Name:

MATH 308

"Since, as is well be seen to be a seen

Fall 2022

HW 6: Due 09/27

"Since, as is well known, god helps those who help themselves, presumably the devil helps all those, and only those, who don't help themselves. Does the devil help himself?"

-Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid

Problem 1. (10pt) Let $S := \{-3, -2, -1, 0, 1, 2, 3\}$ be a universal set and define $X := \{-1, 0, 1\}$. Give an example of...

- (a) a proper subset of S, say A, that is disjoint from X.
- (b) a subset of S, say B, such that $B X \neq B$.
- (c) a subset of S, say C, such that $X\Delta C = X \cup C$.
- (d) a subset of S, say D, such that D^c contains only nonnegative numbers.
- (e) a subset of S, say E, such that the complement of $X \cup E$ is empty.

Problem 2. (10pt) Let A and B be sets. By defining A=B by using a quantified open sentence, show that $A \neq B$ is equivalent to the logical statement...

$$(\exists x)(x \in A \land x \notin B) \lor (\exists x)(x \in B \land x \notin A)$$

Problem 3. (10pt) Let A and B be sets in a universe \mathcal{U} and consider the set $A\Delta B$.

- (a) Using set-builder notation and logical propositions, define the set $A\Delta B$.
- (b) Construct a Venn diagram for the set $(A\Delta B)^c$.
- (c) Construct a Venn diagram for the set $(A \cup B)^c \cup (A \cap B)$
- (d) What might you conjecture from your answers in (b) and (c)?

Problem 4. (10pt) Let A, B, and C be sets in some universe \mathcal{U} . Find the *complement* of the following sets, showing all your work and 'simplifying' as much as possible:

- (a) $A \setminus B$
- (b) $(A^c \cup C) \cap B$
- (c) $(((A \cup B) \cap C))^c \cup B^c)^c$

Problem 5. (10pt) Define $S:=\{1,2,\{1\},\{\{2\}\}\}$. Determine whether the following are true or false—no justification is necessary:

- (a) $\varnothing \in S$
- (b) $\varnothing \subseteq S$
- (c) $1 \in \mathcal{P}(S)$
- (d) $\{1\} \in \mathcal{P}(S)$
- (e) $\{\{1\}\}\in\mathcal{P}(S)$
- (f) $1 \subseteq \mathcal{P}(S)$

- (g) $\{1\} \subseteq \mathcal{P}(S)$
- (h) $\{\{1\}\}\subseteq \mathcal{P}(S)$
- (i) $\varnothing \in \mathcal{P}(S)$
- (j) $\{\varnothing\} \in \mathcal{P}(S)$
- (k) $\varnothing \subseteq \mathcal{P}(S)$
- (1) $\{\emptyset\} \subseteq \mathcal{P}(S)$

Problem 6. (10pt) Define $A := \{3, 5, 7\}$ and $B := \{\pi, e, \sqrt{2}, \varphi\}$.

- (a) Determine $A \times B$.
- (b) Is $(3,\pi) \in A \times B$? Is $(\pi,3) \in A \times B$? Explain the relation between your responses.
- (c) Is $A \times B = B \times A$? Explain.

Problem 7. (10pt) Determine $\bigcup_{i\in\mathcal{I}}A_n$ and $\bigcap_{i\in\mathcal{I}}A_n$ for the given A_n and \mathcal{I} below—no justification is necessary. However, if the set is finite, enumerate its elements; otherwise, either give the set in

set-builder notation or using set operations with 'standard' sets, e.g. \mathbb{Q} , $\mathbb{Z}\setminus\mathbb{N}$, etc.

(a)
$$A_n := \left(\frac{1}{n}, 1 + \frac{1}{n}\right); \mathcal{I} := \mathbb{N}$$

(b)
$$A_n := (n, n+1); \mathcal{I} := \mathbb{Z}$$

(c)
$$A_n := (n - \frac{1}{2}, n + \frac{1}{2}); \mathcal{I} := \mathbb{R}$$

Problem 8. (10pt) Below is a partial proof of the fact that $A \setminus B = A \cap B^c$. By filling in the missing portions, complete the partial proof below so that it is a correct, logically sound proof with 'no gaps':

Proposition. If *A* and *B* are sets, then $A \setminus B = A \cap B^c$.

Proof. If $A \setminus B = \varnothing$, then there is no element in A that is not also in B. But then $A \subseteq B$ so that $A^c \supseteq B^c$. But then $A \cap B^c \subseteq A \cap A^c = \varnothing$ so that $A \cap B^c = \varnothing$. Therefore, if $A \setminus B = \varnothing$, then $A \setminus B = A \cap B^c$. If $A \cap B^c = \varnothing$, then there is no element in both A and B^c . Now if there were an element in $A \setminus B$, there would be an element in A that is not in B, i.e. an element in A that is in B^c , a contradiction to the fact that $A \cap B^c = \varnothing$, i.e. that there is no element in both A and B^c . This shows that $A \setminus B = \varnothing$. Therefore, if $A \cap B^c = \varnothing$, then $A \setminus B = A \cap B^c$. Then we have shown that if either $A \setminus B$ or $A \cap B^c$ are empty then $A \setminus B = A \cap B^c$. Now assume that both $A \setminus B$ and $A \cap B^c$ are nonempty.

To prove that A	$A \setminus B = A \cap B^c$, we need to show	w and _	·
	c : We prove that $A \setminus B \subseteq A \cap B$		
	But then $x \in$ Therefore, this shows t		. This snows that
	: We need to show that $A\cap A$	$B^c \subseteq A \setminus B$. Let $x \in \underline{\hspace{1cm}}$	Then
$x \in \underline{\hspace{1cm}}$	$\underline{\hspace{1cm}}$ and $x \in \underline{\hspace{1cm}}$	But then $x \in $	and
<i>x</i> ∉	This shows that $x \in$	Therefore,	, we know that
Because	and	, we know that $A \setminus B$ =	$=A\cap B^c.$