BMI/CS 576 - Day 16

- Today
 - Parsimony
- Next week
 - Genome annotation
 - Markov chains and hidden Markov models

Upcoming events

- Midterm grades back on Friday
- HW3 posted soon (likely tomorrow)
- Mid-semester survey out soon

Fitch's Algorithm: Step 1 Possible States for Internal Nodes

- do a *post-order* (from leaves to root) traversal of tree
- determine possible states R_i of internal node i with children j and k

$$R_{i} = \begin{cases} R_{j} \cup R_{k}, & \text{if } R_{j} \cap R_{k} = \emptyset \\ R_{j} \cap R_{k}, & \text{otherwise} \end{cases}$$

this step calculates the number of changes required
of changes = # union operations

Fitch's Algorithm: Step 2 Select States for Internal Nodes

- do a pre-order (from root to leaves) traversal of tree
- select state r_i of internal node j with parent i

$$r_{j} = \begin{cases} r_{i}, & \text{if } r_{i} \in \mathbb{R}_{j} \\ & \text{arbitrary state} \in R_{j}, & \text{otherwise} \end{cases}$$

Quiz

Given this tree, what is the minimum number of changes required to explain these characters?

At least 2 changes are required

(can also select G at root node to give same number of changes)

Fitch's Algorithm: Step 2

4 changes to explain characters at leaves in this example

Parsimony scoring with longer sequences at leaves

(column 1)

(column 2)

(column 3)

Searching through tree space for parsimony methods

- Heuristic greedy search
 - Start with an arbitrary tree
 - Move around tree space via nearest-neighbor interchanges to improve score
 - Stop when no move can improve score
- Branch and bound
 - Grow trees starting from partial tree with three leaves in all possible ways (branch)
 - Stop growing a given partial tree if the lower bound on the score of a full tree that contains it is larger than the best score of a full tree seen thus far (bound)

Searching through tree space for parsimony methods

- Heuristic greedy search
 - Not guaranteed to find optimal solution
 - But generally fast
- Branch and bound
 - Guaranteed to find optimal solution
 - In worst case, exponential time
 - Three variants given in lecture
 - All are guaranteed to find optimal solution
 - Vary in memory, time requirements

NJ in day 15 notebook

- You may get ties in the last two iterations
 - Any choice should get you the same unrooted tree
- Testing code was improved to ensure that branch lengths were checked correctly
 - Try submitting again if your branch lengths were marked as incorrect