ppt.cc/fNKNzx

Link of slides

Focal Loss for Dense Object Detection (RetinaNet)

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar (FAIR)

Tutorial Presentation -- PyTorch Taipei Sept. 20th 2018

王威翔 (Wei-Hisang Wang)

Website, CV

• Education:

- BS (2016) & MS (2018) in Mechanical Engineering,
 National Taiwan University (NTU)
- Community:
 - Vice-coordinator, PyTorch Taipei (Feb.-Aug., 2018)
 - Teaching Assistant, Google Al Boot Camp (July, 2018)
- Job Hunting recently
 - DL / ML Engineer
 - CV / IoT / Data Analysis
 - 跪求內推

One Rule Today:

Ask Questions ANYTIME

PyTorch Taipei 是個 論文報告讀書會 →研討

What's OLD in this paper?

- 1. Basic Knowledge of Object Detection
 - One-stage algo.: <u>YOLO</u> / <u>SSD</u> / FPN
 - Two-stage algo.: R-CNN / <u>fast R-CNN</u> / <u>faster R-CNN</u>
 - Pros & Cons of these algo.
- 2. Cross Entropy
- 3. Feature Pyramid Network (FPN)
 - Paper
 - o The speech given by 郭瑞申 last week. [Link to be announced]
- 4. **Concept of Anchor Box** in RPN (or YOLO/SSD)

What's NEW in this paper?

1. Focal Loss

Modified from cross entropy (CE)

2. RetinaNet

- Modified from FPN
- Use anchor box when classification

Section 1. Background

Section 2. Loss Function

Cross Entropy

1. Information Content.

• Higher the probability of the event x is, it has less information

$$I(x) = -log(p(x))$$

Entropy

- Measurement (expectation) of information
- Average rate at which information is produced by a stochastic source of data

$$\operatorname{H}(X) = \sum_{i=1}^n \operatorname{P}(x_i)\operatorname{I}(x_i) = -\sum_{i=1}^n \operatorname{P}(x_i)\log\operatorname{P}(x_i)$$

Cross Entropy

3. Cross Entropy

 Measurement between two probability distributions p and q over the same underlying set of events.

$$H(p,q) = -\sum_x p(x)\,\log q(x)$$

- o In the fields of machine learning, CE is often taken as loss function that describing the difference between true data and predicted data.
- For binary classification,

$$CE(p, y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1 - p) & \text{otherwise} \end{cases}$$

$$p_{t} = \begin{cases} p & \text{if } y = 1\\ 1 - p & \text{otherwise} \end{cases}$$

Cross Entropy

- 4. α-balanced Cross Entropy
 - Problem of Class Imbalance
 - For binary classification, weighting factor $\alpha \in [0, 1]$
 - α can be determined by cross-validation

$$CE(p_t) = -\alpha_t \log(p_t)$$

$$\alpha_{t} = \begin{cases} \alpha & \text{if } y = 1\\ 1 - \alpha & \text{otherwise} \end{cases}$$

Class Imbalance

- Both one- & two- stage detectors face the problem of class imbalance
- Classic detectors usually first propose <u>thousands of candidate location</u>, but <u>few actually contain objects</u>.
 - easy examples give less learning signal → Inefficient training
 - Too many negatives → degenerated model
- Traditional Solution:
 - Robust Estimation
 - Reduce the loss from examples with large errors (hard examples).
 - e.g. α-balanced cross entropy
 - o [SSD] hard negative mining
 - Use part of the hard negative examples only (fixed ratio between pos/neg)
- Defect of the solution:
 - Loss from easy examples still need to be down-weighted

Focal Loss

(1) Small p (p<0.5)

for γ =2, FL=CE/4 (at most)

→ loss from misclassified examples unaffected

(2) Large p (p>0.5)

for
$$\gamma$$
=2, p=0.9,
FL=CE/100

for
$$\gamma$$
=2, p=0.968,
FL=CE/1000

→ loss from well-classified examples reduced

α-balanced Focal Loss

- Combine the merits from α-balanced and focal loss.
- Pros:
 - Increasing accuracy
 - Numerical stablity

$$FL(p_t) = -\alpha_t (1 - p_t)^{\gamma} \log(p_t)$$

Precise form of loss is not crucial

Section 3. Architecture

Overall Architecture

FPN-ResNet

RetinaNet

- Use P3^{P5} layer of FPN-ResNet
- Deprecate C2 to improve speed
- Add two layer
 - P6: 3x3conv-s2 from C5
 - o P7: 3x3conv-s2 & ReLU from P6

Subnet

- Two sub-networks
 - bounding box regression
 - stage layer → four 3x3 conv layer → ReLU →
 - → 3x3 conv layer with K(class)A(anchor) kernel → Sigmoid
 - object classification
 - stage layer → four 3x3 conv layer → ReLU →
 - → 3x3 conv layer with **4A kernel** → Sigmoid

Anchor

- aspect ratios {1:2; 1:1, 2:1}
- o anchor sizes $\{1, 2^{(1/3)}, 2^{(2/3)}\}$
- Total 9 anchors at each location
- Anchor assigned to object if IOU>0.5

Inference

- Decode 1000 top prediction boxes at each FPN level
- Thresholding confidence of 0.05
- Non-maximum suppression with threshold 0.5

Initialization

- FPN-ResNet pre-trained on ImageNet1k
- variable init:
 - last layer of classification subnet: b = -log((1-pi)/pi), pi=0.1
 - → all anchors labeled as foreground at start of training
 - o rest: b=0, Gaussian weight with sigma = 0.01

Optimization

- SGD (batch = 16)
- Learning rate:
 - 0~60k iter.: 0.01
 - 60~80k iter.: 0.001
 - o 80~90k iter.: 0.0001
- Weight decay 0.0001, momentum=0.9
- Loss = focal loss + smoothL1 loss of box regression

Comparison between models

Comparison between different hyper-para.

α	AP	AP_{50}	AP ₇₅	γ	α	AP	AP_{50}	AP_{75}	#sc	#ar	AP	AP_{50}	AP ₇₅
.10	0.0	0.0	0.0	0	.75	31.1	49.4	33.0	1	1	30.3	49.0	31.8
.25	10.8	16.0	11.7	0.1	.75	31.4	49.9	33.1	2	1	31.9	50.0	34.0
.50	30.2	46.7	32.8	0.2	.75	31.9	50.7	33.4	3	1	31.8	49.4	33.7
.75	31.1	49.4	33.0	0.5	.50	32.9	51.7	35.2	1	3	32.4	52.3	33.9
.90	30.8	49.7	32.3	1.0	.25	33.7	52.0	36.2	2	3	34.2	53.1	36.5
.99	28.7	47.4	29.9	2.0	.25	34.0	52.5	36.5	3	3	34.0	52.5	36.5
.999	25.1	41.7	26.1	5.0	.25	32.2	49.6	34.8	4	3	33.8	52.1	36.2

⁽a) Varying α for CE loss ($\gamma = 0$)

(c) Varying anchor scales and aspects

method	batch size	nms thr	AP	AP_{50}	AP ₇₅	depth	scale	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L	time
OHEM	128	.7	31.1	47.2	33.2	50	400	30.5	47.8	32.7	11.2	33.8	46.1	64
OHEM	256	.7	31.8	48.8	33.9	50	500	32.5	50.9	34.8	13.9	35.8	46.7	72
OHEM	512	.7	30.6	47.0	32.6	50	600	34.3	53.2	36.9	16.2	37.4	47.4	98
OHEM	128	.5	32.8	50.3	35.1	50	700	35.1	54.2	37.7	18.0	39.3	46.4	121
OHEM	256	.5	31.0	47.4	33.0	50	800	35.7	55.0	38.5	18.9	38.9	46.3	153
OHEM	512	.5	27.6	42.0	29.2	101	400	31.9	49.5	34.1	11.6	35.8	48.5	81
OHEM 1:3	128	.5	31.1	47.2	33.2	101	500	34.4	53.1	36.8	14.7	38.5	49.1	90
OHEM 1:3	256	.5	28.3	42.4	30.3	101	600	36.0	55.2	38.7	17.4	39.6	49.7	122
OHEM 1:3	512	.5	24.0	35.5	25.8	101	700	37.1	56.6	39.8	19.1	40.6	49.4	154
FL	n/a	n/a	36.0	54.9	38.7	101	800	37.8	57.5	40.8	20.2	41.1	49.2	198

⁽d) FL vs. OHEM baselines (with ResNet-101-FPN)

⁽b) Varying γ for FL (w. optimal α)

⁽e) Accuracy/speed trade-off RetinaNet (on test-dev)