15

30

CLAIMS

A derivative of GLP-1(7-C), wherein C is 35 or 36 which derivative has just one lipophilic
 substituent which is attached to the C-terminal amino acid residue, provided that said derivative is not selected from:

Arg^{26,34}Lys³⁶(N^ε-(ω-carboxynonadecanoyl))-GLP-1(7-36)-OH, Arg^{26,34}Lys³⁶ (N^ε-(ω-carboxyheptadecanoyl))-GLP-1(7-36)-OH, Arg^{26,34}Lys³⁶ (N^ε-(ω-carboxyundecanoyl))-GLP-1(7-36)-OH, Arg^{26,34}Lys³⁶ (N^ε-(ω-carboxyheptanoyl))-GLP-1(7-36)-OH, Arg^{26,34}Lys³⁶ (N^ε-(ω-carboxyheptanoyl))-GLP-1(7-36)-OH.

- 2. A GLP-1 derivative according to any one of the preceding claims, wherein the lipophilic substituent comprises from 4 to 40 carbon atoms, more preferred from 8 to 25 carbon atoms.
- 3. A GLP-1 derivative according to any one of the preceding claims, wherein a lipophilic substituent is attached to an amino acid residue in such a way that a carboxyl group of the lipophilic substituent forms an amide bond with an amino group of the amino acid residue.
- 4. A GLP-1 derivative according to any one of the claims 1-2, wherein a lipophilic substituent is attached to an amino acid residue in such a way that an amino group of the lipophilic substituent forms an amide bond with a carboxyl group of the amino acid residue.
- 5. A GLP-1 derivative according to any one of the preceding claims, wherein the lipophilicsubstituent is attached to the parent peptide by means of a spacer.
 - 6. A GLP-1 derivative according to claim 5, wherein the spacer is an unbranched alkane α, ω -dicarboxylic acid group having from 1 to 7 methylene groups, preferably two methylene groups, which form a bridge between an amino group of the parent peptide and an amino group of the lipophilic substituent.
 - 7. A GLP-1 derivative according to claim 5, wherein the spacer is an amino acid residue except Cys, or a dipeptide such as Gly-Lys.

10

15

20

- 8. A GLP-1 derivative according to claim 7, wherein a carboxyl group of the parent peptide forms an amide bond with an amino group of Lys or a dipeptide containing a Lys residue, and the other amino group of the Lys spacer or a dipeptide spacer containing a Lys residue forms an amide bond with a carboxyl group of the lipophilic substituent.
- 9. A GLP-1 derivative according to claim 7, wherein an amino group of the parent peptide forms an amide bond with a carboxylic group of the amino acid residue or dipeptide spacer, and an amino group of the amino acid residue or dipeptide spacer forms an amide bond with a carboxyl group of the lipophilic substituent.
- 10. A GLP-1 derivative according to claim 7, wherein a carboxyl group of the parent peptide forms an amide bond with an amino group of the amino acid residue spacer or dipeptide spacer, and a carboxyl group of the amino acid residue spacer or dipeptide spacer forms an amide bond with an amino group of the lipophilic substituent.
- 11. A GLP-1 derivative according to claim 7, wherein a carboxyl group of the parent peptide forms an amide bond with an amino group of a spacer which is Asp or Glu, or a dipeptide spacer containing an Asp or Glu residue, and a carboxyl group of the spacer forms an amide bond with an amino group of the lipophilic substituent.
- 12. A GLP-1 derivative according to any one of the preceding claims, wherein the lipophilic substituent comprises a partially or completely hydrogenated cyclopentanophenathrene skeleton.
- 25 13. A GLP-1 derivative according to any of the claims 1-11, wherein the lipophilic substituent is an straight-chain or branched alkyl group.
 - 14. A GLP-1 derivative according to any of the claims 1-11 wherein the lipophilic substituent is the acyl group of a straight-chain or branched fatty acid.
 - 15. A GLP-1 derivative according to claim 14 wherein the acyl group is selected from the group comprising $CH_3(CH_2)_nCO$ -, wherein n is 4 to 38, preferably $CH_3(CH_2)_6CO$ -, $CH_3(CH_2)_8CO$ -, $CH_3(CH_2)_{10}CO$ -, $CH_3(CH_2)_{12}CO$ -, $CH_3(CH_2)_{14}CO$ -, $CH_3(CH_2)_{16}CO$ -, $CH_3(CH_2)_{18}CO$ -, $CH_3(CH_2)_{20}CO$ and $CH_3(CH_2)_{22}CO$ -.

15

20

35

16. A GLP-1 derivative according to any one of the claims 1-11 wherein the lipophilic substituent is an acyl group of a straight-chain or branched alkane α, ω -dicarboxylic acid.

- 17. A GLP-1 derivative according to claim 16 wherein the acyl group is selected from the group comprising HOOC(CH₂)_mCO-, wherein m is from 4 to 38, preferably from 4 to 24, more preferred selected from the group comprising HOOC(CH₂)₁₄CO-, HOOC(CH₂)₁₆CO-, HOOC(CH₂)₂₀CO- and HOOC(CH₂)₂₂CO-.
- 18. A GLP-1 derivative according to any one of the claims 1-11, wherein the lipophilic substituent is a group of the formula CH₃(CH₂)_p((CH₂)_qCOOH)CHNH-CO(CH₂)₂CO-, wherein p and q are integers and p+q is an integer of from 8 to 33, preferably from 12 to 28.
 - 19. A GLP-1 derivative according to any one of the claims 1-11, wherein the lipophilic substituent is a group of the formula CH₃(CH₂)_rCO-NHCH(COOH)(CH₂)₂CO-, wherein r is an integer of from 10 to 24.
 - 20. A GLP-1 derivative according to any one of the claims 1-11, wherein the lipophilic substituent is a group of the formula CH₃(CH₂)_sCO-NHCH((CH₂)₂COOH)CO-, wherein s is an integer of from 8 to 24.
 - 21. A GLP-1 derivative according to any one of the claims 1-11, wherein the lipophilic substituent is a group of the formula -NHCH(COOH)(CH₂)₄NH-CO(CH₂)_uCH₃, wherein u is an integer of from 8 to 18.
- 22. A GLP-1 derivative according to any one of the claims 1-11, wherein the lipophilic substituent is a group of the formula -NHCH(COOH)(CH₂)₄NH-COCH((CH₂)₂COOH)NH-CO(CH₂)_wCH₃, wherein w is an integer of from 10 to 16.
- 23. A GLP-1 derivative according to any one of the claims 1-11, wherein the lipophilic substituent is a group of the formula -NHCH(COOH)(CH₂)₄NH-CO(CH₂)₂CH(COOH)NH-CO(CH₂)_xCH₃, wherein x is an integer of from 10 to 16.
 - 24. A GLP-1 derivative according to any one of the claims 1-11, wherein the lipophilic substituent is a group of the formula -NHCH(COOH)(CH₂)₄NH-CO(CH₂)₂CH(COOH)NH-CO(CH₂)_yCH₃, wherein y is zero or an integer of from 1 to 22.

. . .

5

10

15

20

25. A GLP-1 derivative according to any of claims 1-24, wherein the parent peptide is selected from the group comprising GLP-1(1-45) or an analogue or a fragment thereof.

- 26. A GLP-1 derivative according to claim 25, wherein the parent peptide is selected from the group comprising GLP-1(7-35); GLP-1(7-36); GLP-1(7-36)amide; GLP-1(7-37); GLP-1(7-38); GLP-1(7-39); GLP-1(7-40) and GLP-1(7-41) and an analogue thereof.
 - 27. A GLP-1 derivative according to claim 25, wherein the parent peptide is selected from the group comprising GLP-1(1-35); GLP-1(1-36); GLP-1(1-36)amide; GLP-1(1-37); GLP-1(1-38); GLP-1(1-39); GLP-1(1-40); GLP-1(1-41) and an analogue thereof.
 - 28. A GLP-1 derivative according to any of the preceding claims wherein the designation analogue comprises derivatives wherein a total of up to fifteen, preferably up to ten amino acid residues have been exchanged with any α -amino acid residue.
 - 29. A GLP-1 derivative according to any of the preceding claims wherein the designation analogue comprises derivatives wherein a total of up to fifteen, preferably up to ten amino acid residues have been exchanged with any α -amino acid residue which can be coded for by the genetic code.
 - 30. A GLP-1 derivative according to any of the preceding claims wherein the designation analogue comprises derivatives wherein a total of up to six amino acid residues have been exchanged with any α -amino acid residue which can be coded for by the genetic code.
- 31. A GLP-1 derivative according to any of the preceding claims, wherein the parent peptide is selected from the group comprising Arg²⁶-GLP-1(7-37); Arg³⁴-GLP-1(7-37); Lys³⁶-GLP-1(7-37); Arg^{26,34}Lys³⁶-GLP-1(7-37); Arg^{26,34}Lys³⁸-GLP-1(7-38); Arg^{26,34}Lys³⁹-GLP-1(7-39); Arg^{26,34}Lys³⁶-GLP-1(7-40); Arg²⁶-GLP-1(7-37); Arg³⁴Lys³⁶-GLP-1(7-37); Arg²⁶-GLP-1(7-39); Arg³⁴Lys³⁶-GLP-1(7-40); Arg^{26,34}Lys^{36,39}-GLP-1(7-39); Arg^{26,34}Lys^{36,40}-GLP-1(7-40); Gly⁸Arg^{26,34}Lys³⁶-GLP-1(7-37); Gly⁸Arg^{26,34}Lys³⁶-GLP-1(7-37); Gly⁸Arg^{26,34}Lys³⁶-GLP-1(7-37); Gly⁸Arg^{26,34}Lys³⁶-GLP-1(7-39); Gly⁸Arg^{26,34}Lys³⁶-GLP-1(7-37); Gly⁸Arg^{26,34}Lys³⁶-GLP-1(7-37); Gly⁸Arg^{26,34}Lys³⁶-GLP-1(7-39) and Gly⁸Arg^{26,34}Lys^{36,40}-GLP-1(7-40).
- 32. A GLP-1 derivative according to any of the claims 1-31, wherein the parent peptide is selected from the group comprising Arg^{26,34}Lys³⁸GLP-1(7-38); Arg^{26,34}Lys³⁹GLP-1(7-39);

```
Arg^{26,34}Lys^{40}GLP-1(7-40); \ Arg^{26,34}Lys^{41}GLP-1(7-41); \ Arg^{26,34}Lys^{42}GLP-1(7-42);
                  Arg<sup>26,34</sup>Lys<sup>43</sup>GLP-1(7-43); Arg<sup>26,34</sup>Lys<sup>44</sup>GLP-1(7-44); Arg<sup>26,34</sup>Lys<sup>45</sup>GLP-1(7-45);
                  Arg<sup>26,34</sup>Lys<sup>38</sup>GLP-1(1-38); Arg<sup>26,34</sup>Lys<sup>39</sup>GLP-1(1-39); Arg<sup>26,34</sup>Lys<sup>40</sup>GLP-1(1-40);
                 Arg<sup>26,34</sup>Lys<sup>41</sup>GLP-1(1-41); Arg<sup>26,34</sup>Lys<sup>42</sup>GLP-1(1-42); Arg<sup>26,34</sup>Lys<sup>43</sup>GLP-1(1-43);
                 Arg<sup>26,34</sup>Lys<sup>44</sup>GLP-1(1-44); Arg<sup>26,34</sup>Lys<sup>45</sup>GLP-1(1-45); Arg<sup>26,34</sup>Lys<sup>38</sup>GLP-1(2-38);
    5
                 Arg<sup>26,34</sup>Lys<sup>39</sup>GLP-1(2-39); Arg<sup>26,34</sup>Lys<sup>40</sup>GLP-1(2-40); Arg<sup>26,34</sup>Lys<sup>41</sup>GLP-1(2-41);
                 Arg<sup>26,34</sup>Lys<sup>42</sup>GLP-1(2-42); Arg<sup>26,34</sup>Lys<sup>43</sup>GLP-1(2-43); Arg<sup>26,34</sup>Lys<sup>44</sup>GLP-1(2-44);
                 Arg<sup>26,34</sup>Lys<sup>45</sup>GLP-1(2-45); Arg<sup>26,34</sup>Lys<sup>38</sup>GLP-1(3-38); Arg<sup>26,34</sup>Lys<sup>39</sup>GLP-1(3-39);
                 Arg<sup>26,34</sup>Lys<sup>40</sup>GLP-1(3-40); Arg<sup>26,34</sup>Lys<sup>41</sup>GLP-1(3-41); Arg<sup>26,34</sup>Lys<sup>42</sup>GLP-1(3-42);
                Arg<sup>26,34</sup>Lvs<sup>43</sup>GLP-1(3-43); Arg<sup>26,34</sup>Lys<sup>44</sup>GLP-1(3-44); Arg<sup>26,34</sup>Lys<sup>45</sup>GLP-1(3-45);
10
                 Arg<sup>26,34</sup>Lys<sup>38</sup>GLP-1(4-38); Arg<sup>26,34</sup>Lys<sup>39</sup>GLP-1(4-39); Arg<sup>26,34</sup>Lys<sup>40</sup>GLP-1(4-40);
                 Arg<sup>26,34</sup>Lys<sup>41</sup>GLP-1(4-41); Arg<sup>26,34</sup>Lys<sup>42</sup>GLP-1(4-42); Arg<sup>26,34</sup>Lys<sup>43</sup>GLP-1(4-43);
                 Arg<sup>26,34</sup>Lys<sup>44</sup>GLP-1(4-44); Arg<sup>26,34</sup>Lys<sup>45</sup>GLP-1(4-45); Arg<sup>26,34</sup>Lys<sup>38</sup>GLP-1(5-38);
                Arg<sup>26,34</sup>Lys<sup>39</sup>GLP-1(5-39); Arg<sup>26,34</sup>Lys<sup>40</sup>GLP-1(5-40); Arg<sup>26,34</sup>Lys<sup>41</sup>GLP-1(5-41);
                Arg^{26,34}Lys^{42}GLP-1(5-42);\ Arg^{26,34}Lys^{43}GLP-1(5-43);\ Arg^{26,34}Lys^{44}GLP-1(5-44);
                 Arg<sup>26,34</sup>Lys<sup>45</sup>GLP-1(5-45); Arg<sup>26,34</sup>Lys<sup>38</sup>GLP-1(6-38); Arg<sup>26,34</sup>Lys<sup>39</sup>GLP-1(6-39);
                 Arg<sup>26,34</sup>Lys<sup>40</sup>GLP-1(6-40); Arg<sup>26,34</sup>Lys<sup>41</sup>GLP-1(6-41); Arg<sup>26,34</sup>Lys<sup>42</sup>GLP-1(6-42);
                 Arg^{26,34}Lys^{43}GLP-1(6-43);\ Arg^{26,34}Lys^{44}GLP-1(6-44);\ Arg^{26,34}Lys^{45}GLP-1(6-45);\ Arg^{26}Lys^{38}GLP-1(6-45);\ Arg^{26,34}Lys^{44}GLP-1(6-45);\ Arg^{26,34}Lys^{45}GLP-1(6-45);\ A
                 1(1-38); Arg<sup>34</sup>Lys<sup>38</sup>GLP-1(1-38); Arg<sup>26,34</sup>Lys<sup>36,38</sup>GLP-1(1-38); Arg<sup>26</sup>Lys<sup>38</sup>GLP-1(7-38);
                Arg<sup>34</sup>Lys<sup>38</sup>GLP-1(7-38); Arg<sup>26,34</sup>Lys<sup>36,38</sup>GLP-1(7-38); Arg<sup>26,34</sup>Lys<sup>38</sup>GLP-1(7-38); Arg<sup>26</sup>Lys<sup>39</sup>GLP-
20
                 1(1-39); Arg<sup>34</sup>Lys<sup>39</sup>GLP-1(1-39); Arg<sup>26,34</sup>Lys<sup>36,39</sup>GLP-1(1-39); Arg<sup>26</sup>Lys<sup>39</sup>GLP-1(7-39);
                 Arg<sup>34</sup>Lys<sup>39</sup>GLP-1(7-39) and Arg<sup>26,34</sup>Lys<sup>36,39</sup>GLP-1(7-39).
```

- 33. A pharmaceutical composition comprising a GLP-1 derivative according to the present
 invention and a pharmaceutically acceptable vehicle or carrier.
 - 34. Use of a GLP-1 derivative according to the present invention for the preparation of a medicament which has a protracted profile of action relative to GLP-1(7-37).
- 35. Use of a GLP-1 derivative according to the present invention for the preparation of a medicament with a protracted profile of action for the treatment of non-insulin dependent diabetes mellitus.
- 36. Use of a GLP-1 derivative according to the present invention for the preparation of a
 medicament with a protracted profile of action for the treatment of insulin dependent diabetes mellitus.

- 37. Use of a GLP-1 derivative according to the present invention for the preparation of a medicament with a protracted profile of action for the treatment of obesity.
- 38. Use of a GLP-1 derivative according to the present invention for the preparation of a medicament for use in the treatment of diabetes in a regimen which additionally comprises treatment with another antidiabetic agent.
 - 39. The use according to claim 38, wherein the antidiabetic agent is human insulin or an analogue or a derivative thereof.
- 40. The use according to claim 38, wherein the antidiabetic agent is an oral hypoglycaemic agent.
 - 41. The use according to claim 40, wherein the oral hypoglycaemic agent is a sulfonylurea, preferably tolbutamide, glibenclamide, glipizide or gliclazide.
 - 42. The use according to claim 40, wherein the oral hypoglycaemic agent is a biguanide, preferably metformin.
 - 43. The use according to claim 40, wherein the oral hypoglycaemic agent is a thiazolidinedione, preferably troglitazone or ciglitazone.
 - 44. The use according to claim 40, wherein the oral hypoglycaemic agent is a glucosidase inhibitor, preferably acarbose.
- 45. The use according to claim 40, wherein the oral hypoglycaemic agent is an agent acting on the ATP-dependent potassium channel of the ß-cells, preferably glibenclamide, glipizide, gliclazide or repaglinide.
 - 46. The use according to any one of claims 38 to 45, wherein the GLP-1 derivative and said other antidiabetic agent are administered so as to obtain a synergistic effect.
- 47. An exendin derivative wherein at least one amino acid residue of the parent peptide has a lipophilic substituent attached.
 - 48. An exendin derivative according to claim 47, wherein only one lipophilic substituent is present.

- 49. An exendin derivative according to claim 48, wherein the lipophilic substituent is attached to the N-terminal amino acid residue.
- 50. An exendin derivative according to claim 48, wherein the lipophilic substituent is attached to the C-terminal amino acid residue.
 - 51. An exendin derivative according to claim 48, wherein the lipophilic substituent is attached to an amino acid residue which is not the N-terminal or C-terminal amino acid residue.
- 10 52. An exendin derivative according to claim 47, wherein two lipophilic substituents are present.
 - 53. An exendin derivative according to claim 52, wherein one of the lipophilic substituents is attached to the N-terminal amino acid residue while the other is attached to the C-terminal amino acid residue.
 - 54. An exendin derivative according to claim 52, wherein one of the lipophilic substituents is attached to the C-terminal amino acid residue while the other is attached to an amino acid residue which is not the N-terminal or C-terminal amino acid residue.
- 55. An exendin derivative according to claim 52, wherein both lipophilic substituents are attached to amino acid residues which are neither the N-terminal nor the C-terminal amino acid residue.
- 56. An exendin derivative according to any one of claims 47 to 55, wherein the lipophilic substituent comprises from 4 to 40 carbon atoms, more preferred from 8 to 25 carbon atoms.
 - 57. An exendin derivative according to any one of claims 47 to 56, wherein a lipophilic substituent is attached to an amino acid residue in such a way that a carboxyl group of the lipophilic substituent forms an amide bond with an amino group of the amino acid residue.
 - 58. An exendin derivative according to any one of the claims 47 to 56, wherein a lipophilic substituent is attached to an amino acid residue in such a way that an amino group of the lipophilic substituent forms an amide bond with a carboxyl group of the amino acid residue.
- 59. An exendin derivative according to any one of the claims 47 to 58, wherein the lipophilic substituent is attached to the parent peptide by means of a spacer.

- 60. An exendin derivative according to claim 59, wherein the spacer is an unbranched alkane α,ω -dicarboxylic acid group having from 1 to 7 methylene groups, preferably two methylene groups, which form a bridge between an amino group of the parent peptide and an amino group of the lipophilic substituent.
- 61. An exendin derivative according to claim 59, wherein the spacer is an amino acid residue except cys, or a dipeptide such as gly-lys.
- 62. An exendin derivative according to claim 59, wherein a carboxyl group of the parent peptide forms an amide bond with an amino group of lys or a dipeptide containing a lys residue, and the other amino group of the lys spacer or a dipeptide spacer containing a lys residue forms an amide bond with a carboxyl group of the lipophilic substituent.
- 63. An exendin derivative according to claim 59, wherein an amino group of the parent peptide forms an amide bond with a carboxylic group of the amino acid residue or dipeptide spacer, and an amino group of the amino acid residue or dipeptide spacer forms an amide bond with a carboxyl group of the lipophilic substituent.
- 64. An exendin derivative according to claim 59, wherein a carboxyl group of the parent peptide forms an amide bond with an amino group of the amino acid residue spacer or dipeptide spacer, and a carboxyl group of the amino acid residue spacer or dipeptide spacer forms an amide bond with an amino group of the lipophilic substituent.
- 65. An exendin derivative according to claim 59, wherein a carboxyl group of the parent peptide forms an amide bond with an amino group of a spacer which is asp or glu, or a dipeptide spacer containing an asp or glu residue, and a carboxyl group of the spacer forms an amide bond with an amino group of the lipophilic substituent.
- 30 66. An exendin derivative according to any one the claims 47 to 65, wherein the lipophilic substituent comprises a partially or completely hydrogenated cyclopentanophenathrene skeleton.
 - 67. An exendin derivative according to any of the claims 47 to 65, wherein the lipophilic substituent is an straight-chain or branched alkyl group.

15

20

- 68. An exendin derivative according to any of the claims 47 to 65, wherein the lipophilic substituent is the acyl group of a straight-chain or branched fatty acid.
- 69. An exendin derivative according to claim 68 wherein the acyl group is selected from the group comprising CH₃(CH₂)_nCO-, wherein n is 4 to 38, preferably CH₃(CH₂)₆CO-, CH₃(CH₂)₁₀CO-, CH₃(CH₂)₁₂CO-, CH₃(CH₂)₁₄CO-, CH₃(CH₂)₁₆CO-, CH₃(CH₂)₁₆CO-, CH₃(CH₂)₁₆CO-, CH₃(CH₂)₂₀CO- and CH₃(CH₂)₂₂CO-.
- 70. An exendin derivative according to any one of the claims 47 to 65 wherein the lipophilic substituent is an acyl group of a straight-chain or branched alkane α, ω -dicarboxylic acid.
 - 71. An exendin derivative according to claim 70 wherein the acyl group is selected from the group comprising $HOOC(CH_2)_mCO$ -, wherein m is from 4 to 38, preferably from 4 to 24, more preferred selected from the group comprising $HOOC(CH_2)_{14}CO$ -, $HOOC(CH_2)_{16}CO$ -, $HOOC(CH_2)_{20}CO$ and $HOOC(CH_2)_{22}CO$ -.
 - 72. An exendin derivative according to any one of the claims 47 to 65, wherein the lipophilic substituent is a group of the formula $CH_3(CH_2)_p((CH_2)_qCOOH)CHNH-CO(CH_2)_2CO-$, wherein p and q are integers and p+q is an integer of from 8 to 33, preferably from 12 to 28.
 - 73. An exendin derivative according to any one of the claims 47 to 65, wherein the lipophilic substituent is a group of the formula $CH_3(CH_2)_rCO-NHCH(COOH)(CH_2)_2CO-$, wherein r is an integer of from 10 to 24.
- 74. An exendin derivative according to any one of the claims 47 to 65, wherein the lipophilic substituent is a group of the formula CH₃(CH₂)_sCO-NHCH((CH₂)₂COOH)CO-, wherein s is an integer of from 8 to 24.
- 75. An exendin derivative according to any one of the claims 47 to 65, wherein the lipophilic substituent is a group of the formula -NHCH(COOH)(CH₂)₄NH-CO(CH₂)_uCH₃, wherein u is an integer of from 8 to 18.
 - 76. An exendin derivative according to any one of the claims 47 to 65, wherein the lipophilic substituent is a group of the formula -NHCH(COOH)(CH₂)₄NH-COCH((CH₂)₂COOH)NH-CO(CH₂)_wCH₃, wherein w is an integer of from 10 to 16.

20

- 77. An exendin derivative according to any one of the claims 47 to 65, wherein the lipophilic substituent is a group of the formula -NHCH(COOH)(CH₂)₄NH-CO(CH₂)₂CH(COOH)NH-CO(CH₂)_xCH₃, wherein x is an integer of from 10 to 16.
- 78. An exendin derivative according to any one of the claims 47 to 65, wherein the lipophilic substituent is a group of the formula -NHCH(COOH)(CH₂)₄NH-CO(CH₂)₂CH(COOH)NH-CO(CH₂)_yCH₃, wherein y is zero or an integer of from 1 to 22.
- 79. An exendin derivative according to any of the claims 47 to 78, wherein the designation
 analogue comprises derivatives wherein a total of up to fifteen, preferably up to ten amino acid residues have been exchanged with any α-amino acid residue.
 - 80. An exendin derivative according to any of the claims 47 to 79, wherein the designation analogue comprises derivatives wherein a total of up to fifteen, preferably up to ten amino acid residues have been exchanged with any α -amino acid residue which can be coded for by the genetic code.
 - 81. An exendin derivative according to any of the claims 47 to 80, wherein the designation analogue comprises derivatives wherein a total of up to six amino acid residues have been exchanged with any α -amino acid residue which can be coded for by the genetic code.
 - 82. An exendin derivative according to any of the claims 47 to 81, wherein the parent peptide is HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGX, wherein X = P or Y, or a fragment or an analogue thereof.
 - 83. An exendin derivative according to any of claims 47 to 81, wherein the parent peptide is HX1X2GTFITSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS, wherein X1X2 = SD or GE, or a fragment or an analogue thereof.
- 30 84. An exendin derivative according to any of claims 47 to 81, wherein the parent peptide is DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS, or a fragment or an analogue thereof.
- 85. An exendin derivative according to claim 47, which is selected from Arg¹⁸, Leu²⁰, Gln³⁴, Lys³³ (N^ε-(γ-aminobutyroyl(N^α-hexadecanoyl))) Exendin-4-(7-45)-NH₂,
 35 Arg³³, Leu²⁰, Gln³⁴, Lys¹⁸ (N^ε-(γ-aminobutyroyl(N^α-hexadecanoyl))) Exendin-4-(7-45)-NH₂.

- 86. A pharmaceutical composition comprising an exendin derivative according to the present invention and a pharmaceutically acceptable vehicle or carrier.
- 87. Use of an exendin derivative according to the present invention for the preparation of a medicament which has a protracted profile of action relative to exendin.
 - 88. Use of an exendin derivative according to the present invention for the preparation of a medicament with a protracted profile of action for the treatment of non-insulin dependent diabetes mellitus.
 - 89. Use of an exendin derivative according to the present invention for the preparation of a medicament with a protracted profile of action for the treatment of insulin dependent diabetes mellitus.
- 90. Use of an exendin derivative according to the present invention for the preparation of a medicament with a protracted profile of action for the treatment of obesity.
 - 91. A method of treating insulin dependent or non-insulin dependent diabetes mellitus in a patient in need of such a treatment, comprising administering to the patient a therapeutically effective amount of a exendin derivative according to the present invention together with a pharmaceutically acceptable carrier.

Novo Nordisk A/S

20