Complete S-m-n Theorem Exercise Methodology: Universal Pattern Guide

Core S-m-n Theorem Statement

Formal: Given m, $n \ge 1$, $\exists s_{m,n}: \mathbb{N}^{m+1} \to \mathbb{N}$ total computable such that $\forall e \in \mathbb{N}, \vec{x} \in \mathbb{N}^m, \vec{y} \in \mathbb{N}^n$: $\phi_e^{(m+n)}(\vec{x}, \vec{y}) = \phi_{s_{m,n}(e,\vec{x})}^{(n)}(\vec{y})$

Intuitive: Allows partial application - "fixing" some arguments to create new functions.

UNIVERSAL MECHANICAL METHODOLOGY

Algorithm for ANY S-m-n Exercise:

- 1. **IDENTIFY THE TARGET** (What do you need to prove exists?)
 - Look for: "show there exists s: N → N such that..."
 - Extract requirements for W_s(x) and E_s(x)
- 2. **CLASSIFY THE EXERCISE TYPE** (Use patterns below)
- 3. **CONSTRUCT g(x, y)** using the appropriate pattern
- 4. **APPLY S-m-n THEOREM** to get desired function
- 5. **VERIFY** both domain and codomain properties

COMPLETE EXERCISE TYPE CLASSIFICATION

TYPE A: CARDINALITY CONTROL

Pattern Recognition: $|W_s(x)| = f(x)$, $|E_s(x)| = g(x)$

Template:

Examples:

- $|W_s(x)| = 2x$, $|E_s(x)| = x \rightarrow g(x,y) = qt(2,y)$ if y < 2x, 1 otherwise
- $|W_s(x,y)| = xy \rightarrow q(x,y,z) = 0$ if z < xy, \uparrow otherwise

TYPE B: SPECIFIC SET CONSTRUCTION

Pattern Recognition: $W_s(x) = \text{specific set}$, $E_s(x) = \text{specific set}$

Sub-patterns:

B1: Even/Odd Domain

B2: Arithmetic Progressions

```
g(x, y) = \{

f(x, y), \text{ if } y \ge x \text{ [for } y \ge x \text{]}

\uparrow, \text{ otherwise}
```

B3: Power Sets

TYPE C: EQUALITY CONDITIONS

Pattern Recognition: $W_s(x,y) = \{z \mid condition(x,y,z)\}$

Template:

Examples:

- $W_s(x,y) = \{z \mid xz = y\} \rightarrow g(x,y,z) = 0 \text{ if } xz = y, \uparrow \text{ otherwise}$
- $W_s(x) = \{\text{divisors of } x\} \rightarrow g(x,y) = x^*y \text{ if } y \text{ divides } x, 1 \text{ otherwise } y \in Y$

TYPE D: REDUCTION CONSTRUCTIONS (for r.e. proofs)

Pattern Recognition: Used to show K ≤_m A or similar

Template:

```
g(x, y) = \{
constant, if x \in K
\uparrow, otherwise
```

Examples:

- g(x,y) = 1 if $x \in K$, \uparrow otherwise
- g(x,y) = y+1 if $x \in K$, \uparrow otherwise

TYPE E: COMPLEX FUNCTIONAL CONDITIONS

Pattern Recognition: Involves $\phi_x(x)$ or other computability conditions

Template:

```
g(x, y) = {
    expression, if φ_x(something) ↓
    ↑, otherwise
}
```

MECHANICAL CONSTRUCTION PATTERNS

Pattern 1: Bounded Range Construction

Pattern 2: Modular Arithmetic

Pattern 3: Divisibility

```
g(x, y) = {
    expression, if y divides x
    alternative, otherwise
}
= expression * sg(rm(y, x)) + alternative * sg(rm(y, x))
```

Pattern 4: Conditional with K

COMPLETE SOLUTION LIBRARY

Library Entry 1: Basic Cardinality

Problem: $|W_s(x)| = 2x$, $|E_s(x)| = x$

$$g(x, y) = qt(2, y) + \mu z.(y + 1 - 2x)$$

Library Entry 2: Even Domain, Offset Codomain

Problem: $W_k(n) = P$ (evens), $E_k(n) = \{y \mid y \ge n\}$

$$f(n, x) = x/2 + n + \mu z.rm(2, x)$$

Library Entry 3: Divisor Construction

Problem: $E_k(n) = \text{divisors of } n$

$$g(n, x) = (x * n) * sg(rm(x, n)) + sg(rm(x, n))$$

Library Entry 4: Equation Solving

Problem: $W_s(x,y) = \{z \mid x^*z = y\}$

$$f(x, y, z) = \mu w.(x*z - y) + (y - x*z)$$

Library Entry 5: Square Construction

Problem: $W_s(x) = \{(k+x)^2 \mid k \in \mathbb{N}\}\$

$$g(x, y) = \mu k. |(x + k)^2 - y|$$

Library Entry 6: Power Construction

Problem: $W_k(n) = \{z^n \mid z \in \mathbb{N}\}$

```
f(n, x) = qt(x, z) + \mu z.rm(x, z) [where z represents the base]
```

Library Entry 7: Intersection Cardinality

Problem: $|W_x \cap E_x| = 1$

g(x, y) = y if y ∈ both_domain_and_codomain, ↑ otherwise

Library Entry 8: Union Construction

Problem: $x \in W_x \cup E_x$

g(x, y) = 1 if $x \in K$, \uparrow otherwise (for reductions)

Library Entry 9: Complement Conditions

Problem: $W_x \subseteq P$ (subset of evens)

g(x, y) = 1 if $x \in K$, 1 otherwise (creates W = N when $x \in K$)

Library Entry 10: Functional Value Conditions

Problem: $\varphi_x(x) = x^2$ when $x \in W_x$

 $g(x, y) = y^2$ if $x \in K$, 1 otherwise

STEP-BY-STEP APPLICATION GUIDE

For ANY exercise, follow this algorithm:

1. Read the exercise and extract:

- What needs to be proven? (3s such that...)
- What are the constraints on W_s(x)?
- What are the constraints on E_s(x)?

2. Pattern match to exercise type:

- Type A: Cardinality control
- Type B: Specific sets
- Type C: Equality conditions
- Type D: Reduction construction
- Type E: Complex functional

3. Select appropriate construction pattern:

- Bounded range for cardinality
- Modular arithmetic for even/odd
- Divisibility for factor conditions
- Conditional with K for reductions

4. Construct g(x, y):

- Use library entry if exact match
- Adapt template for similar patterns
- Ensure computability using primitive recursive functions

5. Verify correctness:

- $W_s(x) = \{y \mid g(x, y) \downarrow\}$ matches requirement
- $E_s(x) = \{g(x, y) \mid y \in W_s(x)\}$ matches requirement

6. Write formal proof:

- State S-m-n theorem
- Define g(x, y) explicitly
- Show g is computable
- Apply S-m-n to get s
- Verify both properties

ADVANCED PATTERNS FOR COMPLEX EXERCISES

Pattern: Multiple Parameter Functions

For s: $\mathbb{N}^2 \to \mathbb{N}$ with $W_s(x,y) =$ something:

Pattern: Totality Requirements

When $\varphi_k(n)$ must be total:

```
g(n, x) = always_defined_expression
```

Pattern: Infinite Set Construction

For infinite sets like "all powers of x":

```
g(x, y) = μk.condition_for_y_to_be_power_of_x
```

Pattern: Negation Conditions

For "y ∉ W_x" type conditions:

```
g(x, y) = 0 if \neg H(x, y, z) for all z, \uparrow otherwise
```

MECHANICAL VERIFICATION CHECKLIST

 \checkmark **g(x, y)** is computable (uses only primitive recursive functions) \checkmark **Domain correct:** W_s(x) = {y | g(x, y) ↓} \checkmark **Codomain correct:** E_s(x) = {g(x, y) | y ∈ W_s(x)} \checkmark **S-m-n application valid:** ∃s such that ϕ _s(x)(y) = g(x, y) \checkmark **All edge cases handled**

EMERGENCY PATTERNS (When Nothing Else Works)

Pattern: Direct Encoding

```
g(x, y) = μz.(complex_condition_encoding_the_requirement)
```

Pattern: Case Analysis

Pattern: Composition Construction

```
g(x, y) = h(f_1(x, y), f_2(x, y), ...)
```

This methodology guarantees you can solve ANY S-m-n theorem exercise by:

- 1. Pattern recognition
- 2. Template application
- 3. Mechanical verification

The key insight: Every S-m-n exercise reduces to constructing the right g(x, y) function that encodes the desired domain/codomain relationship.