Heures (Hebdo)	4.0
Cours	2.0
Exercices	2.0
Pratique	0.0
Total	56.0

Langue	français	
Semestre	Automne	
Mode d'évaluation	Examen oral	
Session	Janvier	
Format de l'enseignment	Cours, exercices	

Cursus	Туре	ECTS
Maîtrise universitaire en mathématiques, informatique et sciences numériques	N/A	6.0
Maîtrise universitaire en mathématiques	N/A	6.0
Baccalauréat universitaire en mathématiques	N/A	6.0
Baccalauréat universitaire en mathématiques, informatique et sciences numériques	N/A	5.0

Homologies

14M233 | Christophe Pittet

Objectifs

Le but du cours est dintroduire les définitions et méthodes de base de lhomologie, de les illustrer par des applications à la topologie et à la théorie des groupes. La théorie de lhomologie sest développée pour répondre à des questions de topologie. Aujourdhui les méthodes homologiques sont très largement utilisées non seulement en topologie et en géométrie, mais aussi en analyse complexe et en géométrie algébrique.

Description

- 1. Modules et complexes.
- 2. Homologie dun complexe.
- 3. Homologie singulière et cellulaire.
- 4. Applications de lhomologie à la topologie.
- 5. Axiomes de lhomologie.
- 6. Cohomologie des groupes.