Часть домашнего задания 5

Функциональное программирование

15 марта 2021 г.

Это задание было частью экзамена в 2020 г.

С помощью одного из вариантов scan напишите выражение approxPi :: [Double], которое представляет собой бесконечный список приближений к числу π согласно формуле

$$\pi = 4\left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots\right).$$

Данный ряд сходится достаточно медленно. Существуют отображения последовательности $\{x_i\}_{i=0}^{\infty}$ в последовательность $\{y_i\}_{i=0}^{\infty}$, такие что $\sum_{i=0}^{\infty} x_i = \sum_{i=0}^{\infty} y_i$, но второй ряд сходится гораздо быстрее. Одно такое отображение задается формулой

$$y_i = x_{i+2} - \frac{(x_{i+2} - x_{i+1})^2}{x_i - 2x_{i+1} + x_{i+2}}.$$

Таким образом, каждый член последовательности $\{y_i\}_{i=0}^{\infty}$ определяется тремя последовательными членами последовательности $\{x_i\}_{i=0}^{\infty}$.

Напишите функцию eulerTransform :: [Double] -> [Double], которая отображает последовательность $\{x_i\}_{i=0}^{\infty}$ в последовательность $\{y_i\}_{i=0}^{\infty}$. Также напишите выражение fastApproxPi :: [Double], представляющую последовательность $\{z_i\}_{i=0}^{\infty}$, где $z_n = (\text{eulerTransform}^n(\text{approxPi}))_0$. Таким образом, z_n есть первый член последовательности, полученной n-кратным применением eulerTransform к последовательности approxPi.