INITTY I INCRNING <<<< **CELEBVISION: COMPREHENSIVE**

CELEBRITY IMAGE

PROCESSING

2024SP_MLDS_432-1_SEC20 Deep Learning Final Project

Siyan Li, Stella Wang, Xinran Wang, Yumin Zhang

TABLE OF CONTENTS

- 1. Data Overview
- 2. **Task 1**: Image Classification
 - Customized: CNN
 - Pretrained: InceptionV3
- 3. **Task 2:** Style Transfer
 - Customized: CycleGAN
 - Pretrained: VGG-19
 - Application: Streamlit
- 4. Model Operations & Parameter Update
- 5. Conclusion
- 6. References

LLIGENCE (AI)

DATA OVERVIEW

Tabular Data:

- Total Rows:202,599
- Total Columns: 40 (Attributes)
- No Missing Values

Data Characteristics:

Type: Dataset Type: Image dataset with corresponding attributes. **Images:** 202,599 images of celebrities, each annotated with various facial attributes.

VISUALIZATION

....

TASK 01. IMAGE CLASSIFICATION

Classify the gender of the faces

OBJECTIVE

GOAL

To develop and evaluate deep learning models capable of accurately **classifying the gender** of individuals in the CelebA dataset based on facial attributes.

MODELS

Customized CNN & InceptionV3

ARCHITECTURE

Customized CNN is a deep convolutional neural network (CNN) designed specifically for the CelebFaces data to optimize performance.

PROS

Tailored Architecture:

Custom design for better performance.

Control Over the Model:

Optimize the architecture and adapt to specific data characteristics

CONS

Resource and Expertise Demands:

Time-consuming and computationally intensive

Risk of Overfitting:

Higher risk of overfitting for small or unbalanced datasets

Model Architecture (first few layers)

Conv2D

BatchNormalization

MaxPooling2D

Conv2D

BatchNormalization

MaxPooling2D

Model Architecture (Continued)

Demo:

Predicted: Male (70.27% prob.) Real Target: Male

Predicted: Female (91.93% prob.) Real Target: Female

PRETRAINED MODEL: INCEPTIONV3

ARCHITECTURE

InceptionV3 is a deep convolutional neural network (CNN) designed by Google.

PROS

High Accuracy: InceptionV3 has demonstrated excellent performance on a variety of image classification tasks, making it well-suited for gender classification on the CelebA dataset.

Scalability: InceptionV3 can handle large-scale datasets like CelebA with many images and attributes, making it versatile for extensive facial attribute analysis.

CONS

Complexity: The architecture is complex, with multiple types of convolutions and pooling operations within each module, making it harder to implement and tune compared to simpler models.

ADTICIAL

PRETRAINED MODEL: INCEPTIONV3

PRETRAINED MODEL: INCEPTIONV3 AK

ARTI

Demo:

Male

98.07% prob. Real Target: Male Filename: 186397.jpg

Female

99.96% prob. Real Target: Female Filename: 192481.jpg

MODEL EVALUATION:

CUSTOMIZED CNN VS INCEPTIONV3

	ACCURACY	F1 SCORE	PRECISION	RECALL	ROC-AUC
CUSTOMIZ ED CNN	94.4%	0.944	0.945	0,944	0,980
INCEPTION V3	93.2%	0.931	0.934	0.932	0.987

TASK 02.

STYLE TRANSFER

Transfer the style of the given face image

OBJECTIVE

GOAL

Train and evaluate a model to apply a specific artistic style to the content of a image.

MODELS

CycleGAN & VGG19

ADDITIONAL kaggle DATASETS

SKETCH

<u>CUHK Face Sketch Database</u> Sketch Drawn Based on photos

<<<<

VANGOGH

<u>Van Gogh Paintings</u> Art-Work Sample of Vincent

<<<<

CARTOON

<u>cartoonset10k</u> Cartoon Images by Google

<<<<

GENERATOR LOSS

- Adversarial loss (L2/MSE).
- Identity loss (L1/MAE).
- Forward cycle loss (L1/MAE).
- Backward cycle loss (L1/MAE).

L2/MSE: for label

L1/MAE: for **image**

Figure from: Zhu, Jun-Yan, 2017.

GENERATOR

DISCRIMINATOR

NOTES

- 1. batchsize = 1
- Instance normalization instead of batch normalization

ARTIFICIAL INTELLIGENCE (A1)

SKETCH STYLE

Original celeb

Generated celeb

Original celeb

Original celeb

Generated celeb

AKI IFICIAL IN I ELLIGENCE (AI)

VAN GOGH STYLE

AKTIFICIAL INTELLIGENCE (AT)

CARTOON STYLE

GANTOUN STILL

AKIIFICIAL INI ELLIGENCE (AI)

CycleGAN Style Transfer

Choose a celebrity image... Drag and drop file here Browse files Limit 200MB per file • JPG, JPEG test_siyan.jpg 10.2KB × Choose a style transfer model Cartoon Style

Uploaded Image

Generate Style Transferred Image

PROS

1. <u>Unpaired data</u>, unlike *Pix2Pix*

CONS

1. Tuning Difficulty

The performance can be highly sensitive to hyperparameters such as weights of loss components.

2. <u>Blurriness</u>

The generated images may sometimes contain artifacts or appear blurry.

OVERVIEW

- 19 layers CNN
- Pretrained model on *ImageNet* classification
- Employ it for feature extraction

EXTRACTED LAYERS

Black Rectangle: Style extraction

Red Rectangle: Content extraction

STYLE FORMULA

 For each style layer extracted, we can calculate style matrix by the means and correlations across the different feature map channels

$$G_{cd}^l = rac{\sum_{ij} F_{ijc}^l(x) F_{ijd}^l(x)}{IJ}$$

LOSS FUNCTION=STYLE LOSS + CONTENT LOSS

$$\sum_{Style\ Layers\ x} mse(G_x(target), G_x(generated))$$

$$\sum_{Content\ Layers\ x} mse(C_x(target), C_x(generated))$$

TRAINING? GENERATION!

- Loss function: L(target content, target style, generated image)
- We have a loss function, so we can do gradient descent, but on which parameters?
- The trainable parameters are exactly the generated image
- The gradient descent "training" process is actually the "generation" process

 $\underset{y_{generated}}{\operatorname{argmin}} (L(y_{generated}, y_{style_target}, y_{content_target}))$

PROS

- Easy to implement
- Computation efficiency
- Only need one graph as style graph instead of large training dataset

- No model saved
- Need to generate for every new input style/content images
- Hard to compare the loss across different generation tasks

STREAMLIT DEPLOYMENT

Style Transfer Application

MODEL OPERATIONS

OPERATION ARCHITECTURE

MODEL MAINTENANCE AND PARAMETER UPDATE

MAINTENANCE

- Infrastructure: AWS
- Fetch new data from AWS S3 and retrain the model
- Use CloudWatch to keep track of the application health

PARAMETER UPDATE

- Model can read config file to customize the neural network structure and hyperparameters
- Can set periodical retraining for parameter updates

CONCLUSION

- Image classification task:
 - Both high accuracy, customized CNN slightly higher.
 - Style transfer task:
 - Depends on style:
 - VGG-19 models better transfer styles with texture features, such as the *Van Gogh style*. For simpler styles like *sketches*, both the CycleGAN and VGG-19 models performed well.
 - However, both models struggled with the cartoon style.

Our findings emphasize the importance of model selection and customization based on the task requirements and dataset properties. While pre-trained models like InceptionV3 and VGG-19 offer robust performance and ease of implementation, customized models can provide superior results with sufficient tuning and resource investment.

ARTIFICIAL

REFERENCES

INTE (ai)

[1] Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A. Efros. "Unpaired image-to-image translation using cycle-consistent adversarial networks." In *Proceedings of the IEEE international conference on computer vision*, pp. 2223-2232. 2017.

[2] Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. "Rethinking the Inception Architecture for Computer Vision." 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016. https://doi.org/10.1109/cvpr.2016.308.

[3] VGG-19 architecture [39]. VGG-19 has 16 convolution layers grouped into... | download scientific diagram. Accessed May 31, 2024. https://www.researchgate.net/figure/VGG-19-Architecture-39-VGG-19-has-16-convolution-layer-s-grouped-into-5-blocks-After-fig5-359771670.

[4] "Neural Style Transfer: Tensorflow Core." TensorFlow. Accessed May 30, 2024. https://www.tensorflow.org/tutorials/generative/style_transfer.

AKHIFICIA

DATASET LINKS

- [1] https://www.kaggle.com/datasets/jessicali9530/celeba-dataset
- [2] https://www.kaggle.com/datasets/arbazkhan971/cuhk-face-sketch-database-cufs
- [3] https://www.kaggle.com/datasets/ipythonx/van-gogh-paintings
- [4] https://www.kaggle.com/datasets/imreallyjohn/cartoonset10k

APPENDIX: DATA PREPROCESSING

DATA SAMPLING

Define a function to load and reshape images. Sample an equal number of male and female images for training, validation, and testing.

DATA AUGMENTATION

Use ImageDataGenerator for data

augmentation. Apply

transformations such as rotation.

shift, shear, zoom, and flip.

Combine gender and partition data into a single DataFrame.

DATA SPLITTING

Split data into training, validation, and test sets using the sampling function

ARTIFICIAL INTE (AI)

