examiner—Dinh T. Le

(74) Attorney, Agent, or Firm—Posz Law Group, PLC

(57) ABSTRACT

A low-pass filter configured as a switched capacitor circuit in which capacitor charge switching is performed by 2-phase clock signals that control respective sets of switching elements, wherein an interval between a first-phase clock signal pulse and a succeeding second-phase clock signal pulse, during which no charging/discharging of capacitors should occur, is made as short as possible while ensuring that the two sets of switching elements cannot enter the ON state simultaneously. A low cut-off frequency can thereby be achieved, while using very small capacitor values.

6 Claims, 7 Drawing Sheets

AUG 23 2006

1

**SWITCHED-CAPACITOR LOW-PASS FILTER
AND SEMICONDUCTOR PRESSURE
SENSOR APPARATUS INCORPORATING
THE FILTER**

BACKGROUND OF THE INVENTION

1. Field of Technology

The present invention relates to a low-pass filter formed of a switched capacitor circuit, and to a semiconductor pressure sensor apparatus which utilizes such a low-pass filter.

2. Description of Prior Art

Due to their advantages of being small in size and having high performance, various types of semiconductor pressure sensor apparatus are utilized in applications such as for pressure detection within the air intake pipes or exhaust pipes of vehicle engines, or in non-vehicle applications such as in gas meters, etc. Since a semiconductor pressure sensor has excellent response characteristics, they are suitable for use in detecting rapid changes in pressure. However, the high speed of response of a semiconductor pressure sensor is a disadvantage in applications in which it is required to detect average changes in pressure, with high-frequency components of the pressure changes being excluded. In such a case, in which it is required to extract low-frequency components of the pressure changes, it is necessary to use a low-pass filter to remove the high-frequency components from a detection signal that is obtained from a semiconductor pressure sensor.

FIG. 7 is a circuit diagram of an example of a prior art type of semiconductor pressure sensor apparatus. With this apparatus, a detection signal that is generated by a semiconductor pressure sensor 1 is amplified by a differential amplifier 2, and the resultant output signal is transferred through a low-pass filter 3, to thereby obtain an output signal voltage that contains only low-frequency components of the pressure changes that are detected by the semiconductor pressure sensor 1.

The semiconductor pressure sensor 1 can for example be formed of a diaphragm constituted by a plate of silicon having a region that is made relatively thin, with piezoresistive elements G1-G4 (i.e., elements which exhibit a change in resistance when subjected to distortion) formed on a surface of the diaphragm. When pressure is applied to the diaphragm, causing shape distortion to occur, the respective resistance values of the piezoresistive elements G1-G4 are altered. The piezoresistive elements G1-G4 are connected in a bridge configuration, so that when pressure is applied to the diaphragm then for example a potential Vp1 that appears between the mutual connection points of the piezoresistive elements G2 and G3 may be increased, while a potential Vp2 that appears between the mutual connection points of the piezoresistive elements G1 and G4 may be decreased.

The potentials Vp1, Vp2 that appear between the mutual connection points are amplified by the differential amplifier 2, to obtain an output signal having an instantaneous value of voltage designated as Vo, whose value is proportional to the voltage difference (Vp1-Vp2). Since that output signal contains high-frequency components, it is passed through the low-pass filter 3 to obtain an output signal that contains only low-frequency components, and whose instantaneous voltage value is designated as Vout.

In the following it will be assumed that switches which perform capacitor switching are implemented as FETs (field effect transistors), each controlled by a control voltage signal applied to a gate electrode, and with the ON/OFF conditions

2

of the switch corresponding to conducting/non-conducting conditions, respectively, between the drain and source electrodes of the FET.

Usually, the low-pass filter 3 is configured as a switched capacitor circuit that is formed in an integrated circuit. The capacitor switching is performed by switches S11, S12, S13, S24, S25, S26 which are respective analog switches (where the term "analog switch" is used herein to signify a switching element constituted by a semiconductor switch device such as a MOS FET) controlled by control signals that are constituted by first and second clock signals ϕ_1 , ϕ_2 shown in the timing diagram of FIG. 8, and are generated by a clock pulse signal generating circuit 30. FIG. 8 illustrates the phase relationships of the two-phase clock signals ϕ_1 , ϕ_2 when each of these has a frequency of 150 kHz. Each of the set of switches S11, S12, S13 is set in the ON (i.e., conducting) state when the first clock signal ϕ_1 is at the active level (assumed to be the high level, in the example of FIG. 8), while each of the set of switches S24, S25, S26 is set in the conducting state when the second signal ϕ_2 is at the active level.

When the analog switches S11-S13 and S24-S26 are controlled as described above by the two-phase clock signals ϕ_1 , ϕ_2 with the timing relationships shown in FIG. 8, the equivalent circuit of the operation becomes as shown in FIG. 6, i.e., with the circuit functioning as a low-pass filter. The values of the resistors R1, R2 and the cut-off frequency f_c of that equivalent circuit are obtained (designating the frequency of each of the two-phase clock signals ϕ_1 , ϕ_2 as f_s , the respective capacitance values of the capacitors C1, C2 C3 as c_1 , c_2 , c_3 and the resistance value of the resistors R1, R2 as r_1 , r_2 respectively) from the following equations:

$$r_1 = 1/(f_s \cdot c_1) \quad (1)$$

$$r_2 = 1/(f_s \cdot c_2) \quad (2)$$

$$f_c = 1/(2\pi \cdot r_2 \cdot c_3) = f_s \cdot c_2 / (2\pi \cdot c_3) \quad (3)$$

With a usual type of semiconductor pressure sensor apparatus, the cut-off frequency f_c is generally required to be approximately 100-400 Hz. If for example the cut-off frequency is 100 Hz, then the values $c_2=0.25$ pf, $c_3=60$ pf, $f_s=150$ kHz, can be used. Such capacitance and frequency values can readily be obtained by using devices that are formed in an integrated circuit.

However considering the case in which a substantially lower value of cut-off frequency is required, e.g., 1 Hz, then if the values for the frequency f_s of the two-phase clock signals ϕ_1 , ϕ_2 and for the capacitor C_2 are made the same as in the above numeric example, the value of capacitor C_3 must be multiplied by 100, i.e., to be made 6,000 pf. In practice, it is not possible to realize such a large value of capacitance by a capacitor that is formed in a semiconductor integrated circuit.

Thus, since it would not be practicable to substantially reduce the value of capacitor C_2 below approximately 0.25 pf, it would be necessary to lower the frequency f_s of the two-phase clock signals ϕ_1 , ϕ_2 by a factor of 1:100, i.e., to approximately 1.5 kHz, in order to achieve a value of cut-off frequency as low as 1 Hz with such a prior art type of low-pass filter.

The phase relationship between the two-phase clock signals ϕ_1 , ϕ_2 during one clock period, in the case of a prior art type of apparatus in which the frequency of each of the two-phase clock signals ϕ_1 , ϕ_2 is 150 kHz will be considered referring again to the timing diagram of FIG. 8, and to FIGS. 5A to 5D. FIGS. 5A to 5D respectively illustrate

LUUD

successive conditions attained by the low-pass filter 3 (when formed as the switched capacitor circuit shown in FIG. 7) during four successive time intervals within a clock period, designated as Phase 1, Phase 2, Phase 3 and Phase 4.

Firstly as shown in FIG. 5A, during Phase 1, the capacitor C1 becomes charged to the input voltage V₀, while conversely the capacitor C2 is discharged, to reach a charge of zero. The charge in the capacitor C3 is left unchanged.

Next, considering Phase 2, as shown in FIG. 5B all of the switches S11, S12, S13, S24, S25, S26 are in the OFF (i.e., open) state, so that the charge in each of the capacitors C1, C2, C3 is left unchanged. Thus, during Phase 2, the respective voltages developed across the capacitors are left unchanged from those which existed at the end of Phase 1.

Next, considering Phase 3, as shown in FIG. 5C the capacitors C2 and C3 become connected in parallel, and the capacitor C1 becomes connected between the inverting input terminal and the non-inverting input terminal of the operational amplifier OP1. Since the inverting input terminal and the non-inverting input terminal of the operational amplifier OP1 are held at the same potential the capacitor C1 becomes discharged. The resultant discharge current flow acts to charge each of the capacitors C2, C3. The capacitor C2 becomes finally charged to the output signal voltage V_{out} that is being produced from the operational amplifier OP1 at that point in time. The amount of charging current which flows into the capacitor C3 is equal to the amount of discharge current which flows from the capacitor C1, with the charge voltage of the capacitor C3 changing accordingly. Since the voltage to which the capacitor C3 becomes charged is necessarily identical to the output voltage V_{out} from the operational amplifier OP1, the amount of change of that output voltage V_{out} is equal to the amount of change in the voltage to which the capacitor C3 is charged.

Next, considering Phase 4, as shown in FIG. 5D all of the switches S11, S12, S13, S24, S25, S26 are in the OFF state, in the same way as for the condition during Phase 3. Thus, each of the capacitors C1, C2, C3 is left in the same condition of charge as that which existed at the end of Phase 3.

However a problem arises with respect to a change in the charge voltages of the capacitors C1, C2 during the Phase 2 interval. Immediately after the start of Phase 2, the amount of charge in the capacitor C1 is V₀C₁, while amount of charge in the capacitor C2 is zero. Since the amount of area that is available on the substrate of a semiconductor integrated circuit is extremely small, each capacitor can only have a maximum value that is very small. In addition as can be understood from equation (3) above, the value of capacitor C2 should be as small as possible, to achieve a low value of cut-off frequency for the low-pass filter, e.g., 0.25 pF. When the amount of capacitance is extremely small, then when analog switches that are respectively connected between the terminals of a capacitor and ground potential are set in the OFF state, even a tiny amount of leakage current that flows in these analog switches will have a substantial effect upon the voltage to which the capacitor is charged.

The term "leakage current" is used here to refer to a total amount of leakage current flow, which is determined by such factors as the finite amount of resistance that exists between the drain and source electrodes of a FET constituting an analog switch, when in the OFF state, and also by the leakage current that flows in the PN junction that exists between the region below the drain and source electrodes and the substrate, etc. The leakage current magnitude increases in accordance with increases in operating tempera-

ture. Referring again to the timing diagram of FIG. 8, since the cut-off frequency f_c is 100 Hz, and the duration of a Phase 2 interval is 1.7 microseconds and so is extremely short, the effects of leakage current during that interval can in practice be ignored. However if the capacitor values were to be left unchanged, and the cut-off frequency f_c were to be lowered to 1 Hz, then it would be necessary to lower the frequency f_s of the two-phase clock signals φ1, φ2 to become 1.5 kHz as described above. If that is done, then the duration of a Phase 2 interval becomes multiplied by a factor of 100, i.e., to become 170 microseconds. In that case, with all of the switches S11, S12, S13, S24, S25, S26 in the OFF state during such a long-duration Phase 2 interval, the amount of charge in the capacitors C1, C2 will change substantially during that interval, due to leakage current flow in the switches that are connected on each side of each of these capacitors.

As a result the problem arises that an error will arise in the gain of the low-pass filter 3 in the low-frequency range and in the actual cut-off frequency of the low-pass filter (i.e., by comparison with the cut-off frequency that is derived from equation (3)).

SUMMARY OF THE INVENTION

It is an objective of the present invention to overcome the problems of the prior art set out above, by providing a low-pass filter that is configured as a switched capacitor circuit, whereby even when the frequency of the two-phase clock signals φ1, φ2 is made substantially lower than has been the practice in the prior art, in order to achieve a very low value of cut-off frequency for the filter (for example, approximately 1 Hz) and the values of capacitors used in the switched capacitor circuit are made sufficiently small to enable the capacitors to be readily manufactured within a semiconductor integrated circuit, the operation of the low-pass filter will be substantially unaffected by leakage currents which flow in switching elements of the switched capacitor circuit.

Basically, the present invention is applicable to a low-pass filter that is configured as a switched capacitor circuit, and is used to detect variations in voltage of an input signal, such as a detection signal from a pressure sensor or an amplified detection signal from a pressure sensor. Such a switched capacitor circuit includes first and second capacitors that are fixedly connected in series, and an operational amplifier having a third capacitor fixedly connected between its output terminal and a non-inverting input terminal. The input signal to the low-pass filter is applied between an input terminal of the filter and the non-inverting input terminal of the operational amplifier. The switched capacitor circuit also includes first and second sets of switching elements operable for establishing a plurality of respectively different connection conditions between the first, second and third capacitors and the input terminal of the low-pass filter, and switching control means for selectively setting all of the first plurality of switching elements in a conducting state and in a non-conducting state and for selectively setting all of the second plurality of switching elements in a conducting state and in a non-conducting state, to establish the different connection conditions in a predetermined sequence. Specifically, the switching control means periodically controls the switching elements to sequentially establish:

(a) during a first time interval (Phase 1), a condition in which the first capacitor is charged to the voltage of the input signal, while the second capacitor is discharged to zero and the charge of the third capacitor is left unchanged,

(b) during a second time interval (Phase 2), a condition in which no charging or discharging of the capacitors occurs,

(c) during a third time interval (Phase 3), a condition in which the second and third capacitors are connected in parallel between the output terminal and inverting input terminal of the operational amplifier and are each charged from the first capacitor, while the first capacitor is discharged to zero, with a corresponding change in the voltage across the third capacitor and a resultant change in output voltage from the operational amplifier, and

(d) during a fourth time interval (Phase 4), a condition in which no charging or discharging of the capacitors occurs.

A basic feature of the present invention is that of providing such a low-pass filter, in which the switching control means is configured to establish as short a duration as possible for the second time interval (Phase 2), within a range of durations whereby none of the first set of switching elements can enter the conducting status concurrently with any of the second set of switching elements.

Since in general the switching elements are implemented as semiconductor devices (e.g., MOS FET transistors), the maximum possible duration for the second time interval will increase in accordance with increased operating temperature of the low-pass filter, due to leakage of charge to or from the capacitors because of leakage currents of the switching elements that are connected to each side of each capacitor. Such leakage currents increase in accordance with increasing temperature. Hence, the "shortest possible duration" is preferably established as the shortest duration whereby none of the first set of switching elements can enter the conducting status concurrently with any of the second set of switching elements when the low-pass filter is functioning at a predetermined maximum operating temperature.

In addition, the shortest possible duration for the second time interval may be established based on the maximum amount of error that is permissible in the DC gain of the low-pass filter. The amount of that error varies substantially in proportion to the amount of change in charge voltage that occurs in the aforementioned second capacitor during the second time interval. Thus for example if the maximum amount of error that is permissible in the DC gain of the low-pass filter is 3%, then the shortest possible duration for the aforementioned second time interval can be established as "a duration for the second time interval whereby the amount of charge in the second capacitor during that time interval does not change by more than 3%".

It is a further objective to provide a semiconductor pressure sensor apparatus that utilizes such a low-pass filter. To achieve that objective, the invention provides a semiconductor pressure sensor apparatus comprising

a semiconductor substrate having a region thereof formed to be thinner than surrounding regions to thereby constitute a diaphragm,

a first pair of piezoresistive elements mounted on the diaphragm, each adapted to exhibit an increase in resistance when pressure is applied to the diaphragm,

a second pair of piezoresistive elements mounted on the diaphragm, each adapted to exhibit a decrease in resistance when pressure is applied to the diaphragm, the piezoresistive elements being connected as an electrical bridge circuit, having a first connection point that connects a first one of the first pair of piezoresistive elements to a first one of the second pair of piezoresistive elements, a second connection point that connects a second one of the first pair of piezoresistive elements to a second one of the second pair of piezoresistive elements, a third connection point that connects the first one of the first pair of piezoresistive elements

to the second one of the second pair of piezoresistive elements, and a fourth connection point that connects the second one of the first pair of piezoresistive elements to the first one of the second pair of piezoresistive elements,

a source of an electric current that is passed between the first and second connection points, a differential amplifier for amplifying a voltage difference between the second and third connection points, and a low-pass filter according to the present invention.

Specifically, an amplified output signal produced from the differential amplifier is supplied to the low-pass filter, for thereby detecting variations in pressure applied to the diaphragm.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the electrical configuration of an embodiment of a semiconductor pressure sensor apparatus;

FIG. 2 is a timing diagram for illustrating timing relationships between two-phase clock signals that are utilized in a switched capacitor type of low-pass filter circuit in the embodiment of FIG. 1;

FIGS. 3A, 3B show the configuration of a pressure sensor element which may be used with the above embodiment;

FIG. 4 is a circuit diagram of an example of a circuit for generating the two-phase clock signals that are used in the above embodiment;

FIGS. 5A to 5D are circuit diagrams which illustrate successive switching conditions that are attained by a switched capacitor type of low-pass filter circuit;

FIG. 6 is an equivalent circuit diagram of a switched capacitor type of low-pass filter circuit;

FIG. 7 shows the electrical configuration of an example of a prior art type of semiconductor pressure sensor apparatus; and

FIG. 8 is a timing diagram for describing the operation of a switched capacitor type of low-pass filter in the prior art example of FIG. 7.

DESCRIPTION OF PREFERRED EMBODIMENTS

FIG. 1 is a circuit diagram showing an embodiment of a semiconductor pressure sensor apparatus which incorporates a low-pass filter 3, implemented as a switched capacitor circuit. Components in FIG. 1 corresponding to components of the prior art example of FIG. 7 described above are designated by identical reference numerals to those of FIG. 7. It can thus be understood that the respective configurations of the semiconductor pressure sensor 1, the differential amplifier 2 and the low-pass filter 3 may be similar to those of the prior art example of FIG. 7. However a clock pulse signal generating circuit 40 of this embodiment is configured to operate in a different manner from the prior art example, as described in the following.

FIG. 3A is a plan view of a semiconductor pressure sensor 1 which is used in the embodiment of FIG. 1, while FIG. 3B is a cross-sectional view in elevation of the semiconductor pressure sensor 1, taken along the line A—A in FIG. 3A.

FIG. 2 is a timing diagram showing timing relationships between two-phase clock signals ϕ_1, ϕ_2 of this embodiment, generated by the clock pulse signal generating circuit 40, which controls the switches of the low-pass filter 3 in the embodiment of FIG. 1.

Referring to FIGS. 3A, 3B, the semiconductor pressure sensor 1 includes a semiconductor substrate 4, having an N-type layer 4b formed by epitaxial growth on a P-type

AL 23 LUN

silicon substrate 4a. The substrate 4a has a central region that is shaped to be thinner than the peripheral region of that substrate, and that central region in conjunction with the N-type epitaxial layer 4b constitutes a thin diaphragm 5.

The piezoresistive elements G1-G4, each formed by diffusion of P-type impurities, are disposed on a surface of the diaphragm 5. When pressure is applied to the diaphragm 5, the diaphragm 5 and the piezoresistive elements G1-G4 become distorted, the resistance of each of the piezoresistive elements G1, G2 becomes increased while the resistance of each of the piezoresistive elements G3, G4 becomes decreased. The piezoresistive elements G1-G4 are connected in a bridge circuit as shown in FIG. 1, in which the piezoresistive elements G1-G4 are indicated as respective variable resistors.

A current source 6 supplies a fixed value of current I_a that flows into the mutual connection point of the piezoresistive elements G1, G3, with that current then flowing to ground potential through the mutual connection point of the piezoresistive elements G2, G4. When pressure is applied to the diaphragm 5, with such a circuit configuration, an amount of voltage increase (designated as V_{p1} in FIG. 1) will be assumed to be produced at the mutual connection point of the piezoresistive elements G2, G3, with an amount of voltage decrease (designated as V_{p2} in FIG. 1) being produced at the mutual connection point of the piezoresistive elements G1, G4. The voltage difference (V_{p1}-V_{p2}) varies in substantially direct proportion to variations in the pressure that is applied to the diaphragm 5.

The voltage difference (V_{p1}-V_{p2}) is amplified by the differential amplifier 2, to obtain the output signal having the voltage value V_o as shown in FIG. 1.

Various configurations may be used for the differential amplifier 2. With the specific circuit configuration shown in FIG. 1, the differential amplifier 2 is formed of a pair of operational amplifiers OP2, OP3 and four resistors R3, R4, R5, R6. The potentials V_{p1}, V_{p2} which are developed by the semiconductor pressure sensor 1 as described above are applied to the non-inverting input terminals of the operational amplifiers OP2, OP3 respectively. The resistors R3, R4, R5, R6 are connected in series between the output terminal of the operational amplifier OP2 and a mutual connection node NVref that is held at a potential which is higher than ground potential by a reference voltage value V_{ref}. The resistor R3 is connected between the output terminal and the non-inverting input terminal of the operational amplifier OP2, while the resistor R5 is connected between the output terminal and the non-inverting input terminal of the operational amplifier OP3.

One end of the resistor R6 is connected to the mutual connection node NVref. The voltage that appears between the output terminal of the operational amplifier OP2 and the mutual connection node NVref is proportional to the output voltage value from the differential amplifier 2. Specifically, assuming that all of the resistors R3, R4, R5, R6 have the same value, the output voltage V_o is equal to 2(V_{p1}-V_{p2}).

The output voltage V_o from the differential amplifier 2 is supplied to the low-pass filter 3, which is constituted by a switched capacitor circuit having the configuration described above referring to the prior art example of FIG. 7. That is to say, the low-pass filter 3 is formed of an operational amplifier OP1, first, second and third capacitors C1, C2, C3, a set of first, second and third analog switches S11, S12, S13 each of which is set in the conducting state when the first clock signal φ1 of the two-phase clock signals φ1, φ2 is at the active level, and a set of fourth, fifth and sixth

analog switches S24, S25, S26 S13 each of which is set in the conducting state when the second clock signal φ2 is at the active level.

With this embodiment, the operational amplifier OP1 is supplied with power from a single power supply voltage V_d. For that reason, the non-inverting input terminal of the operational amplifier OP1 is connected to the aforementioned mutual connection node NVref, which is held at the reference voltage V_{ref}. The value of V_{ref} can be approximately half of the supply voltage V_d. However it would be equally possible to supply the operational amplifier OP1 with power from a pair of positive and negative power supply voltages, in which case the reference voltage V_{ref} could be the ground potential.

This embodiment essentially differs from the prior art example of FIG. 7 described above with respect to the timing relationships between the first and second clock signals φ1, φ2 that are generated by the clock pulse signal generating circuit 40. Specifically, with this embodiment, 15 the time interval which elapses between a falling edge of a pulse of the first clock signal φ1 (i.e., a transition of that clock signal from the active to the inactive level, whereby each analog switch that is controlled by that clock signal is changed from the conducting to the non-conducting state) 20 and the rising edge of the succeeding pulse of the second clock signal φ2 (i.e., a transition of that clock signal from the inactive to the active level, whereby each analog switch that is controlled by that clock signal is set in the conducting state) 25 is made as short as possible, insofar as it can be ensured that analog switches controlled by the first clock signal φ1 cannot enter the conducting state concurrently with any analog switches controlled by the second clock signal φ2.

During the first time interval, Phase 1, in which the first 35 clock signal φ1 is at the active level and the second clock signal φ2 is at the inactive level, the connection condition of the low-pass filter 3 is as shown in FIG. 5A. The capacitor C1 is charged to the input voltage V_o while conversely the capacitor C2 is discharged to 0 V, and the charge in the 40 capacitor C3 does not change.

During the second time interval, Phase 2, as shown in FIG. 5B all of the switches S11, S12, S13, S24, S25, S26 are in the non-conducting state so that the charge in each of the capacitors C1, C2, C3 does not change. Thus, during Phase 45 2, (assuming that no charge is lost due to leakage current) the charges of the capacitors will remain unchanged from the condition at the end of Phase 1.

During the third time interval, Phase 3, since the first 50 clock signal φ1 is at the inactive level and the second clock signal φ2 is at the active level, then the connection condition is as shown in FIG. 5C, with the capacitors C2 and C3 connected in parallel. The capacitor C1 is thereby connected between the inverting input terminal and the non-inverting input terminal of the operational amplifier OP1. Since these 55 terminals are at the same potential, the capacitor C1 becomes discharged, and the resultant discharge current serves to charge each of the capacitors C2, C3. As discharge current from the capacitor C1 flows into the capacitor C2 as a charging current, a charging current also flows from the 60 output terminal of the operational amplifier OP1, so that the capacitors C2 and C3 become charged to the same voltage.

Thus in the same way as described for the prior art example of FIG. 7, the output voltage V_o from the low-pass filter 3 changes by an amount that is equal to the amount of change in the voltage to which the capacitor C3 is charged.

Finally in the fourth time interval, Phase 4, the condition becomes as shown in FIG. 5D, in which all of the analog

switches are in the non-conducting state, in the same way as during Phase 3, so that the charge in each capacitor is held unchanged from that which existed at the end of Phase 3.

It can thus be understood that with this embodiment, the circuit configuration of the low-pass filter 3 and the operation of that circuit based on the two-phase clock signals ϕ_1 , ϕ_2 is essentially identical to that of the prior art example described hereinabove. However with this embodiment, the phase relationship between the two-phase clock signals ϕ_1 , ϕ_2 differs from that of the prior art example, shown in the timing diagram of FIG. 8, i.e., with the phase relationships relationship between the two-phase clock signals ϕ_1 , ϕ_2 for this embodiment being as shown in the timing diagram of FIG. 2.

Assuming that the required cut-off frequency for the low-pass filter 3 is extremely low, e.g., 1 Hz, then as described above, in order to be able to utilize capacitors which are of sufficiently small capacitance value to be formed on a semiconductor integrated circuit, it becomes necessary to lower the frequency of the basic clock signal to approximately 1.5 kHz as described hereinabove. In that case, with the prior art type of switched capacitor low-pass filter, the duration of the Phase 2 interval would be 170 microseconds, which is substantially long. Thus, the amounts of charge held in the capacitors C1, C2 would be strongly affected by leakage current flow which occurs in the analog switches that are connected to these capacitors. As a result, as described hereinabove, it would not be possible to correctly obtain the required gain in the low-frequency range, or the value of cut-off frequency that is expressed by equation (3) above, for the low-pass filter 3.

However the above embodiment of the present invention having the clock signal timing relationships shown in FIG. 2 differs from the prior art example in that the duration of the Phase 2 interval is made extremely short. Hence, satisfactory operation can be achieved with a cut-off frequency as low as 1 Hz, when the frequency of the two-phase clock signals ϕ_1 , ϕ_2 is lowered to 1.5 kHz. It becomes possible to use small capacitance values for the capacitors of the low-pass filter, including C3.

Specifically, the duration of the Phase 2 interval should be made as short as possible, within a range of values whereby none of the analog switches that are controlled by the clock signal ϕ_1 will be in the conducting state (i.e., ON state) concurrently with any of the analog switches that are controlled by the clock signal ϕ_2 .

In particular, since the leakage current of switching elements such as MOS field-effect transistors increases with temperature, the duration of the Phase 2 interval should be made as short as possible while ensuring that the above condition is satisfied (i.e., whereby there must be no overlap between conduction intervals of the analog switches that are controlled by the clock signal ϕ_1 and conduction intervals of the analog switches that are controlled by the clock signal ϕ_2) when the low-pass filter 3 is used at up to a predetermined maximum value of operating temperature. It can thereby be ensured that the operation of the low-pass filter 3 will not be affected by temperature-dependent increases in leakage currents of the analog switches.

Preferably, when high-speed MOS FETs are used as the analog switches, the duration of the Phase 2 interval should be within the range of 0.6 to 2 microseconds.

An alternative method of determining a suitable minimum duration for the Phase 2 interval is as follows. If there is significant loss of charge from the capacitors C1, C2 during each Phase 2 interval, then an error will arise in the value of DC gain of the low-pass filter 3, with respect to a target

value of DC gain. That is to say, the magnitude of that gain error is substantially entirely determined by the rate of charge leakage from the capacitors C1, C2 during each Phase 2 interval, due to leakage current in the analog switches. A maximum value for that error in the DC gain can be predetermined, e.g., expressed as a proportion of the target value of DC gain, such as 3%. If the duration of the Phase 2 interval is made such that the proportion of charge reduction (of capacitor C1, for example) that occurs during each Phase 2 interval is equal to the predetermined maximum allowable amount of error in the DC gain of the low-pass filter 3 with respect to the target value (e.g., an error of 3%), then satisfactory operation can be achieved.

The amount of leakage of charge from the capacitor C1 during each Phase 2 interval can be measured directly, or can be obtained by measuring the levels of leakage current of the analog switches.

With such a short duration of the Phase 2 interval, it can be ensured that the charge on the capacitors C1, C2 during each Phase 2 interval will be left unchanged from the condition at the end of the preceding Phase 1 interval, i.e., the charge condition will not be affected by flows of leakage current in the analog switches that are connected to these capacitors, and so will be left unchanged until the start of the succeeding Phase 3 interval. Hence, the aforementioned problems of the prior art with respect to errors in the gain of the filter in the low-frequency range and in the value of cut-off frequency attained, can be overcome. It thus becomes possible to realize a low-pass filter which can have an extremely low value of cut-off frequency, such as 1 Hz, by using a switched capacitor type of circuit in which the capacitors are of sufficiently small value to be readily formed in an integrated circuit.

With this embodiment, the two-phase clock signals ϕ_1 , ϕ_2 are generated by the clock pulse signal generating circuit 40, whose internal circuit configuration can be as shown in the example of FIG. 4. With this circuit, a basic clock signal generating circuit 7 produces the basic clock signal at a frequency of 6 kHz, which is inputted to a 2-bit binary counter 8. The output from the 2⁰ stage of the binary counter 8 is inputted to an inverter Q1 and to one input of a 2-input AND gate Q3, with the output from the inverter Q1 being supplied to one input of a 2-input AND gate Q2, while the output from the 2¹ stage of the binary counter 8 is supplied to the other input of the AND gate Q2 and to the other input of the AND gate Q2. The output produced from the AND gate Q2 consists of a train of pulses at a frequency of 1.5 kHz, i.e., with each pulse occurring when the binary counter 8 attains a count of 2. That pulse train is used as the clock signal ϕ_1 of the circuit of FIG. 1.

The output from the 2-input AND gate Q3 also consists of a train of pulses each generated when the binary counter 8 attains a count of 3. These pulses are delayed by being transferred through a delay circuit 9 that produces a delay of approximately 1 μ s, with the output from the delay circuit 9 constituting the clock signal ϕ_2 of the circuit of FIG. 1, i.e., which also has a frequency of 1.5 kHz.

Thus by appropriately determining the delay amount produced by the delay circuit 9, the phase relationships between the two-phase clock signals ϕ_1 , ϕ_2 are as shown in the timing diagram of FIG. 2, with an extremely short interval of approximately 1 μ s between the end of a pulse of the clock signal ϕ_1 and the start of the succeeding pulse of the clock signal ϕ_2 .

It can thus be understood from the above that with the present invention, since the operation of the low-pass filter is unaffected by leakage current which flows in the analog

US 7,049,883 B2

11

switches, it becomes possible to implement a switched capacitor type of low-pass filter that can have an extremely low value of cut-off frequency, and which can be configured with capacitor values which are sufficiently small that the capacitors can readily be formed within a semiconductor integrated circuit. Such a low-pass filter can be used to detect extremely low-frequency components of voltage variations, when the voltage variations include high-frequency components superimposed on the low-frequency components.

The invention thus enables a semiconductor pressure sensor apparatus to be realized which can detect extremely low-frequency components of pressure variations, and which utilizes a switched capacitor type of low-pass filter that is formed in an integrated circuit.

Furthermore although the low-pass filter of the present invention has been described in the above only with application to a sensor signal produced from a pressure sensor, it will be understood that such a low-pass filter is equally applicable to various other applications in which it is necessary to achieve a very low value of filter cut-off frequency for a low-pass filter whose components are formed entirely within a semiconductor integrated circuit.

What is claimed is:

1. A low-pass filter for detecting voltage variations of an input signal supplied to an input terminal thereof and producing and output signal indicative of said voltage variations, said low-pass filter including a switched capacitor circuit having clock signal generating circuit for generating a first clock pulse signal and a second clock pulse signal of mutually identical frequency and differing phase, first, second and third capacitors, a first plurality of switching elements each controlled by said first clock pulse signal, and a second plurality of switching elements each controlled by said second clock signal, an operational amplifier for producing said output signal from an output terminal thereof, a first capacitor selectively connectable between said low-pass filter input terminal and an input terminal of said operational amplifier via respective ones of said first and second pluralities of switching elements, a second capacitor selectively connectable between an input terminal of said operational amplifier and said output terminal of said operational amplifier via respective ones of said second plurality of switching elements, a third capacitor connected between said input terminal and output terminal of said operational amplifier, 45 said low-pass filter configured to operate successively in:

a first condition in which said first clock pulse signal is at an active level whereby each of said first plurality of switching elements is held in a conducting status and said second clock pulse signal is at an inactive level 50 whereby each of said second plurality of switching elements is held in a non-conducting status, with said first capacitor being thereby charged to a voltage of said input signal, said second capacitor being discharged to a voltage of zero, and no charging or discharging of said third capacitor is performed,

a second condition, in which each of said first clock pulse signal and second clock pulse signal is at said inactive level, whereby no charging or discharging of said first, second or third capacitors is performed,

a third condition in which said first clock pulse signal is at said inactive level and said second clock pulse signal is at said active level, whereby each of said second plurality of switching elements is held in a conducting status and said second and third capacitors thereby 65 become connected in parallel with one another, said first capacitor is discharged to a voltage of zero, and a

10
15

12

discharge current from said first capacitor acts to charge said second and third capacitors, and
a fourth condition in which each of said first clock pulse signal and second clock pulse signal is at said inactive level, whereby no charging or discharging of said first, second or third capacitors is performed, with said first condition being subsequently returned to; wherein

said clock signal generating circuit comprises means for controlling said first and second pulse signals to set a duration of each interval of the second condition at a value whereby a decrease of stored charge in said first capacitor occurring within said interval, expressed as a percentage decrease with respect to an amount of said stored charge at commencement of said interval, is predetermined to be substantially equal to a maximum permissible amount of error of DC gain of said low-pass filter, with said error being no greater than 3 percent of a predetermined value of said DC gain, said duration extending between a transition of said first clock pulse signal from said active level to said inactive level and an immediately succeeding transition of said second clock pulse signal from said inactive level to said active level.

2. A low-pass filter as claimed in claim 1, wherein said switching elements are field effect transistors which exhibit leakage current flow, and wherein said duration of the second condition is made as short as possible within a range of values whereby none of said of first, second and third field effect transistors can enter said conducting status concurrently with any of said fourth, fifth and sixth field effect transistors while said low-pass filter is functioning at a predetermined maximum operating temperature thereof.

3. A low-pass filter as claimed in claim 1, wherein said duration of the second condition is set as a value within a range extending from 0.6 microseconds to 2 microseconds.

4. A semiconductor pressure sensor apparatus comprising: a semiconductor substrate having a region thereof formed to be thinner than surrounding regions to thereby constitute a diaphragm,

a first pair of piezoresistive elements mounted on said diaphragm, each adapted to exhibit an increase in resistance when pressure is applied to said diaphragm, a second pair of piezoresistive elements mounted on said diaphragm, each adapted to exhibit a decrease in resistance when pressure is applied to said diaphragm, said piezoresistive elements being connected as an electrical bridge circuit, having a first connection point that connects a first one of said first pair of piezoresistive elements to a first one of said second pair of piezoresistive elements, a second connection point that connects a second one of said first pair of piezoresistive elements to a second one of said second pair of piezoresistive elements, a third connection point that connects said first one of said first pair of piezoresistive elements to said second one of said second pair of piezoresistive elements, and a fourth connection point that connects said second one of said first pair of piezoresistive elements to said first one of said second pair of piezoresistive elements,

a source of an electric current that is passed between said first and second connection points, and a differential amplifier for amplifying a voltage difference between said second and third connection points; wherein

an amplified output signal voltage produced from said differential amplifier is supplied to a low-pass filter as

60

65

13

claimed in claim 1, for thereby detecting variations in pressure applied to said diaphragm.

5. A low-pass filter for detecting voltage variations of an input signal applied between first and second input terminals thereof and producing an output signal indicative of said voltage variations, said low pass filter including a switched capacitor circuit having first and second input terminals coupled to receive said input signal, a clock signal generating circuit for generating a first clock pulse signal and a second clock pulse signal of mutually identical frequency 10 and differing phase, first, second and third capacitors, a set of first, second and third switching elements each controlled to be set in a conducting status when said first clock pulse signal is at an active level, a set of fourth, fifth and sixth switching elements each controlled to be set in said conducting status when said second clock pulse signal is at said active level, an operational amplifier which operates from a single power supply voltage and has an inverting input terminal thereof connected in common to a reference voltage having a value that is one-half of said power supply voltage 20 and to said second input terminal of said switched capacitor circuit, said first switching element connected between said first input terminal of said switched capacitor circuit and a first mutual connection node, said fourth switching element connected between said first mutual connection node and a non-inverting input terminal of said operational amplifier, said first capacitor connected between said first mutual connection node and a second mutual connection node, said second switching element connected between said second mutual connection node and said non-inverting input terminal 25 of said operational amplifier, said fifth switching element connected between said second mutual connection node and said inverting input terminal of said operational amplifier, said second capacitor connected between said second mutual connection node and a third mutual connection node, said third capacitor connected between said inverting input terminal of said operational amplifier and an output terminal of said operational amplifier, said third switching element connected between said third mutual connection node and said non-inverting input terminal of said operational amplifier, said sixth switching element connected between said third mutual connection node and said output terminal of said operational amplifier, with said output signal of said low-pass filter being produced between said output terminal 30 of said operational amplifier and said non-inverting input terminal of said operational amplifier; wherein
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250
 255
 260
 265
 270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 6385
 6390
 6395
 6400
 6405
 6410
 6415
 6420
 6425
 6430
 6435
 6440
 6445
 6450
 6455
 6460
 6465
 6470
 6475
 6480
 6485
 6490
 6495
 6500
 6505
 6510
 6515
 6520
 6525
 6530
 6535
 6540
 6545
 6550
 6555
 6560
 6565
 6570
 6575
 6580
 6585
 6590
 6595
 6600
 6605
 6610
 6615
 6620
 6625
 6630
 6635
 6640
 6645
 6650
 6655
 6660
 6665
 6670
 6675
 6680
 6685
 6690
 6695
 6700
 6705
 6710
 6715
 6720
 6725
 6730
 6735
 6740
 6745
 6750
 6755
 6760
 6765
 6770
 6775
 6780
 6785
 6790
 6795
 6800
 6805
 6810
 6815
 6820
 6825
 6830
 6835
 6840
 6845
 6850
 6855
 6860
 6865
 6870
 6875
 6880
 6885
 6890
 6895
 6900
 6905
 6910
 69

FIG. 2

U.S. Patent

May 23, 2006

Sheet 3 of 7

US 7,049,883 B2

FIG. 3A

FIG. 3B

APR 2006
2006
LUMA

FIG. 5A**FIG. 5B****FIG. 5C****FIG. 5D**

PRIOR ART
FIG. 8

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
 - COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.