## Ağaç Tabanlı Yapay Öğrenme Algoritmalarına Giriş

R Uygulaması İle

Arş. Gör. Ozancan Özdemir İstatistik Bölümü, Orta Doğu Teknik Üniversitesi

#### Ozancan Özdemir



- Lisans: ODTÜ İstatistik Bölümü. 2017
- Yüksek Lisans: ODTÜ İstatistik Bölümü, 2020

Tez Başlığı: Performance Comparison of Machine Learning Methods and Traditional Time Series Methods for Forecasting. (Danışman: Prof.Dr.Ceylan Yozgatlıgil)

- Doktora: ODTÜ İstatistik Bölümü, Devam Ediyor
- Araştırma Alanları: Yapay ve Derin Öğrenme, Zaman Serileri, Ardısık Veri, Veri Görselleştirme
- Araştırma Görevlisi, ODTÜ İstatistik Bölümü, 2017-...
- Kurucu Ortak, Veripie, 2020-... (http://www.veripie.com.tr/)



WhyR Turkey (https://whyr.pl/2022/turkey/)



Açık Veri, Veri Bazlı Politika, COVID-19, R Programlama



ozancan@metu.edu.tr



www http://users.metu.edu.tr/ozancan







Karar Ağaçlarından Ekstrem Gradyan Artırım Modeline...

## Karar Ağacı



https://medium.com/deep-learning-turkiye/karar-a%C4%9Fa%C3%A7lar%C4%B1-makine-%C3%B6%C4%9Frenmesi-serisi-3-a03f3ff00ba5

## Karar Ağacı





#### Neden Karar Ağacı?

- Gözetimli öğrenme teknikleridir
- Hem bağlanım (regression) hem sınıflandırma (classification) problemlerine uygulanabilir.
- İnsan karar alma mekanizmasına oldukça benzerdir.
- Uygulaması ve sonuçlarının yorumlanması kolaydır.
- Diğer gözetimli öğrenme tekniklerinin aksine, örneğin yapay sinir ağları, veri ön işlemesine ihtiyaç duymazlar.
- Modellerin uygulanması için ön gereklilik ihtiyaçları yoktur.
- Kayıp veriler ile kendi içlerinde baş edebilirler.
- Sadece tahmin yapmak için değil, öznitelik seçimi (feature selection) amacı ile de kullanılabilir.
- Veri madenciliğinde de sıkça kullanılır.

## Bazı Karar Ağacı Türleri | Kullanım Örnekleri

- ID3
- CART
- Rastgele Ormanlar
- Torbalama
- Takviyeleme
- C5.0
- C4.5
- CHAID

- Sahtekarlık Tespiti
- Kalp Hastalıkları Tespiti
- Kredi Skor Hesaplaması
- BP'nin açık deniz platformlarında gaz ve petrolü ayırmaya yönelik GasOIL sistemi, (C.4.5) uzmanların tahmininden daha iyi performans gösterdi ve BP milyonlarını kurtardı. (1986)

#### Bağlanım Ağaçları

- Breiman, Freedman, Olshen, Stone, 1984.
- Kısaca çalışma adımları
  - o Öznitelik uzayı J tane ayrık ve çakışmayan bölgelere ayrılıyor (R1,.....Rj)
  - o Rj bölgesindeki eğitim verisinin çıktı değerlerinin (yi) ortalaması tahmin olarak kullanılıyor.
- **Amaç:** Artık Kareler Toplamının (RSS) en küçük olduğu bölgelerin bulunması

$$\sum_{i=1}^{J} \sum_{i \in R_i} (y_i - \hat{y}_{R_i})^2$$

 $\hat{y}_{R_{m{j}}}$  : Rj bölgesindeki çıktıların ortalaması

#### Bağlanım Ağaçları

Özyinelemeli İkili Ayırma (Recrusive Binary Splitting)

#### İlk olarak

- Tüm değişkenler (X1,....Xp) ve değerler sıralanır.
- Maliyet fonksiyonunda (RSS) en fazla azalmanın sağlandığı değişken ve ayrım noktası bulunur.

#### Daha sonra

- Tüm değişkenler yerine bir önceki adımda bölünmüş olan bölgelerden biri kullanılır.
- Terminal düğümlerde çok az sayıda, örneğin 5, gözlem kalınca durur.

Bağlanım Ağaçları





#### Ağaç Budama (Tree Pruning)

 Amaç: Kompleks ağaçlar sonucu meydana gelebilecek aşırı öğrenme problemini engellemek.

\*Aşırı öğrenme: Yüksek eğitim verisi performansı, düşük test verisi performansı.

Yüksek eşik değeri (treshold value) kullanarak daha sığ ağaçlar elde etmek



Kompleks bir ağaç oluşturup onu budamak. (prune)



#### Ağaç Budama (Tree Pruning)

Maliyet Karmaşıklık Budaması (Cost complexity pruning)

$$\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

 $T \subset T_0$ : alt ağaç (subtree)

|T| T ağacındaki terminal düğüm sayısı

 $R_m$  m. terminal düğüme karşılık gelen bölge

lpha : sabit parametre

Çapraz geçerlilik (cross-validation) yardımı ile elde edilir.

Sabit parametre arttıkça ağaç boyutu küçülüyor.

Sınıflandırma Ağaçları

Amaç: Saflık derecesinin en yüksek olduğu bölgelerin bulunması. (Hata oranının düşük olduğu bölgelerin bulunması)

Sınıflandırma Hata Oranı (Classification Error Rate):  $E = 1 - \max_{k} (\hat{p}_{mk})$ .

Entropi (Entropy): 
$$D=-\sum_{k=1}^K\hat{p}_{mk}\log\hat{p}_{mk}$$
 ;m. bölgedeki eğitim verisindeki k. sınıftan olanların oranı

• **Tahmin:** Rj bölgesine düşen gözlemler arasında sıklığı yüksek olan sınıf kullanılıyor.

- Her zaman gösterileren örneklerin aksine iyi bir performansa sahip değildir.
- Veri setindeki değişikliklere karşı sağlam değildir.
- Yüksek varyans sorunu yaşayabilir.

#### Torbalama (Bootstrap Aggregating ya da Bagging)

Zorlama (Bootstrap)



#### Torbalama (Bagging)

- Leo Breiman, 1996.
- Topluluk yöntemidir.
- Sadece karar ağaçları değil, diğer yöntemlere de uygulanabilir.
- Amaç: Yüksek varyansı düşürmek birden fazla ağaç oluşturarak onlardan elde edilecek tahminlerin ortalamasını (bağlanım problemleri) ya da sıklığı fazla olanı (sınıflandırma) hesaplamak ve daha stabil tahminler elde etmek.

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

## Torbalama (Bagging)

Torba Dışı Hata (Out of Bag Error-OOB)

- Her ağaç için gözlemlerin %63.2'si kullanılır.
- Tüm işlem sonunda gözlemlerin tamamı en az bir kere olsun kullanılmış olur.
- Modellerin performansını ölçmekte kullanılır.

## Torbalama (Bagging)

NumCarbon>=3.41 NumCarbon>=3.78 SurfaceArea2 € 0.978 SurfaceArea1 < 0.978 NumCarbon -- 3.78 NumCarbon:=3.41 SurfaceArea1 < 0.978 SurfaceArea1 < 3.46 SurfaceArea2 < 0.978 NumCarton -- 3.78 NumCarbon:-3.78 SurfaceArea1 € 0.978 MolWeight--5.22

Applied Predictive Modeling, M. Kuhn, K. Johnson., Springer, 2013

#### Rastgele Ormanlar (Rassal Ormanlar)

- Torbalama sonucu ortaya çıkan ilişkili ağaçları bağımsız bir hale dönüştürmek için geliştirilmiştir.
- Torbalama ile aynı çalışma disiplinine sahiptir; topluluk yöntemi.
- Her bir ağaç için rassal sayıda seçilen değişkenler kullanılır. ( $m \approx \sqrt{p}$ )
- Birbirleriyle ilişkili özniteliklerin olduğu veri setlerinde kullanışlıdır.

#### **Takviye (Boosting)**

- Schapire, 1990.
- Sadece karar ağaçları değil, diğer yöntemlere de uygulanabilir.
- Amaç: Birden fazla sığ ve zayıf olmayan ağacı birleştirerek güçlü ve tek bir ağaç oluşturmak.
- Ağaçlar ardışık bir şekilde oluşturulur.



#### **Takviye (Boosting)**

- Sığ bir ağaçtan tahmin elde et.
- Artık değer hesapla ve onu kullanarak sığ bir ağaç oluştur.
- Elde ettiğin değeri ilk tahmine ekle ve yeniden artık değer hesapla.
- Yeni artık değerler üzerine tekrar sığ bir ağaç oluştur.
- Elde edilen yeni tahmini bir önceki tahmine ekle.

$$F_1(x) = y$$

$$h_1(x) = y - F_1(x)$$

$$F_2(x) = F_1(x) + h_1(x)$$

$$F_2(x)$$
:  $h_2(x) = y - F_2(x)$ 

$$F_3(x) = F_2(x) + h_2(x)$$

## **Takviye (Boosting)**



# Gradyan Takviye ve Ekstrem Gradyan Takviye (Gradient Boosting & XGBoost)

#### **Gradyan Takviye**

- Friedman, 1999.
- Ağaçlar artık değerler kullanarak değil, artık değerlerin gradyanları kullanılarak oluşturuluyor.

#### **Ekstrem Gradyan Takviye**

- Chen ve Guestrin, 2016.
- Regülarizasyon, Erken Durma, Paralel İşleme, Maliyet Fonksiyonu, Yeniden Kullanılabilirlik, Farklı basit tahmin modelleri.

#### Gradyan Takviye ve Ekstrem Gradyan Takviye

#### Performance Comparison using SKLearn's 'Make\_Classification' Dataset

(5 Fold Cross Validation, 1MM randomly generated data sample, 20 features)



#### R Uygulaması (Bağlanım Problemi)

- > library(caret) #model ve veri seti kütüphanesi
- > library(ggplot2) #veri görselleştirmesi
- > library(GGally) #veri görselleştirmesi
- > library(tidyverse) #veri manipülasyonu
- > data(Sacramento) #veri setini yükle
- > head(Sacramento) #ilk 6 satırı görüntüle

```
zip beds baths saft
                                        type price latitude longitude
    city
                            1 836 Residential 59222 38.63191 -121.4349
1 SACRAMENTO z95838
2 SACRAMENTO z95823
                            1 1167 Residential 68212 38.47890 -121.4310
                           1 796 Residential 68880 38.61830 -121.4438
3 SACRAMENTO z95815
4 SACRAMENTO z95815
                           1 852 Residential 69307 38.61684 -121.4391
                           1 797 Residential 81900 38.51947 -121.4358
5 SACRAMENTO z95824 2
6 SACRAMENTO z95841
                            1 1122
                                      Condo 89921 38.66260 -121.3278
```

```
> str(Sacramento) #değişkenlerin yapılarını gösteriyor
'data.frame': 932 obs. of 9 variables:
        : Factor w/ 37 levels "ANTELOPE", "AUBURN", ...: 34 34 34 34 34 34 34 34 34 31 ...
$ citv
        : Factor w/ 68 levels "z95603","z95608",..: 64 52 44 44 53 65 66 49 24 25 ...
$ zip
$ beds
        : int 2322233323...
$ baths : num 1111112122...
$ sqft
        : int 836 1167 796 852 797 1122 1104 1177 941 1146 ...
        : Factor w/ 3 levels "Condo", "Multi Family", ...: 3 3 3 3 3 3 3 3 3 3 3 ...
$ type
$ price : int 59222 68212 68880 69307 81900 89921 90895 91002 94905 98937 ...
$ latitude : num 38.6 38.5 38.6 38.6 38.5 ...
$ longitude: num -121 -121 -121 -121 -121 ...
```

```
> sacramento ev <- Sacramento%>%subset(city =="SACRAMENTO")
> head(sacramento ev)
    city
                 1 SACRAMENTO z95838 2
                          1 836 Residential 59222 38.63191 -121.4349
2 SACRAMENTO z95823 3 1 1167 Residential 68212 38.47890 -121.4310
3 SACRAMENTO z95815 2 1 796 Residential 68880 38.61830 -121.4438
4 SACRAMENTO z95815 2 1 852 Residential 69307 38.61684 -121.4391
5 SACRAMENTO z95824 2 1 797 Residential 81900 38.51947 -121.4358
6 SACRAMENTO z95841 3 1 1122
                                    Condo 89921 38.66260 -121.3278
> str(sacramento ev)
'data.frame': 438 obs. of 9 variables:
        : Factor w/ 37 levels "ANTELOPE", "AUBURN", ...: 34 34 34 34 34 34 34 34 34 34 ...
$ citv
        : Factor w/ 68 levels "z95603", "z95608", ...: 64 52 44 44 53 65 66 49 64 52 ...
$ zip
        : int 2322233333...
$ beds
$ baths : num 1111112122...
$ saft
        : int 836 1167 796 852 797 1122 1104 1177 909 1289 ...
        : Factor w/ 3 levels "Condo", "Multi Family", ..: 3 3 3 3 3 3 3 3 3 3 ...
$ tvpe
        : int 59222 68212 68880 69307 81900 89921 90895 91002 100309 106250 ...
$ price
$ latitude : num 38.6 38.5 38.6 38.6 38.5 ...
$ longitude: num -121 -121 -121 -121 -121 ...
```

```
> summary(sacramento ev) #tanımlayıcı istatistikler ve sıklık değerleri
                                      beds
                                                      baths
                                                                  sqft
       city
                             zip
SACRAMENTO
              :438
                        z95823:61 Min. :1.00
                                                 Min. :1.000
                                                                Min. : 484
ANTELOPE
          : 0
                        z95828: 45 1st Qu.:3.00
                                                 1st Qu.:1.000
                                                                1st Qu.:1100
                        z95835 : 37 Median : 3.00 Median : 2.000
AUBURN
            : 0
                                                                Median:1355
CAMERON PARK: 0
                        z95838: 37 Mean :3.13 Mean :1.848
                                                                Mean :1453
CARMICHAEL: 0
                        z95822 : 24 3rd Qu.:4.00
                                                 3rd Qu.:2.000
                                                                3rd Qu.:1682
                        z95820 : 23 Max. :8.00
CITRUS HEIGHTS: 0
                                                 Max. :4.000
                                                                Max. :4246
(Other): 0
                        (Other):211
                                                  longitude
      type
                        price
                                       latitude
Condo
         : 26
                   Min. : 40000
                                   Min. :38.44
                                                 Min. :-121.6
Multi Family: 10
                   1st Qu.:124325
                                   1st Qu.:38.48
                                                 1st Qu.:-121.5
Residential:402
                   Median: 178240 Median: 38.56
                                                 Median :-121.4
                   Mean :197674
                                   Mean :38.56
                                                 Mean :-121.4
                   3rd Qu.:243488
                                   3rd Qu.:38.64 3rd Qu.:-121.4
                   Max. :699000
                                   Max. :38.70
                                                Max. :-121.3
```

> ggpairs(sacramento\_ev) #korelasyon ve keşifleyici görsel



```
> ## Veri Düzenleme
```

- > ## One Hot Encoding
- > dummy<-dummyVars(" ~ .", data=sacramento\_ev)</pre>
- > sacramento\_ev<-predict(dummy, newdata =sacramento\_ev)

| > head(sacramento_ev) |      |                                       |                                                              |                                                                     |                                                                                               |                                                                                                                          |                                                                                                                                                                          |  |  |  |  |  |
|-----------------------|------|---------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| beds                  | bath | ns sqft                               | type.Condo                                                   | type.Multi_Family                                                   | type.Residential                                                                              | price                                                                                                                    | latitude longitude                                                                                                                                                       |  |  |  |  |  |
| 2                     | 1    | 836                                   | 0                                                            | 0                                                                   | 1                                                                                             | 59222                                                                                                                    | 38.63191 -121.4349                                                                                                                                                       |  |  |  |  |  |
| 3                     | 1    | 1167                                  | 0                                                            | 0                                                                   | 1                                                                                             | 68212                                                                                                                    | 38.47890 -121.4310                                                                                                                                                       |  |  |  |  |  |
| 2                     | 1    | 796                                   | 0                                                            | 0                                                                   | 1                                                                                             | 68880                                                                                                                    | 38.61830 -121.4438                                                                                                                                                       |  |  |  |  |  |
| 2                     | 1    | 852                                   | 0                                                            | 0                                                                   | 1                                                                                             | 69307                                                                                                                    | 38.61684 -121.4391                                                                                                                                                       |  |  |  |  |  |
| 2                     | 1    | 797                                   | 0                                                            | 0                                                                   | 1                                                                                             | 81900                                                                                                                    | 38.51947 -121.4358                                                                                                                                                       |  |  |  |  |  |
| 3                     | 1    | 1122                                  | 1                                                            | 0                                                                   | 0                                                                                             | 89921                                                                                                                    | 38.66260 -121.3278                                                                                                                                                       |  |  |  |  |  |
|                       |      | beds bath<br>2 1<br>3 1<br>2 1<br>2 1 | beds baths sqft<br>2 1 836<br>3 1 1167<br>2 1 796<br>2 1 852 | beds baths sqft type.Condo 2 1 836 0 3 1 1167 0 2 1 796 0 2 1 852 0 | beds baths sqft type.Condo type.Multi_Family 2 1 836 0 0 3 1 1167 0 0 2 1 796 0 0 2 1 852 0 0 | beds baths sqft type.Condo type.Multi_Family type.Residential 2 1 836 0 0 1 1 3 1 1167 0 0 1 2 1 796 0 0 1 2 1 852 0 0 1 | beds baths sqft type.Condo type.Multi_Family type.Residential price 2 1 836 0 0 1 59222 3 1 1167 0 0 1 68212 2 1 796 0 0 1 68880 2 1 852 0 0 1 69307 2 1 797 0 0 1 81900 |  |  |  |  |  |

```
> set.seed(1104)
> cartFit <- train(price~.,data = egitim, method = "rpart",trControl = fitcontrol,metric="RMSE")</pre>
> cartFit #eğitim sürecini ve parametreleri görüntüle
CART
352 samples
 8 predictor
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 316, 316, 318, 317, 316, 317, ...
Resampling results across tuning parameters:
          RMSE
                   Rsquared MAE
 CD
 0.003352317 80899.09 0.4249302 58103.94
 0.010404115 82328.38 0.3971679 60120.38
 0.017726268 82764.89 0.3843382 60954.15
```

The final value used for the model was cp = 0.003352317.

RMSE was used to select the optimal model using the smallest value.

```
> cartFit$finalModel #en iyi sonucu veren model detaylarını görüntüle
n = 352
node), split, n, deviance, yval
    * denotes terminal node
 1) root 352 3.777928e+12 199489.9
  2) sqft< 1657.5 257 1.538379e+12 164074.2
   4) sqft< 1225.5 135 4.592364e+11 133100.8
     8) longitude>=-121.4808 109 2.707172e+11 122223.0
     16) longitude< -121.4279 66 1.561158e+11 110251.2
       32) sqft>=795.5 58 9.184129e+10 104501.0
        64) sqft< 1015 30 2.699509e+10 86427.9 *
        65) sqft>=1015 28 4.454805e+10 123865.0 *
       33) sqft< 795.5 8 4.845285e+10 151940.4 *
     17) longitude>=-121.4279 43 9.062325e+10 140598.2
       34) type.Condo>=0.5 12 2.530097e+10 109249.6 *
       35) type.Condo< 0.5 31 4.896453e+10 152733.1 *
     9) longitude < -121.4808 26 1.215506e+11 178704.0
     18) latitude < 38.52207 11 1.407352e+10 133300.2 *
     19) latitude>=38.52207 15 6.817112e+10 212000.1 *
```

- > plot(cartFit\$finalModel) #modeli grafikleştir
- > text(cartFit\$finalModel)



```
> modelLookup("treebag")
  model parameter label forReg forClass probModel
1 treebag parameter parameter TRUE TRUE
                                              TRUE
> baggingFit<- train(price~.,data = egitim, method = "treebag",trControl = fitcontrol,metric="RMSE")
> baggingFit #eğitim sürecini ve parametreleri görüntüle
Bagged CART
352 samples
 8 predictor
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 316, 316, 318, 317, 316, 317, ...
Resampling results:
 RMSE
          Rsquared MAE
 77385.59 0.4539737 56087.51
> baggingFit$finalModel #en iyi sonucu veren model detaylarını görüntüle
```

Bagging regression trees with 25 bootstrap replications

> ## Bagging

```
> ## Random Forest
> modelLookup("rf")
 model parameter
                                label forReg forClass probModel
   rf mtry #Randomly Selected Predictors TRUE TRUE
                                                             TRUE
> set.seed(1104)
> rfFit<- train(price~.,data = egitim, method = "rf",trControl = fitcontrol,metric="RMSE")
> rfFit #eğitim sürecini ve parametreleri görüntüle
Random Forest
352 samples
 8 predictor
No pre-processing
Resampling: Cross-Validated (10 fold, repeated 5 times)
Summary of sample sizes: 316, 316, 318, 317, 316, 317, ...
Resampling results across tuning parameters:
             Rsquared MAE
 mtrv RMSE
     74756.23 0.4915653 53132.30
    75103.18 0.4852230 53249.98
     75650.31 0.4797569 53752.09
```

RMSE was used to select the optimal model using the smallest value.

The final value used for the model was mtry = 2.

> rfFit\$finalModel #en iyi sonucu veren model detaylarını görüntüle

#### Call:

randomForest(x = x, y = y, mtry = min(param\$mtry, ncol(x)))

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 2

Mean of squared residuals: 5786647335

% Var explained: 46.08

```
> ## Gradient Boosting
> modelLookup("gbm")
  model parameter
1 gbm n.trees # Boos
2 gbm interaction.depth
```

```
label forReg forClass probModel
```

- 1 gbm n.trees # Boosting Iterations TRUE TRUE TRUE
- 2 gbm interaction.depth Max Tree Depth TRUE TRUE TRUE
- 3 gbm shrinkage Shrinkage TRUE TRUE TRUE
- 4 gbm n.minobsinnode Min. Terminal Node Size TRUE TRUE TRUE
- > set.seed(1104)
- > gbmFit<- train(price~.,data = egitim, method = "gbm",trControl = fitcontrol,metric="RMSE")
- > gbmFit #eğitim sürecini ve parametreleri görüntüle

Stochastic Gradient Boosting

352 samples

8 predictor

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 5 times)

Summary of sample sizes: 316, 316, 318, 317, 316, 317, ...

#### Resampling results across tuning parameters:

| shrinkage | interaction. | depth n.m | ninobsinnode | n.trees R | MSE Rsqı  | uared MAE |
|-----------|--------------|-----------|--------------|-----------|-----------|-----------|
| 0.1230857 | 10           | 9         | 3696         | 83526.38  | 0.4214183 | 59989.04  |
| 0.2513721 | 5            | 19        | 1533         | 87331.69  | 0.3801141 | 63408.19  |
| 0.3603457 | 5            | 12        | 1846         | 91098.68  | 0.3616729 | 66140.37  |

RMSE was used to select the optimal model using the smallest value. The final values used for the model were n.trees = 3696, interaction.depth = 10, shrinkage = 0.1230857 and n.minobsinnode = 9.

> gbmFit\$finalModel #en iyi sonucu veren model detaylarını görüntüle A gradient boosted model with gaussian loss function. 3696 iterations were performed. There were 8 predictors of which 7 had non-zero influence.

```
> ##XGBoost
```

```
> modelLookup("xgbTree")
  model
                                      label
                                                        forReg forClass probModel
            parameter
1 xgbTree
               nrounds
                            # Boosting Iterations
                                                         TRUE
                                                                 TRUE
                                                                         TRUE
2 xgbTree
             max depth
                                  Max Tree Depth
                                                         TRUE
                                                                 TRUE
                                                                         TRUE
3 xgbTree
                                  Shrinkage
                                                         TRUE
                                                                 TRUE
                                                                         TRUE
                 eta
4 xgbTree
                            Minimum Loss Reduction
                                                               TRUE
                                                                      TRUE
                                                                               TRUE
                gamma
5 xgbTree colsample bytree
                            Subsample Ratio of Columns
                                                         TRUE
                                                                 TRUE
                                                                         TRUE
6 xgbTree min child weight Minimum Sum of Instance Weight
                                                         TRUE
                                                                 TRUE
                                                                         TRUE
             subsample
                              Subsample Percentage
                                                                 TRUE
7 xgbTree
                                                          TRUE
                                                                         TRUE
```

- > set.seed(1104)
- > xgbFit<- train(price~.,data = egitim, method = "xgbTree",trControl = fitcontrol,metric="RMSE")

> xgbFit #eğitim sürecini ve parametreleri görüntüle eXtreme Gradient Boosting

352 samples 8 predictor

No pre-processing

Resampling: Cross-Validated (10 fold, repeated 5 times) Summary of sample sizes: 316, 316, 318, 317, 316, 317, ...

Resampling results across tuning parameters:

eta max depth gamma colsample bytree min child weight subsample nrounds RMSE Rsquared MAE 0.1230857 10 80400.73 0.4416156 57834.20 4.370809 0.5397388 0.8436265 322 0.2513721 5 8.696266 0.4239902 17 0.9431193 630 84642.10 0.4090298 62020.62 0.3603457 5 4.711066 0.5085853 16 0.7009257 645 87791.98 0.3811346 64208.84

RMSE was used to select the optimal model using the smallest value.

The final values used for the model were nrounds = 322, max\_depth = 10, eta = 0.1230857, gamma = 4.370809, colsample\_bytree

= 0.5397388, min\_child\_weight = 7 and subsample = 0.8436265.

```
> ##Performans Karşılaştırması
> cart tahmin <- cartFit %>% predict(test)
> bag_tahmin <- baggingFit %>% predict(test)
> rf tahmin <- rfFit %>% predict(test)
> gbm tahmin <- gbmFit %>% predict(test)
> xgb tahmin <- xgbFit %>% predict(test)
> # RMSE Hesaplama
> RMSE(cart_tahmin, test$price)
[1] 87279.74
> RMSE(bag tahmin, test$price)
[1] 77399.99
> RMSE(rf_tahmin, test$price) # en iyi sonuç
[1] 68477.05
> RMSE(gbm_tahmin, test$price)
[1] 86359.93
> RMSE(xgb_tahmin, test$price)
[1] 82142.13
```

- > ## Değişken Önem Grafiği
- > plot(varImp(rfFit, scale = FALSE))



- > library(iml)
- > predictor = Predictor\$new(rfFit, data = egitim[,-7], y = egitim\$price)
- > shapley = Shapley\$new(predictor, x.interest = egitim[,-7])

> plot(shapley)

Actual prediction: 93875.23 Average prediction: 199459.34



#### Referanslar

- Applied Predictive Modeling, M. Kuhn, K. Johnson., Springer, 2013
- An Introduction to Statistical Learning with Applications in R, G. James, D.
   Witten, T. Hastie, R. Tibshirani, Springer, 2013.
- İlker Birbil, Karar Ağaçları.
- Ceylan Yozgatlıgil, Ders Notları
- Ozancan Ozdemir, Ders Notları

# TEŞEKKÜRLER!