Project_Solution

Mercedes-Benz Greener Manufacturing

```
[1]: # Importing the required libraries
      import numpy as np
      import pandas as pd
      from sklearn_decomposition import PCA
[2]: # Importing the data
      train = pd_read_csv("train.csv")
test = pd_read_csv("test.csv")
[3]: train.head()
                       X0 X1
                               X2 X3 X4 X5 X6 X8
                                                     ... X375
                                                               X376 X377
                                                                             X378
                                                                                    X379
[3]:
              130.81
          0
      0
                                                            0
                                                                   0
                                                                                 0
                               at
                                                     . . .
               88.53
                                       d
                                                                   0
                                                                          0
                                                                                 0
                                                                                        0
      1
          6
                           t
                                                            1
                               av
                                   e
                                                 0
      2
               76.26 az
                                                            0
                                                                   0
                                                                                 0
                                                                                        0
                                n
                                   C
                                       d
                                                 Х
          9
               80.62
                       az t
                                n
                                   f
                                       d
                                          Х
                                                 e
                                                            0
                                                                   0
                                                                          0
                                                                                 0
                                                                                        0
         13
               78.02
                                   f
                                       d
                                          h
                                              d
                                                            0
                                                                                        0
                       az v
                                n
                                                 n
               X382
                       X383
                              X384
                                     X385
         X380
      0
             0
                    0
                           0
                                 0
                                        0
      1
             0
                    0
                           0
                                 0
                                        0
      2
             0
                    1
                           0
                                 0
                                        0
      3
             0
                    0
                           0
                                 0
                                        0
      4
             0
                    0
                           0
                                 0
                                        0
      [5 rows x 378 columns]
[4]: test.head()
                                                  ... X375
[4]:
         ID
             X0 X1
                      X2 X3 X4 X5 X6 X8
                                            X10
                                                            X376 X377
                                                                         X378 X379
                                                                                        X380 \
              az
                       n
                              d
                                 t
                                     a
                                        W
                                                                0
                                                                       0
          2
                                                                0
      1
                                              0
                                                         0
                                                                       1
                                                                              0
                                                                                    0
                                                                                            0
               t
                  b
                      ai
                          a
                              d
                                 b
                                     g
                                        У
      2
                      as
                          f
                              d
                                              0
                                                         0
                                                                0
                                                                       0
                                                                                    0
                                                                                            0
              az
                  ٧
                                 a
                                        j
                          f
                                              0
                                                         0
                                                                0
                                                                                            0
              az
                       n
                              d
                                 Z
```

```
X382 X383 X384 X385
                    0
      0
             0
                           0
      1
             0
                    0
                           0
                                  0
      2
             0
                    0
                           0
                                  0
      3
             0
                    0
                           0
                                  0
      4
             0
                           0
                                  0
      [5 rows x 377 columns]
[5]: print("Size of training set: {} rows and {} columns".format(*train.shape)) print("Size of testing set: {} rows and {} columns".format(*test.shape))
     Size of training set: 4209 rows and 378 columns
     Size of testing set: 4209 rows and 377 columns
[6]: # Collect the Y values into an array
      y_train = train["y"].values
[7]: y_train
[7]: array([130.81,
                        88.53, 76.26, ..., 109.22, 87.48, 110.85])
[8]: # Understand the data types
      cols = [c for c in train.columns if 'X' in c]
      print("Number of features: {}".format(len(cols)))
      print("Feature types:")
train[cols].dtypes.value_counts()
     Number of features: 376
     Feature types:
[8]: int64
                 368
      object
                    8
      dtype: int64
[9]: # Count the data in each of the columns
      counts = [[], [], []]
      for c in cols:
           typ = train[c].dtype
           uniq = len(np.unique(train[c]))
          if uniq == 1:
               counts[0].append(c)
          elif uniq == 2 and typ == np.int64:
    counts[1].append(c)
```

5 w s as c d y i m 0 ... 1 0

0

0

0

Check for null values and unique values for train & test data

```
[11]: def check_missing_values(df):
    if df.isnull().any().any():
        print("There are missing values in the dataframe")
    else:
        print("There are no missing values in the dataframe")
```

[12]: check_missing_values(x_train) check_missing_values(x_test)

There are no missing values in the dataframe There are no missing values in the dataframe

Label Encoding the categorical values

 $x_{test} = test[usable_columns]$

```
[13]: for column in usable_columns:
    cardinality = len(np.unique(x_train[column]))
    if cardinality == 1:
        x_train.drop(column, axis=1) # Column with only one
        # value is useless so we drop it
        x_test.drop(column, axis=1)
    if cardinality > 2: # Column is categorical
        mapper = lambda x: sum([ord(digit) for digit in x])
        x_train[column] = x_train[column].apply(mapper)
        x_test[column] = x_test[column].apply(mapper)
        x_train.head()
```

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:9: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy if __name__ == *__main__*:

/usr/local/lib/python3.7/site-packages/ipykernel_launcher.py:10: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy # Remove the CWD from sys.path while we load stuff.

[13]:		X39	X265	X246	X237	X373	X308	X62	X143	X296	X267	 X15	X243	\
	0	0	0	0	1	0	0	0	0	0	0	 0	0	
	1	0	1	0	0	0	0	0	0	0	0	 0	0	
	2	0	0	1	0	0	0	0	0	0	0	 0	0	
	3	0	0	1	0	0	0	0	0	0	0	 0	0	
	4	0	0	1	0	0	0	0	0	0	0	 0	0	
		X311	X200	X37	X78	X97 X		174	X371					
	0	0	0	1	0	0	1	0	0					
	1	1	0	1	0	0	0	0	0					

[5 rows x 376 columns]

[14]: # Make sure the data is changed into numerical values

print("Feature types:")
x_train[cols].dtypes.value_counts()

Feature types:

[14]: int64 376 dtype: int64

1.0.1 Perform Dimensionality reduction

```
[15]: n_comp = 12
pca = PCA(n_components = n_comp,random_state = 420)
pca2_results_train = pca.fit_transform(x_train)
pca2_results_test = pca.transform(x_test)
```

Training using XGBoost

```
[16]: # Training using XGBoost

import xgboost as xgb
from sklearn_metrics import r2_score
from sklearn_model_selection import train_test_split
```

```
[18]: d_train = xgb.DMatrix(x_train,label = y_train)
d_val = xgb.DMatrix(x_val,label = y_val)

# dtest = xgb.DMatrix(x_test)

d_test = xgb.DMatrix(pca2_results_test)
```

[15:03:21] WARNING: /workspace/src/objective/regression_obj.cu:167: reg:linear is now deprecated in favor of reg:squarederror.

[0] train-rmse:99.14835 valid-rmse:98.26297 train-r2:-58.35295 valid-r2:-67.63754

Multiple eval metrics have been passed: 'valid-r2' will be used for early stopping.

Will train until valid-r2 hasn't improved in 50 rounds.

[10] train-rmse:81.27653 valid-rmse:80.36433 train-r2:-38.88428 valid-r2:-44.91014

[20] train-rmse:66.71610 valid-r2:-29.75260	valid-rmse:65.77334	train-r2:-25.87403
[30] train-rmse:54.86915	valid-rmse:53.89120	train-r2:-17.17724
valid-r2:-19.64513		
[40] train-rmse:45.24564	valid-rmse:44.22231	train-r2:-11.36018
valid-r2:-12.90160 [50] train-rmse:37.44742	valid-rmse:36.37758	train-r2:-7.46672
valid-r2:-8.40697	valiu-11115e.50.57756	(fairi-127.40072
[60] train-rmse:31.15105	valid-rmse:30.01771	train-r2:-4.85891
valid-r2:-5.40526		
[70] train-rmse:26.08769	valid-rmse:24.90855	train-r2:-3.10906
valid-r2:-3.41041		
[80] train-rmse:22.04899	valid-rmse:20.82566	train-r2:-1.93528
valid-r2:-2.08304		
[90] train-rmse:18.84732	valid-rmse:17.59580	train-r2:-1.14472
valid-r2:-1.20090		
[100] train-rmse:16.33602	valid-rmse:15.07912	train-r2:-0.61125
valid-r2:-0.61635		turiu u2. 0.25270
[110] train-rmse:14.40459 valid-r2:-0.22898	valid-rmse:13.14868	train-r2:-0.25278
[120] train-rmse:12.93437	valid-rmse:11.68702	train-r2:-0.01009
valid-r2:0.02907	valid-1111Se. 1 1.08702	114111-120.01009
[130] train-rmse:11.81328	valid-rmse:10.60818	train-r2:0.15742
valid-r2:0.20005	valid-11113e.10.00010	(Idili-12.0.137 42
[140] train-rmse:10.98910	valid-rmse:9.84164	train-r2:0.27089
valid-r2:0.31148	vana imperatori	
[150] train-rmse:10.38670	valid-rmse:9.31149	train-r2:0.34863
valid-r2:0.38366		
[160] train-rmse:9.93406	valid-rmse:8.95125	train-r2:0.40417
valid-r2:0.43043		
[170] train-rmse:9.60179	valid-rmse:8.70644	train-r2:0.44336
valid-r2:0.46116		
[180] train-rmse:9.35700	valid-rmse:8.54541	train-r2:0.47138
valid-r2:0.48090		
[190] train-rmse:9.17218	valid-rmse:8.44794	train-r2:0.49206
valid-r2:0.49268	1:1 0.20202	
[200] train-rmse:9.02681	valid-rmse:8.38293	train-r2:0.50803
valid-r2:0.50046	valid-rmse:8.34528	train-r2:0.51953
[210] train-rmse:8.92066 valid-r2:0.50493	valiu-mise.8.34528	train-12.0.51955
[220] train-rmse:8.83656	valid-rmse:8.32250	train-r2:0.52855
valid-r2:0.50763	valid-1113e.8.32230	(14111-12.0.32633
[230] train-rmse:8.77145	valid-rmse:8.30870	train-r2:0.53547
valid-r2:0.50926	vana 11113C.0.3007 0	train 12.0.33317
[240] train-rmse:8.72003	valid-rmse:8.30321	train-r2:0.54090
valid-r2:0.50991		
[250] train-rmse:8.67607	valid-rmse:8.29589	train-r2:0.54552
valid-r2:0.51078		

[260] train-rmse:8.63885 valid-r2:0.51134	valid-rmse:8.29111	train-r2:0.54941
[270] train-rmse:8.60996 valid-r2:0.51150	valid-rmse:8.28973	train-r2:0.55242
[280] train-rmse:8.57784 valid-r2:0.51202	valid-rmse:8.28530	train-r2:0.55575
[290] train-rmse:8.54968	valid-rmse:8.28160	train-r2:0.55866
valid-r2:0.51246 [300] train-rmse:8.52080	valid-rmse:8.28095	train-r2:0.56164
valid-r2:0.51254 [310] train-rmse:8.49303	valid-rmse:8.28140	train-r2:0.56449
valid-r2:0.51248 [320] train-rmse:8.46923	valid-rmse:8.28174	train-r2:0.56693
valid-r2:0.51244 [330] train-rmse:8.45028	valid-rmse:8.27854	train-r2:0.56886
valid-r2:0.51282 [340] train-rmse:8.42114	valid-rmse:8.28089	train-r2:0.57183
valid-r2:0.51254		
[350] train-rmse:8.40192 valid-r2:0.51286	valid-rmse:8.27823	train-r2:0.57379
[360] train-rmse:8.37694 valid-r2:0.51318	valid-rmse:8.27552	train-r2:0.57632
[370] train-rmse:8.35140 valid-r2:0.51370	valid-rmse:8.27106	train-r2:0.57890
[380] train-rmse:8.32580 valid-r2:0.51441	valid-rmse:8.26504	train-r2:0.58147
[390] train-rmse:8.30213 valid-r2:0.51448	valid-rmse:8.26442	train-r2:0.58385
[400] train-rmse:8.27511 valid-r2:0.51481	valid-rmse:8.26158	train-r2:0.58655
[410] train-rmse:8.24606	valid-rmse:8.26197	train-r2:0.58945
valid-r2:0.51477 [420] train-rmse:8.22087	valid-rmse:8.25998	train-r2:0.59196
valid-r2:0.51500 [430] train-rmse:8.19967	valid-rmse:8.25700	train-r2:0.59406
valid-r2:0.51535 [440] train-rmse:8.17517	valid-rmse:8.25513	train-r2:0.59648
valid-r2:0.51557 [450] train-rmse:8.15067	valid-rmse:8.25417	train-r2:0.59889
valid-r2:0.51568		
[460] train-rmse:8.13282 valid-r2:0.51570	valid-rmse:8.25400	train-r2:0.60065
[470] train-rmse:8.09823 valid-r2:0.51601	valid-rmse:8.25143	train-r2:0.60404
[480] train-rmse:8.07605 valid-r2:0.51585	valid-rmse:8.25276	train-r2:0.60621
[490] train-rmse:8.05222 valid-r2:0.51619	valid-rmse:8.24982	train-r2:0.60853

[500] train-rmse:8.03193 valid-r2:0.51619	valid-rmse:8.24989	train-r2:0.61050
[510] train-rmse:7.99967 valid-r2:0.51631	valid-rmse:8.24886	train-r2:0.61362
[520] train-rmse:7.98118	valid-rmse:8.24874	train-r2:0.61540
valid-r2:0.51632 [530] train-rmse:7.96085	valid-rmse:8.24718	train-r2:0.61736
valid-r2:0.51650 [540] train-rmse:7.94052	valid-rmse:8.25061	train-r2:0.61931
valid-r2:0.51610 [550] train-rmse:7.91974	valid-rmse:8.24936	train-r2:0.62130
valid-r2:0.51625		
[560] train-rmse:7.89511 valid-r2:0.51606	valid-rmse:8.25098	train-r2:0.62365
[570] train-rmse:7.86969 valid-r2:0.51623	valid-rmse:8.24952	train-r2:0.62607
[580] train-rmse:7.84870	valid-rmse:8.25072	train-r2:0.62806
valid-r2:0.51609 Stopping. Best iteration: [533] train-rmse:7.95699 valid-r2:0.51656	valid-rmse:8.24668	train-r2:0.61773

1.1 Predict test_df using XGBoost

```
[20]: p_test = clf.predict(d_test)
[21]: sub = pd.DataFrame()
      sub['ID'] = id_test
      sub['y'] = p_test
      sub.to_csv("test_df.csv", index = False)
sub.head()
[21]:
          ID
      0
           1
               82.844788
           2
               97.869873
      1
      2
               82.781380
      3
               77.284958
           5 113.026222
 []:
```