날씨에 따른 온라인 구매 예측

VARX 모델에 기반한 분석 모델 제안

2021 날씨 빅데이터 콘테스트

김예지 김희진 안다영 이미경 이인선 하성연 **unnormal**

contents

공모배경.1 날씨와 소비 패턴

"늑장 장마, 소비 패턴 바꿨다"

(출처 /MNB 뉴스)

티몬에 따르면, 지난해 6월 초 히트상품은 제습기와 우산, 장화 등 장마관련 상품이 많았다. 기상청이 6월말 장마가 올 것으로 예상해 미리 대비하는 고객들이 많았기 때문. 유통업계에서도 장마 관련 행사를 있따라 열며관련 상품을 집중적으로 홍보했다.

날씨 마케팅

"날씨가 덥지 않으면 20만원을 돌려드립니다." <삼성 에어컨>

> "비 내리는 날~ 반디 네일에는 혜택이 내린다!"

> > <BANDI>

"맑은 날, 빙수구매시 천원 추가하시면

아이스크림 **50g** 더! <나뚜루팝> 경쟁력 제고

마케팅 효과 증대

'기상기후정보를 활용한 날씨 마케팅을 통해 경쟁력 확보"

◀ 공모배경Ⅰ.1 날씨와 소비 패턴

공모배경 .2 분석목표

"기상기후정보를 활용한 소비패턴 파악"

"SNS 채널을 통한 구매 촉진 "

"기상기후정보와 **SNS**채널을 활용한 소비패턴 예측의 정확성 제고 및 마케팅 효과의 극대화"

출처

기상청 날씨마루

기상기후 빅데이터 분석 플랫폼 **날씨마루** ㈜엠코퍼레이션

㈜바이브컴퍼니

데이터 내역

기온, 강수량, 상대습도, 풍속, 미세먼지

온라인 구매이력

date

소셜 데이터

변수

STN_ID	지점번호 (공통)			
TMA	관측시각			
AVG_TA	평균 기온			
MAX_TA	최고 기온			
MIN_TA	최저 기온			
SUM_RN	합계 강수량			
AVG_RHM	평균 상대습도			
PM10_PM	PM10 미세먼지 농도			
PM25_PM	PM25 미세먼지 농도 (초미세먼지)			

sex	 성별			
367	02			
age	LfOI			
big_cat	상품 대분류명			
sm_cat	상품 소분류명			
qty	구매 수량			

날짜

date	날짜	
big_cat	상품 대분류명	
sm_cat	상품 소분류명	
cnt	10만 건 당 건수	

기간

2018.01.01 - 2019.12.31

2018.01.01 - 2019.12.31

2018.01.01 - 2019.12.31

3.1 결측값 처리

데이터 정제

날씨변수 결측값

결측치 총 7개 (비율 0.00029%)

변수명	변수설명
Avg_ta	평균 기온
Max_ta	최고 기온
Min_ta	최저 기온
	:
Avg_ws	평균 풍속
Max_ws	최대 풍속
Max_ins_ws	최대 순간 풍속
Sum_rn	합계 강수량
Avg_rhm	평균 상대습도
Min_rhm	최소 상대습도
Pm10	미세먼지
Pm25	초미세먼지
	Avg_ta Max_ta Min_ta Avg_ws Max_ws Max_ins_ws Sum_rn Avg_rhm Min_rhm Pm10

결측값 처리 방법

"MICE"

(Multivariate Imputation by Chained Equations)

- MCAR(Missing Completely at random)값을 다중대체
- 결측치의 비율이 매우 작아 완전 제거법으로 처리할 수 있지만 날짜별 기상데이터를 모두 활용해 분석하기 위해 대체 선택
- 1. 다른 모든 변수를 사용해 결측치 예측
- 2. 결측치가 채워진 완성된 데이터셋 여러 개 생성
- 3. 각각의 완성된 데이터셋에 통계 모형 적용
- 4. 각각의 분석 결과를 하나로 통합
- 5. 원 데이터의 결측치 대체

3.1 결측값 처리

데이터 정제

온라인 구매건수 결측값

날짜	성별	연령대	대분류	소분류	구매량
2019-09-19	F	20	뷰티	린스	7
2019-09-19	M	20	뷰티	린스	3
2019-09-19	F	30	뷰티	린스	27
2019-09-19	F	40	뷰티	린스	32
2019-09-20	F	20	뷰티	린스	9

- 1. 구매건수가 없는 날짜 존재.
 - → 결측값이 존재하는 제품 [식품 : **33**개, 뷰티 : **27**개, 냉난방가전 : **34**개]
- 2. 성별, 연령대별 구매건수에 대한 결측값을 0으로 대체

날짜	성별	연령대	대분류	소분류	구매량
2019-09-19	F	20	뷰티	린스	7
2019-09-19	M	20	뷰티	린스	3
2019-09-19	F	30	뷰티	린스	27
2019-09-19	M	30	뷰티	린스	0
2019-09-19	F	40	뷰티	린스	32
2019-09-19	M	40	뷰티	린스	0
2019-09-19	F	50	뷰티	린스	0
2019-09-19	M	50	뷰티	린스	0
2019-09-19	F	60	뷰티	린스	0
2019-09-19	M	60	뷰티	린스	0
2019-09-20	F	20	뷰티	린스	9

상품 대분류별 구매량 **TOP3**

세가지 대분류 그래프 모두 계절성을 보임.

제품 구매가 날씨에 영향을 받을 것이라고 예측할 수 있음.

3.2 EDA 대이터 처리 방안 및 활용 분석 기법

성별 / 연령대별 구매건수의 차이 검정

T-test & ANOVA

성별, 연령에 따른 대분류별 구매건수 평균 차이 유의

	구분 여성 (n = 1,081,977)		남성 (n = 974,922)	p- value
전체 25.363		12.156	<.0001	
	식품	24.525	13.378	<.0001
대분류	뷰티	29.517	10.773	<.0001
	가전	9.726	8.152	<.0001

7	분	20대 (n = 406,097)	30대 (n = 476,260)	40대 (n = 473,038)	50대 (n = 414,271)	60대 (n = 287,233)	p-value
전	체	18.009	28.856	24.662	12.574	4.742	<.0001
	식품	16.445	29.473	25.768	13.457	5.137	<.0001
대분류	뷰티	22.205	30.956	25.277	12.010	4.179	<.0001
	가전	5.607	12.688	11.949	7.078	3.283	<.0001

3.2 EDA 데이터 처리 방안 및 활용 분석 기법

연령대 별 구매 카테고리

3.3 온라인 구매이력 - 재분류

카테고리 재분류

- 날씨 변수에 따른 수요예측을 위해 카테고리의 명확한 기준을 재설정.
- 온라인 구매 내역 및 소셜 데이터의 대분류(big_cat) 기준에 따라 **카테고리 기준을 재설정**. (large_cat 이라는 대분류 변수 추가)
- 식품 데이터는 중분류 (mid_cat) 변수를 추가하여 보다 세분화.

Big_cat	Large_cat	Mid_cat	Sm_cat
	건강기능식품	건강기능식품	홍삼 분말/ 환
식품	음료류	탄산음료류	탄산음료
	견과 종실류	견과 종실류	헛개/ 가시오가피
합계	27 개	61개	212 개
	페이셜케어		기초 화장용 미스트
뷰티	바디케어		바디 보습제
	선케어		선파우더
합계	15 개		131개
	난방기기		온수매트
생난방 ·	에어컨		스탠드형 에어컨
	건조기		의류건조기
합계	9 개		40 개

(참고: 식품 공전, 랄라블라, LG생활전자)

날씨지수 생성 개요

온라인 구매내역 소셜 데이터	날씨 데이터
지역 정보가 없음.	지역 정보가 있음.

두 데이터를 함께 활용하기 위해서는 지역에 국한 되지 않는 **'일별 대표 기상 데이터**" 가 필요.

PCA ↓ 차원 축소

date	ta_index	rn_index	wind_index	pm_index
날짜	기온 지수	강수량 지수	풍속 지수	미세먼지 지수
2018-01-01	-4.22459	-2.88059	-0.51503	0.051328
2018-01-02	-4.11965	-2.69721	0.060365	-1.16792
2018-01-03	-4.65496	-2.84326	0.029904	0.537802
:				

지역별 인구수 현황

날씨 데이터의 경우, 전체 인구수 (**○구매자의 비율**)의 절반 이상을 차지하는 서울, 경기, 부산 지역의 데이터를 이용.

날씨지수 생성

변수명	변수설명
Avg_ta	평균 기온
Max_ta	최고 기온
Min_ta	최저 기온
	:
Avg_ws	평균 풍속
Max_ws	최대 풍속
Max_ins_ws	최대 순간 풍속
Sum_rn	합계 강수량
Avg_rhm	평균 상대습도
Min_rhm	최소 상대습도
Pm10	미세먼지
Pm25	초미세먼지

날씨지수 생성

Scree plot

: 기울기가 급격하게 변하는 elbow의 개수에 따라 주성분의 개수 선정

기온, 강수량, 풍속, 미세먼지 모두 첫번째 주성분만을 사용하여 날씨 지수 생성

날씨지수 생성

예) 기온지수

= 0.336 * 경기평균기온 + 0.334 * 부산평균기온 + 0.336 * 서울평균기온 + 0.332 * 경기최저기온 + 0.333 * 부산최저기온 + 0.335 * 서울최저기온 + 0.332 * 경기최고기온 + 0.329 * 부산최고기온 + 0.333 * 서울최고기온

PC2에 대해서는 실제 기온값의 변동성이 작으므로 PC1을 주성분으로 사용

날씨지수 생성

풍속 ∝ 풍속 지수

미세먼지 농도 ○ □세먼지 지수

날씨지수와 모두 양의 상관관계를 보이나 미세먼지만 지수와 음의 상관관계를 보임

제품군 군집화 (hierarchical clustering)

- 날씨에 큰 영향을 받지 않는 품목, 즉 구매량의 변동폭이 작은 제품을 클러스터링을 통해 제거.
- 대분류별 최적의 k(군집의 수)를 도출.

소분류별 구매량에 따른 scale을 맞추기 위해 표준화 진행

표준화된 최대 구매량 - 최소 구매량 에 대해 클러스터링 시행

대분류	중분류	소분류	일자별 구매량	표준화
NONTE		돼지 곱창	524 408 468 ···	- 1.22 - 1.55 - 1.38 ···
식육가공품 및 포장육	식육 가공품	장조림 <i>l</i> 카레용 돈육	11 15 12	- 0.50 0.26 - 0.31 ···
		갈비용 우육	221	- 1.06 - 1.06 - 1.20 ···

제품군 군집화 (hierarchical clustering)

1

"제품군별 구매량 크기의 차이가 있어 표준화 후 클러스터링 진행"

뷰티 (k = 3)

클러스터링 결과, 군집 ① + ②을 모델링에 사용 (③ 제외).

냉난방 가전 (k = 3)

클러스터링 결과, 군집 ① + ②을 모델링에 사용 (③ 제외).

3.6 다중회귀분석

다중회귀분석 (Multiple Linear Regression Analysis)

- 클러스터링 결과 선정된 제품군에 대해 소셜 데이터의 문서건수 변수(SNS_cnt)를 추가하여 다중회귀분석 시행.
- 단계별 변수선택으로 유의하지 않은 변수 제거. (p-value > 0.05)
- 제품군별 구매에 영향을 미치는 날씨 변수 도출 및 소셜 데이터의 영향력 검정.

VIF를 통해 다중공선성 없음을 확인. (VIF < 10 이면 FALSE)

Ex)	냉난방 가전 _	- 공기청정기
-----	----------	---------

	SNS 본서건수	기온 지수	강수량 지수	퐁속 지수	미세먼지 지수
VIF	FALSE	FALSE	FALSE	FALSE	FALSE
	(Intercept)	SNS 문서건수	기온 지수	강수량 지수	미세먼지 지수
회귀계수	- 146.961	5.895	- 9.650	- 6.966	11.634

공기청정기의 구매량은 SNS, 기온, 강수/ 습도, 미세먼지에 영향을 받음.

3.6 다중회귀분석

4.1 상품 구매 연령대

연령대

날씨에 민감한 제품군 별 소비층의 연령대를 확인 해 본 결과, 주 소비층이 30, 40대 인 것을 알 수 있음.

4.2 SNS 이용 연령대

소셜 미디어

SNS 모바일 앱 사용자 분포

남성보다는 여성이 **SNS**를 더 활용하며,

20, 30, 40대가 전체 SNS 이용 비율의 약 70%를 차지

4.3 SNS & 날씨 민감 상품

소셜 미디어

• 날씨에 민감한 제품군 중, SNS 문서 건수와 온라인 구매 수량과의 상관계수가 가장 높은 상품 군 Top 5

'SNS 문서 건수와 온라인 구매 건수간의 경향성 확인"

4.3 SNS & 날씨 민감 상품

소셜 미디어

SNS 홍보가 적절한 예시 _ 공기청정기

SNS 문서건수

공기청정기의 SNS의 문서 건수와 온라인 구매 수량의 그래프 패턴이 거의 동일.

각 계절별 소비자의 관심도와 구매량 패턴이 유사함.

소설 미디어를 활용한 홍보를 통해 제품에 대한 관심이 실제 구매로 이어지도록 유도.

온라인 구매 건수

4.3 SNS & 날씨 민감 상품

소셜 미디어

5.1 모델 선택 배경

시계열분석

- 날씨에 따른 제품군별 수요예측을 위해 시간에 따라 변화하는 날씨의 특성을 반영한 시계열 모형을 고려.
- 사용 변수: 2018~19년간 28개의 각 제품군별 구매건수, 기온지수, 강수/ 습도지수, 풍속지수, 미세먼지지수

다중회귀결과 날씨에 민감한 제품군이 아니므로 제외 \											
		종속변수 (Y) : 제품군별 구매건수					<u></u> 설명변수 ()) : 날씨 지수	
.*** *	날짜	갑각류	건강기능식품	공기청정기		페이셜케어	헤어케어	기온 지수	강수/ 습도 지수	풍속 지수	미세먼지 지수
Time:	2018-01-01	100	4051	243		8137	2742	-4.224586	-2.880586	-0.51514927	0.05140376
	2018-01-02	108	4999	425		9659	3392	-4.119653	-2.629586	0.06208944	-1.16783476
2018 ~	÷			:		:			:	:	:
2019	2019-12-30	215	5249	347		8043	3411	-2.838804	1.438220	4.034096	4.034096
****	2019-12-31	283	4678	316		6401	2576	-5.430106	-2.629586	4.309431	4.309431

5.1 모델 선택 배경

시계열분석

• 시계열 데이터

: 시간의 경과에 따라서 얻어진 관측값/ 통계량으로 연속한 시간의 관측치가 연관되어 있음

X: 날씨 정보 → 시계열 데이터

Y: 날짜별 구매건수 → 시계열 데이터

분석

기온, 강수/ 습도, 풍속, 미세먼지 지수							
일반(비시계열) 모형	시계열 모형						
날씨 지수(X) ↓ 제품군별 구매량(Y)	날씨 지수(X), 제품군별 과거 구매량(Yt-i) ↓ 제품군별 현재 구매량(Yt)						
제품군별 구매량 예측							

5.1 모델 선택 배경

시계열분석

• 다변량 반응변수

제품군
$$\mathbf{2}$$

공기청정기 $y_1 = \begin{pmatrix} y_{2,1} \\ \vdots \\ y_{2,730} \end{pmatrix}$

제품군 28 해어케어
$$y_{28} = \begin{pmatrix} y_{28,1} \\ \vdots \\ y_{28,730} \end{pmatrix}$$

• 제품군 사이의 연관성

서로 강한 상관관계를 가지는 제품군 존재

5.2 모델 비교

모델 비교

데이터 특성 모형	설명변수	시계열성	다변량	Y 간 연관성
다중회귀모형	0	X	X	X
Random Forest	0	X	0	Х
ARIMA	X (외생변수)	0	X	X
ARIMAX	O (외생변수)	0	X	Х
VARX	O (외생변수)	0	0	0

→ 최종적으로 시계열성, 외생변수, 다변량 반응변수를 동시에 고려해 분석할 수 있는 VARX 모형을 선택.

VARX (Vector AutoRegressive with Exogenous Model)

회귀 분석에서 선택된 제품군 29개를 하나의 벡터로 만들어 한 번에 시계열 분석을 시행.

5.3 VARX

VARX

$$Y_t = \sum_{i=1}^p \Theta_i Y_{t-i} + \sum_{j=1}^n \beta_j X_j + \varepsilon_t$$
 (p: number of lag, n: number og exogenous)

 Y_t : 제품군별 t 시점 구매량 벡터, X_j : 날씨변수 (기온지수, 강수/ 습도지수, 풍속지수, 미세먼지지수), $arepsilon_t$: t 시점 오차벡터

VARX 적용 시계열 데이터 예측 사례

(금융 데이터: 통화정책 효과 예측)

	Y:	: 내생면수	**	• X: 외생변 •	个 •
날짜	지역총생산 $(GRDP_i)$	소비자 물가지수 (<i>CPI</i> _i)	:	기준금리 (<i>SR</i> _t)	
2018-01	3.6	104.45	•	1.5	•••
:	:	:	•••	:	•••

구매량 예측에 **VARX** 모델 적용

		,••• Y : 제 :	뚴군╞	별 구매건수 🔩	X:	X: 날씨 지수 •••		
	날짜	갑각류 (Y ₁)		헤어케어 (Y ₂₈)	기온지수 (X ₁)		미세먼지지수 (X_4)	
.••	2018-01-01	100	•••	2742	-4.2245	•••	0.0514	
Time : 2018	2018-01-02	108	•••	3392	-4.1197	•••	-1.1678	
~ 2019								
****	2019-12-31	283	•••	2576	-5.4301	•••	4.3094	

5.3 VARX

VARX

 \mathbf{ACF}) 시계열 관측치 y_t 와 y_{t-k} 간 상관의 측도 유의한 큰 값이면 해당 시차에 대한 상관 有

제품군 여러 개를 한 번에 고려했을 때 시차에 대한 상관 있음

제품군을 동시에 모형화해야 함

다변량 반응변수 시계열 모형인 **VARX**를 사용

VAR select AR 차수 결정
AIC(Akaike Information Criterion) 비교

Model	AIC	
VARX(1,4)	290.678	AIC
VARX(2,4)	290.493	가장 작은 모형 선택
VARX(3,4)	290.624	

<u>외생변수(4개)</u> 기온지수, 강수/ 습도지수, 풍속지수, 미세먼지지수 <u>AR(2)</u>

→ **VARX(2,4)** 모형이 가장 적합

VARX

VARX

VARX VARX 모델을 사용하여 2019-06-28 구매량을 예측.

	제품군	예측 구매량		제품군	예측 구매량
1	갑각류	195.981	15	색조	1814.676
2	공기청정기	91.44391	16	선케어	676.3235
3	과일채소류음료	1364.001	17	선풍기	481.2186
4	기타.농산가공품류	193.3409	18	식육가공품	1908.954
5	기타음료	2431.978	19	어류	518.023
6	김치류	1069.625	20	에어컨	213.1371
7	난방기기	28.09676	21	연체류	751.4151
8	남성제품	315.3373	22	우유류	838.223
9	네일	1104.814	23	채소류	2254.805
10	다류	443.3668	24	축산물	246.3193
11	땅콩 또는 견과류 가공품류	269.8598	25	커피	2604.019
12	바디케어	1202.255	26	클렌징	1051.397
13	베이스	1430.925	27	페이셜케어	6360.275
14	뷰티기타	352.2093	28	헤어케어	3097.295

VARX

모델 예측 정확도(accuracy) 비교

- ✓ 시간의 흐름(시계열)을 반영하지 않은 모델 (Linear Pegression, Random Forest) 과 시간의 흐름을 반영한 모델 (ARIMAX, VARX) 비교
- ✓ 시계열 모델 예측 정확도가 더 우수함
- ✓ 시계열 모델 중 다변량을 반영한 모델 (VARX) 의 예측 정확도가 더 우수함
- ✓ 정확도 순서: VARX > ARIMAX > Linear Pegression > Pandom Forest

MODELS	RMSE		
Linear Regression	315.2934		
Random Forest	355.5274		
ARIMAX	282.2624		
VARX	272.6845		

RMSE: Root mean squared error

6 결과 활용방안 및 제안 6.1 VARX 모델 사용 예시

결과 활용방안 및 제안3.2 SNS 전략

SNS & 날씨 마케팅

(1) 날씨와 **SNS**에 영향을 받는 제품을 파악.

(2) 모델을 통하여 어떤 날씨의 제품의 구매량 예측.

(3) 제품의 주 소비층의 연령대를 파악.

(4) 주 소비층의 연령대가 많이 쓰는 SNS에 집중적으로 홍보를 한다면 효율적인 수익 창출 가능.

• 연령대 별 주 SNS 플랫폼

20대 90.1 52.4 7.8 4.6 20.5

30대 84.4 44.6 24.5 15.1 11.8

40대 60.7 46.7 46.4 36.4 13.2

□ 인스타그램 □ 페이스북 □ 밴드 □ 카카오스토리 □ 트위터 (출처: happist.com)

날씨에 따라 수요를 예측하여 적절한 시기에 **SNS**홍보를 시행. 주 소비층을 타겟팅 하여 홍보에 적절한 **SNS**플랫폼 선택.

결과 활용방안 및 제안 6.2 SNS 전략

• 구체적인 제안 방향 및 기대효과

• 날씨 데이터 + VARX 모델 = 주간 상품 구매 예측 활용

: 날씨를 고려한 예측을 통해 구매를 더 유도하고 싶은 제품에 대한 레시피 및 상품 판매 사이트를 함께 제안.

결과 활용방안 및 제안.2 SNS 전략

2019.6.28.	서울	흐림/ 비/ 안개/ 이슬비 22/ 29℃ ☆			° 😭
기온	풍속	미세먼지 초미세먼지		상대습도 강수량	
20° [℃]	2m/s	19 μg/m³	14 μg/m³	56%	4.5mm

구매 유도 제품 PICK 🚦

VARX (수요예측)

제품	키위	망고	감귤	•••
일별 예측 수요량	5	150	30	•••

SNS 홍보

망고 관련 레시피 & 재료 구매 사이트(Kurly SSG 🎎) 제시

ŧ

상품에 대한 관심도가 증가하여 구매 전환까지 이어질 것을 기대해 볼 수 있음.

3과 활용방안 및 제안 2.2 장바구니 전략

SNS & 날씨 마케팅

결과 활용방안 및 제안3.2 장바구니 전략

방안 및 기대효과

날씨로 인해 구매량이 저조할 것으로 예상되는 상품의 구매 증진을 위한 효과적인 해결 방안.

참고문헌

- 1. WILMS, Ines, et al. Interpretable vector autoregressions with exogenous time series. arXiv:1711.03623, 2017.
- 2. SEPTIANI, Ayu; SUMERTAJAYA, I. Made; AIDI, Muhammad Nur. Vector Autoregressive X (VARX) Modeling for Indonesian Macroeconomic Indicators and Handling Different Time Variations with Cubic Spline Interpolation. *Repositories-Dept. of Statistics, IPB University*, 2019, 175–180.
- 3. 김기호, et al. 통화정책 효과의 지역적 차이에 대한 분석. *보험금융연구*, 2015, 26.4: 3-37.
- 4. 한재윤, et al. 기계학습과 롤링 윈도우 기법을 활용한 주식시장 및 환율 예측 모델 구현. 한국지능정보시스템학회 학술대 회논문집, 2017, 69-70.

END