3

4 5

6

7

8

9 10

1

2

3

1

3

WHAT IS CLAIMED IS:

1 1. A method for adjusting the resonant frequency of an acoustic resonator comprising the steps of:

identifying an electrode-piezoelectric stack having an off-target resonant frequency, said electrode-piezoelectric stack having conductive electrode layers; and

oxidizing at least one of said conductive electrode layers of said electrode-piezoelectric stack so as to achieve a target resonant frequency that is dissimilar from said off-target resonant frequency, including intentionally inducing oxidation by exposing said at least one conductive electrode layer to an oxidizing environment.

- 2. The method of claim 1 wherein said step of oxidizing includes thermally oxidizing said at least one conductive electrode layer of said electrode-piezoelectric stack by exposing said electrode-piezoelectric stack to an oxidation-inducing environment at an elevated temperature.
- 3. The method of claim 2 wherein said step of thermally oxidizing includes exposing a top electrode layer of said conductive electrode layers to said oxidation-inducing environment at said elevated temperature.
- The method of claim 3 wherein said step of thermally oxidizing includes exposing a top surface of said top electrode layer to said oxidation-inducing environment at said elevated temperature, said oxidizing being limited to a top region of said top electrode.
- 1 5. The method of claim 1 wherein said step of oxidizing includes providing said oxidizing environment as air.
- 1 6. The method of claim 1 wherein said step of oxidizing includes forming said oxidizing environment within a rapid thermal annealer (RTA).

8

1

2

1	7.	The method of claim 1 further comprising a step of fabricating said
2	electro	de-piezoelectric stack to be suspended over a cavity.

- 1 8. The method of claim 1 further comprising a step of fabricating said electrode-piezoelectric stack over a Bragg reflector.
- 9. A method for stabilizing a resonant frequency of a film bulk acoustic resonator (FBAR) comprising the steps of:

 providing a substrate;

 forming a bottom electrode above said substrate;

 forming a piezoelectric layer above said bottom electrode;

 forming a top electrode above said piezoelectric layer, said top

 and bottom electrodes and said piezoelectric layer being said FBAR; and
 - and bottom electrodes and said piezoelectric layer being said FBAR; and intentionally inducing oxidization of an upper portion of said top electrode by exposing said FBAR to an oxidation-inducing environment.
 - 10. The method of claim 9 wherein said step of intentionally inducing oxidation includes providing thermal oxidation at an elevated temperature that is higher than an ambient temperature.
- 1 11. The method of claim 10 wherein said step of providing thermal oxida-
- 2 tion includes establishing a temperature that is significantly above room
- 3 temperature.
- 1 12. The method of claim 10 wherein said step of providing thermal
- 2 oxidation includes elevating the temperature adjacent to said top electrode
- 3 to 215 degrees Celsius.
- 1 13. The method of claim 9 wherein said step of intentionally inducing
- 2 oxidization includes exposing said upper portion of said top electrode to air.

1

2

19.

1	14.	The method of claim 9 wherein said step of intentionally inducing		
2	oxida	oxidation includes exposing said upper portion of said top electrode within a		
3	rapid	rapid thermal annealer (RTA).		
1	15.	A film bulk acoustic resonator (FBAR) comprising:		
2		a substrate;		
3		a bottom electrode above said substrate;		
4		a piezoelectric layer above said bottom electrode; and		
5		a top electrode having an upper region above said piezoelectric		
6		layer, said upper region including metal oxide, at least a portion of said metal		
7	oxide being realized by an elevated temperature that is higher than the			
8	ambient temperature;			
9	wherein said FBAR having said portion of metal oxide has a			
10		resonant frequency that is substantially closer to a target resonant frequency		
11	than	said FBAR without said portion of metal oxide.		
1	16.	The FBAR of claim 15 wherein said top electrode has a thickness that		
2	is gre	is greater than a comparable electrode without said portion of metal oxide		
3		being realized by said elevated temperature that is higher than said ambient		
4		temperature.		
	•			
1	17.	The FBAR of claim 15 wherein said ambient temperature is room		
2	tempe	erature.		
1	18.	The FBAR of claim 15 wherein said top and bottom electrodes and		
2		iezoelectric layer form an element of an FBAR array.		
_	odia p	industrial and the ment of all I DAIX allay.		

The FBAR of claim 15 wherein said top and bottom electrodes and

said piezoelectric layer form an element of a passband filter.

- 1 20. The FBAR of claim 19 wherein said resonant frequency is compatible
- with operation in a code division multiple access (CDMA) personal communi-
- 3 cation system (PCS).