

University of Michigan – Shanghai Jiao Tong University Joint Institute (UM-SJTU JI)

RLC circuits

RLC circuits

In the series circuit of Fig. 31.13a, suppose $R = 300 \Omega$, L = 60 mH, $C = 0.50 \mu\text{F}$, V = 50 V, and $\omega = 10,000 \text{ rad/s}$. Find the reactances X_L and X_C , the impedance Z, the current amplitude I, the phase angle ϕ , and the voltage amplitude across each circuit element.

Find amplitude only

RLC circuits

31.61 • A resistance R, capacitance C, and inductance L are connected in series to a voltage source with amplitude V and variable angular frequency ω . If $\omega = \omega_0$, the resonance angular frequency, find (a) the maximum current in the resistor; (b) the maximum voltage across the capacitor; (c) the maximum voltage across the inductor; (d) the maximum energy stored in the capacitor; (e) the maximum energy stored in the inductor. Give your answers in terms of R, C, L, and V.

Waves

Recoll (summer semester): classical wave equation (in 1D)
$$\frac{\partial^2 \xi}{\partial x^2} = \frac{1}{|\mathcal{D}|^2} \frac{\partial^2 \xi}{\partial t^2}$$
 displacement ophase speed

Waves

