KHOA CÔNG NGHỆ THÔNG TIN-ĐHKHTN CSC12107 – Information Systems for Business Intelligence

Overview of Business Intelligence

Giáo viên: Hồ Thị Hoàng Vy TPHCM, 8-2021

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN

Learning Objectives

- Understand the Magpie Sensing Employs Analytics to Manage a Vaccine Supply Chain Effectively and Safely
- Understand the need for computerized support of managerial decision making
- Describe the business intelligence (BI) concepts and relate them to Decision support system (DSS)
- Understand the various types of analytics
- Summarize main applications and business value for BI

Contents

- 1. CASE STUDY Magpie Sensing
- 2. The business demand for data, information, and analytics
- 3. BI definition purpose history
- 4. A framework for BI

- Magpie Sensing, a start-up project under Ebers Smith and Douglas Associated LLC., provides a suite of cold chain monitoring and analysis technologies for the healthcare industry
- Cold chain in healthcare
- ☐ Cold Chain (a temperature-controlled supply chain)
- ☐ It consists of three major components
 - ■transport and storage equipment
 - trained personnel
 - efficient management procedures

Ramesh sharda dursun delen efraim turban - Sensing Cold Chain Analytics and Monitoring, https://www.cdc.gov/vaccines/pubs/pinkbook/vac-storage.html#storage

- Vaccines must be stored properly from manufacture until they are available for use
- Maintained at a temperature of 35–46 degrees
 Fahrenheit (2–8 degrees Centigrade)
- Any extreme temperatures of heat or cold will reduce the vaccine potency
- if administered, might not yield effective results or could cause adverse effects
- Maintaining the temperatures of the storage units throughout the healthcare supply chain in real time

Problems:

- The Centers for Disease Control and Prevention (CDC) looked at the handling of cold chain vaccines by 45 healthcare providers around United States. The CDC reported that:
- Three-quarters of the providers experienced serious cold chain violations
- → How to improve the efficiency of cold chain processes and predict cold storage problems before they occur

A Way Toward a Possible Solution:

Monitored and analysis technologies in real time:
the set point of the storage system's thermostat
wireless temperature and humidity monitor
location-aware tracking of the cold chain products during the shipment
→ All temperature information is displayed on a dashboard that shows a graph of the temperature

inside a specific storage unit.

→ Can determine the set point of the storage unit's thermostat and alert the system's users if the system is incorrectly configured

A Way Toward a Possible Solution (cont):

- → Sends alerts about possible temperature violations based on the storage unit's average temperature and subsequent compressor cycle runs, which may drop the temperature below the freezing point
- Report possible human errors, such as failing to shut the storage unit doors or having an incomplete seal
- Detected compressor or a power failure

- A Way Toward a Possible Solution (cont):
- Determined the estimate time before the storage unit reaches an unsafe temperature
 - help users dial in the optimal temperature setting
 - help formulate additional design training plans and institutional policies to ensure that the system is properly maintained and not overused
- Additional manufacturing time and expenditure can be eliminated by ensuring product safety throughout the supply chain, and effective products can be administered to the patients.
- Compliance with state and federal safety regulations can be better achieved

- Solutions:
- Applies all three types of analytical techniques
- Gathered data from the monitoring devices
- Turn the raw data

→ returned from the monitoring devices into actionable recommendations and warnings:

What We Can Learn from This case study

- illustrates how data from a business process can be used to generate insights at various levels
- graphical analysis of the data (termed reporting analytics) allows users to get a good feel for the situation
- using data mining techniques to estimate what future behavior would be like
- create specific recommendations for operators
- innovative applications of analytics can create new business ventures

The Business Environment

- Companies are moving aggressively to computerized support of their operations:
- Business Environment
 - create <u>Pressures on Organizations</u>
 - is becoming more and more complex
 - This complexity creates opportunities on the one hand and problems on the other
- Organizational Responses:
 - Be Reactive.
 - > Anticipative,
 - Adaptive,
 - Proactive

The Business Environment

- Managers may take actions, such as:
 - Employ strategic planning.
 - Use new and innovative business models.
 - Restructure business processes

- Improve partnership relationships
- Improve customer service and relationships
- Use new IT to improve communication, data access
- Respond quickly to competitors' actions (e.g., in pricing, promotions, new products and services).

The Business Environment

- The decision support concepts in case study:
 - implemented incrementally,
 - under different names,
 - by many vendors that have created tools and methodologies for decision support
- → In this kind of environment, managers must respond quickly, innovate, and be agile
- → These actions require some computerized support → DSS

- □ Data → information → knowledge → wisdom & action
- - Insight into the past: what is happening in the business?
 - Understand the future: What might happen?
 - Advice on possible outcomes: what action to take?

- Organizations tend to grow and prosper as they gain a better understanding of their environment
 - Evaluate through tracking daily transactions and analyzing company data
- Organizations are always looking for a competitive advantage
 - Product development, market positioning, sales promotions, and customer service
- Companies and software vendors addressed these multilevel decision support needs by creating autonomous applications for particular groups of users
 - This more comprehensive and integrated decision support framework within organizations became known as business intelligence

- While enterprises still need leaders and decision-makers with intuition, they depend on data to validate their intuitions
- Data becomes a strategic guide that helps executives see patterns they might not otherwise notice.
- ☐ → TOO MUCH DATA, TOO LITTLE INFORMATION
- □ → the importance of analytics

Business Intelligence - DEFINITION

Business intelligence (BI) is a broad category of applications, technologies, and processes for gathering, storing, accessing, and analyzing data to help business users make better decisions

> Watson, Hugh J. (2009) "<u>Tutorial: Business Intelligence – Past, Present, and Future,"</u> Communications of the Association for Information Systems: V ol. 25, Article 39.

Business intelligence (BI) is a data-driven DSS that combines data gathering, data storage, and knowledge management with analysis to provide input to the decision process

Negash S., Gray P. (2008) <u>Business Intelligence. In: Handbook on Decision Support Systems</u> 2. International Handbooks Information System. Springer, Berlin, Heidelberg

Business Intelligence - DEFINITION

Business intelligence may be defined as a set of mathematical models and analysis methodologies that exploit the available data to generate information and knowledge useful for complex decisionmaking processes.

(Business Intelligence: Data Mining and Optimization for Decision Making - Carlo Vercellis)

Other definitions

Business Intelligence - purpose

The main purpose of business intelligence systems is to provide knowledge workers with tools and methodologies that allow them to make effective and timely decisions.

(Source: Carlo Vercellis – Data mining and optimization for decision making)

Business Inteligent - HISTORY

(Evolution of Computerized Decision Support to Analytics/Data Science)

- The term business intelligence was first used in 1989 by Howard Dressner.
 Then a research fellow at Gartner Group
- □ BI Today is said to have evolved from the <u>decision support systems</u> (DSS) that began in the 1960s and developed throughout the mid-1980s.
- ☐ The number of BI vendors grew in the 1980s, as business people discovered the value of Business Intelligence

Business Inteligent - HISTORY

(Evolution of Computerized Decision Support to Analytics/Data Science)

Evolution of Business Intelligence (BI)

- A High-Level Architecture of B I has four major components:data sources
 - A data warehouse (DW)
 - Business analytics
 - Business performance management
 - User interface

- Operational data stores
- Data marts
- Meta data

□ A High-Level Architecture of BI has four major components:

Tools for

manipulating, mining,

analyzing data in DW

- A data warehouse
- Business analytics
- Business performance management
- User interface

- □ A High-Level Architecture of BI has four major companyone.
 - A data warehouse
 - Business analytics

- For monitoring and analyzing performance
- Business performance management
- User interface

- A High-Level Architecture of BI has four major components:
 - A data warehouse (DW)
 - Business analytics

Eg: dashboard

- Business performance management
- User interface

	hat happens if you skip the architect and go straigh a builder?
	any enterprises today have a BI environment that downward downward the benefit of an architecture:
	Several different BI tools
	Many application-specific reporting environments in addition to an enterprise BI environment.
	Various databases created for BI outside the application environments that were created at different times, by different teams for different purposes
	Data silos, hand code
	Vertical fragmentation of informational systems

- □ BI framework is composed of four architectural layers:
 - Information architecture
 - Data architecture
 - □ Technical architecture
 - Product architecture

- The information architecture defines the "what, who, where, and why" for BI or analytical applications
- Defines the business context necessary for successful BI solutions to be built on a sustaining basis

Question	Description	
WHAT	What business processes or functions are going to be supported	
	What types of analytics will be needed	
	What types of decisions are affected	
WHO • Who will have access—employees, customers, prospects, suppliers, or other stake		
WHERE	Where is the data now	
	Where will it be integrated	
	Where will it be consumed in analytical application	
WHY	Why will the BI solution(s) be built, i.e. what are the business and technical requirements	

Data architecture

- Helps you gain a better understanding of the data
- Provides guidelines for managing data from initial capture in source systems to information consumption by business people.
 - Guides how the data is collected, integrated, enhanced, stored, and delivered to business people who use it to do their jobs
- Provides a structure upon which to develop and implement data governance

Technology & product architecture

- There are four technology layers:
 - Business intelligence and analytics
 - Information access and data integration
 - Data warehousing
 - Data sources

TECHNOLOGY & PRODUCT ARCHITECTURE

BUSINESS INTELLIGENCE AND ANALYTICS

1.Source Systems

- Many possible sources (ERP, CRM, legacy system, unstructured data, etc.)
- Many platforms IBM, Oracle, Microsoft, Sybase, SAS
- Many formats Relational, Hierarchical, Columnar, Multi-dimensional, Big data MapReduce Databases, Unstructured text data

- Integration Services (ETL, Operational Data Feeds, Enterprise Application Integration, Enterprise Information Integration)
- 3. Data Management Services (data warehouse, data marts, federated data marts, OLAP cubes, etc.)
- 4. Reporting and Analytical Services (Analytical Reporting, ad-hoc query and batch reporting, dashboards/scorecards, predictive and prescriptive modeling, data & text mining/forecasting)
- 5. Information Delivery and Consumption Services (Web portals, subscription, direct user access, internal portals

Types of BI users

- IT developers
- Analysts
- Information workers
- Managers and executives
- Front line workers
- Suppliers, customers, and regulators

Development of a BI system

- the specific path followed by each organization might differ from that outlined in the figure
- □ The development of a business intelligence system can be assimilated to a project, with a specific final objective, expected development times and costs, and the usage and coordination of the resources needed to perform planned activities.

(Source: Carlo Vercellis – Data mining and optimization for decision making)

Transaction Processing Versus Analytic Processing

- Online Transaction Processing (O L T P)
 - □Operational databases (accounting system, sales / student management system...)
 - □ERP, SCM, CRM, ...
 - □Goal: data capture, well-defined processes, almost no change in the process
 - data concurrency (supporting multiple users)
 - data integrity
 - read/write performance

- Online Analytical Processing (O L A P)

- Data warehouses
- □Goal:
 - support mid-term and long term decisions (sale analysis by region, by determined period of time, by product or group of product...);

OLTP vs BI system

OLTP Systems	BI Systems
Application orientated . Tables and views are optimized to make the application run faster.	Subject orientated . Tables are modeled on business concepts and designed for usability.
Non integrated . Data for different business applications (like finance versus marketing) is often stored across multiple systems.	Integrated . All data relating to a specific subject (like Customers) is stored together.
Volatile . Data is updated each time a transaction occurs. Records are edited in place in the database.	Non-volatile . Records are rarely updated or deleted. They are almost always only added.
Little summary data . Data is normalized to optimize for performance. There is no storage of rolled-up values.	Multiple granularity with summaries . Data is summarized at various levels of granularity to provide appropriate response times for large volumes of transaction data.
Non-time variant . Holds data that represents the current state of the enterprise.	Time variant . Holds data for several time periods so that useful growth comparisons can be made.

Discussion

- Operational Data versus Decision Support Data ■
- 2. Operational Data versus Decision Support Data

BI Benefit

- Concepts, practices, tools and techniques to help business
 - Understand core capabilities
 - Provide snapshots of the company situation
 - Identify key opportunities to create a competitive advantage
- Provides a framework
 - Collecting and storing operational data and aggregating it into decision support data
 - Analyzing decision support data and presenting generated information to end users to support business decisions
 - Making business decisions which generate more data
 - Monitoring results to evaluate outcomes and predicting future outcomes with a high degree of accuracy

BI Disadvantages

- Cost
 - Business intelligence software can be expensive
 - have to consider the costs of the hardware and IT staff needed to implement the software effectively
- Complexity
 - complexity in implementation of datawarehouse (Poor Data Quality, Difficulty Analyzing Different Data Sources
- **☐ Time Consuming Implementation**

Business Value of BI Analytical Applications

- Customer segmentation
- Propensity to buy
- Customer profitability
- Fraud detection
- Customer attrition
- Channel optimization