We label each rule from top to bottom 1 - 6.

We see that rule 3:

$$B \rightarrow B$$
; $+ V \mid + V$

Is left-recursive as the B in the production can keep expanding infinitely without consuming anything. We remove the left recursion with the following modification:

$$B \rightarrow + V : B \mid + V$$

This gives rise to a new problem, the common prefix +. When we consume a + we have no way of knowing which rule to follow next (i.e. if we should add a V; B or only a V). To fix this, we perform left factoring by factoring the parts after + V out of B:

$$B \rightarrow + VI$$
$$I \rightarrow ; B \mid \epsilon$$

No other rule has left recursion, and consequently the grammar is now LL(1) parsable. The full grammar with numbered productions becomes:

- 1. $S \rightarrow i C B E F n$
- 2. $C \rightarrow c$
- 3. $B \rightarrow + V I$
- 4. $I \rightarrow B$
- 5. $I \rightarrow \epsilon$
- 6. $V \rightarrow x$
- 7. $V \rightarrow y$
- 8. $E \rightarrow e B$
- 9. $E \rightarrow \epsilon$
- 10. $F \rightarrow f$
- 11. $F \rightarrow \epsilon$

Non-terminal	FIRST	FOLLOW	NULLABLE
S	i_1	\$	NO
С	c ₂	+	NO
В	+3	e, f, n	NO
I	; ₄ € ₅	e, f, n	YES
V	$x_6 y_7$; , e, f, n	NO
Е	<i>e</i> ₈ € ₉	f, n	YES
F	$f_{10} \epsilon_{11}$	n	YES

1.3 LL(1) table:

	i	С	+	;	x	y	e	f	n
S	1								
С		2							
В			3						
I				4			5	5	5
V					6	7			
Е							8	9	9
F								10	11

No cell has more than one number (rule), so there are no conflicts \rightarrow the grammar can be parsed with an LL(1) algorithm. Moreover, the grammar is unambiguous.