Оглавление

[06.09.11] Лекция 1	2
Определение дизъюнктивной нормальной формы (ДНФ). Геометрическая интерпретация ДНФ.	
Совершенная ДНФ	2
Геометрическая интерпретация ДНФ	2
[13.09.11] Лекция 2	4
Сложность ДНФ. Минимальная ДНФ. Кратчайшие ДНФ. Функции Шеннона для ДНФ	4
Функция Шеннона относительно функционала ϕ сложности ДНФ	4
Тупиковая ДНФ. Сокращённая ДНФ и методы её построения	4
Методы построения сокращённой ДН Φ	5
[20.09.11] Лекция 3	7
Сложность одновременного нахождения min и max массива	7
[27.09.11] Лекция 4	8
Выведение сокращённой ДНФ из совершенной ДНФ	8
ДНФ Квайна (основана на построении таблицы Квайна)	8
[04.10.11] Лекция 5	10
Разложение функции по k переменным	10
Нижняя оценка функции Шеннона	10
[11.10.11] Лекция 6	11
Метод Лупанова для СФЭ	11
К онтактные схемы (КС)	11
	12
	12
Алгоритм задачи неразрешимости самоприм	12
[01.11.11] Лекция 8	13
Тесты для таблиц	13
[08.11.11] Лекция 9	14
Полный диагностический тест для КС	14
	15
Градиентный алгоритм для задачи о покрытии	15
[15.11.11] Лекция 10	17
ВЫП 1	17
КЛИКА	17
NM	18
2-ВЫП	18
Язык 3-ВЫП	18

[06.09.11] Лекция 1

Определение дизъюнктивной нормальной формы (ДН Φ). Геометрическая интерпретация ДН Φ . Совершенная ДН Φ .

Пусть есть бесконечный алфавит $x_1, x_2, \ldots, x_n, \ldots$ Введем множество $B = E_2 = \{0, 1\}$.

 $B^n=E^n=\{lpha=(lpha_1,\ldots,lpha_n|lpha_i\in B,i=\overline{1,n}\}$ – n-мерный булев куб.

 $f(x_1,\ldots,x_n):B^n o B$ – булева функция. x_1,\ldots,x_n – булевы переменные.

Если есть ??? $f(x_1,\ldots,x_n)$, где x_i - булевы переменные, то следует определение формулы над Q.

Определение. Пусть δ -некоторое множество, а $\delta_1, \dots, \delta_s$ - некоторое его подмножество. Тогда система подмножеств $\{\delta_1, \dots, \delta_s\}$ называется покрытием множества δ тогда и только тогда, когда $\cup_{i=1}^s \delta_i = \delta$ При этом каждое δ_i называется блоком (компонентой) покрытия $\{\delta_1, \dots, \delta_s\}$.

Покрытие неприводимо тогда и только тогда, когда никакая его компонента не является подмножеством другой его компоненты.

Пусть $f(\tilde{x}^n)$ - булева функция, тогдв $N_f = \{\alpha = (\alpha_1, \dots, \alpha_n | f(\alpha) = 1\}$ - объект геометрической интерпретации ЛНФ.

Пусть x_i - символ переменной, $\delta \in \{0,1\}$, тогда x_i^{δ} - буква $(x_i$ при $\delta = 1, \overline{x_i}$ при $\delta = 0$.

Определение. Элементарная контонкция – это контонкция букв различных переменных. $K = x_{i_1}^{\delta_1} x_{i_2}^{\delta_2} \dots x_{i_r}^{\delta_r}$ - элементарная контонкция. R(K) = r - ранг элементарной контонкции.

Определение. Элементарной дизоюнкцией называется дизоюнкция букв различных переменных.

Определение. $ДH\Phi$ – формула, которая представляет собой дизъюнкцию различных элементарных конъюнкций.

 $KH\Phi$ – формула, которая представляет собой контонкцию различных элементарных дизтонкций.

Замечание. ДНФ существует тогда и только тогда, когда функция тождественно не равна 0. КНФ существует тогда и только тогда, когда функция тождественно не равна 1.

Теорема. (О разложении булевой функции по переменным)

Пусть $f(x_1,\ldots,x_n)$ - бульва функция, $1 \le r \le n,r \in \mathbb{N}$, тогда $f(x_1,\ldots,x_r,x_{r+1},\ldots,x_n) = \bigvee_{\delta=(\delta_1,\ldots,\delta_n)} x_1^{\delta_1} x_2^{\delta_2} \ldots x_r^{\delta_r} f(x_1,\ldots,x_r,x_{r+1},\ldots,x_n)$

 \mathcal{A} оказательство. Левая часть $\forall \alpha = (\alpha_1, \dots, \alpha_n) \in B^n, f(x_1, \dots, x_r, x_{r+1}, \dots, x_n)$ - есть $f(\alpha)$. Рассмотрим правую часть $\bigvee_{\delta = (\delta_1, \dots, \delta_n)} x_1^{\delta_1} x_2^{\delta_2} \dots x_r^{\delta_r} f(x_1, \dots, x_r, x_{r+1}, \dots, x_n)$.

- 1. $\delta:\delta_i=\alpha_i \ \forall i\in\{1,\ldots,r\}$, тогда соответствующее слагаемое имеет вид (на α) $\alpha_1^{\delta_1}\ldots\alpha_r^{\delta_r}f(\delta_1,\ldots,\delta_r,\alpha_{r+1},\ldots,\alpha_n)=f(\alpha)$
- 2. δ : $\exists i \in \{1,\ldots,r\}: \delta_i \neq \alpha$, тогда соответствующее слагаемое $\alpha_1^{\delta_1}\ldots\alpha_i^{\delta_i}\ldots\alpha_r^{\delta_r}f(\delta_1,\ldots,\delta_r,\alpha_{r+1},\ldots,\alpha_n)=0$, т.к. $\alpha_i^{\delta_i}=0$

Итак, правая часть имеет вид $0 \lor 0 \dots 0 \lor f(\alpha) \lor 0 \dots \lor 0 = f(\alpha)$

Cледствие. (теорема о СДНФ) Каждая $f(\tilde{x}^n) \neq 0$ имеет место представление $f(\tilde{x}^n) = \bigvee_{\delta=(\delta_1,\dots,\delta_n); f(\alpha)=1} x_1^{\delta_1}\dots x_n^{\delta_n}$

Замечание. ДНФ рассматривается для функций, зависящих от x_1, \dots, x_n (если не оговорено противное)

Геометрическая интерпретация ДНФ

Пусть $\gamma = (\gamma_1, \dots, \gamma_n)$, где $\forall i \in \{1, \dots, n\}, \gamma_i \in \{0, 1, 2\}$

Определение. Гранью G_{γ} п-мерного булевого куба B^n называется множество $\{\alpha=(\alpha_1,\ldots,\alpha_n)|\alpha_i\in\{0,1\}\ \forall i=1,2,\ldots,n\ u\ ecnu\ \gamma\in\{0,1\},\ mo\ \alpha_i=\gamma_i\}$

Пусть количество "2"в наборе γ есть n-r, тогда r-ранг грани G_{γ} , а n-r - размерность грани. Набор γ называется кодом грани G_{γ}

Пример: n=4, $\gamma = (0, 2, 1, 2)G_{\gamma} = \{(0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 1, 0), (0, 1, 1, 1)\}$

Определение. G-грань булева куба B^n тогда и только тогда, когда существует $\gamma \in \{0,1,2\}^n \colon G = G_{\gamma}$

Причем здесь конъюнкция?

Для каждой грани $G_{\gamma} \in B^n$ $\exists !$ элементарная конъюнкция от переменных x_1, \dots, x_n , являющаяся характеристикой функцией этой грани (обозначим эту элементарную конъюнкцию как K), то есть $\alpha \in G_{\gamma} \Leftrightarrow$ $K(\alpha)=1.$ Пусть все символы в γ не равны 2, суть $\gamma_{i_1},\ldots,\gamma_{i_r}$, значит, искомая элементарная конъюнкция Kимеет вид $K=x_{i_1}^{\gamma_{i_1}}\dots x_{i_r}^{\gamma_{i_r}}$. Ясно, что $N_k=G_\gamma$ Булева функция f' имплицирует булеву функцию f'', если $\forall \alpha: f'(\alpha)=1$ следует, что $f''(\alpha)=1$ (или, по-другому,

f'' помещает f'): f' o f'' = 1 или же: $f' * f'' = f', f' \lor f'' = f''$.

Определение. Если элементарная конъюнкция имплицирует f, то говорят, что эта элементарная конъюнкция является импликантой f.

Пусть $D_f = K_1 \lor ... \lor K_s$ - ДНФ, реализующая БК f и $K_1, ..., K_s$ - элементарная конъюнкция (f и элементарная конъюнкция от x_1,\ldots,x_r). Тогда этой ДНФ соответствует покрытие множества N_f гранями N_{k_1},\ldots,N_{k_s} куба B^n .

Определение. Элементарная контюнкция K называется простой импликантой функции f, если она не имплицирует никакую другую импликанту K' функции f (то есть $N_k \notin N_{k'}$)

Определение. G_{γ} -грань булевой функции f тогда и только тогда, когда $G_{\gamma} \subseteq N_f$ ясно, что по умолчанию G_{γ} -грань B^n .

Определение. Пусть K - простая импликанта булевой функции f, тогда соответствующая ей грань называется максимальной гранью функции f.

Легко увидеть, что максимальная грань булевой функции f – это максимальная по включению наборов грань булевой функции f.

Замечание. (о совершенной ДНФ): совершенная ДНФ D_f функции f соответствует покрытию N_f нульмерными гранями, то есть точками.

Определение. Вес булева набора α - число $||\alpha||$ единиц в нем. r-й слой булева куба B^n - это множество $B_r^n = \{\alpha = (\alpha_1, \dots, \alpha_n) | \alpha \in B^n, ||\alpha|| = r\}.$

Определение. Два набора называются соседними, если они отличны в одной координате.

[13.09.11] Лекция 2

Сложность ДНФ. Минимальная ДНФ. Кратчайшие ДНФ. Функции Шеннона для ДНФ

Определение. Пусть ϕ -функция, ставящая в соответствие каждой ДНФ некоторым образом число, при этом:

- 1. для любой ДНФ $D: 0 \le \phi(D)$
- 2. если ДНФ D' получена из D вычеркиванием букв и слагаемых (элементарных конъюнкций), то $\phi(D') \le \phi(D)$

B таком случае говорят, что задан неотрицательный функционал ϕ сложности (ранга) ДН Φ , обладающий свойством монотонности.

Примеры $\phi(D)$:

- R(D) ранг (сложность) ДНФ D, суммарное число букв в D.
- $\lambda(D)$ длина ДНФ D, число слагаемых в ДНФ D.
- L(D) число всех операций, необходимых для построения ДНФ D.

Определение. ДНФ D' называется минимальной относительно функционала ϕ булевой функции f (ϕ - минимальная ДНФ булевой функции f) тогда и только тогда, когда $\phi(D') = \min_{D} \phi(D)$ (D - ДНФ, реализующая f).

Pанг минимальной ДНФ называется минимальным, длина - кратчайшей.

Функция Шеннона относительно функционала ϕ сложности ДНФ

$$\phi(n) = \max_{f(\overline{x}^n) \in P_2} \min_D \phi(D), \, D$$
 - ДНФ, реализующая $f.$

Замечание. Если $D' - \phi$ — минимальная ДНФ булевой функции f, то говорят, что $\phi(D')$ -сложность функции f относительно функционала ϕ .

Теорема. Для любого $n \in \mathbb{N}$ имеет место соотношение: $R(n) = n2^{n-1}, \lambda(n) = 2^{n-1}$.

Доказательство. (Нижняя оценка) Рассмотрим функцию $f_n(\tilde{(}x)^n) = x_1 \oplus \ldots \oplus x_n$, максимальной грани функции - это точка, следовательно, единственной, следовательно, минимальной ДНФ этой функции является совершенная ДНФ.

Пусть α', α'' - соседние наборы в B^n , тогда $f(\alpha') \neq f(\alpha'')$, тогда любая максимальная грань есть точка, то есть грань размерности 0, то есть единственная ДНФ f_n есть ее совершенная ДНФ, поскольку $|N_f| = 2^{n-1}$, то длина f_n есть $\lambda(f_n) = 2^{n-1}$, а ранг $R(f_n) = n2^{n-1}$, следовательно, $2^{n-1} \leq \lambda(n), n2^{n-1} \leq R(n)$. (Верхняя оценка) Рассмотрим любую функцию $f(\tilde{x}^n)(f \neq 0)$. Разложим f по $x_2, \ldots, x_n \colon f(x_1, \ldots, x_n) = 1$

(Верхняя оценка) Рассмотрим любую функцию $f(\tilde{x}^n)(f \neq 0)$. Разложим f по x_2, \ldots, x_n : $f(x_1, \ldots, x_n) = \bigvee_{(\delta_2, \ldots, \delta_n) \in B^{n-1}} x_2^{\delta_2} \ldots x_n^{\delta_n} f(x_1, \delta_1, \ldots, \delta_n) \in \{0, 1, x_1, \overline{x_1}\}$, тогда у любой булевой функций $R \leq n2^{n-1}, \lambda \leq 2^{n-1}$, тогда в силу произвольности выбора $f \in P_2(n)\lambda(n) \leq 2^{n-1}, R(n) \leq n2^{n-1}$

Тупиковая ДНФ. Сокращённая ДНФ и методы её построения

Определение. ДНФ $D = \bigvee_{i=1}^{s} K_i$ называется неприводимой тогда и только тогда, когда покрытие $\{N_{k_1}, \ldots, N_{k_s}\}$ является неприводимым.

Определение. ДНФ D называется тупиковой тогда и только тогда, когда любая ДНФ D', получающаяся из D вычеркиванием букв или слагаемых, не эквивалентна ДНФ D (то есть D' и D реализуют разные булевы функции).

Определение. ДНФ D называется сокращённой ДНФ функции f тогда u только тогда, когда D есть дизъюнкция всех простых импликант булевой функции f

Замечание. Тупиковая ДНФ состоит только из простых импликант.

Замечание. Тупиковая ДНФ является неприводимой и может быть получена из сокращённой ДНФ выбрасыванием некоторых слагаемых.

Замечание. Минимальная ДНФ является тупиковой.

 $\it Замечание.$ Среди всех тупиковых ДНФ есть кратчайшие, но не все кратчайшие ДНФ являются тупиковыми.

Построение сокращённой ДНФ - это первый этап построения кратчайшей ДНФ.

Методы построения сокращённой ДНФ

- 1. Геометрический (по определению). Пусть $N_f = \{\alpha^{(1)}, \dots, \alpha^{(p)}\}.$
 - Шаг 1. Построить покрытие множества N_f гранями $\{\alpha^{(1)}\}, \dots, \{\alpha^{(p)}\}.$
 - ullet Шаг i+1. Дополнить покрытие N_f предыдущего шага всевозможными расширениями на 1 размерность в пределах N_f граней из предыдущего шага; удалить поглощённые грани.

За конечное число шагов будет построено покрытие множества N_f всеми максимальными гранями f.

2. Алгоритм Квайна (построение сокращённой ДНФ по КНФ)

Приведение подобных (после раскрытия скобок с ДНФ) предполагает:

- (а) приведение слагаемых к виду элементарной конъюнкции или удаление слагаемых
- (b) применение правил: $K' \vee K'' = K'' \vee K', (K' \vee K'') \vee K''' = K' \vee (K'' \vee K'''), K' \vee K'K'' = K'$

Эти преобразования выполняются пока возможно, то есть результат есть ДНФ, в которой $K' \vee K' = K', K' \vee K'K'' = K'$ нельзя применить слева направо (при \forall применение тождеств ассоциативности и коммутативности)

Теорема. Пусть D', D'' - сокращённые $\mathcal{J}H\Phi$ f', f'' соответственно, тогда $\mathcal{J}H\Phi$ D, получаемая в результате раскрытия скобок и приведения подобных в формуле D'D'' является сокращённой $\mathcal{J}H\Phi$ функции f = f'f''.

Доказательство. Достаточно доказать, что любая простая импликанта K функции f является слагаемым D. Так как K – импликанта, то K имплицирует f' и K имплицирует f'', следовательно, так как D', D'' – сокращённые ДНФ f', f'', то существует элементарная конъюнкция K' (слагаемое в D') и элементарная конъюнкция K'' (слагаемое в D'') - K имплицирует их, следовательно, K имплицирует K'K'', но при раскрытии скобок в D'D'' и приведении подобных найдется элементарная конъюнкция K' (слагаемое в D'), которую имплицирует K'K'', следовательно, K' имплицирует элементарную конъюнкцию K', но K' – простая импликанта K', значит, K' = K', то есть K' встречается в K'

Cnedcmbue. (описание алгоритма Квайна): сокращённая ДНФ D булевой функции f может быть получена из произвольной КНФ функции f (при $f \not\equiv 1$) путем последовательных раскрытий скобок и приведения подобных.

3. Метод Блэйка (Нэльсона) (построение сокращённой ДН Φ по любой ДН Φ).

Правило обобщённого склеивания: $(xK' \vee \overline{x}K'' = xK' \vee \overline{x}K'' \vee K'K'')$ применяем пока возможно. Затем приводим подобные.

Определение. $\mathcal{J}H\Phi$ D', полученная из $\mathcal{J}H\Phi$ D применением κ каким-то парам ее слагаемых правил обобщённого склеивания, называется расширением $\mathcal{J}H\Phi$ D.

Определение. Расширение D' ДНФ D называется строгим расширением ДНФ D тогда и только тогда, когда в D' есть слагаемое (элементарная конъюнкция), не имплицирующее никакое слагаемое в D.

Замечание. Сокращённая ДНФ не имеет строгих расширений.

Теорема. Пусть ДНФ D является неприводимой u не имеет строгих расширений, тогда D есть сокращённая ДНФ.

Доказательство. Достаточно доказать, что любая простая импликанта встречается в D.

От противного: Пусть D - неприводимая ДНФ булевой функции f, не имеет строгих расширений, K - простая импликанта f и K - не слагаемое D. Построим множество χ всех элементарная конъюнкция, которые являются импликантами f, но не имплицируют никакое слагаемое из D. $\chi \not\equiv \emptyset$, ибо $K \in \chi$. В таком случае пусть K - элементарная конъюнкция максимального ранга из $\chi, f = f(x_1, \dots, x_n)$, следовательно, $R(\hat{K}) < n$ (так как если бы $R(\hat{K}) = n$, то \hat{K} имплицировала бы некоторые элементарные конъюнкции из D), тогда пусть x_i не встречается в widehat K, тогда так как \hat{K} - элементарная конъюнкция максимального ранга из χ , то существует $K', K'' \in \chi : x_i \hat{K}$ имплицирует слагаемое $x_i K'$ из D $\overline{x_i} \hat{K}$ имплицирует слагаемое $\overline{x_i} K''$ из D. Следовательно, \hat{K} имплицирует K' K'', которое получается правилом обобщённого склеивания $x_i K'$ и $\overline{x_i} K''$, значит, $\hat{K} \not\in \chi$, получаем противоречие, значит, $K \in D$

Cnedcmeue. (метод Блэйка): сокращённую ДНФ можно построить, применяя, пока возможно, правило обобщённого склеивания всех возможных пар слагаемых ДНФ по всем переменным последующим приведением подобных.

[20.09.11] Лекция 3

4. Алгоритм, основанный на картах Карно.

Если рассмотреть наборы из 2 аргументов, то их можно упорядочить по коду Грея (расстояние между соседними равно 1, например, 00-01-11-10). Множество ~ тор, любому треугольнику на торе соответствует максимальная грань.

Сложность одновременного нахождения min и max массива

За наименьшее число сравнений. Сколько в худшем случае? (n-1)+(n-2)=2n-3

Нельзя ли проще? Вспомним теорему Мура: $n-1 \le \alpha(n)$

разбить элементы на пары, тах высшей лиги, тіп низшей.

$$n = 2r$$
: $r + (r - 1) + (r - 1) = \frac{3n}{2} - 2$

$$n=2r+1$$
: $r+(r-1)+(r-1)+2=3r=rac{3(n-1)}{2}$ Получаем $lpha(n)\leq \lceil rac{3n}{2}-2 \lceil$ (целое сверху)

Минимизация числа сравнений по множеству всех алгоритмов решений.

Алгоритм:

$$E(x) = \begin{cases} 2, \text{если x может быть max и min} \\ 1, \text{если x может быть max илм min} \\ 0, \text{если x не может быть ни max, ни min} \end{cases}$$

Энергия массива в начале = 2n, в конце = 2. $E(\overline{x}) = \sum_{i=1}^n E(x)$ Энергия массива может уменьшиться на 2. Тогда за $\left]\frac{3n}{2} - 2\right[$ операции можно получить в лучшем случае.

[27.09.11] Лекция 4

Выведение сокращённой ДНФ из совершенной ДНФ

Все простые импликанты входят в нее тогда и только тогда, когда сокращённая ДНФ $K_1 \lor \ldots \lor K_n$ простая импликанта \sim нельзя удалить букву из $K_i \leq f$.

Пусть существует сокращённая или иная ДНФ реализующая нашу функцию: $x_1\overline{x_2} \lor x_2\overline{x_3} \lor x_3\overline{x_1} \lor x_1\overline{x_3} \lor x_3\overline{x_2} \lor x_2\overline{x_1}$. Удаляя по ребру можно получить 5 вариантов. Для покрытия в таких точках необходимо 3 ребра, значит, 2+3 варианта.

Определение. Тупиковая $\mathcal{J}H\Phi$ - это $\mathcal{J}H\Phi$, к которой неприменимо ни одно из преобразований: удаление буквы или удаление конъюнкции.

У нашей функции их 5. Вопрос: сколько их может быть?

Ведь из совершенной ДНФ выводится сокращённая ДНФ.

$$f(\tilde{x}^n) = (x_1 \vee x_2 \vee x_3)(\overline{x_1} \vee \overline{x_2} \vee \overline{x_3}) \oplus x_4 \oplus \ldots \oplus x_n.$$

Что можно сказать о допустимых конъюнкциях?

В каждую конъюнкцию этой функции должен входить множитель $x_4^{\sigma_4}\dots x_n^{\sigma_n}$ нет конъюнкции без этих переменных. $\sigma_4 \dots \sigma_n$ делятся на 2 части: $\sum \sigma_i = 0$ (тупиковая ДНФ? их $5^{2^{n-4}}$), $\sum_{i=1}^{n} \sigma_i = 1$

ДНФ Квайна (основана на построении таблицы Квайна)

 $K_1(\overline{\alpha_i}=0)$, следует решение задачи о покрытии, имея о том, кого выкинуть из сокращённой ДНФ. Сначала решаем, кого оставить; нельзя выкинуть конъюнкцию, которая единственная покрывает некоторый набор (такая конъюнкция называется ядром), тогда и только тогда это ДНФ Квайна.

Теорема. (Журавлева)

- 1. Простая импликанта К входит в ДНФ $\sum T$ тогда и только тогда, когда К не является регулярной.
- 2.~ Конъюнкиия ~K~ называется регулярной тогда и только тогда, когда все ее точки регулярны относительно этой конъюнкции
- 3. $\tilde{\alpha}$ регулярна относительно K, если существует $\tilde{\beta}: f(\tilde{\beta}) = 1, K(\tilde{\beta}) = 0, \Pi(\tilde{\beta}) \leq \Pi(\tilde{\alpha})(\Pi(\tilde{\beta}) \text{множество}K_i,$ которые обращаются в 1 на β , тогда все $K_i: K_i(\beta) = 1$, тогда $K_i(\alpha) = 1$.

 \mathcal{A} оказательство. =>(от противного) Почему K не принадлежит тупиковой ДНФ.

Пусть K регулярна и обращается в 1 на наборах $\tilde{\alpha_1},\dots,\tilde{\alpha_m}$, тогда $\exists \tilde{\beta_1},\dots,\tilde{\beta_n}: f(\tilde{\beta_i})=0, K_m'(\tilde{\beta_m})=1.$ Рассмотрим $K_1',\dots,K_m':K_1'(\tilde{\beta_1})=1,\dots,K_m'(\tilde{\beta_m})=1,$ значит, покрываются все такие точки конъюнкции K, следовательно, её можно выкинуть.

<= Если K не является регулярной, то входит ли она в тупиковую ДНФ? Проотрицаем определение регулярности.

К является нерегулярной, если существует точка, которая не является регулярной.

 $\tilde{\alpha}$ нерегулярна относительно K, если $\forall \tilde{\beta}: f(\tilde{\beta}) = 1, K(\tilde{\beta}) = 0$, следовательно, $\Pi(\tilde{\alpha}) \leq \Pi(\tilde{\beta})$

Пусть $\tilde{\alpha}$ - нерегулярная точка. Рассмотрим ДНФ $K_1' \vee \ldots \vee K$, где K_i' - все простые импликанты: $K_i'(\tilde{\alpha}) = 0$. Эти ДНФ реализует функция. Для всех $\ddot{\beta}$ ее пучок не принадлежит пучку $\tilde{\alpha}$. Делаем тупиковую, но K выбросить нельзя, ибо она единственная, которая обращается в 1 на $\tilde{\alpha}$. П

Рассмотрим несколько функций. Ясно, что на булевом кубе можно уложить цикл и цепочку только четной

Соседние наборы на булевом кубе имеют разные четности, тогда, пройдя по циклу, мы сменили бы четность. Кроме того, булев куб двухцветен, а нечетный цикл трёхцветен. Минимальная ДНФ для цикла цепочки четной или нечетной длины K_1, \ldots, K_n .

В цепочке в любом случае мы должны брать хвосты (а не ядра). Если числа наборов четные (соответственно число звеньев нечетно), то $K_1 \vee K_2 \vee K_3$. Если нечетная длина, то минимальная ДНФ должна содержать (2n+1)наборов) n+1 конъюнкцию, то переход с четной на нечетную в каком-либо месте.

Пусть наш алгоритм не может перелезть через некоторый параметр. ІІ теорема Журавлева (сумма минимальных не лежит в классе локальных алгоритмов).

Есть некоторая пара ("управляющая система"): $<\Sigma,f>,\Sigma$ - функция, или функционирование. $\alpha(\Sigma)$ функционал сложности.

Мы хотим найти $L(f)=\max_{f(x_1,...,x_n)}\min_{\Sigma,f}\alpha f.$ Аргумент функции Шеннона - число переменных.

[04.10.11] Лекция 5

Оценим L(n) сверху: произв. схема синтеза; снизу: оценка основана на том, что едва схемы f функцию не реализуют.

$$L(n) \le n + (n-1)2^n + 2^n - 1$$

Для улучшения надо ввести понятие дешифратора $D_n:L(n)\leq 2^n-1+L(D_n)$. Сложность дешифратора асимптотически равна 2^n .

Пусть есть дешифратор D_{n-1} , как получить из него D_n ? Берем $x_n, x_n x_n \ \forall \text{на} K_i$, тогда $L(D) \leq L(D_{n-1}) + 1 + 2^n$; $L(D_1) = 1, L(D_2) = 6 \dots$

$$L(D_n) = L(D_{n-r}) + L(D_r) + 2^n$$

Разложение функции по к переменным

```
\begin{split} f(x^n) &= \bigvee_{\sigma = (\sigma_1, \dots, \sigma_r)} x_1^{\sigma_1} \dots x_r^{\sigma_r} f(\sigma_1, \dots, \sigma_r, x_{r+1}, \dots, x_n) \\ L(n) &\leq L(D_r) + L(U_{n-r}) + 2^r + 2^{r-1} \\ L(U_n) &= 2^{2^n}, \text{ тогда } L(n) \leq L(D_r) + L(U_{n-r}) + 3 \cdot 2^{r-1} \leq 3 \cdot 2^{r-1} + O(2^{r/2}) + 2^{2^{n-r}} \\ \text{Как оптимально выбрать } \mathbf{r}? \ 3 \cdot 2^r ln(r) + 2^{n-r} \cdot 2^{2^{n-r}} ln(n-r) = 0 \\ r &\approx 2^{n-r} \\ \text{Рассмотрим } r &= ]n - log_2 n[ \\ n - log_2 n &= 2^{log_2 n} = n \\ 3 \cdot 2^{n-log_2 n} + 2^n &= 2^n (3 \cdot 2^{-log_2 n} + 1) \\ \text{Если } r &= n - log_2 log_2 n \\ 3 \cdot 2^{n-log_2 log_2 n} + 2^{2^{log_2 log_2 n}} &= 3 \cdot 2^{n-log_2 log_2 n} + 2^{log_2 n} \\ \text{Если } r &= n - log_2 (n - 2log_2 n) \\ 3 \cdot 2^{n-log_2 (n-2log_2 n)} + 2^{n-2log_2 n} &= 2^n (3 \cdot 2^{-log_2 (n-2log_2 n)} + 4n^{-2}) = 2^n (3(n-2log_2 n)^{-1} - n)^{-2} \\ 2^r &= 2^{]n-log_2 (n-2log_2 n)[} \leq \frac{2^{n+1}}{n-2log_2 n} \\ L(n) &\leq 3 \cdot 2^r + O(R^{r/2}) + 2^{2^{n-r}} \\ \Pi \text{ри } r &= ]n - log_2 (n - 2log_2 n)[ = O(2^n/n) + O(2^{r/2}) + O(2^n/n) \\ \Pi \text{олучим оценку } \Theta(2^n/n) \end{split}
```

Нижняя оценка функции Шеннона

Сколько всего можно получить схем сложности L (от n переменных)? Связной является схема, реализующая функцию. Утверждения про связные графы:

- 1. количество нечетных вершин четно
- 2. у связного графа можно выделить остовное дерево

Выделим остовное дерево функции в базисе {&, ∨, ¬}

Если сложность L, то вершин максимально n+L. Сколько различных деревьев с n+L вершинами: $L+n-1\dots 4^{L+n-1}$

Будут некоторые вершины, которые внутренние вершины, то есть L вершин, в которых неизвестны элементы, тогда $4^{L+n-1}n^{L+n}3^L(L+n)^LL$

Тогда $4^{2+m} - n^{2} + 3^{2} (L+n)^{2} L$ Требование: $\varepsilon 2^{2^{n}} \leq \dots$ $2^{n} - \log_{2}\varepsilon \leq 2(L+n-1) + (L+n)\log_{2}n + L\log_{2}3 + L\log_{2}(L+n) + \log_{2}L$ Пусть $L \leq (1-\delta) \cdot 2^{n}/n$ при $n \to \infty : 1, 2, 3, 5 = o(2^{n} - \log_{2}\varepsilon)$ $(1-\delta)\frac{2^{n}}{n}\log_{2}(n+(1-\delta)2^{n}/2)$ $(1-\delta)\frac{2^{n}}{n}n(1+o(1))$ Эффект Шеннона: для почти всех функции $n \to \infty$ сложность почти $\frac{2^{n}}{n}$

[11.10.11] Лекция 6

Метод Лупанова для СФЭ

Идея представления булевой функции в виде прямоугольной таблицы. Этот прямоугольник режется на равные полосы шириной S. Сколько их? $|2^r/s| = pS'$ (последний) может быть меньше, поэтому в нашей задаче 3параметра r, s, n.

Будет предложен способ ее решения, после чего будет необходимо оценить, насколько сложна схема, полученная с помощью этого решения. Мы хотим реализовать короткий стб, то есть мал. функцию, завис.

Пусть у нас есть дешифратор, во что это обойдется? S-1 дизъюнкция.

Длинный стб - собирается из коротких стб, сложность P-S дизъюнкций.

$$f(x_1,\ldots,x_n)=\bigvee_{\substack{\gamma_1,\ldots,\gamma_r\\\gamma_{r+1},\ldots,\gamma_n}}x_1^{\gamma_1}\ldots x_r^{\gamma_r}f(\gamma_1,\ldots,\gamma_r,x_{r+1},\ldots,x_n)$$
 - Шенноновское разложение, будем брать: $f(x_1,\ldots,x_n)=\bigvee_{\substack{\gamma_{r+1},\ldots,\gamma_n\\\gamma_{r+1},\ldots,\gamma_n}}x_{r+1}^{\gamma_{r+1}}\ldots x_n^{\gamma_n}f(x_1,\ldots,x_r,\gamma_{r+1},\ldots,\gamma_n)$

$$f(x_1,\ldots,x_n) = \bigvee_{\gamma_{r+1},\ldots,\gamma_n} x_{r+1}^{\gamma_{r+1}} \ldots x_n^{\gamma_n} f(x_1,\ldots,x_r,\gamma_{r+1},\ldots,\gamma_n)$$

Теперь мы сделаем еще один шаг. Метод Лупанова - м-д 2 порядка Шеннона, но дает оконч. ответ.

Будем собирать длинный стб из коротких. Нам необходимо п, затем нам необходимо получить дешифраторы $D_k, D_{n-k}: n+2(2^r+2^{n-r})+\ldots$ нужно построить все функции коротких стд: $2^s p(s-1)$, потом длинные: $2^{n-r}(p-1)$ $1) + 2 \cdot 2^{n-r}$ на сборку.

Естественно предположим, что $s, r, 2^r/s \to \infty$.

$$p \sim 2^p/s$$
; $2^{n-r}(p-1) \le 2^{n-r}2^r/s \sim 2^r/s$; $p2^s(s-1) = |2^r/s|2^s(s-1) \sim 2^{r+s}$

Очевидно, s=n(1-o(1)). С другой стороны, казалось бы, г можно подбирать как угодно, но не так: $p\to$ ∞ ; $2^r/s \to \infty$, если $\ln s = o(r)$

2 или 3 логарифма: если $r=[3logn]; s=[n-5log_n],$ то $2^{n-r}(p-1)=2^n/s\sim 2^n/n; 0, 5n^3\leq 2^r; s\leq n,$ тогда $p2^{s}(s-1) \sim 2^{n}/n^{2}$, тогда главным слагаемым является первое.

Итак, мы доказали, что для любой функции по методу Лупанова можно построить схему некоторой сложности, которая при $n \to \infty$ стремится к $2^n/n$.

 $\lim \frac{\text{лев}}{\text{прав}} < 1;$ левая асимптотически не превосходит правую.

Если есть нижняя оценка Шеннона и решение Лупанова, то задача, возник. реальна: надо синтезировать некую функцию: у нас есть оценка для п.в. и оценка наихудш.

Контактные схемы (КС)

[18.10.11] Лекция 7

Эквивалентные преобразования

Пусть есть $\langle \Sigma', f \rangle, \langle \Sigma'', f \rangle$.

Задача синтеза: построить систему, обладающую заданными свойствами.

Задача анализа: понять, что описано.

Упрощение: вводим $L(\Sigma)$ и минимизируем.

 $\ni B\Pi : < \Sigma', f > \leftrightarrow < \Sigma'', f >$

Алгоритм задачи неразрешимости самоприм.

Базис $\{\&, \lor, \neg, 0, 1\}$, мы хотим выписать систему тождеств. Если мы хотим привести куда-либо $<\Sigma', f>, <\Sigma'', f>$, неплохо было бы привести и онозначно опред. каноническому виду $<\Sigma''', f>$ $(x_1x_2)x_3, x_2(x_1x_3)$ - разные для ЭВП.

Какие нужны преобразования, чтобы разные представления ДНФ приводились к единому виду? Их 4: коммутативность, ассоциативность, конъюнкция, дизъюнкция. В формуле может появиться 0, то есть нам нужно еще $x\overline{x}=0$

Итак, нам нужно выражение $K_1 \vee \ldots \vee K_s$, а это совершенная ДНФ.

$$0 \vee x = x; 1 \vee x = 1; x \vee \overline{x} = 1; x \overline{x} = 0; xy \vee x \overline{y} = x; x(y \vee z) = xy \vee xz; x \cdot x = x; x \vee x = x; 0 \cdot x = 0; \overline{\overline{x}} = x$$

- 1. Пусть K замкнутый класс, A базис в нем. В качестве K можно взять K = [A]
- 2. Пусть есть нек. В: [B] = K, тогда [B] = [A]
- 3. Для А существует конечная полная система тождеств (КПСТ), тогда для В также существует КПСТ.

 $F_1 \sim F_1', \dots, F_m \sim F_m'$ - ф-лы, в базисе А они являются эквивалентными формами.

Можем выписать A и B: $A = \{g_1(x), \dots, g_r(x)\}; B = \{h_1(x), \dots, h_l(x)\}$. Все функции g выражаются через h:

 $g_1(\tilde x)=G_1(h_1(\tilde x),\dots,h_l(\tilde x)),\dots,g_r(\tilde x)=G_r(h_1(\tilde x),\dots,h_l(\tilde x))$ и

 $h_1(\tilde{x}) = H_1(g_1(\tilde{x}), \dots, g_r(\tilde{x})), \dots, h_l(\tilde{x}) = H_l(g_1(\tilde{x}), \dots, g_r(\tilde{x}))$

Наличие КПСТ не зависит от выбранного базиса. (Мы здесь не пояснили, о чём говорим, ибо это неважно!)

[01.11.11] Лекция 8

Ещё о функции Линдана.

1.
$$x \cdot x = 0$$

$$2. \ x \cdot (y \cdot z) = 0$$

$$3. \ x_1 \cdot \dots \cdot x_n \cdot x_1 = 0$$

$$4. \ x_1 \cdot x_2 \cdot \dots \cdot x_n \cdot x_2 = x_1 \cdot \dots \cdot x_n$$

Все переменные функции существенны.

Тесты для таблиц

"Чёрный ящик например.

Первое формальное определение в работе Яблонского: есть матрица (таблица), мы хотим определить <по значениям> на нём наборе строк.

Задача проверяющего тестирования и диагностического тестирования.

- (1) эталонный отб. или нет
- (2) где, что именно есть промежуточные

Боремся за длину теста (кол-во строк) стираемая седал минимальной. L(n), T(n)

Вопрос: существует матрица из n сб. кроме эталонного. Что можно сказать о длине проверяющего теста? Не менее 1, не более $\mathbf n$.

А диагностический тест?

Теорема. Длина минимального диагностического теста удовлетворяет $\log_2 n \leqslant J(n) \leqslant n-1$

Мы хотим угадать какое-либо его вариантов ответа не менее n.

n-1: это доказано в теореме Мура. Взначально есть 1 класс эквивалентности R(0)=1, R(T)=n, бессмысленно брать строку, увеличивает число классов эквивалентности.

Если перед ними случ. матрица, то какое ?????

Теорема. Для почти всех т-ц. первые $2\log_2 n + \phi(n)$ строк являются диагностическими тестом, если $\phi(n) \to \infty$ (как угодно медленно)

 $Доказательство. \ m \times n$ матрица, мы хотим разные столбцы. Сколько таких матриц?

$$2^m(2^m-1)\dots(2^m-n+1)$$

Всего матриц 2^{mn}

$$p = \frac{2^m (2^m - 1) \dots (2^m - n + 1)}{2^{mn}} \geqslant \frac{(2^m - n)^m}{2^{mn}} \geqslant (1 - \frac{n}{2^m})^n$$

[08.11.11] Лекция 9

Есть схема Карно. Требуется построить проверяющий тест относительно разложения.

"Взрослая задача": надо найти ответ самим и доказать его потом.

 $n \geqslant 3$ не произошло ли размыкание?

f(10...00) = 1 Если f'(10...00) = 0, то разомкнулись верхние контанты.

Можно взять f(00...01) и наборы $(11...1(n \mod 2))$.

Почему нельзя обойтись 3 наборами.

А что с замыканием?

Возьмём набор, на котором f(...) = 0.

f(0...0) = 0 — проводимость проверяется наверху или снизу

f(1...1) = 0, n чётно

если n нечётно: f(0,1...1) и f(1...1,0) то 2 или 3 набора.

Полный диагностический тест для КС

 \forall безусловный ПДТ для КС, реализующий $x_1 \oplus x_2 \oplus \ldots \oplus x_n$, содержит все наборы. Как устроена схема, реализующая $\bigoplus x_i$?

$$x_i^{\sigma_1} \dots x_n^{\sigma_n}, \quad \sigma_1 \oplus \dots \oplus \sigma_n = 1$$

Если разорвать всё кроме этой цепи, то схема б. реализ-ть $x_1^{\sigma_1}\wedge\ldots\wedge x_n^{\sigma_n}.$

Если $\sigma_1 \oplus \ldots \oplus \sigma_n = 0$, то есть срез ???. Мимо них нельзя пройти. Если замкнуть всё кроме них, то б. $x_1 \vee \ldots \vee x_n^{\sigma_n}$ Из этой схемы можно получить 0, 1 (замкнуть или разомкнуть всё).

Если в тест не вкл. набор ??? к.-п. набор $\bigwedge x_i^{\sigma_i}$, то не отличим от \mathbb{O} , если не вкл. $\bigvee x_i^{\overline{\sigma_i}}$, то не отличим от $\mathbb{1}$. ! Если схема Карно из 4-х переменных, нужно построить полный диагностический тест (условный). Нужны все наборы или нет? Можно ли за 15 наборов?

Каким образом решается задача о тестировании матрицы?

$$\begin{pmatrix} f_0 & f_1 & \cdots & f_n \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix} \Rightarrow \begin{pmatrix} f_0 \oplus f_1 & f_0 \oplus f_2 & \cdots & f_0 \oplus f_n \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix}$$

Надо подобрать такие строки, чтобы 1 столбец отличался от всех других.

Найти строки: в любом столбце есть единицы.

< Задача о полноте и базисе в $P_2>$

Задача о покрытии матриц.

$$\begin{pmatrix} f_1 & \cdots & f_n \\ \vdots & \ddots & \vdots \end{pmatrix} \Rightarrow \begin{pmatrix} f_1 \oplus f_2 & \cdots & f_1 \oplus f_n & \cdots & f_{n-1} \oplus f_n \\ \vdots & & \ddots & & \vdots \end{pmatrix}$$

Строим все тупиковые покрытия матрицы. Для этого: есть строки i, j, k, где 1 у f_1

$$(i \lor j \lor k)(k \lor l \lor m) \dots (\dots) = 1$$

в каждом столбце матрицы №4.

После этого формальное раскрытие скобок и упрощение (а́ la алгоритм Нельсона).

$$(1 \lor 6)(1 \lor 2)(2 \lor 3)(3 \lor 4)(4 \lor 5)(5 \lor 6) = (1 \lor 26)(3 \lor 24)(5 \lor 46) =$$

 $135 \lor 246 \lor 1245 \lor 1346 \lor 2356$

тупиковые ДН Φ для функции, которая = 0 на 3 и более.

Градиентный алгоритм

Сформулируем задачу. Что такое градиентный алгоритм (жадный): минимизируем функции по антиградиенту. Проблемы: с f'', которая может быстро меняться.

Есть параметр, который связан с оптимизацией и который мы меняем.

Градиентный алгоритм для задачи о покрытии

Состоит в том, что берём строку, которая покрывает наибольшее количество столбцов и убираем всё вместе со столбцами и т. д.

При определённых условиях этот алгоритм работает качественно.

Теорема. Если в булевой матрице $m \times n$ доля единиц в любом столбце не меньше p, то градиентное покрытие не более $1 - \log_{1-n}(n)$ строк.

Доказательство. Выбрав первую строку, имеем в ней же менее p доли столбцов.

 $'1' \geqslant pmn$ разбрасываем по m стр.

Теперь осталось $\leq (1-p)n$ столбцов, следовательно, доля единиц повысилась.

$$(1-p)^t n, \quad t-? \qquad (1-p)^t \leqslant \frac{1}{n}, \text{ то есть } t \geqslant -\log_{1-p} n$$

Пример: дискретная задача, где алгоритм работает хорошо. Поиск наикратчайшего остовного дерева. Задан связный граф, ребра с весами. Найти остовное дерево с наименьшим суммарным весом рёбер. (Будем считать, что граф полный и что веса > 0.)

Алгоритм: беру ребро наименьшего веса. Беру следующие лёгкие, если они не образуют цикл...

Доказательство. $l_1, \ldots, l_{n-1} \Rightarrow$ дерево (алгоритма) = D(алг) $l_1, \ldots, l_p, l_{p+1}, \ldots l_{n-1}$ и

 $l_1,\dots,l_p,l_{p+1},\dots l_{n-1}-\widetilde{D}(\text{опт}), \exists,$ если D(алг) неокб ??? р/м $l_1,\dots,l_p,l_{p+1},l'_{p+1},\dots,l'_{n-1}$ — граф с 1 циклом.

$$p/M$$
 $l_1, \ldots, l_n, l_{n+1}, l'_{n+1}, \ldots, l'_{n-1}$ — граф с 1 циклом.

Если есть l'_k , образующее цикл, то выбросим его.

Теперь дерево ещё более оптимальное, чего быть не может.

Какие алгоритмы хорошие (по времени их работы) и почему? Полиномиальные лучше экспоненциальных. Что значит «алгоритм долго работает»?

Для решения задачи можно привлечь разные ресурсы. Если n^k — время, обычно решаем уравнение $n^k \leqslant C$, следовательно, $n \leqslant \sqrt[k]{C}$ — растущая функция.

A что имеем при $2^n \leqslant C$. Это хуже!

Оказывается, что почти все задачи (дискретные) в некотором смысле эквивалентны.

То есть умея решить с полиномиальной сложностью задачу №1, могу решить с полиномиальной сложностью задачу №2.

Язык, состоящий из КНФ.

 ${
m KH}\Phi$ называется *выполнимой*, если существует набор переменных, на которых ${
m KH}\Phi=1.$

МТ: определить, является ??? КНФ легко.

NP-полный язык (недетерминированной полиномиальности) Недетерминированная МТ может содержать 2 разных команды q_1 и q_2 в L и q_1 и q_2 в R.

1. $L \in NP$

15

2. $L' \in NP, L' \propto L$ (полиномиально сводится)

 $L' \in NP$ эт.б. нек. МТ??? 1

Теорема. (Кук, Карп, Левин)

[15.11.11] Лекция 10

Пусть у нас есть задача распознавания, то есть есть некоторый алфавит A, множество слов в этом алфавите и подмножество этого множестве (язык) $L \in A^*$.

Докажем, что $L \in P \iff \exists$ BMT, распозн. L, и время разбора $\leq P(n)$

 $L \in NP \Leftrightarrow \exists HMT$

/ Задача на перебор /

Говорят, что один язык полиномиально сводится к другому языку: $L_1\mathcal{L}L_2$: \exists ДМТ, работающая за полиномиальное от длины входа время, $x \in L_1 \Leftrightarrow \phi(x) \in L_2$

Утверждение 1: $L \in NP$, $L'\mathcal{L}L \Rightarrow L' \in NP$

Утверждение 2 (транзитивность полиномиального сведения): $L_1\mathcal{L}L_2, L_2\mathcal{L}L_3 \Rightarrow L_1\mathcal{L}L_3$

Эталонная задача на перебор – задача выполнимости

ВЫΠ

```
A = \{(,), x, v, 1, 0, \neg\}

\omega \in \text{ВЫП}, (x_1 \lor \not\in \text{ВЫП})

(x_1 \lor x_3)(x_2 \lor x_3) \in \text{ВЫП}
```

Определение. Язык L - NP-полный, если:

1. $L \in NP$

2. $\forall L' \in NP : L'\mathcal{L}L$

Теорема. (Теорема Куна)

Язык выполнимости является NP-полным. / без доказательства /

Утверждение: если язык L-NP-полный, L' – некоторый другой язык и $L\mathcal{L}L'\Rightarrow L'-NP$ -полный.

Рассмотрим ещё несколько NP-полных задач.

КЛИКА

КЛИКА: дан граф G и некоторое число k.

 $(G,k) \in \mathrm{KЛИKA}$ тогда и только тогда, когда в G есть полный подграф из k вершин.

Теорема. Язык КЛИКА является NP-полным. Докажем две вещи:

- 1. КЛИКА∈NР
- 2. ВЫП \mathcal{L} КЛИКА

Доказательство. На вход подаётся ω .

 ω ∉???, ω - не КНФ, тогда (:,2) ∈КЛИКА.

$$\omega - \text{KH}\Phi (x_1 \vee x_2 \vee x_3)(x_2 \vee \overline{x_3})(\overline{x_1} \vee \overline{x_2})$$

∀ литералу в КНФ поставим в соответствие вершину. Рёбра проводятся между всеми парами вершин, кроме

- 1. тех, которые соответствуют литералам, стоящим в одной скобке
- 2. тех, которые соответствуют x_i и \overline{x}_i

Если КНФ выполнима, то в \forall скобке \exists литерал, равный 1.

Вершины, соответствующие истинным литералам, взятые по одному из каждой скобки, образуют клику (они не находятся в одной скобке и не являются отрицанием друг друга, так как оба истинны).

Обратно: если есть некая клика, то в неё входят литералы из разных скобок, им ставим в соответствие 1, остальным - 0 и всё ОК.

(] размер клики=k, то

- 1. литералы, соответствующие разным вершинам, стоят в разных скобках и
- 2. не являются отрицаниями друг друга.

$$x_i \in \mathrm{KЛИKA}$$
, тогда $x_i = 1$; $\overline{x}_i \in \mathrm{KЛИKA}$, тогда $x_i = 0$: $f(\tilde{x}) = 1$, т.к. все скобки $= 1$)

NM

NM - независимое множество.

(G,k): существует ли в G множество из k вершин, не соединённых рёбрами?

КЛИКА \mathcal{L} NM

$$(G,k) \mapsto (\overline{G}, n-k)$$

$$G = \langle V, E \rangle, \ \overline{G} = \langle V, V^2 \setminus E \rangle$$

 $P \subseteq NP$, т.к. \forall ДНТ яляется НДТ (\subseteq или \subset , неизвестно (!!!))

2-ВЫП

 ω ∈2-ВЫП, если ω – КНФ, в \forall скобке ровно 2 литерала.

2-ВЫП $\in P$

$$K = (x_1 \vee y_1)(x_1 \vee y_2) \dots (x_1 \vee y_k) \& (\overline{x}_1 \vee z_1)(\overline{x}_1 \vee z_2) \dots (\overline{x}_1 \vee z_l) \& K'(x_2, \dots, x_n)$$

Преобразуем формулу следующим образом:

$$=(x_1\vee y_1\ldots y_k)(\overline{x_1}\vee z_1\ldots z_l)K'$$

$$(x_1 \lor x_1) \Rightarrow x_1 = 1$$

$$(\overline{x}_1 \vee \overline{x}_1) \Rightarrow \overline{x} = 1$$

 Φ' - выполнима, тогда $(x_1 \vee y_1 \dots y_k) = 1\$x_1 \vee z_1 \dots z_l) = 1$

$$egin{aligned} x_1 &= 1 \Rightarrow z_1 = \ldots = z_l = 1 \ x_1 &= 0 \Rightarrow y_1 = \ldots = y_l = 1 \ \end{aligned}
ightarrow \Phi' = 1$$
 Обратно: если Φ' – выполнима, то

- 1. все $y_i = 1$, следовательно, $x_1 = 0$ или
- 2. существует $y_i = 0$, тогда & $(y_i \lor z_j) = 0 \Rightarrow z_j = 1 \ \forall j \Rightarrow x_1 = 1$

Пемма. \exists биномиальное преобразование ϕ : k вып. тогда и только тогда, когда $\phi(k)$ вып.

В $\phi(k)$ на одну переменную меньше.

$$(x_1 \lor x_2x_4)(\overline{x}_2 \lor x_3)(x_3 \lor \overline{x}_1)(x_4 \lor x_1)(x_4 \lor x_3)(\overline{x}_4 \lor x_2)$$

Устраним x_1 :

 $(x_1 \lor x_2 x_4)(\overline{x}_1 \lor x_3)K'$ выполн. тогда и только тогда, когда $(x_2 \lor x_3)(x_4 \lor x_3)(\overline{x}_2 \lor x_4)(x_4 \lor x_3)(\overline{x}_4 \lor x_2)$ Устраним x_2 :

 $(x_2 \vee x_3\overline{x}_4)(\overline{x}_2 \vee x_3)(x_3 \vee x_4) \iff (x_3 \vee x_3)(\overline{x}_4 \vee x_3)(x_3 \vee x_4), \ x_3 = 1$

Эта КНФ выполнима, следовательно, исходная КНФ выполнима

Язык 3-ВЫП

 $\omega \in 3$ -ВЫП тогда и только тогда, когда $\omega - \mathrm{KH}\Phi$, любая скобка которой содержит ровно 3 литерала. Задача распознавания 3-выполнимости является NP-полной.