阵列传感器

- 多传感器检测的含义
- 光电阵列传感器: 空间滤波=》能做什么?
- 多麦克风阵列:面对多声源=》能做什么?
- 超声阵列探头: 延迟叠加=》能做什么?

+

- 已学过的MEMS传感器
- MEMS传感器制造工艺、优势
- MEMS热电传感器

1

多传感器阵列检测的意义

光电阵列应用一马拉松距离测量仪

Dis.=42.195km P=0.5mm a:b=1:10

差分输出g(t)近似于正弦波, 其频率正比于移动速度, 其周期计数表示移动距离。

思考:这种测距法与光栅标尺法和二维码定位法有什么不同?

3

阵列传感器测距测速原理

阵列传感器有空间频率滤波功能, 差分输出g(t)是窄频带信号。

光电传感器阵列一器件结构

5

光电传感器信号放大电路

阵列传感器的差动输出和权重函数

7

权重函数+直线移动 =》卷积输出

求解权重函数的功率谱

$$H(\mu) = \int_{0}^{Np} h(x) \exp(-j2\pi\mu x) dx$$

$$= \int_{0}^{p} h_{p}(x) \exp(-j2\pi\mu x) dx \cdot \sum_{k=1}^{N} \exp(-j2\pi\mu (k-1)p)$$

$$= H_{p}(\mu) \cdot H_{n}(\mu)$$

$$|H_{p}(\mu)|^{2} = \frac{1}{(2\pi\mu)^{2}} (2\sin\pi\mu w)^{2} (2\sin\pi\mu \frac{p}{2})^{2}$$

$$|H_{n}(\mu)|^{2} = N^{2} (\frac{\sin\pi\mu Np}{N\sin\pi\mu p})^{2}$$

$$\stackrel{\text{$\mathbb{H}_{p}(\mu) = \int_{0}^{w} \exp(-j2\pi\mu x) dx - \int_{\underline{p}}^{\underline{p}+w} \exp(-j2\pi\mu x) dx}}{\mathbb{H}_{p}(\mu)} = \int_{0}^{w} \exp(-j2\pi\mu x) dx - \int_{\underline{p}}^{\underline{p}+w} \exp(-j2\pi\mu x) dx}$$

对应周期重复性的功率谱 $|H_n(\mu)|^2$

对应周期内权重的功率谱 $|H_p(\mu)|^2$

$$|H_p(\mu)|^2 = \frac{1}{(2\pi\mu)^2} (2\sin\pi\mu w)^2 (2\sin\pi\mu \frac{p}{2})^2$$

11

阵列传感器的空间滤波特性 |H (μ)|²

光电阵列传感器的空间滤波测速测距总结

- A 空间滤波频率μ与阵列间距p的关系是 μ=1/p。
- B 阵列传感器输出信号为中心频率f=V/p的窄带信号。
- R 移动物体在传感器平面上的投影每移动一个p距离,则输出一个正弦波脉冲。
- 光电阵列传感器可以用图像传感器模拟实现,但是 其并行处理的实时性不能得到实现。
- 下图周期性差动权重函数不具有窄带空间滤波特性。

可以自由组合的多通道阵列传感器

20ch.
Slit type photo detector
Pitch=0.50mm
Width=0.34mm
Length=3.00mm
Size(10mm*6mm)

权重函数及阵元宽度的设计

思考题

8-1 一周期内正负对称的情况下、1/p的偶次谐波可以滤掉;但是,可以滤掉1/p的3次谐波的权重函数是上图(a) 还是(b)?推导权重函数功率谱的式子,并画出功率谱图说明此问题。

权重函数及阵元宽度的设计

8-2 比较(c)、(d)两种情况下对于相同移动速度测量输出的不同?在中心频率方面和带宽方面分别考察。

设上述几种阵列传感器的周期数N都相同,取N=10; x轴单位长度为0.5mm。

15

阵列传感器的空间滤波原理的总结

- 空间滤波阵列传感器的检测原理:
 - 1. 敏感元件阵列, 差动信号处理, 谐波抑止设计:
 - 2. 权重函数的周期性决定了空间滤波频率的选择性;
 - 3. 输出窄频带信号(正弦波),中心频率与移动速度成正比;
 - 4. 通过被测物的移动将空间分布信息统计为时间变化信号。
- 基于空间滤波原理的测距测速的特点:
 - 1. 非接触式、检测不规则(可以是随机变化的)物体的移动速度
 - 2. 可以应用在光、热、电、声等阵列传感器中
 - 3. 与图像检测技术的区别在于: 真正的实时并行处理

17

麦克风阵列传感器

- 麦克风阵列控制拾音指向性
- 基于麦克风阵列的声源定位分析
- 超声阵列探头的探伤成像
- 基于多麦克风的噪音成分/强度分布特性分析

麦克风阵列传感器与指向控制

麦克风k输出:

$$x_k(t) = e^{-j2\pi f_0 kT} \cdot e^{j2\pi f_0 t} + n_k(t)$$

思考题

声波的近场及远场传播模型

声源定位模型

 设有M个声源(方向角θμ),N个麦克的线性传感器阵列, 则远场平稳窄带信号的传感器输出模型:

$$\begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{N}(t) \end{bmatrix} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ e^{-j\omega_{0}\tau_{21}} & e^{-j\omega_{0}\tau_{22}} & \cdots & e^{-j\omega_{0}\tau_{2M}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-j\omega_{0}\tau_{N1}} & e^{-j\omega_{0}\tau_{N2}} & \cdots & e^{-j\omega_{0}\tau_{NM}} \end{bmatrix} \begin{bmatrix} s_{1}(t) \\ s_{2}(t) \\ \vdots \\ s_{M}(t) \end{bmatrix} + \begin{bmatrix} n_{1}(t) \\ n_{2}(t) \\ \vdots \\ n_{N}(t) \end{bmatrix}$$

$$X(t) = A(\theta)S(t) + N(t)$$

$$A(\theta) = \begin{bmatrix} \mathbf{a}(\theta_1) & \mathbf{a}(\theta_2) & \cdots & \mathbf{a}(\theta_M) \end{bmatrix}$$

$$\mathbf{a}(\theta_m) = \begin{bmatrix} 1 & e^{-j\omega_0 \frac{d\sin(\theta_m)}{c}} & \cdots & e^{-j\omega_0 \frac{(N-1)d\sin(\theta_m)}{c}} \end{bmatrix}^{\mathrm{T}}$$

非平稳宽带的语音信号要经过加窗分帧和带通分频,分解成上述模型问题,构造协方差矩阵求其特征值,估计声源方位角度。

多声源定位算法和结果

- MUSIC算法 (Multiple Signal Classification) 解决多声源定位
- 滤波器组将信号频率分段,多通道上做子空间分解
- 不同通道的声源位置估计结果: 有伪结果, 需要融合处理

超声阵列探头和探伤

• 全矩阵方法:某一阵元发射其他接收,循环进行, 共得到NxN个时域信号

• 延时叠加成像:

$$l_{m} = \sqrt{(x_{A} - x_{m})^{2} + y_{A}^{2}}$$

延时: $l_n = \sqrt{(x_A - x_n)^2 + y_A^2}$ $t_{delay} = t_m + t_n = \frac{l_m + l_n}{c}$

叠加:
$$W_A = \sum_{i=1}^{N^2} Shift(W_i, t_{delay_i})$$

$$V_A = \max(|W_A|)$$

硬件系统设计

- 超声阵列探头: 5MHz, 64阵元, 1mm间距
- 硬件电路:激励/接收电路各1路,64通道模拟开关,FPGA控制; 100MHz12bitDAC生成激励波形,10bitADC接收转换

全矩阵聚焦探伤系统

• 三层结构: 硬件控制, 数据处理及成像, 用户界面显示

全矩阵成像(Full Matrix Capture)

- 全矩阵成像: 应用希尔伯特变换构造复信号进行叠加
- 希尔伯特变换: 信号s(t)与1/πt的卷积

$$\hat{s}(t) = h(t) * s(t) = \int_{-\infty}^{\infty} s(\tau)h(t-\tau)d\tau = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{s(\tau)}{t-\tau}d\tau$$

• 原信号与其希尔伯特变换组成复信号:

$$\tilde{s}(t) = s(t) + j\hat{s}(t)$$

- 先叠加后取模的方法有抑制缺陷周围幅度的作用
- 希尔伯特变换的包络提取:

$$|\tilde{s}(t)| = \sqrt{s^2(t) + \hat{s}^2(t)}$$

$$\arg \tilde{s}(t) = \arctan(\frac{\hat{s}(t)}{s(t)})$$

叠加方法的成像效果比较

仿真: Field II工具包; 实验: 9孔缺陷阵列探头回波数据;

=》先叠加后取模的叠加方式成像效果更好。

超声阵列探头探伤实验系统

- 探头,不锈钢标准测试样块,
- 电路板, 串口模块, 计算机,
- 软件,成像

预埋缺陷的碳纤维复合测试板

27

Hilbert变换在延时叠加成像中的作用

- 实值函数s(t) 的Hilbert变换是s(t)与 $1/(\pi t)$ 进行卷积得到的 $\hat{s}(t)$ 。
- $\hat{s}(t)$ 与s(t)相比较,幅度相同,相位滞后 90° 。
- 利用Hilbert变换求包络的方法是取复函数的模。
- 上 先取模后叠加的叠加方式缺陷成像分辨率更高。

提交

29

底面和侧面孔洞成像

▶ 底面2mm孔洞7个

➤ 侧面1.3mm孔洞4个

Boeing Measures Reduced Aircraft Noise Emissions with NI PXI and LabVIEW

 Data from more than 600 ground-based microphones is collected and analyzed to determine the effectiveness of noise reduction technologies.

Aircraft Noise Images

Flyby array (448-800 channels)

Noise maps

33

Single Server and Multiclient Architecture Diagram

多麦克风信号的相移和去噪

第i个麦克风输出信号

$$x_i(t) = s(t - \tau_i) + n_i(t)$$

35

Key Technologies on Assessing the effectiveness of noise reduction

- Distributed array
 (250 foot × 300 foot, flew over in 6 minutes)
- Maintain tight timing and synchronization
- Match 448 channels spread over 8 chassis within one degree at 93kHz
- Phased array data acquisition and storing
- Advanced in PC based instrumentation
- Flexible software tools for array configurations
- · Noise: where, what frequencies, how loud
- · Overlaying the noise level maps with a visual image

MEMS传感器

- MEMS (Micro-electromechanical Systems)
 微机电系统:
 将机械结构嵌入到半导体芯片中的跨学科技术。
- 主要的MEMS传感器:
 1980-压力传感器(扩散硅电阻应变膜片)
 2000-加速度传感器(叉指电容,压电,扩散硅电阻,热电)
 角速度传感器(叉指电容,音叉振动与压电等)
 MEMS麦克风等
- MEMS传感器小型、轻量,能耗低;敏感、响应快; 方便实现冗余设计,确保高可靠性。

37

MEMS传感器加工工艺

38

蚀刻(Etching)加工方法

39

湿刻(Wet Etching)

	溶液成分	各向同性 或异性	掩膜材料
	HF+HNO ₃ + CH ₃ COOH (or H ₂ O)	各向同性	Si ₃ N ₄ , Au, SiO ₂
©	EDP (Ethylene diamine+ Pyrocatechol+Water)	各向异性	SiO ₂ ,Si ₃ N ₄ Au,Cr,Ag,Cu,Ta等
	KOH +isopropyl alcohol+ water	各向异性	SiO ₂ , Si ₃ N ₄
	Hydrazine +isopropyl alcohol+ water	各向异性	SiO ₂ , Al

各向同性与异性腐蚀的不同

在[100]、[110]方向上腐蚀快, [111]上腐蚀慢

各向同性腐蚀: 无法保证形状 各向异性:

在特定的结晶方向上湿刻进展速度不一样

各向异性腐蚀:形状规整刻蚀

41

利用各向异性腐蚀的结构加工

在「111]面上腐蚀慢

表面110面的硅基板: 深槽加工,111面为垂直壁

表面100面的硅基板: 金字塔结构加工,111面围成V形沟槽

微机械结构加工工序

(a) 沉积牺牲层

(b) 溅射沉积结构层

(c)腐蚀去牺牲层

43

微加工的量产和低成本

(a) 掩膜的影印缩小与反复 大量生产

44

微型薄膜测温电阻

微型薄膜测温电阻传感器

气体微流量测量

微型薄膜测温电阻传感器

One heater resistor Multiple sensor resistors

Small size Small thermal capacity

High responsivility
High sensitivity
Low power consumption

47

非质量块的热式加速度传感器

热空气团的偏移和热式加速度检测

没有可移动的质量块,没有谐振误差,适合于感测高振动环境中的低g(<10g)、低频(<30Hz)加速度。耐撞击达50000g,不易损坏。

分辨率2mg, 带宽30Hz可扩展至160Hz, 封装5mmX5mmX2mm http://www.memsic.cn/Products/list.aspx?lcid=11

49

热电式加速度传感器

http://www.memsic.cn/accelerometers/

- 热对流MEMS惯性传感器
- 硅芯片中央热源,空腔,悬浮的热气团。
- 热电耦(AI和Si)组被等距对称地放置在热源的四个方向。
- 由于自然对流热场的传递性,任何方向的加速度 都会扰乱热场的轮廓,从而导致其不对称。
- 自然对流是由温度引起的密度差产生的流动。

芯片内电路结构

51

思考题

- 8-1 如前述、权重函数(a)(b)的区别
- 8-2 如前述, 权重函数(c)(d) 的区别
- 8-3 如前述多选题,空间滤波测速测距的总结判断题
- 8-4 如前述, 求麦克风阵列指向性控制的延时叠加表达式
- 8-5 如前述多选题, Hilbert变换的总结判断
- 8-6 各向异性蚀刻是指什么?
- 8-7 热电式MEMS加速度传感器相比于叉指电容式MEMS加速度传感器的优点和缺点 是什么?

热式: 跌落测试100%通过,马达等高频信号无影响,对贴片应力容忍度大,零漂小;响应慢,精度稍差。