

SEQUENCE LISTING

<110> GOLDENBERG, DAVID M.
HANSEN, HANS J.

<120> IMMUNOTHERAPY FOR CHRONIC MYELOCYTIC LEUKEMIA

<130> 018733-1055

<140> 09/924,103
<141> 2001-08-08

<160> 4

<170> PatentIn Ver. 2.1

<210> 1
<211> 2073
<212> DNA
<213> Homo sapiens

<400> 1
ctgcagaaag aacaattcag aatcttagac ccgggctta gcccggatg tgtccactcc 60
taggacccta aacatctctg tgacccctt gctgggggtta aatccaacct tccccagacgt 120
gtgagaacac taggaacatc ctgcacacat agagggttt ctctgtcaca gagaaaataa 180
caccagggtt gaggacccca gggactctt gtgtgggtct gacagacccca aggcccagac 240
acagcagagg tccgtgtgg ggagagcggtt tcgtcctgtt atggAACAGGG ggtccaaaca 300
agcttgcttc tcagagcatc ttctggggaa ctgaatataa acagaaaggaa aagaggagga 360
gggacaaaaag agacagaaaat gagagggggg gggatagagg attcctgtAACAGGGCAGCA 420
cccatgaccc acgtgaccctt gggaaatgtct tctatccctg agaggaggct cagcacagaa 480
ggaggaagga cagcaggggcc aacagtacaa gcagccctga ccagagcatt cctggagctc 540
aagctcctct acaaagaggt ggacagagaa gacagcagag accatggggc ccccttcagc 600
ccctccctgc agattgcatt tcccctggaa ggaggtcctg ctcacagggt aggggaggac 660
tccctcgag tggatggag gagggagcac agagactggc tagggcttcc tggggaggac 720
aaggctctga gaggagacag agggctttt ttaaaggcttgg aggaaacaga acaccagaga 780
gggacaggggg tcacaaacagg aaagtacac taaactgggaa ttgataaaaaa gggagggaaa 840
tcaatttgcattt atgttttccaa agttaatcat cattttgtcat taccatttga aaaaaaaagaaa 900
aaatgtataga aatcagaact gcatttaggt gacactccaa ataaaaat aacaaggaaaa 960
ctaaatgtt cccttactca ccaatcagaa gtggaaaaat aaccaccaga tacactcatt 1020
aactcatcca caagcatttgc caatcaattt tagtcaatgg catacaacaa gcatcagaca 1080
agtctcagtc atcacagagc ttatgtgttc atgaagagga aaacacacac acaaagagat 1140
atagaatgtg aggtcaggtt ttgacaagag ccctggagg aacagagcag gggaaagggtca 1200
gaaagaaaaag acccagggtt tggatgggg gtgtcaggga agggatctcc caagaatgcc 1260
ctgtatgtgag caggacctga ggccagtggg gagggagccca tgcagacccc tggggagag 1320
cattccacac agggaaatgc caagtcaaa ggtgtcaag gaatgggggt gtcacactgc 1380
tgactttgac tcagtaggac acacacacac acacacacac acacacacac acacgctcca 1440
acgtggaggg gtgaagagac ctgctcagga cccaggccc ttgttttccca ccctaattgca 1500
taggtcccaa tatttgccttgc tgctctctcc tctctccttag cctcacttctt aaccttctgg 1560
aaccacccca ccactgccaa gctcaattt gatccacgc cattcaatgt cgccaggggg 1620
aaggaggtt ttctactcgc ccacaacctg ccccagaatc gtattggta cagctggta 1680
aaaggcggaa gagtggatgg caacagtcta attgttaggt atgtaatagg aactcaacaa 1740
gctaccccaag gggccgcata cagtggctga gagacaatat accccaatgc atccctgctg 1800
atccagaacgc tcacccagaa tgacacagga ttctataccca tacaagtcat aaagtcat 1860
cttgtaatgc aagaagcaac cggacagttc catgtataacc gtgagttttt ccacatgacc 1920
tctgggtgtt ggggggtcgt tctacttccc acatacggga ttgtcaggcc tgggttgc 1980
ctgtggccct ctctgcatta catcctgtat cagggtttgg acattnatgt caggacacac 2040
acgggggaga caaacttcca cagatcagaa ttc 2073

<210> 2
 <211> 141
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Gly Pro Pro Ser Ala Pro Pro Cys Arg Leu His Val Pro Trp Lys
 1 5 10 15

Glu Val Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr
 20 25 30

Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly
 35 40 45

Lys Glu Val Leu Leu Leu Ala His Asn Leu Pro Gln Asn Arg Ile Gly
 50 55 60

Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Ser Leu Ile Val
 65 70 75 80

Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Tyr Ser
 85 90 95

Gly Arg Glu Thr Ile Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Val
 100 105 110

Thr Gln Asn Asp Thr Gly Phe Tyr Thr Leu Gln Val Ile Lys Ser Asp
 115 120 125

Leu Val Asn Glu Glu Ala Thr Gly Gln Phe His Val Tyr
 130 135 140

<210> 3
 <211> 1364
 <212> DNA
 <213> Homo sapiens

<400> 3
 gcacagagga gaacacgcag gcagcagaga ccatggggcc catctcagcc ctttcctgca 60
 gatggcgcat cccctggcag gggctcctgc tcacagcctc acttttacc ttctggacc 120
 cgccccaccac tgctcagctc actattgaag ctgtgccatc caatgtgca gaggggaaagg 180
 aggttcttact attgtccac aatctgcccc aggaccctcg tggctacaac tggtaaaaaag 240
 gggaaacagt ggatgccaac cgtcgattta taggatatgt aatatcaaat caacagatta 300
 ccccaggccc tgcatcagc aatcgagaga caaatataccc caatgcattcc ctgctgatgc 360
 ggaacgtcac caaaatgac acaggatcct acaccctaca agtcataaaag ctaaatctta 420
 tgagtgaaga agtaactggc cagttcagcg tacatccgga gactccaaag ccctccatct 480
 ccagcaacaa ctccaaccccc gtggaggaca agatgctgt ggccttcacc tggtaacctg 540
 agactcagaa cacaacctac ctgtggggg taaatggtca gagtctccc gtcagtccca 600
 ggctgcagct gtccaatggc aacaggaccc tcactctact cagtgtcaca aggaatgacg 660
 taggacccta tgaatgtgaa atacagaacc cagcgagtgc aaacttcagt gacccagtca 720
 ccctgaatgt cctctatggc ccagatgccc ccaccatttc cccttcagac acatttacc 780
 atgcaggggtaa atatctcaac ctctcctgccc atgcggcctc taatccaccc tcacagtatt 840
 cttggcttgtt caatggcaca ttccagcaat acacacaaaa gctcttatac cccaacatca 900
 ctacaaaagaa cagcgatcc tatgcctgccc acaccactaa ctcagccact ggccgcaaca 960
 ggaccacagt caggatgatc acagtctctg atgcttttagt acaaggaagt ttcctggcc 1020

tctcagctag agccactgtc agcatcatga ttggagtact ggccagggtg gctctgatat 1080
 agtagctcg gtgtagttc tgcattcaa gaagactggc agacagttgt ttttattctt 1140
 cctcaaagca tttgcaatca gctaccattc aaaattgctt cttttcaag atttatggaa 1200
 aatactctga cgagtactct tgaacacaag ttccgtataa cttaagatc acgccactgg 1260
 actgtctatg aacttgcaaa caggctgata cccttgcgaa gttgcccacc aaaacacaga 1320
 aggaaaaaaaa catgaatttc attgaactaa ataataatga ggcg 1364

<210> 4
<211> 349
<212> PRT
<213> Homo sapiens

<400> 4
Met Gly Pro Ile Ser Ala Pro Ser Cys Arg Trp Arg Ile Pro Trp Gln
1 5 10 15
Gly Leu Leu Leu Thr Ala Ser Leu Phe Thr Phe Trp Asn Pro Pro Thr
20 25 30
Thr Ala Gln Leu Thr Ile Glu Ala Val Pro Ser Asn Ala Ala Glu Gly
35 40 45
Lys Glu Val Leu Leu Leu Val His Asn Leu Pro Gln Asp Pro Arg Gly
50 55 60
Tyr Asn Trp Tyr Lys Gly Glu Thr Val Asp Ala Asn Arg Arg Ile Ile
65 70 75 80
Gly Tyr Val Ile Ser Asn Gln Gln Ile Thr Pro Gly Pro Ala Tyr Ser
85 90 95
Asn Arg Glu Thr Ile Tyr Pro Asn Ala Ser Leu Leu Met Arg Asn Val
100 105 110
Thr Lys Asn Asp Thr Gly Ser Tyr Thr Leu Gln Val Ile Lys Leu Asn
115 120 125
Leu Met Ser Glu Glu Val Thr Gly Gln Phe Ser Val His Pro Glu Thr
130 135 140
Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Asn Pro Val Glu Asp Lys
145 150 155 160
Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Thr Gln Asn Thr Thr Tyr
165 170 175
Leu Trp Trp Val Asn Gly Gln Ser Leu Pro Val Ser Pro Arg Leu Gln
180 185 190
Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Leu Ser Val Thr Arg Asn
195 200 205
Asp Val Gly Pro Tyr Glu Cys Glu Ile Gln Asn Pro Ala Ser Ala Asn
210 215 220
Phe Ser Asp Pro Val Thr Leu Asn Val Leu Tyr Gly Pro Asp Ala Pro
225 230 235 240

Thr Ile Ser Pro Ser Asp Thr Tyr Tyr His Ala Gly Val Asn Leu Asn
245 250 255

Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ser Gln Tyr Ser Trp Ser
260 265 270

Val Asn Gly Thr Phe Gln Gln Tyr Thr Gln Lys Leu Phe Ile Pro Asn
275 280 285

Ile Thr Thr Lys Asn Ser Gly Ser Tyr Ala Cys His Thr Thr Asn Ser
290 295 300

Ala Thr Gly Arg Asn Arg Thr Thr Val Arg Met Ile Thr Val Ser Asp
305 310 315 320

Ala Leu Val Gln Gly Ser Ser Pro Gly Leu Ser Ala Arg Ala Thr Val
325 330 335

Ser Ile Met Ile Gly Val Leu Ala Arg Val Ala Leu Ile
340 345