

Révisions

- Deux type de chiffrement
 - **≻**Chiffrement symétrique
 - Même clé pour chiffrer et pour déchiffrer
 - Vigénère, DES, AES
 - **≻**Chiffrement asymétrique
 - Clé de chiffrement ≠ Clé de déchiffrement
 - Systèmes à clé publique / clé privée
 - Authentification,
 - Non répudiation,
 - Signature électronique

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 3

Notion de fonction à sens unique

• Fonction à sens unique

- > Exemple :
 - $\, Exponentiation \,\, modulaire$
 - Logarithme discret

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

• Le calcul inverse est facile si on connaît la clé

> Exemple : Système de chiffrement asymétrique

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 5

Arithmétique modulaire

- De nombreux systèmes cryptographiques sont basés sur l'arithmétique modulaire
 - >Logarithme discret
 - >Théorème de Bezout
 - > Théorèmes de Fermat et d'Euler
 - >RSA
 - Propriétés des nombres premiers
 - Tests de primalité
- Développer des algorithmes efficaces en arithmétique modulaire

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Arithmétique modulo N

- $a \equiv b \text{ [Mod N]} \iff \exists \lambda \in \mathbb{Z} \mid (a-b) = \lambda \mathbb{N}$
 - ⇔ a et b ont même reste dans la division euclidienne par N
- Une classe d'équivalence peut être représentée par ce reste par N, nombre compris entre 0 et N-1
- L'ensemble des classes d'équivalence est noté Z /NZ

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 7

Propriétés de Z/NZ

• Addition: +

Commutative, associative, élément neutre 0 (classe des multiples de N) Tout nombre a un opposé : $a + (N-a) \equiv 0 \text{ [Mod N]}$

• Multiplication : ×

Commutative, Associative, élément neutre 1 Distributive par rapport à l'addition

• Z /NZ est un anneau commutatif unitaire

Jean-Luc Stehlé 1999.2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Anneaux commutatifs unitaires

Soit A un anneau commutatif unitaire

Notations habituelles :

Opérations: + ×

Éléments neutres 0 1

-a est l'opposé de a

On note habituellement 2, 3, 4, etc

les éléments 1+1, 1+1+1, 1+1+1+1 etc

• Théorème $\forall a : a \times 0 = a$

Démonstration :

 $a \times b = a \times (0+b) = a \times 0 + a \times b$ (Distributivité) et on ajoute $-(a \times b)$ à droite et à gauche...

Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 9

Inverse dans un anneau

On dit que a est inversible s'il existe un élément appelé inverse de a, noté a-1, vérifiant

$$\mathbf{a} \times \mathbf{a}^{-1} = \mathbf{a}^{-1} \times \mathbf{a} = \mathbf{1}$$

Si tous les éléments de A autres que 0 sont inversibles, alors A est un corps

Si $a \times b = 0$ avec $a \neq 0$ et $b \neq 0$ (il y a des diviseurs de zéro) alors a n'est pas inversible.

<u>Démonstration par l'absurde</u>:

S'il existe a^{-1} alors $a^{-1} \times (a \times b) = 0$ donc $b = (a^{-1} \times a) \times b = 0$

Jean-Luc Stehlé 1999.2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Solutions de l'équation x²=1

- (x+1)(x-1)=0
- deux racines évidentes : x=1 et x=-1 Appelées racines triviales.
- S'il y a d'autres racines, il y a des diviseurs de 0.

Si dans un anneau il y a des racines carrées non trivales de l'unité, l'anneau n'est pas un corps

D Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 11

Équation x²=x

$$x(x-1) = 0$$

Deux solutions triviales : x=0 et x=1 S'il y a d'autres solutions, alors il y a des diviseurs de 0

Si dans un anneau il y a des éléments égaux à leur carré et autres que 0 ou 1 , alors l'anneau n'est pas un corps

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

a inversible

```
\Leftrightarrow \exists b : a.b \equiv 1 \text{ [Mod N]}
\Leftrightarrow \exists \lambda : a.b + \lambda N = 1
\Leftrightarrow \text{a premier à N} \text{ (Bezout)}
```

<u>Théorème</u>: **Z/NZ** est un corps si et seulement si N est premier

Si N = u.v avec 0 < u < N et 0 < v < N, alors $u.v \equiv 0$, il y a des diviseurs de 0, et $\mathbb{Z}/N\mathbb{Z}$ n'est pas un corps.

Plus généralement, si avec 0 < u < N n'est pas premier à N, il y a un diviseur d, 0 < d < N commun à u et à N. \exists a,b: u = a.d N = b.d \Rightarrow a.b.d = a.N = b.d \Rightarrow b.d $\equiv 0$ [Mod N]: il y a des diviseurs de 0, et Z/NZ n'est pas un corps.

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 13

Tests de primalité

- S'il y a dans Z/NZ une racine carrée non triviale de l'unité, N n'est pas premier.
- S'il y a dans Z/NZ un élément autre que 0 et 1 égal à son carré, N n'est pas premier.

Exemples:

 $5^2 = 25 \equiv 5 \text{ [Mod 10]}$ $5^2 = 25 \equiv 1 \text{ [Mod 12]}$ $6^2 = 36 \equiv 6 \text{ [Mod 10]}$ $7^2 = 49 \equiv 1 \text{ [Mod 12]}$ 10 n'est pas premier 12 n'est pas premier

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

U_N est le groupe multiplicatif des éléments inversibles dans $\mathbb{Z}/N\mathbb{Z}$

 $\Phi[N] = Nombre d'éléments de <math>U_N = card(U_N)$ Nombre d'entiers inférieurs à N et premiers à N

Φ est la fonction d'Euler Φ[N] est appelé indicateur d'Euler de N

Exemple: N=12 $U_{12} = \{1, 5, 7, 11\}$

Remarque : Tous les éléments de U₁₂ sont racines carrées de l'unité

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 15

Théorème : Si a est inversible modulo N,

alors $a^{\Phi[N]} \equiv 1 \text{ [Mod N]}$

Corollaire: Si a est inversible modulo N,

et e \equiv 1 [Mod Φ [N]] alors $a^e \equiv a$ [Mod N]

Démonstration:

 $\{\,1,\,a,\,a^2,\,a^3,\,\ldots,\,a^r,\,\ldots,\,a^s\,,\,\ldots\ldots a^{\nu\,1}\,\}$ sous-groupe de U_N formé des puissances successives de a. Formé de ν éléments où ν est le premier exposant tel que $a^\nu=1$

 ν , nombre d'éléments du sous groupe divise $\Phi[N]$ nombre d'éléments du groupe U_N

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Le théorème de Fermat

Cas particulier du théorème d'Euler:

N=p premier

- $\forall a : a^p = a [Mod p]$
- Pour $e\equiv 1 [Mod (p-1)]$ $a^e = a [Mod p]$
- Attention: Pour N non premier, il n'existe pas toujours d'exposant pour $a^e = a [MoN p]$
- $\underline{Contre\ exemple:}\ Tous\ les\ \'el\'ements\ de\ \ U_{12}=\ \{\ 1\ ,5\ ,7\ ,11\ \}\ sont\ racines\ carr\'ees$ de l'unité donc leur puissance 5ième est égale à eux mêmes. Mais la suite des puissances successives de 2 ($\not\in$ U₁₂) est 2, 4, 8, 4, 8, 4, 8, 4, 8, etc., et on ne retrouve jamais 2.

Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 17

« Petit » théorème de Fermat

Pour p premier, a≠0 [p], on a

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Application du théorème de Fermat

- Pour c premier à p-1, on calcule d inverse de c modulo p-1 (Bezout)
- Pour $cd \equiv 1$ [p-1] on a, pour tout a (y compris 0 [p]) $(\mathbf{a}^{\mathbf{c}})^{\mathbf{d}} \equiv (\mathbf{a}^{\mathbf{d}})^{\mathbf{c}} \equiv \mathbf{a} \quad [\mathbf{p}]$
- Deux exponentiations modulaires réciproques l'une de l'autre

f : élever à la puissance c

g: élever à la puissance d

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 19

Système de Massey - Omura

- p premier public très grand ($> 10^{120}$)
- A choisit c_A et d_A secrets avec $c_A \cdot d_A \equiv 1$ [p-1]
- B choisit c_B et d_B secrets avec $c_B.d_B \equiv 1$ [p-1]

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

- A calcule et transmet M^cA,
- B l'élève à la puissance c_B et renvoie $\mathbf{M}^{c_A c_B}$
- A l'élève à la puissance d_A obtient $\mathbf{M}^{c_A c_B d_A} \equiv \mathbf{M}^{c_B} \mathbf{qu'il}$ transmet
- élève à la puissance d_B et retrouve M N.B.: Tous les calculs sont modulo p
- Trois échanges

- nécessite une authentification préalab
- Protocole de valise à deux cadenas

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmetique Modulaire

Bases mathématiques : Arithmétique dans \mathbb{Z}

Division euclidienne

```
a = b q + r 0 \le r < b

q = a DIV b

r = a MOD b

a MOD b = a - (b \times a DIV b)
```


L'écriture de programmes DIV et MOD en grands nombres n'est pas élémentaire

Temps de calcul proportionnel au carré du nombre de bits

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Notion d'Idéal

$$\begin{array}{ccc}
a \in \mathfrak{G} \\
b \in \mathfrak{G} \\
\lambda \in \mathbb{Z}
\end{array}$$

$$\begin{array}{ccc}
\Rightarrow & a + b \in \mathfrak{G} \\
\lambda a \in \mathfrak{G}$$

- Dans Z, tout idéal est principal, c'est-à-dire égal à l'ensemble des multiples d'un d unique
- Démonstration: Division euclidienne et notion d'ordre

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 23

Arithmétique dans Z : Le pgcd

- Z: Ensemble des entiers relatifs. Muni de + et de ×, Z est un anneau.
- Un idéal \mathscr{I} dans Z est un sous-ensemble stable par + et par $\times \lambda$ avec $\lambda \in \mathbb{Z}$
- Dans Z, tout idéal \mathscr{I} est principal, c'est-à-dire formé des multiples d'un élément $d \in \mathcal{I}$
- Démonstration : par la division euclidienne :
 - Soit d le plus petit élément positif dans
 - ➤ Pour tout x positif dans 𝕒, on peut faire une division euclidienne x=dq+r avec r<d.
 - On a r∈ 𝗸, r<d donc r=0, donc x=dq. Pour y<0, même raisonnement avec x=-y ∈ 𝗸
- Exemple d'idéal : pour a,b \in Z : $\mathcal{A}(a,b) = \{\lambda a + \mu b; \lambda, \mu \in Z\}$
 - > ∃d∈ 𝒯(a,b) tel que tout élément de 𝒯(a,b) soit multiple de d
 - d divise a et b.
 - ∃λμ tels que d= λa+μb
 - Tout diviseur commun de a et b divise

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Arithmétique dans Z: Th de Bezout

- a et b premiers entre eux : pgcd(a,b)=1
- Théorème de Bezout : Il existe $\lambda \mu$ tels que $\lambda a + \mu b = 1$
- Si d divise a et b, d divise 1, donc d=1
- $\mathcal{I}(a,b) = {\lambda a + \mu b; \lambda, \mu \in \mathbb{Z}} = \mathbb{Z}$ tout entier

Attention : λ et μ ne sont pas uniques

 $\lambda \rightarrow \lambda + kb$ $\mu \rightarrow \mu - ka$

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 25

Bases mathématiques: Arithmétique dans Z

Idéal maximal

- Tout idéal strictement plus grand est égal à Z tout entier
- Égal à l'ensemble des multiples d'un d unique
- d n'a pas de diviseurs autres que lui-même et l'unité

⇒ d premier!

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Bases mathématiques : La fonction d'Euler

 $\Phi(N)$ = Indicateur d'Euler de N

 $\Phi(N)$ = nombre d'entiers compris entre 1 et N-1 et premiers à N

 $\Phi(N)$ = nombre d'éléments du groupe multiplicatif U_N

des éléments inversibles dans Z/NZ

N = p premier : $\Phi(p) = p-1$

 $N = p^{\alpha}$, p premier : $\Phi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1} = p^{\alpha-1}(p-1)$

Cas général : $N = \prod p_i^{\alpha_i}$, p_i premiers

$$\Phi(\prod p_i^{\alpha_i}) = \prod (p_i^{\alpha_i} - p_i^{\alpha_i - 1}) = \prod p_i^{\alpha_i - 1}(p_i - 1) = N \prod (1 - 1/p_i)$$

Se démontre par le théorème des restes chinois

ightharpoonup Exemple 12 = 3.2.2 $\Phi(12) = (3-1).2.(2-1) = 4$

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 27

Bases mathématiques:

Le théorème des restes chinois

- $n = n_1 n_2 ... n_k$ avec n_i premiers entre eux deux à deux
- $a \in \mathbb{Z}/n\mathbb{Z} \iff (a_1, a_2, ..., a_k) \in \prod \mathbb{Z}/n_j\mathbb{Z}$ avec $a_j = a \mod n_j$ est une bijection compatible avec les structures de groupes additif et multiplicatif

- Détermination de la fonction réciproque (se ramène à Bezout pour k=2)
 - $\begin{aligned} & \mathbf{m_i} = \mathbf{n} / \mathbf{n_i} \\ & \mathbf{c_i} = \mathbf{m_i} (\mathbf{m_i}^{-1} \operatorname{mod} \mathbf{n_i}) \end{aligned} \qquad (\operatorname{donc} \mathbf{m_i} \equiv 0 [\operatorname{mod} \mathbf{n_i}] \operatorname{pour} \mathbf{j} \neq \mathbf{i})$ $\end{aligned} \qquad (\operatorname{car} \mathbf{m_i} \in \mathbf{n_i} \operatorname{premiers} \operatorname{entre} \operatorname{eux})$
 - $> c_i = 1 \bmod n_i \quad c_i = 0 \bmod n_i \ pour \ j \neq i$
 - ho $a = (a_1c_1 + a_2c_2 + ... + a_kc_k) \mod n$
- La famille d'équations $x \equiv a_i \pmod{n_i}$ a une solution unique modulo n
- $x \equiv a \pmod{n_i} \forall i \iff x \equiv a \pmod{n}$

@ Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Bases mathématiques : Le théorème des restes chinois

Cas particulier: k=2

- $n = n_1 n_2$ avec n_1 et n_2 premiers entre eux
- Par Bezout, il existe $\lambda \mu$ vérifiant $\lambda n_1 + \mu n_2 = 1$
- Etant donnés a_1 et a_2 en posant $a = \lambda n_1 a_2 + \mu n_2 a_1$ on aura $a \mod n_1 = a_1$ et $a \mod n_2 = a_2$

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 29

Bases mathématiques:

Le théorème des restes chinois

Applications

- ☞ Le problème de Sun-Tsu (Mesure des champs)
- TLe partage du sac de pièces d'or par les pirates
- ${}^{\mathscr{F}} \text{ Le calcul de } \Phi(\prod p_i^{\alpha_i})$
 - ${}^{\mbox{\tiny \mathcal{F}}}$ Si a et b sont premiers entre eux, alors $\Phi(ab) = \Phi(a) \times \Phi(b)$

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Un cas particulier

 \triangleright n= p.q, p et q premiers distincts, $\Phi(n) = \Phi(pq) = (p-1)(q-1)$

 \triangle a premier à p \Rightarrow $a^{p-1} \equiv 1[p] \Rightarrow a^{(p-1)(q-1)+1} \equiv a[p]$ a multiple de $p \Rightarrow a \equiv 0 [p] \Rightarrow a^{n'importe quoi} \equiv a [p]$

- \triangleright Donc pour tout a, $a^{(p-1)(q-1)+1} \equiv a [p]$
- ightharpoonup De même $a^{\lambda.(p-1)(q-1)+1} \equiv a[p]$, $\forall \lambda \in Z$
- ➤ Même raisonnement modulo q,
- > p et q étant premiers entre eux, une égalité vraie modulo p et modulo q reste vraie modulo pq.

$$a^{\lambda.\Phi(n)+1} \equiv a[n]$$

Même raisonnement dès que n est le produit d'une famille de nombres premiers tous distincts (donc n'a pas de facteur carré)

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 31

Théorème : Si n n'a pas de facteur carré, alors, $\forall \lambda \in \mathbb{Z}$, on $a \geq a^{\lambda,\Phi(n)+1} \equiv a[n]$

- Corollaire: Si α et β vérifient $\alpha.\beta \equiv 1$ [$\Phi(n)$] alors, pour tout a, on a $a^{\alpha\beta} \equiv a[n]$
- Applications n=pq p,q très grands (10¹⁰⁰)
 - Connaissant n il est très difficile de calculer p et q (problème de la factorisation des grands **nombres**) ainsi que $\Phi(n) = \Phi(pq) = (p-1)(q-1)$
 - * Connaissant α il est très difficile de calculer β si on ne connaît pas p et q Si on les connaît, c'est immédiat (Bezout)
 - * Il est facile de générer des p et q très grands
 - * Si on publie n et α il est très difficile de retrouver p, q et β . Quelques contraintes sur le choix de p et q
 - > (Très difficile = temps > âge de l'univers)

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Le système RSA

- Chaque utilisateur choisit n, α et β vérifiant $\alpha.\beta \equiv 1$ $[\Phi(n)]$ et publie n et α et garde le reste confidentiel.
- α est la clé publique, β est la clé secrète.

codage public : $\mathbf{M} \rightarrow \rightarrow \rightarrow \mu \equiv \mathbf{M}^{\alpha} [n]$

Similaire à Massey Omura, mais l'un des exposants est public et ici on ne peut pas calculer l'autre

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 33

Le système RSA

Système à clés publiques

- Tout le monde peut envoyer un message secret que seul le destinataire saura décoder.
- On peut authentifier un message en codant un checksum avec la clé secrète de l'émetteur
 - ➤ Scellement, non répudiation
- On peut authentifier une liaison

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 34

cument destiné uniquement aux élèves et aux enseignants de l'EPITA. L'auteur vous remercie d'avance de ne pas diffuser ce documen

Le système RSA

Authentification d'une

- > Publics:
- n_A , α_A f_A : $M \rightarrow \rightarrow M^{\alpha_A}[n_A]$
- $n_{_{B}}$, $\alpha_{_{B}}$ $f_{_{B}} \colon M \to \to M^{\alpha_{_{B}}}[n_{_{B}}]$

 $g_{\Lambda}: M \rightarrow M^{\beta_{\Lambda}}[n_{\Lambda}]$ $g_R: M \rightarrow M^{\beta_R}[n_R]$

- A génère un nombre aléatoire ξ et l'envoie à B
- B applique g_R et renvoie $g_R(\xi)$ à A
- A vérifie que $f_B(g_B(\xi))$ redonne bien ξ , ce qui authentifie B. Il applique g_A et envoie $f_B(g_B(\xi))$ à B.
- B vérifie que f_A de ce qu'il a reçu redonne bien $g_R(\xi)$ ce qui authentifie A.

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 35

RSA: Comment l'installer?

- Routines de calcul en arithmétique modulaire
 - > Addition, Multiplication
 - \triangleright Division [mod $\Phi(n)$] pour le calcul des clés)
 - > Réduction modulo N
 - Algorithme « de proche en proche » Méthode de Montgomery
 - > Exponentiation
- Recherche de nombres premiers
 - > Générateurs aléatoires
 - > Tests de primalité
- Peut on casser le RSA ?
 - > Précautions à prendre sur les nombres premiers
 - > Casser le RSA par le Log Discret
 - > Casser le RSA par factorisation

Il existe des algorithmes en $\gamma = 1/3$

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Attaques sur RSA

- Rappels mathématiques
 - p, q premiers secrets très grands N = pq public
 - α secret β public avec $\alpha\beta \equiv 1 \pmod{(p-1)(q-1)}$
 - $\mathbf{M} \longrightarrow (\mathbf{M}^{\alpha}) [\mathbf{mod} \ \mathbf{N}] \longrightarrow ((\mathbf{M}^{\alpha})^{\beta}) [\mathbf{mod} \ \mathbf{N}]$
 - $\mathbf{M} \longrightarrow (\mathbf{M}^{\beta}) [\text{mod } \mathbf{N}] \longrightarrow ((\mathbf{M}^{\beta})^{\alpha}) [\text{mod } \mathbf{N}]$
- Attaque par Log discret
 - > Retrouve l'exposant secret sans factoriser
- Attaque par factorisation
 - > Faiblesse si p ou q ou (p-q) petits

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 37

- Si l'un des facteurs est petit : Essais successifs
- Si les facteurs sont voisins : Test de Fermat

On pose a = (p+q)/2 b = (p-q)/2 $r = \lfloor \sqrt{n} \rfloor$

q = (a+b) $n = a^2-b^2 = (a+b)(a-b)$ Donc $\mathbf{p} = (\mathbf{a} - \mathbf{b})$ $a \ge r+1$

a(t) = r+t $f(t) = a(t)^2-n = t^2+2tr+r^2-n$

On calcule donc f(t) pour t=1,2,3,...: fonction croissante de t, incrément 2t+2r+1jusqu'à obtenir un carré parfait b² pour t=t₀.

On écrit $f(t_0) = b^2 = a^2$ -n, d'où la factorisation

Temps de calcul proportionnel à b donc à p-q

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 38

19

Recommandations DCSSI pour l'utilisation du Log Discret

1. Dans GF(p), p premier

· Niveau standard

> < 2010: p: Minimum 1536 bits

Sous groupe engendré par g : ordre multiple d'un premier à au moins 160 bits

> < 2020: p: Minimum 2048 bits

Sous groupe engendré par g : ordre multiple d'un premier à au moins 256 bits

Niveau Renforcé

> < 2010: p: Minimum 2048 bits

Sous groupe engendré par g : ordre multiple d'un premier à au moins 256 bits

> < 2020: p: Minimum 4096 bits

Sous groupe engendré par g : ordre multiple d'un premier à au moins 256 bits

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 39

Recommandations DCSSI pour l'utilisation du Log Discret

2. Dans **GF**(2ⁿ)

Niveau standard

> < 2010: n > 2048 bits

Sous groupe engendré par g : ordre multiple d'un premier à au moins 160 bits

> < 2020: n > 2048 bits

Sous groupe engendré par g : ordre multiple d'un premier à au moins 256 bits

Mais il est recommandé d'utiliser plutôt GF(p), plus sûr à taille de clé égale

Niveau Renforcé

▶ Déconseillé

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Recommandations DCSSI pour l'utilisation de RSA

Problème de la factorisation

Niveau standard

> < 2010: Modules > 1536 bits; 2048 bits conseillés

> < 2020: Modules > 2048 bits

> Exposant secret de même ordre de grandeur que module

 \triangleright Exposant public $> 2^{16}$

N.B.: $2^{16} + 1 = x10001$ est un exposant public souvent utilisé

Niveau Renforcé

> < 2010: Modules > 2048 bits
 > < 2020: Modules > 4096 bits

> Exposant secret de même ordre de grandeur que module

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 41

Arithmétique modulaire

- Arithmétique modulo N avec N très grand, nombre à n bits
- On travaille toujours en entiers non signés
- On pose $R = 2^n$
 - n : première puissance de 2 supérieure à N
 - R: premier nombre qui ne puisse pas s'écrire sur n bits
- $\delta = R-N \le R/2$ Remarquer $R \equiv \delta \pmod{N}$
 - On a intérêt à prendre δ petit
 - Exemple des groupes d'Oakley

On commence par 64 bits à 1 \Rightarrow δ <2⁻⁶⁴ R

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Arithmétique modulaire

- Il est souhaitable que le nombre de bits n soit un multiple du nombre de bits du processeur
- Exemple: processeur à 32 bits
 - ➤ Une multiplication élémentaire :
 - Multiplie deux nombres à 32 bits,
 - Résultat à 64 bits (sur 2 registres pouvant fonctionner en accumulateur)
 - > Réalisée en une instruction machine

$$\begin{array}{ll} n{=}32~q & B=2^{32}\\ \textit{On travaille sur une arithmétique en base }B\\ x=x_0+x_1B+x_2B^2+x_3~B^3+\ldots+x_{q\text{-}1}~B^{q\text{-}1} \end{array}$$

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 43

Arithmétique modulaire

- Représentation machine du grand nombre x : q mots (par exemple entiers 32 bits non signés)
 - 1024 bits : q=322048 bits : q=64

Une grande multiplication dans Z requiert q² multiplications élémentaires (plus les contrôles de boucles, calculs d'indices,...) et il faudra ensuite faire la réduction modulo N

On écrit $x = (x_0, x_1, x_2, x_3, ..., x_{q-1})_B$ Attention à l'ordre des mots (Big endian, Little endian)

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Calcul du pgcd : Algorithme d'Euclide

```
\mathfrak{G} = \mathfrak{G} (a,b) = \{ \lambda a + \mu b, \lambda, \mu \in \mathbb{Z} \} (a>b)
a = b q_1 + r_1

b = r_1 q_2 + r_2

r_1 = r_2 q_3 + r_3
\mathbf{r}_{n-1} = \mathbf{r}_n \ \mathbf{q}_{n+1} + \mathbf{0}
```

a, b et tous les r sont multiples de r_n et $r_n \in \mathcal{S}$ donc $r_n = pgcd(a,b)$

Programme récursif

```
Euclide(a,b)
Si b=0
   Alors retourner a
   Sinon retourner Euclide(b,a mod b)
```

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 45

Bases mathématiques: Arithmétique dans Z

Calcul du pgcd : Algorithme d'Euclide

Estimation du temps de calcul

```
Nombre d'or: \Phi = (1+\sqrt{5})/2 = 1.61803... \Phi^{-1} = (-1+\sqrt{5})/2 = \Phi - 1 = 0.61803... \Phi^{2} - \Phi - 1 = 0
\mathbf{F}_{\mathbf{k}} = (\mathbf{\Phi}^{\mathbf{k}} - (-1)^{\mathbf{k}}\mathbf{\Phi}^{-\mathbf{k}}) \, / \, \sqrt{5} \ \cong \ \mathbf{\Phi}^{\mathbf{k}} \, / \, \sqrt{5} \, à démontrer par récurrence sur \mathbf{k}
```

Théorème: Si Euclide nécessite plus de k appels récursifs, alors $a \ge F_{k+2}$ et $b \ge F_{k+1}$.

Démonstration : par récurrence sur k Supposons $b \ge F_{k+1}$ et $(a \text{ mod } b) \ge F_k$ Or b+(a MOD b) = b+a-(a DIV b) $b \le a$ Donc $a \ge F_k + F_{k+1}$

Corollaire: $b \le F_{k+1}$ et a>b>0 alors il faut moins de k appels récursifs

Si b- ${\bf \Phi}^{k+1}/\sqrt{5}$ alors moins de k appels. Le cas le pire est (F_{k+2},F_{k+1}) qui nécessite exactement k appels

Nombre d'appels < $(Log_2 b + Log_2(\sqrt{5}) - Log_2(\mathbf{\Phi})) / Log_2(\mathbf{\Phi}) \sim 1.44 Log_2 b + 0.67$

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Calcul de l'inverse d'un nombre modulo N

Trouver un x vérifiant $a x + \mu N = 1$

 $\exists x \Leftrightarrow pgcd(a,N) = 1 \Leftrightarrow a \text{ premier } a N$

 $\Phi(N)$ = Indicateur d'Euler de N

 $\Phi(N) = Nombre \ d$ 'entiers compris entre 1 et N-1 et premiers à N $\Phi(N) = Nombre \ d$ 'éléments du groupe multiplicatif U_N des éléments inversibles dans Z/NZ

Algorithme d'Euclide généralisé dans $\mathcal{S} = \mathcal{S}(a,N)$

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 47

Bases mathématiques : Arithmétique dans Z

Algorithme d'Euclide généralisé dans $\mathcal{G} = \mathcal{G}(a,N)$

Phase 1: On descend

 $\begin{array}{lll} N = a \; q_1 + r_1 & 0 \leq r_1 < a & r_1 \in \mathfrak{G} \\ a = r_1 \; q_2 + r_2 & 0 \leq r_2 < r_1 & r_2 \in \mathfrak{G} \\ r_1 = r_2 \; q_3 + r_3 & 0 \leq r_3 < r_2 & r_3 \in \mathfrak{G} \end{array}$

.

 $\begin{array}{ll} r_{n\text{-}3} = r_{n\text{-}2} \; q_{n\text{-}1} + r_{n\text{-}1} & 0 \leq r_{n\text{-}1} < r_{n\text{-}2} \\ r_{n\text{-}2} = r_{n\text{-}1} \; q_n \; \; + r_n & 0 \leq r_n < r_{n\text{-}1} & r_n \in \, \mathfrak{G} \end{array}$

 $r_{n-1} = r_n \ q_{n+1} \ + 0$

Tous les r_i , a et N sont multiples de $r_n \in \mathcal{I}$ donc $r_n = 1$

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Algorithme d'Euclide généralisé dans $\mathcal{G} = \mathcal{G}(a,N)$

Phase 2: On remonte et on applique des multiplicateurs

```
r_{n-2} = r_{n-1} q_n + r_n
                                                                        r_{n-2} - r_{n-1} q_n = 1
                                                                                                            (\times -q_n et addition, tue le terme en r_{n\text{-}1} )
r_{n-3} = r_{n-2} q_{n-1} + r_{n-1} \implies
                                                                 r_{\text{n-3}} - r_{\text{n-2}} \; q_{\text{n-1}} - r_{\text{n-1}} \; = \; 0
                                                                r_{\text{n-4}} - r_{\text{n-3}} \; q_{\text{n-2}} - r_{\text{n-2}} \; = \; 0
r_{n-4} = r_{n-3} q_{n-2} + r_{n-2} \implies
                                                                                                           (\times\,q_nq_{n\text{-}1} et addition, tue le terme en r_{n\text{-}2} )
r_1 = r_2 q_3 + r_3
                                                                r_1 - r_2 q_3 - r_3 (× ce qu'il faut puis + pour tuer le terme en r_3)
                                                                a - r_1 q_2 - r_2 (× ce qu'il faut puis + pour tuer le terme en r_2)
a = r_1 q_2 + r_2
                                                                N - a q_1 - r_1 (× ce qu'il faut puis + pour tuer le terme en r_1)
N = a q_1 + r_1
```

Il reste au final ($un\ terme\ en\ a$) + ($un\ terme\ en\ N$) = 1

Exercice: Écrire un programme récursif pour inverser a

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 49

Bases mathématiques: Arithmétique dans Z

Algorithme d'Euclide généralisé dans 9=9(a,N)

Phase 3 : Écrire cela dans un programme récursif

```
EuclideEtendu(a,b) renvoie (d,x,y) tel que d = ax + by
    Alors retourner (a,1,0)
    Sinon (d',x',y') := EuclideEtendu(b,a MOD b)

(d,x,y) := (d',y',x' - (a DIV b) y')
            retourner (d,x,y)
```

Inverser a revient à calculer EuclideEtendu(N,a)

Borne supérieure du nombre d'appels $\sim 1.44 \text{ Log}_2 \text{ a} + 0.67$

a équiréparti entre 1 et N-1, et pas forcément Fibonacci Estimation de Knuth: moyenne du nombre d'appel = $0.843 \text{ Log}_2(N) + 1.47$

Nombre d'étapes proportionnel au nombre de bits de N Temps proportionnel au cube du nombre de bits

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA Arithmétique Modulaire

Réduction modulo N

- $R = 2^n$ $N = R \delta$ avec δ petit
 - On suppose toujours $\delta < N/2$, et en général on aura $\delta << N/2$
 - Cas des groupes d'Oakley : $\delta \sim 2^{-64} \, N$
- Le nombre de bits n est un multiple entier du nombre de bits du processeur (n bits représentent un nombre entier de mots)
- R = 2ⁿ = B^q avec n=32q un nombre de n bits est stocké sur q mots de 32 bits
- Un élément de Z /NZ est représenté par un grand entier entre 0 et N-1 stocké sur q mots.
- Chaque fois qu'un calcul intermédiaire donne un résultat supérieur à N, on réduit modulo N.

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 51

Bases mathématiques : Arithmétique dans Z

Grande addition de 2 termes

- Équivaut à q additions élémentaires
- Le résultat peut atteindre 2N-2 < 2R-2, donc tient sur n+1 bits. On prévoit un bit de retenue.
- Si x≥N,
 - \triangleright calculer x-N (toujours <N)
 - $> x-N = x+\delta-R$
 - \triangleright On calcule x+δ (qui est toujours ≥R) et on tue le bit de poids fort.
- Temps de calcul pour une grande addition modulo N
 - ➤ Une grande addition (q additions élémentaires) si pas de réduction
 - > Deux grandes additions (2q additions élémentaires) si réduction nécessaire,
 - Un peu moins si δ est vraiment très petit
 - ➤ Un test (quelques tests élémentaires)

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA Arith

Arithmétique Modulaire

14 Mai 2014 Page 52

26

Grande addition de plusieurs termes

Par exemple q additions dans une grande multiplication

- **Choix 1 :** Se ramener à plusieurs grandes additions de 2 termes
- **Choix 2:** Travailler dans une arithmétique à q+1 mots

 - \triangleright x = a + R b (b est la retenue, inférieure au nombre de termes additionnés)
 - \triangleright On utilise $R \equiv \delta \text{ [mod N]}$
 - \triangleright On calcule $a + \delta b$
 - > Avec les hypothèses précédentes a<R, δ<<N, b petit on reste <2N-2
 - > et on procède comme précédemment si ça dépasse N.

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 53

Bases mathématiques: Arithmétique dans Z

Grande multiplication

Algorithme de l'école communale $z = x \times y$ q^2 multiplications, q(q-1) additions, arithmétique à 2q mots (+un mot de retenue).

Détail des opérations

$$\begin{split} x &= \sum_{0 \leq i < q} x_i \, B^i \quad \ \, y = \sum_{0 \leq i < q} y_i \, B^i \quad \ \, z = \sum_{0 \leq i < 2q} z_i \, B^i \\ & avec \, \, z_i = \sum_{j+k=i} x_j \, \, y_k \quad \text{(si x = y, temps divisé approximativement par 2)} \end{split}$$

 $x_i, y_i \le B-1$ donc $z_i \le q (B^2-2B+1)$ 2 mots principaux + un mot de retenue

Les résultats sont accumulés dans une suite de 2q+1 mots

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Réduction modulo N

Pour $q \le i \le 2q$ on a calculé d'avance Bⁱ [mod N] On multiplie par le coefficient et on additionne le résultat Approximativement q² multiplications et additions temps équivalent à une grande multiplication

```
Calculs préalables :
B^q = R \equiv \delta \text{ [mod N]} \ll N
B^{q+1} \equiv \delta B \; [mod \; N]
```

On additionne les $z_i B^i [mod N]$ On utilise une arithmétique en q+1 mots (car retenues).

Méthode équivalente :

Réduction de proche en proche des mots de poids élevé

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA Arithmétique Modulaire

14 Mai 2014 Page 55

Bases mathématiques :

Exponentiation dans un groupe multiplicatif

```
Élément neutre du groupe (Le nombre 1 en « grand nombre »)
Constantes : UN
                      entier simple
Variables : J
                      entier simple
                                                     (Grand nombre en arithmétique modulaire) représenté par son développement binaire [B[i]]
Données :
                      Élément du groupe
                      Exposant
Résultat : R
                      Élément du groupe
                                                     (Grand nombre en arithmétique modulaire)
              Mult fonction opérant sur des éléments du groupe
2 arguments 1 résultat (Grands nombres en arithmétique modulaire)
Fonction:
BEGIN
  R := UN
                                                                           Algorithme
  J := n-1
  WHILE ((B[j]=0) AND (j\geq0)) DO j := j-1; WHILE j\geq0 DO
        R := Mult(R,R)
élévation de R au carré
        IF B[j]=1 THEN R := Mult(R,A)
        j := j-1
                      à la fin de la boucle, R contient ab
Exercice: une petite amélioration est encore possible...
Attention: si on travaille dans Z/NZ:
   A est défini modulo N, B est défini modulo \Phi(N) © Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA Arithmétique Modulaire
```

Arithmétique Modulaire

Bases mathématiques :

Arithmétique modulo N Méthode de Montgomery (1985)

Principe de la méthode


```
\xi, \eta, \zeta \in \mathbb{Z}/\mathbb{NZ} représentés en machine par X, Y, Z \in [0..N-1] tels que
         X \equiv \xi R \text{ [mod N]}
         Y \equiv \eta R \pmod{N}
         Z \equiv \zeta R \pmod{N}
```

```
Si \zeta = \xi + \eta \pmod{N}, alors Z \equiv X+Y
Si \zeta = \xi \times \eta \text{ [mod N]}, alors Z.R = X.Y [Mod N] et Z = REDC(X.Y)
```

- Les classes d'équivalence modulo N restent codés en machine par leur représentation de Montgomery. Une multiplication équivaut alors à 2 grandes multiplications.
- Pour l'exponentiation, on conserve la routine classique (Square and Mult)
- Attention, les exposants restent stockés en binaire classique

Application : échange de clé par Diffie Hellman

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 59

Bases mathématiques :

Arithmétique modulo N

Méthode de Montgomery (1985)

Exemple d'implémentation : Mélanger multiplication et réduction

```
\mathbf{X} = (\mathbf{x}_{\text{q-1}}\mathbf{x}_{\text{q-2}} - \mathbf{x}_{\text{1}}\mathbf{x}_{\text{0}})_{\text{B}} = \sum \mathbf{x}_{\text{i}} \; \mathbf{B}^{\text{i}}
                 \mathbf{Y} = (\mathbf{y}_{q-1}\mathbf{y}_{q-2} \quad \mathbf{y}_1\mathbf{y}_0)_{\mathbf{B}} = \sum \mathbf{y}_i \mathbf{B}^i
Variables
                U = (u_{q\text{-}1}u_{q\text{-}2} \quad u_1u_0\,)_B = \sum u_i \; 2^{iw}
```

h est l'inverse de $-n_0$ modulo B calculé une fois pour toutes

```
U := 0
Pour i := 0 à q-1
   BEGIN LOOP
      P := x_i Y
                                 Multiplication scalaire par vecteur
                                  Addition de deux vecteurs
                                  Multiplication scalaire sans retenue
(4)
     P := m N
                                  Multiplication scalaire par vecteur
(5)
     U:= U + P
                                  Addition de deux vecteurs
      U := U / B
                                  Simple shift right
(6)
   END LOOP
```

Astuce algorithmique: (4) (5) s'écrivent U:=U+mR; P:=m & U:=U-P si &=R-N petit, on y gagne du temps

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Bases mathématiques : Méthode de Montgomery

Principe de la méthode

 $\xi,\eta,\zeta\in\mathbb{Z}/\mathbb{N}\mathbb{Z}$ représentés en machine par X, Y, Z \in [0..N-1] tels que

 $X \equiv \xi R \text{ [mod N]}$

Si $\zeta = \xi + \eta \pmod{N}$, alors $Z \equiv X+Y \pmod{N}$ $Y \equiv \eta R \text{ [mod N]}$ Si $\dot{\zeta} = \dot{\xi} \times \eta \text{ [mod N]}$, alors $Z.R \equiv X.Y \text{ [Mod N]}$

 $Z \equiv \zeta R \pmod{N}$

Z = REDC(X.Y)

Calcul de ξ connaissant $X : \xi := REDC(X)$

Calcul de X connaissant $\xi : X := REDC(\xi R^2 MOD N)$

Calcul préliminaire de R² MOD N:

- R MOD N = δ : On va q fois multiplier δ par B, modulo N pour obtenir δ R MOD N
 - Pour multiplier par B,

Décalage d'un mot vers la gauche Multiplier par δ le coefficient de B^q Ajouter le résultats au grand entier formé des mots entre B^0 et B^{q+1}

• Réitérer l'opération q fois

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 61

Bases mathématiques: Méthode de Montgomery

Dans la mesure du possible, on essayera de rester en représentation de Montgomery

Calculs préalables à effectuer pour une nouvelle valeur du module N

Les calculs de Bezout : Déterminer R' et N' vérifiant R R' – N N' = 1

soit un calcul par Euclide généralisé

n'est pas indispensable si on calcule « par boucles »

Le calcul de \mathbb{R}^2 MOD \mathbb{N} : S'il est nécessaire de passer de la représentation

classique à la représentation de Montgomery

Utile pour les tests de primalité

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Compléments mathématiques :

Fonction d'Euler et groupe U_N

Exemple: $N = 12 = 2^2.3$ $\Phi(12) = 2(2-1)(3-1) = 4$ $U_{12} = \{1, 5, 7, 11\}$

Remarque : $\forall x \in U_{12} : x^2 = 1$

Théorème d'Euler : $\forall x \in U_N \ x^{\Phi(N)} \equiv 1 \ [\text{ mod } N]$ Remarque : Ne s'applique pas quand $x \in \mathbb{Z}/N\mathbb{Z}$ n'est pas inversible

Définition : $g \in U_N$:

Ordre de $g = v_N(g) = premier exposant r tel que <math>g^r \equiv 1 \text{ [mod N]}$ Théorème d'Euler : L'ordre de g est un diviseur de $\Phi(N)$

 $g \in U_N$ est une racine primitive ou encore un générateur de U_N si $v_N(g) = \Phi(N)$.

Les puissances successives de g engendrent alors U_N

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 63

Compléments mathématiques :

Le groupe U_N

Si U_N possède un générateur, alors U_N est cyclique

 (U_N, \times) isomorphe à $(Z / \Phi(N) Z, +)$

<u>Théorème</u>: Les seules valeurs de N pour lesquelles U_N est cyclique sont 2, 4, p^e , $2p^e$ (p premier impair, $e \ge 1$)

Théorème du logarithme discret

Si g est un générateur, alors $g^x \equiv g^y [\text{mod } N] \iff x \equiv y [\text{mod } \Phi(N)]$ $\underline{D\acute{e}monstration}$: Bijection entre (U $_{N}$, \times) et (Z / $\Phi(N)$ Z , +)

Théorème : Si p est premier alors $x^2 \equiv 1 \pmod{p}$ a comme seules racines 1 et -1 Corollaire: Si 1 a une racine carrée [mod n] non triviale, n n'est pas premier Si $\exists x, x \neq -1 \pmod{N}, x \neq 1 \pmod{N}$ et $x^2 \equiv 1 \pmod{N}$ alors N n'est pas premier

Ce théorème est utilisé dans les tests de primalité

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 64

32

Compléments mathématiques :

Les puissances d'un élément de Z/NZ

Si g est inversible (donc $g \in U_N$) l'ensemble des puissances successives de g forme un groupe multiplicatif d'ordre $v_N(g)$.

C'est faux quand g n'est pas inversible.

```
Exemple: N = 12:
                              g = 5 : \{1, 5, (5^2=1)\}: groupe à deux éléments
                              g = 2 : \{ 1, 2, 4, 8, 4, 8, ... \} n'est pas un groupe
```

ne s'applique pas si N=pq (cf. RSA) car il n'y a pas de générateurs

Mais quand N n'a pas de facteurs carrés, $g^a = g$ si $a \equiv 1$ [$\Phi(N)$] Réciproque vraie si g est un générateur (Théorème du Log discret)

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 65

JLS CONSEIL

Compléments mathématiques :

Les puissances d'un élément de Z/NZ

Exemple: N = 15: $U_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}$ $\Phi[15] = (3-1)(5-1) = 8$

Tableau des puissances successives de g

```
non inversible.
inversible, d'ordre 1
inversible, d'ordre 4
                                                            engendre {1, 2, 4, 8, 1,...}
                    non inversible
                                                            engendre \{1, 3, 9, 12, 6, 3, ...\}
                   inversible, d'ordre 2
                                                            engendre {1, 4, 1,...}
engendre {1, 5, 10, 5, ...}
                   non inversible
                                                            engendre {1, 6, 6, ...}
engendre {1, 7, 4, 13, 1,...}
engendre {1, 8, 4, 2, 1,...}
                   non inversible
                   inversible, d'ordre 4 inversible, d'ordre 4
                   non inversible
                                                            engendre \{1, 9, 6, 9, ...\}
g=10
                                                           engendre {1, 10, 5, 5, ...} engendre {1, 11, 1,...}
                   non inversible
                   inversible, d'ordre 2
g = 11
                                                           engendre {1, 11, 1,...}
engendre {1, 12, 9, 3, 6, 12, ...}
engendre {1, 13, 4, 7, 1,...}
engendre {1, 14, 1...}
                   non inversible
                   inversible, d'ordre 4
inversible, d'ordre 2
g=13
g = 14
```

Quand g est inversible, l'ordre de g divise toujours $\Phi[15] = 8$ Pour tout g, il existe a tel que $g^a = g$, et pour tout k, on a $g^{8k+1} = g$ 4, 11 sont des racines non triviales de 1 donc 15 n'est pas premier

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Compléments mathématiques :

Les puissances d'un élément de Z/NZ

Problème du logarithme discret : g d'ordre élevé

L'ensemble des puissances successives de g forme un groupe multiplicatif isomorphe à $\mathbb{Z}/\nu\mathbb{Z}$ où ν est l'ordre de g.

L'application $a \to g^a \text{ [mod N]}$ est une permutation non triviale de $\mathbb{Z}/v\mathbb{Z}$ Calcul direct facile Calcul inverse très difficile Fonction à sens unique

Exemple: N=13, g=6 engendre 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 67

De grands nombres premiers sont nécessaires pour de nombreux protocoles

- · Diffie Hellman et ses dérivés, basés sur le Log discret
- Cryptographie à clé publique RSA

Pour RSA, il faut trouver deux nombres p et q tels que leur produit N=pq soit difficilement factorisable

Faiblesses

- Factorisation est plus difficile
- Si l'un des deux est petit
- Si pgcd((p-1)(q-1)) est petit
- Si la différence est petite
- Si (p-1) et (q-1) ont de grands facteurs premiers

On choisira si possible des nombres premiers de Sophie Germain Nombres premiers de la forme 2r+1 avec r lui-même premier. La factorisation est alors plus difficile

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Bases mathématiques

Les nombres premiers

Soit p un nombre premier et soit N un nombre >>p

Probabilité que N soit divisible par p: 1/p

Probabilité que N soit premier : $\prod (1-1/p)$ (pour tous les p premier $<\sqrt{N}$) $\cong 1/\ln(N)$

Pour trouver un grand nombre premier, on tire au hasard un nombre de l'ordre de grandeur souhaité.

Si 1024 bits, environ une chance sur 700 de trouver un nombre premier.

Tests triviaux:

Éliminer les nombres pairs (en élimine 50%)

Éliminer les nombres multiples de 3 (élimine 33% de ceux qui restent)

Éliminer les nombres multiples de 5 (élimine 20% de ceux qui restent)

Éliminer les nombres multiples de 7 (élimine 14% de ceux qui restent)

Si on élimine tous les nombres ayant un facteur premier <256, il en reste 10.04% Si on élimine tous les nombres ayant un facteur premier <512, il en reste 8.93%

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 69

Bases mathématiques Les nombres premiers

Tests triviaux:

P	1 - 1/p	Produit cumulé
2	0.5000	0.5000
2 3 5	0.6667	0.3333
	0.8000	0.2667
7	0.8571	0.2286
11	0.9091	0.2078
13	0.9231	0.1918
17	0.9412	0.1805
19	0.9474	0.1710
23	0.9565	0.1636
29	0.9655	0.1579
31	0.9677	0.1529
37	0.9730	0.1487
41	0.9756	0.1451
43	0.9767	0.1417
47	0.9787	0.1387
53	0.9811	0.1361
251	0.9960	0.1004
509	0.9980	0.0893

Ca décroît de plus en plus lentement

Test de divisibilité par des petits nombres premiers p

On travaille en base B (B = 10, B=256 ou B= 2^{32} ...), On veut tester $x = \sum x_i B^i$

On a généré au préalable un tableau r(p,i) avec

r(p,0) = 1

r(p,1) = B MOD p

 $r(p,k) = B^k MOD p$

Les r(p,k) sont les puissances successives de r(p,1) modulo p

C'est rapidement périodique (car $r(p,1)^{p-1} \equiv 1 \pmod{p}$ d'après Fermat)

On construit la fonction $x \to \operatorname{red}(p,x) = \sum x_i r(p,i) \equiv x [\operatorname{mod} p]$ Rapide à calculer et en principe red(p,x) < B

(pour $B=2^{32}$, p < quelques centaines de mille et pour une arithmétique à quelques centaines de mots...) Sinon, on réapplique red

On regarde alors si le résultat est divisible par p (rapide car division sur petits nombres)

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

Bases mathématiques

Tests de primalité

- On utilise les propriétés des nombres premiers : Si N est premier
 - Il n'y a pas de racine carrée non triviale de 1 modulo N
 - Théorème de Fermat : \forall a ∈ U_N a ^{N-1} ≡ 1 [mod N]
- Si N ne vérifie pas ces propriétés, c'est qu'il n'est pas premier.
- Si N échoue au test, on est sûr qu'il n'est pas premier
- Si N réussit un test, il est probablement premier
- Si N réussit plusieurs tests, il est presque certainement premier

Tests probabilistes : si N a une chance sur 2^{50} de ne pas être premier, c'est suffisant pour la plupart des applications

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 71

Bases mathématiques

Tests de primalité

 Définition: N pseudo-premier de base a a N-1 ≡ 1 [mod N]

Sinon, on dit que a est un témoin du caractère non premier de N

- Il y a très peu de nombres pseudo-premiers non premiers, et il y en a de moins en moins lorsque les nombres augmentent
- Nombres de Carmichael : pseudo-premiers pour tout a
 - Exemples: 561, 1105, 1729.
 - Ils sont très rares (il y en a 255 inférieurs à 108)
- Test de Rabin-Miller
 - Recherche simultanément des témoins et des racines carrées non triviales de l'unité
 - Pour un candidat de 256 bits, proba d'erreur après 6 tests < 2⁻⁵⁰ (et ça diminue rapidement quand la taille des nombres augmente)

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire

14 Mai 2014 Page 72

Document destiné uniquement aux élèves et aux enseignants de l'EPITA. L'auteur vous remercie d'avance de ne pas diffuser ce documen

Bases mathématiques Tests de primalité

Test de Rabin-Miller

```
Déterminer b tel que p = 1 + 2^b m avec m impair (Immédiat si p est écrit en binaire)
Tirer a aléatoire < p
j := 0
z := a^m \mod p
Si z = 1 ou p-1
                       Alors p a des chances d'être premier. EXIT
Boucle
   Si j>0 et z=1
                       Alors p n'est pas premier. EXIT
   Si z = p-1 et j < b Alors p a des chances d'être premier. EXIT
                        Sinon
                                  Si j=b Alors p n'est pas premier. EXIT
   j := j+1
   z := z^2 \mod p (z vaut toujours a^{2^{j_m}} et on est sûr que j < b et z \neq p-1)
Fin de boucle
   © Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA
                                    Arithmétique Modulaire
                                                                           14 Mai 2014 Page 73
```


Bases maure. Tests de primalité Bases mathématiques

Méthodologie

Générer un nombre p aléatoire à n bits

Forcer à 1 le bit de poids fort et le bit de poids faible

Si on veut optimiser certains calculs forcer à 1 les 64 ou 128 bits de poids fort

Tester si le nombre est divisible par les petits nombres premiers

Jusqu'à 2000... optimum à trouver...

Faire un test de Rabin-Miller avec a aléatoire.

Si succès, réitérer 6 fois avec de nouvelles valeurs de a Si échec, p n'est pas premier, réessayer avec un autre p aléatoire

© Jean-Luc Stehlé 1999,2014 Cours ING1 à l'EPITA

Arithmétique Modulaire