ML HW2 Report

110511277 蔡東宏

1. Part I

A. Generative Model:

首先,透過 Generative Model 去進行 classification 的問題,先根據 Training Data 分別算出 4 個 class 的 mean vector 以及 covariance matrix,接下來根據權重得到一個共同的 covariance matrix,因為 4 個類別共用同一個 covariance matrix,因此最後得到的 boundary 為直線,接下來根據 4 個類別的 mean vector 以及共用的 1 個 covariance matrix 可以得到 4 個類別的 $P(C_K, x)$ 的 Model 並且可以進一步推出 $P(C_K|x)$,最後在將 (x_1, x_2) 代入四個 Model,並比較機率值決定屬於哪一個類別。觀察 Training data 以及 Testing data 的 accuracy,分別為 0.943 以及 0.912。


```
Training Data(Generative Model Part I) ACC: 0.943076923076923
Training Data(Generative Model Part I) Confusing Matrix:
[[287. 6. 7. 0.]
[ 9. 229. 0. 12.]
[ 10. 2. 329. 9.]
[ 0. 12. 7. 381.]]
Testing Data(Generative Model Part I) ACC: 0.912
Testing Data(Generative Model Part I) Confusing Matrix:
[[187. 10. 3. 0.]
[ 6. 271. 1. 22.]
[ 8. 0. 135. 7.]
[ 0. 3. 6. 91.]]
```

B. Discriminative Model:

接下來,透過 Discriminative Model 去進行 classification 的問題,因為多類別分類的問題是 discriminative 假設 logistic sigmoid function,因此最佳的 w 沒有一個 closed-form 的解,需要用迭代的方式去找出最佳解,所以我使用了 Newton-Raphson($\mathbf{w}^{(\text{new})} = \mathbf{w}^{(\text{old})} - \mathbf{H}^{-1} \nabla E(\mathbf{w})$, where $\mathbf{H} = \nabla \nabla E(\mathbf{w})$) 的方法取找出最佳的 w,接下來根據最後得到的 w 去建立 4 個類別的 $\mathbf{P}(C_K \mid \mathbf{x})$ 的 Model,最後在將($\mathbf{x}_1, \mathbf{x}_2$)代入四個 Model,並比較機率值決定屬於哪一個類別。觀察 Training data 以及 Testing data 的 accuracy,分別為 0.942 以及 0.909。

2. Part II

Training Data 分布圖
(Team 0 and Team 3 to be class A,

Team 1 to be class B, Team 2 to be class C)

A. Generative Model:

透過與 Part I 相同的 Generative Model 實做出來,因為 covariance 使用同一個,因此 boundary 為直線,觀察 Training data 以及 Testing data 的 accuracy,分別為 0.851 以及 0.841,accuracy 相較於 part I 變低。


```
Training Data(Generative Model Part II) ACC: 0.8507692307692307
Training Data(Generative Model Part II) Confusing Matrix:
[[618. 37. 45.]
[ 54. 196. 0.]
[ 58. 0. 292.]]
Testing Data(Generative Model Part II) ACC: 0.84133333333334
Testing Data(Generative Model Part II) Confusing Matrix:
[[269. 15. 16.]
[ 58. 242. 0.]
[ 30. 0. 120.]]
```

B. Discriminative Model:

透過與Part I 相同的 Discriminative Model 方法實做出來,因為選定的 basis function 為一階,因此 boundary 為直線,觀察 Training data 以及 Testing data 的 accuracy,分別為 0.853 以及 0.842,accuracy 相較於 part I 變低,而與 part II 的 Generative Model 大致相同。


```
Training Data(Discriminative Model Part II) ACC: 0.8530769230769231
Training Data(Discriminative Model Part II) Confusing Matrix:
[[622. 35. 43.]
[ 54. 196. 0.]
[ 59. 0. 291.]]
Testing Data(Discriminative Model Part II) ACC: 0.842666666666667
Testing Data(Discriminative Model Part II) Confusing Matrix:
[[270. 14. 16.]
[ 58. 242. 0.]
[ 30. 0. 120.]]
```

Discussion:

1. What is the difference between the generative model and the discriminative model?

Generative Model 的作法是假設各類別的資料是某種分布(此題假設是 Normal Distribution),因此透過 training data 分別找出不同的 mean vector 以及 covariance matrix,如此一來就能夠找出 $P(x, C_k)$,進一步推導出 $P(C_k|x)$, Generative Model 的缺點是需先知道資料的分布情形,否則無法建立出有效的 model;相反地,Discriminative Model 的作法不需要假設資料是哪種分布,透過 training data 便能有效的找出最佳的 weight,並推導出 $P(C_k|x)$ 。 在實作上,Discriminative Model 的方法相對複雜,因為需要透過一次次迭代去尋找最佳的 w,在我採用的 Newton-Raphson 中,每一次迭代都需要找到 ∇ E(w)以及 $\nabla\nabla E(w)$,計算較為複雜且執行時間較久,除此之外,basis 的選定也會影響訓練出來的結果。 最後觀察實作出來的結果會發現兩種模型建出來的 decision boundary 以及 accuracy 都差不多,兩種模型都有很高的 accuracy,然而在程式運行的速度上,Discriminative Model 相對於 Generative Model 慢非常多。

2. How do you implement the code of the generative model and the discriminative model?

Generative Model: 首先先透過 get_w_w0 得到四個類別的 w 以及 w0,如此一來便能將 generative model 的 $P(C_K,x)$ 建立出來,接下來的 get_test 能夠將前面得到的 w、w0 以及想要測試的 x vector 算出 4 個類別的 $P(C_K|x)$,最後再根據哪個 $P(C_K|x)$ 比較大去決定屬於哪個類別,最後的 ACC_confuse 是用來得到 training data 以及 testing data 的 accuracy 以及 confusing matrix。

Discriminative Model: Discriminative 中,我採用的收斂方法是 Newton-Raphson,首先,我先利用 newton 得到 weight,過程中會用 error 去決定是否已經收斂,若收斂就跳出迴圈,gradient 以及 gradi_gradi 分別用來得到 $\nabla E(w)$ 以及 $\nabla \nabla E(w)$,接下來的 get_test 能夠將前面得到的 w 以及想要測試的 x vector 算出 4 個類別的 $P(C_K|x)$,最後再根據哪個 $P(C_K|x)$ 比較大去決定屬於哪個類別,最後的 ACC_confuse 是用來得到 training data 以及 testing data 的 accuracy 以及 confusing matrix。(code 中的 iteration 是 gradient descent 的方法)

```
def gradi_gradi(self,w):
    grad = np.zeros([])
    for k in range(self.M):
    stacked_array = np.zeros([])
    for j in range(self.M):
        partial = np.zeros((self.basis_num,self.basis_num))
    for i in range(self.total_num):
        yk self.get_y(self.data_training[i], w, k)
        yj self.get_y(self.data_training[i], w, j)
        phi = np.array([l,self.data_training[i][],self.data_training[i][2])
        #phi = np.array([l,self.data_training[i][1],self.data_training[i][2],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],self.data_training[i][1],se
```

```
w = np.zeros(self.basis_num*self.M)
ita = 1e-4
error = self.error(w)
 for i in range(20000):
    gradi = self.gradient(w)
       -= ita * gradi
     print(f"error: {error} iter: {i}")
error_new = self.error(w)
       f abs(error - error_new) < abs(error)*0.000001:
     error = error_new
error = 0.0
    error -= self.get_y(self.data_training[i],w,int(self.data_training[i][0]))
return error
newton(self):
w = np.zeros(self.basis_num*self.M)
error = self.error(w)
while 1:
    gradi = self.gradient(w)
    gradi_gradi = self.gradi_gradi(w)
     w -= np.linalg.pinv(gradi_gradi) @ gradi
error_new = self.error(w)
       f abs(error - error_new) < abs(error)*0.0001:
         print("finish NR")
```

3. Part I 中的 Discriminative Model 比較 Newton-Raphson method 以及 Gradient Descent method

在 Discriminative Model 中,有兩種方式用來尋找最佳的 weight,Newton-Raphson method 的方式比起 Gradient Descent method 能夠更快速地收斂,因此程式運行的時間 Newton-Raphson 比 Gradient Descent 快非常多,然而, Newton-Raphson 需要建立 $\nabla\nabla E(w)$,此算式相對不容易建立,通常會根據題目的需求去選取適合的方法。在 gradient descent 中,我迭代出來的結果(迭代大概 17000 次)如圖右下,此種方法非常花時間(大概跑了 1 個小時),且可能因為迭代不夠多次而影響最後的準確率(training data 的 accuracy 只有 0.766),因此可以得知此題使用 Newton-Raphson method 的方式比起 Gradient Descent method 好非常多。

Newton-Raphson method:

Team 0 Team 1 Team 2 Team 3 Team 3

Discriminative Model(Part I)

Gradient Descent method:

4. Part II 中的 Discriminative Model, 使用二階的 basis function

$$\varphi(\mathbf{x}) = [1, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1^2, \mathbf{x}_2^2]^{\mathrm{T}}$$

在 Discriminative Model 中,訓練出的模型會根據 basis 的複雜程度而影響最後分類的 accuracy,因為 part I 使用一階的 basis function $\varphi(x) = [1, x_1, x_2]^T$ 訓練出的模型 accuracy 已經很高了,因此我拿 part II 來進行比較,若用一階的 basis 訓練出的 decision boundary 如下左圖,此 boundary 為直線,然而使用二階的 basis 訓練出的 decision boundary 如下右圖,此時 boundary 變成曲線,而 Training data 以及 Testing data 的 accuracy,分別上升到 0.942 以及 0.909(原本為 0.853 以及 0.842)。

一階 basis:

二階 basis:

