1-11 Set Theory (IV): Infinity

魏恒峰

hfwei@nju.edu.cn

2019年12月19日

Finite Sets

Finite Sets

"关于有穷, 我原以为我是懂的"

Definition (Finite)

X is finite if

$$\exists n \in \mathbb{N} : |X| = n$$

Definition (Finite)

X is finite if

$$\exists n \in \mathbb{N} : |X| = n$$

Theorem (Pigeonhole Principle (UD Theorem 22.2))

$$f: \{1, \dots, m\} \to \{1, \dots, n\} \ (m, n \in \mathbb{N}^+, m > n)$$

f is not one-to-one.

Let A be a nonempty finite set with |A| = n and let $a \in A$.

Prove that $A \setminus \{a\}$ is finite and $|A \setminus \{a\}| = n - 1$.

Let A be a nonempty finite set with |A| = n and let $a \in A$. Prove that $A \setminus \{a\}$ is finite and $|A \setminus \{a\}| = n - 1$.

$$f: A \stackrel{1-1}{\longleftrightarrow} \{1, \cdots, n\}$$

Let A be a nonempty finite set with |A| = n and let $a \in A$. Prove that $A \setminus \{a\}$ is finite and $|A \setminus \{a\}| = n - 1$.

$$f: A \stackrel{1-1}{\longleftrightarrow} \{1, \cdots, n\}$$

$$f|_{A\setminus\{a\}}: A\setminus\{a\} \stackrel{1-1}{\underset{onto}{\longleftarrow}} \{1,\cdots,n\}\setminus\{f(a)\}$$

Let A be a nonempty finite set with |A| = n and let $a \in A$. Prove that $A \setminus \{a\}$ is finite and $|A \setminus \{a\}| = n - 1$.

$$f: A \stackrel{1-1}{\longleftrightarrow} \{1, \cdots, n\}$$

$$f|_{A\setminus\{a\}}: A\setminus\{a\} \stackrel{1-1}{\longleftrightarrow} \{1,\cdots,n\}\setminus\{f(a)\} \stackrel{1-1}{\longleftrightarrow} \{1,\cdots,n-1\}$$

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 21.10). Show that $|B| \leq |A|$.

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 21.10). Show that $|B| \leq |A|$.

one-to-one $f: B \to A$

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 21.10). Show that $|B| \leq |A|$.

one-to-one $f:B\to A$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 21.10). Show that $|B| \leq |A|$.

one-to-one
$$f: B \to A$$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

$$\exists a: a \in A \land a \not\in B \qquad f: B \to A \setminus \{a\} \qquad |B| \leq |A \setminus \{a\}|$$

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 21.10). Show that $|B| \leq |A|$.

one-to-one
$$f: B \to A$$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

$$\exists a: a \in A \land a \not \in B \qquad f: B \to A \setminus \{a\} \qquad |B| \leq |A \setminus \{a\}|$$

(c) If two finite sets A and B satisfy $B \subseteq A$ and $|A| \le |B|$, then A = B.

(a) A is a finite set and $B \subseteq A$. We showed that B is finite (Corollary 21.10). Show that $|B| \leq |A|$.

one-to-one
$$f: B \to A$$

(b) A is a finite set and $B \subseteq A$. Show that if $B \neq A$, then |B| < |A|.

$$\exists a: a \in A \land a \notin B \qquad f: B \to A \setminus \{a\} \qquad |B| \leq |A \setminus \{a\}|$$

- (c) If two finite sets A and B satisfy $B \subseteq A$ and $|A| \le |B|$, then A = B.
 - By contradiction and (b).

 $f: A \to A \text{ (UD Problem 22.21)}$

Let A be a finite set.

$$f:A\to A$$

Prove that

f is one-to-one $\iff f$ is onto.

7/16

 $f: A \to A \text{ (UD Problem 22.21)}$

Let A be a finite set.

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

$$f: A \to A \text{ (UD Problem 22.21)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

By Contradiction.

$$f: A \to A \text{ (UD Problem 22.21)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

By Contradiction.

$$f:A\to A\setminus\{a\}$$

By Pigeonhole Principle.

$$f: A \to A \text{ (UD Problem 22.21)}$$

$$f:A\to A$$

Prove that

f is one-to-one $\iff f$ is onto.

By Contradiction.

$$f:A\to A\setminus\{a\}$$

By Pigeonhole Principle.

$$f: A \to A \text{ (UD Problem 22.21)}$$

$$f:A\to A$$

Prove that

$$f$$
 is one-to-one $\iff f$ is onto.

 \Longrightarrow

 \leftarrow

By Contradiction.

By Contradiction.

$$f:A\to A\setminus\{a\}$$

By Pigeonhole Principle.

$$f: A \to A \text{ (UD Problem 22.21)}$$

$$f:A\to A$$

Prove that

f is one-to-one $\iff f$ is onto.

$$\Longrightarrow$$

 \leftarrow

By Contradiction.

By Contradiction.

$$f:A\to A\setminus\{a\}$$

$$\sum_{x \in A} f^{-1}(\{y\}) > |A|$$

By Pigeonhole Principle.

・ロト・(団)・ (三)・ (三)・ (〇)・

Give an example, if possible, of

(a) A countably infinite collection of pairwise disjoint finite sets whose union is countably infinite.

Give an example, if possible, of

(a) A countably infinite collection of pairwise disjoint finite sets whose union is countably infinite.

$$\forall n \in \mathbb{N} : A_n = \{n\} \qquad \bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}$$

Give an example, if possible, of

(a) A countably infinite collection of pairwise disjoint finite sets whose union is countably infinite.

$$\forall n \in \mathbb{N} : A_n = \{n\} \qquad \bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}$$

(b) A countably infinite collection of nonempty sets whose union is finite.

Give an example, if possible, of

(a) A countably infinite collection of pairwise disjoint finite sets whose union is countably infinite.

$$\forall n \in \mathbb{N} : A_n = \{n\} \qquad \bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}$$

(b) A countably infinite collection of nonempty sets whose union is finite.

$$\forall n \in \mathbb{N} : A_n = \{1\} \qquad \bigcup_{n \in \mathbb{N}} A_n = \{1\}$$

Give an example, if possible, of

(a) A countably infinite collection of pairwise disjoint finite sets whose union is countably infinite.

$$\forall n \in \mathbb{N} : A_n = \{n\} \qquad \bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}$$

(b) A countably infinite collection of nonempty sets whose union is finite.

$$\forall n \in \mathbb{N} : A_n = \{1\} \qquad \bigcup_{n \in \mathbb{N}} A_n = \{1\}$$

(c) A countably infinite collection of pairwise disjoint nonempty sets whose union is finite.

Give an example, if possible, of

(a) A countably infinite collection of pairwise disjoint finite sets whose union is countably infinite.

$$\forall n \in \mathbb{N} : A_n = \{n\} \qquad \bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}$$

(b) A countably infinite collection of nonempty sets whose union is finite.

$$\forall n \in \mathbb{N} : A_n = \{1\} \qquad \bigcup_{n \in \mathbb{N}} A_n = \{1\}$$

(c) A countably infinite collection of pairwise disjoint nonempty sets whose union is finite.

$$|A| = n \implies$$

Give an example, if possible, of

(a) A countably infinite collection of pairwise disjoint finite sets whose union is countably infinite.

$$\forall n \in \mathbb{N} : A_n = \{n\} \qquad \bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}$$

(b) A countably infinite collection of nonempty sets whose union is finite.

$$\forall n \in \mathbb{N} : A_n = \{1\} \qquad \bigcup_{n \in \mathbb{N}} A_n = \{1\}$$

(c) A countably infinite collection of pairwise disjoint nonempty sets whose union is finite.

$$|A| = n \implies |\mathcal{P}(A)| = 2^n$$

UD Problem 23.3 (d)

Is it countable or uncountable?

$$A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x + y = 1\}$$

9/16

UD Problem 23.3 (d)

Is it countable or uncountable?

$$A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x + y = 1\}$$

$$f: \mathbb{R} \stackrel{1-1}{\longleftrightarrow} A$$

UD Problem 23.3 (d)

Is it countable or uncountable?

$$A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x + y = 1\}$$

$$f: \mathbb{R} \stackrel{1-1}{\longleftrightarrow} A$$

$$f(x) = (x, 1 - x)$$

Infinite Sequences of 0's and 1's (UD Problem 23.4)

Is the set of all infinite sequences of 0's and 1's finite, countably infinite, or uncountable?

Infinite Sequences of 0's and 1's (UD Problem 23.4)

Is the set of all infinite sequences of 0's and 1's finite, countably infinite, or uncountable?

```
s = 10111010011...
```

By Diagonal Argument.

Infinite Sequences of 0's and 1's (UD Problem 23.4)

Is the set of all infinite sequences of 0's and 1's finite, countably infinite, or uncountable?

$$f: \{\{0,1\}^*\} \to \mathbb{N}$$

Infinite Sequences of 0's and 1's (UD Problem 23.4)

Is the set of all infinite sequences of 0's and 1's finite, countably infinite, or uncountable?

$$f:\{\{0,1\}^*\}\to\mathbb{N}$$

$$f(x_0x_1\cdots) = \sum_{i=0}^{\infty} x_i 2^i$$

Infinite Sequences of 0's and 1's (UD Problem 23.4)

Is the set of all infinite sequences of 0's and 1's finite, countably infinite, or uncountable?

$$f:\{\{0,1\}^*\}\to\mathbb{N}$$

$$f(x_0x_1\cdots) = \sum_{i=0}^{\infty} x_i 2^i$$

Complex Numbers (UD Problem 24.16)

Prove that

$$|\mathbb{R}| = |\mathbb{C}|, \quad \mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$

Complex Numbers (UD Problem 24.16)

Prove that

$$|\mathbb{R}| = |\mathbb{C}|, \quad \mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}$$

$$|\mathbb{C}| = |\mathbb{R} \times \mathbb{R}|$$

Complex Numbers (UD Problem 24.16)

Prove that

$$|\mathbb{R}| = |\mathbb{C}|, \quad \mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}\$$

$$|\mathbb{C}| = |\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$$

 $\mathbb{R}\times\mathbb{R}\approx\mathbb{R}$

$$\mathbb{R}\times\mathbb{R}\approx\mathbb{R}$$

$$(x = 0.a_1a_2a_3\cdots, y = 0.b_1b_2b_3\cdots)$$

$\mathbb{R} \times \mathbb{R} \approx \mathbb{R}$

$$(x = 0.a_1a_2a_3\cdots, y = 0.b_1b_2b_3\cdots) \mapsto 0.a_1b_1a_2b_2a_3b_3\cdots$$

$\mathbb{R} \times \mathbb{R} \approx \mathbb{R}$

$$(x = 0.a_1a_2a_3\cdots, y = 0.b_1b_2b_3\cdots) \mapsto 0.a_1b_1a_2b_2a_3b_3\cdots$$

Was Cantor Surprised?

$$(0,1)\approx(0,1)\times(0,1)$$

$$(0,1) \approx (0,1) \times (0,1)$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \le |Y| \land |Y| \le |X| \implies |X| = |Y|$$

$$(0,1) \approx (0,1) \times (0,1)$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \le |Y| \land |Y| \le |X| \implies |X| = |Y|$$

 $\exists one\text{-}to\text{-}one \ f:X \to Y \land g:Y \to X \implies \exists bijection \ h:X \to Y$

$$(0,1) \approx (0,1) \times (0,1)$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \leq |Y| \wedge |Y| \leq |X| \implies |X| = |Y|$$

 $\exists \ \textit{one-to-one} \ f: X \to Y \land g: Y \to X \implies \exists \ \textit{bijection} \ h: X \to Y$

$$f:(0,1)\to(0,1)\times(0,1)$$

$$(0,1) \approx (0,1) \times (0,1)$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \leq |Y| \wedge |Y| \leq |X| \implies |X| = |Y|$$

 $\exists \ \textit{one-to-one} \ f: X \to Y \land g: Y \to X \implies \exists \ \textit{bijection} \ h: X \to Y$

$$f:(0,1)\to (0,1)\times (0,1)$$

$$f(x) = (x, 0.5)$$

$$(0,1) \approx (0,1) \times (0,1)$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \le |Y| \land |Y| \le |X| \implies |X| = |Y|$$

 $\exists \ \textit{one-to-one} \ f: X \to Y \land g: Y \to X \implies \exists \ \textit{bijection} \ h: X \to Y$

$$f:(0,1)\to (0,1)\times (0,1)$$

$$f(x) = (x, 0.5)$$

$$g:(0,1)\times(0,1)\times(0,1)$$

$$(0,1) \approx (0,1) \times (0,1)$$

Theorem (Cantor-Schröder-Bernstein (1887))

$$|X| \le |Y| \land |Y| \le |X| \implies |X| = |Y|$$

 $\exists one\text{-}to\text{-}one \ f: X \to Y \land g: Y \to X \implies \exists bijection \ h: X \to Y$

$$f:(0,1)\to (0,1)\times (0,1)$$

$$f(x) = (x, 0.5)$$

$$g:(0,1)\times(0,1)\times(0,1)$$

$$(x=0.a_1a_2a_3\cdots,y=0.b_1b_2b_3\cdots)\mapsto 0.a_1b_1a_2b_2a_3b_3$$

$$[0,1]\approx (0,1)$$

$$[0,1]\approx(0,1)$$

$$0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \cdots$$

$$[0,1]\approx(0,1)$$

$$0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \cdots$$

$$f(0) = \frac{1}{2} \quad f(1) = \frac{1}{3}$$

$$[0,1]\approx(0,1)$$

$$0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \cdots$$

$$f(0) = \frac{1}{2} \quad f(1) = \frac{1}{3}$$

$$\forall n \ge 4: f(\frac{1}{n-2}) = \frac{1}{n}$$

$$[0,1]\approx (0,1)$$

$$0,1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5} \cdots$$

$$f(0) = \frac{1}{2} \quad f(1) = \frac{1}{3}$$

$$\forall n \ge 4: f(\frac{1}{n-2}) = \frac{1}{n}$$

$$f(x) = x$$
, otherwise

$$(-\infty,\infty)\approx(0,\infty)$$

$$(-\infty,\infty)\approx(0,\infty)$$

$$f(x) = e^x$$

$$(-\infty,\infty)\approx(0,\infty)$$

$$f(x) = e^x$$

$$(0,\infty)\approx (0,1)$$

$$(-\infty,\infty)\approx(0,\infty)$$

$$f(x) = e^x$$

$$(0,\infty)\approx(0,1)$$

$$f(x) = \frac{x}{x+1}$$

$$(-\infty,\infty)\approx(0,\infty)$$

$$f(x) = e^x$$

$$(0,\infty)\approx(0,1)$$

$$f(x) = \frac{x}{x+1}$$

$$[0,1] \approx (0,1]$$

$$(-\infty,\infty)\approx(0,\infty)$$

$$f(x) = e^x$$

$$(0,\infty)\approx(0,1)$$

$$f(x) = \frac{x}{x+1}$$

$$[0,1] \approx (0,1]$$

$$f(0) = \frac{1}{2}$$
 $f(\frac{1}{2}) = \frac{2}{3}$ $f(\frac{2}{3}) = \frac{3}{4}$ \cdots $f(x) = x$

Thank You!