Тема 1. Вступ до проблематики дослідження операцій та практичних застосувань

Предмет та задачі ДО

Дослідження операцій (ДО) — це теорія математичних моделей та методів отримання оптимальних розв'язків, скерована на обґрунтування доцільності вибору тієї чи іншої альтернативи з множини можливих в області цілеспрямованої діяльності людини. Найперші дослідження в цій галузі стосувались вибору оптимальних стратегій в іграх. У 1906 році італійський математик і соціолог, інженер за освітою Альфредо Парето видав у Мілані "Підручник політичної економії" та математичний додаток до нього, в якому виклав основні положення аналітичної теорії ігор. Сам же термін "ДО" виник у роки Другої світової війни при розробці систем виявлення та супроводу літаків суперника і наведення взаємодіючих перехоплювачів з метою забезпечення узгоджених операцій всіх учасників бойових дій у повітрі й на землі. У 1951 р. була опублікована робота Куна і Такера, у якій наведені необхідні і достатні умови оптимальності для розв'язання нелінійних задач.

Таким чином, ДО – це науковий підхід до розв'язування задач організаційного управління, що грунтується на побудові та дослідженні математичних моделей систем та процесів.

Характерні риси операційного підхіду:

- 1) системність будь-яка задача повинна розглядатись з різних точок зору, виходячи із загальної ефективності функціонування системи, до якої вона входить;
- 2) комплексність операційне дослідження має здійснюватись групою, складеною з фахівців з різних галузей знань;
- 3) **орієнтація на прийняття рішень** спосіб дій повинен орієнтуватись на досягнення оптимальних (або близьких до них) результатів;
- 4) **телеологічність** оцінка якості отриманого розв'язку реалізується на основі кількісного критерію, що відображає ступінь досягнення мети і дозволяє обрати найкращий з множини розв'язків;
- 5) комп'ютеризація спричинена складністю задач, які необхідно розв'язати.

Основні поняття ДО:

- 1) операція сукупність взаємно узгоджених керованих дій, об'єднаних єдиним задумом та спрямованих на досягнення певної мети;
- 2) оперуюча сторона особа чи група осіб, об'єднаних межами операції, що активно прагнуть до досягнення поставленої мети;
- 3) **активні засоби проведення операції** це сукупність ресурсів усіх видів та організаційних можливостей, які використовує оперуюча сторона для забезпечення успішного перебігу операції та її завершення;
- 4) **стратегії оперуючої сторони** це припустимі способи використання нею активних засобів;
- 5) діючі фактори операції це визначені та невизначені об'єктивні умови та обставини, що безпосередньо впливають на результат;
- 6) **стан операції** це сукупність значень характеристик операції в певний момент часу;
- 7) **прийняття рішення** дія, що полягає в виборі значень параметрів, які залежать від оперуючої сторони;
- 8) **оптимальний розв'язок** припустимий варіант реалізації операції, який з урахуванням множини переваг є найліпшим;
- 9) **критерій ефективності** міра очікуваної або досягнутої відповідності між результатом дій, які виконують, та метою операції;
- 10) математична модель операції формальне співвідношення, яке встановлює зв'язок критерію ефективності з діючими факторами операції та визначає припустимі стратегії оперуючої сторони.

Етапи процесу ДО:

- 1. Визначення мети дослідження.
- 2. Ідентифікація та формулювання проблеми.
- 3. Побудова моделі операції.
- 4. Синтез обчислювального методу та розв'язання поставленої задачі за допомогою моделі.
- 5. Перевірка адекватності моделі (частково шляхом проведення експериментів на реальній системі).
- 6. Реалізація результатів досліджень (у вигляді детальних інструкцій з експлуатації).

Задачі ДО поділяються на **прямі і обернені**. Розв'язок **прямої задачі** ДО відповідає на запитання: "Що буде, якщо за заданих умов ми оберемо конкретний розв'язок із множини припустимих розв'язків $x \in X$?" і є математичною моделлю критерію якості залежно від керованих змінних Q(x)

. **Обернена задача** покликана дати відповідь на питання: "Яке значення x необхідно обрати, щоб $Q(x) \Rightarrow Max$?" Зрозуміло, що пряма задача є простішою, ніж обернена, а для розв'язання оберненої задачі спочатку необхідно розв'язати пряму.

Задачі ДО класифікують за двома основними ознаками:

- 1) змістовною постановкою:
 - розподілу ресурсів;
 - транспортування продуктів (вибору маршрутів);
 - планування та керування на мережах;
 - формування розкладів (календарного та об'ємно-календарного планування);
 - планування та розміщення;
 - управління запасами, ремонту та заміни обладнання;
 - масового обслуговування;
 - прийняття рішень в ситуаціях з активною протидією (конфліктні ситуації).
- 2) формальними моделями та методами:
 - детерміновані у випадку, коли дія невизначеностей відсутня, критерій ефективності операції має вигляд Q(a,x), де a множина детермінованих параметрів, тобто заданих, відомих умов виконання операції й обмежень, накладених на розв'язок; x множина керованих змінних, вибір значень яких залежить від операційної групи;
 - випадкові на результат операції впливають неконтрольовані фактори, критерій ефективності операції має вигляд Q(a, x, y), де y невідомі фактори.

Для розв'язування задач в умовах невизначеності існує ряд можливостей, які залежать від природи випадкових факторів та можливостей їх контролю. У загальному розрізняють два основні види невизначеності:

- *доброякісна* коли невідомі фактори підкоряються законам теорії вірогідності і дослідникам відомі значення та вид законів розподілу цих факторів (стохастичні задачі);
- *погана* коли фактори не підкоряються законам вірогідності або параметри законів невідомі.

Шляхи розв'язування стохастичних задач є такими:

• заміна випадкових факторів значеннями їх математичних сподівань та розв'язування задачі як детермінованої:

 $Q(a, x, M[y]) \Rightarrow Min$, $x \in X$, де M[y] — вектор математичних сподівань або середніх значень (у випадку експериментального визначення) випадкових факторів;

- пошук екстремуму математичного сподівання критерію якості:
- $Q = M[Q(a, x, y)] \Rightarrow Min, \ x \in X$, де M[Q(a, x, y)] математичне сподівання критерію якості;
 - введення стохастичних обмежень.

При розв'язуванні задач в умовах *поганої* невизначеності часто розглядають ситуацію з позиції "крайнього песимізму", тобто рішення приймають з розрахунку на найгірший збіг обставин, і з розв'язків, можливих за найгірших умов, обирають найкращий — використовують принцип гарантованого результату.

Багатокритеріальні задачі ДО та основні підходи до їх розв'язування

Важливий вид невизначеності — **невизначеність мети**, що виявляється у наявності декількох, переважно несумісних аспектів оцінки якості того чи іншого розв'язку з множини припустимих. У формальному вигляді аспекти оцінки якості відображають за допомогою множини критеріїв.

Загальний вигляд багатокритеріальної задачі ДО такий:

$$Q_1(a,x) \Rightarrow Max, Q_2(a,x) \Rightarrow Max, ..., Q_n(a,x) \Rightarrow Max, x \in X$$
.

Знайти розв'язок, який одночасно був би найкращим за всіма критеріями, неможливо, тому що в загальному випадку покращення значення одного з критеріїв приводить до погіршення значення іншого. Множину недомінованих розв'язків багатокритеріальної задачі називають множиною

Парето-оптимальних розв'язків, і вона ϵ в загальному випадку розв'язком ці ϵ ії задачі.

Приклад 1.1. Побудувати множину Парето-оптимальних (недомінованих) розв'язків, якщо критерії задані так:

$$Q_1(x) = Q_1(x_1, x_2) = 2x_1 + x_2^2 \Rightarrow Max$$
,
 $Q_2(x) = Q_2(x_1, x_2) = -2x_1^2 + x_2 \Rightarrow Max$,

а координати альтернатив у просторі змінних задані таблицею:

No	1	2	3	4	5	6
x_1	1	3	0	-1	6	8
x_2	2	1	3	2	1	-2

Розв'язання.

1) Розраховуємо значення двох критеріїв для кожної з 6 альтернатив:

No	1	2	3	4	5	6
$Q_1(x)$	6	7	9	2	13	20
$Q_2(x)$	0	-17	3	0	-71	-130

2) Для побудови множини Парето-оптимальних альтернатив виключаємо послідовно з наведеної множини доміновані альтернативи. Починаємо з альтернативи 1. Вона непорівняльна з 2, а 3 домінує над нею, тому 1 виключаємо і розглядаємо 2. 3 домінує над 2, тому виключаємо 2 і переходимо до 3. 3 домінує над 4 (4 виключаємо), а з 5 та 6 непорівняльна, тому вона належить до множини Парето-оптимальних. Наступна біжуча альтернатива 5 є непорівняльна з 6. Отже, множину Парето-оптимальних складають альтернативи 3, 5 та 6.

Одним з найрозповсюдженіших способів ϵ зведення множини критеріїв до одного глобального та розв'язування класичної однокритерійної задачі. Вадою такого підходу ϵ те, що отриманий розв'язок для деяких специфічних задач може не належати до множини Парето-оптимальних.

Методи згортання критеріїв дозволяють отримати задачу вигляду:

$$Q(Q_1(a, x), ..., Q_n(a, x)) \Rightarrow Max, x \in X$$
.

Найуживанішими ϵ :

• лінійне згортання

$$Q = \sum_{i=1}^{n} (c_i \times Q_i(a, x)) \Rightarrow Max, x \in X, \sum_{i=1}^{n} c_i = 1, c_i > 0,$$

• лінійне згортання нормованих критеріїв:

$$Q = \sum_{i=1}^{n} (c_i \times \frac{Q_i(a, x) - Q_i^{\min}}{Q_i^{\max} - Q_i^{\min}}) \Rightarrow Max, \ x \in X, \ \sum_{i=1}^{n} c_i = 1, c_i > 0.$$

У цих методах c_i — вагові коефіцієнти критеріїв, які повинні відображати їх важливість; Q_i^{\max}, Q_i^{\min} — максимальне та мінімальне значення i-го критерію. Основною проблемою є виявлення точних значень вагових коефіцієнтів, що часто є суб'єктивним.

Приклад 1.2. Обрати з використанням лінійної згортки критеріїв з вагами 0.3 та 0.7 найкращу альтернативу, якщо критерії і координати альтернатив у просторі змінних задані так само, як у прикладі 1.2.

Розв'язання.

1) Обчислимо значення критерію-згортки для кожної з 6 альтернатив:

$$Q^{(1)} = 0.3 \times Q_1^{(1)} + 0.7 \times Q_2^{(1)} = 0.3 \times 6 + 0.7 \times 0 = 1.8,$$

$\mathcal{N}_{\underline{o}}$	1	2	3	4	5	6
$Q^{(i)}$	1.8	-9.8	4.8	0.6	-45.8	-85.0

2) Оберемо максимальне значення, вважаючи, що аргументом ε номер альтернативи:

$$x^* = \arg \frac{Max}{x \in X} Q(a, x) = \arg \frac{Max}{x \in X} \{1.8, -9.8, 4.8, 0.6, -45.8, -85\} = 3,$$

отже, за критерієм-згорткою кращою ϵ альтернатива 3.

Одним з найзрозуміліших змістовно ϵ метод переведення критеріїв в обмеження. Він полягає у виділенні головного критерію $Q_{\rm l}(x)$, за яким проводитимуть оптимізацію, нормативних значень Q_i^N для кожного з критеріїв, що залишилися, та розв'язуванні отриманої таким чином однокритерійної задачі оптимізації:

$$Q_1(x) \Rightarrow Max, Q_2(x) \ge Q_2^N, ..., Q_n(x) \ge Q_n^N, x \in X$$
.

Основними проблемами ϵ складність визначення головного критерію та нормативних значень для інших.

Приклад 1.3. Визначити найкращий розв'язок при оцінюванні 6 можливих розв'язків за 3 критеріями, образи яких у просторі критеріїв задані в таблиці, шляхом переведення критеріїв в обмеження, за умови пошуку максимального значення критерію $Q_1(x)$ для випадку $Q_2(x) \ge 5$, $Q_3(x) \ge 4$:

	$Q_{l}(x)$	$Q_2(x)$	$Q_3(x)$
A_1	2	4	8
A_2	4	3	14
A_3	7	8	2
A_4	5	6	6
A_5	8	4	4
A_6	3	6	12

Розв'язання.

Виключимо з переліку альтернатив ті, для яких не виконуються обмеження, а серед решти визначимо найкращі:

	$Q_{l}(x)$	$Q_2(x)$	$Q_3(x)$	$Q_2(x) \ge 5$	$Q_3(x) \ge 4$	два обме-
						ження
\mathbf{A}_1	2	4	8	-	+	-
\mathbf{A}_2	4	3	14	-	+	-
A_3	7	8	2	+	-	-
A_4	5	6	6	+	+	+
A_5	8	4	4	_	+	_
\mathbf{A}_6	3	6	12	+	+	+

Одночасно два обмеження виконуються для A_4 , A_6 . Для цих альтернатив максимальне значення критерію $Q_1^{(4)} = 5$, тобто обираємо A_4 .

Метод контрольних показників дозволяє позбутися деяких проблем, притаманних попередньому методу, але й тут залишається проблема обґрунтування значень нормативів і додається проблема знаходження розв'язку максимінної задачі. Систему нормативів задають для всіх критеріїв, а критерій якості подають так:

$$Q(x) = \frac{Min}{i} \frac{Q_i(x)}{Q_i^N} \Rightarrow \frac{Max}{x \in X}.$$

Приклад 1.4. Визначити найкращий розв'язок при оцінюванні 6 можливих розв'язків за 3 критеріями, заданими в прикладі 1.3, шляхом використання контрольних показників: $Q_1^N = 6$, $Q_2^N = 8$, $Q_3^N = 10$.

Розв'язання.

Порахуємо спочатку значення $\frac{Q_i(x)}{Q_i^N}$, далі визначимо мінімальні значення в кожному з рядків таблиці і запишемо в 4-ту колонку. Серед

мінімальних значень виберемо максимальне, що відповідає альтернативі А₄:

	$\frac{Q_{l}(x)}{Q_{l}^{N}}$	$\frac{Q_2(x)}{Q_2^N}$	$\frac{Q_3(x)}{Q_3^N}$	$\min_{i} \frac{Q_{i}(x)}{Q_{i}^{N}}$	$Max \\ x \in X$
\mathbf{A}_{1}	2/6	4/8	8/10	2/6=1/3	
A_2	4/6	3/8	14/10	3/8	
A_3	7/6	8/8	2/10	2/10=1/5	
A_4	5/6	6/8	6/10	6/10=3/5	+
A_5	8/6	4/8	4/10	4/10=2/5	
A_6	3/6	6/8	12/10	3/6=1/2	