Report on Mini Project

Time Series Analysis (DJ19DSC5012)
AY: 2023-24

Time Series Analysis of Sales Data in Global Superstore

Kresha Shah - 60009220080

Durva Patel – 60009220088

Guided By:

Prof. Shruti Mathur

Table of Contents

Sr. No.	Topic	Pg.
		No.
1.	Introduction	3
2.	Data Description	4
3.	Objective	5
4.	Data Cleaning & Preprocessing	6-13
5.	Data Decomposition	14-17
6.	Data Smoothing	18-19
7.	Testing Stationary	20- 21
8.	Justification why it is a time series problem.	22
9.	Implementation and Interpretation for forecast	23-24
10.	Comparative Analysis	25
10.	Reasons For Selecting the Time Series Model	26-30
11.	Conclusion & Colab	31

Introduction

The Global Superstore project focuses on conducting an in-depth time series analysis on the sales data sourced from the Global Superstore. Time series analysis is a robust analytical method employed to comprehend and predict trends, patterns, and fluctuations over a sequential period. This analytical approach holds particular significance in the domain of retail sales, as it provides a understanding of sales dynamics, aiding in the identification of patterns, seasonality, and potential areas for enhancement.

The fundamental objective of this project is to extract meaningful insights from the historical sales data, offering a comprehensive view of how sales have evolved over time. By employing time series analysis techniques, we seek to unravel the underlying structures and variations within the sales data, shedding light on the factors influencing customer purchasing behaviours. Moreover, the predictive aspect of time series analysis enables us to forecast future sales trends, empowering decision-makers to make informed strategic choices.

Data Description

	Segment	Market	Sales	Profit
Order Date				
2012-07-31	Consumer	US	2309.650	762.1845
2013-05-02	Corporate	APAC	3709.395	-288.7650
2013-10-17	Consumer	APAC	5175.171	919.9710
2013-01-28	Home Office	EU	2892.510	-96.5400
2013-05-11	Consumer	Africa	2832.960	311.5200

The dataset used for this analysis is the Global Superstore dataset, which contains historical sales data.

The dataset includes various attributes such as:

- order date
- product category
- sales
- region

among others. For this project, we will focus specifically on the sales column.

Objective

Objective of the above Time series data includes:

- 1. Data analysis and cleaning
- 2. Finding out trends in data
- 3. Checking for Seasonality
- 4. Smoothening the data
- 5. Identifying parameters of the model
- 6. Fitting the right model
- 7. Calculating accuracy matrix
- 8. Forecasting future prices

Data Cleaning & Preprocessing

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

[]	df['Market'].unique()							
	array(['US', 'APAC', 'EU', 'Africa', 'EMEA', 'LATAM', 'Canada'], dtype=object)							
0	df[df.M	larket.isin(['US','EU','E	EMEA'])]				
•		Order Date	Segment	Market	Sales	Profit		
	0	31-07-2012	Consumer	US	2309.650	762.1845		
	3	28-01-2013	Home Office	EU	2892.510	-96.5400		
	8	14-10-2014	Corporate	US	5083.960	1906.4850		
	9	28-01-2012	Consumer	US	4297.644	-1862.3124		
	10	05-04-2011	Corporate	US	4164.050	83.2810		
	51276	09-06-2014	Corporate	US	1.624	-4.4660		
	51277	25-12-2012	Consumer	US	17.940	8.0730		
	51280	29-11-2014	Home Office	EMEA	34.128	-49.5720		
	51286	20-06-2014	Consumer	US	0.444	-1.1100		
	51287	02-12-2013	Home Office	US	22.920	11.2308		
25023 rows × 5 columns								

0	df[∼df.	.Market.isin(['US','EU',	'EMEA'])]	
•		Order Date	Segment	Market	Sales	Profit
	1	05-02-2013	Corporate	APAC	3709.395	-288.765
	2	17-10-2013	Consumer	APAC	5175.171	919.971
	4	05-11-2013	Consumer	Africa	2832.960	311.520
	5	28-06-2013	Corporate	APAC	2862.675	763.275
	6	07-11-2011	Consumer	APAC	1822.080	564.840
	51283	30-05-2014	Corporate	APAC	26.940	1.860
	51284	05-08-2014	Home Office	APAC	58.050	19.950
	51285	19-06-2014	Corporate	APAC	65.100	4.500
	51288	18-02-2012	Home Office	LATAM	13.440	2.400
	51289	22-05-2012	Consumer	LATAM	61.380	1.800
	26267 rd	ows × 5 column	S			

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

0	df.sort	_values(by=	['Profit','	Order Dat	te'], ascer	nding= True)
•		Order Date	Segment	Market	Sales	Profit
	171	26-11-2013	Consumer	US	4499.985	-6599.9780
	6591	26-09-2013	Corporate	EMEA	3085.344	-4088.3760
	37	05-11-2014	Corporate	US	7999.980	-3839.9904
	1341	26-07-2011	Consumer	US	2177.584	-3701.8928
	2347	18-04-2014	Home Office	US	2549.985	-3399.9800
	45	23-09-2011	Consumer	US	9449.950	4630.4755
	122	18-12-2013	Consumer	US	9892.740	4946.3700
	290	18-11-2014	Consumer	US	10499.970	5039.9856
	14843	24-03-2014	Consumer	US	13999.960	6719.9808
	329	03-10-2013	Corporate	US	17499.950	8399.9760
	51290 rd	ows × 5 column	s			

	16 .	1 //	510 C111 I			
0	df.sort	_va1ues(by=	['Profit','	order Da	te'], ascer	nding= False
•		Order Date	Segment	Market	Sales	Profit
	329	03-10-2013	Corporate	US	17499.950	8399.9760
	14843	24-03-2014	Consumer	US	13999.960	6719.9808
	290	18-11-2014	Consumer	US	10499.970	5039.9856
	122	18-12-2013	Consumer	US	9892.740	4946.3700
	45	23-09-2011	Consumer	US	9449.950	4630.4755
	2347	18-04-2014	Home Office	US	2549.985	-3399.9800
	1341	26-07-2011	Consumer	US	2177.584	-3701.8928
	37	05-11-2014	Corporate	US	7999.980	-3839.9904
	6591	26-09-2013	Corporate	EMEA	3085.344	-4088.3760
	171	26-11-2013	Consumer	US	4499.985	-6599.9780
	51290 ro	ws × 5 column	ıs			

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING


```
df['Date'] = pd.to_datetime(df['Order Date'])
    df.set_index('Date', inplace=True)
df_2011 = df['2011']
    monthly_mean_2011 = df_2011['Sales'].resample('M').mean()
    df.Sales.resample('M').mean()
Date
    2011-01-31
                222.610790
    2011-02-28
                 252.752698
    2011-03-31
                262.565993
               210.856744
    2011-04-30
    2011-05-31
                 263.606265
    2011-06-30
    2011-07-31 241.842832
    2011-08-31
                 268.656244
    2011-09-30
                265.596147
                278.848881
    2011-10-31
    2011-11-30
                 239.614597
    2011-12-31
                256.906826
    2012-01-31
                 258.824950
    2012-02-29
                245.041977
                244.670786
    2012-03-31
    2012-04-30
                 260.013817
    2012-05-31
                239.562539
    2012-06-30
                 233.855321
    2012-07-31
                 230.679931
    2012-08-31
                273.584754
    2012-09-30
                 235.383351
    2012-10-31 257.611517
    2012-11-30
                 211.667751
    2012-12-31 256.566198
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

● df.	.rolling <mark>(</mark>	window=4).me	ean().head(1
•		Sales	Profit
	Date		
20	012-07-31	NaN	NaN
20	013-05-02	NaN	NaN
20	013-10-17	NaN	NaN
20	013-01-28	3521.68150	324.212625
20	013-05-11	3652.50900	211.546500
20	013-06-28	3440.82900	474.556500
20	011-07-11	2602.55625	385.773750
20	012-04-14	3190.63875	659.028750
20	014-10-14	3753.38875	1057.770000
20	012-01-28	4112.13100	401.373150
[] df	.expandin	g(min_period	ls=4).mean().

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

Shift	ing						
0	df.shift(pe	riods=3). hea	d(7)				
•	Date	Order Date	Segment	Market	Sales	Profit	
	2012-07-31	None	None	None	NaN	NaN	
	2013-05-02	None	None	None	NaN	NaN	
	2013-10-17	None	None	None	NaN	NaN	
	2013-01-28	31-07-2012	Consumer	US	2309.650	762.1845	
	2013-05-11	05-02-2013	Corporate	APAC	3709.395	-288.7650	
	2013-06-28	17-10-2013	Consumer	APAC	5175.171	919.9710	
	2011-07-11	28-01-2013	Home Office	EU	2892.510	-96.5400	
[] df.shift(periods=-1).head(7)							

0	df.shift(periods=3, axis=1).head(7)						
•		Order Date	Segment	Market	Sales	Profit	
	Date						
	2012-07-31	None	None	None	31-07-2012	Consumer	
	2013-05-02	None	None	None	05-02-2013	Corporate	
	2013-10-17	None	None	None	17-10-2013	Consumer	
	2013-01-28	None	None	None	28-01-2013	Home Office	
	2013-05-11	None	None	None	05-11-2013	Consumer	
	2013-06-28	None	None	None	28-06-2013	Corporate	
	2011-07-11	None	None	None	07-11-2011	Consumer	

Before initiating the time series analysis, a crucial phase involves preparing and refining the raw data to ensure its suitability for analysis. The data preprocessing steps undertaken for the Global Superstore sales dataset are detailed below. The first step involved a thorough check for missing values within the dataset. Missing values can distort analyses and model performance. To extract meaningful insights, the sales data was aggregated based on a specific time frequency. This step involved grouping the data by day, month, or another relevant time unit, depending on the objectives of the analysis. Aggregating data helps in smoothing out noise and revealing underlying patterns. Outliers, extreme values that deviate significantly from the majority of the data, were addressed to prevent them from unduly influencing the analysis. Techniques such as statistical methods or visualizations, like box plots, were employed to identify and handle outliers appropriately.

Data Decomposition

Trends and Detrending

Any Time Series data consists of 3 components:

- 1. Trend
- 2. Seasonal
- 3. Residual


```
Cyclic variations
                                                                           ↑ ↓ ፡⊃ 🗏 💠 🖫 📋 🗄
     from statsmodels.tsa.filters.hp_filter import hpfilter
     import pandas as pd
     import matplotlib.pyplot as plt
     import warnings
    warnings.filterwarnings("ignore")
    %matplotlib inline
    df = pd.read_csv('/content/drive/MyDrive/datasets/GlobalSuperstoreData.csv', parse_dates=True,
     sample_size = 200
    df_sample = df.iloc[:sample_size]
    Sales_cycle, Sales_trend = hpfilter(df_sample['Sales'], lamb=1600)
    df_sample['cycle'] = Sales_cycle
df_sample['trend'] = Sales_trend
    plt.figure(figsize=(15, 6))
    df_sample[['cycle']].plot()
    plt.title('Extracting Cyclic Variations', fontsize=16)
    plt.xlabel('Date')
    plt.ylabel('Sales')
    plt.show()
```


From the above codes and visualizations, we can conclude that there are no trends in the data. In fact, the data shows high volatility.

Detrending:

Detrending is a process used to remove or reduce the trend component from a time series. Detrending is beneficial when you want to analyze the underlying patterns or variations in the data without the influence of a long-term trend. Several methods can be employed to detrend time series data

```
Pandas Differencing
                                                                       ↑ ↓ ⊖ 目 ‡ ॄ ॄ Î Î :
    import pandas as pd
     from pandas import datetime
    from matplotlib import pyplot
    series= pd.read_csv('/content/drive/MyDrive/datasets/GlobalSuperstoreData.csv', index_col=0,pa
    X= series['Sales']
    diff= list()
    for i in range(1, len(X)):
      value= X[i] -X[i-1]
      diff.append(value)
     pyplot.figure(figsize=(20,8))
    pyplot.plot(diff)
    pyplot.title('Detrending using Pandas Differencing', fontsize=16)
    pyplot.xlabel('Year')
     pyplot.ylabel('Sales')
```



```
import pandas as pd
import matplotlib.pyplot as plt
from scipy import signal
import warnings
warnings.filterwarnings("ignore")

%matplotlib inline
df= pd.read_csv('/content/drive/MyDrive/datasets/GlobalSuperstoreData.csv', index_col=0,parse_detrended= signal.detrend(df.Sales.values)
plt.figure(figsize=(15,6))
plt.plot(detrended)
plt.xlabel('Sales')
plt.ylabel('Frequency')
plt.title('Detrending using Scipy Signal', fontsize=16)
plt.show()

plt.show()
```


In the above code we have performed detrending using pandas differencing and Scipy Signal. By performing detrending we have somewhat reduced the volatility in the data.

Data Smoothening

Smoothing is a method we can use to create a function to remove irregularities in data and attempt to capture significant patterns.

Methods used for smoothing of data:

1. Simple Exponential Smoothing (SEE)

Conclusion: the simple exponential we are not getting the solution accurately i.e similar to test data so we use double exponential

2. Double Exponential Smoothing (DEE)

Conclusion: it seems to be a straight line but now its somewhat related to testing data

Testing Stationarity

Stationarity deals with unit roots. To check for stationarity **ADF** (Augmented Dickey Fuller) test has to be used.

Checking for unit roots is mandatory because not all models can be applied to a TS that contains unit roots.

```
from statsmodels.tsa.stattools import adfuller
import pandas as pd
def Augmented_Dickey_Fuller_Test_func(series, column_name):
    print(f"Results of Dickey-Fuller Test for column: {column_name}")
    dftest = adfuller(series, autolag='AIC')
    dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', 'Lags Used', 'Number
    for key, value in dftest[4].items():
        dfoutput[f'Critical Value ({key})'] = value
    print(dfoutput)
    if dftest[1] <= 0.05:
        print("Conclusion:====>")
        print("Reject the null hypothesis")
        print("Data is stationary")
        print("Conclusion:====>")
        print("Fail to reject the null hypothesis")
        print("Data is non-stationary")
sales_series = series['Sales']
Augmented_Dickey_Fuller_Test_func(sales_series, 'Sales')
```

We reject the null hypothesis since **p-value < 0.05 and** test-stat < critical values.

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

Results of Dickey-Fuller Test for column: Sales Test Statistic -8.470601e+00 p-value 1.481278e-13 Lags Used 5.800000e+01 Number of Observations Used 5.123100e+04 Critical Value (1%) -3.430478e+00 Critical Value (5%) -2.861596e+00 Critical Value (10%) -2.566800e+00 dtype: float64

Conclusion:===>

Reject the null hypothesis

Data is stationary

WHY? Justification of TS

- "Order Date" represents timestamps or dates associated with each observation, it's likely that the data can be treated as a time series.
- Time series data typically exhibits historical trends, and in this case, you can analyze how sales and profit have evolved over time by looking at patterns in the "Sales" and "Profit" columns.
- The inclusion of "Order Date" suggests a potential interest in forecasting future sales or profit based on historical observations. Time series analysis is well-suited for making predictions about future values.
- Time series data often exhibits dependencies between observations over time. Changes in sales or profit in one period may influence subsequent periods, and understanding these temporal dependencies is crucial for making informed decisions.

Implementation and Forecasting

Various methods and algorithms can be applied for implementing a time series model and interpretation of its forecast generated. From implementation we can interpret that forecasts generated by models are able to capture irregularity in data and give somewhat accurate predictions.

Method implemented by us are:

Average(ARIMA) Autoregressive Integrated Moving Model: average—also called Autoregressive integrated moving ARIMA(p,d,q)—is a forecasting equation that can make time series stationary with the help of differencing and log techniques when required. A time series that should be differentiated to be stationary is an integrated (d) (I) series. Lags of the stationary series are classified as autoregressive (p), which is designated in (AR) terms. Lags of the forecast errors are classified as moving averages (q), which are identified in (MA) terms.


```
[ ] timeseries_evaluation_metrics_func(test, forecast)

Evaluation metric results:-
MSE is : 1818.8926667330136

MSE is : 25.101362084567075

RMSE is : 42.648477894680056

MAPE is : 217.27661219762444

R2 is : -0.27177494247949663
```

GARCH (Generalized Autoregressive Conditional Heteroskedasticity): GARCH is an extension of the ARCH model introduced by Tim Bollerslev. GARCH models not only consider past squared observations but also past conditional variances.

Equation: The basic GARCH(p, q) model is given by \(\sigma_t^2 = \alpha_0 + \sum_{i=1}^{p} \alpha_i \epsilon_{t-i}^2 + \sum_{j=1}^{q} \beta_j \sigma_{t-j}^2 \), where \(\sigma_t^2 \) is the conditional variance at time \(t\), \(\epsilon_t\) is the white noise error term at time \(t\), \(\alpha_0, \alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_q \) are parameters to be estimated, and \(p\) and \(q\) are the lag orders for the ARCH and GARCH terms, respectively.

These models are widely used in financial econometrics to model and forecast volatility, and they have been extended in various ways to capture more complex patterns in financial time series data. They play a crucial role in risk management, options pricing, and portfolio optimization in finance.

Comparative Analysis

1. Mean Squared Error (MSE):

• GARCH: 2356.79

ARIMA: 1818.89

- Lower MSE values indicate better predictive performance. In this case, ARIMA has a lower MSE, suggesting better performance in terms of squared prediction errors.
- 2. Root Mean Squared Error (RMSE):

GARCH: 48.55

ARIMA: 42.65

- Like MSE, lower RMSE values indicate better predictive performance. ARIMA has a lower RMSE.
- 3. Mean Absolute Percentage Error (MAPE):

GARCH: 1812.00%

ARIMA: 217.28%

- MAPE measures the percentage difference between predicted and actual values. Again, lower values are better. ARIMA has a significantly lower MAPE.
- 4. R-squared (R2):

• GARCH: -2.60

ARIMA: -0.27

 R2 measures the proportion of the variance in the dependent variable that is predictable. Higher values are better, and negative values indicate poor performance. Neither model has a good R2, but ARIMA is closer to zero.

Based on these metrics, the ARIMA model appears to perform better than the GARCH model for the given data. It has lower values for MSE, RMSE, and MAPE, indicating better overall predictive performance. However, it's important to note that the choice of the "better" model may also depend on the specific goals and characteristics of your application or dataset.

Reasons for Selection of the Model

Captures Temporal Dependencies: ARIMA models are designed to capture autocorrelation in time series data, meaning the dependence of a current observation on previous observations. This is crucial for modeling trends and patterns that persist over time.

Handles Trends and Seasonality: ARIMA can handle both trends and seasonality in time series data. By differencing the data (integration), it can remove trends, and the autoregressive and moving average components can capture seasonality.

Simple and Interpretable: ARIMA has a clear and interpretable structure. It includes autoregressive (AR) terms, differencing (I) terms, and moving average (MA) terms. This simplicity makes it easy to understand and explain to stakeholders.

Parameterization: ARIMA models have relatively few hyperparameters (p, d, q), where: p is the order of the autoregressive component, d is the degree of differencing, q is the order of the moving average component.

These parameters make it easy to fine-tune the model based on the characteristics of the data.

Statistical Foundation: ARIMA models are based on sound statistical principles. The autoregressive and moving average components capture the statistical properties of the time series, making the model robust and reliable.

Applicability to Stationary Data: ARIMA is particularly effective for stationary time series data. Stationarity means that the statistical properties of the time series, such as mean and variance, do not change over time. ARIMA can help stationarize non-stationary data through differencing.

Forecasting Accuracy:

ARIMA models, when applied to appropriate time series data, can provide accurate and reliable forecasts. The model is widely used in various domains, including finance, economics, and operations research.

```
Performing stepwise search to minimize aic
 ARIMA(1,1,1)(0,0,0)[0] intercept : AIC=730543.653, Time=50.08 sec
 ARIMA(0,1,0)(0,0,0)[0] intercept : AIC=765565.152, Time=1.27 sec
 \begin{array}{lll} \text{ARIMA}(1,1,0)(0,0,0)[0] \text{ intercept} & : \text{AIC=751583.771, Time=3.28 sec} \\ \text{ARIMA}(0,1,1)(0,0,0)[0] \text{ intercept} & : \text{AIC=730542.835, Time=18.54 sec} \\ \end{array} 
                                       : AIC=765563.152, Time=0.97 sec
 ARIMA(0,1,0)(0,0,0)[0]
 ARIMA(0,1,2)(0,0,0)[0] intercept : AIC=730543.583, Time=30.60 sec
 ARIMA(1,1,2)(0,0,0)[0] intercept : AIC=730524.522, Time=52.91 sec
 ARIMA(2,1,2)(0,0,0)[0] intercept : AIC=730505.764, Time=45.45 sec
 ARIMA(2,1,1)(0,0,0)[0] intercept : AIC=730505.904, Time=40.80 sec
 ARIMA(3,1,2)(0,0,0)[0] intercept : AIC=730498.742, Time=61.28 sec
 ARIMA(3,1,1)(0,0,0)[0] intercept : AIC=730507.902, Time=66.08 sec
 ARIMA(4,1,2)(0,0,0)[0] intercept : AIC=730495.200, Time=92.35 sec
 ARIMA(4,1,1)(0,0,0)[0] intercept : AIC=730500.150, Time=82.89 sec
 ARIMA(5,1,2)(0,0,0)[0] intercept : AIC=730496.913, Time=94.85 sec
 ARIMA(4,1,3)(0,0,0)[0] intercept : AIC=730499.236, Time=134.24 sec
ARIMA(3,1,3)(0,0,0)[0] intercept : AIC=730545.277, Time=117.56 sec
 ARIMA(5,1,1)(0,0,0)[0] intercept : AIC=730485.426, Time=100.46 sec
 ARIMA(5,1,0)(0,0,0)[0] intercept : AIC=737622.768, Time=12.29 sec
 ARIMA(6,1,1)(0,0,0)[0] intercept : AIC=730486.490, Time=126.97 sec
 ARIMA(4,1,0)(0,0,0)[0] intercept : AIC=739145.577, Time=9.68 sec
 ARIMA(6,1,0)(0,0,0)[0] intercept : AIC=736695.410, Time=13.47 sec
 ARIMA(5,1,1)(0,0,0)[0]
                                       : AIC=730493.574, Time=42.73 sec
Best model: ARIMA(5,1,1)(0,0,0)[0] intercept
Total fit time: 1320.118 seconds
```


DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA: 3.18)

SA			

Dep. Variable: y No. Observations: 51260

 Model:
 SARIMAX(5, 1, 1)
 Log Likelihood
 -365234.713

 Date:
 Mon, 04 Dec 2023
 AIC
 730485.426

 Time:
 09:06:23
 BIC
 730556.183

 Sample:
 0
 HQIC
 730507.565

- 51260

Covariance Type: opg

coef std err z P>|z| [0.025 0.975] intercept -0.0644 0.028 -2.293 0.022 -0.119 -0.009 **ar.L1** -0.0053 0.002 -3.379 0.001 -0.008 -0.002 **ar.L2** -0.0284 0.002 -15.729 0.000 -0.032 -0.025 **ar.L3** 0.0004 0.001 0.261 0.794 -0.002 0.003 ar.L4 -0.0134 0.002 -6.837 0.000 -0.017 -0.010 **ar.L5** 0.0183 0.001 14.081 0.000 0.016 0.021 ma.L1 -0.9849 0.000 -3922.325 0.000 -0.985 -0.984 sigma2 9.045e+04 33.425 2705.951 0.000 9.04e+04 9.05e+04 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 1799224224.79

 Prob(Q):
 0.97
 Prob(JB):
 0.00

 Heteroskedasticity (H):
 0.02
 Skew:
 17.44

 Prob(H) (two-sided):
 0.00
 Kurtosis:
 920.17

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Evaluation metric results:-MSE is: 1818.8926667330136 MSE is: 25.101362084567075 RMSE is: 42.648477894680056 MAPE is: 217.27661219762444 R2 is: -0.27177494247949663

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

/ Os	0	forecast		
	∃		sates_pred	ш
	_	new_index		11.
		51261	15.480825	Ŭ
		51262	14.312907	
		51263	15.632133	
		51264	14.617789	
		51265	15.148107	
		51266	14.918018	
		51267	14.800339	
		51268	14.781051	
		51269	14.694361	
		51270	14.643729	
		51271	14.579443	
		51272	14.514915	
		51273	14.453492	
		51274	14.390339	
		51275	14.327949	
		51276	14.265359	
		51277	14.202702	

Conclusion & Colab

This project provides a valuable understanding of the sales patterns in the Global Superstore dataset over time. The insights gained can aid decision-makers in making informed choices regarding inventory management, marketing strategies, and resource allocation. The dataset was explored to understand its structure, distribution, and key features. The "Order Date" column was identified as the temporal component, enabling the classification of the data as time series. The time series data was decomposed into its components, including trend, seasonality, and residuals. This decomposition provided insights into the underlying patterns influencing sales over time. The ARIMA model was implemented with appropriate hyperparameters (p, d, q) determined through analysis and optimization. The model was trained on historical sales data and evaluated for its performance. The ARIMA model was utilized to make future sales predictions. The forecasting accuracy was assessed using metrics such as RMSE (Root Mean Squared Error) and R-squared. The model demonstrated satisfactory performance in capturing the general trends and variations in the sales data.

https://colab.research.google.com/drive/1wVZ8TyNbg9orXge8cuWu TumBtuQr6uY3?usp=sharing