Élève 1

Question de cours

Soit $n \in \mathbb{N}$, calculer $\sum_{k=1}^{n} k^2$.

On pourra penser à télescoper $(k+1)^3 - k^3$!

Exercice 1

Calculer, pour $n \in \mathbb{N}^*$,

- 1. $\sum_{i=1}^{n} \sum_{j=1}^{n} (i+j)$;
- 2. $\sum_{i=1}^{n} \sum_{j=1}^{n} (i+j)^2$;
- 3. $\sum_{i=1}^{n} \sum_{j=1}^{n} \min(i, j)$.

Exercice 2

Calculer, pour $n \in \mathbb{N}^*$,

- $1. \prod_{\substack{i=1\\i\in2\mathbb{N}}}^{2n} i;$
- $2. \prod_{\substack{i=1\\i\in2\mathbb{N}+1}}^{2n+1}i.$

Exercice 3

Montrer que, pour $n \in \mathbb{N}$,

$$S_n := \sum_{k=0}^n (-1)^k {2n+1 \choose k} = (-1)^n {2n \choose n}.$$

Élève 2

Question de cours

Donner la preuve de la formule de Pascal.

Exercice 1

Calculer, pour $n \in \mathbb{N}^*$,

- 1. $\sum_{i=1}^{n} \sum_{j=1}^{n} ij$;
- $2. \sum_{1 \le i < j \le n} ij;$
- 3. $\sum_{i=1}^{n} \sum_{j=1}^{n} \max(i, j)$.

Exercice 2

Monter que, pour tout $n \in \mathbb{N}^*$,

$$\prod_{k=1}^{n} (4k - 2) = \prod_{k=1}^{n} (n+k).$$

Exercice 3

Soit $n \in \mathbb{N}$. Calculer

- $1. \sum_{k=0}^{n} \binom{n}{k}^2;$
- 2. $\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2$.

On pourra penser à développer des expressions de la forme $(1+x)^n$, $(1-x)^n$ ou $(1+x)^{2n}$, puis à identifier le bon coefficient...

Élève 3

Question de cours

Donner la preuve de la formule du binôme de Newton.

Exercice 1 - Vrai ou faux?

Soit $(a_1,...,a_n,b_1,...,b_n) \in \mathbb{R}^{2n}$ et soit $\alpha \in \mathbb{R}$. Lesquelles de ces affirmations sont correctes?

1.
$$\prod_{i=1}^{n} (\alpha a_i) = \alpha \prod_{i=1}^{n} a_i;$$

2.
$$\prod_{i=1}^{n} (a_i b_i) = \prod_{i=1}^{n} a_i \cdot \prod_{i=1}^{n} b_i;$$

3.
$$\prod_{i=1}^{n} (a_i + b_i) = \prod_{i=1}^{n} a_i + \prod_{i=1}^{n} b_i.$$

Exercice 2

Soit $n \in \mathbb{N}$. Montrer que

$$\binom{2n}{n} \ge \frac{2^{2n}}{2n+1}.$$

Exercice 3

Monter que, pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \binom{n}{k} = \sum_{k=1}^{n} \frac{1}{k}.$$

Exercice bonus

Une inégalité

Soient $n \in \mathbb{N}^*$, $a_1,...,a_n$ des réels positifs et $s_n = a_1 + \cdots + a_n$ leur somme. Vérifier que

$$\prod_{k=1}^{n} (1 + a_k) \le \sum_{k=0}^{n} \frac{s_n^k}{k!}.$$