DEVOIR À LA MAISON Nº 4 : CORRIGÉ

SOLUTION 1.

- 1. a. sh est continue est strictement croissante sur \mathbb{R} . De plus $\lim_{-\infty} sh = -\infty$ et $\lim_{+\infty} sh = +\infty$. Ainsi sh est une bijection de \mathbb{R} sur \mathbb{R} .
 - **b.** ch est continue et strictement croissante sur \mathbb{R}_+ . De plus, $\operatorname{ch}(0) = 1$ et $\lim_{+\infty} \operatorname{ch} = +\infty$. Ainsi ch induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$.
 - c. th est continue et strictement croissante sur \mathbb{R} . De plus, $\lim_{-\infty} th = -1$ et $\lim_{+\infty} th = 1$. Ainsi th induit une bijection de \mathbb{R} sur]-1,1[.
- **2. a.** Soit $x \in \mathbb{R}$ et posons $\theta = f(x)$. Par définition de f, sh $\theta = x$. Or ch² $\theta = \sinh^2 \theta + 1$. Puisque ch $\theta \geqslant 1 \geqslant 0$, ch $\theta = \sqrt{\sinh^2 \theta + 1} = \sqrt{x^2 + 1}$.
 - **b.** Soit $x \in [1, +\infty[$ et posons $\theta = g(x)$. Par définition de g, $\operatorname{ch} \theta = x$. Or $\operatorname{sh}^2 \theta = \operatorname{sh}^2 \theta 1$. Par définition de g, $\theta \in \mathbb{R}_+$ donc $\operatorname{sh} \theta \geqslant 0$. Ainsi $\operatorname{sh} \theta = \sqrt{\operatorname{ch}^2 \theta 1} = \sqrt{x^2 1}$.
- **3.** a. sh est dérivable et strictement croissante sur \mathbb{R} et sa dérivée ch ne s'annule pas sur \mathbb{R} . Ainsi f est dérivable sur $\mathrm{sh}(\mathbb{R}) = \mathbb{R}$ et pour tout $\mathrm{x} \in \mathbb{R}$,

$$f'(x) = \frac{1}{\sinh'(f(x))} = \frac{1}{\ch(f(x))} = \frac{1}{\sqrt{x^2 + 1}}$$

b. ch est dérivable et strictement croissante sur \mathbb{R}_+^* et sa dérivée sh ne s'annule pas sur \mathbb{R}_+^* . Ainsi g est dérivable sur $\mathrm{ch}(\mathbb{R}_+^*) =]1, +\infty[$ et pour tout $x \in]1, +\infty[$,

$$g'(x) = \frac{1}{\mathrm{ch}'(g(x))} = \frac{1}{\mathrm{sh}(g(x))} = \frac{1}{\sqrt{x^2 - 1}}$$

c. the st dérivable et strictement croissante sur \mathbb{R} et sa dérivée $1 - \operatorname{th}^2$ ne s'annule pas sur \mathbb{R} car the st à valeurs dans]-1,1[. Ainsi h est dérivable sur $\operatorname{th}(\mathbb{R})=]-1,1[$ et pour tout $x\in\mathbb{R}$,

$$h'(x) = \frac{1}{\operatorname{th}'(h(x))} = \frac{1}{1 - \operatorname{th}^2(h(x))} = \frac{1}{\sqrt{1 - x^2}}$$

4. a. Soit $x \in \mathbb{R}$. Posons y = f(x). On a donc sh(y) = x et $ch(y) = \sqrt{x^2 + 1}$ d'après ??. Ainsi

$$e^y = \operatorname{sh}(y) + \operatorname{ch}(y) = x + \sqrt{x^2 + 1}$$

donc

$$f(x) = y = \ln\left(x + \sqrt{x^2 + 1}\right)$$

b. Soit $x \in [1, +\infty[$. On a donc ch(y) = x et $sh(y) = \sqrt{x^2 - 1}$ d'après ??. Ainsi

$$e^{y} = \text{sh}(y) + \text{ch}(y) = x + \sqrt{x^{2} - 1}$$

donc

$$g(x) = y = \ln\left(x + \sqrt{x^2 - 1}\right)$$

c. Soit $x \in]-1,1[$. Posons y=h(x). On a donc th(y)=x i.e. $\frac{e^y-e^{-y}}{e^y+e^{-y}}=x$ ou encore $e^{2y}=\frac{1+x}{1-x}$. On en déduit que

$$h(x) = y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

Remarque. Les fonctions f, g et h s'appellent en fait argsh, argch et argth.