Kyle Kloberdanz 12 December 2021

Exercise 1.1.1: Given functions $\sigma: A \to B$ and $\tau: B \to C$, prove that if $\tau \circ \sigma$ is injective, then so is σ .

Proof. We will demonstrate a proof by contradiction. Assume σ is not injective, then by definition there exists two distinct values $a_1, a_2 \in A$ such that $\sigma(a_1) = \sigma(a_2)$. This implies that $\tau(\sigma(a_1)) = \tau(\sigma(a_2))$ which contradicts the assumption that $x \in A$, $\tau(\sigma(x))$ is an injective function. Hence a_1 and a_2 cannot exist and σ must be an injective function.

Exercise 1.2.2: Decide which of the following are equivalence relations on the set of natural numbers \mathbb{N} . For those that are, prove it. For those that are not, explain why.

(i)
$$x \sim y \text{ if } ||x - y|| \le 3$$

Proof. We will demonstrate a proof by counterexample. We will demonstrate that there exists a situation such that $x \sim y$ and $y \sim z$ but $x \sim z$ is false. Let $x, y, z \in \mathbb{N}$ and let x = 2, y = 4, and z = 6.

We can see that for the case of $x \sim y$ that $\|2-4\| \leq 3$ is true. We can see that for the case of $y \sim z$ that $\|4-6\| \leq 3$ is true. However, we can see that for the case of $x \sim z$ that $\|2-6\| \leq 3$ is false. Hence, the statement is not transitive, and therefore it is not an equivalence relation.

(ii)
$$x \sim y$$
 if $||x - y|| \ge 3$

Proof. For any $x \in \mathbb{N}, x - x = 0$. Furthermore ||x - x|| = 0. Clearly 0 is less than 3, hence the statement $||x - x|| \ge 3$ is false, hence $x \sim x$ is false, which means $x \sim y$ is not reflexive and therefore not an equivalence relation.

(iii) $x \sim y$ if x and y have the same digit in the 1's place (expressed in base 10).

Proof. Let the set D be the set of decimal digits, which would be exactly $\{0,1,2,3,4,5,6,7,8,9\}$. Note that $D \subset \mathbb{N}$. Let $x_1,y_1,z_1 \in D$ be the digit in the one's place of $x,y,z \in \mathbb{N}$ respectively. which means that a statement such as $x_1 = y_1$ would be read as x and y have the same digit in the one's place.

First, for any natural number $n \in \mathbb{N}$, n is the same as itself, hence $x_1 = x_1$ and $y_1 = y_1$, and therefore $x \sim x$ and $y \sim y$ so it is reflexive.

Second, observe that if $x \sim y$, then $x_1 = y_1$, furthermore x_1 is the same number as y_1 , but then y_1 is the same number as x_1 , and hence $y \sim x$, so it is symmetric.

Third, if $x \sim y$ then $x_1 = y_1$ and if $y \sim z$ then $y_1 = z_1$, then x_1 is the same as y_1 and y_1 is the same as z_1 , so z_1 is the same as z_1 , and hence z_1 , and therefore it is transitive.

Finally, because we have shown that the relation is reflexive, symmetric, and transitive, by definition this is an equivalence relation. \Box

(iv)
$$x \sim y$$
 if $x \geq y$

Proof. We will demonstrate a proof by counterexample. Let x=2 and y=1. In this scenario, $x\sim y$ because $2\geq 1$, however $y\sim x$ is false, because that would imply $1\geq 2$, which is absurd, and therefore a counterexample showing that the relation is not symmetric. Because this relation is not symmetric, it is therefore not an equivalence relation.

Exercise 1.2.3: Prove that for any $f: X \to Y$, the relation \sim_f defined in Example 1.2.6 is an equivalence relation. Show that for any $x \in X$, the equivalence class of x is precisely $[x] = f^{-1}(f(x))$.

Note: f^{-1} refers to the *preimage* of *fiber* of f, which is defined on page 4 of your textbook. You should *not* assume that f is an invertible function.

Recall that Example 1.2.6 states: Suppose $f: X \to Y$ is a function. Define a relation \sim_f on X by $x \sim_f y$ if f(x) = f(y).

Proof. First, we will show that the relation is an equivalence relation.

Because x is the same as x and f is the same as f, we can see that f(x) = f(x), so therefore we can see that the relation is reflexive.

If f(x) = f(y), then f(x) is the same as f(y), so f(y) = f(x), and therefore symmetric.

If f(x) = f(y) and f(y) = f(z) where $z \in X$, then f(x) is the same as f(y), but then f(y) is the same as f(z), hence f(x) = f(z) therefore the relation is transitive.

Because the relation is reflexive, symmetric, and transitive, it is therefore an equivalence relation.

Next, we will show that for any $x \in X$, the equivalence class of x is precisely $[x] = f^{-1}(f(x))$.

By definition [x] is the set $\{y \in X | y \sim_f x\}$, which when substituting the definition of \sim_f is $[x] = \{y \in X | f(y) = f(x)\}$. With the preimage of f being defined as $f^{-1}(Y) = \{y \in X | f(y) \in Y\}$. For a given x, f(x) will yield a singular value from Y. In other words, for any given x, f(x) would give us a singleton

set for that particular x input, and if we have some item a in a singlton set containing b, i.e. $a \in \{b\}$, we can conclude that a = b. Hence we can conclude that when we take the preimage of f(x), we can write the resulting set as follows $f^{-1}(f(x)) = \{y \in X | f(y) \in \{f(x)\}\} = \{y \in X | f(y) = f(x)\}$. We can see that this set that we have found for $f^{-1}(f(x))$ is eactly the same as the set we found for [x] We can see that these sets are precisely the same, so therefore [x] is precisely $f^{-1}(f(x))$.

Exercise 1.2.4: Prove Proposition 1.2.12: If \sim is an equivalence relation on X, then the function $\pi: X \to X/\sim$ defined by $\pi(x) = [x]$ is a surjective map, and the equivalence relation \sim_{π} determined by π is precisely \sim .

Proof. First we will show that the function is a surjective map. By definition, for any $[x] \in X/\sim$ then $\pi(x)=[x]$ where $x\in X$, therefore the function $\pi:X\to X/\sim$ is a surjective map.

Next, we will show that equivalence relation \sim_{π} determined by π is precisely \sim . Recall that $X/\sim=\{[x]\mid x\in X\}$ also, $x\sim_{\pi} y$ implies $\pi(x)=\pi(y)$. Also note that $\pi(x)=[x]$ and $\pi(y)=[y]$ where $x,y\in X$. If $x\sim_{\pi} y$ then $\pi(x)=\pi(y)$. Furthermore [x]=[y]. Given that the definition of an equivalence class is $[a]=\{b\in A\mid b\sim a\}$, by this definition, we see that $x\sim y$, which shows that the equivalence relation \sim_{π} is precisely \sim

Exercise 1.3.1: Let $\sigma \in S_8$ be the permutation given by the 2×8 matrix

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 1 & 3 & 2 & 7 & 6 & 8 & 5 \end{pmatrix}$$

Express $\sigma, \sigma^2, \sigma^3$ and σ^{-1} in disjoint cycle notation.

For σ :

 $\sigma(1) = 4$

 $\sigma(2) = 1$

 $\sigma(3) = 3$

 $\sigma(4) = 2$

 $\sigma(5) = 7$

 $\sigma(6) = 6$

 $\sigma(7) = 8$

 $\sigma(8) = 5$

In disjoint cycle notation:

$$\sigma = \begin{pmatrix} 1 & 4 & 2 \end{pmatrix} \quad \begin{pmatrix} 3 \end{pmatrix} \quad \begin{pmatrix} 6 \end{pmatrix} \quad \begin{pmatrix} 5 & 7 & 8 \end{pmatrix}$$

For σ^2 :

 $\sigma(\sigma(1)) = \sigma(4) = 2$

 $\sigma(\sigma(2)) = \sigma(1) = 4$

 $\sigma(\sigma(3)) = \sigma(3) = 3$

 $\sigma(\sigma(4))=\sigma(2)=1$

 $\sigma(\sigma(5)) = \sigma(7) = 8$

 $\sigma(\sigma(6)) = \sigma(6) = 6$

$$\sigma(\sigma(7)) = \sigma(8) = 5$$

$$\sigma(\sigma(8)) = \sigma(5) = 7$$

$$\sigma^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 3 & 1 & 8 & 6 & 5 & 7 \end{pmatrix}$$

In disjoint cycle notation:

$$\sigma^2 = (1 \ 2 \ 4) \ (3) \ (6) \ (5 \ 8 \ 7)$$

For
$$\sigma^3$$
:
 $\sigma(\sigma(\sigma(1))) = \sigma(\sigma(4)) = \sigma(2) = 1$
 $\sigma(\sigma(\sigma(2))) = \sigma(\sigma(1)) = \sigma(4) = 2$
 $\sigma(\sigma(\sigma(3))) = \sigma(\sigma(3)) = \sigma(3) = 3$
 $\sigma(\sigma(\sigma(4))) = \sigma(\sigma(2)) = \sigma(1) = 4$
 $\sigma(\sigma(\sigma(5))) = \sigma(\sigma(7)) = \sigma(8) = 5$
 $\sigma(\sigma(\sigma(6))) = \sigma(\sigma(6)) = \sigma(6) = 6$
 $\sigma(\sigma(\sigma(7))) = \sigma(\sigma(8)) = \sigma(5) = 7$
 $\sigma(\sigma(\sigma(8))) = \sigma(\sigma(5)) = \sigma(7) = 8$

$$\sigma^3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$$

In disjoint cycle notation:

$$\sigma^3 = (1) (2) (3) (4) (5) (6) (7) (8)$$

For σ^{-1} , we must find the inverse of σ , such that $\sigma^{-1} \circ \sigma = \sigma \circ \sigma^{-1}$ is the identity.

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 4 & 3 & 1 & 8 & 6 & 5 & 7 \end{pmatrix}$$

Let's verify that this is correct by showing that $\sigma \circ \sigma^{-1}$ is the identity.

$$\sigma^{-1}(1) = 2$$

$$\sigma^{-1}(2) - 4$$

$$\sigma^{-1}(1) = 2
\sigma^{-1}(2) = 4
\sigma^{-1}(3) = 3$$

$$\sigma^{-1}(4) = 1$$

$$\sigma^{-1}(5) = 8$$

$$\sigma^{-1}(6) = 6$$

$$\sigma^{-1}(7) = 5$$

$$\sigma^{-1}(8) = 7$$

For
$$\sigma \circ \sigma^{-1}$$

$$\sigma(\sigma^{-1}(1)) = \sigma(2) = 1$$

$$\sigma(\sigma^{-1}(2)) = \sigma(4) = 2$$

$$\sigma(\sigma^{-1}(3)) = \sigma(3) = 3$$

$$\sigma(\sigma^{-1}(4)) = \sigma(1) = 4$$

$$\sigma(\sigma^{-1}(5)) = \sigma(8) = 5$$

$$\sigma(\sigma^{-1}(6)) = \sigma(6) = 6$$

 $\sigma(\sigma^{-1}(7)) = \sigma(5) = 7$

$$\sigma(\sigma^{-1}(7)) = \sigma(5) = 7$$

$$\sigma(\sigma^{-1}(8)) = \sigma(7) = 8$$

$$\sigma \circ \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$$

We can see that we have correctly found σ^{-1} in disjoint cycle notation to be:

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 6 \end{pmatrix} \begin{pmatrix} 5 & 8 & 7 \end{pmatrix}$$

Exercise 1.3.2: Consider $\sigma = \begin{pmatrix} 3 & 4 & 8 \end{pmatrix}$ (5 7 6 9) and $\tau = \begin{pmatrix} 1 & 9 & 3 & 5 \end{pmatrix}$ (2 7 4) in S_9 expressed in disjoint cycle notation. Compute $\sigma \circ \tau$ and $\tau \circ \sigma$, expressing both in disjoint cycle notation.

In matrix form:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 4 & 8 & 7 & 9 & 6 & 3 & 5 \end{pmatrix}$$

$$\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 7 & 5 & 2 & 1 & 6 & 4 & 8 & 3 \end{pmatrix}$$

For σ :

- $\sigma(1) = 1$
- $\sigma(2) = 2$
- $\sigma(3) = 4$
- $\sigma(4) = 8$
- $\sigma(5) = 7$
- $\sigma(6) = 9$
- $\sigma(7) = 6$
- $\sigma(8) = 3$
- $\sigma(9) = 5$

For τ :

- $\tau(1) = 9$
- $\tau(2) = 7$
- $\tau(3) = 5$
- $\tau(4) = 2$
- $\tau(5) = 1$
- $\tau(6) = 6$
- $\tau(7) = 4$ $\tau(8) = 8$
- $\tau(8) = 8$ $\tau(9) = 3$

For $\sigma \circ \tau$:

- $\sigma(\tau(1)) = \sigma(9) = 5$
- $\sigma(\tau(2)) = \sigma(7) = 6$
- $\sigma(\tau(3)) = \sigma(5) = 7$
- $\sigma(\tau(4)) = \sigma(2) = 2$
- $\sigma(\tau(5)) = \sigma(1) = 1$
- $\sigma(\tau(6)) = \sigma(6) = 9$
- $\sigma(\tau(7)) = \sigma(4) = 8$

$$\sigma(\tau(8)) = \sigma(8) = 3$$

$$\sigma(\tau(9)) = \sigma(3) = 4$$

In matrix form:

$$\sigma \circ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 6 & 7 & 2 & 1 & 9 & 8 & 3 & 4 \end{pmatrix}$$

In disjoint cycle notation:

$$\sigma \circ \tau = (1 \quad 5) \quad (2 \quad 6 \quad 9 \quad 4) \quad (3 \quad 7 \quad 8)$$

For $\tau \circ \sigma$:

$$\tau(\sigma(1)) = \tau(1) = 9$$

$$\tau(\sigma(2)) = \tau(2) = 7$$

$$\tau(\sigma(3)) = \tau(4) = 2$$

$$\tau(\sigma(4)) = \tau(8) = 8$$

$$\tau(\sigma(5)) = \tau(7) = 4$$

$$\tau(\sigma(6)) = \tau(9) = 3$$

$$\tau(\sigma(7)) = \tau(6) = 6$$

$$\tau(\sigma(8)) = \tau(3) = 5$$

$$\tau(\sigma(9)) = \tau(5) = 1$$

$$\tau \circ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 7 & 2 & 8 & 4 & 3 & 6 & 5 & 1 \end{pmatrix}$$

In disjoint cycle notation: