目录

图论		4
	图的储存	4
	最短路	4
	次短路	6
	最小生成树	6
	所有节点对的最短路	7
	传递闭包	7
	若干和 dfs 相关的算法	7
	二分图判定	7
	割点和桥	7
	双连通分量 bcc	8
	强联通分量分解	9
	强联通分量 tarjan 版	10
网络	流	11
	Dinic	11
	最大流最小切割定理	12
	切割	12
	上下界网络流	12
	二分图匹配	19
	算法	19
	最大权闭合图	20
	分数规划	23
	重要性质	23
	最大密度子图	24

最小	、费用流	28
	算法	28
树		29
	LCA	29
cliqu	ue	30
	版本 1	30
	版本 2	31
	版本 3	31
最小	、费用流	33
数学	<u> </u>	35
	计数	35
	mobius	35
	基本公式定理	35
	分块求和	36
	线性筛法笔记整理	36
	ex_gcd	38
	素数	38
	素因子分解	38
	Eratosthenes 筛法	
	区间筛法	38
	大素数分解与大素数测试	39
	euler phi 函数	40
	模运算	
	大数乘法取模	
	横方程	41

乘法逆元	41
中国剩余定理	41
朴素模方程(mi不两两互素的时候)	41
离散对数	42
阶定义	42
简单性质	42
求阶和原根的方法	42
bsgs algorithm	44
扩展大步小步	44
积性函数	46
欧拉函数	49
问题	49
gauss 消元	49
gauss_jordan 对角消元	49
异或方程组消元求秩	50
线性基	50
线性基简单表示	52
数据结构	53
树上莫队	53
其他	57
hash	57
二维离散化	58
优化	60
FastIO	60
爆 乘法	61

图论

总结一下图论算法的模板

图的储存

临接表,用这种方法比"链式前向星",好,主要是写起来简单,而且在空间上的效率是一样的 O(|V| + |E|)

```
int ne,nv;
struct Edge{
   int from,to,weight;
   Edge(int u=0,int v=0,int w=0):from(u),to(v),weight(w){};
};
int tot=0;
Edge E[maxn*2];
std::vector<int> G[MAX_V];
int dist[MAX_V];
void add_edge(int u,int v,int w){
   E[tot++] = Edge{u,v,w};
   G[u].push_back(tot-1);
}
```

最短路

1. dijkstra

在没有负边的时候使用,O(|E|lg|V|)

```
void dijkstra(int s){
  priority_queue<Pair,std::vector<Pair> > pq;
  memset(dist,INF,sizeof(dist));
  pq.push(Pair(0,s));
  dist[s] = 0;
  while (!pq.empty()) {
    Pair p = pq.top();pq.pop();
    int d = p.fi,u = p.se;
    if(dist[u]<d)continue;
    for(int i=0 ; i<G[u].size() ; ++i)
    {
        int e = G[u][i];
        int v = E[e].to;
        if(dist[v]>dist[u]+E[e].weight){
            dist[v] = dist[u]+E[e].weight;
        }
}
```

```
pq.push(Pair(dist[v],v));
      }
    }
  }
}
2.
    Bellman_Ford
实现简单,复杂度 O(|V| * |E|)
bool Bellman_Ford(s)
  memset(d, INF, sizeof(INF));
 for(int i=0 ; i<nv ; ++i){</pre>
    for(int j=0 ; j<E.size() ; ++j)</pre>
    d[E[i].to] = min(d[E[i].to],d[E[i].from]+E[i].weight);
  }
  //负环判定
 for(int i=0 ; i<E.size() ; ++i){</pre>
    if(d[E[i].to]<d[E[i].from]+E[i].weight)return false;</pre>
  }
 return true;
}
3.
   spfa
bool spfa(int s){
  memset(d,INF,sizeof(d));
  memset(inq,false,sizeof(inq));
  memset(cnt,0,sizeof(cnt));
  queue<int> Q;
  Q.push(s);
  d[s] = 0;
  inq[s] = true;
  while(!Q.empty())
  {
    int u = Q.front();
    inq[u] = false;
    for(int i=0 ; i<G[u].size() ; ++i){</pre>
      Edge &e = E[G[u][i]];
      if(d[e.to]>d[e.from]+e.weight){
        d[e.to] = d[e.from]+e.weight;
        if(!inq[e.to]){
          Q.push(e.to);inq[e.to] = true;
          if(++cnt[e.to]>n)return false;
    }
  return true;
```

次短路

1. dijkstra

仿照求最短路,我们记录一下他的次短路,再做相应的更新,(允许重复走,所以 肯定有次短路)

```
void dijkstra2(int s){
  memset(dist,INF, sizeof(dist));
  memset(dist2,INF,sizeof(dist2));
  priority_queue<PII,std::vector<PII> ,greater<PII> > pq;
  pq.push(PII(0,s));
  dist[s] = 0;
  while (!pq.empty()) {
    int d = pq.top().fi; int u = pq.top().se;
    pq.pop();
    if(dist2[u]<d)continue;</pre>
    for(int i=0 ; i<G[u].size() ; ++i){</pre>
      int e = G[u][i];
      int v = E[e].to;
      int tmp = d+E[e].weight;
      if(dist[v]>tmp){
        swap(dist[v],tmp);//可能d 成为次短路
        pq.push(PII(dist[v],E[e].to));
      if(dist2[v]>tmp && tmp>dist[v])
        dist2[v] = tmp;
        pq.push(PII(tmp,E[e].to));
    }
  }
}
```

最小生成树

```
int kruskal(){
    sort(E.begin(),E.end());
    int res = 0;
    for(int i=0 ; i<E.size() ; ++i){
        int u = E[i].from,v = E[i].to;
        if(find(u)!=find(v)){
            UNION(u,v);
            res+=E[i].weight;
        }
    }
    return res;
}</pre>
```

所有节点对的最短路

```
void floyd(){
  for(int k=1; k<=nv; ++k)
   for(int i =1; i<=nv; ++i)
    for(int j=1; j<=nv; ++j){
      d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
    }
}</pre>
```

传递闭包

上面的算法稍微修改以下就可以求传递传递闭包了。

```
void floyd(){
  for(int k=1; k<=nv; ++k)
    for(int i =1; i<=nv; ++i)
      for(int j=1; j<=nv; ++j){
        d[i][j] |=d[i][k]&d[k][j];
      }
}</pre>
```

若干和 dfs 相关的算法

二分图判定

割点和桥

```
//判断重边可以开个map 来判断.然后置为-1
int dfs_clock = 0;//时间戳
int pre[maxn];//顶点的访问顺序
int low[maxn];//子树的最低访问时间
int cut[maxn];//割点后能增加的联通分量数
void init(){
```

```
memset(pre,0,sizeof(pre));
   memset(cut,0,sizeof(cut));
   dfs_clock = 0;
}
//只能跑一个连通分量中的割点
void dfs(int u,int fa){
    low[u] = pre[u] = ++dfs_clock;
    int cl = 0;//孩子数目
    for(int i=0; i<G[u].size(); ++i){</pre>
        Edge & e = E[G[u][i]];
        int v = e.to;
        if(!pre[v]){
           cl++;
           dfs(v,u);
           low[u]= min(low[u],low[v]);
           //判断割点
           if(low[v] >= pre[u])cut[u]++;//增加(u,v)的联通集
           //判断割边
           if(low[v] > pre[u] && e.qiao !=-1)e.qiao = 1;
        }else if(pre[v] < pre[u] && v != fa){</pre>
           low[u] = min(low[u], pre[v]);
        }
   if(fa == -1 && cl == 1)cut[u] = 0;//根节点
}
```

双连通分量 bcc

```
std::vector<int> G[maxn];
int dfs_clock = 0;//时间戳
int pre[maxn];//顶点的访问顺序
int low[maxn];//子树的最低访问时间
int cut[maxn];//割点后能增加的联通分量数
int bcc cnt;
std::vector<int> bcc[maxn];//双连通分量点集
int bcc no[maxn];//每个点的临时编号
stack<Pair> S;
void init(){
   memset(pre,0,sizeof(pre));
   memset(cut,0,sizeof(cut));
   dfs_clock = 0;
   bcc cnt = 0;
   memset(bcc_no,0,sizeof(bcc_no));
}
//求双连通分量
void dfs(int u,int fa){
   low[u] = pre[u] = ++dfs_clock;
```

```
int cl =0;
    for(auto v : G[u]){
        Pair e = mp(u,v);
        if(!pre[v]){
            ++cl;
            S.push(e);
            dfs(v,u);
            low[u] = min(low[u], low[v]);
            if(low[v]>=pre[u]){
                cut[u]++;//割点
                ++bcc_cnt;bcc[bcc_cnt].clear();
                while (true) {
                    Pair x = S.top();S.pop();
                     if(bcc_no[x.fi] != bcc_cnt){bcc[bcc_cnt].pb(x.fi);b
cc_no[x.fi] = bcc_cnt;}
                     if(bcc_no[x.se]!= bcc_cnt){bcc[bcc_cnt].pb(x.se);bc
c_no[x.se] = bcc_cnt;}
                    if(x == e)break;
            }
        }else if(pre[v]<pre[u] && v!=fa){</pre>
            S.push(e);
            low[u] = min(low[u],pre[v]);
        }
    }
    if(fa<0 && cl==1)cut[u] = 0;//根节点
}
void get_bcc(int n){
    for(int i=0 ; i<n ; ++i){</pre>
        if(!pre[i])dfs(i,-1);
    }
}
```

强联通分量分解

```
std::vector<int> G[MAX_V];
std::vector<int> rG[MAX_V];
bool vis[MAX_V];
int scc[MAX_V];
std::vector<int> vs;//访问结束时间栈
void add_edge(int u,int v){
    G[u].push_back(v);
    G[v].push_back(u);
}
void dfs(int u) {
```

```
vis[u] = true;
  for(int i=0 ; i<G[u].size() ;++i)</pre>
    if(!vis[G[u][i]])dfs(G[u][i]);
 vs.push_back(u);
}
void rdfs(int u,int scc_cnt) {
 vis[u] = true;
  scc[u] = scc cnt;
 for(int i=0 ; i<rG[u].size() ; ++i)</pre>
    if(!vis[rG[u][i]])rdfs(rG[u][i]);
}
int Kosaraju(int nv){
 int scc_cnt = 0;
  memset(vis, false, sizeof(vis));
  vs.clear();
  for(int i=0 ; i<v ; ++i)</pre>
    if(!vis[i])dfs(i);
  memset(vis, false, sizeof(vis));
  for(int i= vs.size()-1; i>=0; --i)
    if(!vis[vs[i]])rdfs(vs[i],++scc_cnt);
  return scc_cnt;
```

强联通分量 tarjan 版

一定有 scc[i]>scc[j]则缩点之后一定有 i->j

```
std::vector<int> G[maxn];
int pre[maxn],low[maxn];
int dfs_clock;
int scc[maxn],scc_cnt;
stack<int> S;//辅助栈
void dfs(int u) {
    low[u] = pre[u] = ++dfs_clock;
   S.push(u);
    for(auto v:G[u]){
       if(!pre[v]){
           //未访问
           dfs(v);
           low[u] = min(low[v], low[u]);
        }else if(!scc[v])low[u] = min(low[v],low[u]);
   }
   //计算出 Low 值之后看是否满足起始条件
```

网络流

Dinic

```
struct Edge{
  int from, to, cap;
 Edge(int u,int v,int c = 0):from(u),to(v),cap(c){};
};
//残量网络
void add_edge(int u,int v,int cap){
  E.push_back(Egde(u,v,cap));G[u].push_back(E.size()-1);
  E.push_back(Edge(v,u,0)); G[v].push_back(E.size()-1);
}
struct Dinic{
  std::vector<Edge> E;
  std::vector<int> G[MAX_V];
  int level[MAX_V], cur[MAX_V];//分层,当前弧;
  void bfs(int s){
    memset(level,-1,sizeof(level));
    queue<int> Q;Q.push(s);
    level[s] = 0;
    while (!Q.empty()) {
      int u = Q.front();Q.pop();
      for(int i=0 ; i<G[u].size() ; ++i){</pre>
        Edge & e = E[G[u][i]];
        if(e.cap>0 && level[e.to]<0){</pre>
          level[e.to] = level[u]+1;
          Q.push(e.to);
        }
      }
   }
  }
 int dfs(int v,int t,int f){
```

```
if(v==t || f == 0)return f;
  for(int& i = cur[v] ; i<G[v].size() ; ++i){</pre>
    Edge & e = E[G[v][i]]; Edge & rev = E[G[v][i]^1];
    if(e.cap>0 && level[v]<level[e.to]){</pre>
      int a = dfs(e.to,t,min(f,e.cap));
      if(a>0){
        e.cap-=a;
        rev.cap+=a;
        return a;
    }
  }
  return 0;
}
int max_flow(int s,int t){
  int flow = 0;
  for(;;){
    bfs(s);
    if(level[t]<0)break;</pre>
    memset(cur,0,sizeof(cur));
    int f;
    while ((f = dfs(s,t,INF))>0) {
      flow+=f;
    }
  }
  return flow;
}
```

对于上面的建边的方式.e 的反向边就是 e^1.这个可以自行枚举证明.

最大流最小切割定理

以下三个条件等价: 1. f 是 G 的最大流. 2. 残存网络中没有增广路 3. |f| = c(S,T) 其中(S,T)是最小切割

切割

G的某个切割 $\{S,T\}$ 是指,将图分为两个不相交的集合, $\{S,T\}$ 的容量为,从 S d 到 T 的最大容量,即割边的最大容量

上下界网络流

区域赛在急,看看了上下界网络流,引水思源,这里给个出处 上下界网络流 https://www.cnblogs.com/liu-runda/p/6262832.html 这里只简单记录建图方法

1. 无源汇可行流

建图

- 1. u->v upper-lower 在源边上建容量上限为 upper-lower 的边
- 2. 计算每条边的 $totflow[u] = \sum in[u] \sum out[u]$
- 3. 对于每个点 totflow[u] > 0, s-> u, totflow[u],反之建 i-> t, -totflow[i]
- 4. 跑s-t 最大流,如果最大流等于总需要流入的流量($\sum^{totflow[u]>0}t$ otflow[u])说明可行.
- 5. 每条边的实际流量为 low[i] + s-t 最大流跑完后边的流量

例题 zoj 2314

```
#include <bits/stdc++.h>
using namespace std;
#define ms(x,v) (memset((x),(v),sizeof(x)))
#define pb push back
#define mp make pair
#define fi first
#define se second
#define INF 0x3f3f3f3f
typedef long long LL;
typedef pair<int,int > Pair;
const int MAX V = 200+10;
const int MAX_E = 1e5+10;
int n,m;
namespace dinic{
    int ne =0,s,t;
    struct Edge{
        int from ,to,cap;
        Edge(int u=0,int v=0,int c =0):from(u),to(v),cap(c)\{\};
    } E[MAX_E<<2];
    std::vector<int> G[MAX V];
    int level[MAX V], cur[MAX V];
    inline void add_edge(int u,int v,int cap) {
        E[ne] = Edge(u,v,cap);G[u].pb(ne++);
        E[ne] = Edge(v,u,0); G[v].pb(ne++);
    void bfs(int s) {
        ms(level, -1);
        queue<int > Q;Q.push(s);
        level[s] = 0;
        while (!Q.empty()) {
            int u = Q.front();Q.pop();
            for(int i=0 ; i< G[u].size() ; ++i){</pre>
                Edge &e = E[G[u][i]];
                if(e.cap >0 && level[e.to] <0){level[e.to] = level[u]+1</pre>
 ; Q.push(e.to);}
```

```
int dfs(int v,int t,int f){
        if(v ==t \mid | f==0) return f;
        for(int &i = cur[v]; i<G[v].size(); ++i){
            Edge & e = E[G[v][i]];Edge & rev = E[G[v][i]^1];
            if(e.cap>0 && level[v] <level[e.to]){</pre>
                int a = dfs(e.to,t,min(f,e.cap));
                if(a > 0){e.cap -=a; rev.cap += a;return a;}
            }
        }
        return 0;
    int max_flow(int s,int t){
        int flow = 0;
        for(;;){
            bfs(s);
            if(level[t] < 0 )break;</pre>
            ms(cur,0);
            int f;
            while ((f = dfs(s,t,INF)) > 0)flow += f;
        return flow;
    }
using namespace dinic;
int totflow[MAX_V];
int low[MAX E];
int main(int argc, char const *argv[]) {
    int T;
    scanf("%d",&T);
    while (T--) {
        ne =0;
        ms(totflow,0);
        scanf("%d%d",&n,&m);
        s = 0;t = n+1;
        for(int i=0; i<m; ++i){
            int u, v, c;
            scanf("%d%d%d%d",&u,&v,&low[i],&c);
            add_edge(u,v,c-low[i]);totflow[u] -=low[i];totflow[v] += lo
w[i];
        int sum=0;
        for(int i=1; i<=n; ++i)
            if(totflow[i]>0)add_edge(s,i,totflow[i]),sum += totflow[i];
            else add edge(i,t,-totflow[i]);
        if(max_flow(s,t) == sum){
            printf("YES\n");
            for(int i=1; i<2*m; i+=2)printf("%d\n",low[(i>>1)]+ E[i].
cap);
```

```
}else printf("NO\n");
    for(int i=s; i<=t; ++i)G[i].clear();
}
return 0;
}</pre>
```

2. 有源汇上下界可行流.

只需连一条 t-s 容量无限的边就是 上面的模型了.

建图

- 1. u->v upper-lower 在源边上建容量上限为 upper-lower 的边
- 2. 计算每条边的 $totflow[u] = \sum in[u] \sum out[u]$
- 3. 建新的原点, 汇点 ss, tt
- 4. 对于每个点 totflow[u] > 0, ss-> u, totflow[u], 反之建 i-> tt, -totflow[i]
- 5. 跑 ss-tt 最大流, 判断是否可行,

这个是下面两个的基础

3. 有源汇上下界最大流

建图 > 1. 同上. 先求可行流设为 f = E[t-s]. flow (残量网络中的容量) > 2. 将新边(t-s, inf)中 s-t 的容量设为 0, 这就等价于上面那片 blog 说的重新重s-t 增广. 得出最大流 f', f+f' 为实际最大流, > 不过对于我的模板来说,其实不必有第一步,因为我们只需在 ss-tt 的残量网络上直接增广就行因此可以 直接求 s-t 的最大流

loj 116

```
#include <bits/stdc++.h>
using namespace std;
#define ms(x,v) (memset((x),(v),sizeof(x)))
#define pb push back
#define mp make pair
#define fi first
#define se second
#define INF 0x3f3f3f3f
typedef long long LL;
typedef pair<int,int > Pair;
const int MAX V = 300;
const int MAX_E = 1e5+10;
int n,m;
namespace dinic{
    int ne =0,s,t;
    struct Edge{
        int from ,to,cap;
```

```
Edge(int u=0,int v=0,int c =0):from(u),to(v),cap(c){};
    } E[MAX E<<2];
    std::vector<int> G[MAX_V];
    int level[MAX_V], cur[MAX_V];
    inline void add_edge(int u,int v,int cap) {
        E[ne] = Edge(u,v,cap);G[u].pb(ne++);
        E[ne] = Edge(v,u,0); G[v].pb(ne++);
    }
    void bfs(int s) {
        ms(level,-1);
        queue<int > Q;Q.push(s);
        level[s] =0;
        while (!Q.empty()) {
            int u = Q.front();Q.pop();
            for(int i=0; i< G[u].size(); ++i){
                Edge &e = E[G[u][i]];
                if(e.cap > 0 \&\& level[e.to] < 0){level[e.to] = level[u]+1}
 ; Q.push(e.to);}
        }
    int dfs(int v,int t,int f){
        if(v == t \mid | f == 0) return f;
        for(int &i = cur[v]; i<G[v].size(); ++i){
            Edge & e = E[G[v][i]]; Edge & rev = E[G[v][i]^1];
            if(e.cap>0 && level[v] <level[e.to]){</pre>
                int a = dfs(e.to,t,min(f,e.cap));
                if(a > 0){e.cap -=a; rev.cap += a;return a;}
            }
        }
        return 0;
    int max_flow(int s,int t){
        int flow = 0;
        for(;;){
            bfs(s);
            if(level[t] < 0 )break;</pre>
            ms(cur,0);
            int f;
            while ((f = dfs(s,t,INF)) > 0)flow += f;
        return flow;
    }
}
using namespace dinic;
int totflow[MAX_V];
int low[MAX_E];
int main(int argc, char const *argv[]) {
    scanf("%d%d%d%d",&n,&m,&s,&t );
```

```
for(int i=0; i<m; ++i){
        int u,v,l,up;
        scanf("%d%d%d%d",&u,&v,&l,&up );
        add_edge(u,v,up-1);
       totflow[u]-=1;totflow[v] += 1;low[i] = 1;
   int sum =0;
   int ss = 0,tt = n+1;
    for(int i=1; i<=n; ++i)
        if(totflow[i]>0)add_edge(ss,i,totflow[i]),sum+=totflow[i];
        else add_edge(i,tt,-totflow[i]);
    add edge(t,s,INF);
    if(max flow(ss,tt) == sum){
        int f = E[ne-1].cap;
        E[ne-1].cap = 0;
        printf("%d\n",f+ max_flow(s,t));
        //or printf("%d\n",max_flow(s,t));
    }else printf("please go home to sleep\n");
   return 0;
}
```

5. 有源汇上下界最小流

建图

- 1. 同上,先求可行流,求出流量 f = E[t s]. flow
- 2. 将t-s 的容量设为 0 重跑 $f'=max_flow(t,s)$ 表示回退流量,最小流为 f-f'

loj 117

```
#include <bits/stdc++.h>
using namespace std;
#define ms(x,v) (memset((x),(v),sizeof(x)))
#define pb push back
#define mp make pair
#define fi first
#define se second
#define INF 0x3f3f3f3f
typedef long long LL;
typedef pair<int,int > Pair;
const int MAX V = 50000+100;
const int MAX E = 125000+10;
int n,m;
typedef LL cap_type;
namespace dinic{
    int ne =0,s,t;
    struct Edge{
        int from ,to;
        cap_type cap;
        Edge(int u=0,int v=0,cap_type c =0):from(u),to(v),cap(c)\{\};
```

```
} E[MAX E<<2];
    std::vector<int> G[MAX V];
    int level[MAX_V], cur[MAX_V];
    inline void add_edge(int u,int v,cap_type cap) {
        E[ne] = Edge(u,v,cap);G[u].pb(ne++);
        E[ne] = Edge(v,u,0); G[v].pb(ne++);
    }
    void bfs(int s) {
        ms(level,-1);
        queue<int > Q;Q.push(s);
        level[s] = 0;
        while (!Q.empty()) {
            int u = Q.front();Q.pop();
            for(int i=0; i< G[u].size(); ++i){
                Edge &e = E[G[u][i]];
                if(e.cap >0 && level[e.to] <0){level[e.to] = level[u]+1
 ; Q.push(e.to);}
            }
        }
    }
    cap_type dfs(int v,int t,cap_type f){
        if(v == t \mid | f == 0) return f;
        for(int &i = cur[v] ; i<G[v].size() ; ++i){</pre>
            Edge & e = E[G[v][i]]; Edge & rev = E[G[v][i]^1];
            if(e.cap>0 && level[v] <level[e.to]){
                int a = dfs(e.to,t,min(f,e.cap));
                if(a > 0){e.cap -=a ; rev.cap += a;return a;}
            }
        return 0;
    cap_type max_flow(int s,int t){
        cap_type flow = 0;
        for(;;){
            bfs(s);
            if(level[t] < 0 )break;</pre>
            ms(cur,0);
            cap_type f;
            while ((f = dfs(s,t,INF)) > 0)flow += f;
        return flow;
    }
}
using namespace dinic;
int totflow[MAX V];
int low[MAX E];
int main(int argc, char const *argv[]) {
    scanf("%d%d%d%d",&n,&m,&s,&t );
    for(int i=0; i<m; ++i){
```

```
int u,v,l,up;
        scanf("%d%d%d%d",&u,&v,&l,&up );
        add_edge(u,v,up-1);
        totflow[u]-=1;totflow[v] += 1;low[i] = 1;
   int sum =0;
    int ss = 0, tt = n+1;
    for(int i=1; i<=n; ++i)
        if(totflow[i]>0)add_edge(ss,i,totflow[i]),sum+=totflow[i];
        else add_edge(i,tt,-totflow[i]);
    add_edge(t,s,0x7ffffffffff);
    if(max flow(ss,tt) == sum){
        //std::cout << E[ne].cap << " " << E[ne-2].cap << '\n';
        cap_type f = E[ne-1].cap;
        E[ne-1].cap = 0;
        printf("%11d\n",f - max_flow(t,s));
    }else printf("please go home to sleep\n");
   return 0;
}
```

二分图匹配

二分图的一个匹配是指二分图中的一些没有公共顶点的边集,匹配数就是边集的数目,最大匹配是指,使得这样的边集的数目最大.

算法

当作网络流来处理,将U = V 的边改成从 $U : 流 \land V$ 的一条边,其容量为一.对于这个多元多汇问题,我们只需要连一个超级节点S 到每一个源点,容量为1,再从每一个汇点连到一个超级汇点容量也为一,这样这个图的最大流就是最大匹配数.

不过由于是二分图我们可不必真的这样实现

Code

```
int V;
std::vector<int> G[MAX_V];
bool used[MAX_V];
int match[MAX_V];

bool dfs(int u){
    used[u] = true;
    for(int i=0 ; i<G[u].size() ; ++i){
        int v = G[u][i];int w = match[v];
        if(w<0 || !used[w] && dfs(w)){
            match[u] = v;match[v] = u;
            return true;
        }
    }
}</pre>
```

```
return false;
}
int bipartite_match(){
  int res = 0;
  memset(match, -1, sizeof(match));
  for(int i = 1 ; i<=V ; ++i){
    if(match[i]<0){
       memset(used, false, sizeof(used));
       if(dfs(i))res++;
    }
  }
  return res;
}

void add_edge(int u,int v){
  G[u].push_back(v);
  G[v].push_back(u);
}</pre>
```

最大权闭合图

参见文献: 最小割模型在比赛中的运用

```
\begin{split} V_N &= V \bigcup \{s,t\} \\ E_N &= E \bigcup \left\{ \left\langle s,v \right\rangle \mid v \in V, w_v > 0 \right\} \bigcup \left\{ \left\langle v,t \right\rangle \mid v \in V, w_v < 0 \right\} \\ \left\{ \begin{aligned} c(u,v) &= \infty & \left\langle s,v \right\rangle \in E \\ c(s,v) &= w_v & w_v > 0 \\ c(v,t) &= -w_v & w_v < 0 \end{aligned} \right. \end{split}
```

http://blog.csdn.net/Dylan Frank

这里写图片描述

从源点搜到的满流边就是解

这是最大权闭合子图问题,参见以上文献. 建边, s->i if b[i]>0; i->t if b[i]<0; i->j if j 是 i 的下属 费用就等于 $\sum^{b[i]>0} b[i] - (max - flow)$ 与S相连接的点为裁掉的人员

```
const int MAX V = 5000+10;
struct Edge{
  int from, to; // 原图的边
  LL cap;
  Edge(int u,int v,LL c = 0):from(u),to(v),cap(c){};
};
std::vector<Edge> E;
std::vector<int> G[MAX V];
//残量网络
void add_edge(int u,int v,LL cap){
  E.push_back(Edge(u,v,cap));G[u].push_back(E.size()-1);
  E.push_back(Edge(v,u,0)); G[v].push_back(E.size()-1);
}
struct Dinic{
  int level[MAX_V], cur[MAX_V];//分层,当前弧;
  void bfs(int s){
    memset(level, -1, sizeof(level));
    queue<int> Q;Q.push(s);
    level[s] = 0;
    while (!Q.empty()) {
      int u = Q.front();Q.pop();
      for(int i=0; i<G[u].size(); ++i){</pre>
        Edge & e = E[G[u][i]];
        if(e.cap>0 && level[e.to]<0){
          level[e.to] = level[u]+1;
          Q.push(e.to);
        }
      }
   }
  }
  LL dfs(int v,int t,LL f){
    if(v==t || f == 0)return f;
    for(int& i = cur[v]; i<G[v].size(); ++i){
      Edge & e = E[G[v][i]]; Edge & rev = E[G[v][i]^1];
      if(e.cap>0 && level[v]<level[e.to]){</pre>
        LL a = dfs(e.to,t,min(f,e.cap));
        if(a>0){
          e.cap-=a;
          rev.cap+=a;
          return a;
        }
      }
    return 0;
```

```
LL max_flow(int s,int t){
    LL flow = 0;
    for(;;){
      bfs(s);
      if(level[t]<0)break;</pre>
      memset(cur,0,sizeof(cur));
      LL f;
      while ((f = dfs(s,t,INF64))>0) {
        flow+=f;
      }
    }
    return flow;
};
LL b[maxn];
Dinic Flow;
bool mark[MAX_V];
int cnt =0;
void dfs(int s){
  mark[s] = true;cnt++;
  for(int i=0 ; i<G[s].size() ; ++i){</pre>
    Edge & e = E[G[s][i]];
    if( e.cap>0&& !mark[e.to])dfs(e.to);
  }
}
int main() {
  int n,m;
  scanf("%d%d",&n,&m );
    for(int i=1; i<=n; ++i)scanf("%1ld",&b[i]);
    while (m--) {
      int x,y;
      scanf("%d%d",&x,&y );
      add_edge(x,y,INF64);
    }
    int s = 0, t = n+1;
    LL sum = 0;
    for(int i=1; i<=n; ++i)
        if(b[i]>0){add_edge(s,i,b[i]);sum+=b[i];}
        else add_edge(i,t,-b[i]);
```

```
LL profit = sum-Flow.max_flow(s,t);

memset(mark,false,sizeof(mark));
cnt = 0;
dfs(s);

printf("%d %lld\n",--cnt,profit );

return 0;
}
```

参考文献*《最小割模型在信息学竞赛中的应用》

分数规划

分数规划问题

Minimize
$$\lambda = f(\mathbf{x}) = \frac{a(\mathbf{x})}{b(\mathbf{x})}$$
 $(\mathbf{x} \in S)$
s.t. $\forall \mathbf{x} \in S, b(\mathbf{x}) > 0$

http://blog.csdm.net/Dylan_Frank 分数规

划中有几个重要的结论,详细的证明过程不在给出,请参考论文

原问题等价于 $g(\lambda) = min\{a(X) - \lambda b(X)\}$

重要性质

- 1. $g(\lambda') = 0 \Leftrightarrow \lambda' 为原分数规划的最优解$
- 2. 单调性 $g(\lambda)$ 单调递减

这个对于最大化分数规划也是同样试用的.证略

最大密度子图

最大密度子图可以转化为分数规划问题

1. 边权为1

建图

$$\begin{split} V_N &= V \cup \{s,t\} \qquad \bigvee \qquad \mathbf{Z} \qquad \\ E_N &= \left\{ \left\langle u,v \right\rangle | \left(u,v\right) \in E \right\} \cup \left\{ \left\langle s,v \right\rangle | \ v \in V \right\} \cup \left\{ \left\langle v,t \right\rangle | \ v \in V \right\} \\ \left\{ \begin{matrix} c(u,v) = 1 & (u,v) \in E \\ c(s,v) = U & v \in V \\ c(v,t) = U + 2g - d_v & v \in V \end{matrix} \right. \end{split}$$

$$h(g) = \frac{U*n - (min - cut(S,T))}{2}$$

二分找g使得hg = 0 复炸度为O(k * maxflow) 对于详细的证明过程参见论文,我认为没有人可以讲的比他还详尽了

poj 3155code 模板

```
typedef long long LL;
typedef pair<int,int> Pair;
const double eps = 1e-8;
const int maxn = 1000+10;
const int MAX V = 100+10;
const int MAX_E = 1000+10;
struct Edge{
  int from, to;//原图的边
  double cap;
  Edge(int u,int v,double c = 0):from(u),to(v),cap(c){};
};
std::vector<Edge> E;
std::vector<int> G[MAX_V];
Pair p[MAX_E];
int d[MAX V];
int n,m,s,t;
//残量网络
void add_edge(int u,int v,double cap){
  E.push_back(Edge(u,v,cap));G[u].push_back(E.size()-1);
  E.push_back(Edge(v,u,0)); G[v].push_back(E.size()-1);
}
struct Dinic{
  int level[MAX_V], cur[MAX_V];//分层,当前弧;
  void bfs(int s){
    memset(level, -1, sizeof(level));
    queue<int> Q;Q.push(s);
    level[s] = 0;
    while (!Q.empty()) {
      int u = Q.front();Q.pop();
      for(int i=0; i<G[u].size(); ++i){</pre>
        Edge & e = E[G[u][i]];
        if(e.cap>eps && level[e.to]<0){</pre>
          level[e.to] = level[u]+1;
          Q.push(e.to);
        }
      }
    }
  }
  double dfs(int v,int t,double f){
    if(v==t \mid f == 0)return f;
    for(int& i = cur[v] ; i<G[v].size() ; ++i){</pre>
      Edge & e = E[G[v][i]]; Edge & rev = E[G[v][i]^1];
      if(e.cap>eps && level[v]<level[e.to]){</pre>
        double a = dfs(e.to,t,min(f,e.cap));
        if(a>0){
```

```
e.cap-=a;
          rev.cap+=a;
          return a;
        }
      }
    return 0;
  }
  double max_flow(int s,int t){
    double flow = 0;
    for(;;){
      bfs(s);
      if(level[t]<0)break;</pre>
      memset(cur,0,sizeof(cur));
      double f;
      while ((f = dfs(s,t,INF64))>0) {
        flow+=f;
    }
    return flow;
};
Dinic Flow;
bool mark[MAX_V];
int cnt =0;
set<int> vertex;
void dfs(int s){
  mark[s] = true;cnt++;
  vertex.insert(s);
  for(int i=0; i<G[s].size(); ++i){
    Edge & e = E[G[s][i]];
    if( e.cap>eps&& !mark[e.to])dfs(e.to);
  }
}
void build_graph(double g){
  for(int i=0 ; i<=n+1 ; ++i)G[i].clear();
  E.clear();
  for(int i=1; i<=n; ++i){
    add edge(s,i,m);
    add_edge(i,t,m+2*g-d[i]);
  for(int i=0; i<m; ++i)
```

```
add_edge(p[i].fi,p[i].se,1.0);
    add_edge(p[i].se,p[i].fi,1.0);
  }
}
int main() {
  scanf("%d%d",&n,&m );
   s = 0, t = n+1;
   memset(d,0,sizeof(d));
  for(int i=0 ; i<m ; ++i){</pre>
    scanf("%d%d",&p[i].fi,&p[i].se );
    d[p[i].fi]++;d[p[i].se]++;
  if(m==0){std::cout << 1 << '\n'<<1<<'\n';}
  else{
    double left = 0,right = m,mid,hg;
    double precise = 1.0/n/n;
    while (right-left>=precise) {
      mid = (right+left)/2;
      build_graph(mid);
      hg = ((double)m*n-Flow.max_flow(s,t))/2;
      (hg>eps?left:right) = mid;
    build_graph(left);
    Flow.max_flow(s,t);
    cnt = 0;
    memset(mark,false,sizeof(mark));
    dfs(s);
    printf("%d\n", --cnt);
    for(set<int>:: iterator it = ++vertex.begin() ; it!=vertex.end() ;
++it)
      printf("%d\n",*it );
  }
  return 0;
}
2.
   边带权图
只需
d_u = \sum_{(u,v)\in E}w_e\setminus U = \sum_{e}w_e\setminus c(u,v) = w_e 
    点边均带权的图
```

3.

 $\ d_u = \sum_{(u,v)\in E} w_e \setminus c(u,v) = w_e \setminus U = \sum_{(u,v)\in E} w_e \setminus c(u,t) =$ $U+2g-2p_u+d_u$ \$\$

最小费用流

在概念上最小费用流只是在最大流的边上在附加一个费用,即求出从源点到汇点的给定流量的最小费用.

算法

先从源点找一条到汇点的最短路,然后沿着最短路增广.建图的时候将反向边的费用设为-cost.(退流退费用)

Code

```
struct Edge{
  int from, to, cap, cost;
  Edge(int f,int t,int c,int co):from(f),to(t),cap(c),cost(co){}
};
std::vector<Edge> E;
std::vector<int> G[MAX_V];
void add_edge(int u,int v,int cap,int cost){
  E.push_back(Edge(u,v,cap,cost));G[u].push_back(E.size()-1);
  E.push_back(Edge(v,u,0,-cost)) ;G[v].push_back(E.size()-1);
}
struct MCMF{
  int V;
  int dist[MAX V];
  int pre_E[MAX_V];//最短路径弧
  bool inq[MAX V];//spfa 判断
  //未判断负圈
  void spfa(int s){
    memset(dist,INF,sizeof(dist));
    memset(inq,false,sizeof(inq));
    queue<int> 0;
    Q.push(s);
    dist[s] = 0;
    inq[s] = true;
    pre_E[s] = -1;
    while(!Q.empty())
      int u = Q.front();Q.pop();
      inq[u] = false;
      for(int i=0 ; i<G[u].size() ; ++i){</pre>
        Edge &e = E[G[u][i]];
        if(e.cap>0&&dist[e.to]>dist[u]+e.cost){
          dist[e.to] = dist[u]+e.cost;
          pre_E[e.to] = G[u][i];
          if(!ing[e.to]){Q.push(e.to);ing[e.to] = true;}
        }
```

```
}
  int min_cost_flow(int s,int t,int f){
   int res = 0;
   while (f>0) {
      spfa(s);
      if(dist[t]==INF)return break;//不能增广
     //沿着最短路增广
      int d = f;
      for(int i = pre_E[t]; i!=-1; i = pre_E[E[i].from])d = min(d,E[i].
cap);
      f-=d;
      res+=d*dist[t];
      for(int i = pre_E[t] ; i!=-1 ;i = pre_E[E[i].from]){
        E[i].cap-=d;
        E[i^1].cap+=d;
      }
   }
   return res;
 }
};
```

树

LCA

```
int st[MAX_V][32];
//返回下标的RMQ;
void RMQ_init(const int *A,int n)
  for(int i=0 ; i<n ; ++i)st[i][0] = i;</pre>
  for(int j = 1; (1<<j)<=n; ++j)
    for(int i = 0; i+(1<< j)-1< n; ++i)
    if(A[st[i][j-1]]<A[st[i+1<<(j-1)][j-1]])
      st[i][j] = st[i][j-1];
    else st[i][j] = st[i+1<<(j-1)][j-1];</pre>
//最小值的下标
int query(const int *A,int L,int R){
  if(R<L)return -1;</pre>
  int k=0;
 while (1 << (k+1) <= R-L+1)k++;
  if(A[st[L][k]]<A[st[R-(1<<k)+1][k]])
    return st[L][k];
  else return st[R-(1<<k)+1][k];
}
```

```
//LCA
std::vector<int> G[MAX_V];
struct LCA{
  int root;
  int vs[MAX_V<<1];//访问数组
  int depth[MAX_V<<1]//深度数组
  int pos[MAX_V];//位置数组
  void dfs(int v,int p,int d,int& k){
    pos[v] = k;
    vs[k] = v;
    depth[k++] = d;
    for(int i=0 ; i<G[v].size() ; ++i)</pre>
      if(G[v][i] !=p){
        dfs(G[v][i],v,d+1,k);
        vs[k] = v;//回退
        depth[k++] = d;
      }
  }
  //预处理
  void init(int V,int r){
    int k=0;
    root = r;
    dfs(root, -1, 0, k);
    RMQ_init(depth, 2*V-1);
  }
  int lca(int u,int v){
    if(pos[u]>pos[v])swap(u,v);
    return vs[query(depth,pos[u],pos[v])];
  }
};
```

clique

版本1

```
#define ctz(x) ((x)? __builtin_ctzll(x):64)

/*计算右边第一个1 之后的0 的个数

*最大计算为64,从右边起序号依次为0,1,2,...

*/
int ans,n;
ULL g[maxn];
//最大团
```

```
void BronKerbosch(ULL clique,ULL allow,ULL forbid){
    if(!allow && !forbid){
        ans = max(ans, __builtin_popcountll(clique));return;
    }
    if(!allow)return;
    int pivot = ctz(allow | forbid);//选择轴点
    ULL choose = allow & ~g[pivot];
    for(int u = ctz(choose); u<n; u += ctz(choose>>(u+1))+1){
        BronKerbosch(clique|(1ULL<<u),allow&g[u],forbid&g[u]);
        allow ^=1ULL<<u;
        forbid|=1ULL<<u;
    }
}</pre>
```

版本2

```
const int MAX V = 55;
bitset<MAX_V> g[MAX_V], clique, allow, forbid;
//暴力枚举
int ans,n;
void BronKerbosch(int sz,bitset<MAX_V> allow, bitset<MAX_V> forbid,int
begin=0) {
    if(allow.none()&&forbid.none()){
        ans = max(ans,sz);
        return;
    if(allow.none())return;
    int pivot = 0;
    for(int i=0 ; i<n ; ++i)</pre>
        if(allow[i]|forbid[i]){pivot = i;break;}
    bitset<MAX_V> choose = allow & (~g[pivot]);
    for(int u=begin ; u<n ; ++u){</pre>
        if(choose[u]){
            SZ++;
            BronKerbosch(sz,allow&g[u],forbid&g[u],begin=0);
            SZ--;
            allow.set(u,₀);
            forbid.set(u);
        }
    }
}
```

版本3

```
std::vector<int> g[MAX_V];
int mat[maxn][maxn];
//暴力枚举
```

```
int ans = 0;
int n,m,s;
int cnt;
int Stack[maxn];
bool ok(int u){
    for(int i=0 ; i<cnt ; ++i)</pre>
        if(!mat[u][Stack[i]])return 0;
    return 1;
}
void dfs(int u,int idx){
    if(cnt ==s){ans++;return;}
    if(g[u].size()+cnt <s|| idx >=g[u].size())return;
    if(ok(g[u][idx])){
        Stack[cnt++] = g[u][idx];
        dfs(u,idx+1);
        cnt--;
    dfs(u,idx+1);
}
int main()
    // ios_base::sync_with_stdio(0);
    // cin.tie(0);
    // cout.tie(0);
    int T;
    cin>>T;
    int allow[100];
    while (T--) {
        cin>>n>>m>>s;
        for(int i=0; i<n; ++i)g[i].clear();</pre>
        ms(mat,0);
        for(int i=0 ; i<m ; ++i){</pre>
             int u,v;
             scanf("%d%d",&u,&v );
             u--;v--;
             if(u==v)continue;
            mat[u][v] = mat[v][u] = 1;
            g[u].pb(v);
            g[v].pb(u);
        }
        ans =0;
        for(int i=0 ; i<n ; ++i){</pre>
            cnt =0;
            Stack[cnt++] = i;
            dfs(i,0);
            for(int j=0 ; j<n ; ++j){</pre>
```

最小费用流

```
#define fi first
#define se second
using namespace std;
typedef long long LL;
typedef pair<int,int> Pair;
const int maxn = 50;
const int MAX_V = 2500;
struct Edge{
  int from, to, cap, cost;
 Edge(int f,int t,int c,int co):from(f),to(t),cap(c),cost(co){}
};
std::vector<Edge> E;
std::vector<int> G[MAX V];
void add_edge(int u,int v,int cap,int cost){
  E.push_back(Edge(u,v,cap,cost));G[u].push_back(E.size()-1);
  E.push_back(Edge(v,u,0,-cost)) ;G[v].push_back(E.size()-1);
}
struct MCMF{
  int V;
  int dist[MAX_V];
  int pre E[MAX V];//最短路径弧
  bool inq[MAX_V];//spfa 判断
 //未判断负圈
  void spfa(int s){
    memset(dist,INF,sizeof(dist));
    memset(inq,false,sizeof(inq));
    queue<int> Q;
    Q.push(s);
    dist[s] = 0;
    inq[s] = true;
    pre_E[s] = -1;
    while(!Q.empty())
      int u = Q.front();Q.pop();
```

```
inq[u] = false;
      for(int i=0 ; i<G[u].size() ; ++i){</pre>
        Edge &e = E[G[u][i]];
        if(e.cap>0&&dist[e.to]>dist[u]+e.cost){
          dist[e.to] = dist[u]+e.cost;
          pre_E[e.to] = G[u][i];
          if(!inq[e.to]){Q.push(e.to);inq[e.to] = true;}
        }
      }
    }
  }
  int min_cost_flow(int s,int t,int f){
    int res = 0;
    while (f>0) {
      spfa(s);
      if(dist[t]==INF) break;//不能增广
      //沿着最短路增广
      int d = f;
      for(int i = pre_{E[t]}; i!=-1; i = pre_{E[E[i].from]})d = min(d,E[i].
cap);
      f-=d;
      res+=d*dist[t];
      for(int i = pre_E[t]; i!=-1; i = pre_E[E[i].from]){
        E[i].cap-=d;
        E[i^1].cap+=d;
      }
    }
    return res;
  }
};
MCMF mcf;
int a[maxn][maxn];
int main(int argc, char const *argv[]) {
  int N,M;
  while (scanf("%d%d",&N,&K )!=EOF) {
    for(int i=0 ; i<N ; ++i)</pre>
      for(int j=0 ; j<M ; ++j)</pre>
        scanf("%d",&a[i][j] );
    int ans = a[0][0]+a[N-1][M-1];
    int s = N*M, t = s+1;
    E.clear();
    for(int i=0 ; i<= t ; ++i)G[i].clear();</pre>
    for(int i=0 ; i<N ; ++i){</pre>
      for(int j = 0 ; j < M ; ++j){}
        int u = i*M+j, v1 = u+1, v2 = (i+1)*N+j;
        if(j!=M-1){
```

```
add_edge(u,v1,1,-a[i][j+1]);
    add_edge(u,v1,INF,0);
}
if(i!=N-1){
    add_edge(u,v2,1,-a[i+1][j]);
    add_edge(u,v2,INF,0);
}
}
add_edge(N*M-1,t,K,0);
add_edge(s,0,K,0);
ans+=(-mcf.min_cost_flow(s,t,K));
std::cout << ans << '\n';
}

return 0;
}</pre>
```

数学

计数

BEST 定理 和这里不加证明的给出 BEST 定理,有向图 $G, d_i = d_i^- = d_i^+$ 的欧拉回路数目为

$$T_v * \prod^{i \in V(G)} (d_i - 1)!$$

i 其中T_v 为任意顶点v 的 in_tree 或者 out_tree 数目

注意: d 定理中的欧拉回路和这个题里的不一样,定理中由于欧拉回路有环结构,与第一条边选取无关,而这个问题是算作不同的.

mobius

基本公式定理

$$n = \sum_{d|n}^{d|n} \phi(d)$$

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$$

1. mobius 反演公式

$$F(n) = \sum_{d|n}^{d|n} f(d)$$

$$f(n) = \sum_{d|n} \mu(n/d)F(d)$$

$$= \sum_{d|n} \mu(d)F(n/d)$$

另一种描述:

```
$$
\begin{align}
F(d)&=\sum_{d\mid n}f(n)\\
f(d)&=\sum_{d\mid n}F(n)\mu(n/d)
\end{align}
$$
```

2. 经典公式

$$n = \sum_{d|n}^{d|n} \phi(d)$$

$$\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d}$$

$$\sum_{d|n} \mu(d) = (n == d)$$

分块求和

如果说计算式中出现了 $\sum_{i=1}^{n} f(i) * g([(n/i)])$,则由于 $[\frac{n}{i}]$ 的取值只有 $O(\sqrt{n})$ 种显然我们可以运用分段求和(可以打印出这样的值来看一下)记录f的前缀和,然后 g 就进行分段求和.

```
11 F(int n, int m, int d) {
    if (n > m) swap(n, m);
    11 ans = 0;
    n /= d, m /= d;
    for (int i = 1, last = 1; i <= n; i = last + 1) {
        last = min(n / (n / i), m / (m / i));
        ans += (ll)(sum[last] - sum[i - 1]) * (n / i) * (m / i);
    }
    return ans;
}</pre>
```

线性筛法笔记整理

线性筛法处理积性函数

```
void monius(){
    cnt =0;
    mu[1] = 1;
    memset(prime,0,sizeof(prime));
    for(int i = 2; i < maxn; ++i){
        if(!prime[i]){
            prime[cnt++] = i;
            mu[i] = -1;
        for(int j=0 ; j<cnt && i*prime[j]<maxn ; ++j){</pre>
            prime[i*prime[j]] = 1;
            if(i%prime[j])mu[prime[j]*i] = -mu[i];
            else {
                 mu[i*prime[j]] = 0;
                 break;
            }
        }
    }
    sum_mu[0] = 0;
    for(int i=1; i<maxn; ++i)</pre>
        sum_mu[i] = sum_mu[i-1]+mu[i];
}
void phi_table(){
    cnt =0;
    phi[1] = 0;
    memset(prime,0,sizeof(prime));
    for(int i = 2 ; i<maxn ; ++i){</pre>
        if(!prime[i]){
            prime[cnt++] = i;
            phi[i] =i-1;
        for(int j=0 ; j<cnt && i*prime[j]<maxn ; ++j){</pre>
            prime[i*prime[j]] = 1;
            if(i%prime[j])phi[prime[j]*i] = phi[i]*(prime[j]-1);
            else {
                 phi[i*prime[j]]= phi[i]*prime[j];
                 break;
            }
        }
    }
}
```

参考文献:

贾智鹏 线性筛

ex_gcd

```
//返回值为最大公约数

LL ex_gcd(LL a, LL b, LL &x, LL &y)

{

    LL d = a;

    if(!b){x = 1,y = 0;}

    else{

        d = ex_gcd(b, a%b, y, x);

        y-=a/b*x;

    }

    return d;

}
```

素数

素因子分解

朴素算法 $O(\sqrt{n})$

Eratosthenes 筛法

```
void Eratosthenes(int n)
{
    memset(is_prime, true, sizeof(is_prime));

    for(int i = 2 ; i*i<=n; ++i)
        if(is_prime[i])
        for(int j=i*i ; j<=n ; j+=i)is_prime[j] = false;
}</pre>
```

区间筛法

```
void segment_sieve(LL a,LL b)//[a,b]
{
    memset(is_prime_ab,true,sizeof(is_prime_ab[0])*(b-a+1));
    memset(is_prime_sqrtb,true,sizeof(is_prime_sqrtb[0])*(sqrt(b)+2));
    for(LL i = 2 ; i*i<=b ; ++i)</pre>
```

```
if(is_prime_sqrtb[i]){
    for( LL j = i*i ; j*j<=b ; j+=i)is_prime_sqrtb[j] = false;
    for(LL j = max(i*i,(a-1)/i+1)*i ; j<=b ; j+=i)is_prime_ab[j-a]
= false;
    }
}</pre>
```

大素数分解与大素数测试

1. miller_rabin

已知最快的素数分解算法.O(lgV)

```
bool witness(LL a, LL n, LL u, LL t){
    LL x0 = power_mod(a,u,n),x1;
    for(int i=1 ;i<=t ; ++i){</pre>
        x1 = mulmod(x0,x0,n);
        if(x1==1 \&\& x0!=1 \&\& x0!=n-1)
             return false;
        x0 = x1;
    if(x1 !=1)return false;
    return true;
}
bool miller_rabin(LL n, int times = 20){
    if(n<2)return false;</pre>
    if(n==2)return true;
    if(!(n&1))return false;
    LL u = n-1, t = 0;
    while (u%2==0) {
        t++;u>>=1;
    while (times--) {
        LL a = random(1,n-1);
        //if(a == 0)std::cout << a << " "<<n<< " "<<u<<" " << t<< \n';
        if(!witness(a,n,u,t))return false;
    }
    return true;
}
```

2. pollard_rho

分解一个合数V的运行时间 $O(V^{1/4})$

```
/*
*pollard_rho 分解n,
*c: 随机迭代器,每次运行设置为随机种子往往更快.
*/
LL pollard_rho(LL n,LL c = 1){
```

```
LL x = random(1,n);

LL i =1,k =2,y = x;

while (1) {

    i++;

    x = (mulmod(x,x,n)+c)%n;

    LL d = gcd(y-x>=0?y-x:x-y,n);

    if(d!=1 && d!=n)return d;//非平凡因子.

    if(y==x)return n;//重复.

    if(i==k){ y = x ; k<<=1;}//将x_1,2,4,8,16,...赋值为y.

}

* 找出因子分解 O(V<sup>1/4</sup>lgV)
```

```
void find_factor(LL n,std::map<LL, int> & m){
    if(n<=1)return;
    if(miller_rabin(n)){
        ++m[n];
        return;
    }
    LL p = n;

while (p==n)p = pollard_rho(p,random(1,n));
    find_factor(p,m);
    find_factor(n/p,m);
}</pre>
```

euler phi 函数

```
\phi(n) = n \prod_{i=1}^{k} (1 - \frac{1}{p_i}) 证明详见《初等数论及其应用》
```

```
int euler_phi(int n)
{
    int ans = n;
    for(int i=2; i*i<=n; ++i)
        if(ans%i ==0)
        {
        ans = ans/i*(i-1);
        while(n%i==0)n/=i;
        }
        if(n>1)ans = ans/n*(n-1);
    return ans;
}
```

模运算

大数乘法取模

```
inline 11 mul_mod_l1(l1 a,l1 b){
    l1 d=(l1)floor(a*(double)b/MOL+0.5);
```

```
ll ret=a*b-d*MOL;
if(ret<0)ret+=MOL; return ret;
}
模方程
```

```
LL MLE(LL a, LL b, LL n) {
    LL d, x, y;
    d = ex_gcd(a, n, x, y);
    if(b%d !=0) {
        return -1;
    }else {
        LL x0 = x*b/d%n+n;
        return x0%(n/d);//模(n/d)
    }
}
```

乘法逆元

a 在模 n 意义下的逆

```
LL inv(LL a,LL n){
    LL x,y;
    LL d = ex_gcd(a,n,x,y);
    return d==1? (x+n)%n:-1;//非负性保证.
}
```

中国剩余定理

```
//x % m[i] = a[i]
LL china(int n,int *a,int *m){
    LL M = 1,x = 0,y,z;
    for(int i=0 ; i<n ; ++i)M*=m[i];
    for(int i=0 ; i<n ; ++i){
        LL M_i = M/m[i];
        ex_gcd(M_i,m[i],y,z);//M_i*y = 1(mod m[i])
        x = (x+M_i*a[i]*y)%M;
    }
    return (x+M)%M;
}</pre>
```

朴素模方程(mi不两两互素的时候)

```
LL MLE(int *r,int *mod,int n){
    LL lm = 0, lb = 1;
    for (int i = 0; i < n; i++)
    {
        LL k1,k2;
        LL d= exgcd(lb, mod[i],k1,k2); // x=c1(mod r1)
        if ((lm - r[i]) % d) { return -1; } // 联立 x=r2(mod m2), (r1-r2)
=0(mod gcd) 才有解
        lb = lb / d * mod[i]; // Lcm
```

离散对数

阶定义

设 (a, m) = 1, 满足 $a^x \equiv 1 \pmod{m}$ 的最小的 x,称为 a 对 m 的阶,记为 $ord_m(a)$ 当 $ord_m(a) = \phi(m)$ 时称为 a 为 m 的原根.

简单性质

- 1. $a^x \equiv 1 \Leftrightarrow ord_m(a) \mid x$
- 2. $ord_m(a) \mid \phi(m)$
- 3. $a^0, a^1, \dots, a^{ord_m(a)-1}$ 构成摸 m 的既约剩余系.
- 4. $a^x \equiv a^y \pmod{m} \Leftrightarrow x \equiv y \pmod{ord_m(a)}$
- 5. $ord_m(a^d) = \frac{ord_m(a)}{(ord_m(a),d)}$ (利用这个性质可以求出所有原根)
- 6. m(若存在原根)的原根数目为 $\phi(\phi(m))$.
- 7. n有原根 \Leftrightarrow n = 2,4,p^e, 2p^e(p为奇素数).
- 8. 设 $\phi(m) = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$,则g是m的原根当且仅当对与所有的 p_i .

$$g^{\frac{\phi(m)}{p_i}} \neq 1 (mod\ m)$$

求阶和原根的方法

上面的性质是非常容易证明的.随便找一本数论书籍都会有详细的证明.由上面的性质我们可以得到一个相对简单的求阶和原根的方法(暴力)

- **阶**: 我门可以对 m 先分解因子,设 $m = p_1^{r_1} p_2^{r_2} \dots p_k^{r_k}$,然后将 r_i 逐个相减记为p 直到再减一个之后 $a^p \neq 1$
- **原根:** 这个就更加暴力了,我们可以用性质 8 逐一枚举与m互素的数然后对分解式进行验证就好.

这里有一份 51nod 模板题 1135 的代码

```
#include <cstdio>
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
```

```
#include<cmath>
#include <cstring>
#include <map>
#include <iomanip>
#define fi first
#define se second
#define INF 0x3f3f3f3f
using namespace std;
const int MOD = 1e9+7;
const int MAX P = 2e4+10;
const int maxn = 2e5 + 10;
const int MAX V = 5e5+10;
const int maxv = 1e6+10;
typedef long long LL;
typedef long double DB;
typedef pair<int,int> Pair;
int p;
int prime[maxn],cnt;
int factor[maxn],fact cnt;
void init_prime(){
    memset(prime, 0, sizeof(prime));
    cnt = 0;
    for(int i = 2 ; i<maxn ; ++i){</pre>
        if(!prime[i]){
            prime[cnt++] = i;
        for(int j =0 ; j<cnt && prime[j]*i<maxn ; ++j){</pre>
            prime[prime[j]*i] = 1;
            if(i % prime[j] == 0)break;
        }
    }
LL power_mod(LL x,LL n,LL mod){
    LL res =1;
    while (n) {
        if(n & 1)res = res*x % mod;
        x = x*x \% mod;
        n >>= 1;
    }
    return res;
void get_fact(int n){
    fact cnt = 0;
    for(int i = 0 ; i < cnt && prime[i]*prime[i] <=n ; ++i ){</pre>
        if(n % prime[i] == 0){
            factor[fact_cnt++] = prime[i];
            while (n%prime[i] == 0)n/=prime[i];
```

```
if(n!=1)factor[fact cnt++] = n;
}
bool check(int g){
    for(int i=0 ; i<fact cnt ; ++i)</pre>
        if(power mod(g,(p-1)/factor[i],p) ==1)return false;
    return true;
}
int proot(int p){
    get fact(p-1);
    for(int i=2 ; i
        if(check(i))return i;
}
int main(int argc, char const *argv[]) {
    init_prime();
    cin>>p;
    std::cout << proot(p) << '\n';</pre>
  return 0;
}
```

bsgs algorithm

 $A^x \equiv C \pmod{m}$ 大步小步算法,这个算法有一定的局限性,只有当gcd(a,m) = 1 *时才可以用*.

原理

简单说一下它的原理.其实由上面的性质,我们知道 $0 \le x < ord_m(a)$,设x = uT - v则原方程转化为 $a^{uT} \equiv Ca^v(a^{-1}$ 存在)我们可以预处理出每一个 Ca^v 对每一个计算出的 a^{uT} 找一下有没有等于 Ca^v 的取 $(T = \sqrt{m})$ 复杂度 $O(\sqrt{m}lg(m))$

扩展大步小步

上面的过程能求离散对数的前提是 a^{-1} 存在即若 gcd(a,m)=1 则大步小步是可用的,现在我们来扩展一下大步小步算法.使得即使对任意的 m 都能求出x或者不存在时返回-1. 由于模方程 $ax\equiv b \pmod{m}$ $\Leftrightarrow \frac{a}{d}x\equiv \frac{b}{d} \pmod{\frac{m}{d}}$, d=gcd(a,m) (证明见《初等数论及其应用》),我们可以对a,m,b 不断消因子,直到 (a,m)=1 设共进行 δ 次消因子操作,那么 δ 次操作以后就变成了 $a^{x-\delta}a^{\delta}\equiv b' \pmod{m'}$,(若消因子中途遇见 b 不能整除返回-1,若中途遇见b 等于 a^{δ} ,直接返回 δ).现在就可以用大步小步算法来求解了.详细内容请看代码. 模板题 spoj MOD - Power Modulo Inverted

```
#include <cstdio>
#include <iostream>
#include <vector>
#include <queue>
```

```
#include <algorithm>
#include<cmath>
#include <cstring>
#include <map>
#define fi first
#define se second
#define INF 0x3f3f3f3f
using namespace std;
const int MOD = 1e9+7;
const int MAX P = 2e4+10;
const int maxn = 500+10;
const int MAX V = 5e5+10;
const int maxv = 1e6+10;
typedef long long LL;
typedef pair<int,int> Pair;
LL power_mod(LL x,LL n, int mod){
   LL res =1;
   while (n) {
      if(n&1)res = res*x % mod;
      x = x*x \text{ mod};
      n >>=1;
   }
  return res;
}
LL bsgs(LL A, LL C, LL mod){
   A %= mod; C %= mod;
   if(C==1)return 0;
   LL cnt =0;
   LL tmp = 1;
   for(LL g = __gcd(A,mod) ; g != 1 ; g = __gcd(A,mod)){
      if(C % g)return -1;//不能整除
      C /=g ; mod/=g ; tmp = tmp*A/g%mod;
      ++cnt;
      if(C == tmp)return cnt;
   }
   //大步小步a^xa^cnt=C (mod m)a^cnt = tmp;
   LL T = (LL)sqrt(0.5 + mod);
   LL b = C;
   map<LL,LL> hash;
   hash[b] = 0;
   for(int i=1 ; i<=T ; ++i){</pre>
      hash[b] = i;
   A = power mod(A,T,mod);
   for(int u =1 ; u<=T ; ++u){</pre>
     tmp = tmp*A %mod;
```

```
if(hash.count(tmp))return u*T-hash[tmp]+cnt;
}
return -1;
}

int main(int argc, char const *argv[]) {
    LL x,y,z,k;
    while (scanf("%lld%lld",&x,&z,&k ) && z) {
        y = bsgs(x,k,z);
        if(y==-1)std::cout << "No Solution" << '\n';
        else std::cout << y << '\n';
    }
    return 0;
}</pre>
```

积性函数

题目链接 Count a*b

分析

这是很有意思的积性函数问题

反过来定义

$$h(m) = m^2 - f(m)$$

$$= \sum_{a,b} [a * b\%m = 0]$$

$$= \sum_{a=1,b} g cd(a,m)|b$$

$$= \sum_{a=1}^m g cd(a,m)$$

$$= \sum_{d|m} g cd(a,m)$$

$$= \sum_{d|m} d * \phi(m/d)$$

即h(m) 是恒等映射与 Euler 函数的狄利克雷卷积,所以它是积性函数 对于素数p $h(p^k) = \sum_{i=0}^k p^i * \phi(p^{k-i}) = p^k + \sum_{i=0}^{k-1} p^i (p^{k-i} - p^{k-i-1}) = p^{k-1} (k * (p-1) + p)$ 所以

$$g(n) = \sum_{n=0}^{d|n} d^2 - h(d)$$

分别求

\$ g1(n) =\sum_{d|n}d^2\\ g2(n)=\sum_{d|n}h(d) \$\$

g1,g2均是 1 和积性函数的狄利克雷卷积,所以他们都是积性函数.以g2举例 $n=p_1^{r_1}...p_k^{r_k}$

$$g2(n) = \prod_{i=1}^{k} g2(p_i^r)$$
$$= \prod_{i=1}^{k} (\sum_{j=0}^{r_i} h(p_i^j))$$

AC code

```
//Problem : 5528 ( Count a * b ) Judge Status : Accepted
//RunId : 22241701 Language : G++ Author : zouzhitao
//Code Render Status : Rendered By HDOJ G++ Code Render Version 0.01 Be
#include<bits/stdc++.h>
#define pb push back
#define mp make pair
#define PI acos(-1)
#define fi first
#define se second
#define INF 0x3f3f3f3f
#define INF64 0x3f3f3f3f3f3f3f3f3f
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define ms(x,v) memset((x),(v),sizeof(x))
#define sci(x) scanf("%d",&x );
#define scf(x) scanf("%lf",&x );
#define eps 1e-8
#define dcmp(x) (fabs(x) < eps? 0:((x) <0?-1:1))
#define lc o<<1
#define rc o<<1|1
using namespace std;
typedef unsigned long long ULL;
typedef long long LL;
typedef long double DB;
typedef pair<int,int> Pair;
const int maxn = 1e5+10;
int prime[maxn],cnt;//
void getPrime(/* arguments */) {
    cnt =0;
    ms(prime,0);
    for(int i=2; i<maxn; ++i){</pre>
        if(!prime[i]){prime[cnt++] = i;}
        for(int j=0 ; j<cnt&&prime[j]*i < maxn ; ++j){</pre>
            prime[i*prime[j]] =1;
```

```
if(i%prime[j]==0)break;
        }
    }
}
ULL power_mod(ULL x,ULL n){
    ULL ret =1;
    while (n) {
        if(n&1)ret*=x;
        n>>=1;
        x=x*x;
    }
    return ret;
}
ULL H(ULL p,ULL k){
    return k==0?1 : power_mod(p,k-1)*(k*(p-1)+p);
ULL SQRT(ULL p,ULL k){
    return power_mod(p,2*k);
}
int main()
{
    // ios_base::sync_with_stdio(0);
    // cin.tie(0);
    // cout.tie(0);
    int T;
    getPrime();
    scanf("%d",&T );
    while (T--) {
        int n;
        cin>>n;
        int nn = n;
        ULL f1=1, f2=1;
        for(int i=0; i<cnt && prime[i]*prime[i]<=nn; ++i){</pre>
            if(n%prime[i]==0){
                int k=0;
                while (n%prime[i]==0) {
                     n/=prime[i];k++;
                 }
                ULL val1 = 0;
                ULL val2 =0;
                ULL p = prime[i];
                for(int i=0; i<=k;++i){
                     val1 += H(p,i); val2 += SQRT(p,i);
                f1 *=val1;
                f2 *= val2;
```

```
}
}
if(n!=1){
    f1 *= (H(n,0)+H(n,1));
    f2 *= (SQRT(n,0)+SQRT(n,1));
}
std::cout << f2-f1 << '\n';
}
//std::cout << "time "<< clock()/1000 <<"ms"<< '\n';
return 0;
}</pre>
```

欧拉函数

问题

x已知,求

$$\sum_{a} gcd(a,x)=1$$

我们知道这样的 a 只有 $\phi(x)$ 个,我们想能否用经典的 gauss 求等差数列的方法 来解决这个问题呢? s 设 gcd(a,x)=1,那麽有 gcd(x-a,x)=1因此对于任意的数 a,gcd(a,x)=1则有 对应的x-a,满足gcd(x-a,x)=1,因此我们有

$$\sum_{x=0}^{\gcd(a,x)=1} ax$$

$$= \frac{\phi(x)x}{2}$$

gauss 消元

gauss_jordan 对角消元

```
if(k!=i)
    for(int j = n; j>=i; --j)A[k][j] -=A[k][i]/A[i][i]*A[i]
[j];//精度.
    }
}
```

异或方程组消元求秩

```
int my rank(Matrix &A, int m,int n){
    int i=0 , j = 0, r;
    while (i<m && j < n) {</pre>
        int r =i ;
        for(int k =i ; k<m ; ++k)</pre>
             if(A[k][j]){r=k; break;}
        if(A[r][j]){
             if(r != i)for(int k = 0; k<n; ++k)swap(A[r][k],A[i][k]);</pre>
             for(int u= i+1 ; u<m ; ++u)</pre>
                  if(A[u][j])
                      for(int k = j ; k<n ; ++k)</pre>
                          A[u][k] ^= A[i][k];
             ++i;
        j++;
    return i;
}
```

线性基

2013. 「SCOI2016」幸运数字 给一颗树,每个点有一个值 a_i ,求 $u \sim v$ 路径上异或最大值

分析

涉及异或的东西,就是线性基了,如果你对这玩意不熟,可参考这个 Sengxian's Blog

然后由于线性基合并是 log^2V 因此,可以暴力合并,也就是采用倍增思想,计算u,v到公共祖先路径上的线性基,然后合并就行了

Ac code

```
#include <bits/stdc++.h>
using namespace std;
#define ms(x,v) (memset((x),(v),sizeof(x)))
#define pb push_back
typedef long long LL;
const int maxn = 20000+10;
const int LOG_MAXN = 15;
const int MOD = 998244353;
```

```
int n,q;
const int MAX BASE = 60;
LL a[maxn];
struct LinearBase{
    LL base[MAX BASE+1];
    LinearBase(){ms(base,0);}
    bool insert(LL val){
        for(int i=MAX BASE ; i>=0 ; --i){
            if(val >>i &1){
                if(base[i])val ^=base[i];
                else{base[i]=val ; break;}
            }
        return val>0;
    LinearBase merge(LinearBase & o) {
        for(int i=MAX_BASE ; i>=0 ; --i)if(o.base[i])insert(o.base[i]);
return *this;
    }
    LL max(){
        LL ans =0;
        for(int i=MAX_BASE ;i>=0 ; --i)ans = std::max(ans,ans ^ base
[i]);return ans;
};
LinearBase lb[maxn][LOG_MAXN+1];
int dep[maxn],fa[maxn][LOG_MAXN+1];
std::vector<int> G[maxn];
void dfs(int u,int father) {
    dep[u] = dep[father]+1;
    fa[u][0]=father;
    lb[u][0].insert(a[father]);lb[u][0].insert(a[u]);
    // std::cout << " lb " << u <<" " << 0 << " " << lb[u][0].max() << '
\n';
    for(int i=1 ; (1<<i)<=dep[u] ; ++i){</pre>
        fa[u][i] = fa[fa[u][i-1]][i-1];
        lb[u][i].merge(lb[u][i-1]);lb[u][i].merge(lb[fa[u][i-1]][i-1]);
        //std::cout << " lb " << u <<" " << i << " " <<lb[u][i].max() <
< '\n';
    for(auto v : G[u])
        if(v!=father)dfs(v,u);
}
LinearBase lca(int x,int y){
    LinearBase ans;
    if(dep[x] <dep[y])swap(x,y);</pre>
   int bin=dep[x]-dep[y];
```

```
for(int i=0 ; i<LOG MAXN ; ++i)</pre>
        if(bin>>i&1)ans.merge(lb[x][i]),x=fa[x][i];
    if(x==y){ans.insert(a[y]);return ans;}
    for(int i= LOG_MAXN-1 ; i>=0 ; --i){
        if(fa[x][i]!=fa[y][i])ans.merge(lb[x][i]),ans.merge(lb[y][i]),x
=fa[x][i],y=fa[y][i];
    ans.merge(lb[x][0]);ans.insert(a[y]);
    return ans;
}
int main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    cin>>n>>q;
    for(int i=1; i<=n; ++i)cin>>a[i];
    for(int i=1 ; i<n ; ++i){</pre>
        int u,v;
        cin>>u>>v;
        G[u].pb(v);G[v].pb(u);
    dfs(1,0);
    while (q--) {
        int x, y;cin>>x>>y;
        std::cout << lca(x,y).max() << '\n';</pre>
    return 0;
```

线性基简单表示

数据结构

树上莫队

1. 点权

debug 到想吐.... 各种撒比错误,一晚上就没有了, 总结如下几点:

- 1. 两个不同参数的数组, (n,m) 的最大值不一样, 最好开到同样大
- 2. 树上莫队注意重复节点的拆分
- 3. 树型数据简单生成技巧: *i rand()%i
- 4. 树上莫队的桶是 (q[i].l/S) not u/S(saaaa...)

题目链接 Count on a tree II:

分析 如果你学了树上莫队,对这题应该不会陌生,将树搞成链

AC code

```
#include <bits/stdc++.h>
using namespace std;
#define ms(x,v) (memset((x),(v),sizeof(x)))
#define pb push_back
#define mp make pair
#define fi first
#define se second
typedef long long LL;
typedef pair<int,int > Pair;
const int maxn = 1e5+10;
const int max query = 1e5+10;
const int MAX LOG = 19;
int n,m;
int S;
struct Query{
    int id,1,r,lc,backet;
    bool operator<(const Query & o)const{</pre>
        return backet==o.backet?(backet&1?r>o.r : r <o.r) : l<o.l;</pre>
    }
};
Query q[max_query];
int ret[max_query],ans=0;
int dfn[maxn<<1],st[maxn],ed[maxn],dft=0;</pre>
int tmp[maxn],a[maxn];
int dep[maxn];
int fa[maxn][MAX LOG];
int vis[maxn],cnt[maxn];
std::vector<int> G[maxn];
```

```
void dfs(int u,int f) {
    dep[u] = dep[f]+1;
    fa[u][0] = f;
    st[u] = ++dft;
    dfn[dft] = u;
    for(int i=1; (1<<i) <= dep[u]; ++i)fa[u][i] = fa[fa[u][i-1]][i-1];
    for(auto v : G[u]){
        if(v == f)continue;
        dfs(v,u);
    ed[u] = ++dft;
    dfn[dft] = u;
inline int lca(int u,int v){
    if(dep[u]<dep[v])swap(u,v);</pre>
    int bin = dep[u] - dep[v];
    for(int i=0 ; i<MAX_LOG ; ++i)if(bin>>i & 1)u = fa[u][i];
    if(u==v) return u;
    for(int i= MAX LOG-1; i>=0; --i)
        if(fa[u][i]!=fa[v][i]) u = fa[u][i],v = fa[v][i];
    return fa[u][0];
}
inline int move(int node){
    if(vis[node] && --cnt[a[node]]==0)ans--;
    else if(!vis[node] && ++cnt[a[node]]==1) ans++;
    vis[node] ^=1;
}
void mo() {
    int curL = q[0].1, curR = q[0].1-1;
    for(int i=0; i<m; ++i){
        int L = q[i].1, R=q[i].r;
        while (curL > L)move(dfn[--curL]);
        while (curR < R)move(dfn[++curR]);</pre>
        while (curL < L)move(dfn[curL++]);
        while (curR > R)move(dfn[curR--]);
        ret[q[i].id] = ans;
        if(!cnt[a[q[i].lc]])ret[q[i].id]++;
    }
}
int main(int argc, char const *argv[]) {
    scanf("%d%d",&n,&m );
    ms(vis,0);
    ms(cnt,0);
    for(int i=1; i<=n; ++i)scanf("%d", a+i),tmp[i] =a[i];</pre>
    sort(tmp+1,tmp+n+1);
    for(int i=1; i <= n; ++i)a[i] = lower_bound(tmp+1,tmp+n+1,a[i]) - t
mp;
```

```
for(int i=1; i<n; ++i){
        int u,v;
        scanf("%d%d",&u,&v );
        G[u].pb(v);G[v].pb(u);
   S = sqrt(2.0*n)+1;
   dfs(1,0);
   // for(int i=1 ; i<=dft ; ++i)std::cout << dfn[i] << ' ';std::cout
   // for(int i=1; i<=dft; ++i)std::cout << a[dfn[i]] << ' ';std::co
ut << '\n';
   for(int i=0; i<m; ++i){
        int u,v;
        scanf("%d%d",&u,&v );
        // std::cout << u << " " << v << '\n';
        int p = lca(u,v);
        if(st[u]>st[v])swap(u,v);
        q[i].id = i;
        q[i].lc = p;
        if(p==u){q[i].l = st[u];q[i].r = st[v];}
        else \{q[i].l = ed[u]; q[i].r = st[v]; \}
        q[i].backet = q[i].1/S;
        // std::cout << q[i].l << " "<< q[i].r<< " " << q[i].backet<< '
\n';
        // std::cout << q[i].lc << '\n';
   sort(q,q+m);
   for(int i=0; i<m; ++i)printf("%d\n",ret[i]);</pre>
   return 0;
}
```

2. 边权

题目链接 Problem F. Frank Sinatra

分析

这题和前面那个题唯一不一样的地方是,这题访问的是边上的,因此可以将边上的值算做入边顶点的值,这样就 u,v 对应的区间就是 [dfl[u] + 1, dfl[v]], 这样开个桶记录访问到的数就行了.

code

```
#include <bits/stdc++.h>
using namespace std;
#define ms(x,v) (memset((x),(v),sizeof(x)))
#define pb push_back
#define mp make_pair
```

```
#define fi first
#define se second
typedef long long LL;
typedef pair<int,int > Pair;
const int maxn = 1e5+10;
int n,m;
const int S = 320;
struct Query{
    int id,1,r,backet;
    bool operator<(const Query & o)const{</pre>
        return backet==o.backet?(backet&1?r>o.r : r <o.r) : l<o.l;</pre>
    }
} q[maxn];
std::vector<Pair> G[maxn];
int dfl[maxn],dfr[maxn],dfn[maxn<<1],val[maxn],dft=0;</pre>
int cnt[maxn], vis[maxn], sum[maxn], ret[maxn];
void dfs(int x) {
    dfl[x] = ++dft;dfn[dft] = x;
    for(auto v : G[x])
        if(!dfl[v.fi])val[v.fi] =v.se, dfs(v.fi);
    dfr[x] = ++dft;dfn[dft] = x;
}
inline void move(int node) {
    if(val[node]>n)return;
    if(vis[node] && --cnt[val[node]]==0)--sum[val[node]/S];
    else if(!vis[node] && ++cnt[val[node]]==1)++sum[val[node]/S];
    vis[node] ^=1;
inline void mo(/* arguments */) {
    int l = q[0].1, r = q[0].1-1, L, R;
    for(int i=0 ;i<m ; ++i){
        L = q[i].1,R = q[i].r;
        while (1 > L)move(dfn[--1]);
        while (r < R)move(dfn[++r]);
        while (1 < L)move(dfn[1++]);
        while (r > R) move (dfn[r--]);
        int j;
        for( j=0;sum[j]==S; ++j);
        for(j*=S; cnt[j]; ++j);
        ret[q[i].id] = j;
    }
int main(int argc, char const *argv[]) {
    scanf("%d%d",&n,&m );
    for(int i=1; i<n; ++i){
        int u,v,c;
        scanf("%d%d%d",&u,&v,&c );
        G[u].pb(mp(v,c));G[v].pb(mp(u,c));
```

```
}
dfs(1);
for(int i=0; i<m; ++i){
    int u,v;
    scanf("%d%d",&u,&v);
    if(dfl[u]> dfl[v])swap(u,v);
    q[i].id = i;
    q[i].l= dfl[u]+1;q[i].r = dfl[v];q[i].backet = q[i].l/S;
}
sort(q,q+m);
mo();
for(int i=0; i<m; ++i)printf("%d\n",ret[i]);
return 0;
}
</pre>
```

其他

hash

迷一样的 hash.

题目链接

2016 JAG E Similarity of Subtrees

分析

啊这位大佬的图非常到位

hash 函数的定义方式是将深度为 d 的顶点给一个权重 p^d , 取 p 为素数就好

AC code

```
const int MOD = 1e9+7;
const int p = 19;
std::map<LL, int> ma;
LL hash_val[maxn];
std::vector<int> G[maxn];
void dfs(int u,int fa) {
    hash_val[u] =1;
    for(auto v: G[u]){
        if(v == fa)continue;
        dfs(v,u);
        hash_val[u] = (hash_val[u]+hash_val[v]*p) % MOD;
    ma[hash_val[u]]++;
}
int main()
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    int n;
    cin>>n;
    for(int i=0; i<n-1; ++i){
        int u,v;
        cin>>u>>v;
        G[u].pb(v);G[v].pb(u);
    }
    dfs(1,-1);
    LL ans =0;
    for(auto e : ma){
        ans += (LL)e.se*(e.se -1)/2;
    std::cout << ans << '\n';</pre>
    return 0;
}
```

二维离散化

分析

直接二维离散化,然后记录下各压缩了多少行和列,将其权值相乘便是离散化的图里的权重. dfs or bfs 统计一下就行了.

```
std::map<int, int> idx_x,idx_y;
LL vx[maxn],vy[maxn];
int a[maxn][maxn];
std::vector<LL> ans;
int x[maxn],y[maxn];
Pair bad[maxn];
int lishan(int * arr,int len, LL *val,std::map<int, int>& m ){
    m.clear();
    sort(arr,arr+len);
    len = unique(arr,arr+len)-arr;
    int t = 1;
    val[t] = 1;
    m[arr[0]] = t++;
    for(int i=1; i<len; ++i){
        if(arr[i]!=arr[i-1]+1)val[t++] = arr[i] - arr[i-1]-1;//补空白
        val[t] =1;m[arr[i]] = t++;
    return t;
int dx[] = \{1,0,0,-1\};
int dy[] = \{0,1,-1,0\};
int vis[maxn][maxn];
LL bfs(int i,int j) {
    queue<Pair> Q;
    Q.push(mp(i,j));
    vis[i][j] =1;
    LL cnt =0;
    while (!Q.empty()) {
        Pair p = Q.front();Q.pop();
        cnt += vx[p.fi] * vy[p.se];
        for(int i=0; i<4; ++i){
            int ni = p.fi + dx[i];
            int nj = p.se+dy[i];
            if(!a[ni][nj] && !vis[ni][nj]){
                vis[ni][nj] =1;
                Q.push(mp(ni,nj));
            }
        }
    }
    return cnt;
}
int main()
```

```
// ios_base::sync_with_stdio(0);
    // cin.tie(0);
    // cout.tie(0);
    int T;
    cin>>T;
    for(int kase =1 ; kase <=T ; ++kase){</pre>
        int n,m,k;
        cin>>n>>m>>k;
        for(int i=1; i<=k; ++i){
            scanf("%d%d",&bad[i].fi, &bad[i].se );
            x[i] = bad[i].fi;y[i] = bad[i].se;
        }
        x[0] = 1;x[k+1] = n;
        y[0] = 1;y[k+1] = m;
        n = lishan(x,k+2,vx,idx x);
        m = lishan(y,k+2,vy,idx_y);
        ms(a,0);
        for(int i=1; i<=k; ++i)a[idx_x[bad[i].fi]][idx_y[bad[i].se]]</pre>
= 1;
        for(int i=0; i<=m; ++i)a[0][i] = a[n][i] =1;
        for(int i=0; i<=n; ++i)a[i][0] = a[i][m] =1;
        ms(vis,0);
        ans.clear();
        for(int i=1; i<n; ++i){
            for(int j=1 ; j<m ; ++j){</pre>
                if(!a[i][j] && !vis[i][j])ans.pb(bfs(i,j));
            }
        }
        printf("Case #%d:\n",kase );
        sort(ans.begin(),ans.end());
        printf("%d\n",ans.size() );
        for(unsigned int i=0; i<ans.size(); ++i){</pre>
            printf("%lld%c",ans[i],i==ans.size()-1?'\n':' ');
        }
    }
    return 0;
}
```

优化

FastIO

```
namespace
{
#define RG register

namespace io
```

```
const int MaxBuff = 1 << 15;</pre>
        const int Output = 1 << 24;</pre>
        char B[MaxBuff], *S = B, *T = B;
        #define getc() ((S == T) && (T = (S = B) + fread(B, 1, MaxBuff,
 stdin), S == T) ? 0 : *S++)
        char Out[Output], *iter = Out;
        inline void flush() {fwrite(Out, 1, iter - Out, stdout); iter =
 Out;}
    template<class Type> inline Type read()
        using namespace io;
        RG char ch; RG Type ans = 0; RG bool neg = 0;
        while(ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
        ch == '-' ? neg = 1 : ans = ch - '0';
        while(ch = getc(), '0' <= ch && ch <= '9') ans = ans * 10 + ch
 '0';
        return neg ? -ans : ans;
    template<class Type> inline void print(RG Type x, RG char ch = '\n')
        using namespace io;
        if(!x) *iter++ = '0';
        else
        {
            if(x < 0) *iter++ = '-', x = -x;
            static int S2[100]; RG int t = 0;
            while(x) S2[++t] = x \% 10, x /= 10;
            while(t) *iter++ = '0' + S2[t--];
        *iter++ = ch;
    }
}
爆Ⅱ乘法
inline 11 mul mod 11(11 a,11 b){
```

```
inline 11 mul_mod_l1(11 a,11 b){
    11 d=(11)floor(a*(double)b/MOL+0.5);
    11 ret=a*b-d*MOL;
    if(ret<0)ret+=MOL; return ret;
}</pre>
```