High-Level Synthesis Based Acceleration of LLaMA2 Inference on FPGA

利用高階合成加速LLaMA2模型在FPGA上的推論設計

組別:62

組員:趙堉安、金以凡

指導教授: 陳添福 教授

INTRODUCTION

Background:

- LLM rely heavily on matrix operations, making them ideal candidates for hardware acceleration
- While cloud GPUs are powerful, they are not ideal for embedded devices or edge deployment. FPGA gives a better solution for accelerating inference

Our main goal:

- To accelerate inference speed by offload operations to FPGA kernels
- We use:
 - LLaMA2.c
 - AMD Zynq UltraScale+ MPSoC ZCU106 board
 - Xilinx Vitis 2024.2
 - High-Level Synthesis (HLS)

WORKFLOW

Host code load .xclbin to kernel

CONCEPTS

LLaMA2 structure

- Offload six operations
 - RMS Normalization
 - Matrix Multiplication
 - Rotary Position Embedding (RoPE)
 - Self-Attention and SoftMax
 - Residual Connection
 - SwiGLU

METHODOLOGY

- We designed and optimized the following key components for FPGA to accelerate inference:
- RMS Normalization Block and Self Attention Block

$$RMS(x) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} \qquad attention \ score = \frac{Q \times K^T}{\sqrt{d_k}}$$

- Optimized approach: precompute the inverse or inverse square root values and store them as constants
- Replace runtime division operations with faster multiplications
- Respectively Speed Up 12.7x and 21.6x
- Matrix Multiplication Block

METHODOLOGY

- Normalization Block and Self Attention Block
- Matrix Multiplication Block
 - For example: x size: n * 1, weight size: n * m

$$o = x^T \cdot w$$

*Need n*m non-continuous access*

- Weed III Holl collilladas acce
- Mathematically equivalent but reduce hardware access times
- Speed Up 10.6x

METHODOLOGY

We applied several optimizations for blocks:

- 1. Memory Access Time Optimization by Preloading
 - Avoid multiple DRAM accesses by preloading data into BRAM
- 2. Array Partitioning and Loop Unrolling for Parallelism
 - Use pragma HLS ARRAY_PARTITION, HLS UNROLL
 - Combined loop unrolling and array partitioning to maximize parallel access and system performance
- 3. Pipeline for Throughput
 - Use pragma HLS PIPELINE
 - Achieved fully pipelined execution that processes one input per clock cycle

Achieved Total Speed Up: 13.4x

EXPERIMENTS

- Model we use: TinyStories 15M parameters
- Generate Stories: Once upon a time, there was a little boy named Timmy. Timmy was very brave and liked to climb trees. One day, Timmy saw a big wagon in the park. He wanted to climb on it, but he was scared ...
- Result Comparison of Inference Speed:

Hardware	Tokens	Time Spent (s)	Speed (toks/s)
APU	201	114.75	1.75
Logic Cells	225	25.83	8.71

-> Improved performance by around 5x

CONCLUSIONS

- FPGA Hardware Limitations
 - Limited DDR memory capacity restricts the deployment of larger models
 - Resource constraints (e.g., DSP, LUT) affect the degree of parallelism, limiting the extent to which computation can be unrolled or pipelined in hardware
- We successfully accelerated LLaMA2 inference speed by 5 times using FPGA-based hardware optimizations
- Provided a Demonstration of the feasibility of Transformer inference on resource-constrained edge devices

Thanks for listening!