Statistical Hypothesis Testing [Parametric]

Satishkumar L. Varma

Professor, Department of Computer Engineering PCE, New Panvel www.sites.google.com/view/vsat2k www.vsat2k.wordpress.com www.vsat2k.moodlecloud.com

Statistical Hypothesis Testing

- Need and Motivation
- Procedure in Hypotheses Testing
- Types of Hypothesis Testing
- * Example of Hypotheses
- From in Hypothesis Testing: Type I and II error
- Confidence interval
- ♠ Z test and 2 test for goodness of fit
- ANOVA (one way classification)

Learning Objectives

- Distinguish Parametric & Nonparametric Test Procedures
- * Explain commonly used Nonparametric Test Procedures
- Perform Hypothesis Tests Using Parametric Procedures
- Perform Hypothesis Tests Using Nonparametric Procedures
- **★** Know different Statistical Parameters

Parametric & Nonparametric Test Procedures

Distinguish with Example

Parametric Tests	Nonparametric Tests
Depends of Probability Distribution	Distribution-free methods
Involve Population Parameters (Mean)	Do Not Involve Population Parameters (Example: Probability Distributions, Independence)
Have Stringent Assumptions (Normality)	Data Measured on Any Scale (Ratio or Interval, Ordinal or Nominal)
Examples: Z Test, t Test, x^2 Test, F test	Example: Wilcoxon Rank Sum Test
Parametric Test Example	Nonparametric Test Examle
t test	Sign Test
Z test	Wilcoxon Signed-Rank Test
x^2 Test	Wilcoxon rank sum test
F test (Analysis of variance)	Mann-Whitney-Wilcoxon Test
One Way ANOVA	Kruskal-Wallis H-Test
Linear correlation	Rank Correlation Test
	Runs test

Classification

Statistical Analysis

Statistical Analysis			
Descriptive Statistics	Inferential Statistics		
	Estimation: Estimate parameters of the pdf along with its confidence region		
	Hypotheses Testing: Making judgements about f(x) and its parameters		

Need of (Motivation for) Hypothesis Testing

- ♠ Need of (Motivation for) Hypothesis Testing (Significance Testing)
 - ♦ Will an investment in MF yield > desired value?
 - **☀** Is incidence of diabetes > among male than female?
 - * Are women > than male to change mobile service provider?
 - ♣ Has the efficiency of a pump < form its original value due to aging?</p>

Statistical tests are either parametric or non-parametric

Characteristics of Good Hypothesis

- A good Hypothesis must
 - Be clear, definite and stated in a simple manner all its concepts
 - # Have concepts which have empirical basis
 - * Be specific and precise while stating the relationship among variable
 - Be consistent with known fats
 - Be able to support or deny an existing theory
 - # Have reasonable explanation to any problem in present state of knowledge

Basics of Hypothesis Testing

- Definition
 - Test to make decision from set of data by determining expected behavior
- Hypothesis are converted to a test of parameters
 - mean or variance of population or
 - * difference in mean or variance of populations
- # Hypothesis is a statement or postulate about parameters of distribution
- This statement is called as
 - \Rightarrow Null Hypothesis(H₀)
 - Statement is true (wish to reject if sample provide sufficient evidence)
 - Alternative Hypothesis (H_a)
 - \clubsuit Statement is not true (wish to accept if H_0 is rejected)

Basics of Hypothesis Testing

- * Null hypothesis (H_0) Default (Claim)
 - The hypothesis will not be rejected unless the data provide convincing evidence that it is false
 - we are interested in disproving or, accumulating evidence for rejection
- Alternative or research hypothesis (H_a)
 - Accepted only if data provide convincing evidence of its truth

Basics of Hypothesis: A Case

- To understand Hypothesis Testing (Significance testing)
 - What is Normal Distribution?
 - **What is P-value?**
 - What is Statistical Significance?
- To determine the statistical significance of our results p-value is used
 - i.e p-value is used to know if a claim is valid or not
- \clubsuit To test the validity of a claim (H_0) about a population using sample data
- \clubsuit H_a is believed to be true if H₀ is concluded to be untrue

Basics of Hypothesis: A Case

Example:

Suppose a pizza place claims their delivery times are 30 minutes or less on average but you think it's more than that. So you conduct a hypothesis test and randomly sample some delivery times to test the claim:

- Null hypothesis The mean delivery time (MDT) is 30 minutes or less
- Alternative hypothesis The mean delivery time is greater than 30 minutes
- Goal is to determine which claim
 - 4 H₀ or H_a is better supported by the evidence found from sample data
- Want to test to see if there is a chance that MDT is greater than 30 minutes
 - In other words, we want to see if the pizza place lied to us somehow
- **One-tailed test** (our case): we care about if the MDT is greater than 30 minutes
- Two-tailed test: use if a MDT lower or equal to 30 minutes (even more preferable)

Basics of Hypothesis: A Case - What is Normal Distribution?

- Normal Distribution (PDF) with mean μ and standard deviation sigma σ
- Z-test can be to conduct our hypothesis testing
- For z-test we need to calculate Z-scores (to be used in our test-statistic)
- **Z**-score is the number of standard deviations from the mean a data point is
- T-score can tell us where the overall data lies compared to average population
- In our case, each data point is the pizza delivery time that we collected

- Mr. Will Koehrsen: Higher or lower the Z-score, the more unlikely the result is to happen by chance and the more likely the result is meaningful
- *But how high (or low) is considered as sufficiently convincing to quantify how meaningful our results are?
- This is where we need the last piece of item to solve the puzzle p-value, and
- $^{\bullet}$ Check if our results are statistically significant based on the **significance level** (also known as **alpha** α) we set before we began our experiment

- p-value lead to our decisions for the hypothesis testing
- Recall example of randomly sampled some pizza delivery times and
- The goal is to check if the mean delivery time is greater than 30 minutes
- § If final evidence supports the claim by pizza place (MDT is 30min or less), then
 - we will not reject the null hypothesis
- The otherwise, we will reject the null hypothesis

- The job of p-value is to answer the following question:
 - If I'm living in a world where the pizza delivery time is 30 minutes or less (null hypothesis is true), how surprising is my evidence in real life?
- P-value answers this question with a number probability
- \clubsuit Lower the p-value, more surprising evidence is, the more ridiculous our H_0 looks
 - Ridiculous means we reject H₀ and choose our H_a instead
- * If the p-value is lower than a predetermined significance level (alpha α the threshold of being ridiculous), then
 - $\stackrel{\bullet}{\sim}$ we reject the H_0
- After understanding the meaning of p-value means, let's apply it in our case

- Let's apply p-value meaningfully in pizza delivery times
- For collected some sampled delivery times
 - We perform the calculation and
 - Find that the MDT is longer by 10 minutes with a p-value of 0.03
- $\stackrel{\bullet}{\sim}$ That means in a world where pizza delivery time is 30 min or less (H₀ is true),
 - There is a 3% chance we would see MDT is at least 10min longer due to random noise
- Lower the p-value, the more meaningful the result because it is less likely to be caused by noise

- Misinterpretation of p-value: It is 0.03 means that there is 3% (probability in %) that the result is due to chance which is not true
- $^{\bullet}$ p-value of 0.03 is lower than the significance level of 0.05 (alpha α), and we can say that the result is statistically significant
- So what do we do?
 - \clubsuit At first, try to think of every possible way to make our initial belief (H₀) valid
 - The late delivery
 - \clubsuit Even we ourselves feel <u>ridiculous</u> to justify for the pizza place anymore and hence, we decide to reject the H_0
 - Finally, we decision is to choose not to buy any pizza from that place again

Used as a tool to challenge our initial belief (H_0) when the result is statistically significant

Basics of Hypothesis: A Case - What is Statistical Significance?

- Finally we put everything together and test if the result is statistically significant
 - Having just the p-value is not enough
 - $\stackrel{\bullet}{\bullet}$ We need to set a threshold (alpha α aka significance level)
 - \triangle Alpha α should always be set before an experiment to avoid bias
 - $\stackrel{\bullet}{\bullet}$ If the observed p-value is lower than α , then
 - We conclude that the result is statistically significant
 - * Rule of thumb is to set alpha $\alpha = 0.05$ or 0.01 (depends on application)
 - Assume that we set the alpha to be 0.05 before we began the experiment
 - $\stackrel{\text{\tiny{$4$}}}{\sim}$ Result is statistically significant since p-value of 0.03 is lower than alpha α
- Next: Basic steps for the whole experiment

Procedure in Hypotheses Testing

- Identify parameter (mean, variance, etc.) of interest to be tested
- \checkmark State the null hypotheses H_0
- \checkmark State the alternative hypotheses H_1
- $^{\prime}$ Choose test criterion (threshold alpha α)
- \checkmark Find the Z-score associated with our alpha α level
- \angle Choose kind of test need to perform (test-statistics) $Z = \frac{\overline{x} \mu_0}{\sigma/\sqrt{n}}$
 - ⟨ e.g. (our case) Find the test statistic using this formula
- Compare the t-statistics
 - ₩ If the value of test statistic is less than the Z-score of alpha level (or p-value is less than alpha value), then
 - Arr Reject the H_0 . Otherwise, don't reject the H_0

Procedure in Hypotheses Testing

- No hypotheses test is perfect.
 - Observations are random
 - Sample is only available
- * Test performance depends on
 - Extent of variability in data
 - Sample size (# of observations)
 - Test statistics (function of observations)
 - Threshold (test criterion)
- Example Next

Test of Hypothesis

- Test of Hypothesis
 - *Test whether a population parameter is less than, equal to, or greater than a specified value
- Remember an inference without a measure of reliability is little more than a guess

Hypothesis Statement Example

- **Hypothesis Statement Example 1**
- If
 - We wanted to test the hypothesis that a coin is a fair
 - i.e. the coin lands on heads or tails with equal probability
- Then consider
 - $H_0: p = 0.5$
 - $^{\prime}\!\!\!\!/ \!\!\!\!/ \!\!\!\!/ \, H_1: p \neq 0.5$
 - where p is the probability of the coin landing on heads
- ₩ How to do it?

How to do Hypothesis Testing

- ₩ Hypothesis Statement Example 1: How to do it?
- ★ It is tested by repeatedly tossing the coin and
- Recording the number of times that the coin landed on heads, and
- Testing H₀ using the Binomial distribution
- This is a one-sample test
- **₩** What about two-sample test?

How to do Hypothesis Testing

- W Hypothesis Statement Example 2: Two-sample test
- Two coins in a two-sample test
- i.e. both coins land on heads with equal probability
- $H_0: p1 = p2$ and $H_1: p1 \neq p2$
 - where p1 & p2 are the prob. of coins 1 & 2 landing on heads
- Null hypothesis testing by repeatedly tossing both coins, and
- Recording # times that each coin landed on heads, and
- \protect Obtaining the prob. that both values come from Bin.Dist. with equal success probability p = p1 = p2
- Given the numbers of trials n1 and n2, respectively

How to do Hypothesis Testing

- * Hypothesis Statement Example 2: Two-sample test
- $\stackrel{\bullet}{\sim}$ Rejection of H₀depends on the statistical significance of test P(H₀)
- $^{\bullet}$ P(H₀) is referred to as a p-value
- A result is considered significant if
 - it has been predicted to be highly unlikely to have occurred randomly by chance, given some threshold level
- This threshold is called significance level and denoted as alpha
- 4 The significance level commonly set as alpha = 0.05
- \clubsuit It means there is only 5% probability that H_0 is correct
- If a p-value is found to be less than threshold(alpha),
 - then the result is considered as statistically significant
- Different significance levels may be selected depending on the application

Example of Hypotheses

Example 3:

- Researcher wants to find out if sex influences lang. development during childhood
- # He collected MLU values from a group of N year-old boys and N year-old girls

Example of Hypotheses:

- Sex does not influence development (i.e. MLU)
- Sex influences development (i.e. MLU)
- Girls have a higher MLU
- Boys have a higher MLU

Example of Hypotheses

Example 4:

- Suppose building specifications for a city require that the average breaking strength of residential sewer pipe to be more than 2,400 lbs per foot of length.
- To sell pipe in the city a manufacturer must demonstrate that its product meets the specifications.

Example of Hypotheses:

- # the pipe does not meet specifications (H₀): $\mu \le 2400$
- # the pipe meets specifications (H₁): $\mu > 2400$
- # How can the city decide when enough evidence exists to conclude the pipe meets specifications?
 - When the sample mean convincingly indicates that the population mean exceeds 2,400 lbs per foot
- * Decision is done using **Statistical Measures** (e.g. p-value)

Example of Hypotheses

- Example 5: Website testing using hypothesis statement
 - # if you had reason to believe that the color of your landing page might be having a detrimental effect (harmful or damaging effect) on conversions
- Our hypothesis statement could be:
 - "Changing my landing page color from black to blue will have a statistically significant impact on conversions."
- Once this hypothesis is established
 - * We need to run your test to prove (or disprove) it
 - # Including words "statistically significant" in the hypothesis statement is important
 - # Since it means your sample sizes need to be adequate to analyze it as such

Error in Hypothesis Testing

- \P Statistical significance of test = $P(H_0)$ = p-value
- \Rightarrow Significance level (α) = Rate of FP = type I errors = Size of the test
- \clubsuit Rate of FN (type II) error = β
- \Rightarrow Power of a test = 1 Beta

$$\approx \alpha = P(\text{reject } H_0 \mid H_0 \text{ is correct})$$

 $\beta = P(\text{do not reject } H_0 \mid H_0 \text{ is incorrect})$

Decision →	H ₀ is not rejected	H ₀ is rejected	
Truth ↓			
H ₀ is true	Correct Decision Pr = 1 - α	Type I error Pr = α	
H _I is true	Type II error Pr = β	Correct Decision Pr = 1 - β	

Dataset, N = 20	Actual Class (Condition Given)			Performance Measures	
{4Class, 5Item}	P			N	Performance Measures
	TP			FP	PPV = TP/(TP+FP)
P distant	Correct Decision	2	1	Type I Errors	= 2 / (2+1)
Predicted Class	$Pr = 1 - \alpha$			$Pr = \alpha$	0.400
	FN			TN	NPV = TN/(TN+FN)
(Outcome) N	Type II Errors	3	14	Correct Decision	= 3 / (3+14)
	$Pr = \beta$			$Pr = 1 - \beta$	0.067
Performance	Sensitivity = $TP/(TP+FN)$		Specificity = $TN/(TN+FP)$		A=(TP+TN)/(TP+FP+TN+FN)
Measures	= 2 / (2+3)		= 14 / (14+1)		= (2+14) / (2+1+3+14)
Measures	0.667		0.824		0.8

Basics of Hypothesis Testing

- $\stackrel{\text{def}}{=}$ Size of a test (a) may be controlled by adjusting the significance level
- Power of a test (1-Beta) is determined by nature of particular statistical test used to test H₀
- Given that non-parametric tests tend to have lower power than parametric tests,
 - Non-parametric tests will have a greater tendency to fail to reject H_0 in cases where H_0 is actually incorrect

Dataset, N = 20	Actual Class (Condition Given)		Performance Measures		
{4Class, 5Item}	P			N	Feriormance Measures
	TP			FP	PPV = TP/(TP+FP)
Predicted P	Correct Decision	2	1	Type I Errors	= 2 / (2+1)
	$Pr = 1 - \alpha$			$Pr = \alpha$	0.400
Class	FN			TN	NPV = TN/(TN+FN)
(Outcome) N	Type II Errors	3	14	Correct Decision	= 3 / (3+14)
	$Pr = \beta$			$Pr = 1 - \beta$	0.067
Performance	Sensitivity = TP/(TP+FN)		Spec	cificity = TN/(TN+FP)	A=(TP+TN)/(TP+FP+TN+FN)
Measures	= 2 / (2+3)		= 14 / (14+1)		= (2+14) / (2+1+3+14)
ivieasures	0.667		0.824		0.8

Types of Hypothesis Test

- Based on 2 different ways of computing significance level (p-value)
- One-tailed test: A two-tailed test considers any values at extremes of distribution
- Two-tailed test: A one-tailed test is being interested in detecting extreme outliers

Two sided test

$$H_0: \mu = 0$$

$$H_1: \mu \neq 0$$

Test statistic standard normal V z
 Test statistic standard normal V z

• Reject H_0 if $z \le -2$ or $z \ge 2$

One sided test

$$H_0: \mu = 0$$

$$H_1: \mu > 0$$

Reject H_0 if $z \ge 1.5$

Types of Hypothesis Test

- Controlling Type Error 1 is minimized with selecting test criteria value
 - $^{\bullet}$ H₀ is specific
 - ♣ H₁ is clear

Two sided test

$$H_0: \mu = 0$$

$$H_1: \mu \neq 0$$

Test statistic standard normal V z
 Test statistic standard normal V z

• Reject H_0 if $z \le -2$ or $z \ge 2$

One sided test

$$H_0: \mu = 0$$

$$H_1: \mu > 0$$

• Reject H_0 if $z \ge 1.5$

Error in Hypothesis Testing

- Type 1 and Type II error probability
 - \bullet Statistical Test Power= 1 Beta = 1 Type II error Prob.
 - Trade-off: If decrease(Type 1 error prob.) Then increase(type II error prob.)

Decision →	H ₀ is not rejected	H ₀ is rejected	
Truth ↓			
H ₀ is true	Correct Decision Pr = I - α	Type I error Pr = α	
H _I is true	Type II error Pr = β	Correct Decision Pr = I - β	

Type 1 and Type 2 Error

Type 1 and Type 2 error

- Type 1 error: we reject a true null hypothesis
- Type 2 error: We accept a false null hypothesis

Model-> Prediction	True (Null Hypothesis)	False (Null Hypothesis)
P > 0.05	Correct	Error [Type 2]
P < 0.05	Error [Type 1]	Correct

- * p-value indicates the probability of making a type 1 error
- p-value does not say anything about making a type 2 error!

Dataset, N = 20	Actual Class (Condition Given)		Performance Measures		
{4Class, 5Item}	P			N	Feriormance Measures
	TP			FP	PPV = TP/(TP+FP)
P. P. P	Correct Decision	2	1	Type I Errors	= 2 / (2+1)
Predicted	$Pr = 1 - \alpha$			$Pr = \alpha$	0.400
Class	FN			TN	NPV = TN/(TN+FN)
(Outcome) N	Type II Errors	3	14	Correct Decision	= 3 / (3+14)
	$Pr = \beta$			$Pr = 1 - \beta$	0.067
Performance	Sensitivity = TP/(TP+FN)		Spec	eificity = TN/(TN+FP)	A=(TP+TN)/(TP+FP+TN+FN)
Measures	= 2 / (2+3)		= 14 / (14+1)		= (2+14) / (2+1+3+14)
Measures	0.667	.667		0.824	0.8

Parametric & Nonparametric Test Procedures

Statistical tests are either parametric or non-parametric(distribution-free hypothesis tests)

Parametric Tests	Non-parametric Tests
Depends of Probability Distribution	Distribution-free methods
Require more conditions to be satisfied	Require fewer conditions than their parametric counterparts
Involve Population Parameters (Mean)	Do Not Involve Population Parameters
Use Mean, P	Use median
Have Stringent Assumptions (Normality)	Data Measured on Any Scale (Ratio or Interval, Ordinal or Nominal)
Parametric Test Example:	Nonparametric Test Example:
• t test	• Sign Test
• Z test	Wilcoxon Signed-Rank Test
• x^2 Test	Wilcoxon rank sum test
• F test (Analysis of variance)	Mann-Whitney-Wilcoxon Test
One Way ANOVA	Kruskal-Wallis H-Test
Linear correlation	Rank Correlation Test
	• Runs test

Parametric Hypothesis Tests

- **t** test
- Test 2
- x^2 Test
- F test (Analysis of variance)
- One Way ANOVA
- Linear correlation

T Test

- * Compares the mean of your sample data to a known value
- We might want to know how sample mean compares to the population mean
- ₩ We should run a one sample t test when
 - We don't know the population std.dev. or you have a small sample size
- Assumptions: Data should meet these requirements for the test to be valid
 - Data is independent
 - Data is collected randomly
 - Data is approximately normally distributed
- T score is used in t-tests can be positive or negative

T Score

- * A t-score is one form of a standardized test statistic (other is the z-score)
- **♣** It enables to take an individual score and transform it into a standardized form > one which helps you to compare scores $t = \frac{\overline{X} \mu t}{\frac{S}{\sqrt{n}}}$
- # It is used when we don't know the std.dev and we have a small sample (under 30)
 - $\star \bar{x} = sample mean$
 - $= \mu_0 =$ population mean
 - * s = sample standard deviation
 - \Rightarrow n = sample size
- \clubsuit If you have only one item in sample, the sqrt in the denominator becomes $\sqrt{1}$
 - This means the formula becomes: $t = \frac{\overline{X} \mu}{S}$
- * i.e the larger the t score, larger the difference is between the groups you are testing

T Score

Example

- A law school claims it's graduates earn an average of \$300 per hour.
- A sample of 15 graduates is selected and found to have a mean salary of \$280 with a sample standard deviation of \$50.
- Assuming the school's claim is true, what is the probability that the mean salary of graduates will be no more than \$280?
- Step 1: Plug the information into the formula and solve:
 - $\sqrt[4]{x}$ = sample mean = 280
 - μ_0 = population mean = 300
 - \approx s = sample standard deviation = 50
 - n = sample size = 15
 - $t = (280 300)/(50/\sqrt{15}) = -20/12.909945 = -1.549$
- Step 2: Subtract 1 from the sample size to get the degrees of freedom:
 - 4 15 1 = 14
 - Degrees of freedom lets you know which form of the t distribution to use
 - There are many, but you can solve these problems without knowing that fact!

Example of the T Score Formula

- Step 3: Use a calculator to find the probability using your degrees of freedom (8)
 - ₩ You have several options, including the TI-83
 - Here's the result from that calculator
 - Radio button selected under the left tail, as we're looking for a result that's no more than \$280:

The probability is 0.0718, or 7.18%

One Sample T Test: Example

* Sample question:

- **A** company wants to improve sales
- Past sales data indicate that the average sale was Rs100 per transaction
- **♣** After training the sales force, recent sales data (taken from a sample of 25 salesmen) indicates an average sale of Rs130, with a std.dev of Rs15
- Did the training work?
- **★** Test your hypothesis at a 5% alpha level

One Sample T Test: Example 1 Steps

- **♦** Step 1:
 - \clubsuit Write H_0 statement
 - * The accepted hypothesis is that there is no difference in sales, so: H_0 : $\mu = Rs100$

⅍ Step 2:

- ₩ Write H_a
- This is the one you're testing
- We think that there is a difference (that mean sales increased), so: H_a : $\mu > Rs100$

Step 3:

- Identify the following pieces of info you'll need to calculate the test statistic
- The question should give/reveal us these items:
 - Sample mean(\bar{x}): This is given in the question as Rs130
 - **Population mean**(μ): Given as Rs100 (from past data)
 - Sample standard deviation(s) = Rs15
 - **Number of observations**(n) = 25

One Sample T Test: Example 1 Steps

- Step 4: Insert the items from above into the t score formula $t = \frac{\bar{x} \mu}{\frac{S}{\sqrt{B}}}$
 - **t-value,** $t = (130 100) / ((15 / \sqrt{25}))$
 - **t-value,** t = (30 / 3) = 10
- Step 5: Find the t-table value
 - We need two values to find t-table value
 - $\alpha : 0.05$
 - \bullet Degree of Freedom (DoF) = # items in the sample (n) minus 1 = 25 1 = 24
 - Look up 24 DoF in the left column and 0.05 in the top row form Table = 1.711
 - 1.711 is our one-tailed critical t-value
 - What this critical value means
 - We would expect most values to fall under 1.711
 - ♣ If our calculated t-value (from Step 4) falls within this range, H₀ is likely true

One Sample T Test: Example 1 Steps

- Step 6: Compare Step 4 to Step 5
 - \blacksquare Step 4 value **does not** fall into the range calculated in Step 5, so we can reject H_0
 - ♦ Value of 10 falls into the rejection region (the left tail)
 - In other words:
 - ♠ It is highly likely that the mean sale is greater
 - The sales training was probably a success

Z score

- * z-score is also known as a standard score
- # it can be placed on a normal distribution curve
- Definition
 - a measure of how many std.dev below or above the μ a raw score is
 - a z-score is # μ from the mean a data point is
- □ Z-scores range from -3 std. dev. up to +3 std. dev. of Normal Distribution curve

$$z_i = \frac{x_i - \bar{x}}{s}$$

Example

Z score: One Sample

For example

$$z_i = \frac{x_i - \bar{x}}{s}$$

- Let's say you have a test score of 190
- \clubsuit The test has a mean (μ) of 150 and a standard deviation (σ) of 25
- * Assuming a normal distribution, your z score would be:

$$\not\triangleq z = (x - \mu) / \sigma$$

$$\Rightarrow$$
 z = 190 - 150 / 25 = 1.6

- * z score tells how many standard deviations from the mean our score is
- * z score is 1.6 standard deviations above the mean

Z test

- For solved examples:
 - goo.gl/f5rC77
- 1

- SLV
- SLV

x² test

- For solved examples:
 - goo.gl/f5rC77
- 4

- SLV
- SLV

One-Way ANOVA test

- For solved examples:
 - goo.gl/f5rC77
- (<u>†</u>

- SIV
- S

Summary

- For solved examples:
 - goo.gl/f5rC77

- SIV
- SI

Bibliography

- [1] Data Mining: Concepts and Techniques, Jiawei Han, Micheline Kamber, 3rd edition Publisher: Morgan Kaufmann; 3 edition
- [2] Business Intelligence, 2/E; Efraim Turban, Ramesh Sharda, Dursun Delen, David King; pearson Education
- [3] Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with Xlminer; 2nd edition, Galit Shmueli, Nitin R. Patel and Peter C. Bruce; John Wiley
- [4] Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management, Author: Berry, Gordon S. Linoff, Format: Paperback, 648 pages, Edition: 3; Publisher: John Wiley & Sons Inc.
- [5] Robert Groth, Data Mining: Building Competitive Advantage, Prentice Hall, 2000.
- [6] P. N. Tan, M. Steinbach, Vipin Kumar, "Introduction to Data Mining", Pearson Education
- [7] Alex Berson and Smith, "Data Mining and Data Warehousing and OLAP", McGraw Hill Publication
- [8] E. G. Mallach, "Decision Support and Data Warehouse Systems", Tata McGraw Hill.
- [9] Michael Berry and Gordon Linoff "Mastering Data Mining- Art & science of CRM", Wiley Student Edition

Thank You.

