Using the cumulative distribution (continuous RVs)

Recall that the cumulative distribution, F_X of a continuous random variable X with density f_X is the function

$$s o F_X(s)=P(X\leq s)=\int_{-\infty}^s f_X(x)dx.$$

It is a very convenient tool to deal with continuous random variables, often easier to handle than the density itself. If we have the cumulative distribution, we can typically recover the density as $f_X(x) = F_X'(x)$ (this requires that f_X be continuous a x but discontinuities can be ignored in most examples). READ Fact 3.13 in the book.

Examples:

- If X is $\text{Exp}(\lambda)$, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}_{(0,+\infty)}(x)$ and $F_X(x) = (1 e^{-\lambda x}) \mathbf{1}_{(0,+\infty)}(x)$. There is a discontinuity at 0 but we do not care about the value of f_X at one particular single point.
- Suppose X is $\text{Exp}(\lambda)$ and $Y = \ln(X)$. This is well defined because X > 0. The cumulative function for Y is, for s > 0,

$$F_Y(s)=P(Y\leq s)=P(\ln X\leq s)=P(X\leq e^s)=1-e^{-\lambda e^s}.$$

Taking derivative for y>0 gives $f_Y(y)=\lambda e^y e^{-\lambda e^y}$. Of course, we know that the density f_Y is 0 on the entire negative semi-axis.

Question: What is the best way to see that the function $s \to \lambda e^s e^{-\lambda e^s}$ is integrable on $(0, +\infty)$?