Jeonghyeon Woo

Math 301

HW 7

1. a.

 $\frac{a}{b} \sim \frac{c}{d}$ iff b=d, where both are in lowest terms.

Reflexivity

Suppose a = c. $\frac{a}{b} \sim \frac{a}{b}$, so it is reflexive.

Symmetry

Let k = b = d. $\frac{a}{k} \sim \frac{c}{k}$, and $\frac{c}{k} \sim \frac{a}{k}$, so it is symmetric

Transitivity

Let $x \in \mathbb{Z}$, $y \in \mathbb{Z}$, d = y. $\frac{c}{d} \sim \frac{x}{y}$. Since b = d = y, $\frac{a}{b} = \frac{x}{y}$, so it is transitive.

Thus, the relation is an equivalence relation.

b.

$$[b] = \left\{ a \in \mathbb{Z}, k \in \mathbb{Z} : \frac{a}{k} \sim \frac{b}{k} \right\} = \{ b \in \mathbb{Z} \}$$

$$[x] = \left\{ b \in \mathbb{Z}, k \in \mathbb{Z}, \frac{b}{k} \sim \frac{x}{k} \right\} = \left\{ x \in \mathbb{Z} \right\}$$

2. $r \sim s$ iff |r - s| < 1 possesses reflexivity and symmetry but no transitivity.

Reflexivity $|r-r| < 1 \rightarrow 0 < 1$

Symmetry |r-s| = |s-r| < 1

Transitivity, counter example.

$$|0.1 - 0.2| < 1$$
 and $|0.2 - 1.1| < 1$ but $|0.1 - 1.1| \not< 1$

3. $a \sim b$ iff $|a - b| \neq 0$

Symmetry $|a - b| \neq 0 \rightarrow |b - a| \neq 0$

Transitivity $|a - b| \neq 0$ and $|b - c| \neq 0 \rightarrow |a - c| \neq 0$

Reflexivity, counter example

 $|a-a| \neq 0$ when a=1 is false

4. a. Domain: Z

b. Codomain: Z

c. Range: $\{f(n) = 10n + 5\} \subseteq \mathbb{Z}$

d. Let f(a) = 10a + 5 and f(b) = 10b + 5. Assume f is an injunction.

$$f(a) = f(b)$$

$$10a + 5 = 10b + 5$$

$$a = b$$

Thus, f is an injunction.

e. Assume f is a surjection. Let $n \in \mathbb{Z}$, such that f(n) = 1

$$f(n) = 10n + 5$$

$$10n + 5 = 1$$

$$n = -\frac{4}{10}$$

Contradiction.

Thus, f is not a surjection.

5.
$$g(n \in \mathbb{Z}^+, k \in \mathbb{Z}^+) \rightarrow \frac{n}{k} \in \mathbb{Q}^+$$

a. Let $g(a,b) = \frac{a}{b}$ and $g(x,y) = \frac{x}{y}$. Assume f is an injection.

$$g(a,b) = g(x,y)$$

$$\frac{a}{b} = \frac{x}{v}$$

$$\frac{1}{2} = \frac{2}{4}$$

$$a = x$$
 and $b = y$

Contradiction.

Thus, g is not an injection.

b. Let $n \in \mathbb{Z}^+$, $k \in \mathbb{Z}^+$. Assume g is a surjective. We want $\{g(n,k)\} = \mathbb{Q}^+$.

$$g(n,k) = \frac{n}{k}$$

$$x = \frac{n}{k}$$

 ${\bf x}$ is always rational by def. of rational number, and ${\bf x}$ is always positive since both n and k are always positive. Thus, g is a surjective.

6. h:
$$\mathbb{R} \to \mathbb{R}$$
 h(r) = 10r + 5

- a. h is an injection as the same way as f(n) of #4 is an injection.
- b. Let $r \in \mathbb{R}$. Assume h is a surjective. We want $\{h(r)\} = \mathbb{R}$

$$h(r) = 10r + 5$$
$$x = 10r + 5$$
$$r = \frac{x - 5}{10}$$

It shows,
$$h\left(\frac{x-5}{10}\right) = x$$
 for any x, so $\{x\} = \mathbb{R}$

Thus, it is a surjective.