Formulas from the Lesson on Light

1. Law of Reflection

Formula:

$$\theta_i = \theta_r$$

Where:

- θ_i = Angle of incidence
- θ_r = Angle of reflection

Example:

A light ray strikes a mirror at an angle of 30°. What will be the angle of reflection? **Solution:**

Using the law of reflection:

$$\theta_r = \theta_i = 30^{\circ}$$

So, the angle of reflection is 30°.

2. Distance of Image in a Plane Mirror

Formula:

$$d_o = d_i$$

Where:

- d_o = Distance of the object from the mirror
- d_i = Distance of the image behind the mirror

Example:

If a person stands **2 meters** in front of a plane mirror, where is the image located? **Solution:**

$$d_i = d_o = 2$$
 meters

So, the image is formed 2 meters behind the mirror.

3. Speed of Light

Formula:

$$c = 3.0 \times 10^8 \text{ m/s}$$

Where:

• c = Speed of light in vacuum or air

Speed of light in different media:

• Vacuum/Air: $3.0 \times 10^8 m/s$

• Water: $2.25 \times 10^8 m/s$

• Glass: $2.0 \times 10^8 m/s$

Example:

If light takes 2×10^{-9} seconds to travel through a 60 cm glass slab, what is the speed of light in the glass?

Solution:

Speed =
$$\frac{\text{Distance}}{\text{Time}} = \frac{0.60}{2 \times 10^{-9}} = 3.0 \times 10^8 \text{ m/s}$$

So, the speed of light in glass is ** $3.0 \times 10^8 m/s^{**}$.

4. Refractive Index

Formula:

$$n = \frac{c}{v}$$

Where:

- n = Refractive index
- c = Speed of light in vacuum
- v = Speed of light in the medium

Example:

The speed of light in water is ** $2.25 \times 10^8 m/s$. What is the refractive index of water? **Solution:

$$n = \frac{3.0 \times 10^8}{2.25 \times 10^8} = 1.33$$

5. Relation Between Wavelength, Frequency, and Speed of Light

Formula:

$$c = \lambda f$$

Where:

- c = Speed of light
- λ = Wavelength of light (in meters)
- f = Frequency of light (in Hertz)

Example:

If the frequency of red light is ** 4.3×10^{14} Hz**, what is its wavelength? Solution:

$$\lambda = \frac{c}{f} = \frac{3.0 \times 10^8}{4.3 \times 10^{14}}$$

$$= 7.0 \times 10^{-7} \text{ m} = 700 \text{ nm}$$

So, the wavelength of red light is 700 nm.

6. Lateral Inversion (Image Reversal)

Formula:

$$M = -1$$

Where:

• M = Magnification (negative sign indicates inversion)

Example:

The word "AMBULANCE" is written in reverse on the front of an ambulance so that it appears correctly in a rear-view mirror.

7. Colour Subtraction

Formula:

White light – absorbed colour = reflected colour

Example:

If a cloth absorbs **red** and reflects **blue and green**, what colour does it appear? **Solution:**

White
$$- \text{Red} = \text{Cyan}(\text{Blue} + \text{Green})$$

So, the cloth appears cyan.

8. Image Distance in a Plane Mirror

Formula:

$$h_i = h_o$$

Where:

- h_i = Height of the image
- h_o = Height of the object

Example:

If a person is **1.6 meters** tall, what is the height of their image in a plane mirror? **Solution:**

$$h_i = h_o = 1.6 \text{ m}$$

So, the image height is 1.6 meters.

9. Multiple Reflections

Formula for Number of Images Formed by Two Mirrors at an Angle \theta:

$$N = \frac{360^{\circ}}{\theta} - 1$$

Example:

Two mirrors are placed at an angle of **90**°. How many images will be formed? **Solution:**

$$N = \frac{360^{\circ}}{90^{\circ}} - 1 = 4 - 1 = 3$$

10. Magnification Formula

Formula:

$$M = \frac{\text{Height of image}(h_i)}{\text{Height of object}(h_o)}$$

$$M = \frac{\text{Image Distance}(d_i)}{\text{Object Distance}(d_o)}$$

Example:

If an object 10 cm tall is placed 20 cm in front of a plane mirror, what is the size of its image?

Solution:

$$M = \frac{h_i}{h_o} = 1 \Rightarrow h_i = 10 \text{ cm}$$

So, the image height is 10 cm.

Final Notes

These formulas are essential for solving problems related to light, reflection, and image formation. Let me know if you need more practice questions!