

Demand Forecasting Automation

Understanding the business need

"We have no way of managing the backorder process or the purchasing of parts. We have stock for some parts that will cover two years worth of demand and we are still getting back orders."

Stocking the incorrect parts

"Our distribution centers are at capacity we need more warehousing space to service our customers."

Wrong idea what the problem is

"It's always a knee-jerk reaction to fulfill our customer's orders. Buyers are always too busy putting out fires. They can't manage vendors or pipeline."

Closer to the 'real' problem

The client want to *maximize* the *fulfillment* of their customers demand whilst *optimizing* the *cost* of holding the relevant inventory in their part distribution centers. This speaks to maintaining correct amount of inventory whilst minimizing the following situations:

- Holding cost, when inventory exceeds demand
- Opportunity Cost, when there is not enough inventory to meet demand, there is cost
 associated with lost revenue if the order gets cancelled
- Back Order Cost, the additional cost incurred for the fulfillment of a back order.

The big idea is to improve *sustainable growth* rate by reducing and controlling operating capital.

aculocity High-level approach

Ordering Optimization Part Order Data Reporting Forecast Model Supersessions Seasonality Dashboard Holding cost Filter/Slice by: Trend Effect Cancelled Orders Back Order Cost Buyer Supplier Confidence Customer Interest Rate Part Preferred PDC Intervals PDC Simulations **Detailed Summary** Customer Shipping address Varying Order Information PDC Cycles Accuracy Measurement Pipeline

Management

Top 10 Analysis

Part	Actual (2016)		Demand Forecasting (2016)	
	Times in Back Order	Back Order Quantity	Times in Back Order	Back Order Quantity
Part1-001	67	110	0	0
Part2	87	167	0	0
Part3-001	28	49	0	0
Part4-001	16	17	2	17
Part5-001	163	468	0	0
Part6-2	93	111	0	0
Part7-001	35	44	0	0
Part8-001	78	149	0	0
Part9-001	110	139	0	0
Part10-001	88	208	0	0
Total	765	1462	2	17

Historical Demand	Seasonality	No Demand	
Safety Stock	Time Series	Safety Stock	
Legacy Inventory	Trend Effect Seasonal Effect Gaussian Error	Risk Likelihood of failure Qty. Utilized in production	
New Demand	Erratic Demand	Random Demand	
Probabilistic Model	Replenish Stock Max Demand During	Probabilistic Model	
95% Confidence Level	Lead Time	95% Confidence Level	

For each distribution center process in parallel

1. Load libraries, source code, initialize custom functions, set parameters:

```
source("config/Config.Libaries.R")
source("config/Config.Parameters.R")
source("config/Config.PartConfig.R")
source("services/Services.ModelBuild.R")
source("services/Services.InventoryThreshold.R")
source("services/Services.SuggestedOrders.R")
...
LoadLibraries()
SetParameters()
LoadPartDetail()
```

aculocity Data Import and Structure

- 2. Import inventory, sales and part metadata from shared data hub.
- 3. Clean and structure data, determine seasonality

aculocity Model Selection

Using either an Exponential Smoothing, Seasonal Models, Naïve methods, Auto Forecast features, Averages and Linear equations

- 4. Apply business rules to determine which models to fit
- 5. Apply models and calculate mean absolute scaled error
- 6. Forecast 12 month order demand from model
- 7. Calculate 24 month trend

$$MASE = n^{-1} \sum \frac{|yt - ft|}{q}$$

Determine KPI levels for buyer management and inventory control

8. Calculate Lower Control limits, Target and Upper control limits based off lead time

```
#LCL = Lower Control Level(Business Safety Level)
#Target = Demand During Lead Time (CDLT)
#UCL = Upper Control Level(Demand during lead time and order cycle)
LCL = pmax(0, SafetyStock)
Target = if(model != 'Safety'){
               sum(forecasted$PointForecast[i:(i+LT),])
         } else {
               rollapply(partdemand, LT, sum))
UCL = sum(forecasted$PointForecast[i:(i+LT+OC),])
```

aculocity Automated Ordering

Pipeline & Warehouse management

9. Calculate suggested ordering for the forecast

aculocity Reporting DOMINATE YOUR DATA Reporting Actionable Insights

aculocity Contact Us DOMINATE YOUR DATA

Warren Allworth

(084) 420 2146 wallworth@aculocity.com

Peter Gross

(083) 388 1674 pgross@aculocity.com

www.aculocity.com