Soit f(x) la densité d'une variable aléatoire symétrique d'espérance nulle. Je m'intéresse à l'espérance de X^3 :

$$I := \int_{IR} x^3 f(x) dx.$$

Posons $dU(x) = x^3 dx$ et V = f, alors $U = \frac{1}{4}x^4 + C$, et dV = f' dx.

$$I = \frac{1}{4}x^4f|_{IR} + Cf|_{IR} - \int \frac{1}{4}x^4f'dx - \int Cf'dx.$$

Le premier terme à droite de l'égalité vaut zéro car on a $\lim_{x\to +\infty} x^4f - \lim_{x\to -\infty} x^4f$, la limite moins ellemême du fait de la parité de x^4 (je manque de rigueur ici). Le deuxième et le dernier terme sont égaux. On a donc $I=\frac{1}{4}\int x^4f'dx$.

Intégrons encore par partie en posant $U=\frac{1}{4}x^4$ et dV=f'dx. On a donc $dU=x^3$ et V=f. D'où : $I=\frac{1}{4}x^4f|_{IR}-\int x^3fdx$. On retrouve 0-I. Par conséquent, I=0-I. Autrement dit, 2I=0, d'où I=0.