I_D

6.9A

International IOR Rectifier

IRF7473PbF

HEXFET® Power MOSFET

R_{DS(on)} max

 $26m\Omega@V_{GS} = 10V$

Applications

- Telecom and Data-Com 24 and 48V input DC-DC converters
- Motor Control
- Uninterrutible Power Supply

Benefits

Lead-	Free	

- Ultra Low On-Resistance
- High Speed Switching
- Low Gate Drive Current Due to Improved Gate Charge Characteristic
- Improved Avalanche Ruggedness and Dynamic dv/dt
- Fully Characterized Avalanche Voltage and Current

S III 8 ____ D S 🗆 2 6 III D G □□ 5 ____ D Top View

 V_{DSS}

100V

Typical SMPS Topologies

- Full and Half Bridge 48V input Circuit
- Forward 24V input Circuit

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	6.9	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	5.5	A
I _{DM}	Pulsed Drain Current ①	55	
P _D @T _A = 25°C	Power Dissipation	2.5	W
	Linear Derating Factor	0.02	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt ©	5.8	V/ns
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	7

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JL}$	Junction-to-Drain Lead		20	
$R_{\theta JA}$	Junction-to-Ambient ④		50	°C/W

Notes ① through ⑥ are on page 8 www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		22	26	mΩ	V _{GS} = 10V, I _D = 4.1A ③
V _{GS(th)}	Gate Threshold Voltage	3.5		5.5	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
I	Drain-to-Source Leakage Current			1.0	μA	$V_{DS} = 95V$, $V_{GS} = 0V$
IDSS	Brain to course Ecanage Carrent			250	μΛ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150$ °C
	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	I IIA	V _{GS} = -20V

Dynamic @ T_{.1} = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	10			S	$V_{DS} = 50V, I_{D} = 4.1A$
Qg	Total Gate Charge		61			I _D = 4.1A
Q _{gs}	Gate-to-Source Charge		21		nC	$V_{DS} = 50V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		19			$V_{GS} = 10V$,
t _{d(on)}	Turn-On Delay Time		24			$V_{DD} = 50V$
t _r	Rise Time		20		ns	$I_D = 4.1A$
t _{d(off)}	Turn-Off Delay Time		29			$R_G = 6.0\Omega$
t _f	Fall Time		11			V _{GS} = 10V ③
C _{iss}	Input Capacitance		3180			$V_{GS} = 0V$
Coss	Output Capacitance		230			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		120		pF	f = 1.0MHz
Coss	Output Capacitance		830			$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
Coss	Output Capacitance		150			$V_{GS} = 0V, V_{DS} = 80V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance		230			$V_{GS} = 0V$, $V_{DS} = 0V$ to $80V$ $\textcircled{5}$

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		140	mJ
I _{AR}	Avalanche Current①		4.1	А

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current (Body Diode)	_		2.3	Α	MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①			55		integral reverse p-n junction diode.	
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 4.1A$, $V_{GS} = 0V$ ③	
t _{rr}	Reverse Recovery Time		55		ns	$T_J = 25^{\circ}C, I_F = 4.1A$	
Q _{rr}	Reverse RecoveryCharge		140		nC	di/dt = 100A/µs ③	

1000

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance Vs. Drain Current

 V_{GS} Charge

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

Fig 13. On-Resistance Vs. Gate Voltage

Fig 15c. Maximum Avalanche Energy Vs. Drain Current

6

International

TOR Rectifier

IRF7473PbF

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

DIM	INC	HES	MILLIM	ETERS	
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
e1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- ① DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

International IOR Rectifier

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

- NOTES:
 1. CONTROLLING DIMENSION: MILLIMETER.
 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Notes:

8

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting T_J = 25°C, L = 16mH $R_G = 25\Omega$, $I_{AS} = 4.1A$.
- When mounted on 1 inch square copper board
- $\ensuremath{\mathbb{G}}$ C_{oss} eff. is a fixed capacitance that gives the same charging time as $C_{oss}\,\text{while}\,\,V_{DS}\,\text{is rising from 0 to 80\%}\,\,V_{DSS}$
- $\textcircled{6} \ I_{SD} \leq 4.1 A, \ di/dt \leq 210 A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\$ $T_J \le 150^{\circ}C$

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

www.irf.com

Visit us at www.irf.com for sales contact information.08/04

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.