CSCI 220 | Spring 2022 Discrete Structure

Induction

Discrete Mathematics and its Application Section 5.1, 5.2

Prove that
$$1+3+5+\cdots+(2n-1)=n^2$$
 for positive integer n .

Passis $n=1$ $1=4^2$ $n=2$ $n=3$ $1+3+5=3^2$ $n=3$ $1+3+5=3^2$ $n=3$ $1+3+5=3^2$ $n=3$ $n=$

Principle of Mathematical Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional

statement $P(k) \rightarrow P(k + 1)$ is

true for all positive

integers k.

Prove that
$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$
 for positive integer n .

Basis step: $n=1$
 $1 = \frac{1}{2}$

Inductive step: IH: Assume $1+2+3+\cdots+k=\frac{k(k+1)}{2}$ for $k \ge 1$.

WTS

 $1+2+3+\cdots+k=\frac{k(k+1)}{2}$
 $1+2+3+\cdots+k=\frac{k(k+1)}{2}$

(want to show)

 $1+2+3+\cdots+k+\frac{k+1}{2}$
 $1+2+3+\cdots+k+1$
 $1+2+3+\cdots+k+$

Prove that
$$1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$
 for positive integer n .

Basis Step: $n=1$: $1^2 = \frac{1(ht)(2(t)+1)}{6}$ $\frac{1(2)(3)}{6} = \frac{6}{6}$

Inductive Step: IH: Assume $1^2 + 2^2 + 3^2 + ... + k^2 = \frac{k(k+1)(2k+1)}{6}$ for $k \ge 1$.

Want to show $1^2 + 2^2 + 3^2 + ... + (k+1)^2 = \frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$.

$$1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2 = \frac{(k+1)((k+2)(2k+3))}{6}$$

by IH, $\frac{k(k+1)(2k+1)}{6} + \frac{(k+1)^2}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$
 $(k+1)(2k+1) + \frac{6(k+1)^2}{6} = \frac{(k+1)(k+2)(2k+3)}{6}$
 $(k+1)(2k^2 + k + 6k+6) = \frac{(k+1)(2k^2 + k + 3k+6)}{6}$
 $(k+1)(2k^2 + 7k+6) = \frac{(k+1)(2k^2 + 7k+6)}{6}$

Prove or disprove that $1^3 + 2^3 + 3^3 + ... + n^3 = n^4 - n^3 + 1$ for positive integer n.

For positive integer
$$n$$
.

False.

13 = $\binom{4-3+1}{3}$
 $\binom{3+2^3+3^3+\cdots}{3}$
 $\binom{3+2^3+\cdots}{3}$
 $\binom{3+2^3+\cdots}{$

Mathematical Induction $b^{x+y} = b^x \cdot b^y$

Use mathematical induction to prove that $\frac{7^{n+2}+8^{2n+1}}{1}$ is divisible by 57 for every nonnegative integer n.

Prove that
$$7^{n+2} + 8^{2n+1} \equiv 0 \pmod{57}$$
 for $n \geqslant 0$.

Basis Step: $n=0$ $7^{0+2} + 8^{2(0)+1} \equiv 7^2 + 8 \equiv 49 + 8 \equiv 57 \equiv 0 \pmod{57}$

Inductive Step: IH: Assume $7^{k+2} + 8^{2k+1} \equiv 0 \pmod{57}$

WTS $7^{(k+1)+2} + 8^{2(k+1)+1} \equiv 0 \pmod{57}$
 $7^{(k+1)+2} + 8^{2(k+1)+1} \equiv 7^{k+3} + 8^{2k+3} \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 8^2 \pmod{57}$
 $7^{(k+1)+2} + 8^{2(k+1)+1} \equiv 7^{k+3} + 8^{2k+3} \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 8^2 \pmod{57}$
 $7^{(k+1)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+1)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+1)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+1)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+1)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+1)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+1)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+1)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+1)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+1)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+2)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+2)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+2)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+2)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+2)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+2)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$
 $7^{(k+2)+2} + 8^{2k+1} \cdot 64 \equiv 7^{k+2} \cdot 7 + 8^{2k+1} \cdot 7$

Prove that
$$f_1 + f_2 + f_3 + ... + f_n = f_{(n+2)} - 1$$
 for positive integer n . Let f_n be the n th Fibonacci number. $f_1 = 1$, $f_2 = 1$, $f_n = f_{n-1} + f_{n-2}$. $f_{s=0}$, $f_{s=1}$, $f_{s=2}$, $f_{s=3}$, $f_{s=5}$, $f_{b=8}$, $f_{q=13}$

Basis Step: $n=1$. $f_{s=6}$ $f_{s=1}$ $f_{s=1}$

Show that $2^n < n!$ for integer $n \ge 4$.

Mathematical Induction FTOA.

Show that if n is an integer greater than 1, then ncan be written as a prime or product of primes. Basis step: n=2 2=2 prime / 2=j =k

Inductive step: IH: Assume j = prime or product of primes k>1. 5= 5 WTS: K+1 = prime or product of prime.

C1: K+1 is prime K+1= K+1 prime /

CZ: K+1 is not a prime, it's a composite.

 $K+1=a\cdot b$ $a,b\neq 1,K+1,$ $1\leq a,b\leq k+1$ $2\leq a,b\leq k+1$ by $2\leq a,b\leq k+1$ b

K+1= a.b=(prime or product of primes)(prime or product of primes) = product of prime.

Strong Induction

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement

statement $[P(1) \wedge P(2) \wedge \cdots \wedge P(k)] \rightarrow P(k+1)$ is true for all positive integers k.

To prove that P(n) is true for all positive integers n, where P(n) is a propositional function, we complete two steps:

Mathematical Induction

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement $P(k) \rightarrow P(k+1)$ is true for all positive integers k.

VS

Strong Induction

BASIS STEP: We verify that P(1) is true.

INDUCTIVE STEP: We show that the conditional statement $[P(1) \land P(2) \land \cdots \land P(k)] \rightarrow P(k+1)$ is true for all positive integers k.

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps. By Mothematical Induction (P(k) → P(k+1))= Basis Step: n=12: 12 cents postage can be formed by three 4-cent stamps. Inductive Step: IH: Assume K cents postage can be formed using just 4-cent and 5-cent stamps, K=12. Want to show K+1 cents postage can be formed using just 4-cent and 5-cent stamps. By IH; We know K cents postage can be formed using just 4-cent and 5-cent stamps. Case 1: There are at least one 4 cent stamp used in K cents postage.

Exchange one 4-cent stamp to a 5-cent stamp. to form K+1 cents postage. case 2: There are no 4-cent stamp used in K cents postage, which it's formed by only 5-cent stamps. Since K>12, at least three 5-cent stamps are used in K cents postage Exchange three 5-cent stamps to four 4-cent stamp to form K+1 cents postage. Either ways, you can form K+1 cents postage from K cents postage.

Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps. By Strong Induction: Basis Step: n=12: 12 cents postage can be formed by three 4-cent stamps. N=13: 13 cents postage can be formed by two 4-cent and one 5-cent stamps N=14: 14 cents postage can be formed by one 4-cent and two 5-cent stamps. N=15: 15 cents postage can be formed by three 5-cent stamps.

Inductive Step: IH: Assume j cents postage can be formed using just 4-cent and 5-cent stamps, 125/5 k

Want to show K+1 cents postage can be formed using just 4-cent and 5-cent stamps.

To form K+1 cents postage, we can look up how we form (K+1)-4 = K-3 cents postage, then adding a 4-cent stamp to K-3 cents postage, we can get K+1 cents postage.

Since $K \ge 15$, $K-3 \ge 15-3=12$, then $12 \le K-3 \le K$, by IH, K-3 can be formed by just 4-cent and 5-cent stamps. Then add a 4-cent stamp to T, we got K+1 cents postage.

Prove that $f_n < 2^n$ for positive integer n. Let f_n be the nth Fibonacci number. $f_1 = 1$, $f_2 = 1$, $f_n = f_{n-1} + f_{n-2}$. Basis step: n=1 , $f_1 < 2^n$

Inductive Step: IH: Assume $f_k < 2^k$ for $k \ge 1$. Want to show $f_{k+1} < 2^{k+1}$.

$$f_{k+1} = f_k + f_{k-1} \le f_k + f_k = 2 \cdot f_k < 2 \cdot 2^k = 2^{k+1}$$

$$f_{k-1} \le f_k$$
by def

Show that $f_0 f_1 + f_1 f_2 + \dots + f_{2n-1} f_{2n} = (f_{2n})^2$ for positive integer n. Let f_n be the nth Fibonacci number. $f_1=1$, $f_2=1$, $f_n=f_{n-1}+f_{n-2}$. Fasis Step: n=1 fof, +f, f2 = (f2)2 0.1 + (-1 = 12/ Inductive Step: IH: Assume fof, + f, f, + --- + f_{2k-1}f_{2k} = (f_{2k})² for k=1. Want to show fof, + f, f2+ --- + f2(k+1)-1 f2(k+1) = (f2(k+1))2 -fofi+fif2+--++f2K-1f2K+f2K+1+ f2K+1f2K+2 = f2K+2 by IH, f2k2 + f2kf2k41 + f2k+1 f2k+2 = f2k+2 f2K (F2K+f2K+1) + f2K+1 f2K+2 = f2K+2 f2k f2k+2 + f2k+1 f2k+2 = f2k+2 = f2k+2 = f2k+2

Mathematical Induction Model

To prove P(n) is true for $n \ge b$ by induction: Basis Step: n = b Show P(b) is true. Inductive Step: IH: Assume P(K), for $k \ge b$. white the P(K) statement

Want to show P(K+1). write the P(K+1) statement.

(1) Rewrite P(k+1) so you can see P(k) as part of P(k+1). by IH, (2) Apply IH. Normally you will substitute the P(k).

3 Show that P(K+1) is true.