MC 302 DBMS: Unit 1 – Basic Concepts

Goonjan Jain

Department of Applied Mathematics

Delhi Technological University

Outline

- Introduction to DBMSs
- The Entity Relationship model
- The Relational Model
- SQL: the commercial query language
- DB design: FD, 3NF, BCNF
- Indexing
- Transaction Processing
- Concurrency control

Administrative

- Contact Hours: L-3 P-2
- Examination: CWS 15 PRS 25 MTE 20 ETE 40
- CWS
 - Assignments / and quizzes
 - Class performance
- PRS
 - Lab performance and lab project
- MTE
 - Small project, case study etc. (Group of max 2 students)
- ETE
 - 3 quizzes in the semester of 15 marks each. Best 2 will be considered.
 - 2 surprise tests of 10 marks each. Best of the two will be considered.

Books

- Fundamentals of Database Systems. Ramez Elmasari and Shamkant B.
 Navathe
- Database System Concepts. Abraham Silberschatz, Henry F. Korth, and S. Sudarshan
- Database Management Systems. Raghu Ramakrishnan and Johannes Gehrke

What is the goal of DBMS?

- Electronic record keeping
- Fast and convenient access of information
- DBMS Database Management System
 - Commercial systems like Oracle, SQL Server, MySQL etc.
- Database System DBMS + data + application programs
- For example students, taking classes, calculate grades.

One solution: Paper Based

- Advantages
 - Cheap, easy to use
 - E.g. student folders etc.
- Disadvantages
 - No 'ad-hoc' queries
 - No sharing
 - Large carbon footprint

Next possible solution

- Computer based
 - flat files + C (JAVA) programs to access them
- Layout
 - comma separated values (csv)
 - Rohan, 123, A
 - Amit, 239, A+
- Problems?

Problems with File System

Data redundancy and inconsistency –

- Repetition of data i.e. each data may have more than a single copy.
- The file system cannot control redundancy of data
- Each user defines and maintains the needed files for a specific application to run.
- Changes made by one user does not reflect in files used by second users, which leads to inconsistency of data.

Data sharing –

File system does not allow sharing of data or sharing is too complex.

Data concurrency –

- Concurrent access to data means more than one user is accessing the same data at the same time.
- Anomalies occur when changes made by one user gets lost because of changes made by other user.
- File system does not provide any procedure to stop anomalies.

Problems with File System

Data searching –

• For every search operation, a different application program has to be written.

Data integrity –

- some constraints need to be applied on the data before inserting it in database.
- The file system does not provide any procedure to check these constraints automatically.

System crashing –

- systems might have crashes due to various reasons.
- In file systems, once the system crashes, there will be no recovery of the data that's been lost.

Data security –

 A file system provides a password mechanism to protect the database but how longer can the password be protected?

Why problems?

- Two main reasons-
 - File layout description is buried within the C programs
 - There is no support of concurrency

DBMS handles exactly these two problems

DBMS

- Commercial/freeware DBMS
- Main vendors/products

- In labs we will be using MySQL.
- However, one can opt any RDBMS.

Commercial	Open source
Oracle	MySQL
IBM/DB2	Postgres
MS SQL server	miniBase
Sybase	sqlite
MS Access	

How do DBs work?

Advantages over flat files

- Logical and physical data independence
 - Data layout, security info etc. stored explicitly on the disk
- Concurrent access
- Transaction processing

Disadvantages over flat files

- Price
- Additional expertise

Hence overkill for small, single-user data sets

Fundamental concepts

- Data Abstraction
- Logical data independence
- Physical data independence

Data Abstraction

- Hiding the irrelevant details
- Several levels of abstraction
 - View level
 - Logical level
 - Physical level

3-level architecture

- View level
 - Describes only a part of DB
 - V1: select roll no from student
 - V2: Select fac_id, name from faculty
- Logical level
 - What data stored in the DB, and what relationships exist among data. Eg. tables
 - Student(roll_no, name)
 - Faculty(fac_id, name, deptNo)
- Physical level
 - How are these tables stored, how many bytes/attributes etc.

Schema and Instances

- Schema
 - overall design of DB
 - Changes infrequently
- Instance
 - Collection of information stored in DB at a particular moment

DB schema corresponds to variable declaration.

Value in variables at a point of time correspond to an instance of a DB schema

DB Schemas

- Several schemas partitioned according to levels of abstraction
- Physical schema
 - schema at physical level
 - Can be changed without affecting application programs
- Logical Schema
 - schema at logical level
 - Programs construct applications using logical schema
- Several schemas at view level, called subschemas

3-level architecture

- Logical data independence
 - Can add/drop column; add/drop table
- Physical data independence
 - Can add index; change record order

Data Models

- Collection of conceptual tools
 - Describe data
 - data relationships
 - data semantics
 - consistency constraints
- Relational model
- Entity-Relationship model
- Object-Based data model
- Sem-structured data model

Relational Model

- Collection of tables to represent
 - Data
 - Relationship among data
- Each table has multiple columns
- Each column has a unique name
- Tables also called relations

Entity-Relationship model

- Collection of entities and relationships objects
- Entity 'thing' or 'object' in real world, distinguishable from other objects

Database Languages

- Data Definition Language (DDL)
- Data Manipulation Language (DML)
- Data Query Language (DQL)
- Data Control Language (DCL)
- Transaction Control Language (TCL)

Data Definition Language (DDL)

- define the database structure or schema
- CREATE to create objects in the database
- ALTER alters the structure of the database
- DROP delete objects from the database
- TRUNCATE remove all records from a table, including all spaces allocated for the records are removed
- RENAME rename an object

Data Manipulation Language (DML)

- managing data within schema objects
- SELECT retrieve data from the a database
- INSERT insert data into a table
- UPDATE updates existing data within a table
- DELETE deletes all records from a table, the space for the records remain
- LOCK TABLE control concurrency

Data Query Language

- get some schema relation based on the query passed
- SELECT
 - retrieve or fetch data from a database
 - fetch either the entire table or according to some specified rules
 - data returned is stored in a result table, called result-set

Data Control Language (DCL)

- Deals with the rights, permissions and other controls of the database system.
- GRANT gives user's access privileges to database
- · REVOKE withdraw access privileges given with the GRANT command

Transaction Control Language (TCL)

- allows statements to be grouped together into logical transactions.
- COMMIT save work done
- SAVEPOINT identify a point in a transaction to which you can later roll back
- ROLLBACK restore database to original since the last COMMIT
- SET TRANSACTION Change transaction options like isolation level and what rollback segment to use

Types of SQL Commands

Database Users

- 'naïve' users
- Casual users
- Application programmers
- DBA database administrators

Database Administrator (DBA)

- Schema definition (logical level)
- Physical schema (storage structure, access methods)
- Schema modifications
- Granting authorizations
- Integrity constraint specification

Database Architecture

- DB systems can be
 - Centralized
 - Client-server
- Distributed DBs span multiple geographically separated machines

Application Architectures

Conclusions

- (Relational) DBMSs electronic record keeper
- Customize them with CREATE table commands
- Ask SQL queries to retrieve data
- Advantages over flat file systems
 - Logical + physical data independence
 - Concurrency control and recovery