Function Problems

Pranav Tikkawar

March 6, 2024

Problem 1

\mathbf{a}

If f and g are decreasing functions on \mathbb{R} then thier composition $g \circ f$ is not necessarily decreasing. For example, let f(x) = -x and g(x) = -x. Then f and g are decreasing functions, but $g \circ f = -(-x) = x$ is not decreasing.

b

If f and g are decreasing functions on \mathbb{R} then their composition is always increasing as if we consider $x_1, x_2 \in \mathbb{R}$ such that $x_1 < x_2$, then $f(x_1) > f(x_2)$ and $g(f(x_1)) < g(f(x_2))$ due to the fact that g is decreasing. Hence, $g \circ f$ is increasing.

\mathbf{c}

If f and g are increasing functions on \mathbb{R} then thier pointwise sum f+g is always increasing as if we consider $x_1,x_2\in\mathbb{R}$ such that $x_1< x_2$, then $f(x_1)< f(x_2)$ and $g(x_1)< g(x_2)$ due to the fact that f and g are increasing. Hence, $f(x_1)+g(x_1)< f(x_2)+g(x_2)$ and f+g is increasing.

\mathbf{d}

If f and g are increasing functions on \mathbb{R} then thier pointwise product $f \cdot g$ is not necessarily increasing. For example, let f(x) = x and g(x) = x. Then f and g are increasing functions, but $f \cdot g = x^2$ is not increasing for all $x \in \mathbb{R}$.

Problem 2

a

Let $r: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be given by the rule $r(a,b) = 2^{a-1}(2b-1)$. Prove that r is one-to-one and onto N (a bijection).

One-to-one

Need: $(\forall a_1, a_2, b_1, b_2 \in \mathbb{N})$ $[r(a_1, b_1) = r(a_2, b_2) \Rightarrow (a_1, b_1) = (a_2, b_2)]$ Let $a_1, a_2, b_1, b_2 \in \mathbb{N}$ such that $r(a_1, b_1) = r(a_2, b_2)$. Then $2^{a_1-1}(2b_1-1) = 2^{a_2-1}(2b_2-1)$. Since 2^{a_1-1} and 2^{a_2-1} are both powers of 2, they are both positive and non-zero. Hence, we can divide both sides of the equation by 2^{a_1-1} to get $(2b_1-1)=2^{a_2-a_1}(2b_2-1)$. Since $2b_1-1$ and $2b_2-1$ are both odd and non-zero, we can divide both sides of the equation by $2b_2-1$ to get $\frac{2b_1-1}{2b_2-1}=2^{a_2-a_1}$. Since the left side is a fraction with odd numerator and denominator, it must also be odd. But the right side is a power of 2, so the only way for the equation to hold is if $a_2-a_1=0$ and $2b_1-1=2b_2-1$. Hence, $a_1=a_2$ and $b_1=b_2$ and r is one-to-one.

Onto

Need: $(\forall n \in \mathbb{N}) \ (\exists a, b \in \mathbb{N}) \ r(a, b) = n$

Let $n \in \mathbb{N}$. Then n be written in prime facortization form. That is, n is the product of some powers of primes. The even primes, which is only 2, can be contributed by the term 2^{a-1} and all the other odd primes can be contributed by the term 2b-1 as the product of odd numbers is always odd. Hence, r is onto.

b

Let $g: \mathbb{N} \times \mathbb{N} \to 8\mathbb{N}$ be given by the rule $g(m,n) = 2^{m+2}(2n-1)$. Prove that r is one-to-one and onto N (a bijection).

One-to-One

Need: $(\forall m_1, m_2, n_1, n_2 \in \mathbb{N})$ $[g(m_1, n_1) = g(m_2, n_2) \Rightarrow (m_1, n_1) = (m_2, n_2)]$ Let $m_1, m_2, n_1, n_2 \in \mathbb{N}$ such that $g(m_1, n_1) = g(m_2, n_2)$. Then $2^{m_1+2}(2n_1-1) = 2^{m_2+2}(2n_2-1)$. We can then divide both sides by 8 to get $2^{m_1-1}(2n_1-1) = 2^{m_2-1}(2n_2-1)$. This leads to a proof that is identical to the one in part a, so q is one-to-one.

Onto

Need: $(\forall k \in 8\mathbb{N})$ $(\exists m, n \in \mathbb{N})$ g(m, n) = k

Let $n \in 8\mathbb{N}$. Then k be written in prime facortization form times 8. That is, k is a product of 8 times a series of primes. After factoring out 8 from 2^{m+2} we get 2^{m-1} thus resulting in a identical proof to the one in part a, so g is onto.

Problem 3

Let $A = \{1, 2, 3, 4\}$ For each subproblem, describe a codomain B and a function $f: A \to B$

\mathbf{a}

one-to-one but not onto

Let $B = \{1, 2, 3, 4, 5\}$ and $f: A \to B$ be given by the rule f(x) = x. Then f is one-to-one but not onto.

b

onto B but not one-to-one Let $B = \{0\}$ and $f : A \to B$ be given by the rule f(x) = 0. Then f is onto but not one-to-one.

\mathbf{c}

both one-to-one and onto Let $B = \{1, 2, 3, 4\}$ and $f : A \to B$ be given by the rule f(x) = x. Then f is both one-to-one and onto.

\mathbf{d}

neither one-to-one nor onto Let $B = \{0, 1\}$ and $f : A \to B$ be given by the rule f(x) = 0 Then f is neither one-to-one nor onto.

Problem 4

Find nonempty sets A,B,C and functions $f:A\to B$ and $g:B\to C$ for the following questions

\mathbf{a}

f is onto but $g \circ f$ is not onto.

 $A = \{1, 2\}, B = \{1, 2\}, C = \{1, 2\}$ where $f : A \to B$ is given by the rule f(x) = x and $g : B \to C$ is given by the rule g(x) = 1. Then f is onto but $g \circ f$ is not onto.

b

g is onto but $g \circ f$ is not onto.

 $A = \{1, 2\}, B = \{1, 2\}, C = \{1, 2\}$ where $f : A \to B$ is given by the rule f(x) = 1 and $g : B \to C$ is given by the rule g(x) = x. Then g is onto but $g \circ f$ is not onto.

\mathbf{c}

 $g \circ f$ is onto but f is not onto.

 $A=\{1,2\}, B=\{1,2,3\}, C=\{1\}$ where $f:A\to B$ is given by the rule f(x)=x and $g:B\to C$ is given by the rule g(x)=1 Then $g\circ f$ is onto but f is not onto.

\mathbf{d}

```
f is 1-1 but g \circ f is not 1-1. A = \{1, 2\}, B = \{1, 2\}, C = \{1\} where f : A \to B is given by the rule f(x) = x and g : B \to C is given by the rule g(x) = 1 Then f is 1-1 but g \circ f is not 1-1.
```

\mathbf{e}

```
g is 1-1 but g \circ f is not 1-1. A = \{1, 2\}, B = \{1, 2\}, C = \{1, 2\} where f : A \to B is given by the rule f(x) = 1 and g : B \to C is given by the rule g(x) = x Then g is 1-1 but g \circ f is not 1-1.
```

\mathbf{f}

```
g \circ f is 1-1 but g is not 1-1. A = \{1,2\}, B = \{1,2,3\}, C = \{1,2\} where f:A \to B is given by the rule f(x) = x and g:B \to C is given by the rule g(x) = x for x \in \{1,2\} and g(x) = 1 for x = 3 Then g \circ f is 1-1 but g is not 1-1.
```

Problem 5

Let $f:A\to B$ and $g:B\to C$ be 1-1 functions. Prove that $g\circ f$ is also 1-1.

Proof

```
Suppose: f: A \to B and g: B \to A are 1-1 functions.
Need: g \circ f is 1-1.
In other words: (\forall a_1, a_2 \in A)[g(f(a_1)) = g(f(a_2)) \to a_1 = a_2]
Proof: Let a_1, a_2 \in A such that g(f(a_1)) = g(f(a_2)). Since g is 1-1 then f(a_1) = f(a_2). Since f is 1-1 then a_1 = a_2 as desired. Hence, g \circ f is 1-1.
```

Problem 6

Let $f: A \to B$ and $g: B \to C$ be onto functions. Prove that $g \circ f$ is also onto.

Proof

```
Suppose: f: A \to B and g: B \to A are onto functions.
Need: g \circ f is onto.
In other words: (\forall z \in C)(\exists x \in A)[g(f(x)) = z]
Proof: Let z \in C, since g is onto C then (\exists y \in B)[g(y) = z]. Since f is onto B then (\exists x \in A)[f(x) = y] as desired. Hence, g(f(x)) = z and g \circ f is onto.
```

Problem 7

Let $f:A\to B$ and $g:B\to C$ be functions. Assume $g\circ f$ is one to one. Prove that f is one to one.

Proof

```
Suppose f: A \to B and g: B \to C are functions.
Assume g \circ f is one to one.
Need: f is one to one.
In other words: (\forall a_1, a_2 \in A)[f(a_1) = f(a_2) \to a_1 = a_2]
Proof: Let a_1, a_2 \in A such that f(a_1) = f(a_2). Composing g to both sides gives g(f(a_1)) = g(f(a_2)) Since g \circ f is one to one, then a_1 = a_2 as desired.
```

Problem 8

Let $f:A\to B$ and $g:B\to C$ be functions. Assume $g\circ f$ is onto. Prove that g is onto.

Proof

```
Suppose f:A\to B and g:B\to C Assume: g\circ f is onto.
Need: g is onto.
In other words: (\forall z\in C)(\exists y\in B)[g(y)=z]
Proof: Let z\in C then since g\circ f is onto then \exists x\in A such that g(f(x))=z.
Let y:=f(x), clearly y\in B and g(y)=g(f(x))=z as desired. Hence, g is onto.
```

Problem 9

Let $f: A \to B$ and $g: B \to A$ be functions satisfying $g \circ f = I_A$.

a

Prove that if f is onto then $f \circ g = I_B$.

Proof

```
Suppose: f: A \to B and g: B \to A Assume g \circ f = I_A. and f is onto Need f \circ g = I_B
In other words: (\forall b \in B)[f(g(b)) = b]
Proof: since g \circ f = I_A we can say that f is one to one. Since f is onto and one to one then f is invertible (Main Theorem). Since f is invertible then it is both right and left invertable. By defintion of right invertibility, f \circ g = I_B as desired.
```

b

Prove that if g is 1-1 then $f \circ g = I_B$.

Proof

Suppose: $f:A\to B$ and $g:B\to A$ Assume $g\circ f=I_A$. and g is 1-1 Need $f\circ g=I_B$

Proof: Since $g \circ f = I_A$ then g is onto. Since g is 1-1 and onto then g is invertible (Main Theorem). Since g is invertible then it is both right and left invertable. By defintion of left invertibility, $f \circ g = I_B$ as desired.

\mathbf{c}

Prove by example that $g \circ f = I_A$ alone doesn't imply $f \circ g = I_B$

Proof

Let $A = \mathbb{R}_{\geq 0}$ and $B = \mathbb{R}_{\leq 0}$ and $f : A \to B$ be given by the rule $f(x) = -\sqrt{x}$ and $g : B \to A$ be given by the rule $g(x) = x^2$. Then $g \circ f = I_A$ but $f \circ g = I_B$ is not true.

\mathbf{d}

(Optional) Can you fine such an example with A = B

Proof

It is not possible as if A=B that means A and B have the same elements. And since $f \circ g \neq I_B$ that imply that f is not onto but for two sets to be equal, the functions must be 1-1 and onto (defintion of Cardinality). Hence, it is not possible to find such an example with A=B.

Problem 10

Suppose A, B, C, D are nonempty sets and $g: B \to C$ is 1-1 function. For each of the following two claims, prove it or give a specific counterexample (In a counterexample you may choose your A, B, C, D, g.)

a

For any two function $f_1: A \to B$ and $f_2: A \to B$, if $g \circ f_1 = g \circ f_2$ then $f_1 = f_2$.

Proof

```
Suppose: A, B are notempty sets and f_1: A \to B and f_2: A \to B are functions. Assume g \circ f_1 = g \circ f_2
Need f_1 = f_2
Supose a \in A need f_1(a) = f_2(a)
Since g is 1-1 then g(f_1(a)) = g(f_2(a)) then f_1(a) = f_2(a) as desired
```

b

For any two function $h_1: C \to D$ and $h_2: C \to D$, if $h_1 \circ g = h_2 \circ g$ then $h_1 = h_2$.

Proof

```
Suppose C, D are nonempty sets and h_1: C \to D and h_2: C \to D are functions. Assume h_1 \circ g = h_2 \circ g
Need h_1 = h_2
Proof: This is not true as we can take B = \{1\}, C = \{1, 2, 3\} and D = \{1, 2, 3\} and g: B \to C be given by the rule g(x) = 1 and h_1: C \to D be given by the rule h_1(x) = x and h_2: C \to D be given by the rule h_2(x) = x for x \in \{1, 2\}, h_2(3) = 4 and h_2(4) = 3. Then h_1 \circ g = h_2 \circ g but h_1 \neq h_2.
```

Problem 11

\mathbf{a}

Let $f:A\to B$ be 1-1 and onto, and let $g:B\to A$ be a function. Prove that g is the inverse of f iff $f\circ g=I_B$

Proof

Suppose A, B are nonempty sets and $f: A \to B$ is 1-1 and onto and $g: B \to A$ is a function.

Need: g is the inverse of f iff $f \circ g = I_B$

Part I

```
Need: g is the inverse of f implies f \circ g = I_B
Suppose g is the inverse of f. Need f \circ g = I_B
Proof: Since g is the inverse of f then f \circ g = I_B by defintion of inverse.
```

Part II

Need: $f \circ g = I_A$ implies g is the inverse of f Suppose $f \circ g = I_B$

Need: g is the inverse of f

Proof: Since f is 1-1 and onto then f is invertible (Main Theorem). Since $f \circ g = I_B$ then g is an inverse of f. Since f is invertible then there is only one inverse of f and since g is an inverse of f then g is the inverse of f as desired.

b

Problem 12

Let A and B be nonempty sets and $f: A \to B$ a function. Assume there exists a function $g: B \to A$ such that $g \circ f = I_A$. Prove that f is 1-1.

Proof

```
Suppose: A and B are nonempty sets and f: A \to B a function.
Assume there exists a function g: B \to A such that g \circ f = I_A
Need f is 1-1
In other words: (\forall a_1, a_2 \in A)[f(a_1) = f(a_2) \to a_1 = a_2]
Proof: Let a_1, a_2 \in A such that f(a_1) = f(a_2). Then id we compose
```

Proof: Let $a_1, a_2 \in A$ such that $f(a_1) = f(a_2)$. Then id we compose g with both sides of the equation we get $g(f(a_1)) = g(f(a_2))$. Since $g \circ f = I_A$ then $a_1 = a_2$ as desired. Hence, f is 1-1.

Problem 13

Let A and B be nonempty sets and $f:A\to B$ a function. Assume there exists a function $g:B\to A$ such that $f\circ g=I_B$. Prove that f is onto.

Proof

```
Suppose: A and B are nonempty sets and f:A\to B a function.
Assume there exists a function g:B\to A such that f\circ g=I_B
Need f is onto
That is: (\forall y\in B)(\exists x\in A)[f(x)=y]
Proof:Let y\in B and define x:=g(y) then f(x)=f(g(y))=(f\circ g)(y)=I_B(y)=y as desired. Hence, f is onto.
```

Problem 14

Find an example of a function which has more than one left inverse. Do the same for right inverses.

\mathbf{a}

Find two nonempty sets A and B and a function $f:A\to B$ which has more than one left inverse.

Proof

Need: $f: A \to B$ which has more than one left inverse.

In other words: Need two functions $g: B \to A$ and $h: B \to A$ such that $g \circ f = I_A$ and $h \circ f = I_A$ and $g \neq h$

Proof: Let $A = \{1, 2\}$ and $B = \{1, 2, 3\}$ and $f : A \to B$ be given by the rule f(x) = x and $g : B \to A$ be given by the rule g(x) = x for $x \in \{1, 2\}$ and g(3) = 1 and $h : B \to A$ be given by the rule h(x) = x for $x \in \{1, 2\}$ and h(3) = 2. Then $g \circ f = I_A$ and $h \circ f = I_A$ and $g \neq h$ as desired.

b

Find two nonempty sets A and B and a function $f: A \to B$ which has more than one right inverse.

Proof

Let $A = \mathbb{R}$ and $B = \mathbb{R}_{\geq 0}$ and $f : A \to B$ be given by the rule $f(x) = x^2$. and $g : B \to A$ be given by the rule $g(x) = \sqrt{x}$ and $h : B \to A$ be given by the rule $h(x) = -\sqrt{x}$. Then $f \circ g = I_B$ and $f \circ h = I_B$ and $g \neq h$ as desired.

Problem 15

Let A and B be nonempty sets and $f: A \to B$ and $g: B \to A$ be functions. Prove that if $g \circ f = I_A$ is equivalent to $(\forall x \in A)(\forall y \in B)[f(x) = y \to g(y) = x]$

Proof

Part I

Need: $g \circ f = I_A$ implies $(\forall x \in A)(\forall y \in B)[f(x) = y \to g(y) = x]$

Suppose: A and B are nonempty sets and $f:A\to B$ and $g:B\to A$ be functions.

Assume: $g \circ f = I_A$

Need: $(\forall x \in A)(\forall y \in B)[f(x) = y \to g(y) = x]$

Assume: f(x) = y

Proof: Let $x \in A$ then f(x) = y, then $g(y) = g(f(x)) = I_A(x) = x$ as desired.

Part II

Need $(\forall x \in A)(\forall y \in B)[f(x) = y \to g(y) = x]$ implies $g \circ f = I_A$

Suppose: A and B are nonempty sets and $f:A\to B$ and $g:B\to A$ be functions.

Assume: $(\forall x \in A)(\forall y \in B)[f(x) = y \to g(y) = x]$

Need: $g \circ f = I_A$

In other words $(\forall x \in A)[g(f(x)) = x]$

Proof: Let $x \in A$ then g(y) = x then substituting f(x) = y then g(f(x)) = x as desired.

Problem 16

Let A and B be nonempty sets and $f: A \to B$ and $g: B \to A$ be functions. Prove that $f \circ g = I_B$ is equivalent to $(\forall x \in A)(\forall y \in B)[f(x) = y \leftarrow g(y) = x]$

Proof

Part I

```
Need: f \circ g = I_B implies (\forall x \in A)(\forall y \in B)[f(x) = y \leftarrow g(y) = x]
Suppose: A and B are nonempty sets and f: A \to B and g: B \to A be functions.
```

Assume $f \circ g = I_B$

Need $(\forall x \in A)(\forall y \in B)[f(x) = y \leftarrow g(y) = x]$

Proof: Let $y \in B$ then g(y) = x then $f(x) = f(g(y)) = I_B(y) = y$ as desired.

Part II

```
Need (\forall x \in A)(\forall y \in B)[f(x) = y \leftarrow g(y) = x] implies f \circ g = I_B
```

Suppose: A and B are nonempty sets and $f:A\to B$ and $g:B\to A$ be functions.

Assume: $(\forall x \in A)(\forall y \in B)[f(x) = y \leftarrow g(y) = x]$

Need: $f \circ g = I_B$

In other words: $(\forall y \in B)[f(g(y)) = y]$

Proof: Let $y \in B$ then f(x) = y then substituting g(y) = x then f(g(y)) = y as desired.

Problem 17

Let A, B, C be nonempty sets, and let $f: A \to B$ and $g: B \to C$ be invertible functions. Show that $g \circ f: A \to C$ is also invertible and that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof

Suppose: A, B, C are nonempty sets and $f: A \to B$ and $g: B \to C$ are invertible functions.

Need to show that: $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

That is we need to show that $(g \circ f) \circ (g \circ f)^{-1} = I_C$ and $(g \circ f)^{-1} \circ (g \circ f) = I_A$

Part I

Need: $(g \circ f) \circ (g \circ f)^{-1} = I_C$ Proof: $(g \circ f) \circ (g \circ f)^{-1} = (g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ I_B \circ g^{-1} = g \circ g^{-1} = I_C$ as desired.

Part II

Need: $(g \circ f)^{-1} \circ (g \circ f) = I_A$ Proof: $(g \circ f)^{-1} \circ (g \circ f) = (f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ I_B \circ f = f^{-1} \circ f = I_A$ as desired.

Problem 18

Let A, B, C, D be nonempty sets, and let $f: A \to B$ and $g: B \to C$ and $h: C \to D$ be functions. Show that $h \circ g \circ f: A \to D$ is also invertable and that $(h \circ g \circ f)^{-1} = f^{-1} \circ g^{-1} \circ h^{-1}$.

Proof

Suppose: A, B, C, D are nonempty sets, and $f: A \to B$ and $g: B \to C$ and $h: C \to D$ are functions that are all invertable. Need to show that: $h \circ g \circ f$ is invertable and $(h \circ g \circ f)^{-1} = f^{-1} \circ g^{-1} \circ h^{-1}$

Part I

Need: $h \circ g \circ f$ is invertable

Proof: Since f, g, h are all invertable then we can compose to create the functions to get $h \circ g \circ f$. Then we can compose the inverses of the functions "in reverse order" $(f^{-1} \circ g^{-1} \circ h^{-1})$ to get the inverse of $h \circ g \circ f$ as desired as $f^{-1} \circ g^{-1} \circ h^{-1} \circ h \circ g \circ f = I_A$ and $h \circ g \circ f \circ f^{-1} \circ g^{-1} \circ h^{-1} = I_D$.

Part II

Given: $(h \circ g \circ f)^{-1} = f^{-1} \circ g^{-1} \circ h^{-1}$ We need to show that $(h \circ g \circ f) \circ (h \circ g \circ f)^{-1} = I_D$ and $(h \circ g \circ f)^{-1} \circ (h \circ g \circ f) = I_A$ in order to prove that $(h \circ g \circ f)^{-1} = f^{-1} \circ g^{-1} \circ h^{-1}$ and it is invertable.

Subpart I

Need $(h \circ g \circ f) \circ (h \circ g \circ f)^{-1} = I_D$

Subpart II

Need $(h \circ g \circ f)^{-1} \circ (h \circ g \circ f) = I_A$

Extra Problems

Problem 1

Let A,B be nonempy sets, $f:A\to B.$ If f is one to one, then f has a left inverse.

Proof

Suppose: A, B are nonempty sets, $f: A \to B$.

Assume f is one to one.

Need: f has a left inverse.

In other words, need: $(\exists g: B \to A)(g(f(x) = x))$

Proof: Let $y \in B$, since f is one to one then $(\exists! x \in A)[f(x) = y]$. Let define $g: B \to A$ such that g(y) := x. We can prove that g(f(x)) = x due to the fact g(y) = g(f(x)) = x as desired. Hence, f has a left inverse.

Problem 2

Let A, B be nonempy sets, $f: A \to B$. If f is onto, then f has a right inverse.

Proof

Suppose A, B are nonempty sets, $f: A \to B$.

Assume f is onto.

Need: f has a right inverse.

In other words, need: $(\exists g : B \to A)(f(g(y)) = y)$

Proof: Let $y \in B$, since f is onto then y is always in the range of f then we can define g(y) to be an element of the preimage set of y. We can call this element f and g(y) = f such that f(f) = f

We need to prove that $f \circ g(y) = y$, by definiton of g(y) = t we have that f(g(y)) = y

Problem 3

If $g \circ f = I_B$ then $(\forall x \in A)(\forall y \in B)[f(x) = y \to g(y) = x]$

Proof

Suppose: A, B are nonempty sets, $f: A \to B$ and $g: B \to A$

Assume: $g \circ f = I_B$

Need: $(\forall x \in A)(\forall y \in B)[f(x) = y \to g(y) = x]$

Proof: Let $y \in B$ and $x \in A$ such that f(x) = y. Then g(y) = g(f(x)) =

 $I_B(x) = x$ as desired.

Problem 4

Definitions

Domain

A is the domain of f if A is a nonempty set such that $\{x : \exists y \in B(f(x) = y)\}$ The set of all x's which relate to at least one y in B.

Range

C is the Range of f if C is a nonempty set such that $\{y : \exists x \in A(f(x) = y)\}$ The set of all y's to which at least one x relates to in A.

Codomain

Codomain is a superset of the range of f

One-to-One

$$(\forall x_1, x_2 \in A)(f(x_1) = f(x_2) \to x_1 = x_2)$$

Onto

$$(\forall y \in B)(\exists x \in A)[f(x) = y]$$

Bijection

Both 1-1 and Onto

Left Inverse

g is a left inverse of f if $g \circ f = I_A$

Right Inverse

g is a right inverse of f if $f \circ g = I_B$

Inverse

g is an (unique) inverse of f if $g \circ f = I_A$ and $f \circ g = I_B$

Left Invertible

f is left invertable if there exists a left inverse of f

Right Invertible

f is right invertable if there exists a right inverse of f

Invertible

f is invertable if there exists a unique inverse of f that is both left and right inverses of f

Main Theorem

A function is invertible if and only if it is both one-to-one and onto.

Images

The image of X under f is defined as all of the f(x) such that $x \in X$ In otherwords: $\{y \in B : \exists x \in A(f(x) = y)\}$

Preimages

The preimage of Y under f is defined a all of the $x \in A$ such that $f(x) \in Y$ In otherwords: $\{x \in A : f(x) \in Y\}$

Composition

The composition of two functions $f:A\to B$ and $g:B\to C$ is defined as $g\circ f:A\to C$ such that $(g\circ f)(x)=g(f(x))$