



## SEQUENCE LISTING

<110> Le, Junming  
Vilcek, Jan  
Daddona, Peter  
Ghrayeb, John  
Knight, David M.  
Siegel, Scott

<120> Anti-TNF Antibodies and Peptides of  
Human Tumor Necrosis Factor

<130> 0975.1005-006

<140> US 09/756,398  
<141> 2001-01-08

<150> U.S. 09/133,119  
<151> 1998-08-12

<150> U.S. 08/570,674  
<151> 1995-12-11

<150> U.S. 08/324,799  
<151> 1994-10-18

<150> U.S. 08/192,102  
<151> 1994-02-04

<150> U.S. 08/192,861  
<151> 1994-02-04

<150> U.S. 08/192,093  
<151> 1994-02-04

<150> U.S. 08/010,406  
<151> 1993-01-29

<150> U.S. 08/013,413  
<151> 1993-02-02

<150> U.S. 07/943,852  
<151> 1992-09-11

<150> U.S. 07/853,606  
<151> 1992-03-18

<150> U.S. 07/670,827  
<151> 1991-03-18

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1  
<211> 157  
<212> PRT

<213> Homo sapiens

```

<400> 1
Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val
      1           5           10          15
Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg
      20          25          30
Ala Asn Ala Leu Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln Leu
      35          40          45
Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe
      50          55          60
Lys Gly Gln Gly Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile
      65          70          75          80
Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser Ala
      85          90          95
Ile Lys Ser Pro Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys
      100         105         110
Pro Trp Tyr Glu Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys
      115         120         125
Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe
      130         135         140
Ala Glu Ser Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu
      145         150         155

```

<210> 2  
<211> 321  
<212> DNA  
<213> Mus Balb/c

<220>  
<221> CDS  
<222> (1)...(321)

```

<400> 2
gac atc ttg ctg act cag tct cca gcc atc ctg tct gtg agt cca gga      48
Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
 1           5           10          15

gaa aga gtc agt ttc tcc tgc agg gcc agt cag ttc gtt ggc tca agc      96
Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser
 20          25          30

atc cac tgg tat cag caa aga aca aat ggt tct cca agg ctt ctc ata    144
Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile
 35          40          45

aag tat gct tct gag tct atg tct ggg atc cct tcc agg ttt agt ggc    192
Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly
 50          55          60

agt gga tca ggg aca gat ttt act ctt agc atc aac act gtg gag tct    240
Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser
 65          70          75          80

gaa gat att gca gat tat tac tgt caa caa agt cat agc tgg cca ttc    288
Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe
 85          90          95

```

acg ttc ggc tcg ggg aca aat ttg gaa gta aaa 321  
Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys  
100 105

<210> 3  
<211> 107  
<212> PRT  
<213> Mus Balb/c

```

<400> 3
Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
      1           5           10          15
Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser
      20          25          30
Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile
      35          40          45
Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly
      50          55          60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser
65 - - - - - 70 - - - - - 75 - - - - - 80
Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe
      85          90          95
Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys
      100         105

```

<210> 4  
<211> 357  
<212> DNA  
<213> Mus Balb/c

<220>  
<221> CDS  
<222> (1) . . . (357)

```

<400> 4
gaa gtg aag ctt gag gag tct gga gga ggc ttg gtg caa cct gga gga 48
Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
   1           5           10          15

```

tcc atg aaa ctc tcc tgt gtt gcc tct gga ttc att ttc agt aac cac 96  
 Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His  
           20                 25                 30

tgg atg aac tgg gtc cgc cag tct cca gag aag ggg ctt gag tgg gtt 144  
Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val  
35 40 45

gct gaa att aga tca aaa tct att aat tct gca aca cat tat gcg gag 192  
 Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu  
       50                 55                 60

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| tct | gtg | aaa | ggg | agg | ttc | acc | atc | tca | aga | gat | gat | tcc | aaa | agt | gct | 240 |
| Ser | Val | Lys | Gly | Arg | Phe | Thr | Ile | Ser | Arg | Asp | Asp | Ser | Lys | Ser | Ala |     |
| 65  |     |     |     | 70  |     |     |     |     | 75  |     |     |     |     | 80  |     |     |

gtc tac ctg caa atg acc gac tta aga act gaa gac act ggc gtt tat 288  
 Val Tyr Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr

85

90

95

|                                                                 |     |
|-----------------------------------------------------------------|-----|
| tac tgt tcc agg aat tac tac ggt agt acc tac gac tac tgg ggc caa | 336 |
| Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln |     |
| 100                                                             | 105 |
| 110                                                             |     |

|                             |     |
|-----------------------------|-----|
| ggc acc act ctc aca gtc tcc | 357 |
| Gly Thr Thr Leu Thr Val Ser |     |
| 115                         |     |

<210> 5  
<211> 119  
<212> PRT  
<213> Mus Balb/c

|                                                                 |  |
|-----------------------------------------------------------------|--|
| <400> 5                                                         |  |
| Glu Val Lys Leu Glu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly     |  |
| 1 5 10 15                                                       |  |
| Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His |  |
| 20 25 30                                                        |  |
| Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val |  |
| 35 40 45                                                        |  |
| Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu |  |
| 50 55 60                                                        |  |
| Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala |  |
| 65 70 75 80                                                     |  |
| Val Tyr Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr |  |
| 85 90 95                                                        |  |
| Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln |  |
| 100 105 110                                                     |  |
| Gly Thr Thr Leu Thr Val Ser                                     |  |
| 115                                                             |  |

<210> 6  
<211> 8  
<212> PRT  
<213> Homo sapiens

|                                 |  |
|---------------------------------|--|
| <400> 6                         |  |
| Gly Thr Leu Val Thr Val Ser Ser |  |
| 1 5                             |  |

<210> 7  
<211> 7  
<212> PRT  
<213> Homo sapiens

|                             |  |
|-----------------------------|--|
| <400> 7                     |  |
| Gly Thr Lys Leu Glu Ile Lys |  |
| 1 5                         |  |

<210> 8  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 8  
cctggataacc tgtgaaaaga

20

<210> 9  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 9  
cctggtagccct tagtccacgt ctcctca

27

<210> 10  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 10  
aatagatatc tccttcaaca cctgcaa

27

<210> 11  
<211> 21  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 11  
atcgggacaa agttggaaat a

21

<210> 12  
<211> 16  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 12  
ggcggtctgg taccgg

16

<210> 13  
<211> 19  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 13  
gtcaacaaca tagtcatca

19

<210> 14  
<211> 23  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 14  
cacaggtgtg tcccccaagga aaa

23

<210> 15  
<211> 18  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 15  
aatctgggggt aggcacaa

18

<210> 16  
<211> 17  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 16  
agtgtgtgtc cccagg

17

<210> 17  
<211> 24  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 17  
cacagctgcc cgcccaggtg gcat

24

<210> 18

<211> 17  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 18  
gtcgccagtg ctcccc

17

<210> 19  
<211> 20  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> PCR oligonucleotides

<400> 19  
atcggacgtg gacgtgcaga

20