ПЛАН-КОНСПЕКТ ПРАКТИЧНОГО ЗАНЯТТЯ з дисципліни «Математичні основи ІТ»

Викладач: студент групи 641м Бужак Андрій

Дата проведення: 21.10.2021

Група: 143(1)

Вид заняття: практичне заняття **Тривалість пари:** 80 хвилин **Тема:** *Пряма у просторі*.

Мета: ознайомлення студентів із основними типами рівнянь прямих у просторі, особливостями їх написання та застосування, визначення кутів між прямими та між прямою і площиною у просторі; формування компетенцій розв'язування типових задач із даної тематики.

ХІД ЗАНЯТТЯ 1. Актуалізація опорних знань, нагадування теоретичного матеріалу (5 хв.)

XB.).			
Пряма у просторі				
$N_{\underline{o}}$	Рівняння	Малюнок		
1	Пряма, що проходить через задану точку $M_0(x_0; y_0; z_0)$ паралельно до даного вектора $\vec{s} = (l; m; n)$ $\frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}$ канонічне рівняння	$\vec{s} = (l; m; n)$ $M(x,y,z)$		
2	$egin{aligned} \emph{Параметричні рівняння} \ & \left\{ egin{aligned} x = x_0 + lt, \ y = y_0 + mt, & t \in \mathbb{R} \ z = z_0 + nt, \end{aligned} ight. \ & \ddot{s} = (l; m; n) - напрямний вектор \ & l^2 + m^2 + n^2 > 0 \end{aligned}$	y r		
3	Пряма, що проходить через дві задані точки $M_1(x_1;y_1;z_1)$, $M_2(x_2;y_2;z_2)$ $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}.$ $\vec{s}=(x_2-x_1;y_2-y_1;z_2-z_1)$	$\frac{z}{s}$ M_1 y		

Взаємне розмішення прямих та прямої і плошини у просторі

изисмне розмищення прямих та прямої і площини у просторі			
Спосіб	Прямі задані	Пряма задана	
\ задання	канонічними рівняннями	канонічним рівнянням, площи-	
		на - загальним	
	$p_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1},$	$p: \frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n},$	
Назва \	$\vec{s}_1 = (l_1; m_1; n_1)$		
правила \		$\vec{s} = (l; m; n)$	
чи	$p_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$	$\pi: Ax + By + Cz + D = 0$	
формули	$l_2 \qquad m_2 \qquad n_2$	$\overrightarrow{N} = (A; B; C)$	
	$s_2 = (l_2; m_2; n_2)$		
Кут ϕ між	Кут між напрямними векторами		
площинами/	цих прямих, тобто	Кут між прямою p та її проек-	
прямими/	^		
прямою та	$\varphi = (p_1, p_2) = (\vec{s}_1, \vec{s}_2)$	цією на площину π .	
площиною	$\psi - (p_1, p_2) - (s_1, s_2)$		
Тригономет	$\cos \varphi =$	$\sin \varphi =$	
Тригономет-	l.l. + m.m. + n.n.	'	
рична функ-	$=\frac{l_1l_2+m_1m_2+n_1n_2}{\sqrt{l_1^2+m_1^2+n_1^2}\sqrt{l_2^2+m_2^2+n_2^2}}$	$= \frac{ Al + Bm + Cn }{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}}$	
ція кута	$\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}$	$\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}$	
Умова пара-	$\frac{l_1}{l_1} = \frac{m_1}{l_1} = \frac{n_1}{l_1}$	Al + Bm + Cn = 0	
лельності	$l_2 m_2 n_2$		
Умова	11	$\frac{A}{A} = \frac{B}{A} = \frac{C}{A}$	
перпендику-	$l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$	7	
лярності		l m n	

2. Розв'язування задач (70 хв.)

Задача 1. З'ясувати взаємне розміщення прямої, заданої своїм загальним рівнянням (р): $\begin{cases} 3x+5y+z-4=0, \\ x+y+z=0 \end{cases}$ та площини (π): x-y=0 . Якщо вони перетинаються - знайти кут між ними.

<u>Розв'язання</u>. **1)** Для з'ясування питання про взаємне розміщення прямої та площини, нам треба знати напрямний вектор прямої $\vec{s} = (l; m; n)$ та вектор нормалі $\vec{N} = (A; B; C)$ площини. Пряма (p) задана загальним рівнянням (як перетин двох площин), а значить, за її напрямний вектор можна взяти векторний добуток векторів нормалей площин, перетином яких утворена ця пряма.

$$\vec{s} = \vec{n_1} \times \vec{n_2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 3 & 5 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \vec{i} \begin{vmatrix} 5 & 1 \\ 1 & 1 \end{vmatrix} - \vec{j} \begin{vmatrix} 3 & 1 \\ 1 & 1 \end{vmatrix} + \vec{k} \begin{vmatrix} 3 & 5 \\ 1 & 1 \end{vmatrix} = 4\vec{i} - 2\vec{j} - 2\vec{k} = 2(2\vec{i} - \vec{j} - \vec{k}).$$

Таким чином, в якості напрямного вектора прямої (p) можна брати $\vec{s} = (4; -2; -2)$ (або $\vec{s}_1 = (2; -1; -1)$). Вектор нормалі площини $(\pi): x - y = 0$ має вигляд $\vec{n} = (1; -1; 0)$.

Пряма і площина паралельні, якщо Al + Bm + Cn = 0.

Перевіряємо: $1 \cdot 4 + (-1) \cdot (-2) + 0 \cdot (-2) = 6 \neq 0$, отже, пряма і площина не паралельні.

$$\frac{A}{l} = \frac{B}{m} = \frac{C}{n}$$

Перевіряємо: $\frac{1}{4} \neq \frac{-1}{-2} \neq \frac{0}{-2}$,

отже, пряма і площина не перпендикулярні (і не паралельні), а значить, перетинаються під деким кутом φ , причому

$$\sin \varphi = \frac{\left|Al + Bm + Cn\right|}{\sqrt{A^2 + B^2 + C^2} \sqrt{l^2 + m^2 + n^2}} = \frac{\left|1 \cdot 4 + (-1) \cdot (-2) + 0 \cdot (-2)\right|}{\sqrt{1^2 + (-1)^2 + 0^2} \sqrt{4^2 + (-2)^2 + (-2)^2}} = \frac{6}{\sqrt{2}\sqrt{24}} = \frac{6}{\sqrt{48}} = \frac{6}{4\sqrt{3}} = \frac{\sqrt{3}}{2}.$$

Звідси робимо висновок, що $\varphi = 60^{\circ}$.

<u>Відповідь</u>: пряма та площина перетинаються під кутом $\varphi = 60^{\circ}$

Задача 2. Знайти кут між прямою (p_1) : $\begin{cases} x = -3 + 5t, \\ y = 2 - 3t, & ma прямою <math>(p_2), \text{ яка} \\ z = 1 \end{cases}$

проходить через точки M(3;2;-1) та N(4;-1;2).

<u>Розв'язання</u>. Кут φ між прямими у просторі - це кут між їхніми напрямними векторами $\vec{s}_1 = (l_1; m_1; n_1)$ та $\vec{s}_2 = (l_2; m_2; n_2)$, а значить,

$$\cos \varphi = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}}$$
 (1)

Таким чином, задача зводиться до знаходження напрямних векторів даних прямих.

Напрямний вектор прямої (p_1) , очевидно, має вигляд $\vec{s_1} = (5; -3; 0)$, а для знаходження напрямного вектора прямої (p_2) складемо її рівняння, врахувавши, що пряма проходить через 2 точки M(3; 2; -1) та N(4; -1; 2):

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}.$$

Підставляючи координати точок, маємо:

$$\frac{x-3}{4-3} = \frac{y-2}{-1-2} = \frac{z-(-1)}{2-(-1)} \Rightarrow \frac{x-3}{1} = \frac{y-2}{-3} = \frac{z+1}{3}$$

Легко бачити, що напрямний вектор даної прямої має вигляд $\overrightarrow{s_2} = (1; -3; 3)$.

Підставимо координати знайдених векторів $\vec{s_1} = (5; -3; 0)$ та $\vec{s_2} = (1; -3; 3)$ у формулу (1) та знайдемо косинус кута між цими прямими:

$$\cos \varphi = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}} = \frac{5 \cdot 1 + (-3) \cdot (-3) + 0 \cdot 3}{\sqrt{5^2 + (-3)^2 + 0^2} \sqrt{1^2 + (-3)^2 + 3^2}} = \frac{14}{\sqrt{34} \sqrt{19}}.$$

Bidnosidb:
$$\cos \varphi = \frac{14}{\sqrt{34}\sqrt{19}}$$

3адача 3. Скласти рівняння прямої, що проходить через точку M(1;2;0):

- **а)** паралельно до прямої $\frac{x}{2} = \frac{y-3}{0} = \frac{z+1}{-3}$;
- **б)** паралельно осі Оz;
- **в)** перпендикулярно до площини 3x z + 5 = 0.

Вказати точку, симетричну до точки M(1;2;0) відносно площини 3x-z+5=0.

 $\frac{Poзв'язання}{2} = \frac{y-3}{0} = \frac{z+1}{-3}$, то їхні напрямні вектори колінеарні, зокрема, за напрямний

вектор шуканої прямої можна взяти напрямний вектор $\vec{s} = (2;0;-3)$ заданої прямої. Тоді записуємо рівняння прямої, що проходить через точку M(1;2;0) паралельно до вектора $\vec{s} = (2;0;-3)$ (канонічне рівняння):

$$\frac{x-1}{2} = \frac{y-2}{0} = \frac{z}{-3}.$$

б) Шукана пряма паралельна до осі Oz, а значить, орт $\vec{k} = (0;0;1)$ осі Oz паралельний до цієї прямої, а отже, може бути взятий за її напрямний вектор. Таким чином, записуємо канонічне рівняння прямої:

$$\frac{x-1}{0} = \frac{y-2}{0} = \frac{z-0}{1}.$$

в) Шукана пряма (p) перпендикулярна до площини (π) 3x-z+5=0.

Тому вектор нормалі $\vec{n} = (3;0;-1)$ можна взяти за напрямний вектор шуканої прямої. Отже, пряма (p) проходить через точку M(1;2;0) паралельно

до вектора
$$\vec{s} = (3;0;-1)$$
: $\frac{x-1}{3} = \frac{y-2}{0} = \frac{z-0}{-1}$.

Знайдемо точку $M'(x_{M'};y_{M'};z_{M'})$, симетричну до точки M відносно площини (π) . За означенням точки M та M' симетричні відносно площини (π) , якщо дана площина проходить через середину відрізка MM' та перпендикулярна до даного відрізка. Виходячи з цього, для побудови точки, симетричної до даної точки відносно заданої площини, слід виконати наступні дії:

- **1)** провести через точку M пряму (p), перпендикулярну до площини (π) ;
- **2)** знайти точку O, в якій пряма (p) перетинає площину (π) (проєкцію точки M на площину (π));
- **3)** знайти точку M' з умови, що точка O середина відрізка MM'

$$x_O = \frac{x_M + x_{M'}}{2}, \ y_O = \frac{y_M + y_{M'}}{2}, \ z_O = \frac{z_M + z_{M'}}{2},$$

тобто знайти координати кінця відрізка, коли відомі координати його початку та середини

$$x_{M'} = 2x_O - x_M$$
, $y_{M'} = 2y_O - y_M$, $z_{M'} = 2z_O - z_M$.

Пряма (p), що проходить через точку M перпендикулярно до площини (π) у нас вже побудована. Це пряма

(p):
$$\frac{x-1}{3} = \frac{y-2}{0} = \frac{z-0}{-1}$$
.

Знайдемо точку, в якій (p) перетинає площину (π) . Для цього зручно звести рівняння прямої до параметричного вигляду:

$$\frac{x-1}{3} = \frac{y-2}{0} = \frac{z-0}{-1} = t \implies \begin{cases} x = 1+3t, \\ y = 2, \\ z = -t \end{cases}$$

та розв'яжемо систему

$$\begin{cases} x = 1 + 3t, \\ y = 2, \\ z = -t, \\ 3x - z + 5 = 0. \end{cases}$$

Підставимо значення x = 1 + 3t, y = 2 та z = -t у рівняння площини 3x - z + 5 = 0 та знайдемо значення параметра t, що відповідає точці перетину:

$$3(1+3t)-(-t)+5=0$$
, $10t+8=0$, $t=-0.8$.

Знайдене значення t = -0.8 підставляємо у параметричні рівняння прямої (p) та знаходимо координати точки O, в якій пряма (p) перетинає площину (π) :

$$\begin{cases} x_O = 1 + 3(-0.8) = -1.4; \\ y_O = 2; \\ z_O = -(-0.8) = 0.8. \end{cases}$$

Отже, O(-1,4;2;0,8) - точка перетину (p) і (π) та середина відрізка MM', де M(1;2;0).

Знаходимо координати точки M':

$$x_{M'} = 2x_O - x_M = 2(-1,4) - 1 = -1,8, \quad y_{M'} = 2y_O - y_M = 2 \cdot 2 - 2 = 2,$$

 $z_{M'} = 2z_O - z_M = 2 \cdot 0,8 - 0 = 1,6.$

Таким чином, M'(-1,8;2;1,6).

Bidnosidb: a)
$$\frac{x-1}{2} = \frac{y-2}{0} = \frac{z}{-3}$$
; b) $\frac{x-1}{0} = \frac{y-2}{0} = \frac{z}{1}$;
b) $\frac{x-1}{3} = \frac{y-2}{0} = \frac{z}{-1}$; $M'(-1,8;2;1,6)$

Зауваження. Якщо при підстановці виразів $x = x_0 + lt$, $y = y_0 + mt$, $z = z_0 + nt$ з параметричного рівняння прямої (p) у загальне рівняння Ax + By + Cz + D = 0 площини (π) отримане лінійне рівняння не має розв'язку, це означає, що $(p) || (\pi)$, а якщо має безліч розв'язків, то пряма (p) лежить у площині (π) .

Задача 4. Знайти точку перетину прямих

$$\begin{cases} x = 1+t \\ y = 1-t \\ z = 2+3t \end{cases} ma \qquad \begin{cases} x = 3+2t \\ y = -2-3t \\ z = 1-t \end{cases}$$

і кут між ними.

<u>Розв'язання</u>. Легко зрозуміти, що ці прямі не є паралельними, адже їхні напрямні вектори $\vec{s_1} = (1; -1; 3)$ та $\vec{s_2} = (2; -3; -1)$ не колінеарні. Тому дані прямі або перетинаються, або є мимобіжними. Одразу легко визначається косинус кута між прямими:

$$\cos \varphi = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}} = \frac{1 \cdot 2 + (-1) \cdot (-3) + 3 \cdot (-1)}{\sqrt{1^2 + (-1)^2 + 3^2} \sqrt{2^2 + (-3)^2 + (-1)^2}} = \frac{2}{\sqrt{11}\sqrt{14}} = \frac{2}{\sqrt{154}}$$

Будемо вважати, що точці перетину у рівняннях першої прямої відповідає значення параметра $t=t_1$, а у рівняннях другої прямої — значення параметра $t=t_2$, тобто

$$\begin{cases} x_0 = 1 + t_1, \\ y_0 = 1 - t_1, \\ z_0 = 2 + 3t_1 \end{cases} \text{ Ta } \begin{cases} x_0 = 3 + 2t_2, \\ y_0 = -2 - 3t_2, \\ z_0 = 1 - t_2 \end{cases}$$

Координати точки перетину прямих повинні задовольняти рівнянням обох прямих, отже

$$\begin{cases} 1 + t_1 = 3 + 2t_2, \\ 1 - t_1 = -2 - 3t_2, \\ 2 + 3t_1 = 1 - t_2 \end{cases}$$

Перетворюємо:

$$\begin{cases} t_1 - 2t_2 = 2, \\ t_1 - 3t_2 = 3, \\ 3t_1 + t_2 = -1 \end{cases} \Rightarrow \begin{cases} t_2 = -1(відняли \ 2 - ге \ p - ня \ від \ 1 - го), \\ t_1 - 3t_2 = 3, \\ 3t_1 + t_2 = -1 \end{cases} \Rightarrow \begin{cases} t_2 = -1, \\ t_1 = 0, \\ t_1 = 0, \end{cases}$$

Тоді шукана точка має координати $\begin{cases} x_0 = 1+0,\\ y_0 = 1-0, \quad \text{тобто точка } M(1;1;2) \in \text{точ-}\\ z_0 = 2+3\cdot 0 \end{cases}$

кою перетину заданих прямих.

$$\underline{\textbf{\textit{Bidnoвidb}}}$$
: $\cos \varphi = \frac{2}{\sqrt{154}}$; $M(1;1;2)$ — точка перетину заданих прямих.

<u>Зауваження.</u> Якщо отримана система трьох рівнянь з двома змінними не має розв'язку, це означає, що прямі не перетинаються.

Задача 5. Записати рівняння прямої, яка проходить через точку M(3;2;-1) перпендикулярно до прямих $\frac{x-1}{2} = \frac{y-2}{0} = \frac{z}{-3}$ та $\begin{cases} x=2+4t, \\ y=-1+t, \\ z=1+3t \end{cases}$

Розв'язання.

Шукана пряма перпендикулярна прямим з напрямними векторами $\overline{S_1} = (3;5;-2)$ та $\overline{S_2} = (4;1;3)$. Тоді напрямний вектор прямої можна обчислити як векторний добуток векторів $\overline{S_1}$ та $\overline{S_2}$:

$$\overline{S} = \overline{S_1} \times \overline{S_2} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ 3 & 5 & -2 \\ 4 & 1 & 3 \end{vmatrix} = \overline{i} \begin{vmatrix} 5 & -2 \\ 1 & 3 \end{vmatrix} - \overline{j} \begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix} + \overline{k} \begin{vmatrix} 3 & 5 \\ 4 & 1 \end{vmatrix} = 17\overline{i} - 17\overline{j} - 17\overline{k} .$$

Тоді канонічні рівняння прямої мають вигляд

$$\frac{x-3}{17} = \frac{y-2}{-17} = \frac{z+1}{-17}$$
 and $x-3 = \frac{y-2}{-1} = \frac{z+1}{-1}$.

Bionosiob:
$$x-3=\frac{y-2}{-1}=\frac{z+1}{-1}$$

<u>Задача 6.</u> Визначити проєкцію точки $M_1(1;2;-1)$ на пряму $\frac{x-2}{-1} = \frac{y+1}{2} = \frac{z}{-4}$ та знайти відстань від точки до прямої. Розв'язання.

Знайдемо рівняння площини, яка проходить через точку M_I перпендикулярно заданій прямій. Можна вважати, що нормаль \overline{N} до площини дорівнює напрямному вектору прямої :

$$\overline{N} = \overline{S} = (-1;2;-4)$$

Запишемо рівняння шуканої площини:

$$A(x-x_1)+B(y-y_1)+C(z-z_1)=0;$$

-1(x-1)+2(y-2)-4(z+1)=0;
-x+2y-4z-7=0;
x-2y+4z+7=0.

Параметричні рівняння заданої прямої мають вигляд $\begin{cases} x = 2 - t \\ y = -1 + 2t . 3'ясуємо, \\ z = -4t \end{cases}$

при якому значенні параметра t пряма перетинає площину:

$$(2-t)-2(1+2t)+4(-4t)+7=0 \Rightarrow t=\frac{11}{21}$$

Обчислимо координати точки перетину M_{θ} :

$$\begin{cases} x_0 = 2 - \frac{11}{21} \\ y_0 = -1 + 2 \cdot \frac{11}{21} \implies M_0 \left(\frac{31}{21}; \frac{1}{21}; -\frac{44}{21} \right) \\ z_0 = -4 \cdot \frac{11}{21} \end{cases}$$

Пряма $M_0 M_1$ є перпендикулярною до заданої прямої, отже точка

$$M_0 \left(\frac{31}{21}; \frac{1}{21}; -\frac{44}{21} \right)$$
 є шуканою проекцією точки M_I .

Відстань від точки M_I до прямої — це відстань до проекції M_{θ} заданої точки на пряму, тобто

$$d(M_1) = M_1 M_0 = \sqrt{\left(\frac{31}{21} - 1\right)^2 + \left(\frac{1}{21} - 2\right)^2 + \left(-\frac{44}{21} - \left(-1\right)\right)^2} = \frac{\sqrt{2310}}{21}$$
 (од.)

3. Перевірка рівня засвоєння нових знань (групове міні-тестування з використанням онлайн-дошки).

Ключ до тесту: 1-В, 2-А, 3-Г, 4-Д, 5-Б

3. Підведення підсумків заняття, оголошення домашнього завдання (до 5-7 хв.)

Д/з: пряма на площині, зб. задач Дубовик В.П., Юрик І.І. с. 69-74, №№ 201, 202, 224, 228, 236, 237.