Multiple Predictor Variables: ANOVA

What if you manipulate two factors?

Block 1	Block 2	Block 3	Block 4
Α	В	С	D
В	С	D	Α
С	D	Α	В
D	Α	В	C

Randomized Controlled Blocked Design: Design where each treatment only has 1 replicate of a second treatment Note: Above is a Latin Squares Design - Every row and column contains one replicate of a treatment.

Effects of Stickleback Density on Zooplankton

Units placed across a lake so that ${\bf 1}$ set of each treatment was 'blocked' together

Treatment and Block Effects

Model for Multiway ANOVA/ANODEV

Or, with matrices...

 $y_k = \beta_0 + \sum \beta_i x_i + \sum \beta_j x_j + \epsilon_k$ $\epsilon_{ijk} \sim N(0, \sigma^2), \quad x_i = 0, 1$ $Y = \beta X + \epsilon$

sufficient replication of each treatment combination.

ANOVA/ANODEV

 $Y = \beta X + \epsilon$

The 'Treatment Contrast' Model for Multiway

 $Y = \beta X + \epsilon$

Model for Multiway ANOVA/ANODEV

$$\begin{pmatrix} y1\\y2\\y3\\y4 \end{pmatrix} = \begin{pmatrix} \beta_{i1}\\\beta_{i2}\\\beta_{j1}\\\beta_{j2} \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & 0\\1 & 0 & 0 & 1\\0 & 1 & 1 & 0\\0 & 1 & 0 & 1 \end{pmatrix} + \begin{pmatrix} \epsilon_1\\\epsilon_2\\\epsilon_3\\\epsilon_4 \end{pmatrix}$$
 hfill We can have as many groups as we need, so long as there is

Hypotheses for Multiway ANOVA/ANODEV

TreatmentHo:
$$\mu_{i1}=\mu i2=\mu i3=\dots$$
 Block Ho: $\mu_{j1}=\mu j2=\mu j3=\dots$ Remember, this can also be stated in terms of β

Residuals by Groups and No Non-Additivity

Residuals by Groups and No Non-Additivity

Tukey's Test for Non-Additivity

library(car)

residualPlots(zoop_lm) Test stat Pr(>|t|) # treatment NA # block NA # Tukey test 0.474 0.635

The ANOVA

But first, what are the DF for ... Treatment (with 3 levels)

Block (with 5 blocks)

Residuals (with n=15)

The ANOVA

```
# Analysis of Variance Table
```

anova(zoop_lm)

Response: zooplankton Df Sum Sq Mean Sq F value Pr(>F)

treatment 2 6.86 3.43 16.37 0.0015 # block 4 2.34

0.58

2.79 0.1010

Residuals 8 1.68 0.21

Sums of Squares as Model Comparison

Testing SS for a Factor is the same as comparing the residual SS of a model with v. without that factor.

Here is $y = intercept \ versus \ y = intercept + treatment$:

zoop_intOnly <- lm(zooplankton ~ 1, data=zoop)</pre> zoop treatment <- lm(zooplankton ~ treatment . data=zoop)

anova(zoop_intOnly, zoop_treatment)

Analysis of Variance Table

Model 1: zooplankton ~ 1

of Squares

Model 2: zooplankton ~ treatment # Res.Df RSS Df Sum of Sq F Pr(>F)

14 10.87 12 4.02 2 6.86 10.2 0.0025 # 2

Sums of Squares as Model Comparison

Squential model building and SS Calculation is called Type I Sums

Sums of Squares as Model Comparison

Testing SS for a Factor is the same as comparing the residual SS of a model with v. without that factor.

Here is v = intercept + treatment versus v = intercept +treatment+block:

anova(zoop_treatment, zoop_lm)

Analysis of Variance Table # Model 1: zooplankton ~ treatment # Model 2: zooplankton ~ treatment + block

Res.Df RSS Df Sum of Sq F Pr(>F) 12 4.02

8 1.68 4 2.34 2.79

Coefficients via Treatment Contrasts

```
summary(zoop_lm)$coef
```

Estimate Std. Error t value Pr(>|t|) # (Intercept) 3.420e+00 0 3127 1 0940+01 4 3300-06 # treatmenthigh -1.640e+00 0.2895 -5.665e+00 4.730e-04

treatmentlow -1.020e+00 0.2895 -3.524e+00 7.805e-03 # block? 1 039e-15 0 3737 2 781e-15 1 000e+00 # block3 -7.000e-01 0.3737 -1.873e+00 9.795e-02

block4 -1.000e+00 0.3737 -2.676e+00 2.811e-02 # block5 -3.000e-01 0.3737 -8.027e-01 4.453e-01

Unique Effect of Each Treatment

Exercise: Likelihood and Bees!

- ► Load the Bee Gene Expresion Data
- Does bee type or colony matter?
- ▶ How much variation does this experiment explain?

Bee ANOVA

Bee Effects

Unbalancing the Zooplankton Data

zoop_u <- zoop[-c(1,2),]

An Unbalanced ANOVA

anova(zoop_u_lm)

```
zoop_u_lm <- update(zoop_lm, data=zoop_u)
# Analysis of Variance Table
# Response: zooplankton
            Df Sum Sq Mean Sq F value Pr(>F)
```

3.45 0.0860 # Residuals 6 0.76 0.127

Unbalanced Data and Type I SS

Missing "cells" (i.e., treatment-block combinations) mean that

order matters in testing SS

zoop_u_lm1 <- lm(zooplankton ~ treatment + block, data=zoop_u) zoop u lm2 <- lm(zooplankton ~ block + treatment, data=zoop u)

Intercept versus Treatment and Block versus Treatment + Block

will not produce different SS

Is this valid? Can we use Type I sequential SS?

treatment 2 4.18 2.088 16.48 0.0037

block 4 1.75 0.437

Unbalanced Data and Type I SS

```
# Analysis of Variance Table # # Response: zooplankton # Df Sum Sg Mean Sq F value Pr(>F) # treatment 2 4.18 2.088 16.48 0.0037 # block 4 1.75 0.437 3.45 0.0860 # Residuals 6 0.76 0.127 # Analysis of Variance Table # Response: zooplankton # Df Sum Sg Mean Sq F value Pr(>F) # block 4 2.24 0.559 4.41 0.053 # treatment 2 3.69 1.843 14.55 0.005 # Response: zooplankton # Df Sum Sg Mean Sq F value Pr(>F) # block 4 2.24 0.559 4.41 0.053 # treatment 2 3.69 1.843 14.55 0.005
```

Solution: Marginal, or Type II SS

```
SS of Block: Treatment versus Treatment + Block SS of Treatment: Block versus Block + Treatment
```

Note: Because of marginality, the sum of all SS will no longer equal $\ensuremath{\mathsf{SST}}$

Solution: Marginal, or Type II SS

```
Anova(zoop_u_lmi)

# Anova Table (Type II tests)

# Response: zooplankton

# Sum Sq Df F value Pr(>F)

# treatment 3.69 2 14.55 0.005

# block 1.75 4 3.45 0.086

# Besidmals 0.76 6
```

Note the capital "A" - this is a function from the car package.

Neanderthals and Sums of Squares

How big was their brain?

Does Species Matter for Brain Size?

We want to evaluate the species effect, controlling for brain size - is size balanced?

The General Linear Model

$$Y = \beta X + \epsilon$$

- This equation is huge. X can be anything categorical, continuous, etc.
- One easy way to see this is if we want to control for the effect of a covariate - i.e., ANCOVA
- ► Type of SS matters, as 'covariate' is de facto 'unbalanced'

Exercise: Fit like a cave man

- ► Fit a model that will describe brain size from this data
- ▶ Does species matter? Compare type I and type II results
- ▶ Use Component-Residual plots to evaluate results

Type of SS Matters

lnmass

```
# Analysis of Variance Table
#
# Response: labrain
# Df Sum Sq Mean Sq F value Pr(>F)
# species 1 0.0001 0.0001 0.01 0.91
# Immass 1 0.1300 0.1300 29.28 4.3e-06
# Residuals 36 0.1590 0.0044
# Anova Table (Type II tests)
# Response: labrain
# Sum Sq Df F value Pr(>F)
# species 0.0276 1 6.2 0.017
```

29.3 4.3e-06

0.1300 1

Residuals 0 1599 36

Component + Residual Plots Component + Residual Plots Output Output

4.1 4.2 4.3 4.4

recent

neanderthal

Species Effect

