Energy efficiency in buildings

Asiah Zibrila Yao Zong

Deysy Londono

Introduction

Keeping a comfortable temperature in a building:

- Significant portion of the energy in the average home
- Contributes to global Energy consumption
- Concerns about exhaustions of energy resources
- Legal constraints in building energy performance

Goal

Model the relationship between the attributes of the building and the heating load.

Dataset

Name	Description	Units
X1	Relative Compactness	None
X2	Surface Area	m^2
Х3	Wall Area	m ²
X4	Roof Area	m ²
X5	Overall Height	m
X6	Orientation (2, 3, 4, 5)	None
X7	Glazing Area (%)	None
X8	Glazing Area Distribution (1,2, 3, 4,5)	None
Y1	Heating Load (HL)	kWh/m ²
Y2	Cooling Load (CL)	kWh/m ²

Source: UC Irvine Machine learning repository

It contains energy performance data for 12 different building shapes

Methodology

Fitting the Model

Correlation between dependent variables: 0.9759

Y1: Heating Load Y2: Cooling Load

Only keeping Y1

Fitting the Model - Multicollinearity

VIF Multicollinearity Diagnostics								
	VIF	detection						
X1	105.5241	1						
х3	27.6627	1						
X4	211.9383	1						
X5	31.2055	1						
factor(X6)3	1.5000	0						
factor(X6)4	1.5000	0						
factor(X6)5	1.5000	0						
х7	1.2604	0						
factor(X8)1	3.9271	0						
factor(X8)2	3.9271	0						
factor(X8)3	3.9271	0						
factor(X8)4	3.9271	0						
factor(X8)5	3.9271	0						

Drop X4

VIF Multicollinearity Diagnostics VIF detection 9.2503 X1 х3 3.1619 0 X5 9.6261 0 factor(X6)3 1.5000 0 factor(X6)4 1.5000 factor(X6)5 1.5000 0 **X7** 1.2604 0 factor(X8)1 3.9271 0 factor(X8)2 3.9271 0 factor(X8)3 3.9271 0 factor(X8)4 3.9271 0 factor(X8)5 3.9271 0

Fitting the Model - Stepwise Selection

Independent variables: X1(Relative Compactness), X3(Wall Area), X5(Overall Height), X7(Glazing Area %), X8(Orientation, dummy)

Parameter Estimates										
mod	del i	Beta Std.	Error	Std. Beta	t	Sig	lower	upper		
(Intercep	ot) -15	. 184	2.589		-5.86	0.000	-20.267	-10.100		
	X5 5.	. 607	0.182	0.973	30.75	0.000	5.249	5.965		
	x7 16.	. 848	0.867	0.222	19.43	0.000	15.146	18.551		
	X3 0.	. 035	0.004	0.151	8.34	0.000	0.027	0.043		
factor(X8	3)1 4.	. 528	0.522	0.175	8.67	73 0.000	3.503	5.553		
factor(X8	3)2 4.	.436	0.522	0.172	8.49	0.000	3.411	5.461		
factor(X8	3)3 4.	. 183	0.522	0.162	8.01	L2 0.000	3.158	5.208		
factor(X8	3)4 4.	. 388	0.522	0.170	8.40	0.000	3.363	5.413		
factor(X8	3)5 4.	. 182	0.522	0.162	8.01	0.000	3.158	5.207		
	X1 -14	. 532	2.958	-0.152	-4.91	L2 0.000	-20.340	-8.725		
Stepwise Selection Summary										
		Added/		Ad	lj.					
Step	Variable	Removed	R-Squa		uare	C(p)	AIC	RMSE		
1	X 5	addition	0.7	91 0	. 791	1237.6840	4532.4914	4.6149		
2	х7	addition	0.8	64 0	. 864	542.0180	4205.3741	3.7273		
3	х3	addition	0.9	10 0	. 910	103.5860	3890.8720	3.0352		
4 f	factor(X8)	addition	0.9	19 0	. 918	21.2450	3821.9456	2.8927		
5	X1	addition	0.9	21 0	. 920	-0.7950	3799.8793	2.8496		

```
call:
lm(formula = Y1 \sim X1 + X3 + X5 + X7 + factor(X8), data = data)
Residuals:
   Min
            1Q Median
-7.3068 -1.5588 0.0232 1.4189 7.3450
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -15.183790 2.589482 -5.864 6.76e-09 ***
           -14.532402 2.958472 -4.912 1.10e-06
X3
            0.034976 0.004194
                                8.340 3.49e-16
X5
            5.606753   0.182300   30.756   < 2e-16
           factor(X8)1
          4.527653 0.522063
                                8.673 < 2e-16
factor(x8)2
          4.435986 0.522063
           4.183000 0.522063
factor(X8)3
                                8.012 4.24e-15 ***
factor(x8)4
           4.388208 0.522063
                                8.406 < 2e-16 ***
factor(x8)5 4.182444 0.522063
                                8.011 4.28e-15 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.85 on 758 degrees of freedom
Multiple R-squared: 0.9212, Adjusted R-squared: 0.9202
F-statistic: 984.3 on 9 and 758 DF, p-value: < 2.2e-16
```

Fitting the Model – Higher Order Terms

Pairwise Correlation Plot:

4th Order Model: Adjusted R-squared = 0.985

```
lm(formula = Y1 \sim X1 + X3 + X5 + X7 + factor(X8) + I(X1^2) +
    I(X1^3) + I(X3^2) + I(X3^3) + I(X1^4) + I(X3^4), data = data)
Residuals:
             1Q Median
                                   Max
-4.1708 -0.7470 0.0030 0.7912 4.0091
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.374e+04 7.989e+02 -42.23
                                           <2e-16 ***
X1
х3
             7.225e+01 2.295e+00
                                            <2e-16 ***
             1.697e+01 4.816e-01
                                  35.23
                                           <2e-16 ***
                                           <2e-16 ***
x7
             1.685e+01 3.763e-01
factor(x8)1 4.528e+00 2.266e-01
                                           <2e-16 ***
factor(x8)2 4.436e+00 2.266e-01
                                           <2e-16 ***
factor(x8)3 4.183e+00 2.266e-01
                                           <2e-16 ***
factor(x8)4 4.388e+00 2.266e-01
                                            <2e-16 ***
factor(X8)5 4.182e+00 2.266e-01
                                   18.46
                                           <2e-16 ***
I(X1^2)
            -2.727e+05 6.824e+03 -39.96
                                           <2e-16 ***
I(X1^3)
             2.258e+05 5.692e+03
                                           <2e-16 ***
I(X3^2)
            -3.672e-01 1.108e-02 -33.15
                                            <2e-16 ***
I(X3^3)
             8.109e-04 2.344e-05
                                           <2e-16 ***
I(X1^{4})
            -6.942e+04 1.761e+03 -39.42
                                           <2e-16 ***
I(X3^4)
            -6.580e-07 1.836e-08 -35.84
                                           <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.237 on 752 degrees of freedom
Multiple R-squared: 0.9853, Adjusted R-squared: 0.985
F-statistic: 3354 on 15 and 752 DF, p-value: < 2.2e-16
```

Fitting the Model – Interaction Terms

Significant Interaction Terms:

X1:X3

X1:X5

X1:X7

X3:X5

X3:X7

Adjusted R-squared: 0.9353

```
call:
lm(formula = Y1 \sim X1 + X3 + X5 + X7 + factor(X8) + X1:X3 + X1:X5 + X
           X1:X7 + X3:X5 + X3:X7, data = data)
Residuals:
                                   1Q Median
           Min
  -6.7845 -1.0662 -0.0875 0.7896 6.8684
Coefficients:
                                      Estimate Std. Error t value Pr(>|t|)
 (Intercept) -236.96103
                                                                    96.19470 -2.463 0.013987 *
                                   189.06644
                                                                    94.48693 2.001 0.045753 *
х3
                                        0.05769
                                                                      0.08703 0.663 0.507595
                                      50.23088
                                                                    15.12360 3.321 0.000939 ***
                                    -51.61230
                                                                      8.04777 -6.413 2.51e-10 ***
factor(x8)1 4.52765
                                                                      0.47007 9.632 < 2e-16 ***
factor(x8)2
                                   4.43599
                                                                      0.47007 9.437 < 2e-16 ***
factor(X8)3
                                       4.18300
                                                                      0.47007 8.899 < 2e-16 ***
factor(x8)4
                                        4.38821
                                                                      0.47007 9.335 < 2e-16 ***
                                        4.18244
                                                                      0.47007 8.897 < 2e-16 ***
factor(x8)5
X1:X3
                                        0.39709
                                                                      0.08367 4.746 2.48e-06 ***
X1:X5
                                    -46.94903
                                                                    15.14544 -3.100 0.002008 **
X1:X7
                                     58.73302
                                                                      6.71975 8.740 < 2e-16 ***
X3:X5
                                      -0.04490
                                                                      0.01618 -2.775 0.005653 **
X3:X7
                                        0.07403
                                                                      0.01629 4.544 6.43e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.566 on 753 degrees of freedom
Multiple R-squared: 0.9365, Adjusted R-squared: 0.9353
F-statistic: 793.5 on 14 and 753 DF, p-value: < 2.2e-16
```

Fitting the Model – Final Model

Interaction and Higher Order terms combined:

Adjust R-squared: 0.997

RMSE: 0.5542

```
\begin{split} \widehat{Y_1} &= -4090 + 17520X1 + 76.82X3 + 81.93X5 - 51.61X7 + 4.52X8_1 \\ &+ 4.436X8_2 + 4.18X8_3 + 4.38X8_4 + 4.182X8_5 - 32730X1^2 + 27140X1^3 \\ &- 0.373X_2^2 + 0.0081X3^3 - 83660X1^4 - 0.000006X3^4 \\ &- 2.5(X1 \times X3) - 98.56(X1 \times X5) + 58.73(X1 \times X7) + 740.3(X3 \times X7) \end{split}
```

```
lm(formula = Y1 \sim X1 + X3 + X5 + X7 + factor(X8) + X1:X3 + X1:X5 +
    X1:X7 + X3:X7 + I(X1^2) + I(X1^3) + I(X3^2) + I(X3^3) + I(X1^4) +
    I(X3^4), data = data)
Residuals:
              1Q Median
-2.07036 -0.30361 -0.02345 0.35724 2.88851
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.090e+04 4.619e+02 -88.547 < 2e-16 ***
            1.752e+05 2.346e+03 74.672 < 2e-16 ***
            7.682e+01 1.129e+00 68.065 < 2e-16 ***
            8.193e+01 2.123e+01
            -5.161e+01 1.738e+00 -29.692 < 2e-16 ***
factor(x8)1 4.528e+00 1.015e-01 44.593 < 2e-16
factor(X8)2 4.436e+00 1.015e-01 43.690
factor(X8)3 4.183e+00 1.015e-01 41.198 < 2e-16 ***
factor(X8)4 4.388e+00 1.015e-01 43.220 < 2e-16 ***
factor(x8)5 4.182e+00 1.015e-01 41.193
I(X1^2)
            -3.273e+05 5.090e+03 -64.311 < 2e-16 ***
I(X1^3)
            2.714e+05 4.910e+03 55.276 < 2e-16 ***
I(X3^2)
           -3.732e-01 6.017e-03 -62.034
I(X3\3)
            8.161e-04 1.432e-05 56.986 < 2e-16 ***
I(X1^{4})
           -8.366e+04 1.694e+03 -49.380 < 2e-16 ***
I(X3^4)
           -6.593e-07 1.238e-08 -53.244 < 2e-16 ***
X1:X3
           -2.550e+00 8.220e-02 -31.025 < 2e-16 ***
X1:X5
           -9.856e+01 2.782e+01 -3.543 0.000420 ***
X1:X7
            5.873e+01 1.451e+00 40.466 < 2e-16 ***
x3:x7
            7.403e-02 3.519e-03 21.037 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5542 on 748 degrees of freedom
Multiple R-squared: 0.9971, Adjusted R-squared: 0.997
```

1. Linearity

2. Independence

3. Equal Variance

Test for heteroscedasticity

- H₀: heteroscedasticity is not present (homoscedasticity)
- HA: heteroscedasticity is present

- The Breusch-Pagan test.
- BP = 169.24, df = 19, p-value < 2.2e-16 < α = 0.05

Null hypothesis rejected

4. Normality

Histogram of residuals(model)

4. Normality (Statistical Test)

- Ho: the sample data are significantly normally distributed
- Ha: the sample data are not significantly normally distributed
- Shapiro-Wilk test

Shapiro-Wilk normality test

```
data: residuals(model)
W = 0.98323, p-value = 1.061e-07
```

Not normally distributed.

5. Multicollinearity

VIF Multicollinearity Diagnostics

```
VIF detection
X1
            9.2503
X3
            3.1619
X5
            9.6261
factor(X6)3 1.5000
factor(X6)4 1.5000
factor(X6)5 1.5000
            1.2604
X7
factor(X8)1 3.9271
factor(X8)2 3.9271
factor(X8)3 3.9271
factor(X8)4 3.9271
factor(X8)5 3.9271
```

NOTE: VIF Method Failed to detect multicollinearity

6. Outliers

Box-cox Transformation

Search for best lamda: 0.7879

Box-cox Transformation

studentized Breusch-Pagan test

data: bcmodel

BP = 97.787, df = 19, p-value = 1.345e-12

Shapiro-Wilk normality test

data: residuals(bcmodel)
W = 0.9687, p-value = 9.264e-12

Conclusions and Recommendations

- The glazing area(X7) and glazing area distribution (X8) are slightly correlated to each other, however uncorrelated with the first six input variables, and the wall area (X3) is not strongly correlated to any other variable, which made them good candidates for the model.
- Our results indicate that the significant variables for modelling the heating load of a building are relative compactness (x1), wall area(x3), overall height(x5), orientation (x6), glazing area(x7) and glazing area distribution (x8).
- A Box-Cox transformation on the data was performed and the MLR model still did not meet the assumptions, therefore the forecast accuracy may be distorted.
- Exploring alternative regression models such as robust regression or PLS might improve the model.

References

- L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy Build. 40 (3) (2008) 394–398.
- K. Kavyalola, Robust modeling of heating and cooling loads using partial least squares towards efficient residential building design. Journal of Building Engineering 18 (2018) 467–475.
- UC Irvine Machine learning repository. Energy Efficiency Dataset. https://archive.ics.uci.edu/dataset/242/energy+efficiency
- A. Tsana's, A. Xiara, Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools, Energy Build. 49 (2012) 560–567.