MAT2040: Linear Algebra

Final Exam (2017-18, Summer)

Instructions:

- 1. This exam consists of 9 questions (3 pages). This exam is 3 hour long, and worth 100 points.
- 2. This exam is in closed book format. No books, calculators, dictionaries or blank papers are allowed. Any cheating will be given **ZERO** mark. **Please show your steps.**

Name:

Problem 1 (10 points) Determinant

Given the matrix

$$\mathbf{A} = \begin{bmatrix} \alpha & -1 & -1 \\ -1 & \alpha & -1 \\ -1 & -1 & \alpha \end{bmatrix}$$

where α is a real number.

- (a) Compute the determinant for the above matrix **A**. [6 marks]
- (b) Find α such that the matrix **A** is singular. [4 marks]

Problem 2 (10 points) Linear transformation

Define a map $L: \mathbb{P}_2 \longrightarrow \mathbb{P}_2$ by

$$L(p) = (x-1)\frac{dp}{dx}$$

where $\mathbb{P}_2 = \{ax^2 + bx + c | a, b, c \in \mathbb{R}\}.$

- (a) Show that L is a linear transformation. [2 marks]
- (b) Write down a matrix representation of L with respect to basis $\{1, x, x^2\}$ for the input and output vector spaces. [8 marks]

Problem 3 (16 points) Least square problem

Given the linear system Ax = b, where

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}$$

(a) Find the least square solution of the linear system.

[6 marks]

- (b) Find the projection matrix and projection vector corresponding to the least square solution in (a). [6 marks]
- (c) Find the distance between **b** and column space $C(\mathbf{A})$.

[4 marks]

Problem 4 (15 points) True or False. No justifications are required

- (a) If **A** is an $n \times n$ matrix with characteristic polynomial $p_A(\lambda) = \det(\lambda \mathbf{I} \mathbf{A}) = \lambda^n$, then $\mathbf{A} = \mathbf{O}$. [3 marks]
- (b) If $\mathbf{Q} \in \mathcal{R}^{n \times n}$ and $\|\mathbf{Q}\mathbf{x}\| = \|\mathbf{x}\|$ for every column vector $\mathbf{x} \in \mathcal{R}^{\mathbf{n}}$, then \mathbf{Q} is an orthogonal matrix, where orthogonal matrix means square matrix with orthonormal columns.
- (c) If **A** is the sum of 6 rank one matrices, then $rank(\mathbf{A}) < 6$. [3 marks]
- (d) If $\mathbf{A}, \mathbf{B} \in \mathcal{R}^{n \times n}$ and λ is the eigenvalue of \mathbf{AB} , then λ is also the eigenvalue of \mathbf{BA} . [3 marks]
- (e) If $\mathbf{A} \in \mathcal{R}^{n \times n}$ and the eigenvalues of \mathbf{A} are not distinct, then \mathbf{A} must be non-diagonalizable. [3 marks]

Problem 5 (12 points) SVD

Given matrix

$$\mathbf{A} = \left[\begin{array}{cc} 0 & -4 \\ 1 & 0 \end{array} \right]$$

(a) Find the eigenvalues and eigenvectors of **A**.

[4 marks]

(b) Find the SVD decomposition of $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathbf{T}}$ in two steps:

[8 marks]

- 1) First, compute V and Σ using the matrix $A^{T}A$.
- 2) Second, find the (orthonormal) columns of **U**.

Problem 6 (12 points) Orthogonality

Let

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 2 & -2 \\ 1 & 2 & 2 \\ 1 & -1 & 0 \end{bmatrix} = [\mathbf{a}_1 | \mathbf{a}_2 | \mathbf{a}_3]$$

where $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ are three column vectors of \mathbf{A} .

- (a) Using Gram-Schmidt process for $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ to obtain three orthonormal vectors $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$. [8 marks]
- (b) Suppose that A = QR be the QR factorization, find Q and R. [4 marks]

Problem 7 (8 points) Eigenvalues and eigenvectors

- (a) Let \mathbf{A}, \mathbf{B} be two $n \times n$ real symmetric matrices, if the eigenvalues of \mathbf{A}, \mathbf{B} are the same, show that \mathbf{A}, \mathbf{B} are similar. [4 marks]
- (b) Let **A** be any $m \times n$ real matrix, show that the eigenvalues of $\mathbf{A}\mathbf{A}^{\mathbf{T}}$ must be nonnegative. [4 marks]

Problem 8 (9 points) Positive definite matrix

- (a) Given matrix $\mathbf{A} = \begin{bmatrix} \lambda & -\sqrt{2} \\ -\sqrt{2} & 3 \lambda \end{bmatrix}$, where λ is a real number, find the condition for λ such that \mathbf{A} is positive definite. [3 marks]
- (b) Let **A**, **B** be two $n \times n$ real symmetric matrices, and suppose **A** is positive definite. Show that there exists an $n \times n$ nonsingular matrix **C** such that $\mathbf{C}^{\mathbf{T}}\mathbf{A}\mathbf{C}$ and $\mathbf{C}^{\mathbf{T}}\mathbf{B}\mathbf{C}$ are both diagonal matrices. [6 marks]

Problem 9 (8 points) Vector space

Suppose U, V are two subspaces of \mathbb{R}^n , define:

$$\mathbf{U} + \mathbf{V} = \{a + b | a \in \mathbf{U}, b \in \mathbf{V}\}\$$

(a) Show that $\mathbf{U} + \mathbf{V}$ is a subspace of \mathbb{R}^n .

- [2 marks]
- (b) If $U \cap V = \{0\}$, show that $\dim(U + V) = \dim U + \dim V$.
- [6 marks]