Assignment #3A and #3B

Submission Deadline: March 5, 2018

Maximum Marks: 40

3A In this programming assignment you will implement ϵ -NFA to DFA conversion mechanishm. The specific input-output requirements to your program are given below:

Input: An ϵ -NFA N_{ϵ} with alphabet $\Sigma = \{0, 1\}$. The description of the NFA must be provided to the program through a file. An example format for a specific ϵ -NFA is given below. The first row includes all the states; the second row include the starting state; the third row includes all the final states; fourth row describes three transitions from q_0 on input symbols 0, 1 and ϵ respectively; fifth row does the same with respect to q_1 ; and so on.

q_0	q_1	q_2	q_3
q_0			
q_1			
$\{q_1\}$	ϕ	$\{q_1,q_2\}$	
$\{q_1, q_2\}$	$\{q_1\}$	$\{q_3\}$	
$\{q_1\}$	ϕ	ϕ	
$\{q_2\}$	ϕ	$\{q_2\}$	

Output: An equivalent DFA D, i.e. $\mathcal{L}(D) = \mathcal{L}(N_{\epsilon})$. The output, i.e., the description (similar to input NFA description) of equivalent DFA D must be copied into a file.

Your program must also provide a graphical drawing of the equivalent DFA (you may use standard libraries for this task).

3B In this programming assignment you will implement membership checking of an arbitrary binary string with respect to the language of a given ϵ -NFA. The specific input-output requirements to your program are given below:

Input: An ϵ -NFA N_{ϵ} with alphabet $\Sigma = \{0, 1\}$ and a string $w \in \{0, 1\}^*$. The input N_{ϵ} will be provided in the format given in Assignment # 3A.

Output: Yes, if $w \in \mathcal{L}(N_{\epsilon})$; No - otherwise.

Important Instructions!!

- Combine both 3A and 3B in one program.
- 20 marks for correctness of # 3A.
- 10 marks for correctness of # 3B.
- The rest 10 will account for programming efficiency and proficiency.

Assignment #3C

Submission Deadline: March 12, 2018

Maximum Marks: 30

In this programming assignment you will implement membership checking of an arbitrary string with respect to the language of a given regular expression. The specific input-output requirements to your program are given below:

Input: A Regular expression R over a alphabet Σ , and a string $w \in \Sigma^*$. The Σ need not be $\{0,1\}$. Thus, as input, you must also provide the alphabet Σ .

Output: Yes, if $w \in \mathcal{L}(R)$; No - otherwise.

Your program should ideally be doing the following:

- Function making sense of regular expressions.
- Function that converts regular expressions to its equivalent ϵ -NFA N_{ϵ} .
- Using your # 3B program (modify it to support any alphabet Σ) to check if $w \in \mathcal{L}(N_{\epsilon})$.

Note: 25 marks for correctness of # 3C. The rest 5 will account for programming efficiency and proficiency.