

Wide Bandgap Semiconductors

Wide Bandgap Semiconductors

- Полупроводници с широчина на забранената зона > 2eV (за сравнение за Si тази величина е 1.12eV)
- Характерни представители на този клас п.п. са SiC и GaN

Properties	Si	4H-SiC	GaAs	GaN
Crystal Structure	Diamond	Hexagonal	Zincblende	Hexagonal
Energy Gap : E_{G} (eV)	1.12	3.26	1.43	3.5
Electron Mobility : μ_n (cm ² /Vs)	1400	900	8500	1250
Hole Mobility: μ_p (cm ² /Vs)	600	100	400	200
Breakdown Field : E _B (V/cm) X10 ⁶	0.3	3	0.4	3
Thermal Conductivity (W/cm°C)	1.5	4.9	0.5	1.3
Saturation Drift Velocity : v_s (cm/s) X10 ⁷	1	2.7	2	2.7
Relative Dielectric Constamt : ϵ s	11.8	9.7	12.8	9.5

По-висока електрическа якост (breakdown field) -> по-тънка обеднена област (при същото пробивно напрежение -> по-ниско съпротивление във проводящо състояние.

По-висока термична проводимост -> по-висока работна температура.

SiC Schottky Barrier Diodes

- Високо пробивно напрежение
- Бързо превключване (fast recovery time trr)
- Висока работна температура

SiC Schottky Barrier Diodes

Високо бързодействие	да	да	не
Високо пробивно напрежение	да	не	да
Ниско съпротивление	да	не	да
Componionemic			

Пробивно напрежение - Si и SiC диоди

SiC MOSFET

Високо пробивно напрежение Ниски загуби при превключване Висока работна температура

Minority carrier device

: Low on-resistance, but low speed

Majority carrier device

: High speed

SiC MOSFET vs Si IGBT

Приложения на SiC прибори в EV и HEV

Приложения

Model 3 Main Inverter – Featuring 24 SiC MOSFET modules from ST (650V at 100A)

B Tesla S и Roadster са използвани IGBT модули.

GaN vs SiC

Properties	Si	4H-SiC	GaAs	GaN
Crystal Structure	Diamond	Hexagonal	Zincblende	Hexagonal
Energy Gap : E_G (eV)	1.12	3.26	1.43	3.5
Electron Mobility : μ_n (cm ² /Vs)	1400	900	8500	1250 2000?
Hole Mobility: μ_p (cm ² /Vs)	600	100	400	200
Breakdown Field : E _B (V/cm) X10 ⁶	0.3	3	0.4	3
Thermal Conductivity (W/cm°C)	1.5	4.9	0.5	1.3
Saturation Drift Velocity : v_s (cm/s) X10 7	1	2.7	2	2.7
Relative Dielectric Constamt : E S	11.8	9.7	12.8	9.5

Висока подвижност на електроните -> бързодействие © Ниска термична проводимост -> ниска работна температура ©

GaN приложения – зарядни устройства

What higher power density in adapters and chargers means to consumers

Приложения

Защо SiC и GaN на са изместили Si?

1. Спецификата на технологиите за производство на монокристали от SiC и GaN води до голям брой дефекти на единица площ.

Последици:

- Ниска степен на интеграция
- Висока цена
- 2. Si прибори са достатъчно добри за болшинството приложения
- 3. Съществуващи инвестиции в заводи за производство на Si прибори