

XMPP in real life: attacks, bad behaviour and how to cope with them

2009, 7th february - FOSDEM 2009

Mickaël Rémond < mremond@process-one.net >

€ Company created in 1999

- Company created in 1999
- **№** 20 employees

- **€** Company created in 1999
- **∮** ¥ 20 employees
- **♥** Specialized in Instant Messaging since 2002

- **€** Company created in 1999
- **€** 20 employees
- **♥** Specialized in Instant Messaging since 2002
- ▶ Involved in ejabberd since 2002. ProcessOne produced 98% of the code.

- **€** Company created in 1999
- **≨** ¥ 20 employees
- **≨** Specialized in Instant Messaging since 2002
- Involved in ejabberd since 2002. ProcessOne produced 98% of the code.
- **€** Complete stack of Instant Messaging software

- **€** Company created in 1999
- **≨** ¥ 20 employees
- **≨** Specialized in Instant Messaging since 2002
- Involved in ejabberd since 2002. ProcessOne produced 98% of the code.
- **€** Complete stack of Instant Messaging software
- Two main activities
 - software: complete software solution for IM
 - expertise: renowed company for high-availability, scalability and custom solutions (consulting, development and hosting)

- **€** Company created in 1999
- **≨** ¥ 20 employees
- **≨** Specialized in Instant Messaging since 2002
- Involved in ejabberd since 2002. ProcessOne produced 98% of the code.
- **€** Complete stack of Instant Messaging software
- - software: complete software solution for IM
 - expertise: renowed company for high-availability, scalability and custom solutions (consulting, development and hosting)
- Several tens of large customers, spread across the world
 - Large scale worldwide leader
 - Specific needs renowed expertise

- Visible public servers
 - **★ The «Sandbox»**
 - Not necessarily large scale but very **unusual** behaviours, clients, usage pattern

- **♥** Visible public servers
 - **∮** The «Sandbox»
 - Not necessarily large scale but very **unusual behaviours**, clients, usage pattern
- Large scale servers
 - - Large scale starts after a million of registered users and / or hundred of thousands simultaneous connections

- **♥** Visible public servers
 - **∮** The «Sandbox»
 - Not necessarily large scale but very **unusual behaviours**, clients, usage pattern
- **★** Large scale servers
 - Large scale in term of registered or simultaneous users
 - Large scale starts after a million of registered users and / or hundred of thousands simultaneous connections
 - **★** Large scale in term of thoughput
 - At least tens of thousands of packets per seconds, millions of users of MUC / Pubsub, millions of nodes.

- **♥** Visible public servers
 - **∮** The «Sandbox»
 - Not necessarily large scale but very **unusual behaviours**, clients, usage pattern
- **★** Large scale servers
 - Large scale in term of registered or simultaneous users
 - Large scale starts after a million of registered users and / or hundred of thousands simultaneous connections
 - Large scale in term of thoughput
 - At least tens of thousands of packets per seconds or tens of thousands users in MUC room or subscribed to pubsub node, etc.
- Experience of large clusters with several tens of millions registered users and more than 500 000 simultaneous users.

∮ Uptime

- **∮** Uptime
- **✓** Uptime!

- **∮** Uptime
- **✓** Uptime!
- **✓** Uptime !!

- **55** Uptime
- **∮** Uptime!
- **∮** Uptime !!

Everything else derives from this Challenge (performance, scalability)

- **∮** Uptime
- **∮** Uptime!
- **∮** Uptime !!

Everything else derives from this Challenge (performance, scalability)

- - fi it faces a reconnect storm from client that login again
 - it needs to resync the complete presence states with most of its known s2s servers
 - fit reconnects the users accounts on gateways ...

- **∮** Uptime
- **∮** Uptime!
- **∮** Uptime !!

Everything else derives from this Challenge (performance, scalability)

- **♦** When a server is restarted:
 - fi it faces a reconnect storm from client that login again
 - it needs to resync the complete presence states with most of its known s2s servers
 - fit reconnects the users accounts on gateways ...
- You need to:
 - Be able to **monitor** lots of values to **detect troubles** and have tools to keep the server online during trouble phase (otherwise it crash:get worse)
 - F Be able to perform maintenance task and upgrade code live

Symptom: A «sandbox» XMPP server crashes regularly

- Symptom: A «sandbox» XMPP server crashes regularly
- First challenge: Detect possible abuser

- Symptom: A «sandbox» XMPP server crashes regularly
- First challenge: Detect possible abuser

- Symptom: A «sandbox» XMPP server crashes regularly
- First challenge: Detect possible abuser
- **♥** Use of our toolkit (TeamLeader console) to analyse traffic patterns.
- Correlate the crash to a given user
 - Large number of packets send when online
 - Large bandwidth consumption

- Symptom: A «sandbox» XMPP server crashes regularly
- First challenge: Detect possible abuser
- **♥** Use of our toolkit (TeamLeader console) to analyse traffic patterns.
- Correlate the crash to a given user
 - Large number of packets send when online
 - **FF** Large bandwidth consumption
- Dump traffic of this user for analysis

- Symptom: A «sandbox» XMPP server crashes regularly
- First challenge: Detect possible abuser
- **♥** Use of our toolkit (TeamLeader console) to analyse traffic patterns.
- Correlate the crash to a given user
 - Large number of packets send when online
 - Large bandwidth consumption
- **▶** Dump traffic of this user for analysis
- **F** Traffic reveals that user:
 - for has deployed XMPP bot at work on his servers
 - for is using the public server to get control of his server
 - basically «Shell over XMPP»

- Symptom: A «sandbox» XMPP server crashes regularly
- First challenge: Detect possible abuser
- **♥** Use of our toolkit (TeamLeader console) to analyse traffic patterns.
- Correlate the crash to a given user
 - Large number of packets send when online
 - Large bandwidth consumption
- **♥** Dump traffic of this user for analysis
- **F** Traffic reveals that user:
 - has deployed XMPP bot at work on his servers
 - is using the public server to get control of his server
 - **★** basically «Shell over XMPP»
- Response: Need to detect abnormal usage pattern and trigger alerts

Symptom: Abnormal memory consumption / sometime leading to crash

- Symptom: Abnormal memory consumption / sometime leading to crash
- Source problem had been client behaviour

- Symptom: Abnormal memory consumption / sometime leading to crash
- Source problem had been client behaviour
- - **F** Example: Client does not reply to some IQ stanzas (PEPS / CAPS)
 - Server waits for reply until timeout
 - Depending on the type of processing it can be blocking
 - **Example:** Client that send too many presences

- Symptom: Abnormal memory consumption / sometime leading to crash
- Source problem had been client behaviour
- - **Example:** Client does not reply to some IQ stanzas (PEPS / CAPS)
 - Server waits for reply until timeout
 - **Example:** Client that send too many presences
 - Large presence broadcast, especially in MUC rooms
- Need to restrict the ability to perform those patterns:
 - Limit the interval for sending presences in chat rooms
 - **★** Limit resourc consumption in general

- Symptom: Abnormal memory consumption / sometime leading to crash
- Source problem had been client behaviour
- - **≨** Example: Client does not reply to some IQ stanzas (PEPS / CAPS)
 - Server waits for reply until timeout
 - Depending on the type of processing it can be blocking
 - **Example:** Client that send too many presences
- Need to restrict the ability to perform those patterns:
 - Limit the interval for sending presences in chat rooms
 - Limit resourc consumption in general

- **MUC** rooms attacks
 - Most common case of abuse

- **MUC** rooms attacks
 - Most common case of abuse
 - Create a lot of MUC persistant MUC rooms

- **MUC** rooms attacks
 - Most common case of abuse
 - Create a lot of MUC persistant MUC rooms
 - Join a lot of MUC rooms

- **MUC** rooms attacks
 - **∮** Most common case of abuse
 - Create a lot of MUC persistant MUC rooms
 - Join a lot of MUC rooms
 - Join / leave a MUC room fastly

- **MUC** rooms attacks
 - **∮** Most common case of abuse
 - Create a lot of MUC persistant MUC rooms
 - Join a lot of MUC rooms
 - Join / leave a MUC room fastly
 - Join lots of users in a single room

- **∮** MUC rooms attacks
 - **∮** Most common case of abuse
 - Create a lot of MUC persistant MUC rooms
 - **∮** Join a lot of MUC rooms
 - Join / leave a MUC room fastly
 - Join lots of users in a single room
 - Change presence to bypass voice

Case 3: Multi User chat

- **∮** MUC rooms attacks
 - **∮** Most common case of abuse
 - Create a lot of MUC persistant MUC rooms
 - **∮** Join a lot of MUC rooms
 - Join / leave a MUC room fastly
 - Join lots of users in a single room
 - **Change presence to bypass voice**
 - Flood with messages

Case 3: Multi User chat

- **MUC** rooms attacks

 - Create a lot of MUC persistant MUC rooms
 - Join a lot of MUC rooms
 - Join / leave a MUC room fastly
 - Join lots of users in a single room
 - **€** Change presence to bypass voice
 - Flood with messages
 - Use large values to «attack» the server or the client (large room names, large nick names, etc)

Symptom: Server crash

- Symptom: Server crash
- F Reduce to a crash when some special user connects (every time)

- Symptom: Server crash
- Reduce to a crash when some special user connects (every time)
- Bots send messages to their users on a public server

- Symptom: Server crash
- Reduce to a crash when some special user connects (every time)
- Bots send messages to their users on a public server
- They do not often use headline message type (which means they are not intended to be stored offline).
- They sometimes rely on presence, but it can be inaccurate after a force server shutdown.
- We have seen users of public servers with more than 500 000 messages in the offline store.

- Symptom: Server crash
- Reduce to a crash when some special user connects (every time)
- **≸** Bots send messages to their users on a public server
- They do not often use headline message type (which means they are not intended to be stored offline).
- They sometimes rely on presence, but it can be inaccurate after a force server shutdown.
- We have seen users of public servers with more than 500 000 messages in the offline store.
- **★** Limit the size of the offline store
- Ability to detect abusers and limit their ability to send massive amount of messages

Case 5: Large flow / small pipes

- ♠ An XMPP server is a pipe
- Data **flows** from on connection to another.

Case 5: Large flow / small pipes

- ♠ An XMPP server is a pipe
- **∮** Data **flows** from on connection to another.
- Problem:
 - What happens if you try to send data faster than the target client can receive (mobile)?
 - What happens if you try to send data faster than the target server can receive (limited bandwith, Karma limitation)?

Case 5: Large flow / small pipes

- ♠ An XMPP server is a pipe
- **∮** Data **flows** from on connection to another.

Problem:

- What happens if you try to send data faster than the target client can receive (mobile)?
- What happens if you try to send data faster than the target server can receive (limited bandwith, Karma limitation)?

M Challenge:

- This has to been done right otherwise the service might seems unreliable
- Federation rules / pattern needed?

Interesting new challenges ahead

- Massive numbers of XMPP servers deployed
 - **№** Lots of s2s connections to maintain for large servers
 - Will XMPP scale to millions of servers?

Interesting new challenges ahead

- **№** Massive numbers of XMPP servers deployed
 - Lots of s2s connections to maintain for large servers
 - Will XMPP scale to millions of servers?
- **★** Large servers connected through s2s:
 - Several large servers need to keep users presence in sync
 - - Yes, massive presence resync is needed

Interesting new challenges ahead

- **№** Massive numbers of XMPP servers deployed
 - Lots of s2s connections to maintain for large servers
 - **♥** Will XMPP scale to millions of servers?
- **★** Large servers connected through s2s:
 - Several large servers need to keep users presence in sync
 - Imagine what happen when one of them goes down ...
 - Yes, massive presence resync is needed
- New usage patterns
 - ✓ Ubiquitous XMPP: A single users can have many connections: Increase in size of XMPP platforms
 - Devices / Machine to Machine communication: increase of volume of messages

Questions and challenges to share?