

目录

胺化反应的热风险评价

催化加氢反应的热风险评价

甲苯磺化反应的热风险评价

胺化反应的热风险评价

- 1. 工艺温度T_p =180°C
- 2. 反应釜允许最大工作压力为 10MPa
- 3. 氨水 (30%)超过化学计量比 (4:1)
- 4. 停留时间为 8h 的反应转化率达到 90%
- 5. 投料: 315kg 的氯代芳烃化合物 (约 2kmol) 和 453kg 的 30% 氨水 (约8kmol)
- 6. 摩尔反应焓: $-\Delta_r H_m = 175 \text{ kJ/mol}$
- 7. 反应物料的比热容: $c'_p = 3.2 \text{ kJ/(kg K)}$
- 8. 反应物料的比分解热: Q'_D = 840 kJ/kg
- 9. 二次分解反应诱导期为24h的温度 $T_{D24} = 280^{\circ}$ C
- 10. 17.7%(m/m) 氨溶液的蒸气压(bar) $\ln p = 11.62 3735/T$

胺化反应的热风险评价

$$Ar-Cl+2\,NH_3 \xrightarrow{180\,^{\circ}C} Ar-NH_2+NH_4Cl$$

胺化反应 $\Delta T_{ad} = \frac{Q'_r}{c'_p} = \frac{175\times2000}{768\times3.2} \approx 143(K)$ 中等
 $MTSR = T_P + \Delta T_{ad,r} = 180 + 143 = 323\,^{\circ}C$
 $T_{D24} = 280\,^{\circ}C$ 21.1 MPa
分解反应 $\Delta T_{ad} = \frac{Q'_r}{c'_p} = \frac{840}{3.2} = 263(K)$ 高
 $10MPa \longrightarrow MTT=260\,^{\circ}C$
 $T_p < MTT < T_{D24} < MTSR$

对应于危险度等级 4 投产时,必须采取足够的控制技术措施

催化加氢反应的热风险评价

- 将浓度为 0.1 mol L⁻¹ 的酮在 30°C 的水溶液中催化氢化制得相应的醇
- 反应器操作压力为 0.2 MPa
- 反应器装有设定压力为 0.32 MPa 的安全阀
- 反应物料的比热容 c'_p = 3.6 kJ/(kg K)
- 类似反应的摩尔反应焓 (-200 kJ/mol)

	不同官能团标准分解焓的标准值						
官能团	结构式	摩尔分解焓 ΔH_d /(kJ/mol)					
重氮盐	$-N=N^+$	-160 ∼ -180					
重氮基	— N = N —	-100 \sim -180					
异氰酸酯	-N=C=O	<i>-</i> 50 ∼ <i>-</i> 75					
氮-氢氧化物	N-OH	-180 \sim -240					
过氧化物	C-0-0-C	∼ -350					
硝基	-NO ₂	$-310 \sim -360$					
硝酸酯	-O-NO ₂	$-400 \sim -480$					
环氧化物	-c c	-70 ∼ -100					

对以下安全问题进行评价

分解反应的 热风险?

将浓度为 0.1 mol L⁻¹ 的酮在 30°C 的水溶液中催化氢化制得相应的醇

氢化反应

$$Q'_r = \rho^{-1}c_0(-\Delta_r H_m) = \frac{0.1 \times 200}{1} = 20(\text{kJ/kg})$$

$$\Delta T_{ad} = \frac{Q_r'}{c_p'} = \frac{20}{3.6} \approx 6(K)$$
 氢化反应,低

$$MTSR = 30 + 6 = 36$$
°C

如果发生分解反应,压力要达到 0.32 MPa,温度必须到

达 105°C(MTT), 即需要温升105-36=69K)

所需能量 $Q'_D = c'_p \Delta T_{ad} = 3.6 \times 69 \approx 250 \text{(kJ/kg)}$

考虑浓度摩尔分解焓需要达到-2500 kJ/mol

$$T_{\rm p} < {\rm MTSR} < {\rm MTT} < T_{\rm D24}$$
 分解反应,低,1级危险

主要风险: 氢气的爆炸性、化合物的毒性

- 半间歇反应: 首先加入甲苯,加热至沸点 (110°C左右),在蒸馏模式下将硫酸慢慢加入,加料时间为 60 min,总反应时间为 4 h,搅拌速度为 300 r/min。甲苯与硫酸的摩尔比为 5:1。
- 采用反应量热仪、加速度量热仪(甲苯磺酸)测试特征温度参数

甲	苯磺化	反应热风	风险评价	的4个	特征温度	参数
1 -	7- PX 10.	CALL MISP	וע ויי אייייואי	HA . I	TQ JIL MILL/X	. D M

工艺温度 $T_p/^{\circ}$ C	MTSR/°C	MTT/°C	$T_{D24}/^{\circ}C$
110	304.6(间歇模式)	110.6	152
110	169.3(半间歇模式)	110.6	152

甲苯溶剂蒸气的泄漏 问题以及由此可能引 发的蒸气云爆炸问题