Конспект лекций по математическому анализу

(2й семестр 2024-2025 учебного года)

Лектор:

Горячев А. П., Хлистунов И. А.

Верстка

Оглавление

1	Ин	тегралы	4	
	1.1	Первообразная и неопределенный интеграл	4	
		1.1.1 Таблица интегралов	Ē	
	1.2	Способы вычисления неопределенных интегралов	6	
		1.2.1 Метод подстановки	6	
		1.2.2 Интегрирование по частям	6	
2	Опј	ределенный интеграл	8	
	2.1	Определение интеграла Римана. Существование интегрируемых функций. Необратимое усло-		
		вие	8	
	2.2	Суммы Дарбу и их свойства. Связь сумм Дарбу с интегральной суммой	ę	
	2.3	Верхний и нижний интегралы Дарбу. Критерий интегрируемости	10	
	2.4	Интегрируемость непрерывной функции. Интегрируемость монотонной функции	12	
	2.5	Интегрируемость функции, отличающейся от интегрируемой в конечном количестве точек .	12	
3	Свойства определенного интеграла			
	3.1	Линейные свойства определенного интеграла	14	
	3.2	Интегрируемость произведения интегрируемых по Риману функций	15	
	3.3	Интегрируемость функции на внутреннем отрезке. Аддитивность определенного интеграла	16	
	3.4	Монотонность определенного интеграла. Строгая монотонноость определенного интеграла		
		от непрерывной функции	17	
	3.5	Интегрируемость модуля интегрируемых по Риману функций. Связь интеграла от функции		
		с интегралом от ее модуля	18	
	3.6	Неравенство Коши-Буняковского для определенных интегралов. Теорема о среднем и ее		
		обобщение	18	
4	Осн	новные правила интегрирования.	20	
	4.1	Интеграл с переменным верхним (нижним) пределом, его непрерывность и дифференциру-		
		емость. Существование первообразной у непрерывной функции. Формула Ньютона-Лейбница.	20	
	4.2	Вычисление определенных интегралов способами замены переменных и интегрирования по		
		HARTIN	21	

Геометрические приложения определенного интеграла.				
5.1	Спрямляемость гладкой кривой. Выражение длины дуги гладкой кривой в виде определен-			
	ного интеграла. Формулы длины дуги плоской кривой, заданной в декартовых либо поляр-			
	ных координатах.	23		
	5.1.1 Частные случаи гладких кривых:	26		
5.2	Площадь плоской фигуры. Критерий квадратируемости	26		
5.3	Квадрируемость криволинейной трапеции. Выражение плоащиди криволинейной трапеции			
	в виде определенного интеграла. Формула площади криволинейного сектора (без доказа-			
	тельства)	28		
Соб	бственные и несобственные интегралы.	29		
6.1	Несобственный интеграл первого рода, их сходимость и расходимость. Независимость сходи-			
	мости (расходимости) несобственного интеграла первого рода от значения его постоянного			
	(неособенного) предела	29		
6.2	Несобственные интегралы второго рода, их сходимость и расходимость. Независимость схо-			
	димости (расходимости) несобственного интеграла второго рода от значения его постоянного			
	(неособенного) предела	31		
6.3	Несобственные интегралы с несколькими особыми точками.	32		
6.4	Формула Ньютона-Лейбница для несобственных интегралов. Вычисление несобственных ин-			
	тегралов способами замены переменной и интегрирования по частям.	33		
6.5	Линейные свойства несобственного интеграла. Пример неинтегрируемого произведения ин-			
	тегрируемых функций	34		
6.6	Связь интеграла от функции с интегралом от ее модуля в случае их интегрируемости	35		
6.7	Критерий Коши сходимости несобственных интегралов первого и второго рода.	36		
6.8	Абсолютная и условная сходимость несобственных интегралов. Сходимость абсолютно схо-			
	дящихся несобственных интегралов.	37		
6.9	Необходимое и достаточное условие сходимости несобственных интегралов первого и второго			
	рода от неотрицательных функций	37		
6.10	Признак сравнения (в допредельной и предельной форме) для сходимости несобственных			
	интегралов первого и второго рода от неотрицательных функций	38		
6.11	Абсолютная и условная сходимость несобственных интегралов. Признаки Дирихле и Абеля			
	для сходимости несобственных интегралов первого и второго рода	40		
	6.11.1 Пример неинтегрируемости модуля интегрируемых в несобственном смысле функций.	42		
6.12	Главное значение в смысле Коши несобственных интегралов первого и второго рода и его			
	связь с величиной соответствующего несобственного интеграла	43		

6

Оглавление 3

Глава 1

Интегралы

Лекция **1**

1.1 Первообразная и неопределенный интеграл

Определение. X - промежуток f(x) определена $x \in X.F(x), x \in X$, называется первообразной к f(x), если $\forall x \in X \ \exists F'(x) = f(x)$

Определение. Множество всех первообразных к f(x) на X называется неопределенным интегралом. (об. $\int f(x)dx$, f(x) - подынтегральная функция, f(x)dx - подынтегральное выражение)

F(x)— первообразная к $f(x) \Rightarrow F(x) + C$ - тоже первообразная

 $\Phi(x)$ - первообразная к f(x) $F'(x) = f(x) = \Phi'(x)$

Рассмотрим
$$(\Phi(x) - F(x))' = \Phi'(x) - F'(x) = f(x) - f(x) = 0 \ \forall x \in X$$

$$\Phi(x) - F(x) = C = const$$
 $\Phi(x) = F(x) + C$

$$\int f(x)dx = F(x) + C, \quad d(\int (f(x)dx)) = f(x)dx; \quad \int dF(x) = F(x) + C$$

$$dF(x) = F'(x)dx = f(x)dx \qquad d(\int f(x)dx) = d(F(x) + C) = f(x)dx$$

Теорема 1.1. f(x), g(x) имеют первообразные $\Rightarrow f(x) \pm g(x)$ тоже имеют первообразные, причем $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx.$

Доказатель ство.
$$\int f(x)dx = F(x) + C_1, \int g(x)dx = G(x) + C_2.$$
 Рассмотрим $H_{\pm}(x) = F(x) \pm G(x), H'_{\pm}(x) = F'(x) \pm G'(x) = f(x) \pm g(x)$
$$\int (f(x) \pm g(x))dx = F(x) \pm G(x) + C = \int f(x)dx + \int g(x)dx$$

Теорема 1.2. f(x) имеет первообразную $\Rightarrow \forall k, k f(x)$ тоже имеет первообразную, а если $k \neq 0$, то $\int k f(x) dx = k \int f(x) dx$

Доказатель ство.
$$\int f(x)dx = F(x) + C \qquad (kF(x))' = kF'(x) = kf(x) \qquad \int kf(x)dx = kF(x) + C_1 \qquad k \int f(x)dx = k(F(x) + C) = kF(x) + kC, \quad \int kf(x)dx = kF(x) = C_1, \quad k \int f(x)dx = k(F(x) + C) = kF(x) + kC, \text{ если } k \neq 0, \text{ то } \int kf(x)dx = k \int f(x)dx \qquad \square$$

1.1.1 Таблица интегралов.

$$\begin{aligned} &1. \int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1 (\alpha = 0 \Rightarrow x^{\alpha} = 1) \\ &2. \int \frac{dx}{x} = \ln |x| + C \\ &3. \int a^{x} dx = \frac{a^{x}}{\ln a} + C \\ &4. \int \sin x dx = -\cos x + C \\ &5. \int \cos x dx = \sin x + C \\ &6. \int \frac{dx}{\cos^{2} x} = t g x + C \\ &7. \int \frac{dx}{\sin^{2} x} = -c t g x + C \\ &8. \int \sinh x dx = c h x + C \\ &9. \int \cosh x dx = \sinh x + C \\ &10. \int \frac{dx}{\cosh^{2} x} = t h x + C \\ &11. \int \frac{dx}{\sinh^{2} x} = -c t h x + C \\ &12. \int \frac{dx}{x^{2} + a^{2}} = \frac{1}{a} \arctan \frac{x}{a} + C = -\frac{1}{a} \arctan \frac{x}{a} + C, a > 0 \\ &13. \int \frac{dx}{x^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C \\ &14. \int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \arcsin \frac{x}{a} + C = -\arccos \frac{x}{a} + \tilde{C}, a > 0 \\ &15. \int \frac{dx}{\sqrt{x^{2} \pm a^{2}}} = \ln |x + \sqrt{x^{2} \pm a^{2}}| + C, a > 0 \end{aligned}$$

Лекция **2**

1.2 Способы вычисления неопределенных интегралов

1.2.1 Метод подстановки

$$\int f(u)du = F(u) + C \qquad u = \varphi(x) - \text{дифферен..} f(\varphi(x)) \text{ опр при} x \in -\text{промежуток.}$$
 Рассмотрим $F(\varphi(x)), x \in X$. $(F(\varphi(x)))_x' = F_u' \bigg|_{u = \varphi(x)} (u) * \varphi'(x) = f(u) \bigg|_{u = \varphi(x)} * \varphi'(x) = f(\varphi(x)) * \varphi'(x)$
$$\int f(\varphi(x)) dx = F(\varphi(x)) + C$$

$$\int f(\varphi(x)) \underbrace{\varphi'(x) dx}_{du} = \int f(u) du \bigg|_{u = \varphi(x)}$$

$$\int f(x) dx \bigg|_{x = \psi(t)} = \int f(\psi(t)) \psi'(t) dt \bigg|_{t = \psi^{-1}(x)}$$

Примеры.

1.

$$\int \frac{x \, dx}{x^2 + a^2} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln|u| + C$$
$$x^2 + a^2 = u, \quad 2x \, dx = du$$

2.

$$\int \sin^3 x \, dx = -\int \sin^2 x (-\sin x \, dx) = -\int (1 - u^2) \, du = -u + \frac{u^3}{3} + C = -\cos x + \frac{\cos^3 x}{3} + C$$
$$\cos x = u, \quad -\sin x \, dx = du$$

3.

$$\int \frac{dx}{\sqrt{x}(1+\sqrt[3]{x})} = \int \frac{6t^5 dt}{t^3(1+t^2)} = 6\int \frac{t^2+1-1}{1+t^2} dt = 6(t-\arctan t) + C = 6(\sqrt[6]{x} - \arctan \sqrt[6]{x}) + C$$
$$x = t^6(\sqrt[6]{x} = t), \quad dx = 6t^5 dt$$

4.

$$\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx = \int \frac{du}{u} = \ln|u| + C = \ln|\sin x| + C$$
$$\sin x = u, \quad du = \cos x \, dx$$

1.2.2 Интегрирование по частям

$$d(uv) = udv + vdu, udv = d(uv) - vdu, \quad \int udv = \int d(uv) - \int vdu; \quad \int d(uv) = uv + C$$

$$\int udv = uv - \int vdu$$

Примеры

1.

$$\int \underbrace{\ln x}_{u} \underbrace{dx}_{dv} = x \ln x - \int x \frac{dx}{x} = x \ln x - \int dx = x \ln x - x + C$$

$$u = \ln x, \quad dv = dx, \quad du = \frac{dx}{x}, \quad v = x$$

2.

$$I = \int e^x \underbrace{\cos x \, dx}_{d(\sin x)} = \int e^x d(\sin x) = e^x \sin x - \int \sin x e^x \, dx = e^x \sin x + \int e^x d(\cos x) = e^x \sin x + e^x \cos x - \underbrace{\int \cos x e^x \, dx}_{I}$$

$$I = \int e^x \cos x \, dx = \frac{1}{2} e^x (\sin x + \cos x) + C$$

3.

$$\begin{split} I &= \int \underbrace{\sqrt{x^2 + a^2}}_{u} \underbrace{dx}_{dv} = x\sqrt{x^2 + a^2} - \int x \frac{2x \, dx}{2\sqrt{x^2 + a^2}} = x\sqrt{x^2 + a^2} - \int \frac{x^2 + a^2 - a^2}{\sqrt{x^2 + a^2}} \, dx \\ &= x\sqrt{x^2 + a^2} - I + a^2 \ln\left(x + \sqrt{x^2 + a^2}\right) \\ I &= \frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2} \ln\left(x + \sqrt{x^2 + a^2}\right) + C \end{split}$$

4.

$$J_n = \int \frac{dx}{(x^2 + a^2)^n} \qquad a > 0, \quad n \in \mathbb{N}$$

$$J_n = \int \frac{1}{(x^2 + a^2)^n} dx = \frac{x}{(x^2 + a^2)^n} - \int x \frac{(-n)}{(x^2 + a^2)^{n+1}} 2x dx =$$

$$\frac{x}{(x^2 + a^2)^n} + 2n \int \frac{x^2 + a^2 - a^2}{(x^2 + a^2)^{n+1}} dx = \frac{x}{(x^2 + a^2)^n} + 2n(J_n - a^2 J_{n+1})$$

$$J_{n+1} = \frac{1}{2na^2} \left[\frac{x}{(x^2 + a^2)^n} + (2n - 1)J_n \right] \qquad n = 1, 2, 3, \dots$$

$$J_1 = \int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$J_2 = \int \frac{dx}{(x^2 + a^2)^2} = \frac{1}{2a^2} \left[\frac{x}{x^2 + a^2} + \frac{1}{a} \arctan \frac{x}{a} \right] + C, \dots$$

В качестве упражнения найти рекуррентную формулу для

$$\int \frac{dx}{(ax^2 + bx + c)^n}$$

$$\int \frac{P_m(x)}{Q_n(x)} dx \qquad \deg P_m(x) = m, \quad \deg Q_n(x) = n$$

$$m > n \quad P_m(x) = R_{m-n}(x)Q_n(x) + T_k(x), \quad k < n \quad \frac{P_m(x)}{Q_n(x)} = R_{m-n}(x) + \frac{T_k(x)}{Q_n(x)}, \quad k < n$$

$$Q_n(x) = a_0x^n + \dots + a_n = a_0(x - x_1)^{\alpha_1} \dots (x - x_l)^{\alpha_l} (x^2 + p_1x + q_1)^{\beta_1} \dots (x^2 + p_rx + q_r)^{\beta_r}$$

$$\frac{T_k(x)}{Q_n(x)} = \frac{A_1}{x - x_1} + \dots + \frac{A_{1\alpha_1}}{(x - x_1)^{\alpha_1}} + \dots + \frac{A_{\alpha_1\alpha_l}}{(x - x_l)^{\alpha_l}} + \frac{B_{11}x + C_{11}}{x^2 + p_1x + q_1} + \dots + \frac{B_{1\beta_1}x + C_{1\beta_1}}{(x^2 + p_1x + q_1)^{\beta_1}} + \dots$$

Глава 2

Определенный интеграл

Лекция **3**

2.1 Определение интеграла Римана. Существование интегрируемых функций. Необратимое условие

$$a < b$$
. Рассмотрим $[a,b]$. \cdots $a = x_0 x_1 x_2 x_2 x_1 x_k x_n = b$

$$T = \{a = x_0 < x_1 < x_2 < \dots < x_{k-1} < x_k < \dots < x_n = b\}$$
 - разбиение отрезка [a,b] Рассмотрим

$$\Delta x_k = x_k - x_{k-1}, k = 1, 2, 3, \dots, n(k = \overline{1, n})$$

$$\delta_T = \max_{1 \leqslant k \leqslant n} \max(\Delta x_k)$$
- характеристика разбиения.

$$\xi_{k} \in [x_{k-1}, x_{k}], k = \overline{1, n}, \qquad \Xi = \{\xi_{k}\}_{k=1}^{n} \qquad \qquad x_{0} \xi_{1} x_{1} \xi_{2} x_{2} \qquad x_{k-1}\xi_{k} x_{k} \qquad \xi_{n} x_{n}$$

Пусть f(x) определена на [a,b]. Рассмотрим $\sigma_T(f,\Xi)=\sum_{k=1}^n f(\xi_k)\Delta x_k$ - интегральная сумма

Определение. Говорят, что
$$\exists \lim_{\delta_T \to 0} \sigma_T(f,\Xi)$$
, если $\exists I : \forall \varepsilon > 0 \exists \delta > 0 : \forall T, \delta_T < \delta, \forall \Xi \Rightarrow |\sigma_T(f,\Xi) - I| < \varepsilon$! Свойства пределов переносятся.

Определение. f(x) называется интегрируемой (по Риману) на [a,b], если $\exists \lim_{\delta_T \to 0} \sigma_T(f,\Xi)$. Величина этого предела $(I = \lim_{\delta_T \to 0} \sigma_T(f,\Xi))$ называется определенным интегралом функции f(x) на (a,b) (интегралом Римана))

Обозначение:
$$\int_{a}^{b} f(x)dx = I$$

Примеры:

а)
$$f(x) \equiv C - const$$
 на $[a,b]; \forall T = \{a = x_0 < x_1 < \dots < x_n = b\}, \forall \Xi = \{\xi_k\}_{k=1}^n;$ $\sigma_T(f,\Xi) = \sum_{k=1}^n f(\xi_k) \Delta x_k = \sum_{k=1}^n c \Delta x_k = c \sum_{k=1}^n \Delta x_k = c((x_1-x_0) + (x_2-x_1) + \dots + (x_n-x_{n-1}) = c(x_n-x_0) = c(b-a)$ $\xrightarrow{\delta_T \to 0} c(b-a); \Rightarrow \exists \lim_{\delta_T \to 0} \sigma_T(f,\Xi) = c(b-a). \Rightarrow f(x)$ – интегрируема на $[a,b]$, причем $\int_a^b c dx = c(b-a)$

 $c(b-a)\Rightarrow$ интегрируемые функции существуют.

$$6) \ \chi(x) = \begin{cases} 1, x - \text{рац.} \\ 0, x - \text{иррац.} \end{cases}, x \in [a, b] \ (\text{функция Дирихле})$$
 Предположим, что $\exists \int\limits_a^b \chi(x) dx = I$, т.е $\forall \varepsilon > 0 \exists \delta > 0 : \forall T, \delta_T < \delta, \forall \Xi \Rightarrow |\sigma_T(\chi, \Xi) - I| < \varepsilon$ Возьмем $\Xi_1 = \{\xi_k^{(1)}\}_{k=1}^n$ — набор рац. точек
$$\sigma^{(1)} = \sigma_T(\chi, \Xi_1) = \sum_{k=1}^n \underbrace{\chi(\xi_k^{(1)})}_{=1} \Delta x_k = b - a$$
 Возьмем $\Xi_2 = \{\xi_k^2\}_{k=1}^n$ — набор иррац. точек
$$\sigma^{(2)} = \sigma_T(\chi, \Xi_2) = \sum_{k=1}^n \underbrace{\chi(\xi_k^{(1)})}_{=0} \Delta x_k = 0$$
 $b - a = |\sigma^{(1)} - \sigma^{(2)}| = |\sigma^{(1)} - I - \sigma^{(2)} + I| \leqslant \underbrace{|\sigma^{(1)} - I|}_{<\varepsilon} + \underbrace{|\sigma^{(2)} - I|}_{<\varepsilon} < \varepsilon + \varepsilon = b - a - \text{противоречие} \Rightarrow$

 $\chi(x)$ не является интегрируемой на [a,b]

Теорема 2.1 (Необходимое условие интегрируемости). f(x)-интегрируема на $[a,b] \Rightarrow f(x)$ - ограничена $\mu a [a, b]$

Доказатель ство. От противного. Предположим, что f(x) не является ограниченной на [a,b], но при этом $\exists \int_a^b f(x) dx = I, \text{ т.е } \forall \varepsilon > 0 \exists \delta > 0 : \forall T, \delta_T < \delta, \forall \Xi \Rightarrow |\sigma_T(f,\Xi) - I| < \varepsilon.$ Берем $\varepsilon = 1 \Rightarrow \exists \delta > 0 : \forall T, \delta_T < \delta, \forall \Xi \Rightarrow |\sigma_T(F,\Xi) - I| < 1$

Берем $\forall T = \{a = x_0 < \dots < x_{k-1} < x_k < \dots < x_n = b\};$

Строим $\Xi = \{\xi\}_{k=1}^n \ f(x)$ неограничена на $[a,b] \Rightarrow \exists k: f(x)$ неограничена на $[x_{k-1},x_k]$,

$$\Xi:\xi_{1},\xi_{2},\ldots,\xi_{k-1},\xi_{k+1},\ldots,\xi_{n}-\text{ произвольные}.$$
 Берем такое $\xi_{k}:|f(\xi_{k})|>\frac{1+|I|+|f(\xi_{1})|\Delta x_{1}+|f(\xi_{2})|\Delta x_{2}+\cdots+|f(\xi_{k-1})|\Delta x_{k-1}+\cdots+|f(\xi_{n})|\Delta x_{n}}{\Delta x_{k}}|$
$$|\sigma_{T}(f,\Xi)-I|\geqslant|\sigma_{T}(f,\Xi)|-|I|=|f(\xi_{1})\Delta x_{1}+\cdots+f(\xi_{k-1})\Delta x_{k-1}+f(\xi_{k})\Delta x_{k}+f(\xi_{k+1})\Delta x_{k+1}+\cdots+f(\xi_{n})\Delta x_{n}|$$

$$-|I|=|f(\xi_{k})\Delta x_{k}-(-f(\xi_{1})\Delta x_{1}-\cdots-f(\xi_{k-1})\Delta x_{k-1}-f(\xi_{k+1})\Delta x_{k+1}-\cdots-f(\xi_{n})\Delta x_{n})|-|I|\geqslant$$

$$\geqslant|f(\xi_{k})|\Delta x_{k}-|f(\xi_{1})|\Delta x_{1}-\cdots-|f(\xi_{k-1})|\Delta x_{k-1}-|f(\xi_{k+1})|\Delta x_{k+1}-\cdots-|f(\xi_{n})|\Delta x_{n}-|I|>|=\varepsilon|$$
 противоречие

2.2Суммы Дарбу и их свойства. Связь сумм Дарбу с интегральной суммой

Пусть
$$f(x)$$
 ограничена на $[a,b]$. $T = \{a = x_0 < \dots < x_n = b\}$.
$$m_k \mathop{=}_{\substack{x_{k-1} \leqslant x \leqslant x_k}} \sup (f(x));$$

$$m_k \mathop{=}_{\substack{x_{k-1} \leqslant x \leqslant x_k}} \inf (f(x)).$$

$$S_T(f) = \sum_{k=1}^n M_k \Delta x_k$$
 — верхняя сумма Дарбу.

 $s_T(f) = \sum_{k=0}^{n} m_k \Delta x_k$ — нижняя сумма Дарбу

Эти суммы не обязаны быть интегральными суммами, т.к точные грани не всегда достигаются.

$$\forall \Xi = \{\xi_k\}_{k=1}^n \Rightarrow m_k \leqslant f(\xi_k) \leqslant M_k. \qquad s_T(f) \leqslant \sigma_T(f,\Xi) \leqslant S_T(f)$$

Определение. $T_1 = \{a = x_0^{(1)} < x_1^{(1)} < \dots < x_n^{(1)} = b\}$ $T_2 = \{a = x_0^{(2)} < x_1^{(2)} < \dots < x_m^{(2)} = b\}.$ T_2 называется последующим к T_1 , если $x_k^{(1)} \in T_2 \forall k = \overline{0,n}.$ Обозначение $T_2 \succ T_1$

Теорема 2.2. Если
$$T_1 \succ T_2 \Rightarrow \begin{cases} 1) & S_{T_1}(f) \leqslant S_{T_2}(f) \\ 2) & s_{T_1}(f) \geqslant s_{T_2}(f) \end{cases}$$

$$T_2 = \{a = x_0 < x_1 < \dots < x_{k-1} < x_k < \dots < x_n < b\}.$$

 \mathcal{A} оказательство. 1) Пусть у T_1 ровно на 1 точку больше, т.е

$$T_1 = \{ a = x_0 < x_1 < \dots < x_{k-1} < \tilde{x} < x_K < \dots < x_n = b \}.$$

$$M_k = \sup_{x_{k-1} \le x \le x_k} \sup f(x), \quad M'_k = \sup_{x_{k-1} \le x \le \tilde{x}} \sup f(x) \leqslant M_k, \quad M''_k = \sup_{\tilde{x} \le x \le x_k} \sup f(x) \leqslant M_k$$

$$M_k \underset{x_{k-1} \leqslant x \leqslant x_k}{=} \sup f(x), \quad M_k' \underset{x_{k-1} \leqslant x \leqslant \tilde{x}}{=} \sup f(x) \leqslant M_k, \quad M_k'' \underset{\tilde{x} \leqslant x \leqslant x_k}{=} \sup f(x) \leqslant M_k$$
 Рассмотрим $S_{T_2}(f) - S_{T_1}(f) = M_k \Delta x_k - M_k'(\tilde{x} - x_{k-1}) - M_k''(x_k - \tilde{x}) = M_k(x_k - x_{k-1}) - M_k'(\tilde{x} - x_{k-1}) - M_k'(\tilde{x}$

$$M_{k}''(x_{k} - \tilde{x}) = M_{k}(x_{k} - \tilde{x} + \tilde{x} - x_{k-1}) - M_{k}'(\tilde{x} - x_{k-1}) = \underbrace{(M_{k} - M_{k}'')}_{\geqslant 0}\underbrace{(x_{k} - \tilde{x})}_{\geqslant 0} + \underbrace{(M_{k} - M_{k}')}_{\geqslant 0}\underbrace{(\tilde{x} - x_{k-1})}_{\geqslant 0} \geqslant 0 \Rightarrow \underbrace{(M_{k} - \tilde{x})}_{\geqslant 0} + \underbrace{(M_{k} - M_{k}')}_{\geqslant 0}\underbrace{(\tilde{x} - x_{k-1})}_{\geqslant 0} \geqslant 0 \Rightarrow \underbrace{(M_{k} - \tilde{x})}_{\geqslant 0} + \underbrace{(M_{k} - M_{k}')}_{\geqslant 0}\underbrace{(\tilde{x} - x_{k-1})}_{\geqslant 0} \Rightarrow \underbrace{(M_{k} - \tilde{x})}_{\geqslant 0} + \underbrace{(M_{k} - M_{k}')}_{\geqslant 0}\underbrace{(\tilde{x} - x_{k-1})}_{\geqslant 0} \Rightarrow \underbrace{(M_{k} - M_{k}')}_{\geqslant 0}\underbrace{(\tilde{x} - x_{k-1})}_{\geqslant 0}\underbrace{(\tilde{x} - x_{k-1})}_{\geqslant 0} \Rightarrow \underbrace{(M_{k} - M_{k}')}_{\geqslant 0}\underbrace{(\tilde{x} - x_{k-1})}_{\geqslant 0}\underbrace{(\tilde{x}$$

 $S_{T_2}(f) \geqslant S_{T_1}(f)$. Если у T_1 более, чем на одну точку больше, то делаем анало

Теорема 2.3. $\forall T_1, T_2 \Rightarrow s_{T_1}(f) \leqslant S_{T_2}(f)$

Доказатель ство. Рассмотрим
$$T_3 = T_1 \cup T_2 \Rightarrow \begin{cases} T_3 \succ T_1 \\ T_3 \succ T_2 \end{cases} \Rightarrow s_{T_1}(f) \leqslant s_{T_3}(f) \leqslant S_{T_3}(f) \leqslant S_{T_2}(f)$$

Теорема 2.4.
$$\forall T, \forall \varepsilon > 0 \exists \Xi_1, \exists \Xi_2 : \begin{cases} 0 \leqslant S_T(f) - \sigma_T(f,\Xi_1) < \varepsilon \\ 0 \leqslant \sigma_T(f,\Xi_2) - s_T(f) < \varepsilon \end{cases}$$

$$\exists \xi_k^{(1)} \in [x_{k-1}, x_k] : 0 \leqslant M_k - f(\xi_k^{(1)}) < \frac{\varepsilon}{b-a} \\ \exists \xi_k^{(2)} \in [x_{k-1}, x_k] : 0 \leqslant f(\xi_k^{(2)}) - m_k < \frac{\varepsilon}{b-a} \\ | \Delta x_k \text{ if } \sum_{k=1}^n \Rightarrow 0 \leqslant S_T(f) - \sigma_T(f, \Xi_1) < \varepsilon \\ 0 \leqslant \sigma_T(f, \Xi_2) - s_T(f) < \varepsilon \\ | \Box x_k \text{ if } \sum_{k=1}^n \sigma_T(f, \Xi_2) - \sigma_T(f) < \varepsilon \\ | \Box x_k \text{ if } \sum_{k=1}^n \sigma_T(f, \Xi_2) - \sigma_T(f) < \varepsilon \\ | \Box x_k \text{ if } \sum_{k=1}^n \sigma_T(f, \Xi_2) - \sigma_T(f) < \varepsilon \\ | \Box x_k \text{ if } \sum_{k=1}^n \sigma_T(f, \Xi_2) - \sigma_T(f) < \varepsilon \\ | \Box x_k \text{ if } \sum_{k=1}^n \sigma_T(f, \Xi_2) - \sigma_T(f) < \varepsilon \\ | \Box x_k \text{ if } \sum_{k=1}^n \sigma_T(f, \Xi_2) - \sigma_T(f) < \varepsilon \\ | \Box x_k \text{ if } \sum_{k=1}^n \sigma_T(f, \Xi_2) - \sigma_T(f) < \varepsilon \\ | \Box x_k \text{ if } \sum_{k=1}^n \sigma_T(f, \Xi_2) - \sigma_T(f, \Xi_2) - \sigma_T(f) < \varepsilon \\ | \Box x_k \text{ if } \sum_{k=1}^n \sigma_T(f, \Xi_2) - \sigma_T(f, \Xi_2) - \sigma_T(f) < \varepsilon \\ | \Box x_k \text{ if } \sum_{k=1}^n \sigma_T(f, \Xi_2) - \sigma_T(f, \Xi_2) -$$

2.3Верхний и нижний интегралы Дарбу. Критерий интегрируемости

Из теоремы
$$2.3 \Rightarrow \forall T_1, T_2$$
 $\underbrace{s_{T_1}(f)}_{\text{огр. Graphy}} \leqslant \underbrace{S_{T_2}(f)}_{\text{огр. Graphy}}$

Из теоремы $2.3\Rightarrow \forall T_1,T_2$ $\underbrace{s_{T_1}(f)}_{\text{огр. сверху}}\leqslant \underbrace{S_{T_2}(f)}_{\text{огр. снизу}}$ Рассмотрим $\bar{I}=\inf_T S_T(f)-$ верхний интеграл Дарбу. $\underline{I}=\sup_T s_T(f)-$ нижний интеграл Дарбу $s_{T_1}(f) \leqslant S_{T_2}(f)$. $\underline{\mathbf{I}} \leqslant S_{T_2}(f)$.

Теорема 2.5 (Критерий интегрируемости). f(x) интегрируема на $[a,b]\Leftrightarrow \lim_{\delta_T\to 0}(S_T(f)-s_T(f))=0$

Доказательство. $\Rightarrow f(x)$ интегрируема на $[a,b] \Rightarrow \exists \int^b f(x) dx = I$, т.е $\forall \varepsilon > 0 \exists \delta > 0 : \forall T, \delta_T < \delta \Rightarrow 0$

$$|\sigma_T(f,\Xi) - I| < rac{arepsilon}{4}, \text{ r.e } I - rac{arepsilon}{4} < \sigma_T(f,\Xi) < I + rac{arepsilon}{4}$$

Ho
$$\varepsilon > 0 \Rightarrow \exists \Xi_1, \exists \Xi_2 :$$

$$0 \leqslant S_{T}(f) - \sigma_{T}(f, \Xi_{1}) < \frac{\varepsilon}{4}$$

$$0 \leqslant S_{T}(f) - \sigma_{T}(f, \Xi_{1}) < \frac{\varepsilon}{4}$$

$$0 \leqslant \sigma_{T}(f, \Xi_{2}) - s_{T}(f) < \frac{\varepsilon}{4}$$

$$I - \frac{\varepsilon}{2} < \sigma_{T}(f, \Xi_{2}) - \frac{\varepsilon}{4} < s_{T}(f) \leqslant S_{T}(f) < \sigma_{T}(f, \Xi_{1}) + \frac{\varepsilon}{4} < I + \frac{\varepsilon}{2}$$

$$\Rightarrow 0 \leqslant S_T(f) - s_T(f) \leqslant \varepsilon \Rightarrow \lim_{\varepsilon \to 0} (S_T(f) - s_T(f)) = 0$$

$$\Rightarrow 0 \leqslant S_T(f) - s_T(f) < \varepsilon \Rightarrow \lim_{\delta_T \to 0} (S_T(f) - s_T(f)) = 0$$

$$\Leftarrow \text{ Пусть } \lim_{\delta_T \to 0} (S_T(f) - s_T(f)) = 0, \text{ T.e } \forall \varepsilon > 0 \exists \delta > 0 : \forall T, \delta_T < \delta \Rightarrow 0 \leqslant S_T(f) - s_T(f) < \varepsilon$$

Ho
$$s_T(f) \leqslant \underline{\mathbf{I}} \leqslant \overline{I} \leqslant S_T(f) \Rightarrow 0 \leqslant \overline{I} - \underline{\mathbf{I}} < \varepsilon \Rightarrow \overline{I} - \underline{\mathbf{I}} = 0 \Rightarrow \underline{\mathbf{I}} = \overline{I}.$$
Обозначим $\underline{\mathbf{I}} = \overline{I} = I \Rightarrow \begin{cases} s_T(f) \leqslant I \leqslant S_T(f) \\ \text{Но } \forall \Xi \Rightarrow s_T(f) \leqslant \sigma_T(f,\Xi) \leqslant S_T(f) \end{cases} \Rightarrow |\sigma_T(f,\Xi) - I| < \varepsilon \Rightarrow \exists \lim_{\delta_T \to 0} \sigma_T(f,\Xi) = I \Rightarrow f(x)$ — интегрируема на $[a,b]$

Следствие 1. f(x) интегрируема на $[a,b]\Rightarrow \lim_{\delta_T\to 0} s_T(f) = \lim_{\delta_T\to 0} S_T(f) = I(\exists \int_a^b f(x)dx = I)$

Доказатель ство.
$$f(x)$$
 инт на $[a,b]$ \Rightarrow
$$(S_T)(f) - s_T(f)) = 0$$
 $\Rightarrow 0 \leqslant S_T(f) - I \leqslant S_T(f) - I \leqslant S_T(f) - I \leqslant S_T(f)$

Лекция 4 11.02

2.4Интегрируемость непрерывной функции. Интегрируемость монотонной функции

Теорема 2.6. $f(x) \in C[a,b] \Rightarrow f(x)$ интегрируема на [a,b]

 \mathcal{A} оказатель ство. $f(x) \in C[a,b] \underset{\text{т.Кантора}}{\Rightarrow} f(x)$ равномерно непрерывна на [a,b], т.е. $\forall \varepsilon > 0 \exists \delta > 0 \forall x', x'' \in \mathcal{A}$ $[a,b]:|x'-x''|<\delta\Rightarrow |f(x')-f(x'')|<\frac{\varepsilon}{b-a}$

$$[a,b]: |x'-x''| < \delta \Rightarrow |f(x')-f(x'')| < \frac{\varepsilon}{b-a}.$$

$$\text{Берем } \forall T = \{a = x_0 < x_1 < \dots < x_n = b\}. \quad \delta_T < \delta;$$

$$f(x) \in C[x_{k-1}, x_k] \underset{\text{т. Вейрштрасса}}{\Rightarrow} \exists x_k', x_k'' \in [x_{k-1}, x_k] : m_k \underset{x_{k-1} \leqslant x \leqslant x_k}{=} \inf(f(x)) = f(x_k'')$$

 $|x_k' - x_k''| \leqslant \Delta x_k \leqslant \delta_t \Rightarrow |M_k - m_k| < \frac{\varepsilon}{h - a}$

$$0\leqslant M_k-m_k\leqslant \frac{\varepsilon}{b-a}\left|\Delta x_k\text{ и }\sum_{k=1}^n\Rightarrow 0\leqslant S_T(f)-s_T(f)<\varepsilon\Rightarrow \lim_{\delta_T\to 0}(S_T(f)-s_T(f))=0\underset{\text{кр. инт.}}{\Rightarrow}f(x)\text{ интегрируема на }[a,b]\right|$$

Теорема 2.7. f(x) монотонна на [a,b] (не имеет значения, что из себя представляет множество точек разрыва) = f(x) интегрируема на [a,b]

Доказатель ство. Пусть f(x) монотонно возрастает на $[a,b] \Rightarrow f(a) \leqslant f(x) \leqslant f(b) \forall x \in [a,b] \Rightarrow f(x)$ ограничена на [a,b].

$$\text{Берем } \forall T = \{a = x_0 < x_1 < \dots < x_n = b\} \qquad f(x_{k-1}) \leqslant f(x) \leqslant f(x_k) \\ \forall x \in [x_{k-1}, x_k] \Rightarrow \begin{cases} M_k & = \sup_{x_{k-1} \leqslant x \leqslant x_k} \sup f(x) = f(x_k) \\ m_k & = \inf_{x_{k-1} \leqslant x \leqslant x_k} \sup f(x) = f(x_{k-1}) \end{cases}$$

$$0 \leqslant S_T(f) - s_T(f) = \sum_{k=1}^n (M_k - m_k) \Delta x_k \leqslant \delta_T \sum_{k=1}^n (M_k - m_k) = \delta_T \sum_{k=1}^n (f(x_k) - f(x_{k-1})) = \delta_T (f(b) - f(a)) \underset{\delta_T \to 0}{\to} 0$$

$$0 \Rightarrow \lim_{\delta_T \to 0} (S_T(f) - s_T(f)) = 0 \Rightarrow \text{критерий инт.} f(x) \text{ интегрируема на } [a, b]$$

Пример.
$$f(x) = \begin{cases} \frac{1}{k}, x \in \left(\frac{1}{k+1}, \frac{1}{k}\right], k \in \mathbb{N} \\ 0, x = 0 \end{cases}$$

У f(x) ∞ -но много точек разрыва на $[a,b]: x=\frac{1}{k}, k=2,3,4,\cdots$ — точки разрыва 1-го рода f(x) монотонно возрастает на $[0,1] \Rightarrow f(x)$ интегрируема на [0,1]

2.5Интегрируемость функции, отличающейся от интегрируемой в конечном количестве точек

Теорема 2.8. Пусть
$$f(x)$$
 интегрируема на $[a,b]\Rightarrow \tilde{f}(x)= \begin{cases} A, x=\tilde{x}\in [a,b]\\ f(x), x\in [a,b]\backslash \{\tilde{x}\} \end{cases}$ тоже интегрируема на $[a,b]$, причем $\int\limits_{a}^{b} f(x)dx=\int\limits_{a}^{b} \tilde{f}(x)dx$

1) ограничена на [a,b], т.е $\exists M>0: |f(x)|\leqslant M \forall x\in [a,b]$

Доказательство.
$$f(x)$$
 интегрируема на $[a,b]\Rightarrow f(x)$
$$2)\lim_{\delta_T\to 0}S_T(f)=\int\limits_a^bf(x)dx=I, \text{ т.e.}$$

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall T : \delta_T < \delta \Rightarrow |S_T(f) - I| < \frac{\varepsilon}{2}.$$

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall T : \delta_T < \delta \Rightarrow |S_T(f) - I| < \frac{\varepsilon}{2}.$$

 Bepem $\delta_2 = \frac{\varepsilon}{4(M + |A|)} > 0 \Rightarrow \exists \delta = \min(\delta_1, \delta_2) > 0.$ Bepem $\forall T = \{a = x_0 < x_1 < \dots < x_n = b\} : \delta_T < \delta;$

$$M_k = \sup f(x)$$

$$\tilde{M}_k = \sup \tilde{f}(x), \quad k = \overline{1, n}$$
Рассмотрим $|S_T(f) - S_T(\tilde{f})| = \left| \sum_{k=1}^n (M_k - \tilde{M}_k \Delta x_k) \right| \leqslant \delta_T * 2(M + |A|) < \delta_T$

$$< 2\delta(M + |A|) \le 2\delta_2(M + |A|) = \frac{\varepsilon}{2}$$

Рассмотрим
$$|S_T(\tilde{f}) - I| = |S_T(\tilde{f}) - S_T(f) + S_T(f) - I| \le \underbrace{|S_T(\tilde{f}) - S_T(f)|}_{<\frac{\varepsilon}{\delta}} + \underbrace{|S_T(f) - I|}_{<\frac{\varepsilon}{\delta}} < \varepsilon$$
, т.е $\lim_{\delta_T \to 0} (S_T(f) - I)$

$$I) = 0 \Rightarrow \lim_{\delta_T \to 0} S(\tilde{f}) = I$$

Аналогично:
$$\lim_{\delta_T \to 0} s_T(\tilde{f}) = I \Rightarrow \lim_{\delta_T \to 0} (S_T(\tilde{f}) - s_T(\tilde{f})) = 0 \Rightarrow_{\text{кр. инт.}} \tilde{f}(x)$$
 интегрируема на $[a, b]$.

$$\text{T.K } \int \tilde{f}(x)dx = \lim_{\delta_T \to 0} S_T(f) = \lim_{\delta_T \to 0} S_T(\tilde{f}) \Rightarrow \lim_{\delta_T \to 0} (S_T(\tilde{f})) = \int_a^b \tilde{f}(x)dx = \sum_a^b \tilde{f}(x)dx = \int_a^b \tilde{f}(x)dx = \sum_a^b \tilde$$

Следствие 1. f(x) интегрируема на $[a,b]\Rightarrow \tilde{f}(x)$, отличающася от f(x) в конечном количестве точек, тоже интегрируема на [a,b],причем $\int\limits_{-\infty}^{\sigma}f(x)dx=\int\limits_{-\infty}^{\sigma}\tilde{f}(x)dx$

Доказательство. Применим последнюю теорему надлежащее число раз.

Пример. $\chi(x) = \begin{cases} 1, x - \text{рац.} \\ 0, x - \text{иррац.} \end{cases}$ отличающаяся от $f_0(x) \equiv 0$ на [a,b] в счетном количество точек, но при

этом $\chi(x)$ не является интегрируемой на [a,b], а $f_0(x)$ - является.

Теорема 2.9 (Критерий Лебега). Пусть f(x) ограничена на [a,b], а R(f)— множество ее точек разрыва f(x) на [a,b], тогда f(x) интегрируема по Риману на $[a,b] \Leftrightarrow R(f)$ имеет меру нуль, т.е $\forall \varepsilon >$ $0\exists \{\alpha_i,\beta_i\}_{i=1}^\infty: R(f)\subset \cup_{i=1}^\infty(\alpha_i,\beta_i), \ npu \ {\it этом} \ \sup_m \sum_{i=1}^m (\beta_i-\alpha_i)< arepsilon$

Доказательство. Без доказательства.

Глава 3

Свойства определенного интеграла

Лекция 4

3.1 Линейные свойства определенного интеграла

Определение. Если f(x) определена при x=a, то положим $\int^a f(x) dx \equiv 0$

Определение. Если a < b, а еще f(x) интегрируема на [a,b], то положим $\int\limits_{a}^{a} f(x) dx \equiv -\int\limits_{a}^{b} f(x) dx$

Теорема 3.1. Если f(x), g(x) интегрируемы на $[a,b], \ f(x) \pm g(x)$ тоже интегрируема на [a,b], причем $\int\limits_a^b (f(x) \pm g(x) dx) = \int\limits_a^b f(x) dx \pm \int\limits_a^b g(x) dx$

Доказательство. Если a=b, то доказывать нечего: $0=0\pm0$.

Если a < b, то: Берем $\forall T = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}$; Берем $\forall \Xi = \{\xi_k\}_{k=1}^n$, тогда: рассмотрим $\sigma_T(f \pm g, \Xi) = \sum_{k=1}^n (f(\xi_k) \pm g(\xi_k)) \Delta x_k = \sum_{k=1}^n f(\xi_k) \Delta x_k \pm \sum_{k=1}^n g(\xi_k) \Delta x_k = \sigma_T(f, \Xi) \pm \sigma_T(g, \Xi) \rightarrow I_1 + I_2$, т.е

$$\int_{a}^{b} (f(x) \pm g(x))dx = \int_{a}^{b} f(x)dx \pm \int_{a}^{b} g(x)dx$$

Если $a > b \Rightarrow \int_{b}^{a} (f(x) \pm g(x)) dx = \int_{b}^{a} f(x) dx \pm \int_{b}^{a} g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$

Теорема 3.2. f(x) интегрируема на $[a,b]\Rightarrow \forall c\in\mathbb{R}\quad c\in f(x)$ интегрируема на [a,b],причем $\int\limits_{-b}^{b}cf(x)dx=$

$$c\int_{a}^{b}f(x)dx$$

Доказательство. Самостоятельно.

3.2 Интегрируемость произведения интегрируемых по Риману функций

Теорема 3.3. Если f(x), g(x) интегрируемы на $[a,b] \Rightarrow f(x)g(x)$ тоже интегрируема на [a,b]

Доказатель ство. Пусть
$$a < b.$$
 $f(x), g(x)$ интегрируемы на $[a,b] \Rightarrow f(x), g(x)$ — ограничены на $[a,b]$, т.е $\exists M^{(f)} > 0, M^{(g)} > 0: \begin{cases} |f(x)| \leqslant M^{(f)} \forall x \in [a,b] \\ |g(x)| \leqslant M^{(g)} \forall x \in [a,b] \end{cases}$. Берем $\forall T = \{a = x_0 < x_1 < \dots < x_n = b\}$; Введем $M_k^{(f)} = \sup_{x_{k-1} \leqslant x \leqslant x_k} f(x)$ $M_k^{(g)} = \sup_{x_k = 1} g(x)$ $M_k^{(fg)} = \sup_{x_k = 1} f(x) = \sup_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_k = 1} f(x) = \sup_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_k = 1} f(x) = \sup_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_k = 1} f(x) = \sup_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_k = 1} f(x) = \sup_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_k = 1} f(x)$ $M_k^{(fg)} = \inf_{x_$

Лекция 5 14.02

3.3 Интегрируемость функции на внутреннем отрезке. Аддитивность определенного интеграла

Теорема 3.4. f(x) интегрируема на $[a,b] \Rightarrow \forall [c,d] \subset [a,b] f(x)$ интегрируема на [a,b]

 \mathcal{A} оказательство. f(x) интегрируема на $[a,b] \Rightarrow \lim_{\delta_T \to 0} (S_T(f,[a,b]) - s_T(f,[a,b])) \Rightarrow \text{ т.е } \forall \varepsilon > 0 \exists \delta > 0 :$ $\forall T, \delta_T < \delta \rightarrow 0 \leqslant S_T(f, [a, b]) - s_T(f, [a, b]) < \varepsilon$

Берем $\forall \tau$ — разбиение [c,d]. Дополним его до T (разбиение [a,b]). Считаем, что $a\leqslant c< d\leqslant b$;

$$T|_{[c,d]} = \tau; \delta_T < \delta$$

Рассмотрим
$$0 \leqslant S_T(f,[c,d]) - s_T(f,[c,d]) \leqslant S_T(f,[a,b]) - s_T(f,[a,b]) < \varepsilon$$
, т.е $\lim_{\delta_T \to 0} (S_T(f,[c,d]) - s_T(f,[c,d])) = 0 \Rightarrow f(x)$ интегрируема на $[c,d]$

Теорема 3.5. f(x) интегрируема на [a,b] и интегрируема на $[b,c] \Rightarrow f(x)$ интегрируема на [a,c], причем

$$\int_{a}^{c} f(x) = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

Доказательство. $\exists \int\limits_a^b f(x)dx = I_1, \\ \exists \int\limits_a^c f(x)dx = I_2$ \Rightarrow Пусть $a < b < c: \quad f(x)$ ограничена на [a,b] и ограничена на [b,c] \Rightarrow

f(x) ограничена на $[a,c] \Rightarrow \exists m,M: m \leqslant f(x) \leqslant M \forall x \in [a,c]$

$$\lim_{\delta_{\tau_1} \to 0} S_{\tau_1}(f,[a,b]) = I_1, \quad \Rightarrow \forall \varepsilon > 0 \\ \exists \delta_1 > 0 : \forall \tau_1 \\ \text{(разбиение } [a,b]), \\ \delta_{\tau_1} < \delta_1 \Rightarrow |S_{\tau_1}(f,[a,b]) - I_1| < \frac{\varepsilon}{3}$$

$$\lim_{\delta_{\tau_2} \to 0} S_{\tau_2}(f,[b,c]) = I_2 \qquad \Rightarrow \forall \varepsilon > 0 \\ \exists \delta_2 > 0 \\ (\text{разбиение } [b,c]), \delta_{\tau_2} < \delta_2 \Rightarrow |S_{\tau_2}(f,[b,c]) - I_2| < \frac{\varepsilon}{3}$$

$$x_n = c$$
 $\Rightarrow \exists k : b \in [x_{k-1}, x_k]$ $M_k = \sup f(x), M'_k = \sup_{x_{k-1} \le x \le b} \sup f(x), M''_k = \sup_{b \le x \le x_k} \sup f(x).$

Рассмотрим $T_1 = T \cup b \Rightarrow \delta_{T_1} \leqslant \delta_T < \delta$

$$|S_{T}(f,[a,c]) - (I_{1} + I_{2})| = |S_{T}(f,[a,c]) - S_{T_{1}}(f,[a,c]) + S_{T_{1}}(f,[a,c]) - (I_{1} + I_{2})| \leq |S_{T}(f,[a,c]) - S_{T_{1}}(f,[a,c])| + |S_{T_{1}}(f,[a,c]) - I_{1} - I_{2}| = \underbrace{|M_{k}(x_{k} - x_{k-1}) - M'_{k}(b - x_{k-1}) - M''_{k}(x_{k} - b)|}_{(M_{k} - M''_{k})(x_{k} - b) + (M_{k} - M'_{k})(b - x_{k-1}) \leq (M - m)(x_{k} - x_{k-1}) \leq (M - m)\delta_{T} < \delta(M - m) \leq \delta_{3}(M - m)} + |S_{T_{1}}(f,[a,c]) - S_{T_{1}}(f,[a,c]) + |S_{T_{1}}(f,[a,c]) - S_{T_{1}}(f,[a,c]) - |S_{T_{1}}(f,[a,c]) - |S_{T_{1}}(f,[a,c])$$

$$(M_k - M_L'')(x_k - b) + (M_k - M_L')(b - x_{k-1}) \leq (M - m)(x_k - x_{k-1}) \leq (M - m)\delta_T < \delta(M - m) \leq \delta_3(M - m)$$

 $S_{\tau_2}(f, [b, c]) - I_1 - I_2 | \leqslant$

$$\leq (M - m)\delta_3 + |S_{\tau_1}(f, [a, b] - I_1)| + |S_{\tau_2}(f, [b, c]) - I_2| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \Rightarrow \lim_{\delta_T \to 0} (S_T(f, [a, c]) - I_1 - I_2) = 0 = \lim_{\delta_T \to 0} (S_T(f, [a, c])) = I_1 + I_2 \Leftrightarrow$$

Аналогично (самостоятельно) $\lim_{\delta_T \to 0} s_T(f,[a,c]) = I_1 + I_2$

$$I_1 + I_2$$
 $\Rightarrow \int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx$

Теперь пусть $a < c < b \stackrel{a}{\underset{{}_{\rm T^2}}{\Rightarrow}} f(x)$ интегрируема на $[a,c] \Rightarrow \,$ работает только что рассмотренный случай $\,\Rightarrow\,$

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \Rightarrow \int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f$$

3.4 Монотонность определенного интеграла. Строгая монотонноость определенного интеграла от непрерывной функции

Теорема 3.6.
$$\int_{a}^{b} 1 dx = b - a$$

Доказательство. Самостоятельно.

Теорема 3.7. Пусть $a\leqslant b, f(x)$ интегрируема на $[a,b], f(x)\geqslant 0$ на $[a,b]\Rightarrow \int f(x)dx\geqslant 0$

Доказательство. 1) a = b - очевидно.

2)
$$a < b \Rightarrow \exists \int_{a}^{b} f(x)dx = I \geqslant S_{T}(f) = \sum_{k=1}^{n} m_{k} \Delta x_{k} \geqslant 0$$

Теорема 3.8. $a\leqslant b; f(x)$ и g(x) интегрируемы на [a,b], причем $f(x)\geqslant g(x)x\in [a,b]\Rightarrow$ $\Rightarrow \int f(x)dx \geqslant \int g(x)dx$

Доказательство. Самостоятельно.

Теорема 3.9. $f(x) \in C[a,b](a < b), f(x) \geqslant 0 \forall x \in [a,b], \ \textit{причем } f(x) \not\equiv 0 \ \textit{на } [a,b] \Rightarrow \int\limits_{-\infty}^{\infty} f(x) dx > 0$

Доказатель ство.
$$\exists \xi \in (a,b): f(\xi) = A > 0$$
 \Longrightarrow $\exists \delta > 0: \forall x \in (\xi - \delta, \xi + \delta) f(x) > \frac{A}{2}$ Рассмотрим $\int\limits_a^b f(x) = \int\limits_{\geqslant 0}^{\xi - \delta} f(x) dx + \int\limits_{\xi - \delta}^{\xi + \delta} f(x) dx + \int\limits_{\xi + \delta}^b f(x) dx \geqslant 0 + \frac{A}{2} 2\delta + 0 = A + \delta \geqslant 0$

Теорема 3.10. $f(x), g(x) \in C[a,b] (a < b); f(x) \geqslant g(x) \forall x \in [a,b], \ \textit{причем } f(x) \not\equiv g(x) \ \textit{на } [a,b] \Rightarrow \int\limits_{-\infty}^{\infty} f(x) dx > b = 0$

$$\int_{a}^{b} g(x)dx$$

Доказательство. Самостоятельно.

3.5 Интегрируемость модуля интегрируемых по Риману функций. Связь интеграла от функции с интегралом от ее модуля

Теорема 3.11. f(x) интегрируема на $[a,b] \Rightarrow |f(x)|$ тоже интегрируема на [a,b], причем $\left|\int\limits_{a}^{b} f(x)dx\right| \leqslant \left|\int\limits_{a}^{b} |f(x)|dx\right|.$

Доказательство. 1) Если $a=b\Rightarrow 0\leqslant 0\Rightarrow$ доказывать нечего.

2) Если a < b, то : f(x) интегрируема на $[a,b] \underset{\text{кр. инт.}}{\Rightarrow} \lim_{\delta_T \to 0} (S_T(f) - s_T(f)) = 0$, т.е $\varepsilon > 0 \exists \delta > 0 : \forall T, \delta_T < \delta \Rightarrow 0 \leqslant S_T(f) - s_T(f) < \varepsilon$

Берем $\forall T = \{a = x_0 < x_1 < \dots < x_n = b\}, \delta_T < \delta$

$$M_{k} \underset{x_{k-1} \leqslant x \leqslant x_{k}}{=} \sup f(x) \qquad \qquad M'_{k} \underset{x_{k-1} \leqslant x \leqslant x_{k}}{=} \sup |f(x|)$$

$$m_{k} \underset{x_{k-1} \leqslant x \leqslant x_{k}}{=} \inf f(x) \qquad \qquad m'_{k} \underset{x_{k-1} \leqslant x \leqslant x_{k}}{=} \inf |f(x)|$$

а)
$$0\leqslant m_k\leqslant M_k\Rightarrow f(x)\geqslant 0$$
 на $[x_{k-1},x_k\Rightarrow|f(x)|=f(x)$ на $[x_{k-1},x_k]\Rightarrow m_k'=m_k,M_k'=M_k\Rightarrow M_k'-m_k'=M_k-m_k$

б)
$$m_k \leqslant M_k \leqslant 0 \Rightarrow f(x) \leqslant 0$$
 на $[x_{k-1}, x_k] \Rightarrow |f(x)| = -f(x)$ на $[x_{k-1}, x_k], M_k' = -m_k, m_k' = -M_k \Rightarrow M_k' - m_k' = M_k - m_k$

в)
$$m_k \leqslant 0 \leqslant M_k \Rightarrow M_k' = \max(m_k, -m_k) \Rightarrow M_k' - m_K' \leqslant M_k' \leqslant M_k - m_k \Rightarrow$$
 в любом случае $0 \leqslant M_k' - m_k' \leqslant M_k - m_k | \Delta x_k$ и $\sum_{k=1}^n \Rightarrow 0 \leqslant S_T(|f|) - s_T(|f|) \leqslant S_T(f) - s_T(f) < \varepsilon \Rightarrow \lim_{\delta_T \to 0} (S_T(|f|) - s_T(|f|)) = 0 \Rightarrow |f(x)|$ интегрируема на $[a, b]$.

$$-|f(x)|\leqslant f(x)\leqslant |f(x)| \quad \forall x\in [a,b]\Rightarrow -\int_a^b|f(x)|dx\leqslant \int_a^b f(x)dx\leqslant \int_a^b|f(x)|dx\Rightarrow$$

$$\Rightarrow \left|\int_a^b f(x)dx\right|\leqslant \int_a^b|f(x)|dx$$
 Если $a>b\Rightarrow \left|\int_a^b f(x)dx\right|\leqslant \left|\int_a^b|f(x)|dx\right|$

3.6 Неравенство Коши-Буняковского для определенных интегралов. Теорема о среднем и ее обобщение

Теорема 3.12 (Неравенство Коши-Буняковского). f(x), g(x) интегрируемы на $[a,b] \Rightarrow$

$$\Rightarrow \left[\int_{a}^{b} f(x)g(x)dx\right]^{2} \leqslant \left[\int_{a}^{b} f^{2}(x)dx\right] \left[\int_{a}^{b} g^{2}(x)dx\right]$$

Доказательство. Пусть a < b.

Рассмотрим
$$\varphi(\lambda) = \int_a^b (\lambda f(x) + g(x))^2 = \lambda^2 \int_{\underline{a}}^b f^2(x) dx + 2\lambda \int_{\underline{a}}^b f(x) g(x) dx + \int_{\underline{a}}^b g^2(x) dx = A\lambda^2 + 2B\lambda + C$$

Если $A = 0 \Rightarrow B = 0 \Rightarrow B^2 \leqslant AC$

Если
$$A\geqslant 0\Rightarrow B^2-AC\leqslant 0,$$
 т.е $B^2\leqslant AC\Rightarrow \left[\int\limits_a^bf(x)g(x)dx\right]\leqslant \left(\int\limits_a^bf^2(x)dx\right)\left(\int\limits_a^bg^2(x)dx\right)$ Если $a=b\Rightarrow$ верно Если $a>b\Rightarrow$ верно

Теорема 3.13 (1-ая теорема о среднем). f(x), g(x) интегрируемы на $[a,b]; m = \inf_{[a,b]} f(x), M = \sup_{[a,b]} f(x),$

$$g(x) \geqslant 0 \ \forall x \in [a,b] \Rightarrow \exists \mu \in [m,M]: \int_a^b f(x)g(x)dx = \mu \int_a^b g(x)dx$$

Доказательство. a < b. Пусть $g(x) \geqslant 0$ на [a, b].

$$m \leqslant f(x) \leqslant M \quad \forall x \in [a, b]$$

$$mg(x) \leqslant f(x)g(x) \leqslant Mg(x) \Rightarrow m \int_{a}^{b} g(x)dx \leqslant \int_{a}^{b} f(x)g(x)dx \leqslant M \int_{a}^{b} g(x)dx$$

1) Если
$$\int\limits_a^b g(x)dx=0\Rightarrow \int\limits_a^b f(x)g(x)dx=0\Rightarrow \,\,$$
 утверждение верно $\forall \mu \in [m,M]$

2) Если
$$\int_a^b g(x)dx > 0 \Rightarrow m \leqslant \underbrace{\int_a^b f(x)g(x)dx}_{b} \leqslant M \Rightarrow \int_a^b f(x)g(x)dx = \mu \int_a^b g(x)dx$$

Если $g(x) \leqslant 0$ на [a,b], то рассмотрим $\tilde{g}(x) = -g(x) \geqslant 0$ на [a,b].

Если $a \geqslant b \Rightarrow$ самостоятельно.

Следствие 1. Если в условиях предыдущей теоремы $f(x) \in C[a,b] \Rightarrow \exists \xi \in [a,b]: \int\limits_a^b f(x)g(x)dx = f(\xi) \int\limits_a^b g(x)dx$

Доказательство. По теореме Вейрештрасса: $\exists \alpha, \beta \in [a,b]: f(\alpha) = m \quad f(\beta) = M \qquad \mu \in [m,M] \underset{\text{т.Коши}}{\Rightarrow}$ $\exists \mu \in [\alpha,\beta] \subset [a,b]: f(\xi) = \mu$

Следствие 2. Если f(x) интегрируема на $[a,b], m = \inf_{a \leqslant x \leqslant b} \inf f(x), \ M = \sup_{a \leqslant x \leqslant b} \sup f(x) \Rightarrow \exists \mu \in [m,M]$:

$$\int\limits_a^b f(x)dx = \mu(b-a). \ \ A \ \ \text{ecau euge} \ \ f(x) \in C[a,b] \Rightarrow \exists \xi \in [a,b]: \int\limits_a^b f(x)dx = f(\xi)(b-a)$$

Доказательство. Самостоятельно.

Глава 4

Основные правила интегрирования.

Лекция **6**

4.1 Интеграл с переменным верхним (нижним) пределом, его непрерывность и дифференцируемость. Существование первообразной у непрерывной функции. Формула Ньютона-Лейбница.

Определение. Пусть f(x) — интегрируема на [a,b]. Рассмотрим функции F(x) и G(x), определенные на

$$F(x) = \int\limits_{a}^{b} f(t)dt$$
 — интеграл с переменный верхним пределом

отрезке [a,b]:

$$G(x) = \int\limits_{x}^{b} f(t) dt$$
 — интеграл с переменным нижним пределом

$$F(x)+G(x)=\int\limits_{-}^{b}f(t)dt\equiv const$$
 на $[a,b]$

Теорема 4.1. $\stackrel{a}{f}(x)$ интегрируема на $[a,b] \Rightarrow F(x) \in C[a,b]$

Доказатель ство. По Т1 $\exists M>0: |f(x)|\leqslant M \ \forall x\in[a,b].$ Берем $\forall x_0\in[a,b]$ и $\Delta x:x_0+\Delta x\in[a,b].$ Тогда рассмотрим $|F(x_0+\Delta x)-F(x_0)|=\left|\int\limits_a^{x_0+\Delta x}f(t)dt-\int\limits_a^{x_0}f(t)dt\right|=\left|\int\limits_{x_0}^{x_0+\Delta x}f(t)dt\right|\leqslant\left|\int\limits_{x_0}^{x_0+\Delta x}|f(t)|dt\right|\leqslant M|\Delta x|\underset{\Delta x\to 0}{\to}0$ $0\Rightarrow\lim_{\Delta x\to 0}(F(x_0+\Delta x)-F(x_0))=0, \ \text{ т.e. }\lim_{\Delta x\to 0}F(x_0+\Delta x)=F(x_0)\Rightarrow F(x)$ непрерывна при $x=x_0.$ Но x_0 - любое из $[a,b]\Rightarrow F(x)\in C[a,b]$

Теорема 4.2. f(x) интегрируема на [a,b], а также f(x) непрерывна при $x=x_0 \Rightarrow \exists F'(x_0)=f(x_0)$ (на концах односторонние производные)

Доказатель ство. f(t) непрерывна при $t=x_0\Rightarrow \forall \varepsilon>0 \exists \delta>0: \forall t\in (x_0-\delta,x_0+\delta)\cap [a,b]\Rightarrow |f(t)-f(x_0)|< \frac{\varepsilon}{2}$

Берем
$$\Delta x: \Delta x \in (-\delta, \delta) \setminus \{0\}, x_0 + \Delta x \in [a, b].$$
 Рассмотрим $\left| \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} - f(x_0) \right| = 0$

$$= \left| \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(t)dt - \frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(x_0)dt \right| = \left| \int_{x_0}^{x_0 + \Delta x} \frac{f(t) - f(x_0)}{\Delta x} dt \right| \le \left| \int_{x_0}^{x_0 + \Delta x} \frac{|f(t)| - |f(x_0)|}{|\Delta x|} dt \right| \le \frac{\varepsilon}{2} \frac{1}{|\Delta x|} |\Delta x| = \varepsilon$$

$$\frac{\varepsilon}{2} < \varepsilon, \text{ T.e } \lim_{\Delta x \to 0} \frac{F(x_0 + \Delta x) - F(x_0)}{\Delta x} = F(x_0), \text{ T.e } \exists F'(x_0) = f(x_0)$$

Теорема 4.3. $f(x) \in C[a,b] \Rightarrow \exists$ первообразная κ f(x) на [a,b]

Доказатель ство.
$$F(x) = \int\limits_a^x f(t)dt \Rightarrow \forall x \in [a,b] \exists F'(x) = f(x)$$
, т.е $F(x)$ — первообразная к $f(x)$ на $[a,b]$ \square

Теорема 4.4 (Основная теорема интегрального исчисления). $f(x) \in C[a,b], \Phi(x)-$ первообразная κ f(x) на $[a,b] \Rightarrow \int_a^b f(x) dx = \Phi(x) \Big|_a^b = \Phi(b) - \Phi(a)$ (Формула Ньютона-Лейбница)

$$arPhi(x)+C$$
, the $\int\limits_{a}^{x}f(t)dt=arPhi(x)+C$

при
$$x=a\Rightarrow C=-\varPhi(a)\Rightarrow\int\limits_a^xf(t)dt=\varPhi(x)-\varPhi(a).$$
 При $x=b\Rightarrow\int\limits_a^xf(t)dt=\varPhi(b)-\varPhi(a)$

Для G(x) справедливы теоремы аналогичные Т4.1 Т4.2 Т4.3

4.2 Вычисление определенных интегралов способами замены переменных и интегрирования по частям.

значений
$$\varphi(t)$$
 на $[a,b]\Rightarrow\int\limits_a^bf(x)dx=\int\limits_\alpha^\beta f(\varphi(t))\varphi'(t)dt$

Доказательство. По Т
$$3.16\Rightarrow\exists \varPhi(x)$$
 — первообразная к $f(x)$ на $[a,b]$, причем $\int\limits_a^b f(x)dx=\varPhi(b)-\varPhi(a)$.

Рассмотрим сложную функцию $\Phi(\varphi(t))$ — дифференцируема на [a,b] (по т. о дифф сложной функции)

$$\left.\frac{d}{dt}(\varPhi(\varphi(t)))=\varPhi_x'(x)\right|_{x=\varphi(t)}*\varphi_t'(t)=f(\varphi(t))\varphi'(t)\;\forall t\in[a,b]\Rightarrow\varPhi(\varphi(t))-\text{первообразная к}\underbrace{f(\varphi(t))\varphi'(t)}_{\in C[a,b]}\text{ на }[a,b]\Rightarrow$$

$$\int_{a}^{b} f(\varphi(t))\varphi'(t)dt = \Phi(\varphi(t))\Big|_{t=\alpha}^{t=\beta} = \Phi(\varphi(\beta)) - \Phi(\varphi(\alpha)) = \Phi(b) - \Phi(a) = \int_{a}^{b} f(x)dx \qquad \Box$$

Теорема 4.6.
$$u(x), v(x) : u'(x), v'(x) \in C[a,b] \Rightarrow \int_a^b u(x)v'(x)dx = (u(x)v(x))\Big|_a^b - \int_a^b v(x)u'(x)dx$$

Доказатель ство. $\frac{d}{dx}(u(x)v(x)) = u'(x)v(x) + u(x)v'(x) \ \forall x \in [a,b] \Rightarrow u(x)v(x) - \text{первообразная к} \underbrace{u'(x)v(x) + u(x)v'(x)}_{\in C[a,b]}$

на
$$[a,b] \underset{\text{линейность}}{\Rightarrow} \int\limits_a^b u(x)v'(x)dx + \int\limits_a^b u'(x)v(x)dx = \int\limits_a^b (u(x)v'(x) + u'(x)v(x))dx = [u(x)v(x)]\bigg|_a^b$$

Пусть $f(x): f^{(n+1)}(x)$ непрерывна в некоторой окрестности точки $x=x_0$, тогда $\forall x$ из этой окрестности имеет место: $f(x)=f(x_0)+(f(x)-f(x_0))=f(x_0)+\int\limits_{x_0}^x f'(t)dt=f(x_0)-\int\limits_{x_0}^x f'(t)d(x-t)=f(x_0)-\int\limits_{x_0}^x f'(t)dt=f(x_0)+\int\limits_{x_0}^x f'(t)dt=f(x_0)+\int\limits_{x_0}^x f'(t)dt=f(x_0)+\int\limits_{x_0}^x f'(t)dt=f(x_0)+\int\limits_{x_0}^x f''(t)dt=f(x_0)+\int\limits_{x_0}^x f''(t)dt=f(x_0)+$

Итого:

$$f(x) = f(x_0) + rac{f'(x_0)}{1!}(x - x_0) + rac{f''(x_0)}{2!}(x - x_0)^2 + \dots + rac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x, f),$$
 где $r_n(x, f) = rac{1}{n!} \int\limits_{x_0}^x (x - t)^n f^{(n+1)}(t) dt$

- формула Тейлора с остаточным членом в интегральной форме

$$r_n(x,f) = \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt$$
. На $[x_0,x]$ $(x-t)^n$ не меняет знак, а $f^{(n+1)}(t) \in C[x_0,x] \Rightarrow \frac{1}{n!} \int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt = \frac{f^{n+1}(\xi)}{n!} \int_{x_0}^x (x-t)^n dt = -\frac{f^{n+1}(\xi)}{n!} \frac{(x-t)^{n+1}}{n+1} \Big|_{t=x_0}^{t=x} = \frac{f^{n+1}(\xi)}{(n+1)!} (x-x_0)^{n+1}$ - остаточный член в форме Лагранжа (получено при больших ограничениях, чем раньше)

Глава 5

Геометрические приложения определенного интеграла.

Лекция 6 21.02

5.1Спрямляемость гладкой кривой. Выражение длины дуги гладкой кривой в виде определенного интеграла. Формулы длины дуги плоской кривой, заданной в декартовых либо полярных координатах.

Определение. Пусть $\varphi(t), \psi(t), \chi(t) \in C[a, b]$. Рассмотрим множество точек в пространстве, которое обозначим $L=\{M(x,y,z), x=\varphi(t), y=\psi(t), z=\chi(t), t\in [lpha,eta]\}$ - такое множество точек изывается простой

значим
$$L=\{M(x,y,z), x=\varphi(t), y=\psi(t), z=\chi(t), t\in [\alpha,\beta]\}$$
 - такое множество точек нзывается кривой, если $\forall t_1,t_2\in [\alpha,\beta]: t_1\neq t_2\Rightarrow M_1(x_1,y_1,z_1)\neq M_2(x_2,y_2,z_2)$, где
$$\begin{cases} x_i=\varphi(t_i)\\ y_i=\psi(t_i) & i=1,2,\dots\\ z_i=\chi(t_i) \end{cases}$$

Если при этом $z = \chi(t) \equiv 0$ на [a, b], то плоская простая кривая.

Определение. Говорят, что система уравнений $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ $t \in \{t\}$ — промежуток, задает параметри-

чески кривую L, если промежуток $\{t\}$ можно разбить на конечный или бесконечный (счетный) набор отрезков $[\alpha_i, \beta_i]$, покрывающих данный промежуток $\{t\}$ и пересекающихся не более чем концами, так, что на каждом отрезке $[\alpha_i, \beta_i]$ L - простая кривая.

Везде далее, если не оговорено противного кривая - параметрически заданная кривая

Определение. Кривая $L: \begin{cases} x=\varphi(t) \\ y=\psi(t) & t\in [\alpha,\beta] \text{ называется гладкой, если } \varphi'(t), \psi'(t), \chi'(t)\in C[a,b], \text{ а еще} \end{cases}$ $(\varphi'(t))^2+(\psi'(t))^2+(\chi'(t))^2>0 \forall t\in [\alpha,\beta]$ $L: \begin{cases} x=\varphi(t) \\ y=\psi(t) & t\in [\alpha,\beta] \end{cases}$ $T=\{\alpha=t_0< t_1< \cdots < t_{k-1}< t_k< \cdots < t_n=\beta\}$ $M_k(x,y,z): \begin{cases} x=\varphi(t_k) \\ y=\psi(t_k) \\ z=\chi(t) \end{cases}$ Рассмотрим $l_T=\sum_{k=1}^n |\overrightarrow{M_{k-1}M_k}|=\sum_{k=1}^n \sqrt{[\varphi(t_k)-\varphi(t_{k-1})]^2+[\psi(t_k)-\psi(t_{k-1})]^2+[\chi_k-\chi_{k-1}]^2}$ длина ломаной, вписанной в L. $T_1=T\cup \tilde{t}\Rightarrow l_T$, $\geqslant l_T$ (по неравенству треугольника). Тогда: $T_1\succ T\to l_{T_1}\geqslant l_T$

$$(\varphi'(t))^{2} + (\psi'(t))^{2} + (\chi'(t))^{2} > 0 \forall t \in [\alpha, \beta]$$

$$L : \begin{cases} x = \varphi(t) \\ y = \psi(t) & t \in [\alpha, \beta] \end{cases} T = \{\alpha = t_{0} < t_{1} < \dots < t_{k-1} < t_{k} < \dots < t_{n} = \beta\} M_{k}(x, y, z) : \begin{cases} x = \varphi(t_{k}) \\ y = \psi(t_{k}) \end{cases}$$

Определение. Кривая L называется спрямляемой, если $\{l_T\}$ - ограниченное сверху множество.

Определение. Если L - спрямляемая кривая, то число $l=l(L)=\sup_T\{l_T\}$ называется длиной кривой L

$$\textbf{Теорема 5.1. } L: \begin{cases} x=\varphi(t) \\ y=\psi(t) & t \in [\alpha,\beta]- \ \textit{гладкая кривая} \Rightarrow L \text{ - } \textit{спрямляемая, причем} \\ z=\chi(t) \end{cases}$$

$$l(L) = \int\limits_{\alpha}^{\beta} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2 + (\chi'(t))^2}$$

$$l(L) = \int_{\alpha}^{\beta} \sqrt{(\varphi'(t))^2 + (\psi'(t))^2 + (\chi'(t))^2}$$

tg: @moksimga

Лекция 7 _{25.02}

Доказатель ство. $\varphi'(t), \psi'(t), \chi'(t) \in C[\alpha, \beta] \Rightarrow \exists M > 0 : |\varphi'(t)| \leqslant M, |\psi'(t)| \leqslant M, |\chi'(t)| \leqslant M \forall t \in [\alpha, \beta].$

Берем
$$\forall T = \{ \alpha = t_0 < t_1 < \dots < t_{k-1} < t_k < \dots < t_n = \beta \}.$$

$$\varphi(t_k) - \varphi(t_{k-1}) = \varphi'(\alpha_k) \Delta t_k$$

По теореме Лагранжа $\exists \alpha_k, \beta_k, \gamma_k \in (t_{k-1}, t_k) : \psi(t_k) - \psi_{t_{k-1}} = \psi'(\beta_k) \Delta t_k \quad k = \overline{1, n} \Rightarrow$

$$\chi(t_k) - \chi(t_{k-1}) = \chi'(\gamma_k) \Delta t_k$$

$$\Rightarrow l_t = \sum_{k=1}^n \sqrt{(\varphi(t_k) - \varphi(t_{k-1}))^2 + (\psi(t_{k-1}) - \psi(t_{k-1}))^2 + (\chi(t_k) - \chi(t_{k-1}))^2} = \sum_{k=1}^n \underbrace{\sqrt{(\varphi'(\alpha_k))^2 + (\psi'(\beta_k))^2 + (\chi(\gamma_k))^2}}_{\leq 3M^2} \leq \frac{1}{2} \underbrace{\sqrt{(\varphi'(\alpha_k))^2 + (\chi(\gamma_k))^2 + (\chi(\gamma_k))^2}}_{\leq 3M^2}$$

$$\leq M\sqrt{3}\sum_{k=1}^n \Delta t_k = M\sqrt{3}(\beta-\alpha) = \{l_T\}$$
 – ограничена сверху $\Rightarrow L$ – спрямляемая.

Введем
$$f(t) = \sqrt{(\varphi(t))^2 + (\psi(t))^2 + (\chi(t))^2} \in C[\alpha, \beta] \Rightarrow f(t)$$
 интегрируема на $[\alpha, \beta] \Rightarrow \exists \int_{\alpha}^{\beta} f(t) dt = I$, т.е

$$\underline{\forall \varepsilon > 0} \exists \delta_1 > 0 : \forall T, \delta_T < \delta_1, \forall \Xi = \{\xi_k\}_{k=1}^n \Rightarrow |\sigma_T(f,\Xi) - I| < \frac{\varepsilon}{2}$$

$$\varphi'(t), \psi'(t), \chi'(t) \in C[\alpha, \beta] \underset{\text{т. Кантора}}{\Rightarrow} \varphi'(t), \psi'(t), \chi'(t)$$
— равномерно непрерывны на $[\alpha, \beta] \Rightarrow$

$$\Rightarrow \exists \delta_2 > 0: \forall t', t'' \in [\alpha, \beta]: |t' - t''| < \delta_2 \Rightarrow |\phi'(t') - \varphi'(t'')| < \frac{\varepsilon}{4(\beta - \alpha)}; |\psi'(t') - \psi'(t'')| < \frac{\varepsilon}{4(\beta - \alpha)}; |\chi'(t') - \psi'(t'')| < \frac{\varepsilon}{4(\beta -$$

$$\chi'(t'')| < \frac{\varepsilon}{4(\beta - \alpha)}$$
. Берем $\delta = \max(\delta_1, \delta_2) > 0$, $\forall T, \delta_T < \delta, \forall \Xi = \{\xi_k\}_{k=1}^n$,

рассмотрим
$$|l_T - I| = |l_T - \sigma_T(f, \Xi) + \sigma_T(f, \Xi) - I| \le |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \frac{\varepsilon}{2} = \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f, \Xi)| + \underbrace{|\sigma_T(f, \Xi) - I|}_{< \frac{\varepsilon}{5}} < |l_T - \sigma_T(f,$$

$$\left| \sum_{k=1}^{n} \left[\sqrt{(\varphi'(\alpha_k))^2 + (\psi'(\beta_k))^2 + (\chi'(\gamma_k))^2} \Delta t_k - \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\xi_k))^2 + (\chi'(\xi_k))^2} \Delta t_k \right] \right| + \frac{\varepsilon}{2} \leqslant$$

$$\leqslant \frac{\varepsilon}{2} + \sum_{k=1}^{n} \left| \sqrt{(\varphi'(\alpha_k))^2 + (\psi'(\beta_k))^2 + (\chi'(\gamma_k))^2} - \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\xi_k))^2 + (\chi'(\xi_k))^2} \right| \Delta t_k \leqslant \frac{\varepsilon}{2} + \sum_{k=1}^{n} \left| \sqrt{(\varphi'(\alpha_k))^2 + (\psi'(\beta_k))^2 + (\chi'(\gamma_k))^2} - \sqrt{(\varphi'(\xi_k))^2 + (\psi'(\xi_k))^2 + (\chi'(\xi_k))^2} \right| \Delta t_k \leqslant \frac{\varepsilon}{2} + \sum_{k=1}^{n} \left| \sqrt{(\varphi'(\alpha_k))^2 + (\psi'(\beta_k))^2 + (\chi'(\gamma_k))^2} - \sqrt{(\varphi'(\xi_k))^2 + (\chi'(\xi_k))^2 + (\chi'(\xi_k))^2} \right| \Delta t_k \leqslant \frac{\varepsilon}{2} + \sum_{k=1}^{n} \left| \sqrt{(\varphi'(\alpha_k))^2 + (\psi'(\beta_k))^2 + (\chi'(\gamma_k))^2} - \sqrt{(\varphi'(\xi_k))^2 + (\chi'(\xi_k))^2 + (\chi'(\xi_k))^2} \right| \Delta t_k \leqslant \frac{\varepsilon}{2} + \sum_{k=1}^{n} \left| \sqrt{(\varphi'(\alpha_k))^2 + (\psi'(\beta_k))^2 + (\chi'(\gamma_k))^2} - \sqrt{(\varphi'(\xi_k))^2 + (\chi'(\xi_k))^2 + (\chi'(\xi_k))^2} \right| \Delta t_k \leqslant \frac{\varepsilon}{2} + \sum_{k=1}^{n} \left| \sqrt{(\varphi'(\alpha_k))^2 + (\chi'(\xi_k))^2 + (\chi'(\xi_k))^2} - \sqrt{(\varphi'(\xi_k))^2 + (\chi'(\xi_k))^2 + (\chi'(\xi_k))^2} \right| \Delta t_k \leqslant \frac{\varepsilon}{2} + \sum_{k=1}^{n} \left| \sqrt{(\varphi'(\alpha_k))^2 + (\chi'(\xi_k))^2 + (\chi'(\xi_k))^2 + (\chi'(\xi_k))^2} \right| \Delta t_k \leqslant \frac{\varepsilon}{2} + \sum_{k=1}^{n} \left| \sqrt{(\varphi'(\alpha_k))^2 + (\chi'(\xi_k))^2 + (\chi$$

$$\leqslant \sum_{k=1}^{n} \sqrt{(\varphi'(\alpha_k) - \varphi'(\xi_k))^2 + (\psi'(\beta_k) - \psi'(\xi_k))^2 + (\chi'(\gamma_k) - \chi'(\xi_k))^2} \Delta t_k + 2 < \sum_{k=1}^{n} \sqrt{\frac{3\varepsilon^2}{16(\beta - \alpha)^2}} \Delta t_k + \frac{\varepsilon}{2} = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_k + \frac{\varepsilon}{2} \right) = \frac{1}{2} \left(\frac{3\varepsilon^2}{16(\beta - \alpha)^2} \Delta t_$$

$$=\frac{\varepsilon\sqrt{3}}{4(\beta-\alpha)}(\beta-\alpha)+\frac{\varepsilon}{2}=\frac{\varepsilon\sqrt{3}}{4}+\frac{\varepsilon}{2}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\Rightarrow\lim_{\delta_{T}\to0}l_{T}=I$$

Осталось докзаать, что $L_T\leqslant I$ $\forall T.$ От противного, предположим, что $\exists T_0:l_{T_0}>I.$ Известно, что

$$\lim_{\delta_T \to 0} l_T = I, \text{ r.e } \forall \varepsilon > 0 \exists \delta > 0 : \forall T, \delta_T < \delta \Rightarrow |l_T - I| < \varepsilon.$$

Берем
$$\varepsilon = \frac{l_{T_0} - I}{2} > 0 \Rightarrow \exists \delta > 0 : \forall T, \delta_T < \delta \Rightarrow |l_T - I| < \frac{l_{T_0} - I}{2}$$
. Берем $T_1 \succ T_0 : \delta_{T_1} < \delta \Rightarrow \frac{l_{T_0} - I}{2} = \varepsilon > |l_{T_1} - I| = l_{T_1} - I \geqslant l_{T_0} - I = 2\varepsilon \Rightarrow$ противоречие \Rightarrow предположение неверно $\Rightarrow l_T \leqslant I \ \forall T$

5.1.1Частные случаи гладких кривых:

$$1)y = f(x), x \in [a, b] \begin{cases} x = t \\ y = f(t) \quad t \in [a, b] \Rightarrow l(L) = \int_{a}^{b} \sqrt{1 + (f'(t))^{2}} dt = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx \\ z \equiv 0 \end{cases}$$

$$2)r = r(\varphi), \varphi \in [\alpha, \beta], \begin{cases} x = r(\varphi)\cos\varphi \\ y = r(\varphi)\sin\varphi \end{cases} \qquad (x'_{\varphi}(\varphi))^{2} + (y'_{\varphi}(\varphi))^{2} = (r'(\varphi)\cos\varphi - r(\varphi)\sin\varphi)^{2} + (r'(\varphi)\sin\varphi + r(\varphi)\cos\varphi)^{2} = r^{2}(\varphi) + (r'(\varphi))^{2} \Rightarrow l(L) = \int_{\alpha}^{\beta} \sqrt{r^{2}(\varphi) + (r'(\varphi))^{2}} dt = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$

5.2Площадь плоской фигуры. Критерий квадратируемости

Определение. Плоская фигура - любое ограниченное множество на плоскости

Определение. Р - плоская фигура. Число $\mu(P)$ – площадь, если:

- $1)\mu(P) \geqslant 0$
- 2) Если фигуры P_1P_2 равны в геометрическом смысле $\Rightarrow \mu(P_1) = \mu(P_2)$
- $(3)P_1, P_2: P_1 \cap P_2 = \emptyset \Longrightarrow \mu(P_1 \cup P_2) = \mu(P_1) + \mu(P_2)$
- 4)Если P единичный квадрат $\Rightarrow \mu(P) = 1$

Объединение, пересечение, вычитание многоугольников - тоже многоугольник.

 \varnothing — тоже многоугольник ($\mu(\varnothing)=0$). Если P— многоугольник, то его площадь известна ($\tilde{\mu}(P)$ - обозначение площади)

P- плоская фигура $\Rightarrow Q, S : Q \subset P \subset S$

 $\forall Q,S:Q\subset P\subset S\Rightarrow \tilde{\mu}(Q)\leqslant \tilde{\mu}(S)\Rightarrow \{\mu(Q)\}$ - ограничено сверху. $\{\mu(S)\}$ - ограничено снизу.

Определение. P- плоская фигура. $\underline{\mu(P)}=\sup_{Q\subset P}\tilde{\mu}(Q)$ - нижняя площадь. $\overline{\mu(P)}=\inf_{S\supset P}\tilde{\mu}(S)$ $Q \subset P \subset S \Rightarrow \widetilde{\mu}(Q) \leqslant \widetilde{\mu}(S) \Rightarrow \underline{\mu}(P) \leqslant \widetilde{\mu}(S) \Rightarrow \underline{\mu}(P) \leqslant \overline{\mu}(P)$

Определение. Плоская фигура P называется квадрируемой, если $\mu(P)=\overline{\mu(P)}$. При этом $\mu(P)=\mu(P)=$ $\overline{\mu(P)}$

Теорема 5.2. Введеная таким образом $\mu(P)$ - площадь т.е

- 1) P квадрируема фигура $\Rightarrow \mu(P) \geqslant 0$
- 2) P_1, P_2 квадрируемые плоские фигуры, причем P_1 и P_2 равны в геометрическом смысле $\Rightarrow \mu(P_1) =$ $\mu(P_2)$
- 3) P_1, P_2 квадрируемые плоские фигуры, причем $P_1 \cap P_2 = \varnothing \Rightarrow P = P_1 \cup P_2$ тоже квадрируема, причем $\mu(P) = \mu(P_1) + \mu(P_2)$
- 4) Если P единичный квадрат $\Rightarrow P$ плоская квадрируемая фигура, причем $\mu(P)=1$

Доказатель ство. 1) $\exists \mu(P) = \underbrace{\mu(P)}_{Q \subset P} = \sup_{\geqslant 0} \underbrace{\tilde{\mu}(P)}_{\geqslant 0} \geqslant 0$ 2) $Q_1 \subset P_1 \subset S_1 \Leftrightarrow Q_2 \subset P_2 \subset S_2$, причем Q_1 и Q_2 равны в геометрическом смысле, S_1 и S_2 равны в

геометрическом смысле
$$\Rightarrow \frac{\bar{\mu_1}(Q_1) = \bar{\mu}(Q_2)}{\bar{\mu_1}(S_1) = \bar{\mu}(S_2)} \Rightarrow \underline{\mu(P_1)} = \underline{\mu}(P_2), \ \bar{\mu}(P_1) = \bar{\mu}(P_2) \Rightarrow \mu(P_1) = \mu(P_2)$$
 $\Rightarrow \mu(P_1) = \mu(P_2)$ $\Rightarrow \mu(P_1) = \mu(P_2)$ $\Rightarrow \mu(P_1) = \mu(P_2) \Rightarrow \mu(P_1) = \mu(P_2)$ $\Rightarrow \forall \varepsilon > 0 \exists Q_1, Q_2, S_1, S_2 : \mu(P_2) = \bar{\mu}(P_2) = \mu(P_2)$ $\Rightarrow \forall \varepsilon > 0 \exists Q_1, Q_2, S_1, S_2 : \mu(P_2) = \bar{\mu}(P_2) = \mu(P_2)$ $\Rightarrow \psi(P_2) = \mu(P$

Берем $\forall \varepsilon > 0$

 $\varnothing \subset AB \subset S$ $0 \leqslant \overline{\mu}(AB) \leqslant \varepsilon(l+\varepsilon) \Rightarrow \overline{\mu}(AB) = 0; \quad 0 \leqslant \mu(AB) \leqslant \overline{\mu}(AB) = 0 \Rightarrow \mu(AB) = 0$

 $tg \colon @moksimqa$

28.02

Теорема 5.3 (Критерий квадрируемости). P - плоская фигура, тогда: P — квадрируема $\Leftrightarrow \forall \varepsilon > 0 \exists Q, S: Q \subset P \subset S$, причем $0 \leqslant \tilde{\mu}(S) - \tilde{\mu}(Q) < \varepsilon$

Доказатель ство.
$$\Rightarrow$$
 Пусть P - квадрируема $\Rightarrow \exists \mu(P) = \underline{\mu}(P) = \overline{\mu}(P) \Rightarrow \forall \varepsilon > 0 \exists Q, S: Q \subset P \subset S$, причем $\tilde{\mu}(P) > \underline{(\mu)}(P) - \frac{\varepsilon}{2}$ $\Rightarrow 0 \leqslant \tilde{\mu}(S) - \tilde{\mu}(Q) < (\mu(P) + \frac{\varepsilon}{2}) - (\mu(P) - \frac{\varepsilon}{2}) = \varepsilon$ $(\mu)(S) < \overline{(\mu)}(P) + \frac{\varepsilon}{2}$ $\Rightarrow 0 \leqslant \tilde{\mu}(S) - \tilde{\mu}(Q) < (\mu(P) + \frac{\varepsilon}{2}) - (\mu(P) - \frac{\varepsilon}{2}) = \varepsilon$ \Leftrightarrow Пусть $\forall \varepsilon > 0 \exists Q, S: Q \subset P \subset S$, причем $0 \leqslant \tilde{\mu}(S) - \tilde{\mu}(Q) < \varepsilon$, но $\tilde{\mu}(Q) \leqslant \underline{(\mu)}(P) \leqslant \overline{\mu}(P) \leqslant \tilde{\mu}(S) \Rightarrow 0 \leqslant \varepsilon$ $\leqslant \overline{\mu}(P) - \underline{\mu}(P) < \varepsilon \Rightarrow \forall \varepsilon > 0 \leqslant \overline{\mu}(P) - \underline{\mu}(P) < \varepsilon \Rightarrow \overline{\mu}(P) - \underline{\mu}(P) = 0 \Rightarrow \underline{\mu}(P) = \overline{\mu}(P)$, т.е P - квадрируема

5.3 Квадрируемость криволинейной трапеции. Выражение плоащиди криволинейной трапеции в виде определенного интеграла. Формула площади криволинейного сектора (без доказательства)

Определение. Пусть $f(x) \in C[a,b], f(x) \geqslant 0 \ \forall x \in [a,b].$ Плоская фигура $P = \{(x,y) : a \leqslant x \leqslant b, 0 \leqslant y \leqslant f(x)\}$ называется криволинейной трапецией.

Теорема 5.4 (Критерий квадрируемости). $f(x) \in C[a,b], f(x) \geqslant 0 \ \forall x \in [a,b] \Rightarrow$ криволинейная трапеция $P = \{(x,y) : a \leqslant x \leqslant b, 0 \leqslant y \leqslant f(x)\}$ является квадрируемой фигурой, причем $\mu(P) = \int\limits_{a}^{b} f(x) dx$

Доказатель ство. $f(x) \in C[a,b] \Rightarrow \exists \int\limits_a^b f(x) dx = I \underset{\text{кр.инт}}{\Rightarrow} \forall \varepsilon > 0 \exists \delta > 0 : \forall T, \delta_T < \delta \Rightarrow 0 \leqslant S_T(f) - s_T(f) < \varepsilon,$ т.е $\exists Q, S-$ ступенчатые фигуры (являются многоугольниками): $Q \subset P \subset S$, причем $0 \leqslant \tilde{\mu}(S) - \tilde{\mu}(Q) < 0$

$$\mu(P) = \underline{\mu}(P) = \sup \tilde{\mu}(Q) \geqslant \sup_{\substack{Q:Q \subset P \\ Q - \text{ступенчатая} \\ \text{фигура}}} \tilde{\mu}(Q) = \sup_{T} S_T(f) = \underline{I} = I$$

$$\varepsilon \underset{\text{Т5.4}}{\Rightarrow} P - \text{ квадрируемая фигура} \Rightarrow \exists \mu(P) :$$

$$\mu(P) = \overline{\mu}(P) = \inf_{S \supset P} \tilde{\mu}(S) \leqslant \inf_{\substack{S:S \supset P \\ S - \text{ступенчатая} \\ \text{фигура}}} \tilde{\mu}(S) = \inf_{T} S_T(f) = \overline{I} = I$$

$$I \leqslant \mu(P) \leqslant I \Rightarrow \mu(P) = I$$

Замечание. Если $f(x) \in C[a,b], f(x) \leqslant 0,$ то $\int\limits_a^b f(x) dx = -\mu(P)$

Если $f(x) \in C[a,b]$, причем меняет знак на $[a,b] \Rightarrow \int\limits_a^b f(x) dx$ — алгебраическая разность площадей.

Определение. r, φ — полярные координаты. Пусть $r(\varphi) \in C[\alpha, \beta]$. Плоскя фигура $P = \{(r, \varphi) : \alpha \leqslant \varphi \leqslant \beta, 0 \leqslant r \leqslant r(\varphi)\}$

Теорема 5.5. $r, \varphi-$ полярные координаты $r(\varphi) \in C[\alpha, \beta] \Rightarrow$ криволинейный сектор $P = \{(r, \varphi) : \alpha \leqslant \varphi \leqslant \beta, 0 \leqslant r \leqslant r(\varphi)\}$ — квадрируемая фигура, причем $\mu(P) = \frac{1}{2} \int\limits_{\alpha}^{\beta} r^2(\varphi) d\varphi$

Глава 6

Собственные и несобственные интегралы.

Лекция 8

28.02

6.1 Несобственный интеграл первого рода, их сходимость и расходимость. Независимость сходимости (расходимости) несобственного интеграла первого рода от значения его постоянного (неособенного) предела

Определение. Пусть $\forall c \geqslant a \ f(x)$ интегрируема на [a,c]. Выражение $\int\limits_a^+ f(x) dx$ называется несобственным интегралом I рода от f(x) на $[a,+\infty)$. Если $\exists \lim\limits_{c \to +\infty} \int\limits_a^c f(x) dx = A$, то число A называется величиной этого интеграла. Обозначение: $\int\limits_a^+ f(x) dx = A$ **Определение.** Если $\exists \lim\limits_{c \to +\infty} \int\limits_a^c f(x) dx$, то $\int\limits_a^+ f(x) dx$ называется сходящися, иначе - расходящимся.

Теорема 6.1. $\int\limits_{a}^{+\infty}f(x)dx\ cxodumcs\ (pacxodumcs)\Rightarrow \forall a'\geqslant a\int\limits_{a'}^{+\infty}f(x)dx\ moжe\ cxodumcs\ (pacxodumcs).$

Доказатель ство.
$$\forall c \geqslant a, \forall a' \geqslant a \ \exists \int\limits_a^c f(x) dx = \int\limits_{\text{собственный интеграл}}^{a'} f(x) dx \\ + \int\limits_{a'}^c f(x) dx \\ \underset{c \to +\infty}{\Rightarrow} \int\limits_a^{+\infty} f(x) dx \ \text{u} \int\limits_{a'}^{+\infty} f(x) dx$$

сходятся или расходятся одновременно. А их величины (в случае сходимости) отличаются на $\int\limits_a^{a'} f(x) dx,$ (т.е на константу)

Определение. Пусть $\forall c\leqslant a\ f(x)$ интегрируема на [c,a]. Выражение $\int\limits_{-\infty}^{a}f(x)dx$ называется несобственным интегралом I рода от f(x) на $(-\infty,a]$. Если $\exists\lim_{c\to -\infty}\int\limits_{c}^{a}f(x)dx=A$, то число A называется величиной этого интеграла. Обозначение: $\int\limits_{-\infty}^{a}f(x)dx=A$

Определение. Если $\exists \lim_{c \to -\infty} \int\limits_{c}^{a} f(x) dx$, то $\int\limits_{-\infty}^{a} f(x) dx$ называется сходящимся, иначе - расходящимся.

Теорема 6.2. $\int\limits_{-\infty}^{a} f(x) dx$ сходится (расходится) $\Rightarrow \forall a' \leqslant a \int\limits_{-\infty}^{a'} f(x) dx$ тоже сходится (расходится) Доказательство. Самостоятельно.

Определение. Пусть $\forall a,b\ f(x)$ - интегрируема на [a,b]. Выражение $\int\limits_{-\infty}^{+\infty} f(x)dx$ называется несобственным интегралом I рода от f(x) на $(-\infty,+\infty)$. Если $\exists c:\int\limits_{-\infty}^a f(x)dx$ и $\int\limits_a^{+\infty} f(x)dx$ сходятся, то $\int\limits_{-\infty}^{+\infty} f(x)dx$ называется сходящимся, а число $A=\int\limits_{-\infty}^a f(x)dx+\int\limits_a^{+\infty} f(x)dx$ называется величиной $\int\limits_{-\infty}^{+\infty} f(x)dx$. Обозначение: $\int\limits_{-\infty}^{+\infty} f(x)dx=A$. Если такого c не существует, то $\int\limits_{-\infty}^{+\infty} f(x)dx$ называется расходящимся.

Доказательство.
$$\exists c: \int\limits_{-\infty}^{c} f(x)dx$$
 и $\int\limits_{c}^{+\infty} f(x)dx$ еходятся \Rightarrow $\exists \lim_{a \to +\infty} \int\limits_{c}^{a} f(x)dx \left| \int\limits_{c}^{+\infty} f(x)dx = \lim_{a \to +\infty} \int\limits_{c}^{a} f(x)dx \right| \xrightarrow{\text{T6.1}} \underset{b \to -\infty}{\text{T6.2}} \int\limits_{b}^{\text{T6.2}} f(x)dx = \lim_{b \to -\infty} \int\limits_{b}^{c} f(x)dx = \lim_{b \to -\infty} \int\limits_{b}^{a} f(x)dx$

$$\forall c' \qquad \int\limits_{c'}^{+\infty} f(x) dx \text{ сходится} \qquad \int\limits_{c'}^{+\infty} f(x) dx = \lim\limits_{a \to +\infty} \int\limits_{c'}^{a} f(x) dx - \text{ число}$$

$$\int\limits_{-\infty}^{+\infty} f(x) dx \text{ сходится} \qquad \int\limits_{c'}^{+\infty} f(x) dx = \lim\limits_{b \to -\infty} \int\limits_{b}^{c'} f(x) dx - \text{ число}$$

$$= \lim\limits_{a \to +\infty} \int\limits_{c'}^{a} f(x) dx + \lim\limits_{b \to -\infty} \int\limits_{b}^{c'} f(x) dx = \lim\limits_{a \to +\infty} \left[\int\limits_{c'}^{c} f(x) dx + \int\limits_{c}^{a} f(x) dx \right] + \lim\limits_{b \to -\infty} \left[\int\limits_{b}^{c} f(x) dx + \int\limits_{c}^{c'} f(x) dx \right] = \int\limits_{c'}^{c} f(x) dx + \lim\limits_{a \to +\infty} \int\limits_{c}^{a} f(x) dx + \lim\limits_{b \to -\infty} \int\limits_{c}^{a} f(x) dx + \int\limits_{c}^{c} f(x) dx + \int\limits_{c}^{c} f(x) dx = \int\limits_{-\infty}^{+\infty} f(x) dx = \int\limits_{$$

Пример.
$$\int_{1}^{+\infty} \frac{dx}{x^{p}}, \quad f(x) = \frac{1}{x^{p}} \text{ непрерывна при } x \geqslant 1 \text{ (даже при } x > 0) \Rightarrow \text{интегрируема на } [a,c] \forall c \geqslant 1$$

$$p > 1 \quad \int_{1}^{c} \frac{dx}{x^{p}} = \frac{x^{1-p}}{1-p} \bigg|_{x=1}^{x=c} = \frac{1}{x-p} \left(\frac{1}{c^{p-1}} - 1\right) \underset{c \to +\infty}{\to} \frac{1}{p-1} \Rightarrow \int_{1}^{+\infty} \frac{dx}{x^{p}} = \frac{1}{p-1} \text{ (сходится)}$$

$$p < 1 \quad \int_{1}^{c} \frac{dx}{x^{p}} = \frac{1}{1-p} \left(\frac{1}{c^{p-1}} - 1\right) \underset{c \to +\infty}{\to} +\infty \Rightarrow \int_{1}^{c} \frac{dx}{x^{p}} = +\infty \text{ (расходится)}$$

$$p = 1 \quad \int_{1}^{c} \frac{dx}{x} = \ln\left(x\right) \bigg|_{x=1}^{x=c} = \ln\left(c\right) \underset{c \to +\infty}{\to} +\infty \Rightarrow \int_{1}^{+\infty} \frac{dx}{x} = +\infty \text{ (расходится)}$$
 Итого:
$$\int_{1}^{+\infty} \frac{dx}{x^{p}} - \text{сходится при } p > 1. \text{ Расходится при } p \leqslant 1. \Rightarrow \forall a > 0 \int_{a}^{+\infty} \frac{dx}{x^{p}} - \text{сходится при } p > 1. \text{ Расходится}$$
 при $p \leqslant 1$

6.2Несобственные интегралы второго рода, их сходимость и расходимость. Независимость сходимости (расходимости) несобственного интеграла второго рода от значения его постоянного (неособенного) предела

Определение. Пусть $\forall c \in [a,b) \Big[\forall c \in (a,b] \Big] f(x)$ интегрируема на [a,c] $\Big[$ на [c,b] $\Big]$. Выражение $\int_{-c}^{b} f(x) dx$ называется несобственным интегралом второго рода с особой точкой b-0 a+0 от b=0 от b=0 от b=0 на bЕсли $\exists\lim_{c\to b-0}\int\limits_a^c f(x)dx=A\left[\exists\lim_{c\to a+0}\int\limits_c^b f(x)dx=A\right]$, то число A называется его величиной. Обозначение: $\int\limits_c^b f(x)dx=A$. Интеграл, имеющий конечную величину называется сходящимся, в противном случае а расходящимся.

Теорема 6.4. $\int\limits_{a}^{b}f(x)dx$ с особой точкой b-0 сходится (pacxodumcs) \Rightarrow $\forall c\in [a,b)$ $\int\limits_{a}^{b}f(x)dx$ с особой

Доказательство. Самостоятельно.

Теорема 6.5. $\int\limits_a^b f(x)dx$ с особой точкой a+0 сходится $\Rightarrow \forall c \in (a,b]$ $\int\limits_a^c f(x)dx$ с особой точкой a+0тоже сходится (расходится).

Доказательство. Самостоятельно.

Самостоятельно. Ввести понятие $\int\limits_{-\infty}^{\infty} f(x)dx$ с двумя особыми точками b-0 и a+0. Дать определение сходимости (расходимости) такого интеграла. Доказать, что если такой интеграл сходится, то его величина не зависит от выбора промежуточной точки $c \in (a, b)$

tg: @moksimga

Лекция 9

07.03

Теорема 6.6. Собственный $\int f(x)dx$, рассмотрим его как несобственный с особой точкой b-0 (с особой a + 0), сходится, причем значения совпадают.

Доказатель ство. f(x) интегрируема на \Rightarrow ограничена $\Rightarrow \exists M>0: \forall x\in [a,b] \ |f(x)|\leqslant M$

2) Особая точка
$$b-0$$
 $\forall C \in [a,b)$ $\left|\int\limits_a^b f(x)dx - \int\limits_a^c f(x)dx\right| = \left|\int\limits_c^b f(x)dx\right| \leqslant \left|\int\limits_c^b |f(x)|dx\right| = \int\limits_c^b |f(x)|dx| \leqslant \int\limits_c^b |f(x)|dx$ $\leqslant \int\limits_c^b Mdx = M(b-c) \underset{c \to b-0}{\longrightarrow} 0 \Rightarrow \lim\limits_{c \to b-0} \int\limits_c^c f(x)dx = \int\limits_c^b f(x)dx$

2) Особая точка
$$a+0$$
 - самостоятельно.

Пример:
$$\int_{0}^{1} \frac{dx}{x^{p}} \qquad \frac{1}{x^{p}} - \text{ непрерывна при } x > 0$$

$$1) \left[p > 1 \right] \int\limits_{c}^{1} \frac{dx}{x^{p}} = \frac{x^{1-p}}{1-p} \bigg|_{x=c}^{x=1} = \frac{1}{1-p} \left(1 - \frac{1}{c^{p-1}} \right) \underset{c \to 0+0}{\rightarrow} + \infty \Rightarrow \int\limits_{0}^{1} \frac{dx}{x^{p}} = +\infty \text{ - расходится}$$

$$2) \left[p < 1 \right] \int\limits_{0}^{1} \frac{dx}{x^{p}} = \frac{1}{1-p} \left(1 - \frac{1}{c^{p-1}} \right) \underset{c \to 0+0}{\rightarrow} \frac{1}{1-p} \Rightarrow \int\limits_{0}^{1} \frac{dx}{x^{p}} = \frac{1}{1-p} - \text{сходится}$$

3)
$$\boxed{p=1}\int\limits_{c}^{1}\dfrac{dx}{x}=\ln x\Bigg|_{x=c}^{x=1}=\ln 1-\ln c=-\ln c\underset{c\to 0+0}{\rightarrow}+\infty\Rightarrow\int\limits_{0}^{1}\dfrac{dx}{x}=+\infty$$
 - расходится

Итого: $\int \frac{dx}{x^p}$ - сходится при p < 1, расходится при $p \geqslant 1 \Longrightarrow_{\mathrm{T6.6}} \forall a > 0 \int \frac{dx}{x^p}$ - сходится при p < 1, расходится при $p \geqslant 1$

6.3Несобственные интегралы с несколькими особыми точками.

В общем случае несобственный интеграл $\int_{-\infty}^{\infty} f(x)dx$, где a - число или $-\infty$, b - число или $+\infty$, причем на промежутке (a,b) - лишь конечное количество точек, в которых f(x) не является интегрируемой в собственном смысле, разбивается на сумму конечного количества слагаемых, каждое из которых несобственный интеграл с единственной особенностью (один из пределов интегрирования). Его величина (если все слагаемые сходятся) не зависит от выбора промежуточных точек.

Пример:
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 - 1} = \int_{-\infty}^{-2} \frac{dx}{x^2 - 1} + \int_{-2}^{-1} \frac{dx}{x^2 - 1} + \int_{-1}^{0} \frac{dx}{x^2 - 1} + \int_{0}^{1} \frac{dx}{x^2 - 1} + \int_{1}^{2} \frac{dx}{x^2 - 1} + \int_{1}^{+\infty} \frac{dx}{x$$

6.4 Формула Ньютона-Лейбница для несобственных интегралов. Вычисление несобственных интегралов способами замены переменной и интегрирования по частям.

Теорема 6.7. Пусть $f(x) \in C[a,b)$, где b - число или $+\infty$, F(x) - первообразная κ f(x) на $[a,b) \Rightarrow$ из существования одного из пределов следует существования другого и равно: $\int\limits_a f(x)dx = \varprojlim\limits_{c o b - 0} F(c) - F(a)$

$$\left(m.e\int\limits_{a}^{b}F(x)dx=F(x)\bigg|_{x=a}^{x=b-0}
ight)$$
 Т.е формула Ньютона-Лейбница справедлива и для сходящихся несобственных интегралов.

Доказательство.
$$f(x) \in C[a,b) \Rightarrow \exists F(x)$$
— первообразная к $f(x)$ на $[a,b)$. $\forall c \in [a,b)$ рассмотрим $\int\limits_a^c f(x) dx = F(c) - F(a)$, а теперь $c \to b - 0$

Случай где a - число или $-\infty$, b - число или $+\infty$ рассматривается аналогично.

Примеры:
$$\int\limits_{1}^{+\infty} \frac{dx}{x^2} = -\frac{1}{x} \bigg|_{x=1}^{+\infty} = 1, \qquad \int\limits_{0}^{1} \frac{dx}{\sqrt{x}} = 2\sqrt{x} \bigg|_{x=0}^{x=1} = 2$$

Теорема 6.8. $f(x) \in C[a,b)$ (где b - число или $+\infty$), $\varphi(t): \varphi(t)$ строго возрастает на $[\alpha,\beta)$ (где β - число uли $+\infty$), $\varphi(\alpha)=a,\lim_{t o \beta-0}\varphi(t)=b-0, \varphi'(t)\in C[lpha,eta)\Rightarrow u$ з существования одного из интегралов следует

существование другого и их равенство:
$$\int\limits_a^b f(x)dx=\int\limits_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$$

Доказатель ство. $\exists \Theta(x)$ — обратная функция к $\varphi(t)\Rightarrow\Theta(a)=\alpha, \lim_{x\to b-0}\Theta(x)=\beta-0.$ Берем $\forall c\in[a,b)\Rightarrow$

$$\exists ! \gamma \in [\alpha,\beta) : \Theta(c) = \gamma, \text{ т.е } \varphi(\gamma) = c. \text{ Рассмотрим } \int\limits_{a}^{c} f(x) dx = \int\limits_{\substack{\text{по T o} \\ \text{переменной}}}^{\gamma} f(\varphi(t)) \varphi'(t) dt, \text{ а теперь } c \to b-0 \quad \square$$

Случай где a - число или $-\infty$ ($\varphi(t)$ строго убывает) аналогично.

По теореме 6.8: если после замены получен собственный интеграл, то так устанавливается сходимость.

Пример:
$$\int_{1}^{2} \frac{xe^{x}dx}{\sqrt{x^{2}-1}} = \begin{vmatrix} \sqrt{x^{2}-1} = t, x^{2} = t^{2}+1, xdx = tdt, \\ x = 2 \Leftrightarrow t = \sqrt{3}, x \to 1+0 \Leftrightarrow t \to 0+0 \end{vmatrix} = \int_{0}^{\sqrt{3}} e^{\sqrt{t^{2}+1}}dt \Rightarrow \int_{1}^{2} \frac{xe^{x}dx}{\sqrt{x^{2}-1}} - \text{схо-}$$

дится.

По теореме 6.8 особую точку можно перевести в
$$+\infty$$
.
$$1) \int_{-\infty}^{a} f(x) dx = \begin{vmatrix} x = -t, dx = -dt, \\ x = a \Leftrightarrow t = -a, x \to -\infty \Leftrightarrow t \to +\infty \end{vmatrix} = -\int_{+\infty}^{-a} f(-t) dt = \int_{-a}^{+\infty} f(-t) dt$$
$$2) \int_{a}^{b} f(x) dx = \begin{vmatrix} b - 0 - \cos \cos x \cos x, & \frac{a+bt}{1+t}, & \frac{x-a}{b-x}, \\ x = a \Leftrightarrow t = 0, x \to b - 0 \Leftrightarrow t \to +\infty, & dx = \frac{(b-a)dt}{(1+t)^2} \end{vmatrix} = \int_{0}^{+\infty} f\left(\frac{a+bt}{1+t}\right) \frac{(b-a)dt}{(1+t)^2} = (b-a) \int_{0}^{+\infty} f\left(\frac{a+bt}{1+t}\right) \frac{dt}{(1+t)^2}$$

$$3) \int\limits_a^b f(x) dx = \left| \begin{array}{c} a + 0 - \operatorname{ocofast} \ \operatorname{toyka}, x = \frac{b + at}{1 + t} \Rightarrow t = \frac{x - b}{a - x}, \\ x = b \Leftrightarrow t = 0, x \to a + 0 \Rightarrow t \to +\infty, dx \frac{(a - b)dt}{(1 + t)^2} \end{array} \right| = \int\limits_{+\infty}^0 f\left(\frac{b + at}{1 + t}\right) \frac{(a - b)dt}{(1 + t)^2} = \left(b - a\right) \int\limits_0^{+\infty} f\left(\frac{b + at}{1 + t}\right) \frac{dt}{(1 + t)^2}$$

Теорема 6.9. $u(x),v(x):u'(x),v'(x)\in C[a,b)$ (где b - число или $+\infty$) \Rightarrow из существования двух пределов следует существование третьего, а также равенство: $\int u(x)v'(x)dx = \lim_{c o b = 0} u(c)v(c) - \int u'(x)v(x)dx - \int u'(x)v(x)dx$ $-u(a)v(a) \quad \left(\int_{a}^{b} u(x)v'(x)dx = u(x)v(x)\Big|_{a}^{b-0} - \int_{a}^{b} u'(x)v(x)dx\right)$

Доказатель ство. Берем $\forall c \in [a,b) \Rightarrow$ (по формуле интегрирования по частям в собственных интегрелах) \Rightarrow $\int\limits_a u(x)v(x)dx=u(x)v(x)\bigg|_a^c-\int\limits_{-1} u'(x)v(x)dx, \text{ а теперь }c\to b-0$

Случай, где
$$a$$
 - число или $-\infty$ - аналогично. По теореме 6.9 также можно устанавливать сходимость. Пример:
$$\int\limits_0^1 \frac{\ln{(x)} dx}{1+x^2} = \int\limits_0^1 \ln{(x)} d(\arctan{(x)}) = \ln{(x)} \arctan{(x)} \left| \int\limits_0^1 - \int\limits_0^1 \frac{\arctan{(x)}}{x} dx \right|$$

Рассмотрим $\lim_{x \to 0+0} (\ln(x) \underbrace{\arctan(x)}_{\sim x}) = \lim_{x \to 0+0} (x \ln(x)) = \lim_{x \to 0+0} \frac{\ln(x)}{\frac{1}{x}} = \lim_{x \to 0+0} \frac{\left(\frac{1}{x}\right)}{\left(\frac{-1}{x^2}\right)} = 0 \Rightarrow \int_{0}^{1} \frac{\ln(x) dx}{1 + x^2} = \lim_{x \to 0+0} \frac{\ln(x)}{x} = \lim_{x \to 0+0}$

$$= -\int_{0}^{1} \frac{\arctan(x)dx}{x}$$

 $\frac{\mathrm{arctg}\,(x)}{x} \underset{x \to 0+0}{\rightarrow} 1 \Rightarrow \int\limits_0^1 \frac{\mathrm{arctg}\,(x)dx}{x}$ можно рассматривать как собственный, так как подынтегральную функцию в данном случае можно доопределить по непрерывности в точке x=0

6.5Линейные свойства несобственного интеграла. Пример неинтегрируемого произведения интегрируемых функций.

Пусть дан $\int f(x)dx$, где a < b, причем b - число или $+\infty$, b - единственная особенность.

Определение. f(x) называется интегрируемой на [a,b), если $\int\limits_{-\infty}^{o}f(x)dx$ сходится.

Остальные случаи аналогично.

Теорема 6.10. f(x) интегрируема на $[a,b) \Rightarrow \forall k \in \mathbb{R} \ k \cdot f(x)$ - тоже интегрируема на [a,b), причем $\int k \cdot f(x)dx = k \int f(x)dx$

Доказатель ство.
$$\forall c \in [a,b) \Rightarrow \int\limits_a^c k \cdot f(x) dx = k \int\limits_a^c f(x) dx$$
, а теперь $c \to b-0$

Теорема 6.11. f(x),g(x) интегрируемы на $[a,b)\Rightarrow f(x)\pm g(x)$ тоже интегрируемы на [a,b), причем $\int\limits_a^b (f(x)\pm g(x))dx=\int\limits_a^b f(x)dx\pm\int\limits_a^b g(x)dx$

Доказательство. Самостоятельно.

Теорема 6.10 и теорема 6.11 - линейные свойства несобственных интегралов.

Теорема 6.12.
$$f(x), g(x)$$
 интегрируемы на $[a,b)$, причем $f(x) \geqslant g(x) \ \forall x \in [a,b) \Rightarrow \int\limits_a^b f(x) dx \geqslant \int\limits_a^b g(x) dx$

Доказатель ство.
$$\forall c \in [a,b)$$
 $\int\limits_a^c f(x) dx \geqslant \int\limits_a^c g(x) dx$, а теперь $c \to b-0$

Пример:
$$f(x) = \frac{1}{\sqrt{x}}$$
, $\int\limits_0^1 \frac{dx}{\sqrt{x}}$ — сходится. Рассмотрим $g(x) = f(x)$, рассмотрим $\int\limits_0^1 f(x)g(x)dx =$

$$= \int_{0}^{1} \frac{dx}{x}$$
- расходится.

6.6 Связь интеграла от функции с интегралом от ее модуля в случае их интегрируемости

Теорема 6.13.
$$f(x), |f(x)|$$
 интегрируемы на $[a,b) \Rightarrow \left|\int\limits_a^b f(x)dx\right| \leqslant \int\limits_a^b |f(x)|dx$

Доказательство. Самостоятельно.

tg: @moksimqa

Лекция 10 11.03

6.7Критерий Коши сходимости несобственных интегралов первого и второго рода.

Теорема 6.14 (Критерий Коши). f(x) интегрируема в собственном смысле на [a,c] $\forall c \geqslant a,$ тогда $\left| \int_{-\infty}^{\infty} f(x) dx \ cxo \partial umc s \right| \Leftrightarrow \exists B \geqslant a : \forall b_1, b_2 > B \left| \int_{-\infty}^{b_2} f(x) dx \right| < \varepsilon$

$$<\frac{\varepsilon}{2}$$

Берем
$$\forall b_1, b_2 > B \Rightarrow \left| \int_{b_1}^{b_2} f(x) dx \right| = \left| \int_a^{b_2} f(x) dx - A + A - \int_a^{b_1} f(x) dx \right| \leqslant \left| \int_a^{b_1} f(x) dx - A \right| + \left| \int_a^{b_2} f(x) dx - A \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\bigoplus$$
Пусть $\forall \varepsilon > 0 \; \exists B \geqslant 0 : \forall b_1, b_2 > B \left| \int\limits_{b_1}^{b_2} f(x) dx \right| < \varepsilon.$ Рассмотрим $F(x) = \int\limits_a^x f(t) dt, x \geqslant a$

Возьмем $\forall \{x_n\}: x_n \geqslant a, \lim_{n \to \infty} x_n = +\infty$ (т.е $\forall B \geqslant a \exists N: \forall n > N \ x_n > B$), возьмем $\forall m, n > N$ и рассмотрим

$$|F(x_m) - F(x_n)| = \left| \int\limits_a^{x_m} f(t) dt - \int\limits_a^{x_n} f(t) dt \right| = \left| \int\limits_{x_m}^{x_n} f(t) dt \right| < \varepsilon, \text{ т.е } \forall \varepsilon > 0 \; \exists N : \forall m, n > N \Rightarrow |F(x_m) - F(x_n)| < \varepsilon, \text{ т.е } \{F(x_n)\} \text{ - фундаментальная } \Rightarrow \exists \lim_{n \to \infty} F(x_n) \text{ - может зависеть от } x_n.$$

Пусть
$$\exists x_n': x_n' \geqslant a, \lim_{n \to \infty} x_n' = +\infty, \lim_{n \to \infty} F(x_n') = A'$$

Пусть
$$\exists x_n': x_n' \geqslant a$$
, $\lim_{n \to \infty} x_n' = +\infty$, $\lim_{n \to \infty} F(x_n') = A'$ $\exists x_n'': x_n'' \geqslant a$, $\lim_{n \to \infty} x_n'' = +\infty$, $\lim_{n \to \infty} F(x_n'') = A''$ Рассмотрим $\{z_n\}: \underbrace{z_1}_{=x_1'}, \underbrace{z_2}_{=x_1'}, \underbrace{z_3}_{x_2'}, \underbrace{z_4}_{x_2''}, \ldots, \underbrace{z_{2n-1}}_{x_n'}, \underbrace{z_{2n}}_{x_n''}, \cdots \Rightarrow z_m \geqslant a$, $\lim_{n \to \infty} z_m = +\infty \Rightarrow \exists \lim_{n \to \infty} F(z_m)$. Рассмотрим $A' = \lim_{n \to \infty} F(z_{2n-1}) = \lim_{n \to \infty} F(z_{2n}) = A'' \Rightarrow x_n''$

$$z_m \geqslant a, \lim_{n \to \infty} z_m = +\infty \Rightarrow \exists \lim_{m \to \infty} F(z_m).$$
 Рассмотрим $A' = \lim_{n \to \infty} F(\underbrace{z_{2n-1}}_{x_n'}) = \lim_{n \to \infty} F(\underbrace{z_{2n}}_{x_n'}) = A'' \Rightarrow$

$$\exists \lim_{n \to \infty} F(x)$$
, т.е $\exists \lim_{c \to +\infty} \int\limits_a^c f(x) dx$, т.е $\int\limits_a^c f(x) dx$ сходится

$$\int\limits_{-\infty}^{a}f(x)dx$$
 формулировка и доказательство - самостоятельно.

Теорема 6.15. f(x) интегрируема в собственном смысле на [a,c] $\forall c \in [a,b),$ тогда: $\int f(x)dx$ (c особой

точкой
$$b-a$$
) $cxoдится \Leftrightarrow \forall \varepsilon > 0 \; \exists B \in [a,b): \forall b_1,b_2 \in (B,b) \; \left| \int\limits_{b_1}^{b_2} f(x) dx \right| < \varepsilon$

Доказательство. Самостоятельно.

$$\int\limits_a^b f(x) dx$$
с особой точкой $a+0$ формулировка и доказательство - самостоятельно.

6.8 Абсолютная и условная сходимость несобственных интегралов. Сходимость абсолютно сходящихся несобственных интегралов.

Определение. Пусть f(x) интегрируема в собственном смысле на [a,c] $\forall c\geqslant a.$ $\int\limits_a^{+\infty}f(x)dx$ называется

абсолютно сходящимся, если $\int\limits_a^{+\infty} |f(x)| dx$ является сходящимся.

 $\int\limits_{-\infty}^{a}f(x)dx,\int\limits_{a}^{b}f(x)dx$ с особой точкой $b-0,\int\limits_{a}^{b}f(x)dx$ с особой точкой a+0 - формулировка определений абсолютной сходимости - самостоятельно.

Теорема 6.16. $\int_{a}^{+\infty} f(x)dx \ cxodumcs \ abconomno \Rightarrow \int_{a}^{+\infty} f(x)dx \ cxodumcs.$

 ${\it Доказатель\, cmbo}.$ $\int\limits_a^{+\infty} f(x)dx$ сходится абсолютно, т.е $\int\limits_a^{+\infty} |f(x)|dx$ сходится $\underset{{
m кр.\ Ko\, min}}{\Longrightarrow}$ orall arepsilon > 0 $\exists B \,\geqslant\, a$:

$$\forall b_1, b_2 > B \quad \left| \int\limits_{b_1}^{b_2} |f(x)| dx \right| < \varepsilon. \text{ Ho} \left| \int\limits_{b_1}^{b_2} f(x) dx \right| \leqslant \left| \int\limits_{b_1}^{b_2} |f(x)| dx \right| < \varepsilon \underset{\text{кр. Kоши}}{\Longrightarrow} \int\limits_{a}^{+\infty} f(x) dx \text{ сходится.}$$

 $\int\limits_{-\infty}^{a}f(x)dx$ - формулировка и доказательство - самостоятельно.

 $\begin{tabular}{l} -\infty \\ \begin{tabular}{l} \textbf{Теорема 6.17.} & \int\limits_a^b f(x) dx \ c \ ocoбoù \ moчкоù \ b-0 \ cxodumcs \ abconomno \Rightarrow \int\limits_a^b f(x) dx \ c \ ocoboù \ moчкоù \ b-0 \ cxodumcs. \\ \end{tabular}$

Доказательство. Самостоятельно.

 $\int\limits_a^b f(x)dx$ с особой точкой a+0 - формулировка и доказательство - самостоятельно.

6.9 Необходимое и достаточное условие сходимости несобственных интегралов первого и второго рода от неотрицательных функций.

Теорема 6.18. $f(x)\geqslant 0 \ \forall x\geqslant a, f(x)$ интегрируема в собственном смысле на $[a,c]\ \forall c\geqslant a; F(x)=\int\limits_a^x f(t)dt,\ mor\partial a:\int\limits_a^{+\infty} f(x)dx\ cxo\partial umc \ \Leftrightarrow \exists M>0: 0\leqslant F(x)\leqslant M\ \forall x\geqslant a$

Доказательство.
$$\forall x_1, x_2: a\leqslant x_1\leqslant x_2\Rightarrow F(x_2)=\int\limits_a^{x_2}f(t)dt=\underbrace{\int\limits_a^{x_1}f(t)dt}_{=F(x_1)}+\underbrace{\int\limits_{x_1}^{x_2}f(t)dt}_{\geqslant 0}\geqslant F(x_1)\Rightarrow F(x)$$

монотонно возрастает на $[a, +\infty)(*)$

$$\int\limits_{-\infty}^{a}f(x)dx$$
 - формулировка и доказательство - самостоятельно.
 Теорема 6.19. $f(x)\geqslant 0 \ \forall x\in [a,b), f(x)$ интегрируема в собственном смысле на $[a,c] \ \forall c\in [a,b), F(x)=x$

Теорема 6.19. $f(x)\geqslant 0 \ \forall x\in [a,b), f(x)$ интегрируема в собственном смысле на $[a,c] \ \forall c\in [a,b), F(x)=\int\limits_a^x f(t)dt, \ mor \partial a: \int\limits_a^b f(x)dx \ c \ ocoboù \ mor koù \ b-0 \ cxodumcs \Leftrightarrow \exists M>0: 0\leqslant F(x)\leqslant M \ \forall x\in [a,b)$

$$\int_{0}^{b} f(x) dx$$
 с особой точкой $a+0$ - формулировка и доказательство - самостоятельно.

6.10 Признак сравнения (в допредельной и предельной форме) для сходимости несобственных интегралов первого и второго рода от неотрицательных функций.

Теорема 6.20 (признак сравнения в допредельной форме). f(x), g(x) интегрируемы в собственном смыс-

ле на
$$[a,c]$$
 $\forall c\geqslant a,0\leqslant f(x)\leqslant g(x)$ $\forall x\geqslant a\Rightarrow \begin{pmatrix} +\infty\\ +\infty\\ +\infty\\ +\infty\\ 2)\int\limits_a^+ f(x)dx\ pacxodumcs\Rightarrow \int\limits_a^+ f(x)dx\ pacxodumcs\Rightarrow \int\limits_a^+ g(x)\ pacxodumcs.$

Доказатель ство. Рассмотрим
$$F(x)=\int\limits_{a}^{x}f(t)dt, G(x)=\int\limits_{a}^{x}g(t)dt\Rightarrow 0\leqslant F(x)\leqslant G(x)\;\forall x\geqslant a$$

1) Пусть
$$\int\limits_{a}^{+\infty}g(x)dx$$
 сходится \Rightarrow $\exists M>0:0\leqslant G(x)\leqslant M\ \forall x\geqslant a\Rightarrow 0\leqslant F(x)\leqslant G(x)\leqslant M\ \forall x\geqslant a\underset{\mathrm{T6.18}}{\Rightarrow}$ $\int\limits_{a}^{+\infty}f(x)dx$ сходится.

$$a$$
 2) Пусть $\int\limits_a^{+\infty} f(x)dx$ расходится. Предположим, что $\int\limits_a^{+\infty} g(x)dx$ сходится $\Rightarrow \int\limits_a^{+\infty} f(x)dx$ - сходится - противоречие $\Rightarrow \int\limits_a^{+\infty} g(x)dx$ расходится.

Следствие 1. $f(x)\geqslant 0 \ \forall x\geqslant a, f(x)$ интегрируема в собственном смысле на $[a,c]\ \forall c\geqslant a; \exists p>1: f(x)=$ $=\underline{Q}\left(\frac{1}{x^p}\right)\ npu\ x\rightarrow +\infty \Rightarrow \int\limits_{-\infty}^{+\infty} f(x)dx\ cxo\partial umcs.$

Доказатель ство. $\exists C>0, \exists b\geqslant \max{(a,1)}: 0\leqslant f(x)\leqslant \frac{c}{x^p} \ \forall x\geqslant b. \quad \int\limits_{1}^{+\infty} \frac{dx}{x^p} \ \text{сходится} \ (\text{т.к} \ p>1) \Rightarrow f(x) \leqslant \frac{c}{x^p} \ \forall x\geqslant b.$

$$\Rightarrow \int\limits_{b}^{+\infty} \frac{cdx}{x^{p}} \underset{\mathrm{T6.20}}{\Rightarrow} \int\limits_{b}^{+\infty} f(x) dx \ \mathrm{сходится} \qquad \Box$$

 $\int\limits_{-\infty}^{a}$ - формулировка и доказательство признака сравнения (без следствия) - самостоятельно.

Теорема 6.21. f(x), g(x) интегрируемы в собственном смысле на [a,c] $\forall c \in [a,b); 0 \leqslant f(x) \leqslant g(x)$ $\forall x \in [a,b]$ $\int_a^b g(x) dx$ c особой точкой b-0 cxodumcs $\Rightarrow \int_a^b f(x) dx$ c особой точкой b-0 cxodumcs [a,b) $\Rightarrow \int_a^b f(x) dx$ c f(x) f(x)

 $2)\int\limits_a^b f(x)dx$ с особой точкой b-0 расходится $\Rightarrow \int\limits_a^b g(x)dx$ с особой точкой b-0 расходится

Доказательство. Самостоятельно.

 $\int\limits_a^b f(x) dx$ с особой точкой a+0 - формулировка и доказательство самостоятельно.

Следствие 1. $f(x) \geqslant 0 \ \forall x \in (0;a], f(x)$ интегрируема в собственном смысле на $[c,a] \ \forall c \in (0;a], \exists p < 1:$ $f(x) = \underline{Q}\left(\frac{1}{x^p}\right) \ npu \ x \to 0 + 0 \Rightarrow \int\limits_0^a f(x) dx \ cxo \partial umc$ я

Доказательство. Самостоятельно.

Теорема 6.22 (признак сравнения в предельной форме). f(x), g(x) интегрируемы в собственном смысле на $[a,c]\ \forall c\geqslant a, f(x)\geqslant 0\ \forall x\geqslant a, g(x)>0\ \forall x\geqslant a, \exists \lim_{x\to +\infty}\frac{f(x)}{g(x)}=k\in (0,+\infty)\Rightarrow \int\limits_a^{+\infty}f(x)dx\ u\int\limits_a^{+\infty}g(x)dx$ сходятся или расходятся одновременно.

Доказатель ство.
$$\exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = k$$
, т.е $\forall \varepsilon > 0 \ \exists B \geqslant a : \forall x \geqslant b \Rightarrow \left| \frac{f(x)}{g(x)} - k \right| < \varepsilon$, т.е $k - \varepsilon < \frac{f(x)}{g(x)} < k + \varepsilon$

Берем $\varepsilon = \frac{k}{2} \Rightarrow \frac{\frac{k}{2} < \frac{f(x)}{g(x)} < \frac{3k}{2}}{\frac{k}{2}g(x) < f(x) < \frac{3k}{2}g(x)} \qquad \qquad \Box$

 $\int\limits_{-\infty}^{a}f(x)dx$ формулировка и доказательство - самостоятельно.

Теорема 6.23. f(x), g(x) интегрируемы в собственном смысле на [a,c] $\forall c \in [a,b), f(x) \geqslant 0 \forall x \in [a,b),$ $g(x) > 0 \forall x \in [a,b), \exists \lim_{x \to b-0} \frac{f(x)}{g(x)} = k \in (0,+\infty) \Rightarrow \int_a^b f(x) dx$ с особой точкой b-0 и $\int_a^b g(x) dx$ с особой точкой b-0 сходятся или расходятся одновременно.

Доказательство. Самостоятельно.

 $\int\limits_a^b f(x) dx$ с особой точкой a+0 формулировка и доказательство - самостоятельно.

6.11 Абсолютная и условная сходимость несобственных интегралов. Признаки Дирихле и Абеля для сходимости несобственных интегралов первого и второго рода.

Определение. f(x) интегрируема в собственном смысле на $[a,c] \ \forall c \geqslant a. \int_{a}^{+\infty} f(x) dx$ называется условно сходящимся, если $\int_{a}^{+\infty} f(x) dx$ сходится, но $\int_{a}^{+\infty} |f(x)| dx$ расходится.

Формулировка определений условно сходящихся $\int\limits_{-\infty}^{a}f(x)dx$, $\int\limits_{a}^{b}f(x)dx$ с особой точкой b-0, $\int\limits_{a}^{b}f(x)dx$ с особой точкой a+0 - самостоятельно.

Теорема 6.24 (признак Дирихле). f(x) непрерывна при $x \geqslant a, F(x)$ - первообразная κ f(x) на $[a, +\infty)$, $\exists q'(x) \forall x \geqslant a$,

причем
$$\exists M>0: |F(x)|\leqslant M \ \forall x\geqslant a, g(x): \ g'(x)$$
 непрерывна при $x\geqslant a, \ \Rightarrow \int\limits_a^{+\infty}f(x)g(x)dx$ сходится.
$$\lim_{x\to +\infty}g(x)=0$$

Лекция 11

14.03

Доказательство.
$$\begin{aligned} g(x) &\geqslant 0 \ \forall x \geqslant a, \\ \lim_{x \to +\infty} g(x) &= 0 \end{aligned} \Rightarrow \forall \varepsilon > 0 \exists B > 0 : \forall x > B \ 0 \leqslant g(x) < \frac{\varepsilon}{3M}. \text{ Берем } \forall b_1, b_2 > B \Rightarrow \end{aligned}$$

$$\begin{vmatrix} \int_{b_1}^{b_2} f(x)g(x)dx \\ = \left| \int_{b_1}^{b_2} g(x)d(F(x)) \right| = \left| F(x)g(x) \right|_{b_1}^{b_2} + \int_{b_1}^{b_2} F(x)(-g'(x))dx \\ &\leqslant |F(b_2)g(b_2)| + |F(b_1)g(b_1)| + \left| \int_{b_1}^{b_2} F(x)(-g'(x))dx \\ &\leqslant |F(b_2)g(b_2)| + |F(b_1)g(b_1)| + \left| \int_{b_1}^{b_2} F(x)(-g'(x))dx \\ &\leqslant \frac{\varepsilon}{3M} \cdot M + \frac{\varepsilon}{3M} \cdot M + M \right| \int_{b_1}^{b_2} (-g'(x))dx \\ &= \frac{2\varepsilon}{3} + \\ + M \left| g(b_1) - g(b_2) \right|_{EOO} = \sum_{b_2 \geqslant b_1} \frac{2\varepsilon}{3} + M \underbrace{\left(g(b_1) - g(b_2) \right)}_{\geqslant 0} \leqslant \frac{2\varepsilon}{3} + M \cdot \frac{\varepsilon}{3M} = \varepsilon \underset{\text{Кр. Коши}}{\Longrightarrow} \int_{a}^{+\infty} f(x)g(x)dx \end{aligned}$$
 сходится.
$$\Box$$

$$\int_{a}^{a} - \text{формулировка и доказательство - самостоятельно.}$$

Теорема 6.25. f(x) непрерывна при $x \in [a,b), F(x)$ — первообразная κ f(x) на $[a,b), \exists M>0: |F(x)| \leqslant M \ \forall x \in [a,b), g(x): \exists g'(x) \ \forall x \in [a,b), g'(x) \ nenperuble ha ha <math>[a,b), g'(x) \leqslant 0 \ \forall x \in [a,b), \lim_{x \to b-0} g(x) = 0 \Rightarrow \int_a^b f(x)g(x)dx \ c \ ocoboù \ moчкоù \ b-0 \ cxodumcs.$

Доказательство. Самостоятельно.

 $\int\limits_{a}^{b}$ с особой точкой a+0 - формулировка и доказательство - самостоятельно.

Теорема 6.26. (признак Абеля)
$$f(x)$$
 :
$$\int\limits_{a}^{+\infty} f(x) \, dx \, cxo dumcs.$$
 $f(x) = \exists g'(x) \, \forall x \geqslant a,$
$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \forall x \geqslant a,$$

$$g'(x) = \exists g'(x) \, \exists g'(x) \,$$

$$\Rightarrow \int\limits_{a}^{+\infty} f(x)g(x) dx$$
 сходится.

Доказатель ство. Рассмотрим $F(x) = \int\limits_a^x f(t)dt, \quad \int\limits_a^{+\infty} f(x)dx$ сходится $\Rightarrow \exists \lim\limits_{c \to +\infty} \int\limits_a^c f(x)dx = A = \lim\limits_{x \to +\infty} F(x) \Rightarrow \exists \theta \in S_{a} : \ \forall x > B \ |F(x) - A| < \frac{\varepsilon}{4k}$

$$F(x) - \text{первообразная к } f(x) \text{ на } [a, +\infty); \text{ Берем } \forall b_1, b_2 > B \Rightarrow \left| \int\limits_{b_1}^{b_2} f(x) g(x) dx \right| = \left| \int\limits_{b_1}^{b_2} g(x) d\left(F(x) - A\right) \right| = \left| \left(F(x) - A)g(x)\right|_{b_1}^{b_2} + \int\limits_{b_1}^{b_2} (F(x) - A)(-g'(x)) dx \right| = \left| \left(F(b_2) - A)g(b_2) - (F(b_1) - A)(g(b_1)) + \int\limits_{b_1}^{b_2} (F(x) - A)(-g'(x)) dx \right| \leq \left| F(b_2) - A| \cdot |g(b_2)| + |F(b_1) - A| \cdot |g(b_1)| + \left| \int\limits_{b_1}^{b_2} (F(x) - A(-g'(x)) dx \right| < \frac{\varepsilon}{4k} \cdot k + \frac{\varepsilon$$

 $\int\limits_{-\infty}$ - формулировка и доказательство - самостоятельно. $\exists a'(x) \ \forall x \in [a,b)$

$$f(x)$$
 непрерывна при $x \in [a,b),$ Георема 6.27.
$$\int\limits_a^b f(x) dx \ c \ ocoбой точкой $b-0 \ cxo \partial umc$ я, $g(x): \begin{cases} g'(x) \ nenpepus na \ npu \ x \in [a,b), \\ g'(x) \leqslant 0 \ \forall x \in [a,b), \end{cases} \Rightarrow \int\limits_a^b f(x)g(x) dx$ $\exists k>0: |g(x)| \leqslant k \ \forall x \in [a,b)$$$

c особой точкой b-0 сходится.

Доказательство. Самостоятельно.

 $\int\limits_{a}^{b}$ с особой точкой a+0 - формулировка и доказательство - самостоятельно.

6.11.1 Пример неинтегрируемости модуля интегрируемых в несобственном смысле функций.

$$\int_{1}^{+\infty} \frac{\sin x}{x^{p}} dx, \int_{1}^{+\infty} \frac{\cos x}{x^{p}} dx$$
1) $p > 1$: $\left| \frac{\sin x}{x^{p}} \right| \leqslant \frac{1}{x^{p}}, \left| \frac{\cos x}{x^{p}} \right|, \int_{1}^{+\infty} \frac{dx}{x^{p}} \operatorname{сходится} (p > 1) \Rightarrow \int_{1}^{+\infty} \left| \frac{\sin x}{x^{p}} \right| dx$ и $\int_{1}^{+\infty} \left| \frac{\cos x}{x^{p}} \right| dx$ сходятся абсолютно.

$$2) \ 0$$

 $f(x) = \cos x$; $F(x) = \sin x$, $|F(x)| \le 1$

признаку Дирихле

$$\left|\frac{\cos x}{x^p}\right| = \frac{|\cos x|}{x^p} \geqslant \frac{\cos^2 x}{x^p} = \frac{1}{2} \left(\frac{1}{x^p} + \frac{\cos 2x}{x^p}\right), \quad \int_1^{+\infty} \frac{\cos 2x}{x^p} dx \text{ сходится по Дирихле, но } \int_1^{+\infty} \frac{dx}{x^p} \text{ расходится }$$
 (т.к. $p \leqslant 1$) $\Rightarrow \int_1^{+\infty} \frac{1}{2} \left(\frac{1}{x^p} + \frac{\cos 2x}{x^p}\right) dx \text{ расходится.} \Rightarrow \int_1^{+\infty} \left|\frac{\cos x}{x^p}\right| dx \text{ расходится по признаку сравнения}$ $\Rightarrow \int_1^{+\infty} \frac{\cos x}{x^p} dx \text{ сходится условно.}$

3)
$$p\leqslant 0$$
: Рассмотрим $\int\limits_{1}^{+\infty} \frac{\sin x}{x^p} dx$. Докажем расходимость.

Отрицание критерия Коши:
$$\int\limits_{1}^{+\infty} \frac{\sin x}{x^{p}} dx \text{ расходится} \Leftrightarrow \exists \varepsilon > 0 : \forall B \geqslant a \ \exists b_{1}, b_{2} > B : \left| \int\limits_{b_{1}}^{b_{2}} \frac{\sin x}{x^{p}} dx \right| \geqslant \varepsilon \ (?)$$

$$\varepsilon = 2, \text{ берем } \forall B \geqslant a \Rightarrow \exists b_{1} = 2k\pi > B, \exists b_{2} = 2k\pi + \pi > b_{1} > B, k \in \mathbb{N} \left| \int\limits_{b_{1}}^{b_{2}} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi + \pi}^{2k\pi + \pi} \frac{\sin x}{x^{p}} dx \right| = \left| \int\limits_{2k\pi$$

Итого: $\int_{1}^{+\infty} \frac{\sin x}{x^p} dx$, $\int_{1}^{+\infty} \frac{\cos x}{x^p} dx$ сходятся абсолютно при p > 1, сходятся условно при $p \in (0;1]$, расходятся при $p \in 0$.

6.12 Главное значение в смысле Коши несобственных интегралов первого и второго рода и его связь с величиной соответствующего несобственного интеграла.

Определение. Пусть f(x) интегрируема в собственном смысле на $\forall [a,b] \subset (-\infty,+\infty)$. Главным значением $\int\limits_{-\infty}^{+\infty} f(x)dx$ в смысле Коши называется число равное $\lim\limits_{R \to +\infty} \int\limits_{-R}^{R} f(x)dx$ (если он существует). Обозначение: $v.p.\int\limits_{-\infty}^{+\infty} f(x)dx$ (Valeur Principale, фр).

Теорема 6.28. Если $\int_{-\infty}^{+\infty} f(x)dx$ сходится по Риману, то он сходится и по Коши, причем к той жее $+\infty$

величине
$$\left(v.p.\int\limits_{-\infty}^{+\infty}f(x)=\int\limits_{-\infty}^{+\infty}f(x)dx\right)$$

Доказатель ство.
$$v.p.$$

$$\int\limits_{-\infty}^{+\infty} f(x)dx = \lim\limits_{R \to +\infty} \int\limits_{-R}^{R} f(x)dx = \lim\limits_{R \to +\infty} \left[\int\limits_{-R}^{0} f(x)dx + \int\limits_{0}^{R} f(x)dx \right] = \lim\limits_{R \to +\infty} \int\limits_{-R}^{0} f(x) + \lim\limits_{R \to +\infty} \int\limits_{0}^{R} f(x)dx = \int\limits_{-\infty}^{0} f(x)dx + \int\limits_{0}^{+\infty} f(x)dx = \int\limits_{-\infty}^{+\infty} f(x)dx = \int\limits_{-\infty}^{+\infty} f(x)dx$$

Но не наооборот!

 \mathcal{A} оказательство. v.p. $\int\limits_{-\infty}^{+\infty} \mathrm{arctg}\,(x) dx = \lim_{R \to +\infty} \int\limits_{-R}^{R} \mathrm{arctg}\,(x) dx = 0$, но $\int\limits_{-\infty}^{+\infty} \mathrm{arctg}\,(x) dx$ расходится, т.к

$$\int_{0}^{+\infty} \arctan(x) dx = \int_{0}^{\frac{\pi}{4}} \arctan(x) dx + \int_{\frac{\pi}{4}}^{+\infty} \arctan(x) dx$$

$$\int_{\underline{\pi}}^{+\infty} 1 \cdot dx \text{ расходится} \Rightarrow \int_{0}^{+\infty} \arctan(x) dx \text{ расходится.}$$

Определение. Пусть f(x) интегрируема в собственном смысле на $[a,c-\delta]$ и на $[c+\delta,b]$ $\forall \delta \in$

 $f(a,\min(c-a,b-c))$. Главным значением $\int\limits_a^b f(x)dx$ в смысле Коши называется число, равное

$$\lim_{\delta\to 0+0}\left[\int\limits_a^{c-\delta}f(x)dx+\int\limits_{c+\delta}^bf(x)dx\right] \mbox{ (если он существует). Обозначение: } v.p.\int\limits_a^bf(x)dx.$$

Теорема 6.29. Если $\int\limits_a^b f(x) dx$ сходится по Риману, то он сходится и по Коши, причем к той же

величине
$$\left(v.p.\int\limits_a^bf(x)dx=\int\limits_a^bf(x)dx\right)$$

Доказательство. Самостоятельно.

Но не наоборот! Пусть
$$a < c < b$$
. Рассмотрим $v.p.$
$$\int\limits_a^b \frac{dx}{x-c} = \lim_{\delta \to 0+0} \left[\int\limits_a^{c-\delta} \frac{dx}{x-c} + \int\limits_{c+\delta}^b \frac{dx}{x-c} \right] = \lim_{\delta \to 0+0} \left[\ln\left(c-x\right) \Big|_{x=a}^{x=c-\delta} + \ln\left(x-c\right) \Big|_{x=c+\delta}^{x=b} \right] = \lim_{\delta \to 0+0} \left[\underbrace{\ln\left(\delta\right) - \ln\left(c-a\right)}_{\frac{\#\lim}{\delta \to 0}} + \underbrace{\ln\left(b-c\right) - \ln\delta}_{\frac{\#\lim}{\delta \to 0}} \right] = \ln\left(\frac{b-c}{c-a}\right), \text{ но}$$

$$\int\limits_b^b \frac{dx}{x-c} \text{ расходится по Риману.}$$

Если особых точек несколько, то промежуток интегрирования разбиваем так, чтобы особые точки x_0-0 и x_0+0 (как и $-\infty$ и $+\infty$) входили попарно.

$$x_0 - 0 \text{ и } x_0 + 0 \text{ (как и } -\infty \text{ и } +\infty) \text{ входили попарно.}$$
 Пример:
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 - 1} \text{ расходится по Риману.} -\frac{-\infty}{R} - \frac{-1 - \delta_1}{1} - \frac{-1 + \delta_1}{1 - \delta_2} \frac{1 + \delta_2}{x^2 - 1} \frac{\infty}{R}$$

$$v.p. \int_{-\infty}^{+\infty} \frac{dx}{x^2 - 1} = \lim_{\delta_1 \to 0 + 0} \left[\int_{-2}^{-1 - \delta_1} \frac{dx}{x^2 - 1} + \int_{-1 + \delta_1}^{0} \frac{dx}{x^2 - 1} \right] + \lim_{\delta_2 \to 0 + 0} \left[\int_{0}^{1 - \delta_2} \frac{dx}{x^2 - 1} + \int_{1 + \delta_2}^{2} \frac{dx}{x^2 - 1} \right] + \lim_{\delta_2 \to 0 + 0} \left[\frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \right|_{-2}^{-1 - \delta_1} + \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \right|_{-1 + \delta_1}^{0} \right] + \lim_{\delta_2 \to 0 + 0} \left[\frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \right|_{0}^{1 - \delta_2} + \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \right|_{-1 + \delta_1}^{-2} \right] + \lim_{\delta_2 \to 0 + 0} \left[\frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| \right|_{-1 + \delta_1}^{-2} \right] = \lim_{\epsilon_{\text{амостоятельно}}} = 0 \Rightarrow \text{ v. p. } \int_{-\infty}^{+\infty} \frac{dx}{x^2 - 1} = 0$$

tg: @moksimqa