Homework #5

Question 1.

a) Best fit

For best fit, the smallest available free region is allocated. In this case, that region is the free block with size 100 bytes.

body	
next = NULL	
size = 1208	
body	p2
magic	
size = 300	
body	р3
magic	
size = 50	
body	
next = 832	
size = 42	
body	p1
magic	
size = 200	
body	
next = 416	
size = 200	head
	next = NULL size = 1208 body magic size = 300 body magic size = 50 body next = 832 size = 42 body magic size = 200 body

b) Worst fit

For worst fit, the largest available free region is allocated. In this case, that region is the free block with size 1208 bytes.

1998	body	р3
1994	magic	
1990	size = 50	
840	body	
836	next = NULL	
832	size = 1150	
532	body	p2
528	magic	
524	size = 300	
424	body	
420	next = 832	
416	size = 100	
216	body	p1
212	magic	
208	size = 200	
8	body	
4	next = 416	
0	size = 200	head

c) First fit

For first fit, the first available free region is allocated, starting from the free list head. In this case, that region is the free block starting at head.

840	body	
836	next = NULL	
832	size = 1208	
532	body	p2
528	magic	
524	size = 300	
424	body	
420	next = 832	
416	size = 100	
216	body	p1
212	magic	
208	size = 200	
158	body	p3
154	magic	
150	size = 50	
8	body	
4	next = 416	
0	size = 142	head

Question 2.

page size: 256 bytes

virtual memory space: 8 pages physical memory space: 4 frames

Process A page table

Page	Frame
0	1
2	0
5	3

a) Plot a diagram representing the page table for process A. Write the virtual address space on the left, and the physical on the right. Number the pages and frames, and draw arrows that connect pages with their associated frames.

VA space for proc	ess A	PA space
7		3
6		2
5		1
4		0
3		
2		
1		
0		

b) How many bits are used to represent a VA? How many for a PA? How many for the page offset?

```
# bits for VA = \log_2(256 \text{ bytes per page * 8 pages}) = \log_2(2048) = 11
# bits for PA = \log_2(256 \text{ bytes per frame * 4 frames}) = \log_2(1024) = 10
# bits for page offset = \log_2(256 \text{ bytes per page}) = 8
```

c) Translate the following VAs into PAs: 418, 0, 581, 460

```
1) VA = 418_{10} = 00110100010_2

VPN = 001_2 = 1_{10}

PFN = unmapped
```

2)
$$VA = 0_{10} = 0_2$$

 $VPN = 0$
 $PFN = 1_{10} = 01_2$
offset = 00000000_2
 $PA = 0100000000_2 = 256_{10}$

3)
$$VA = 581_{10} = 01001000101_2$$

 $VPN = 010_2 = 2_{10}$
 $PFN = 0 = 00_2$
offset = 01000101_2
 $PA = 0001000101_2 = 69_{10}$

4)
$$VA = 460_{10} = 00111001100_2$$
 $VPN = 001_2 = 1_{10}$ $PFN = unmapped$