Учреждение образования Республики Беларусь Гомельский государственный технический университет им. П.О. Сухого»

Кафедра «Физика и электротехника»

Лабораторная работа №7

«Электрическая цепь синусоидального тока и её элементы»

Стенд №7

Выполнил: студент гр. ЭН-21

Мушковец М. Д.

Проверил: преподаватель

Ревенок М. А.

Лабораторная работа №7

Цель работы: 1) приобретение навыков измерения параметров пассивных элементов (резисторов, конденсаторов и катушек индуктивности) в цепи синусоидального тока; 2) снятие вольт-амперных характеристик элементов электрической цепи синусоидального тока; 3) знакомство с работой электронного осциллографа и возможностью его применения для измерения разности фаз между синусоидальными напряжениями и токами.

Исходные данные

- 1. Стабилизированный источник синусоидального напряжения.
- 2. В качестве пассивных элементов:
 - Резисторы R1 и R2;
 - Конденсаторы С16 и С17;
 - Катушки индуктивности L11 и L12;
 - блок переменного сопротивления БПС.
- 3. Измерительные приборы, установленные на стенде.
- 4. Электрическая цепь в соответствии со схемой рис. 1.
- 5. Частота напряжения источника: $f = 1000 \, \Gamma$ ц.

Рис. 1. Схема исследования параметров элементов

Экспериментальная часть

Измерение фактических параметров элементов производится в соответствии со схемой рис. 1. Результаты представлены в таблицах 1-4.

Таблица 1

	D	7.7	7	D	Измерено			Вычислено
Элемент	$R_{\rm H}$	$oldsymbol{U}_{\mathrm{H}}$	I _H	$oldsymbol{R}_{\Phi}$	U	I	f	$oldsymbol{R}_{\Phi}$
	Ом	В	A	Ом	В	мА	Гц	Ом
R_1	120	24,5	0,2	128,4	10	0,073	050	136,99
R_2	180	28,8	0,16	178	8,9	0,051	958	174,51

$$R_{I\Phi} := \frac{U_I}{I_I} = 136.99 \text{ (OM)}$$
 $R_{2\Phi} := \frac{U_2}{I_2} = 174.51 \text{ (OM)}$

Таблица 2

Элемент	C		Измерено		Вычислено			
	L_n	f	U	I	Z	X_c	C	
	мкФ	Гц	В	A	Ом	Ом	мкФ	
C ₁₆	1,55	1000	9,7	0,09	107,78	107,78	1,48	
C ₁₇	2,25		9,8	0,136	72,06	72,06	2,21	

$$Z_{16} = \frac{U_{16}}{I_{16}} = 107.78 \text{ (Om)}$$
 $Z_{17} = \frac{U_{17}}{I_{17}} = 72.06 \text{ (Om)}$

$$X_{e16} := Z_{16} = 107.78 \text{ (Om)}$$
 $X_{e17} := Z_{17} = 72.06 \text{ (Om)}$

$$C_{I\delta} \coloneqq \frac{1 \cdot 10^6}{2 \cdot \pi \cdot f \cdot X_{cI\delta}} = 1.48 \text{ (MK}\Phi) \qquad C_{I7} \coloneqq \frac{1 \cdot 10^6}{2 \cdot \pi \cdot f \cdot X_{cI7}} = 2.21 \text{ (MK}\Phi)$$

Таблица 3

		Изме	ерено		Вычислено				
Элемент	R	f	U	I	Z	X_L	L	$oldsymbol{arphi}_{ ext{ iny K}}$	
	Ом	Гц	В	мА	Ом	Ом	мГн	Град	
К ₁₁	33,6	1000	10	19	526,32	525,24	83,59	86,34	
К ₁₂	36,3		10	29	344,83	342,91	54,58	83,96	

$$Z_{II} \coloneqq \frac{U_{II}}{I_{II}} = 526.32 \text{ (Ом)} \qquad Z_{I2} \coloneqq \frac{U_{I2}}{I_{I2}} = 344.83 \text{ (Ом)}$$

$$Z_{LII} \coloneqq \sqrt[2]{Z_{II}^2 - R_{II}^2} = 525.24 \text{ (Ом)} \qquad Z_{LI2} \coloneqq \sqrt[2]{Z_{I2}^2 - R_{I2}^2} = 342.91 \text{ (Ом)}$$

$$L_{II} \coloneqq \frac{X_{LII} \cdot 10^3}{2 \cdot \pi \cdot f} = 83.59 \text{ (мГн)} \qquad L_{I2} \coloneqq \frac{X_{LI2} \cdot 10^3}{2 \cdot \pi \cdot f} = 54.58 \text{ (мГн)}$$

$$\varphi_{\kappa II} \coloneqq \operatorname{atan} \left(\frac{X_{LII}}{R_{II}}\right) \cdot \frac{180}{\pi} = 86.34 \text{ (Град)} \qquad \varphi_{\kappa I2} \coloneqq \operatorname{atan} \left(\frac{X_{LI2}}{R_{I2}}\right) \cdot \frac{180}{\pi} = 83.96 \text{ (Град)}$$

		Конден	саторы		Индуктивные катушки				
No	C	C ₁₆		C ₁₇		К ₁₁		К ₁₂	
п/п	U	I	U	I	U	UII		I	
	В	мA	В	мА	В	мА	В	мА	
1	1,42	13,43	1,41	19,51	1,47	2,54	1,48	3.84	
2	2,81	26.95	2,81	39,12	2,83	5,32	2,83	8,13	
3	4,23	40,47	4,28	58,87	4,25	8,04	4,22	12,16	
4	5,64	53.99	5,66	78,42	5,69	10,66	5,65	16,01	
5	7.07	67,46	7,09	98,61	7.08	13,35	7.09	20,37	
6	8,44	80.94	8,49	117,77	8,41	16,14	8,47	24,36	

Рис. 2. BAX конденсаторов

Рис. 3. ВАХ катушек

Измерение разности фаз напряжения и тока в соответствии со схемой рис. 3. Результаты представлены в таблице 5:

Рис. 4. Схема измерения разности фаз напряжения и тока

Таблица 5

Элементы	Резис	торы	Конден	саторы	Индуктивные катушки		
	R_1	R_2	C ₁₆	C ₁₇	К ₁₁	К ₁₂	
Разность фаз ф (град)	0	0	-85,5	-85,5	85,5	81	

Вывод: 1) приобрели навыки измерения параметров пассивных элементов (резисторов, конденсаторов и катушек индуктивности) в цепи синусоидального тока; 2) сняли вольт-амперных характеристик элементов электрической цепи синусоидального тока; 3) ознакомлены с работой электронного осциллографа и возможностью его применения для измерения разности фаз между синусоидальными напряжениями и токами.