

Machine Learning – Apache Spark

Week 14 – Part 1 – Big Data Processing using Apache Spark

CS 457 - L1 Data Science

Zeehasham Rasheed

Outline

- What is Apache Spark?
- Where Big Data Comes From?
- The Structure Spectrum
- Apache Spark and DataFrames
- Transformations and Actions

Objectives

- Understand Apache Spark's history and development
- Understand the conceptual model: <u>DataFrames</u>
- Transformations, data analytics and visualization using
 - pySpark and SparkSQL

Prerequisites

Basic programming skills and experience Some experience with Python or R

What is Apache Spark?

Scalable, efficient framework for analyzing Big Data

BerkeleyX

Where Does Big Data Come From?

It's all happening online – could record every:

- » Click
- » Ad impression
- » Billing event
- » Fast Forward, pause,...
- » Server request
- » Transaction
- » Network message
- » Fault
- **»** ...

Where Does Big Data Come From?

User Generated Content (Web & Mobile)

- » Facebook
- » Instagram
- » Yelp
- » TripAdvisor
- » Twitter
- » YouTube
- **»** ...

Graph Data

Lots of interesting data has a graph structure:

- Social networks
- Telecommunication Networks
- Computer Networks
- Road networks
- Collaborations/Relationships
- •

Some of these graphs can get quite large (e.g., Facebook user graph)

Log Files – Apache Web Server Log

1.0" 304 0


```
ix,esc,ca2,07.ix.netcom.com , , [01/Aug/1995:00:00:09 ,0400] "GET/images/launch, logo.gif
HTTP/1.0" 200 1713
uplherc.upl.com , , [01/Aug/1995:00:00:10 ,0400] "GET/images/WORLD,logosmall.gif HTTP/ 1.0" 304 0
slppp6.intermind.net , , [01/Aug/1995:00:00:10 ,0400] "GET/history/skylab/skylab.html
HTTP/1.0" 200 1687
piweba4y.prodigy.com , , [01/Aug/1995:00:00:10 ,0400] "GET/images/launchmedium.gif HTTP/1.0" 200
11853
tampico.usc.edu , , [14/Aug/1995:22:57:13 ,0400] "GET/welcome.html HTTP/1.0" 200 790
                                                 ,0400] "GET / HTTP/1.0" 304 0
                   , , [01/Aug/1995:00:00:07
uplherc.upl.com
                   , , [01/Aug/1995:00:00:08
uplherc.upl.com
                                                 ,0400] "GET /images/ksclogo,medium.gif HTTP/
1.0" 304 0
uplherc.upl.com
                   , , [01/Aug/1995:00:00:08
                                                 ,0400] "GET /images/MOSAIC,logosmall.gif
HTTP/1.0" 304 0
                   , , [01/Aug/1995:00:00:08
                                                 ,0400] "GET /images/USA,logosmall.gif HTTP/
uplherc.upl.com
```

Machine Syslog File


```
dhcp,47,129:CS100 1> syslog ,w 10
      315:18:11 dhcp,47,129 Evernote[1140] <Warning>:,[EDAMAccounting read:]: unexpected field ID 23 with type 8. Skipping.
Feb
      315:18:11 dhcp,47,129 Evernote[1140] < Warning>: ,[EDAMUserread:]: unexpected field ID 17 with type 12.
Feb
      Skipping.
      315:18:11 dhcp,47,129 Evernote[1140] < Warning>: , [EDAMAuthenticationResult read:]: unexpected field ID 6 with type
Feb
11. Skipping.
      315:18:11 dhcp,47,129 Evernote[1140] <Warning>:, [EDAMAuthenticationResult read:]: unexpected field ID 7 with type
Feb
11. Skipping.
      3 15:18:11 dhcp,47,129 Evernote[1140] < Warning>: ,[EDAMAccounting read:]: unexpected field ID 19 with type 8.
Feb
                                                                                                                       Skipping.
      3 15:18:11 dhcp,47,129 Evernote[1140] <Warning>:,[EDAMAccounting read:]: unexpected field ID 23 with type 8.
Feb
                                                                                                                      Skipping.
      315:18:11 dhcp,47,129 Evernote[1140] < Warning>: ,[EDAMUserread:]: unexpected field ID 17 with type 12.
Feb
      Skipping.
      315:18:11 dhcp,47,129 Evernote[1140] <Warning>: ,[EDAMSyncState read:]: unexpected field ID 5 with type 10.
Feb
                                                                                                                       Skipping.
      315:18:49 dhcp,47,129 com.apple.mtmd[47] < Notice>: low priority thinning
Feb
needed for volume Macintosh HD(/) with 18.9 <= 20.0 pct free space
```

Internet of Things: RFID tags

California FasTrak Electronic Toll Collection transponder

Used to pay tolls

Collected data also used for traffic reporting

http://www.511.org/

http://en.wikipedia.org/wiki/FasTrak

The Structure Spectrum

Whither Structured Data?

Conventional Wisdom:

» Only 20% of data is structured

Decreasing due to:

- » Consumer applications
- » Enterprise search
- » Media applications

http://upload.wikimedia.org/wikipedia/commons/2/23/Lod-datasets 2010-09-22 colored.png

Unstructured Data

Only one column with string or binary type Examples:

- » Facebook post
- » Instagram image
- » Youtube video
- » Blog post
- » News article
- » User Generated Content

» ...

The Structure Spectrum

Extract-Transform-Load (ETL)

 Imposes structure on unstructured data

The Big Data Problem

Data growing faster than computation speeds

Growing data sources

» Web, mobile, scientific, …

Storage getting cheaper

» Size doubling every 18 months

But, stalling CPU speeds and storage bottlenecks

Traditional Tools

» Unix shell commands (grep, awk, sed), pandas, R
(All run on a single machine!)

Big Data Examples

- Facebook's daily logs: 60 TB
- 1,000 genomes project: 200 TB
- Google web index: 10+ PB

- Cost of 1 TB of disk: ~\$35
- Time to read 1 TB from disk: 3 hours (100 MB/s)

The Big Data Problem

One machine can not process or even store all the data!

Solution is to distribute data over cluster of machines

End of Part 1

Machine Learning – Apache Spark

Week 14 – Part 2 – Apache Spark Framework
CS 457 - L1 Data Science

Zeehasham Rasheed

The Spark Computing Framework

Provides programming abstraction and parallel runtime to hide complexities of fault-tolerance and slow machines

Apache Spark Components

Spark SQL

Spark Streaming MLlib & ML (machine learning)

GraphX (graph)

Apache Spark

Real World Spark Analysis Use Cases

- Big Data Genomics using ADAM API
- Conviva optimizing Internet video stream delivery
- Data processing for wearables and Internet of Things
- Personalized Yahoo! news pages
- Analytics for Yahoo! advertising
- Capital One product recommendations

Python Spark (pySpark)

"Here's an operation, run it on all of the data"

DataFrames are the key concept

We can use Python programming interface to Spark (**pySpark**) pySpark provides an easy-to-use programming abstraction and parallel runtime:

Spark Driver and Workers

A Spark program is two programs:

» A driver program and a workers program

Worker programs run on cluster nodes or in local threads

DataFrames are distributed across workers

Spark and SQL Contexts

A Spark program first creates a SparkContext object

- >> SparkContext tells Spark how and where to access a cluster
- » pySpark shell, Databricks CE automatically create SparkContext

>> Jupyter, iPython programs must create a new SparkContext

Data Frames

The primary abstraction in Spark

- » Immutable once constructed
- >> Track lineage information to efficiently recompute lost data
- >> Enable operations on collection of elements in parallel

You construct <u>DataFrames</u>

- » by parallelizing existing Python collections (lists)
- » by transforming an existing Spark or pandas DFs
- » from *files* in HDFS or any other storage system

Distributed Memory

Big Data

Word	Index	Count
l	0	1
am	2	1
Sam	5	1
I	9	1
am	11	1
Sam	14	1

I	0	1	
1 am	2	1	

	Sam	5	1
\rightarrow	l	9	1

am	11	1
Sam	14	1

Partition 1

Partition 2

Partition 3

Spark DataFrames

Word	Index	Count
I	0	1
am	2	1
Sam	5	1
Į.	9	1
am	11	1
Sam	14	1

2 am Sam 5 9

11

14

am

DataFrame

Sam

Partition 2

Partition 3

Data Frames

Each row of a DataFrame is a <u>Row</u>object
The fields in a Row can be accessed like attributes

```
>>> row = Row(name="Alice", age=11)
>>> row
Row(age=11, name='Alice')
>>> row['name'], row['age']
('Alice', 11)
>>> row.name, row.age
('Alice', 11)
```

DataFrames

Two types of operations: *transformations* and *actions*

Transformations are **lazy** (not computed immediately)

Transformed DF is executed when action runs on it

Persist (cache) DFs in memory or disk

Working with DataFrames

Create a DataFrame from a data source:

< list>

Apply *transformations* to a DataFrame:

filter select

Apply actions to a DataFrame:

show count

The entry point into all relational functionality in Spark is the **SQLContext** class, or one of its decedents. To create a basic SQLContext, all you need is a **SparkContext**

```
SCALA
val SC: SparkContext // An existing SparkContext.
val sqlContext = new org apache spark sql sqlcontext (sc)
JAVA
JavaSparkContext sc = ..., // An existing JavaSparkContext.
SQLContext sqlContext = new org apache spark sql SQLContext (sc);
Python
from pyspark.sql import SQLContext
sqlContext = SQLContext(sc)
sqlContext < sparkRSQL.init(sc)
```


Create DataFrames from Python collections (lists)

```
>>> data =[('Alice', 1), ('Bob', 2)]
>>> data
[('Alice', 1), ('Bob', 2)]
>>> df = sqlContext.createDataFrame(data)
```

No computation occurs with sqlContext.createDataFrame()

 Spark only records how to create the DataFrame

```
[Row(_1=u'Alice', _2=1), Row(_1=u'Bob', _2=2)]
>>> sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
```


Easy to create pySpark DataFrames from pandas (and R) DataFrames

```
# Create a Spark DataFrame from Pandas
```

>>> spark_df = sqlContext.createDataFrame(pandas_df)

 From HDFS, text files, JSON files, Apache Parquet, Hypertable, Amazon S3, Apache Hbase, SequenceFiles, any other Hadoop Input Format

```
>>> df = sqlContext.read.text("README.txt")
>>> df.collect()
[Row(value=u'hello'), Row(value=u'this')]
```

Creating a DataFrame from a File

distFile = sqlContext.read.text ("...")

Loads text file and returns a DataFrame with a single string column named "value"

Each line in text file is a row

Lazy evaluation means no execution happens now

End of Part 2

Machine Learning – Apache Spark

Week 14 – Part 3 – Spark (Transformation Operations)

CS 457 - L1 Data Science

Zeehasham Rasheed

Spark Transformations

Create new DataFrame from an existing one

Use *lazy evaluation*: results not computed right away – Spark remembers set of transformations applied to base DataFrame

- » Spark uses *Catalyst* to optimize the required calculations
- » Spark recovers from failures and slow workers

Think of this as a recipe for creating result

The apply method creates a DataFrame from one column:

>>> ageCol = df.age

The apply method creates a DataFrame from one column:

>>> ageCol = df.age

You can select one or more columns from a DataFrame:

>>> df.select('*')

* selects all the columns

The apply method creates a DataFrame from one column:

>>> ageCol = df.age

You can select one or more columns from a DataFrame:

- >>> df.select('*')
 - * selects all the columns
- >>> df.select('name', 'age')
 - * selects the name and age columns

The apply method creates a DataFrame from one column:

```
>>> ageCol = df.age
```

You can <u>select</u> one or more columns from a DataFrame:

- >>> df.select('*')
 - * selects all the columns
- >>> df.select('name', 'age')
 - * selects the name and age columns
- >>> df.select(df.name,

```
(df.age + 10).alias('age'))
```

* selects the name and age columns, increments the values in the age column by 10, and renames (alias) the age +10 column as age

More Column Transformations

The <u>drop</u> method returns a new DataFrame that drops the specified column:

>>> df.drop(df.age)

[Row(name=u'Alice'), Row(name=u'Bob')]

Review: Python <u>lambda</u> Functions

Small anonymous functions (not bound to a name)

```
lambda a, b: a + b
```

» returns the sum of its two arguments

- Can use lambda functions wherever function objects are required
- Restricted to a single expression

User Defined Function Transformations

Transform a DataFrame using a <u>User Defined Function</u>

<u>UDF</u> takes named or lambda function and the <u>return type</u> of the function

Other Useful Transformations

Transformation	Description
filter(func)	returns a new DataFrame formed by selecting those rows of the source on which <i>func</i> returns true
where(func)	where is an alias for filter
<u>distinct()</u>	return a new DataFrame that contains the distinct rows of the source DataFrame
orderBy(*cols, **kw)	returns a new DataFrame sorted by the specified column(s) and in the sort order specified by kw
sort(*cols, **kw)	Like orderBy, sort returns a new DataFrame sorted by the specified column(s) and in the sort order specified by kw
explode(col)	returns a new row for each element in the given array or map

func is a Python named function or lambda function

Using Transformations (I)


```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
```

Using Transformations (I)


```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> from pyspark.sql.types import IntegerType
>>> doubled = udf(lambda s: s * 2, IntegerType())
>>> df2 = df.select(df.name, doubled(df.age).alias('age'))
[Row(name=u'Alice', age=2), Row(name=u'Bob', age=4)]
```

^{*} selects the name and age columns, applies the UDF to age column and aliases resulting column to age

Using Transformations (I)


```
df = sqlContext.createDataFrame(data,['name', 'age'])
[Row(name=u'Alice',age=1), Row(name=u'Bob',age=2)]
     from pyspark.sql.types import IntegerType
>>>
     doubled = udf(lambda s: s * 2, IntegerType())
>>>
     df2 = df.select(df.name, doubled(df.age).alias('age'))
>>>
[Row(name=u'Alice', age=2), Row(name=u'Bob', age=4)]
      selects the name and age columns, applies the UDF to age
       column and aliases resulting column to age
    df3 = df2.filter(df2.age > 3)
[Row(name=u'Bob', age=4)]
      only keeps rows with age column greater than 3
```

Using Transformations (II)


```
>>>  data2 = [('Alice', 1), ('Bob', 2), ('Bob', 2)]
    df = sqlContext.createDataFrame(data2, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2),
    Row(name=u'Bob', age=2)]
   df2 = df.distinct()
[Row(name=u'Alice',age=1), Row(name=u'Bob', age=2)]
     * only keeps rows that are distinct
```

Using Transformations (II)


```
>>>  data2 = [('Alice', 1), ('Bob', 2), ('Bob', 2)]
>>> df = sqlContext.createDataFrame(data2, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2),
    Row(name=u'Bob', age=2)]
>>> df2 = df.distinct()
[Row(name=u'Alice', age=1),
                                    Row(name=u'Bob', age=2)]
     * only keeps rows that are distinct
   df3 = df2.sort("age", ascending=False)
[Row(name=u'Bob', age=2), Row(name=u'Alice', age=1)]
     * sort ascending on the age column
```

Using Transformations (III)


```
>>> data3 = [Row(a=1, intlist=[1,2,3])]
>>> df4 = sqlContext.createDataFrame(data3)
[Row(a=1, intlist=[1,2,3])]
>>> df4.select(explode(df4.intlist).alias("anInt"))
[Row(anInt=1), Row(anInt=2), Row(anInt=3)]
  * turn each element of the intlist column into a Row, alias the resulting column to an Int, and select only that column
```

Grouped Data Transformations

groupBy(*cols)

groups the DataFrame using the specified columns, so we can run aggregation on them

GroupedData Function	Description
agg(*exprs)	Compute aggregates (avg, max, min, sum, or count) and returns the result as a DataFrame
count()	counts the number of records for each group
avg(*args)	computes average values for numeric columns for each group

Using Grouped Data (I)


```
>>> data = [('Alice',1,6), ('Bob',2,8), ('Alice',3,9), ('Bob',4,7)]
>>> df = sqlContext.createDataFrame(data, ['name', 'age', 'grade'])
>>> df1 = df.groupBy(df.name)
>>> df1.agg({"*": "count"}).collect()
[Row(name=u'Alice', count(1)=2), Row(name=u'Bob', count(1)=2)]
```

Using GroupedData (I)


```
>>> data = [('Alice', 1, 6), ('Bob', 2, 8), ('Alice', 3, 9), ('Bob', 4, 7)]
>>> df = sqlContext.createDataFrame(data, ['name', 'age', 'grade'])
>>> df1 = df.groupBy(df.name)
>>> df1.agg({"*": "count"}).collect()
[Row(name=u'Alice', count(1)=2), Row(name=u'Bob', count(1)=2)]
>>> df.groupBy(df.name).count()
[Row(name=u'Alice', count=2), Row(name=u'Bob', count=2)]
```

Using Grouped Data (II)


```
>>> data = [('Alice',1,6), ('Bob',2,8), ('Alice',3,9), ('Bob',4,7)]
>>> df = sqlContext.createDataFrame(data, ['name', 'age', 'grade'])
>>> df.groupBy().avg().collect()
[Row(avg(age)=2.5, avg(grade)=7.5)]
```

Using Grouped Data (II)


```
\Rightarrow data = [('Alice', 1, 6), ('Bob', 2, 8), ('Alice', 3, 9), ('Bob', 4, 7)]
>>> df = sqlContext.createDataFrame(data, ['name', 'age', 'grade'])
>>> df.groupBy().avg().collect()
[Row(avg(age)=2.5, avg(grade)=7.5)]
>>> df.groupBy('name').avg('age', 'grade').collect()
[Row(name=u'Alice', avg(age)=2.0, avg(grade)=7.5),
    Row(name=u'Bob', avg(age)=3.0, avg(grade)=7.5)]
```

Transforming a DataFrame (Lazy)

linesDF = sqlContext.read.text('....')

commentsDF = linesDF.filter(<condition>)

Lazy evaluation means nothing executes – Spark saves recipe for transforming source

End of Part 3

Machine Learning – Apache Spark

Week 14 – Part 4 – Spark (Actions Operations)

CS 457 - L1 Data Science

Zeehasham Rasheed

Spark Actions

 Cause Spark to execute recipe to transform source Mechanism for getting results out of Spark

Some Useful Actions

Action	Description
show(n, truncate)	prints the first nrows of the DataFrame
take(n)	returns the first n rows as a list of Row
collect()	return all the records as a list of Row WARNING: make sure will fit in driver program
count()+	returns the number of rows in this DataFrame
describe(*cols)	Exploratory Data Analysis function that computes statistics (count, mean, stddev, min, max) for numeric columns – if no columns are given, this function computes statistics for all numerical columns

+count for DataFrames is an action, while for GroupedData it is a transformation

Getting Data Out of DataFrames (I)


```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
>>> df.collect()
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
```

Getting Data Out of DataFrames (I)


```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
   >>> df.collect()
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
  >>> df.show()
+,,,,,+,,,+
| name|age|
+,,,,,+,,,+
|Alice| 1|
    Bob| 2|
+ , , , , + , , , +
>>> df.count()
```

Getting Data Out of DataFrames (II)


```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
>>> df.take(1)
[Row(name=u'Alice', age=1)]
```

Getting Data Out of DataFrames (II)


```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
  >>> df.take(1)
[Row(name=u'Alice', age=1)]
 >>> df.describe()
+,,,,,+,,,,,,,,+
|summary|
         age
+,,,,,,+,,,,,,,,,,+
   count
    mean| 1.5|
  stddev | 0.7071067811865476|
      min
      max
```

Spark Programming Model

linesDF = sqlContext.read.text('....')

print linesDF.count()

count() causes Spark to:

- read data
- sum within partitions
- combine sums in driver

Spark Programming Model

linesDF = sqlContext.read.text('...')
commentsDF = linesDF.filter(<condition>)
print linesDF.count(), commentsDF.count()

Caching DataFrames

linesDF = sqlContext.read.text('...')
linesDF.cache() # save,don't recompute!
commentsDF = linesDF.filter(<condition>)
Print linesDF.count(),commentsDF.count()

Spark Program Lifecycle

- Create DataFrames from external data or <u>createDataFrame</u> from a collection in driver program
- 2. Lazily transform them into new DataFrames
- 3. **cache()** some DataFrames for reuse (help in reducing the cost of recovery)
- Perform actions to execute parallel computation and produce results

Local or Distributed?

Where does code run?

- » Locally, in the driver
- » Distributed at the executors
- » Both at the driver and the executors

Very important question:

- » Executors run in parallel
- » Executors have much more memory

Where Code Runs

Most Python code runs in driver

» Except for code passed to transformations

Transformations run at executors

Actions run at executors and driver

Examples

Examples

Examples

How Not to Write Code

Let's say you want to combine two DataFrames: aDF, bDF

You remember that df.collect()

returns a list of Row, and in Python you can combine two lists with +

A naïve implementation would be:

```
>>> a = aDF.collect()
>>> b = bDF.collect()
>>> cDF = sqlContext.createDataFrame(a + b)
```

Where does this code run?

Combine two DataFrames: aDF, bDF


```
>>> a = aDF.collect()
>>> b = bDF.collect()
```

* all distributed data for a and b is sent to driver

What if a and/or b is very large?

- » Driver could run out of memory: Out
 - Of Memory error (OOM)
- » Also, takes a long time to send the data to the driver

combine two DataFrames: aDF, bDF

>>> cDF = sqlContext.createDataFrame(a + b)

* all data for cDF is sent to the executors

What if the list a + b is very large?

- » Driver could run out of memory:
 Out Of Memory error (OOM)
- » Also, takes a long time to send the data to executors

The Best Implementation

>>> cDF = aDF.<u>unionAll(bDF)</u>

Use the **DataFrame** reference API!

- » unionAll(): "Return a new DataFrame containing union of rows in this frame and another frame"
- » Runs completely at executors:
 - Very scalable and efficient

Some Programming Best Practices

Use Spark Transformations and Actions wherever possible

» Search DataFrame reference API

Never use collect() in production, instead use take(*n*)

cache() DataFrames that you reuse a lot

Apache Spark References

http://spark.apache.org/docs/latest/api/python/index.html
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html

SparkML

- **spark.ml** is a new package introduced in Spark 1.2
 - Aims to provide a uniform set of high-level APIs that help users create and tune practical machine learning pipelines.

4/13/2022

End of Part 4

4/13/2022