# **Hypothesis Testing**

Feng-Chang Lin

Department of Biostatistics University of North Carolina at Chapel Hill

flin@bios.unc.edu

(C&B §8)

#### Introduction

- **Example** Current standard treatment for a given disease has success probability 0.7. A new drug has success probability  $\theta$  (unknown). Is the new drug better than the current treatment?
- Hypothesis:  $H_0: \theta \le 0.7$  and  $H_1: \theta > 0.7$ .
- A hypothesis is a statement about a population parameter.
- The parameter space is divided into two disjoint sets:

$$\Theta = \Theta_0 \cup \Theta_0^c$$

- The *null hypothesis* is  $H_0: \theta \in \Theta_0$ .
- The alternative hypothesis is  $H_1: \theta \in \Theta_0^c$ .



2/35

#### Introduction (cont'd)

- Assume  $X_1, \ldots, X_n \sim \text{Bernoulli}(\theta)$ :
  - ▶ Simple versus simple  $\Theta = \{1/4, 3/4\}, \, \Theta_0 = \{1/4\}, \, \Theta_0^c = \{3/4\}.$
  - ▶ Simple versus composite, one-sided  $\Theta = [1/4, 1], \Theta_0 = \{1/4\}, \Theta_0^c = (1/4, 1].$
  - ▶ Simple versus composite, two-sided  $\Theta = [0, 1], \Theta_0 = \{1/4\}, \Theta_0^c = [0, 1/4) \cup (1/4, 1].$
  - ► Composite versus composite  $\Theta = [0, 1], \Theta_0 = [0, 1/4],$  $\Theta_0^c = (1/4, 1].$
  - ▶ Composite versus composite  $\Theta = [0, 1/4] \cup [3/4, 1],$  $\Theta_0 = [0, 1/4], \Theta_0^c = [3/4, 1].$

3/35

# **Hypothesis Testing**

- Hypothesis testing: Use data to decide whether to reject  $H_0$  as false or accept  $H_0$  as true (do not reject  $H_0$ ).
- A *hypothesis testing procedure* is a rule that specifies for which values of X are to reject  $H_0$  or not.
- *Test function*:  $\delta(\mathbf{X})$  is either 0 or 1.
- Decision rule: If  $\delta(\mathbf{X}) = 1$ ,  $H_0$  is rejected; If  $\delta(\mathbf{X}) = 0$ ,  $H_0$  is not rejected.

4/35

# Rejection Region

- $\delta(\mathbf{X})$  divides the sample space into two regions.
- The rejection region or critical region R is the region over which  $\delta(\mathbf{x}) = 1$ , and  $H_0$  is rejected.
- The acceptance region is the region  $R^c$  (the complement of R) over which  $\delta(\mathbf{x}) = 0$ , and  $H_0$  is accepted.

$$R = \{ x : \delta(x) = 1 \}, \text{ and, } R^c = \{ x : \delta(x) = 0 \}.$$

- *Type I error*: Reject  $H_0$  when it is true.
- Size of the test (the largest type-I error one can make):

$$\alpha = \sup_{\theta \in \Theta_0} P(\delta(\mathbf{x}) = 1).$$

• Type II error: Do not reject  $H_0$  when it is false.



5/35

#### Likelihood Ratio Test

• The *likelihood ratio statistic* for testing  $H_0: \theta \in \Theta_0$  against  $H_1: \theta \in \Theta_0^c$  is

$$\lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Theta_0} L(\theta|\mathbf{x})}{\sup_{\theta \in \Theta} L(\theta|\mathbf{x})}$$

- let  $\hat{\theta}_0$  denote the restricted MLE over  $\Theta_0$ , and Let  $\hat{\theta}$  denote the unrestricted MLE over  $\Theta = \Theta_0 \cup \Theta_0^c$ .
- The likelihood ratio statistic:

$$\lambda(\mathbf{x}) = \frac{L(\hat{\theta}_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})}.$$

A likelihood ratio test (LRT) is any test with

$$R = \{ \boldsymbol{x} : \lambda(\boldsymbol{x}) \leq c \}$$
 for some  $c \in [0, 1]$ .



6/35

# Likelihood Ratio Test (cont'd)

- A test with test function  $\delta(\mathbf{x}) = I(\lambda(\mathbf{x}) \leq c)$  for some  $c \in [0, 1]$ .
- Use the test size, say  $\alpha$ , to find c, where

$$\alpha = \sup_{\theta \in \Theta_0} P(\lambda(\mathbf{X}) \leq \mathbf{c}).$$

- However, we usually do not know about the distribution of  $\lambda(\mathbf{X})$ .
- We intend to find an equivalent region using unrestricted MLE  $\hat{\theta}$  with

$$R = \{ \mathbf{x} : \lambda(\mathbf{X}) \le c \} \iff R^* = \{ \mathbf{x} : \hat{\theta} \ge c^* \text{ or } \hat{\theta} \le c^* \}.$$

•  $\hat{\theta} \geq c^*$  or  $\hat{\theta} \leq c^*$  follows the direction of  $H_1$ .

7/35

#### LRT under Normal Distribution

- Let  $X_1, \dots, X_n$  be iid  $N(\theta, 1)$ . Consider testing  $H_0: \theta = \theta_0$  versus  $H_1: \theta \neq \theta_0$ .
- Under  $H_0$ ,  $\theta_0$  is a fixed number determined by the researcher, so the numerator of  $\lambda(\mathbf{x})$  is

$$\sup_{\theta \in \Theta_0} L(\theta | \mathbf{x}) = L(\theta_0 | \mathbf{x}).$$

• Under the unrestricted parameter space  $\Theta = \Theta \cup \Theta^c$ , the MLE is  $\bar{X}$ , so the denominator of  $\lambda(\mathbf{x})$  is

$$\sup_{\theta \in \Theta} L(\theta | \mathbf{x}) = L(\bar{x} | \mathbf{x}).$$



8/35

## LRT under Normal Distribution (cont'd)

The LRT statistic is

$$\begin{split} \lambda(\boldsymbol{x}) &= \frac{(2\pi)^{-n/2} \exp\{-\sum_{i=1}^{n} (x_i - \theta_0)^2/2\}}{(2\pi)^{-n/2} \exp\{-\sum_{i=1}^{n} (x_i - \bar{x})^2/2\}} \\ &= \exp\left\{\left[-\sum_{i=1}^{n} (x_i - \theta_0)^2 + \sum_{i=1}^{n} (x_i - \bar{x})^2\right]/2\right\}. \end{split}$$

• Since  $\sum_{i=1}^{n} (x_i - \theta_0)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \theta_0)^2$ , the LRT statistic is simplified to

$$\lambda(\mathbf{x}) = \exp\{-n(\bar{x} - \theta_0)^2/2\}.$$

• The rejection region is  $\{x : \lambda(x) \le c\}$ , which can be written by

$$\{\boldsymbol{x}: |\bar{\boldsymbol{x}} - \theta_0| \geq \sqrt{-2(\log c)/n}\}.$$

9/35

#### LRT under Exponential Distribution

• Let  $X_1, \dots, X_n$  be a random sample from an exponential distribution with pdf

$$f(x|\theta) = \begin{cases} e^{-(x-\theta)} & x \ge \theta \\ 0 & x < \theta, \end{cases}$$

where  $-\infty < \theta < \infty$ . The likelihood function is

$$L(\theta|\mathbf{x}) = \begin{cases} e^{-\sum_{i=1}^{n} x_i + n\theta} & \theta \leq x_{(1)} \\ 0 & \theta > x_{(1)}. \end{cases}$$

- Consider testing  $H_0: \theta \leq \theta_0$  versus  $H_1: \theta > \theta_0$ , where  $\theta_0$  is a value specified by the researcher.
- Unrestricted MLE (denominator) is more straightforward. The unrestricted maximum of  $L(\theta|x)$  is  $L(x_{(1)}|x) = e^{-\sum x_i + nx_{(1)}}$ .

Lin (UNC-CH) Bios 661 March 19, 2019 10 / 35

## LRT under Exponential Distribution (cont'd)

- Under  $H_0$ , finding maximum of  $L(\theta|\mathbf{x})$  is more complicated. Drawing  $L(\theta|\mathbf{x})$  helps.
- If  $x_{(1)} \leq \theta_0$ , the numerator of  $\lambda(\mathbf{x})$  is also  $L(x_{(1)}|\mathbf{x})$ .
- If  $x_{(1)} > \theta_0$ , the numerator of  $\lambda(\mathbf{x})$  is  $L(\theta_0|\mathbf{x})$ .
- Therefore, the likelihood ratio test statistic is

$$\lambda(\mathbf{x}) = \begin{cases} 1 & x_{(1)} \leq \theta_0 \\ e^{-n(x_{(1)} - \theta_0)} & x_{(1)} > \theta_0. \end{cases}$$

- One rejects  $H_0$  if  $\lambda(\mathbf{x}) \leq c$ .
- The rejection region  $\{ \boldsymbol{x} : x_{(1)} \ge \theta_0 \log(c)/n \}$ .

11/35

# **Evaluating Tests**

The power function of a hypothesis test is

$$\beta(\theta) = P_{\theta}(\mathbf{X} \in R) = E_{\theta}\delta(\mathbf{X})$$

- Type I error:  $\beta(\theta)$ ,  $\theta \in \Theta_0$ .
- Type II error:  $1 \beta(\theta)$ ,  $\theta \in \Theta_0^c$ .
- A size  $\alpha$  test if

$$\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha.$$

• A level  $\alpha$  test if

$$\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha.$$



12/35

#### Power Function under Normal Distribution

- Let  $X_1, \ldots, X_n$  be a random sample from  $N(\theta, \sigma^2)$  with known  $\sigma^2$ .
- To test  $H_0: \theta \leq \theta_0$  versus  $H_1: \theta > \theta_0$ , one would reject  $H_0$  if  $(\bar{X} \theta_0)/(\sigma/\sqrt{n}) > c$  by LRT.
- The power function of this test is

$$\beta(\theta) = P_{\theta} \left( \frac{\bar{X} - \theta_{0}}{\sigma / \sqrt{n}} > c \right) = P_{\theta} \left( \frac{\bar{X} - \theta}{\sigma / \sqrt{n}} > c + \frac{\theta_{0} - \theta}{\sigma / \sqrt{n}} \right)$$
$$= P_{\theta} \left( Z > c + \frac{\theta_{0} - \theta}{\sigma / \sqrt{n}} \right) = 1 - \Phi \left( c + \frac{\theta_{0} - \theta}{\sigma / \sqrt{n}} \right).$$

- $\lim_{\theta \to -\infty} \beta(\theta) = 0$  and  $\lim_{\theta \to \infty} \beta(\theta) = 1$
- $\beta(\theta_0) = \alpha$  if  $\Phi(c) = 1 \alpha$ .



Lin (UNC-CH) Bios 661 March 19, 2019 13 / 35

#### Power Function under Binomial Distribution

- $X \sim \text{Binomial}(3, \theta), \Theta = (0, 1),$
- $H_0: \theta \le 1/4 \text{ versus } H_1: \theta > 1/4.$
- The test defined by  $\delta(x) = I(x = 3)$  has a power function

$$\beta(\theta) = P_{\theta}(X = 3) = \theta^3.$$

- The size of  $\delta(x)$  is  $\sup_{\theta \in \Theta_0} \beta(\theta) = \beta(1/4) = 1/64$ .
- Another test defined by  $\delta^*(x) = I(x \ge 2)$  has a power function

$$\beta^*(\theta) = P_{\theta}(X \in \{2,3\}) = 3\theta^2(1-\theta) + \theta^3.$$

- The size of  $\delta^*(x)$  is  $\beta^*(1/4) = 10/64$ .
- Clearly,  $\beta^*(\theta) > \beta(\theta)$  for all  $\theta \in (0, 1)$ .



Lin (UNC-CH) Bios 661 March 19, 2019 14/35

#### Size of a Binomial Test

- $X \sim \text{Binomial}(3, \theta), \Theta = \{1/4, 3/4\}.$
- $H_0: \theta = \theta_0 = 1/4 \text{ versus } H_1: \theta = \theta_1 = 3/4.$
- Under  $H_0$ ,  $P_{\theta_0}(X=0)=27/64$ ,  $P_{\theta_0}(X=1)=27/64$ ,  $P_{\theta_0}(X=2)=9/64$ , and  $P_{\theta_0}(X=3)=1/64$ .
- Any test function  $\delta(x)$  will simply partition the set  $\{0, 1, 2, 3\}$  into two subsets.
- Hence, no matter what  $\delta(X)$  is, the test size

$$\sup_{\theta \in \Theta_0} \beta(\theta) = P_{\theta_0}(\delta(X) = 1)$$

will be the sum of one or more of the numbers in {0,27/64,27/64,9/64,1/64}.

• Can we have the test size exactly equals  $\alpha = 0.05$ ?

#### Nonexistence of a Size $\alpha$ Test

- A size  $\alpha$  test may not always exist (for example, discreteness).
- Solutions:
  - (1) Practical: Settle for a size  $\alpha^*$  test with  $\alpha^*$  being the largest possible size that is less than or equal to  $\alpha$ .
  - (2) Mathematical: Randomized tests. Find c such that  $\alpha^* + c(1 \alpha^*) = \alpha$ . If the test with size  $\alpha^*$  does not reject  $H_0$ , draw  $U \sim \text{Uniform}(0,1)$  and reject  $H_0$  if U < c.

16/35

## **Desirable Properties of Tests**

- Error probabilities as small as possible.
- Error probabilities that are uniformly 0 are impossible except in trivial cases.
- Example of a trivial case:  $X \sim \text{Bernoulli}(\theta)$ ,  $\Theta = \{0, 1\}$ . If  $H_0: \theta = 0$  against  $H_1: \theta = 1$ .
- The test  $\delta(X) = X$  has error probabilities uniformly 0. Why?

Lin (UNC-CH) Bios 661 March 19, 2019 17 / 35

# Uniformly Most Powerful (UMP) Level $\alpha$ Test

- Fix type I error at  $\alpha$ , then minimize type II error uniformly in  $\theta$ .
- Restrict to the class of level  $\alpha$  tests, then find the uniformly most powerful test.
- Neyman-Pearson Lemma: X (scalar or vector) has pdf or pmf  $f(x|\theta)$ ,  $H_0: \theta = \theta_0$  against  $H_1: \theta = \theta_1$ . Suppose a test has a rejection region

$$R = \left\{ x \left| \frac{f(x|\theta_1)}{f(x|\theta_0)} > c \right\} \right\},\,$$

and acceptance region

$$R^c = \left\{ x \left| \frac{f(x|\theta_1)}{f(x|\theta_0)} < c \right\} \right\},$$

for some  $c \ge 0$  and has size  $\alpha = P_{\theta_0}(X \in R)$ .

Lin (UNC-CH) Bios 661 March 19, 2019 18/35

## UMP Level $\alpha$ Test (cont'd)

- Then,
  - (a) Any such test is a UMP level  $\alpha$  test.
  - (b) If such a test exists with c > 0 then every UMP size  $\alpha$  test has the same test function (except on a set that has probability 0).
- Proof of (a): Given a level  $\alpha$  test  $\delta^*(x)$ , we want to show that  $\beta(\theta_1) \beta^*(\theta_1) \ge 0$ . The inequality

$$\{\delta(x)-\delta^*(x)\}\{f(x|\theta_1)-cf(x|\theta_0)\}\geq 0.$$

holds for each of the four cases:  $\delta(x)$ ,  $\delta^*(x) = 0, 1$ .

Integrating out x gives

$$\beta(\theta_1) - c\beta(\theta_0) - \beta^*(\theta_1) + c\beta^*(\theta_0) \ge 0,$$

which can be written as

$$\beta(\theta_1) - \beta^*(\theta_1) \ge c\{\beta(\theta_0) - \beta^*(\theta_0)\}.$$

Lin (UNC-CH) Bios 661 March 19, 2019 19/35

## UMP Level $\alpha$ Test (cont'd)

• Since  $\beta(\theta_0) = \alpha$ ,  $\beta^*(\theta_0) \le \alpha$  and  $c \ge 0$ , it follows that  $c\{\beta(\theta_0) - \beta^*(\theta_0)\} \ge 0$  and

$$\beta(\theta_1) \geq \beta^*(\theta_1).$$

- **Example**  $X_1, ..., X_n \sim N(\theta, 1)$ . Find the UMP level  $\alpha$  test for  $H_0: \theta = \theta_0$  versus  $H_1: \theta = \theta_1 > \theta_0$  (simple versus simple).
- This test is also UMP test for H<sub>0</sub>: θ = θ<sub>0</sub> versus H<sub>1</sub>: θ > θ<sub>0</sub>
   (simple versus composite) since the rejection region does not depend on θ<sub>1</sub> > θ<sub>0</sub>.

Lin (UNC-CH) Bios 661 March 19, 2019 20 / 35

## UMP Level $\alpha$ Test (cont'd)

 The statement of the Neyman-Pearson Lemma does not say what to do (reject or accept H<sub>0</sub>) if

$$X \in \left\{ x \left| \frac{f(x|\theta_1)}{f(x|\theta_0)} = c \right\} \right\}.$$

- If X is continuous, the probability of this event is zero, and we do not need to worry about it.
- If X is discrete, the event may or may not have positive probability.
- If it does have positive probability, the lemma does not say anything about such tests.
- The implication is that, when deriving UMP tests based on discrete *X*, we simply avoid using such values of *c*.



### Monotone Likelihood Ratio (MLR)

• The MLR property is said to hold if the likelihood ratio

$$\frac{L(\theta_2|x)}{L(\theta_1|x)} = \frac{f_X(x|\theta_2)}{f_X(x|\theta_1)},$$

depends on x only through a statistic T(x), and is monotone increasing function of T(x) for every  $\theta_2 > \theta_1$ .

- We will say that the likelihood has a MLR property in T(X).
- **Example**:  $X_1, \dots, X_n$  are iid Poisson( $\theta$ ),  $\theta > 0$ . The likelihood ratio

$$\frac{f_X(x|\theta_2)}{f_X(x|\theta_1)} = \exp\left\{\left(\log\frac{\theta_2}{\theta_1}\right)\left(\sum_{i=1}^n x_i\right) - n(\theta_2 - \theta_1)\right\},\,$$

is clearly a monotone increasing function in  $T(X) = \sum_{i=1}^{n} X_i$  since  $\log(\theta_2/\theta_1) > 0$  for all  $\theta_2 > \theta_1 > 0$ .

◄□▶◀∰▶◀불▶◀불▶ 불 쒸٩

22 / 35

#### Karlin-Rubin Theorem

- Consider testing  $H_0: \theta \leq \theta_0$  against  $H_1: \theta > \theta_0$ .
- Suppose that T is *sufficient*, and the *MLR property holds*, then  $\delta(X) = I(T > c)$  defines a UMP level  $\alpha$  test.
- The theorem can be restated for the reversed testing problem.
- For testing  $H_0: \theta \ge \theta_0$  against  $H_1: \theta < \theta_0$ , a UMP level  $\alpha$  test has test function  $\delta(X) = I(T < t_0)$ .
- The value of  $t_0$  needs to be chosen so that the test has the desired size  $\alpha$  in the continuous case.
- Or, the largest possible size  $\alpha^* \leq \alpha$  in the discrete case.

Lin (UNC-CH) Bios 661 March 19, 2019 23 / 35

#### **Unbiased Tests**

- Uniformly most powerful (UMP) level  $\alpha$  tests do not always exist.
- **Example 8.3.19** Let  $X_1, \dots, X_n$  be iid  $N(\theta, \sigma^2), \sigma^2$  known. Consider testing  $H_0: \theta = \theta_0$  versus  $H_1: \theta \neq \theta_0$ .
- A size  $\alpha$  test that rejects for large values of  $\bar{X}$  is most powerful for  $\theta > \theta_0$  but not for  $\theta < \theta_0$ .
- One way out of the nonexistence of UMP is to restrict to smaller classes of tests.

Lin (UNC-CH) Bios 661 March 19, 2019 24 / 35

### Unbiased Tests (cont'd)

• We define unbiased tests as:

$$\sup_{\theta \in \Theta_0} \beta(\theta) \leq \inf_{\theta \in \Theta_0^c} \beta(\theta).$$

- **Example** *X* is a random sample of size *n* from the N( $\theta$ , 1) distribution.  $H_0: \theta = \theta_0$  against  $H_1: \theta \neq \theta_0$ .
- A uniformly most powerful (UMP) unbiased level  $\alpha$  test is defined by  $\delta(X) = I(\sqrt{n}|\bar{X} \theta_0| > c)$  for some  $c \ge 0$ .
- Since  $\Theta_0 = \{\theta_0\}$ , the size of the test is  $E_{\theta_0}\delta(X) = 2\Phi(-c)$ .
- If we want the size to be 0.05, we choose c = 1.96.

Lin (UNC-CH) Bios 661 March 19, 2019 25 / 35

#### P-value

- **Definition**: Given a sample X, a p-value is a test statistic  $p(X) \in [0, 1]$  such that small values support  $H_1$  over  $H_0$ .
- A *p*-value is *valid* if, for every  $\theta \in \Theta_0$ , and every  $0 \le \alpha \le 1$ ,

$$P_{\theta}(p(X) \leq \alpha) \leq \alpha.$$

• That means, if  $p(\mathbf{X})$  is a valid p-value, a test that rejects  $H_0$  if  $p(\mathbf{X}) \leq \alpha$  is a level  $\alpha$  test.



Lin (UNC-CH) Bios 661 March 19, 2019 26 / 35

## P-value (cont'd)

- **Example** X is a random sample of size n from the  $N(\theta, 1)$  distribution.  $H_0: \theta \leq \theta_0$  against  $H_1: \theta > \theta_0$ .
- Let  $\mathbf{x}$  be an observed sample and  $\bar{\mathbf{x}}$  be the observed sample mean.
- Consider a function:

$$p(\mathbf{x}) = 1 - \Phi\left(\sqrt{n}(\bar{x} - \theta_0)\right).$$

- p(X) is a statistic since  $\theta_0$  is a specified known number (not an unknown parameter), and n is also known.
- p(x) can be interpreted as the probability that the random variable  $\bar{X}$  exceeds the observed value  $\bar{x}$  if  $\theta = \theta_0$ .



Lin (UNC-CH) Bios 661 March 19, 2019 27 / 35

## P-value (cont'd)

- $p(\mathbf{x})$  is decreasing in  $\bar{x}$ , so large values of  $\bar{x}$ , which would support  $H_1$  over  $H_0$ , go with small values of  $p(\mathbf{x})$ .
- Also,

$$P_{\theta}(p(\mathbf{X}) \leq \alpha) = P_{\theta}(\bar{\mathbf{X}} \geq \theta_0 + \Phi^{-1}(1 - \alpha)/\sqrt{n})$$

$$= P_{\theta}(\sqrt{n}(\bar{\mathbf{X}} - \theta) \geq \sqrt{n}(\theta_0 - \theta) + \Phi^{-1}(1 - \alpha))$$

$$= 1 - \Phi(\sqrt{n}(\theta_0 - \theta) + \Phi^{-1}(1 - \alpha)).$$

- That means  $P_{\theta_0}(p(\mathbf{X}) \leq \alpha) = \alpha$ , and  $P_{\theta}(p(\mathbf{X}) \leq \alpha) < \alpha$  for  $\theta < \theta_0$ .
- Hence, this is a valid *p*-value, and the test with test function  $\delta(X) = I(p(X) \le \alpha)$  has size  $\alpha$ .



Lin (UNC-CH) Bios 661 March 19, 2019 28 / 35

## P-value (cont'd)

• In general, if a hypothesis test rejects  $H_0: \theta = \theta_0$  for large values of a statistic T(X), the p-value can be defined to be

$$p(x) = P_{\theta_0}(T(X) \geq T(x)),$$

where T(x) is observed value of T(X).

Lin (UNC-CH) Bios 661 March 19, 2019 29 / 35

#### **Union-Intersection Test**

- Union-intersection and intersection-union tests are ways of combining many simpler hypothesis tests into a single more complicated test.
- In some problems, the null hypothesis is the intersection of two or more simpler null hypotheses,

$$H_0: \theta \in \bigcap_{j \in J} \Theta_j$$
 against  $H_1: \theta \in \bigcup_{j \in J} \Theta_j^c$ .

J may be finite or infinite.



Lin (UNC-CH) Bios 661 March 19, 2019 30 / 35

#### Union-Intersection Test (cont'd)

Suppose that for each individual problem of testing

$$H_{0j}: \theta \in \Theta_j$$
 against  $H_{1j}: \theta \in \Theta_j^c$ ,

 $j \in J$ , with rejection region  $R_j$ . Then, the union-intersection test has rejection region

$$R = \bigcup_{j \in J} R_j$$

- That is, the union-intersection test rejects H<sub>0</sub> if any of the individual hypotheses H<sub>0i</sub> is rejected.
- The null hypothesis is an intersection while the rejection region is a union.

## **Example for Union-Intersection Test**

- $X \sim N(\theta, 1)$ . Test  $H_0: \theta = 1$  against  $H_1: \theta \neq 1$ .
- Suppose that the simpler hypothesis tests are

$$H_{01}: \theta \ge 1$$
 against  $H_{11}: \theta < 1$ ,

with rejection region  $R_1 = \{x : x < a\}$ , and

$$H_{02}: \theta \le 1$$
 against  $H_{12}: \theta > 1$ ,

with rejection region  $R_2 = \{x : x > b\}$ , where a and b are specified constants with a < b.

• Then the union-intersection test has critical region

$$R = R1 \bigcup R2 = \{x : x \notin [a,b]\}.$$



Lin (UNC-CH) Bios 661 March 19, 2019 32 / 35

#### Intersection-Union Test

 In intersection-union tests, the null hypothesis is a union while the rejection region is an intersection,

$$H_0: \theta \in \bigcup_{j \in J} \Theta_j$$
 against  $H_1: \theta \in \bigcap_{j \in J} \Theta_j^c$ ,

and

$$R = \bigcap_{j \in J} R_j$$
.

Lin (UNC-CH) Bios 661 March 19, 2019 33 / 35

#### **Example for Intersection-Union Test**

- Suppose we observe a pair of random variables for each patient.
- X is an indicator of response to treatment, while Y is an indicator of severe side effects.
- Let  $\theta_1 = P(X = 1)$  and  $\theta_2 = P(Y = 1)$ .
- One may test

$$H_0: \theta_1 < 0.8 \text{ or } \theta_2 > 0.15 \text{ against } H_1: \theta_1 \ge 0.8 \text{ and } \theta_2 \le 0.15.$$

Suppose that the simpler hypothesis tests are

$$H_{01}: \theta_1 < 0.8$$
 against  $H_{11}: \theta_1 \ge 0.8$ ,

with rejection region  $R_1 = \{x : \sum_{i=1}^n x_i > a\},\$ 



Lin (UNC-CH) Bios 661 March 19, 2019 34 / 35

# Example for Intersection-Union Test (cont'd)

and

$$H_{02}: \theta_2 > 0.15$$
 against  $H_{12}: \theta_2 \le 0.15$ ,

with rejection region  $R_2 = \{y : \sum_{i=1}^n y_i < b\}$ .

Then the intersection-union test has critical region

$$R = R_1 \bigcap R_2 = \{(x, y) : \sum_{i=1}^n x_i > a \text{ and } \sum_{i=1}^n y_i < b\},$$

and it rejects  $H_0$  if the observed (x, y) falls within R, i.e. if both simpler null hypotheses are rejected.

35/35