Tutorato di Automi e Linguaggi Formali

Homework 9: Indecidibilità e Riducibilità

Gabriel Rovesti

Corso di Laurea in Informatica - Università degli Studi di Padova

Tutorato 9 - 19-05-2025

1 Problemi Indecidibili e Diagonalizzazione

Esercizio 1. Il metodo della diagonalizzazione di Cantor è utilizzato per dimostrare l'esistenza di linguaggi non riconoscibili da macchine di Turing.

- a) Spiegare formalmente perché l'insieme di tutte le macchine di Turing è numerabile. Fornire una funzione di enumerazione che associa ciascuna macchina di Turing a un numero naturale univoco.
- b) Dimostrare, utilizzando il metodo della diagonalizzazione, che l'insieme di tutti i linguaggi su un alfabeto Σ è non numerabile. Spiegare chiaramente dove viene applicata la diagonalizzazione nella dimostrazione.
- c) Basandosi sui risultati precedenti, spiegare perché deve esistere almeno un linguaggio che non è riconoscibile da alcuna macchina di Turing. Questa è una dimostrazione non costruttiva. Quale linguaggio specifico è stato introdotto nel corso come esempio di linguaggio non Turing-riconoscibile?

Esercizio 2. Consideriamo il seguente problema: data una TM M a nastro semi-infinito, determinare se esiste un input w su cui M sposta la testina a sinistra partendo dalla cella numero 2023 (ossia se in qualche momento durante la computazione la testina si muove dalla cella 2023 alla cella 2022).

- a) Formulare questo problema come un linguaggio 2023_{TM} .
- b) Dimostrare che il linguaggio 2023_{TM} è indecidibile mediante una riduzione da un problema noto. Specificare chiaramente la funzione di riduzione e verificare che soddisfi le proprietà necessarie.

c) Discutere se 2023_{TM} è Turing-riconoscibile, co-Turing-riconoscibile, o nessuno dei due. Giustificare la risposta.

Esercizio 3. Un linguaggio L viene definito co-Turing-riconoscibile se il suo complemento \overline{L} è Turing-riconoscibile.

- a) Dimostrare formalmente il seguente teorema: un linguaggio è decidibile se e solo se è sia Turing-riconoscibile che co-Turing-riconoscibile.
- b) Dato che $A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che accetta la stringa } w \}$ è Turing-riconoscibile ma non decidibile, dimostrare che $\overline{A_{TM}}$ non può essere Turing-riconoscibile.
- c) Descrivere un linguaggio che non è né Turing-riconoscibile né co-Turing-riconoscibile. Giustificare la risposta.

2 Riducibilità e Dimostrazione di Indecidibilità

Esercizio 4. Consideriamo il concetto di riducibilità mediante funzione:

- a) Definire formalmente cosa significa che un linguaggio A è riducibile mediante funzione a un linguaggio B (notazione: $A \leq_m B$). Spiegare il ruolo della funzione di riduzione f e quali proprietà deve soddisfare.
- b) Dimostrare che se $A \leq_m B$ e B è decidibile, allora A è decidibile. Spiegare come costruire un decisore per A utilizzando un decisore per B e la funzione di riduzione f.

Esercizio 5. Consideriamo il problema di determinare se un PDA accetta qualche stringa nella forma $\{ww \mid w \in \{0,1\}^*\}$.

- a) Formulare questo problema come un linguaggio WW_{PDA} .
- b) Dimostrare che il linguaggio WW_{PDA} è indecidibile mediante una riduzione appropriata. Quale problema utilizzereste come punto di partenza e perché?
- c) Spiegare perché questo risultato è interessante nel contesto dei linguaggi context-free, dato che è noto che $\{ww \mid w \in \{0,1\}^*\}$ non è un linguaggio context-free.

Esercizio 6. Sia $E_{TM} = \{ \langle M \rangle \mid M \text{ è una TM tale che } L(M) = \emptyset \}$ il problema del vuoto per macchine di Turing.

- a) Dimostrare che $A_{TM} \leq_m \overline{E_{TM}}$ (dove $\overline{E_{TM}}$ è il complemento di E_{TM}) fornendo una riduzione mediante funzione esplicita. Spiegare come questa riduzione trasforma un'istanza di A_{TM} in un'istanza di $\overline{E_{TM}}$.
- b) Utilizzando la riduzione precedente e il fatto che A_{TM} è indecidibile, dimostrare che E_{TM} è indecidibile.
- c) Dimostrare che E_{TM} è co-Turing-riconoscibile ma non Turing-riconoscibile.

3 Analisi di Problemi di Indecidibilità avanzati

Esercizio 7. Una CFG è minimale se nessuna delle regole può essere rimossa senza cambiare il linguaggio generato. Sia $MIN_{CFG} = \{\langle G \rangle \mid G \text{ è una CFG minimale}\}.$

- a) Dimostrare che MIN_{CFG} è Turing-riconoscibile. Descrivere una macchina di Turing che riconosce questo linguaggio.
- b) Dimostrare che MIN_{CFG} è indecidibile. Suggerimento: utilizzare una riduzione da un problema indecidibile noto.

Esercizio 8. Consideriamo i seguenti problemi per macchine di Turing:

$$ALL_{TM} = \{ \langle M \rangle \mid M \text{ è una TM tale che } L(M) = \Sigma^* \}$$

 $FINITE_{TM} = \{ \langle M \rangle \mid M \text{ è una TM tale che } L(M) \text{ è un linguaggio finito} \}$

- a) Dimostrare che ALL_{TM} è indecidibile mediante una riduzione da un problema noto (a vostra scelta). Specificare chiaramente la funzione di riduzione e verificare che soddisfi le proprietà necessarie.
- b) Dimostrare che $FINITE_{TM}$ è indecidibile utilizzando una riduzione appropriata. Quale problema utilizzate come punto di partenza e perché?
- c) Discutere se ALL_{TM} e $FINITE_{TM}$ sono Turing-riconoscibili o co-Turing-riconoscibili, giustificando le risposte.

Esercizio 9. Sia $SELF_{TM} = \{\langle M \rangle \mid M \text{ è una TM che accetta la propria codifica } \langle M \rangle \}.$

- a) Dimostrare che $SELF_{TM}$ è indecidibile utilizzando una tecnica di diagonalizzazione. Fornire una dimostrazione dettagliata.
- b) Dimostrare che $SELF_{TM}$ è Turing-riconoscibile. Descrivere una macchina di Turing che riconosce questo linguaggio.
- c) Descrivere una macchina di Turing U che, per ogni macchina di Turing M, ha la proprietà che U accetta $\langle M \rangle$ se e solo se M non accetta $\langle M \rangle$. Spiegare perché l'esistenza di U porta a una contraddizione.