

The “Lab”

From the Big Bang to Black Holes

*Formation using Numerical
Waveforms*

J.I. Thorpe, S. McWilliams, B. Kelly, R. Fahey, K. Arnaud, J. Baker

7th International LISA Symposium

July 19th, 2008

Barcelona, Spain

GSFC - JPL

Beyond Einstein: From the Big Bang to Black Holes

- Merger makes significant contribution to SNR
 - Depends on M_{tot}
 - Depends on distance/redshift

SNR contours for equal-mass, non-spinning case

Beyond Einstein: From the Big Bang to Black Holes

Traditional thought

- Despite high SNR, merger is short-lived
- Little orbital modulation
- Small impact on parameter estimation

Possible paths for impact

- Direct
- Covariance

- Develop Parameter Estimation Code for Full Waveform
 - Complete inspiral, merger, and ringdown waveform
 - High-frequency instrumental response & noise
 - Fisher matrix approach

Waveform Model

Instrument Model

Fisher Matrix

Waveform Model

- Combined numerical & PN
- Equal mass, non-spinning
- Can be scaled to generate set of templates

$M_{\text{tot}}(1+z)$, D_L , t_c , ϕ_{orb} , θ_{sky} , θ_{sys}

Instrument Modeling

- Synthetic LISA (Vallisneri)
- Realistic orbital model
- TDI outputs (pseudo A,E,T)
- Instrumental noise

Parameter Sensitivity Calculation

Beyond Einstein: From the Big Bang to Black Holes

- Two $2.5 \times 10^5 M_{\odot}$ non-spinning BH at $z = 1$ (~ 6 Gpc), 140 cases, pseudo A & E channels only

- Two $2.5 \times 10^5 M_\odot$ non-spinning BH at $z = 1$ (~ 6 Gpc), 140 cases, pseudo A & E channels only

	Total Mean	pre-ISCO Mean	Total Median	pre-ISCO Median
SNR	1.12E+03	8.35E+02	9.28E+02	6.98E+02
$\Delta \ln M$	2.35E-06	4.00E-06	1.66E-06	3.26E-06
$\Delta D/D$	3.87E-01	6.07E-01	4.48E-02	1.18E-01
Δlat (deg)	3.84E+00	7.19E+00	2.15E+00	5.28E+00
Δlon (deg)	1.77E+01	2.69E+01	4.64E+00	9.19E+00
Δiota (deg)	8.19E+01	1.37E+02	1.08E+00	3.12E+00
$\Delta \phi$ (deg)	6.07E+02	1.27E+03	1.59E+00	4.26E+00
Δpol (deg)	6.20E+02	1.29E+03	7.46E+00	1.59E+01
Δt_c (sec)	1.71E+01	3.95E+01	6.87E+00	2.73E+01

Evolution of Parameters

Beyond Einstein: From the Big Bang to Black Holes

- Two $2.5 \times 10^5 M_{\odot}$ non-spinning BH at $z = 1$ (~ 6 Gpc), 140 cases, pseudo A & E channels only

Results: $M_{tot}(1+z) \sim 10^7 M_\odot$

Beyond Einstein: From the Big Bang to Black Holes

- Two $2.5 \times 10^6 M_\odot$ non-spinning BH at $z = 1$ (~ 6 Gpc), 140 cases, pseudo A & E channels only

- Two $2.5 \times 10^6 M_\odot$ non-spinning BH at $z = 1$ (~ 6 Gpc), 140 cases, pseudo A & E channels only

	Total Mean	pre-ISCO Mean	Total Median	pre-ISCO Median
SNR	9.85E+01	2.68E+01	8.52E+01	2.29E+01
$\Delta \ln M$	1.55E-06	2.66E-06	1.01E-06	1.89E-06
$\Delta D/D$	2.17E+00	2.83E+00	8.04E-01	1.07E+00
Δlat (deg)	2.24E+01	3.35E+01	1.98E+01	2.76E+01
Δlon (deg)	5.84E+01	1.03E+02	2.20E+01	3.51E+01
Δiota (deg)	9.65E+00	2.52E+01	5.88E-01	1.40E+00
$\Delta \phi_{\text{io}}$ (deg)	1.58E+03	2.80E+03	3.33E+01	4.39E+01
Δpol (deg)	1.62E+03	2.87E+03	7.99E+01	1.11E+02
Δt_c (sec)	1.47E+01	7.72E+01	1.31E+01	6.85E+01

Changes in Covariance as merger is added

- Most covariances decrease, merger is breaking degeneracies
- Some covariances increase
- Strong impact on coalescence time

- ⌚ Developed parameter estimation model integrating complete waveforms and improved instrumental models
- ⌚ Initial results for equal-mass non-spinning systems indicate moderate improvement in most parameters, significant improvement in some
- ⌚ Near-term improvement
 - Improved statistics
 - T-channel
 - Larger parameter space coverage
- ⌚ Combination with other results
 - Higher harmonics
 - Spin precession
 - Instrumental effects

Backup Slides

Changes in Covariance as merger is added

- Most covariances decrease, merger is breaking degeneracies
- Some covariances increase

