1. The graph of $y = x^2 - 2x - 3$ is shown on the axes below.

- (a) Draw the graph of y = 5 on the same axes.
- (b) Use your graph to find:
 - (i) the values of x when $x^2 2x 3 = 5$
 - (ii) the value of x that gives the minimum value of $x^2 2x 3$

Working:	
	Answers:
	(b) (i)
	(ii)

(Total 4 marks)

2. The diagram shows the graph of $y = x^2 - 2x - 8$. The graph crosses the x-axis at the point A, and has a vertex at B.

- (a) Factorize $x^2 2x 8$.
- (b) Write down the coordinates of each of these points
 - (i) A;
 - (ii) B.

Working:	
	Answers:
	(a)
	(b) (i)
	(ii)

(Total 4 marks)

3. The diagram below shows part of the graph of $y = ax^2 + 4x - 3$. The line x = 2 is the axis of symmetry. M and N are points on the curve, as shown.

(a) Find the value of a.

- (b) Find the coordinates of
 - (i) M;
 - (ii) N.

Working:	
	Answers:
	(a)
	(b) (i)
	(ii)

(Total 4 marks)

- **4.** A rectangle has dimensions (5 + 2x) metres and (7 2x) metres.
 - (a) Show that the area, A, of the rectangle can be written as $A = 35 + 4x 4x^2$. (1)
 - (b) The following is the table of values for the function $A = 35 + 4x 4x^2$.

ĺ	х	-3	-2	-1	0	1	2	3	4
	A	-13	p	27	35	q	r	11	S

- (i) Calculate the values of p, q, r and s.
- (ii) On graph paper, using a scale of 1 cm for 1 unit on the *x*-axis and 1 cm for 5 units on the *A*-axis, plot the points from your table and join them up to form a smooth curve.

(6)

- (c) Answer the following, using your graph or otherwise.
 - (i) Write down the equation of the axis of symmetry of the curve,
 - (ii) Find one value of x for a rectangle whose area is 27 m².
 - (iii) Using this value of x, write down the dimensions of the rectangle.

(4)

- (d) (i) On the same graph, draw the line with equation A = 5x + 30.
 - (ii) Hence or otherwise, solve the equation $4x^2 + x 5 = 0$.

(3) (Total 14 marks)

- **5.** Consider the graphs of the following functions.
 - (i) $y = 7x + x^2$;
 - (ii) y = (x-2)(x+3);
 - (iii) $y = 3x^2 2x + 5$;
 - (iv) $y = 5 3x 2x^2$.

Which of these graphs

- has a *y*-intercept below the *x*-axis? (a)
- (b) passes through the origin?
- (c) does not cross the x-axis?
- could be represented by the following diagram? (d)

Working:	
	Answers:
	(a)
	(b)
	(c)
	(d)

(Total 8 marks)

6. The figure below shows part of the graph of a quadratic function $y = ax^2 + 4x + c$.

- (a) Write down the value of c.
- (b) Find the value of a.
- (c) Write the quadratic function in its factorized form.

Working:	
	Answers:
	(a)
	(b)
	(c)

(Total 8 marks)

1. (a)

(A1) (C1)

Note: The equation y = 5 is not required

(b) (i)
$$x = -2$$
 $x = 4$

(A1)

(A1) (C2)

(ii)
$$x = 1$$

(C1)(A1)

Note: Allow follow through from candidate's graph

[4]

2. (a)
$$(x+2)(x-4)$$

(A1)

(b) (i)
$$(-2, 0)$$

(A1)

(ii)
$$(1, -9)$$

(A1)(A1)[4]

3. (a)
$$x = -\frac{b}{2a}$$

$$2 = -\frac{4}{2 \times a}$$

$$a = -1$$
(M1)

(b) *Note:* Answers to (b) must be written as coordinates.

(i)
$$M(0, -3)$$

(A1)

(ii)
$$y = 1 \times 2^2 + 4 \times 2 - 3$$

= 1
N is (2,1)

(A1)

[4]

4. (a)
$$A = (5+2x)(7-2x)$$
 (M1)
= $35-10x+14x-4x^2$
= $35+4x-4x^2$ (AG) 1

(b) (i)
$$p = 11, q = 35, r = 27, s = -13$$
 (A2)
Note: Award (A2) for all four correct, (A1) for two or three correct.

(ii)

(A4) 6

Notes: Award (A1) for axes with correct scales and labelling. Award (A2) for 6, 7 or 8 points correctly plotted,

(A1) for 3, 4, or 5 points,

(A0) for 2 or fewer.

Award (A1) for a smooth curve through reasonably correct points.

(c) (i) Axis of symmetry is
$$x = \frac{1}{2}$$
 (A1)

(ii)
$$A = 27 \Rightarrow x = -1 \text{ or } x = 2$$
 (A1)

Note: Award (A1) for one correct value of x.

(iii)
$$x = -1$$
, rectangle is $(5-2) \times (7+2)$
i.e. 3×9 (M1)

OR

$$x = 2$$
, rectangle is $(5 + 4) \times (7 - 4)$ (M1)
i.e. 9×3 (A1) 4

Notes: Award (A2) for the correct answer. Follow through with answers for x from the candidate's graph.

(ii) From graph solutions are
$$x = 1$$
 and $x = -1.3$ (± 0.1) (Follow through with candidate's graph of parabola and straight line.)

OR

Factorizing gives
$$(x-1)(4x+5) = 0$$
 (M1)
 $\Rightarrow x = 1 \text{ or } x = -1.25$ (A1) 3
[14]

(b) (i)
$$(A2)(C2)$$

$$(c) (iii) (A2)(C2)$$

6. (a) At
$$x = 0$$
 we have $y = 6 = c$, (M1) so $c = 6$. (A1) (C2)

(b) At
$$x = 3$$
 we have $9a + 12 + c = 0$ (M2)
 $a = -2$ (A1)

OR

at
$$x = -1$$
 we have $a - 4 + c = 0$ (M2)
 $a = -2$ (A1)

(c) Factorisation is
$$y = -2(x-3)(x+1)$$

(A1)(A1)(A1)

OR

can include 2 and/or sign in a factor.

(A1)(A2) [8]