Name: ______ Period: _____

Relations & Functions — Day 1 Practice

"Learning \geq Grading. Be curious, be kind, and use parentheses."

Quick Reference (Read Me!)

Relation: any set of ordered pairs (x, y).

Function: a relation where each input x is paired with exactly one output y. (No

input gets two different outputs.)

Domain: the set of all inputs (all x-values used).

Range: the set of all outputs (all y-values produced).

Function notation: f(x) means "the output of f when the input is x." To evaluate,

replace x by the entire input—with parentheses.

1. (10 points) Is it a function? Domain & Range. Consider the relation

$$R = \{(0,2), (1,5), (2,5), (1,5)\}.$$

(a) Is R a function? Why or why not?

(b) List the domain and the range of R.

2. (12 points) Fix the relation (table view). You're given this table of input/output pairs. Fill in the blank so that the relation is a

function.

$$\begin{array}{c|cc}
x & y \\
-1 & 3 \\
0 & 0 \\
1 & 4 \\
1 &
\end{array}$$

(b)	After	your	fix,	write	the	new	relation	as a	set	of	ordered	pairs.
-----	-------	------	------	-------	-----	-----	----------	------	-----	----	---------	--------

3. (14 points) Function evaluation (numbers and constants). Let

$$f(x) = 3x - 4.$$

Compute each value. Use parentheses when substituting!

(a) f(0)

(b) f(5)

4.

(c)	f(-2)
(0)	$J \left(\begin{array}{c} 2 \end{array} \right)$
(->	
(d)	f(a), where a is a constant
(e)	f(2a+1)
()	J (' -)
(10	
(12 J	points) Solve for the missing number (basic notation). $g(x) = k - 2x$, where k is a constant.
(a)	If $g(4) = 9$, find k .

(b) Find the input x such that g(x) = 1 (your answer may involve k).

1			
1			
1			

- 5. (12 points) Plain-English interpretation (ACT/SAT style). A function p is defined by p(x) = 2x + 6. Circle all true statements and explain why each is true or false.
 - (A) p(4) = 14 means "when the input is 4, the output is 14."
 - (B) p(a) = 2a + 6 even if we don't know what a is yet.
 - (C) If p(x) = 10, then x = 2.