Chapter 5

Database and
Data Center Security

Database

- Security
 •Reasons database security has not kept pace with the increased reliance of databases are:
 - There is a dramatic imbalance between the complexity of modern database management systems (DBMS) and the security technique used to protect these critical systems
 - Databases have a sophisticated interaction protocol, Structured Query Language (SQL), is complex
 - Effective database security requires a strategy based on a full understanding of the security vulnerabilities of SQL
 - •The typical organization lacks full-time database security personnel
 - Most enterprise environments consist of a heterogeneous mixture of database platforms enterprise platforms, and OS platforms, creating an additional complexity hurdle for second personnel
 - The increasing reliance on cloud technology to host part or all of the corporate database

Databases

- Structured collection of data stored for use by one or more applications
- Contains the relationships between data items and groups of data items
- Can sometimes contain sensitive data that needs to be secured

Query language

 Provides a uniform interface to the database for users and applications

- Database management system (DBMS)
 - Suite of programs for constructing and maintaining the database
 - Offers ad hoc query facilities to multiple users and applications

Figure 5.1 DBMS Architecture

Relational Databases

- Table of data consisting of rows and columns
 - Each column holds a particular type of data
 - Each row contains a specific value for each column
 - Ideally has one column where all values are unique, forming an identifier/key for that row
- Enables the creation of multiple tables linked together by a unique identifier that is present in all tables
- Use a relational query language to access the database
 - Allows the user to request data that fit a given set of criteria

Figure 5.2 Example Relational Database Model. A relational database uses multiple tables related to one another by a designated key; in this case the key is the PhoneNumber field.

Relational Database Elements

- Relation
 - Table/file
- Tuple
 - Row/record
- Attribute
 - Column/field

Primary key

- Uniquely identifies a row
- Foreign key
- Links one table to attributes in another

View/virtual table

- Result of a query that returns selected rows and columns from one or more tables
- Views are often used for security purposes

Structured Query Language (SQL)

- Standardized language to define schema, manipulate, and query data in a relational database
- Several similar versions of ANSI/ISO standard
- All follow the same basic syntax and semantics

- •SQL statements can be used to:
 - Create tables
 - Insert and delete data in tables
 - Create views
 - •Retrieve data with query statements

SQL Injection Attacks (SQLi)

- One of the most prevalent and dangerous network-based security threats
- Designed to exploit the nature of Web application pages

Sends malicious SQL commands to the

- Most common attack goal is bulk extraction of data
- Depending on the environment SQL injection can also be exploited to:
 - Modify or delete data
 - Execute arbitrary operating system commands
 - Launch denial-of-service (DoS) attacks

Figure 5.5 Typical SQL Injection Attack

Injection Technique

SQLi Attack Avenues

User input

Server variables

Second-order injection

Cookies

Physical user input

- Attackers inject SQL commands by providing suitable crafted user input
- Attackers can forge the values that are placed in HTTP and network neaders and exploit this vulnerability by placing
- •A malicious user could rely on data already present in the system or database to rigger an SQL injection attack, so when the attack
- •An attacker could alter cookies such that when that sepalications local quest not paints faons to be questioned by the cooksite of the cooksi
- Applying user input that constructs an attack
 outside the realm of web

Inband Attacks

- Uses the same communication channel for injecting SQL code and retrieving results
- The retrieved data are presented directly in application Web page
- Include:

- Tautology
 - •This form of attack injects code in one or more conditional statements so that they always evaluate to true
- End-of-line comment
 - •After injecting code into a particular field, legitimate code that follows are nullified through usage of end of line comments
- Piggybacked queries
 - •The attacker adds additional queries beyond the intended query, piggy-backing the attack on top of a legitimate request

Inferential Attack

- There is no actual transfer of data, but the attacker is able to reconstruct the information by sending particular requests and observing the resulting behavior of the Website/database server
- Include:
 - Illegal/logically incorrect queries
 - This attack lets an attacker gather important information about the type and structure of the backend database of a Web application
 - The attack is considered a preliminary, information-gathering step for other attacks
 - Blind SQL injection
 - Allows attackers to infer the data present in a database system even when the system is sufficiently secure to not display any erroneous information back to the attacker

Out-of-Band Attack

- Data are retrieved using a different channel
- This can be used when there are limitations on information retrieval, but outbound connectivity from the database server is lax

SQLi Countermeasures

- Three types:
 - Defensive coding
 - •Manual defensive coding practices
 - Parameterized query insertion
 - •SQL DOM
 - Detection
 - Signature based
 - Anomaly based
 - Code analysis
 - •Run-time prevention
 - •Check queries at runtime to see if they conform to a model of expected queries

Signature Based Detection

signature-based systems, which can only detect attacks for which a signature has previously been created

Anomaly based Detection

for detecting both network and computer intrusions and misuse by monitoring system activity and classifying it as either *normal* or *anomalous*. The classification is based on <u>heuristics</u> or rules

Database Access Control

Database access control system determines:

If the user has access to the entire database or just portions of it

What access rights the user has (create, insert, delete, update, read, write)

Can support a range of administrative policies

 Small number of privileged users may grant and revoke access rights

Ownership-based administration

• The creator of a table may grant and revoke access rights to the table

Decentralized administration

 The owner of the table may grant and revoke authorization rights to other users, allowing them to grant and revoke access rights to the table