

Matematematisk programvara

Anders Västberg 08-790 44 55, vastberg@kth.se

Innehåll

- Beskrivning av kursmomentet
- Matematisk Programvara
 - Excel
 - MATLAB
 - Mathematica
- Diagram
- Talrepresentation i en dator
- Demonstration av matematisk programvara

Mål med kursmomentet

Efter genomgången kurs skall studenten kunna:

- presentera beräkningar och resonemang med hjälp av text och matematisk notation tydligt och läsbart
- läsa matematisk text och sätta sig in i nya, matematiskt beskrivna, tillämpningsområden
- kritiskt granska matematiska modellers och beräkningars
 - korrekthet,
 - noggrannhet
 - relevans
- använda datorbaserat matematikverktyg för
 - visualisering,
 - matematisk modellering
 - problemlösning.

Läraktiviteter och examination

Två Föreläsningar

- Matematisk programvara
- 2. Matematisk modellering

Datorövningar

- 1. Introduktion till Mathematica
- 2. Visualisering med matematisk programvara

Inlämningsuppgifter (INL1, 4.5 hp, betyg P/F)

- Problemlösning
- 2. Visualisering
- 3. Matematisk modellering

Tre Handledningstillfällen

Regler

- Inlämningsuppgifterna skall lämnas in i form av en rapport (Mathematica-notebook, LaTeX-dokument eller likande).
- Inlämningsuppgifterna genomförs i grupper om 2 studenter.
- All form av hjälp skall dokumenteras
- Plagiering är inte tillåtet och alla referenser skall redovisas i rapporten

Matematisk modellering

Fördelar med att använda datorer för att lösa matematiska problem

- Hantera stora mängder data
- Hantera stora uttryck och komplexa system
- Numeriska beräkningar
- Simuleringar
- Visualisera resultat
- Testa olika lösningar snabbt

Matematiska verktyg

Kalkylblad – Excel

Numeriska beräkningar – Matlab

Numeriska och algebraiska beräkningar - Mathematica

Excel

- Första versionen lanserades 1985 [wikipedia.org]
- Pris ca 900 kr
- Enkelt att börja använda
- Tillgänglig
 - Finns ofta på datorer
 - Lågt pris
- Enkelt att koppla till ordbehandlare
- Kan enkelt hantera data
- Grafer och diagram

Excel

- Kan programmeras med VBA (Visual Basic for Applications)
- Förhållandevis många matematiska funktioner
 - Trigonometriska funktioner
 - Exponential- och logaritmfunktioner
 - Potensfunktioner och kvadratrot
 - Matrisoperationer
 - Heltalsoperationer (GCD, LCM etc.)
 - Statistikfunktioner

MATLAB

- Utvecklades i slutet av 1970 talet på University of New Mexico. Första kommersiella versionen 1984 [wikipedia.org]
- Pris ca 20 000 kr
- Industristandard för ingenjörsberäkningar
- Numeriska beräkningar
 - Separat toolbox med symboliska beräkningar finns
- Stor mängd funktioner för ingenjörsmässig beräkningar och simuleringar

MATLAB

- Programmeras i C-liknande språk
- Har använts länge =>
 - stor installerad bas av egenutvecklade tillämpningar
- Många kommersiella toolboxar inom vitt skilda områden
 - Data science
 - 5G simulatorer
- Går att snabbt bygga prototyper för att sedan generera
 C/C++ kod och implementera direkt i inbyggda system

Mathematica

- Första versionen lanserades 1988 [wikipedia.org]
- Pris ca 19 000 kr/år
- Mycket omfattande matematisk programvara
- Hanterar både algebraiska uträkningar och numeriska beräkningar

Mathematica

- Kan genomföra beräkningar med:
 - godtycklig noggrannhet
 - exakta värden
- Programmeras i Wolfram language
 - Högre nivå än andra språk
 - Imperativa konstruktioner
 - Men även list-orienterade operationer
- Många olika paket

Hur lär man sig att använda mjukvaran

- Omfattande hjälpfunktioner och tutorials i programmen
- Företagens hemsidor
- Mycket material på nätet googla om du har specifika frågeställningar
- Youtube
- Framför allt Tid framför tangenbordet!

Diagram

Att bara presentera data i tabeller är ofta svårt att tyda. Koldioxidhalten i atmosfären har ökat med tiden enligt:

År	Koldioxidhalt
1930	297
1940	306
1950	314
1960	319
1970	326
1980	339
1990	354
2000	369
2010	389
2015	400

Diagram

Men med en graf blir utvecklingen tydligare.

Tydligare med bruten axel

KOLDIOXIDHALT

Diagram

- Ange tydligt vad axlarna representerar
- Ange enheter inom klammer [kg]
- Välj enhet så att axlarnas markeringarna kan anges med lämpligt antal siffror
- Ange om axlarna är brutna

Använd prefix för enheterna

10^{3}	k	kilo	10^{-3}	milli	m
10^{6}	M	mega	10^{-6}	micro	μ
10^{9}	G	giga	10^{-9}	nano	n
10^{12}	Τ	tera	10^{-12}	pico	p
10^{15}	Р	peta	10^{-15}	femto	р
10^{18}	Е	exa	10^{-18}	atto	а

Olika typer av diagram

- Stapeldiagram
- Histogram
- Punktdiagram
- Graf av en funktion
- Kurvor (Parameterplot)

Stapeldiagram

- Används när data är kategoriserad i olika diskreta grupper
- Höjden på stapeldiagrammet anger värdet för just den diskreta gruppen
- Det finns inget funktionsvärde på x-axeln

Histogram

- Data grupperas inom vissa intervall
- Exempel med 1000 utfall av en likformig fördelning mellan $[0, 2\pi]$. Varje stapel har en bredd på $\pi/8$.

Punktdiagram

- Används för mätdata
- Exempel: Betapartiklar från en okänd radioaktiv isotop registreras i en räknare.

Graf av en funktion

- Heldragen linje som beskriver funktionens värde som en funktion av en delmängd av definitionsmängden
- Alternativ en kurvanpassning till datapunkterna i ett punktdiagram

Kurvor

• Kurva av $\left[2\cos(t), \sin\left(t + \frac{\pi}{4}\right)\right]$ där $t \in [0, 2\pi]$

Anpassa data till en modell

Linjärt beroende

$$y = k x + l$$

Rita diagrammet i linjär skala och anpassa data till en rät linje I övriga fall är det lämpligt att transformera data så att det går att anpassa en rätt linje till diagrammet.

Modell beroende	Transformering av data
$y = kx^2$	$x \to x^2$
$y = \frac{1}{a \; x + b}$	$y \to \frac{1}{y}$
$y = a e^{b x}$	$y \to \log y$
$y = a x^k$	$y \to \log y$ $x \to \log x$

Linjära och logaritmiska plottar

