Calculus A(1): Homework 3

October 23, 2021

1.2

Problem 93.

For what value of k is the line 2x + ky = 3 perpendicular to the line 4x + y = 1? For what value of k are the lines parallel?

Solution 93.

For any line y = ax + b, a is the slope and b is the y-intercept. $2x + ky = 3 \Leftrightarrow y = -\frac{2}{k}x + \frac{3}{k}$, $4x + y = 1 \Leftrightarrow y = -4x + 1.$

If the lines are perpendicular, then $-\frac{2}{k}\cdot(-4)=-1\Rightarrow k=-8$. If the lines are parallel, then $-\frac{2}{k}=-4\Rightarrow k=1/2$.

1.3

Problem 22.

Graph |x| + |y| = 1 and |x + y| = 1 and explain why they are not graphs of functions of x.

Solution 22.

Graph of |x| + |y| = 1: Graph of |x + y| = 1:

Since $\exists a \text{ s.t. } x = a \text{ and the each of the graphs have two intersections, neither are functions.}$

Problem 27.

Find a formula for each function graphed.

Solution 27.

(a)
$$y = \begin{cases} x, & 0 \le x \le 1 \\ 2-x, & 1 < x \le 2 \end{cases}$$

(b)
$$y = \begin{cases} 2, & 0 \le x < 1 \lor 2 \le x < 3 \\ 0, & 1 \le x < 2 \lor 3 \le x \le 4 \end{cases}$$

1.5

Problem 50.

The accompanying figure shows the graph of a function g(t) with domain [-4,0] and range [-3,0]. Find the domains and ranges of the following functions, and sketch their graphs.

$$\mathbf{a}.\,g(-t) \quad \mathbf{b}.\,-g(t) \quad \mathbf{c}.\,g(t) + 3 \quad \mathbf{d}.\,1 - g(t) \quad \mathbf{e}.\,g(-t+2) \quad \mathbf{f}.\,g(t-2) \quad \mathbf{g}.\,g(1-t) \quad \mathbf{h}.\,-g(t-4)$$

Solution 50.

function	domain	range	graph
g(-t)	[0, 4]	[-3, 0]	a 1 2 4 b. 960 1 C. 960 13 1 3 01 360 14
-g(t)	[-4, 0]	[0, 3]	0 1 13 13 14
g(t)+3	[-4, 0]	[0, 3]	
1-g(t)	[-4, 0]	[1, 4]	-3+ yegg-14-20 >2 -4 -20 >2
g(-t+2)	[2, 6]	[-3, 0]	e. 1 2 4 6 fiz 1 2 2 3 1 2 4 6 hy
g(t-2)	[-2, 2]	[-3, 0]	Jeglen 1
g(1-t)	[1, 5]	[-3, 0]	
-g(t-4)	[0, 4]	[0, 3]	-3+ 4=9(-4+2) +-3 3+ 4=3(1-t) of 1 4 >>

2

Problem 69.

Graph the function $y = |x^2 - 1|$

Solution 69.

Problem 79.

Assume that is an even function, g is an odd function, and both and g are defined on the entire real line \mathbb{R} . Which of the following (where defined) are even? odd?

a.
$$fg$$
 b. f/g **c.** g/f **d.** $f^2 = ff$ **e.** $g^2 = gg$ **f.** $f \circ g$ **g.** $g \circ f$ **h.** $f \circ f$ **i.** $g \circ g$

Solution 79.

1.6

Problem 49.

Find the value of $\sin^2 \frac{\pi}{12}$

Solution 49.

$$\sin^2 \frac{\pi}{12} = \frac{1 - \cos \frac{\pi}{6}}{2} = \frac{2 - \sqrt{3}}{4}$$

Problem 53.

Apply the law of cosines to the triangle in the accompanying figure to derive the formula for $\cos (A - B)$.

Solution 53.

Let $P_A = (\cos A, \sin A), P_B = (\cos B, \sin B).$

On one hand,

$$|P_A P_B|^2 = 1^2 + 1^2 - 2(1)(1)\cos(A - B) = 2 - 2\cos(A - B)$$

On the other hand,

$$|P_A P_B|^2 = (\cos A - \cos B)^2 + (\sin A - \sin B)^2$$

= $\cos^2 A - 2\cos A\cos B + \cos^2 B + \sin^2 A - 2\sin A\sin B + \sin^2 B$
= $2 - 2\cos A\cos B - 2\sin A\sin B$

Thus,

$$2 - 2\cos A\cos B - 2\sin A\sin B = 2 - 2\cos (A - B) \Rightarrow \cos (A - B) = \cos A\cos B + \sin A\sin B$$

Problem 57.

The law of sines The law of sines says that if a,b and c are the sides of opposite the angles A, B and C in a triangle, then

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Use the accompanying figures and the identity $\sin(\pi - \theta) = \sin \theta$ if required, to derive the law.

Solution 57.

Consider the area of that triangle, and denote $S_{\triangle ABC}$ as the area of $\triangle ABC$. Case $\triangle ABC$ is an acute triangle, $S_{\triangle ABC} = \frac{1}{2}ah = \frac{1}{2}ab\sin C$ Case $\triangle ABC$ is an obtuse triangle, $S_{\triangle ABC} = \frac{1}{2}ah = \frac{1}{2}ab\sin (\pi - C) = \frac{1}{2}ab\sin C$ Similarly, $S_{\triangle ABC} = \frac{1}{2}bc\sin A$, $S_{\triangle ABC} = \frac{1}{2}ca\sin B$. Hence, $\frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B \Rightarrow \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.