Physical Science Notes

Mr. Vober

Contents

Unit 1

Matter

Matter

Taking Excellent Notes

A.1 The old, terrible way of taking notes

Most of your notes look something like this; just a wall of text:

How most freshmen take notes Matter is anything that has mass and takes up space (volume). It's the stuff that makes up everything we can see and touch, from the smallest atom to the largest galaxy. We can classify matter in a few ways. First, we can look at its physical state. The three main states are solid, liquid, and gas. A solid has a definite shape and volume; its particles are packed tightly together and vibrate in place. Think of a block of ice or a rock. A liquid has a definite volume but no definite shape, taking the shape of its container. Its particles are close but can slide past one another. Water is a great example. A gas has no definite shape or volume, and its particles are far apart and move randomly and quickly. The air we breathe is a mixture of gases like nitrogen and oxygen. There's also a fourth state, plasma, which is a super-heated gas where atoms are stripped of their electrons. It's found in stars and lightning. Beyond states, we can also classify matter as a pure substance or a mixture. A pure substance has a fixed composition and consistent properties throughout, like gold or distilled water. A mixture, on the other hand, is a combination of two or more substances that are not chemically bonded and can be separated by physical means. Think of a salad or salt water. Matter is also classified into pure substances: elements and compounds. An element is the simplest form of matter and cannot be broken down into a simpler substance by chemical means. Every element is made up of only one type of atom. The periodic table is a complete list of all the known elements, such as carbon (C), oxygen (O), and iron (Fe).

This is VERY hard to use later. You can't find anything when you need it, and you need to do a TON of reading.

There is a better way.

A.2 The EASY way to get great notes

1. Excellent notes use an Outline format

- (a) This is required for my class to get your points for notes!
- (b) This works in all of your classes.
- 2. Examples Good
 - 1. Main Idea 1
 - a. Detail 1
 - b. Detail 2
 - i) Detail about Detail 2
 - i) Another detail about Detail 2
 - c. Detail 3
 - 2. Main Idea 2

etc...

Bad

- 1. Main Idea 1
- a. Detail 1
- b. Detail 2
- i) Detail about Detail 2
- i) Another detail about Detail 2
- c. Detail 3
- 2. Main Idea 2

etc...

- 3. It is better to over-indent than under-indent.
- 4. Style
 - (a) Choose whatever style you like the most. You can use any combination of the following:
 - 1. Numbers
 - a. Letters
 - i) Roman Numerals
 - Bullet Points
 - \square Boxes
 - └ Curly Arrows
 - Dashes
- 5. Other useful symbols and conventions
 - Bolding, Underlining and Double Underlining your text to represent important words.
 - Δ Greek letter "Delta". In math and science, means "Change".
 - \Rightarrow Double arrows for definitions.

 $\operatorname{Not}_{\epsilon}$

Indentation \mapsto represents more specific stuff

Nothing is indented. This is hard to read and find information later. Indenting is an easy way to make your notes better.

- \sim Squiggly arrows for saying when one things leads to another thing.
- \approx For when things are about the same.
- -→ Dashed arrows.
- ** For really important stuff that you want to call out.
- Put a box around definitions.
- Double Box formulas.
- 6. Fancy Box Ideas

Blue Pointy Box

Title Centered Title Box

Step By Step Math
$$i = \frac{n(n+1)}{2}. \tag{A.1}$$

$$\sum_{i=1}^n i = \frac{n(n+1)}{2}. \tag{A.2}$$

- 7. Advanced / Extra stuff
 - (a) To really take your notes to the next level, incorporate colors.
 - (b) Bring different colored pens and highlighters to draw attention to specific details.
 - (c) Come up with your own system of what each color means.
- 8. Abbreviations
 - (a) To take notes QUICKLY and keep up, you must abbreviate (a.k.a. shorten) as much as possible, while still having what you write down make sense later.

Put questions or thoughts in the margins with clouds

Appendix B

Calculating Grades

B.1 Calculating the effect of a new grade on your existing average

Yo Mr. Vober! If I get a bad grade on this, will it bring down my grade?

Bruh, that's how math works.

If you get a grade on your test that's HIGHER than your current average, your grade goes UP ↑

If you get a grade on your test that's LOWER than your current average, your grade goes DOWN ↓

If it's worth a lot of points, it makes it go up or down by a lot more.

How to Calculate Your New Grade If You Get X out of Y on the New Assignment

 $New\ Grade = \frac{(Total\ Points\ Scored\ So\ Far) + (Points\ You\ Get\ From\ New\ Assignment)}{(Total\ Points\ Possible\ So\ Far) + (New\ Assignment\ Max\ Score\ Possible)}$ (B.1)

Appendix C

Math in Physical Science

C.1 Numbers

Generally, in this class, you should give your final answers in decimal form. If it is a fraction that makes sense, like $\frac{4}{5}$, fine, give it as a fraction. If it ends up being some weird fraction like $\frac{85}{217}$, please just use decimal form.

Rounding Decimals

Answers should be rounded to two or three decimal places.

C.2 Units

C.3 Examples of solving Math Problems in Physical Science

Now that we have discussed what units are in Math and Science, let's look the general steps you should be doing for all of the math problems in this class. We will use an example problem from near the beginning of the year involving Gas Laws.

Example 1

A balloon is filled with air. The pressure of the balloon is 10 atm to start. This expands it to a starting volume of 2 mL. The balloon is then squeezed to a new pressure of 28 atm. What would be the new volume of the balloon after it is squeezed?