DN to Reflectance

HONDA Kiyoshi

Contents

- o Definition of NDVI
- o Radiance
- o Reflectance
- o How to Calculate Radiance from DN
- o Irradiance

Definition of NDVI

$$NDVI = \frac{\rho_{NIR} - \rho_{VR}}{\rho_{NIR} + \rho_{VR}}$$

 $ho_{\it NIR}$: Reflectance at Near Infrared

 ρ_{VR} : Reflectance at Visible Red

Reflectance

- Ratio of Radiant Energy Reflected to Incident Energy
- Radiant Energy = Integral of vertical components of Radiance Measured (by satellite to be scaled back from DN)

$$\rho_{\lambda} = \frac{\pi L_{\lambda}}{G_{\lambda}} = \frac{\pi L_{\lambda}}{\mu_{s} E_{s\lambda}}$$

 ρ_{λ} : Spectral Reflectance

 L_{λ} : Spectral Radiance of the Surface $W/m^2 \cdot sr \cdot \mu m$

G: Spectral Irradiance $W/m^2 \cdot \mu m$

 $E_{s\lambda}$: Spectral Solar Irradiance $W/m^2 \cdot \mu m$

 $\mu_s = \cos(\theta_s), \theta_s$: Solar zenith angle

• • • DN ?

- DN (Digital Number) you can see in the RS image files is not Reflectance.
- So you have to derive Reflectance from the DN
- o Then what is DN?

DN is a scaled Radiance

 DN is scaled from Radiance measured by sensors

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter6/chapter6.html

Radiance

 Energy in unit time, unit solid angle, unit wavelenth

unit :
$$J / s \cdot m^2 \cdot sr \cdot \mu m = W / m^2 \cdot sr \cdot \mu m$$

$$L_{\lambda} = \frac{Energy_{received}}{dtdAd\omega d\lambda}$$

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter6/chapter6.html

 $L_{\lambda} = gain \times DN + offset$

01

$$L_{\lambda} = \frac{LMAX_{\lambda} - LMIN_{\lambda}}{QCALMAX - QCALMIN} (QCAL - QCALMIN) + LMIN_{\lambda}$$

 $gain = \frac{LMAX_{\lambda} - LMIN_{\lambda}}{QCALMAX - QCALMIN}$

$$offset = -\frac{LMAX_{\lambda} - LMIN_{\lambda}}{QCALMAX - QCALMIN} + LMIN_{\lambda}$$

DN = QCAL, offset = bias

 Have to find out LMAX, LMIN, QCALMAX, QCALMIN

QCALMAX

- L_λ = Spectral Radiance at the sensor Δ aperture in watts/(meter squared * ster * μm)
- "gain" = Rescaled gain (the data product "gain" contained in the Level 1 product header or ancillary data record) in watts/(meter squared * ster * μm)
- "offset" = Rescaled bias (the data product "offset" contained in the Level 1 product header or ancillary data record) in watts/(meter squared * ster * μm)
- \mathbf{QCAL} = the quantized calibrated pixel value in DN
- $\begin{array}{ll} \textbf{LMIN}_{\lambda} & = \text{the spectral radiance that is scaled to QCALMIN in watts/} \\ & \left(\text{meter squared * ster * $\mu m} \right) \end{array}$
- $\begin{array}{ll} LMAX_{\lambda} & = \text{the spectral radiance that is scaled to QCALMAX in watts/} \\ & (meter squared * ster * \mu m) \end{array}$
- QCALMIN = the minimum quantized calibrated pixel value (corresponding to LMIN, χ) in DN
 - = 1 (LPGS Products)
 - = 0 (NLAPS Products)

QCALMAX = the maximum quantized calibrated pixel value (corresponding to LMAX $_{\lambda})$ in DN

= 255

LMIN, LMAX of LANDSAT7

o LMIN, LMAX List

Table 11.2 ETM+ Spectral Radiance Range watts/(meter squared * ster * µm)										
	F	Before Ju	dy 1, 200	00	After July 1, 2000					
Band Number	Low Gain		High Gain		Low	Gain	High Gain			
	LMIN	LMAX	LMIN	LMAX	LMIN	LMAX	LMIN	LMAX		
1	-6.2	297.5	-6.2	194.3	-6.2	293.7	-6.2	191.6		
2	-6.0	303.4	-6.0	202.4	-6.4	300.9	-6.4	196.5		
3	-4.5	235.5	-4.5	158.6	-5.0	234.4	-5.0	152.9		
4	-4.5	235.0	-4.5	157.5	-5.1	241.1	-5.1	157.4		
5	-1.0	47.70	-1.0	31.76	-1.0	47.57	-1.0	31.06		
6	0.0	17.04	3.2	12.65	0.0	17.04	3.2	12.65		
7	-0.35	16.60	-0.35	10.932	-0.35	16.54	-0.35	10.80		
8	-5.0	244.00	-5.0	158.40	-4.7	243.1	-4.7	158.3		

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html

How to Find the Constants for Scaling factor of Radiance

- o Metadata file .met
 - Sample ftp://cgceopush3.geo.msu.edu/push3 2/137/043/p137r43 7x000228/p137r043 7x20000228.met
- o Identify Hi-Gain or Low Gain
 - EROS Data Center Gateway
 - http://edcimswww.cr.usgs.gov/pub/imswelcome/
- Obtain Hi-Gain and Low-Gain parameters
 - USGS LANDSAT Page
 - http://landsat7.usgs.gov/technical_details/calibration_files/
- Header file/record
- Data Handling Manuals
 - Processed in Japan, China, Thailand

How to obtain TOA Irradiance

Spectral Exo-atmospheric Irradiance

$$\rho_{\lambda} = \frac{\pi L_{\lambda}}{G_{\lambda}} = \frac{\pi L_{\lambda}}{\mu_{s} E_{s\lambda}}$$

$$E_{s\lambda} = \frac{ESUN_{\lambda}}{d_{s}^{2}}$$

 $E_{s\lambda}$: Exo - atmospheric Solar Spectral Irradiance $W/m^2 \cdot \mu m$

 $ESUN_{\lambda}$: Average Exo - atmospheric Solor Spectral Irradiance $W/m^2 \cdot \mu m$

 d_s : Earth - Sun distance in astronomical units

 $\mu_s = \cos(\theta_s), \theta_s$: Solar zenith angle

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html

Average Solar Spectral Irradiance ESUN ^λ

 Average Solor Spectral Exo-atmospheric Irradiance

$$\rho_{\lambda} = \frac{\pi L_{\lambda}}{G_{\lambda}} = \frac{\pi L_{\lambda}}{\mu_{s} E_{s\lambda}}$$

$$E_{s\lambda} = \frac{ESUN_{\lambda}}{L^{2}}$$

 $E_{s\lambda}$: Exo-stomospheric Solar Spectral Irradiance $W/m^2\cdot\mu m$ $ESUN_{\lambda}$: Average Exo-atmospheric Spectral Irradiance $W/m^2\cdot\mu m$

Table 11	ETM+ Solar Spectral Irradiances				
Band	watts/(meter squared * μm)				
1	1969.000				
2	1840.000				
3	1551.000				
4	1044.000				
5	225.700				
7	82.07				

ESUN λ for ETM+

1368.000

http://modarch.gsfc.nasa.gov/MODIS/ATM/solar.html

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html

Sun Earth Distance ds

$$E_{s\lambda} = \frac{1}{d_s^2} ESUN_{\lambda}$$

 d_s : Earth - Sun distance in astronomical units

	Table 11.4 Earth-3th Distance in Astronomical Cints											
Julian Day	Distance	Julian Day	Distance	Julian Day	Distance	Julian Day	Distance	Julian Day	Distanc			
1	.9832	74	.9945	152	1.0140	227	1.0128	305	.9925			
15	.9836	91	.9993	166	1.0158	242	1.0092	319	.9892			
32	.9853	106	1.0033	182	1.0167	258	1.0057	335	.9860			
46	.9878	121	1.0076	196	1.0165	274	1.0011	349	.9843			
60	.9909	135	1.0109	213	1.0149	288	.9972	365	.9833			

$$d_s = 1 + 0.01672 \times \sin \left(\frac{2 \pi (J - 93.5)}{365} \right)$$

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html

Solar Zenith Angle

- LANDSAT: Use Zenith Angle (90deg Sun Elevation) at the centre of the image for the whole image
 - 180km -> +- 0.81 deg
 - If Zenith Angle < 20deg, difference < 1%

Or

 Calculate the angle from Lat, Lon, Julian day and time (i.e POSSOL of 6S).

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html

Atmospheric Correction

- The reflectance we have obtained here is Apparent Reflectance or Reflectance at TOA
- Atmospheric correction is needed to obtain Reflectance at Ground Level
- You may run 6S with appropriate parameters
- Some products are Reflectance at Ground Surface, such as MODIS, SPOT VEGETAION...

• • | References

- Landsat 7 Science Data Users Handbook
 - Chapter6
 - http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook htmls/chapter6/chapter6.html
 - Chapter 11
 - http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_htmls/chapter11/chapter11.html
- Dr. Kawamura's page DN->Refelctance for Landsat (Japanese)
 - http://www.geocities.jp/kensuke kawamura/Others/LandsatCal ibration/LandsatCalibration.html
- o 6S Manual