

RNN이란?

Recurrent Neural Network 순환 신경망

- 은닉 계층 안에 하나 이상의 순환 계층을 갖는 신경망
- Sequential 데이터의 "순서"가 고려되어야 할 경우, 순서를 유지하며 학습

many to one

many to many

many to many

Image Captioning

- one : image vector

- many : sequence of words

Sentiment Classification

- many : sequence of words

- one : sentiment(종/싫)

"I love this movie. I've seen it many times and it's still awesome."

"This movie is bad. I don't like it it all. It's terrible."

Machine Translation

many : sequence of words many : 단어 순차 데이터(문장) "Sequence to Sequence"

Noun Classification

- many : sequence of words

- many : classifier of each word

새로운 h_t를 만들 때, h_t-1의 정보도 반영하자!

새로운 h_t를 만들 때, h_t-1의 정보도 반영하자!

수식표현

수식표현

RNN 작통웬리

RNN 사용 예시

Language Model

- $X_t = hello \rightarrow [h, e, l, o]$
- 글자별로 one-hot encoding

h: [1, 0, 0, 0]

e:[0, 1, 0, 0]

I:[0, 0, 1, 0]

o: [0, 0, 0, 1]

RNN JIS MJ

Language Model

- 매번 존재하는 출력값의 loss로 final loss 계산
 "Backpropagation Through Time"
- 시퀀스가 길면? 다 끝나야 한 번 gradient 계산
- 그래서 실제로는 일정 단위로 스텝 잘라서 계산 "Truncated Backpropagation Through Time"

Truncated Backpropagation through time

RNN의 단점

장기 의존성 Long-Term Dependency

- 데이터가 너무 길면, 뒤로 갈수록 앞쪽 데이터의 입력을 까먹음
- backward pass에서 gradient를 계산할 때 점점 작아짐 "Gradient Vanishing"
- 이걸 해결한 것이 LSTM

