

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2019

MATHEMATICAL LITERACY P2 MARKING GUIDELINE

MARKS: 150

Symbol	Explanation
M	Method
M/A	Method with accuracy
MCA	Method with consistent accuracy
CA	Consistent accuracy
A	Accuracy
С	Conversion
S	Simplification
RT/RG/RM	Reading from a table OR Reading from a graph OR Read from map
F	Choosing the correct formula
SF	Substitution in a formula
J	Justification
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding Off OR Reason
AO	Answer only
NPR	No penalty for rounding

This marking guideline consists of 10 pages.

MARKING GUIDELINES

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out (cancelled) an attempt to a question and NOT redone the solution, mark the crossed out (cancelled version)
- Consistent accuracy (CA) applies in ALL aspects of the marking guidelines,
 however it stops at the second calculation error.
- If the candidate presents any extra solution when reading from a graph, table, layout plan and map, then penalise for every extra incorrect item presented.

LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek (kanselleer) en nie oordoen nie, merk die doodgetrekte (gekanselleerde) poging.
- Volgehoue akkuraatheid (CA) word in ALLE aspekte van die nasienriglyn toegepas, maar dit hou by die tweede berekeningsfout op.
- Wanneer 'n kandidaat aflesings vanaf 'n grafiek, tabel, uitlegplan en kaart geneem en ekstra antwoorde gee, penaliseer vir elke ekstra verkeerde item.

	FION 1 [37] Solution	Evalenation	Tonia
Ques.	Solution	Explanation	Topic & Level
1.1.1	Interest Amount = $R749\ 299,39 \times \frac{\checkmark M}{0,8125\%} \checkmark A$ = $R6\ 088,06$ OR	1RT Correct opening balance 1M Multiply 1A Monthly rate	L2 F
	Interest Amount = $R749\ 299,39 \times 0,008125$ = $R6\ 088,06$	(3)	
1.1.2	Monthly repayment = $\frac{750\ 000}{1\ 000\ \sqrt{M}} \times 8,59\ \sqrt{RT}$ = R6 442,50	1RT Home loan 1M Divided by 1 000 1RT Correct factor	L2 F
	$ √RT √RT $ Monthly repayment = 750 000 × 8,59 $ = \frac{6442500}{1000 √M} $ = R6 442,50	1RT Home loan 1RT Correct factor 1M Divided by 1 000	
1.1.3	Closing balance for Month 3 = R749 299,39 + R6 088,06 − R6 442,50 ✓ A = R748 944,95 ✓ A	1A Add and Subtract 1A Closing balance (2)	L2 F
1.1.4	Statement not valid $\checkmark R$ The shorter the loan period, the higher the monthly repayment $\checkmark R$ OR $\checkmark R$ The shorter the loan period, the higher the loan factor	1A Not valid 1R Shorter period 1R Higher MRP	L4 F
	No \checkmark A \checkmark R \checkmark R The loan factors are higher with shorter periods	1A No 1R Higher loan factor 1R Shorter periods	
1.1.5	Accept any other relevant response Amount at 119 months = R6 442,50 × 119 = R766 657,50 ✓ CA	1MA Multiplying correct values 1CA Amount	L4 F
	Difference = R766 657,50 − R750 000 ✓M = R16 657,50 ✓ CA Statement valid ✓O	1M Subtraction 1CA Difference 10 Valid (5)	
1.1.6	It will reduce the interest amount. Accept any other relevant response	2A Explanation (2)	L4 F
1.2.1	Volume = $2 \text{ m} \times 2 \text{ m} \times 0.3 \text{ m} \checkmark \text{SF}$ = $1.2 \text{ m}^3 \checkmark \text{CA}$	1SF Substitution 1C Convert mm to m 1CA Answer in m ³ (3)	M L2

1.0.0	1.2	C + 0 4 4 4	3.7
1.2.2	Bags of cement = $\frac{1,2}{0,26}$ \checkmark M	CA from 1.2.1	M
	$= 4.615384615 \times 2 \checkmark M$	1M Ratio concept	L3
	$= 9.2 \text{ bags } \checkmark \text{S}$	1 N () (14:12	
	≈ 10 bags ✓CA	1M Multiply by 2	
	OR	1S Simplification	
	0.26 = 2 bags	1R Number of bags	
	$1,2 = \frac{2}{1} \times \frac{1,2}{0,26} $ \checkmark M	1M Datio concept	
		1M Ratio concept	
	$= 9.2 \text{ bags } \checkmark \text{S}$	1M Multiply by 2	
	$= 10 \text{ bags } \checkmark \text{R}$	1M Multiply by 2	
		1S Simplification	
		1R Number of bags	
1 2 2	I :tf:t1-1 - 15 × 1 00	(4)	M
1.2.3	Litres of paint needed = $15 \times 1,08$	1MA Increased	M
	$= 16, 2 \text{ m}^2 \checkmark \text{MA}$	surface area	L3
	$=\frac{16,2}{5} \checkmark M$	1M Dividing by	
	= 3,24 litres	spread rate	
	$= 3,24 \text{ litres}$ $= 3,24 \text{ litres} \times 2$		
	- 5,24 fittes ∧ 2 6,48 ✓ CA	1CA Total number	
	$=\frac{-5,75}{5-litre\ tins}$	of litres	
	= 1,296 tins	1CA Number of 5-	
	Number of 5-litre tins = 2 tins \checkmark CA	litre tins	
	OR	nue uns	
	Litres of paint needed = $15 \times 108\%$	1MA Increased	
	$= 16.2 \text{ m}^2 \checkmark \text{MA}$	surface area	
	Two coats = 16.2×2	1CA Two coats	
	$= 32.4 \text{ m}^2 \checkmark \text{CA}$	1M Dividing	
	Number of 5-litre tins = $\frac{32,4}{4}$ \checkmark MM	1CA Number of 5-	
	5-litre tins	litre tins	
	= 6,6 litres	(4)	
1.2.1	$= 2 \times 5 \text{ litres } \checkmark \text{CA}$		T 2
1.3.1	Price for $2015 = 1\ 251\ 158,39 + (1\ 251\ 158,39 \times 0,05) \checkmark MA$	1MA Increase by 5%	L3
	$= 1251158,39 + 62557,9195 \checkmark S$	1S Simplification	F
	= R1 313 716,31 ✓CA	1CA Amount 2015	
	Dries for 2016 - 1 212 716 21 + (1 212 716 21 × 0.04)		
	Price for $2016 = 1313716,31 + (1313716,31 \times 0,04)$	104 4	
	= 1 313 716,31 + 52 548,65238 = P1 366 264 96 664	1CA Amount 2016	
	= R1 366 264,96 ✓CA		
	OR \checkmark_{M} \checkmark_{M} Price from $2015 - 2016 = 1\ 251\ 158,39 \times 1,05 \times 1,04 \checkmark_{S}$		
		(4)	
1 2 2	= R1 366 264,96 ✓ CA	1DC Subtract correct	1.2
1.3.2	✓RG 1 598 366 77 –1 029 331	1RG Subtract correct	L3 F
	Percentage change = $\frac{1598366,77 - 1029331}{1029331} \times 100\%$	values 1RG Correct	Г
	1 029 331 VRG 569 035,77	denominator	
	$= \frac{569035,77}{1029331} \times 100\%$		
		1S Simplification 1R Nearest %	
	= 0,5528 × 100% ✓S	TIX INCATEST 70	
	= 55% ✓R	(4)	
		[39]	
		[39]	

on Topic and Level ct 7,5% L2
-
cation F
ole Income
(3)
.1.1 L4
Rates of F
tution
cation
et rebate
et MAC
al tax
ol fees × 11
al School
(9)
ng correct L2
P
lity
et from 100
bility (2)
act from L3
D
. %
culate %
for 2004 in
for 1911
et
rence
(7)
: 1911 L2
red D
1911
red
2004 (3)
increase L4
decrease

2.3.1	Number of people = $(25 \times 2) + 17$	1MA × 2 and addition	L2
	$= 50 + 17 \checkmark MA$	1CA Number of	D
	= 67 people ✓ CA	people (2)	
2.3.2	Cost for Option $1 = 1500 + (250 \times 67)$	CA from 2.3.1	L4
	= 1 500 + 16 750	1MCA Adding and	F
	= R 18 250 ✓ CA	Multiplying	
	Cost for Option 2 \checkmark MA \checkmark MCA Cost for couples = $0.96 \times 270 \times 50$	1CA Option 1 cost	
	= R12 950 ✓CA	1MA % decrease	
	Cost for singles = 270×17	1MCA × 50	
	= R4 590 ✓ CA	1CA Couples cost	
	Total for couples and singles = R12 950 + R4 590	1CA Singles cost	
	= R 17 550 ✓ CA		
	Statement invalid ✓O	1CA Option 2 cost	
		10 Invalid (8)	
		[36]	

OUES	ΓΙΟΝ 3 [39]		
Ques.	Solution	Explanation	Topic
		_	and
			Level
3.1.1	North West OR West of North ✓✓A	2A Direction	M&PL2
3.1.2		1A Measure scale	M&PL3
3.1.2	Scale: $3.8 \text{ cm} = 20 \text{ miles}$	1A Measured distance	MATLS
	Distance = $8.6 \text{ cm} \checkmark \text{A}$	1M Dividing and	
		multiplying	
	Actual distance = $\frac{20}{3.8} \times 8.6 \checkmark M$	1CA Distance to 3 dec places	
	= 45,263 miles ✓ CA	Scale Measured Accept	
		3,6 – 4 cm	
		Measured distance Accept	
		8,4 – 8,8 cm	
2.1.2	20 20 1	(4)	3.6
3.1.3	3,8 cm = 20 miles Convert miles to kilometres = 20 miles × 1.600	CA from 3.1.2	M
	Convert miles to kilometres = 20 miles \times 1,609 = 32,18 km \checkmark MA	1MA Convert to miles to km 1MA Convert km to cm	L3
	$-32,18 \text{ km } \checkmark \text{MA}$ Convert km to cm = 32,18 × 100 000	1S Simplification	
	$= 3.218 \ 0.00 \ \text{cm} \ \checkmark \text{MA}$	1R Nearest million	
	Unit scale = 3,8 cm : 3 218 000 cm	Penalise for units in unit	
	= 1 cm : 848 842,1053 \(\sigma \)S	ratio	
	≈ 1 : 1 000 000 ✓ R	(4)	
3.1.4	Noise pollution	2R Reason	M&PL4
	OR		
	Air pollution ✓✓ R		
	OR		
	Danger ✓ ✓ R		
	OR Length of runways ✓✓ R		
	Accept any other relevant answer	(2)	
3.1.5	A 61	2A Road (2)	M&PL2
3.1.6	Distance = Speed × Time	1SF Substitution	M
	78 miles = 40 miles per hour × Time ✓SF	1M Changing subject of the	L4
	$\frac{\sqrt{M}}{\text{Time}} = \frac{78}{12}$	formula	
	40	1S Time in hours	
	= 1,95 hours ✓S	1C Time in hours and min	
	Time in hours and minutes = 1h 57 minutes \checkmark C	1M Adding times	
	Arrival time = $07:20 + 1:57 \checkmark M$	1CA Arrival time	
	= 09:17 ✓CA	1O Invalid	
	Statement invalid ✓O	1M Changing subject of the	
	OR Distance	formula	
	$Time = \frac{Distance}{Speed} \checkmark M$	1SF Substitution	
		1S Time in hours	
	$Time = \frac{78}{40} \checkmark SF$	1C Time in hours and min	
	= 1,95 hours ✓S	1M Travel time	
	= 1h 57 minutes \checkmark C	10 Not valid	
	Travel time = 7:20 to 9:15	1O 2 min late	
	$= 1h 55 \text{ minutes } \checkmark M$	(7)	
	Not valid, she will be 2 minutes late ✓O	(7)	

3.2.1	Range = Highest – Lowest	1M Concept of	D
	15° C = 13° C − Lowest \checkmark M	range	L2
	Lowest = $13^{\circ}\text{C} - 15^{\circ}\text{C} \checkmark \text{RT}$	1RT Correct	
	= -2°C ✓ A	values	
		1A Lowest	
		value (3)	
3.2.2 (a)	Mistakes:		D
	Data was not arranged ✓A	1A Mistake 1	L3
	Calculation was done without using the BODMAS-rule ✓A	1A Mistake 2	
	 	(2)	
3.2.2 (b)	Correction:	(-)	D
	3; 4; 6; 7; 10; 13; 14; 19; 19; 22; 24; 24 ✓ M	1M Arrange	L3
		data ascending	20
	$Median = \frac{13 + 14}{2}$	or descending	
	$=\frac{27}{2}^{2}$	or descending	
	$-\frac{2}{2}$	1A Median (2)	
	= 13,5 °C ✓A	()	
3.2.3	June, July and August ✓A	1A Correct	D
	Minimum temperatures are high \checkmark R	months	L4
	Maximum temperatures are high ✓ R	1R Min high	
		1R Max high	
		(3)	
3.2.4	Probability = $\frac{5\sqrt{A}}{12\sqrt{A}}$	CA from 3.2.1	P
	12* A	1A Numerator	L2
	= 0,4166	1A Denominator	
	$=0.417\checkmark$ CA	1CA 3 dec places	
		(3)	
3.2.5		CA from 3.2.1	D
	Average Minimum and Maximum	1CA January	L2
	temperatures in Frankfurt	1A Feb – Apr	
		1A May – Jul	
	30	1A Aug – Nov	
	25	1A Dec	
	g, 20	IN DCC	
	the 15		
	es 15		
	and 10 A A A A A A A A A A A A A A A A A A		
	⊢ 5 ∕ A		
	0		
	-5 Jan Afeb Mar Apr May Jun Jul Aug Sep Oct Nov Dec A		
	Months	(5)	
		[39]	

QUES	ΓΙΟΝ 4 [38]		
Ques.	Solution	Explanation	Topic and Level
4.1.1	Area of unshaded part	1SF Correct values	M
	= Area of rectangle – Area of $\triangle 1$ – Area of $\triangle 2$	for rectangle	L3
	= (Length × Width) – $(\frac{1}{2}$ × base × height) – $(\frac{1}{2}$ × base × height)	1SF Correct values	
		▲ 1	
	$= (130 \text{ cm} \times 25 \text{ cm}) - (0.5 \times 50 \text{ cm} \times 25 \text{ cm}) - (0.5 \times 50 \text{ cm} \times 15 \text{ cm})$	1SF Correct values	
	$= 3 250 \text{ cm}^2 - 625 \text{ cm}^2 - 375 \text{ cm}^2 \checkmark \text{M} \checkmark \text{S}$	for $\triangle 2$	
	$= 2 250 \text{ cm}^2 \checkmark \text{CA} \times 5 \checkmark \text{M}$	1M Subtracting	
	Total area = $11\ 250\ \text{cm}^2\ \checkmark\text{CA}$	1S Simplification	
	OR	1CA Area of	
	Area of rectangle = Length \times Width	unshaded part 1M Multiply by 5	
	Area of 5 panels = $130 \text{ cm} \times 25 \text{ cm} \checkmark \text{SF}$	1CA Total area	
	$= 32 500 \text{ cm}^2 \times 5 \checkmark \text{M}$ = 16 250 \text{ cm}^2 \sqrt{CA}	OR	
		1SF Correct values	
	Area of $\blacktriangle 1$ (5 panels) = $\frac{1}{2} \times \text{base} \times \text{height}$	for rectangle	
	$= 0.5 \times 50 \text{ cm} \times 25 \text{ cm} \times 5 \checkmark \text{SF}$	1M Multiply by 5	
	$= 3 125 \text{ cm}^2 \checkmark \text{CA}$	1CA Area of rec	
	Area of $\triangle 2$ (5 panele) = $\frac{1}{2} \times \text{base} \times \text{height}$	1SF Correct values	
	$= 0.5 \times 50 \text{ cm} \times 15 \text{ cm} \times 5$	▲ 1	
	$= 1.875 \text{ cm}^2 \checkmark \text{CA}$	1CA Area of ▲1	
	Total Area = $16\ 250\ \text{cm}^2 - 3\ 125\ \text{cm}^2 - 1\ 875\ \text{cm}^2 \checkmark \text{M}$	1CA Area of ▲2	
	$= 11 \ 250 \ \text{cm}^2 \ \checkmark \text{CA}$	1M Subtracting	
		1CA Area of	
		unshaded part (8)	
4.1.2	To glue the seams together	2R Reason	M
	OR	(2)	L4
4.1.2	To paste sides together ✓ R	(2)	1.40 D
4.1.3	Diagram T – A ring should be attached to the wide side of the	1A Explain	M&P
	hot air balloon ✓A	Diagram T	L2
	Diagram U − A paper clip to be attached to the ring ✓ A	1A Explain	
111	To blow hat air in balloon	Diagram U (2)	M & D
4.1.4	To blow hot air in balloon	2R Reason (2)	M&P L4
4.2.1	√√A	2A Temperature	M&P
	When the temperature increases, the lift of the hot air balloon is	increases	L4
	higher. $\checkmark\checkmark$ A	2A Hot air balloon	
	\checkmark A OR \checkmark A	higher	
	When the temperature decreases, the lift of the hot air balloon is		
	lower.	(4)	

4.2.2	Air Density of Hot air balloon B = $\frac{0.972 + 0.946}{2}$ = $\frac{1.918}{2}^{2} \checkmark MA$	1MA Concept of average	M L4
	$= 0.959 \text{ kg/m}^3 \checkmark \text{CA}$	1CA Air Density	
	Lift = (Air density outside of the hot air balloon – Air density inside hot air balloon) × Volume of the hot air balloon ✓RT ✓RT Lift = (1,204 kg/m³ – 0,959 kg/m³) × 2 400 m³ ✓SF = 0,245 kg/m³ ✓S × 2 400 m³ = 588 kg ✓CA	1RT Correct outside air density 1RT Correct inside air density 1SF Substitution 1S Simplification 1CA Lift (7)	
4.2.3	Probability = $\frac{33+12}{93}$	1A Numerator	P
1.2.3	Probability $-\frac{1}{45}$	1A Denominator	L2
	From $A = \frac{45}{93} \checkmark A$ $= \frac{15}{31} \checkmark CA$	1CA Common	
	$=\frac{15}{\sqrt{CA}}$	fraction in the	
	31	simplest form (3)	
4.2	Assemble detice = 1 020 × 4 mights × 4 magnle (A	1 A A mights v A	Б
4.3	Accommodation = 1030×4 nights $\times 4$ people $\checkmark A$ = $R16480 \checkmark CA$	1A 4 nights × 4 1CA Cost for	F L3
	Hot air balloon rides = $750 - (750 \times 0.15) \checkmark MA$	accommodation	L3
	= 750 - 112,50	1MA Less 15%	
	, and the second	1S Cost per person	
	Cost per person = $R637,50 \times 4$	1CA Cost for rides	
	= R2 550 ✓ CA		
	Total cost in Rand = $R16480 + R2550$	1CA Total cost	
	= R19 030 ✓ CA	1C Dividing	
	Cost in USD = $\frac{19030}{13,63}$ \checkmark C	1CA Cost in USD	
	= \$1 396, 184886 ✓ CA	1M Multiply 1CA Cost in Turkish	
	Cost in Turkish Lira = \$1 396,184886 × 5,25 ✓ M	Lira	
	= 7 329,97 Turkish Lira ✓CA	(10)	
		[39]	
		TOTAL:	150