

Concours d'entrée 2006-2007

Mathématiques

Durée : 3 heures

La distribution des notes est sur 25

I-(2 pts) Le tableau ci-contre représente les variations d'une fonction continue f définie sur IR. On donne de plus que la courbe représentative (C) de f admet la droite y = x comme direction asymptotique à $+\infty$.

1-Ecrire l'équation de la tangente (T) à (C) au point d'abscisse 1.

2-Tracer (C) et (T).

3-Montrer que, pour tout x > 1, on a (x+1)/2 < f(x) < x.

X	-∞		1		$+\infty$
f "(x)		+		+	
f '(x)		+	1/2	+	
f(x)	0		1		$+\infty$

II-(4 pts) Une urne contient 6 boules identiques : 4 rouges et 2 noires.

1- On tire au hasard 2 boules de cette urne. On considère les évènements suivants :

A₀ : les deux boules tirées sont rouges

A₁: les deux boules tirées sont de couleurs différentes.

A₂: les deux boules tirées sont noires.

Calculer la probabilité de chacun des évènements A₀, A₁, A₂.

2- Après le premier tirage, l'urne contient 4 boules. On en tire au hasard deux nouvelles boules.

On considère les évènements suivants :

B₀: les deux boules tirées sont rouges

B₁ : les deux boules tirées sont de couleurs différentes.

B₂: les deux boules tirées sont noires.

- a) Calculer $p(B_0/A_0)$, $p(B_0/A_1)$ et $p(B_0/A_2)$. En déduire que $p(B_0) = 0.4$
- b) Calculer $p(B_1)$ et $p(B_2)$
- c) Sachant qu'une seule boule noire est tirée dans le second tirage, calculer la probabilité qu'une seule boule noire ait été tiré dans le premier tirage.
- 3- Calculer la probabilité pour que, après les deux tirages, les deux boules qui restent soient rouges.

III- (6 pts) Dans l'espace rapporte au repère orthonormé (O; \vec{i} , \vec{j} , \vec{k}) on considère le point A (-1; 1; 0), le plan (P) d'équation x-2y +2z -6= 0 et la droite (D) définie par x = m+1; y = 2m+1; z = 3m+2.

- 1- Démontrer que A et (D) déterminent un plan (Q) dont on déterminera l'équation.
- 2- a) Démontrer que (P) et (Q) se coupent suivant une droite (Δ) définie par x = 2 ; y = t-2 ; z = t.
 - b) Déterminer les coordonnées de A´ projeté orthogonal de A sur (Δ).
- 3- Soit M un point variable de (Δ). Désignons par α la mesure de l'angle que fait (AM) avec (P).
 - a) Démontrer que AM.sin $\alpha = 3$
 - b) En déduire la position de M pour laquelle α est maximum et calculer sin α dans ce cas.
 - c) Que représente la valeur de α ainsi trouvée pour les deux plans (P) et (Q) ?
- 4- On désigne par (C) le cercle de centre A se trouvant dans (Q) et tangent à (Δ). Le projeté orthogonal de (C) sur (P) est une ellipse (E).
 - a) Calculer le rayon de (C).

- b) Déterminer les coordonnées du centre de (E).
- c) Calculer l'excentricité de (E).
- d) Déterminer un système d'équation paramétrique de l'axe focal de (E).
- e) Déterminer les coordonnées de chacun des deux foyers de (E).
- f) Calculer l'aire du domaine compris entre (E) et son cercle principal.

IV- (6 pts) Dans le plan complexe rapporté au repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$

On considère les points A_0 , A_1 et A_2 d'affixes respectives $z_0 = 5$ - 4i, $z_1 = -1$ -4i et $z_2 = -4$ -i. On désigne par S la similitude qui transforme A_0 en A_1 et A_1 en A_2

- 1-a) Déterminer le rapport de S.
 - b) Montrer que le point I (2 ; 2) est le centre du cercle (γ) circonscrit au triangle $A_0A_1A_2$.
 - c) Calculer le rayon de l'image de (γ) par (S).
- 2-a) Montrer que l'expression complexe de S est $z' = \frac{1-i}{2}z + \frac{i-3}{2}$.
 - b) Déduire l'angle de S et l'affixe d de son centre D.
- 3-Soit M un point quelconque d'affixe z, tel que $z \neq d$, et M' d'affixe z' son image par S.
 - a) Déterminer la nature du triangle DMM'
 - b) Déduire que d z' = i(z z').
- 4-Soit (A_n) la suite de points de premier terme A₀ définie par $A_{n+1} = S(A_n)$
 - Soit (U_n) la suite définie sur IN par $U_n = A_n A_{n+1}$
 - a) Placer les points A_0 , A_1 et A_2 et construire les points A_3 , A_4 et A_5
 - b) Montrer que la suite (U_n) est une suite géométrique.
- 5-Soit m un naturel donné. On considère la suite (P_k) de points définis par $P_k = A_{m+4k}$
 - a) Montrer que tous les points P_k se trouvent sur une droite.
 - b) Montrer que pour tout naturel k, $P_{k+1} = H(P_k)$ ou H est une transformation que l'on déterminera.

V-(7 pts) <u>A.</u> On considère l'équation différentielle (1) $y' + 2y^2e^x - y = 0$ ou y est une fonction définie sur IR telle que pour tout réel x, $y(x) \neq 0$.

On pose $z = \frac{1}{y}$ où z est une fonction dérivable définie sur IR.

- 1- Déterminer l'équation différentielle (2) satisfaite par z.
- 2- Résoudre l'équation (2) et en déduire la solution générale de (1).
- 3- Déterminer la solution particulière de (1) telle que $y(0) = \frac{1}{2}$

<u>B.</u> Soit f la fonction définie sur IR par $f(x) = \frac{1}{e^x + e^{-x}}$. Désignons par (C) sa courbe représentative dans un repère orthonormé $(O; \vec{i}, \vec{j})$

1- Montrer que f est une fonction paire.

2- Dresser le tableau de variations de f.

3-a) Dresser le tableau de variations de la fonction g définie sur $[0; +\infty[$ par g(x) = f(x) - x.

b) Déduire que l'équation f(x) = x admet sur $[0; +\infty[$ une seule solution α . Vérifier que $0,4 < \alpha < 0,5$.

c) Tracer (C) (on suppose 1 unité = 4 cm).

4-a) Montrer que la restriction de f sur l'intervalle [0 ; +∞[admet une fonction réciproque f -1.

b) Déterminer le domaine de définition de f⁻¹ et calculer f⁻¹ (x) en fonction de x.

c) Tracer la courbe (γ) de f $^{-1}$ dans le même repère que (C).

<u>C.</u> On considère la suite (V_n) définie sur IN par $V_n = \int_0^n f(x)dx$

1-a) Montrer que, pour tout $x \ge 0$, $f(x) < e^{-x}$

b) Déduire que, pour tout naturel n, $V_n \le 1 - e^{-n}$

2-a) Vérifier que $V_{n+1} - V_n = \int_{n}^{n+1} f(x) dx$

b) En déduire que la suite (V_n) est strictement croissante.

c) Montrer que la suite (V_n) converge vers une limite ℓ telle que $0 \le \ell \le 1$.

3-Verifier que $f(x) = \frac{e^x}{1 + e^{2x}}$. Calculer alors V_n en fonction de n et déterminer ℓ

4- Calculer en cm² l'aire du domaine limité par (γ) , y'y, x'x et la droite d'équation y = 2.

Concours d'entrée 2006-2007

Solution de Mathématiques

Durée: 3 heures

La distribution des notes est sur 25

Exercice I

1- Une équation de la tangente (T) à (C) au point d'abscisse 1 est $y = f(1) + f'(1)(x-1) = 1 + \frac{1}{2}(x-1)$

$$f'(1) = \frac{1}{2}$$
 et $f(1) = 1$ d'ou $y = \frac{1}{2}x + \frac{1}{2} = \frac{1}{2}(x+1)$

2-

3- Pour x > 1, la courbe représentative de f est au-dessus de la tangente et au-dessous de la droite d'équation y = x donc $\frac{(x+1)}{2} < f(x) < x$

Exercise II

$$1-p(A_0) = \frac{C_4^2}{C_6^2} = \frac{2}{5}$$

$$p(A_1) = \frac{C_4^1 C_2^1}{C_6^2} = \frac{8}{15}$$

$$p(A_2) = \frac{C_2^2}{C_6^2} = \frac{1}{15}$$

2-a)
$$p(B_0/A_0) = \frac{C_2^2}{C_4^2} = \frac{1}{6}$$
, $p(B_0/A_1) = \frac{C_3^2}{C_4^2} = \frac{1}{2}$, $p(B_0/A_2) = 1$

$$p(B_0) = p(B_0 / A_0).p(A_0) + p(B_0 / A_1).p(A_1) + p(B_0 / A_2).p(A_2) = \frac{1}{6}.\frac{2}{5} + \frac{1}{2}.\frac{8}{15} + \frac{1}{15} = \frac{2}{5} = 0.4$$

b)
$$p(B_1) = p(B_1 / A_0).p(A_0) + p(B_1 / A_1).p(A_1) + p(B_1 / A_2).p(A_2) = \frac{2}{3}.\frac{2}{5} + \frac{1}{2}.\frac{8}{15} + 0 = \frac{8}{15}$$

or
$$p(B_1/A_2) = 0$$

$$p(B_2) = \frac{1}{6} \cdot \frac{2}{5} = \frac{1}{15}$$

c)
$$p(A_1/B_1) = \frac{p(A_1 \cap B_1)}{p(B_1)} = \frac{p(B_1/A_1) \times p(A_1)}{p(B_1)} = \frac{1}{2}$$

3-
$$p(2R) = p(A_0) \times p(B_2/A_0) + p(A_1) \times p(B_1/A_1) + p(B_0/A_2) \cdot p(A_2) = \frac{2}{5} \cdot \frac{1}{6} + \frac{1}{2} \cdot \frac{8}{15} + 1 \cdot \frac{1}{15} = \frac{2}{5} \cdot \frac{1}{15} + \frac{1}{15} = \frac{2}{5} \cdot \frac{1}{15} + \frac{1}{15} = \frac{2}{5} \cdot \frac{1}{15} + \frac{1}{15} = \frac{2}{15} \cdot \frac{1}{15} + \frac{1}{15} \cdot \frac{1}{15} = \frac{2}{15} \cdot \frac{1}{15} + \frac{1}{15} = \frac{2}{15} \cdot \frac{1}{15} + \frac{1}{15} + \frac{1}{15} + \frac{1}{15} + \frac{1}{15} = \frac{2}{15} \cdot \frac{1}{15} + \frac{1}{15} +$$

Exercise III

1) Le point A n'appartient pas à (d) car si -1 = m+1, 1 = 2m+1, 0 = 3m+2

On aura
$$m = -2$$
, $m = 0$, $m = -\frac{2}{3}$

Donc A et (d) déterminent un plan (Q).

Soit B (1, 1, 2) un point de (d) et M(x, y, z) un point variable de (Q). Une équation de (Q) est

$$\overrightarrow{AM} \cdot (\overrightarrow{AB} \wedge \overrightarrow{v_d}) = 0$$
 ce qui donne $x + y - z = 0$

2) a- $\overrightarrow{n_p}(1;-2;2)$ et $\overrightarrow{n_Q}(1;1;-1)$ ne sont pas colinéaires donc (P) et (Q) se coupent suivant une droite (Δ)

Soit M (2; t-2; t) un point variable de (Δ)

$$M \in (P)$$
 car $x_M - 2y_M + 2z_M - 6 = 2 - 2t + 4 + 2t - 6 = 0$

$$M \in (Q)$$
 car $x_M + y_M - z_M = 2 + t - 2 - t = 0$

Donc x = 2, y = t-2, z = t est un système d'équations paramétriques de (Δ) .

- b- A' est un point de (Δ) donc A' (2; t-2; t), $\overrightarrow{AA'}$ (3; t-3; t) et $\overrightarrow{v}_{\Delta}$ (0;1;1) sont orthogonaux, d'où $\overrightarrow{AA'}.\overrightarrow{v}_{\Delta} = 0$ ce qui donne t-3+t = 0, d'où t = $\frac{3}{2}$ et par suite A' (2; $-\frac{1}{2}; \frac{3}{2}$)
- 3) a- Soit H le projeté orthogonal de A sur (P), l'angle que fait (AM) avec (P) n'est autre que $\stackrel{\wedge}{AMH}$.

$$\sin \alpha = \frac{\text{HA}}{\text{AM}} \text{ or } HA = d(A; P) = \frac{|-1 - 2 - 6|}{\sqrt{1 + 4 + 4}} = 3$$

d'ou $\sin \alpha = \frac{3}{AM}$ et par suite $AM \cdot \sin \alpha = 3$

b- α est maximum lorsque AM est minimum donc lorsque M est confondu avec A' dans ce cas on a

$$\overrightarrow{AA}'(3; -\frac{3}{2}; \frac{3}{2})$$
 d'ou $AA' = \frac{3}{2}\sqrt{6}$

Donc
$$\sin \alpha = \frac{HA}{AA'} = \frac{3}{\frac{3}{2}\sqrt{6}} = \frac{\sqrt{6}}{3}$$

- c- (AH) \perp (P) donc (AH) \perp (Δ) et puisque (AA') \perp (Δ) alors (Δ) \perp (A'H) donc α est l'angle du dièdre déterminé par les (P) et (Q).
- 4) a- Le rayon de (C) est $r = AA' = \frac{3}{2}\sqrt{6}$
 - b- Le centre de (E) est le point H. Le vecteur $n_p(1;-2;2)$ est un vecteur directeur de la droite (AH).

Un system d'équations paramétriques de (AH) est $x = \lambda - 1$, $y = -2\lambda + 1$, $z = 2\lambda$.

H est le point d'intersection de (AH) et (P), d'où $\lambda - 1 + 4\lambda - 2 + 4\lambda - 6 = 0$ ce qui donne $\lambda = 1$ Par suite H(0; -1; 2)

c- On sait que a = r, $b = r\cos\alpha$ donc $c^2 = a^2 - b^2 = r^2 - r^2\cos^2\alpha = r^2\sin^2\alpha$ d'où $c = r\sin\alpha = 3$

$$e = \frac{c}{a} = \frac{r \sin \alpha}{5} \sin \alpha = \frac{\sqrt{6}}{3}$$

- d- L'axe focal de (E) est la droite passant par le centre de (E) et parallèle à la droite (Δ) donc le vecteur $\vec{v}_{\Delta}(0;1;1)$ est directeur de l'axe focal, un système d'équations paramétriques de l'axe focal est: x = 0, y = k-1, z = k+2
- e- Soit F l'un des deux foyers, F appartient à l'axe focal donc : F(0; k-1; k+2), HF = c = 3 d'où $HF^2 = 9$.

Or $\overrightarrow{HF}(0;k;k)$ d'où $k^2 + k^2 = 9$ ce qui donne

$$k = \frac{3\sqrt{2}}{2}$$
 ou $k = -\frac{3\sqrt{2}}{2}$ ce qui donne $F(0; \frac{3\sqrt{2}}{2} - 1; \frac{3\sqrt{2}}{2} + 2)$

Et F'(0;
$$-\frac{3\sqrt{2}}{2} - 1$$
; $-\frac{3\sqrt{2}}{2} + 2$)

f- L'aire du cercle principal est $S_1 = \pi \times a^2 = \pi \times r^2$ et l'aire de l'ellipse est $S_2 = \pi a b = \pi \times r \times r \cos \alpha$, l'aire du domaine compris entre (E) et son cercle principal est:

$$S = S_1 - S_2 = \pi \times r^2 - \pi \times r^2 \cos \alpha = \pi \times r^2 (1 - \cos \alpha) \text{ or } \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \frac{\sqrt{3}}{3} \text{ and } r = \frac{3}{2} \sqrt{6}$$

D'ou,
$$S = \frac{27}{2}\pi(1-\frac{\sqrt{3}}{3})$$
 unites d'aire.

Exercise IV

1) a-
$$k = \frac{A_1 A_2}{A_0 A_1} = \frac{|z_2 - z_1|}{|z_1 - z_0|} = \frac{|-3 + 3i|}{|-6|} = \frac{\sqrt{2}}{2}$$

b- IA₀=
$$|z_0 - z_I| = |5 - 4i - 2 - 2i| = |3 - 6i| = 3\sqrt{5}$$
, IA₁= $|z_1 - z_I| = |-1 - 4i - 2 - 2i| = |-3 - 6i| = 3\sqrt{5}$, IA₂= $|z_2 - z_I| = |-4 - i - 2 - 2i| = |-6 - 3i| = 3\sqrt{5}$

Donc $IA_0 = IA_1 = IA_2$ par suite le point I (2; 2) est le centre du cercle (γ) circonscrit au triangle $A_0A_1A_2$

c- L'image de
$$(\gamma)$$
 par S est un cercle de rayon, $R' = K.R = \frac{\sqrt{2}}{2}.3\sqrt{5} = \frac{3}{2}\sqrt{10}$

2) a- L'expression complexe d'une similitude est z'=az+b; $S(A_0)=A_1$ donne : $zA_1=az_{A0}+b$ et $S(A_1)=A_2$ donne : $zA_2=az_{A1}+b$ d'où le système :

$$(5-4i) a+b=-1-4i$$

(-1-4i) a+b= -4-i qui admet pour solution
$$a = \frac{1}{2} - \frac{1}{2}i$$
 et $b = -\frac{3}{2} + \frac{1}{2}i$ d'ou $z' = \frac{1-i}{2}z + \frac{i-3}{2}$

b-
$$a = \left(\frac{1-i}{2}\right) = \frac{\sqrt{2}}{2} \left(\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2} e^{-i\frac{\pi}{4}}$$

donc l'angle de S est $-\frac{\pi}{4}$ l'affixe d du centre D de S est $d = \frac{b}{1-a} = -1 + 2i$

3) a- $DM' = \frac{\sqrt{2}}{2}DM$ et $(\overrightarrow{DM}; \overrightarrow{DM}' = -\frac{\pi}{4}(2\pi)$. Si on pose $DM = \ell$ alors $DM' = \frac{\sqrt{2}}{2}\ell$ d'ou $MM'^2 = DM^2 + DM'^2 + DM'^2 + DM' + DM'$

$$MM^{'2} = DM^{2} + DM^{'2} - 2DM \times DM'\cos(\frac{\pi}{4})$$

 $MM'^2 = \ell^2 + \frac{\ell^2}{2} - 2\ell \times \ell \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{\ell^2}{2}$ d'où $MM' = \frac{\sqrt{2}}{2}\ell$ donc le triangle DMM' est isocèle en M' et

puisque $\stackrel{\circ}{MDM}' = \frac{\pi}{4}$ alors ce triangle sera rectangle isocèle en M'.

b-
$$\frac{z'-d}{z'-z} = \frac{DM'}{MM'}e^{i(\overrightarrow{MM'};\overrightarrow{DM'})} = 1e^{i\frac{\pi}{2}} = i$$

$$z'-d = i(z'-z)$$
 et par suite $d - z' = i(z - z')$

4) a-

b-
$$\frac{U_{n+1}}{U_n} = \frac{A_{(n+1)}A_{(n+2)}}{A_{(n)}A_{(n+1)}}$$
 or $A_{n+1} = S(A_n)et$ $A_{n+2} = S(A_{n+1})$ $donc \frac{A_{(n+1)}A_{(n+2)}}{A_{(n)}A_{(n+1)}} = \frac{\sqrt{2}}{2}$ et par suite $\frac{U_{n+1}}{U_n} = \frac{\sqrt{2}}{2} \implies (U_n)$ est une suite géométrique de raison $\frac{\sqrt{2}}{2}$

Et de premier terme $U_0 = A_0A_1 = 6$

5) a-
$$(\overrightarrow{DP}_{k}; \overrightarrow{DP}_{k+1}) = (\overrightarrow{DA}_{m+4k} + \overrightarrow{DA}_{m+4k+4}) = (\overrightarrow{DA}_{m+4k+1}) + \overrightarrow{DA}_{m+4k+1}; \overrightarrow{DA}_{m+4k+2}) + (\overrightarrow{DA}_{m+4k+2}; \overrightarrow{DA}_{m+4k+3}) + (\overrightarrow{DA}_{m+4k+3}; \overrightarrow{DA}_{m+4k+4}) = -\frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi}{4} - \frac{\pi}{4} = -\pi(2\pi)$$

Donc les points D, P_k et P_{k+1} sont alignes; et par suite tous les points P_k se trouvent sur une droite passant par D.

b-
$$\frac{DP_{(k+1)}}{DP_{(k)}} = \frac{DA_{(m+4k+4)}}{DA_{(m+4k)}} = \frac{DA_{(m+4k+4)}}{DA_{(m+4k+3)}} \cdot \frac{DA_{(m+4k+3)}}{DA_{(m+4k+2)}} \cdot \frac{DA_{(m+4k+2)}}{DA_{(m+4k+1)}} \cdot \frac{DA_{(m+4k+1)}}{DA_{(m+4k+1)}}$$
$$= \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{1}{4} \Rightarrow (\overrightarrow{DP_k}; \overrightarrow{DP_{k+1}}) = -\pi(2\pi) \ alors \overrightarrow{DP_{k+1}} = -\frac{1}{4} \overrightarrow{DP_k}$$

Par suite $P_{k+1} = H(P_k)$ ou H est l'homothétie de centre D et de rapport -1/4

Exercice V

A-1)
$$z = \frac{1}{y} \Rightarrow y = 1/z \text{ d'ou}$$

 $y' = \frac{z'}{z^2} \text{ et } y' + 2y^2 e^x - y = 0$
 $\text{devient } -\frac{z'}{z^2} + 2\frac{1}{z^2} e^x - \frac{1}{z} = 0 \text{ soit } -z' + 2e^x - z = 0 \text{ par suite } (\beta); z' + z = 2e^x$

2) La solution générale de l'équation z'+z=0 est $z_1=C$ e^{-x}

 $z_2 = e^x$ est une solution particulière de l'équation (β) donc $z = z_1 = z_2 = Ce^{-x} + e^x$ est une solution générale de (β) $y(x) = \frac{1}{z(x)} = \frac{1}{Ce^{-x} + e^x}$ est une solution générale de (α)

3)
$$y(0) = \frac{1}{2} \Rightarrow c = 1 \Rightarrow y(x) = \frac{1}{e^x + e^{-x}}$$
 est une solution particulière de (α)

B- 1) Le domaine de f est centré en O, et $f(-x) = \frac{1}{e^x + e^{-x}} = f(x) \Rightarrow f$ est une fonction paire

2) $f'(x) = \frac{e^x - e^{-x}}{(e^x + e^{-x})} = \frac{1 - e^{2x}}{1 + e^{2x}}, f'(x) \ge 0$ pour $x \le 0$, d'où le tableau de variations de f:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = 0$$

X	-∞	0	$+\infty$
f '(x)	+	> 0	-
f(x)		1/2	

3) a- g'(x) = f'(x) -, puisque pour x > 0, f'(x) < 0 alors

x > 0 g'(x) < 0 d'où le tableau de variations de g:

X	0		$+\infty$
g '(x)		- /	
g (x)	1/2	→	-∞

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} [f(x) - x] = 0 - \infty = -\infty$$

b- g est continue et strictement décroissante sur $[0; +\infty[$, elle décroit de $\frac{1}{2}$ à $-\infty$ donc sa courbe

représentative coupe l'axe x'x en un seul point par suite l'équation g(x) = 0 admet une seule racine α , donc l'équation f(x) = x admet sur $[0; +\infty[$ une seule solution α .

$$g(0,4) = f(0,4) - 0,4 = 0,0625 > 0$$

$$g(0,6) = f(0,6) - 0,6 = -0,056 < 0 \text{ donc } 0,4 < \alpha < 0,5$$

c-

4) a-f est continue et strictement décroissante sur $[0; +\infty[$ donc elle admet une fonction réciproque f^{-1}

b- Le domaine de définition de f^{-1} est $\left]0; \frac{1}{2}\right]$

$$y = \frac{1}{e^x + e^{-x}} \Rightarrow y = \frac{e^x}{1 + e^{2x}} \text{ d'ou } ye^{2x} + y - e^x = 0$$

équation du seconde degré en e^x , $\Delta = 1-4y^2$; $e^x = \frac{1 \pm \sqrt{1-4y^2}}{2y}$; ce qui donne

$$x = \ln(\frac{1 \pm \sqrt{1 - 4y^2}}{2y}) \text{ pour } y = \frac{1}{4}; \text{ on a } x = \ln\left[\frac{1 + \sqrt{1 - \frac{1}{4}}}{\frac{1}{2}}\right] = \ln(2 + \sqrt{3}) > 0 \text{ ou } x = \ln\left[\frac{1 - \sqrt{1 - \frac{1}{4}}}{\frac{1}{2}}\right] = \ln(2 - \sqrt{3}) < 0$$

donc la solution acceptable est
$$x = \ln \left[\frac{1 + \sqrt{1 - 4y^2}}{2y} \right] \Rightarrow f^{-1}(x) = \ln \left[\frac{1 + \sqrt{1 - 4x^2}}{2x} \right]$$

c- La courbe (γ) de f^{-1} est symétrique de (C) par rapport à la droite d'équation y = x, (C) et (γ)

se coupent au point $E(\alpha, \alpha)$

C-1) a-
$$f(x) - e^{-x} = \frac{1}{e^x + e^{-x}} - e^{-x} = \frac{1 - 1 - e^{-2x}}{e^x + e^{-x}} = \frac{-e^{-2x}}{e^x + e^{-x}} < 0 \text{ donc } f(x) < e^{-x}$$

Pour tout x et en particulier pour $x \ge 0$

b-
$$f(x) < e^{-x} \operatorname{donc} \int_{0}^{n} f(x) dx < \int_{0}^{b} e^{-x} dx \operatorname{so} \int_{0}^{n} f(x) dx < \left[-e^{-x} \right]_{0}^{n}$$

$$\int_{0}^{n} f(x) dx < 1 - e^{-n} \Rightarrow V_{n} \le 1 - e^{-n}$$

2) a-
$$V_{n+1} - V_n = \int_0^{n+1} f(x) dx - \int_0^n f(x) dx = \int_n^0 f(x) dx + \int_0^{n+1} f(x) dx = \int_n^{n+1} f(x) dx$$

b-Puisque f(x) > 0 alors $\int_{n}^{n+1} f(x)dx > 0$ donc $v_{n+1} - v_n > 0$ soit $v_{n+1} > v_n$ par suite la suite

 (v_n) est strictement croissante.

c – La suite (v_n) est croissanteet majorée par 1 car $V_n \le 1 - e^{-n} < 1$ donc elle est convergente vers une limite ℓ . Puisque $0 \le v_n < 1$ alors $0 \le \ell \le 1$

3)
$$f(x) = \frac{1}{e^x + e^{-x}} = \frac{e^x}{e^x (e^x + e^{-x})} = \frac{e^x}{e^{2x} + 1}$$

$$v_n = \int_0^n \frac{e^x}{e^{2x} + 1} dx = \left[\arctan e^x\right]_0^n = \arctan e^n - \arctan 1 = \arctan e^n - \frac{\pi}{4}$$

$$\lim_{n\to+\infty} v_n = \lim_{n\to\infty} \arctan e^n - \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \quad \text{car } \lim_{n\to\infty} \arctan e^n = \arctan(+\infty) = \frac{\pi}{2}$$

L'aire du domaine demandé est egale à l'aire du domaine limité par (C) x'x, y'y et la droite d'equation x = 2

4) à cause de la symétrie par rapport à la droite d'equation y = x

$$\int_{0}^{2} f(x)dx = v_2 = \arctan e^2 - \frac{\pi}{4} \text{ unit\'e d'aire} = 16 \times (\arctan e^2 - \frac{\pi}{4})cm^2$$

