

101534858
CT/JP03/14547

10.12.03

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日
Date of Application: 2003年11月 4日

出願番号
Application Number: 特願 2003-374517

[ST. 10/C]: [JP 2003-374517]

出願人
Applicant(s): 新日本製鐵株式会社

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2003年11月20日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

BEST AVAILABLE COPY

出証番号 出証特 2003-3096223

【書類名】 特許願
【整理番号】 1034699
【提出日】 平成15年11月 4日
【あて先】 特許庁長官 今井 康夫 殿
【国際特許分類】 C22C 38/00
【発明者】
 【住所又は居所】 北海道室蘭市仲町12番地 新日本製鐵株式会社 室蘭製鐵所内
 【氏名】 橋村 雅之
【発明者】
 【住所又は居所】 北海道室蘭市仲町12番地 新日本製鐵株式会社 室蘭製鐵所内
 【氏名】 水野 淳
【発明者】
 【住所又は居所】 北海道室蘭市仲町12番地 新日本製鐵株式会社 室蘭製鐵所内
 【氏名】 磯部 浩一
【発明者】
 【住所又は居所】 東京都千代田区大手町2-6-3 新日本製鐵株式会社内
 【氏名】 内藤 賢一郎
【発明者】
 【住所又は居所】 東京都千代田区大手町2-6-3 新日本製鐵株式会社内
 【氏名】 萩原 博
【特許出願人】
 【識別番号】 000006655
 【氏名又は名称】 新日本製鐵株式会社
【代理人】
 【識別番号】 100077517
 【弁理士】
 【氏名又は名称】 石田 敬
 【電話番号】 03-5470-1900
【選任した代理人】
 【識別番号】 100092624
 【弁理士】
 【氏名又は名称】 鶴田 準一
【選任した代理人】
 【識別番号】 100113918
 【弁理士】
 【氏名又は名称】 亀松 宏
【選任した代理人】
 【識別番号】 100082898
 【弁理士】
 【氏名又は名称】 西山 雅也
【先の出願に基づく優先権主張】
 【出願番号】 特願2002-332665
 【出願日】 平成14年11月15日
【手数料の表示】
 【予納台帳番号】 036135
 【納付金額】 21,000円
【提出物件の目録】
 【物件名】 特許請求の範囲 1
 【物件名】 明細書 1
 【物件名】 図面 1

【物件名】 要約書 1
【包括委任状番号】 0018106

【書類名】特許請求の範囲**【請求項1】**

質量%で、C:0.005~0.2%、S:0.5~1.0%、B:0.005超~0.05%を含み、かつMn/S:1.2~2.8で、ミクロ組織においてパーライト面積率が5%以下であることを特徴とする被削性に優れる鋼。

【請求項2】

C:0.005~0.2%、
Si:0.001~0.5%、
Mn:0.5~3.0%、
P:0.001~0.2%、
S:0.5~1.0%、
B:0.005超~0.05%、
total-N:0.002~0.02%、
total-O:0.0005~0.035%

を含有し、残部がFeおよび不可避的不純物よりなることを特徴とする被削性に優れる鋼。

【請求項3】

前記鋼が、ミクロ組織においてパーライト面積率が5%以下であることを特徴とする請求項2記載の被削性に優れる鋼。

【請求項4】

前記鋼において、質量%で、鋼中のMnとSの比Mn/S:1.2~2.8であることを特徴とする請求項2または3記載の被削性に優れる鋼。

【請求項5】

前記鋼が、質量%で、さらに、V:0.05~1.0%、Nb:0.005~0.2%、Cr:0.01~2.0%、Mo:0.05~1.0%、W:0.05~1.0%の1種または2種以上を含有することを特徴とする請求項1~4のいずれかの項に記載の被削性に優れる鋼。

【請求項6】

前記鋼が、質量%で、さらに、Ni:0.05~2.0%、Cu:0.01~2.0%の1種または2種を含有することを特徴とする請求項1~5のいずれかの項に記載の被削性に優れる鋼。

【請求項7】

前記鋼が、質量%で、さらに、Sn:0.005~2.0%、Zn:0.0005~0.5%の1種または2種を含有することを特徴とする請求項1~6のいずれかの項に記載の被削性に優れる鋼。

【請求項8】

前記鋼が、質量%で、さらに、Ti:0.0005~0.1%、Ca:0.0002~0.005%、Zr:0.0005~0.1%、Mg:0.0003~0.005%の1種または2種以上を含有することを特徴とする請求項1~7のいずれかの項に記載の被削性に優れる鋼。

【請求項9】

前記鋼が、質量%で、さらに、Te:0.0003~0.05%、Bi:0.005~0.5%、Pb:0.01~0.5%の1種または2種以上を含有することを特徴とする請求項1~8のいずれかの項に記載の被削性に優れる鋼。

【請求項10】

前記鋼において、Al:0.015%以下に制限することを特徴とする請求項1~9のいずれかの項に記載の被削性に優れる鋼。

【書類名】明細書

【発明の名称】被削性に優れる鋼

【技術分野】

【0001】

本発明は、自動車や一般機械などに用いられる鋼に関するもので、特に切削時の工具寿命と切削表面粗さおよび切り屑処理性に優れた被削性に優れた鋼に関する。

【背景技術】

【0002】

一般機械や自動車は多種の部品を組み合わせて製造されているが、その部品は要求精度と製造効率の観点から、多くの場合、切削工程を経て製造されている。その際、コスト低減と生産能率の向上が求められ、鋼にも被削性の向上が求められている。特に従来SUM23やSUM24Lは被削性を重視して開発されてきた。これまで被削性を向上させるためにS, Pbなどの被削性向上元素を添加するのが有効であることが知られている。しかし需要家によってはPbは環境負荷として使用を避ける場合も有り、その使用量を低減する方向にある。

【0003】

これまでもPbを添加しない場合にはSのようにMnSのような切削環境下で軟質となる介在物を形成して被削性を向上させる手法が使われている。しかしわゆる低炭鉛快削鋼SUM24Lには低炭硫黄快削鋼SUM23と同量のSが添加されている。従って従来以上のS量を添加する必要がある。しかし、多量のS添加ではMnSを単に粗大にするだけで、被削性向上に有効なMnS分布にならないだけでなく、圧延、鍛造等において破壊起点になって圧延疵等の製造上の問題を多く引き起こす。さらに、SUM23をベースとする硫黄快削鋼では構成刃先が付着しやすく、構成刃先の脱落および切り屑分離現象に伴う、切削表面に凹凸が生じ、表面粗さが劣化する。従って、被削性の観点からも表面粗さが劣化による精度低下が問題である。切り屑処理性においても、切り屑が短く分断しやすい方が良好とされているが、単なるS添加だけではマトリックスの延性が大きいため、十分に分断されず、大きく改善できなかった。

【0004】

さらにS以外の元素、Te, Bi, P等も被削性向上元素として知られているが、ある程度被削性を向上させることができても、圧延や熱間鍛造時に割れを生じ易くなるため、極力少ないとされる。 (例えば、特許文献1、特許文献2、特許文献3、特許文献4参照。)。

【0005】

【特許文献1】特開平9-71840号公報

【特許文献2】特願2000-160284号公報

【発明の開示】

【発明が解決しようとする課題】

【0006】

本発明は、圧延や熱間鍛造における不具合を避けつつ工具寿命と表面粗さの両者を改善し、従来の低炭鉛快削鋼と同等以上の被削性を有する鋼を提供する。

【課題を解決するための手段】

【0007】

切削は切り屑を分離する破壊現象であり、それを促進させることが一つのポイントとなる。この効果はSを単純に增量するだけでは限界がある。本発明者らは、Sを增量するだけでなく、マトリックスを脆化させることで破壊を容易にして工具寿命を延長するとともに切削表面の凹凸を抑制することで被削性が向上することを知見した。

【0008】

本発明は上記知見に基づいてなされたもので、その要旨は次のとおりである。

【0009】

(1) 質量%で、C:0.005~0.2%、S:0.5~1.0%、B:0.005

超～0.05%を含み、かつMn/S : 1.2～2.8で、ミクロ組織においてパーライト面積率が5%以下であることを特徴とする被削性に優れる鋼。

【0010】

(2) C : 0.005～0.2%、Si : 0.001～0.5%、Mn : 0.5～3.0%、P : 0.001～0.2%、S : 0.5～1.0%、B : 0.005超～0.05%、total-N : 0.002～0.02%、total-O : 0.0005～0.035%を含有し、残部がFeおよび不可避的不純物よりなることを特徴とする被削性に優れる鋼。

【0011】

(3) 前記鋼が、ミクロ組織においてパーライト面積率が5%以下であることを特徴とする(2)記載の被削性に優れる鋼。

【0012】

(4) 前記鋼において、質量%で、鋼中のMnとSの比Mn/S : 1.2～2.8であることを特徴とする(2)または(3)記載の被削性に優れる鋼。

【0013】

(5) 前記鋼が、質量%で、さらに、V : 0.05～1.0%、Nb : 0.005～0.2%、Cr : 0.01～2.0%、Mo : 0.05～1.0%、W : 0.05～1.0%の1種または2種以上を含有することを特徴とする(1)～(4)のいずれかの項に記載の被削性に優れる鋼。

【0014】

(6) 前記鋼が、質量%で、さらに、Ni : 0.05～2.0%、Cu : 0.01～2.0%の1種または2種を含有することを特徴とする(1)～(5)のいずれかの項に記載の被削性に優れる鋼。

【0015】

(7) 前記鋼が、質量%で、さらに、Sn : 0.005～2.0%、Zn : 0.005～0.5%の1種または2種を含有することを特徴とする(1)～(6)のいずれかの項に記載の被削性に優れる鋼。

【0016】

(8) 前記鋼が、質量%で、さらに、Ti : 0.0005～0.1%、Ca : 0.002～0.005%、Zr : 0.0005～0.1%、Mg : 0.0003～0.005%の1種または2種以上を含有することを特徴とする(1)～(7)のいずれかの項に記載の被削性に優れる鋼。

【0017】

(9) 前記鋼が、質量%で、さらに、Te : 0.0003～0.05%、Bi : 0.005～0.5%、Pb : 0.01～0.5%の1種または2種以上を含有することを特徴とする(1)～(8)のいずれかの項に記載の被削性に優れる鋼。

【0018】

(10) 前記鋼において、Al : 0.015%以下に制限することを特徴とする(1)～(9)のいずれかの項に記載の被削性に優れる鋼。

【発明の効果】

【0019】

以上説明したように、本発明は切削時の工具寿命と切削表面粗さ、および切り屑処理性に優れた特性を有するため自動車用部材、一般機械用部材に用いることが可能となる。

【発明を実施するための最良の形態】

【0020】

本発明は、鉛を添加することなく、十分な被削性、特に良好な表面粗さを得るためにマトリックスを脆化させるとともに、工具/被削材の接触面の潤滑を良好にするため、Bを多量に添加することを特徴としている。さらにS量も比較的多量に添加し、それらを微細分散させるためMnとSの添加量の比率を精密に制御する。また、鋼のミクロ組織に関しても、従来の炭素鋼で見られるパーライトを制御した。すなわち化学成分ではC添加量を

抑制し、粗大なパーライトの析出を抑制し、あるいはCを多く含む場合には熱処理により粗大なパーライト粒の生成を抑制する、すなわち自然放冷でよく見られるパーライトバンドを抑制した被削性に優れた鋼である。

【0021】

次に、本発明で規定する鋼成分の限定理由について説明する。

【0022】

Cは、鋼材の基本強度と鋼中の酸素量に関係するので被削性に大きな影響を及ぼす。Cを多く添加して強度を高めると被削性を低下させるのでその上限を0.2%とした。一方、被削性を低下させる硬質酸化物生成を防止しつつ、凝固過程でのピンホール等の高温での固溶酸素の弊害を抑制するため、酸素量を適量に制御する必要がある。単純に吹鍊によってC量を低減させすぎるとコストがかさむだけでなく、鋼中酸素量が多量に残留してピンホール等の不具合の原因となる。従ってピンホール等の不具合を容易に防止できるC量0.005%を下限とした。C量の好ましい下限は0.05%である。

【0023】

Siの過度な添加は硬質酸化物を生じて被削性を低下させるが、適度な添加は酸化物を軟質化させ、被削性を低下させない。その上限は0.5%であり、それ以上では硬質酸化物を生じる。0.001%以下では酸化物の軟質化が困難になるとともに工業的にはコストがかかる。

【0024】

Mnは、鋼中硫黄をMnSとして固定・分散させるために必要である。また鋼中酸化物を軟質化させ、酸化物を無害化させるために必要である。その効果は添加するS量にも依存するが、0.5%以下では添加SをMnSとして十分に固定できず、SがFeSとなり脆くなる。Mn量が大きくなると素地の硬さが大きくなり被削性や冷間加工性が低下するので、3.0%を上限とした。

【0025】

Pは、鋼中において素地の硬さが大きくなり、冷間加工性だけでなく、熱間加工性や铸造特性が低下するので、その上限を0.2%にしなければならない。一方、被削性向上に効果がある元素で下限値を0.001%とした。

【0026】

Sは、Mnと結合してMnS介在物として存在する。MnSは被削性を向上させるが、伸延したMnSは鍛造時の異方性を生じる原因の一つである。大きなMnSは避けるべきであるが、被削性向上の観点からは多量の添加が好ましい。従ってMnSを微細分散させることが好ましい。Pbを添加しない場合の従来の硫黄快削鋼以上の被削性の向上には0.5%以上の添加が必要である。一方、1%を越えると粗大MnSの生成が避けられないだけでなく、FeS等による铸造特性、熱間変性特性の劣化から製造中に割れを生じるので、これを上限とした。

【0027】

Bは、BNとして析出すると被削性向上に効果がある。これらの効果は0.005%以下では顕著でなく、0.05%を超えて添加してもその効果が飽和し、BNが多く析出しきるとかえって铸造特性、熱間変性特性の劣化から製造中に割れを生じる。そこで0.005超~0.05%を範囲とした。

【0028】

N(totai-N)は、固溶Nの場合、鋼を硬化させる。特に切削においては動的ひずみ時効によって刃先近傍で硬化し、工具の寿命を低下させるが、切削表面粗さを改善する効果もある。また、Bと結びついてBNを生成して被削性を向上させる。0.002%以下では固溶窒素による表面粗さ向上効果やBNによる被削性改善効果が認められないで、これを下限とした。また0.02%を越えると固溶窒素が多量に存在するためかえって工具寿命を低下させる。また铸造途中に気泡を生成し、疵などの原因となる。従って本発明ではこれらの弊害が顕著になる0.02%を上限とした。

【0029】

O (total-O) は、フリーで存在する場合には冷却時に気泡となり、ピンホールの原因となる。また、酸化物を軟質化し、被削性に有害な硬質酸化物を抑制するためにも制御が必要である。さらに、MnS の微細分散させる際に析出核として酸化物を利用する。0.0005%未満では十分に MnS を微細分散させることができず、粗大な MnS を生じ、機械的性質にも悪影響を及ぼすので 0.0005% を下限とした。さらに酸素量 0.035% を越えると鋳造中に気泡となりピンホールとなるため、その上限を 0.035% 以下とした。

【0030】

次にパーライト面積率を 5% 以下とする理由を説明する。一般に炭素を含む鋼を変態点以上の温度から冷却すると、フェライト・パーライト組織となる。本発明の対象となる C 量の比較的小ない鋼の場合、変態点 (A₃ 点) 以上の温度から空冷後、切り出してその内部を鏡面研磨してナイタールでエッチングすると、図 1 のようなミクロ組織を観察することができる。黒い粒がパーライトと呼ばれるフェライトとセメンタイトの複合組織であるが、通常、このようにナイタールによって黒く見える粒は白く見えるフェライト粒よりも硬質であり、鋼の変形／破断挙動において局部的にフェライト粒とは異なる挙動を示す。このことは切削において切りくずの破断挙動において、均一変形／破断を阻害するため、構成刃先の生成に大きく関与し、さらには切削面の表面粗さを劣化させる。従って、C に起因する組織的不均一を極力排除することが重要である。そこでナイタールでエッチングされる黒い粒をパーライト粒とみなし、このパーライト粒が多すぎると組織不均一を引き起こし、表面粗さ劣化の原因になるのでその面積率を 5% 以下に制限した。図 4 にパーライト面積率と表面粗さの関係を示した。

【0031】

ここで測定方法の詳細に関して述べる。圧延または鍛造後の鋼の長手方向断面 (L 断面) に切断、樹脂埋め込みサンプルを鏡面研磨し、ナイタールエッチングした。ナイタールにて黒色にエッチングされた物の内、灰色の MnS を除いた粒径 (円相当径) 1 μm 以上の粒を画像処理装置で解析し、その面積率を求めた。面積率測定の画像処理時に、黒色に見えるパーライトに合わせた“しきい値”設定で画像濃淡を合わせ、グレーに見える介在物 (MnS 等) を画面上から消すことで、パーライトのみを測定対象とした。この時の認識最小パーライトは約 1 μm であるが、1 μm 未満のパーライトは被削性に影響を及ぼさないので、認識されなくても影響はない。

【0032】

本発明での、測定視野は、1 視野 0.2 mm² (0.4 mm × 0.5 mm) を 400 倍以上の倍率で 20 視野測定し、計 4 mm² の面積について、パーライト面積率を算出した。

【0033】

Mn/S に関してはすでに熱間延性に大きく影響し、通常、Mn/S > 3 でなければ製造性を大きく低下させることができている。その原因是 FeS の生成であるが、本発明においては、低 C、かつ高 S の領域ではその比率をさらに Mn/S : 1.2 ~ 2.8 まで低下させることができることを見出した。Mn/S : 1.2 以下では FeS が多く生成し、熱間延性を極端に低下させ、製造性を大きく低下させる。

【0034】

図 2 に Mn/S ≤ 2.8 と Mn/S > 2.8 の場合の微細な MnS をレプリカ法を用い、透過型電子顕微鏡にて観察した例を示す。Mn/S > 2.8 の場合には図 2 (b) に示すような粗大な MnS のみとなり、表面粗さを小さくすることができない。一方、Mn/S : 1.2 ~ 2.8 と規制した場合には図 2 (a) に示すような微細な MnS の生成が得られる。

【0035】

この微細な MnS は連続鋳造やインゴットによる鋳造後、900°C 以上の加熱を繰り返すことにより、個数を増加させることができる。

【0036】

なお、MnS とは、純粋な MnS のみならず、MnS を主体に含み、Fe, Ca, Ti

Zr, Mg, REM等の硫化物がMnSと固溶したり結合して共存している介在物や、MnTeのようにS以外の元素がMnと化合物を形成してMnSと固溶・結合して共存している介在物や、酸化物を核として析出した上記介在物が含まれるものであり、化学式では、(Mn, X)(S, Y)（ここで、X:Mn以外の硫化物形成元素、Y:S以外でMnと結合する元素）として表記できるMn硫化物系介在物を総称して言うものである。

【0037】

次に、本発明においては、上述した成分に加え、V, Nb, Cr, Mo, W, Ni, Sn, Zn, Ti, Ca, Zr, Mg, Te, Bi, Pbの1種または2種以上を必要に応じて添加することができる。

【0038】

Vは、炭窒化物を形成し、二次析出硬化により鋼を強化することができる。0.05%以下では高強度化に効果はなく、1.0%を超えて添加すると多くの炭窒化物を析出し、かえって機械的性質を損なうので、これを上限とした。

【0039】

Nbも炭窒化物を形成し、二次析出硬化により鋼を強化することができる。0.005%以下では高強度化に効果はなく、0.2%を超えて添加すると多くの炭窒化物を析出し、かえって機械的性質を損なうので、これを上限とした。

【0040】

Crは、焼入れ性向上、焼戻し軟化抵抗付与元素である。そのため高強度化が必要な鋼には添加される。その場合、0.01%以上の添加を必要とする。しかし多量に添加するとCr炭化物を生成し脆化させるため、2.0%を上限とした。

【0041】

Moは、焼戻し軟化抵抗を付与とともに、焼入れ性を向上させる元素である。0.05%未満ではその効果が認められず、1.0%を超えて添加してもその効果が飽和しているので、0.05%~1.0%を添加範囲とした。

【0042】

Wは、炭化物を形成し、二次析出硬化により鋼を強化することができる。0.05%以下では高強度化に効果はなく、1.0%を超えて添加すると多くの炭化物が析出し、かえって機械的性質を損うのでこれを上限とした。

【0043】

Niは、フェライトを強化し、延性を延性向上させるとともに焼入れ性向上、耐食性向上にも有効である。0.05%未満ではその効果は認められず、2.0%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。

【0044】

Cuはフェライトを強化し、焼入れ性向上、耐食性向上にも有効である。0.01%未満で、その効果は認められず、2.0%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。特に熱間延性を低下させ、圧延時の疵の原因となりやすいので、Niと一緒に添加することが好ましい。

【0045】

Snはフェライトを脆化させ、工具寿命を延ばすとともに、表面粗さ向上に効果がある。0.005%未満ではその効果は認められず、2.0%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。

【0046】

Znはフェライトを脆化させ、工具寿命を延ばすとともに、表面粗さ向上に効果がある。0.0005%未満ではその効果は認められず、0.5%を超えて添加しても、機械的性質の点では効果が飽和するので、これを上限とした。

【0047】

Tiも炭窒化物を形成し、鋼を強化する。また脱酸元素もあり、軟質酸化物を形成させることで被削性を向上させることが可能である。0.0005%以下ではその効果が認められず、0.1%を超えて添加してもその効果が飽和する。またTiは高温でも窒化物

となりオーステナイト粒の成長を抑制する。そこで上限を0.1%とした。尚、TiはNと化合してTiNを形成するが、TiNは硬質物質で被削性を低下させる。また被削性向上に有効なBNを造るのに必要なN量を低減させる。そのためTi添加量は0.010%以下が好ましい。

【0048】

Caは、脱酸元素であり、軟質酸化物を生成し、被削性を向上させるだけでなく、MnSに固溶してその変形能を低下させ、圧延や熱間鍛造してもMnS形状の伸延を抑制する働きがある。したがって異方性の低減に有効な元素である。0.0002%未満ではその効果は顕著ではなく、0.005%以上添加しても歩留まりが極端に悪くなるばかりでなく、硬質のCaOを大量に生成し、かえって被削性を低下させる。従って添加範囲を0.0002~0.005%と規定した。

【0049】

Zrは、脱酸元素であり、酸化物を生成する。酸化物はMnSの析出核になりMnSの微細均一分散に効果がある。またMnSに固溶してその変形能を低下させ、圧延や熱間鍛造してもMnS形状の伸延を抑制する働きがある。したがって異方性の低減に有効な元素である。0.0005%未満ではその効果は顕著ではなく、0.1%以上添加しても歩留まりが極端に悪くなるばかりでなく、硬質のZrO₂やZrSなどを大量に生成し、かえって被削性を低下させる。従って添加範囲を0.0005~0.1%と規定した。なお、MnSの微細分散を図る場合には、ZrとCaとの複合添加が好ましい。

【0050】

Mgは、脱酸元素であり、酸化物を生成する。酸化物はMnSの析出核になりMnSの微細均一分散に効果があり、異方性の低減に有効な元素である。0.0003%未満ではその効果は顕著ではなく、0.005%以上添加しても歩留まりが極端に悪くなるばかりで効果は飽和する。従って添加範囲を0.0003~0.005%と規定した。

【0051】

Teは、被削性向上元素である。またMnTeを生成したり、MnSと共に存することでMnSの変形能を低下させてMnS形状の伸延を抑制する働きがある。したがって異方性の低減に有効な元素である。この効果は0.0003%未満では認められず、0.05%を超えると効果が飽和する。

【0052】

BiおよびPbは、被削性向上に効果のある元素である。その効果は0.005%以下では認められず、0.5%を超えて添加しても被削性向上効果が飽和するだけでなく、熱間鍛造特性が低下して疵の原因となりやすい。

【0053】

Alは、脱酸元素で鋼中ではAl₂O₃やAlNを形成する。しかし、Al₂O₃は硬質なので切削時に工具損傷の原因となり、摩耗を促進させる。そこでAl₂O₃を多量に生成しない0.015%以下に制限した。特に工具寿命を優先させる場合には0.005%以下が好ましい。

【実施例1】

【0054】

本発明の効果を実施例によって説明する。表1、表2（表1のつづき1）、表3（表1のつづき2）、表4（表1のつづき3）、表5（表1のつづき4）、表6（表1のつづき5）に示す供試材のうち、No.13は270t転炉で、その他は2t真空溶解炉で溶製後、ビレットに分解圧延、さらにφ60mmに圧延した。

【0055】

表の熱処理の項において、焼準と記された実施例は920℃で10min以上保持し、空冷したものである。QTと記された発明例は920℃から圧延ライン後端の水槽に投入性急冷後、焼鈍にて700℃で1時間以上保持した。これによりパーライト面積率を調整した。発明例でもC量が低いものは焼準でもパーライト面積率を低減することができる。

【0056】

表1～表6の実施例1～86に示す材料の被削性評価はドリル穿孔試験で表7に切削条件を示す。累積穴深さ1000mmまで切削可能な最高の切削速度（いわゆるVL1000、単位はm/min）で被削性を評価した。

【0057】

さらに切削における表面品質を示す切削表面粗さを評価した。その切削条件を表8に、その評価方法（以後、プランジ切削試験と記す）の概要を図3に示す。プランジ切削試験では工具は短時間切削を繰り返す。一回の切削で工具は被削材長手方向に動かず、回転している被削材中心に向かって動くため、短時間の切削後、工具は引き抜かれるが、その形状は基本的には工具は刃先形状が被削材表面に転写される。構造刃先の付着や工具の磨耗損傷によりこの転写された切削面の表面粗さは影響を受ける。この表面粗さを表面粗さ計で測定した。10点表面粗さRz(μm)を表面粗さを示す指標とした。

【0058】

発明例1～75はいずれも比較例76～86に対してドリル工具寿命に優れるとともに、プランジ切削における表面粗さが良好であった。これはBによってフェライトが局部的に脆化され、表面創成がスムーズに行われたために良好な表面粗さを得られたと考えられる。

【0059】

これらの表面粗さの改善効果はSが0.5%超の場合に顕著であるが、S量がそれより少ない場合でも切りくず処理性に効果が見られた。

【0060】

さらにMnとSの比率が従来鋼によく見られる3程度でも効果が認められるが、Mn/Sを小さくすると、より工具寿命が向上するとともに、表面粗さも向上する。この原因はB多量添加の環境下では微細なMnSがフェライト中にも微細分散し、潤滑効果と脆化効果の両面に有効に機能するためと考えられる。ただし実施例85のようにMn/Sが小さすぎるとFeSが生成するため、圧延割れを生じる。本発明に関する評価では実施例85は圧延割れのため、被削性等の評価が全くできなかったので、表中にはその評価結果を表記しなかった。

【0061】

C量を若干変更した場合（表1～表6、実施例37～75）でもBを大量に添加すること、さらに、パーライト面積率を制御することで良好な工具寿命と切削表面粗さを得ることができた。

【0062】

なお、切り屑処理性に関しては切り屑のカール時の曲率が小さいもの、あるいは分断されているものが好ましい。そこで切り屑が20mmを超えた曲率半径で3巻き以上連続してカールして長く伸びた切り屑を不良とした。巻数が多くとも曲率半径が小さいもの、あるいは曲率半径が大きくとも切り屑長さが100mmに達しなかったものは良好とした。

【0063】

【表1】

実験 区分	C	Si	Mn	P	S	B	化 學 成 分 mass%						
							V	Ni	Cr	Nb	Mo	W	Sn
1 契明例	0.023	0.004	1.69	0.072	0.52	0.0080	0.0079	0.0187					
2 契明例	0.011	0.015	2.05	0.077	0.72	0.0067	0.0061	0.0174					
3 契明例	0.055	0.008	1.64	0.078	0.55	0.0094	0.0098	0.0202					
4 契明例	0.058	0.013	2.36	0.077	0.75	0.0098	0.0102	0.0152					
5 契明例	0.101	0.009	1.62	0.080	0.52	0.0062	0.0055	0.0153					
6 契明例	0.090	0.009	2.14	0.088	0.75	0.0110	0.0117	0.0206					
7 契明例	0.118	0.005	1.71	0.016	0.53	0.0050	0.0040	0.0164					
8 契明例	0.117	0.007	2.10	0.019	0.73	0.0109	0.0116	0.0175					
9 契明例	0.167	0.004	1.70	0.083	0.55	0.0089	0.0090	0.0200					
10 契明例	0.174	0.007	2.19	0.072	0.75	0.0116	0.0126	0.0200					
11 契明例	0.065	0.009	1.66	0.089	0.52	0.0129	0.0142	0.0166					
12 契明例	0.055	0.004	1.70	0.074	0.58	0.0130	0.0143	0.0171					
13 契明例	0.057	0.012	1.75	0.078	0.57	0.0133	0.0147	0.0169					
14 契明例	0.058	0.013	1.84	0.084	0.59	0.0127	0.0139	0.0056					
15 契明例	0.057	0.004	1.76	0.078	0.56	0.0052	0.0042	0.0157	0.11				
16 契明例	0.053	0.004	1.70	0.078	0.60	0.0094	0.0096	0.0155	0.032				
17 契明例	0.055	0.013	1.72	0.083	0.55	0.0131	0.0146	0.0207	0.34				
18 契明例	0.050	0.014	1.91	0.078	0.58	0.0105	0.0111	0.0174		0.21			
19 契明例	0.055	0.010	1.68	0.089	0.56	0.0051	0.0042	0.0196		0.11	0.48		
20 契明例	0.057	0.013	1.49	0.082	0.51	0.0128	0.0141	0.0182		0.21			
21 契明例	0.057	0.010	1.77	0.072	0.58	0.0053	0.0043	0.0164		0.36			
22 契明例	0.050	0.005	1.75	0.087	0.54	0.0069	0.0064	0.0153		0.0040			
23 契明例	0.054	0.012	1.57	0.080	0.53	0.0099	0.0104	0.0079					
24 契明例	0.050	0.009	1.81	0.089	0.55	0.0075	0.0073	0.0052					
25 契明例	0.050	0.014	1.80	0.079	0.58	0.0081	0.0079	0.0185					
26 契明例	0.057	0.014	1.72	0.081	0.53	0.0083	0.0083	0.0208					
27 契明例	0.051	0.014	1.76	0.078	0.60	0.0112	0.0119	0.0170					
28 契明例	0.055	0.003	1.67	0.090	0.55	0.0101	0.0107	0.0191					
29 契明例	0.050	0.003	1.83	0.089	0.56	0.0078	0.0077	0.0210					
30 契明例	0.057	0.013	1.70	0.073	0.59	0.0080	0.0079	0.0059					
31 契明例	0.022	0.010	0.98	0.079	0.54	0.0097	0.0101	0.0190					
32 契明例	0.020	0.007	1.63	0.074	0.76	0.0123	0.0134	0.0168					
33 契明例	0.059	0.007	1.43	0.089	0.59	0.0125	0.0137	0.0184					
34 契明例	0.052	0.003	1.64	0.085	0.73	0.0063	0.0057	0.0207					
35 契明例	0.099	0.015	1.24	0.074	0.52	0.0131	0.0145	0.0190					

【0064】

【表2】

実施 区分	化 学 成 分 (mass%)						Mn/S	面積率 (%)	V1000 m/min	表面粗さ Rz (μm)	切り屑 處理性	
	Ti	Ca	Zr	Mg	Te	Pb						
1 純明例							0.0011	3.26	燒連	1.5	147	10.5 ○
2 純明例							0.0013	2.84	燒連	0.6	155	10.4 ○
3 純明例							0.0023	2.98	QT	1.9	144	7.3 ○
4 純明例							0.0018	3.13	QT	0.7	157	6.6 ○
5 純明例							0.0013	3.13	QT	0.7	142	7.8 ○
6 純明例							0.0021	2.83	QT	2.0	152	6.2 ○
7 純明例							0.0019	3.24	QT	2.0	147	6.6 ○
8 純明例							0.0020	2.88	QT	1.4	157	7.4 ○
9 純明例							0.0017	3.11	QT	2.6	141	6.8 ○
10 純明例							0.0013	2.91	QT	0.6	145	6.5 ○
11 純明例							0.0020	3.19	燒連	5.5	130	10.8 ○
12 純明例							0.0017	2.92	QT	2.3	131	6.4 ○
13 純明例							0.0026	3.08	QT	2.7	126	6.3 ○
14 純明例							0.0024	3.14	QT	0.8	145	7.5 ○
15 純明例							0.0025	3.13	QT	2.6	146	7.7 ○
16 純明例							0.0023	2.84	QT	0.7	144	6.6 ○
17 純明例							0.0012	3.14	QT	2.8	147	6.8 ○
18 純明例							0.0025	3.29	QT	0.5	145	7.5 ○
19 純明例							0.0025	3.01	QT	1.5	147	7.0 ○
20 純明例							0.0023	2.89	QT	2.5	145	7.0 ○
21 純明例							0.0016	3.03	QT	3.0	146	6.9 ○
22 純明例							0.0011	3.24	QT	0.8	143	7.2 ○
23 純明例 0.026							0.0030	2.96	QT	1.0	143	8.0 ○
24 純明例 0.0037							0.0028	3.26	QT	1.3	145	7.2 ○
25 純明例 0.0037							0.0021	3.09	QT	3.0	144	6.9 ○
26 純明例 0.0025							0.0027	3.25	QT	2.9	146	7.7 ○
27 純明例							0.0022	2.94	QT	1.0	144	7.9 ○
28 純明例							0.0012	3.02	QT	1.2	170	7.3 ○
29 純明例							0.283	3.29	QT	1.3	170	6.4 ○
30 純明例							0.0163	2.88	QT	0.8	128	7.1 ○
31 純明例							0.0019	1.82	燒連	1.4	154	10.2 ○
32 純明例							0.0030	2.16	燒連	1.4	165	11.7 ○
33 純明例							0.0013	2.42	QT	2.0	156	3.9 ○
34 純明例							0.0020	2.25	QT	1.4	167	4.5 ○
35 純明例							0.0027	2.39	QT	0.7	153	4.1 ○

【0065】

【表3】

要旨	区分	化 学 成 分 mass%														
		C	Si	Mn	P	S	B	total-N	total-O	Nb	Cr	Mo	W	Ni	Cu	Sn
36	差明例	0.091	0.006	1.54	0.079	0.77	0.0057	0.0050	0.0168							
37	差明例	0.115	0.013	1.34	0.072	0.56	0.0102	0.0107	0.0194							
38	差明例	0.118	0.011	1.61	0.083	0.76	0.0090	0.0091	0.0197							
39	差明例	0.167	0.007	1.36	0.089	0.57	0.0052	0.0042	0.0166							
40	差明例	0.171	0.006	1.42	0.089	0.71	0.0097	0.0100	0.0191							
41	差明例	0.064	0.007	1.15	0.086	0.59	0.0121	0.0132	0.0208							
42	差明例	0.053	0.003	1.00	0.074	0.53	0.0104	0.0110	0.0172							
43	差明例	0.052	0.014	1.13	0.077	0.58	0.0095	0.0098	0.0160							
44	差明例	0.056	0.014	1.04	0.089	0.54	0.0082	0.0081	0.0109							
45	差明例	0.053	0.013	1.06	0.077	0.59	0.0065	0.0059	0.0172	0.10						
46	差明例	0.050	0.007	1.14	0.088	0.57	0.0115	0.0124	0.0181	0.038						
47	差明例	0.053	0.009	1.26	0.082	0.53	0.0094	0.0097	0.0185						0.67	
48	差明例	0.058	0.006	1.13	0.076	0.54	0.0056	0.0047	0.0173							
49	差明例	0.059	0.002	1.20	0.090	0.60	0.0090	0.0091	0.0192							
50	差明例	0.057	0.005	1.31	0.082	0.56	0.0055	0.0046	0.0171							
51	差明例	0.053	0.002	1.15	0.070	0.57	0.0076	0.0072	0.0186							
52	差明例	0.051	0.011	1.25	0.079	0.55	0.0085	0.0085	0.0157							
53	差明例	0.055	0.014	1.26	0.074	0.60	0.0109	0.0116	0.0058							
54	差明例	0.057	0.003	0.99	0.073	0.52	0.0070	0.0066	0.0103							
55	差明例	0.051	0.011	1.09	0.087	0.51	0.0129	0.0142	0.0175							
56	差明例	0.050	0.003	1.07	0.082	0.59	0.0063	0.0057	0.0187							
57	差明例	0.055	0.010	1.17	0.075	0.53	0.0063	0.0057	0.0165							
58	差明例	0.055	0.004	1.27	0.072	0.53	0.0126	0.0138	0.0189							
59	差明例	0.059	0.010	1.12	0.080	0.56	0.0123	0.0134	0.0173							
60	差明例	0.052	0.011	1.03	0.087	0.53	0.0113	0.0121	0.0087							
61	差明例	0.056	0.008	1.46	0.079	0.54	0.0087	0.0100	0.0049							
62	差明例	0.051	0.009	1.65	0.077	0.56	0.0089	0.0099	0.0045							
63	差明例	0.056	0.006	1.45	0.082	0.54	0.0098	0.0099	0.0020							
64	差明例	0.061	0.007	1.40	0.081	0.57	0.0089	0.0091	0.0123							
65	差明例	0.071	0.011	1.10	0.002	0.55	0.0087	0.0095	0.0110							
66	差明例	0.060	0.010	1.20	0.078	0.60	0.0103	0.0124	0.0112							
67	差明例	0.060	0.009	1.06	0.077	0.53	0.0110	0.0121	0.0100							
68	差明例	0.060	0.009	1.08	0.076	0.54	0.0092	0.0112	0.0101							
69	差明例	0.070	0.008	1.40	0.086	0.56	0.0088	0.0095	0.0157							
70	差明例	0.061	0.010	1.53	0.077	0.61	0.0104	0.0124	0.0058							
71	差明例	0.060	0.006	1.35	0.077	0.54	0.0110	0.0122	0.0189							

【0066】

【表4】

実験 番号	区分	化学成分 (mass%)						熱処理	Δ^-24h 面積率 (%)	VL1000 m/min	表面粗さ $Rz (\mu m)$	切り屑 処理性	
		Ti	Ca	Zr	Mg	Te	Pb						
36	発明例							0.0028	2.01	QT	3.0	168	
37	発明例							0.0018	2.39	QT	2.2	154	
38	発明例							0.0014	2.11	QT	2.1	170	
39	発明例							0.0024	2.39	QT	0.5	156	
40	発明例							0.0027	2.00	QT	0.7	168	
41	発明例							0.0014	1.95	焼筆	5.2	135	
42	発明例							0.0023	1.90	QT	2.5	131	
43	発明例							0.0029	1.95	QT	2.0	133	
44	発明例							0.0016	1.92	QT	1.0	155	
45	発明例							0.0015	1.82	QT	2.8	156	
46	発明例							0.0026	2.00	QT	1.9	155	
47	発明例							0.0012	2.39	QT	1.4	156	
48	発明例							0.0026	2.09	QT	0.6	155	
49	発明例							0.0012	2.00	QT	2.8	154	
50	発明例							0.0030	2.31	QT	1.4	156	
51	発明例							0.0019	2.02	QT	2.6	155	
52	発明例							0.0029	2.27	QT	0.8	153	
53	発明例	0.036						0.0016	2.12	QT	1.3	156	
54	発明例	0.0033						0.0017	1.89	QT	2.5	156	
55	発明例	0.0035						0.0024	2.14	QT	2.1	154	
56	発明例	0.0020						0.0013	1.82	QT	2.6	154	
57	発明例	0.036					0.0061	0.0022	2.21	QT	2.4	154	
58	発明例	0.0033					0.16	0.0017	2.37	QT	2.8	182	
59	発明例							0.266	0.0031	2.02	QT	2.5	189
60	発明例							0.0208	1.96	QT	1.9	136	
61	発明例	0.005						0.0010	2.70	QT	2.3	146	
62	発明例							0.0021	2.95	QT	3.4	145	
63	発明例	0.0022	0.0025					0.0010	2.68	QT	2.9	145	
64	発明例	0.0018	0.0012					0.0011	2.45	QT	3.0	139	
65	発明例							0.0016	2.00	QT	2.5	172	
66	発明例							0.0015	2.00	QT	2.8	134	
67	発明例							0.0012	2.00	QT	3.6	131	
68	発明例	0.0025	0.0015					0.0019	2.00	QT	2.1	130	
69	発明例							0.0016	2.50	QT	3.9	135	
70	発明例							0.0017	2.51	QT	2.3	133	
71	発明例							0.0010	2.50	QT	3.9	132	

[0067]

【表5】

実施 区分	化 學 成 分 mass%															
	C	Si	Mn	P	S	B	total-N	V	Nb	Cr	Mo	W	Ni	Cu	Sn	Zn
72 稀釈例	0.059	0.009	1.38	0.075	0.55	0.0092	0.0132	0.0173								
73 稀釈例	0.069	0.009	1.62	0.076	0.54	0.0089	0.0095	0.0160								
74 稀釈例	0.062	0.006	1.80	0.090	0.60	0.0100	0.0106	0.0181								
75 稀釈例	0.058	0.002	1.65	0.079	0.55	0.0110	0.0122	0.0173								
76 比較例	0.045	0.007	1.00	0.084	0.35	0.0076	0.0074	0.0183								
77 比較例	0.050	0.005	1.79	0.074	0.59	0.0067	0.0062	0.0180								
78 比較例	0.049	0.008	0.96	0.077	0.34	0.0129	0.0141	0.0205								
79 比較例	0.055	0.009	1.78	0.080	0.59	—	0.0123	0.0151								
80 比較例	0.050	0.015	0.75	0.089	0.35	0.0052	0.0042	0.0162								
81 比較例	0.053	0.004	1.16	0.071	0.54	0.0097	0.0100	0.0166								
82 比較例	0.052	0.009	0.84	0.074	0.34	0.0089	0.0089	0.0171								
83 比較例	0.052	0.014	0.95	0.079	0.53	—	0.0142	0.0157								
84 比較例	0.051	0.011	0.95	0.088	0.52	0.0032	0.0060	0.0189								
85 比較例	0.047	0.011	0.48	0.085	0.53	0.0089	0.0090	0.0167								
86 比較例	0.048	0.008	0.93	0.089	0.33	—	0.0139	0.0151								

【0068】

【表6】

実施 区分	化学成分 (mass%)						熱処理	面積率 (%)	V _L 1000 m/min	表面粗さ R _z (μm)	切り屑 處理性
	Ti	Ca	Zr	Mg	Te	Bi					
72 兌明例							0.0016	2.51	QT	2.2	132
73 兌明例	0.0016	0.0010					0.0006	3.00	QT	2.6	134
74 兌明例							0.0010	3.00	QT	1.9	130
75 兌明例	0.0022	0.0017					0.0009	3.00	QT	2.9	130
76 比較例							0.0012	2.90	焼準	5.8	97
77 比較例							0.0013	3.05	焼準	5.8	119
78 比較例							0.0017	2.83	焼準	5.8	119
79 比較例							0.0011	3.03	焼準	5.3	100
80 比較例							0.0018	2.16	焼準	5.5	119
81 比較例							0.0013	2.13	焼準	5.7	121
82 比較例							0.0021	2.49	焼準	5.9	110
83 比較例							0.0024	1.80	焼準	5.9	118
84 比較例							0.0016	1.85	QT	1.5	105
85 比較例							0.0013	0.90	—	—	13.0
86 比較例							0.0027	2.81	焼準	5.9	117

【0069】

【表7】

表7

切削条件	ドリル	その他
切削速度 10~200m/min	Φ 5mm	穴深さ 15mm
送り 0.33mm/rev	NACHI通常ドリル	工具寿命 折損まで
水溶性切削油	突き出し量 60mm	

【0070】

【表8】

表8 プランジ切削条件

切削条件	工具	その他
切削速度 80m/min	SKH57相当	突き出し
送り 0.05mm/rev	すくい角 20°	評価タイミング 200サイクル
不水溶性切削油	逃げ角 6°	

【図面の簡単な説明】

【0071】

【図1】本発明による鋼のフェライト・パーライト組織を示す顕微鏡写真である。

【図2】(a)は本発明によるMnSの微細分散状態を示す顕微鏡写真であり、(b)は従来鋼における粗大MnSの存在状態を示す顕微鏡写真である。

【図3】(a), (b)はプランジ切削試験法を示す図である。

【図4】パーライト面積率と表面粗さの関係を示す図である。

【書類名】 図面
【図1】

図1

パーライト

フェライト・パーライト組織

【図2】

図2

(b)

大型MnS

(a)

微細MnS

【図3】

図 3

プランジ切削方法

プランジ切削試験イメージ

【図4】

4

【書類名】要約書

【要約】

【課題】 工具寿命のみならず、切削面性状の良好な被削性に優れる鋼を提供する。

【解決手段】 C : 0. 005~0. 2%、Si : 0. 001~0. 5%、Mn : 0. 5~3. 0%、P : 0. 001~0. 2%、S : 0. 003~1. 0%、B : 0. 005超~0. 05%、total-N : 0. 002~0. 02%、total-O : 0. 0005~0. 035%を含有し、残部がFeおよび不可避的不純物よりなり、ミクロ組織においてパーライト面積率が5%以下であることを特徴とする被削性に優れる鋼。

【選択図】 図1

認定・付加情報

特許出願の番号	特願2003-374517
受付番号	50301822383
書類名	特許願
担当官	第五担当上席 0094
作成日	平成15年11月 7日

<認定情報・付加情報>

【特許出願人】

【識別番号】	000006655
【住所又は居所】	東京都千代田区大手町2丁目6番3号
【氏名又は名称】	新日本製鐵株式会社
【代理人】	申請人
【識別番号】	100077517
【住所又は居所】	東京都港区虎ノ門三丁目5番1号 虎ノ門37森 ビル 青和特許法律事務所
【氏名又は名称】	石田 敬

【選任した代理人】

【識別番号】	100092624
【住所又は居所】	東京都港区虎ノ門三丁目5番1号 虎ノ門37森 ビル 青和特許法律事務所
【氏名又は名称】	鶴田 準一

【選任した代理人】

【識別番号】	100113918
【住所又は居所】	東京都港区虎ノ門三丁目5番1号 虎ノ門37森 ビル 青和特許法律事務所
【氏名又は名称】	亀松 宏

【選任した代理人】

【識別番号】	100082898
【住所又は居所】	東京都港区虎ノ門三丁目5番1号 虎ノ門37森 ビル 青和特許法律事務所
【氏名又は名称】	西山 雅也

特願2003-374517

出願人履歴情報

識別番号 [000006655]

1. 変更年月日 1990年 8月10日
[変更理由] 新規登録
住 所 東京都千代田区大手町2丁目6番3号
氏 名 新日本製鐵株式会社

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.