Morning.

Context-Free Grammars

- Formal definition
- ♦ Construction
- Parse tree
- ◆ Simplication

English Grammar

```
\langle sentence \rangle \rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
\langle noun\_phrase \rangle \rightarrow \langle article \rangle \langle noun \rangle
\langle predicate \rangle \rightarrow \langle verb \rangle
\langle article \rangle \rightarrow \langle a \rangle \mid \langle an \rangle \mid \langle the \rangle
\langle noun \rangle \rightarrow \langle boy \rangle \mid \langle dog \rangle
\langle \text{verb} \rangle \rightarrow \langle \text{runs} \rangle \mid \langle \text{walks} \rangle
                                                                  a dog walks
           a boy runs
```

Palindrome Language

L={
$$w \mid w \in \{0,1\}^* \text{ and } w = w^R \}$$

- recursive definition
 - basis ϵ , 0, 1 are palindromes.
 - induction If w is a palindrome, so is 0w 0 and 1w1.

Palindrome Language

L={
$$w \mid w \in \{0,1\}^* \text{ and } w = w^R \}$$

- definition with grammars or rules
 - 1. ϵ is a palindrome.
 - 2. 0 is a palindrome.
 - 3. 1 is a palindrome.
 - 4. If w is a palindrome, so is 0w0.
 - 5. If w is a palindrome, so is 1w1.

Palindrome Language

L={
$$w \mid w \in \{0,1\}^* \text{ and } w = w^R \}$$

- 1. ε is a P.
- 2. 0 is a P.
- 3. 1 is a *P*.
- 4. If w is a P, so is OwO.
- 5. If w is a P, so is 1w1.

Context-Free Grammar

A grammar G=(V, T, S, P) is said to be contextfree if all productions in P have the form

$$A \rightarrow \alpha$$
 , where $A \in V$, $\alpha \in (V \cup T)^*$

CFG for Palindrome Language

L={
$$w \mid w \in \{0,1\}^* \text{ and } w = w^R \}$$

CFG for palindromes on {0,1}

$$R = (\{5\}, \{0,1\}, 5, P), P \text{ is defined as follow}$$

$$S \rightarrow \epsilon$$
, $S \rightarrow 0$, $S \rightarrow 1$, $S \rightarrow 050$, $S \rightarrow 151$

Compact notation

$$5 \rightarrow \varepsilon | 0 | 1 | 050 | 151$$

Example 1 CFG for

L={
$$O^{n}1^{n} | n \ge 0$$
 }

$$R = (\{5\}, \{0,1\}, P, S), P \text{ is defined as follow}$$

$$5 \rightarrow \epsilon \mid 051$$

Example 2 CFG for

L={
$$0^{n}1^{m} | n \neq m$$
 }

R = ({ S,A,B,C }, { $0,1$ }, P,S)

S \rightarrow AC | CB, $C \rightarrow 0C1 | \varepsilon$

A \rightarrow A0 | 0 , B \rightarrow 1B | 1

$$n \neq m \Rightarrow \begin{cases} n > m \Rightarrow n = (n - m) + m \\ n < m \Rightarrow m = n + (m - n) \end{cases}$$

Example 3 CFG for

L={ $w \in \{0,1\}^*$ | w contains same number of 0's and 1's }

 $R = ({S}, {0,1}, P, S), P \text{ is defined as follow}$

$$5 \to \epsilon \mid 051 \mid 150 \mid 55$$

Example 4 CFG for

$$L=\{w\in\{0,1\}^*\mid n_0(w)=n_1(w) \text{ and } n_0(v)\geq n_1(v)$$
 where v is any prefix of w }

$$R = ({S}, {0,1}, P, S), P \text{ is defined as follow}$$

$$S \rightarrow \varepsilon \mid 0S1 \mid SS$$

Example 5 CFG for

L=
$$\{a^{2n}b^m \mid n \ge 0, m \ge 0\}$$

$$R = (\{S,A,B\}, \{a,b\}, P, S), P \text{ is defined as follow}$$

$$S \rightarrow AB$$
, $A \rightarrow \varepsilon |aaA$, $B \rightarrow \varepsilon |Bb$

Derivations

L=
$$\{a^{2n}b^m \mid n \ge 0, m \ge 0\}$$

$$S \rightarrow AB$$
 , $A \rightarrow \epsilon |aaA$, $B \rightarrow \epsilon |Bb$

for w = aabb:

$$S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aaBbb \Rightarrow aabb$$
 $S \Rightarrow AB \qquad B \Rightarrow Bb \qquad B \Rightarrow Bb \qquad B \Rightarrow Bb \qquad B \Rightarrow \epsilon$

Context-Free Language

Let
$$G=(V, T, S, P)$$
 be context-free, then $L(G) = \{w \mid w \in T^* \text{ and } S \stackrel{*}{\Rightarrow} w \}$

Left Most Derivations

L=
$$\{a^{2n}b^m \mid n \ge 0, m \ge 0\}$$

 $S \to AB$, $A \to \varepsilon |aaA$, $B \to \varepsilon |Bb$
for $w = aabb$:
 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaABb \Rightarrow aaBb \Rightarrow aaBbb \Rightarrow aabb$
Left most:
 $S \Rightarrow AB \Rightarrow aaAB \Rightarrow aaB \Rightarrow aaBb \Rightarrow aaBbb \Rightarrow aabb$
Right most:
 $S \Rightarrow AB \Rightarrow ABb \Rightarrow ABbb \Rightarrow Abb \Rightarrow aaAbb \Rightarrow aabb$

Parse Tree

Let G = (V, T, S, P) be a CFG. A tree is a parse tree for G if:

- 1. Each interior node is labeled by a variable in V
- 2. Each leaf is labeled by a symbol in $T \cup \{\epsilon\}$. Any ϵ -labeled leaf is the only child of its parent.
- 3. If an interior node is labeled A, and its children (from left to right) labeled $x_1, x_2, ..., x_k$,

Then $A \rightarrow x_1, x_2, ..., x_k \in P$.

Example 6

L={
$$w \mid w \in \{0,1\}^* \text{ and } w = w^R \}$$

 $S \to \varepsilon \mid 0 \mid 1 \mid 0.50 \mid 1.51$

inferences recursive

w=00100

Ambiguity

$$G = (\{E, I\}, \{a, b, (,), +, *\}, E, P)$$

$$E \rightarrow I \mid E + E \mid E * E \mid (E), \quad I \rightarrow a \mid b$$

Derivation for w = a + a * a:

$$E \Rightarrow E*E \Rightarrow E+E*E \Rightarrow I+E*E \Rightarrow a+E*E \stackrel{*}{\Rightarrow} a+a*a$$

$$E \Rightarrow E + E \Rightarrow I + E \Rightarrow a + E \Rightarrow a + E \Rightarrow a + a * a$$

Ambiguity

parse-tree for w = a + a * a:

Removing Ambiguity

$E \rightarrow I \mid E+E \mid E*E \mid (E), I \rightarrow a \mid b$

$$E \rightarrow T|E+T, T \rightarrow F|T*F, F \rightarrow I|(E), I \rightarrow a|b|Ia|Ib$$

Left most derivation for w = a + a * a:

$$E \Rightarrow E+T \Rightarrow T+T \Rightarrow F+T \Rightarrow I+T \Rightarrow a+T \Rightarrow a+T*F$$

$$\Rightarrow$$
a+F*F \Rightarrow a+I*F \Rightarrow a+a*F \Rightarrow a+a*I \Rightarrow a+a*a

$$E \Rightarrow T \Rightarrow T * T \Rightarrow (E) * T \Rightarrow (E+T) * T \Rightarrow (a+a) * a$$

Inherent Ambiguity

What is inherent ambiguity

A CFL L is said to be inherently ambiguous if all grammars that generate it is ambiguous.

Example 7

Let
$$L=\{ w \mid w \in \{0,1\}^* \text{ and } n_0(w)=n_1(w) \}$$

L is not inherently ambiguous, because there is an unambiguous CFG:

$$5 \rightarrow \epsilon$$
 | 051 | 150 | 051150 | 150051

$$5 \to \epsilon \mid 051 \mid 150 \mid 55$$

ambiguity

Example 8

 $L=\{a^nb^nc^md^m \mid n\geq 1, m\geq 1\}\cup \{a^nb^mc^md^n \mid n\geq 1, m\geq 1\}$

The CFG for L is:

$$S \rightarrow AB \mid C$$
, $A \rightarrow aAb \mid ab$, $B \rightarrow cBd \mid cd$
 $C \rightarrow aCd \mid aDd$, $D \rightarrow bDc \mid bc$

Let w= abcd, there are two left most derivations

$$S \Rightarrow AB \Rightarrow abB \Rightarrow abcd$$

$$S \Rightarrow C \Rightarrow aDd \Rightarrow abcd$$

Simplification of CFG

Why & what:

$$S \rightarrow A \mid B$$
, $A \rightarrow 1CA \mid 1DE \mid \varepsilon$, $B \rightarrow 1CB \mid 1DF$, $C \rightarrow 1CC \mid 1DG \mid 0G$, $D \rightarrow 1CD \mid 1DH \mid 0H$, $E \rightarrow 0A$, $F \rightarrow 0B$, $G \rightarrow \phi$, $H \rightarrow 1$

- ε -productions
- unit productions
- useless symbols and productions

ε -productions

Variable A is said to be nullable if $A \stackrel{*}{\Rightarrow} \epsilon$.

Let G=(V,T,P,S) is a CFG

If $A \rightarrow \varepsilon \in P$, then A is nullable.

If $A \rightarrow A_1 A_2 \dots A_k \in P$, and $A_i \rightarrow \varepsilon \in P$ for i=1, ...,k

then A is nullable.

Example 9 ε -production

$$G: S \rightarrow AB, A \rightarrow \alpha AA | \epsilon, B \rightarrow bBB | \epsilon$$

$$A \rightarrow \varepsilon \Rightarrow A$$
 is nullable. $B \rightarrow \varepsilon \Rightarrow B$ is nullable. $S \rightarrow AB \Rightarrow S$ is nullable.

Example 10 unit productions

$$G: S \rightarrow A|B|0S1, A \rightarrow 0A|0, B \rightarrow 1B|1$$

 $S \rightarrow 0A|0|1B|1|0S1$
 $A \rightarrow 0A|0$
 $B \rightarrow 1B|1$

Useless productions

For a grammar G=(V,T,P,S), a symbol X is usefull, if there is a derivation for some $w \in T^*$ $S \stackrel{*}{\Rightarrow} \alpha X\beta \stackrel{*}{\Rightarrow} w$

generating, if $\alpha X\beta \stackrel{*}{\Rightarrow} w$ for some $w \in T^*$

reachable, if $S \stackrel{*}{\Rightarrow} \alpha X \beta$ for $\{\alpha,\beta\} \subseteq (V \cup T)^*$

Example 11 Useless productions

$$G: S \rightarrow AB | a, A \rightarrow b.$$
 useless non-genrating $S \Rightarrow a$ or $S \Rightarrow AB \Rightarrow bB \Rightarrow ?$

non-reachable

$$G: S \rightarrow a, A \rightarrow b.$$

 $G: S \rightarrow a$

Example 12 Simplify CFG

```
S \rightarrow A \mid B, A \rightarrow 1CA \mid 1DE \mid \varepsilon, B \rightarrow 1CB \mid 1DF,

C \rightarrow 1CC \mid 1DG \mid 0G, D \rightarrow 1CD \mid 1DH \mid 0H,

E \rightarrow 0A, F \rightarrow 0B, G \rightarrow \phi, H \rightarrow 1
```

• eliminating ε -productions: $A \rightarrow \varepsilon$

$$S \rightarrow A \mid B, A \rightarrow 1CA \mid 1C \mid 1DE, B \rightarrow 1CB \mid 1DF,$$

 $C \rightarrow 1CC \mid 1DG \mid 0G, D \rightarrow 1CD \mid 1DH \mid 0H,$
 $E \rightarrow 0A \mid 0, F \rightarrow 0B, G \rightarrow \phi, H \rightarrow 1$

Example 12 Simplify CFG

 $S \rightarrow A \mid B, A \rightarrow 1CA \mid 1C \mid 1DE, B \rightarrow 1CB \mid 1DF,$ $C \rightarrow 1CC \mid 1DG \mid 0G, D \rightarrow 1CD \mid 1DH \mid 0H,$ $E \rightarrow 0A \mid 0, F \rightarrow 0B, G \rightarrow \phi, H \rightarrow 1$

• eliminating unit productions: $S \rightarrow A$, $S \rightarrow B$ $S \rightarrow 1CA \mid 1C \mid 1DE \mid 1CB \mid 1DF$, $A \rightarrow 1CA \mid 1C \mid 1DE$, $B \rightarrow 1CB \mid 1DF$, $C \rightarrow 1CC \mid 1DG \mid 0G$, $D \rightarrow 1CD \mid 1DH \mid 0H$, $E \rightarrow 0A \mid 0$, $F \rightarrow 0B$, $G \rightarrow \phi$, $H \rightarrow 1$

Example 12 Simplify CFG

$$S \rightarrow 1CA \mid 1C \mid 1DE \mid 1CB \mid 1DF$$
,
 $A \rightarrow 1CA \mid 1C \mid 1DE$, $B \rightarrow 1CB \mid 1DF$,
 $C \rightarrow 1CC \mid 1DG \mid 0G$, $D \rightarrow 1CD \mid 1DH \mid 0H$,
 $E \rightarrow 0A \mid 0$, $F \rightarrow 0B$, $G \rightarrow \phi$, $H \rightarrow 1$

eliminating useless productions

$$S \rightarrow 1DE$$
, $A \rightarrow 1DE$, $D \rightarrow 1DH \mid OH$, $E \rightarrow 0A \mid O, H \rightarrow 1$

Chomsky Normal Form

All productions are one of following two forms:

- 1. $A \rightarrow BC$, $A,B,C \in V$
- 2. $A \rightarrow a$, $a \in T$

Example 13

Convert following CFG into CNF

$$S \rightarrow ABa$$
, $A \rightarrow aab$, $B \rightarrow Ac$

Greibach Normal Form/GNF

All productions are shown as following form:

 $A \rightarrow ax$, where $a \in T$, $x \in V^*$

Example 14

Convert following grammar to GNF

$$S \rightarrow AB$$
, $A \rightarrow \alpha A | bB | b$, $B \rightarrow b$

Example 15

Convert following grammar to GNF

S→01S1|00

Discussion

- eliminating ε -productions : $\varepsilon \in L$?
- Chomsky normal form

$$A \rightarrow a \mid BC$$
 advantage ?

Greibach normal form

$$A \rightarrow a\alpha$$
 advantage ?

Good good stilly day day up