

数字逻辑电路

主讲老师:王亚芳

一进制代码

本节主要内容

常用的代码(BCD码、格雷码、ASCII码)

常用的BCD码(8421、2421、5421、余 3码、余3循环码等)

学习完本节, 你能

- 掌握十进制数的BCD码表示方法
- 了解格雷码的基本特点及构成方法
- 了解ASCII码的基本特点

- ◆ 码制:编制代码所要遵循的规则
 - ◆ 二进制代码的位数(n),与需要编码的事件(或信息)的个数(N)之间应满足以下关系: $2^{n-1} \le N \le 2^n$
 - ◆ 二—十进制码 (Binary Code Decimal, BCD码)

 用4位二进制数来表示一位十进制数中的0~9十个数码。

从4 位二进制数16种代码中,选择10种来表示0~9个数码的方案有很多种。每种方案产生一种BCD码。

BCD码

Г

几种常用的BCD代码

BCD码					42
十进制数码	8421码	2421 码	5421 码	余3码	循环码
0	0000	0000	0000	0011	0010
1	0001	0001	0001	0100	0110
2	0010	0010	0010	0101	0111
3	0011	0011	0011	0110	0101
4	0100	0100	0100	0111	0100
5	0101	1011	1000	1000	1100
6	0110	1100	1001	1001	1101
7	0111	1101	1010	1010	1111
8	1000	1110	1011	1011	1110
9	1001	1111	1100	1100	1010

8421BCD码

- ▶ 最常用的一种BCD码;
- > 取4位自然二进制数的前10种组合,后6个是无效码;
- > 8421码属于有权码,权值与二进制数相同。

十进制数和8421BCD码之间的转换

- ◆ 十进制数 ⇒ BCD码
- > 将每个十进制数字用对应的4位二进制代码代替

$$(254.26)_{D} = (0010\ 0101\ 0100.0010\ 0110)_{BCD}$$

不能省略!

不能省略!

十进制数和8421BCD码之间的转换

- ◆ BCD码 → 十进制数
- 整数部分从右边最低位开始,小数部分从左边最高位开始,4位1组,写出对应的十进制数

$$(10000100.10010001)_{BCD} = (84.91)_{D}$$

2421BCD码

- > 有权码,从高位到低位的权值分别是2、4、2、1;
- ▶ 取4位自然二进制数的前5种组合和后5种组合,中间6个是无效码。

5421BCD码

▶ 有权码,从高位到低位的权值分别是5、4、2、1。

余3码

- → 当两个十进制的和是10时,相应的二进制正好是16,于是可自 动产生进位信号,而不需修正。如1和9、2和8、.....6和4;
- **无权码**,编码可由8421码加3(0011)得出。

余3循环码

相邻的两个代码之间仅一位的状态不同。

格雷码

- - 格雷码是一种无权码;
 - 编码特点是:任何两个相邻代码之间 仅有一位不同;
 - 该特点常用于模拟量的转换。当模拟量发生微小变化,格雷码仅仅改变一位,这与其它码同时改变2位或更多的情况相比,更加可靠,且容易检错。

二进制码	格雷码	
$\mathbf{b_3}\mathbf{b_2}\mathbf{b_1}\mathbf{b_0}$	$G_3G_2G_1G_0$	
0000	0000	
0001	0001	
0010	0011	
0011	0010	
0100	0110	
0101	0111	
0110	0101	
0111	0100	
1000	1100	
1001	1101	
1010	1111	
1011	1110	
1100	1010	
1101	1011	
1110	1001	
1111	1000	

格雷码

二进制码和格雷码之间的转换

- ◆ 二进制码 → 格雷码
- 格雷码的最高位(最左边)与二进制码的最高位相同。
- 从左到右,逐一将二进制码相邻的两位相加(舍去进位),作为格雷码的下一位。

格雷码

二进制码和格雷码之间的转换

- ◆ 格雷码 ⇒ 二进制码
- 二进制码的最高位(最左边)与格雷码的最高位相同;
- > 将产生的每一位二进制码,与下一位相邻的格雷码相加(舍去进位),作为 二进制码的下一位。

> ASCII码即美国标准信息交换码;

它共有128个代码,可以表示大、小写英文字母、十进制数、标点符号、运算符号、控制符号等,普遍用于计算机的键盘指令输入和数据等。

小结:

- 常用的码制有BCD码、格雷码、ASCII码等;
- 常用的BCD码有8421、2421、5421、余3
 码、余3循环码;
- **二进制码和格雷码之间的转换。**

