

Guía Ayudantía Mecánica Intermedia (FIS 310)

Daniel Salinas A.

Contenidos: Formalismo de Hamilton

- 1. Una pequeña partícula de masa m desliza sin fricción en el interior de un cuenco, de radio R que tiene su eje paralelo al campo gravitacional. Use el ángulo polar θ (mire la fig.) y el ángulo azimutal φ para describir la localización de la partícula (la partícula tiene que ser tratada como un punto).
- a. Escriba el Lagrangiano.
- **b.** Determinar los momentos generalizados p_{θ} y p_{φ} .
- c. Escriba el Hamiltoniano para el movimiento.
- **d.** Encuentre las ecuaciones del movimiento para H.
- e. Combine las ecuaciones de manera que se produzca una ecuación diferencial de segundo orden, ecuacion de θ en funcion del tiempo.
- **f.** Si $\theta = \theta_0$ y $\overset{\cdot}{\theta} = 0$, independiente del tiempo calcule la velocidad (magnitud y dirección).
- **g.** Si para t=0, tenemos $\theta=\theta_0, \dot{\theta}=0$ y $\dot{\varphi}=0$, calcule la velocidad máxima para tiempos posteriores.

2. Para un Lagrangiano dado: $(\gamma>\omega)$

$$L = \frac{1}{2}m(\dot{x}^2 - \omega^2 x^2)\exp(\gamma t)$$

Determinar:

- a. Determinar las ecuaciones del movimiento.
- b. Encontrar el momento canónico y el Hamiltoniano.
- **c.** Es H una constante de movimiento, ¿Se conserva la energía?.
- **d.** Dado x(0) = 0, $\dot{x}(0) = v_0$, encontrar $x(t \to \infty)$ (Hint: $x \approx \exp(i\lambda t)$).
 - 3. En dinámica relativista, el *Hamiltoniano* de una partícula que se mueve en una dimensión, en presencia de un campo externo es:

$$H = \sqrt{p^2 c^2 + m^2 c^4} + V(r)$$

donde p es su momentum, m es la masa en reposo, c la velocidad de la luz y $V\left(r\right)$ es el potencial externo.

- **a.** Muestre que el *Hamiltoniano* predice que la velocidad de la partícula es siempre menor que la velocidad de la luz.
- **b.** Determine el *Lagrangiano* y las ecuaciones del movimiento.
 - 4. Considere una masa en una dimensión bajo la influencia de la fuerza $F=kx^{-2}\exp(t)$.
- a. Escriba el Lagrangiano y las ecuaciones del movimiento.
- **b.** Determine el *Hamiltoniano* y comparelo con la energía total, ¿Qué pasó con la concervación de la energía?