December 2023

REV	DATA	ZMIANY
0.1	28.12.2023	Michał Wilczak (mwilczak@student.agh.edu.pl)
0.2	29.12.2023	Michał Wilczak (mwilczak@student.agh.edu.pl)
0.3	30.12.2023	Michał Wilczak (mwilczak@student.agh.edu.pl)
0.4	13.01.2024	Michał Wilczak (mwilczak@student.agh.edu.pl)
0.5	19.01.2024	Michał Wilczak (mwilczak@student.agh.edu.pl)
0.6	20.01.2024	Michał Wilczak (mwilczak@student.agh.edu.pl)

KALKULATOR DLA ELEKTRONIKÓW/INFORMATYKÓW

Autor: Michał Wilczak Akademia Górniczo-Hutnicza

December 2023

Spis treści

1.	Wstęp	str.4.
2.	Wymagania systemowe (requirements)	str.5.
3.	Funkcjonalność (functionality)	str.6.
4.	Analiza problemu (problem analysis)	str.7
5.	Projekt techniczny (technical design)	str.8.
6.	Klasa oraz jej najważniejsze funkcje	str.9.
7.	Użyte biblioteki	str.10
8.	Wykorzystane przykłady	str.10.
9.	Opis realizacji (implementation report)	str.11.
10.	Opis wykonanych testów (testing report)	str.11.
11.	Podręcznik użytkownika (user's manual)	str.12
	Bibliografia	str.13.

	Technical Report]	Rev. 0.1
	AGH University of Science and Technology		December 2023
Lista	oznaczeń		

Unified Modeling Language

UML

1. Wstęp

Dokument dotyczy projektu aplikacji kalkulatora dla elektroników/informatyków. Celem tego kalkulatora jest możliwość wykonania kilku podstawowych działań dla elektroników i informatyków wraz z możliwością przełączenia się na systemy: binarny, ósemkowy, szesnastkowy lub dziesiętny.

2. Wymagania systemowe (requirements)

Podstawowe założenia projektu:

- 1. Przygotowanie dokumentacji projektu
- 2. Opracowanie architektury programu: potrzebne klasy i funkcje.
- 3. Napisanie kodu programu realizującego założone funkcjonalności.

December 2023

3.Funkcjonalność (functionality)

Kalkulator ma funkcjonalności takie, jak:

- wykonywanie działań matematycznych: dodawanie, odejmowanie, mnożenie i dzielenie,
- zamiana systemów liczbowych: dziesiętny, dwójkowy, ósemkowy i szesnastkowy możliwość
 wyboru systemu liczbowego przed zamianą i po zamianie,

4. Analiza problemu (problem analysis)

Jesteśmy przyzwyczajeni do zapisywania liczb w systemie dziesiętnym, ale w elektronice i informatyce często wykorzystywane są systemy: dwójkowy, ósemkowy i szesnastkowy. Komputer jest urządzeniem cyfrowym, które do wykonywania operacji wykorzystuje dane zapisane w postaci dwóch stanów: stanu niskiego (0) oraz stanu wysokiego (1), co odpowiada dwóm symbolom wykorzystywanym w systemie dwójkowym. Systemy: ósemkowy i szesnastkowy również mają zastosowanie w tych dziedzinach. System ósemkowy wykorzystywany jest do przypisywania uprawnień w systemach operacyjnych Linux. Adresy IP w wersji 6 są zapisywane w postaci liczb w systemie szesnastkowym. Również adresy pamięci zapisywane są w systemie szesnastkowym.

Z tego powodu przydatnym narzędziem dla elektroników i informatyków jest kalkulator umożliwiający zamianę tych systemów liczbowych na naturalny dla człowieka system dziesiętny oraz na operacje w drugą stronę.

System dwójkowy na kolejnych pozycjach przyjmuje kolejne potęgi liczby 2 przemnożone przez cyfry 0 i 1, system ósemkowy przyjmuje kolejne potęgi liczby 8 przemnożone przez liczby z zakresu od 0 do 7, system dziesiętny kolejne potęgi liczby 10 przemnożone przez liczby z zakresu od 0 do 9, a system szesnastkowy kolejne potęgi liczby 16 przemnożone przez liczby z zakresu od 0 do 15 (10 jest reprezentowane przez A, 11 przez B, 12 przez C, 13 przez D, 14 przez E, a 15 przez F). Kolejne potęgi po przemnożeniu są dodawane i w wyniku tej operacji otrzymujemy liczbę zapisaną w danym systemie liczbowym.

5. Projekt techniczny (technical design)

calculator

- vector_int_to_dec_int(wektor : vector<int>) : int

+ add(a: float, b: float): float + subtract(a: float, b: float): float + multiply(a: float, b: float): float + divide(a: float, b: float): float + DecToBinary(decimal: int): int + DecToOct(decimal: int): int +DecToHex(decimal: int): string +BinToDec(binary: int): int +OctToDec(oct: int): int +HexToDec(hex: string): int

Diagram UML przedstawiający klasę calculator nie ma żadnych atrybutów, ale ma operacje: prywatną funkcję zamieniającą liczbę zapisaną jako vector<int> na liczbę typu int zapisaną w systemie dziesiętnym, publiczne funkcje realizujące działania matematyczne: dodawanie, odejmowanie, mnożenie i dzielenie oraz publiczne funkcje zamieniające liczby z systemu dziesiętnego na system binarny, ósemkowy i szesnastkowy oraz publiczne funkcje zamieniające liczby z systemu binarnego, ósemkowego i szesnastkowego na system dziesiętny.

December 2023

6.Klasa oraz jej najważniejsze funkcje

```
float add(float a, float b)
                                                  //funkcja realizująca dodawanie
  float subtract(float a, float b)
                                                 //funkcja realizująca odejmowanie
 float multiply(float a, float b)
                                                   //funkcja realizująca mnożenie
  float divide(float a, float b)
                                                   //funkcja realizująca dzielenie
 int DecToBinary(int decimal)
                                     //wzorowano się na kodzie ze strony: https://www.geeksforgeeks.org/pro
int DecToOct(int decimal)
string DecToHex(int decimal)
                                 //wzorowano się na kodzie ze strony:<u>https://www.geeksforgeeks.org/program-de</u>
int BinToDec(int binary)
int OctToDec(int oct)
int HexToDec(string hex)
```

December 2023

7.Użyte biblioteki

Do zaimplementowania kodu realizującego kalkulator wykorzystano następujące biblioteki:

- iostream,
- cmath.
- limits,
- vector,
- string,
- algorithm,

Wykorzystane funkcje pochodzące z wyżej wymienionych bibliotek:

- std::numeric_limits pochodzi z biblioteki <limits>,
- std::reverse pochodzi z biblioteki <algorithm>,
- std::to_string pochodzi z biblioteki <string>,
- pow pochodzi z biblioteki <cmath>,
- std::vector pochodzi z biblioteki <vector>,
- std::cin, std::cout pochodzą z biblioteki <iostream>,

8. Wykorzystane przykłady

Wykorzystano funkcje na maksymalną i minimalną wartość zmiennej typu float na podstawie filmu pod linkiem: https://www.youtube.com/watch?v=7aZbYJ5UTC8&t=2480s (minuta 41:20)

Wykorzystano funkcję na epsilon dla zmiennej typu float na podstawie filmu pod linkiem: https://www.youtube.com/watch?v=7aZbYJ5UTC8&t=1495s (minuta 24:36)

Do zaimplementowania funkcji zamieniającej liczbę z systemu dziesiętnego na system binarny wzorowano się na kodzie dostępnym pod linkiem: https://www.geeksforgeeks.org/program-decimal-binary-conversion/

Funkcję zamieniającą liczbę z systemu dziesiętnego na system ósemkowy zaimplementowano przez analogię do funkcji zamieniającej liczbę z systemu dziesiętnego na system binarny.

Do zaimplementowania funkcji zamieniającej liczbę z systemu dziesiętnego na system szesnastkowy wzorowano się na kodzie dostępnym pod linkiem: https://www.geeksforgeeks.org/program-decimal-hexadecimal-conversion/

December 2023

9. Opis realizacji (implementation report)

Platforma testowa: komputer PC z systemem operacyjnym Windows 11, zintegrowane środowisko programistyczne: Microsoft Visual Studio 2022, Platform Toolset: Microsoft Visual Studio 2022 (v143), standard języka C++: ISO C++ 20 Standard.

10. Opis wykonanych testów (testing report)

Kod usterki	Data	Autor	Opis	Stan
	13.01.2024	Michał Wilczak	Wykonano testy poprawności działania kodu za	Test zakończył
			pomocą testów jednostkowych i biblioteki do testów	się pomyślnie
			GoogleTest	

11.Podręcznik użytkownika (user's manual)

Test aplikacji w systemie Windows

```
Funkcjonalnosc:
1. Kalkulator
2. Zamiana systemow liczbowych
Wybierz funkcjonalnosc: 1
Dzialania matematyczne:
1. Dodawanie
2. Odejmowanie
3. Mnozenie
4. Dzielenie
Wybierz dzialanie matematyczne: 1
Podaj pierwsza liczbe: 2.44
Podaj druga liczbe: 1.55
Wynik: 3.99
```

Rys. 1. Przykład działania programu dla funkcjonalności działań matematycznych

```
Funkcjonalnosc:

1. Kalkulator

2. Zamiana systemow liczbowych
Wybierz funkcjonalnosc: 2
Dostepne systemy liczbowe:

1. Dziesietny

2. Dwojkowy

3. Osemkowy

4. Szesnastkowy
Podaj system liczbowy przed zamiana: 1
Podaj system liczbowy po zamianie: 2
Podaj liczbe:

10
Liczba w systemie dwojkowym: 1010
```

Rys. 2. Przykład działania programu dla funkcjonalności zamiany systemów liczbowych

Po uruchomieniu programu użytkownik jest proszony o wybranie funkcjonalności. W przypadku wybrania funkcji kalkulatora, użytkownik jest proszony o wybór działania matematycznego. Po wyborze jednego z czterech: dodawania, odejmowania, mnożenia lub dzielenia użytkownik może wprowadzić dwie liczby, każdą z nich osobno potwierdzając klawiszem "Enter". Kalkulator obsługuje liczby zmiennoprzecinkowe, więc aby program prawidłowo je zinterpretował należy zamiast znaku , (przecinek) używać znaku . (kropka).

W przypadku wybrania funkcji zamiany systemów liczbowych, użytkownik jest proszony o wybór systemu liczbowego przed zamianą oraz po zamianie. Następnie użytkownik może podać liczbę, którą chce zamienić pomiędzy wybranymi systemami liczbowymi.

December 2023

Bibliografia

- [1] Cyganek B.: Programowanie w języku C++. Wprowadzenie dla inżynierów. PWN, 2023.
- [2] Cyganek B. *A refresher on the floating-point computations and the standard library*, cpponsea, 22.07.2020, online: https://www.youtube.com/watch?v=7aZbYJ5UTC8&t=1495s, dostep: 29.12.2023
- [3] *Program for Decimal to Binary Conversion*, GeeksforGeeks, 18.10.2023, online: https://www.geeksforgeeks.org/program-decimal-binary-conversion/, dostep: 29.12.2023
- [4] *Program for decimal to hexadecimal conversion*, GeeksforGeeks, 22.12.2023, online: https://www.geeksforgeeks.org/program-decimal-hexadecimal-conversion/, dostęp: 29.12.2023