PAGE NO.

**************** STAAD.Pro V8i SELECTseries4 Version 20.07.09.31 Proprietary Program of Bentley Systems, Inc. Date= OCT 26, 2020 10: 5:15 Time= USER ID: HP ************

1. STAAD SPACE

INPUT FILE: RAJESH KUMAR [G+5 BUILDING].STD

- 2. START JOB INFORMATION
- 3. ENGINEER DATE 26-OCT-20
- 4. JOB NAME RCC G+5 BUILDING
- 5. JOB CLIENT NSUT WEST CAMPUS
- 6. ENGINEER NAME RAJESH
- 7. END JOB INFORMATION
- 8. INPUT WIDTH 79
- 9. UNIT METER KN
- 10. JOINT COORDINATES
- 11. 1 0 0 0; 2 3 0 0; 3 6 0 0; 4 9 0 0; 5 12 0 0; 6 0 3 0; 7 3 3 0; 8 6 3 0 12. 9 9 3 0; 10 12 3 0; 11 0 6 0; 12 3 6 0; 13 6 6 0; 14 9 6 0; 15 12 6 0 13. 16 0 9 0; 17 3 9 0; 18 6 9 0; 19 9 9 0; 20 12 9 0; 21 0 12 0; 22 3 12 0 14. 23 6 12 0; 24 9 12 0; 25 12 12 0; 26 0 15 0; 27 3 15 0; 28 6 15 0 15. 29 9 15 0; 30 12 15 0; 31 0 18 0; 32 3 18 0; 33 6 18 0; 34 9 18 0 16. 35 12 18 0; 36 0 0 3; 37 3 0 3; 38 6 0 3; 39 9 0 3; 40 12 0 3; 41 0 3 3 17. 42 3 3 3; 43 6 3 3; 44 9 3 3; 45 12 3 3; 46 0 6 3; 47 3 6 3; 48 6 6 3 18. 49 9 6 3; 50 12 6 3; 51 0 9 3; 52 3 9 3; 53 6 9 3; 54 9 9 3; 55 12 9 3 19. 56 0 12 3; 57 3 12 3; 58 6 12 3; 59 9 12 3; 60 12 12 3; 61 0 15 3 20. 62 3 15 3; 63 6 15 3; 64 9 15 3; 65 12 15 3; 66 0 18 3; 67 3 18 3 21. 68 6 18 3; 69 9 18 3; 70 12 18 3; 71 0 0 6; 72 3 0 6; 73 6 0 6 22. 74 9 0 6; 75 12 0 6; 76 0 3 6; 77 3 3 6; 78 6 3 6; 79 9 3 6; 80 12 3 6 23. 81 0 6 6; 82 3 6 6; 83 6 6 6; 84 9 6 6; 85 12 6 6; 86 0 9 6; 87 3 9 6 24. 88 6 9 6; 89 9 9 6; 90 12 9 6; 91 0 12 6; 92 3 12 6; 93 6 12 6 25. 94 9 12 6; 95 12 12 6; 96 0 15 6; 97 3 15 6; 98 6 15 6; 99 9 15 6 26. 100 12 15 6; 101 0 18 6; 102 3 18 6; 103 6 18 6; 104 9 18 6 27. 105 12 18 6; 106 0 0 9; 107 3 0 9; 108 6 0 9; 109 9 0 9; 110 12 0 9 28. 111 0 3 9; 112 3 3 9; 113 6 3 9; 114 9 3 9; 115 12 3 9; 116 0 6 9 29. 117 3 6 9; 118 6 6 9; 119 9 6 9; 120 12 6 9; 121 0 9 9; 122 3 9 9 30. 123 6 9 9; 124 9 9 9; 125 12 9 9; 126 0 12 9; 127 3 12 9; 128 6 12 9 31. 129 9 12 9; 130 12 12 9; 131 0 15 9; 132 3 15 9; 133 6 15 9; 134 9 15 9 32. 135 12 15 9; 136 0 18 9; 137 3 18 9; 138 6 18 9; 139 9 18 9 33. 140 12 18 9; 141 0 0 12; 142 3 0 12; 143 6 0 12; 144 9 0 12 34. 145 12 0 12; 146 0 3 12; 147 3 3 12; 148 6 3 12; 149 9 3 12 35. 150 12 3 12; 151 0 6 12; 152 3 6 12; 153 6 6 12; 154 9 6 12 36. 155 12 6 12; 156 0 9 12; 157 3 9 12; 158 6 9 12; 159 9 9 12 37. 160 12 9 12; 161 0 12 12; 162 3 12 12; 163 6 12 12; 164 9 12 12

38. 165 12 12 12; 166 0 15 12; 167 3 15 12; 168 6 15 12; 169 9 15 12

```
39. 170 12 15 12; 171 0 18 12; 172 3 18 12; 173 6 18 12; 174 9 18 12
40. 175 12 18 12
41. MEMBER INCIDENCES
42. 1 6 7; 2 7 8; 3 8 9; 4 9 10; 5 11 12; 6 12 13; 7 13 14; 8 14 15
43. 9 16 17; 10 17 18; 11 18 19; 12 19 20; 13 21 22; 14 22 23; 15 23 24
44. 16 24 25; 17 26 27; 18 27 28; 19 28 29; 20 29 30; 21 31 32; 22 32 33
45. 23 33 34; 24 34 35; 25 1 6; 26 2 7; 27 3 8; 28 4 9; 29 5 10; 30 6 11
46. 31 7 12; 32 8 13; 33 9 14; 34 10 15; 35 11 16; 36 12 17; 37 13 18
47. 38 14 19; 39 15 20; 40 16 21; 41 17 22; 42 18 23; 43 19 24; 44 20 25
48. 45 21 26; 46 22 27; 47 23 28; 48 24 29; 49 25 30; 50 26 31; 51 27 32
49. 52 28 33; 53 29 34; 54 30 35; 55 41 42; 56 42 43; 57 43 44; 58 44 45
50. 59 46 47; 60 47 48; 61 48 49; 62 49 50; 63 51 52; 64 52 53; 65 53 54
51. 66 54 55; 67 56 57; 68 57 58; 69 58 59; 70 59 60; 71 61 62; 72 62 63
52. 73 63 64; 74 64 65; 75 66 67; 76 67 68; 77 68 69; 78 69 70; 79 36 41
53. 80 37 42; 81 38 43; 82 39 44; 83 40 45; 84 41 46; 85 42 47; 86 43 48
54. 87 44 49; 88 45 50; 89 46 51; 90 47 52; 91 48 53; 92 49 54; 93 50 55
55. 94 51 56; 95 52 57; 96 53 58; 97 54 59; 98 55 60; 99 56 61; 100 57 62
56. 101 58 63; 102 59 64; 103 60 65; 104 61 66; 105 62 67; 106 63 68
57. 107 64 69; 108 65 70; 109 76 77; 110 77 78; 111 78 79; 112 79 80
58. 113 81 82; 114 82 83; 115 83 84; 116 84 85; 117 86 87; 118 87 88
59. 119 88 89; 120 89 90; 121 91 92; 122 92 93; 123 93 94; 124 94 95
60. 125 96 97; 126 97 98; 127 98 99; 128 99 100; 129 101 102; 130 102 103
61. 131 103 104; 132 104 105; 133 71 76; 134 72 77; 135 73 78; 136 74 79
62. 137 75 80; 138 76 81; 139 77 82; 140 78 83; 141 79 84; 142 80 85
63. 143 81 86; 144 82 87; 145 83 88; 146 84 89; 147 85 90; 148 86 91
64. 149 87 92; 150 88 93; 151 89 94; 152 90 95; 153 91 96; 154 92 97
65. 155 93 98; 156 94 99; 157 95 100; 158 96 101; 159 97 102; 160 98 103
66. 161 99 104; 162 100 105; 163 111 112; 164 112 113; 165 113 114
67. 166 114 115; 167 116 117; 168 117 118; 169 118 119; 170 119 120
68. 171 121 122; 172 122 123; 173 123 124; 174 124 125; 175 126 127
69. 176 127 128; 177 128 129; 178 129 130; 179 131 132; 180 132 133
70. 181 133 134; 182 134 135; 183 136 137; 184 137 138; 185 138 139
71. 186 139 140; 187 106 111; 188 107 112; 189 108 113; 190 109 114
72. 191 110 115; 192 111 116; 193 112 117; 194 113 118; 195 114 119
73. 196 115 120; 197 116 121; 198 117 122; 199 118 123; 200 119 124
74. 201 120 125; 202 121 126; 203 122 127; 204 123 128; 205 124 129
75. 206 125 130; 207 126 131; 208 127 132; 209 128 133; 210 129 134
76. 211 130 135; 212 131 136; 213 132 137; 214 133 138; 215 134 139
77. 216 135 140; 217 146 147; 218 147 148; 219 148 149; 220 149 150
78. 221 151 152; 222 152 153; 223 153 154; 224 154 155; 225 156 157
79. 226 157 158; 227 158 159; 228 159 160; 229 161 162; 230 162 163
80. 231 163 164; 232 164 165; 233 166 167; 234 167 168; 235 168 169
81. 236 169 170; 237 171 172; 238 172 173; 239 173 174; 240 174 175
82. 241 141 146; 242 142 147; 243 143 148; 244 144 149; 245 145 150
83. 246 146 151; 247 147 152; 248 148 153; 249 149 154; 250 150 155
84. 251 151 156; 252 152 157; 253 153 158; 254 154 159; 255 155 160
85. 256 156 161; 257 157 162; 258 158 163; 259 159 164; 260 160 165
86. 261 161 166; 262 162 167; 263 163 168; 264 164 169; 265 165 170
87. 266 166 171; 267 167 172; 268 168 173; 269 169 174; 270 170 175
88. 271 6 41; 272 7 42; 273 8 43; 274 9 44; 275 10 45; 276 11 46; 277 12 47
89. 278 13 48; 279 14 49; 280 15 50; 281 16 51; 282 17 52; 283 18 53
90. 284 19 54; 285 20 55; 286 21 56; 287 22 57; 288 23 58; 289 24 59
91. 290 25 60; 291 26 61; 292 27 62; 293 28 63; 294 29 64; 295 30 65
92. 296 31 66; 297 32 67; 298 33 68; 299 34 69; 300 35 70; 301 41 76
93. 302 42 77; 303 43 78; 304 44 79; 305 45 80; 306 46 81; 307 47 82
94. 308 48 83; 309 49 84; 310 50 85; 311 51 86; 312 52 87; 313 53 88
```

```
STAAD SPACE -- PAGE NO. 3

95. 314 54 89; 315 55 90; 316 56 91; 317 57 92; 318 58 93; 319 59 94

96. 320 60 95; 321 61 96; 322 62 97; 323 63 98; 324 64 99; 325 65 100

97. 326 66 101; 327 67 102; 328 68 103; 329 69 104; 330 70 105; 331 76 111

98. 332 77 112; 333 78 113; 334 79 114; 335 80 115; 336 81 116; 337 82 117
```

99. 338 83 118; 339 84 119; 340 85 120; 341 86 121; 342 87 122; 343 88 123 100. 344 89 124; 345 90 125; 346 91 126; 347 92 127; 348 93 128; 349 94 129

- 101. 350 95 130; 351 96 131; 352 97 132; 353 98 133; 354 99 134; 355 100 135 102. 356 101 136; 357 102 137; 358 103 138; 359 104 139; 360 105 140
- 102. 356 101 136; 357 102 137; 358 103 138; 359 104 139; 360 105 140 103. 361 111 146; 362 112 147; 363 113 148; 364 114 149; 365 115 150
- 104. 366 116 151; 367 117 152; 368 118 153; 369 119 154; 370 120 155
- 105. 371 121 156; 372 122 157; 373 123 158; 374 124 159; 375 125 160
- 106. 376 126 161; 377 127 162; 378 128 163; 379 129 164; 380 130 165
- 107. 381 131 166; 382 132 167; 383 133 168; 384 134 169; 385 135 170
- 108. 386 136 171; 387 137 172; 388 138 173; 389 139 174; 390 140 175
- 109. DEFINE MATERIAL START
- 110. ISOTROPIC CONCRETE
- 111. E 2.17185E+007
- 112. POISSON 0.17
- 113. DENSITY 23.5616
- 114. ALPHA 1E-005
- 115. DAMP 0.05
- 116. TYPE CONCRETE
- 117. STRENGTH FCU 27579
- 118. END DEFINE MATERIAL
- 119. MEMBER PROPERTY
- 120. 25 TO 54 79 TO 108 133 TO 162 187 TO 216 241 TO 270 PRIS YD 0.45 ZD 0.45
- 121. 1 TO 24 55 TO 78 109 TO 132 163 TO 186 217 TO 240 271 TO 389 -
- 122. 390 PRIS YD 0.4 ZD 0.4
- 123. CONSTANTS
- 124. MATERIAL CONCRETE ALL
- 125. SUPPORTS
- 126. 1 TO 5 36 TO 40 71 TO 75 106 TO 110 141 TO 145 FIXED
- 127. DEFINE 1893 LOAD
- 128. ZONE 0.24 RF 5 I 1 SS 2 ST 1 DM 0.5 DT 5
- 129. SELFWEIGHT 1
- 130. FLOOR WEIGHT

NOTE about Floor/OneWay Loads/Weights.

Please note that depending on the shape of the floor you may have to break up the FLOOR/ONEWAY LOAD into multiple commands. For details please refer to Technical Reference Manual Section 5.32.4 Note 6.

- 131. YRANGE 0 18 FLOAD -4
- 132. DEFINE WIND LOAD
- 133. TYPE 1 WIND 1
- 134. <! STAAD PRO GENERATED DATA DO NOT MODIFY !!!
- 135. ASCE-7-2010:PARAMS 47.000 MPH 0 1 1 0 0.000 FT 0.000 FT 0.000 FT 1 -
- 136. 1 18.000 M 12.000 M 12.000 M 2.000 0.050 0 -
- 137. 0 0 0 0 0.850 1.000 1.000 0.850 0 -
- 138. 0 0 0 0.854 0.800 -0.550
- 139. !> END GENERATED DATA BLOCK
- 140. INT 0.197996 0.197996 0.203412 0.208156 0.212397 0.216248 0.219786 -
- 141. 0.223064 0.226125 0.229 0.231714 0.234287 0.236736 0.239075 0.241313 -
- 142. HEIG 0 4.572 5.60492 6.63785 7.67077 8.70369 9.73662 10.7695 -
- 143. 11.8025 12.8354 13.8683 14.9012 15.9341 16.9671 18
- 144. EXP 1 JOINT 1 TO 175

- 145. LOAD 1 LOADTYPE SEISMIC TITLE SL X
- 146. 1893 LOAD X 1
- 147. LOAD 2 LOADTYPE SEISMIC TITLE SL Z
- 148. 1893 LOAD Z 1
- 149. LOAD 3 LOADTYPE WIND TITLE WL X
- 150. WIND LOAD X 1 TYPE 1 YR 0 18
- 151. LOAD 4 LOADTYPE WIND TITLE WL Z
- 152. WIND LOAD Z 1 TYPE 1 YR 0 18
- 153. LOAD 7 LOADTYPE DEAD TITLE DL
- 154. SELFWEIGHT Y -1 LIST ALL
- 155. FLOOR LOAD
- 156. YRANGE 0 18 FLOAD -4 GY
- 157. MEMBER LOAD
- 158. 1 TO 390 UNI GY -15
- 159. LOAD 8 LOADTYPE LIVE REDUCIBLE TITLE LL
- 160. FLOOR LOAD
- 161. YRANGE 0 18 FLOAD -4 GY
- 162. LOAD COMB 5 COMBINATION LOAD CASE 5
- 163. 1 1.5 3 1.5
- 164. LOAD COMB 6 COMBINATION LOAD CASE 6
- 165. 2 1.5 4 1.5
- 166. LOAD COMB 9 GENERATED INDIAN CODE GENRAL STRUCTURES 1
- 167. 7 1.5 8 1.5
- 168. PERFORM ANALYSIS PRINT ALL

$\verb"PROBLEM" STATISTICS" \\$

NUMBER OF JOINTS175NUMBER OF MEMBERS390NUMBER OF PLATES0NUMBER OF SOLIDS0NUMBER OF SURFACES0NUMBER OF SUPPORTS25

SOLVER USED IS THE IN-CORE ADVANCED SOLVER

TOTAL PRIMARY LOAD CASES = 6, TOTAL DEGREES OF FREEDOM = 900

LOADING 1 LOADTYPE SEISMIC TITLE SL X

LOADING 2 LOADTYPE SEISMIC TITLE SL Z

LOADING 3 LOADTYPE WIND TITLE WL X

JOINT LOAD - UNIT KN METE

JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM-Z
1	0.45	0.00	0.00	0.00	0.00	0.00
6	0.89	0.00	0.00	0.00	0.00	0.00
11	0.93	0.00	0.00	0.00	0.00	0.00
16	0.99	0.00	0.00	0.00	0.00	0.00
21	1.03	0.00	0.00	0.00	0.00	0.00
26	1.06	0.00	0.00	0.00	0.00	0.00
31	0.54	0.00	0.00	0.00	0.00	0.00
36	0.89	0.00	0.00	0.00	0.00	0.00
41	1.78	0.00	0.00	0.00	0.00	0.00
46	1.87	0.00	0.00	0.00	0.00	0.00
51	1.97	0.00	0.00	0.00	0.00	0.00
56	2.05	0.00	0.00	0.00	0.00	0.00
61	2.12	0.00	0.00	0.00	0.00	0.00
66	1.08	0.00	0.00	0.00	0.00	0.00
71	0.89	0.00	0.00	0.00	0.00	0.00
76	1.78	0.00	0.00	0.00	0.00	0.00
81	1.87	0.00	0.00	0.00	0.00	0.00
86	1.97	0.00	0.00	0.00	0.00	0.00
91	2.05	0.00	0.00	0.00	0.00	0.00
96	2.12	0.00	0.00	0.00	0.00	0.00
101	1.08	0.00	0.00	0.00	0.00	0.00
106	0.89	0.00	0.00	0.00	0.00	0.00
111	1.78	0.00	0.00	0.00	0.00	0.00
116	1.87	0.00	0.00	0.00	0.00	0.00
121	1.97	0.00	0.00	0.00	0.00	0.00
126	2.05	0.00	0.00	0.00	0.00	0.00
131	2.12	0.00	0.00	0.00	0.00	0.00
136	1.08	0.00	0.00	0.00	0.00	0.00
141	0.45	0.00	0.00	0.00	0.00	0.00
146	0.89	0.00	0.00	0.00	0.00	0.00
151	0.93	0.00	0.00	0.00	0.00	0.00
156	0.99	0.00	0.00	0.00	0.00	0.00
161	1.03	0.00	0.00	0.00	0.00	0.00
166	1.06	0.00	0.00	0.00	0.00	0.00
171	0.54	0.00	0.00	0.00	0.00	0.00

LOADING 4 LOADTYPE WIND TITLE WL Z

JOINT LOAD - UNIT KN METE

JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM-Z
1	0.00	0.00	0.45	0.00	0.00	0.00
2	0.00	0.00	0.89	0.00	0.00	0.00
3	0.00	0.00	0.89	0.00	0.00	0.00
4	0.00	0.00	0.89	0.00	0.00	0.00
5	0.00	0.00	0.45	0.00	0.00	0.00
6	0.00	0.00	0.89	0.00	0.00	0.00
7	0.00	0.00	1.78	0.00	0.00	0.00
8	0.00	0.00	1.78	0.00	0.00	0.00
9	0.00	0.00	1.78	0.00	0.00	0.00
10	0.00	0.00	0.89	0.00	0.00	0.00
11	0.00	0.00	0.93	0.00	0.00	0.00
12	0.00	0.00	1.87	0.00	0.00	0.00
13	0.00	0.00	1.87	0.00	0.00	0.00
14	0.00	0.00	1.87	0.00	0.00	0.00
15	0.00	0.00	0.93	0.00	0.00	0.00
16	0.00	0.00	0.99	0.00	0.00	0.00
17	0.00	0.00	1.97	0.00	0.00	0.00
18	0.00	0.00	1.97	0.00	0.00	0.00
19	0.00	0.00	1.97	0.00	0.00	0.00
20	0.00	0.00	0.99	0.00	0.00	0.00
21	0.00	0.00	1.03	0.00	0.00	0.00
22	0.00	0.00	2.05	0.00	0.00	0.00
23	0.00	0.00	2.05	0.00	0.00	0.00
24	0.00	0.00	2.05	0.00	0.00	0.00
25	0.00	0.00	1.03	0.00	0.00	0.00
26	0.00	0.00	1.06	0.00	0.00	0.00
27	0.00	0.00	2.12	0.00	0.00	0.00
28	0.00	0.00	2.12	0.00	0.00	0.00
29	0.00	0.00	2.12	0.00	0.00	0.00
30	0.00	0.00	1.06	0.00	0.00	0.00
31	0.00	0.00	0.54	0.00	0.00	0.00
32	0.00	0.00	1.08	0.00	0.00	0.00
33	0.00	0.00	1.08	0.00	0.00	0.00
34	0.00	0.00	1.08	0.00	0.00	0.00
35	0.00	0.00	0.54	0.00	0.00	0.00

LOADING 7 LOADTYPE DEAD TITLE DL

SELFWEIGHT Y -1.000

ACTUAL WEIGHT OF THE STRUCTURE = 4861.353 KN

MEMBER LOAD - UNIT KN METE

MEMBER	UDL	L1	L2	CON	L	LIN1	LIN2
1				-0.0703 GY	0.12		
1				-0.2109 GY	0.29		
1				-0.3516 GY	0.47		
1				-0.4922 GY	0.66		
1				-0.6328 GY	0.85		
1				-0.7734 GY	1.03		
1				-0.9141 GY	1.22		
1				-1.0547 GY	1.41		
1				-1.0547 GY	1.59		
1				-0.9141 GY	1.78		
1				-0.7734 GY	1.97		
1				-0.6328 GY	2.15		
1				-0.4922 GY	2.34		
1 1				-0.3516 GY	2.53		
1				-0.2109 GY -0.0703 GY	2.71		
272				-0.0703 GY	0.12		
272				-0.2109 GY	0.12		
272				-0.3516 GY	0.47		
272				-0.4922 GY	0.66		
272				-0.6328 GY	0.85		
272				-0.7734 GY	1.03		
272				-0.9141 GY	1.22		
272				-1.0547 GY	1.41		
272				-1.0547 GY	1.59		
272				-0.9141 GY	1.78		
272				-0.7734 GY	1.97		
272				-0.6328 GY	2.15		
272				-0.4922 GY	2.34		
272				-0.3516 GY	2.53		
272				-0.2109 GY	2.71		
272				-0.0703 GY	2.88		
55				-0.0703 GY	0.12		
55				-0.2109 GY	0.29		
55				-0.3516 GY	0.47		
55				-0.4922 GY	0.66		
55				-0.6328 GY	0.85		
55 55				-0.7734 GY -0.9141 GY	1.03		
55				-1.0547 GY	1.41		
55				-1.0547 GY	1.59		
55				-0.9141 GY	1.78		
55				-0.7734 GY	1.97		
55				-0.6328 GY	2.15		
55				-0.4922 GY	2.34		
55				-0.3516 GY	2.53		
55				-0.2109 GY	2.71		
55				-0.0703 GY	2.88		
271				-0.0703 GY	0.12		
271				-0.2109 GY	0.29		

					monaay,	October	20,	2020,	10:07
STAAD SPACE			PAGE NO.	9					
271	-0.3516 GY	0.47							
271	-0.4922 GY								
271	-0.6328 GY								
271	-0.7734 GY								
271	-0.9141 GY								
271	-1.0547 GY								
271	-1.0547 GY								
271	-0.9141 GY								
271	-0.7734 GY								
271	-0.6328 GY								
271	-0.4922 GY								
271	-0.3516 GY								
271	-0.2109 GY	2.71							
271	-0.0703 GY								
2	-0.0703 GY	0.12							
2	-0.2109 GY	0.29							
2	-0.3516 GY	0.47							
2	-0.4922 GY	0.66							
2	-0.6328 GY	0.85							
2	-0.7734 GY								
2	-0.9141 GY	1.22							
2	-1.0547 GY	1.41							
2	-1.0547 GY	1.59							
2	-0.9141 GY	1.78							
2	-0.7734 GY								
2	-0.6328 GY								
2	-0.4922 GY								
2	-0.3516 GY								
2	-0.2109 GY								
2	-0.0703 GY								
273	-0.0703 GY								
273	-0.2109 GY								
273	-0.3516 GY								
273	-0.4922 GY								
273273	-0.6328 GY -0.7734 GY								
273	-0.7734 GI -0.9141 GY								
273	-1.0547 GY								
273	-1.0547 GY								
273	-0.9141 GY								
273	-0.7734 GY								
273	-0.6328 GY								
273	-0.4922 GY								
273	-0.3516 GY								
273	-0.2109 GY								
273	-0.0703 GY								
56	-0.0703 GY								
56	-0.2109 GY								
56	-0.3516 GY								
56	-0.4922 GY								
56	-0.6328 GY								
56	-0.7734 GY	1.03							
56	-0.9141 GY	1.22							
56	-1.0547 GY	1.41							
56	-1.0547 GY								
56	-0.9141 GY	1.78							

					monday,	OCCODEI	20,	2020,
STAAD SPACE			PAGE NO.	10				
56	-0.7734 GY	1.97						
56	-0.6328 GY							
56	-0.4922 GY	2.34						
56	-0.3516 GY	2.53						
56	-0.2109 GY	2.71						
56	-0.0703 GY	2.88						
272	-0.0703 GY	0.12						
272	-0.2109 GY	0.29						
272	-0.3516 GY	0.47						
272	-0.4922 GY	0.66						
272	-0.6328 GY	0.85						
272	-0.7734 GY	1.03						
272	-0.9141 GY	1.22						
272	-1.0547 GY	1.41						
272	-1.0547 GY	1.59						
272	-0.9141 GY	1.78						
272	-0.7734 GY	1.97						
272	-0.6328 GY	2.15						
272	-0.4922 GY	2.34						
272	-0.3516 GY	2.53						
272	-0.2109 GY	2.71						
272	-0.0703 GY	2.88						
3	-0.0703 GY	0.13						
3	-0.2109 GY	0.29						
3	-0.3516 GY	0.48						
3	-0.4922 GY	0.66						
3	-0.6328 GY							
3	-0.7734 GY	1.03						
3	-0.9141 GY	1.22						
3	-1.0547 GY	1.41						
3	-1.0547 GY	1.59						
3	-0.9141 GY	1.78						
3	-0.7734 GY	1.97						
3	-0.6328 GY -0.4922 GY	2.15						
3 3	-0.4922 G1 -0.3516 GY	2.34 2.53						
3	-0.2109 GY	2.71						
3	-0.0703 GY	2.88						
274	-0.0703 GY	0.12						
274	-0.2109 GY							
274	-0.3516 GY	0.47						
274	-0.4922 GY	0.66						
274	-0.6328 GY	0.85						
274	-0.7734 GY	1.03						
274	-0.9141 GY	1.22						
274	-1.0547 GY	1.41						
274	-1.0547 GY	1.59						
274	-0.9141 GY	1.78						
274	-0.7734 GY	1.97						
274	-0.6328 GY	2.15						
274	-0.4922 GY	2.34						
274	-0.3516 GY	2.53						
274	-0.2109 GY	2.71						
274	-0.0703 GY	2.88						
57	-0.0703 GY	0.13						
57	-0.2109 GY	0.29						

					monday,	OC LODE!	. 20, 20	20, 10.	0 / 2
STAAD SPACE			PAGE NO.	11					
57	-0.3516 GY	0.48							
57		0.66							
57		0.85							
57		1.03							
57		1.22							
57		1.41							
57		1.59							
57		1.78							
57		1.97							
57		2.15							
57		2.34							
57		2.53							
57		2.71							
57		2.88							
273		0.12							
273		0.29							
273		0.47							
273		0.66							
273		0.85							
273		1.03							
273		1.22							
273		1.41							
273		1.59							
273		1.78							
273		1.97							
273		2.15							
273		2.34							
273		2.53							
273		2.71							
273	-0.0703 GY	2.88							
4	-0.0703 GY	0.12							
4	-0.2109 GY	0.29							
4	-0.3516 GY	0.47							
4	-0.4922 GY	0.66							
4	-0.6328 GY	0.85							
4	-0.7734 GY	1.03							
4	-0.9141 GY	1.22							
4	-1.0547 GY	1.41							
4	-1.0547 GY	1.59							
4	-0.9141 GY	1.78							
4		1.97							
4		2.15							
4		2.34							
4		2.52							
4		2.71							
4		2.87							
275		0.12							
275		0.29							
275		0.47							
275		0.66							
275		0.85							
275		1.03							
275		1.22							
275		1.41							
275		1.59							
275	-0.9141 GY	1.78							

					monday,	OCCODE	20,	2020,	10.
STAAD SPACE			PAGE NO.	12					
275	-0.7734 GY	1.97							
275	-0.6328 GY	2.15							
275	-0.4922 GY	2.34							
275	-0.3516 GY	2.53							
275	-0.2109 GY	2.71							
275	-0.0703 GY	2.88							
58	-0.0703 GY	0.12							
58	-0.2109 GY	0.29							
58	-0.3516 GY	0.47							
58	-0.4922 GY	0.66							
58	-0.6328 GY	0.85							
58	-0.7734 GY	1.03							
58	-0.9141 GY	1.22							
58	-1.0547 GY	1.41							
58	-1.0547 GY	1.59							
58	-0.9141 GY	1.78							
58	-0.7734 GY	1.97							
58	-0.6328 GY	2.15							
58	-0.4922 GY	2.34							
58	-0.3516 GY	2.52							
58	-0.2109 GY	2.71							
58	-0.0703 GY	2.87							
274	-0.0703 GY	0.12							
274	-0.2109 GY	0.29							
274	-0.3516 GY	0.47							
274	-0.4922 GY	0.66							
274	-0.6328 GY	0.85							
274									
	-0.7734 GY	1.03							
274	-0.9141 GY	1.22							
274	-1.0547 GY	1.41							
274	-1.0547 GY	1.59							
274	-0.9141 GY	1.78							
274	-0.7734 GY	1.97							
274	-0.6328 GY	2.15							
274	-0.4922 GY	2.34							
274	-0.3516 GY	2.53							
274	-0.2109 GY	2.71							
274	-0.0703 GY	2.88							
55	-0.0703 GY	0.12							
55	-0.2109 GY	0.29							
55	-0.3516 GY	0.47							
55	-0.4922 GY	0.66							
55	-0.6328 GY	0.85							
55	-0.7734 GY	1.03							
55	-0.9141 GY	1.22							
55	-1.0547 GY	1.41							
55	-1.0547 GY	1.59							
55	-0.9141 GY	1.78							
55	-0.7734 GY	1.97							
55	-0.6328 GY	2.15							
55	-0.4922 GY	2.13							
55	-0.3516 GY	2.53							
55	-0.2109 GY	2.71							
55	-0.0703 GY	2.88							
302	-0.0703 GY	0.12							
302	-0.2109 GY	0.29							

						- '	•	•
STAAD SPACE			PAGE	NO.	13			
302	-0.3516 GY	0.47						
302	-0.4922 GY	0.66						
302	-0.6328 GY	0.85						
302	-0.7734 GY	1.03						
302	-0.9141 GY	1.22						
302	-1.0547 GY	1.41						
302	-1.0547 GY	1.59						
302	-0.9141 GY	1.78						
302	-0.7734 GY	1.97						
302	-0.6328 GY	2.15						
302	-0.4922 GY	2.34						
302	-0.3516 GY	2.53						
302	-0.2109 GY	2.71						
302	-0.0703 GY	2.88						
109	-0.0703 GY	0.12						
109	-0.2109 GY	0.29						
109	-0.3516 GY	0.47						
109	-0.4922 GY	0.66						
109	-0.6328 GY	0.85						
109	-0.7734 GY	1.03						
109	-0.9141 GY	1.22						
109	-1.0547 GY	1.41						
109	-1.0547 GY	1.59						
109	-0.9141 GY	1.78						
109	-0.7734 GY	1.97						
109	-0.6328 GY	2.15						
109	-0.4922 GY	2.34						
109	-0.3516 GY	2.53						
109	-0.2109 GY	2.71						
109	-0.0703 GY	2.88						
301	-0.0703 GY	0.12						
301	-0.2109 GY	0.29						
301	-0.3516 GY	0.47						
301	-0.4922 GY	0.66						
301	-0.6328 GY	0.85						
301	-0.7734 GY	1.03						
301	-0.9141 GY	1.22						
301	-1.0547 GY	1.41						
301	-1.0547 GY	1.59						
301	-0.9141 GY	1.78						
301	-0.7734 GY	1.97						
301	-0.6328 GY	2.15						
301	-0.4922 GY	2.34						
301	-0.3516 GY	2.53						
301	-0.2109 GY	2.71						
301	-0.2109 GY	2.88						
56	-0.0703 GY	0.12						
56	-0.2109 GY	0.29						
56	-0.3516 GY	0.47						
56	-0.4922 GY	0.66						
56	-0.6328 GY	0.85						
56	-0.7734 GY	1.03						
56	-0.9141 GY	1.22						
56	-1.0547 GY	1.41						
56	-1.0547 GY	1.59						
56	-0.9141 GY	1.78						

					, ,	0000001	,	,	
STAAD SPACE			PAGE NO.	14					
56	-0.7734 GY	1.97							
56	-0.6328 GY	2.15							
56	-0.4922 GY	2.34							
56	-0.3516 GY	2.53							
56	-0.2109 GY	2.71							
56	-0.0703 GY	2.88							
303	-0.0703 GY	0.12							
303	-0.2109 GY	0.29							
303	-0.3516 GY	0.47							
303	-0.4922 GY	0.66							
303	-0.6328 GY	0.85							
303	-0.7734 GY	1.03							
303	-0.9141 GY	1.22							
303	-1.0547 GY	1.41							
303	-1.0547 GY	1.59							
303	-0.9141 GY	1.78							
303	-0.7734 GY	1.97							
303	-0.6328 GY	2.15							
303	-0.4922 GY	2.34							
303	-0.3516 GY	2.53							
303	-0.2109 GY	2.71							
303	-0.0703 GY	2.88							
110	-0.0703 GY	0.12							
110	-0.2109 GY	0.29							
110	-0.3516 GY	0.47							
110	-0.4922 GY	0.66							
110	-0.6328 GY	0.85							
110	-0.7734 GY	1.03							
110	-0.9141 GY	1.22							
110	-1.0547 GY	1.41							
110	-1.0547 GY	1.59							
110	-0.9141 GY	1.78							
110	-0.7734 GY	1.97							
110	-0.6328 GY	2.15							
110	-0.4922 GY	2.34							
110	-0.3516 GY	2.53							
110	-0.2109 GY	2.71							
110	-0.0703 GY	2.88							
302	-0.0703 GY	0.12							
302	-0.2109 GY	0.29							
302	-0.3516 GY	0.47							
302	-0.4922 GY	0.66							
302	-0.6328 GY	0.85							
302	-0.7734 GY	1.03							
302	-0.9141 GY	1.22							
302	-1.0547 GY	1.41							
302	-1.0547 GY	1.59							
302	-0.9141 GY	1.78							
302	-0.7734 GY	1.97							
302	-0.6328 GY	2.15							
302	-0.4922 GY	2.34							
302	-0.3516 GY	2.53							
302	-0.2109 GY	2.71							
302	-0.2109 G1 -0.0703 GY	2.88							
57	-0.0703 GY	0.13							
5 <i>7</i> 57	-0.0703 GY -0.2109 GY	0.13							
JI	-0.2109 GY	0.29							

				monday,	OCCODE	20,	2020,	10.0
STAAD SPACE		PAGE NO.	15					
57	-0.3516 GY 0.48							
57	-0.4922 GY 0.66							
57	-0.6328 GY 0.85							
57	-0.7734 GY 1.03							
57	-0.9141 GY 1.22							
57	-1.0547 GY 1.41							
57	-1.0547 GY 1.59							
57	-0.9141 GY 1.78							
57	-0.7734 GY 1.97							
57	-0.6328 GY 2.15							
57	-0.4922 GY 2.34							
57	-0.3516 GY 2.53							
57	-0.2109 GY 2.71							
57	-0.0703 GY 2.88							
304	-0.0703 GY 0.12							
304	-0.2109 GY 0.29							
304	-0.3516 GY 0.47							
304	-0.4922 GY 0.66							
304	-0.6328 GY 0.85							
304	-0.7734 GY 1.03							
304	-0.9141 GY 1.22							
304	-1.0547 GY 1.41							
304	-1.0547 GY 1.59							
304	-0.9141 GY 1.78							
304	-0.7734 GY 1.97							
304	-0.6328 GY 2.15							
304	-0.4922 GY 2.34							
304	-0.3516 GY 2.53							
304	-0.2109 GY 2.71							
304	-0.0703 GY 2.88							
111	-0.0703 GY 0.13							
111	-0.2109 GY 0.29							
111	-0.3516 GY 0.48							
111	-0.4922 GY 0.66							
111	-0.6328 GY 0.85							
111	-0.7734 GY 1.03							
111	-0.9141 GY 1.22							
111	-1.0547 GY 1.41							
111	-1.0547 GY 1.59							
111	-0.9141 GY 1.78							
111	-0.7734 GY 1.97							
111	-0.6328 GY 2.15							
111	-0.4922 GY 2.34							
111	-0.3516 GY 2.53							
111	-0.2109 GY 2.71							
111	-0.0703 GY 2.88							
303	-0.0703 GY 0.12							
303 303	-0.2109 GY 0.29 -0.3516 GY 0.47							
303	-0.4922 GY 0.66							
303	-0.4922 G1 0.66 -0.6328 GY 0.85							
303	-0.6328 GY 0.83 -0.7734 GY 1.03							
303	-0.7734 GI 1.03 -0.9141 GY 1.22							
303	-0.9141 GY 1.22 -1.0547 GY 1.41							
303	-1.0547 GY 1.41 -1.0547 GY 1.59							
303	-1.0347 G1 1.39 -0.9141 GY 1.78							
303	0.7171 G1 1.70							

					monday,	occoper	20,	2020,	10.07
STAAD SPACE			PAGE NO.	16					
303	-0.7734 GY	1.97							
303	-0.6328 GY	2.15							
303	-0.4922 GY	2.34							
303	-0.3516 GY	2.53							
303	-0.2109 GY	2.71							
303	-0.0703 GY	2.88							
58	-0.0703 GY	0.12							
58	-0.2109 GY	0.29							
58	-0.3516 GY	0.47							
58	-0.4922 GY	0.66							
58	-0.6328 GY	0.85							
58	-0.7734 GY	1.03							
58	-0.9141 GY	1.22							
58	-1.0547 GY	1.41							
58	-1.0547 GY	1.59							
58	-0.9141 GY	1.78							
58	-0.7734 GY	1.97							
58	-0.6328 GY	2.15							
58	-0.4922 GY	2.34							
58	-0.3516 GY	2.52							
58	-0.2109 GY	2.71							
58	-0.0703 GY	2.87							
305	-0.0703 GY	0.12							
305	-0.2109 GY	0.29							
305	-0.3516 GY	0.47							
305	-0.4922 GY	0.66							
305	-0.6328 GY	0.85							
305	-0.7734 GY	1.03							
305	-0.9141 GY	1.22							
305	-1.0547 GY	1.41							
305	-1.0547 GY	1.59							
305	-0.9141 GY	1.78							
305	-0.7734 GY	1.97							
305	-0.6328 GY	2.15							
305	-0.4922 GY	2.34							
305	-0.3516 GY	2.53							
305	-0.2109 GY	2.71							
305	-0.0703 GY	2.88							
112	-0.0703 GY	0.12							
112	-0.2109 GY								
112	-0.3516 GY	0.47							
112	-0.4922 GY	0.66							
112	-0.6328 GY	0.85							
112	-0.7734 GY	1.03							
112	-0.9141 GY	1.22							
112	-1.0547 GY	1.41							
112	-1.0547 GY	1.59							
112	-0.9141 GY	1.78							
112	-0.7734 GY	1.97							
112	-0.6328 GY	2.15							
112	-0.4922 GY	2.34							
112	-0.3516 GY	2.52							
112	-0.2109 GY	2.71							
112	-0.0703 GY	2.87							
304	-0.0703 GY	0.12							
304	-0.2109 GY	0.29							

					monday,	OCCODEI	20,	2020,	10.07 A
STAAD SPACE			PAGE NO.	17					
304	-0.3516 GY	0.47							
304	-0.4922 GY	0.66							
304	-0.6328 GY	0.85							
304	-0.7734 GY	1.03							
304	-0.9141 GY	1.22							
304	-1.0547 GY	1.41							
304	-1.0547 GY	1.59							
304	-0.9141 GY	1.78							
304	-0.7734 GY	1.97							
304	-0.6328 GY	2.15							
304	-0.4922 GY	2.34							
304	-0.3516 GY	2.53							
304	-0.2109 GY	2.71							
304	-0.0703 GY	2.88							
109	-0.0703 GY	0.12							
109	-0.2109 GY	0.29							
109	-0.3516 GY	0.47							
109	-0.4922 GY	0.66							
109	-0.6328 GY	0.85							
109	-0.7734 GY	1.03							
109	-0.9141 GY	1.22							
109	-1.0547 GY	1.41							
109	-1.0547 GY	1.59							
109	-0.9141 GY	1.78							
109	-0.7734 GY	1.97							
109	-0.6328 GY	2.15							
109	-0.4922 GY	2.34							
109	-0.3516 GY	2.53							
109	-0.2109 GY	2.71							
109	-0.0703 GY	2.88							
332	-0.0703 GY	0.13							
332	-0.2109 GY	0.29							
332	-0.3516 GY -0.4922 GY	0.48							
332	-0.4922 G1 -0.6328 GY	0.66							
332 332	-0.6328 G1 -0.7734 GY	0.85 1.03							
332	-0.7734 G1 -0.9141 GY	1.22							
332	-1.0547 GY	1.41							
332	-1.0547 GY	1.59							
332		1.78							
332	-0.7734 GY	1.97							
332	-0.6328 GY	2.15							
332	-0.4922 GY	2.34							
332	-0.3516 GY	2.53							
332	-0.2109 GY	2.71							
332	-0.0703 GY	2.88							
163	-0.0703 GY	0.12							
163	-0.2109 GY	0.29							
163	-0.3516 GY	0.47							
163	-0.4922 GY	0.66							
163	-0.6328 GY	0.85							
163	-0.7734 GY	1.03							
163	-0.9141 GY	1.22							
163	-1.0547 GY	1.41							
163	-1.0547 GY	1.59							
163	-0.9141 GY	1.78							

						monday,	OCCODEI	20, 2	.020,	10.0
STAAD SPACE			PAGE NO	٥.	18					
163	-0.7734 GY	1.97								
163	-0.6328 GY	2.15								
163	-0.4922 GY	2.34								
163	-0.3516 GY	2.53								
163	-0.2109 GY	2.71								
163	-0.0703 GY	2.88								
331	-0.0703 GY	0.13								
331	-0.2109 GY	0.29								
331	-0.3516 GY	0.48								
331	-0.4922 GY	0.66								
331	-0.6328 GY	0.85								
331	-0.7734 GY	1.03								
331	-0.9141 GY	1.22								
331	-1.0547 GY	1.41								
331	-1.0547 GY	1.59								
331	-0.9141 GY	1.78								
331	-0.7734 GY	1.97								
331	-0.6328 GY	2.15								
331	-0.4922 GY	2.34								
331	-0.3516 GY	2.53								
331	-0.2109 GY	2.71								
331	-0.0703 GY	2.88								
110	-0.0703 GY	0.12								
110	-0.2109 GY	0.29								
110	-0.3516 GY	0.47								
110	-0.4922 GY	0.66								
110	-0.6328 GY	0.85								
110	-0.7734 GY	1.03								
110	-0.9141 GY	1.22								
110	-1.0547 GY	1.41								
110	-1.0547 GY	1.59								
110	-0.9141 GY	1.78								
110	-0.7734 GY	1.97								
110	-0.6328 GY	2.15								
110	-0.4922 GY	2.34								
110	-0.3516 GY	2.53								
110	-0.2109 GY	2.71								
110	-0.0703 GY	2.88								
333	-0.0703 GY	0.13								
333	-0.2109 GY	0.29								
333	-0.3516 GY	0.48								
333	-0.4922 GY	0.66								
333	-0.6328 GY	0.85								
333	-0.7734 GY	1.03								
333	-0.9141 GY	1.22								
333	-1.0547 GY	1.41								
333	-1.0547 GY	1.59								
333	-0.9141 GY	1.78								
333	-0.7734 GY	1.97								
333	-0.6328 GY	2.15								
333	-0.4922 GY	2.34								
333	-0.3516 GY	2.53								
333	-0.2109 GY	2.71								
333	-0.0703 GY	2.88								
164 164	-0.0703 GY -0.2109 GY	0.12								
T O 7	0.Z1U9 G1	U•∠3								

					monday,	OCCODEI	20,	2020,	10.0
STAAD SPACE			PAGE NO.	19					
164	-0.3516 GY	0.47							
164	-0.4922 GY	0.66							
164	-0.6328 GY	0.85							
164	-0.7734 GY	1.03							
164	-0.9141 GY	1.22							
164	-1.0547 GY	1.41							
164	-1.0547 GY	1.59							
164	-0.9141 GY	1.78							
164	-0.7734 GY	1.97							
164	-0.6328 GY	2.15							
164	-0.4922 GY	2.34							
164	-0.3516 GY	2.53							
164	-0.2109 GY	2.71							
164	-0.0703 GY	2.88							
332	-0.0703 GY	0.13							
332	-0.2109 GY	0.29							
332	-0.3516 GY	0.48							
332	-0.4922 GY	0.66							
332	-0.6328 GY	0.85							
332	-0.7734 GY	1.03							
332	-0.9141 GY	1.22							
332	-1.0547 GY	1.41							
332	-1.0547 GY	1.59							
332	-0.9141 GY	1.78							
332	-0.7734 GY	1.97							
332	-0.6328 GY	2.15							
332	-0.4922 GY	2.34							
332	-0.3516 GY	2.53							
332	-0.2109 GY	2.71							
332	-0.0703 GY	2.88							
111	-0.0703 GY	0.13							
111	-0.2109 GY	0.29							
111	-0.3516 GY	0.48							
111	-0.4922 GY	0.66							
111	-0.6328 GY	0.85							
111	-0.7734 GY	1.03							
111	-0.9141 GY	1.22							
111	-1.0547 GY	1.41							
111	-1.0547 GY	1.59							
111	-0.9141 GY	1.78							
111	-0.7734 GY	1.97							
111	-0.6328 GY	2.15							
111	-0.4922 GY	2.34							
111	-0.3516 GY	2.53							
111	-0.2109 GY	2.71							
111	-0.0703 GY	2.88							
334	-0.0703 GY	0.13							
334	-0.2109 GY	0.29							
334	-0.3516 GY	0.48							
334	-0.4922 GY	0.66							
334	-0.6328 GY	0.85							
334	-0.7734 GY	1.03							
334	-0.9141 GY	1.22							
334	-1.0547 GY	1.41							
334	-1.0547 GY	1.59							
334	-0.9141 GY	1.78							

					monday,	october	20,	2020,	10.07	_
STAAD SPACE			PAGE NO.	20						
334	-0.7734 GY	1.97								
334	-0.6328 GY	2.15								
334	-0.4922 GY	2.34								
334	-0.3516 GY	2.53								
334	-0.2109 GY	2.71								
334	-0.0703 GY	2.88								
165	-0.0703 GY	0.13								
165	-0.2109 GY	0.29								
165	-0.3516 GY	0.48								
165	-0.4922 GY	0.66								
165	-0.6328 GY	0.85								
165	-0.7734 GY	1.03								
165	-0.9141 GY	1.22								
165	-1.0547 GY	1.41								
165	-1.0547 GY	1.59								
165	-0.9141 GY	1.78								
165	-0.7734 GY	1.97								
165	-0.6328 GY	2.15								
165	-0.4922 GY	2.34								
165	-0.3516 GY	2.53								
165	-0.2109 GY	2.71								
165	-0.0703 GY	2.88								
333	-0.0703 GY	0.13								
333	-0.2109 GY	0.29								
333	-0.3516 GY	0.48								
333	-0.4922 GY	0.66								
333	-0.6328 GY	0.85								
333	-0.7734 GY	1.03								
333	-0.9141 GY	1.22								
333	-1.0547 GY	1.41								
333	-1.0547 GY	1.59								
333	-0.9141 GY	1.78								
333	-0.7734 GY	1.97								
333	-0.6328 GY	2.15								
333	-0.4922 GY	2.34								
333	-0.3516 GY	2.53								
333	-0.2109 GY	2.71								
333	-0.0703 GY	2.88								
112	-0.0703 GY	0.12								
112	-0.2109 GY	0.29								
112		0.47								
112		0.66								
112		0.85								
112	-0.7734 GY	1.03								
112	-0.9141 GY	1.22								
112	-1.0547 GY	1.41								
112	-1.0547 GY	1.59								
112	-0.9141 GY	1.78								
112	-0.7734 GY	1.97								
112 112	-0.6328 GY -0.4922 GY	2.15								
112	-0.4922 GY -0.3516 GY	2.52								
112	-0.3516 GY -0.2109 GY	2.71								
112	-0.0703 GY	2.87								
335 335		0.13 0.29								
555	U.ZIU9 GI	U • 4 3								

					momuay,	octobel	20,	2020,	10.07	_
STAAD SPACE			PAGE NO.	21						
335	-0.3516 GY	0.48								
335	-0.4922 GY	0.66								
335	-0.6328 GY	0.85								
335	-0.7734 GY	1.03								
335	-0.9141 GY	1.22								
335	-1.0547 GY	1.41								
335	-1.0547 GY	1.59								
335	-0.9141 GY	1.78								
335	-0.7734 GY	1.97								
335	-0.6328 GY	2.15								
335	-0.4922 GY	2.34								
335	-0.3516 GY	2.53								
335	-0.2109 GY	2.71								
335	-0.0703 GY	2.88								
166	-0.0703 GY	0.12								
166	-0.2109 GY	0.29								
166	-0.3516 GY	0.47								
166	-0.4922 GY	0.66								
166	-0.6328 GY	0.85								
166	-0.7734 GY	1.03								
166	-0.9141 GY	1.22								
166	-1.0547 GY	1.41								
166	-1.0547 GY	1.59								
166	-0.9141 GY	1.78								
166	-0.7734 GY	1.97								
166	-0.6328 GY	2.15								
166	-0.4922 GY	2.34								
166	-0.3516 GY	2.52								
166	-0.2109 GY	2.71								
166	-0.0703 GY	2.87								
334	-0.0703 GY	0.13								
334	-0.2109 GY	0.29								
334	-0.3516 GY	0.48								
334	-0.4922 GY	0.66								
334	-0.6328 GY	0.85								
334	-0.7734 GY	1.03								
334	-0.9141 GY	1.22								
334	-1.0547 GY	1.41								
334	-1.0547 GY	1.59								
334	-0.9141 GY	1.78								
334	-0.7734 GY	1.97								
334	-0.6328 GY	2.15								
334	-0.4922 GY	2.34								
334	-0.3516 GY	2.53								
334	-0.2109 GY	2.71								
334	-0.0703 GY	2.88								
163	-0.0703 GY	0.12								
163	-0.2109 GY	0.29								
163	-0.3516 GY	0.47								
163	-0.4922 GY	0.66								
163	-0.6328 GY	0.85								
163	-0.7734 GY	1.03								
163	-0.9141 GY	1.22								
163	-1.0547 GY	1.41								
163	-1.0547 GY	1.59								
163	-0.9141 GY	1.78								

						11011447,	000000	_ ,	
STAAD SPACE			PAGE	NO.	22				
163	-0.7734 GY	1.97							
163	-0.6328 GY	2.15							
163	-0.4922 GY	2.34							
163	-0.3516 GY	2.53							
163	-0.2109 GY	2.71							
163	-0.0703 GY	2.88							
362	-0.0703 GY	0.12							
362	-0.2109 GY	0.29							
362	-0.3516 GY	0.47							
362	-0.4922 GY	0.66							
362	-0.6328 GY	0.85							
362	-0.7734 GY	1.03							
362	-0.9141 GY	1.22							
362	-1.0547 GY	1.41							
362	-1.0547 GY	1.59							
362	-0.9141 GY	1.78							
362	-0.7734 GY	1.97							
362	-0.6328 GY	2.15							
362	-0.4922 GY	2.34							
362	-0.3516 GY	2.52							
362	-0.2109 GY	2.71							
362	-0.0703 GY	2.87							
217	-0.0703 GY	0.12							
217	-0.2109 GY	0.29							
217	-0.3516 GY	0.47							
217	-0.4922 GY	0.66							
217	-0.6328 GY	0.85							
217	-0.7734 GY	1.03							
217	-0.9141 GY	1.22							
217	-1.0547 GY	1.41							
217	-1.0547 GY	1.59							
217	-0.9141 GY	1.78							
217	-0.7734 GY	1.97							
217	-0.6328 GY	2.15							
217	-0.4922 GY	2.34							
217	-0.3516 GY	2.53							
217	-0.2109 GY	2.71							
217	-0.0703 GY	2.88							
361	-0.0703 GY	0.12							
361	-0.2109 GY	0.29							
361	-0.3516 GY	0.47							
361	-0.4922 GY	0.66							
361	-0.6328 GY	0.85							
361	-0.7734 GY	1.03							
361	-0.9141 GY	1.22							
361	-1.0547 GY	1.41							
361	-1.0547 GY	1.59							
361	-0.9141 GY	1.78							
361	-0.7734 GY	1.97							
361	-0.6328 GY	2.15							
361	-0.4922 GY	2.34							
361	-0.3516 GY	2.52							
361	-0.2109 GY	2.71							
361	-0.0703 GY	2.87							
164	-0.0703 GY	0.12							
164	-0.2109 GY	0.29							

					11011447,	000000	_ ,	2020,	
STAAD SPACE		-	PAGE NO.	23					
164	-0.3516 GY	0.47							
164	-0.4922 GY	0.66							
164		0.85							
164	-0.7734 GY	1.03							
164	-0.9141 GY	1.22							
164	-1.0547 GY	1.41							
164	-1.0547 GY	1.59							
164	-0.9141 GY	1.78							
164	-0.7734 GY	1.97							
164	-0.6328 GY	2.15							
164	-0.4922 GY	2.34							
164	-0.3516 GY	2.53							
164	-0.2109 GY	2.71							
164	-0.0703 GY	2.88							
363	-0.0703 GY	0.12							
363	-0.2109 GY	0.29							
363	-0.3516 GY	0.47							
363		0.66							
363		0.85							
363	-0.7734 GY	1.03							
363	-0.9141 GY	1.22							
363	-1.0547 GY	1.41							
363	-1.0547 GY	1.59							
363	-0.9141 GY	1.78							
363	-0.7734 GY	1.97							
363	-0.6328 GY	2.15							
363	-0.4922 GY	2.34							
363	-0.3516 GY	2.52							
363	-0.2109 GY	2.71							
363	-0.0703 GY	2.87							
218	-0.0703 GY	0.12							
218	-0.2109 GY	0.29							
218	-0.3516 GY	0.47							
218	-0.4922 GY	0.66							
218	-0.6328 GY	0.85							
218	-0.7734 GY	1.03							
218	-0.9141 GY	1.22							
218	-1.0547 GY	1.41							
218	-1.0547 GY	1.59							
218	-0.9141 GY	1.78							
218	-0.7734 GY	1.97							
218	-0.6328 GY	2.15							
218	-0.4922 GY	2.34							
218	-0.3516 GY	2.53							
218	-0.2109 GY	2.71							
218	-0.0703 GY	2.88							
362	-0.0703 GY	0.12							
362	-0.2109 GY	0.29							
362	-0.2109 G1 -0.3516 GY	0.47							
362	-0.4922 GY	0.47							
362	-0.4922 GY	0.85							
362	-0.7734 GY	1.03							
362	-0.9141 GY	1.22							
362	-1.0547 GY	1.41							
362	-1.0547 GY	1.59							
362	-0.9141 GY	1.78							

					, inclination	000000	,	
STAAD SPACE			PAGE NO.	. 24				
362	-0.7734 GY	1.97						
362	-0.6328 GY	2.15						
362	-0.4922 GY	2.34						
362	-0.3516 GY	2.52						
362	-0.2109 GY	2.71						
362	-0.0703 GY	2.87						
165	-0.0703 GY	0.13						
165	-0.2109 GY	0.29						
165	-0.3516 GY	0.48						
165	-0.4922 GY	0.66						
165	-0.6328 GY	0.85						
165	-0.7734 GY	1.03						
165	-0.9141 GY	1.22						
165	-1.0547 GY	1.41						
165	-1.0547 GY	1.59						
165	-0.9141 GY	1.78						
165	-0.7734 GY	1.97						
165	-0.6328 GY	2.15						
165	-0.4922 GY	2.34						
165	-0.3516 GY	2.53						
165	-0.2109 GY	2.71						
165	-0.0703 GY	2.88						
364	-0.0703 GY	0.12						
364	-0.2109 GY	0.29						
364	-0.3516 GY	0.47						
364	-0.4922 GY	0.66						
364	-0.6328 GY	0.85						
364	-0.7734 GY	1.03						
364	-0.9141 GY	1.22						
364	-1.0547 GY	1.41						
364	-1.0547 GY	1.59						
364 364	-0.9141 GY -0.7734 GY	1.78 1.97						
364	-0.6328 GY							
364	-0.4922 GY	2.15						
364	-0.4922 G1 -0.3516 GY	2.54						
364	-0.2109 GY	2.71						
364	-0.0703 GY	2.87						
219	-0.0703 GY	0.13						
219	-0.2109 GY	0.29						
219	-0.3516 GY	0.48						
219	-0.4922 GY	0.66						
219	-0.6328 GY	0.85						
219	-0.7734 GY	1.03						
219	-0.9141 GY	1.22						
219	-1.0547 GY	1.41						
219	-1.0547 GY	1.59						
219	-0.9141 GY	1.78						
219	-0.7734 GY	1.97						
219	-0.6328 GY	2.15						
219	-0.4922 GY	2.34						
219	-0.3516 GY	2.53						
219	-0.2109 GY	2.71						
219	-0.0703 GY	2.88						
363	-0.0703 GY	0.12						
363	-0.2109 GY	0.29						

					11011447,	000000	, _	,
STAAD SPACE			PAGE NO.	25				
363	-0.3516 GY	0.47						
363	-0.4922 GY							
363	-0.6328 GY	0.85						
363	-0.7734 GY	1.03						
363	-0.9141 GY	1.22						
363	-1.0547 GY	1.41						
363	-1.0547 GY	1.59						
363	-0.9141 GY	1.78						
363	-0.7734 GY	1.97						
363	-0.6328 GY	2.15						
363	-0.4922 GY	2.34						
363	-0.3516 GY	2.52						
363	-0.2109 GY	2.71						
363	-0.0703 GY	2.87						
166	-0.0703 GY	0.12						
166	-0.2109 GY	0.29						
166	-0.3516 GY	0.47						
166	-0.4922 GY	0.66						
166	-0.6328 GY	0.85						
166	-0.7734 GY	1.03						
166	-0.9141 GY	1.22						
166	-1.0547 GY	1.41						
166	-1.0547 GY	1.59						
166		1.78						
166		1.97						
166	-0.6328 GY	2.15						
166	-0.4922 GY	2.34						
166	-0.3516 GY	2.52						
166	-0.2109 GY	2.71						
166	-0.0703 GY	2.87						
365	-0.0703 GY	0.12						
365	-0.2109 GY	0.29						
365	-0.3516 GY	0.47						
365	-0.4922 GY	0.66						
365	-0.6328 GY	0.85						
365	-0.7734 GY	1.03						
365		1.22						
365	-1.0547 GY	1.41						
365	-1.0547 GY	1.59						
365	-0.9141 GY	1.78						
365	-0.7734 GY	1.97						
365	-0.6328 GY	2.15						
365	-0.4922 GY	2.34						
365	-0.3516 GY	2.52						
365	-0.2109 GY	2.71						
365	-0.0703 GY	2.87						
220	-0.0703 GY	0.12						
220	-0.2109 GY	0.29						
220	-0.3516 GY	0.47						
220	-0.4922 GY	0.66						
220	-0.6328 GY	0.85						
220	-0.7734 GY	1.03						
220	-0.9141 GY	1.22						
220	-1.0547 GY	1.41						
220	-1.0547 GY	1.59						
220	-0.9141 GY	1.78						

STAAD SPACE			PAGE NO.	26
220	-0.7734 GY	1.97		
220	-0.6328 GY	2.15		
220	-0.4922 GY	2.34		
220	-0.3516 GY	2.52		
220	-0.2109 GY	2.71		
220	-0.0703 GY	2.87		
364	-0.0703 GY	0.12		
364	-0.2109 GY	0.29		
364	-0.3516 GY	0.47		
364	-0.4922 GY	0.66		
364	-0.6328 GY	0.85		
364	-0.7734 GY	1.03		
364	-0.9141 GY	1.22		
364	-1.0547 GY			
364		1.41		
	-1.0547 GY	1.59		
364	-0.9141 GY	1.78		
364	-0.7734 GY	1.97		
364	-0.6328 GY	2.15		
364	-0.4922 GY	2.34		
364	-0.3516 GY	2.52		
364	-0.2109 GY	2.71		
364	-0.0703 GY	2.87		
5	-0.0703 GY	0.12		
5	-0.2109 GY	0.29		
5	-0.3516 GY	0.47		
5	-0.4922 GY	0.66		
5	-0.6328 GY	0.85		
5	-0.7734 GY	1.03		
5	-0.9141 GY	1.22		
5	-1.0547 GY	1.41		
5	-1.0547 GY	1.59		
5				
	-0.9141 GY	1.78		
5	-0.7734 GY	1.97		
5	-0.6328 GY	2.15		
5	-0.4922 GY	2.34		
5	-0.3516 GY	2.53		
5	-0.2109 GY	2.71		
5	-0.0703 GY	2.88		
277	-0.0703 GY	0.12		
277	-0.2109 GY	0.29		
277	-0.3516 GY	0.47		
277	-0.4922 GY	0.66		
277	-0.6328 GY	0.85		
277	-0.7734 GY	1.03		
277	-0.9141 GY	1.22		
277	-1.0547 GY	1.41		
277	-1.0547 GY	1.59		
277				
	-0.9141 GY	1.78		
277	-0.7734 GY	1.97		
277	-0.6328 GY	2.15		
277	-0.4922 GY	2.34		
277	-0.3516 GY	2.53		
277	-0.2109 GY	2.71		
	0 0702 CV	2.88		
	-0.0703 GY	2.00		
277 59	-0.0703 GY	0.12		

					monday,	octobel	20,	2020,	10.07
STAAD SPACE			PAGE NO.	27					
59	-0.3516 GY 0.	47							
59		66							
59		85							
59	-0.7734 GY 1.								
59	-0.9141 GY 1.								
59	-1.0547 GY 1.								
59	-1.0547 GY 1.								
59	-0.9141 GY 1.	78							
59	-0.7734 GY 1.	97							
59		15							
59	-0.4922 GY 2.								
59	-0.3516 GY 2.	53							
59		71							
59		88							
276		12							
276		29							
276	-0.3516 GY 0.								
276		66							
276		85							
276	-0.7734 GY 1.								
276	-0.9141 GY 1.								
276	-1.0547 GY 1.								
276	-1.0547 GY 1.								
276	-0.9141 GY 1.								
276	-0.7734 GY 1.								
276		15							
276	-0.4922 GY 2.								
276		53							
276		71							
276		88							
6	-0.0703 GY 0.								
6		29							
6		47							
6		66							
6	-0.6328 GY 0.	85							
6		03							
6	-0.9141 GY 1.								
6	-1.0547 GY 1.								
6	-1.0547 GY 1.	59							
6	-0.9141 GY 1.	78							
6	-0.7734 GY 1.	97							
6	-0.6328 GY 2.	15							
6	-0.4922 GY 2.	34							
6	-0.3516 GY 2.	53							
6	-0.2109 GY 2.	71							
6	-0.0703 GY 2.	88							
278	-0.0703 GY 0.	12							
278	-0.2109 GY 0.	29							
278	-0.3516 GY 0.	47							
278	-0.4922 GY 0.	66							
278	-0.6328 GY 0.	85							
278		03							
278	-0.9141 GY 1.	22							
278	-1.0547 GY 1.								
278		59							
278	-0.9141 GY 1.								

					man ,	0000001	_ , ,	, .
STAAD SPACE			PAGE NO.	28				
278	-0.7734 GY	1.97						
278	-0.6328 GY	2.15						
278	-0.4922 GY	2.34						
278	-0.3516 GY	2.53						
278	-0.2109 GY	2.71						
278	-0.0703 GY	2.88						
60	-0.0703 GY	0.12						
60	-0.2109 GY	0.29						
60	-0.3516 GY	0.47						
60	-0.4922 GY	0.66						
60	-0.6328 GY	0.85						
60	-0.7734 GY	1.03						
60	-0.9141 GY	1.22						
60	-1.0547 GY	1.41						
60	-1.0547 GY	1.59						
60	-0.9141 GY	1.78						
60	-0.7734 GY	1.97						
60	-0.6328 GY	2.15						
60	-0.4922 GY	2.34						
60	-0.3516 GY	2.53						
60	-0.2109 GY	2.71						
60	-0.0703 GY	2.88						
277	-0.0703 GY	0.12						
277	-0.2109 GY	0.29						
277	-0.3516 GY	0.47						
277	-0.4922 GY	0.66						
277	-0.6328 GY	0.85						
277	-0.7734 GY	1.03						
277	-0.9141 GY	1.22						
277	-1.0547 GY	1.41						
277	-1.0547 GY	1.59						
277	-0.9141 GY	1.78						
277	-0.7734 GY	1.97						
277	-0.6328 GY	2.15						
277	-0.4922 GY	2.34						
277	-0.3516 GY	2.53						
277	-0.2109 GY	2.71						
277	-0.0703 GY	2.88						
7	-0.0703 GY	0.13						
7	-0.2109 GY	0.29						
7	-0.3516 GY	0.48						
7	-0.4922 GY	0.66						
7	-0.6328 GY	0.85						
7	-0.7734 GY	1.03						
7	-0.9141 GY	1.22						
7	-1.0547 GY	1.41						
7	-1.0547 GY	1.59						
7	-0.9141 GY	1.78						
7	-0.7734 GY	1.97						
7	-0.6328 GY	2.15						
7	-0.4922 GY	2.34						
7	-0.3516 GY	2.53						
7	-0.2109 GY	2.71						
7	-0.0703 GY	2.88						
279	-0.0703 GY	0.12						
279	-0.2109 GY	0.29						
2.3	J.2107 G1	J•23						

STAAD SPACE -0.3516 GY 0.47 279 -0.4922 GY 0.66 279 -0.6328 GY 0.85 279 -0.6328 GY 0.85 279 -0.7734 GY 1.03 279 -0.9141 GY 1.22 279 -1.0547 GY 1.41 279 -1.0547 GY 1.59 279 -0.9141 GY 1.78 279 -0.7734 GY 1.97 279 -0.7734 GY 1.97 279 -0.6328 GY 2.15 279 -0.4922 GY 2.34 279 -0.4922 GY 2.34 279 -0.3516 GY 2.53 279 -0.3516 GY 2.53 279 -0.0703 GY 2.88 61 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.7734 GY 1.03 61 -0.10547 GY 1.59 61 -0.6328 GY 0.85 61 -0.0703 GY 0.12 278	29	
279 -0.4922 GY 0.66 279 -0.6328 GY 0.85 279 -0.7734 GY 1.03 279 -0.9141 GY 1.22 279 -1.0547 GY 1.41 279 -1.0547 GY 1.59 279 -0.9141 GY 1.78 279 -0.7734 GY 1.97 279 -0.6328 GY 2.15 279 -0.4922 GY 2.34 279 -0.4922 GY 2.34 279 -0.3516 GY 2.53 279 -0.3516 GY 2.53 279 -0.2109 GY 2.71 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.0703 GY 0.13 61 -0.0703 GY 0.29 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.7734 GY 1.03 61 -0.7734 GY 1.41 61 -0.9141 GY 1.22 61 -0.7734 GY 1.59 61		
279 -0.4922 GY 0.66 279 -0.6328 GY 0.85 279 -0.7734 GY 1.03 279 -0.9141 GY 1.22 279 -1.0547 GY 1.41 279 -1.0547 GY 1.59 279 -0.9141 GY 1.78 279 -0.7734 GY 1.97 279 -0.6328 GY 2.15 279 -0.4922 GY 2.34 279 -0.4922 GY 2.34 279 -0.3516 GY 2.53 279 -0.3516 GY 2.53 279 -0.2109 GY 2.71 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.0703 GY 0.13 61 -0.0703 GY 0.29 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.7734 GY 1.03 61 -0.7734 GY 1.41 61 -0.9141 GY 1.22 61 -0.7734 GY 1.59 61		
279 -0.6328 GY 0.85 279 -0.7734 GY 1.03 279 -0.9141 GY 1.22 279 -1.0547 GY 1.41 279 -1.0547 GY 1.59 279 -0.9141 GY 1.78 279 -0.7734 GY 1.97 279 -0.6328 GY 2.15 279 -0.4922 GY 2.34 279 -0.3516 GY 2.53 279 -0.2109 GY 2.71 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.0703 GY 0.29 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.7734 GY 1.03 61 -0.7734 GY 1.41 61 -0.7734 GY 1.59 61 -0.7734 GY 1.78 61 -0.7934 GY 1.97 61		
279 -0.7734 GY 1.03 279 -0.9141 GY 1.22 279 -1.0547 GY 1.41 279 -1.0547 GY 1.59 279 -0.9141 GY 1.78 279 -0.6328 GY 2.15 279 -0.4922 GY 2.34 279 -0.3516 GY 2.53 279 -0.2109 GY 2.271 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.0703 GY 0.29 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.6328 GY 0.85 61 -0.734 GY 1.03 61 -0.734 GY 1.59 61 -0.734 GY 1.59 61 -0.734 GY 1.78 61 -0.734 GY 1.97 61 -0.734 GY 1.97 61 -0.735 GY 2.34 61 -0.736 GY 2.34 61 -0		
279 -0.9141 GY 1.22 279 -1.0547 GY 1.41 279 -1.0547 GY 1.59 279 -0.9141 GY 1.78 279 -0.9141 GY 1.97 279 -0.6328 GY 2.15 279 -0.4922 GY 2.34 279 -0.3516 GY 2.53 279 -0.2109 GY 2.71 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.0703 GY 0.29 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.7734 GY 1.03 61 -0.10547 GY 1.41 61 -0.10547 GY 1.59 61 -0.3516 GY 2.34 61 -0.4922 GY 2.34 61 -0.7734 GY 1.97 61 -0.3516 GY 2.53 61 -0.0703 GY 2.88 278		
279 -1.0547 GY 1.41 279 -1.0547 GY 1.59 279 -0.9141 GY 1.78 279 -0.734 GY 1.97 279 -0.6328 GY 2.15 279 -0.4922 GY 2.34 279 -0.2109 GY 2.71 279 -0.2109 GY 2.71 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.0703 GY 0.29 61 -0.2109 GY 0.29 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.4922 GY 0.85 61 -0.4922 GY 0.85 61 -0.7734 GY 1.03 61 -1.0547 GY 1.41 61 -0.7734 GY 1.97 61 -0.7734 GY 1.97 61 -0.6328 GY 2.15 61 -0.7934 GY 1.97 61 -0.7934 GY 2.98 61 -0.0703 GY 2.88 78 <		
279 -1.0547 GY 1.59 279 -0.9141 GY 1.78 279 -0.734 GY 1.97 279 -0.6328 GY 2.15 279 -0.4922 GY 2.34 279 -0.3516 GY 2.53 279 -0.2109 GY 2.71 279 -0.0703 GY 0.13 61 -0.0703 GY 0.29 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.6328 GY 0.85 61 -0.9141 GY 1.03 61 -0.9141 GY 1.22 61 -0.10547 GY 1.41 61 -0.10547 GY 1.41 61 -0.7734 GY 1.97 61 -0.734 GY 1.97 61 -0.703 GY 2.34 61 -0.4922 GY 2.34 61 -0.3516 GY 2.53 61 -0.2109 GY 2.71 61 -0.0703 GY 2.88 278 <		
279 -0.9141 GY 1.78 279 -0.7734 GY 1.97 279 -0.6328 GY 2.15 279 -0.4922 GY 2.34 279 -0.2109 GY 2.71 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.2109 GY 0.29 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.7734 GY 1.03 61 -0.79141 GY 1.22 61 -1.0547 GY 1.41 61 -0.10547 GY 1.59 61 -0.7734 GY 1.78 61 -0.7734 GY 1.97 61 -0.3516 GY 2.34 61 -0.3516 GY 2.34 61 -0.3516 GY 2.53 61 -0.3516 GY 2.53 61 -0.3516 GY 2.53 61 -0.3516 GY 2.53 61 <		
279 -0.6328 GY 2.15 279 -0.6328 GY 2.15 279 -0.4922 GY 2.34 279 -0.3516 GY 2.53 279 -0.2109 GY 2.71 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.0703 GY 0.29 61 -0.3516 GY 0.48 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.6328 GY 0.85 61 -0.9141 GY 1.03 61 -0.9141 GY 1.78 61 -0.9141 GY 1.78 61 -0.9141 GY 1.78 61 -0.4922 GY 2.34 61 -0.3516 GY 2.53 61 -0.3516 GY 2.53 61 -0.3516 GY 2.53 61 -0.3516 GY 2.88 78 -0.0703 GY 2.88 78 -0.3516 GY 0.47 278 <t< td=""><td></td><td></td></t<>		
279 -0.4922 GY 2.34 279 -0.3516 GY 2.53 279 -0.2109 GY 2.71 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.0703 GY 0.29 61 -0.2109 GY 0.29 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.4922 GY 0.85 61 -0.4922 GY 0.85 61 -0.7734 GY 1.03 61 -0.9141 GY 1.22 61 -1.0547 GY 1.59 61 -0.9141 GY 1.78 61 -0.7734 GY 1.97 61 -0.4922 GY 2.34 61 -0.4922 GY 2.34 61 -0.4922 GY 2.34 61 -0.4922 GY 2.34 61 -0.3516 GY 2.53 61 -0.0703 GY 2.88 278 -0.0703 GY 2.88 278 -0.0914 GY 0.47 278 <t< td=""><td></td><td></td></t<>		
279 -0.4922 GY 2.34 279 -0.3516 GY 2.53 279 -0.2109 GY 2.71 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.0703 GY 0.29 61 -0.2109 GY 0.29 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.4922 GY 0.66 61 -0.4922 GY 0.85 61 -0.7734 GY 1.03 61 -0.7734 GY 1.03 61 -0.9141 GY 1.22 61 -0.9141 GY 1.78 61 -0.9141 GY 1.78 61 -0.7734 GY 1.97 61 -0.4922 GY 2.34 61 -0.4922 GY 2.34 61 -0.4922 GY 2.34 61 -0.3516 GY 2.53 61 -0.0703 GY 2.88 278 -0.0703 GY 2.88 278 -0.0703 GY 0.66 278 <t< td=""><td></td><td></td></t<>		
279 -0.3516 GY 2.53 279 -0.2109 GY 2.71 279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.2109 GY 0.29 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.6328 GY 0.85 61 -0.7734 GY 1.03 61 -0.9141 GY 1.22 61 -1.0547 GY 1.59 61 -0.9141 GY 1.78 61 -0.7734 GY 1.97 61 -0.4922 GY 2.34 61 -0.4922 GY 2.34 61 -0.4922 GY 2.34 61 -0.3516 GY 2.53 61 -0.3516 GY 2.71 61 -0.0703 GY 2.88 278 -0.0703 GY 0.29 278 -0.0703 GY 0.85 278 -0.3516 GY 0.47 278 -0.6328 GY 0.85 278 -0.7734 GY 1.41 278		
279 -0.0703 GY 2.88 61 -0.0703 GY 0.13 61 -0.2109 GY 0.29 61 -0.3516 GY 0.48 61 -0.4922 GY 0.66 61 -0.6328 GY 0.85 61 -0.7734 GY 1.03 61 -0.9141 GY 1.22 61 -1.0547 GY 1.41 61 -1.0547 GY 1.59 61 -0.9141 GY 1.78 61 -0.7734 GY 1.97 61 -0.6328 GY 2.15 61 -0.4922 GY 2.34 61 -0.3516 GY 2.53 61 -0.3516 GY 2.53 61 -0.0703 GY 2.12 278 -0.0703 GY 0.12 278 -0.2109 GY 0.29 278 -0.3516 GY 0.47 278 -0.4922 GY 0.66 278 -0.6328 GY 0.85 278 -0.7734 GY 1.03 278 -0.7941 GY 1.41 278		
61		
61		
61		
61		
61		
61		
61		
61		
61		
61		
61		
61		
61		
61		
61		
61		
278 -0.0703 GY 0.12 278 -0.2109 GY 0.29 278 -0.3516 GY 0.47 278 -0.4922 GY 0.66 278 -0.6328 GY 0.85 278 -0.7734 GY 1.03 278 -0.9141 GY 1.22 278 -1.0547 GY 1.41 278 -1.0547 GY 1.59 278 -0.9141 GY 1.78 278 -0.7734 GY 1.97		
278 -0.2109 GY 0.29 278 -0.3516 GY 0.47 278 -0.4922 GY 0.66 278 -0.6328 GY 0.85 278 -0.7734 GY 1.03 278 -0.9141 GY 1.22 278 -1.0547 GY 1.41 278 -1.0547 GY 1.59 278 -0.9141 GY 1.78 278 -0.7734 GY 1.97		
278 -0.3516 GY 0.47 278 -0.4922 GY 0.66 278 -0.6328 GY 0.85 278 -0.7734 GY 1.03 278 -0.9141 GY 1.22 278 -1.0547 GY 1.41 278 -1.0547 GY 1.59 278 -0.9141 GY 1.78 278 -0.7734 GY 1.97		
278 -0.4922 GY 0.66 278 -0.6328 GY 0.85 278 -0.7734 GY 1.03 278 -0.9141 GY 1.22 278 -1.0547 GY 1.41 278 -1.0547 GY 1.59 278 -0.9141 GY 1.78 278 -0.7734 GY 1.97		
278		
278		
278 -0.9141 GY 1.22 278 -1.0547 GY 1.41 278 -1.0547 GY 1.59 278 -0.9141 GY 1.78 278 -0.7734 GY 1.97		
278 -1.0547 GY 1.41 278 -1.0547 GY 1.59 278 -0.9141 GY 1.78 278 -0.7734 GY 1.97		
278 -1.0547 GY 1.59 278 -0.9141 GY 1.78 278 -0.7734 GY 1.97		
278 -0.9141 GY 1.78 278 -0.7734 GY 1.97		
278 -0.7734 GY 1.97		
278 -0.6328 GY 2.15		
278 -0.4922 GY 2.34		
278 -0.3516 GY 2.53		
278 -0.2109 GY 2.71		
278 -0.0703 GY 2.88		
8 -0.0703 GY 0.12		
8 -0.2109 GY 0.29		
8 -0.3516 GY 0.47		
8 -0.4922 GY 0.66		
8 -0.6328 GY 0.85		
8 -0.7734 GY 1.03		
8 -0.9141 GY 1.22		
8 -1.0547 GY 1.41		
8 -1.0547 GY 1.59		
8 -0.9141 GY 1.78		

							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 000000	,	,	
ST	AAD SPACE			PAGE NO	o. :	30					
	8	-0.7734 GY	1.97								
		-0.6328 GY	2.15								
		-0.4922 GY	2.34								
		-0.3516 GY	2.52								
		-0.2109 GY	2.71								
		-0.0703 GY	2.87								
28		-0.0703 GY	0.12								
28		-0.2109 GY	0.29								
28		-0.3516 GY	0.47								
28		-0.4922 GY	0.66								
28		-0.6328 GY	0.85								
28		-0.7734 GY	1.03								
28		-0.9141 GY	1.22								
28		-1.0547 GY	1.41								
28		-1.0547 GY	1.59								
28		-0.9141 GY	1.78								
28		-0.9141 G1 -0.7734 GY	1.97								
28		-0.6328 GY	2.15								
28		-0.4922 GY	2.34								
28		-0.4922 G1 -0.3516 GY	2.53								
28			2.71								
		-0.2109 GY									
28		-0.0703 GY	2.88								
6		-0.0703 GY	0.12								
		-0.2109 GY	0.29								
		-0.3516 GY	0.47								
		-0.4922 GY	0.66 0.85								
		-0.6328 GY	1.03								
		-0.7734 GY									
		-0.9141 GY	1.22 1.41								
		-1.0547 GY -1.0547 GY	1.59								
			1.78								
		-0.9141 GY -0.7734 GY	1.97								
		-0.6328 GY	2.15								
		-0.4922 GY	2.34								
		-0.4922 G1 -0.3516 GY	2.52								
		-0.2109 GY	2.71								
		-0.0703 GY	2.87								
27		-0.0703 GY	0.12								
27		-0.2109 GY	0.29								
27		-0.3516 GY	0.47								
27		-0.4922 GY	0.66								
27		-0.6328 GY	0.85								
27		-0.7734 GY	1.03								
27		-0.9141 GY	1.22								
27		-1.0547 GY	1.41								
27		-1.0547 GY	1.59								
27		-0.9141 GY	1.78								
27		-0.7734 GY	1.97								
27		-0.6328 GY	2.15								
27		-0.4922 GY	2.34								
27		-0.4922 G1 -0.3516 GY	2.53								
27		-0.2109 GY	2.71								
27		-0.2109 G1 -0.0703 GY	2.88								
		-0.0703 G1 -0.0703 GY	0.12								
		-0.2109 GY	0.29								
J		J.2107 GI	J.27								

							Monday,	October	26,	2020,	10:07	Α
STAAD SPACE				PAGE	NO.	31						
59	-0.351	.6 GY	0.47									
59	-0.492		0.66									
59	-0.632		0.85									
59	-0.773	4 GY	1.03									
59	-0.914	1 GY	1.22									
59	-1.054	7 GY	1.41									
59	-1.054	7 GY	1.59									
59	-0.914	1 GY	1.78									
59	-0.773	34 GY	1.97									
59	-0.632		2.15									
59	-0.492	22 GY	2.34									
59	-0.351	.6 GY	2.53									
59	-0.210	9 GY	2.71									
59	-0.070	3 GY	2.88									
307	-0.070		0.12									
307	-0.210		0.29									
307	-0.351		0.47									
307	-0.492		0.66									
307	-0.632		0.85									
307	-0.773		1.03									
307	-0.914		1.22									
307	-1.054		1.41									
307	-1.054		1.59									
307	-0.914		1.78									
307	-0.773		1.97									
307	-0.632		2.15									
307	-0.492		2.34									
307 307	-0.351		2.53									
307	-0.210 -0.070		2.71									
113	-0.070		0.12									
113	-0.210		0.29									
113	-0.351		0.47									
113	-0.492		0.66									
113	-0.632		0.85									
113	-0.773		1.03									
113	-0.914		1.22									
113	-1.054		1.41									
113	-1.054		1.59									
113	-0.914	1 GY	1.78									
113	-0.773	4 GY	1.97									
113	-0.632	8 GY	2.15									
113	-0.492	22 GY	2.34									
113	-0.351	6 GY	2.53									
113	-0.210	9 GY	2.71									
113	-0.070	3 GY	2.88									
306	-0.070		0.12									
306	-0.210		0.29									
306	-0.351		0.47									
306	-0.492		0.66									
306	-0.632		0.85									
306	-0.773		1.03									
306	-0.914		1.22									
306	-1.054		1.41									
306	-1.054		1.59									
306	-0.914	I GY	1.78									

				momay,	october	20,	2020,	10.07
STAAD SPACE		PAGE NO.	32					
205	0.5504.64.4.05							
306	-0.7734 GY 1.97							
306 306	-0.6328 GY 2.15 -0.4922 GY 2.34							
306	-0.4922 G1 2.54 -0.3516 GY 2.53							
306	-0.2109 GY 2.71							
306	-0.0703 GY 2.88							
60	-0.0703 GY 0.12							
60	-0.2109 GY 0.29							
60	-0.3516 GY 0.47							
60	-0.4922 GY 0.66							
60	-0.6328 GY 0.85							
60	-0.7734 GY 1.03							
60	-0.9141 GY 1.22							
60	-1.0547 GY 1.41							
60	-1.0547 GY 1.59							
60	-0.9141 GY 1.78							
60	-0.7734 GY 1.97							
60	-0.6328 GY 2.15							
60	-0.4922 GY 2.34							
60 60	-0.3516 GY 2.53							
60	-0.2109 GY 2.71 -0.0703 GY 2.88							
308	-0.0703 GY 2.88 -0.0703 GY 0.12							
308	-0.2109 GY 0.29							
308	-0.3516 GY 0.47							
308	-0.4922 GY 0.66							
308	-0.6328 GY 0.85							
308	-0.7734 GY 1.03							
308	-0.9141 GY 1.22							
308	-1.0547 GY 1.41							
308	-1.0547 GY 1.59							
308	-0.9141 GY 1.78							
308	-0.7734 GY 1.97							
308	-0.6328 GY 2.15							
308	-0.4922 GY 2.34							
308	-0.3516 GY 2.53							
308	-0.2109 GY 2.71							
308	-0.0703 GY 2.88							
114	-0.0703 GY 0.12							
114	-0.2109 GY 0.29							
114 114	-0.3516 GY 0.47 -0.4922 GY 0.66							
114	-0.6328 GY 0.85							
114	-0.0320 G1 0.03 -0.7734 GY 1.03							
114	-0.9141 GY 1.22							
114	-1.0547 GY 1.41							
114	-1.0547 GY 1.59							
114	-0.9141 GY 1.78							
114	-0.7734 GY 1.97							
114	-0.6328 GY 2.15							
114	-0.4922 GY 2.34							
114	-0.3516 GY 2.53							
114	-0.2109 GY 2.71							
114	-0.0703 GY 2.88							
307	-0.0703 GY 0.12							
307	-0.2109 GY 0.29							

					11011441,	000000	_ ,	٠,
STAAD SPACE			PAGE NO.	33				
307	-0.3516 GY	0.47						
307	-0.4922 GY	0.66						
307		0.85						
	-0.6328 GY							
307	-0.7734 GY	1.03						
307	-0.9141 GY	1.22						
307	-1.0547 GY	1.41						
307	-1.0547 GY	1.59						
307	-0.9141 GY	1.78						
307	-0.7734 GY	1.97						
307	-0.6328 GY	2.15						
307	-0.4922 GY	2.34						
307	-0.3516 GY	2.53						
307	-0.2109 GY	2.71						
307	-0.0703 GY	2.88						
61	-0.0703 GY	0.13						
61	-0.2109 GY	0.29						
61	-0.3516 GY	0.48						
61	-0.4922 GY	0.66						
61	-0.6328 GY	0.85						
61	-0.7734 GY	1.03						
61	-0.9141 GY	1.22						
	-1.0547 GY							
61		1.41						
61	-1.0547 GY	1.59						
61	-0.9141 GY	1.78						
61	-0.7734 GY	1.97						
61	-0.6328 GY	2.15						
61	-0.4922 GY	2.34						
61	-0.3516 GY	2.53						
61	-0.2109 GY	2.71						
61	-0.0703 GY	2.88						
309	-0.0703 GY	0.12						
309	-0.2109 GY	0.29						
309	-0.3516 GY	0.47						
309	-0.4922 GY	0.66						
309	-0.6328 GY	0.85						
309	-0.7734 GY	1.03						
309	-0.9141 GY	1.22						
309	-1.0547 GY	1.41						
309	-1.0547 GY	1.59						
309	-0.9141 GY	1.78						
309	-0.7734 GY	1.97						
309	-0.6328 GY	2.15						
309	-0.4922 GY	2.34						
309	-0.3516 GY	2.53						
309	-0.2109 GY	2.71						
309	-0.0703 GY	2.88						
115	-0.0703 GY	0.13						
115	-0.2109 GY	0.29						
115	-0.3516 GY	0.48						
115	-0.4922 GY	0.66						
115	-0.6328 GY	0.85						
115	-0.7734 GY	1.03						
115	-0.9141 GY	1.22						
115	-1.0547 GY	1.41						
115	-1.0547 GY	1.59						
115	-0.9141 GY	1.78						
110	0.9141 GI	1.10						

					- ·	
STAAD SPACE			PAGE NO.	34		
115	-0.7734 GY	1.97				
115	-0.6328 GY	2.15				
115	-0.4922 GY	2.34				
115	-0.3516 GY	2.53				
115	-0.2109 GY	2.71				
115	-0.0703 GY	2.88				
308	-0.0703 GY	0.12				
308	-0.2109 GY	0.29				
308	-0.3516 GY	0.47				
308	-0.4922 GY	0.66				
308	-0.6328 GY	0.85				
308	-0.7734 GY	1.03				
308	-0.9141 GY	1.22				
308	-1.0547 GY	1.41				
308	-1.0547 GY	1.59				
308	-0.9141 GY	1.78				
308	-0.7734 GY	1.97				
308	-0.6328 GY	2.15				
308	-0.4922 GY	2.34				
308	-0.3516 GY	2.53				
308	-0.2109 GY	2.71				
308	-0.0703 GY	2.88				
62	-0.0703 GY	0.12				
62	-0.2109 GY	0.29				
62	-0.3516 GY	0.47				
62	-0.4922 GY	0.66				
62	-0.6328 GY	0.85				
62	-0.7734 GY	1.03				
62	-0.9141 GY	1.22				
62	-1.0547 GY	1.41				
62	-1.0547 GY	1.59				
62	-0.9141 GY	1.78				
62	-0.7734 GY	1.97				
62	-0.6328 GY	2.15				
62	-0.4922 GY	2.34				
62	-0.3516 GY	2.52				
62	-0.2109 GY	2.71				
62	-0.0703 GY	2.87				
310	-0.0703 GY	0.12				
310	-0.2109 GY	0.29				
310	-0.3516 GY	0.47				
310	-0.4922 GY	0.66				
310	-0.6328 GY	0.85				
310	-0.7734 GY	1.03				
310	-0.7734 GI	1.22				
310	-1.0547 GY					
		1.41				
310	-1.0547 GY	1.59				
310	-0.9141 GY	1.78				
310	-0.7734 GY	1.97				
310	-0.6328 GY	2.15				
310	-0.4922 GY	2.34				
310	-0.3516 GY	2.53				
310	-0.2109 GY	2.71				
310	-0.0703 GY	2.88				
116	-0.0703 GY	0.12				
116	-0.2109 GY	0.29				

					monday,	OCCODEI	20, 2	202
STAAD SPACE			 PAGE NO.	35				
116	-0.3516 GY	0.47						
116	-0.4922 GY	0.66						
116	-0.6328 GY	0.85						
116	-0.7734 GY	1.03						
116	-0.9141 GY	1.22						
116	-1.0547 GY	1.41						
116	-1.0547 GY	1.59						
116	-0.9141 GY	1.78						
116	-0.7734 GY	1.97						
116	-0.6328 GY -0.4922 GY	2.15						
116		2.34						
116	-0.3516 GY	2.52						
116	-0.2109 GY	2.71						
116	-0.0703 GY	2.87						
309	-0.0703 GY	0.12						
309	-0.2109 GY	0.29						
309	-0.3516 GY	0.47						
309	-0.4922 GY	0.66						
309	-0.6328 GY	0.85						
309	-0.7734 GY	1.03						
309	-0.9141 GY	1.22						
309	-1.0547 GY	1.41						
309	-1.0547 GY	1.59						
309 309	-0.9141 GY -0.7734 GY	1.78 1.97						
309	-0.6328 GY	2.15						
309	-0.4922 GY	2.34						
309	-0.3516 GY	2.53						
309	-0.2109 GY	2.71						
309	-0.0703 GY	2.88						
113	-0.0703 GY	0.12						
113	-0.2109 GY	0.29						
113	-0.3516 GY	0.47						
113	-0.4922 GY	0.66						
113	-0.6328 GY	0.85						
113	-0.7734 GY	1.03						
113	-0.9141 GY	1.22						
113	-1.0547 GY	1.41						
113	-1.0547 GY	1.59						
113	-0.9141 GY	1.78						
113	-0.7734 GY	1.97						
113	-0.6328 GY	2.15						
113	-0.4922 GY	2.34						
113	-0.3516 GY	2.53						
113	-0.2109 GY	2.71						
113	-0.0703 GY	2.88						
337	-0.0703 GY	0.13						
337	-0.2109 GY	0.29						
337	-0.3516 GY	0.48						
337	-0.4922 GY	0.66						
337	-0.6328 GY	0.85						
337	-0.7734 GY	1.03						
337	-0.9141 GY	1.22						
337	-1.0547 GY	1.41						
337	-1.0547 GY	1.59						
337	-0.9141 GY	1.78						

					, ,	0000001	,	,
STAAD SPACE			PAGE NO.	36				
337	-0.7734 GY	1.97						
337	-0.6328 GY	2.15						
337	-0.4922 GY	2.34						
337	-0.3516 GY	2.53						
337	-0.2109 GY	2.71						
337	-0.0703 GY	2.88						
167	-0.0703 GY	0.12						
167	-0.2109 GY	0.29						
167	-0.2109 G1 -0.3516 GY	0.47						
167								
167	-0.4922 GY	0.66						
	-0.6328 GY	0.85						
167	-0.7734 GY	1.03						
167 167	-0.9141 GY	1.22						
167	-1.0547 GY	1.41						
	-1.0547 GY	1.59						
167	-0.9141 GY	1.78						
167	-0.7734 GY	1.97						
167	-0.6328 GY	2.15						
167	-0.4922 GY	2.34						
167	-0.3516 GY	2.53						
167	-0.2109 GY	2.71						
167	-0.0703 GY	2.88						
336	-0.0703 GY	0.13						
336	-0.2109 GY	0.29						
336 336	-0.3516 GY -0.4922 GY	0.48						
336	-0.4922 G1 -0.6328 GY	0.85						
336	-0.7734 GY	1.03						
336	-0.7734 G1 -0.9141 GY	1.22						
336	-1.0547 GY	1.41						
336	-1.0547 GY	1.59						
336	-0.9141 GY	1.78						
336	-0.7734 GY	1.97						
336	-0.6328 GY	2.15						
336	-0.4922 GY	2.34						
336	-0.3516 GY	2.53						
336	-0.2109 GY	2.71						
336	-0.0703 GY	2.88						
114	-0.0703 GY	0.12						
114	-0.2109 GY	0.29						
114	-0.3516 GY	0.47						
114	-0.4922 GY	0.66						
114	-0.6328 GY	0.85						
114	-0.7734 GY	1.03						
114	-0.9141 GY	1.22						
114	-1.0547 GY	1.41						
114	-1.0547 GY	1.59						
114	-0.9141 GY	1.78						
114	-0.7734 GY	1.97						
114	-0.6328 GY	2.15						
114	-0.4922 GY	2.34						
114	-0.3516 GY	2.53						
114	-0.2109 GY	2.71						
114	-0.0703 GY	2.88						
338	-0.0703 GY	0.13						
338	-0.2109 GY	0.29						

					monday,	octobel	20,	2020,	10.07 A
STAAD SPACE			PAGE NO.	37					
338	-0.3516 GY	0.48							
338	-0.4922 GY	0.66							
338	-0.6328 GY	0.85							
338	-0.7734 GY	1.03							
338	-0.9141 GY	1.22							
338	-1.0547 GY	1.41							
338	-1.0547 GY	1.59							
338	-0.9141 GY	1.78							
338	-0.7734 GY	1.97							
338	-0.6328 GY	2.15							
338	-0.4922 GY	2.34							
338	-0.3516 GY	2.53							
338	-0.2109 GY	2.71							
338	-0.0703 GY	2.88							
168	-0.0703 GY	0.12							
168	-0.2109 GY	0.29							
168	-0.3516 GY	0.47							
168	-0.4922 GY	0.66							
168	-0.6328 GY	0.85							
168	-0.7734 GY	1.03							
168	-0.9141 GY	1.22							
168	-1.0547 GY	1.41							
168	-1.0547 GY	1.59							
168	-0.9141 GY	1.78							
168	-0.7734 GY	1.97							
168	-0.6328 GY	2.15							
168	-0.4922 GY	2.34							
168	-0.3516 GY	2.53							
168	-0.2109 GY	2.71							
168	-0.0703 GY	2.88							
337	-0.0703 GY	0.13							
337	-0.2109 GY	0.29							
337	-0.3516 GY	0.48							
337	-0.4922 GY	0.66							
337	-0.6328 GY	0.85							
337	-0.7734 GY	1.03							
337	-0.9141 GY	1.22							
337	-1.0547 GY	1.41							
337	-1.0547 GY	1.59							
337	-0.9141 GY	1.78							
337	-0.7734 GY	1.97							
337	-0.6328 GY	2.15							
337	-0.4922 GY	2.34							
337	-0.3516 GY	2.53							
337	-0.2109 GY	2.71							
337	-0.0703 GY	2.88							
115	-0.0703 GY	0.13							
115	-0.2109 GY	0.29							
115	-0.3516 GY	0.48							
115	-0.4922 GY	0.66							
115	-0.6328 GY	0.85							
115	-0.7734 GY	1.03							
115	-0.9141 GY	1.22							
115	-1.0547 GY	1.41							
115	-1.0547 GY	1.59							
115	-0.9141 GY	1.78							

					, ,	000000	,	,	
STAAD SPACE			PAGE NO.	38					
115	-0.7734 GY	1.97							
115	-0.6328 GY	2.15							
115	-0.4922 GY	2.34							
115	-0.3516 GY	2.53							
115	-0.2109 GY	2.71							
115	-0.0703 GY	2.88							
339	-0.0703 GY	0.13							
339	-0.2109 GY	0.29							
339	-0.3516 GY	0.48							
339	-0.4922 GY	0.66							
339									
339	-0.6328 GY	0.85							
	-0.7734 GY	1.03							
339	-0.9141 GY	1.22							
339	-1.0547 GY	1.41							
339	-1.0547 GY	1.59							
339	-0.9141 GY	1.78							
339	-0.7734 GY	1.97							
339	-0.6328 GY	2.15							
339	-0.4922 GY	2.34							
339	-0.3516 GY	2.53							
339	-0.2109 GY	2.71							
339	-0.0703 GY	2.88							
169	-0.0703 GY	0.13							
169	-0.2109 GY	0.29							
169	-0.3516 GY	0.48							
169	-0.4922 GY	0.66							
169	-0.6328 GY	0.85							
169	-0.7734 GY	1.03							
169	-0.9141 GY	1.22							
169	-1.0547 GY	1.41							
169	-1.0547 GY	1.59							
169	-0.9141 GY	1.78							
169	-0.7734 GY	1.97							
169	-0.6328 GY	2.15							
169	-0.4922 GY	2.34							
169	-0.3516 GY	2.53							
169	-0.2109 GY	2.71							
169	-0.0703 GY	2.88							
338	-0.0703 GY	0.13							
338	-0.2109 GY	0.29							
338	-0.3516 GY	0.48							
338	-0.4922 GY	0.66							
338	-0.6328 GY	0.85							
338	-0.7734 GY	1.03							
338	-0.9141 GY	1.22							
338	-1.0547 GY	1.41							
338	-1.0547 GY	1.59							
338	-0.9141 GY	1.78							
338	-0.7734 GY	1.97							
338	-0.6328 GY	2.15							
338	-0.4922 GY	2.34							
338	-0.3516 GY	2.53							
338	-0.2109 GY	2.71							
338	-0.0703 GY	2.88							
116	-0.0703 GY	0.12							
116	-0.2109 GY	0.29							

					, ,	0000001	,	2020,	
STAAD SPACE			PAGE NO.	39					
116	-0.3516 GY	0.47							
116	-0.4922 GY	0.66							
116	-0.6328 GY	0.85							
116	-0.7734 GY	1.03							
116	-0.9141 GY	1.22							
116	-1.0547 GY	1.41							
116	-1.0547 GY	1.59							
116	-0.9141 GY	1.78							
116	-0.7734 GY	1.97							
116	-0.6328 GY	2.15							
116	-0.4922 GY	2.34							
116	-0.3516 GY	2.52							
116	-0.2109 GY	2.71							
116	-0.0703 GY	2.87							
340	-0.0703 GY	0.13							
340	-0.2109 GY	0.29							
340	-0.3516 GY	0.48							
340	-0.4922 GY	0.66							
340	-0.6328 GY	0.85							
340	-0.7734 GY	1.03							
340	-0.9141 GY	1.22							
340	-1.0547 GY	1.41							
340	-1.0547 GY	1.59							
340	-0.9141 GY	1.78							
340	-0.7734 GY	1.97							
340	-0.6328 GY	2.15							
340	-0.4922 GY	2.34							
340	-0.3516 GY	2.53							
340	-0.2109 GY	2.71							
340	-0.2109 G1 -0.0703 GY	2.88							
170	-0.0703 GY	0.12							
170	-0.2109 GY	0.29							
170	-0.3516 GY	0.47							
170	-0.4922 GY	0.66							
170	-0.6328 GY	0.85							
170	-0.7734 GY	1.03							
170	-0.9141 GY	1.22							
170	-1.0547 GY	1.41							
170	-1.0547 GY	1.59							
170	-0.9141 GY	1.78							
170	-0.7734 GY	1.97							
170	-0.6328 GY	2.15							
170	-0.4922 GY	2.34							
170	-0.3516 GY	2.52							
170	-0.2109 GY	2.71							
170	-0.0703 GY	2.87							
339	-0.0703 GY	0.13							
339	-0.2109 GY	0.29							
339	-0.3516 GY	0.48							
339	-0.4922 GY	0.66							
339	-0.6328 GY	0.85							
339	-0.7734 GY	1.03							
339	-0.9141 GY	1.22							
339	-1.0547 GY	1.41							
339	-1.0547 GY	1.59							
339	-0.9141 GY	1.78							
		• • •							

					Monday,	October	26,	2020,	10:07
STAAD SPACE			PAGE NO.	40					
339	-0.7734 GY	1.97							
339	-0.6328 GY	2.15							
339	-0.4922 GY	2.34							
339	-0.3516 GY	2.53							
339	-0.2109 GY	2.71							
339	-0.0703 GY	2.88							
167	-0.0703 GY	0.12							
167	-0.2109 GY	0.29							
167	-0.3516 GY	0.47							
167 167	-0.4922 GY -0.6328 GY	0.66 0.85							
167	-0.7734 GY	1.03							
167	-0.7734 G1 -0.9141 GY	1.22							
167	-1.0547 GY	1.41							
167	-1.0547 GY	1.59							
167	-0.9141 GY	1.78							
167	-0.7734 GY	1.97							
167	-0.6328 GY	2.15							
167	-0.4922 GY	2.34							
167	-0.3516 GY	2.53							
167	-0.2109 GY	2.71							
167	-0.0703 GY	2.88							
367	-0.0703 GY	0.12							
367	-0.2109 GY	0.29							
367	-0.3516 GY	0.47							
367	-0.4922 GY	0.66							
367	-0.6328 GY	0.85							
367	-0.7734 GY	1.03							
367	-0.9141 GY	1.22							
367	-1.0547 GY	1.41							
367	-1.0547 GY	1.59							
367	-0.9141 GY	1.78							
367	-0.7734 GY	1.97							
367	-0.6328 GY	2.15							
367	-0.4922 GY	2.34							
367	-0.3516 GY	2.52							
367	-0.2109 GY	2.71							
367	-0.0703 GY	2.87							
221	-0.0703 GY	0.12							
221	-0.2109 GY								
221	-0.3516 GY	0.47							
221	-0.4922 GY	0.66							
221	-0.6328 GY	0.85							
221	-0.7734 GY	1.03							
221	-0.9141 GY	1.22							
221	-1.0547 GY	1.41							
221	-1.0547 GY	1.59							
221 221	-0.9141 GY -0.7734 GY	1.78 1.97							
221	-0.7734 G1 -0.6328 GY	2.15							
221	-0.4922 GY	2.34							
221	-0.4922 G1 -0.3516 GY	2.53							
221	-0.2109 GY	2.71							
221	-0.0703 GY	2.88							
366	-0.0703 GY	0.12							
366	-0.2109 GY	0.29							

					, ,	0000001	,	,	
STAAD SPACE			PAGE NO.	41					
366	-0.3516 GY	0.47							
366	-0.4922 GY	0.66							
366	-0.6328 GY	0.85							
366	-0.7734 GY	1.03							
366	-0.9141 GY	1.22							
366	-1.0547 GY	1.41							
366	-1.0547 GY	1.59							
366	-0.9141 GY	1.78							
366	-0.7734 GY	1.97							
366	-0.6328 GY	2.15							
366	-0.4922 GY	2.34							
366	-0.3516 GY	2.52							
366	-0.2109 GY	2.71							
366	-0.0703 GY	2.87							
168	-0.0703 GY	0.12							
168	-0.2109 GY	0.29							
168	-0.3516 GY	0.47							
168	-0.4922 GY	0.66							
168	-0.6328 GY	0.85							
168	-0.7734 GY	1.03							
168	-0.9141 GY	1.22							
168	-1.0547 GY	1.41							
168	-1.0547 GY	1.59							
168	-0.9141 GY	1.78							
168	-0.7734 GY	1.97							
168	-0.6328 GY	2.15							
168	-0.4922 GY	2.34							
168	-0.3516 GY	2.53							
168	-0.2109 GY	2.71							
168	-0.0703 GY	2.88							
368	-0.0703 GY	0.12							
368	-0.2109 GY	0.29							
368	-0.3516 GY	0.47							
368	-0.4922 GY	0.66							
368	-0.6328 GY	0.85							
368	-0.7734 GY	1.03							
368	-0.9141 GY	1.22							
368	-1.0547 GY	1.41							
368	-1.0547 GY	1.59							
368	-0.9141 GY	1.78							
368	-0.7734 GY	1.97							
368	-0.6328 GY	2.15							
368	-0.4922 GY	2.34							
368	-0.3516 GY	2.52							
368	-0.2109 GY	2.71							
368	-0.0703 GY	2.87							
222	-0.0703 GY	0.12							
222	-0.2109 GY	0.29							
222	-0.2109 G1 -0.3516 GY	0.47							
222	-0.4922 GY	0.47							
222									
	-0.6328 GY	0.85							
222	-0.7734 GY	1.03							
222	-0.9141 GY	1.22							
222	-1.0547 GY	1.41							
222	-1.0547 GY	1.59							
222	-0.9141 GY	1.78							

					Monday,	October	26,	2020,	10:07
STAAD SPACE			PAGE NO.	42					
222	-0.7734 GY	1.97							
222	-0.6328 GY -0.4922 GY	2.15							
222 222	-0.4922 GY	2.34							
222	-0.3316 GY	2.53 2.71							
222	-0.2109 GY	2.88							
367	-0.0703 GY	0.12							
367	-0.2109 GY	0.29							
367	-0.3516 GY	0.47							
367	-0.4922 GY	0.66							
367	-0.6328 GY	0.85							
367	-0.7734 GY	1.03							
367	-0.9141 GY	1.22							
367	-1.0547 GY	1.41							
367	-1.0547 GY	1.59							
367	-0.9141 GY	1.78							
367	-0.7734 GY	1.97							
367	-0.6328 GY	2.15							
367	-0.4922 GY	2.34							
367	-0.3516 GY	2.52							
367	-0.2109 GY	2.71							
367	-0.0703 GY	2.87							
169	-0.0703 GY	0.13							
169	-0.2109 GY	0.29							
169	-0.3516 GY	0.48							
169	-0.4922 GY	0.66							
169	-0.6328 GY	0.85							
169	-0.7734 GY	1.03							
169	-0.9141 GY	1.22							
169	-1.0547 GY	1.41							
169	-1.0547 GY	1.59							
169 169	-0.9141 GY -0.7734 GY	1.78 1.97							
169	-0.6328 GY	2.15							
169	-0.4922 GY	2.34							
169	-0.3516 GY	2.53							
169	-0.2109 GY	2.71							
169	-0.0703 GY	2.88							
369	-0.0703 GY	0.12							
369	-0.2109 GY								
369	-0.3516 GY	0.47							
369	-0.4922 GY	0.66							
369	-0.6328 GY	0.85							
369	-0.7734 GY	1.03							
369	-0.9141 GY	1.22							
369	-1.0547 GY	1.41							
369	-1.0547 GY	1.59							
369	-0.9141 GY	1.78							
369	-0.7734 GY	1.97							
369	-0.6328 GY	2.15							
369	-0.4922 GY	2.34							
369	-0.3516 GY	2.52							
369	-0.2109 GY	2.71							
369	-0.0703 GY	2.87							
223	-0.0703 GY	0.13							
223	-0.2109 GY	0.29							

					monday,	october	20,	2020,	10.07	77
STAAD SPACE			PAGE NO.	43						
223	-0.3516 GY	0.48								
223	-0.4922 GY	0.66								
223	-0.6328 GY	0.85								
223	-0.7734 GY	1.03								
223	-0.9141 GY	1.22								
223	-1.0547 GY	1.41								
223	-1.0547 GY	1.59								
223	-0.9141 GY	1.78								
223	-0.7734 GY	1.97								
223	-0.6328 GY	2.15								
223	-0.4922 GY	2.34								
223	-0.3516 GY	2.53								
223	-0.2109 GY	2.71								
223	-0.0703 GY	2.88								
368	-0.0703 GY	0.12								
368	-0.2109 GY	0.29								
368	-0.3516 GY	0.47								
368	-0.4922 GY	0.66								
368	-0.6328 GY	0.85								
368	-0.7734 GY	1.03								
368	-0.9141 GY	1.22								
368	-1.0547 GY	1.41								
368	-1.0547 GY	1.59								
368	-0.9141 GY	1.78								
368	-0.7734 GY	1.97								
368	-0.6328 GY	2.15								
368	-0.4922 GY	2.34								
368	-0.3516 GY	2.52								
368	-0.2109 GY	2.71								
368	-0.0703 GY	2.87								
170	-0.0703 GY	0.12								
170	-0.2109 GY	0.29								
170	-0.3516 GY	0.47								
170	-0.4922 GY	0.66								
170	-0.6328 GY	0.85								
170 170	-0.7734 GY	1.03								
170	-0.9141 GY -1.0547 GY	1.22 1.41								
170	-1.0547 GY	1.59								
170		1.78								
170	-0.7734 GY	1.97								
170	-0.6328 GY	2.15								
170	-0.4922 GY	2.34								
170	-0.3516 GY	2.52								
170	-0.2109 GY	2.71								
170	-0.0703 GY	2.87								
370	-0.0703 GY	0.12								
370	-0.2109 GY	0.29								
370	-0.3516 GY	0.47								
370	-0.4922 GY	0.66								
370	-0.6328 GY	0.85								
370	-0.7734 GY	1.03								
370	-0.9141 GY	1.22								
370	-1.0547 GY	1.41								
370	-1.0547 GY	1.59								
370	-0.9141 GY	1.78								

					11011447,	000000	,
STAAD SPACE			PAGE NO.	44			
370	-0.7734 GY	1.97					
370	-0.6328 GY	2.15					
370	-0.4922 GY	2.34					
370	-0.3516 GY	2.52					
370	-0.2109 GY	2.71					
370	-0.0703 GY	2.87					
224	-0.0703 GY	0.12					
224	-0.2109 GY	0.29					
224	-0.3516 GY	0.47					
224	-0.4922 GY	0.66					
224	-0.6328 GY	0.85					
224	-0.7734 GY	1.03					
224	-0.9141 GY	1.22					
224	-1.0547 GY	1.41					
224	-1.0547 GY	1.59					
224	-0.9141 GY	1.78					
224	-0.7734 GY	1.97					
224	-0.6328 GY	2.15					
224	-0.4922 GY	2.34					
224	-0.3516 GY	2.52					
224	-0.2109 GY	2.71					
224	-0.0703 GY	2.87					
369	-0.0703 GY	0.12					
369	-0.2109 GY	0.29					
369	-0.3516 GY	0.47					
369	-0.4922 GY	0.66					
369	-0.6328 GY	0.85					
369	-0.7734 GY	1.03					
369	-0.9141 GY	1.22					
369	-1.0547 GY	1.41					
369	-1.0547 GY	1.59					
369	-0.9141 GY	1.78					
369	-0.7734 GY	1.97					
369	-0.6328 GY	2.15					
369	-0.4922 GY	2.34					
369	-0.3516 GY	2.52					
369	-0.2109 GY	2.71					
369	-0.0703 GY	2.87					
9	-0.0703 GY	0.12					
9	-0.2109 GY	0.29					
9	-0.3516 GY	0.47					
9	-0.4922 GY -0.6328 GY	0.66					
9	-0.8328 G1 -0.7734 GY	0.85 1.03					
9	-0.7734 G1 -0.9141 GY	1.03					
9	-1.0547 GY	1.41					
9	-1.0547 GY	1.59					
9	-0.9141 GY	1.78					
9	-0.7734 GY	1.97					
9	-0.6328 GY	2.15					
9	-0.4922 GY	2.34					
9	-0.4322 G1 -0.3516 GY	2.53					
9	-0.2109 GY	2.71					
9	-0.0703 GY	2.88					
282	-0.0703 GY	0.12					
282	-0.2109 GY	0.29					
	3.2233 01						

						, remain	000000	, _
STAAD SPACE			PAGE N	0.	45			
282	-0.3516 GY	0.47						
282	-0.4922 GY	0.66						
282	-0.6328 GY	0.85						
282	-0.7734 GY	1.03						
282	-0.9141 GY	1.22						
282	-1.0547 GY	1.41						
282	-1.0547 GY	1.59						
282	-0.9141 GY	1.78						
282	-0.7734 GY	1.97						
282	-0.6328 GY	2.15						
282	-0.4922 GY	2.34						
282	-0.3516 GY	2.53						
282	-0.2109 GY	2.71						
282	-0.0703 GY	2.88						
63	-0.0703 GY	0.12						
63	-0.2109 GY	0.29						
	-0.3516 GY							
63		0.47						
63	-0.4922 GY	0.66						
63	-0.6328 GY	0.85						
63	-0.7734 GY	1.03						
63	-0.9141 GY	1.22						
63	-1.0547 GY	1.41						
63	-1.0547 GY	1.59						
63	-0.9141 GY	1.78						
63	-0.7734 GY	1.97						
63	-0.6328 GY	2.15						
63	-0.4922 GY	2.34						
63	-0.3516 GY	2.53						
63	-0.2109 GY	2.71						
63	-0.0703 GY	2.88						
281	-0.0703 GY	0.12						
281	-0.2109 GY	0.29						
281	-0.3516 GY	0.47						
281	-0.4922 GY	0.66						
281	-0.6328 GY	0.85						
281	-0.7734 GY	1.03						
281	-0.9141 GY	1.22						
281	-1.0547 GY	1.41						
281	-1.0547 GY	1.59						
281	-0.9141 GY	1.78						
281	-0.7734 GY	1.97						
281	-0.6328 GY	2.15						
281	-0.4922 GY	2.34						
281	-0.3516 GY	2.53						
281	-0.2109 GY	2.71						
281	-0.0703 GY	2.88						
10	-0.0703 GY	0.12						
10	-0.2109 GY	0.29						
10	-0.3516 GY	0.47						
10	-0.4922 GY	0.66						
10	-0.6328 GY	0.85						
10	-0.7734 GY	1.03						
10	-0.9141 GY	1.22						
10	-1.0547 GY	1.41						
10	-1.0547 GY	1.59						
10	-0.9141 GY	1.78						

					11011447,	000000	,	
STAAD SPACE			PAGE NO.	46				
10	-0.7734 GY	1.97						
10	-0.6328 GY	2.15						
10	-0.4922 GY	2.34						
10	-0.3516 GY	2.53						
10	-0.2109 GY	2.71						
10	-0.0703 GY	2.88						
283	-0.0703 GY	0.12						
283	-0.2109 GY	0.12						
283	-0.3516 GY	0.47						
283	-0.4922 GY	0.66						
283	-0.6328 GY	0.85						
283	-0.7734 GY	1.03						
283	-0.9141 GY	1.22						
283	-1.0547 GY	1.41						
283	-1.0547 GY	1.59						
283	-0.9141 GY	1.78						
283	-0.7734 GY	1.97						
283	-0.6328 GY	2.15						
283	-0.4922 GY	2.34						
283	-0.3516 GY	2.53						
283	-0.2109 GY	2.71						
283	-0.0703 GY	2.88						
64	-0.0703 GY	0.12						
64	-0.2109 GY	0.29						
64	-0.3516 GY	0.47						
64	-0.4922 GY	0.66						
64	-0.6328 GY	0.85						
64	-0.7734 GY	1.03						
64	-0.7734 G1 -0.9141 GY	1.22						
64	-1.0547 GY	1.41						
64	-1.0547 GY	1.59						
64	-0.9141 GY	1.78						
64	-0.7734 GY	1.97						
64	-0.6328 GY	2.15						
64	-0.4922 GY	2.34						
64	-0.3516 GY	2.53						
64	-0.2109 GY	2.71						
64	-0.0703 GY	2.88						
282	-0.0703 GY	0.12						
282	-0.2109 GY	0.29						
282	-0.3516 GY	0.47						
282	-0.4922 GY	0.66						
282	-0.6328 GY	0.85						
282	-0.7734 GY	1.03						
282	-0.9141 GY	1.22						
282	-1.0547 GY	1.41						
282	-1.0547 GY	1.59						
282	-0.9141 GY	1.78						
282	-0.7734 GY	1.97						
282	-0.6328 GY	2.15						
282	-0.4922 GY	2.34						
282	-0.3516 GY	2.53						
282	-0.2109 GY	2.71						
282	-0.0703 GY	2.88						
11	-0.0703 GY	0.13						
11	-0.0703 GY -0.2109 GY	0.13						
т т	-0.2109 GI	0.23						

					monday,	OCTODEI	20, 202	0, 10.07
STAAD SPACE			PAGE NO.	47				
11	-0.3516 GY	0.48						
11	-0.4922 GY	0.66						
11	-0.6328 GY	0.85						
11	-0.7734 GY	1.03						
11	-0.9141 GY	1.22						
11	-1.0547 GY	1.41						
11	-1.0547 GY	1.59						
11	-0.9141 GY	1.78						
11	-0.7734 GY	1.97						
11	-0.6328 GY	2.15						
11	-0.4922 GY	2.34						
11	-0.3516 GY	2.53						
11	-0.2109 GY	2.71						
11	-0.2109 G1 -0.0703 GY	2.88						
284	-0.0703 GY	0.12						
284	-0.2109 GY	0.29						
284	-0.3516 GY	0.47						
284	-0.4922 GY	0.66						
284	-0.6328 GY	0.85						
284	-0.7734 GY	1.03						
284	-0.9141 GY	1.22						
284	-1.0547 GY	1.41						
284	-1.0547 GY	1.59						
284	-0.9141 GY	1.78						
284	-0.7734 GY	1.97						
284	-0.6328 GY	2.15						
284	-0.4922 GY	2.34						
284	-0.3516 GY	2.53						
284	-0.2109 GY	2.71						
284	-0.0703 GY	2.88						
65	-0.0703 GY	0.13						
65	-0.2109 GY	0.29						
65	-0.3516 GY	0.48						
65	-0.4922 GY	0.66						
65	-0.6328 GY	0.85						
65	-0.7734 GY	1.03						
65	-0.9141 GY	1.22						
65	-1.0547 GY	1.41						
65	-1.0547 GY	1.59						
65	-0.9141 GY	1.78						
65	-0.7734 GY	1.97						
65	-0.6328 GY	2.15						
65	-0.4922 GY	2.34						
65	-0.3516 GY	2.53						
65	-0.2109 GY	2.71						
65	-0.0703 GY	2.88						
283	-0.0703 GY	0.12						
283	-0.2109 GY	0.29						
283	-0.3516 GY	0.47						
283	-0.4922 GY	0.66						
283	-0.4322 G1 -0.6328 GY	0.85						
283	-0.7734 GY	1.03						
283	-0.7734 GY -0.9141 GY	1.22						
283	-1.0547 GY	1.41						
283	-1.0547 GY	1.59						
283	-0.9141 GY	1.78						

STA	AD SPACE			PAGE NO.	48	
283		-0.7734 GY	1.97			
283		-0.6328 GY	2.15			
283		-0.4922 GY	2.34			
283		-0.3516 GY	2.53			
283		-0.2109 GY	2.71			
283		-0.0703 GY	2.88			
12		-0.0703 GY	0.12			
12		-0.2109 GY	0.29			
12		-0.3516 GY	0.47			
12		-0.4922 GY	0.66			
12		-0.6328 GY	0.85			
12		-0.7734 GY	1.03			
12		-0.9141 GY	1.22			
12		-1.0547 GY	1.41			
12		-1.0547 GY	1.59			
12		-0.9141 GY	1.78			
12		-0.7734 GY	1.97			
12		-0.6328 GY	2.15			
12		-0.4922 GY	2.34			
12		-0.3516 GY	2.52			
12		-0.2109 GY	2.71			
12		-0.0703 GY	2.87			
285		-0.0703 GY	0.12			
285		-0.2109 GY	0.29			
285		-0.3516 GY	0.47			
285		-0.4922 GY	0.66			
285		-0.6328 GY	0.85			
285		-0.7734 GY	1.03			
285		-0.9141 GY	1.22			
285		-1.0547 GY	1.41			
285		-1.0547 GY	1.59			
285		-0.9141 GY	1.78			
285		-0.7734 GY	1.97			
285		-0.6328 GY	2.15			
285		-0.4922 GY	2.34			
285		-0.3516 GY	2.53			
285		-0.2109 GY	2.71			
285		-0.0703 GY	2.88			
66		-0.0703 GY	0.12			
66		-0.2109 GY	0.29			
66		-0.3516 GY	0.47			
66		-0.4922 GY	0.66			
66		-0.6328 GY	0.85			
66		-0.7734 GY	1.03			
66		-0.9141 GY	1.22			
66		-1.0547 GY	1.41			
66		-1.0547 GY	1.59			
66		-0.9141 GY	1.78			
66		-0.7734 GY	1.97			
66		-0.6328 GY	2.15			
66		-0.4922 GY	2.34			
66		-0.3516 GY	2.52			
66		-0.2109 GY	2.71			
66		-0.0703 GY	2.87			
284 284		-0.0703 GY	0.12			
∠04		-0.2109 GY	0.29			

### Company of Company						, ,	0000001	,	,	
284 -0.4922 GY 0.65 284 -0.6528 GY 0.65 284 -0.0734 GY 1.03 286 -0.9141 GY 1.22 284 -1.0847 GY 1.41 284 -1.0847 GY 1.41 285 -0.9141 GY 1.78 286 -0.9141 GY 1.78 286 -0.9141 GY 1.78 286 -0.9141 GY 1.78 286 -0.0734 GY 2.15 284 -0.0734 GY 2.15 284 -0.0734 GY 2.15 284 -0.0736 GY 2.15 284 -0.0736 GY 2.15 284 -0.0736 GY 2.53 285 -0.0196 GY 2.53 286 -0.0736 GY 2.53 286 -0.0703 GY 2.68 287 -0.0703 GY 2.88 286 -0.0703 GY 2.88 287 -0.0703 GY 2.88 286 -0.0703 GY 2.88 287 -0.0703 GY 2.88 288 -0.0703 GY 2.88 289 -0.0703 GY 2.88 280 -0.0703 GY 2.88 281 -0.0703 GY 2.88 282 -0.0703 GY 2.88 283 -0.0703 GY 2.88 284 -0.0703 GY 2.88 285 -0.0703 GY 2.88 286 -0.0703 GY 2.88 287 -0.0703 GY 2.88 288 -0.0703 GY 2.88 289 -0.0703 GY 2.88 280 -0.0703 GY 2.88 280 -0.0703 GY 2.03 280 -0.0703 GY 2.03 280 -0.0703 GY 2.03 280 -0.0703 GY 2.15 281 -0.0703 GY 2.15 281 -0.0703 GY 2.15 282 -0.0703 GY 2.15 283 -0.0703 GY 2.15 283 -0.0703 GY 2.15 283 -0.0703 GY 2.15 283 -0.0703 GY 2.88 284 -0.0703 GY 2.88 285 -0	STAAD SPACE			PAGE NO.	49					
284	284	-0.3516 GY	0.47							
284	284									
284	284		0.85							
286	284	-0.7734 GY	1.03							
284										
284										
284										
284										
284										
284										
284										
284										
284										
63										
63										
63										
63										
63										
63										
63										
63										
63										
63										
63										
63										
63										
63										
63										
63 312 -0.0703 GY 0.12 312 -0.2109 GY 0.29 312 -0.3516 GY 0.47 312 -0.4922 GY 0.66 312 -0.7734 GY 1.03 312 -0.9141 GY 1.22 312 -1.0547 GY 1.41 312 -0.7734 GY 2.34 312 -1.0547 GY 2.53 312 -0.7734 GY 2.53 312 -1.0547 GY 2.53 312 -1.0547 GY 1.59 312 -1.0547 GY 1.78 312 -1.0547 GY 1.78 312 -1.0547 GY 1.97 312 -0.6328 GY 2.15 312 -0.703 GY 2.88 312 -0.703 GY 2.88 312 -0.2109 GY 2.71 312 -0.0703 GY 2.88 117 -0.0703 GY 0.12 117 -0.0703 GY 0.29 117 -0.4922 GY 0.66 117 -0.547 GY 1.59										
312										
312		-0.0703 GY	2.88							
312		-0.0703 GY								
312			0.29							
312										
312		-0.4922 GY	0.66							
312 -0.9141 GY 1.22 312 -1.0547 GY 1.41 312 -1.0547 GY 1.59 312 -0.9141 GY 1.78 312 -0.7734 GY 1.97 312 -0.6328 GY 2.15 312 -0.4922 GY 2.34 312 -0.3516 GY 2.53 312 -0.2109 GY 2.71 312 -0.0703 GY 2.88 117 -0.0703 GY 0.12 117 -0.2109 GY 0.29 117 -0.3516 GY 0.47 117 -0.4922 GY 0.66 117 -0.4922 GY 0.66 117 -0.4922 GY 0.66 117 -0.7734 GY 1.03 117 -0.6328 GY 0.85 117 -0.7734 GY 1.03 117 -0.9141 GY 1.22 117 -1.0547 GY 1.41 117 -1.0547 GY 1.59			0.85							
312		-0.7734 GY								
312 -1.0547 GY 1.59 312 -0.9141 GY 1.78 312 -0.7734 GY 1.97 312 -0.6328 GY 2.15 312 -0.4922 GY 2.34 312 -0.3516 GY 2.53 312 -0.2109 GY 2.71 312 -0.0703 GY 2.88 117 -0.0703 GY 0.12 117 -0.2109 GY 0.29 117 -0.3516 GY 0.47 117 -0.4922 GY 0.66 117 -0.4922 GY 0.85 117 -0.6328 GY 0.85 117 -0.7734 GY 1.03 117 -0.9141 GY 1.22 117 -0.9141 GY 1.22 117 -1.0547 GY 1.41 117 -1.0547 GY 1.59		-0.9141 GY	1.22							
312 -0.9141 GY 1.78 312 -0.7734 GY 1.97 312 -0.6328 GY 2.15 312 -0.4922 GY 2.34 312 -0.3516 GY 2.53 312 -0.2109 GY 2.71 312 -0.0703 GY 2.88 117 -0.0703 GY 0.12 117 -0.2109 GY 0.29 117 -0.3516 GY 0.47 117 -0.4922 GY 0.66 117 -0.4922 GY 0.66 117 -0.6328 GY 0.85 117 -0.7734 GY 1.03 117 -0.9141 GY 1.22 117 -0.9141 GY 1.22 117 -1.0547 GY 1.41 117 -1.0547 GY 1.59		-1.0547 GY	1.41							
312		-1.0547 GY	1.59							
312	312	-0.9141 GY	1.78							
312	312	-0.7734 GY	1.97							
312 -0.3516 GY 2.53 312 -0.2109 GY 2.71 312 -0.0703 GY 2.88 117 -0.0703 GY 0.12 117 -0.2109 GY 0.29 117 -0.3516 GY 0.47 117 -0.4922 GY 0.66 117 -0.6328 GY 0.85 117 -0.7734 GY 1.03 117 -0.9141 GY 1.22 117 -1.0547 GY 1.41 117 -1.0547 GY 1.59	312		2.15							
312	312	-0.4922 GY	2.34							
312	312	-0.3516 GY	2.53							
117	312	-0.2109 GY	2.71							
117	312	-0.0703 GY	2.88							
117	117	-0.0703 GY	0.12							
117	117	-0.2109 GY	0.29							
117 -0.6328 GY 0.85 117 -0.7734 GY 1.03 117 -0.9141 GY 1.22 117 -1.0547 GY 1.41 117 -1.0547 GY 1.59	117	-0.3516 GY	0.47							
117 -0.7734 GY 1.03 117 -0.9141 GY 1.22 117 -1.0547 GY 1.41 117 -1.0547 GY 1.59	117	-0.4922 GY	0.66							
117 -0.7734 GY 1.03 117 -0.9141 GY 1.22 117 -1.0547 GY 1.41 117 -1.0547 GY 1.59	117	-0.6328 GY	0.85							
117 -0.9141 GY 1.22 117 -1.0547 GY 1.41 117 -1.0547 GY 1.59										
117 -1.0547 GY 1.41 117 -1.0547 GY 1.59										
117 -1.0547 GY 1.59										

STRAD SPACE FAGS NO. 50 117						monday,	OCCODEI	20,	2020
117	STAAD SPACE			PAGE NO.	50				
117	117	0 7724 CV	1 07						
117									
117									
117									
117									
311									
311									
311									
311									
311									
311									
311									
311		-0.7734 GY	1.03						
311		-0.9141 GY	1.22						
311		-1.0547 GY	1.41						
311	311	-1.0547 GY	1.59						
311	311	-0.9141 GY	1.78						
311	311	-0.7734 GY	1.97						
311	311	-0.6328 GY	2.15						
311	311	-0.4922 GY	2.34						
311	311	-0.3516 GY	2.53						
64	311	-0.2109 GY	2.71						
64	311	-0.0703 GY	2.88						
64		-0.0703 GY							
64	64	-0.2109 GY	0.29						
64	64		0.47						
64	64	-0.4922 GY							
64 -0.9141 GY 1.22 64 -1.0547 GY 1.41 64 -1.0547 GY 1.59 64 -0.9141 GY 1.78 64 -0.9141 GY 1.78 64 -0.9734 GY 1.97 64 -0.6328 GY 2.15 64 -0.4922 GY 2.34 64 -0.3516 GY 2.53 64 -0.2109 GY 2.71 64 -0.0703 GY 0.12 313 -0.0703 GY 0.12 313 -0.3516 GY 0.47 313 -0.3516 GY 0.85 313 -0.7734 GY 1.03 313 -0.6328 GY 0.85 313 -0.6328 GY 0.85 313 -0.6328 GY 0.85 313 -0.7734 GY 1.03 313 -0.9141 GY 1.22 313 -0.9141 GY 1.22 313 -0.9141 GY 1.25 313 -0.9141 GY 1.78 313 -0.9141 GY 2.88 313 -0.0109 GY 2.71 313 -0.0703 GY 2.88 313 -0.0703 GY 2.88	64	-0.6328 GY	0.85						
64	64	-0.7734 GY	1.03						
64	64	-0.9141 GY	1.22						
64									
64									
64									
64	64								
64	64								
64	64								
64									
64	64								
313									
313									
313									
313	313	-0.3516 GY	0.47						
313									
313									
313									
313									
313									
313									
313									
313									
313									
313 -0.3516 GY 2.53 313 -0.2109 GY 2.71 313 -0.0703 GY 2.88 118 -0.0703 GY 0.12									
313 -0.2109 GY 2.71 313 -0.0703 GY 2.88 118 -0.0703 GY 0.12									
313 -0.0703 GY 2.88 118 -0.0703 GY 0.12									
118 -0.0703 GY 0.12									
110 -U.21U9 GY U.29									
	110	-0.2109 GY	0.29						

					monday,	OCCUDEI	20,	2020,	10.
STAAD SPACE			PAGE NO.	51					
118	-0.3516 GY	0.47							
118	-0.4922 GY								
118	-0.6328 GY								
118	-0.7734 GY								
118	-0.7734 GI -0.9141 GY								
118	-1.0547 GY								
118	-1.0547 GY								
118	-0.9141 GY								
118	-0.7734 GY								
118	-0.6328 GY								
118	-0.4922 GY								
118	-0.3516 GY								
118	-0.2109 GY								
118	-0.0703 GY								
312	-0.0703 GY								
312	-0.2109 GY	0.29							
312	-0.3516 GY	0.47							
312	-0.4922 GY	0.66							
312	-0.6328 GY	0.85							
312	-0.7734 GY	1.03							
312	-0.9141 GY	1.22							
312	-1.0547 GY	1.41							
312	-1.0547 GY	1.59							
312	-0.9141 GY	1.78							
312	-0.7734 GY	1.97							
312	-0.6328 GY	2.15							
312	-0.4922 GY	2.34							
312	-0.3516 GY	2.53							
312	-0.2109 GY	2.71							
312	-0.0703 GY								
65	-0.0703 GY								
65	-0.2109 GY								
65	-0.3516 GY								
65	-0.4922 GY								
65	-0.6328 GY								
65	-0.7734 GY								
65	-0.9141 GY								
65	-1.0547 GY								
65	-1.0547 GY								
65	-0.9141 GY								
65	-0.7734 GY	1.97							
65	-0.6328 GY								
65	-0.4922 GY								
65	-0.3516 GY								
65	-0.2109 GY	2.71							
65	-0.0703 GY								
314	-0.0703 GY								
314	-0.2109 GY								
314	-0.2109 G1 -0.3516 GY								
314	-0.3316 GY -0.4922 GY								
314	-0.6328 GY								
314	-0.7734 GY	1.03							
314	-0.9141 GY	1.22							
314	-1.0547 GY								
314	-1.0547 GY								
314	-0.9141 GY	1.78							

							monday,	october	20,	2020,	10.07
STAAD SPACE				PAGE	E NO.	52					
21.4	0 5504	~	1 00								
314	-0.7734		1.97								
314 314	-0.6328 -0.4922		2.15								
314	-0.3516		2.53								
314	-0.2109		2.71								
314	-0.0703		2.88								
119	-0.0703		0.13								
119	-0.2109	GY	0.29								
119	-0.3516	GY	0.48								
119	-0.4922	GY	0.66								
119	-0.6328		0.85								
119	-0.7734		1.03								
119	-0.9141		1.22								
119	-1.0547		1.41								
119	-1.0547		1.59								
119	-0.9141		1.78								
119	-0.7734		1.97								
119	-0.6328		2.15								
119	-0.4922		2.34								
119	-0.3516		2.53								
119 119	-0.2109 -0.0703		2.71 2.88								
313	-0.0703		0.12								
313	-0.2109		0.29								
313	-0.3516		0.47								
313	-0.4922		0.66								
313	-0.6328		0.85								
313	-0.7734		1.03								
313	-0.9141		1.22								
313	-1.0547		1.41								
313	-1.0547		1.59								
313	-0.9141	GY	1.78								
313	-0.7734	GY	1.97								
313	-0.6328	GY	2.15								
313	-0.4922		2.34								
313	-0.3516		2.53								
313	-0.2109		2.71								
313	-0.0703		2.88								
66	-0.0703		0.12								
66	-0.2109		0.29								
66 66	-0.3516 -0.4922		0.47								
66	-0.4922		0.85								
66	-0.7734		1.03								
66	-0.9141		1.22								
66	-1.0547		1.41								
66	-1.0547		1.59								
66	-0.9141		1.78								
66	-0.7734		1.97								
66	-0.6328		2.15								
66	-0.4922		2.34								
66	-0.3516	GY	2.52								
66	-0.2109	GY	2.71								
66	-0.0703		2.87								
315	-0.0703		0.12								
315	-0.2109	GY	0.29								

					monday,	october	20, 2	020,	10.07
STAAD SPACE			PAGE NO.	53					
315	-0.3516 GY	0.47							
315	-0.4922 GY	0.66							
315	-0.6328 GY	0.85							
315	-0.7734 GY	1.03							
315	-0.9141 GY	1.22							
315	-1.0547 GY	1.41							
315	-1.0547 GY	1.59							
315	-0.9141 GY -0.7734 GY	1.78							
315		1.97							
315	-0.6328 GY -0.4922 GY	2.15							
315 315	-0.4922 G1 -0.3516 GY	2.34 2.53							
315	-0.2109 GY	2.71							
315	-0.2109 G1 -0.0703 GY	2.88							
120	-0.0703 GY	0.12							
120	-0.2109 GY	0.29							
120	-0.3516 GY	0.47							
120	-0.4922 GY	0.66							
120	-0.4322 G1 -0.6328 GY	0.85							
120	-0.7734 GY	1.03							
120	-0.9141 GY	1.22							
120	-1.0547 GY	1.41							
120	-1.0547 GY	1.59							
120	-0.9141 GY	1.78							
120	-0.7734 GY	1.97							
120	-0.6328 GY	2.15							
120	-0.4922 GY	2.34							
120	-0.3516 GY	2.52							
120	-0.2109 GY	2.71							
120	-0.0703 GY	2.87							
314	-0.0703 GY	0.12							
314	-0.2109 GY	0.29							
314	-0.3516 GY	0.47							
314	-0.4922 GY	0.66							
314	-0.6328 GY	0.85							
314	-0.7734 GY	1.03							
314	-0.9141 GY	1.22							
314	-1.0547 GY	1.41							
314	-1.0547 GY	1.59							
314	-0.9141 GY	1.78							
314	-0.7734 GY	1.97							
314	-0.6328 GY	2.15							
314	-0.4922 GY	2.34							
314	-0.3516 GY	2.53							
314	-0.2109 GY	2.71							
314	-0.0703 GY	2.88							
117	-0.0703 GY	0.12							
117	-0.2109 GY	0.29							
117	-0.3516 GY	0.47							
117	-0.4922 GY	0.66							
117	-0.6328 GY	0.85							
117	-0.7734 GY	1.03							
117	-0.9141 GY	1.22							
117	-1.0547 GY	1.41							
117	-1.0547 GY	1.59							
117	-0.9141 GY	1.78							

						, tallian	0000001	,	
STAAD SPACE			 PAGE	NO.	54				
117	-0.7734 GY	1.97							
117	-0.6328 GY	2.15							
117	-0.4922 GY	2.34							
117	-0.3516 GY	2.53							
117	-0.2109 GY	2.71							
117	-0.0703 GY	2.88							
342	-0.0703 GY	0.13							
342	-0.2109 GY	0.29							
342	-0.3516 GY	0.48							
342	-0.4922 GY	0.66							
342	-0.6328 GY	0.85							
342	-0.7734 GY	1.03							
342	-0.9141 GY	1.22							
342	-1.0547 GY	1.41							
342	-1.0547 GY	1.59							
342	-0.9141 GY	1.78							
342	-0.7734 GY	1.97							
342	-0.6328 GY	2.15							
342	-0.4922 GY	2.34							
342	-0.3516 GY	2.53							
342	-0.2109 GY	2.71							
342	-0.0703 GY	2.88							
171	-0.0703 GY	0.12							
171	-0.2109 GY	0.29							
171	-0.3516 GY	0.47							
171	-0.4922 GY	0.66							
171	-0.6328 GY	0.85							
171	-0.7734 GY	1.03							
171	-0.9141 GY	1.22							
171	-1.0547 GY	1.41							
171	-1.0547 GY	1.59							
171	-0.9141 GY	1.78							
171	-0.7734 GY	1.97							
171	-0.6328 GY	2.15							
171	-0.4922 GY	2.34							
171	-0.3516 GY	2.53							
171	-0.2109 GY	2.71							
171	-0.0703 GY	2.88							
341	-0.0703 GY	0.13							
341	-0.2109 GY	0.29							
341	-0.3516 GY	0.48							
341	-0.4922 GY	0.66							
341	-0.6328 GY	0.85							
341	-0.7734 GY	1.03							
341	-0.9141 GY	1.22							
341	-1.0547 GY	1.41							
341 341	-1.0547 GY -0.9141 GY	1.59							
		1.78							
341 341	-0.7734 GY -0.6328 GY	1.97 2.15							
341	-0.6328 G1 -0.4922 GY	2.13							
341	-0.4922 G1 -0.3516 GY	2.53							
341	-0.2109 GY	2.71							
341	-0.2109 G1 -0.0703 GY	2.88							
118	-0.0703 GY	0.12							
118	-0.2109 GY	0.29							
		×							

AGE NO. 55

					11011447,	000000	_ ,	
STAAD SPACE			PAGE NO.	56				
342	-0.7734 GY	1.97						
342	-0.6328 GY	2.15						
342	-0.4922 GY	2.34						
342	-0.3516 GY	2.53						
342	-0.2109 GY	2.71						
342	-0.0703 GY	2.88						
119								
	-0.0703 GY	0.13						
119	-0.2109 GY	0.29						
119	-0.3516 GY	0.48						
119	-0.4922 GY	0.66						
119	-0.6328 GY	0.85						
119	-0.7734 GY	1.03						
	-0.9141 GY	1.22						
119	-1.0547 GY	1.41						
119	-1.0547 GY	1.59						
119	-0.9141 GY	1.78						
119	-0.7734 GY	1.97						
119	-0.6328 GY	2.15						
119	-0.4922 GY	2.34						
119	-0.3516 GY	2.53						
119	-0.2109 GY	2.71						
119	-0.0703 GY	2.88						
344	-0.0703 GY	0.13						
344	-0.2109 GY	0.29						
344								
	-0.3516 GY	0.48						
344	-0.4922 GY	0.66						
344	-0.6328 GY	0.85						
344	-0.7734 GY	1.03						
344	-0.9141 GY	1.22						
344	-1.0547 GY	1.41						
344	-1.0547 GY	1.59						
344	-0.9141 GY	1.78						
344	-0.7734 GY	1.97						
344	-0.6328 GY	2.15						
344	-0.4922 GY	2.34						
344	-0.3516 GY	2.53						
344	-0.2109 GY	2.71						
344	-0.0703 GY	2.88						
173	-0.0703 GY	0.13						
173	-0.2109 GY	0.29						
173	-0.3516 GY	0.48						
173	-0.4922 GY	0.66						
173	-0.6328 GY	0.85						
173	-0.7734 GY	1.03						
173	-0.9141 GY	1.22						
173	-1.0547 GY	1.41						
173	-1.0547 GY	1.59						
173	-0.9141 GY	1.78						
173	-0.7734 GY	1.97						
173	-0.7734 G1 -0.6328 GY	2.15						
173	-0.4922 GY	2.34						
173	-0.3516 GY	2.53						
173	-0.2109 GY	2.71						
173	-0.0703 GY	2.88						
343	-0.0703 GY	0.13						
343	-0.2109 GY	0.29						

					momuay,	octobel	20,	2020,	10.07	77
STAAD SPACE			PAGE NO.	57						
343	-0.3516 GY	0.48								
343	-0.4922 GY	0.66								
343	-0.6328 GY	0.85								
343	-0.7734 GY	1.03								
343	-0.7734 G1 -0.9141 GY	1.22								
343	-1.0547 GY	1.41								
343	-1.0547 GY	1.59								
343	-0.9141 GY	1.78								
343	-0.7734 GY	1.97								
343	-0.6328 GY	2.15								
343	-0.4922 GY	2.34								
343	-0.3516 GY	2.53								
343	-0.2109 GY	2.71								
343	-0.0703 GY	2.88								
120	-0.0703 GY	0.12								
120	-0.2109 GY	0.29								
120	-0.3516 GY	0.47								
120	-0.4922 GY	0.66								
120	-0.6328 GY	0.85								
120	-0.7734 GY	1.03								
120	-0.9141 GY	1.22								
120	-1.0547 GY	1.41								
120	-1.0547 GY	1.59								
120	-0.9141 GY	1.78								
120	-0.7734 GY	1.97								
120	-0.6328 GY	2.15								
120	-0.4922 GY	2.34								
120	-0.3516 GY	2.52								
120	-0.2109 GY	2.71								
120	-0.0703 GY	2.87								
345	-0.0703 GY	0.13								
345	-0.2109 GY	0.29								
345	-0.3516 GY	0.48								
345	-0.4922 GY	0.66								
345	-0.6328 GY	0.85								
345	-0.7734 GY	1.03								
345	-0.9141 GY	1.22								
345	-1.0547 GY	1.41								
345	-1.0547 GY	1.59								
345	-0.9141 GY	1.78								
345	-0.7734 GY	1.97								
345	-0.6328 GY	2.15								
345	-0.4922 GY	2.34								
345	-0.3516 GY	2.53								
345	-0.2109 GY	2.71								
345	-0.0703 GY	2.88								
174	-0.0703 GY	0.12								
174	-0.2109 GY	0.29								
174	-0.3516 GY	0.47								
174	-0.4922 GY	0.66								
174	-0.6328 GY	0.85								
174	-0.7734 GY	1.03								
174	-0.9141 GY	1.22								
174	-1.0547 GY	1.41								
174	-1.0547 GY	1.59								
174	-0.9141 GY	1.78								

						 •	•
STAAD SPACE			PAGE NO	٥.	58		
174	-0.7734 GY	1.97					
174	-0.6328 GY	2.15					
174	-0.4922 GY	2.34					
	-0.3516 GY	2.52					
174	-0.2109 GY	2.71					
174	-0.0703 GY	2.87					
344	-0.0703 GY	0.13					
344	-0.2109 GY	0.29					
344	-0.3516 GY	0.48					
344	-0.4922 GY	0.66					
	-0.6328 GY	0.85					
	-0.7734 GY	1.03					
	-0.9141 GY	1.22					
344	-1.0547 GY	1.41					
344	-1.0547 GY	1.59					
	-0.9141 GY	1.78					
	-0.7734 GY	1.97					
344	-0.6328 GY	2.15					
	-0.4922 GY	2.34					
	-0.3516 GY	2.53					
	-0.2109 GY	2.71					
344	-0.0703 GY	2.88					
171	-0.0703 GY	0.12					
	-0.2109 GY	0.29					
	-0.3516 GY	0.47					
171	-0.4922 GY	0.66					
171	-0.6328 GY	0.85					
171	-0.7734 GY	1.03					
171	-0.9141 GY	1.22					
171	-1.0547 GY	1.41					
171	-1.0547 GY	1.59					
171	-0.9141 GY	1.78					
171	-0.7734 GY	1.97					
171	-0.6328 GY	2.15					
171	-0.4922 GY	2.34					
	-0.3516 GY	2.53					
	-0.2109 GY	2.71					
	-0.0703 GY	2.88					
372	-0.0703 GY	0.12					
372	-0.2109 GY	0.29					
372	-0.3516 GY	0.47					
372	-0.4922 GY	0.66					
372	-0.6328 GY	0.85					
372	-0.7734 GY	1.03					
372	-0.9141 GY -1.0547 GY	1.22					
372 372		1.41					
372	-1.0547 GY -0.9141 GY	1.59 1.78					
372	-0.7734 GY	1.78					
	-0.6328 GY	2.15					
372	-0.4922 GY	2.13					
372	-0.3516 GY	2.52					
372	-0.2109 GY	2.71					
372	-0.0703 GY	2.87					
225	-0.0703 GY	0.12					
225	-0.2109 GY	0.29					

					, inclination	000000	,	,	
STAAD SPACE			PAGE NO.	59					
225	-0.3516 GY	0.47							
225	-0.4922 GY	0.66							
225	-0.6328 GY	0.85							
225	-0.7734 GY	1.03							
225	-0.9141 GY	1.22							
225	-1.0547 GY	1.41							
225	-1.0547 GY	1.59							
225	-0.9141 GY	1.78							
225	-0.7734 GY	1.97							
225	-0.6328 GY	2.15							
225	-0.4922 GY	2.34							
225	-0.3516 GY	2.53							
225	-0.2109 GY	2.71							
225	-0.0703 GY	2.88							
371	-0.0703 GY	0.12							
371	-0.2109 GY	0.29							
371	-0.3516 GY	0.47							
371	-0.4922 GY	0.66							
371	-0.6328 GY	0.85							
371	-0.7734 GY	1.03							
371	-0.9141 GY	1.22							
371	-1.0547 GY	1.41							
371	-1.0547 GY	1.59							
371	-0.9141 GY	1.78							
371	-0.7734 GY	1.97							
371	-0.6328 GY	2.15							
371	-0.4922 GY	2.34							
371	-0.3516 GY	2.52							
371	-0.2109 GY	2.71							
371	-0.0703 GY	2.87							
172	-0.0703 GY	0.12							
172	-0.2109 GY	0.29							
172	-0.3516 GY	0.47							
172	-0.4922 GY	0.66							
172	-0.6328 GY	0.85							
172	-0.7734 GY	1.03							
172	-0.9141 GY	1.22							
172	-1.0547 GY	1.41							
172	-1.0547 GY	1.59							
172	-0.9141 GY	1.78							
172	-0.7734 GY	1.97							
172	-0.6328 GY	2.15							
172	-0.4922 GY	2.34							
172	-0.3516 GY	2.53							
172	-0.2109 GY	2.71							
172	-0.0703 GY	2.88							
373	-0.0703 GY	0.12							
373	-0.2109 GY	0.29							
373	-0.3516 GY	0.47							
373	-0.4922 GY	0.66							
373	-0.6328 GY	0.85							
373	-0.7734 GY	1.03							
373	-0.9141 GY	1.22							
373	-1.0547 GY	1.41							
373	-1.0547 GY	1.59							
373	-0.9141 GY	1.78							

					monday,	october	20,	2020,	10.07	
STAAD SPACE			PAGE NO.	60						
373	-0.7734 GY	1.97								
373	-0.7734 G1 -0.6328 GY	2.15								
373	-0.4922 GY	2.34								
373	-0.3516 GY	2.52								
373	-0.2109 GY	2.71								
373	-0.0703 GY	2.87								
226	-0.0703 GY	0.12								
226	-0.2109 GY	0.29								
226	-0.3516 GY	0.47								
226	-0.4922 GY	0.66								
226	-0.6328 GY	0.85								
226	-0.7734 GY	1.03								
226	-0.9141 GY	1.22								
226	-1.0547 GY	1.41								
226	-1.0547 GY	1.59								
226	-0.9141 GY	1.78								
226	-0.7734 GY	1.97								
226	-0.6328 GY	2.15								
226	-0.4922 GY	2.34								
226	-0.3516 GY	2.53								
226	-0.2109 GY	2.71								
226	-0.0703 GY	2.88								
372	-0.0703 GY	0.12								
372	-0.2109 GY	0.29								
372	-0.3516 GY	0.47								
372	-0.4922 GY	0.66								
372	-0.6328 GY	0.85								
372	-0.7734 GY	1.03								
372	-0.9141 GY	1.22								
372	-1.0547 GY	1.41								
372	-1.0547 GY	1.59								
372	-0.9141 GY	1.78								
372	-0.7734 GY	1.97								
372	-0.6328 GY	2.15								
372	-0.4922 GY	2.34								
372	-0.3516 GY	2.52								
372	-0.2109 GY	2.71								
372	-0.0703 GY	2.87								
173	-0.0703 GY	0.13								
173	-0.2109 GY	0.29								
173	-0.3516 GY	0.48								
173	-0.4922 GY	0.66								
173	-0.6328 GY	0.85								
173	-0.7734 GY	1.03								
173	-0.9141 GY	1.22								
173	-1.0547 GY	1.41								
173	-1.0547 GY	1.59								
173	-0.9141 GY	1.78								
173	-0.7734 GY	1.97								
173	-0.6328 GY	2.15								
173	-0.4922 GY	2.34								
173	-0.3516 GY	2.53								
173	-0.2109 GY	2.71								
173	-0.0703 GY	2.88								
374	-0.0703 GY	0.12								
374	-0.2109 GY	0.29								

					Monday,	October	26,	2020,	10:07	A
STAAD SPACE			PAGE NO.	61						
374	-0.3516 GY	0.47								
374	-0.4922 GY	0.66								
374	-0.6328 GY	0.85								
374	-0.7734 GY	1.03								
374	-0.9141 GY	1.22								
374	-1.0547 GY	1.41								
374	-1.0547 GY	1.59								
374	-0.9141 GY	1.78								
374	-0.7734 GY	1.97								
374	-0.6328 GY	2.15								
374	-0.4922 GY	2.34								
374	-0.3516 GY	2.52								
374	-0.2109 GY	2.71								
374	-0.0703 GY	2.87								
227	-0.0703 GY	0.13								
227	-0.2109 GY	0.29								
227	-0.3516 GY	0.48								
227	-0.4922 GY	0.66								
227	-0.6328 GY	0.85								
227	-0.7734 GY	1.03								
227	-0.9141 GY	1.22								
227	-1.0547 GY	1.41								
227	-1.0547 GY	1.59								
227	-0.9141 GY	1.78								
227	-0.7734 GY	1.97								
227	-0.6328 GY	2.15								
227	-0.4922 GY	2.34								
227	-0.3516 GY	2.53								
227	-0.2109 GY	2.71								
227	-0.0703 GY	2.88								
373	-0.0703 GY	0.12								
373 373	-0.2109 GY -0.3516 GY	0.29 0.47								
373	-0.4922 GY	0.66								
373	-0.6328 GY	0.85								
373	-0.7734 GY	1.03								
373	-0.9141 GY	1.22								
373	-1.0547 GY	1.41								
373	-1.0547 GY	1.59								
373	-0.9141 GY									
373	-0.7734 GY	1.97								
373	-0.6328 GY	2.15								
373	-0.4922 GY	2.34								
373	-0.3516 GY	2.52								
373	-0.2109 GY	2.71								
373	-0.0703 GY	2.87								
174	-0.0703 GY	0.12								
174	-0.2109 GY	0.29								
174	-0.3516 GY	0.47								
174	-0.4922 GY	0.66								
174	-0.6328 GY	0.85								
174	-0.7734 GY	1.03								
174	-0.9141 GY	1.22								
174	-1.0547 GY	1.41								
174	-1.0547 GY	1.59								
174	-0.9141 GY	1.78								

					Monday,	October	26,	2020,	10:07
STAAD SPACE			PAGE NO.	62					
174	-0.7734 GY	1.97							
174	-0.6328 GY	2.15							
174	-0.4922 GY	2.34							
174	-0.3516 GY	2.52							
174	-0.2109 GY	2.71							
174	-0.0703 GY	2.87							
375	-0.0703 GY	0.12							
375	-0.2109 GY	0.29							
375	-0.3516 GY	0.47							
375	-0.4922 GY	0.66							
375	-0.6328 GY	0.85							
375	-0.7734 GY	1.03							
375	-0.9141 GY	1.22							
375	-1.0547 GY	1.41							
375	-1.0547 GY	1.59							
375	-0.9141 GY	1.78							
375	-0.7734 GY	1.97							
375	-0.6328 GY	2.15							
375	-0.4922 GY	2.34							
375	-0.3516 GY	2.52							
375	-0.2109 GY	2.71							
375	-0.0703 GY	2.87							
228	-0.0703 GY	0.12							
228	-0.2109 GY	0.29							
228	-0.3516 GY	0.47							
228	-0.4922 GY	0.66							
228	-0.6328 GY	0.85							
228	-0.7734 GY	1.03							
228	-0.9141 GY	1.22							
228	-1.0547 GY	1.41							
228	-1.0547 GY	1.59							
228	-0.9141 GY	1.78							
228	-0.7734 GY	1.97							
228	-0.6328 GY	2.15							
228	-0.4922 GY	2.34							
228	-0.3516 GY	2.52							
228	-0.2109 GY	2.71							
228	-0.0703 GY	2.87							
374	-0.0703 GY	0.12							
374	-0.2109 GY								
374 374		0.47 0.66							
374		0.85							
374	-0.7734 GY	1.03							
374	-0.9141 GY	1.22							
374	-1.0547 GY	1.41							
374	-1.0547 GY	1.59							
374	-0.9141 GY	1.78							
374	-0.7734 GY	1.97							
374	-0.6328 GY	2.15							
374	-0.4922 GY	2.34							
374	-0.3516 GY	2.52							
374	-0.2109 GY	2.71							
374	-0.0703 GY	2.87							
13	-0.0703 GY	0.12							
13	-0.2109 GY	0.29							

					monday,	october	20,	2020,	10.07 A
STAAD SPACE			PAGE NO.	63					
13	-0.3516 GY 0.	47							
13		66							
13		85							
13	-0.7734 GY 1.	03							
13	-0.9141 GY 1.	22							
13	-1.0547 GY 1.	41							
13	-1.0547 GY 1.	59							
13	-0.9141 GY 1.	78							
13	-0.7734 GY 1.	97							
13	-0.6328 GY 2.	15							
13	-0.4922 GY 2.	34							
13	-0.3516 GY 2.	53							
13	-0.2109 GY 2.	71							
13	-0.0703 GY 2.	88							
287	-0.0703 GY 0.	12							
287	-0.2109 GY 0.	29							
287	-0.3516 GY 0.	47							
287	-0.4922 GY 0.	66							
287		85							
287	-0.7734 GY 1.	03							
287	-0.9141 GY 1.	22							
287	-1.0547 GY 1.	41							
287	-1.0547 GY 1.	59							
287	-0.9141 GY 1.	78							
287	-0.7734 GY 1.	97							
287	-0.6328 GY 2.	15							
287	-0.4922 GY 2.	34							
287	-0.3516 GY 2.	53							
287	-0.2109 GY 2.	71							
287		88							
67	-0.0703 GY 0.	12							
67		29							
67		47							
67		66							
67		85							
67		03							
67		22							
67		41							
67		59							
67	-0.9141 GY 1.								
67		97							
67		15							
67		34							
67		53							
67		71							
67		88							
286		12							
286		29							
286		47							
286		66							
286		85							
286		03							
286		22							
286		41							
286		59							
286	-0.9141 GY 1.	78							

					momuay,	OCCUDEI	20,	2020,	10
STAAD SPACE			PAGE NO.	64					
286	-0.7734 GY	1.97							
286	-0.6328 GY	2.15							
286	-0.4922 GY	2.34							
286	-0.3516 GY	2.53							
286	-0.2109 GY	2.71							
286	-0.0703 GY	2.88							
14	-0.0703 GY	0.12							
14	-0.2109 GY	0.29							
14	-0.3516 GY	0.47							
14	-0.4922 GY	0.66							
14	-0.6328 GY	0.85							
14	-0.7734 GY	1.03							
14	-0.9141 GY	1.22							
14	-1.0547 GY	1.41							
14	-1.0547 GY	1.59							
14	-0.9141 GY	1.78							
14	-0.7734 GY	1.97							
14	-0.6328 GY	2.15							
14	-0.4922 GY	2.34							
14	-0.3516 GY	2.53							
14	-0.2109 GY	2.71							
14	-0.0703 GY	2.88							
288	-0.0703 GY	0.12							
288	-0.2109 GY	0.29							
288	-0.3516 GY	0.47							
288	-0.4922 GY	0.66							
288	-0.6328 GY	0.85							
288	-0.7734 GY	1.03							
288	-0.9141 GY	1.22							
288	-1.0547 GY	1.41							
288	-1.0547 GY	1.59							
288	-0.9141 GY	1.78							
288	-0.7734 GY	1.97							
288	-0.6328 GY	2.15							
288	-0.4922 GY	2.34							
288	-0.3516 GY	2.53							
288	-0.2109 GY	2.71							
288	-0.0703 GY	2.88							
68	-0.0703 GY	0.12							
68	-0.2109 GY	0.29							
68	-0.3516 GY	0.47							
68	-0.4922 GY	0.66							
68	-0.6328 GY	0.85							
68	-0.7734 GY	1.03							
68	-0.9141 GY	1.22							
68	-1.0547 GY	1.41							
68	-1.0547 GY	1.59							
68	-0.9141 GY	1.78							
68	-0.7734 GY	1.97							
68	-0.6328 GY	2.15							
68	-0.4922 GY	2.34							
68	-0.3516 GY	2.53							
68	-0.2109 GY	2.71							
68	-0.0703 GY	2.88							
287	-0.0703 GY	0.12							
287	-0.2109 GY	0.29							
201	-U.ZIU9 GI	0.43							

							- '	•	•
STA	AD SPACE			PAGE	NO.	65			
287		-0.3516 GY	0.47						
287		-0.4922 GY	0.66						
287		-0.6328 GY	0.85						
287		-0.7734 GY	1.03						
287		-0.9141 GY	1.22						
287		-1.0547 GY	1.41						
287		-1.0547 GY	1.59						
287		-0.9141 GY	1.78						
287		-0.7734 GY	1.97						
287		-0.6328 GY	2.15						
287		-0.4922 GY	2.34						
287		-0.4922 G1 -0.3516 GY	2.53						
287			2.71						
		-0.2109 GY							
287		-0.0703 GY	2.88						
15		-0.0703 GY	0.13						
15		-0.2109 GY	0.29						
15		-0.3516 GY	0.48						
15		-0.4922 GY	0.66						
15		-0.6328 GY	0.85						
15		-0.7734 GY	1.03						
15		-0.9141 GY	1.22						
15		-1.0547 GY	1.41						
15		-1.0547 GY	1.59						
15		-0.9141 GY	1.78						
15		-0.7734 GY	1.97						
15		-0.6328 GY	2.15						
15		-0.4922 GY	2.34						
15		-0.3516 GY	2.53						
15		-0.2109 GY	2.71						
15		-0.0703 GY	2.88						
289		-0.0703 GY	0.12						
289		-0.2109 GY	0.29						
289		-0.3516 GY	0.47						
289		-0.4922 GY	0.66						
289		-0.6328 GY	0.85						
289		-0.7734 GY	1.03						
289		-0.9141 GY	1.22						
289		-1.0547 GY	1.41						
289		-1.0547 GY	1.59						
289		-0.9141 GY	1.78						
289 289		-0.7734 GY -0.6328 GY	1.97						
			2.15						
289		-0.4922 GY	2.34						
289		-0.3516 GY	2.53						
289		-0.2109 GY	2.71						
289		-0.0703 GY	2.88						
69		-0.0703 GY	0.13						
69		-0.2109 GY	0.29						
69		-0.3516 GY	0.48						
69		-0.4922 GY	0.66						
69		-0.6328 GY	0.85						
69		-0.7734 GY	1.03						
69		-0.9141 GY	1.22						
69		-1.0547 GY	1.41						
69		-1.0547 GY	1.59						
69		-0.9141 GY	1.78						

						monday,	october	20,	2020,	10.07
STAAD SPACE			PAGE	NO.	66					
69	-0.7734 GY	1.97								
69		2.15								
69		2.34								
69		2.53								
69	-0.2109 GY	2.71								
69	-0.0703 GY	2.88								
288	-0.0703 GY	0.12								
288		0.29								
288		0.47								
288		0.66								
288		0.85								
288		1.03								
288 288		1.22								
288		1.41 1.59								
288		1.78								
288		1.97								
288		2.15								
288		2.34								
288	-0.3516 GY	2.53								
288	-0.2109 GY	2.71								
288	-0.0703 GY	2.88								
16		0.12								
16		0.29								
16		0.47								
16		0.66								
16		0.85								
16 16		1.03 1.22								
16		1.41								
16		1.59								
16		1.78								
16		1.97								
16		2.15								
16	-0.4922 GY	2.34								
16	-0.3516 GY	2.52								
16		2.71								
16		2.87								
290		0.12								
290	-0.2109 GY									
290 290		0.47 0.66								
290		0.85								
290		1.03								
290		1.22								
290		1.41								
290		1.59								
290	-0.9141 GY	1.78								
290	-0.7734 GY	1.97								
290		2.15								
290		2.34								
290		2.53								
290		2.71								
290		2.88								
70 70		0.12 0.29								
, ,	-0.2109 G1	0.43								

				momay,	october	20,	2020,	10.07 A
STAAD SPACE		PAGE NO.	67					
70	-0.3516 GY 0.4	7						
70	-0.4922 GY 0.6							
70	-0.6328 GY 0.8							
70	-0.7734 GY 1.0	3						
70	-0.9141 GY 1.2							
70	-1.0547 GY 1.4							
70	-1.0547 GY 1.5							
70	-0.9141 GY 1.7							
70	-0.7734 GY 1.9							
70	-0.6328 GY 2.1							
70	-0.4922 GY 2.3							
70	-0.3516 GY 2.5							
70	-0.2109 GY 2.7							
70	-0.0703 GY 2.8							
289	-0.0703 GY 0.1							
289	-0.2109 GY 0.2	9						
289	-0.3516 GY 0.4	7						
289	-0.4922 GY 0.6	6						
289	-0.6328 GY 0.8	5						
289	-0.7734 GY 1.0	3						
289	-0.9141 GY 1.2	2						
289	-1.0547 GY 1.4	1						
289	-1.0547 GY 1.5	9						
289	-0.9141 GY 1.7	8						
289	-0.7734 GY 1.9							
289	-0.6328 GY 2.1							
289	-0.4922 GY 2.3							
289	-0.3516 GY 2.5							
289	-0.2109 GY 2.7							
289	-0.0703 GY 2.8							
67	-0.0703 GY 0.1							
67 67	-0.2109 GY 0.2 -0.3516 GY 0.4							
67	-0.4922 GY 0.6							
67	-0.6328 GY 0.8							
67	-0.7734 GY 1.0							
67	-0.9141 GY 1.2							
67	-1.0547 GY 1.4							
67	-1.0547 GY 1.5							
67	-0.9141 GY 1.7							
67	-0.7734 GY 1.9	7						
67	-0.6328 GY 2.1	5						
67	-0.4922 GY 2.3	4						
67	-0.3516 GY 2.5	3						
67	-0.2109 GY 2.7							
67	-0.0703 GY 2.8	8						
317	-0.0703 GY 0.1							
317	-0.2109 GY 0.2							
317	-0.3516 GY 0.4							
317	-0.4922 GY 0.6							
317	-0.6328 GY 0.8							
317	-0.7734 GY 1.0							
317	-0.9141 GY 1.2							
317	-1.0547 GY 1.4							
317	-1.0547 GY 1.5							
317	-0.9141 GY 1.7	Ö						

					monday,	octobel	20,	2020,	10.07 A
STAAD SPACE			PAGE NO.	68					
317	-0.7734 GY	1.97							
317	-0.6328 GY	2.15							
317	-0.4922 GY	2.34							
317	-0.3516 GY	2.53							
317	-0.2109 GY	2.71							
317	-0.0703 GY	2.88							
121	-0.0703 GY	0.12							
121	-0.2109 GY	0.29							
121	-0.3516 GY	0.47							
121	-0.4922 GY	0.66							
121	-0.6328 GY	0.85							
121	-0.7734 GY	1.03							
121	-0.9141 GY	1.22							
121	-1.0547 GY	1.41							
121	-1.0547 GY	1.59							
121	-0.9141 GY	1.78							
121	-0.7734 GY	1.97							
121	-0.6328 GY	2.15							
121	-0.4922 GY	2.34							
121	-0.3516 GY	2.53							
121	-0.2109 GY	2.71							
121	-0.0703 GY	2.88							
316	-0.0703 GY	0.12							
316	-0.2109 GY	0.29							
316	-0.3516 GY	0.47							
316	-0.4922 GY	0.66							
316	-0.6328 GY	0.85							
316	-0.7734 GY	1.03							
316	-0.9141 GY	1.22							
316	-1.0547 GY	1.41							
316	-1.0547 GY	1.59							
316	-0.9141 GY	1.78							
316	-0.7734 GY	1.97							
316	-0.6328 GY	2.15							
316	-0.4922 GY	2.34							
316	-0.3516 GY	2.53							
316	-0.2109 GY	2.71							
316	-0.0703 GY	2.88							
68	-0.0703 GY	0.12							
68	-0.2109 GY	0.29							
68	-0.3516 GY	0.47							
68	-0.4922 GY	0.66							
68	-0.6328 GY	0.85							
68 68	-0.7734 GY	1.03							
68	-0.9141 GY	1.22							
	-1.0547 GY	1.41							
68 68	-1.0547 GY -0.9141 GY	1.59 1.78							
68	-0.7734 GY	1.97							
68	-0.6328 GY	2.15							
68	-0.6328 G1 -0.4922 GY	2.15							
68	-0.4922 G1 -0.3516 GY	2.53							
68	-0.3316 G1 -0.2109 GY	2.71							
68	-0.2109 G1 -0.0703 GY	2.88							
318	-0.0703 GY	0.12							
318	-0.2109 GY	0.12							
310	0.2103 GI	0.23							

					11011447 /	0000001	,	2020,	_ · · · ·
STAAD SPACE			PAGE NO.	69					
21.0	0 2516 67	0.47							
318 318	-0.3516 GY	0.47							
318	-0.4922 GY	0.66 0.85							
318	-0.6328 GY -0.7734 GY	1.03							
318	-0.9141 GY	1.22							
318	-1.0547 GY	1.41							
318	-1.0547 GY	1.59							
318	-0.9141 GY	1.78							
318	-0.7734 GY	1.97							
318	-0.6328 GY	2.15							
318	-0.4922 GY	2.34							
318	-0.3516 GY	2.53							
318	-0.2109 GY	2.71							
318	-0.0703 GY	2.88							
122	-0.0703 GY	0.12							
122	-0.2109 GY	0.29							
122	-0.3516 GY	0.47							
122	-0.4922 GY	0.66							
122		0.85							
122	-0.6328 GY	1.03							
122	-0.7734 GY	1.22							
122	-0.9141 GY -1.0547 GY	1.41							
122	-1.0547 GY	1.59							
122	-0.9141 GY	1.78							
122	-0.7734 GY	1.97							
122	-0.6328 GY	2.15							
122	-0.4922 GY	2.34							
122	-0.3516 GY	2.53							
122	-0.2109 GY	2.71							
122	-0.0703 GY	2.88							
317	-0.0703 GY	0.12							
317	-0.2109 GY	0.29							
317	-0.3516 GY	0.47							
317	-0.4922 GY	0.66							
317	-0.6328 GY	0.85							
317	-0.7734 GY	1.03							
317	-0.9141 GY	1.22							
317	-1.0547 GY	1.41							
317	-1.0547 GY	1.59							
317	-0.9141 GY	1.78							
317	-0.7734 GY	1.97							
317	-0.6328 GY	2.15							
317	-0.4922 GY	2.34							
317	-0.3516 GY	2.53							
317	-0.2109 GY	2.71							
317	-0.0703 GY	2.88							
69	-0.0703 GY	0.13							
69	-0.2109 GY	0.29							
69	-0.3516 GY	0.48							
69	-0.4922 GY	0.66							
69	-0.6328 GY	0.85							
69	-0.7734 GY	1.03							
69	-0.9141 GY	1.22							
69	-1.0547 GY	1.41							
69	-1.0547 GY	1.59							
69	-0.9141 GY	1.78							

					monday,	OCCODEL	20,	2020,	10.07
STAAD SPACE			PAGE NO.	70					
69	-0.7734 GY	1.97							
69	-0.6328 GY	2.15							
69	-0.4922 GY	2.34							
69	-0.3516 GY	2.53							
69	-0.2109 GY	2.71							
69	-0.0703 GY	2.88							
319	-0.0703 GY	0.12							
319	-0.2109 GY	0.29							
319	-0.3516 GY	0.47							
319	-0.4922 GY	0.66							
319	-0.6328 GY	0.85							
319	-0.7734 GY	1.03							
319	-0.9141 GY	1.22							
319	-1.0547 GY	1.41							
319	-1.0547 GY	1.59							
319	-0.9141 GY	1.78							
319	-0.7734 GY	1.97							
319	-0.6328 GY	2.15							
319	-0.4922 GY	2.34							
319	-0.3516 GY	2.53							
319	-0.2109 GY	2.71							
319	-0.0703 GY	2.88							
123	-0.0703 GY	0.13							
123	-0.2109 GY	0.29							
123	-0.3516 GY	0.48							
123	-0.4922 GY	0.66							
123	-0.6328 GY	0.85							
123	-0.7734 GY	1.03							
123	-0.9141 GY	1.22							
123	-1.0547 GY	1.41							
123	-1.0547 GY	1.59							
123	-0.9141 GY	1.78							
123	-0.7734 GY	1.97							
123	-0.6328 GY	2.15							
123	-0.4922 GY	2.34							
123	-0.3516 GY	2.53							
123	-0.2109 GY	2.71							
123	-0.0703 GY	2.88							
318	-0.0703 GY	0.12							
318	-0.2109 GY	0.29							
318	-0.3516 GY	0.47							
318	-0.4922 GY	0.66							
318	-0.6328 GY	0.85							
318	-0.7734 GY	1.03							
318	-0.9141 GY	1.22							
318	-1.0547 GY	1.41							
318	-1.0547 GY	1.59							
318	-0.9141 GY	1.78							
	-0.9141 G1 -0.7734 GY								
318		1.97							
318	-0.6328 GY	2.15							
318	-0.4922 GY	2.34							
318	-0.3516 GY	2.53							
318	-0.2109 GY	2.71							
318	-0.0703 GY	2.88							
70	-0.0703 GY	0.12							
70	-0.2109 GY	0.29							

					momuay,	OCCODEI	20,	2020,	10.07 A
STAAD SPACE			PAGE NO.	71					
70	-0.3516 GY	0.47							
70	-0.4922 GY	0.66							
70	-0.6328 GY	0.85							
70	-0.7734 GY	1.03							
70	-0.9141 GY	1.22							
70	-1.0547 GY	1.41							
70	-1.0547 GY	1.59							
70	-0.9141 GY	1.78							
70	-0.7734 GY	1.97							
70	-0.6328 GY	2.15							
70	-0.4922 GY	2.34							
70	-0.3516 GY	2.52							
70	-0.2109 GY	2.71							
70	-0.0703 GY	2.87							
320	-0.0703 GY	0.12							
320	-0.2109 GY	0.29							
320	-0.3516 GY	0.47							
320	-0.4922 GY	0.66							
320	-0.6328 GY	0.85							
320	-0.7734 GY	1.03							
320	-0.9141 GY	1.22							
320	-1.0547 GY	1.41							
320	-1.0547 GY	1.59							
320	-0.9141 GY	1.78							
320	-0.7734 GY	1.97							
320	-0.6328 GY	2.15							
320	-0.4922 GY	2.34							
320	-0.3516 GY	2.53							
320	-0.2109 GY	2.71							
320	-0.0703 GY	2.88							
124	-0.0703 GY	0.12							
124	-0.2109 GY	0.29							
124	-0.3516 GY	0.47							
124	-0.4922 GY	0.66							
124	-0.6328 GY	0.85							
124	-0.7734 GY	1.03							
124 124	-0.9141 GY -1.0547 GY	1.22 1.41							
124	-1.0547 GY	1.59							
124		1.78							
124	-0.7734 GY	1.97							
124	-0.6328 GY	2.15							
124	-0.4922 GY	2.34							
124	-0.3516 GY	2.52							
124	-0.2109 GY	2.71							
124	-0.0703 GY	2.87							
319	-0.0703 GY	0.12							
319	-0.2109 GY	0.29							
319	-0.3516 GY	0.47							
319	-0.4922 GY	0.66							
319	-0.6328 GY	0.85							
319	-0.7734 GY	1.03							
319	-0.9141 GY	1.22							
319	-1.0547 GY	1.41							
319	-1.0547 GY	1.59							
319	-0.9141 GY	1.78							

					11011447,	0000001	,	2020, 1
STAAD SPACE			PAGE NO.	72				
319	-0.7734 GY	1.97						
319	-0.6328 GY	2.15						
319	-0.4922 GY	2.34						
319	-0.3516 GY	2.53						
319	-0.2109 GY	2.71						
319	-0.0703 GY	2.88						
121	-0.0703 GY	0.12						
121	-0.2109 GY	0.29						
121	-0.3516 GY	0.47						
121	-0.4922 GY	0.66						
121	-0.4322 G1 -0.6328 GY	0.85						
121	-0.0328 G1 -0.7734 GY	1.03						
121	-0.7734 G1 -0.9141 GY	1.22						
121	-1.0547 GY	1.41						
121	-1.0547 GY	1.59						
121	-0.9141 GY	1.78						
121	-0.7734 GY	1.97						
121	-0.6328 GY	2.15						
121	-0.4922 GY	2.34						
121	-0.3516 GY	2.53						
121	-0.2109 GY	2.71						
121	-0.0703 GY	2.88						
347	-0.0703 GY	0.13						
347	-0.2109 GY	0.29						
347	-0.3516 GY	0.48						
347	-0.4922 GY	0.66						
347	-0.6328 GY	0.85						
347	-0.7734 GY	1.03						
347	-0.9141 GY	1.22						
347	-1.0547 GY	1.41						
347	-1.0547 GY	1.59						
347	-0.9141 GY	1.78						
347	-0.7734 GY	1.97						
347	-0.6328 GY	2.15						
347	-0.4922 GY	2.34						
347	-0.3516 GY	2.53						
347	-0.2109 GY	2.71						
347	-0.0703 GY	2.88						
175	-0.0703 GY	0.12						
175	-0.2109 GY	0.29						
175	-0.3516 GY	0.47						
175	-0.4922 GY	0.66						
175	-0.6328 GY	0.85						
175	-0.7734 GY	1.03						
175	-0.9141 GY	1.22						
175	-1.0547 GY	1.41						
175	-1.0547 GY	1.59						
175	-0.9141 GY	1.78						
175	-0.7734 GY	1.97						
175	-0.6328 GY	2.15						
175	-0.4922 GY	2.34						
175	-0.3516 GY	2.53						
175	-0.2109 GY	2.71						
175	-0.0703 GY	2.88						
346	-0.0703 GY	0.13						
346	-0.2109 GY	0.29						

					11011447,	0000001	, 202	,	• • • •
STAAD SPACE			PAGE NO.	73					
346	0 3516 67	0 40							
346	-0.3516 GY -0.4922 GY	0.48							
346	-0.4922 G1 -0.6328 GY	0.85							
346	-0.7734 GY	1.03							
346	-0.7734 G1 -0.9141 GY	1.22							
346	-1.0547 GY	1.41							
346									
346	-1.0547 GY -0.9141 GY	1.59 1.78							
346		1.97							
	-0.7734 GY								
346	-0.6328 GY	2.15							
346 346	-0.4922 GY -0.3516 GY	2.34 2.53							
346		2.71							
346	-0.2109 GY -0.0703 GY	2.88							
122	-0.0703 GY	0.12							
122	-0.2109 GY	0.29							
122	-0.2109 G1 -0.3516 GY	0.47							
122	-0.4922 GY	0.66							
122	-0.4922 G1 -0.6328 GY	0.85							
122	-0.7734 GY	1.03							
122	-0.9141 GY	1.22							
122	-1.0547 GY	1.41							
122	-1.0547 GY	1.59							
122	-0.9141 GY	1.78							
122	-0.7734 GY	1.97							
122	-0.6328 GY	2.15							
122	-0.4922 GY	2.34							
122	-0.3516 GY	2.53							
122	-0.2109 GY	2.71							
122	-0.0703 GY	2.88							
348	-0.0703 GY	0.13							
348	-0.2109 GY	0.29							
348	-0.3516 GY	0.48							
348	-0.4922 GY	0.66							
348	-0.6328 GY	0.85							
348	-0.7734 GY	1.03							
348	-0.9141 GY	1.22							
348	-1.0547 GY	1.41							
348	-1.0547 GY	1.59							
348	-0.9141 GY	1.78							
348	-0.7734 GY	1.97							
348	-0.6328 GY	2.15							
348	-0.4922 GY	2.34							
348 348	-0.3516 GY	2.53							
348	-0.2109 GY	2.71 2.88							
176	-0.0703 GY -0.0703 GY	0.12							
176	-0.2109 GY	0.29							
176	-0.3516 GY	0.47							
176	-0.4922 GY	0.66							
176	-0.6328 GY	0.85							
176	-0.7734 GY	1.03							
176	-0.9141 GY	1.22							
176	-1.0547 GY	1.41							
176	-1.0547 GY	1.59							
176	-0.9141 GY	1.78							

					- '	•
STAAD SPACE			PAGE NO.	74		
176	-0.7734 GY	1.97				
176	-0.6328 GY	2.15				
176	-0.4922 GY	2.34				
176	-0.3516 GY	2.53				
176	-0.2109 GY	2.71				
176	-0.0703 GY	2.88				
347	-0.0703 GY	0.13				
347	-0.2109 GY	0.29				
347	-0.3516 GY	0.48				
347	-0.4922 GY	0.66				
347	-0.6328 GY	0.85				
347	-0.7734 GY	1.03				
347	-0.9141 GY	1.22				
347	-1.0547 GY	1.41				
347	-1.0547 GY	1.59				
347	-0.9141 GY	1.78				
347	-0.7734 GY	1.97				
347	-0.6328 GY	2.15				
347	-0.4922 GY	2.34				
347	-0.3516 GY	2.53				
347	-0.2109 GY	2.71				
347	-0.0703 GY	2.88				
123	-0.0703 GY	0.13				
123	-0.2109 GY	0.29				
123	-0.3516 GY	0.48				
123	-0.4922 GY	0.66				
123	-0.6328 GY	0.85				
123	-0.7734 GY	1.03				
123	-0.9141 GY	1.22				
123	-1.0547 GY	1.41				
123	-1.0547 GY	1.59				
123	-0.9141 GY	1.78				
123	-0.7734 GY	1.97				
123	-0.6328 GY	2.15				
123	-0.4922 GY	2.34				
123	-0.3516 GY	2.53				
123	-0.2109 GY	2.71				
123	-0.0703 GY	2.88				
349	-0.0703 GY	0.13				
349	-0.2109 GY	0.29				
349	-0.3516 GY	0.48				
349	-0.4922 GY	0.66				
349	-0.6328 GY	0.85				
349	-0.7734 GY	1.03				
349	-0.9141 GY	1.22				
349	-1.0547 GY	1.41				
349	-1.0547 GY	1.59				
349	-0.9141 GY	1.78				
349	-0.7734 GY	1.97				
349	-0.6328 GY	2.15				
349	-0.4922 GY	2.34				
349	-0.3516 GY	2.53				
349	-0.2109 GY	2.71				
349	-0.0703 GY	2.88				
177	-0.0703 GY	0.13				
177	-0.2109 GY	0.29				
±11	U.ZIUJ GI	0.23				

						momuay,	OCCUDEI	20,	20.
STAAD SPACE			 PAGE 1	10.	75				
177	-0.3516 GY	0.48							
177	-0.4922 GY	0.66							
177	-0.4322 G1 -0.6328 GY	0.85							
177	-0.0328 G1 -0.7734 GY	1.03							
177	-0.9141 GY	1.22							
177	-1.0547 GY	1.41							
177	-1.0547 GY	1.59							
177	-0.9141 GY	1.78							
177	-0.7734 GY	1.97							
177	-0.6328 GY	2.15							
177	-0.4922 GY	2.34							
177	-0.3516 GY	2.53							
177	-0.2109 GY	2.71							
	-0.0703 GY	2.88							
348	-0.0703 GY	0.13							
348	-0.2109 GY	0.29							
348	-0.3516 GY	0.48							
348	-0.4922 GY	0.66							
348	-0.6328 GY	0.85							
348	-0.7734 GY	1.03							
348	-0.9141 GY	1.22							
348	-1.0547 GY	1.41							
348	-1.0547 GY	1.59							
348	-0.9141 GY	1.78							
348	-0.7734 GY	1.97							
348 348	-0.6328 GY -0.4922 GY	2.15							
348	-0.4922 G1 -0.3516 GY	2.53							
348	-0.2109 GY	2.71							
348	-0.2109 G1 -0.0703 GY	2.88							
124	-0.0703 GY	0.12							
124	-0.2109 GY	0.29							
124	-0.3516 GY	0.47							
124	-0.4922 GY	0.66							
124	-0.6328 GY	0.85							
124	-0.7734 GY	1.03							
124	-0.9141 GY	1.22							
124	-1.0547 GY	1.41							
124	-1.0547 GY	1.59							
124	-0.9141 GY	1.78							
124	-0.7734 GY	1.97							
124	-0.6328 GY	2.15							
124	-0.4922 GY	2.34							
124	-0.3516 GY	2.52							
124	-0.2109 GY	2.71							
124	-0.0703 GY	2.87							
350	-0.0703 GY	0.13							
350	-0.2109 GY	0.29							
350	-0.3516 GY	0.48							
350	-0.4922 GY	0.66							
350	-0.6328 GY	0.85							
350	-0.7734 GY	1.03							
350	-0.9141 GY	1.22							
350	-1.0547 GY	1.41							
350	-1.0547 GY	1.59							
350	-0.9141 GY	1.78							

					11011447,	000000	_ ,	_ 0 _ 0 ,
STAAD SPACE			PAGE NO.	76				
350	-0.7734 GY	1.97						
350	-0.6328 GY	2.15						
350	-0.4922 GY	2.34						
350	-0.3516 GY	2.53						
350	-0.2109 GY	2.71						
350	-0.0703 GY	2.88						
178	-0.0703 GY	0.12						
178	-0.2109 GY	0.29						
178	-0.3516 GY	0.47						
178	-0.4922 GY	0.66						
178	-0.6328 GY	0.85						
178	-0.7734 GY	1.03						
178	-0.9141 GY	1.22						
178	-1.0547 GY	1.41						
178	-1.0547 GY	1.59						
178	-0.9141 GY	1.78						
178	-0.7734 GY	1.97						
178	-0.6328 GY	2.15						
178	-0.4922 GY	2.34						
178	-0.3516 GY	2.52						
178	-0.2109 GY	2.71						
178	-0.0703 GY	2.87						
349	-0.0703 GY	0.13						
349	-0.2109 GY	0.29						
349	-0.3516 GY	0.48						
349	-0.4922 GY	0.66						
349	-0.6328 GY	0.85						
349	-0.7734 GY	1.03						
349	-0.9141 GY	1.22						
349								
349	-1.0547 GY	1.41						
	-1.0547 GY	1.59						
349	-0.9141 GY	1.78						
349	-0.7734 GY	1.97						
349	-0.6328 GY	2.15						
349	-0.4922 GY	2.34						
349	-0.3516 GY	2.53						
349	-0.2109 GY	2.71						
349	-0.0703 GY	2.88						
175	-0.0703 GY	0.12						
175	-0.2109 GY	0.29						
175	-0.3516 GY	0.47						
175	-0.4922 GY	0.66						
175	-0.6328 GY	0.85						
175	-0.7734 GY	1.03						
175	-0.9141 GY	1.22						
175	-1.0547 GY	1.41						
175	-1.0547 GY	1.59						
175	-0.9141 GY	1.78						
175	-0.7734 GY	1.97						
175	-0.6328 GY	2.15						
175	-0.4922 GY	2.34						
175	-0.3516 GY	2.53						
175	-0.2109 GY	2.71						
175	-0.0703 GY	2.88						
377	-0.0703 GY	0.12						
377								
<i>311</i>	-0.2109 GY	0.29						

						, ,	000002	,	
STAAD SPACE			PAGE	NO.	77				
377	-0.3516 GY	0.47							
377	-0.4922 GY	0.66							
377	-0.6328 GY	0.85							
377	-0.7734 GY	1.03							
377	-0.9141 GY	1.22							
377	-1.0547 GY	1.41							
377	-1.0547 GY	1.59							
377	-0.9141 GY	1.78							
377	-0.7734 GY	1.97							
377	-0.6328 GY	2.15							
377	-0.4922 GY	2.34							
377	-0.3516 GY	2.52							
377	-0.2109 GY	2.71							
377	-0.0703 GY	2.87							
229	-0.0703 GY	0.12							
229	-0.2109 GY	0.29							
229	-0.3516 GY	0.47							
229	-0.4922 GY	0.66							
229	-0.6328 GY	0.85							
229	-0.7734 GY	1.03							
229	-0.9141 GY	1.22							
229	-1.0547 GY	1.41							
229	-1.0547 GY	1.59							
229	-0.9141 GY	1.78							
229	-0.7734 GY	1.97							
229	-0.6328 GY	2.15							
229	-0.4922 GY	2.34							
229	-0.3516 GY	2.53							
229	-0.2109 GY	2.71							
229	-0.0703 GY	2.88							
376	-0.0703 GY	0.12							
376	-0.2109 GY	0.29							
376	-0.3516 GY	0.47							
376	-0.4922 GY	0.66							
376	-0.6328 GY	0.85							
376	-0.7734 GY	1.03							
376	-0.9141 GY	1.22							
376	-1.0547 GY	1.41							
376	-1.0547 GY	1.59							
376	-0.9141 GY	1.78							
376	-0.7734 GY	1.97							
376	-0.6328 GY	2.15							
376	-0.4922 GY	2.34							
376	-0.3516 GY	2.52							
376	-0.2109 GY	2.71							
376	-0.0703 GY	2.87							
176	-0.0703 GY	0.12							
176	-0.2109 GY	0.29							
176	-0.3516 GY	0.47							
176	-0.4922 GY	0.66							
176	-0.6328 GY	0.85							
176	-0.7734 GY	1.03							
176	-0.9141 GY	1.22							
176	-1.0547 GY	1.41							
176	-1.0547 GY	1.59							
176	-0.9141 GY	1.78							

					- '	
STAAD SPACE			PAGE NO.	78		
176	-0.7734 GY	1.97				
176	-0.6328 GY	2.15				
176	-0.4922 GY	2.34				
176	-0.3516 GY	2.53				
176	-0.2109 GY	2.71				
176	-0.0703 GY	2.88				
378	-0.0703 GY	0.12				
378	-0.2109 GY	0.29				
378	-0.3516 GY	0.47				
378	-0.4922 GY	0.66				
378	-0.6328 GY	0.85				
378	-0.7734 GY	1.03				
378	-0.9141 GY	1.22				
378	-1.0547 GY	1.41				
378	-1.0547 GY	1.59				
378	-0.9141 GY	1.78				
378	-0.7734 GY	1.97				
378	-0.6328 GY	2.15				
378	-0.4922 GY	2.34				
378	-0.3516 GY	2.52				
378	-0.2109 GY	2.71				
378	-0.0703 GY	2.87				
	-0.0703 GY					
230		0.12				
230	-0.2109 GY	0.29				
230	-0.3516 GY	0.47				
230	-0.4922 GY	0.66				
230	-0.6328 GY	0.85				
230	-0.7734 GY	1.03				
230	-0.9141 GY	1.22				
230	-1.0547 GY	1.41				
230	-1.0547 GY	1.59				
230	-0.9141 GY	1.78				
230	-0.7734 GY	1.97				
230	-0.6328 GY	2.15				
230	-0.4922 GY	2.34				
230	-0.3516 GY	2.53				
230	-0.2109 GY	2.71				
230	-0.0703 GY	2.88				
377	-0.0703 GY	0.12				
377	-0.2109 GY	0.29				
377	-0.3516 GY	0.47				
377	-0.4922 GY	0.66				
377	-0.6328 GY	0.85				
377	-0.7734 GY	1.03				
377	-0.9141 GY	1.22				
377	-1.0547 GY	1.41				
377	-1.0547 GY	1.59				
377	-0.9141 GY	1.78				
377	-0.7734 GY	1.97				
377	-0.6328 GY	2.15				
377	-0.4922 GY	2.34				
377	-0.3516 GY	2.52				
377	-0.2109 GY	2.71				
377	-0.0703 GY	2.87				
177	-0.0703 GY	0.13				
177	-0.2109 GY	0.29				

						, inclination	000000	_ ,	
STAAD SPACE			PAGE	E NO.	79				
177	-0.3516 GY	0.48							
177	-0.4922 GY	0.66							
177	-0.6328 GY	0.85							
177	-0.7734 GY	1.03							
177	-0.9141 GY	1.22							
177	-1.0547 GY	1.41							
177	-1.0547 GY	1.59							
177	-0.9141 GY	1.78							
177	-0.7734 GY	1.97							
177	-0.6328 GY	2.15							
177	-0.4922 GY	2.34							
177	-0.3516 GY	2.53							
177	-0.2109 GY	2.71							
177	-0.0703 GY	2.88							
379	-0.0703 GY	0.12							
379	-0.2109 GY	0.29							
379	-0.3516 GY	0.47							
379	-0.4922 GY	0.66							
379	-0.6328 GY	0.85							
379	-0.7734 GY	1.03							
379	-0.9141 GY	1.22							
379	-1.0547 GY	1.41							
379	-1.0547 GY	1.59							
379	-0.9141 GY	1.78							
379	-0.7734 GY	1.97							
379	-0.6328 GY	2.15							
379	-0.4922 GY	2.34							
379	-0.3516 GY	2.52							
379	-0.2109 GY	2.71							
379	-0.0703 GY	2.87							
231	-0.0703 GY	0.13							
231	-0.2109 GY	0.29							
231	-0.3516 GY	0.48							
231 231	-0.4922 GY	0.66							
	-0.6328 GY	0.85							
231 231	-0.7734 GY -0.9141 GY	1.03 1.22							
231	-1.0547 GY	1.41							
231	-1.0547 GY	1.59							
231	-0.9141 GY	1.78							
231	-0.7734 GY	1.97							
231	-0.6328 GY	2.15							
231	-0.4922 GY	2.34							
231	-0.3516 GY	2.53							
231	-0.2109 GY	2.71							
231	-0.0703 GY	2.88							
378	-0.0703 GY	0.12							
378	-0.2109 GY	0.29							
378	-0.3516 GY	0.47							
378	-0.4922 GY	0.66							
378	-0.6328 GY	0.85							
378	-0.7734 GY	1.03							
378	-0.9141 GY	1.22							
378	-1.0547 GY	1.41							
378	-1.0547 GY	1.59							
378	-0.9141 GY	1.78							

					11011441,	0000001	_ ,	2020,	
STAAD SPACE			PAGE NO.	80					
378	-0.7734 GY	1.97							
378	-0.6328 GY	2.15							
378	-0.4922 GY	2.34							
378	-0.3516 GY	2.52							
378	-0.2109 GY	2.71							
378	-0.0703 GY	2.87							
178	-0.0703 GY	0.12							
178	-0.2109 GY	0.29							
178	-0.3516 GY	0.47							
178	-0.4922 GY	0.66							
178	-0.6328 GY	0.85							
178	-0.7734 GY	1.03							
178	-0.9141 GY	1.22							
178	-1.0547 GY	1.41							
178	-1.0547 GY	1.59							
178	-0.9141 GY	1.78							
178	-0.7734 GY	1.97							
178	-0.6328 GY	2.15							
178	-0.4922 GY	2.34							
178	-0.3516 GY	2.52							
178	-0.2109 GY	2.71							
178	-0.0703 GY	2.87							
380	-0.0703 GY	0.12							
380	-0.2109 GY	0.29							
380	-0.3516 GY	0.47							
380	-0.4922 GY	0.66							
380	-0.6328 GY	0.85							
380	-0.7734 GY	1.03							
380	-0.9141 GY	1.22							
380	-1.0547 GY	1.41							
380	-1.0547 GY	1.59							
380	-0.9141 GY	1.78							
380	-0.7734 GY	1.97							
380	-0.6328 GY	2.15							
380	-0.4922 GY	2.34							
380	-0.3516 GY	2.52							
380	-0.2109 GY	2.71							
380	-0.0703 GY	2.87							
232	-0.0703 GY	0.12							
232	-0.2109 GY	0.29							
232	-0.3516 GY	0.47							
232	-0.4922 GY	0.66							
232	-0.6328 GY	0.85							
232	-0.7734 GY	1.03							
232	-0.9141 GY	1.22							
232	-1.0547 GY	1.41							
232	-1.0547 GY	1.59							
232	-0.9141 GY	1.78							
232	-0.7734 GY	1.97							
232	-0.6328 GY	2.15							
232	-0.4922 GY	2.34							
232	-0.3516 GY	2.52							
232	-0.2109 GY	2.71							
232	-0.0703 GY	2.87							
379	-0.0703 GY	0.12							
379	-0.2109 GY	0.29							

					- ·	october	,	•	
STAAD SPACE			PAGE NO.	81					
379	-0.3516 GY	0.47							
379	-0.4922 GY	0.66							
379	-0.6328 GY	0.85							
379	-0.7734 GY	1.03							
379	-0.9141 GY	1.22							
379	-1.0547 GY	1.41							
379	-1.0547 GY	1.59							
379	-0.9141 GY	1.78							
379	-0.7734 GY	1.97							
379	-0.6328 GY	2.15							
379	-0.4922 GY	2.34							
379	-0.3516 GY	2.52							
379	-0.2109 GY	2.71							
379	-0.0703 GY	2.87							
17	-0.0703 GY	0.12							
17	-0.2109 GY	0.29							
17	-0.3516 GY	0.47							
17	-0.4922 GY	0.66							
17	-0.6328 GY	0.85							
17	-0.7734 GY	1.03							
17	-0.9141 GY	1.22							
17	-1.0547 GY	1.41							
17	-1.0547 GY	1.59							
17	-0.9141 GY	1.78							
17	-0.7734 GY	1.97							
17	-0.6328 GY	2.15							
17	-0.4922 GY	2.34							
17	-0.3516 GY	2.53							
17	-0.2109 GY	2.71							
17	-0.0703 GY	2.88							
292	-0.0703 GY	0.12							
292	-0.2109 GY	0.29							
292	-0.3516 GY	0.47							
292	-0.4922 GY	0.66							
292	-0.6328 GY	0.85							
292	-0.7734 GY	1.03							
292	-0.9141 GY	1.22							
292	-1.0547 GY	1.41							
	-1.0547 GY	1.59							
-	1.7111 01	=							
	292 292 292 292 292 292	292 -0.2109 GY 292 -0.3516 GY 292 -0.4922 GY 292 -0.6328 GY 292 -0.7734 GY 292 -1.0547 GY 292 -1.0547 GY 292 -1.0547 GY 292 -0.9141 GY 292 -0.7734 GY 292 -0.6328 GY 292 -0.3516 GY 292 -0.2109 GY 292 -0.0703 GY 71 -0.0703 GY 71 -0.3516 GY 71 -0.3516 GY 71 -0.3516 GY 71 -0.6328 GY 71 -0.3516 GY 71 -0.7734 GY 71 -0.6328 GY 71 -0.7734 GY 71 -0.7734 GY 71 -0.7734 GY 71 -0.547 GY 71 -0.547 GY 71 -0.547 GY	292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.4922 GY 0.66 292 -0.6328 GY 0.85 292 -0.7734 GY 1.03 292 -0.9141 GY 1.22 292 -1.0547 GY 1.59 292 -0.9141 GY 1.78 292 -0.9141 GY 1.97 292 -0.7734 GY 1.97 292 -0.6328 GY 2.15 292 -0.4922 GY 2.34 292 -0.3516 GY 2.53 292 -0.2109 GY 2.71 292 -0.0703 GY 2.88 71 -0.0703 GY 0.12 71 -0.2109 GY 0.29 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.6328 GY 0.85 71 -0.6328 GY 0.85 71 -0.7734 GY 1.03 71 -0.76328 GY 0.85 71 -0.7734 GY 1.41 71	292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.4922 GY 0.66 292 -0.6328 GY 0.85 292 -0.7734 GY 1.03 292 -0.9141 GY 1.22 292 -1.0547 GY 1.41 292 -1.0547 GY 1.59 292 -0.9141 GY 1.78 292 -0.9141 GY 1.97 292 -0.7734 GY 1.97 292 -0.6328 GY 2.15 292 -0.3516 GY 2.53 292 -0.2109 GY 2.71 292 -0.2109 GY 2.71 292 -0.2109 GY 0.27 292 -0.2109 GY 0.29 71 -0.0703 GY 0.12 71 -0.2109 GY 0.29 71 -0.4922 GY 0.66 71 -0.6328 GY 0.85 71 -0.6328 GY 0.85 71 -0.7734 GY 1.03 71 -0.7734 GY 1.41 71 <td>292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.4922 GY 0.66 292 -0.6328 GY 0.85 292 -0.7734 GY 1.03 292 -0.9141 GY 1.22 292 -1.0547 GY 1.41 292 -1.0547 GY 1.59 292 -0.9141 GY 1.78 292 -0.7734 GY 1.97 292 -0.6328 GY 2.15 292 -0.4922 GY 2.34 292 -0.3516 GY 2.53 292 -0.2109 GY 2.71 292 -0.0703 GY 2.88 71 -0.0703 GY 0.12 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.4922 GY 0.66 71 -0.6328 GY 0.85 71 -0.7734 GY 1.03 71 -0.7734 GY 1.03 71 -0.7734 GY 1.41 71 -0.547 GY 1.41 71</td> <td>292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.4922 GY 0.66 292 -0.6328 GY 0.85 292 -0.7734 GY 1.03 292 -0.9141 GY 1.22 292 -1.0547 GY 1.41 292 -0.9141 GY 1.78 292 -0.9141 GY 1.78 292 -0.7734 GY 1.97 292 -0.6328 GY 2.15 292 -0.4922 GY 2.34 292 -0.3516 GY 2.53 292 -0.3516 GY 2.71 292 -0.0703 GY 2.12 71 -0.0703 GY 0.12 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.4922 GY 0.66 71 -0.6328 GY 0.85 71 -0.7734 GY 1.03 71 -0.7734 GY 1.41 71 -0.9141 GY 1.22 71 -0.10547 GY 1.41 71</td> <td>292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.4922 GY 0.66 292 -0.6328 GY 0.85 292 -0.7734 GY 1.03 292 -1.0547 GY 1.41 292 -1.0547 GY 1.78 292 -0.7734 GY 2.78 292 -0.7734 GY 2.78 292 -0.7734 GY 2.78 292 -0.9141 GY 1.78 292 -0.9141 GY 1.78 292 -0.9141 GY 1.78 292 -0.6328 GY 2.15 292 -0.4922 GY 2.34 292 -0.4922 GY 2.34 292 -0.3516 GY 2.53 292 -0.2109 GY 2.71 292 -0.0703 GY 2.88 71 -0.0703 GY 0.12 71 -0.0703 GY 0.12 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.4922 GY 0.66 71 -0.6328 GY 0.85 71 -0.7734 GY 1.03 71 -0.9141 GY 1.22 71 -0.9141 GY 1.22 71 -0.9141 GY 1.22 71 -1.0547 GY 1.59</td> <td>292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.6328 GY 0.85 292 -0.9141 GY 1.22 292 -1.0547 GY 1.41 292 -0.7734 GY 1.59 292 -0.9141 GY 1.78 292 -0.6328 GY 2.15 292 -0.6328 GY 2.15 292 -0.4922 GY 2.34 292 -0.4922 GY 2.34 292 -0.2109 GY 2.71 292 -0.0703 GY 2.88 71 -0.0703 GY 0.12 71 -0.2109 GY 0.29 71 -0.3516 GY 0.47 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.4922 GY 0.66 71 -0.6328 GY 0.85 71 -0.9141 GY 1.03 71 -0.9141 GY 1.03 71 -0.9141 GY 1.22 71 -0.9141 GY 1.22</td> <td>292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.6328 GY 0.66 292 -0.7734 GY 1.03 292 -0.9141 GY 1.22 292 -1.0547 GY 1.41 292 -0.9141 GY 1.78 292 -0.7734 GY 1.97 292 -0.6328 GY 2.15 292 -0.6328 GY 2.15 292 -0.6326 GY 2.34 292 -0.3516 GY 2.53 292 -0.2109 GY 2.71 292 -0.0703 GY 2.88 71 -0.0703 GY 0.12 71 -0.3516 GY 0.47 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.4922 GY 0.66 71 -0.4922 GY 0.65 71 -0.4923 GY 0.85 71 -0.4924 GY 0.85 71 -0.4925 GY 0.66 71 -0.6328 GY 0.85 71 -0.6328 GY 0.85</td>	292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.4922 GY 0.66 292 -0.6328 GY 0.85 292 -0.7734 GY 1.03 292 -0.9141 GY 1.22 292 -1.0547 GY 1.41 292 -1.0547 GY 1.59 292 -0.9141 GY 1.78 292 -0.7734 GY 1.97 292 -0.6328 GY 2.15 292 -0.4922 GY 2.34 292 -0.3516 GY 2.53 292 -0.2109 GY 2.71 292 -0.0703 GY 2.88 71 -0.0703 GY 0.12 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.4922 GY 0.66 71 -0.6328 GY 0.85 71 -0.7734 GY 1.03 71 -0.7734 GY 1.03 71 -0.7734 GY 1.41 71 -0.547 GY 1.41 71	292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.4922 GY 0.66 292 -0.6328 GY 0.85 292 -0.7734 GY 1.03 292 -0.9141 GY 1.22 292 -1.0547 GY 1.41 292 -0.9141 GY 1.78 292 -0.9141 GY 1.78 292 -0.7734 GY 1.97 292 -0.6328 GY 2.15 292 -0.4922 GY 2.34 292 -0.3516 GY 2.53 292 -0.3516 GY 2.71 292 -0.0703 GY 2.12 71 -0.0703 GY 0.12 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.4922 GY 0.66 71 -0.6328 GY 0.85 71 -0.7734 GY 1.03 71 -0.7734 GY 1.41 71 -0.9141 GY 1.22 71 -0.10547 GY 1.41 71	292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.4922 GY 0.66 292 -0.6328 GY 0.85 292 -0.7734 GY 1.03 292 -1.0547 GY 1.41 292 -1.0547 GY 1.78 292 -0.7734 GY 2.78 292 -0.7734 GY 2.78 292 -0.7734 GY 2.78 292 -0.9141 GY 1.78 292 -0.9141 GY 1.78 292 -0.9141 GY 1.78 292 -0.6328 GY 2.15 292 -0.4922 GY 2.34 292 -0.4922 GY 2.34 292 -0.3516 GY 2.53 292 -0.2109 GY 2.71 292 -0.0703 GY 2.88 71 -0.0703 GY 0.12 71 -0.0703 GY 0.12 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.4922 GY 0.66 71 -0.6328 GY 0.85 71 -0.7734 GY 1.03 71 -0.9141 GY 1.22 71 -0.9141 GY 1.22 71 -0.9141 GY 1.22 71 -1.0547 GY 1.59	292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.6328 GY 0.85 292 -0.9141 GY 1.22 292 -1.0547 GY 1.41 292 -0.7734 GY 1.59 292 -0.9141 GY 1.78 292 -0.6328 GY 2.15 292 -0.6328 GY 2.15 292 -0.4922 GY 2.34 292 -0.4922 GY 2.34 292 -0.2109 GY 2.71 292 -0.0703 GY 2.88 71 -0.0703 GY 0.12 71 -0.2109 GY 0.29 71 -0.3516 GY 0.47 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.4922 GY 0.66 71 -0.6328 GY 0.85 71 -0.9141 GY 1.03 71 -0.9141 GY 1.03 71 -0.9141 GY 1.22	292 -0.2109 GY 0.29 292 -0.3516 GY 0.47 292 -0.6328 GY 0.66 292 -0.7734 GY 1.03 292 -0.9141 GY 1.22 292 -1.0547 GY 1.41 292 -0.9141 GY 1.78 292 -0.7734 GY 1.97 292 -0.6328 GY 2.15 292 -0.6328 GY 2.15 292 -0.6326 GY 2.34 292 -0.3516 GY 2.53 292 -0.2109 GY 2.71 292 -0.0703 GY 2.88 71 -0.0703 GY 0.12 71 -0.3516 GY 0.47 71 -0.3516 GY 0.47 71 -0.4922 GY 0.66 71 -0.4922 GY 0.66 71 -0.4922 GY 0.65 71 -0.4923 GY 0.85 71 -0.4924 GY 0.85 71 -0.4925 GY 0.66 71 -0.6328 GY 0.85

				momuay,	OCCODE	20,	2020,	10
STAAD SPACE		PAGE NO.	82					
71	-0.7734 GY 1.97							
71	-0.6328 GY 2.15							
71	-0.4922 GY 2.34							
71	-0.3516 GY 2.53							
71	-0.2109 GY 2.71							
71	-0.2109 G1 2.71 -0.0703 GY 2.88							
291	-0.0703 GY 0.12							
291	-0.2109 GY 0.29							
291	-0.3516 GY 0.47							
291	-0.4922 GY 0.66							
291	-0.6328 GY 0.85							
291	-0.7734 GY 1.03							
291	-0.9141 GY 1.22							
291	-1.0547 GY 1.41							
291	-1.0547 GY 1.59							
291	-0.9141 GY 1.78							
291	-0.7734 GY 1.97							
291	-0.6328 GY 2.15							
291	-0.4922 GY 2.34							
291	-0.3516 GY 2.53							
291	-0.2109 GY 2.71							
291	-0.0703 GY 2.88							
18	-0.0703 GY 0.12							
18	-0.2109 GY 0.29							
18	-0.3516 GY 0.47							
18	-0.4922 GY 0.66							
18	-0.6328 GY 0.85							
18	-0.7734 GY 1.03							
18	-0.9141 GY 1.22							
18	-1.0547 GY 1.41							
18	-1.0547 GY 1.59							
18	-0.9141 GY 1.78							
18	-0.7734 GY 1.97							
18	-0.6328 GY 2.15							
18	-0.4922 GY 2.34							
18	-0.3516 GY 2.53							
18	-0.2109 GY 2.71							
18	-0.0703 GY 2.88							
293	-0.0703 GY 0.12							
293	-0.2109 GY 0.29							
293	-0.3516 GY 0.47							
293	-0.4922 GY 0.66							
293	-0.6328 GY 0.85							
293	-0.7734 GY 1.03							
293	-0.9141 GY 1.22							
293	-1.0547 GY 1.41							
293	-1.0547 GY 1.59							
293	-0.9141 GY 1.78							
293	-0.7734 GY 1.97							
293	-0.6328 GY 2.15							
293	-0.4922 GY 2.34							
293	-0.3516 GY 2.53							
293	-0.2109 GY 2.71							
293	-0.0703 GY 2.88							
72	-0.0703 GY 0.12							
72	-0.2109 GY 0.29							

						monday,	OCCUDEI	20,	2020,	10.
STAAD SPACE			PAGE	NO.	83					
72	-0.3516 GY	0.47								
72	-0.4922 GY	0.66								
72	-0.6328 GY	0.85								
72	-0.7734 GY	1.03								
72	-0.9141 GY	1.22								
72	-1.0547 GY	1.41								
72	-1.0547 GY	1.59								
72	-0.9141 GY	1.78								
72	-0.7734 GY	1.97								
72	-0.6328 GY	2.15								
72	-0.4922 GY	2.34								
72	-0.3516 GY	2.53								
72	-0.2109 GY	2.71								
72	-0.0703 GY	2.88								
292	-0.0703 GY	0.12								
292	-0.2109 GY	0.29								
292	-0.3516 GY	0.47								
292	-0.4922 GY	0.66								
292	-0.6328 GY	0.85								
292	-0.7734 GY	1.03								
292	-0.9141 GY	1.22								
292	-1.0547 GY	1.41								
292	-1.0547 GY	1.59								
292	-0.9141 GY	1.78								
292	-0.7734 GY	1.97								
292	-0.6328 GY	2.15								
292	-0.4922 GY	2.34								
292	-0.3516 GY	2.53								
292	-0.2109 GY	2.71								
292	-0.0703 GY	2.88								
19	-0.0703 GY	0.13								
19	-0.2109 GY	0.29								
19	-0.3516 GY	0.48								
19	-0.4922 GY	0.66								
19	-0.6328 GY	0.85								
19	-0.7734 GY	1.03								
19	-0.9141 GY	1.22								
19	-1.0547 GY	1.41								
19	-1.0547 GY	1.59								
19	-0.9141 GY									
19	-0.7734 GY	1.97								
19 19	-0.6328 GY	2.15								
19	-0.4922 GY -0.3516 GY	2.34 2.53								
19	-0.2109 GY	2.71								
19	-0.2109 G1 -0.0703 GY	2.88								
294	-0.0703 GY	0.12								
294	-0.2109 GY	0.29								
294	-0.3516 GY	0.47								
294	-0.4922 GY	0.66								
294	-0.6328 GY	0.85								
294	-0.7734 GY	1.03								
294	-0.9141 GY	1.22								
294	-1.0547 GY	1.41								
294	-1.0547 GY	1.59								
294	-0.9141 GY	1.78								

						monday,	OCCODE	20, 202	0, 10.	0 /
S	TAAD SPACE			PAGE NO.	84					
2	94	-0.7734 GY	1.97							
	94	-0.6328 GY	2.15							
	94	-0.4922 GY	2.34							
	94	-0.3516 GY	2.53							
	94	-0.2109 GY	2.71							
	94	-0.0703 GY	2.88							
	73	-0.0703 GY	0.13							
	73	-0.2109 GY	0.29							
	73	-0.3516 GY	0.48							
	73	-0.4922 GY	0.66							
	73	-0.6328 GY	0.85							
	73	-0.7734 GY	1.03							
	73	-0.9141 GY	1.22							
	73	-1.0547 GY	1.41							
	73	-1.0547 GY	1.59							
	73	-0.9141 GY	1.78							
	73	-0.7734 GY	1.97							
	73	-0.6328 GY	2.15							
	73	-0.4922 GY	2.34							
	73	-0.3516 GY	2.53							
	73	-0.2109 GY	2.71							
	73	-0.0703 GY	2.88							
2	93	-0.0703 GY	0.12							
2	93	-0.2109 GY	0.29							
2	93	-0.3516 GY	0.47							
	93	-0.4922 GY	0.66							
	93	-0.6328 GY	0.85							
	93	-0.7734 GY	1.03							
	93	-0.9141 GY	1.22							
	93	-1.0547 GY	1.41							
	93	-1.0547 GY	1.59							
	93	-0.9141 GY	1.78							
	93	-0.7734 GY	1.97							
	93	-0.6328 GY	2.15							
	93	-0.4922 GY	2.34							
	93	-0.3516 GY	2.53							
2	93	-0.2109 GY	2.71							
2	93	-0.0703 GY	2.88							
	20	-0.0703 GY	0.12							
	20	-0.2109 GY	0.29							
	20	-0.3516 GY	0.47							
	20	-0.4922 GY	0.66							
	20	-0.6328 GY	0.85							
	20	-0.7734 GY	1.03							
	20	-0.9141 GY	1.22							
	20	-1.0547 GY	1.41							
	20									
		-1.0547 GY	1.59							
	20	-0.9141 GY	1.78							
	20	-0.7734 GY	1.97							
	20	-0.6328 GY	2.15							
	20	-0.4922 GY	2.34							
	20	-0.3516 GY	2.52							
	20	-0.2109 GY	2.71							
	20	-0.0703 GY	2.87							
	95	-0.0703 GY	0.12							
	95	-0.2109 GY	0.29							

							, ,	000000	,	2020, 1
ST	AAD SPACE			PAGE NO).	85				
29	5	-0.3516 GY	0.47							
29		-0.4922 GY	0.66							
29		-0.6328 GY	0.85							
29		-0.7734 GY	1.03							
29		-0.9141 GY	1.22							
29		-1.0547 GY	1.41							
29		-1.0547 GY	1.59							
29		-0.9141 GY	1.78							
29		-0.7734 GY	1.97							
29		-0.6328 GY	2.15							
29		-0.4922 GY	2.34							
29	5	-0.3516 GY	2.53							
29	5	-0.2109 GY	2.71							
29	5	-0.0703 GY	2.88							
7	4	-0.0703 GY	0.12							
7	4	-0.2109 GY	0.29							
7		-0.3516 GY	0.47							
7		-0.4922 GY	0.66							
7		-0.6328 GY	0.85							
7		-0.7734 GY	1.03							
7		-0.9141 GY	1.22							
7		-1.0547 GY	1.41							
7		-1.0547 GY	1.59							
7		-0.9141 GY	1.78							
7		-0.7734 GY	1.97							
7		-0.6328 GY	2.15							
7		-0.4922 GY	2.34							
7		-0.3516 GY	2.52							
7	4	-0.2109 GY	2.71							
7	4	-0.0703 GY	2.87							
29	4	-0.0703 GY	0.12							
29	4	-0.2109 GY	0.29							
29	4	-0.3516 GY	0.47							
29	4	-0.4922 GY	0.66							
29	4	-0.6328 GY	0.85							
29		-0.7734 GY	1.03							
29		-0.9141 GY	1.22							
29		-1.0547 GY	1.41							
29		-1.0547 GY	1.59							
29		-0.9141 GY	1.78							
29		-0.7734 GY	1.97							
29		-0.6328 GY	2.15							
29		-0.4922 GY	2.34							
29		-0.3516 GY	2.53							
29		-0.2109 GY	2.71							
29		-0.0703 GY	2.88							
	1	-0.0703 GY	0.12							
	1	-0.2109 GY	0.29							
	1	-0.3516 GY	0.47							
	1	-0.4922 GY	0.66							
7	1	-0.6328 GY	0.85							
7	1	-0.7734 GY	1.03							
7	1	-0.9141 GY	1.22							
	1	-1.0547 GY	1.41							
	1	-1.0547 GY	1.59							
	1	-0.9141 GY	1.78							
,										

					11011447,	0000002	_ ,	2020,	
STAAD SPACE			PAGE NO.	86					
71	-0.7734 GY	1.97							
71	-0.6328 GY	2.15							
71	-0.4922 GY	2.34							
71	-0.3516 GY	2.53							
71	-0.2109 GY	2.71							
71	-0.0703 GY	2.88							
322	-0.0703 GY	0.12							
322	-0.2109 GY	0.12							
322	-0.2109 G1 -0.3516 GY	0.47							
322	-0.4922 GY	0.66							
322	-0.6328 GY	0.85							
322	-0.7734 GY	1.03							
322	-0.9141 GY	1.22							
322	-1.0547 GY	1.41							
322	-1.0547 GY	1.59							
322	-0.9141 GY	1.78							
322	-0.7734 GY	1.97							
322	-0.6328 GY	2.15							
322	-0.4922 GY	2.34							
322	-0.3516 GY	2.53							
322	-0.2109 GY	2.71							
322	-0.0703 GY	2.88							
125	-0.0703 GY	0.12							
125	-0.2109 GY	0.29							
125	-0.3516 GY	0.47							
125	-0.4922 GY	0.66							
125	-0.6328 GY	0.85							
125	-0.7734 GY	1.03							
125	-0.9141 GY	1.22							
125	-1.0547 GY	1.41							
125	-1.0547 GY	1.59							
125	-0.9141 GY	1.78							
125	-0.7734 GY	1.97							
125	-0.6328 GY	2.15							
125	-0.4922 GY	2.34							
125	-0.3516 GY	2.53							
125	-0.2109 GY	2.71							
125	-0.2109 G1 -0.0703 GY	2.88							
321	-0.0703 GY	0.12							
321		0.12							
	-0.2109 GY								
321	-0.3516 GY	0.47							
321	-0.4922 GY								
321	-0.6328 GY	0.85							
321	-0.7734 GY	1.03							
321	-0.9141 GY	1.22							
321	-1.0547 GY	1.41							
321	-1.0547 GY	1.59							
321	-0.9141 GY	1.78							
321	-0.7734 GY	1.97							
321	-0.6328 GY	2.15							
321	-0.4922 GY	2.34							
321	-0.3516 GY	2.53							
321	-0.2109 GY	2.71							
321	-0.0703 GY	2.88							
72	-0.0703 GY	0.12							
72	-0.2109 GY	0.29							

				monday,	OCCODEL	20,	2020,	10.07 A
STAAD SPACE		PAGE NO.	87					
72	-0.3516 GY 0.4	47						
72	-0.4922 GY 0.6							
72	-0.6328 GY 0.8							
72	-0.7734 GY 1.0	03						
72	-0.9141 GY 1.2	22						
72	-1.0547 GY 1.4	41						
72	-1.0547 GY 1.5	59						
72	-0.9141 GY 1.	78						
72	-0.7734 GY 1.9	97						
72	-0.6328 GY 2.3	15						
72	-0.4922 GY 2.3	34						
72	-0.3516 GY 2.5							
72	-0.2109 GY 2.							
72	-0.0703 GY 2.8							
323	-0.0703 GY 0.1							
323	-0.2109 GY 0.2							
323	-0.3516 GY 0.4							
323	-0.4922 GY 0.6							
323	-0.6328 GY 0.8							
323	-0.7734 GY 1.0							
323	-0.9141 GY 1.2							
323	-1.0547 GY 1.4							
323	-1.0547 GY 1.5							
323	-0.9141 GY 1.7							
323	-0.7734 GY 1.9							
323	-0.6328 GY 2.3							
323 323	-0.4922 GY 2.3 -0.3516 GY 2.5							
323	-0.2109 GY 2.							
323	-0.2109 G1 2.							
126	-0.0703 GY 0.3							
126	-0.2109 GY 0.2							
126	-0.3516 GY 0.4							
126	-0.4922 GY 0.6							
126	-0.6328 GY 0.8							
126	-0.7734 GY 1.0							
126	-0.9141 GY 1.2							
126	-1.0547 GY 1.4							
126	-1.0547 GY 1.5							
126	-0.9141 GY 1.7	78						
126	-0.7734 GY 1.9	97						
126	-0.6328 GY 2.3	15						
126	-0.4922 GY 2.3	34						
126	-0.3516 GY 2.5	53						
126	-0.2109 GY 2.7							
126	-0.0703 GY 2.8							
322	-0.0703 GY 0.1							
322	-0.2109 GY 0.2							
322	-0.3516 GY 0.4							
322	-0.4922 GY 0.6							
322	-0.6328 GY 0.8							
322	-0.7734 GY 1.0							
322	-0.9141 GY 1.2							
322	-1.0547 GY 1.4							
322	-1.0547 GY 1.5							
322	-0.9141 GY 1.7	/8						

					11011447,	0000002	,	2020,	±0.07
STAAD SPACE			PAGE NO.	88					
322	0 7724 CV	1 07							
	-0.7734 GY	1.97							
322 322	-0.6328 GY -0.4922 GY	2.15							
322	-0.4322 G1 -0.3516 GY	2.53							
322	-0.2109 GY	2.71							
322	-0.2109 G1 -0.0703 GY	2.88							
73	-0.0703 GY	0.13							
73	-0.2109 GY	0.29							
73	-0.3516 GY	0.48							
73	-0.4922 GY	0.66							
73	-0.6328 GY	0.85							
73	-0.7734 GY	1.03							
73	-0.9141 GY	1.22							
73	-1.0547 GY	1.41							
73	-1.0547 GY	1.59							
73	-0.9141 GY	1.78							
73	-0.7734 GY	1.97							
73	-0.6328 GY	2.15							
73	-0.4922 GY	2.34							
73	-0.3516 GY	2.53							
73	-0.2109 GY	2.71							
73	-0.0703 GY	2.88							
324	-0.0703 GY	0.12							
324	-0.2109 GY	0.29							
324	-0.3516 GY	0.47							
324	-0.4922 GY	0.66							
324	-0.6328 GY	0.85							
324	-0.7734 GY	1.03							
324	-0.9141 GY	1.22							
324	-1.0547 GY	1.41							
324	-1.0547 GY	1.59							
324	-0.9141 GY	1.78							
324	-0.7734 GY	1.97							
324	-0.6328 GY	2.15							
324	-0.4922 GY	2.34							
324	-0.3516 GY	2.53							
324	-0.2109 GY	2.71							
324	-0.0703 GY	2.88							
127	-0.0703 GY	0.13							
127	-0.2109 GY	0.29							
127	-0.3516 GY	0.48							
127	-0.4922 GY	0.66							
127	-0.6328 GY	0.85							
127	-0.7734 GY	1.03							
127	-0.9141 GY	1.22							
127	-1.0547 GY	1.41							
127	-1.0547 GY	1.59							
127	-0.9141 GY	1.78							
127	-0.7734 GY	1.97							
127	-0.6328 GY	2.15							
127	-0.4922 GY	2.34							
127	-0.3516 GY	2.53							
127	-0.2109 GY	2.71							
127	-0.0703 GY	2.88							
323 323	-0.0703 GY	0.12							
J2J	-0.2109 GY	0.29							

						, ,	0000001	, .	,	-0.0
SI	'AAD SPACE			PAGE NO.	89					
32	22	-0.3516 GY	0.47							
32		-0.4922 GY	0.66							
32		-0.6328 GY	0.85							
32										
		-0.7734 GY	1.03							
32		-0.9141 GY	1.22							
32		-1.0547 GY	1.41							
32		-1.0547 GY	1.59							
32		-0.9141 GY	1.78							
32		-0.7734 GY	1.97							
32		-0.6328 GY	2.15							
32		-0.4922 GY	2.34							
32		-0.3516 GY	2.53							
32		-0.2109 GY	2.71							
32	23	-0.0703 GY	2.88							
7	7.4	-0.0703 GY	0.12							
7	7.4	-0.2109 GY	0.29							
7	7.4	-0.3516 GY	0.47							
7	7.4	-0.4922 GY	0.66							
7	7.4	-0.6328 GY	0.85							
7	7.4	-0.7734 GY	1.03							
7	7.4	-0.9141 GY	1.22							
7	7.4	-1.0547 GY	1.41							
		-1.0547 GY	1.59							
		-0.9141 GY	1.78							
		-0.7734 GY	1.97							
		-0.6328 GY	2.15							
		-0.4922 GY	2.34							
		-0.3516 GY	2.52							
		-0.2109 GY	2.71							
		-0.0703 GY	2.87							
32		-0.0703 GY	0.12							
32		-0.2109 GY	0.29							
32		-0.3516 GY	0.47							
32		-0.4922 GY	0.66							
32		-0.6328 GY	0.85							
32		-0.7734 GY	1.03							
32		-0.9141 GY	1.22							
32		-1.0547 GY	1.41							
32		-1.0547 GY	1.59							
32		-0.9141 GY	1.78							
32		-0.7734 GY	1.97							
32		-0.6328 GY	2.15							
32		-0.4922 GY	2.34							
32		-0.3516 GY	2.53							
32		-0.2109 GY	2.71							
32		-0.2109 G1 -0.0703 GY	2.88							
		-0.0703 GY								
12			0.12							
12		-0.2109 GY	0.29							
12		-0.3516 GY	0.47							
12		-0.4922 GY	0.66							
12		-0.6328 GY	0.85							
12		-0.7734 GY	1.03							
12		-0.9141 GY	1.22							
12		-1.0547 GY	1.41							
12		-1.0547 GY	1.59							
12	28	-0.9141 GY	1.78							

					momuay,	OCCODE	20,	2020,	10
STAAD SPACE			PAGE NO.	90					
128	-0.7734 GY	1.97							
128	-0.6328 GY	2.15							
128	-0.4922 GY	2.34							
	-0.3516 GY								
128		2.52							
128	-0.2109 GY	2.71							
128	-0.0703 GY	2.87							
324	-0.0703 GY	0.12							
324	-0.2109 GY	0.29							
324	-0.3516 GY	0.47							
324	-0.4922 GY	0.66							
324	-0.6328 GY	0.85							
324	-0.7734 GY	1.03							
324	-0.9141 GY	1.22							
324	-1.0547 GY	1.41							
324	-1.0547 GY	1.59							
324	-0.9141 GY	1.78							
324	-0.7734 GY	1.97							
324	-0.6328 GY	2.15							
324	-0.4922 GY	2.34							
324	-0.3516 GY	2.53							
324	-0.2109 GY	2.71							
324	-0.0703 GY	2.88							
125	-0.0703 GY	0.12							
125	-0.2109 GY	0.29							
125	-0.3516 GY	0.47							
125	-0.4922 GY	0.66							
125	-0.6328 GY	0.85							
125	-0.7734 GY	1.03							
125	-0.9141 GY	1.22							
125	-1.0547 GY	1.41							
125	-1.0547 GY	1.59							
125	-0.9141 GY	1.78							
125	-0.7734 GY	1.97							
125	-0.6328 GY	2.15							
125	-0.4922 GY	2.34							
125	-0.3516 GY	2.53							
125	-0.2109 GY	2.71							
125	-0.0703 GY	2.88							
352	-0.0703 GY	0.13							
352	-0.2109 GY	0.29							
352	-0.3516 GY	0.48							
352	-0.4922 GY	0.66							
352	-0.6328 GY	0.85							
352	-0.7734 GY	1.03							
352	-0.9141 GY	1.22							
352	-1.0547 GY	1.41							
352	-1.0547 GY	1.59							
352	-0.9141 GY	1.78							
352	-0.7734 GY	1.97							
352	-0.6328 GY	2.15							
352	-0.4922 GY	2.34							
352	-0.3516 GY	2.53							
352	-0.2109 GY	2.71							
352	-0.0703 GY	2.88							
179	-0.0703 GY	0.12							
179	-0.2109 GY	0.29							

					monday,	october	20,	2020,	10.07	77
STAAD SPACE			PAGE NO.	91						
179	-0.3516 GY	0.47								
179	-0.4922 GY	0.66								
179	-0.6328 GY	0.85								
179	-0.7734 GY	1.03								
179	-0.9141 GY	1.22								
179	-1.0547 GY	1.41								
179	-1.0547 GY	1.59								
179	-0.9141 GY	1.78								
179	-0.7734 GY	1.97								
179	-0.6328 GY	2.15								
179	-0.4922 GY	2.34								
179	-0.3516 GY	2.53								
179	-0.2109 GY	2.71								
179	-0.0703 GY	2.88								
351	-0.0703 GY	0.13								
351	-0.2109 GY	0.29								
351	-0.3516 GY	0.48								
351	-0.4922 GY	0.66								
351	-0.6328 GY	0.85								
351	-0.7734 GY	1.03								
351	-0.9141 GY	1.22								
351	-1.0547 GY	1.41								
351	-1.0547 GY	1.59								
351	-0.9141 GY	1.78								
351	-0.7734 GY	1.97								
351	-0.6328 GY	2.15								
351	-0.4922 GY	2.34								
351	-0.3516 GY	2.53								
351	-0.2109 GY	2.71								
351	-0.0703 GY	2.88								
126	-0.0703 GY	0.12								
126	-0.2109 GY	0.29								
126	-0.3516 GY	0.47								
126	-0.4922 GY	0.66								
126	-0.6328 GY	0.85								
126	-0.7734 GY	1.03								
126	-0.9141 GY	1.22								
126	-1.0547 GY	1.41								
126	-1.0547 GY	1.59								
126		1.78								
126	-0.7734 GY	1.97								
126	-0.6328 GY	2.15								
126	-0.4922 GY	2.34								
126	-0.3516 GY	2.53								
126	-0.2109 GY	2.71								
126	-0.0703 GY	2.88								
353	-0.0703 GY	0.13								
353	-0.2109 GY	0.29								
353	-0.3516 GY	0.48								
353	-0.4922 GY	0.66								
353	-0.6328 GY	0.85								
353	-0.7734 GY	1.03								
353	-0.9141 GY	1.22								
353	-1.0547 GY	1.41								
353	-1.0547 GY	1.59								
353	-0.9141 GY	1.78								

					Monday,	October	26,	2020,	10:07 A
STAAD SPACE			PAGE NO.	92					
353	-0.7734 GY	1.97							
353	-0.6328 GY	2.15							
353	-0.4922 GY	2.34							
353	-0.3516 GY	2.53							
353	-0.2109 GY	2.71							
353	-0.0703 GY	2.88							
180	-0.0703 GY	0.12							
180	-0.2109 GY	0.29							
180	-0.3516 GY	0.47							
180	-0.4922 GY	0.66							
180	-0.6328 GY	0.85							
180	-0.7734 GY	1.03							
180	-0.9141 GY	1.22							
180	-1.0547 GY	1.41							
180	-1.0547 GY	1.59							
180	-0.9141 GY	1.78							
180	-0.7734 GY	1.97							
180	-0.6328 GY	2.15							
180	-0.4922 GY	2.34							
180	-0.3516 GY	2.53							
180	-0.2109 GY	2.71							
180	-0.0703 GY	2.88							
352	-0.0703 GY	0.13							
352	-0.2109 GY	0.29							
352	-0.3516 GY	0.48							
352	-0.4922 GY	0.66							
352	-0.6328 GY	0.85							
352	-0.7734 GY	1.03							
352	-0.9141 GY	1.22							
352	-1.0547 GY	1.41							
352	-1.0547 GY	1.59							
352	-0.9141 GY	1.78							
352	-0.7734 GY	1.97							
352	-0.6328 GY	2.15							
352	-0.4922 GY	2.34							
352	-0.3516 GY	2.53							
352	-0.2109 GY	2.71							
352	-0.0703 GY	2.88							
127	-0.0703 GY	0.13							
127	-0.2109 GY								
127	-0.3516 GY	0.48							
127	-0.4922 GY	0.66							
127 127	-0.6328 GY -0.7734 GY	0.85 1.03							
127	-0.9141 GY	1.22							
127	-1.0547 GY	1.41							
127	-1.0547 GY	1.59							
127	-0.9141 GY	1.78							
127	-0.7734 GY	1.97							
127	-0.6328 GY	2.15							
127	-0.4922 GY	2.34							
127	-0.4922 G1 -0.3516 GY	2.53							
127	-0.2109 GY	2.71							
127	-0.2109 G1 -0.0703 GY	2.88							
354	-0.0703 GY	0.13							
354	-0.2109 GY	0.29							
	3.2233 01								

					monday,	october	20,	2020,	10.07	
STAAD SPACE			PAGE NO.	93						
354	-0.3516 GY	0.48								
354	-0.4922 GY	0.66								
354	-0.6328 GY	0.85								
354	-0.7734 GY	1.03								
354	-0.9141 GY	1.22								
354	-1.0547 GY	1.41								
354	-1.0547 GY	1.59								
354	-0.9141 GY	1.78								
354	-0.7734 GY	1.97								
354	-0.6328 GY	2.15								
354	-0.4922 GY	2.34								
354	-0.3516 GY	2.53								
354	-0.2109 GY	2.71								
354	-0.0703 GY	2.88								
181	-0.0703 GY	0.13								
181	-0.2109 GY	0.29								
181	-0.3516 GY	0.48								
181	-0.4922 GY	0.66								
181	-0.6328 GY	0.85								
181	-0.7734 GY	1.03								
181	-0.9141 GY	1.22								
181	-1.0547 GY	1.41								
181	-1.0547 GY	1.59								
181	-0.9141 GY	1.78								
181	-0.7734 GY	1.97								
181	-0.6328 GY	2.15								
181	-0.4922 GY	2.34								
181	-0.3516 GY	2.53								
181	-0.2109 GY	2.71								
181	-0.0703 GY	2.88								
353	-0.0703 GY	0.13								
353	-0.2109 GY	0.29								
353	-0.3516 GY	0.48								
353	-0.4922 GY	0.66								
353	-0.6328 GY	0.85								
353	-0.7734 GY	1.03								
353	-0.9141 GY	1.22								
353	-1.0547 GY	1.41								
353	-1.0547 GY	1.59								
353		1.78								
353	-0.7734 GY	1.97								
353	-0.6328 GY	2.15								
353	-0.4922 GY	2.34								
353	-0.3516 GY	2.53								
353	-0.2109 GY	2.71								
353	-0.0703 GY	2.88								
128	-0.0703 GY	0.12								
128	-0.2109 GY	0.29								
128	-0.3516 GY	0.47								
128	-0.4922 GY	0.66								
128	-0.6328 GY	0.85								
128	-0.7734 GY	1.03								
128	-0.9141 GY	1.22								
128	-1.0547 GY	1.41								
128	-1.0547 GY	1.59								
128	-0.9141 GY	1.78								

					, inclination	000000	, _	,
STAAD SPACE			PAGE NO.	94				
128	-0.7734 GY	1.97						
128	-0.6328 GY	2.15						
128	-0.4922 GY	2.34						
128	-0.3516 GY	2.52						
128	-0.2109 GY	2.71						
128	-0.0703 GY	2.87						
355	-0.0703 GY	0.13						
355	-0.2109 GY	0.29						
355	-0.3516 GY	0.48						
355	-0.4922 GY	0.66						
355	-0.6328 GY	0.85						
355		1.03						
355	-0.9141 GY	1.22						
355	-1.0547 GY	1.41						
355	-1.0547 GY	1.59						
355	-0.9141 GY	1.78						
355	-0.7734 GY	1.97						
355	-0.6328 GY	2.15						
355	-0.4922 GY	2.34						
355	-0.3516 GY	2.53						
355	-0.2109 GY	2.71						
355	-0.0703 GY	2.88						
182	-0.0703 GY	0.12						
182	-0.2109 GY	0.29						
182	-0.3516 GY	0.47						
182	-0.4922 GY	0.66						
182	-0.4322 G1 -0.6328 GY	0.85						
182		1.03						
182		1.22						
182	-1.0547 GY	1.41						
182	-1.0547 GY	1.59						
182	-0.9141 GY	1.78						
182		1.97						
182	-0.6328 GY	2.15						
182	-0.4922 GY	2.34						
182	-0.3516 GY	2.52						
182	-0.2109 GY	2.71						
182	-0.0703 GY	2.87						
354	-0.0703 GY	0.13						
354	-0.2109 GY	0.29						
354	-0.3516 GY	0.48						
354	-0.4922 GY	0.66						
354	-0.6328 GY	0.85						
354	-0.7734 GY	1.03						
354	-0.9141 GY	1.22						
354	-1.0547 GY	1.41						
354	-1.0547 GY	1.59						
354	-0.9141 GY	1.78						
354	-0.7734 GY	1.97						
354	-0.6328 GY	2.15						
354	-0.4922 GY	2.13						
354	-0.4922 G1 -0.3516 GY							
		2.53						
354	-0.2109 GY	2.71						
354	-0.0703 GY	2.88						
179	-0.0703 GY	0.12						
179	-0.2109 GY	0.29						

					, ,	000000	,	_ ,
STAAD SPACE		-	PAGE NO.	95				
179	-0.3516 GY	0.47						
179	-0.4922 GY	0.66						
179	-0.6328 GY	0.85						
179	-0.7734 GY	1.03						
179	-0.9141 GY	1.22						
179	-1.0547 GY	1.41						
179	-1.0547 GY	1.59						
179	-0.9141 GY	1.78						
179	-0.7734 GY	1.97						
179	-0.6328 GY	2.15						
179	-0.4922 GY	2.34						
179	-0.4922 G1 -0.3516 GY	2.53						
179	-0.2109 GY	2.71						
179	-0.2109 G1 -0.0703 GY	2.88						
382	-0.0703 GY	0.12						
382	-0.2109 GY	0.29						
382	-0.3516 GY	0.47						
382	-0.4922 GY	0.66						
382	-0.6328 GY	0.85						
382	-0.7734 GY	1.03						
382	-0.9141 GY	1.22						
382	-1.0547 GY	1.41						
382	-1.0547 GY	1.59						
382	-0.9141 GY	1.78						
382	-0.7734 GY	1.97						
382	-0.6328 GY	2.15						
382	-0.4922 GY	2.34						
382	-0.3516 GY	2.52						
382	-0.2109 GY	2.71						
382	-0.0703 GY	2.87						
233	-0.0703 GY	0.12						
233	-0.2109 GY	0.29						
233	-0.3516 GY	0.47						
233	-0.4922 GY	0.66						
233	-0.6328 GY	0.85						
233	-0.7734 GY	1.03						
233	-0.9141 GY	1.22						
233	-1.0547 GY	1.41						
233	-1.0547 GY	1.59						
233	-0.9141 GY	1.78						
233	-0.7734 GY	1.97						
233	-0.6328 GY	2.15						
233	-0.4922 GY	2.34						
233	-0.3516 GY	2.53						
233	-0.2109 GY	2.71						
233	-0.0703 GY	2.88						
381	-0.0703 GY	0.12						
381	-0.2109 GY	0.29						
381	-0.3516 GY	0.47						
381	-0.4922 GY	0.66						
381	-0.6328 GY	0.85						
381	-0.7734 GY	1.03						
381	-0.9141 GY	1.22						
381	-1.0547 GY	1.41						
381	-1.0547 GY	1.59						
381	-0.9141 GY	1.78						

						, inclination	000000	_ ,	
STAAD SPACE			PAGE	NO.	96				
381	-0.7734 GY	1.97							
381	-0.6328 GY	2.15							
381	-0.4922 GY	2.34							
381	-0.3516 GY	2.52							
381	-0.2109 GY	2.71							
381	-0.0703 GY	2.87							
180	-0.0703 GY	0.12							
180	-0.2109 GY	0.29							
180		0.47							
180	-0.3516 GY								
	-0.4922 GY	0.66							
180	-0.6328 GY	0.85							
180	-0.7734 GY	1.03							
180	-0.9141 GY	1.22							
180	-1.0547 GY	1.41							
180	-1.0547 GY	1.59							
180	-0.9141 GY	1.78							
180	-0.7734 GY	1.97							
180	-0.6328 GY	2.15							
180	-0.4922 GY	2.34							
180	-0.3516 GY	2.53							
180	-0.2109 GY	2.71							
180	-0.0703 GY	2.88							
383	-0.0703 GY	0.12							
383	-0.2109 GY	0.29							
383	-0.3516 GY	0.47							
383	-0.4922 GY	0.66							
383 383	-0.6328 GY -0.7734 GY	0.85							
383		1.03							
383	-0.9141 GY -1.0547 GY	1.22 1.41							
383	-1.0547 GY	1.59							
383	-0.9141 GY	1.78							
383	-0.7734 GY	1.97							
383	-0.6328 GY	2.15							
383	-0.4922 GY	2.34							
383	-0.3516 GY	2.52							
383	-0.2109 GY	2.71							
383	-0.0703 GY	2.87							
234	-0.0703 GY	0.12							
234	-0.2109 GY	0.29							
234	-0.3516 GY	0.47							
234	-0.4922 GY	0.66							
234	-0.6328 GY	0.85							
234	-0.7734 GY	1.03							
234	-0.9141 GY	1.22							
234	-1.0547 GY	1.41							
234	-1.0547 GY	1.59							
234	-0.9141 GY	1.78							
234	-0.7734 GY	1.97							
234	-0.6328 GY	2.15							
234	-0.4922 GY	2.34							
234	-0.3516 GY	2.53							
234	-0.2109 GY	2.71							
234	-0.0703 GY	2.88							
382	-0.0703 GY	0.12							
382	-0.2109 GY	0.29							

					monday,	October	20,	2020,	10.07 2	1
STAAD SPACE			PAGE NO.	97						
382	-0.3516 GY	0.47								
382	-0.4922 GY	0.66								
382	-0.6328 GY	0.85								
382	-0.7734 GY	1.03								
382	-0.9141 GY	1.22								
382	-1.0547 GY	1.41								
382	-1.0547 GY	1.59								
382	-0.9141 GY	1.78								
382	-0.7734 GY	1.97								
382	-0.6328 GY	2.15								
382	-0.4922 GY	2.34								
382	-0.3516 GY	2.52								
382	-0.2109 GY	2.71								
382	-0.0703 GY	2.87								
181	-0.0703 GY	0.13								
181	-0.2109 GY	0.29								
181	-0.3516 GY	0.48								
181	-0.4922 GY	0.66								
181	-0.6328 GY	0.85								
181	-0.7734 GY	1.03								
181	-0.9141 GY	1.22								
181	-1.0547 GY	1.41								
181	-1.0547 GY	1.59								
181	-0.9141 GY	1.78								
181	-0.7734 GY	1.97								
181	-0.6328 GY	2.15								
181	-0.4922 GY	2.34								
181	-0.3516 GY	2.53								
181	-0.2109 GY	2.71								
181	-0.0703 GY	2.88								
384	-0.0703 GY	0.12								
384	-0.2109 GY	0.29								
384	-0.3516 GY	0.47								
384	-0.4922 GY	0.66								
384	-0.6328 GY	0.85								
384	-0.7734 GY	1.03								
384	-0.9141 GY	1.22								
384	-1.0547 GY	1.41								
384	-1.0547 GY	1.59								
384	-0.9141 GY									
384		1.97								
384		2.15								
384		2.34								
384	-0.3516 GY	2.52								
384	-0.2109 GY	2.71								
384	-0.0703 GY	2.87								
235	-0.0703 GY	0.13								
235	-0.2109 GY	0.29								
235	-0.3516 GY	0.48								
235 235	-0.4922 GY -0.6328 GY	0.66 0.85								
235	-0.8328 G1 -0.7734 GY	1.03								
235	-0.7734 GY	1.22								
235	-1.0547 GY	1.41								
235		1.41								
235		1.78								
255	0.7141 G1	±./U								

					, ,	0000001	_ , _	020,	
STAAD SPACE			PAGE NO.	98					
235	-0.7734 GY	1.97							
235	-0.6328 GY	2.15							
235	-0.4922 GY	2.34							
235	-0.3516 GY	2.53							
235	-0.2109 GY	2.71							
235	-0.0703 GY	2.88							
383	-0.0703 GY	0.12							
383	-0.2109 GY	0.29							
383	-0.3516 GY	0.47							
383	-0.4922 GY	0.66							
383	-0.6328 GY	0.85							
383	-0.7734 GY	1.03							
383	-0.9141 GY	1.22							
383	-1.0547 GY	1.41							
383	-1.0547 GY	1.59							
383	-0.9141 GY	1.78							
383	-0.7734 GY	1.97							
383	-0.6328 GY	2.15							
383	-0.4922 GY	2.34							
383	-0.3516 GY	2.52							
383	-0.2109 GY	2.71							
383	-0.0703 GY	2.87							
182	-0.0703 GY	0.12							
182	-0.2109 GY	0.29							
182	-0.3516 GY	0.47							
182	-0.4922 GY	0.66							
182	-0.6328 GY	0.85							
182	-0.7734 GY	1.03							
182	-0.9141 GY	1.22							
182	-1.0547 GY	1.41							
182	-1.0547 GY	1.59							
182	-0.9141 GY	1.78							
182	-0.7734 GY	1.97							
182	-0.6328 GY	2.15							
182	-0.4922 GY	2.34							
182	-0.3516 GY	2.52							
182	-0.2109 GY	2.71							
182	-0.0703 GY	2.87							
385	-0.0703 GY	0.12							
385	-0.2109 GY	0.29							
385	-0.3516 GY	0.47							
385	-0.4922 GY	0.66							
385	-0.6328 GY	0.85							
385	-0.7734 GY	1.03							
385	-0.9141 GY	1.22							
385	-1.0547 GY	1.41							
385	-1.0547 GY	1.59							
385	-0.9141 GY	1.78							
385	-0.7734 GY	1.97							
385	-0.6328 GY	2.15							
385	-0.4922 GY	2.34							
385	-0.3516 GY	2.52							
385	-0.2109 GY	2.71							
385	-0.0703 GY	2.87							
236	-0.0703 GY	0.12							
236	-0.2109 GY	0.29							
	J.2107 G1	U•23							

					11011447,	0000001	,	,	
STAAD SPACE			PAGE NO.	99					
236	-0.3516 GY	0.47							
236	-0.4922 GY	0.66							
236	-0.6328 GY	0.85							
236	-0.7734 GY	1.03							
236	-0.9141 GY	1.22							
236	-1.0547 GY	1.41							
236	-1.0547 GY	1.59							
236	-0.9141 GY	1.78							
236	-0.7734 GY	1.97							
236	-0.6328 GY	2.15							
236	-0.4922 GY	2.34							
236	-0.3516 GY	2.52							
236	-0.2109 GY	2.71							
236	-0.0703 GY	2.87							
384	-0.0703 GY	0.12							
384	-0.2109 GY	0.29							
384	-0.3516 GY	0.47							
384	-0.4922 GY	0.66							
384	-0.6328 GY	0.85							
384	-0.7734 GY	1.03							
384	-0.9141 GY	1.22							
384	-1.0547 GY	1.41							
384	-1.0547 GY	1.59							
384	-0.9141 GY	1.78							
384	-0.7734 GY	1.97							
384	-0.6328 GY	2.15							
384	-0.4922 GY	2.34							
384	-0.3516 GY	2.52							
384	-0.2109 GY	2.71							
384	-0.0703 GY	2.87							
21	-0.0703 GY	0.12							
21	-0.2109 GY	0.29							
21	-0.3516 GY	0.47							
21	-0.4922 GY	0.66							
21	-0.6328 GY	0.85							
21	-0.7734 GY	1.03							
21	-0.9141 GY	1.22							
21	-1.0547 GY	1.41							
21	-1.0547 GY	1.59							
21	-0.9141 GY	1.78							
21	-0.7734 GY	1.97							
21	-0.6328 GY	2.15							
21	-0.4922 GY	2.34							
21	-0.3516 GY	2.53							
21	-0.2109 GY	2.71							
21	-0.0703 GY	2.88							
297	-0.0703 GY	0.12							
297	-0.2109 GY	0.29							
297	-0.3516 GY	0.47							
297	-0.4922 GY	0.66							
297	-0.4922 G1 -0.6328 GY	0.85							
297	-0.8328 G1 -0.7734 GY	1.03							
297	-0.9141 GY	1.22							
297	-1.0547 GY	1.41							
297	-1.0547 GY	1.59							
297	-0.9141 GY	1.78							

STAAD SPACE			PAGE NO. 10)
297	-0.7734 GY	1.97		
297	-0.6328 GY	2.15		

STAAD SPACE		
297	-0.7734 GY	1.97
297	-0.6328 GY	2.15
297	-0.4922 GY	2.13
		2.54
297	-0.3516 GY	
297	-0.2109 GY	2.71
297	-0.0703 GY	2.88
75	-0.0703 GY	0.12
75	-0.2109 GY	0.29
75	-0.3516 GY	0.47
75	-0.4922 GY	0.66
75	-0.6328 GY	0.85
75	-0.7734 GY	1.03
75	-0.9141 GY	1.22
75	-1.0547 GY	1.41
75	-1.0547 GY	1.59
75	-0.9141 GY	1.78
75	-0.7734 GY	1.97
75	-0.6328 GY	2.15
75	-0.4922 GY	2.34
75	-0.3516 GY	2.53
75	-0.2109 GY	2.71
75	-0.0703 GY	2.88
296	-0.0703 GY	0.12
296	-0.2109 GY	0.29
296	-0.3516 GY	0.47
296	-0.4922 GY	0.66
296	-0.6328 GY	0.85
296		1.03
296	-0.9141 GY	1.22
296	-1.0547 GY	1.41
296	-1.0547 GY	1.59
296	-0.9141 GY	1.78
296	-0.7734 GY	1.97
296	-0.6328 GY	2.15
296	-0.4922 GY	2.34
296	-0.3516 GY	2.53
296	-0.2109 GY	2.71
296	-0.0703 GY	2.88
22	-0.0703 GY	0.12
22	-0.2109 GY	0.29
22	-0.3516 GY	0.47
22	-0.4922 GY	0.66
22	-0.6328 GY	0.85
22	-0.7734 GY	1.03
22	-0.9141 GY	1.22
22	-1.0547 GY	1.41
22	-1.0547 GY	1.59
22	-0.9141 GY	1.78
22	-0.7734 GY	1.97
22	-0.6328 GY	2.15
22	-0.4922 GY	2.34
22	-0.3516 GY	2.53
22	-0.2109 GY	2.71
22	-0.0703 GY	2.88
298	-0.0703 GY	0.12
298	-0.2109 GY	0.12
2,0	0.2103 GI	0.43

						- '	•
STAAD SPACE			Pi	AGE NO.	101		
298	-0.3516 GY	0.47					
298	-0.4922 GY	0.66					
298	-0.6328 GY	0.85					
298	-0.7734 GY	1.03					
298	-0.9141 GY	1.22					
298	-1.0547 GY	1.41					
298	-1.0547 GY	1.59					
298	-0.9141 GY	1.78					
298	-0.7734 GY	1.97					
298	-0.6328 GY	2.15					
298	-0.4922 GY	2.34					
298	-0.3516 GY	2.53					
298	-0.2109 GY	2.71					
298	-0.0703 GY	2.88					
76	-0.0703 GY	0.12					
76	-0.2109 GY	0.29					
76	-0.3516 GY	0.47					
76	-0.4922 GY	0.66					
76	-0.6328 GY	0.85					
76	-0.7734 GY	1.03					
76	-0.9141 GY	1.22					
76	-1.0547 GY	1.41					
76	-1.0547 GY	1.59					
76	-0.9141 GY						
		1.78					
76	-0.7734 GY	1.97					
76	-0.6328 GY	2.15					
76	-0.4922 GY	2.34					
76	-0.3516 GY	2.53					
76	-0.2109 GY	2.71					
76	-0.0703 GY	2.88					
297	-0.0703 GY	0.12					
297	-0.2109 GY	0.29					
297	-0.3516 GY	0.47					
297	-0.4922 GY	0.66					
297	-0.6328 GY	0.85					
297	-0.7734 GY	1.03					
297	-0.9141 GY	1.22					
297	-1.0547 GY	1.41					
297	-1.0547 GY	1.59					
297	-0.9141 GY	1.78					
297	-0.7734 GY	1.97					
297	-0.6328 GY	2.15					
297	-0.4922 GY	2.34					
297	-0.3516 GY	2.53					
297	-0.2109 GY						
		2.71					
297	-0.0703 GY	2.88					
23	-0.0703 GY	0.13					
23	-0.2109 GY	0.29					
23	-0.3516 GY	0.48					
23	-0.4922 GY	0.66					
23	-0.6328 GY	0.85					
23	-0.7734 GY	1.03					
23	-0.9141 GY	1.22					
23	-1.0547 GY	1.41					
23	-1.0547 GY	1.59					
23	-0.9141 GY	1.78					

					, inclination	000000	, _	,
STAAD SPACE			PAGE NO.	102				
23	-0.7734 GY	1.97						
23	-0.6328 GY	2.15						
23	-0.4922 GY	2.34						
23	-0.3516 GY	2.53						
23	-0.2109 GY	2.71						
23								
	-0.0703 GY	2.88						
299	-0.0703 GY	0.12						
299	-0.2109 GY	0.29						
299	-0.3516 GY	0.47						
299	-0.4922 GY	0.66						
299	-0.6328 GY	0.85						
299		1.03						
299	-0.9141 GY	1.22						
299	-1.0547 GY	1.41						
299	-1.0547 GY	1.59						
299	-0.9141 GY	1.78						
299	-0.7734 GY	1.97						
299	-0.6328 GY	2.15						
299	-0.4922 GY	2.34						
299	-0.3516 GY	2.53						
299	-0.2109 GY	2.71						
299	-0.0703 GY	2.88						
77	-0.0703 GY	0.13						
77	-0.2109 GY	0.29						
77	-0.3516 GY	0.48						
77	-0.4922 GY	0.66						
77	-0.6328 GY	0.85						
77	-0.7734 GY	1.03						
77	-0.9141 GY	1.22						
77	-1.0547 GY	1.41						
77	-1.0547 GY	1.59						
77	-0.9141 GY	1.78						
77	-0.7734 GY	1.97						
77	-0.6328 GY	2.15						
77	-0.4922 GY	2.34						
77	-0.3516 GY	2.53						
77	-0.2109 GY	2.71						
77	-0.0703 GY	2.88						
298	-0.0703 GY	0.12						
298	-0.2109 GY	0.29						
298	-0.3516 GY	0.47						
298	-0.4922 GY	0.66						
298	-0.6328 GY	0.85						
298	-0.7734 GY	1.03						
298	-0.9141 GY	1.22						
298	-1.0547 GY	1.41						
298	-1.0547 GY	1.59						
298	-0.9141 GY	1.78						
298	-0.7734 GY	1.97						
298	-0.6328 GY	2.15						
298	-0.4922 GY	2.34						
298	-0.3516 GY	2.53						
298	-0.2109 GY	2.71						
298	-0.0703 GY	2.88						
24	-0.0703 GY	0.12						
24	-0.2109 GY	0.29						

				11011447,	000000	20, 2020	,
STAAD SPACE		PAGE NO	0. 103				
24	-0.3516 GY 0	.47					
24		.66					
24		.85					
24		.03					
24		.22					
24		.41					
24		.59					
24	-0.9141 GY 1	.78					
24	-0.7734 GY 1	.97					
24		.15					
24	-0.4922 GY 2	.34					
24	-0.3516 GY 2	.52					
24	-0.2109 GY 2	.71					
24	-0.0703 GY 2	.87					
300	-0.0703 GY 0	.12					
300	-0.2109 GY 0	.29					
300	-0.3516 GY 0	. 47					
300	-0.4922 GY 0	.66					
300	-0.6328 GY 0	.85					
300	-0.7734 GY 1	.03					
300	-0.9141 GY 1	.22					
300	-1.0547 GY 1	.41					
300	-1.0547 GY 1	.59					
300	-0.9141 GY 1	.78					
300	-0.7734 GY 1	.97					
300		.15					
300		.34					
300		.53					
300		.71					
300		.88					
78		.12					
78		.29					
78		. 47					
78		.66					
78		.85					
78		.03					
78 78		.22					
78		.41 .59					
78		.78					
78		.97					
78		.15					
78		.34					
78		.52					
78		.71					
78		.87					
299		.12					
299		.29					
299		.47					
299		.66					
299		.85					
299		.03					
299		.22					
299		.41					
299		.59					
299		.78					

					11011447,	0000001 2
STAAD SPACE			PAGE NO	. 104		
299	-0.7734 GY	1.97				
299	-0.6328 GY	2.15				
299	-0.4922 GY	2.34				
299	-0.3516 GY	2.53				
299	-0.2109 GY	2.71				
299	-0.0703 GY	2.88				
75	-0.0703 GY	0.12				
75	-0.2109 GY	0.29				
75	-0.3516 GY	0.47				
75	-0.4922 GY	0.66				
75	-0.6328 GY	0.85				
75	-0.7734 GY	1.03				
75	-0.9141 GY	1.22				
75	-1.0547 GY	1.41				
75	-1.0547 GY	1.59				
75	-0.9141 GY	1.78				
75	-0.7734 GY	1.97				
75	-0.6328 GY	2.15				
75	-0.4922 GY	2.34				
75	-0.3516 GY	2.53				
75	-0.2109 GY	2.71				
75	-0.0703 GY	2.88				
327	-0.0703 GY	0.12				
327	-0.2109 GY	0.29				
327	-0.3516 GY	0.47				
327	-0.4922 GY	0.66				
327	-0.6328 GY	0.85				
327	-0.7734 GY	1.03				
327	-0.9141 GY	1.22				
327	-1.0547 GY	1.41				
327	-1.0547 GY	1.59				
327	-0.9141 GY	1.78				
327	-0.7734 GY	1.97				
327	-0.6328 GY	2.15				
327	-0.4922 GY	2.34				
327	-0.3516 GY	2.53				
327	-0.2109 GY	2.71				
327 129	-0.0703 GY -0.0703 GY	2.88 0.12				
129	-0.2109 GY	0.12				
129	-0.3516 GY	0.47				
129	-0.4922 GY	0.66				
129	-0.6328 GY	0.85				
129	-0.7734 GY	1.03				
129	-0.9141 GY	1.22				
129	-1.0547 GY	1.41				
129	-1.0547 GY	1.59				
129	-0.9141 GY	1.78				
129	-0.7734 GY	1.97				
129	-0.6328 GY	2.15				
129	-0.4922 GY	2.34				
129	-0.3516 GY	2.53				
129	-0.2109 GY	2.71				
129	-0.0703 GY	2.88				
326	-0.0703 GY	0.12				
326	-0.2109 GY	0.29				

						4 ,	•
STAAD SPACE			I	PAGE NO.	105		
326	-0.3516 GY	0.47					
326	-0.4922 GY	0.66					
326	-0.6328 GY	0.85					
326	-0.7734 GY	1.03					
326	-0.9141 GY	1.22					
326	-1.0547 GY	1.41					
326	-1.0547 GY	1.59					
326	-0.9141 GY	1.78					
326	-0.7734 GY	1.97					
326	-0.6328 GY	2.15					
326	-0.4922 GY	2.34					
326	-0.3516 GY	2.53					
326	-0.2109 GY	2.71					
326	-0.0703 GY	2.88					
76	-0.0703 GY	0.12					
76	-0.2109 GY	0.29					
76	-0.2109 G1 -0.3516 GY	0.47					
76	-0.4922 GY	0.66					
76	-0.4922 G1 -0.6328 GY	0.85					
76	-0.0328 G1 -0.7734 GY	1.03					
76	-0.9141 GY	1.22					
76	-1.0547 GY	1.41					
76	-1.0547 GY	1.59					
76	-0.9141 GY	1.78					
76	-0.7734 GY	1.97					
76	-0.6328 GY	2.15					
76	-0.4922 GY	2.34					
76	-0.3516 GY	2.53					
76	-0.2109 GY	2.71					
76	-0.0703 GY	2.88					
328	-0.0703 GY	0.12					
328	-0.2109 GY	0.29					
328	-0.3516 GY	0.47					
328	-0.4922 GY	0.66					
328	-0.6328 GY	0.85					
328	-0.7734 GY	1.03					
328	-0.9141 GY	1.22					
328	-1.0547 GY	1.41					
328	-1.0547 GY	1.59					
328	-0.9141 GY	1.78					
328	-0.7734 GY	1.97					
328	-0.6328 GY	2.15					
328	-0.4922 GY	2.34					
328	-0.3516 GY	2.53					
328	-0.2109 GY	2.71					
328	-0.0703 GY	2.88					
130	-0.0703 GY	0.12					
130	-0.2109 GY	0.29					
130	-0.3516 GY	0.47					
130 130	-0.4922 GY	0.66					
130	-0.6328 GY -0.7734 GY	0.85 1.03					
130	-0.7734 GY -0.9141 GY	1.03					
130	-0.9141 GY -1.0547 GY	1.41					
130	-1.0547 GY	1.41					
130	-0.9141 GY	1.78					
100	0.7141 G1	1.70					

					Monday,	October 2
STAAD SPACE			PAGE NO	. 106		
130	-0.7734 GY	1.97				
130	-0.6328 GY	2.15				
130	-0.4922 GY	2.34				
130	-0.3516 GY	2.53				
130	-0.2109 GY	2.71				
130	-0.0703 GY	2.88				
327	-0.0703 GY	0.12				
327	-0.2109 GY	0.29				
327	-0.3516 GY	0.47				
327	-0.4922 GY	0.66				
327	-0.6328 GY	0.85				
327	-0.7734 GY	1.03				
327	-0.9141 GY	1.22				
327	-1.0547 GY	1.41				
327	-1.0547 GY	1.59				
327	-0.9141 GY	1.78				
327	-0.7734 GY	1.97				
327	-0.6328 GY	2.15				
327	-0.4922 GY	2.34				
327	-0.3516 GY	2.53				
327	-0.2109 GY	2.71				
327	-0.0703 GY	2.88				
77	-0.0703 GY	0.13				
77	-0.2109 GY	0.29				
77	-0.3516 GY	0.48				
77	-0.4922 GY	0.66				
77	-0.6328 GY	0.85				

-0.7734 GY 1.03

-0.9141 GY 1.22

-1.0547 GY

-1.0547 GY

-0.9141 GY

-0.7734 GY

-0.6328 GY

-0.4922 GY

-0.3516 GY

-0.2109 GY

-0.0703 GY

-0.0703 GY

-0.2109 GY

-0.3516 GY

-0.4922 GY

-0.6328 GY

-0.7734 GY

-0.9141 GY

-1.0547 GY

-1.0547 GY

-0.9141 GY

-0.7734 GY

-0.6328 GY

-0.4922 GY

-0.3516 GY

-0.2109 GY

-0.0703 GY

-0.0703 GY

-0.2109 GY

1.41

1.59

1.78

1.97

2.15

2.34

2.53

2.71

2.88

0.12

0.29

0.47

0.66

0.85

1.03

1.22

1.41

1.59

1.78

1.97

2.15

2.34

2.53

2.71

2.88

0.13

0.29

77 77

77

77

77

77

77

77

77

77

77

329

329

329

329 329

329 329

329

329

329

329 329

329

329

329

329

131

131

						Monday,	October	2
STAAD SPACE			 PAGE	NO.	107			
131	-0.3516 GY	0.48						
131	-0.4922 GY	0.66						
131	-0.6328 GY	0.85						
131	-0.7734 GY	1.03						
131	-0.9141 GY	1.22						
131	-1.0547 GY	1.41						
131	-1.0547 GY	1.59						
131	-0.9141 GY	1.78						
131	-0.7734 GY	1.97						
131	-0.6328 GY	2.15						
131	-0.4922 GY	2.34						
131	-0.4922 G1 -0.3516 GY	2.53						
131	-0.2109 GY	2.71						
131	-0.2109 G1 -0.0703 GY	2.88						
328	-0.0703 GY	0.12						
328	-0.2109 GY	0.29						
328	-0.3516 GY	0.47						
328 328	-0.4922 GY -0.6328 GY	0.66						
328	-0.8328 G1 -0.7734 GY	0.85 1.03						
328	-0.7734 G1 -0.9141 GY	1.22						
328								
328	-1.0547 GY -1.0547 GY	1.41 1.59						
328	-0.9141 GY	1.78						
328	-0.7734 GY	1.97						
328	-0.6328 GY	2.15						
328	-0.4922 GY	2.34						
328	-0.3516 GY	2.53						
328	-0.2109 GY	2.71						
328	-0.0703 GY	2.88						
78	-0.0703 GY	0.12						
78	-0.2109 GY	0.29						
78	-0.3516 GY	0.47						
78	-0.4922 GY	0.66						
78	-0.6328 GY	0.85						
78	-0.7734 GY	1.03						
78	-0.9141 GY	1.22						
78	-1.0547 GY	1.41						
78	-1.0547 GY	1.59						
78	-0.9141 GY	1.78						
78	-0.7734 GY	1.97						
78	-0.6328 GY	2.15						
78	-0.4922 GY	2.34						
78	-0.3516 GY	2.52						
78	-0.2109 GY	2.71						
78	-0.0703 GY	2.87						
330	-0.0703 GY	0.12						
330	-0.2109 GY	0.29						
330	-0.3516 GY	0.47						
330	-0.4922 GY	0.66						
330	-0.6328 GY	0.85						
330	-0.7734 GY	1.03						
330 330	-0.9141 GY	1.22						
330	-1.0547 GY -1.0547 GY	1.41 1.59						
330	-0.9141 GY	1.78						
550	O.DITI GI	1.70						

						Monday,	October	26,
ST	AAD SPACE			PAGE NO.	108			
33		-0.7734 GY	1.97					
33		-0.6328 GY	2.15					
33		-0.4922 GY	2.34					
33	0	-0.3516 GY	2.53					
33	0	-0.2109 GY	2.71					
33	0	-0.0703 GY	2.88					
13	2	-0.0703 GY	0.12					
13	2	-0.2109 GY	0.29					
13	2	-0.3516 GY	0.47					
13	2	-0.4922 GY	0.66					
13	2	-0.6328 GY	0.85					
13	2	-0.7734 GY	1.03					
13	2	-0.9141 GY	1.22					
13	2	-1.0547 GY	1.41					
13	2	-1.0547 GY	1.59					
13	2	-0.9141 GY	1.78					
13		-0.7734 GY	1.97					
13		-0.6328 GY	2.15					
13		-0.4922 GY	2.34					
13		-0.3516 GY	2.52					
13		-0.2109 GY	2.71					
13		-0.0703 GY	2.87					
32		-0.0703 GY	0.12					
32		-0.2109 GY	0.29					
32		-0.3516 GY	0.47					
32		-0.4922 GY	0.66					
32		-0.4322 G1 -0.6328 GY	0.85					
32			1.03					
32	<i>9</i>	-0.7734 GY	1.03					

-0.9141 GY 1.22

-1.0547 GY 1.41

-1.0547 GY 1.59

-0.9141 GY -0.7734 GY

-0.6328 GY

-0.4922 GY

-0.3516 GY

-0.2109 GY

-0.0703 GY

-0.0703 GY

-0.2109 GY

-0.6328 GY

-0.7734 GY

-0.9141 GY

-1.0547 GY

-1.0547 GY

-0.9141 GY

-0.7734 GY

-0.6328 GY -0.4922 GY

-0.3516 GY

-0.2109 GY

-0.2109 GY

-0.0703 GY 2.88 -0.0703 GY

-0.3516 GY 0.47 -0.4922 GY

1.78

1.97

2.15

2.34

2.53

2.71

2.88

0.12

0.29

0.66

0.85 1.03

1.22

1.41 1.59

1.78 1.97

2.15

2.34

2.53

2.71

0.13

0.29

329 329

329

329

329

329 329

329

329 329

329

129

129

129

129 129

129

129 129

129

129

129

129

129

129 129

129

357

357

					monday,	occoper	20,	20
STAAD SPACE			PAGE NO.	109				
357	-0.3516 GY	0.48						
357	-0.4922 GY	0.66						
357	-0.6328 GY	0.85						
357	-0.7734 GY	1.03						
357	-0.9141 GY	1.22						
357	-1.0547 GY	1.41						
357	-1.0547 GY	1.59						
357	-0.9141 GY	1.78						
357	-0.7734 GY	1.97						
357	-0.6328 GY	2.15						
357	-0.4922 GY	2.34						
357	-0.3516 GY	2.53						
357	-0.2109 GY	2.71						
357	-0.0703 GY	2.88						
183	-0.0703 GY	0.12						
183	-0.2109 GY	0.29						
183	-0.3516 GY	0.47						
183	-0.4922 GY	0.66						
183	-0.6328 GY	0.85						
183	-0.7734 GY	1.03						
183	-0.9141 GY	1.22						
183	-1.0547 GY	1.41						
183	-1.0547 GY	1.59						
183	-0.9141 GY	1.78						
183	-0.7734 GY	1.97						
183	-0.6328 GY	2.15						
183	-0.4922 GY	2.34						
183	-0.3516 GY	2.53						
183	-0.2109 GY	2.71						
183	-0.0703 GY	2.88						
356	-0.0703 GY	0.13						
356	-0.2109 GY	0.29						
356	-0.3516 GY	0.48						
356	-0.4922 GY	0.66						
356	-0.6328 GY	0.85						
356	-0.7734 GY	1.03						
356	-0.9141 GY	1.22						
356	-1.0547 GY	1.41						
356	-1.0547 GY	1.59						
356		1.78						
356	-0.7734 GY	1.97						
356	-0.6328 GY	2.15						
356	-0.4922 GY	2.34						
356	-0.3516 GY	2.53						
356	-0.2109 GY	2.71						
356	-0.0703 GY	2.88						
130	-0.0703 GY	0.12						
130	-0.2109 GY	0.29						
130	-0.3516 GY	0.47						
130	-0.4922 GY	0.66						
130	-0.6328 GY	0.85						
130	-0.7734 GY	1.03						
130	-0.9141 GY	1.22						
130	-1.0547 GY	1.41						
130	-1.0547 GY	1.59						
130	-0.9141 GY	1.78						

							monaay,	October
STAAD SPACE				PAG	E NO.	110		
120	0 7704 611	. 1	0.7					
130	-0.7734 GY		.97					
130	-0.6328 GY		.15					
130	-0.4922 GY		. 34					
130	-0.3516 GY		.53					
130	-0.2109 GY		.71					
130	-0.0703 GY		. 88					
358	-0.0703 GY		.13					
358	-0.2109 GY		.29					
358	-0.3516 GY		. 48					
358	-0.4922 GY		. 66					
358	-0.6328 GY		. 85					
358	-0.7734 GY		.03					
358	-0.9141 GY		.22					
358	-1.0547 GY		. 41					
358	-1.0547 GY		.59					
358	-0.9141 GY		.78					
358	-0.7734 GY		. 97					
358	-0.6328 GY		.15					
358	-0.4922 GY		.34					
358	-0.3516 GY		.53					
358	-0.2109 GY		.71					
358	-0.0703 GY		. 88					
184	-0.0703 GY		.12					
184	-0.2109 GY		.29					
184	-0.3516 GY		. 47					
184	-0.4922 GY		. 66					
184	-0.6328 GY		. 85					
184	-0.7734 GY		.03					
184	-0.9141 GY		.22					
184	-1.0547 GY		.41					
184	-1.0547 GY		.59					
184 184	-0.9141 GY -0.7734 GY		. 78 . 97					
184	-0.7734 GI -0.6328 GY		.15					
	-0.6326 GI -0.4922 GY							
184 184	-0.4922 G1 -0.3516 GY		.34 .53					
184	-0.2109 GY		.71					
184	-0.2109 GI -0.0703 GY		. 71					
357	-0.0703 GY		.13					
357	-0.2109 GY							
357	-0.3516 GY		.48					
357	-0.4922 GY		.66					
357	-0.6328 GY		.85					
357	-0.7734 GY		.03					
357	-0.9141 GY		.22					
357	-1.0547 GY		.41					
357	-1.0547 GY		.59					
357	-0.9141 GY		.78					
357	-0.7734 GY		. 70					
357	-0.6328 GY		.15					
357	-0.4922 GY		.34					
357	-0.3516 GY		.53					
357	-0.2109 GY		.71					
357	-0.0703 GY		.88					
131	-0.0703 GY		.13					
131	-0.2109 GY		. 29					
T 🗸 T	U.ZIU3 GI	. 0.	/					

					momay,	OCTODEL	20,	2020,	10.07
STAAD SPACE			PAGE NO.	111					
131	-0.3516 GY	0.48							
131	-0.4922 GY	0.66							
131	-0.6328 GY	0.85							
131	-0.7734 GY	1.03							
131	-0.9141 GY	1.22							
131	-1.0547 GY	1.41							
131	-1.0547 GY	1.59							
131	-0.9141 GY	1.78							
131	-0.7734 GY	1.97							
131	-0.6328 GY	2.15							
131	-0.4922 GY	2.34							
131	-0.3516 GY	2.53							
131	-0.2109 GY	2.71							
131	-0.0703 GY	2.88							
359	-0.0703 GY	0.13							
359	-0.2109 GY	0.29							
359	-0.3516 GY	0.48							
359	-0.4922 GY	0.66							
359	-0.6328 GY	0.85							
359	-0.7734 GY	1.03							
359	-0.9141 GY	1.22							
359	-1.0547 GY	1.41							
359	-1.0547 GY	1.59							
359	-0.9141 GY	1.78							
359	-0.7734 GY	1.97							
359	-0.6328 GY	2.15							
359	-0.4922 GY	2.34							
359	-0.3516 GY	2.53							
359	-0.2109 GY	2.71							
359	-0.0703 GY	2.88							
185	-0.0703 GY	0.13							
185	-0.2109 GY	0.29							
185	-0.3516 GY	0.48							
185	-0.4922 GY	0.66							
185	-0.6328 GY	0.85							
185	-0.7734 GY	1.03							
185	-0.9141 GY	1.22							
185	-1.0547 GY	1.41							
185	-1.0547 GY	1.59							
185	-0.9141 GY								
185	-0.7734 GY	1.97							
185	-0.6328 GY	2.15							
185	-0.4922 GY	2.34							
185	-0.3516 GY	2.53							
185	-0.2109 GY	2.71							
185	-0.0703 GY	2.88							
358	-0.0703 GY	0.13							
358	-0.2109 GY	0.29							
358	-0.3516 GY	0.48							
358	-0.4922 GY	0.66							
358	-0.6328 GY	0.85							
358	-0.7734 GY	1.03							
358	-0.9141 GY	1.22							
358	-1.0547 GY	1.41							
358	-1.0547 GY	1.59							
358	-0.9141 GY	1.78							
	J.J.11 O1	-• / •							

						, tanaa	000000	
STAAD SPACE			PAGE	NO.	112			
358	-0.7734 GY	1.97						
358	-0.6328 GY	2.15						
358	-0.4922 GY	2.34						
358	-0.3516 GY	2.53						
358	-0.2109 GY	2.71						
358	-0.0703 GY	2.88						
132	-0.0703 GY	0.12						
132	-0.2109 GY	0.29						
132	-0.3516 GY	0.47						
132	-0.4922 GY	0.66						
132	-0.6328 GY	0.85						
132	-0.7734 GY	1.03						
132	-0.9141 GY	1.22						
132	-1.0547 GY	1.41						
132	-1.0547 GY	1.59						
132	-0.9141 GY	1.78						
132	-0.7734 GY	1.97						
132	-0.6328 GY	2.15						
132	-0.4922 GY	2.34						
132	-0.3516 GY	2.52						
132	-0.2109 GY	2.71						
132	-0.0703 GY	2.87						
360	-0.0703 GY	0.13						
360	-0.2109 GY	0.29						
360	-0.3516 GY	0.48						
360	-0.4922 GY	0.66						
360	-0.6328 GY	0.85						
360	-0.7734 GY	1.03						
360	-0.9141 GY	1.22						
360	-1.0547 GY	1.41						
360	-1.0547 GY	1.59						
360 360	-0.9141 GY -0.7734 GY	1.78 1.97						
360	-0.6328 GY	2.15						
360	-0.4922 GY	2.34						
360	-0.4922 G1 -0.3516 GY	2.53						
360	-0.2109 GY	2.71						
360	-0.0703 GY	2.88						
186	-0.0703 GY	0.12						
186	-0.2109 GY	0.29						
186	-0.3516 GY	0.47						
186	-0.4922 GY	0.66						
186	-0.6328 GY	0.85						
186	-0.7734 GY	1.03						
186	-0.9141 GY	1.22						
186	-1.0547 GY	1.41						
186	-1.0547 GY	1.59						
186	-0.9141 GY	1.78						
186	-0.7734 GY	1.97						
186	-0.6328 GY	2.15						
186	-0.4922 GY	2.34						
186	-0.3516 GY	2.52						
186	-0.2109 GY	2.71						
186	-0.0703 GY	2.87						
359	-0.0703 GY	0.13						
359	-0.2109 GY	0.29						

					, ,	0000001	20,	2020,	
STAAD SPACE			PAGE NO.	113					
359	-0.3516 GY	0.48							
359	-0.4922 GY	0.66							
359	-0.6328 GY	0.85							
359	-0.7734 GY	1.03							
359	-0.9141 GY	1.22							
359	-1.0547 GY	1.41							
359	-1.0547 GY	1.59							
359	-0.9141 GY	1.78							
359	-0.7734 GY	1.97							
359	-0.6328 GY	2.15							
359	-0.4922 GY	2.13							
359	-0.3516 GY	2.53							
359	-0.2109 GY	2.71							
359	-0.0703 GY	2.88							
183	-0.0703 GY	0.12							
183	-0.2109 GY	0.29							
183	-0.3516 GY	0.47							
183	-0.4922 GY	0.66							
183	-0.6328 GY	0.85							
183	-0.7734 GY	1.03							
183	-0.9141 GY	1.22							
183	-1.0547 GY	1.41							
183	-1.0547 GY	1.59							
183	-0.9141 GY	1.78							
183	-0.7734 GY	1.97							
183	-0.6328 GY	2.15							
183	-0.4922 GY	2.34							
183	-0.3516 GY	2.53							
183	-0.2109 GY	2.71							
183	-0.0703 GY	2.88							
387	-0.0703 GY	0.12							
387	-0.2109 GY	0.29							
387	-0.3516 GY	0.47							
387	-0.4922 GY	0.66							
387	-0.6328 GY	0.85							
387	-0.7734 GY	1.03							
387	-0.9141 GY	1.22							
387	-1.0547 GY	1.41							
387	-1.0547 GY	1.59							
387	-0.9141 GY	1.78							
387	-0.7734 GY	1.97							
387	-0.6328 GY	2.15							
387	-0.4922 GY	2.34							
387	-0.3516 GY	2.52							
387	-0.2109 GY	2.71							
387	-0.0703 GY	2.87							
237	-0.0703 GY	0.12							
237	-0.2109 GY	0.29							
237	-0.3516 GY	0.47							
237	-0.4922 GY	0.66							
237	-0.6328 GY	0.85							
237	-0.7734 GY	1.03							
237	-0.9141 GY	1.22							
237	-1.0547 GY	1.41							
237	-1.0547 GY	1.59							
237	-0.9141 GY	1.78							
231	0.9141 G1	1.70							

				M
STAAD SPACE			PAGE NO.	114
237	-0.7734 GY	1.97		
237	-0.6328 GY	2.15		
237	-0.4922 GY	2.34		
237	-0.3516 GY	2.53		
237	-0.2109 GY	2.71		
237	-0.0703 GY	2.88		
386	-0.0703 GY	0.12		
386	-0.2109 GY	0.29		
386	-0.3516 GY	0.47		
386	-0.4922 GY	0.66		
386	-0.6328 GY	0.85		
386	-0.7734 GY	1.03		
386	-0.9141 GY	1.22		
386	-1.0547 GY	1.41		
386	-1.0547 GY	1.59		
386	-0.9141 GY	1.78		
386	-0.7734 GY	1.97		
386	-0.6328 GY	2.15		
386	-0.4922 GY	2.34		
386	-0.3516 GY	2.52		
386	-0.2109 GY	2.71		
386	-0.0703 GY	2.87		
184	-0.0703 GY	0.12		
184	-0.2109 GY	0.29		
184	-0.3516 GY	0.47		
184	-0.4922 GY	0.66		
184	-0.6328 GY	0.85		
184	-0.7734 GY	1.03		
184	-0.9141 GY	1.22		
184	-1.0547 GY	1.41		
184	-1.0547 GY	1.59		
184	-0.9141 GY	1.78		
184	-0.7734 GY	1.97		
184	-0.6328 GY	2.15		
184	-0.4922 GY	2.34		
184	-0.3516 GY	2.53		
184	-0.2109 GY	2.71		
184	-0.0703 GY	2.88		
388	-0.0703 GY	0.12		
388	-0.2109 GY	0.29		
388	-0.3516 GY	0.47		
388	-0.4922 GY	0.66		
388	-0.6328 GY	0.85		
388	-0.7734 GY	1.03		
388	-0.9141 GY	1.22		
388	-1.0547 GY	1.41		
388	-1.0547 GY	1.59		
388	-0.9141 GY -0.7734 GY	1.78 1.97		
388				
388	-0.6328 GY	2.15		
388 388	-0.4922 GY -0.3516 GY	2.34		
388	-0.3516 GY -0.2109 GY	2.32		
388	-0.2109 GY -0.0703 GY	2.71		
238	-0.0703 GY -0.0703 GY	0.12		
238	-0.0703 GY -0.2109 GY	0.12		
230	.0.2103 GI	0.23		

						- ,	•	•
STAAD SPACE		-	PAGE N	10.	115			
238	-0.3516 GY	0.47						
238	-0.4922 GY	0.66						
238	-0.6328 GY	0.85						
238	-0.7734 GY	1.03						
238	-0.9141 GY	1.22						
238	-1.0547 GY	1.41						
238	-1.0547 GY	1.59						
238	-0.9141 GY	1.78						
238	-0.7734 GY	1.97						
238	-0.6328 GY	2.15						
238	-0.4922 GY	2.34						
238	-0.3516 GY	2.53						
238	-0.2109 GY	2.71						
238	-0.0703 GY	2.88						
387	-0.0703 GY	0.12						
387	-0.2109 GY	0.29						
387	-0.3516 GY	0.47						
387	-0.4922 GY	0.66						
387	-0.6328 GY	0.85						
387	-0.7734 GY	1.03						
387	-0.9141 GY	1.22						
387	-1.0547 GY	1.41						
387	-1.0547 GY	1.59						
387	-0.9141 GY	1.78						
387	-0.7734 GY	1.78						
387	-0.6328 GY	2.15						
387	-0.4922 GY	2.13						
387	-0.4922 G1 -0.3516 GY	2.54						
387	-0.2109 GY	2.71						
387	-0.2109 G1 -0.0703 GY	2.87						
185	-0.0703 GY	0.13						
185	-0.2109 GY	0.29						
185	-0.3516 GY	0.48						
185	-0.4922 GY	0.66						
185	-0.6328 GY	0.85						
185	-0.7734 GY	1.03						
185	-0.9141 GY	1.22						
185	-1.0547 GY	1.41						
185	-1.0547 GY	1.59						
185	-0.9141 GY	1.78						
185	-0.7734 GY	1.97						
185	-0.6328 GY	2.15						
185	-0.4922 GY	2.34						
185	-0.3516 GY	2.53						
185	-0.2109 GY	2.71						
185	-0.0703 GY	2.88						
389	-0.0703 GY	0.12						
389	-0.2109 GY	0.29						
389	-0.3516 GY	0.47						
389	-0.4922 GY	0.66						
389	-0.6328 GY	0.85						
389	-0.7734 GY	1.03						
389	-0.9141 GY	1.22						
389	-1.0547 GY	1.41						
389	-1.0547 GY	1.59						
389	-0.9141 GY	1.78						
	J.J.11 U1							

						1101100_
STAAD SPACE			 PAGE	NO.	116	
389	-0.7734 GY	1.97				
389	-0.6328 GY	2.15				
389	-0.4922 GY	2.34				
389	-0.3516 GY	2.52				
389	-0.2109 GY	2.71				
389	-0.0703 GY	2.87				
239	-0.0703 GY	0.13				
239	-0.2109 GY	0.29				
239	-0.3516 GY	0.48				
239	-0.4922 GY	0.66				
239	-0.6328 GY	0.85				
239	-0.7734 GY	1.03				
239	-0.9141 GY	1.22				
239	-1.0547 GY	1.41				
239	-1.0547 GY	1.59				
239	-0.9141 GY	1.78				
239	-0.7734 GY	1.97				
239	-0.6328 GY	2.15				
239	-0.4922 GY	2.34				
239	-0.3516 GY	2.53				
239	-0.2109 GY	2.71				
239	-0.0703 GY	2.88				
388	-0.0703 GY	0.12				
388	-0.2109 GY	0.29				
388	-0.3516 GY	0.47				
388	-0.4922 GY	0.66				
388 388	-0.6328 GY -0.7734 GY	0.85				
388		1.03 1.22				
388	-0.9141 GY -1.0547 GY	1.41				
388	-1.0547 GY	1.59				
388	-0.9141 GY	1.78				
388	-0.7734 GY	1.97				
388	-0.6328 GY	2.15				
388	-0.4922 GY	2.34				
388	-0.3516 GY	2.52				
388	-0.2109 GY	2.71				
388	-0.0703 GY	2.87				
186	-0.0703 GY	0.12				
186	-0.2109 GY	0.29				
186	-0.3516 GY	0.47				
186	-0.4922 GY	0.66				
186	-0.6328 GY	0.85				
186	-0.7734 GY	1.03				
186	-0.9141 GY	1.22				
186	-1.0547 GY	1.41				
186	-1.0547 GY	1.59				
186	-0.9141 GY	1.78				
186	-0.7734 GY	1.97				
186	-0.6328 GY	2.15				
186	-0.4922 GY	2.34				
186	-0.3516 GY	2.52				
186	-0.2109 GY	2.71				
186	-0.0703 GY	2.87				
390	-0.0703 GY	0.12				
390	-0.2109 GY	0.29				

								11011447,	000000	_ ,	2020,	_ 0 . 0 /	
	STAAD SPACE				-	PAGE NO.	117						
	390	-(0.3516 GY	0.47									
	390		0.4922 GY	0.66									
	390			0.85									
	390		0.7734 GY	1.03									
	390		0.9141 GY	1.22									
	390		1.0547 GY	1.41									
	390	-:	1.0547 GY	1.59									
	390	-(0.9141 GY	1.78									
	390	- (0.7734 GY	1.97									
	390	- (0.6328 GY	2.15									
	390	- (0.4922 GY	2.34									
	390	-(0.3516 GY	2.52									
	390		0.2109 GY	2.71									
	390		0.0703 GY	2.87									
	240		0.0703 GY	0.12									
	240		0.2109 GY	0.29									
	240		0.3516 GY	0.47									
	240			0.66									
	240		0.6328 GY	0.85									
	240		0.7734 GY	1.03									
	240		0.9141 GY	1.22									
	240 240		1.0547 GY 1.0547 GY	1.41 1.59									
	240			1.78									
	240			1.97									
	240			2.15									
	240			2.34									
	240		0.3516 GY	2.52									
	240		0.2109 GY	2.71									
	240		0.0703 GY	2.87									
	389		0.0703 GY	0.12									
	389		0.2109 GY	0.29									
	389		0.3516 GY	0.47									
	389	- (0.4922 GY	0.66									
	389	- (0.6328 GY	0.85									
	389	- (0.7734 GY	1.03									
	389		0.9141 GY	1.22									
	389		1.0547 GY	1.41									
	389		1.0547 GY	1.59									
	389		0.9141 GY	1.78									
	389		0.7734 GY	1.97									
	389		0.6328 GY	2.15									
	389		0.4922 GY	2.34									
	389 389		0.3516 GY	2.52									
	389		0.2109 GY 0.0703 GY	2.71									
	303	`	J.0703 G1	2.07									
M	EMBER LOAD - UNIT KN	1 METE											
M	EMBER UDL I	L1 L2	CON	L	LIN1	LIN2							
	1 -15.0000 GY	0.00 3.00											
		0.00 3.00											
		0.00 3.00											
	4 -15.0000 GY	0.00 3.00											

STAAD	SPACE

5	-15.0000 GY	0.00	3.00
6			3.00
		0.00	
7	-15.0000 GY	0.00	3.00
8	-15.0000 GY	0.00	3.00
9	-15.0000 GY	0.00	3.00
10	-15.0000 GY	0.00	3.00
11	-15.0000 GY	0.00	3.00
12	-15.0000 GY	0.00	3.00
13	-15.0000 GY	0.00	3.00
14	-15.0000 GY	0.00	3.00
15	-15.0000 GY	0.00	3.00
16	-15.0000 GY	0.00	3.00
17		0.00	3.00
18	-15.0000 GY	0.00	3.00
19	-15.0000 GY	0.00	3.00
20	-15.0000 GY	0.00	3.00
21	-15.0000 GY	0.00	3.00
22	-15.0000 GY	0.00	3.00
23	-15.0000 GY	0.00	3.00
24	-15.0000 GY	0.00	3.00
25	-15.0000 GY	0.00	3.00
26	-15.0000 GY	0.00	3.00
27	-15.0000 GY	0.00	3.00
28	-15.0000 GY	0.00	3.00
29	-15.0000 GY	0.00	3.00
30			
	-15.0000 GY	0.00	3.00
31	-15.0000 GY	0.00	3.00
32	-15.0000 GY	0.00	3.00
33	-15.0000 GY	0.00	3.00
34	-15.0000 GY	0.00	3.00
35	-15.0000 GY	0.00	3.00
36	-15.0000 GY	0.00	3.00
37	-15.0000 GY	0.00	3.00
38	-15.0000 GY	0.00	3.00
39	-15.0000 GY	0.00	3.00
40	-15.0000 GY	0.00	3.00
41	-15.0000 GY	0.00	3.00
42	-15.0000 GY	0.00	3.00
43	-15.0000 GY	0.00	3.00
44	-15.0000 GY	0.00	3.00
45	-15.0000 GY	0.00	3.00
46	-15.0000 GY	0.00	3.00
47	-15.0000 GY	0.00	3.00
48	-15.0000 GY	0.00	3.00
49	-15.0000 GY	0.00	3.00
50	-15.0000 GY	0.00	3.00
51	-15.0000 GY	0.00	3.00
52	-15.0000 GY	0.00	3.00
53	-15.0000 GY	0.00	3.00
54	-15.0000 GY	0.00	3.00
55	-15.0000 GY	0.00	3.00
56	-15.0000 GY	0.00	3.00
57	-15.0000 GY	0.00	3.00
58	-15.0000 GY	0.00	3.00
59	-15.0000 GY	0.00	3.00
60	-15.0000 GY	0.00	3.00

STAAD	SPACE			
61	-15.0000	GY	0.00	3.00
62	-15.0000	GY	0.00	3.00
63	-15.0000	GY	0.00	3.00
64	-15.0000	GY	0.00	3.00
65	-15.0000	GY	0.00	3.00
66	-15.0000	GY	0.00	3.00
67	-15.0000	GY	0.00	3.00
68	-15.0000	GY	0.00	3.00
69	-15.0000	GY	0.00	3.00
70	-15.0000		0.00	3.00
	-15.0000	GY GY		
71			0.00	3.00
72 73	-15.0000	GY	0.00	3.00
	-15.0000	GY	0.00	3.00
74	-15.0000	GY	0.00	3.00
75	-15.0000	GY	0.00	3.00
76	-15.0000	GY	0.00	3.00
77	-15.0000	GY	0.00	3.00
78	-15.0000	GY	0.00	3.00
79	-15.0000	GY	0.00	3.00
80	-15.0000	GY	0.00	3.00
81	-15.0000	GY	0.00	3.00
82	-15.0000	GY	0.00	3.00
83	-15.0000	GY	0.00	3.00
84	-15.0000	GY	0.00	3.00
85	-15.0000	GY	0.00	3.00
86	-15.0000	GY	0.00	3.00
87	-15.0000	GY	0.00	3.00
88	-15.0000	GY	0.00	3.00
89	-15.0000	GY	0.00	3.00
90	-15.0000	GY	0.00	3.00
91	-15.0000	GY	0.00	3.00
92	-15.0000	GY	0.00	3.00
93	-15.0000	GY	0.00	3.00
94	-15.0000	GY	0.00	3.00
95	-15.0000	GY	0.00	3.00
96	-15.0000	GY	0.00	3.00
97	-15.0000	GY	0.00	3.00
98	-15.0000	GY	0.00	3.00
99	-15.0000	GY	0.00	3.00
100	-15.0000	GY	0.00	3.00
101	-15.0000	GY	0.00	3.00
102	-15.0000	GY	0.00	3.00
103	-15.0000	GY	0.00	3.00
104	-15.0000	GY	0.00	3.00
105	-15.0000	GY	0.00	3.00
106	-15.0000	GY	0.00	3.00
107	-15.0000	GY	0.00	3.00
108	-15.0000	GY	0.00	3.00
109	-15.0000	GY	0.00	3.00
110	-15.0000	GY	0.00	3.00
111	-15.0000	GY	0.00	3.00
112	-15.0000	GY	0.00	3.00
113	-15.0000	GY	0.00	3.00
114	-15.0000	GY	0.00	3.00
115	-15.0000	GY	0.00	3.00
116	-15.0000	GY	0.00	3.00

STAAD	SPACE			
117	-15.0000	GY	0.00	3.00
118	-15.0000	GY	0.00	3.00
119	-15.0000	GY	0.00	3.00
120	-15.0000	GY	0.00	3.00
121	-15.0000	GY	0.00	3.00
122	-15.0000	GY	0.00	3.00
123	-15.0000	GY	0.00	3.00
124	-15.0000	GY	0.00	3.00
125	-15.0000	GY	0.00	3.00
126	-15.0000	GY	0.00	3.00
127	-15.0000	GY	0.00	3.00
128	-15.0000	GY	0.00	3.00
129	-15.0000	GY	0.00	3.00
130	-15.0000	GY	0.00	3.00
131	-15.0000	GY	0.00	3.00
132	-15.0000	GY	0.00	3.00
133	-15.0000	GY	0.00	3.00
134	-15.0000	GY	0.00	3.00
135	-15.0000	GY	0.00	3.00
136	-15.0000	GY	0.00	3.00
137	-15.0000	GY	0.00	3.00
138	-15.0000	GY	0.00	3.00
139	-15.0000	GY	0.00	3.00
140	-15.0000	GY	0.00	3.00
141	-15.0000	GY	0.00	3.00
142	-15.0000	GY	0.00	3.00
143 144	-15.0000 -15.0000	GY GY	0.00	3.00
145	-15.0000	GY	0.00	3.00
145	-15.0000	GY	0.00	3.00
147	-15.0000	GY	0.00	3.00
148	-15.0000	GY	0.00	3.00
149	-15.0000	GY	0.00	3.00
150	-15.0000	GY	0.00	3.00
151	-15.0000	GY	0.00	3.00
152	-15.0000	GY	0.00	3.00
153	-15.0000	GY	0.00	3.00
154	-15.0000	GY	0.00	3.00
155	-15.0000	GY	0.00	3.00
156	-15.0000	GY	0.00	3.00
157	-15.0000	GY	0.00	3.00
158	-15.0000	GY	0.00	3.00
159	-15.0000	GY	0.00	3.00
160	-15.0000	GY	0.00	3.00
161	-15.0000	GY	0.00	3.00
162	-15.0000	GY	0.00	3.00
163	-15.0000	GY	0.00	3.00
164	-15.0000	GY	0.00	3.00
165	-15.0000	GY	0.00	3.00
166	-15.0000	GY	0.00	3.00
167	-15.0000	GY	0.00	3.00 3.00
168 169	-15.0000 -15.0000	GY GY	0.00	3.00
170	-15.0000	GY	0.00	3.00
171	-15.0000	GY	0.00	3.00
172	-15.0000	GY	0.00	3.00
± ,	10.0000	01		0.00

STAAD	SPACE			
173	-15.0000	GY	0.00	3.00
174	-15.0000	GY	0.00	3.00
175	-15.0000	GY	0.00	3.00
176	-15.0000	GY	0.00	3.00
177	-15.0000	GY	0.00	3.00
178	-15.0000	GY	0.00	3.00
179	-15.0000	GY	0.00	3.00
180	-15.0000	GY	0.00	3.00
181	-15.0000	GY	0.00	3.00
182	-15.0000	GY	0.00	3.00
183	-15.0000	GY	0.00	3.00
184	-15.0000	GY	0.00	3.00
185	-15.0000	GY	0.00	3.00
186	-15.0000	GY	0.00	3.00
187	-15.0000	GY	0.00	3.00
188	-15.0000	GY	0.00	3.00
189	-15.0000	GY	0.00	3.00
190	-15.0000	GY	0.00	3.00
191	-15.0000	GY	0.00	3.00
192	-15.0000	GY	0.00	3.00
193	-15.0000	GY	0.00	3.00
194	-15.0000	GY	0.00	3.00
195	-15.0000	GY	0.00	3.00
196	-15.0000	GY	0.00	3.00
197	-15.0000	GY	0.00	3.00
198	-15.0000	GY	0.00	3.00
199	-15.0000	GY	0.00	3.00
200	-15.0000	GY	0.00	3.00
201	-15.0000	GY	0.00	3.00
202	-15.0000	GY	0.00	3.00
203	-15.0000	GY	0.00	3.00
204	-15.0000	GY	0.00	3.00
205	-15.0000	GY	0.00	3.00
206	-15.0000	GY	0.00	3.00
207	-15.0000	GY	0.00	3.00
208	-15.0000	GY	0.00	3.00
209	-15.0000	GY	0.00	3.00
210	-15.0000	GY	0.00	3.00
211	-15.0000	GY	0.00	3.00
212	-15.0000	GY	0.00	3.00
213	-15.0000	GY	0.00	3.00
214	-15.0000	GY	0.00	3.00
215	-15.0000	GY	0.00	3.00
216	-15.0000	GY	0.00	3.00
217	-15.0000	GY	0.00	3.00
218	-15.0000	GY	0.00	3.00
219	-15.0000 -15.0000	GY	0.00	3.00
220 221	-15.0000	GY	0.00	3.00
221	-15.0000	GY GY	0.00	3.00
223	-15.0000	GY	0.00	3.00
223	-15.0000	GY	0.00	3.00
225	-15.0000	GY	0.00	3.00
226	-15.0000	GY	0.00	3.00
227	-15.0000	GY	0.00	3.00
228	-15.0000	GY	0.00	3.00
-				

STAAD	SPACE			
229	-15.0000	GY	0.00	3.00
230	-15.0000	GY	0.00	3.00
231	-15.0000	GY	0.00	3.00
232	-15.0000	GY	0.00	3.00
233	-15.0000	GY	0.00	3.00
234	-15.0000	GY	0.00	3.00
235	-15.0000	GY	0.00	3.00
236	-15.0000	GY	0.00	3.00
237	-15.0000	GY	0.00	3.00
238	-15.0000	GY	0.00	3.00
239	-15.0000	GY	0.00	3.00
240	-15.0000	GY	0.00	3.00
241	-15.0000	GY	0.00	3.00
242	-15.0000	GY	0.00	3.00
243	-15.0000	GY	0.00	3.00
244	-15.0000	GY	0.00	3.00
245	-15.0000	GY	0.00	3.00
246	-15.0000	GY	0.00	3.00
247	-15.0000	GY	0.00	3.00
248	-15.0000	GY	0.00	3.00
249	-15.0000	GY	0.00	3.00
250	-15.0000	GY	0.00	3.00
251	-15.0000	GY	0.00	3.00
252	-15.0000	GY	0.00	3.00
253	-15.0000	GY	0.00	3.00
254	-15.0000	GY	0.00	3.00
255	-15.0000	GY	0.00	3.00
256	-15.0000	GY	0.00	3.00
257	-15.0000	GY	0.00	3.00
258	-15.0000	GY	0.00	3.00
259	-15.0000	GY	0.00	3.00
260	-15.0000	GY	0.00	3.00
261	-15.0000	GY	0.00	3.00
262	-15.0000	GY	0.00	3.00
263	-15.0000	GY	0.00	3.00
264	-15.0000	GY	0.00	3.00
265	-15.0000	GY	0.00	3.00
266	-15.0000	GY	0.00	3.00
267	-15.0000	GY	0.00	3.00
268	-15.0000	GY	0.00	3.00
269	-15.0000	GY	0.00	3.00
270	-15.0000	GY	0.00	3.00
271	-15.0000	GY	0.00	3.00
272	-15.0000	GY	0.00	3.00
273	-15.0000	GY	0.00	3.00
274	-15.0000	GY	0.00	3.00
275	-15.0000		0.00	3.00
276	-15.0000	GY	0.00	3.00
277	-15.0000	GY GY	0.00	3.00
278	-15.0000	GY	0.00	3.00
279	-15.0000		0.00	3.00
280	-15.0000	GY GY	0.00	3.00
281	-15.0000	GY	0.00	3.00
282	-15.0000		0.00	3.00
283	-15.0000	GY GY	0.00	3.00
284	-15.0000	GY	0.00	3.00
204	13.0000	GI	0.00	5.00

STAAD	SPACE			
285	-15.0000	GY	0.00	3.00
286	-15.0000	GY	0.00	3.00
287	-15.0000	GY	0.00	3.00
288	-15.0000	GY	0.00	3.00
289	-15.0000	GY	0.00	3.00
290	-15.0000	GY	0.00	3.00
291	-15.0000	GY	0.00	3.00
292	-15.0000	GY	0.00	3.00
293	-15.0000	GY	0.00	3.00
294	-15.0000	GY	0.00	3.00
295	-15.0000	GY	0.00	3.00
296	-15.0000	GY	0.00	3.00
297	-15.0000	GY	0.00	3.00
298	-15.0000	GY	0.00	3.00
299	-15.0000	GY	0.00	3.00
300	-15.0000	GY	0.00	3.00
301	-15.0000	GY	0.00	3.00
302	-15.0000	GY	0.00	3.00
303	-15.0000	GY	0.00	3.00
304	-15.0000	GY	0.00	3.00
305	-15.0000	GY	0.00	3.00
306	-15.0000	GY	0.00	3.00
307	-15.0000	GY	0.00	3.00
308	-15.0000	GY	0.00	3.00
309	-15.0000	GY	0.00	3.00
310	-15.0000	GY	0.00	3.00
311	-15.0000	GY	0.00	3.00
312	-15.0000	GY	0.00	3.00
313	-15.0000	GY	0.00	3.00
314	-15.0000	GY	0.00	3.00
315	-15.0000	GY	0.00	3.00
316	-15.0000	GY	0.00	3.00
317	-15.0000	GY	0.00	3.00
318	-15.0000	GY	0.00	3.00
319	-15.0000	GY	0.00	3.00
320	-15.0000	GY	0.00	3.00
321	-15.0000	GY	0.00	3.00
322	-15.0000	GY	0.00	3.00
323 324	-15.0000 -15.0000	GY	0.00	3.00 3.00
		GY	0.00	
325	-15.0000	GY	0.00	3.00
326	-15.0000 -15.0000	GY GY	0.00	3.00
327	-15.0000		0.00	3.00
328 329	-15.0000	GY GY	0.00	3.00
330	-15.0000		0.00	3.00
331	-15.0000	GY	0.00	3.00
332	-15.0000	GY GY	0.00	3.00
333	-15.0000	GY	0.00	3.00
334	-15.0000	GY	0.00	3.00
335	-15.0000	GY	0.00	3.00
336	-15.0000	GY	0.00	3.00
337	-15.0000	GY	0.00	3.00
338	-15.0000	GY	0.00	3.00
339	-15.0000	GY	0.00	3.00
340	-15.0000	GY	0.00	3.00

STAAD	SPACE			
341	-15.0000	CV	0.00	3.00
	-15.0000			
342		GY	0.00	3.00
343	-15.0000	GY	0.00	3.00
344	-15.0000	GY	0.00	3.00
345	-15.0000	GY	0.00	3.00
346	-15.0000	GY	0.00	3.00
347	-15.0000	GY	0.00	3.00
348	-15.0000	GY	0.00	3.00
349	-15.0000		0.00	3.00
350		GY	0.00	3.00
351	-15.0000	GY	0.00	3.00
352	-15.0000	GY	0.00	3.00
353	-15.0000	GY	0.00	3.00
354	-15.0000	GY	0.00	3.00
355	-15.0000	GY	0.00	3.00
356	-15.0000	GY	0.00	3.00
357	-15.0000	GY	0.00	3.00
358	-15.0000	GY	0.00	3.00
359	-15.0000	GY	0.00	3.00
360	-15.0000	GY	0.00	3.00
361	-15.0000	GY	0.00	3.00
362	-15.0000	GY	0.00	3.00
363	-15.0000	GY	0.00	3.00
364	-15.0000	GY	0.00	3.00
365	-15.0000	GY	0.00	3.00
366	-15.0000	GY	0.00	3.00
367	-15.0000	GY	0.00	3.00
368	-15.0000	GY	0.00	3.00
369	-15.0000	GY	0.00	3.00
370	-15.0000	GY	0.00	3.00
371	-15.0000	GY	0.00	3.00
372	-15.0000	GY	0.00	3.00
373	-15.0000	GY	0.00	3.00
374	-15.0000	GY	0.00	3.00
375	-15.0000	GY	0.00	3.00
376	-15.0000	GY	0.00	3.00
377	-15.0000	GY	0.00	3.00
378	-15.0000	GY	0.00	3.00
379	-15.0000	GY	0.00	3.00
380	-15.0000	GY	0.00	3.00
381	-15.0000	GY	0.00	3.00
382	-15.0000	GY	0.00	3.00
383	-15.0000	GY	0.00	3.00
384	-15.0000	GY	0.00	3.00
385	-15.0000	GY	0.00	3.00
386	-15.0000	GY	0.00	3.00
387	-15.0000	GY	0.00	3.00
388	-15.0000	GY	0.00	3.00
389	-15.0000	GY	0.00	3.00
390	-15.0000	GY	0.00	3.00

LOADING 8 LOADTYPE LIVE REDUCIBLE TITLE LL

MEMBER LOAD - UNIT KN METE

1	MEMBER	UDL	L1	L2	CON	L	LIN1	LIN2
1	1				0 0703 CV	0 10		
1								
1								
1								
1								
1								
1								
1								
1								
1								
1								
1								
1								
1								
1								
272 -0.0703 GY 0.12 272 -0.2109 GY 0.29 272 -0.3516 GY 0.47 272 -0.4922 GY 0.66 272 -0.6328 GY 0.85 272 -0.7734 GY 1.03 272 -0.9141 GY 1.22 272 -1.0547 GY 1.41 272 -0.9141 GY 1.78 272 -0.9141 GY 1.78 272 -0.9141 GY 1.78 272 -0.9141 GY 1.78 272 -0.4922 GY 2.34 272 -0.4922 GY 2.34 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.2109 GY 2.71 272 -0.0703 GY 2.88 55 -0.0703 GY 0.12 55 -0.0703 GY 0.28 55 -0.0703 GY 0.29 55 -0.3516 GY 0.47 55 -0.3516 GY 0.47 55 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
272 -0.2109 GY 0.29 272 -0.3516 GY 0.47 272 -0.4922 GY 0.66 272 -0.6328 GY 0.85 272 -0.7734 GY 1.03 272 -0.9141 GY 1.22 272 -1.0547 GY 1.41 272 -0.9141 GY 1.78 272 -0.9141 GY 1.78 272 -0.9141 GY 1.97 272 -0.914 GY 1.97 272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.2109 GY 2.71 272 -0.2109 GY 2.71 272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.2109 GY 2.71 272 -0.3516 GY 0.25 55 -0.703 GY 0.28 55 -0.734 GY 0.29 55 -0.6328 GY 0.85 55 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1							
272 -0.3516 GY 0.47 272 -0.4922 GY 0.66 272 -0.6328 GY 0.85 272 -0.7734 GY 1.03 272 -0.9141 GY 1.22 272 -1.0547 GY 1.41 272 -0.9141 GY 1.78 272 -0.9141 GY 1.78 272 -0.7734 GY 1.97 272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.0703 GY 2.88 55 -0.0703 GY 0.12 255 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.6328 GY 0.85 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55	272				-0.0703 GY	0.12		
272 -0.4922 GY 0.66 272 -0.6328 GY 0.85 272 -0.7734 GY 1.03 272 -0.9141 GY 1.22 272 -1.0547 GY 1.41 272 -1.0547 GY 1.59 272 -0.9141 GY 1.78 272 -0.7734 GY 1.97 272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.0703 GY 2.88 55 -0.0703 GY 2.88 55 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.3516 GY 0.47 55 -0.6328 GY 0.85 55 -0.6328 GY 1.93 55 -0.7734 GY 1.22 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55	272				-0.2109 GY	0.29		
272 -0.6328 GY 0.85 272 -0.7734 GY 1.03 272 -0.9141 GY 1.22 272 -1.0547 GY 1.41 272 -1.0547 GY 1.59 272 -0.9141 GY 1.78 272 -0.7734 GY 1.97 272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.0703 GY 2.88 55 -0.0703 GY 0.12 55 -0.0703 GY 0.29 55 -0.3516 GY 0.47 55 -0.6328 GY 0.85 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.7734 GY 1.41 55 -0.7734 GY 1.59 55 -0.734 GY 1.79 55	272				-0.3516 GY	0.47		
272 -0.7734 GY 1.03 272 -0.9141 GY 1.22 272 -1.0547 GY 1.41 272 -1.0547 GY 1.59 272 -0.9141 GY 1.78 272 -0.7734 GY 1.97 272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.0703 GY 2.88 55 -0.0703 GY 2.88 55 -0.0703 GY 0.12 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.6328 GY 2.15 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.6328 GY 2.15 55 -0.6328 GY 2.15 55	272							
272 -0.9141 GY 1.22 272 -1.0547 GY 1.41 272 -1.0547 GY 1.59 272 -0.9141 GY 1.78 272 -0.7734 GY 1.97 272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.0703 GY 2.88 55 -0.0703 GY 0.12 55 -0.3516 GY 0.47 55 -0.3516 GY 0.47 55 -0.3516 GY 0.47 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.7734 GY 1.41 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55 -0.3516 GY 2.34 55	272				-0.6328 GY	0.85		
272 -1.0547 GY 1.41 272 -1.0547 GY 1.59 272 -0.9141 GY 1.78 272 -0.7734 GY 1.97 272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.703 GY 2.88 55 -0.0703 GY 0.12 55 -0.0703 GY 0.29 55 -0.3516 GY 0.47 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -0.9141 GY 1.78 55 -0.7734 GY 1.41 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55 -0.3516 GY 2.53 55 -0.3516 GY 2.53 55 <t< td=""><td>272</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	272							
272 -1.0547 GY 1.41 272 -1.0547 GY 1.59 272 -0.9141 GY 1.78 272 -0.7734 GY 1.97 272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.703 GY 2.88 55 -0.0703 GY 0.12 55 -0.0703 GY 0.29 55 -0.3516 GY 0.47 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -0.9141 GY 1.78 55 -0.7734 GY 1.41 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55 -0.3516 GY 2.53 55 -0.3516 GY 2.53 55 <t< td=""><td>272</td><td></td><td></td><td></td><td>-0.9141 GY</td><td>1.22</td><td></td><td></td></t<>	272				-0.9141 GY	1.22		
272 -0.9141 GY 1.78 272 -0.7734 GY 1.97 272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.0703 GY 2.88 55 -0.0703 GY 0.12 55 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	272				-1.0547 GY	1.41		
272 -0.7734 GY 1.97 272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.0703 GY 2.88 55 -0.0703 GY 0.12 55 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -1.0547 GY 1.41 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	272				-1.0547 GY	1.59		
272 -0.6328 GY 2.15 272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.0703 GY 0.12 55 -0.0703 GY 0.12 55 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.9141 GY 1.97 55 -0.3516 GY 2.53 55 -0.3516 GY 2.53 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 0.12	272				-0.9141 GY	1.78		
272 -0.4922 GY 2.34 272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.0703 GY 2.88 55 -0.0703 GY 0.12 55 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.7734 GY 1.97 55 -0.3516 GY 2.53 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	272				-0.7734 GY	1.97		
272 -0.3516 GY 2.53 272 -0.2109 GY 2.71 272 -0.0703 GY 2.88 55 -0.0703 GY 0.12 55 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.9141 GY 2.53 55 -0.3516 GY 2.53 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	272							
272 -0.2109 GY 2.71 272 -0.0703 GY 2.88 55 -0.0703 GY 0.12 55 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -1.0547 GY 1.59 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.7734 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	272				-0.4922 GY	2.34		
272 -0.0703 GY 2.88 55 -0.0703 GY 0.12 55 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -1.0547 GY 1.41 55 -1.0547 GY 1.59 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 0.12	272							
55 -0.0703 GY 0.12 55 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -1.0547 GY 1.59 55 -0.9141 GY 1.78 55 -0.9141 GY 1.97 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 0.12	272				-0.2109 GY	2.71		
55 -0.2109 GY 0.29 55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -1.0547 GY 1.59 55 -0.9141 GY 1.78 55 -0.9141 GY 1.97 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	272							
55 -0.3516 GY 0.47 55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -1.0547 GY 1.59 55 -0.9141 GY 1.78 55 -0.9734 GY 1.97 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-0.0703 GY	0.12		
55 -0.4922 GY 0.66 55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -0.9141 GY 1.78 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-0.2109 GY	0.29		
55 -0.6328 GY 0.85 55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -1.0547 GY 1.59 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-0.3516 GY	0.47		
55 -0.7734 GY 1.03 55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -1.0547 GY 1.59 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55							
55 -0.9141 GY 1.22 55 -1.0547 GY 1.41 55 -1.0547 GY 1.59 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-0.6328 GY	0.85		
55 -1.0547 GY 1.41 55 -1.0547 GY 1.59 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-0.7734 GY	1.03		
55 -1.0547 GY 1.59 55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-0.9141 GY	1.22		
55 -0.9141 GY 1.78 55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-1.0547 GY	1.41		
55 -0.7734 GY 1.97 55 -0.6328 GY 2.15 55 -0.4922 GY 2.34 55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-1.0547 GY	1.59		
55	55				-0.9141 GY	1.78		
55	55				-0.7734 GY	1.97		
55 -0.3516 GY 2.53 55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-0.6328 GY	2.15		
55 -0.2109 GY 2.71 55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-0.4922 GY	2.34		
55 -0.0703 GY 2.88 271 -0.0703 GY 0.12	55				-0.3516 GY	2.53		
55 -0.0703 GY 2.88 271 -0.0703 GY 0.12								
271 -0.0703 GY 0.12								

TAAD	SPACE	 PAGE NO.	126

STAAD SPACE		
	0.054.6	
271	-0.3516 GY	0.47
271	-0.4922 GY	0.66
271	-0.6328 GY	0.85
271	-0.7734 GY	
271	-0.9141 GY	1.22
271	-1.0547 GY	1.41 1.59
271 271	-1.0547 GY -0.9141 GY	1.78
271	-0.7734 GY	1.97
271	-0.6328 GY	2.15
271	-0.4922 GY	2.13
271	-0.3516 GY	2.53
271	-0.2109 GY	2.71
271	-0.0703 GY	2.88
2	-0.0703 GY	0.12
2	-0.2109 GY	0.29
2	-0.3516 GY	0.47
2	-0.4922 GY	0.66
2	-0.6328 GY	0.85
2	-0.7734 GY	1.03
2	-0.9141 GY	1.22
2	-1.0547 GY	1.41
2	-1.0547 GY	1.59
2	-0.9141 GY	1.78
2	-0.7734 GY	1.97
2	-0.6328 GY	2.15
2	-0.4922 GY	2.34
2	-0.3516 GY	2.53
2	-0.2109 GY	2.71
2	-0.0703 GY	2.88
273	-0.0703 GY	0.12
273	-0.2109 GY	0.29
273	-0.3516 GY	0.47
273	-0.4922 GY	0.66
273	-0.6328 GY	0.85
273	-0.7734 GY	1.03
273	-0.9141 GY	1.22
273	-1.0547 GY	1.41
273	-1.0547 GY	1.59
273	-0.9141 GY	1.78
273	-0.7734 GY	1.97
273	-0.6328 GY	2.15
273	-0.4922 GY	2.34
273	-0.3516 GY	2.53
273	-0.2109 GY	2.71
273	-0.0703 GY	2.88
56	-0.0703 GY	0.12
56	-0.2109 GY	0.29
56	-0.3516 GY	0.47
56	-0.4922 GY	0.66
56	-0.6328 GY	0.85
56	-0.7734 GY	1.03
56	-0.9141 GY	1.22
56	-1.0547 GY	1.41
56	-1.0547 GY	1.59
56	-0.9141 GY	1.78

							, ,	000000	,	
STA	AD SPACE			PAG	E NO.	127				
56		-0.7734 GY	1.97							
56		-0.6328 GY	2.15							
56		-0.4922 GY	2.34							
56		-0.3516 GY	2.53							
56		-0.2109 GY	2.71							
56		-0.0703 GY	2.88							
272		-0.0703 GY	0.12							
272		-0.2109 GY	0.29							
272		-0.3516 GY	0.47							
272		-0.4922 GY	0.66							
272		-0.6328 GY	0.85							
272		-0.7734 GY	1.03							
272		-0.9141 GY	1.22							
272		-1.0547 GY	1.41							
272		-1.0547 GY	1.59							
272		-0.9141 GY	1.78							
272		-0.7734 GY	1.97							
272		-0.6328 GY	2.15							
272		-0.4922 GY	2.34							
272		-0.3516 GY	2.53							
272		-0.2109 GY	2.71							
272		-0.0703 GY	2.88							
3		-0.0703 GY	0.13							
3		-0.2109 GY	0.29							
3		-0.3516 GY	0.48							
3		-0.4922 GY	0.66							
3		-0.6328 GY	0.85							
3		-0.7734 GY	1.03							
3		-0.9141 GY	1.22							
3		-1.0547 GY	1.41							
3		-1.0547 GY	1.59							
3		-0.9141 GY	1.78							
3		-0.7734 GY	1.97							
3		-0.6328 GY	2.15							
3		-0.4922 GY	2.34							
3		-0.3516 GY	2.53							
3		-0.2109 GY	2.71							
3		-0.0703 GY	2.88							
274		-0.0703 GY	0.12							
274		-0.2109 GY	0.29							
274		-0.3516 GY	0.47							
274		-0.4922 GY	0.66							
274		-0.6328 GY	0.85							
274		-0.7734 GY	1.03							
274		-0.9141 GY	1.22							
274		-1.0547 GY	1.41							
274		-1.0547 GY	1.59							
274		-0.9141 GY	1.78							
274		-0.7734 GY	1.97							
274		-0.6328 GY	2.15							
274		-0.4922 GY	2.34							
274		-0.3516 GY	2.53							
274		-0.2109 GY	2.71							
274		-0.0703 GY	2.88							
57		-0.0703 GY	0.13							
57		-0.2109 GY	0.29							

					monday,	october	20,	2020,
STAAD SPACE			PAGE NO.	128				
57	-0.3516 GY	0.48						
57	-0.4922 GY	0.66						
57	-0.6328 GY	0.85						
57	-0.7734 GY	1.03						
57	-0.9141 GY	1.22						
57	-1.0547 GY	1.41						
57	-1.0547 GY	1.59						
57	-0.9141 GY	1.78						
57	-0.7734 GY	1.97						
57	-0.6328 GY	2.15						
57	-0.4922 GY	2.34						
57	-0.3516 GY	2.53						
57	-0.2109 GY	2.71						
57	-0.0703 GY	2.88						
273	-0.0703 GY	0.12						
273	-0.2109 GY	0.29						
273	-0.3516 GY	0.47						
273		0.66						
	-0.4922 GY							
273	-0.6328 GY	0.85						
273	-0.7734 GY	1.03						
273	-0.9141 GY	1.22						
273	-1.0547 GY	1.41						
273	-1.0547 GY	1.59						
273	-0.9141 GY	1.78						
273	-0.7734 GY	1.97						
273	-0.6328 GY	2.15						
273	-0.4922 GY	2.34						
273	-0.3516 GY	2.53						
273	-0.2109 GY	2.71						
273	-0.0703 GY	2.88						
4	-0.0703 GY	0.12						
4	-0.2109 GY	0.29						
4	-0.3516 GY	0.47						
4	-0.4922 GY	0.66						
4	-0.6328 GY	0.85						
4	-0.7734 GY	1.03						
4	-0.9141 GY	1.22						
4	-1.0547 GY	1.41						
4	-1.0547 GY -0.9141 GY	1.59						
4								
4	-0.7734 GY	1.97						
4	-0.6328 GY	2.15						
4	-0.4922 GY	2.34						
4	-0.3516 GY	2.52						
4	-0.2109 GY	2.71						
4	-0.0703 GY	2.87						
275	-0.0703 GY	0.12						
275	-0.2109 GY	0.29						
275	-0.3516 GY	0.47						
275	-0.4922 GY	0.66						
275	-0.6328 GY	0.85						
275	-0.7734 GY	1.03						
275	-0.9141 GY	1.22						
275	-1.0547 GY	1.41						
275	-1.0547 GY	1.59						
275	-0.9141 GY	1.78						
2 I J	-U.9141 GI	1./0						

STAAD SPACE			PAGE NO.	129
275	-0.7734 GY	1.97		
275	-0.6328 GY	2.15		
275	-0.4922 GY	2.34		
275	-0.3516 GY	2.53		

STAAD	SPACE	
275	-0.7734	GY
275	-0.6328	
275	-0.4922	GY
275	-0.3516	GY
275	-0.2109	GY
275	-0.0703	GY
58	-0.0703	GY
58	-0.2109	GY
58	-0.3516	GY
58	-0.4922	GY
58	-0.6328	GY
58	-0.7734	GY
58	-0.9141	GY
58	-1.0547	GY
58	-1.0547	GY
58	-0.9141	GY
58	-0.7734	GY
58	-0.6328	GY
58	-0.4922	GY
58	-0.3516	GY
58	-0.2109	GY
58	-0.0703	GY
274	-0.0703	GY
274	-0.2109	GY
274	-0.3516	GY
274	-0.4922	GY
274	-0.6328	GY
274	-0.7734	GY
274	-0.9141	GY
274	-1.0547	GY
274	-1.0547	GY
274	-0.9141	GY
274	-0.7734	GY
274	-0.6328	GY
274	-0.4922	GY
274	-0.3516	GY
274	-0.2109	GY
274	-0.0703	GY
55	-0.0703	GY
55	-0.2109	GY

2.71 2.88 0.12 0.29 0.47 0.66 0.85 1.03 1.22 1.41 1.59 1.78 1.97 2.15 2.34 2.52 2.71 2.87 0.12 0.29 0.47 0.66 0.85 1.03 1.22 1.41 1.59 1.78 1.97 2.15 2.34 2.53 2.71 2.88 0.12 -0.2109 GY 0.29 -0.3516 GY 0.47 -0.4922 GY 0.66 -0.6328 GY 0.85 -0.7734 GY 1.03 -0.9141 GY 1.22 -1.0547 GY 1.41 -1.0547 GY 1.59 -0.9141 GY 1.78 -0.7734 GY 1.97 -0.6328 GY 2.15 -0.4922 GY 2.34 -0.3516 GY 2.53 -0.2109 GY 2.71 -0.0703 GY 2.88

0.12

-0.0703 GY

55

55

55

55

55

55

55

55

55

55

55

55

55

55

302

302

					, ,	0000001	, _	020,
STAAD SPACE			PAGE NO. 1	.30				
302	-0.3516 GY	0.47						
302	-0.4922 GY	0.66						
302	-0.6328 GY	0.85						
302	-0.7734 GY	1.03						
302	-0.9141 GY	1.22						
302	-1.0547 GY	1.41						
302	-1.0547 GY	1.59						
302	-0.9141 GY	1.78						
302	-0.7734 GY	1.97						
302								
	-0.6328 GY	2.15						
302	-0.4922 GY	2.34						
302	-0.3516 GY	2.53						
302	-0.2109 GY	2.71						
302	-0.0703 GY	2.88						
109	-0.0703 GY	0.12						
109	-0.2109 GY	0.29						
109	-0.3516 GY	0.47						
109	-0.4922 GY	0.66						
109	-0.6328 GY	0.85						
109	-0.7734 GY	1.03						
109	-0.9141 GY	1.22						
109	-1.0547 GY	1.41						
109	-1.0547 GY	1.59						
109	-0.9141 GY	1.78						
109	-0.7734 GY	1.97						
109	-0.6328 GY	2.15						
109	-0.4922 GY	2.34						
109	-0.3516 GY	2.53						
109	-0.2109 GY	2.71						
109	-0.0703 GY	2.88						
301	-0.0703 GY	0.12						
301	-0.2109 GY	0.29						
301	-0.3516 GY	0.47						
301	-0.4922 GY	0.66						
301	-0.6328 GY	0.85						
301	-0.7734 GY	1.03						
301	-0.9141 GY	1.22						
301	-1.0547 GY	1.41						
301	-1.0547 GY	1.59						
301	-0.9141 GY	1.78						
301		1.97						
	-0.7734 GY							
301	-0.6328 GY	2.15						
301	-0.4922 GY	2.34						
301	-0.3516 GY	2.53						
301	-0.2109 GY	2.71						
301	-0.0703 GY	2.88						
56	-0.0703 GY	0.12						
56	-0.2109 GY	0.29						
56	-0.3516 GY	0.47						
56	-0.4922 GY	0.66						
56	-0.6328 GY	0.85						
56	-0.7734 GY	1.03						
56	-0.9141 GY	1.22						
56	-1.0547 GY	1.41						
56	-1.0547 GY	1.59						
56	-0.9141 GY	1.78						

					, ,	000000	20, 2	,	
STAAD	SPACE		PAGE NO.	131					
56	-0.7734 GY	1.97							
56	-0.6328 GY	2.15							
56	-0.4922 GY	2.34							
56	-0.3516 GY	2.53							
56	-0.2109 GY	2.71							
56	-0.0703 GY	2.88							
303	-0.0703 GY	0.12							
303	-0.2109 GY	0.29							
303	-0.3516 GY	0.47							
303	-0.4922 GY	0.66							
303	-0.6328 GY	0.85							
303	-0.7734 GY	1.03							
303	-0.9141 GY	1.22							
303	-1.0547 GY	1.41							
303	-1.0547 GY	1.59							
303	-0.9141 GY	1.78							
303	-0.7734 GY	1.97							
303	-0.6328 GY	2.15							
303	-0.4922 GY	2.34							
303	-0.3516 GY	2.53							
303	-0.2109 GY	2.71							
303	-0.0703 GY	2.88							
110	-0.0703 GY	0.12							
110	-0.2109 GY	0.29							
110	-0.3516 GY	0.47							
110	-0.4922 GY	0.66							
110	-0.6328 GY	0.85							
110	-0.7734 GY	1.03							
110	-0.9141 GY	1.22							
110	-1.0547 GY	1.41							
110	-1.0547 GY	1.59							
110	-0.9141 GY	1.78							
110	-0.7734 GY	1.97							
110	-0.6328 GY	2.15							
110	-0.4922 GY	2.34							
110	-0.3516 GY	2.53							
110	-0.2109 GY	2.71							
110	-0.0703 GY	2.88							
302	-0.0703 GY	0.12							
302	-0.2109 GY	0.29							
302	-0.3516 GY	0.47							
302	-0.4922 GY	0.66							
302	-0.6328 GY	0.85							
302	-0.7734 GY	1.03							
302	-0.9141 GY	1.22							
302	-1.0547 GY	1.41							
302	-1.0547 GY	1.59							
302	-0.9141 GY	1.78							
302	-0.7734 GY	1.97							
302	-0.6328 GY	2.15							
302	-0.4922 GY	2.34							
302	-0.3516 GY	2.53							
302	-0.2109 GY	2.71							
302	-0.0703 GY	2.88							
57	-0.0703 GY	0.13							
57	-0.2109 GY	0.13							
JI	-0.2109 G1	0.23							

			monday,	occoper 20,	2020, 10.0
STAAD SPACE		PAGE NO. 132	2		
57	-0.3516 GY 0.48				
57	-0.4922 GY 0.66				
57	-0.6328 GY 0.85				
57	-0.7734 GY 1.03				
57	-0.9141 GY 1.22				
57	-1.0547 GY 1.41				
57	-1.0547 GY 1.59				
57	-0.9141 GY 1.78				
57	-0.7734 GY 1.97				
57	-0.6328 GY 2.15				
57	-0.4922 GY 2.34				
57	-0.3516 GY 2.53				
57	-0.2109 GY 2.71				
57	-0.0703 GY 2.88				
304	-0.0703 GY 0.12				
304	-0.2109 GY 0.29				
304	-0.3516 GY 0.47				
304	-0.4922 GY 0.66				
304	-0.6328 GY 0.85				
304	-0.7734 GY 1.03				
304	-0.9141 GY 1.22				
304	-1.0547 GY 1.41				
304	-1.0547 GY 1.59				
304	-0.9141 GY 1.78				
304	-0.7734 GY 1.97				
304	-0.6328 GY 2.15				
304	-0.4922 GY 2.34				
304	-0.3516 GY 2.53				
304	-0.2109 GY 2.71				
304	-0.0703 GY 2.88				
111	-0.0703 GY 0.13				
111	-0.2109 GY 0.29				
111	-0.3516 GY 0.48				
111	-0.4922 GY 0.66				
111	-0.6328 GY 0.85				
111	-0.7734 GY 1.03				
111 111	-0.9141 GY 1.22 -1.0547 GY 1.41				
111	-1.0547 GY 1.41 -1.0547 GY 1.59				
111	-0.9141 GY 1.78				
111	-0.7734 GY 1.97				
111	-0.6328 GY 2.15				
111	-0.4922 GY 2.34				
111	-0.3516 GY 2.53				
111	-0.2109 GY 2.71				
111	-0.0703 GY 2.88				
303	-0.0703 GY 0.12				
303	-0.2109 GY 0.29				
303	-0.3516 GY 0.47				
303	-0.4922 GY 0.66				
303	-0.6328 GY 0.85				
303	-0.7734 GY 1.03				
303	-0.9141 GY 1.22				
303	-1.0547 GY 1.41				
303	-1.0547 GY 1.59				
303	-0.9141 GY 1.78				

					11011447,	0000001	_ ,	
STAAD SPACE			PAGE NO). 133				
303	-0.7734 GY	1.97						
303	-0.6328 GY	2.15						
303	-0.4922 GY	2.34						
303	-0.3516 GY	2.53						
303	-0.2109 GY	2.71						
303	-0.0703 GY	2.88						
58	-0.0703 GY	0.12						
58	-0.2109 GY	0.29						
58	-0.3516 GY	0.47						
58	-0.4922 GY	0.66						
58	-0.6328 GY	0.85						
58	-0.7734 GY	1.03						
58	-0.9141 GY	1.22						
58	-1.0547 GY	1.41						
58	-1.0547 GY	1.59						
58	-0.9141 GY	1.78						
58	-0.7734 GY	1.97						
58	-0.6328 GY	2.15						
58	-0.4922 GY	2.34						
58	-0.3516 GY	2.52						
58	-0.2109 GY	2.71						
58	-0.0703 GY	2.87						
305	-0.0703 GY	0.12						
305	-0.2109 GY	0.29						
305	-0.3516 GY	0.47						
305	-0.4922 GY	0.66						
305	-0.6328 GY	0.85						
305	-0.7734 GY	1.03						
305	-0.9141 GY	1.22						
305	-1.0547 GY	1.41						
305	-1.0547 GY	1.59						
305	-0.9141 GY	1.78						
305	-0.7734 GY	1.97						
305	-0.6328 GY	2.15						
305	-0.4922 GY	2.34						
305	-0.3516 GY	2.53						
305	-0.2109 GY	2.71						
305	-0.0703 GY	2.88						
112	-0.0703 GY	0.12						
112	-0.2109 GY	0.29						
112	-0.3516 GY	0.47						
112	-0.4922 GY	0.66						
112	-0.6328 GY	0.85						
112	-0.7734 GY	1.03						
112	-0.9141 GY	1.22						
112	-1.0547 GY	1.41						
112	-1.0547 GY	1.59						
112	-0.9141 GY	1.78						
112	-0.7734 GY	1.97						
112	-0.6328 GY	2.15						
112	-0.4922 GY	2.34						
112	-0.3516 GY	2.52						
112	-0.2109 GY	2.71						
112	-0.0703 GY	2.87						
304	-0.0703 GY	0.12						
304	-0.2109 GY	0.29						

						, ,	000000	_ ,	,
S	TAAD SPACE			PAGE NO.	134				
3	04	-0.3516 GY	0.47						
	04	-0.4922 GY	0.66						
	04	-0.6328 GY	0.85						
	04	-0.7734 GY	1.03						
	04	-0.7734 GI	1.22						
	04	-1.0547 GY	1.41						
	04								
			1.59						
	04		1.78						
	04		1.97						
	04	-0.6328 GY	2.15						
	04	-0.4922 GY	2.34						
	04	-0.3516 GY	2.53						
		-0.2109 GY	2.71						
	04	-0.0703 GY	2.88						
	09	-0.0703 GY	0.12						
	09	-0.2109 GY	0.29						
	09	-0.3516 GY	0.47						
	09	-0.4922 GY	0.66						
	09	-0.6328 GY	0.85						
	09		1.03						
	09	-0.9141 GY	1.22						
	09	-1.0547 GY	1.41						
	09		1.59						
	09		1.78						
	09	-0.7734 GY	1.97						
	09	-0.6328 GY	2.15						
	09	-0.4922 GY	2.34						
	09	-0.3516 GY	2.53						
	09	-0.2109 GY	2.71						
1	09	-0.0703 GY	2.88						
	32	-0.0703 GY	0.13						
	32	-0.2109 GY	0.29						
	32	-0.3516 GY	0.48						
	32	-0.4922 GY	0.66						
	32	-0.6328 GY	0.85						
	32	-0.7734 GY	1.03						
	32	-0.9141 GY	1.22						
	32	-1.0547 GY	1.41						
	32	-1.0547 GY	1.59						
3	32	-0.9141 GY	1.78						
	32	-0.7734 GY	1.97						
	32	-0.6328 GY	2.15						
3	32	-0.4922 GY	2.34						
	32	-0.3516 GY	2.53						
3	32	-0.2109 GY	2.71						
3	32	-0.0703 GY	2.88						
1	63	-0.0703 GY	0.12						
	63	-0.2109 GY	0.29						
	63	-0.3516 GY	0.47						
	63	-0.4922 GY	0.66						
1	63	-0.6328 GY	0.85						
	63	-0.7734 GY	1.03						
1	63	-0.9141 GY	1.22						
1	63	-1.0547 GY	1.41						
1	63	-1.0547 GY	1.59						
1	63	-0.9141 GY	1.78						

						monday,	-
STAAD SPACE			 PAGE	NO.	135		
1.63	-0.7734 GY	1 07					
163		1.97					
163	-0.6328 GY	2.15					
163	-0.4922 GY	2.34					
163	-0.3516 GY	2.53					
163	-0.2109 GY	2.71					
163	-0.0703 GY	2.88					
331	-0.0703 GY	0.13					
331	-0.2109 GY	0.29					
331	-0.3516 GY	0.48					
331	-0.4922 GY	0.66					
331	-0.6328 GY -0.7734 GY	0.85					
331		1.03					
331	-0.9141 GY	1.22					
331	-1.0547 GY -1.0547 GY	1.41					
331		1.59					
331	-0.9141 GY	1.78					
331	-0.7734 GY	1.97					
331	-0.6328 GY	2.15					
331	-0.4922 GY	2.34					
331	-0.3516 GY	2.53					
331	-0.2109 GY	2.71					
331	-0.0703 GY	2.88					
110	-0.0703 GY	0.12					
110	-0.2109 GY	0.29					
110	-0.3516 GY	0.47					
110	-0.4922 GY	0.66					
110	-0.6328 GY	0.85					
110	-0.7734 GY	1.03					
110	-0.9141 GY	1.22					
110	-1.0547 GY	1.41					
110	-1.0547 GY	1.59					
110	-0.9141 GY	1.78					
110	-0.7734 GY	1.97					
110	-0.6328 GY	2.15					
110	-0.4922 GY	2.34					
110	-0.3516 GY	2.53					
110	-0.2109 GY	2.71					
110	-0.0703 GY	2.88					
333	-0.0703 GY	0.13					
333	-0.2109 GY	0.29					
333	-0.3516 GY	0.48					
333	-0.4922 GY	0.66					
333	-0.6328 GY	0.85					
333	-0.7734 GY	1.03					
333	-0.9141 GY	1.22					
333	-1.0547 GY	1.41					
333	-1.0547 GY	1.59					
333	-0.9141 GY	1.78					
333	-0.7734 GY	1.97					
333	-0.6328 GY	2.15					
333	-0.4922 GY	2.34					
333	-0.3516 GY	2.53					
333	-0.2109 GY	2.71					
333	-0.0703 GY	2.88					
164	-0.0703 GY	0.12					
164	-0.2109 GY	0.29					

					monaay,	October	20, 2
STAAD SPACE			PAGE NO.	136			
164	0 2516 CV	0 47					
164 164	-0.3516 GY -0.4922 GY	0.47					
164	-0.6328 GY	0.85					
164	-0.7734 GY	1.03					
164	-0.9141 GY	1.22					
164	-1.0547 GY	1.41					
164	-1.0547 GY	1.59					
164	-0.9141 GY	1.78					
164	-0.7734 GY	1.97					
164	-0.6328 GY	2.15					
164	-0.4922 GY	2.34					
164	-0.3516 GY	2.53					
164	-0.2109 GY	2.71					
164	-0.0703 GY	2.88					
332	-0.0703 GY	0.13					
332	-0.2109 GY	0.29					
332	-0.3516 GY	0.48					
332	-0.4922 GY	0.66					
332	-0.6328 GY	0.85					
332	-0.7734 GY	1.03					
332	-0.9141 GY	1.22					
332	-1.0547 GY	1.41					
332	-1.0547 GY	1.59					
332	-0.9141 GY	1.78					
332	-0.7734 GY	1.97					
332	-0.6328 GY	2.15					
332	-0.4922 GY	2.34					
332	-0.3516 GY	2.53					
332	-0.2109 GY	2.71					
332	-0.0703 GY	2.88					
111	-0.0703 GY	0.13					
111	-0.2109 GY	0.29					
111	-0.3516 GY	0.48					
111	-0.4922 GY	0.66					
111	-0.6328 GY	0.85					
111	-0.7734 GY	1.03					
111 111	-0.9141 GY	1.22					
111	-1.0547 GY -1.0547 GY	1.41 1.59					
111	-0.9141 GY						
111	-0.7734 GY	1.97					
111	-0.6328 GY	2.15					
111	-0.4922 GY	2.34					
111	-0.3516 GY	2.53					
111	-0.2109 GY	2.71					
111	-0.0703 GY	2.88					
334	-0.0703 GY	0.13					
334	-0.2109 GY	0.29					
334	-0.3516 GY	0.48					
334	-0.4922 GY	0.66					
334	-0.6328 GY	0.85					
334	-0.7734 GY	1.03					
334	-0.9141 GY	1.22					
334	-1.0547 GY	1.41					
334	-1.0547 GY	1.59					
334	-0.9141 GY	1.78					

					11011447,	000000	,	,	
STAAD SPACE			PAGE NO.	137					
334	-0.7734 GY	1.97							
334	-0.6328 GY	2.15							
334	-0.4922 GY	2.34							
334	-0.3516 GY	2.53							
334	-0.2109 GY	2.71							
334	-0.0703 GY	2.88							
165	-0.0703 GY	0.13							
165	-0.2109 GY	0.29							
165	-0.3516 GY	0.48							
165	-0.4922 GY	0.66							
165	-0.6328 GY	0.85							
165	-0.7734 GY	1.03							
165	-0.9141 GY	1.22							
165	-1.0547 GY	1.41							
165	-1.0547 GY	1.59							
165	-0.9141 GY	1.78							
165	-0.7734 GY	1.97							
165	-0.6328 GY	2.15							
165	-0.4922 GY	2.34							
165	-0.3516 GY	2.53							
165	-0.2109 GY	2.71							
165	-0.0703 GY	2.88							
333	-0.0703 GY	0.13							
333	-0.2109 GY	0.29							
333	-0.3516 GY	0.48							
333	-0.4922 GY	0.66							
333	-0.6328 GY	0.85							
333	-0.7734 GY	1.03							
333	-0.9141 GY	1.22							
333	-1.0547 GY	1.41							
333	-1.0547 GY	1.59							
333	-0.9141 GY	1.78							
333	-0.7734 GY	1.97							
333	-0.6328 GY	2.15							
333	-0.4922 GY	2.34							
333	-0.3516 GY	2.53							
333	-0.2109 GY	2.71							
333	-0.0703 GY	2.88							
112	-0.0703 GY	0.12							
112	-0.2109 GY	0.29							
112	-0.3516 GY	0.47							
112	-0.4922 GY	0.66							
112	-0.6328 GY	0.85							
112	-0.7734 GY	1.03							
112	-0.9141 GY	1.22							
112	-1.0547 GY	1.41							
112	-1.0547 GY	1.59							
112	-0.9141 GY	1.78							
112	-0.7734 GY	1.97							
112	-0.6328 GY	2.15							
112	-0.4922 GY	2.34							
112	-0.3516 GY	2.52							
112	-0.2109 GY	2.71							
112	-0.0703 GY	2.87							
335	-0.0703 GY	0.13							
335	-0.2109 GY	0.29							

					11011441,	000000	, _	020,	
STAAD SPACE			PAGE NO.	138					
335	-0.3516 GY	0.48							
335	-0.4922 GY	0.66							
335	-0.6328 GY	0.85							
335	-0.7734 GY	1.03							
	-0.9141 GY	1.22							
335	-1.0547 GY	1.41							
335	-1.0547 GY	1.59							
335	-0.9141 GY	1.78							
335	-0.7734 GY	1.97							
335	-0.6328 GY	2.15							
335	-0.4922 GY	2.34							
335	-0.3516 GY	2.53							
335	-0.2109 GY	2.71							
335	-0.0703 GY	2.88							
166	-0.0703 GY	0.12							
166	-0.2109 GY	0.29							
166	-0.3516 GY	0.47							
166	-0.4922 GY	0.66							
166	-0.6328 GY	0.85							
166	-0.7734 GY	1.03							
	-0.9141 GY	1.22							
	-1.0547 GY	1.41							
166	-1.0547 GY	1.59							
166	-0.9141 GY	1.78							
	-0.7734 GY	1.97							
166	-0.6328 GY	2.15							
166	-0.4922 GY	2.34							
166	-0.3516 GY	2.52							
166	-0.2109 GY	2.71							
	-0.0703 GY	2.87							
334	-0.0703 GY	0.13							
334	-0.2109 GY	0.29							
334	-0.3516 GY	0.48							
334	-0.4922 GY	0.66							
334	-0.6328 GY	0.85							
334	-0.7734 GY	1.03							
334	-0.9141 GY	1.22							
334	-1.0547 GY	1.41							
334	-1.0547 GY	1.59							
334	-0.9141 GY	1.78							
334	-0.7734 GY	1.97							
334	-0.6328 GY	2.15							
334	-0.4922 GY	2.34							
334	-0.3516 GY	2.53							
334	-0.2109 GY	2.71							
334	-0.2109 G1 -0.0703 GY	2.88							
163	-0.0703 GY	0.12							
163	-0.2109 GY	0.29							
163	-0.3516 GY	0.47							
163	-0.4922 GY	0.66							
163	-0.6328 GY	0.85							
163	-0.7734 GY	1.03							
163	-0.9141 GY	1.22							
163	-1.0547 GY	1.41							
163	-1.0547 GY	1.59							
163	-0.9141 GY	1.78							

						monday,	OCCODEI	20,
STAAD SPACE			 PAGE	NO.	139			
163	-0.7734 GY	1.97						
163	-0.6328 GY	2.15						
163	-0.4922 GY	2.34						
163	-0.3516 GY	2.53						
163	-0.2109 GY	2.71						
163	-0.0703 GY	2.88						
362	-0.0703 GY	0.12						
362	-0.2109 GY	0.29						
362	-0.3516 GY	0.47						
362	-0.4922 GY	0.66						
362	-0.6328 GY	0.85						
362	-0.7734 GY	1.03						
362	-0.9141 GY	1.22						
362	-1.0547 GY	1.41						
362	-1.0547 GY	1.59						
362	-0.9141 GY	1.78						
362	-0.7734 GY	1.97						
362	-0.6328 GY	2.15						
362	-0.4922 GY	2.34						
362	-0.3516 GY	2.52						
362	-0.2109 GY	2.71						
362	-0.0703 GY	2.87						
217	-0.0703 GY	0.12						
217	-0.2109 GY	0.29						
217	-0.3516 GY	0.47						
217	-0.4922 GY	0.66						
217	-0.6328 GY	0.85						
217	-0.7734 GY	1.03						
217	-0.9141 GY	1.22						
217	-1.0547 GY	1.41						
217	-1.0547 GY	1.59						
217	-0.9141 GY	1.78						
217	-0.7734 GY	1.97						
217	-0.6328 GY	2.15						
217	-0.4922 GY	2.34						
217	-0.3516 GY	2.53						
217	-0.2109 GY	2.71						
217	-0.0703 GY	2.88						
361	-0.0703 GY	0.12						
361	-0.2109 GY	0.29						
361	-0.3516 GY	0.47						
361	-0.4922 GY	0.66						
361	-0.6328 GY	0.85						
361	-0.7734 GY	1.03						
361	-0.9141 GY	1.22						
361	-1.0547 GY	1.41						
361	-1.0547 GY	1.59						
361	-0.9141 GY	1.78						
361	-0.7734 GY	1.97						
361	-0.6328 GY	2.15						
361	-0.4922 GY	2.34						
361	-0.3516 GY	2.52						
361	-0.2109 GY	2.71						
361	-0.0703 GY	2.87						
164	-0.0703 GY	0.12						
164	-0.2109 GY	0.29						

						 •
STAAD SPACE			PAG	E NO.	140	
164	-0.3516 GY	0.47				
164	-0.4922 GY	0.66				
164	-0.6328 GY	0.85				
164	-0.7734 GY	1.03				
164	-0.9141 GY	1.22				
164	-1.0547 GY	1.41				
164	-1.0547 GY	1.59				
164	-0.9141 GY	1.78				
164	-0.7734 GY					
		1.97				
164	-0.6328 GY	2.15				
164	-0.4922 GY	2.34				
164	-0.3516 GY	2.53				
164	-0.2109 GY	2.71				
164	-0.0703 GY	2.88				
363	-0.0703 GY	0.12				
363	-0.2109 GY	0.29				
363	-0.3516 GY	0.47				
363	-0.4922 GY	0.66				
363	-0.6328 GY	0.85				
363	-0.7734 GY	1.03				
363	-0.9141 GY	1.22				
363	-1.0547 GY	1.41				
363	-1.0547 GY	1.59				
363	-0.9141 GY	1.78				
363	-0.7734 GY	1.97				
363	-0.6328 GY	2.15				
363	-0.4922 GY	2.34				
363	-0.3516 GY	2.52				
363	-0.2109 GY	2.71				
363	-0.0703 GY	2.87				
218	-0.0703 GY	0.12				
218	-0.2109 GY	0.29				
218	-0.3516 GY	0.47				
218	-0.4922 GY	0.66				
218	-0.6328 GY	0.85				
218	-0.7734 GY	1.03				
218	-0.9141 GY	1.22				
218	-1.0547 GY	1.41				
218	-1.0547 GY	1.59				
218	-0.9141 GY	1.78				
218	-0.7734 GY	1.97				
218	-0.6328 GY	2.15				
218	-0.4922 GY	2.34				
218	-0.3516 GY	2.53				
218	-0.2109 GY	2.71				
218	-0.0703 GY	2.88				
362	-0.0703 GY	0.12				
362	-0.2109 GY	0.29				
362	-0.3516 GY	0.47				
362	-0.4922 GY	0.66				
362	-0.6328 GY	0.85				
362	-0.7734 GY	1.03				
362	-0.9141 GY	1.22				
362	-1.0547 GY	1.41				
362	-1.0547 GY	1.59				
362	-0.9141 GY	1.78				

					, inclination	000000	
STAAD SPACE			PAGE NO). 141			
362	-0.7734 GY	1.97					
362	-0.6328 GY	2.15					
362	-0.4922 GY	2.34					
362	-0.3516 GY	2.52					
362	-0.2109 GY	2.71					
362	-0.0703 GY	2.87					
165	-0.0703 GY	0.13					
165	-0.2109 GY	0.29					
165	-0.3516 GY	0.48					
165	-0.4922 GY	0.66					
165	-0.6328 GY	0.85					
165	-0.7734 GY	1.03					
165	-0.9141 GY	1.22					
165	-1.0547 GY	1.41					
165	-1.0547 GY	1.59					
165	-0.9141 GY	1.78					
165	-0.7734 GY	1.97					
165	-0.6328 GY	2.15					
165	-0.4922 GY	2.34					
165	-0.3516 GY	2.53					
165	-0.2109 GY	2.71					
165	-0.0703 GY	2.88					
364	-0.0703 GY	0.12					
364	-0.2109 GY	0.29					
364	-0.3516 GY	0.47					
364	-0.4922 GY	0.66					
364	-0.6328 GY	0.85					
364	-0.7734 GY	1.03					
364	-0.9141 GY	1.22					
364	-1.0547 GY	1.41					
364	-1.0547 GY	1.59					
364	-0.9141 GY	1.78					
364	-0.7734 GY	1.97					
364	-0.6328 GY	2.15					
364	-0.4922 GY	2.34					
364	-0.3516 GY	2.52					
364	-0.2109 GY	2.71					
364 219	-0.0703 GY -0.0703 GY	2.87					
219	-0.0703 G1 -0.2109 GY	0.13 0.29					
219	-0.3516 GY	0.48					
219	-0.4922 GY	0.46					
219	-0.6328 GY	0.85					
219	-0.7734 GY	1.03					
219	-0.9141 GY	1.22					
219	-1.0547 GY	1.41					
219	-1.0547 GY	1.59					
219	-0.9141 GY	1.78					
219	-0.7734 GY	1.97					
219	-0.6328 GY	2.15					
219	-0.4922 GY	2.34					
219	-0.3516 GY	2.53					
219	-0.2109 GY	2.71					
219	-0.0703 GY	2.88					
363	-0.0703 GY	0.12					
363	-0.2109 GY	0.12					
	0.2109 01	J.23					

					11011442,	0000001	, _	
STAAD SPACE			PAGE NO	. 142				
363	-0.3516 GY	0.47						
363	-0.4922 GY	0.66						
363	-0.6328 GY	0.85						
363	-0.7734 GY	1.03						
363	-0.9141 GY	1.22						
363	-1.0547 GY	1.41						
363	-1.0547 GY	1.59						
363	-0.9141 GY	1.78						
363	-0.7734 GY	1.97						
363	-0.6328 GY	2.15						
363	-0.4922 GY	2.34						
363	-0.3516 GY	2.52						
363	-0.2109 GY	2.71						
363	-0.0703 GY	2.87						
166	-0.0703 GY	0.12						
166	-0.2109 GY	0.29						
166	-0.3516 GY	0.47						
166	-0.4922 GY	0.66						
166	-0.6328 GY	0.85						
166	-0.7734 GY	1.03						
166	-0.9141 GY	1.22						
166	-1.0547 GY	1.41						
166	-1.0547 GY	1.59						
166	-0.9141 GY	1.78						
166	-0.7734 GY	1.97						
166	-0.6328 GY	2.15						
166	-0.4922 GY	2.34						
166	-0.3516 GY	2.52						
166	-0.2109 GY	2.71						
166	-0.2109 G1 -0.0703 GY	2.87						
365	-0.0703 GY	0.12						
365	-0.2109 GY	0.29						
365	-0.3516 GY	0.47						
365		0.66						
365	-0.4922 GY							
	-0.6328 GY	0.85						
365	-0.7734 GY	1.03						
365	-0.9141 GY	1.22						
365	-1.0547 GY	1.41						
365	-1.0547 GY	1.59						
365	-0.9141 GY	1.78						
365	-0.7734 GY	1.97						
365	-0.6328 GY	2.15						
365	-0.4922 GY	2.34						
365	-0.3516 GY	2.52						
365	-0.2109 GY	2.71						
365	-0.0703 GY	2.87						
220	-0.0703 GY	0.12						
220	-0.2109 GY	0.29						
220	-0.3516 GY	0.47						
220	-0.4922 GY	0.66						
220	-0.6328 GY	0.85						
220	-0.7734 GY	1.03						
220	-0.9141 GY	1.22						
220	-1.0547 GY	1.41						
220	-1.0547 GY	1.59						
220	-0.9141 GY	1.78						

STAAD SPACE			P	AGE NO.	143
220	-0.7734 GY	1.97			
220	-0.6328 GY	2.15			
220	-0.4922 GY	2.34			
220	-0.3516 GY	2.52			
220	-0.2109 GY	2.71			
220	-0.0703 GY	2.87			
364	-0.0703 GY	0.12			
364	-0.2109 GY	0.29			
364	-0.3516 GY	0.47			
364	-0.4922 GY	0.66			
364	-0.6328 GY	0.85			
364	-0.7734 GY	1.03			
364	-0.9141 GY	1.22			
364	-1.0547 GY	1.41			
364	-1.0547 GY	1.59			
364	-0.9141 GY	1.78			
364	-0.7734 GY	1.97			
364	-0.6328 GY	2.15			
364	-0.4922 GY	2.34			
364	-0.3516 GY	2.52			
364	-0.2109 GY	2.71			
364	-0.0703 GY	2.87			
5	-0.0703 GY	0.12			
5	-0.2109 GY	0.29			
5	-0.3516 GY	0.47			
5	-0.4922 GY	0.66			
5	-0.6328 GY	0.85			
5	-0.7734 GY	1.03			
5	-0.9141 GY	1.22			
5	-1.0547 GY	1.41			
5	-1.0547 GY	1.59			
5	-0.9141 GY	1.78			
5	-0.7734 GY	1.97			
5	-0.6328 GY	2.15			
5	-0.4922 GY	2.34			
5	-0.3516 GY	2.53			
5	-0.2109 GY	2.71			
5	-0.0703 GY	2.88			
277	-0.0703 GY	0.12			
277	-0.2109 GY	0.29			
277	-0.3516 GY	0.47			
277	-0.4922 GY	0.66			
277	-0.6328 GY	0.85			
277	-0.7734 GY	1.03			
277	-0.9141 GY	1.22			
077	1 0547 017	1 11			

-1.0547 GY 1.41

-1.0547 GY 1.59

-0.9141 GY 1.78

-0.7734 GY 1.97

-0.6328 GY 2.15

-0.4922 GY 2.34

-0.3516 GY 2.53

-0.2109 GY 2.71

-0.0703 GY 2.88

-0.0703 GY 0.12

-0.2109 GY 0.29

277

277

277

277

277

277

277

277

277

59

59

					monday,	OCCODEI	20,	2020,	10.07
STAAD SPACE			PAGE NO.	144					
59	-0.3516 GY 0.	47							
59		66							
59		85							
59		03							
59		22							
59		41							
59		59							
59		78							
59		97							
59		15							
59		34							
59		53							
59		71							
59		88							
276		12							
276		29							
276		47							
276		66							
276		85							
276		03							
276		22							
276		41							
276	-1.0547 GY 1.	59							
276	-0.9141 GY 1.	78							
276	-0.7734 GY 1.	97							
276	-0.6328 GY 2.	15							
276	-0.4922 GY 2.	34							
276	-0.3516 GY 2.	53							
276	-0.2109 GY 2.	71							
276	-0.0703 GY 2.	88							
6	-0.0703 GY 0.	12							
6	-0.2109 GY 0.	29							
6		47							
6		66							
6		85							
6		03							
6		22							
6		41							
6		59							
6	-0.9141 GY 1.								
6		97							
6		15							
6		34							
6 6		53							
6		71 88							
278		12							
278		29							
278		47							
278		66							
278		85							
278		03							
278		22							
278		41							
278		59							
278		78							

						- '	
STAAD SPACE			PAGE	NO.	145		
278	-0.7734 GY	1.97					
278	-0.6328 GY	2.15					
278	-0.4922 GY	2.34					
278	-0.3516 GY	2.53					
278	-0.2109 GY	2.71					
278	-0.0703 GY	2.88					
60	-0.0703 GY	0.12					
60	-0.2109 GY	0.29					
60	-0.3516 GY	0.47					
60	-0.4922 GY	0.66					
60	-0.6328 GY	0.85					
60	-0.7734 GY	1.03					
60	-0.9141 GY	1.22					
60	-1.0547 GY	1.41					
60	-1.0547 GY	1.59					
60	-0.9141 GY	1.78					
60	-0.7734 GY	1.97					
60	-0.6328 GY	2.15					
60	-0.4922 GY	2.34					
60	-0.3516 GY	2.53					
60	-0.2109 GY	2.71					
60	-0.0703 GY	2.88					
277	-0.0703 GY	0.12					
277	-0.2109 GY	0.29					
277	-0.3516 GY	0.47					
277	-0.4922 GY	0.66					
277	-0.6328 GY	0.85					
277	-0.7734 GY	1.03					
277	-0.9141 GY	1.22					
277	-1.0547 GY	1.41					
277	-1.0547 GY	1.59					
277	-0.9141 GY	1.78					
277	-0.7734 GY	1.97					
277	-0.6328 GY	2.15					
277	-0.4922 GY	2.34					
277	-0.3516 GY	2.53					
277 277	-0.2109 GY -0.0703 GY	2.71					
7	-0.0703 GY	0.13					
7	-0.2109 GY	0.13					
7	-0.3516 GY	0.48					
7	-0.4922 GY	0.66					
7	-0.6328 GY	0.85					
7	-0.7734 GY	1.03					
7	-0.9141 GY	1.22					
7	-1.0547 GY	1.41					
7	-1.0547 GY	1.59					
7	-0.9141 GY	1.78					
7	-0.7734 GY	1.97					
7	-0.6328 GY	2.15					
7	-0.4922 GY	2.34					
7	-0.3516 GY	2.53					
7	-0.2109 GY	2.71					
7	-0.0703 GY	2.88					
279	-0.0703 GY	0.12					
279	-0.2109 GY	0.29					

						momay,	OCCODE	2 (
STAAD SPACE			 PAGE	NO.	146			
279	-0.3516 GY	0.47						
279	-0.4922 GY	0.66						
279	-0.6328 GY	0.85						
279	-0.7734 GY	1.03						
279	-0.9141 GY	1.22						
279	-1.0547 GY	1.41						
279	-1.0547 GY	1.59						
279	-0.9141 GY	1.78						
279	-0.7734 GY	1.97						
279	-0.6328 GY	2.15						
279	-0.4922 GY	2.34						
279	-0.3516 GY	2.53						
279	-0.2109 GY	2.71						
279	-0.0703 GY	2.88						
61	-0.0703 GY	0.13						
61	-0.2109 GY	0.29						
61	-0.3516 GY	0.48						
61	-0.4922 GY	0.66						
61	-0.6328 GY	0.85						
61	-0.7734 GY	1.03						
61	-0.9141 GY	1.22						
61	-1.0547 GY	1.41						
61	-1.0547 GY	1.59						
61	-0.9141 GY	1.78						
61	-0.7734 GY	1.97						
61	-0.6328 GY	2.15						
61	-0.4922 GY	2.34						
61	-0.3516 GY	2.53						
61	-0.2109 GY	2.71						
61	-0.0703 GY	2.88						
278	-0.0703 GY	0.12						
278	-0.2109 GY	0.29						
278	-0.3516 GY	0.47						
278	-0.4922 GY	0.66						
278	-0.6328 GY	0.85						
278	-0.7734 GY	1.03						
278	-0.9141 GY	1.22						
278	-1.0547 GY	1.41						
278	-1.0547 GY	1.59						
278	-0.9141 GY	1.78						
278	-0.7734 GY	1.97						
278	-0.6328 GY	2.15						
278	-0.4922 GY	2.34						
278	-0.3516 GY	2.53						
278	-0.2109 GY	2.71						
278	-0.0703 GY	2.88						
8	-0.0703 GY	0.12						
8	-0.2109 GY	0.29						
8	-0.3516 GY	0.47						
8	-0.4922 GY	0.66						
8	-0.6328 GY	0.85						
8	-0.7734 GY	1.03						
8	-0.9141 GY	1.22						
8	-1.0547 GY	1.41						
8	-1.0547 GY	1.59						
8	-0.9141 GY	1.78						

						man ,	0000001	,	
STAAD SPACE			 PAGE	NO.	147				
8	-0.7734 GY	1.97							
8	-0.6328 GY	2.15							
8	-0.4922 GY	2.34							
8	-0.3516 GY	2.52							
8	-0.2109 GY	2.71							
8	-0.0703 GY	2.87							
280	-0.0703 GY	0.12							
280	-0.2109 GY	0.29							
280	-0.3516 GY	0.47							
280	-0.4922 GY	0.66							
280	-0.6328 GY	0.85							
280	-0.7734 GY	1.03							
280	-0.9141 GY	1.22							
280	-1.0547 GY	1.41							
280	-1.0547 GY	1.59							
280	-0.9141 GY	1.78							
280	-0.7734 GY	1.97							
280	-0.6328 GY	2.15							
280	-0.4922 GY	2.34							
280	-0.3516 GY	2.53							
280	-0.2109 GY	2.71							
280	-0.0703 GY	2.88							
62	-0.0703 GY	0.12							
62	-0.2109 GY	0.29							
62	-0.3516 GY	0.47							
62	-0.4922 GY	0.66							
62	-0.6328 GY	0.85							
62	-0.7734 GY	1.03							
62	-0.9141 GY	1.22							
62	-1.0547 GY	1.41							
62	-1.0547 GY	1.59							
62	-0.9141 GY	1.78							
62	-0.7734 GY	1.97							
62	-0.6328 GY	2.15							
62	-0.4922 GY	2.34							
62	-0.3516 GY	2.52							
62	-0.2109 GY	2.71							
62 279	-0.0703 GY	2.87							
279	-0.0703 GY -0.2109 GY	0.12 0.29							
279	-0.3516 GY	0.47							
279	-0.4922 GY	0.66							
279	-0.4322 G1 -0.6328 GY	0.85							
279	-0.7734 GY	1.03							
279	-0.9141 GY	1.22							
279	-1.0547 GY	1.41							
279	-1.0547 GY	1.59							
279	-0.9141 GY	1.78							
279	-0.7734 GY	1.97							
279	-0.6328 GY	2.15							
279	-0.4922 GY	2.34							
279	-0.3516 GY	2.53							
279	-0.2109 GY	2.71							
279	-0.0703 GY	2.88							
59	-0.0703 GY	0.12							
59	-0.2109 GY	0.29							

					monday,	octobel	20,	2020,	10.07	77
STAAD SPACE			PAGE NO.	148						
59	-0.3516 GY	0.47								
59	-0.4922 GY	0.66								
59	-0.6328 GY	0.85								
59	-0.7734 GY	1.03								
59	-0.9141 GY	1.22								
59	-1.0547 GY	1.41								
59	-1.0547 GY	1.59								
59	-0.9141 GY	1.78								
59	-0.7734 GY	1.97								
59	-0.6328 GY	2.15								
59	-0.4922 GY	2.34								
59	-0.3516 GY	2.53								
59	-0.2109 GY	2.71								
59	-0.0703 GY	2.88								
307	-0.0703 GY	0.12								
307	-0.2109 GY	0.29								
307	-0.3516 GY	0.47								
307	-0.4922 GY	0.66								
307	-0.6328 GY	0.85								
307	-0.7734 GY	1.03								
307	-0.9141 GY	1.22								
307	-1.0547 GY	1.41								
307	-1.0547 GY	1.59								
307	-0.9141 GY	1.78								
307	-0.7734 GY	1.97								
307	-0.6328 GY	2.15								
307	-0.4922 GY	2.34								
307	-0.3516 GY	2.53								
307	-0.2109 GY	2.71								
307	-0.0703 GY	2.88								
113	-0.0703 GY	0.12								
113	-0.2109 GY	0.29								
113	-0.3516 GY	0.47								
113	-0.4922 GY	0.66								
113	-0.6328 GY	0.85								
113	-0.7734 GY	1.03								
113	-0.9141 GY	1.22								
113	-1.0547 GY	1.41								
113	-1.0547 GY	1.59								
113	-0.9141 GY									
113	-0.7734 GY -0.6328 GY	1.97								
113 113	-0.6328 G1 -0.4922 GY	2.15								
113	-0.4922 G1 -0.3516 GY	2.53								
113	-0.2109 GY	2.71								
113	-0.2109 G1 -0.0703 GY	2.88								
306	-0.0703 GY	0.12								
306	-0.2109 GY	0.29								
306	-0.3516 GY	0.47								
306	-0.4922 GY	0.66								
306	-0.4322 G1 -0.6328 GY	0.85								
306	-0.7734 GY	1.03								
306	-0.9141 GY	1.22								
306	-1.0547 GY	1.41								
306	-1.0547 GY	1.59								
306	-0.9141 GY	1.78								
	01									

						monday,	OCCODE	20,
STAAD SPACE				PAGE NO.	149			
306	-0.7734 GY	1.9	97					
306	-0.6328 GY							
306	-0.4922 GY							
306	-0.3516 GY							
306	-0.2109 GY							
306	-0.0703 GY							
60								
	-0.0703 GY							
60	-0.2109 GY							
60	-0.3516 GY							
60	-0.4922 GY							
60	-0.6328 GY							
60	-0.7734 GY							
60	-0.9141 GY	1.2	22					
60	-1.0547 GY	1.4	1					
60	-1.0547 GY	1.5	59					
60	-0.9141 GY	1.	'8					
60	-0.7734 GY	1.9	7					
60	-0.6328 GY							
60	-0.4922 GY							
60	-0.3516 GY							
60	-0.2109 GY							
60								
	-0.0703 GY							
308	-0.0703 GY							
308	-0.2109 GY							
308	-0.3516 GY							
308	-0.4922 GY							
308	-0.6328 GY							
308	-0.7734 GY							
308	-0.9141 GY		22					
308	-1.0547 GY	1.4	1					
308	-1.0547 GY	1.5	9					
308	-0.9141 GY	1.	'8					
308	-0.7734 GY	1.9	97					
308	-0.6328 GY	2.1	.5					
308	-0.4922 GY							
308	-0.3516 GY							
308	-0.2109 GY							
308	-0.0703 GY							
114	-0.0703 GY							
114	-0.2109 GY							
114	-0.3516 GY							
114	-0.4922 GY							
114	-0.6328 GY							
114	-0.7734 GY							
114	-0.9141 GY							
114	-1.0547 GY							
114	-1.0547 GY		59					
114	-0.9141 GY	1.	'8					
114	-0.7734 GY	1.9	7					
114	-0.6328 GY	2.1	.5					
114	-0.4922 GY							
114	-0.3516 GY							
114	-0.2109 GY							
114	-0.0703 GY							
307	-0.0703 GY							
307	-0.2109 GY							
30 <i>i</i>	-0.2109 GY	. 0.2	. 9					

						, ,	000002	_ ,	
STAAD SPACE			PAGE	NO.	150				
307	-0.3516 GY	0.47							
307	-0.4922 GY	0.66							
307	-0.6328 GY	0.85							
307	-0.7734 GY	1.03							
307	-0.9141 GY	1.22							
307	-1.0547 GY	1.41							
307	-1.0547 GY	1.59							
307	-0.9141 GY	1.78							
307	-0.7734 GY	1.97							
307	-0.6328 GY	2.15							
307	-0.4922 GY	2.34							
307	-0.3516 GY	2.53							
307	-0.2109 GY	2.71							
307	-0.0703 GY	2.88							
61	-0.0703 GY	0.13							
61	-0.2109 GY	0.29							
61	-0.3516 GY	0.48							
61	-0.4922 GY	0.66							
61	-0.6328 GY	0.85							
61	-0.7734 GY	1.03							
61	-0.9141 GY	1.22							
61	-1.0547 GY	1.41							
61	-1.0547 GY	1.59							
61	-0.9141 GY	1.78							
61	-0.7734 GY	1.97							
61	-0.6328 GY	2.15							
61	-0.4922 GY	2.34							
61	-0.3516 GY	2.53							
61	-0.2109 GY	2.71							
61	-0.0703 GY	2.88							
309	-0.0703 GY	0.12							
309	-0.2109 GY	0.29							
309	-0.3516 GY	0.47							
309	-0.4922 GY	0.66							
309	-0.6328 GY	0.85							
309	-0.7734 GY	1.03							
309	-0.9141 GY	1.22							
309	-1.0547 GY	1.41							
309 309	-1.0547 GY	1.59							
	-0.9141 GY -0.7734 GY	1.78							
309 309	-0.6328 GY	1.97 2.15							
309	-0.4922 GY	2.13							
309	-0.4922 G1 -0.3516 GY	2.53							
309	-0.2109 GY	2.71							
309	-0.0703 GY	2.88							
115	-0.0703 GY	0.13							
115	-0.2109 GY	0.29							
115	-0.3516 GY	0.48							
115	-0.4922 GY	0.66							
115	-0.6328 GY	0.85							
115	-0.7734 GY	1.03							
115	-0.9141 GY	1.22							
115	-1.0547 GY	1.41							
115	-1.0547 GY	1.59							
115	-0.9141 GY	1.78							

					 •
STAAD SPACE		_	- PAGE NO.	151	
115	-0.7734 GY	1.97			
115	-0.6328 GY	2.15			
115	-0.4922 GY	2.34			
115	-0.3516 GY	2.53			
115	-0.2109 GY	2.71			
115	-0.0703 GY	2.88			
308	-0.0703 GY	0.12			
	-0.2109 GY				
308		0.29			
308	-0.3516 GY	0.47			
308	-0.4922 GY	0.66			
308	-0.6328 GY	0.85			
308	-0.7734 GY	1.03			
308	-0.9141 GY	1.22			
308	-1.0547 GY	1.41			
308	-1.0547 GY	1.59			
308	-0.9141 GY	1.78			
308	-0.7734 GY	1.97			
308	-0.6328 GY	2.15			
308	-0.4922 GY	2.34			
308	-0.3516 GY	2.53			
308	-0.2109 GY	2.71			
308	-0.0703 GY	2.88			
62	-0.0703 GY	0.12			
62	-0.2109 GY	0.29			
62	-0.3516 GY	0.47			
62	-0.4922 GY	0.66			
62	-0.6328 GY	0.85			
62	-0.7734 GY	1.03			
62	-0.9141 GY	1.22			
62	-1.0547 GY	1.41			
62	-1.0547 GY	1.59			
62	-0.9141 GY	1.78			
62	-0.7734 GY	1.97			
62	-0.6328 GY	2.15			
62	-0.4922 GY	2.34			
62	-0.3516 GY	2.52			
62	-0.2109 GY	2.71			
62	-0.0703 GY	2.87			
310	-0.0703 GY	0.12			
310	-0.2109 GY	0.29			
310	-0.3516 GY	0.47			
310	-0.4922 GY	0.66			
310	-0.6328 GY	0.85			
310	-0.7734 GY	1.03			
310	-0.9141 GY	1.22			
310	-1.0547 GY	1.41			
310	-1.0547 GY	1.59			
310	-0.9141 GY	1.78			
310	-0.7734 GY	1.97			
310	-0.6328 GY	2.15			
310	-0.4922 GY	2.34			
310	-0.3516 GY	2.53			
310	-0.2109 GY	2.71			
310	-0.0703 GY	2.88			
116	-0.0703 GY	0.12			
116	-0.2109 GY	0.29			
±±0	U.ZIU3 GI	0.23			

					monday,	october	20,
STAAD SPACE			PAGE NO.	152			
116	-0.3516 GY	0.47					
116	-0.4922 GY	0.66					
116	-0.6328 GY	0.85					
116	-0.7734 GY	1.03					
116	-0.9141 GY	1.22					
116	-1.0547 GY	1.41					
116	-1.0547 GY	1.59					
116	-0.9141 GY	1.78					
116	-0.7734 GY	1.97					
116	-0.6328 GY	2.15					
116	-0.4922 GY	2.34					
116	-0.3516 GY	2.52					
116	-0.2109 GY	2.71					
116	-0.0703 GY	2.87					
309	-0.0703 GY	0.12					
309	-0.2109 GY	0.29					
309	-0.3516 GY	0.47					
309	-0.4922 GY	0.66					
309	-0.6328 GY	0.85					
309	-0.7734 GY	1.03					
309	-0.9141 GY	1.22					
309	-1.0547 GY	1.41					
309	-1.0547 GY	1.59					
309	-0.9141 GY	1.78					
309	-0.7734 GY	1.97					
309	-0.6328 GY	2.15					
309	-0.4922 GY	2.13					
309							
	-0.3516 GY	2.53					
309	-0.2109 GY	2.71					
309	-0.0703 GY	2.88					
113	-0.0703 GY	0.12					
113	-0.2109 GY	0.29					
113	-0.3516 GY	0.47					
113	-0.4922 GY	0.66					
113	-0.6328 GY	0.85					
113	-0.7734 GY	1.03					
113	-0.9141 GY	1.22					
113	-1.0547 GY	1.41					
113	-1.0547 GY	1.59					
113	-0.9141 GY	1.78					
113	-0.7734 GY	1.97					
113	-0.6328 GY	2.15					
113	-0.4922 GY	2.34					
113	-0.3516 GY	2.53					
113	-0.2109 GY	2.71					
113	-0.0703 GY	2.88					
337	-0.0703 GY	0.13					
337	-0.2109 GY	0.29					
337	-0.3516 GY	0.48					
337	-0.4922 GY	0.66					
337	-0.6328 GY	0.85					
337	-0.0328 GI -0.7734 GY	1.03					
337	-0.9141 GY	1.22					
337	-1.0547 GY	1.41					
337	-1.0547 GY	1.59					
337	-0.9141 GY	1.78					

					monaay,	Uctober	26,	4
STAAD SPACE			PAGE NO.	153				
227	0 7724 65	1 07						
337 337	-0.7734 GY -0.6328 GY	1.97						
337	-0.4922 GY	2.15						
337	-0.3516 GY	2.53						
337	-0.2109 GY	2.71						
337	-0.0703 GY	2.88						
167	-0.0703 GY	0.12						
167	-0.2109 GY	0.29						
167	-0.3516 GY	0.47						
167	-0.4922 GY	0.66						
167	-0.6328 GY	0.85						
167	-0.7734 GY	1.03						
167	-0.9141 GY	1.22						
167	-1.0547 GY	1.41						
167	-1.0547 GY	1.59						
167	-0.9141 GY	1.78						
167	-0.7734 GY	1.97						
167	-0.6328 GY	2.15						
167	-0.4922 GY	2.34						
167	-0.3516 GY	2.53						
167	-0.2109 GY	2.71						
167	-0.0703 GY	2.88						
336	-0.0703 GY	0.13						
336	-0.2109 GY	0.29						
336	-0.3516 GY	0.48						
336	-0.4922 GY	0.66						
336	-0.6328 GY	0.85						
336	-0.7734 GY	1.03						
336	-0.9141 GY	1.22						
336	-1.0547 GY	1.41						
336	-1.0547 GY	1.59						
336	-0.9141 GY	1.78						
336	-0.7734 GY	1.97						
336	-0.6328 GY	2.15						
336	-0.4922 GY	2.34						
336	-0.3516 GY	2.53						
336	-0.2109 GY	2.71						
336	-0.0703 GY	2.88						
114	-0.0703 GY	0.12						
114	-0.2109 GY							
114	-0.3516 GY	0.47						
114 114	-0.4922 GY	0.66						
114	-0.6328 GY	0.85						
114	-0.7734 GY -0.9141 GY	1.03 1.22						
114	-1.0547 GY	1.41						
114	-1.0547 GY	1.59						
114	-0.9141 GY	1.78						
114	-0.7734 GY	1.97						
114	-0.6328 GY	2.15						
114	-0.4922 GY	2.34						
114	-0.3516 GY	2.53						
114	-0.2109 GY	2.71						
114	-0.0703 GY	2.88						
338	-0.0703 GY	0.13						
338	-0.2109 GY	0.29						

					monday,	october	20,	2020,	10.07
STAAD SPACE			PAGE NO.	154					
338	-0.3516 GY	0.48							
338	-0.4922 GY	0.66							
338 338	-0.6328 GY	0.85							
338	-0.7734 GY -0.9141 GY	1.03 1.22							
338	-0.9141 GY -1.0547 GY								
338	-1.0547 GY	1.41 1.59							
338	-0.9141 GY	1.78							
338	-0.7734 GY	1.97							
338	-0.6328 GY	2.15							
338	-0.4922 GY	2.34							
338	-0.3516 GY	2.53							
338	-0.2109 GY	2.71							
338	-0.0703 GY	2.88							
168	-0.0703 GY	0.12							
168	-0.2109 GY	0.29							
168	-0.3516 GY	0.47							
168	-0.4922 GY	0.66							
168	-0.6328 GY	0.85							
168	-0.7734 GY	1.03							
168	-0.9141 GY	1.22							
168	-1.0547 GY	1.41							
168	-1.0547 GY	1.59							
168	-0.9141 GY	1.78							
168	-0.7734 GY	1.97							
168	-0.6328 GY	2.15							
168	-0.4922 GY	2.34							
168	-0.3516 GY	2.53							
168	-0.2109 GY	2.71							
168	-0.0703 GY	2.88							
337	-0.0703 GY	0.13							
337 337	-0.2109 GY	0.29							
337	-0.3516 GY -0.4922 GY	0.46							
337	-0.6328 GY	0.85							
337	-0.7734 GY	1.03							
337	-0.9141 GY	1.22							
337	-1.0547 GY	1.41							
337	-1.0547 GY	1.59							
337	-0.9141 GY								
337	-0.7734 GY	1.97							
337	-0.6328 GY	2.15							
337	-0.4922 GY	2.34							
337	-0.3516 GY	2.53							
337	-0.2109 GY	2.71							
337	-0.0703 GY	2.88							
115	-0.0703 GY	0.13							
115	-0.2109 GY	0.29							
115	-0.3516 GY	0.48							
115	-0.4922 GY	0.66							
115	-0.6328 GY	0.85							
115	-0.7734 GY	1.03							
115	-0.9141 GY	1.22							
115	-1.0547 GY	1.41							
115	-1.0547 GY	1.59							
115	-0.9141 GY	1.78							

						, ,	0000002	, .	-
STAAD SPACE			PAGE	NO.	155				
115	-0.7734 GY	1.97							
115	-0.6328 GY	2.15							
115	-0.4922 GY	2.34							
115	-0.3516 GY	2.53							
115	-0.2109 GY	2.71							
115	-0.0703 GY	2.88							
339	-0.0703 GY	0.13							
339	-0.2109 GY	0.29							
339	-0.3516 GY	0.48							
339	-0.4922 GY	0.66							
339	-0.6328 GY	0.85							
339	-0.7734 GY	1.03							
339	-0.9141 GY	1.22							
339	-1.0547 GY	1.41							
339	-1.0547 GY	1.59							
339	-0.9141 GY	1.78							
339	-0.7734 GY	1.97							
339	-0.6328 GY	2.15							
339	-0.4922 GY	2.34							
339	-0.3516 GY	2.53							
339	-0.2109 GY	2.71							
339	-0.0703 GY	2.88							
169	-0.0703 GY	0.13							
169	-0.2109 GY	0.29							
169	-0.3516 GY	0.48							
169	-0.4922 GY	0.66							
169	-0.6328 GY	0.85							
169	-0.7734 GY	1.03							
169	-0.9141 GY	1.22							
169	-1.0547 GY	1.41							
169	-1.0547 GY	1.59							
169	-0.9141 GY	1.78							
169	-0.7734 GY	1.97							
169	-0.6328 GY	2.15							
169	-0.4922 GY	2.34							
169	-0.3516 GY	2.53							
169	-0.2109 GY	2.71							
169	-0.0703 GY	2.88							
338	-0.0703 GY	0.13							
338	-0.2109 GY	0.29							
338	-0.3516 GY	0.48							
338	-0.4922 GY	0.66							
338	-0.6328 GY	0.85							
338	-0.7734 GY	1.03							
338	-0.9141 GY	1.22							
338	-1.0547 GY	1.41							
338	-1.0547 GY	1.59							
338	-0.9141 GY	1.78							
338	-0.7734 GY	1.97							
338	-0.6328 GY	2.15							
338	-0.4922 GY	2.34							
338	-0.3516 GY	2.53							
338	-0.2109 GY	2.71							
338	-0.0703 GY	2.88							
116	-0.0703 GY	0.12							
116	-0.2109 GY	0.29							

						, tana	000000	,	
STAAD SPACE			PAG	E NO.	156				
116	-0.3516 GY	0.47							
116	-0.4922 GY	0.66							
116	-0.6328 GY	0.85							
116	-0.7734 GY	1.03							
116	-0.9141 GY	1.22							
116	-1.0547 GY	1.41							
116	-1.0547 GY	1.59							
116	-0.9141 GY	1.78							
116	-0.7734 GY	1.97							
116	-0.6328 GY	2.15							
116	-0.4922 GY	2.34							
116	-0.3516 GY	2.52							
116	-0.2109 GY	2.71							
116	-0.0703 GY	2.87							
340	-0.0703 GY	0.13							
340	-0.2109 GY	0.29							
340									
340	-0.3516 GY	0.48							
340	-0.4922 GY -0.6328 GY	0.66							
340	-0.8328 G1 -0.7734 GY	0.85							
		1.03							
340	-0.9141 GY	1.22							
340 340	-1.0547 GY	1.41							
	-1.0547 GY	1.59 1.78							
340 340	-0.9141 GY -0.7734 GY	1.97							
340	-0.6328 GY	2.15							
340	-0.4922 GY	2.34							
340	-0.3516 GY	2.53							
340	-0.2109 GY	2.71							
340	-0.0703 GY	2.88							
170	-0.0703 GY	0.12							
170	-0.2109 GY	0.29							
170	-0.3516 GY	0.47							
170	-0.4922 GY	0.66							
170	-0.6328 GY	0.85							
170	-0.7734 GY	1.03							
170	-0.9141 GY	1.22							
170	-1.0547 GY	1.41							
170	-1.0547 GY	1.59							
170	-0.9141 GY	1.78							
170	-0.7734 GY	1.97							
170	-0.6328 GY	2.15							
170	-0.4922 GY	2.34							
170	-0.3516 GY	2.52							
170	-0.2109 GY	2.71							
170	-0.0703 GY	2.87							
339	-0.0703 GY	0.13							
339	-0.2109 GY	0.29							
339	-0.3516 GY	0.48							
339	-0.4922 GY	0.66							
339	-0.6328 GY	0.85							
339	-0.7734 GY	1.03							
339	-0.9141 GY	1.22							
339	-1.0547 GY	1.41							
339	-1.0547 GY	1.59							
339	-0.9141 GY	1.78							

						- '	•	•
ST	AAD SPACE		-	- PAGE NO.	157			
33	9	-0.7734 GY	1.97					
33		-0.6328 GY	2.15					
33		-0.4922 GY	2.34					
33		-0.3516 GY	2.53					
33		-0.2109 GY	2.71					
33		-0.0703 GY	2.88					
16		-0.0703 GY	0.12					
16		-0.2109 GY	0.29					
16		-0.3516 GY	0.47					
16		-0.4922 GY	0.66					
16		-0.4922 G1 -0.6328 GY						
			0.85					
16			1.03					
16		-0.9141 GY	1.22					
16		-1.0547 GY	1.41					
16			1.59					
16			1.78					
16			1.97					
16		-0.6328 GY	2.15					
16		-0.4922 GY	2.34					
16		-0.3516 GY	2.53					
16		-0.2109 GY	2.71					
16		-0.0703 GY	2.88					
36		-0.0703 GY	0.12					
36		-0.2109 GY	0.29					
36		-0.3516 GY	0.47					
36		-0.4922 GY	0.66					
36		-0.6328 GY	0.85					
36	7	-0.7734 GY	1.03					
36	7	-0.9141 GY	1.22					
36	7	-1.0547 GY	1.41					
36	7	-1.0547 GY	1.59					
36	7	-0.9141 GY	1.78					
36	7	-0.7734 GY	1.97					
36	7	-0.6328 GY	2.15					
36	7	-0.4922 GY	2.34					
36	7	-0.3516 GY	2.52					
36	7	-0.2109 GY	2.71					
36	7	-0.0703 GY	2.87					
22	1	-0.0703 GY	0.12					
22	1	-0.2109 GY	0.29					
22	1	-0.3516 GY	0.47					
22	1	-0.4922 GY	0.66					
22	1	-0.6328 GY	0.85					
22	1	-0.7734 GY	1.03					
22	1	-0.9141 GY	1.22					
22	1	-1.0547 GY	1.41					
22	1	-1.0547 GY	1.59					
22		-0.9141 GY	1.78					
22		-0.7734 GY	1.97					
22		-0.6328 GY	2.15					
22		-0.4922 GY	2.34					
22		-0.3516 GY	2.53					
22		-0.2109 GY	2.71					
22		-0.0703 GY	2.88					
36		-0.0703 GY	0.12					
36		-0.2109 GY	0.29					
0.0	-							

					- '	•	
STAAD SPACE			PAGE NO.	158			
366	-0.3516 GY	0.47					
366	-0.4922 GY	0.66					
366	-0.6328 GY	0.85					
366	-0.7734 GY	1.03					
366	-0.9141 GY	1.22					
366	-1.0547 GY	1.41					
366	-1.0547 GY	1.59					
366	-0.9141 GY	1.78					
366	-0.7734 GY	1.97					
366							
	-0.6328 GY	2.15					
366	-0.4922 GY	2.34					
366	-0.3516 GY	2.52					
366	-0.2109 GY	2.71					
366	-0.0703 GY	2.87					
168	-0.0703 GY	0.12					
168	-0.2109 GY	0.29					
168	-0.3516 GY	0.47					
168	-0.4922 GY	0.66					
168	-0.6328 GY	0.85					
168	-0.7734 GY	1.03					
168	-0.9141 GY	1.22					
168	-1.0547 GY	1.41					
168	-1.0547 GY	1.59					
168	-0.9141 GY	1.78					
168	-0.7734 GY	1.97					
168	-0.6328 GY	2.15					
168	-0.4922 GY	2.34					
168	-0.3516 GY	2.53					
168	-0.2109 GY	2.71					
168	-0.0703 GY	2.88					
368	-0.0703 GY	0.12					
368	-0.2109 GY	0.29					
368	-0.3516 GY	0.47					
368	-0.4922 GY	0.66					
368							
368	-0.6328 GY	0.85					
	-0.7734 GY	1.03					
368	-0.9141 GY	1.22					
368	-1.0547 GY	1.41					
368	-1.0547 GY	1.59					
368	-0.9141 GY	1.78					
368	-0.7734 GY	1.97					
368	-0.6328 GY	2.15					
368	-0.4922 GY	2.34					
368	-0.3516 GY	2.52					
368	-0.2109 GY	2.71					
368	-0.0703 GY	2.87					
222	-0.0703 GY	0.12					
222	-0.2109 GY	0.29					
222	-0.3516 GY	0.47					
222	-0.4922 GY	0.66					
222	-0.6328 GY	0.85					
222	-0.7734 GY	1.03					
222	-0.9141 GY	1.22					
222	-1.0547 GY	1.41					
222	-1.0547 GY	1.59					
222	-0.9141 GY	1.78					
	J.J.11 O1	_,,,					

					11011447,	000000	20, 2020,	
STAAD SPACE			PAGE NO.	159				
222	-0.7734 GY	1.97						
222	-0.6328 GY	2.15						
222	-0.4922 GY	2.34						
222	-0.3516 GY	2.53						
222	-0.2109 GY	2.71						
222	-0.0703 GY	2.88						
367	-0.0703 GY	0.12						
367	-0.2109 GY	0.29						
367	-0.3516 GY	0.47						
367	-0.4922 GY	0.66						
367	-0.6328 GY	0.85						
367		1.03						
367	-0.9141 GY	1.22						
367	-1.0547 GY	1.41						
367	-1.0547 GY	1.59						
367	-0.9141 GY	1.78						
367	-0.7734 GY	1.97						
367	-0.6328 GY	2.15						
367	-0.4922 GY	2.34						
367	-0.3516 GY	2.52						
367	-0.2109 GY	2.71						
367	-0.0703 GY	2.87						
169	-0.0703 GY	0.13						
169	-0.2109 GY	0.29						
169	-0.3516 GY	0.48						
169	-0.4922 GY	0.66						
169	-0.6328 GY	0.85						
169	-0.7734 GY	1.03						
169	-0.9141 GY	1.22						
169	-1.0547 GY	1.41						
169	-1.0547 GY	1.59						
169	-0.9141 GY	1.78						
169	-0.7734 GY	1.97						
169	-0.6328 GY	2.15						
169	-0.4922 GY	2.34						
169	-0.3516 GY	2.53						
169	-0.2109 GY	2.71						
169	-0.0703 GY	2.88						
369	-0.0703 GY	0.12						
369	-0.2109 GY	0.29						
369	-0.3516 GY	0.47						
369	-0.4922 GY	0.66						
369	-0.6328 GY	0.85						
369	-0.7734 GY	1.03						
369	-0.9141 GY	1.22						
369	-1.0547 GY	1.41						
369	-1.0547 GY	1.59						
369								
369	-0.9141 GY -0.7734 GY	1.78 1.97						
369	-0.6328 GY -0.4922 GY	2.15						
369		2.34						
369	-0.3516 GY	2.52						
369	-0.2109 GY	2.71						
369	-0.0703 GY	2.87						
223	-0.0703 GY	0.13						
223	-0.2109 GY	0.29						

					11011441	0000001	_ ,	,	
STAAD SPACE			PAGE NO.	. 160					
223	-0.3516 GY	0.48							
223	-0.4922 GY	0.66							
223	-0.6328 GY	0.85							
223	-0.7734 GY	1.03							
223	-0.9141 GY	1.22							
223	-1.0547 GY	1.41							
223	-1.0547 GY	1.59							
223	-0.9141 GY	1.78							
223	-0.7734 GY	1.97							
223	-0.6328 GY	2.15							
223	-0.4922 GY	2.34							
223	-0.3516 GY	2.53							
223	-0.2109 GY	2.71							
223	-0.0703 GY	2.88							
368	-0.0703 GY	0.12							
368	-0.2109 GY	0.29							
368	-0.3516 GY	0.47							
368	-0.4922 GY	0.66							
368	-0.6328 GY	0.85							
368	-0.7734 GY	1.03							
368	-0.9141 GY	1.22							
368	-1.0547 GY	1.41							
368	-1.0547 GY	1.59							
368	-0.9141 GY	1.78							
368	-0.7734 GY	1.97							
368	-0.6328 GY	2.15							
368	-0.4922 GY	2.34							
368	-0.3516 GY	2.52							
368	-0.2109 GY	2.71							
368	-0.0703 GY	2.87							
170	-0.0703 GY	0.12							
170		0.29							
170	-0.2109 GY -0.3516 GY								
		0.47							
170	-0.4922 GY	0.66							
170	-0.6328 GY	0.85							
170	-0.7734 GY	1.03							
170	-0.9141 GY	1.22							
170	-1.0547 GY	1.41							
170	-1.0547 GY	1.59							
170	-0.9141 GY	1.78							
170	-0.7734 GY	1.97							
170	-0.6328 GY	2.15							
170	-0.4922 GY	2.34							
170	-0.3516 GY	2.52							
170	-0.2109 GY	2.71							
170	-0.0703 GY	2.87							
370	-0.0703 GY	0.12							
370	-0.2109 GY	0.29							
370	-0.3516 GY	0.47							
370	-0.4922 GY	0.66							
370	-0.6328 GY	0.85							
370	-0.7734 GY	1.03							
370	-0.9141 GY	1.22							
370	-1.0547 GY	1.41							
370	-1.0547 GY	1.59							
370	-0.9141 GY	1.78							

							monaay,	Uctober	26,
STAAD	SPACE			P	AGE NO.	161			
370		-0.7734 GY	1.97						
370		-0.6328 GY	2.15						
370		-0.4922 GY	2.34						
370		-0.3516 GY	2.52						
370		-0.2109 GY	2.71						
370		-0.0703 GY	2.87						
224		-0.0703 GY	0.12						
224		-0.2109 GY	0.12						
224		-0.3516 GY	0.47						
224		-0.4922 GY	0.66						
224		-0.6328 GY							
224		-0.7734 GY							
224		-0.9141 GY	1.22						
224		-1.0547 GY							
224		-1.0547 GY	1.59						
224		-0.9141 GY	1.78						
224		-0.7734 GY	1.97						
224		-0.6328 GY	2.15						
224		-0.4922 GY	2.34						
224		-0.3516 GY	2.52						
224		-0.2109 GY	2.71						
224		-0.0703 GY	2.87						
369		-0.0703 GY	0.12						
369		-0.2109 GY	0.29						
369		-0.3516 GY	0.47						
369		-0.4922 GY	0.66						
369		-0.6328 GY	0.85						
369		-0.7734 GY	1.03						
369		-0.9141 GY	1.22						
369		-1.0547 GY	1.41						
369		-1.0547 GY	1.59						
369		-0.9141 GY	1.78						
369		-0.7734 GY	1.78						
369		-0.6328 GY	2.15						
369		-0.4922 GY	2.34						
369		-0.3516 GY	2.52						
369		-0.2109 GY							
369		-0.0703 GY	2.87						
9		-0.0703 GY	0.12						
9		-0.2109 GY							
9		-0.3516 GY	0.47						
9		-0.4922 GY							
9		-0.6328 GY	0.85						
9		-0.7734 GY	1.03						
9		-0.9141 GY	1.22						
9		-1.0547 GY	1.41						
9		-1.0547 GY	1.59						
9		-0.9141 GY	1.78						
9		-0.7734 GY	1.97						
9		-0.6328 GY	2.15						
9		-0.4922 GY	2.34						
9		-0.3516 GY	2.53						
9		-0.2109 GY	2.71						
9		-0.0703 GY	2.88						
282		-0.0703 GY	0.12						
282		-0.2109 GY	0.12						
202		0.2109 GI	U • ∠ J						

						11011447,	000000	, .	
STAAD SPACE			PAGE	NO.	162				
282	-0.3516 GY	0.47							
282	-0.4922 GY	0.66							
282	-0.6328 GY	0.85							
282	-0.7734 GY	1.03							
282	-0.9141 GY	1.22							
282	-1.0547 GY	1.41							
282	-1.0547 GY	1.59							
282	-0.9141 GY	1.78							
282	-0.7734 GY	1.97							
282	-0.6328 GY	2.15							
282	-0.4922 GY	2.34							
282	-0.3516 GY	2.53							
282	-0.2109 GY	2.71							
282	-0.0703 GY	2.88							
63	-0.0703 GY	0.12							
63	-0.2109 GY	0.29							
63	-0.3516 GY	0.47							
63	-0.4922 GY	0.66							
63	-0.6328 GY	0.85							
63	-0.7734 GY	1.03							
63	-0.9141 GY	1.22							
63	-1.0547 GY	1.41							
63	-1.0547 GY	1.59							
63	-0.9141 GY	1.78							
63	-0.7734 GY	1.97							
63	-0.6328 GY	2.15							
63	-0.4922 GY	2.34							
63	-0.3516 GY	2.53							
63	-0.2109 GY	2.71							
63	-0.0703 GY	2.88							
281	-0.0703 GY	0.12							
281	-0.2109 GY	0.29							
281	-0.3516 GY	0.47							
281	-0.4922 GY	0.66							
281	-0.6328 GY	0.85							
281	-0.7734 GY	1.03							
281	-0.9141 GY	1.22							
281	-1.0547 GY	1.41							
281	-1.0547 GY	1.59							
281	-0.9141 GY	1.78							
281	-0.7734 GY	1.97							
281	-0.6328 GY	2.15							
281	-0.4922 GY	2.34							
281	-0.3516 GY	2.53							
281	-0.2109 GY	2.71							
281	-0.0703 GY	2.88							
10	-0.0703 GY	0.12							
10	-0.2109 GY	0.29							
10	-0.3516 GY	0.47							
10	-0.4922 GY	0.66							
10	-0.6328 GY	0.85							
10	-0.7734 GY	1.03							
10	-0.9141 GY	1.22							
10	-1.0547 GY	1.41							
10	-1.0547 GY	1.59							
10	-0.9141 GY	1.78							

						11011447,	000000	,	
STAAD SPACE			PA	GE NO.	163				
10	-0.7734 GY	1.97							
10	-0.6328 GY	2.15							
10	-0.4922 GY	2.34							
10	-0.3516 GY	2.53							
10	-0.2109 GY	2.71							
10	-0.0703 GY	2.88							
283	-0.0703 GY	0.12							
283	-0.2109 GY	0.29							
283	-0.3516 GY	0.47							
283	-0.4922 GY	0.66							
283	-0.6328 GY	0.85							
283	-0.7734 GY	1.03							
283	-0.9141 GY	1.22							
283	-1.0547 GY	1.41							
283	-1.0547 GY	1.59							
283	-0.9141 GY	1.78							
283	-0.7734 GY	1.97							
283	-0.6328 GY	2.15							
283	-0.4922 GY	2.34							
283	-0.3516 GY	2.53							
283	-0.2109 GY	2.71							
283	-0.0703 GY	2.88							
64	-0.0703 GY	0.12							
64	-0.2109 GY	0.29							
64	-0.3516 GY	0.47							
64	-0.4922 GY	0.66							
64	-0.6328 GY	0.85							
64	-0.7734 GY	1.03							
64	-0.9141 GY	1.22							
64	-1.0547 GY	1.41							
64	-1.0547 GY	1.59							
64 64	-0.9141 GY -0.7734 GY	1.78 1.97							
64	-0.6328 GY	2.15							
64	-0.4922 GY	2.34							
64	-0.4922 G1	2.53							
64	-0.2109 GY	2.71							
64	-0.0703 GY	2.88							
282	-0.0703 GY	0.12							
282	-0.2109 GY	0.29							
282	-0.3516 GY	0.47							
282	-0.4922 GY	0.66							
282	-0.6328 GY	0.85							
282	-0.7734 GY	1.03							
282	-0.9141 GY	1.22							
282	-1.0547 GY	1.41							
282	-1.0547 GY	1.59							
282	-0.9141 GY	1.78							
282	-0.7734 GY	1.97							
282	-0.6328 GY	2.15							
282	-0.4922 GY	2.34							
282	-0.3516 GY	2.53							
282	-0.2109 GY	2.71							
282	-0.0703 GY	2.88							
11	-0.0703 GY	0.13							
11	-0.2109 GY	0.29							

						rioriaaj	,	,	,
STAAD SPACE			PAGE	NO.	164				
11	-0.3516 GY	0.48							
11	-0.4922 GY	0.66							
11	-0.6328 GY	0.85							
11	-0.7734 GY	1.03							
11	-0.9141 GY	1.22							
11	-1.0547 GY	1.41							
11	-1.0547 GY	1.59							
11	-0.9141 GY	1.78							
11	-0.7734 GY	1.97							
11	-0.6328 GY	2.15							
11	-0.4922 GY	2.34							
11	-0.3516 GY	2.53							
11	-0.2109 GY	2.71							
11	-0.0703 GY	2.88							
284	-0.0703 GY	0.12							
284	-0.2109 GY	0.29							
284	-0.3516 GY	0.47							
284	-0.4922 GY	0.66							
284	-0.6328 GY	0.85							
284	-0.7734 GY	1.03							
284	-0.9141 GY	1.22							
284	-1.0547 GY	1.41							
284	-1.0547 GY	1.59							
284	-0.9141 GY	1.78							
284	-0.7734 GY	1.97							
284	-0.6328 GY	2.15							
284	-0.4922 GY	2.34							
284	-0.3516 GY	2.53							
284	-0.2109 GY	2.71							
284	-0.0703 GY	2.88							
65 65	-0.0703 GY -0.2109 GY	0.13 0.29							
65	-0.2109 G1 -0.3516 GY	0.48							
65	-0.4922 GY	0.66							
65	-0.6328 GY	0.85							
65	-0.7734 GY	1.03							
65	-0.9141 GY	1.22							
65	-1.0547 GY	1.41							
65	-1.0547 GY	1.59							
65	-0.9141 GY	1.78							
65	-0.7734 GY	1.97							
65	-0.6328 GY	2.15							
65	-0.4922 GY	2.34							
65	-0.3516 GY	2.53							
65	-0.2109 GY	2.71							
65	-0.0703 GY	2.88							
283	-0.0703 GY	0.12							
283	-0.2109 GY	0.29							
283	-0.3516 GY	0.47							
283	-0.4922 GY	0.66							
283	-0.6328 GY	0.85							
283	-0.7734 GY	1.03							
283	-0.9141 GY	1.22							
283	-1.0547 GY	1.41							
283	-1.0547 GY	1.59							
283	-0.9141 GY	1.78							

STAAD	SPACE			 PAGE :	NO.	165
283		-0.7734 GY	1.97			

STAAD SPACE		
202	0 7724 6	TV 1 07
283	-0.7734	
283		GY 2.15
283	-0.4922 (
283	-0.3516 (
283	-0.2109	
283	-0.0703	
12	-0.0703	GY 0.12
12	-0.2109	GY 0.29
12	-0.3516	GY 0.47
12	-0.4922	GY 0.66
12	-0.6328	GY 0.85
12	-0.7734	GY 1.03
12	-0.9141	GY 1.22
12	-1.0547	GY 1.41
12	-1.0547	GY 1.59
12	-0.9141	
12	-0.7734	
12		GY 2.15
12		GY 2.34
12	-0.3516	
12	-0.2109	
12	-0.0703	
285	-0.0703	
285	-0.2109	
285	-0.3516	
285		GY 0.66
285	-0.6328	
285	-0.7734 (
285	-0.9141 (
285		GY 1.41
285		GY 1.59
285	-0.9141	
285	-0.7734	
285	-0.6328	GY 2.15
285	-0.4922	GY 2.34
285	-0.3516	GY 2.53
285	-0.2109	GY 2.71
285	-0.0703	GY 2.88
66	-0.0703	GY 0.12
66	-0.2109	
66	-0.3516	GY 0.47
66	-0.4922	GY 0.66
66	-0.6328	GY 0.85
66	-0.7734	GY 1.03
66	-0.9141	GY 1.22
66	-1.0547	GY 1.41
66	-1.0547	GY 1.59
66		GY 1.78
66		GY 1.97
66	-0.6328	
66		GY 2.34
66	-0.3516	
66	-0.2109	
66	-0.0703	
284	-0.0703	
284	-0.2109	
201	0.2100	0.29

					man ,	000000	,	,	
STAAD SPACE			PAGE NO.	166					
284	-0.3516 GY	0.47							
284	-0.4922 GY	0.66							
284	-0.6328 GY	0.85							
284	-0.7734 GY	1.03							
284	-0.9141 GY	1.22							
284	-1.0547 GY	1.41							
284	-1.0547 GY	1.59							
284	-0.9141 GY	1.78							
284	-0.7734 GY	1.97							
284	-0.6328 GY	2.15							
284	-0.4922 GY	2.34							
284	-0.3516 GY	2.53							
284	-0.2109 GY	2.71							
284	-0.0703 GY	2.88							
63	-0.0703 GY	0.12							
63	-0.2109 GY	0.29							
63	-0.3516 GY	0.47							
63	-0.4922 GY	0.66							
63	-0.6328 GY	0.85							
63	-0.7734 GY	1.03							
63	-0.9141 GY	1.22							
63	-1.0547 GY	1.41							
63	-1.0547 GY	1.59							
63	-0.9141 GY	1.78							
63	-0.7734 GY	1.97							
63	-0.6328 GY	2.15							
63	-0.4922 GY	2.34							
63	-0.3516 GY	2.53							
63	-0.2109 GY	2.71							
63	-0.0703 GY	2.88							
312	-0.0703 GY	0.12							
312	-0.2109 GY	0.29							
312	-0.3516 GY	0.47							
312	-0.4922 GY	0.66							
312	-0.6328 GY	0.85							
312	-0.7734 GY	1.03							
312	-0.9141 GY	1.22							
312	-1.0547 GY	1.41							
312	-1.0547 GY	1.59							
312	-0.9141 GY	1.78							
312	-0.7734 GY	1.97							
312	-0.6328 GY	2.15							
312	-0.4922 GY	2.34							
312	-0.3516 GY	2.53							
312	-0.2109 GY	2.71							
312	-0.0703 GY	2.88							
117	-0.0703 GY	0.12							
	-0.2109 GY								
117		0.29							
117	-0.3516 GY	0.47							
117	-0.4922 GY	0.66							
117	-0.6328 GY	0.85							
117	-0.7734 GY	1.03							
117	-0.9141 GY	1.22							
117	-1.0547 GY	1.41							
117	-1.0547 GY	1.59							
117	-0.9141 GY	1.78							

						Monday,	October	26,
STAAD SPACE			PAGE	NO.	167			
117	-0.7734 GY	1.97						
117	-0.6328 GY	2.15						
117	-0.4922 GY	2.34						
117	-0.3516 GY	2.53						
117	-0.2109 GY	2.71						
117	-0.0703 GY	2.88						
311	-0.0703 GY	0.12						
311	-0.2109 GY	0.29						
311	-0.3516 GY	0.47						
311	-0.4922 GY	0.66						
311	-0.6328 GY	0.85						
311	-0.7734 GY	1.03						
311	-0.9141 GY	1.22						
311	-1.0547 GY	1.41						
311	-1.0547 GY	1.59						
311	-0.9141 GY	1.78						
311	-0.7734 GY	1.97						
311	-0.6328 GY	2.15						
311	-0.4922 GY	2.34						
311	-0.3516 GY	2.53						
311	-0.2109 GY	2.71						
311	-0.0703 GY	2.88						
64	-0.0703 GY	0.12						
64	-0.2109 GY	0.29						
64	-0.3516 GY	0.47						
64	-0.4922 GY	0.66						
64	-0.6328 GY	0.85						
64	-0.7734 GY	1.03						
64	-0.9141 GY	1.22						
64	-1.0547 GY	1.41						
64	-1.0547 GY	1.59						
64	-0.9141 GY	1.78						
64 64	-0.7734 GY	1.97 2.15						
64	-0.6328 GY -0.4922 GY	2.34						
64	-0.4922 G1 -0.3516 GY	2.54						
64	-0.2109 GY	2.71						
64	-0.0703 GY	2.88						
313	-0.0703 GY	0.12						
313	-0.2109 GY	0.29						
313	-0.3516 GY	0.47						
313	-0.4922 GY	0.66						
313	-0.6328 GY	0.85						
313	-0.7734 GY	1.03						
313	-0.9141 GY	1.22						
313	-1.0547 GY	1.41						
313	-1.0547 GY	1.59						
313	-0.9141 GY	1.78						
313	-0.7734 GY	1.97						
313	-0.6328 GY	2.15						
313	-0.4922 GY	2.34						
313	-0.3516 GY	2.53						
313	-0.2109 GY	2.71						
313	-0.0703 GY	2.88						
118	-0.0703 GY	0.12						
118	-0.2109 GY	0.29						

						- ,	
STAAD SPACE			PAGE	NO.	168		
118	-0.3516 GY	0.47					
118	-0.4922 GY	0.66					
118	-0.6328 GY	0.85					
118	-0.7734 GY	1.03					
118	-0.9141 GY	1.22					
118	-1.0547 GY						
		1.41					
118	-1.0547 GY	1.59					
118	-0.9141 GY	1.78					
118	-0.7734 GY	1.97					
118	-0.6328 GY	2.15					
118	-0.4922 GY	2.34					
118	-0.3516 GY	2.53					
118	-0.2109 GY	2.71					
118	-0.0703 GY	2.88					
312	-0.0703 GY	0.12					
312	-0.2109 GY	0.29					
312	-0.3516 GY	0.47					
312	-0.4922 GY	0.66					
312	-0.6328 GY	0.85					
312	-0.7734 GY	1.03					
312	-0.9141 GY	1.22					
312	-1.0547 GY	1.41					
312	-1.0547 GY	1.59					
312	-0.9141 GY	1.78					
312	-0.7734 GY	1.97					
312	-0.6328 GY	2.15					
312	-0.4922 GY	2.34					
312	-0.3516 GY	2.53					
312	-0.2109 GY	2.71					
312	-0.0703 GY	2.88					
65	-0.0703 GY	0.13					
65	-0.2109 GY	0.29					
65	-0.3516 GY	0.48					
65	-0.4922 GY	0.66					
65	-0.6328 GY	0.85					
65	-0.7734 GY	1.03					
65	-0.9141 GY	1.22					
65	-1.0547 GY	1.41					
65	-1.0547 GY	1.59					
65	-0.9141 GY	1.78					
65	-0.7734 GY	1.97					
65	-0.6328 GY	2.15					
65	-0.4922 GY	2.34					
65	-0.3516 GY	2.53					
65	-0.2109 GY	2.71					
65	-0.0703 GY	2.88					
314	-0.0703 GY	0.12					
314	-0.2109 GY	0.29					
314	-0.3516 GY	0.47					
314	-0.4922 GY	0.66					
314	-0.6328 GY	0.85					
314	-0.7734 GY	1.03					
314	-0.9141 GY	1.22					
314	-1.0547 GY	1.41					
314	-1.0547 GY	1.59					
314	-0.9141 GY	1.78					
<u></u>	0.7111 01	±• / O					

					11011447,	000000	,	
STAAD SPACE			PAGE NO.	169				
314	-0.7734 GY	1.97						
314	-0.6328 GY	2.15						
314	-0.4922 GY	2.34						
	-0.3516 GY	2.53						
	-0.2109 GY	2.71						
314	-0.0703 GY	2.88						
119	-0.0703 GY	0.13						
119	-0.2109 GY	0.29						
119	-0.3516 GY	0.48						
119	-0.4922 GY	0.66						
119	-0.6328 GY	0.85						
119	-0.7734 GY	1.03						
119	-0.9141 GY	1.22						
119	-1.0547 GY	1.41						
119	-1.0547 GY	1.59						
119	-0.9141 GY	1.78						
	-0.7734 GY	1.97						
119	-0.6328 GY	2.15						
119	-0.4922 GY	2.34						
119	-0.3516 GY	2.53						
	-0.2109 GY	2.71						
	-0.0703 GY	2.88						
313	-0.0703 GY	0.12						
313	-0.2109 GY	0.29						
	-0.3516 GY	0.47						
313	-0.4922 GY	0.66						
313	-0.6328 GY	0.85						
313	-0.7734 GY	1.03						
313	-0.9141 GY	1.22						
313	-1.0547 GY	1.41						
313	-1.0547 GY	1.59						
313	-0.9141 GY	1.78						
313	-0.7734 GY	1.97						
313	-0.6328 GY	2.15						
313	-0.4922 GY	2.34						
313	-0.3516 GY	2.53						
313	-0.2109 GY	2.71						
313	-0.0703 GY	2.88						
66	-0.0703 GY	0.12						
66	-0.2109 GY	0.29						
66	-0.3516 GY	0.47						
66	-0.4922 GY	0.66						
66	-0.6328 GY	0.85						
66	-0.7734 GY	1.03						
66	-0.9141 GY	1.22						
66	-1.0547 GY	1.41						
66	-1.0547 GY	1.59						
66	-0.9141 GY	1.78						
66	-0.7734 GY	1.97						
66	-0.6328 GY	2.15						
66	-0.4922 GY	2.34						
66	-0.3516 GY	2.52						
66	-0.2109 GY	2.71						
66	-0.0703 GY	2.87						
315	-0.0703 GY	0.12						
315	-0.2109 GY	0.29						

					11011447,	000000	, _	
STAAD SPACE			PAGE NO	. 170				
315	-0.3516 GY	0.47						
315	-0.4922 GY	0.66						
315	-0.6328 GY	0.85						
315	-0.7734 GY	1.03						
315	-0.9141 GY	1.22						
315	-1.0547 GY	1.41						
315	-1.0547 GY	1.59						
315	-0.9141 GY	1.78						
315	-0.7734 GY	1.97						
315	-0.6328 GY	2.15						
315	-0.4922 GY	2.34						
315	-0.3516 GY	2.53						
315	-0.2109 GY	2.71						
315	-0.0703 GY	2.88						
120	-0.0703 GY	0.12						
120	-0.2109 GY	0.29						
120	-0.3516 GY	0.47						
120	-0.4922 GY	0.66						
120	-0.6328 GY	0.85						
120	-0.7734 GY	1.03						
120	-0.9141 GY	1.22						
120	-1.0547 GY	1.41						
120	-1.0547 GY	1.59						
120	-0.9141 GY	1.78						
120	-0.7734 GY	1.97						
120	-0.6328 GY	2.15						
120	-0.4922 GY	2.34						
120	-0.3516 GY	2.52						
120	-0.2109 GY	2.71						
120	-0.0703 GY	2.87						
314	-0.0703 GY	0.12						
314	-0.2109 GY	0.29						
314	-0.3516 GY	0.47						
314	-0.4922 GY	0.66						
314	-0.6328 GY	0.85						
314	-0.7734 GY	1.03						
314	-0.9141 GY	1.22						
314	-1.0547 GY	1.41						
314	-1.0547 GY	1.59						
314	-0.9141 GY	1.78						
314	-0.7734 GY	1.97						
314	-0.6328 GY	2.15						
314	-0.4922 GY	2.34						
314	-0.3516 GY	2.53						
314	-0.2109 GY	2.71						
314	-0.0703 GY	2.88						
117	-0.0703 GY	0.12						
117	-0.2109 GY	0.29						
117	-0.3516 GY	0.47						
117	-0.4922 GY	0.66						
117	-0.4922 G1 -0.6328 GY	0.85						
117	-0.7734 GY	1.03						
117	-0.9141 GY	1.22						
117	-1.0547 GY	1.41						
117	-1.0547 GY	1.59						
117	-0.9141 GY	1.78						

					Monday,	October	26,
STAAD SPACE			PAGE NO). 171			
117	-0.7734 GY	1.97					
117	-0.6328 GY	2.15					
117	-0.4922 GY	2.34					
117	-0.3516 GY	2.53					
117	-0.2109 GY	2.71					
117	-0.0703 GY	2.88					
342 342	-0.0703 GY	0.13					
342	-0.2109 GY -0.3516 GY	0.29 0.48					
342	-0.4922 GY	0.46					
342	-0.6328 GY	0.85					
342	-0.7734 GY	1.03					
342	-0.9141 GY	1.22					
342	-1.0547 GY	1.41					
342	-1.0547 GY	1.59					
342	-0.9141 GY	1.78					
342	-0.7734 GY	1.97					
342	-0.6328 GY	2.15					
342	-0.4922 GY	2.34					
342	-0.3516 GY	2.53					
342	-0.2109 GY	2.71					
342	-0.0703 GY	2.88					
171	-0.0703 GY	0.12					
171	-0.2109 GY	0.29					
171	-0.3516 GY	0.47					
171	-0.4922 GY	0.66					
171	-0.6328 GY	0.85					
171	-0.7734 GY	1.03					
171	-0.9141 GY	1.22					
171	-1.0547 GY	1.41					
171 171	-1.0547 GY -0.9141 GY	1.59 1.78					
171	-0.7734 GY	1.97					
171	-0.6328 GY	2.15					
171	-0.4922 GY	2.34					
171	-0.3516 GY	2.53					
171	-0.2109 GY	2.71					
171	-0.0703 GY	2.88					
341	-0.0703 GY	0.13					
341	-0.2109 GY	0.29					
341	-0.3516 GY	0.48					
341	-0.4922 GY	0.66					
341	-0.6328 GY	0.85					
341	-0.7734 GY	1.03					
341	-0.9141 GY	1.22					
341	-1.0547 GY	1.41					
341	-1.0547 GY	1.59					
341	-0.9141 GY	1.78					
341	-0.7734 GY	1.97					
341	-0.6328 GY	2.15					
341	-0.4922 GY	2.34					
341	-0.3516 GY	2.53					
341	-0.2109 GY	2.71					
341 118	-0.0703 GY -0.0703 GY	2.88 0.12					
118	-0.0703 GY	0.12					
±±0	U.ZIUJ GI	0.23					

						momuay,	october	20,	2 (
STAAD SPACE			 PAGE	NO.	172				
118	-0.3516 GY	0.47							
118	-0.4922 GY	0.66							
118	-0.6328 GY	0.85							
118	-0.7734 GY	1.03							
118	-0.9141 GY	1.22							
118	-1.0547 GY	1.41							
118	-1.0547 GY	1.59							
118	-0.9141 GY	1.78							
118	-0.7734 GY	1.97							
118	-0.6328 GY	2.15							
118	-0.4922 GY	2.34							
118	-0.3516 GY	2.53							
118	-0.2109 GY	2.71							
118	-0.0703 GY	2.88							
343	-0.0703 GY	0.13							
343	-0.2109 GY	0.29							
343	-0.3516 GY	0.48							
343	-0.4922 GY	0.66							
343	-0.6328 GY	0.85							
343	-0.7734 GY	1.03							
343	-0.9141 GY	1.22							
343	-1.0547 GY	1.41							
343	-1.0547 GY	1.59							
343	-0.9141 GY	1.78							
343	-0.7734 GY	1.97							
343	-0.6328 GY	2.15							
343	-0.4922 GY	2.34							
343	-0.3516 GY	2.53							
343	-0.2109 GY	2.71							
343	-0.0703 GY	2.88							
172	-0.0703 GY	0.12							
172	-0.2109 GY	0.29							
172	-0.3516 GY	0.47							
172	-0.4922 GY	0.66							
172	-0.6328 GY	0.85							
172	-0.7734 GY	1.03							
172	-0.9141 GY	1.22							
172	-1.0547 GY	1.41							
172 172	-1.0547 GY -0.9141 GY	1.59 1.78							
172 172	-0.7734 GY -0.6328 GY	1.97 2.15							
172	-0.4922 GY	2.34							
172	-0.4922 G1 -0.3516 GY	2.53							
172	-0.2109 GY	2.71							
172	-0.0703 GY	2.88							
342	-0.0703 GY	0.13							
342	-0.2109 GY	0.29							
342	-0.3516 GY	0.48							
342	-0.4922 GY	0.66							
342	-0.6328 GY	0.85							
342	-0.7734 GY	1.03							
342	-0.9141 GY	1.22							
342	-1.0547 GY	1.41							
342	-1.0547 GY	1.59							
342	-0.9141 GY	1.78							

							- '	•
STAAD SPACE			F	PAGE NO	. 1	L73		
342	-0.7734 GY	1.97						
342	-0.6328 GY	2.15						
342	-0.4922 GY	2.34						
342	-0.3516 GY	2.53						
342	-0.2109 GY	2.71						
342	-0.0703 GY	2.88						
119	-0.0703 GY	0.13						
119	-0.2109 GY	0.29						
119	-0.3516 GY	0.48						
119	-0.4922 GY	0.66						
119	-0.6328 GY	0.85						
119	-0.7734 GY	1.03						
119	-0.9141 GY	1.22						
119	-1.0547 GY	1.41						
119	-1.0547 GY	1.59						
119	-0.9141 GY	1.78						
119	-0.7734 GY	1.97						
119	-0.6328 GY	2.15						
119	-0.4922 GY	2.34						
119	-0.3516 GY	2.53						
119	-0.2109 GY	2.71						
119	-0.0703 GY	2.88						
344	-0.0703 GY	0.13						
344	-0.2109 GY	0.29						
344	-0.3516 GY	0.48						
344	-0.4922 GY	0.66						
344	-0.6328 GY	0.85						
344	-0.7734 GY	1.03						
344	-0.9141 GY	1.22						
344	-1.0547 GY	1.41						
344	-1.0547 GY	1.59						
344 344	-0.9141 GY -0.7734 GY	1.78 1.97						
344	-0.7734 G1 -0.6328 GY	2.15						
344	-0.4922 GY	2.34						
344	-0.3516 GY	2.53						
344	-0.2109 GY	2.71						
344	-0.0703 GY	2.88						
173	-0.0703 GY	0.13						
173	-0.2109 GY	0.29						
173	-0.3516 GY	0.48						
173	-0.4922 GY	0.66						
173	-0.6328 GY	0.85						
173	-0.7734 GY	1.03						
173	-0.9141 GY	1.22						
173	-1.0547 GY	1.41						
173	-1.0547 GY	1.59						
173	-0.9141 GY	1.78						
173	-0.7734 GY	1.97						
173	-0.6328 GY	2.15						
173	-0.4922 GY	2.34						
173	-0.3516 GY	2.53						
173	-0.2109 GY	2.71						
173	-0.0703 GY	2.88						
343	-0.0703 GY	0.13						
343	-0.2109 GY	0.29						

					, ,	000000	,	
STAAD SPACE		-	PAGE NO.	174				
343	-0.3516 GY	0.48						
343	-0.4922 GY	0.66						
343	-0.6328 GY	0.85						
343	-0.7734 GY	1.03						
343	-0.9141 GY	1.22						
343	-1.0547 GY	1.41						
343	-1.0547 GY	1.59						
343	-0.9141 GY	1.78						
343	-0.7734 GY	1.97						
343	-0.6328 GY	2.15						
343	-0.4922 GY	2.34						
343	-0.3516 GY	2.53						
343	-0.2109 GY	2.71						
343	-0.0703 GY	2.88						
120	-0.0703 GY	0.12						
120	-0.2109 GY	0.29						
120	-0.3516 GY	0.47						
120	-0.4922 GY	0.66						
120	-0.6328 GY	0.85						
120	-0.7734 GY	1.03						
120	-0.9141 GY	1.22						
120	-1.0547 GY	1.41						
120	-1.0547 GY	1.59						
120	-0.9141 GY	1.78						
120	-0.7734 GY	1.97						
120	-0.6328 GY	2.15						
120	-0.4922 GY	2.34						
120	-0.3516 GY	2.52						
120	-0.2109 GY	2.71						
120	-0.0703 GY	2.87						
345	-0.0703 GY	0.13						
345	-0.2109 GY	0.29						
345	-0.3516 GY	0.48						
345	-0.4922 GY	0.66						
345	-0.6328 GY	0.85						
345	-0.7734 GY							
345	-0.9141 GY	1.03 1.22						
345 345	-1.0547 GY	1.41						
	-1.0547 GY	1.59						
345	-0.9141 GY	1.78						
345	-0.7734 GY	1.97						
345	-0.6328 GY	2.15						
345	-0.4922 GY	2.34						
345	-0.3516 GY	2.53						
345	-0.2109 GY	2.71						
345	-0.0703 GY	2.88						
174	-0.0703 GY	0.12						
174	-0.2109 GY	0.29						
174	-0.3516 GY	0.47						
174	-0.4922 GY	0.66						
174	-0.6328 GY	0.85						
174	-0.7734 GY	1.03						
174	-0.9141 GY	1.22						
174	-1.0547 GY	1.41						
174	-1.0547 GY	1.59						
174	-0.9141 GY	1.78						

STAAD	SPACE	 PAGE	NO.	175

STAAD SPACE		PAG
174	-0.7734 GY 1.97	
174	-0.6328 GY 2.15	
174	-0.4922 GY 2.34	
174	-0.3516 GY 2.52	
174	-0.2109 GY 2.71	
174	-0.0703 GY 2.87	
344	-0.0703 GY 0.13	
344	-0.2109 GY 0.29	
344	-0.3516 GY 0.48	
344	-0.4922 GY 0.66	
344	-0.6328 GY 0.85	
344	-0.7734 GY 1.03	
344	-0.9141 GY 1.22	
344	-1.0547 GY 1.41	
344	-1.0547 GY 1.59	
344	-0.9141 GY 1.78	
344	-0.7734 GY 1.97	
344	-0 6328 GY 2 15	
344	-0.4922 GY 2.34	
344	-0.3516 GY 2.53	
344	-0.2109 GY 2.71	
344	-0.0703 GY 2.88	
171	-0.0703 GY 0.12	
171	-0.2109 GY 0.29	
171	-0.3516 GY 0.47	
171	-0.4922 GY 0.66	
171	-0.6328 GY 0.85	
171	-0.7734 GY 1.03	
171	-0.9141 GY 1.22	
171	-1.0547 GY 1.41	
171	-1.0547 GY 1.59	
171	-0.9141 GY 1.78	
171	-0.7734 GY 1.97	
171	-0.6328 GY 2.15	
171	-0.4922 GY 2.34	
171	-0.3516 GY 2.53	
171	-0.2109 GY 2.71	
171	-0.0703 GY 2.88	
372	-0.0703 GY 0.12	
372	-0.2109 GY 0.29	
372	-0.3516 GY 0.47	
372	-0.4922 GY 0.66	
372	-0.6328 GY 0.85	
372	-0.7734 GY 1.03	
372	-0.9141 GY 1.22	
372	-1.0547 GY 1.41	
372	-1.0547 GY 1.59	
372	-0.9141 GY 1.78	
372	-0.7734 GY 1.97	
372	-0.6328 GY 2.15	
372	-0.4922 GY 2.34	
372	-0.3516 GY 2.52	
372	-0.2109 GY 2.71	
372	-0.0703 GY 2.87	
225	-0.0703 GY 0.12	
225	-0.2109 GY 0.29	

					11011447,	000000	, _	
STAAD SPACE			PAGE NO.	176				
225	-0.3516 GY	0.47						
225	-0.4922 GY	0.66						
225	-0.6328 GY	0.85						
225	-0.7734 GY	1.03						
225	-0.9141 GY	1.22						
225	-1.0547 GY	1.41						
225	-1.0547 GY	1.59						
225	-0.9141 GY	1.78						
225	-0.7734 GY	1.97						
225	-0.6328 GY	2.15						
225	-0.4922 GY	2.34						
225	-0.3516 GY	2.53						
225	-0.2109 GY	2.71						
225	-0.0703 GY	2.88						
371	-0.0703 GY	0.12						
371	-0.2109 GY	0.29						
371	-0.3516 GY	0.47						
371	-0.4922 GY	0.66						
371	-0.6328 GY	0.85						
371	-0.7734 GY	1.03						
371	-0.9141 GY	1.22						
371	-1.0547 GY	1.41						
371	-1.0547 GY	1.59						
371	-0.9141 GY	1.78						
371	-0.7734 GY	1.97						
371	-0.6328 GY	2.15						
371	-0.4922 GY	2.34						
371	-0.3516 GY	2.52						
371	-0.2109 GY	2.71						
371	-0.0703 GY	2.87						
172	-0.0703 GY	0.12						
172	-0.2109 GY	0.29						
172	-0.3516 GY	0.47						
172	-0.4922 GY	0.66						
172	-0.6328 GY	0.85						
172	-0.7734 GY	1.03						
172	-0.9141 GY	1.22						
172	-1.0547 GY	1.41						
172	-1.0547 GY	1.59						
172	-0.9141 GY	1.78						
172	-0.7734 GY	1.97						
172	-0.6328 GY	2.15						
172	-0.4922 GY	2.34						
172	-0.3516 GY	2.53						
172	-0.2109 GY	2.71						
172	-0.0703 GY	2.88						
373	-0.0703 GY	0.12						
373	-0.2109 GY	0.29						
373	-0.3516 GY	0.47						
373	-0.4922 GY	0.66						
373	-0.6328 GY	0.85						
373	-0.7734 GY	1.03						
373	-0.7734 GI -0.9141 GY	1.22						
373	-1.0547 GY	1.41						
373	-1.0547 GY	1.59						
373	-0.9141 GY	1.78						

STAAD SPACE			PAGE NO.	177
272	0 7724 CV	1 07		
373	-0.7734 GY			
373	-0.6328 GY	2.15		
373	-0.4922 GY	2.34		
373	-0.3516 GY	2.52		
373	-0.2109 GY	2.71		
373	-0.0703 GY	2.87		
226	-0.0703 GY	0.12		
226	-0.2109 GY	0.29		
226	-0.3516 GY	0.47		
226	-0.4922 GY	0.66		
226	-0.6328 GY	0.85		
226	-0.7734 GY	1.03		
226	-0.9141 GY	1.22		
226	-1.0547 GY	1.41		
226	-1.0547 GY	1.59		
226	-0.9141 GY	1.78		
226	-0.7734 GY	1.97		
226	-0.6328 GY	2.15		
226	-0.4922 GY	2.34		
226	-0.3516 GY	2.53		
226	-0.2109 GY	2.71		
226	-0.0703 GY	2.88		
372	-0.0703 GY	0.12		
372	-0.2109 GY	0.29		
372	-0.3516 GY	0.47		
372	-0.4922 GY	0.66		
372	-0.6328 GY	0.85		
372	-0.7734 GY	1.03		
372	-0.9141 GY	1.22		
372	-1.0547 GY	1.41		
372	-1.0547 GY	1.59		
372	-0.9141 GY	1.78		
372	-0.7734 GY	1.97		
372	-0.6328 GY	2.15		
372	-0.4922 GY	2.34		
372	-0.3516 GY	2.52		
372	-0.2109 GY	2.71		
372	-0.0703 GY	2.87		
173	-0.0703 GY			
173	-0.2109 GY			
173	-0.3516 GY			
173	-0.4922 GY	0.66		
173	-0.6328 GY	0.85		
173	-0.7734 GY	1.03		
173	-0.9141 GY	1.22		
173	-1.0547 GY	1.41		
173	-1.0547 GY	1.59		
173	-0.9141 GY	1.78		
173	-0.7734 GY	1.97		
173	-0.6328 GY	2.15		
173	-0.4922 GY	2.34		
173	-0.3516 GY	2.53		
173	-0.2109 GY	2.71		
173	-0.0703 GY	2.88		

-0.0703 GY 2.88 -0.0703 GY 0.12

-0.2109 GY 0.29

173 374 374

						11011447,	0000002	,	
STAAD SPACE			 PAGE	NO.	178				
374	-0.3516 GY	0.47							
374	-0.4922 GY	0.66							
374	-0.6328 GY	0.85							
374	-0.7734 GY	1.03							
374	-0.9141 GY	1.22							
374	-1.0547 GY	1.41							
374	-1.0547 GY	1.59							
374	-0.9141 GY	1.78							
374	-0.7734 GY	1.97							
374	-0.7734 G1 -0.6328 GY	2.15							
374	-0.4922 GY	2.34							
374									
374	-0.3516 GY	2.52							
	-0.2109 GY	2.71							
374	-0.0703 GY	2.87							
227	-0.0703 GY	0.13							
227	-0.2109 GY	0.29							
227	-0.3516 GY	0.48							
227	-0.4922 GY	0.66							
227	-0.6328 GY	0.85							
227	-0.7734 GY	1.03							
227	-0.9141 GY	1.22							
227	-1.0547 GY	1.41							
227	-1.0547 GY	1.59							
227	-0.9141 GY	1.78							
227	-0.7734 GY	1.97							
227	-0.6328 GY	2.15							
227	-0.4922 GY	2.34							
227	-0.3516 GY	2.53							
227	-0.2109 GY	2.71							
227	-0.0703 GY	2.88							
373	-0.0703 GY	0.12							
373	-0.2109 GY	0.29							
373	-0.3516 GY	0.47							
373	-0.4922 GY	0.66							
373	-0.6328 GY	0.85							
373	-0.7734 GY	1.03							
373	-0.9141 GY	1.22							
373	-1.0547 GY	1.41							
373	-1.0547 GY	1.59							
373	-0.9141 GY	1.78							
373	-0.7734 GY	1.97							
373	-0.6328 GY	2.15							
373	-0.4922 GY	2.34							
373	-0.3516 GY	2.52							
373	-0.2109 GY	2.71							
373	-0.0703 GY	2.87							
174	-0.0703 GY	0.12							
174	-0.2109 GY	0.29							
174	-0.3516 GY	0.47							
174	-0.4922 GY	0.66							
174	-0.6328 GY	0.85							
174	-0.7734 GY	1.03							
174	-0.9141 GY	1.22							
174	-1.0547 GY	1.41							
174	-1.0547 GY	1.59							
174	-0.9141 GY	1.78							

STAAD	SPACE	 PAGE	NO.	179

STAAD SPACE		
174	0 7724 67	1 07
174	-0.7734 GY	
174	-0.6328 GY	2.15
174	-0.4922 GY	2.34
174	-0.3516 GY	
174	-0.2109 GY	
174	-0.0703 GY	2.87
375	-0.0703 GY	0.12
375	-0.2109 GY	0.29
375	-0.3516 GY	0.47
375	-0.4922 GY	0.66
375	-0.6328 GY	0.85
375	-0.7734 GY	1.03
375	-0.9141 GY	1.22
375	-1.0547 GY	
375	-1.0547 GY	1.59
375	-0.9141 GY	1.78
375	-0.7734 GY	
375	-0.6328 GY	
375	-0.4922 GY	2.34
	-0.4922 G1 -0.3516 GY	
375		2.52
375	-0.2109 GY	
375	-0.0703 GY	
228	-0.0703 GY	0.12
228	-0.2109 GY	0.29
228	-0.3516 GY	
228	-0.4922 GY	
228	-0.6328 GY	0.85
228	-0.7734 GY	1.03
228	-0.9141 GY	
228	-1.0547 GY	
228	-1.0547 GY	1.59
228	-0.9141 GY	1.78
228	-0.7734 GY	1.97
228	-0.6328 GY	2.15
228	-0.4922 GY	2.34
228	-0.3516 GY	2.52
228	-0.2109 GY	2.71
228	-0.0703 GY	
374	-0.0703 GY	
374	-0.2109 GY	0.29
374	-0.3516 GY	0.47
374	-0.4922 GY	0.66
374	-0.6328 GY	
374	-0.7734 GY	1.03
374	-0.9141 GY	1.22
374	-1.0547 GY	1.41
374	-1.0547 GY -0.9141 GY	1.59 1.78
374		
374	-0.7734 GY	1.97
374	-0.6328 GY	2.15
374	-0.4922 GY	2.34
374	-0.3516 GY	2.52
374	-0.2109 GY	2.71
374	-0.0703 GY	2.87
13	-0.0703 GY	
13	-0.2109 GY	0.29

					11011447,	0000002	_ ,	2020,	
STAAD SPACE			PAGE NO.	180					
13	-0.3516 GY	0.47							
13	-0.4922 GY	0.66							
13	-0.6328 GY	0.85							
13	-0.7734 GY	1.03							
13	-0.9141 GY	1.22							
13	-1.0547 GY	1.41							
13	-1.0547 GY	1.59							
13	-0.9141 GY	1.78							
13	-0.7734 GY	1.97							
13	-0.6328 GY	2.15							
13	-0.4922 GY	2.34							
13	-0.3516 GY	2.53							
13	-0.2109 GY	2.71							
13	-0.0703 GY	2.88							
287	-0.0703 GY	0.12							
287	-0.2109 GY	0.29							
287	-0.3516 GY	0.47							
287	-0.4922 GY	0.66							
287	-0.6328 GY	0.85							
287	-0.7734 GY	1.03							
287	-0.9141 GY	1.22							
287	-1.0547 GY	1.41							
287	-1.0547 GY	1.59							
287	-0.9141 GY	1.78							
287	-0.7734 GY	1.97							
287	-0.6328 GY	2.15							
287	-0.4922 GY	2.34							
287	-0.3516 GY	2.53							
287	-0.2109 GY	2.71							
287	-0.0703 GY	2.88							
67	-0.0703 GY	0.12							
67	-0.2109 GY	0.29							
67 67	-0.3516 GY	0.47							
67	-0.4922 GY -0.6328 GY	0.85							
67	-0.6328 GY -0.7734 GY	1.03							
67	-0.7734 G1 -0.9141 GY	1.22							
67	-1.0547 GY	1.41							
67	-1.0547 GY	1.59							
67	-0.9141 GY	1.78							
67	-0.7734 GY	1.97							
67	-0.6328 GY	2.15							
67	-0.4922 GY	2.34							
67	-0.3516 GY	2.53							
67	-0.2109 GY	2.71							
67	-0.0703 GY	2.88							
286	-0.0703 GY	0.12							
286	-0.2109 GY	0.29							
286	-0.3516 GY	0.47							
286	-0.4922 GY	0.66							
286	-0.6328 GY	0.85							
286	-0.7734 GY	1.03							
286	-0.9141 GY	1.22							
286	-1.0547 GY	1.41							
286	-1.0547 GY	1.59							
286	-0.9141 GY	1.78							

							Monday,	October	26,
STAAD SPACE				 - PAGE	NO.	181			
286	-0.7734 G	Y	1.97						
286	-0.6328 G		2.15						
286	-0.4922 G		2.34						
286	-0.3516 G		2.53						
286	-0.2109 G		2.71						
286	-0.0703 G		2.88						
14	-0.0703 G		0.12						
14	-0.2109 G	Y	0.29						
14	-0.3516 G	Y	0.47						
14	-0.4922 G	Y	0.66						
14	-0.6328 G	Y	0.85						
14	-0.7734 G	Y	1.03						
14	-0.9141 G	Y	1.22						
14	-1.0547 G	Y	1.41						
14	-1.0547 G	Y	1.59						
14	-0.9141 G	Y	1.78						
14	-0.7734 G	Y	1.97						
14	-0.6328 G	Y	2.15						
14	-0.4922 G	Y	2.34						
14	-0.3516 G	Y	2.53						
14	-0.2109 G	Y	2.71						
14	-0.0703 G	Y	2.88						
288	-0.0703 G		0.12						
288	-0.2109 G		0.29						
288	-0.3516 G		0.47						
288	-0.4922 G		0.66						
288	-0.6328 G		0.85						
288	-0.7734 G		1.03						
288	-0.9141 G		1.22						
288	-1.0547 G		1.41						
288	-1.0547 G		1.59						
288	-0.9141 G		1.78						
288	-0.7734 G		1.97						
288	-0.6328 G		2.15						
288	-0.4922 G		2.34						
288	-0.3516 G		2.53						
288 288	-0.2109 G		2.71						
68	-0.0703 GY		2.88						
68	-0.2109 G		0.29						
68	-0.2109 G		0.47						
68	-0.4922 G		0.66						
68	-0.6328 G		0.85						
68	-0.7734 G		1.03						
68	-0.9141 G		1.22						
68	-1.0547 G		1.41						
68	-1.0547 G		1.59						
68	-0.9141 G		1.78						
68	-0.7734 G		1.97						
68	-0.6328 G		2.15						
68	-0.4922 G		2.34						
68	-0.3516 G		2.53						
68	-0.2109 G		2.71						
68	-0.0703 G		2.88						
287	-0.0703 G		0.12						
0.05	0 0100		0 00						

-0.2109 GY 0.29

						, ,	000000	_ ,	
STAAD SPACE			 PAGE	NO.	182				
287	-0.3516 GY	0.47							
287	-0.4922 GY	0.66							
287	-0.6328 GY	0.85							
287	-0.7734 GY	1.03							
287	-0.9141 GY	1.22							
287	-1.0547 GY	1.41							
287	-1.0547 GY	1.59							
287	-0.9141 GY	1.78							
287	-0.7734 GY	1.97							
287	-0.6328 GY	2.15							
287	-0.4922 GY	2.34							
287	-0.3516 GY	2.53							
287	-0.2109 GY	2.71							
287	-0.0703 GY	2.88							
15	-0.0703 GY	0.13							
15	-0.2109 GY	0.29							
15	-0.3516 GY	0.48							
15	-0.4922 GY	0.66							
15	-0.4922 G1 -0.6328 GY	0.85							
15	-0.7734 GY	1.03							
15	-0.9141 GY	1.22							
15	-1.0547 GY	1.41							
15	-1.0547 GY	1.59							
15	-0.9141 GY	1.78							
15	-0.7734 GY	1.97							
15	-0.6328 GY	2.15							
15	-0.4922 GY	2.34							
15	-0.3516 GY	2.53							
15	-0.2109 GY	2.71							
15	-0.0703 GY	2.88							
289	-0.0703 GY	0.12							
289	-0.2109 GY	0.29							
289	-0.3516 GY	0.47							
289	-0.4922 GY	0.66							
289	-0.6328 GY	0.85							
289	-0.7734 GY	1.03							
289	-0.9141 GY	1.22							
289	-1.0547 GY	1.41							
289	-1.0547 GY	1.59							
289	-0.9141 GY	1.78							
289	-0.7734 GY	1.97							
289	-0.6328 GY	2.15							
289	-0.4922 GY	2.34							
289	-0.3516 GY	2.53							
289	-0.2109 GY	2.71							
289	-0.0703 GY	2.88							
69	-0.0703 GY	0.13							
69	-0.2109 GY	0.29							
69	-0.3516 GY	0.48							
69	-0.4922 GY	0.66							
69	-0.6328 GY	0.85							
69	-0.7734 GY	1.03							
69	-0.9141 GY	1.22							
69	-1.0547 GY	1.41							
69	-1.0547 GY	1.59							
69	-0.9141 GY	1.78							

						11011447,	0000001	,	2020, 1
STAAD SPACE			PA	GE NO.	183				
69	-0.7734 GY	1.97							
69	-0.6328 GY	2.15							
69	-0.4922 GY	2.34							
69	-0.3516 GY	2.53							
69	-0.2109 GY	2.71							
69	-0.0703 GY	2.88							
288	-0.0703 GY	0.12							
288	-0.2109 GY	0.29							
288	-0.3516 GY	0.47							
288	-0.4922 GY	0.66							
288	-0.6328 GY	0.85							
288	-0.7734 GY	1.03							
288	-0.9141 GY	1.22							
288	-1.0547 GY	1.41							
288	-1.0547 GY	1.59							
288	-0.9141 GY	1.78							
288	-0.7734 GY	1.97							
288	-0.6328 GY	2.15							
288	-0.4922 GY	2.34							
288	-0.3516 GY	2.53							
288	-0.2109 GY	2.71							
288	-0.0703 GY	2.88							
16	-0.0703 GY	0.12							
16	-0.2109 GY	0.29							
16	-0.3516 GY	0.47							
16	-0.4922 GY	0.66							
16	-0.6328 GY	0.85							
16	-0.7734 GY	1.03							
16	-0.9141 GY	1.22							
16	-1.0547 GY	1.41							
16	-1.0547 GY	1.59							
16	-0.9141 GY	1.78							
16	-0.7734 GY	1.97							
16	-0.6328 GY	2.15							
16	-0.4922 GY	2.34							
16	-0.3516 GY	2.52							
16	-0.2109 GY	2.71							
16	-0.0703 GY	2.87							
290	-0.0703 GY	0.12							
290	-0.2109 GY	0.29							
290	-0.3516 GY	0.47							
290	-0.4922 GY	0.66							
290	-0.6328 GY	0.85							
290	-0.7734 GY	1.03							
290	-0.9141 GY	1.22							
290	-1.0547 GY	1.41							
290	-1.0547 GY	1.59							
290	-0.9141 GY	1.78							
290	-0.7734 GY	1.97							
290	-0.6328 GY	2.15							
290	-0.4922 GY	2.34							
290	-0.3516 GY	2.53							
290	-0.2109 GY	2.71							
290	-0.0703 GY	2.88							
70	-0.0703 GY	0.12							
70	-0.2109 GY	0.29							
		-							

					, ,	0000001	,	2020,	
STAAD SPACE			PAGE NO. 1	.84					
70	-0.3516 GY	0.47							
70	-0.4922 GY	0.66							
70	-0.6328 GY	0.85							
70	-0.7734 GY	1.03							
70	-0.9141 GY	1.22							
70	-1.0547 GY	1.41							
70	-1.0547 GY	1.59							
70	-0.9141 GY	1.78							
70	-0.7734 GY	1.97							
70									
70	-0.6328 GY -0.4922 GY	2.15							
		2.34							
70	-0.3516 GY	2.52							
70	-0.2109 GY	2.71							
70	-0.0703 GY	2.87							
289	-0.0703 GY	0.12							
289	-0.2109 GY	0.29							
289	-0.3516 GY	0.47							
289	-0.4922 GY	0.66							
289	-0.6328 GY	0.85							
289	-0.7734 GY	1.03							
289	-0.9141 GY	1.22							
289	-1.0547 GY	1.41							
289	-1.0547 GY	1.59							
289	-0.9141 GY	1.78							
289	-0.7734 GY	1.97							
289	-0.6328 GY	2.15							
289	-0.4922 GY	2.34							
289	-0.3516 GY	2.53							
289	-0.2109 GY	2.71							
289	-0.0703 GY	2.88							
67	-0.0703 GY	0.12							
67	-0.2109 GY	0.29							
67	-0.3516 GY	0.47							
67	-0.4922 GY	0.66							
67	-0.6328 GY	0.85							
67	-0.7734 GY	1.03							
67	-0.9141 GY	1.22							
67	-1.0547 GY	1.41							
67	-1.0547 GY	1.59							
67	-0.9141 GY	1.78							
67	-0.7734 GY	1.97							
67	-0.6328 GY	2.15							
67	-0.4922 GY	2.34							
67	-0.3516 GY	2.53							
67	-0.2109 GY	2.71							
67	-0.0703 GY	2.88							
317	-0.0703 GY	0.12							
317	-0.2109 GY	0.12							
317	-0.3516 GY								
	-0.3516 GY -0.4922 GY	0.47							
317		0.66							
317	-0.6328 GY	0.85							
317	-0.7734 GY	1.03							
317	-0.9141 GY	1.22							
317	-1.0547 GY	1.41							
317	-1.0547 GY	1.59							
317	-0.9141 GY	1.78							

STAAD SPACE			 PAGE NO.	185
0.1.5	0 5504 644	1 05		
317	-0.7734 GY	1.97		
317	-0.6328 GY	2.15		
317	-0.4922 GY	2.34		
0.1.5	0 0516 677	0		

SPACE			
	SPACE	SPACE	SPACE

2.53 -0.3516 GY 2.71 -0.2109 GY -0.0703 GY 2.88 -0.0703 GY 0.12 -0.2109 GY 0.29 -0.3516 GY 0.47 -0.4922 GY 0.66 -0.6328 GY 0.85 -0.7734 GY 1.03 1.22 -0.9141 GY -1.0547 GY 1.41 -1.0547 GY 1.59 -0.9141 GY 1.78 -0.7734 GY 1.97 -0.6328 GY 2.15 -0.4922 GY 2.34 -0.3516 GY 2.53 -0.2109 GY 2.71 -0.0703 GY 2.88 -0.0703 GY 0.12 -0.2109 GY 0.29 -0.3516 GY 0.47 -0.4922 GY 0.66 -0.6328 GY 0.85 -0.7734 GY 1.03 -0.9141 GY 1.22 -1.0547 GY 1.41 -1.0547 GY 1.59 -0.9141 GY 1.78 -0.7734 GY 1.97 -0.6328 GY 2.15 -0.4922 GY 2.34 -0.3516 GY 2.53 -0.2109 GY 2.71 -0.0703 GY 2.88 -0.0703 GY 0.12 -0.2109 GY 0.29 -0.3516 GY 0.47 -0.4922 GY 0.66 -0.6328 GY 0.85 -0.7734 GY 1.03 -0.9141 GY 1.22 -1.0547 GY 1.41 -1.0547 GY 1.59 -0.9141 GY 1.78 -0.7734 GY 1.97 -0.6328 GY 2.15 -0.4922 GY 2.34 -0.3516 GY 2.53 -0.2109 GY 2.71 -0.0703 GY 2.88 -0.0703 GY 0.12

-0.2109 GY

0.29

68

318

						11011447,	0000001	_ ,	
STAAD SPACE			 PAGE	NO.	186				
318	-0.3516 GY	0.47							
318	-0.4922 GY	0.66							
318	-0.6328 GY	0.85							
318	-0.7734 GY	1.03							
318	-0.9141 GY	1.22							
318	-1.0547 GY	1.41							
318	-1.0547 GY	1.59							
318	-0.9141 GY	1.78							
318	-0.7734 GY	1.97							
318	-0.6328 GY	2.15							
318	-0.4922 GY	2.34							
318	-0.3516 GY	2.53							
318	-0.2109 GY	2.71							
318	-0.0703 GY	2.88							
122	-0.0703 GY	0.12							
122	-0.2109 GY	0.29							
122	-0.3516 GY	0.47							
122	-0.4922 GY	0.66							
122	-0.6328 GY	0.85							
122	-0.7734 GY	1.03							
122	-0.9141 GY	1.22							
122	-1.0547 GY	1.41							
122	-1.0547 GY	1.59							
122	-0.9141 GY	1.78							
122	-0.7734 GY	1.97							
122	-0.6328 GY	2.15							
122	-0.4922 GY	2.34							
122	-0.3516 GY	2.53							
122	-0.2109 GY	2.71							
122	-0.0703 GY	2.88							
317	-0.0703 GY	0.12							
317	-0.2109 GY	0.29							
317	-0.3516 GY	0.47							
317	-0.4922 GY	0.66							
317	-0.6328 GY	0.85							
317	-0.7734 GY	1.03							
317	-0.9141 GY	1.22							
317	-1.0547 GY	1.41							
317	-1.0547 GY	1.59							
317	-0.9141 GY	1.78							
317	-0.7734 GY	1.97							
317 317	-0.6328 GY -0.4922 GY	2.15							
317	-0.4922 G1 -0.3516 GY	2.34 2.53							
317	-0.2109 GY	2.71							
317	-0.2109 G1 -0.0703 GY	2.88							
69	-0.0703 GY	0.13							
69	-0.2109 GY	0.29							
69	-0.3516 GY	0.48							
69	-0.4922 GY	0.66							
69	-0.4922 G1 -0.6328 GY	0.85							
69	-0.7734 GY	1.03							
69	-0.9141 GY	1.22							
69	-1.0547 GY	1.41							
69	-1.0547 GY	1.59							
69	-0.9141 GY	1.78							
	0.0141 01	. , , o							

					, tana	000002	,	
STAAD SPACE			PAGE NO.	187				
69	-0.7734 GY	1.97						
69	-0.6328 GY	2.15						
69	-0.4922 GY	2.34						
69	-0.3516 GY	2.53						
69	-0.2109 GY	2.71						
69	-0.0703 GY	2.88						
319	-0.0703 GY	0.12						
319	-0.2109 GY	0.29						
319	-0.3516 GY	0.47						
319	-0.4922 GY	0.66						
319	-0.6328 GY	0.85						
319	-0.7734 GY	1.03						
319	-0.9141 GY	1.22						
319	-1.0547 GY	1.41						
319	-1.0547 GY	1.59						
319	-0.9141 GY	1.78						
319	-0.7734 GY	1.97						
319	-0.6328 GY	2.15						
319	-0.4922 GY	2.34						
319	-0.3516 GY	2.53						
319	-0.2109 GY	2.71						
319	-0.0703 GY	2.88						
123	-0.0703 GY	0.13						
123	-0.2109 GY	0.29						
123	-0.3516 GY	0.48						
123	-0.4922 GY	0.66						
123	-0.6328 GY	0.85						
123	-0.0328 G1 -0.7734 GY	1.03						
123	-0.9141 GY	1.22						
123	-1.0547 GY	1.41						
123	-1.0547 GY	1.59						
123	-0.9141 GY	1.78						
123	-0.7734 GY	1.97						
123	-0.6328 GY	2.15						
123	-0.4922 GY	2.34						
123	-0.3516 GY	2.53						
123	-0.2109 GY	2.71						
123	-0.0703 GY	2.88						
318	-0.0703 GY	0.12						
318	-0.2109 GY	0.29						
318	-0.3516 GY	0.47						
318	-0.4922 GY	0.66						
318	-0.6328 GY	0.85						
318	-0.7734 GY	1.03						
318	-0.9141 GY	1.22						
318	-1.0547 GY	1.41						
318	-1.0547 GY	1.59						
318	-0.9141 GY	1.78						
318	-0.7734 GY	1.97						
318	-0.6328 GY	2.15						
318	-0.4922 GY	2.34						
318	-0.4922 G1 -0.3516 GY	2.53						
318	-0.2109 GY	2.71						
318	-0.0703 GY	2.88						
70	-0.0703 GY	0.12						
70	-0.2109 GY	0.29						

					momay,	october	20,	2020,	10.07
STAAD SPACE			PAGE NO.	188					
70	0 3516 CV	0 47							
70 70		0.47							
70		0.85							
70		1.03							
70		1.22							
70									
70		1.41 1.59							
70		1.78							
70		1.97							
70		2.15							
70		2.34							
70		2.52							
70		2.71							
70		2.87							
320		0.12							
320		0.29							
320		0.47							
320		0.66							
320		0.85							
320		1.03							
320		1.22							
320		1.41							
320		1.59							
320		1.78							
320		1.97							
320		2.15							
320	-0.4922 GY	2.34							
320	-0.3516 GY	2.53							
320	-0.2109 GY	2.71							
320	-0.0703 GY	2.88							
124	-0.0703 GY	0.12							
124	-0.2109 GY	0.29							
124	-0.3516 GY	0.47							
124	-0.4922 GY	0.66							
124		0.85							
124		1.03							
124		1.22							
124		1.41							
124		1.59							
124	-0.9141 GY								
124		1.97							
124		2.15							
124 124		2.34							
124		2.52							
124		2.71 2.87							
319		0.12							
319		0.29							
319		0.29							
319		0.66							
319		0.85							
319		1.03							
319		1.22							
319		1.41							
319		1.59							
319		1.78							
-									

						monday,	OC LODE	
STAAD SPACE			PAGE N	10.	189			
319	-0.7734 GY	1.97						
319	-0.6328 GY	2.15						
319	-0.4922 GY	2.34						
319	-0.3516 GY	2.53						
319	-0.2109 GY	2.71						
319	-0.0703 GY	2.88						
121	-0.0703 GY	0.12						
121	-0.2109 GY	0.29						
121	-0.3516 GY	0.47						
121	-0.4922 GY	0.66						
121	-0.6328 GY	0.85						
121	-0.7734 GY	1.03						
121	-0.9141 GY	1.22						
121	-1.0547 GY	1.41						
121	-1.0547 GY	1.59						
121	-0.9141 GY	1.78						
121	-0.7734 GY	1.97						
121	-0.7734 G1 -0.6328 GY	2.15						
121	-0.4922 GY	2.34						
121	-0.4922 G1 -0.3516 GY	2.53						
121	-0.2109 GY	2.71						
121	-0.2109 G1 -0.0703 GY	2.88						
347	-0.0703 GY	0.13						
347	-0.2109 GY	0.29						
347	-0.3516 GY	0.48						
347 347	-0.4922 GY -0.6328 GY	0.66 0.85						
347	-0.0328 G1 -0.7734 GY	1.03						
347								
347	-0.9141 GY -1.0547 GY	1.22						
347		1.41						
347	-1.0547 GY	1.59						
347	-0.9141 GY -0.7734 GY	1.78 1.97						
347	-0.6328 GY	2.15						
347	-0.4922 GY	2.34						
347	-0.3516 GY	2.53						
347	-0.2109 GY	2.71						
347 175	-0.0703 GY -0.0703 GY	2.88						
175	-0.0703 GY	0.12						
175 175	-0.3516 GY	0.47						
	-0.4922 GY	0.66						
175	-0.6328 GY	0.85						
175	-0.7734 GY	1.03						
175	-0.9141 GY	1.22						
175	-1.0547 GY	1.41						
175	-1.0547 GY	1.59						
175	-0.9141 GY	1.78						
175	-0.7734 GY	1.97						
175	-0.6328 GY	2.15						
175	-0.4922 GY	2.34						
175	-0.3516 GY	2.53						
175	-0.2109 GY	2.71						
175	-0.0703 GY	2.88						
346	-0.0703 GY	0.13						
346	-0.2109 GY	0.29						

				monday,	october	20, 2020	, 10.07
STAAD SPACE		PAGE NO.	190				
346	-0.3516 GY 0.4	8					
346	-0.4922 GY 0.6						
346	-0.6328 GY 0.8						
346	-0.7734 GY 1.0						
346	-0.9141 GY 1.2						
346	-1.0547 GY 1.4						
346	-1.0547 GY 1.5						
346	-0.9141 GY 1.7	8					
346	-0.7734 GY 1.9	7					
346	-0.6328 GY 2.1	5					
346	-0.4922 GY 2.3	4					
346	-0.3516 GY 2.5						
346	-0.2109 GY 2.7						
346	-0.0703 GY 2.8						
122	-0.0703 GY 0.1						
122	-0.2109 GY 0.2						
122	-0.3516 GY 0.4						
122	-0.4922 GY 0.6	6					
122	-0.6328 GY 0.8	5					
122	-0.7734 GY 1.0	3					
122	-0.9141 GY 1.2	2					
122	-1.0547 GY 1.4	1					
122	-1.0547 GY 1.5						
122	-0.9141 GY 1.7						
122	-0.7734 GY 1.9						
122	-0.6328 GY 2.1						
122	-0.4922 GY 2.3						
122	-0.3516 GY 2.5						
122	-0.2109 GY 2.7						
122	-0.0703 GY 2.8	8					
348	-0.0703 GY 0.1	3					
348	-0.2109 GY 0.2	9					
348	-0.3516 GY 0.4	8					
348	-0.4922 GY 0.6	6					
348	-0.6328 GY 0.8						
348	-0.7734 GY 1.0						
348	-0.9141 GY 1.2						
348	-1.0547 GY 1.4						
348							
348	-0.9141 GY 1.7						
348	-0.7734 GY 1.9						
348	-0.6328 GY 2.1						
348	-0.4922 GY 2.3						
348	-0.3516 GY 2.5	3					
348	-0.2109 GY 2.7	1					
348	-0.0703 GY 2.8	8					
176	-0.0703 GY 0.1	2					
176	-0.2109 GY 0.2						
176	-0.3516 GY 0.4						
176	-0.4922 GY 0.6						
176	-0.6328 GY 0.8						
176	-0.7734 GY 1.0						
176	-0.9141 GY 1.2						
176	-1.0547 GY 1.4						
176	-1.0547 GY 1.5						
176	-0.9141 GY 1.7	8					

					momuay,	occoper	20,	202
STAAD SPACE			 PAGE NO.	191				
176	-0.7734 GY	1.97						
176	-0.6328 GY	2.15						
176	-0.4922 GY	2.34						
176	-0.4322 G1 -0.3516 GY	2.53						
		2.71						
176	-0.2109 GY							
176 347	-0.0703 GY	2.88						
	-0.0703 GY	0.13						
347	-0.2109 GY	0.29						
347	-0.3516 GY	0.48						
347	-0.4922 GY	0.66						
347	-0.6328 GY	0.85						
347	-0.7734 GY	1.03						
347	-0.9141 GY	1.22						
347	-1.0547 GY	1.41						
347	-1.0547 GY	1.59						
347	-0.9141 GY	1.78						
347	-0.7734 GY	1.97						
347	-0.6328 GY	2.15						
347	-0.4922 GY	2.34						
347	-0.3516 GY	2.53						
347	-0.2109 GY	2.71						
347	-0.0703 GY	2.88						
123	-0.0703 GY	0.13						
123	-0.2109 GY	0.29						
123	-0.3516 GY	0.48						
123	-0.4922 GY	0.66						
123	-0.6328 GY	0.85						
123	-0.7734 GY	1.03						
123	-0.9141 GY	1.22						
123	-1.0547 GY	1.41						
123	-1.0547 GY	1.59						
123	-0.9141 GY	1.78						
123	-0.7734 GY	1.97						
123	-0.6328 GY	2.15						
123	-0.4922 GY	2.34						
123	-0.3516 GY	2.53						
123	-0.2109 GY	2.71						
123	-0.0703 GY	2.88						
349	-0.0703 GY	0.13						
349	-0.2109 GY	0.29						
349	-0.3516 GY	0.48						
349	-0.4922 GY	0.66						
349	-0.6328 GY	0.85						
349	-0.7734 GY	1.03						
349	-0.9141 GY	1.22						
349	-1.0547 GY	1.41						
349	-1.0547 GY	1.59						
349	-0.9141 GY	1.78						
349	-0.7734 GY	1.97						
349	-0.6328 GY	2.15						
349	-0.4922 GY	2.34						
349	-0.3516 GY	2.53						
349	-0.2109 GY	2.71						
349	-0.0703 GY	2.88						
177	-0.0703 GY	0.13						
177	-0.2109 GY	0.29						

						Μ
STAAD SPACE			 PAGE	NO.	192	
177	-0.3516 GY	0.48				
177	-0.4922 GY	0.66				
177	-0.6328 GY	0.85				
177	-0.7734 GY	1.03				
177	-0.9141 GY	1.22				
177	-1.0547 GY	1.41				
177	-1.0547 GY	1.59				
177	-0.9141 GY	1.78				
177	-0.7734 GY	1.97				
177	-0.6328 GY	2.15				
177	-0.4922 GY	2.34				
177	-0.3516 GY	2.53				
177	-0.2109 GY	2.71				
177	-0.0703 GY	2.88				
348	-0.0703 GY	0.13				
348	-0.2109 GY	0.29				
348	-0.3516 GY	0.48				
348	-0.4922 GY	0.66				
348	-0.6328 GY	0.85				
348	-0.7734 GY	1.03				
348	-0.9141 GY	1.22				
348	-1.0547 GY	1.41				
348	-1.0547 GY	1.59				
348	-0.9141 GY	1.78				
348	-0.7734 GY	1.97				
348	-0.6328 GY	2.15				
348	-0.4922 GY	2.34				
348	-0.3516 GY	2.53				
348	-0.2109 GY	2.71				
348	-0.0703 GY	2.88				
124	-0.0703 GY	0.12				
124	-0.2109 GY	0.29				
124	-0.3516 GY	0.47				
124	-0.4922 GY	0.66				
124	-0.6328 GY	0.85				
124	-0.7734 GY	1.03				
124	-0.9141 GY	1.22				
124	-1.0547 GY	1.41				
124	-1.0547 GY	1.59				
124	-0.9141 GY	1.78				
124	-0.7734 GY	1.97				
124	-0.6328 GY	2.15				
124	-0.4922 GY	2.34				
124	-0.3516 GY	2.52				
124	-0.2109 GY	2.71				
124	-0.0703 GY	2.87				
350	-0.0703 GY	0.13				
350	-0.2109 GY	0.29				
350	-0.3516 GY	0.48				
350	-0.4922 GY	0.66				
350	-0.6328 GY	0.85				
350	-0.7734 GY	1.03				
350	-0.9141 GY	1.22				
350	-1.0547 GY	1.41				
350	-1.0547 GY	1.59				
350	-0.9141 GY	1.78				
	113111 31	.				

					, inclination	000000	, _
STAAD SPACE			PAGE NO	. 193			
350	-0.7734 GY	1.97					
350	-0.6328 GY	2.15					
350	-0.4922 GY	2.34					
350	-0.3516 GY	2.53					
350	-0.2109 GY	2.71					
350	-0.0703 GY	2.88					
178	-0.0703 GY	0.12					
178	-0.2109 GY	0.29					
178	-0.3516 GY	0.47					
178	-0.4922 GY	0.66					
178	-0.6328 GY	0.85					
178	-0.7734 GY	1.03					
178	-0.9141 GY	1.22					
178	-1.0547 GY	1.41					
178	-1.0547 GY	1.59					
178	-0.9141 GY	1.78					
178	-0.7734 GY	1.97					
178	-0.6328 GY	2.15					
178	-0.4922 GY	2.34					
178	-0.3516 GY	2.52					
178	-0.2109 GY	2.71					
178	-0.0703 GY	2.87					
349	-0.0703 GY	0.13					
349	-0.2109 GY	0.29					
349	-0.3516 GY	0.48					
349	-0.4922 GY	0.66					
349	-0.6328 GY	0.85					
349	-0.7734 GY	1.03					
349	-0.9141 GY	1.22					
349	-1.0547 GY	1.41					
349	-1.0547 GY	1.59					
349	-0.9141 GY	1.78					
349 349	-0.7734 GY -0.6328 GY	1.97 2.15					
349	-0.4922 GY	2.34					
349	-0.4922 G1 -0.3516 GY	2.53					
349	-0.2109 GY	2.71					
349	-0.2109 G1 -0.0703 GY	2.88					
175	-0.0703 GY	0.12					
175	-0.2109 GY	0.29					
175	-0.3516 GY	0.47					
175	-0.4922 GY	0.66					
175	-0.6328 GY	0.85					
175	-0.7734 GY	1.03					
175	-0.9141 GY	1.22					
175	-1.0547 GY	1.41					
175	-1.0547 GY	1.59					
175	-0.9141 GY	1.78					
175	-0.7734 GY	1.97					
175	-0.6328 GY	2.15					
175	-0.4922 GY	2.34					
175	-0.3516 GY	2.53					
175	-0.2109 GY	2.71					
175	-0.0703 GY	2.88					
377	-0.0703 GY	0.12					
377	-0.2109 GY	0.29					

						monday,	UC
STAAD SPACE			 PAGE	NO.	194		
377	-0.3516 GY	0.47					
377	-0.4922 GY	0.66					
377	-0.6328 GY	0.85					
377	-0.7734 GY	1.03					
377	-0.9141 GY	1.22					
377	-1.0547 GY	1.41					
377	-1.0547 GY	1.59					
377	-0.9141 GY	1.78					
377	-0.7734 GY	1.97					
377	-0.6328 GY	2.15					
377	-0.4922 GY	2.34					
377	-0.3516 GY	2.52					
377	-0.2109 GY	2.71					
377	-0.0703 GY	2.87					
229	-0.0703 GY	0.12					
229	-0.2109 GY	0.29					
229	-0.3516 GY	0.47					
229	-0.4922 GY	0.66					
229	-0.6328 GY	0.85					
229	-0.7734 GY	1.03					
229	-0.9141 GY	1.22					
229	-1.0547 GY	1.41					
229	-1.0547 GY	1.59					
229	-0.9141 GY	1.78					
229	-0.7734 GY	1.97					
229	-0.6328 GY	2.15					
229	-0.4922 GY	2.34					
229	-0.3516 GY	2.53					
229	-0.2109 GY	2.71					
229	-0.0703 GY	2.88					
376	-0.0703 GY	0.12					
376	-0.2109 GY	0.29					
376	-0.3516 GY	0.47					
376	-0.4922 GY	0.66					
376	-0.6328 GY	0.85					
376	-0.7734 GY	1.03					
376	-0.9141 GY	1.22					
376	-1.0547 GY	1.41					
376	-1.0547 GY	1.59					
376	-0.9141 GY	1.78					
376	-0.7734 GY	1.97					
376	-0.6328 GY	2.15					
376	-0.4922 GY	2.34					
376	-0.3516 GY	2.52					
376	-0.2109 GY	2.71					
376	-0.0703 GY	2.87					
176	-0.0703 GY	0.12					
176	-0.2109 GY	0.29					
176	-0.3516 GY	0.47					
176	-0.4922 GY	0.66					
176	-0.6328 GY	0.85					
176	-0.7734 GY	1.03					
176	-0.9141 GY	1.22					
176	-1.0547 GY	1.41					
176	-1.0547 GY	1.59					
176	-0.9141 GY	1.78					

						Monday,	October	26,
STAAD SPACE			 - PA	GE NO.	195			
176	-0.7734 GY	1.97						
176	-0.6328 GY	2.15						
176	-0.4922 GY	2.34						
176	-0.3516 GY	2.53						
176	-0.2109 GY	2.71						
176	-0.0703 GY	2.88						
378	-0.0703 GY	0.12						
378	-0.2109 GY	0.29						
378	-0.3516 GY	0.47						
378	-0.4922 GY	0.66						
378	-0.6328 GY	0.85						
378	-0.7734 GY	1.03						
378	-0.9141 GY	1.22						
378	-1.0547 GY	1.41						
378	-1.0547 GY	1.59						
378	-0.9141 GY	1.78						
378	-0.7734 GY	1.97						
378	-0.6328 GY	2.15						
378	-0.4922 GY	2.34						
378	-0.3516 GY	2.52						
378	-0.2109 GY	2.71						
378	-0.0703 GY	2.87						
230	-0.0703 GY	0.12						
230	-0.2109 GY	0.29						
230	-0.3516 GY	0.47						
230	-0.4922 GY	0.66						
230	-0.6328 GY	0.85						
230	-0.7734 GY	1.03						
230	-0.9141 GY	1.22						
230	-1.0547 GY	1.41						
230	-1.0547 GY	1.59						
230	-0.9141 GY	1.78						
230	-0.7734 GY	1.97						
230	-0.6328 GY	2.15						
230	-0.4922 GY	2.34						
230	-0.3516 GY	2.53						
230	-0.2109 GY	2.71						
230	-0.0703 GY	2.88						
377	-0.0703 GY	0.12						
377	-0.2109 GY	0.29						
377	-0.3516 GY	0.47						
377	-0.4922 GY	0.66						
377	-0.6328 GY	0.85						
377	-0.7734 GY	1.03						
377	-0.9141 GY	1.22						
377	-1.0547 GY	1.41						
377	-1.0547 GY	1.59						
377	-0.9141 GY	1.78						
377	-0.7734 GY	1.97						
377	-0.6328 GY	2.15						
377	-0.4922 GY	2.34						
377	-0.3516 GY	2.52						
377	-0.2109 GY	2.71 2.87						
377 177	-0.0703 GY -0.0703 GY	0.13						
177	-0.2109 GY	0.13						
± / /	0.2109 GI	0.29						

						Monday,	Octobe
STAAD SPACE			PAGE	E NO.	196		
177	-0.3516 GY	0.48					
177	-0.4922 GY	0.66					
177	-0.6328 GY	0.85					
177	-0.7734 GY	1.03					
177	-0.9141 GY	1.22					
177	-1.0547 GY	1.41					
177	-1.0547 GY	1.59					
177	-0.9141 GY	1.78					
177	-0.7734 GY	1.97					
177	-0.6328 GY	2.15					
177	-0.4922 GY	2.34					
177	-0.3516 GY	2.53					
177	-0.2109 GY	2.71					
177	-0.0703 GY	2.88					
379	-0.0703 GY	0.12					
379	-0.2109 GY	0.29					
379	-0.3516 GY	0.47					
379	-0.4922 GY	0.66					
379	-0.6328 GY	0.85					
379	-0.7734 GY	1.03					
379	-0.9141 GY	1.22					
379	-1.0547 GY	1.41					
379	-1.0547 GY	1.59					
379	-0.9141 GY	1.78					
379	-0.7734 GY	1.97					
379	-0.6328 GY	2.15					
379	-0.4922 GY	2.34					
379	-0.3516 GY	2.52					
379	-0.2109 GY	2.71					
379	-0.0703 GY	2.87					
231	-0.0703 GY	0.13					
231	-0.2109 GY	0.29					
231	-0.3516 GY	0.48					
231	-0.4922 GY	0.66					
231	-0.6328 GY	0.85					
231	-0.7734 GY	1.03					
231	-0.9141 GY	1.22					
231	-1.0547 GY	1.41					
231	-1.0547 GY	1.59					
231	-0.9141 GY	1.78					
231	-0.7734 GY	1.97					
231	-0.6328 GY	2.15					
231	-0.4922 GY	2.34					
231	-0.3516 GY	2.53					
231	-0.2109 GY	2.71					
231	-0.0703 GY	2.88					
378	-0.0703 GY	0.12					
378	-0.2109 GY	0.29					
378	-0.3516 GY	0.47					
378	-0.4922 GY	0.66					
378	-0.6328 GY	0.85					
378	-0.7734 GY	1.03					
378	-0.9141 GY	1.22					
378	-1.0547 GY	1.41					
378	-1.0547 GY	1.59					
378	-0.9141 GY	1.78					

						Monday,	October	26,
STAAD SPACE			Pi	AGE NO.	197			
378	-0.7734 GY	1.97						
378	-0.6328 GY	2.15						
378	-0.4922 GY	2.13						
378								
378	-0.3516 GY	2.52						
378	-0.2109 GY	2.71						
	-0.0703 GY	2.87						
178 178	-0.0703 GY -0.2109 GY	0.12 0.29						
178	-0.3516 GY	0.29						
178	-0.4922 GY	0.66						
178	-0.6328 GY	0.85						
178	-0.7734 GY	1.03						
178	-0.9141 GY	1.22						
178	-1.0547 GY	1.41						
178	-1.0547 GY	1.59						
178	-0.9141 GY	1.78						
178	-0.7734 GY	1.97						
178	-0.6328 GY	2.15						
178	-0.4922 GY	2.34						
178	-0.3516 GY	2.52						
178	-0.2109 GY	2.71						
178	-0.0703 GY	2.87						
380	-0.0703 GY	0.12						
380	-0.2109 GY	0.29						
380	-0.3516 GY	0.47						
380	-0.4922 GY	0.66						
380	-0.6328 GY	0.85						
380	-0.7734 GY	1.03						
380	-0.9141 GY	1.22						
380	-1.0547 GY	1.41						
380	-1.0547 GY	1.59						
380	-0.9141 GY	1.78						
380	-0.7734 GY	1.97						
380	-0.6328 GY	2.15						
380	-0.4922 GY	2.34						
380	-0.3516 GY	2.52						
380	-0.2109 GY	2.71						
380	-0.0703 GY	2.87						
232	-0.0703 GY	0.12						
232	-0.2109 GY	0.29						
232	-0.3516 GY	0.47						
232	-0.4922 GY	0.66						
232	-0.6328 GY	0.85						
232	-0.7734 GY	1.03						
232	-0.9141 GY	1.22						
232	-1.0547 GY	1.41						
232	-1.0547 GY	1.59						
232	-0.9141 GY	1.78						
232	-0.7734 GY	1.97						
232	-0.6328 GY	2.15						
232	-0.4922 GY	2.34						
232	-0.3516 GY	2.52						
232	-0.2109 GY	2.71						
232	-0.0703 GY	2.87						
379	-0.0703 GY	0.12						
379	-0.2109 GY	0.29						

						Monday,	October	26,	20.
STAAD SPACE			 PAGE	NO.	198				
379	-0.3516 GY	0.47							
379	-0.4922 GY	0.66							
379	-0.6328 GY	0.85							
379	-0.7734 GY	1.03							
379	-0.9141 GY	1.22							
379	-1.0547 GY	1.41							
379	-1.0547 GY	1.59							
379	-0.9141 GY	1.78							
379	-0.7734 GY	1.97							
379	-0.6328 GY	2.15							
379	-0.4922 GY	2.34							
379	-0.3516 GY	2.52							
379	-0.2109 GY	2.71							
379	-0.0703 GY	2.87							
17	-0.0703 GY	0.12							
17	-0.2109 GY	0.29							
17	-0.3516 GY	0.47							
17	-0.4922 GY	0.66							
17	-0.6328 GY	0.85							
17	-0.7734 GY	1.03							
17	-0.9141 GY	1.22							
17	-1.0547 GY	1.41							
17	-1.0547 GY	1.59							
17	-0.9141 GY	1.78							
17 17	-0.7734 GY -0.6328 GY	1.97 2.15							
17	-0.6326 GI -0.4922 GY	2.13							
17	-0.3516 GY	2.53							
17	-0.2109 GY	2.71							
17	-0.0703 GY	2.88							
292	-0.0703 GY	0.12							
292	-0.2109 GY	0.29							
292	-0.3516 GY	0.47							
292	-0.4922 GY	0.66							
292	-0.6328 GY	0.85							
292	-0.7734 GY	1.03							
292	-0.9141 GY	1.22							
292	-1.0547 GY	1.41							
292	-1.0547 GY	1.59							
292	-0.9141 GY								
292	-0.7734 GY	1.97							
292 292	-0.6328 GY -0.4922 GY	2.15 2.34							
292	-0.4922 G1 -0.3516 GY	2.54							
292	-0.2109 GY	2.71							
292	-0.0703 GY	2.88							
71	-0.0703 GY	0.12							
71	-0.2109 GY	0.29							
71	-0.3516 GY	0.47							
71	-0.4922 GY	0.66							
71	-0.6328 GY	0.85							
71	-0.7734 GY	1.03							
71	-0.9141 GY	1.22							
71	-1.0547 GY	1.41							
71	-1.0547 GY	1.59							
	0 01 11 0	4 00							

-0.9141 GY 1.78

### STAAD SPACE						<u> </u>	•
71	STAAD SPACE			PAGE NO.	199		
71	71	-0.7734 GY	1.97				
71	71	-0.6328 GY	2.15				
71	71	-0.4922 GY	2.34				
71	71	-0.3516 GY	2.53				
291 -0.0703 GY 0.12 291 -0.2109 GY 0.29 291 -0.3516 GY 0.47 291 -0.5326 GY 0.66 291 -0.5328 GY 0.85 291 -0.1713 GY 1.03 291 -0.1713 GY 1.03 291 -0.1713 GY 1.03 291 -0.1713 GY 1.22 291 -1.0847 GY 1.41 291 -1.0847 GY 1.41 291 -0.1914 GY 1.79 291 -0.1828 GY 2.15 291 -0.1733 GY 2.33 291 -0.1733 GY 2.33 291 -0.1031 GY 2.33 291 -0.2109 GY 2.71 291 -0.2109 GY 2.71 291 -0.2109 GY 2.71 291 -0.0703 GY 0.12 291 -0.0703 GY 0.12 18 -0.0703 GY 0.12 18 -0.1914 GY 1.99 18 -0.1818 -0.1818 GY 0.85 18 -0.7734 GY 1.03 18 -0.1818 GY 0.85 18 -0.7734 GY 1.03 18 -0.914 GY 1.59 18 -0.914 GY 1.79 18 -0.914 GY 1.22 19 18 -0.914 GY 1.22 19 18 -0.914 GY 1.22 19 18 -0.914 GY 1.22 29 18 -0.0703 GY 0.29 29 19 18 -0.0703 GY 0.29 29 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	71	-0.2109 GY	2.71				
291 -0.2109 GY 0.29 291 -0.4922 GY 0.66 291 -0.6228 GY 0.66 291 -0.6228 GY 0.66 291 -0.6228 GY 1.03 291 -0.914 GY 1.22 291 -0.914 GY 1.22 291 -1.0547 GY 1.14 291 -1.0547 GY 1.19 291 -1.0547 GY 1.19 291 -0.9141 GY 1.78 291 -0.9141 GY 1.78 291 -0.9141 GY 1.78 291 -0.6228 GY 2.15 291 -0.6228 GY 2.34 291 -0.6228 GY 2.34 291 -0.6228 GY 2.71 291 -0.703 GY 0.12 18 -0.516 GY 0.47 18 -0.516 GY 0.47 18 -0.9141 GY 1.03 18 -0.9141 GY 1.03 18 -0.9141 GY 1.22 18 -0.9141 GY 1.29 19 18 -0.6228 GY 2.15 18 -0.9141 GY 1.29 19 18 -0.6228 GY 2.15 2.93 -0.6228 GY 2.19 2.93 -0.6228 GY 0.65 2.93 -0.7734 GY 1.97 2.93 -0.9734 GY 1.97 2.93 -0.9734 GY 1.97 2.93 -0.9734 GY 1.93 2.93 -0.9734 GY 1.97 2.93 -0.9734 GY 2.15 2.93 -0.9734 GY 2.15 2.93 -0.9734 GY 2.98 2.93 -0.9734	71	-0.0703 GY	2.88				
291	291	-0.0703 GY	0.12				
291	291	-0.2109 GY	0.29				
291	291	-0.3516 GY	0.47				
291	291	-0.4922 GY	0.66				
291	291	-0.6328 GY	0.85				
291	291	-0.7734 GY	1.03				
291	291	-0.9141 GY	1.22				
291	291	-1.0547 GY	1.41				
291	291	-1.0547 GY	1.59				
291	291	-0.9141 GY	1.78				
291	291		1.97				
291		-0.6328 GY	2.15				
291							
291							
18							
18							
18							
18							
18							
18							
18							
18							
18							
18 -0.9141 GY 1.78 18 -0.7734 GY 1.97 18 -0.6328 GY 2.15 18 -0.4922 GY 2.34 18 -0.3516 GY 2.53 18 -0.2109 GY 2.71 18 -0.0703 GY 2.88 293 -0.0703 GY 0.12 293 -0.2109 GY 0.29 293 -0.3516 GY 0.47 293 -0.4922 GY 0.66 293 -0.6328 GY 0.85 293 -0.7734 GY 1.03 293 -0.9141 GY 1.22 293 -0.9141 GY 1.22 293 -0.9141 GY 1.78 293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.7734 GY 1.97 293 -0.734 GY 2.53 293 -0.3516 GY 2.53 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
18							
18 -0.6328 GY 2.15 18 -0.4922 GY 2.34 18 -0.3516 GY 2.53 18 -0.2109 GY 2.71 18 -0.0703 GY 2.88 293 -0.0703 GY 0.12 293 -0.2109 GY 0.29 293 -0.3516 GY 0.47 293 -0.4922 GY 0.66 293 -0.6328 GY 0.85 293 -0.7734 GY 1.03 293 -0.9141 GY 1.22 293 -1.0547 GY 1.41 293 -1.0547 GY 1.59 293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.7734 GY 1.97 293 -0.3526 GY 2.15 293 -0.3516 GY 2.53 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12							
18 -0.4922 GY 2.34 18 -0.3516 GY 2.53 18 -0.2109 GY 2.71 18 -0.0703 GY 2.88 293 -0.0703 GY 0.12 293 -0.2109 GY 0.29 293 -0.3516 GY 0.47 293 -0.4922 GY 0.66 293 -0.6328 GY 0.85 293 -0.7734 GY 1.03 293 -0.9141 GY 1.22 293 -1.0547 GY 1.41 293 -1.0547 GY 1.59 293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.6328 GY 2.15 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.7073 GY 2.88 72 -0.0703 GY 2.88							
18							
18 -0.2109 GY 2.71 18 -0.0703 GY 2.88 293 -0.0703 GY 0.12 293 -0.2109 GY 0.29 293 -0.3516 GY 0.47 293 -0.4922 GY 0.66 293 -0.6328 GY 0.85 293 -0.7734 GY 1.03 293 -0.9141 GY 1.22 293 -1.0547 GY 1.41 293 -0.9141 GY 1.59 293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.7734 GY 1.97 293 -0.3516 GY 2.15 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.703 GY 2.88 72 -0.0703 GY 0.12							
18							
293							
293							
293 -0.4922 GY 0.66 293 -0.6328 GY 0.85 293 -0.7734 GY 1.03 293 -0.9141 GY 1.22 293 -1.0547 GY 1.41 293 -0.9141 GY 1.78 293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.6328 GY 2.15 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12							
293 -0.4922 GY 0.66 293 -0.6328 GY 0.85 293 -0.7734 GY 1.03 293 -0.9141 GY 1.22 293 -1.0547 GY 1.41 293 -0.9141 GY 1.78 293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.6328 GY 2.15 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12	293	-0.3516 GY	0.47				
293 -0.6328 GY 0.85 293 -0.7734 GY 1.03 293 -0.9141 GY 1.22 293 -1.0547 GY 1.41 293 -1.0547 GY 1.59 293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.6328 GY 2.15 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12							
293 -0.9141 GY 1.22 293 -1.0547 GY 1.41 293 -1.0547 GY 1.59 293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.6328 GY 2.15 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12	293	-0.6328 GY					
293 -1.0547 GY 1.41 293 -1.0547 GY 1.59 293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.6328 GY 2.15 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12	293	-0.7734 GY	1.03				
293 -1.0547 GY 1.59 293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.6328 GY 2.15 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12	293	-0.9141 GY	1.22				
293 -0.9141 GY 1.78 293 -0.7734 GY 1.97 293 -0.6328 GY 2.15 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12	293	-1.0547 GY	1.41				
293 -0.7734 GY 1.97 293 -0.6328 GY 2.15 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12	293	-1.0547 GY	1.59				
293 -0.6328 GY 2.15 293 -0.4922 GY 2.34 293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12	293	-0.9141 GY	1.78				
293	293	-0.7734 GY	1.97				
293 -0.3516 GY 2.53 293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12							
293 -0.2109 GY 2.71 293 -0.0703 GY 2.88 72 -0.0703 GY 0.12							
293 -0.0703 GY 2.88 72 -0.0703 GY 0.12							
72 -0.0703 GY 0.12							
72 -U.2109 GY U.29							
	12	-0.2109 GY	0.29				

						rionaa,	, 000000	,	_ 0 _ 0
STAAD SPACE			PAGE	NO.	200				
72	-0.3516 GY	0.47							
72	-0.4922 GY	0.66							
72	-0.6328 GY	0.85							
72	-0.7734 GY	1.03							
72	-0.9141 GY	1.22							
72	-1.0547 GY	1.41							
72	-1.0547 GY	1.59							
72	-0.9141 GY	1.78							
72	-0.7734 GY	1.97							
72	-0.6328 GY	2.15							
72	-0.4922 GY	2.34							
72	-0.3516 GY	2.53							
72	-0.2109 GY	2.71							
72	-0.0703 GY	2.88							
292	-0.0703 GY	0.12							
292	-0.2109 GY	0.29							
292	-0.3516 GY	0.47							
292	-0.4922 GY	0.66							
292	-0.6328 GY	0.85							
292	-0.7734 GY	1.03							
292	-0.9141 GY	1.22							
292	-1.0547 GY	1.41							
292	-1.0547 GY	1.59							
292	-0.9141 GY	1.78							
292	-0.7734 GY	1.97							
292	-0.6328 GY	2.15							
292	-0.4922 GY	2.34							
292	-0.3516 GY	2.53							
292	-0.2109 GY	2.71							
292	-0.0703 GY	2.88							
19	-0.0703 GY	0.13							
19	-0.2109 GY	0.29							
19	-0.3516 GY	0.48							
19	-0.4922 GY	0.66							
19	-0.6328 GY	0.85							
19	-0.7734 GY	1.03							
19 19	-0.9141 GY	1.22							
19	-1.0547 GY -1.0547 GY	1.41 1.59							
19	-0.9141 GY	1.78							
19	-0.7734 GY	1.97							
19	-0.7734 G1 -0.6328 GY	2.15							
19	-0.4922 GY	2.13							
19	-0.3516 GY	2.53							
19	-0.2109 GY	2.71							
19	-0.0703 GY	2.88							
294	-0.0703 GY	0.12							
294	-0.2109 GY	0.29							
294	-0.3516 GY	0.47							
294	-0.4922 GY	0.66							
294	-0.6328 GY	0.85							
294	-0.7734 GY	1.03							
294	-0.9141 GY	1.22							
294	-1.0547 GY	1.41							
294	-1.0547 GY	1.59							
294	-0.9141 GY	1.78							

						- '	•
STAAD SPACE			PA	GE NO.	201		
294	-0.7734 GY	1.97					
294	-0.6328 GY	2.15					
294	-0.4922 GY	2.34					
294	-0.3516 GY	2.53					
294	-0.2109 GY	2.71					
294	-0.0703 GY	2.88					
73	-0.0703 GY	0.13					
73	-0.2109 GY	0.29					
73	-0.3516 GY						
73		0.48					
	-0.4922 GY	0.66					
73	-0.6328 GY	0.85					
73	-0.7734 GY	1.03					
73	-0.9141 GY	1.22					
73	-1.0547 GY	1.41					
73	-1.0547 GY	1.59					
73	-0.9141 GY	1.78					
73	-0.7734 GY	1.97					
73	-0.6328 GY	2.15					
73	-0.4922 GY	2.34					
73	-0.3516 GY	2.53					
73	-0.2109 GY	2.71					
73	-0.0703 GY	2.88					
293	-0.0703 GY	0.12					
293	-0.2109 GY	0.29					
293	-0.3516 GY	0.47					
293	-0.4922 GY	0.66					
293	-0.6328 GY	0.85					
293	-0.7734 GY	1.03					
293	-0.9141 GY	1.22					
293	-1.0547 GY	1.41					
293	-1.0547 GY	1.59					
293	-0.9141 GY	1.78					
293	-0.7734 GY	1.97					
293	-0.6328 GY	2.15					
293	-0.4922 GY	2.34					
293	-0.3516 GY	2.53					
293	-0.2109 GY	2.71					
293	-0.0703 GY	2.88					
20	-0.0703 GY	0.12					
20	-0.2109 GY	0.29					
20	-0.3516 GY	0.47					
20	-0.4922 GY	0.66					
20	-0.6328 GY	0.85					
20	-0.7734 GY	1.03					
20	-0.9141 GY	1.22					
20	-1.0547 GY	1.41					
20	-1.0547 GY	1.59					
20	-0.9141 GY	1.78					
20	-0.7734 GY	1.97					
20	-0.6328 GY	2.15					
20	-0.4922 GY	2.34					
20	-0.3516 GY	2.52					
20	-0.2109 GY	2.71					
20	-0.0703 GY	2.87					
295	-0.0703 GY	0.12					
295	-0.2109 GY	0.29					

						11011447,	000000	, .	
STAAD SPACE			PAG	E NO.	202				
295	-0.3516 GY	0.47							
295	-0.4922 GY	0.66							
295	-0.6328 GY	0.85							
	-0.7734 GY								
295		1.03							
295	-0.9141 GY	1.22							
295	-1.0547 GY	1.41							
295	-1.0547 GY	1.59							
295	-0.9141 GY	1.78							
295	-0.7734 GY	1.97							
295	-0.6328 GY	2.15							
295	-0.4922 GY	2.34							
295	-0.3516 GY	2.53							
295	-0.2109 GY	2.71							
295	-0.0703 GY	2.88							
74	-0.0703 GY	0.12							
74	-0.2109 GY	0.29							
74	-0.3516 GY	0.47							
74	-0.4922 GY	0.66							
74	-0.6328 GY	0.85							
74	-0.7734 GY	1.03							
74	-0.9141 GY	1.22							
74	-1.0547 GY	1.41							
74	-1.0547 GY	1.59							
74	-0.9141 GY	1.78							
74	-0.7734 GY	1.97							
74	-0.6328 GY	2.15							
74	-0.4922 GY	2.34							
74	-0.3516 GY	2.52							
74	-0.2109 GY	2.71							
74	-0.0703 GY	2.87							
294	-0.0703 GY	0.12							
294 294	-0.2109 GY	0.29							
294	-0.3516 GY	0.47							
294	-0.4922 GY -0.6328 GY								
294	-0.7734 GY	0.85 1.03							
294	-0.9141 GY	1.22							
294	-1.0547 GY	1.41							
294	-1.0547 GY	1.59							
294	-0.9141 GY	1.78							
294	-0.7734 GY	1.97							
294	-0.6328 GY	2.15							
294	-0.4922 GY	2.34							
294	-0.3516 GY	2.53							
294	-0.2109 GY	2.71							
294	-0.0703 GY	2.88							
71	-0.0703 GY	0.12							
71	-0.2109 GY	0.29							
71	-0.3516 GY	0.47							
71	-0.4922 GY	0.66							
71	-0.6328 GY	0.85							
71	-0.7734 GY	1.03							
71	-0.9141 GY	1.22							
71	-1.0547 GY	1.41							
71	-1.0547 GY	1.59							
71	-0.9141 GY	1.78							

						11011447,	000000	,	
STAAD SPACE			 PAGE	NO.	203				
71	-0.7734 GY	1.97							
71	-0.6328 GY	2.15							
71	-0.4922 GY	2.34							
71	-0.3516 GY	2.53							
71	-0.2109 GY	2.71							
71	-0.0703 GY	2.88							
322	-0.0703 GY	0.12							
322	-0.2109 GY	0.29							
322	-0.3516 GY	0.47							
322	-0.4922 GY	0.66							
322	-0.6328 GY	0.85							
322	-0.7734 GY	1.03							
322	-0.9141 GY	1.22							
322	-1.0547 GY	1.41							
322	-1.0547 GY	1.59							
322	-0.9141 GY	1.78							
322	-0.7734 GY	1.97							
322	-0.6328 GY	2.15							
322	-0.4922 GY	2.34							
322	-0.3516 GY	2.53							
322	-0.2109 GY	2.71							
322	-0.0703 GY	2.88							
125	-0.0703 GY	0.12							
125	-0.2109 GY	0.29							
125	-0.3516 GY	0.47							
125	-0.4922 GY	0.66							
125	-0.6328 GY	0.85							
125	-0.7734 GY	1.03							
125	-0.9141 GY	1.22							
125	-1.0547 GY	1.41							
125	-1.0547 GY	1.59							
125	-0.9141 GY	1.78							
125	-0.7734 GY	1.97							
125	-0.6328 GY	2.15							
125	-0.4922 GY	2.34							
125	-0.3516 GY	2.53							
125	-0.2109 GY	2.71							
125	-0.0703 GY	2.88							
321	-0.0703 GY	0.12							
321	-0.2109 GY	0.29							
321	-0.3516 GY	0.47							
321	-0.4922 GY	0.66							
321	-0.6328 GY	0.85							
321	-0.7734 GY	1.03							
321	-0.9141 GY	1.22							
321	-1.0547 GY	1.41							
321	-1.0547 GY	1.59							
321	-0.9141 GY	1.78							
321	-0.7734 GY	1.97							
321	-0.6328 GY	2.15							
321	-0.4922 GY	2.34							
321	-0.3516 GY	2.53							
321	-0.2109 GY	2.71							
321	-0.0703 GY	2.88							
72	-0.0703 GY	0.12							
72	-0.2109 GY	0.29							

					11011447,	0000001	20, 2	020, 1	
STAAD SPACE			PAGE NO.	204					
72	-0.3516 GY 0	0.47							
72		0.66							
72		0.85							
72		1.03							
72		1.22							
72		1.41							
72		1.59							
72		1.78							
72		1.97							
72									
		2.15							
72		2.34							
72		2.53							
72		2.71							
72		2.88							
323		0.12							
323		0.29							
323		0.47							
323		0.66							
323		0.85							
323		1.03							
323	-0.9141 GY 1	1.22							
323	-1.0547 GY 1	1.41							
323	-1.0547 GY 1	1.59							
323	-0.9141 GY 1	1.78							
323	-0.7734 GY 1	1.97							
323	-0.6328 GY 2	2.15							
323	-0.4922 GY 2	2.34							
323	-0.3516 GY 2	2.53							
323	-0.2109 GY 2	2.71							
323	-0.0703 GY 2	2.88							
126	-0.0703 GY 0	0.12							
126	-0.2109 GY 0	0.29							
126	-0.3516 GY 0	0.47							
126	-0.4922 GY C	0.66							
126		0.85							
126		1.03							
126		1.22							
126		1.41							
126		1.59							
126		1.78							
126		1.97							
126		2.15							
126		2.34							
126		2.53							
126		2.71							
126		2.88							
322		0.12							
322		0.29							
322		0.47							
322		0.66							
322		0.85							
322		1.03							
322		1.22							
322		1.41							
322		1.41							
322									
J	-0.9141 GY 1	1.78							

						iioiiaa,	000002	•
STAAD SPACE			PAGE	NO.	205			
322	-0.7734 GY	1.97						
322	-0.6328 GY	2.15						
322	-0.4922 GY	2.34						
322	-0.3516 GY	2.53						
322	-0.2109 GY	2.71						
322	-0.0703 GY	2.88						
73	-0.0703 GY	0.13						
73	-0.2109 GY	0.29						
73	-0.3516 GY	0.48						
73	-0.4922 GY	0.66						
73	-0.6328 GY	0.85						
73	-0.7734 GY	1.03						
73	-0.9141 GY	1.22						
73	-1.0547 GY	1.41						
73	-1.0547 GY	1.59						
73 73	-0.9141 GY -0.7734 GY	1.78 1.97						
73	-0.6328 GY	2.15						
73	-0.4922 GY	2.34						
73	-0.3516 GY	2.53						
73	-0.2109 GY	2.71						
73	-0.0703 GY	2.88						
324	-0.0703 GY	0.12						
324	-0.2109 GY	0.29						
324	-0.3516 GY	0.47						
324	-0.4922 GY	0.66						
324	-0.6328 GY	0.85						
324	-0.7734 GY	1.03						
324	-0.9141 GY	1.22						
324	-1.0547 GY	1.41						
324	-1.0547 GY	1.59						
324	-0.9141 GY	1.78						
324	-0.7734 GY	1.97						
324	-0.6328 GY	2.15						
324	-0.4922 GY	2.34						
324	-0.3516 GY	2.53						
324 324	-0.2109 GY -0.0703 GY	2.71						
127	-0.0703 GY	0.13						
127	-0.2109 GY	0.29						
127	-0.3516 GY	0.48						
127	-0.4922 GY	0.66						
127	-0.6328 GY	0.85						
127	-0.7734 GY	1.03						
127	-0.9141 GY	1.22						
127	-1.0547 GY	1.41						
127	-1.0547 GY	1.59						
127	-0.9141 GY	1.78						
127	-0.7734 GY	1.97						
127	-0.6328 GY	2.15						
127	-0.4922 GY	2.34						
127	-0.3516 GY	2.53						
127	-0.2109 GY	2.71						
127	-0.0703 GY	2.88						
323	-0.0703 GY	0.12						
323	-0.2109 GY	0.29						

						11011447,	000000	,	
STAAD SPACE			PAG	GE NO.	206				
323	-0.3516 GY	0.47							
323	-0.4922 GY	0.66							
323	-0.6328 GY	0.85							
323	-0.7734 GY	1.03							
323	-0.9141 GY	1.22							
323	-1.0547 GY	1.41							
323	-1.0547 GY	1.59							
323	-0.9141 GY	1.78							
323	-0.7734 GY	1.97							
323	-0.6328 GY	2.15							
323	-0.4922 GY	2.34							
323	-0.3516 GY	2.53							
323	-0.2109 GY	2.71							
323	-0.0703 GY	2.88							
74	-0.0703 GY	0.12							
74	-0.2109 GY	0.29							
74	-0.3516 GY	0.47							
74	-0.4922 GY	0.66							
74	-0.6328 GY	0.85							
74	-0.7734 GY	1.03							
74	-0.9141 GY	1.22							
74	-1.0547 GY	1.41							
74	-1.0547 GY	1.59							
74	-0.9141 GY	1.78							
74	-0.7734 GY	1.97							
74	-0.6328 GY	2.15							
74	-0.4922 GY	2.34							
74	-0.3516 GY	2.52							
74	-0.2109 GY	2.71							
74	-0.0703 GY	2.87							
325	-0.0703 GY	0.12							
325	-0.2109 GY	0.29							
325	-0.3516 GY	0.47							
325	-0.4922 GY	0.66							
325	-0.6328 GY	0.85							
325	-0.7734 GY	1.03							
325	-0.9141 GY	1.22							
325	-1.0547 GY	1.41							
325	-1.0547 GY	1.59							
325	-0.9141 GY	1.78							
325	-0.7734 GY	1.97							
325	-0.6328 GY	2.15							
325	-0.4922 GY	2.34							
325	-0.3516 GY	2.53							
325	-0.2109 GY	2.71							
325	-0.0703 GY	2.88							
128	-0.0703 GY	0.12							
128	-0.2109 GY	0.29							
128	-0.3516 GY	0.47							
128 128	-0.4922 GY -0.6328 GY	0.66 0.85							
128	-0.6328 GY -0.7734 GY								
128	-0.7734 GY	1.03							
		1.22							
128	-1.0547 GY	1.41							
128 128	-1.0547 GY -0.9141 GY	1.59 1.78							
120	-0.9141 GI	1./0							

STAAD SPACE			 PAGE	NO.
128	-0.7734 GY	1.97		
128	-0.6328 GY	2.15		
128	-0.4922 GY	2.34		
128	-0.3516 GY	2.52		
128	-0.2109 GY	2.71		
128	-0.0703 GY	2.87		
324	-0.0703 GY	0.12		
324	-0.2109 GY	0.29		
324	-0.3516 GY	0.47		
324	-0.4922 GY	0.66		
324	-0.6328 GY	0.85		
324	-0.7734 GY	1.03		
324	-0.9141 GY	1.22		
324	-1.0547 GY	1.41		
324	-1.0547 GY	1.59		
324	-0.9141 GY	1.78		
324	-0.7734 GY	1.97		
324	-0.6328 GY	2.15		
324	-0.4922 GY	2.34		
324	-0.3516 GY	2.53		
324	-0.2109 GY	2.71		
324	-0.0703 GY	2.88		
125	-0.0703 GY	0.12		
125	-0.2109 GY	0.29		
125	-0.3516 GY	0.47		
125	-0.4922 GY	0.66		
125	-0.6328 GY	0.85		
125	-0.7734 GY	1.03		
125	-0.9141 GY	1.22		
125	-1.0547 GY	1.41		
125	-1.0547 GY	1.59		
125	-0.9141 GY	1.78		
125	-0.7734 GY	1.97		
125	-0.6328 GY	2.15		
125	-0.4922 GY	2.34		
125	-0.3516 GY	2.53		
125	-0.2109 GY	2.71		
125	-0.0703 GY	2.88		
352	-0.0703 GY	0.13		
352	-0.2109 GY	0.29		
352	-0.3516 GY	0.48		
352	-0.4922 GY	0.66		
352	-0.6328 GY	0.85		
352	-0.7734 GY	1.03		
352	-0.9141 GY	1.22		
352	-1.0547 GY	1.41		
352	-1.0547 GY	1.59		
352	-0.9141 GY	1.78		
352	-0.7734 GY	1.97		
352	-0.6328 GY	2.15		
352	-0.4922 GY	2.34		
352	-0.3516 GY	2.53		
352	-0.2109 GY	2.71		
352	-0.0703 GY	2.88		
179	-0.0703 GY	0.12		
179	-0.2109 GY	0.29		

						4 /	•
STAAD SPACE			PA	GE NO.	208		
179	-0.3516 GY	0.47					
179	-0.4922 GY	0.66					
179	-0.6328 GY	0.85					
179	-0.7734 GY	1.03					
179	-0.9141 GY	1.22					
179	-1.0547 GY	1.41					
179	-1.0547 GY	1.59					
179	-0.9141 GY	1.78					
179	-0.7734 GY	1.97					
179	-0.6328 GY	2.15					
179	-0.4922 GY	2.34					
179	-0.3516 GY	2.53					
179	-0.2109 GY	2.71					
179	-0.0703 GY	2.88					
351	-0.0703 GY	0.13					
351	-0.2109 GY	0.29					
351	-0.3516 GY	0.48					
351	-0.4922 GY	0.66					
351	-0.6328 GY	0.85					
351	-0.7734 GY	1.03					
351	-0.9141 GY	1.22					
351	-1.0547 GY	1.41					
351	-1.0547 GY	1.59					
351	-0.9141 GY	1.78					
351	-0.7734 GY	1.97					
351	-0.6328 GY	2.15					
351	-0.4922 GY	2.34					
351	-0.3516 GY	2.53					
351	-0.2109 GY	2.71					
351	-0.0703 GY	2.88					
126	-0.0703 GY	0.12					
126 126	-0.2109 GY -0.3516 GY	0.29					
126	-0.4922 GY	0.66					
126	-0.4322 G1 -0.6328 GY	0.85					
126	-0.7734 GY	1.03					
126	-0.9141 GY	1.22					
126	-1.0547 GY	1.41					
126	-1.0547 GY	1.59					
126	-0.9141 GY	1.78					
126	-0.7734 GY	1.97					
126	-0.6328 GY	2.15					
126	-0.4922 GY	2.34					
126	-0.3516 GY	2.53					
126	-0.2109 GY	2.71					
126	-0.0703 GY	2.88					
353	-0.0703 GY	0.13					
353	-0.2109 GY	0.29					
353	-0.3516 GY	0.48					
353	-0.4922 GY	0.66					
353	-0.6328 GY	0.85					
353	-0.7734 GY	1.03					
353	-0.9141 GY	1.22					
353	-1.0547 GY	1.41					
353	-1.0547 GY	1.59					
353	-0.9141 GY	1.78					

							11011447,	000000	,	
S	TAAD SPACE			 PAGE 1	10.	209				
3	53	-0.7734 GY	1.97							
	53	-0.6328 GY	2.15							
	53	-0.4922 GY	2.34							
	53	-0.3516 GY	2.53							
	53	-0.2109 GY	2.71							
	53	-0.0703 GY	2.88							
	80	-0.0703 GY	0.12							
	80	-0.2109 GY	0.29							
	80	-0.3516 GY	0.47							
	80	-0.4922 GY	0.66							
	80	-0.6328 GY	0.85							
	80	-0.7734 GY	1.03							
	80	-0.9141 GY	1.22							
1	80	-1.0547 GY	1.41							
1	80	-1.0547 GY	1.59							
1	80	-0.9141 GY	1.78							
1	80	-0.7734 GY	1.97							
1	80	-0.6328 GY	2.15							
1	80	-0.4922 GY	2.34							
1	80	-0.3516 GY	2.53							
1	80	-0.2109 GY	2.71							
	80	-0.0703 GY	2.88							
	52	-0.0703 GY	0.13							
	52	-0.2109 GY	0.29							
	52	-0.3516 GY	0.48							
	52	-0.4922 GY	0.66							
	52	-0.6328 GY	0.85							
	52	-0.7734 GY	1.03							
	52	-0.9141 GY	1.22							
	52	-1.0547 GY	1.41							
	52	-1.0547 GY	1.59							
	52	-0.9141 GY	1.78							
	52	-0.7734 GY	1.97							
	52	-0.6328 GY	2.15							
	52	-0.4922 GY	2.34							
	52	-0.3516 GY	2.53							
	52	-0.2109 GY	2.71							
	52	-0.0703 GY	2.88							
	27	-0.0703 GY	0.13							
	27	-0.2109 GY	0.29							
	27	-0.3516 GY	0.48							
	27	-0.4922 GY	0.66							
	27	-0.6328 GY	0.85							
1	27	-0.7734 GY	1.03							
1	27	-0.9141 GY	1.22							
1	27	-1.0547 GY	1.41							
1	27	-1.0547 GY	1.59							
1	27	-0.9141 GY	1.78							
1	27	-0.7734 GY	1.97							
	27	-0.6328 GY	2.15							
	27	-0.4922 GY	2.34							
	27	-0.3516 GY	2.53							
	27	-0.2109 GY	2.71							
	27	-0.0703 GY	2.88							
	54	-0.0703 GY	0.13							
	54	-0.2109 GY	0.29							
J	J 1	J.2107 GI	0.23							

					, ,	000000	,	2020,	±0.07
STAAD SPACE			PAGE NO.	210					
354	-0.3516 GY	0.48							
354	-0.4922 GY	0.66							
354	-0.6328 GY	0.85							
354	-0.7734 GY	1.03							
354	-0.9141 GY	1.22							
354	-1.0547 GY	1.41							
354	-1.0547 GY	1.59							
354	-0.9141 GY	1.78							
354	-0.7734 GY	1.97							
354	-0.6328 GY	2.15							
354	-0.4922 GY	2.34							
354	-0.3516 GY	2.53							
354	-0.2109 GY	2.71							
354	-0.0703 GY	2.88							
181	-0.0703 GY	0.13							
181	-0.2109 GY	0.29							
181	-0.3516 GY	0.48							
181	-0.4922 GY	0.66							
181	-0.6328 GY	0.85							
181	-0.7734 GY	1.03							
181	-0.9141 GY	1.22							
181	-1.0547 GY	1.41							
181	-1.0547 GY	1.59							
181	-0.9141 GY	1.78							
181	-0.7734 GY	1.97							
181	-0.6328 GY	2.15							
181	-0.4922 GY	2.34							
181	-0.3516 GY	2.53							
181	-0.2109 GY	2.71							
181	-0.0703 GY	2.88							
353	-0.0703 GY	0.13							
353	-0.2109 GY	0.29							
353	-0.3516 GY	0.48							
353	-0.4922 GY	0.66							
353	-0.6328 GY	0.85							
353	-0.7734 GY	1.03							
353	-0.9141 GY	1.22							
353	-1.0547 GY	1.41							
353	-1.0547 GY	1.59							
353	-0.9141 GY	1.78							
353	-0.7734 GY	1.97							
353	-0.6328 GY	2.15							
353	-0.4922 GY	2.34							
353	-0.3516 GY	2.53							
353	-0.2109 GY	2.71							
353	-0.0703 GY	2.88							
128	-0.0703 GY	0.12							
128	-0.2109 GY	0.29							
128	-0.3516 GY	0.47							
128	-0.4922 GY	0.66							
128	-0.6328 GY	0.85							
128	-0.7734 GY	1.03							
128	-0.9141 GY	1.22							
128	-1.0547 GY	1.41							
128	-1.0547 GY	1.59							
128	-0.9141 GY	1.78							
-									

						, remaining	000000
STAAD SPACE			PAGE 1	NO.	211		
128	-0.7734 GY	1.97					
128	-0.6328 GY	2.15					
128	-0.4922 GY	2.34					
128	-0.3516 GY	2.52					
128	-0.2109 GY	2.71					
128	-0.0703 GY	2.87					
355	-0.0703 GY	0.13					
355	-0.2109 GY	0.29					
355	-0.3516 GY	0.48					
355	-0.4922 GY	0.66					
355	-0.6328 GY	0.85					
355	-0.7734 GY	1.03					
355	-0.9141 GY	1.22					
355	-1.0547 GY	1.41					
355	-1.0547 GY	1.59					
355	-0.9141 GY	1.78					
355	-0.7734 GY	1.97					
355	-0.6328 GY	2.15					
355	-0.4922 GY	2.34					
355	-0.3516 GY	2.53					
355	-0.2109 GY	2.71					
355	-0.0703 GY	2.88					
182	-0.0703 GY	0.12					
182	-0.2109 GY	0.29					
182	-0.3516 GY	0.47					
182	-0.4922 GY	0.66					
182	-0.6328 GY	0.85					
182	-0.7734 GY	1.03					
182	-0.9141 GY	1.22					
182	-1.0547 GY	1.41					
182 182	-1.0547 GY	1.59 1.78					
182	-0.9141 GY -0.7734 GY	1.97					
182	-0.6328 GY	2.15					
182	-0.4922 GY	2.34					
182	-0.3516 GY	2.52					
182	-0.2109 GY	2.71					
182	-0.0703 GY	2.87					
354	-0.0703 GY	0.13					
354	-0.2109 GY	0.29					
354	-0.3516 GY	0.48					
354	-0.4922 GY	0.66					
354	-0.6328 GY	0.85					
354	-0.7734 GY	1.03					
354	-0.9141 GY	1.22					
354	-1.0547 GY	1.41					
354	-1.0547 GY	1.59					
354	-0.9141 GY	1.78					
354	-0.7734 GY	1.97					
354	-0.6328 GY	2.15					
354	-0.4922 GY	2.34					
354	-0.3516 GY	2.53					
354	-0.2109 GY	2.71					
354	-0.0703 GY	2.88					
179	-0.0703 GY	0.12					
179	-0.2109 GY	0.29					

						11011447,	0000001	,	
STAAD SPACE			PAGE	NO.	212				
179	-0.3516 GY	0.47							
179	-0.4922 GY	0.66							
179	-0.6328 GY	0.85							
179	-0.7734 GY	1.03							
179	-0.9141 GY	1.22							
179	-1.0547 GY	1.41							
179	-1.0547 GY	1.59							
179	-0.9141 GY	1.78							
179	-0.7734 GY	1.97							
179	-0.6328 GY	2.15							
179	-0.4922 GY	2.34							
179	-0.3516 GY	2.53							
179	-0.2109 GY	2.71							
179	-0.0703 GY	2.88							
382	-0.0703 GY	0.12							
382	-0.2109 GY	0.29							
382	-0.3516 GY	0.47							
382	-0.4922 GY	0.66							
382	-0.6328 GY	0.85							
382	-0.7734 GY	1.03							
382	-0.9141 GY	1.22							
382	-1.0547 GY	1.41							
382	-1.0547 GY	1.59							
382	-0.9141 GY	1.78							
382	-0.7734 GY	1.97							
382	-0.6328 GY	2.15							
382	-0.4922 GY	2.34							
382	-0.3516 GY	2.52							
382	-0.2109 GY	2.71							
382	-0.0703 GY	2.87							
233	-0.0703 GY	0.12							
233	-0.2109 GY	0.29							
233	-0.3516 GY	0.47							
233	-0.4922 GY	0.66							
233	-0.6328 GY	0.85							
233	-0.7734 GY	1.03							
233	-0.9141 GY	1.22							
233	-1.0547 GY	1.41							
233	-1.0547 GY	1.59							
233	-0.9141 GY	1.78							
233	-0.7734 GY	1.97							
233	-0.6328 GY	2.15							
233	-0.4922 GY	2.34							
233	-0.3516 GY	2.53							
233	-0.2109 GY	2.71							
233	-0.0703 GY	2.88							
381	-0.0703 GY	0.12							
381	-0.2109 GY	0.29							
381	-0.3516 GY	0.47							
381	-0.4922 GY	0.66							
381 381	-0.6328 GY -0.7734 GY	0.85 1.03							
381	-0.7734 GY -0.9141 GY	1.03							
381 381	-1.0547 GY -1.0547 GY	1.41 1.59							
381	-0.9141 GY	1.78							
J01	0.9141 GI	1./0							

STAAD SPACE			PAGE NO.	213
381	-0.7734 GY	1.97		
381	-0.6328 GY	2.15		
381	-0.4922 GY	2.34		
381	-0.3516 GY	2.52		

234

234

234

234

234

234

234

234

234

234

234

234

234

234

382

382

-0.2109 GY 2.71 -0.0703 GY 2.87 -0.0703 GY 0.12 -0.2109 GY 0.29 -0.3516 GY 0.47 -0.4922 GY 0.66 -0.6328 GY 0.85 -0.7734 GY 1.03 -0.9141 GY 1.22 -1.0547 GY 1.41 -1.0547 GY 1.59 -0.9141 GY 1.78 -0.7734 GY 1.97 -0.6328 GY 2.15 -0.4922 GY 2.34 -0.3516 GY 2.53 -0.2109 GY 2.71 -0.0703 GY 2.88 -0.0703 GY 0.12 -0.2109 GY 0.29 -0.3516 GY 0.47 -0.4922 GY 0.66 -0.6328 GY 0.85 -0.7734 GY 1.03 -0.9141 GY 1.22 -1.0547 GY 1.41 -1.0547 GY 1.59 -0.9141 GY 1.78 -0.7734 GY 1.97 -0.6328 GY 2.15 -0.4922 GY 2.34 -0.3516 GY 2.52 -0.2109 GY 2.71 -0.0703 GY 2.87 -0.0703 GY 0.12 -0.2109 GY 0.29 -0.3516 GY 0.47 -0.4922 GY 0.66 -0.6328 GY 0.85 -0.7734 GY 1.03 -0.9141 GY 1.22 -1.0547 GY 1.41 -1.0547 GY 1.59 -0.9141 GY 1.78 -0.7734 GY 1.97 -0.6328 GY 2.15 -0.4922 GY 2.34 2.53 -0.3516 GY -0.2109 GY 2.71 -0.0703 GY 2.88

-0.0703 GY

-0.2109 GY

0.12

0.29

						11011447,	000000	_ , _
STAAD SPACE			PAGE	NO.	214			
382	-0.3516 GY	0.47						
382	-0.4922 GY	0.66						
382	-0.6328 GY	0.85						
382	-0.7734 GY	1.03						
382	-0.9141 GY	1.22						
382	-1.0547 GY	1.41						
382	-1.0547 GY	1.59						
382	-0.9141 GY	1.78						
382	-0.7734 GY	1.97						
382	-0.6328 GY	2.15						
382	-0.4922 GY	2.34						
382	-0.3516 GY	2.52						
382	-0.2109 GY	2.71						
382	-0.0703 GY	2.87						
181	-0.0703 GY	0.13						
181	-0.2109 GY	0.29						
181	-0.3516 GY	0.48						
181	-0.4922 GY	0.66						
181	-0.6328 GY	0.85						
181	-0.7734 GY	1.03						
181	-0.9141 GY	1.22						
181	-1.0547 GY	1.41						
181	-1.0547 GY	1.59						
181	-0.9141 GY	1.78						
181	-0.7734 GY	1.97						
181	-0.6328 GY	2.15						
181	-0.4922 GY	2.34						
181	-0.3516 GY	2.53						
181	-0.2109 GY	2.71						
181	-0.0703 GY	2.88						
384	-0.0703 GY	0.12						
384	-0.2109 GY	0.29						
384	-0.3516 GY	0.47						
384	-0.4922 GY	0.66						
384	-0.6328 GY -0.7734 GY	0.85						
384 384	-0.7734 G1 -0.9141 GY	1.03 1.22						
384	-1.0547 GY	1.41						
384	-1.0547 GY	1.59						
384	-0.9141 GY	1.78						
384	-0.7734 GY	1.97						
384	-0.6328 GY	2.15						
384	-0.4922 GY	2.34						
384	-0.3516 GY	2.52						
384	-0.2109 GY	2.71						
384	-0.0703 GY	2.87						
235	-0.0703 GY	0.13						
235	-0.2109 GY	0.29						
235	-0.3516 GY	0.48						
235	-0.4922 GY	0.66						
235	-0.6328 GY	0.85						
235	-0.7734 GY	1.03						
235	-0.9141 GY	1.22						
235	-1.0547 GY	1.41						
235	-1.0547 GY	1.59						
235	-0.9141 GY	1.78						

							- '	•
5	STAAD SPACE			PAGE	NO.	215		
2	235	-0.7734 GY	1.97					
2	235	-0.6328 GY	2.15					
	235	-0.4922 GY	2.34					
	235	-0.3516 GY	2.53					
	235	-0.2109 GY	2.71					
	235	-0.0703 GY	2.88					
	383	-0.0703 GY	0.12					
	383	-0.2109 GY	0.29					
	383	-0.3516 GY						
			0.47					
	883	-0.4922 GY	0.66					
	383	-0.6328 GY	0.85					
	383	-0.7734 GY	1.03					
	383	-0.9141 GY	1.22					
	383	-1.0547 GY	1.41					
	383	-1.0547 GY	1.59					
	383	-0.9141 GY	1.78					
	383	-0.7734 GY	1.97					
	383	-0.6328 GY	2.15					
3	383	-0.4922 GY	2.34					
3	383	-0.3516 GY	2.52					
3	383	-0.2109 GY	2.71					
3	383	-0.0703 GY	2.87					
1	.82	-0.0703 GY	0.12					
1	.82	-0.2109 GY	0.29					
1	.82	-0.3516 GY	0.47					
	.82	-0.4922 GY	0.66					
	.82	-0.6328 GY	0.85					
	.82	-0.7734 GY	1.03					
	.82	-0.9141 GY	1.22					
	.82	-1.0547 GY	1.41					
	.82	-1.0547 GY	1.59					
	.82	-0.9141 GY	1.78					
	.82	-0.7734 GY	1.97					
	.82	-0.6328 GY	2.15					
	.82	-0.4922 GY	2.34					
	.82	-0.3516 GY	2.52					
	.82	-0.2109 GY	2.71					
	.82	-0.0703 GY	2.87					
	385	-0.0703 GY	0.12					
	385	-0.2109 GY	0.29					
		-0.3516 GY						
	385		0.47					
	385	-0.4922 GY	0.66					
	385	-0.6328 GY	0.85					
	385	-0.7734 GY	1.03					
	385	-0.9141 GY	1.22					
	385	-1.0547 GY	1.41					
	385	-1.0547 GY	1.59					
	385	-0.9141 GY	1.78					
	385	-0.7734 GY	1.97					
	385	-0.6328 GY	2.15					
	385	-0.4922 GY	2.34					
	385	-0.3516 GY	2.52					
3	385	-0.2109 GY	2.71					
3	385	-0.0703 GY	2.87					
2	236	-0.0703 GY	0.12					
2	236	-0.2109 GY	0.29					

STAAD SPACE				 PAGE NO.	216	
236	-0.3516 G	Y	0.47			
236	-0.4922 G	Y	0.66			
236	-0.6328 G		0.85			
236	-0.7734 G		1.03			
236	-0.9141 G		1.22			
236	-1.0547 G		1.41			
236	-1.0547 G		1.59			
236	-0.9141 G		1.78			
236	-0.7734 G		1.97			
236	-0.6328 G		2.15			
236	-0.4922 G		2.34			
236	-0.3516 G		2.52			
236	-0.2109 G	Y	2.71			
236	-0.0703 G	Y	2.87			
384	-0.0703 G	Y	0.12			
384	-0.2109 G	Y	0.29			
384	-0.3516 G		0.47			
384	-0.4922 G		0.66			
384	-0.6328 G		0.85			
384	-0.7734 G		1.03			
384	-0.9141 G		1.22			
384	-1.0547 G		1.41			
384						
	-1.0547 G		1.59			
384	-0.9141 G		1.78			
384	-0.7734 G		1.97			
384	-0.6328 G		2.15			
384	-0.4922 G		2.34			
384	-0.3516 G		2.52			
384	-0.2109 G		2.71			
384	-0.0703 G	Y	2.87			
21	-0.0703 G	Y	0.12			
21	-0.2109 G	Y	0.29			
21	-0.3516 G	Y	0.47			
21	-0.4922 G	Y	0.66			
21	-0.6328 G	Y	0.85			
21	-0.7734 G		1.03			
21	-0.9141 G		1.22			
21	-1.0547 G		1.41			
21	-1.0547 G		1.59			
21	-0.9141 G		1.78			
21	-0.7734 G		1.97			
21	-0.6328 G		2.15			
21						
	-0.4922 G		2.34			
21	-0.3516 G		2.53			
21	-0.2109 G		2.71			
21	-0.0703 G		2.88			
297	-0.0703 G		0.12			
297	-0.2109 G		0.29			
297	-0.3516 G		0.47			
297	-0.4922 G		0.66			
297	-0.6328 G	Y	0.85			
297	-0.7734 G	Y	1.03			
297	-0.9141 G	Y	1.22			
297	-1.0547 G		1.41			
297	-1.0547 G		1.59			
297	-0.9141 G		1.78			

					Monday,	October
STAAD SPACE			 PAGE NO.	217		
297	-0.7734 GY	1.97				
297	-0.6328 GY	2.15				
297	-0.4922 GY	2.34				
297	-0.3516 GY	2.53				
297	-0.2109 GY	2.71				
297	-0.0703 GY	2.88				
75	-0.0703 GY	0.12				
75	-0.2109 GY	0.29				
75	-0.3516 GY	0.47				
75	-0.4922 GY	0.66				
75	-0.6328 GY	0.85				
75	-0.7734 GY	1.03				
75	-0.9141 GY	1.22				
75	-1.0547 GY	1.41				
75	-1.0547 GY	1.59				
75	-0.9141 GY	1.78				
75	-0.7734 GY	1.97				
75	-0.6328 GY	2.15				
75	-0.4922 GY	2.34				
75	-0.3516 GY	2.53				
75	-0.2109 GY	2.71				
75	-0.0703 GY	2.88				
296	-0.0703 GY	0.12				
296	-0.2109 GY	0.29				
296	-0.3516 GY	0.47				
296	-0.4922 GY	0.66				
296	-0.6328 GY	0.85				
296	-0.7734 GY	1.03				
296	-0.9141 GY	1.22				
296	-1.0547 GY	1.41				
296	-1.0547 GY	1.59				
296	-0.9141 GY	1.78				
296	-0.7734 GY	1.97				
296	-0.6328 GY	2.15				
296	-0.4922 GY	2.34				
296	-0.3516 GY	2.53				
296	-0.2109 GY	2.71				
296	-0.0703 GY	2.88				
22	-0.0703 GY	0.12				
22	-0.2109 GY					
22	-0.3516 GY	0.47				
22	-0.4922 GY	0.66				
22	-0.6328 GY	0.85				
22 22	-0.7734 GY -0.9141 GY	1.03				
22	-0.9141 GY -1.0547 GY	1.22 1.41				
22	-1.0547 GY	1.59				
22						
22	-0.9141 GY -0.7734 GY	1.78 1.97				
22	-0.6328 GY	2.15				
22	-0.4922 GY	2.13				
22	-0.3516 GY	2.53				
22	-0.2109 GY	2.71				
22	-0.2109 G1 -0.0703 GY	2.88				
298	-0.0703 GY	0.12				
298	-0.2109 GY	0.29				
2,0	0.2107 91	0.27				

					monday,	. 0
STAAD SPACE			PAGE NO.	218		
298	-0.3516 GY	0.47				
298	-0.4922 GY	0.66				
298	-0.6328 GY	0.85				
298	-0.7734 GY	1.03				
298	-0.9141 GY	1.22				
298	-1.0547 GY	1.41				
298	-1.0547 GY	1.59				
298	-0.9141 GY	1.78				
298	-0.7734 GY	1.97				
298	-0.6328 GY	2.15				
298	-0.4922 GY	2.34				
298	-0.3516 GY	2.53				
298	-0.2109 GY	2.71				
298	-0.0703 GY	2.88				
76	-0.0703 GY	0.12				
76	-0.2109 GY	0.29				
76	-0.3516 GY	0.47				
76	-0.4922 GY	0.66				
76	-0.6328 GY	0.85				
76	-0.7734 GY	1.03				
76	-0.9141 GY	1.22				
76	-1.0547 GY	1.41				
76	-1.0547 GY	1.59				
76	-0.9141 GY	1.78				
76	-0.7734 GY	1.97				
76	-0.6328 GY	2.15				
76	-0.4922 GY	2.34				
76	-0.3516 GY	2.53				
76	-0.2109 GY	2.71				
76	-0.0703 GY	2.88				
297	-0.0703 GY	0.12				
297	-0.2109 GY	0.29				
297	-0.3516 GY	0.47				
297	-0.4922 GY	0.66				
297	-0.6328 GY	0.85				
297	-0.7734 GY	1.03				
297	-0.9141 GY	1.22				
297	-1.0547 GY	1.41				
297	-1.0547 GY	1.59				
297	-0.9141 GY					
297	-0.7734 GY	1.97				
297	-0.6328 GY	2.15				
297	-0.4922 GY	2.34				
297	-0.3516 GY	2.53				
297	-0.2109 GY	2.71				
297	-0.0703 GY	2.88				
23	-0.0703 GY	0.13				
23	-0.2109 GY	0.29				
23	-0.3516 GY	0.48				
23	-0.4922 GY	0.66				
23	-0.6328 GY	0.85				
23	-0.7734 GY	1.03				
23	-0.9141 GY	1.22				
23	-1.0547 GY	1.41				
23	-1.0547 GY	1.59				
23	-0.9141 GY	1.78				

						, ,	0000001	,	
STAAD SPACE			PAGE	E NO.	219				
23	-0.7734 GY	1.97							
23	-0.6328 GY	2.15							
23	-0.4922 GY	2.34							
23	-0.3516 GY	2.53							
23	-0.2109 GY	2.71							
23									
	-0.0703 GY	2.88							
299	-0.0703 GY	0.12							
299	-0.2109 GY	0.29							
299	-0.3516 GY	0.47							
299	-0.4922 GY	0.66							
299	-0.6328 GY	0.85							
299	-0.7734 GY	1.03							
299	-0.9141 GY	1.22							
299	-1.0547 GY	1.41							
299	-1.0547 GY	1.59							
299	-0.9141 GY	1.78							
299	-0.7734 GY	1.97							
299	-0.6328 GY	2.15							
299	-0.4922 GY	2.34							
299	-0.3516 GY	2.53							
299	-0.2109 GY	2.71							
299	-0.0703 GY	2.88							
77	-0.0703 GY	0.13							
77									
	-0.2109 GY	0.29							
77	-0.3516 GY	0.48							
77	-0.4922 GY	0.66							
77	-0.6328 GY	0.85							
77	-0.7734 GY	1.03							
77	-0.9141 GY	1.22							
77	-1.0547 GY	1.41							
77	-1.0547 GY	1.59							
77	-0.9141 GY	1.78							
77	-0.7734 GY	1.97							
77	-0.6328 GY	2.15							
77	-0.4922 GY	2.34							
77	-0.3516 GY	2.53							
77	-0.2109 GY	2.71							
77	-0.0703 GY	2.88							
298	-0.0703 GY	0.12							
298	-0.2109 GY	0.29							
298	-0.3516 GY	0.47							
298	-0.4922 GY	0.66							
298	-0.6328 GY	0.85							
298	-0.7734 GY	1.03							
298	-0.9141 GY	1.22							
298	-1.0547 GY	1.41							
298	-1.0547 GY	1.59							
298	-0.9141 GY	1.78							
298	-0.7734 GY	1.97							
298	-0.6328 GY	2.15							
298	-0.4922 GY	2.34							
298	-0.3516 GY	2.53							
298	-0.2109 GY	2.71							
298	-0.0703 GY	2.88							
24	-0.0703 GY	0.12							
24	-0.2109 GY	0.29							

				11011447,	0000001 20	, 2020,
STAAD SPACE			PAGE NO. 220			
24	-0.3516 GY	0.47				
24	-0.4922 GY	0.66				
24	-0.6328 GY	0.85				
24	-0.7734 GY	1.03				
24	-0.9141 GY	1.22				
24						
	-1.0547 GY	1.41				
24	-1.0547 GY	1.59				
24	-0.9141 GY	1.78				
24	-0.7734 GY	1.97				
24	-0.6328 GY	2.15				
24	-0.4922 GY	2.34				
24	-0.3516 GY	2.52				
24	-0.2109 GY	2.71				
24	-0.0703 GY	2.87				
300	-0.0703 GY	0.12				
300	-0.2109 GY	0.29				
300	-0.3516 GY	0.47				
300	-0.4922 GY	0.66				
300	-0.6328 GY	0.85				
300	-0.7734 GY	1.03				
300	-0.9141 GY	1.22				
300	-1.0547 GY	1.41				
300	-1.0547 GY	1.59				
300	-0.9141 GY	1.78				
300	-0.7734 GY	1.97				
300	-0.6328 GY	2.15				
300	-0.4922 GY	2.34				
300	-0.3516 GY	2.54				
300	-0.2109 GY	2.71				
300	-0.0703 GY	2.88				
78	-0.0703 GY	0.12				
78	-0.2109 GY	0.29				
78	-0.3516 GY	0.47				
78	-0.4922 GY	0.66				
78	-0.6328 GY	0.85				
78	-0.7734 GY	1.03				
78	-0.9141 GY	1.22				
78	-1.0547 GY	1.41				
78	-1.0547 GY	1.59				
78	-0.9141 GY	1.78				
78	-0.7734 GY	1.97				
78	-0.6328 GY	2.15				
78	-0.4922 GY	2.34				
78	-0.3516 GY	2.52				
78	-0.2109 GY	2.71				
78	-0.0703 GY	2.87				
299	-0.0703 GY	0.12				
299	-0.2109 GY	0.29				
299	-0.3516 GY	0.47				
299	-0.4922 GY	0.66				
299	-0.6328 GY	0.85				
299	-0.7734 GY	1.03				
299	-0.9141 GY	1.22				
299	-1.0547 GY	1.41				
299	-1.0547 GY	1.59				
299	-0.9141 GY	1.78				
233	-0.3141 G1	1./0				

						, inclination	000000	, _
STAAD SPACE			PAG	E NO.	221			
299	-0.7734 GY	1.97						
299	-0.6328 GY	2.15						
299	-0.4922 GY	2.34						
299	-0.3516 GY	2.53						
299	-0.2109 GY	2.71						
299	-0.0703 GY	2.88						
75	-0.0703 GY	0.12						
75	-0.2109 GY	0.29						
75	-0.3516 GY	0.47						
75	-0.4922 GY	0.66						
75	-0.6328 GY	0.85						
75	-0.7734 GY	1.03						
75	-0.9141 GY	1.22						
75	-1.0547 GY	1.41						
75	-1.0547 GY	1.59						
75	-0.9141 GY	1.78						
75	-0.7734 GY	1.97						
75	-0.6328 GY	2.15						
75	-0.4922 GY	2.34						
75	-0.3516 GY	2.53						
75	-0.2109 GY	2.71						
75	-0.0703 GY	2.88						
327	-0.0703 GY	0.12						
327	-0.2109 GY	0.29						
327	-0.3516 GY	0.47						
327	-0.4922 GY	0.66						
327	-0.6328 GY	0.85						
327	-0.7734 GY	1.03						
327	-0.9141 GY	1.22						
327 327	-1.0547 GY -1.0547 GY	1.41 1.59						
327	-0.9141 GY	1.78						
327	-0.7734 GY	1.97						
327	-0.6328 GY	2.15						
327	-0.4922 GY	2.34						
327	-0.3516 GY	2.53						
327	-0.2109 GY	2.71						
327	-0.0703 GY	2.88						
129	-0.0703 GY	0.12						
129	-0.2109 GY	0.29						
129	-0.3516 GY	0.47						
129	-0.4922 GY	0.66						
129	-0.6328 GY	0.85						
129	-0.7734 GY	1.03						
129	-0.9141 GY	1.22						
129	-1.0547 GY	1.41						
129	-1.0547 GY	1.59						
129	-0.9141 GY	1.78						
129	-0.7734 GY	1.97						
129	-0.6328 GY	2.15						
129	-0.4922 GY	2.34						
129	-0.3516 GY	2.53						
129	-0.2109 GY	2.71						
129	-0.0703 GY	2.88						
326	-0.0703 GY	0.12						
326	-0.2109 GY	0.29						

						Monday,	October	26,	202
STAAD SPACE			 PAGE	E NO.	222				
326	-0.3516 GY	0.47							
326	-0.4922 GY	0.66							
326	-0.6328 GY	0.85							
326	-0.7734 GY	1.03							
326	-0.9141 GY	1.22							
326	-1.0547 GY	1.41							
326	-1.0547 GY	1.59							
326	-0.9141 GY	1.78							
326	-0.7734 GY	1.97							
326	-0.6328 GY	2.15							
326	-0.4922 GY	2.34							
326	-0.3516 GY	2.53							
326	-0.2109 GY	2.71							
326	-0.0703 GY	2.88							
76	-0.0703 GY	0.12							
76	-0.2109 GY	0.29							
76	-0.3516 GY	0.47							
76	-0.4922 GY	0.66							
76	-0.6328 GY	0.85							
76	-0.7734 GY	1.03							
76	-0.9141 GY	1.22							
76	-1.0547 GY	1.41							
76 76	-1.0547 GY	1.59							
76 76	-0.9141 GY -0.7734 GY	1.78 1.97							
76	-0.6328 GY	2.15							
76	-0.4922 GY	2.34							
76	-0.3516 GY	2.53							
76	-0.2109 GY	2.71							
76	-0.0703 GY	2.88							
328	-0.0703 GY	0.12							
328	-0.2109 GY	0.29							
328	-0.3516 GY	0.47							
328	-0.4922 GY	0.66							
328	-0.6328 GY	0.85							
328	-0.7734 GY	1.03							
328	-0.9141 GY	1.22							
328	-1.0547 GY	1.41							
328	-1.0547 GY	1.59							
328	-0.9141 GY	1.78							
328	-0.7734 GY	1.97							
328	-0.6328 GY	2.15							
328	-0.4922 GY	2.34							
328	-0.3516 GY	2.53							
328	-0.2109 GY	2.71							
328	-0.0703 GY	2.88							
130	-0.0703 GY	0.12							
130	-0.2109 GY	0.29							
130	-0.3516 GY	0.47							
130	-0.4922 GY	0.66							
130	-0.6328 GY	0.85							
130	-0.7734 GY	1.03							
130	-0.9141 GY	1.22							
130	-1.0547 GY	1.41							
130	-1.0547 GY	1.59							
130	-0.9141 GY	1.78							

						nonday
STAAD SPACE			 PAGE	NO.	223	
130	-0.7734 GY	1.97				
130	-0.6328 GY	2.15				
130	-0.4922 GY	2.34				
130	-0.3516 GY	2.53				
130	-0.2109 GY	2.71				
130	-0.0703 GY	2.88				
327	-0.0703 GY	0.12				
327	-0.2109 GY	0.29				
327	-0.3516 GY	0.47				
327	-0.4922 GY	0.66				
327	-0.6328 GY	0.85				
327	-0.7734 GY	1.03				
327	-0.9141 GY	1.22				
327	-1.0547 GY	1.41				
327	-1.0547 GY	1.59				
327	-0.9141 GY	1.78				
327	-0.7734 GY	1.97				
327	-0.6328 GY	2.15				
327	-0.4922 GY	2.34				
327	-0.3516 GY	2.53				
327	-0.2109 GY	2.71				
327	-0.0703 GY	2.88				
77	-0.0703 GY	0.13				
77	-0.2109 GY	0.29				
77	-0.3516 GY	0.48				
77	-0.4922 GY	0.66				
77	-0.6328 GY	0.85				
77	-0.7734 GY	1.03				
77	-0.9141 GY	1.22				
77	-1.0547 GY	1.41				
77	-1.0547 GY	1.59				
77	-0.9141 GY	1.78				
77	-0.7734 GY	1.97				
77	-0.6328 GY	2.15				
77	-0.4922 GY	2.34				
77	-0.3516 GY	2.53				
77	-0.2109 GY	2.71				
77	-0.0703 GY	2.88				
329	-0.0703 GY	0.12				
329	-0.2109 GY	0.29				
329	-0.3516 GY	0.47				
329	-0.4922 GY	0.66				
329	-0.6328 GY	0.85				
329	-0.7734 GY	1.03				
329	-0.9141 GY	1.22				
329	-1.0547 GY	1.41				
329	-1.0547 GY	1.59				
329	-0.9141 GY	1.78				
329	-0.7734 GY -0.6328 GY	1.97				
329		2.15				
329 329	-0.4922 GY -0.3516 GY	2.34				
329	-0.3516 GY	2.53				
329	-0.2109 G1 -0.0703 GY	2.88				
131	-0.0703 GY	0.13				
131	-0.2109 GY	0.29				
101	0.2103 GI	U•∠ <i>3</i>				

					Monday,
STAAD SPACE			PAGE N	0. 224	
131	-0.3516 GY	0.48			
131	-0.4922 GY	0.66			
131	-0.6328 GY	0.85			
131	-0.7734 GY	1.03			
131	-0.9141 GY	1.22			
131	-1.0547 GY	1.41			
131	-1.0547 GY	1.59			
131	-0.9141 GY	1.78			
131	-0.7734 GY	1.97			
131	-0.6328 GY	2.15			
131	-0.4922 GY	2.34			
131	-0.3516 GY	2.53			
131	-0.2109 GY	2.71			
131	-0.0703 GY	2.88			
328	-0.0703 GY	0.12			
328	-0.2109 GY	0.29			
328	-0.3516 GY	0.47			
328	-0.4922 GY	0.66			
328	-0.6328 GY	0.85			
328	-0.7734 GY	1.03			
328	-0.9141 GY	1.22			
328	-1.0547 GY	1.41			
328	-1.0547 GY	1.59			
328	-0.9141 GY	1.78			
328	-0.7734 GY	1.97			
328	-0.6328 GY	2.15			
328	-0.4922 GY	2.34			
328	-0.3516 GY	2.53			
328	-0.2109 GY	2.71			
328	-0.0703 GY	2.88			
78	-0.0703 GY	0.12			
78	-0.2109 GY	0.29			
78	-0.3516 GY	0.47			
78	-0.4922 GY	0.66			
78	-0.6328 GY	0.85			
78	-0.7734 GY	1.03			
78	-0.9141 GY	1.22			
78	-1.0547 GY	1.41			
78	-1.0547 GY	1.59			
78	-0.9141 GY	1.78			
78 78	-0.7734 GY -0.6328 GY	1.97			
78		2.15			
78 78	-0.4922 GY -0.3516 GY	2.34			
78		2.52			
78	-0.2109 GY	2.71			
	-0.0703 GY	2.87			
330	-0.0703 GY	0.12			
330 330	-0.2109 GY	0.29			
330	-0.3516 GY	0.47			
330	-0.4922 GY -0.6328 GY	0.66 0.85			
330	-0.6328 GY -0.7734 GY	1.03			
330	-0.7734 GY	1.03			
330					
330	-1.0547 GY -1.0547 GY	1.41 1.59			
330	-0.9141 GY	1.78			

STAAD	SPACE						PAGE	NO.	225
330		-	0.7734	GY	1.97				
330		_	0 6338	CV	2 15				

STAAD SPACE		
220	0 7724 67	1 07
330	-0.7734 GY	1.97
330	-0.6328 GY	2.15
330	-0.4922 GY	2.34
330	-0.3516 GY	2.53
330	-0.2109 GY	2.71
330	-0.0703 GY	2.88
132	-0.0703 GY	0.12
132	-0.2109 GY	0.29
132	-0.3516 GY	0.47
132	-0.4922 GY	0.66
132	-0.6328 GY	0.85
132	-0.7734 GY	1.03
132	-0.9141 GY	1.22
132	-1.0547 GY	1.41
132	-1.0547 GY	1.59
132	-0.9141 GY	1.78
132	-0.7734 GY	1.97
132	-0.6328 GY	2.15
132	-0.4922 GY	2.34
132	-0.3516 GY	2.52
132	-0.2109 GY	2.71
132	-0.0703 GY	2.87
329	-0.0703 GY	0.12
329	-0.2109 GY	0.29
329	-0.3516 GY	0.47
329	-0.4922 GY	0.66
329	-0.6328 GY	0.85
329	-0.7734 GY	1.03
329	-0.9141 GY	1.22
329	-1.0547 GY	1.41
329	-1.0547 GY	1.59
329	-0.9141 GY	1.78
329	-0.7734 GY	1.97
329	-0.6328 GY	2.15
329	-0.4922 GY	2.34
329	-0.3516 GY	2.53
329	-0.2109 GY	2.71
329	-0.0703 GY	2.88
129	-0.0703 GY	0.12
129	-0.2109 GY	0.29
129	-0.3516 GY	0.47
129	-0.4922 GY	0.66
129	-0.6328 GY	
129	-0.7734 GY	1.03
129	-0.9141 GY	1.22
129	-1.0547 GY	1.41
129	-1.0547 GY	1.59
129	-0.9141 GY	1.78
129	-0.7734 GY	1.97
129	-0.6328 GY	2.15
129	-0.4922 GY	2.34
129	-0.3516 GY	2.53
129	-0.2109 GY	2.71
129	-0.0703 GY	2.88
357	-0.0703 GY	0.13
357	-0.2109 GY	0.29

						momuay,	OCCODEL	20
STAAD SPACE			PAGI	E NO.	226			
357	-0.3516 GY	0.48						
357	-0.4922 GY	0.66						
357	-0.6328 GY	0.85						
357	-0.7734 GY	1.03						
357	-0.9141 GY	1.22						
357	-1.0547 GY	1.41						
357	-1.0547 GY	1.59						
357	-0.9141 GY	1.78						
357	-0.7734 GY	1.97						
357	-0.6328 GY	2.15						
357	-0.4922 GY	2.34						
357	-0.3516 GY	2.53						
357	-0.2109 GY	2.71						
357	-0.0703 GY	2.88						
183	-0.0703 GY	0.12						
183	-0.2109 GY	0.29						
183	-0.3516 GY	0.47						
183	-0.4922 GY	0.66						
183	-0.6328 GY	0.85						
183	-0.7734 GY	1.03						
183	-0.9141 GY	1.22						
183	-1.0547 GY	1.41						
183	-1.0547 GY	1.59						
183	-0.9141 GY	1.78						
183	-0.7734 GY	1.97						
183	-0.6328 GY	2.15						
183	-0.4922 GY	2.34						
183	-0.3516 GY	2.53						
183	-0.2109 GY	2.71						
183	-0.0703 GY	2.88						
356	-0.0703 GY	0.13						
356	-0.2109 GY	0.29						
356	-0.3516 GY	0.48						
356	-0.4922 GY	0.66						
356	-0.6328 GY	0.85						
356	-0.7734 GY	1.03						
356	-0.9141 GY	1.22						
356	-1.0547 GY	1.41						
356	-1.0547 GY	1.59						
356	-0.9141 GY	1.78						
356	-0.7734 GY	1.97						
356	-0.6328 GY	2.15						
356	-0.4922 GY	2.34						
356	-0.3516 GY	2.53						
356	-0.2109 GY	2.71						
356	-0.0703 GY	2.88						
130	-0.0703 GY	0.12						
130	-0.2109 GY	0.29						
130	-0.3516 GY	0.47						
130	-0.4922 GY	0.66						
130	-0.6328 GY	0.85						
130	-0.7734 GY	1.03						
130	-0.9141 GY	1.22						
130	-1.0547 GY	1.41						
130	-1.0547 GY	1.59						
130	-0.9141 GY	1.78						
±5,0	0.7111 01							

						Monday.	October	26.
STA	AAD SPACE			PAGE NO.	227			
130		-0.7734 GY	1.97					
130)	-0.6328 GY	2.15					
130)	-0.4922 GY	2.34					
130)	-0.3516 GY	2.53					
130)	-0.2109 GY	2.71					
130)	-0.0703 GY	2.88					
358	3	-0.0703 GY	0.13					
358	3	-0.2109 GY	0.29					
358	3	-0.3516 GY	0.48					
358	3	-0.4922 GY	0.66					
358	3	-0.6328 GY	0.85					
358	3	-0.7734 GY	1.03					
358	3	-0.9141 GY	1.22					
358	3	-1.0547 GY	1.41					
358	3	-1.0547 GY	1.59					
358	3	-0.9141 GY	1.78					
358	3	-0.7734 GY	1.97					
358	3	-0.6328 GY	2.15					
358	3	-0.4922 GY	2.34					
358	3	-0.3516 GY	2.53					
358	3	-0.2109 GY	2.71					
358	3	-0.0703 GY	2.88					
184	1	-0.0703 GY	0.12					
184	1	-0.2109 GY	0.29					
184	1	-0.3516 GY	0.47					
184	1	-0.4922 GY	0.66					

-0.6328 GY 0.85 -0.7734 GY 1.03

-0.9141 GY 1.22

-1.0547 GY

-1.0547 GY

-0.9141 GY

-0.7734 GY

-0.6328 GY

-0.4922 GY -0.3516 GY

-0.2109 GY

-0.0703 GY

-0.0703 GY

-0.2109 GY

-0.3516 GY

-0.4922 GY

-0.6328 GY

-0.7734 GY

-0.9141 GY

-1.0547 GY

-1.0547 GY

-0.9141 GY

-0.7734 GY

-0.6328 GY

-0.4922 GY

-0.3516 GY

-0.2109 GY

-0.0703 GY

-0.0703 GY

-0.2109 GY

1.41

1.59

1.78

1.97

2.15

2.34

2.53

2.71

2.88

0.13

0.29

0.48

0.66

0.85

1.03

1.22

1.41

1.59

1.78

1.97

2.15

2.34

2.53

2.71

2.88

0.13

0.29

184

184 184

184

184

184

184 184

184

184

184

184

357

357

357

357 357

357

357

357

357

357

357 357

357

357

357

357

131

						11011447,	0000002	_ ,	
STAAD SPACE			PAG	GE NO.	228				
131	-0.3516 GY	0.48							
131	-0.4922 GY	0.66							
131	-0.6328 GY	0.85							
131	-0.7734 GY	1.03							
131	-0.9141 GY	1.22							
131	-1.0547 GY	1.41							
131	-1.0547 GY	1.59							
131	-0.9141 GY	1.78							
131	-0.7734 GY	1.97							
131	-0.6328 GY	2.15							
131	-0.4922 GY	2.34							
131	-0.4922 G1 -0.3516 GY	2.53							
131	-0.2109 GY	2.71							
131	-0.2109 G1 -0.0703 GY	2.88							
359	-0.0703 GY	0.13							
359	-0.2109 GY	0.29							
359 359	-0.3516 GY	0.48							
359	-0.4922 GY -0.6328 GY	0.66							
359	-0.6328 G1 -0.7734 GY	0.85							
		1.03							
359	-0.9141 GY	1.22							
359	-1.0547 GY	1.41							
359	-1.0547 GY	1.59							
359 359	-0.9141 GY -0.7734 GY	1.78 1.97							
359	-0.6328 GY	2.15							
359	-0.4922 GY	2.34							
359	-0.3516 GY	2.53							
359	-0.2109 GY	2.71							
359	-0.0703 GY	2.88							
185	-0.0703 GY	0.13							
185	-0.2109 GY	0.29							
185	-0.3516 GY	0.48							
185	-0.4922 GY	0.66							
185	-0.6328 GY	0.85							
185	-0.7734 GY	1.03							
185	-0.9141 GY	1.22							
185	-1.0547 GY	1.41							
185	-1.0547 GY	1.59							
185	-0.9141 GY	1.78							
185	-0.7734 GY	1.97							
185	-0.6328 GY	2.15							
185	-0.4922 GY	2.34							
185	-0.3516 GY	2.53							
185	-0.2109 GY	2.71							
185	-0.0703 GY	2.88							
358	-0.0703 GY	0.13							
358	-0.2109 GY	0.29							
358	-0.3516 GY	0.48							
358	-0.4922 GY	0.66							
358	-0.6328 GY	0.85							
358	-0.7734 GY	1.03							
358	-0.9141 GY	1.22							
358	-1.0547 GY	1.41							
358	-1.0547 GY	1.59							
358	-0.9141 GY	1.78							

STAAD SPACE		 PAGE	NO.
358	-0.7734 GY 1.97		
358	-0.6328 GY 2.15		
358	-0.4922 GY 2.34		
358	-0.3516 GY 2.53		
358	-0.3310 G1 2.33 -0.2109 GY 2.71		
358	-0.2109 G1 2.71 -0.0703 GY 2.88		
132	-0.0703 G1 2.88 -0.0703 GY 0.12		
132	-0.2109 GY 0.29		
132	-0.2109 G1 0.29 -0.3516 GY 0.47		
132 132	-0.4922 GY 0.66		
	-0.6328 GY 0.85		
132	-0.7734 GY 1.03		
132	-0.9141 GY 1.22		
132	-1.0547 GY 1.41		
132	-1.0547 GY 1.59		
132	-0.9141 GY 1.78		
132	-0.7734 GY 1.97		
132	-0.6328 GY 2.15		
132	-0.4922 GY 2.34		
132	-0.3516 GY 2.52		
132	-0.2109 GY 2.71		
132	-0.0703 GY 2.87		
360	-0.0703 GY 0.13		
360	-0.2109 GY 0.29		
360	-0.3516 GY 0.48		
360	-0.4922 GY 0.66		
360	-0.6328 GY 0.85		
360	-0.7734 GY 1.03		
360	-0.9141 GY 1.22		
360	-1.0547 GY 1.41		
360	-1.0547 GY 1.59		
360	-0.9141 GY 1.78		
360	-0.7734 GY 1.97		
360	-0.6328 GY 2.15		
360	-0.4922 GY 2.34		
360	-0.3516 GY 2.53		
360	-0.2109 GY 2.71		
360	-0.0703 GY 2.88		
186	-0.0703 GY 0.12		
186	-0.2109 GY 0.29		
186	-0.3516 GY 0.47		
186	-0.4922 GY 0.66		
186	-0.6328 GY 0.85		
186	-0.7734 GY 1.03		
186	-0.9141 GY 1.22		
186	-1.0547 GY 1.41		
186	-1.0547 GY 1.59		
186	-0.9141 GY 1.78		
186	-0.7734 GY 1.97		
196	_0 6329 CV 2 15		

-0.6328 GY 2.15 -0.4922 GY 2.34 -0.3516 GY 2.52 -0.2109 GY 2.71

-0.0703 GY 2.87

-0.0703 GY 0.13

-0.2109 GY 0.29

359

						, tanaa	000000	_ ,	,
STAAD SPACE			PAGE NO	٥.	230				
359	-0.3516 GY	0.48							
359	-0.4922 GY	0.66							
359	-0.6328 GY	0.85							
359	-0.7734 GY	1.03							
359	-0.9141 GY	1.22							
359									
	-1.0547 GY	1.41							
359	-1.0547 GY	1.59							
359	-0.9141 GY	1.78							
359	-0.7734 GY	1.97							
359	-0.6328 GY	2.15							
359	-0.4922 GY	2.34							
359	-0.3516 GY	2.53							
359	-0.2109 GY	2.71							
359	-0.0703 GY	2.88							
183	-0.0703 GY	0.12							
183	-0.2109 GY	0.29							
183	-0.3516 GY	0.47							
183	-0.4922 GY	0.66							
183	-0.6328 GY	0.85							
183	-0.7734 GY	1.03							
183	-0.9141 GY	1.22							
183	-1.0547 GY	1.41							
183	-1.0547 GY	1.59							
183	-0.9141 GY	1.78							
183	-0.7734 GY	1.97							
183	-0.6328 GY	2.15							
183	-0.4922 GY	2.34							
183	-0.3516 GY	2.53							
183	-0.2109 GY	2.71							
183	-0.0703 GY	2.88							
387	-0.0703 GY	0.12							
387	-0.2109 GY	0.29							
387	-0.3516 GY	0.47							
387	-0.4922 GY	0.66							
387	-0.6328 GY	0.85							
387	-0.7734 GY	1.03							
387	-0.9141 GY	1.22							
387	-1.0547 GY	1.41							
387	-1.0547 GY	1.59							
387	-0.9141 GY	1.78							
387	-0.7734 GY	1.97							
387	-0.6328 GY	2.15							
387	-0.4922 GY	2.34							
387	-0.3516 GY	2.52							
387	-0.2109 GY	2.71							
387	-0.0703 GY	2.87							
237									
	-0.0703 GY	0.12							
237	-0.2109 GY	0.29							
237	-0.3516 GY	0.47							
237	-0.4922 GY	0.66							
237	-0.6328 GY	0.85							
237	-0.7734 GY	1.03							
237	-0.9141 GY	1.22							
237	-1.0547 GY	1.41							
237	-1.0547 GY	1.59							
237	-0.9141 GY	1.78							

						11011447,	000000	, _
STAAD SPACE			PAGE	E NO.	231			
237	-0.7734 GY	1.97						
237	-0.6328 GY	2.15						
237	-0.4922 GY	2.34						
237	-0.3516 GY	2.53						
237	-0.2109 GY	2.71						
237	-0.0703 GY	2.88						
386	-0.0703 GY	0.12						
386	-0.2109 GY	0.29						
386	-0.3516 GY	0.47						
386	-0.4922 GY	0.66						
386	-0.6328 GY	0.85						
386	-0.7734 GY	1.03						
386	-0.9141 GY	1.22						
386	-1.0547 GY	1.41						
386	-1.0547 GY	1.59						
386	-0.9141 GY	1.78						
386	-0.7734 GY	1.97						
386	-0.6328 GY	2.15						
386	-0.4922 GY	2.34						
386	-0.3516 GY	2.52						
386	-0.2109 GY	2.71						
386	-0.0703 GY	2.87						
184	-0.0703 GY	0.12						
184	-0.2109 GY	0.29						
184	-0.3516 GY	0.47						
184	-0.4922 GY	0.66						
184	-0.6328 GY	0.85						
184	-0.7734 GY	1.03						
184	-0.9141 GY	1.22						
184	-1.0547 GY	1.41						
184	-1.0547 GY	1.59						
184	-0.9141 GY	1.78						
184	-0.7734 GY	1.97						
184	-0.6328 GY	2.15						
184	-0.4922 GY	2.34						
184	-0.3516 GY	2.53						
184	-0.2109 GY	2.71						
184	-0.0703 GY	2.88						
388	-0.0703 GY	0.12						
388	-0.2109 GY	0.29						
388	-0.3516 GY	0.47						
388	-0.4922 GY	0.66						
388	-0.6328 GY	0.85						
388	-0.7734 GY	1.03						
388	-0.9141 GY	1.22						
388	-1.0547 GY	1.41						
388	-1.0547 GY	1.59						
388	-0.9141 GY	1.78						
388	-0.7734 GY	1.97						
388	-0.6328 GY	2.15						
388	-0.4922 GY	2.34						
388	-0.3516 GY	2.52						
388	-0.2109 GY	2.71						
388	-0.0703 GY	2.87						
238	-0.0703 GY	0.12						
238	-0.2109 GY	0.29						

					iioiiaa _j ,	000000	_ ,	,
STAAD SPACE			PAGE NO	232				
238	-0.3516 GY	0.47						
238	-0.4922 GY	0.66						
238	-0.6328 GY	0.85						
238	-0.7734 GY	1.03						
238	-0.9141 GY	1.22						
238	-1.0547 GY	1.41						
238	-1.0547 GY	1.59						
238	-0.9141 GY	1.78						
238	-0.7734 GY	1.97						
238	-0.6328 GY	2.15						
238	-0.4922 GY	2.34						
238	-0.3516 GY	2.53						
238	-0.2109 GY	2.71						
238	-0.0703 GY	2.88						
387	-0.0703 GY	0.12						
387	-0.2109 GY	0.29						
387	-0.3516 GY	0.47						
387	-0.4922 GY	0.66						
387	-0.6328 GY	0.85						
387	-0.7734 GY	1.03						
387	-0.9141 GY	1.22						
387	-1.0547 GY	1.41						
387	-1.0547 GY	1.59						
387	-0.9141 GY	1.78						
387	-0.7734 GY	1.97						
387	-0.6328 GY	2.15						
387	-0.4922 GY	2.34						
387	-0.3516 GY	2.52						
387	-0.2109 GY	2.71						
387	-0.0703 GY	2.87						
185	-0.0703 GY	0.13						
185	-0.2109 GY	0.29						
185	-0.3516 GY	0.48						
185	-0.4922 GY	0.66						
185	-0.6328 GY	0.85						
185	-0.7734 GY	1.03						
185	-0.9141 GY	1.22						
185	-1.0547 GY	1.41						
185 185	-1.0547 GY	1.59						
	-0.9141 GY	1.78						
185 185	-0.7734 GY -0.6328 GY	1.97 2.15						
185	-0.4922 GY	2.34						
185	-0.4922 G1 -0.3516 GY	2.53						
185	-0.2109 GY	2.71						
185	-0.0703 GY	2.88						
389	-0.0703 GY	0.12						
389	-0.2109 GY	0.29						
389	-0.3516 GY	0.47						
389	-0.4922 GY	0.66						
389	-0.6328 GY	0.85						
389	-0.7734 GY	1.03						
389	-0.9141 GY	1.22						
389	-1.0547 GY	1.41						
389	-1.0547 GY	1.59						
389	-0.9141 GY	1.78						
	-							

						Monda
STAAD SPACE			PAGE	NO.	233	
389	-0.7734 GY	1.97				
389	-0.6328 GY	2.15				
389	-0.4922 GY	2.34				
389	-0.3516 GY	2.52				
389	-0.2109 GY	2.71				
389	-0.0703 GY	2.87				
239	-0.0703 GY	0.13				
239	-0.2109 GY	0.29				
239	-0.3516 GY	0.48				
239	-0.4922 GY	0.66				
239	-0.6328 GY	0.85				
239	-0.7734 GY	1.03				
239	-0.9141 GY	1.22				
239	-1.0547 GY	1.41				
239	-1.0547 GY	1.59				
239	-0.9141 GY	1.78				
239	-0.7734 GY	1.97				
239	-0.6328 GY	2.15				
239	-0.4922 GY	2.34				
239	-0.4922 G1 -0.3516 GY	2.53				
239		2.71				
	-0.2109 GY					
239	-0.0703 GY	2.88				
388	-0.0703 GY	0.12				
388	-0.2109 GY	0.29				
388	-0.3516 GY	0.47				
388	-0.4922 GY	0.66				
388	-0.6328 GY	0.85				
388	-0.7734 GY	1.03				
388	-0.9141 GY	1.22				
388	-1.0547 GY	1.41				
388	-1.0547 GY	1.59				
388	-0.9141 GY	1.78				
388	-0.7734 GY	1.97				
388	-0.6328 GY	2.15				
388	-0.4922 GY	2.34				
388	-0.3516 GY	2.52				
388	-0.2109 GY	2.71				
388	-0.0703 GY	2.87				
186	-0.0703 GY	0.12				
186		0.29				
186	-0.3516 GY	0.47				
186	-0.4922 GY	0.66				
186	-0.6328 GY	0.85				
186	-0.7734 GY	1.03				
186	-0.9141 GY	1.22				
186	-1.0547 GY	1.41				
186	-1.0547 GY	1.59				
186	-0.9141 GY	1.78				
186	-0.7734 GY	1.97				
186	-0.6328 GY	2.15				
186	-0.4922 GY	2.34				
186	-0.3516 GY	2.52				
186	-0.2109 GY	2.71				
186	-0.0703 GY	2.87				
390	-0.0703 GY	0.12				
390	-0.2109 GY	0.29				

STAAD SPACE			 PAGE	NO.	234
390	-0.3516 GY	0.47			
390	-0.4922 GY	0.66			
390	-0.6328 GY	0.85			
390	-0.7734 GY	1.03			
390	-0.9141 GY	1.22			
390	-1.0547 GY	1.41			
390	-1.0547 GY	1.59			
390	-0.9141 GY	1.78			
390	-0.7734 GY	1.97			
390	-0.6328 GY	2.15			
390	-0.4922 GY	2.34			
390	-0.3516 GY	2.52			
390	-0.2109 GY	2.71			
390	-0.0703 GY	2.87			
240	-0.0703 GY	0.12			
240	-0.2109 GY	0.29			
240	-0.3516 GY	0.47			
240	-0.4922 GY	0.66			
240	-0.6328 GY	0.85			
240	-0.7734 GY	1.03			
240	-0.9141 GY	1.22			
240	-1.0547 GY	1.41			
240	-1.0547 GY	1.59			
240	-0.9141 GY	1.78			
240	-0.7734 GY	1.97			
240	-0.6328 GY	2.15			
240	-0.4922 GY	2.34			
240	-0.3516 GY	2.52			
240	-0.2109 GY	2.71			
240	-0.0703 GY	2.87			
389	-0.0703 GY	0.12			
389	-0.2109 GY	0.29			
389	-0.3516 GY	0.47			
389	-0.4922 GY	0.66			
389	-0.6328 GY	0.85			
389	-0.7734 GY	1.03			
389	-0.9141 GY	1.22			
389	-1.0547 GY	1.41			
389	-1.0547 GY	1.59			
389	-0.9141 GY	1.78			
389	-0.7734 GY	1.97			
389	-0.6328 GY	2.15			
389	-0.4922 GY	2.34			
389	-0.3516 GY	2.52			
389	-0.2109 GY	2.71			
389	-0.0703 GY	2.87			

**WARNING: IF THIS UBC/IBC ANALYSIS HAS TENSION/COMPRESSION OR REPEAT LOAD OR RE-ANALYSIS OR SELECT OPTIMIZE, THEN EACH UBC/IBC CASE SHOULD BE FOLLOWED BY PERFORM ANALYSIS _CHANGE.

JOINT		LATERAL LOAD (KN)	TORSIONAL MOMENT (KN		LOAD - FACTOR -	1
6	FX	0.055	MY	0.000			
7	FX	0.078	MY	0.000			
8	FX	0.078	MY	0.000			
9	FX	0.078	MY	0.000			
10	FX	0.055	MY	0.000			
41	FX	0.078	MY	0.000			
42	FX	0.116	MY	0.000			
43	FX	0.116	MY	0.000			
44	FX	0.116	MY	0.000			
45	FX	0.078	MY	0.000			
76	FX	0.078	MY	0.000			
77	FX	0.116	MY	0.000			
78	FX	0.116	MY	0.000			
79	FX	0.116	MY	0.000			
80	FX	0.078	MY	0.000			
111	FX	0.078	MY	0.000			
112	FX	0.116	MY	0.000			
113	FX	0.116	MY	0.000			
114	FX	0.116	MY	0.000			
115	FX	0.078	MY	0.000			
146	FX	0.055	MY	0.000			
147	FX	0.078	MY	0.000			
148	FX	0.078	MY	0.000			
149	FX	0.078	MY	0.000			
150	FX	0.055	MY	0.000			
		2.198		0.000	AT LEVEL	3.000	METE
VB PER	. 1893 =	189.846 KN					
11	FX	0.220	MY	0.000			
12	FX	0.313		0.000			
13	FX	0.313	MY	0.000			
		0.010		0.000			

							11011000	,	00202	_ ,	2020,	
STAAD	SPACE				PAGE NO.	236						
14	FX	0.313	MY	0.000								
15	FX	0.220	MY	0.000								
46	FX	0.313	MY	0.000								
47	FX	0.463	MY	0.000								
48	FX	0.463	MY	0.000								
49	FX	0.463	MY	0.000								
50	FX	0.313	MY	0.000								
81	FX	0.313	MY	0.000								
82	FX	0.463	MY	0.000								
83	FX	0.463	MY	0.000								
84	FX	0.463	MY	0.000								
85	FX	0.313	MY	0.000								
116	FX	0.313	MY	0.000								
117	FX	0.463	MY	0.000								
118	FX	0.463	MY	0.000								
119	FX	0.463	MY	0.000								
120	FX	0.313	MY	0.000								
151	FX	0.220	MY	0.000								
152	FX	0.313	MY	0.000								
153	FX	0.313	MY	0.000								
154	FX	0.313	MY	0.000								
155	FX	0.220	MY	0.000								
	TOTAL =	8.794		0.000 AT LEVEL	6.000 METE							
VB PER	1893 =	189.846 K	ΙN									
16	FX	0.494	MY	0.000								
17	FX	0.703	MY	0.000								
18	FX	0.703	MY	0.000								
19	FX	0.703	MY	0.000								
20	FX	0.494	MY	0.000								
51	FX	0.703	MY	0.000								
52	FX	1.041	MY	0.000								
53	FX	1.041	MY	0.000								
54	FX	1.041	MY	0.000								
55	FX	0.703	MY	0.000								
86	FX	0.703	MY	0.000								
87	FX	1.041	MY	0.000								
88	FX	1.041	MY	0.000								
89	FX	1.041	MY	0.000								
90	FX	0.703	MY	0.000								
121	FX	0.703	MY	0.000								
122	FX	1.041	MY	0.000								
123	FX	1.041	MY	0.000								
124	FX	1.041	MY	0.000								
125	FX	0.703	MY	0.000								
156	FX	0.494	MY	0.000								
157	FX	0.703	MY	0.000								
158	FX	0.703	MY	0.000								
159	FX	0.703	MY	0.000								
160	FX	0.494	MY	0.000								
		10.706		0.000.37.77777	0 000 1555							
	TOTAL =	19.786		0.000 AT LEVEL	9.000 METE							
VB PER	1893 =	189.846 K	UN.									
21	₽₩	0 070	1.437	0 000								
21	FX	0.879	MY	0.000								

							Monday,	October	26,	2020,	10:07	AN
STAAD	SPACE				PAGE NO.	237						
22	FX	1.250	MY	0.000								
23	FX	1.250	MY	0.000								
24	FX	1.250	MY	0.000								
25	FX	0.879	MY	0.000								
56	FX	1.250	MY	0.000								
57	FX	1.851	MY	0.000								
58	FX	1.851	MY	0.000								
59	FX	1.851	MY	0.000								
60	FX	1.250	MY	0.000								
91	FX	1.250	MY	0.000								
92	FX	1.851	MY	0.000								
93	FX	1.851	MY	0.000								
94	FX	1.851	MY	0.000								
95	FX	1.250	MY	0.000								
126	FX	1.250	MY	0.000								
127	FX	1.851	MY	0.000								
128	FX	1.851	MY	0.000								
129	FX	1.851	MY	0.000								
130	FX	1.250	MY	0.000								
161	FX	0.879	MY	0.000								
162	FX	1.250	MY	0.000								
163	FX	1.250	MY	0.000								
164	FX	1.250	MY	0.000								
165	FX	0.879	MY	0.000								
	TOTAL =	35.176		0.000 AT LEVEL	12.000 METE							
VB PER	1893 =	189.846 K	ZN									
26	FX	1.373	MY	0.000								
27	FX	1.954	MY	0.000								
28	FX	1.954	MY	0.000								
29	FX	1.954	MY	0.000								
30	FX	1.373	MY	0.000								
61	FX	1.954	MY	0.000								
62	FX	2.892	MY	0.000								
63	FX	2.892	MY	0.000								
64	FX	2.892	MY	0.000								
65	FX	1.954	MY	0.000								
96	FX	1.954	MY	0.000								
97	FX	2.892	MY	0.000								
98	FX	2.892	MY	0.000								
99	FX	2.892	MY	0.000								
100	FX	1.954	MY	0.000								
131	FX	1.954	MY	0.000								
132	FX	2.892	MY	0.000								
133	FX	2.892	MY	0.000								
134	FX	2.892	MY	0.000								
135	FX	1.954	MY	0.000								
166	FX	1.373	MY	0.000								
167	FX	1.954	MY	0.000								
168	FX	1.954	MY	0.000								
169	FX	1.954	MY	0.000								
170	FX	1.373	MY	0.000								

STAAD SPACE -- PAGE NO. 238

	TOTAL	=	54.962		0.000	AT LEVEL	15.000 METE
VB PER	1893	=	189.846	KN			
31	FX		1.568	MY	0.000		
32	FX		2.405	MY	0.000		
33	FX		2.405	MY	0.000		
34	FX		2.405	MY	0.000		
35	FX		1.568	MY	0.000		
66	FX		2.405	MY	0.000		
67	FX		3.755	MY	0.000		
68	FX		3.755	MY	0.000		
69	FX		3.755	MY	0.000		
70	FX		2.405	MY	0.000		
101	FX		2.405	MY	0.000		
102	FX		3.755	MY	0.000		
103	FX		3.755	MY	0.000		
104	FX		3.755	MY	0.000		
105	FX		2.405	MY	0.000		
136	FX		2.405	MY	0.000		
137	FX		3.755	MY	0.000		
138	FX		3.755	MY	0.000		
139	FX		3.755	MY	0.000		
140	FX		2.405	MY	0.000		
171	FX		1.568	MY	0.000		
172	FX		2.405	MY	0.000		
173	FX		2.405	MY	0.000		
174	FX		2.405	MY	0.000		
175	FX		1.568	MY	0.000		
	TOTAL	=	68.930		0.000	AT LEVEL	18.000 METE
VB PER	1893	=	189.846	KN			

JOINT		LATERAL LOAD (KN)	TORSIONAL MOMENT (KN	-METE)	LOAD - FACTOR -	2
6	FZ	0.055	MY	0.000			
7	FZ	0.078	MY	0.000			
8	FZ	0.078	MY	0.000			
9	FZ	0.078	MY	0.000			
10	FZ	0.055	MY	0.000			
41	FZ	0.078	MY	0.000			
42	FZ	0.116	MY	0.000			
43	FZ	0.116	MY	0.000			
44	FZ	0.116	MY	0.000			
45	FZ	0.078	MY	0.000			
76	FZ	0.078	MY	0.000			
77	FZ	0.116	MY	0.000			
78	FZ	0.116	MY	0.000			
79	FZ	0.116	MY	0.000			
80	FZ	0.078	MY	0.000			
111	FZ	0.078	MY	0.000			
112	FZ	0.116	MY	0.000			
113	FZ	0.116	MY	0.000			

							Monaay,	October	26,	2020,	10:07	AM
STAAD	SPACE				PAGE NO.	239						
114	FZ	0.116	MY	0.000								
115	FZ	0.078	MY	0.000								
146	FZ	0.055	MY	0.000								
147	FZ	0.078	MY	0.000								
148	FZ	0.078	MY	0.000								
149	FZ	0.078	MY	0.000								
150	FZ	0.055	MY	0.000								
	TOTAL =	2.198			3.000 METE							
	R 1893 =	189.846 K	M	0.000 AI DEVED	3.000 MEIE							
VD IDI	. 1033	103.010 1										
11	FZ	0.220	MY	0.000								
12	FZ	0.313	MY	0.000								
13	FZ	0.313	MY	0.000								
14	FZ	0.313	MY	0.000								
15	FZ	0.220	MY	0.000								
46	FZ	0.313	MY	0.000								
47	FZ	0.463	MY	0.000								
48	FZ	0.463	MY	0.000								
49	FZ	0.463	MY	0.000								
50	FZ	0.313	MY	0.000								
81	FZ	0.313	MY	0.000								
82	FZ	0.463	MY	0.000								
83	FZ	0.463	MY	0.000								
84	FZ	0.463	MY	0.000								
85	FZ	0.313	MY	0.000								
116	FZ	0.313	MY	0.000								
117	FZ	0.463	MY	0.000								
118	FZ	0.463	MY	0.000								
119	FZ	0.463	MY	0.000								
120	FZ	0.313	MY	0.000								
151	FZ	0.220	MY	0.000								
152	FZ	0.313	MY	0.000								
153	FZ	0.313	MY	0.000								
154	FZ	0.313	MY	0.000								
155	FZ	0.220	MY	0.000								
	TOTAL =	8.794		0.000 AT LEVEL	6.000 METE							
VB PER	R 1893 =	189.846 K	ΚN									
1.6	E.7	0 404	MY	0.000								
16 17	FZ FZ	0.494 0.703	MY	0.000								
18	FZ	0.703	MY	0.000								
19	FZ	0.703	MY	0.000								
20	FZ	0.494	MY	0.000								
51	FZ	0.703	MY	0.000								
52	FZ	1.041	MY	0.000								
53	FZ	1.041	MY	0.000								
54	FZ	1.041	MY	0.000								
55	FZ	0.703	MY	0.000								
86	FZ	0.703	MY	0.000								
87	FZ	1.041	MY	0.000								
88	FZ	1.041	MY	0.000								
89	FZ	1.041	MY	0.000								
90	FZ	0.703	MY	0.000								
121	FZ	0.703	MY	0.000								

							monaay,	October	26,	2020,	10:07	AM
STAAD	SPACE				PAGE NO.	240						
122	FZ	1.041	MY	0.000								
123	FZ	1.041	MY	0.000								
124	FZ	1.041	MY	0.000								
125	FZ	0.703	MY	0.000								
156	FZ	0.494	MY	0.000								
157 158	FZ	0.703 0.703	MY	0.000 0.000								
159	FZ FZ	0.703	MY MY	0.000								
160	FZ	0.703	MY	0.000								
100			PII									
	TOTAL =	19.786			9.000 METE							
VB PEI	R 1893 =	189.846 F	KN									
21	FZ	0.879	MY	0.000								
22	FZ	1.250	MY	0.000								
23	FZ	1.250	MY	0.000								
24	FZ	1.250	MY	0.000								
25	FZ	0.879	MY	0.000								
56	FZ	1.250	MY	0.000								
57	FZ	1.851	MY	0.000								
58	FZ	1.851	MY	0.000								
59	FZ	1.851	MY	0.000								
60	FZ	1.250	MY	0.000								
91	FZ	1.250	MY	0.000								
92	FZ	1.851	MY	0.000								
93	FZ	1.851	MY	0.000								
94	FZ	1.851	MY	0.000								
95	FZ	1.250	MY	0.000								
126	FZ	1.250	MY	0.000								
127	FZ	1.851	MY	0.000								
128	FZ	1.851	MY	0.000								
129	FZ	1.851	MY	0.000								
130	FZ	1.250	MY	0.000								
161	FZ	0.879	MY	0.000								
162	FZ	1.250	MY	0.000								
163	FZ	1.250	MY	0.000								
164 165	FZ FZ	1.250 0.879	MY MY	0.000								
103	F Z	0.079	IVI I									
	TOTAL =	35.176		0.000 AT LEVEL	12.000 METE							
VB PEI	R 1893 =	189.846 F	KN	-	_							
26	FZ	1.373	MY	0.000								
27	FZ	1.954	MY	0.000								
28	FZ	1.954	MY	0.000								
29	FZ	1.954	MY	0.000								
30	FZ	1.373	MY	0.000								
61	FZ	1.954	MY	0.000								
62	FZ	2.892	MY	0.000								
63	FZ	2.892	MY	0.000								
64	FZ	2.892	MY	0.000								
65	FZ	1.954	MY	0.000								
96	FZ	1.954	MY	0.000								
97	FZ	2.892	MY	0.000								
98	FZ	2.892	MY	0.000								
99	FZ	2.892	MY	0.000								

							Monday,	Octob
STAAD	SPACE				PAGE NO.	241		
100	FZ	1.954	MY	0.000				
131	FZ	1.954	MY	0.000				
132	FZ	2.892	MY	0.000				
133	FZ	2.892	MY	0.000				
134	FZ	2.892	MY	0.000				
135	FZ	1.954	MY	0.000				
166	FZ	1.373	MY	0.000				
167	FZ	1.954	MY	0.000				
168	FZ	1.954	MY	0.000				
169	FZ	1.954	MY	0.000				
170	FZ	1.373	MY	0.000				
	TOTAL =	54.962	_	0.000 AT LEVE	L 15.000 METE			
VB PEF	R 1893 =		KN	******				
31	FZ	1.568	MY	0.000				
32	FZ	2.405	MY	0.000				
33	FZ	2.405	MY	0.000				
34	FZ	2.405	MY	0.000				
35	FZ	1.568	MY	0.000				
66	FZ	2.405	MY	0.000				
67	FZ	3.755	MY	0.000				
68	FZ	3.755	MY	0.000				
69	FZ	3.755	MY	0.000				
70	FZ	2.405	MY	0.000				
101	FZ	2.405	MY	0.000				
102	FZ	3.755	MY	0.000				
103	FZ	3.755	MY	0.000				
104	FZ	3.755	MY	0.000				
105	FZ	2.405	MY	0.000				
136	FZ	2.405	MY	0.000				
137	FZ	3.755	MY	0.000				
138	FZ	3.755	MY	0.000				
139	FZ	3.755	MY	0.000				
140	FZ	2.405	MY	0.000				
171	FZ	1.568	MY	0.000				
172	FZ	2.405	MY	0.000				
173	FZ	2.405	MY	0.000				
174	FZ	2.405	MY	0.000				
175	FZ	1.568	MY	0.000				
	TOTAL =	68.930	_	0.000 AT LEVE	L 18.000 METE			

FOR LOADING - 1
APPLIED JOINT EQUIVALENT LOADS

VB PER 1893 = 189.846 KN

JOINT FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM-Z
6 5.49105E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
7 7.81521E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
8 7.81521E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
9 7.81521E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
10 5.49105E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
11 2.19642E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM-Z
		0.00000E+00				0.00000E+00
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
33	2.40486E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
34	2.40486E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
35	1.56817E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
41	7.81521E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
42	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
43	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
44	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
45	7.81521E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
46	3.12609E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
47	4.62669E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
48	4.62669E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
49	4.62669E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
50	3.12608E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
51	7.03369E-01	0.00000E+00	0.00000E+00	0.0000E+00	0.00000E+00	0.00000E+00
52	1.04101E+00	0.00000E+00	0.00000E+00	0.0000E+00	0.00000E+00	0.00000E+00
53	1.04101E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
54	1.04101E+00	0.00000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00000E+00
55	7.03369E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+00	0.0000E+00
56	1.25043E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+00	0.0000E+00
57	1.85068E+00	0.0000E+00	0.00000E+00	0.00000E+00	0.0000E+00	0.00000E+00
58	1.85068E+00	0.0000E+00	0.00000E+00	0.00000E+00	0.0000E+00	0.00000E+00
59	1.85068E+00	0.0000E+00	0.00000E+00	0.00000E+00	0.0000E+00	0.00000E+00
60	1.25043E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+00	0.00000E+00
61	1.95380E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+00	0.00000E+00
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
69	3.75541E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00

. Е Е Б Т Б Г	O OUTHI EQUI	VALENI LOADS				
JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM-Z
70	2.40486E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
76	7.81521E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
77	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
78	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
79	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
80	7.81521E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
81	3.12609E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
82	4.62669E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
83	4.62669E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
84	4.62669E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
85	3.12608E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
86	7.03369E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
87	1.04101E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
88	1.04101E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
89	1.04101E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
90	7.03369E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
91	1.25043E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
92	1.85068E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
93	1.85068E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
94	1.85068E+00	0.00000E+00	0.0000E+00	0.0000E+00	0.00000E+00	0.00000E+00
95	1.25043E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
96	1.95380E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
97	2.89168E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
98	2.89168E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
99	2.89168E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
100	1.95380E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
101	2.40486E+00	0.0000E+00	0.0000E+00	0.00000E+00	0.00000E+00	0.00000E+00
102	3.75541E+00	0.0000E+00	0.0000E+00	0.00000E+00	0.00000E+00	0.00000E+00
103	3.75541E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
104	3.75541E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
105	2.40486E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
111	7.81521E-02	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
112	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
113	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
114	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
116	3.12609E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
118	4.62669E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
120	3.12608E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
121	7.03369E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
122	1.04101E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
123	1.04101E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
124	1.04101E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
125	7.03369E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
132	2.89168E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00

```
APPLIED JOINT EQUIVALENT LOADS
 JOINT FORCE-X
                    FORCE-Y
                                 FORCE-Z
                                              MOM-X
                                                          MOM-Y
                                                                      MOM-7
   133 2.89168E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   134 2.89168E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   135 1.95380E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   136 2.40486E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   137 3.75541E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   138 3.75541E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   139 3.75541E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   140 2.40486E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   146 5.49105E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   147 7.81521E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   148 7.81521E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   149 7.81521E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   150 5.49105E-02 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   151 2.19642E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   152 3.12609E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   153 3.12609E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   154 3.12609E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   155 2.19642E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   156 4.94194E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   157 7.03369E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   158 7.03369E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   159 7.03369E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   160 4.94194E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   161 8.78568E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   162 1.25043E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   163 1.25043E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   164 1.25043E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   165 8.78568E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   166 1.37276E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   167 1.95380E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   168 1.95380E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   169 1.95380E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   170 1.37276E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   171 1.56817E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   172 2.40486E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   173 2.40486E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
   174 2.40486E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
```

STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 1
LOADTYPE SEISMIC TITLE SL X

175 1.56817E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

CENTER OF FORCE BASED ON X FORCES ONLY (METE). (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)

X = 0.599999991E+01 Y = 0.143522019E+02 Z = 0.600000002E+01 STAAD SPACE

-- PAGE NO. 245

SU	JMMATION F JMMATION F		189. 0.	85 00	ADING 1)			
SUM MX=			ROUND THE O		-2724	.70			
SU SU	JMMATION F JMMATION F JMMATION F	ORCE-X = ORCE-Y = ORCE-Z =	-189. 0. 0.	85 00 00	ADING 1)			
MX=			ROUND THE O = -11		2724	.70			
MAXIMUM DISPLACEMENTS (CM /RADIANS) (LOADING 1) MAXIMUMS AT NODE X = 3.39656E-01 105 Y = -7.78392E-03 105 Z = -1.06316E-04 35 RX= -1.79004E-07 140 RY= 9.52111E-06 66 RZ= -1.92381E-04 81									
EXTERN	NAL AND IN	TERNAL JOIN	NT LOAD SUM	MARY (KN	METE)-				
JT	EXT FX/ INT FX	EXT FY/ INT FY	EXT FZ/ INT FZ	EXT MX/ INT MX	EXT MY/ INT MY	EXT MZ/ INT MZ			
							SUPPORT=1		
1	6.34	38.73	0.00	0.00	0.00				
2					0.00 0.01				
3	0.00	0.00	0.00	0.00	0.00 0.01	0.00 -15.75	111111		
4	0.00	0.00	0.00	0.00	0.00	0.00			
7	8.40	-0.14	0.00	0.00	0.01	-15.82	111111		
5	0.00 6.34	0.00 -38.73	0.00	0.00	0.00 0.01	0.00 -13.80	111111		
36	0.00 6.38	0.00 39.21	0.00	0.00	0.00 0.01	0.00 -13.88	111111		
37	0.00 8.45	0.00 0.15	0.00	0.00	0.00 0.01	0.00 -15.91	111111		
38	0.00 8.38	0.00	0.00	0.00	0.00 0.01	0.00 -15.84	111111		
39	0.00 8.45	0.00 -0.15	0.00	0.00	0.00 0.01	0.00 -15.91	111111		
40	0.00 6.38	0.00 -39.21	0.00	0.00	0.00	0.00 -13.88	111111		

71	0.00	0.00	0.00	0.00	0.00	0.00	
	6.39	39.44	0.00	0.00	0.00	-13.92	111111

STAAD	SPACE					PAGE N	0. 246
72	0.00	0.00	0.00	0.00	0.00	0.00	
	8.48	0.15	0.00	0.00	0.00	-15.96	111111
73	0.00	0.00	0.00	0.00	0.00	0.00	
	8.40	0.00	0.00	0.00	0.00	-15.89	111111
74	0.00	0.00	0.00	0.00	0.00	0.00	
	8.48	-0.15	0.00	0.00	0.00	-15.96	111111
75	0.00	0.00	0.00	0.00	0.00	0.00	
	6.39	-39.44	0.00	0.00	0.00	-13.92	111111
106	0.00	0.00	0.00	0.00	0.00	0.00	
	6.38	39.21	0.00	0.00	-0.01	-13.88	111111
107	0.00	0.00	0.00	0.00	0.00	0.00	
	8.45	0.15	0.00	0.00	-0.01	-15.91	111111
108	0.00	0.00	0.00	0.00	0.00	0.00	
	8.38	0.00	0.00	0.00	-0.01	-15.84	111111
109	0.00	0.00	0.00	0.00	0.00	0.00	
	8.45	-0.15	0.00	0.00	-0.01	-15.91	111111
110	0.00	0.00	0.00	0.00	0.00	0.00	
	6.38	-39.21	0.00	0.00	-0.01	-13.88	111111
141	0.00	0.00	0.00	0.00	0.00	0.00	
	6.34	38.73	0.00	0.00	-0.01	-13.80	111111
142	0.00	0.00	0.00	0.00	0.00	0.00	
	8.40	0.14	0.00	0.00	-0.01	-15.82	111111
143	0.00	0.00	0.00	0.00	0.00	0.00	
	8.33	0.00	0.00	0.00	-0.01	-15.75	111111
144	0.00	0.00	0.00	0.00	0.00	0.00	
	8.40	-0.14	0.00	0.00	-0.01	-15.82	111111
145	0.00	0.00	0.00	0.00	0.00		
	6.34	-38.73	0.00	0.00	-0.01	-13.80	111111
EOD TOXDT	NC	2					

FOR LOADING - 2

APPLIE) DOINT EGOTA	VALENT LOADS				
JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM-Z
6	0.00000E+00	0.00000E+00	5.49105E-02	0.00000E+00	0.0000E+00	0.00000E+00
7	0.00000E+00	0.00000E+00	7.81521E-02	0.00000E+00	0.00000E+00	0.00000E+00
8	0.00000E+00	0.00000E+00	7.81521E-02	0.00000E+00	0.00000E+00	0.00000E+00
9	0.00000E+00	0.00000E+00	7.81521E-02	0.00000E+00	0.00000E+00	0.00000E+00
10	0.00000E+00	0.00000E+00	5.49105E-02	0.00000E+00	0.00000E+00	0.00000E+00
11	0.00000E+00	0.00000E+00	2.19642E-01	0.00000E+00	0.00000E+00	0.00000E+00
12	0.00000E+00	0.00000E+00	3.12609E-01	0.00000E+00	0.00000E+00	0.00000E+00
13	0.00000E+00	0.00000E+00	3.12609E-01	0.00000E+00	0.00000E+00	0.00000E+00
14	0.0000E+00	0.00000E+00	3.12609E-01	0.0000E+00	0.0000E+00	0.00000E+00
15	0.00000E+00	0.00000E+00	2.19642E-01	0.00000E+00	0.00000E+00	0.00000E+00
16	0.00000E+00	0.00000E+00	4.94194E-01	0.00000E+00	0.00000E+00	0.00000E+00
17	0.00000E+00	0.00000E+00	7.03369E-01	0.00000E+00	0.00000E+00	0.00000E+00
18	0.00000E+00	0.00000E+00	7.03369E-01	0.00000E+00	0.00000E+00	0.00000E+00
19	0.00000E+00	0.0000E+00	7.03369E-01	0.00000E+00	0.0000E+00	0.00000E+00
20	0.00000E+00	0.00000E+00	4.94194E-01	0.00000E+00	0.00000E+00	0.00000E+00
21	0.00000E+00	0.00000E+00	8.78568E-01	0.00000E+00	0.00000E+00	0.00000E+00
22	0.00000E+00	0.00000E+00	1.25043E+00	0.00000E+00	0.00000E+00	0.00000E+00
23	0.00000E+00	0.00000E+00	1.25043E+00	0.00000E+00	0.00000E+00	0.00000E+00
24	0.00000E+00	0.00000E+00	1.25043E+00	0.00000E+00	0.00000E+00	0.00000E+00
25	0.00000E+00	0.0000E+00	8.78568E-01	0.00000E+00	0.0000E+00	0.00000E+00
26	0.00000E+00	0.00000E+00	1.37276E+00	0.00000E+00	0.00000E+00	0.00000E+00

27 0.00000E+00 0.00000E+00 1.95380E+00 0.00000E+00 0.00000E+00 0.00000E+00

28 0.00000E+00 0.00000E+00 1.95380E+00 0.00000E+00 0.00000E+00 0.00000E+00

29 0.00000E+00 0.00000E+00 1.95380E+00 0.00000E+00 0.00000E+00 0.00000E+00

. Е Е Б Т Б Г	J JOINI EQUI	VALENI LOADS				
JOINT	FORCE-X	FORCE-Y		MOM-X	MOM-Y	MOM-Z
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00 0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
65	0.00000E+00	0.00000E+00	1.95380E+00	0.00000E+00	0.00000E+00	0.00000E+00
66	0.0000E+00	0.00000E+00	2.40486E+00	0.0000E+00	0.00000E+00	0.00000E+00
67	0.0000E+00	0.00000E+00	3.75541E+00	0.0000E+00	0.00000E+00	0.00000E+00
68	0.0000E+00	0.00000E+00	3.75541E+00	0.0000E+00	0.00000E+00	0.00000E+00
69	0.0000E+00	0.00000E+00	3.75541E+00	0.00000E+00	0.0000E+00	0.0000E+00
70	0.00000E+00	0.00000E+00	2.40486E+00	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00 0.00000E+00				
		0.00000E+00				
		0.00000E+00				
14	J.00000E100	5.00000E100	I.00000E100	J.00000E100	0.00000100	0.00000E100

4E E TT TET	J JOINI EQUI					
JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM-Z
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
97	0.00000E+00	0.00000E+00	2.89168E+00	0.00000E+00	0.00000E+00	0.00000E+00
98	0.00000E+00	0.00000E+00	2.89168E+00	0.00000E+00	0.00000E+00	0.00000E+00
99	0.00000E+00	0.00000E+00	2.89168E+00	0.00000E+00	0.00000E+00	0.00000E+00
100	0.0000E+00	0.0000E+00	1.95380E+00	0.0000E+00	0.00000E+00	0.0000E+00
101	0.0000E+00	0.0000E+00	2.40486E+00	0.0000E+00	0.00000E+00	0.0000E+00
102	0.0000E+00	0.0000E+00	3.75541E+00	0.0000E+00	0.00000E+00	0.0000E+00
103	0.0000E+00	0.0000E+00	3.75541E+00	0.0000E+00	0.00000E+00	0.0000E+00
104	0.00000E+00	0.00000E+00	3.75541E+00	0.00000E+00	0.00000E+00	0.00000E+00
105	0.00000E+00	0.00000E+00	2.40486E+00	0.00000E+00	0.00000E+00	0.00000E+00
111	0.00000E+00	0.00000E+00	7.81521E-02	0.00000E+00	0.00000E+00	0.00000E+00
112	0.00000E+00	0.00000E+00	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00
113	0.00000E+00	0.00000E+00	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00
114	0.00000E+00	0.00000E+00	1.15667E-01	0.00000E+00	0.00000E+00	0.00000E+00
115	0.00000E+00	0.00000E+00	7.81521E-02	0.00000E+00	0.00000E+00	0.00000E+00
116	0.00000E+00	0.00000E+00	3.12609E-01	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
118	0.00000E+00	0.00000E+00	4.62669E-01	0.00000E+00	0.00000E+00	0.00000E+00
119	0.00000E+00	0.00000E+00	4.62669E-01	0.00000E+00	0.00000E+00	0.00000E+00
120	0.00000E+00	0.00000E+00	3.12608E-01	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
122	0.00000E+00	0.00000E+00	1.04101E+00	0.00000E+00	0.00000E+00	0.00000E+00
123	0.00000E+00	0.00000E+00	1.04101E+00	0.00000E+00	0.00000E+00	0.00000E+00
124	0.00000E+00	0.00000E+00	1.04101E+00	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
126	0.00000E+00	0.00000E+00	1.25043E+00	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
135	0.00000E+00	0.00000E+00	1.95380E+00	0.00000E+00	0.00000E+00	0.00000E+00
136	0.00000E+00	0.00000E+00	2.40486E+00	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
100		J. J	UI		J.00000D100	

```
APPLIED JOINT EQUIVALENT LOADS
 JOINT FORCE-X
                                           MOM-X
                  FORCE-Y
                               FORCE-Z
                                                        MOM-Y
                                                                     MOM-7
   156 0.00000E+00 0.00000E+00 4.94194E-01 0.00000E+00 0.00000E+00 0.00000E+00
   157 0.00000E+00 0.00000E+00 7.03369E-01 0.00000E+00 0.00000E+00 0.00000E+00
   158 0.00000E+00 0.00000E+00 7.03369E-01 0.00000E+00 0.00000E+00 0.00000E+00
   159 0.00000E+00 0.00000E+00 7.03369E-01 0.00000E+00 0.00000E+00 0.00000E+00
   160 0.00000E+00 0.00000E+00 4.94194E-01 0.00000E+00 0.00000E+00 0.00000E+00
   161 0.00000E+00 0.00000E+00 8.78568E-01 0.00000E+00 0.00000E+00 0.00000E+00
   162 0.00000E+00 0.00000E+00 1.25043E+00 0.00000E+00 0.00000E+00 0.00000E+00
   163 0.00000E+00 0.00000E+00 1.25043E+00 0.00000E+00 0.00000E+00 0.00000E+00
   164 0.00000E+00 0.00000E+00 1.25043E+00 0.00000E+00 0.00000E+00 0.00000E+00
   165 0.00000E+00 0.00000E+00 8.78568E-01 0.00000E+00 0.00000E+00 0.00000E+00
   166 0.00000E+00 0.00000E+00 1.37276E+00 0.00000E+00 0.00000E+00 0.00000E+00
   167 0.00000E+00 0.00000E+00 1.95380E+00 0.00000E+00 0.00000E+00 0.00000E+00
   168 0.00000E+00 0.00000E+00 1.95380E+00 0.00000E+00 0.00000E+00 0.00000E+00
   169 0.00000E+00 0.00000E+00 1.95380E+00 0.00000E+00 0.00000E+00 0.00000E+00
   170 0.00000E+00 0.00000E+00 1.37276E+00 0.00000E+00 0.00000E+00 0.00000E+00
   171 0.00000E+00 0.00000E+00 1.56817E+00 0.00000E+00 0.00000E+00 0.00000E+00
   172 0.00000E+00 0.00000E+00 2.40486E+00 0.00000E+00 0.00000E+00 0.00000E+00
   173 0.00000E+00 0.00000E+00 2.40486E+00 0.00000E+00 0.00000E+00 0.00000E+00
   174 0.00000E+00 0.00000E+00 2.40486E+00 0.00000E+00 0.00000E+00 0.00000E+00
   175 0.00000E+00 0.00000E+00 1.56817E+00 0.00000E+00 0.00000E+00 0.00000E+00
          STATIC LOAD/REACTION/EOUILIBRIUM SUMMARY FOR CASE NO.
          LOADTYPE SEISMIC TITLE SL Z
          CENTER OF FORCE BASED ON Z FORCES ONLY (METE).
         (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
                       X = 0.59999991E+01
                       Y = 0.143522019E+02
                       Z = 0.600000002E+01
                              METE ) SUMMARY (LOADING
   ***TOTAL APPLIED LOAD ( KN
       SUMMATION FORCE-X =
                                    0.00
       SUMMATION FORCE-Y =
                                    0.00
       SUMMATION FORCE-Z =
                                  189.85
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
                2724.70 MY=
                                   -1139.07 MZ=
                                                            0.00
     MX =
   ***TOTAL REACTION LOAD( KN METE ) SUMMARY (LOADING
                                                           2.)
       SUMMATION FORCE-X =
                                    0.00
       SUMMATION FORCE-Y =
                                    0.00
       SUMMATION FORCE-Z =
                                 -189.85
```

1139.07 MZ=

0.00

SUMMATION OF MOMENTS AROUND THE ORIGIN-

-2724.70 MY=

MX=

MAXIMUM	DISPLACEMENTS	(CM	/RADIANS)	(LOADING	2)
	MAXIMUMS	AT	NOD	E		
X =	1.06321E-04		175			
Y = -	-7.78392E-03		173			
Z =	3.39656E-01		173			
RX=	1.92381E-04		13			
RY=	9.52112E-06		174			
R7= -	-1.79004E-07		172			

EXTERNAL AND INTERNAL JOINT LOAD SUMMARY (KN METE)-

JT	EXT FX/ INT FX	EXT FY/ INT FY	EXT FZ/ INT FZ	EXT MX/ INT MX	EXT MY/ INT MY	EXT MZ/ INT MZ	
							SUPPORT=1
1	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	38.73	6.34	13.80	-0.01	0.00	111111
2	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	39.21	6.38	13.88	-0.01	0.00	111111
3	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	39.44	6.39	13.92	0.00	0.00	111111
4	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	39.21	6.38	13.88	0.01	0.00	111111
5	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	38.73	6.34	13.80	0.01	0.00	111111
36	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.14	8.40	15.82	-0.01	0.00	111111
37	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.15	8.45	15.91	-0.01	0.00	111111
38	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.15	8.48	15.96	0.00	0.00	111111
39	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.15	8.45	15.91	0.01	0.00	111111
40	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.14	8.40	15.82	0.01	0.00	111111
71	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	8.33	15.75	-0.01	0.00	111111
72	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	8.38	15.84	-0.01	0.00	111111
73	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	8.40	15.89	0.00	0.00	111111
74	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	8.38	15.84	0.01	0.00	111111
75	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	8.33	15.75	0.01	0.00	111111
106	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	-0.14	8.40	15.82	-0.01	0.00	111111

107	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	-0.15	8.45	15.91	-0.01	0.00	111111
108	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	-0.15	8.48	15.96	0.00	0.00	111111
109	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	-0.15	8.45	15.91	0.01	0.00	111111
110	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	-0.14	8.40	15.82	0.01	0.00	111111

ST	AAD SPACE				PA	GE NO. 251
141	0.00	0.00	0.00	0.00	0.00	.00
	0.00	-38.73				.00 111111
142	0.00	0.00	0.00	0.00	0.00	.00
	0.00	-39.21				.00 111111
143	0.00	0.00	0.00	0.00	0.00	.00
113	0.00	-39.44				.00 111111
144	0.00	0.00 -39.21	0.00 6.38			.00 .00 111111
	0.00	03.21		20.00	0.01	.00 111111
145	0.00	0.00	0.00			.00
	0.00	-38.73	6.34	13.80	0.01 0	.00 111111
FOR LO	ADING -	3				
APPLIE	D JOINT EQUI	VALENT LOADS				
JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM-Y	MOM-Z
1	4.45491E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
6	8.90982E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
11	9.33739E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+00
16	9.85416E-01	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
21	1.02635E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
26	1.06073E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00 0.00000E+00				
		0.00000E+00 0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00 0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
		0.00000E+00				
1/1	J.41380E-01	0.00000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.00000E+00
	STATIC L	OAD/REACTION,	/EQUILIBRIUM	SUMMARY FOR	CASE NO.	3

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

LOADTYPE WIND TITLE WL X

CENTER OF FORCE BASED ON X FORCES ONLY (METE).

(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)

X = 0.000000000E+00Y = 0.936698571E+01

Z = 0.599999997E+01

***TOTAL APPLIED LOAD (KN METE) SUMMARY (LOADING 3)

SUMMATION FORCE-X = 47.07 SUMMATION FORCE-Y = 0.00 SUMMATION FORCE-Z = 0.00

SUMMATION OF MOMENTS AROUND THE ORIGIN-

MX = 0.00 MY = 282.44 MZ = -440.93

***TOTAL REACTION LOAD(KN METE) SUMMARY (LOADING 3)

SUMMATION FORCE-X = -47.07 SUMMATION FORCE-Y = 0.00 SUMMATION FORCE-Z = 0.00

SUMMATION OF MOMENTS AROUND THE ORIGIN-

MX = 0.00 MY = -282.44 MZ = 440.93

MAXIMUM DISPLACEMENTS (CM /RADIANS) (LOADING 3)

MAXIMUMS AT NODE

X = 5.31128E-02 101

Y = -1.00875E-03 35

Z = -2.33509E-05 161

RX= -2.61333E-08 146

RY= -2.11809E-06 161

RZ= -3.71675E-05 76

EXTERNAL AND INTERNAL JOINT LOAD SUMMARY (KN METE) -

JT	EXT FX/	EXT FY/	EXT FZ/	EXT MX/	EXT MY/	EXT MZ/	
	INT FX	INT FY	INT FZ	INT MX	INT MY	INT MZ	
							SUPPORT=1
1	0.45	0.00	0.00	0.00	0.00	0.00	
	1.44	5.93	0.00	0.00	0.02	-3.03	111111
2	0.00	0.00	0.00	0.00	0.00	0.00	
	1.85	-0.05	0.00	0.00	0.01	-3.42	111111
3	0.00	0.00	0.00	0.00	0.00	0.00	
	1.82	0.00	0.00	0.00	0.01	-3.38	111111
4	0.00	0.00	0.00	0.00	0.00	0.00	
	1.83	0.05	0.00	0.00	0.01	-3.39	111111
5	0.00	0.00	0.00	0.00	0.00	0.00	
	1.41	-5.93	0.00	0.00	0.01	-2.97	111111
36	0.89	0.00	0.00	0.00	0.00	0.00	
	1.55	6.00	0.00	0.00	0.02	-3.24	111111
37	0.00	0.00	0.00	0.00	0.00	0.00	
	1.97	-0.06	0.00	0.00	0.01	-3.63	111111

STA	AD SPACE					PAGE 1	10. 253
38	0.00 1.93	0.00	0.00	0.00	0.00	0.00 -3.57	111111
39	0.00 1.94	0.00	0.00	0.00	0.00	0.00 -3.57	111111
40	0.00 1.49	0.00 -5.99	0.00	0.00	0.00	0.00 -3.13	111111
71	0.89 1.59	0.00 6.03	0.00	0.00	0.00	0.00 -3.30	111111
72	0.00 2.01	0.00 -0.06	0.00	0.00	0.00	0.00 -3.69	111111
73	0.00 1.96	0.00	0.00	0.00	0.00	0.00 -3.63	111111
74	0.00 1.97	0.00	0.00	0.00	0.00	0.00 -3.63	111111
75	0.00 1.52	0.00 -6.02	0.00	0.00	0.00	0.00 -3.19	111111
106	0.89 1.55	0.00	0.00	0.00	0.00 -0.02	0.00 -3.24	111111
107	0.00 1.97	0.00 -0.06	0.00	0.00	0.00 -0.01	0.00 -3.63	111111
108	0.00 1.93	0.00	0.00	0.00	0.00 -0.01	0.00 -3.57	111111
109	0.00 1.94	0.00 0.05	0.00	0.00	0.00 -0.01	0.00 -3.57	111111
110	0.00 1.49	0.00 -5.99	0.00	0.00	0.00 -0.01	0.00 -3.13	111111
141	0.45 1.44	0.00 5.93	0.00	0.00	0.00 -0.02	0.00 -3.03	111111
142	0.00 1.85	0.00 -0.05	0.00	0.00	0.00 -0.01	0.00 -3.42	111111
143	0.00 1.82	0.00	0.00	0.00	0.00 -0.01	0.00 -3.38	111111
144	0.00 1.83	0.00 0.05	0.00	0.00	0.00 -0.01	0.00 -3.39	111111
145	0.00	0.00 -5.93	0.00	0.00	0.00 -0.01	0.00 -2.97	111111
FOR I.OAT	DING -	4					
		¬ VALENT LOADS	5				
JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MOM	Y-Y	MOM-Z

JOINT FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y 1 0.00000E+00 0.00000E+00 4.45491E-01 0.00000E+00 0.00000E+00 0.00000E+00 2 0.00000E+00 0.00000E+00 8.90982E-01 0.00000E+00 0.00000E+00 0.00000E+00 3 0.00000E+00 0.00000E+00 8.90982E-01 0.00000E+00 0.00000E+00 0.00000E+00 4 0.00000E+00 0.00000E+00 8.90982E-01 0.00000E+00 0.00000E+00 0.00000E+00 5 0.00000E+00 0.00000E+00 4.45491E-01 0.00000E+00 0.00000E+00 0.00000E+00 6 0.00000E+00 0.00000E+00 8.90982E-01 0.00000E+00 0.00000E+00 0.00000E+00 7 0.00000E+00 0.00000E+00 1.78196E+00 0.00000E+00 0.00000E+00 0.0000E+00 8 0.00000E+00 0.00000E+00 1.78196E+00 0.00000E+00 0.00000E+00 0.0000E+00 9 0.00000E+00 0.00000E+00 1.78196E+00 0.00000E+00 0.00000E+00 0.00000E+00

 10
 0.00000E+00
 0.00000E+00
 8.90982E-01
 0.00000E+00
 <td

```
APPLIED JOINT EQUIVALENT LOADS
 JOINT FORCE-X
                  FORCE-Y
                               FORCE-Z
                                           MOM-X
                                                        MOM-Y
                                                                     MOM-7
   17 0.00000E+00 0.00000E+00 1.97083E+00 0.00000E+00 0.00000E+00 0.00000E+00
   18 0.00000E+00 0.00000E+00 1.97083E+00 0.00000E+00 0.00000E+00 0.00000E+00
   19 0.00000E+00 0.00000E+00 1.97083E+00 0.00000E+00 0.00000E+00 0.00000E+00
   20 0.00000E+00 0.00000E+00 9.85416E-01 0.00000E+00 0.00000E+00 0.00000E+00
   21 0.00000E+00 0.00000E+00 1.02635E+00 0.00000E+00 0.00000E+00 0.00000E+00
   22 0.00000E+00 0.00000E+00 2.05270E+00 0.00000E+00 0.00000E+00 0.00000E+00
   23 0.00000E+00 0.00000E+00 2.05270E+00 0.00000E+00 0.00000E+00 0.00000E+00
   24 0.00000E+00 0.00000E+00 2.05270E+00 0.00000E+00 0.00000E+00 0.00000E+00
   25 0.00000E+00 0.00000E+00 1.02635E+00 0.00000E+00 0.00000E+00 0.00000E+00
   26 0.00000E+00 0.00000E+00 1.06073E+00 0.00000E+00 0.00000E+00 0.00000E+00
   27 0.00000E+00 0.00000E+00 2.12146E+00 0.00000E+00 0.00000E+00 0.00000E+00
   28 0.00000E+00 0.00000E+00 2.12146E+00 0.00000E+00 0.00000E+00 0.00000E+00
   29 0.00000E+00 0.00000E+00 2.12146E+00 0.00000E+00 0.00000E+00 0.00000E+00
   30 0.00000E+00 0.00000E+00 1.06073E+00 0.00000E+00 0.00000E+00 0.00000E+00
   31 0.00000E+00 0.00000E+00 5.41386E-01 0.00000E+00 0.00000E+00 0.00000E+00
   32 0.00000E+00 0.00000E+00 1.08277E+00 0.00000E+00 0.00000E+00 0.00000E+00
   33 0.00000E+00 0.00000E+00 1.08277E+00 0.00000E+00 0.00000E+00 0.00000E+00
   34 0.00000E+00 0.00000E+00 1.08277E+00 0.00000E+00 0.00000E+00 0.00000E+00
   35 0.00000E+00 0.00000E+00 5.41386E-01 0.00000E+00 0.00000E+00 0.00000E+00
          STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO.
         LOADTYPE WIND TITLE WL Z
          CENTER OF FORCE BASED ON Z FORCES ONLY (METE).
         (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
                       X = 0.59999997E+01
                       Y = 0.936698571E+01
                       Z = 0.00000000E+00
   ***TOTAL APPLIED LOAD ( KN METE ) SUMMARY (LOADING
                                                          4)
      SUMMATION FORCE-X =
                                    0.00
       SUMMATION FORCE-Y =
                                    0.00
      SUMMATION FORCE-Z =
                                   47.07
     SUMMATION OF MOMENTS AROUND THE ORIGIN-
                 440.93 MY=
                                   -282.44 MZ=
                                                           0.00
     MX =
   ***TOTAL REACTION LOAD( KN
                               METE ) SUMMARY (LOADING
                                                           4)
      SUMMATION FORCE-X =
                                    0.00
       SUMMATION FORCE-Y =
                                    0.00
      SUMMATION FORCE-Z =
                                  -47.07
```

282.44 MZ=

0.00

SUMMATION OF MOMENTS AROUND THE ORIGIN-

-440.93 MY=

MX=

MAXIMUM DISPLACEMENTS	(CM /RADIANS) (LOADING	4)
MAXIMUMS	AT NODE	
X = -2.33509E-05	25	
Y = -1.00875E-03	171	
Z = 5.31128E-02	33	
RX= 3.71675E-05	8	
RY= 2.11809E-06	25	
RZ= 2.61333E-08	10	

EXTERNAL AND INTERNAL JOINT LOAD SUMMARY (KN METE)-

JT	EXT FX/ INT FX	EXT FY/ INT FY	EXT FZ/ INT FZ	EXT MX/ INT MX	EXT MY/ INT MY	EXT MZ/ INT MZ	
						Ç.	SUPPORT=1
1	0.00	0.00	0.45	0.00	0.00	0.00	
	0.00	5.93	1.44	3.03	-0.02	0.00	111111
2	0.00	0.00	0.89	0.00	0.00	0.00	
	0.00	6.00	1.55	3.24	-0.02	0.00	111111
3	0.00	0.00	0.89	0.00	0.00	0.00	
	0.00	6.03	1.59	3.30	0.00	0.00	111111
4	0.00	0.00	0.89	0.00	0.00	0.00	
	0.00	6.00	1.55	3.24	0.02	0.00	111111
5	0.00	0.00	0.45	0.00	0.00	0.00	
	0.00	5.93	1.44	3.03	0.02	0.00	111111
36	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	-0.05	1.85	3.42	-0.01	0.00	111111
37	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	-0.06	1.97	3.63	-0.01	0.00	111111
38	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	-0.06	2.01	3.69	0.00	0.00	111111
39	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	-0.06	1.97	3.63	0.01	0.00	111111
40	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	-0.05	1.85	3.42	0.01	0.00	111111
71	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	1.82	3.38	-0.01	0.00	111111
72	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	1.93	3.57	-0.01	0.00	111111
73	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	1.96	3.63	0.00	0.00	111111
74	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	1.93	3.57	0.01	0.00	111111
75	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.00	1.82	3.38	0.01	0.00	111111
106	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.05	1.83	3.39	-0.01	0.00	111111

107	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.05	1.94	3.57	-0.01	0.00	111111
108	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.05	1.97	3.63	0.00	0.00	111111
109	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.05	1.94	3.57	0.01	0.00	111111
110	0.00	0.00	0.00	0.00	0.00	0.00	
	0.00	0.05	1.83	3.39	0.01	0.00	111111

								monday,
STA	AAD SPACE					PAGE N	0. 256	
141	0.00	0.00 -5.93	0.00		0.00	0.00	111111	
142	0.00	0.00 -5.99	0.00 1.49		0.00	0.00	111111	
143	0.00	0.00 -6.02	0.00 1.52		0.00	0.00	111111	
144	0.00	0.00 -5.99	0.00 1.49		0.00	0.00	111111	
145	0.00	0.00 -5.93	0.00 1.41		0.00	0.00	111111	
FOR LOA	ADING - 7							
APPLIED	JOINT EQUIV	ALENT LOADS						
JOINT	FORCE-X	FORCE-Y	FORCE-Z	MOM-X	MO	M-Y	MOM-Z	
	0.00000E+00-							
	0.00000E+00-							
3	0.00000E+00-	2.96568E+01	0.00000E+00	0.00000E+00	0.000	00E+00 0.0	0000E+00	
4	0.00000E+00-	2.96568E+01	0.00000E+00	0.00000E+00	0.000	00E+00 0.0	0000E+00	
5	0.00000E+00-	2.96568E+01	0.00000E+00	0.00000E+00	0.000	00E+00 0.0	0000E+00	
6	0.00000E+00-	1.24623E+02	0.00000E+00	1.68942E+01	0.000	00E+00-1.6	8942E+01	
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
13	0.00000E+00-	1.61778E+02	0.00000E+00	1.97111E+01	0.000	00E+00-1.7	2401E-06	
14	0.00000E+00-	1.61778E+02	0.00000E+00	1.97111E+01	0.000	00E+00 5.1	7204E-06	
15	0.00000E+00-	1.24623E+02	0.00000E+00	1.68942E+01	0.000	00E+00 1.6	8942E+01	
16	0.00000E+00-	1.24623E+02	0.00000E+00	1.68942E+01	0.000	00E+00-1.6	8942E+01	
17	0.00000E+00-	1.61778E+02	0.00000E+00	1.97111E+01	0.000	00E+00 0.0	0000E+00	
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
	0.0000E+00-							
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
27	0.00000E+00-	1.61778E+02	0.00000E+00	1.97111E+01	0.000	00E+00 0.0	0000E+00	
28	0.00000E+00-	1.61778E+02	0.00000E+00	1.97111E+01	0.000	00E+00-1.7	2401E-06	
29	0.00000E+00-	1.61778E+02	0.00000E+00	1.97111E+01	0.000	00E+00 5.1	7204E-06	
30	0.00000E+00-	1.24623E+02	0.00000E+00	1.68942E+01	0.000	00E+00 1.6	8942E+01	
31	0.00000E+00-	9.49664E+01	0.00000E+00	1.68942E+01	0.000	00E+00-1.6	8942E+01	
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
	0.00000E+00-							
38	0.00000E+00-	2.96568E+01	0.00000E+00	0.00000E+00	0.000	00E+00 0.0	0000E+00	
39	0.00000E+00-	2.96568E+01	0.00000E+00	0.00000E+00	0.000	00E+00 0.0	0000E+00	
40	0.00000E+00-	2.96568E+01	0.00000E+00	0.00000E+00	0.000	00E+00 0.0	0000E+00	
	0.00000E+00-							
	0.00000E+00-							
72		0,,,,,,,,,	C.00000100	1.,21010 00	0.000	I	_ 1011 00	

APPLIED JOINT EQUIVALENT LOADS

TOTNT FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM-743 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00-3.44802E-06 44 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00 3.44802E-06 45 0.00000E+00-1.61778E+02 0.00000E+00 0.00000E+00 0.00000E+00 1.97111E+01 46 0.00000E+00-1.61778E+02 0.00000E+00 0.00000E+00 0.00000E+00-1.97111E+01 47 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.72401E-06 48 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00-3.44802E-06 49 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00 3.44802E-06 50 0.00000E+00-1.61778E+02 0.00000E+00 0.00000E+00 0.00000E+00 1.97111E+01 51 0.00000E+00-1.61778E+02 0.00000E+00 0.00000E+00 0.00000E+00-1.97111E+01 52 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.72401E-06 53 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00-3.44802E-06 54 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00 3.44802E-06 55 0.00000E+00-1.61778E+02 0.00000E+00 0.00000E+00 0.00000E+00 1.97111E+01 56 0.00000E+00-1.61778E+02 0.00000E+00 0.00000E+00 0.00000E+00-1.97111E+01 57 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.72401E-06 58 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00-3.44802E-06 59 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00 3.44802E-06 60 0.00000E+00-1.61778E+02 0.00000E+00 0.00000E+00 0.00000E+00 1.97111E+01 61 0.00000E+00-1.61778E+02 0.00000E+00 0.00000E+00 0.00000E+0-1.97111E+01 62 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.72401E-06 63 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00-3.44802E-06 64 0.00000E+00-2.07933E+02 0.00000E+00 1.72401E-06 0.00000E+00 3.44802E-06 65 0.00000E+00-1.61778E+02 0.00000E+00 0.00000E+00 0.00000E+00 1.97111E+01 66 0.00000E+00-1.32121E+02 0.00000E+00 0.00000E+00 0.00000E+00-1.97111E+01 67 0.00000E+00-1.78276E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.72401E-06 68 0.00000E+00-1.78276E+02 0.00000E+00 1.72401E-06 0.00000E+00-3.44802E-06 69 0.00000E+00-1.78276E+02 0.00000E+00 1.72401E-06 0.00000E+00 3.44802E-06 70 0.00000E+00-1.32121E+02 0.00000E+00 0.00000E+00 0.00000E+00 1.97111E+01 71 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 72 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 73 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 74 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 75 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 76 0.00000E+00-1.61778E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.97111E+01 77 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00-1.72401E-06 78 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00-3.44802E-06 79 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00 3.44802E-06 80 0.00000E+00-1.61778E+02 0.00000E+00 1.72401E-06 0.00000E+00 1.97111E+01 81 0.00000E+00-1.61778E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.97111E+01 82 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00-1.72401E-06 83 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00-3.44802E-06 84 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00 3.44802E-06 85 0.00000E+00-1.61778E+02 0.00000E+00 1.72401E-06 0.00000E+00 1.97111E+01 86 0.00000E+00-1.61778E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.97111E+01 87 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00-1.72401E-06 88 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00-3.44802E-06 89 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00 3.44802E-06 90 0.00000E+00-1.61778E+02 0.00000E+00 1.72401E-06 0.00000E+00 1.97111E+01 91 0.00000E+00-1.61778E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.97111E+01 92 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00-1.72401E-06 93 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00-3.44802E-06 94 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00 3.44802E-06 95 0.00000E+00-1.61778E+02 0.00000E+00 1.72401E-06 0.00000E+00 1.97111E+01

APPLIED JOINT EQUIVALENT LOADS

JOINT FORCE-X FORCE-Y FORCE-Z MOM-XMOM-Y MOM-796 0.00000E+00-1.61778E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.97111E+01 97 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00-1.72401E-06 98 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00-3.44802E-06 99 0.00000E+00-2.07933E+02 0.00000E+00 3.44802E-06 0.00000E+00 3.44802E-06 100 0.00000E+00-1.61778E+02 0.00000E+00 1.72401E-06 0.00000E+00 1.97111E+01 101 0.00000E+00-1.32121E+02 0.00000E+00 1.72401E-06 0.00000E+00-1.97111E+01 102 0.00000E+00-1.78276E+02 0.00000E+00 3.44802E-06 0.00000E+00-1.72401E-06 103 0.00000E+00-1.78276E+02 0.00000E+00 3.44802E-06 0.00000E+00-3.44802E-06 104 0.00000E+00-1.78276E+02 0.00000E+00 3.44802E-06 0.00000E+00 3.44802E-06 105 0.00000E+00-1.32121E+02 0.00000E+00 1.72401E-06 0.00000E+00 1.97111E+01 106 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 107 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 108 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 109 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 110 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 111 0.00000E+00-1.61778E+02 0.00000E+00-5.17204E-06 0.00000E+00-1.97111E+01 112 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00-1.72401E-06 113 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00-3.44802E-06 114 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00 3.44802E-06 115 0.00000E+00-1.61778E+02 0.00000E+00-5.17204E-06 0.00000E+00 1.97111E+01 116 0.00000E+00-1.61778E+02 0.00000E+00-5.17204E-06 0.00000E+00-1.97111E+01 117 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00-1.72401E-06 118 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00-3.44802E-06 119 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00 3.44802E-06 120 0.00000E+00-1.61778E+02 0.00000E+00-5.17204E-06 0.00000E+00 1.97111E+01 121 0.00000E+00-1.61778E+02 0.00000E+00-5.17204E-06 0.00000E+00-1.97111E+01 122 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00-1.72401E-06 123 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00-3.44802E-06 124 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00 3.44802E-06 125 0.00000E+00-1.61778E+02 0.00000E+00-5.17204E-06 0.00000E+00 1.97111E+01 126 0.00000E+00-1.61778E+02 0.00000E+00-5.17204E-06 0.00000E+00-1.97111E+01 127 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00-1.72401E-06 128 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00-3.44802E-06 129 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00 3.44802E-06 130 0.00000E+00-1.61778E+02 0.00000E+00-5.17204E-06 0.00000E+00 1.97111E+01 131 0.00000E+00-1.61778E+02 0.00000E+00-5.17204E-06 0.00000E+00-1.97111E+01 132 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00-1.72401E-06 133 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00-3.44802E-06 134 0.00000E+00-2.07933E+02 0.00000E+00-3.44802E-06 0.00000E+00 3.44802E-06 135 0.00000E+00-1.61778E+02 0.00000E+00-5.17204E-06 0.00000E+00 1.97111E+01 136 0.00000E+00-1.32121E+02 0.00000E+00-5.17204E-06 0.00000E+00-1.97111E+01 137 0.00000E+00-1.78276E+02 0.00000E+00-3.44802E-06 0.00000E+00-1.72401E-06 138 0.00000E+00-1.78276E+02 0.00000E+00-3.44802E-06 0.00000E+00-3.44802E-06 139 0.00000E+00-1.78276E+02 0.00000E+00-3.44802E-06 0.00000E+00 3.44802E-06 140 0.00000E+00-1.32121E+02 0.00000E+00-5.17204E-06 0.00000E+00 1.97111E+01 141 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 142 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 143 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 144 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 145 0.00000E+00-2.96568E+01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 146 0.00000E+00-1.24623E+02 0.00000E+00-1.68942E+01 0.00000E+00-1.68942E+01 147 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00 0.00000E+00 148 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00-1.72401E-06

APPLIED JOINT FOUTVALENT LOADS

-- PAGE NO. 259

```
JOINT FORCE-X
                  FORCE-Y
                               FORCE-Z
                                            MOM-X
                                                        MOM-Y
                                                                     MOM-7
 149 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00 5.17204E-06
 150 0.00000E+00-1.24623E+02 0.00000E+00-1.68942E+01 0.00000E+00 1.68942E+01
 151 0.00000E+00-1.24623E+02 0.00000E+00-1.68942E+01 0.00000E+00-1.68942E+01
 152 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00 0.00000E+00
 153 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00-1.72401E-06
 154 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00 5.17204E-06
 155 0.00000E+00-1.24623E+02 0.00000E+00-1.68942E+01 0.00000E+00 1.68942E+01
 156 0.00000E+00-1.24623E+02 0.00000E+00-1.68942E+01 0.00000E+00-1.68942E+01
 157 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00 0.00000E+00
 158 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00-1.72401E-06
 159 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00 5.17204E-06
 160 0.00000E+00-1.24623E+02 0.00000E+00-1.68942E+01 0.00000E+00 1.68942E+01
 161 0.00000E+00-1.24623E+02 0.00000E+00-1.68942E+01 0.00000E+00-1.68942E+01
 162 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00 0.00000E+00
 163 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00-1.72401E-06
 164 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00 5.17204E-06
 165 0.00000E+00-1.24623E+02 0.00000E+00-1.68942E+01 0.00000E+00 1.68942E+01
 166 0.00000E+00-1.24623E+02 0.00000E+00-1.68942E+01 0.00000E+00-1.68942E+01
 167 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00 0.00000E+00
 168 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00-1.72401E-06
 169 0.00000E+00-1.61778E+02 0.00000E+00-1.97111E+01 0.00000E+00 5.17204E-06
 170 0.00000E+00-1.24623E+02 0.00000E+00-1.68942E+01 0.00000E+00 1.68942E+01
 171 0.00000E+00-9.49664E+01 0.00000E+00-1.68942E+01 0.00000E+00-1.68942E+01
 172 0.00000E+00-1.32121E+02 0.00000E+00-1.97111E+01 0.00000E+00 0.00000E+00
 173 0.00000E+00-1.32121E+02 0.00000E+00-1.97111E+01 0.00000E+00-1.72401E-06
 174 0.00000E+00-1.32121E+02 0.00000E+00-1.97111E+01 0.00000E+00 5.17204E-06
 175 0.00000E+00-9.49664E+01 0.00000E+00-1.68942E+01 0.00000E+00 1.68942E+01
         STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO.
        LOADTYPE DEAD TITLE DI
         CENTER OF FORCE BASED ON Y FORCES ONLY (METE).
        (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
                      X = 0.59999998E+01
                      Y = 0.998407652E+01
                       Z = 0.59999998E+01
                             METE ) SUMMARY (LOADING
                                                          7)
 ***TOTAL APPLIED LOAD ( KN
     SUMMATION FORCE-X =
                                   0.00
     SUMMATION FORCE-Y =
                              -25867.35
     SUMMATION FORCE-Z =
                                   0.00
    SUMMATION OF MOMENTS AROUND THE ORIGIN-
             155204.08 MY=
    MX =
                                      0.00 Mz =
                                                    -155204.08
  ***TOTAL REACTION LOAD ( KN
                              METE ) SUMMARY (LOADING
                                                           7)
     SUMMATION FORCE-X =
                                   0.00
     SUMMATION FORCE-Y =
                                25867.35
                                   0.00
     SUMMATION FORCE-Z =
```

SUMMATION OF MOMENTS AROUND THE ORIGIN-

 $MX = -155204.08 \quad MY = 0.00 \quad MZ = 155204.08$

MAXIMUM DISPLACEMENTS (CM /RADIANS) (LOADING 7)

MAXIMUMS AT NODE

X = -2.47205E-03 105

Y = -2.85815E-01 103

Z = -2.47205E-03 173 RX = 2.05295E-04 33

RY= -2.68256E-07 136

RZ= -2.05295E-04 101

EXTERNAL AND INTERNAL JOINT LOAD SUMMARY (KN METE)-

JT	EXT FX/ INT FX		EXT FZ/ INT FZ	EXT MX/ INT MX	EXT MY/ INT MY	EXT MZ/ INT MZ	
							SUPPORT=1
1	0.00	-29.66	0.00	0.00	0.00	0.00	
	-3.46	-753.65	-3.46	-3.44	0.00	3.44	111111
2	0.00	-29.66	0.00	0.00	0.00	0.00	
	-0.31	-945.11	-4.01	-3.99	0.00	0.35	111111
3	0.00	-29.66	0.00	0.00	0.00	0.00	
	0.00	-962.91	-4.04	-4.02	0.00	0.00	111111
4	0.00	-29.66	0.00	0.00	0.00	0.00	
	0.31	-945.11	-4.01	-3.99	0.00	-0.35	111111
5	0.00	-29.66	0.00	0.00	0.00	0.00	
	3.46	-753.65		-3.44		-3.44	111111
36	0.00	-29.66	0.00	0.00	0.00	0.00	
	-4.01		-0.31	-0.35	0.00		111111
37	0.00	-29.66	0.00	0.00	0.00	0.00	
		-1174.69	-0.38	-0.43	0.00		111111
38	0.00	-29.66	0.00	0.00	0.00	0.00	
		-1195.68	-0.39	-0.44	0.00	0.00	111111
39	0.00	-29.66	0.00	0.00	0.00	0.00	
	0.38	-1174.69	-0.38	-0.43	0.00	-0.43	111111
40	0.00	-29.66	0.00	0.00	0.00	0.00	
	4.01	-945.11		-0.35	0.00	-3.99	111111
71	0.00	-29.66	0.00	0.00	0.00	0.00	
	-4.04		0.00	0.00	0.00	4.02	111111
72	0.00	-29.66	0.00	0.00	0.00	0.00	
	-0.39	-1195.68	0.00	0.00	0.00	0.44	111111
73	0.00	-29.66	0.00	0.00	0.00	0.00	
	0.00	-1217.31	0.00	0.00	0.00	0.00	111111
74	0.00	-29.66	0.00	0.00	0.00	0.00	
		-1195.68	0.00	0.00	0.00	-0.44	111111
75	0.00	-29.66	0.00	0.00	0.00	0.00	
		-962.91		0.00		-4.02	111111

106	0.00 -4.01	-29.66 -945.11	0.00 0.31	0.00 0.35	0.00	0.00 3.99	111111
107	0.00	-29.66 -1174.69	0.00 0.38	0.00 0.43	0.00	0.00	111111
108	0.00	-29.66 -1195.68	0.00	0.00	0.00	0.00	111111

STAAD SPACE					PAGE NO	261
109 0.00 0.38	-29.66 -1174.69	0.00 0.38		0.00	0.00 -0.43	111111
110 0.00 4.01	-29.66 -945.11	0.00 0.31		0.00	0.00 -3.99	111111
141 0.00 -3.46	-29.66 -753.65	0.00 3.46		0.00	0.00 3.44	111111
142 0.00 -0.31	-29.66 -945.11	0.00 4.01		0.00	0.00 0.35	111111
143 0.00 0.00	-29.66 -962.91	0.00 4.04		0.00	0.00	111111
144 0.00 0.31	-29.66 -945.11	0.00 4.01		0.00	0.00 -0.35	111111
145 0.00 3.46	-29.66 -753.65	0.00 3.46		0.00	0.00 -3.44	111111
7 0.00000E+00 8 0.00000E+00	FORCE-Y 0-9.00000E+00 0-1.80000E+01 0-1.80000E+01 0-9.00000E+00 0-9.00000E+00 0-1.80000E+01 0-9.00000E+00 0-9.00000E+00 0-1.80000E+01 0-3.60000E+01 0-3.60000E+01 0-3.60000E+01 0-1.80000E+01	0.00000E+00	5.63370E+00 5.63370E+00 2.81685E+00 2.81685E+00 5.63370E+00 5.63370E+00 5.63370E+00 5.63370E+00 5.63370E+00 5.63370E+00 5.63370E+00 5.63370E+00 5.63370E+00 2.81685E+00 2.81685E+00 2.81685E+00 5.63370E+00 6.63370E+00 7.63370E+00 7.6337	0.00000E- 0.0000E-	+00-2.81 +00-2.15 +00-6.46 +00 1.29 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-2.15 +00-3.81 +00-2.15 +00-3.81 +00-2.15 +00-6.46 +00 1.29 +00 2.81 +00-2.15 +00-6.46 +00 1.29 +00-6.46 +00 1.29 +00 2.81 +00-6.46 +00 1.29 +00 2.81 +00-6.46 +00 1.29 +00 2.81 +00 3.81 +00 3.81 +00 5.63 +00 4.31 +00 5.63 +00 4.31	5501E-07 5504E-07 3301E-06 685E+00 5501E-07 5504E-07 3301E-06 685E+00

APPLIED JOINT EQUIVALENT LOADS

TOTNT FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM-749 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00 2.58602E-06 50 0.00000E+00-1.80000E+01 0.00000E+00 2.15501E-07 0.00000E+00 5.63370E+00 51 0.00000E+00-1.80000E+01 0.00000E+00 2.15501E-07 0.00000E+00-5.63370E+00 52 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00 4.31003E-07 53 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00-8.62006E-07 54 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00 2.58602E-06 55 0.00000E+00-1.80000E+01 0.00000E+00 2.15501E-07 0.00000E+00 5.63370E+00 56 0.00000E+00-1.80000E+01 0.00000E+00 2.15501E-07 0.00000E+00-5.63370E+00 57 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00 4.31003E-07 58 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00-8.62006E-07 59 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00 2.58602E-06 60 0.00000E+00-1.80000E+01 0.00000E+00 2.15501E-07 0.00000E+00 5.63370E+00 61 0.00000E+00-1.80000E+01 0.00000E+00 2.15501E-07 0.00000E+00-5.63370E+00 62 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00 4.31003E-07 63 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00-8.62006E-07 64 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00 2.58602E-06 65 0.00000E+00-1.80000E+01 0.00000E+00 2.15501E-07 0.00000E+00 5.63370E+00 66 0.00000E+00-1.80000E+01 0.00000E+00 2.15501E-07 0.00000E+00-5.63370E+00 67 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00 4.31003E-07 68 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00-8.62006E-07 69 0.00000E+00-3.60000E+01 0.00000E+00-4.31003E-07 0.00000E+00 2.58602E-06 70 0.00000E+00-1.80000E+01 0.00000E+00 2.15501E-07 0.00000E+00 5.63370E+00 76 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00-5.63370E+00 77 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 4.31003E-07 78 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00-8.62006E-07 79 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 2.58602E-06 80 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00 5.63370E+00 81 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00-5.63370E+00 82 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 4.31003E-07 83 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00-8.62006E-07 84 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 2.58602E-06 85 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00 5.63370E+00 86 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00-5.63370E+00 87 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 4.31003E-07 88 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00-8.62006E-07 89 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 2.58602E-06 90 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00 5.63370E+00 91 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00-5.63370E+00 92 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 4.31003E-07 93 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00-8.62006E-07 94 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 2.58602E-06 95 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00 5.63370E+00 96 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00-5.63370E+00 97 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 4.31003E-07 98 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00-8.62006E-07 99 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 2.58602E-06 100 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00 5.63370E+00 101 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00-5.63370E+00 102 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 4.31003E-07 103 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00-8.62006E-07 104 0.00000E+00-3.60000E+01 0.00000E+00 8.62006E-07 0.00000E+00 2.58602E-06 105 0.00000E+00-1.80000E+01 0.00000E+00 6.46504E-07 0.00000E+00 5.63370E+00 111 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00-5.63370E+00

APPLIED JOINT EQUIVALENT LOADS

JOINT FORCE-X FORCE-Y FORCE-Z MOM-XMOM-Y MOM-7112 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 4.31003E-07 113 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00-8.62006E-07 114 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 2.58602E-06 115 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00 5.63370E+00 116 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00-5.63370E+00 117 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 4.31003E-07 118 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00-8.62006E-07 119 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 2.58602E-06 120 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00 5.63370E+00 121 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00-5.63370E+00 122 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 4.31003E-07 123 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00-8.62006E-07 124 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 2.58602E-06 125 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00 5.63370E+00 126 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00-5.63370E+00 127 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 4.31003E-07 128 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00-8.62006E-07 129 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 2.58602E-06 130 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00 5.63370E+00 131 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00-5.63370E+00 132 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 4.31003E-07 133 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00-8.62006E-07 134 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 2.58602E-06 135 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00 5.63370E+00 136 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00-5.63370E+00 137 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 4.31003E-07 138 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00-8.62006E-07 139 0.00000E+00-3.60000E+01 0.00000E+00-2.58602E-06 0.00000E+00 2.58602E-06 140 0.00000E+00-1.80000E+01 0.00000E+00-1.29301E-06 0.00000E+00 5.63370E+00 146 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00-2.81685E+00 147 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-2.15501E-07 148 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-6.46504E-07 149 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00 1.29301E-06 150 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00 2.81685E+00 151 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00-2.81685E+00 152 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-2.15501E-07 153 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-6.46504E-07 154 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00 1.29301E-06 155 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00 2.81685E+00 156 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00-2.81685E+00 157 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-2.15501E-07 158 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-6.46504E-07 159 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00 1.29301E-06 160 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00 2.81685E+00 161 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00-2.81685E+00 162 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-2.15501E-07 163 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-6.46504E-07 164 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00 1.29301E-06 165 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00 2.81685E+00 166 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00-2.81685E+00 167 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-2.15501E-07 168 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-6.46504E-07 169 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00 1.29301E-06

```
STAAD SPACE

APPLIED JOINT EQUIVALENT LOADS

JOINT FORCE-X FORCE-Y FORCE
```

DINT FORCE-X FORCE-Y FORCE-Z MOM-X MOM-Y MOM-Z
170 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00 2.81685E+00

171 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00-2.81685E+00

172 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-2.15501E-07

173 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00-6.46504E-07 174 0.00000E+00-1.80000E+01 0.00000E+00-5.63370E+00 0.00000E+00 1.29301E-06

175 0.00000E+00-9.00000E+00 0.00000E+00-2.81685E+00 0.00000E+00 2.81685E+00

STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO. 8

LOADTYPE LIVE REDUCIBLE TITLE LL

CENTER OF FORCE BASED ON Y FORCES ONLY (METE).

(FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)

X = 0.59999994E+01

Y = 0.105000001E+02

Z = 0.59999994E+01

***TOTAL APPLIED LOAD (KN METE) SUMMARY (LOADING 8)

SUMMATION FORCE-X = 0.00 SUMMATION FORCE-Y = -3456.00 SUMMATION FORCE-Z = 0.00

SUMMATION OF MOMENTS AROUND THE ORIGIN-

MX = 20736.00 MY = 0.00 MZ = -20736.00

***TOTAL REACTION LOAD(KN METE) SUMMARY (LOADING 8)

SUMMATION FORCE-X = 0.00SUMMATION FORCE-Y = 3456.00SUMMATION FORCE-Z = 0.00

SUMMATION OF MOMENTS AROUND THE ORIGIN-

MX= -20736.00 MY= 0.00 MZ= 20736.00

MAXIMUM DISPLACEMENTS (CM /RADIANS) (LOADING 8)

MAXIMUMS AT NODE

X = -8.27435E-04 105 Y = -5.15392E-02 103

Z = -8.27435E-04 173

RX= -6.64981E-05 173

RY= -2.68255E-07 70

RZ= 6.64981E-05 105

EXTERNAL AND INTERNAL JOINT LOAD SUMMARY (KN METE) -

JT EXT FX/ EXT FY/ EXT FZ/ EXT MX/ EXT MY/ EXT MZ/
INT FX INT FY INT FZ INT MX INT MY INT MZ

SUPPORT=1

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.64 -64.33 -0.64 -0.64 0.00 0.64 111111

NO. 265	PAGE N					AAD SPACE	STA
111111	0.00 0.10	0.00	0.00 -1.19	0.00 -1.19	0.00 -112.06	0.00 -0.10	2
111111	0.00	0.00	0.00 -1.21	0.00 -1.22	0.00 -117.36	0.00	3
111111	0.00 -0.10	0.00	0.00 -1.19	0.00 -1.19	0.00 -112.06	0.00	4
111111	0.00 -0.64	0.00	0.00 -0.64	0.00 -0.64	0.00 -64.33	0.00 0.64	5
111111	0.00	0.00	0.00 -0.10	0.00 -0.10	0.00 -112.06	0.00 -1.19	36
111111	0.00 0.18	0.00	0.00 -0.18	0.00 -0.16	0.00 -197.92	0.00 -0.16	37
111111	0.00	0.00	0.00 -0.19	0.00 -0.17	0.00 -206.40	0.00	38
111111	0.00 -0.18	0.00	0.00 -0.18	0.00 -0.16	0.00 -197.92	0.00 0.16	39
111111	0.00 -1.19	0.00	0.00 -0.10	0.00 -0.10	0.00 -112.06	0.00 1.19	40
111111	0.00 1.21	0.00	0.00	0.00	0.00 -117.36	0.00 -1.22	71
111111	0.00 0.19	0.00	0.00	0.00	0.00 -206.40	0.00 -0.17	72
111111	0.00	0.00	0.00	0.00	0.00 -215.53	0.00	73
111111	0.00 -0.19	0.00	0.00	0.00	0.00 -206.40	0.00 0.17	74
111111	0.00 -1.21	0.00	0.00	0.00	0.00 -117.36	0.00 1.22	75
111111	0.00	0.00	0.00 0.10	0.00 0.10	0.00 -112.06	0.00 -1.19	106
111111	0.00 0.18	0.00	0.00 0.18	0.00 0.16	0.00 -197.92	0.00 -0.16	107
111111	0.00	0.00	0.00 0.19	0.00 0.17	0.00 -206.40	0.00	108
111111	0.00 -0.18	0.00	0.00 0.18	0.00 0.16	0.00 -197.92	0.00 0.16	109
111111	0.00 -1.19	0.00	0.00 0.10	0.00 0.10		0.00 1.19	110
111111	0.00 0.64	0.00	0.00	0.00	0.00 -64.33	0.00 -0.64	141
111111	0.00 0.10	0.00	0.00 1.19	0.00 1.19	0.00 -112.06	0.00 -0.10	142
111111	0.00	0.00	0.00 1.21	0.00 1.22		0.00	143

144	0.00	0.00	0.00	0.00	0.00	0.00	
	0 10	-112.06	1 19	1 19	0 00	-0 10	111111
	0.10	112.00	1.17	1.17	0.00	0.10	111111
145	0.00	0.00	0.00	0.00	0.00	0.00	
	0.64	-64.33	0.64	0.64	0.00	-0.64	111111

LOAD COMBINATION NO. 5
COMBINATION LOAD CASE 5

LOADING- 1. 3. FACTOR - 1.50 1.50

LOAD COMBINATION NO. 6
COMBINATION LOAD CASE 6

LOADING- 2. 4. FACTOR - 1.50 1.50

LOAD COMBINATION NO. 9

GENERATED INDIAN CODE GENRAL_STRUCTURES 1

LOADING- 7. 8. FACTOR - 1.50 1.50

169. START CONCRETE DESIGN

170. CODE INDIAN

171. FC 25000 ALL

172. FYMAIN 415000 ALL

173. DESIGN BEAM 1 TO 24 55 TO 78 109 TO 132 163 TO 186 217 TO 240 271 TO 390

BEAM NO. 1 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	0.00	303.13	327.71
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	2-12í	2-12í	3-12í	3-121
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2	2 legged 81 @ 170 mm c/c	2.2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 37.52 MX = -0.37 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.13~\rm{MX}$ = $-0.37~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 2 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.87 MX = -0.02 LD = 9Provide 2 Legged 8í @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -36.78 MX = -0.02 LD = 9Provide 2 Legged 8í @ 170 mm c/c

______ BEAM NO. 3 DESIGN RESULTS

Fe415 (Main)

SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm LENGTH: 3000.0 mm

Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

M25

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.51 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -37.14 MX = 0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 4 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

STAAD SPACE

-- PAGE NO. 270

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 35.86 MX = 0.37 LD= 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -37.79 MX = 0.37 LD= 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 5 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-101	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 40.91 MX = -0.38 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-32.74~\rm{MX}$ = $-0.38~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 6 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c	2 2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.76 MX = -0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.89~\rm{MX}$ = $-0.02~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 7 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2		2 legged 81 @ 170 mm c/c	2.2

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.62 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.03~\rm{MX}$ = $$0.02~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 8 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 32.47 MX = 0.38 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-41.18~\rm{MX}$ = $$0.38~\rm{LD}\text{=}$$ 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 9 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	- 3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 43.21 MX = -0.42 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -30.44 MX = -0.42 LD = 9

Provide 2 Legged 8í @ 170 mm c/c

BEAM NO. 10 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.84 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -36.82 MX = -0.03 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 11 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.55 MX = 0.03 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -37.11 MX = 0.03 LD = 9Provide 2 Legged 81 @ 170 mm c/c

______ BEAM NO. 12 DESIGN RESULTS

Fe415 (Main)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

Fe415 (Sec.)

M25

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	2 2	3 3

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 30.17 MX = 0.42 LD = 9Provide 2 Legged 8í @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -43.48 MX = 0.42 LD = 9Provide 2 Legged 8í @ 170 mm c/c

______ BEAM NO. 13 DESIGN RESULTS

Fe415 (Main)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	318.21	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

M25

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	2-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $44.90~\rm{MX}$ = $-0.45~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-28.75~\rm{MX}$ = $-0.45~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 14 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	- 3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.93 MX = -0.03 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -36.72 MX = -0.03 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 15 DESIGN RESULTS

Fe415 (Main) M25 Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.45 MX = 0.03 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -37.20 MX =0.03 LD= 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 16 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	318.21
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2.2	3 3	2 legged 81 @ 170 mm c/c		3 3

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 28.48 MX = 0.45 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-45.17~\rm{MX}$ = $$0.45~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 17 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	342.58	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13 (Sq. mm)
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $46.71~\rm{MX}$ = $-0.42~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-26.94~\rm{MX}$ = $-0.42~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 18 DESIGN RESULTS

BEAM NO. 10 DESIGNAESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81	2 legged 81	2 legged 81	2 legged 81	2 legged 8í
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.85 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.80~\rm{MX}$ = $-0.03~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 19 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

STAAD SPACE

-- PAGE NO. 282

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.53 MX = 0.03 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -37.12 MX = 0.03 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 20 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	342.58
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 26.67 MX = 0.42 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-46.98~\rm{MX}$ = $$0.42~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 21 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	4-10i	4-10i	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2	2 legged 81 @ 170 mm c/c	2 2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$41.31~\rm{MX} = $-0.90~\rm{LD} = $9$$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-32.35~\rm{MX}$ = $-0.90~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 22 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.26 MX = -0.09 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.40~\rm{MX}$ = $-0.09~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 23 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 37.13 MX = 0.09 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -36.53~MX = \$0.09~LD=\$ 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 24 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

 $VY = 32.08 \ MX = 0.90 \ LD= 9$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -41.58 MX = 0.90 LD= 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 55 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	4-10i	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 49.04 MX = -0.04 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-47.02~\rm{MX}$ = $-0.04~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 56 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.97~\rm{MX}$=$-0.01~\rm{LD}=9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.09~\rm{MX}$ = $-0.01~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 57 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

-- PAGE NO. 288

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 47.55 MX = 0.01 LD = 9Provide 2 Legged 8í @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -48.51 MX = 0.01 LD = 9Provide 2 Legged 8í @ 170 mm c/c

______ BEAM NO. 58 DESIGN RESULTS

Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

M25

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10i	4-10i	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 46.48 MX = 0.04 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -49.58 MX = 0.04 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 59 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	349.52	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 53.46 MX = -0.10 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -42.61 MX = -0.10 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 60 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10i 1 layer(s)
BOTTOM REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)
	2 legged 81 @ 170 mm c/c	33	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.83 MX = -0.01 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.23~\rm{MX}$ = $-0.01~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 61 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2		2 legged 81 @ 170 mm c/c	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.69 MX = 0.01 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.37~\rm{MX}$ = $$0.01~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 62 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

-- PAGE NO. 292

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	349.52
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 42.07 MX = 0.10 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-54.00~\rm{MX}$ = $$0.10~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 63 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	386.09	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 56.45 MX = -0.13 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -39.61~MX = -0.13~LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 64 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	- 3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.92~\rm{MX} = $-0.02~\rm{LD} = $9$$

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.14 MX = -0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 65 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.60 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$$ AWAY FROM END SUPPORT VY = $-48.46\ \mathrm{MX}$ = $$0.02\ \mathrm{LD}\text{=}$$ 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 66 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	386.09
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	5-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.				2 legged 81 @ 170 mm c/c	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 39.07 MX = 0.13 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -56.99 MX = 0.13 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 67 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	414.12	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 58.66 MX = -0.16 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.41~\rm{MX}$ = $-0.16~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 68 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.03 MX = -0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -48.03~MX = -0.02~LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 69 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.49 MX = 0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.57 MX = 0.02 LD= 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 70 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	414.12
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$36.86~\rm{MX}$ = 0.16~\rm{LD} = 9$

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -59.20 \ MX = 0.16 \ LD= 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 71 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	446.21	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-12í	3-12í	3-12í	3-12í	3-121
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2	2 legged 81 @ 170 mm c/c	2.2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 60.95 MX = -0.18 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-35.11~\rm{MX}$ = $-0.18~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 72 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.95 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.11~\rm{MX}$ = $-0.03~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

DEAM NO. 72 DECTON DECUTE O

BEAM NO. 73 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.57 MX = 0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -48.49~MX = \$0.03~LD=\$ 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 74 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	446.21
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

-- PAGE NO. 302

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 34.57 MX = 0.18 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -61.49 MX = 0.18 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 75 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	339.44	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 54.30 MX = -0.26 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-41.76~\rm{MX}$ = $-0.26~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 76 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.16 MX = -0.04 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.90~\rm{MX}$ = $-0.04~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 77 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.36 MX = 0.04 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-47.70~\rm{MX}$ = $$0.04~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 78 DESIGN RESULTS

BEAM NO. 70 DESIGN RESULIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	339.44
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 41.22 MX = 0.26 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -54.84 MX = 0.26 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 109 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 8í
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 49.10 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -46.96 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 110 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 47.98 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -48.08 \ MX = 0.00 \ LD= 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 111 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	2 legged 81 @ 220 mm c/c		3 3

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.54~\rm{MX}$=$0.00~\rm{LD}=9 Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.52~\rm{MX}$ = $$0.00~\rm{LD} = 9$$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 112 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2.2	3 3	2 legged 81 @ 220 mm c/c	3 3

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$46.42~\rm{MX}$=$0.00~\rm{LD}=9 Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-49.64~\rm{MX} = 0.00~\rm{LD} = 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 113 DESIGNRESULTS

BEAM NO. 113 DESIGN RESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	350.47	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81		2 legged 81
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 53.62 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -42.45 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 114 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 8í
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

STAAD SPACE

-- PAGE NO. 310

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT 0.00 LD= 9 VY = 47.85 MX =

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.22 MX =0.00 LD= 9 Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 115 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	4-10i	4-10í	4-10i
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 220 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 47.68 MX = 0.00 LD = 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.39 MX =0.00 LD= 9 Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 116 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	350.47
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 41.91 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-54.16~\rm{MX} = 0.00~\rm{LD} = 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 117 DESIGNRESULTS

Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

M25

M25

-- PAGE NO. 312

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	391.14	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 56.69 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -39.37 MX = 0.00 LD = 9Provide 2 Legged 8í @ 220 mm c/c

______ BEAM NO. 118 DESIGN RESULTS

Fe415 (Main)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81	2 legged 81	2 legged 81	2 legged 81	2 legged 8í
REINF.	@ 220 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.94~\rm{MX}$=$0.00~\rm{LD}=9 Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.12 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 119 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 8í
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.58 MX = 0.00 LD= 9Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.48 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 120 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	391.14
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 220 mm c/c		@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 38.83 MX = 0.00 LD= 9
Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -57.23 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 121 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	416.21	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 58.96 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.10~\rm{MX}$ = $$0.00~\rm{LD} = 9$$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 122 DESIGNRESULTS

Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

M25

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	2 legged 81 @ 220 mm c/c	2 legged 81 @ 220 mm c/c	2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.06 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.00~\rm{MX}$ = $$0.00~\rm{LD} = 9$$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 123 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 8í	3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 220 mm c/c		@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 47.46 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

BEAM NO. 124 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	416.21
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP REINF.	3-12í 1 layer(s)	3-12í 1 layer(s)	3-12í 1 layer(s)	3-12í 1 layer(s)	4-12í 1 layer(s)
BOTTOM REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)
SHEAR REINF.	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.56 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -59.50 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 125 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	449.04	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP REINF.	4-12í 1 layer(s)	3-12í 1 layer(s)	3-12í 1 layer(s)	3-12í 1 layer(s)	3-12í 1 layer(s)
BOTTOM REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10i 1 layer(s)	4-10i 1 layer(s)
	2 legged 81 @ 220 mm c/c	33	2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 61.32 MX = 0.00 LD= 9
Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -34.74 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 126 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $47.98~\rm{MX}$ = $0.00~\rm{LD} = 9$ Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -48.08 MX = 0.00 LD= 9
Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 127 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	22	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.54~\rm{MX}$=$0.00~\rm{LD}=9 Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.52~\rm{MX}$ = $$0.00~\rm{LD} = 9$$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 128 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	449.04
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 34.20 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -61.86 \ MX = 0.00 \ LD= 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 129 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	338.50	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

-- PAGE NO. 322

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 54.48 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -41.58 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 130 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	4-10i	4-10í	4-10i
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 220 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.16 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -48.90 \ MX = 0.00 \ LD= 9$ Provide 2 Legged 81 @ 220 mm c/c

STAAD SPACE

-- PAGE NO. 323

BEAM NO. 131 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2.2	33	2 legged 81 @ 220 mm c/c		2.2

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.36 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -47.70 MX = 0.00 LD= 9 Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 132 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	338.50
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	2 legged 81 @ 220 mm c/c	3 3	2 2	2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 41.04 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-55.02~\rm{MX}$ = $$0.00~\rm{LD} = 9$$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 163 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	2-10í	4-10í	4-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	2.2	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 49.04 MX = 0.04 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -47.02 MX = 0.04 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 164 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.97 MX = 0.01 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.09 MX = 0.01 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 165 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.55~\rm{MX} = $-0.01~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.51~\rm{MX}$ = $-0.01~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

STAAD SPACE

-- PAGE NO. 327

BEAM NO. 166 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2.2	3 3	2 legged 81 @ 170 mm c/c		2.2

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$ AWAY FROM START SUPPORT VY = $46.48\ \mathrm{MX} = -0.04\ \mathrm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-49.58~\rm{MX}$ = $-0.04~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 167 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	349.52	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	2 legged 81 @ 170 mm c/c	3 3	2 2	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 53.46 MX = 0.10 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-42.61~\rm{MX}$ = $$0.10~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 168 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	2-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.83 MX = 0.01 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -48.23 \ MX = 0.01 \ LD= 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 169 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

		DOIMMIN OF THO	VIDED REINI.		
SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10i 1 layer(s)	4-10í 1 layer(s)
BOTTOM REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-101 1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c	2 2	2 legged 81 @ 170 mm c/c

STAAD SPACE

-- PAGE NO. 330

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.69 MX = -0.01 LD= 9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.37 MX = -0.01 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 170 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	349.52
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 42.07 MX = -0.10 LD= 9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-54.00~\rm{MX}$ = $-0.10~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 171 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	386.09	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	2-101	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$ AWAY FROM START SUPPORT VY = $$56.45\ \mathrm{MX} = $0.13\ \mathrm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -39.61 MX = 0.13 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 172 DESIGNRESULTS

BEAM NO. 1/2 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	2 legged 81 @ 170 mm c/c	3 3	2 2	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.92 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.14~\rm{MX}$ = $$0.02~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 173 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	2.2	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.60 MX = -0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.46~\rm{MX}$ = $-0.02~\rm{LD}$ = 9 Provide 2 Legged $81~\rm{@}$ 170 mm c/c

BEAM NO. 174 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	386.09
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 39.07 MX = -0.13 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -56.99 MX = -0.13 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 175 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	414.12	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP REINF.	4-12í 1 layer(s)	3-12í 1 layer(s)	3-12í 1 layer(s)	3-12í 1 layer(s)	3-12í 1 layer(s)
BOTTOM REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)
	2 legged 81 @ 170 mm c/c	33	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$58.66~\rm{MX}$ = $0.16~\rm{LD}= 9$$

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -37.41 MX = 0.16 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 176 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.03 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.03~\rm{MX}$ = $$0.02~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 177 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.49 MX = -0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.57~\rm{MX}$ = $-0.02~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 178 DESIGNRESULTS

BEAM NO. 1/0 DESIGN RESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	414.12
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12i
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.86 MX = -0.16 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -59.20~MX = -0.16~LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 179 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	446.21	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 60.95 MX = 0.18 LD= 9Provide 2 Legged 8i @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -35.11 MX = 0.18 LD= 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 180 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 47.95 MX = 0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.11~\rm{MX}$ = $$0.03~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 181 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10i	4-10í	4-10i	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c	2 2	2.2

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.57~\rm{MX}$=$-0.03~\rm{LD}=9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.49~\rm{MX}$ = $-0.03~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 182 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	446.21
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 34.57 MX = -0.18 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-61.49~\rm{MX}$ = $-0.18~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 183 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	339.44	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 54.30 MX = 0.26 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -41.76~MX = \$0.26~LD=\$ 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 184 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.16 MX = 0.04 LD= 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.90 MX = 0.04 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 185 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10i	4-10i	4-10i	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81		2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.36 MX = -0.04 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-47.70~\rm{MX}$ = $-0.04~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 186 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	339.44
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13 (Sq. mm)	303.13	303.13	303.13	303.13
REINF.		(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$ AWAY FROM START SUPPORT VY = $$41.22\ \mathrm{MX}$=$-0.26\ \mathrm{LD}=9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-54.84~\rm{MX}$ = $-0.26~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 217 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 37.52 MX = 0.37 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.13~\rm{MX}$ = $$0.37~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 218 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2.2	3 3	2 legged 81 @ 170 mm c/c		2.2

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.87 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -36.78 \ MX = 0.02 \ LD= 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 219 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	- 3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.51 MX = -0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -37.14 MX = -0.02 LD= 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 220 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 35.86 MX = -0.37 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -37.79 MX = -0.37 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 221 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 40.91 MX = 0.38 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -32.74 MX = 0.38 LD= 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 222 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.76 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.89~\rm{MX}$ = $$0.02~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 223 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.62 MX = -0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0\ \text{mm}$$ AWAY FROM END SUPPORT VY = $-37.03\ \text{MX}$ = $-0.02\ \text{LD}\text{=}$ 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 224 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2 legged 81 @ 170 mm c/c	2.2	3 3	2.2

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 32.47 MX = -0.38 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -41.18 MX = -0.38 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 225 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 43.21 MX = 0.42 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-30.44~\rm{MX}$ = $$0.42~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 226 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	2-10i	4-10i	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c	2 2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.84 MX = 0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.82~\rm{MX}$ = $$0.03~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 227 DESIGNRESULTS

Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

M25

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2.2	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.55 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.11~\rm{MX}$ = $-0.03~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 228 DESIGNRESULTS

BEAM NO. 220 DESIGN RESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 2	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 30.17 MX = -0.42 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -43.48~MX = -0.42~LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 229 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	318.21	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 44.90 MX = 0.45 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -28.75 MX = 0.45 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 230 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.93 MX = 0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -36.72 MX = 0.03 LD= 9

Provide 2 Legged 8í @ 170 mm c/c

BEAM NO. 231 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2	2 legged 81 @ 170 mm c/c	2.2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.45 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.20~\rm{MX}$ = $-0.03~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 232 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	318.21
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	0.00	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	2-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	2-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	2 legged 81 @ 170 mm c/c	3 3	2.2

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 28.48 MX = -0.45 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-45.17~\rm{MX}$ = $-0.45~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 233 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	342.58	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$46.71~\rm{MX}$=$0.42~\rm{LD}=9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -26.94 MX = 0.42 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 234 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.85 MX = 0.03 LD= 9Provide 2 Legged 8i @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -36.80 MX = 0.03 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 235 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.53 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.12~\rm{MX}$ = $-0.03~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 236 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	342.58
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $26.67~\rm{MX} = -0.42~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-46.98~\rm{MX}$ = $-0.42~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 237 DESIGNRESULTS

Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

M25

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 41.31 MX = 0.90 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-32.35~\rm{MX}$ = $$0.90~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 238 DESIGNRESULTS

BEAM NO. 230 DESIGN RESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 2	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.26 MX = 0.09 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -37.40 MX = 0.09 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 239 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 37.13 MX = -0.09 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -36.53 \ MX = -0.09 \ LD= 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 240 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	4-10i	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 32.08 MX = -0.90 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-41.58~\rm{MX}$ = $-0.90~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 271 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
		3 3	33	2 legged 81 @ 170 mm c/c	3 3

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 37.52 MX = 0.37 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.13~\rm{MX}$ = $$0.37~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 272 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 49.04 MX = 0.04 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-47.02~\rm{MX}$ = $$0.04~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 273 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 49.10 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -46.96~MX = \$0.00~LD=\$ 9

Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 274 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
SECTION	0.0 mm	/50.0 mm		2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	2-10í	4-101	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 8í	2 2	2 legged 8í		2 legged 8í
REINF.	@ 170 mm c/c				

-- PAGE NO. 366

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 49.04 MX = -0.04 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -47.02 MX = -0.04 LD= 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 275 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	4-10i	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 37.52 MX = -0.37 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$ AWAY FROM END SUPPORT VY = $-36.13\ \mathrm{MX} = -0.37\ \mathrm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 276 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-101	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 40.91 MX = 0.38 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -32.74 MX = 0.38 LD= 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 277 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

-- PAGE NO. 368

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	349.52	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2.2	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 53.46 MX = 0.10 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-42.61~\rm{MX}$ = $$0.10~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 278 DESIGNRESULTS

BEAM NO. 270 DESIGNAESOEIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	350.47	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 220 mm c/c	2.2	2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 53.62 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -42.45~MX = \$0.00~LD=\$ 9

Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 279 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	349.52	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c	2 2	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$$ AWAY FROM START SUPPORT VY = $$53.46\ \mathrm{MX} = $-0.10\ \mathrm{LD} = $9$$

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -42.61 MX = -0.10 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 280 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 40.91 MX = -0.38 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0\ \text{mm}$$ AWAY FROM END SUPPORT VY = $-32.74\ \text{MX}$ = $-0.38\ \text{LD}\text{=}$ 9

Provide 2 Legged 8í @ 170 mm c/c

BEAM NO. 281 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2	2 legged 81 @ 170 mm c/c	2.2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 43.21 MX = 0.42 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-30.44~\rm{MX}$ = $$0.42~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 282 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	386.09	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 56.45 MX = 0.13 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-39.61~\rm{MX}$ = $$0.13~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 283 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	391.14	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP REINF.	5-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)
BOTTOM REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)
SHEAR REINF.	2 legged 8í @ 220 mm c/c	3 3	2 legged 8í @ 220 mm c/c	2 2	2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 56.69 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -39.37 MX = 0.00 LD= 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 284 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	386.09	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM START SUPPORT VY = \$56.45~MX\$ = \$-0.13~LD\$ = \$9\$

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -39.61 MX = -0.13 LD = 9

Provide 2 Legged 8í @ 170 mm c/c

BEAM NO. 285 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	4-10i	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 43.21 MX = -0.42 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-30.44~\rm{MX}$ = $-0.42~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 286 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	318.21	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	2-12í	3-12í	3-121
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2	2 legged 81 @ 170 mm c/c	2.2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 44.90 MX = 0.45 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-28.75~\rm{MX}$ = $$0.45~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 287 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	414.12	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2.2	2.2	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 58.66 MX = 0.16 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.41~\rm{MX}$ = $$0.16~\rm{LD}\text{=}$$ 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 288 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	416.21	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 8í	2 legged 81	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 220 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 58.96 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -37.10 \ MX = 0.00 \ LD= 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 289 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	414.12	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2.2	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 58.66 MX = -0.16 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -37.41 MX = -0.16 LD = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 290 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	318.21	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 44.90 MX = -0.45 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-28.75~\rm{MX}$ = $-0.45~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 291 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	342.58	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2	2 legged 81 @ 170 mm c/c	2 2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$ AWAY FROM START SUPPORT VY = $46.71\ \mathrm{MX} = 0.42\ \mathrm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -26.94 MX = 0.42 LD= 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 292 DESIGNRESULTS

Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

M25

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	446.21	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2.2	2.2	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 60.95 MX = 0.18 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-35.11~\rm{MX}$ = $$0.18~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 293 DESIGNRESULTS

BEAM NO. 293 DESIGN RESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	449.04	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 8í	2 legged 81	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 220 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 61.32 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -34.74~MX = \$0.00~LD=\$ 9

Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 294 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	446.21	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	2 2	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

-- PAGE NO. 382

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 60.95 MX = -0.18 LD= 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -35.11 MX = -0.18 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 295 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	342.58	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $46.71~\rm{MX}$ = $-0.42~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-26.94~\rm{MX}$ = $-0.42~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 296 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
		2.2	2 2	2 legged 81 @ 170 mm c/c	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 41.31 MX = 0.90 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-32.35~\rm{MX}$ = $0.90~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 297 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

-- PAGE NO. 384

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	339.44	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2.2	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 54.30 MX = 0.26 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-41.76~\rm{MX}$ = $$0.26~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 298 DESIGNRESULTS

BEAM NO. 290 DESIGN RESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	338.50	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 8í	2 legged 81	2 legged 81		2 legged 81
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 54.48 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -41.58 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 299 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	339.44	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	5-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 33	2 legged 81 @ 170 mm c/c	2 2	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 54.30 MX = -0.26 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -41.76 MX = -0.26 LD=

Provide 2 Legged 81 @ 170 mm c/c

300 DESIGN RESULTS BEAM NO.

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	4-10i	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 41.31 MX = -0.90 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -32.35 MX = -0.90 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 301 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.				2 legged 81 @ 170 mm c/c	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.87 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.78~\rm{MX}$ = $$0.02~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 302 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.97 MX = 0.01 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.09~\rm{MX}$ = $$0.01~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 303 DESIGNRESULTS

BEAM NO. 303 DESIGN RESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 220 mm c/c		@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$$ AWAY FROM START SUPPORT VY = $$47.98\ \mathrm{MX}$ = $0.00\ \mathrm{LD} = $9$$

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.08~\rm{MX}$ = $$0.00~\rm{LD} = 9$$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 304 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

STAAD SPACE

-- PAGE NO. 390

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 47.97 MX = -0.01 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.09 MX = -0.01 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

305 DESIGN RESULTS BEAM NO.

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.87 MX = -0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -36.78 MX = -0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 306 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10i	4-10i	4-10i	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2	2 legged 81 @ 170 mm c/c	2 2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.76 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -36.89 MX = 0.02 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 307 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.83 MX = 0.01 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.23~\rm{MX}$ = $$0.01~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 308 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10i	4-10i	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.85 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -48.22~MX = \$0.00~LD=\$ 9

Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 309 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.83~\rm{MX}$ = $-0.01~\rm{LD}$ = 9$

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.23 MX = -0.01 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 310 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.76 MX = -0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -36.89 MX = -0.02 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 311 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.84 MX = 0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.82~\rm{MX}$ = $$0.03~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 312 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.92 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.14~\rm{MX}$ = $$0.02~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 313 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81		2 legged 81
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.94~\rm{MX}$=$0.00~\rm{LD}=9 Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.12 MX = 0.00 LD = 9 Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 314 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	- 3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.92 MX = -0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.14 MX = -0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 315 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	2-10i	4-10í	4-10i
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.84 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.82~\rm{MX}$ = $-0.03~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 316 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.93 MX = 0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -36.72 MX = 0.03 LD= 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 317 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-101	4-10i	4-101	2-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	2.2	2 legged 81 @ 170 mm c/c	2.2	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.03 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.03~\rm{MX}$ = $$0.02~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

DEAM NO 210 DECTON DECTION

BEAM NO. 318 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81		2 legged 81
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$$ AWAY FROM START SUPPORT VY = $$48.06\ \mathrm{MX}$$ = $$0.00\ \mathrm{LD}$$ = \$9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -48.00 \ MX = 0.00 \ LD= 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 319 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

-- PAGE NO. 402

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.03 MX = -0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -48.03 \ MX = -0.02 \ LD= 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 320 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.93 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$ AWAY FROM END SUPPORT VY = $-36.72\ \mathrm{MX} = -0.03\ \mathrm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 321 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	2 legged 81 @ 170 mm c/c	3 3	3 3

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.85 MX = 0.03 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -36.80 MX = 0.03 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 322 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2.2	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 47.95 MX = 0.03 LD = 9Provide 2 Legged 8í @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -48.11 MX = 0.03 LD = 9Provide 2 Legged 8í @ 170 mm c/c

______ BEAM NO. 323 DESIGN RESULTS

Fe415 (Main)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

M25

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81	2 legged 81	2 legged 81	2 legged 81	2 legged 8í
REINF.	@ 220 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.98 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -48.08 \ MX = 0.00 \ LD= 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 324 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.95 MX = -0.03 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.11 MX = -0.03 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 325 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.85 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -36.80 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 326 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	3 3	2 legged 81 @ 170 mm c/c	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.26 MX = 0.09 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.40~\rm{MX}$ = $$0.09~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 327 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2.2	2.2	2 legged 81 @ 170 mm c/c	3 3

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.16 MX = 0.04 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.90~\rm{MX}$ = $$0.04~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 328 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 220 mm c/c		@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.16~\rm{MX}$ = $0.00~\rm{LD} = 9$$

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.90 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 329 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10i	4-101	2-101	4-101	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2 legged 81 @ 170 mm c/c	2.2	3 3	2.2

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.16~\rm{MX}$ = $-0.04~\rm{LD} = $9$$

Provide 2 Legged 8í @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -48.90 \ MX = -0.04 \ LD= 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 330 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR		2 legged 81	2 legged 81	2 legged 81	2 legged 81
REINF.		@ 170 mm c/c			

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.26 MX = -0.09 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.40~\rm{MX}$ = $-0.09~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 331 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10i	4-10i	4-10i	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		2.2	2 legged 81 @ 170 mm c/c	2 2	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$ AWAY FROM START SUPPORT VY = $36.51\ \mathrm{MX} = -0.02\ \mathrm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.14~\rm{MX}$ = $-0.02~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 332 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	22	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.55~\rm{MX}$=$-0.01~\rm{LD}=9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.51~\rm{MX}$ = $-0.01~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

DEAM NO 222 DECTON DECITED

BEAM NO. 333 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.54~\rm{MX}$=$0.00~\rm{LD}=9 Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.52 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 334 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	0.00	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	2-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.55 MX = 0.01 LD= 9Provide 2 Legged 8i @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.51 MX = 0.01 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 335 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.51 MX = 0.02 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -37.14 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 336 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.62 MX = -0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.03~\rm{MX}$ = $-0.02~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 337 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	22	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.69 MX = -0.01 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.37~\rm{MX}$ = $-0.01~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 338 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 8í @ 220 mm c/c	3 3	3 3	2 legged 81 @ 220 mm c/c	2 legged 8í @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.68 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.39 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 339 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.69 MX = 0.01 LD= 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.37 MX = 0.01 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 340 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.62 MX = 0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.03~\rm{MX}$ = $$0.02~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 341 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$36.55~\rm{MX} = -0.03~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.11~\rm{MX}$ = $-0.03~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 342 DESIGNRESULTS

Fe415 (Main)

Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

M25

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2.2	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.60 MX = -0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.46~\rm{MX}$ = $-0.02~\rm{LD}$ = 9 Provide 2 Legged $81~\rm{@}$ 170 mm c/c

BEAM NO. 343 DESIGNRESULTS

BEAM NO. 343 DESIGN KESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81	2 legged 81	2 legged 81	2 legged 81	2 legged 8í
REINF.	@ 220 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 47.58 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -48.48 \ MX = 0.00 \ LD= 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 344 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

-- PAGE NO. 422

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.60 MX = 0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.46 MX = 0.02 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 345 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.55 MX = 0.03 LD = 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0\ \text{mm}$$ AWAY FROM END SUPPORT VY = $-37.11\ \text{MX}$ = $$0.03\ \text{LD}\text{=}$$ 9

VY = -37.11 MX = 0.03 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 346 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.		3 3	3 3	2 legged 81 @ 170 mm c/c	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.45 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.20~\rm{MX}$ = $-0.03~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 347 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.49 MX = -0.02 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.57~\rm{MX}$ = $-0.02~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 348 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81		2 legged 81
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 47.46 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -48.60~MX = \$0.00~LD=\$ 9

Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 349 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.49 MX = 0.02 LD= 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.57 MX = 0.02 LD= 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 350 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR		2 legged 81	2 legged 81	2 legged 81	2 legged 81
REINF.		@ 170 mm c/c			

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.45 MX = 0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -37.20 MX = 0.03 LD= 9

Provide 2 Legged 8í @ 170 mm c/c

BEAM NO. 351 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.53 MX = -0.03 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.12~\rm{MX}$ = $-0.03~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 352 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$47.57~\rm{MX}$=$-0.03~\rm{LD}=9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-48.49~\rm{MX}$ = $-0.03~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 353 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 8í	2 legged 81	2 legged 81		2 legged 8í
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$$ AWAY FROM START SUPPORT VY = $$47.54\ \mathrm{MX}$$ = $$0.00\ \mathrm{LD}$$ = \$9

Provide 2 Legged 8í @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.52 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 354 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 47.57 MX = 0.03 LD= 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -48.49 MX = 0.03 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 355 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 36.53 MX = 0.03 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.12~\rm{MX}$ = $$0.03~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 356 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.				2 legged 81 @ 170 mm c/c	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 37.13 MX = -0.09 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.53~\rm{MX}$ = $-0.09~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 357 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

-- PAGE NO. 432

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 2	3 3	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.36 MX = -0.04 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-47.70~\rm{MX}$ = $-0.04~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 358 DESIGNRESULTS

DEAM NO. 330 DESIGN RESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10i	4-10i	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 220 mm c/c	3 3	2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.36 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -47.70 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 359 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 48.36 MX = 0.04 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -47.70 MX = 0.04 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 360 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 37.13 MX = 0.09 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-36.53~\rm{MX}$ = $$0.09~\rm{LD} = 9$$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 361 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		2.2

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 35.86 MX = -0.37 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-37.79~\rm{MX}$ = $-0.37~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 362 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 46.48 MX = -0.04 LD = 9Provide 2 Legged 8í @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -49.58 MX = -0.04 LD = 9Provide 2 Legged 8í @ 170 mm c/c

______ BEAM NO. 363 DESIGN RESULTS

Fe415 (Main)

SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm LENGTH: 3000.0 mm

Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

M25

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10i
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c		2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$46.42~\rm{MX}$=$0.00~\rm{LD}=9 Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -49.64~MX = \$0.00~LD=\$ 9

Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 364 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	- 3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

 $VY = 46.48 \ MX = 0.04 \ LD= 9$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -49.58 \ MX = 0.04 \ LD= 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 365 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 35.86 MX = 0.37 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -37.79 MX = 0.37 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 366 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.				2 legged 81 @ 170 mm c/c	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 32.47 MX = -0.38 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-41.18~\rm{MX}$ = $-0.38~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 367 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	349.52
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $42.07~\rm{MX}$ = $-0.10~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-54.00~\rm{MX}$ = $-0.10~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 368 DESIGNRESULTS

DEAM NO. 300 DESIGN RESULIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	350.47
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 220 mm c/c		@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 41.91 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -54.16 \ MX = 0.00 \ LD= 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 369 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	349.52
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 42.07 MX = 0.10 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -54.00 MX = 0.10 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 370 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 32.47 MX = 0.38 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -41.18 MX = 0.38 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 371 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.			2 legged 81 @ 170 mm c/c		

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 30.17 MX = -0.42 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-43.48~\rm{MX}$ = $-0.42~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 372 DESIGNRESULTS

Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

M25

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	386.09
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2 legged 81 @ 170 mm c/c	3 3	2 2	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 39.07 MX = -0.13 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-56.99~\rm{MX}$ = $-0.13~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 373 DESIGNRESULTS

BEAM NO. 3/3 DESIGN RESOLIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	391.14
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81	2 legged 81	2 legged 81	2 legged 81	2 legged 8í
REINF.	@ 220 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 38.83 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT \$590.0~mm\$ AWAY FROM END SUPPORT VY = -57.23~MX = \$0.00~LD=\$ 9

Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 374 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	386.09
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81		2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 39.07 MX = 0.13 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -56.99 MX = 0.13 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 375 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	2-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10i	4-10i	2-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 30.17 MX = 0.42 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -43.48 MX = 0.42 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 376 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	318.21
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2.2	3 3	2 legged 81 @ 170 mm c/c		3 3

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 28.48 MX = -0.45 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-45.17~\rm{MX}$ = $-0.45~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 377 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	414.12
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13 (Sq. mm)
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2 legged 81 @ 170 mm c/c	3 3	2 2	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.86 MX = -0.16 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-59.20~\rm{MX}$ = $-0.16~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 378 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	416.21
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

F:\STAAD PRO\RAJESH KUMAR [G+5 BUILDING].anl

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 220 mm c/c	2 2	2 legged 81 @ 220 mm c/c	2 2	2 legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$$ AWAY FROM START SUPPORT VY = $$36.56\ \mathrm{MX}$ = $0.00\ \mathrm{LD} = $9$$

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -59.50 \ MX = 0.00 \ LD= 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 379 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	414.12
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	2 legged 81	2 legged 81	3 3	2 legged 81
REINF.	@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c		@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 36.86 MX = 0.16 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -59.20 MX = 0.16 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 380 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	0.00	303.13	303.13	318.21
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	0.00	0.00
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	2-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	2-10í	2-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT VY = 28.48 MX = 0.45 LD= 9
Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT VY = -45.17 MX = 0.45 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 381 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	342.58
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2.2	3 3	2 legged 81 @ 170 mm c/c		2.2

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$ AWAY FROM START SUPPORT VY = $26.67\ \mathrm{MX} = -0.42\ \mathrm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-46.98~\rm{MX}$ = $-0.42~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 382 DESIGNRESULTS

M25 Fe415 (Main) Fe415 (Sec.)

-- PAGE NO. 452

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	446.21
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	3 3	2 legged 81 @ 170 mm c/c	3 3	2 2	2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 34.57 MX = -0.18 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-61.49~\rm{MX}$ = $-0.18~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 383 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	449.04
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 8í	2 legged 81	2 legged 81		2 legged 81
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 34.20 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

 $VY = -61.86 \ MX = 0.00 \ LD= 9$ Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 384 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	446.21
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	4-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 81	- 3 3	2 legged 81	2 legged 81	2 legged 81
REINF.	@ 170 mm c/c		@ 170 mm c/c	@ 170 mm c/c	@ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 34.57 MX = 0.18 LD = 9Provide 2 Legged 8i @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -61.49 MX = 0.18 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 385 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	342.58
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 26.67 MX = 0.42 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0\ \mathrm{mm}$ AWAY FROM END SUPPORT VY = $-46.98\ \mathrm{MX} = 0.42\ \mathrm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 386 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-101
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.				2 legged 81 @ 170 mm c/c	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 32.08 MX = -0.90 LD= 9

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-41.58~\rm{MX}$ = $-0.90~\rm{LD}$ = 9 Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 387 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	339.44
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	5-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR REINF.	2 legged 81 @ 170 mm c/c	3 3	2 legged 81 @ 170 mm c/c		2 legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$41.22~\rm{MX} = -0.26~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-54.84~\rm{MX} = -0.26~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 388 DESIGNRESULTS

BEAM NO. 300 DESIGN RESULIS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	338.50
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	3-12í	3-12í	3-12í	3-12í	3-12í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)	1 layer(s)
SHEAR	2 legged 8í	2 legged 81	2 legged 81		2 legged 81
REINF.	@ 220 mm c/c	@ 220 mm c/c	@ 220 mm c/c		@ 220 mm c/c

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 41.04 MX = 0.00 LD= 9

Provide 2 Legged 81 @ 220 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -55.02 MX = 0.00 LD = 9Provide 2 Legged 81 @ 220 mm c/c

BEAM NO. 389 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	339.44
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

	01 110 110 110 110 110 110 110 110 110					
SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm	
TOP REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	5-10í 1 layer(s)	
BOTTOM REINF.	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	4-10í 1 layer(s)	
SHEAR REINF.		3 3	2 legged 81 @ 170 mm c/c	2 legged 81 @ 170 mm c/c	2 legged 81 @ 170 mm c/c	

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM START SUPPORT

VY = 41.22 MX = 0.26 LD = 9Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT 590.0 mm AWAY FROM END SUPPORT

VY = -54.84 MX = 0.26 LD = 9Provide 2 Legged 81 @ 170 mm c/c

BEAM NO. 390 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm SIZE: 400.0 mm X 400.0 mm COVER: 25.0 mm

SUMMARY OF REINF. AREA (Sq.mm)

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)
BOTTOM	303.13	303.13	303.13	303.13	303.13
REINF.	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)	(Sq. mm)

SUMMARY OF PROVIDED REINF. AREA

SECTION	0.0 mm	750.0 mm	1500.0 mm	2250.0 mm	3000.0 mm
TOP	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
BOTTOM	4-10í	4-10í	4-10í	4-10í	4-10í
REINF.	1 layer(s)				
SHEAR	2 legged 81				
REINF.	@ 170 mm c/c				

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM START SUPPORT VY = $$32.08~\rm{MX}$ = 0.90~\rm{LD} = 9$

Provide 2 Legged 81 @ 170 mm c/c

SHEAR DESIGN RESULTS AT $$590.0~\rm{mm}$ AWAY FROM END SUPPORT VY = $-41.58~\rm{MX} = 0.90~\rm{LD} = 9$ Provide 2 Legged 81 @ 170 mm c/c

174. DESIGN COLUMN 25 TO 54 79 TO 108 133 TO 162 187 TO 216 241 TO 270

COLUMN NO. 25 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 1 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 102.71 Muy1 : 102.71

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 6 Puz : 2820.99 Muz : 195.10 Muy : 195.10 IR: 0.12

COLUMN NO. 26 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 2 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.16 Muy1 : 109.16

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 2 Puz : 2820.99 Muz : 167.35 Muy : 167.35 IR: 0.15

COLUMN NO. 27 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 3 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 102.59 Muv1: 102.59

142 · 2/01:10 Hazi · 102:05 Hayi · 102:05

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 3 Puz : 2820.99 Muz : 121.02 Muy : 121.02 IR: 0.24

COLUMN NO. 28 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 4 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 102.63 Muy1 : 102.63

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 4 Puz : 2820.99 Muz : 121.05 Muy : 121.05 IR: 0.24

COLUMN NO. 29 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 5 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 102.71 Muy1 : 102.71

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 5 Puz : 2820.99 Muz : 131.62 Muy : 131.62 IR: 0.20

COLUMN NO. 30 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 6 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 104.13 Muy1 : 104.13

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 11 Puz : 2820.99 Muz : 187.92 Muy : 187.92 IR: 0.13

COLUMN NO. 31 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 7 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.04 Muy1 : 109.04

INTERACTION RATIO: 0.13 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 7 Puz : 2820.99 Muz : 186.37 Muy : 186.37 IR: 0.13

COLUMN NO. 32 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 8 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 104.02 Muy1: 104.02

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 8 Puz : 2820.99 Muz : 184.24 Muy : 184.24 IR: 0.13

COLUMN NO. 33 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 9 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 104.06 Muy1 : 104.06

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 9 Puz : 2820.99 Muz : 121.26 Muy : 121.26 IR: 0.21

COLUMN NO. 34 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 10 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 104.13 Muy1 : 104.13

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 15 Puz : 2820.99 Muz : 187.92 Muy : 187.92 IR: 0.13

COLUMN NO. 35 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 11 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 105.65 Muy1 : 105.65

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 16 Puz: 2820.99 Muz: 196.96 Muy: 196.96 IR: 0.14

COLUMN NO. 36 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 12 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 108.98 Muy1: 108.98

INTERACTION RATIO: 0.12 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 17 Puz : 2820.99 Muz : 200.07 Muy : 200.07 IR: 0.13

COLUMN NO. 37 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 13 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 105.56 Muy1 : 105.56

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 18 Puz : 2820.99 Muz : 188.45 Muy : 188.45 IR: 0.13

COLUMN NO. 38 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 14 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 105.59 Muy1 : 105.59

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 19 Puz : 2820.99 Muz : 121.37 Muy : 121.37 IR: 0.19

COLUMN NO. 39 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 15 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 105.65 Muy1: 105.65

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 20 Puz: 2820.99 Muz: 196.96 Muy: 196.96 IR: 0.14

COLUMN NO. 40 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 16 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 107.03 Muy1 : 107.03

INTERACTION RATIO: 0.05 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 21 Puz : 2820.99 Muz : 185.16 Muy : 185.16 IR: 0.22

COLUMN NO. 41 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 17 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.97 Muy1 : 108.97

INTERACTION RATIO: 0.10 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 22 Puz: 2820.99 Muz: 195.28 Muy: 195.28 IR: 0.17

COLUMN NO. 42 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 18 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 106.96 Muy1: 106.96

INTERACTION RATIO: 0.06 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 23 Puz : 2820.99 Muz : 196.29 Muy : 196.29 IR: 0.17

COLUMN NO. 43 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 19 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 106.98 Muy1 : 106.98

INTERACTION RATIO: 0.06 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 24 Puz : 2820.99 Muz : 195.28 Muy : 195.28 IR: 0.17

COLUMN NO. 44 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 20 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 107.03 Muy1 : 107.03

INTERACTION RATIO: 0.05 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 25 Puz: 2820.99 Muz: 185.16 Muy: 185.16 IR: 0.22

COLUMN NO. 45 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 21 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 108.15 Muy1: 108.15

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 26 Puz: 2820.99 Muz: 166.43 Muy: 166.43 IR: 0.23

COLUMN NO. 46 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 22 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.00 Muy1 : 109.00

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 22 Puz: 2820.99 Muz: 184.18 Muy: 184.18 IR: 0.20

COLUMN NO. 47 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 23 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.11 Muy1 : 108.11

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 23 Puz : 2820.99 Muz : 185.29 Muy : 185.29 IR: 0.21

COLUMN NO. 48 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 24 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.12 Muy1 : 108.12

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 24 Puz: 2820.99 Muz: 184.18 Muy: 184.18 IR: 0.20

COLUMN NO. 49 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 25 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.15 Muy1 : 108.15

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 30 Puz: 2820.99 Muz: 166.43 Muy: 166.43 IR: 0.23

COLUMN NO. 50 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 26 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.88 Muy1 : 108.88

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 31 Puz : 2820.99 Muz : 139.28 Muy : 139.28 IR: 0.48

COLUMN NO. 51 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 27 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \mathrm{mm}\ \mathrm{dia.}\ \mathrm{rectangular}\ \mathrm{ties}\ \mathrm{@}\ 190\ \mathrm{mm}\ \mathrm{c/c}$

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.10 Muy1 : 109.10

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 32 Puz : 2820.99 Muz : 147.42 Muy : 147.42 IR: 0.35

COLUMN NO. 52 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 28 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 33 Puz: 2820.99 Muz: 148.21 Muy: 148.21 IR: 0.32

COLUMN NO. 53 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 29 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.87 Muy1 : 108.87

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 34 Puz: 2820.99 Muz: 147.42 Muy: 147.42 IR: 0.35

COLUMN NO. 54 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 30 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.88 Muy1 : 108.88

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 35 Puz : 2820.99 Muz : 139.28 Muy : 139.28 IR: 0.48

COLUMN NO. 79 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 36 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 102.63 Muy1 : 102.63

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 36 Puz: 2820.99 Muz: 167.35 Muy: 167.35 IR: 0.15

COLUMN NO. 80 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 37 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.16 Muy1 : 109.16

INTERACTION RATIO: 0.15 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 37 Puz : 2820.99 Muz : 118.80 Muy : 118.80 IR: 0.30

COLUMN NO. 81 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 38 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.16 Muy1 : 109.16

INTERACTION RATIO: 0.15 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 38 Puz : 2820.99 Muz : 112.98 Muy : 112.98 IR: 0.34

COLUMN NO. 82 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 39 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.16 Muy1: 109.16

INTERACTION RATIO: 0.15 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 39 Puz: 2820.99 Muz: 118.80 Muy: 118.80 IR: 0.30

COLUMN NO. 83 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 40 TENSION COLUMN

-- PAGE NO. 482

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.16 Muy1 : 109.16

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 40 Puz : 2820.99 Muz : 131.74 Muy : 131.74 IR: 0.20

COLUMN NO. 84 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 41 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 104.06 Muy1 : 104.06

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 41 Puz : 2820.99 Muz : 186.37 Muy : 186.37 IR: 0.13

COLUMN NO. 85 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 42 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.04 Muy1 : 109.04

INTERACTION RATIO: 0.13 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 42 Puz: 2820.99 Muz: 158.07 Muy: 158.07 IR: 0.17

COLUMN NO. 86 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 43 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.04 Muy1 : 109.04

INTERACTION RATIO: 0.13 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 43 Puz : 2820.99 Muz : 154.07 Muy : 154.07 IR: 0.18

COLUMN NO. 87 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 44 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.04 Muy1 : 109.04

INTERACTION RATIO: 0.13 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 44 Puz : 2820.99 Muz : 121.26 Muy : 121.26 IR: 0.21

COLUMN NO. 88 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 45 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.04 Muy1: 109.04

INTERACTION RATIO: 0.13 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 45 Puz : 2820.99 Muz : 186.37 Muy : 186.37 IR: 0.13

COLUMN NO. 89 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 46 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 105.59 Muy1 : 105.59

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 51 Puz : 2820.99 Muz : 200.07 Muy : 200.07 IR: 0.13

COLUMN NO. 90 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 47 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.98 Muy1 : 108.98

INTERACTION RATIO: 0.12 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 47 Puz : 2820.99 Muz : 184.82 Muy : 184.82 IR: 0.13

COLUMN NO. 91 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 48 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.98 Muy1 : 108.98

INTERACTION RATIO: 0.12 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 48 Puz : 2820.99 Muz : 182.38 Muy : 182.38 IR: 0.13

COLUMN NO. 92 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 49 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.98 Muy1 : 108.98

INTERACTION RATIO: 0.12 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 54 Puz : 2820.99 Muz : 121.37 Muy : 121.37 IR: 0.19

COLUMN NO. 93 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 50 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 108.98 Muy1: 108.98

INTERACTION RATIO: 0.12 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 55 Puz : 2820.99 Muz : 200.07 Muy : 200.07 IR: 0.13

COLUMN NO. 94 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 51 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 106.98 Muy1 : 106.98

INTERACTION RATIO: 0.06 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 56 Puz: 2820.99 Muz: 195.28 Muy: 195.28 IR: 0.17

COLUMN NO. 95 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 52 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.97 Muy1 : 108.97

INTERACTION RATIO: 0.10 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 52 Puz : 2820.99 Muz : 187.66 Muy : 187.66 IR: 0.13

COLUMN NO. 96 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 53 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.97 Muy1 : 108.97

INTERACTION RATIO: 0.10 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 53 Puz: 2820.99 Muz: 188.60 Muy: 188.60 IR: 0.13

COLUMN NO. 97 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 54 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.97 Muy1 : 108.97

INTERACTION RATIO: 0.10 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 59 Puz : 2820.99 Muz : 121.40 Muy : 121.40 IR: 0.17

COLUMN NO. 98 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 55 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.97 Muy1 : 108.97

INTERACTION RATIO: 0.10 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 60 Puz: 2820.99 Muz: 195.28 Muy: 195.28 IR: 0.17

COLUMN NO. 99 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 56 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 108.12 Muy1: 108.12

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 56 Puz : 2820.99 Muz : 184.18 Muy : 184.18 IR: 0.20

COLUMN NO. 100 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 57 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.00 Muy1 : 109.00

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 62 Puz : 2820.99 Muz : 188.17 Muy : 188.17 IR: 0.13

COLUMN NO. 101 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 58 TENSION COLUMN

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.00 Muy1 : 109.00

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 63 Puz : 2820.99 Muz : 189.49 Muy : 189.49 IR: 0.13

COLUMN NO. 102 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 59 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.00 Muy1 : 109.00

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 64 Puz : 2820.99 Muz : 121.34 Muy : 121.34 IR: 0.14

COLUMN NO. 103 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 60 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.00 Muy1 : 109.00

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 60 Puz: 2820.99 Muz: 184.18 Muy: 184.18 IR: 0.20

COLUMN NO. 104 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 61 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.87 Muy1 : 108.87

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 66 Puz: 2820.99 Muz: 147.42 Muy: 147.42 IR: 0.35

COLUMN NO. 105 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 62 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.10 Muy1: 109.10

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 67 Puz : 2820.99 Muz : 157.40 Muy : 157.40 IR: 0.15

COLUMN NO. 106 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 63 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 68 Puz : 2820.99 Muz : 158.37 Muy : 158.37 IR: 0.11

COLUMN NO. 107 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 64 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.10 Muy1 : 109.10

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 69 Puz : 2820.99 Muz : 157.40 Muy : 157.40 IR: 0.15

COLUMN NO. 108 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 65 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.10 Muy1 : 109.10

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 70 Puz : 2820.99 Muz : 147.42 Muy : 147.42 IR: 0.35

COLUMN NO. 133 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 71 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 102.59 Muy1 : 102.59

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 71 Puz : 2820.99 Muz : 121.02 Muy : 121.02 IR: 0.24

COLUMN NO. 134 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 72 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.16 Muy1 : 109.16

INTERACTION RATIO: 0.15 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 72 Puz : 2820.99 Muz : 112.98 Muy : 112.98 IR: 0.34

COLUMN NO. 135 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 73 SHORT COLUMN

REQD. STEEL AREA: 1573.99 Sq.mm. REQD. CONCRETE AREA: 196748.58 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 16 dia. (0.79%, 1608.50 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 255 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2750.32 Muz1: 95.40 Muy1: 95.40

INTERACTION RATIO: 0.47 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 73 Puz : 2760.67 Muz : 98.90 Muy : 98.90 IR: 0.44

COLUMN NO. 136 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 74 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.03 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 74 Puz : 2820.99 Muz : 112.98 Muy : 112.98 IR: 0.34

COLUMN NO. 137 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 75 SHORT COLUMN

REQD. STEEL AREA : 1194.54 Sq.mm. REQD. CONCRETE AREA: 149317.45 Sq.mm.

MAIN REINFORCEMENT: Provide 12 - 12 dia. (0.67%, 1357.17 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2636.49 Muz1 : 140.03 Muy1 : 140.03

INTERACTION RATIO: 0.18 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 75 Puz: 2685.28 Muz: 147.18 Muy: 147.18 IR: 0.17

COLUMN NO. 138 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 76 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 104.02 Muy1 : 104.02

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 76 Puz: 2820.99 Muz: 184.24 Muy: 184.24 IR: 0.13

COLUMN NO. 139 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 77 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.04 Muy1 : 109.04

INTERACTION RATIO: 0.13 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 77 Puz: 2820.99 Muz: 154.07 Muy: 154.07 IR: 0.18

COLUMN NO. 140 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 78 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.02 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 78 Puz : 2820.99 Muz : 149.71 Muy : 149.71 IR: 0.19

COLUMN NO. 141 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 4 END JOINT: 79 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.18 Muy1: 109.18

INTERACTION RATIO: 0.02 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 79 Puz : 2820.99 Muz : 121.27 Muy : 121.27 IR: 0.21

COLUMN NO. 142 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 4 END JOINT: 80 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.18 Muy1: 109.18

INTERACTION RATIO: 0.02 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 80 Puz : 2820.99 Muz : 184.24 Muy : 184.24 IR: 0.13

COLUMN NO. 143 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 81 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 105.56 Muy1 : 105.56

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 86 Puz: 2820.99 Muz: 188.45 Muy: 188.45 IR: 0.13

COLUMN NO. 144 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 82 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.98 Muy1 : 108.98

INTERACTION RATIO: 0.12 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 82 Puz : 2820.99 Muz : 182.38 Muy : 182.38 IR: 0.13

COLUMN NO. 145 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 83 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.02 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 83 Puz : 2820.99 Muz : 179.72 Muy : 179.72 IR: 0.13

COLUMN NO. 146 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 4 END JOINT: 84 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.02 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 89 Puz : 2820.99 Muz : 121.37 Muy : 121.37 IR: 0.19

COLUMN NO. 147 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 4 END JOINT: 85 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.02 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 90 Puz: 2820.99 Muz: 188.45 Muy: 188.45 IR: 0.13

COLUMN NO. 148 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 86 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 106.96 Muy1 : 106.96

INTERACTION RATIO: 0.06 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 91 Puz : 2820.99 Muz : 196.29 Muy : 196.29 IR: 0.17

COLUMN NO. 149 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 87 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.97 Muy1 : 108.97

INTERACTION RATIO: 0.10 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 87 Puz : 2820.99 Muz : 188.60 Muy : 188.60 IR: 0.13

COLUMN NO. 150 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 88 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.18 Muy1: 109.18

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 93 Puz : 2820.99 Muz : 185.66 Muy : 185.66 IR: 0.13

COLUMN NO. 151 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 4 END JOINT: 89 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 94 Puz: 2820.99 Muz: 121.40 Muy: 121.40 IR: 0.17

COLUMN NO. 152 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 4 END JOINT: 90 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 95 Puz : 2820.99 Muz : 196.29 Muy : 196.29 IR: 0.17

COLUMN NO. 153 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 91 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.11 Muy1 : 108.11

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 91 Puz : 2820.99 Muz : 185.29 Muy : 185.29 IR: 0.21

COLUMN NO. 154 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 92 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.00 Muy1 : 109.00

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 97 Puz : 2820.99 Muz : 189.49 Muy : 189.49 IR: 0.13

COLUMN NO. 155 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 93 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 98 Puz : 2820.99 Muz : 190.82 Muy : 190.82 IR: 0.13

COLUMN NO. 156 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 4 END JOINT: 94 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 99 Puz: 2820.99 Muz: 121.34 Muy: 121.34 IR: 0.14

COLUMN NO. 157 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 4 END JOINT: 95 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 95 Puz: 2820.99 Muz: 185.29 Muy: 185.29 IR: 0.21

COLUMN NO. 158 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 96 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.86 Muy1 : 108.86

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 101 Puz: 2820.99 Muz: 148.21 Muy: 148.21 IR: 0.32

COLUMN NO. 159 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 97 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.10 Muy1: 109.10

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 102 Puz : 2820.99 Muz : 158.37 Muy : 158.37 IR: 0.11

COLUMN NO. 160 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 98 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.18 Muy1: 109.18

INTERACTION RATIO: 0.05 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 98 Puz: 2820.99 Muz: 169.31 Muy: 169.31 IR: 0.09

COLUMN NO. 161 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 99 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 104 Puz: 2820.99 Muz: 158.37 Muy: 158.37 IR: 0.11

COLUMN NO. 162 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 2 END JOINT: 100 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 105 Puz : 2820.99 Muz : 148.21 Muy : 148.21 IR: 0.32

COLUMN NO. 187 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 106 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 102.63 Muy1 : 102.63

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 106 Puz : 2820.99 Muz : 121.05 Muy : 121.05 IR: 0.24

COLUMN NO. 188 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 107 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.16 Muy1 : 109.16

INTERACTION RATIO: 0.15 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 107 Puz: 2820.99 Muz: 118.80 Muy: 118.80 IR: 0.30

COLUMN NO. 189 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 4 END JOINT: 108 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.03 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 108 Puz : 2820.99 Muz : 112.98 Muy : 112.98 IR: 0.34

COLUMN NO. 190 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 109 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.03 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 109 Puz : 2820.99 Muz : 118.80 Muy : 118.80 IR: 0.30

COLUMN NO. 191 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 4 END JOINT: 110 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.03 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 110 Puz: 2820.99 Muz: 121.05 Muy: 121.05 IR: 0.24

COLUMN NO. 192 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 111 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 104.06 Muy1 : 104.06

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 111 Puz : 2820.99 Muz : 121.26 Muy : 121.26 IR: 0.21

COLUMN NO. 193 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 112 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.04 Muy1: 109.04

INTERACTION RATIO: 0.13 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 112 Puz : 2820.99 Muz : 121.26 Muy : 121.26 IR: 0.21

COLUMN NO. 194 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 113 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.02 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 113 Puz : 2820.99 Muz : 121.27 Muy : 121.27 IR: 0.21

COLUMN NO. 195 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 114 SHORT COLUMN

REQD. STEEL AREA: 1248.16 Sq.mm. REQD. CONCRETE AREA: 156020.56 Sq.mm.

MAIN REINFORCEMENT: Provide 12 - 12 dia. (0.67%, 1357.17 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2652.57 Muz1 : 135.37 Muy1 : 135.37

INTERACTION RATIO: 0.20 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 114 Puz : 2685.28 Muz : 140.39 Muy : 140.39 IR: 0.19

COLUMN NO. 196 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 115 SHORT COLUMN

REQD. STEEL AREA: 975.74 Sq.mm. REQD. CONCRETE AREA: 121967.92 Sq.mm.

MAIN REINFORCEMENT: Provide 12 - 12 dia. (0.67%, 1357.17 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2570.85 Muz1: 153.16 Muy1: 153.16

INTERACTION RATIO: 0.15 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 115 Puz: 2685.28 Muz: 168.74 Muy: 168.74 IR: 0.14

COLUMN NO. 197 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 116 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 105.59 Muy1 : 105.59

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 121 Puz : 2820.99 Muz : 121.37 Muy : 121.37 IR: 0.19

COLUMN NO. 198 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 117 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.98 Muy1 : 108.98

INTERACTION RATIO: 0.12 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 122 Puz : 2820.99 Muz : 121.37 Muy : 121.37 IR: 0.19

COLUMN NO. 199 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 118 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.02 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 123 Puz : 2820.99 Muz : 121.37 Muy : 121.37 IR: 0.19

COLUMN NO. 200 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 119 SHORT COLUMN

REQD. STEEL AREA: 993.71 Sq.mm. REQD. CONCRETE AREA: 124213.44 Sq.mm.

MAIN REINFORCEMENT: Provide 12 - 12 dia. (0.67%, 1357.17 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2576.24 Muz1 : 152.45 Muy1 : 152.45

INTERACTION RATIO: 0.15 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 119 Puz : 2685.28 Muz : 167.29 Muy : 167.29 IR: 0.14

COLUMN NO. 201 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 120 SHORT COLUMN

REQD. STEEL AREA: 781.15 Sq.mm. REQD. CONCRETE AREA: 97643.95 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2512.47 Muz1: 155.94 Muy1: 155.94

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 125 Puz: 2549.56 Muz: 63.90 Muy: 63.90 IR: 0.36

COLUMN NO. 202 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 121 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 106.98 Muy1 : 106.98

INTERACTION RATIO: 0.06 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 126 Puz : 2820.99 Muz : 195.28 Muy : 195.28 IR: 0.17

COLUMN NO. 203 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 122 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.97 Muy1 : 108.97

INTERACTION RATIO: 0.10 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 127 Puz: 2820.99 Muz: 121.40 Muy: 121.40 IR: 0.17

COLUMN NO. 204 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 123 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.18 Muy1: 109.18

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 128 Puz : 2820.99 Muz : 121.40 Muy : 121.40 IR: 0.17

COLUMN NO. 205 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 124 SHORT COLUMN

REQD. STEEL AREA : 743.43 Sq.mm. REQD. CONCRETE AREA: 92928.40 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2501.15 Muz1: 154.56 Muy1: 154.56

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 129 Puz : 2549.56 Muz : 63.93 Muy : 63.93 IR: 0.33

COLUMN NO. 206 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 125 SHORT COLUMN

REQD. STEEL AREA : 586.00 Sq.mm. REQD. CONCRETE AREA: 73250.56 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2453.93 Muz1 : 142.71 Muy1 : 142.71

INTERACTION RATIO: 0.19 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 130 Puz: 2549.56 Muz: 63.92 Muy: 63.92 IR: 0.32

COLUMN NO. 207 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 126 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \mathrm{mm}\ \mathrm{dia.}\ \mathrm{rectangular}\ \mathrm{ties}\ \mathrm{@}\ 190\ \mathrm{mm}\ \mathrm{c/c}$

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 108.12 Muy1: 108.12

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 126 Puz : 2820.99 Muz : 184.18 Muy : 184.18 IR: 0.20

COLUMN NO. 208 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 127 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.00 Muy1 : 109.00

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 132 Puz : 2820.99 Muz : 121.34 Muy : 121.34 IR: 0.14

COLUMN NO. 209 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 128 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 133 Puz : 2820.99 Muz : 121.34 Muy : 121.34 IR: 0.14

COLUMN NO. 210 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 129 SHORT COLUMN

REQD. STEEL AREA: 496.15 Sq.mm. REQD. CONCRETE AREA: 62018.42 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2426.97 Muz1: 131.13 Muy1: 131.13

INTERACTION RATIO: 0.16 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 134 Puz: 2549.56 Muz: 63.86 Muy: 63.86 IR: 0.26

COLUMN NO. 211 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 130 SHORT COLUMN

REQD. STEEL AREA : 390.43 Sq.mm. REQD. CONCRETE AREA: 48803.22 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2395.25 Muz1: 112.89 Muy1: 112.89

INTERACTION RATIO: 0.31 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 135 Puz : 2549.56 Muz : 133.86 Muy : 133.86 IR: 0.26

COLUMN NO. 212 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 131 TENSION COLUMN

-- PAGE NO. 536

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 108.87 Muy1: 108.87

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 136 Puz: 2820.99 Muz: 147.42 Muy: 147.42 IR: 0.35

COLUMN NO. 213 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 132 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.10 Muy1: 109.10

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 137 Puz : 2820.99 Muz : 157.40 Muy : 157.40 IR: 0.15

COLUMN NO. 214 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 133 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.18 Muy1: 109.18

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 138 Puz : 2820.99 Muz : 158.37 Muy : 158.37 IR: 0.11

COLUMN NO. 215 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 134 SHORT COLUMN

REQD. STEEL AREA : 252.28 Sq.mm. REQD. CONCRETE AREA: 31535.27 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2353.81 Muz1 : 81.50 Muy1 : 81.50

INTERACTION RATIO: 0.25 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 139 Puz : 2549.56 Muz : 108.47 Muy : 108.47 IR: 0.21

COLUMN NO. 216 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 140 SHORT COLUMN

REQD. STEEL AREA: 226.35 Sq.mm. REQD. CONCRETE AREA: 28293.75 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2346.03 Muz1 : 52.52 Muy1 : 52.52

INTERACTION RATIO: 0.98 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 140 Puz : 2549.56 Muz : 95.46 Muy : 95.46 IR: 0.54

COLUMN NO. 241 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 141 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 102.71 Muy1 : 102.71

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 141 Puz: 2820.99 Muz: 131.62 Muy: 131.62 IR: 0.20

COLUMN NO. 242 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 142 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.16 Muy1 : 109.16

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 6

END JOINT: 142 Puz : 2820.99 Muz : 131.74 Muy : 131.74 IR: 0.20

COLUMN NO. 243 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 143 SHORT COLUMN

REQD. STEEL AREA: 1194.54 Sq.mm. REQD. CONCRETE AREA: 149317.45 Sq.mm.

MAIN REINFORCEMENT: Provide 12 - 12 dia. (0.67%, 1357.17 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2636.49 Muz1 : 140.03 Muy1 : 140.03

INTERACTION RATIO: 0.18 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 143 Puz : 2685.28 Muz : 147.18 Muy : 147.18 IR: 0.17

COLUMN NO. 244 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 144 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.03 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 144 Puz: 2820.99 Muz: 121.05 Muy: 121.05 IR: 0.24

COLUMN NO. 245 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 145 SHORT COLUMN

-- PAGE NO. 542

REQD. STEEL AREA : 912.25 Sq.mm. REQD. CONCRETE AREA: 114031.74 Sq.mm.

MAIN REINFORCEMENT: Provide 12 - 12 dia. (0.67%, 1357.17 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2551.80 Muz1 : 155.14 Muy1 : 155.14

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 145 Puz : 2685.28 Muz : 173.49 Muy : 173.49 IR: 0.13

COLUMN NO. 246 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 146 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 104.13 Muy1 : 104.13

INTERACTION RATIO: 0.08 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 151 Puz : 2820.99 Muz : 187.92 Muy : 187.92 IR: 0.13

COLUMN NO. 247 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 147 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.04 Muy1 : 109.04

INTERACTION RATIO: 0.13 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 147 Puz : 2820.99 Muz : 186.37 Muy : 186.37 IR: 0.13

COLUMN NO. 248 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 148 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.02 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 148 Puz : 2820.99 Muz : 184.24 Muy : 184.24 IR: 0.13

COLUMN NO. 249 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 149 SHORT COLUMN

REQD. STEEL AREA: 975.74 Sq.mm. REQD. CONCRETE AREA: 121967.92 Sq.mm.

MAIN REINFORCEMENT: Provide 12 - 12 dia. (0.67%, 1357.17 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2570.85 Muz1: 153.16 Muy1: 153.16

INTERACTION RATIO: 0.15 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 149 Puz : 2685.28 Muz : 168.74 Muy : 168.74 IR: 0.14

COLUMN NO. 250 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 150 SHORT COLUMN

REQD. STEEL AREA : 767.25 Sq.mm. REQD. CONCRETE AREA: 95906.09 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2508.30 Muz1: 155.51 Muy1: 155.51

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 150 Puz: 2549.56 Muz: 72.87 Muy: 72.87 IR: 0.21

COLUMN NO. 251 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 151 TENSION COLUMN

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 105.65 Muy1 : 105.65

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 156 Puz : 2820.99 Muz : 196.96 Muy : 196.96 IR: 0.14

COLUMN NO. 252 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 152 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 108.98 Muy1: 108.98

INTERACTION RATIO: 0.12 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 157 Puz : 2820.99 Muz : 200.07 Muy : 200.07 IR: 0.13

COLUMN NO. 253 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 153 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.02 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 7

END JOINT: 158 Puz : 2820.99 Muz : 188.45 Muy : 188.45 IR: 0.13

COLUMN NO. 254 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 154 SHORT COLUMN

REQD. STEEL AREA : 781.15 Sq.mm. REQD. CONCRETE AREA: 97643.95 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2512.47 Muz1 : 155.94 Muy1 : 155.94

INTERACTION RATIO: 0.14 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 159 Puz : 2549.56 Muz : 63.90 Muy : 63.90 IR: 0.36

COLUMN NO. 255 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 155 SHORT COLUMN

REQD. STEEL AREA: 617.38 Sq.mm. REQD. CONCRETE AREA: 77172.73 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2463.34 Muz1: 145.98 Muy1: 145.98

INTERACTION RATIO: 0.15 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 160 Puz : 2549.56 Muz : 70.00 Muy : 70.00 IR: 0.20

COLUMN NO. 256 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 156 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 107.03 Muy1 : 107.03

INTERACTION RATIO: 0.05 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 161 Puz: 2820.99 Muz: 185.16 Muy: 185.16 IR: 0.22

COLUMN NO. 257 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 157 TENSION COLUMN

-- PAGE NO. 550

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.97 Muy1 : 108.97

INTERACTION RATIO: 0.10 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 162 Puz: 2820.99 Muz: 195.28 Muy: 195.28 IR: 0.17

COLUMN NO. 258 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 158 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.18 Muy1: 109.18

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 163 Puz : 2820.99 Muz : 196.29 Muy : 196.29 IR: 0.17

COLUMN NO. 259 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 159 SHORT COLUMN

REQD. STEEL AREA : 586.00 Sq.mm. REQD. CONCRETE AREA: 73250.56 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2453.93 Muz1: 142.71 Muy1: 142.71

INTERACTION RATIO: 0.19 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 5

END JOINT: 164 Puz: 2549.56 Muz: 63.92 Muy: 63.92 IR: 0.32

COLUMN NO. 260 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 160 SHORT COLUMN

STAAD SPACE

-- PAGE NO. 552

REQD. STEEL AREA : 464.22 Sq.mm. REQD. CONCRETE AREA: 58027.23 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2417.39 Muz1 : 126.18 Muy1 : 126.18

INTERACTION RATIO: 0.25 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 165 Puz: 2549.56 Muz: 143.08 Muy: 143.08 IR: 0.27

COLUMN NO. 261 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 161 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \mathrm{mm}\ \mathrm{dia.}\ \mathrm{rectangular}\ \mathrm{ties}\ \mathrm{@}\ 190\ \mathrm{mm}\ \mathrm{c/c}$

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 108.15 Muy1: 108.15

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 166 Puz : 2820.99 Muz : 166.43 Muy : 166.43 IR: 0.23

COLUMN NO. 262 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 162 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.00 Muy1 : 109.00

INTERACTION RATIO: 0.07 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 162 Puz : 2820.99 Muz : 184.18 Muy : 184.18 IR: 0.20

COLUMN NO. 263 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 3 END JOINT: 163 TENSION COLUMN

-- PAGE NO. 554

STAAD SPACE

REQD. STEEL AREA : 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 109.18 Muy1 : 109.18

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 163 Puz : 2820.99 Muz : 185.29 Muy : 185.29 IR: 0.21

COLUMN NO. 264 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 164 SHORT COLUMN

REQD. STEEL AREA: 390.43 Sq.mm. REQD. CONCRETE AREA: 48803.22 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2395.25 Muz1: 112.89 Muy1: 112.89

INTERACTION RATIO: 0.31 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 169 Puz: 2549.56 Muz: 133.86 Muy: 133.86 IR: 0.26

COLUMN NO. 265 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 165 SHORT COLUMN

REQD. STEEL AREA : 308.62 Sq.mm. REQD. CONCRETE AREA: 38578.07 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2370.71 Muz1: 95.42 Muy1: 95.42

INTERACTION RATIO: 0.43 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 170 Puz: 2549.56 Muz: 119.96 Muy: 119.96 IR: 0.33

COLUMN NO. 266 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 166 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2764.13 Muz1 : 108.88 Muy1 : 108.88

INTERACTION RATIO: 0.01 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 171 Puz: 2820.99 Muz: 139.28 Muy: 139.28 IR: 0.48

COLUMN NO. 267 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 167 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide $8\ \text{mm}$ dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.10 Muy1: 109.10

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 172 Puz : 2820.99 Muz : 147.42 Muy : 147.42 IR: 0.35

COLUMN NO. 268 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 1 END JOINT: 168 TENSION COLUMN

REQD. STEEL AREA: 1620.00 Sq.mm. REQD. CONCRETE AREA: 200880.00 Sq.mm.

MAIN REINFORCEMENT: Provide 16 - 12 dia. (0.89%, 1809.56 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz: 2764.13 Muz1: 109.18 Muy1: 109.18

INTERACTION RATIO: 0.04 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 173 Puz : 2820.99 Muz : 148.21 Muy : 148.21 IR: 0.32

COLUMN NO. 269 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 174 SHORT COLUMN

REQD. STEEL AREA : 226.35 Sq.mm. REQD. CONCRETE AREA: 28293.75 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2346.03 Muz1 : 52.52 Muy1 : 52.52

INTERACTION RATIO: 0.98 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 174 Puz: 2549.56 Muz: 95.46 Muy: 95.46 IR: 0.54

COLUMN NO. 270 DESIGN RESULTS

M25 Fe415 (Main) Fe415 (Sec.)

LENGTH: 3000.0 mm CROSS SECTION: 450.0 mm X 450.0 mm COVER: 40.0 mm

** GUIDING LOAD CASE: 9 END JOINT: 175 SHORT COLUMN

REQD. STEEL AREA: 634.09 Sq.mm. REQD. CONCRETE AREA: 79261.62 Sq.mm.

MAIN REINFORCEMENT: Provide 8 - 12 dia. (0.45%, 904.78 Sq.mm.)

(Equally distributed)

TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c

SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)

Puz : 2468.35 Muz1 : 67.90 Muy1 : 67.90

INTERACTION RATIO: 0.99 (as per Cl. 39.6, IS456:2000)

SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)

WORST LOAD CASE: 9

END JOINT: 175 Puz: 2549.56 Muz: 85.02 Muy: 85.02 IR: 0.79

STAAD	SPACE				_	- PAGE	NO.	559
*****	*************END	OF	COLUMN	DESIGN	RESULTS*******	*****	***	

175. CONCRETE TAKE

176. END CONCRETE DESIGN

******** CONCRETE TAKE OFF ********

(FOR BEAMS, COLUMNS AND PLATES DESIGNED ABOVE)

NOTE: CONCRETE QUANTITY REPRESENTS VOLUME OF CONCRETE IN BEAMS, COLUMNS, AND PLATES DESIGNED ABOVE. REINFORCING STEEL QUANTITY REPRESENTS REINFORCING STEEL IN BEAMS AND COLUMNS DESIGNED ABOVE. REINFORCING STEEL IN PLATES IS NOT INCLUDED IN THE REPORTED QUANTITY.

TOTAL VOLUME OF CONCRETE = 206.3 CU.METER

BAR DIA	WEIGHT				
(in mm)	(in New)				
8	35445				
10	31167				
12	61126				
16	372				
*** TOTAL=	128110				

177. FINISH

****** END OF THE STAAD.Pro RUN *******

**** DATE= OCT 26,2020 TIME= 10: 5:29 ****

**************** For questions on STAAD.Pro, please contact Bentley Systems or Partner offices Telephone Web / Email +1 (714) 974-2500 USA * UK +44 (0) 808 101 9246 SINGAPORE +65 6225-6158 FRANCE +33 (0) 1 55238400 GERMANY +49 0931 40468 INDIA +91 (033) 4006-2021 +81 (03)5952-6500 http://www.ctc-g.co.jp JAPAN CHINA +86 21 6288 4040 THAILAND +66 (0)2645-1018/19 partha.p@reisoftwareth.com* * Worldwide http://selectservices.bentley.com/en-US/
