Consider a triangular grid with each gridpoint having a label in $\{1, 2, ..., n\}$. What is the biggest triangle that can be formed such that no sub-triangle has corners that all have the same label?

Figure 1: On the left is an example of a triangle on two labels that has no sub-triangles with equal corners. On the right is a non-example of such a triangle on two labels—it has two sub-triangles with equal corners.

Question. Given n labels, what is the biggest triangle that can be constructed? Call the side length of such a triangle a(n).

Related.

- 1. Given a triangle of side length k and labels up to n, what number of sub-triangles with equal corners must exist?
- 2. How many such triangles exist?
- 3. What if any orientation of equilateral triangles are not allowed to have equal corners?
- 4. What if this is done with hexagons instead of triangles?
- 5. What if this is done on a square grid?
- 6. What if for $n \geq 3$ no two corners are allowed to be equal?

References.

https://math.stackexchange.com/a/2416790/121988