Recorrido Mínimo Uno a Todos

Técnicas de Diseño de Algoritmos

FCEyN UBA

Mayo 2024

Hasta ahora vimos:

Qué son los grafos y cómo representarlos

Hasta ahora vimos:

- Qué son los grafos y cómo representarlos
- Algoritmos para recorrer y obtener árbol generador de un grafo (BFS y DFS)

Hasta ahora vimos:

- Qué son los grafos y cómo representarlos
- Algoritmos para recorrer y obtener árbol generador de un grafo (BFS y DFS)
- Algoritmos para obtener el árbol generador mínimo de un grafo (Kruskal y Prim)

Hasta ahora vimos:

- Qué son los grafos y cómo representarlos
- Algoritmos para recorrer y obtener árbol generador de un grafo (BFS y DFS)
- Algoritmos para obtener el árbol generador mínimo de un grafo (Kruskal y Prim)

Hoy vamos a ver:

Algoritmos para obtener el camino mínimo de uno a todos los nodos (Dijkstra y Bellman-Ford)

Nos da los caminos mínimos de uno a todos en (di)grafos con pesos en las aristas, por lo que también nos da los de uno a uno

- Nos da los caminos mínimos de uno a todos en (di)grafos con pesos en las aristas, por lo que también nos da los de uno a uno
- Sirve cuando no hay aristas de peso negativo

- Nos da los caminos mínimos de uno a todos en (di)grafos con pesos en las aristas, por lo que también nos da los de uno a uno
- Sirve cuando no hay aristas de peso negativo
- Su complejidad es $O(min\{m \cdot log(n), n^2\})$

También nos da los caminos mínimos de uno a todos en (di)grafos pesados.

- También nos da los caminos mínimos de uno a todos en (di)grafos pesados.
- Bellman-Ford detecta los ciclos de peso negativo

- También nos da los caminos mínimos de uno a todos en (di)grafos pesados.
- Bellman-Ford detecta los ciclos de peso negativo
- Su complejidad es $O(m \cdot n)$

Plan de hoy

Recorrido Mínimo

BFS

Dijkstra

Bellman-Ford

Ejercicios

Policías

Recorrido mínimo

Problema

Problema |

Sea G=(V,E) un (di)grafo con una función de costo para las aristas $c\colon E\to\mathbb{R}$, y v un vértice de G. Para todo $w\in V$, encontrar la mínima suma del costo de las aristas de un recorrido desde v a w.

Se puede resolver con BFS?

Problema |

- ¿Se puede resolver con BFS? Así nomás, no.
- ¿Qué tengo que cambiar?

Problema

- ¿Se puede resolver con BFS? Así nomás, no.
- ▶ ¿Qué tengo que cambiar? El costo tiene que ser el mismo para todas las aristas.¹
- ¿Complejidad?

¹Podemos relajar esto un poco, ver acá.

Problema

- ¿Se puede resolver con BFS? Así nomás, no.
- ▶ ¿Qué tengo que cambiar? El costo tiene que ser el mismo para todas las aristas.¹
- \triangleright ¿Complejidad? O(|V| + |E|) sobre lista de adyacencias.

¹Podemos relajar esto un poco, ver acá.

Problema

Sea G = (V, E) un (di)grafo con una función de costo para las aristas $c \colon E \to \mathbb{R}$, y v un vértice de G. Para todo $w \in V$, encontrar la mínima suma del costo de las aristas de un recorrido desde v a w.

¿Se puede resolver con Dijkstra?

Problema

- ¿Se puede resolver con Dijkstra? Así nomás, no.
- ¿Qué tengo que cambiar?

Problema

- ¿Se puede resolver con Dijkstra? Así nomás, no.
- ightharpoonup ¿Qué tengo que cambiar? **El costo tiene que ser** \geq **0**.
- ¿Complejidad?

Problema

- ¿Se puede resolver con Dijkstra? Así nomás, no.
- ightharpoonup ¿Qué tengo que cambiar? El costo tiene que ser ≥ 0 .
- \triangleright ¿Complejidad? $O(\min\{|E|\log|V|,|V|^2\})$ sobre lista de adyacencias.

Problema

Sea G = (V, E) un (di)grafo con una función de costo para las aristas $c \colon E \to \mathbb{R}$, y v un vértice de G. Para todo $w \in V$, encontrar la mínima suma del costo de las aristas de un recorrido desde v a w.

¡Se puede resolver con Bellman-Ford?

Problema

- ; Se puede resolver con Bellman-Ford? Sí!
- ¿Qué pasa si hay un ciclo con suma de costos negativa?

Problema

- ¿Se puede resolver con Bellman-Ford? Sí!
- ► ¿Complejidad?

Problema

- ¿Se puede resolver con Bellman-Ford? Sí!
- \triangleright ¿Complejidad? O(|V||E|) sobre lista de adyacencias.

Policías

Problema

La nueva reglamentación de una ciudad establece que toda esquina debe estar a lo sumo a 5 cuadras de una estación de policía. Dada la lista de esquinas $\{v_1,\ldots,v_n\}$ de la ciudad, la lista $\{p_1,\ldots,p_k\}$ de esquinas donde hay policías², y la lista E de calles, debemos indicar si la normativa se cumple, y en caso contrario cuáles esquinas son las que quedan "desprotegidas".

²O sea, asumimos que la policía siempre se ubica en una esquina.

Primero el modelado: en este caso es bastante directo, las esquinas son los nodos, y las calles los ejes.

- Primero el modelado: en este caso es bastante directo, las esquinas son los nodos, y las calles los ejes.
- ► Entonces lo que nos pide el enunciado es que todo nodo esté a una distancia menor o igual a 5 de un nodo policía.

- Primero el modelado: en este caso es bastante directo, las esquinas son los nodos, y las calles los ejes.
- ► Entonces lo que nos pide el enunciado es que todo nodo esté a una distancia menor o igual a 5 de un nodo policía.
- ¿Conocemos algún algoritmo que nos permita resolver este problema?

▶ Podemos correr un BFS desde cada vértice *v* y ver la distancia de cada uno a la estación de policía más cercana.

- ▶ Podemos correr un BFS desde cada vértice v y ver la distancia de cada uno a la estación de policía más cercana.
- ► La complejidad de esto es $O(|v| \cdot (m+n))$. ¿Se puede mejorar?

- Podemos correr un BFS desde cada vértice v y ver la distancia de cada uno a la estación de policía más cercana.
- ► La complejidad de esto es $O(|v| \cdot (m+n))$. ¿Se puede mejorar?
- Si pudiésemos correr un BFS desde todas las estaciones de policia a la vez y cortarlo cuando la distancia es mayor a 5, guardándonos los nodos a los que puedo llegar nos estaríamos guardando todos los vértices que cumplen.

- Podemos correr un BFS desde cada vértice v y ver la distancia de cada uno a la estación de policía más cercana.
- ► La complejidad de esto es $O(|v| \cdot (m+n))$. ¿Se puede mejorar?
- Si pudiésemos correr un BFS desde todas las estaciones de policia a la vez y cortarlo cuando la distancia es mayor a 5, guardándonos los nodos a los que puedo llegar nos estaríamos guardando todos los vértices que cumplen.
- Pero hay una manera mucho más simple.

Cambiemos un poquito nuestro modelo: agregamos un nodo fantasma z al grafo y lo conectamos con todos los policías.

- Cambiemos un poquito nuestro modelo: agregamos un nodo fantasma z al grafo y lo conectamos con todos los policías.
- En este nuevo grafo el problema va a ser un poco distinto. Corriendo BFS desde z y viendo qué nodos están a distancia mayor a 6 nos alcanza para resolverlo (y con complejidad O(m+n)!!).

- Cambiemos un poquito nuestro modelo: agregamos un nodo fantasma z al grafo y lo conectamos con todos los policías.
- En este nuevo grafo el problema va a ser un poco distinto. Corriendo BFS desde z y viendo qué nodos están a distancia mayor a 6 nos alcanza para resolverlo (y con complejidad O(m+n)!!).
- Ahora solo nos queda demostrar que lo que hicimos vale y da la misma respuesta que en el grafo original. Es decir, hay que probar el siguiente lema:

Un nodo v está a distancia menor o igual a 5 de un policía si y solamente si v está a distancia menor o igual a 6 de z

En lugar de demostrar ese lema vamos a demostrar algo un poco más fuerte: lo vamos a probar para todo problema de camino mínimo con múltiples orígenes. Es decir, sea z el nodo fantasma y S el conjunto de orígenes queremos ver que $\forall v \ d(z,v) = \min_{s \in S} \{d(s,v)\} + 1$

En lugar de demostrar ese lema vamos a demostrar algo un poco más fuerte: lo vamos a probar para todo problema de camino mínimo con múltiples orígenes. Es decir, sea z el nodo fantasma y S el conjunto de orígenes queremos ver que $\forall v \ d(z,v) = min_{s \in S} \{d(s,v)\} + 1$

▶ $\forall v \ d(z, v) = min_{s \in S} \{d(z, s) + d(s, v)\}$ ya que z solo está conectado a los nodos S.

En lugar de demostrar ese lema vamos a demostrar algo un poco más fuerte: lo vamos a probar para todo problema de camino mínimo con múltiples orígenes. Es decir, sea z el nodo fantasma y S el conjunto de orígenes queremos ver que $\forall v \ d(z,v) = min_{s \in S} \{d(s,v)\} + 1$

- ▶ $\forall v \ d(z, v) = min_{s \in S} \{d(z, s) + d(s, v)\}$ ya que z solo está conectado a los nodos S.
- ► $\{d(z,s)\}=1$ ya que z está conectado a todos los orígenes con una arista. Por lo tanto $\forall v \ d(z,v)=min_{s\in S}\{d(s,v)+1\}$

En lugar de demostrar ese lema vamos a demostrar algo un poco más fuerte: lo vamos a probar para todo problema de camino mínimo con múltiples orígenes. Es decir, sea z el nodo fantasma y S el conjunto de orígenes queremos ver que

$$\forall v \ d(z,v) = \min_{s \in S} \{d(s,v)\} + 1$$

- $\forall v \ d(z, v) = min_{s \in S} \{d(z, s) + d(s, v)\}$ ya que z solo está conectado a los nodos S.
- $\{d(z,s)\} = 1$ ya que z está conectado a todos los orígenes con una arista. Por lo tanto $\forall v \ d(z, v) = min_{s \in S} \{d(s, v) + 1\}$
- Si sacamos el 1 hacia afuera queda $\forall v \ d(z, v) = \min_{s \in S} \{d(s, v)\} + 1 \text{ tal como queríamos probar.}$