When Query Authentication Meets Fine-Grained Access Control: A Zero-Knowledge Approach

Cheng Xu¹, Jianliang Xu¹, Haibo Hu², and Man Ho Au²

¹Hong Kong Baptist University ²Hong Kong Polytechnic University {chengxu, xujl}@comp.hkbu.edu.hk {haibo.hu@, csallen@comp.}polyu.edu.hk

June 2018

Background

Data-as-a-Service (DaaS) and cloud computing are gaining popularity for big data analytics

Background

Data-as-a-Service (DaaS) and cloud computing are gaining popularity for big data analytics

Fine-Grained Access Control: enable big data sharing

Background

Data-as-a-Service (DaaS) and cloud computing are gaining popularity for big data analytics

- Fine-Grained Access Control: enable big data sharing
- Security Threats:
 - Query result integrity not guaranteed
 - Leaking information beyond query result may breach privacy

Problem Model

*Content is encrypted by CP-ABE

Data Owner (DO)

Service Provider (SP)

Users

Fine-grained access policy as monotone boolean function

Problem Model

Data Owner (DO)

Service Provider (SP)

Users

- Fine-grained access policy as monotone boolean function
- Our solution:
 - Integrity: SP returns a verification object (VO) to prove
 - Soundness
 - Completeness
 - Zero-Knowledge Confidentiality:

VO leaks no information beyond query results

Our Contributions

- Develop a novel ABS-based APP signature
 - Authenticate accessible records
 - Prove inaccessibility in zero-knowledge
- Supported query types:
 - Equality queries
 - Range queries
 - Join queries
- Optimization techniques to reduce verification cost

Our Contributions

- Develop a novel ABS-based APP signature
 - Authenticate accessible records
 - Prove inaccessibility in zero-knowledge
- Supported query types:
 - Equality queries
 - Range queries
 - Join queries
- Optimization techniques to reduce verification cost

User Service Provider

• User submits a query key o_q and a role set A

User Service Provider Outcomes

• User submits a query key o_q and a role set A

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

User Service Provider Outcomes

• User submits a query key o_q and a role set A

User Service Provider

- Outcomes
- User submits a query key o_q and a role set A
- Non-existent record will leak information

- User submits a query key o_q and a role set $\mathcal A$
- Non-existent record will-leak information
- Treat non-existent records as inaccessible by anyone i.e. Υ' = Role_∅

ABS with Predicate Relaxation

Attribute Based Signature (ABS)

It signs a message with a monotone boolean function predicate that is satisfied by the attributes obtained from the authority

ABS with Predicate Relaxation

Attribute Based Signature (ABS)

It signs a message with a monotone boolean function predicate that is satisfied by the attributes obtained from the authority

Predicate Relaxation
 Derive a weaker ABS signature without knowing secret key

DO generates ADS and sends to the SP

- DO generates ADS and sends to the SP
- u₁ can access the data,

- DO generates ADS and sends to the SP
- u₁ can access the data, APP signature is the VO

- DO generates ADS and sends to the SP
- u₁ can access the data, APP signature is the VO
- u₂ cannot access the data,

- DO generates ADS and sends to the SP
- u₁ can access the data, APP signature is the VO
- u₂ cannot access the data, SP generates an APS signature as VO

Authenticated Data Structures (ADS)

- Access-Policy-Preserving (APP) signature
 - Signed by DO and used as ADS
 - It captures three parts of information: query attribute o_i, data content v_i, and access policy Υ_i

Example 1

$$\begin{aligned} &\mathsf{Record}_2 \leftarrow \langle o_2, v_2, \Upsilon_2 = Role_A \wedge Role_B \rangle \\ &\sigma_2 \leftarrow \mathsf{ABS.Sign}(\mathit{sk}_{\mathsf{DO}}, \mathit{hash}(o_2) | \mathit{hash}(v_2), \mathit{Role}_A \wedge \mathit{Role}_B) \end{aligned}$$

Authenticated Data Structures (ADS)

- Access-Policy-Preserving (APP) signature
 - Signed by DO and used as ADS
 - It captures three parts of information: query attribute o_i, data content v_i, and access policy Υ_i

Example 1

$$\begin{aligned} &\mathsf{Record}_2 \leftarrow \langle o_2, v_2, \Upsilon_2 = Role_A \wedge Role_B \rangle \\ &\sigma_2 \leftarrow \mathsf{ABS.Sign}(\mathit{sk}_{\mathsf{DO}}, \mathit{hash}(o_2) | \mathit{hash}(v_2), \mathit{Role}_A \wedge \mathit{Role}_B) \end{aligned}$$

- Access-Policy-Stripped (APS) signature
 - Replace Υ_i to $\Upsilon_A = a_1 \vee a_2 \vee \cdots \vee a_n, a_i \in \mathbb{A} \setminus \mathcal{A}$
 - Be used to prove inaccessibility in zero-knowledge

Example 2

$$A = \{Role_A, Role_B, Role_C, Role_\emptyset\}, \hat{\Upsilon}_{\{Role_C\}} = Role_A \lor Role_B \lor Role_\emptyset$$

$$\hat{\sigma}_2 \leftarrow \mathsf{ABS.Sign}(sk_{DO}, hash(o_2)|hash(v_2), Role_A \lor Role_B \lor Role_\emptyset)$$

Performance Evaluation

- TPC-H dataset (1 800 000 records)
- 10 distinct policies (10 global roles, max policy length is 6)

Range Query Performance vs. Range

Join Query Performance vs. Range

Thanks Q&A