# Lesson 21: Systems of Differential Equations: Introduction. Reduction to first-order systems.

#### Francisco Blanco-Silva

University of South Carolina



#### WHAT DO WE KNOW?

- The concepts of differential equation and initial value problem
- The concept of order of a differential equation.
- ► The concepts of general solution, particular solution and singular solution.
- ► Slope fields
- Approximations to solutions via Euler's Method and Improved Euler's Method

- ► First-Order Differential Equations
  - Separable equations
  - Homogeneous First-Order Equations
  - ► Linear First-Order Equations
  - ▶ Bernoulli Equations
  - General Substitution Methods
  - ► Exact Equations

Coefficients

- ► Second-Order Differential Equations
  - ► Reducible Equations
  - ► General Linear Equations (Intro)
  - ► Linear Equations with Constant
    - ► Characteristic Equation
    - ► Variation of Parameters
    - Undetermined Coefficients

## What do we know?

#### LAPLACE TRANSFORMS

| f(x)           | $\mathcal{L}{f} = \int_0^\infty e^{-sx} f(x)  dx$ |              | f(x)               | $\mathcal{L}{f} = \int_0^\infty e^{-sx} f(x)  dx$ |                  |
|----------------|---------------------------------------------------|--------------|--------------------|---------------------------------------------------|------------------|
| 1              | $\frac{1}{s}$                                     | s > 0        | $cf(x) \pm g(x)$   | $cF(s) \pm G(s)$                                  | s > max(a, b)    |
| $x^p$          | $\frac{\Gamma(p+1)}{s^{p+1}}$                     | <i>s</i> > 0 | $x^n f(x)$         | $(-1)^n F^{(n)}$                                  | s > a            |
| $x^n$          | $\frac{n!}{s^{n+1}}$                              | s > 0        | $e^{\alpha x}f(x)$ | $F(s-\alpha)$                                     | $s > a + \alpha$ |
| $e^{\alpha x}$ | $\frac{1}{s-\alpha}$                              | $s > \alpha$ | $\frac{f(x)}{x}$   | $\int_{s}^{\infty} F(\sigma)  d\sigma$            | s > a            |
| $\sin \beta x$ | $\frac{\beta}{s^2 + \beta^2}$                     | s > 0        | $f \star g$        | F(s)G(s)                                          | $s > \max(a, b)$ |
| $\cos \beta x$ | $\frac{s}{s^2 + \beta^2}$                         | s > 0        | f'(x)              | sF(s) - f(0)                                      | s > a            |

DEFINITION

# Systems of Differential Equations

A system of differential equations is a collection of functions and functional equations of the form

$$\begin{cases} y_1^{(n)} = F_1(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \\ y_2^{(n)} = F_2(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \\ \dots \\ y_r^{(n)} = F_r(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \end{cases}$$

order n,r functions

# Systems of Differential Equations

DEFINITION

A system of differential equations is a collection of functions and functional equations of the form

$$\begin{cases} y_1^{(n)} = F_1(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \\ y_2^{(n)} = F_2(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \\ \dots \\ y_r^{(n)} = F_r(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \end{cases}$$

order n,r functions

Some examples

$$\begin{cases} y_1' = x + y_1 - y_2 \\ y_2' = 2y_1 - 3y_2 \end{cases}$$
first order, two functions

## Systems of Differential Equations

#### DEFINITION

A system of differential equations is a collection of functions and functional equations of the form

$$\begin{cases} y_1^{(n)} = F_1(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \\ y_2^{(n)} = F_2(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \\ \dots \\ y_r^{(n)} = F_r(x, y_1, y_1', \dots, y_1^{(n-1)}, y_2, y_2', \dots, y_2^{(n-1)}, \dots, y_r, y_r', \dots, y_r^{(n-1)}) \end{cases}$$

order n,r functions

#### Some examples

$$\begin{cases} y_1' = x + y_1 - y_2 \\ y_2' = 2y_1 - 3y_2 \end{cases}$$
first order, two functions
$$\begin{cases} y_1'' = y_2 + y_3' \\ y_2'' = y_3 - y_1' \\ y_3'' = y_1 + y_2' \end{cases}$$

$$\begin{cases} y_1'' = y_2 + y_3' \\ y_2'' = y_3 - y_1' \\ y_3'' = y_1 + y_2' \end{cases}$$

second order, three functions

TRANSFORMATION TO FIRST-ORDER SYSTEMS

Any differential equation of order n can be transformed into a system of n differential equations of first order:

$$y^{(n)} = F(x, y, y', y'', \dots, y^{(n-1)})$$

TRANSFORMATION TO FIRST-ORDER SYSTEMS

Any differential equation of order n can be transformed into a system of n differential equations of first order:

$$y^{(n)} = F(x, y, y', y'', \dots, y^{(n-1)})$$

We start by assigning  $y_1 = y$  and, to each k-th derivative of y, the function  $y_{k+1}$ :

$$y_1 = y$$
,  $y_2 = y'$ ,  $y_3 = y''$ , ...  $y_n = y^{(n-1)}$ 

TRANSFORMATION TO FIRST-ORDER SYSTEMS

Any differential equation of order n can be transformed into a system of n differential equations of first order:

$$y^{(n)} = F(x, y, y', y'', \dots, y^{(n-1)})$$

We start by assigning  $y_1 = y$  and, to each k-th derivative of y, the function  $y_{k+1}$ :

$$y_1 = y$$
,  $y_2 = y'$ ,  $y_3 = y''$ , ...  $y_n = y^{(n-1)}$ 

Note that now,  $y'_1 = y' = y_2$ ,  $y'_2 = y_3$  and, in general,  $y'_k = y_{k+1}$ . We have the system we required:

$$\begin{cases} y'_1 = y_2 \\ y'_2 = y_3 \\ \dots \\ y'_{n-1} = y'_n \\ y'_n = y^{(n)} = F(x, y, y', y'', \dots, y^{(n-1)}) = F(x, y_1, y_2, \dots, y_n) \end{cases}$$

## Systems of Differential Equations

EXAMPLES

# Transform the differential equation in a first-order system of differential Equations

$$y''' + 3y'' + 2y' - 5y = \sin 2x$$

EXAMPLES

# Transform the differential equation in a first-order system of differential Equations

$$y''' + 3y'' + 2y' - 5y = \sin 2x$$

We start with the assignment of functions first. We stop at three (the order of the differential equation)

$$y_1 = y, \qquad y_2 = y', \qquad y_3 = y''$$

EXAMPLES

# Transform the differential equation in a first-order system of differential Equations

$$y''' + 3y'' + 2y' - 5y = \sin 2x$$

We start with the assignment of functions first. We stop at three (the order of the differential equation)

$$y_1 = y, \qquad y_2 = y', \qquad y_3 = y''$$

We take derivatives now.

EXAMPLES

# Transform the differential equation in a first-order system of differential Equations

$$y''' + 3y'' + 2y' - 5y = \sin 2x$$

We start with the assignment of functions first. We stop at three (the order of the differential equation)

$$y_1=y, \qquad y_2=y', \qquad y_3=y''$$

We take derivatives now.

$$\begin{cases} y_1' = y_2 \end{cases}$$

EXAMPLES

# Transform the differential equation in a first-order system of differential Equations

$$y''' + 3y'' + 2y' - 5y = \sin 2x$$

We start with the assignment of functions first. We stop at three (the order of the differential equation)

$$y_1 = y, \qquad y_2 = y', \qquad y_3 = y''$$

We take derivatives now.

$$\begin{cases} y_1' = y_2 \\ y_2' = y_3 \end{cases}$$

EXAMPLES

# Transform the differential equation in a first-order system of differential Equations

$$y''' + 3y'' + 2y' - 5y = \sin 2x$$

We start with the assignment of functions first. We stop at three (the order of the differential equation)

$$y_1 = y, \qquad y_2 = y', \qquad y_3 = y''$$

We take derivatives now. Note that  $y_3' = y''' = \sin 2x + 5y - 2y' - 3y''$ 

$$\begin{cases} y_1' = y_2 \\ y_2' = y_3 \\ y_3' = \sin 2x + 5y_1 - 2y_2 - 3y_3 \end{cases}$$

TRANSFORMATION TO FIRST-ORDER SYSTEMS

Using the same technique, it is also possible to transform any system of differential equations into another of order one.

TRANSFORMATION TO FIRST-ORDER SYSTEMS

Using the same technique, it is also possible to transform any system of differential equations into another of order one.

# Transform the following system to First-order

$$\begin{cases} y_1'' = -3y_1 + y_2 \\ y_2'' = 2y_1 - 2y_2 + 40\sin 3x \end{cases}$$

TRANSFORMATION TO FIRST-ORDER SYSTEMS

Using the same technique, it is also possible to transform any system of differential equations into another of order one.

# Transform the following system to First-order

$$\begin{cases} y_1'' = -3y_1 + y_2 \\ y_2'' = 2y_1 - 2y_2 + 40\sin 3x \end{cases}$$

TRANSFORMATION TO FIRST-ORDER SYSTEMS

Using the same technique, it is also possible to transform any system of differential equations into another of order one.

## Transform the following system to First-order

$$\begin{cases} y_1'' = -3y_1 + y_2 \\ y_2'' = 2y_1 - 2y_2 + 40\sin 3x \end{cases}$$

$$(Y_1' = Y_2)$$

TRANSFORMATION TO FIRST-ORDER SYSTEMS

Using the same technique, it is also possible to transform any system of differential equations into another of order one.

## Transform the following system to First-order

$$\begin{cases} y_1'' = -3y_1 + y_2 \\ y_2'' = 2y_1 - 2y_2 + 40\sin 3x \end{cases}$$

$$\begin{cases} Y_1' = Y_2 \\ Y_2' = -3Y_1 + Y_3 \end{cases}$$

TRANSFORMATION TO FIRST-ORDER SYSTEMS

Using the same technique, it is also possible to transform any system of differential equations into another of order one.

## Transform the following system to First-order

$$\begin{cases} y_1'' = -3y_1 + y_2 \\ y_2'' = 2y_1 - 2y_2 + 40\sin 3x \end{cases}$$

$$\begin{cases} Y_1' = Y_2 \\ Y_2' = -3Y_1 + Y_3 \\ Y_3' = Y_4 \end{cases}$$

TRANSFORMATION TO FIRST-ORDER SYSTEMS

Using the same technique, it is also possible to transform any system of differential equations into another of order one.

## Transform the following system to First-order

$$\begin{cases} y_1'' = -3y_1 + y_2 \\ y_2'' = 2y_1 - 2y_2 + 40\sin 3x \end{cases}$$

$$\begin{cases} Y_1' = Y_2 \\ Y_2' = -3Y_1 + Y_3 \\ Y_3' = Y_4 \\ Y_4' = 2Y_1 - 2Y_3 + 40\sin 3x \end{cases}$$

#### EXAMPLES

It is often possible to solve a first-order system of differential equations by transforming it to a single differential equation.

#### EXAMPLES

It is often possible to solve a first-order system of differential equations by transforming it to a single differential equation.

Transform the following system into a differential equation, and solve it

$$\begin{cases} y_1' = -2y_2 \\ y_2' = \frac{1}{2}y_1 \end{cases}$$

#### EXAMPLES

It is often possible to solve a first-order system of differential equations by transforming it to a single differential equation.

Transform the following system into a differential equation, and solve it

$$\begin{cases} y_1' = -2y_2 \\ y_2' = \frac{1}{2}y_1 \end{cases}$$

Note that

$$y_1^{\prime\prime}=-2y_2^{\prime}$$

#### EXAMPLES

It is often possible to solve a first-order system of differential equations by transforming it to a single differential equation.

Transform the following system into a differential equation, and solve it

$$\begin{cases} y_1' = -2y_2 \\ y_2' = \frac{1}{2}y_1 \end{cases}$$

Note that

$$y_1'' = -2y_2' = -2(\frac{1}{2}y_1) = -y_1$$

#### EXAMPLES

It is often possible to solve a first-order system of differential equations by transforming it to a single differential equation.

Transform the following system into a differential equation, and solve it

$$\begin{cases} y_1' = -2y_2 \\ y_2' = \frac{1}{2}y_1 \end{cases}$$

Note that

$$y_1'' = -2y_2' = -2(\frac{1}{2}y_1) = -y_1$$

We have then the second order homogeneous linear equation with constant coefficients  $y_1'' + y_1 = 0$ , with general solution

$$y_1 = A\cos x + B\sin x$$

#### EXAMPLES

It is often possible to solve a first-order system of differential equations by transforming it to a single differential equation.

Transform the following system into a differential equation, and solve it

$$\begin{cases} y_1' = -2y_2 \\ y_2' = \frac{1}{2}y_1 \end{cases}$$

Note that

$$y_1'' = -2y_2' = -2(\frac{1}{2}y_1) = -y_1$$

We have then the second order homogeneous linear equation with constant coefficients  $y_1'' + y_1 = 0$ , with general solution

$$y_1 = A\cos x + B\sin x$$

It must be then

$$y_2 = -\frac{1}{2}y_1'$$

#### EXAMPLES

It is often possible to solve a first-order system of differential equations by transforming it to a single differential equation.

Transform the following system into a differential equation, and solve it

$$\begin{cases} y_1' = -2y_2 \\ y_2' = \frac{1}{2}y_1 \end{cases}$$

Note that

$$y_1'' = -2y_2' = -2(\frac{1}{2}y_1) = -y_1$$

We have then the second order homogeneous linear equation with constant coefficients  $y_1'' + y_1 = 0$ , with general solution

$$y_1 = A\cos x + B\sin x$$

It must be then

$$y_2 = -\frac{1}{2}y_1' = \frac{A}{2}\sin x - \frac{B}{2}\cos x$$

#### EXAMPLES

## Transform the system into a differential equation, and solve it

$$\begin{cases} y_1' = y_2 \\ y_2' = 2y_1 + y_2 \end{cases}$$

EXAMPLES

### Transform the system into a differential equation, and solve it

$$\begin{cases} y_1' = y_2 \\ y_2' = 2y_1 + y_2 \end{cases}$$

As before, we start by taking derivatives of the easier equation:

$$y_1'' = y_2' = 2y_1 + y_2$$

EXAMPLES

#### Transform the system into a differential equation, and solve it

$$\begin{cases} y_1' = y_2 \\ y_2' = 2y_1 + y_2 \end{cases}$$

As before, we start by taking derivatives of the easier equation:

$$y_1'' = y_2' = 2y_1 + y_2 = 2y_1 + y_1'$$

EXAMPLES

### Transform the system into a differential equation, and solve it

$$\begin{cases} y_1' = y_2 \\ y_2' = 2y_1 + y_2 \end{cases}$$

As before, we start by taking derivatives of the easier equation:

$$y_1'' = y_2' = 2y_1 + y_2 = 2y_1 + y_1'$$

We have the second-order homogeneous linear equation with constant coefficients

$$y_1'' - y_1' - 2y_1 = 0$$

EXAMPLES

#### Transform the system into a differential equation, and solve it

$$\begin{cases} y_1' = y_2 \\ y_2' = 2y_1 + y_2 \end{cases}$$

As before, we start by taking derivatives of the easier equation:

$$y_1'' = y_2' = 2y_1 + y_2 = 2y_1 + y_1'$$

We have the second-order homogeneous linear equation with constant coefficients

$$y_1'' - y_1' - 2y_1 = 0$$

The general solution is readily found from the roots of the characteristic equation:

$$r^{2} - r - 2 = 0,$$
  $r = \frac{1 \pm \sqrt{1 - 4 \cdot (-2)}}{2} = \frac{1 \pm 3}{2} = \{2, -1\}$ 

EXAMPLES

#### Transform the system into a differential equation, and solve it

$$\begin{cases} y_1' = y_2 \\ y_2' = 2y_1 + y_2 \end{cases}$$

As before, we start by taking derivatives of the easier equation:

$$y_1'' = y_2' = 2y_1 + y_2 = 2y_1 + y_1'$$

We have the second-order homogeneous linear equation with constant coefficients

$$y_1'' - y_1' - 2y_1 = 0$$

The general solution is readily found from the roots of the characteristic equation:

$$r^{2} - r - 2 = 0,$$
  $r = \frac{1 \pm \sqrt{1 - 4 \cdot (-2)}}{2} = \frac{1 \pm 3}{2} = \{2, -1\}$ 

We have

$$y_1 = Ae^{-x} + Be^{2x}$$

EXAMPLES

#### Transform the system into a differential equation, and solve it

$$\begin{cases} y_1' = y_2 \\ y_2' = 2y_1 + y_2 \end{cases}$$

As before, we start by taking derivatives of the easier equation:

$$y_1'' = y_2' = 2y_1 + y_2 = 2y_1 + y_1'$$

We have the second-order homogeneous linear equation with constant coefficients

$$y_1'' - y_1' - 2y_1 = 0$$

The general solution is readily found from the roots of the characteristic equation:

$$r^{2} - r - 2 = 0$$
,  $r = \frac{1 \pm \sqrt{1 - 4 \cdot (-2)}}{2} = \frac{1 \pm 3}{2} = \{2, -1\}$ 

We have

$$y_1 = Ae^{-x} + Be^{2x}$$
  
 $y_2 = y_1' = -Ae^{-x} + 2Be^{2x}$