

UNIVERSIDAD DE ANTIOQUIA

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Cursos de Servicios para Ingeniería

Alumno:					
Asignatura: Álgebra line	al	Profesor: Holmes Chavarria			
Parcial # 2	Valor: 25 %	Fecha:			

Instrucciones: El examen tiene una duración de 1 hora y 50 minutos. No está permitido sacar ningún tipo de documento durante el examen. Realice los procedimientos de forma clara y ordenada.

- 1. (25%) Responda falso o verdadero y justifique brevemente.
 - a) La matriz de transición no depende de las bases.
 - b) La proyección ortogonal sobre un subespacio de \mathbb{R}^n no depende de la base ortogonal.
 - c) Si A es una matriz $n \times n$ tal que $\rho(A) = 0$ entonces R_A^{\perp} es el espacio \mathbb{R}^n .
 - $d)\,$ Las filas de una matriz A son ortogonales a los elementos de N_A
 - e) Si V es un espacio con producto interno y $x,y \in V$ entonces $|< x,y>| \leq ||x||||y||$

2.
$$(25\%)$$
 Sea $z = \begin{bmatrix} 3 \\ 2 \\ 3 \\ 1 \end{bmatrix}$. Encuentre la proyección ortogonal de z sobre $W = \left\{ \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} : y = 3x, z = -2w \right\}$.

Encuentre también la descomposición ortogonal.

3. (15%) Sea
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in \mathbb{R}^4 : x = -2z, w = -2y \right\}$$
 Halle una base para W^{\perp} .

4. (10%) Sean $B = \{2, x, 3x - x^2\}$ y $C = \{1, 3x, 7 - x^2\}$ bases de \mathbb{P}_2 . Encuentre $A_{C \to B}$.

 $5.~(25\,\%)$ La siguiente tabla muestra la población de la tierra desde 1950 hasta 2010, según la oficina de censo de los Estados Unidos.

Año	1950	1960	1970	1980	1990	2000	2010
Población (en millones)	2500	3000	3500	4500	5100	6000	6800

Se estima que nuestro planeta tendría capacidad máxima para 26000 millones de humanos. Suponiendo un modelo exponencial use mínimos cuadrados para encontrar el año en que la población de humanos llegaría a la capacidad máxima del planeta .