two digit octal number

$$(64)_8 = (52)_{10}$$

three digit octal number

$$(274)_8 = (188)_{18}$$

Any number in octal form.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\times 8^{\circ} = d_1$ $\times 8^{\circ} = d_2$	
$\times 8^1 = d_2$	
$\times 8^1 = d_2$	
$\times 8^1 = d_2$	V @ 0
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ζ8,
	_2
\sim 0 = α	×8

After addition,

- = least significant digit
- = most significant digit

Decimal to Octal Conversion

20, Divide 20 by 8, and find the quotient and the remainder 9 = 29 r = 4.

$$= 2 \times 8^{1} + 4 \times 1$$

= $2 \times 8^{1} + 4 \times 8^{0}$

$$(24)_8 = (20)_{10}$$

167
Stage-1: Divide 167 by 8.

Q=20 R=7.

$$167 = 20 \times 8 + 7$$
.

Stage 2: Divide 20 by 8.

Q=2, R=4.

 $20 = 2 \times 8 + 4$
 $167 = 20 \times 8 + 7$... Stage-1

 $= 2 \times 8 \times 8 + 4 \times 8 + 7$ $= 2 \times 8 + 4 \times 8 + 7 \times 1$ $= 2 \times 8^{2} + 4 \times 8^{1} + 7 \times 8^{4}$ $= 2 \times 8^{2} + 4 \times 8^{1} + 7 \times 8^{4}$

$$(247)_{8} = 7 \times 8^{\circ} + 4 \times 8^{1} + 2 \times 8^{2} = (167)_{10}$$

Conversion of decimal to octal.

- 1) Divide target number by 8 find out the quotient & the semainder
- 2) keep dividing the quotient by 8 contil it fans down to 0. and for each division of quotient, register a remainder.
- 3) When the quotient is zero conte down all remainder from left to write in the neverse order of this generation (LIFU)

- Hexa-decimal number system.

0 1 2 3 4 5 6 7 8 9 a b c d e f.
10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
20 21 22 28 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f

$$(a)_{16} = (18)_{10} \qquad (a)_{11} = (13)_{10}$$

$$(b)_{16} = (11)_{10} \qquad (e)_{16} = (14)_{10}$$

Single digit hexa-decimal number

Two digit hexa-decimal number.

$$(d8)_{16} = (216)_{10}$$

Three digit hera-decimal number

$$10 \times 1 = 10$$

 $15 \times 16 = 240$
 $4 \times 256 = 512$

$$(2fa)_{16} = (762)_{10}$$

Any number in hexa-decimal format

$$\left(d_{n}d_{n-1}d_{n-2}...d_{3}d_{2}d_{n}\right)_{16} = \left(d_{1} \times 16^{0} + d_{2} \times (6^{1} + d_{3} \times (6^{2} + c_{6} + d_{n-2} \times (6 + d_{n-1} \times (6 + d_{n} \times (6 + d_{n}$$

$$(189)_{(0} \longrightarrow (27)_{16}$$

Divide 189 by 16.

$$189 = 11 \times 16 + 13$$

= $b \times 16 + d$

Conversion of decimal to hexa-decimal.

- 1) Divide target number by 16 find out the quotient & the semainder
- 2) keep dividing the quotient by 16 centil it falls down to O. and for each division of quotient, sugister a remainder.
- 3) When the quotient is zero conte down all remainder from left to write in the neverse order of this generation (LIFU)

[Additional Activity in Decimal - hex Conversion]

After dividing the tanget number in 8tep-1 on the quotient in Step-2, the remainder will fall between 0 to 15.

If Remainder is between 10 to 15 than while waiting the hexa-decimal firm in Step-3

Replace 10
$$\xrightarrow{b_J}$$
 \xrightarrow{a} $\xrightarrow{b_J}$ $\xrightarrow{b_J}$ $\xrightarrow{b_J}$ $\xrightarrow{b_J}$ $\xrightarrow{b_J}$ $\xrightarrow{b_J}$ $\xrightarrow{b_J}$

Computer = the CPU + RAM	
Mechanisms Interface	
[ALU, trigonometric, to combine	
inverse trigonometric, mechanism	, 2
exponential, loganthmic,	
hyperbolic, inverse +	
hyperbolic, data	
movement, control	
flow management	
· · a computer == a programmable	
devike	
Memory = Any device capable of exhibiting	
more than one State and does	
not undergo a state transition	
without explicit command	
-How to represent numbers in memory?	
[to answer the question -> how CPU	
mechanisms are combined in memory)	
STO1).	

fundamental Drineipu of countria (Simple version
fundamental principle of counting (simple version) fundamental principle of counting (generalised)
version)
Division theorem.
Exponential & log function
Charles and Charles Control
(log to base 10,2), floor & ceiling funcs.
Decimal, binary, Octal & Hexa-decimal
number system & inter-conversions
RESUME