

Système à barres et ressort

Soient deux barres (1) et (2) de longueur 2L, de masse m et de centre de gravité G_1 et G_2 respectivement reliées par un ressort de raideur k et de longueur libre l_0

Point 0 : Liaison pivot d'axe Z_0

Point A: Liaison pivot d'axe Z_0

Point B: Liaison linéaire annulaire d'axe Y₀

I : Centre de rotation instantané de la barre (2) : $\overrightarrow{AI} = 2L.\overrightarrow{x_1}$; $\overrightarrow{BI} = 4L.\cos\theta.\overrightarrow{x_0}$

 $\overrightarrow{OG_1} = L.\overrightarrow{x_1}$; $\overrightarrow{AG_2} = L.\overrightarrow{x_2}$; $(\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}) = \theta$; $(\overrightarrow{x_0}, \overrightarrow{x_2}) = (\overrightarrow{y_0}, \overrightarrow{y_2}) = -\theta$;

Moment d'inertie au centre de gravité des barres : $I_{G1z} = I_{G2z} = m \frac{L^2}{3}$

On cherche à établir l'équation du mouvement du système

- 1) Ecrire le torseur de l'action en A $\{T_A\}$ dans le repère $R_1(0, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_0})$
- 2) Ecrire le torseur de l'action en B $\{T_B\}$ dans le repère $R_0(0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$
- 3) Ecrire le torseur du poids de la barre (1) $\{\mathcal{T}_{(g o 1)}\}$ en G_1
- 4) Ecrire le torseur du poids de la barre (2) $\{T_{(g\rightarrow 2)}\}$ en G_2
- 5) Ecrire le torseur de l'action du ressort (R) $\{T_R\}$ en O puis en I
- 6) Ecrire le vecteur vitesse du point G_1 dans le repère $R_0: \overrightarrow{V_{G_{1/R_0}}}$
- 7) Ecrire le vecteur vitesse du point G_2 dans le repère $R_0: \overrightarrow{V_{G_2/R_0}}$ dans le repère $R_0(O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$
- 8) Ecrire le vecteur accélération du point G_2 dans le repère $R_0: \overline{\Gamma_{G_2}}_{R_0}$ dans le repère $R_0(O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$
- 9) Isoler la barre (1), faire le bilan des actions mécaniques, écrire le torseur résultant $\{\mathcal{T}_{(ext \to 1)}\}$ des actions appliquées au point O
- 10) Isoler la barre (2), faire le bilan des actions mécaniques, écrire le torseur résultant $\{\mathcal{T}_{(ext \to 2)}\}$ des actions appliquées au point I
- 11) Ecrire le moment cinétique de la barre (1) en $G_1 \overrightarrow{\sigma_{G_1}}_{1/R_0}$ puis en O $\overrightarrow{\sigma_{O_1/R_0}}$

- 12) Ecrire le moment dynamique de la barre (1) en O $\overrightarrow{\delta_{O~1/R_0}}$
- 13) Appliquer le théorème du moment dynamique à la barre (1) au point O et établir l'équation de son mouvement
- 14) Ecrire le moment cinétique de la barre (2) en G_2 $\overrightarrow{\sigma_{G_2}}_{2/R_0}$
- 15) Ecrire le moment dynamique de la barre (2) en G_2 $\overrightarrow{\delta_{G_2}}_{2/R_0}$ puis en I $\overrightarrow{\delta_{I_2/R_0}}$
- 16) Appliquer le théorème du moment dynamique à la barre (2) au point I et établir l'équation de son mouvement
- 17) En éliminant les inconnues de l'action de liaison en A en déduire l'équation du mouvement du système en fonction des caractéristiques géométriques et du paramètre θ et ses dérivées

Rappels:

Le torseur $\{\tau_{(2\to 1)}\}$ associé à l'action mécanique exercée en A, par un solide 2 sur un solide 1 sera noté :

$$\left\{\mathcal{T}_{(2\to1)}\right\} = A \left\{\frac{\overrightarrow{R_{2\to1}}}{\overrightarrow{M_{A_{2\to1}}}}\right\} = A \left\{\frac{\overrightarrow{R_{2\to1}}}{\overrightarrow{M_{A_{2\to1}}}} = X_A \cdot \overrightarrow{x} + Y_A \cdot \overrightarrow{y} + Z_A \cdot \overrightarrow{z}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{Y} + X_A \cdot \overrightarrow{Z}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X} + X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} = A \left\{X_A \cdot \overrightarrow{X}\right\}_{(x,y,z)} =$$

Le torseur cinématique $\{v_{2/1}\}$ du mouvement d'un solide S par rapport à un repère R exprimé au point A sera noté :

$$\left\{v_{(S/R)}\right\} = \left\{\overrightarrow{\Omega_{S/R}}\right\} = \left\{\overrightarrow{\Omega_{S/R}}\right\} = \left\{\overrightarrow{\Omega_{S/R}} = \omega_x.\overrightarrow{x} + \omega_y.\overrightarrow{y} + \omega_z.\overrightarrow{z}\right\}_{(x,y,z)} = \left\{(x,y,z)\right\}_{(x,y,z)} = \left\{(x,y,z)\right\}_{($$

Le torseur cinétique $\{C_{S/R}\}$ du mouvement d'un solide S par rapport à un repère R galiléen exprimé au point A sera noté :

$$\left\{C_{(S/R)}\right\} = \left\{\begin{array}{c} m \, \overrightarrow{V_{G_{S/R}}} \\ \overrightarrow{\sigma_{A_{S/R}}} \end{array}\right\} = \left\{\begin{array}{c} m \, \overrightarrow{V_{G_{S/R}}} \\ \overrightarrow{\sigma_{A_{S/R}}} \end{array} = m \, \overrightarrow{AG} \wedge \overrightarrow{V_{A_{S/R}}} + \overrightarrow{J_A}(S, \overrightarrow{\Omega_{S/R}}) \right\}_{(x,y,z)} \overrightarrow{J_A} = \text{opérateur d'inertie de S en A}$$

Le torseur dynamique $\{D_{S/R}\}$ du mouvement d'un solide S par rapport à un repère R galiléen exprimé au point A sera noté :

$$\{D_{(S/R)}\} = \begin{cases} m \overrightarrow{\Gamma_{G_{S/R}}} \\ \overrightarrow{\delta_{A_{S/R}}} \end{cases} = \begin{cases} m \overrightarrow{\Gamma_{G_{S/R}}} \\ \overrightarrow{\delta_{A(S/R)}} = \left[\frac{d}{dt} \overrightarrow{\sigma_{A(S/R)}}\right]_{R} + m. \overrightarrow{V_{A_{S/R}}} \wedge \overrightarrow{V_{G_{S/R}}} \end{cases}_{(x,y,z)}$$

L'énergie cinétique d'un solide S dans son mouvement par rapport à un repère R galiléen exprimé au point A sera noté : $T_{(S/R)} = \frac{1}{2} \left\{ C_{(S/R)} \right\} \otimes \left\{ v_{(S/R)} \right\} = m \ \overrightarrow{V_{G_{S/R}}} \cdot \overrightarrow{V_{A_{S/R}}} + \overrightarrow{\Omega_{S/R}} \cdot \overrightarrow{\sigma_{A_{S/R}}}$