1997年计算机数学基础

三、

3. 由于 m=17,所以树上共有 18 个顶点。题目中已给出 17 个顶点的度数,故,唯一度数未知的顶点即是树根。设树根的度数为 d,则由图论基本定理知 $d+4\cdot 4+1\cdot 3+12=2m=34$,解得,d=3。因此,树根的度数为 3。

4.

证明:要证 $\lambda(G^*) \geq 2$,即要证 G^* 中无桥。由于 G 是连通图,所以 G^* 的对偶图 $G^{**} \cong G$ 。反设 G^* 中有桥 e^* ,则由对偶图的性质知,在 G^{**} 中与 e^* 对应的边 e^{**} 是环(这是因为,若 e^* 为桥,则 $G^* - e^*$ 是不连通的,因此, e^* 的两侧都是 G^* 的外部面,而外部面是唯一的,从而 e^{**} 是环),这 与 $G^{**} \cong G$ 是简单图矛盾。这就证明了 G^* 中无桥,从而有 $\lambda(G^*) > 2$ 。

由于极大平面图的每个面的次数皆为 3,所以对任意 $v_i^* \in G^*$,有 $d_{G^*}(v_i^*) = \deg(R_i) = 3$ 。 从而 G^* 是 3-正则的。

四、

- $1. \quad R=\{\langle 0,4\rangle, \langle 3,3\rangle, \langle 6,2\rangle, \langle 9,1\rangle, \langle 12,0\rangle\}, \text{ } \text{$\not M$ \overrightarrow{m} } R^2=\{\langle 3,3\rangle, \langle 12,4\rangle\}.$
- 2. 若 A 为无穷集,则 B 中无极大元和最大元, B 中的极小元集合为 $\{x \mid x \in P(A) \land |x| = 1\}$ 。 若 A 为有穷集,记 n = |A|,则 B 中极大元的集合为 $\{x \mid x \in P(A) \land |x| = n 1\}$,极小元的集合为 $\{x \mid x \in P(A) \land |x| = 1\}$, B 中无最大元。
- 3. $G(1) = \{1,2\}, G(2) = \{3\}, G(3) = \emptyset$,可见 G 是单射。但 G 不是满射(例如, $\{1\} \in \mathcal{P}(A)$ 但 $\{1\} \notin \operatorname{ran} G$),从而不是双射。 $\operatorname{ran} G = \{\emptyset, \{1,2\}, \{3\}\}$ 。

4.

证明:由理想的定义可知,I对 \lor 运算封闭。

对任意 $a,b\in I$,由 \land 运算定义有 $a\land b\in A$ 且 $a\land b\preccurlyeq a$,从而由理想的定义知, $a\land b\in I$ 。 所以 I 对 \land 运算也封闭。

5.

(1)

证明:对任意 $x, y \in G$ 有:

$$xax^{-1} = yay^{-1}$$

$$\iff ax^{-1}y = x^{-1}ya$$

 $(左乘 x^{-1}、右乘 y)$

 $\iff x^{-1}y \in N(a)$

(N(a) 定义)