Лекція 6. Інтервальне оцінювання параметрів генеральної сукупності

При заміні істинного значення параметра розподілу генеральної сукупності θ його точковою оцінкою θ^* потрібно знати можливу похибку, яка виникає при використанні такої оцінки.

Для того, щоб мати уявлення про точність і надійність оцінки θ^* параметра θ використовують інтервальні статистичні оцінки.

При інтервальному оцінюванні вказують такий інтервал, що покриває оцінюваний параметр θ генеральної сукупності з заданою ймовірністю γ . Величину γ вибирають заздалегідь.

Нехай для заданого $\gamma \in (0;1)$ існує таке $\delta > 0$, що

$$P(|\theta^* - \theta| < \delta) = \gamma \quad (P(\theta^* - \delta < \theta < \theta^* + \delta) = \gamma)$$

Тоді випадковий інтервал $(\theta^* - \delta; \theta^* + \delta)$ називають надійним (або довірчим) інтервалом, число γ – надійністю (або надійним рівнем), δ - точністю оцінки, значення та $\theta^* - \delta$, $\theta^* + \delta$ — відповідно нижньою і верхньою надійними межами.

6.1. Надійні інтервали для параметрів нормального закону при відомому значенні σ_{Γ} із заданою надійністю γ

Нехай ознака X генеральної сукупності має нормальний закон розподілу $N(a;\sigma)$. Побудуємо довірчий інтервал для математичного сподівання, знаючи числове значення середнього квадратичного відхилення генеральної сукупності σ_{Γ} , із заданою надійністю γ . Оскільки випадкова величина \overline{x}_B , як точкова незміщена статистична оцінка для $\overline{X}_{\Gamma} = M(X)$, має нормальний закон розподілу $N\left(a;\frac{\sigma_{\Gamma}}{\sqrt{n}}\right)$, то дістанемо $P\left(\left|\overline{x}_B-a\right|<\delta\right)=\gamma$, де випадкова величина \overline{x}_B-a має нормальний закон розподілу.

Випадкова величина $\frac{\overline{x}_B-a}{\frac{\sigma_{\varGamma}}{\sqrt{n}}}$ матиме стандартний нормальний N(0;1).

Позначимо $\frac{\mathcal{S}}{\frac{\sigma_{\varGamma}}{\sqrt{n}}} = x$ і перепишемо $P(\left|\theta^* - \theta\right| < \mathcal{S}) = \gamma$ у вигляді

$$P\left(\left|\frac{\overline{x}_B - a}{\frac{\sigma_{\Gamma}}{\sqrt{n}}}\right| < x\right) = \gamma \tag{6.1}$$

або

$$P\left(\overline{x}_B - \frac{x \cdot \sigma_{\Gamma}}{\sqrt{n}} < a < \overline{x}_B + \frac{x \cdot \sigma_{\Gamma}}{\sqrt{n}}\right) = \gamma.$$

Згідно з формулою нормованого закону $P(|X-a|<\delta)=2\Phi(\delta)$ для (6.1) вона набирає вигляду:

$$P\left(\left|\frac{\overline{x}_B - a}{\frac{\sigma_{\Gamma}}{\sqrt{n}}}\right| < x\right) = 2\Phi(x) - 1 = \gamma, \tag{6.2}$$

де $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left\{-\frac{z^2}{2}\right\} dz$ - функція розподілу стандартної нормальної випадкової величини.

3 рівності (6.2) знаходимо аргументи x, а саме, за значенням функції Лапласа $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x \exp\left\{-\frac{z^2}{2}\right\} dz$ (таблиця 2) використавши при цьому формулу:

$$\Phi(x) = 0.5 \cdot \gamma = \frac{\gamma}{2} \tag{6.3}$$

Шуканий довірчий інтервал матиме вигляд:

$$\overline{x}_B - \frac{x \cdot \sigma_{\Gamma}}{\sqrt{n}} < a < \overline{x}_B + \frac{x \cdot \sigma_{\Gamma}}{\sqrt{n}}$$
 (6.4)

Величина $\frac{x \cdot \sigma_{\Gamma}}{\sqrt{n}} = \delta$ називається точністю оцінки, або похибкою вибірки.

Приклад 6.1. Знайти інтервальну оцінку з надійністю $\gamma = 0,95$ для математичного сподівання a нормально розподіленої генеральної сукупності, якщо відомо $\sigma_{\Gamma} = 5$, а за вибіркою об'єму n = 25 знайшли вибіркове середнє $\overline{x}_{R} = 14$.

Розв'язання: За умовою задачі маємо: $\overline{x}_B=14$, $\sigma_{\Gamma}=5$, n=25. Величину x знаходимо за табл. 2 як корінь рівняння $\Phi(x)=\frac{\gamma}{2}$, тобто $\Phi(x)=0,475$. Маємо x=1,96.

Знайдемо числові значення нижньої і верхньої надійних меж:

$$\overline{x}_B - \frac{x \cdot \sigma_{\Gamma}}{\sqrt{n}} = 14 - \frac{1,96 \cdot 5}{\sqrt{25}} = 12,04.$$

$$\overline{x}_B + \frac{x \cdot \sigma_{\Gamma}}{\sqrt{n}} = 14 + \frac{1,96 \cdot 5}{\sqrt{25}} = 15,96.$$

Підставимо у формулу (6.4): 12,04 < a < 15,96.

Отже, з надійністю 0.95 (95% гарантії) математичне сподівання a нормально розподіленої генеральної сукупності покривається інтервалом (12.04;15.96).

Приклад 6.2. Знайти мінімальний об'єм вибірки при якому з надійністю 0,975 точність оцінки математичного сподівання a нормально розподіленої генеральної сукупності $\delta = 0,3$, якщо відомо $\sigma_{\Gamma} = 1,2$.

Розв'язання. Похибка вибірки знаходиться за формулою

$$\delta = \frac{x \cdot \sigma_{\Gamma}}{\sqrt{n}}$$
, звідси $n = \frac{x^2 \cdot \sigma_{\Gamma}^2}{\delta^2}$.

Знайдемо корінь рівняння $\Phi(x) = \frac{\gamma}{2}$, де $\gamma = 0,975$. Звідси $\Phi(x) = \frac{0,975}{2} = 0,4875$. Згідно табл. 2 x = 2,24.

Обчислюємо мінімальний об'єм вибірки

$$n = \frac{2,24^2 \cdot 1,2^2}{0,3^2} = 81.$$

Зауваження. При малих вибірках (n < 30) для оцінювання математичного сподівання якщо невідоме значення середнього квадратичного відхилення, застосовується випадкова величина t, що має розподіл Стьюдента.

6.2. Надійні інтервали для параметрів нормального закону при невідомому значенні σ_{Γ} із заданою надійністю γ

Для побудови довірчого інтервалу, який оцінює математичне сподівання a нормально розподіленої генеральної сукупності при невідомому середньоквадратичному відхиленні із заданою надійністю γ , застосовується випадкова величина

$$t = \frac{\overline{x}_B - a}{\frac{S}{\sqrt{n}}},\tag{6.5}$$

що має розподіл Стьюдента з k = n - 1 ступенями свободи.

Спочатку обчислюємо за даним статистичним розподілом вибіркове середнє \overline{x}_B , виправлене середнє квадратичне відхилення S, об'єм вибірки n і визначаємо за таблицею розподілу Стьюдента для оцінки математичного сподівання (табл. 3) значення $t_{\gamma} = t(\gamma, n)$ при заданій надійності (γ) та об'єму вибірки (k = n), або значення $t_{\gamma} = t(\alpha, k)$ при заданому рівню значущості $(\alpha = 1 - \gamma)$ та числа ступенів свободи (k = n - 1) згідно табл. 6.

Шуканий надійний інтервал має вигляд:

$$\left(\overline{x}_B - \frac{t_{\gamma} \cdot S}{\sqrt{n}} < a < \overline{x}_B + \frac{t_{\gamma} \cdot S}{\sqrt{n}}\right) \tag{6.6}$$

Величина $\frac{t_{\gamma} \cdot S}{\sqrt{n}} = \delta$ називається точністю оцінки, або похибкою вибірки.

Приклад 6.3. 3 надійністю $\gamma = 0.95$ побудувати довірчий інтервал вигляду (6.6) за вибіркою 4; 2; 1; -2; 3; -2; 2; 5; 4; 3.

Розв'язання. Знайдемо вибіркове середнє і виправлене середнє квадратичне відхилення. Для спрощення обчислень побудуємо дискретний статистичний розподіл вибірки

x_i	-2	1	2	3	4	5
$\overline{n_i}$	2	1	2	2	2	1

Обчислюємо:

$$\overline{x}_B = \frac{\sum_{i=1}^{6} x_i n_i}{n} = \frac{-2 \cdot 2 + 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 2 + 4 \cdot 2 + 5 \cdot 1}{10} = \frac{20}{10} = 2.$$

$$D_B = \frac{\sum_{i=1}^{6} x_i^2 n_i}{n} - \overline{x}_B^2 = \frac{-2^2 \cdot 2 + 1^2 \cdot 1 + 2^2 \cdot 2 + 3^2 \cdot 2 + 4^2 \cdot 2 + 5^2 \cdot 1}{10} - 2^2 = 5, 2.$$

$$S = \sqrt{\frac{n}{n-1} D_B} = \sqrt{\frac{10}{10-1} \cdot 5, 2} \approx 2, 4.$$

За таблицею значень розподілу Стьюдента за табл. 6, де $\alpha=1-0.95=0.05$ та k=n-1=10-1=9) знаходимо значення $t\left(\alpha=0.05;k=9\right)=2.26$. (Це ж саме значення можна отримати згідно табл. 3, де $t_{\gamma}\left(\gamma=0.95;n=10\right)=2.26$)

Знайдемо числові значення нижньої і верхньої надійних меж:

$$\overline{x}_B - \frac{t_{\gamma} \cdot S}{\sqrt{n}} = 2 - \frac{2,26 \cdot 2,4}{\sqrt{10}} \approx 0,3.$$

$$\overline{x}_B + \frac{t_{\gamma} \cdot S}{\sqrt{n}} = 2 + \frac{2,26 \cdot 2,4}{\sqrt{10}} \approx 3,7.$$

Отже, з надійність $\gamma = 0.95$, можна стверджувати, що 0.3 < a < 3.7.

Зауважимо, що при великих обсягах вибірки (n>30) на підставі центральної граничної теореми розподіл Стьюдента наближається до нормального закону розподілу і значення t_{γ} знаходиться за таблицею значень функції Лапласа $\Phi(x)$ (додаток 2).

6.3. Побудова довірчого інтервалу \overline{X}_{\varGamma} із заданою надійністю γ для дисперсії D_{\varGamma} та середньоквадратичного відхилення σ_{\varGamma}

Спосіб перший через $\chi^2_{(\alpha;k)}$ (табл. 5)

Якщо досліджувана ознака \overline{X}_{Γ} має нормальний закон розподілу, то для побудови довірчого інтервалу із заданою надійністю γ для D_{Γ} , σ_{Γ} використаємо випадкову величину

$$\chi^2 = \frac{n-1}{\sigma_\Gamma^2} S^2, \tag{6.7}$$

що має розподіл χ^2 із k = n - 1 ступенями свободи.

Тобто, довірчий інтервал для D_{\varGamma} можна записати у вигляді:

$$\frac{n-1}{\chi_2^2}S^2 < D_{\Gamma} < \frac{n-1}{\chi_1^2}S^2, \tag{6.8}$$

звідки довірчий інтервал для σ_{Γ} :

$$\frac{\sqrt{n-1}}{\chi_2} S < \sigma_{\Gamma} < \frac{\sqrt{n-1}}{\chi_1} S \tag{6.9}$$

де значення χ_1^2 , χ_2^2 знаходимо (за табл. 5) ймовірності $P(\chi^2 > \chi_{\alpha;k}^2)$.

Додатні значення χ_1^2 , χ_2^2 знаходимо за табл. 5 з використанням рівностей:

$$F\left(\chi_1^2(\gamma)\right) = \frac{1+\gamma}{2} \text{ afo } F\left(\chi_1^2(\alpha)\right) = 1 - \frac{\alpha}{2}. \tag{6.10}$$

$$F\left(\chi_2^2(\gamma)\right) = \frac{1-\gamma}{2} \text{ afo } F\left(\chi_2^2(\alpha)\right) = \frac{\alpha}{2}$$
 (6.11)

Приклад 6.4. За вибіркою 4; 2; 1; -2; 3; -2; 2; 5; 4; 3 з нормально розподіленої генеральної сукупності побудувати довірчі інтервали з надійністю $\gamma = 0,9$ для дисперсії D_{Γ} та середнього квадратичного відхилення σ_{Γ} .

Розв'язання. Для побудови довірчих інтервалів скористаємось формулами (6.8) і (6.9). Виправлене середнє квадратичне відхилення було знайдено у попередньому прикладі: $S \approx 2,4$. Виправлена дисперсія $S^2 = 2,4^2 \approx 5,8$.

Згідно формул (6.10) та (6.11) знайдемо значення для χ_1^2 і χ_2^2 відповідно. Кількість ступенів свободи k=n-1=9. При надійності $\gamma=0,9$, рівень значущості буде $\alpha=1-\gamma=1-0,9=0,1$. Отже знаходимо ймовірності:

$$F(\chi_1^2(\alpha)) = 1 - \frac{\alpha}{2} = 1 - \frac{0.1}{2} = 0.95 \text{ Ta } F(\chi_2^2(\alpha)) = \frac{\alpha}{2} = \frac{0.1}{2} = 0.05.$$

Згідно табл. 5 для ймовірностей 0,95 і 0,05 при k=9 знаходимо $\chi_1^2=3,325$ та $\chi_2^2=16,919$. Тоді довірчий інтервал з надійністю для дисперсії за (6.8) має вигляд:

$$\frac{9}{16.919} \cdot 5,8 < D_{\Gamma} < \frac{9}{3.325} \cdot 5,8 \implies 3,1 < D_{\Gamma} < 15,8$$

Довірчий інтервал з надійністю $\gamma = 0.9$ для σ_{Γ} (6.9):

$$\sqrt{3,1} < \sigma_{\Gamma} < \sqrt{15,8} \implies 1.8 < \sigma_{\Gamma} < 4.0$$
.

Cnociб другий через $\chi = q_{(\gamma,n)}$ (табл. 4)

Довірчий інтервал для σ_{Γ} із заданою надійністю γ можна побудувати з використанням розподілу χ .

За заданою надійністю (γ) і обсягом вибірки (n) знаходимо за табл. 4 значення величини $q=q(\gamma,n)$.

Якщо q>1 тоді довірчий інтервал для σ_{Γ} записується у вигляді:

$$0 < \sigma_{\Gamma} < S \cdot (1+q). \tag{5.12}$$

Якщо q < 1 тоді довірчий інтервал для σ_{Γ} записується у вигляді:

$$S \cdot (1-q) < \sigma_{\Gamma} < S \cdot (1+q). \tag{5.13}$$

Приклад 6.5. Побудувати довірчі інтервали для σ_{Γ} з надійностями $\gamma_1=0.95$ та $\gamma_2=0.99$ за вибіркою об'єму n=10, якщо знайдено S=2.4.

Розв'язання. Для побудови потрібних довірчих інтервалів знайдемо за додатком 5 значення $q_1=q\left(\gamma_1,n\right)$ та $q_2=q\left(\gamma_2,n\right)$.

При $\gamma_1=0,95$, маємо $q_1=0,65<1$, тому довірчий інтервал з надійністю $\gamma_1=0,95$ запишему у вигляді (4.12), а з надійністю $\gamma_2=0,99$, та $q_2=1,08>1$ - у вигляді (4.13). Визначаємо величини:

$$S(1-q_1) = 2,4 \cdot (1-0,65) = 2,4 \cdot 0,35 = 0,84;$$

 $S(1+q_1) = 2,4 \cdot (1+0,65) = 2,4 \cdot 1,65 = 3,96.$

$$S(1+q_2) = 2,4 \cdot (1+1,08) = 2,4 \cdot 2,08 = 4,99.$$

Отже, довірчий інтервал для σ_{Γ} з надійністю γ_1 = 0,95 має вигляд: $0.84 < \sigma_{\Gamma} < 3.96$, з надійністю γ_2 = 0,99 : $0 < \sigma_{\Gamma} < 4.99$.

6.4. Довірчий інтервал для оцінки ймовірності настання події

1. Для оцінки генеральної частки p нормально розподіленої кількості ознак X_{Γ} за вибірковою часткою $\omega = \frac{m}{n}$ (при великому обсязі вибірки, тобто при $n \ge 30$) та власне-випадковому повторному відборі матимемо формулу:

$$P\left(\omega - t \cdot \sqrt{\frac{\omega \cdot (1 - \omega)}{n}}$$

де t визначається за табл. 2 функції Лапласа із співвідношення $2 \cdot \Phi(t) = \gamma$; ω - вибіркова частка; n - об'єм вибірки; $\Delta = t \cdot \sqrt{\frac{\omega \cdot (1-\omega)}{n}}$ - гранична похибка.

2. Для оцінки генеральної частки p нормально розподіленої кількості ознак X_{Γ} за вибірковою часткою $\omega = \frac{m}{n}$ (при великому обсязі вибірки, тобто при $n \ge 30$) та власне-випадковому безповторному відборі матимемо формулу:

$$P\left(\omega - t \cdot \sqrt{\frac{\omega \cdot \left(1 - \omega\right)}{n} \cdot \left(1 - \frac{n}{N}\right)}$$

де N - обсяг генеральної сукупності; $\Delta = t \cdot \sqrt{\frac{\omega \cdot (1-\omega)}{n} \cdot \left(1-\frac{n}{N}\right)}$ - гранична похибка.

3. Для оцінки генеральної частки p нормально розподіленої кількості ознак X_{Γ} за вибірковою часткою $\omega = \frac{m}{n}$ (при малому обсязі вибірки, тобто при n < 30) та власне-випадковому повторному відборі матимемо формулу:

$$P\left(\omega - t \cdot \sqrt{\frac{\omega \cdot (1 - \omega)}{n}}$$

де t визначається за табл. 6 розподілу Стьюдента при рівні значущості $\alpha = 1 - \gamma$ та числом ступенів свободи k = n - 1.

4. Для оцінки генеральної частки p нормально розподіленої кількості ознак X_{Γ} за вибірковою часткою $\omega = \frac{m}{n}$ (при малому обсязі вибірки, тобто при n < 30) та власне-випадковому безповторному відборі матимемо формулу:

$$P\left(\omega - t \cdot \sqrt{\frac{\omega \cdot (1 - \omega)}{n} \cdot \left(1 - \frac{n}{N}\right)}$$

Приклад 6.6. Знайти довірчий інтервал для оцінки ймовірності p настання деякої події з надійністю $\gamma = 0.95$, якщо у 80 спробах ця подія настала 20 разів.

Pозв'язання. За умовою $\gamma = 0.95$, n = 80 > 30, m = 20.

Для оцінки генеральної частки p обераємо формулу при $n \ge 30$ та власне-випадковому *повторному відборі*:

$$P\left(\omega - t \cdot \sqrt{\frac{\omega \cdot (1 - \omega)}{n}}$$

Корінь рівняння $2\Phi(t) = \gamma$ знаходимо із табл. 2:

$$\Phi(t) = \frac{0.95}{2} = 0.475; \quad t = 1.96.$$

Обчислюємо відносну частоту настання події $\omega = \frac{m}{n} = \frac{1}{4} = 0,25$.

Знайдемо граничну похибку згідно формули:

$$\Delta = t \cdot \sqrt{\frac{\omega \cdot (1 - \omega)}{n}} = 1,96 \cdot \sqrt{\frac{0,25 \cdot (1 - 0,25)}{80}} \approx 0,0949.$$

Тоді згідно формули $\omega - \Delta , отримаємо:$

$$0,25-0,0949
 $0,155 .$$$

6.5. Побудова довірчого інтервалу для математичного сподівання за допомогою нерівності Чебишова із заданою надійністю γ

Якщо немає впевненості, що досліджувана ознака генеральної сукупності має нормальний розподіл, тоді для побудови довірчого інтервалу для математичного сподівання a із заданою надійністю γ використовують нерівність Чебишова:

$$P(|\overline{x}_B - a| < \delta) \ge 1 - \frac{\sigma_{\Gamma}^2}{n\delta^2} = \gamma \tag{6.14}$$

Останню рівність розв'яжемо відносно точності оцінки δ :

$$\delta = \frac{\sigma_{\Gamma}}{\sqrt{(1-\gamma)n}} \tag{6.15}$$

Отже, шуканий довірчий інтервал має вигляд:

$$\overline{x}_B - \frac{\sigma_{\Gamma}}{\sqrt{(1-\gamma)n}} < a < \overline{x}_B + \frac{\sigma_{\Gamma}}{\sqrt{(1-\gamma)n}}$$
 (6.16)

Якщо теоретичне середнє квадратичне відхилення невідоме, то його замінюють виправленим вибірковим середнім квадратичним відхиленням S і довірчий інтервал для математичного сподівання a із заданою надійністю γ шукають у вигляді

$$\overline{x}_B - \frac{S}{\sqrt{(1-\gamma)n}} < a < \overline{x}_B + \frac{S}{\sqrt{(1-\gamma)n}}$$
 (6.17)

Приклад 6.7. З надійністю $\gamma = 0.95$ побудувати довірчий інтервал для математичного сподівання a за допомогою нерівності Чебишова, якщо за вибіркою об'єму n = 10 знайдено $\overline{x}_B = 2$ і S = 2.4.

Розв'язання. Скористаємось формулою (6.17). Обчислимо

$$\frac{S}{\sqrt{(1-\gamma)n}} = \frac{2,4}{\sqrt{(1-0.95)\cdot 10}} = \frac{2,4}{0.7} \approx 3,4.$$

Шуканий довірчий інтервал має вигляд: $2-3,4 < a < 2+3,4 \Rightarrow -1,4 < a < 5,4$. Отже, з надійністю $\gamma = 0,95$ математичне сподівання $a \in (-1,4;5,4)$.