

Charles L Dodgson 1832 - 1898

Quantifiers

Predicates & Propositions

×	Winged(x)	Flies(x)	Pink(x)
Alice	FALSE	FALSE	FALSE
Jabberwock	TRUE	TRUE	FALSE
Flamingo	TRUE	TRUE	TRUE

- A predicate is a column in this table
- A proposition like Winged(Alice) refers to a single cell. Can build more complex propositions using propositional calculus (formulas)
- Next: Propositions involving quantifiers.

(First-Order) Predicate Calculus

×	Winged(x)	Flies(x)	Pink(x)	
Alice	FALSE	FALSE	FALSE	
Jabberwock	TRUE	TRUE	FALSE	∈ AIW
Flamingo	TRUE	TRUE	TRUE	E MINN

All characters in AIW are winged. (False!)

∀x Winged(x)

- For every character x in AIW, Winged(x) holds
- Some character in AIW is winged. (True)

∃x Winged(x)

There exists a character x in AIW, such that Winged(x) holds

(First-Order) Predicate Calculus

×	Winged(x)	Flies(x)	Pink(x)	
Alice	FALSE	FALSE	FALSE	
Jabberwock	TRUE	TRUE	FALSE	
Flamingo	TRUE	RUE	TRUE	

Quantifiers: To what "extent" does a predicate evaluate to TRUE in the domain of discourse ∀x Winged(x)

Universal quantifier, ∀

∃x Winged(x)

(First-Order) Predicate Calculus

×	Winged(x)	Flies(x)	Pink(x)
Alice	FALSE	FALSE	FALSE
Jabberwock	TRUE	TRUE	FALSE
Flamingo	TRUE	TRUE	TRUE

- Could write ∀x Winged(x) as: Winged(Alice) ∧ Winged(J'wock) ∧ Winged(Flamingo)
- And ∃x Winged(x) as:
 Winged(Alice) ∨ Winged(J'wock) ∨ Winged(Flamingo)
 - But need to list the entire domain (works only if finite)

Examples

×	Winged(x)	Flies(x)	Pink(x)	Pink(x)→ Flies(x)
Alice	FALSE	FALSE	FALSE	TRUE
Jabberwock	TRUE	TRUE	FALSE	TRUE
Flamingo	TRUE	TRUE	TRUE	TRUE

- $\exists x \ Winged(x) \rightarrow \neg Flies(x)$ is True

(First-Order) Predicate Calculus

×	Winged(x)	Flies(x)	Pink(x)	¬Winged(x)
Alice	FALSE	FALSE	FALSE	TRUE
Jabberwock	TRUE	TRUE	FALSE	FALSE
Flamingo	TRUE	TRUE	TRUE	FALSE

- - Not everyone is winged
 - Same as saying, there is someone who is not winged
 - ø i.e., ∃x ¬Winged(x) is True

$$\neg (\forall x W(x)) = \exists x \neg W(x)$$

$$\neg$$
(W(a) \land W(j) \land W(f))

$$\neg W(a) \lor \neg W(j) \lor \neg W(f)$$

Predicates, again

- A predicate can be defined over any number of elements from the domain
 - e.g., Likes(x,y): "x likes y"

x,y	Likes(x,y)	
Alice, Alice	TRUE	
Alice, Jabberwock	FALSE	
Alice, Flamingo	TRUE	
Jabberwock, Alice	FALSE	
Jabberwock, Jabberwock	TRUE	
Jabberwock, Flamingo	FALSE	
Flamingo, Alice	FALSE	
Flamingo, Jabberwock	FALSE	
Flamingo, Flamingo	TRUE	

Two quantifiers

х,у	Likes(x,y)	
Alice, Alice	TRUE	
Alice, Jabberwock	FALSE	
Alice, Flamingo	TRUE	
Jabberwock, Alice	FALSE	
Jabberwock, Jabberwock	TRUE	
Jabberwock, Flamingo	FALSE	
Flamingo, Alice	FALSE	
Flamingo, Jabberwock	FALSE	
Flamingo, Flamingo	TRUE	

- And we can quantify all the variables of a predicate
- ø e.g. ∀x,y Likes(x,y)
 - Everyone likes everyone
 - False!

Two quantifiers

х,у	Likes(x,y)	
Alice, Alice	TRUE	
Alice, Jabberwock	FALSE	
Alice, Flamingo	TRUE	
Jabberwock, Alice	FALSE	
Jabberwock, Jabberwock	TRUE	
Jabberwock, Flamingo	FALSE	
Flamingo, Alice	FALSE	
Flamingo, Jabberwock	FALSE	
Flamingo, Flamingo	TRUE	

- - Everyone likes someone (True)
- - Someone is liked by everyone (False)

Order of quantifiers is important!

Two quantifiers

×	У	Likes(x,y)	∃y Likes(x,y) i.e., LikesSomeone(x)
	Alice	TRUE	
Alice	Jabberwock	FALSE	TRUE
	Flamingo	TRUE	
	Alice	FALSE	
Jabberwock	Jabberwock	TRUE	TRUE
	Flamingo	FALSE	
	Alice	FALSE	
Flamingo	Jabberwock	FALSE	TRUE
	Flamingo	TRUE	

- - Everyone likes someone
 - ∀x LikesSomeone(x)
 - True

- $\forall x \ \forall y \ P(x,y) = \ \forall y \ \forall x \ P(x,y)$ for all pairs (x,y), P(x,y) holds
- $\exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$ for some pair (x,y), P(x,y) holds
- Below R is a proposition not involving x $\forall x P(x) \lor R \equiv (\forall x P(x)) \lor R$

- Scope of x extends to the end: $\forall x (P(x) \lor R)$
- i.e., if domain is $\{a_1,...,a_N\}$ $(P(a_1)\vee R) \wedge ... \wedge (P(a_N)\vee R)$

- R evaluates to True or False (indep of x)
- When R is True, both equivalent (to True)
- Also, when R is False, both equivalent
- Hence both equivalent

- $\forall x \ \forall y \ P(x,y) = \ \forall y \ \forall x \ P(x,y)$ for all pairs (x,y), P(x,y) holds
- $\Rightarrow \exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$ for some pair (x,y), P(x,y) holds
- Below R is a proposition not involving x

$$\forall x P(x) \lor R \equiv (\forall x P(x)) \lor R \exists x P(x) \lor R \equiv (\exists x P(x)) \lor R$$

$$\forall x P(x) \land R \equiv (\forall x P(x)) \land R \exists x P(x) \land R \equiv (\exists x P(x)) \land R$$

```
\forall x \ \underline{\neg P(x) \lor R} \equiv (\forall x \ \underline{\neg P(x)}) \lor R \equiv \neg (\exists x \ \underline{P(x)}) \lor R
```

- $\forall x \ \forall y \ P(x,y) = \ \forall y \ \forall x \ P(x,y)$ for all pairs (x,y), P(x,y) holds
- $\Rightarrow \exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$ for some pair (x,y), P(x,y) holds
- Below R is a proposition not involving x

$$\forall x P(x) \lor R \equiv (\forall x P(x)) \lor R \exists x P(x) \lor R \equiv (\exists x P(x)) \lor R$$

$$\forall x P(x) \land R \equiv (\forall x P(x)) \land R \exists x P(x) \land R \equiv (\exists x P(x)) \land R$$

$$(\exists x P(x)) \lor (\exists x Q(x)) \equiv \exists x (P(x) \lor Q(x))$$

$$\equiv \forall x (P(x) \lor (\forall y Q(y)))$$

PQ

$$\equiv \forall x (\forall y (P(x) \lor Q(y)))$$

$$\equiv \forall x \forall y (P(x) \lor Q(y))$$

```
 \forall x \ \forall y \ P(x,y) = \ \forall y \ \forall x \ P(x,y)  for all pairs (x,y), P(x,y) holds
 \Rightarrow \exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)  for some pair (x,y), P(x,y) holds
Below R is a proposition not involving x
  \forall x P(x) \lor R \equiv (\forall x P(x)) \lor R \exists x P(x) \lor R \equiv (\exists x P(x)) \lor R
  \forall x P(x) \land R \equiv (\forall x P(x)) \land R \exists x P(x) \land R \equiv (\exists x P(x)) \land R
(\exists x P(x)) \lor (\exists x Q(x)) = \exists x (P(x) \lor Q(x))
(\exists x P(x)) \land (\exists x Q(x)) = \exists x \exists y P(x) \land Q(y)
                                       \neg(\exists x P(x)) \equiv \forall x \neg P(x)
```