

Prof. Dr. Markus Banagl Mathematisches Institut Im Neuenheimer Feld 205 69120 Heidelberg Telefon (06221) 54-14211 E-Mail banagl@mathi.uni-heidelberg.de Heidelberg, den 24. November 2021

ALGEBRAISCHE TOPOLOGIE I ÜBUNGSAUFGABEN 6

DEADLINE: Do. 2. Dez. 2021, 15:00.

- 1. Sei X ein Raum mit $\pi_1(X) = \mathbb{Z}/_{19}$. Hat X eine Überlagerung vom Grad 4? Beweisen Sie Ihre Antwort.
- 2. Beweisen oder widerlegen Sie: Eine Überlagerung vom Grad 2 ist regulär.
- 3. Sei X ein Hausdorff-Raum und G eine endliche Gruppe, die durch Homöomorphismen frei auf X wirkt. Zeigen Sie, dass eine solche Wirkung eigentlich unstetig ist.
- 4. Sei g eine natürliche Zahl. Eine (orientierbare, kompakte, zusammenhängende) Fläche F_g vom Geschlecht g erhält man aus der Sphäre S^2 , indem man 2g disjunkte, offene Kreisscheiben entfernt und entlang der entstandenen Randkreise g "Henkel" der Form $S^1 \times [0,1]$ anklebt. (Beispiele: $g=0:F_g\cong S^2, g=1:F_g\cong T^2, g=2:F_g\cong T^2\#T^2,\ldots$) Zeigen Sie, dass $\pi_1(F_4)$ die Fundamentalgruppe $\pi_1(F_{10})$ als normale Untergruppe vom Index 3 enthält, ohne diese Gruppen explizit zu berechnen. Hinweis: Konstruieren Sie eine geeignete eigentlich unstetige Gruppenwirkung auf F_{10} .