Séquence 2 : Grandeurs et proportionnalité

I] Reconnaître une situation de proportionnalité

Act. 1

Définition

Deux grandeurs sont proportionnelles si les valeurs de l'une s'obtiennent en multipliant les valeurs de l'autre par un même nombre appelé coefficient de proportionnalité.

Exemple 1

Anna achète pour 1,50 € de bonbons à la boulangerie.

Chaque bonbon coute 0,15 €.

prix à payer =

nombre de bonbons achetés × 0,15

Le prix à payer est proportionnel au nombre de bonbons achetés, avec 0,15 pour coefficient de proportionnalité.

Avec 1,50 €, Anna peut acheter 10 bonbons:

 $1,50 = 10 \times 0,15$.

▶Exemple 2

À la boulangerie, Isham lit:

Prix d'une baquette : 0,85 €

Pour 3 baguettes achetées, la 4º est offerte.

Le prix de 3 baguettes est le même que le prix de 4 baguettes.

Le prix à payer n'est pas proportionnel au nombre de baguettes achetées.

1. Lundi, au marché, Alvin a acheté 1 kg de tomates pour 2,65 €. Mercredi, il achète 3 kg de ces mêmes tomates pour 7,95 €.

Le prix à payer est-il proportionnel à la masse de tomates achetées ?

2. Chloé, qui adore les fruits exotiques, se laisse tenter par des mangues. Elle peut lire : « 2,80 € la mangue et 5 € les 2 ».

Le prix est-il proportionnel au nombre de mangues achetées ?

Solution

1. $1 \times 2,65 = 2,65$ et $3 \times 2,65 = 7,95$.

Dans les deux cas, le prix à payer est égal à la masse de tomates achetées multipliée par 2,65.

Le prix à payer est donc proportionnel à la masse de tomates achetées.

2. Une mangue coute 2,80 €. Si le prix était proportionnel au nombre de mangues achetées, deux mangues couteraient 2 x 2,80 € soit 5,60 €. Le prix à payer n'est donc pas proportionnel au nombre de mangues achetées.

Définition

Dans un tableau représentant deux grandeurs, si les valeurs de la première grandeur sont proportionnelles aux valeurs de la seconde, ce tableau est appelé **tableau de proportionnalité**.

Méthode

Pour déterminer si deux grandeurs représentées dans un tableau sont proportionnelles, on peut calculer les quotients des valeurs correspondantes de ces grandeurs.

▶ Exemple 1

On a relevé dans le tableau ci-dessous la consommation, en fonction du temps, d'un robinet mal fermé.

Temps écoulé (en jours)	1_	7	365	1	×0,432
Quantité d'eau (en L)	0,432	3,024	157,68	2	X 0,432

On calcule les quotients : $\frac{0,432}{1} = 0,432$; $\frac{3,024}{7} = 0,432$; $\frac{157,68}{365} = 0,432$

Tous les quotients sont égaux à 0,432 : le tableau est donc un tableau de proportionnalité. La quantité d'eau est proportionnelle au temps écoulé, avec 0,432 pour coefficient de proportionnalité.

Exemple 2

Angèle et Clara achètent respectivement un pack de 6 litres de jus d'orange à 9,12 € et un pack de 4 litres à 6,48 €. On récapitule ces résultats dans un tableau ci-contre.

Quantité de jus (en L)	6	4
Prix à payer (en €)	9,12	6,48

On calcule les quotients : $\frac{9,12}{6} = 1,52$; $\frac{6,48}{4} = 1,62$

Les quotients ne sont pas égaux, ce tableau n'est donc pas un tableau de proportionnalité. Le prix à payer n'est pas proportionnel à la quantité de jus d'orange achetée ; il n'y a pas de coefficient de proportionnalité. Mila s'entraine en vue d'un semi-marathon. Voici ses derniers résultats :

Distance (en km)	9,6	12,4	16,5	21,1
Temps (en min)	54	69,75	95	124,65

• Ce tableau est-il un tableau de proportionnalité ? Si oui, avec quel coefficient de proportionnalité ?

Solution

On calcule les quotients :

$$\frac{54}{9.6} = \frac{5,625}{12.4} = \frac{69,75}{12.4} = \frac{5,625}{16.5} \approx 5,76$$

Tous les quotients ne sont pas égaux, ce n'est donc pas un tableau de proportionnalité : la distance et le temps ne sont pas des grandeurs proportionnelles. Il n'y a pas de coefficient de proportionnalité. Alizée a découvert un site qui développe des photos en format Polaroid et affiche les tarifs suivants.

• Ce tableau est-il un tableau de proportionnalité ? Si oui, avec quel coefficient de proportionnalité ?

Solution

On calcule les quotients :

$$\frac{0.07}{1} = 0.07$$
; $\frac{0.70}{10} = 0.07$; $\frac{3.50}{50} = 0.07$; $\frac{17.50}{250} = 0.07$

Tous les quotients sont égaux, c'est donc un tableau de proportionnalité: le prix à payer est proportionnel au nombre de photos, avec pour coefficient de proportionnalité 0,07.

XEntraine-toi avec Reconnaître une situation de proportionnalité X

Act. 2

II] Calculer une quatrième proportionnelle

Propriété

Dans un tableau de proportionnalité à quatre cases, lorsque l'on ne connait que trois valeurs, on peut calculer la quatrième valeur, appelée **quatrième proportionnelle**.

Méthode 1

À l'aide du coefficient de proportionnalité

Pour compléter un tableau de proportionnalité, on peut utiliser un coefficient de proportionnalité pour passer d'une ligne à l'autre.

Exemple

Marie voudrait mettre 5,5 L d'essence dans son scooter. La station-service affiche un prix de l'essence à 1,22 € le litre. Combien devrait-elle payer ?

Marie n'a que 5 €. Quelle quantité d'essence peut-elle acheter ?

On représente cette situation par un tableau de proportionnalité :

Le prix à payer est proportionnel à la quantité d'essence achetée avec pour coefficient de proportionnalité 1,22. Marie devrait donc payer $5,5 \times 1,22 \in \text{soit } 6,71 \in .$

Avec 5 €, Marie peut acheter 5 L ÷ 1,22 soit environ 4,1 L.

Méthode 2

Liens entre les colonnes

Pour obtenir les nombres d'une colonne dans un tableau de proportionnalité, on peut :

- multiplier ou diviser les nombres d'une autre colonne par un même nombre ;
- ajouter ou soustraire les nombres de deux autres colonnes.

Exemple

Une recette de pâte à crêpes indique qu'il faut 300 g de farine pour cuisiner 12 crêpes. Quelle masse de farine faut-il pour cuisiner 4 crêpes ? 16 crêpes ?

La masse de farine à utiliser est proportionnelle au nombre de crêpes à cuisiner, on peut donc faire un tableau de proportionnalité.

Pour faire 4 crêpes, il faut utiliser : $300 g \div 3$ soit 100 g de farine

Pour faire 16 crêpes, il faut utiliser : 300 g + 100 g soit 400 g de farine

Pour chaque ingrédient, la quantité est proportionnelle au nombre Nombre de personnes de personnes. Pour passer de 4 à 10 personnes, il faut multiplier la Masse de farine (g) quantité par 2,5 (car $\frac{10}{4}$ = 2,5). Il faut donc 2,5 × 500 g de farine, soit 1 250 g (ou 1,25 kg) de farine.

1 250

De la même façon, on multiplie la quantité de chaque ingrédient par 2,5, ce qui donne 625 g de sucre, 5 œufs, 2,5 yaourts nature, 12,5 g de levure en poudre et 50 cL d'huile.

(Méthode 3)

Passage par l'unité

Pour traiter une situation de proportionnalité, il est parfois plus judicieux de revenir à l'unité.

▶Exemple

Lucile a acheté 3 cahiers pour 4,05 €.

Emma a besoin de 7 cahiers. Combien devra-t-elle payer?

Nombre de cahiers	3	7
Prix (en €)	4,05	?

3 cahiers coutent 4,05 €, donc 1 cahier coute $\frac{4,05€}{3}$ = 1,35 €.

Donc 7 cahiers coutent $7 \times 1.35 \in 9.45 \in$.

Lionel a trouvé un petit job d'été. Il est payé à la journée. En travaillant 5 jours, il a gagné 325 €.

1. Combien gagnera-t-il en travaillant pendant 9 jours?

2. Combien de jours devra-t-il travailler pour obtenir les 1 000 € qu'il convoite?

1. $\frac{325}{5}$ = 65 donc 1 jour de travail est payé 65 €.

Nombre de jours de travail 1 000 Salaire (€) 325

65 € × 9 = 585 €. Lionel sera payé 585 € pour 9 jours.

≈ 15,4 donc Lionel devra travailler 16 jours pour gagner au moins 1 000 €.

🐉 Bilan environnemental de nos assiettes 🧩

III] Utiliser un pourcentage ou une échelle

Propriété

p désigne un nombre positif.

Calculer p % d'une quantité revient à multiplier cette quantité par $\frac{p}{100}$

▶Exemple

Dans un pot de crème fraiche de 20 cL, il y a 12 % de matière grasse.

12 % de 20 = $\frac{12}{100}$ × 20 = 2,4. La quantité de matière grasse dans le pot est égale à 2,4 g.

Un pourcentage exprime une proportion par rapport à 100. Il peut s'écrire sous plusieurs formes :

15 % =
$$\frac{15}{100}$$
 = 0,15
pourcentage écriture fractionnaire écriture décimale

Méthode

Pour calculer un pourcentage, on peut exprimer une proportion de dénominateur 100 ou utiliser un tableau de proportionnalité.

▶Exemples

À l'aide d'une proportion de dénominateur 100

4 personnes sur 5 trient leurs déchets. Quel pourcentage cela représente-t-il?

On peut exprimer $\frac{4}{5}$ comme une proportion de dénominateur 100 : $\frac{4}{5} = \frac{80}{100} = 80 \%$.

80 % des personnes trient leurs déchets.

À l'aide d'un tableau de proportionnalité

Dans une classe de 23 élèves de 3^e, 15 élèves connaissent leur orientation scolaire pour l'année suivante. Quel pourcentage cela représente-t-il ?

On peut représenter cette situation par un tableau de proportionnalité :

 $\frac{23}{15}$ ≈ 65,2. La proportion d'élèves connaissant leur orientation est d'environ 65,2 %.

• Quel était le pourcentage de femmes députées ?

Solution

Le nombre total de députés est 228 + 349 = 577. Le coefficient de proportionnalité qui permet de calculer le nombre de femmes députées est $\frac{228}{577}$.

calculer le nombre de femmes députées est $\frac{228}{577}$. Le pourcentage de femmes députées était donc $100 \times \frac{228}{577} \approx 40 \%$.

En 2003, on a utilisé en France 15 milliards de sacs plastique. En 2010, cette consommation avait diminué de 95 %.

Combien de sacs plastique a-t-on utilisé en 2010 ?

Solution

Nombre de femmes députées

 $\frac{95}{100}$ × 15 000 000 000 = 14 250 000 000

Le nombre de sacs plastique utilisés a diminué de 14 250 000 000.

15 000 000 000 – 14 250 000 000 = 750 000 000 On a utilisé 750 millions de sacs plastique en 2010.

★Entraine-toi avec Pourcentages

 ★ Economie circulaire: Aluminium

Définition

On dit qu'un plan est à l'échelle si les distances sur le plan sont proportionnelles aux distances réelles. Le coefficient de proportionnalité égal au rapport $\frac{\text{distances sur le plan}}{\text{distances réelles}}$, où les deux distances sont exprimées dans la même unité, est appelé échelle du plan.

Remarque

Dire qu'un plan est à l'échelle $\frac{1}{1000}$ signifie que 1 cm sur le plan représente 1000 cm en réalité.

▶ Exemple

La distance à vol d'oiseau entre Bordeaux et Pau sur une carte à l'échelle $\frac{1}{250\ 000}$ est de 86 cm.

 $? = 250\,000 \times 86 = 21\,500\,000.$

Distances sur le plan (en cm) 1 86
Distances réelles (en cm) 250 000 ?

La distance entre Bordeaux et Pau est donc de 21 500 000 cm, soit 215 km.

La distance à vol d'oiseau entre deux villes est 75 km. Sur une carte, on mesure 5 cm entre ces villes.

1. Quelle est l'échelle de la carte ?

2. La distance sur la carte entre deux autres villes est de 3,2 cm. Quelle est la distance réelle entre ces deux villes ?

Solution

1. 75 km = 7 500 000 cm

Chercher l'échelle de la carte revient à

Longueur réelle (cm) 1 5 3,2

Longueur réelle (cm) ? 7 500 000 ?

chercher quelle longueur 1 cm sur la carte représente dans la réalité. Le coefficient de proportionnalité qui permet de calculer les longueurs réelles est $\frac{7500000}{5} = 1500000$

L'échelle de la carte est donc 1500 000 .

2. 3,2 cm \times 1 500 000 = 4 800 000 cm = 48 km. La distance entre ces deux villes est de 48 km.

IV] Partager une quantité selon un ratio

Définition

a, b, i et j désignent des nombres positifs. On dit que les deux nombres a et b sont dans le ratio i:j si $\frac{a}{i} = \frac{b}{i}$.

▶Exemples

- Deux nombres a et b sont dans le ratio 2:3 si $\frac{a}{2} = \frac{b}{3}$.
- Partager des œufs de Pâques selon le ratio 2:3 entre Raphaël et Enzo signifie qu'à chaque fois qu'on donne 2 œufs à Raphaël, on en donne 3 à Enzo.
 Le nombre d'œufs de Raphaël et le nombre d'œufs de Enzo sont alors dans le ratio 2:3.

	Pour Raphaël	Pour Enzo
1 ^{er} tour		
2e tour		
3e tour		

Propriétés

a et b désignent des nombres positifs. Si a et b sont dans le ratio 2:3, alors :

- le tableau ci-contre est un tableau de proportionnalité ;
- a est égal à $\frac{2}{5}$ du nombre a+b; b est égal à $\frac{3}{5}$ du nombre a+b.

Remarque

Cette propriété reste vraie si l'on remplace 2 et 3 par d'autres nombres positifs.

▶ Exemple

On partage 30 œufs de Pâques selon le ratio 2:3 entre Raphaël et Enzo.

- Raphaël obtiendra $\frac{2}{5}$ des œufs, soit $\frac{2}{5} \times 30 = 12$ œufs.
- Enzo obtiendra $\frac{3}{5}$ des œufs, soit $\frac{3}{5} \times 30 = 18$ œufs.

12 18 2 3

Le tableau ci-contre est un tableau de proportionnalité.

Charlotte veut faire de la peinture mauve en mélangeant du bleu et du rouge dans le ratio 3 : 2. Elle dispose de 1,5 L de peinture bleue.

- 1. Quelle quantité de peinture rouge doit-elle utiliser?
- 2. Combien obtiendra-t-elle de peinture mauve ?

Solution

1.

Le tableau ci-contre est un tableau de proportionnalité, avec

2 pour coefficient de proportionnalité.

On a donc: $\frac{2}{2} = 1$. Charlotte doit utiliser 1 L de peinture rouge.

2. La quantité de peinture mauve qu'elle obtiendra sera : 1,5 L + 1 L = 2,5 L.

Définition

a, b, c, i, j, k désignent des nombres positifs. On dit que a, b et c sont dans le ratio i: j: k si $\frac{a}{i} = \frac{b}{i} = \frac{c}{k}$.

Exemples

- Trois nombres a, b et c sont dans le ratio 2:3:5 si $\frac{a}{2} = \frac{b}{3} = \frac{c}{5}$.
- Dans la recette d'un gâteau pour 4 personnes, il faut 200 g de sucre, 300 g de farine et 500 g de lait. Les masses de sucre, de farine et de lait sont dans le ratio 2 : 3 : 5 puisque $\frac{200}{3} = \frac{300}{3} = \frac{500}{5} = 100$.

Le cocktail Bora-Bora se prépare avec de la grenadine, du jus de fruit de la passion et du jus d'ananas selon le ratio 1 : 6 : 13.

 Pour préparer 1 litre de ce cocktail, quelle quantité de chaque ingrédient faut-il?

Solution

1 + 6 + 13 = 20 donc il faut:

- $\frac{1}{20}$ × 100 cL = 5 cL de grenadine;
- $\frac{6}{20}$ × 100 cL = 30 cL de jus de fruit de la passion ;
- $\frac{13}{20}$ × 100 cL = 65 cL de jus d'ananas.