Econometric Methods (Econometrics I)

Lecture 4:

Inference

Prof. Dr. Kai Carstensen

Kiel University

Winter Term 2023/2024

Outline of this lecture

- 1. Testing linear restrictions for a single parameter
- 2. Confidence intervals for a single parameter
- 3. Testing general linear restrictions
- 4. Testing exclusion restrictions

Reference: Wooldridge, Chapter 4; Greene, Chapter 5.

Example: Wage Equation for Married, Working Women

- We are interested in how family factors (number of children) determine the wage a woman achieves.
- To this end, consider a wage equation for married, working women:

$$\log(wage) = \beta_0 + \beta_1 exper + \beta_2 exper^2 + \beta_3 educ$$
$$+ \beta_4 age + \beta_5 kidslt6 + \beta_6 kidsge6 + u$$

where the last three variables are the woman's age, number of children less than six, and number of children at least six years of age, respectively.

- We are not only interested in point estimates but we would also like to test the following restrictions:
 - no effect of family status: $eta_5=0$ and $eta_6=0$ (individually)
 - no effect of family status: $\beta_5=0$ and $\beta_6=0$ (jointly)
 - no effect of children's age: $\beta_5=\beta_6$

 Data and reference: T. A. Mroz (1987), The Sensitivity of an Empirical Model of Married Women's Hours of Work to Economic and Statistical Assumptions, Econometrica 55, 765-799.

Stata commands:

```
use "C:\path\mroz.dta", clear
regress lwage exper expersq educ age kidslt6 kidsge6, vce(robust)
```

Stata output (robust s.e.'s):

Linear regression

Number of obs = 428 F(6, 421) = 13.78 Prob > F = 0.0000 R-squared = 0.1582 Root MSE = .66823

lwage		Robust				
	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
exper	.039819	.0152578	2.61	0.009	.0098281	.06981
expersq	0007812	.0004097	-1.91	0.057	0015865	.0000241
educ	.1078319	.0136235	7.92	0.000	.0810533	.1346106
age	0014653	.0059351	-0.25	0.805	0131313	.0102008
kidslt6	0607106	.1061006	-0.57	0.567	2692635	.1478424
kidsge6	014591	.0293505	-0.50	0.619	0722829	.0431009
cons	4209078	.3183346	-1.32	0.187	-1.046631	.2048154

 In the following, we show how to test the hypotheses formulated above. To make them robust to heteroscedasticity, they should be based on robust variance estimators. 1. Testing linear restrictions for a single parameter

The t statistic

• We want to test a hypothesis regarding one of the coefficients estimated by OLS, β_i :

$$H_0: \beta_i = \beta_{i,0}$$
 against $H_1: \beta_i \neq \beta_{i,0}$.

- We choose a significance level = $Pr(H_0 \text{ is rejected}|H_0 \text{ is correct})$ of α . This is also called the size of the test.
- The usual test statistic is:

$$t_i = rac{\hat{eta}_i - eta_{i,0}}{\hat{\sigma}_{\hat{eta}_i}}$$

We need to find the asymptotic distribution of the t statistic.

Asymptotic distribution of the t statistic

Start from the asymptotic distribution

$$\sqrt{N}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \stackrel{\mathsf{d}}{\longrightarrow} \mathsf{Normal}(\mathbf{0},\mathbf{V}),$$

where $\mathbf{V} = \mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{-1}$ (heteroskedasticity) or $\mathbf{V} = \sigma^2\mathbf{A}^{-1}$ (homoskedasticity).

• Then the asymptotic distribution of a single element is

$$\sqrt{N}(\hat{\beta}_i - \beta_i) \stackrel{\mathsf{d}}{\longrightarrow} \mathsf{Normal}(0, v_{ii}^2),$$

where v_{ii}^2 is the *i*th element of the main diagonal of **V**.

• Under $H_0: \beta_i = \beta_{i,0}$ the asymptotic distribution is

$$\sqrt{N}(\hat{\beta}_i - \beta_{i,0}) \stackrel{d}{\longrightarrow} \text{Normal}(0, v_{ii}^2).$$

Dividing by the standard deviation yields

$$\sqrt{N} \frac{\hat{\beta}_i - \beta_{i,0}}{v_{ii}} \stackrel{d}{\longrightarrow} \text{Normal}(0,1).$$

Asymptotic distribution of the t statistic

- To make the t test feasible, we need to estimate v_{ii} .
- Both under heteroskedasticity and homoskedasticity, we found "consistent" estimates of the covariance matrix, $\hat{\mathbf{V}} \stackrel{p}{\longrightarrow} \mathbf{V}$.
- Hence, we have a consistent estimate of $\hat{v}_{ii}^2 \stackrel{p}{\longrightarrow} v_{ii}^2$.
- By Slutzky's theorem, $\hat{v}_{ii} \stackrel{p}{\longrightarrow} v_{ii}$.
- Using the asymptotic equivalence lemma (or Cramer's theorem) this implies that

$$\sqrt{N} \frac{\hat{\beta}_i - \beta_{i,0}}{v_{ii}}$$
 and $\sqrt{N} \frac{\hat{\beta}_i - \beta_{i,0}}{\hat{v}_{ii}}$

have the same asymptotic distribution.

• Therefore,

$$t_i = rac{\hat{eta}_i - eta_{i,0}}{\hat{v}_{ii}/\sqrt{N}} \stackrel{\mathsf{d}}{\longrightarrow} \mathsf{Normal}(0,1).$$

Asymptotic distribution of the t statistic

- A comment on notation.
- Recall that \hat{v}_{ii}^2 is the *i*th diagonal element of

$$\hat{\mathbf{V}} \equiv \widehat{\mathsf{Avar}}(\sqrt{N}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})).$$

ullet Also recall that the approximate distribution of $\hat{oldsymbol{eta}}$ is

$$\hat{\boldsymbol{\beta}} \sim \mathsf{Normal}(\boldsymbol{\beta}, \mathbf{V}_{\hat{\boldsymbol{\beta}}}),$$

where
$$\mathbf{V}_{\hat{\boldsymbol{\beta}}} \equiv \mathsf{Avar}(\hat{\boldsymbol{\beta}}) = \mathbf{V}/N$$
.

• Let $\hat{\sigma}_{\hat{\beta}_i}^2$ be the *i*th diagonal element of $\mathbf{V}_{\hat{\beta}}$. Then $\hat{\sigma}_{\hat{\beta}_i} = \hat{\mathbf{v}}_{ii}/\sqrt{N}$ and the t statistic can equivalently be written as

$$t_i = rac{\hat{eta}_i - eta_{i,0}}{\hat{\sigma}_{\hat{eta}_i}} \stackrel{\mathsf{d}}{\longrightarrow} \mathsf{Normal}(0,1).$$

• It turns out that $\hat{\sigma}_{\hat{\beta}_i}$ is, in principle, the same estimator as the one derived from exact small-sample theory (that assumes fixed regressors, homoscedasticity and normality).

Test decision

• In practice (where $N < \infty$), we use the approximate distribution

$$t_i = rac{\hat{eta}_i - eta_{i,0}}{\hat{\sigma}_{\hat{eta}_i}} \sim \mathsf{Normal}(0,1).$$

- For a two-sided test, we need an upper and lower critical value.
- Using the symmetry of the normal distribution, we choose $cv_{hi}=-cv_{lo}=z_{1-\alpha/2}$, where $z_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of the standard normal distribution.
- Or we may compare $|t_i|$ with cv_{hi} .
- Test decision: If $|t_i| > cv_{hi} \longrightarrow \text{reject } H_0$.
- Remember: size of the test is only approximately correct.

Remember the OLS estimates (heteroscedasticity-robust s.e. in brackets):

$$\widehat{\log(wage)} = -0.421 + 0.040 \underbrace{exper - 0.00078}_{(0.015)} \underbrace{exper^2 + 0.108}_{(0.00041)} \underbrace{educ}_{(0.014)} \\ -0.0015 \underbrace{age - 0.061}_{(0.106)} \underbrace{kidslt6 - 0.015}_{(0.029)} \underbrace{kidsge6}_{(0.029)}$$

- Let us test the two-sided null hypothesis that the number of young children has no effect on their mother's wage, $H_0: \beta_5 = 0$.
- Choose significance level of 5%.
- Test statistic: $|t_5|=|\hat{eta}_5/\hat{\sigma}_{\hat{eta}_5}|=|-0.061/0.106|pprox 0.57.$
- Critical value: $z_{0.975} = 1.96$
- Test decision: $|t_5| < 1.96 \longrightarrow$ do not reject H_0 .
- Similarly, you can show that H_0 : $\beta_6 = 0$ cannot be rejected.

• Stata command (F-test, explanation see below):

test kidslt6

• Stata output:

$$(1)$$
 kidslt6 = 0

$$F(1, 421) = 0.33$$

Prob > F = 0.5675

• In case the numerator degrees of freedom is 1, the absolute *t*-statistic is just the square root of the *F*-statistic. Or directly use the *p*-value given above.

2. Confidence intervals for a single parameter

Review: what is a confidence interval?

- ullet Confidence intervals for single parameters cover the true parameter with a pre-specified probability of 1-lpha.
- ullet This means the following: Assume we could draw a large number of repeated samples from the population. From each sample we construct a confidence interval. Then a fraction of $1-\alpha$ of the confidence intervals will cover the unknown population parameter.
- This is also called interval estimation.

Constructing a confidence interval from the t statistic

• To construct a confidence interval for β_i , we use the approximate distribution

$$t_i = rac{\hat{eta}_i - eta_i}{\hat{\sigma}_{\hat{eta}_i}} \sim \mathsf{Normal}(0,1).$$

This implies

$$P(-z_{1-\alpha/2} \le t_i \le z_{1-\alpha/2}) = 1 - \alpha.$$

• Solving for β_i yields the well-known expression

$$P(\hat{\beta}_i - z_{1-\alpha/2}\hat{\sigma}_{\hat{\beta}_i} \leq \beta_i \leq \hat{\beta}_i + z_{1-\alpha/2}\hat{\sigma}_{\hat{\beta}_i}) = 1 - \alpha.$$

- Note once again that the coverage probability holds only approximately.
- ullet Hence, the (approximate) 1-lpha confidence interval for eta_i is the set

$$CI(\beta_i) = \left[\hat{\beta}_i - z_{1-\alpha/2}\hat{\sigma}_{\hat{\beta}_i}, \ \hat{\beta}_i + z_{1-\alpha/2}\hat{\sigma}_{\hat{\beta}_i}\right].$$

 To construct two-sided 90% confidence intervals, recall the OLS estimates (heteroscedasticity-robust s.e. in brackets):

$$\begin{array}{lll} \widehat{\log(wage)} & = & -0.421 + 0.040 \; exper - 0.00078 \; exper^2 + 0.108 \; educ \\ & & -0.0015 \; age - 0.061 \; kidslt6 - 0.015 \; kidsge6 \\ & & & (0.0059) \end{array}$$

• Here are the 90% confidence intervals for β_5 and β_6 .

$$CI(\beta_5) = [-0.061 - 0.106 z_{0.95}, -0.061 + 0.106 z_{0.95}] = [-0.236, 0.114]$$

$$CI(\beta_6) = [-0.015 - 0.029 z_{0.95}, -0.015 + 0.029 z_{0.95}] = [-0.063, 0.034]$$

• In Stata it is more convenient to use the option level(90) and read off the results:

regress lwage exper ... kidsge6, vce(robust) level(90)

Linear regression

Number of obs = 428 F(6, 421) = 13.78 Prob > F = 0.0000 R-squared = 0.1582 Root MSE = .66823

lwage		Robust				
	Coef.	Std. Err.	t	P> t	[90% Conf.	Interval]
exper	.039819	.0152578	2.61	0.009	.0146668	.0649712
expersq	0007812	.0004097	-1.91	0.057	0014566	0001059
educ	.1078319	.0136235	7.92	0.000	.0853738	.1302901
age	0014653	.0059351	-0.25	0.805	0112491	.0083186
kidslt6	0607106	.1061006	-0.57	0.567	2356154	.1141943
kidsge6	014591	.0293505	-0.50	0.619	0629748	.0337928
_cons	4209078	.3183346	-1.32	0.187	9456764	.1038608

Note: both intervals include 0.

3. Testing general linear restrictions

Stating general linear restrictions

- To state r general linear restrictions concerning the K-dimensional parameter vector β we use restriction matrices.
- $H_0: \mathbf{R}\boldsymbol{\beta} = \mathbf{r}$ against $H_1: \mathbf{R}\boldsymbol{\beta} \neq \mathbf{r}$.
- **R** is a $r \times K$ matrix of constants and **r** is a $r \times 1$ vector of constants.

Examples for restriction matrices

- Assume we have three parameters β_0 , β_1 , and β_2 .
- We want to test the joint null hypothesis $H_0: \beta_0=1$ and $2\beta_1=\beta_2$. This can be written in matrix form as

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \end{pmatrix}}_{\mathbf{R}} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 \\ 0 \end{pmatrix}}_{\mathbf{r}}$$

• To test for joint significance of all parameters, we formulate the null hypothesis $H_0: \beta_0 = \beta_1 = \beta_2 = 0$. This gives rise to

$$\underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{R}=\mathbf{I}} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}}_{\mathbf{r}=\mathbf{0}}$$

• Remember that, approximately (as N gets large),

$$\hat{\boldsymbol{\beta}} \sim \mathsf{Normal}(\boldsymbol{\beta}, \mathbf{V}_{\hat{\boldsymbol{\beta}}}).$$

Hence,

$$\mathsf{E}(\mathsf{R}\hat{\boldsymbol{eta}}) = \mathsf{R}\,\mathsf{E}(\hat{\boldsymbol{eta}}) = \mathsf{R}\boldsymbol{eta}$$

$$\begin{aligned} \mathsf{Var}(\mathsf{R}\hat{\boldsymbol{\beta}}) &= \mathsf{E}[(\mathsf{R}\hat{\boldsymbol{\beta}} - \mathsf{R}\boldsymbol{\beta})(\mathsf{R}\hat{\boldsymbol{\beta}} - \mathsf{R}\boldsymbol{\beta})'] = \mathsf{R}\,\mathsf{E}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})']\mathsf{R}' \\ &= \mathsf{R}\,\mathsf{Var}(\hat{\boldsymbol{\beta}})\mathsf{R}' = \mathsf{R}\mathsf{V}_{\hat{\boldsymbol{\beta}}}\mathsf{R}' \end{aligned}$$

and thus

$$\mathbf{R}\hat{\boldsymbol{\beta}} \sim \mathsf{Normal}(\mathbf{R}\boldsymbol{\beta}, \mathbf{R}\mathbf{V}_{\hat{\boldsymbol{\beta}}}\mathbf{R}').$$

Distribution of a quadratic form of normal random variables

• Theorem: Consider the K-dimensional random vector \mathbf{z} with $\mathsf{E}(\mathbf{z}) = \boldsymbol{\mu}$ and $\mathsf{Var}(\mathbf{z}) = \boldsymbol{\Sigma}$ that follows a multivariate normal distribution:

$$z \sim \mathsf{Normal}(\mu, \Sigma).$$

Then the quadratic form $(\mathbf{z}-\mathbf{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{z}-\mathbf{\mu})$ is distributed as

$$(\mathbf{z} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{z} - \boldsymbol{\mu}) \sim \chi_K^2$$
.

ullet Applying this rule to the r-dimensional random vector ${f R}\hat{eta}$ with approximate distribution

$$\boldsymbol{\mathsf{R}}\hat{\boldsymbol{\beta}} \sim \mathsf{Normal}(\boldsymbol{\mathsf{R}}\boldsymbol{\beta},\boldsymbol{\mathsf{R}}\boldsymbol{\mathsf{V}}_{\!\hat{\boldsymbol{\beta}}}\boldsymbol{\mathsf{R}}')$$

yields the quadratic form

$$(\mathsf{R}\hat{\boldsymbol{\beta}} - \mathsf{R}\boldsymbol{\beta})'(\mathsf{R}\mathsf{V}_{\hat{\boldsymbol{\beta}}}\mathsf{R}')^{-1}(\mathsf{R}\hat{\boldsymbol{\beta}} - \mathsf{R}\boldsymbol{\beta}) \sim \chi_r^2.$$

• Under H_0 : $\mathbf{R}\beta = \mathbf{r}$, the approximate distribution of the quadratic form is

$$(\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r})'(\mathbf{R}\mathbf{V}_{\hat{\boldsymbol{\beta}}}\mathbf{R}')^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r}) \sim \chi_r^2.$$

- ullet To make the test feasible, replace $old V_{\hat{eta}} = old V/N$ by a consistent estimator $\hat{old V}/N$.
- By the asymptotic equivalence lemma (or Cramer's theorem), this leaves the asymptotic distribution unchanged.
- Hence, we use the Wald statistic

$$W \equiv (\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r})'(\mathbf{R}(\hat{\mathbf{V}}/N)\mathbf{R}')^{-1}(\mathbf{R}\hat{\boldsymbol{\beta}} - \mathbf{r}) \sim \chi_r^2$$

 This holds both under heteroscedasticity (where we use the heteroscedasticity-consistent estimator for V) and under homoscedasticity (where we use the simplified homoscedasticity-only estimator for V).

Remember the OLS estimates (heteroscedasticity-robust s.e. in brackets):

$$\widehat{\log(wage)} = -0.421 + 0.040 \underbrace{exper - 0.00078}_{(0.015)} \underbrace{exper^2 + 0.108}_{(0.0041)} \underbrace{educ}_{(0.014)} \\ -0.0015 \underbrace{age - 0.061}_{(0.106)} \underbrace{kidslt6 - 0.015}_{(0.029)} \underbrace{kidsge6}_{(0.029)}$$

- We want to test the joint null hypothesis H_0 : $\beta_5 = \beta_6 = 0$.
- This can be written in matrix form as

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \boldsymbol{\beta} = \mathbf{0}.$$

To perform this test in Stata use:

test kidslt6 kidsge6

 When the estimation in Stata is done using heteroscedasticity-robust standard errors, the Wald test will also be heteroscedasticity-robust.

ullet Note that Stata rescales the Wald statistic to have an approximate F distribution,

$$F = W/r \xrightarrow{d} F(r, \infty).$$

Instead of using this asymptotic distribution, Stata uses the approximate distribution

$$F = W/r \sim F(r, N - K),$$

which would be exact if the disturbances were normal.

• For our example, Stata reports

$$F(2, 421) = 0.25$$

$$Prob > F = 0.7820$$

- Test decision: due to a *p*-value of 0.78, $H_0: \beta_5 = \beta_6 = 0$ cannot be rejected.
- The 5% critical value of the F(2, 421) distribution is 3.017.
- The 5% critical value of the $F(2,\infty)$ distribution is 2.996.
- Both exceed the F statistic of 0.25.

• We can also back out the Wald statistic:

$$W = rF = 2 \cdot 0.25 = 0.5$$
.

- The 5% critical value of the χ^2_2 distribution is 5.99.
- Test decision: $W < cv \longrightarrow H_0$ cannot be rejected.

- Let us also test the null hypothesis $H_0: \beta_5 = \beta_6$.
- This can be written in matrix form as

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & -1 \end{pmatrix} \beta = 0.$$

• To perform this test in Stata use:

Stata reports

$$F(1, 421) = 0.19$$

Prob > $F = 0.6612$

$$Prob > F = 0.6612$$

• Test decision: due to a *p*-value of 0.66, $H_0: \beta_5 = \beta_6$ cannot be rejected.

4. Testing exclusion restrictions

The Lagrange Multiplier (LM) testing principle

- Exclusion restrictions (and many more) can sometimes more easily be tested using the Lagrange Multiplier (LM) test.
- This test has the advantage that it requires to estimate the model only under the null hypothesis.
- This may be computationally much easier in certain situations than to estimate the model under the alternative as is done for the Wald test.
- More on testing principles later.
- In the following we present (without proof) how to use the LM test to test exclusion restrictions in the linear regression model.

Testing exclusion restrictions

- Model: $y = x_1 \beta_1 + x_2 \beta_2 + u$
- Hypotheses: $H_0: oldsymbol{eta}_2 = 0$ against $H_1: oldsymbol{eta}_2
 eq 0$
- Step 1: estimate under H_0 , i.e., estimate by OLS the model

$$y=\mathbf{x}_1\boldsymbol{\beta}_1+u,$$

and compute the residual $\tilde{u}=y-\mathbf{x}_1\tilde{\boldsymbol{\beta}}_1$, where $\tilde{\boldsymbol{\beta}}_1$ is the OLS estimator.

• Step 2: estimate the auxiliary model

$$\tilde{u} = \mathbf{x}_1 \boldsymbol{\alpha}_1 + \mathbf{x}_2 \boldsymbol{\alpha}_2 + \boldsymbol{v}$$

and compute the R-squared, $R_{\tilde{u}}^2$.

Then the LM or score statistic is

$$LM \equiv NR_{\tilde{u}}^2$$
.

• Under H_0 , LM is χ^2_r distributed, where r is the number of restrictions.

Testing exclusion restrictions

- In practice, we thus have to run two OLS regressions.
- However, the test statistic $LM \equiv NR_{\tilde{u}}^2$ requires homoscedasticity.
- Wooldridge (p. 59-60) shows how to adjust the auxiliary regression and the test statistic to obtain a heteroscedasticity-robust test.
- For our example, try the LM test in the computer tutorial.