

Polarimetric Radar Verification of GPM Satellite-Based Retrievals of the Raindrop Size Distribution

Walter A. Petersen, Earth Science Branch, ST-11, NASA-MSFC

A. Tokay (UMBC/NASA-GSFC), K. R. Morris (SAIC/NASA-GSFC), L. P. D'Aderro (U. Ferrara, Italy),
D. B. Wolff (NASA-GSFC/WFF), P. N. Gatlin (NASA-MSFC)

Outline

- **Motivation and Requirements**
- **Approach, Methods, Data**
- **Verification of basic mission requirement and GPM DSD "drill down"**
- **Summary**

Acknowledgements: T. Berendes (UAH/MSFC), D. Marks (SSAI/WFF), J. Pippitt (SSAI/GSFC), M. Wingo (UAH/MSFC)

Research Support: NASA PMM/GPM (Dr.'s R. Kakar / G. Skofronick-Jackson)

GPM “Core” Satellite Science Requirements

(Termed “Level -1” or “L1”)

- DPR: *quantify rain rates between 0.22 and 110 mm hr⁻¹ and demonstrate the detection of snowfall at an effective resolution of 5 km.*
- GMI: *quantify rain rates between 0.22 and 60 mm hr⁻¹ and demonstrate the detection of snowfall at an effective resolution of 15 km.*
- **Core observatory radar estimation of the Drop Size Distribution (DSD)- specifically, D_m to within +/- 0.5 mm.** [note- no N_w requirement]
- Core observatory *instantaneous rain rate estimates at a resolution of 50 km with bias and random error < 50% at 1 mm hr⁻¹ and < 25% at 10 mm hr⁻¹, relative to GV*

Overarching Philosophy

World map of Köppen climate classification for 1901–2010

First letter	Second letter	Third letter
A: Tropical	f: Fully humid	T: Tundra
B: Dry	m: Monsoon	F: Frost
C: Mild temperate	s: Dry summer	h: Hot arid
D: Snow	w: Dry winter	k: Cold arid
E: Polar	W: Desert	a: Hot summer
	S: Steppe	b: Warm summer
		c: Cool summer
		d: Cold summer

Data source: Terrestrial Air Temperature/Precipitation: 1900–2010 Gridded Monthly Time Series (V 3.01)
Resolution: 0.5 degree latitude/longitude
Website: <http://hanschen.org/koppen>
Ref: Chen, D. and H. W. Chen, 2013: Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. *Environmental Development*, 6, 69–79, 10.1016/j.envdev.2013.03.007.

.....references dual-pol radar that functions as a "translator" to GPM footprint and swath scales

2D Video disdrometer data collected at numerous locations, regimes, and point scales.....

Ensemble Point Data Useful for Verification of DPR DSD-related Algorithm Assumptions

Algorithm assumes $R = C \varepsilon^a D_m^b$
coefficients a f(rain type) and ε
range [5, 0.2];

DPR Algorithm- assumes
 \log normal ε , with $\langle \varepsilon \rangle \sim 1$;

Disdrometer data suggests ε is smaller
for convective vs. stratiform - consistent
(with analysis of DPR retrievals);

Need Footprint Comparisons for L1 Requirements

2DVD to Radar: Methodology

- Empirical models developed for NASA field campaign "regimes" (Oklahoma, Iowa, Alabama, Mid-Atlantic Coastal, Washington Coast, Appalachians/Piedmont....)
- Aggregated to make "**ALL-regimes**" relationship developed for U.S. continental-scale statistical verification (> 200,000 minutes used)

"ALL" DSD model-fit relative errors: BIAS < 10%, MAE < 15%

Regime Sub-sample comparisons to NPOL

Field Campaign	Bias	Absolute Bias	Samples
D_m			
IFloods	0.00	0.42	6,610
IPHEx	0.07	0.34	1,058
OLYMPEx	0.03	0.34	1,008
LOG10[N_w]			
IFloods	0.04	0.90	6,610
IPHEx	-0.12	0.89	1,058
OLYMPEx	0.21	0.89	1,008

- **Sanity check:** Examine regime D_m , N_w fits against NPOL observations;
- Examine departure of regime fits from the "ALL" relationship

Tokay et al. 2017 (in preparation)

Application of the "ALL" relationship to certain regimes (e.g., OLYMPEx) and/or the less-frequently sampled large ZDR introduces more uncertainty in D_m ; N_w more stable.

GPM-GV Radar Sites

88Ds, NPOL, KWAJ

Network radar datasets used for "statistical" science requirements verification of the DSD

DPR Ray

DPR bins vertically averaged in GR-beam intersection

Schwaller and Morris, 2011

VN Matching

For each GV radar beam, range gates within 100 km of a given radar are geometrically volume-matched to intersecting DPR rays

Products (e.g., select DPR variables, Polarimetric moments, **DSD**, HID, RR...) are stored in the VN-database.

L1 DSD: DPR MS Version 4, Version 5 vs. GV Radar D_m

All Samples

2ADPR V04A D_m vs. GR D_m Scatter, Mean GR-DPR Bias: -0.1 mm, N=107274
All Samples Below Bright Band and ≤ 3 km AGL, 100% Above Thresh.

V4

Stratiform

DPR V04A D_m vs. GR D_m Scatter, Mean GR-DPR Bias: -0.0 mm, N=82932
Stratiform Samples, Below Bright Band and ≤ 3 km AGL, 100% Above Thresh.

Convective

DPR V04A D_m vs. GR D_m Scatter, Mean GR-DPR Bias: -0.2 mm, N=24652
Convective Samples, Below Bright Band and ≤ 3 km AGL, 100% Above Thresh.

V5

L1 science requirement: Satisfied as a whole. However, stratiform samples dominate and V5 inner swath of NS (MS) possesses an increasingly positive bias in D_m relative to GV;

2ADPR Convective D_m in V5 deviates more from GV and secondary mode in convective D_m more pronounced at large values of DPR D_m (?)

2ADPR Convective N_w vs. D_m against GV Radar

Ref. C/S Separation
line (e.g., Bringi et
al., 2009; Thurai et
al. 2015)

DPR

GV

- D_m offset results in lower N_w in DPR retrievals and mode in *inner* dual-freq. swath
- Differences marked between *inner* (DPR) and *outer* (2AKu) retrieval swaths
- Slope of N_w vs. D_m is reasonably similar between retrievals and GV pol relationship

DPR and GV in Disdrometer Space D_m and N_w

V5 Stratiform

V5 Convective

- V5 fits GV sample space (Assuming $D_m \approx D_0$); behavior qualitatively similar to GPM GV Radar
- Shift to larger D_m and smaller N_w relative to GV; secondary mode at large D_m

2BDPRGMI: MS Swath with GV (DSD, Rain, Z...)

- Modes in the 2BDPRGMI DSD (N_w?).
- In aggregate 2BDPRGMI produces a footprint rain rate similar to GV (GV-pol, and the MRMS!)

Summary

Approach:

- Polarimetric radar-based DSD retrievals (D_m , N_w) developed using 2DVD data for multiple rainfall regimes; scale translation to GPM satellite footprints/swaths.
- VN architecture for comparing GPM Core satellite DPR to GV on CONUS scale

Result:

- GPM Level 1 Requirements on D_m (+/- 0.5 mm of GV) are satisfied relative to GV measurement;
- D_m positive bias- accentuated in convective precip; N_w in DPR somewhat similar to GV but responds to D_m bias; Combined-Algorithm N_w - odder behavior compared to GV.
- Sensitivity of comparisons to rain type (Convective vs. Stratiform) and swath (e.g., inner Ka/Ku vs. outer KuPR, Combined MS)- algorithms/sampling vs. physics?

Moving ahead:

- Further analysis work to parse/isolate DSD behavior as a function of 3-D GPM and ancillary observables to guide algorithm approaches (e.g., μ , PIA, N_w selection in Combined algorithm, ε and associated parameter behavior in DPR/KuPR algorithms....)
- Further GV work on defining the DSD for light rain/small D_m - Generalized Gamma approach?

EXTRAS

Next: How do we handle light rain DSD?

Do current DSD assumptions for GPM adequately represent the small rain drop sizes?

We do not properly represent the small-drop end (< 0.7 mm) of the drop size distribution-

Likely important for light rain estimation.

GPM dual-frequency precipitation radar (DPR) swath as it samples rain over Huntsville disdrometers

Right answerright reason?

DSD measured by GV

MPS+2DVD (2DVD) $D_m = 1.61$ (1.73) mm

Reference: Thurai et al. 2017, JAMC

$\mu = 3 ?$

Convective (stratiform) μ almost always $< (>)$ 3 in MC3E and Alabama 2DVD data [DPR $\mu=3$, Combined $\mu=2$]