

deciBel?

	3 dB	6 dB	10 dB	20 dB
Power ratio	2	4	10	100
Voltage ratio	1.414	2	3.16	10

ratio (dB) = $10 \log_{10} \left(\frac{P_1}{P_2} \right)$

- Logarithmic unit, to express power ratio
 originally used in telephone system design
- Bel = common log of power ratio
 unit too large, so use deci-Bel instead (dB)
- Often also used for voltage or current ratio...
 - for same resistance, power \propto voltage² ...

ratio (dB) = $10 \log_{10} \left(\frac{{V_1}^2}{{V_2}^2} \right) = 20 \log_{10} \left(\frac{{V_1}}{{V_2}} \right)$

Analogue Example

- Want to send analogue speech signal
 - from Dublin to Limerick
 - distance ~ 200 km
- Using cable
 - attenuation 0.8 dB/km
 - or gain -0.8 dB/km
 - so total gain 10⁻¹⁶
 - at frequencies in range 300 Hz to 3 kHz
- Receiver needs 10 nW to operate properly (10⁻⁸ W)
- What power do we need to transmit?
 - most of this will be lost in cable...

..

deciBel Calculations

cable attenuation 0.8 dB/km length 200 km

RX

- attenuation 0.8 dB/km means gain -0.8 dB/km
- The hard way: -0.8 dB is ratio 0.832
 - signal scaled by factor 0.832 for every km
 - after n km, power reduced by factor 0.832ⁿ
 - after 200 km, factor is $0.832^{200} = 10^{-16}$
- Using dB
 - log ⇒ raise to power becomes multiply
 - gain -0.8 dB/km, 200 km, total gain -160 dB

$$-160 \text{ dB} = 10 \log_{10} \left(\frac{P_{RX}}{P_{TX}} \right) \Rightarrow \log_{10} \left(\frac{P_{RX}}{P_{TX}} \right) = -16 \Rightarrow \frac{P_{RX}}{P_{TX}} = 10^{-16}$$

Power in dB

power (dBW) =
$$10 \log_{10} \left(\frac{P}{1 \text{ W}} \right)$$

power (dBm) = $10 \log_{10} \left(\frac{P}{1 \text{ mW}} \right)$

- deciBel intended for power ratio relative power
 - often used for absolute power
 - extra letter indicates reference power
- In our example:
 - receive power 10 nW = 10^{-5} mW or -50 dBm
 - required transmit power greater by 160 dB
 - so need +110 dBm, or +80 dBW or 10⁸ W
- Realistic transmit power ≤1 W
 - if transmit 1 W, how far can we send the signal?
 - -1 W = +30 dBm, need -50 dBm, so max loss 80 dB
 - so max distance 100 km (on this cable)

Analogue Example again

- Why does receiver need 10 nW?
 - maybe noise power at receiver is 10 pW
 - some from last few km of cable, more from receiver
 - and we want S/N ratio 1000, or 30 dB
 - note 10 nW in 600 Ω is ~2.5 mV rms
- How do we transmit over long distances?
 - better cable? but always some loss...
 - think of telephone call to Australia...
 - think of telephone call to Australia...
 - add an amplifier? could compensate for loss...
 - where to put the amplifier?

UCD DUBLIN

UCD DUBLIN 13

Digital Transmission - Regeneration

- Long-distance transmission
 - don't amplify regenerate along the way
 - receive signal, transmit new signal
 - full amplitude, ~no noise
- Perfect transmission?
 - not quite always some probability of error
 - regenerator makes decision, just like receiver
 - so some prob. of error at every regenerator...
 - if regenerate early, while S/N still high,
 - can keep probability of error very low

15

Guglielmo Marconi (1874 - 1937)

- Developed long-distance "wireless" telegraphy
 - technically and commercially
- Nobel Prize in Physics in 1909 (with K F Braun)

M M M

• First commercial trans-Atlantic service 1907

- Clifden to Nova Scotia

25

Clifden

• Derrygimla bog, 120 hectare site

- opened 1907, first message to Nova Scotia
- tall masts supporting long antenna (aerial) wires
- 150 permanent staff, 200 seasonal
 - electricity generators, narrow-gauge railway
 - destroyed 1922 casualty of war

26

Propagation of Radio Waves

- Applies to all electromagnetic waves
 - propagating in free space (not guided)
- Above 300 MHz...
 - e.g. most modern communication systems
 - assume straight-line propagation, like light
 - called "line of sight" propagation
- On earth, range limited ~10s of km
 - curve of earth, mountains, etc.
 - range depends on terrain, height of antennas...
 - buildings attenuate, flat surfaces reflect...
 - multi-path propagation in urban environment

8

Frequency Spectrum 1 10 100 1k 10k 100k 1M 10M100M 1G 10G100G 1T 10T100T 1P 10P100P 1E frequency (Hz) 10 11 12 13 14 15 16 17 18 Audio Frequencies Infra-red Biomedical Radio Waves X rays Visible signals Optical fibre Terrestrial Satellite 50Hz systems electricity AM radio FM GSM • Early work at low(ish) frequencies - long-wave band - now LF, 30 kHz to 300 kHz - medium-wave band - now MF, 300 kHz to 3 MHz - short-wave band - now HF, 3 MHz to 30 MHz ucd UCD - added VHF, 30 MHz to 300 MHz - then UHF, 300 MHz to 3 GHz . . .

Regulation

www.comreg.ie

- Radio frequency spectrum is scarce resource
 - every transmission affects everyone
 - waves don't recognise international borders
- Governments control transmissions
 - allocate parts of frequency spectrum to users
 - usually pay annual fee for permission to transmit
 - may re-allocate same frequency in different area
- International agreements
 - different bands of frequency assigned to different applications
 - e.g. TV broadcast, mobile phone, air traffic control

- anyone can transmit, with some limit on power
- no guarantee of protection from interference...

30

Antenna Properties

- Radiation pattern
- Beamwidth

ucd UCD

- angular width of main beam, to half-power points
- Gain, G (ratio, often in dB, or dBi)
 - $\mbox{-}\mbox{improvement}$ in power density, in desired direction
 - relative to hypothetical *isotropic radiator* uniform pattern
- Aperture or effective aperture, A (m²)
 - collecting area of antenna
- Reciprocity antenna properties same for tx or rx
 - so receive antenna has gain, beamwidth
 - although easier to think about when transmitting...

32

Power Density

- Power per unit area
- For isotropic radiator (hypothetical)
 - transmit power spread uniformly in 3 dimensions

- at distance r, surface area $4\pi r^2$
- so transmit power P_{tx} gives power density (at distance r) $D = \frac{P_{tx}}{4\pi r^2}$
- Real antenna, gain G_{tv}

- increased by gain of antenna
 - at expense of other directions...

- · Power density at receiver
 - falls with square of distance

$$D_{rx} = \frac{P_{tx} G_{tx}}{4\pi r^2}$$

- · Received power
 - power density at receiver × aperture of receive antenna

$$P_{rx} = D_{rx} A_{rx}$$

- fundamental equation:

$$P_{rx} = \frac{P_{tx} G_{tx} A_{rx}}{4\pi r^2}$$

- Notes on received power:
 - independent of frequency (but G_{tx} might not be)

- analysis not valid close to transmit antenna

Power Calculation

- Often work with gain of receive antenna
 - related to aperture: $G_{rx} = \frac{4\pi A_{rx}}{2^2}$

• effective isotropic radiated power

- where $\lambda = \frac{c}{f}$ is wavelength in free space
- Then equation becomes: $P_{rx} = \frac{P_{tx} G_{tx} G_{rx} \lambda^2}{(4\pi)^2 r^2}$

- also use $EIRP = P_{tx}G_{tx}$
 - combines transmit power and antenna gain

Long-distance Links on Earth

- Use "repeater" along the way (maybe many)
 - often on convenient hill-top...
 - receive, amplify, re-transmit on different freq.
 - Dublin Cork might use 4 or 5 repeaters...
 - on hills, mountains, high buildings or high masts 37

Satellite Communications

- Repeater in orbit
 - called *transponder*
 - satellite has many transponders, solar power
- Geostationary satellite altitude 36 000 km
 - orbit synchronised with earth's rotation
 - easy to aim antenna, but very long paths
 - signals severely attenuated, long time delay
 - can cover large fraction of earth's surface
- Low-orbit satellite 200 to 2000 km
 - moving relative to user on earth
 - but shorter path, stronger signals, less delay 39

