Theory of Computation Supplementary math session

Spring 2017

Professor Natasha Sharygina Informatics Department University of Lugano

www.inf.unisi.ch

Math session

- Preliminaries
 - Set Notation, Strings, Languages, Graphs
 - First order logic
 - Propositional logic

Set – collection of finite or infinite elements

Examples: $A=\{1,5,7,10\}, \{x \mid R(x)\}, \{\emptyset\}$

|A| - number of elements (size or cardinality) of set A

Operations:

$$A \cap B$$
, $A \cup B$, $A \setminus B$, 2^A , $A \in D$, $D = \{..., -1, 0, 1, 2, ...\}$ - Int or $D = \{0,1,2,...\}$ - Nat, $A \notin D$, $A \subseteq B$, $A = B$, $A \subseteq B$

Cartesian product of A and $B: A \times B$ — set of ordered pairs n-tuple is an object with exactly n elements

- String finite (infinite) sequence over some pre-defined alphabet (Σ), ϵ empty string
- Language (L) finite (infinite) set of strings over Σ
- Operations on strings:
 - Concatenation (abba.baa.cbb)
 - Repetition (σ^* set of strings with a finite repetition of σ) L* language obtained from L by repeatedly concatenating 0 or more words from L
 - Set operators
 - u.v u is prefix, v is suffix
 - What is n-fix notation?

 Graph – collection of objects with some (binary) relation among them, G = (N,E), N – nodes, E:= N x N = {(q1,q2), (q1,q3)} - edges

Facoltà di scienze informatiche

Sets, Strings, Languages, Graphs

- L: $E \rightarrow D$, D set of labels
- $G = (N,E,D,L), E := N \times D \times N$

- Path finite (or infinite) sequence of nodes
- Infinite path at least one node appears infinitely often

$$q_1 \rightarrow q_3 \rightarrow q_1 \rightarrow q_3 \rightarrow q_1 \rightarrow$$

Università della Svizzera italiana

Facoltà di scienze informatiche

Sets, Strings, Languages, Graphs

 A directed graph is a strongly connected graph if 3 directed path between any pair of its nodes Facoltà di scienze informatiche

Sets, Strings, Languages, Graphs

Unwinding (unfolding) of a graph to obtain Infinite Tree

Mathematical Logic

Mathematical logic formalizes the notion of a proof

- Logic Syntax
 How to write legal formulas
- Logic Semantics
 Meaning to each formula

First Order Logic

- Variables range over specific domains (e.g., integers or reals)
- Relations such as ≤, x or +
- Reasons about all (∀) the objects in the domain
- Asserts that exists (∃) an object satisfying a property

Expression:

term ::= var | const | func(term,...,term)

Assignement:

 $a: V \rightarrow D$, V –set of Variables, D - domain

Facoltà di scienze informatiche

First Order Logic Formulas

- simple_form ::= rel(term,...,term) | term = term
- form ::= simple_form | (form ∧ form) | (form ∨ form) | (¬form) | ∀var(form) | ∃var(form) | true | false

First Order Logic Formulas (2)

- Expressiveness of first order logic (descriptive power of formalism):
 - · the graph is undirected
 - there are no unconnected nodes
- Can not express:
 - · If graph is finite
 - If it contains cycles
 - If the graph is connected

Propositional Logic

- No quantification, no functions, no relation
- It has a set of propositional variables, AP = {true, false}
- form := prop | (form ∧ form) | (form ∨ form) |
 (¬form) | (form → form) | true | false