

AU6350-MGL

USB2.0 Hub-Reader Controller

Technical Reference Manual

Rev. 1.04 30 APR. 2009

AU6350-MGL

USB2.0 Hub-Reader Controller

Rev. 1.04 30 APR. 2009

Copyright

Copyright © 1997 – 2009. Alcor Micro, Corp. All Rights Reserved. No part of this data sheet may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without prior written permission from Alcor Micro, Corp.

Trademark Acknowledgements

The company and product names mentioned in this document may be the trademarks or registered trademarks of their manufacturers.

Disclaimer

Alcor Micro, Corp. reserves the right to change this product without prior notice. Alcor Micro, Corp. makes no warranty for the use of its products and bears no responsibility for any errors that appear in this document. Specifications are subject to change without prior notice.

Revision History

Date	Revision	Description					
Nov 2008	1.00	Official Release					
Jan 2009	1.01	Remove "Table 5.6 Static characteristic: Digital pin"					
Mar 2009	1.02	Modify Feature 1.2.					
Mar 2009	1.03	Modify Pin Description					
Apr 2009	1.04	Modify "Table 5.1 Absolute Maximum Ratings"					

Contact Information:

Web site: http://www.alcormicro.com/

Taiwan

Alcor Micro, Corp. 9F., No.66, Sanchong Rd., Nangang District, Taipei 115, Taiwan, R.O.C.

Phone: 886-2-2653-5000 Fax: 886-2-2786-8567

San Jose Office

2025 Gateway Place, Suite 335 San Jose, CA 95110

USA

Phone: (408) 453-9530 Fax: (408) 453-9523

China ShenZhen Office

Rm.2407-08, Industrial Bank Building No.4013, Shennan Road, ShenZhen, China. 518026

Phone: (0755) 8366-9039 Fax: (0755) 8366-9101

Los Angeles Office

8351 Elm Ave, Suite 103 Rancho Cucamonga, CA 91730 USA

Phone: (909) 483-8821 Fax: (909) 944-0464

<Memo>

Table of Contents

1.	Introduction	3
	1.1 Description	.3
	1.2 Features	
2.	Application Block Diagram	4
3.	Pin Assignment	5
4.	System Architecture and Reference Design	8
	4.1 AU6350 Block Diagram	.8
5.	Electrical Characteristics	9
	5.1 Absolute Maximum Ratings	.9
	5.2 Recommended Operating Conditions	.9
	5.3 General DC Characteristics	.9
	5.4 DC Electrical Characteristics of 3.3V I/O Cells	.10
	5.5 USB Transceiver Characteristics	.10
	5.6 Crystal Oscillator Circuit Setup for Characterization	.13
	5.7 Bus Timing/Electrical Characteristics	.13
6.	Mechanical Information	17
7.	Abbreviations	18

List of Figures

Figure 2.1 Block Diagram	4
Figure 3.1 AU6350-MGL Pin Assignment Diagram	5
Figure 4.1 AU6350-MGL Block Diagram	8
Figure 5.1 Crystal Oscillator Circuit Setup for Characterization	13
Figure 6.1 Mechanical Information Diagram	17
List of Tables	
Table 3.1 AU6350-MGL Pin Descriptions	
Table 5.1 Absolute Maximum Ratings	9
Table 5.2 Recommended Operating Conditions	9
Table 5.3 General DC Characteristics	9
Table 5.4 DC Electrical Characteristics of 3.3V I/O Cells	10
Table 5.5 Electrical characteristics	10
Table 5.6 Static characteristic : Analog I/O pins (DP/DM)	11
Table 5.7 Dynamic characteristic : Analog I/O pins (DP/DM)	12
Table 5.8 DC Electrical Characteristics	13
Table 5.9 High-speed Source Electrical Characteristics	14
Table 5.10 Full-speed Source Electrical Characteristics	15
Table 5.11 Low-speed Source Electrical Characteristics	16

1. Introduction

1.1 Description

AU6350-MGL is a single chip integrated USB2.0 hub and SD/MS card reader controller.

1.2 Features

- HUB
 - Fully compliant with USB Hub Specification version 2.0 and is also backward compatible with USB Hub specification 1.1.
 - Supports three bus-powered/self-powered downstream ports.
 - Supports automatic switching between bus-power and self-power modes.
 - Cost effective design using one transaction translator for all downstream ports.
 - Extra low power consumption.
 - On chip internal pull-up and meets USB bus power regain emend pull down resistors for all data line.
 - Built-in USB 2.0 transceiver.
 - Supports gang modes of power management.
 - Built-in power switch control for over current sensing control.
 - Built-in 1.8V regulator for core logic.
 - Built-in 3.3V regulator
 - Embedded in PLL circuit for 12MHz operation precision.

Card Reader

- USB Device Class Definition for Mass Storage, Bulk-Transport V1.0
- Support SD spec up to ver. 2.0 (SDHC).
- Support MMC spec up to ver. 4.2.
- Support MS spec up to ver. 1.43.
- Support MSPRO spec up to ver. 1.03.
- Compatible to MSPRO-HG spec up to ver. 1.01 with 4-bit data bus
- Hardware DMA engine integrated for performance enhancement.
- Work with default driver from Windows ME/2000/XP and Mac OS X; Windows 98/2000(SP1/SP2) and Mac OS 9 are supported by vendor driver from Alcor.
- Ping-pong FIFO implementation for concurrent bus operation
- Support multiple sectors transfer optimize performance
- Support port-to-slot and read/write operation
- Support Dynamic Icon Utility
- Power switch integrated to reduce production BOM cost

2. Application Block Diagram

AU6350 is a single chip 3-port USB Hub-Reader controller. Its upstream port is connected to a USB Host system. The downstream ports can be used for a mouse, joystick, scanner, printer or other devices.

USB HOST SYSTEM

ALCOR MICRO
AU6350

USB DOWNSTREAM
PORTS

Mouse

Keyboard

Figure 2.1 Block Diagram

3. Pin Assignment

AU6350-MGL is available in 48-pin LQFP package. Below diagram shows signal name of each pin and table in the following page describes each pin in detail.

CARDDATA10 PVDD XSCO CARDDATA9 2 35 CARDDATA8 XSCI CARDDATA7 PVSS 34 DP2_DM CARDDATA6 DP2_DP CARDDATA5 32 **ALCOR MICRO** AVDD 31 CARDDATA4 AU6350-MGL DP3_DM **48PIN LQFP** CARDDATA3 DP3_DP CARDDATA2 29 AVDD CARDDATA1 28 CARDDATA0 AVDD5V VDD 11 26 CONTROLOUTO CF_V33 25 20 22 VDDH SDCDN BUS_PWREDN DP1_PWRUP DP1_OVRCUR ChipResetN SNISW CONTROLOUT1

Figure 3.1 AU6350-MGL Pin Assignment Diagram

Table 3.1 AU6350-MGL Pin Descriptions

Pin #	Pin Name	1/0	Description
1	XSCO		12MHz crystal output
2	XSCI		12MHz crystal input
3	PVSS	GND	Ground
4	DP2_DM		Port2 USB bus
5	DP2_DP		Port2 USB bus
6	AVDD	PWR	3.3V power input
7	DP3_DM		Port3 USB bus
8	DP3_DP		Port3 USB bus
9	AVDD	PWR	3.3V power input
10	V33	PWR	Voltage regulator output 3.3V
11	AVDD5V	PWR	5V power input
12	CF_V33	PWR	card power 3.3V output
13	V18	PWR	1.8V power output
14	PLL_VDD	PWR	1.8V power input
15	PLL_VSS	GND	Ground
16	VDDH	PWR	3.3V power input
17	BUS_PWREDN	I	'1' = Self Powered '0' = Bus Powered
18	VDD	PWR	1.8V power input
4.0			Port1 PowerEnable
19	DP1_PWRUP	0	'0' = power on '1' = power off
	DD4 OVDOUD		Port 1 Overcurrent
20	DP1_OVRCUR	I	'0' = overcurrent '1' = not overcurrent
21	ChipResetN	ı	0' = Reset
			'1' = Run
22	MSINS	I	MS card detect
23	SDCDN		SD card detect
24	CONTROLOUT1	0	MSCLK
25	CONTROLOUT0	0	SDCLK / MSBS
26	VDD	PWR	1.8V power input
27	CARDDATA0	Ю	SDCMD / MSDAT0
28	CARDDATA1	Ю	MSDAT1
29	CARDDATA2	Ю	SDWP / MSDAT2
30	CARDDATA3	Ю	MSDAT3
31	CARDDATA4	IO	SDDAT0 / MSDAT4
32	CARDDATA5	Ю	SDDAT1 / MSDAT5
33	CARDDATA6	IO	SDDAT2 / MSDAT6

Pin #	Pin Name	1/0	Description
34	CARDDATA7	Ю	SDDAT3 / MSDAT7
35	CARDDATA8	Ю	SDDAT4
36	CARDDATA9	Ю	SDDAT5
37	CARDDATA10	Ю	SDDAT6
38	CARDDATA11	Ю	SDDAT7
39	VDDH	PWR	3.3V power input
40	VSSH	GND	Ground
41	USB_DM		Upstream port USB bus
42	USB_DP		Upstream port USB bus
43	AVDD	PWR	3.3V power input
44	USB1_DM		Port1 USB bus
45	USB1_DP		Port1 USB bus
46	AVDD	PWR	3.3V power input
47	UP_RREF		1K 1% current reference resistor
48	PVDD	PWR	3.3V power input

4. System Architecture and Reference Design

4.1 AU6350 Block Diagram

Figure 4.1 AU6350-MGL Block Diagram

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	RATING	UNITS
V _{5IN}	Power Supply	-1 to 6V	V
V_{DDH}	Power Supply	-0.3 to V _{DDH} +0.3	V
V _{IN}	Input Signal Voltage	-0.3 to 3.6	V
V _{OUT}	Output Signal Voltage	-0.3 to V _{DDH} +0.3	V
T _{STG}	Storage Temperature	-40 to 150	°C

5.2 Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNITS
V_{5IN}	5V Power Supply	4.5	5.0	5.5	V
V_{DDH}	Power Supply	3.0	3.3	3.6	V
V _{DD}	Digital Supply	1.62	1.8	1.98	V
V _{IN}	Input Signal Voltage	0	3.3	3.6	V
T _{OPR}	Operating Temperature	0		85	°C

5.3 General DC Characteristics

Table 5.3 General DC Characteristics

	14.0.0 0.0 00.0.0.0 00.0.0.00									
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS				
I _{IN}	Input current	No pull-up or pull-down	-10	±1	10	μА				
I _{OZ}	Tri-state leakage current		-10	±1	10	μΑ				
C _{IN}	Input capacitance	Pad Limit		2.8		ρF				
C _{OUT}	Output capacitance	Pad Limit		2.8		ρF				
C _{BID}	Bi-directional buffer capacitance	Pad Limit		2.8		ρF				

5.4 DC Electrical Characteristics of 3.3V I/O Cells

Table 5.4 DC Electrical Characteristics of 3.3V I/O Cells

SYMBOL	PARAMETER	CONDITIONS		Limits		UNIT
STIVIDUL	PARAIVIETER	CONDITIONS	MIN	TYP	MAX	OIVII
V_{D33P}	Power supply	3.3V I/O	3.0	3.3	3.6	V
V_{il}	Input low voltage	LVTTL			0.8	V
V_{ih}	Input high voltage	LVIIL	2.0			V
V _{ol}	Output low voltage	I _{ol} =2~16mA			0.4	V
V_{oh}	Output high voltage	I _{oh} =2~16mA	2.4			V
R_{pu}	Input pull-up resistance	PU=high, PD=low	55	75	110	ΚΩ
R_{pd}	Input pull-down resistance	PU=low, PD=high	40	75	150	ΚΩ
I _{in}	Input leakage current	V _{in} = V _{D33P} or 0	-10	±1	10	μ A
l _{oz}	Tri-state output leakage current		-10	±1	10	μ A

5.5 USB Transceiver Characteristics

Table 5.5 Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VD33P	Analog supply Voltage		3.0	3.3	3.6	V
VDD V18	Digital supply Voltage		1.62	1.8	1.98	V
I _{CC}	Operating supply current	High speed operating at 480 MHz			55	mA

Table 5.6 Static characteristic : Analog I/O pins (DP/DM)

	Table 5.6 Static chara				1	
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		2.0 Transceiver (HS)				
	Input Lev	vels (differential receiv	ver)			
V _{HSDIFF}	High speed differential input sensitivity	V _{I (DP)} -V _{I (DM)} measured at the connection as application circuit	300			mV
V _{HSCM}	High speed data signaling common mode voltage range		-50		500	mV
V	High speed squelch	Squelch detected			100	mV
V_{HSSQ}	detection threshold	No squelch detected	150			mV
V _{HSDSC}	High speed disconnection	Disconnection detected	625			mV
VHSDSC	detection threshold	Disconnection not detected			525	mV
	T	Output Levels	T	Т		
V _{HSOI}	High speed idle level output voltage(differential)		-10		10	mV
V _{HSOL}	High speed low level output voltage(differential)		-10		10	mV
V _{HSOH}	High speed high level output voltage(differential)		-360		400	mV
V _{CHIRPJ}	Chirp-J output voltage (differential)		700		1100	mV
V _{CHIRPK}	Chirp-K output voltage (differential)		-900		-500	mV
		Resistance				
D	Driver output impedance	Equivalent resistance used as internal chip only	3	6	9	Ω
R_{DRV}	Driver output impedance	Overall resistance including external resistor	40.5	45	49.5	2.2
		Termination	•	•	1	
V_{TERM}	Termination voltage for pull-up resistor on pin RPU		3.0		3.6	V
		.1 Transceiver (FS/LS)			
	Input Lev	vels (differential receiv	ver)			
V _{DI}	Differential input sensitivity	$V_{I(DP)}$ - $V_{I(DM)}$	0.2			V
V _{CM}	Differential common mode voltage		0.8		2.5	V
		ls (single-ended recei	vers)			
V _{SE}	Single ended receiver threshold		0.8		2.0	V
		Output levels				

V _{OL}	Low-level output voltage	0	0.3	V
V_{OH}	High-level output voltage	2.8	3.6	V

Table 5.7 Dynamic characteristic : Analog I/O pins (DP/DM)

Table 5.7 Dynamic characteristic : Analog I/O pins (DP/DM)						
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	D	river Characteristics				
		High-Speed Mode				
t _{HSR}	High-speed differential rise time		500			ps
t _{HSF}	High-speed differential fall time		500			ps
	Full-Speed Mode					
t _{FR}	Rise time	CL=50pF; 10 to 90% of V _{OH} -V _{OL} ;	4		20	ns
t _{FF}	Fall time	CL=50pF; 90 to 10% of V _{OH} -V _{OL} ;	4		20	ns
t _{FRMA}	Differential rise/fall time matching (t _{FR} / t _{FF})	Excluding the first transition from idle mode	90		110	%
V _{CRS}	Output signal crossover voltage	Excluding the first transition from idle mode	1.3		2.0	V
		Low-Speed Mode				
t _{LR}	Rise time	CL=200pF-600pF; 10 to 90% of V _{OH} -V _{OL} ;	75		300	ns
t _{LF}	Fall time	CL=200pF-600pF; 90 to 10% of V _{OH} -V _{OL} ;	75		300	ns
t _{LRMA}	Differential rise/fall time matching (t _{LR} / t _{LF})	Excluding the first transition from idle mode	80		125	%
V _{CRS}	Output signal crossover voltage	Excluding the first transition from idle mode	1.3		2.0	V
V _{OH}	High-level output voltage		2.8		3.6	V

5.6 Crystal Oscillator Circuit Setup for Characterization

The following setup was used to measure the open loop voltage gain for crystal oscillator circuits. The feedback resistor serves to bias the circuit at its quiescent operating point and the AC coupling capacitor, Cs, is much larger than C1 and C2.

Figure 5.1 Crystal Oscillator Circuit Setup for Characterization

5.7 Bus Timing/Electrical Characteristics

Table 5.8 DC Electrical Characteristics

Input Levels for Low-/Full -speed:

SYMBOL	PARAMETER	LIMITS MIN MAX	UNIT	
STIVIBUL	PARAIVIETER		UNII	
V _{IH}	High (Driven)	2.0		V
V_{IHZ}	High (floating)	2.7	3.6	V
V_{IL}	Low		0.8	V
V_{DI}	Differential Input Sensitivity	0.2		V
V _{CM}	Differential Common Mode Range	0.8	2.5	V

Input Levels for High -speed:

SYMBOL	PARAMETER	LIM	IITS	UNIT
STIVIBUL	PARAIVIETER	MIN	MAX	CIVITI
V _{HHSSQ}	High-speed squelch detection threshold (differential signal amplitude)	100	150	mV
V _{HSDSC}	High speed disconnect detection threshold (differential signal amplitude)	525	625	mV

Output Levels for Low-/Full-speed:

CVMDOL	PARAMETER	LIM	IITS	UNIT
SYMBOL	PARAIVIETER	MIN	MAX	
V _{OL}	Low	0.0	0.3	٧
V _{OH}	High (driven)	2.8	3.6	V
V _{OSE1}	SE1	0.8		V
V_{CRS}	Output Signal Crossover Voltage	1.3	2.0	V

Output Levels for High -speed:

SYMBOL	PARAMETER	LIMITS		UNIT
STIVIBUL	PARAIVIETER	MIN MAX	UNII	
V_{HSOI}	High-speed idle level	-10	10	mV
V _{HSOH}	High-speed data signaling high	360	440	mV
V _{HSOL}	High-speed data signaling low	-10	10	mV
V_{CHIRPJ}	Chirp J level (differential voltage)	700	1100	mV
V _{CHIRPK}	Chirp K level (differential voltage)	-900	-500	mV

Terminations:

CVMDOL	PARAMETER	LIMITS		UNIT
SYMBOL	PARAIVIETER	MIN	MAX	UNII
R _{PU}	Bus Pull-up Resistor on Upstream Facing Port	1.425	1.575	kΩ
R _{PD}	Bus Pull-down Resistor on Upstream Facing Port	14.25	15.75	kΩ
Z _{INP}	Input impedance exclusive of pull-up/pull-down (for low-/full-speed)	300		kΩ
V_{TERM}	Termination voltage for upstream facing port pull-up (R _{PU})	3.0	3.6	V

Terminations in High-speed:

SYMBOL	PARAMETER	LIM	LIMITS	
SYIVIBUL	PARAIVIETER	MIN MAX	MAX	UNIT
V _{HSTERM}	Termination voltage in high-speed	-10	10	mV

Table 5.9 High-speed Source Electrical Characteristics

Driver Characteristics:

SYMBOL	PARAMETER	LIMITS		UNIT
STIVIBUL	PARAIVIETER	MIN	MAX	OIVII
T _{HSR}	Rise Time (10%-90%)	500		ps
T _{HSF}	Fall Time (10%-90%)	500		ps
Z _{HSDRV}	Driver Output Resistance (which also serves as high-speed termination)	40.5	49.5	Ω

Clock Timings:

SYMBOL	PARAMETER	LIM	1ITS	UNIT	
STIVIBUL	PARAIVIETER	MIN MAX		OIVII	
T _{HSDRAT}	High-speed Data Rate	479.76	480.24	Mb/s	
T _{HSFRAM}	Micorframe Interval	124.9375	125.0625	μ s	
T _{HSRFI}	Consecutive Microframe Interva	I	4 high-speed bit times		

Table 5.10 Full-speed Source Electrical Characteristics

Driver Characteristics:

CVMDOL	PARAMETER	LIMITS		UNIT
SYMBOL	PARAIVIETER	MIN	MAX	UNII
T_{FR}	Rise Time	4	20	ns
T_{FF}	Fall Time	4	20	ns
T _{FRFM}	Differential Rise and Fall Time Matching	90	111.11	%
Z _{ZRV}	Driver Output Resistance for driver which is not high-speed capable	28	44	Ω

Clock Timings:

SYMBOL	PARAMETER	LIMITS MIN MAX		UNIT
STIVIDUL	PARAIVIETER			
T _{FDRATHS}	Full-speed Data Rate for hubs and devices which are high-speed capable		12.006	Mb/s
T _{FDRATE}	Full-speed Data Rate for devices which are not high-speed capable	11.970	12.030	Mb/s
T _{FRAME}	Frame interval	0.9995	1.0005	Ms
T_{RFI}	Consecutive Frame Interval Jitter		42	ns

Full-speed Data Timings:

SYMBOL	PARAMETER	LIM	ITS MAX	UNIT
STIVIBUL	PARAIVIETER	MIN		
	Source Jitter Total(including			
	frequency tolerance):			
T_{DJ1}	To Next Transition	-3.5	-3.5	ns
T_{DJ2}	For Paired Transitions	-4	-4	ns
т	Source Jitter for Differential	-2	5	ns
T_{FDEOP}	Transition to SE0 Transition	-2	5	115
	Receiver Jitter:			
T_{JR1}	To Next Transition	-18.5	-18.5	ns
T_{JR2}	For Paired Transitions	-9	-9	ns
T_{FEPPT}	Source SE0 interval of EOP	160	175	ns
T_{FEOPR}	Receiver SE0 interval of EOP	82		ns
T _{FST}	Width of SE0 interval during		14	ns
' FST	differential transition		17	113

Table 5.11 Low-speed Source Electrical Characteristics

Driver Characteristics:

SYMBOL	PARAMETER	LIMITS		LINIT
		MIN	MAX	UNIT
T_LR	Rise Time	75	300	ns
T_{LF}	Fall Time	75	300	ns
T_{LRFM}	Differential Rise and Fall Time Matching	80	125	%
C _{LINUA}	Upstream Facing Port (w/cable, low-speed only)	200	450	pF

Clock Timings:

SYMBOL	PARAMETER	LIMITS		UNIT
	PARAIVIETER	MIN	MAX	OIVII
T _{LDRATHS}	Low-speed Data Rate for hubs and devices which are high-speed capable		1.50075	Mb/s
T_{LDRATE}	Low-speed Data Rate for devices which are not high-speed capable	1.4775	1.5225	Mb/s

Low-speed Data Timings:

SYMBOL	PARAMETER	LIMITS		LINIT
		MIN	MAX	UNIT
	Upstream facing port source Jitter			
_	Total(including frequency tolerance):			
T_{UDJ1}	To Next Transition	-95	95	ns
T_{UDJ2}	For Paired Transitions	-150	150	ns
T _{LDEOP}	Upstream facing port source Jitter for Differential Transition to SE0 Transition		100	ns
	Upstream facing port differential Receiver Jitter:			
T_{DJR1}	To Next Transition	-75	75	ns
T_{DJR2}	For Paired Transitions	-45	45	ns
	Upstream facing port differential			
_	Receiver Jitter: To Next Transition	-25	25	no
T _{DDJ1}	For Paired Transitions	-25 -14	14	ns
T_{DDJ2}		-14	14	ns
	Downstream facing port Differential Receiver Jitter:			
T _{UJR1}	To Next Transition	-152	152	ns
T _{UJR2}	For Paired Transitions	-200	200	ns
T _{LEOPT}	Source SE0 interval of EOP	1.25	1.50	μs
T _{LEOPR}	Receiver SE0 interval of EOP	670		ns
T _{LST}	Width of SE0 interval during differential transition		210	ns

6. Mechanical Information

Figure 6.1 Mechanical Information Diagram

7. Abbreviations

In this chapter some of the terms and abbreviations used throughout the technical reference manual are listed as follows.

SIE Serial Interface Engine

SD Secure Digital **MMC** Multimedia Card

UTMI USB Transceiver Macrocell Interface

About Alcor Micro, Corp.

Alcor Micro, Corp. designs, develops and markets highly integrated and advanced peripheral semiconductor, and software driver solutions for the personal computer and consumer electronics markets worldwide. We specialize in USB solutions and focus on emerging technology such as USB and IEEE 1394. The company offers a range of semiconductors including controllers for USB hub, integrated keyboard/USB hub and USB Flash memory card reader...etc. Alcor Micro, Corp. is based in Taipei, Taiwan, with sales offices in Taipei, Japan, Korea and California. Alcor Micro is distinguished by its ability to provide innovative solutions for spec-driven products. Innovations like single chip solutions for traditional multiple chip products and on-board voltage regulators enable the company to provide cost-efficiency solutions for the computer peripheral device OEM customers worldwide.