

Adaptive Computation Time for Recurrent Neural Networks

Мадуар Дарин

ниу вшэ

1 марта, 2019

Мотивация

Зачем понадобились адаптивные вычисления?

 Время на постановку задачи и на её решение могут существенно отличаться

Мотивация

Зачем понадобились адаптивные вычисления?

- Время на постановку задачи и на её решение могут существенно отличаться
- Входные данные могут отличаться по сложности:

Зачем понадобились адаптивные вычисления?

- Время на постановку задачи и на её решение могут существенно отличаться
- Входные данные могут отличаться по сложности:
 - Слишком простая нейросеть может не решить сложную задачу
 - Слишком сложная нейросеть может попусту растрачивать ресурсы

Зачем понадобились адаптивные вычисления?

- Время на постановку задачи и на её решение могут существенно отличаться
- Входные данные могут отличаться по сложности:
 - Слишком простая нейросеть может не решить сложную задачу
 - Слишком сложная нейросеть может попусту растрачивать ресурсы

Мотивация

Как расчитывать сложность вычислений нейронной сети?

 Для сетей с полносвязными слоями – количество преобразований между слоями;

Как расчитывать сложность вычислений нейронной сети?

- Для сетей с полносвязными слоями количество преобразований между слоями;
- Для сетей с прямым распространением глубина сети или количество слоёв;

Как расчитывать сложность вычислений нейронной сети?

- Для сетей с полносвязными слоями количество преобразований между слоями;
- Для сетей с прямым распространением глубина сети или количество слоёв;
- Для реккурентных сетей количество вычислений зависит в том числе и от длины входной последовательности.

Мотивация

Как детерминировать сложность для RNN?

• Сделать архитектуру очень глубокой

Как детерминировать сложность для RNN?

- Сделать архитектуру очень глубокой
- Динамически варьировать число шагов, за которые сеть «обдумывает» каждый ход

Как детерминировать сложность для RNN?

- Сделать архитектуру очень глубокой
- Динамически варьировать число шагов, за которые сеть «обдумывает» каждый ход
- В последнем случае глубина становится динамической функцией от полученных на данный момент входных данных.

Spatially Adaptive Computation Time for Residual Networks[]

Spatially Adaptive Computation Time for Residual Networks

block of residual units

6 / 23

Skip RNN[]

LSTM-jump[]

Adaptive Computation Time[]

RNN

- \mathcal{R} реккурентная нейронная сеть
- W_x входные веса
- S параметрическая state transition model
- W_y выходные веса
- b_{v} смещение на выходе
- $\mathbf{x} = (x_1, \cdots, x_T)$ последовательность входов
- $\mathbf{s} = (s_1, \cdots, s_T)$ последовательность состояний, которую расчитывает \mathcal{R}
- ${f y} = (y_1, \cdots, y_T)$ последовательность выходов

RNN

$$s_t = \mathcal{S}(s_{t-1}, W_x x_t)$$
$$y_t = W_y s_t + b_y$$

Adaptive Computation Time

Пусть N(t) – количество всех обновлений, которые происходят на шаге t. Определим промежуточные состояния $(s_t^1, \cdots, s_t^{N(t)})$ и промежуточные выходы $(y_t^1, \cdots, y_t^{N(t)})$, которые будут обновляться следующим образом:

Где $x_t^n=(\delta_n^1,x_n)$, а δ_n^1 — индикатор того, впервые ли встретился x_t .

Halting unit

Чтобы определить, сколько обновлений \mathcal{R} сделает на шаге t, дополнительный сигмоидальный блок остановки h со связанной с ним матрицей весов W_h и смещением b_h :

$$h_t^n = \sigma(W_h s_t^n + b_h)$$

Определим вероятность остановки (halting probability) как

$$p_t^n = egin{cases} h_t^n & ext{при } n < N(t) \ R(t) & ext{при } n = N(t) \end{cases}$$

Где
$$\mathit{N}(t) = \min\{k \mid \sum\limits_{n=1}^k h^n_t \geq 1 - arepsilon\}$$
, а $\mathit{R}(t) = 1 - \sum\limits_{n=1}^{\mathit{N}(t)-1} h^n_t$

Adaptive Computation Time

$$s_t = \sum_{n=1}^{N(t)} p_t^n s_t^n \qquad y_t = \sum_{n=1}^{N(t)} p_t^n y_t^n$$

Архитектура модели

Limiting Computation Time

Ponder sequence

$$\rho_t = N(t) + R(t)$$

Limiting Computation Time

• Ponder sequence

$$\rho_t = N(t) + R(t)$$

Ponder cost

$$\mathcal{P}(\mathbf{x}) = \sum_{t=1}^{T} \rho_t$$

Модификация функции потерь

Чтобы «наказывать» модель за слишком большое суммарное количество обновлений, добавим к лосс-функции $\mathcal{L}(x,y)$ функцию $\mathcal{P}(\mathbf{x})$ с некоторым коэффициентом, называемым *time* penalty.

$$\hat{\mathcal{L}}(x,y) = \mathcal{L}(x,y) + \tau \mathcal{P}(\mathbf{x})$$

Ограничение числа вычислений

Ещё можно сверху ограничивать число вычислений небольшой модификацией N(t)

$$N(t) = \min \left\{ M, \min\{k \mid \sum_{n=1}^k h_t^n \ge 1 - \varepsilon\} \right\}$$

Parity

Решаем с помощью простой RNN с одним скрытым слоем, в котором 128 tanh units и одним сигмоидальным выходным слоем, обученным с binary cross-entropy loss по мини-батчам размера 128.

Parity

Сравнение[]

Model	Task solved	Updates until solved	Mean repetitions
RNN	No	-	1
ACT-RNN, $\tau = 10^{-1}$	No	-	1.000
ACT-RNN, $\tau = 10^{-2}$	Yes	53000	1.805
ACT-RNN, $\tau = 5 \cdot 10^{-3}$	Yes	356000	2.027
ACT-RNN, $\tau = 10^{-3}$	Yes	55000	2.044
Repeat-RNN, $\rho = 2$	Yes	22000	2
Repeat-RNN, $\rho = 3$	Yes	49000	3
Repeat-RNN, $\rho = 5$	Yes	27000	5
Repeat-RNN, $\rho = 8$	Yes	26000	8

- [1] Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry P. Vetrov, and Ruslan Salakhutdinov. Spatially adaptive computation time for residual networks. CoRR, abs/1612.02297, 2016.
- [2] Victor Campos, Brendan Jou, Xavier Giró i Nieto, Jordi Torres, and Shih-Fu Chang. Skip RNN: learning to skip state updates in recurrent neural networks. CoRR, abs/1708.06834, 2017.
- [3] Adams Wei Yu, Hongrae Lee, and Quoc V. Le. Learning to skim text. CoRR, abs/1704.06877, 2017.

- [4] Alex Graves.
 Adaptive computation time for recurrent neural networks.
 CoRR, abs/1603.08983, 2016.
- [5] Xavier Giró-i-Nieto Víctor Campos , Daniel Fojo. Adaptive computation time for recurrent neural networks in pytorch and tensorflow https://github.com/imatge-upc/danifojo-2018-repeatrnn.