

Discrete-Time Dynamic Consensus on the Max Value

Diego Deplano*, Mauro Franceschelli*, Alessandro Giua*

*Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy

15th European Workshop on Advanced Control and Diagnosis, ACD 2019, Bologna, Italy

Outline

- Introduction
- 2 Proposed Dynamic Max Consensus Protocol
- Simulations
- Conclusions and Future works

Outline

- Introduction
- 2 Proposed Dynamic Max Consensus Protocol
- Simulations
- 4 Conclusions and Future works

Problem set-up

Undirected Network
$$\rightarrow \mathcal{G} = (\mathcal{V}, \mathcal{E})$$

Set of agents $\rightarrow \mathcal{V} = \{1, \dots, n\}$
Set of interactions $\rightarrow \mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
State of agent $i \rightarrow x_i \in \mathbb{R}$
Input of agent $i \rightarrow u_i \in \mathbb{R}$
Neighbors of agent $i \rightarrow \mathcal{N}_i = \{j | (j, i) \in \mathcal{E}\}$

$$x_i(k+1) = f_i\left(\mathbf{u}_i(k), \ x_i(k), \ x_j(k) : j \in \mathcal{N}_i\right) \tag{1}$$

Static Consensus Problem

CONSENSUS

$$\lim_{k \to \infty} ||x_i(k) - g(x_j(0) : j \in \mathcal{V})|| = 0 \quad \forall i \in \mathcal{V}$$

CONSENSUS AVERAGI

$$\lim_{k \to \infty} ||x_i(k) - \frac{1}{n} \sum_{j \in \mathcal{V}} x_j(0)|| = 0 \qquad \forall i \in \mathcal{V}$$

CONSENSUS MAX VALUE^[1-6]

$$\lim_{k \to \infty} ||x_i(k) - \max_{j \in \mathcal{V}} x_j(0)|| = 0 \qquad \forall i \in \mathcal{V}$$

- [1] Cortés (2008)
- [2-3] **B. M. Nejad et al.** (2009-2010
- [4] F. lutzeler et al. (2012
- [5] **S. Zhang et al.** (2016)
- 6 M. Abdelrahim et al. (2017

Static Consensus Problem

CONSENSUS

$$\lim_{k \to \infty} ||x_i(k) - g(x_j(0) : j \in \mathcal{V})|| = 0 \quad \forall i \in \mathcal{V}$$

CONSENSUS AVERAGE

$$\lim_{k \to \infty} ||x_i(k) - \frac{1}{n} \sum_{j \in \mathcal{V}} x_j(0)|| = 0 \qquad \forall i \in \mathcal{V}$$

CONSENSUS MAX VALUE^[1-6]

$$\lim_{k \to \infty} ||x_i(k) - \max_{j \in \mathcal{V}} x_j(0)|| = 0 \qquad \forall i \in \mathcal{V}$$

- [1] Cortés (2008)
- [2-3] **B. M. Nejad et al.** (2009-2010
- [4] F. lutzeler et al. (2012)
- 5] **S. Zhang et al.** (2016)
- 6 M. Abdelrahim et al. (2017)

Static Consensus Problem

$$\lim_{k o\infty}\|x_i(k)-g(x_j(0):j\in\mathcal{V})\|=0\quad orall i\in\mathcal{V}$$

$$\lim_{k \to \infty} ||x_i(k) - \frac{1}{n} \sum_{j \in \mathcal{V}} x_j(0)|| = 0 \qquad \forall i \in \mathcal{V}$$

CONSENSUS MAX VALUE^[1-6]

$$\lim_{k \to \infty} ||x_i(k) - \max_{j \in \mathcal{V}} x_j(0)|| = 0 \qquad \forall i \in \mathcal{V}$$

- [1] Cortés (2008)
- [2-3] B. M. Nejad et al. (2009-2010)
- [4] F. lutzeler et al. (2012)
- [5] S. Zhang et al. (2016)
- [6] M. Abdelrahim et al. (2017)

Dynamic Consensus Problem

DYNAMIC CONSENSUS

$$\lim_{k \to \infty} ||x_i(k) - g(u_j(k) : j \in \mathcal{V})|| \le e \quad \forall i \in \mathcal{V}$$

DYNAMIC

CONSENSUS MAX VALUE

$$\lim_{k \to \infty} \|x_i(k) - \max_{j \in \mathcal{V}} u_j(k)\| \le e \qquad \forall i \in \mathcal{V}$$

No solutions to the dynamic consensus on max value problem

Main Contribution

We propose the first protocol to solve the dynamic consensus on max value problem with a bounded relative error $\hat{\varepsilon}$.

Denoting the max value $\bar{u}(k) = \max_{i \in \mathcal{V}} u_i$, for each agent i it holds

$$\lim_{k \to \infty} ||x_i(k) - \bar{u}(k)|| \le \hat{\varepsilon} \cdot \bar{u}(k).$$

Dynamic Consensus Problem

$$\lim_{k \to \infty} ||x_i(k) - g(u_j(k) : j \in \mathcal{V})|| \le e \quad \forall i \in \mathcal{V}$$

DYNAMIC

CONSENSUS MAX VALUE

$$\lim_{k \to \infty} ||x_i(k) - \max_{j \in \mathcal{V}} u_j(k)|| \le e \qquad \forall i \in \mathcal{V}$$

No solutions to the dynamic consensus on max value problem

Main Contribution

We propose the first protocol to solve the dynamic consensus on max value problem with a bounded relative error $\hat{\varepsilon}$.

Denoting the max value $\bar{u}(k) = \max_{j \in \mathcal{V}} u_j$, for each agent i it holds

$$\lim_{k \to \infty} ||x_i(k) - \bar{u}(k)|| \le \hat{\varepsilon} \cdot \bar{u}(k).$$

Dynamic Consensus Problem

$$\lim_{k \to \infty} ||x_i(k) - g(u_j(k) : j \in \mathcal{V})|| \le e \quad \forall i \in \mathcal{V}$$

DYNAMIC

CONSENSUS MAX VALUE

$$\lim_{k \to \infty} ||x_i(k) - \max_{j \in \mathcal{V}} u_j(k)|| \le e \qquad \forall i \in \mathcal{V}$$

No solutions to the dynamic consensus on max value problem

Main Contribution

We propose the first protocol to solve the dynamic consensus on max value problem with a bounded relative error $\hat{\varepsilon}$.

Denoting the max value $\bar{u}(k) = \max_{j \in \mathcal{V}} u_j$, for each agent i it holds

$$\lim_{k \to \infty} ||x_i(k) - \bar{u}(k)|| \le \hat{\varepsilon} \cdot \bar{u}(k).$$

Applications

DISTRIBUTED SYNCHRONIZATION

NETWORK PARAMETER ESTIMATION

Time-synchronization^[7]

Cardinality^[8], highest degree^[9]

- [7] Z. Dengchang et al., Time Synchronization in Wireless Sensor Networks Using Max and Average Consensus Protocol (2013).
- [8] R. Lucchese et al. Network cardinality estimation using max consensus: The case of Bernoulli trials (2015).
- [9] T. Borsche and S. A. Attia, On leader election in multi-agent control systems (2010).

Outline

- Introduction
- Proposed Dynamic Max Consensus Protocol
- Simulations
- 4 Conclusions and Future works

Proposed Protocol

Protocol: Dynamic Max-Consensus (DMC)

Input: Tuning parameter $\alpha \in (0,1)$; Time interval $T \in \mathbb{Z}$

Set : Initial conditions $x_i(0)$ at any arbitrary value in $\mathbb R$

for $k = 0, 1, 2, \ldots$ each node i does

Collect $x_j(k)$ from all neighbors $j \in \mathcal{N}_i$

Update the current state according to

$$x_i(k+1) = \max_{j \in \mathcal{N}_i \bigcup \{i\}} \left\{ \alpha \cdot x_j(k), u_i(k - mod(k, T)) \right\}$$
 (2)

Function mod(k,T) denotes the modulo operation, i.e., it outputs the remainder after the division of the integer k by T

A simple example

Steady state error analysis

Theorem 1

Consider a MAS executing DMC Protocol with tuning parameter $\alpha \in (0,1)$ and time interval $T \in \mathbb{N}$ and consider constant and positive input reference signals u_i . If graph $\mathcal G$ is connected, then there exists $\bar k \in \mathbb{Z}$ such that for any time $k \geq \bar k$ and any initial condition $x(0) \in \mathbb{R}^n$ the relative error is bounded by

$$\varepsilon(k) = \max_{i \in V} \frac{\|x_i(k) - \bar{u}\|}{\bar{u}} \le 1 - \alpha^{\delta(\mathcal{G})},\tag{3}$$

where $\delta(\mathcal{G})$ denotes the diameter of graph \mathcal{G} and $\lceil \cdot \rceil$ denotes the ceil function.

Proof Sketch - Steady state error

- 1) Initial time is k^*
- 2) Worst case is when
- 3) The maximum state decreases by a factor α , then there exists a time $k_1 \geq k^*$ such that
- 4) For any $k \geq k_1$ it holds
- 5) For any $k \geq k_1 + \delta(\mathcal{G})$ it holds

$$\max_{i \in \mathcal{V}} x_i(k^*) \ge \max_{i \in \mathcal{V}} u_i = \bar{u}$$

$$\alpha^{k_1 - k^*} \max_{i \in \mathcal{V}} x_i(k^*) \le \bar{u}$$

$$\max_{i \in \mathcal{V}} x_i(k_1) = \bar{u}$$

$$\min_{i \in \mathcal{V}} x_i(k) = \alpha^{\delta(\mathcal{G})} \bar{u}$$

6) Finally
$$\varepsilon(k) = \max_{i \in V} \frac{\|x_i(k) - \bar{u}\|}{\bar{u}} \le \frac{-\alpha^{\delta(\mathcal{G})} \bar{u} + \bar{u}}{\bar{u}} = 1 - \alpha^{\delta(\mathcal{G})}$$

Tracking error analysis

Assumption: Bounded relative input's change

Each unknown exogenous reference signal is strictly positive, $u_i(k)>0$ and their relative change is bounded by a constant $\Pi\in(0,1)$, i.e.,

$$\frac{|u_i(k+1) - u_i(k)|}{|u_i(k)|} \le \Pi, \quad \forall i \in V, \ \forall k \ge 0.$$

Any continuous time signal with bounded relative change can be oversampled to reduce its relative changes.

Tracking error analysis

Theorem 2

Consider a MAS executing DMC Protocol with tuning parameter $\alpha \in (0,1)$ and time interval $T \in \mathbb{N}$ and consider consider time-varying input reference signals $u_i(k)$ satisfying the assumption. If graph $\mathcal G$ is connected, and the tuning parameters α and T satisfy

$$(1-\alpha) > \Pi, \quad T \ge \left\lceil \frac{\delta(\mathcal{G})}{1 - \log_{\alpha}(1-\Pi)} \right\rceil,$$

then there exists $k \in \mathbb{Z}$ such that for any time $k \geq k$ and any initial condition $x(0) \in \mathbb{R}^n$ the relative error is bounded by

$$e(k) = \max_{i \in V} \frac{|x_i(k) - \bar{u}(k)|}{\bar{u}(k)} \le \max \left\{ \frac{1}{(1 - \Pi)^T} - 1, 1 - \frac{\alpha^{\delta(\mathcal{G})}}{(1 + \Pi)^{T + \delta(\mathcal{G})}} \right\}$$
(4)

where $\delta(\mathcal{G})$ denotes the diameter of graph \mathcal{G} , Π is the maximum relative change of the inputs and $\lceil \cdot \rceil$ denotes the ceil function.

Proof Sketch - Tracking error

1) Consider time steps k multiple of T

 $k = \lambda T$ with $\lambda \in \mathbb{N}$

2) Initial time is

$$k^* = \lambda^* T$$

3) Worst case is when

$$\max_{i \in \mathcal{V}} x_i(\lambda^* T) \ge \max_{i \in \mathcal{V}} u_i(\lambda^* T) = \bar{u}(\lambda^* T)$$

4) Since $\alpha < 1 - \Pi$ there exists $\bar{\lambda}$ such that for $\lambda > \bar{\lambda}$ it holds

$$\max_{i \in \mathcal{V}} x_i(\lambda T) \le \bar{u}((\lambda - 1)T)$$

- 5) For $\lambda < \bar{\lambda}$ the error decreases
- 6) What happen for $\lambda \geq \bar{\lambda}$?

Proof Sketch - Tracking error

Max input is decreasing

Max input is increasing

Outline

- Introduction
- 2 Proposed Dynamic Max Consensus Protocol
- Simulations
- 4 Conclusions and Future works

Constant inputs

Two steps inputs

Sinusoidal input

Large Network with random input signals

Outline

- Introduction
- Proposed Dynamic Max Consensus Protocol
- Simulations
- Conclusions and Future works

Conclusions and Future works

Conclusions

- We proposed the first distributed protocol for multi-agent systems to solve the problem of tracking the maximum of a set of positive time-varying input reference signals.
- The protocol is guaranteed to achieve bounded relative error in both steady state with cosntant inputs and tracking of time-varying inputs...
- Main advantage versus static max-consensus: dealing with time-varying inputs without re-initialization.

Future works

- Novel and improved protocols able to deal with negative inputs and with improved error performance.
- Application of our dynamic consensus on the max value protocols for size-estimation of time-varying anonymous network.

Conclusions and Future works

Conclusions

- We proposed the first distributed protocol for multi-agent systems to solve the problem of tracking the maximum of a set of positive time-varying input reference signals.
- The protocol is guaranteed to achieve bounded relative error in both steady state with cosntant inputs and tracking of time-varying inputs...
- Main advantage versus static max-consensus: dealing with time-varying inputs without re-initialization.

Future works

- Novel and improved protocols able to deal with negative inputs and with improved error performance.
- Application of our dynamic consensus on the max value protocols for size-estimation of time-varying anonymous network.

Thank you for your attention

Questions?

email: diego.deplano@unica.it