一、物理学史

模	块	物理学家	主要成就内容、观点		
\/\	学	牛 顿	发现光的色散,用三棱镜证明白光由七种色光组成		
光		伽利略	用自制的望远镜观察天体,以确凿的证据支持了"日心说"		
++	学	布 朗	布朗运动:(分子永不停息地做无规则运动)		
热		开尔文	创立热力学温标,以-273 ℃作为温度的起点,叫作绝对零度		
			论证"重物体不会比轻物体下落的快"		
		伽利略	第一个提出"力不是维持物体运动的原因",推翻了亚里士多德"运动需要力来维持"的观点、发现了摆的等时性		
			在伽利略和笛卡尔等科学家研究的基础上总结出牛顿第一定律(一切物体在没		
		牛 顿	有受到力的作用时,总保持静止或匀速直线运动状态)		
			创立经典力学理论体系并发现万有引力定律		
カ	学	胡克	胡克定律:在一定条件下,弹簧的弹力与弹簧的形变量成正比		
		帕斯卡	帕斯卡裂桶实验;帕斯卡定律		
		奥托・格里克	马德堡半球实验,最早证明大气压强的存在		
		托里拆利 最早通过实验测出了大气压的数值,用汞柱测出大气压的数值约为1.013×10			
		阿基米德	阿基米德原理 $(F_{\beta} = G_{\#})$		
			杠杆原理,即杠杆平衡条件(给我一个支点,我就能撬起整个地球)		
		汤姆逊	发现电子,并提出原子枣糕模型		
		卢瑟福	发现质子,并提出原子核式结构		
		库仑	发现电荷间相互作用力的规律		
		欧 姆	欧姆定律(通过导体的电流跟导体两端的电压成正比,跟导体的电阻成反比)		
		焦耳	焦耳定律(最早发现了电流的热效应,电流通过导体产生的热量跟电流的平方成 正比,跟导体的电阻成正比,跟通电时间成正比)		
电码	兹学	沈括	固体传声、最早论述了地理的两极和地磁的两极并不重合,发现磁偏角		
		奥斯特	证实了通电导体周围存在磁场(电流的磁效应)、磁场的方向与电流方向有关,第一个发现电与磁有联系		
		安 培	安培定则(右手螺旋定则),可判断出通电螺线管的极性跟电流方向的关系		
		法拉第	首先发现电磁感应现象(发电机的原理),使电能的大规模使用成为可能 ··		
		赫兹	证实电磁波的存在		

二、初中常考物理公式汇总

力学				
公式 变形式 物理量 常见单位及其换算关系				
	$t = \frac{s}{v}$ $s = vt$	距离(s)	m(米)、cm(厘米)、km(千米);1 km = 1 000 m = 10 ⁵ cm	
$v = \frac{s}{t}$		时间(t)	s(秒)、h(小时)、min(分);1 h=60 min=3 600 s	
		速度(v)	m/s(米每秒)、km/h(千米每小时);1 m/s=3.6 km/h	
	$m = \rho V$	质量(m)	t(吨)、kg(千克)、g(克)、1 t = 1 000 kg = 10 ⁶ g	
$\rho = \frac{m}{V}$	$V = \frac{m}{}$	体积(V)	m³(立方米)、dm³(立方分米)、cm³(立方厘米);1 m³ = 10³ dm³ = 106 cm³	
,	γ – ρ	密度(ρ)	kg/m³(千克每立方米)、g/cm³(克每立方厘米);1 g/cm³ = 1×10³ kg/m³	

	_ <u>G</u>	质量(m)	t(吨)、kg(千克)、g(克)、mg(毫克);1 t=1000 kg=10 ⁶ g=10 ⁹ mg	
G = mg	$m = \frac{G}{g}$ G	重力与质量的 比值(g)	一般情况下g取9.8 N/kg(牛每千克),粗略计算时g可取10 N/kg	
	$g = \frac{G}{m}$	重力(G)	N(牛顿,简称牛)	
	F = pS	压力(F)	N(牛顿,简称牛)	
$p = \frac{F}{S}$	_	受力面积(S)	m ² (平方米)、dm ² (平方分米)、cm ² (平方厘米);1 m ² = 10 ² dm ² = 10 ⁴ cm ²	
3	$S = \frac{F}{p}$	压强(p)	Pa(帕斯卡);1 Pa = 1 N·m ⁻² . 注:求压强时,受力面积单位必须是 m ² .	
		密度(ρ)	kg/m³(千克每立方米)、g/cm³(克每立方厘米);1 g/cm³ = 1 × 10³ kg/m³	
	$ \rho = \frac{p}{gh} $	液体深度(h)	cm(厘米)、dm(分米)、m(米)、km(千米);1 m = 10 dm = 100 cm; 1 km = 1 000 m. 注:此公式中深度单位必须是 m.	
$p = \rho g h$	$h = \frac{p}{\rho g}$	重力与质量 的比值(g)	一般情况下 g 取 9.8 N/kg(牛每千克),粗略计算时 g 可取 10 N/kg	
		液体内部压强(p)	Pa(帕斯卡);1 Pa=1 N·m ⁻²	
		密度(ρ)	kg/m³(千克每立方米)、g/cm³(克每立方厘米);1 g/cm³ = 1 × 10³ kg/m³	
	$F_{_{;\sharp}}$	排开液体的	m³(立方米)、dm³(立方分米)、cm³(立方厘米);1 m³ = 10³ dm³ =	
$F_{:a} = G_{\sharp \sharp} =$	$ ho_{}_{}_{\dot{lpha}}=rac{F_{}_{\dot{eta}}}{gV_{}_{\dot{lpha}}}$	体积(V)	10 ⁶ cm ³ .注:此公式中体积单位必须是 m ³ .	
$ ho_{}_{lpha} gV_{}_{ii}$	$V_{_{\slashed H}} = rac{F_{_{\slashed F}}}{g ho_{_{lpha}}}$	重力与质量 的比值(g)	一般情况下 g 取 9.8 N/kg(牛每千克),粗略计算时 g 可取 10 N/kg	
		浮力(F)	N(牛顿,简称牛)	
	_ W	カ(F)	N(牛顿,简称牛)	
W = Fs	$F = \frac{W}{s}$ $s = \frac{W}{F}$	距离(s)	cm(厘米)、dm(分米)、m(米)、km(千米);1 m = 10 dm = 100 cm; 1 km = 1 000 m	
	S - F	功(W)	J(焦耳, 简称焦); 1 J=1 N·m	
	W = Pt	功(W)	J(焦耳,简称焦);1 J=1 N·m	
$P = \frac{W}{t}$	$t = \frac{W}{P}$	时间(t)	s(秒)、min(分钟)、h(小时);1 h=60 min=3 600 s	
	ι – _P	功率(P)	W(瓦)、kW(千瓦)、mW(毫瓦);1 kW = 10 ³ W = 10 ⁶ mW	
P = Fv		$P = \frac{W}{t} = \frac{W}{t}$	$=rac{Fs}{t}=rac{Fvt}{t}=Fv$. 注:此公式只适用于匀速运动.	
		重力(G)	N(牛顿,简称牛)	
$W_{\pi} = Gh$	$h = \frac{W_{\pi}}{G}$	上升高度(h)	cm(厘米)、dm(分米)、m(米)、km(千米);1 m=10 dm=100 cm; 1 km=1000 m	
		 有用功(<i>W</i> _有)	J(焦耳, 简称焦);1 J=1 N·m	
	$W_{\eta} = W_{\&} - W_{\S}$ $W_{\&} \setminus W_{\eta} \cdot W_{\S}$, $W_{\S} \setminus W_{\eta} \cdot W_{\S}$, $W_{\S} \cdot W_{\eta} \cdot W_{\S}$, $W_{\S} \cdot W_{\eta} \cdot W_{\S}$, $W_{\S} \cdot W_{\eta} \cdot W_{\S} \cdot W_{\eta}$, $W_{\S} \cdot W_{\eta} \cdot W_{\S} \cdot W_{\eta} \cdot W_{\S} \cdot W_{\eta} \cdot W_{\S} \cdot W_{\eta} \cdot W_{\S} \cdot W_{\eta} \cdot W$			
W _±	$W_{\pm} = \eta W_{\pm}$	有用功(W _有)	J(焦耳, 简称焦); 1 J=1 N·m	
$\eta = \frac{1}{W_{\mathcal{E}}} \times$	$W_{ar{\eta}} = \eta W_{ar{\otimes}}$ $W_{ar{\otimes}} = rac{W_{ar{\eta}}}{\eta}$	总功(₩ _ž)	J(焦耳, 简称焦);1 J=1 N·m	
100%		机械效率(η)	通常用百分数表示	
杠杆平 衡条件	$F_1L_1=F_2L_2$ (动力×动力管=阻力×阻力管)			
电学				

电阻的规律 总结

串、并联电路中电阻的规律:串联: $R = R_1 + R_2$;并联: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$, $R = \frac{R_1 R_2}{R_1 + R_2}$

公式	变形式	物理量	常见单位及其换算关系	
	U = IR	电压(U)	V(伏特,简称伏)、kV(千伏)、mV(毫伏);1 kV = 103 V,1 mV = 10-3 V	
$I = \frac{U}{R}$	$R = \frac{U}{I}$	电阻(R)	Ω (欧姆,简称欧)、 $k\Omega$ (千欧)、 $M\Omega$ (兆欧); $1 k\Omega = 10^3 \Omega$, $1 M\Omega = 10^6 \Omega$	
	$K = \frac{I}{I}$	电流(I)	A(安培,简称安)、mA(毫安)、μA(微安);1 A=10 ³ mA=10 ⁶ μA	
	$U = \frac{W}{It}$	电压(U)	V(伏特,简称伏)、kV(千伏)、mV(毫伏);1 kV = 103 V,1 mV = 10-3 V	
		电流(I)	A(安培,简称安)、mA(毫安)、μA(微安);1 A=10 ³ mA=10 ⁶ μA	
W = UIt	$I = \frac{W}{Ut}$	时间(t)	s(秒)、min(分钟)、h(小时);1 h=60 min=3 600 s	
	$t = \frac{W}{UI}$	电功(W)	国际单位为 J, 电能表上常用单位为 kW・h, 常称为"度";1 kW・h=3.6×10 ⁶ J	
	W = Pt	电功(W)	国际单位为 J, 电能表上常用单位为 kW・h, 常称为"度";1 kW・h=3.6×10 ⁶ J	
$P = \frac{W}{t}$		时间(t)	s(秒)、min(分钟)、h(小时);1 h=60 min=3 600 s	
	$t = \frac{W}{P}$	电功率(P)	W(瓦特,简称瓦)、kW(千瓦)、mW(毫瓦);1 kW=103 W,1 W=103 mW	
	$U = \frac{P}{I}$	电压(U)	V(伏特,简称伏)、kV(千伏)、mV(毫伏);1 kV = 103 V,1 mV = 10-3 V	
P = UI		电流(I)	A(安培,简称安)、mA(毫安)、μA(微安);1 A=10 ³ mA=10 ⁶ μA	
	$I = \frac{P}{U}$	电功率(P)	W(瓦特,简称瓦)、kW(千瓦)、mW(毫瓦);1 kW = 103 W,1 W = 103 mW	
	$t = \frac{Q}{I^2 R}$	电流(I)	A(安培,简称安)、mA(毫安)、μA(微安);1 A=10 ³ mA=10 ⁶ μA	
0 2 0	$I = \sqrt{\frac{Q}{Rt}}$	电阻 (R) Ω (欧姆,简称欧)、 $k\Omega$ (千欧)、 $M\Omega$ (兆欧); $1 k\Omega = 10^3 \Omega$, $1 M\Omega =$		
$Q = I^2 Rt$		时间(t)	s(秒)、min(分钟)、h(小时);1 h=60 min=3 600 s	
	$R = \frac{Q}{I^2 t}$	热量(Q)	J(焦耳,简称焦)	
电功推导 公式总结	(1)热量的	的计算:Q=I²I	Rt ; (2) 电流通过导体,全部电能转化为内能时: $W = Q = UIt = I^2Rt = \frac{U^2}{R}t$	
'			热学	
公式	变形式	物理量	常见单位及其换算关系	
	0	比热容(·) J/(kg·℃)(焦每千克摄氏度)	
$Q = cm\Delta t$	$m = \frac{Q}{c\Delta t}$	质量(m)	t(吨)、kg(千克)、g(克);1 t=1 000 kg=10 ⁶ g	
$Q = cm\Delta t$	$c = \frac{Q}{m\Delta t}$	温度(t)	℃(摄氏度)	
	$m\Delta t$	热量(Q)	J(焦耳,简称焦)	
	0	质量(m)	t(吨)、kg(千克)、g(克);1 t=1 000 kg=10 ⁶ g	
Q = mq	$m = \frac{Q}{q}$	热量(Q)	J(焦耳,简称焦)	
Q = qV	$V = \frac{Q}{q}$	热值(q)	J/kg(焦每千克);J/m³(焦每立方米)(气体燃料,标准大气压状态下)	
	q	体积(V)	m³(立方米)、dm³(立方分米)、cm³(立方厘米);1 m³ = 10³ dm³ = 106 cm³	
	Q = Q	热量(Q)	J(焦耳,简称焦)	
$ \eta = \frac{Q}{W} \times 100\% $	$W = \frac{Q}{\eta}$	做功(W)	J(焦耳,简称焦)	
	$Q = \eta W$	热效率(7		
热平衡方程			吸收的热量和放出的热量相等: $Q_{_{\varnothing}}=Q_{_{\dot{lpha}}}$	

三、常见的隐含条件

	说法	隐含条件	
	入射角为30°	反射角也为 30°	
	实像	倒立的像(小孔成像、投影仪、照相机),光线相交,实线	
光学	虚像	正立的像(平面镜、放大镜、凹透镜),光线的延长线或反向延长线相	
	企	交,虚线	
	物距大于像距	照相机的成像原理	

	标准大气压下冰水混合物	温度0℃		
	标准大气压下将水加热至沸腾	水的末温为 100 ℃		
 热学	升高到	物体的末温		
於子 	升高了	物体温度的变化量 Δt		
	"白气"	小液滴,液化现象		
	不计热量损失	吸收的热量等于放出的热量 $(Q_{\scriptscriptstyle ar{w}}=Q_{\scriptscriptstyle ar{w}})$;转化效率为 100%		
	质量减小	惯性减小,动能、重力势能不一定减小		
	光滑	没有摩擦力;机械能守恒		
	撤去所有外力	物体不受到任何力的作用(包括重力),处于静止状态或匀速直线运动状态		
	漂浮	浮力等于重力;ρ _物 <ρ _液		
	悬浮	浮力等于重力; $ ho_{rak{h}}= ho_{rak{k}}$		
	完全浸没	排开液体的体积等于物体自身的体积, $V_{ii}=V_{ii}$		
 力学	恰好离开地面或水面	没有受到支持力或浮力的作用		
<u>カ</u> 子 	两个物体刚好接触	两个物体间没有弹力的作用		
	静止	受平衡力,动能为零		
	轻小物体	质量可忽略不计		
	最省力	所用动力最小(杠杆中代表动力臂最长,滑轮组中代表动滑轮上绳子 段数最多)		
	滑轮中不计绳重和摩擦	在计算时只考虑动滑轮的重力		
	匀速直线运动	速度不变;受平衡力;动能不变(同一物体)		
	物体上升	重力势能增加(同一物体)		
	超导体	电阻为零;电流通过时不会产生热量		
	用1节新干电池作为电源	电源电压 1.5 V		
	正常工作	用电器在额定电压下工作,实际功率等于额定功率		
4 24	串联	通过各元件的电流相等;选择公式 $P = I^2R$ 计算和比较功率的大小		
电学	并联	各支路两端的电压相等;选择公式 $P = \frac{U^2}{R}$ 计算和比较功率的大小		
	灯都不亮,电流表无示数	电路中存在断路		
	灯部分亮,电流表有示数	电路中存在短路		
	家庭电路用电器都不工作	保险丝烧断,短路或总功率过大		

四、初中常考物理量的估测

1. 中学生自身常见物理量估测

物理量	估测值	物理量	估测值
身高	150 ~ 170 cm	体重	约 50 kg
重力	约 500 N	密度	约 1 g/cm³
体积	约 0.05 m³	单脚站立时对地面压强	约 3 × 10 ⁴ Pa
正常体温	约 37 ℃	一拃	15 ~ 20 cm
大拇指关节	约 2 cm	步幅	50 ~ 70 cm
步速	约1.1 m/s	100 米短跑时间	13 ~ 15 s
手掌面积	100 ~ 120 cm ²	心跳	约 70 次/min

2. 中考常考物理量的估测

模块	物理量	中考常考的物理量
热学	温度	 ①人的正常体温约37℃; ②洗澡时适宜的水温约40℃; ③人感觉最舒服的环境温度为24℃~26℃ ④冰水混合物的温度0℃(1个标准大气压下); ⑤沸水的温度为100℃(1个标准大气压下);
	长度	①教室门的高度约 2 m; ②课桌高度约 80 cm,椅子的高度约 42 cm; ③一支铅笔的长度约 19 cm; ④物理课本的长度约 26 cm,宽度约 18 cm; ⑤中学生的步幅 50~70 cm; ⑥十元人民币长约 14 cm; ⑦一支普通牙刷的长度约 15 cm
	时间	①演奏一遍中华人民共和国国歌的时间约 46 s; ②普通中学生百米成绩约 15 s; ③做一遍眼保健操的时间约 5 min; ④脉搏跳动一次时间约 0.8 s; ⑤一块橡皮从课桌掉到地上所用时间约 0.5 s; ⑥跳远运动员起跳后,在空中滞留时间约 2 s
	速度	 ①声音在 15 ℃的空气中传播的速度约 340 m/s; ②光在真空中传播的速度约 3×10⁸ m/s; ③自行车的速度约 5 m/s; ④人步行的速度约 1.1 m/s
 力学	频率	①正常人呼吸的频率约 20 次/min; ②正常人脉搏跳动的频率约 70 次/min
	质量	①一名初中生的质量约 50 kg; ②物理教科书的质量约 200 g; ③一个苹果的质量约 200 g; ④一个篮球的质量约 500 g; ⑤一个鸡蛋的质量约 50 g; ⑥一份理化试卷的质量约 8 g; ⑦一元硬币的质量约 6 g; ⑧一瓶矿泉水的质量约 550 g; ⑨一盒方便面的质量约 150 g
	重力	可根据上面质量的估测,利用公式 $G=mg$ 得出
	压强	①一个标准大气压约为 10^5 Pa; ②中学生双脚站立时对地面的压强约 10^4 Pa; ③报纸展开后放在桌面上对桌面的压强约 0.5 Pa; ④物理课本平置时对桌面的压强 $60 \sim 80$ Pa; ⑤普通砖平置时对地面的压强约 1 000 Pa
	功	①将2个鸡蛋举高1m做功约1J; ②中学生从一楼走到二楼做功约1500J; ③将地面上的物理课本捡起放到桌子上,人对课本做功约2J

	电流	① 30 W 普通照明白炽灯电流约为 130 mA; ②电饭锅的电流约 2 A; ③家用空调的电流约 5 A; ④电视机中流过的电流约 0.5 A
电学	电压	①一节新干电池的电压是 1.5 V; ②铅蓄电池的电压是 2 V; ③人体安全电压不大于 36 V; ④我国家庭电路的电压是 220 V
	电功率	①电热水壶的电功率约 1 200 W; ②吹风机的电功率约 500 W; ③家用空调的电功率约 1 000 W; ④液晶电视机的电功率约 100 W

五、初中常考仪器的使用与读数

仪器	仪器使用	读数步骤
A B B 1 2 3 4 cm 刻度尺	(1)看:看量程、看分度值、看零刻度线. (2)放:零刻度线(或其他整刻度线)对准被测物体的一端,有刻度线的一边要紧靠被测物体且与被测边平行,不能歪斜. (3)读:视线要正对刻度线(如视线方向 B),且要估读到分度值的下一位. (4)记:测量结果由数值和单位两部分组成.	确定分度值→确定始末刻度→相减. ①确定分度值:0.1 cm ②确定起始刻度:1.00 cm ③确定末端刻度:3.80 cm ④确定物体长度:3.80 cm - 1.00 cm = 2.80 cm
Tangle Tangle	(1)使用前:看量程、看分度值. (2)使用时:①选:选择量程合适的温度计. ②放:温度计的玻璃泡应该全部浸入被测液体中, 不要碰到容器底或容器壁. ③读:温度计的玻璃泡浸入被测液体后要稍候一会,待温度计的示数稳定后再读数.读数时温度计的玻璃泡要继续留在被测液体中,视线要与温度计中液柱的液面相平(如视线方向B). ④记:测量结果由数值和单位两部分组成.	确定分度值→确定零刻度线 →确定示数在零上还是零下. ①确定分度值:0.1℃ ②确定示数位置:零上 ③确定温度计的示数: 36℃+0.1℃×7=36.7℃
A	(1)使用前:看量程、看分度值. (2)使用时:①选:选择量程合适的量筒. ②放:量筒要平稳地放置在水平桌面上. ③读:读数时,视线要与量筒中的液面最低处相切 (如视线方向 B). ④记:测量结果由数字和单位两部分组成.	确定分度值→确定示数. ①确定分度值:2 mL ②确定量筒的示数:18 mL
20 g 5 g A 5 d O 1 2 3 4 5	(1)放:将天平放置在水平桌面上,游码拨至刻度尺左端零刻度线处. (2)调:调节平衡螺母使横梁平衡,牢记"左倾右调,右倾左调",使指针恰好指向分度盘正中央. (3)测:把被测物体放在天平的左盘中,用镊子向右盘中加、减砝码,调节游码使天平再次平衡,牢记:"左物右码". (4)读:右盘中砝码的质量加上游码在标尺上所对应的刻度值等于被测物体的质量(游码左端在标尺上对应的示数为标尺的读数).	确定砝码的质量→确定标尺分度值→确定标尺示数→相加. ①确定砝码的质量:25 g ②确定标尺分度值:0.2 g ③确定标尺的示数:2 g+0.2 g× 4=2.8 g ④确定物体的质量: 25 g+2.8 g=27.8 g

六、初中常用物理研究方法

物理方法	教材中方法的应用	说明
控制变量法	(1)探究摩擦力的作用效果与哪些因素有关(压力和接触面的粗糙程度) (2)探究压力作用效果与哪些因素有关(压力和受力面积) (3)研究液体压强与液体的密度和深度的关系 (4)探究浮力的大小与哪些因素有关(浸在液体中的体积和液体的密度) (5)探究动能的大小与哪些因素有关(质量和速度) (6)探究重力势能的大小与哪些因素有关(质量和高度) (7)探究音调与哪些因素有关(与弦的松紧、长短和粗细的关系) (8)探究响度与哪些因素有关(物体的振幅和人距离发声体的远近) (9)研究电流与电阻、电压之间的关系即欧姆定律 (10)探究导体的电阻大小与哪些因素有关(材料、长度和横截面积) (11)探究电流通过导体时产生热量的多少与哪些因素有关(电流、电阻和通电时间) (12)探究影响电磁铁磁性强弱的因素(线圈匝数、电流的大小和有无铁芯) (13)探究液体蒸发的快慢与哪些因素有关(液体温度、液体的表面积和液体上方空气流动快慢)	在研究物理问题时,某一物理制理问题时,某一物理问题不不同物理问题不不同的关系,就需要之一,则的关系,就不要的判决。 是量,使其固定不死的关系是一个量,观察所研的关系是一个量,观察所可的探究性实验是一个。 我要保持要你的自然不要。 我要保持要探究的目的,如果是一个,如果是一个,我要保证接触的,如果的自己的人,即可不要,我要压力大小即可,我要压力大小即可,就要压力大小即可,就要压力大小即可,就要压力大小即可,就要压力大小即可,就要压力大小即可,就要压力大小即可,就要压力大小即可,就要压力大小即可,就要压力大小即可,就要压力大小即可,就要不管是一个一个。

转换法	(1)电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定,即根据电流产生的效应来判断(2)分子运动看不见、摸不着,不好研究,但可以通过研究扩散现象认识它(3)磁场看不见、摸不着,判断磁场是否存在时,用小磁针放在其中看其是否转动来确定(4)探究响度与哪些因素有关——音叉的振幅转换成乒乓球的振幅(5)探究电流通过导体时产生热量的多少与哪些因素有关——产生热量的多少转换成液体温度变化的多少(6)探究影响电磁铁磁性强弱的因素——磁性强弱转换成吸引大头针的数目多少(7)探究阻力对物体运动的影响——将影响转换成物体运动路程的远近(8)探究压力的作用效果与哪些因素有关——作用效果转换成泡沫塑料凹陷的程度(9)探究动能的大小与哪些因素有关——动能的大小转换成物体被撞移动距离的远近	在物理学习中,有时需研究 看不见的物质,如电流、须 研究的场,这时就通验的 研究的方向转移到由效应、 新 所的各种可见的数究该的 是上,由此来分析、研究方法称为转换法,转换 研究方法称为转换法,转换 法作为一种思维方式也用到 在分析、解决问题时应用到
类比法	(1)研究电流时用水流类比电流 (2)用"水压"类比"电压" (3)用抽水机类比电源 (4)研究做功快慢时与运动快慢进行类比等	为了把要表述的物理问题说得清楚明白,往往用具体的、有形的、人们所熟知的事物来类比要说明的那些抽象的、无形的、陌生的事物.通过类比,使人们对所要揭示的事物有一个直接的、具体的、形象的认识,找出类似的规律
等效法	(1)在力的合成中,若干个共同作用的分力可以等同于作用效果相同的一个合力;相反,一个力也可以分解为作用效果相同的若干个力(2)在电路中,若干个电阻,可以等效为一个合适的电阻,如串联电路的总电阻、并联电路的总电阻都利用了等效的思想(3)在研究平面镜成像实验中,用两根完全相同的蜡烛,其中一根等效另一根的像	物理状态或过程用另一个物 理量、一种物理装置、一个物
实验推理法	(1)研究牛顿第一定律 (2)研究真空中能否传声 (3)"自然界中只存在两种电荷"这一重要结论,是在实验的基础上 进行推理得出来的	实验推理法以大量的可靠的事实为基础,以真实的实验为原型,通过合理的推理得出结论,深刻地揭示物理规律的本质,是物理学研究的一种重要的思想方法

七、生活中的物理

物理知识解释生活现象

声学	隔墙有耳	固体可以传声		
	迅雷不及掩耳	声音的传播速度快		
	余音绕梁,三日不绝	声音遇到物体反射回来		
	长啸一声,山鸣谷应	声音经过多次反射,可以形成洪亮的回声,经久不息,似乎山在狂呼,谷在回应		
	未见其人,先闻其声	不同发声体发出声音的音色不同,根据声音的音色就能分辨出不同发声体		
	不敢高声语,恐惊天上	这里的"高"指的是声音的响度大,不过"天宫"里听不到你的声音,因为真空		
	4	不能传声		
	掩耳盗铃	在人耳处减弱声音		

光学	一叶障目,不见泰山	光的直线传播. 一片树叶挡住眼睛,连面前高大的泰山也会看不见
	坐井观天,所见甚少	由于光在均匀介质中沿直线传播,所以井越深,看到的井外的范围就越小
	水中月,镜中花	都是光经过反射形成的虚像,看到的物体并不存在于眼睛所见的位置
	潭清疑水浅	池底的光线从水中斜射入空气时发生折射,人看到的池底是折射光线的反向延长线交点处形成的虚像,位置较高,所以觉得池水变浅
	海市蜃楼	光经过密度不均匀的空气时发生折射,把远处的景物显现在空中,实际上是景物的虚像
	人面桃花相映红	我们看到物体的颜色是由其反射色光的颜色决定的. 红色的桃花只反射红光, 红光反射到人脸上, 人脸也看起来是红色
热学	墙内开花墙外香 近朱者赤,近墨者黑	都是扩散现象,说明分子在不停地做无规则运动
	花气袭人知骤暖	温度越高、分子运动越剧烈,当花香分子的扩散运动加剧时,便预示着温度升高,天气变暖
	破镜不能重圆	分子距离较大时,分子间作用力几乎为零,可以忽略,故破镜不能在分子引力的作用下复合
	下雪不冷化雪冷	雪是高空中的水蒸气凝华或水滴凝固形成的,都是放热过程;雪消融是熔化现象,需要吸热
	加火不如加盖	在1个标准大气压下,水的沸点为100℃,沸腾后再继续加热,水的温度保持不变,只会使大量的水汽化使之浪费.相反,给锅加盖能使锅内气压增大,水的沸点升高,使饭菜熟得更快,同时也能减少锅内水的汽化,减小热量损失,节约能源,高压锅就是利用这个原理制成的

航天类

"嫦娥三号"成 功登陆月球

- ①"嫦娥三号"四个腿都设计成了"大脚丫",这是为了减小对月球表面的压强;
- ②"嫦娥三号"在月球上对月球表面的压强小于其在地球上对地面的压强;
- ③从地球到月球,其质量不变.

"嫦娥三号" 发射升空

- ①火箭飞行时的速度约为 7.9 km/s;
- ②发射火箭时,火箭尾部向下喷出高速气流,从而使火箭快速前进,这里用到的物理原 理是力的作用是相互的(力可以改变物体的运动状态);
- ③火箭在上升过程中,其头部表面温度会急剧升高是因为头部与空气摩擦会产生大量 的热量,这是通过做功的方式改变内能的;
- ④火箭在发射时,下部会产生大量"白气"是因为火箭发射时会产生大量的热量,火箭发 射塔下的水池里的水遇高温迅速汽化,然后又遇周围较冷空气液化形成了大量小水珠 悬浮在空气中形成的;
- ⑤火箭在发射时,燃料的化学能转化为内能再转化为火箭的机械能,使火箭机械能增加.

与"天宫二号"目标 转化为电能; 飞行器成功对接

- ①图片中看到飞船周围是黑的,是因为太空中是真空,光线无法反射到相机中;
- ②"神舟十一号"中的宇航员是靠电磁波与地面指挥中心联系的;
- ③"神舟十一号"和"天宫二号"是靠太阳能电池板供电的,太阳能属于可再生能源;
- '神舟十一号"飞船 ④"神舟十一号"和"天宫二号"是靠太阳能电池板供电的,太阳能电池板可以将太阳能
 - ⑤对接成功后以"天宫二号"为参照物,飞船是静止的.

军事科技类

国歼-31 隐形战斗机

- ①隐形即电磁隐形,原理是通过特定机身外形设计以及特殊的外层涂料使得雷达反射信号尽量变小;
- ②导航采用北斗卫星定位,是利用电磁波传递坐标信息;
- ③飞机场地勤人员戴耳罩是在人耳处减弱噪声;
- ④加油机给歼-31 加油时,歼-31 相对加油机是静止的

MBT - 3 000 主战坦克

- ①MBT-3 000 主战坦克设计履带是通过增大与地面接触面积使其在松软的地区不易陷下去;
- ②MBT-3 000 主战坦克内的通信员靠电磁波与总部联络

"蛟龙"号载人潜水器

- ①"蛟龙"号当前最大下潜深度 7 062.68 米,下潜深度越大,潜水器所受液体压强越大;
- ②潜水器在下潜或者上浮的过程中浮力不变,是靠增加或减少自身的重力实现下潜或上浮;
- ③潜水器海底探测靠超声波;
- ④潜望镜的原理是光的反射

交通工具类

共享单车

- ①在夏天我们将共享单车放在太阳底下容易发生爆胎现象,主要原因是空气受热膨胀;
- ②共享单车胎上有很多凹凸不平的纹络是为了增大摩擦力;
- ③共享单车的把手有花纹,可增大摩擦;
- ④共享单车的座垫比较宽大,可减小压强;
- ⑤车把的构造是轮轴,是省力杠杆;
- ⑥车轮是圆形的,滚动摩擦比滑动摩擦小;
- ⑦共享单车横梁用碳纤维材料制成,密度小、强度大

新能源汽车

- ①倒车雷达采用超声波的原理;
- ②倒车镜是应用凸面镜来扩大视野;
- ③发动机将化学能转化为内能,然后内能转化为机械能;
- ④车胎上的花纹是为了增大摩擦;
- ⑤刹车时车还会向前运动一段距离,是由于车具有惯性;
- ⑥汽车前挡风玻璃设计成斜面一是为了减小风的阻力;二是当后面车辆射来的光照到 挡风玻璃后斜向下反射,不进入司机眼睛

和谐号 CRH1 型电 力动车组

- ①铁轨铺在枕木上的设计是为了减小列车对地面的压强;
- ②和谐号 CRHI 型电力动车组站台设置安全线是因为列车进站时导致其附近空气流速增大压强减小,容易把人"吸向"列车发生安全事故;
- ③和谐号 CRH1 型电力动车组车头设计成斜面流线型是为了减小空气阻力

喷气式客机

- ①喷气式飞机的升力来自于机翼上下表面的空气流速不同,产生向上的压力差;
- ②飞机宽大的轮胎是通过增大接触面积来减小压强;
- ③飞机轮胎用特殊橡胶可以将飞机飞行时与空气摩擦产生的电荷在飞机落地时导入 大地,防止飞机外壳带电

厨房类

- ①菜刀的刀刃做得很薄是通过减小受力面积来增大压强,让人更容易切割东西
- ②菜刀柄把手有凹凸花纹,是通过增大接触面粗糙程度来增大摩擦

- 抽油烟机
- ①抽油烟机能将油烟抽走是因为空气流速大的位置压强小;
- ②抽油烟机中的扇叶转动是将电能转化为动能

- ①用高压锅煮食物熟得快,其原因是高压锅密封好,锅内气压高,水的沸点高;
- ②根据用电安全,一般会用三脚插头;
- ③高压锅是利用电流的热效应来给食物加热

- ①用铁锅炒菜,主要利用了铁具有良好的导热性;
- ②炒菜时,铁锅热得烫手,铁锅的内能增加,这是通过热传递的方式改变了它的内能;
- ③水滴可以附着在铁锅上说明分子之间有力的作用存在;
- ④人们会在很远处闻到菜香味是因为香味分子做无规则运动;
- ⑤锅铲柄用木制材料是因为木头的比热容比铁大,吸收相同热量温度改变小不至于烫手

体育运动类

- ①运动员跳起来后由于具有惯性,会继续向前运动;
- ②运动员用力向后蹬地,地面会给人一个向前的力使运动员向前运动,说明力的作用 是相互的

- 足球运动
- ①人用力踢球,静止在地面上的球飞出去了,说明力可以改变物体的运动状态;
- ②踢出去的足球仍然向前运动是因为足球具有惯性;
- ③足球在空中运动,这个过程中人对球没有做功

- ①跳板被压弯说明力可以改变物体的形状;
- ②运动员能被弹起说明力可以改变物体的运动状态; ③跳水过程中,跳板的弹性势能转化为运动员的机械能;
- ④运动员上岸后会感觉到冷是因为其身体表面水蒸发吸热

- 冰壶运动
- ①掷出的冰壶能在冰面继续滑行,是由于冰壶具惯性;
- ②冰壶表面打磨得很光滑是通过减小接触面的粗糙程度来减小摩擦;
- ③冰壶被推出后运动过程中,动能转化为内能