

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Dipartimento di Informatica

Linguaggi e Compilatori

Autore:

Simone Lidonnici

Indice

\mathbf{E}	Ese	rcizi		1
	E.1	Esercia	zi su automi	1
		E.1.1	Trasformare un'espressione regolare in NFA	1
		E.1.2	Trasformare un NFA in DFA	5
		E.1.3	Minimizzare un DFA	8
	E.2	Esercia	zi su grammatiche	11
		E.2.1	Eliminare la ricorsione sinistra	11
		E.2.2	Fattorizzare una grammatica	13

Esercizi

E.1 Esercizi su automi

E.1.1 Trasformare un'espressione regolare in NFA

Data un'espressione regolare R e il suo Syntax Tree, possiamo trasformarlo in NFA eseguendo un visita in profondità del Syntax Tree e in base al nodo che visitiamo creaiamo un NFA parziale per il suo sottoalbero. Nella spiegazione dell'algoritmo i nodi s_i, s_f indicano il primo e l'ultimo nodo dell'NFA che riconosce s, negli esercizi solitamente si numerano sequanzialmente partendo da 0 in base all'ordine di visita. Eseguendo la visita in profondità l'NFA da creare cambia in base al simbolo contenuto nel nodo visitato:

• Se stiamo visitando una foglia contente ε , costruiremo il seguente NFA:

• Se stiamo visitando una foglia contente un simbolo $a \in \Sigma$, costruiremo il seguente NFA:

• Se stiamo visitando un nodo contente un'unione $s \cup t$, costruiremo il seguente NFA, aggiungendo gli stati $i \in f$:

• Se stiamo visitando un nodo contente una concatenazione st, costruiremo il seguente NFA, unendo lo stato finale di s_f con lo stato iniziale di t_i :

• Se stiamo visitando un nodo contente una star di Kleene s^* , costruiremo il seguente NFA, aggiungendo gli stati i e f:

L'NFA risultante avrà un solo stato accettante e ogni stato (ad eccezione di quello accettante) avrà le transizioni uscenti in uno di questi due modi:

- 1. Una sola transizione con etichetta $a \in \Sigma$
- 2. Una o due transizioni con etichetta ε

Data l'espressione regolare $(a \cup b)^*abb$ con il seguente Abstract Tree (\circ indica la concatenzazione):

In questo esempio i nodi dell'albero sono numerati in base all'ordine in cui vanno visitati. Eseguiamo i passi dell'algoritmo, partendo dalla foglia in basso a sinistra:

1. La foglia contiene a, quindi l'NFA corrispondente sarà:

2. La foglia contiene b, quindi l'NFA corrispondente sarà:

3. La foglia contiene un'unione, quindi l'NFA corrispondente a $a \cup b$ sarà:

4. La foglia contiene una star di Kleene, quindi l'NFA corrispondente a $(a \cup b)^*$ sarà:

5. La foglia contiene a, quindi l'NFA corrispondente sarà:

6. La foglia contiene una concatenazione, quindi l'NFA corrispondente a $(a \cup b)^*a$ sarà:

start
$$\rightarrow 6 \cdots (7/8) \cdots (9)$$

7. La foglia contiene b, quindi l'NFA corrispondente sarà:

start
$$\longrightarrow$$
 10 \xrightarrow{b} 11

8. La foglia contiene una concatenazione, quindi l'NFA corrispondente a $(a \cup b)^*ab$ sarà:

start
$$\longrightarrow$$
 6 \cdots $9/10$ \cdots 11

9. La foglia contiene b, quindi l'NFA corrispondente sarà:

start
$$\longrightarrow$$
 12 \xrightarrow{b} 13

10. La foglia contiene una concatenazione, quindi l'NFA corrispondente a $(a \cup b)^*abb$ sarà:

L'automa finale disegnato completamente sarà:

E.1.2 Trasformare un NFA in DFA

Dato un NFA $N=(Q_N,\Sigma,\delta_N,q_{0_N},F_N)$ definiamo la ε -closure (o estensione) di uno stato $q\in Q_N$ come:

$$E(q) = \varepsilon\text{-closure}(q) = \left\{ s \in Q_N \middle| \begin{array}{c} s \text{ può essere raggiunto da } q \\ \text{tramite solamente } \varepsilon\text{-archi} \end{array} \right\}$$

La ε -closure di un insieme di stati $R \subseteq Q_N$ è definita come:

$$E(R) = \varepsilon\text{-closure}(R) = \bigcup_{q \in R} \varepsilon\text{-closure}(q)$$

La ε -closure di un insieme di stati R contiene sempre almeno R.

Per creare il DFA $D=(Q_D, \Sigma, \delta_D, q_{0_D}, F_D)$ equivalente all'NFA N, si esegue questo algoritmo:

```
 \begin{array}{c|c} \textbf{Algoritmo: Subset Construction} \\ \textbf{def Subset\_Construction(N):} \\ Q_D = \{\varepsilon\text{-closure}(q_{0_N})\} \\ \textbf{for } R \in Q_D : \text{ // anche quelli aggiunti durante il ciclo} \\ \textbf{for } a \in \Sigma : \\ S = \varepsilon\text{-closure}(\delta_N(R,a)) \\ \textbf{if } S \notin Q_D : \\ Aggiungo \ S \ a \ Q_D \ // \ Solitamente \ si \ numerano \ con \ A,B,...,Z \\ Creo \ la \ transizione \ \delta_D(R,a) = S \\ \textbf{return } \ D \\ \end{array}
```

Quando uno stato $R \in Q_D$ è un insieme di stati in Q_N , la funzione δ_N viene calcolata come:

$$\delta_N(R,a) = \bigcup_{r \in R} \delta_N(r,a)$$

Gli stati accettanti in D sono tutti gli stati che contengono almeno uno stato accettante di N. Il DFA risultante può essere disegnato oppure rappresentato come tabella con le intestazioni:

Stati NFA	Stato DFA	a	b
{0,1,2,3}	A	В	С
{1,2}	В	С	Α
{3,4}	С	A	С

Con l'alfabeto $\Sigma = \{a, b\}$ la tabella avrebbe le intestazioni come sopra e la casella nella colonna a e riga A rappresenta la transizione $\delta_D(A, a)$. Nel caso l'alfabeto avesse altri simboli bisognerebbe aggiungere una colonna per ogni simbolo dell'alfabeto.

Dato l'NFA per il linguaggio $L = \{(a \cup b)^*abb\}$:

Eseguiamo i passaggi dell'algoritmo:

- Lo stato iniziale di D sarà ε -closure $(0) = \{0, 1, 2, 4, 7\} = A$
- Sullo stato A eseguiamo:
 - 1. ε -closure $(\delta_N(A, a)) = \varepsilon$ -closure $(\{3, 8\}) = \{1, 2, 3, 4, 6, 7, 8\} = B$ Avremo una transizione $\delta_D(A, a) = B$
 - 2. ε -closure $(\delta_N(A,b)) = \varepsilon$ -closure $(\{5\}) = \{1,2,4,5,6,7\} = C$ Avremo una transizione $\delta_D(A,b) = C$
- Sullo stato B eseguiamo:
 - 1. ε -closure $(\delta_N(B, a)) = \varepsilon$ -closure $(\{3, 8\}) = B$ Avremo una transizione $\delta_D(B, a) = B$
 - 2. ε -closure $(\delta_N(B,b)) = \varepsilon$ -closure $(\{5,9\}) = \{1,2,4,5,6,7,9\} = D$ Avremo una transizione $\delta_D(B,b) = D$
- Sullo stato C eseguiamo:
 - 1. ε -closure $(\delta_N(C, a)) = \varepsilon$ -closure $(\{3, 8\}) = B$ Avremo una transizione $\delta_D(C, a) = B$
 - 2. ε -closure $(\delta_N(C, b)) = \varepsilon$ -closure $(\{5\}) = C$ Avremo una transizione $\delta_D(C, b) = C$
- Sullo stato *D* eseguiamo:
 - 1. ε -closure $(\delta_N(D, a)) = \varepsilon$ -closure $(\{3, 8\}) = B$ Avremo una transizione $\delta_D(D, a) = B$
 - 2. ε -closure $(\delta_N(D,b)) = \varepsilon$ -closure $(\{5,10\}) = \{1,2,4,5,6,7,10\} = E$ Avremo una transizione $\delta_D(D,b) = E$

- Sullo stato E eseguiamo:
 - 1. ε -closure $(\delta_N(E, a)) = \varepsilon$ -closure $(\{3, 8\}) = B$ Avremo una transizione $\delta_D(E, a) = B$
 - 2. ε -closure $(\delta_N(E,b)) = \varepsilon$ -closure $(\{5\}) = C$ Avremo una transizione $\delta_D(E,b) = C$
- Abbiamo finito gli stati da analizzare quindi l'algoritmo è terminato e lo stato accettante di D sarà E perchè è l'unico che contiene lo stato 10 di N.

Il DFA risultante rappresentato sotto forma di automa sarà quindi:

Sotto forma di tabella invece sarà:

Stati NFA	Stato DFA	a	b
{0,1,2,4,7}	A	В	С
{1,2,3,4,6,7,8}	В	В	D
$\{1,2,4,5,6,7\}$	\mathbf{C}	В	\mathbf{C}
$\{1,2,4,5,6,7,9\}$	D	В	\mathbf{E}
$\{1,2,3,5,6,7,10\}$	E	В	\mathbf{C}

E.1.3 Minimizzare un DFA

Dato un DFA $D = (Q, \Sigma, \delta, q_0, F)$, possiamo minimizzare il numero di stati, creando un DFA equivalente D_{min} seguendo un algoritmo basato sulle partizioni di Q:

- 1. Partiamo con la partizione $\Pi = \{\{Q F\}, \{F\}\}\$
- 2. Per ogni insieme $P \in \Pi$ con $|P| \ge 2$ non ancora controllato (compresi quelli aggiunti durante il ciclo):
 - 2.1 Per ogni $a \in \Sigma$:
 - 2.1.1 Per ogni stato $q \in P$, controllo l'insieme P_i a cui appartiene lo stato r tale che $\delta(q,a) = r \in P_i$
 - 2.1.2 Se tutti gli stati $q \in P$ con input a non raggiungono lo stesso insieme P_i allora divido gli stati di P in base all'insieme che raggiungono
 - 2.1.3 Se tutti gli stati $q \in P$ con input a raggiungono lo stesso insieme P_i allora continuo con il prossimo insieme da controllare
- 3. Dopo aver controllato tutti gli insiemi ed aver trovato Π_{final} , per ogni insieme $P \in \Pi$ scelgo uno stato rappresentante.
- 4. Lo stato iniziale di D_{min} è lo stato rappresentante dell'insieme P per cui $s_0 \in P$
- 5. Gli stati finali di D_{min} sono tutti gli stati rappresentanti di insiemi P in cui esiste $q \in F$ tale che $q \in P$

Dato un DFA D non minimizzato:

Eseguiamo l'algoritmo:

1.
$$\Pi = \{\{A, B, C, D\}, \{E\}\}$$

- 2. Per l'insieme $\{A, B, C, D\}$:
 - 2.1 Per $a \in \Sigma$:

2.1.1
$$\delta(A, a) = B \in \{A, B, C, D\}$$

2.1.2
$$\delta(B, a) = B \in \{A, B, C, D\}$$

2.1.3
$$\delta(C, a) = B \in \{A, B, C, D\}$$

2.1.4
$$\delta(D, a) = B \in \{A, B, C, D\}$$

- 2.1.5 Vanno tutti nello stesso insieme, quindi va bene
- 2.2 Per $b \in \Sigma$:

2.2.1
$$\delta(A, b) = C \in \{A, B, C, D\}$$

2.2.2
$$\delta(B,b) = D \in \{A, B, C, D\}$$

2.2.3
$$\delta(C, b) = C \in \{A, B, C, D\}$$

2.2.4
$$\delta(D, b) = E \in \{E\}$$

- 2.2.5 Non vanno tutti nello stesso insieme quindi divido l'insieme aggiungendo a Π i sottoinsiemi $\{A,B,C\}$ e $\{D\}$
- 3. $\Pi = \{\{A, B, C\}, \{D\}, \{E\}\}\$
- 4. Per l'insieme $\{A,B,C\}$:
 - 4.1 Per $a \in \Sigma$:

4.1.1
$$\delta(A, a) = B \in \{A, B, C\}$$

4.1.2
$$\delta(B, a) = B \in \{A, B, C\}$$

4.1.3
$$\delta(C, a) = B \in \{A, B, C\}$$

 $4.1.4\,$ Vanno tutti nello stesso insieme, quindi va bene

4.2 Per $b \in \Sigma$:

4.2.1
$$\delta(A, b) = C \in \{A, B, C\}$$

4.2.2
$$\delta(B, b) = D \in \{D\}$$

4.2.3
$$\delta(C, b) = C \in \{A, B, C\}$$

- 4.2.4 Non vanno tutti nello stesso insieme quindi divido l'insieme aggiungendo a Π i sottoinsiemi $\{A,C\}$ e $\{B\}$
- 5. $\Pi = \{\{A, C\}, \{B\}, \{D\}, \{E\}\}\}$
- 6. Per l'insieme $\{A, C\}$:
 - 6.1 Per $a \in \Sigma$:

6.1.1
$$\delta(A, a) = B \in \{B\}$$

6.1.2
$$\delta(C, a) = B \in \{B\}$$

- 6.1.3 Vanno tutti nello stesso insieme, quindi va bene
- 6.2 Per $b \in \Sigma$:

6.2.1
$$\delta(A, b) = C \in \{A, C\}$$

6.2.2
$$\delta(C, b) = C \in \{A, C\}$$

- 6.2.3 Vanno tutti nello stesso insieme, quindi va bene
- 7. Abbiamo finito gli insiemi da controllare e quindi $\Pi_{final} = \{\{A, C\}, \{B\}, \{D\}, \{E\}\}\}$
- 8. Lo stato iniziale è il rappresentante dell'insieme $\{A, C\} = A$
- 9. Lo stato finale è il rappresentante dell'insieme {E}

Il DFA minimizzato D_{min} sarà:

E.2 Esercizi su grammatiche

E.2.1 Eliminare la ricorsione sinistra

Una grammatica $G = (V, \Sigma, R, S)$ ha una ricorsione sinistra se:

$$\exists A \in V | A \xrightarrow{+} A\alpha \quad \alpha \in (V \cup \Sigma)^*$$

Il simbolo $\stackrel{+}{\Longrightarrow}$ indica la derivazione in almeno un passo, se $A \Rightarrow A\alpha$ (in esattamente un passo) allora si dice che la grammatica ha una **ricorsione immediata a sinistra**.

Per eliminare una ricorsione immediata a sinistra nella forma:

$$A \to A\alpha_1 |A\alpha_2| \dots |A\alpha_n|$$

 $A \to \beta_1 |\dots |\beta_m|$

Per cui $\forall i \ \alpha_i, \beta_i \in (V \cup \Sigma)^*$ e per cui il primo simbolo non è A.

Per eliminare la ricorsione immediata a sinistra modifico le regole facendo diventare la grammatica:

$$A \to \beta_1 A' | \dots | \beta_m A'$$

 $A' \to \alpha_1 A' | \alpha_2 A' | \dots | \alpha_n A' | \varepsilon$

Per eliminare invece la ricorsione a sinistra generica, possiamo utilizzare un algoritmo se la grammatica segue due regole:

- 1. G non contiene cicli, cioè non esiste $A \stackrel{+}{\Longrightarrow} A$
- 2. G non ha regole $A \to \varepsilon$ (in alcuni casi potrebbe non essere un problema)

L'algoritmo per eliminare la ricorsione sinistra è (considerando n = |V|):

Algoritmo: Eliminazione ricorsione a sinistra

```
def Elimina_Ricorsione(G):
```

Data la grammatica G con regole:

$$S \to Aa|b$$
$$A \to Ac|Sd|\varepsilon$$

Applichiamo l'algoritmo:

- 1. Ordiniamo $V = \{S, A\}$
- 2. Per S non esistono variabili precedenti e non c'è ricorsione immediata
- 3. Per A:
 - 3.1 Sostituiamo la regola $A \to Sd$ utilizzando le regole $S \to Aa|b$ aggiungendo le regole $A \to Aad|bd$, facendo diventare la grammatica:

$$S \to Aa|b$$
$$A \to Ac|Aad|bd|\varepsilon$$

3.2 Eliminiamo la ricorsione immediata a sinistra togliendo le regole di A aggiungendo una variabile A' e le regole:

$$\begin{array}{l} A \rightarrow bdA'|A' \\ A' \rightarrow cA'|adA'|\varepsilon \end{array}$$

4. La gramatica diventa quindi:

$$S \to Aa|b$$

$$A \to bdA'|A'$$

$$A' \to cA'|adA'|\varepsilon$$

E.2.2 Fattorizzare una grammatica