## **Introduction to Machine Learning with Apache Spark**

## **Module 1: Get Started with Machine Learning**

Welcome! This alphabetized glossary contains many terms you will find in this course. This comprehensive glossary also includes additional industry-recognized terms not used in course videos. These terms are essential for you to recognize when working in the industry, participating in user groups, and participating in other certificate programs.

| Terms                           | Definition                                                                                                                                                                            | Video                                               |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Al (Artificial<br>Intelligence) | The field of computer science aims to create intelligent machines that can mimic human cognitive functions.                                                                           | Introduction to<br>Machine Learning<br>for Everyone |
| Anomaly Detection               | An application of clustering that focuses on identifying data points that are unusual, abnormal, or deviate significantly from the established patterns or clusters.                  | Clustering                                          |
| Augmented Intelligence          | The concept of using AI technologies to enhance and augment human capabilities allows experts to scale their abilities while machines manage time-consuming tasks.                    | Generative AI<br>Overview and Use<br>Cases          |
| Categorical data                | Non-numeric data that represent categories or labels.                                                                                                                                 | Supervised vs<br>Unsupervised<br>Learning           |
| Classification                  | A supervised learning technique that predicts the class or category of a case, such as classifying a cell as benign or malignant.                                                     | Introduction to Machine Learning for Everyone       |
| Classifier                      | A machine learning algorithm or model is used to solve classification problems by learning patterns and making predictions about the class of new, unseen data.                       | Classification                                      |
| Cluster Centroid                | Cluster centroid refers to a cluster's representative or central point in a clustering algorithm. It is calculated as the mean or median of the data points assigned to that cluster. | Clustering                                          |
| Clustering                      | An unsupervised learning technique that groups similar cases together based on their features, aiming to identify patterns or clusters within the data.                               | Introduction to<br>Machine Learning<br>for Everyone |
| Confusion Matrix                | A table that summarizes a classification model's performance by showing the counts of true positives, true negatives, false positives, and false negatives.                           | Evaluating Machine<br>Learning Models               |



| Decision Tree                      | A predictive model that uses a tree-like structure to                                           | Regression                      |
|------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------|
|                                    | make decisions or predictions based on input                                                    | J                               |
| <u> </u>                           | features.                                                                                       |                                 |
| Deep learning                      | An exceptional field of machine learning where                                                  | Introduction to                 |
|                                    | computers can learn and make intelligent decisions independently.                               | Machine Learning for Everyone   |
| Density Estimation                 | An unsupervised learning technique that focuses                                                 | Supervised vs                   |
|                                    | on estimating the underlying probability density                                                | Unsupervised                    |
|                                    | function of a dataset.                                                                          | Learning                        |
| Dependent variable                 | The continuous variable that is being predicted,                                                | Supervised vs                   |
|                                    | explained, or estimated based on the input or                                                   | Unsupervised                    |
| Dimensianality                     | independent variables                                                                           | Learning                        |
| Dimensionality Reduction           | An unsupervised learning technique is used to reduce the number of input features while         | Supervised vs<br>Unsupervised   |
| reduction                          | preserving valuable information.                                                                | Learning                        |
| Eager Learner                      | A type of classification algorithm that spends time                                             | Classification                  |
|                                    | training and generalizing the model, making it                                                  |                                 |
|                                    | faster in predicting test data. Examples include                                                |                                 |
| Ethical Concessor                  | decision trees and logistic regression.                                                         | Congretive                      |
| Ethical Concerns                   | Issues and considerations related to the responsible and ethical use of AI, including           | Generative Al Application and   |
|                                    | potential misuse of Al-generated content and                                                    | Examples                        |
|                                    | implications for intellectual property and copyright                                            | Examples                        |
|                                    | laws.                                                                                           |                                 |
| <b>Euclidean Distance</b>          | Euclidean distance is a measure of distance or                                                  | Clustering                      |
|                                    | similarity between two data points in a                                                         |                                 |
| Everage Transform and              | multidimensional space.                                                                         | Machine Learning                |
| Extract, Transform, and Load (ETL) | The process within the machine learning model lifecycle refers to the data collection and       | Model Lifecycle                 |
| Loud (LTL)                         | preparation stage.                                                                              | Woder Energeic                  |
| F1-Score                           | A metric that combines precision and recalls into a                                             | Evaluating Machine              |
|                                    | single value to assess a classification model's                                                 | Learning Models                 |
|                                    | overall performance. It is calculated as the                                                    |                                 |
|                                    | harmonic mean of precision and recall, providing a                                              |                                 |
|                                    | balanced measure when both metrics are equally important.                                       |                                 |
| Feature Engineering                | The process of creating new features or                                                         | Role of data                    |
| <b>.</b>                           | representations from existing data to enhance the                                               | Engineering in                  |
|                                    | performance and predictive capabilities of machine                                              | Machine learning                |
| <u> </u>                           | learning models.                                                                                | D   (   )                       |
| Feature extraction                 | The process in which relevant information or                                                    | Role of data                    |
|                                    | characteristics are extracted from raw data and transformed into a reduced and more informative | Engineering in Machine learning |
|                                    | representation, known as features                                                               | wide inite learning             |
| Generative Al                      | A technology that uses machine learning and deep                                                | Generative AI                   |
|                                    | learning techniques to generate original content                                                | Application and                 |
|                                    | based on patterns learned during training, enabling                                             | Examples                        |



|                                     | software applications to create and simulate new                                                                                                                                                                                 |                                               |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                     | content.                                                                                                                                                                                                                         |                                               |
| Gradient Boosting                   | A machine learning technique that builds an ensemble of weak models like decision trees sequentially, where each subsequent model focuses on correcting the errors made by the previous models.                                  | Regression                                    |
| Image Segmentation                  | Image segmentation is an application of clustering                                                                                                                                                                               | Clustering                                    |
| illiage Segmentation                | that involves dividing images into categories based on color, content, or other features.                                                                                                                                        | Clustering                                    |
| Independent variable                | A variable that is used to explain, predict, or estimate the value of the dependent variable.                                                                                                                                    | Supervised vs<br>Unsupervised<br>Learning     |
| K-means Algorithm                   | The K-means algorithm is a popular clustering algorithm that aims to divide a dataset into K clusters, where K is a user-specified parameter.                                                                                    | Clustering                                    |
| k-nearest neighbor<br>(KNN)         | A lazy learner algorithm is used for classification. It classifies unknown data points by finding the k most similar examples in the training set and assigning the majority class among those neighbors to the test data point. | Classification                                |
| Large Language Model (LLM)          | A type of artificial intelligence model based on deep learning techniques designed to process and generate natural language, which can be incorporated into Generative AI systems.                                               | Generative AI<br>Overview and Use<br>Cases    |
| Lazy Learner                        | A type of classification algorithm that does not have a specific training phase. It waits until it receives test data before making predictions, often resulting in longer prediction times.                                     | Classification                                |
| Line of Best Fit                    | A straight line represents the best approximation of<br>the relationship between two variables in a scatter<br>plot.                                                                                                             | Regression                                    |
| Machine learning                    | The subfield of computer science gives computers the ability to learn from data without being explicitly programmed.                                                                                                             | Introduction to Machine Learning for Everyone |
| Machine Learning<br>Model Lifecycle | The end-to-end process involved developing, deploying, and maintaining a machine learning                                                                                                                                        | Machine Learning<br>Model Lifecycle           |
| Market Basket Analysis              | model.  An unsupervised learning technique used to identify associations or relationships between items in a dataset.                                                                                                            | Supervised vs<br>Unsupervised<br>Learning     |
| Mean Absolute Error<br>(MAE)        | A metric that uses the absolute differences between the predicted and actual values. It calculates the average of the absolute values of the errors.                                                                             | Evaluating Machine<br>Learning Models         |





| Madal Danlaymant  | The present of making the trained machine             | Machinal carning           |
|-------------------|-------------------------------------------------------|----------------------------|
| Model Deployment  | The process of making the trained machine             | Machine Learning           |
|                   | learning model available for use in a production      | Model Lifecycle            |
| Naturallanguage   | environment or real-world application.                | lindricality at the second |
| Natural language  | The field of study that focuses on enabling           | Introduction to            |
| processing        | computers to understand and process human             | Machine Learning           |
|                   | language, both written and spoken.                    | for Everyone               |
| Neural Networks   | A class of machine learning models inspired by the    | Regression                 |
|                   | structure and functioning of biological neural        |                            |
|                   | networks. Neural networks consist of                  |                            |
|                   | interconnected nodes (neurons) organized in layers    |                            |
|                   | and are capable of learning complex patterns from     |                            |
|                   | data. They are used for regression tasks as well as   |                            |
|                   | other types of problems.                              |                            |
| Precision         | A metric that measures the fraction of true           | Evaluating Machine         |
|                   | positives among all examples predicted to be          | Learning Models            |
|                   | positive by a classification model.                   |                            |
| Random Forest     | An ensemble learning method that combines             | Regression                 |
|                   | multiple decision trees to create a predictive        |                            |
|                   | model.                                                |                            |
| Recall            | Also known as sensitivity or true positive rate,      | Evaluating Machine         |
|                   | recall measures the fraction of true positives        | Learning Models            |
|                   | among all actual positive examples.                   |                            |
| Recommendation    | Recommendation systems are applications of            | Clustering                 |
| Systems           | clustering that group related items or products       |                            |
|                   | based on customer behavior or preferences.            |                            |
| Regression        | A supervised learning technique that predicts         | Introduction to            |
|                   | continuous values based on input features, such as    | Machine Learning           |
|                   | predicting the price of a house based on its          | for Everyone               |
|                   | characteristics.                                      |                            |
| Root Mean Squared | The square root of the mean squared error. It has     | Evaluating Machine         |
| Error (RMSE)      | the same unit as the target variable and is easier to | Learning Models            |
|                   | interpret than MSE.                                   |                            |
| R-squared         | A metric that quantifies the proportion of variance   | Evaluating Machine         |
|                   | in the dependent variable that can be explained by    | Learning Models            |
|                   | the independent variable(s) in a regression model.    |                            |
|                   | It ranges from 0 to 1, with higher values indicating  |                            |
|                   | a better fit.                                         |                            |
| Scatter Plot      | A graphical representation of data points on a two-   | Regression                 |
|                   | dimensional coordinate system, where each point       |                            |
|                   | represents the values of two variables.               |                            |
| Slope             | The slope of the line of best fit represents the rate | Regression                 |
|                   | of change in the dependent variable for a unit        |                            |
|                   | change in the independent variable.                   |                            |
| Squared error     | A common metric used to evaluate the                  | Evaluating Machine         |
|                   |                                                       |                            |
| •                 | performance of regression models. It measures the     | Learning Models            |



|                                    | predicted values and the actual values of the target variable.                                                                                                                               |                                               |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Supervised learning                | A category of machine learning where the model is trained using labeled data with known input-output pairs.                                                                                  | Introduction to Machine Learning for Everyone |
| Support Vector<br>Regression (SVR) | A regression technique that uses support vector machines to create a hyperplane or line that best fits the data points.                                                                      | Regression                                    |
| Train/Test Split                   | The process of dividing a dataset into two separate sets: a training set used to train a machine learning model and a test set used to evaluate the model's performance on new, unseen data. | Evaluating Machine<br>Learning Models         |
| Unsupervised learning              | A category of machine learning where the model is trained using unlabeled data, and the algorithms detect patterns and relationships within the data.                                        | Introduction to Machine Learning for Everyone |

