Решения и критерии, 11 класс.

Во всех критериях пропущено в виду самоочевидности, что полное решение стоит полный балл.

№1

Для действительного числа $\alpha \in (0,1)$ рассмотрим возрастающую последовательность всех натуральных чисел m_i , для которых $\{m_i\alpha\} < \alpha$. Может ли для какого-то α соответствующая последовательность начинаться с

- a) 2021, 4041, 6062?
- б) 2021, 4042, 6062, 8082?

Автор: В.Тиморин

Решение. Немного рассуждений, избыточных для решения этой задачи Покажем индукцией по i, что m_i – это наименьшее натуральное число n_i , для которого $n_i\alpha \geq i$. База: для удобства будем считать 0 натуральным числом, и все последовательности тоже начинать с нулевого члена. Тогда, во-первых, $m_0 = 0$ поскольку $\{0\alpha\} = 0 < \alpha$, и 0 – первое натуральное число с таким свойством, поскольку оно просто первое. С другой стороны, $n_0 = 0$ поскольку $n_0\alpha \geq 0$ и опять же, 0 – первое натуральное число с этим свойством. Итак, $m_0 = n_0$.

Переход. Пусть $m_i = n_i$. Тогда для всех натуральных чисел k из отрезка $[n_i+1,n_{i+1}-1]$ имеем $[k\alpha]=i$ из определения n_{i+1} . Но тогда $\{k\alpha\}=\{n_i\alpha\}+(k-n_i)\alpha\geq\alpha$. С другой стороны, $n_{i+1}\alpha=(n_{i+1}-1)\alpha+\alpha< i+1+\alpha$ то есть $\{n_{i+1}\alpha<\alpha\}$. Итак, $m_{i+1}=n_{i+1}$.

Пункт а). Из приведенных выше рассуждений следует система неравенств (самая левая)

$$\begin{cases} \frac{1}{2020} > \alpha & \geq \frac{1}{2021} \\ \frac{2}{4040} > \alpha & \geq \frac{2}{4041} \\ \frac{3}{6061} > \alpha & \geq \frac{3}{6062} \end{cases} \Leftrightarrow \begin{cases} 2020 < \frac{1}{\alpha} & \leq 2021 \\ 2020 < \frac{1}{\alpha} & \leq 2020\frac{1}{2} \\ 2020\frac{1}{3} < \frac{1}{\alpha} & \leq 2020\frac{1}{3} \end{cases} \Leftrightarrow 2020\frac{1}{3} < \frac{1}{\alpha} \leq 2020\frac{1}{2}.$$

Преобразуем как написано выше, благо все числа положительны. Имеем, что условие выполняется для любого α , такого что $\frac{1}{\alpha}$ лежит в полуинтервале $(2020\frac{1}{3}, 2020\frac{1}{2}]$.

Отметим, что для решения задачи не обязательно описывать множество всех таких α (как сделано выше), достаточно указать одно, например, $\frac{2}{4041}$, и доказать, что оно подходит.

Пункт б) Действуя аналогично, имеем:

$$\begin{cases} \frac{1}{2020} > \alpha & \geq \frac{1}{2021} \\ \frac{2}{4041} > \alpha & \geq \frac{2}{4042} \\ \frac{3}{6061} > \alpha & \geq \frac{3}{6062} \\ \frac{4}{8081} > \alpha & \geq \frac{4}{8082} \end{cases} \Leftrightarrow \begin{cases} 2020 < \frac{1}{\alpha} & \leq 2021 \\ 2020\frac{1}{2} < \frac{1}{\alpha} & \leq 2021 \\ 2020\frac{1}{3} < \frac{1}{\alpha} & \leq 2020\frac{2}{3} \\ 2020\frac{1}{4} < \frac{1}{\alpha} & \leq 2020\frac{1}{2} \end{cases} \Leftrightarrow 2020\frac{1}{2} < \frac{1}{\alpha} \leq 2020\frac{1}{2}.$$

Приходим к противоречию, что $2020\frac{1}{2} < 2020\frac{1}{2}$, что доказывает что такого α не существует.

Критерии.

A0 Ответы без доказательства -0.

А1 В а) верно указан промежуток, которому должно принадлежать α : 2 балла.

А2 Без доказательства выписаны начальные системы неравенств из вышеприведенного решения: 3 балла в а), 4 балла в б). (баллы за A2 включает A1 а не складываются с ними)

 ${f A9}$ Множественная путаница знаков (в другую сторону или строгие/нестрогие), не приведшие к неверному ответу: -1 балл к номиналу.

B1 Сформулировано но не доказано утверждение, что m_i – минимальное число, для которого $m_i \alpha \geq i-2$ и 3 балла соответственно.

B2 Сформулировано и доказано утверждение из B1, (но непостижимым образом задача после этого не решена): 4 и 6 баллов соответственно.

 ${\bf C}$ Из-за путаницы со строгими знаками "доказано", что есть единственное значение α в пункте б), при верной общей логике решения: 5 баллов.

Баллы разных буквенных серий не складываются друг с другом.

№2

В последовательности чисел $2^0, 2^1, 2^2, \dots$ некоторые члены умножили на -1, причем известно, что осталось бесконечно много положительных членов. Докажите что любое натуральное число представимо в виде суммы нескольких различных членов полученной последовательности.

Автор: Д.Вотякова

Решения. Будем называть последовательность, удовлетворяющую условию задачи ПУУЗ. Первое решение. Заметим, что следующая операция из ПУУЗ делает ПУУЗ: из последовательности выкидываем первый член, а все остальные делим на 2. В самом деле, все члены остались плюс или минус степенями двойки, и положительных все еще бесконечно. Назовем эту операцию сокращением.

Докажем по индукции утверждение: любое натуральное n для любой ПУУЗ представляется в виде суммы некоторые ее различных членов.

База. Докажем что в таком виде представляется 1. В самом деле, у любой ПУУЗ есть положительные члены, пусть первый из них 2^k . Тогда заметим что $(-2^0)+(-2^1)+\cdots+(-2^{k-1})+2^k=1$.

Переход. Пусть утверждение доказано для всех натуральных чисел, меньших n. Рассмотрим $n \ge 2$ и ПУУЗ A. Если n четное – представим $\frac{n}{2}$ в виде суммы нескольких различных членов сокращения A, этому представлению соответствует представление n в виде суммы различных членов A. Если n нечетное – вычтем из него первый член A, (который равен 1 или -1) и результат поделим пополам. Мы получили одно из чисел $\frac{n\pm 1}{2}$, оно натуральное и строго меньше n, значит для него уже доказано, что оно представляется в виде суммы различных членов произвольной ПУУЗ, в частности – сокращения A. Снова строим соответствующее представление n в виде суммы различных членов A.

Второе решение. Зафиксируем произвольную ПУУЗ $a_0, a_1, a_2 \dots$ Докажем более сильное утверждение:

Лемма 1. Для произвольного натурального или нулевого k множество целых чисел, представимых в виде суммы некоторых различных членов последовательности выбранных из первых k, есть отрезок длинны 2^k .

Замечание. Как всегда, когда речь идет о подмножествах множества целых чисел, длинной отрезка мы называем число целых чисел на нем, а не его геометрическую длину. Так, отрезок $\{9,10,11,12\}$ имеет длину 4 а не 3. Так же как всегда будем считать, что сумма пустого множества слагаемых равна нулю.

Докажем сформулированное утверждение по индукции. База: для k=0 утверждение верно, поскольку представим только 0, одно целое число это отрезок длины $1=2^0$. Переход. Пусть утверждение доказано для некоторого k, то есть числа, представимые в виду суммы различных членов последовательности $a_0, a_1, \ldots, a_{k-1}$ образуют отрезок $[n, n+2^k-1]$. Рассмотрим все числа, представимые как суммы различных членов, выбранных из a_0, \ldots, a_k . Заметим, что любое представление или не включает a_k , и тогда представляет какое-то число из $[n, n+2^k-1]$, или включает, и тогда представляет какое-то число из $[a_k+n, a_k+n+2^k-1]$. Вспомним что $a_k=\pm 2^k$ и посмотрим, чему равно объединение двух вышеозначенных отрезков в обоих случаях. Заметим, что оно – всегда отрезок (два отрезка легли в точности в стык), и его длина всегда 2^{k+1} . Переход доказан.

Выведем из доказанного утверждения задачу. По условию, положительных членов бесконечно много. Тогда мы можем выбрать k так, чтобы сумма положительных членов была больше любого наперед заданного числа N. Но для этого k в виде суммы различных членов последовательности (из первых k) представляется и 0 (как сумма пустого множества), и сумма всех положительных членов среди первых k, а по Лемме 1 – и все числа между 0 и всеми положительными, в частности - все число от 0 до N. В силу произвольности N мы доказали, что все натуральные числа представляются.

Критерии.

А0 Любой процесс, конечность которого не очевидна (например, алгоритм идет по разрядам в бесконечную сторону), при том что в работе конечность не доказывается: 0 баллов.

А1 Процесс, конечность которого очевидна (например, сразу выделяется конечное число кусков, в которых будут лежать все ненулевый знаки представления, далее куски только объединяются или сокращаются, но никогда не напарщиваются в бесконечную сторону), однако в описании процесса пропущен случай, разбирающийся аналогично разобранным: 10 баллов.

В1 Приведено верное явное описание представления, но не доказано, что таким образом представлено именню требуемое число: 10 баллов.

Комментарий: В большинстве решений, где представление строилось в результате процесса, достаточно очевидно, что если процесс завершается то результат представляет именно требуемое число, в решениях через явный вид это как правило не очевидно, и примерно эквивалентно по сложности доказательству того, что процесс завершается за конечное число шагов.

№3

3. В ряд стоят n домов k различных цветов, причем для любого цвета найдутся 20 стоящих подряд домов, среди которых домов этого цвета строго больше, чем домов любого другого цвета. При каком наибольшем k это возможно, если

a) n = 84?

б) n = 86?

Авторы: А.Акбари, Г.Челноков

Решение. Пункт а). Цветов не может быть больше 42, иначе есть цвет, в который покрашен только один дом, тогда домов этого этого цвета ни в каком отрезке не может быть строго больше, чем любого другого. Покажем пример на 42 цвета, то есть такую раскраску, что для каждого цвета в него было покрашено ровно два дома, притом существует отрезок из 20 домов, в который эта пара одноцветных попадает целиком, а любая другая — нет.

Назовем 38-блоком следующую конструкцию: подряд стоят 38 домов, пары домов на расстоянии 19 (т.е. такие, между которыми ровно 18 других домов)покрашены в один цвет, и больше этого цвета домов нет (не только в блоке но вообще из участвующих домов); 2-блоком назовем стоящие подряд два дома, покрашенные в уникальный цвет. 84 дома надо раскрасить так: 2-блок, 38-блок, два 2-блока, 38-блок, 2-блок. Осталось доказать, что эта раскраска подходит, мы оставляем это читателю в качестве несложного упражнения (но каждый участник, который оставил это жюри в качестве несложного упражнения, недосчитался одного балла).

Пункт б). Этот же пример позволяет реализовать 42 цвета на 86 домах – в конец добавим еще два дома, цвет которых совпадает с последним 2-блоком.

Оценка. Понятно что каждого цвета должно быть хотя бы два дома, значит ответ для n=86 не больше 43. Если для n=86 ответ 43, то каждого цвета ровно два дома. Занумеруем цвета в порядке их появления слева направо, и пусть дома i-го цвета имеют номера a_i и b_i , причем $a_i < b_i$. По определению $1=a_1 < a_2 < a_3 \cdots < a_{43}$. Докажем что $b_1 < b_2 < b_3 \cdots < b_{43} = 86$. Предположим противное, т.е. для каких-то i < j оказалось $b_j < b_i$. Вспомнив что $a_j < b_j$ и $a_i < a_j$ видим, что $a_i < a_j < b_j < b_i$, то есть любой отрезок, содержащий a_i, b_i также содержит a_j, b_j , то есть нет отрезка, на котором домов i-го цвета больше всего – привели предположение к противоречию.

Докажем еще два полезных неравенства: $b_i-a_i\leq 19$ – иначе нет отрезка из 20 домов, в который попали оба из a_i,b_i ; и $b_{i+1}-a_{i-1}\geq 21$ – иначе каждый отрезок, содержащий a_i,b_i , также содержит или a_{i-1},b_{i-1} или a_{i+1},b_{i+1} .

Все готово для решения. Среди первых 20 номеров ровно одна b-шка, это b_1 : иначе, если там есть и b_2 , среди домов от 1 до 20 есть два дома второго цвета, тогда для первого цвета нет отрезка, в котором его больше чем любого другого (поскольку только отрезок [1,20] содержит два дома первого цвета, но он содержит и два дома второго). Значит среди первых 20 домов ровно 19 a-шек. Значит из соответствующих им b-шек 18 лежат среди 19 номеров от 21 до 39, то есть там максимум одна a-шка, это может быть только a_{20} . Мы доказали, что $a_{21} \ge 40$. Повторив то же самое рассуждение с другого конца, получим, что $b_{23} \le 46$. Но это противоречит неравенству $b_{23} - a_{21} \ge 21$ (частный случай доказанного выше для i = 22).

Критерии.

Решение пункта а состоит из:

- В1 Доказательства оценки: не приносит баллов но снимает 1 балл если не написано.
- **B2** Указание верного примера: стоит 5 баллов (таким образом, если есть B1+B2+B3: оценка 7)
- ${\bf B3}$ Доказательство того, что пример из ${\bf B2}$ работает. Не может встречаться без ${\bf B2}$, приносит 1 балл.
- С Если пример, работающий для пункта а), написан в пункте б) оценивается пункт а) как будто пример написан там, (если это больше баллов, чем родной текст пункта а).
 - 19 баллов пункта б) только за оценку
 - **D0** Оценка $k \le 43$: 0 баллов.
- **ЕО** Любые попытки описания явного вида "единственно возможной" раскраски в 43 цвета, содержащие пропущенный случай: 0 баллов.
- **F1** Доказано, что если бы была покраска в 43 цвета, то центральный отрезок из 8 домов содержал бы для трех цветов оба дома этого цвета: 13 баллов.

№4

В угол AOC вписаны окружности Ω_1 и Ω_2 (радиус Ω_1 больше). Ω_1 касается сторон угла в точках A и B, а Ω_2 – в точках D и C соответственно. Точка M – середина отрезка BC. Прямые MA и MD вторично пересекают Ω_1 и Ω_2 соответственно в точках X и Y. Прямые BX и CY пересекаются в точке Z. Докажите что прямая MZ проходит через середину отрезка AD.

Автор: А.Браженко

Первое решение. Докажем, что четырехугольник ADXY вписанный. Для этого нам достаточно показать равенство $MA\cdot MX=MY\cdot MD$. Для этого заметим, что эти произведения равны MB^2 и MC^2 соответственно (степень точки M относительно окружностей Ω_1 и Ω_2).

Теперь докажем вписанность BXYC. Из первого утверждения получаем равенство углом DAX и XYM. Кроме того, равны углы MBX и MAB по свойству касательной и MYC и MCD из подобия соответствующих треугольников. Поскольку также равны углы BAD и DCO, то получаем, что сумма углов XBC и XYC равна 180° , что и требовалось.

Из этого получаем, что $ZX \cdot ZB = ZY \cdot ZC$, что соответствует тому, что точка Z лежит на радикальной оси окружностей Ω_1 и Ω_2 . Очевидно, что на ней же лежат точки M и середина стороны AD.

Второе решение (набросок). Инверсия с центром M и радиусом MB переводит вписанную трапецию ABCD во вписанный 4-угольник XBCY. Тогда радикальные оси BX и CY пересекаются на радикальной оси окружностей Ω_1 и Ω_2 , которая проходит через середины AD и BC.

Критерии.

- **A1** Вписанность ADXY 6 баллов.
- **A2** Вписанность BXYC 15 баллов, не складываются с A1, A1+A2=A2=15.
- **B1** Точки O, X, Y на одной прямой, вкупе с идеей сделать инверсию ?? баллов.

№5

Дана пара взаимно-простых многочленов с действительными коэффициентами P(x) и Q(x) степеней 2021 и 2000 соответственно (взаимно-простые означает, что не существует многочлена R(x), не равного константе, на который делятся P(x) и Q(x)). Гриша выбирает конечное множество действительных чисел $c_1, \ldots c_n$ (помните, в множествее элементы не повторяются, размер множества Гриша тоже выбирает сам), находит число различных кратных действительных корней у многочлена $P(x) + c_i Q(x)$ (при i от 1 до n) и складывает полученные числа. Какую наибольшую сумму Гриша может получить в результате этого процесса?

Автор: Г. Челноков

Решение. Лемма. В гришиной сумме могут быть учтены те и только те числа α , в которых производная функции $f(x) = \frac{P(x)}{Q(x)}$ обращается в ноль, причем каждое такое α может быть посчитано максимум для одно c_i .

Доказательство. Как известно, число α является кратным корнем многочлена T(x) если и только если α является корнем многочлена T(x) и его производной T'(x). Пусть α – кратный корень P(x) + cQ(x), имеем левую из систем:

$$\begin{cases} P(\alpha) + cQ(\alpha) = 0 & (*) \\ P'(\alpha) + cQ'(\alpha) = 0 & (**) \end{cases} \Leftrightarrow \begin{cases} Q(\alpha) \neq 0 \\ P'(\alpha) - \frac{P(\alpha)}{Q(\alpha)}Q'(\alpha) = 0 \end{cases} \Leftrightarrow \begin{cases} Q(\alpha) \neq 0 \\ \frac{P'(\alpha)Q(\alpha) - P(\alpha)Q'(\alpha)}{Q^2(\alpha)} = 0 \end{cases}$$

Первая равносильность заслуживает пояснений: из уравнения (*) если $Q(\alpha) = 0$ что и $P(\alpha) = 0$, то невозможно поскольку многочлены взаимно-просты. Если же $Q(\alpha) \neq 0$ то деление на него является равносильным переходом, а c однозначно находится из (*). Второй переход – просто поделили на Q(x).

Осталось заметить, что
$$\frac{P'(x)Q(x)-P(x)Q'(x)}{Q^2(x)}$$
 это в точности производная $\frac{P(x)}{Q(x)}$.

Итак, мы получили что все числа, посчитанные в гришиной сумме, это корни многочлена T(x) = P'(x)Q(x) - P(x)Q'(x), который имеет не более чем 4020 степень (при взятии производной степень многочлена уменьшается на единицу, при перемножении многочленов – складывается, при вычитании не увеличивается), покажем что T(x) не может быть тождественно нулем (на самом деле покажем, что степень ровно 4020). Пусть p_{2021} и q_{2000} – старшие (а значит – ненулевые) коэффициенты многочленов P(x) и Q(x) соответственно. Тогда коэффициент T(x) при x^{4020} есть $2021p_{2021}q_{2000} - 2000p_{2021}q_{2000} = 21p_{2021}q_{2000} \neq 0$. Таким образом, мы доказали оценку сверху: сумма не может быть больше 4020.

Осталось построить пример, когда сумма равна 4020. Возьмем P(x) и Q(x) такими, что все их корни вещественны, различны и все корни P(x) лежат левее всех корней Q(x). Тогда есть 2020 отрезков между соседними корнями P(x), на каждом из этих отрезков функция f(x) непрерывна (все корни знаменателя правее), равна нулю в концах отрезка и не равна нулю в остальных точках, значит в какой-то точке производная принимает нулевое значение по теореме Ролля – нашли 2020 нулей производной. Теперь посмотрим на интервалы между соседними корнями Q(x), и также на открытый луч от самого правого из них до плюс бесконечности. На каждом интервале функция непрерывна, не меняет знак (поскольку не принимает нулевого значения — все корни числителя лежат левее), в концах интервалов f(x) стремиться к бесконечности (поскольку это корни числителя), при $x \to +\infty$ аналогично f(x) стремиться к бесконечности, поскольку степень числителя больше степени знаменателя. Значит на каждом из промежутков модуль достигает минимума во внутренней точке, там производная обращается в ноль (альтернативно можно воспользоваться теоремой Ролля для функции $\frac{1}{f(x)}$) — нашли еще 2000 нулей производной.

Критерии.

А Чистое доказательство оценки – 14 баллов.

АО Оценка без доказательства 0 баллов.

А7 При доказательстве не упомянуто, что один и тот же корень производной P/Q не может быть посчитан при разных значениях c_i : -2 балла к итоговой сумме. Если это хотя бы упомянуто (очевидно что...) – нет претензий.

А8 Не рассматривает случай обращения в ноль знаменателя: -2 балла к итоговой сумме.

А9 Не доказано, что многочлен P'(x)Q(x) - P(x)Q'(x) не может быть тождественно нулем: -4 балла к итоговой сумме.

Критерии A7, **A8 и A9 не могут давать более чем -4 балла в сумме** – то есть даже допущены все три ошибки, доказательство оценки стоит 10 баллов (14-4) а не 14-2-2-4=6.

В Чистое построение примера вместе с доказательством существования всех корней: 14 баллов.

В1 Пример верный, но доказано существование только 4019 корней: 4 балла.

№6

ABC — равносторонний треугольник на плоскости, а S — круг, концентрический с описанной окружностью треугольника ABC, но имеющий вдвое больший радиус, пусть его радиус равен 1. Применить к точке X на плоскости onepaquo — значит, отразить точку X симметрично

относительно ближайшей вершины треугольника ABC (если ближайших вершин две, выбираем одну из двух произвольным образом).

- а) Докажите, что любая точка плоскости за конечное число операций попадет в круг S.
- б) Пусть d расстояние от центра S до какой-то точки, попадающей в круг S после ровно 2021 операции. Найдите промежуток возможных значений d.

Автор: В. Тиморин

Первое решение. Пусть O - центр окружности S (и описанной окружности треугольника ABC соответственно). Прямые OA, OB, и OC разделят плоскость на 6 частей, которые назовем областями. Пусть эти прямые пересекают окружность S в точках A_1 , A_2 , B_1 , B_2 и C_1 , C_2 соответственно (A_1 и A на одном луче от O, A_2 — на другом, для других точек аналогично). Тогда стороны угла B_2OC_2 являются серединными перпендикулярами к отрезкам AC и AB, а значит, для всех точкек угла B_2OC_2 (равного 120°) и только для них A является ближайшей из A, B, C. При этом для точек, которые лежат внутри угла C_2OA_1 , но вне круга S, после операции вершина C становится ближайшей, а внутри угла A_1OB_2 - вершина B. Для вершин B и C аналогично.

Рассмотрим, что происходит при применении нескольких операций к точке X_0 . Пусть X_k образ точки X_0 , после применения к ней к операций. Докажем следующие утверждения:

Утверждение 0. Если X_k лежит в S, то все X_n при n > k – тоже.

Очевидно.

Так что теперь можем без ограничения общности считать, что X_0 лежит в угле A_1OB_2 и вне круга S.

Утверждение 1. Вектор X_0X_2 равен удвоенному вектору AB.

В самом деле, для X_0 ближайшая вершина A, для $X_1 - B$, композиция симметрий относительно A потом B – параллельный перенос на вектор 2AB.

Соответственно, если все точки $X_0, X_2, X_4, \dots X_{2k}$ лежат в A_1OB_2 но не в S, то все вектора $X_0X_2, X_2X_4, X_4X_6, \dots X_{2k}X_{2k+2}$ равны 2AB.

Утверждение 2. Пусть X_{2k+2} – первая из четных точек, не лежащая одновременно в угле A_1OB_2 и вне круга S. Тогда X_{2k+2} лежит в одной из трех областей: S, A_1OC_2 и B_2OC_1 .

Очевидно.

Итак, без ограничения общности можно считать, что X_{2k+2} попала в A_1OC_2 .

Утверждение 3. Если X_{2k+2} – первая из четных точек, попавшая в A_1OC_2 , то X_{2k+4} попадет в S или A_1OB_2 , X_{2k+6} попадет в S или A_1OC_2 и так далее (за каждые два хода точка перескакивает через границу между теми же двумя соседними углами, или запрыгивает в S).

Очевидно.

Итак, если точка когда то за две операции перескочит из угла в соседний — то дальше за каждую пару операций точка перепрыгивает между ровно этими двумя соседними углами, пока не попадет в круг S. Докажем, что это рано или поздно произойдет. В самом деле, пусть точка за двойную операцию переходит между A_1OC_2 и A_1OB_2 . Тогда она за каждую двойную операцию смещается на вектор 2AB или 2AC. Оба вектора имеют проекцию -3/4 на луч OA, значит рано или поздно проекция точки на OA будет иметь отрицательную координату, то есть точка покинет углы A_1OC_2 и A_1OB_2 . По Утверждению 3 сделать это четная точка может только попав в S, что завершает доказательство пункта A.

Набросок решения пункта Б

Как доказано выше, каждому из шести углов, на которые разделена плоскость, сопоставлен свой вектор $e_1, \dots e_6$, такой что квадрат операции для точки, лежащей в данном угле, есть перенос на соответствующий вектор. Тогда множество точек, попадающих в круг S не более чем за 1010 операций – это множество кругов, получаемых из круга S при параллельных переносах на всевозможные линейные комбинации векторов $e_1, \dots e_6$ с целыми неотрицательными коэффициентами, сумма которых не больше 1010, и только два циклически соседних коэффициента отличны от нуля. Тогда самый близкий к S граничный круг (обозначим его S' а его центр O')— представляющийся в виде $505e_i + 505e^i + 1$, то есть |OO'| = 1515. Заметим, что для S' только его дуга размером 120° , отвернутая от S, не покрыта остальными кругами, итого самая ближняя к O граничная точка Y такова что $\angle OO'Y = 120^\circ$, то есть $|OY| = \sqrt{1515^2 + 1515 + 1}$.

По аналогичным соображениям, точки переходящие в S за 2021 ход – образы кругов радиуса 1 с центрами в точках A_1, B_1, C_1 при переносах на ту же систему векторов. Тогда са-

мый далекий от S круг (обозначим его S а его центр O)получается при переносе на вектор $1010e_i$, то есть имеющий длину $1010\sqrt{3}$. Поскольку OA_1 образует угол в 150° с e_i имеем $|OO^\circ| = \sqrt{3 \cdot 1010^2 + 3 \cdot 1010 + 1}$. Точка на границе круга еще на 1 дальше, итого ответ $\sqrt{3 \cdot 1010^2 + 3 \cdot 1010 + 1} + 1$.

Набросок альтернативного решения. Нарисуем на плоскости треугольную решетку, так чтобы вершинами одного из треугольников были точки A_2, B_2, C_2 (в обозначениях основного решения). Присвоим этому треугольнику метку 0, далее по индукции присвоим метки всем треугольникам: каждый еще не помеченный треугольник, соседний по стороне с треугольником с меткой n, получит метку n+1. Тогда несложно доказать, что при применении операции точки из треугольника с меткой n>0 переходят в какой-то из треугольников с меткой n-1 (а точки из треугольника с меткой 0- в треугольники с меткой 1). Тогда множество точек, не более чем за n операций переходящих в круг S- объединение кругов, описанных вокруг всех треугольников с метками не больше n. Итак, мы получили альтернативное описание того же объединения кругов, что и в основном пути решения, осталось сделать тот же подсчет.

Критерии.

A0 Доказано только, что в результате применения операции точка, не лежавшая в круге, становится ближе к центру: 0 баллов. Комментарий: последовательность $x_n = 1 + \frac{1}{n}$ убывает, отсюда не следует что она становится меньше 1.

 ${\bf A1}$ Плоскость поделена на 6 областей и установлено, какая вершина треугольника становится ближайшей к точке после применения операции (в зависимости от расположения исходной точки X): 1 балл.

A2 Сказано, что двойное применение операции параллельный перенос на вектор, равный удвоенной стороне треугольника, но не выяснено, какой именно: 1 балл.

Критерии A1 и A2 суммируются так: A1 + A2 = 3 балла.

В1 Утверждение без доказательства, что для достижения минимума расстояния точка должна двигаться "зигзагом" (правильно сказано, каким именно): 2 балла.

В1 Если к тому же получен верный ответ: 3 балла.

№7

Для таблички $n \times n$ рассматриваем семейство квадратов 2×2 , состоящих из клеток таблицы, и обладающее свойством: для любого квадрата семейства найдется покрытая им клетка, не покрытая никаким другим квадратом из семейства. Через f(n) обозначим максимальное количество квадратов в таком семействе. Для какого наименьшего C неравенство $f(n) \leq Cn^2$ верно при любом n?

A втор: Γ . Челноков Докажем ответ $C=\frac{1}{2}$.

Во-первых, докажем что $f(n) \leq \frac{1}{2}n^2$. Для этого полезно доказать более сильное утверждение: для произвольной фигуры из S клеток количество квадратов 2×2 в семействе, таком что все квадраты лежат в фигуре и для любого квадрата найдется клетка, покрытая только им, не превосходит S/2. Рассмотрим два случая: для семейства найдется клетка A, покрытая четырьмя квадратами, и случай, когда такой клетки не найдется.

Если такая клетка A нашлась, то рассмотрим четыре покрывающих ее квадрата. Они образуют квадрат 3×3 с клеткой A в центре. И поскольку в каждом из четырех квадратов 2×2 должна быть клетка, покрытая только им — это четыре угловые клетки квадрата 3×3 , поскольку все остальные покрыты хотя бы дважды. Но тогда никакой другой квадрат 2×2 из семейства не покрывает клетки квадрат 3×3 , иначе он покрывает и угловую клетку, а она должна быть покрыта только один раз. Итак, все остальные квадраты лежат в множестве площади S-9. В этот момент доказательства еще не поздно решить, что на самом-то деле мы ведем индукцию по S:), благо база тривиальна. Итак, всего квадратов в семействе оказывается не больше $4+\frac{S-9}{2}=\frac{S-1}{2}< S/2$.

Пусть клетки, покрытой четырьмя квадратами из семейства, не найдется. Поместим в каждую клетку множества единичный заряд. Теперь пусть каждая клетка, покрытая k квадратами из семейства, отдаст каждому из этих квадратов по 1/k заряда (таким образом, раздаст весь свой заряд). Тогда каждый квадрат семейства получил заряд не меньше 2, потому что минимум

от одной клетки получил 1, и от остальных получал не меньше 1/3 от каждой. Итого, всего полученного заряда не меньше чем дважды число квадратов в семействе, а отданного заряда не больше S, итого квадратов в семействе не больше S/2.

Теперь построим пример, доказывающий, что $f(n) \ge \frac{1}{2}n^2 - 4n$, следовательно неравенство $f(n) \le Cn^2$ при $C < \frac{1}{2}$ неверно при всех достаточно больших n.

Возьмем бесконечную клетчатую плоскость и покрасим ее в два цвета следующим образом: выберем одно из двух направлений диагонали, покрасим все клетки каждой диагонали в один цвет: две диагонали в белый, следующие две в черный и так далее с периодом 4. Теперь выберем квадрат $n \times n$, в который черных клеток попало не меньше чем белых, то есть хотя бы $n^2/2$. Теперь на каждую черную клетку внутри квадрата $n \times n$ положим квадрат 2×2 так, чтобы кроме этой черной клетки квадрат содержал только белые (это можно сделать единственным образом). Удалим все квадраты 2×2 , частично вылезшие за границы квадрата $n \times n$, их не больше 4n. Требуемое семейство построено.

Критерии.

- **А** Чистое доказательство оценки $C \le 1/2$: 22 балла.
- В Чистое построение примера, доказывающего что $C \ge 1/2$: 12 баллов.