

Image Analysis

Rasmus R. Paulsen Tim B. Dyrby DTU Compute

rapa@dtu.dk

http://www.compute.dtu.dk/courses/02502

Lecture 5 – BLOB analysis and feature based classification

What can you do after today?

- Calculate the connected components of a binary image. Both using 4-connected and 8-connected neighbours
- Compute BLOB features including area, bounding box ratio, perimeter, center of mass, circularity, and compactness
- Describe a feature space
- Compute blob feature distances in feature space
- Classify binary objects based on their blob features
- Estimate feature value ranges using annotated training data
- Compute a confusion matrix
- Compute rates from a confusion matrix including sensitivity, specificity and accuracy
- Determine and discuss what is the importance of sensitivity and specificity given an image analysis problem

Object recognition

- Recognise objects in images
- Put them into different classes

BLOB - what is it?

- BLOB = Binary Large Object
 - Group of connected pixels
- BLOB Analysis
 - Connected component analysis
 - Object labelling

Isolating a BLOB

- What we want:
 - For each object in the image, a list with its pixels
- How do we get that?
 - Connected component analysis
- Connectivity
 - Who are my neighbors?
 - 4-connected
 - 8-connected

Connected component analysis

- Binary image
- Seed point: where do we start?
- Grassfire concept
 - Delete (burn) the pixels we visit
 - Visit all connected (4 or 8) neighbors

4-connected

The result of connected component analysis

- An image where each BLOB (component) is labelled
- Each blob now has a unique ID number
- What do we do with these blobs?

Features

- **Feature**
 - A prominent or distinctive aspect, quality, or characteristic
 - This radio has many good features
- Car (Ford-T) features
 - 4 wheels
 - 2 doors
 - 540 kg
 - 20 hp

Feature vector

f=[4, 2, 540, 20]

f=[4, 3, 1100, 90]

- Feature vector
 - Vector with all the features for one object
- Ford-T features
 - 4 wheels
 - 2 doors
 - 540 kg
 - 20 hp
- Ford Fiesta features
 - 4 wheels
 - 3 doors
 - 1100 kg
 - 90 hp

Feature extractions

- Compute features for each BLOB that can be used to identify it
 - Size
 - Shape
 - Position
- From image operations to mathematical operations
 - Input: a list of pixel positions
 - Output: Feature vector
- First step: remove invalid BLOBS
 - too small or big- using morphological operations for example
 - border BLOBs

Feature vector =
$$[2,1,...,3]$$

Feature vector =
$$[4,7,...,0]$$

One BLOB

Area

- number of pixels in the BLOB
- Can be used to remove noise (small BLOBS)

One BLOB

Bounding box

- Minimum rectangle that contains the BLOB
- Height: $y_{\text{max}} y_{\text{min}}$
- Width: $x_{\text{max}} x_{\text{min}}$
- Bounding box ratio:

$$\frac{y_{\text{max}} - y_{\text{min}}}{x_{\text{max}} - x_{\text{min}}}$$

tells if the BLOB is elongated

One BLOB

- Bounding box
 - Bounding box area:

$$(y_{\text{max}} - y_{\text{min}}) \cdot (x_{\text{max}} - x_{\text{min}})$$

Compactness of BLOB

Compactness =
$$\frac{\text{BLOB Area}}{(y_{\text{max}} - y_{\text{min}}) \cdot (x_{\text{max}} - x_{\text{min}})}$$

Not compact

Compact

One BLOB

- Bounding box ratio
 - Bounding box height divided by the width

Center of mass (x_c, y_c)

$$x_c = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$y_c = \frac{1}{N} \sum_{i=1}^{N} y_i$$

BLOB Center of Mass

The smallest BLOB is found using 4-connectivity. What is the center of mass of this BLOB. The image has origin (0,0) and uses a (x,y) coordinate system.

(12, 1.5)

(5, 8.5)

(6.5, 3.5)

(4.5, 0.5)

(7, 4.5)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

The smallest BLOB is found using 4-connectivity. What is the center of mass of this BLOB. The image has origin (0,0) and uses a (x,y) coordinate system.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

BLOB Center of Mass

The smallest BLOB is found using 4-connectivity. What is the center of mass of this BLOB. The image has origin (0,0) and uses a (x,y) coordinate system.

 $Start\ the\ presentation\ to\ see\ live\ content.\ For\ screen\ share\ software, share\ the\ entire\ screen.\ Get\ help\ at\ \textbf{pollev.com/app}$

One BLOB

- Perimeter
 - Length of perimeter
 - How can we compute that?
- In practice, it is computed differently and more accurately

$$\sum ((f(x,y) \oplus SE) - f(x,y))$$

BLOB Features - circularity

Circle like

How much does it look like a circle?

- Circle
 - Area $A = \pi r^2$
 - Perimeter $P = 2\pi r$
- New object assumed to be a circle
 - Measured perimeter P_m
 - Measured area A_m
- Estimate perimeter from (measured) area
 - Estimated perimeter $P_e = 2\sqrt{\pi A_m}$

BLOB Features - circularity

Circle like

- Compare the perimeters
 - Measured perimeter P_m
 - Estimated perimeter $P_e = 2\sqrt{\pi A_m}$
- Circularity 1:

Circularity =
$$\frac{P_m}{P_e} = \frac{P_m}{2\sqrt{\pi A_m}}$$

BLOB Features - circularity

Circle like

- Compare the perimeters
 - Measured perimeter P_m
 - Estimated perimeter $P_e = 2\sqrt{\pi A_m}$
- Circularity:

Circularity =
$$\frac{P_m}{P_e} = \frac{P_m}{2\sqrt{\pi A_m}}$$

This measure will normally be ≥1

BLOB Features – circularity inverse

Circle like

- Compare the perimeters
 - Measured perimeter P_m
 - Estimated perimeter $P_e = 2\sqrt{\pi A_m}$
- Circularity (inverse):

Circularity inverse =
$$\frac{P_e}{P_m} = \frac{2\sqrt{\pi A_m}}{P_m}$$

This measure will normally be ≤1

After feature extraction

Area, compactness, circularity etc calculated for all BLOB

One feature vector per blob

BLOB Classification

- Classification
 - Put a BLOB into a class
- Classes are normally pre-defined
 - Car
 - Bus
 - Motorcycle
 - Scooter
- Object recognition

Image Analysis

Object recognition: Circle example

BLOB number	Circu- larity	Area (pixels)
1	0.31	6561
2	0.40	6544
3	0.98	890
4	0.97	6607
5	0.99	6730
6	0.52	6611
7	0.75	2073

Which objects are circles?

Circle classification

- Two classes:
 - Circle
 - Not-circle
- Lets make a model of a proto-type circle

Circle classification

Proto-type circle

Circularity: 1

Area: 6700

Feature Space

Objects in here are classified as circles

Feature space

- Proto-type circle
 - Circularity: 1
 - Area: 6700
- Some slack is added to allow non-perfect circles
 - Circularity: 1 +/- 0.15

Image Analysis

Feature space - distances

- How do we decide if an object is inside the circle?
- Feature space distance
- Euclidean distance in features space

Blob 1: circularity: 0.31, Area: 6561

$$D = \sqrt{(0.31 - 1)^2 + (6561 - 6700)^2}$$

Dominates all! - normalisation needed

Cell classification

UV Microscopy

Fluorescence Microscopy (DAPI)

Images from ChemoMetec A/S

Nuclei classification

- DAPI image
- Two classes
 - Single nuclei
 - Noise
 - Multiple nuclei together
 - Debris
 - Other noise

2024

Training and annotation

- Selection of true single nuclei marked
- Thresholding
- **BLOB Analysis**
 - Circularity
 - Area

Training data - analysis

Probably outliers

Feature ranges

Feature	Min	Max
Area	50	110
Circularity	0.87	1.05

Using the classifier

DAPI input image

- Threshold input image
- Morphological opening (SE 5x5)
- Morphological closing (SE 5x5)
- BLOBs found using 8-neighbours
- Border BLOBS removed
- BLOB features computed
 - Area + circularity
- BLOBs with features inside the acceptance range are single-nuclei

Image Analysis

Using the classifier

DTU

How well does it work?

- We say we have a great algorithm!
- Strangely the doctor/biochemist do not trust this statement!
 - They need numbers!
- How do we report the performance?

Creating ground truth - expert annotations

Found single nuclei

Expert opinion on true single nuclei

Red markings: Single nuclei

Not marked: Noise

Four cases

- True Positive (TP): A nuclei is classified as a nuclei
- True Negative (TN): A noise object is classified as noise object
- False Positive (FP): A noise object is classified as a nuclei
- False Negative (FN): A nuclei is classified as a noise object

	Predicted as noise	Predicted as single- nuclei
Actual noise		
Actual single-nuclei		

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	
Actual single-nuclei		

2024

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	
Actual single-nuclei		TP=51

	Predicted as noise	Predicted as single- nuclei
Actual noise	TN=19	FP=2
Actual single-nuclei		TP=51

	Predicted as noise Predicted nuclei	
Actual noise	TN=19	FP=2
Actual single-nuclei	FN=5	TP=51

Something simpler?

Accuracy

Tells how often the classifier is correct

$$Accuracy = \frac{TP + TN}{N}$$

N is the total number of annotated objects

$$N = TN + TP + FP + FN$$

Image Analysis

True positive rate (sensivity)

How often is a positive predicted when it actually is positive

Sensivity =
$$\frac{TP}{FN+TP}$$

All the experts true single-nuclei

Image Analysis

Sensitivity from Confusion Matrix				
			62%	
	Predicted as noise	Predicted as single-	65%	
		nuclei		
Actual noise	TN=19	FP=2	71%	
Actual single-	FN=5	TP=51		
nuclei				
			91%	
			93%	
	Start the presentati	on to see live content.	For screen share software, share the entire screen. Get help at pollev.com/app	

Image Analysis

Specificity

How often is a negative predicted when it actually is negative

Specificity =
$$\frac{TN}{TN + FP}$$
 All the experts true noise objects

True positive rate 77% You have made an algorithm that can locate neon fish in an aquarium. An 92% expert has marked all neon fish in an image as seen in Figure 1 (left). The result of your algorithm is seen in Figure 1 (right). What is the true positive rate of your algorithm? 81% Figure 1: Image of aquarium with neon fish. Left: Expert markings are shown as ellipses. Right: Algorithm markings are shown as ellipses. 55% 67% Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

True positive rate

You have made an algorithm that can locate neon fish in an aquarium. An expert has marked all neon fish in an image as seen in Figure 1 (left). The result of your algorithm is seen in Figure 1 (right). What is the true positive rate of your algorithm?

Figure 1: Image of aquarium with neon fish. Left: Expert markings are shown as ellipses. Right: Algorithm markings are shown as ellipses.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Image Analysis

Start the presentation to see tive content. For screen share software, share the entire acreen. Get help at the Levice m/app

Optimising the classification

- Changing the classification limits
- The rates will be changed:
 - Accuracy
 - Sensitivity
 - Specificity
 - **–** ...
- Very dependent on the task what is optimal

Dependencies

- Increasing true positive rate
 - Increased false positive rate
 - Decreased precision

2024

Example – cell analysis

- We want only single-nuclei cells
 - For further analysis
- We do not want to do an analysis of a noise object
- We are not interested in the true number of single nuclei

What measure is the most important? Low false positives ■ We want only single-nuclei cells High true positives - For further analysis ■ We do not want to do an analysis of noise objects ■ We are not interested in the true number of single nuclei High true negatives Low false negatives

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Advanced classification

- Fitting more advanced functions to the samples
- Multivariate Gaussians
- Mahalanobis distances

Feature Engineering vs. Deep learning

- Until around 5-7 years ago feature engineering was the way to go
- Now deep learning beats everything
- However feature engineering is still important

Feature engineering

- Given a classification problem
 - Cars vs. Pedestrians
- Use background knowledge to select relevant features
 - Area
 - Shape
 - Appearance
 - ...
- Use multivariate statistics to classify
- Depending on the selected features

Deep learning

- You start with a dummy classifier
- Feed it with lots and lots of data with given labels
- The network learns the optimal features
- Layer/network engineering

Feature Engineering vs. Deep learning

Deep Learning

- When you have lot of annotated data
- Where it is not clear what features work

Manual features

- When you have limited data
- When it is rather obvious what features can discriminate

Image Analysis

Next week

- Pixel classification
- Advanced classification

Image Analysis