Course Code	18MAB201T	Course Name	TRANSFORMS AND BOUNDARY VALUE PROBLEMS	Course Category	В	Basic Sciences	3	1	0 0	4
Pre-requis	ite 4044B400T		Co-requisite	Progre	ssive	N. III				

Pre-requisite Courses	18MAB102T	Co-requisite Courses	Nil	Progressive Courses Nil
Course Offering	Department	Mathematics	Data Book / Codes/Standards	Nil

Course Learning Rationale (CLR): The purpose of learning this course is to:			ng	Program Learning Outcomes (PLO)														
CLR-1: Describe types of Partial differential equations interpret solutions relate PDE to the respective branches of engineering	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Relate Fourier series expansion in solving problems under RMS value and Harmonic Analysis.										Λ								
CLR-3: Infer the most general form to the PDE and relate to half range sine and cosine series, as the case may be	=	<u></u>	<u></u>				arch			stainability								
CLR-4: Evaluate the various types of integral transforms	hinking (Bloom)	oficiency (%)	ıt (%)	edge		ent	ese			aine		Work		90				
CLR-5: Conclude that the purpose of studying z transform is to solve linear difference equations having constant coefficients			Attainment	₩ We	S	Development	, Re	sage	Φ	Sust		ъ Р		Finance	ning			
CLR-6: Predicting the importance of PDE, Fourier series, Boundary value problems and Fourier ,Z – transform applications			tain	Knowle	alysis	Nel Ve	sign	\supset 1	Culture	∞5		Team	ion	⊗ IT	ar.			
	量	<u>~</u>	d Aff	ing	٩		2	20	8 C	nent		∞ర	icat	∕lgt.	J Le			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering	Problem	Design &	Analysis,	Modern -	Society 8	Environn	Ethics	Individual	Communication	Project Mgt.	Life Long	PS0 - 1	PS0 - 2	PS0 – 3
CLO-1: Determine Partial differential equation	2	85	80	М	Н	L	-	-	-	-	-	М	-	-	Н	-	-	-
CLO-2: Explain the expansion of a discontinuous function as an infinite form of trigonometric sine and cosine series.		85	80	М	Н	-	М	М	-	-	-	М	L	-	Н	-	-	-
CLO-3: Decide a proper form of solution for the differential equations which are of hyperbolic and parabolic type			80	М	Н	-	-	-	-	-	-	М	-	-	Н	-	-	-
CLO-4: justify the relationship between aperiodic signals and linear combination of exponentials.			80	М	Н	-	Μ	-	-	-	-	Μ	L	-	Н	-	-	-
CLO-5: Relate signal analysis with that of z transform			80	М	Н	L	-	-	-	-	-	М	-	-	Н	-	-	-
CLO-6: Relate PDE, Fourier series, Boundary value problems, Fourier and Z transforms		85	80	L	L	L	Н	Н	Н	L	Н	Н	Н	-	Н	-	-	-

Durat	ion (hour)	12	12	12	12	12
S-1	SLO-1	Formation of partial differential equation by eliminating arbitrary constants	Introduction of Fourier series - Dirichlet's conditions for existence of Fourier Series	Classification of second order partial differential equations	Introduction of Fourier Transforms	Introduction of Z-transform
3-1	SLO-2 Formation of partial differential equation eliminating two or more arbitrary const		Fourier series –related problems in $(0,2\pi)$	Method of separation of variables	Fourier Transforms- problems	Z-transform-elementary properties
	SLO-1	Formation of partial differential equation by eliminating arbitrary functions	Fourier series –related problems in $(-\pi,\pi)$	One dimensional Wave Equation and its possible solutions	Properties of Fourier transforms	Z-transform- change of scale property, shifting property
S-2	SLO-2	Formation of partial differential equation by eliminating two or more arbitrary functions	Change of interval Fourier series –related problems in (0,2 <i>l</i>)	One dimensional Wave Equation-initial displacement with zero initial velocity-type 1 Algebraic function	Standard results of Fourier transform	Z-transform of $a^n, \frac{1}{n}, \frac{1}{n+1}$
S-3	SLO-1	Formation of partial differential equation by eliminating arbitrary functions of the form $\phi(u, v) = 0$		One dimensional Wave Equation-initial displacement with zero initial velocity-type 2 Trigonometric function	Fourier Sine Transforms - problems	Z-transform of $\frac{1}{n^2}$, $\frac{1}{(n+1)^2}$
3-3	SLO-2	Solution of first order non-linear partial differential equations-standard type I F(p,q)=0	Fourier series –half range cosine series related problems $(0,\pi)$	One dimensional Wave Equation-initial displacement with zero initial velocity-type 3 – Midpoint of the string is displaced	Fourier Cosine Transforms - problems	Z-transform of $r^n\cos n\theta$
S-4	SLO-1 SLO-2	Problem solving using tutorial sheet 1	Problem solving using tutorial sheet 4	Problem solving using tutorial sheet 7	Problem solving using tutorial sheet 10	Problem solving using tutorial sheet 13
0.5		Solution of first order nonlinear partial differential equations-standard type –II Clairaut's form	Fourier series –half range cosine series related problems $(0, l)$	One dimensional Wave Equation-initial displacement with non-zero initial velocity Type 1 Algebraic function	Properties of Fourier sine Transforms	Z-transform of $r^n \sin n heta$
S-5	SLO-2	Solution of first order non-linear partial differential equations-standard type III $F(z, p, q)$ =0	Fourier series –half range sine series related problems $(0,\pi)$	One dimensional Wave Equation-initial displacement with non-zero initial velocity Type 2 Trigonometric function	Fourier sine Transforms applications	Initial value theorem

		1	1		1	
S-6		Solution of first order non-linear partial differential equations-standard type-IV separation of variable $f(x, p) = g(y, q)$	related problems(0, l)	Wave Equation-initial displacement with non-zero initial velocity Type 3 split function	Properties of Fourier cosine Transforms	Finial value theorem
	SLU-2	Lagrange's linear equation: Method of grouping	Parseval's Theorem (without proof)-related One dimensional heat equation and its problems in Fourier series Pourier cosine Transforms		Fourier cosine Transforms applications	Inverse Z-transform- long division method
S-7	SLO-1			problems	Convolution of two function	Inverse Z-transform, related problems, long division method
3-1		More problems in Lagrange's linear equation: Method of multipliers	Parseval's Theorem (without proof)-related problems in sine series	One dimensional heat equation -Steady state conditions	Convolution Theorem	Inverse Z-transform, Partial fraction method
S-8	SLO-1 SLO-2	Problem solving using tutorial sheet 2	Problem solving using tutorial sheet 5	Problem solving using tutorial sheet 8	Problem solving using tutorial sheet 11	Problem solving using tutorial sheet 14
S-9	SLO-1	Linear Homogeneous partial differential equations of second and higher order with constant coefficients-CF and PI Type 1: e^{ax+by}	Introduction to Harmonic Analysis	One dimensional heat equation -Steady state conditions more problems	Parseval's Identity for Fourier transform	Inverse Z-transform, Partial fraction method related problems
	SLO-2	PI Type2.: sin(ax+by) or cos(ax+by)	Harmonic Analysis for finding harmonic in $(0,2\pi)$	One dimensional heat equation -Steady state conditions with zero velocity	Parseval's Identity for Fourier sine & cosine transforms	Inverse Z-transform - residue theorem method
S-10	SLO-1	Type 3: PI of polynomial	Harmonic Analysis for finding harmonic in $(0,2l)$	One dimensional heat equation -Steady state conditions with zero velocity more problems	Parseval's Identity for Fourier sine & cosine transforms applications	Inverse Z-transform - residue theorem method-problems
3-10	SLO-2	Type 4 Exponential shifting $e^{ax+by}f(x,y)$	Harmonic Analysis for finding harmonic in periodic interval (0, T)	One dimensional heat equation -Steady state conditions with zero velocity more related problems	Fourier Transforms Using Differentiation property	Convolution theorem (without proof)
S-11	SLO-1	Linear Homogeneous partial differential equations of second and higher order with constant coefficients type 5 General rule	Harmonic Analysis for finding cosine series	Steady state conditions and Non-zero boundary conditions- related problems	Solving integral equation	Convolution theorem applications
	51 ()-/	Applications of Partial differential equations in Engineering	Harmonic Analysis for linding sine series	Steady state conditions and Non-zero boundary conditions- more problems	Self-reciprocal using Fourier Transform, sine and cosine transform	Solution of linear difference equations with constant coefficients using Z-transform
C 40	SLO-1	Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15
S-12		Problem solving using tutorial sheet 3	Problem solving using tutorial sheet 6	Problem solving using tutorial sheet 9	Problem solving using tutorial sheet 12	Problem solving using tutorial sheet 15

Learning
Resources

- 1. B. H. Erwin kreyszig, Advanced Engineering Mathematics, 10th Edition, John Wiley & Sons, 2006
- 2. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 43rd Edition, 2015 3. Veerarajan T., Transforms and Partial Differential Equations, Tata McGraw-Hill, New Delhi,2012
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 3rd Edition, 2010 6. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, for third semester, Laxmi Publications, 3rd Edition, 2014

Learning Assess	Learning Assessment													
	Continuous Learning Assessment (50% weightage)									Final Evamination (F00/ weightage)				
	Bloom's Level of Thinking	CLA –	CLA – 1 (10%)		CLA – 2 (15%)		3 (15%)	CLA – 4	1 (10%)#	Final Examination (50% weightage)				
	Level of Trilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	40 %		30 %		30 %		30 %		30%				
Level I	Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-			
Level 2	Apply	40 %		40 %	_	40 %	_	40 %		40%	_			
Level 2	Analyze	40 /0	-	40 /0	_	40 /0	_	40 /0	_	4070	_			
Level 3	Evaluate	20 %		30 %		30 %		30 %		30%				
Level 3	Create	20 /0	-	30 /0	-	30 /0	-	30 /0	-	30%	_			
Total		100	0 %	100	0 %	100	0 %	10	0 %	10	0 %			

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. V. Maheshwaran, CTS, Chennai, maheshwaranv@yahoo.com	1. Dr. K. C. Sivakumar, IIT, Madras, kcskumar@iitm.ac.in	1. Dr. A. Govindarajan, SRMIST
2. Dr. Sricharan Srinivasan, Wipro Technologies, sricharanms@gmail.com	2. Dr. Nanjundan, Bangalore University, nanzundan@gmail.com	2. Prof. Ganapathy Subramanian K S, SRMIST