- 1 Section 1 Number Systems
- 2 Section 2 Set Theory
- 3 Section 3 Logic

3.1 Logical Operations

- $\neg p$ the negation of proposition p.
- $p \lor q$ One of the propositions is true, or both (Logical State : OR)
- $p \otimes q$ Only one of the propositions is true (Logical State : exclusive OR (i.e XOR)

р	q	$p \lor q$	$q \wedge p$	$p \otimes q$
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	0

4 Conditional Connectives

Construct the truth table for the proposition $p \to q$.

р	q	$p \to q$	$q \to p$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	1	1

5 Section 4 Functions

5.1 Invertible Functions

A function is invertible if it fulfils two criteria

- The function is *onto*,
- The function is *one-to-one*.

State the conditions to be satisfied by a function $f: X \leftarrow Y$ for it to have an inverse function $f^{-1}: Y \leftarrow X$.

$$\lceil \frac{x^2+1}{4} \rceil$$
 where $f: A \to \mathbf{Z}$

- (i) Find f(4) and the ancestors of 3.
- (ii) Find the range of f.
- (iii) Is f invertible? Justify your answer

Given $f: \mathbf{R} \to \mathbf{R}$ where f(x) = 3x-1, define fully the inverse of the function f, i.e. f^{-1} . State the value of $f^{-1}(2)$

5.2 Precision Functions

- Absolute Value Function |x|
- Ceiling Function $\lceil x \rceil$
- Floor Function $\lfloor x \rfloor$

Question 1.2: State the range and domain of the following function

$$F(x) = |x - 1|$$

5.3 Powers

$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

$$5^3 = 5 \times 5 \times 5 = 125$$

5.3.1 Special Cases

Anything to the power of zero is always 1

$$X^0 = 1$$
 for all values of X

Sometimes the power is a negative number.

$$X^{-Y} = \frac{1}{X^Y}$$

Example

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

5.4 Exponentials Functions

$$e^a \times e^b = e^{a+b}$$

$$(e^a)^b = e^{ab}$$

5.5 Logarithmic Functions

5.5.1 Laws for Logarithms

The following laws are very useful for working with logarithms.

- 1. $\log_b(X) + \log_b(Y) = \log_b(X \times Y)$
- 2. $\log_b(X)$ $\log_b(Y) = \log_b(X/Y)$
- 3. $\log_b(X^Y) = Y \log_b(X)$

 ${\bf Question 1.3}$ Compute the Logarithm of the following

- $\log_2(8)$
- $\log_2(\sqrt{128})$
- $\log_2(64)$
- $\log_5(125) + \log_3(729)$
- $\log_2(64/4)$

6 graph theory

Given the following definitions for simple, connected graphs:

- K_n is a graph on n vertices where each pair of vertices is connected by an edge;
- C_n is the graph with vertices $v_1, v_2, v_3, \dots, v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, \dots \{v_n, v_1\};$
- W_n is the graph obtained from C_n by adding an extra vertex, v_{n+1} , and edges from this to each of the original vertices in C_n .
- (a) Draw K_4 , C_4 , and W_4 .

7 Digraphs and Relatiosn

Given a flock of chickens, between any two chickens one of them is dominant. A relation, R, is defined between chicken x and chicken y as xRy if x is dominant over y. This gives what is known as a pecking order to the flock. Home Farm has 5 chickens: Amy, Beth, Carol, Daisy and Eve, with the following relations:

- Amy is dominant over Beth and Carol
- Beth is dominant over Eve and Carol
- Carol is dominant over Eve and Daisy
- Daisy is dominant over Eve, Amy and Beth
- Eve is dominant over Amy.

8 Counting

Given S is the set of all 5 digit binary strings, E is the set of a 5 digit binary strings beginning with a 1 and F is the set of all 5 digit binary strings ending with two zeroes.

- (a) Find the cardinality of S, E and F.
- (b) Draw a Venn diagram to show the relationship between the sets S, E and F. Show the relevant number of elements in each region of your diagram.