Exercise 1*

Draw a graphical representation of the complete lattice $(2^{\{a,b,c\}},\subseteq)$ and compute supremum and infimum of the following sets:

- 1. $\sqcap\{\{a\},\{b\}\}=?$
- 2. $\sqcup \{\{a\}, \{b\}\} = ?$
- 3. $\sqcap\{\{a\},\{a,b\},\{a,c\}\}=?$
- 4. $\sqcup \{\{a\}, \{a,b\}, \{a,c\}\} = ?$
- 5. $\sqcap\{\{a\},\{b\},\{c\}\}=?$
- 6. $\sqcup \{\{a\}, \{b\}, \{c\}\} = ?$
- 7. $\sqcap \{\{a\}, \{a,b\}, \{b\}, \emptyset\} = ?$
- 8. $\sqcup \{\{a\}, \{a,b\}, \{b\}, \emptyset\} = ?$

Exercise 2
Prove that for any partially ordered set (D, \sqsubseteq) and any $X \subseteq D$, if supremum of X ($\sqcup X$) and infimum of X ($\sqcap X$) exist then they are uniquely defined. (Hint: use the definition of supremum and infimum and antisymmetry of \sqsubseteq .)
Exercise 3
Let (D,\sqsubseteq) be a complete lattice. What are $\sqcup\emptyset$ and $\sqcap\emptyset$ equal to?

Exercise 4*

Consider the complete lattice $(2^{\{a,b,c\}},\subseteq)$. Define a function $f:2^{\{a,b,c\}}\to 2^{\{a,b,c\}}$ such that f is monotonic.

• Compute the greatest fixed point by using directly the Tarski's fixed point theorem.

• Compute the least fixed point by using the Tarski's fixed point theorem for finite lattices (i.e. by starting from \perp and by applying repeatedly the function f until the fixed point is reached).

Exercise 5

Consider the following labelled transition system.

$$s \longleftrightarrow s_1 \xrightarrow{b} s_2$$

Compute for which sets of states $[X] \subseteq \{s, s_1, s_2\}$ the following formulae are true.

- $X = \langle a \rangle t t \vee [b] X$
- $X = \langle a \rangle t t \vee ([b] X \wedge \langle b \rangle t t)$

Exercise 6 (optional)

Solve Exercise 4.10 from *Reactive Systems*, page 83.