1)

2)

$$00000000 = 0$$
 $11111111 = 255$ $01010101 = 64 + 16 + 4 + 1 = 85$ $10101010 = 128 + 32 + 8 + 2 = 170$ $10000000 = 128$ $01101111 = 127$ $11111110 = 254$ $01100110 = 64 + 32 + 4 + 2 = 102$

Parte entera Parte fraccionaria

Más chico = 000000,0000Más grande = $111111,1111 = 63 + 2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} = 63 + 0,5 + 0,25 + 0,125 + 0,0625$ = 63,9375

Resolución = distancia entre dos representaciones sucesivas (mínima) = 0.0001 = 0.0625

4)

$$3,25 = 000011,01$$

1,2 1,0011 = 1,1875 Error = 1,2 - 1,1875 = 0,0125
$$\Rightarrow$$
 Error = 1,25 - 1,2 = 0,05

El error más pequeño es 0,0125 entonces 1,1875 es la representación más cercana a 1,2.

2,001
$$\longrightarrow$$
 000010,0000 = 2,0 Error = 2,001 - 2,0 = 0,001 \Longrightarrow Error = 2,0625 - 2,001 = 0,0615

El error más pequeño es 0,001 entonces 2,0 es la representación más cercana a 2,001.

La representación es exacta, error = 0.

$$62,0625$$
 Error = $62,0625 - 62,0625 = 0$

La representación es exacta, error = 0.

5)

$$010000,0000 = 16,0$$

$$111111.1111 = 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} = 63.9375$$

$$010101,0101 = 2^4 + 2^2 + 2^0 + 2^{-2} + 2^{-4} = 16 + 4 + 1 + 0,25 + 0,0625 = 21,3125$$

$$101010,1010 = 2^5 + 2^3 + 2^1 + 2^{-1} + 2^{-3} = 32 + 8 + 2 + 0,5 + 0,125 = 42,625$$

$$100000,0000 = 2^5 = 32$$

$$011111,1111 = 2^4 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} = 31,9375$$

$$011001,1000 = 2^4 + 2^3 + 2^0 + 2^{-1} = 16 + 8 + 1 + 0,5 = 25,5$$

6)

7)

7) Sumas

Ca2	BSS
29 + 27 = 56	29 + 27 = 56
- 99 + 114 = 15	157 + 114 = 15 X
118 + 113 = -25 X	118 + 113 = 231
- 71 + (-29) = - 100	185 + 227 = 156 X
58 + 15 = 73	58 + 15 = 73
112 + (-15) = 97	112 + 241 = 97 X

76 + 112 = - 68 X	76 + 112 = 188
- 52 + (-16) = -68	204 + 240 = 188 X
-128 + (-128) = 0 X	128 + 128 = 0 X
0 + (-128) = -128	0 + 128 = 128

Restas

Ca2	BSS
29 - 27 = 2	29 - 27 = 2
-99 - 114 = 43 X	157 - 114 = 43
118 - 113 = 5	118 - 113 = 5
- 71 – (-29) = - 42	185 - 227 = 214 X
56 - 15 = 43	56 - 15 = 43
112 - (-15) = 127	112 - 241 = 127 X
76 - 112 = -36	76 - 112 = 220 X
- 52 – (-16) = -36	204 - 240 = 220 X
-128 - (-128) = 0	128 - 128 = 0
0 - (-128) = -128 X	0 - 128 = 128 X

8) 9)

Cada vez que hay V (overflow) es incorrecto el resultado en Ca2.

Cada vez que hay C (carry en la suma y borrow en la resta), es incorrecto el resultado es BSS.

En los resultados marcados con X hay condición de V ó C según corresponda.

10)

La cuenta y los flags son iguales al ej. anterior. Cambia el rango y resolución, no la cantidad de números distintos representables

11)

Resolución =
$$000,1 = 0,5$$
 - Números distintos = $2^4 = 16$ separados $0,5$ $0 - 0,5 - 1 - 1,5 - 2 - 2,5 - 3 - 3,5 - 4 - 4,5 - 5 - 5,5 - 6 - 6,5 - 7 - 7,5$

Resolución = 00.01 = 0.25 - Números distintos = $2^4 = 16$ separados 0.25 0 - 0.25 - 0.5 - 0.75 - 1 - 1.25 - 1.5 - 1.75 - 2 - 2.25 - 2.5 - 2.75 - 3 - 3.25 - 3.5 - 3.75

Resolución = 0.001 = 0.125 - Números distintos = $2^4 = 16$ separados 0.125 0 - 0.125 - 0.25 - 0.375 - 0.5 - 0.625 - 0.75 - 0.875 - 1 - 1.125 - 1.25 - 1.375 - 1.5 - 1.5 - 1.625 - 1.75 - 1.875

12)

BCD desempaquetado

```
0 = 11110000 = F0

1 = 11110001 = F1

9 = 11111001 = F9

20 = 11110010 11110000 = F2F0

34 = 11110011 11110100 = F3F4

99 = 11111001 11111001 = F9F9
```

 $10 = 11110001 \ 11110000 = F1F0$ $100 = 11110001 \ 11110000 \ 11110000 = F1F0F0$

 $11 = 11110001 \ 111110001 = F1F1$

1220 = 11110001 11110010 11110010 11110000 = F1F2F2F0

BCD empaquetado

$$0 = 00000000 = 00$$
 $20 = 00100000 = 20$
 $1 = 00000001 = 01$ $34 = 00110100 = 34$
 $9 = 00001001 = 09$ $99 = 10011001 = 99$
 $10 = 00010000 = 10$ $100 = 00000001 00000000 = 1000$
 $1220 = 00010010 00100000 = 1220$

Suma en BCD

$$\begin{array}{c} + \begin{array}{c} 20 \\ 34 \\ \hline 54 \end{array} \\ \end{array} \begin{array}{c} + \begin{array}{c} 0010 \ 0000 \\ 0011 \ 0100 \\ \hline \end{array} \\ \hline 5 \end{array} \begin{array}{c} 4 \end{array}$$
