Методы адаптации в случайном поиске

Грицай Дмитрий Анатольевич, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д. ф.-м. н., профессор Ю. А. Сушков Рецензент: Г. С. Тамазян

Санкт-Петербург 2015г.

Цели работы

Цели работы:

- Нахождение минимума функции методом случайного поиска.
- Исследование различных законов сужения перспективной области.
- Классификация тестовых функций.
- Оптимизация параметров случайного поиска.
- Сравнение эффективности поиска для различных законов сужения перспективной области.

Постановка задачи

Постановка задачи:

- $x^* = \operatorname{argmin} F(x)$;
- ullet x^{j} текущий минимум за j шагов;
- ullet $n_{
 m step}$ число шагов работы алгоритма;
- $P(||x^* x^{n_{\text{step}}}|| < \varepsilon) \to \max$.

Метод случайного поиска

Пусть $X = [0,1]^n$. Обозначения:

- ullet $I^{j}\subset [0,1]$ перспективная область для x^{*} на j-ом шаге;
- $s_j = (2q_j)^n$ объем I^j ;
- $(x_{0,i}^j,\dots,x_{0,n}^j)$ центр I^j ;
- $p_j = \mathsf{P}(x^j \in I^j)$;
- H_j плотность внутри I^j ;
- h_j плотность вне I^j ;
- p_{\min} , $s_{\min} = (2q_{\min})^n$ гиперпараметры.

Pаспределение вектора x в случае n=2.

Метод случайного поиска

Алгоритм:

$$x_i^0 = 0.5, i = 1 \dots n;$$

- $\mathbf{2}$ пока $j \leq n_{\text{step}}$:
 - $\mathbf{0}$ вычисляем q_i ;
 - **2** вычисляем p_{i} ;
 - $\mathbf{3} \ x_{0,i}^{j} = \max \{q_{j}, \min \{x_{i}^{j-1}, 1 q_{j}\}\};$
 - $oldsymbol{o}$ моделируем x^j ;
 - \mathbf{o} $x_j := egin{cases} x_j, & \text{если } F(x_j) < F(x_{j-1}; \ x_{j-1}, & \text{если } F(x_j) \geqslant F(x_{j-1}). \end{cases}$

Метод случайного поиска

$$p_j = \begin{cases} \frac{s_j(p_{\min} - 1)}{s_{\min}} + 1, & \text{если } 0 \leq s_j \leq s_{\min}, \\ \frac{s_j(1 - p_{\min})}{1 - s_{\min}} + \frac{p_{\min} - s_{\min}}{1 - s_{\min}}, & \text{если } s_{\min} \leq s_j \leq 1; \end{cases}$$

$$H_j = egin{cases} rac{p_{\min} - 1}{s_{\min}} + rac{1}{s_j}, & ext{если } 0 \leq s_j \leq s_{\min}, \\ rac{1 - p_{\min}}{1 - s_{\min}} + rac{p_{\min} - s_{\min}}{s_j (1 - s_{\min})}, & ext{если } s_{\min} \leq s_j \leq 1; \end{cases}$$

$$h_j = egin{cases} rac{(1-p_{\min})s_j}{(1-s_j)s_{\min}}, & \text{если } 0 \leq s_j \leq s_{\min}, \\ rac{1-p_{\min}}{1-s_{\min}}, & \text{если } s_{\min} \leq s_j \leq 1. \end{cases}$$

Пока $s_j \geq s_{\min}$, h_j не меняется; $p_{\min} = \min p_j$.

Шкалы

Шкала — это функция, отображающая множество качественных оценок превосходства Λ в множество положительных вещественных чисел.

Шкала Саати:
$$\varphi_S(\lambda) = (1 + x_S|\lambda|)^{\operatorname{sign}(\lambda)}, \lambda \in \Lambda;$$

Шкала Брука:
$$\varphi_B(\lambda) = c_B + \lambda x_B, \lambda \in \Lambda;$$

Логистическая шкала:
$$\varphi_{log}(\lambda) = 2/(1 + \exp(-\mu\lambda)), \lambda \in \Lambda;$$

Шкала Лутсма:
$$\varphi_L(\lambda) = c^{\lambda}, \lambda \in \Lambda;$$

Шкала Ма-Зенга:
$$\varphi_{MZ}(\lambda) = (K/(K-|\lambda|))^{\mathrm{sign}(\lambda)}, \lambda \in \Lambda, |\lambda| < K.$$

Модификация шкал для случайного поиска

В методе случайного поиска $q_0=0.5,\,q$ монотонно убывает. Изменим шкалы так, чтобы они удовлетворяли этим свойствам, и возьмем их в качестве законов сужения перспективной области.

Например, логистический закон сужения перспективной области:

$$\psi(\lambda, \mu) = 1 - 1/(1 + \exp(-\mu\lambda)),$$
$$\lambda = k/n_{\text{step}}.$$

Оптимизация параметров q_{\min} и p_{\min}

Оптимизация параметров:

- Оценивалась вероятность попадания в ε -окрестность точки глобального минимума функции за $n_{
 m step}$ шагов.
- ullet Оптимизация велась на сетке с шагом 0.01 по q_{\min} и p_{\min} .
- Выделились 4 класса тестовых функций.
- Внутри одинаковых классов тестовых функций оптимальные параметры совпали.
- Вид закона сужения перспективной области не важен.

Оптимизация параметров q_{\min} и p_{\min}

Логистический закон с $\mu=6$ для f_4 .

Классы тестовых функций

Классы рассматриваемых тестовых функций:

- Одноэкстремальные.
- Многоэкстремальные:
 - Первый класс:
 - Много локальных минимумов, в которых функция принимает близкие к минимальному значения.
 - Второй класс:
 - Мало локальных минимумов, в которых функция принимает близкие к минимальному значения;
 - Ярко выраженный тренд.
- Овражные.

Овражные функции

Функция F(x) называется овражной на множестве $X\in\mathbf{R}^n$, если для собственных значений $\lambda_i(x)$ матрицы Гессе

$$F^{"}(x) = \left\| \frac{d^2 F(x)}{dx_i dx_j} \right\|, \quad i, j = 1 \dots n,$$

упорядоченных в любой точке $x \in X$, справедливо неравенство

$$0 < |\min_{i} \lambda_i(x)| \ll \lambda_1, \qquad x \in X.$$

Поверхность овражной функции F(x) напоминает по форме овраг. Плохо поддаются градиентной оптимизации.

Оптимальные q_{\min} и p_{\min}

Классы рассматриваемых тестовых функций:

- Одноэкстремальные: $q_{\min} = 0.45$ и $p_{\min} = 0.95$.
- Многоэкстремальные:
 - ullet Первый класс: $q_{\min} = 0.05$ и $p_{\min} = 0.95$;
 - ullet Второй класс: $q_{\min} = 0.05$ и $p_{\min} = 0.55$.
- ullet Овражные: $q_{\min} = 0.05$ и $p_{\min} = 0.95$.

Оптимизация параметров законов сужения перспективной области

Оптимизация параметров:

- ullet Зафиксируем наилучшие гиперпараметры q_{\min} и p_{\min} .
- ullet $n_{
 m search}$ раз запустим процедуру случайного поиска.
- Оценим вероятность попадания в ε -окрестность глобального минимума за n_{step} шагов.
- Внутри одинаковых классов тестовых функций оптимальные параметры близки.

Наилучшие параметры законов сужения перспективной области

Одноэкстремальные:

- Саати $(x_S = 10)$;
- Лутсма ($c = 2^{10/4}$);
- Логистический $(\mu = 6)$;
- Показательный;
- Ма-Зенга;
- Брука.

Овражные:

- Логистический $(\mu = 1)$;
- Саати $(x_S = 1)$;
- Брука;
- Лутсма $(c = 2^{1/4})$;
- Показательный;
- Ма-Зенга.

Наилучшие параметры законов сужения перспективной области

Многоэкстремальные I:

- Лутсма ($c = 2^{10/4}$);
- Логистический ($\mu = 4$);
- Саати $(x_S = 8)$;
- Показательный;
- Брука;
- Ма-Зенга.

Многоэкстремальные II:

- Логистический $(\mu = 1)$;
- Саати $(x_S = 1)$;
- Брука;
- Лутсма $(c = 2^{1/4})$;
- Показательный;
- Ма-Зенга.

Оптимизация параметров законов сужения перспективной области с помощью случайного поиска

Методом случайного поиска ищем минимум функции:

$$f(\mu) = -P(A),$$

где A — событие, соответствующее попаданию в arepsilon-окрестность глобального минимума за $n_{
m step}$ шагов при фиксированных параметрах $q_{
m min}$ и $p_{
m min}$, μ — параметр скорости сужения перспективной области.

Значения функции f для разных аргументов можно сравнивать как с пересчётом вероятностей, так и без него.

Оптимизация параметров законов сужения перспективной области с помощью случайного поиска

- ullet $f(\mu)$ —многоэкстремальная функция второго класса.
- Гиперпараметрами внешнего поиска (поиска верхнего уровня) будут $q_{
 m step}=0.05$ и $p_{
 m step}=0.55$.
- Во внешнем случайном поиске используется логистический закон сужения перспективной области с $\mu=4$.
- Результаты в обоих способах очень близки к предыдущим результатам.
- При пересчете вероятностей дисперсия меньше.

Итоги

В ходе работы были получены следующие основные результаты:

- На основе статистического исследования найдены оптимальные значения параметров алгоритма случайного поиска для исследуемых классов тестовых функций.
- Рассмотрены наиболее эффективные с точки зрения выбранных критериев законы сужения перспективной области случайного поиска и найдены их оптимальные параметры.
- Был введен случайный поиск верхнего уровня, подтвердивший выбор наилучших параметров.
- Проведено сравнение результатов для разных законов сужения перспективной области для классов рассмотренных тестовых функций.