第七章 脂质和生物膜

本章内容

概述 ★脂质的结构和性质 生物膜

第一节 概述

脂质 (lipid, 脂类)

- * 一类基本不溶于水而溶于非极性溶剂的生物有机分子
- *大多数脂类的化学本质是脂肪酸和醇所形成的酯类及其衍生物
 - * 脂肪酸多为4碳以上的长链一元羧酸
 - * 醇成分包括甘油、鞘氨醇、高级一元醇和固醇

脂类的分类(按化学结构分)

- * 单纯脂类
 - * 由高级脂肪酸和醇生成的酯,如甘油三酯、蜡
- * 复合脂类
 - *除了含有脂肪酸和醇外,还含有非脂的成分,如磷脂、糖脂
- * 结合脂类

脂类的作用

- * 脂肪是生物体的重要代谢燃料,是贮存能量的主要形式
- * 机体表面的脂类有防止机械损伤和防止热量散发的作用
- * 磷脂、糖脂和固醇是构成生物膜的重要物质
- *有些脂类,如萜、类固醇可转化为维生素、激素等

第二节 脂质的结构和性质

脂酰甘油类 磷脂类 固醇类

一、脂酰甘油类

- * 也称为脂肪、酰基甘油
- * 由甘油和脂肪酸组成
- * 单纯甘油酯、混合甘油酯
- * 单酰甘油、二酰甘油

- * 植物油
 - * 大豆、花生、油菜籽、芝麻
- * 动物脂
 - *皮下、肠系膜
- * 微生物油脂

1、脂肪酸 fatty acid

图 6.2 脂肪酸的基本结构和命名

低级脂肪酸:碳原子数小于10的脂肪酸;熔点偏低,常温下星液态。 高级脂肪酸:碳原子数大于10的脂肪酸. 常温下为固体

- * 高等动植物体内脂肪酸的碳原子数通常为偶数, 极少数为奇数
- * 常见的饱和脂肪酸: 硬脂酸、软脂酸 (棕榈酸)
- *常见的不饱和脂肪酸: 油酸、亚油酸、亚 麻酸、花生四烯酸 (ARA)
- * 多烯酸通常间隔3个碳原子出现一个双键
- * 不饱和脂肪酸具有顺反 (cis-、trans-) 异构现象, 天然存在的多为____异构体

脂肪酸的分类

按碳数分: 短链 (2~4C)

中链 (6~10C)

长链(12~26C)

按双键分: 饱和、不饱和

按来源分:必需

非必需

必须由食物供給 (含两个双键以上) 亚油酸,亚麻酸,

花生四烯酸

机体可自身合成 (饱和、单不饱和)

补充: DHA

- *大脑、神经和视觉细胞中重要的脂肪酸成分
 - *影响胎儿大脑、神经系统发育
 - *影响婴幼儿大脑和视觉系统发育
 - * 导致患老年痴呆症
 - * 导致视力下降

脂肪酸的简写

先写碳原子数,再写双键的数目,最后标明 双键的位置

3、油脂的理化性质

- *溶解性
- *熔点
- *乳化作用
- *水解作用
- *加成作用
- *氧化作用

1) 溶解性和熔点

- * 脂肪一般不溶于水,溶于有机溶剂
- *脂肪在水中的溶解度随着脂肪酸分子所含碳原子数的增加而___。
- *脂肪的熔点随着脂肪酸碳原子数的增加而____,随着不饱和度增加而____。

2) 乳化作用

- * 在乳化剂的作用下,油脂变成很小的颗粒均匀分散在水中形成稳定的乳状液
- * 应用
 - * 脂肪的消化 (胆汁酸盐)
 - * 肥皂去污

3)水解作用

*酸、碱、酶

皂和皂化作用

原理 脂肪即中性脂,为脂酸与丙三醇所成的 酯。一切脂肪都能被酸、碱、蒸汽及酶所水解,产生甘油和 脂 酸。如果催化剂是碱,则得甘油和脂酸的盐类,这种盐类称 皂,脂 肪的碱水解称为皂化作用。

补充: 脂的分类(按能否皂化分)

*可皂化脂类

* 能被碱水解而产生皂(脂肪酸盐)的称为可皂化脂类

* 不可皂化脂类

皂化值

原理 脂肪的 碱水 解称皂 化作用。 皂化 1 g 脂肪所 需 KOH 的mg 数, 称为皂化价。脂肪的皂化价和其分子量成反比(亦与其所含脂酸分子量成反比), 由皂化价的数值可知混合脂肪(或脂酸)的平均分子量。

油脂平均分子量

*油脂的皂化值与分子质量成反比

$$M_r = \frac{3 \times 56 \times 1000}{$$
皂化值

4) 氧化作用

- * 生物体内油脂代谢
- * 酸败
 - * 双键被氧化 (光、热、湿气)
 - * 微生物

酸值

- * 中和1g油脂中游离脂肪酸所需氢氧化钾的 mg数
- * 酸值越大,油脂的品质越差
 - *酸价高于3.5mgKOH/g时,油脂出现哈喇味;
 - *酸价超过4 mgKOH/g时,食用后可引起呕吐、 腹泻等中毒现象
 - *食用植物油的酸价控制在3.0mgKOH/g之内

5) 加成作用

- * 双键
- * 氢化作用
 - * 氢化油 (硬化油)
 - * 人造奶油、人造牛油

早期的人造奶油是用牛脂为原料的,后又用猪油和鱼油等动物油来加工。随着油脂氢化技术的应用和推广,加上植物油资源丰富,不含胆固醇等营养和医学上的原因,本世纪五十年代以后,植物油已逐渐替代了动物油而占主导地位,到七十年代,人造奶油的世界产量已大大超过了天然奶油。

碘值(卤化作用)

- * 在油脂的卤化作用中,100g油脂与碘作用所 需碘的克数
- * 碘值越大,油脂的不饱和程度越大

判断题

- * 脂肪酸的碳链越长, 在水中的溶解度越大。
 - ■脂酰甘油分子中不饱和脂肪酸含量越高, 其熔点越高
- ■油脂的皂化值越高,说明油脂分子所含脂肪酸的碳链越长

填空题

*油脂与碱共热产生____作用,在空气中放置过久产生臭味,是因为____作用造成。

填空题

- * 皂化价为195的甘油三酯的平均分子量为___。
- *油脂碱水解可生成____和___。
- *由于不饱和脂肪酸分子中存在双键,因此可能产生___式和___式两种立体异构体,自然界中存在的多为___式结构。

- * 下列哪种物质是十八碳三烯酸?
- * A油酸 B亚麻酸 C硬脂酸 D亚油酸

- 请按照简写符号写出下列脂肪酸的结构式:
- C_{18:0}

C_{18:1}Δ9

C_{18:3} Δ6,9,12

是到