Preliminar notes on maximum-flow problem solved in FCPP. Notation:

 \bullet G will denote the directed weighted graph of capacities, s and t will denote respectively source and sink of our graph.

We will assume that capacities are nonnegative and symmetrical.

• For a path \mathfrak{p} we will denote with $|\mathfrak{p}|$ its length.

When it will be convenient, we will treat a directed weighted graph G as a function $G: V \times V \to \mathbb{R}_+$, where V is its set of vertices. With a little abuse of notation we will say that the edge from a node δ to a node δ' is in G, or $(\delta, \delta') \in G$, in place of $G(\delta, \delta') \neq 0$.

Likewise we will say that a path \mathfrak{p} is contained in G, or $\mathfrak{p} \subset G$, if every edg

• For a field Φ , \mathcal{R}_{Φ} will denote the directed weighted graph of residual capacities respect to Φ :

$$\mathcal{R} = G - \Phi \tag{1}$$

• We define a dmissible path respect to Φ a path γ in G from source to sink such that

$$\Phi|_{\gamma} < G|_{\gamma}$$

• We say that a flow Φ is maximal if there are no admissible paths in G respect to Φ .

Proposizione 0.1. Φ is a maximum flow iff \mathcal{R}_{Φ} does not have paths from source to sink.

For a field-value f in δ we define $|f| := \sum_{\delta \sim \delta'} f(\delta')$. We now formalize functions involved in the algorithm. Let Φ be a field and $\delta \sim \delta'$ be devices, we define

$$\Phi^*(\delta, \delta') := \Phi(\delta', \delta)$$
. By co-induction:

$$\begin{split} &\Phi_0 := \Phi \\ &\mathcal{R}_n := \mathcal{R}_{\Phi_n} \\ &e_n(\delta) := \begin{cases} \infty & \text{if } \delta = s \\ -\infty & \text{if } \delta = t \\ |\Phi_n(\delta)| & \text{otherwise} \end{cases} \\ &d_0(\delta) := \begin{cases} 0 & \text{if } \delta = t \\ \infty & \text{otherwise} \end{cases} \\ &d_n(\delta) := \begin{cases} 0 & \text{if } \delta = t \\ \min \{d_{n-1}(\delta') + 1 \mid \mathcal{R}_{n-1}(\delta, \delta') > 0\} & \text{otherwise} \end{cases} \\ &I_{n+1} := \operatorname{trunc}(\mathcal{R}_n \cdot (d_n^* < d_{n+1}), e(\Phi_n^*)) \\ &\Phi_{n+1} := -\Phi_n^* + I_{n+1} + \operatorname{trunc}(\Phi_n^* \ , \ e(\Phi_n^* - I_{n+1})) \\ &X_n := \{\delta \mid d_n(\delta) = \infty\} \end{split}$$

Lemma 0.2. Eventually $\{X_n\}_n$ stabilizes to a set of devices X.

Proof. For every $n \in \mathbb{N}$ let's consider the set $T_n = \{\delta \mid \mathrm{dist}_G(\delta,t) \leq n\}$. We prove by induction that for $\delta \not\in T_n$ we have $d_n(\delta) = \infty$. Base step: $T_0 = \{t\}$, and condition on d_0 holds by definition. Inductive step: suppose that $\forall \delta' \not\in T_{n-1} \ d_{n-1}(\delta') = \infty$ and consider a $\delta \not\in T_n$. We have $d_n(\delta) = \min\{d_{n-1}(\delta') + 1 \mid \mathcal{R}_{n-1}(\delta,\delta') > 0\}$ and since no $\delta' \sim \delta$ is in T_{n-1} , condition on d_n holds by inductive hypothesis.

As a consequence, for a $\delta \in T_n$

$$d_n(\delta) = \min_{\delta' \in T_n} \left\{ d_{n-1}(\delta') + 1 \mid \mathcal{R}_{n-1}(\delta, \delta') > 0 \right\}$$

Now we want to show by induction that $\forall n \ X_n \cap T_n \subseteq X_{n+1} \cap T_{n+1}$. Base step: $X_0 \cap T_0 = \emptyset$ and we're done. Inductive step: let δ be a device in $X_n \cap T_n$ and $\delta' \in T_n$ such that $\delta' \sim \delta$. We have $d_{n-1}(\delta') = \infty \vee \mathcal{R}_{n-1}(\delta, \delta') = 0$. If $d_{n-1}(\delta') = \infty$ then $d_n(\delta') = 0$.

We have $d_{n-1}(\delta') = \infty \vee \mathcal{R}_{n-1}(\delta, \delta') = 0$. If $d_{n-1}(\delta') = \infty$ then $d_n(\delta') = \infty$ by inductive hypothesis. Otherwise let's suppose $d_{n-1}(\delta') < \infty$ and $d_n(\delta') < \infty$

$$\forall \delta' \sim \delta \quad \mathcal{R}_{n-1}(\delta, \delta') \cdot (d_{n-1}(\delta') < d_n(\delta)) = 0$$

and thus $I_n(\delta)$ is a zero field-value. So we have