TANGENT BUNDLE

Let M be a smooth manifold of dimension n. We define the *tangent bundle of* M to be the disjoint union of all the tangent spaces:

$$TM := \coprod_{p \in M} T_p M = \{ (p, v) \mid p \in M, \ v \in T_p M \}.$$

We define the projection $\pi:TM\to M$ by $(p,v)\mapsto p$.

Let $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$ be the smooth structure on M. For each α , let $\{\partial_i^{\alpha}|_p\}$ be the coordinate vectors at T_pM induced by φ_{α} . Define $\widetilde{U}_{\alpha} := \pi^{-1}(U_{\alpha})$, and define

$$\widetilde{\varphi}_{\alpha}: \widetilde{U}_{\alpha} \to \varphi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n}, \qquad (p, v^{i}\partial_{i}^{\alpha}|_{p}) \mapsto (\varphi_{\alpha}(p), v^{1}, \dots, v^{n}).$$

Finally, set $\widetilde{\mathcal{A}} := \{(\widetilde{U}_{\alpha}, \widetilde{\varphi}_{\alpha})\}.$

Proposition. The tangent bundle TM has a unique topology which makes TM a 2n-dimensional topological manifold, with $\widetilde{\mathcal{A}}$ as a smooth atlas. Moreover, π is smooth.

Proof. We use the Smooth Manifold Chart Lemma.

(i) First, each $\widetilde{\varphi}_{\alpha}$ is invertible, with inverse given by

$$\widetilde{\varphi}_{\alpha}^{-1}: \varphi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n} \to \widetilde{U}_{\alpha}, \qquad (x, v^{1}, \dots, v^{n}) \mapsto (\varphi_{\alpha}^{-1}(x), v^{i} \partial_{i}^{\alpha}|_{\varphi_{\alpha}^{-1}(x)}).$$

Moreover, each $\widetilde{\varphi}_{\alpha}(\widetilde{U}_{\alpha}) = \varphi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n}$ is open in \mathbb{R}^{2n} .

- (ii) For each α and β , we find that $\widetilde{\varphi}_{\alpha}(\widetilde{U}_{\alpha} \cap \widetilde{U}_{\beta}) = \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \times \mathbb{R}^{n}$, which is open in \mathbb{R}^{2n} .
- (iii) Fix α and β , and consider the transition map $\widetilde{\varphi}_{\beta} \circ \widetilde{\varphi}_{\alpha}^{-1}$. We find that

$$\begin{split} \widetilde{\varphi}_{\beta} \circ \widetilde{\varphi}_{\alpha}^{-1}(x, v^{1}, \dots, v^{n}) &= \widetilde{\varphi}_{\beta}(\varphi_{\alpha}^{-1}(x), v^{i} \partial_{i}^{\alpha}|_{\varphi_{\alpha}^{-1}(x)}) \\ &= \widetilde{\varphi}_{\beta}(\varphi_{\alpha}^{-1}(x), v^{i} \partial_{i} \tau_{\alpha\beta}^{j}(x) \partial_{j}^{\beta}|_{\varphi_{\alpha}^{-1}(x)}) = \left((\varphi_{\beta} \circ \varphi_{\alpha}^{-1})(x), v^{i} \partial_{i} \tau_{\alpha\beta}(x) \right), \end{split}$$

where $\tau_{\alpha\beta} = \varphi_{\beta} \circ \varphi_{\alpha}^{-1}$. Thus, $\widetilde{\varphi}_{\beta} \circ \widetilde{\varphi}_{\alpha}^{-1}$ is smooth.

- (iv) Countably many \tilde{U}_{α} s cover TM because countably many U_{α} s cover M.
- (v) The Hausdorff property is straightforward to check.

The projection π is smooth, because we can represent π in coordinates as a projection onto the first n coordinates.

Remark. The topology for TM is generated by sets of the form $\widetilde{\varphi}_{\alpha}^{-1}(V)$, where $V \subseteq \mathbb{R}^{2n}$ is open.