Administrative

MATLAB1

- –See `SubmittingProjects' folder for details on submitting
- HW based on today's lecture is in today's folder - due next Monday
 - -Photos of two of the problems are uploaded separately
- Change in office hours
 - -See doodle poll →

Tuesday 12-2 (current)	Thursday 3-5	Friday 1-3	Friday 3-5
2	8	8	9
		~	~
(<)		~	~
	~		~
	~	~	~
~		<>	~
	~		
			~
	~		~
	~	~	
	~	~	
	~	<>	⇔
	~	~	~

EE-125: Digital Signal Processing

Lecture 4: Fourier Transform, Sampling review

Professor Tracey

Lecture 4: Outline

- Continue with Discrete-time Fourier transform (DTFT)
 - -Transform pairs
 - Symmetry properties
 - Other properties
- Sampling theory
 - Matlab2 explores this topic

Reminder: different transforms

CT CT Fourier series $x(t), c_k$ $x(t), X(f)$ DT DT Fourier series $x(n), c_k$ $x(n), x(n)$ $x(n), x(n)$ $x(n), x(n)$ $x(n), x(n)$ $x(n), x(n)$ $x(n)$		Periodic	Aperiodic	
	CT		•	
	DT			—Our focus now

Definition of the DTFT:

$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n)e^{-j\omega n}$$
$$x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{j\omega n} d\omega$$

Relationship of Z to DTFT

Consequence of this:

DTFT is 2 pi periodic in radian frequency w

Figure 4.2.9 relationship between X(z) and $X(\omega)$ for the sequence in Example 4.2.4, with A=1 and L=10

Transform pairs – more info

1) Transform pair video at https://youtu.be/F1qfDnVNWPY

2) DemoDTFT codes on Trunk with today's notes - Each has a line marked 'CHANGE THIS NUMBER' with the parameter you want to vary

Fourier transform pairs – boxcar in frequency (Table 4.6 in book)

REMEMBER: REPEATS EVERY 2p

Form: sin() / time

Fourier transform pairs – boxcar in time (Table 4.6 in book)

Form: sin() / sin ()

Why?

Fourier transform pairs - Pulse trains (see book)

See book for derivation: result is

$$x(n) = \sum_{k=-\infty}^{\infty} \delta(n - kM) \iff X(\omega) = \frac{2\pi}{M} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_M)$$

where
$$\omega_M \equiv \frac{2\pi}{M}$$

$$\frac{\text{M=32}}{\text{Pulse train in time, M=32}}$$
Pulse train in time, M=8 $\frac{1}{M}$
Pulse train in time, M=8 $\frac{1}{M}$
Pulse train in (mail in (mai

DTFT Symmetry Properties

Figure 4.4.2 Summary of symmetry properties for the Fourier transform.

•Most important: the FT of a real signal has a complex conjugate F.T. i.e. $H(w)^* = H(-w)$. Will appear on exams! (and real life)

DTFT Symmetry Properties

Figure 4.4.2 Summary of symmetry properties for the Fourier transform.

•Most important: the FT of a real signal has a complex conjugate F.T. i.e. $H(w)^* = H(-w)$. Will appear on exams! (and real life)

DTFT properties (see P&M Table 4.5)

- Linearity: a x1(n) + b x2(n) <-> a X1(w) + b X2(w)
- Time shifting: x(n-k) <-> exp(-j w k) X(w)
- Frequency shift: $\exp(j w0 n) x(n) < > X(w-w0)$
- Time reversal: x(-n) <-> X(-w)
- Parseval: S(energy in time) = S (energy in frequency)
- Convolution and multiplication relations Very useful!

Convolution <-> Multiplication

•Say p(n) has the following transform, P(w):

Which of these is the Fourier transform of p(n) * p(n) ?

Convolution <-> Multiplication

p*p is convolution in time – so multiply in frequency

Note: Linear systems can attenuate or boost response at a frequency, but can't shift energy to new frequencies

What is Fourier transform of p * p ?

Lecture 4: Outline

- Finish Discrete-time Fourier transform (DTFT)
 - Definition
 - Useful transform pairs
 - Symmetry properties
 - Other properties
- Sampling theory

Questions (from last lecture)

Continuous time (CT)
$$x(t)$$
, $X(f)$

- 1) How are CT quantities (time t, frequency f) related to DT quantities (sample n, radial frequency w)?
- 2) How does the process of sampling affect the frequency response?

Practical A/D: Sample and Hold

Figure 6.3.1 (a) Block diagram of basic elements of an A/D converter; (b) time-domain response of an ideal S/H circuit.

Practical A/D: quantization

- A/D output is in integer "counts", or levels
- Spacing of levels is the quantization step: D = (Xmax-Xmin)/(L-1) for L levels (figure shows L=8)

Lots more detail in P&M 6.3

Figure 6.3.3 Example of a midtread quantizer.

