Ear Recognizer Android

Leonardo Emili, Alessio Luciani Sapienza University of Rome

February, 2021

1 Introduction

The ear as a new biometrics has recently gained a discrete success because of some fundamental properties it has, among them: uniqueness, permanence, collectability, and universality. We owe A. Iannarelli for these incredibile findings, in 1989 he discovered that no pair of individuals share the same ear shape, therefore it is possible to use them to identify people. Although humans are not used to recognizing people by their ear shape, it is possible to leverage a number of keypoints (namely points of interest) in the ear shape in order to distinguish them. Moreover, ears present less details with respect to other biometrics (e.g. the face), hence allowing them be captured by means of lower resolution devices. However, some challenges must be tackled when dealing with ear recognition: the size and the fact that they share the same colour of the skin puts some difficulties, as well as their position that may be an obstacle because they may be only partially visible. In the years, researchers proposed several approaches to deal with the ear recognition task, in some cases requiring the use of complex neural networks as well as a large collection of annotated data to train them. In this work, we implemented a recognition system according to the best pratices that are adopted when designing a biometric module, exploring different techniques that are currently employed by state-of-the-art solutions.

2 Dataset

We conducted our experiments using the Mathematical Analysis of Images (AMI) Ear Database [1]: it consists of a collection of 700 2D images acquired from 100 different subjects in an indoor environment. Images show a high degree of variability since they represent ears of subjects in the range of 19-65 ears taken from multiple points of view. Since all of the images come shipped with the identifier of the subject they belong to, we have been able to evaluate our work against it and draw some considerations about the final performances.

3 Localization phase

The first step of the pipeline aims at designing a detection module for detecting whether the provided image contains ear shapes or not and for localizing their position within the image. The idea is that we only care about portions of the original image containing ears while discarding other irrelevant information. From now on, we will refer to these portions with the term of Region of Interest (ROI), denoting the bounding box surrounding the ear zone. Our goal is to build a detection module that is robust enough to rotations, translations, viewpoint, and scale changes. The reason is that images may not be perfect and the ear region not perfectly centered, but we want to be able to extract valid ROI no matter their position in the original image. To this aim, we relied on Viola-Jones Haar Feature-based Cascade Classifiers [2] to detect valid ROI. The algorithm works by combining the power of Haar-like features to useful extract information from the image (e.g. presence of edges or straight lines) with the concept of integral images to speed up computations. The AdaBoost algorithm is responsible for the training procedure which selects a subset of meaningful features from the original set of features. Finally,

a sequence of gradually stronger classifiers is applied over the input image to detect if it contains an ear shape. If at any stage, the decision is negative then the considered window is discarded without any further processing.

Figure 1: ROI after applying a degree of rotation $(-10/0/+10^{\circ})$.

In the above figure, it is possible to see the effects of applying ear detection on a real image from the dataset. It is clear that the best localization results are achieved when the image is not rotated at all. However, it is worth noting that the bounding box denoted by the detection procedure does not contain the whole ear and cuts off some external regions. For the sake of completeness, we also include the results when a small rotation is applied to the image. We can see that the ear zone localization is still quite good even though the aforementioned problem is more evident.

In order to improve the quality of the localization performed by the considered classifiers [3], we propose a slight modification of the original algorithm where the considered ROI is the bounding box returned by the algorithm plus a small area of padding of size k around it. We experimentally found that for k = 80 our model performs the best and below here we can see that previous issues are less visible:

Figure 2: ROI with padding after applying a degree of rotation $(-10/0/+10^{\circ})$.

At the end of this phase, we finally have our ROI, and by cropping the green areas, we can ignore the rest of the image. It is worth noting that all the images are converted into grayscale images and resized into a fixed size for the next steps.

4 Landmark detection phase

In this phase, we explored some of the most common approaches when extracting points of interest (i.e. landmarks). We first experimented using a state-of-the-art convolutional neural network (CNN) from the work of Hansley et al. that was specifically trained on this task and it performed quite well.

Figure 3: Landmark detection using a state-of-the-art CNN.

However, for the aim of this project, we thought that it would be interesting to test ourselves by experimenting with some specific algorithm instead of using an off-the-shelf model. In this context, we analyze the effects of applying the Oriented FAST and rotated BRIEF (ORB) algorithm [4] for detecting image keypoints and extracting features. The algorithm essentially works by combining the feature detection provided by the FAST algorithm [5], which performs corner detection by inspecting if a pixel has a contiguous set of pixels that are brighter or darker than a threshold, and the BRIEF algorithm [6] for feature description computation, which allows us to get a compact feature vector. It's important to say that the two algorithms are used in this context for the same purpose (i.e. landmark detection), but their task is slightly different: while the CNN was specifically trained for detecting landmarks that are specific to ear shapes, the ORB algorithm plays in a different way and aims at finding generic image keypoints. Thus, we expect the resulting set of keypoints to be different from each other.

Figure 4: Landmark detection using the ORB algorithm.

We can see how the set of landmarks produced by the ORB algorithm is much more widespread around the center of the ear and does not necessarily follow the ear shape. However, we thought we could improve the results achieved using ORB by doing some considerations about the distribution of our data. We know that the ear region contains many meaningful key points that will later be used when matching incoming probes with templates belonging to enrolled subjects. If we inspect how these points are distributed we can clearly distinguish some outliers (e.g. in the hair region) from the rest of the points that are concentrated around the center of the ear. Hence, we decided to apply data reduction to our set of landmarks X and only to retain those points that satisfy the following condition:

$$d(x_i, \mu_X) <= l * \sigma_X$$

where $d(x_i, x_j)$ is the Euclidean distance bewteen x_i and x_j , μ_X and σ_X are respectively the centroid and the standard deviation of our set of points, and l can be seen as a factor that controls how strictly

we are filtering out points that are far from the centroid. Here, we see the effects for different values of l, where the green circles represent points that satisfy the condition while red points discarded:

Figure 5: Effects of landmarks reduction based on sparsity of data points.

We can observe that when l is low many important landmarks are discarded, on the other hand, if we choose a suitable value for l we can have a better approximation of the landmarks that were previously obtained using a dedicated CNN. We find it particularly interesting because the latter results can be computed much faster, and above all, we can skip the complex training and data preparation which is instead required if using the first model.

5 Alignment phase

Another common technique that is common when designing a biometric module is image alignment. In fact, in the beginning, we said that we want a recognition system capable of identifying the user even if the input probe is not perfectly centered and aligned. In order to do that, we explored a few techniques to estimate the initial orientation of the image and finally opted for regression. The idea is simple, if we look at the ear shape, we can observe that it is stretched along one direction, and more interesting, key points naturally tend to follow this direction. In these terms, we got a formulation for a linear regression problem where the goal is to find the line that better approximates a set of points (i.e. the landmarks). We did it and got some unexpected results:

Figure 6: Ear rotation.

TODO: discuss about zoom with padding, difference with rotations obtained using the CNN model.

References

- [1] E. Gonzalez-Sanchez, "Biometria de la oreja, Ph.D. thesis, Universidad de Las Palmas de Gran Canaria, Spain." https://ctim.ulpgc.es/research_works/ami_ear_database/, 2008.
- [2] P. A. Viola and M. J. Jones, "Rapid object detection using a boosted cascade of simple features," in CVPR (1), pp. 511–518, IEEE Computer Society, 2001.
- [3] M. Castrillón Santana, J. Lorenzo Navarro, and D. Hernández Sosa, "An study on ear detection and its applications to face detection," in *Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA)*, (La Laguna, Spain), November 2011.
- [4] E. Rublee, V. Rabaud, K. Konolige, and G. R. Bradski, "Orb: An efficient alternative to sift or surf.," in ICCV (D. N. Metaxas, L. Quan, A. Sanfeliu, and L. V. Gool, eds.), pp. 2564–2571, IEEE Computer Society, 2011.
- [5] E. Rosten and T. Drummond, "Machine learning for high-speed corner detection," in *European Conference on Computer Vision*, vol. 1, pp. 430–443, May 2006.
- [6] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, "Brief: binary robust independent elementary features," in *Proceedings of the 11th European conference on Computer vision: Part IV*, ECCV'10, (Berlin, Heidelberg), pp. 778–792, Springer-Verlag, 2010.