Table 1: Test functions used in experiments.

Label	Name	Formulation	Туре	Range	$f(x^*)$
F1	Rosenbrock	$f_1(\vec{X}) = \sum_{i=1}^{D-1} \left[100 \left(x_{i+1} - x_i^2 \right)^2 + \left(x_i - 1 \right)^2 \right]$	UN	$[-2.048, 2.048]^D$	0
F2	Ackley	$f_2(\vec{X}) = -20 \exp\left(-0.2\sqrt{\frac{1}{D}}\sum_{i=1}^{D}x_i^2\right) - \exp\left(\frac{1}{D}\sum_{i=1}^{D}\cos(2\pi x_i)\right) + 20 + e$	MS	[-32.768, 32.768] ^D	0
F3	Rastrigin	$f_3(\vec{X}) = \sum_{i=1}^{D} [x_i^2 - 10\cos(2\pi x_i) + 10]$	MS	$[-5.12, 5.12]^D$	0
F4	Griewank	$f_4(\vec{X}) = \frac{1}{4000} \sum_{i=1}^{D} x_i^2 - \prod_{i=1}^{D} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$	MN	[-600, 600] ^D	0
F5	Weierstrass	$f_5(\vec{X}) = \sum_{i=1}^{D} \left(\sum_{k=0}^{k_{\text{max}}} \left[a^k \cos \left(2\pi b^k \left(x_i + 0.5 \right) \right) \right] \right) - D \sum_{k=0}^{k_{\text{max}}} \left[a^k \cos \left(2\pi b^k 0.5 \right) \right], a = 0.5, \ b = 3, \ k_{\text{max}} = 20$	MS	$[-0.5, \\ 0.5]^D$	0
F6	Schwefel 2.26	$f_6\left(\vec{X}\right) = 418.9829 \times D - \sum_{i=1}^{D} -x_i \sin\left(\sqrt{ x_i }\right)$	MS	[-500, 500] ^D	$-418.98 \times D$
F7	Shifted Sphere	$f_7(\vec{X}) = \sum_{i=1}^{D} z_i^2 - f_{\text{bias}}, z = x - o, \ f_{\text{bias}} = -450$	US	$[-100, \\ 100]^D$	$f_{ m bias}$
F8	Shifted Schwefel 1.2	$f_8(\vec{X}) = \sum_{i=1}^{D} \left(\sum_{j=1}^{i} z_j\right) + f_{\text{bias}}, z = x - o, \ f_{\text{bias}} = -450$	UN	$[-100, \\ 100]^D$	$f_{ m bias}$
F9	Shifted Rosenbrock	$f_9(\vec{X}) = \sum_{i=1}^{D-1} \left(100(z_i^2 - z_{i+1})^2 + (z_i - 1)^2\right) + f_{\text{bias}}, z = x - o + 1, \ f_{\text{bias}} = 390$	MN	$[-100, \\ 100]^D$	$f_{ m bias}$
F10	Shifted Rastrigin	$f_{10}(\vec{X}) = \sum_{i=1}^{D} [z_i^2 - 10\cos(2\pi z_i) + 10] + f_{\text{bias}}, z = x - o, \ f_{\text{bias}} = -330$	MS	$[-5, 5]^D$	$f_{ m bias}$
F11	Step	$f_{11}\left(\vec{X}\right) = \sum_{i=1}^{D} \left(\left\lfloor x_i + 0.5 \right\rfloor^2 \right)$	US	$[-100, \\ 100]^D$	0
F12	Penalized 2	$f_{12}(\vec{X}) = \frac{1}{10} \left\{ \sin^2(\pi x_1) + \sum_{i=1}^{D-1} (x_i - 1)^2 \left[1 + \sin^2(3\pi x_{i+1}) \right] + (x_n - 1)^2 \right\}$ $\left[1 + \sin^2(2\pi x_{i+1}) \right] + \sum_{i=1}^{D} u(x_i, 5, 100, 4)$	MN	[-50, 50] ^D	0
F13	Alpine	$f_{13}\left(\vec{X}\right) = \sum_{i=1}^{D} \left x_i \cdot \sin\left(x_i\right) + 0.1 \cdot x_i \right $	MS	$\begin{bmatrix} -10, 10 \\ \end{bmatrix}^D$	0