Al-Azhar University .,Faculty of Eng .,Systems and Computer Eng., Dept

ENG 041: Digital & Logic Design (1)
Grade 1, 1st Semester

Ass. Prof. Khaled Elshafey

Course Objectives

- Studying logic design introduces students to binary numbers, logic gates, and Boolean algebra to understand and design combinational and sequential digital circuits for computers and other systems.
- Key objectives include learning to simplify logic functions, designing basic components, and using hardware description languages (HDLs) for modern design with tools for simulation and testing.
- This knowledge provides a foundation for computer architecture and practical skills in digital hardware development.

Text Books

"Logic and Computer Design Fundamentals",
 by: M. Morris Mano Charles Kime, Fifth
 Edition

Syllabus

- Introduction
- Number Systems
- Combinational Logic Circuits.
- Boolean Algebra.
- Circuit Optimization
- Combinational Logic Design.
- Combinational Logic Devices.

Course Plan

• Final Exam: 40

• Mid Term: 30

• Practical Lab: 30

• Total 100

Lecture 1

Introduction

Introduction

- The term logic is applied to circuits that operate on a set of just two elements with values True (1) and False (0).
- Since computers are based on logic circuits, they operate on patterns of elements from these two-valued sets, which are used to represent, among other things, the decimal digits.
- Today, the term "digital circuits" is viewed as synonymous with the term "logic circuits".
- The general-purpose digital computer is a digital system that can follow a stored sequence of instructions, called a program, that operates on data.

Information Representation

- Most physical parameters are continuous (Analog), typically capable of taking on all possible values over a defined range.
- The physical world is characterized by parameters such as weight, temperature, pressure, velocity, flow, and sound intensity and frequency.
- In contrast, The digital computer system deals only with discrete inputs (countable) called **discrete** (Digital) in nature.
- A devices' like Analog To Digital Converter (ADC), and Digital to Analog Converter (DTA) converters are used to convert information from one form into another.

Analog Signal Vs. Digital Signal

- Suppose that temperature, which is continuous, is measured by a sensor and converted to an electrical voltage, which is likewise continuous.
- We refer to such a continuous voltage as an analog signal, which is one possible way to represent temperature.

Did You Know?

- What are the main components of digital computer system?
 - Processor and Memory.
- How are the processor and memory designed?
 - by using Integrated circuits (IC's)
- The IC's made of:
 - logic circuits (combinational & sequential circuits)
- The logic circuits consisting of :
 - logic gates (AND, OR, NOT,....)
- The logic gates made of :
 - transistor (Bipolar, and Unipolar)
- The Transistor made of: Semiconductors (Si, Ge)

The Digital Computer: Von-Neumann Architecture

The main Features of Von-Neumann Arch.,

- The computer consists of memory, I/O, and CPU
- The computer structure is independent of the problem
- Binary signals are used for representing data and instructions
- The memory is divided into cells of equal size
- Instructions and Data are stored in the same memory
- The program is a sequence of instructions (control flow)

BASIC MICROPROCESSOR SYSTEM

- The Microprocessor alone does not serve any useful purpose unless it is supported by memory and I/O ports.
- The combination of memory and I/O ports with microprocessor is known as microprocessor-based system.
- The microprocessor executes the program stored in the memory and transfer data to and from the outside world through I/O ports.
- The microprocessor is interconnected with memory and I/O ports by busses called: the data bus, the Address bus and the control bus.
- A bus is basically a communication link between the processing unit and the peripheral devices.

Control Unit

- The control unit performs the most important function in a computer.
- It controls all other units and controls the flow of data from one unit to another for performing computations.
- It also sequences the operations.
- It instructs all the units to perform the task in a particular sequence with the help of clock pulses.

Arithmetic Logic Unit (ALU)

- Microprocessors (Datapath) are defined by their registers and the operations performed on binary data stored in the registers.
- This operation unit (ALU) is used for performing arithmetic operations such as Addition, Subtraction, Multiplications, division and other logical operations on the data.
- The control unit guides ALU which of the operations are to be performed.
- The sequence of the instructions is controlled by the control unit.

Address Bus

- The address bus is unidirectional and is to be used by the CPU
 to send out address of the memory location to be accessed.
- It is also used by the CPU to select a particular input or output port.
- It may consist of 8, 12, 16, 20 or even more number of parallel lines.
- Number of bits in the address bus determines the minimum number of bytes of data in the memory that can be accessed.
- A 16-bit address bus for instance can access 2¹⁶ bytes of data.

Data Bus

- Data bus is bidirectional, that is, data flow occurs both to and from CPU and peripherals.
- A microprocessor is characterized by the width of its data bus.
- The size of the internal data bus determines the largest number that can be processed by a microprocessor, for instance, having a 16-bit internal data bus is 65536 (64K).
- A microprocessor is specified by its 'Word Size', e.g. 4-bit, 8-bit, 16-bit etc.
- By the term 'word size" means the number of bits of data that is processed by the microprocessor as a unit.
- It also specifies the width of the data bus.

Control Bus

- Control bus contains a number of individual lines carrying synchronizing signals.
- The control bus sends out control signal to memory, I/O ports and other peripheral devices to ensure proper operation.
- For instance, if it is desired to read the contents of a particular memory location, the CPU first sends out address of that very location on the address bus and a 'Memory Read' control signal on the control bus.
- The memory responds by outputting data stored in the addressed memory location on the data bus.

Summary

What are the three main units of a digital computer?

- **Ans.** The three main units of a digital computer are: the central processing unit (CPU), the
 - memory unit and the input/output devices.

How does the microprocessor communicate with the memory and input/output devices?

- Ans. The microprocessor communicates with the memory and the Input/ Output devices via
 - the three buses, data bus, address bus and control bus.

What are the different jobs that the CPU is expected to do at any given point of time?

• **Ans.** The CPU may perform a memory read or write operation, ALU operations, an I/O read or write operation or an internal activity.

Beyond the Computer

- In terms of world impact, computers, such as the PC, are not the end of the story.
- Smaller, often less powerful, single-chip computers called microcomputers or microcontrollers, or special-purpose computers called digital signal processors (DSPs) actually are more prevalent in our lives.
- These computers are parts of everyday products (Embedded systems).

■ FIGURE 1-3 Block Diagram of an Embedded System

The Task of computer Designer

- Determine what attributes are important for a new computer, then design a computer to maximize performance and energy efficiency while staying within cost, power, and availability constraints.
- This task has many aspects, including instruction set design, functional organization, logic design, and implementation.
- The implementation may encompass integrated circuit design, packaging, power, and cooling.
- Optimizing the design requires familiarity with a very wide range of technologies, from compilers and operating systems to logic design and packaging.

Abstraction Layers Design

- Design is the process of understanding all the relevant constraints for a problem and arriving at a solution that balances those constraints.
- In computer systems, typical constraints include functionality, speed, cost, power, area, and reliability.
- Computer systems design is typically performed in a "top down" approach, where the system is specified at a high level and then the design is decomposed into successively smaller blocks until a block is simple enough that it can be implemented.
- These blocks are then connected together to make the full system.

Cont.,

• A fundamental aspect of the computer systems design process is the concept of "layers of abstraction."

Algorithms
Programming Languages
Operating Systems
Instruction Set Architecture
Microarchitecture
Register Transfers
Logic Gates
Transistor Circuits

FIGURE 1-5

Typical Layers of Abstraction in Modern Computer Systems

Where:

- At the top of the abstraction layers, algorithms describe a series of steps that lead to a solution.
- These algorithms are then implemented as a program in a high level programming language such as C++, Python, or Java.
- When the program is running, it shares computing resources with other programs under the control of an operating system.
- Both the operating system and the program are composed of sequences of instructions that are particular to the processor running them.

Cont.,

- The processor hardware is a particular implementation of the instruction set architecture, referred to as the microarchitecture;.
- A microarchitecture can be described as underlying sequences of transfers of data between registers.
- These register transfers can be decomposed into logic operations on sets of bits performed by logic gates, which are electronic circuits implemented with transistors.

Note:

- An important feature of abstraction is that lower layers of abstraction can usually be modified without changing the layers above them.
- For example, a program written in C++ can be compiled on any computer system with a C++ compiler and then executed.
- As another example, an executable program for the Intel[™] x86 instruction set architecture can run on any microarchitecture (implementation) of that architecture, whether that implementation is from Intel[™] or AMD.
- Consequently, abstraction allows us to continue to use solutions at higher layers of abstraction even when the underlying implementations have changed.

Assignment #1

Give a brief about : "HARVARD Computer Architecture".