MACHINE LEARNING

UJIAN AKHIR SEMESTER

Nama : Adi Purnama

Nim: 20220801426

SOAL ESSAY:

- 1) Jelaskan bagaimana memanfaatkan Machine Learning untuk Call API
- 2) Jelaskan apa yang dimaksud dengan unsupervised learning
- 3) Sebutkan beberapa tools yang di gunakan untuk mengolah machine learning

Jawab:

1) Memanfaatkan Machine Learning untuk Call API

Machine Learning dapat dimanfaatkan untuk Call API dengan cara berikut:

1.) Model Deployment:

Model Machine Learning yang telah dilatih dan dievaluasi dapat di-deploy sebagai API. Ini memungkinkan aplikasi lain untuk mengirimkan data ke model tersebut dan menerima prediksi atau hasil dari model tersebut. Berikut adalah langkah-langkah umumnya:

- Training Model: Melatih model menggunakan dataset yang sesuai.
- **Model Serialization**: Menyimpan model yang telah dilatih dalam format yang dapat digunakan kembali, seperti 'pickle' atau 'joblib' di Python.
- API Development: Mengembangkan API menggunakan framework seperti Flask atau FastAPI. API ini akan menerima input, memprosesnya dengan model Machine Learning, dan mengembalikan output.
- **Deployment**: Menggunakan platform seperti Docker, Heroku, atau AWS untuk mengdeploy API sehingga dapat diakses oleh aplikasi lain.

Contoh kode sederhana untuk membuat API dengan Flask:

Automated Decision Making:

API yang memanfaatkan Machine Learning dapat digunakan untuk pengambilan keputusan otomatis. Contohnya termasuk deteksi penipuan dalam transaksi keuangan, rekomendasi produk dalam e-commerce, atau analisis sentimen untuk ulasan pelanggan.

Scalability:

API Machine Learning memungkinkan skalabilitas, di mana banyak request dapat diproses secara paralel. Ini sangat berguna untuk aplikasi dengan volume data besar atau permintaan prediksi yang tinggi.

2) Penjelasan tentang Unsupervised Learning

Unsupervised Learning:

adalah metode Machine Learning di mana model dilatih menggunakan data yang tidak berlabel. Berbeda dengan supervised learning, di mana data pelatihan berisi input-output pairs (label), unsupervised learning bekerja dengan hanya menggunakan input data tanpa label yang jelas. Tujuan utama unsupervised learning adalah untuk menemukan pola atau struktur yang tersembunyi dalam data.

Contoh teknik unsupervised learning:

• Clustering:

Mengelompokkan data ke dalam beberapa kelompok berdasarkan kesamaan.
 Contoh algoritma clustering adalah K-Means, DBSCAN, dan Hierarchical Clustering.

• Dimensionality Reduction :

Mengurangi jumlah fitur dalam data sambil mempertahankan informasi penting.
 Contoh algoritma adalah Principal Component Analysis (PCA) dan t-Distributed
 Stochastic Neighbor Embedding (t-SNE).

Association Rule Learning :

 Mencari hubungan atau aturan dalam data. Contoh penerapannya adalah analisis keranjang belanja untuk menemukan produk yang sering dibeli bersama.

3) Tools untuk Mengolah Machine Learning

Beberapa tools yang sering digunakan dalam pengolahan Machine Learning meliputi:

1. Libraries dan Frameworks:

- **Scikit-learn**: Pustaka Python yang menyediakan alat untuk pemodelan data dan analisis data, termasuk algoritma klasifikasi, regresi, clustering, dan reduksi dimensi.
- **TensorFlow**: Framework open-source yang digunakan untuk membangun dan melatih model Machine Learning, terutama deep learning.
- PyTorch: Framework deep learning yang dikembangkan oleh Facebook's AI Research lab (FAIR), yang menawarkan fleksibilitas dan kecepatan dalam penelitian dan pengembangan model.
- **NLTK**: Pustaka Python untuk Natural Language Processing yang menyediakan alat untuk pengolahan teks, tokenisasi, stemming, tagging, parsing, dan lainnya.

2. Development Tools :

- **Jupyter Notebook**: Alat interaktif untuk menulis dan menjalankan kode Python, sangat berguna untuk eksplorasi data, visualisasi, dan pengembangan model Machine Learning.
- Google Colab: Platform gratis yang memungkinkan pengguna menjalankan Jupyter Notebook di cloud, dengan dukungan GPU untuk percepatan komputasi.

3. Deployment Tools:

- **Docker**: Platform untuk mengembangkan, mengirim, dan menjalankan aplikasi dalam container, yang memastikan bahwa aplikasi berjalan secara konsisten di berbagai lingkungan.
- **Heroku**: Platform cloud yang memungkinkan deployment aplikasi web, termasuk API Machine Learning, dengan mudah.
- AWS (Amazon Web Services): Menyediakan berbagai layanan untuk deployment, termasuk Amazon SageMaker untuk pembangunan, pelatihan, dan deployment model Machine Learning.

SOAL STUDI KASUS:

Tentu! Berikut adalah penjelasan langkah demi langkah dalam bahasa Indonesia beserta hasil dari pengolahan teks yang dilakukan:

Langkah-langkah Pengolahan Teks

1. Instalasi Pustaka yang Diperlukan:

Pertama, kita perlu menginstal pustaka yang dibutuhkan menggunakan pip. Ini memastikan kita memiliki semua alat yang diperlukan untuk pengolahan teks dan visualisasi.

pip install wordcloud nltk matplotlib seaborn

2. Import Pustaka dan Persiapan Data:

Mengimpor pustaka yang diperlukan untuk membuat word cloud, plotting, dan analisis sentimen. Kita juga mendefinisikan teks yang akan dianalisis.

```
from wordcloud import Wordcloud
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer
import re
nltk.download('vader_lexicon')

text = """
(masukkan teks cerita Snow White di sini)
"""

✓ 00s

Pytt
```

3. Membuat Word Cloud:

Membuat dan menampilkan word cloud dari teks.

```
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)

plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title("Word Cloud dari Cerita Snow White")
plt.show()

[6] 

## D, D, H ... **

Python

**Python**

**Python**
```

4. Bar Plot Frekuensi Kata:

Tokenisasi teks, menghapus stopwords, dan memplot frekuensi kata yang paling umum.

5. Analisis Sentimen:

Menganalisis sentimen teks menggunakan VADER dan memplot hasilnya.

Hasil Running

Word Cloud:

```
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)

plt.figure(figsize=(10, 5))
plt.amshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title("Word cloud dari Cerita Snow White")
plt.show()

[6] 

0.05
```

Bar Plot Frekuensi Kata:

```
plt.figure(figsize=(12, 6))
sns.barplot(x=list(words), y=list(frequencies))
plt.xticks(rotation=45)
plt.xticks(rotation=45)
plt.xtlabel("Kata yang Paling Sering Muncul dalam Cerita Snow White")
plt.ylabel("Frekuensi")
plt.ylabel("Frekuensi")
plt.show()

[6] 

Output

Python
```

Analisis Sentimen:

Penjelasan Langkah-Langkah

1. Instalasi Pustaka:

Pustaka `wordcloud`, `nltk`, `matplotlib`, dan `seaborn` diinstal untuk keperluan pengolahan dan visualisasi teks.

2. Import dan Persiapan Data:

Pustaka diimpor, dan teks cerita dimasukkan ke dalam variabel 'text'.

3. Pembuatan Word Cloud:

Word cloud dibuat dari teks untuk memvisualisasikan kata-kata yang paling sering muncul.

4. Bar Plot Frekuensi Kata:

Teks di-tokenisasi, stopwords dihapus, dan frekuensi kata yang paling umum diplot dalam bentuk bar plot.

5. Analisis Sentimen:

Sentimen dari teks dianalisis menggunakan VADER untuk mengidentifikasi sentimen positif, netral, dan negatif.

Berikut adalah OutPut yang di berikan:

Neutral

Negative

 $https://github.com/Poxezy/UAS-MACHINE_LEARNING$

Positive

0.0