# ISyE 6739 - Statistical Methods

# **Descriptive Statistics (Chapter 6)**

Instructor: Kamran Paynabar
H. Milton Stewart School of
Industrial and Systems Engineering
Georgia Tech

Kamran.paynabar@isye.gatech.edu
Office: Groseclose 436

ISyE6739, Descriptive Statistics

1

### **Population Vs. Sample**

- <u>Population</u>: a finite well-defined group of <u>ALL</u> objects which, although possibly large, can be enumerated in theory (e.g. investigating <u>ALL</u> the bearings manufactured today).
- <u>Sample</u>: A sample is a <u>SUBSET</u> of a population (e.g. select 50 out of 1,000 bearings manufactured today).





# **List of Topics**

- Descriptive Statistics (Ch.6)
  - Numerical Summaries:
    - Central Tendency
    - Variability
    - Position
  - Graphical Summaries:
    - Frequency Table and Histogram
    - Box plot
    - Time-series plot
    - stem-and-leaf diagram

# **Descriptive Vs. Inferential Statistics**

• Descriptive Statistics:

A set of statistical techniques used to organize, summarize, display, and describe important features of data



• Inferential (a.k.a. inductive) Statistics:

A set of statistical methods that uses <u>sample</u> information to draw conclusion about the <u>population</u>

ISyE6739, Descriptive Statistics

5

## **Descriptive Statistics**

**Numerical Summaries:** 

Central Tendency
Variability
Position

## **Numerical Summary of Data**

Statistic: Any function of sampled observations is called a statistic

#### **Central Tendency statistics**

 $\underline{\text{Mean}} \qquad \overline{x} = \frac{\sum_{i=1}^{n} x_i}{x_i}$ 

Median  $\tilde{x}$ 

A value such that 50% of the data are at or above this value.

Mode  $\hat{x}$ 

Observation with the highest frequency

Variability statistics

**Range**  $R = x_{\text{max}} - x_{\text{min}}$ 

<u>Variance</u>

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

**Standard Deviation** 

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

ISyE6739, Descriptive Statistics

7

### Sample Mean

If the *n* observations in a sample are denoted by  $x_1, x_2, \dots, x_n$ , the sample mean is

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 (6-1)

Let's consider the eight observations collected from the prototype engine connectors from Chapter 1. The eight observations are  $x_1 = 12.6$ ,  $x_2 = 12.9$ ,  $x_3 = 13.4$ ,  $x_4 = 12.3$ ,  $x_5 = 13.6$ ,  $x_6 = 13.5$ ,  $x_7 = 12.6$ , and  $x_8 = 13.1$ . The sample mean is

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^{8} x_i}{8} = \frac{12.6 + 12.9 + \dots + 13.1}{8}$$
$$= \frac{104}{8} = 13.0 \text{ pounds}$$



ISyE6739, Descriptive Statistics

# **Population Mean**



Population mean 
$$\mu = \frac{\displaystyle\sum_{i=1}^{N} x_i}{N} \qquad \qquad \bar{x} = \frac{\displaystyle\sum_{i=1}^{n} x_i}{n} \qquad \text{Sample mean}$$

The sample mean is a reasonable estimate of the population mean.

ISyE6739, Descriptive Statistics

О

#### **Sample Median**

 $\widetilde{\chi}$  A value such that 50% of the data are at or above this value

#### How to calculate:

- Sort the data in ascending (or descending) order
- If n is an odd number, median is the (n+1)/2<sup>th</sup> number
- If n is an even number, median is the average of is the n/2<sup>th</sup> and (n/2)+1<sup>th</sup> numbers

Let's consider the eight observations collected from the prototype engine connectors from Chapter 1. The eight observations are  $x_1 = 12.6$ ,  $x_2 = 12.9$ ,  $x_3 = 13.4$ ,  $x_4 = 12.3$ ,  $x_5 = 13.6$ ,  $x_6 = 13.5$ ,  $x_7 = 12.6$ , and  $x_8 = 13.1$ .

### **Sample Mode**

#### $\hat{x}$ Observation with the highest frequency

Let's consider the eight observations collected from the prototype engine connectors from Chapter 1. The eight observations are  $x_1 = 12.6$ ,  $x_2 = 12.9$ ,  $x_3 = 13.4$ ,  $x_4 = 12.3$ ,  $x_5 = 13.6$ ,  $x_6 = 13.5$ ,  $x_7 = 12.6$ , and  $x_8 = 13.1$ .

ISyE6739, Descriptive Statistics

11

# Sample Variance & Standard Deviation

If  $x_1, x_2, \ldots, x_n$  is a sample of n observations, the sample variance is

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$
 (6-3)

The sample standard deviation, s, is the positive square root of the sample variance.

How the sample variance measures variability through the deviations?  $x_i - \overline{x}$ 

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1}$$

Easier to calculate



ISyE6739, Descriptive Statistics

# **Example (pull-off force)**

| i | $x_i$ | $x_i - \overline{x}$ | $(x_i - \overline{x})^2$ |
|---|-------|----------------------|--------------------------|
| 1 | 12.6  | -0.4                 | 0.16                     |
| 2 | 12.9  | -0.1                 | 0.01                     |
| 3 | 13.4  | 0.4                  | 0.16                     |
| 4 | 12.3  | -0.7                 | 0.49                     |
| 5 | 13.6  | 0.6                  | 0.36                     |
| 6 | 13.5  | 0.5                  | 0.25                     |
| 7 | 12.6  | -0.4                 | 0.16                     |
| 8 | 13.1  | 0.1                  | 0.01                     |
|   | 104.0 | $\bar{x} = 13$ 0.0   | 1.60                     |

so the sample variance is

$$s^2 = \frac{1.60}{8 - 1} = \frac{1.60}{7} = 0.2286 \text{ (pounds)}^2$$

and the sample standard deviation is

$$s = \sqrt{0.2286} = 0.48$$
 pounds

ISyE6739, Descriptive Statistics

13

# **Population Variance**

N: population size population sample n: sample size

Population variance 
$$\sigma^2 = \frac{\displaystyle\sum_{i=1}^N (x_i - \mu)^2}{N}$$
  $s^2 = \frac{\displaystyle\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}$  Sample variance

The sample variance is a reasonable estimate of the population variance.

ISyE6739, Descriptive Statistics

### Sample Range

If the *n* observations in a sample are denoted by  $x_1, x_2, \dots, x_n$ , the sample range is

$$r = \max(x_i) - \min(x_i) \tag{6-6}$$

Let's consider the eight observations collected from the prototype engine connectors from Chapter 1. The eight observations are  $x_1 = 12.6$ ,  $x_2 = 12.9$ ,  $x_3 = 13.4$ ,  $x_4 = 12.3$ ,  $x_5 = 13.6$ ,  $x_6 = 13.5$ ,  $x_7 = 12.6$ , and  $x_8 = 13.1$ .

$$r = x_{\text{max}} - x_{\text{min}} = 13.6 - 12.3 = 1.3$$

ISyE6739, Descriptive Statistics

15

### **Percentiles**

To calculate  $i^{th}$  (1 < i < 99) percentile ( $P_i$ ):

- Sort the data in <u>ascending</u> order
- Calculate the rank as  $r = (n+1) \times i/100$
- If *r* is integer, the *i* <sup>th</sup> percentile is the *r*<sup>th</sup> sorted number
- If r is non-integer, the i<sup>th</sup> percentile is the average of is the floor(r)<sup>th</sup> and floor(r)<sup>th</sup> +1 numbers
- $P_{25}$ ,  $P_{50}$ , and  $P_{75}$  are also known as first, second and third quartiles, respectively and denoted as  $Q_1$ ,  $Q_2$ , and  $Q_3$ .

# **Descriptive Statistics**

### **Graphical Summaries:**

Frequency Table and Histogram
Box plot
Time-series plot
stem-and-leaf diagram

ISyE6739, Descriptive Statistics

17

# Frequency Table and Histogram

- To construct a frequency table
  - 1. Find the range of the data
    - start the lower limit for the first bin just slightly below the smallest data value
    - $-b_0=<\min(x), b_m=\max(x),$
    - $R = b_m b_0$
  - 2. Divide this range into a suitable number of equal intervals
    - m=4 ~ 20, or  $\sqrt{N}$  (N is the total number of observations)
  - 3. Count the frequency of each interval

$$- \text{ if } \mathbf{b}_{i-1} \leq \mathbf{x} < \mathbf{b}_i$$

# **Example: Forged Piston Rings for Engines**

- Population:
  - The inside diameter of forged piston rings(mm)
  - One sample that includes 125 observations were collected



ISyE6739, Descriptive Statistics

Forged Piston-Ring Inside Diameter (mm)

|        |        | Observations |        |        |
|--------|--------|--------------|--------|--------|
| 74.030 | 74.002 | 74.019       | 73.992 | 74.008 |
| 73.995 | 73.992 | 74.001       | 74.011 | 74.004 |
| 73.988 | 74.024 | 74.021       | 74.005 | 74.002 |
| 74.002 | 73.996 | 73.993       | 74.015 | 74.009 |
| 73.992 | 74.007 | 74.015       | 73.989 | 74.014 |
| 74.009 | 73.994 | 73.997       | 73.985 | 73.993 |
| 73.995 | 74.006 | 73.994       | 74.000 | 74.005 |
| 73.985 | 74.003 | 73.993       | 74.015 | 73.988 |
| 74.008 | 73.995 | 74.009       | 74.005 | 74.004 |
| 73.998 | 74.000 | 73.990       | 74.007 | 73.995 |
| 73.994 | 73.998 | 73.994       | 73.995 | 73.990 |
| 74.004 | 74.000 | 74.007       | 74.000 | 73.996 |
| 73.983 | 74.002 | 73.998       | 73.997 | 74.012 |
| 74.006 | 73.967 | 73.994       | 74.000 | 73.984 |
| 74.012 | 74.014 | 73.998       | 73.999 | 74.007 |
| 74.000 | 73.984 | 74.005       | 73.998 | 73.996 |
| 73.994 | 74.012 | 73.986       | 74.005 | 74.007 |
| 74.006 | 74.010 | 74.018       | 74.003 | 74.000 |
| 73.984 | 74.002 | 74.003       | 74.005 | 73.997 |
| 74.000 | 74.010 | 74.013       | 74.020 | 74.003 |
| 73.988 | 74.001 | 74.009       | 74.005 | 73.996 |
| 74.004 | 73.999 | 73.990       | 74.006 | 74.009 |
| 74.010 | 73.989 | 73.990       | 74.009 | 74.014 |
| 74.015 | 74.008 | 73.993       | 74.000 | 74.010 |
| 73.982 | 73.984 | 73.995       | 74.017 | 74.013 |

19





V - The cylinders are arranged in two banks set at an angle to one another



COMPRESSION RINGS



RINGS INSTALLED CORRECTLY

#### **Frequency Distribution for Piston-Ring Diameter**

- Data range:  $b_0 = 73.965 < min(x)$ ;  $b_N = max(x) = 74.030$
- N=125; # of Bin m=13, Interval=(74.030-73.965)/13=0.005
- Count for each bin: b<sub>i-1</sub> ≤ x < b<sub>i</sub>

Table 2-3 Frequency Distribution for Piston-Ring Diameter

| Ring Diameter, x (mm)   | Tally                   | Frequency | Cumulative<br>Frequency | Relative<br>Frequency | Cumulative<br>Relative<br>Frequency |
|-------------------------|-------------------------|-----------|-------------------------|-----------------------|-------------------------------------|
| $73.965 \le x < 73.970$ | 1                       | 1         | 1                       | 0.008                 | 0.008                               |
| $73.970 \le x < 73.975$ |                         | 0         | 1                       | 0.000                 | 0.008                               |
| $73.975 \le x < 73.980$ |                         | 0         | 1                       | 0.000                 | 0.008                               |
| $73.980 \le x < 73.985$ | 1111 111                | 8         | 9                       | 0.064                 | 0.072                               |
| $73.985 \le x < 73.990$ | 1111 1111               | 10        | 19                      | 0.080                 | 0.152                               |
| $73.990 \le x < 73.995$ | 1111 1111 1111 1111     | 19        | 38                      | 0.152                 | 0.304                               |
| $73.995 \le x < 74.000$ | 1111 1111 1111 1111 111 | 23        | 61                      | 0.184                 | 0.488                               |
| $74.000 \le x < 74.005$ | 1111 1111 1111 1111 11  | 22        | 83                      | 0.176                 | 0.664                               |
| $74.005 \le x < 74.010$ | 1111 1111 1111 1111 11  | 22        | 105                     | 0.176                 | 0.840                               |
| $74.010 \le x < 74.015$ | 1111 1111 111           | 13        | 118                     | 0.104                 | 0.944                               |
| $74.015 \le x < 74.020$ | 1111                    | 4         | 122                     | 0.032                 | 0.976                               |
| $74.020 \le x < 74.025$ | 11                      | 2         | 124                     | 0.016                 | 0.992                               |
| $74.025 \le x < 74.030$ | 1                       | 1         | 125                     | 0.008                 | 1.000                               |
|                         | Total                   | 125       | 1.                      | 1.000                 | 500                                 |
|                         |                         |           |                         |                       | 2                                   |

ISyE6739, Descriptive Statistics

21

# Histogram for Piston-ring Diameter Data - A graphical display of the frequency table



Figure 2-4 Histogram for piston-ring diameter data.

ISyE6739, Descriptive Statistics

# Interpretation based on Histogram

#### Three Properties of Sample Data

- · Shape:
  - roughly symmetric and unimodal
- The center tendency or location
  - the points tend to cluster near 74mm.
- Scatter or spread range
  - variability is relatively high (min=73.967; max=74.030)



#### **Box Plots**

 The box plot is a graphical display that simultaneously describes several important features of a data set, such as center, spread, departure from symmetry, and identification of observations that lie unusually far from the bulk of the data (outliers).







#### **Time Series Plot**

- A time series or time sequence is a data set in which the observations are recorded in the order in which they occur.
- A time series plot is a graph in which the vertical axis denotes the observed value of the variable (say x) and the horizontal axis denotes the time (which could be minutes, days, years, etc.).
- When measurements are plotted as a time series, we often see patterns like trends, cycles, or other broad features of the data



Figure 6-16 Company sales by year (a) and by quarter (b).

ISyE6739, Descriptive Statistics

27





Figure 6-17 A digidot plot of the compressive strength data.

ISyE6739, Descriptive Statistics

# **Stem-and-Leaf Diagrams**

A **stem-and-leaf diagram** is a good way to obtain an informative visual display of a data set  $x_1, x_2, ..., x_n$ , where each number  $x_i$  consists of at least two digits. To construct a stem-and-leaf diagram, use the following steps.

#### Steps for Constructing a Stem-and-Leaf Diagram

- (1) Divide each number  $x_t$  into two parts: a stem, consisting of one or more of the leading digits and a leaf, consisting of the remaining digit.
- (2) List the stem values in a vertical column.
- (3) Record the leaf for each observation beside its stem.
- (4) Write the units for stems and leaves on the display.

ISyE6739, Descriptive Statistics

29

### **Stem-and-Leaf Diagrams**

#### Example 6-4

Table 6-2 Compressive Strength (in psi) of 80 Aluminum-Lithium Alloy Specimens

| 105 | 221 | 183 | 186 | 121 | 181 | 180 | 143 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 97  | 154 | 153 | 174 | 120 | 168 | 167 | 141 |
| 245 | 228 | 174 | 199 | 181 | 158 | 176 | 110 |
| 163 | 131 | 154 | 115 | 160 | 208 | 158 | 133 |
| 207 | 180 | 190 | 193 | 194 | 133 | 156 | 123 |
| 134 | 178 | 76  | 167 | 184 | 135 | 229 | 146 |
| 218 | 157 | 101 | 171 | 165 | 172 | 158 | 169 |
| 199 | 151 | 142 | 163 | 145 | 171 | 148 | 158 |
| 160 | 175 | 149 | 87  | 160 | 237 | 150 | 135 |
| 196 | 201 | 200 | 176 | 150 | 170 | 118 | 149 |

ISyE6739, Descriptive Statistics

# **Stem-and-Leaf Diagrams**

Figure 6-4 Stem-and-leaf diagram for the compressive strength data in Table 6-2.

| Stem | Leaf          | Frequency |
|------|---------------|-----------|
| 7    | 6             | 1         |
| 8    | 7             | 1         |
| 9    | 7             | 1         |
| 10   | 5 1           | 2         |
| 11   | 580           | 3         |
| 12   | 103           | 3         |
| 13   | 413535        | 6         |
| 14   | 29583169      | 8         |
| 15   | 471340886808  | 12        |
| 16   | 3073050879    | 10        |
| 17   | 8544162106    | 10        |
| 18   | 0 3 6 1 4 1 0 | 7         |
| 19   | 960934        | 6         |
| 20   | 7 1 0 8       | 4         |
| 21   | 8             | 1         |
| 22   | 189           | 3         |
| 23   | 7             | 1         |
| 24   | 5             | 1         |

Stem: Tens and hundreds digits (psi); Leaf: Ones digits (psi)

ISyE6739, Descriptive Statistics

31

# **Stem-and-Leaf Diagrams**

Example 6-5

| Stem | Leaf      |
|------|-----------|
| 6    | 134556    |
| 7    | 011357889 |
| 8    | 1344788   |
| 9    | 2 3 5     |
| (2   | n)        |

| Stem | Leaf  |
|------|-------|
| 6L   | 134   |
| 6U   | 5 5 6 |
| 7L   | 0113  |
| 7U   | 57889 |
| 8L   | 1344  |
| 8U   | 788   |
| 9L   | 2 3   |
| 9U   | 5     |
| (b)  |       |

| Stem | Leaf |
|------|------|
| 6z   | 1    |
| 6t   | 3    |
| 6f   | 455  |
| 6s   | 6    |
| 6e   |      |
| 7z   | 011  |
| 7t   | 3    |
| 7f   | 5    |
| 7s   | 7    |
| 7e   | 889  |
| 8z   | 1    |
| 8t   | 3    |
| 8f   | 4 4  |
| 8s   | 7    |
| 8e   | 8 8  |
| 9z   |      |
| 9t   | 2 3  |
| 9f   | 5    |
| 9s   |      |
| 9e   |      |
| (6   | e)   |
|      |      |

ISyE6739, Descriptive Statistics