Név:				
Neptun kód:				
Csoport:				
Miski Marcell	Polcz Péter	Pongrácz Barna	Rudner Tamás	CV

Pázmány Péter Katolikus Egyetem Információs Technológiai és Bionikai Kar

Lineáris algebra és diszkrét matematika I.– 3. ZH A vektoralgebra, mátrixalgebra, determináns, vektortér, homogén lineáris leképezés

2022/12/13

Írja fel nevét, Neptun kódját és csoportját a lap tetejére. Karikázza be gyakorlatvezetője nevét! Sötéten fogó (lehetőleg kék) tollal írjon. Piros toll és segédeszköz (számológép, telefon, okosóra...) nem használható. A ZH 5 oldalt tartalmaz (a borítót is beleértve) és 6 kérdést. Időtartam: 60 perc. A gyökös kifejezéseket és nem nevezetes szögek szögfüggvényeit tartalmazó végeredményeket elfogadjuk. Ajánlott jegyhez az első beugró feladatban legalább 8 pontot el kell érni. Sok sikert!

Pontok eloszlása

Kérdés	Maxpont	Elért pontszám
1	10	
2	7	
3	4	
4	4	
5	11	
6	4	
Total:	40	

- 3. ZH A 1. Beugró feladatok, min. 8 pontot meg kell szerezni ajánlott jegyhez. (a) (2 pont) Mondja ki a síkbeli felbontási tételt! (b) (2 pont) Definiálja vektorok vegyes szorzatát! (c) (2 pont) Definiálja a mátrix bal és jobboldali inverzét! Milyen összefüggés írható fel közöttük? (d) (2 pont) Definiálja vektorok lineáris függetlenségét általános vektortér esetében! (e) (2 pont) Mondja ki a kicserélési tételt!
- 2. (a) (4 pont) Adja meg vektorok skaláris szorzatának tulajdonságait.

(b) (2 pont) Ismerjük két térbeli vektor koordinátáit ortonormált bázisban. Mely vektorokra vonatkozó függvénnyel (művelettel) dönthető el, hogy a vektorok párhuzamosak-e? Bizonyítsa állítását!

		nt) Ismerjuk három térbeli vektor koordinátáit ortonormált bázisban. Hogyan dönt el, hogy egy síkban fekszenek-e?
3.	(a) (1 po	nt) Definiálja a diagonális mátrix fogalmát!
	. , . –	nt) Igaz-e, hogy diagonális mátrixnak mindig van inverze? Ha igaz, hogyan számol ki, ha nem, milyen további feltétel teljesülése szükséges az inverz létezéséhez?
	(c) (1 po	nt) Milyen típusú lehet egy sorvektor és egy oszlopvektor szorzata?
4.		$n \times n$ -es determináns. Hogyan változik értéke, ha nt) egyik sorához hozzáadjuk egy másik sorát?
	(b) (1 po	nt) egyik sorát megszorozzuk λ -val?
	(c) (1 po	nt) egyik oszlopának minden elemét 0-ra cseréljük?
	(d) (1 po	nt) A fenti tulajdonságok közül az egyiket bizonyítsa! Választott feladatrész:

5. Tekintsük a legfeljebb másodfokú polinomok terét, melyben adottak az alábbi polinomok:

 $\underline{a} = 3x^2 + 2x$, $\underline{b} = -2x + 4$, $\underline{c} = 3x^2 - 2x + 8$, $\underline{d} = -3$, $\underline{e} = -x^2 + 2$

(a) (2 pont) Hány dimenziós teret generálnak az \underline{a} és \underline{b} polinomok? Adjuk meg ezen polinomok koordinátáit x^2 , x, 1 bázisban (paraméteresen)!

(b) (2 pont) Adjunk meg egy bázist a fenti polinomok segítségével!

(c) (2 pont) Mi lesz ebben a bázisban az $f = 9x^2 + 2x - 8$ polinom koordinátái?

- $(\mbox{\bf d})$ (1 pont) Adjon meg egy olyan generátorrendszert, amely nem bázis!
- (e) (1 pont) Igaz-e a következő állítás? Ha egy bázishoz hozzáadunk egy vektort, lineárisan összefüggő rendszert kapunk.
- (f) (1 pont) Igaz-e a következő állítás? Generátorrendszerhez újabb vektort hozzávéve generátorrendszert kapunk.
- (g) (2 pont) Generátorrendszerből egy vektort elveszünk, és így lineárisasn független rendszert kapunk. Bázis-e az így keletkező rendszer? Indokolja állítását!

- 6. Legyen L_1 olyan leképezés, mely egy síkbeli vektorhoz hozzárendeli az α -szorosát, L_2 pedig síkbeli vektorhoz rendeli hozzá az x tengelyre vett vetületét.
 - (a) (2 pont) Igazolja, hogy L_1 homogén lineáris leképezés!

(b) (2 pont) Legyen L egy olyan leképezés, mely tetszőleges \underline{v} síkbeli vektorhoz $L(\underline{v}) = L_2 [L_1 (\underline{v})]$ t rendeli hozzá. Feltéve, hogy L_1 és L_2 homogén lineáris leképezések, igaz-e, hogy L is homogén lineáris leképezés? Válaszát indokolja!