Machine Learning

Instructor: Chandra Sekhar V

Consider the quadratic function $f(t) = 3t^2 - 2t + 1$:

- Domain: Since f(t) is a polynomial, there are no restrictions on the input values t. Thus, the domain is all real numbers $(-\infty, \infty)$.
- Range: The range depends on the vertex of the parabola. This function opens upwards (as the coefficient of t^2 is positive), so the range is $[f(t_{\text{vertex}}), \infty)$, where $t_{\text{vertex}} = -b/(2a)$.

2. Function Composition

- Basics:
 - Composition combines two functions f(x) and g(x): $(f \circ g)(x) = f(g(x))$ or $(g \circ f)(x) = g(f(x))$.
- Deeper Concepts:
 - Order matters in composition: $(f\circ g)(x)
 eq (g\circ f)(x)$ in general.
 - Domain considerations are critical. For example, if g(x) outputs a value outside f(x)'s
 domain, the composition is undefined.

Function Composition Example

Let's consider two functions:

- 1. $f(x) = x^2 + 1$: Squares the input and adds 1.
- 2. $g(x) = \sqrt{x}$: Computes the square root of the input (only defined for $x \geq 0$).

Compositions:

- 1. $(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 + 1 = x + 1$, defined for $x \ge 0$.
- 2. $(g \circ f)(x) = g(f(x)) = g(x^2 + 1) = \sqrt{x^2 + 1}$, defined for all x since $x^2 + 1 \ge 0$.

Key Points:

- The **domain** of $f\circ g(x)$ is restricted to $x\geq 0$ because g(x) (square root) is undefined for x<0.
- The **domain** of $g\circ f(x)$ is all real numbers because x^2+1 is always non-negative.

The Derivative: A Deeper Explanation

The derivative of a function f(x) is a fundamental concept in calculus that describes how the function f(x) changes as x changes. It has both **conceptual** and **geometrical** interpretations that make it incredibly useful in mathematics, physics, engineering, and beyond.

1. Formal Definition

The derivative of f(x) at a point x is defined as:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Numerator: f(x + h) f(x) measures the change in the output of the function as x increases by a small amount h.
- Denominator: Dividing by h scales this change per unit increase in x, giving the rate of change.

Intuition:

- The derivative calculates the instantaneous rate of change of f(x) at a specific x.
- It approximates the slope of the **tangent line** to the curve y=f(x) at that point.

Role of the Denominator h:

- 1. Represents the Change in Input (Step Size):
 - The denominator h measures how much the input x is incremented.
 - For example, if h=1, we are calculating the average rate of change over an interval of width 1.

2. Scaling the Change in Output:

- The numerator f(x+h)-f(x) gives the change in the function's output over the interval.
- Dividing by h gives the rate of change per unit of x. It answers the question: "How much does f(x) change for every unit increase in x?"

Example:

• If h=2 and f(x+h)-f(x)=6, then the rate of change is $\frac{6}{2}=3$, meaning f(x) increases by 3 units for every unit increase in x.

Numerical Example

Consider $f(x)=x^2$ at x=1. Let's compute $\frac{f(1+h)-f(1)}{h}$ for decreasing values of h:

Formula:

$$\frac{f(1+h)-f(1)}{h} = \frac{(1+h)^2-1^2}{h} = \frac{1+2h+h^2-1}{h} = 2+h.$$

Values for Different h:

•
$$h = 1$$
: $\frac{f(1+1)-f(1)}{1} = 2+1=3$.

•
$$h = 0.1$$
: $\frac{f(1+0.1)-f(1)}{0.1} = 2 + 0.1 = 2.1$.

•
$$h = 0.01$$
: $\frac{f(1+0.01)-f(1)}{0.01} = 2 + 0.01 = 2.01$.

•
$$h = 0.001$$
: $\frac{f(1+0.001)-f(1)}{0.001} = 2 + 0.001 = 2.001$.

3. As h o 0:

• The slope approaches 2, the value of the derivative f'(1)=2.

1. Tangent Line Approximations:

- Tangent lines provide linear approximations to non-linear functions near a specific point.
- For small changes around x=a, f(x)pprox f'(a)(x-a)+f(a).

2. Generalization:

- This method works for any differentiable function f(x) at any point x=a.
- The steeper the curve at a, the larger the slope f'(a).

The function is: $f(x) = \sqrt{x}$

2. Tangent Line Equation

The tangent line to f(x) at x=4 is given by the formula:

$$y = f'(4)(x-4) + f(4)$$

Here:

- f'(4): Slope of the tangent line at x=4.
- f(4): Value of the function at x=4.

3. Calculate f(4) and f'(4)

- $f(4) = \sqrt{4} = 2$
- $f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$

4. Write the Tangent Line Equation

Substitute these values into the tangent line equation:

$$y = rac{1}{4}(x-4) + 2$$
 $y = rac{1}{4}x - 1 + 2$ $y = rac{1}{4}x + 1$

5. Approximation for x=4.1

To estimate $\sqrt{4.1}$, substitute x=4.1 into the tangent line equation:

$$y = \frac{1}{4}(4.1) + 1$$

 $y = 1.025 + 1 = 2.025$

Thus, $\sqrt{4.1} \approx 2.025$.

Tangent Line Applications in Machine Learning:

The concept of tangent lines is fundamental in machine learning, particularly when working with optimization algorithms like gradient descent.

In the context of gradient descent and optimization, tangent lines play a crucial role in providing guidance, magnitude, and efficiency for parameter updates.

- Gradient Descent: Optimization in Machine Learning Overview:
- In machine learning, the goal is often to minimize a loss function L(w), which measures how well a model's predictions match the true values.
- Tangent lines are essential for calculating the slope of the loss function at any point
- The slope (or gradient) is used to adjust the model's parameters to reduce the loss.

How Tangent Lines Are Used

- The slope of the tangent line to L(w) at a specific point indicates the direction and rate of change of L(w).
- Gradient descent updates parameters w iteratively:

$$w_{
m new} = w_{
m old} - \eta \cdot L'(w)$$

Here:

- L'(w): Slope of the tangent line (derivative of L(w)).
- η: Learning rate (step size).

1. Goal:

- The aim in machine learning is to minimize a loss function L(w), which quantifies how far off a model's predictions are from the actual values.
- w: Represents model parameters (e.g., weights).

2. Role of Tangent Lines:

- The tangent line to the loss function L(w) at a point gives the slope or gradient (L'(w)).
- · This slope indicates:
 - **Direction**: Should we increase or decrease w to minimize L(w)?
 - Magnitude: How much should w change to effectively reduce L(w)?

Update Rule:

• In gradient descent, the model's parameters w are updated iteratively:

$$w_{\text{new}} = w_{\text{old}} - \eta \cdot L'(w_{\text{old}})$$

- Here:
 - η: Learning rate (controls step size).
 - L'(w): Slope of the loss function (from the tangent line).

Why It Works:

The slope (gradient) tells us how steep the curve is and helps us move toward the direction
of the minimum w.

1. Guidance

What it means:

• The slope of the tangent line at a point w (computed as L'(w)) tells us whether to increase or decrease w to minimize the loss function L(w).

How it works:

- If L'(w) > 0: The tangent line slopes **upward**, meaning w is too large, and we need to decrease w.
- If L'(w) < 0: The tangent line slopes **downward**, meaning w is too small, and we need to increase w.
- If L'(w)=0: The slope is flat, meaning we are at the minimum, and no further updates are needed.
 - Example: For the loss function $L(w) = (w-2)^2$:
 - At w=0: L'(w)=2(0-2)=-4 \rightarrow Negative slope \rightarrow Increase w.
 - At w=3: L'(w)=2(3-2)=2 \rightarrow Positive slope \rightarrow Decrease w.

Deeper Concepts:

- · Rules of differentiation:
 - Power Rule: $\frac{d}{dx}(x^n) = nx^{n-1}$.
 - Chain Rule: $rac{d}{dx}[g(f(x))] = g'(f(x))f'(x)$.
 - Product Rule: (uv)' = u'v + uv'.
 - Quotient Rule: $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$.

Norms of Vectors:

- In machine learning, vector norms are used to measure the magnitude (or length) of a vector.
- Norms are crucial for optimization, regularization, distance measurement, and assessing the scale of vectors.

$$\|x\|_1=\sum_{i=1}^n|x_i|$$

Definition:

- The L_1 norm is the sum of the absolute values of all elements in the vector.
- For a vector $x = [x_1, x_2, ..., x_n]$:

$$||x||_1 = |x_1| + |x_2| + ... + |x_n|$$

Geometric Interpretation:

 It represents the "Manhattan distance" (or taxicab geometry) between the vector and the origin in the vector space.

L1 norm

Machine Learning Applications:

1. Feature Sparsity:

 L₁-based regularization (e.g., Lasso regression) promotes sparsity in the model by driving some coefficients to zero, effectively selecting features.

2. Robustness:

 The L₁ norm is robust to outliers, as it minimizes absolute differences instead of squared differences.

Example:

• Given x = [1, -2, 3]:

$$||x||_1 = |1| + |-2| + |3| = 1 + 2 + 3 = 6$$

L2 norm

$$\|x\|_2=\sqrt{\sum_{i=1}^n x_i^2}$$

Definition:

- The L₂ norm is the Euclidean norm, representing the straight-line distance between the vector and the origin.
- ullet For a vector $x=[x_1,x_2,...,x_n]$:

$$\|x\|_2 = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$$

Geometric Interpretation:

It measures the length (or magnitude) of the vector in the Euclidean space.

Machine Learning Applications:

1. Smoothness:

 L₂-based regularization (e.g., Ridge regression) penalizes large coefficients without driving them to zero, ensuring smooth and less complex models.

2. Gradient Descent:

- The L₂ norm is commonly used to compute distances and gradients in optimization problems.
 - Example:
 - Given x = [1, -2, 3]:

$$||x||_2 = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \approx 3.74$$

L-Infinity norm

$$\|x\|_{\infty} = \max(|x_i|)$$

- Definition:
 - ullet The L_{∞} norm is the **maximum absolute value** among the elements of the vector.
 - For a vector $x = [x_1, x_2, ..., x_n]$:

$$||x||_{\infty} = \max(|x_1|, |x_2|, ..., |x_n|)$$

- Geometric Interpretation:
 - It represents the distance in "Chebyshev geometry," where the metric considers the largest coordinate displacement.
 - Example:
 - Given x = [1, -2, 3]:

$$||x||_{\infty} = \max(|1|, |-2|, |3|) = 3$$

Matrices

	Topic	Machine Learning Applications
•	Matrix Multiplication	Neural networks (forward propagation), data transformation
•	Matrix Operations	Covariance matrices, solving systems of equations
•	Dot Product	Cosine similarity, weighted sums in neural networks
•	Orthogonal Vectors	PCA, feature independence
•	Gaussian Elimination	Solving linear regression problems
•	Linear Dependence	Feature selection, eliminating redundant features
•	Rank of a Matrix	Dimensionality reduction, low-rank approximations

Why Orthogonality Matters in PCA

•Redundancy Removal:

•Orthogonal components ensure no redundancy (correlation) in the transformed data.

•Feature Selection:

•The first few components explain most of the variance, allowing us to reduce dimensions while retaining information.

•Model Stability:

•Using orthogonal features improves numerical stability in machine learning algorithms.

- Orthogonal vectors ensure that features or components are independent and contribute unique information.
- In advanced scenarios like PCA, orthogonality simplifies the data representation, removes redundancy, and improves the efficiency of machine learning models.
- This approach is widely used in dimensionality reduction, feature engineering, and unsupervised learning tasks.

Orthogonal Vectors

Definition:

Two vectors \mathbf{a} and \mathbf{b} are **orthogonal** if their dot product is zero:

$$\mathbf{a} \cdot \mathbf{b} = 0$$

Geometrically, this means that the two vectors are **perpendicular** to each other (their angle is 90°).

Importance of Orthogonal Vectors

Feature Independence in Machine Learning:

Interpretation:

- If two feature vectors (columns in a dataset) are orthogonal, they are completely independent of each other.
- This ensures that one feature does not contribute redundant information, leading to better models and easier interpretation.

Applications:

- Orthogonality ensures no correlation between features.
- Orthogonal vectors simplify computations in linear models and reduce multicollinearity.

Why Keep Both Features? Unique Contribution:

- •Orthogonal features are completely independent, meaning they describe different aspects of the data.
- •Removing one feature would result in a loss of information.

Dataset Example:

Suppose we have two features:

- 1. Feature $x_1 = [1, 0]$ (e.g., horizontal movement).
- 2. Feature $x_2 = [0,1]$ (e.g., vertical movement).

These features are orthogonal, meaning they are independent:

• $x_1 \cdot x_2 = 0$.

Retaining Both Features:

- x₁: Captures information about horizontal variability.
- x₂: Captures information about vertical variability.
- If you remove one feature, you lose the ability to describe one axis entirely, reducing the descriptive power of your model.

Gaussian Elimination

- Gaussian elimination is a systematic method for solving systems of linear equations.
- It transforms a given system into an equivalent triangular form (row echelon form)
 using elementary row operations.
- Once in this form, the solution can be easily obtained by back-substitution

Key Steps in Gaussian Elimination

1. Augmented Matrix Formation:

Write the system of equations in matrix form:

$$A\mathbf{x} = \mathbf{b}$$

Combine A (the coefficient matrix) and ${f b}$ (the right-hand side vector) into an **augmented** matrix:

$$[A|\mathbf{b}]$$

2. Forward Elimination:

- Eliminate variables below the pivot (diagonal) element by performing row operations:
 - Row Swapping: Swap rows to ensure a non-zero pivot.
 - · Scaling: Multiply a row by a scalar.
 - Row Replacement: Replace a row by subtracting a multiple of another row.

3. Back Substitution:

Once the augmented matrix is in row echelon form (upper triangular matrix), solve for each
variable starting from the last equation.

Step 1: Augmented Matrix

Step 1: Augmented Matrix
Write the system as an augmented matrix:
$$\begin{bmatrix} 2 & 1 & -1 & 8 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix}$$

Step 2: Forward Elimination

- 1. First Pivot (Row 1):
 - Divide the first row by 2 to make the pivot element 1:

$$\begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ -3 & -1 & 2 & -11 \\ -2 & 1 & 2 & -3 \end{bmatrix}$$

- Eliminate the first variable (x) from Rows 2 and 3:
 - Row 2: $R_2 = R_2 + 3 \cdot R_1$
 - Row 3: $R_3 = R_3 + 2 \cdot R_1$

$$\begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 0.5 & 0.5 & 1 \\ 0 & 2 & 1 & 5 \end{bmatrix}$$

2. Second Pivot (Row 2):

Make the second pivot element 1 by dividing Row 2 by 0.5:

$$egin{bmatrix} 1 & 0.5 & -0.5 & 4 \ 0 & 1 & 1 & 2 \ 0 & 2 & 1 & 5 \end{bmatrix}$$

- Eliminate the second variable (y) from Row 3:
 - Row 3: $R_3=R_3-2\cdot R_2$

$$\begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

3. Third Pivot (Row 3):

Make the third pivot element 1 by dividing Row 3 by -1:

$$\begin{bmatrix} 1 & 0.5 & -0.5 & 4 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$