

UPES UNIVERSITY OF PETROLEUM AND ENERGY STUDIES, DEHRADUN

Assignment Sheet #1, September 2021

Programme Name: B. Tech (CSE- AI/ML) : III Semester **Course Name** : Design and Analysis of Algorithms Max. Marks: 30

Course Code : CSEG 2021 **Circulation:** 13/09/2022 Nos. of page(s) : 02 **Submission**: 20/09/2022

: Answer the following questions **Instructions**

S. No.		Marks	CO
Q1	What do you understand with Algorithm and its efficiency?	1	CO1
Q2	a) What are the basic properties of an algorithm?b) Distinguish between algorithm and pseudo code.	2	CO1
Q3	a) What is Asymptotic Time/Space Complexity?b) Differentiate big-O and small-o notation.	2	CO1
Q4	Define basic principal of Divide and Conquer approach with an example of Binary Search.	1	CO1
Q5	Prove that: For any two functions $f(n)$ and $g(n)$, we have $f(n) = \Theta(g(n))$ if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	1	CO1
Q6	Justify your answer: a) Is $2^{n+1} = O(2^n)$? b) Is $2^{2n} = O(2^n)$?	2	CO1
Q7	Solve using Recurrence method: a) $T(n) = \begin{cases} 1, & \text{if } n = 0 \\ T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + 1, \text{if } n \ge 1 \end{cases}$ b) $T(n) = 4T\left(\frac{n}{2}\right) + n$	3	CO2
Q8	Solve using Master Theorem: Annexure #1 (find at last page of the assignment)	0.5*22	CO2
Q9	Explain Iteration and Recurrence tree method and solve the following: a) $T(n) = \begin{cases} 1, & \text{if } n = 0 \\ 3T\left(\frac{n}{2}\right) + n, \text{if } n \geq 1 \end{cases}$ Solve using changing variable method: a) $T(n) = T(\sqrt{n}) + lgn$ b) $T(n) = \sqrt{n} T(\sqrt{n}) + n$	2+3	CO2
Q10	What are the real time applications of Quick Sort? Write the algorithm of Quick Sort and Analyze its balanced case running time complexity.	2	CO3

Note: Plagiarism is strictly prohibited in the assignment. A viva based on assignment questions will be conducted at the time of assignment submission to validate Academic Integrity.

Annexure #1

1.
$$T(n) = 3T(n/2) + n^2$$

12.
$$T(n) = 3T(n/2) + n$$

2.
$$T(n) = 4T(n/2) + n^2$$

13.
$$T(n) = 3T(n/3) + \sqrt{n}$$

3.
$$T(n) = T(n/2) + 2^n$$

14.
$$T(n) = 4T(n/2) + cn$$

4.
$$T(n) = 2^n T(n/2) + n^n$$

15.
$$T(n) = 3T(n/4) + n \log n$$

5.
$$T(n) = 16T(n/4) + n$$

16.
$$T(n) = 3T(n/3) + n/2$$

6.
$$T(n) = 2T(n/2) + n \log n$$

17.
$$T(n) = 6T(n/3) + n^2 \log n$$

7.
$$T(n) = 2T(n/2) + n/\log n$$

18.
$$T(n) = 4T(n/2) + n/\log n$$

8.
$$T(n) = 2T(n/4) + n^{0.51}$$

19.
$$T(n) = 64T(n/8) - n^2 \log n$$

9.
$$T(n) = 0.5T(n/2) + 1/n$$

20.
$$T(n) = 7T(n/3) + n^2$$

10.
$$T(n) = 16T(n/4) + n!$$

21.
$$T(n) = 4T(n/2) + \log n$$

11.
$$T(n) = \sqrt{2}T(n/2) + \log n$$

22.
$$T(n) = T(n/2) + n(2 - \cos n)$$