

- Due 00:00 am, May 26, 2021
- Language
 - Please use C++ language to implement your program.
- Program
 - Given the structure of a B*-tree, show its packing result.
 - Use B*-tree packing algorithm to determine coordinates of modules.
 - After packing, calculate total area and wirelength of modules.

- Calculate Area
 - The area of the minimum rectangle containing all modules.
- Calculate Wirelength
 - Use Half-Perimeter Wire Length(HPWL).
 - All net pins of the modules are located on center.
 - Calculate the sum of all nets HPWL.

Two input files

- .nodes
 - Name : module name.
 - Dimension : width, height.
 - Relation : parent, left, right, where X is "NULL".

- .nets
 - Net name module1 module2

Two output files

- ** is benchmark name
- **.m: The coordinates of all modules in Matlab format. Please see "Output_format.pdf" for detailed information.
- report_**.txt : Contain benchmark name, area, wirelength.

report_ami33.txt

Benchmark: ami33

Wirelength: 12345678

Area: 500

Execution program

- ./PK_EXXX.exe benchmark_name
 - You must input the benchmark name.
 - In your code, you must revise the name to read *.nodes and *.nets files.
 - ex.

input ami33 → read "ami33.nodes" and "ami33.nets"

Note

- There are 3 test data and 1 hidden test data.
- There exists no overlap between modules.
- The area and wirelength take integers.

Upload data

- Please upload a zip file.
- The zip file contains a folder which is named by your student ID.
- Put your executable file, source code and header(if exists) in the folder.
 - e.g. PK_EXXX.exe , PK_EXXX.cpp and PK_EXXX.h.

Your student ID Your student ID Your student ID