

一、 概述

TM1620是一种LED(发光二极管显示器)驱动控制专用IC,内部集成有MCU数字接口、数据锁存器、LED驱动等电路。本产品质量可靠、稳定性好、抗干扰能力强。主要适用于家电设备(智能热水器、微波炉、洗衣机、空调、电磁炉)、机顶盒、电子称、智能电表等数码管或LED显示设备。

二、 特性说明

- 采用CMOS工艺
- 显示模式 (8 段×6 位~10段×4位)
- 辉度调节电路(8级占空比可调)
- 串行接口(CLK, STB, DIN)
- 振荡方式: 内置RC振荡
- 内置上电复位电路
- 内置数据锁存电路
- 内置针对LED反偏漏电导致暗亮问题优化电路
- 抗干扰能力强
- 封装形式: SOP20

三、 管脚定义:

VDD		20	STB
SEG1	2	19	CLK
SEG2	3	18	DIN
SEG3	4 TM1620	17	GRID1
SEG4	5 (TOP VIEW)	16	GRID2
SEG5	6	15	GND
SEG6	7	14	GRID3
SEG7	8	13	GRID4
SEG8	9	12	GND
SEG13/GRID6	10	11	GRID5/SEG14

©Titan Micro Electronics www.titanmec.com

V1.0

- 1 -

- 2 -

四、管脚功能定义:

符号	管脚名称	管脚号	说明
DIN	数据输入	18	在时钟上升沿输入串行数据,从低位 开始。
CLK	时钟输入	19	在上升沿读取串行数据,下降沿输出数据。
STB	片选输入	20	在下降沿初始化串行接口,随后等待接收指令。STB为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB为高时,CLK被忽略。
SGE1~SEG8	输出(段)	2~9	段输出,P管开漏输出
GRID1∼GRID4	输出(位)	16~17 13~14	位输出,N管开漏输出
SEG13/DRID6 ~ SEG14/GRID5	输出(段/位)	10~11	段/位复用输出, 只能选段或位输出
VDD	逻辑电源	1	接电源正
GND	逻辑地	12、15	接系统地

五、指令说明:

指令用来设置显示模式和LED驱动器的状态。

在STB下降沿后由DIN输入的第一个字节作为指令。经过译码, 取最高B7、B6两位比特位以区别不同的指令。

В7	В6	指令
0	0	显示模式命令设置
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平, 串行通讯被初始化, 并且正在传送的指令或数据无效(之前传送的指令或数据保持有效)。

(1) 显示模式命令设置:

该指令用来设置选择段和位的个数($4\sim6$ 位, $8\sim10$ 段)。当该指令被执行时, 显示被强制关闭。在显示模式不变时, 显存内的数据不会被改变, 显示控制命令控制显示开关。

W2R							L2R	
В7	В6	В5	B4	В3	B2	B1	В0	显示模式
0	0					0	0	4位10段
0	0		无关项	页,填0		0	1	5位9段
0	0					1	0	6位8段

(2) 数据命令设置:

该指令用来设置数据写和读,B1和B0位不允许设置01或11。

MSB

В7	В6	В5	B4	В3	B2	B1	В0	功能	说明
0	1					0	0	数据模式设置	写数据到显示寄存器
0	1	无关	- T石		0			地址增加模式	自动地址增加
0	1		: 坝, [0		1			设置	固定地址
0	1	块	; U	0				测试模式设置	普通模式
0	1			1				(内部使用)	测试模式

(3) 显示控制命令设置:

该指令用来设置显示的开关以及显示亮度调节。共有8级辉度可供选择进行调节。

MSB LSB

В7	В6	В5	B4	В3	B2	B1	ВО	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1		设置脉冲宽度为 2/16
1	0	无关项,			0	1	0	消光数量设置	设置脉冲宽度为 4/16
1	0	填	0		0	1	1		设置脉冲宽度为 10/16
1	0				1	0	0		设置脉冲宽度为 11/16
1	0				1	0	1		设置脉冲宽度为 12/16

©Titan Micro Electronics

www.titanmec.com

LED 驱动控制专用电路

0BH

TM1620

1	0		1	1	0		设置脉冲宽度为 13/16
1	0		1	1	1		设置脉冲宽度为 14/16
1	0	0				显示开关设置	显示关
1	0	1				业小开大以且	显示开

(4) 地址命令设置:

该指令用来设置显示寄存器的地址。 最多有效地址为12位(00H-0BH)。上电时,地址默认设为00H。

MSB							LSB	
В7	В6	В5	B4	В3	B2	B1	В0	显示地址
1	1			0	0	0	0	00Н
1	1			0	0	0	1	01H
1	1			0	0	1	0	02H
1	1			0	0	1	1	03Н
1	1			0	1	0	0	04H
1	1	无关	连项,	0	1	0	1	05H
1	1	填	į 0	0	1	1	0	06Н
1	1			0	1	1	1	07Н
1	1			1	0	0	0	08Н
1	1			1	0	0	1	09Н
1	1			1	0	1	0	OAH

六、 显示寄存器地址:

该寄存器存储通过串行接口接收从外部器件传送到TM1620的数据,最多有效地址从00H-0BH共12字节单元,分别与芯片SEG和GRID管脚对应,具体分配如图(2):

写LED显示数据的时候,按照显示地址从低位到高位,数据字节从低位到高位操作。

X	x 2	SEG14	SEG13	Х	X	X	X	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
	位)	U (高	ххН		氏四位)	xxHL(1	2	()	高四位	xHU(高	X	()	氐四位	HL(们	XX
В7	B6 I	В5	B4	В3	B2	B1	В0	В7	В6	B5	B4	В3	B2	B1	В0
GRID1		01HI			HL	01			HU	00			HL	00	
GRID2		03HI			HL	03			HU	02			HL	02	
GRID3		05HI			HL	05			HU	04			HL	04	
GRID4		07HI			HL	07			HU	06			HL	06	
GRID5		09HI			HL	09			HU	08			HL	08	
GRID6		0BHI			HL	OB			HU	0A			HL	0A	

图 (2)

▲注意: 芯片显示寄存器在上电瞬间其内部保存的值可能是随机不确定的,此时客户直接发送开屏命令,将有可能出现显示乱码。所以我司建议客户对显示寄存器进行一次上电清零操作,即上电后向12位显存地址(00H-0BH)中全部写入数据0x00。

七、 显示:

驱动共阴数码管:

图 (7)

图7给出共阴极数码管的连接示意图,如果让该数码管显示"0",只需要向00H(GRID1)地址中从低位开始写入0x3F数据即可,此时00H对应每一个SEG1-SEG8的数据如下表格。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	GRID1 (00H)
В7	В6	В5	B4	В3	B2	B1	В0	

八、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

十一、 应用时串行数据的传输:

(1) 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕, "STB"不需要置高紧跟着传数据,最多14BYTE,数据传送完毕才将"STB"置高。

CLK					ШШШ				
DIN	Command 1	Command 2	Command 3	Datal	Data2		Data n	Command 4	_
STB						\rightarrow			

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址

Data1~ n: 传输显示数据至Command3地址和后面的地址内(最多12bytes)

Command4:显示控制命令

(2) 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完毕,"STB"不需要置高,紧跟着传1BYTE数据,数据传送完毕才将"STB"置高。然后重新设置第2个数据需要存放的地址,最多12BYTE数据传送完毕,"STB"置高。

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址1

Data1: 传输显示数据1至Command3地址内

Command4: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

Command5:显示控制命令

(4) 采用地址自动加一和固定地址方式的程序设计流程图:

采用自动地址加一的程序设计流程图:

采用固定地址的程序设计流程图:

十二、应用电路:

TM1620驱动共阴数码屏硬件电路图(18)

▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1620芯片放置,加强滤波效果。

- 2、连接在DIN、CLK、STB通讯口上下拉三个100pF电容可以降低对通讯口的干扰。
- 3、因蓝光数码管的导通压降压约为3V, 因此TM1620供电应选用5V。

©Titan Micro Electronics www.titanmec.com

- 9 -V1.0

十三、 电气参数:

极限参数 (Ta = 25℃, Vss = 0V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	-0.5 ∼ VDD + 0.5	V
LED SEG 驱动输出电流	101	-50	mA
LED GRID 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	−40 ~ +80	°C
储存温度	Tstg	−65 ~+150	$^{\circ}$

正常工作范围 (Ta = -20 ~ +80℃, Vss = 0V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD		5	-	V	-
高电平输入电压	VIH	0.7 VDD	-	VDD	V	_
低电平输入电压	VIL	0	ı	0.3 VDD	V	_

©Titan Micro Electronics www.titanmec.com

V1.0

电气特性 (Ta = -20 ~ +80℃, VDD = 5V, V_{SS} = 0V)

参数	符号	最小	典型	最大	单位	测试条件
高电平输出电流	Ioh1	20	35	60	mA	SEG1∼SEG8 Vo = VDD −3V
低电平输入电流	${ m I}_{ m OL}$	80	120	-	mA	GRID1∼GRID6 Vo=0.3V
低电平输出电流	Idout	3	-	-	mA	Vo = 0.4V, Dout
高电平输出电流容 许量	Itolsg	-	-	5	%	Vo = VDD − 3V, SEG1∼SEG8
高电平输入电压	VIH	0. 7 VDD	-		V	CLK, DIN, STB
低电平输入电压	VIL		_	0. 3 VDD	v	CLK, DIN, STB

开关特性 (Ta = -20 ~ +80℃, VDD = 5V)

参数	符号	最小	典型	最大	单位	测试条件	
	$t_{\mathtt{PLZ}}$		-	300	ns	CLK \rightarrow DIN CL = 15pF, RL = 10K Ω	
传输延迟时间	t _{PZL}	-	-	100	ns		
	t _{TZH} 1		_	2	μs		SEG1~SEG8
上升时间	t _{TZH} 2	-	1	0. 5	μs	CL = 300p F	GRID1∼GRID4 SEG13/GRID6∼ SEG14/GRID5
下降时间	$t_{\mathtt{THZ}}$	-	_	1. 5	μs	CL = 300pF, SEGn, GRIDn	
最大输入时钟频 率	Fmax	_	_	1	MHz	占空比50%	
输入电容	CI	-	-	15	pF	-	

- 12 -

时序特性 (Ta = -20 ~ +80℃, VDD = 5V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PW _{CLK}	500	-	-	ns	-
选通脉冲宽度	PW _{STB}	1	_	_	μs	_
数据建立时间	tsetup	100	_	_	ns	-
数据保持时间	$t_{ ext{ t HOLD}}$	100	_	_	ns	_
CLK →STB 时间	t _{CLK-STB}	1	_	_	µ s	CLK↑→STB↑

时序波形图:

©Titan Micro Electronics www.titanmec.com

V1.0

十四、IC 封装示意图: SOP20 封装尺寸:

Symbol	Dimensions In	n Millimeters	eters Dimensions In		
	Min	Max	Min	Max	
Α	2. 350	2. 650	0. 093	0. 104	
A1	0. 100	0. 300	0.004	0. 012	
A2	2. 100	2. 500	0. 083	0. 098	
b	0. 330	0. 510	0. 013	0. 020	
С	0. 204	0. 330	0.008	0. 013	
D	12. 520	13. 000	0. 493	0. 512	
E	7. 400	7. 600	0. 291	0. 299	
E1	10. 210	10. 610	0. 402	0. 418	
е	1. 270	(BSC)	0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0. 050	
θ	0°	8°	0°	8°	

All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)