Amendments to the Specification:

Please replace the fifth complete paragraph on page 2, lines 14-26, with the following amended paragraph:

In a preferred embodiment, the attribute is the power level of the monitored signals. During the monitoring step, power level calculations are performed to determine the power level of the monitored signals. This is achieved by generating an envelope following the power level of the monitored signals. The envelope is generated by an infinite impulse response (IIR) lowpass filter. The IIR lowpass filter generates the envelope by solving the equation:

$$AbsY=(1-alpha)*AbsY + alpha*AbsY_0$$

where alpha is a parameter of the IIR filter, Y is the power level of the current monitored signal, Y_0 is the power level of the previously monitored signal and AbsY and AbsY₀ are the absolute values of the power levels Y and Y₀ respectively.

Please replace the first complete paragraph on page 6, lines 4-22, with the following amended paragraph:

Appendix A shows psuedo-code representing the echo suppression algorithm executed by the echo suppressor 32. The echo suppression algorithm, in response to signals to be broadcast by the handset speaker 20, invokes a power level calculation routine (see Appendix B). During execution of this routine, an envelope following the power level of signals to be broadcast by the handset speaker is generated using an infinite impulse response (IIR) lowpass filter 61. The IIR filter 61 generates the envelope by estimating the long-range average of the absolute value of the signal to be broadcast and is of the form:

$$AbsY = (1-alpha)*AbsY + alpha*Abs\footnote{Y0}Y_0$$
 (1)

Alpha is an IIR filter parameter and is chosen to provide a fast attack time and a slow decay time for the IIR filter <u>61</u>. In the present embodiment, two different values for alpha are used, namely alpha_fast and alpha_slow depending on the power level of the signal to be broadcast by the handset speaker 20. Figure 3 shows an example of an envelope 64 generated by the echo suppressor 32 in response to a signal to be broadcast by the handset speaker where alpha_fast = 1 and alpha_slow = 2^{-12} . As will be appreciated, by choosing these values for alpha, the echo suppressor generates an envelope that reacts fast to signals to be broadcast by the handset speaker 20. The slow decay time on the other hand compensates for small signal delays and reduces the switching effect when the signals fade. Y is the power level of the current monitored

SMC1P003 -2- 09/488.141

signal and Y_0 is the power level of the previously monitored signal. AbsY and Abs Y_0 are the absolute values of power levels Y and Y_0 respectively.

Please replace Appendix A on page 10 with the following replacement Appendix A:

Inputs: transmitted signal(1), received signal (2)

Output: output_signal going to the network (3)

Start:

Calculate the power of the signal to be broadcast by the handset speaker;

AbsY = $(1-alpha)*AbsY + alpha*abs(transmitted signal Y_0);$

Chose the mask that corresponds to the power of the signal to be broadcast by the handset speaker;

Mask = Mask select(AbsY);

Output signal = received signal AND Mask;

Go to Start;

where:

transmitted_signal is the signal received by the telephone device to be broadcast by the handset speaker;

received_signal is the echo signal picked up by the handset microphone and voice signals picked up by the handset microphone;

alpha is an IIR filter parameter; and

Y is the power level of the received signal or currently monitored signal;

Y₀ is the power level of the transmitted signal or previously monitored signal; and

Output_signal is the signal output to the network by the telephone device.

Please replace Appendix B on page 11 with the following replacement Appendix B:

Power Level Calculation Routine

```
if AbsY > Abs\underline{Y_0} AbsY=(1- alpha_slow)*AbsY + alpha_slow *Abs\underline{Y_0}; else AbsY=(1- alpha_fast)*AbsY + alpha_fast *Abs\underline{Y_0}; end where:
```

AbsY and AbsY₀ are the absolute values of the power levels Y and Y₀ respectively

Mask Selection Routine

```
Mask select:
                    %fc00 or 10 zeros (1111110000000000)
 Mask = 64512;
if AbsY < 4063
                    %fe00 or 9 zeros
 Mask = 65024;
end
if AbsY < 2031
  Mask = 65280;
                    %ff00 or 8 zeros
if AbsY < 1015
  Mask = 65408;
                    %ff80 or 7 zeros
end
if AbsY < 507
  Mask = 65472;
                    %ffc0 or 6 zeros
end
if AbsY < 253
  Mask = 65504;
                   %ffe0 or 5 zeros
end
if AbsY < 126
 Mask = 65520;
                   %fff0 or 4 zeros
end
if AbsY < 63
 Mask = 65528; %fff8 or 3 zeros
end
if AbsY < 31
  Mask = 65532;
                  %fffc or 2 zeros
end
if AbsY < 15
  Mask = 65534;
                  %fffe or 1 zero
end
```