

Soit la suite (u_n) définie sur \mathbb{N} par $u_0 = 2$ et tout entier naturel n par $u_{n+1} = \frac{1}{4}u_n + 2$.

1. Démontrer que pour tout entier naturel n,

$$u_n \leqslant u_{n+1}$$
.

2. En déduire le sens de variation de la suite (u_n) .

On considère la suite (u_n) définie sur \mathbb{N} par :

$$u_{n+1} = \frac{1}{3}u_n + \frac{14}{3}$$
 et $u_0 = 1$.

- 1. Démontrer par récurrence que la suite (u_n) est majorée par 7.
- **2.** Démontrer que la suite (u_n) est croissante.

1. Soit la suite (u_n) définie pour tout entier naturel non nul par :

$$u_n = \frac{4n+1}{1-5n}.$$

Démontrer que la suite (u_n) est minorée par $-\frac{5}{4}$.

2. Soit la suite (v_n) définie sur \mathbb{N} par :

$$v_{n+1} = \frac{2}{3}v_n + \frac{4}{3}$$
 et $v_0 = 1$.

Démontrer par récurrence que pour tout entier naturel $n, v_n \leq 4$.

Soit la suite (v_n) définie sur \mathbb{N}^* par $v_n = 2 + \sin(n^2)$. Démontrer que la suite (v_n) est bornée.

On considère la suite (u_n) définie sur \mathbb{N} par $u_0 = 2$ et pour tout entier naturel n,

$$u_{n+1} = \frac{2}{3}u_n + 2n + 1.$$

- 1. Conjecturer la limite de la suite (u_n) à la calculatrice.
- 2. On considère le programme Python :

Compléter la fonction Python ci-dessus pour qu'elle retourne le premier terme de la suite strictement supérieur à 100.

39

Calculer les limites des suites (u_n) suivantes :

1.
$$u_n = n^2 + 6$$

2.
$$u_n = \sqrt{n} + \frac{1}{n^2}$$

3.
$$u_n = 3n^2 + \frac{5}{n^3}$$

Calculer les limites des suites (u_n) suivantes :

1.
$$u_n = \sqrt{n} \left(1 + \frac{1}{n} \right)$$

2.
$$u_n = -n^3(3n^2 + 5)$$

3.
$$u_n = \left(-7 + \frac{2}{\sqrt{n}}\right)(n+1)$$

Déterminer la limite (si elle existe) de la suite (u_n) dans les cas suivants :

- 1. $u_n = n + (-1)^n$ pour tout $n \in \mathbb{N}$.
- **2.** $u_n = \frac{(-1)^n}{n^2}$ pour tout $n \in \mathbb{N}^*$.
- **3.** $u_n = \frac{1}{n}\cos(n)$ pour tout $n \in \mathbb{N}^*$.

Déterminer la limite de la suite $(u_n)_{n\geqslant 1}$ dans les cas suivants :

- 1. $u_n = \frac{1}{n}(n^2 + 10)$;
- **2.** $u_n = \frac{n^2 2n + 3}{4n^3 + 5}$;
- $3. \ u_n = \frac{2n^2 + 1}{n^2 + 5n + 4}$

43

1. On considère une suite (u_n) qui vérifie $u_n \ge 2n^2 - 1$ pour tout entier naturel n.

Déterminer la limite de la suite (u_n) .

2. On considère une suite (v_n) qui vérifie $v_n \leqslant -5n$ pour tout entier naturel n.

Déterminer la limite de la suite (v_n) .

3. On considère une suite (w_n) qui vérifie $-\frac{1}{n}+1\leqslant w_n\leqslant \frac{1}{n}+1 \text{ pour tout entier naturel } n$

non nul. Calculer la limite de la suite (w_n) .

44

En utilisant les théorèmes de comparaison des limites, calculer les limites des suites (u_n) suivantes :

- $1. \ u_n = n \sin n$
- **2.** $v_n = -n^2 + \cos n$
- 3. $w_n = \frac{4n + (-1)^n}{2n + 3}$
- **4.** $z_n = \frac{n \sin n}{n^2 + 3}$

Soit q un réel et (u_n) la suite définie par $u_n = q^n$ pour tout entier naturel n non nul.

Compléter la fonction Python ci-dessous pour qu'elle retourne un message indiquant si (u_n) est convergente ou divergente :

Déterminer la limite éventuelle des suites (u_n) définies sur \mathbb{N} suivantes en utilisant la limite d'une suite géométrique :

1.
$$u_n = \frac{4}{7^n}$$

2.
$$u_n = 4^n + 7^n$$

3.
$$u_n = 9^n - 3^n$$

4.
$$u_n = \frac{(-4)^{n+1}}{5^n}$$

Déterminer la limite éventuelle des suites (u_n) suivantes :

1.
$$u_n = \frac{2^n - 3^n}{5^n + 4^n}$$

2.
$$u_n = 3^n - \sin n$$

3.
$$u_n = \frac{1}{n}\sin(2^n)$$

4.
$$u_n = 0, 5^n \cos(n!)$$

Soit la suite (v_n) définie pour tout entier naturel n par :

$$\begin{cases} v_0 = -\frac{2}{3} \\ v_{n+1} = -2v_n + 1 \end{cases}$$

1. Démontrer par récurrence que pour tout entier naturel n,

$$v_n = \frac{1}{3} - (-2)^n$$

2. Étudier la convergence de la suite (v_n) .

On considère la suite (u_n) définie par $u_0 = 1$ et pour tout nombre entier naturel n,

$$u_{n+1} = \frac{1}{3}u_n + 4.$$

On pose, pour tout nombre entier naturel n,

$$v_n = u_n - 6.$$

- 1. Démontrer que la suite (v_n) est géométrique. Préciser sa raison et son premier terme.
- **2.** Justifier que pour tout nombre entier naturel $n, u_n = -5\left(\frac{1}{3}\right)^n + 6.$

3. Étudier la convergence de la suite (u_n) .

On considère la suite (u_n) définie pour tout entier naturel n par :

$$u_{n+1} = \frac{3u_n + 1}{2u_n + 4}$$
 et $u_0 = 1$.

- 1. Démontrer que pour tout entier naturel $n, u_n \ge 0$.
- **2.** On considère alors la suite (t_n) définie pour tout entier naturel n par :

$$t_n = \frac{2u_n - 1}{u_n + 1}.$$

- a. Démontrer que la suite (t_n) est géométrique de raison $\frac{2}{\pi}$.
- **b.** Exprimer, pour tout entier naturel n, t_n en fonction de n.
- **c.** En déduire l'expression de u_n en fonction de n.
- **d.** Démontrer que (u_n) converge et déterminer sa limite.

On considère la suite (u_n) définie pour tout entier naturel n non nul par :

$$\begin{cases} u_0 = 0 \\ u_n = u_{n-1} + \frac{n}{2^n} \end{cases}$$

1. Montrer par récurrence que pour tout entier naturel $n \ge 1$,

$$u_n = 2 - \frac{n+2}{2^n}.$$

- **2.** En déduire que la suite (u_n) est majorée.
- **3.** Montrer par récurrence que pour tout entier naturel supérieur ou égal à 2,

$$n+2 \leqslant 2^n$$
.

4. La suite (u_n) est-elle minorée?

On considère la suite (u_n) définie pour tout entier naturel n non nul par :

$$\begin{cases} u_0 = 1, 8 \\ u_{n+1} = \frac{2}{3 - u_n} \end{cases}$$

1. Démontrer par récurrence que pour tout entier naturel n,

$$1 \leqslant u_{n+1} \leqslant u_n \leqslant 2.$$

- **2.** En déduire que la suite (u_n) est convergente.
- 3. Soit ℓ la limite de la suite (u_n) . Démontrer que ℓ vérifie l'égalité $\ell = \frac{2}{3-\ell}$ puis en déduire la valeur de ℓ .

Avant le début des travaux de construction d'une autoroute, une équipe d'archéologie préventive procède à des sondages successifs en des points régulièrement espacés sur le terrain.

Lorsque le n-ième sondage donne lieu à la découverte de vestiges, il est dit positif.

L'évènement : « le n-ième sondage est positif » est noté V_n , on note p_n la probabilité de l'évènement V_n .

L'expérience acquise au cours de ce type d'investigation permet de prévoir que :

- si un sondage est positif, le suivant a une probabilité égale à 0,6 d'être aussi positif;
- si un sondage est négatif, le suivant a une probabilité égale à 0,9 d'être aussi négatif.

On suppose que le premier sondage est positif, c'est-à-dire : $p_1=1.$

- 1. Calculer les probabilités des évènements suivants :
 - **a.** $A: \ll \text{les } 2^{\text{e}} \text{ et } 3^{\text{e}} \text{ sondages sont positifs} \gg;$
 - **b.** $B : \ll \text{les } 2^{\text{e}} \text{ et } 3^{\text{e}} \text{ sondages sont négatifs} \gg$.
- **2.** Calculer la probabilité p_3 pour que le $3^{\rm e}$ sondage soit positif.
- **3.** *n* désigne un entier naturel supérieur ou égal à 2. Compléter l'arbre ci-dessous en fonction des données de l'énoncé :

- 4. Pour tout entier naturel n non nul, établir que : $p_{n+1}=0, 5p_n+0, 1.$
- **5.** On note u la suite définie, pour tout entier naturel n non nul par : $u_n = p_n 0, 2$.
 - **a.** Démontrer que u est une suite géométrique, en préciser le premier terme et la raison.
 - **b.** Exprimer p_n en fonction de n.
 - **c.** Calculer la limite, quand n tend vers $+\infty$, de la probabilité p_n .

On définit la suite (u_n) définie pour $n \ge 2$ par :

$$\begin{cases} u_2 = 1 \\ u_{n+1} = \left(1 - \frac{1}{n^2}\right) u_n \end{cases}$$

1. a. Démontrer que pour entier naturel n supérieur ou égal à 2,

$$0 \leqslant u_n \leqslant 1$$
.

- **b.** Étudier le sens de variation de la suite (u_n) .
- **2.** Justifier que la suite (u_n) est convergente.
- **3.** Montrer que pour tout entier naturel n supérieur ou égal à 2,

$$u_n = \frac{n}{2(n-1)}.$$

4. En déduire $\lim_{n\to+\infty}u_n$.

On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et telle que pour tout entier naturel n,

$$u_{n+1} = \frac{3u_n}{1 + 2u_n}$$

- **1.** a. Calculer u_1 et u_2 .
 - **b.** Démontrer, par récurrence, que pour tout entier naturel n, $0 < u_n$.
- **2.** On admet que pour tout entier naturel $n, u_n < 1$.
 - a. Démontrer que la suite (u_n) est croissante.
 - **b.** Démontrer que la suite (u_n) converge.
- **3.** Soit (v_n) la suite définie, pour tout entier naturel n, par $v_n = \frac{u_n}{1 u_n}$.
 - **a.** Montrer que la suite (v_n) est une suite géométrique de raison 3.
 - **b.** Exprimer pour tout entier naturel n, v_n en fonction de n.
 - **c.** En déduire que, pour tout entier naturel n, $u_n = \frac{3^n}{3^n + 1}$.
 - **d.** Déterminer la limite de la suite (u_n) .

On considère la suite (u_n) définie sur \mathbb{N} par $u_0 = 1$ et, pour tout $n \ge 0$,

$$u_{n+1} = \frac{1}{10} u_n (20 - u_n).$$

1. Soit f la fonction définie sur [0; 20] par

$$f(x) = \frac{1}{10}x(20 - x).$$

- **a.** Étudier les variations de f sur [0; 20].
- **b.** En déduire que pour tout $x \in [0; 20]$,

$$f(x) \in [0 ; 10].$$

- c. On donne ci-après la courbe représentative $\mathscr C$ de la fonction f dans un repère orthonormal. Représenter, sur l'axe des abscisses, à l'aide de ce graphique, les cinq premiers termes de la suite $(u_n)_{n\geqslant 0}$ puis émettre une conjecture quant à son sens de variation et à sa convergence.
- **2.** Montrer par récurrence que pour tout $n \in \mathbb{N}$,

$$0 \leqslant u_n \leqslant u_{n+1} \leqslant 10.$$

3. Montrer que la suite $(u_n)_{n\geqslant 0}$ est convergente et déterminer sa limite.

Soit (u_n) la suite définie par $u_0 = 5$ et pour tout nombre entier naturel n, par $u_{n+1} = \frac{4u_n - 1}{u_n + 2}$.

Si f est la fonction définie sur l'intervalle]-2; $+\infty[$ par $f(x)=\frac{4x-1}{x+2},$ alors on a, pour tout nombre entier naturel $n,\ u_{n+1}=f\left(u_{n}\right).$

On donne ci-dessous une partie de la courbe représentative $\mathcal C$ de la fonction f ainsi que la droite Δ d'équation y=x.

- 1. a. Sur l'axe des abscisses, placer u_0 puis construire $u_1,\ u_2$ et u_3 en laissant apparents les traits de construction.
 - **b.** Quelles conjectures peut-on émettre sur le sens de variation et sur la convergence de la suite (u_n) ?
- **2. a.** Démontrer que la fonction f est strictement croissante sur]-2; $+\infty[$.
 - **b.** Démontrer par récurrence que, pour tout nombre entier naturel n, on a $u_n > 1$.
 - c. Dans cette question, toute trace de recherche, même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

Valider par une démonstration les conjectures émises à la question 1. b. On ne cherchera pas l'éventuelle limite de la suite (u_n) mais seulement son existence.

3. Dans cette question, on se propose d'étudier la suite (u_n) par une autre méthode, en déterminant une expression de u_n en fonction de n.

Pour tout nombre entier naturel n, on pose :

$$v_n = \frac{1}{u_n - 1}.$$

- **a.** Démontrer que la suite (v_n) est une suite arithmétique de raison $\frac{1}{3}$.
- **b.** Pour tout nombre entier naturel n, exprimer v_n puis u_n en fonction de n.
- c. En déduire la limite de la suite (u_n) .

58

On considère la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n,

$$u_{n+1} = \sqrt{2u_n}.$$

On considère le programme

```
from math import sqrt
u=1
for i in range(1,n+1):
u=sqrt(2*u)
print(u)
```

- 1. Donner une valeur approchée à 10^{-4} près du résultat qu'affiche cet algorithme lorsque l'on choisit n=3.
- **2.** Démontrer que, pour tout entier naturel n,

$$0 < u_n < u_{n+1} \le 2.$$

- **3.** Démontrer que la suite (u_n) est convergente.
- 4. Démontrer que $\ell = \sqrt{2\ell}$ puis en déduire la valeur de ℓ .