GEN 242: Linear Algebra

Chapter 8: Vectors/Matrix Differential Calculus

Solutions Guide

Instructor: Richard Bahin

Full Sail University

Table of Contents

A	nswers	5
	Converting from Rectangular to Polar Coordinates	5
	Converting from Polar to Rectangular Coordinates	
	Converting from Cylindrical to Rectangular Coordinates	
	Converting from Rectangular to Cylindrical Coordinates	
	Converting from Spherical to Rectangular Coordinates	
	Converting from Rectangular to Spherical Coordinates	
	Converting from Spherical to Cylindrical Coordinates	
	Converting from Cylindrical to Spherical Coordinates	
	Gradient of a Scalar Field	
	Curl of a Vector Field	7
	Divergence of a Vector Field	8
	Laplacian of a Scalar Field	8
	Laplacian of a Vector Field	8
	Derivative of a Vector with Respect to a Vector	8
	Derivative of a Scalar with Respect to a Vector	9
	Quadric Forms	9
Si	olutions	10
	Rectangular to Polar Coordinates Conversion	10
	Problem 1	
	Problem 2	
	Problem 3	12
	Polar to Rectangular Coordinates Conversion	13
	Problem 4	
	Problem 5	14
	Problem 6	15
	Cylindrical to Rectangular Coordinates Conversion	16
	Problem 7	
	Problem 8	17
	Problem 9	18
	Rectangular to Cylindrical Coordinates Conversion	19
	Problem 10	
	Problem 11	20
	Problem 12	21

Spherical to Rectangular Coordinates Conversion	22
Problem 13	22
Problem 14	23
Problem 15	24
Rectangular to Spherical Coordinates Conversion	25
Problem 16	
Problem 17	26
Problem 18	27
Spherical to Cylindrical Coordinates Conversion	28
Problem 19	28
Problem 20	29
Problem 21	30
Cylindrical to Spherical Coordinates Conversion	
Problem 22	31
Problem 23	
Problem 24	33
Gradient of a Scalar Field	
Problem 25	
Problem 26	
Problem 27	35
Curl of a Vector Field	
Problem 28	
Problem 29	
Problem 30	38
Computing the Divergence of a Vector Field	
Problem 31	
Problem 32	39
Problem 33	40
Computing the Laplacian of a Scalar Field	
Problem 34	
Problem 35	
Problem 36	43
Computing the Laplacian of a Vector Field	
Problem 37	
Problem 38	
Problem 39	46
Derivative of a Vector with Respect to a Vector	
Problem 40	
Problem 41	
Problem 42	48
Derivative of a Scalar with Respect to a Vector (Jacobian	•
Problem 43	
Problem 44	49

inear Algebra	Chapter 8 – Vector	/Matrix Diff.	Calculus -	Solutions	Guide

Quadric Forms		
Problem 46		
Problem 47		
Drohlom 19	E:	

Answers

Converting from Rectangular to Polar Coordinates

1.
$$\vec{p} = (3, \sqrt{3})_{\text{rect}} \rightarrow \vec{p} = (\frac{\pi}{6}, 2\sqrt{3})_{\text{polar}}$$

2.
$$\vec{p} = (1, \sqrt{3})_{\text{rect}} \rightarrow \vec{p} = (\frac{\pi}{3}, 2)_{\text{polar}}$$

3.
$$\vec{p} = (-1, -1)_{\text{rect}} \rightarrow \left[\vec{p} = \left(-\frac{3\pi}{4}, \sqrt{2} \right)_{\text{polar}} \right]$$

Converting from Polar to Rectangular Coordinates

4.
$$\vec{p} = \left(\frac{7\pi}{4}, 3\sqrt{2}\right)_{\text{polar}} \to \boxed{\vec{p} = (3, -3)_{\text{rect}}}$$

5.
$$\vec{p} = \left(\frac{\pi}{4}, 4\right)_{\text{polar}} \rightarrow \left[\vec{p} = \left(2\sqrt{2}, 2\sqrt{2}\right)_{\text{rect}}\right]$$

6.
$$\vec{p} = \left(\frac{\pi}{3}, 1\right)_{\text{polar}} \rightarrow \boxed{\vec{p} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)_{\text{rect}}}$$

Converting from Cylindrical to Rectangular Coordinates

7.
$$\vec{p} = (3, \frac{\pi}{2}, 1)_{\text{cyl}} \rightarrow \boxed{\vec{p} = (0, 3, 1)_{\text{rect}}}$$

8.
$$\vec{p} = \left(4, \frac{\pi}{6}, 2\right)_{\text{cyl}} \rightarrow \left[\vec{p} = \left(2\sqrt{3}, 2, 2\right)_{\text{rect}}\right]$$

9.
$$\vec{p} = \left(1, \frac{\pi}{4}, 5\right)_{\text{cyl}} \rightarrow \left[\vec{p} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 5\right)_{\text{rect}}\right]$$

Converting from Rectangular to Cylindrical Coordinates

10.
$$\vec{p} = (1,1,1)_{\text{rect}} \rightarrow \boxed{\vec{p} = (\sqrt{2}, \frac{\pi}{4}, 1)_{\text{cyl}}}$$

11.
$$\vec{p} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 5\right)_{\text{rect}} \rightarrow \vec{p} = \left(1, \frac{\pi}{3}, 5\right)_{\text{cyl}}$$

12.
$$\vec{p} = (\sqrt{2}, \sqrt{2}, 3)_{\text{rect}} \rightarrow \vec{p} = (2, \frac{\pi}{4}, 3)_{\text{cyl}}$$

Converting from Spherical to Rectangular Coordinates

13.
$$\vec{p} = \left(1, \frac{\pi}{4}, \pi\right)_{\text{sphere}} \rightarrow \boxed{\vec{p} = (0, 0, -1)_{\text{rect}}}$$

14.
$$\vec{p} = \left(3, \frac{\pi}{3}, \frac{\pi}{4}\right)_{\text{sphere}} \rightarrow \vec{p} = \left(\frac{3\sqrt{6}}{4}, \frac{3\sqrt{6}}{4}, \frac{3\sqrt{2}}{2}\right)_{\text{rect}}$$

15.
$$\vec{p} = \left(5, \frac{\pi}{2}, \pi\right)_{\text{sphere}} \rightarrow \boxed{\vec{p} = (0, -5, 0)_{\text{rect}}}$$

Converting from Rectangular to Spherical Coordinates

16.
$$\vec{p} = (1,1,\sqrt{2})_{\text{rect}} \rightarrow \vec{p} = (2,\frac{\pi}{4},\frac{\pi}{4})_{\text{sphere}}$$

17.
$$\vec{p} = \left(\frac{\sqrt{3}}{4}, \frac{1}{2}, \frac{\sqrt{3}}{2}\right)_{\text{rect}} \rightarrow \vec{p} = \left(\frac{\sqrt{19}}{4}, 0.65, 0.86\right)_{\text{sphere}}$$

18.
$$\vec{p} = (1,1,0)_{\text{rect}} \rightarrow \boxed{\vec{p} = (\sqrt{2}, \frac{\pi}{2}, \frac{\pi}{4})_{\text{sphere}}}$$

Converting from Spherical to Cylindrical Coordinates

19.
$$\vec{p} = \left(4, \frac{\pi}{4}, \frac{\pi}{3}\right)_{\text{sphere}} \rightarrow \vec{p} = \left(2\sqrt{2}, \frac{\pi}{3}, 2\sqrt{2}\right)_{\text{cyl}}$$

20.
$$\vec{p} = \left(2\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{3}\right)_{\text{sphere}} \rightarrow \vec{p} = \left(2, \frac{\pi}{3}, 2\right)_{\text{cyl}}$$

21.
$$\vec{p} = \left(\sqrt{2}, \frac{\pi}{2}, \frac{\pi}{4}\right)_{\text{sphere}} \rightarrow \boxed{\vec{p} = \left(\sqrt{2}, \frac{\pi}{4}, 0\right)_{\text{cyl}}}$$

Converting from Cylindrical to Spherical Coordinates

22.
$$\vec{p} = \left(1, \frac{\pi}{2}, 1\right)_{\text{cyl}} \rightarrow \vec{p} = \left(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{2}\right)_{\text{sphere}}$$

23.
$$\vec{p} = \left(\sqrt{6}, \frac{\pi}{4}, \sqrt{2}\right)_{\text{cyl}} \rightarrow \vec{p} = \left(2\sqrt{2}, \frac{\pi}{3}, \frac{\pi}{2}\right)_{\text{sphere}}$$

24.
$$\vec{p} = \left(1, \frac{\pi}{4}, 5\right)_{\text{cyl}} \rightarrow \vec{p} \approx \left(\sqrt{26}, 0.20, \frac{\pi}{4}\right)_{\text{sphere}}$$

Gradient of a Scalar Field

25.
$$f(x, y, z) = x^2y + xz + y^2 \rightarrow \overrightarrow{\text{grad}}(f) = (2xy + z, x^2 + 2y, x)$$

26.
$$f(x, y, z) = x^2 + y^2 + z^2 + 2 \rightarrow \overrightarrow{\text{grad}}(f) = (2x, 2y, 2z)$$

27.
$$f(x, y, z) = x + 3y + 5z + 2 \rightarrow \overrightarrow{\text{grad}}(f) = (1,3,5)$$

Curl of a Vector Field

28.
$$\vec{u} = (x^2y)\hat{i} + (yz)\hat{j} - (z^2)\hat{k} \rightarrow \text{curl}(\vec{u}) = -y\hat{i} - x^2\hat{k} = (-y, 0, -x^2)$$

29.
$$\vec{u} = (x^2)\hat{\imath} + (z^2)\hat{\jmath} - (xy^3)\hat{k} \rightarrow \boxed{\operatorname{curl}(\vec{u}) = -2xy^2\hat{\imath} + y^3\hat{\jmath} = (-2xy^2, y^3, 0)}$$

30.
$$\vec{u} = (x)\hat{i} + (z)\hat{j} - (x)\hat{k} \rightarrow \boxed{\operatorname{curl}(\vec{u}) = -\hat{i} + \hat{j} = (-1,1,0)}$$

Divergence of a Vector Field

31.
$$\vec{u} = x^2 y \hat{\imath} + z y \hat{\jmath} - z^2 \hat{k} \rightarrow \overrightarrow{\text{div } \vec{u} = 2xy - z}$$

32.
$$\vec{u} = x^2 \hat{\imath} + z^2 \hat{\jmath} - xy^3 \hat{k} \rightarrow \boxed{\text{div } \vec{u} = 2x}$$

33.
$$\vec{u} = x\hat{\imath} + z\hat{\jmath} - x\hat{k} \rightarrow \overrightarrow{\text{div } \vec{u} = 1}$$

Laplacian of a Scalar Field

34.
$$f(x, y, z) = x^2y + xz + y^2 \rightarrow \overrightarrow{\nabla}^2 f = 2y + 2$$

35.
$$f(x, y, z) = x^2 + y^2 + z^2 + 2 \rightarrow \overrightarrow{\nabla}^2 f = 6$$

36.
$$f(x, y, z) = zx + 3x^3y^2 + 2xz^2 \rightarrow \overrightarrow{\nabla}^2 f = 18xy^2 + 6x^3 + 4x$$

Laplacian of a Vector Field

37.
$$\vec{u} = (3x^2y, zy^2, 3z^2) \rightarrow \overrightarrow{\nabla}^2 \vec{u} = (6y, 2z, 6)$$

38.
$$\vec{u} = (x^2 + y, x + zy^2, z^2) \rightarrow \vec{\nabla}^2 \vec{u} = (2, 2z, 2)$$

39. Duplicate of #37.

Derivative of a Vector with Respect to a Vector

40.
$$\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
, $\begin{cases} w_1 = 2x + 3y \\ w_2 = 7x + 5y \end{cases}$, $\vec{u} = \begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} \frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} 2 & 3 \\ 7 & 5 \end{bmatrix} \end{bmatrix}$

41.
$$\overrightarrow{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
, $\begin{cases} w_1 = x - y + z \\ w_2 = x + 2y - z \end{cases}$, $\overrightarrow{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ $\rightarrow \begin{bmatrix} \frac{\partial \overrightarrow{w}}{\partial \overrightarrow{u}} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \end{bmatrix} \end{bmatrix}$

42.
$$\vec{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}, \begin{cases} w_1 = xy + z \\ w_2 = x - y^2 + z \\ w_3 = 2x + y + xz \end{cases}, \vec{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} \frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} y & x & 1 \\ 1 & -2y & 1 \\ 2 + z & 1 & x \end{bmatrix}$$

Derivative of a Scalar with Respect to a Vector

43.
$$s(\vec{x}) = (x_1 + 1)^2 + x_2^2 + (x_3 + 2)^2, \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow \begin{bmatrix} \frac{\partial s}{\partial \vec{x}} = \begin{bmatrix} 2x_1 + 2 \\ 2x_2 \\ 2x_3 + 4 \end{bmatrix}$$

44.
$$f(\vec{x}) = x + y + z$$
, $\vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} \frac{\partial f}{\partial \vec{x}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

45.
$$g(\vec{x}) = x + xy + z^2, \vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \rightarrow \begin{bmatrix} \frac{\partial g}{\partial \vec{x}} = \begin{bmatrix} 1+y \\ x \\ 2z \end{bmatrix}$$

Quadric Forms

$$46. f(x,y) = x^{2} + 6xy + 2y^{2} \rightarrow \begin{bmatrix} f(x,y) = \vec{x}^{T} \cdot \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \cdot \vec{x} \\ \frac{\partial f(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} 2x + 6y \\ 6x + 4y \end{bmatrix}$$

$$47. f(x,y) = 5x^{2} + 2xy + 2y^{2} \rightarrow \begin{bmatrix} f(x,y) = \vec{x}^{T} \cdot \begin{bmatrix} 5 & 1 \\ 1 & 2 \end{bmatrix} \cdot \vec{x} \\ \frac{\partial f(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} 10x + 2y \\ 2x + 4y \end{bmatrix}$$

$$48. f(x,y) = 3x^{2} + 8xy + 6xz + y^{2} + 6yz + 3z^{2} \rightarrow \begin{cases} f(x,y,z) = \vec{x}^{T} \cdot \begin{bmatrix} 3 & 4 & 3 \\ 4 & 1 & 3 \\ 3 & 3 & 3 \end{bmatrix} \cdot \vec{x} \\ \frac{\partial f(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} 6x + 8y + 6z \\ 8x + 2y + 6z \\ 6x + 6y + 6z \end{bmatrix}$$

Solutions

Rectangular to Polar Coordinates Conversion

Problem 1

Change $\vec{p} = (3, \sqrt{3})$ from rectangular coordinates to polar coordinates.

$$\vec{p}_{\text{rect}} = \left(3, \sqrt{3}\right) = (x, y)$$

$$x = 3$$

$$y = \sqrt{3}$$

$$\vec{p}_{\text{polar}} = (\theta, r)$$

$$y = \sqrt{3} \to y \ge 0$$

$$\therefore \theta = \cos^{-1}\left(\frac{x}{r}\right)$$

$$\theta = \cos^{-1}\left(\frac{3}{2\sqrt{3}}\right)$$

$$\theta = \frac{\pi}{6}$$

$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{(3)^2 + \left(\sqrt{3}\right)^2}$$

$$r = \sqrt{9+3}$$

$$r = \sqrt{12} = 2\sqrt{3}$$

$$\vec{p}_{\text{polar}} = \left(\frac{\pi}{6}, 2\sqrt{3}\right)$$

Change $\vec{p} = (1, \sqrt{3})$ from rectangular coordinates to polar coordinates.

$$\vec{p}_{\rm rect} = \left(1, \sqrt{3}\right) = (x, y)$$

$$x = 1$$

$$y = \sqrt{3}$$

$$\vec{p}_{\text{polar}} = (r, \theta)$$

$$r = \sqrt{x^2 + y^2}$$

$$y = \sqrt{3} \to y \ge 0$$

$$r = \sqrt{(1)^2 + \left(\sqrt{3}\right)^2}$$

$$\theta = \cos^{-1}\left(\frac{x}{r}\right)$$

$$r = \sqrt{1+3}$$

$$\theta = \cos^{-1}\left(\frac{1}{2}\right)$$

$$r = \sqrt{4} = 2$$

$$\theta = \frac{\pi}{3}$$

$$\vec{p}_{\text{polar}} = \left(\frac{\pi}{3}, 2\right)$$

Change $\vec{p} = (-1, -1)$ from rectangular coordinates to polar coordinates.

$$\vec{p}_{\text{rect}} = (-1, -1) = (x, y)$$

$$x = -1$$

$$y = -1$$

$$\vec{p}_{polar} = (\theta, r)$$

$$r = \sqrt{x^2 + y^2}$$
$$r = \sqrt{(-1)^2 + (-1)^2}$$

$$y = -1 \to y < 0$$

$$r = \sqrt{1+1}$$

$$\theta = -\cos^{-1}\left(\frac{x}{r}\right)$$

$$r = \sqrt{2}$$

 $\vec{p}_{\text{polar}} = \left(-\frac{3\pi}{4}, \sqrt{2}\right)$

$$\theta = -\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$$

$$\theta = -\frac{3\pi}{4}$$

Polar to Rectangular Coordinates Conversion

Problem 4

Change $\vec{p} = \left(\frac{7\pi}{4}, 3\sqrt{2}\right)$ from polar coordinates to rectangular coordinates.

$$\vec{p}_{\text{polar}} = \left(\frac{7\pi}{4}, 3\sqrt{2}\right) = (\theta, r)$$

$$r = 3\sqrt{2}$$

$$\theta = \frac{7\pi}{4}$$

 $y = 3\sqrt{2} \cdot \sin\left(\frac{7\pi}{4}\right)$

 $y = 3\sqrt{2} \cdot \left(-\frac{\sqrt{2}}{2}\right)$

y = -3

$$\vec{p}_{\rm rect} = (x, y)$$

$$x = r\cos(\theta)$$

$$x = 3\sqrt{2} \cdot \cos\left(\frac{7\pi}{4}\right)$$

$$x = 3\sqrt{2} \cdot \frac{\sqrt{2}}{2}$$

$$x = 3$$

$$y = r\sin(\theta)$$

$$\vec{p}_{\text{rect}} = (3, -3)$$

Change $\vec{p} = \left(\frac{\pi}{4}, 4\right)$ from polar coordinates to rectangular coordinates.

$$\vec{p}_{\text{polar}} = \left(\frac{\pi}{4}, 4\right) = (\theta, r)$$

$$r = 4$$

$$\theta = \frac{\pi}{4}$$

$$\vec{p}_{\rm rect} = (x, y)$$

$$x = r\cos(\theta)$$

$$x = 4 \cdot \cos\left(\frac{\pi}{4}\right)$$

$$x = 4 \cdot \frac{\sqrt{2}}{2}$$

$$x = 2\sqrt{2}$$

$$y = r \sin(\theta)$$

$$\vec{p}_{\text{rect}} = \left(2\sqrt{2}, 2\sqrt{2}\right)$$

$$y = 4 \cdot \sin\left(\frac{\pi}{4}\right)$$

$$y = 4 \cdot \frac{\sqrt{2}}{2}$$

$$y = 2\sqrt{2}$$

Change $\vec{p} = \left(\frac{\pi}{3}, 1\right)$ from polar coordinates to rectangular coordinates.

$$\vec{p}_{\mathrm{polar}} = \left(\frac{\pi}{3}, 1\right) = (\theta, r)$$

$$r = 1$$

$$\theta = \frac{\pi}{3}$$

$$\vec{p}_{\rm rect} = (x, y)$$

$$x = r \cos(\theta)$$

$$y = r \sin(\theta)$$

$$x = 1 \cdot \cos\left(\frac{\pi}{3}\right)$$

$$y = 1 \cdot \sin\left(\frac{\pi}{3}\right)$$

$$x = 1 \cdot \frac{1}{2}$$

$$y = 1 \cdot \frac{\sqrt{3}}{2}$$

$$x = \frac{1}{2}$$

$$y = \frac{\sqrt{3}}{2}$$

$$\vec{p}_{\text{rect}} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

Cylindrical to Rectangular Coordinates Conversion

Problem 7

Change $\vec{p} = \left(3, \frac{\pi}{2}, 1\right)$ from cylindrical coordinates to rectangular coordinates.

$$\vec{p}_{\rm cyl} = \left(3, \frac{\pi}{2}, 1\right) = (\rho, \phi, z)$$

$$\rho = 3$$

$$\phi = \frac{\pi}{2}$$

$$z = 1$$

$$\vec{p}_{\text{rect}} = (x, y, z)$$

$$x = \rho \cos(\phi)$$

$$y = \rho \sin(\phi)$$

$$z = z$$

$$x = 3\cos\left(\frac{\pi}{2}\right)$$

$$y = 3\sin\left(\frac{\pi}{2}\right)$$

$$z = 1$$

$$x = 3 \cdot 0$$

$$y = 3 \cdot 1$$

$$x = 0$$

$$y = 3$$

$$\vec{p}_{\text{rect}} = (0,3,1)$$

Change $\vec{p} = \left(4, \frac{\pi}{6}, 2\right)$ from cylindrical coordinates to rectangular coordinates.

$$\vec{p}_{\rm cyl} = \left(4, \frac{\pi}{6}, 2\right) = \left(\rho, \phi, z\right)$$

$$\rho = 4$$

$$\phi = \frac{\pi}{6}$$

$$z = 2$$

$$\vec{p}_{\rm rect} = (x, y, z)$$

$$x = \rho \cos(\phi)$$

$$y = \rho \sin(\phi)$$

$$z = z$$

$$x = 4\cos\left(\frac{\pi}{6}\right)$$

$$y = 4\sin\left(\frac{\pi}{6}\right)$$

$$z = 2$$

$$x = 4 \cdot \frac{\sqrt{3}}{2}$$

$$y = 4 \cdot \frac{1}{2}$$

$$x = 2\sqrt{3}$$

$$y = 2$$

$$\vec{p}_{\text{rect}} = \left(2\sqrt{3}, 2, 2\right)$$

Change $\vec{p} = \left(1, \frac{\pi}{4}, 5\right)$ from cylindrical coordinates to rectangular coordinates.

$$\vec{p}_{\rm cyl} = \left(1, \frac{\pi}{4}, 5\right) = (\rho, \phi, z)$$

$$\rho = 1$$

$$\phi = \frac{\pi}{4}$$

$$z = 5$$

$$\vec{p}_{\rm rect} = (x, y, z)$$

$$x = \rho \cos(\phi)$$

$$y = \rho \sin(\phi)$$

$$z = z$$

$$x = 1\cos\left(\frac{\pi}{4}\right)$$

$$y = 1\sin\left(\frac{\pi}{4}\right)$$

$$z = 5$$

$$x = 1 \cdot \frac{\sqrt{2}}{2}$$

$$y = 1 \cdot \frac{\sqrt{2}}{2}$$

$$x = \frac{\sqrt{2}}{2}$$

$$y = \frac{\sqrt{2}}{2}$$

$$\vec{p}_{\text{rect}} = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 5\right)$$

Rectangular to Cylindrical Coordinates Conversion

Problem 10

Change $\vec{p} = (1,1,1)$ from rectangular coordinates to cylindrical coordinates.

$$\vec{p}_{\text{rect}} = (1,1,1) = (x, y, z)$$

$$x = 1$$

$$y = 1$$

$$z = 1$$

$$\vec{p}_{\rm cyl} = (\rho, \phi, z)$$

$$\rho = \sqrt{x^2 + y^2}$$

$$x = 1 \rightarrow x \ge 0$$

$$z = z$$

$$\rho = \sqrt{(1)^2 + (1)^2}$$

$$\phi = \sin^{-1}\left(\frac{y}{\rho}\right)$$

$$z = 1$$

$$\rho = \sqrt{1+1}$$

$$\rho = \sqrt{2}$$

$$\phi = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

$$\phi = \frac{\pi}{4}$$

$$\vec{p}_{\rm cyl} = \left(\sqrt{2}, \frac{\pi}{4}, 1\right)$$

Change $\vec{p} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 5\right)$ from rectangular coordinates to cylindrical coordinates.

$$\vec{p}_{\text{rect}} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 5\right) = (x, y, z)$$

$$x = \frac{1}{2}$$

$$y = \frac{\sqrt{3}}{2}$$

$$z = 5$$

$$\vec{p}_{\rm cyl} = (\rho, \phi, z)$$

$$\rho = \sqrt{x^2 + y^2}$$

$$x = \frac{1}{2} \to x \ge 0$$

$$z = z$$

$$\rho = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$\phi = \sin^{-1}\left(\frac{y}{\rho}\right)$$

$$z = 5$$

$$\rho = \sqrt{\frac{1}{4} + \frac{3}{4}}$$

$$\phi = \sin^{-1}\left(\frac{\sqrt{3}/2}{1}\right)$$

$$\rho = \sqrt{1} = 1$$

$$\phi = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

$$\phi = \frac{\pi}{3}$$

$$\vec{p}_{\rm cyl} = \left(1, \frac{\pi}{3}, 5\right)$$

Change $\vec{p} = (\sqrt{2}, \sqrt{2}, 3)$ from rectangular coordinates to cylindrical coordinates.

$$\vec{p}_{\text{rect}} = \left(\sqrt{2}, \sqrt{2}, 3\right) = (x, y, z)$$

$$x = \sqrt{2}$$

$$y = \sqrt{2}$$

$$z = 3$$

$$\vec{p}_{\rm cvl} = (\rho, \phi, z)$$

$$\rho = \sqrt{x^2 + y^2}$$

$$x = \sqrt{2} \rightarrow x \ge 0$$

$$z = z$$

$$\rho = \sqrt{\left(\sqrt{2}\right)^2 + \left(\sqrt{2}\right)^2}$$

$$\phi = \sin^{-1}\left(\frac{y}{\rho}\right)$$

$$z = 3$$

$$\rho = \sqrt{2+2}$$

$$\phi = \sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$$

$$\rho = \sqrt{4} = 2$$

$$\phi = \frac{\pi}{4}$$

$$\vec{p}_{\rm cyl} = \left(2, \frac{\pi}{4}, 3\right)$$

Spherical to Rectangular Coordinates Conversion

Problem 13

Change $\vec{p} = \left(1, \frac{\pi}{4}, \pi\right)$ from spherical coordinates to rectangular coordinates.

$$\vec{p}_{\text{sphere}} = \left(1, \frac{\pi}{4}, \pi\right) = (r, \theta, \phi)$$

$$r = 1$$

$$\phi = \frac{\pi}{4}$$

$$\theta = \pi$$

$$\vec{p}_{\text{rect}} = (x, y, z)$$

$$x = r\sin(\theta)\cos(\phi)$$

$$y = r\sin(\theta)\sin(\phi)$$

$$z = r \cos(\theta)$$

$$x = 1\sin(\pi)\cos\left(\frac{\pi}{4}\right)$$

$$y = 1\sin(\pi)\sin\left(\frac{\pi}{4}\right)$$

$$z=1\cos(\pi)$$

$$x = 1 \cdot 0 \cdot \frac{\sqrt{2}}{2}$$

$$y = 1 \cdot 0 \cdot \frac{\sqrt{2}}{2}$$

$$z=1\cdot (-1)$$

z = -1

$$x = 0$$

$$y = 0$$

$$\vec{p}_{\text{rect}} = (0,0,-1)$$

Change $\vec{p} = \left(3, \frac{\pi}{3}, \frac{\pi}{4}\right)$ from spherical coordinates to rectangular coordinates.

$$\vec{p}_{\text{sphere}} = \left(3, \frac{\pi}{3}, \frac{\pi}{4}\right) = (r, \theta, \phi)$$

$$r = 3$$

$$\theta = \frac{\pi}{3}$$

$$\phi = \frac{\pi}{4}$$

$$\vec{p}_{\rm rect} = (x, y, z)$$

$$x = r\sin(\theta)\cos(\phi)$$

$$y = r\sin(\theta)\sin(\phi)$$

$$z = r \cos(\theta)$$

$$x = 3\sin\left(\frac{\pi}{3}\right)\cos\left(\frac{\pi}{4}\right)$$

$$y = 3\sin\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{4}\right)$$

$$z = 3\cos\left(\frac{\pi}{3}\right)$$

$$x = 3 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}$$

$$y = 3 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}$$

$$z = 3 \cdot \frac{1}{2}$$

$$x = \frac{3\sqrt{6}}{4}$$

$$y = \frac{3\sqrt{6}}{4}$$

$$z = \frac{3}{2}$$

$$\vec{p}_{\text{rect}} = \left(\frac{3\sqrt{6}}{4}, \frac{3\sqrt{6}}{4}, \frac{3}{2}\right)$$

Change $\vec{p} = \left(5, \frac{\pi}{2}, \pi\right)$ from spherical coordinates to rectangular coordinates.

$$\vec{p}_{\rm sphere} = \left(5, \frac{\pi}{2}, \pi\right) = (r, \theta, \phi)$$

$$r = 5$$

$$\theta = \frac{\pi}{2}$$

$$\phi = \pi$$

$$\vec{p}_{\rm rect} = (x, y, z)$$

$$x = r\sin(\theta)\cos(\phi)$$

$$y = r\sin(\theta)\sin(\phi)$$

$$z = r \cos(\theta)$$

$$x = 5\sin\left(\frac{\pi}{2}\right)\cos(\pi)$$

$$y = 5\sin\left(\frac{\pi}{2}\right)\sin(\pi)$$

$$z = 5\cos\left(\frac{\pi}{2}\right)$$

$$x = 5 \cdot 1 \cdot 0$$

$$y = 5 \cdot 1 \cdot (-1)$$

$$z = 5 \cdot (0)$$

$$x = 0$$

$$y = -5$$

$$z = 0$$

$$\vec{p}_{\text{rect}} = (0, -5, 0)$$

Rectangular to Spherical Coordinates Conversion

Problem 16

Change $\vec{p} = (1,1,\sqrt{2})$ from rectangular coordinates to spherical coordinates.

$$\vec{p}_{\text{rect}} = (1, 1, \sqrt{2}) = (x, y, z)$$

x = 1

y = 1

 $z = \sqrt{2}$

$$\vec{p}_{\rm sphere} = (r,\theta,\phi)$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \cos^{-1}\left(\frac{z}{r}\right)$$

$$\phi = \tan^{-1}\left(\frac{y}{x}\right)$$

$$r = \sqrt{(1)^2 + (1)^2 + (\sqrt{2})^2}$$

$$r = \sqrt{(1)^2 + (1)^2 + (\sqrt{2})}$$

$$r = \sqrt{1 + 1 + 2}$$

$$\theta = \cos^{-1}\left(\frac{\sqrt{2}}{2}\right)$$

$$\phi = \tan^{-1}\left(\frac{1}{1}\right)$$

$$r = \sqrt{4}$$

$$\theta = \frac{\pi}{4}$$

$$\phi = \tan^{-1}(1)$$

$$r = 2$$

$$\theta = \frac{\kappa}{4}$$

$$\phi = \frac{\pi}{4}$$

$$\vec{p}_{\text{sphere}} = \left(2, \frac{\pi}{4}, \frac{\pi}{4}\right)$$

Change $\vec{p} = \left(\frac{\sqrt{3}}{4}, \frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ from rectangular coordinates to spherical coordinates.

$$\vec{p}_{\text{rect}} = \left(\frac{\sqrt{3}}{4}, \frac{1}{2}, \frac{\sqrt{3}}{2}\right) = (x, y, z)$$

$$x = \frac{\sqrt{3}}{4}$$

$$y = \frac{1}{2}$$

$$z = \frac{\sqrt{3}}{2}$$

$$\vec{p}_{\rm sphere} = (r, \theta, \phi)$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \cos^{-1}\left(\frac{z}{r}\right)$$

$$\phi = \tan^{-1}\left(\frac{y}{x}\right)$$

$$r = \sqrt{\left(\frac{\sqrt{3}}{4}\right)^2 + \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

$$\theta = \cos^{-1}\left(\frac{\sqrt{3}/2}{\sqrt{19}/4}\right)$$

$$\phi = \tan^{-1}\left(\frac{1/2}{\sqrt{3}/4}\right)$$

$$r = \sqrt{\frac{3}{16} + \frac{1}{4} + \frac{3}{4}}$$

$$\theta = \cos^{-1}\left(\frac{2\sqrt{57}}{19}\right)$$

$$\phi = \tan^{-1}\left(\frac{2\sqrt{3}}{3}\right)$$

$$r = \sqrt{\frac{3}{16} + \frac{4}{16} + \frac{12}{16}}$$

$$\theta \approx 0.65$$

$$\phi\approx 0.86$$

$$r = \sqrt{\frac{19}{16}}$$

$$r = \frac{\sqrt{19}}{4}$$

$$\vec{p}_{\text{sphere}} \approx \left(\frac{\sqrt{19}}{4}, 0.65, 0.86\right)$$

Change $\vec{p} = (1,1,0)$ from rectangular coordinates to spherical coordinates.

$$\vec{p}_{\text{rect}} = (1,1,0) = (x, y, z)$$

$$x = 1$$

$$y = 1$$

$$z = 0$$

$$\vec{p}_{\text{sphere}} = (r, \theta, \phi)$$

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$\theta = \cos^{-1}\left(\frac{z}{r}\right)$$

$$\phi = \tan^{-1}\left(\frac{y}{x}\right)$$

$$r = \sqrt{(1)^2 + (1)^2 + (0)^2}$$

$$r = \sqrt{1+1+0}$$

$$\theta = \cos^{-1}\left(\frac{0}{\sqrt{2}}\right)$$

$$\phi = \tan^{-1}\left(\frac{1}{1}\right)$$

$$r = \sqrt{2}$$

$$\theta = \cos^{-1}(0)$$

$$\phi = \tan^{-1}(1)$$

$$\theta = \frac{\pi}{2}$$

$$\phi = \frac{\pi}{4}$$

$$\vec{p}_{\text{sphere}} = \left(\sqrt{2}, \frac{\pi}{2}, \frac{\pi}{4}\right)$$

Spherical to Cylindrical Coordinates Conversion

Problem 19

Change $\vec{p} = \left(4, \frac{\pi}{4}, \frac{\pi}{3}\right)$ from spherical coordinates to cylindrical coordinates.

$$\vec{p}_{\text{sphere}} = \left(4, \frac{\pi}{4}, \frac{\pi}{3}\right) = (r, \theta, \phi)$$

$$r = 4$$

$$\theta = \frac{\pi}{4}$$

$$\phi = \frac{\pi}{3}$$

$$p_{\rm cvl} = (\rho, \phi, z)$$

$$\rho = r \sin(\theta)$$

$$\phi = \phi$$

$$z = r \cos(\theta)$$

$$\rho = (4)\sin\left(\frac{\pi}{4}\right)$$

$$\phi = \frac{\pi}{3}$$

$$z = (4)\cos\left(\frac{\pi}{4}\right)$$

$$\rho = (4) \left(\frac{\sqrt{2}}{2} \right)$$

$$z = (4) \left(\frac{\sqrt{2}}{2}\right)$$

$$\rho = 2\sqrt{2}$$

$$z = 2\sqrt{2}$$

$$p_{\rm cyl} = \left(2\sqrt{2}, \frac{\pi}{3}, 2\sqrt{2}\right)$$

Change $\vec{p} = \left(2\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{3}\right)$ from spherical coordinates to cylindrical coordinates.

$$\vec{p}_{\text{sphere}} = \left(2\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{3}\right) = (r, \theta, \phi)$$

$$r = 2\sqrt{2}$$

$$\theta = \frac{\pi}{4}$$

$$\phi = \frac{\pi}{3}$$

$$p_{\rm cyl} = (\rho, \phi, z)$$

$$\rho = r\sin(\theta)$$

$$\phi = \phi$$

$$z = r \cos(\theta)$$

$$\rho = (2\sqrt{2})\sin\left(\frac{\pi}{4}\right)$$

$$\phi = \frac{\pi}{3}$$

$$z = \left(2\sqrt{2}\right)\cos\left(\frac{\pi}{4}\right)$$

$$\rho = \left(2\sqrt{2}\right) \left(\frac{\sqrt{2}}{2}\right)$$

$$z = \left(2\sqrt{2}\right) \left(\frac{\sqrt{2}}{2}\right)$$

$$\rho = 2$$

$$z = 2$$

$$p_{\rm cyl} = \left(2, \frac{\pi}{3}, 2\right)$$

Change $\vec{p} = \left(\sqrt{2}, \frac{\pi}{2}, \frac{\pi}{4}\right)$ from spherical coordinates to cylindrical coordinates.

$$\vec{p}_{\text{sphere}} = \left(\sqrt{2}, \frac{\pi}{2}, \frac{\pi}{4}\right) = (r, \theta, \phi)$$

$$r = \sqrt{2}$$

$$\theta = \frac{\pi}{2}$$

$$\phi = \frac{\pi}{4}$$

$$p_{\rm cyl} = (\rho, \phi, z)$$

$$\rho = r\sin(\theta)$$

$$\phi = \phi$$

$$z = r\cos(\theta)$$

$$\rho = (\sqrt{2})\sin\left(\frac{\pi}{2}\right)$$

$$\phi = \frac{\pi}{4}$$

$$z = \left(\sqrt{2}\right)\cos\left(\frac{\pi}{2}\right)$$

$$\rho = \left(\sqrt{2}\right)(1)$$

$$z = \left(2\sqrt{2}\right)(0)$$

$$\rho = \sqrt{2}$$

$$z = 0$$

$$p_{\rm cyl} = \left(\sqrt{2}, \frac{\pi}{4}, 0\right)$$

Cylindrical to Spherical Coordinates Conversion

Problem 22

Change $\vec{p} = \left(1, \frac{\pi}{2}, 1\right)$ from cylindrical coordinates to spherical coordinates.

$$\vec{p}_{\rm cyl} = \left(1, \frac{\pi}{2}, 1\right) = (\rho, \phi, z)$$

$$\rho = 1$$

$$\phi = \frac{\pi}{2}$$

$$z = 1$$

$$\vec{p}_{\text{sphere}} = (r, \theta, \phi)$$

$$r = \sqrt{\rho^2 + z^2}$$

$$\theta = \tan^{-1}\left(\frac{\rho}{z}\right)$$

$$\phi = \phi$$

$$r = \sqrt{(1)^2 + (1)^2}$$

$$\theta = \tan^{-1}\left(\frac{1}{1}\right)$$

$$\phi = \frac{\pi}{2}$$

$$r = \sqrt{1+1}$$

$$\theta = \tan^{-1}(1)$$

$$r = \sqrt{2}$$

$$\theta = \frac{\pi}{4}$$

$$\vec{p}_{\text{sphere}} = \left(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{2}\right)$$

Change $\vec{p} = \left(\sqrt{6}, \frac{\pi}{4}, \sqrt{2}\right)$ from cylindrical coordinates to spherical coordinates.

$$\vec{p}_{\rm cyl} = \left(\sqrt{6}, \frac{\pi}{4}, \sqrt{2}\right) = (\rho, \phi, z)$$

$$\rho=\sqrt{6}$$

$$\phi = \frac{\pi}{4}$$

$$z = \sqrt{2}$$

$$\vec{p}_{\rm sphere} = (r, \theta, \phi)$$

$$r = \sqrt{\rho^2 + z^2}$$

$$\theta = \tan^{-1}\left(\frac{\rho}{z}\right)$$

$$\phi = \phi$$

$$r = \sqrt{\left(\sqrt{6}\right)^2 + \left(\sqrt{2}\right)^2}$$

$$\theta = \tan^{-1}\left(\frac{\sqrt{6}}{\sqrt{2}}\right)$$

$$\phi = \frac{\pi}{2}$$

$$r = \sqrt{6 + 2}$$

$$r = \sqrt{8} = 2\sqrt{2}$$

$$\theta = \tan^{-1}(\sqrt{3})$$

$$\theta = \frac{\pi}{3}$$

$$\vec{p}_{\text{sphere}} = \left(2\sqrt{2}, \frac{\pi}{3}, \frac{\pi}{2}\right)$$

Change $\vec{p} = \left(1, \frac{\pi}{4}, 5\right)$ from cylindrical coordinates to spherical coordinates.

$$\vec{p}_{\rm cyl} = \left(1, \frac{\pi}{4}, 5\right) = (\rho, \phi, z)$$

$$\rho = 1$$

$$\phi = \frac{\pi}{4}$$

$$z = 5$$

$$\vec{p}_{\rm sphere} = (r, \theta, \phi)$$

$$r = \sqrt{\rho^2 + z^2}$$

$$\theta = \tan^{-1}\left(\frac{\rho}{z}\right)$$

$$\phi = \phi$$

$$r = \sqrt{(1)^2 + (5)^2}$$

$$\theta = \tan^{-1}\left(\frac{1}{5}\right)$$

$$\phi = \frac{\pi}{4}$$

$$r = \sqrt{1 + 25}$$

$$\theta \approx 0.20$$

$$r = \sqrt{26}$$

$$|\vec{p}_{\text{sphere}} \approx \left(\sqrt{26}, 0.20, \frac{\pi}{4}\right)|$$

Gradient of a Scalar Field

Problem 25

Given the scalar field $f(x, y, z) = x^2y + xz + y^2$, calculate $\overrightarrow{\text{grad}}(f) = \overrightarrow{\nabla} f$.

$$\overrightarrow{\text{grad}}(f) = \overrightarrow{\nabla} f$$

$$\overrightarrow{\text{grad}}(f) = \frac{\partial f}{\partial x} \hat{\imath} + \frac{\partial f}{\partial y} \hat{\jmath} + \frac{\partial f}{\partial y} \hat{k}$$

$$\overrightarrow{\text{grad}}(f) = \frac{\partial}{\partial x} (x^2 y + xz + y^2) \cdot \hat{\imath} + \frac{\partial}{\partial y} (x^2 y + xz + y^2) \cdot \hat{\jmath} + \frac{\partial}{\partial z} (x^2 y + xz + y^2) \cdot \hat{k}$$

$$\overrightarrow{\text{grad}}(f) = (2xy + z + 0) \cdot \hat{\imath} + (x^2 + 0 + 2y) \cdot \hat{\jmath} + (0 + x + 0) \cdot \hat{k}$$

$$\overrightarrow{\text{grad}}(f) = (2xy + z)\hat{\imath} + (x^2 + 2y)\hat{\jmath} + x\hat{k}$$

$$\overrightarrow{\text{grad}}(f) = (2xy + z, x^2 + 2y, x)$$

Problem 26

Given the scalar field $f(x, y, z) = x^2 + y^2 + z^2 + 2$, calculate $\overrightarrow{\text{grad}}(f) = \overrightarrow{\nabla} f$.

$$\overrightarrow{\text{grad}}(f) = \overrightarrow{\nabla} f$$

$$\overrightarrow{\text{grad}}(f) = \frac{\partial f}{\partial x} \hat{\imath} + \frac{\partial f}{\partial y} \hat{\jmath} + \frac{\partial f}{\partial y} \hat{k}$$

$$\overrightarrow{\text{grad}}(f) = \frac{\partial}{\partial x} (x^2 + y^2 + z^2 + 2) \cdot \hat{\imath} + \frac{\partial}{\partial y} (x^2 + y^2 + z^2 + 2) \cdot \hat{\jmath}$$

$$+ \frac{\partial}{\partial z} (x^2 + y^2 + z^2 + 2) \cdot \hat{k}$$

$$\overrightarrow{\text{grad}}(f) = (2x + 0 + 0 + 0) \cdot \hat{\imath} + (0 + 2y + 0 + 0) \cdot \hat{\jmath} + (0 + 0 + 2z + 0) \cdot \hat{k}$$

$$\overrightarrow{\text{grad}}(f) = 2x\hat{\imath} + 2y\hat{\jmath} + 2z\hat{k}$$

$$\overrightarrow{\text{grad}}(f) = (2x, 2y, 2z)$$

Linear Algebra

Given the scalar field f(x, y, z) = x + 3y + 5z + 2, calculate $\overrightarrow{\text{grad}}(f) = \overrightarrow{\nabla} f$.

$$\overrightarrow{\operatorname{grad}}(f) = \overrightarrow{\nabla} f$$

$$\overrightarrow{\operatorname{grad}}(f) = \frac{\partial f}{\partial x}\hat{\imath} + \frac{\partial f}{\partial y}\hat{\jmath} + \frac{\partial f}{\partial y}\hat{k}$$

$$\overrightarrow{\operatorname{grad}}(f) = \frac{\partial}{\partial x}(x+3y+5z+2)\cdot\hat{\imath} + \frac{\partial}{\partial y}(x+3y+5z+2)\cdot\hat{\jmath}$$

$$+\frac{\partial}{\partial z}(x+3y+5z+2)\cdot\hat{k}$$

$$\overrightarrow{\text{grad}}(f) = (1+0+0+0) \cdot \hat{\imath} + (0+3+0+0) \cdot \hat{\jmath} + (0+0+5+0) \cdot \hat{k}$$

$$\overrightarrow{\text{grad}}(f) = \hat{\imath} + 3\hat{\jmath} + 5\hat{k}$$

$$\overrightarrow{\operatorname{grad}}(f) = (1,3,5)$$

Curl of a Vector Field

Problem 28

Linear Algebra

Given the vector field $\vec{u}=\left(u_x,u_y,u_z\right)=(x^2y)\hat{\imath}+(yz)\hat{\jmath}-(z^2)\hat{k}$, calculate

$$\operatorname{curl}(\vec{u}) = \vec{\nabla} \times \vec{u}.$$

$$\operatorname{curl}(\vec{u}) = \vec{\nabla} \times \vec{u}$$

$$\operatorname{curl}(\vec{u}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u_{x} & u_{y} & u_{z} \end{vmatrix}$$

$$\operatorname{curl}(\vec{u}) = \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u_y & u_z \end{vmatrix} \hat{i} - \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ u_x & u_z \end{vmatrix} \hat{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ u_x & u_y \end{vmatrix} \hat{k}$$

$$\operatorname{curl}(\vec{u}) = \left(\frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z}\right)\hat{\imath} - \left(\frac{\partial u_z}{\partial x} - \frac{\partial u_x}{\partial z}\right)\hat{\jmath} + \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y}\right)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = \left[\frac{\partial}{\partial y}(-z^2) - \frac{\partial}{\partial z}(yz)\right]\hat{\imath} - \left[\frac{\partial}{\partial x}(-z^2) - \frac{\partial}{\partial z}(x^2y)\right]\hat{\jmath} + \left[\frac{\partial}{\partial x}(yz) - \frac{\partial}{\partial y}(x^2y)\right]\hat{k}$$

$$\operatorname{curl}(\vec{u}) = (0 - y)\hat{i} - (0 - 0)\hat{j} + (0 - x^2)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = (-y)\hat{i} - (0)\hat{j} + (-x^2)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = (-y, 0, -x^2)$$

Linear Algebra

Given the vector field $\vec{u} = (u_x, u_y, u_z) = (x^2)\hat{i} + (z^2)\hat{j} - (xy^3)\hat{k}$, calculate

$$\operatorname{curl}(\vec{u}) = \vec{\nabla} \times \vec{u}.$$

$$\vec{u} = (x^2)\hat{i} + (z^2)\hat{j} + (-xy^3)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = \vec{\nabla} \times \vec{u}$$

$$\operatorname{curl}(\vec{u}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u_{x} & u_{y} & u_{z} \end{vmatrix}$$

$$\operatorname{curl}(\vec{u}) = \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u_y & u_z \end{vmatrix} \hat{i} - \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ u_x & u_z \end{vmatrix} \hat{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ u_x & u_y \end{vmatrix} \hat{k}$$

$$\operatorname{curl}(\vec{u}) = \left(\frac{\partial u_z}{\partial y} - \frac{\partial u_y}{\partial z}\right)\hat{\imath} - \left(\frac{\partial u_z}{\partial x} - \frac{\partial u_x}{\partial z}\right)\hat{\jmath} + \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y}\right)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = \left[\frac{\partial}{\partial y} (-xy^3) - \frac{\partial}{\partial z} (z^2) \right] \hat{\imath} - \left[\frac{\partial}{\partial x} (-xy^3) - \frac{\partial}{\partial z} (x^2) \right] \hat{\jmath} + \left[\frac{\partial}{\partial x} (z^2) - \frac{\partial}{\partial y} (x^2) \right] \hat{k}$$

$$\operatorname{curl}(\vec{u}) = (-2xy^2 - 0)\hat{\imath} - (-y^3 - 0)\hat{\jmath} + (0 - 0)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = (-2xy^2)\hat{\imath} - (-y^3)\hat{\jmath} + (0)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = (-2xy^2)\hat{i} + (y^3)\hat{j} + (0)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = (-2xy^2, y^3, 0)$$

Linear Algebra

Given the vector field $\vec{u} = (u_x, u_y, u_z) = (x)\hat{\imath} + (z)\hat{\jmath} - (x)\hat{k}$, calculate $\operatorname{curl}(\vec{u}) = \vec{\nabla} \times \vec{u}$.

$$\vec{u} = (x)\hat{\imath} + (z)\hat{\jmath} + (-x)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = \vec{\nabla} \times \vec{u}$$

$$\operatorname{curl}(\vec{u}) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u_x & u_y & u_z \end{vmatrix}$$

$$\operatorname{curl}(\vec{u}) = \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u_y & u_z \end{vmatrix} \hat{i} - \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\ u_x & u_z \end{vmatrix} \hat{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ u_x & u_y \end{vmatrix} \hat{k}$$

$$\operatorname{curl}(\vec{u}) = \left(\frac{\partial}{\partial y}u_z - \frac{\partial}{\partial z}u_y\right)\hat{\imath} - \left(\frac{\partial}{\partial x}u_z - \frac{\partial}{\partial z}u_x\right)\hat{\jmath} + \left(\frac{\partial}{\partial x}u_y - \frac{\partial}{\partial y}u_x\right)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = \left[\frac{\partial}{\partial y}(-x) - \frac{\partial}{\partial z}(z)\right]\hat{\imath} - \left[\frac{\partial}{\partial x}(-x) - \frac{\partial}{\partial z}(x)\right]\hat{\jmath} + \left[\frac{\partial}{\partial x}(z) - \frac{\partial}{\partial y}(x)\right]\hat{k}$$

$$\operatorname{curl}(\vec{u}) = (0-1)\hat{\imath} - (-1-0)\hat{\jmath} + (0-0)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = (-1)\hat{\imath} - (-1)\hat{\jmath} + (0)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = (-1)\hat{\imath} + (1)\hat{\jmath} + (0)\hat{k}$$

$$\operatorname{curl}(\vec{u}) = (-1,1,0)$$

Computing the Divergence of a Vector Field

Problem 31

Given the vector field $\vec{u} = (u_x, u_y, u_z) = x^2 y \hat{\imath} + z y \hat{\jmath} - z^2 \hat{k}$, calculate div $\vec{u} = \vec{\nabla} \cdot \vec{u}$.

$$\vec{u} = (x^2y)\hat{i} + (zy)\hat{j} + (-z^2)\hat{k}$$

$$\operatorname{div} \vec{u} = \vec{\nabla} \cdot \vec{u}$$

$$\operatorname{div} \vec{u} = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}$$

$$\operatorname{div} \vec{u} = \frac{\partial}{\partial x}(x^2y) + \frac{\partial}{\partial y}(zy) + \frac{\partial}{\partial z}(-z^2)$$

$$\operatorname{div} \vec{u} = 2xy + z + (-2z)$$

Problem 32

Given the vector field $\vec{u} = (u_x, u_y, u_z) = x^2 \hat{\imath} + z^2 \hat{\jmath} - xy^3 \hat{k}$, calculate $\operatorname{div} \vec{u} = \vec{\nabla} \cdot \vec{u}$.

$$\vec{u} = (x^2)\hat{\imath} + (z^2)\hat{\jmath} + (-xy^3)\hat{k}$$

$$\operatorname{div} \vec{u} = \vec{\nabla} \cdot \vec{u}$$

$$\operatorname{div} \vec{u} = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}$$

$$\operatorname{div} \vec{u} = \frac{\partial}{\partial x}(x^2) + \frac{\partial}{\partial y}(z^2) + \frac{\partial}{\partial z}(-xy^3)$$

$$\operatorname{div} \vec{u} = 2x + 0 + 0$$

$$\operatorname{div} \vec{u} = 2x$$

Given the vector field $\vec{u} = (u_x, u_y, u_z) = x\hat{\imath} + z\hat{\jmath} - x\hat{k}$, calculate $\operatorname{div} \vec{u} = \vec{\nabla} \cdot \vec{u}$.

$$\vec{u} = (x)\hat{\imath} + (z)\hat{\jmath} + (-x)\hat{k}$$

$$\operatorname{div} \vec{u} = \vec{\nabla} \cdot \vec{u}$$

$$\operatorname{div} \vec{u} = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}$$

$$\operatorname{div} \vec{u} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(z) + \frac{\partial}{\partial z}(-x)$$

$$\operatorname{div} \vec{u} = 1 + 0 + 0$$

$$\operatorname{div} \vec{u} = 1$$

Computing the Laplacian of a Scalar Field

Problem 34

Given the scalar field $f(x, y, z) = x^2y + xz + y^2$, compute the Laplacian

$$\vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

$$\vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right)$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} (f) \right]$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} (x^2 y + xz + y^2) \right]$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (2xy + z + 0)$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (2xy + z)$$

$$\frac{\partial^2 f}{\partial x^2} = 2y + 0$$

$$\frac{\partial^2 f}{\partial x^2} = 2y$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} (x^2 y + xz + y^2) \right]$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (x^2 + 0 + 2y)$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (x^2 + 2y)$$

$$\frac{\partial^2 f}{\partial v^2} = 0 + 2$$

$$\frac{\partial^2 f}{\partial y^2} = 2$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} \left[\frac{\partial}{\partial z} (x^2 y + xz + y^2) \right]$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} (0 + x + 0)$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z}(x)$$

$$\frac{\partial^2 f}{\partial z^2} = 0$$

$$\vec{\nabla}^2 f = 2y + 2 + 0$$

$$\overrightarrow{\nabla}^2 f = 2y + 2$$

Given the scalar field $f(x, y, z) = x^2 + y^2 + z^2 + 2$, compute the Laplacian

$$\vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

$$\vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} (x^2 + y^2 + z^2 + 2) \right]$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (2x + 0 + 0 + 0)$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (2x)$$

$$\frac{\partial^2 f}{\partial x^2} = 2$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} \left[\frac{\partial}{\partial z} (x^2 + y^2 + z^2 + 2) \right]$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} (0 + 0 + 2z + 0)$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} (2z)$$

$$\frac{\partial^2 f}{\partial z^2} = 2$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} (x^2 + y^2 + z^2 + 2) \right]$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (0 + 2y + 0 + 0)$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (2y)$$

$$\frac{\partial^2 f}{\partial v^2} = 2$$

$$\vec{\nabla}^2 f = 2 + 2 + 2$$

$$\vec{\nabla}^2 f = 6$$

Given the scalar field $f(x, y, z) = xz + 3x^3y^2 + 2xz^2$, compute the Laplacian

$$\vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

$$\vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} (xz + 3x^3y^2 + 2xz^2) \right]$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} (z + 9x^2y^2 + 2z^2)$$

$$\frac{\partial^2 f}{\partial x^2} = 0 + 18xy^2 + 0$$

$$\frac{\partial^2 f}{\partial x^2} = 18xy^2$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} (xz + 3x^3y^2 + 2xz^2) \right]$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (0 + 6x^3 y + 0)$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (6x^3 y)$$

$$\frac{\partial^2 f}{\partial y^2} = 6x^3$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z} \left[\frac{\partial}{\partial z} (xz + 3x^3y^2 + 2xz^2) \right]$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z}(x + 0 + 4xz)$$

$$\frac{\partial^2 f}{\partial z^2} = \frac{\partial}{\partial z}(x + 4xz)$$

$$\frac{\partial^2 f}{\partial z^2} = 0 + 4x$$

$$\frac{\partial^2 f}{\partial z^2} = 4x$$

$$\vec{\nabla}^2 f = 18xy^2 + 6x^3 + 4x$$

Computing the Laplacian of a Vector Field Problem 37

Given the vector field $\vec{u} = (u_x, u_y, u_z) = (3x^2y, y^2z, 3z^2)$, find the Laplacian of \vec{u} , $\vec{\nabla}^2 \vec{u}$.

$$\begin{split} \vec{\nabla}^2 \vec{u} &= (\vec{\nabla}^2 u_x) \hat{\imath} + (\vec{\nabla}^2 u_y) \hat{\jmath} + (\vec{\nabla}^2 u_z) \hat{k} \\ \vec{\nabla}^2 u_x &= \frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \\ \vec{\nabla}^2 u_x &= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} (3x^2 y) \right] + \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} (3x^2 y) \right] + \frac{\partial}{\partial z} \left[\frac{\partial}{\partial z} (3x^2 y) \right] \\ \vec{\nabla}^2 u_x &= \frac{\partial}{\partial x} (6xy) + \frac{\partial}{\partial y} (3x^2) + \frac{\partial}{\partial z} (0) \\ \vec{\nabla}^2 u_x &= 6y + 0 + 0 \\ \vec{\nabla}^2 u_x &= 6y \\ \vec{\nabla}^2 u_y &= \frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \\ \vec{\nabla}^2 u_y &= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} (y^2 z) \right] + \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} (y^2 z) \right] + \frac{\partial}{\partial z} \left[\frac{\partial}{\partial z} (y^2 z) \right] \\ \vec{\nabla}^2 u_y &= \frac{\partial}{\partial x} (0) + \frac{\partial}{\partial y} (2yz) + \frac{\partial}{\partial z} (y^2) \\ \vec{\nabla}^2 u_y &= 0 + 2z + 0 \\ \vec{\nabla}^2 u_y &= 2z \\ \vec{\nabla}^2 u_z &= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} (3z^2) \right] + \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} (3z^2) \right] + \frac{\partial}{\partial z} \left[\frac{\partial}{\partial z} (3z^2) \right] \\ \vec{\nabla}^2 u_z &= \frac{\partial}{\partial x} (0) + \frac{\partial}{\partial y} (0) + \frac{\partial}{\partial z} (6z) \\ \vec{\nabla}^2 u_z &= 0 + 0 + 6 \\ \vec{\nabla}^2 u_z &= 6 \end{split}$$

Full Sail University

 $\vec{\nabla}^2 \vec{u} = (6y, 2z, 6)$

Linear Algebra

Given the vector field $\vec{u} = (u_x, u_y, u_z) = (x^2 + y, x + y^2z, z^2)$, find the Laplacian of \vec{u} , $\vec{\nabla}^2 \vec{u}$.

$$\begin{split} \vec{\nabla}^2 \vec{u} &= (\vec{\nabla}^2 u_x) \hat{\imath} + (\vec{\nabla}^2 u_y) \hat{\jmath} + (\vec{\nabla}^2 u_z) \hat{k} \\ \vec{\nabla}^2 u_x &= \frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \\ \vec{\nabla}^2 u_x &= \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} (x^2 + y) \right] + \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} (x^2 + y) \right] + \frac{\partial}{\partial z} \left[\frac{\partial}{\partial z} (x^2 + y) \right] \\ \vec{\nabla}^2 u_x &= \frac{\partial}{\partial x} (2x + 0) + \frac{\partial}{\partial y} (0 + 1) + \frac{\partial}{\partial z} (0 + 0) \\ \vec{\nabla}^2 u_x &= \frac{\partial}{\partial x} (2x) + \frac{\partial}{\partial y} (1) + \frac{\partial}{\partial z} (0) \\ \vec{\nabla}^2 u_x &= 2 + 0 + 0 \\ \vec{\nabla}^2 u_x &= 2 \end{split}$$

$$\vec{\nabla}^2 u_y = \frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2}$$

$$\vec{\nabla}^2 u_y = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} (x + y^2 z) \right] + \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} (x + y^2 z) \right] + \frac{\partial}{\partial z} \left[\frac{\partial}{\partial z} (x + y^2 z) \right]$$

$$\vec{\nabla}^2 u_y = \frac{\partial}{\partial x} (1 + 0) + \frac{\partial}{\partial y} (0 + 2yz) + \frac{\partial}{\partial z} (0 + y^2)$$

$$\vec{\nabla}^2 u_y = \frac{\partial}{\partial x} (1) + \frac{\partial}{\partial y} (2yz) + \frac{\partial}{\partial z} (y^2)$$

$$\vec{\nabla}^2 u_y = 0 + 2z + 0$$

$$\vec{\nabla}^2 u_y = 2z$$

$$\vec{\nabla}^2 u_z = \frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2}$$

$$\vec{\nabla}^2 u_z = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} (z^2) \right] + \frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} (z^2) \right] + \frac{\partial}{\partial z} \left[\frac{\partial}{\partial z} (z^2) \right]$$

$$\vec{\nabla}^2 u_z = \frac{\partial}{\partial x} (0) + \frac{\partial}{\partial y} (0) + \frac{\partial}{\partial z} (2z)$$

$$\vec{\nabla}^2 u_z = 0 + 0 + 2$$

$$\vec{\nabla}^2 u_z = 2$$

$$\vec{\nabla}^2 \vec{u} = (2)\hat{\imath} + (2z)\hat{\jmath} + (2)\hat{k}$$

$$\vec{\nabla}^2 \vec{u} = (2,2z,2)$$

Given the vector field $\vec{u}(u_x,u_y,u_z)=(3x^2y,y^2z,3z^2)$, find the Laplacian of $\vec{u},\vec{\nabla}^2\vec{u}$.

[duplicate to #37]

Derivative of a Vector with Respect to a Vector

Problem 40

Given
$$\vec{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
, $\begin{cases} w_1 = 2x + 3y \\ w_2 = 7x + 5y \end{cases}$, $\vec{u} = \begin{bmatrix} x \\ y \end{bmatrix}$, calculate $\frac{\partial \vec{w}}{\partial \vec{u}}$.

$$\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} \frac{\partial w_1}{\partial u_1} & \frac{\partial w_1}{\partial u_2} \\ \frac{\partial w_2}{\partial u_1} & \frac{\partial w_2}{\partial u_2} \end{bmatrix}$$

$$\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} \frac{\partial}{\partial x} (2x + 3y) & \frac{\partial}{\partial y} (2x + 3y) \\ \frac{\partial}{\partial x} (7x + 5y) & \frac{\partial}{\partial y} (7x + 5y) \end{bmatrix}$$

$$\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} 2+0 & 0+3\\ 7+0 & 0+5 \end{bmatrix}$$

$$\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} 2 & 3 \\ 7 & 5 \end{bmatrix}$$

Given
$$\overrightarrow{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$
, $\begin{cases} w_1 = x - y + z \\ w_2 = x + 2y - z \end{cases}$, $\overrightarrow{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, calculate $\frac{\partial \overrightarrow{w}}{\partial \overrightarrow{u}}$.

$$\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} \frac{\partial w_1}{\partial u_1} & \frac{\partial w_1}{\partial u_2} & \frac{\partial w_1}{\partial u_3} \\ \frac{\partial w_2}{\partial u_1} & \frac{\partial w_2}{\partial u_2} & \frac{\partial w_2}{\partial u_3} \end{bmatrix}$$

$$\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} \frac{\partial}{\partial x} (x - y + z) & \frac{\partial}{\partial y} (x - y + z) & \frac{\partial}{\partial z} (x - y + z) \\ \frac{\partial}{\partial x} (x + 2y - z) & \frac{\partial}{\partial y} (x + 2y - z) & \frac{\partial}{\partial z} (x + 2y - z) \end{bmatrix}$$

$$\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} 1 - 0 + 0 & 0 - 1 + 0 & 0 - 0 + 1 \\ 1 + 0 - 0 & 0 + 2 - 0 & 0 + 0 - 1 \end{bmatrix}$$

$$\boxed{\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \end{bmatrix}}$$

Given
$$\overrightarrow{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$
, $\begin{cases} w_1 = xy + z \\ w_2 = x - y^2 + z \\ w_3 = 2x + y + xz \end{cases}$, $\overrightarrow{u} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, calculate $\frac{\partial \overrightarrow{w}}{\partial \overrightarrow{u}}$.

$$\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} \frac{\partial w_1}{\partial u_1} & \frac{\partial w_1}{\partial u_2} & \frac{\partial w_1}{\partial u_3} \\ \frac{\partial w_2}{\partial u_1} & \frac{\partial w_2}{\partial u_2} & \frac{\partial w_2}{\partial u_3} \\ \frac{\partial w_3}{\partial u_1} & \frac{\partial w_3}{\partial u_2} & \frac{\partial w_3}{\partial u_3} \end{bmatrix}$$

$$\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} \frac{\partial}{\partial x} (xy+z) & \frac{\partial}{\partial y} (xy+z) & \frac{\partial}{\partial z} (xy+z) \\ \frac{\partial}{\partial x} (x-y^2+z) & \frac{\partial}{\partial y} (x-y^2+z) & \frac{\partial}{\partial z} (x-y^2+z) \\ \frac{\partial}{\partial x} (2x+y+xz) & \frac{\partial}{\partial y} (2x+y+xz) & \frac{\partial}{\partial z} (2x+y+xz) \end{bmatrix}$$

$$\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} y+0 & x+0 & 0+1\\ 1-0+0 & 0-2y+0 & 0-0+1\\ 2+0+z & 0+1+0 & 0+0+x \end{bmatrix}$$

$$\boxed{\frac{\partial \vec{w}}{\partial \vec{u}} = \begin{bmatrix} y & x & 1\\ 1 & -2y & 1\\ 2+z & 1 & x \end{bmatrix}}$$

Derivative of a Scalar with Respect to a Vector (Jacobian) Problem 43

Given
$$s = s(\vec{x}) = (x_1 + 1)^2 + x_2^2 + (x_3 + 2)^2, \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
, calculate $\frac{\partial s}{\partial \vec{x}}$.

$$\frac{\partial s}{\partial \vec{x}} = \begin{bmatrix} \frac{\partial s}{\partial x_1} & \frac{\partial s}{\partial x_2} & \frac{\partial s}{\partial x_3} \end{bmatrix}$$

$$\frac{\partial s}{\partial \vec{x}} = \begin{bmatrix} \frac{\partial}{\partial x_1} [(x_1 + 1)^2 + x_2^2 + (x_3 + 2)^2] & \frac{\partial}{\partial x_2} [(x_1 + 1)^2 + x_2^2 + (x_3 + 2)^2] & \frac{\partial}{\partial x_3} [(x_1 + 1)^2 + x_2^2 + (x_3 + 2)^2] \end{bmatrix}$$

$$\frac{\partial s}{\partial \vec{x}} = [2(x_1 + 1) + 0 + 0 & 0 + 2x_2 + 0 & 0 + 0 + 2(x_3 + 2)]$$

$$\frac{\partial s}{\partial \vec{x}} = [2x_1 + 2 & 2x_2 & 2x_3 + 4]$$

Given
$$f = f(\vec{x}) = x + y + z$$
, $\vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, calculate $\frac{\partial f}{\partial x}$.

$$\frac{\partial f}{\partial \vec{x}} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{bmatrix}$$

$$\frac{\partial f}{\partial \vec{x}} = \begin{bmatrix} \frac{\partial}{\partial x} (x + y + z) & \frac{\partial}{\partial y} (x + y + z) & \frac{\partial}{\partial z} (x + y + z) \end{bmatrix}$$

$$\frac{\partial f}{\partial \vec{x}} = \begin{bmatrix} 1 + 0 + 0 & 0 + 1 + 0 & 0 + 0 + 1 \end{bmatrix}$$

$$\frac{\partial f}{\partial \vec{x}} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Given
$$g = g(\vec{x}) = x + xy + z^2, \vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, calculate $\frac{\partial g}{\partial x}$.

$$\frac{\partial g}{\partial \vec{x}} = \begin{bmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial z} \end{bmatrix}$$

$$\frac{\partial g}{\partial \vec{x}} = \left[\frac{\partial}{\partial x} (x + xy + z^2) \quad \frac{\partial}{\partial y} (x + xy + z^2) \quad \frac{\partial}{\partial z} (x + xy + z^2) \right]$$

$$\frac{\partial g}{\partial \vec{x}} = \begin{bmatrix} 1 + y + 0 & 0 + x + 0 & 0 + 0 + 2z \end{bmatrix}$$

$$\frac{\partial g}{\partial \vec{x}} = \begin{bmatrix} 1 + y & x & 2z \end{bmatrix}$$

Quadric Forms

Problem 46

Given the quadric form $f(x, y) = x^2 + 6xy + 2y^2$:

a. Express in matrix form, $f(\vec{x}) = \vec{x}^{T} \cdot A \cdot \vec{x}$.

$$f(x,y) = a_{11}x^{2} + a_{12}xy + a_{21}xy + a_{22}y^{2}$$

$$f(x,y) = (1)x^{2} + \left(\frac{6}{2}\right)xy + \left(\frac{6}{2}\right)xy + (2)y^{2}$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}$$

$$f(x,y) = \vec{x}^{T} \cdot A \cdot \vec{x}$$

$$f(x,y) = \vec{x}^{T} \cdot \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix} \cdot \vec{x}$$

b. Calculate
$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \frac{\partial}{\partial \vec{x}} (\vec{x}^T A \vec{x})$$
.

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \frac{\partial}{\partial \vec{x}} (\vec{x}^{\mathrm{T}} A \vec{x})$$
$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = 2\vec{x}^{\mathrm{T}} A^{\mathrm{T}}$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = 2 \begin{bmatrix} x \\ y \end{bmatrix}^{T} \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}^{T}$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = 2\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} (2)(x)(1) + (2)(y)(3) \\ (2)(x)(3) + (2)(y)(2) \end{bmatrix}$$

$$\boxed{\frac{\partial f(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} 2x + 6y \\ 6x + 4y \end{bmatrix}}$$

Given the quadric form $f(x, y) = 5x^2 + 2xy + 2y^2$:

a. Express in matrix form, $f(\vec{x}) = \vec{x}^T \cdot A \cdot \vec{x}$.

$$f(x,y) = a_{11}x^{2} + a_{12}xy + a_{21}xy + a_{22}y^{2}$$

$$f(x,y) = (5)x^{2} + \left(\frac{2}{2}\right)xy + \left(\frac{2}{2}\right)xy + (2)y^{2}$$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$A = \begin{bmatrix} 5 & 1 \\ 1 & 2 \end{bmatrix}$$

$$f(x,y) = \vec{x}^{T} \cdot A \cdot \vec{x}$$

$$f(x,y) = \vec{x}^{T} \cdot \begin{bmatrix} 5 & 1 \\ 1 & 2 \end{bmatrix} \cdot \vec{x}$$

b. Calculate
$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \frac{\partial}{\partial \vec{x}} (\vec{x}^{\mathrm{T}} A \vec{x}).$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \frac{\partial}{\partial \vec{x}} (\vec{x}^{T} A \vec{x})$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = 2 \vec{x}^{T} A^{T}$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = 2 \begin{bmatrix} x \\ y \end{bmatrix}^{T} \begin{bmatrix} 5 & 1 \\ 1 & 2 \end{bmatrix}^{T}$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = 2 [x \quad y] \begin{bmatrix} 5 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} (2)(x)(5) + (2)(y)(1) \\ (2)(x)(1) + (2)(y)(2) \end{bmatrix}$$

$$\boxed{\frac{\partial f(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} 10x + 2y \\ 2x + 4y \end{bmatrix}}$$

Given the quadric form $f(x, y) = 3x^2 + 8xy + 6xz + y^2 + 6yz + 3z^2$:

a. Express in matrix form, $f(\vec{x}) = \vec{x}^T \cdot A \cdot \vec{x}$.

$$f(x,y,z) = a_{11}x^{2} + a_{12}xy + a_{21}xy + a_{13}xz + a_{31}xz + a_{22}y^{2} + a_{23}yz + a_{32}yz + a_{33}z^{2}$$

$$f(x,y,z) = (3)x^{2} + \left(\frac{8}{2}\right)xy + \left(\frac{8}{2}\right)xy + \left(\frac{6}{2}\right)xz + \left(\frac{6}{2}\right)xz + (1)y^{2} + \left(\frac{6}{2}\right)yz + \left(\frac{6}{2}\right)yz + (3)z^{2}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 4 & 3 \\ 4 & 1 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

$$f(x, y, z) = \vec{x}^{\mathrm{T}} \cdot A \cdot \vec{x}$$

$$f(x,y,z) = \vec{x}^{T} \cdot \begin{bmatrix} 3 & 4 & 3 \\ 4 & 1 & 3 \\ 3 & 3 & 3 \end{bmatrix} \cdot \vec{x}$$

b. Calculate
$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \frac{\partial}{\partial \vec{x}} (\vec{x}^{T} A \vec{x}).$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \frac{\partial}{\partial \vec{x}} (\vec{x}^{\mathrm{T}} A \vec{x})$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = 2\vec{x}^{\mathrm{T}}A^{\mathrm{T}}$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = 2 \begin{bmatrix} x \\ y \\ z \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} 3 & 4 & 3 \\ 4 & 1 & 3 \\ 3 & 3 & 3 \end{bmatrix}^{\mathrm{T}}$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = 2\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 3 & 4 & 3 \\ 4 & 1 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} (2)(x)(3) + (2)(y)(4) + (2)(z)(3) \\ (2)(x)(4) + (2)(y)(1) + (2)(z)(3) \\ (2)(x)(3) + (2)(y)(3) + (2)(z)(3) \end{bmatrix}$$

$$\frac{\partial f(\vec{x})}{\partial \vec{x}} = \begin{bmatrix} 6x + 8y + 6z \\ 8x + 2y + 6z \\ 6x + 6y + 6z \end{bmatrix}$$

END