

Figure 1: A tree with $\kappa_{nc,\leq 3}^{(2)}(T)=3$ and $\kappa_{nc,\leq 2}^{(3)}(T)=4$

- $i \to 2$ (3) $\Lambda_2 = 8 \nleq 0$; $compsize(r) = 50 11 = 39 \nleq k = 2$.
 - (4) $\Lambda_2 = 8 \nleq l = 3$; $compsize(r) = 39 \neq k = 2$.
 - (5) Vertices such that $l(u) = \Lambda_2 = 8$ in T_2 do not exist. Set $F_3 = F_2 = \{v_1\}$; $T_3 = T_2 = T - T(w_1)$; $\Lambda_3 = \Lambda_2 - 1 = 7$; $i \to 3$.
- $i \rightarrow 3$ (3) $\Lambda_3 = 7 \nleq 0$; $compsize(r) = 39 \nleq k = 2$.
 - (4) $\Lambda_3 = 7 \nleq l = 3$; $compsize(r) = 39 \neq k = 2$.
 - (5) Only the lowest vertex in T_3 has $l(u) = \Lambda_3 = 7$. compsize(u) $\not\geq k = 2$. Set $F_4 = F_3 = \{v_1\}$; $T_4 = T_3 = T - T(w_1)$; $\Lambda_4 = \Lambda_3 - 1 = 6$; $i \to 4$