Analiza I

Michał Dobranowski

 $\begin{array}{c} \mathrm{semestr} \ \mathrm{zimowy} \ 2022 \\ \mathrm{v} 0.0 \end{array}$

Poniższy skrypt zawiera materiał obejmujący wykłady z Analizy Matematycznej I prowadzone na I semestrze Informatyki na AGH, lecz jest mocno rozbudowany przez twierdzenia i tematy pochodzące z przeróżnych źródeł, które (zwykle dla rozwinięcia intuicji lub ułatwienia rozwiązań pewnych zadań) postanowiłem opisać.

Spis treści

1	Granice ciągów			
	1.1	Proste granice	. 3	
	1.2	Liczba Eulera	. 6	
	1.3	Mniej proste granice	. 7	
	1.4	Limes superior i limes inferior	. 7	
2	Granice funkcji			
	2.1	Ciągłość funkcji	. 12	
3	Pochodne			
	3.1	Wzory Taylora i Maclaurina	. 16	
Α	Dod	latek	18	

Z powodu braku czasu (ale również chęci) do opisywania materiału, który – chociaż pojawił się na wykładach – jest, skromnym zdaniem autora, raczej szkolny, Czytelnik powinien upewnić się, że jest zaznajomiony z następującymi pojęciami: funkcja, dziedzina, przeciwdziedzina, dziedzina naturalna, injekcja, surjekcja, bijekcja, funkcja monotoniczna, (nie)rosnąca, (nie)malejąca, złożenie funkcji, funkcja odwrotna, wielomianowa, wymierna, potęgowa, wykładnicza, logarytmiczna, trygonometryczna, cyklometryczna, ciąg, podciąg.

§1 Granice ciągów

Definicja 1.1 (Cauchy'ego granicy właściwej). Ciąg (a_n) ma granicę $g = \lim_{n \to \infty} a_n$ wtedy, gdy

 $\bigvee_{\varepsilon>0} \; \underset{N\in\mathbb{N}}{\exists} \; \bigvee_{n>N} \; |a_n-g| < \varepsilon.$

Jeśli ciąg (a_n) ma granicę g, to mówimy że jest zbieżny do g i piszemy $\lim a_n = g$ lub po prostu $a_n \to g$.

Definicja 1.2 (granicy niewłaściwej $+\infty$). Ciąg (a_n) ma granicę niewłaściwą $\lim_{n\to\infty} a_n = \infty$ wtedy, gdy

 $\bigvee_{M \in \mathbb{R}} \ \, \bigcup_{N \in \mathbb{N}} \ \, \bigvee_{n > N} \ \, a_n > M.$

Analogicznie definiujemy granicę niewłaściwą w $-\infty$. Może się również zdarzyć, że ciąg nie ma granicy, na przykład $a_n = n(-1)^n$.

Fakt 1.3. Równość $\lim |a_n| = 0$ jest równoważna $\lim a_n = 0$.

Dowód. Równoważność wynika z definicji 1.1 i równości ||a|| = |a|.

Twierdzenie 1.4

Jeśli $\lim a_n = g$, to dla każdego podciągu (a_{n_k}) zachodzi $\lim a_{n_k} = g$.

Dowód. Zakładając przeciwnie, że istnieją dwa podciągi o różnych granicach, to w definicji Cauchy'ego (1.1) wystarczy wybrać ε mniejszy niż połowa różnicy między tymi dwie granicami, aby uzyskać sprzeczność.

Prosty wniosek z tego twierdzenia jest taki, że jeśli znajdziemy dwa podciągi ciągu (a_n) zbiegające do różnych granic, to ciąg (a_n) jest rozbieżny.

Twierdzenie 1.5 (o ciągu monotonicznym i ograniczonym)

Każdy ciąg monotoniczny i ograniczony jest zbieżny.

Dowód. Bez starty ogólności przyjmijmy, że dany ciąg (a_n) jest niemalejący i ograniczony z góry przez $M = \sup\{a_n : n \in \mathbb{N}\}$. Dla wszystkich n zachodzi więc nierówność

$$a_n \leq M$$
.

Dla dowolnego $\varepsilon > 0$ istnieje takie a_N , że

$$M - \varepsilon < a_N \le M$$

jako że w przeciwnym wypadku to $M - \varepsilon$ byłoby supremum (a_n) . Skoro (a_n) jest niemalejący, to dla każdego n > N

$$|M - a_n| = M - a_n \le M - a_N < \varepsilon,$$

więc $\lim a_n = M$.

Twierdzenie 1.6 (Bolzano-Weierstrassa)

Jeśli ciąg jest ograniczony, to ma podciąg zbieżny.

Dowód. Udowodnimy, że jeśli z ciągu nie można wybrać podciągu niemalejącego, to można wybrać ciąg malejący, czego natychmiastowym wnioskiem (z pomocą twierdzenia 1.5) będzie teza.

Najpierw zauważymy, że jeśli z ciągu nie można wybrać podciągu rosnącego, to ma on wyraz największy. Zakładając przeciwnie, mamy, że a_1 nie jest największy, więc szukamy większego a_k , który znowu nie jest największy i w ten sposób (powtarzając rozumowanie) uzyskujemy konstrukcję ciągu rosnącego. Taką konstrukcję zakłóci tylko znalezienie elementu największego.

Załóżmy, że ciąg (a_n) nie zawiera podciągu niemalejącego. Tym bardziej nie zawiera więc podciągu rosnącego, a więc ma wyraz największy, który oznaczymy a_m . Z ciągu $(a_{m+1}, a_{m+2}, \ldots)$ nie można wybrać podciągu niemalejącego (bo jest to podciąg ciągu (a_n)), więc ma on element największy, jednak mniejszy od a_m . Powtarzając to rozumowanie konstruujemy ciąg malejący.

Twierdzenie 1.7 (o ciągu ograniczonym i ciągu zbieżnym do zera)

Jeśli ciag (a_n) jest ograniczony oraz $\lim b_n = 0$, to

$$\lim_{n \to \infty} (a_n \cdot b_n) = 0$$

Dowód. Z założenia istnieje takie M>0, że dla każdego $n\in\mathbb{N}$ zachodzi

$$-M \le a_n \le M$$
.

Z definicji (1.1) dla każdego $\varepsilon > 0$ istnieje takie $N \in \mathbb{N}$, że dla każdego n > N zachodzi

$$|b_n| < \frac{\varepsilon}{M},$$

więc (również dla każdego n > N) zachodzi

$$|a_n \cdot b_n| < M \cdot \frac{\varepsilon}{M} = \varepsilon.$$

§1.1 Proste granice

Twierdzenie 1.8 (o arytmetyce granic ciągów)

Jeśli $\lim_{n\to\infty} a_n = A$ oraz $\lim_{n\to\infty} b_n = B$, to:

- 1. $\lim_{n\to\infty} (a_n \pm b_n) = A \pm B,$
- $2. \lim_{n \to \infty} (a_n \cdot b_n) = A \cdot B,$
- 3. $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$, jeśli $(b_n) \neq 0, B \neq 0$.

Dowód. Wynika w prosty sposób z definicji 1.1.

Twierdzenie 1.9 (o trzech ciągach)

Jeśli lim $a_n = \lim c_n = g$ oraz istnieje takie $N \in \mathbb{N}$, że dla wszystkich n > N zachodzi

$$a_n \leq b_n \leq c_n$$

to

$$\lim b_n = g.$$

Dowód. Weźmy $\varepsilon > 0$. Z definicji granicy (1.1) mamy

$$|a_n - g| < \varepsilon$$

$$a_n < g + \varepsilon \quad \land \quad a_n > g - \varepsilon$$

dla wszystkich $n > N_1$. Analogicznie dla wszystkich $n > N_2$ zachodzi

$$c_n < g + \varepsilon \quad \land \quad c_n > g - \varepsilon.$$

Mamy więc

$$g - \varepsilon < a_n \le b_n \le c_n < g + \varepsilon$$
$$g - \varepsilon < b_n < g + \varepsilon$$
$$|b_n - g| < \varepsilon$$

dla wszystkcih $n > \max(N, N_1, N_2)$.

Fakt 1.10. Ciąg geometryczny jest zbieżny do 0, jeśli jego iloraz jest mniejszy od 1. Jeśli jest większy od 1, to ciąg jest rozbieżny.

Dowód powyższego faktu jest bardzo łatwo pokazać z definicji lub twierdzenia o ciagu monotonicznym i ograniczonym (1.5), a sama jego treść na tyle oczywista i powszechna, że nie będziemy się nie niego powoływać bezpośrednio.

Twierdzenie 1.11

Zachodzi równość

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

dla każdego a > 0.

Dowód. Dla a=1 równość jest trywialna. Jeśli założymy, że a>1, to mamy $\sqrt[n]{a}=1+x_n$, gdzie $x_n>0$. Korzystając z nierówności Bernoulliego (A.1) mamy

$$a = (1 + x_n)^n \ge 1 + nx_n$$
$$\therefore 0 < x_n \le \frac{a - 1}{n}$$

z czego wynika, że $\lim x_n = 0$, a więc $\lim a_n = 1$. Jeśli a < 1, to, jak właśnie wykazaliśmy,

$$\lim \sqrt[n]{a^{-1}} = 1,$$

więc

$$\lim \sqrt[n]{a} = \lim \frac{1}{\sqrt[n]{a^{-1}}} = \frac{1}{\lim \sqrt[n]{a^{-1}}} = 1.$$

Twierdzenie 1.12

Zachodzi równość

$$\lim_{n\to\infty} \sqrt[n]{n} = 1.$$

Dowód. W poniższym dowodzie będziemy korzystać z nierówności między średnimi (A.2). Z nierówności między średnią geometryczną i harmoniczną (GM-HM) mamy

$$\sqrt[n]{n} = \sqrt[n]{n \cdot 1^{n-1}} \ge \frac{n}{\frac{1}{n} + \frac{1}{1} + \frac{1}{1} + \dots + \frac{1}{1}} = \frac{n}{\frac{1}{n} + n - 1},$$

a z nierówności między średnią arytmetyczną i geometryczną (AM-GM)

$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1^{n-2}} \le \frac{2\sqrt{n} + n - 2}{n}.$$

Oba te ciągi dążą do 1 i z dwóch stron ograniczają ciąg dany wzorem $\sqrt[n]{n}$, więc na mocy twierdzenia o trzech ciągach (1.9) teza jest prawdziwa.

Twierdzenie 1.13

Jeśli $(a_n) > 0$ oraz $\lim \frac{a_{n+1}}{a_n}$ istnieje i jest równe L, to również $\lim \sqrt[n]{a_n} = L$.

Dowód. Z definicji 1.1 dla każdego ε i pewnego N mamy

$$\begin{array}{lll} L-\varepsilon < & \frac{a_{n+1}}{a_n} < & L+\varepsilon \\ L-\varepsilon < & \frac{a_n}{a_{n-1}} < & L+\varepsilon \\ L-\varepsilon < & \frac{a_{n-1}}{a_{n-2}} < & L+\varepsilon \\ & \vdots & \\ L-\varepsilon < & \frac{a_{N+1}}{a_N} < & L+\varepsilon \end{array}$$

Przemnażając wszystkie nierówności (oprócz pierwszej, dla wygody zapisu) przez siebie mamy

$$(L - \varepsilon)^{n-N} < \frac{a_n}{a_N} < (L + \varepsilon)^{n-N}$$

$$\frac{(L - \varepsilon)^n}{(L - \varepsilon)^N} \cdot a_N < a_n < \frac{(L + \varepsilon)^n}{(L + \varepsilon)^N} \cdot a_N$$

$$(L - \varepsilon) \sqrt[n]{\frac{a_N}{(L - \varepsilon)^N}} < \sqrt[n]{a_n} < (L + \varepsilon) \sqrt[n]{\frac{a_N}{(L + \varepsilon)^N}}.$$

Korzystając z twierdzenia 1.11 przy obliczeniu granicy przy $n \to \infty$ dla trzech powyższych wyrażeń mamy

$$L - \varepsilon < \lim \sqrt[n]{n} < L - \varepsilon$$
,

z czego wynika (z definicji 1.1), że

$$\lim \sqrt[n]{n} = L = \lim \frac{a_{n+1}}{a_n}.$$

§1.2 Liczba Eulera

Definicja 1.14 (Liczba Eulera).

$$e = \lim \left(1 + \frac{1}{n}\right)^n$$

Uzasadnienie. Oznaczmy $e_n = \left(1 + \frac{1}{n}\right)^n$. Udowodnimy, że (e_n) jest rosnący.

$$\frac{e_{n+1}}{e_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} = \frac{\left(\frac{n+2}{n+1}\right)^n}{\left(\frac{n+1}{n}\right)^{n+1}} = \left(\frac{n+2}{n+1} \cdot \frac{n}{n+1}\right)^{n+1} \cdot \frac{n+1}{n}$$
$$= \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \cdot \frac{n+1}{n}.$$

Z nierówności Bernoulliego (A.1) mamy

$$\left(1 - \frac{1}{(n+1)^2}\right)^{n+1} > 1 - \frac{n+1}{(n+1)^2} = 1 - \frac{1}{n+1} = \frac{n}{n+1},$$

więc

$$\frac{e_{n+1}}{e_n} > \frac{n}{n+1} \cdot \frac{n+1}{n} = 1,$$

co dowodzi, że ciąg (e_n) jest rosnący.

Następnie pokażemy, że ciąg (a_n) jest również ograniczony.

$$e_n = \left(1 + \frac{1}{n}\right)^n = 2 + \sum_{k=2}^n \binom{n}{k} \frac{1}{n^k}$$

$$< 2 + \sum_{k=2}^n \frac{1}{k(k-1)} = 2 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right) = 3 - \frac{1}{n}$$

Skoro (a_n) jest rosnący i ograniczony od góry, to (z twierdzenia 1.5) jest zbieżny. Jego granicą jest $e \approx 2.71828$.

Lemat 1.15

Zachodzi równość

$$\lim_{n \to \infty} \left(1 + \frac{k}{n} \right)^n = e^k,$$

a w szególności (dla k = -1)

$$\lim_{n\to\infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}.$$

Dowód.Dla k=0równość jest trywialna, dla $k\neq 0$ obliczamy

$$\lim_{n\to\infty} \left(1+\frac{k}{n}\right)^n = \lim_{n\to\infty} \left(1+\frac{1}{\frac{n}{k}}\right)^n = \lim_{\frac{n}{k}\to\infty} \left(1+\frac{1}{\frac{n}{k}}\right)^{\frac{n}{k}\cdot k} = e^k.$$

§1.3 Mniej proste granice

Twierdzenie 1.16

Zachodzi równość

$$\lim \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}.$$

Dowód. Stosując twierdzenie 1.13 mamy

$$\lim \frac{\sqrt[n]{n!}}{n} = \lim \sqrt[n]{\frac{n!}{n^n}} = \lim \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \lim \frac{(n+1)n^n}{(n+1)^{n+1}} = \lim \frac{n!}{(n+1)^n} = \lim \left(\frac{n+1}{n}\right)^{-n} = e^{-1}.$$

§1.4 Limes superior i limes inferior

Definicja 1.17. Dla ciągu (a_n) definiujemy granicę górną (limes superior)

$$\limsup_{n\to\infty} a_n = \sup \{ \lim a_{n_k} : (a_{n_k}) \text{ jest zbieżnym podciągiem } (a_n) \}$$

oraz granicę dolną (limes inferior)

$$\liminf_{n\to\infty} a_n = \inf\{\lim a_{n_k} : (a_{n_k}) \text{ jest zbieżnym podciągiem } (a_n)\}.$$

Przykład 1.18

Obliczyć granicę górną i dolną ciągu $a_n = n^{\sin \frac{n\pi}{2}}$.

Rozwiązanie. Wyróżniamy trzy podciągi ciagu (a_n) , które łącznie zawierają wszystkie wyrazy tego ciągu:

- n przystaje do 1 (mod 4), mamy $b_k = (4k+1)^1$,
- n jest parzyste, mamy $c_k = (2k)^0$,
- n przystaje do 3 (mod 4), mamy $d_k = (4k+3)^{-1}$.

Obliczając ich granice dostajemy

$$\lim b_n = \infty$$
, $\lim c_n = 1$, $\lim d_n = 0$.

Z twierdzenia 1.4 wynika, że każdy zbieżny podciąg (a_n) jest zbieżny do granicy któregoś z ciągów $(b_n), (c_n), (d_n)$, więc

$$\limsup a_n = \infty, \qquad \liminf a_n = 0.$$

§2 Granice funkcji

Otoczeniem $U(x_0,r)$ punktu $x_0 \in \mathbb{R}$ o promieniu r > 0 nazywamy przedział $(x_0 - r, x_0 + r)$, a jego sąsiedztwem $S(x_0, r)$ – otoczenie bez niego samego, czyli $U(x_0, r) \setminus \{x_0\}$. Definiujemy również sąsiedztwo lewo- i prawostronne punktu x_0 – odpowiednio zbiory $S^-(x_0, r) = (x_0 - r, x_0)$ i $S^+(x_0, r) = (x_0, x_0 + r)$. Dla ∞ każde sąsiedztwo jest sąsiedztwem lewostronnym, a dla $-\infty$ prawostronnym.

Definicja 2.1 (Heinego granicy funkcji). Funkcja $f: \mathbb{R} \supset D_f \to \mathbb{R}$ ma granicę $g = \lim_{x \to x_0} f(x)$ w $x_0 \in \overline{\mathbb{R}}$ wtedy, gdy jest określona w sąsiedztwie punktu x_0 oraz dla każdego ciągu (x_n) takiego, że $\forall n \in \mathbb{N}: x_n \neq x_0, x_n \in D_f$ oraz $(x_n) \to x_0$ zachodzi

$$\lim_{n \to \infty} f(x_n) = g.$$

Granice lewo- lub prawostronne są definiowane analogicznie, lecz funkcja f musi być zdefiniowana w lewo- lub prawostronnym sąsiedztwie punktu x_0 , a elementy ciągu x_n muszą leżeć po lewej lub prawej stronie od x_0 .

Twierdzenie 2.2

Funkcja f ma granicę wtedy i tylko wtedy, gdy obie granice jednostronne istnieją i są sobie równe.

$$\lim_{x \to x_0} f(x) = g \quad \Leftrightarrow \quad \lim_{x \to x_0^-} f(x) = g \land \lim_{x \to x_0^+} f(x) = g$$

Dowód. Wynika wprost z definicji Heinego granicy funkcji i granic jednostronnych.

Definicja 2.3 (Cauchy'ego granicy funkcji). Funkcja $f:\mathbb{R}\supset D_f\to\mathbb{R}$ ma granicę $g=\lim_{x\to x_0}f(x)$ w $x_0\in\overline{\mathbb{R}}$ wtedy, gdy jest określona w sąsiedztwie punktu x_0 oraz zachodzi warunek

$$\bigvee_{\varepsilon>0} \ \exists_{\delta>0} \ \bigvee_{x\in S(x_0,\delta)} \ |f(x)-g| < \varepsilon.$$

Twierdzenie 2.4 (o arytmetyce granic funkcji)

Jeśli funkcje f i g są określone w sąsiedztwie $x_0 \in \overline{\mathbb{R}}$, to:

- 1. $\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$,
- 2. $\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$,
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}, \text{ jeśli } g(x) \neq 0 \text{ w sąsiedztwie } x_0 \text{ oraz } \lim_{x \to x_0} g(x) \neq 0.$

Dowód. Wynika w prosty sposób z definicji 2.3.

Twierdzenie 2.5 (o trzech funkcjach)

Jeśli $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = g$ oraz dla każdego xw sąsiedztwie x_0 zachodzi

$$f(x) \le g(x) \le h(x),$$

to

$$\lim_{x \to x_0} g(x) = g.$$

Dowód. Analogiczny jak dowód twierdzenia o trzech ciąchach (1.9).

Uwaga 2.6. Oprócz arytmetyki granicy czy twierdzenia o trzech funkcjach, prawdziwych jest również kilka innych twierdzenia, które udowodnialiśmy dla ciągów, między innymi o funkcji ograniczonej i zbieżnej do 0 (1.7) czy granice specjalnych funkcji (1.15).

Przykład 2.7

Znajdź

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{\sqrt[3]{1+x} - 1}.$$

Rozwiązanie. Biorąc

$$1 + x = y^6,$$

mamy

$$\lim_{x \to 0} \frac{\sqrt{1+x} - 1}{\sqrt[3]{1+x} - 1} = \lim_{y \to 1} \frac{y^3 - 1}{y^2 - 1} = \lim_{y \to 1} \frac{y^2 + y + 1}{y + 1} = \frac{3}{2}.$$

Twierdzenie 2.8

Zachodzi równość

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Dowód. Narysujmy pewne długości na okręgu jednostkowym i oznaczmy jak na rysunku.

Jeśli $\angle DAC=x$ oraz |AC|=1, to $|BC|=|\sin x|$ i $|DE|=|\tan x|$. Między polem trójkąta $\triangle ADC$, polem wycinka koła \widehat{ADC} i polem trójkąta $\triangle ADE$ zachodzi poniższa nierówność

$$[ADC] \leq [A\widehat{DC}] \leq [ADE],$$

a więc

$$\frac{|\sin x|}{2} \le \frac{|x|}{2} \le \frac{|\tan x|}{2}$$

$$|\sin x| \le |x| \le |\tan x|$$

$$1 \le \frac{|x|}{|\sin x|} \le \frac{1}{|\cos x|}.$$

Przy x bliskim 0 możemy zapisać

$$1 \le \frac{x}{\sin x} \le \frac{1}{\cos x}$$

$$1 \ge \frac{\sin x}{x} \ge \cos x.$$

Z twierdzenia o trzech funkcjach (2.5) otrzymujemy

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Przykład 2.9

Oblicz

$$\lim_{x \to 0} \frac{\cos 3x - \cos 2x}{x^2}.$$

Rozwiązanie. Korzystając ze wzoru na różnicę cosinusów mamy

$$\lim_{x \to 0} \frac{\cos 3x - \cos 2x}{x^2} = \lim_{x \to 0} -2 \frac{\sin \frac{5x}{2} \sin \frac{x}{2}}{x^2}.$$

Na mocy twierdzenia 2.8 otrzymujemy

$$\lim_{x \to 0} -2 \frac{\sin \frac{5x}{2} \sin \frac{x}{2}}{x^2} = -2 \cdot \frac{\frac{5}{2} \cdot \frac{1}{2}}{1} \lim_{x \to 0} \frac{\sin \frac{5x}{2}}{\frac{5x}{2}} \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} = \frac{-5}{2}.$$

Michał Dobranowski

Analiza I

Twierdzenie 2.10

Zachodzi równość

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

Dowód. TODO (logarytm granicy = granica logarytmu)

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln((1+x)^{\frac{1}{x}}) = \ln\left(\lim_{x \to 0} (1+x)^{\frac{1}{x}}\right) = \ln e = 1$$

Twierdzenie 2.11

Zachodzi równość

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

dla a > 0.

 $Dow \acute{o}d.$ Skorzystamy z twierdzenia 2.10. Podstawiając $y=a^x-1$ mamy

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{y \to 0} \frac{y}{\log_a(1 + y)} = \lim_{y \to 0} \frac{y \ln a}{\ln a \log_a(1 + y)} = \lim_{y \to 0} \frac{y \ln a}{\ln(1 + y)} = \lim_{y \to 0} \frac{y \ln a}{y} = \ln a.$$

Twierdzenie 2.12

Jeśli $\lim_{x\to x_0}f(x)=\pm\infty,$ to zachodzi równość

$$\lim_{x \to x_0} \left(1 + \frac{1}{f(x)} \right)^{f(x)} = e.$$

Twierdzenie 2.13 (o granicy funkcji złożonej)

Jeśli $\lim_{x\to x_0} f(x)=y_0, \lim_{x\to y_0} g(x)=z_0$ oraz dla każdego punktu x w sąsiedztwie x_0 $f(x)\neq y_0$, to

$$\lim_{x \to x_0} g(f(x)) = z_0.$$

Dowód. TODO

Dowód. TODO

§2.1 Ciągłość funkcji

Definicja 2.14 (ciągłość funkcji w punkcie). Jeśli funkcja f jest określona w otoczeniu punktu $x_0 \in D_f$ to mówimy, że funkcja f jest ciągła w tym punkcie, jeśli

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Mówimy, że funkcja jest ciągła, jeśli jest ciągła w każdym punkcie swojej dziedziny.

Fakt 2.15. Suma, różnica, iloczyn oraz iloraz (o ile mianownik się nie zeruje) funkcji jest funkcją ciągłą.

Dowód. Wynika z arytmetyki granic funkcji.

Fakt 2.16. Wszystkie funkcje elementarne (funkcje wielomianowe, wymierne i niewymierne, logarytmiczne, trygonometryczne, cyklometryczne oraz wszystkie ich złożenia) są ciągłe w swojej dziedzinie.

Dowód. Wystarczy wykazać ciągłość funkcji: identyczności, stałej, sinus, arcus sinus oraz logarytmu i skorzystać z poprzedniego faktu. $\hfill\Box$

Twierdzenie 2.17 (o lokalnym zachowaniu znaku)

Jeśli funkcja f jest ciągła w x_0 oraz $f(x_0) \neq 0$, to istnieje takie otoczenie $U(x_0, r)$, że dla każdego $x \in U(x_0, r)$ wartość f(x) jest tego samego znaku co $f(x_0)$.

 $Dow \acute{o}d$. Z definicji Cauchy'ego (2.3).

Twierdzenie 2.18 (Darboux, o wartości pośredniej)

Każda ciągła funkcja f ma własność Darboux, to znaczy, że jeśli f(a)f(b) < 0, to istnieje takie $c \in (a, b)$, że

$$f(c) = 0.$$

Twierdzenie 2.19 (Weierstrassa, o osiąganiu kresów)

Każda funkcja f ciągła na przedziale domkniętym [a,b] ma wartość najmniejszą oraz wartość największą na tym przedziale.

§3 Pochodne

Definicja 3.1. Pochodną funkcji f nazwiemy taką funkcję f', że

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Jeśli wartość $f'(x_0)$ istnieje, to mówimy, że funkcja f jest różniczkowalna w punkcie x_0 .

Oprócz notacji Lagrange'a (f') stosuje się również notację Leibniza $(f' = \frac{df(x)}{dx})$.

Twierdzenie 3.2

Jeśli f jest różniczkowalna w punkcie x_0 , to jest w tym punkcie ciągła.

Dowód.

$$\lim_{h \to 0} (f(x_0 + h) - f(x_0)) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \cdot h = f'(x_0) \cdot h = 0$$

więc

$$\lim_{h \to 0} f(x_0 + h) = f(x_0),$$

ergo f jest ciąła w x_0 .

Pochodną funkcji w punkcie możemy interpretować jako nachylenie stycznej do wykresu funkcji w tym punkcie. Równanie takiej stycznej ma postać

$$y - f(x_0) = f'(x_0)(x - x_0)$$
(1)

TODO rysunek

Twierdzenie 3.3 (wzory pochodnych podstawowych funkcji)

Zachodzą równości:

1.
$$\frac{d}{dx}c=0$$

$$2. \ \frac{d}{dx}x^r = rx^{r-1}$$

$$3. \ \frac{d}{dx}\sin x = \cos x$$

4.
$$\frac{d}{dx}\cos x = -\sin x$$

5.
$$\frac{d}{dx} \tan x = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

6.
$$\frac{d}{dx} \cot x = -\frac{1}{\sin^2 x} = -1 - \cot^2 x$$

7.
$$\frac{d}{dx}e^x = e^x$$

8.
$$\frac{d}{dx}a^x = a^x \ln a$$

Dowód. TODO □

Twierdzenie 3.4 (o pochodnej funkcji złożonej)

$$f(g(x))' = f'(g(x)) \cdot g'(x)$$

 $Dow \acute{o}d.$

$$\frac{df(g(x))}{dx} = \frac{df(g(x))}{dg(x)} \cdot \frac{dg(x)}{dx} = f'(g(x)) \cdot g'(x)$$

Twierdzenie 3.5 (o pochodnej funkcji odwrotnej)

Dana jest bijekcja $f: U \to V$, gdzie U jest otoczeniem punktu x_0 , a V – otoczeniem $y_0 = f(x_0)$. Jeśli f jest różniczkowalna w x_0 oraz $f'(x_0) \neq 0$, to

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Dowód. TODO □

Przykład 3.6

Obliczyć pochodną funkcji arctan.

Rozwiązanie. Funkcja tan : $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \left(-\infty, \infty\right)$ jest bijekcją oraz jest różniczkowalna na całym przedziale. Ponadto, jej pochodna nigdy się nie zeruje. Mamy więc

$$\arctan'(\tan x) = \frac{1}{\tan'(x)} = \frac{1}{\frac{1}{\cos^2 x}} = \cos^2 x$$

$$\arctan'(x) = \cos^2(\arctan x)$$

$$\arctan'(x) = \frac{\cos^2(\arctan x)}{\sin^2(\arctan x)} \cdot \sin^2(\arctan x)$$

$$\arctan'(x) = \frac{1}{\tan^2(\arctan x)} \cdot (1 - \arctan'(x))$$

$$\arctan'(x) = \frac{1}{x^2} - \arctan'(x) \frac{1}{x^2}$$

$$\arctan'(x) = \frac{\frac{1}{x^2}}{1 + \frac{1}{x^2}} = \frac{1}{x^2} \cdot \frac{x^2}{x^2 + 1} = \frac{1}{x^2 + 1}$$

Twierdzenie 3.7

 $\frac{d}{dx}\ln x = \frac{1}{x}$

Dowód.

$$\frac{d}{dx}x = 1$$

$$\frac{d}{dx}e^{\ln x} = e^{\ln x}\frac{d}{dx}\ln x = 1$$

$$x\frac{d}{dx}\ln x = 1$$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

Twierdzenie 3.8 (o zerowaniu się pochodnej w punkcie, w którym funkcja przyjmuje ekstremum)

Jeśli funkcja f jest ciągła na przedziale [a,b], różniczkowalna na przedziale (a,b) oraz istnieje takie $x_0 \in (a,b)$, że

$$f(x_0) = \max_{x \in [a,b]} f(x)$$
 lub $f(x_0) = \min_{x \in [a,b]} f(x)$,

to

$$f'(x_0) = 0.$$

 $Dow \acute{o}d.$ Przypadek z minimum jest analogiczny, wykażemy tylko dla maksimum. Dla każdego $x < x_0$ mamy

$$f(x) \le f(x_0)$$

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$f'_-(x_0) \ge 0,$$

a dla każdego $x > x_0$ analogicznie

$$f'_{+}(x_0) \leq 0,$$

wiec
$$f(x_0) = 0$$
.

Twierdzenie 3.9 (Rolle'a)

Jeśli funkcja f jest ciągła na przedziale [a,b] oraz różniczkowalna na przedziale (a,b), to z

$$f(a) = f(b)$$

wynika, że istnieje takie $c \in (a, b)$, że

$$f'(c) = 0.$$

Dowód. Wynika z twierdzenia o zerowaniu się pochodnej (3.8) oraz twierdzenia Weierstrassa (2.19).

Twierdzenie 3.10 (Lagrange'a)

Jeśli funkcja f jest ciągła na przedziale [a,b] oraz różniczkowalna na przedziale (a,b), to istnieje takie $c \in (a,b)$, że

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Dowód. Niech $h(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$. Z twierdzenia Rolle'a (3.9) dla funkcji h wynika teza.

Twierdzenie 3.11 (Cauchy'ego)

Jeśli funkcje f,g są ciągłe na przedziale [a,b] oraz różniczkowalne na przedziale (a,b), to istnieje takie $c \in (a,b)$, że

$$g'(c)(f(b) - f(a)) = f'(c)(g(b) - g(a)).$$

Dowód. Niech h(x) = g(x)(f(b) - f(a)) - f(x)(g(b) - g(a)). Z twierdzenia Rolle'a (3.9) dla funkcji h wynika teza.

Twierdzenia Rolle'a, Lagrange'a oraz Cauchy'ego nazywamy **twierdzeniami o wartości średniej**.

Twierdzenie 3.12 (reguła de l'Hospitala)

Jeśli funkcje f,g są różniczkowalne w pewnym sąsiedztwie S punktu $x_0 \in \overline{\mathbb{R}}$ oraz

- 1. dla każdego $x \in S$ zachodzi $g(x) \neq 0$ oraz $g'(x) \neq 0$,
- 2. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) \in \{0, \infty, -\infty\},\$
- 3. istnieje $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$,

to prawdą jest, że

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

Dowód. TODO □

Uwaga 3.13. Warunek 3 jest bardzo ważny; gdybyśmy regułę de l'Hospitala wykorzystali do obliczenia granicy

$$\lim_{x \to \infty} \frac{x}{x + \sin x}$$

wyszłoby nam, że

$$\lim_{x \to \infty} \frac{1}{1 + \cos x}$$

nie istnieje, bo ma podciągi zbieżne do 1 i $\frac{1}{2}$. Moglibyśmy (błędnie stosując wspomianą regułę) wyciągnąć wniosek, że dana wcześniej granica również nie istnieje, co jednak jest nieprawdą, bo jest równa 1 na mocy twierdzenia o trzech funkcjach (2.5).

§3.1 Wzory Taylora i Maclaurina

Twierdzenie 3.14 (Taylora)

Jeśli funkcja f jest n-krotnie różniczkowalna na przedziale [a,b], to dla $x\in(a,b)$ zachodzi

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} + R_n(x,a),$$

gdzie

$$R_n(x,a) = \frac{f^{(n)}(c)}{n!}(x-a)^n$$

dla $c \in [a, x]$ jest nazywane **resztą Lagrange'a**.

Resztę Lagrange'a możemy również zapisać w postaci

$$R_n(x,a) = \frac{f^{(n)}(a + \theta(x-a))}{n!}(x-a)^n$$

dla $\theta \in [0,1]$.

Definicja 3.15. We wzorze Taylora (3.14), jeśli a = 0, to ten wzór nazywamy wzorem Maclaurina.

Przykład 3.16

Oblicz $\cos \frac{1}{40}$ z dokładnością do 10^{-9} .

Rozwiązanie. Skorzystamy ze wzoru Maclaurina przy $f = \cos$.

$$\cos\frac{1}{40} = \cos(0) + \frac{-\sin(0)}{1!} \left(\frac{1}{40}\right) + \dots + R_n,$$

gdzie

$$|R_n| \le 10^{-9}$$

$$\left| \frac{\cos^{(n)}(c)}{n!} \left(\frac{1}{40} \right)^n \right| \le 10^{-9}.$$

Dla n = 5 możemy oszacować

$$\left| \frac{-\sin(c)}{5!} \left(\frac{1}{40} \right)^5 \right| = \frac{\sin(c)}{5! \cdot 40^5} \le \frac{c}{120 \cdot 40^5}.$$

A skoro $c \in [0, \frac{1}{40}]$, to

$$\frac{c}{120 \cdot 40^5} \le \frac{1}{120 \cdot 40^6} = \frac{1}{12 \cdot 16^3} \cdot 10^{-7} < 10^{-9},$$

więc

$$\cos \frac{1}{40} \approx 1 + 0 + \frac{-1}{2!} \left(\frac{1}{40}\right)^2 + 0 + \frac{1}{4!} \left(\frac{1}{40}\right)^4$$
$$= 1 - \frac{1}{2 \cdot 40^2} + \frac{1}{24 \cdot 40^4}.$$

Pomagając sobie kalkulatorem można sprawdzić, że nasz błąd wynosi około $3.39 \cdot 10^{-13}$.

§A Dodatek

Twierdzenie A.1 (Nierówność Bernoulliego)

Jeżeli $x \geq -1,$ to dla każdego $\alpha \geq 1$ zachodzi nierówność

$$(1+x)^{\alpha} \ge 1 + \alpha x.$$

Równość zachodzi wtedy i tylko wtedy, gdy $\alpha=1$ lub x=0.

Twierdzenie A.2 (Nierówność między średnimi)

$$AM \ge GM \ge HM$$