

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15010000902

FCC REPORT (BLE)

Applicant: Shenzhen Elink-IOT Technology Co.Ltd.

Address of Applicant: Rm 13A06, Huafeng international commercial building, No.

4018 Xixiang Bao'an Shenzhen city, China

Equipment Under Test (EUT)

Product Name: Watcher

Model No.: EK-W1001

Trade mark: Elinkiot

FCC ID: 2AD3AEKW1001

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 07 Jan., 2015

Date of Test: 08 Jan., to 26 Jan., 2015

Date of report issued: 27 Jan., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Jan., 2015	Original

Prepared by:

Report Clerk

Date: 27 Jan., 2015

Reviewed by: Date: 27 Jan., 2015

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	
4		T SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3		
	0.0	CONDUCTED OUTPUT POWER	
	6.4	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH	13 15
	6.4 6.5	CONDUCTED OUTPUT POWER	13 15 18
	6.4 6.5 6.6	CONDUCTED OUTPUT POWER	
	6.4 6.5 6.6 6.6.1	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method	
	6.4 6.5 6.6 6.6.1 6.6.2	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method	
	6.4 6.5 6.6 6.6.1 6.6.2 6.7	CONDUCTED OUTPUT POWER	
	6.4 6.5 6.6 6.6.1 6.6.2 6.7 6.7.1	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION Conducted Emission Method	
	6.4 6.5 6.6 6.6.1 6.6.2 6.7 6.7.1 6.7.2	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION Conducted Emission Method Radiated Emission Method Radiated Emission Method	
7	6.4 6.5 6.6 6.6.1 6.6.2 6.7 6.7.1 6.7.2	CONDUCTED OUTPUT POWER OCCUPY BANDWIDTH POWER SPECTRAL DENSITY BAND EDGE Conducted Emission Method Radiated Emission Method SPURIOUS EMISSION Conducted Emission Method	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Shenzhen Elink-IOT Technology Co.,Ltd.		
Address of Applicant:	Rm 13A06, Huafeng international commercial building, No. 4018 Xixiang Baoan Shenzhen city, China		
Manufacturer:	Antai Electronic Technology Co.Ltd.		
Address of Manufacturer:	Room 1221, Hongyu Building, Longuang East Road, Longhua New District, Shenzhen 518109, China		
Factory:	Antai Electronic Technology Co.Ltd.		
Address of Manufacturer:	Building E, 22, Yuhua Street, 138 Industrial Park, Tangxia Town, Dongguang 523710, China		

5.2 General Description of E.U.T.

Product Name:	Watcher
Model No.:	EK-W1001
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	2.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-230mAh

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS15010000902

5.3 Test environment and mode

Operating Environment:					
Temperature:	24.0 °C				
Humidity:	54 % RH				
Atmospheric Pressure:	1010 mbar				
Test mode:					
Operation mode	Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	04-19-2014	04-19-2015
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	04-19-2014	04-19-2015
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2014	03-31-2015
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	06-09-2014	06-05-2015
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2014	03-31-2015
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	03-30-2014	03-29-2015
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	04-19-2014	04-19-2015
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	04-01-2014	03-31-2015
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2014	03-31-2015
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	05-29-2014	05-28-2015
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-19-2014	04-19-2015

Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	04-10-2014	04-09-2015	
3	LISN	CHASE	MN2050D	CCIS0074	04-10-2014	04-10-2015	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2014	03-31-2015	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	Laptop	INSPIRON M4010	B1LMVP1	DoC

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207				
Test Method:	ANSI C63.4: 2003				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Limit (dRu\/)				
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logarithm 1. The E.U.T and simulator				
	 a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. 				
Test setup:	Refere	ence Plane			
	AUX Equipment Test table/Insulation pla Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	U.T EMI Receiver	er — AC power		
Test Instruments:	Refer to section 5.7 for details	3			
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Neutral:

Trace: 31

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL Condition

: 009RF Pro : Watcher : EK-W1001 : BLE Mode EUT Model Test Mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Carey Remark:

remark	•	Read	LISN	Cable		Limit	Over		
	Freq	100 100 100 100 100 100 100 100 100 100	Factor	Loss	Level	Line		Remark	
	MHz	dBu∜	<u>dB</u>	₫B	dBu₹	dBu₹	<u>dB</u>		
1	0.186	37.83	0.25	10.76	48.84	64.20	-15.36	QP	
2	0.187	24.42	0.25	10.76	35.43	54.15	-18.72	Average	
3	0.194	23.48	0.25	10.76	34.49	53.84	-19.35	Average	
4 5 6 7 8 9	0.202	37.20	0.25	10.76	48.21	63.54	-15.33	QP	
5	0.253	28.13	0.26	10.75	39.14	61.64	-22.50	QP	
6	0.253	21.86	0.26	10.75	32.87	51.64	-18.77	Average	
7	0.310	29.26	0.26	10.74	40.26	59.97	-19.71	QP	
8	0.318	19.70	0.26	10.74	30.70	49.75	-19.05	Average	
	0.330	30.85	0.26	10.73	41.84	59.44	-17.60	QP	
10	0.330	20.02	0.26	10.73	31.01	49.44	-18.43	Average	
11	0.339	30.16	0.26	10.73	41.15	59.22	-18.07	QP	
12	0.377	16.14	0.25	10.72	27.11	48.34	-21.23	Average	

Trace: 29

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE Site Condition

: 009RF Pro EUT : Watcher : EK-W1001 Model Test Mode : BLE Mode

Power Rating: AC 120V/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Carey

Remark

Kemark								
	E	Read	LISN	Cable		Limit	Over	Danaula
	Freq	rever	Factor	Loss	Level	Line	Limit	Remark
2000	MHz	dBuV	dB	₫B	dBu₹	dBu₹	₫B	
1	0.150	38.65	0.27	10.78	49.70	66.00	-16.30	QP
2	0.190	40.12	0.28	10.76	51.16	64.02	-12.86	QP
3	0.191	26.41	0.28	10.76	37.45	53.98	-16.53	Average
4	0.202	39.48	0.28	10.76	50.52		-13.02	
1 2 3 4 5 6 7 8	0.202	26.34	0.28	10.76	37.38	53.54	-16.16	Average
6	0.258	20.76	0.27	10.75	31.78	51.51	-19.73	Average
7	0.262	33.31	0.27	10.75	44.33	61.38	-17.05	QP
8	0.310	33.45	0.26	10.74	44.45	59.97	-15.52	QP
9	0.318	23.14	0.26	10.74	34.14	49.75	-15.61	Average
10	0.327	32.88	0.27	10.73	43.88	59.53	-15.65	QP
11	0.337	22.08	0.27	10.73	33.08	49.27	-16.19	Average
12	0.377	14.95	0.28	10.72	25.95	48.34	-22.39	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Remark:	Test method refer to KDB558074 v03r01 (DTS Measure Guidance) section 9.2.2.2				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	0.83		
Middle	0.21	30.00	Pass
Highest	-0.63		

Test plot as follows:

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.752		
Middle	0.752	>500	Pass
Highest	0.772		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.172		
Middle	1.112	N/A	N/A
Highest	1.122		

Test plot as follows:

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.4:2003 and KDB558074				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	0.05		
Middle	-0.17	8.00	Pass
Highest	-0.79		

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Highest channel

6.6.2 Radiated Emission Method

0.0	.2 Radiated Emission Method							
	Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
	Test Method:	ANSI C63.4: 20	03					
	Test Frequency Range:	2.3GHz to 2.5G	iHz					
	Test site:	Measurement D	Distance: 3m					
	Receiver setup:							
		Frequency	Detector	RBW	VBW	Remark		
		Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value		
	Limit:							
		Freque	ency	Limit (dBuV		Remark		
		Above 1	IGHz —	54.0 74.0		Average Value		
	Test Procedure:	1. The EUT w	vas placed on ti			Peak Value e 0.8 meters above		
	Toot cotup:	 the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
	Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier						
	Test Instruments:	Refer to section 5.7 for details						
	Test mode:	Refer to section	5.3 for details					
	Test results:	Passed						

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Watcher EUT Model : EK-W1001 Test mode : BLE-L Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey
REMARK :

Freq		Antenna Factor						
MHz	—dBu∜	dB/m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
2390,000 2390,000								

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Watcher : EK-W1001 Model : BLE-L Mode Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

линс		Read	Antenna	Cable	Preamo		Limit	Over	
	Freq		Factor						Remark
6.	MHz	dBu∇	<u>dB</u> /m	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000		7727 S. C. D. W. C.		0.00				Peak Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Watcher EUT Model : EK-W1001 Test mode : BLE-H Mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni:55%

Test Engineer: Carey

REMARK

	Freq		Antenna Factor						
	MHz	—dBu∇	— <u>dB</u> /m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Watcher : EK-W1001 : BLE-H Mode EUT Model Test mode

Power Rating : AC120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

2)ILITA	10000		Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Kemark
32	MHz	dBu√	dB/m	<u>dB</u>	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Lowest channel

Date: 9.JAN.2015 17:18:38

30MHz~25GHz

Middle channel

Date: 9.JAN.2015 17:18:15

30MHz~25GHz

Highest channel

Date: 9.JAN.2015 17:17:42

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4:2003							
Test Frequency Range:	9KHz to 25GHz							
Test site:	Measurement D	istance: 3m						
Receiver setup:								
'	Frequency Detector RBW VBW Remark							
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	Above IGI12	RMS	1MHz	3MHz	Average Value			
Limit:								
	Frequency		Limit (dBuV/m	@3m)	Remark			
	30MHz-88MHz		40.0		Quasi-peak Value			
	88MHz-216MHz		43.5		Quasi-peak Value			
	216MHz-960MH	z	46.0		Quasi-peak Value			
	960MHz-1GHz		54.0		Quasi-peak Value			
	Above 1GHz	_	54.0		Average Value			
			74.0		Peak Value			
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenre the ground Both horizon make the make the make the make the maters and to find the material based of the EUT have 10 dB	at a 3 meter the the position was set 3 meter was set 3 meter was more than the determinant of the color of t	camber. The of the highes eters away funted on the trailed from one the maximutical polarizations was turned awas turned ding. In Maximum Hone EUT in peresting could be corted. Other discorted.	table was a st radiation. The incorpor a variance meter to the state of the state o	le 0.8 meters above rotated 360 degrees aterference-receiving lable-height antenna of four meters above of the field strength. I antenna are set to arranged to its worst as from 1 meter to 4 rees to 360 degrees etect Function and as 10 dB lower than and the peak values missions that did not e using peak, quasing reported in a data			

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Watcher Model : EK-W1001 Test mode : BLE Mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

						Limit	Over	
Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
MHz	dBuV	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBu√/m	dBu√/m	<u>dB</u>	
60.069	31.01	12.69	0.69	29.77	14.62	40.00	-25.38	QP
89.905	31.40	11.90	0.91	29.57	14.64	43.50	-28.86	QP
147.404	35.38	8.24	1.30	29.23	15.69	43.50	-27.81	QP
161.474	36.10	8.72	1.34	29.12	17.04	43.50	-26.46	QP
179.386	34.69	9.62	1.36	28.98	16.69	43.50	-26.81	QP
312.179	31.59	13.22	1.81	28.48	18.14	46.00	-27.86	QP
	MHz 60.069 89.905 147.404 161.474 179.386	Freq Level MHz dBuV 60.069 31.01 89.905 31.40 147.404 35.38 161.474 36.10 179.386 34.69	Freq Level Factor MHz dBuV dB/m 60.069 31.01 12.69 89.905 31.40 11.90 147.404 35.38 8.24 161.474 36.10 8.72 179.386 34.69 9.62	Freq Level Factor Loss MHz dBuV dB/m dB 60.069 31.01 12.69 0.69 89.905 31.40 11.90 0.91 147.404 35.38 8.24 1.30 161.474 36.10 8.72 1.34 179.386 34.69 9.62 1.36	MHz dBuV dB/m dB dB 60.069 31.01 12.69 0.69 29.77 89.905 31.40 11.90 0.91 29.57 147.404 35.38 8.24 1.30 29.23 161.474 36.10 8.72 1.34 29.12 179.386 34.69 9.62 1.36 28.98	MHz dBuV dB/m dB dB dBuV/m 60.069 31.01 12.69 0.69 29.77 14.62 89.905 31.40 11.90 0.91 29.57 14.64 147.404 35.38 8.24 1.30 29.23 15.69 161.474 36.10 8.72 1.34 29.12 17.04 179.386 34.69 9.62 1.36 28.98 16.69	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 60.069 31.01 12.69 0.69 29.77 14.62 40.00 89.905 31.40 11.90 0.91 29.57 14.64 43.50 147.404 35.38 8.24 1.30 29.23 15.69 43.50 161.474 36.10 8.72 1.34 29.12 17.04 43.50 179.386 34.69 9.62 1.36 28.98 16.69 43.50	Freq Level Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 60.069 31.01 12.69 0.69 29.77 14.62 40.00 -25.38 89.905 31.40 11.90 0.91 29.57 14.64 43.50 -28.86 147.404 35.38 8.24 1.30 29.23 15.69 43.50 -27.81 161.474 36.10 8.72 1.34 29.12 17.04 43.50 -26.46 179.386 34.69 9.62 1.36 28.98 16.69 43.50 -26.81

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT Watcher : EK-W1001 : BLE Mode Model Test mode Power Rating : AC120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

EMAKK	:								
	Fred		Antenna Factor				Limit		Ramark
	rred	Peact	ractor	F022	ractor	Peact	Line	LIMIT	Kemark
-	MHz	dBu∜	dB/m	₫B	₫₿	dBuV/m	dBuV/m	<u>dB</u>	
1	37.548	37.57	12.96	0.50	29.92	21.11	40.00	-18.89	QP
2	69.114	38.14	9.06	0.78	29.73	18.25	40.00	-21.75	QP
3	86.200	43.38	10.74	0.89	29.59	25.42	40.00	-14.58	QP
4	94.098	40.22	12.67	0.93	29.55	24.27	43.50	-19.23	QP
4 5	135.032	38.77	8.56	1.23	29.30	19.26	43.50	-24.24	QP
6	204.238	37.75	10.70	1.40	28.80	21.05	43.50	-22.45	QP

Above 1GHz

Т	Test channel:			Lowest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	51.17	31.53	8.90	40.24	51.36	74.00	-22.64	Vertical
4804.00	48.89	31.53	8.90	40.24	49.08	74.00	-24.92	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	41.37	31.53	8.90	40.24	41.56	54.00	-12.44	Vertical
4804.00	38.37	31.53	8.90	40.24	38.56	54.00	-15.44	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	50.82	31.58	8.98	40.15	51.23	74.00	-22.77	Vertical
4884.00	47.74	31.58	8.98	40.15	48.15	74.00	-25.85	Horizontal

Т	Test channel:			Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	40.83	31.58	8.98	40.15	41.24	54.00	-12.76	Vertical	
4884.00	37.22	31.58	8.98	40.15	37.63	54.00	-16.37	Horizontal	

Т	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	50.41	31.69	9.08	40.03	51.15	74.00	-22.85	Vertical
4960.00	47.34	31.69	9.08	40.03	48.08	74.00	-25.92	Horizontal

Test channel:			Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	40.76	31.69	9.08	40.03	41.50	54.00	-12.50	Vertical
4960.00	37.47	31.69	9.08	40.03	38.21	54.00	-15.79	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

7 Test Setup Photo

8 EUT Constructional Details

Reference to the test report No. CCIS15010000901

----End of report-----