Limites

Regra geral:

$$\lim_{x \to c} f(x) = f(c)$$

Regras operatórias com limites:

Limites de funções constantes

Se f é uma função constante f(x)=k, então para qualquer valor de $c\in\mathbb{R}$,

$$\lim_{x \to c} f(x) = \lim_{x \to c} k = k$$

Limites da função identidade

Se f é uma função identidade f(x)=x, então para qualquer valor de $c\in\mathbb{R}$,

$$\lim_{x \to c} f(x) = \lim_{x \to c} x = c$$

Limites de operações com funções

Se L_1 e L_2 são dois números reais e $\lim_{x\to c}f(x)=L_1$ e $\lim_{x\to c}g(x)=L_2$, então

• Limite da soma

$$\lim_{x \to c} [(f + g)(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = L_1 + L_2$$

• Limite do produto

$$\lim_{x \to c} \left[(f \times g)(x) \right] = \lim_{x \to c} f(x) \times \lim_{x \to c} g(x) = L_1 \times L_2$$

• Limite do quociente

$$\lim_{x \to c} \left[\left(\frac{f}{g} \right)(x) \right] = \lim_{\substack{x \to c \\ \lim_{x \to c} g(x)}} f(x) = \frac{L_1}{L_2}, L_2 \neq 0$$

• Limite da potência

$$\lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n = L_1^n$$

• Limite da raiz

$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)} = \sqrt[n]{L_1}$$

+		Limite quando $m{x} ightarrow m{c}$ (finito ou infinito)			
↓	g(x) $f(x)$	а	+∞	- ∞	
Limite quando $x \rightarrow c$ (finito ou infinito)	b	a + b	+∞	- ∞	
	+∞	-∞	+∞	?	
	- ∞	+∞	?	- ∞	

_	_	Limite quando $x \rightarrow c$ (finito ou infinito)		
*	g(x) $f(x)$	а	+∞	- ∞
Limite quando $x \rightarrow c$ (finito ou infinito)	b	a-b	+∞	- ∞
	+∞	-∞	?	- ∞
	- ∞	+∞	+∞	?

×			Limite quando $oldsymbol{x} ightarrow c$ (finito ou infinito)			
*	g(x) $f(x)$	a ≠ 0	$0 \text{ (por valores } \neq 0)$	+∞	- ∞	
Limite quando $x \rightarrow c$ (finito ou infinito)	<i>b</i> ≠ 0	a-b	0	$+\infty$ se $b>0$ $-\infty$ se b<0	$+ \infty \operatorname{se} b > 0$ $- \infty \operatorname{se} b < 0$	
	0 (por valores ≠ 0)	0	0	?	?	
	+ ∞	$+\infty$ se $a>0$ $-\infty$ se $a<0$?	+ ∞	- ∞	
	- ∞	$+ \infty$ se $a > 0$ $- \infty$ se $a < 0$?	+ ∞	?	

÷			Limite quando $oldsymbol{x} ightarrow oldsymbol{arepsilon}$ (finito ou infinito)			
\	g(x) $f(x)$	a ≠ 0	0	+ ∞	- ∞	
	b ≠ 0	a-b	0	$+ \infty$ se $b > 0$ $- \infty$ se $b < 0$	$+ \infty$ se $b > 0$ $- \infty$ se $b < 0$	
Limite quando $x \rightarrow c$ (finito ou infinito)	0	Limites laterais $+ \infty ou - \infty$?	Limites laterais + ∞ ou − ∞	Limites laterais $+ \infty ou - \infty$	
	+∞	0	0	?	?	
	-∞	0	0	?	?	

Indeterminações

• Indeterminação $\infty - \infty$, $\frac{\infty}{\infty}$, $\infty - \infty$, $0 \times \infty$

Para conseguir resolver esta indeterminação colocamos em evidência a mais alta potência de \mathbf{x}

• Indeterminação $\frac{0}{0}$

Consegue-se levantar a indeterminação simplificando a fracção.

Limites de funções envolvendo exponenciais

$$\lim_{x\to+\infty}\frac{e^x}{x^p}=+\infty$$
, $p\in\mathbb{R}$

$$\lim_{x \to +\infty} \frac{e^x - 1}{x} = 1$$

Limites de funções envolvendo logaritmos

$$\lim_{x\to+\infty}\frac{\ln(x+1)}{x}=0$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$