

DEPN: Detecting and Editing Privacy Neurons in Pretrained Language Models

Xinwei Wu¹, Junzhuo Li², Minghui Xu¹, Weilong Dong¹, Shuangzhi Wu⁴, Chao Bian^{3,4}, Deyi Xiong^{1,2*}

¹College of Intelligence and Computing, Tianjin University, Tianjin, China
²School of New Media and Communication, Tianjin University, Tianjin, China
³Department of Computer Science and Technology, Tsinghua University, Beijing, China
⁴ByteDance Lark AI, Beijing, China
⁴ButeDance Lark AI, Beijing, China
⁴Wuxw2021, jzli, xuminghui, willowd, dyxiong}@tju.edu.cn,
wufurui@bytedance.com, bianc18@mails.tsinghua.edu.cn

- Inspired by model editing, the paper firstly proposed a neuron-based editing technique to the privacy issue of language models.
- The method is efficient to reduce the privacy issue while maintaining the model performance successfully.

Background

- > LLMs are pretrained on a huge amount of data;
- A variety of methods have been explored to attack LLMs for training data extraction

Existing methods to protect privacy:

- Data processing stage: removing sensitive information
- training stage: reducing the extent to which models memorize training data
- post-processing stage: retraining the model

Background

Factual knowledge is found to be stored in the feed-forward networks

Private information might be also encoded in specific neurons.

DEPN

Figure 1: The diagram of DEPN. When a language model leaks privacy information, DEPN calculates privacy attribution scores using the Privacy Neuron Detector. It then selects the top z privacy neurons with the Privacy Neuron Aggregator and eliminates the model memorization of privacy information using the Privacy Editor.

- 1. Neuron detector
- 2. Neuron aggregator
- 3. Privacy editor

DEPN

Given a tuple $T = \{X, Y\}$, let $Y = \{y_1, ..., y_n\}$ be the sequence with private information, X be the the context of the sequence, θ be the parameters of a language model. Given a context X, the

$$P(\mathbf{Y}|\mathbf{X}, w_l^k) = \prod_{i=1}^{|\mathbf{Y}|} P(y_i|\mathbf{X}, w_l^k = \alpha_l^k)$$
 (2)

Privacy Neuron Detector

$$\operatorname{Att}(w_l^k) = \beta_l^k \int_0^{\beta_l^k} \frac{\partial P(\boldsymbol{Y}|\boldsymbol{X}, \alpha_l^k)}{\partial w_l^k} d\alpha_l^k \qquad (3)$$

$$\operatorname{Att}(w_l^k) = \frac{\beta_l^k}{m} \sum_{j=1}^m \frac{\partial P(\boldsymbol{Y}|\boldsymbol{X}, \frac{j}{m}\beta_l^k)}{\partial w_l^k} \quad (4)$$

 w_l^k :a neuron where l is the layer and k is the position

 $lpha_l^k$:the value of w_l^k

 eta_l^k :the original value of $lpha_l^k$

DEPN

When a pixel or feature is enhanced to a certain extent, its contribution to network decision-making may reach saturation.

Privacy definition: personal identity in formation, such as names, ID numbers, phone numbers and other related expressions.

Dataset: Enron, containing over 500000 emails

Private information:

- 1) Names: 20 unique names that are memorized by language models
- 2) **Phone numbers**: 20 unique LM-memorized phone numbers
- 3) **Private texts**: 100 sentences that are not semantically overlapping with each other

- __ _ is a senior writer at ESPN.com
- My phone number is 71385 _ _ _ _ _.

Metrics:

- 1) Vaild-PPL: the Perplexity of Masked Language Modeling task on the Enron validation dataset. It is used to test LLM's general performance.
- 3) Mean Reciprocal Rank(MRR): measure the model's memorization of names.

__ is a senior writer at ESPN.com

$$\frac{\sum_{i=1}^{|\boldsymbol{E}|} \frac{1}{Rank(e_i|Q)}}{|\boldsymbol{E}|}.$$
 (7)

4) Perplexity: measure the model's memorization of sentences.

Main Results

Privacy Type	Models	Time ↓	Valid-PPL ↓	Privacy Leakage Risk	
			valid-FFL \$	Metric	Value
Phone Number	BERT-O	-	25.23		1.58
	BERT-F	100%	3.07	Emmanuma	15.74
	BERT-FE	2.4%	3.11	Exposure ↓	9.78
	BERT-DP	181.4%	5.43		3.12
Name	BERT-O	-	25.23		0.87
	BERT-F	100%	3.07	MRR↓	1.21
	BERT-FE	4.4%	<u>3.11</u>	WIKK ↓	1.15
	BERT-DP	181.4%	5.43		0.95
Random Text	BERT-O	-	25.23		10.05
	BERT-F	100%	3.07	DDI A	2.30
	BERT-FE	4.6%	3.11	PPL ↑	3.67
	BERT-DP	181.4%	5.43		8.82

Table 1: Results of testing the risks of leaking private Phone Numbers, Names, and Texts on different baseline models, as well as the efficiency of protection. **Bold** and <u>underlined</u> results indicate the best and second best result, respectively. ↑: the higher the better. ↓: the lower the better.

- DEPN's performance was almost similar to BERT-F and has fewest execution time cost;
- Regarding privacy leakage risk metrics, DEPN achieve the reduction of privacy leakage risk.

Effect of the number of neurons edited

(b) Model performance with different number of edited neuron.

Figure 2: The performance of the model and the risk of privacy leakage with the change trend of the number of neurons edited.

➤ Increasing the number of edited neurons reduces the risk of privacy leakage in the model, but it also leads to a decrease in the model performance.

Impact of Training Time on Privacy Neuron Distribution over Layers

Figure 3: The distribution of privacy neurons in the bert-base model at different training epochs.

As the training time increases, privacy neurons
of top layers increases.

A model of a larger size has better performances on normal task. And DEPN demonstrates better performance on larger models.

Models	# Edited Neurons	Time	Before Editing		After Editing		Daduction Data
			Valid-PPL	Exposure	Valid-PPL	Exposure	Reduction Rate
bert-small	100	0.26h	4.09	5.10	4.57	3.39	33.5%
bert-base	200	1.59h	3.07	15.74	3.11	9.78	37.86%
bert-large	400	7.66h	2.93	18.10	2.98	7.63	57.84%

Table 2: The privacy leakage risk reduction rate for models of different sizes.

Robustness analysis

Privacy Amount	# Edited Neurons	Time	Before Editing		After Editing	
			Valid-PPL	Exposure	Valid-PPL	Exposure
20	200	0.76h	3.07	15.74	3.11	9.78
100	500	1.59h	3.07	12.46	3.33	10.47
1000	2000	17.61h	3.07	8.32	3.81	8.03

- ➤ There duction in privacy risks gradually diminishes as the amount of privacy increases.
- Privacy risk reduction across all prompts

Table 3: Analysis results on the cost-effectiveness of DEPN.

Methods	Before 1	Editing	After Editing		
Methods	Valid-PPL	Exposure	Valid-PPL	Exposure	
PND + Editing	3.07	15.54	3.11	9.78	
KN + Editing	3.07	15.54	3.10	10.75	
Random + Editing	3.07	15.54	3.07	12.48	

Table 4: Effect of using different neuron localization methods on results.

Prompts	Original Exposure	Exposure
'Contact me at ***'	12.52	9.77↓
'Contact me at : ***'	11.20	9.40↓
'Contact me: ***'	12.50	9.68↓
'Call me at ***'	12.31	$11.82 \downarrow$
'My phone number is ***'	13.41	12.96 ↓
'You can call me at ***'	13.04	12.84 ↓

Table 5: Results with varying prompts during privacy attack. 'Contact me at ***' is the prefix to the private phone numbers in the training data, and the others are varying prompts used in inference.

Thank you

