Testy nieparametryczne na poziomie istotności α

Test zgodności chi-kwadrat Pearsona

$$H_0: p_1 = p_1^0, p_2 = p_2^0, \dots, p_k = p_k^0, \qquad \sum_{i=1}^k p_i^0 = 1.$$

Statystyka testowa:

$$\chi_*^2 = \sum_{i=1}^k \frac{(n_i - n \cdot p_i^0)^2}{n \cdot p_i^0} \approx_{|H_0} \chi^2[k-1],$$

gdzie n_i oznacza liczność *i*-tej klasy, $i=1,2,\ldots,k,\,\sum_{i=1}^k n_i=n.$

Decyzja: Hipotezę zerowa odrzucamy jeżeli

$$\chi_*^2 \geqslant \chi_{1-\alpha,k-1}^2,$$

w przeciwnym przypadku nie ma podstaw do odrzucenia H_0 .

Uwaga: Jeżeli liczność klasy jest mniejsza od 5 to łączymy tę klasę z klasą sąsiednią.

Test niezależności chi-kwadrat

Mamy n-elementową próbę dwuwymiarowej zmiennej losowej (X,Y), gdzie zmienna X może przyjąć jedną z k kategorii x_i , $i=1,\ldots,k$ oraz zmienna Y jedną z k kategorii y_j , $j=1,\ldots,l$, zapisaną w postaci tablicy kontygencji

Y	y_1	y_2		y_l	$n_{i\bullet}$
X					
x_1	n_{11}	n_{12}		n_{1l}	$n_{1\bullet}$
x_2	n_{21}	n_{22}		n_{2l}	$n_{2\bullet}$
:	:	:	٠.,	:	:
x_k	n_{k1}	n_{k2}		n_{kl}	$n_{k\bullet}$
$n_{\bullet j}$	$n_{\bullet 1}$	$n_{\bullet 2}$		$n_{\bullet l}$	n

$$n_{\bullet j} \quad n_{\bullet 1} \quad n_{\bullet 2} \quad \cdots \quad n_{\bullet l} \quad n$$

$$n_{i\bullet} = \sum_{j=1}^{l} n_{ij}, \quad i = 1, \dots, k \quad oraz \quad n_{\bullet j} = \sum_{i=1}^{k} n_{ij}, \quad j = 1, \dots, l$$

Hipoteza o niezależności X i Y

 $H_0: X$ i Y niezależne

Statystyka testowa

$$\chi_*^2 = \sum_{i=1}^k \sum_{i=1}^l \frac{\left(n_{ij} - n_{ij}^0\right)^2}{n_{ij}^0}, \quad n_{ij}^0 = \frac{n_{i\bullet} \cdot n_{\bullet j}}{n}.$$

Decyzja: Hipotezę zerowa odrzucamy jeżeli

$$\chi_*^2 \geqslant \chi_{1-\alpha}^2 (k-1)(l-1),$$

w przeciwnym przypadku nie ma podstw do odrzucenia H_0 .