Trabalho 3 - Métodos Numéricos - MTM224

prof. Tiago Martinuzzi Buriol

1. Dada a tabela a seguir, de valores de uma função f,

\overline{x}	0,15	0,17	0,19	0,21	0,23	0,25	0,27	0,29	0,31
f(x)	0,1761	0,2304	0,2788	0,3222	0,3617	0,3979	0,4314	0,4624	0,4914

- (a) Utilize um programa em Python para interpolar todos os pontos tabelados usando a Forma de Lagrange e obtenha uma estimativa para f(0,20) e para f(0,22) utilizando esse polinômio.
- (b) Plote o gráfico do polinômio obtido juntamente com os pontos tabelados para verificar o resultado da interpolação.
- (c) Estime f(0,20) e f(0,22) utilizando uma polinomial de terceiro grau. Plote o gráfico e compare com o resultado do item anterior.
- 2. Determina-se empiricamente o alongamento de uma mola em milímetros, em função da carga P kgf que sobre ela atua, obtendo-se Use um programa em Python que

\overline{x}	5	10	15	20	25	30	35	40
\overline{P}	49	105	172	253	352	473	619	793

implemente a Forma de Newton para o polinômio interpolador e, usando polinômios de terceiro grau, encontre as cargas que produzem os seguintes alongamentos na mola

- (a) 12 mm
- (b) 32 mm
- (c) 31 mm

Encontre novamente as cargas dos itens a, b e c com o programa utilizado no Exercício 1, que usa a Forma de Lagrange, e compare os resultados obtidos. Explique o que você observou.

3. A tabela a seguir mostra a fração percentual F de luz polarizada refletida por uma superfície em função do ângulo de incidência θ (em graus).

$\theta(^{\rm o})$	50	52	54	56	58	60
F(%)	2,75	1,45	0,50	0,15	0,20	0,85

Use um polinômio de grau 2 para estimar o ângulo θ_B (ângulo de Brewster) para o qual a fração F_B de luz polarizada é mínima. Plote os dados tabelados, o polinômio obtido e o ponto (θ_B, F_B) .

- 4. A tabela abaixo mostra as alturas e pesos de nove homens entre as idades de 25 a 29 anos, extraída ao acaso entre funcionários de uma grande indústria:
 - (a) Utilize um programa em Python para ajustar uma reta que descreva o peso em função da altura. Mostre a reta e o diagrama de dispersão em um mesmo gráfico.

Altura	183	173	168	188	158	163	193	163	178	$\overline{ cm }$
Peso	79	69	70	81	61	63	79	71	73	kg

- (b) Estime o peso de um funcionário com 175 cm de altura; e estime a altura de um funcionário com 80 kg.
- (c) Ajuste agora a reta que descreva a altura em função do peso. Mostre a reta e os pontos tabelados em um mesmo gráfico.
- (d) Resolva o item b com essa nova função, compare os resultados obtidos. Tente encontrar uma explicação.
- 5. O número de bactérias, por unidade de volume, existente em uma cultura após x horas é apresentado na tabela:

nº de horas	0	1	2	3	4	5	6
nº de bactéricas	32	47	65	92	132	190	275

- (a) Ajuste os dados às curvas $y = ab^x$ e $y = ax^b$; compare os valores obtidos por meio dessas equações com os dados experimentais. Comente.
- (b) Avalie da melhor forma o valor de y(x) para x = 7.