OPERATING SYSTEM

BOOK & THESIS CHALLENGE

Pitchuka Venkata Ramana 03 I 90444 EEIC 4th Year

MELTDOWN VULNERABILITY

(A)MELTDOWN VULNERABILITY 1 INTRODUCTION

- Hardware vulnerability: Intel x86 microprocessors and some ARM-based microprocessors.
- Rogue process read memory
- January 2018; 3 years ago

(A)MELTDOWN VULNERABILITY 2INITIAL WORKAROUNDS

- Software fixes: Slows 5~30%
- March 2018: Intel redesign begins
- October 2018: Intel adds mitigations

(A)MELTDOWN VULNERABILITY 3 MECHANISM

Background – modern CPU design

Features are particularly relevant to Meltdown:

- Virtual (paged) memory
- Privilege levels
- Instruction pipelining
- CPU cache

(A)MELTDOWN VULNERABILITY 3 MECHANISM

Meltdown Exploits

- Ordinarily, the mechanisms are considered secure.
- Exploits the mechanisms to bypass the CPU's fundamental privilege controls
- Accesses privileged and sensitive data from the O.S.
- CPU attempts to execute an instruction referencing a memory operand (address: Base+A)
- Caching of the data at Base+A, completed as a side effect of the memory access before the privilege check
- Act of caching -> leak of information
- Process executes a timing attack referencing memory operands directly

(A)MELTDOWN VULNERABILITY 3 MECHANISM

How MELTDOWN leaks kernel space information.

- Step I The content of an attacker-chosen memory location, which is inaccessible to the attacker, is loaded into a register.
- Step 2 A transient instruction accesses a cache line based on the secret content of the register.
- Step 3 The attacker uses Flush+Reload to determine the accessed cache line and hence the secret stored at the chosen memory location.

The Meltdown attack uses exception handling or suppression, e.g., TSX, to run a series of transient instructions.

(A)MELTDOWN VULNERABILITY 4 IMPACT

- CPU
- OS
- Virtual Machine
- Embedded Device, IoT
- Impacts Cloud Platforms like AWS and GCP
- Affects Para virtualized Machines and Containers

(A)MELTDOWN VULNERABILITY 5 THESIS: READING KERNEL MEMORY FROM USER SPACE

Optimizations and Limitations

- Inherent bias towards 0
- Optimizing the case of 0
- Single-bit transmission.
- Exception Suppression using Intel TSX
- Dealing with KASLR.

(A)MELTDOWN VULNERABILITY (5)THESIS: READING KERNEL MEMORY FROM USER SPACE

EVALUATION

- Leakage and Environments
 - Linux
 - Linux with KAISER Patch
 - Microsoft Windows
 - Android
 - Containers (Docker, LXC, and OpenVZ)
 - Uncached and Uncacheable Memory

Table 1: Experimental setups.

Environment	CPU Model	Cores
Lab	Celeron G540	2
Lab	Core i5-3230M	2
Lab	Core i5-3320M	2
Lab	Core i7-4790	4
Lab	Core i5-6200U	2
Lab	Core i7-6600U	2
Lab	Core i7-6700K	4
Lab	Core i7-8700K	12
Lab	Xeon E5-1630 v3	8
Cloud	Xeon E5-2676 v3	12
Cloud	Xeon E5-2650 v4	12
Phone	Exynos 8890	8

(A)MELTDOWN VULNERABILITY 5 THESIS: READING KERNEL MEMORY FROM USER SPACE

- Meltdown Performance
 - Core i7-8700K Reading rate: 582 KB/s Error Rate 0.003%
 - Core i7-6700K Reading rate: 569 KB/s Error Rate 0.002 % | L3 Data Cache RR:12.4 KB/s ER: 0.02 %
 - Xeon E5- 1630 Reading rate: 491 KB/s Error Rate 10.7 % but Slower version (137 KB/s Error Rate->0)
- Limitations on ARM and AMD
 - Successfully leak kernel memory on different Intel CPUs and a Samsung Exynos M1 processor
 - Failed on ARM cores and AMD

(A)MELTDOWN VULNERABILITY 5 THESIS: READING KERNEL MEMORY FROM USER SPACE

Countermeasures

- Hardware
 - Meltdown bypasses the hardware-enforced isolation of security domains
 - As Meltdown exploits out-of-order execution,
 - →disable out-of-order execution completely.
 - →however, performance impacts would be devastating

KAISER

- Kernel modification to not have the kernel mapped in the user space
- Intended to prevent side-channel attacks breaking KASLR
- Due to the design of the x86 architecture, several privileged memory locations are required to be mapped

VIRTUAL MACHINES

(B) VIRTUAL MACHINES 1) INTRODUCTION

- Emulation of a computer system
- Based on computer architectures and provide functionality of a physical computer

Broadly 2 types

- System virtual machines
 - Provide a substitute for a real machine.
 - They provide functionality needed to execute entire operating systems.
- Process virtual machines
 - execute computer programs in a platform-independent environment

(B) VIRTUAL MACHINES 1) INTRODUCTION

USES

- Test applications in a safe, sandboxed environment.
- Used for server virtualization, enabling teams to consolidate their computing resources and improve efficiency.

Advantages

- Run multiple OS on a single computer
- Windows host can run Linux on VM

Disadvantages

- Can result in unstable performance
- Less efficient and generally run slower

(B) VIRTUAL MACHINES (2) VIRTUALIZATION

- Types of Virtualization
 - Hardware Virtualization
 - Software Virtualization
 - Storage Virtualization
 - Network Virtualization
 - Desktop Virtualization
- Container vs virtual machine
 - Similar as they both run isolated applications on a single platform
 - VM make a computer but containers package up just a single app
 - Containers are faster

(B) VIRTUAL MACHINES 2 VIRTUAL MACHINES VS EMULATORS (SLIGHTLY OFF-TOPIC)

- The purpose of a virtual machine is to create an isolated environment.
- The purpose of an emulator is to accurately reproduce the behavior of some hardware.

(B) VIRTUAL MACHINES 3 THESIS THE ARCHITECTURE OF VIRTUAL MACHINES

- Architected interfaces
 - Instruction set architecture.
 - Application binary interface.
 - Application programming interface.

Figure 2. Computer system architecture. Key implementation layers communicate vertically via the instruction set architecture (ISA), application binary interface (ABI), and application programming interface (API).

(B) VIRTUAL MACHINES 3 THESIS THE ARCHITECTURE OF VIRTUAL MACHINES

- Process and system VMs
 - Perspective of a process
 - executing a user program, the machine consists of a logical memory address space assigned to the process along with user-level instructions and registers that allow the execution of code belonging to the process
 - Perspective of the operating system and the applications it supports
 - The entire system runs on an underlying machine.
- The virtualizing software in a system VM is typically referred to as the virtual machine monitor (VMM)

Figure 3. Process and system VMs. (a) In a process VM, virtualizing software translates a set of OS and user-level instructions composing one platform to those of another. (b) In a system VM, virtualizing software translates the ISA used by one hardware platform to that of another.

Process VM

- Process VMs provide a virtual ABI or API environment for user applications. In their various implementations, process VMs offer replication, emulation, and optimization.
- Multiprogrammed systems
- Emulators and dynamic binary translators
- Same-ISA binary optimizers
- High-level-language VMs

Figure 4. High-level-language environments. (a) Conventional environment where platform-dependent object code is distributed. (b) HLL VM environment where a platform-dependent VM executes portable intermediate code.

(B) VIRTUAL MACHINES 3 THESIS THE ARCHITECTURE OF VIRTUAL MACHINES

System VM

- A system VM provides a complete environment in which an operating system and many processes, possibly belonging to multiple users, can coexist.
- Classic system VM
- Hosted VMs
- Whole-system VMs
- Multiprocessor virtualization
- Codesigned VMs

(B) VIRTUAL MACHINES 3 THESIS THE ARCHITECTURE OF VIRTUAL MACHINES

Figure 5. Virtual machine taxonomy. Within the general categories of process and system VMs, ISA simulation is the major basis of differentiation.

ANNOTATIONS/SOURCES

MELTDOWN

- https://meltdownattack.com/meltdown.pdf
- https://lwn.net/Articles/738975/
- https://lkml.org/lkml/2017/11/22/956
- https://gruss.cc/files/kaiser.pdf

VM

- https://minds.wisconsin.edu/bitstream/handle/1793/11154/file_1.pdf?sequence=1&origin=publicationDetail
- https://zoo.cs.yale.edu/classes/cs422/2014/bib/goldberg74architecture.pdf
- http://mvapich.cse.ohio-state.edu/static/media/publications/abstract/huangwei-ics06.pdf