Math

Adrian

February 10, 2014

1 Prelude

Some math notes for myself. You can tell I'm not great at this, as the good math people know these off the top of their heads:P

2 General Notes

- Area of circumcircle of a triangle: $R = \frac{abc}{4A}$
- Sum of roots of polymonial: $-\frac{b}{a}$
- Product of roots of polynomial of degree $n: -1^n \frac{z}{a}$
- Sum of squares of root of a polynomial: $-\frac{b+2c}{a}$
- Binomial theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$
- Sum of cubes: $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
- Difference of cubes: $a^3 b^3 = (a b)(a^2 + ab + b^2)$
- Sum of squares: $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
- Sum of cubes: $\sum_{k=1}^{n} k^3 = (\frac{n(n+1)}{2})^2$
- Sum of fourth power: $\sum_{k=0}^{n} k^4 = \frac{n(2n+1)(n+1)(3n^2+3n-1)}{30}$
- Sum of fifth power: $\sum_{k=1}^{n} k^5 = \frac{n^2(2n^2+2n-1)(n+1)^2}{12}$
- Inequality of arithmetic and geometric means: $\sqrt[n]{x_1x_2\cdots x_n} \leq \frac{x_1+x_2+\cdots+x_n}{n}$
 - Direct consequence: $\sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}}$
- Convex functions inequality: $f(ty + (1-t)x) \le tf(y) + (1-t)f(x)$
- Jensen's Inequality: $f(\sum_{k=1}^n t_k x_k) \leq \sum_{k=1}^n t_k f(x_k)$ where $\sum_{k=1}^n t_k = 1$
 - Direct consequence: $f(\frac{\sum_{k=1}^{n} x_k}{n}) \leq \frac{\sum_{k=1}^{n} f(x_k)}{n}$
- Volume of partial sphere: $V = \frac{\pi h^2}{3}(3r h) = \frac{\pi h}{6}(3a^2 + h^2)$
- Curved surface area of partial sphere: $A = 2\pi rh$
- Surface area of cone: $A = \pi rs + \pi r^2$
- Surface area of sphere: $A = 4\pi r^2$
- Newton's method: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
- Logarithm inequality: $1 \frac{1}{x} \le \ln(x) \le x 1$ for all x > 0, or $\frac{x}{1+x} \le \ln(1+x) \le x$
- Sum of geometric series: $S_n = \frac{a(1-r^n)}{1-r}$

Function	Expansion	Region of convergence
$\frac{\frac{1}{x}}{\frac{1}{x+1}}$	$\sum_{k=0}^{\infty} (-1)^k (x-1)^k \\ \sum_{k=0}^{\infty} (-1)^k (x)^k$	$\begin{aligned} x - 1 &< 1 \\ x &< 1 \end{aligned}$
$\ln(x)$	$\sum_{k=0}^{\infty} (-1)^k \frac{(x-1)^k}{k}$ $\sum_{k=0}^{\infty} \frac{x^k}{k!}$	$0 < x \le 2$
e^x	$\sum_{k=0}^{\infty} \frac{x^k}{k!}$	\mathbb{R}
$\sin(x)$	$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2n+1}}{(2n+1)!}$	
$\cos(x)$	$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2n}}{(2n)!}$	
D	T 1	T , 1
Function	Inverse derivative	Integral
$\frac{\text{Function}}{\sin(x)}$	1	Integral $cos(x)$
	1	
sin(x)	Inverse derivative $ \frac{\frac{1}{\sqrt{1-x^2}}}{\frac{1}{\sqrt{1-x^2}}} $ $ \frac{1}{1+x^2}$	cos(x) -sin(x) -ln cos(x)
sin(x) $cos(x)$ $tan(x)$ $sec(x)$	$ \frac{\frac{1}{\sqrt{1-x^2}}}{\frac{-1}{\sqrt{1-x^2}}} \\ \frac{1}{1+x^2} \\ \frac{1}{ x \sqrt{x^2-1}} $	cos(x) $-sin(x)$
sin(x) $cos(x)$ $tan(x)$ $sec(x)$	$ \frac{\frac{1}{\sqrt{1-x^2}}}{\frac{-1}{\sqrt{1-x^2}}} $	cos(x) -sin(x) -ln cos(x)

- 3 Taylor Series Expansions
- 4 Trigonometric Derivatives and Integrals
- 5 Hyperbolic Derivatives and Integrals

Function	Inverse	Inverse derivative	Integral
sinh(x)	$ln(x+\sqrt{x^2+1})$	$\frac{1}{\sqrt{x^2+1}}$	cosh(x)
cosh(x)	$ln(x+\sqrt{x^2-1}); x \ge 1$	$\frac{1}{\sqrt{x^2-1}}$	sinh(x)
tanh(x)	$\frac{1}{2}ln(\frac{1+x}{1-x}); x < 1$	$\frac{1}{1-x^2}$	ln(cosh(x))
sech(x)	$cosh(\frac{1}{x}); 0 < x \le 1$	$\frac{1}{x} \frac{x}{\sqrt{1-x^2}}$	atan(sinh(x))
csch(x)	$sinh(\frac{1}{x}); x \neq 0$	$\frac{-1}{ x \sqrt{1+x^2}}$	$ln(tanh(rac{x}{2}))$
coth(x)	$tanh(\frac{1}{x}); x > 1$	$\frac{1}{1-x^2}$	ln(sinh(x))

- 6 Integrals of powers of trigonometric functions
- 7 Trigonometric substitution
- 8 Tan half angle substitution

Hmmmm hmmm hmmm