

Data Collection and Preprocessing Phase

Date	4 th June 2024
Team ID	SWTID1720164961
Project Title	Early Prediction of Chronic Kidney Disease Using Machine Learning
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description
Data Overview	400 rows 26 columns [5]: data.head() [5]: id age bp sg al su rbc pc pcc ba pcv wc rc htn dm cad appet pe ane cla
	0 0 48.0 8.0 1.020 1.0 0.0 NaN normal notpresent notpresent 44 78.0 5.2 yes yes no good no no 1 1 7.0 5.0 1.020 4.0 0.0 NaN normal notpresent notpresent 38 6000 NaN no no no good no no 2 2 62.0 8.0 1.010 2.0 3.0 normal normal notpresent notpresent 31 75.00 NaN no yes no poor no yes 3 3 48.0 70.0 1.005 4.0 0.0 normal abnormal present notpresent 32 6700 3.9 yes no no poor yes yes 4 4 51.0 8.0 1.010 2.0 0.0 normal normal notpresent notpresent 35 7300 4.6 no no good no no 5 rows × 26 columns
Univariate Analysis	120 100 100 100 100 100 100 100 100 100

Outliers and Anomalies	NA		
Data Preprocessing Code Screenshots			
Loading Data	[5]: data.head() [5]: did age bp sg al su rbc pc pcc ba pcv wc rc htn dm cad appet pe ane cla [6]: 0 0 48.0 8.00 1.020 1.0 0.0 NaN normal notpresent notpresent 44 7800 5.2 yes yes no good no no [7] 1 1 7.0 5.0 1.020 4.0 0.0 NaN normal notpresent notpresent 38 6000 NaN no no no good no no [8] 2 2 62.0 8.0 1.010 2.0 3.0 normal normal notpresent notpresent 31 7500 NaN no yes no poor no yes [8] 3 3 48.0 70.0 1.005 4.0 0.0 normal abnormal present notpresent 32 6700 3.9 yes no no good no no [8] 5 rows × 26 columns		
Handling Missing Data	[66]: # filling null values, we will use two methods, random sampling for higher null values and # mean/mode sampling for lower null values def random_value_imputation(feature): random_sample = data[feature].corpas().sample(data[feature].sana().sum()) random_sample = indox = data[data[feature] = random_sample def imput_mode(feature]: mode = data[feature] = data[feature].fillna(mode) data[feature] = data[feature].fillna(mode) [67]: # filling num_cols null values using random sampling method for col in num_cols: random_value_imputation(col) [68]: age		
Data Transformation	NA		
Feature Engineering	NA		
Save Processed Data	NA		