Lezioni di Matematica Discreta

Antonino Salibra Università Ca'Foscari Venezia 12 Agosto 2013 ore 16

Queste dispense non sono sufficienti per la preparazione dell'esame di Matematica Discreta Modulo I.

NOTAZIONI:

- 1. $\mathbb{N} = \{0, 1, 2, 3...\}$ è l'insieme dei numeri naturali.
- 2. $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, +1, +2, +3 \ldots\}$ è l'insieme dei numeri interi.
- 3. $\mathbb{Q} = \{n/m : n, m \in \mathbb{Z}\}$ è l'insieme dei numeri razionali.
- 4. \mathbb{R} è l'insieme dei numeri reali.
- 5. Se n è un numero naturale, allora $\hat{n} = \{1, 2, \dots, n\}$.
- 6. Se X è un insieme, allora $\mathcal{P}(X)$ è l'insieme delle parti di X ovvero l'insieme dei suoi sottoinsiemi.
- 7. Y^X denota l'insieme delle funzioni da X in Y.
- 8. Se X è un insieme, allora |X| denota la sua cardinalità.
- 9. Se A è un alfabeto finito, A^* denota l'insieme delle stringhe o parole su A.
- 10. Se A è un alfabeto finito, A_n^* denota l'insieme delle stringhe su A di lunghezza n.
- 11. Se a è un carattere, a^n denota la stringa aa...a (n volte).
- 12. Se R è una relazione di equivalenza su X e $a \in X$, allora $[a]_R$ denota la classe di equivalenza di a.
- 13. $\binom{n}{k}$ denota il coefficiente binomiale n su k.

1. Perché la matematica è importante?

1.1. Dati semplici

Un tipo di dato è un insieme di elementi o dati con delle operazioni elementari su di essi. Nel seguito distinguiamo tra dati semplici e composti (o strutturati).

- Il tipo di dato Nat dei numeri naturali è costituito dall'insieme N dei naturali e le operazioni usuali di somma e prodotto. La sottrazione x-y è definita se $x \geq y$. Esempi di problemi: Determinare se il numero naturale x è primo. Scomporre x in fattori primi.
 - I numeri naturali si rappresentano come stringhe sull'alfabeto delle cifre.
- Il tipo di dato Int dei numeri interi è costituito dall'insieme Z degli interi e le operazioni usuali di somma, prodotto e sottrazione. La divisione x/y è definita solo se x è multiplo di y. I numeri interi si rappresentano in modulo e segno oppure in complemento a due.
- Il tipo di dato delle stringhe (o parole) su un alfabeto A è costituito dall'insieme A* delle stringhe su A e le operazioni di concatenazione di stringhe (per esempio, cane + stro =canestro), lunghezza di una stringa (per esempio, lunghezza di "cane" = 4), creazione di sottostringhe (per esempio, la sottostringa di "canestro" di lunghezza 4 a partire dal terzo carattere è uguale a "nest"), etc. Esempio di algoritmo su stringhe: Determinare se una stringa è palindroma, etc.

1.2. Dati composti

- Sequenze di dati semplici (per esempio, di stringhe o numeri) si rappresentano di solito con i vettori (se le sequenze hanno una lunghezza massima). Operazione tipica su una sequenza A di lunghezza minore o uguale ad n, è il recupero del valore A[i] che si trova nella posizione $i \leq n$ della sequenza. Algoritmi tipici sulle sequenze sono quelli di ordinamento e di ricerca.
 - Sequenze di dati semplici di lunghezza arbitraria possono essere rappresentate come liste. Per accedere ad un element in una lista bisogna scorrere la lista dall'inizio.
- Un grafo (come tipo di dati) è costituito da un insieme finito di nodi (o vertici) ed un insieme finito di archi (orientati o meno). Un arco orientato connette un nodo sorgente x ad un nodo target y e si disegna di solito con una freccia orientata da x verso y:

$$x \longrightarrow u$$

Un arco non orientato connette due nodi x, y e si disegna con un segmento che unisce x e y. In questo caso non vi è una direzione privilegiata:

$$x - y$$

I nodi di un grafo sono in genere etichettati da dati semplici, numeri o stringhe. Nodi differenti possono avere la stessa etichetta.

Un cammino in un grafo è una sequenza x_1, x_2, \ldots, x_n di nodi tale che, per ogni $1 \le i \le n-1$, esiste un arco che connette il nodo x_i al nodo x_{i+1} .

Il seguente è un esempio di grafo orientato:

Si noti che tre nodi distinti hanno la stessa etichetta.

- 1. L'orario degli esami [4, pagina 230]. Consideriamo un corso di laurea con n studenti e r corsi. Immaginiamo che gli esami siano scritti e che tutti gli studenti di un corso facciamo gli esami contemporaneamente. Due esami si possono svolgere lo stesso giorno se non hanno studenti in comune. Qual'è il numero minimo di giorni per svolgere tutti gli esami? Si costruisce un grafo i cui nodi sono etichettati dai nomi dei corsi; un arco connette il corso x al corso y se i due corsi hanno alcuni studenti in comune (e quindi gli esami non possono svolgersi lo stesso giorno). Il numero cromatico del grafo risultante corrisponde al numero minimo di giorni per svolgere gli esami. (Spiegazione del numero cromatico: coloriamo i nodi del grafo in maniera tale che due nodi adiacenti, cioè connessi da un arco, devono avere colori diversi. Il numero cromatico è il numero minimo di colori necessari).
- 2. Problema matematico: è possibile colorare una carta geografica planare con 4 colori in maniera tale che stati confinanti hanno colori diversi? Problema informatico: Scrivere un programma che prende in input una carta geografica e restituisce la carta colorata con quattro colori [4, pagina 230-1]. La carta geografica si rappresenta con un grafo i cui nodi rappresentano gli stati ed un arco non orientato connette il nodo (stato) x con il nodo (stato) y se esiste una linea di confine tra lo stato x e lo stato y. Per esempio:

Se consideriamo la carta geografica politica della terra come grafo, esiste un cammino che collega l'Italia all'Olanda:

ma non esiste un cammino che collega l'Italia al Canada perché i due paesi si trovano in continenti diversi non collegati da lembi di terra.

• Un albero (come tipo di dati) è un grafo finito in cui esiste un nodo, detto radice dell'albero, che verifica la seguente proprietà: per ogni altro nodo x nell'albero esiste uno ed un solo cammino che collega il nodo dato x alla radice dell'albero. Il seguente è l'albero genealogico del vostro professore a partire dal nodo radice, il mio bisnonno Luigi:

Dato un albero, il nodo x è figlio del nodo y se l'unico cammino che collega x alla radice r dell'albero ha la forma seguente x, y, \ldots, r . I figli di un nodo possono essere ordinati. Per esempio, se ordiniamo fratelli e sorelle in ordine decrescente di data di nascita otteniamo il seguente albero:

1. Ordinamento di sequenze di naturali: leggendo la sequenza da sinistra a destra pongo gli elementi su un albero binario ordinato. Esempio: data la sequenza 6,4,8,1,5,86,7,2, mi costruisco un albero binario ordinato (ogni nodo ha un figlio sinistro e/o un figlio destro), che ha il primo numero 6 come radice. Gli altri numeri vengono inseriti scendendo nell'albero a destra (a sinistra) se il numero è più piccolo (grande) del numero che etichetta il nodo in considerazione.

La sequenza ordinata in ordine crescente (decrescente) si recupera visitando i nodi dell'albero X da destra verso sinistra (da sinistra verso destra) secondo il seguente algoritmo ricorsivo.

```
\begin{split} & \textbf{Stampa-etichette}(\textbf{X}); \\ & \textbf{begin} \\ & \textbf{If } X \neq \textbf{albero-vuoto then} \\ & \textbf{begin} \\ & \textbf{Stampa-etichette}(\textbf{sottoalbero-destro}(\textbf{X})); \\ & \textbf{Stampa-etichetta-radice}(\textbf{X}); \\ & \textbf{Stampa-etichette}(\textbf{sottoalbero-sinistro}(\textbf{X})); \\ & \textbf{end}; \\ & \textbf{end} \end{split}
```

2. Il problema del minimo albero ricoprente di un grafo [4, Cap. 10, Sezione 5, pag.262]. Esempio: città connesse con cavi telefonici con costo della posa dei cavi.

In conclusione, i dati semplici o composti di un programma sono sempre *strutture finite*. La matematica discreta studia le proprietà matematiche di queste strutture finite che molto spesso sono essenziali alla comprensione del problema informatico. Si cerca di rispondere alla domanda: È vero che i grafi verificano la seguente proprietà? Per esempio, è vero che possiamo colorare un grafo planare con 4 colori?

2. Insiemi

La collezione dei dati in input (output) di un algoritmo è un *insieme*, che in generale è infinito, mentre l'insieme dei dati in input (output) di un programma in un linguaggio di programmazione è finito (la memoria del computer è finita!). L'insieme dei programmi sintatticamente corretti in un linguaggio di programmazione è un insieme infinito.

1. Definizione di un insieme finito tramite enumerazione dei suoi elementi [2, Cap.2]. Un insieme è una collezione di elementi. Gli elementi di un insieme finito vengono racchiusi tra parentesi graffe.

Example 2.1. Ogni numero naturale modulo 5 è congruo ad un elemento dell'insieme $\{0, 1, 2, 3, 4\}$.

2. Definizione di un insieme tramite una proprietà [2, Cap.2]. Esempi di proprietà: essere alto, essere un numero naturale, essere residente a Iesolo, etc. Data una fissata proprietà P ed un elemento x, si hanno esattamente due possibilità: x verifica la proprietà P oppure x non verifica la proprietà P. In matematica non esistono altre possibilità. Per esempio, Salibra non è alto e quindi non verifica la proprietà "essere alto", mentre 5 è un numero naturale, ossia 5 verifica la proprietà "essere un numero naturale". Data una proprietà possiamo definire l'insieme degli elementi che la verificano.

Example 2.2. Alcuni insiemi definiti da proprietà:

```
- \{n \mid n \ \hat{e} \ un \ multiplo \ di \ 11\}.
```

Al posto del simbolo "|" che significa "tali che" si può usare in modo equivalente il simbolo ":". Per esempio, $\{n : n \in n \in n \text{ in multiplo di } 11\}$.

Per risparmiare spazio e tempo, è preferibile dare nomi brevi agli insiemi:

```
    - X<sub>1</sub> = {n | n è un multiplo di 11}.
    - X<sub>2</sub> = {n | n è un uomo alto}.
    - X<sub>3</sub> = {n | n è dispari}.
```

Una proprietà si riferisce sempre ad una prefissata collezioni di elementi. Per esempio, nella definizione dell'insieme precedente la proprietà "essere dispari" divide l'insieme dei numeri naturali in due parti: i numeri naturali che verificano la proprietà: $1, 3, 5, \ldots$, e quelli che non la verificano: $2, 4, 6, \ldots$

A volte si utilizzano proprietà che determinano coppie di elementi (oppure triple, etc). Una coppia si scrive racchiudendo i due elementi tra parentesi tonde: (1,2) costituisce la coppia il cui primo elemento è 1 ed il secondo elemento è 2. In una coppia l'ordine degli elementi è importante. Le due coppie (1,2) e (2,1) sono diverse: $(1,2) \neq (2,1)$. Ecco alcuni insiemi di coppie ed insiemi di triple:

- $X_4 = \{(x, y) \mid x, y \text{ sono numeri naturali } e \ x < y\}.$
- $X_5 = \{(x, y) \mid x \text{ è padre di } y\}.$
- $X_6 = \{(x, y, z) \mid x, y, z \text{ sono numeri naturali } e \ x + y = z\}.$

Se X ed Y sono insiemi, l'insieme delle coppie con primo elemento in X e secondo elemento in Y si indica con $X \times Y$. L'insieme $X \times Y$ è detto prodotto Cartesiano di X e Y.

La relazione di appartenenza. Per esprimere l'appartenenza o meno di un elemento x ad un insieme A si usa il simbolo \in . Si scrive $x \in A$ se x è un elemento dell'insieme (appartiene all'insieme) A, mentre si scrive $x \notin A$ se x non è un elemento dell'insieme A. Quindi l'appartenenza è una relazione tra elementi ed insiemi.

Example 2.3.

- $3 \in \{0, 1, 2, 3, 4\}$ mentre $5 \notin \{0, 1, 2, 3, 4\}$.

Si considerino gli insiemi X_1, X_2, \dots, X_6 dell' Esempio 2.2. Allora si ha:

- $121 \in X_1$ mentre $5 \notin X_1$.
- Antonino Salibra $\notin X_2$.
- $1 \in X_3$, $ma\ 2 \notin X_3$.
- $(2,5) \in X_4$, $ma(5,2) \notin X_4$.
- (Luigi Salibra, Antonino Salibra) $\in X_5$.
- $(2,3,5) \in X_6$, $ma(2,3,6) \notin X_6$.

L'insieme vuoto. L'insieme che non ha elementi si indica con il simbolo \emptyset ed è detto insieme vuoto. L'insieme vuoto può essere definito da una proprietà:

$$\emptyset = \{x : x \neq x\}.$$

Singletons. Un insieme è un singleton se ha esattamente un elemento. Per esempio, gli insiemi $\{1\}$ e $\{a\}$ sono singletons.

La relazione di uguaglianza. Due insiemi sono uguali se hanno gli stessi elementi. Nota che l'ordine degli elementi in un insieme non è importante. Per esempio,

$$\{0,1,2,3,4\} = \{3,1,4,2,0\}.$$

3. La relazione di contenuto o uguale. Per esprimere che gli elementi di un insieme sono anche elementi di un altro insieme si utilizza il simbolo \subseteq . Si scrive $A \subseteq B$ se l'insieme A è contenuto o uguale all'insieme B mentre si scrive $A \not\subseteq B$ se A non è contenuto in B. Se $A \subseteq B$, si dice che A è un sottoinsieme di B. La relazione di contenuto o uguale è una relazione tra coppie di insiemi. Esempio: $\{2,4\} \subseteq \{0,1,2,3,4\}$ mentre $\{2,7\} \not\subseteq \{0,1,2,3,4\}$.

La relazione di contenuto o uguale è una relazione d'ordine parziale. Dato un insieme X, indichiamo con $\mathcal{P}(X)$ l'insieme di tutti i sottoinsiemi di X. L'insieme $\mathcal{P}(X)$ è detto insieme delle parti di X. Per esempio, se $X = \{0,1\}$, allora $\mathcal{P}(X) = \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$ è un insieme di 4 elementi.

L'insieme $\mathcal{P}(X)$ delle parti di X è parzialmente ordinato dalla relazione di contenuto o uguale. Per esempio, la relazione di \subseteq sulla'insieme $\mathcal{P}(\{0,1\})$ può essere rappresentata come un grafo orientato i cui nodi sono i sottoinsiemi di $\{0,1\}$ ed un arco orientato connette il nodo A al nodo B se $B \setminus A$ è un singleton. Quindi, per esempio, abbiamo

$$\{1\} \longrightarrow \{0,1\}$$

perché $\{0,1\} \setminus \{1\} = \{0\}$ è un singleton.

Se $X = \{0, 1, 2\}$ allora l'insieme $\mathcal{P}(X)$ delle parti è parzialmente ordinato come segue:

Dal diagramma capiamo che, per esempio, $\{1\} \subseteq \{0,1,2\}$ perchè c'è un cammino

$$\{1\} \longrightarrow \{1,2\} \longrightarrow \{0,1,2\}$$

che parte da $\{1\}$ ed arriva a $\{0,1,2\}$. Il cammino non è unico:

$$\{1\} \longrightarrow \{0,1\} \longrightarrow \{0,1,2\}$$

Osserviamo che l'insieme delle parti di un insieme di 2 elementi ha 4 elementi, e che l'insieme delle parti di un insieme di 3 elementi ha 8 elementi. Dimostreremo in seguito che l'insieme delle parti di un insieme di n elementi ha 2^n elementi.

4. L'algebra Booleana dei sottoinsiemi di un insieme X. Se A, B sono sottoinsiemi di X, definiamo la loro unione $A \cup B$ come segue:

$$A \cup B = \{x : x \in A \text{ oppure } x \in B\}.$$

Allora abbiamo che $A \subseteq A \cup B$ e $B \subseteq A \cup B$. Viceversa, se $x \in A \cup B$ allora $x \in A$ oppure $x \in B$. Per esempio, $\{0,1\} \cup \{1,3,4\} = \{0,1,3,4\}$.

L'intersezione $A \cap B$ di $A \in B$ è definita come segue:

$$A \cap B = \{x : x \in A \in x \in B\}$$

Allora abbiamo $A \cap B \subseteq A$ e $A \cap B \subseteq B$. Viceversa, se $x \in A$ e $x \in B$ allora $x \in A \cap B$. Per esempio, $\{0,1\} \cap \{1,3,4\} = \{1\}$.

La complementazione $X \setminus A$ di un sottoinsieme A di X è definita come segue:

$$X \setminus A = \{x : x \in X \in x \notin A\}$$

Allora abbiamo $(X \setminus A) \cap A = \emptyset$ e $A \cup (X \setminus A) = X$. Per esempio, $\{0, 1, 3, 4\} \setminus \{3, 4\} = \{0, 1\}$.

Le precedenti operazioni sono chiamate operazioni Booleane [2, Cap.2] e verificano le seguenti identità per ogni $A, B \in C$:

- Idempotenza: $A \cap A = A$; $A \cup A = A$
- Proprietà associativa: $(A \cap B) \cap C = A \cap (B \cap C)$; $(A \cup B) \cup C = A \cup (B \cup C)$
- Proprietà commutativa: $A \cap B = B \cap A$; $A \cup B = B \cup A$
- Assorbimento: $A \cup (A \cap B) = A$; $A \cap (A \cup B) = A$
- Distributività: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- Complementazione: $A \cup (X \setminus A) = X$; $A \cap (X \setminus A) = \emptyset$

Nei seguenti due esempi mostriamo come è possibile dimostrare enunciati del tipo "Per tutti i sottoinsiemi A, B, C di $X, A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ ".

Example 2.4. (Prima dimostrazione di uguaglianza di due espressioni insiemistiche) Sia X un insieme. Dimostrare che, per tutti i sottoinsiemi A, B di X, vale la sequente proprietà: $A \cup (A \cap B) = A$.

Soluzione: L'uguaglianza $A \cup (A \cap B) = A$ è vera se sono vere le seguenti due disuguaglianze: $A \cup (A \cap B) \subseteq A$ e $A \subseteq A \cup (A \cap B)$. Cominciamo con la dimostrazione della prima disuguaglianza:

Se $x \in A \cup (A \cap B)$ allora $x \in A$ oppure $x \in A \cap B$, per definizione dell'operatore insiemistico di unione. Nel primo caso abbiamo finito perché $x \in A$. Nel secondo caso da $x \in A \cap B$ deriviamo $x \in A$ e $x \in B$. Quindi in entrambi i casi deriviamo $x \in A$.

 $A \subseteq A \cup (A \cap B)$: Se $x \in A$ allora x appartiene ad ogni sovrainsieme di A, in particolare all'insieme $A \cup (A \cap B)$.

Example 2.5. (Seconda dimostrazione di uguaglianza di due espressioni insiemistiche) Sia X un insieme. Dimostrare che, per tutti i sottoinsiemi A, B, C di X, vale la proprietà distributiva: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Soluzione: Proviamo prima che $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Sia $x \in A \cup (B \cap C)$. Allora abbiamo due casi esaustivi: $x \in A$ oppure $x \in B \cap C$.

- Se $x \in A$ allora x appartiene ad ogni sovrainsieme di A, in particolare $x \in A \cup B$ e $x \in A \cup C$, da cui $x \in (A \cup B) \cap (A \cup C)$.
- Se $x \notin A$ allora $x \in B \cap C$ (stante l'ipotesi $x \in A \cup (B \cap C)$), che implica $x \in B$ e $x \in C$. Da $x \in B$ seque che $x \in A \cup B$, mentre da $x \in C$ seque che $x \in A \cup C$. In conclusione, $x \in (A \cup B) \cap (A \cup C)$.

Proviamo ora il viceversa: $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Sia $x \in (A \cup B) \cap (A \cup C)$. Allora abbiamo $x \in A \cup B$ e $x \in A \cup C$. Analizziamo due casi.

- Se $x \in A$ allora $x \in A \cup (B \cap C)$ che è un sovrainsieme di A.
- Se $x \notin A$ allora da $x \in A \cup B$ segue $x \in B$, mentre da $x \in A \cup C$ segue $x \in C$. In conclusione, $x \in B \cap C$, e quindi $x \in A \cup (B \cap C)$.

3. Logica: enunciati e loro dimostrazione

In matematica si dimostrano enunciati che esprimono proprietà di oggetti matematici. Gli enunciati sono di solito espressi in linguaggio naturale. Gli oggetti matematici possono essere di tipo differente: interi, reali, matrici, sequenze, insiemi, funzioni continue, gruppi, etc... Quando dimostriamo un enunciato ϕ , esprimiamo un giudizio di verità: l'enunciato ϕ è vero perché ne abbiamo una prova. In tal caso, la negazione dell'enunciato è falsa. In matematica non esistono altri valori di verità oltre il vero ed il falso. Nella vita reale la situazione è ben diversa.

3.1. Espressioni e formule atomiche

Nel linguaggio della matematica gli *enunciati atomici* are constructed by relating mathematical objects. Mathematical objects are denoted by *terms* (or expressions), where variables may occur. For example, in algebra the terms may denote the elements of a group (or a ring, vector space, etc.), while in analysis they may denote reals or continuous functions. It is also possible to consider terms for sets of objects (for example, subgroups, vector subspaces, etc.).

• Le espressioni senza variabili denotano oggetti matematici:

- 3 denota (= è un nome per) il numero naturale tre
- -5+6 denota (= è un nome per) il numero naturale undici
- -0.3147 denota (= è un nome per) il numero reale 3/10+1/100+4/1000+7/10000
- $-\{3,6,7\}$ denota (= è un nome per) l'insieme con elementi 3, 6 e 7
- "L'autore di Romeo e Giulietta" è una espressione che denota (= è un nome per) Shakespeare
- "Il padre di Antonino Salibra" è una espressione che denota (= è un nome per) Luigi Salibra
- Le espressioni con variabili denotano oggetti matematici dopo un'interpretazione delle variabili nell'universo del discorso:
 - x denota un elemento generico
 - -5+x, dove x varia nell'insieme dei numeri naturali (l'universo del discorso), denota un generico numero naturale più grande o uguale a 5.
 - -0.3xy7 denota un generico numero reale della forma 3/10+x/100+y/1000+7/10000 (in questo caso le variabili x e y variano tra le cifre)
 - $-\{x,y,z\}$ denota un insieme generico di al più tre elementi (in questo caso le variabili x,y,z variano tra gli elementi)
 - "L'autore di x" denota un generico scrittore (in questo caso la variabile x varia tra i titoli di libri)
- Un enunciato atomico (senza occorrenze di variabili) denota un valore di verità:
 - 3 divide 21 (vero)
 - 121 è un multiplo di 11 (vero)
 - -3 = 5 + 6 (falso)
 - -11+6 è un numero primo (vero)
 - 5 è dispari (vero)
 - $-3 \in \{3,6,7\} \text{ (vero)}$
 - $\{3\} \subseteq \{3, 6, 7\} \text{ (vero)}$
 - John ama Mary (non si sa, dipende dal contesto in cui si pronunzia l'enunciato)
 - John è il padre di Mary (come sopra)
 - -P(5) (leggi: 5 ha la proprietà P). Se non si conosce quale proprietà P rappresenta, non si conosce il valore di verità.
 - $-\{3,5\}\subseteq\{x\in\mathbb{N}:\ x\ \text{è dispari}\}\ (\text{vero})$

Le locuzioni "divide", "è un multiplo di", "=", "⊆", "ama" and "è il padre di" sono chiamate *relazioni* o predicati binari. They relate pairs of elements of the universe of elements we are speaking or writing about. The words "is odd", "is a prime number" and "P" are unary predicates (or "properties" of the elements of the universe we are writing about). The binary predicate "∈" relates elements and sets.

- Un enunciato atomico (con occorrenze di variabili) denota un valore di verità dopo che interpretiamo le variabili nell'universo del discorso:
 - $-\ x$ divide 122
 - -x + y = y + x
 - -3+5=5+3 (È un caso particolare della formula x+y=y+x, dove x=3 e y=5)
 - -xè un numero primo
 - -xè dispari
 - $-3 \in X$

- $-X \subseteq Y$
- $-\{3\}\subseteq\{3,6,7\}$ (it is a particular instance of the atomic formula $X\subseteq Y$, where $X=\{3\}$ and $Y=\{3,6,7\}$)
- John ama X
- -P(x) (leggi: x ha la proprietà P)

Altri esempi di enunciati atomici possono essere trovati in [2, Ex.1.2.1] e [2, Ex.1.2.5,6].

3.2. Enunciati composti

[2, Sezione 1.3]. Formule più complesse si possono definire a partire dalle formule atomiche utilizzando i connettivi proposizionali:

```
\land (and, e); \lor (or, oppure); \neg (not, non); \rightarrow (if-then, se-allora); \leftrightarrow (if and only if, se e solo se),
```

il quantificatore universale

e il quantificatore esistenziale

$$\exists$$
 (Some, Qualche).

Un'altra espressione idiomatica per il quantificatore universale è "per tutti" e per il quantificatore esistenziale è "esiste".

Alcuni esempi di enunciati composti:

- 5 è un numero primo e 8 è un numero pari.
- Un numero è pari se e solo se è divisibile per 2.
- 5 non è un numero pari.

I quantificatori universale ed esistenziale hanno significato soltanto in relazione ad un universo del discorso. Per esempio, il valore di verità dell'enunciato "Esiste un uomo alto" dipende dal contesto. Se pensiamo alle persone presenti in un asilo di bambini, l'enunciato è falso; se l'universo del discorso riguarda la squadra di basket della nazionale italiana l'enunciato è vero.

Ecco alcuni esempi di enunciati universali ed esistenziali. Altri enunciati esistenziali e universali possono essere trovati in [2, Sezione 1.4 e 1.5].

- Esiste un numero diverso da 1 che divide 122. Nel linguaggio formale della matematica si scrive: $\exists x(\neg(x=1) \land \exists y(122=x \cdot y))$. L'enunciato si legge letteralmente cone segue: Esiste x tale che x non è uguale ad 1 e $x \cdot y = 122$ per qualche y.
- Proprietà commutativa: $\forall x \forall y (x + y = y + x)$.

3.3. Tecniche di dimostrazione

- 1. Tecniche elementari di dimostrazione [2, Sezione 1.6].
 - Per provare un enunciato esistenziale $\exists x P(x)$ bisogna trovare un elemento a tale che P(a) è vero. Per esempio, se vogliamo dimostrare l'enunciato "Esiste un numero x il cui quadrato è uguale a 121", è sufficiente trovare la soluzione x = 11.
 - Controprova di enunciato universale $\forall x P(x)$: trovare un controesempio [2, Ex.1.6.3]. Per esempio, se vogliamo falsificare l'enunciato "Ogni numero diverso da 0 e 1 è un numero primo", è sufficiente trovare un numero diverso da 0,1 che non è primo, per esempio x=8.
 - Prova di enunciato universale $\forall x P(x)$: si utilizzano le proprietà generali delle variabili quantificate; esempio: [2, Ex. 1.6.2].
 - Controprova di enunciato esistenziale $\exists x P(x)$: si prova che P(x) è falso utilizzando le proprietà generali della variabile x.

- Altre tecniche di dimostrazione: dimostrazione per contraddizione [2, Sezione 1.6, Theorem]; dimostrazione per contropositiva [2, Sezione 3.5, Example].
- Prove di uguaglianza di espressioni numeriche e di espressioni insiemistiche.
- 2. Tavole di verità: and, or, not [2, Sezione 3.1]; equivalenza logica ed il connettivo if-and-only-if [2, Sezione 3.2]; if-then [2, Sezione 3.2]. Quantificatori esistenziali ed universali [2, Sezione 3.6].

Precedenze tra operatori logici:

Precedenze: To save parenthesis, we define the following priorities between the logical symbols:

- $1: \neg, \forall, \exists$
- $2: \land, \lor$
- $3: \rightarrow$

Then $\forall xA \land B \to C \lor \neg D$ corresponds to the formula $((\forall xA) \land B) \to (C \lor (\neg D))$, where A, B, C, D are arbitrary formulas.

3.4. Esercizi di Formalizzazione

In questa sezione presentiamo alcuni esercizi di formalizzazione.

3.4.1. Primo Esempio

Supponiamo di avere il predicato binario Axy (x ammira y), il predicato unario Px (x è un professore) ed una costante m (che interpretiamo come Miriam). Nota che Axy e Px sono abbreviazioni per risparmiare parentesi. E' un modo compatto di scrivere A(x,y) e P(x).

1. Miriam ammira ogni professore:

$$\forall x (Px \to Amx)$$

La traduzione letterale in linguaggio naturale del precedente enunciato formale è:

Per ogni x, se x è un professore allora Miriam ammira x.

In generale, "Ogni P..." "Tutti i P..." si traducono così:

$$\forall x (Px \rightarrow)$$

2. Alcuni professori ammirano Miriam:

$$\exists x (Px \land Axm)$$

La traduzione letterale in linguaggio naturale del precedente enunciato formale è:

Esiste un x tale che x è un professore e x ammira Miriam.

3. Miriam ammira solo i professori:

$$\forall x (Px \to Amx) \land \forall x (\neg Px \to \neg Amx)$$

Si può portare il quantificatore universale fuori

$$\forall x((Px \to Amx) \land (\neg Px \to \neg Amx))$$

perché vale la seguente regola logica:

$$\forall x (Qx \land Rx) \leftrightarrow (\forall x Qx \land \forall x Rx)$$

4. Un solo professore ammira Miriam:

$$\exists x (Px \land Axm \land \forall z (Pz \land Azm \rightarrow z = x))$$

5. Almeno due professori ammirano Miriam:

$$\exists xy (Px \land Py \land (x \neq y) \land Axm \land Aym)$$

Aggiungiamo altri predicati: B(x,y) (x ama y), C(x) (x è un corso), S(x) (x è uno studente).

7. Nessuno studente ama ogni corso:

$$\neg \exists x (Sx \land \forall y (Cy \rightarrow Bxy))$$

8. Nessun corso è amato da tutti gli studenti:

$$\neg \exists x (Cx \land \forall y (Sy \to Byx))$$

Example 3.1. (Esempio di formalizzazione) Formalizziamo il predicato "x è un numero primo". Ricordiamo che un numero naturale è primo se è diverso da 0,1 e divisibile solo per 1 e se stesso.

$$Px \equiv_{def} x \neq 0 \land x \neq 1 \land \forall z (\exists k(x = z \times k) \rightarrow z = 1 \lor z = x)$$

4. Numeri naturali

Il tipo di dato più semplice è l'insieme dei numeri naturali con le usuali operazioni aritmetiche di addizione e moltiplicazione. Attenzione: Nel libro [2] l'insieme dei numeri naturali è definito come $\{1,2,3,\dots\}$, mentre noi seguiremo l'usuale convenzione che 0 è un naturale. Quindi studieremo le leggi algebriche dell'insieme

$$\mathbb{N} = \{0, 1, 2, \dots\}.$$

4.1. Le leggi dell'algebra [2, Sezione 4.1]

- 1. . Come provare che l'enunciato " $\forall xy(x+y=y+x)$ " è vero? Si potrebbe verificare la proprietà tramite la tabellina dell'addizione per le cifre da 0 a 9 e poi controllare che l'algoritmo dell'addizione che abbiamo imparato alla scuola elementare verifica la proprietà. Comunque la prova dipende dalla rappresentazione che abbiamo scelto per i numeri naturali. Cosa succede se scegliamo di rappresentare i numeri in un alfabeto binario oppure con la rappresentazione romana? Il concetto di numero esiste a prescindere dalla sua rappresentazione concreta!
- 2. Leggi dell'algebra come assiomi. $(\mathbb{N}, +, \times, 0, 1)$ è un quasi anello integrale:
 - (a) $(\mathbb{N}, +, 0)$ e $(\mathbb{N}, \times, 1)$ sono monoidi commutativi, cioè verificano le seguenti leggi:
 - Proprietà associativa della somma: $\forall xyz\{x+(y+z)=(x+y)+z\}$; Per non mettere troppe parentesi tonde abbiamo scritto $\forall xyz\{\dots\}$ al posto di $\forall xyz(\dots)$. Lo faremo spesso.

Inoltre spesso non scriveremo i quantificatori universali \forall ; scriveremo quindi: vale la proprietà associativa della somma, x + (y + z) = (x + y) + z, sottintendendo che vale per ogni x, y, z.

- Proprietà associativa del prodotto: $x \times (y \times z) = (x \times y) \times z$
- Proprietà commutativa della somma: x + y = y + x;
- Proprietà commutativa del prodotto: $x \times y = y \times x$
- Proprietà dell'elemento neutro: x + 0 = 0 + x = x; $x \times 1 = 1 \times x = x$.
- (b) $x \times 0 = 0 \times x = 0$.
- (c) Distributività della moltiplicazione rispetto alla somma: $x \times (y+z) = (x \times y) + (x \times z)$,
- (d) Proprietà di cancellazione della somma: x+z=y+z implica x=y, che formalmente si scrive:

$$\forall xyz(x+z=y+z \rightarrow x=y).$$

(e) Proprietà di cancellazione del prodotto (questa legge è chiamata anche legge dell' integralità):

$$\forall xyz(z \neq 0 \land z \times x = z \times y \rightarrow x = y).$$

Come abbreviazione scriveremo spesso

$$(\forall z \neq 0)(\dots)$$

al posto di

$$\forall z (z \neq 0 \rightarrow \dots)$$

Notazione: Di solito scriveremo xy al posto di $x \times y$ e supporremo che la moltiplicazione lega di più dell'addizione, cioè xy + z sta per $(x \times y) + z$.

- 3. Le proprietà che definiscono un ordinamento parziale \leq sugli elementi di un insieme X:
 - (a) Proprietà riflessiva: $\forall x (x \leq x)$
 - (b) Proprietà transitiva: $\forall xyz (x \leq y \land y \leq z \rightarrow x \leq z)$
 - (c) Proprietà antisimmetrica: $\forall xy (x \leq y \land y \leq x \rightarrow x = y)$

Abbiamo già visto un esempio di ordine parziale: la relazione di contenuto uguale \subseteq sui sottoinsiemi di un insieme X.

Un ordinamento parziale stretto < sugli elementi di un insieme X è definito dalle proprietà transitiva e antisimmetrica e dalla seguente proprietà:

4. Proprietà irriflessiva: $\forall x \neg (x < x)$

Possiamo sempre definire un ordinamento parziale stretto a partire da un ordinamento parziale \(\leq:\)

$$x < y$$
 sse $x \le y \land x \ne y$.

Viceversa, possiamo definire un ordinamento parziale da uno stretto:

$$x \le y$$
 sse $x < y \lor x = y$.

Un ordine parziale \leq è totale se è verificata la seguente ulteriore proprietà:

- 5. $\forall xy (x \le y \lor y \le x)$.
- 4. L' ordinamento sui numeri naturali si definisce come segue:

$$x \le y$$
 sse $\exists z(x+z=y)$.

L'ordinamento stretto sui numeri naturali si definisce come segue:

$$x < y$$
 sse $x \le y \land x \ne y$ sse $\exists z \ne 0 (x + z = y)$.

Supporremo che valga la seguente legge:

(Legge di tricotomia) Dati i numeri naturali x ed y, soltanto una delle seguenti tre condizioni vale: x < y oppure y < x oppure x = y.

Verifichiamo per < le proprietà che definiscono un ordinamento parziale:

- Proprietà riflessiva: Da x + 0 = x segue $x \le x$.
- Proprietà transitiva: sia $x \le y$ e $y \le z$. Dalla definizione di \le segue che esistono k,r tali che x+k=y e y+r=z. Allora si ha:

$$x + (k + r) = (x + k) + r = y + r = z,$$

• Prima prova della proprietà antisimmetrica: Sia $x \le y$ e $y \le x$; allora, esistono k, r tali che x + k = y e y + r = x. Con semplici calcoli deriviamo:

$$x + (k + r) = (x + k) + r = y + r = x.$$

Dalla legge di cancellazione della somma e da x + (k + r) = x + 0 segue che k + r = 0, e quindi k = r = 0. In conclusione, y = x + k = x + 0 = x.

- Seconda prova della proprietà antisimmetrica: Sia $x \le y$ e $y \le x$. Supponiamo per assurdo che $x \ne y$. Allora, dalla definizione di ordinamento stretto segue che x < y e y < x. Ma ciò contraddice l'assioma di tricotomia. Quindi supporre $x \ne y$ ha portato ad un assurdo; ne segue che x = y vale.
- L'ordine è totale dalla legge di tricotomia.
- 0 è il minimo, cioè $0 \le x$ per ogni numero naturale x.

4.2. Il principio di induzione

4.2.1. Il principio di induzione con base 0

Il Principio di Induzione [2, Sezioni 4.3, 4.4, 4.5, 4.6, 4.8] nella sua forma più semplice: sia P(x) una proprietà sui numeri naturali.

$$P(0) \land \forall x (P(x) \rightarrow P(x+1)) \rightarrow \forall x P(x).$$

In altri termini, per provare $\forall x P(x)$ bisogna:

- 1. Base dell'induzione x = 0: Provare che P vale per il numero 0;
- 2. Ipotesi di induzione: Supporre che P valga per x.
- 3. Utilizzare l'ipotesi d'induzione per provare che P vale anche per x + 1.

Notazione: Una sommatoria si scrive con il simbolo Σ . Per esempio,

$$1 + 2 + \dots + n = \sum_{1 \le k \le n} k$$

Per esempio, se n = 3, allora

$$\sum_{1 \le k \le 3} k = 1 + 2 + 3.$$

Example 4.1. Provare per induzione che

$$\sum_{0 \le k \le x} (2k+1) = (x+1)^2.$$

- 1. Base dell'induzione x = 0: In questo caso $2 \times 0 + 1 = 1 = (0+1)^2$.
- 2. Ipotesi di induzione: Supponiamo che

$$\sum_{0 \le k \le x} (2k+1) = (x+1)^2.$$

3. Utilizziamo l'ipotesi d'induzione per provare che

$$\sum_{0 \le k \le x+1} (2k+1) = ((x+1)+1)^2.$$

Infatti,

$$\sum_{0 \le k \le x+1} (2k+1) = (\sum_{0 \le k \le x} 2k+1) + 2(x+1) + 1 = (x+1)^2 + 2(x+1) + 1 = ((x+1)+1)^2.$$

Ne seque dal principio di induzione che l'uquaglianza vale per ogni numero naturale x.

4.2.2. Il principio di induzione con base n_0

Il *Principio di Induzione* con base di induzione il numero naturale n_0 :

$$P(n_0) \land \forall x \ge n_0(P(x) \to P(x+1)) \to \forall x \ge n_0 P(x).$$

In altri termini, per provare $\forall x \geq n_0 P(x)$ bisogna:

- 1. Base dell'induzione $x = n_0$: Provare che P vale per il numero n_0 ;
- 2. Ipotesi di induzione: Supporre che P valga per $x \geq n_0$.
- 3. Utilizzare l'ipotesi d'induzione per provare che P vale anche per x + 1.

Example 4.2. Provare che per ogni numero naturale $x \ge 8$, esistono due numeri interi y, z (y o z possono essere negativi) tali che x = 3y + 5z.

Prova:

- 1. Base dell'induzione (x = 8): $8 = 3 \times 1 + 5 \times 1$;
- 2. Ipotesi di induzione: Supponiamo che $x \ge 8$ e che x = 3y + 5z.
- 3. Allora x+1=3y+5z+1. Ma $1=5\times 2-3\times 3$, da cui $x+1=3y+5z+1=3y+5z+5\times 2-3\times 3=3(y-3)+5(z+2)$.

Ne segue dal principio di induzione che l'uguaglianza vale per ogni numero naturale x.

Notazione: Con [x,y] intendiamo l'insieme di tutti gli elementi z tali che $x \le z \le y$.

4.2.3. Il principio di induzione completa

Il Principio di Induzione Completa:

$$P(n_0) \land \forall x \ge n_0 (\forall k \in [n_0, x] P(k) \to P(x+1)) \to \forall x \ge n_0 P(x).$$

- 1. Base dell'induzione $x = n_0$: Provare che P vale per il numero n_0 ;
- 2. Ipotesi di induzione: Supporre che P valga per tutti i numeri naturali nell'intervallo $[n_0, x]$.
- 3. Utilizzare l'ipotesi d'induzione per provare che P vale anche per x+1.

Example 4.3. Provare che ogni numero naturale $x \geq 2$ è scomponibile in fattori primi. Prova:

- 1. Base dell'induzione (x = 2): 2 è un numero primo;
- 2. Ipotesi di induzione: Supponiamo che tutti i numeri nell'intervallo [2, x] siano scomponibili in fattori primi.
- 3. Consideriamo x+1. Si hanno due possibilità: x+1 è primo oppure no. Nel primo caso una scomposizione in fattori primi di x+1 è data dal numero stesso. Nel secondo caso, x+1 non è primo; quindi esistono due altri numeri y, z tali che x+1=yz e $y, z \neq 1, x+1$. Da queste due ultime relazioni segue che y e z appartengono all'intervallo [2,x]. Quindi, per ipotesi d'induzione sia y che z sono scomponibili in fattori primi: $y=p_1\dots p_r$ e $z=q_1\dots q_s$, con p_i, q_j primi. In conclusione, $x+1=yz=p_1\dots p_rq_1\dots q_s$ ammette una scomposizione in fattori primi.

Ne segue dal principio di induzione che ogni numero naturale $x \ge 2$ è scomponibile in fattori primi.

4.3. Dati induttivi

I numeri naturali sono definiti "induttivamente" a partire dal numero 0 applicando l'operazione di successore (+1). In altre parole,

- 1. 0 è un numero naturale;
- 2. Se x è un numero naturale allora x + 1 è un numero naturale;
- 3. Nient'altro è numero naturale.

Il principio di induzione trova la sua giustificazione nella precedente definizione.

Altri tipi di dato sono definiti induttivamente a partire da alcuni dati di base utilizzando delle operazioni che "costruiscono" dati più complessi. Di seguito troverete degli esempi.

Example 4.4. (Stringhe sull'alfabeto $\{a,b\}$) Indichiamo con ϵ la stringa vuota, cioè la stringa senza caratteri. L'insieme $\{a,b\}^*$ delle stringhe di alfabeto $\{a,b\}$ è definito induttivamente come segue:

- 1. " ϵ " è una stringa;
- 2. "a" e "b" sono stringhe;
- 3. Se α, β sono stringhe allora la concatenazione $\alpha\beta$ delle stringhe α e β è una stringa;
- 4. Nient'altro è stringa.

Per esempio, la concatenazione di ababa e bbb è la stringa abababb., mentre la concatenazione di ababa e la stringa vuota ϵ è uguale alla stringa ababa.

Sia P una proprietà sulle stringhe. Il principio di induzione per il tipo di dato stringa (le variabili α e β variano sull'insieme delle stringhe):

$$P(\epsilon) \wedge P(a) \wedge P(b) \wedge \forall \alpha \beta \{P(\alpha) \wedge P(\beta) \rightarrow P(\alpha\beta)\} \rightarrow \forall \alpha P(\alpha).$$

Exercize 4.1. Provare per induzione che, per ogni stringa α , la lunghezza della stringa $\alpha\alpha$ è un numero pari.

Indichiamo con $l(\alpha)$ la lunghezza di una stringa α . La lunghezza $l(\alpha\beta)$ della concatenazione di due stringhe α e β è uguale a $l(\alpha) + l(\beta)$.

- 1. Base dell'induzione: Abbiamo i tre casi seguenti. $\epsilon \epsilon = \epsilon$ ha lunghezza 0, mentre aa e bb hanno lunghezza 2; entrambi sono numeri pari.
- 2. Ipotesi di induzione: Consideriamo due stringhe α e β , e supponiamo per ipotesi d'induzione che $l(\alpha\alpha)$ e $l(\beta\beta)$ siano numeri pari.
- 3. Consideriamo la stringa $\alpha\beta$. Se permutiamo i caratteri presenti in una stringa la sua lunghezza non cambia. Quindi

$$l(\alpha\beta\alpha\beta) = l(\alpha\alpha\beta\beta) = l(\alpha\alpha) + l(\beta\beta).$$

Per ipotesi d'induzione $l(\alpha\alpha)$ e $l(\beta\beta)$ sono pari e la somma di due numeri pari è ancora pari.

Ne segue dal principio di induzione che ogni stringa $\alpha\alpha$ ha lunghezza pari.

Example 4.5. (Espressioni aritmetiche) Siano a, 0, 1, [,], +, * dei caratteri.

L'insieme EXP delle espressioni aritmetiche è definito induttivamente come segue:

- 1. a, 0 e 1 sono espressioni;
- 2. Se E_1 e E_2 sono espressioni allora $[E_1 + E_2]$ e $[E_1 * E_2]$ sono espressioni.
- 3. Nient'altro è espressione.

Esempio: Le stringhe "[a+1]" e "[0+[a*0]]" sono espressioni, mentre le stringhe "[a+1[" e "[]" non sono espressioni.

Sia P una proprietà che può essere soddisfatta o meno dalle espressioni. Il principio di induzione per il tipo di dato espressione (le variabili x e y variano sull'insieme delle espressioni):

$$P(a) \land P(0) \land P(1) \land \forall xy \{P(x) \land P(y) \rightarrow P([x+y]) \land P([x*y])\} \rightarrow \forall x P(x).$$

Exercize 4.2. Provare per induzione che ogni espressione ha un numero pari di parentesi. Indichiamo con p(E) il numero di parentesi dell'espressione E.

- 1. Base dell'induzione: L'espressione "a" ha 0 parentesi (che è pari), così come le espressioni "0" e "1".
- 2. Ipotesi di induzione: Supponiamo che le espressioni E_1 e E_2 abbiano un numero pari di parentesi, cioè $p(E_1)$ e $p(E_2)$ sono numeri pari.
- 3. Consideriamo $[E_1 + E_2]$. Allora si ha: $p([E_1 + E_2]) = p(E_1) + p(E_2) + 2$, che è un numero pari, perché per ipotesi d'induzione $p(E_1)$ e $p(E_2)$ sono numeri pari. Un ragionamento simile funziona per l'espressione $[E_1 * E_2]$.

Example 4.6. (Comandi) Dopo aver definito le espressioni, definiamo induttivamente il tipo dei comandi. Supponiamo che a, b sono le sole variabili a disposizione per eseguire comandi di assegnamento. L'insieme COM dei comandi è definito induttivamente come seque:

- 1. Se E è una espressione allora le stringhe "a := E" e "b := E" sono comandi;
- 2. Se C_1, C_2 sono comandi ed E_1, E_2 sono espressioni, allora " $C_1; C_2$ " e "**while** $E_1 = E_2$ **do** C_1 **od**" sono comandi.
- 3. Nient'altro è comando.

Ecco un comando sintatticamente corretto: **while** [a*0] = 1 **do** a := [a*[a*1]]; b := [1+1] **od**. Sia P una proprietà che può essere soddisfatta o meno dai comandi. Il principio di induzione per il tipo di dato comando lo scriviamo informalmente $(c, c_1, c_2 \text{ sono variabili che prendono valori in COM, mentre <math>E, E_1E_2 \text{ sono variabili che prendono valori in EXP}).$

```
Da \forall E\{P(a := E) \land P(b := E)\}\
e \forall c_1c_2\{P(c_1) \land P(c_2) \rightarrow P(c_1; c_2)\}\
e \forall E_1E_2\forall c\{P(c) \rightarrow P(\textbf{\textit{while}}\ E_1 = E_2 \ \textbf{\textit{do}}\ c\ \textbf{\textit{od}})\}\
segue \forall cP(c)
```

Se volessimo provare per induzione che una proprietà P vale per tutti i comandi, dovremmo partire dalla base dell'induzione che in questo caso comprende infiniti casi. Infatti possiamo scrivere un numero infinito di comandi di assegnamento a := E al variare di E nell'insieme infinito EXP.

4.4. Funzioni

Un programma definisce una "regola" di trasformazione dei dati in input nei dati in output. Il concetto di funzione in matematica (si veda [2, Sezione 5.1]) formalizza e generalizza questa intuizione.

Definition 4.1. Siano A e B insiemi. Una funzione $f: A \to B$ (leggi: una funzione f da A in B) è una regola che ad ogni elemento x di A assegna uno ed un sol elemento y di B. L'insieme A è il dominio della funzione f, mentre l'insieme B è il suo codominio.

L'elemento y, che è il risultato dell'applicazione della funzione f ad x, si scrive y = f(x). A volte si scrive f_x al posto di f(x).

Una funzione, oltre che dal suo dominio A e codominio B, è caratterizzata dal suo comportamento "input-output", che può essere rappresentato dall' insieme seguente:

$$\{(x,y): (x \in A) \land (y \in B) \land (y = f(x))\}$$

Example 4.7. La funzione di elevamento a quadrato ha l'insieme \mathbb{N} come dominio e codominio, ed è definita come seque: $f(x) = x^2$. Se applichiamo f all'elemento $2 \in \mathbb{N}$ otteniamo f(2) = 4 come risultato.

Example 4.8. (Composizione di funzioni; si veda anche [2, Sezione 5.3]). Consideriamo il seguente comando, dove a è una variabile di tipo nat:

while
$$a = [1+1]$$
 do $a := [a*a]$ **od**

Non è difficile verificare che il comportamento input-output del programma

input
$$a$$
; while $a = [1+1]$ do $a := [a*a]$ od; output a

definisce la seguente funzione f da \mathbb{N} in \mathbb{N} :

$$f(x) = \begin{cases} x & \text{if } x \neq 2; \\ 4, & \text{if } x = 2. \end{cases}$$

Si consideri ora il programma:

$$input \ a; \ a := [a * a]; \ output \ a$$

il cui comportamento input-output definisce la seguente funzione g da \mathbb{N} in \mathbb{N} :

$$g(x) = x^2$$
.

Qual'è il comportamento input-output del programma

input a; while
$$a = [1+1]$$
 do $a := [a*a]$ od; $a := [a*a]$; output a

ottenuto componendo il primo comando **while** a = [1+1] **do** a := [a*a] **od** ed il secondo comando a := [a*a]? La composizione delle due funzioni f e g. La composizione di f e g si scrive f; g con notazione informatica oppure $g \circ f$ con notazione matematica. Essa è definita così:

$$(q \circ f)(x) = q(f(x)).$$

In altre parole, per calcolare $(g \circ f)(x)$ prima applichiamo la funzione f ad x e successivamente applichiamo la funzione g a f(x). Nel nostro esempio,

$$(g \circ f)(x) = \begin{cases} x^2 & \text{if } x \neq 2; \\ 16, & \text{if } x = 2. \end{cases}$$

4.5. Definizione ricorsiva di funzioni

Se un insieme A è definito per induzione, allora possiamo definire "ricorsivamente" funzioni di dominio A. Nel seguito prima di presentare lo schema generale di ricorsione, consideriamo degli esempi.

Example 4.9. Ricordiamo che i numeri naturali sono definiti induttivamente a partire dal numero 0 e dalla funzione successore "+1" (si veda Sezione 4.3). Allora definiamo la funzione 2^x per ricorsione a partire dalla funzione successore e dalla funzione di moltiplicazione:

(i)
$$2^0 = 1$$
;

(ii)
$$2^{x+1} = 2 \times 2^x$$
.

Proviamo per induzione che la proprietà "la funzione 2^x è ben definita su x" vale per ogni numero naturale x.

Base dell'induzione 2^0 è ben definita perché $2^0 = 1$ Ipotesi d'induzione Supponiamo di aver ben definito 2^x Allora 2^{x+1} è ben definita perché $2^{x+1} = 2 \times 2^x$

Conclusione Per il principio d'induzione 2^x è definita per ogni x

Come si calcola ricorsivamente:

$$2^2 = 2^{1+1} = (ii) \ 2 \times 2^1 = 2 \times 2^{0+1} = (ii) \ 2 \times (2 \times 2^0) = (i) \ 2 \times (2 \times 1)) = 2 \times 2 = 4$$

Example 4.10. Definiamo il fattoriale di x per ricorsione come segue:

- (i) 0! = 1;
- (ii) $(x+1)! = (x+1) \times x!$.

Proviamo per induzione che la proprietà "la funzione fattoriale è ben definita su x" vale per ogni numero naturale x.

Base dell'induzione ! è ben definita su 0 perché 0! = 1Ipotesi d'induzione Supponiamo di aver ben definito x!

Allora (x+1)! è ben definita perché $(x+1)! = (x+1) \times x!$ Conclusione Per il principio d'induzione x! è definita per ogni x

Come si calcola ricorsivamente:

$$3! = (ii)$$
 $3 \times 2! = (ii)$ $3 \times (2 \times 1!) = (ii)$ $3 \times (2 \times (1 \times 0!)) = (i)$ $3 \times (2 \times (1 \times 1)) = 3 \times (2 \times 1) = 3 \times 2 = 6$.

Nei prossimi due esempi definiamo ricorsivamente la somma ed il prodotto. Il dominio della funzione somma (oppure del prodotto) è l'insieme delle coppie di numeri naturali.

Example 4.11. Definiamo la somma di x e y per ricorsione a partire dalla funzione successore "+1". L'induzione è sul secondo argomento y:

- (i) x + 0 = x;
- (ii) x + (y + 1) = (x + y) + 1.

Fissiamo $x \in \mathbb{N}$. Allora la proprietà " $P(y) \equiv la$ funzione x + y è ben definita su y" dipende soltanto da y. Proviamo per induzione che vale $\forall y P(y)$. Dall'arbitrartietà della scelta di x, seguirà che la funzione x + y sarà ben definita per ogni x, y.

Base dell'induzione x + 0 è ben definita perché uguale a xIpotesi d'induzione Supponiamo di aver ben definito x + y

Allora x + (y + 1) è ben definita perché uguale a (x + y) + 1Conclusione Per il principio d'induzione x + y è ben definita per ogni y

Come si calcola ricorsivamente:

$$5+3=(5+2)+1=((5+1)+1)+1=(((5+0)+1)+1)+1=((5+1)+1)+1=(6+1)+1=7+1=8.$$

Example 4.12. Definiamo il prodotto di x e y per ricorsione a partire dalla funzione successore "+1" e dalla somma. L'induzione è sul secondo argomento y:

- (i) $x \times 0 = 0$;
- (ii) $x \times (y+1) = (x \times y) + x$.

Fissiamo $x \in \mathbb{N}$. Proviamo per induzione che la proprietà " $x \times y$ è ben definita su y" vale per ogni y.

Base dell'induzione $x \times 0$ è ben definita perché uguale a 0 Ipotesi d'induzione Supponiamo di aver ben definito $x \times y$

Allora $x \times (y+1)$ è ben definita perché uguale a $(x \times y) + x$ Conclusione Per il principio d'induzione $x \times y$ è ben definita per ogni y

Come si calcola ricorsivamente:

```
5 \times 3 = (5 \times 2) + 5 = ((5 \times 1) + 5) + 5 = (((5 \times 0) + 5) + 5) + 5 = ((0 + 5) + 5) + 5 = (5 + 5) + 5 = 10 + 5 = 15.
```

Example 4.13. Definiamo la lunghezza di una stringa per ricorsione. Essa è una funzione dall'insieme $\{a,b\}^*$ nell'insieme \mathbb{N} .

(i)
$$len(\epsilon) = 0$$
; $len(a) = 1$; $len(b) = 1$

(ii) $len(\alpha\beta) = len(\alpha) + len(\beta)$.

Base dell'induzione $len(\epsilon)$ è ben definita perché uguale a 0

Base dell'induzione len(a) e len(b) sono ben definiti perché uguali a 1 Ipotesi d'induzione Supponiamo di aver ben definito $len(\alpha)$ e $len(\beta)$ Allora $len(\alpha\beta)$ è ben definita perché uguale a $len(\alpha) + len(\beta)$ Conclusione Per il principio d'induzione $len(\alpha)$ è ben definita per ogni α

Veniamo ora alla definizione generale dello schema di definizione ricorsiva. Per semplicità ci limiteremo all'insieme dei numeri naturali.

Definition 4.2. Una funzione $g: \mathbb{N} \to \mathbb{N}$ è definita ricorsivamente a partire da una costante c e da una funzione $h: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ se

$$q(0) = c;$$
 $q(x+1) = h(x, q(x)).$

Per esempio, nel caso della funzione 2^x abbiamo c=1 e $h(x,y)=2\times y$. Allora abbiamo:

(i)
$$2^0 = c = 1$$

(ii)
$$2^{x+1} = h(x, 2^x) = 2 \times 2^x$$
.

Nel caso del fattoriale c=1 e $h(x,y)=(x+1)\times y$. Allora abbiamo:

(i)
$$0! = c = 1$$

(ii)
$$(x+1)! = h(x,x!) = (x+1) \times x!$$
.

Generalizziamo lo schema di ricorsione con dei parametri in più.

Definition 4.3. Una funzione $f: \mathbb{N}^{n+1} \to \mathbb{N}$ è definita ricorsivamente a partire da una funzione $g: \mathbb{N}^n \to \mathbb{N}$ e da una funzione $h: \mathbb{N}^{n+2} \to \mathbb{N}$ se

$$f(x_1, \dots, x_n, 0) = g(x_1, \dots, x_n); \quad f(x_1, \dots, x_n, y + 1) = h(x_1, \dots, x_n, y, f(x_1, \dots, x_n, y)).$$

Per esempio, nel caso della funzione x+y abbiamo un parametro x, g(x)=x e h(x,y,z)=z+1. Allora abbiamo:

(i)
$$x + 0 = q(x) = x$$

(ii)
$$x + (y+1) = h(x, y, x+y) = (x+y) + 1$$
.

Nel caso del prodotto $x \times y$ abbiamo un parametro x, g(x) = 0 e h(x, y, z) = z + x. Allora abbiamo:

(i)
$$x \times 0 = g(x) = 0$$

(ii)
$$x \times (y+1) = h(x, y, x \times y) = (x \times y) + x$$
.

4.6. Il principio del buon ordinamento

Minimo e Massimo. Il principio del buon ordinamento: ogni sottoinsieme di \mathbb{N} ha minimo elemento [2, Sezione 4.7]

5. Il principio d'induzione e prove di correttezza

Il principio di induzione è collegato ai cicli iterativi della programmazione. Spieghiamo il perché con un esempio.

Consideriamo il problema di calcolare il quoziente ed il resto della divisione di $x \ge 0$ per d > 0. Essi sono definiti come gli unici numeri q ed r che soddisfano la seguente relazione:

$$x = (q \times d) + r, \qquad 0 \le r < d.$$

L'algoritmo usuale consiste nel sottrarre ripetutamente d a x, aumentando di volta in volta di 1 il valore di q (eventuale quoto) e decrementando di x il valore di r (eventuale resto).

$$q := 0; r := x;$$
while $(r \ge d)$ do $q := q + 1; r := r - d$ od (1)

L'algoritmo è corretto se proviamo per induzione sul numero di volte che eseguiamo il corpo del "while" che la relazione $x = (q \times d) + r$ è un "invariante", cioè se vale prima dell'esecuzione del "while" allora vale anche dopo l'esecuzione del "while".

Definiamo per induzione le due funzioni $q: \mathbb{N} \to \mathbb{N}$ e $r: \mathbb{N} \to \mathbb{N} \cup \{\text{errore}\}$:

- (i) $q_0 = 0$;
- (ii) $q_{n+1} = q_n + 1$.
- (i) $r_0 = x$;

(ii)

$$r_{n+1} = \begin{cases} \text{errore} & \text{if } r_n < d \text{ oppure } r_n = \text{errore}; \\ r_n - d, & \text{if } r_n \ge d. \end{cases}$$

Proviamo per induzione su n che $\forall n(r_n \neq \text{errore } \rightarrow x = q_n d + r_n)$. Ricordiamo che per provare una implicazione

Base dell'induzione: $q_0d + r_0 = 0 \times d + x = x$, perchè per definizione $r_0 \neq$ errore

Ipotesi d'induzione: Supponiamo che sia vera $r_n \neq \text{errore } \rightarrow x = q_n d + r_n$

Allora Proviamo che $r_{n+1} \neq \text{errore } \rightarrow x = q_{n+1}d + r_{n+1}$. Supponiamo che

 $r_{n+1} \neq \text{ errore.}$ Allora dalla definizione di r segue che $r_{n+1} = r_n - d$. Quindi si ha:

 $q_{n+1}d + r_{n+1} = (q_n + 1)d + (r_n - d) = q_n d + d + r_n - d = q_n d + r_n = x$

Quest'ultima uguaglianza si ha per ipotesi d'induzione perchè da $r_{n+1} \neq \text{ errore}$

si he necessariamente $r_n \neq$ errore.

Conclusione Per il principio d'induzione $\forall n(r_n \neq \text{errore } \rightarrow x = q_n d + r_n).$

Ritorniamo ora al comando in (1). Dopo aver eseguito i comandi di assegnamento $q:=0; r:=x, q_0$ e r_0 sono i valori delle variabili q ed r. Non è difficile provare per induzione su n che q_n e r_n con $r_n < d$ sono i valori delle variabili q ed r dopo aver eseguito il corpo del while per n volte. Quindi, dal fatto che vale $\forall n (r_n \neq \text{errore } \rightarrow x = q_n d + r_n)$, dopo l'esecuzione del "while" avremo che $x = q_n d + r_n$ per un opportuno n, ed inoltre $0 \le r_n < d$. Ne segue che il comando (1) è corretto.

REFERENCES

- 1. F. Bellissima, F. Montagna. Matematica per l'informatica: aritmetica e logica, probabilità, grafi. Carocci Editore, 2006.
- 2. Norman L. Biggs: Discrete Mathematics, Oxford University Press, 2002.
- 3. David M. Burton. Elementary Number Theory. Allyn and Bacon, 1980.
- 4. M. Cesaroli, F. Eugeni, M. Protasi. Elementi di Matematica Discreta. Zanichelli, 1988.

6. Sequenze e Relazioni

- 1. Composizione di funzioni (si veda [2, Sezione 5.3]).
- 2. Funzioni iniettive, surgettive e bigettive. Inversa di una funzione bigettiva [2, Sezione 5.2, 5.4]. Se $f: A \to B$ è una funzione bigettiva, denotiamo con $f^{-1}: B \to A$ la sua inversa.
- 3. Siano A, B insiemi. Una funzione parziale da A in B è una funzione $f: C \to B$ da un sottoinsieme C di A in B. Denoteremo con $f: A \to B$ una funzione parziale da A in B, e con dom(f) il dominio di definizione di f. Per esempio, la funzione $f: Pari \to \mathbb{N}$, dove Pari è l'insieme dei numeri pari, definita da f(2x) = x è una funzione parziale $f: \mathbb{N} \to \mathbb{N}$ con dom(f) = Pari.

6.1. Cardinalità

- 1. La cardinalità (= numero di elementi) di un insieme finito ed infinito [2, Cap. 6]. Se A è un insieme |A| denota la sua cardinalità.
- 2. Insiemi finiti. Notazione: if n is a natural number, then

$$\hat{n} = \{1, 2, \dots, n-1, n\}.$$

- Un insieme A è costituito da un numero finito di elementi sse esiste un numero naturale n ed una corrispondenza bigettiva da A nell'insieme \hat{n} .
- If n > k, |A| = n e |B| = k, allora non esiste alcuna funzione iniettiva da A in B, mentre il viceversa è vero, cioè esistono funzioni iniettive da B in A.
- If n > k, |A| = n e |B| = k, allora esistono funzioni surgettive da A in B, mentre il viceversa è non è vero, cioè non esistono funzioni surgettive da B in A.
- 3. Insiemi infiniti. I seguenti insiemi sono tutti infiniti: \mathbb{N} (insieme dei numeri naturali), \mathbb{Z} (insieme dei numeri interi), \mathbb{Q} (insieme dei numeri razionali), \mathbb{R} (insieme dei numeri reali), \mathbb{P} (insieme dei programmi nel linguaggio di programmazione Pascal).
 - Le seguenti condizioni sono equivalenti per un insieme A:
 - -A è infinito;
 - Esiste una funzione bigettiva da A in un suo sottoinsieme proprio.
 - Esiste una funzione iniettiva da A in un suo sottoinsieme proprio.
 - Esiste una funzione surgettiva da un sottoinsieme proprio di A nello stesso A.
 - Due insiemi infiniti A e B hanno la stessa cardinalità se esiste una funzione bigettiva da A in B. È molto più utile la seguente caratterizzazione: Due insiemi infiniti A e B hanno la stessa cardinalità se esiste una funzione iniettiva da A in B ed una funzione iniettiva da B in A.
 - Esistono differenti ordini di infinito. Per esempio, la cardinalità dell'insieme dei numeri reali è strettamente più grande di quella dell'insieme dei numeri naturali. A livello intuitivo, l'insieme dei numeri reali ha due ordini di infinito: oltre al fatto che l'insieme dei numeri reali è infinito, il singolo numero reale ha in generale una rappresentazione "infinita" con un numero infinito di cifre dopo la virgola.
 - Esiste una funzione iniettiva da \mathbb{N} in \mathbb{R} perché ogni numero naturale è anche un numero reale. Questo risultato comporta che $|\mathbb{N}| \leq |\mathbb{R}|$.
 - Non esiste una funzione bigettiva da \mathbb{N} in \mathbb{R} (il che comporta $|\mathbb{N}| < |\mathbb{R}|$). Per semplicità consideriamo l'intervallo [0,1) di tutti i numeri reali tra 0 e 1 con quest'ultimo numero escluso. Supponiamo per assurdo che esista una corrispondenza bigettiva r tra \mathbb{N} e [0,1). allora possiamo enumerare tutti i reali tra 0 e 1:

$$r_0, r_1, r_2, \ldots, r_n, \ldots$$

Senza perdita di generalità, possiamo supporre che ciascun numero reale r_n abbia un numero infinito di cifre dopo la virgola

$$r_n = 0, c_0^n c_1^n \dots c_k^n \dots$$

con eventualmente $c_k^n = 0$ per tutti i k sufficientemente grandi. Con un argomento diagonale costruiamo un numero reale q tra 0 e 1 che non è presente nella lista:

$$q = 0, d_0 d_1 \dots d_n \dots,$$

dove l' n-sima cifra d_n di q è uguale a $c_n^n + 1$ modulo 10 (dove c_n^n è l'n-sima cifra del numero r_n). Allora, q differisce da r_0 per la prima cifra dopo la virgola, e in generale differisce da r_n per l'n-sima cifra dopo la virgola. In conclusione, q non è nella lista. Questo contraddice la bigettività della corrispondenza r tra $\mathbb{N} \in \mathbb{R}$.

• Esistono problemi che non ammettono soluzione algoritmica? Sarebbe interessante, per esempio, trovare una soluzione algoritmica al problema della fermata ed al problema della correttezza, che descriviamo brevemente qui di seguito.

Sia \mathbb{P}_0 l'insieme dei sottoprogrammi Pascal del tipo

Function Pippo
$$(x : \mathbb{N}) : \mathbb{N}$$
; begin ... Pippo:= ... end;

che calcolano funzioni parziali da \mathbb{N} in \mathbb{N} , cioè prendono in input un dato di tipo "nat" e restituiscono in output, nel caso in cui terminino la computazione, un dato di tipo "nat".

Una funzione parziale $f: \mathbb{N} \to \mathbb{N}$ è calcolabile se esiste un sottoprogramma $q \in \mathbb{P}_0$ il cui comportamento input-output coincide con quello della funzione $f: (x \in dom(f) \in f(x) = y)$ sse la chiamata q(x) del sottoprogramma q con parametro attuale x termina la computazione con output y. In tal caso, diremo che il sottoprogramma q calcola la funzione parziale f.

- (Il Problema della Fermata) È possibile determinare in modo effettivo se un "while" in un programma va in ciclo? In modo più formale, esiste un programma che prende in input un sottoprogramma $p \in \mathbb{P}_0$ ed un naturale $y \in \mathbb{N}$ e restituisce:
 - * 1 se la chiamata p(y) del sottoprogramma p con parametro attuale y termina la computazione;
 - * 0 se la chiamata p(y) del sottoprogramma p con parametro attuale y NON termina la computazione?

La risposta è NO.

– (Il Problema della Correttezza) Sia $f: \mathbb{N} \to \mathbb{N}$ una funzione calcolabile. È possibile decidere se un programma $q \in \mathbb{P}_0$ calcola f? La risposta è NO.

Supponiamo per assurdo che il problema della fermata ammetta una soluzione algoritmica che scriveremo come una "function" in Pascal:

Function
$$Fermata(q : \mathbb{P}_0, x : \mathbb{N}) : \mathbb{N}; \ldots; Fermata := \ldots$$

Fermata(q,x)=1 se q termina la computazione sull'input x; Fermata(q,x)=0 altrimenti. Consideriamo una enumerazione effettiva dei sottoprogrammi di \mathbb{P}_0 tramite una funzione $p:\mathbb{N}\to\mathbb{P}_0$ bigettiva e calcolabile:

$$p_0, p_1, \ldots, p_n, \ldots$$
 (2)

Consideriamo il seguente sottoprogramma Assurdo.

Function $Assurdo(x : \mathbb{N})$: \mathbb{N} ;

begin

if $Fermata(p_x, x) = 0$ then Assurdo:= 1 else begin while true do x:=x end; end:

Il sottoprogramma Assurdo è uno dei sottoprogrammi p_n , per un certo n. Ma allora otteniamo una contraddizione:

Fermata(Assurdo, n) = 1 sse $Fermata(p_n, n) = 0$ sse Fermata(Assurdo, n) = 0

Fermata(Assurdo, n) = 0 sse $Fermata(p_n, n) = 1$ sse Fermata(Assurdo, n) = 1

In conclusione, il problema della fermata non ammette soluzione algoritmica.

6.2. Stringhe (o parole) e sequenze finite

- 1. Il prodotto Cartesiano $X \times Y$ di due insiemi X e Y è l'insieme delle coppie (a,b) con $a \in X$ e $b \in Y$. $X \times Y \times Z$ è l'insieme delle triple (a,b,c) con $a \in X$, $b \in Y$ e $c \in Z$, etc. Le triple (a,b,c) = (a,(b,c)) come coppie, le coppie come insiemi: $(a,b) = \{a,\{a,b\}\}$. Notazione $X \times X \times \cdots \times X$ n-volte si abbrevia X^n (vedi l'inizio di [2, Sezione 10.2]).
- 2. Sequenze finite su $X = \bigcup_{n \in \mathbb{N}} X^n$. L'insieme X^0 ha come unico elemento la sequenza vuota.
- 3. Stringhe su un alfabeto A come sequenze finite di caratteri. In questo caso (a,b,a,b) si scrive in maniera più compatta come abab. Le stringhe vengono di solito indicate con le lettere greche α, β, γ . La stringa vuota è denotata con ϵ . La giustapposizione di due stringhe α e β viene indicata con $\alpha\beta$. Per esempio, la giustapposizione di "casa" e "matta" è la stringa "casamatta".
- 4. L'insieme delle stringhe su un alfabeto finito A ha la stessa cardinalità dell'insieme dei numeri naturali. Si può dimostrare definendo una funzione iniettiva da \mathbb{N} in A^* ed un'altra sempre iniettiva da A^* in \mathbb{N} . Per esempio, sia $A = \{a, b, c, \ldots, z\}$ l'alfabeto finito dei caratteri della lingua italiana (21 caratteri). Definiamo una corrispondenza biunivoca $\rho: A \to \{0, 1, \ldots, 20\}$: $\rho(a) = 0$, $\rho(b) = 1, \ldots, \rho(z) = 20$. Definiamo una prima funzione iniettiva $f: A^* \to \mathbb{N}$:

$$f(a_1 \dots a_k) = \rho(a_1) + \rho(a_2) \times 21 + \rho(a_3) \times 21^2 + \dots + \rho(a_k) \times 21^{k-1}.$$

ed una seconda funzione iniettiva $g: \mathbb{N} \to A^*$:

$$f(n) = a^n,$$

dove a^n denota la stringa $aa \dots a$ (n volte).

- 5. Stringhe di lunghezza k su un alfabeto A = funzioni da k in A.
- 6. Notazione $X \times X \times \cdots \times X$ k-volte si abbrevia X^k perché sequenze di lunghezza k su X = funzioni da k in X [2, Sezione 10.4].

6.3. Relazioni

- 1. Relazione binaria come sottoinsieme del prodotto cartesiano [2, Sezione 10.1]. Funzioni come relazioni binarie.
- 2. Relazioni d'ordine parziale e totale:
- 3. Sia (A, \leq) un insieme parzialmente ordinato.
 - Relazione di comparabilità: x e y sono comparabili se $x \le y$ o $y \le x$; x e y sono incomparabili se nè $x \le y$ nè $y \le x$;
 - \bullet Catene: Un sottoinsieme X di A è una catena se gli elementi di X sono comparabili a due a due
 - Anti-catene: Un sottoinsieme X di A è una anti-catena se gli elementi di X sono incomparabili a due a due.
- 4. Ordini ben fondati: un ordinamento parziale è ben fondato se non ammette catene discendenti infinite: $a_0 > a_1 > a_2 > \cdots > a_n > \ldots$ L'ordinamento su $\mathbb N$ è ben fondato, mentre sull'insieme $\mathbb Z$ degli interi non lo è: $0 > -1 > -2 > \ldots$
- 5. Esempi:
 - Ordine naturale su \mathbb{N} : $x \leq y$ se esiste $k \in \mathbb{N}$ tale che y = x + k.
 - Ordine di divisibilità su \mathbb{N} : $x \mid y$ se x divide y. Questo ordinamento ammette 1 come minimo elemento e 0 come massimo. È un ordinamento ben fondato perché, per ogni x, esiste soltanto un numero finito di divisori di x.
 - Ordine prefisso sulle stringhe: $\alpha \leq_{pre} \beta$ se esiste una stringa γ tale che $\beta = \alpha \gamma$. L'ordine prefisso è ben fondato.

• Ordine lessicografico sulle stringhe: Sia $A = \{a_1, \ldots, a_n\}$ un alfabeto finito di caratteri con $a_1 < a_2 < \cdots < a_n$. Allora $\alpha \le_{lex} \beta$ se $\alpha \le_{pre} \beta$ oppure esistono stringhe γ, δ, η e caratteri a_i e a_j tali che $\alpha = \gamma a_i \delta$ e $\beta = \gamma a_j \eta$ con $a_i < a_j$. Un metodo per enumerare tutte le stringhe su un alfabeto finito, per esempio $A = \{a, b, c\}$ con a < b < c, è quello di enumerare prima le stringhe di lunghezza 0 (la sola stringa vuota ϵ), poi quelle di lunghezza 1, poi quelle di lunghezza 2 e così via. Le stringhe di lunghezza n, che sono in numero finito, sono ordinate in ordine lessicografico:

 ϵ , a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, abc, . . .

- Ordine "contenuto o uguale" sull'insieme $\mathcal{P}(X)$ delle parti di un insieme X: Se A e B sono sottoinsiemi di $X, X \subseteq Y$ se ogni elemento di X è anche elemento di Y.
- 6. Relazioni di equivalenza [2, Sezione 7.2, 7.3, 12.2]. Partizioni (vedi l'inizio di [2, Sezione 12.1]). Sia R una relazione di equivalenza su A.
 - $[a]_R = \{b : aRb\}$ denota la classe di equivalenza di $a \in A$. In alcuni libri la classe di equivalenza $[a]_R$ è denotata con a/R.
 - La famiglia di sottoinsiemi ($[a]_R : a \in A$) determina una partizione di A.
 - L'insieme $\{[a]_R : a \in A\}$ è chiamato insieme quoziente ed è denotato da A/R.

Sia $P = (X_i : i \in I)$ una partizione di A. Allora la relazione

$$aRb$$
 sse $\exists i \in I.a, b \in X_i$

è una relazione di equivalenza su A.

7. Combinatoria: i principi del contare

Il tema principale di questo capitolo è lo studio della cardinalità degli insiemi finiti i cui elementi possono essere dati strutturati e non.

7.1. Il principio dell'addizione [2, Sezione 10.1]

Cardinalità dell'unione di insiemi disgiunti. Il principio del cassetto (pigeonhole principle).

7.2. Il principio della moltiplicazione [4, Sezione 1.2]

1. Cardinalità del prodotto cartesiano [2, Sezione 10.2]:

$$|X \times Y| = |X| \times |Y|$$

In particolare,

$$|X \times X| = |X|^2$$

2. Cardinalità delle funzioni da X in Y [2, Sezione 10.4]:

$$|Y^X| = |Y|^{|X|}$$

. Ecco alcune applicazioni di questo risultato:

- $|X \times X| = |X^{\{1,2\}}| = |X|^2$ perché a ciascuna coppia (a,b) con $a,b \in X$ corrisponde in maniera univoca la funzione $f: \{1,2\} \to X$ tale che f(1) = a e f(2) = b.
- Le stringhe di lunghezza n su un alfabeto finito A corrispondono alle funzioni da \hat{n} in A. Se indichiamo con A_n^* l'insieme finito delle stringhe di lunghezza n, abbiamo

$$|A_n^*| = |A^{\hat{n}}| = |A|^n$$

Cardinalità dell'insieme delle parti \(\mathcal{P}(X) \) di un insieme \(X \) [2, Sezione 10.4][4, Sezione 1.2, pag. 5-6]. L'insieme \(\mathcal{P}(X) \) può essere messo in corrispondenza biunivoca con l'insieme delle funzioni da \(X \) in \(\{0, 1\} \):

$$A \subseteq X \mapsto f_A: X \to \{0,1\}, \text{ con } f_A(x) = \text{if } x \in A \text{ then } 1 \text{ else } 0.$$

Allora la cardinalità dell'insieme $\mathcal{P}(X)$ è:

$$|\mathcal{P}(X)| = |\{0,1\}^X| = 2^{|X|}.$$

3. La cardinalità delle funzioni iniettive da X in Y [2, Sezione 10.5] [4, Sezione 1.3: Le iniezioni da D in C] (con |X| = k e |Y| = n) è uguale a

$$(n)_k = n(n-1)(n-2)\dots(n-k+1).$$

Ecco un'applicazione di questo risultato:

- Le k-stringhe "iniettive" (cioè senza ripetizioni) su un alfabeto A di n caratteri corrispondono alle funzioni iniettive da \hat{k} in A. In totale abbiamo quindi un numero $(n)_k$ di k-stringhe iniettive su un alfabeto di n caratteri. Per esempio, se $A = \{a, b, c, d\}$ allora abd corrisponde alla funzione iniettiva $f: \{1, 2, 3\} \to A$ tale che f(1) = a, f(2) = b e f(3) = d.
- 4. L'insieme delle funzioni bigettive da X in X [2, Sezione 10.6] [4, Sezione 1.3: Fattoriali] è anche uguale all'insieme delle funzioni iniettive da X in X. Se |X| = n allora abbiamo n! funzioni bigettive. Le funzioni bigettive di un insieme finito vengono chiamate permutazioni. Si veda [2, Sezione 10.6] per la rappresentazione delle permutazioni tramite cicli.

7.3. Il principio del pastore o della divisione [4, Sezione 1.4]

La regola del pastore dice: se vuoi sapere quante pecore ci sono in un gregge conta le zampe e poi dividi per quattro. Se A, B sono insiemi, abbiamo:

$$|A| = |A \times B|/|B|$$

Nel seguito vedremo come, applicando la regola del pastore, la cardinalità di insiemi finiti ordinati possa dare informazione sulla cardinalità di insiemi finiti non ordinati. L'ordine fa crescere il numero di possibilità ma semplifica i conti potendo utilizzare la moltiplicazione. Quindi, lo slogan è:

Cercare l'ordine per applicare successivamente il principio del pastore!

7.3.1. Le contrapposizioni

 $Ordine ext{-}Disordine:$

1. Primo esempio:

k-stringhe iniettive su un alfabeto di n caratteri (ordine)

versus

k-sottoinsiemi di un insieme di n elementi (disordine)

Esempio: Se "togliamo" l'ordine alla 4-stringa iniettiva cead sull'alfabeto $A = \{a, b, c, d, e\}$ otteniamo il 4-sottoinsieme $\{a, c, d, e\}$ di A.

Ricordiamo che l'insieme delle k-stringhe iniettive può anche essere visto come l'insieme delle funzioni iniettive da \hat{k} in un insieme di n elementi.

La dicotomia "ordine-disordine" corrisponde a quella in informatica "programma sequenziale-programma parallelo" e a quella in fisica "esperimento sequenziale-esperimento parallelo".

- Programma Sequenziale (ordine) versus Programma Parallelo (disordine): sia "Out" un comando di output di un dispositivo che può inviare caratteri in sequenza tramita l'operatore ";" oppure in parallelo tramite l'operatore "||". Allora il primo comando qui di seguito corrisponde ad inviare in output la stringa cead, mentre il secondo ad inviare in output il multinsieme $\{a, c, d, e\}$.
 - $\operatorname{Out}(c); \operatorname{Out}(e); \operatorname{Out}(a); \operatorname{Out}(d)$
 - $\operatorname{Out}(a)||\operatorname{Out}(c)||\operatorname{Out}(d)||\operatorname{Out}(e).$
- Esperimento Sequenziale (ordine)-Esperimento in Parallelo (disordine)
 - $-\ k$ estrazioni successive di caratteri da una scatola che contiene inizialmente tutti i caratteri.
 - $-\ k$ estrazioni in parallelo di caratteri da una scatola che contiene tutti i caratteri.

Come si calcola la cardinalità dei k-sottoinsiemi di un insieme di n elementi a partire dalla cardinalità conosciuta delle k-stringhe iniettive su un alfabeto di n caratteri (= funzioni iniettive da \hat{k} in un insieme di n elementi)? Con il principio del pastore!

Spieghiamo il procedimento con un esempio. Quante sono le 4-stringhe iniettive sull'alfabeto $\{a,b,c,d,e\}$ (per esempio, acde, cead) che corrispondono al 4-sottoinsieme $\{a,c,d,e\}$? Sono pari al numero delle permutazioni di 4 elementi. Quindi, per ciascun 4-sottoinsieme abbiamo 4! 4-stringhe iniettive corrispondenti. In totale abbiamo $(5)_4/4! = 5$ 4-sottoinsiemi.

In generale, abbiamo

```
|Funzioni iniettive da \hat{k} in \hat{n}| / |Permutazioni di \hat{k}| = n(n-1)...(n-k+1)/k! = (n)_k/k!.
```

Il precedente numero si chiama coefficiente binomiale e si indica con $\binom{n}{k}$. La ragione di un tale nome e l'importanza dei coefficienti binomiali verranno spiegati in seguito.

2. Secondo esempio:

k-stringhe su un alfabeto di n caratteri (ordine)

versus

k-multinsiemi ad elementi in un alfabeto di n caratteri (disordine)

- Programma Sequenziale (ordine) versus Programma Parallelo (disordine):
 - $-\operatorname{Out}(a);\operatorname{Out}(b);\operatorname{Out}(a);\operatorname{Out}(a);\operatorname{Out}(b);\operatorname{Out}(c);\operatorname{Out}(c);\operatorname{Out}(c)$
 - $-\operatorname{Out}(a)||\operatorname{Out}(a)||\operatorname{Out}(a)||\operatorname{Out}(b)||\operatorname{Out}(b)||\operatorname{Out}(c)||\operatorname{Out}(c)||\operatorname{Out}(c)|$
- Esperimento Sequenziale (ordine)-Esperimento in Parallelo (disordine):
 - -k estrazioni successive da una scatola che contiene sempre tutti i caratteri di A (equivalentemente lancio in successione di k palline distinguibili in urne ciascuna delle quali è etichettata da un carattere diverso di A).
 - k estrazioni in parallelo di caratteri da k scatole che contengono tutti i caratteri (equivalentemente lancio in parallelo di k palline indistinguibili in urne ciascuna etichettata da un diverso carattere dell'alfabeto).

Purtroppo in questo esempio il principio del pastore non è applicabile.

3. **Terzo esempio**: dato un numero naturale n, fissiamo k numeri r_1, r_2, \ldots, r_k tali che $r_1 + \cdots + r_k = n$.

Permutazioni di un insieme A con n elementi (ordine)

versus

Partizioni $(X_i : 1 \le i \le k)$ di A con |A| = n e $|X_i| = r_i$ (i = 1, ..., k) (disordine)

- Esperimento Sequenziale (ordine)-Esperimento in Parallelo (disordine)
 - -k estrazioni successive in un'urna con n elementi distinti, dove la prima estrazione pesca in sequenza r_1 elementi, etc.
 - -k estrazioni successive in un'urna con n elementi distinti, dove la prima estrazione pesca in parallelo r_1 elementi, etc.

Possiamo applicare il principio del pastore. Spieghiamo il procedimento con un esempio. Fissiamo $n=7,\ r_1=2,\ r_2=3$ e $r_3=2,$ da cui segue $r_1+r_2+r_3=7.$ Consideriamo la partizione $\{1,5\},\{2,3,6\},\{4,7\}$ di \hat{n} le cui classi di equivalenza hanno rispettivamente $r_1=2,\ r_2=3$ e $r_3=2$ elementi. Quante sono le permutazioni dell'insieme $\{1,2,3,4,5,6,7\}$ che corrispondono alla partizione $\{1,5\},\{2,3,6\},\{4,7\}$? Sono pari al numero delle permutazioni dell'insieme $\{1,5\}$ moltiplicato il numero di permutazioni di $\{2,3,6\}$ moltiplicato il numero di permutazioni di $\{4,7\}$: in totale 2!3!2!=24 permutazioni. Per esempio, entrambe le permutazioni 5267134 e 1627534 corrispondono alla data partizione. In generale, abbiamo

```
|Permutazioni di \hat{n}| / |Permutazioni di \hat{r}_1| × · · · × |Permutazioni di \hat{r}_1| = n!/r_1! \dots r_k!
```

Il precedente numero si chiama coefficiente multinomiale.

4. Quarto esempio (facoltativo): Abbiamo visto prima la contrapposizione: funzioni da \hat{k} in \hat{n} versus multinsiemi. Però non era applicabile il principio del pastore. Si può modificare la contrapposizione nel modo seguente [2, Sezione 11.2].

Consideriamo delle urne speciali che possono contenere stringhe iniettive di palline distinguibili invece che insiemi di palline distinguibili. Se lancio una nuova pallina a_0 dentro un'urna che contiene la stringa $a_1a_2\ldots a_r$, ho r+1 possibilità:

$$a_0 a_1 a_2 \dots a_r; \quad a_1 a_0 a_2 \dots a_r; \quad \dots \quad a_1 a_2 \dots a_r a_0.$$

Lancio in successione di k-palline distinguibili in n urne speciali. In totale ho $n(n+1)(n+2)\dots(n+k-1)$ possibilità.

versus

Lancio in parallelo di k-palline indistinguibili in n urne speciali oppure no. In totale ho $(n + k - 1)_k/k! = \binom{n+k-1}{k}$ possibilità, che è quindi il numero di k-multinsiemi.

Esempio di 4 urne e 8 palline: 362|58|1|47 versus $\{1, 1, 1, 2, 2, 3, 4, 4\}$. La prima urna contiene 362, la seconda 58, la terza 1 e l'ultima 47.

5. *Quinto esempio (facoltativo)*: Permutazioni di un k+n-1-insieme $versus\ k$ -multinsiemi di un n-insieme.

Esempio: sia k = 8 e n = 4. Consideriamo l'alfabeto $\{1, \dots, 8, a, b, c\}$.

$$362a58c1b47$$
 versus $\{1, 1, 1, 2, 2, 3, 4, 4\}$

$$473b61a2c58$$
 versus $\{1, 1, 1, 2, 2, 3, 4, 4\}$

Devo quindi dividere il numero di permutazioni (k+n-1)! per il numero di permutazioni dell'insieme \hat{k} ($\hat{8}$ nell'esempio) e per il numero di permutazioni dell'insieme $\widehat{n-1}$ ($\{a,b,c\}$ nell'esempio).

7.4. Sottoinsiemi e coefficienti binomiali

In questa sezione cominciamo a studiare le proprietà notevoli dei coefficienti binomiali $\binom{n}{k}$ al variare di n e k, ricordando che $\binom{n}{k}$ è il numero di k-sottoinsiemi di un n-insieme.

1. Nuovo calcolo del valore del coefficiente binomiale $\binom{n}{k}$. Un k-sottoinsieme $\{a_1, \ldots, a_k\}$ di un n-insieme A genera un numero k di (k-1)-sottoinsiemi eliminando di volta in volta un elemento:

$$(\{a_1,\ldots,a_{i-1},a_i,a_{i+1},\ldots,a_k\},a_i)\mapsto \{a_1,\ldots,a_{i-1},a_{i+1},\ldots,a_k\}$$

In totale, al variare dei k-sottoinsiemi, ho $k\binom{n}{k}$ possibilità.

Viceversa, un (k-1)-sottoinsieme $\{b_1, \ldots, b_{k-1}\}$ di un n-insieme A genera un numero pari a (n-k+1) di k-sottoinsiemi aggiungendo di volta in volta un elemento $c \in A - \{b_1, \ldots, b_{k-1}\}$ tra gli (n-k+1) elementi rimasti:

$$(\{b_1,\ldots,b_{k-1}\},c)\mapsto \{b_1,\ldots,b_{k-1},c\}$$

In totale, al variare dei (k-1)-sottoinsiemi, ho $(n-k+1)\binom{n}{k-1}$ possibilità.

Le due corrispondenze che abbiamo descritto sono l'una inversa dell'altra, per cui abbiamo descritto una corrispondenza bigettiva tra l'insieme delle coppie (k-sottoinsieme, elemento del k-sottoinsieme) e l'insieme delle coppie (k – 1-sottoinsieme, elemento non appartenente al k – 1-sottoinsieme).

In conclusione, abbiamo la seguente uguaglianza notevole:

$$k\binom{n}{k} = (n-k+1)\binom{n}{k-1}$$

Iterando il ragionamento otteniamo

$$\binom{n}{k} = [(n-k+1)/k]\binom{n}{k-1} = [(n-k+1)/k][(n-k+2)/k-1]\binom{n}{k-2} = \dots = (n)_k/k!$$

2. La formula di Stifel: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ ed il triangolo aritmetico di Pascal (o di Tartaglia?). [2, Sezione 11.1]

La formula di Stifel è importante perché dimostra una relazione tra i sottoinsiemi di un n-insieme ed i sottoinsiemi di un (n-1)-insieme. Dimostriamola.

Sia A un n-insieme e $c \in A$ un fissato elemento. Allora i k-sottoinsiemi di A si dividono in due classi: quelli che contengono c

$$\{a_1,\ldots,a_{k-1},c\}\mapsto\{a_1,\ldots,a_{k-1}\}$$

(che corrispondono ai (k-1)-sottoinsiemi di $A-\{c\}$) e quelli che non contengono c

$$\{a_1,\ldots,a_k\}$$
 con $c\neq a_i$ per ogni i

(che corrispondono ai k-sottoinsiemi di $A - \{c\}$). Quindi abbiamo la formula di Stifel.

La formula di Stifel può essere utilizzata per calcolare ricorsivamente tutti i coefficienti binomiali. Possono essere disposti in un triangolo aritmetico, detto di Pascal dai francesi e di Tartaglia dagli italiani [2, Sezione 11.1, pag. 106]. Vi sono tantissime relazioni interessanti sui coefficienti binomiali. Qui di seguito ne riportiamo alcune:

• $\binom{n}{k} = \binom{n}{n-k}$ [4, Sezione 1.4]. Esiste una corrispondenza bigettiva tra i k-sottoinsiemi di un n-insieme A ed i suoi (n-k)-sottoinsiemi:

$$\{a_1, \ldots, a_k\} \mapsto A - \{a_1, \ldots, a_k\}.$$

• Cardinalità delle parti di un *n*-insieme [2, Sezione 11.1]:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Ogni sottoinsieme di un n-insieme ha come cardinalità un numero compreso tra 0 ed n.

• I numeri $\binom{n}{k}$, fissato n, crescono con k che varia da 1 fino ad $(1/2) \times (n+1)$. Segue dalla relazione $\binom{n}{k} = [(n-k+1)/k]\binom{n}{k-1}$ che abbiamo dimostrato prima in questa sezione: $(n-k+1)/k \ge 1$ sse $k \le n-k+1$ sse $k \le (1/2) \times (n+1)$.

3. Il teorema binomiale [4, Sezione 1.5, pag. 11], [2, Sezione 11.3].

7.5. Numeri di Fibonacci [4, Sezione 1.6] [3, Cap. 13]

1. Il problema delle coppie di colombi [4, Sezione 1.6]: supponiamo che ogni coppia di colombi impieghi un mese per diventare adulta ed un secondo mese per procreare un'altra coppia. Se all'inizio della generazione abbiamo una sola coppia non adulta e nessun animale muore, quante coppie avremo dopo n mesi? Calcoliamo per doppia induzione il numero A_n di coppie adulte ed il numero N_n di coppie non adulte dopo n mesi.

$$N_0 = 1;$$
 $A_0 = 0;$ $N_{n+1} = A_n;$ $A_{n+1} = A_n + N_n = A_n + A_{n-1}$

Quindi

$$A_0 = 0;$$
 $A_1 = 1;$ $A_{n+1} = A_n + A_{n-1}$

Il numero totale di coppie F_n dopo n mesi:

$$F_n = A_n + N_n = A_n + A_{n-1} = A_{n+1}.$$

Quindi,

$$F_0 = 1;$$
 $F_1 = 1;$ $F_{n+1} = F_n + F_{n-1}$

2. Sottoinsiemi di n che non contengono due numeri consecutivi [4, Sezione 1.6]

Proviamo a contare il numero G_n dei sottoinsiemi di un n-insieme che non contengono due numeri consecutivi. Li possiamo dividere in due classi, la classe dei sottoinsiemi che contengono n ma non contengono due numeri consecutivi (così non possono contenere neanche n-1) e la classe dei sottoinsiemi che non contengono nè n nè due numeri consecutivi. La prima classe ha G_{n-2} elementi, mentre la seconda classe ne ha G_{n-1} . In totale, abbiamo la seguente relazione di ricorrenza:

$$G_0 = 1;$$
 $G_1 = 2;$ $G_n = G_{n-1} + G_{n-2}$

Calcoliamo ora il valore di G_n , partendo dal numero $G_{n,k}$ dei k-sottoinsiemi di un n-insieme che non contengono due numeri consecutivi. Quest'ultimo numero è pari al numero di n-stringhe di 0,1 in cui occorre k volte 1 (e n-k volte 0) e non ho due 1 consecutivi. Si calcola così: prima consideriamo n-k cifre 0 scritte di seguito poi interponiamo k cifre 1 in modo tale che due non siano consecutive.

$$G_n = \sum_{k \ge 0} G_{n,k} = \sum_{k \ge 0} \binom{n-k+1}{k}$$

I numeri di Fibonacci sono

$$F_0 = 1;$$
 $F_1 = 1;$ $(n \ge 2)$ $F_n = G_{n-1} = \sum_{k \ge 0} {n-k \choose k}$

3. La somma delle diagonali di angolo 45 gradi del triangolo aritmetico sono i numeri di Fibonacci [4, Sezione 1.6]. Segue dalla relazione $F_n = \sum_{k \geq 0} \binom{n-k}{k}$.

I primi numeri di Fibonacci sono:

$$1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad 55 \quad 89....$$

che corrispondono alla somma delle diagonali di angolo 45 gradi del triangolo aritmetico:

```
1
1
       1
1
       2
              1
1
       3
                     1
              3
1
       4
              6
1
       5
              10
1
       6
                            15
              15
                      20
                                           1
1
       7
                      25
                             25
                                    21
              21
                                           7
                                                   1
```

Diagonale 0: 1

Diagonale 1: 1

Diagonale 2: 1 + 1 = 2

Diagonale 3: 1 + 2 = 3

Diagonale 4: 1 + 3 + 1 = 5

Diagonale 5: 1 + 4 + 3 = 8

Diagonale 6: 1 + 5 + 6 + 1 = 13

Diagonale 7: 1+6+10+4=21

- 4. Proprietà dei numeri di Fibonacci (facoltativo):
 - $gcd(F_n, F_{n+1}) = 1$ [3, Teorema 13.1]
 - $F_{m+n} = F_{m-1}F_n + F_mF_{n+1}$ (Facile per induzione su n)
 - $gcd(F_n, F_m) = F_{qcd(n,m)}$ [3, Teorema 13.3] + Lemma che lo precede.
 - (Formula di Binet [4, Sezione 1.6 pag. 14]) Esiste una progressione geometrica $1, x, x^2, \ldots, x^n, \ldots$ che verifica la relazione di ricorrenza della successione di Fibonacci? Se si, allora

$$x^n = x^{n-1} + x^{n-2}$$

cioè

$$x^2 = x + 1$$

cioè x deve essere radice della precedente equazione. Essa si puo riscrivere come segue:

$$x^2 = x + 1 = xF_1 + F_0$$

e più in generale

$$x^{n+1} = xF_n + F_{n-1}$$
 (per induzione)

Le radici delle quazione $x^2 - x - 1$ sono

$$\alpha = (1 - \sqrt{5})/2; \quad \beta = (1 + \sqrt{5})/2$$

Quindi valgono le identità

$$F_n = (\beta^{n+1} - \alpha^{n+1})/(\beta - \alpha)$$

cio'e

$$F_n = (1/\sqrt{5})[((1+\sqrt{5})/2)^{n+1} - ((1-\sqrt{5})/2)^{n+1}]$$

7.5.1. Zeckendorfs Theorem (1939) and data compression

Edouard Zeckendorf, a Belgian amateur mathematician, discovered the following theorem in 1939. In 1960, David E. Daykin proved that the Fibonacci sequence is the only one which satisfies the theorem; in other words, the theorem asserts a defining property of the Fibonacci sequence!

Theorem 7.1. [3, Teorema 13.4] Ogni numero intero positivo si scrive in maniera univoca come somma finita di numeri di Fibonacci distinti e non consecutivi. Più precisamente, per ogni intero positivo n, esiste un'unica stringa finita binaria $b_1b_2...b_t$ $(t \ge 1)$, senza uni consecutivi tale che $n = \sum_{i>1} b_i F_i$.

Quindi i numeri di Fibonacci possono essere utilizzati come sistema numerico (per esempio, $17 = 101001 = F_1 + F_3 + F_6 = 1 + 3 + 13$) e non solo.

Data Compression: Letters, in everyday use, occur with very pronounced frequencies: E most commonly, then T, then A, etc. Sending digital messages (using binary digits) is quicker if the letters are encoded with fewer bits for the more frequent letters. In Fibonacci coding, invented by Alberto Apostolico and Aviezri Fraenkel in 1985, the string 101001 can encode G, the 17th most common

letter: an extra 1 is added at the end to signal letter boundaries. THEOREM is encoded in standard ASCII as seven 8-bit bytes: 56 bits. The Fibonacci code makes a 46% saving with only 30 bits: 011000011111011100011111000011. Per completezza riportiamo la codifica delle lettere

ORDER LETTER CODE

- 1 E 11
- 2 T 011
- 3 A 0011
- 4 O 1011
- 5 I 00011
- 6 N 10011
- 7 S 01011
- 8 H 000011
- 9 R 100011
- 10 D 010011
- 11 L 001011
- 12 C 101011
- 13 U 0000011
- 14 M 1000011
- 15 W 0100011
- 16 F 0010011
- 17 G 1010011
- 18 Y 0001011
- 19 P 1001011
- 20 B 0101011
- 21 V 00000011
- 22 K 10000011
- $23\ {\rm J}\ 01000011$
- 24 X 00100011
- 25 Q 10100011
- 26 Z 00010011

7.6. Some applications of Fibonacci numbers

The Fibonacci numbers are important in the run-time analysis of Euclid's algorithm to determine the greatest common divisor of two integers: the worst case input for this algorithm is a pair of consecutive Fibonacci numbers.

The Fibonacci numbers and principle is also used in the financial markets. It is used in trading algorithms, applications and strategies. Some typical forms include: the Fibonacci fan, Fibonacci Arc, Fibonacci Retracement and the Fibonacci Time Extension.

Fibonacci numbers are used by some pseudorandom number generators.

Fibonacci numbers are used in a polyphase version of the merge sort algorithm in which an unsorted list is divided into two lists whose lengths correspond to sequential Fibonacci numbers - by dividing the list so that the two parts have lengths in the approximate proportion.

Fibonacci numbers arise in the analysis of the Fibonacci heap data structure.

A one-dimensional optimization method, called the Fibonacci search technique, uses Fibonacci numbers.

In music, Fibonacci numbers are sometimes used to determine tunings, and, as in visual art, to determine the length or size of content or form (music)—formal elements. It is commonly thought that the first movement of Bela Bartok's "Music for Strings, Percussion, and Celesta" was structured using Fibonacci numbers.

REFERENCES

- 1. F. Bellissima, F. Montagna. Matematica per l'informatica: aritmetica e logica, probabilità, grafi. Carocci Editore, 2006.
- 2. Norman L. Biggs: Discrete Mathematics, Oxford University Press, 2002.

- 3. David M. Burton. Elementary Number Theory. Allyn and Bacon, 1980.
- 4. M. Cesaroli, F. Eugeni, M. Protasi. Elementi di Matematica Discreta. Zanichelli, 1988.