

Classic Visualizations

The Big Picture

task

questions, goals assumptions

data

physical data type conceptual data type

domain

metadata semantics conventions processing algorithms

mapping visual encoding

image visual channel graphical marks

Gun Sales Soar After Obama Calls for New Restrictions

By GREGOR AISCH and JOSH KELLER UPDATED February 3, 2016

Position (x 2) Length

Size → Area

Value Volume

Texture

Color

Orientation

Shape

Transparency

Blur / Focus ...

Choosing Visual Encodings

- N data attributes, K visual encodings
 - -> pick the 'best' encoding among a combinatorial set
- Principle of Consistency
 - The properties of visual variables should match the properties of the data
- Principle of Importance Ordering
 - The most important information should be encoded in the most effective way

Bertin's "Levels of Organization"

Position

N O Q

Size

N O Q

Value

N O a

Nominal

Ordinal

Quantitative

Note: **Q** ⊂ **O** ⊂ **N**

Texture

Color

Orientation

Shape

Design Criteria

- ▶ Expressiveness 表达性
 - Visually express all the facts in the set of data and only the facts in the data Tell the truth and nothing but the truth!
- ▶ Effectiveness 有效性
 - Well deliver the information

Use encodings that people decode better!

Effectiveness Rankings [Mackinlay 86]

QUANTITATIVE

ORDINAL

NOMINAL

Position

Length

Angle

Slope

Area (Size)

Volume

Density (Value)

Color Sat

Color Hue

Texture

Connection

Containment

Shape

Position Position

Density (Value)

Color Sat

Color Hue **

Texture

Connection

Containment

Length

Angle

Slope

Area (Size)

Volume

Shape

Color Hue

Texture

Connection

Containment

Density (Value)

Color Sat

Shape

Length

Angle

Slope

Area

Volume

Bar Chart

Single-series Bar Chart

Multi-series Bar Chart

Stacked Bar Chart

Dual Bar Chart

Horizontal Bar Chart

Horizontal * Stacked Bar Chart

Negative Bar Chart

Horizontal * Stacked * Negative Bar Chart

Scatterplot

Scatterplot for quality characteristic XXX

Horizontal * Stacked * Negative Bar Chart

Scatterplots can show correlation between two variables

Hans Rosling's 200 Countries Scatterplot

Line Chart

Monthly Average Temperature

Source: WorldClimate.com

Highch arts.com

Pie Chart

Map

Design Considerations

Title, labels, legend, captions, source!

Design Considerations

Expressiveness and Effectiveness

Avoid unexpressive marks (lines? gradients?)

Use perceptually effective encodings

Don't distract: faint gridlines, pastel highlights/fills

The "elimination diet" approach - start minimal

Support comparison and pattern perception

Between elements, to a reference line, or to totals

Use reader-friendly units and labels
Statistical soundness (regression, interpolation)

Design Considerations

Transform data (e.g., filter, log, normalize)

Group / sort data by meaningful dimensions

Reduce cognitive overhead

Minimize visual search, minimize ambiguity
Appropriate size, aspect ratio, legible text
Avoid legend lookups if direct labeling works
Avoid color mappings with indiscernible colors

Be consistent! Visual inferences should consistently support data inferences.