

Prova de etapa 2

EM IME-ITA 1

Nome: Turma: EM IME-ITA 1

Professor: Gabriel Braun Unidade: Tijuca II Data: junho de 2023

Instruções:

- Faça sua avaliação à caneta.
- Resoluções a lápis não serão corrigidas.
- Questões discursivas sem desenvolvimento não serão consideradas.
- Não serão fornecidas folhas para rascunho.

Nota:

QUÍMICA

Dados

- Constante de Avogadro, $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2\,\mathrm{kg}\,\mathrm{s}^{-1}$
- Constante de autoionização da água, $K_{\rm w}=1\cdot 10^{-14}$
- Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
- Constante dos gases, $R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$
- Constante de Rydberg, $\Re = 1.1 \cdot 10^7 \, \text{m}^{-1}$
- Velocidade da luz no vácuo, $c = 3 \cdot 10^8 \text{ m s}^{-1}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

•
$$\sqrt{2} = 1.4$$
 • $\sqrt{3} = 1.7$ • $\sqrt{5} = 2.2$ • $\log 2 = 0.3$ • $\log 3 = 0.5$ • $\ln 10 = 2.3$

•
$$\sqrt{5} = 2.3$$

•
$$\log 2 = 0.3$$

•
$$\log 3 = 0$$
.

$$\ln 10 = 2.3$$

Tabela Periódica

1 H 1,01	6 C 12,01	7 N 14,01	8 0 16,00	9 F 19,00	Na 22,99	Mg 24,31	15 P 30,97	16 S 32,06	17 Cl 35,45	19 K 39,10	21 SC 44,96
Fe 55,84	27 Co 58,93	28 Ni 58,69	33 As 74,92	47 Ag 107,87	Te 127,60	53 126,90	54 Xe 131,29	56 Ba 137,33	74 W 183,84	82 Pb 207,20	

Apresente a fórmula molecular dos compostos iônicos.

- a. Cloreto de manganês(II)
- b. Fosfato de cálcio
- c. Sulfito de alumínio dihidratado
- d. Nitreto de magnésio
- e. Hidróxido de bário

Questão 2

Apresente a configuração eletrônica pra cada íon:

- a. W^{2+}
- b. Ni²⁺
- c. Co²⁺
- d. Sc³⁺

Apresente a estrutura de Lewis para as moléculas.

- a. I_3^-
- b. SF₆
- c. XeF₂
- d. AsF₆⁻
- e. TeCl₄

Questão 4

Determine a geometria em torno do átomo central para as moléculas.

- a. PF₄⁻
- $b.\ ICl_{4}{}^{+}$
- c. PF₅
- d. XeF₄

Classifique cada molécula como polar ou apolar.

- a. CH_2Cl_2
- b. CCl₄
- c. CS₂
- d. SF₄

Questão 6

Deseja-se preparar 150 mL de uma solução 0,442 mol $\rm L^{-1}$ de glicose, $\rm C_6H_{12}O_6$.

Determine a massa de glicose necessária para preparar a solução.

Questão 7

O ácido de bateria é uma solução aquosa $4,27 \text{ mol } L^{-1}$ em ácido sulfúrico, H_2SO_4 , e densidade $1,25 \text{ g cm}^{-3}$.

Determine a molalidade do ácido sulfúrico na solução.

Um experimento necessita de $60 \, \text{mL}$ de uma solução aquosa $0.5 \, \text{mol} \, \text{L}^{-1}$ de NaOH. O técnico do laboratório só encontrou um frasco contendo uma solução $2.5 \, \text{mol} \, \text{L}^{-1}$ de NaOH.

Determine o volume da solução original que deve ser usado para preparar a solução desejada.

Questão 9

Apresente a equação iônica simplificada de precipitação que ocorre quando as soluções aquosas contendo os solutos a seguir são misturadas:

- a. $Fe_3(SO_4)_2(aq)$ e NaOH (aq).
- b. $AgNO_3(aq) e K_2CO_3(aq)$.
- c. $Pb(NO_3)_2(aq) e CH_3CH_2ONa(aq)$.
- d. $BaCl_2(aq)$ e $K_2SO_4(aq)$.

Questão 10

Um alíquota de 10 mL de uma solução 3 mol L^{-1} de KOH foi transferida para um balão volumétrico de 250 mL e diluída até a marca. Foram necessários 38,5 mL da solução diluída para titular 10 mL de uma solução de ácido fosfórico, H_3PO_4 .

- a. **Apresente** a equação balanceada pra a reação de titulação.
- b. **Determine** a concentração da solução de ácido fosfórico.