

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS

Departamento de Matemática

Profesor: Giancarlo Urzúa – Ayudante: Benjamín Mateluna

Introducción a la Geometría - MAT1304 Ayudantía 19 20 de octubre de 2025

Problema 1. Halle el máximo común divisor de los siguientes pares de polinomios y halle una combinación del lema de Bézout en cada caso

- (1) $x^4 + x^3 + x^2 + 1$ v $x^3 + 1$ en $\mathbb{R}[x]$.
- (2) $x^3 + 2x i y x^2 + 1 \text{ en } \mathbb{C}[x].$

Definición: Sea $F \in \mathbb{C}[x,y]$, se dice homogéneo si existe $\lambda \in \mathbb{C}$ tal que $F(\lambda x, \lambda y) = \lambda^n F(x,y)$ para algún $n \in \mathbb{N}$.

Problema 2. Demuestre que todo polinomio homogéneo en $\mathbb{C}[x,y]$ se puede escribir como el producto de polinomios lineales homogéneos.

Problema 3. Demuestre que $y^2 - x^3$ es irreducible en $\mathbb{C}[x,y]$.

Problema 4. Sean $f, g \in k[x, y]$, demuestre que

- (1) El conjunto de ceros de fg es igual a la unión del conjunto de ceros de f y g.
- (2) Si $k = \mathbb{R}$, el conjunto de ceros de $f^2 + g^2$ es igual a la intersección del conjunto de ceros de f y g.

Problema 5. Halle el lugar geométrico de todos los puntos que equidistan del origen y (-1,1). Después, grafiquelo en el plano.