generally used to improve the numerical stability of some calculations. Some models, such as PLS (Sects. 6.3 and 12.4), benefit from the predictors being on a common scale. The only real downside to these transformations is a loss of interpretability of the individual values since the data are no longer in the original units.

Transformations to Resolve Skewness

Another common reason for transformations is to remove distributional skewness. An un-skewed distribution is one that is roughly symmetric. This means that the probability of falling on either side of the distribution's mean is roughly equal. A right-skewed distribution has a large number of points on the left side of the distribution (smaller values) than on the right side (larger values). For example, the cell segmentation data contain a predictor that measures the standard deviation of the intensity of the pixels in the actin filaments. In the natural units, the data exhibit a strong right skewness; there is a greater concentration of data points at relatively small values and small number of large values. Figure 3.2 shows a histogram of the data in the natural units (left panel).

A general rule of thumb to consider is that skewed data whose ratio of the highest value to the lowest value is greater than 20 have significant skewness. Also, the skewness statistic can be used as a diagnostic. If the predictor distribution is roughly symmetric, the skewness values will be close to zero. As the distribution becomes more right skewed, the skewness statistic becomes larger. Similarly, as the distribution becomes more left skewed, the value becomes negative. The formula for the sample skewness statistic is

skewness =
$$\frac{\sum (x_i - \overline{x})^3}{(n-1)v^{3/2}}$$
where $v = \frac{\sum (x_i - \overline{x})^2}{(n-1)}$,

where x is the predictor variable, n is the number of values, and \overline{x} is the sample mean of the predictor. For the actin filament data shown in Fig. 3.2, the skewness statistic was calculated to be 2.39 while the ratio to the largest and smallest value was 870.

Replacing the data with the log, square root, or inverse may help to remove the skew. For the data in Fig. 3.2, the right panel shows the distribution of the data once a log transformation has been applied. After the transformation, the distribution is not entirely symmetric but these data are better behaved than when they were in the natural units.

Fig. 3.2: Left: a histogram of the standard deviation of the intensity of the pixels in actin filaments. This predictor has a strong right skewness with a concentration of points with low values. For this variable, the ratio of the smallest to largest value is 870 and a skewness value of 2.39. Right: the same data after a log transformation. The skewness value for the logged data was -0.4

Alternatively, statistical methods can be used to empirically identify an appropriate transformation. Box and Cox (1964) propose a family of transformations³ that are indexed by a parameter, denoted as λ :

$$x^* = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0\\ \log(x) & \text{if } \lambda = 0 \end{cases}$$

In addition to the log transformation, this family can identify square transformation ($\lambda=2$), square root ($\lambda=0.5$), inverse ($\lambda=-1$), and others in-between. Using the training data, λ can be estimated. Box and Cox (1964) show how to use maximum likelihood estimation to determine the transformation parameter. This procedure would be applied independently to each predictor data that contain values greater than zero.

For the segmentation data, 69 predictors were not transformed due to zero or negative values and 3 predictors had λ estimates within 1 ± 0.02 , so no transformation was applied. The remaining 44 predictors had values estimated between -2 and 2. For example, the predictor data shown in Fig. 3.2 have an estimated transformation value of 0.1, indicating the log

 $^{^3}$ Some readers familiar with Box and Cox (1964) will know that this transformation was developed for outcome data while Box and Tidwell (1962) describe similar methods for transforming a set of predictors in a linear model. Our experience is that the Box–Cox transformation is more straightforward, less prone to numerical issues, and just as effective for transforming individual predictor variables.

Fig. 3.3: Left: a histogram of the cell perimeter predictor. Right: the same data after a Box–Cox transformation with λ estimated to be -1.1

transformation is reasonable. Another predictor, the estimated cell perimeter, had a λ estimate of -1.1. For these data, the original and transformed values are shown in Fig. 3.3.

3.3 Data Transformations for Multiple Predictors

These transformations act on groups of predictors, typically the entire set under consideration. Of primary importance are methods to resolve outliers and reduce the dimension of the data.

Transformations to Resolve Outliers

We will generally define outliers as samples that are exceptionally far from the mainstream of the data. Under certain assumptions, there are formal statistical definitions of an outlier. Even with a thorough understanding of the data, outliers can be hard to define. However, we can often identify an unusual value by looking at a figure. When one or more samples are suspected to be outliers, the first step is to make sure that the values are scientifically valid (e.g., positive blood pressure) and that no data recording errors have occurred. Great care should be taken not to hastily remove or change values, especially if the sample size is small. With small sample sizes, apparent outliers might be a result of a skewed distribution where there are not yet