Try each problem, showing all your work. Partial credit may be given, but unsupported answers will receive no credit. Cellphones, calculators, computers, and other electronic devices are prohibited.

Quiz time: 30 minutes.

- 1. Differentiate each function with respect to x.
 - (a) (2 points) $f(x) = \sinh(3x^2 + e^{2x})$.

Let $u(x)=3x^2+e^{2x}$. Then $f(x)=\sinh(u)$, so $f'(x)=\cosh(u)\,u'(x)$. Compute $u'(x)=6x+2e^{2x}$. Hence

$$f'(x) = \cosh(3x^2 + e^{2x}) (6x + 2e^{2x})$$

(b) (3 points) $g(x) = \sqrt{4 + x \ln(2x)}$

Rewrite $g(x) = (4 + x \ln(2x))^{1/2}$. By chain rule,

$$g'(x) = \frac{1}{2}(4 + x\ln(2x))^{-1/2} \cdot \frac{d}{dx}[x\ln(2x)].$$

Since $\frac{d}{dx}[\ln(2x)] = \frac{1}{x}$, we get

$$\frac{d}{dx}[x\ln(2x)] = \ln(2x) + x \cdot \frac{1}{x} = \ln(2x) + 1.$$

Therefore

$$g'(x) = \frac{\ln(2x) + 1}{2\sqrt{4 + x\ln(2x)}}.$$

(c) (3 points) $h(x) = 7^{\tan(2x)}$.

Let $u(x)=\tan(2x)$. Then $h(x)=7^{u(x)}$, so $h'(x)=7^{u(x)}\ln7\cdot u'(x)$. Now $u'(x)=\sec^2(2x)\cdot2$. Thus

$$h'(x) = 2 \ln(7) 7^{\tan(2x)} \sec^2(2x)$$

2. (3 points) Find an equation of the sphere with center (1, -3, 4) and diameter 10.

Radius $r = \frac{10}{2} = 5$. Standard form: $(x-1)^2 + (y+3)^2 + (z-4)^2 = r^2 = 25$. Hence

$$(x-1)^2 + (y+3)^2 + (z-4)^2 = 25$$

3. (3 points) Find the unit vector in the same direction as \overrightarrow{PQ} , where P(-1,4,0) and Q(5,1,8).

$$\overrightarrow{PQ} = \langle 5 - (-1), 1 - 4, 8 - 0 \rangle = \langle 6, -3, 8 \rangle.$$

Magnitude:
$$|\overrightarrow{PQ}| = \sqrt{6^2 + (-3)^2 + 8^2} = \sqrt{36 + 9 + 64} = \sqrt{109}$$
. Unit vector:
$$\mathbf{u} = \frac{1}{\sqrt{109}} \langle 6, -3, 8 \rangle = \left\langle \frac{6}{\sqrt{109}}, -\frac{3}{\sqrt{109}}, \frac{8}{\sqrt{109}} \right\rangle$$

4. Evaluate the following integrals.

(a) (3 points)
$$\int_{1}^{3} \sqrt[3]{2+4t} \, dt$$

Let u=2+4t, so $du=4\,dt$ and $dt=\frac{1}{4}du$. Limits: $t=1\Rightarrow u=6,\,t=3\Rightarrow u=14$.

$$\int_{1}^{3} (2+4t)^{1/3} dt = \int_{6}^{14} \frac{u^{1/3}}{4} du = \frac{1}{4} \cdot \frac{3}{4} u^{4/3} \Big|_{6}^{14} = \boxed{\frac{3}{16} \left(14^{4/3} - 6^{4/3}\right)}$$

(b) (3 points) $\int 3x \cos(4x) dx$

Integration by parts: $u = 3x \Rightarrow du = 3 dx$, $dv = \cos(4x) dx \Rightarrow v = \frac{1}{4} \sin(4x)$.

$$\int 3x \cos(4x) \, dx = \frac{3x}{4} \sin(4x) - \int \frac{3}{4} \sin(4x) \, dx = \frac{3x}{4} \sin(4x) + \frac{3}{16} \cos(4x) + C.$$

$$\int 3x \cos(4x) \, dx = \frac{3x}{4} \sin(4x) + \frac{3}{16} \cos(4x) + C$$