Natural Language Processing

Jacob Eisenstein

November 13, 2018

Contents

Co	ontents 1				
Pro	eface	U	oundo use this book		
1	Intro 1.1 1.2	Three t	n Il language processing and its neighbors	1 1 6 6 7	
Ι	Leaı	1.2.3	Relational, compositional, and distributional perspectives	9 11	
2	Line	ar text o	classification	13	
	2.1	The ba	g of words	13	
	2.2			17	
		2.2.1	Types and tokens	19	
			Prediction	20	
			Estimation	21	
		2.2.4	Smoothing	22	
				23	
	2.3	Discrin	ninative learning	24	
		2.3.1	Perceptron	25	
		2.3.2	Averaged perceptron	27	
	2.4		0 0	27	
			0 0	30	
			1 1	32	
	2.5	Logisti	c regression	35	

		2.5.1	Regularization	
		2.5.2	Gradients	
	2.6	Optim	nization	
		2.6.1	Batch optimization	
		2.6.2	Online optimization	
	2.7	*Addi	tional topics in classification	
		2.7.1	Feature selection by regularization	41
		2.7.2	Other views of logistic regression	41
	2.8	Summ	nary of learning algorithms	43
3	Non	linear	classification	47
	3.1	Feedfo	orward neural networks	48
	3.2	Design	ning neural networks	50
		3.2.1	Activation functions	
		3.2.2	Network structure	51
		3.2.3	Outputs and loss functions	52
		3.2.4	Inputs and lookup layers	53
	3.3	Learni	ing neural networks	53
		3.3.1	Backpropagation	55
		3.3.2	Regularization and dropout	57
		3.3.3	*Learning theory	58
		3.3.4	Tricks	59
	3.4	Convo	olutional neural networks	62
4	Ling	guistic a	applications of classification	69
	4.1	Sentin	nent and opinion analysis	69
		4.1.1	Related problems	70
		4.1.2	Alternative approaches to sentiment analysis	72
	4.2	Word	sense disambiguation	73
		4.2.1	How many word senses?	74
		4.2.2	Word sense disambiguation as classification	75
	4.3	Design	n decisions for text classification	76
		4.3.1	What is a word?	76
		4.3.2	How many words?	79
		4.3.3	Count or binary?	80
	4.4	Evalua	ating classifiers	80
		4.4.1	Precision, recall, and F -MEASURE	81
		4.4.2	Threshold-free metrics	83
		4.4.3	Classifier comparison and statistical significance	84
		4.4.4	*Multiple comparisons	87
	4.5	Buildi	ng datasets	88

		4.5.1 Metadata as labels	
5	Lear	rning without supervision	95
	5.1	Unsupervised learning	95
		5.1.1 <i>K</i> -means clustering	
		5.1.2 Expectation-Maximization (EM)	
		5.1.3 EM as an optimization algorithm	
		5.1.4 How many clusters?	
	5.2	·	
		5.2.1 Word sense induction	
		5.2.2 Semi-supervised learning	
		5.2.3 Multi-component modeling	
	5.3	Semi-supervised learning	
		5.3.1 Multi-view learning	
		5.3.2 Graph-based algorithms	
	5.4	Domain adaptation	
		5.4.1 Supervised domain adaptation	
		5.4.2 Unsupervised domain adaptation	
	5.5	*Other approaches to learning with latent variables	
		5.5.1 Sampling	
		5.5.2 Spectral learning	
		2	
II	Seq	quences and trees	123
6	Lang	nguage models	125
	6.1	<i>N</i> -gram language models	126
	6.2	Smoothing and discounting	129
		6.2.1 Smoothing	129
		6.2.2 Discounting and backoff	
		6.2.3 *Interpolation	
		6.2.4 *Kneser-Ney smoothing	133
	6.3	Recurrent neural network language models	
		6.3.1 Backpropagation through time	
		6.3.2 Hyperparameters	
		6.3.3 Gated recurrent neural networks	137
	6.4	Evaluating language models	139
		6.4.1 Held-out likelihood	
		(40 P 1 ''	4.40
		6.4.2 Perplexity	140
	6.5	Out-of-vocabulary words	

7	Seq	quence labeling 1				
	7.1	Sequence labeling as classification				
	7.2	Sequence labeling as structure prediction				
	7.3	The Viterbi algorithm				
		7.3.1 Example				
		7.3.2 Higher-order features				
	7.4	Hidden Markov Models				
		7.4.1 Estimation				
		7.4.2 Inference				
	7.5	Discriminative sequence labeling with features				
		7.5.1 Structured perceptron				
		7.5.2 Structured support vector machines				
		7.5.3 Conditional random fields				
	7.6	Neural sequence labeling				
		7.6.1 Recurrent neural networks				
		7.6.2 Character-level models				
		7.6.3 Convolutional Neural Networks for Sequence Labeling 170				
	7.7	*Unsupervised sequence labeling				
		7.7.1 Linear dynamical systems				
		7.7.2 Alternative unsupervised learning methods 172				
		7.7.3 Semiring notation and the generalized viterbi algorithm 172				
_						
8		olications of sequence labeling 175				
	8.1	Part-of-speech tagging				
		8.1.1 Parts-of-Speech				
	0.0	8.1.2 Accurate part-of-speech tagging				
	8.2	Morphosyntactic Attributes				
	8.3	Named Entity Recognition				
	8.4	Tokenization				
	8.5	Code switching				
	8.6	Dialogue acts				
9	For	mal language theory 191				
,	9.1	Regular languages				
	7.1	9.1.1 Finite state acceptors				
		9.1.2 Morphology as a regular language				
		9.1.2 Weighted finite state acceptors				
		9.1.4 Finite state transducers				
		9.1.4 Finite state transducers				
	9.2	0 0				
	7.∠	Context-free languages				
		9.2.1 Context-free grammars				

		9.2.2	Natural language syntax as a context-free language
		9.2.3	A phrase-structure grammar for English 213
		9.2.4	Grammatical ambiguity
	9.3	*Mildl	y context-sensitive languages
		9.3.1	Context-sensitive phenomena in natural language 219
		9.3.2	Combinatory categorial grammar
10			e parsing 225
	10.1		ninistic bottom-up parsing
			Recovering the parse tree
		10.1.2	Non-binary productions
		10.1.3	Complexity
	10.2		guity
		10.2.1	Parser evaluation
		10.2.2	Local solutions
	10.3	Weigh	ted Context-Free Grammars
		10.3.1	Parsing with weighted context-free grammars
		10.3.2	Probabilistic context-free grammars
			*Semiring weighted context-free grammars
	10.4		ng weighted context-free grammars
			Probabilistic context-free grammars
			Feature-based parsing
			*Conditional random field parsing
			Neural context-free grammars
	10.5		nar refinement
			Parent annotations and other tree transformations
			Lexicalized context-free grammars
			*Refinement grammars
	10.6		d context-free parsing
			Reranking
			Transition-based parsing
11	Dep	endenc	ry parsing 257
	$11.\overline{1}$	Depen	dency grammar
		11.1.1	Heads and dependents
		11.1.2	Labeled dependencies
			Dependency subtrees and constituents
	11.2		-based dependency parsing
			Graph-based parsing algorithms
			Computing scores for dependency arcs
			Learning
			0

	11.3	Transition-based dependency parsing	268
		11.3.1 Transition systems for dependency parsing	
		11.3.2 Scoring functions for transition-based parsers	
		11.3.3 Learning to parse	
	11.4	Applications	
TTT	N /		202
111	iviea	nning	283
12	Logi	ical semantics	285
	_	Meaning and denotation	286
		Logical representations of meaning	
		12.2.1 Propositional logic	
		12.2.2 First-order logic	
	12.3	Semantic parsing and the lambda calculus	
	1	12.3.1 The lambda calculus	
		12.3.2 Quantification	
	12 4	Learning semantic parsers	
	11	12.4.1 Learning from derivations	
		12.4.2 Learning from logical forms	
		12.4.3 Learning from denotations	
		12.10 Zeurinig from denountons	001
13		licate-argument semantics	305
	13.1	Semantic roles	307
		13.1.1 VerbNet	308
		13.1.2 Proto-roles and PropBank	309
		13.1.3 FrameNet	310
	13.2	Semantic role labeling	312
		13.2.1 Semantic role labeling as classification	
		13.2.2 Semantic role labeling as constrained optimization	315
		13.2.3 Neural semantic role labeling	
	13.3	Abstract Meaning Representation	
		13.3.1 AMR Parsing	
		Ç	
14		ributional and distributed semantics	325
		<i>J</i> 1	325
	14.2	Design decisions for word representations	
		14.2.1 Representation	
		14.2.2 Context	328
		14.2.3 Estimation	
		Latent semantic analysis	

	14.4	Brown	ı clusters				331
	14.5	Neura	ıl word embeddings				334
		14.5.1	Continuous bag-of-words (CBOW)				334
		14.5.2	Skipgrams				335
		14.5.3	Computational complexity				335
			Word embeddings as matrix factorization				
	14.6		ating word embeddings				
			Intrinsic evaluations				
		14.6.2	Extrinsic evaluations				339
		14.6.3	Fairness and bias				340
	14.7	Distrib	outed representations beyond distributional statistics				341
		14.7.1	Word-internal structure				341
		14.7.2	Lexical semantic resources				343
	14.8	Distrib	outed representations of multiword units				344
		14.8.1	Purely distributional methods				344
		14.8.2	Distributional-compositional hybrids				345
			Supervised compositional methods				
		14.8.4	Hybrid distributed-symbolic representations				346
15	Refe	rence I	Resolution				351
	15.1	Forms	of referring expressions				352
			Pronouns				
		15.1.2	Proper Nouns				357
		15.1.3	Nominals				357
	15.2	Algori	ithms for coreference resolution				358
			Mention-pair models				
			Mention-ranking models				
		15.2.3	Transitive closure in mention-based models				361
			Entity-based models				
	15.3		sentations for coreference resolution				
		15.3.1	Features				367
		15.3.2	Distributed representations of mentions and entities				370
	15.4		ating coreference resolution				
16	Disc	ourse					379
	16.1	Segme	ents				379
			Topic segmentation				
			Functional segmentation				
	16.2		es and reference				
			Centering theory				
			The entity grid				

		16.2.3	*Formal semantics beyond the sentence level
	16.3	Relatio	ons
		16.3.1	Shallow discourse relations
		16.3.2	Hierarchical discourse relations
		16.3.3	Argumentation
			Applications of discourse relations
IV	App	olicatio	ons 401
17			n extraction 403
	17.1		es
			Entity linking by learning to rank
			Collective entity linking
			*Pairwise ranking loss functions
	17.2		ons
			Pattern-based relation extraction
			Relation extraction as a classification task
			Knowledge base population
			Open information extraction
			s
			es, denials, and hypotheticals
	17.5		ion answering and machine reading
		17.5.1	Formal semantics
		17.5.2	Machine reading
18			anslation 431
	18.1		ne translation as a task
			Evaluating translations
			Data
	18.2		ical machine translation
			Statistical translation modeling
			Estimation
			Phrase-based translation
		18.2.4	*Syntax-based translation
	18.3	Neura	l machine translation
		18.3.1	Neural attention
		18.3.2	*Neural machine translation without recurrence 446
		18.3.3	Out-of-vocabulary words
			ing
	18.5	Traini	ng towards the evaluation metric $\dots \dots \dots$

19	Text	generation	457
	19.1	Data-to-text generation	457
		19.1.1 Latent data-to-text alignment	
		19.1.2 Neural data-to-text generation	
	19.2	Text-to-text generation	
		19.2.1 Neural abstractive summarization	
		19.2.2 Sentence fusion for multi-document summarization	
	19.3	Dialogue	
		19.3.1 Finite-state and agenda-based dialogue systems	
		19.3.2 Markov decision processes	
		19.3.3 Neural chatbots	
A		y	475
	A.1	Probabilities of event combinations	475
		A.1.1 Probabilities of disjoint events	476
		A.1.2 Law of total probability	477
	A.2	Conditional probability and Bayes' rule	477
		Independence	
	A.4	Random variables	480
	A.5	Expectations	481
		Modeling and estimation	
В	Nun	nerical optimization	485
	B.1	Gradient descent	486
	B.2	Constrained optimization	
	B.3	Example: Passive-aggressive online learning	
Bil	oling	raphy	489

Preface

The goal of this text is focus on a core subset of the natural language processing, unified by the concepts of learning and search. A remarkable number of problems in natural language processing can be solved by a compact set of methods:

Search. Viterbi, CKY, minimum spanning tree, shift-reduce, integer linear programming, beam search.

Learning. Maximum-likelihood estimation, logistic regression, perceptron, expectation-maximization, matrix factorization, backpropagation.

This text explains how these methods work, and how they can be applied to a wide range of tasks: document classification, word sense disambiguation, part-of-speech tagging, named entity recognition, parsing, coreference resolution, relation extraction, discourse analysis, language modeling, and machine translation.

Background

Because natural language processing draws on many different intellectual traditions, almost everyone who approaches it feels underprepared in one way or another. Here is a summary of what is expected, and where you can learn more:

Mathematics and machine learning. The text assumes a background in multivariate calculus and linear algebra: vectors, matrices, derivatives, and partial derivatives. You should also be familiar with probability and statistics. A review of basic probability is found in Appendix A, and a minimal review of numerical optimization is found in Appendix B. For linear algebra, the online course and textbook from Strang (2016) provide an excellent review. Deisenroth et al. (2018) are currently preparing a textbook on *Mathematics for Machine Learning*, a draft can be found online. For an introduction to probabilistic modeling and estimation, see James et al. (2013); for

¹https://mml-book.github.io/

ii PREFACE

a more advanced and comprehensive discussion of the same material, the classic reference is Hastie et al. (2009).

Linguistics. This book assumes no formal training in linguistics, aside from elementary concepts likes nouns and verbs, which you have probably encountered in the study of English grammar. Ideas from linguistics are introduced throughout the text as needed, including discussions of morphology and syntax (chapter 9), semantics (chapters 12 and 13), and discourse (chapter 16). Linguistic issues also arise in the application-focused chapters 4, 8, and 18. A short guide to linguistics for students of natural language processing is offered by Bender (2013); you are encouraged to start there, and then pick up a more comprehensive introductory textbook (e.g., Akmajian et al., 2010; Fromkin et al., 2013).

Computer science. The book is targeted at computer scientists, who are assumed to have taken introductory courses on the analysis of algorithms and complexity theory. In particular, you should be familiar with asymptotic analysis of the time and memory costs of algorithms, and with the basics of dynamic programming. The classic text on algorithms is offered by Cormen et al. (2009); for an introduction to the theory of computation, see Arora and Barak (2009) and Sipser (2012).

How to use this book

After the introduction, the textbook is organized into four main units:

- **Learning.** This section builds up a set of machine learning tools that will be used throughout the other sections. Because the focus is on machine learning, the text representations and linguistic phenomena are mostly simple: "bag-of-words" text classification is treated as a model example. Chapter 4 describes some of the more linguistically interesting applications of word-based text analysis.
- Sequences and trees. This section introduces the treatment of language as a structured phenomena. It describes sequence and tree representations and the algorithms that they facilitate, as well as the limitations that these representations impose. Chapter 9 introduces finite state automata and briefly overviews a context-free account of English syntax.
- **Meaning.** This section takes a broad view of efforts to represent and compute meaning from text, ranging from formal logic to neural word embeddings. It also includes two topics that are closely related to semantics: resolution of ambiguous references, and analysis of multi-sentence discourse structure.
- **Applications.** The final section offers chapter-length treatments on three of the most prominent applications of natural language processing: information extraction, machine

translation, and text generation. Each of these applications merits a textbook length treatment of its own (Koehn, 2009; Grishman, 2012; Reiter and Dale, 2000); the chapters here explain some of the most well known systems using the formalisms and methods built up earlier in the book, while introducing methods such as neural attention.

Each chapter contains some advanced material, which is marked with an asterisk. This material can be safely omitted without causing misunderstandings later on. But even without these advanced sections, the text is too long for a single semester course, so instructors will have to pick and choose among the chapters.

Chapters 1-3 provide building blocks that will be used throughout the book, and chapter 4 describes some critical aspects of the practice of language technology. Language models (chapter 6), sequence labeling (chapter 7), and parsing (chapter 10 and 11) are canonical topics in natural language processing, and distributed word embeddings (chapter 14) have become ubiquitous. Of the applications, machine translation (chapter 18) is the best choice: it is more cohesive than information extraction, and more mature than text generation. Many students will benefit from the review of probability in Appendix A.

- A course focusing on machine learning should add the chapter on unsupervised learning (chapter 5). The chapters on predicate-argument semantics (chapter 13), reference resolution (chapter 15), and text generation (chapter 19) are particularly influenced by recent progress in machine learning, including deep neural networks and learning to search.
- A course with a more linguistic orientation should add the chapters on applications of sequence labeling (chapter 8), formal language theory (chapter 9), semantics (chapter 12 and 13), and discourse (chapter 16).
- For a course with a more applied focus, I recommend the chapters on applications of sequence labeling (chapter 8), predicate-argument semantics (chapter 13), information extraction (chapter 17), and text generation (chapter 19).

Acknowledgments

Several colleagues, students, and friends read early drafts of chapters in their areas of expertise, including Yoav Artzi, Kevin Duh, Heng Ji, Jessy Li, Brendan O'Connor, Yuval Pinter, Shawn Ling Ramirez, Nathan Schneider, Pamela Shapiro, Noah A. Smith, Sandeep Soni, and Luke Zettlemoyer. I also thank the anonymous reviewers, particularly reviewer 4, who provided detailed line-by-line edits and suggestions. The text benefited from high-level discussions with my editor Marie Lufkin Lee, as well as Kevin Murphy, Shawn Ling Ramirez, and Bonnie Webber. In addition, there are many students, colleagues, friends, and family who found mistakes in early drafts, or who recommended key references.

iv PREFACE

These include: Parminder Bhatia, Kimberly Caras, Jiahao Cai, Justin Chen, Rodolfo Delmonte, Murtaza Dhuliawala, Yantao Du, Barbara Eisenstein, Luiz C. F. Ribeiro, Chris Gu, Joshua Killingsworth, Jonathan May, Taha Merghani, Gus Monod, Raghavendra Murali, Nidish Nair, Brendan O'Connor, Dan Oneata, Brandon Peck, Yuval Pinter, Nathan Schneider, Jianhao Shen, Zhewei Sun, Rubin Tsui, Ashwin Cunnapakkam Vinjimur, Denny Vrandečić, William Yang Wang, Clay Washington, Ishan Waykul, Aobo Yang, Xavier Yao, Yuyu Zhang, and several anonymous commenters. Clay Washington tested some of the programming exercises, and Varun Gupta tested some of the written exercises. Thanks to Kelvin Xu for sharing a high-resolution version of Figure 19.3.

Most of the book was written while I was at Georgia Tech's School of Interactive Computing. I thank the School for its support of this project, and I thank my colleagues there for their help and support at the beginning of my faculty career. I also thank (and apologize to) the many students in Georgia Tech's CS 4650 and 7650 who suffered through early versions of the text. The book is dedicated to my parents.

Notation

As a general rule, words, word counts, and other types of observations are indicated with Roman letters (a,b,c); parameters are indicated with Greek letters (α,β,θ) . Vectors are indicated with bold script for both random variables x and parameters θ . Other useful notations are indicated in the table below.

Basics	
$\exp x$	the base-2 exponent, 2^x
$\log x$	the base-2 logarithm, $\log_2 x$
$\{x_n\}_{n=1}^N$	the set $\{x_1, x_2, \ldots, x_N\}$
x_i^j	x_i raised to the power j
$x_i^{(j)}$	indexing by both i and j

Linear algebra		
$oldsymbol{x}^{(i)}$	a column vector of feature counts for instance i , often word counts	
$\boldsymbol{x}_{j:k}$	elements j through k (inclusive) of a vector \boldsymbol{x}	
$[oldsymbol{x};oldsymbol{y}]$	vertical concatenation of two column vectors	
$[oldsymbol{x},oldsymbol{y}]$	horizontal concatenation of two column vectors	
$oldsymbol{e}_n$	a "one-hot" vector with a value of 1 at position n , and zero everywhere	
$oldsymbol{ heta}^ op$	else the transpose of a column vector $\boldsymbol{\theta}$	
$oldsymbol{ heta} \cdot oldsymbol{x}^{(i)}$	the dot product $\sum_{i=1}^{N} \theta_j \times x_i^{(i)}$	
\mathbf{X}	a matrix	
$x_{i,j}$	row i , column j of matrix \mathbf{X}	
$Diag(m{x})$	a matrix with x on the diagonal, e.g., $\begin{pmatrix} x_1 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & x_3 \end{pmatrix}$	
\mathbf{X}^{-1}	the inverse of matrix ${f X}$	

vi PREFACE

Text datas	sets
$\overline{w_m}$	word token at position m
N	number of training instances
M	length of a sequence (of words or tags)
V	number of words in vocabulary
$y^{(i)}$	the true label for instance i
\hat{y}	a predicted label
\mathcal{Y}	the set of all possible labels
K	number of possible labels $K = \mathcal{Y} $
	the start token
	the stop token
$oldsymbol{y}^{(i)}$	a structured label for instance i , such as a tag sequence
$\mathcal{Y}(oldsymbol{w})$	the set of possible labelings for the word sequence w
\Diamond	the start tag
♦	the stop tag

Probabilities

Pr(A)	probability of event A
$Pr(A \mid B)$	probability of event A , conditioned on event B
$p_B(b)$	the marginal probability of random variable B taking value b ; written
	p(b) when the choice of random variable is clear from context
$p_{B A}(b\mid a)$	the probability of random variable B taking value b , conditioned on A
- 1	taking value a ; written $p(b \mid a)$ when clear from context
$A \sim p$	the random variable A is distributed according to distribution p . For
	example, $X \sim \mathcal{N}(0,1)$ states that the random variable X is drawn from
$A \mid B \sim p$	a normal distribution with zero mean and unit variance. conditioned on the random variable B , A is distributed according to p . ²

Machine learning

$\Psi(oldsymbol{x}^{(i)},y)$	the score for assigning label y to instance i
$oldsymbol{f}(oldsymbol{x}^{(i)},y)$	the feature vector for instance i with label y
$oldsymbol{ heta}$	a (column) vector of weights
$\ell^{(i)}$	loss on an individual instance i
L	objective function for an entire dataset
$\mathcal L$	log-likelihood of a dataset
λ	the amount of regularization