Tema 1. Programación Paralela y sus aplicaciones

Materia: Tópico II. (Procesamiento Paralelo con CUDA)

Dra. Sandra Luz Canchola Magdaleno

U.A.Q. Fac. de Informática

Correo: sandra.canchola@uaq.mx

Introducción

Existen problemas que requieren alto poder de procesamiento.

Recuperación de Información

Aplicaciones financieras

Imágenes médicas y biofísicas

CAD/CAM/CAE

Tecnologías de manejo

Energía y exploración petrolera

Creación de Contenidos Digitales

Modelado y predicción de clima

Video juegos

Vehículos no tripulados

Introducción

Se pueden realizar diversas plataformas para programación

Computadoras portátiles

Servidores

Tabletas & Teléfonos inteligentes

Computadoras de escritorio

Sistemas embebidos

Computación paralela

- Es el uso de computadoras paralelas para reducir el tiempo de ejecución necesario para resolver un problema computacional.
- Ahora es una forma estandar para resolver problemas en áreas como modelación de clima, dinámica molecular, evolución de galaxias,.....

Computacion paralela

Tecnologías de GPGPU

(General-purpose computing on graphics processing units)

- Unidades de procesamiento gráfico de propósito general.
- Procesadores vectoriales.
- Fabricantes: nVidia, ATI, Intel...
- La idea es aprovechar las unidades aritméticas y lógicas de los GPU's para hacer computaciones de alto rendimiento.

Tecnologías de GPGPU

GPGPU - Procesadores vectoriales

- Procesador escalar opera sobre números sencillos (escalares).
- Procesadores vectoriales operan en vectores de números.

GPGPU - Procesadores vectoriales

Beneficios de los procesadores vectoriales

- Compacto: una simple instrucción define N operaciones.
 - Ademas reduce la frecuencia de saltos.
- Paralelo: N operaciones son paralelas en datos.
 - No hay dependencias.
 - No se requiere de HW para detectar paralelismo.
 - Puede ejecutar en paralelo asumiento N flujos de datos paralelos.
- Usa patrones de acceso a memoria continua.

CPU vs GPU

CPU

- Baja latencia de memoria.
- Acceso aleatorio.
- 20GB/s ancho de banda.
- 0.1Tflop.
- 1Gflop/watt
- Procesador escalar
- Modelo de programación altamente conocido.

GPU

- Gran ancho de banda.
- Acceso secuencial.
- 100GB/s ancho de banda.
- 1Tflop.
- 10 Gflop/watt
- Procesador vectorial
- Modelo de programación <u>muy</u> poco conocido.

CPU vs GPU

Lista del top500 de super computadoras

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,194.00	1,679.82	22,703
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,824,768	238.70	304.47	7,404
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
6	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438
7	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93.01	125.44	15,371

June 2023

The 61st TOP500 List was published June 1, 2023 in Hamburg, Germany.

Computación paralela en GPU (ATI-AMD)

■ Tarjetas: ATI Radeon Disponible en laptops, desktops, servidores y nodos para clusters

ATI Radeon

GPU en los servidores actuales

- Coprocesadores del CPU.
- Conexión PCIe (8GB/s) por direccion.
- Memoria independiente del GPU (gran ancho de banda local, hasta 100GB/s).

Configuraciones de HW

Computación paralela en GPU

- Lenguajes de programación:
 - CUDA: C, C++ (nVidia) y CUDA Fortran (PGI)
 - OpenCL: Consorcio Kronos.
 - DirectCompute: C (Microsoft).
 - Brook+: C,C++ (Standford University).
 - OpenACC (PGI, CRAY, CAPS y nVidia)

Conceptos generales

Computación secuencial

Conceptos generales

Computación secuencial

Conceptos generales

Computación paralela

Computadora paralela

- Computadora con múltiples procesadores que soporta programación paralela. Hay dos categorias importantes de computadoras paralelas: multicomputadoras y multiprocesadores centralizados.
- Multicomputadora: es una computadora paralela construida por múltiples computadoras y una red de interconección.
- Multiprocesador centralizado: (o SMP) es un sistema más integrado donde todos los CPU comparten el acceso a una memoria global.

Programación paralela

Es la programación en un lenguaje que permita indicar explicitamente como distintas partes de una computación pueden ejecutarse concurrentemente por diferentes procesadores.

- El modelo de programación paralela es una abstracción de la arquitectura de la computadora paralela.
 - Memoria compartida: Multithreading (pthreads, OpenMP, CUDA, OpenCL).
 - Memoria distribuida: Paso de mensajes (MPI).

Programación paralela

- Detalles a considerar:
 - Control
 - Synchronization
 - Communication
- Los lenguajes de programación ofrecen diferentes formas de trabajar con éstas.

Paralelización

Hardware Compilador Lenguajes Bibliotecas

Arquitecturas

Directivas del compilador

Sentencias del lenguaje Funciones de sincronización, manejo de seccion crítica,...

Acceleration of algorithms

- Only three options:
 - 1. Increase clock speed
 Faster technologies, already at limit
 - 2. Reduce number of instructions

 Better compilers, better algorithms, simplified algorithms
 - 3. Increase CPI- Clock cycles Per Instruction
 Better architectures, parallel execution of instructions

sandra.canchola@uaq.mx 25

Extensión para variaciones en frecuencia

Fabricantes han incorporado el control de cambio de

frecuencia en sus procesadores

Turbo Core

Precision Boost

Turbo Boost

Procesadores con cambio de frecuencia

Ley de Amdahl

Gene Amdahl publica en 1967 su artículo:

Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference. ACM, 1967. p. 483-485.

Se puede predecir la aceleración de un programa paralelo conociendo su parte secuencial.

Ley de Amdahl

Ley de Amdahl

Tiempo de ejecución de un programa secuencial

$$T(N,1) = \sigma(N) + \rho(N)$$

- $\sigma(N)$ Tiempo de ejecución de la parte inherentemente secuencial
- ho(N) Tiempo de ejecución de la parte potencialmente paralela
- Tiempo de ejecución de un programa paralelo

$$T(N,p) = \sigma(N) + \frac{\rho(N)}{p} + \kappa(N,p)$$

 $\kappa(N,p) \geq 0$ Tiempo de ejecución del *overhead* producido por la paralelización

p es el número de procesadores

Que es GPGPU?

- Computación de propósito general usando GPU y API de gráficas en aplicación es distintas a gráficos en 3D.
 - GPU acelera la trayectoria crítica de una aplicación.
- Algoritmos paralelos sobre datos aprovechan los atributos del GPU.
 - Grandes arreglos de datos, rendimiendo de "streaming".
 - Paralelismo de grano fino SIMD.
 - Computaciones de punto flotante de baja latencia.
- Aplicaciones ver //GPGPU.org
 - Efectos físicos de video juegos (FX), procesamiento de imágenes.
 - Modelado físico, ingeniería computacional, algebra matricial, convolución, correlación, ordenamientos.

CUDA

- "Compute Unified Device Architecture"
- Modelo de programación de propósito general
 - El usuario inicializa conjuntos de threads en el GPU
 - GPU = super-threaded dedicado para procesamiento masivo de datos (co-processor)
- Conjunto de software dedicado
 - Manejadores de dispositivos, lenguaje y herramientas.
- Manejador para carga de programas al GPU
 - Manejador Independiente Optimizado para computaciones
 - Interfaz diseñada para computaciones API no gráfica
 - Comparte datos con objetos OpenGL en buffer
 - Aceleración garantizada en los accesos a memoria
 - Manejo explicito de la memoria del GPU

Computación paralela en GPU

- Diversas Familias de Tarjetas: Fermi, Keppler, Maxwell, Pascal, Volta, ...
- Productos que manejan CUDA (
 http://developer.nvidia.com/cuda-gpus
 gpus
 - Disponible en laptops, desktops, servidores y nodos paraclusters

Ciclo de diseño de aplicaciones APOD

- Requerimientos para correr CUDA
 - Tarjeta nVidia (Tecnologia, Fermi, Keppler, Maxwel, Pascal) http://developer.nvidia.com/cuda-gpus
 - Quadro
 - GeForce
 - Tesla
 - Embedded
 - Link
 - Manejador de tarjeta (Driver)
 - Kit de desarrollo de nVidia (Cuda Developer) http://developer.nvidia.com/cuda-toolkit

Código secuencial (host)

Kernel paralelo (device)
KernelA<<< nBlk, nTid >>>(args);

Código Secuencial (host)

Kernel paralelo (device)
KernelB<<< nBlk, nTid >>>(args);

Conceptos de programación

Thread (hilo). Es la unidad básica de control y ejecución del programa.

Block (bloques). Es un conjunto de hilos.

Grid. Es el arreglo de control para un código que contiene bloques de

hilos.

Conceptos de programación

Indices:

- a) De hilos: threadldx.x, threadldx.y, threadldx.z
- b) De bloques: blockldx.x, blockldx.y, blockldx.z

De la configuración de ejecución:

a) Del grid (Número de bloques que contiene en cada dimensión):

gridDim.x, gridDim.y, gridDim.z

b) Del bloque (Número de hilos que contiene en cada dimensión):

blockDim.x, blockDim.y, blockDim.z

Extensiones a C

■ Declspecs

global, device, shared, local, constant

■ Palabras clave

- threadIdx, blockIdx

Escencial

– __syncthreads

■ Runtime API

Memory, symbol, execution management

■ Funcion de lanzamiento

```
device float filter[N];
global void convolve (float *image) {
  shared float region[M];
  region[threadIdx] = image[i];
  syncthreads()
  image[j] = result;
// Allocate GPU memory
void *myimage = cudaMalloc(bytes)
```

Extensiones a C

Integrated source (foo.cu)

cudaccEDG C/C++ frontendOpen64 Global Optimizer

GPU Assembly

CPU Host Code foo.cpp

OCG

gcc / cl

G80 SASS foo.sass

Mark Murphy, "NVIDIA's Experience with Open64,"

www.capsl.udel.edu/conferences/open64/2008/Papers/101.doc

Memoria compartida en paralelo

BIBLIOGRAFÍA

- "Taller Computación Paralela" Dr. Amilcar Meneses Viveros (UNAM) Dic. 2018
 http://computacion.cs.cinvestav.mx/%7Eameneses/index.html
- Sitio: "Introduction to Parallel Computing Tutorial"
 Lawrence Livermore National Laboratory (EUA)
 https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
- Sitio "CUDA Toolkit Documentation"

NVIDIA

https://docs.nvidia.com/cuda/index.html