Inference in Complex Models

Tyler Ransom Duke University

June 23, 2012

Outline

- Review inference
- Talk about clustering
- Talk about bootstrapping

Why all the fuss over standard errors?

- Empiricists are in the business of estimating models and assigning meaning to those model estimates
- Coupled with point estimates, standard errors are the most crucial piece of an empiricists findings
- If the standard errors are wrong, then the results will be wrong, too, because false inferences will be made
- This is why so much energy is spent deriving correct standard errors under a variety of assumptions (e.g. Hayashis textbook)

Standard errors

Economists prefer to have models with parameter estimates that are *consistent* and *asymptotically normal*, i.e.

$$\sqrt{n}\left(\hat{\beta}-\beta\right) \stackrel{d}{\to} N\left(0, \text{Avar}\right)$$

(Hayashi, p. 113)

- We want to know the variance of our parameter estimates so that we can tell whether or not we got a lucky draw, or if they are actually different from some number (typically zero)
- The standard errors of the $\hat{\beta}$ vector are embedded in the $\widehat{\text{Avar}}$ matrix (our estimate of the true Avar matrix)
- In the next few slides, we'll go over what the formula is for Avar in more advanced econometric models

Corrected standard errors in clustered models

Suppose we want to estimate standard errors for models in which there are multiple dimensions of agents

- e.g. in development, we might have data on individuals in families, across villages, and across countries
- We want to get "correct" standard errors for the estimates of our models, and we know that there is some amount of correlation (i.e. heteroskedasticity) within families, villages, and countries
- By "correct" we mean "consistent in the presence of heteroskedasticity"

Other examples of clustering

IO:

• Car data might be classified by vehicle class (e.g. sedan), make (e.g. Ford), and country of origin (i.e. Mitsubishi is different than Toyota, but both come from Japan)

Health:

 Data on patients for a specific doctor and across hospitals for a similarly specialized doctor (i.e. patients for Doctor X, who is an orthopedic surgeon at Hospital Y; and patients for Doctor Z who is an orthopedic surgeon at hospital W)

Education:

• Test scores for students in a certain grade, across teachers, across schools in the same district

Labor:

• Workers in a specific occupation across different firms in different cities

Robust clustered standard errors for GMM models

The formula for robust clustered standard errors is

$$\widehat{Avar} = \left(\mathbf{X}' \mathbf{X} \left(\sum_{j=1}^{N_c} u'_j u_j \right)^{-1} \mathbf{X}' \mathbf{X} \right)^{-1}$$

where

$$u_j = \sum_{i \in i} \varepsilon_i \mathbf{x}_i$$

and N_c is the number of clusters. When each cluster has just one element, this formula collapses to the "robust" variance matrix [next slide]

Robust standard errors for GMM models

Stata's robust option produces the following Avar matrix:

$$\widehat{Avar} = \left(\mathbf{X}' \mathbf{X} \left(\mathbf{X}' \mathbf{B} \mathbf{X} \right)^{-1} \mathbf{X}' \mathbf{X} \right)^{-1}$$

where

- **X** is a matrix of regressors
- $\bullet \ \mathbf{B}_{i,i} = \left(y_i x_i \hat{\beta}\right)^2$

Cluster vs. Robust

When should I use cluster-corrected standard errors, and when should I use robust standard errors?

- If you have any sort of cross-unit correlation (i.e. panel data for people over time, cross sectional data for people over space), you should use cluster-corrected standard errors
- The formula collapses to the regular robust formula if there is no clustering
- If using fixed effects, cluster at the same level as your fixed effects
- If all else fails, you can always bootstrap

Standard errors for other models

- All classical econometric models can be considered as either GMM or MLE. (Furthermore, GMM and MLE are asymptotically equivalent in some situations)
- Most structural econometric models, however, incorporate simulation methods, multiple estimation stages, and/or contraction mapping/fixed point algorithms (in addition to a main GMM/MLE optimization) – we'll cover these in more detail next class
- In these more complex estimation algorithms, it's unclear how the standard errors of the parameter estimates are affected by the use of previous stage estimates and/or simulation draws
- The solution to this problem is bootstrapping, which we will cover today

Bootstrapping

- Suppose we have a crazy model and we have no idea what the variance of our estimates looks like
- The solution to this problem is bootstrapping:
- We can recover the variance matrix by inducing randomness into our estimates by sampling observations *with replacement*
- We can then repeat this a large number of times and look at the distribution of our estimates
- e.g. the 90% confidence interval will be the 5th and 95th percentiles of our bootstrap distribution

Bootstrap Formula

After running *B* bootstrap iterations of the program, the bootstrap approximation to the asymptotic variance is calculated according to

$$\widehat{\text{Avar}} = \frac{1}{B-1} \sum_{h=1}^{B} \left[\widehat{\theta}_{m} (b) - \overline{\widehat{\theta}} \right] \left[\widehat{\theta}_{m} (b) - \overline{\widehat{\theta}} \right]'$$

where $\hat{\theta}_m(b)$ refers to the parameter estimates taken from the subsample of the population (from draw b, with replacement), and $\bar{\theta}$ is the average parameter estimate, computed over the B bootstrap draws.

Example

- Simple example: Suppose we have a random variable Z which is a function of two other random variables X and Y (i.e. $Z = \frac{X}{Y}$), and we want to estimate $\mathbb{E}[Z] = \mathbb{E}\left[\frac{X}{Y}\right]$, as well as the standard error of our estimate
 - Oraw a sample with replacement from the data
 - Calculate mean (Z)
 - Repeat B times
 - Apply the formula from the previous slide
- This same process holds for any estimation routine. Just replace step 2 with whatever estimation you're doing.

Bootstrapping in Matlab

- Matlab has a useful command bootstrp which will automatically sample with replacement and perform bootstrap iterations on any function desired
- For more open-ended problems, randsample is a function that will sample data with replacement so users can bootstrap an estimation procedure which may not fit well with bootstrp
- Syntax:

```
bootstat = bootstrp(nboot,bootfun,d1,...)
y = randsample(population,k,replacement)
```