ECE 304

Design & Analysis of a 4-input Digital Multiplexor

Abstract:

The purpose of this lab is to design, test, and find propagation delays for the gates in a 4-input digital MUX. To form the MUX we need to build 3 and 4-input NAND gates, as well as use our inverter from lab 1. For the 3-input NAND we size the PMOS 2*(120nm) and NMOS 3*(120nm) in order to satisfy equal resistances for equal pull-up/pull-down strength. The rising edge and falling edge propagation delays were found to be 11.13 ps and 16.33 ps respectively. For the 4-input NAND we size the PMOS 2*(120nm) and NMOS 4*(120nm). The propagation delays for the rising/falling edge here are 14.66 ps and 23.77 respectively. Finally we construct the MUX shown in Figure 4. The propagation delays for the rising/falling edge of each input gate is shown in Table 1.

Design:

Figure 1 - 4-input NAND schematic

Since $\mu n=2\mu p$, each PMOS has equivalent resistance of 2*R to equalize base current. With 4 active NMOS but only a single PMOS path at a time we size the transistors as shown below to equalize the resistances for the pull-up and pull-down networks. Resistance scales inversely with size so doubling the size reduces the resistance by a half (I \propto $\mu W/L$).

PMOS width = 2*(120nm) = 240nm -> 2R/2, NMOS 4*(120nm) = 480 nm -> 4R/4

Figure 2 - Testbench plot for NAND gates

Vout1 - 3 input NAND Vout2 - 4 input NAND

y = 5.0E-1V												
/A	/B	/C	/D	/Vout1	Nout2	Input	Voltage 1	Voltage 2	Rise time	Fall time	Pulse width	Period
500.0fs	500.0fs	500.0fs	500.0fs	18.451496ps	27.415179ps	A	0	1.0	1p	1p	80n	160n
80.0015ns	40.0015ns	20.0015ns	10.0015ns	20.011627ns	10.016166ns	В	0	1.0	1p	1p	40n	80n
160.0005ns	80.0005ns	40.0005ns	20.0005ns	160.01683ns	160.02426ns	C	0	1.0	1p	1p	20n	40n
	120.0015ns	60.0015ns	30.0015ns	180.01163ns	170.01615ns	D	0	1.0	1p	1p	10n	20n

<u>Figure 3</u> - Horizontal marker table for Y = 0.5V<u>Propagation delays</u>

Figure 3.1 - NAND input vpulse parameters

NAND3

Rising edge: Vout1_2 - D_3 = 20.011627 ns - 20.0005 ns = 11.13 ps Falling edge: Vout1_3 - A_3 = 160.01683 ns - 160.0005 ns = 16.33 ps

NAND4

Rising edge: Vout2_2 - D_2 = 10.016166 ns - 10.0015 ns = 14.66 ps Falling edge: Vout2_3 - A_3 = 160.02426 ns - 160.0005 ns = 23.77 ps

Figure 4 - MUX schematics

<u>Figure 5</u> - MUX testbench schematic

Input	Voltage 1	Voltage 2	Delay time	Rise time	Fall time	Pulse width	Period
S0	1.0	0	-5n	1p	1p	40n	80n
S1	1.0	0	-5n	1p	1p	20n	40n
Α	0	1.0	0n	1p	1p	10n	80n
В	1.0	0	20n	1p	1p	10n	80n
С	0	1.0	40n	1p	1p	10n	80n
D	1.0	0	60n	1p	1p	10n	80n

Figure 5.1 - MUX simulation input parameters

Figure 6 - MUX testbench plot

Mux Behavior

D0	D1	D2	D3	S0	S1	Out
0	X	X	X	0	0	0
1	X	X	X	0	0	1
X	0	X	X	0	1	0
X	1	X	X	0	1	1
X	X	0	X	1	0	0
X	X	1	X	1	0	1
X	X	X	0	1	1	0
X	X	X	1	1	1	1

<u>**Table 1**</u> - Propagation delays

D1:

D0: Rising edge: 35.17932 ps - 500.0 fs = 34.68 ps Falling edge: 10.03042 ns - 10.0015 ns = 28.92 ps

Rising edge: 30.03883 ns - 30.0015 ns = 28.92 ps Rising edge: 30.03883 ns - 30.0015 ns = 37.33 ps

Falling edge: 20.03418 ns - 20.0005 ns = 33.69 ps

D2: Rising edge: 40.03987 ns - 40.0005 ns = 39.37 ps

Falling edge: 50.03837 ns - 50.0015 ns = 36.87 ps

D3: Rising edge: 5.041911 ns - 5.0015 ns = 40.41 ps Falling edge: 75.04021 ns - 75.0005 ns = 39.7 ps

<u>Figure 7</u> - Horizontal marker table for original plot.

Propagation delays for rising/falling edges of D0,D1,D2 all appear here.

Figure 7 - Horizontal marker table for S0,S1 set to vdd!

Shows propagation delays for rising/falling edge of D3

Questions:

1) Why do we want pull-up and pull-down networks in our gates to have equal strength?

Since the mobility of holes in PMOS is half that of electrons in NMOS we can correct the pull-up/pull-down current to be the same by sizing the transistors so that the resistances of each network are equivalent. The result is that the pull-up response and pull-down response times are the same.

2) Similar as the 2nd question of the prelab, please size the transistors of a n-input complementary logic NAND gate for equal pull-up and pull-down resistance, assuming $\mu n = 2\mu p$.

Pmos width = 240nm

Nmos width = 120nm*n

3) How does the resistance and capacitance of a transistor change as it's width changes?

For a fixed length - $R \sim 1/W$, $C \sim W$