Scale Mixture Of Normals (SMiN) Representation

In foreign exchange markets such as the EUR/USD, market moves are widely regarded to be symmetric in nature [tankov2003financial]. This motivates the selection of the parameter $\beta = 0$. Instead of considering the general α -stable process, we can instead restrict ourselves to a more analytically tractable sub-class, the a Symmetric α -stable (S α S) process instead.

For $\beta = 0$, we have a convenient Scale Mixture of Normals (SMiN) representation based off the product property of α -stable distributions: If X and Y are independent random variables with $\lambda_1 \sim S_{\alpha/2}(1,1,0)$ and $\lambda_2 \sim S_2(1,0,0) = \mathcal{N}(0,1)$, then $\lambda_1 \lambda_2 \sim S_{\alpha}(1,0,0)$.

We can then convert the discretised state space model specified in ?? into SMiN form as specified in Equation 1 below.

$$\underbrace{\begin{bmatrix} x_{1,t+\delta t} \\ x_{2,t+\delta_t} \end{bmatrix}}_{\mathbf{S_{t+\delta t}}} = \underbrace{\begin{bmatrix} 1 & \delta t \\ 0 & e^{\theta \delta t} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} x_{1,t} \\ x_{2,t} \end{bmatrix}}_{\mathbf{S_{t}}} + \underbrace{\begin{bmatrix} 0 \\ \sigma_{t} \sqrt{\lambda_{1,t-1}} \end{bmatrix}}_{\mathbf{b}} \lambda_{2,t}; \qquad \lambda_{2,t} \sim \mathcal{N}(0,1), \ \lambda_{1,t} \sim S_{\alpha/2}(1,1,0)$$
(1)

This means that conditional upon us observing λ_1 , λ_2 is gaussian, making inference much more tractable. We exploit this fact by designing a Rao-Blackwellised Particle Filter to sample λ_1 by using a simple particle filter, and propogating the states using a Kalman Filter conditioned upon the sampled λ_1 of the particle.

We take a short detour to properly formulate the inference problem using the SMiN representation here. In the inference problem, we are seeking to infer the state variables \mathbf{s}_t given the observations y_t . We assume model dynamics as follows:

$$\mathbf{s}_{t} = \mathbf{A}\mathbf{s}_{t-\delta t} + \mathbf{b}\sqrt{\lambda_{t}}\eta_{t}$$

$$y_{t} = \mathbf{C}\mathbf{s}_{t} + d\epsilon_{t}$$

$$\lambda_{t} \sim S_{\alpha/2}(1, 1, 0)$$

$$\eta_{t}, \epsilon_{t} \sim \mathcal{N}(0, 1)$$

$$(2)$$

It will also be useful to use the following expression for y_t :

$$y_{t} = \mathbf{CAs}_{t-\delta t} + \underbrace{\begin{bmatrix} \mathbf{Cb}\sqrt{\lambda_{t}} & d \end{bmatrix}}_{\mathbf{e}_{t}} \underbrace{\begin{bmatrix} \eta_{t} \\ \epsilon_{t} \end{bmatrix}}_{\mathbf{n}_{t}}$$

$$\mathbf{n}_{t} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\lambda_{t} \sim S_{\alpha/2}(1, 1, 0)$$
(3)

This transforms our state equation form into a (nearly?) α -stable sub-gaussian form. (This is NOT in α -stable sub-gaussian form, see: $< \alpha$ -stable sub-gaussian definition > for reference)

Generic Rao-Blackwellised Particle Filter (RBPF)

For Rao-Blackwellised Particle Filtering, we partition the state vector into gaussian and non-gaussian components. We can then use standard Kalman Filtering to obtain optimal estimates for the gaussian state components, after obtaining estimates for the non-gaussian state components.

We partition the state from Equation 1 as $\vec{s}_t = (\vec{x}_t, \lambda_t)$.

Again, detailed treatment of the Rao-Blackwellised Particle Filter is omitted, but a short summary of the recursive steps taken every time step are presented below.

Adaptive Sampling

One way of attempting to improve the performance of the RBPF is to form a better importance sampling distribution. In this section, we seek to form a better importance sampling distribution for $\pi(\lambda_t|y_{1:t},\lambda_{0:t-1})$.

For optimality, we want $\pi(\lambda_t|y_{1:t}\lambda_{0:t-1}) \approx p(\lambda_t|y_{1:t},\lambda_{0:t-1})$.

It is hard to formulate an analytical form for this density directly. To get around this, we can instead form the analytical joint distribution for $p(y_t, \lambda_t | y_{1:t-1}, \lambda_{0:t-1})$. The complete derivation is given in the appendix, with the key steps highlighted below.

We first augment the probability density given above with $x_{0:t-1}$. This allows us to use results from the previously-performed Kalman Filter step.

$$p(y_{t}.\lambda_{t}, x_{0:t-1}|y_{1:t-1}, \lambda_{0:t-1})$$

$$\propto p(y_{t}|y_{1:t-1}, \lambda_{0:t}, x_{0:t-1})p(x_{0:t-1}|y_{1:t-1}, \lambda_{0:t})p(\lambda_{t}|\lambda_{0:t-1})$$

$$\approx p(y_{t}|y_{1:t-1}, \lambda_{0:t}, x_{0:t-1})p(x_{0:t-1}|y_{1:t-1}, \lambda_{0:t-1})p(\lambda_{t}|\lambda_{0:t-1})$$

$$= \mathcal{N}(y_{t}|\mathbf{CAx}_{t-1}, \mathbf{ee}^{T})\mathcal{N}(\mathbf{x}_{0:t-1}|\mu_{k}, \mathbf{\Sigma}_{k})S_{\alpha/2}(1, 1, 0)$$

$$= \mathcal{N}\left(\begin{bmatrix} y_{t} \\ \vec{x}_{t-1} \end{bmatrix} | \begin{bmatrix} \vec{CAx}_{t-1} \end{bmatrix}, \begin{bmatrix} \vec{ee}^{T} + (\vec{CA})\vec{\Sigma}_{k}(\vec{CA})^{T} & \vec{CA}\Sigma_{k} \\ \vec{\Sigma}_{k}(\vec{CA})^{T} & \vec{\Sigma}_{k} \end{bmatrix} \right) S_{\alpha/2}(1, 1, 0)$$

We can then obtain the required density $p(y_t, \lambda_t | y_{1:t-1}, \lambda_{0:t-1})$ by marginalising out $x_{0:t-1}$.

Option 2: It is hard to formulate an analytical form for this density directly. To get around this, we can instead form the analytical joint distribution for $p(y_t, \lambda_t | y_{1:t-1}, \lambda_{0:t-1})$:

$$p(y_t, \lambda_t | y_{1:t-1}, \lambda_{0:t-1}) = \mathcal{N}(y_t | \mathbf{C} \mathbf{A} \mu_k, (\mathbf{C} \mathbf{b})(\mathbf{C} \mathbf{b})^T \lambda_t + d^2) S_{\alpha/2}(\lambda_t | 1, 1, 0)$$
(4)

By fixing the value of y_t in Equation 4, we can obtain the desired distribution $p(\lambda_t|y_{1:t}, \lambda_{0:t-1})$. In general, there is no closed form expression for this distribution.

This formulation of the joint distribution also gives us an alternative interpretation for the sampling density $p(\lambda_t|y_{1:t}, \lambda_{0:t-1})$.

We can reinterpret this as finding the posterior density of λ_t We can interpret this density as the posterior density of the variance of a normal distribution (λ_t)

However, there are a variety of methods to draw samples from this distribution.

1. Rejection Sampling

We adapt the methods of Godsill and Kuruoglu, 1999 to draw samples from this distribution.

The target distribution for the rejection sampling scheme is given by:

$$f(y_t, \lambda_t | y_{1:t-1}, \lambda_{0:t-1}) = \mathcal{N}(y_t | \mathbf{C} \mathbf{A} \mu_k, (\mathbf{C} \mathbf{b}) (\mathbf{C} \mathbf{b})^T \lambda_t + d^2) S_{\alpha/2}(\lambda_t | 1, 1, 0)$$

Option 1:

Using a proposal distribution $g(\lambda_t|y_{1:t},\lambda_{0:t-1}) = S_{\alpha/2}(1,1,0)$, we can bound the probability density from above using:

$$M \geq \frac{f(y_t, \lambda_t | y_{1:t-1}, \lambda_{0:t-1})}{g(y_t, \lambda_t | y_{1:t-1}, \lambda_{0:t-1})}$$

$$= \frac{1}{\sqrt{2\pi v_t^2}} \exp(-0.5)$$
(5)

Option 2:

Using a proposal distribution $g(\lambda_t|y_{1:t},\lambda_{0:t-1}) = S_{\alpha/2}(1,1,0)$, we can use the likelihood as a valid rejection function as it is bounded from the above:

$$\mathcal{N}(...) \geq \frac{f(y_t, \lambda_t | y_{1:t-1}, \lambda_{0:t-1})}{g(y_t, \lambda_t | y_{1:t-1}, \lambda_{0:t-1})} \\
= \frac{1}{\sqrt{2\pi v_t^2}} \exp(-0.5)$$
(6)

This gives a suitable rejection sampler as:

- (a) Draw $\lambda_t \sim S_{\alpha_2}(1,1,0)$
- (b) Draw $u \sim U\left(0, \frac{1}{\sqrt{2\pi v_t^2}} \exp(-0.5)\right)$
- (c) If $u > \mathcal{N}(....)$, reject λ_t and go to Step (a)

$$p(y_t, \lambda_t | y_{1:t-1}, \lambda_{0:t-1}) = \mathcal{N}(y_t - \mathbf{C}\mathbf{A}\mu_k | 0, \lambda_t') S_{\frac{\alpha}{2}}(\lambda_t' | (\mathbf{C}\mathbf{b})(\mathbf{C}\mathbf{b})^T, 1, \mathbf{d}\mathbf{d}^T + \mathbf{C}\mathbf{A}\boldsymbol{\Sigma}_k(\mathbf{C}\mathbf{A})^T)$$
(7)

In general, we cannot sample from Equation 7 exactly.