

Ekoparty #20 15 de Noviembre de 2024 Carlos Benitez

God does not play dice. (Albert Einstein)

Carlos Benitez

- Ing. y Mg. de la UTN FRBA
- Investigador en procesamiento de señales acústicas submarinas.
- Director del primer Laboratorio en Seguridad Informática (Si6) en el ámbito del Estado.
- Implementación del primer SOC del Ministerio de Defensa.
- Asesor técnico de la Subsecretaría de Ciberdefensa.
- Consultor en ciberseguridad.
- Co-fundador de Platinumciber.
- Proyectos de ciberseguridad, como: SOC, Ethical Hacking, Vulnerability Assessment,
 Análisis forense, Análisis y Gestión de Riesgos, etc.
- Algunas publicaciones en congresos y dos patentes en USA en ciberseguridad.
- Docente de posgrado en ciberseguridad.
- Formador y mentoring de teams.
- Quantum Computing enthusiast.

Índice

Parte O

Preparación

Parte 1

El apocalipsis cuántico Evolución tecnológica Tipos de computadoras cuánticas Proyección

Parte 2

Conceptos básicos de qiskit
Pasos para ir de un problema a un circuito cuántico
Errores
Ejemplos de problemas en ciberseguridad
Ejecución de ejemplos e interpretación de resutados

Bonus track

¿AI ayudando a Quantum o Quantum ayudando a AI?

Conclusiones

Referencias y bibliografía

Parte O

koan 1

koan 2

•
$$e = 1.6 \times 10^{-19} \,\mathrm{C}$$

$$\mu = \frac{e \cdot v \cdot r}{2}$$
 • $r = 1.41 \times 10^{-15} \,\mathrm{m}$.

•
$$\mu = \mu_B = 9.27 \times 10^{-24} \,\mathrm{A m}^2$$

$$v = \frac{2\mu_B}{e \cdot r}$$

$$v \approx 8.26 \times 10^8 \,\mathrm{m/s}$$

$$c \approx 3 \times 10^8 \,\mathrm{m/s}$$

$$v \approx 2.75 \times c!!!!!$$

•
$$e = 1.6 \times 10^{-19} \,\mathrm{C}$$

•
$$r = 1.41 \times 10^{-15} \,\mathrm{m}$$
.

•
$$\mu = \mu_B = 9.27 \times 10^{-24} \,\mathrm{A m}^2$$

$$v = \frac{2\mu_B}{e \cdot r}$$

$$v \approx 8.26 \times 10^8 \,\mathrm{m/s}$$

$$c \approx 3 \times 10^8 \,\mathrm{m/s}$$

$$v \approx 2.75 \times c!!!!!$$

Parte 1

Tipos de computadoras cuánticas

Propósitos generales

Adiabáticas

Dwave

Simuladas

Evolución tecnológica

2010 experimental 1 qubit

2020 hummingbird 63 qubits

2024 heron r2 156 qubits

opment and Innovation Roadmap

Roadmap

Demonstrate path to

improved quality with

logical communication

Demonstrate path to

improved quality with

logical memory

opment and Innovation Roadmap

Demonstrate scaling

with multiplexing

Demonstrate scaling

with MLW and TSV

Demonstrate scaling

with I/O routing with

Bump bonds

Canary

Penguin

Albatross Prototype

20 qubits

53 qubits

Demonstrate scaling

Crossbill

m-coupler

Demonstrate scaling

with nonlocal c-coupler

Enabling scaling with

and fridge capacity

Architecture based on

tunable-couplers

Heron

high density signal

El apocalipsis

Q-day demands a reasonable worst case mindset

Post quantum NIST standards

#1 - FIPS 203: CRYSTALS-Kyber (-> ML-KEM)

#2 - FIPS 204: CRYSTALS-Dilithium (-> ML-DSA)

#3 - FIPS 205: Sphincs+ (-> SLH-DSA)

(#4 - FIPS 206: FALCON (-> FN-DSA))

Parte 2

Quantum Security

Algoritmo de Shor

Algoritmo de Grover

QKD

Hackear computadoras cuánticas

...?

Hands on 1

Instalar qiskit

- #1 Install miniconda
- #2 Create conda environment
 conda create --name qiskitpg
- #3 Activate environment conda activate qiskitpg
- #4 Install pip conda install pip
- #5- Install qiskit pip install qiskit
- #6 Install additional libs
 pip install matplotlib
 pip install qiskit_ibm_runtime
 pip install pylatexenc
- #7 Create a new Jupyter Notebook file go to vscode

Instalar qiskit

```
#8 - Select kernel (qiskitipg)
  auto install: ipykernel
#9 In the ipynb cell:
  import qiskit
  qiskit.__version__
#10 Instanciate IBM quantum services
  go to https://quantum.ibm.com
  get the token
#11 - In the ipynb
  from qiskit_ibm_runtime import QiskitRuntimeService
  service = QiskitRuntime Service(channel="ibm_quantum", token=
"XXX")
  service = QiskitRuntime
Service.save_account(channel="ibm_quantum",
token= "XXX")
#12 Connect to a real device
  backend = service.backend(name="ibm_brisbane")
  backend.num_qubits
```

Pasos para ir de un problema a un circuito cuántico

1. Map problem to quantum circuits and operators	2. Optimize circuits for target hardware	3. Execute on target hardware	4. Postprocess results
--	--	-------------------------------	------------------------

transpilation

...compilation...?

simulation

```
# Run the sampler job locally using FakeManilaV2
fake_manila = FakeManilaV2()
pm = generate_preset_pass_manager(backend=fake_manila, optimization_level=1)
isa_qc = pm.run(qc)

# You can use a fixed seed to get fixed results.
options = {"simulator": {"seed_simulator": 42}}
sampler = Sampler(backend=fake_manila, options=options)
result = sampler.run([isa_qc]).result()
```

<= 50 qubits

Errores

- Gate
- Decoherence
- Readout

```
backend = service.backend(name="<backend_name>")
print(backend.target)
```

Data encoding

Basis encoding

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 11 \\ 01 \\ 00 \\ 11 \end{bmatrix} = \begin{bmatrix} |11 \rangle \\ |01 \rangle \\ |00 \rangle \\ |11 \rangle \end{bmatrix}$$

$$|0\rangle \longrightarrow ()$$

Data encoding

Amplitude encoding

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{19} \\ 1/\sqrt{19} \\ 0/\sqrt{19} \\ 3/\sqrt{19} \end{bmatrix} \qquad \qquad \text{Io> } - \boxed{ u(a) } - \boxed{ } \end{bmatrix} \text{ Ix}$$

Data encoding

Angle encoding

$$\overrightarrow{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{19} \\ 1/\sqrt{19} \\ 0/\sqrt{19} \\ 3/\sqrt{19} \end{bmatrix}$$

$$|0\rangle - \left[R_{x}(x_{1})\right] - \left[R_{x}(x_{2})\right] - \left[R_{x}(x_{3})\right] - \left[R_{x}(x_{4})\right] - \left[R_{$$

Map problem to quantum circuits and operators

Ansatz

Resultados posibles

- No se puede crear el circuito/no ejecuta
- Ejecuta, pero no hay ventaja
- Ejecuta y hay ventaja

Ejemplos de problemas en seguridad

Riesgos de IT en una organización.

- Activos (de información) [valor]
- Amenazas [probabilidad/impacto]
- Vulnerabilidades [degradacción]
- Contramedidas [efectividad]
- Dependencias entre activos

Assets:

A1: Web Server

A2: Database

A3: File Server

A4: Application Server

A5: Email Server

A6: Backup Server

A7: HR Database

A8: Finance Database

A9: Customer Portal

A10: Internal Network

Threats:

T1: SQL Injection

T2: DDoS Attack

T3: Data Exfiltration

T4: Phishing Attack

T5: Insider Threat

T6: Ransomware

T7: Zero-Day Exploit

T8: Man-in-the-Middle Attack

T9: Brute Force Attack

T10: Malware Injection

Probability matrix:

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

```
T1: [0.8, 0.6, 0.0, 0.2, 0.1, 0.3, 0.4, 0.5, 0.2, 0.1]
```

Impact matrix:

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

```
[0.9, 0.8, 0.3, 0.7, 0.5, 0.4, 0.6, 0.9, 0.7, 0.5]
T1:
      [0.6, 0.5, 0.4, 0.3, 0.7, 0.8, 0.6, 0.5, 0.8, 0.6]
T2:
      [0.4, 0.7, 0.8, 0.5, 0.6, 0.7, 0.4, 0.3, 0.8, 0.7]
T3:
     [0.7, 0.3, 0.5, 0.8, 0.4, 0.5, 0.7, 0.2, 0.6, 0.8]
T4:
      [0.5, 0.6, 0.4, 0.2, 0.9, 0.3, 0.8, 0.9, 0.6, 0.3]
T5:
     [0.3, 0.7, 0.5, 0.4, 0.6, 0.9, 0.5, 0.4, 0.8, 0.5]
T6:
      [0.8, 0.4, 0.6, 0.5, 0.3, 0.4, 0.9, 0.3, 0.2, 0.9]
T7:
      [0.5, 0.6, 0.5, 0.7, 0.5, 0.4, 0.6, 0.8, 0.7, 0.4]
T8:
T9: [0.6, 0.8, 0.6, 0.4, 0.7, 0.3, 0.7, 0.4, 0.5, 0.9]
T10: [0.7, 0.4, 0.8, 0.6, 0.9, 0.5, 0.5, 0.6, 0.8, 0.8]
```

Hands on 2

Dependency matrix (simplified):

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

Hands on 3

Threat-Vulnerability matrix (degradations):

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Control matrix (efectiveness):

```
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
```

```
T1: [0.8, 0.6, 0.0, 0.0, 0.1, 0.0, 0.4, 0.5, 0.2, 0.1]
```

T2: [0.0, 0.2, 0.1, 0.0, 0.3, 0.5, 0.2, 0.4, 0.3, 0.2]

T3: [0.0, 0.0, 0.5, 0.3, 0.2, 0.6, 0.1, 0.0, 0.4, 0.0]

T4: [0.3, 0.0, 0.2, 0.5, 0.4, 0.2, 0.3, 0.1, 0.3, 0.0]

T5: [0.0, 0.0, 0.2, 0.0, 0.5, 0.1, 0.4, 0.6, 0.2, 0.1]

T6: [0.0, 0.0, 0.3, 0.1, 0.4, 0.7, 0.3, 0.2, 0.6, 0.4]

T7: [0.6, 0.2, 0.0, 0.3, 0.0, 0.3, 0.5, 0.2, 0.1, 0.6]

T8: [0.0, 0.4, 0.0, 0.6, 0.2, 0.3, 0.2, 0.5, 0.4, 0.2]

T9: [0.3, 0.6, 0.4, 0.2, 0.5, 0.2, 0.6, 0.1, 0.3, 0.7]

T10: [0.0, 0.3, 0.0, 0.0, 0.0, 0.2, 0.3, 0.4, 0.5, 0.6]

Bonus track

AI helping QC?

QC helping AI?

Conclusiones

- Apocalipsis cuántico para 2030/2035(?)
- Desarrollos para alejar la funcionalidad de las QC de la física
- Facilidad para usar algunas QC online
- Pensar en qué problemas de seguridad se pueden resolver con QC

Carlos Benitez
@ch4r1i3b
carlos<at>platinumciber.com
https://cybersonthestorm.com
https://github.com/ch4r1i3b

Ekoparty #20 15 de Noviembre de 2024 Carlos Benitez

Not only does God play dice, but... he sometimes throws them where they cannot be seen. (Stephen Hawking)

REFERENCIAS

Post Quantum NIST https://csrc.nist.gov/projects/post-quantum-cryptography https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards

Labs IBM Quantum

https://lab.quantum-computing.ibm.com/

https://quantum-computing.ibm.com/composer

Qiskit

https://github.com/Qiskit/qiskit https://docs.quantum.ibm.com/

https://github.com/Qiskit/qiskit-ibm-runtime https://www.ibm.com/quantum/ecosystem

https://docs.quantum.ibm.com/guides/install-qiskit

Richard Feynman hablando de cuántica https://www.youtube.com/watch?v=xdZMXWmlp9g