

计算机操作系统

1计算机与操作系统 - 1.3 深入观察操作系统 1.3.6 系统结构的视角

理解操作系统软件的规模 理解操作系统的构件与设计原则 了解操作系统内核 操作系统实现的层次式结构模型

操作系统软件的规模

- •在计算机软件发展史上,OS是第一个 大规模的软件系统
- 1960年代,由OS开发所衍生的体系结构、模块化开发、测试与验证、演化与维护等研究,直接催生了软件工程这一新兴研究领域(另一个催生来源是DB应用引发的需求与规格)
- ·OS作为大型软件,结构设计是关键

操作系统软件的结构设计

- •OS构件 内核、进程、线程、管程等
- 设计概念模块化、层次式、虚拟化
- •内核设计是OS设计中最为复杂的部分

操作系统内核

- 单内核:内核中各部件杂然混居的形态,始于1960年代,广泛使用;如Unix/Linux,及Windows(自称采用混合内核的CS结构)
- · 微内核: 1980年代始,强调结构性部件与功能性部件的分离,大部分OS研究都集中在此
- 混合内核: 微内核和单内核的折中, 较多组件在核心态中运行, 以获得更快的执行速度
- 外内核:尽可能减少内核的软件抽象化和传统微内核的消息传递机制,使得开发者专注于硬件的抽象化;部分嵌入式系统使用

操作系统实现的一种层次式结构

用户 模式

内核 模式 用户 文件系统 进程交互 I/O设备管理 虚存

基本进程管理

硬件

	●命令、进程、库、环境	用户
	用户进程管理	
操作	• 目录管理	文件
	• 设备文件	系统
系统	文件系统	调用
实现	• 管道等高阶通信	
的第	一	软
	• 块设备管理、I/0控制	硬件
二种	• 核心进程管理、控制与通信原语	协同
层次	• <u>中断管理</u>	内核
		/:1
结构	• 指令解译	硬件
	• 电路执行 ,	电路