Heuristic Analysis: Isolation

Esteban Rodríguez Betancourt

April 28, 2018

Strategy 1

This strategy tries to maximize both the number of moves available and the difference between moves available to the player and its opponent. The formula is simple to calculate:

$$p^2 - o^3$$

where p is the number of available moves to the player, and o is the number of moves available to the opponent.

This was implemented as custom_score.

The performance of this strategy is shown in table 1.

Opponent	AB_Improved		AB_Custom	
	Won	Lost	Won	Lost
Random	9	1	10	0
AB_Improved	6	4	6	4
AB_Custom	4	6	8	2
AB_Custom_2	3	7	7	3
AB_Custom_3	5	5	7	3
AB_Open	5	5	4	6
AB_Center	4	6	9	1
$MM_{Improved}$	7	3	9	1
MM_Custom	8	2	6	4
MM_Custom_2	6	4	9	1
MM_Custom_3	8	2	6	4
MM_Open	10	0	7	3
MM_Center	9	1	8	2
Win Rate:	64.6%		73.8%	
No self vs self	65.0%		73.33%	

Table 1: AB_Custom Tornament Results

Strategy 2

This strategy just tries to maximize the number of available moves to the player, using the formula:

 p^2

To me it makes sense to test it, as more moves makes less probable to loss.

This was implemented as custom_score_2.

The performance of this strategy is shown in table 2.

Opponent	AB_Improved		AB_Custom_2	
	Won	Lost	Won	Lost
Random	8	2	10	0
AB_Improved	4	6	5	5
AB_Custom	4	6	7	3
AB_Custom_2	6	4	5	5
AB_Custom_3	6	4	6	4
AB_Open	5	5	5	5
AB_Center	6	4	5	5
$MM_{Improved}$	8	2	6	4
MM_Custom	8	2	8	2
MM_Custom_2	7	3	7	3
MM_Custom_3	8	2	10	0
MM_Open	6	4	4	6
MM_Center	8	2	9	1
Win Rate:	64.6%		66.9%	
No self vs self	66.67%		68.33%	

Table 2: AB Custom 2 Tornament Results

Strategy 3

This strategy just tries to minimize the number of available moves to the opponent, using the formula:

$$-o^2$$

Like in strategy 2, the idea was to make more probable to the opponent to lose, by forcing less and less available moves.

This was implemented as custom_score_3.

The performance of this strategy is shown in table 3.

Opponent	AB_Improved		AB_Custom_3	
	Won	Lost	Won	Lost
Random	10	0	10	0
AB_Improved	4	6	1	9
AB_Custom	4	6	4	6
AB_Custom_2	3	7	6	4
AB_Custom_3	6	4	6	4
AB_Open	5	5	5	5
AB_Center	6	4	6	4
MM_Improved	8	2	7	3
MM_Custom	9	1	7	3
MM_Custom_2	8	2	6	4
MM_Custom_3	6	4	10	0
MM_Open	7	3	5	5
MM_Center	10	0	8	2
Win Rate:	66.2%		62.3%	
No self vs self	68.33%		62.50%	

Table 3: AB_Custom_3 Tornament Results

Results Analysis

After testing *Improved*, *Custom*, *Custom_2* and *Custom_3* (the four in AB pruning version) against everyone (*Improved*, *Custom*, *Custom_2* and *Custom_3*. both alphabeta pruning and minimax) the first obvious result is that alphabeta pruning performs better than minimax.

The winning rate of AB pruning algorithms vs minimax algorithms was 79.29% which makes sense, as AB pruning is capable of exploring wider than minimax.

Scoring Function	Win Rate
AB_Improved	66.67%
AB_Custom	73.33%
AB_Custom_2	68.33%
AB_Custom_3	62.50%

Table 4: Winning Rate per scoring function

As shown in *table 4 AB_Custom* and *AB_Custom_2* have higher winning rate than AB_Improved.

As a curious fact, AB_Custom and AB_Custom_2 played 20 against each other, and each won 10 games each. This could be caused as Custom is a more complex score function, in fact it do twice the work done by $Custom_2$. In that case, Custom may be a better score function, but $Custom_2$ is capable to analyse a bit more branches.

After the tournament measurings, we can claim that *Custom* scoring function works better than *Custom_2* and *Custom_3* because:

	AB Imp	ABC	ABC 2	ABC 3
AB Improved	100	60	57.5	55
AB Custom	40	100	50	35
AB Custom 2	42.5	50	100	50
AB Custom 3	45	65	50	100
AB Open	50	40	50	50
AB Center	53.3	90	50	60
Random	90	100	100	100

Table 5: Winning Rates Percent

- 1. As shown in table 4, its win rate was higher: 73.33%. The next one was *Custom 2* with 68.33%.
- 2. As shown in table 5, it had a win rate higher against *Improved*, *Custom_3*, *Center* and *Random*.
 - (a) It ties against $Custom_2$ with $Custom_3$, with 50% win rate each.
 - (b) It performs worse against *Open*, where *Improved*, *Custom_2* and *Custom_3* had a higher winning rate: 50% versus just 40%.
- Custom tries both to penalize opponent available moves, and reward having own available moves. Custom_2 and Custom_3 just tries to optimize one of those metrics.
- 4. *Custom* penalization is higher when the opponent has more available moves.