

Integrerad övervakning av miljötillståndet i svensk skogsmark – IM

Årsrapport 2019

Integrated monitoring of the environmental status in Swedish forest ecosystems – IM

Annual report for 2019

Stefan Löfgren (red.)

SLU, Vatten och miljö: Rapport 2020:6

Integrerad övervakning av miljötillståndet i svensk skogsmark – IM

Årsrapport 2019

Integrated monitoring of the environmental status in Swedish forest ecosystems - IM Annual report for 2019

Stefan Löfgren (red.)

SLU, Vatten och miljö: Rapport 2020:6

Institutionen för vatten och miljö Sveriges lantbruksuniversitet (SLU) Box 7050 750 07 Uppsala

Tel. 018 - 67 31 10

http://www.slu.se/vatten-miljo

Tryck: 100 exemplar. SLU, Uppsala, december 2020.

.

NATIONELL MILJÖÖVERVAKNING PÅ UPPDRAG AV NATURVÅRDSVERKET

ÄRENDENNUMMER NV-02490-19
AVTALSNUMMER 2221-19-006
PROGRAMOMRÅDE Skog
DELPROGRAM Integrerad
monitoring

Integrerad övervakning av miljötillståndet i svensk skogsmark - IM. Årsrapport 2019

Rapportförfattare Stefan Löfgren (redaktör), SLU	Utgivare Institutionen för vatten och miljö, SLU
	Postadress Box 7050, 750 07 Uppsala
	Telefon 018-67 10 00
Rapporttitel och undertitel Integrerad övervakning av miljötillståndet i svensk skogsmark - IM. Årsrapport 2019	Beställare Naturvårdsverket 106 48 Stockholm Finansiering Nationell MÖ, programområde Skog

Nyckelord för plats

Gårdsjön, Aneboda, Kindla och Gammtratten

Nyckelord för ämne

Ekosystemstudier, avrinningsområde, vattenbalans, kemiska ämnesbudgetar, effekter på biota, vegetation, markprocesser

Tidpunkt för insamling av underlagsdata 2019

Sammanfattning

Naturvårdsverkets miljöövervakningsenhet genomför Integrerad övervakning av miljötillståndet i skogsekosystem (IM) inom programområdet "Skog". Övervakningen är relaterad till konventionen om effekter av långtransporterade luftföroreningar "Long-range transboundary air pollution – LRTAP 1979" (UN/ECE). IVL Svenska Miljöinstitutet (IVL), Sveriges Geologiska Undersökning (SGU) och Institutionen för vatten och miljö (IVM) vid Sveriges lantbruksuniversitet (SLU) utför övervakningen på uppdrag av Naturvårdsverket.

Miljöövervakningen omfattar ekosystemstudier på avrinningsområdesnivå med bestämningar av vattenbalans, kemiska ämnesbudgetar och effekter på biota, främst vegetation och studier av markprocesser. Syftet är dels att som referensområden ge relevanta bakgrundsdata, dels att söka skilja effekter av mänsklig påverkan från naturlig variation. Modellering för prognostisering av utvecklingen är ett viktigt inslag. IM programmet lämpar sig också väl till testning av modeller. Mätningarna utförs i skyddade områden med lång kontinuitet, utan skogliga aktiviteter. Deposition av luftföroreningar och potentiell klimatpåverkan är de enda mänskliga störningarna i områdena.

Föreliggande rapport redovisar undersökningar från år 2019 och inbegriper de fyra IM-områdena Gårdsjön, Aneboda, Kindla och Gammtratten. Verksamheten under året beskrivs kortfattat i text med glimtar av intressanta resultat som framkommit. Bearbetade data och resultat återfinns i tabellbilagan i slutet på rapporten.

1 Förord

Naturvårdsverkets miljöövervakningsenhet genomför Integrerad övervakning av miljötillståndet i skogsekosystem (IM) inom programområdet "Skog". Övervakningen är relaterad till FN-konventionen om effekter av långtransporterade luftföroreningar "Long-range transboundary air pollution – LRTAP 1979" (UN/ECE). IVL Svenska Miljöinstitutet (IVL), Sveriges geologiska undersökning (SGU) och Institutionen för vatten och miljö (IVM) vid Sveriges lantbruksuniversitet (SLU) utför övervakningen på uppdrag av Naturvårdsverket.

Miljöövervakningen omfattar ekosystemstudier på avrinningsområdesnivå med bestämningar av vattenbalans, kemiska ämnesbudgetar och effekter på biota, främst vegetation och studier av markprocesser. Utförarna ansvarar för olika delprogram i ett integrerat system där IVL följer depositionen av ämnen, SGU undersöker markens fysikaliska och mineralologiska egenskaper och följer processer i grundvattnet medan IVM, SLU följer klimat och avrinning, markkemi och biologi, vegetation samt samordnar verksamheterna. Till detta kommer ett särskilt ansvar för IVL vad avser undersökningsområdet Gårdsjön i Bohuslän. Prov- och datainsamling vid detta område genomförs i huvudsak av IVL, Göteborg som utförare.

Huvudansvariga för IM:s olika delmoment och de som bidrar med data till denna och annan rapportering framgår av nedanstående tabell:

Samordning och internationella kontakter	Pernilla Rönnback, SLU Ulf Grandin, SLU (Lars Lundin, SLU)
Deposition, krondropp	Gunilla Pihl Karlsson, IVL
Meteorologi, hydrologi, datahantering och modellering	Pernilla Rönnback, SLU Mikael Östlund, SLU (Lars Lundin, SLU) Filip Moldan, IVL
Mark- och markvattenkemi, förnafall & förnanedbrytning (metaller inklusive Hg i Aneboda, SITES)	Stefan Löfgren, SLU
Markfysik, grundvatten	Kajsa Bovin, SGU
Bäckvattenkemi	Pernilla Rönnback, SLU (Lars Lundin, SLU) Filip Moldan, IVL
Vegetation inkl. träd, epifytiska alger & -lavar	Ulf Grandin, SLU

För mer utförlig information om de olika delmomenten hänvisas till dessa personer.

Provtagning och observationer genomfördes i områdena huvudsakligen av Sara Jutterström, Gårdsjön, Kjell Rosén, Aneboda, Kent Wirenborg, Kindla och Johan Hörnqvist, Gammtratten. Insamlade prover för kemisk analys tas om hand och analyseras av ackrediterade laboratorier vid IVL och SLU. Göran Gullberg och Mikael Östlund vid SLU, Kajsa Bovin, David Eveborn, och Bo Thunholm vid SGU samt Filip Moldan vid IVL har medverkat i arbetet med att karaktärisera avrinningsområdena och att installera, underhålla och sköta driften av mätutrustning.

Textdelen av föreliggande rapport består av bidrag från Stefan Löfgren, Lars Lundin, Mikael Östlund och Ulf Grandin från SLU. Stefan Löfgren har bearbetat dessa bidrag och färdigställt rapporten med dess nuvarande innehåll. I rapporten sammanfattas resultaten från de fyra IMområdena Gårdsjön, Aneboda, Kindla och Gammtratten under 2019. På grund av begränsningar i budgeten från Naturvårdsverket redovisas även metalldata från Aneboda, bl.a. Hg, insamlade på uppdrag av annan finansiär (SITES). Rådata finns digitalt tillgängliga vid IVM, SLU på http://www.slu.se/sv/institutioner/vatten-miljo/miljoanalys/integrerad-monitoring-im/ och vid SGU på http://apps.sgu.se/kartvisare/kartvisare-miljoovervakning-grundvatten-sv.html.

Stefan Löfgren 21 december 2020

2 Innehåll

1 Fö	rord	i
2 In	nehåll	ii
3 Sa	mmanfattning	1
4 Su	mmary	2
5 Öv	vervakningens bakgrund och syfte	3
6 Va 6.1 6.2 6.3 6.4	Kindla - SE-15	3 6 7 8 9
7 Vä	derförhållanden 2019	10
8 Mc	odellerad vattenbalans 1997-2019	15
9 Ke	emiska förhållanden 2019	18
10 Ve	getationsperiodens längd	21
11 Re	ferenser	23
12 Ti	digare publicerade årsrapporter	23
13 Ap 13.1 13.2 13.3 13.4	ppendix Koncentrationer Transporter Biologiska mätningar Klimat och hydrologi	25 25 25 25 26
14 Ap	ppendix (English)	27
14.1 14.2 14.3	Concentrations Fluxes Biological measurements	27 27 27
14.4	Meteorology and hydrology	28

3 Sammanfattning

Naturvårdsverkets miljöövervakningsenhet genomför Integrerad övervakning av miljötillståndet i skogsekosystem (IM) inom programområdet "Skog". Övervakningen är relaterad till konventionen om effekter av långtransporterade luftföroreningar "Long-range transboundary air pollution – LRTAP 1979" (UN/ECE). IVL Svenska Miljöinstitutet (IVL), Sveriges Geologiska Undersökning (SGU) och Institutionen för vatten och miljö (IVM) vid Sveriges lantbruksuniversitet (SLU) utför övervakningen på uppdrag av Naturvårdsverket.

Miljöövervakningen omfattar ekosystemstudier på avrinningsområdesnivå med bestämningar av vattenbalans, kemiska ämnesbudgetar och effekter på biota, främst vegetation och studier av markprocesser. Syftet är dels att som referensområden ge relevanta bakgrundsdata, dels att söka skilja effekter av mänsklig påverkan från naturlig variation. Modellering för prognostisering av utvecklingen är ett viktigt inslag. IM programmet lämpar sig också väl till testning av modeller. Mätningarna utförs i skyddade områden med lång kontinuitet, utan skogliga aktiviteter. Deposition av luftföroreningar och potentiell klimatpåverkan är de enda mänskliga störningarna i områdena. Syftet med IM-övervakningen skiljer sig från syftena med övriga miljöövervakningsprogram genom att IM i detalj ska kunna förklara förändringar i miljön och därmed bidra till tolkningen av resultaten från de mer extensiva programmen.

Föreliggande rapport redovisar undersökningar från år 2019 och inbegriper de fyra IMområdena Gårdsjön, Aneboda, Kindla och Gammtratten. Verksamheten under året beskrivs kortfattat i text med glimtar av intressanta resultat som framkommit. Bearbetade data och resultat återfinns i tabellbilagan i slutet på rapporten.

Mark och vatten i IM-områdena är jonsvaga, med permanent sura förhållanden och med tämligen höga aluminiumhalter i bäckvatten. Endast Gammtratten uppvisade låga till måttliga halter oorganiskt aluminium, på nivåer som är tämligen ofarliga för gälandande organismer som fisk (Lydersen et al. 2002). Med avseende på spårmetallerna Cu, Zn och Cd var halterna i Aneboda under de nivåer där man anser att det föreligger risk för biologisk skada, medan halterna Pb var något högre (1,3 µg L⁻¹ jämfört med gränsvärdet 1,0 µg L⁻¹). Områdena hade låga halter av oorganiska näringsämnen med undantag av Aneboda med något förhöjda nitrathalter sannolikt orsakade av stormskador och barkborreangrepp. Gårdsjöns närhet till havet återspeglas tydligt i kemin medan de höga halterna organiskt material påverkar vattenkvaliteten i Aneboda. Kindlas kemi förefaller präglas av vattnets snabba och ytliga transportvägar i marken, vilket är en vanlig företeelse i svensk skogsmark. Gammtratten är det minst sura området med ett medel-pH runt 5,6 och frekvent förekommande vätekarbonatalkalinitet i bäckvattnet. Jonflödet i Gårdsjön styrs i hög grad av nedfallet av havssalter, medan jonflödet i Aneboda och Kindla påverkas till ungefär lika delar av havssalttillförsel, svaveldeposition och interna biologiska processer. I Gammtratten styrs jonflödena i huvudsak av interna biologiska processer.

Under 2019 var årsmedeltemperaturen 1,1–1,3°C högre än långtidsmedelvärdet (1961-1990) vid alla IM-områdena. Särskilt månaderna januari-april och december hade högre temperaturer medan maj och oktober var kallare än normalt. Den högre temperaturen har medfört att Gårdsjön har ungefär en månads längre vegetationsperiod idag jämfört med när mätningarna startade 1996. Nederbörden 2019 var ca 200 mm högre än normalt vid Aneboda och Gårdsjön, normal vid Kindla och ca 145 mm lägre än normalt vid Gammtratten. Fördelningen under året var likartad för de tre sydliga områdena med överskott vinter, vår och tidig höst. Även Gammtratten uppvisade överskott i början på året medan det föll mindre nederbörd än normalt under perioden juni-november.

4 Summary

The Swedish Environmental Protection Agency (SEPA) conducts Integrated Monitoring (IM) of the environmental status in forest ecosystems within the "Forest" part of Sweden's national environmental monitoring program. The monitoring is related to the Convention on "Long-Range Transboundary Air Pollution – LRTAP 1979" (UN/ECE). The Swedish Environmental Research Institute (IVL), the Geological Survey of Sweden (SGU) and the Department of Aquatic Sciences and Assessment (IVM) at the Swedish University of Agricultural Sciences (SLU) perform the investigations on behalf of the SEPA.

The monitoring program includes ecosystem studies at catchment level with determinations of hydrological and chemical budgets as well as effects on biota, primarily the vegetation and studies of soil processes. The aims are to collect relevant background data from reference areas that can be used to separate anthropogenic disturbance of the ecosystem by air pollution from natural variation. Model simulations for prognoses of future environmental status are an important part of the program. IM also furnish possibilities to test models. The IM sites are located in protected areas where there has been little forestry activity for many decades. Atmospheric deposition of pollutants and anthropogenically induced climate change are the only human disturbances within the IM sites.

This report documents the investigations carried out in 2019 on the four IM-sites Gårdsjön, Aneboda, Kindla and Gammtratten. The results are briefly described in the text, with some glimpses of the year's results. The entire set of data and results are included in appendixes at the end of the report.

The IM sites are base poor with permanently acidic conditions and high aluminium concentrations in soil water, groundwater and streams. Only Gammtratten exhibited inorganic aluminium concentrations at levels below those reported to be harmful to gill breathing organisms such as fish (Lydersen et al. 2002). At Aneboda, the trace metals Cu, Zn and Cd exhibited stream water concentrations below biologically harmful levels as well, while Pb slightly exceeds this limit (1,3 µg L⁻¹ compared with 1,0 µg L⁻¹). All sites except Aneboda, with somewhat elevated nitrate concentrations due to storm felling and bark beetle outbreaks, had low concentrations of inorganic nutrients. The coastal near location was reflected in the sea- salt influenced water chemistry at Gårdsjön, while the high concentrations of organic matter influenced the water quality at Aneboda. The water chemistry at Kindla seems to mirror shallow groundwater flow paths, which is common for Swedish forest land. Gammtratten is the least acidic area with an average pH of 5.6 and frequently occurring hydrogen carbonate in the stream water. At Gårdsjön, the ion fluxes were dominated by Na and Cl from the precipitation of sea spray, while the ion fluxes at Aneboda and Kindla were equally influenced by sea salt, sulphur deposition and internal biological processes. Organic matter played a significant role at Aneboda. At Gammtratten, internal biological processes determined the ion fluxes.

At all IM sites, the annual mean temperature 2019 was 1.1–1.3°C higher than the long-term average (1961-1990). Especially the moths January-April and December had higher temperatures, while May and October was colder than normal. At Gårdsjön, the higher temperature has resulted in a prolonged vegetation period of approximately one month. The precipitation during 2019 was ca 200 mm higher than long-term average at Aneboda and Gårdsjön, normal at Kindla and ca 145 mm lower than at Gammtratten. The seasonal precipitation patterns were similar at the three southern sites with higher precipitation in winter, spring and early autumn compared with the long-term averages. During the initial months of the year, Gårdsjön exhibited higher precipitation as well, while it was lower than normal during June-November.

5 Övervakningens bakgrund och syfte

Naturvårdsverket genomför Integrerad övervakning av miljötillståndet (IM) i fyra skogsekosystem inom programområdet "Skog". Övervakningen är relaterad till konventionen om effekter av långtransporterade luftföroreningar "Long-range transboundary air pollution – LRTAP 1979" (UN/ECE). Konventionsarbetet är organiserat i ett antal arbetsgrupper, varav den effektrelaterade omfattar sex övervakningsprogram (ICP) och Task Force on Health. IM utgör en av dessa och tjugo av Europas länder deltar. Sverige är ordförandeland medan Finland samordnar datainsamlingen och den årliga internationella rapporteringen (ICP IM Annual Report). Övervakningen omfattar ett antal obligatoriska delprogram, som alla länder skall genomföra. Sverige har dessutom valt att utföra några frivilliga delprogram, bl.a. skogsskador, algpåväxt på barr och förnanedbrytning.

Övervakningen är inriktad mot att studera miljöeffekter och att undersöka konsekvenserna för hela ekosystemet av depositionen av kväve, svavel och tungmetaller. Det övergripande syftet med övervakningen i Sverige är att:

- i små, väldefinierade avrinningsområden samordna mätningar och utvärderingar så att samhällets behov av <u>detaljerad</u> kunskap och prognoser <u>långsiktigt</u> kan tillgodoses m. a. p. försurning, eutrofiering och metallpåverkan i typiska, svenska skogsekosystem,
- tillhandahålla kunskap som nationellt och internationellt kan användas som underlag för att optimera miljöförbättrande åtgärder,
- tillhandahålla kunskap som kan användas för att underlätta tolkningen av resultat från andra miljöövervakningsprogram eller forskningsprojekt,
- generera underlag till utveckling av modeller för att beräkna t. ex. kritiska belastningsnivåer (Critical Loads/Levels) och framtida miljötillstånd,
- sprida kunskap till allmänheten om vilka processer som påverkar miljötillståndet i skogen.

Miljöövervakningen utförs på avrinningsområdesnivå med bestämningar av vattenbalans, kemiska ämnesbudgetar och effekter på biota, främst vegetation och studier av markprocesser. Mätningarna används för att särskilja effekter av mänsklig påverkan från naturlig variation. Prognostisering av utvecklingen med hjälp av matematiska modeller är ett viktigt inslag. Med undantag av Gårdsjön ligger områdena i skyddade naturmiljöer med lång kontinuitet (Natura 2000), utan skogsbruksåtgärder. Deposition av luftföroreningar och potentiell klimatpåverkan är de enda mänskliga störningarna i områdena.

För att kunna uppfylla målet med programmet måste övervakningen vara långsiktig. IM-övervakningen skiljer sig från övriga miljöövervakningsprogram genom att IM i detalj skall kunna förklara förändringar i miljön. IM-programmet bör på sikt också kunna inrymma övervakning av klimatförändringar, ozon samt persistenta organiska föreningar (POP) och deras effekter på biotan.

6 Val av områden och undersökningsmetodik

Målet är att på ekosystemnivå följa vattenomsättning och biogeokemiska processer för att förklara observerade effekter på biota vilket innebär kvantitativa bestämningar av inflöde, förråd och utflöde. För en utförlig redovisning av den metodik som används hänvisas till IM-manualen (EDC 1993, SYKE 1998).

De bestämningar som görs i avrinningsområdet omfattar klimatologiska och fysikaliska förhållanden (t.ex. berggrund, jordlager och vatten), kemiska förhållanden i mark, vatten och vegetation samt biologiska förhållanden (t.ex. flora och skogliga beståndsdata). De processer som studeras är deposition, vittring, omsättning och utbyte i marken av vatten och kemiska ämnen, avdunstning och gasutbyte, upptag i levande biomassa och utflöden i avrinnande vatten från området. De övergripande samband som nyttjas är vattenbalans och hydrokemiska budgetar;

 $P = E + R + \Delta S$

 $d\ddot{a}r$ $P = nederb\ddot{o}rd$,

E = avdunstning, R = avrinning och

 ΔS = ändring i vattenmagasin;

 $DEP + WEATH = UPTAKE + LEACH + \Delta POOL$

där DEP = deposition av ämnen,

WEATH = vittring,

UPTAKE = vegetationsupptag, LEACH = utlakning och ΔPOOL = ändring i förråd

Övervakningen av ekosystemets olika delar görs inom väldefinierade små avrinningsområden. Ett område bör vara så homogent som möjligt vad avser geologi och vegetation. Det bör vara i storleksordningen 10-100 ha och inneslutas av en likartad omgivning för att eliminera randeffekter. Området bör vara typiskt för regionen och vara lokaliserat över högsta kustlinjen för att undvika inflytande av marina sediment och relikt salt. Det bör ha lång kontinuitet utan skogliga åtgärder och vara fritt från störande aktiviteter, något som bäst tillgodoses i naturskyddade reservat. Området skall avvattnas av en bäck, vara fritt från sjöar och ha liten andel myrmark. Avstånd till förorenande aktiviteter och utsläpp bör vara > 50 km. Det bör också ligga så långt från havet att direkt inverkan därifrån är starkt reducerad.

I Sverige genomfördes en omfattande förändring av miljöövervakningen 1995, vilket innebar att fyra IM-områden utsågs. Dessa har successivt byggts upp. Aneboda (SE-14) etablerades 1996, Kindla (SE-15) etablerades 1997 medan Gammtratten (SE-16) etablerades under 1999. Området vid Gårdsjön (SE-04) har däremot lång kontinuitet med mätningar sedan 1970. Områdena är likartade och domineras av barrskog främst gran (Tabell 1), men lokaliserade till regioner med olika klimat och depositionsförhållanden (Figur 1).

Figur 1. De svenska IM-områdenas geografiska lokalisering. *Location of the Swedish IM sites.*

Tabell 1. Andelar i IM-områdena för olika växtsamhällen klassificerade enligt Nordiska Ministerrådet (1994). Data från inventeringar i mitten på 1990-talet av Sven Bråkenhielm, SLU. Proportions at the IM sites of different vegetation communities classified according to the Nordic Council of Ministers (1994). Data from inventories in the mid 1990's performed by Sven Bråkenhielm, SLU.

	Aneboda ¹	Gårdsjön ²		Gammtratten
	%	%	%	%
Granskog av blåbärsristyp	76,3	56,2	64,2	18,7
(Vaccinium myrtillus-spruce forest)				
Sumpgranskog	14,2	11,0	22,6	9,6
(wet spruce forest)				
Barrblandskog av blåbärsristyp	5,8	8,1	4,6	63,9
(Vacc. myrt. and mixed conifers)				
Öppet kärr	0	0	1,3	4,3
(open mire)				
Planterad tallungskog	0	15,4	0	0
(young pine stand)				
Öppen fastmark	0	4,5	2,0	1,8
(open well-drained soils)				
Övrigt	3,7	4,8	5,3	1,8
(other)				
Totalt	100	100	100	100
(Total)				

¹Stormfällning 2005 och barkborreangrepp 2007-2010 har dödat huvuddelen stora granar (Löfgren et al., 2014)

²Under 2012 utfördes en gallring i delar av området

6.1 Gårdsjön - SE-04

IM-området i Gårdsjön är ett litet avrinningsområde (F1) om knappt 0,04 km², dominerat av tunna (0-0,7 m) moräntäcken med hög frekvens sten och block. Området är ett av flera som undersöks med inriktning på terrester och hydrologisk forskning. Undersökningarna har pågått sedan 1970. Gårdsjön har ingått som PMK- och sedan IM-område sedan 1991. Området har varit skogklätt under hundratals år men avverkades i början av 1900-talet. Gallring utfördes 1968. Cirka 0,5 hektar i sydöstra delen av avrinningsområdet avverkades 1980 och återplanterades därefter med tall. Ett mindre område i söder (0,2 ha) ingår i en större kalyta som togs upp under 1990-talet. En traktorväg byggdes centralt genom området 1999. Under 2012 utfördes en gallring (70 m³sk togs ut) i de södra delarna av avrinningsområdet. Boskap har betat i området fram till 1950-talet.

Västkusten, Bohuslän, Västra Götalands län Läge:

N 58° 03'; E 12° 01' Lat./Long: N 6438620; E 324256 SWEREF99 TM: Göteborg 7B NO Kartblad:

Area: 3.7 ha

114-140 m.ö.h. Altitud:

Lutning (grader/procent) 12°/22%

Berggrund: Yngre gnejsiga granodioriter

Årsmedeltemperatur: + 6.7 °C Nederbörd: 1000 mm Avdunstning: 480 mm Avrinning: 520 mm

Avrinningsområde och instrumentering i Gårdsjön

Catchment area and instrumentation at Gårdsjön

Red line= catchment water divide Blue line=stream

Light blue squares with black dot=bulk deposition and meteorology (outside the map at Aneboda) Orange area or line with circles=litterfall, Purple area or line with diamonds=throughfall

Dark green area= soil sampling plot

Brown area=vegetation plot

Blue squares or line with squares=groundwater sampling Pink cross or line with cross=soil water sampling Green rings = circular plots for monitoring tree layer,

needle chemistry, algae and lichen cover on needles Yellow arrow= hydrology and water chemistry in catchment outlet

Contours at 2 m (Aneboda and Gårdsjön) or 5 m (Kindla and Gammtratten) intervals. (Maps prepared by Ola Langvall and Ivan Clegg, SLU)

6.2 Aneboda - SE-14

IM-området i Aneboda är ett 0,2 km² stort avrinningsområde mitt på Sydsvenska höglandet. Boskap har under flera århundraden nyttjat området, som sannolikt kalavverkades i mitten av 1800-talet med spontan skogsåterväxt därefter. Under tiden 1940-1955 gjordes tidvis gallringar. Undersökningar avseende mark, vegetation och vatten har pågått sedan 1982. Aneboda etablerades som IM-område 1995. Området utgörs av småbruten, ställvis mycket stor- och rikblockig morän med relativt stort inslag av fuktiga och blöta marktyper. Skogen domineras av gran med inblandning av främst tall, bok och björk. Det bör påpekas att boken föryngrar sig väl. En kraftig storm (Gudrun) som drabbade södra Sverige i januari 2005 orsakade partiell stormfällning inom IM-området med olika efterverkningar som följd. Området har därefter drabbats av kraftiga barkborreangrepp och omfattande dödlighet för äldre gran (Löfgren et al. 2014).

Sydsvenska höglandet, Småland, Kronobergs län Läge:

N 57° 05'; E 14° 32' Lat./Long: SWEREF99 TM: N 6330292; E 473043

Växjö 5E NV Kartblad:

Area: 18,9 ha

210-240 m.ö.h. Altitud:

7°/13% Lutning (grader/procent) Berggrund: Granit Årsmedeltemperatur: + 5.8 °C Nederbörd: 750 mm Avdunstning: 470 mm Avrinning: 280 mm

Avrinningsområde och instrumentering i Aneboda

Catchment area and instrumentation at Aneboda

Red line= catchment water divide Blue line=stream Light blue squares with black dot=bulk deposition and meteorology (outside the map at Aneboda) Orange area or line with circles=litterfall, Purple area or line with diamonds=throughfall Dark green area= soil sampling plot Brown area=vegetation plot Blue squares or line with squares=groundwater sampling Pink cross or line with cross=soil water sampling Green rings = circular plots for monitoring tree layer, needle chemistry, algae and lichen cover on needles Yellow arrow= hydrology and water chemistry in catchment outlet. Contours at 2 m (Aneboda and Gårdsjön) or 5 m (Kindla and Gammtratten) intervals. (Maps prepared by Ola

Langvall and Ivan Clegg, SLU)

6.3 Kindla - SE-15

IM-området i Kindla är ett 0,2 km² avrinningsområde i centrala Bergslagen. Regionen karakteriseras av småkullig terräng med större höjder. Barrskog med inslag av sumpskog dominerar. En liten öppen myr finns. Området är kuperat med branta sluttningar med höjdskillnader på uppåt 100 m inom avstånd av endast 200 m. Skogen domineras av ca 100 årig, ogallrad gran. Många kolbottnar och tjärdalar i området visar att skogen under tidigare sekler nyttjats till träkolframställning och alltså varit kalavverkat i omgångar. Kindla etablerades som IM-område 1996.

Läge: Bergslagen, Västmanland, Örebro län

Lat./Long: N 59° 45'; E 14° 54' SWEREF99 TM: N 6623934; E 495022 Kartblad: Filipstad 11E NV

Area: 20,4 ha

Altitud: 312-415 m.ö.h.

Lutning (grader/procent) 13°/23%

Berggrund: Filipstadsgraniter

Arsmedeltemperatur: + 4.2 °C Nederbörd: 900 mm Avdunstning: 450 mm Avrinning: 450 mm

Avrinningsområde och instrumentering i Kindla

Catchment area and instrumentation at Kindla

Red line= catchment water divide Blue line=stream

Light blue squares with black dot=bulk deposition and meteorology (outside the map at Aneboda)

Orange area or line with circles=litterfall,

Purple area or line with diamonds=throughfall

Dark green area= soil sampling plot

Brown area=vegetation plot Blue squares or line with

squares=groundwater sampling Pink cross or line with cross=soil water sampling

Green rings = circular plots for monitoring tree layer, needle chemistry, algae and lichen cover on needles

Yellow arrow= hydrology and water chemistry in catchment outlet.

Contours at 2 m (Aneboda and Gårdsjön) or 5 m (Kindla and Gammtratten) intervals. (Maps prepared by Ola Langvall and Ivan Clegg, SLU)

6.4 Gammtratten – SE 16

IM-området i Gammtratten är ett 0,4 km² stort avrinningsområde 10 mil från N Kvarkenkusten i höjd med Umeå. Det ligger inom den mellanboreala zonen och landskapet karakteriseras som Norrlands vågiga bergkulleterräng. Området är en mot sydost sluttande dalsänka mellan bergen Gammtratten (578 m) i öster och Siberget (530 m) i väster. I sluttningarnas nedre del och i bottnen av sänkan finns flera mindre, mestadels trädbevuxna myrar. Nedre delen av sänkan domineras helt av gran, medan tallen är riklig i sluttningarnas övre delar. Glasbjörk förekommer nästan överallt, asp och sälg här och var. Skogen är till mindre omfattning påverkad av skogsbruksåtgärder. Omkring 1900 fälldes ett antal större tallar, s.k. dimensionsavverkning, i de centrala delarna, särskilt sydväst om bäcken. Omkring 1990 låggallrades 6 hektar i avrinningsområdets nedre, sydvästra del, varav knappt 1 ha slutavverkades och planterades med gran. Låggallring innebär att mindre träd avverkas. På grund av brand, som dödat granen, finns tämligen rikligt med äldre tallar – den äldsta borrade från mitten av 1500-talet – medan granarna som regel är 100-150 år. Det finns rikligt med spår efter bränder från 1890-talet och bakåt i tiden.

Läge: Norra Ångermanland, Västernorrlands län

Lat./Long: N 63°51′, E 18°06′ SWEREF99 TM: N 7084548, E 653124

Kartblad: 20 I NV Björna

Area: 45 ha

Altitud: 410-545 m.ö.h.

Lutning (grader/procent) 12°/21%

Berggrund: Rätangranit eller liknande

Arsmedeltemperatur: +1,2°C Nederbörd: 750 mm Avdunstning: 370 mm Avrinning: 380 mm

Avrinningsområde och instrumentering i Gammtratten (se Kindla för kartsymboler)

Catchment area and instrumentation at Gammtratten (see Kindla for map symbols)

7 Väderförhållanden 2019

Under 2019 var årsmedeltemperaturen 1,1–1,3 °C högre än långtidsmedelvärdet (1961-1990) för alla IM-områden (Appendix 19). Jämfört med IM:s långtidsmedelvärden från 1996/97 (Gammtratten från 2000) hade Gårdsjön, och Aneboda 1,1 respektive 1,3 °C högre årsmedeltemperatur medan Kindla uppvisade ett litet överskott på 0,2°C och Gammtratten ett lika stort temperaturunderskott. Variationen mellan år är påtaglig de tio senaste åren med nära tre grader för Aneboda, Gårdsjön och Gammtratten (Figur 2). Dygnsvis temperatur, nederbörd och avrinning under 2019 och jämfört med långtidsmedelvärdet 1961-1990 vid IM-områdena visas i Figur 3.

Årsmedeltemperatur vid de fyra IM-områdena Aneboda, Kindla, Gammtratten och Gårdsjön under åren 1996 till 2019 med medelvärdet för perioden inlagd som streckad linje.

Annual mean temperatures at the four IM sites Aneboda, Kindla, Gammtratten and Gårdsjön during the period 1996-2019. Broken lines represent average temperatures for the investigation period.

Under 2019 uppvisade särskilt månaderna januari-april och december högre temperaturer än normalt vid alla stationer. Maj och oktober var istället kallare än normalt (Appendix 19). Vid Kindla och Gammtratten var medeltemperaturen trots det på minussidan under januari-mars, medan Aneboda och Gårdsjön uppvisade så låg medeltemperatur endast i januari. Liknande förhållanden gällde 2018 avseende vintertemperaturerna vid de två nordliga områdena, medan februari-mars 2019 var betydligt varmare vid de två sydliga stationerna jämfört med 2018.

Nederbörden 2019 var ca 200 mm högre än normalt vid Aneboda och Gårdsjön, normal vid Kindla och ca 145 mm lägre än normalt vid Gammtratten (Appendix 19). Det föll således betydligt mer nederbörd 2019 än under torråret 2018. Fördelningen under året var likartad för de tre sydliga områdena med överskott i februari-mars, maj och augusti-oktober. Även Gammtratten uppvisade överskott dessa vinter och vårmånader medan det föll mindre nederbörd än normalt under perioden juni-november. Med undantag för Aneboda som uppvisade normala mängder, hade IM-områdena betydligt mindre nederbörd än normalt under sommarmånaderna juni och juli.

Figur 3. Dygnsvärden (mm/dag) på nederbörd (turkos linje), avrinning (blå linje) och temperatur (röd linje) under 2019. Streckad röd linje är medeltemperaturen (1961-1990) från referensstationerna Alvhem (Gårdsjön), Växjö (Aneboda), Knon (Kindla) och Fredrika (Gammtratten).

Daily values (mm/day) on precipitation (turquoise line), discharge (blue line) and temperature (red line) during 2019. Broken red line shows long-term average (1961-1990) from the reference stations Alvhem (Gårdsjön), Växjö (Aneboda), Knon (Kindla) and Fredrika (Gammtratten).

Grundvattennivåerna i Aneboda var relativt normala med låga nivåer under januari-februari, en vårtopp i mars och succesivt avsänkta nivåer till sensommaren. Nederbörden i juli och augusti höjde grundvattennivån vid Kuren något fram till september-oktober då ytterligare regn snabbt höjde grundvattennivåerna till mindre än en meter under markytan. Ytterligare nederbörd höjde grundvattennivån i december då den nådde den högsta nivån under året på ca 0.8 m under markytan. Mätstationerna "Kuren" ligger nära utloppet medan "Skogen" är lokaliserad till den nedre delen på en sluttning i den övre delen av avrinningsområdet. Vid Skogen var grundvattennivån i jämnhöjd med marken i början på april för att därefter sjunka till under en meter i juli och fram till slutet av september då en snabb och kraftig höjning startade, som kulminerade i december då grundvattennivån återigen låg strax under markytan. De båda mätstationernas säsongsdynamik är tämligen likartade men på olika nivåer i marken. Kuren reagerade något snabbare efter sommarens låga nivåer medan det tog längre tid, d.v.s. mer nederbörd krävdes, vid Skogen för att grundvattennivån ska återhämta sig (Figur 4).

Vid mätstationen i Kindla låg grundvattennivåerna ofta tämligen nära markytan, men med stor variation under året. I början av året sjönk grundvattennivån succesivt fram till mitten av februari men redan då startade snösmältning och nivån steg från 0.5 m under markytan till ytliga nivåer på 0.1-0.2 m (Figur 4). Denna nivå låg stabilt fram till början av april då en succesiv recession startade fram till mitten på juli då sommarregnen återigen höjde grundvattennivån till nära 0.2 m under markytan. Därefter sänktes grundvattennivån till årets lägsta på 0.9 m under markytan i början av augusti då nya regn på nytt höjde grundvattenytan så att den låg ca 0.2 m under markytan i början av september, vilket var en nivå som hölls resten av året. I jämförelse med 2018 var grundvattennivåerna 2019 generellt avsevärt högre både över tid och i absoluta tal. Ytliga nivåer förekom relativt lång tid av året och 2018 års största djup på 1.5 m under markytan nåddes inte 2019 utan stannade på en kortvarig period med nivåer ned till drygt 0.8 m (Figur 4). Det är tydligt att grundvattennivån i Kindla reagerar snabbt även vid måttliga nederbördsmängder till skillnad från förhållanden i bl.a. Aneboda.

Grundvattennivån i Gammtratten följer den traditionella bilden för nordliga områden med allt djupare nivåer så länge vintern håller i sig och under 2019 var det i stort sett minusgrader till mitten av april då snösmältningen startade. Bilden var likartad 2018. Vatteninnehållet i snömagasinet var ca 210 mm i mitten av april. Snösmältning startade och en karaktäristisk nivåhöjning pågick till slutet av maj till ca 1.3 m under markytan varefter recession följde och relativt djupa nivåer, ca 2.8 m, nåddes i slutet av september. I oktober höjdes nivån något (ca 2.5 m), vilket var den nivån som bibehölls året ut. Med början av februari till andra halvan av april låg grundvattennivån under tryckgivaren som registrerar grundvattennivån. Vilket innebär att data uteblir (Figur 4).

Dagliga grundvattennivåer (m under markytan) vid Aneboda, Kindla och Gammtratten under 2019. Mätstationerna "Kuren" och "Skogen" i Aneboda är lokaliserade nära utloppet respektive i nedre delen på en sluttning i övre delen av avrinningsområdet. I Kindla är mätstationen lokaliserad nära utloppet medan den i Gammtratten är placerad centralt i området. Grundvattenytan i Aneboda och Gammtratten har ibland legat under trycksensorn och då saknas data.

Daily groundwater levels (m below soil surface) at Aneboda, Kindla and Gammtratten during 2019. The measuring stations "Kuren" and "Skogen" are located close to the stream outlet and close to bottom of a hill slope in the upper part of the catchment, respectively. At Kindla, the measuring station is located close to the stream outlet while it is centrally located in the catchment at Gammtratten. During periods, the groundwater levels at Aneboda and Gammtratten were below the pressure sensor resulting in no data.

Vattenbalans 2019

Vattenbalanserna 2019 (Tabell 2) visade delvis normala förhållanden med högre avdunstning i söder (389-513 mm, beräknad som P-R på årsbas och mätt vid slutet på året) jämfört med det nordliga området Gammtratten (287 mm). Båda de sydliga områdena uppvisade dock en relativt låg evapotranspiration på ca 400 mm, vilket är ca 100 mm lägre än förväntat (Tabell 3). Den låga avdunstningen i Aneboda och Gårdsjön kan vara en effekt av att volymen levande skog minskat betydligt p.g.a. stormar och barkborreangrepp (Löfgren et al. 2014, Appendix 18) samt i Gårdsjöns fall även ett begränsat uttag av biomassa i samband med en gallring (ca 70 m³sk). Nederbörden var hög i Gårdsjön (1240 mm), vilket i kombination med den låga avdunstningen gav en hög avrinning (851 mm). Även i Kindla var nederbörden över 1000 mm, med den gav upphov till betydligt lägre avrinning (559 mm) än i Gårdsjön, vilket indikerar hög avdunstning (513 mm). Både avrinningen och avdunstningen vid Kindla var således högre än förväntat på långtidsbasis men en fördelning på ca 50/50 är trots allt rimligt och de höga värdena får tillskrivas den höga nederbörden (Tabell 2). Fördelningen mellan avdunstning och avrinning var ungefär den samma vid Gammtratten. Andelen nederbörd som gav upphov till avdustning och avrinning var 47% respektive 53%, vilket är rimligt. För Aneboda var avrinningen 322 mm, vilket är tämligen normalt enligt långtidsmedelvärdet i den modellerade vattenbalansen (Tabell 3).

Årsregimerna i avrinning för områdena Kindla och Gammtratten var någorlunda normala med vårflödestopp och lägre avrinning under sommarmånaderna, men bara Kindla uppvisade den vanligtvis ökande avrinningen under hösten. Denna skillnad förklaras av att det föll 93 mm mer nederbörd än normalt under september till december i Kindla medan det istället uppträdde ett underskott på 158 mm under perioden juni-november i Gammtratten (Appendix 19). Intressant att notera är att i båda områdena uppträdde vårflödestoppen en månad tidigare än normalt (Figur 5). Både Aneboda och Gårdsjön uppvisade vattenföringstoppar i februarimars orsakade av högre nederbörd än normalt dessa månader (169 mm respektive 83 mm). Även årets avslutande 3-4 månader uppvisade högre avrinning än normalt vid de tre sydliga områdena. Orsaken var förhållandevis hög nederbörd under perioden augusti-oktober samt december (Appendix 19). Avrinningsmönstret vid Aneboda, Kindla och Gammtratten överensstämmer relativt väl med mönstren för grundvattennivåerna (Figur 4 & 5).

Tabell 2. Sammanfattning av 2019 års vattenbalanser i IM-områdena. Kronavdunstning = Nederbörd – krondropp.

Compilation of the 2017 water balances for the four Swedish IM sites. Nederbörd, P – Precipitation, Krondropp, TF – Throughfall, Kronavdunstning – Interception, Avrinning, R – Water runoff

	Gårdsjön SE04		Aneboo	Aneboda SE14		Kindla SE15		Gammtratten SE16	
	mm	% av nbd	mm	% av nbd	mm	% av nbd	mm	% av nbd	
Nederbörd ¹ , öppet fält, P	1240	100	731	100	1072	100	618	100	
Krondropp ¹ , TF	991	80	715	98	1052	98	581	94	
Kronavdunstning, P-TF	248	20	16	2	20	2	37	6	
Avrinning, R	851	69	322	44	559	52	330	53	
Nederbörd – avrinning, P-R	389	31	409	56	513	48	287	47	

Figur 5. Avrinningsmönstren vid IM områdena 2019 jämfört med månadsmedelvärden för perioden 1996/1997-2019. Obs! Olika skalor på y-axlarna.

Runoff patterns 2019 at the IM sites compared with the long-term monthly averages for the period 1996/97-2019. Obs! Different scales at the Y-axes

8 Modellerad vattenbalans 1997-2019

För att få en uppfattning av osäkerheten i beräkningarna har vattenbalansen även modellerats på dygnsbasis med hjälp av en simuleringsmodell (Q-modellen, Kvarnäs 2000, sedan 2018 används FyrisQ-modellen). I Figur 6 visas uppmätt och FyrisQ -simulerad daglig avrinning (mm d⁻¹) under åren 2017-2019. Dygnsdata på nederbörd och temperatur driver modellen. Osäkerheten i nederbördsdata är vid modellberäkningarna helt avgörande för avdunstningen eftersom modellen kalibreras mot avrinningen och avdunstningen blir något av en "restterm". Simulerade årsvisa vattenbalanser under perioden 1997-2018 har gett relativt god överensstämmelse mellan beräknad och observerad avrinning sett på årsbasis (Tabell 2&3). Orsaken till att resultaten avviker mellan uppmätta och simulerade värden är för Gammtratten bl.a. att modellerna drivs med nederbördsdata från SMHI-stationen Fredrika, som omräknats och försökt anpassas för IM-stationen. Motsvarande bekymmer finns även för Kindla sedan den meteorologiska stationen i Nyberget lades ned och nu används nederbördsdata från Kloten, som ligger 40 km från Kindlaområdet. Även för Aneboda är resultaten påverkade av att skattningarna av nederbörd delvis är baserade på data från SMHI:s mätningarna i Berg, som ligger relativt nära IM-området.

Tabell 3. Modellberäknade vattenbalanser (mm) för IM-områdena 1997-2018. Vattenbalansen är osäker för Gammtratten, vilket bl.a. framgår av den extremt höga avrinningen år 2000 (Löfgren 2002). Modelled water balances (mm) for the IM sites 1997-2018.

Station	År	Nederbörd ¹⁾	Avdunstning ²⁾	Avrinning ³⁾	Markvatten ⁴⁾	Snö⁵)
Gårdsjön	1997	1015	513	483	16	-2
Gårdsjön	1998	1222	526	704	1	-3
Gårdsjön	1999	1385	548	833	4	2
Gårdsjön	2000	1319	570	765	-12	-1
Gårdsjön	2001	954	548	408	-2	0
Gårdsjön	2002	1191	530	619	-1	32
Gårdsjön	2003	986	486	514	-37	27
Gårdsjön	2004	1132	513	613	6	5
Gårdsjön	2005	1039	578	492	-20	-3
Gårdsjön	2006	1075	392	672	-4	0
Gårdsjön	2007	1330	598	706	30	8
Gårdsjön	2008	1345	540	841	-29	-7
Gårdsjön	2009	1141	579	513	-8	57
Gårdsjön	2010	990	511	497	5	-24
Gårdsjön	2011	1248	618	652	16	-34
Gårdsjön	2011	1232	636	693	27	15
Gårdsjön	2012	900	376	577	-25	-12
	2013	1283	436	866	-23 -9	2
Gårdsjön		1365	520	855	-9 -9	2
Gårdsjön	2015	949	408		-9 7	-4
Gårdsjön	2016			558		
Gårdsjön	2017	1145	482	663	9	11
Gårdsjön	2018	817	384	467	-25	-8
Gårdsjön	2019 Medel	1145 1139	454 511	707 639	0	0
Aneboda	1997	675	408	261	20	-22
Aneboda	1998	873	460	401	11	3
Aneboda	1999	821	461	347	-2	16
Aneboda	2000	927	533	383	18	-5
Aneboda	2001	748	471	322	-62	13
Aneboda	2002	859	461	421	6	-30
Aneboda	2003	834	507	308	20	0
Aneboda	2004	1013	523	489	5	-2
Aneboda	2005	734	448	309	-28	6
Aneboda	2006	811	477	310	-24	-9
Aneboda	2007	692	421	278	-6	1
Aneboda	2008	902	503	390	9	0
Aneboda	2009	680	455	246	-25	5
Aneboda	2010	872	455	359	9	50
Aneboda	2011	700	480	259	17	-56
Aneboda	2012	925	491	412	-22	27
Aneboda	2013	560	353	240	-2	-19
Aneboda	2014	710	428	300	- 6	4
Aneboda	2015	720	409	319	1	2
Aneboda	2016	584	305	301	-i	-5
Aneboda	2017	930	443	411	71	18
Aneboda	2018	479	265	314	-81	-17
Aneboda	2019	974	528	425	42	-3
		U. 1	U_U			_

¹⁾ Beräknad på korrigerad dygnsnederbörd i Gårdsjön, Aneboda, Nyberget/Kloten respektive Fredrika

²⁾ Avdunstning enligt modellen
3) Avrinning enligt modellen

⁴⁾ Markvattenhalt vid slutet av året minus markvattenhalt vid början av respektive år

⁵⁾ Snöns vattenekvivalent vid slutet av året minus vattenekvivalenten vid början av respektive år

Tabell 3. Fortsättning Continued

Station	År	Nederbörd ¹⁾	Avdunstning ²⁾	Avrinning ³⁾	Markvatten ⁴⁾	Snö ⁵⁾
Kindla	1997	850	409	350	2	88
Kindla	1998	857	414	508	27	-87
Kindla	1999	951	463	430	-10	70
Kindla	2000	1219	501	767	-9	-46
Kindla	2001	788	412	407	-3	-34
Kindla	2002	840	409	392	-1	39
Kindla	2003	827	453	400	35	-58
Kindla	2004	890	458	446	-14	1
Kindla	2005	907	463	399	-14	55
Kindla	2006	1046	486	618	3	-67
Kindla	2007	1018	499	510	11	0
Kindla	2008	1118	483	623	-6	9
Kindla	2009	773	365	375	-8	41
Kindla	2010	994	411	528	-1	53
Kindla	2011	677	474	305	15	-116
Kindla	2011	1008	466	468	-8	49
Kindla	2012	681	314	416	-8 18	-67
	2013		349	621		-67 22
Kindla		935			-38 -1	
Kindla	2015	1028	456 247	613		-20
Kindla	2016	835	317	515 475	11	2
Kindla	2017	957	441	475	2	51
Kindla	2018	674	313	407	-11	-29
Kindla	2019 Medel	906 903	399 424	496 481	18	3
Gammtratten	1997	706	402	392	-4	-84
Gammtratten	1998	994	453	586	14	-67
Gammtratten	1999	979	456	520	-9	13
Gammtratten	2000	1397	515	906	18	-46
Gammtratten	2001	1135	454	593	-22	109
Gammtratten	2002	720	413	367	1	-61
Gammtratten	2003	990	474	518	4	-7
Gammtratten	2004	954	480	477	0	-3
Gammtratten	2005	1009	532	500	0	-26
Gammtratten	2006	1107	436	598	40	27
Gammtratten	2007	855	464	419	-27	-6
Gammtratten	2008	830	396	398	-16	50
Gammtratten	2009	1059	469	653	11	-73
Gammtratten	2010	890	474	434	-7	-11
Gammtratten	2011	941	492	402	1	46
Gammtratten	2012	1219	476	720	2	14
Gammtratten	2013	579	272	386	11	-82
Gammtratten	2014	599	269	346	3	-3
Gammtratten	2015	651	256	404	-11	17
Gammtratten	2016	577	308	279	2	-3
Gammtratten	2017	589	198	341	-5	64
Gammtratten	2018	416	167	342	-3 -1	-79
	2019	590	165	360	5	76
Gammtratten						

¹⁾ Beräknad på korrigerad dygnsnederbörd i Gårdsjön, Aneboda, Nyberget/Kloten respektive Fredrika
2) Avdunstning enligt modellen
3) Avrinning enligt modellen
4) Markvattenhalt vid slutet av året minus markvattenhalt vid början av respektive år
5) Snöns vattenekvivalent vid slutet av året minus vattenekvivalenten vid början av respektive år

Figur 6. Modellerad (röd linje) och observerad (blå linje) avrinning från IM-områdena Gårdsjön, Aneboda, Kindla och Gammtratten 2017-2019.

Simulated (red line) and observed (blue line) discharge at the IM sites Gårdsjön, Aneboda, Kindla and Gammtratten in 2017-2019.

9 Kemiska förhållanden 2019

Följande kortfattade karaktärisering av det kemiska tillståndet i IM-områdena under 2019 baseras på de medelhalter som finns redovisade i tabellbilagan till denna rapport. För närmare beskrivning av antalet observationer, statistisk spridning etc. hänvisas till dessa tabeller.

Svaveldioxidhalterna i luft vid IM-områdena låg under 2019 upp till 0,15 μg SO₂ m⁻³ lägre än de medelnivåer som registrerats sedan mätningarna påbörjades 1996. I Gårdsjön och Aneboda motsvarar medelnivån ca 0,30 μg SO₂ m⁻³ och i Kindla och Gammtratten ca 0,22 μg SO₂ m⁻³.

Kvävedioxidhalterna i luft låg $0.33~\mu g~NO_2~m^{-3}$ under långtidsmedelvärdet vid Gårdsjön, medan motsvarande underskott var lägre ($\le 0.17~\mu g~NO_2~m^{-3}$) vid de övriga tre områdena.

Depositionen på öppen mark hade låg jonstyrka i samtliga fyra IM-områden, motsvarande en konduktivitet på 0,7-1,7 mS m⁻¹. Gårdsjöns närhet till havet och en betydande torrdeposition av havssalter framträder dock tydligt i krondroppets konduktivitet på ca 4,0 mS m⁻¹, att jämföra med ca 1,9 mS m⁻¹ i Aneboda och 1,0 mS m⁻¹ i Kindla. I Gammtratten var konduktiviteten endast 0,8 mS m⁻¹ i krondroppet, vilket var marginellt högre än på öppet fält, indikerande liten påverkan av havssalt. Markvatten, grundvatten och bäckvatten hade högre jonstyrka än krondroppet i samtliga områden, vilket indikerar betydande evapotranspiration och/eller påtaglig påverkan från markkemiska processer och tillförsel av joner.

Kiselhalterna i mark- och grundvatten låg i intervallet 1,8-10,2 mg L⁻¹ i IM-områdena medan halterna i bäckvattnet varierade mellan 3,6-5,1 mg Si L⁻¹.

Depositionen på öppen mark och i krondropp uppvisade inga tydliga geografiska gradienter i pH. På öppet fält var medel-pH=5,1±0,1 vid samtliga lokaler. Även medel-pH i krondroppet var tämligen konstant vid stationerna (pH=5,2-5,4). Detta är, med undantag av 2014, en likartad bild som uppvisats de senaste 10 åren då pH i nederbörd och krondropp varit ungefär lika i områdena. Dessförinnan, då svaveldepositionen var hög, uppvisades det typiska mönstret ett lägre pH i sydväst, särskilt i krondropp. I mark- och grundvattnet i inströmningsområdena i Gårdsjön, Aneboda och Kindla var pH ≤0,6 enheter lägre än i krondroppet och särskilt E-horisonten hade lägre pH. I Gammtratten var det vanligtvis något högre pH i marken med undantag av markvattnet i E-horisonten där lägst medel-pH uppmättes (pH=3,8). I utströmningsområdena var pH i grundvattnet högre än i krondroppet i Kindla (pH_{grv}=5.9) och Gammtratten (pHgrv=5,3) något lägre i Aneboda (pHgrv =4,8) och betydligt surare i Gårdsjön (pH_{grv}=4,4). Mark- och grundvattnets buffertkapacitet, ANC, växlade mellan positiva och negativa värden i avrinningsområdena. Särskilt Aneboda uppvisade kraftigt negativt ANC i grundvattnet i inströmningsområdet (-0,08 mEq L⁻¹), sannolikt kopplat till nitrifikation i sluttningen. Grundvattnet i utströmningsområdet hade dock betydande buffertkapacitet (ANC=0,07 mEq L⁻¹). I Kindla hade grundvattnet i utströmningsområdena betydligt högre buffertkapacitet (ANC=0,21 mEq L⁻¹) medan Gårdsjön (ANC= 0,03 mEq L⁻¹) och Gammtratten (ANC=0,05 mEq L-1) uppvisade något lägre värden än Aneboda. Vätekarbonatalkalinitet förekom i utströmningsområdets grundvatten i Kindla och Gammtratten med 0,22 respektive 0,04 mEq L⁻¹ medan det saknades i Aneboda. Det senare indikerar tillförsel av surt grundvatten. Uppgifter på alkalinitet saknas för grundvattnet i utströmningsområdet i Gårdsjön.

Även bäckvattnet var påtagligt surt (pH \leq 4,7) i samtliga områden förutom Gammtratten (pH \approx 5,6) och samtliga områden uppvisade ett positivt ANC (\geq 0,035 mEq L $^{-1}$) även om halterna i Kindla var nära noll (0,001 mEq L $^{-1}$) Ytvattnet i Gammtratten var det mest välbuffrade med frekvent förekommande vätekarbonatalkalinitet, ett pH \approx 5,6 och ett ANC \approx 0,1 mEq L $^{-1}$. Surheten har minskat i Aneboda jämfört med tidigare år sannolikt som en konsekvens av att nitrifikationen minskat i inströmningsområdena. Kindla och Gårdsjön var i många avseenden påtagligt surare än de båda andra områdena. I båda områdena är det sannolikt oxidation av organiskt bundet svavel som tidigare i huvudsak deponerats via atmosfäriskt nedfall och bundits in i biota (se nedan). I Gårdsjön har även nedfallet av havssalt betydelse för surhetstillståndet.

Fördelningen mellan sulfat, klorid och nitrat var tämligen jämn i nederbörden på öppet fält i Aneboda, Kindla och Gammtratten, medan andelen klorid var betydligt högre i Gårdsjön. Påverkan av havssalter i sydvästra Sverige framträdde ännu tydligare i krondroppet där klorid var den dominerande anjonen i Gårdsjön, men även Aneboda påverkas påtagligt av havssalt. I samtliga områden förekom betydande inslag av organiska anjoner i krondroppet. I Gårdsjön

var klorid den dominerande anjonen i det vatten som passerat marken, men sulfathalterna tyder på att svavel tillfördes från marken. I Aneboda och Kindla var klorid och sulfat på ungefär samma nivå i marken. I Aneboda förekom inte längre förhöjda nitrathalter i markvattnet i inströmningsområdet. Det har tidigare år registrerats sannolikt som en effekt av nettomineralisering och nitrifikation av den stora mängden barr och död ved som ansamlats efter stormen Gudrun och de efterföljande barkborreangreppen. I Gammtratten var sulfathalten i marken och bäcken betydligt högre än i krondroppet, även det en indikation på att marken utgjorde en svavelkälla. Organiska anjoner och vätekarbonat utgjorde cirka 2/3 av anjonflödet i bäcken i Gammtratten, medan dessa joner vanligtvis utgjorde ca en tredjedel i Kindla respektive en sjättedel i Aneboda och Gårdsjön.

I depositionen på öppet fält dominerades baskatjonerna av natrium i samtliga områden. Natrium var för övrigt den mest framträdande baskatjonen i det vatten som passerat marken i samtliga områden förutom Gammtratten där kalcium låg på ungefär samma nivå. Till skillnad från 2005 då kloridhalten översteg natriumhalten och 2007 då det omvända gällde, fanns ingen likartad trend för IM-områdena vad avser förhållandet mellan klorid- och natriumhalterna. I Gårdsjön och Aneboda var klorid- och natriumhalterna ungefär lika, medan natriumhalterna var något högre än kloridhalterna i Kindla och Gammtratten. Ett högre utflöde av natrium än klorid indikerar att natrium via vittring och/eller jonbyte frigörs från det fasta materialet. Magnesium var den näst mest dominerande baskatjonen i Gårdsjön, medan kalcium var högre eller på samma nivå som magnesium i Aneboda, Kindla och Gammtratten. Vätejoner utgjorde ett betydande inslag (≥0,01 mEq L-¹) i samtliga medier förutom i markvattnet i utströmningsområdet i Kindla. Nivåerna låg normalt i intervallet 0,01-0,04 mEq L-¹, men varierade beroende på vattnets ursprung. I Gammtratten var vätejonhalterna låga i samtliga medier (≤0,005 mEq L-¹) förutom i E-horisontens markvatten (0,15 mEq L-¹).

Halterna av totalaluminium var tämligen höga (0,5-1,6 mg L⁻¹) i markvattnet i övriga områden, men endast i E-horisonten i Gammtratten. Särskilt Aneboda och Gårdsjön uppvisade höga halter i grundvattnet i inströmningsområdet med 1,1 respektive 0,7 mg L⁻¹ i E-horisonten. Halterna i bäckvattnet var lägst i Gammtratten (0,24 mg L⁻¹) med högst pH (5,6) och ca 0,5-0,65 mg L⁻¹ i de andra områdena med lägre pH (4,5-4,7). Det oorganiska aluminiumet (Ali) utgjorde 15%, 41%, 58% och 23% av totalaluminiumet i bäckvattnet i Gårdsjön, Aneboda, Kindla respektive Gammtratten. Detta motsvarar ett haltintervall på 0,05-0,30 mg Ali L⁻¹, vilket innebär att Ali-halterna enligt Naturvårdsverkets förslag till bedömningsgrunder klassas som höga till måttligt höga i Gårdsjön, som extremt höga i Aneboda och Kindla och som till måttliga i Gammtratten.

Halten löst organiskt material (DOC) var betydligt högre i bäckvattnet i Aneboda och Gårdsjön (28 respektive 17 mg L⁻¹), än i Kindla och Gammtratten (10 mg L⁻¹). Förutsättningarna för att komplexbinda metaller var följaktligen avsevärt bättre i Aneboda och Gårdsjön än i de övriga områdena. DOC-gradienten återspeglades i halterna organiskt bundet kväve. I samtliga områden låg medelhalterna i intervallet 206-668 μg org-N L⁻¹. Det organiskt bundna kvävet dominerade totalkvävet i samtliga bäckar. De oorganiska kväve- och fosforfraktionerna förekom i tämligen låga halter (≤44 μg oorg-N L⁻¹, ≤1,5 μg PO₄-P L⁻¹) förutom i Aneboda där nitrathalterna var betydligt högre (80 μg NO₃-N L⁻¹). De höga nitrathalterna är sannolikt en effekt av att en stor andel av skogen stormfällts och att granarna drabbats av barkborre, vilket lett till förutsättningar till mineralisering och nettonitrifikation i marken kopplat till det döda växtmaterial, främst barr och finrötter, som bryts ned. Nitratalterna har sjunkit under de senaste åren.

Inget av områdena hade särskilt höga järn- eller manganhalter i bäckvattnet (<1,2 mg Fe L⁻¹, ≤0,07 mg Mn L⁻¹). I Aneboda visade SITES analyser att halterna av koppar, zink och kadmium (Cu, Zn och Cd) i bäckvattnet var betydligt lägre än de lägsta halterna där negativa

biologiska effekter kan förväntas (Cu >3 μg L⁻¹, Pb >1 μg L⁻¹, Zn >20 μg L⁻¹ och Cd >0,1 μg L⁻¹, NV 1999). För bly (Pb) uppmättes något högre halter (1,3,μg L⁻¹) än gränsvärdet. Även totalkvicksilver och metylkvicksilver analyserades i Aneboda av SITES. Nederbörden på öppet fält hade en Hg-halt på 3,9 ng L⁻¹, medan den var något högre i krondroppet (6,3 ng Hg L⁻¹). Metylkvicksilverhalterna var betydligt lägre eller ca 0,2 ng MeHg L⁻¹. I markvattnet varierade halterna mellan 3,5-13,9 ng Hg L⁻¹ respektive 0,08 ng MeHg L⁻¹ med de högre halterna i inströmningsområdet. Motsvarande intervall för grundvattnet var 1-6,3 ng Hg L⁻¹ respektive <0,06-0,6 ng MeHg L⁻¹. I bäcken var medelhalterna för total-Hg 10,5 ng Hg L⁻¹ och för metyl-Hg 1,5 ng L⁻¹. Det är uppenbart att det sker en metylering av Hg i avrinningsområdet, vilket höjer MeHg-halterna i grundvatten och bäckvatten, medan markvattnet uppvisar lägre MeHg-halter än i depositionen. Transportberäkningarna för Hg och MeHg i Aneboda visar att drygt hälften av luftnedfallet av Hg fastlades i marken medan avrinningen av MeHg via bäckvattnet var dubbelt så stor som tillförseln via krondropp.

Avslutningsvis kan man sammanfatta områdena som jonsvaga, med permanent sura förhållanden och med tämligen höga aluminiumhalter. Endast Gammtratten uppvisade låga halter oorganiskt aluminium, på nivåer som är tämligen ofarliga för gälandande organismer som fisk (Lydersen et al. 2002). Med undantag av bly uppvisade övriga spårmetaller halter i bäckvattnet i Aneboda under de nivåer där man anser att det föreligger risk för biologisk skada. Områdena uppvisade låga halter av oorganiska näringsämnen med undantag för Aneboda där nitrathalterna fortfarande är något förhöjda p.g.a stormfällningarna och barkborreangreppen. Gårdsjöns närhet till havet återspeglas tydligt i kemin medan de höga halterna organiskt material påverkar vattenkvaliteten i Aneboda. Kindlaområdets kemi förefaller präglas av vattnets snabba och ytliga transportvägar i marken, vilket är en vanlig företeelse i svensk skogsmark. Gammtratten är det minst sura området med ett medel-pH runt 5,6 och frekvent förekommande vätekarbonatalkalinitet i bäckvattnet.

10 Vegetationsperiodens längd

(Ulf Grandin, Institutionen för vatten och miljö, SLU)

Vegetationsperiodens längd beräknades enligt "StdMeteo"-metoden (ETCCDI, 2009). Lite förenklat är vegetationsperioden enligt denna metod antalet dagar under ett kalenderår med en medeltemperatur över +4° C, och således ett meteorologiskt mått. Det är dock fler faktorer än temperatur som styr tillväxt i vegetationen, t.ex. ljus och dagslängd. Resultaten av beräkningarna visar en signifikant förändring (Regional Kendall test, p < 0,05) i Gårdsjön där vi ser ungefär en månads längre vegetationsperiod idag jämfört med när mätningarna startade 1996 (Figur 7). Denna förändring beror framför allt på tidigare start men även senare slut på vegetationsperioden. Så, även om den meteorologiska vegetationsperioden blivit längre är det inte desamma som att den biologiska vegetationsperioden förlängts i samma utsträckning

Figur 7. Vegetationsperiodens start, slut och längd vid IM-områdena från 1996 till 2019. Icke-signifikanta tender mellan år är illustrerade endast med en "smoother" (röd linje), och signifikanta förändringar (Regional Kendall test, p < 0,05) även med en regressionslinje (blå).

Start, end and length of the vegetation period at the IM sites from 1996 to 2019. Non-significant trends among years are indicated only by a "smoother" (red line), and significant changes (Regional Kendall test, p < 0.05) also by a blue regression line.

11 Referenser

- EDC, 1993. *Manual for integrated monitoring. Program phase 1993-1996.* National Board of Waters and the Environment, Helsingfors.
- ETCCDI, 2009. Climate Change Indices: Definitions of the 27 core indices. http://etccdi.pacificclimate.org/list 27 indices.shtml
- Kvarnäs, H. 2000. The Q model, a simple conceptual model for runoff simulations in catchment areas. Dep. of Environ. Assess., SLU, Report 2000:15.
- Lydersen, E., S. Löfgren & T. Arnessen. 2002. Chemical and biological effects of reacidification of limed water bodies a state of the art review on metals. *Crit. Rev. Environ. Sci. Technol.* 32(2-3):73-295.
- Löfgren, S. (Ed.). 1999. Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 1997. Naturvårdsverket rapport 5031. English summary.
- Löfgren, S. (Ed.). 2000. *Miljötillståndet i skogsmark integrerad övervakning*. Naturvårdsverket rapport 5071. English summary.
- Löfgren, S. (Ed.). 2002. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2000*. Inst. f. miljöanalys, SLU rapport 2002:17. English summary.
- Löfgren, S., S. Stendera, & U. Grandin. 2014. Long-term effects on nitrogen and benthic fauna of extreme climatic events examples from two headwater streams. *Ambio* 43:58–76. http://dx.doi.org/10.1007/s13280-014-0562-3
- SYKE. 1998. Manual for Integrated Monitoring. Finnish Environment Institute, ICP IM Programme Centre, Helsinki, Finland. https://www.syke.fi/en-us/Research_Development/Nature/Monitoring/Integrated_Monitoring/Manual_for_Integrated_Monitoring (Accessed 2020-12-21).

12 Tidigare publicerade årsrapporter

- Löfgren, S (Ed.). 2000a. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 1997*. Naturvårdsverket rapport 5031. English summary.
- Löfgren, S (Ed.). 2000b. *Miljötillståndet i skogsmark integrerad övervakning. Årsrapport 1998*Naturvårdsverket rapport 5071. English summary.
- Löfgren, S (Ed.). 2001. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 1999*. Inst. f. miljöanalys, SLU rapport 2001:10. English summary.
- Löfgren, S (Ed.). 2002. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2000*. Inst. f. miljöanalys, SLU rapport 2002:17. English summary.
- Löfgren, S (Ed.). 2003. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Sammanfattning av 1997-2001 och årsrapport 2001*. Inst. f. miljöanalys, SLU rapport 2004:7. English summary.
- Löfgren, S (Ed.). 2004. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Sammanfattning av 2002 års resultat.* Inst. f. miljöanalys, SLU rapport 2004:23. English summary.
- Löfgren, S. (Ed.). 2005. *Integrerad övervakning av miljötillståndet i svensk skogsmark (IM) årsrapport 2003*. Institutionen för miljöanalys, SLU rapport 2005:11. English summary.
- Löfgren, S. (Ed.). 2006. *Integrerad övervakning av miljötillståndet i svensk skogsmark (IM) årsrapport 2004*. Institutionen för miljöanalys, SLU rapport 2006:12. English summary.
- Löfgren, S. (Ed.) 2007. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2005*. Institutionen för miljöanalys, SLU, rapport 2007:11. English summary.
- Löfgren, S. (Ed.) 2008. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2006*. Institutionen för miljöanalys, SLU, rapport 2008:13. English summary.
- Löfgren, S. (Ed.) 2009. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2007*. Institutionen för vatten och miljö, SLU, rapport 2009:11. English summary.
- Löfgren, S. (Ed.) 2010. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2008*. Institutionen för vatten och miljö, SLU, rapport 2010:10. English summary.

- Löfgren, S. (Ed.) 2011. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2009*. Institutionen för vatten och miljö, SLU, rapport 2011:20. English summary.
- Löfgren, S. (Ed.) 2012. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2010*. Institutionen för vatten och miljö, SLU, rapport 2012:04. English summary.
- Löfgren, S. (Ed.) 2013. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2011*. Institutionen för vatten och miljö, SLU, rapport 2013:10. English summary.
- Löfgren, S. (Ed.) 2014. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2012*. Institutionen för vatten och miljö, SLU, rapport 2014:17. English summary.
- Löfgren, S. (Ed.) 2015a. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2013*. Institutionen för vatten och miljö, SLU, rapport 2015:8. English summary.
- Löfgren, S. (Ed.) 2015b. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2014*. Institutionen för vatten och miljö, SLU, rapport 2015:18. English summary.
- Löfgren, S. (Ed.) 2016. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2015*. Institutionen för vatten och miljö, SLU, rapport 2016:5. English summary.
- Löfgren, S. (Ed.) 2017. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2016*. Institutionen för vatten och miljö, SLU, rapport 2017:11. English summary.
- Löfgren, S. (Ed.) 2018. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2017*. Institutionen för vatten och miljö, SLU, rapport 2018:13. English summary.
- Löfgren, S. (Ed.) 2019. *Integrerad övervakning av miljötillståndet i svensk skogsmark IM. Årsrapport 2018*. Institutionen för vatten och miljö, SLU, rapport 2019:7. English summary.

13 Appendix

13.1 Koncentrationer

I Tabellbilagan redovisas medel- och medianvärden för halter av olika ämnen i deposition på öppet fält (Bulk deposition), krondropp (Throughfall), markvatten (Soil water), grundvatten (Groundwater) och bäckvatten (Stream water) i Gårdsjön, Aneboda, Kindla och Gammtratten under 2018. Mark- och grundvatten insamlas både i inströmningsområden (Recharge area) och utströmningsområden (Discharge area). Statistisk spridning redovisas som CV (Coefficient of Variation) och n_T visar antalet mättillfällen under året. Antalet analyser överstiger n_T i markvattnet eftersom 6-9 lysimetrar analyseras vid varje mättillfälle och på varje provtagningsnivå (n_o = totala antalet observationer). För grundvatten är n_O och n_T identiska. Följande piezometrar används för grundvattenstatistiken:

Område	Område	Piezometer	Hydrauliskt	Installationsdjup,
	nr	nr	läge	meter under markyta
Aneboda	7700	22	Inströmning	3,2
Aneboda	7700	31	Utströmning	0,99
Kindla	6700	11	Inströmning	2,4
Kindla	6700	31	Utströmning	1,1
Gammtratten	5700	22	Inströmning	3,22
Gammtratten	5700	31	Utströmning	1,06

Koncentrationerna återfinns enligt följande indelning:

Appendix 1: Halter i luft: SO₂, NO₂, NH₃, O₃
Appendix 2: Allmänt: pH, konduktivitet, kisel
Kväve: Tot-N, Org-N, NO₃-N, NH₄-N

Fosfor: Tot-P, Res-P, PO₄-P

Organiskt material: DOC, Abs f 420 nm

Appendix 4: Jonbalans – Gårdsjön Appendix 5: Jonbalans – Aneboda Appendix 6: Jonbalans – Kindla Appendix 7: Jonbalans – Gammtratten

Appendix 8: Metaller: Al, Fe, Mn, Cu, Pb, Zn, Cd

Appendix 9: Metaller: Hg, Metyl-Hg, Cr, Ni, Co, V, As, B (SITES data)

13.2 Transporter

Transporter i deposition på öppet fält, krondropp, förnafall (Litterfall) och bäckvatten har beräknats utifrån halter och uppmätta och/eller modellerade vattenflöden i Gårdsjön, Aneboda och Kindla. Förnafallet i inkluderar alla fraktioner.

Transporterna återfinns enligt följande indelning: Appendix 10: Näringsämnen: N, P, C

Appendix 11: Jonflöden: Anjoner och katjoner

Appendix 12: Metallflöden: Al, Fe, Mn, Cu, Pb, Zn, Cd (SITES data)

13.3 Biologiska mätningar

Appendix 13: Nedbrytning av förna (Standardrespiration)

Appendix 14: Epifytiska lavar på grenar

Appendix 15: Epifytiska alger på barr och lavar på grenar Appendix 16: Biodiversitet i undervegetationen på intensivytor Appendix 17: Kemisk sammansättning på barr och förnafall

Appendix 18: Biomassa och bioelement i träd

13.4 Klimat och hydrologi

Appendix 19: Lufttemperatur och nederbörd

Appendix 20: Vattenbalanser

Appendix 21 Tidsmässiga trender, utvalda biologiska variabler Appendix 22 Tidsmässiga trender, fältskiktets vegetation

Appendix 23: Viktiga observationer

14 Appendix (English)

14.1 Concentrations

In the appendix, mean and median values on concentrations of different elements and substances are reported for bulk deposition at opened field, throughfall, soil water, groundwater and stream water in Gårdsjön, Aneboda, Kindla and Gammtratten during 2018. Soil water and groundwater were collected both in recharge and discharge areas. Statistical variations are reported as Coefficient of Variation (CV) and n_T shows the number of samplings occasions during the year. In soil water, the numbers of analyses are much larger than n_T , since 6-9 lysimeters are sampled at each sampling occasion and at each sampling depth (n_o = total number of obs.). In groundwater, n_O and n_T are identical. The following piezometers are used for the groundwater statistics:

Site	Site	Piezometer	Hydraulic	Installation depth
	no	no	location	meter below soil surface
Aneboda	7700	22	Recharge	3.2
Aneboda	7700	31	Discharge	0.99
Kindla	6700	11	Recharge	2.4
Kindla	6700	31	Discharge	1.1
Gammtratten	5700	22	Recharge	3.22
Gammtratten	5700	31	Discharge	1.06

The concentrations are found in the following order:

Appendix 1: Concentrations in air: SO₂, NO₂, NH₃, O₃

Appendix 2: General: pH, conductivity, Si

Appendix 3: Nitrogen: Tot-N, Org-N, NO₃-N, NH₄-N

Phosphorus: Tot-P, Res-P, PO₄-P Organic matter: DOC, Abs f 420 nm

Appendix 4: Ion balances – Gårdsjön
Appendix 5: Ion balances – Aneboda
Appendix 6: Ion balances – Kindla
Appendix 7: Ion balances – Gammtratten

Appendix 8: Metals: Al, Fe, Mn, Cu, Pb, Zn, Cd

Appendix 9: Metals: Hg, Metyl-Hg, Cr, Ni, Co, V, As, B (SITES data)

14.2 Fluxes

The fluxes in deposition on open field, throughfall, litterfall and stream water have been calculated from measured concentrations and measured and/or simulated water discharge values in Gårdsjön, Aneboda and Kindla. Litterfall fluxes include all fractions.

The fluxes are found in the following order:

Appendix 10: Nutrients: N, P, C

Appendix 11: Ions: Anions and cations

Appendix 12: Metals: Al, Fe, Mn, Cu, Pb, Zn, Cd (SITES data)

14.3 Biological measurements

Appendix 13: Decomposition in field (litter bags), standardised litter

Appendix 14: Epiphytic lichens on twigs

Appendix 15: Epiphytic algae on needles and lichens on twigs of spruce Appendix 16: Biodiversity in understorey vegetation: intensity plots Appendix 17: Chemistry of spruce needles and needles in litterfall

Appendix 18: Biomass and bioelements in trees

14.4 Meteorology and hydrology

Appendix 19: Air temperature and precipitation

Appendix 20: Water balances

Appendix 21 Temporal trends, selected biological variables Appendix 22 Temporal trends, forest floor vegetation

Appendix 23: Important observations

			Gårds	jön			Aneb	oda			Kindla	ì			Gamn	ntratten		
	Unit	Year	Mean	Median	CV	n	Mean	Median	CV	n	Mean	Median	CV	n	Mean	Median	CV	n
Sulphur dioxide, SO ₂ *	μg S m ⁻³	1996	0,78	0,59	62%	12	0,87	0,65	82%	12	0,34	0,23	71%	12	-	-	-	-
		1997	0,41	0,38	50%	12	0,40	0,36	65%	12	0,22	0,16	73%		-	-	-	-
		1998	0,44	0,41	44%	12	0,40	0,35	65%	12	0,21	0,15	75%		-	-	-	-
		1999	0,43	0,40	38%	12	0,33	0,31	40%	12	0,22	0,19	46%	12	0,26	0,17	98%	12
		2000	0,34	0,36	27%	12	0,31	0,31	37%	12	0,23	0,20	48%		0,20	0,17	54%	12
		2001	0,38	0,35	39%	12	0,34	0,29	47%	12	0,26	0,21	47%	12	0,37	0,26	82%	11
		2002	0,34	0,31	32%	12	0,27	0,24	34%	12	0,21	0,19	34%	12	0,21	0,21	36%	12
		2003	0,38	0,36	43%	12	0,35	0,29	42%	12	0,26	0,23	43%	12	0,24	0,22	47%	12
		2004	0,46	0,33	68%	12	0,38	0,35	45%	12	0,28	0,24	47%	12	0,29	0,26	46%	12
		2005	0,48	0,31	115%	12	0,39	0,28	73%	12	0,24	0,25	50%	12	0,32	0,25	114%	11
		2006	0,42	0,38	39%	12	0,41	0,39	42%	11	0,34	0,29	44%	11	0,34	0,26	67%	12
		2007	0,20	0,20	38%	12	0,23	0,17	76%	12	0,15	0,11	88%	12	0,15	0,06	112%	12
		2008	0,20	0,19	19%	12	0,18	0,18	26%	12	0,14	0,12	40%	12	0,12	0,13	45%	12
		2009	0,20	0,19	20%	12	0,19	0,20	43%	12	0,15	0,15	38%	12	0,18	0,14	78%	12
		2010	0,25	0,24	40%	12	0,20	0,18	55%	12	0,18	0,15	70%	11	0,23	0,17	82%	12
		2011	0,19	0,20	36%	12	0,21	0,20	45%	12	0,15	0,14	57%	12	0,17	0,13	97%	12
		2012	0,20	0,19	42%	12	0,18	0,17	42%	12	0,18	0,15	46%	12	0,17	0,13	63%	12
		2013	0,20	0,20	21%	12	0,17	0,15	42%	12	0,14	0,15	51%	12	0,12	0,13	55%	12
		2014	0,32	0,28	41%	12	0,29	0,27	41%	12	0,31	0,25	62%	12	0,47	0,22	144%	11
		2015	0,23	0,19	46%	12	0,21	0,19	32%	12	0,19	0,17	61%	12	0,19	0,16	57%	12
		2016	0,16	0,16	36%	12	0,13	0,12	29%	12	0,13	0,12	26%	12	0,14	0,12	46%	12
		2017	0,17	0,17	16%	12	-	0,17	30%	12	0,16	0,16	29%	12	0,15	0,15	20%	12
		2018	0,21	0,21	13%	12	0,18	0,19	28%	12	0,19	0,17	37%	11	0,16	0,14	35%	12
		2019	0,18	0,16	21%	11	0,18	0,19	25%	12	0,15	0,14	16%		0,14	0,14	21%	12
Nitrogen dioxide, NO ₂ *	µg N m⁻³	1996	1,29	1,05	44%	12	0,71	0,56	51%	12	0,42	0,38	45%		-	-	-	-
		1997	1,33	1,08	58%	12	0,91	0,72	80%	12	0,50	0,31	74%		-	-	-	-
		1998	1,28	0,94	56%	12	0,81	0,59	66%	12	0,47	0,39	61%		-	-	-	-
		1999	1,26	1,00	47%	12	0,70	0,56	64%	12	0,46	0,443	57%		0,19	0,17	59%	12
		2000	1,11	0,95	43%	12	0,69	0,50	68%	12	0,36	0,30	57%		0,15	0,13	52%	12
		2001	1,07	1,10	44%	12	0,60	0,64	50%	12	0,36	0,36	49%		0,15	0,11	67%	11
		2002	1,39	1,17	54%	12	0,57	0,45	75%	12	0,34	0,29	65%		0,15	0,15	55%	12
		2003	1,05	0,80	48%	12	0,66	0,56	60%	12	0,35	0,28	60%		0,19	0,16	53%	12
		2004	1,00	0,89	45%	12	0,57	0,49	54%	12	0,37	0,33	56%		0,14	0,14	46%	12
		2005	1,05	0,95	30%	12	0,68	0,57	51%	12	0,39	0,37	53%		0,15	0,12	67%	11
		2006	1,04	1,00	45%	12	0,68	0,58	63%	12	0,38	0,30	73%		0,17	0,14	58%	12
		2007	0,89	0,90	39%	12	0,59	0,62	45%	12	0,33	0,29	64%		0,13	0,11	61%	12
		2008	0,86	0,74	44%	12	0,65	0,53	64%	12	0,30	0,26	54%		0,14	0,12	48%	12
		2009	0,81	0,71	47%	12	0,51	0,37	69%	12	0,29	0,21	64%		0,14	0,12	56%	12
		2010	0,89	0,70	44%	12	0,58	0,50	57%	12	0,36	0,34	61%		0,15	0,11	69%	12
		2011	0,88	0,92	43%	12	0,54	0,55	46%	12	0,31	0,26	55%		0,17	0,12	72%	12
		2012	0,83	0,74	40%	12	0,56	0,58	47%	12	0,28	0,24	48%		0,17	0,10	88%	12
		2013	0,73	0,71	32%	12	0,48	0,37	57%	12	0,25	0,23	45%		0,08	0,08	49%	12
		2014	0,74	0,73	41%	12	0,46	0,41	58%	12	0,29	0,24	58%		0,13	0,08	88%	12
		2015	0,73	0,64	46%	12	0,47	0,38	51%	12	0,21	0,21	42%		0,10	0,09	55%	12
		2016	0,72	0,59	34%	12	0,44	0,40	48%	12	0,25	0,28	47%		0,11	0,11	53%	12
		2017 2018	0,59 0,71	0,53	46% 24%	11	0,35	0,31	46% 37%	12	0,22	0,21	48%		0,08 0,14	0,07	43% 70%	12 12
			,	0,75		12	0,39	0,39		12	0,30	0,27	42% 57%		,	0,11		
*Gas concentrations at		2019	0,62	0,51	42%	12	0,41	0,39	55%	12	0,26	0,22	57%	12	0,12	0,11	65%	11

*Gas concentrations at ambient air temperature
OBS. During January - March 2003, data from Gårdsjön are collected from the nearby station Hensbacka

			Gårds	jön		
	Unit	Year	Mean	Median	CV	n
Ozone, O3*	µg O₃ m⁻³	2002	52	54	26%	12
		2003	49	49	28%	12
		2004	48	46	21%	12
		2005	50	49	36%	12
		2006	51	49	24%	11
		2007	46	46	26%	12
		2008	45	43	30%	12
		2009	44	43	29%	12
		2010	48	45	20%	10
		2011	52	52	29%	11
		2012	49	47	25%	12
		2013	53	51	24%	12
		2014	52	49	23%	12
		_	_	_	_	_

Ozondata mäts ej längre vid Gårdsjön

pH	Gårdsjö						da				Kindla					Gamm	tratten			
	Mean	Median	CV	no	n _T	Mean	Median	CV	no	$n_{\scriptscriptstyle T}$	Mean	Median	CV	n _o	$n_{\scriptscriptstyle T}$	Mean	Median	CV	n_{o}	$n_{\scriptscriptstyle T}$
Bulk deposition	5,0	5,0	11%	12	12	5,1	5,1	13%	12	12	5,3	5,5	9%	12	12	5,1	5,2	5%	12	12
Throughfall	5,2	5,4	10%	12	12	5,4	6,0	12%	12	12	5,3	5,3	9%	12	12	5,2	5,3	4%	12	12
Soil water, recharge area, E, 8-20 cm	4,8	4,8	16%	2	2	-	-	-	-	-	4,9	5,0	5%	6	3	3,8	3,8	-	1	1
Soil water, recharge area, B, 33-45 cm	4,8	4,8	16%	2	2	4,9	4,9	7%	9	3	4,9	4,9	5%	7	3	5,3	5,3	4%	5	3
Soil water, discharge area, 30-50 cm	5,2	5,2	34%	2	2	5,4	5,5	5%	11	3	4,7	4,7	8%	6	3	5,6	5,6	1%	3	3
Groundwater, recharge area, F1:4	5,0	5,0	20%	4	3	4,8	4,8	3%	4	4	4,7	4,7	1%	4	4	5,8	5,8	1%	2	2
Groundwater, discharge area, F1:5	4,4	4,4	10%	4	4	4,8	4,8	4%	4	4	5,9	5,9	1%	4	4	5,3	5,3	1%	3	3
Stream water	4,5	4,5	17%	12	11	4,6	4,6	3%	24	24	4,7	4,7	2%	23	23	5,6	5,7	3%	23	23

Cond ₂₅ (mS m ⁻¹)	Gårdsjö	n	Anebo	da				Kindla					Gammt	tratten						
	Mean	Median	CV	no	n _T	Mean														
Bulk deposition	1,7	1,8	28%	12	12	1,3	1,4	55%	12	12	1,0	1,0	54%	12	12	0,7	0,7	40%	12	12
Throughfall	4,0	3,6	45%	12	12	1,9	1,6	82%	12	12	1,0	0,9	64%	12	12	0,8	0,7	42%	12	12
Soil water, recharge area, E, 8-20 cm	7,2	7,2	26%	2	2	-	-	-	-	-	2,8	2,3	36%	6	3	6,7	6,7	-	1	1
Soil water, recharge area, B, 33-45 cm	7,7	7,7	16%	2	2	4,2	3,2	60%	9	3	2,9	2,9	13%	7	3	0,9	0,9	30%	5	3
Soil water, discharge area, 30-50 cm	6,7	6,7	21%	2	2	7,9	5,6	50%	11	3	3,5	3,0	41%	6	3	1,6	1,6	6%	3	3
Groundwater, recharge area, 2,4-3,2 m	8,8	8,7	9%	4	3	8,0	7,8	17%	4	4	2,7	2,7	9%	4	4	1,5	1,5	2%	2	2
Groundwater, discharge area, 1-1,1 m	8,0	8,1	9%	4	4	8,7	8,1	31%	4	4	4,3	4,3	8%	4	4	1,2	1,3	21%	3	3
Stream water	8,1	7,5	31%	12	11	6,9	6,6	17%	24	24	2,7	2,7	13%	23	23	1,7	1,7	10%	23	23

Si (mg l ⁻¹)	Gårdsjö	n			Anebo	da				Kindla					Gamm	tratten				
	Mean	Median	CV	no	n _T	Mean	Median	CV	no	$n_{\scriptscriptstyle T}$	Mean	Median	CV	n _o	$n_{\scriptscriptstyle T}$	Mean	Median	CV	n _o	n _T
Bulk deposition	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Throughfall	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soil water, recharge area, E, 8-20 cm	4,4	4,4	29%	2	2	1,83	1,59	76%	3	3	4,2	3,8	34%	13	3	9,2	8,4	0,37	6	3
Soil water, recharge area, B, 33-45 cm	3,9	3,9	22%	2	2	4,5	4,1	48%	13	3	3,5	3,8	23%	7	3	2,6	1,7	60%	9	3
Soil water, discharge area, 30-50 cm	3,3	3,3	13%	2	2	5,1	5,2	23%	13	3	5,6	5,0	27%	13	3	4,7	3,8	52%	5	3
Groundwater, recharge area, 2,4-3,2 m	2,6	2,5	15%	4	3	5,1	5,1	11%	4	4	7,7	7,6	13%	4	4	3,5	3,5	8%	2	2
Groundwater, discharge area, 1-1,1 m	3,6	3,6	4%	4	4	5,3	4,9	21%	4	4	10,2	10,4	18%	4	4	2,7	2,6	7%	3	3
Stream water	3,6	3,6	12%	12	11	5,1	4,9	23%	24	24	3,7	3,8	13%	23	23	4,1	4,2	17%	23	23

	i	Ciudalian+				-	Al.					Kindla					C			
		Gårdsjön* Mean	Median	CV	n _o r		Aneboda Mean	Median	CV	n _o	n _T	Mean	Median	CV	no	n _T	Gammtra Mean	Median	CV	n _o n
Bulk deposition	Tot-N μg/l	702	625	72%		12	783	686	79%	12	11	524	464	93%	12		319	244	61%	12 1
Throughfall	,,,	869	806	66%		12	675	600	205%			325	303	85%		12	219	178	49%	12 1
Soil water, recharge area, E, 8-20 cm		370	370	1%		2	4454	4454	-	1	1	687,3	472	99%	10		814,8	815	-	1
Soil water, recharge area, B, 33-45 cm		177	177	53%		2	493	288,2	76%	7	3	509,8	375	98%	7	3	69,94	63	65%	5
Soil water, discharge area, 30-50 cm		226	226	37%		2	632	571.2	67%	8	3	464.8	394	49%	7	3	56,73	50	21%	3
Groundwater, recharge area, 2,4-3,2 m		427	410	21%		3	172	172	34%	4	4	147	112	62%	4	4	199	199	47%	2
Groundwater, discharge area, 1-1,1 m		474	483	6%	4	4	1227	1260	11%	4	4	140	146	22%	4	4	241	241	67%	2
Stream water		361	361	17%	12 1	11	747	712	39%	24	24	245	246	23%	23	23	213	203	40%	23 2
Bulk deposition	Org-N μg/l	98	95	108%	12 1	12	146	159	147%	12	11	67	82	240%	12	12	68	64	147%	12 1
Throughfall	3 73	276	253	78%	12 1	12	165	122	266%	12	12	132	85	181%	12		95	85	33%	12 1
Soil water, recharge area, E, 8-20 cm		334	334	7%		2	_	-	-	-	_	443	294	81%	9		798	798	_	1
Soil water, recharge area, B, 33-45 cm		156	156	64%		2	297	210,1	64%	7	3	250	212	55%	6			-	-	- -
Soil water, discharge area, 30-50 cm		117	117	39%		2	534	435,9	73%	6	3	305	287	35%	6		-	-	-	- -
Groundwater, recharge area, 2,4-3,2 m		370	399	31%	4	3	123	134	23%	4	4	123	102	51%	4	4	159	159	55%	2
Groundwater, discharge area, 1-1,1 m		410	412	16%	4	4	780	768	27%	4	4	50	52	69%	4	4	200	200	64%	2
Stream water		317	343	24%	12 1	11	668	625	47%	24	24	216	197	30%	23	23	206	192	42%	23 2
Bulk deposition	NO ₃ -N μq/I	287	283	37%		12	249	265	155%	12	12	220	231	55%	12		139	119	42%	12 1
Throughfall	- 3 , 3	322	316	45%		12	195	233	169%			93	89	110%		12	66	34	83%	12 1
Soil water, recharge area, E, 8-20 cm		5	5	67%		2	-	-	-		_	10	6	159%	10		3	3	-	1 1
Soil water, recharge area, B, 33-45 cm		6	6	85%		2	168	11	206%	9	3	6	5	116%	6		_ ~	_ ~	_	
Soil water, discharge area, 30-50 cm		7	7	2%	2	2	25	9	183%	8	3	13	3	206%	7		_	_	_	- -
Groundwater, recharge area, 2,4-3,2 m		32	9	143%	4	3	31	25	90%	4	4	5	6	68%	4		22	22	11%	2
Groundwater, discharge area, 1-1,1 m		13	9	99%	4	4	91	14	175%	4	4	64	55	49%	4		4	3	110%	3
Stream water		29	21	129%	12 1	1	63	29	124%	24	24	22	4	158%	23	23	2	2	87%	23 2
Bulk deposition	NH₄-N μq/I	317	245	103%		12	395	351	199%	12	12	236	184	116%	12	12	111	57	97%	12 1
Throughfall	i ii i i i i i i i i i i i i i i i i i	271	236	102%		12	315	240	210%	12	12	100	66	124%	12		58	15	94%	12 1
Soil water, recharge area, E, 8-20 cm		32	32	74%		2		- 10	_	- '-	-	261	127	131%	11	'-	14	14	21%	3
Soil water, recharge area, B, 33-45 cm		14	14	5%		2	147	147	-	1	1	263	13	150%	7		3	1	95%	5
Soil water, discharge area, 30-50 cm		40	40	88%	2	2	141	59	145%	12	3	65	11	138%	8		2	2	64%	3
Groundwater, recharge area, 2,4-3,2 m		24	19	79%	4	3	183	32	163%	13	3	18	6	141%	4	4	18	18	13%	2
		52	50	79% 82%	4	4	356	364	47%	4	4	25	23	88%	4	4	40	40	83%	2
Groundwater, discharge area, 1-1,1 m Stream water		15	15	0%	12 1	1	17	14	46%	24	24	7	5	76%	23	23	40	40	45%	23 2
Bulk deposition	Tot-P μq/I	7	5	114%		12	36	5	190%	12	12	12	5	176%	12	12	5	5	0%	12 1
Throughfall	ioti μg/.	17	5	193%		12	116	56	108%	12	12	13	5	107%	12		22	18	80%	12 1
Soil water, recharge area, E, 8-20 cm		5	5	0%		2	-	-	-		_	-	_	-		_			-	
Soil water, recharge area, B, 33-45 cm		5	5	0%		2	_	_	_	_	_	_	_	_	_		l -	_	_	_ _
Soil water, discharge area, 30-50 cm		5	5	0%	2	2	_		_	_			_	_	_					
Groundwater, recharge area, 2,4-3,2 m		8	5	60%	4	3	19	15	94%	4	4	18	6	141%	4	4	18	18	13%	2
Groundwater, discharge area, 2,4-3,2 m		10	9	55%	4	4	356	364	47%	4	4	25	23	88%	4	4	40	40	83%	2
Stream water		5	5	0%		11	26	15	127%	24	24	23	3	78%	23	23	9	7	53%	23 2
Bulk deposition	PO ₄ -P μg/I			- 070	12	#	- 20	- 13	12/70		-	-	-	7 0 70	-	-	- 3	- '	3370	23 2.
Throughfall	1 O4-1 μg/1			_		1	_		_	_			_	_	_					
Soil water, recharge area, E, 8-20 cm				_		1	_		_	_			_	_	_					
	1		-	-	- 1		-			_			_	_	-		I -		-	- 1 -
		_	_ !	_	-		_	_	_	_			_	-	_	_	_	_	_	_
Soil water, recharge area, B, 33-45 cm		-	-	-	-	- [-	-	-	-	-	-	-		-	-	-	-	-	- -
Soil water, discharge area, 30-50 cm		-	-	- -	-	-	- - 0.6	- - 0.5	- - 116%	- -	- -	- - 0.5	- -	-	-	- - 4	- 03	- 03	- - 116%	
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m		-	- - -	- - -	-	- -	- 0,6	- 0,5	- - 116% 84%	- - 4	- - 4	- 0,5	- 0,3	- 116%	- 4		- 0,3	- 0,3	- 116% 132%	2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m		-	- - -	- - - -	- - -	- - -	10,9	7,1	84%	4	4	10,2	9,7	- 116% 43%	- 4 4	4	0,7	0,7	132%	2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water	DOC mg/l	- - - - - 2 3 1	- - - -	- - - - - 94041	- - -	- - - -	10,9 1,5	7,1 0,9	84% 96%	4 24	4 24	10,2 0,4	9,7 0,4	- 116% 43% 91%	- 4 4 23	4 23	0,7 1,4	0,7 1,1	132% 74%	2 23 2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition	DOC mg/l	- - - - 2,3 8.8	- - - - 3,0	- - - - - 94% 47%	- - - - 12 1	- - - - -	10,9 1,5 4,0	7,1 0,9 4,1	84% 96% 94%	4 24 12	4 24 11	10,2 0,4 2,3	9,7 0,4 2,8	- 116% 43% 91% 66%	- 4 4 23	4 23 12	0,7 1,4 1,8	0,7 1,1 1,5	132% 74% 90%	2 2 23 2 12 1
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall	DOC mg/l	8,8	9,8	47%	- - - 12 1	12	10,9 1,5 4,0 5,2	7,1 0,9 4,1 5,8	84% 96%	4 24 12 12	4 24 11	10,2 0,4 2,3 5,3	9,7 0,4 2,8 4,2	- 116% 43% 91% 66% 132%	- 4 4 23 12	4 23 12 12	0,7 1,4 1,8 4,6	0,7 1,1 1,5 4,1	132% 74%	2 23 2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm	DOC mg/l	8,8 13,2	9,8 13,2	47% 13%	- - - 12 1 12 1 2	2	10,9 1,5 4,0 5,2 50,4	7,1 0,9 4,1 5,8 50,4	84% 96% 94% 85%	4 24 12 12 1	4 24 11 12 1	10,2 0,4 2,3 5,3 11,9	9,7 0,4 2,8 4,2 6,8	- 116% 43% 91% 66% 132% 109%	- 4 4 23 12 12 10	4 23 12 12 3	0,7 1,4 1,8 4,6 62,3	0,7 1,1 1,5 4,1 62,3	132% 74% 90% 57%	2 2 23 2 12 1 12 1 1
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm	DOC mg/l	8,8 13,2 9,6	9,8 13,2 9,6	47% 13% 2%	- - - 12 1 12 1 2	2	10,9 1,5 4,0 5,2 50,4 7,9	7,1 0,9 4,1 5,8 50,4 4,8	84% 96% 94% 85% - 68%	12 12 12 1 7	11 12 1 3	10,2 0,4 2,3 5,3 11,9 4,6	9,7 0,4 2,8 4,2 6,8 4,5	- 116% 43% 91% 66% 132% 109% 28%	- 4 4 23 12 12 10 7	4 23 12 12 3 3	0,7 1,4 1,8 4,6 62,3 2,9	0,7 1,1 1,5 4,1 62,3 2,5	132% 74% 90% 57% 45%	2 23 23 12 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm	DOC mg/l	8,8 13,2 9,6 6,2	9,8 13,2 9,6 6,2	47% 13% 2% 16%	- - - 12 1 12 1 2 2 2 2	2 2 2	10,9 1,5 4,0 5,2 50,4 7,9 18,8	7,1 0,9 4,1 5,8 50,4 4,8 14,1	84% 96% 94% 85% - 68% 80%	12 12 12 1 7 8	11 12 1 3 3	10,2 0,4 2,3 5,3 11,9 4,6 10,8	9,7 0,4 2,8 4,2 6,8 4,5 10,2	116% 43% 91% 66% 132% 109% 28% 34%	- 4 4 23 12 12 10 7	4 23 12 12 3 3 3	0,7 1,4 1,8 4,6 62,3 2,9 2,0	0,7 1,1 1,5 4,1 62,3 2,5 1,6	132% 74% 90% 57% 45% 42%	2 2 23 2 12 1 12 1 1 5 3
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m	DOC mg/l	8,8 13,2 9,6 6,2 16,5	9,8 13,2 9,6 6,2 19,0	47% 13% 2% 16% 41%	- - - 12 1 12 1 2 2 2 4	2 2 2 3	10,9 1,5 4,0 5,2 50,4 7,9 18,8 3,1	7,1 0,9 4,1 5,8 50,4 4,8 14,1 3,1	84% 96% 94% 85% - 68% 80% 37%	12 12 12 1 7 8 4	11 12 1 3	10,2 0,4 2,3 5,3 11,9 4,6 10,8 3,7	9,7 0,4 2,8 4,2 6,8 4,5 10,2 3,7	116% 43% 91% 66% 132% 109% 28% 34% 16%	- 4 4 23 12 12 10 7 7	4 23 12 12 3 3 3 4	0,7 1,4 1,8 4,6 62,3 2,9 2,0 1,3	0,7 1,1 1,5 4,1 62,3 2,5 1,6 1,3	132% 74% 90% 57% 45% 42% 4%	2 23 22 12 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m	DOC mg/I	8,8 13,2 9,6 6,2 16,5 20,0	9,8 13,2 9,6 6,2 19,0 20,1	47% 13% 2% 16% 41% 24%	- - - 12 1 12 1 2 2 2 2 4 4	12 2 2 2 3 4	10,9 1,5 4,0 5,2 50,4 7,9 18,8 3,1 35,7	7,1 0,9 4,1 5,8 50,4 4,8 14,1 3,1 34,7	84% 96% 94% 85% - 68% 80% 37% 41%	12 12 12 1 7 8 4 4	11 12 1 3 3 4 4	10,2 0,4 2,3 5,3 11,9 4,6 10,8 3,7 1,2	9,7 0,4 2,8 4,2 6,8 4,5 10,2 3,7 1,2	- 116% 43% 91% 66% 132% 109% 28% 34% 16% 13%	- 4 4 23 12 12 10 7 7 4 4	4 23 12 12 3 3 3 4 4	0,7 1,4 1,8 4,6 62,3 2,9 2,0 1,3 2,4	0,7 1,1 1,5 4,1 62,3 2,5 1,6 1,3 2,4	132% 74% 90% 57% 45% 42% 4% 65%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water		8,8 13,2 9,6 6,2 16,5	9,8 13,2 9,6 6,2 19,0	47% 13% 2% 16% 41%	- - - 12 1 12 1 2 2 2 2 4 4	2 2 2 3	10,9 1,5 4,0 5,2 50,4 7,9 18,8 3,1	7,1 0,9 4,1 5,8 50,4 4,8 14,1 3,1	84% 96% 94% 85% - 68% 80% 37%	12 12 12 1 7 8 4	11 12 1 3 3	10,2 0,4 2,3 5,3 11,9 4,6 10,8 3,7	9,7 0,4 2,8 4,2 6,8 4,5 10,2 3,7	116% 43% 91% 66% 132% 109% 28% 34% 16%	- 4 4 23 12 12 10 7 7	4 23 12 12 3 3 3 4	0,7 1,4 1,8 4,6 62,3 2,9 2,0 1,3	0,7 1,1 1,5 4,1 62,3 2,5 1,6 1,3	132% 74% 90% 57% 45% 42% 4%	2 23 22 12 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition	DOC mg/l Abs f 420 nm	8,8 13,2 9,6 6,2 16,5 20,0	9,8 13,2 9,6 6,2 19,0 20,1	47% 13% 2% 16% 41% 24%	- - - 12 1 12 1 2 2 2 2 4 4	12 2 2 2 3 4	10,9 1,5 4,0 5,2 50,4 7,9 18,8 3,1 35,7	7,1 0,9 4,1 5,8 50,4 4,8 14,1 3,1 34,7	84% 96% 94% 85% - 68% 80% 37% 41%	12 12 12 1 7 8 4 4	11 12 1 3 3 4 4	10,2 0,4 2,3 5,3 11,9 4,6 10,8 3,7 1,2	9,7 0,4 2,8 4,2 6,8 4,5 10,2 3,7 1,2	- 116% 43% 91% 66% 132% 109% 28% 34% 16% 13%	- 4 4 23 12 12 10 7 7 4 4	4 23 12 12 3 3 3 4 4	0,7 1,4 1,8 4,6 62,3 2,9 2,0 1,3 2,4	0,7 1,1 1,5 4,1 62,3 2,5 1,6 1,3 2,4	132% 74% 90% 57% 45% 42% 4% 65%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall		8,8 13,2 9,6 6,2 16,5 20,0 17,0	9,8 13,2 9,6 6,2 19,0 20,1 17,2	47% 13% 2% 16% 41% 24% 19%	- 12 1 12 1 12 2 2 2 4 4 12 1	12 2 2 3 4 11	10,9 1,5 4,0 5,2 50,4 7,9 18,8 3,1 35,7	7,1 0,9 4,1 5,8 50,4 4,8 14,1 3,1 34,7	84% 96% 94% 85% - 68% 80% 37% 41%	12 12 12 1 7 8 4 4	11 12 1 3 3 4 4	10,2 0,4 2,3 5,3 11,9 4,6 10,8 3,7 1,2	9,7 0,4 2,8 4,2 6,8 4,5 10,2 3,7 1,2	- 116% 43% 91% 66% 132% 109% 28% 34% 16% 13%	- 4 4 23 12 12 10 7 7 4 4	4 23 12 12 3 3 3 4 4	0,7 1,4 1,8 4,6 62,3 2,9 2,0 1,3 2,4	0,7 1,1 1,5 4,1 62,3 2,5 1,6 1,3 2,4	132% 74% 90% 57% 45% 42% 4% 65%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, 8, 33-45 cm Soil water, recharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm		8,8 13,2 9,6 6,2 16,5 20,0 17,0 - 0,040	9,8 13,2 9,6 6,2 19,0 20,1 17,2	47% 13% 2% 16% 41% 24% 19% - - 15%	- 12 1 12 1 12 2 2 2 4 4 12 1	12 2 2 3 4 11 -	10,9 1,5 4,0 5,2 50,4 7,9 18,8 3,1 35,7	7,1 0,9 4,1 5,8 50,4 4,8 14,1 3,1 34,7	84% 96% 94% 85% - 68% 80% 37% 41%	12 12 12 1 7 8 4 4	11 12 1 3 3 4 4	10,2 0,4 2,3 5,3 11,9 4,6 10,8 3,7 1,2	9,7 0,4 2,8 4,2 6,8 4,5 10,2 3,7 1,2	- 116% 43% 91% 66% 132% 109% 28% 34% 16% 13%	- 4 4 23 12 12 10 7 7 4 4	4 23 12 12 3 3 3 4 4	0,7 1,4 1,8 4,6 62,3 2,9 2,0 1,3 2,4	0,7 1,1 1,5 4,1 62,3 2,5 1,6 1,3 2,4	132% 74% 90% 57% 45% 42% 4% 65%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 2,4-3,2 m Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm		8,8 13,2 9,6 6,2 16,5 20,0 17,0 - 0,040 0,234	9,8 13,2 9,6 6,2 19,0 20,1 17,2 - 0,040 0,234	47% 13% 2% 16% 41% 24% 19% 15% 8%	- 12 1 12 1 12 2 2 2 4 4 12 1	12 2 2 3 4 11 - 2 2	10,9 1,5 4,0 5,2 50,4 7,9 18,8 3,1 35,7	7,1 0,9 4,1 5,8 50,4 4,8 14,1 3,1 34,7	84% 96% 94% 85% - 68% 80% 37% 41%	12 12 12 1 7 8 4 4	11 12 1 3 3 4 4	10,2 0,4 2,3 5,3 11,9 4,6 10,8 3,7 1,2	9,7 0,4 2,8 4,2 6,8 4,5 10,2 3,7 1,2	- 116% 43% 91% 66% 132% 109% 28% 34% 16% 13%	- 4 4 23 12 10 7 7 4 4 23	4 23 12 12 3 3 3 4 4	0,7 1,4 1,8 4,6 62,3 2,9 2,0 1,3 2,4	0,7 1,1 1,5 4,1 62,3 2,5 1,6 1,3 2,4	132% 74% 90% 57% 45% 42% 4% 65%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 2,4-3,2 m Groundwater, techarge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm		8,8 13,2 9,6 6,2 16,5 20,0 17,0 - 0,040 0,234 0,016	9,8 13,2 9,6 6,2 19,0 20,1 17,2 - 0,040 0,234 0,016	47% 13% 2% 16% 41% 24% 19% - 15% 8% 37%		12 2 2 3 4 11 - - 2 2	10,9 1,5 4,0 5,2 50,4 7,9 18,8 3,1 35,7	7,1 0,9 4,1 5,8 50,4 4,8 14,1 3,1 34,7	84% 96% 94% 85% - 68% 80% 37% 41%	12 12 12 1 7 8 4 4	11 12 1 3 3 4 4	10,2 0,4 2,3 5,3 11,9 4,6 10,8 3,7 1,2	9,7 0,4 2,8 4,2 6,8 4,5 10,2 3,7 1,2	- 116% 43% 91% 66% 132% 109% 28% 34% 16% 13%	- 4 4 23 12 12 10 7 7 4 4	4 23 12 12 3 3 3 4 4	0,7 1,4 1,8 4,6 62,3 2,9 2,0 1,3 2,4	0,7 1,1 1,5 4,1 62,3 2,5 1,6 1,3 2,4	132% 74% 90% 57% 45% 42% 4% 65%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, 30-50 cm Groundwater, discharge area, 50-50 cm Soil water, discharge area, 8, 33-45 cm Soil water, discharge area, 2,4-3,2 m Groundwater, recharge area, 2,4-3,2 m		8,8 13,2 9,6 6,2 16,5 20,0 17,0 - 0,040 0,234 0,016 0,075	9,8 13,2 9,6 6,2 19,0 20,1 17,2 - 0,040 0,234 0,016 0,096	47% 13% 2% 16% 41% 24% 19% - 15% 8% 37% 52%		12 2 2 3 4 11 - 2 2	10,9 1,5 4,0 5,2 50,4 7,9 18,8 3,1 35,7	7,1 0,9 4,1 5,8 50,4 4,8 14,1 3,1 34,7	84% 96% 94% 85% - 68% 80% 37% 41%	12 12 12 1 7 8 4 4	11 12 1 3 3 4 4	10,2 0,4 2,3 5,3 11,9 4,6 10,8 3,7 1,2	9,7 0,4 2,8 4,2 6,8 4,5 10,2 3,7 1,2	- 116% 43% 91% 66% 132% 109% 28% 34% 16% 13%	- 4 4 23 12 10 7 7 4 4 23	4 23 12 12 3 3 3 4 4	0,7 1,4 1,8 4,6 62,3 2,9 2,0 1,3 2,4	0,7 1,1 1,5 4,1 62,3 2,5 1,6 1,3 2,4	132% 74% 90% 57% 45% 42% 4% 65%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 2,4-3,2 m Groundwater, techarge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-50 cm		8,8 13,2 9,6 6,2 16,5 20,0 17,0 - 0,040 0,234 0,016	9,8 13,2 9,6 6,2 19,0 20,1 17,2 - 0,040 0,234 0,016	47% 13% 2% 16% 41% 24% 19% - 15% 8% 37%		12 2 2 3 4 11 - - 2 2	10,9 1,5 4,0 5,2 50,4 7,9 18,8 3,1 35,7	7,1 0,9 4,1 5,8 50,4 4,8 14,1 3,1 34,7	84% 96% 94% 85% - 68% 80% 37% 41%	12 12 12 1 7 8 4 4	11 12 1 3 3 4 4	10,2 0,4 2,3 5,3 11,9 4,6 10,8 3,7 1,2	9,7 0,4 2,8 4,2 6,8 4,5 10,2 3,7 1,2	- 116% 43% 91% 66% 132% 109% 28% 34% 16% 13%	- 4 4 23 12 10 7 7 4 4 23	4 23 12 12 3 3 3 4 4	0,7 1,4 1,8 4,6 62,3 2,9 2,0 1,3 2,4	0,7 1,1 1,5 4,1 62,3 2,5 1,6 1,3 2,4	132% 74% 90% 57% 45% 42% 4% 65%	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

^{*} Abs f 400 nm i 1 cm kyvett

Gårdsjön	Anions						Cations					
	7	Mean	Median	CV	no	n⊤	52.5010	Mean	Median	CV	no	n⊤
Bulk deposition	SO ₄ ²⁻ mEq/l	0,017	0.016	51%			Ca ²⁺ mEq/l	0,007	0,007	67%		12
Throughfall	CO4 IIILQ/I	0,029	0,028	38%		12	ou meq/	0,024	0,024	46%		12
Soil water L1, recharge area, 20 cm		0,089	0,089	19%		2		0,008	0,008	40%		
Soil water L1, recharge area, B, 40 cm		0,107	0,107	6%	2	2		0,010	0,010	39%		2
Soil water L2, discharge area, 20 cm		0,107	0,107	20%	2	2		0,010	0,010	36%		2
Groundwater, recharge area, F1:4		0,099	0,090	30%	4	3		0,023	0,028	40%		2
Groundwater, discharge area, F1:5		0,033	0,069	23%	4	4		0,033	0,023	12%		4
Stream water		0,092	0,075	41%		11		0,033	0,025	22%		11
Bulk deposition	Cl ⁻ mEq/I	0,056	0,054	41%	12		Mg ²⁺ mEq/l	0,012	0,013	38%	_	12
Throughfall	CI IIILq/I	0,030	0,034	48%		12	Mg IIILq/I	0,012	0,015	56%		12
Soil water L1, recharge area, 20 cm		0,133	0,132	43%	2	2		0,042	0,033	29%		
Soil water L1, recharge area, E, 40 cm		0,414	0,414	29%	2	2		0,060	0,060	13%		2 2
Soil water L2, discharge area, 20 cm		0,359	0,359	41%	2	2		0,058	0,058	35%		2
Groundwater, recharge area, F1:4		0,510	0,339	5%	4	3		0,038	0,038	14%		3
Groundwater, discharge area, F1:4		0,310	0,314	17%		4		0,086	0,080	7%		4
Stream water		0,417	0,423	23%		11		0,079	0,079	29%		11
	NO - 5 /						N + F //				•	
Bulk deposition	NO ₃ - mEq/I	0,021	0,020	37%			Na⁺ mEq/I	0,047	0,043	41%		12
Throughfall		0,023	0,023	45%		12		0,157	0,150	42%		12
Soil water L1, recharge area, 20 cm		0,000	0,000	67%	2	2		0,428	0,428	29%		2
Soil water L1, recharge area, B, 40 cm		0,000	0,000	85%	2	2		0,462	0,462	24%	2	2 2 3
Soil water L2, discharge area, 20 cm		0,005	0,005		2	2		0,408	0,408	29%		2
Groundwater, recharge area, F1:4		0,002	0,001	143%		3		0,511	0,535	10%		
Groundwater, discharge area, F1:5		0,001	0,001	99%	4	4		0,388	0,395	14%		4
Stream water		0,002	0,001	129%	12	11		0,402	0,390	13%	_	11
Bulk deposition	Alk/Ac mEq/I	-	-	-	-	-	K⁺ mEq/I	0,004	0,002	176%		12
Throughfall		-	-	-	-	-		0,045	0,039	80%		12
Soil water L1, recharge area, 20 cm		-	-	-	-	-		0,011	0,011	33%		2
Soil water L1, recharge area, B, 40 cm		-	-	-	-	-		0,012	0,012	3%		2 2 2 3
Soil water L2, discharge area, 20 cm		-	-	-	-	-		0,011	0,011	22%		2
Groundwater, recharge area, F1:4		-	-	-	-	-		0,041	0,036	31%		
Groundwater, discharge area, F1:5		-	-	-	-	-		0,017	0,020	38%		4
Stream water		-	-	-	-	-		0,014	0,015	28%	_	11
Bulk deposition	RCOO- mEq/I	0,014					NH₄⁺ mEq/I	0,023	0,018	103%		12
Throughfall		0,055						0,019	0,017	102%		12
Soil water L1, recharge area, 20 cm		0,073						0,002	0,002	74%		2
Soil water L1, recharge area, B, 40 cm		0,052						0,001	0,001	5%		2
Soil water L2, discharge area, 20 cm		0,039						0,003	0,003	88%		2
Groundwater, recharge area, F1:4		0,095						0,002	0,001	79%		3
Groundwater, discharge area, F1:5		0,097	0,098					0,004	0,004	82%		4
Stream water		0,083	,					0,015	0,015	0%	12	11
Bulk deposition	ANC mEq/l	-0,023					H⁺ mEq/I	0,009				
Throughfall		0,018						0,006				
Soil water L1, recharge area, 20 cm		0,008						0,014	-	00000000000000		
Soil water L1, recharge area, B, 40 cm		-0,004						0,014				
Soil water L2, discharge area, 20 cm		0,001						0,007		00000000000000		
Groundwater, recharge area, F1:4		0,050	-					0,010	-			
Groundwater, discharge area, F1:5		0,027						0,036				
Stream water		0,035	0,041					0,034	0,032			

Aneboda	Anions						Cations					
		Mean	Median	CV	no	n⊤		Mean	Median	CV	n _o	n _T
Bulk deposition	SO ₄ ²⁻ mEq/l	0,015	0,013		_		Ca ²⁺ mEq/l	0,006			12	12
Throughfall		0,015	0,014			12	•	0,020	0,019	192%		12
Soil water, recharge area, E, 8-20 cm		0,088	0,03	122%	5	3		0,224	0,24	83%	3	3
Soil water, recharge area, B, 33-45 cm		0,153	0,126	59%	17	3		0,065	0,035	100%	13	3
Soil water, discharge area, 30-50 cm		0,249	0,233	48%	15	3		0,131	0,145	45%	13	3
Groundwater, recharge area, 3,2 m		0,322	0,326	37%	4	4		0,099	0,099	11%	4	4
Groundwater, discharge area, 0,99 m		0,344	0,304	63%	4	4		0,197	0,199	33%		4
Stream water		0,184	0,168	56%	24	24		0,143	0,134	19%		24
Bulk deposition	Cl ⁻ mEq/l	0,025	0,023	53%	12	12	Mg ²⁺ mEq/l	0,007	0,008	138%	12	12
Throughfall		0,037	0,032	49%	12			0,019	0,015	140%	12	12
Soil water, recharge area, E, 8-20 cm		0,253	0,193	88%	5	3		0,068	0,057	61%	3	3
Soil water, recharge area, B, 33-45 cm		0,113	0,101	69%	17	3		0,057	0,052	60%	13	3
Soil water, discharge area, 30-50 cm		0,278	0,204	90%	15	3		0,127	0,127	17%	13	3
Groundwater, recharge area, 3,2 m		0,263	0,27	15%	4	4		0,104	0,102	32%	4	4
Groundwater, discharge area, 0,99 m		0,232	0,241	18%	4	4		0,177	0,176	37%	4	4
Stream water		0,225	0,225	8%	24	24		0,120	0,112	24%	24	24
Bulk deposition	NO₃⁻ mEq/l	0,018	0,019	155%	12	12	Na⁺ mEq/I	0,022	0,023	54%	12	12
Throughfall		0,014	0,017				-	0,029	0,027	43%	12	12
Soil water, recharge area, E, 8-20 cm		-	-	-	-	-		0,051	0,048	48%	3	3
Soil water, recharge area, B, 33-45 cm		0,012	0,001	206%	9	3		0,110	0,080	70%	13	3
Soil water, discharge area, 30-50 cm		0,002	0,001	183%	8	3		0,324	0,161	97%	13	3
Groundwater, recharge area, 3,2 m		0,002	0,002	90%	4	4		0,254	0,261	7%	4	4
Groundwater, discharge area, 0,99 m		0,007	0,001	175%	4	4		0,261	0,255	12%	4	4
Stream water		0,004	0,002	124%	24	24		0,225	0,218	11%	24	24
Bulk deposition	Alk/Ac mEq/I	-	-	-	-	-	K⁺ mEq/I	0,004	0,002	251%	12	12
Throughfall		-	-	-	-	-		0,046	0,033	74%	12	12
Soil water, recharge area, E, 8-20 cm		-	-	-	-	-		0,080	0,087	38%	3	3
Soil water, recharge area, B, 33-45 cm		-	-	-	-	-		0,018	0,013	75%	13	3
Soil water, discharge area, 30-50 cm		0,018	0,018		1			0,013	0,013	37%	13	3
Groundwater, recharge area, 3,2 m		-0,043	-0,038	-111%	4	4		0,045	0,045	45%	4	4
Groundwater, discharge area, 0,99 m		-0,044	-0,051	-51%	4	4		0,021	0,019	19%		4
Stream water		-0,084	-0,080	-22%	24	24		0,019	0,019	39%	_	24
Bulk deposition	RCOO ⁻ mEq/l	0,024	0,025				NH ₄ ⁺ mEq/I	0,028	0,025			12
Throughfall		0,036	0,051					0,022	,	210%	12	12
Soil water, recharge area, E, 8-20 cm		#######	######					0,010			1	1
Soil water, recharge area, B, 33-45 cm		0,044	0,027]				0,010	0,004			3
Soil water, discharge area, 30-50 cm		0,132	0,100					0,013	0,002			3
Groundwater, recharge area, 3,2 m		0,017	0,017	1				0,001	0,001	94%		4
Groundwater, discharge area, 0,99 m		0,189	0,185					0,025	0,026			4
Stream water		0,139	0,144					0,001	0,001	46%	24	24
Bulk deposition	ANC mEq/I	-0,018	-0,018				H+ mEq/I	0,009	- ,			
Throughfall		0,048	0,031					0,004				
Soil water, recharge area, E, 8-20 cm		#######	######					#######	######			
Soil water, recharge area, B, 33-45 cm		-0,029	-0,048					0,013	1 1			
Soil water, discharge area, 30-50 cm		0,065	0,008					0,004	· ·			
Groundwater, recharge area, 3,2 m		-0,085	-0,091					0,015	1 1			
Groundwater, discharge area, 0,99 m		0,073	0,103					0,018				
Stream water		0,094	0,087					0,027	0,028			

Kindla	Anions						Cations					
Nilidia	ATIIOTIS	Mean	Median	CV	no	n _T	Cations	Mean	Median	CV	no	n _T
Bulk deposition	SO ₄ 2- mEq/l	0,014		55%	_	12	Ca ²⁺ mEg/l	0,008	0,009	121%		12
Throughfall	OO4 IIIEq/ I	0,012	0,011	59%	12		ou meq/	0,007	0,006	135%		12
Soil water, recharge area, E, 8-20 cm		0,068	0,067	24%	13	3		0,014	0,011	61%	13	3
Soil water, recharge area, B, 33-45 cm		0,000		24%	8	3		0,015	0,011	73%	7	3
Soil water, recharge area, B, 33-43 cm		0,033	0,031	65%	13	3		0,013	0,013	43%	13	3
						4			-	15%	4	
Groundwater, recharge area, 2,4 m		0,062	0,060	13%	4			0,013	0,012	-		4
Groundwater, discharge area, 1,1 m		0,121	0,121	5%	4	4		0,146	0,150	9%	4	4
Stream water	0. 5 //	0,076	0,072	36%	23	23	2	0,023	0,023	24%		23
Bulk deposition	Cl ⁻ mEq/l	0,016	0,015	61%	12		Mg ²⁺ mEq/l	0,005	0,005	55%	12	12
Throughfall		0,016	0,014	72%	12	12		0,007	0,006	105%		12
Soil water, recharge area, E, 8-20 cm		0,084	0,070	32%	13	3		0,016	0,013	58%	13	3
Soil water, recharge area, B, 33-45 cm		0,092	0,088	19%	8	3		0,012	0,012	15%	7	3
Soil water, discharge area, 30-50 cm		0,075	0,074	9%	13	3		0,033	0,027	58%	ı	3
Groundwater, recharge area, 2,4 m		0,082	0,080	18%	4	4		0,015	0,015	9%	4	4
Groundwater, discharge area, 1,1 m		0,055	0,056	2%	4	4		0,071	0,073	11%	4	4
Stream water		0,068	0,072	19%	23	23		0,023	0,021	26%		23
Bulk deposition	NO ₃ mEq/I	0,016	0,016	55%	12	12	Na⁺ mEq/I	0,014	0,012	71%	12	12
Throughfall		0,007	0,006	110%	12	12		0,013	0,013	54%	12	12
Soil water, recharge area, E, 8-20 cm		0,001	0,000	159%	10	3		0,104	0,096	18%	13	3
Soil water, recharge area, B, 33-45 cm		0,000	0,000	116%	6	3		0,104	0,102	12%	7	3
Soil water, discharge area, 30-50 cm		0,001	0,000	206%	7	3		0,098	0,095	10%	13	3
Groundwater, recharge area, 2,4 m		0,000	0,000	68%	4	4		0,097	0,097	6%	4	4
Groundwater, discharge area, 1,1 m		0,005	0,004	49%	4	4		0,160	0,159	10%	4	4
Stream water		0,002	0,000	158%	23	23		0,098	0,099	11%	23	23
Bulk deposition	Alk/Ac mEq/I	-	-	-	-	-	K⁺ mEq/I	0,005	0,004	124%	12	12
Throughfall		-	-	-	-	-	,	0,026	0,014	135%	12	12
Soil water, recharge area, E, 8-20 cm		-0,051	-0,038	-70%	3	3		0,007	0,006	71%	13	3
Soil water, recharge area, B, 33-45 cm		-0,025	-0,031	-97%	4	3		0,005	0,005	32%	7	3
Soil water, discharge area, 30-50 cm		-0,020		-123%	2	2		0,005	0,004	73%	13	3
Groundwater, recharge area, 2,4 m		-0,014	-	-104%	4	4		0,009	0,009	6%	4	4
Groundwater, discharge area, 1,1 m		0,221	0,221	14%	4	4		0,017	0,016	13%	4	4
Stream water		-0,043	-0,043	-13%	23	23		0,003	0,003	53%	23	23
Bulk deposition	RCOO mEq/I	0,015					NH₄⁺ mEq/I	0,017	0,013	116%	12	12
Throughfall		0,036		10000000000000000				0,007	0,005	124%		12
Soil water, recharge area, E, 8-20 cm		0,067		000000000000000000000000000000000000000				0,019	0,009	131%	11	3
Soil water, recharge area, B, 33-45 cm		0,026						0,019	0,001	150%	7	3
Soil water, discharge area, 30-50 cm		0.057						0,005	0,001	138%	8	3
Groundwater, recharge area, 2,4 m		0.019						0,001	0,000	141%	4	4
Groundwater, discharge area, 1,1 m		0,010	,	000000000000000000000000000000000000000				0,002	0,002	88%	4	4
Stream water		0,051	0,047					0,001	0,000	76%		23
Bulk deposition	ANC mEq/I	-0.014					H⁺ mEq/I	0,005	0,003	. 070		
Throughfall	ANG IIIE9/I	0,018					iii iiiEq/i	0,005	· · · · · ·			
Soil water, recharge area, E, 8-20 cm		-0.012						0,003	0,003			
Soil water, recharge area, E, 6-20 cm		-0,012	,					0,012	0,010			
Soil water, recharge area, 5, 55-45 cm		-0,031						0,011	· · · · · ·			
Groundwater, recharge area, 30-30 cm		-0,020						0,018				
Groundwater, discharge area, 1,1 m	1	0,213 0,001	0,217 0,002					0,001 0,020	0,001 0,021			

							Cations					
		Mean	Median	CV	n _o	n _T		Mean	Median	CV	n_0	n _T
Bulk deposition	SO ₄ ²⁻ mEq/l	0,009	0,007	50%	12	12	Ca ²⁺ mEq/I	0,004	0,003	215%	12	12
Throughfall		0,008	0,007	51%	12	12		0,006	0,005	73%	12	12
Soil water, recharge area, E, 8-20 cm		0,009	0,009	17%	2	2		0,048	0,018	175%	6	3
Soil water, recharge area, B, 33-45 cm		0,027	0,020	43%	6	3		0,010	0,006	73%	9	3
Soil water, discharge area, 30-50 cm		0,035	0,034	20%	4	3		0,059	0,060	28%	5	3
Groundwater, recharge area, 3,2 m		0.034	0.034	11%	2	2		0.060	0.060	6%	2	2
Groundwater, discharge area, 1,1 m		0,026	0,026	0%	2	2		0,030	0,030	9%	3	3
Stream water		0,030	0,028	33%	23	23		0,063	0,062	15%	23	23
Bulk deposition	Cl ⁻ mEq/l	0,007	0,005	218%	12	12	Mg ²⁺ mEq/l	0,002	0,002	105%	12	12
Throughfall		0,011	0,007	111%		12	5 1	0,004	0,004	83%	12	12
Soil water, recharge area, E, 8-20 cm		0,033	0,033	2%	2	2		0,054	0,019	128%	6	3
Soil water, recharge area, B, 33-45 cm		0,021	0,021	59%	6	3		0,009	0,008	48%	9	3
Soil water, discharge area, 30-50 cm		0,017	0,017	5%	4	3		0,020	0,021	16%	5	3
Groundwater, recharge area, 3,2 m		0,017	0,017	8%	2	2		0,016	0,016	9%	2	2
Groundwater, discharge area, 1,1 m		0,022	0,022	13%	2	2		0,013	0,014	25%	3	3
Stream water		0,024	0,023	16%	23	23		0,027	0,027	16%	23	23
Bulk deposition	NO ₃ mEq/l	0,010	0,009	42%	12	12	Na⁺ mEq/I	0,006	0,004	187%	12	12
Throughfall		0,005	0,002	83%	12	12		0,010	0,006	92%	12	12
Soil water, recharge area, E, 8-20 cm		0,000	0,000	-	1	1		0,088	0,076	47%	6	3
Soil water, recharge area, B, 33-45 cm		-	-	-	-	-		0,034	0,036	29%	9	3
Soil water, discharge area, 30-50 cm		-	-	-	-	-		0,062	0,064	16%	5	3
Groundwater, recharge area, 3,2 m		0,002	0,002	11%	2	2		0,053	0,053	4%	2	2
Groundwater, discharge area, 1,1 m		0,000	0,000	110%	3	3		0,047	0,045	12%	3	
Stream water		0,000	0,000	87%	23	23		0,067	0,070	13%	23	23
Bulk deposition	Alk/Ac mEq/I	-	-	-	-	-	K⁺ mEq/I	0,001	0,001	174%	12	12
Throughfall		-	-	-	-	-		0,013	0,011	71%	12	12
Soil water, recharge area, E, 8-20 cm		-0,309	-0,309	-	1	1		0,019	0,018	48%	6	3
Soil water, recharge area, B, 33-45 cm		0,003	0,004	148%	4	3		0,004	0,004	33%	9	3
Soil water, discharge area, 30-50 cm		0,089	0,085	19%	3	3		0,002	0,002	52%	4	3
Groundwater, recharge area, 3,2 m		0,082	0,082	0%	2	2		0,007	0,007	20%	2	2
Groundwater, discharge area, 1,1 m		0,044	0,055	45%	3	3		0,003	0,003	22%	3	3
Stream water		0,035	0,038	59%	23	23		0,004	0,004	53%	23	23
Bulk deposition	RCOO ⁻ mEq/l	0,011	0,009				NH₄⁺ mEq/I	0,008	0,004	97%	12	12
Throughfall		0,030						0,004	0,001	94%	12	12
Soil water, recharge area, E, 8-20 cm		0,280						0,001	0,001	21%	3	3
Soil water, recharge area, B, 33-45 cm		0,019						0,000	0,000	95%	5	3
Soil water, discharge area, 30-50 cm		0,016						0,000	0,000	64%	3	3
Groundwater, recharge area, 3,2 m		0,011	0,011					0,001	0,001	13% 83%	2	2 2
Groundwater, discharge area, 1,1 m Stream water		0,016 0.078	0,016 0,082					0,003	0,003 0.000	45%	23	23
	ANC mEa/l						LIt ma F or /I		-,	4370	~~	~~~
Bulk deposition Throughfall	ANC mEq/I	-0,012 0.010	-0,011 0.009				H⁺ mEq/I	0,008 0.006	0,007 0.005			
Soil water, recharge area, E, 8-20 cm		0,010	-,					0,000	0,003			
Soil water, recharge area, E, 8-20 cm		######						0,737	· '			
Soil water, discharge area, 30-50 cm		######	######					0,003				
Groundwater, recharge area, 3,2 m		0.083	0,083					0,002	0,003			
Groundwater, recharge area, 3,2 m		0,085	0,083					0,007	0,007			
Stream water		0,106	0,112					0,002	0,002			

Sub-physiologic (1994)		I	Gårdsjö	n				Aneboda					Kindla					Gammtr	ratten			
Throughouse A. S.		!			CV	no	n _T		Median	CV	no	n _T		Median	CV	no	n _T			CV	no	n _T
Throughouse A. S.	Bulk deposition	Al tot mg/l	-	-		-	-						-		-	-	-		-	-	-	-
Salvatine, nethogo ann. p. 8-00 and Called Marker (1998) and property of the control of the cont	•		-	-	-	-	-		0,01				-	-	-	-	-	-	-	-	-	-
Salvater, discharge and, 3-0-00 m. Salvater, discharge and, 3-0-00 m. Salvater, discharge and, 3-0-00 m. Salvater, discharge and, 1-1-1 m. Salvater, dis	Soil water, recharge area, E, 8-20 cm	(AI_ICPAES)	1,37	1,37	7%	2	2	0,76	0,94	42%	3	3	1,02	0,80	47%	13	3	1,59	1,82	44%	6	3
Gouchester, echange ana, 2,4-52, m. Co. 65, 0,75 275 4 4 3 1,00 1		I '		1,20	7%			,	0,81			-	0,68	0,62	23%				0,12		-	
General section and section of the s	Soil water, discharge area, 30-50 cm	I	0,51	0,51	4%	2	2	0,76	0,73	51%	13	3	0,66	0,71	29%	13	3	0,12	0,07	115%		
State desposition Question Qu	Groundwater, recharge area, 2,4-3,2 m	!	0,65	0,72	22%	4	3	1,13	1,15	48%	4	4	0,53	0,53	6%	4	4	0,13	0,13	55%	2	2
Size reportion Find programs (1, 80.00 or more) (1, 10.00 or more) (1	Groundwater, discharge area, 1-1,1 m	!	0,76	0,73	20%	4	4	0,71	0,69	42%	4	4	0,13	0,03	151%	4	4	0,24	0,24	19%	3	3
Throughfull Contact	Stream water		0,65	0,68	13%	12	11	0,56	0,56	29%	24	24	0,53	0,51	18%	23	23	0,24	0,23	35%	23	23
Sal waker, selt-age east, E. 8-20 on Solve (active) age east, E. 8	Bulk deposition	Al tot mg/l	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Solve with contemps and, 8, 33-45 cm 5 or 5 o	Throughfall	(ambient pH)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sol wester, declarge area, 9, 90.00 cm (General eter, declarge area, 1-1 m)	Soil water, recharge area, E, 8-20 cm	(Al_NI)	-	-	-	-	-	0,39	0,39	-	1	1	0,78	0,71	51%	4	3	1,96	2,02	11%		
Controller Con	Soil water, recharge area, B, 33-45 cm		-	-	-	-	-	0,93	0,63		8	3	0,61	0,53	31%	6	3	0,13	0,10	84%		3
General colorange area, 1-1 m Series Serie	Soil water, discharge area, 30-50 cm		-	-	-	-	-	0,67	0,63	63%	8	3	0,55	0,58	19%	5	3	0,11	0,05	120%		
Steam water No graph Carbon Carb	, , , ,	!	-	-	-	-	-															
Bill deposition (makes pt p)			-	-	-	-		,	,					,					,			
Throughfull Services, rechange areas, 1,8-20 cm (A)(CIMS.MS) 0,98 0,98 1,79 0,79 0,73 34, 2 2 0,77 0,73 0,73 34, 2 2 0,77 0,73 0,73 34, 2 3 0,70 0,70 3,73 1,739 4 3 0,00 0,00 1,00 4 3 5,00 water, rechange areas, 3-50 cm (A)(CIMS.MS) 0,75 0,73 34, 2 2 0,75 0,73 0,73 0,73 0,73 1,739 4 3 0,00 0,00 1,00 1,00 1,00 1,00 1,00 1,	Stream water		-	-	-	-	-	0,55	0,53	29%	23	23	0,51	0,49	17%	23	23	0,23	0,24	34%	22	22
Saw water, no-hange area, E, 8-20 cm (ALLCRUB) 0,98	· · · · · · · · · · · · · · · · · · ·		-	-	-	•	-	-		-	-	ı	-	-	-	,		-	-	-	ı	1
Sal waster, nethange area, B, 33-45 cm	-			-	-	-	-	-			-	-		-	-	-	-			-	-	-
Sal water, dechange area, 36-90 cm		(AI_ICPKJB)	,	,				,	,					,					,			
Coundwater, rechange areas, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					-			,				-		,								
Secundary Secu		!			-									,								
Stream water				,				,														
Balk deposition Fe mg/l O,88									,					,				,	,			
Throughfull Sci water, recharge area, 8, 33-45 cm Soil water, recharge area, 8, 33-45 cm Soil water, recharge area, 9, 53-45 cm Soil water, recharge area, 1, 1-1 m Soil water, recharge area, 1, 1-2 m Soil water, recharge a		ļ	0,55	0,60	22%	12	11	0,33	0,34	40%	24	24	0,23	0,21	34%	23	23		0,18	32%	23	23
Sal water, rechange area, g. 8, 24 Co cm Soil water, rechange area, g. 8, 24 Co cm Soil water, deschange area, 3, 33 - 50 cm Control, deschange area, 3, 30 - 50 cm Soil water, deschange area, 3, 30 - 50 cm Soil water, deschange area, 3, 30 - 50 cm Soil water, deschange area, 3, 30 - 50 cm Soil water, deschange area, 3, 30 - 50 cm Soil water, deschange area, 1, 1, 1 m Soil water, deschange area, 3, 30 - 50 cm Soil water,	· · · · · · · · · · · · · · · · · · ·	Al inorg mg/l	-			-	-	-		-	-]	-]	-		-	-]	-]				-	-
Sal water, rechange area, 8, 33-34 cm soliton water. Finding area, 8, 13-34 cm soliton water. Finding area, 3, 10-34 cm soliton water. Finding area, 10-14 cm soliton water. Finding area, 10-14 cm soliton water. Finding area, 3, 10-34 cm solit		I					-	-		-	-	-			-	-	-				-	-
Sal water, descharge area, 3,9-3,0-5 cm (concluster, recharge area, 2,4-3,2 m (a) 0,00 0,00 1,00 1,00 1,00 1,00 1,00 1,0	, , ,		,	,	-			,	,	-				,				,				
Sourharder, recharge area, 2,4-3,2 m		I	,	,	-			,	,					,					,			
Geundwater, descharge area, 1-1, 1 m Ol 3 0,14 39% 4 4 0,05 0,26 0,28 0,28 0,30 0,30 0,30 15% 23 23 23 23 23 23 23 2		I																				
Steam water 0,10 0,10 33% 12 13 0,23 0,25 13 0,23 0,05 13 0,23 0,05 13 0,23 0,05 13 0,23 0,05 13 0,23 13 0,23 0,05 13 0,05 13 0,05 13 13 0,05 13 13 0,05 13 13 0,05 13 13 0,05 13 13 0,05 13 13 0,05 13 13 0,05 0,05 13 0,05 13 0,05 0,05 13 0,05 0,05 13 0,05 0,05 13 0,05 0,05 13 0,05 0,05 13 0,05 0,05 13 0,05 0,05 13 0,05 0,05 13 0,05 0,05 13 0,05 0,05 13 0,05 0,05		I	,	,																		
Bisk deposition Fe mg/l		I							,					,					,			
Throughful Soli water, recharge area, B, 3-20 cm			0,10	0,10	53%	12	11						0,30	0,30	15%	23	23	0,05	0,05	51%	23	23
Sol water, encharge area, B, 8-20 cm Sol water, encharge area, B, 8-20 cm Sol water, encharge area, B, 3-34 5 cm U, 20 1	· ·	Fe mg/I	-	-	-	•	-						-	-	-	,		-	-	-	ı	1
Sol water, recharge area, 8, 33-45 cm 50 water, decharge area, 9, 33-45 cm 50 water, decharge area, 30-50 cm 40 mm	Throughfall		-	-	-	-		,	0,01					-	-	-	-		-	-	-	-
Sol water, decharge area, 3.0-50 cm G		!	,	,				,	,					,					,			
Scoundwater, recharge area, 2,4-3,2 m Scoundwater, recharge area, 1,1-1 m Scoundwater Scoundwater Scoundwater Scota Scoundwater Scoundwater Scoundwater Scoundwater Scota Scoundwater Scoundwater Scota Scoundwater Scota Sc	Soil water, recharge area, B, 33-45 cm		,					,				-		,					0,02		-	
Sourdwater, discharge area, 1-1,1 m 0,93 0,86 21 m 1 m 1 m 1 m 1 m 2 m	Soil water, discharge area, 30-50 cm		0,06					,				3					3					
Stream water	Groundwater, recharge area, 2,4-3,2 m		0,71	0,87	61%			0,04				4	0,06	0,07	57%	4	4		0,05	129%		
Bilk deposition Min mg/l Soli water, rechange area, 8, 8-20 cm O,004 0,004 47% 2 2 0,038 0,003 125% 12 12		!		,				,														
Trroughfall Soil water, recharge area, E, 8-20 cm			0,60	0,67	30%	12	11					24	0,49	0,37	60%	23	23	0,78	0,63	57%	23	23
Solf water, recharge area, 8, 8-20 cm	•	Mn mg/l	-	-	-	-	-						-	-	-	-	-	-	-	-	-	-
Salt water, recharge area, B, 33-45 cm 0,004 0,004 47% 2 2 2 0,088 0,048 125% 13 3 0,011 0,006 125% 13 3 0,009 0,004 132% 9 3 3 or 36 or	· ·		-	-			-							-	-	-	-	-	-	-	-	-
Soll water, discharge area, 3.0-50 cm of coundwater, recharge area, 2.4-3.2 m of coundwater, recharge area, 2.4-3.2 m of coundwater, recharge area, 2.4-3.2 m of coundwater, recharge area, 1-1,1 m substituting the second of the		!	,	,	-				,				,	,				,	,			
Goundwater, recharge area, 2,4-3,2 m			,	-									,					,				
Goundwater, discharge area, 1-1, 1 m Stream water 0,017 0,014 50% 4 0,019 0,010 25% 4 4 0,006 0,004 85% 4 0,006 0,004 35% 23 23 23 23 23 23 23 2													,					,				
Stream water Cu µg/I			,	,									,	,				,				
Bulk deposition Cu μg/l - - - - 0,49 0,50 53% 12 12 - - - 0, 0 - - 0, 0 - - 0, 0	, , , ,	!	,	0,014	50%	4	4	0,119	0.112	35%						4	4	0.010	0,011			
Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm	Stream water	l l																		CEO/	23	23
Soil water, rechange area, B, 33-45 cm	Bulk deposition		0,020			12	11	,	0,063			24	0,068	0,064	35%	23			0,017	0370	_	
Soil water, recharge area, B, 33-45 cm	Sam deposition	Cu µg/l	0,020 -			12	11	0,49	0,063	53%	12	12	-	0,064	35%	_			0,017	-	-	-
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, recharge area, 8,4-3,2 m Groundwater, recharge area, 8, 33-45 cm Soil water, discharge area, 8, 33-45 cm Soil water, discharge area, 2,4-3,2 m Groundwater, recharge area, 8, 33-45 cm Soil water, discharge area, 8, 33-45 cm Soil water, recharge area, 8, 33-45 cm Soil water, discharge area, 2,4-3,2 m Groundwater, recharge area, 2,4-3,2 m Groundwater, recharge area, 8, 33-45 cm Soil water, recharge area, 2,4-3,2 m Groundwater, recharge area, 2,4-3,2 m Groundwater, recharge area, 8, 33-45 cm Soil water, recharge area, 8, 33-45 cm Soil water, recharge area, 8, 33-45 cm Soil water, recharge area, 2,4-3,2 m Groundwater, recharge area, 8, 33-45 cm Soil water, recharge area, 2,4-3, 2 m Groundwater, recharge area, 8, 33-45 cm Soil water, recharge area, 8,	Throughfall	Cu µg/I	0,020 - -			12 - -	11 - -	0,49 0,96	0,063 0,50 0,80	53% 232%	12 12	12 12	-	0,064 - -	35% - -	_			0,017 - -	-	-	
Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Pb µg/l	Throughfall Soil water, recharge area, E, 8-20 cm	Cu μg/I	0,020 - - -			-	11 - - -	0,49 0,96 5,6	0,063 0,50 0,80 5,76	53% 232% 13%	12 12 3	12 12 3	-	0,064 - - -	35% - - -	_			0,017 - - -	- - -	-	
Groundwater, discharge area, 1-1,1 m	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm	Cu μg/l	- - - -					0,49 0,96 5,6 3,19	0,063 0,50 0,80 5,76 2,04	53% 232% 13% 94%	12 12 3 13	12 12 3 3	-	-	35% - - - -	_			0,017 - - - -	- - - -		
Stream water - - - - 0,55 0,49 37% 12 12 - - - 0,5 - - 0,5 - 0,0 - - 0,5 - 0,5 0,49 37% 12 12 - - - 0,5	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm	Cu μg/l	0,020 - - - - -					0,49 0,96 5,6 3,19 3,97	0,063 0,50 0,80 5,76 2,04 2,13	53% 232% 13% 94% 130%	12 12 3 13	12 12 3 3	-	-	35% - - - - -	_			0,017 - - - -	- - - - -		
Bulk deposition Ph μg/l 0,51 0,30 97% 12 12	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m	Cu μg/l	- - - - - -					0,49 0,96 5,6 3,19 3,97 0,59	0,063 0,50 0,80 5,76 2,04 2,13 0,55	53% 232% 13% 94% 130% 30%	12 12 3 13 13 4	12 12 3 3 4	-	-	35% - - - - -	_			0,017 - - - - -			
Throughfall	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m	Cu μg/l	-	- - - - - - -	- - - - - - -			0,49 0,96 5,6 3,19 3,97 0,59 1,57	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26	53% 232% 13% 94% 130% 30% 69%	12 12 3 13 13 4 4	12 12 3 3 4 4		-	35%	_			0,017 - - - - - -			
Soil water, recharge area, E, 8-20 cm	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water		-	- - - - - - -	- - - - - - -			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49	53% 232% 13% 94% 130% 30% 69% 37%	12 12 3 13 13 4 4 12	12 12 3 3 4 4 12		-	35%	_			0,017 - - - - - - -			
Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water 1	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition		-	0,010 - - - - - - -	26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49	53% 232% 13% 94% 130% 30% 69% 37%	12 12 3 13 13 4 4 12	12 3 3 3 4 4 12	-	-	35%	1 1 1 1 1 1 1 1		- - - - - - -	-			
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Coundwater, discharge area, 1-1,1 m Coundwater, disch	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall		-	0,010 - - - - - - - - -	26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23	53% 232% 13% 94% 130% 30% 69% 37% 97% 120%	12 12 3 13 13 4 4 12 12	12 3 3 4 4 12 12	-		35%	1 1 1 1 1 1 1 1				-		
Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm		-	0,010 - - - - - - - - -	26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8	53% 232% 13% 94% 130% 30% 69% 37% 97% 120% 83%	12 12 3 13 13 4 4 12 12 12 3	12 3 3 4 4 12 12 3	-		35%	1 1 1 1 1 1 1 1				-		
Groundwater, discharge area, 1-1,1 m Stream water	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm		-	0,010 - - - - - - - - -	26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35	53% 232% 13% 94% 130% 30% 69% 37% 97% 120% 83% 65%	12 3 13 13 4 4 12 12 12 3 13	12 3 3 4 4 12 12 3 3			35%	1 1 1 1 1 1 1 1						
Stream water	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm		-	0,010 - - - - - - - - - - - -	26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35 0,54	53% 232% 13% 94% 130% 30% 69% 37% 97% 120% 83% 65% 63%	12 3 13 13 4 4 12 12 12 3 13 13	12 3 3 3 4 4 12 12 3 3 3			35%	1 1 1 1 1 1 1 1						
Bulk deposition Zn μg/l 3 3 51% 12 12	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m		-	0,010 - - - - - - - - - - - - -	26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35 0,54 0,11	53% 232% 13% 94% 130% 30% 69% 37% 97% 120% 83% 65% 63% 95%	12 3 13 13 4 4 12 12 12 3 13 13 4	12 3 3 4 4 12 12 3 3 4 4 12			35%	1 1 1 1 1 1 1 1		0,022				
Throughfall	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m		-	0,010 - - - - - - - - - - - - -	26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35 0,54 0,11 1,86	53% 232% 13% 94% 130% 30% 69% 37% 97% 120% 83% 65% 63% 95% 83%	12 3 13 13 4 4 12 12 12 3 13 4 4 4 12	12 3 3 4 4 12 12 3 3 4 4 4 12			35%			0,022				
Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-45 cm Soil water, discharge area, C,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Cd \(\mu \)	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water	Pb μg/I	-	0,010 - - - - - - - - - - - - -	26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35 0,54 0,11 1,86 1,17	53% 232% 13% 94% 130% 30% 69% 37% 97% 120% 83% 65% 63% 95% 83% 60%	12 3 13 13 4 4 12 12 3 13 13 4 4 4 12	12 3 3 4 4 12 12 3 3 4 4 12 12 12 3 4 4 12			35%			0,022				
Soil water, recharge area, 8, 33-45 cm Soil water, recharge area, 30-50 cm Soil water, recharge area, 2,4-3,2 m Groundwater, recharge area, 1-1,1 m Stream water Cd \(\psi \) Cd \(\psi \) Soil water, recharge area, 8, 33-45 cm Soil water, recharge area, 1-1,1 m Cd \(\psi \) Soil water, recharge area, 1-1,1 m Stream water Cd \(\psi \) Soil water, recharge area, 1-1,1 m Soil water, recharge area, 8, 33-45 cm Soil water, recharge area, 8, 33-45 cm Soil water, recharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Soil water, recharge area, 1-1,1 m Soil water, recharge area, 1-1,1 m Soil water, recharge area, 1-1,1 m Soil water, discharge area, 1-1,1 m Soil water, recharge area, 1-1,1 m Soil water, discharge area, 1-1,1 m Soil wat	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition	Pb μg/I	-	0,010 - - - - - - - - - - - - -	26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35 0,54 0,11 1,86 1,17 3	53% 232% 13% 94% 130% 30% 69% 37% 97% 120% 83% 65% 63% 95% 83% 60%	12 3 13 13 4 4 12 12 3 13 13 4 4 4 12 12 12 3	12 3 3 4 4 12 12 3 3 4 4 12 12 3 4 4 12			35%			0,022				
Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall	Pb μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35 0,54 0,11 1,86 1,17	53% 232% 13% 94% 130% 69% 37% 97% 120% 83% 65% 63% 95% 83% 60%	12 3 13 13 4 4 12 12 3 13 13 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12	12 3 3 4 4 12 12 3 3 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				
Groundwater, recharge area, 2,4-3,2 m Groundwater, recharge area, 1-1,1 m	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, 30-50 cm Groundwater, recharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm	Pb μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35 0,54 0,11 1,86 1,17 3 6 362	53% 232% 13% 94% 130% 69% 69% 120% 83% 65% 63% 95% 83% 60% 51% 112% 76%	12 3 13 13 4 4 12 12 3 13 13 4 4 12 12 12 3 13 13 13 4 4 12 12 3 13 13 13 13 13 13 13 13 13 13 13 13 1	12 3 3 4 4 12 12 12 3 3 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				
Groundwater, discharge area, 1-1,1 m	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, 8, 8-20 cm Soil water, recharge area, 8, 8-20 cm Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm	Pb μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 597 267	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35 0,54 0,11 1,86 1,17 3 6 6 6 2,44	53% 232% 13% 94% 130% 69% 37% 97% 120% 83% 65% 63% 95% 83% 60% 112% 76% 72%	12 3 13 13 4 4 12 12 12 3 13 4 4 12 12 12 12 3 13 13 13 4 4 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	12 3 3 4 4 12 12 3 3 3 4 4 12 12 3 3 3 4 4 12 12 3 3 3 3 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				
Stream water	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, 8, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm	Pb μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 597 267 214	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,88 1,35 0,54 0,11 1,86 362 244 94	53% 232% 13% 94% 130% 69% 37% 97% 120% 83% 65% 63% 95% 83% 60% 511% 76% 76% 112%	12 3 13 13 4 4 12 12 12 3 13 14 4 12 12 12 12 3 13 13 13 13	12 3 3 4 4 12 12 3 3 4 4 12 12 12 3 3 3 4 4 12 12 3 3 3 3 4 4 5 1 2 1 2 1 2 1 2 1 2 3 3 3 3 3 3 3 3 3 3			35%			0,022				
Bulk deposition	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 20-50 cm Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 30-50 cm Soil water, recharge area, E, 8-20 cm Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-50 cm Groundwater, recharge area, 2,4-3,2 m	Pb μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 597 267 214 23	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,88 1,35 0,54 0,11 1,86 362 244 19	53% 232% 13% 94% 130% 69% 37% 97% 120% 65% 63% 95% 63% 95% 6112% 76% 76% 72%	12 3 13 13 4 4 12 12 12 3 13 4 4 12 12 12 3 13 4 4 12 12 12 3 13 4 4 12 12 12 13 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12	12 3 3 4 4 12 12 3 3 4 4 12 12 12 3 3 4 4 12 12 3 3 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				
Throughfall 0,02 0,02 124% 12 12	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, 8, 33-45 cm Groundwater, recharge area, 30-50 cm Groundwater, recharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m	Pb μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 597 267 214 23 18	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35 0,54 0,11 1,86 1,17 3 6 362 244 94 19 16	53% 232% 13% 94% 69% 37% 97% 120% 65% 63% 95% 63% 51% 112% 76% 72% 656 60% 51%	12 3 13 13 4 4 12 12 12 3 13 4 4 12 12 12 3 13 4 4 12 12 12 3 13 4 4 4 12 12 12 13 13 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12	12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 4 4 4 12 12 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			35%			0,022				
Soil water, recharge area, E, 8-20 cm 0,24 0,26 81% 3	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, discharge area, B, 33-45 cm Soil water, discharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, B, 33-45 cm Groundwater, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water	Pb μg/I Ζη μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 7 97 267 214 23 18 6	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,85 0,54 0,11 1,86 1,17 3 6 362 244 94 19 16 5	53% 232% 13% 94% 130% 30% 69% 77% 120% 83% 65% 83% 60% 51% 72% 156% 62% 62% 32%	12 13 13 14 4 12 12 12 3 13 4 4 12 12 12 3 13 13 4 4 12 12 12 12 3 13 4 4 12 12 12 12 12 13 13 14 14 14 15 16 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 3 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				
Soil water, recharge area, 8, 33-45 cm 0,14 0,06 106% 13	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, 2,4-3,2 m Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition	Pb μg/I Ζη μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 267 214 23 18 6	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,88 1,35 0,54 0,11 1,86 362 244 94 19 16 5	53% 232% 13% 30% 69% 37% 65% 65% 63% 63% 60% 51% 112% 62% 62% 62% 62% 46%	12 13 13 14 4 12 12 12 3 13 4 4 12 12 12 3 13 14 4 12 12 12 13 13 14 4 12 12 12 12 13 13 14 14 14 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 3 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				
Soil water, discharge area, 30-50 cm 0,06 0,06 34% 13	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-45 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-45 cm Soil water, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall	Pb μg/I Ζη μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 597 267 214 23 18 6 0,02 0,02	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,88 1,35 0,54 0,11 1,86 362 244 94 19 16 5 0,02 0,02	53% 232% 13% 130% 30% 69% 97% 120% 83% 65% 63% 65% 65% 65% 62% 55% 62% 55% 62% 62% 62%	12 12 3 13 4 4 12 12 12 3 13 4 4 12 12 3 13 13 4 4 12 12 12 3 13 13 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12	12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 3 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12						0,022				
Groundwater, recharge area, 2,4-3,2 m	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, 30-50 cm Groundwater, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm	Pb μg/I Ζη μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 597 267 214 23 18 6 0,02 0,02 0,02	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,85 1,35 0,11 1,86 1,17 3 6 362 244 94 19 16 5 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,02	53% 232% 13% 94% 130% 30% 69% 83% 65% 83% 65% 51% 112% 76% 72% 55% 32% 46% 81%	12 13 13 14 4 12 12 13 13 14 4 12 12 3 13 13 4 4 12 12 3 13 4 4 12 12 3 13 4 4 12 12 3 13 4 4 4 12 12 13 13 13 13 13 13 13 13 13 13	12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 3 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				
Groundwater, discharge area, 1-1,1 m	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-45 cm Soil water, discharge area, 2,4-3,2 m Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, B, 33-45 cm Soil water, recharge area, 30-50 cm Groundwater, recharge area, 30-50 cm Groundwater, discharge area, 3,3-45 cm Soil water, recharge area, 3,1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, 3,1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, 8, 8-20 cm Soil water, recharge area, 8, 8-20 cm	Pb μg/I Ζη μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 597 267 214 23 18 6 0,02 0,02 0,02 0,02 0,02 0,02	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,8 1,35 0,54 0,11 1,86 1,17 3 6 362 244 94 19 16 5 0,02 0,02 0,06	53% 232% 13% 94% 130% 30% 69% 83% 65% 83% 60% 51% 152% 76% 72% 46% 32% 46% 124% 124% 124% 124% 124% 124% 124% 124	12 3 13 13 4 4 12 12 12 3 13 14 4 12 12 12 3 13 13 4 4 12 12 12 3 13 13 13 13 13 13 13 13 13 13 13 13 1	12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 3 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				
	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, recharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, 30-50 cm Groundwater, recharge area, 2,4-3,2 m Groundwater, discharge area, 30-50 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 2,4-3,2 m Groundwater, recharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-45 cm	Pb μg/I Ζη μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 597 214 23 18 6 0,02 0,02 0,02 0,04 0,14 0,06	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,88 1,35 0,54 0,11 1,86 362 244 94 19 16 5 0,02 0,03 0,0	53% 232% 13% 130% 30% 69% 120% 83% 65% 63% 95% 63% 51% 112% 76% 62% 62% 46% 124% 81% 106% 34%	12 3 13 13 4 4 12 12 13 13 14 4 12 12 13 13 14 4 12 12 13 13 14 4 12 12 13 13 13 13 14 15 16 17 17 18 18 18 18 18 18 18 18 18 18	12 12 3 3 4 4 12 12 3 3 4 4 12 12 3 3 3 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				
Stream water - - - 0,06 0,06 23% 12 12 - - - - - - - - -	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 1-1,1 m Stream water Groundwater, discharge area, 1-1,1 m Stream water Throughfall Soil water, recharge area, 2,4-3,2 m Groundwater, discharge area, 30-50 cm Groundwater, recharge area, E, 8-20 cm Soil water, recharge area, E, 8-20 cm Soil water, recharge area, E, 8-50 cm Groundwater, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-45 cm Soil water, recharge area, B, 33-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, recharge area, B, 33-50 cm Groundwater, recharge area, 2,4-3,2 m	Pb μg/I Ζη μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 597 267 214 23 18 6 0,02 0,02 0,02 0,24 0,04 0,06 0,01	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,88 1,35 0,54 0,11 1,86 362 244 94 19 16 5 0,02 0,02 0,02 0,26 0,06 0,06 0,01	53% 232% 13% 130% 30% 69% 97% 120% 83% 65% 63% 65% 65% 65% 62% 55% 62% 55% 62% 124% 81% 106% 81% 4000 44% 49%	12 3 13 13 4 4 12 12 13 13 14 4 12 12 13 13 4 4 12 12 13 13 13 4 4 12 12 13 13 13 14 16 17 18 18 18 18 18 18 18 18 18 18	12 12 3 3 4 4 12 12 3 3 3 4 4 12 12 3 3 3 4 4 12 12 12 3 3 3 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				
	Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, E, 8-20 cm Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 1-1,1 m Stream water Bulk deposition Throughfall Soil water, recharge area, B, 33-45 cm Soil water, discharge area, 30-50 cm Groundwater, discharge area, 2,4-3,2 m Groundwater, discharge area, 2,4-3,2 m Groundwater, recharge area, 2,4-3,5 cm Soil water, recharge area, B, 8-20 cm Soil water, recharge area, B, 33-45 cm Groundwater, recharge area, B, 33-45 cm Groundwater, recharge area, B, 33-45 cm Groundwater, recharge area, B, 33-45 cm	Pb μg/I Ζη μg/I			26%			0,49 0,96 5,6 3,19 3,97 0,59 1,57 0,55 0,51 0,24 13,2 1,41 0,68 0,19 2,55 1,30 3 7 597 267 214 23 18 6 0,02 0,02 0,02 0,14 0,02 0,14 0,02 0,14 0,02 0,02 0,02 0,02 0,02 0,03 0,03 0,03	0,063 0,50 0,80 5,76 2,04 2,13 0,55 1,26 0,49 0,30 0,23 10,86 1,35 0,54 0,11 1,86 362 244 94 19 16 5 0,02 0,03 0,0	53% 232% 13% 30% 69% 83% 65% 83% 65% 83% 60% 112% 76% 55% 32% 66% 46% 1124% 81% 106% 34% 49% 39%	12 3 13 13 4 4 12 12 3 13 13 4 4 12 12 3 13 13 14 4 12 12 3 13 13 4 4 12 12 12 3 13 13 4 4 12 12 12 13 13 14 14 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	12 12 3 3 4 4 12 12 3 3 3 4 4 12 12 3 3 3 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12			35%			0,022				

		Gårdsj	ön				Aneboda	1				Kindla					Gamm	tratten			\neg
		Mean	Median	CV	n _o	n _T	Mean	Median	CV	n _o	n _T	Mean	Median	CV	n _o	n _T	Mean	Median	CV	no	n _T
Bulk deposition	Hg ng/I	-	-	-	-	-	3,9	3,3	86%	12	12	-	-	-	-	-	-	-	-	-	-
Throughfall		-	-	-	-	-	6,3	6,6	147%	12	12	-	-	-	-	-	-	-	-	-	-
Soil water, recharge area, E, 8-20 cm		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Soil water, recharge area, B, 33-45 cm		-	-	-	-	-	3,5	2,2	75%	5	3	-	-	-	-	-	-	-	-	-	-
Soil water, discharge area, 30-50 cm		-	-	-	-	-	13,9	13,9	73%	2	1	-	-	-	-	-	-	-	-	-	-
Groundwater, recharge area, 2,4-3,2 m		-	-	-	-	-	1,0	0,4	126%	4	4	-	-	-	-	-	-	-	-	-	-
Groundwater, discharge area, 1-1,1 m		-	-	-	-	-	6,3	5,6	71%	4	4	-	-	-	-	-	-	-	-	- 1	-
Stream water		-	-	-	-	-	10,5	9,2	56%	12	12	-	-	-	-	-	-	-	-	- 1	-
Bulk deposition	Metyl-Hg ng/l	-	-	-	-	-	0,2	0,2	97%	12	12	-	-	-	-	-	-	-	-	- 7	-
Throughfall		-	-	-	-	-	0,2	0,2	55%	12	12	-	-	-	-	-	-	-	-	- 1	-
Soil water, recharge area, E, 8-20 cm		-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-
Soil water, recharge area, B, 33-45 cm		-	-	-	-	-	0,08	0,03	0,86	5	3	-	-	-	-	-	-	-	-	- 1	-
Soil water, discharge area, 30-50 cm		-	-	-	-	-	0,08	0,08	0,88	2	1	-	-	-	-	-	-	-	-	- 1	-
Groundwater, recharge area, 2,4-3,2 m		-	-	-	-	-	0,06	0,06	0%	4	4	-	-	-	-	-	-	-	-	- 1	-
Groundwater, discharge area, 1-1,1 m		-	-	-	-	-	0,57	0,57	48%	4	4	-	-	-	-	-	-	-	-	_	-
Stream water		-	-	-	-	-	1,5	1,0	129%	12	12	-	-	-	-	-	-	-	-	_	-
Bulk deposition	Cr μg/I	-	-	-	-	-	0,08	0,07	56%	12	12	-	-	-	-	-	-	-	-	т	-
Throughfall	1	-	-	-	-	-	0,05	0,06	208%	12	12	-	-	-	-	-	l -	-	-	_	-
Soil water, recharge area, E, 8-20 cm		_	_	_	_	_	0,60	0,58	43%	3	3	_	_	_	_	_	_	-	_	_	_
Soil water, recharge area, B, 33-45 cm		_	_	_	_	_	0.46	0,34	70%	13	3	_	_	_	_	_	_	-	_	_	_
Soil water, discharge area, 30-50 cm		_	_	_	_	_	0,32	0,26	61%	13	3	_	_	_	_	_	_	-	_	_	_
Groundwater, recharge area, 2,4-3,2 m		-	-	_	_	_	0.19	0.19	33%	4	4	_	-	_	_	-	_	-	_	_	-
Groundwater, discharge area, 1-1,1 m		-	-	_	_	_	0.72	0,67	49%	4	4	_	-	_	_	-	_	-	_	_	-
Stream water		-	-	_	_	_	0,43	0,39	41%	12	12	_	-	_	_	-	_	-	_	_	-
Bulk deposition	Ni μg/I	-	-	-	-	-	0,12	0,13	38%	12	12	-	-	-	-	-	-	-	-	▭	
Throughfall	pg	_	_	_	l -	_	0,21	0,16	182%	12	12	_	_	_	l _	١.	_	_	_	_	l _
Soil water, recharge area, E, 8-20 cm		_	_	_	l -	_	1,90	1,44	69%	3	3	_	_	_	l _	١.	_	_	_	_	_
Soil water, recharge area, B, 33-45 cm		_	_	_	l -	_	1.07	0,84	53%	13	3	_	_	_	l _	١.	_	_	_	_	_
Soil water, discharge area, 30-50 cm		_	_	_	l -	_	0,58	0,55	38%	13	3	_	_	_	l _	١.	_	_	_	_	_
Groundwater, recharge area, 2,4-3,2 m		_	_	_	l -	_	1,82	1,94	22%	4	4	_	_	_	l _	١.	_	_	_	_	l _
Groundwater, discharge area, 1-1,1 m		_	_	_	l -	_	1,60	1,17	76%	4	4	_	_	_	l _	١.	_	_	_	_	l _
Stream water		_	_	_	_	_	0,73	0,65	38%	12	12	l -	_	_	١.		l -	_	_	_	
Bulk deposition	Co μg/I	-	_	-	Η-	_	0,01	0,01	100%			-	-	-	-	-	-	-		H	
Throughfall	ου μαν τ	_	_	_	_	_	0,02	0,02	264%	12	12	l -	_	_	١.		l -	_	_	_	_
Soil water, recharge area, E, 8-20 cm			_	_	_		0,33	0,36	35%	3	3		_					_	_		
Soil water, recharge area, B, 33-45 cm		l _	_	_	1 _	_	1.17	0.63	120%	13	3	_	_	_	١.	١.		_	_	_	I _
Soil water, discharge area, 30-50 cm				_			0.64	0.49	81%	13	3		_						_		
Groundwater, recharge area, 2,4-3,2 m							2,15	2,22	56%	4	4		_						_		
Groundwater, discharge area, 1-1,1 m				_			1,45	1,20	41%	4	4		_		-			_	_		
Stream water							1,00	0,97	23%	12	12								_		
Bulk deposition	V μg/I				H		0,11	0.10	47%	12	12	-	-		H	H		_		H	H
Throughfall	ν <i>μ</i> g/1	-	_	_	-	_	0.10	0,10	162%				-	_	-	-	l -	-	-	-	
Soil water, recharge area, E, 8-20 cm		-	_	_	-	_	1.31	1.33	76%	3	3		-	_	-	-	l -	-	-	-	
Soil water, recharge area, E, 8-20 cm		-	_	_	-	_	0,18	0,13	59%	13	3	l -	-	_	-	-	l -	-	-	-	
Soil water, recharge area, B, 33-43 cm		-	_	_	-	_	0,18	0,13	96%	13	3	l -	-	_	-	-	l -	-	-	-	
Groundwater, recharge area, 2,4-3,2 m		-	_	_	-	_	0.09	0.10	32%	4	4	l -	-	_	-	-	l -	-	-	-	
Groundwater, discharge area, 1-1,1 m		-	_	_	-	_	3,19	2.89	36%	4	4	l -	-	_	-	-	l -	-	-	-	
Stream water		-	_	_	-	_	1.59	1,36	62%	12	12		_	_	-	-	l -	-	-	-	
Bulk deposition	Δο. μα/Ι	H-	_	-	F	_	0,06	0,05	46%	12			-	_	┢	Ė	_	_	_	H	H
Throughfall	As μg/l	I -	-	_	-	-	0.06	0,05	133%			_	-	-	1 -	1 -	l -	_	-	-	-
o .		-	-	-	-	-	.,	,		3			-	_	-	-	l -	-	-	-	-
Soil water, recharge area, E, 8-20 cm	I	I -	-	-	-	-	0,51	0,62	54%		3		-	_	1 -	-	l -	-	-	-	-
Soil water, recharge area, B, 33-45 cm	I	I -	-	-	-	-	0,11	0,08	54%	13		I -		_	1 -	-	l -	-	-	-	-
Soil water, discharge area, 30-50 cm		-	-	-	-	-	0,36	0,23	124%	13	3	- I	-	-	-	-	l -	-	-	-	-
Groundwater, recharge area, 2,4-3,2 m		-	-	-	-	-	0,06	0,05	34%	4	4	-	-	-	-	-	-	-	-	-	-
Groundwater, discharge area, 1-1,1 m		-	-	-	-	-	0,93	0,89	30%	4	4	I -	-	-	-	-	l -	-	-	-	-
Stream water	l		-	-	_	-	0,48	0,32	104%	12	12		_	-	1 -	<u> </u>		-		_	

Gårdsjön	Nitrogen,	Nitrogen, phosphorus & organic carbon fluxes (kg ha ⁻¹ y ⁻¹)									
	NH ₄ -N	NO ₃ -N	Org-N	Tot-N	PO ₄ -P	Tot-P	DOC				
Bulk deposition	3,9	3,9 3,6 1,2 8,7 - 0,09 2									
Throughfall	2,7	2,7 3,2 2,7 8,6 - 0,17									
Litterfall				17,9		1,31	809				
Stream water	0,12	0,34	2,77	3,24	-	0,04	150				

Aneboda	Nitrogen,	Nitrogen, phosphorus & organic carbon fluxes (kg ha ⁻¹ y ⁻¹)										
	NH ₄ -N	IH₄-N NO₃-N Org-N Tot-N PO₄-P Tot-P TOC										
Bulk deposition	2,9	1,8	1,1	5,7	-	0,26	29					
Throughfall	2,3	1,4	1,2	4,8	-	0,83	37					
Litterfall				16,8		1,26	733					
Stream water	0,04	0,22	1,91	2,18	0,006	0,07	85					

Kindla	Nitrogen,	Nitrogen, phosphorus & organic carbon fluxes (kg ha ⁻¹ y ⁻¹)									
	NH₄-N	₄ -N NO ₃ -N Org-N Tot-N PO ₄ -P Tot-P									
Bulk deposition	2,5	2,4	0,7	5,6	-	0,13	24				
Throughfall	1,1	1,0	0,14	56							
Litterfall				8,7		0,56	459				
Stream water	0,03	0,09	1,13	1,25	0,006	0,02	52				

Gammtratten	Nitrogen,	Nitrogen, phosphorus & organic carbon fluxes (kg ha ⁻¹ y ⁻¹)								
	NH₄-N	NO ₃ -N	Org-N	Tot-N	PO₄-P	Tot-P	TOC			
Bulk deposition	0,7	0,7 0,9 0,4 2,0 - 0,03								
Throughfall	0,3	0,4	-	0,13	27					
Litterfall				9,7		0,97	564			
Stream water	0,01	0,01	0,67	0,70	0,004	0,03	35			

Gårdsjön	Anion flu	Anion fluxes (mEq m ⁻² y ⁻¹)								
	SO ₄ ²⁻	SO_4^{2-} Cl NO_3 HCO_3 $RCOO$ $Sum(-)$ A								
Bulk deposition	21	69	25	0	11	126	-29			
Throughfall	28	197	23	0	43	291	18			
Litterfall	11									
Stream water	73	365	2,4	0	45	485	<i>13</i>			

Gårdsjön	Cation flu	ıxes (mEd	m ⁻² y ⁻¹)					
	Ca ²⁺	Mg ²⁺	Na⁺	K⁺	NH4⁺	H⁺	Sum(+)	Sum(+)-Sum(-)
Bulk deposition	9	15	58	5	28	12	126	0
Throughfall	24	41	156	45	19	6	291	0
Litterfall	1053	22	11	3				
Stream water	24	69	348	13	1	31	485	0

Aneboda	Anion flu	Anion fluxes (mEq m ⁻² y ⁻¹)									
	SO ₄ ²⁻	SO ₄ ²⁻ Cl ⁻ NO ₃ ⁻ HCO ₃ ⁻ RCOO ⁻ Sum(-)									
Bulk deposition	11	18	13	0	13	55	<i>-13</i>				
Throughfall	10	27	10	0	53	101	34				
Litterfall	8										
Stream water	62	69	1,6	0	42	1 <i>75</i>	28				

Aneboda	Cation flu	ıxes (mEd	m ⁻² y ⁻¹)					Cation fluxes (mEq m ⁻² y ⁻¹)									
	Ca ²⁺	Mg ²⁺	Na⁺	K⁺	NH4⁺	H⁺	Sum(+)	Sum(+)-Sum(-)									
Bulk deposition	4	5	16	3	21	6	55	0									
Throughfall	14	14	21	33	16	3	101	0									
Litterfall	1245	19	13	8													
Stream water	44	39	71	7	0,3	10	172	- <i>3</i>									

Kindla	Anion flu	xes (mEq	m ⁻² y ⁻¹)					
	SO ₄ ²⁻	SO ₄ ² - Cl ⁻ NO ₃ ⁻ HCO ₃ ⁻ RCOO ⁻ S						
Bulk deposition	15	17	17	0	8	58	-15	
Throughfall	13	16	7	0	31	68	19	
Litterfall	4							
Stream water	43	35	0,7	0	27	106	<i>-3</i>	

Kindla	Cation flu	uxes (mEd	m ⁻² y ⁻¹)					
	Ca ²⁺	Mg ²⁺	Na⁺	K ⁺	NH4⁺	H⁺	Sum(+)	Sum(+)-Sum(-)
Bulk deposition	9	5	15	6	18	5	58	0
Throughfall	8	7	13	27	8	5	68	0
Litterfall	429	6	6	3				
Stream water	11	12	52	2	0,2	12	89	<i>-17</i>

Gammtratten	Anion flu	Anion fluxes (mEq m ⁻² y ⁻¹)									
	SO ₄ ²⁻	Cl	NO ₃ -	RCOO-	Sum(-)	ANC					
Bulk deposition	5	4	6	0	3	19	-7				
Throughfall	4	6	3	0	11	25	6				
Litterfall	5										
Stream water	9	7	0,1	7	25	49	31				

Gammtratten	Cation flu	Cation fluxes (mEq m ⁻² y ⁻¹)									
	Ca ²⁺	Mg ²⁺	Na⁺	K⁺	NH4⁺	H⁺	Sum(+)	Sum(+)-Sum(-)			
Bulk deposition	3	1	4	1	5	5	19	0			
Throughfall	4	3	6	7	2	3	25	0			
Litterfall	889	10	8	3							
Stream water	19	8	20	1	0,1	1	49	-0			

Gårdsjön	Metal flu	xes (mg m ⁻²	² y ⁻¹)						
	Al tot	Al org	Al oorg	Fe	Mn	Cu	Pb	Zn	Cd
Bulk deposition	-	-	-	-	-	-	-	-	-
Throughfall	-	-	-	-	-	-	-	-	-
Litterfall	19			17	40	1,3	0,2	15,6	0,03
Stream water	564	482	82	503	14	-	-	-	-

Aneboda	Metal flu	fluxes (mg m ⁻² y ⁻¹)											
	Al tot	Al org	Al oorg	Fe	Mn	Cu	Pb	Zn	Cd				
Bulk deposition	8	-	-	6	2	0,4	0,4	2,4	0,01				
Throughfall	6	-	-	5	58	0,7	0,2	4,9	0,01				
Litterfall	17			19	16	0,7	0,1	16,4	0,04				
Stream water	171	100	71	303	24	0,2	0,3	1,7	0,02				

Kindla	Metal flu	xes (mg m ⁻²	² y-1)						
	Al tot	Al org	Al oorg	Fe	Mn	Cu	Pb	Zn	Cd
Bulk deposition	-	-	-	-	-	-	-	-	-
Throughfall	-	-	-	-	-	-	-	-	-
Litterfall	16			10	6	0,2	0,2	6,3	0,01
Stream water	280	121	159	219	36	-	-	-	-

Gammtratten	Metal flu	xes (mg m ⁻²	y-1)						
	Al tot	Al org	Al oorg	Fe	Mn	Cu	Pb	Zn	Cd
Bulk deposition	-	-	-	-	-	-	-	-	-
Throughfall	-	-	-	-	-	-	-	-	-
Litterfall	13			9	3	0,3	0,1	12,5	0,02
Stream water	77	61	15	201	6	-	-	-	-

Gårdsjön	Metal flu	xes (µg m ⁻²	y ⁻¹)				
	Hg	Metyl-Hg	Cr	Ni	Со	V	As
Bulk deposition	-	-	-	-	-	-	-
Throughfall	-	-	-	-	-	-	-
Litterfall	8,7		389	706	239	53	118
Stream water	-	-	-	-	-	-	-

Aneboda	Metal flu	xes (µg m ⁻²					
	Hg	Metyl-Hg	Cr	Ni	Со	V	As
Bulk deposition	2,8	0,1	59	91	7	81	43
Throughfall	4,5	0,1	38	151	16	72	43
Litterfall	6,0		457	550	227	35	7
Stream water	2,5	0,2	120	195	284	388	98

Kindla	Metal flu	xes (µg m ⁻²	y ⁻¹)				
	Hg	Metyl-Hg	Cr	Ni	Со	V	As
Bulk deposition	-	-	-	-	-	-	-
Throughfall	-	-	-	-	-	-	-
Litterfall	6,4		412	372	46	28	5
Stream water	-	-	-	-	-	-	-

Gammtratten	Metal flu	xes (µg m ⁻²	y ⁻¹)				
	Hg	Metyl-Hg	Cr	Ni	Со	V	As
Bulk deposition	-	-	-	-	-	-	-
Throughfall	-	-	-	-	-	-	-
Litterfall	6,6		168	234	52	22	5
Stream water	-	-	-	-	-	-	-

Decomposition in field (litter bags), standardized litter

Compliant	1	C * - d - ! = -			A a la al			IZ: all		0		
Sampling place Incubation period	1 yr	Gårdsjön 2 yr	3 yr	1 yr	Aneboda 2 yr	3 yr	1 yr	Kindla 2 yr	3 yr	1 yr	ammtratt 2 yr	en 3 yr
Sampling date	ı yı	971008	3 yı	ı yı	971112	3 yı	ı yı	971001	3 yı	ı yı	2 yı	3 yı
Decomposition ratio 1997 (weight loss in % of original weight)		37 1000			371112			37 100 1				
Mean	32,8	57,1	69,7	34,0	58,0	73,0	26,9	48,0	69,3	-	-	-
median	32,7	55,4	72,6	33,0	57,1	75,3	27,0	49,0	71,1	-	-	-
n_{O}	18	18	15	19	19	18	18	18	18	-	-	-
Sampling date		981007			981109			981005				
Decomposition ratio 1998 (weight loss in % of original weight)												
Mean	40,6	65,2	69,9	38,7	64,8	77,0	36,4	59,5	75,3	-	-	-
median	41,5 18	62,2 18	68,9 18	37,8 19	70,8 17	77,3 17	37,1 18	60,4 18	75,0 18	-	-	-
n _o	10	10	10	19	17	17	10	10	10	-	_	-
Sampling date		991019			991027			991114			l	l
Decomposition ratio 1999 (weight loss in % of original weight)		331013			331021			331114				
Mean	35,6	65,3	74,3	30,7	60,0	65,3	30,1	61,5	69,8	-	-	-
median	34,4	67,3	73,8	30,7	59,5	64,9	29,0	60,6	73,0	-	-	-
n _o	18	19	18	17	17	16	16	16	15	-	-	-
Sampling date		001011			001101			001003	1		001003	
Decomposition ratio 2000 (weight loss in % of original weight)	00.4	04.7	70.5	00.4	04.0	07.4	00.0	54.7	74.5	05.4		
Mean	33,4	61,7	72,5	38,1	61,8	67,4	30,2	51,7	71,5	25,1	-	-
median	32,8 18	61,0 18	73,6 17	37,0 18	62,3 17	66,3 17	29,7 16	54,5 18	74,3 18	25,0 18	-	
n _o	10	10	17	10	17	17	10	10	10	10	-	-
Sampling date		011103			011106			011123	i		010926	
Decomposition ratio 2001 (weight loss in % of original weight)		511100			311100			311120			310020	
Mean	34,6	61,6	76,7	36,2	62,2	66,3	33,3	63,3	74,0	33,7	46,2	-
median	32,9	62,2	77,3	35,8	60,1	64,8	32,6	66,5	75,7	31,1	46,2	-
n_{O}	18	18	18	18	17	16	18	18	18	18	18	-
Sampling date		021029			021030			021016			020920	
Decomposition ratio 2002 (weight loss in % of original weight)												
Mean	32,5	65,7	70,8	30,5	67,4	70,7	27,2	57,7	74,2	32,5	55,8	60,1
median	31,1	67,0	71,7	30,0	71,1	71,7	26,7	59,0	74,6	33,2	56,4	62,9
n _o	18	18	17	18	18	17	18	18	17	18	18	18
Sampling date		031030			031024			031110			031001	l
Decomposition ratio 2003 (weight loss in % of original weight)		031030			031024			031110			031001	l
Mean	25,8	55,3	68,8	30,1	53,6	65,0	29,9	57,4	73,4	24,5	58,0	72,5
median	25,5	54,5	70,6	28,5	54,2	66,4	29,8	58,7	73,1	24,4	59,8	75,0
n_{O}	18	18	16	18	18	14	18	18	18	18	18	16
Sampling date		041116			041027			041020			041011	
Decomposition ratio 2004 (weight loss in % of original weight)	07.5	00.0	05.0	44.7	00.0	00.0	00.4	50.4	00.5	04.4	40.4	70.0
Mean median	37,5 34,0	60,8 62,8	65,9 68,1	41,7 40,7	66,2 67,6	62,8 65,0	28,4 29,2	56,1 59,4	69,5	24,4 23,5	42,4 43,1	70,0 72,5
	34,0 17	17	14	18	17	17	29,2 18	18	72,1 18	23,5 17	18	18
n _o	17	17	14	10	17	17	10	10	10	17	10	10
Sampling date		051115			051011			051103			051006	
Decomposition ratio 2005 (weight loss in % of original weight)												
, Nean	33,4	64,2	71,8	31,9	59,7	75,9	26,2	57,9	70,5	26,0	41,0	62,1
median	35,5	65,2	71,7	34,8	59,9	78,0	25,8	55,8	74,1	24,4	42,3	60,7
n _o	18	18	18	15	15	14	17	18	18	18	18	18
	ļ	<u> </u>									<u> </u>	
Sampling date		061115			061026			061013			060927	
Decomposition ratio 2006 (weight loss in % of original weight)	22.0	65.2	77,9	36,9	EG 2	71 1	26.2	40.2	71 =	19,9	40,8	65,1
Mean median	33,9 33,9	65,3 66,7	77,9 80,1	36,9 35,9	56,3 53,4	71,1 75,1	26,2 26,6	49,2 47,0	71,5 73,0	19,9	40,8 36,4	65,6
n _o		18	17	18	15	15	18	18	18	18	19	16
110	l ''	.0	.,	'0								
Sampling date		071013			071014			071004			070926	•
Decomposition ratio 2007 (weight loss in % of original weight)	~~ ~	61,2	76,4	41,1	65,7	68,3	28,6	52,5	77,1	26,6	42,0	62,3
Decomposition ratio 2007 (weight loss in % of original weight) Mean	37,7		70.0	44.4		68,3	26,6	54,3	77,0	26,8	43,9	65,9
, , ,	37,7	62,5	79,0	41,1	67,1	00,0	.,.					18
Mean		62,5 17	18	16	67,1 17	16	18	18	18	18	18	10
Mean median n _o	39,0	17			17				18	18		10
Mean median n _o Sampling date	39,0							18 081026	18	18	18 080928	10
Mean median no Sampling date Decomposition ratio 2008 (weight loss in % of original weight)	39,0 18	081108	18	16	17 081028	16	18	081026			080928	
Mean median no no Sampling date Decomposition ratio 2008 (weight loss in % of original weight) Mean	39,0 18 39,9	081108 70,1	72,8	34,3	081028 70,5	73,7	26,2	081026 63,3	77,4	31,9	080928	65,2
Mean median no Sampling date Decomposition ratio 2008 (weight loss in % of original weight) Mean median	39,0 18 39,9 38,1	70,1 73,4	72,8 74,4	34,3 35,0	17 081028 70,5 68,7	73,7 77,8	26,2 25,9	081026 63,3 67,5	77,4 79,4	31,9 31,3	080928 50,9 50,5	65,2 68,7
Mean median median n _o Sampling date Decomposition ratio 2008 (weight loss in % of original weight) Mean	39,0 18 39,9	081108 70,1	72,8	34,3	081028 70,5	73,7	26,2	081026 63,3	77,4	31,9	080928	65,2
Mean median n _o Sampling date Decomposition ratio 2008 (weight loss in % of original weight) Mean median n _o	39,0 18 39,9 38,1	70,1 73,4 17	72,8 74,4	34,3 35,0	70,5 68,7 16	73,7 77,8	26,2 25,9	081026 63,3 67,5 18	77,4 79,4	31,9 31,3	080928 50,9 50,5 18	65,2 68,7
Mean median no Sampling date Decomposition ratio 2008 (weight loss in % of original weight) Mean median	39,0 18 39,9 38,1	70,1 73,4	72,8 74,4	34,3 35,0	17 081028 70,5 68,7	73,7 77,8	26,2 25,9	081026 63,3 67,5	77,4 79,4	31,9 31,3	080928 50,9 50,5	65,2 68,7
Mean median n _o Sampling date Decomposition ratio 2008 (weight loss in % of original weight) Mean median n _o Sampling date	39,0 18 39,9 38,1	70,1 73,4 17	72,8 74,4	34,3 35,0	70,5 68,7 16	73,7 77,8	26,2 25,9	081026 63,3 67,5 18	77,4 79,4	31,9 31,3	080928 50,9 50,5 18	65,2 68,7
Mean median no Sampling date Decomposition ratio 2008 (weight loss in % of original weight) Mean median no Sampling date Decomposition ratio 2009 (weight loss in % of original weight)	39,0 18 39,9 38,1 18 31,6 30,2	081108 70,1 73,4 17 091026	72,8 74,4 18 81,7 80,7	34,3 35,0 17	70,5 68,7 16	73,7 77,8 15	26,2 25,9 18	081026 63,3 67,5 18 091022	77,4 79,4 18	31,9 31,3 18	080928 50,9 50,5 18 090928	65,2 68,7 18
Mean median no Sampling date Decomposition ratio 2008 (weight loss in % of original weight) Mean median no Sampling date Decomposition ratio 2009 (weight loss in % of original weight) Mean	39,0 18 39,9 38,1 18	081108 70,1 73,4 17 091026 64,7	72,8 74,4 18	34,3 35,0 17	17 081028 70,5 68,7 16 091009	73,7 77,8 15	26,2 25,9 18	081026 63,3 67,5 18 091022	77,4 79,4 18	31,9 31,3 18	080928 50,9 50,5 18 090928 53,5	65,2 68,7 18

Commission where		C * - d - : = -		_	۸ ا ا-		_	IZ:a alla		0		
Sampling place Incubation period	Gårdsjön 1 yr 2 yr 3 yr 1 y 101010				Aneboda 2 yr	3 yr	1 yr	Kindla 2 yr	3 yr	1 yr	ammtratt 2 yr	en 3 yr
Sampling date	ı yı		J yı	ı yı	101003	J yı	ı yı	101022	J yı	ı yı	100928	J yı
Decomposition ratio 2010 (weight loss in % of original weight)		101010			101003	l		101022			100320	
Mean	41,1	67,0	75,1	41,6	65,5	81,8	30,9	48,2	71,4	35,1	53,5	78,4
median	40,8	70,0	73,8	41,5	69,3	83,9	31,0	46,7	72,8	35,1	52,3	79,1
n_O	18	18	17	17	20	16	18	18	18	18	17	17
Sampling date		111103			111015			111020			111003	
Decomposition ratio 2011 (weight loss in % of original weight)	00.5	00.7	70.0	00.0	00.0	77.0	00.4	05.4		00.0	45.0	00.0
Mean median	38,5 35,8	62,7 64,1	78,9 76,5	38,6 39,6	62,0 63,1	77,0 77,5	33,1 34,2	65,1 65,4	71,4 71,4	26,2 24,9	45,9 45,4	62,6 67,3
n _o	15	16	17	17	17	14	18	18	18	18	18	17
"0	10	10	''	.,,	.,	17	10	10	10	10	10	''
Sampling date		121106			121011			121016			120927	
Decomposition ratio 2012 (weight loss in % of original weight)												
Mean	42,2	69,3	75,8	34,8	57,1	76,5	30,6	59,8	76,7	28,6	44,4	59,6
median	41,5	68,7	79,3	34,0	57,4	75,4	30,9	61,7	78,1	29,5	42,2	66,0
n _O	16	16	17	16	17	16	18	18	17	16	18	15
Sampling date	 	131017	<u> </u>	-	131121		-	131001	<u> </u>		131001	
Decomposition ratio 2013 (weight loss in % of original weight)		131017			131121			131001			131001	
Mean	32,1	59,8	65,0	30,3	51,5	62,7	26,2	53,1	69,7	28,9	45,7	61,3
median	30,0	60,5	55,4	31,5	53,4	63,0	26,1	50,7	67,9	28,0	47,9	60,0
n_O	18	17	16	18	16	14	19	18	17	18	18	14
Sampling date		141024	1		141030			141020	1		140923	1
Decomposition ratio 2014 (weight loss in % of original weight) Mean	37,2	60,4	70,9	41,0	58,9	61,0	35,9	53,5	72,1	26,9	47,4	62,4
median	37,2	61,4	70,9	38,9	56,9 57,6	58,2	37,2	53,6	70,8	26,9	47,4	62,7
n _o		17	15	15	15	12	18	18	18	18	18	16
Sampling date		151028			151009			150924			150923	
Decomposition ratio 2015 (weight loss in % of original weight)												
Mean	47,1	71,4	72,5	32,4	58,9	64,5	35,8	64,7	74,6	31,7	47,1	67,5
median	46,4 17	72,2 17	72,5 20	29,7 11	54,6 13	67,4 13	36,0 19	63,2 18	76,1 18	32,6 18	48,1 18	71,1 18
n _o	17	17	20	''	13	13	19	10	10	10	10	10
Sampling date		161020			161014			161013			160922	
Decomposition ratio 2016 (weight loss in % of original weight)												
Mean	35,4	65,1	69,2	30,9	52,5	66,8	34,5	63,1	76,5	37,4	55,2	70,3
median	32,9	67,3	68,9	29,9	52,3	71,8	33,8	64,3	76,6	36,2	55,3	73,1
n _O	17	15	15	14	15	17	18	18	17	17	18	18
Sampling data	<u> </u>	171100			171010	L		171012			170922	
Sampling date Decomposition ratio 2017 (weight loss in % of original weight)		171108		-	171012		-	171013			170823	
Mean	37,1	65,1	78,2	25,1	56,9	61,3	25,4	54,5	75,6	20,1	42,2	60,3
median	37,6	63,3	77,9	25,8	57,8	60,0	23,5	55,0	77,2	18,5	42,5	62,2
n_O	19	18	15	17	14	12	17	18	18	16	16	18
Sampling date		181011			180912			180928			180822	1
Decomposition ratio 2018 (weight loss in % of original weight)	32,7	56,0	69,4	25,8	45,8	58,9	30,4	10 1	71,7	26.2	36,6	57,1
Mean median	32, <i>1</i> 33,1	56,0 54,9	68,9	25,8 25,6	45,8 45,9	58,9 58,4	30,4	48,1 48,6	71,7	26,2 26,8	36,6 34,6	55,1
n _o		18	15	18	18	13	18	18	18	17	17	18
							_			L.		L
Sampling date		191002			191029			190918			190916	
Decomposition ratio 2019 (weight loss in % of original weight)												
, , ,	40.0	59,2	68,7	39,2	52,4	69,5	34,0	54,5	64,0	33,1	45,3	54,8
Mean	43,3						,		00'.		45.	
Mean median	41,6	60,2	70,9	38,5	52,8	72,9	34,5	54,8	66,1	32,2	45,4	55,9
Mean	41,6						,		66,1 18		45,4 16	55,9 16

Epiphytic lichens 2020-12-02 Appendix 14

Epiphytic lichens on tree trunks	NB All figures recalculated 2007, i.e. some differences compared to earlier annual reports

	1996						2001						2006						2011						2016					
Gårdsjön	Species	mean	median	CV%	n lich.	n trees	Species	mean	median	CV%	n lich.	n trees	Species	mean	median	CV%	n lich.	n trees	Species	mean	median	CV%	n lich.	n trees	Species	mean	median	CV%	n lich.	n trees
n:o of lichen species total					30	20					33	20					35	20					21	20					17	20
n:o of lichens per tree: birch		7,0				1		12,0				1		13,0				1		5,0				1		6,0	6,0	n/a		- 1
n:o of lichens per tree: Norway spruce		5,7	6,0	24		7		6,6	7,0	15		7		7,4	8,0	11		7		7,1	7,0	22		7		4,8	5,0	24		6
n:o of lichens per tree: Scots pine		7,8	9,0	31		11		7,9	8,0	12		11		7,4	8,0	17		11		6,9	7,0	45		11		5,8	5,5	27		12
n:o of lichens per tree: oak		9,0				1		9,0				1		10,0				1		3,0				1		2,0				- 1
n:o of lichens per tree: all tree species		7,1	6,5	31		20		7,7	8,0	20		20		7,8	8,0	22		20		6,7	7,0	39		20		5,4	5,0	30		20
point freq. dominant 1, %:	Lep inca	15,8	12,1	105,1		18	Lep inca	16,6	13,3	90		19	Lep inca	10,2	6,8	104		18	Cla sp.	15,4	9,5	109		16	Cla sp.	15,7	13,4	97		16
point freq. dominant 2, %	Hyp phys	11,1	9,4	67,34		20	Hyp phys	7,8	5,8	91		20	Hyp phys	7,0	3,0	165		18	Hyp phys	6,4	3,6	127		17	Hyp phys	4,3	0,4	193		11
point freq. dominant 3, %	Cla conr	6,4	2,5	141,5		12	Cla squa	5,5	0,0	165		9	Cla squa	5,8	0,0	179		9	Lepr inc	5,0	0,6	161		13	Lep inca	3,0	0,0	199		9
sensitivity index per tree: birch		2,4			3	1						10	Cla squa	5,8	0,0	179		9	Lepr inc	5,0	0,6		3	1		3,6			4	1
sensitivity index per tree: Norway spruce		1,9	1,5	59	8	7		ĺ				11	Cla squa	5,8	0,0	179		9	Lepr inc	5,0	0,6	62	5	7		3,4	2,9	57	4	6
sensitivity index per tree: Scots pine		2,2	2,2	31	11	11						12	Cla squa	5,8	0,0	179		9	Lepr inc	5,0	0,6	33	5	11		2,2	2,2	49	6	12
sensitivity index per tree: oak		2,4			5	1						13	Cla squa	5,8	0,0	179		9	Lepr inc	5,0	0,6		1	1		4,0			1	1
sensitivity index per tree: all tree species		2,1	2,0	39	14	20						14	Cla squa	5,8	0,0	179		9	Lepr inc	5,0	0,6	43	8	20		2,7	2,4	53	8	20

	1997						2002						2007						2012						2017					
Aneboda	Species	mean	median	CV%	n lich.	n trees	Species	mean	median	CV%	n lich	. n tree:	Species	mean	median	CV%	n lich.	n trees	Species	mean	median	CV%	n lich.	n trees	Species	mean	median	CV% n	ı lich. r	trees
number of lichen species total					30	20					2	1 20)				24	20					20	20					16	20
n:o of lichens per tree: Norway spruce		8,8	9,0	43		19		6,9	7,0	39		19	9	4,5	4,0	39		17		4,8	4,0	27		16		5,5	5,5	16		16
n:o of lichens per tree: Scots pine		13,0	n/a	n/a		1		8,0	8,0	n/a				7,0	7,0	n/a		1		7,0	7,0	0		2		9,0	9,0	16		2
n:o of lichens per tree: all tree species		9,1	10,0	42		20								7,0	7,0	n/a		1		7,0	7,0	27		20		5,8	6,0	29		20
point freq. dominant 1, %	Lec abie	34,9	34,6	74,56		18							1	7,0	7,0	n/a		1		7,0	7,0	100		19	Lep inca	23,6	11,3	116		19
point freq. dominant 2, %	Lep inca	33,5	31,1	55,07		20	Lec abie	20,2	16,8	89		17	Lec abie	8,7	0,5	175	,	10	Lec abie	8,7	0,0	264		4	Lec abie	9,9	0,0	243		6
point freq. dominant 3, %	Hyp phys	5,2	2,6	114,6		16	Cla squa	2,0	0,0	207		1	Cla conr	2,4	0,0	306	_	5	Cla sp.	1,2	0,0	383		6	Hyp phys	1,5	0,3	175		14
sensitivity index per tree: Norway spruce		3,9	3,9	40	8	19		3,2	3,3	60	7	7 19	9	5,0	6,0	41	7	17		1,8	1,0	90	5	16		2,3	1,2	78	4	16
sensitivity index per tree: Scots pine		1,1	1,1	n/a	2	1		4,3	4,2	29	4	4	1	2,7	2,7	n/a	1	1		1,5	1,5	47	3	2		1,3	1,3	30	4	2
sensitivity index per tree; all tree species		3.8	3.9	44	8	20		3.8	3.7	43		3 20		4.9	5.6	41	7	20		1.9	1.1	84	8	20		2.0	1.2	79	7	20

	1998																							2018					
Kindla	Species	mean	median	CV%	n lich.	n trees															CV%	n lich.	n trees	Species	mean	median	CV% r	n lich.	n trees
n:o of lichen species total					31	20					27	20					24	20					20					15	20
n:o of lichens per tree: birch		10,2	11,0	22		5		10,2	10,0	15		5		12,0	11,5	18		4	8,0	7,5	40		4		7,0	7,0	35		4
n:o of lichens per tree: Norway spruce		8,2	8,0	34		13		6,6	6,0	30		13		8,3	9,0	14		15	7,6	7,0	16		15		6,6	7,0	14		15
n:o of lichens per tree: Scots pine		9,5	9,5	22		2		8,5	8,5	25		2		9,0	9,0	n/a		1	7,0	7,0	n/a		1		7,0	7,0	n/a		1
n:o of lichens per tree: all tree species		8,9	9,0	30		20		7,7	7,5	31		20		9,1	9,0	22		20	7,7	7,0	22		20		6,7	7,0	19		20
point freq. dominant 1, %	Hyp phys	26,1	24,1	45		20	Hyp phys	28,1	24,6	49		20	Lep inca	34,6	22,4	93		19 Lep inca	41,7	37,0	81		19	Lep inca	27,9	18,9	90		19
point freq. dominant 2, %	Lep inca	23,6	15,1	84		20	Lep inca	26,3	17,0	77		20	Hyp phys	19,5	19,1	45		20 Hyp phys	17,6	16,1	55		20	Hyp phys	24,4	23,5	59		20
point freq. dominant 3, %	Pla glau	3,2	0,1	223		10	Pla glau	3,3	0,0	202		8	Pla glau	3,0	0,8	195		13 Cla sp.	2,7	0,0	221		4	Cla sp.	3,2	0,0	266		5
sensitivity index per tree: birch	-	2,3	2,4	13	8	5	-	2,1	2,2	14	7	5		2,3	2,2	35	6	4	2,8	2,8	28	6	4		2,4	2,5	32	4	4
sensitivity index per tree: Norway spruce		1,6	1,5	14	7	13		1,6	1,6	16	6	13		1,5	1,4	22	5	15	1,6	1,6	18	5	15		1,6	1,6	19	4	15
sensitivity index per tree: Scots pine		1,5	1,5	12	4	2		1,5	1,5	9	4	2		1,9	1,9	n/a	4	1	1,8	1,7	n/a	4	1		1,6	1,6	n/a	4	1
sensitivity index per tree: all tree species		1,8	1,7	22	11	20		1,7	1,6	19	9	20		1,7	1,5	32	7	20	1,8	1,7	35	7	20		1,7	1,6	30	5	20

	2000						2005						2010						2015						2019					
Gammtratten	Species	mean	median	CV%	n lich.	n trees	Species	mean	media	n CV%	n lich	n tree:	Species	mean	median	CV%	n lich.	n trees	Species	mean	median	CV%	n lich.	n trees	Species	mean	median	CV%	n lich.	n trees
n:o of lichen species total/tree individuals total	al				44	20					36	20)				36	20					36	20						
n:o of lichens per tree: birch		11,0				1		16,0						13,0	12	n/a		1		10,0	10	n/a		1						
n:o of lichens per tree: Norway spruce		11,4	12,0	20		8		14,5	15,0	21			3	9,9	10	21		8		11,5	11,5	17		8						
n:o of lichens per tree: Scots pine		10,4	10,0	20		9		13,8	15,0	23		9	9	10,0	11	20		9		10,4	10	21		9						
n:o of lichens per tree: Populus tremula		9,0				1		14,0						10,0	10	n/a		1		9,0	9	n/a		1						
n:o of lichens per tree: Salix caprea		14,0				1		14,0						11,0	11	n/a		1		14,0	14	n/a		1						
n:o of lichens per tree: all tree species		11,0	11,0	22		20		14,2	15,0	20		20)	10,15		19		20		10,95		19		20						
point freq. dominant 1, %	Hyp phys	9,3	2,3	160		15	Hyp phys	8,4	2,5	150		16	Hyp phys	8,8	2,625	134		16	Hyp phys	8	2,875	115		15						
point freq. dominant 2, %	Par ambi	6,3	2,0	127		14	Par ambi	4,1	3,0	148		14	Par ambi	4,3	3,75	150		18	Par ambi	7,1	5,625	133		17						
point freq. dominant 3, %	Bia effl	4,2	0,0	447		1	Bac arce	2,2	0,0	447			Myc sang	1,4	0,625	213		14	Bry capi	2,4	0	199		9						
sensitivity index per tree sp.: birch		3,1			5	1		2,4						3,1	n/a	n/a	6	1		3,6	3,585	n/a	5	1						
sensitivity index per tree sp.: Norway spruce		4,2	4,4	17	9	8		2,5	2,5	15			3	3,1	3,1	19	9	8		2,8	2,8	15	9	8						
sensitivity index per tree sp.: Scots pine		3,4	3,2	37	8	9		2,5	2,3	28	7		9	2,4	2,2	29	8	9		2,3	2,2	10	9	9						
sensitivity index per tree sp.: Populus tremula		4,8			2	1		4,3			2	·		4,4	n/a	n/a	2	1		4,4	4,4	n/a	3	1						
sensitivity index per tree sp.: Salix caprea		7,3			5	1		6,4			. 5	1 .		6,4	n/a	n/a	5	1		6,6	6,6	n/a	4	1		1				
sensitivity index all tree species		4,0	3,8	33	14	20		2,8	2,4	1 39	11	20		3,0	2,8	36	14	20		2,9	2,4	38	16	20		1				

Comments

Data collected from four circular plots with five trees each. Currently every fifth year. On each tree trunk is one sample plot 40x40 cm with 400 points on which hits of lichens are observed giving point frequency. On the trunk between 50 and 200 cm above ground all species, besides those on the plot, are noted as to presence.

no of lichen species total = on and outside sample plots on all trees
no of lichens per tree = mean number of lichen species on and outside the sample plot per tree individual
sensitivity index per tree sp. = mean of all individuals of the resp. tree species; only lichens present on sample plots and
having indicator values are included
in lich. = number of lichen species involved in the calculation
in trees = number of tree individuals on which observations were performed

Algae on needles and lichens on twigs of spruce

																														
	1998			_	1999		-	2000	_	, ,	2001	1		200	1	200		$\overline{}$	2004		2005			06		2007**		2008		ᅰ
Gårdsjön	mean	median	CV%	n ı	nean	median	CV%	n [/] mea	n mediar	cv% r	mea	median	CV% n3) mea	n CV% n	*) mea	n CV%	n*)	mean	CV% n*)	mean	CV%	n*) me	an C	V% n*	mean	CV% r	mea	n CV%	n
Algae																														
thickness on needles	1,7	1,7		20	-	-	-	- 2,		17	6 2,		13	_,		6 2,		6	1,0	0 6	1,3	25		0,6	58 6	1,5	36 1	,		
age youngest needles with algae		3,0		20	_	-	-	- 2,	1 2,0	7	6 2,	3 2,3		6 2,	1 7	6 2,		6	4,0	13 6	3,9	59	3	5,4	11 6		18 1	0 5,		
n:o whorls with 5-50% needles	5,8	5,9		20	-	-	-	- 1,			6 1,			6 3,		6 3,			6,5	14 6	6,9	7		9,0	14 6	. , .		,	-	10
n:o whorls with >50% needles	10,7	10,2	26	20	-	-	-	- 9,	9 10,5	15	6 9,	9,7	13	6 7,	7 6	6 6,	5 12	6	2,4	66 6	3,2	63	3	2,6	21 6	1,8	68 1	0 2,	0 32	10
Lichens				ш					_								_										└			Ш
amount on branch	1,7	2,0			-	-	-	- 1,			6 1,			6 1,		6 1,			0,9	18 6	0,9	31		0,8	36 6		n/a 1	0 0,		10
age youngest twig with lichen	4,8	4,5	47	20	-	-	-	- 4,	7 4,7	13	6 5,		18	6 5,	1 12	6 4,	_	_	4,2	20 6	6,1	12	3	8,2	24 6	0,0	n/a 1	0 7,	0 n/a	10
*) Few trees left due to partial destruc					olacem	ent trees	not atta	inable.		_	6 5,		18	6 5,	1 12	6 4,														
") Start of new temporal series; new of	bservati	on trees	selecte	ed.							6 5,	3 5,2	18	6 5,	1 12	6 4,	7 20													
	1998				1999						6 5,	5,2	18	6 5,	1 12	6 4,	7 20		2004		2005		20	006		2007	-no data	200	В	
Aneboda	mean	median	CV%	n	mean	median					6 5,		18	6 5,	1 12	6 4,			mean	CV% n	mean	CV%	n me	ean C	V% n	mean	CV% r	mear	n CV%	n
Algae											6 5,	3 5,2	18	6 5,	1 12	6 4,	7 20													
thickness on needles	1,9	2,0	14	20	1,9	2,0	13	20 2,	0 2,0	6 2	20 1,	5 1,7	30 2	0 1,	2 26 2	20 1,	3 23	20	1,0	16 20	1,0	12	20	0,7	62 20	-		- 1,	0 41	20
age youngest needles with algae	2,2	2,2	11	20	2,0	2,0	3	20 2,	1 2,0	7 2	20 2,	7 2,7	23 2	0 2,	4 20 2	20 2,	8 11	20	3,2	20 20	3,8	20	20	2,5	59 20	-		- 4,		
n:o whorls with 5-50% needles	2,1	2,3	51	20	2,8	2,7	29	20 3,	5 3,0	37 2	20 1,	0,7	74 2	0 2,	5 30 2	20 2,	3 41	20	6,1	19 20	5,2	13	20	2,5	59 20	-		- 4,	0 19	20
n:o whorls with >50% needles	8,0	8,0	17	20	6,7	6,9	19	20 6,	4 6,5	21 2	20 7,	7 7,7	13 2	0 6,	2 11 2	20 5,	6 12	20	1,9	50 20	1,7	42	20	2,0	53 20	-	<u> </u>	- 2,	2 53	3 20
Lichens																														
amount on branch	1,6	1,7	29	20	1,7	1,7	32	20 1,	8 2,0	23 2	20 1,	8 2,0	20 2	0 1,	3 28 2	20 1,	5 31	20	1,7	29 20	1,5	32	20	1,0	42 20	-		- 1,	5 38	20
age youngest twig with lichen	3,7	3,7	24	20	3,7	3,7				2	20 1,	8 2,0	20 2	0 1,	3 28 2	20 1,	5 31	20	4,2	22 20	4,4	15	20	2,3	52 20	_		- 5,	9 23	20
										2	20 1,	8 2,0	20 2	0 1,	3 28 2	20 1,	5 31													
	1998				1999			2000)		2001			2002		2003	3		2004		2005		20	006		2007		2008	3	
Kindla	mean	median	CV%	n	mean	median	CV%	n meai	n median	CV%	n mear	median	CV% r	mea	CV% I	n mea	n CV%	n	mean	CV% n	mean	CV%	n me	ean C	V% n	mean	CV% r	mear	n CV%	n
Algae																												1		
thickness on needles	1,9	2,0	40	20	2,0	2,0	27	20 2,	1 2,0	17 2	20 2,	0 2,0	9 2	0 2,	2 9 2	20 1,	8 16	20	1,0	10 20	0,8	28	20	1,2	36 20	0,9	33 2	0,	6 57	20
age youngest needles with algae	4,1	3,7	29	20	3,5	3,3	28	20 3,	2 3,0	20 2	20 3,	3 3,2	18 2	0 3,	5 24 2	20 3,	4 10	20	4,4	19 20	3,9	32	20	4,9	39 20	6,7	23 2	6,	0 16	20
n:o whorls with 5-50% needles	1,7	1,5	41	20	1,9	1,9	42	20 1,	6 1,7	51 2	20 1,	6 1,5	46 2	0 1,	1 62 2	20 2,	2 29	20	6,7	18 20	5,0	18	20	5,4	14 20	6,4	13 2	20 5,	7 18	20
n:o whorls with >50% needles	9,0	9,2	14	20	9,0	9,0				2	20 1,	6 1,5	46 2	0 1,	1 62 2	20 2,	2 29	20	3,0	33 20	2,1	33	20	1,6	30 20	1,7	70 2	20 2,	5 34	1 20
Lichens										2	20 1,	6 1,5	46 2		1 62 2	20 2,	2 29													
amount on branch	1,7	1,7	17	20	1,8	1,7	15	20 1,	3 1,3	27 2	20 1,	0 1,0	9 2	0 1,	1 23 2	20 1,	1 17	20	1,0	12 20	0,8	38	20	1,3	36 20	0,8	34 2	0,	8 48	3 20
age youngest twig with lichen	5,4	4,9	29	20	5,8	5,3	23	20 6,	2 5,9	22 2	6,	7 6,5	18 2	0 7,	5 20 2	20 8,	5 18	20	6,6	24 20	5,0	43	20	7,0	32 20	6,2	37 2	20 7,	3 14	1 20
																			-											
Committetten	1998		01/0/		1999		0.404	2000		0.101	2001		0) (0)	2002		2003			2004	0.00	2005	0.404		006		2007	0.494		8 - no data	1
Gammtratten	mean	median	CV%	n	mean	median	CV%	n mea	n median	CV%	mear	median	CV% r	mea	CV% I	n mea	n CV%	n	mean	CV% n	mean	CV%	n me	ean C	V% n	mean	CV% r	mear	n CV%	n
Algae				+				0	1 00	334 2	0 0	0,0	-	0 0.	0 – 2	0 0,	0	20	0.0	- 20	0.0		20	0,0	20	0.0	-	_	+	+
thickness on needles	I - I	-	-	⁻	-	-	-	- 0,			0,		- 2 - 2					20			0,0			- 1	- 20 - 20		- 2 - 2		_	_
age youngest needles with algae	_	-	-	-	-	-	-	- 0,							· 1				0,0		. , .			0,0					_	_
n:o whorls with 5-50% needles	-	-	-	-	-	-	-	- 1,			20 1,		59 2			20 2,			5,0	26 20		22		6,2	40 20			- 00	_	-
n:o whorls with >50% needles	- 1	-		-	-	-	-	- 11,	7 11,8	13 2	8,	8 8,9	16 2	0 9,	18 2	20 5,	9 32	20	3,2	38 20	1,3	91	20	1,2	78 20	6,16	37 2	U -		-
Liebone																														
Lichens				H				_	6 0.0	22.7	0 0	7 20	15 0	0 4	200	20 0	6 47	20	2.0	15 00	2.4	22	20	2.4	16 00	2.4	16 0	2	+	+
Lichens amount on branch age youngest twig with lichen	-	-	-	-	-	-	-	- 2, - 4.					15 2 16 2			20 2, 20 3.			2,6	15 20 20 20		23 24	20	2,4	16 20 27 20		16 2		+-	-

Algae on needles and lichens or

	2009			2010			2011			2012			2013			2014			2015		2	2016			2017			2018		2019		
Gårdsjön	mean	CV%	n	mean	CV%	n	mean	CV%	n r	nean	CV%	n	mean	CV%	n	mean	CV% r	mear	CV%	n												
Algae																																T
thickness on needles	1,4	69	10	1,0	25	10	0,3	143	10	1,0	0	10	1,1	31	10	-	-	-	1,1	12	10	1,0	9	10	1,2	21	9	0,8	35 1	0 n/	a n/a	1
age youngest needles with algae	4,4	22	10	3,8	22	10	2,2	88	10	4,8	28	10	4,2	50	10	-	-	-	6,6	16	10	3,6	24	10	5,5	21	9	6,0	22 1	0 n/	a n/a	a
n:o whorls with 5-50% needles	11,1	61	10	6,0	14	10	7,9	21	10	8,9	45	10	7,2	21	10	-	-	-	2,8	30	10	8,5	20	10	8,3	16	9	2,1	43 1	0 5,	5 16	3 10
n:o whorls with >50% needles	4,2	91	10	1,3	58	10	2,4	46	10	7,4	26	10	3,0	52	10	-	-	-	7,52	13	10	4,7	60	10	1,8	34	9	9,9	22 1	0 3,	4 14	4 10
Lichens																																
amount on branch	0,4	35	10	1,4	73	10	0,3	104	10	1,0	10	10	0,1	195	10	-	-	-	0,2	165	10	0,30	102	10	1,0	0	9	0,6	63 1	0,	9 37	7 10
age youngest twig with lichen	7,5	84	10	5,1	74	10	4,0	27	10	6,3	21	10	11,2	19	10	-	-	-	2,6	222	10	5,5	115	10	7,5	11	9	8,8	21 1	0 6,	2 19) 10

^{*)} Few trees left due to partial destruct

^{**)} Start of new temporal series; new ot

	2009			2010			2011			2012			2013			2014			2015			2016			2017 -	- no da	ata	2018			2019		
Aneboda	mean	CV%	n	mean	CV%	n	mean	CV%	n	mean	CV%	n	mean	CV%	n	mean	CV%	n	mean	CV%	n												
Algae																																	
thickness on needles	0,8	44	20	0,4	75	20	0,8	53	18	1,0	7	19	0,5	77	20	-	-	-	0,7	53	18	n/a	n/a	0	_	-	-	1,0	0	10	0,4	99	€ 10
age youngest needles with algae	4,9	23	20	5,1	48	20	2,3	49	18	3,2	16	19	5,4	33	20	-	-	-	3,6	58	18	n/a	n/a	0	_	-	-	1,3	35	10	6,2	. 27	7 10
n:o whorls with 5-50% needles	4,5	9	20	5,1	12	20	3,3	24	18	6,9	11	19	5,2	14	20	_	-	-	1,5	93	18	5,0	45	18	-	-	-	2,3	48	10	7,3	15	5 10
n:o whorls with >50% needles	1,6	63	20	0,8	70	20	4,7	20	18	5,0	16	19	1,8	36	20	_	_	_	5,1	14	18	7,0	42	18	_	_	_	4,0	43	10	2,6	33	3 10
Lichens																																<u> </u>	'
amount on branch	1,7	33	20	1,9	32	20	1,1	25	18	1,0	7	19	1,9	29	20	-	-	-	1,0	0	18	1,8	46	18	-	-	-	0,8	53	10	1,6	43	3 10
age youngest twig with lichen	5,4	18	20	6,4	13	20	2,6	26	18	4,2	23	19	5,1	16	20	-	_	-	4,0	22	18	6,4	39	18	_	_	-	5,4	23	10	4,8	16	6 10

	2009			2010			2011			2012			2013			2014			2015			2016		2017			2018			2019		
Kindla	mean	CV%	n	mean	CV%	n	mean	CV%	n	mean	CV%	mear	CV%	n	mean	CV%	n	mean	CV%	n												
Algae																																
thickness on needles	0,6	27	20	1,6	25	20	1,2	22	18	0,0	424	18	0,2	149	18	-	-	-	0,0	n/a	18	0,55	71 1	0,00	n/a	a 18	1,2	24	18	0,02	424	18
age youngest needles with algae	5,2	24	20	3,0	12	20	1,1	18	18	3,0	141	18	1,3	89	18	-	-	-	n/a	n/a	18	3,7	64 1	8 n/a	a n/a	a 18	2,1	21	18	4,0	71	18
n:o whorls with 5-50% needles	5,7	6	20	7,3	15	20	3,5	37	18	7,9	17	18	5,4	22	18	-	-	-	1,1	25	18	6,2	35 1	6,0	22	2 18	6,3	26	18	3,4	34	18
n:o whorls with >50% needles	1,5	22	20	2,0	68	20	2,3	36	18	5,9	22	18	6,4	15	18	_	-	_	7,1	32	18	1,8	45 1	1,7	7 49) 18	4,1	32	18	1,5	45	18
Lichens																																ĺ
amount on branch	0,9	49	20	0,4	35		1,0	7	18	1,0	7	8	0,8	29	18	-	-	-	1,0	0	18	0,91	41 1	0,98	3 7	7 18	1,07	17	18	1,08	23	18
age youngest twig with lichen	7,4	26	20	5,5	14		3,1	15	18	5,9	23	18	5,0	55	18	_	-	-	7,7	25	18	8,3	33 1	5,	5 19	9 18	7,8	32	18	4,3	32	18

	2009			2010			2011			2012			2013			2014			2015			2016		20	017			2018		2	2019		
Gammtratten	mean	CV%	n	mean	CV%	n	mean	CV%	n	mean	CV%	n	mean	CV%	n	mean	CV%	n	mean	CV%	n	mean	CV%	n m	nean	CV%	n	mean	CV%	n r	mean	CV%	n
Algae																																	
thickness on needles	0,0	-	20	0	-	20	-	-	-	0,0	-	20	0,0	n/a	18	0,0	-	20	0,0	n/a	18	0,0	n/a	8	0,0	n/a	18	0,0	n/a	18	0,0	n/a	18
age youngest needles with algae	0,0	-	20	0	-	20	-	-	_	0,0	-	20	0,0	n/a	18	0,0	-	20	n/a	n/a	18	n/a	n/a	8	n/a	n/a	18	n/a	n/a	18	n/a	n/a	18
n:o whorls with 5-50% needles	6,4	16	20	6,0	26	20	-	-	_	2,9	52	20	5,8	18	18	6,9	22	20	1,8	35	18	6,7	21	8	7,8	26	18	3,0	29	18	4,1	31	18
n:o whorls with >50% needles	0,665	91	20	1,8	70	20	-	-	_	6,3	22	20	2,9	43	18	8,0	20	20	6,1	20	18	2,5	35	18	2,6	29	18	4,7	24	18	2,9	37	18
Lichens																																	
amount on branch	1,7	17	20	1,9	7	20	-	-	_	2,6	20	20	2,3	18	18	1,9	17	20	2,4	11	18	2,5	16	8	2,2	16	18	2,2	11	18	2,0	7	18
age youngest twig with lichen	5,4	20	20	6,4	11	20	-	_	_	4,4	21	20	4,6	19	18	6,4	23	20	5,7	17	18	4,9	22	18	3,5	28	18	5,2	21	18	3,6	22	18

Understorey vegetation: intensive plot

See also appendix 23

			2019 - o	nly grou	nd layer r	ecorded	
Aneboda1	species	list	mean %	median	CV%		n spec.
n:o of species total							21
cover field layer			n/a	n/a	n/a		n/a
cover bottom layer			48	46	50		21
cover dominant 1	PLEU SCH	M2	17	12	101		
cover dominant 2	DICR MAJ	M2	9	5	102		
cover dominant 3	HYLO SPL	M2	9	4	155		
plot frequency dominant 1	PLEU SCH	M2				32	
plot frequency dominant 2	DICR MAJ	M2				30	
plot frequency dominant 3	BRAC OED	M2				27	
species diversity index (H´)						2,0	
Equitability (J)						0,7	
Ellenberg N index (N)						2,1	13
Ellenberg pH index (R)						3,1	14

			2019				
Gammtratten2	species	list	mean %	median	CV%		n spec.
n:o of species total							83
cover field layer			42	38	38		41
cover bottom layer			61	60	29		42
cover dominant 1	HYLO SPL	M2	20	20	79		
cover dominant 2	SPHA GIR	M2	18	4	145		
cover dominant 3	VACC MYR	B4	7	4	128		
plot frequency dominant 1	LINN BOR	В4				31	
plot frequency dominant 2	DESC FLE	В4				30	
plot frequency dominant 3	VACC MYR	В4				30	
species diversity index (H´)						3,4	
Equitability (J)						0,7	
Ellenberg N index (N)						2,2	44
Ellenberg pH index (R)						2,9	43

			2019				
Gårdsjön2	species	list	mean %	median	CV%		n spec.
n:o of species total							38
cover field layer			7	6	100		7
cover bottom layer			74	86	36		31
cover dominant 1	DICR MAJ	M2	31	25	86	J	
cover dominant 2	PLEU SCH	M2	10	5	137		
cover dominant 3	SPHA CAP	M2	9	0	257		
plot frequency dominant 1	DICR MAJ	M2				30	
plot frequency dominant 2	PLEU SCH	M2				26	
plot frequency dominant 3	VACC MYR	B4				25	
anagina divaraity inday (III)						1.6	
species diversity index (H´)						1,6	
Equitability (J)						0,53	
Ellenberg N index (N)						1,9	28
Ellenberg pH index (R)						2,3	30

			2019				
Kindla1	species	list	mean %	median	CV%		n spec.
n:o of species total							36
cover field layer			5	2	124		6
cover bottom layer			84	92	21		30
cover dominant 1	DICR MAJ	M2	42	39	71		
cover dominant 2	PLEU SCH	M2	20	18	92		
cover dominant 3	SPHA CAP	M2	12	0	209		
plot frequency dominant 1	DICR MAJ	M2				32	
plot frequency dominant 2	PLEU SCH	M2				30	
plot frequency dominant 3	DESC FLE	B4				15	
species diversity index (H´)						1,3	
Equitability (J)						0,52	
Ellenberg N index (N)						1,9	27
Ellenberg pH index (R)						2,5	27

Observations on intensive plot 40x40 m with 32 subplots 0,5x0,5 m distributed by stratified random sampling. list = Nordic Council of Ministers Code Centre: B4-vascular plants, M2-mosses, L2-lichens. Indices calculated with all sub-plots summed to one plot. Species diversity index: Shannon-Wiener $H' = -\sum(pi \times log2pi)$, where pi = proportional cover for species i. N- and R-indices based on Ellenberg indicator values: $\sum(ci \times Elli)/\sum ci$, where ci = cover ofspecies i and Elli = Ellenberg value for species i.

* too few species with an Ellenberg value to be calculated.

Chemistry of spruce needles and needles in litterfall – 2019

Gårdsjö	in	Current n	eedles		Current ne	edles +1		Needles in litterfall					
Element	Unit	Mean	Median	CV%	n	Mean	Median	CV%	n	Mean	Median	CV%	n
Ca	µg/g dw	5610			2	6765			2	5293	5400	9	3
Mg	µg/g dw	1465			2	1275			2	915	914	3	3
Na	µg/g dw	273			2	384			2	239	227	21	3
K	µg/g dw	4860			2	3960			2	1157	1140	12	3
P	µg/g dw	1295			2	1180			2	606	575	20	3
N	%	1,07			2	1,05			2	1,06	1,05	27	3
C	%	51			2	51			2	52	52	1	3
S	µg/g dw	1			2	1			2	721	672	15	3
C/N	weight basis	48			2	49			2	52	49	29	3
Cu	μg/g dw	1,91			2	1,81			2	3,4	3	17	3
Pb	µg/g dw	0,05			2	0,07			2	0,7	1	25	3
Zn	µg/g dw	61,4			2	67,4			2	59,2	59	13	3
Cd	µg/g dw	0,03			2	0,03			2	0,15	0	21	3
Hg	µg/g dw	0,008			2	0,021			2	0,04	0,03	28	3
Mn	µg/g dw	760			2	715			2	506	513	4	3
Al	μg/g dw	72			2	89			2	147	152	12	3
Fe	µg/g dw	34			2	34			2	79	72	16	3
Arginine	µmol/g dw	-											

Aneboo	da	Current n	eedles			Current ne	edles +1			Needles in litterfall			
Element	Unit	Mean	Median	CV%	n	Mean	Median	CV%	n	Mean	Median	CV%	n
Ca	µg/g dw	5280			2	5515			2	5235	5235	6	2
Mg	µg/g dw	1290			2	1102			2	641	641	17	2
Na	µg/g dw	76			2	110			2	160	160	19	2
K	µg/g dw	5225			2	4605			2	1290	1290	2	2
P	µg/g dw	2035			2	1880			2	556	556	1	2
N	%	1,18			2	1,06			2	0,7	0,7	6	2
C	%	51			2	51			2	52,7	52,7	1	2
S	µg/g dw	1			2	1			2	620	620	7	2
C/N	weight basis	43			2	48			2	75	75	7	2
Cu	µg/g dw	1,92			2	1,77			2	2,5	2,5	10	2
Pb	µg/g dw	0,05			2	0,05			2	0,6	0,6	11	2
Zn	µg/g dw	44,1			2	41,5			2	53,3	53,3	9	2
Cd	µg/g dw	0,03			2	0,04			2	0,19	0,19	8	2
Hg	µg/g dw	0,008			2	0,021			2	0,03	0,03	4	2
Mn	μg/g dw	1515			2	1565			2	1005	1005	2	2
Al	μg/g dw	83			2	116			2	178	178	13	2
Fe	µg/g dw	31			2	31			2	101	101	6	2
Arginine	µmol/g dw	-											

Kindla		Current n	eedles			Current ne	eedles +1			Needles in litterfall				
Element	Unit	Mean	Median	CV%	n	Mean	Median	CV%	n	Mean	Median	CV%	n	
Ca	μg/g dw	3930			2	4375			2	3807	3980	9	3	
Mg	μg/g dw	1075			2	903			2	446	445	13	3	
Na	µg/g dw	87			2	105			2	54	57	13	3	
K	µg/g dw	5755			2	5255			2	726	751	18	3	
P	μg/g dw	1265			2	1130			2	437	368	30	3	
N	%	1,04			2	0,99			2	0,70	0,64	17	3	
С	%	51			2	51			2	53	52	1	3	
S	μg/g dw	1			2	1			2	576	543	16	3	
C/N	weight basis	50			2	52			2	76	83	16	3	
Cu	μg/g dw	1,89			2	1,80			2	2,0	1,9	14	3	
Pb	μg/g dw	0,06			2	0,15			2	0,9	0,7	59	3	
Zn	μg/g dw	45,4			2	47,5			2	56,8	54,0	12	3	
Cd	μg/g dw	0,03			2	0,03			2	0,22	0,19	31	3	
Hg	μg/g dw	0,005			2	0,008			2	0,04	0,03	22	3	
Mn	μg/g dw	1060			2	996			2	714	720	12	3	
Al	μg/g dw	64			2	80			2	155	158	11	3	
Fe	μg/g dw	23			2	26			2	61	61	5	3	
Arginine	μmol/g dw	-												

Gammtr	atten	Current n	eedles			Current ne	eedles +1			Needles in litterfall					
Element	Unit	Mean	Median	CV%	n	Mean	Median	CV%	n	Mean	Median	CV%	n		
Ca	μg/g dw	3670			2	5400			2	5670	5680	5	3		
Mg	μg/g dw	1105			2	1100			2	557	559	13	3		
Na	µg/g dw	64			2	72			2	81	78	18	3		
K	µg/g dw	6395			2	5795			2	1027	932	28	3		
P	μg/g dw	2075			2	1830			2	404	413	16	3		
N	%	1,04			2	0,91			2	0,52	0,51	7	3		
С	%	51			2	52			2	53	53	0	3		
S	µg/g dw	1			2	1			2	497	510	8	3		
C/N	weight basis	50			2	57			2	102	104	7	3		
Cu	µg/g dw	1,81			2	1,47			2	1,4	1,4	14	3		
Pb	µg/g dw	0,15			2	0,05			2	0,5	0,4	23	3		
Zn	µg/g dw	43,4			2	44,5			2	68,4	66,9	4	3		
Cd	µg/g dw	0,02			2	0,02			2	0,16	0,15	23	3		
Hg	µg/g dw	0,008			2	0,008			2	0,03	0,03	12	3		
Mn	μg/g dw	811			2	1109			2	1126	1140	13	3		
Al	μg/g dw	119			2	68			2	167	164	4	3		
Fe	μg/g dw	106			2	32			2	60	62	7	3		
Arginine	μmol/g dw	-													

Comments

Samples are taken in February-March near the crown top of ten trees on or near circular plots. Except for arginine they are mixed into two separate samples for analysis.

n = number of samples analysed

Biomass and bioelements in living trees, ≥5 cm dbh (mass per hectar)

All values corrected in 2015. This sheet replaces older data

See annual report from 2015 for details.

Biom/Element	Unit	1991	n plots	1995	n plots	2000	n plots	2005	n plots	2010	n plots	2015	n plots
biomass	ton dw/ha	188	18	194	19	199	18	198	18	213	18	181	17
C-tot	ton/ha	92	18	95	19	98	18	97	18	104	18	89	17
N-tot	kg/ha	492	18	503	19	514	18	505	18	544	18	465	17
P-tot	kg/ha	53	18	54	19	55	18	55	18	58,6	18	48	17
K	kg/ha	193	18	197	19	202	18	198	18	213	18	183	17
Ca	kg/ha	343	18	351	19	358	18	352	18	379	18	332	17
Mg	kg/ha	52	18	54	19	55	18	54	18	58,1	18	49	17
Fe	kg/ha	16	18	16	19	16	18	16	18	17,3	18	15	17
Mn	kg/ha	57	18	58	19	59	18	58	18	62,7	18	55	17
Zn	kg/ha	3,8	18	4,1	19	4,1	18	4,1	18	4,32	18	3,8	17
Cu	kg/ha	0,8	18	1,1	19	1,1	18	1,1	18	1,08	18	0,8	17
В	kg/ha	0,5	18	0,5	19	0,5	18	0,5	18	0,5	18	0,5	17

Aneboda	19 ha
---------	-------

7111000000	10 Ha										
Biom/Element	Unit	1996	n plots	2001	n plots	2006	n plots	2011	n plots	2016	n plots
biomass	ton dw/ha	205	49	223	47	204	45	122	18	96	22
C-tot	ton/ha	100	49	109	47	100	45	60	18	47	22
N-tot	kg/ha	533	49	584	47	525	45	317	18	248	22
P-tot	kg/ha	53	49	58	47	52	45	33	18	26	22
K	kg/ha	206	49	226	47	203	45	121	18	94	22
Ca	kg/ha	381	49	418	47	376	45	217	18	170	22
Mg	kg/ha	56	49	61	47	55	45	33	18	26	22
Fe	kg/ha	17	49	19	47	17	45	10	18	7,6	22
Mn	kg/ha	63	49	69	47	62	45	36	18	28	22
Zn	kg/ha	4,5	49	5	47	4,4	45	3	18	2,1	22
Cu	kg/ha	1,1	49	1,2	47	1,0	45	1	18	0,4	22
В	kg/ha	0,6	49	0,6	47	0,6	45	0,4	18	0,3	22

Kindla 20 ha

Biom/Element	Unit	1998	n plots	2003	n plots	2008	n plots	2013*	n plots	2018	n plots
biomass	ton dw/ha	189	41	203	41	210	40	208	39	153	39
C-tot	ton/ha	93	41	99	41	103	40	102	39	75	39
N-tot	kg/ha	529	41	564	41	583	40	576	39	416	39
P-tot	kg/ha	52	41	56	41	57	40	57	39	40,9	39
K	kg/ha	207	41	221	41	229	40	226	39	164	39
Ca	kg/ha	380	41	408	41	422	40	418	39	304	39
Mg	kg/ha	55	41	59	41	60	40	60	39	43,3	39
Fe	kg/ha	18	41	19	41	19	40	19	39	13,9	39
Mn	kg/ha	64	41	68	41	71	40	70	39	50,7	39
Zn	kg/ha	4,3	41	4,6	41	4,8	40	4,7	39	3,4	39
Cu	kg/ha	1,0	41	1,1	41	1,1	40	1,1	39	0,8	39
В	kg/ha	0,6	41	0,6	41	0,6	40	0,6	39	0,5	39

Gammtratten 45 ha

Gammuatten	45 Ha										
Biom/Element	Unit	1999	n plots	2004	n plots	2009	n plots	2014	n plots	2019	n plots
biomass	ton dw/ha	100	35	102	35	105	35	102	33	108	32
C-tot	ton/ha	49	35	50	35	51	35	50	33	53	32
N-tot	kg/ha	274	35	279	35	287	35	276	33	305	32
P-tot	kg/ha	30	35	30	35	31	35	30	33	33	32
K	kg/ha	107	35	109	35	112	35	107	33	116	32
Ca	kg/ha	186	35	190	35	195	35	186	33	205	32
Mg	kg/ha	29	35	29	35	30	35	29	33	32	32
Fe	kg/ha	8,7	35	8,9	35	9,1	35	8,7	33	9,3	32
Mn	kg/ha	31	35	32	35	33	35	31	33	34	32
Zn	kg/ha	2,1	35	2,2	35	2,2	35	2,2	33	3,6	32
Cu	kg/ha	0,5	35	0,5	35	0,5	35	0,5	33	0,5	32
В	kg/ha	0,3	35	0,3	35	0,3	35	0,3	33	0,3	32

Comments

Biomass estimated from measurements of trees on regularly distributed permanent sample plots. Chemistry data from literature.

Månadsvärden på temperatur och nederbörd (P) vid meteorologistationen i Gårdsjön 2019

janinoi t ineu ia	iliguiusvait	ien nan Jave	OCII /4 VIII	CIII.		
Månad	Temp a)	Temp 2019	Översk./	P 1961-1990 b)	P 2019	Översk./
	Säve	Gårdsjön	undersk.	Alvhem	Gårdsjön	undersk.
	grad C	grad C	grad C	mm	mm	mm
1	-1,6	-0,7	0,9	71	31	-40
2	-1,6	2,6	4,2	47	125	78
3	1,2	3,3	2,1	57	148	91
4	5,2	8,5	3,3	50	22	-28
5	10,9	9,8	-1,1	62	73	11
6	14,9	16,0	1,1	73	56	-17
7	16,2	17,3	1,1	89	38	-51
8	15,6	16,5	0,9	91	124	33
9	12,2	12,3	0,1	107	184	77
10	8,5	7,2	-1,3	112	112	0
11	3,7	3,2	-0,5	109	95	-14
12	0,3	3,2	2,9	83	136	53
Medel/Summa	7,1	8,3	1,1	951	1145	194

Månadsvärden på temperatur och nederbörd (P)vid meteorologistationen i Aneboda 2019 jämfört med långtidsvärden från Växiö

jamfort med la	ingtiasvai	uen man vaxj	0			
Månad	Temp a)	Temp 2019	Översk./	P 1961-1990 c)	P 2019	Översk./
	Växjö	Aneboda	undersk.	Växjö	Aneboda	undersk.
	grad C	grad C	grad C	mm	mm	mm
1	-2,7	-2,1	0,6	60	42	-18
2	-2,6	1,8	4,4	41	68	27
3	0,4	2,7	2,3	48	104	56
4	4,9	6,5	1,6	46	6	-40
5	10,8	9,2	-1,6	56	91	35
6	14,9	16,9	2,0	64	62	-2
7	15,9	15,8	-0, 1	87	95	8
8	15,2	15,5	0,3	66	105	39
9	11,2	11,5	0,3	82	94	12
10	7,2	7,0	-0,2	67	132	65
11	2,5	3,6	1,1	73	77	4
12	-1,1	2,3	3,4	65	98	33
Medel/Summa	6,4	7,5	1,2	<i>755</i>	974	219

- a) Månadsmedeltemperaturer 1961-90, källa: SMHI.
- b) Korrigerad nederbörd, Alvhem (SMHI-bet 8200 korrektionsfaktor 1,18, källa:Data rörande Sveriges
- nederbördsklimat. Normalvärden för perioden 1961-90. SMHI Rapport 1991:81) c) Korrigerad nederbörd, Växjö (SMHI-bet 6452 korrektionsfaktor 1,16)
- d) Korrigerad nederbörd, Nyberget (SMHI-bet 9544 korrektionsfaktor 1,21) e) Korrigerad nederbörd, Fredrika (SMHI-bet 14805 korrektionsfaktor 1,24)

Månadsvärden på temperatur och nederbörd (P) vid meteorologistationen i Kindla 2019 jämfört med långtidsvärden från Knon och Nyberget.

jannoi e mea ie	g c. ao i a.					
Månad	Temp a)	Temp 2019	Översk./	P 1961-1990 d)	P 2019 d)	Översk./
	Knon	Kindla	undersk.	Kindla	Kindla	undersk.
	grad C	grad C	grad C	mm	mm	mm
1	-7,7	-4,9	2,8	64	40	-24
2	-6,9	-0,9	6,0	46	47	1
3	-3,2	-0,6	2,6	51	81	30
4	3,1	5,6	2,5	56	1	-55
5	9,3	8,0	-1,3	58	86	28
6	13,7	14,7	1,0	80	52	-28
7	16,1	14,9	-1,2	98	69	-29
8	14,3	14,4	0, 1	102	86	-16
9	9,4	9,2	-0,2	99	124	25
10	4, 1	3,8	-0,3	87	132	45
11	-0,5	-0,4	0, 1	97	98	1
12	-4,3	-0,4	3,9	68	90	22
Medel/Summa	4,0	5,3	1,3	906	906	-0

Månadsvärden på temperatur och nederbörd (P) vid meteorologistationen i Gammtratten 2019

jämfört med la	ıngtıasvar	aen Tran Fred	rıka.			
Månad	Temp a)	Temp 2019	Översk./	P 1961-90 e)	P 2019 e)	Översk./
	Fredrika	Gammtratten	undersk.	Fredrika	Gammtratten	undersk.
	grad C	grad C	grad C	mm	mm	mm
1	-12,7	-10,8	1,9	43	26	-17
2	-11,2	-5,7	5,5	33	42	9
3	-6,2	-5,0	1,2	39	67	28
4	-0,2	2,5	2,7	36	6	-30
5	6,6	5,2	-1,4	47	64	17
6	12,3	12,2	-0, 1	62	40	-22
7	13,9	13,5	-0,4	109	43	-66
8	12,0	12,7	0,7	85	60	-25
9	7,0	6,0	-1,0	77	72	-5
10	1,8	-0,6	-2,4	68	41	-27
11	-5,8	-5,5	0,3	59	46	-13
12	-10,6	-3,9	6,7	50	56	6
Medel/Summa	0,6	1,7	1,1	708	563	-145

- a) Månadsmedeltemperaturer 1961-90, källa: SMHI.
- b) Korrigerad nederbörd, Alvhem (SMH-bet 8200 korrektionsfaktor 1,18, källa:Data rörande Sveriges nederbördsklimat. Normalvärden för perioden 1961-90. SMHI Rapport 1991:81)

- c) Komigerad nederbörd, Växjö (SMHI-bet 6452 korrektionsfaktor 1,16) d) Komigerad nederbörd för Kindla baserad på Nyberget (SMHI-bet 9544 korrektionsfaktor 1,21) alt. Kloten omräknad till Kindla
- e) Korrigerad nederbörd, Fredrika (SMHI-bet 14805 korrektionsfaktor 1,24)

Uppmätt nederbörd (öppet fält), krondropp och avrinning i Gårdsjön 2019 Kronavdunstning är beräknad som nederbörd minus krondropp. Enhet mm.

Månad	Nederbörd	Krondropp	Kronavdunstning	Avrinning	nederbörd -
					avrinning
1	53	36	17	25	28
2	161	131	29	177	-17
3	128	90	38	191	-63
4	0	0	0	9	-9
5	99	92	7	6	93
6	41	38	4	9	33
7	25	26	-1	2	23
8	125	111	15	6	119
9	123	119	4	80	44
10	164	135	29	108	55
11	138	90	49	81	57
12	182	124	59	157	26
Summa	1240	991	248	851	389
% av NBD	100%	80%	20%	69%	31%

Uppmätt nederbörd (öppet fält), krondropp och avrinning i Aneboda 2019

Kronavdunstning är beräknad som nederbörd minus krondropp. Enhet mm.

KIOHAVUUHSTIII	ig al belakliau s	om nederbord m	irius kronuropp. Eni	ice iiiiii.	
Månad	Nederbörd	Krondropp	Kronavdunstning	Avrinning	nederbörd -
					avrinning
1	42	45	-3	20	22
2	67	86	-19	37	30
3	73	69	4	49	24
4	1	3	-2	17	-16
5	48	79	-31	14	34
6	20	36	-16	6	14
7	32	41	-9	3	29
8	113	76	37	7	106
9	48	67	-19	15	33
10	110	87	23	38	72
11	92	54	38	51	41
12	85	71	14	65	20
Summa	731	715	16	322	409
% av NBD	100%	98%	2%	44%	56%

Uppmätt nederbörd (öppet fält), krondropp och avrinning i Kindla 2019

navdunstning är beräknad som nederbörd minus krondropp. Enhet mm

Kionavuunstiii	ig ai berakilau si	om nederbord m	inus kronaropp. Enn	et mm.	
Månad	Nederbörd	Krondropp	Kronavdunstning	Avrinning	nederbörd -
					avrinning
1	80	34	45	12	67
2	51	37	14	43	8
3	40	40	0	83	-42
4	10	8	1	38	-28
5	90	119	-29	12	78
6	54	74	-20	17	36
7	61	93	-32	7	54
8	105	170	-65	7	97
9	124	62	61	40	84
10	110	180	-70	81	29
11	229	161	68	96	133
12	119	72	47	123	-4
Summa	1072	1052	20	559	513
% av NBD	100%	98%	2%	52%	48%

Uppmätt nederbörd (öppet fält), krondropp och avrinning i Gammtratten 2019

Kronavdunstning är beräknad som nederbörd minus krondropp. Enhet mm.

Månad	Nederbörd	Krondropp	Kronavdunstning	Avrinning	nederbörd -
					avrinning
1	21	38	-16	4	17
2	21	34	-13	1	20
3	37	40	-4	1	36
4	36	36	0	103	-67
5	67	62	5	86	-19
6	55	70	-15	44	12
7	31	42	-11	17	13
8	73	71	2	13	60
9	41	45	-4	15	25
10	48	57	-9	24	24
11	133	29	104	14	120
12	55	57	-2	9	45
Summa	618	581	<i>37</i>	330	287
% av NBD	100%	94%	6%	53%	47%

Temporal patterns in forest floor vegetation

The diagrams show sub plot centroids (multivaraite mean values) in ordinations based on all field and ground layer plant species. The centroids represent 32 subplots in each diagram and year. The hulls encricle the distribution of plots in each year. The closer crosses are to each other, the higher similarities in the species composition. See text in the Annual report 2010 for a description.

mportant observations 2019