#### Data streams

Mining Massive Datasets Carlos Castillo Topic 10



#### Sources

- Mining of Massive Datasets (2014) by Leskovec et al. (chapter 4)
  - Slides part 1, part 2
- Tutorial: Mining Massive Data Streams (2019) by Michael Hahsler

#### What is a data stream?

- A potentially infinite sequence of data points
  - Each data point can be a tuple or vector
- Examples:
  - web click-stream data → who clicks on what
  - computer network monitoring data
  - telecommunication connection data
  - readings from sensor nets
  - stock quotes

Do not confuse with "streaming," which in vernacular typically means live video.

## Example: Apache server log

```
tecmint@TecMint ~ $ tailf /var/log/apache2/access.log
127.0.0.1 - - [31/Oct/2017:11:11:37 +0530] "GET / HTTP/1.1" 200 729 "-" "Mozill
127.0.0.1 - - [31/Oct/2017:11:11:37 +0530] "GET /icons/blank.gif HTTP/1.1" 200
fox/56.0"
127.0.0.1 - - [31/Oct/2017:11:11:37 +0530] "GET /icons/folder.gif HTTP/1.1" 200
efox/56.0"
127.0.0.1 - - [31/Oct/2017:11:11:37 +0530] "GET /icons/text.gif HTTP/1.1" 200 5
ox/56.0"
127.0.0.1 - - [31/Oct/2017:11:11:38 +0530] "GET /favicon.ico HTTP/1.1" 404 500
127.0.0.1 - - [31/0ct/2017:11:12:05 +0530] "GET /tecmint/ HTTP/1.1" 200 787 "ht
127.0.0.1 - - [31/Oct/2017:11:12:05 +0530] "GET /icons/back.gif HTTP/1.1" 200 4
01 Firefox/56.0"
127.0.0.1 - - [31/Oct/2017:11:13:58 +0530] "GET /tecmint/Videos/ HTTP/1.1" 200
101 Firefox/56.0"
127.0.0.1 - - [31/Oct/2017:11:13:58 +0530] "GET /icons/compressed.gif HTTP/1.1"
) Gecko/20100101 Firefox/56.0"
127.0.0.1 - - [31/Oct/2017:11:13:58 +0530] "GET /icons/movie.gif HTTP/1.1" 200
o/20100101 Firefox/56.0"
```

## Key properties of data streams

#### Unbounded size

- Data cannot be persisted on disk
- Only summaries can be stored

#### Transient

- Single pass over the data
- Sometimes real-time processing is needed

#### Dynamic

- May require incremental updates
- May require to forget old data
- Concepts "drift"
- Temporal order is often important



#### **Applications**

#### Mining query streams

 A search engine wants to know what queries are more frequent today than yesterday

#### Mining click streams

 A newspaper wants to know when one of its pages starts getting an unusual number of hits per hour

#### Mining social network news feeds

A social media platform wants to show trending topics

#### Applications (cont.)

#### Sensor Networks

Many sensors feeding into a central controller

#### Telephone call records

 Data feeds into customer bills as well as settlements between telephone companies

#### IP packets monitored at a switch

- Gather information for optimal routing
- Detect denial-of-service attacks

## Why not simply use a relational DB?

| Relational DBMS                 | DSMS (Stream)      |  |
|---------------------------------|--------------------|--|
| persistent relations            | transient streams  |  |
| only current state is important | history matters    |  |
| not real-time                   | real-time          |  |
| low update rate                 | stream!            |  |
| one time queries                | continuous queries |  |

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom (2002). Models and issues in data stream systems. In PODS '02, pages 1–16, ACM Press.

## Why do we need new algorithms?

|                 | Traditional        | Stream      |
|-----------------|--------------------|-------------|
| passes          | multiple           | single      |
| processing time | unlimited          | restricted  |
| memory          | disk               | main memory |
| results         | typically accurate | approximate |
| distributed     | typically not      | often       |

**Source:** Joao Gama, Data Stream Mining Tutorial, ECML/PKDD, 2007

## A generic stream-processing architecture

Input streams
Each is stream is
composed of
elements/tuples



## Load shedding

## Too much data? Ignore some of it



## Sampling a fixed proportion

### Sampling a fixed proportion

- Example stream: <user, query, timestamp> from a search engine query log
- Suppose we have space to store 1/r of the stream
  - E.g.: 1/10th, 1/100th, 1/1000th,
- Naïve solution:
  - Generate uniform random number in 0...(r-1) numpy.random.uniform(0,r)
  - If the number is 0, keep the item

#### What can we do with this sample?

- Approximate most frequent query
  - Pick the most frequent in the sample
- Approximate frequency of a query
  - Multiply observed frequency by r
- Do people ask query q?
  - Approximate answer (with some prob. of error)

#### Try it!

- We want to tell if we have seen item q
- Suppose we have seen *n* items
- Suppose we have sampled a fraction 1/r
- Suppose item q appears with probability p(q)
- What is the probability of a:
  - False Positive? (Item q <u>was not</u> in the stream but we said it <u>was</u>)
  - False Negative? (Item q <u>was</u> in the stream but we said it <u>was not</u>)

#### What can we do with this...? (cont.)

• Approximate num. queries per minute



- Peak frequency
  - Multiply observed peak by r

## But there are questions we cannot answer well

- What fraction of queries by an average search engine user are duplicates?
  - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
  - Correct answer: d/(x+d)
- Proposed solution: We keep  $1/10^{th}$  of the queries (r=10)
  - Sample will contain x/10 of the singleton queries at least once
  - Sample will contain 2d/10 of the duplicate queries at least once
  - Sample will contain d/100 pairs of duplicates
    - $d/100 = 1/10 \cdot 1/10 \cdot d$
  - Of the d duplicates, 18d/100 will be seen once\*
    - $18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$
- So the sample-based answer is

$$\frac{\frac{d}{100}}{\frac{x}{10} + \frac{18d}{100} + \frac{d}{100}} = \frac{d}{10x + 19d}$$

<sup>\*</sup> Copy A is in the selected part, copy B in the unselected part, or viceversa

## But there are questions we cannot answer well (cont.)

- What fraction of queries by an average search engine user are duplicates?
  - Suppose each user issues x queries once and d queries twice (total of x+2d queries)
  - Correct answer: d/(x+d)
- Proposed solution: We keep 1/10<sup>th</sup> of the queries (r=10)
  - Sample will contain x/10 of the singleton queries at least once
  - Sample will contain 2d/10 of the duplicate queries at least once
  - Sample will contain d/100 pairs of duplicates
    - $d/100 = 1/10 \cdot 1/10 \cdot d$
  - Of the d duplicates, 18d/100 will be seen once
    - $18d/100 = ((1/10 \cdot 9/10) + (9/10 \cdot 1/10)) \cdot d$
- So the sample-based answer is



#### How do we solve it?

 We need to sample 1/r of users and all of their queries

How do we do this?

```
<user1, query, timestamp>
<user2, query, timestamp>
<user2, query, timestamp>
<user3, query, timestamp>
<user1, query, timestamp>
<user3, query, timestamp>
<user2, query, timestamp>
<user1, query, timestamp>
<user1, query, timestamp>
<user1, query, timestamp>
<user2, query, timestamp>
```

#### How do we solve it?

- We need to sample 1/r of users and all of their queries
- How do we do this?
  - Hashing!
  - Given <user, query, timestamp>
  - Compute h(user) → 0, 1, ..., (r-1)
  - Keep tuple if hash value is 0

```
<user1, query, timestamp>
<user2, query, timestamp>
<user2, query, timestamp>
<user3, query, timestamp>
<user1, query, timestamp>
<user3, query, timestamp>
<user2, query, timestamp>
<user1, query, timestamp>
<user1, query, timestamp>
<user2, query, timestamp>
```

### In general ...

- To sample a fraction a/b of a stream by key
- Compute h(key) → 0, 1, ..., (b-1)
- Keep if h(key) < a</li>



## Sampling a fixed-size sample

#### A fixed-size sample

- We normally do not know the stream size
- We just know how much storage space we have
- Suppose we have storage space s and want to maintain a random sample s of size s = |s|
- Requirement: after seeing n items, each of the n items should be in our sample with probability s/n
  - No item should have an advantage or disadvantage

#### **Bad solutions**

- Suppose stream = < a, f, e, b, g, r, u, ... >
- Requirement: after seeing n items, each of the n items should be in our sample with probability s/n
- Suppose s=2
  - Always keep first 2? No, because then  $p(a) = 1 \neq 0 = p(e)$
  - Always keep last 2? No, because then  $p(a) = 0 \neq 1 = p(u)$
- Sample some ... which? Then evict some ... which?

#### Reservoir sampling

(one of the most beautiful algorithms of this course)

- Elements x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, ..., x<sub>i</sub>, ...
- Store all first s elements  $x_1, x_2, ..., x_s$
- Suppose element x<sub>n</sub> arrives
  - With probability 1 s/n, ignore this element
  - With probability s/n:
    - Discard a random element from the reservoir
    - Insert element  $x_n$  into the reservoir

#### Try it!

- Suppose input is <a, b, c, ...>
- Suppose s = 2
- We have just processed element 3 = "c"
- What is:
  - Probability "a" is in the sample?
  - Probability "b" is in the sample?
  - Probability "c" is in the sample?
- If you are done quickly, try one more element, "d"

#### RESERVOIR SAMPLING

Store all first s elements  $x_1, x_2, ..., x_s$ When element x<sub>a</sub> arrives

- With probability 1 s/n, ignore
- With probability s/n:
  - Discard randomly from reservoir
  - Insert element x into the reservoir

## Proof by induction

- Inductive hypothesis: after n elements seen each of them is sampled with probability s/n
- Inductive step: element  $x_{n+1}$  arrives,
  - what is the probability than an already-sampled element  $x_i$  stays in the sample?

$$\left(1-\frac{s}{n+1}\right) + \left(\frac{s}{n+1}\right) \cdot \left(\frac{s-1}{s}\right) = \frac{n}{n+1}$$
 
$$\mathbf{x}_{\text{n+1}} \text{ not sampled} \quad \mathbf{x}_{\text{n+1}} \text{ sampled} \quad \mathbf{x}_{\text{i}} \text{ not evicted}$$

### Proof by induction (cont.)

- Tuple  $x_{n+1}$  is sampled with probability  $\frac{s}{n+1}$
- Tuples  $x_i$  with  $i \le n$ 
  - Were in the sample with probability s/n
  - Stay in the sample with probability n/(n+1)
  - Hence, are in the sample with probability

$$\frac{s}{n} \cdot \frac{n}{n+1} = \frac{s}{n+1} \checkmark$$

# Recency-biased reservoir sampling

- Before we had p(i) = s/n
  - Probability of element x<sub>i</sub> to be included
  - Reservoir of size s
  - Stream so far of size n
- Suppose we want a different p(i) ∝ f(i,n)
  - Example: f(i,n) larger for more recent items

# Recency-biased reservoir sampling (cont.)

- Suppose we want  $p(i) \propto f(i,n) = e^{-\lambda(n-i)}$
- Parameter  $\lambda \in [0,1]$  is a decay factor and  $s < \frac{1}{\lambda}$
- Algorithm: reservoir starts empty

At time n, it is  $F(n) \in [0,1]$  full

 $x_{n+1}$  arrives and is inserted with probability  $\lambda \cdot s$ 

If  $x_{n+1}$  is inserted, remove from reservoir a random element with probability F(n)

#### **Bloom filters**

#### Filtering a data stream

- Suppose we have a large set S of keys
- We want to filter a stream <key, data> to let pass only the elements for which key ∈ S
- Example: key is an e-mail address, we have a total of |S|=10° allowed e-mail addresses

Naïve solution?

#### Filtering a data stream

- Suppose we have a large set S of keys
- We want to filter a stream <key, data> to let pass only the elements for which key ∈ S
- Example: key is an e-mail address, we have a total of |S|=10° allowed e-mail addresses
- Naïve solution? Hash table won't work, too big!

### Bloom Filter (1-bit case)

- Given a set of keys S
- Create a bit array B[] of n bits
  - Initialize to all Os
- Pick a hash function h with range [0,n)
  - For each member of  $s \in S$ 
    - Hash to one of *n* buckets
    - Set that bit to 1, i.e., **B[h(s)] ← 1**
- For each element a of the stream
  - Output a if and only if B[h(a)] == 1

Bloom filter creation

Stream processing

## Bloom Filter is an approximate filter

Can it output an element with a key not in S?

Can it not output an element with a key in S?

#### Bloom Filter is an approximate filter

- Can it output an element with a key not in S?
   Yes, due to hash collisions h(x)=h(y) when x≠y
- Can it not output an element with a key in S?
   No, because h(x) is always the same for x

Bloom filters are permissive (not strict)

#### Bloom filter

- A bloom filter is:
  - An array of n bits, initialized as 0
  - A collection of hash functions  $h_1, h_2, ..., h_k$
  - A set S of m key values
- The purpose of the bloom filter is to allow all stream items whose key is in S

#### Bloom filter initialization

```
For all positions i in [0, n-1]
B[i] \leftarrow 0
```

For all keys K in S:

For every hash function  $h_1$ ,  $h_2$ , ...,  $h_k$  $B[h_i(K)] \leftarrow 1$ 



#### Bloom filter usage

```
For each input element <key, data>
allow \leftarrow TRUE
For every hash function h_1, h_2, ..., h_k
allow \leftarrow allow \land B[h_i(K)] == 1
output element if allow == TRUE
```



#### Characteristics of Bloom Filters

- Are lax (not strict) and let some items pass
  - May require a second-level check to make filter strict, for instance store output on disk files and then check against hash tables (slower)
- Implementations can be very fast
  - E.g., use hardware words for the bit table

# Preliminaries for the analysis: targets and darts

- Suppose we throw y darts at x targets
  - All darts will hit one of the targets
- After throwing the darts, how many distinct targets can we expect to hit at least once?
  - Prob. that a given dart will not hit a given target is (x-1)/x = 1-1/x
  - Prob. none of the y darts will hit a given target is  $(1-1/x)^y = (1-1/x)^{x(y/x)}$
  - Using  $(1-\varepsilon)^{1/\varepsilon} \simeq 1/e$  for small  $\varepsilon$
  - Prob. none of the y darts will hit a given target is  $(1/e)^{y/x}$

#### Analysis of the 1-bit Bloom Filter

- Each element of S is a dart |S|=y
- Each bit in the array is a target n=x
- Suppose  $y=|S|=10^9$  (1 G) and  $x=n=8 \times 10^9$  (8 GB)
- Prob. that a given bit is NOT set to 1 (dart does not hit the target) is  $(1/e)^{y/x} = (1/e)^{1/8}$
- Prob. bit is set to 1 is  $1 (1/e)^{1/8} = 0.1175$

About 12% of bits are set to one in the Bloom Filter

this is also the false-hit probability of this method

#### General case

- |S|=m keys, array has n bits
- k hash functions
- Targets x=n, darts y=km
- Probability that a bit remains 0 is e-km/n
- Example:

We can pick k=n/m to obtain collision probability 1/e = 37%

#### Analysis of a 2-bit Bloom Filter

- Suppose |S|=10° (1 G) and n=8 x 10° (8 GB)
- Suppose we use two hash functions
- Prob. that a given bit is NOT set to 1 (dart does not hit the target) is  $(1/e)^{y/x} = (1/e)^{1/4}$
- Prob. a bit is set to 1 is  $1 (1/e)^{1/4}$
- Prob. two bits are set to 1 is  $(1 (1/e)^{1/4})^2 = 0.0493$
- We have a false hit probability of about 5% with two hash functions, while the probability was about 12% with only one

#### How many hash functions to use?

Too few: test is too unspecific. Too many: table becomes too crowded.

• m = 1 billion, n = 8 billion

$$k = 1: (1 - e^{-1/8}) = 0.1175$$

$$k = 2: (1 - e^{-1/4})^2 = 0.0493$$

- What happens as we keep increasing k?
  - "Optimal" value of k: n/m In(2)
  - In our case: Optimal k = 8 In(2) =
     5.54 ≈ 6
  - Error at k = 6:  $(1 e^{-1/6})^2 = 0.0235$



## Probabilistic counting

# Motivating example how many neighbors?

- Let n(u,h) be the number of nodes reachable through a path of length up to h from node u
- Naïve method
  - Maintain a set for each node u, initialize  $S(u) = \{u\}$
  - Repeat h times:

$$S(u) = S(u) \cup \bigcup_{v \text{ neighbor of } u} S(v)$$

- Answer n(u,h) = |S(u)|

# What is the problem with this method?

- Let n(u,h) be the number of nodes reachable through a path of length up to h from node u
- Naïve method
  - Maintain a set for each node u, initialize  $S(u) = \{u\}$
  - Repeat h times:

$$S(u) = S(u) \cup \bigcup_{v \text{ neighbor of } u} S(v)$$

- Answer n(u,h) = |S(u)|

#### Let's look at each node

- We will receive a stream of items
  - Our neighbors at distance <= h</li>
  - Repeated many times because of loops
- We want to use a small amount of memory
- We don't care which items are in the stream
- We just want to know how many are distinct

#### Counting fishes with pebbles

- Normally, to count with pebbles, you add one pebble every time you see an event
- How do you extend this method to count up to 1000 fishes with 10 pebbles?
- Assume you have access to a random number generator but not to an abacus for ... reasons





### Morris' probabilistic counting (1977)

$$x \leftarrow 0$$

For each of the n events:

$$x \leftarrow x + 1$$
 with probability  $(1/2)^x$ 

Return estimate  $n' = 2^x + 1$ 



Counter x needs only log<sub>2</sub>(n) bits

Simulation results by Flajolet (1985)



# Morris' algorithm provides an unbiased estimator

- Init x=0, let  $p_x = 2^{-x}$ , estimate  $n' = 2^x 1$
- n = 1
  - before:  $x = 0 p_0 = 1$ ;
  - prob. 1: x → 1
  - estimate  $n' = 2^1 1 = 1 = n$
- n = 2
  - before: x = 1;  $p_1 = \frac{1}{2}$
  - prob.  $\frac{1}{2}$ : x stays at 1;  $n' = 2^1 1 = 1$
  - prob.  $\frac{1}{2}$ :  $x \rightarrow 2$ .  $n' = 2^2 1 = 3$
  - $E[n'] = \frac{1}{2} \times 1 + \frac{1}{2} \times 3 = 2 = n$

# Morris' algorithm provides an unbiased estimator (cont.)

```
Let X(n) denote random counter x after n<sup>th</sup> arrival Initialize X(0) = 0; increment w.p. p_x = 2^{-x} Estimate n' = 2^{X(n)} - 1  = \sum_{j=1,...,n-1} \Pr[X(n-1) = j] E[2^{X(n)} | X(n-1) = j]  = \sum_{j=1,...,n-1} \Pr[X(n-1) = j] (p_j 2^{j+1} + (1-p_j) 2^j)  = \sum_{j=1,...,n-1} \Pr[X(n-1) = j] (2^j + 1)  = E[2^{X(n-1)}] + 1
```

Iterating:  $E[2^{X(n)}] = E[2^{X(0)}] + n = 1 + n$ 

Therefore:  $E[2^{X(n)} - 1] = n$ 

# Flajolet-Martin algorithm for counting distinct elements

- For every element u in the stream, compute hash h(u)
- Let r(u) be the number of trailing zeros in hash value
  - Example: if  $h(u) = 001011101\underline{000}$  then r(u) = 3
- Maintain R = max r(u) seen so far
- Output  $2^R$  as an estimator of the number of distinct elements seen so far

#### Flajolet-Martin algorithm

(intuitive, hand-waving explanation)

- Let r(u) be the number of trailing zeros in hash value, keep  $R = max \ r(u)$ , output  $2^R$  as estimate
- Repeated items don't change our estimates because their hashes are equal
- About ½ of distinct items hash to \*\*\*\*\*\*\*0
  - To actually see a \*\*\*\*\*\*\*0, we expect to wait until seeing 2 distinct items
- About ¼ of distinct items hash to \*\*\*\*\*\*00
  - To actually see a \*\*\*\*\*\*00, we expect to wait until seeing 4 items
- •
- If we actually saw a hash value of \*\*\*000...0 (having R trailing zeros) then on expectation we saw  $2^R$  different items

### Flajolet-Martin, correctness proof

- Let m be the number of distinct elements
- Let z(r) be the probability of finding a tail of r zeroes
- We will prove that

$$z(r) \rightarrow 1 \text{ if } m \gg 2^r$$
  
 $z(r) \rightarrow 0 \text{ if } m \ll 2^r$ 

• Hence  $2^r$  should be around m

### Flajolet-Martin, correctness proof (cont.)

- Probability a hash value ends in r zeroes =  $(1/2)^r$ 
  - Assuming h(u) produces values at random
  - Prob. random binary ends in r zeroes =  $(1/2)^r$
- Probability of seeing m distinct elements and NOT seeing a tail of r zeroes =  $(1 (1/2)^r)^m$

### Flajolet-Martin, correctness proof (cont.)

- Probability of seeing m distinct elements and NOT seeing a tail of r zeroes =  $(1 - (\frac{1}{2})^r)^m$
- Remember  $(1-\varepsilon)^{1/\varepsilon} \simeq 1/e$  for small  $\varepsilon$

• Hence 
$$\left(1-\left(\frac{1}{2}\right)^r\right)^m=\left(1-\left(\frac{1}{2}\right)^r\right)^{\frac{m\left(\frac{1}{2}\right)^r}{\left(\frac{1}{2}\right)^r}}\approx\left(\frac{1}{e}\right)^{\left(\frac{m}{2^r}\right)}$$

### Flajolet-Martin, correctness proof (cont.)

- Probability of seeing m distinct elements and NOT seeing a tail of r zeroes  $\approx (1/e)^{\left(\frac{m}{2^r}\right)}$
- If  $m \gg 2^r$ , this tends to 0
  - We almost certainly will see a tail of r zeroes
- If  $m \ll 2^r$ , this tends to 1
  - We almost certainly will not see a tail of r zeroes
- Hence,  $2^r$  should be around m

### Flajolet-Martin: increasing precision

- Idea: repeat many times or compute in parallel for multiple hash functions
- How to combine?
  - Average? E[2<sup>r</sup>] is infinite, extreme values will skew the number excessively
  - Median? 2<sup>r</sup> is always a power of 2
- Solution: group hash functions, take median of values obtained in each group, then average across groups

### Let's go back to counting neighbors

#### Naïve method:

```
Maintain a set for each node u, initialize S(u) = \{u\}
Repeat h times: S(u) = S(u) \cup \bigcup_{v \text{ neighbor of } u} S(v)
```

Answer n(u,h) = |S(u)|

#### **ANF** method:

```
 \begin{array}{ll} \text{FOR each node } x \text{ DO} \\ M(x,0) = & \text{concatenation of } k \text{ bitmasks} \\ & \text{each with 1 bit set } (P(\text{bit } i) = .5^{i+1}) \\ \text{FOR each distance } k \text{ starting with 1 DO} \\ & \text{FOR each node } x \text{ DO } M(x,h) = M(x,h-1) \\ // \text{ Update } \mathcal{M}(x,h) \text{ by adding one step} \\ & \text{FOR each edge } (x,y) \text{ DO} \\ & M(x,h) = (M(x,h) \text{ BITWISE-OR } M(y,h-1)) \\ // \text{ Compute the estimates for this } k \\ & \text{FOR each node } x \text{ DO} \\ & \text{Individual estimate } I\hat{N}(x,h) = (2^b)/.77351 \\ & \text{where } b \text{ is the average position of the least zero bits in the } k \text{ bitmasks} \\ \end{array}
```

# Example of another variant of the same type of algorithm

 More repetitions of the algorithm yield better precision



Becchetti, Luca, Carlos Castillo, Debora Donato, Stefano Leonardi, and Ricardo Baeza-Yates. "Using rank propagation and probabilistic counting for link-based spam detection." In Proc. of WebKDD, 2006.

## Estimating moments

#### Moments of order k

- If a stream has A distinct elements, and each element has frequency  $m_i$
- The k<sup>th</sup> order moment of the stream is  $\sum m_i^k$
- **The Oth order moment** is the number of distinct elements in the stream
- The 1st order moment is the length of the stream

#### Moments of order k (cont.)

- The k<sup>th</sup> order moment of the stream is  $\sum_i m_i^k$
- The 2<sup>nd</sup> order moment is also known as the "surprise number" of a stream (large values = more uneven distribution)

| m <sub>i</sub> | i=1 | i=2 | i=3 | i=4 | i=5 | i=6 | i=7 | i=8 | i=9 | i=10 | i=11 | 2 <sup>nd</sup> moment |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------------------------|
| Seq1           | 10  | 9   | 9   | 9   | 9   | 9   | 9   | 9   | 9   | 9    | 9    | 910                    |
| Seq2           | 90  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1    | 1    | 8110                   |

#### Method for second moment

- Assume (for now) that we know n, the length of the stream
- We will sample s positions
- For each sample we will have *X.element* and *X.count*
- We sample s random positions in the stream X.element = element in that position,  $X.count \leftarrow 1$  When we see X.element again,  $X.count \leftarrow X.count + 1$
- Estimate second moment as  $n(2 \times X.count 1)$

#### Method for second moment (cont.)

Example: a,b,c,b,d,a,c,d,a,b,d,c,a,a,b
 m<sub>a</sub> = 5, m<sub>b</sub> = 4, m<sub>c</sub> = 3, m<sub>d</sub> = 3
 second moment = 5<sup>2</sup>+4<sup>2</sup>+3<sup>2</sup>+3<sup>2</sup> = 59

- Suppose we sample s=3 variables  $X_1$ ,  $X_2$ ,  $X_3$
- Suppose we pick the 3<sup>rd</sup>, 8<sup>th</sup>, and 13<sup>th</sup> position at random
- X<sub>1</sub>.element=c, X<sub>2</sub>.element=d, X<sub>3</sub>.element=a
- $X_1$ .count=3,  $X_2$ .count=2,  $X_3$ .count=2 (we count forwards only!)
- Estimate  $n(2 \times X.count 1)$ , first estimate = 15(6-1) = 75, second estimate 15(4-1) = 45, third estimate 15(4-1) = 45, average of estimates =  $55 \approx 59$

#### Method for second moment (cont.)

- Example: a,b,c,b,d,a,c,d,a,b,d,c,a,a,b
- Suppose we pick the 3<sup>rd</sup>, 8<sup>th</sup>, and 13<sup>th</sup> position at random
- $X_1$ .element=c,  $X_2$ .element=d,  $X_3$ .element=a
- X<sub>1</sub>.count=3, X<sub>2</sub>.count=2, X<sub>3</sub>.count=2

#### Why this method works?

- Let e(i) be the element in position i of the stream
- Let c(i) be the number of times e(i) appears in positions i, i+1, i+2, ..., n
- Example: a,b,c,b,d,a,c,d,a,b,d,c,a,a,b c(6) = ?

#### Why this method works?

- Let e(i) be the element in position i of the stream
- Let c(i) be the number of times e(i) appears in positions i, i+1, i+2, ..., n
- Example:  $a,b,c,b,d,\underline{a},c,d,\underline{a},b,d,c,\underline{a},\underline{a},b$ c(6) = 4 (remember: we count forwards only!)

### Why this method works? (cont.)

- c(i) is the number of times e(i) appears in positions i, i+1, i+2, ..., n
- $E[n (2 \times X.count 1)]$  is the average of n (2 c(i) 1) over all positions i=1...n

$$E[n(2 \times X. \text{count} - 1)] = \frac{1}{n} \sum_{i=1}^{n} n(2c(i) - 1)$$

$$E[n(2 \times X. \text{count} - 1)] = \sum_{i=1}^{\infty} (2c(i) - 1)$$

#### Why this method works? (cont.)

$$E[n(2 \times X. \text{count} - 1)] = \sum_{i=1}^{\infty} (2c(i) - 1)$$

- Now focus on element a that appears m<sub>a</sub> times in the stream
  - The last time a appears this term is 2c(i) 1 = 2x1-1 = 1
  - Just before that, 2c(i)-1 = 2x2-1 = 3
  - ...
  - Until 2m<sub>a</sub> 1 for the first time a appears
- Hence

$$E[n(2 \times X. \text{count} - 1)] = \sum 1 + 3 + 5 + \dots + (2m_a - 1) = \sum m_a^2$$

# For higher order moments (v = X.count)

- For second order moment
  - We use  $n(2v-1) = n(v^2 (v-1)^2)$
- For third order moment
  - We use  $n(3v^2 3v + 1) = n(v^3 (v-1)^3)$
- For k<sup>th</sup> order moment
  - We use  $n(v^k (v-1)^k)$

#### For infinite streams

- Use a reservoir sampling strategy
- If we want s samples
  - Pick the first s elements of the stream setting X<sub>i</sub>.element ← e(i) and X<sub>i</sub>.count ← 1 for i=1...s
  - When element n+1 arrives
    - Pick X<sub>n+1</sub>.element with probability s/(n+1), evicting one of the existing elements at random and setting X.count ← 1
- As before, probability of an element is s/n

## Summary

#### Things to remember

- Reservoir sampling
- Bloom filter
- Probabilistic counting algorithms:
  - Morris
  - Flajolet-Martin
- kth order moments of a stream

#### Exercises for this topic

- Mining of Massive Datasets (2014) by Leskovec et al.
  - Exercises 4.2.5
  - Exercises 4.3.4
  - Exercises 4.4.5
  - Exercises 4.5.6