MCQ Questions PART-A

- 1. The inputs in the PLD is given through
 - a) NAND gates b) OR gates c) NOR gates d) AND gates
- 2. PAL refers to
 - a) Programmable Array Loaded b) Programmable Logic Array
 - c) Programmable Array Logic d) None of the Mentioned
- 3. Outputs of the AND gate in PLD is known as
 - a) Input lines b) Output lines c) Strobe lines d) None of the Mentioned
- 4. PLA contains
 - a) AND and OR arrays b) NAND and OR arrays c) NOT and AND arrays
 - d) NOR and OR arrays
- 5. PLA is used to implement
 - a) A complex sequential circuit b) A simple sequential circuit
 - c) A complex combinational circuit d) A simple combinational circuit
- 6. A PLA is similar to a ROM in concept except that
 - a) It hasn't capability to read only b) It hasn't capability to read or write operation
 - c) It doesn't provide full decoding to the variables d) It hasn't capability to write only
- 7. For programmable logic functions, which type of PLD should be used?
 - a) PLA b) CPLD c) PAL d) SLD
- 8. The complex programmable logic device contains several PLD blocks and
 - a) A language compiler b) AND/OR arrays c) Global interconnection matrix
 - d) Field-programmable switches
- 9. Which type of device FPGA are?
 - a) SLD b) SROM c) EPROM d) PLD
- 10. The difference between a PAL & a PLA is
 - a) PALs and PLAs are the same thing
 - b) The PAL has a programmable OR plane and a programmable AND plane, while the PLA only has a programmable AND plane
 - c) The PLA has a programmable OR plane and a programmable AND plane, while the PAL only has a programmable AND plane
 - d) The PAL has more possible product terms than the PLA

11. If a PAL has been programmed once
a) Its logic capacity is lost b) Its outputs are only active HIGH
c) Its outputs are only active LOW d) It cannot be reprogrammed
12. The FPGA refers to
a) First programmable Gate Array b) Field Programmable Gate Array
c) First Program Gate Array d) Field Program Gate Array
 In FPGA, vertical and horizontal directions are separated by
a) A line b) A channel c) A strobe d) A flip-flop
 Logic circuits can also be designed using
a) RAM b) ROM c) PLD d) PLA
 In PLD, there are provisions to perform interconnections of the gates internally, because of
a) High reliability b) High conductivity c) The desired logic implementation d) The desired output
16. Why antifuses are implemented in a PLD?
a) To protect from high voltage b) To increase the memory
c) To implement the programmes d) As a switching devices
 is the fundamental architecture block or element of a target PLD.
a. System Partitioning b. Pre-layout Simulation
c. Logic cell d. Post-layout Simulation
 Moore Machine is an application of
a. Finite automata without input b. Finite automata with output
c. Non Finite automata with output
19. In Moore machine, output is produced over the change of:
a) transitions b) states c) Both d) None of the mentioned
20. For a give Moore Machine, Given Input='101010', thus the output would be of length:
a) Input +1 b) Input c) Input-1 d) Cannot be predicted
21) PLA is used to implement
a) A complex sequential circuit b) A simple sequential circuit
c) A complex combinational circuit d) A simple combinational circuit
22) For programmable logic functions, which type of PLD should be used?
a) PLA b) CPLD c) PAL d) SLD
23) Which type of device FPGA are?
a) SLD b) SROM c) EPROM d) PLD
24) If a PAL has been programmed once
a) Its logic capacity is lost b) Its outputs are only active HIGH

- c) Its outputs are only active LOW d) It cannot be reprogrammed
- 25) Applications of PLAs are
- a) Registered PALs
- b) Configurable PALs
- c) PAL programming d) All of the Mentioned
- 26) Which of the following best describes the fusible-link PROM?
- a) Manufacturer-programmable, reprogrammable
- b) Manufacturer-programmable, one-time programmable
- c) User-programmable, reprogrammable
- d) User-programmable, one-time programmable
- 27) In finite state machine the data in and data out are
- a) In same ports b) different ports c) same register d) different register
- 28)

Consider the circuit above which is represent f(x,y,z)?

a)
$$x\bar{z} + xy + z\bar{y}$$
 b) $x\bar{z} + xy + z\bar{y}$ c) $zx + xy + y\bar{z}$ c) $zx + x\bar{y} + z\bar{y}$

- 29) Convert gray code into binary code: 110111
- a) 101101 b)001110 c)111001 d)100101
- 30) How many flip flops are necessary to design a state machine with 25 states?
- a) 2 b) 5 c) 25 d) 2²⁵
- 31) A finite state machine has an output determined only by the present state of the system is _____.
- a) Moore machine b) Mealy machine c) Max machine d) Min machine
- 32) How many gates would be required to implement the following Boolean expression after the simplification? XY + X(X + Z) + Y(X + Z)
- a) 1 b)2 c)4 d)5
- 33) Two states are said to be equal if they have exactly same
- a) Inputs b) next state c) output d) both a and b
- 34) Which mechanism allocates the binary value to the states in order to reduce the cost of the combinational circuits?
- a) State Reduction b) State Minimization c) State Assignment d) State Evaluation

- 35) The number of address lines in EPROM 4096 x 8 is
- a) 2 b) 4 c) 8 d) 12
- 36) In the given figure shows a 4 bit serial in parallel out right shift register. The initial contents as shown are 0110. After 3 clock pulses the contents will be

- a) 17) b)0101 c)1010 d)1111
- 37) State table can be represented in a
- a) state diagram b) map c) truth table d) graph
- 38) Which is the major functioning responsibility of the multiplexing combinational circuit?
- a) Decoding the binary information
- b) Generation of all min-terms in an output function with OR-gate
- c) Generation of selected path between multiple sources and a single destination
- d) All of the Mentioned
- 39) What is the function of an enable input on a multiplexer chip?
- a) To apply VCC b) To connect ground c) To active the entire chip d) To active one half of the chip
- 40) One multiplexer can take the place of
- a) Several SSI logic gates b) Combinational logic circuits
- c) Several Ex-NOR gates d) Several SSI logic gates or combinational logic circuits
- 41. A PLA is similar to a ROM in concept except that
- a) It hasn't capability to read only
- b) It hasn't capability to read or write operation
- c) It doesn't provide full decoding to the variables
- d) It hasn't capability to write only
- 42. The complex programmable logic device contains several PLD blocks and
- a) A language compiler
- b) AND/OR arrays
- c) Global interconnection matrix
- d) Field-programmable switches
- 43. What is a fusing process?
 - a) It is a process by which data is passed to the memory
 - b) It is a process by which data is read through the memory
 - c) It is a process by which programs are burnout to the diode/transistors

- d) None of the Mentioned
- 44. The number of address lines in EPROM 1024 x 16 is
 - a) 10
- b) 12 c) 16
- d) 8
- 45. Applying DeMorgan's theorem to the expression $\overline{(X + Y)} + \overline{Z}$, we get
 - a)(X+Y)z b)($\bar{y} + \bar{x}$)Z c)(X+Y) \bar{z} d))($\bar{y} + \bar{x}$) \bar{z}
- 46. State table can be represented in
 - a)state diagram b)map c)truth table d)graph
- 47. Which mechanism allocates the binary value to the states in order to reduce the cost of the Combinational circuits?
 - a) State Reduction b) State Minimization
 - c) State Assignment d) State Evaluation
- 48) MOD-9 counter has
 - a)5 states b)10 states c)9 states d)20 states
- 49) The following mealy machine outputs which of the following?

- a)9's Complement
- b) 2's Complement
- c) 1's Complement
- d) 10's Complement
- 50). What is the function of an enable input on a multiplexer chip?
- a) To apply Vcc
- b) To connect ground
- c) To active the entire chip
- d) To

- active one half of the chip
- 51. Reduction of flip-flops in a sequential circuits are referred as
- a)reduction b) state reduction c)next state d)both a and b
- 52. Memory elements in clocked sequential circuits are called
- a)latches b)flip-flop c)signals d)gates
- 53.In Moore models, output are function of only
- a)present state b)input state c)next state d)both a and b
- 54. Unused states are treated as Don't cares conditions during
- a)Execution b)Pulse trigger c) Design of a circuit d)None
- 55) Table that lists inputs for required change of states is called

a)truth table b)excitation table c)state table d)clock table
56) In last step of design procedure we
a)draw map b)draw circuit c)draw table d)draw a logic diagram
57) ROM is a device that includes both decoder and?
a)encoder b)Multiplexer c)OR Gates d)None
58) Reed-Muller expansion produces expression in the form of
a) SOP b) POS c) ESOP d) NSOP
59). Which of the following expression remove hazard from: xy + zx '?
a) $z\overline{x} + xy$ b) $xy+wyz+z\overline{x}$ c) $xy+yz+z\overline{x}$ d) $xy+wz+z\overline{x}$
60) Two states are said to be equal if they have exactly same
a) Inputs b) output c) next state d)both a and c
61) Out of multiplexer and demultiplexer, which can be used as a logic function generator?
A.Multiplexer only B.Demultiplexer only C.Both D.None
62) is the fundamental architecture block or element of a target PLD.
a.System Partitioning b. Pre-layout Simulation c. Logic cell d. Post-layout Simulation
63) An Antifuse programming technology is predominantly associated with
a. SPLDs b. FPGAs c. CPLDs d. All of the above
64) Which one is not the type of hazard
a. Static- 0 hazard Static -1 hazard Dynamic hazard None
65) In a logic circuit delay is an hazard is independent form
a. Delay excisting b. Clock pulse c. Latches d. Feedback
66) Which statement is suitable to explain glitch
a. A glitch is produce in a logic circuit when a circuit output may produce a short pulse
b. A glitch is produce in a logic circuit when a circuit output never produce a short pulse
c. A glitch is produce in a logic circuit when a circuit output may produce a high pulse
d. A glitch is produce in a logic circuit when a circuit output never produce a high pulse
67) Any condition that a processor can stay is called as
a) Page fault b) Hazard c) System error d) None
68) When steady-state analysis predicts that the output should not change the short pulse
generated by a circuit is called
a) Behavior pulse Output pulse c. Dlitch d) Glitch
69) An hazard is excist in a circuit
a) When a circuit has the possibility of producing a glitch
b) When a circuit has the possible tolerance to filter a glitch

- c) When a circuit has maximum probability to stop unwanted glitch
- d) When a circuit is on its minimum limit to remove glitch
- 70) The dynamic hazard problem occurs in
 - a) Combinational circuit alone b) Sequential circuit only c) Both a and b d) None
- 71) Which one is suitable to detecting the hazard in circuit
 - a) Karnaugh map b) Boolean expression c) Logic gates d) None
- 72) Data hazard occur when
 - a) Greater performance loss
 - b) Pipeline changes the order of read/ write access to operands
 - c) Some functional unit is fully pipelined
 - d) Machine size is limited
- 73) Which circuit hazards must be eliminated
 - a) Combination circuit b) Sequential circuit c) Multiprocessor d) Decoder
- 74) Which of the following are problems that can arise pipelining
 - a) Data hazards b) Water hazards c) Dukes hazards d)None
- 75) Static hazards can be detected by using k-map in
- a. Two level sum of product b. Two level of product of sum c.Both 1 & 2 d.Neither 1 nor 2
- 76) What happens when variables and it compliment were connected to the same And gate in two level of SOP
- a. Static -0 hazards occur only b. Static -1 hazards occur only c. Dynamic hazards
 - d. must exists but (b) not compulsory
- 77) The term consensus also referred as
 - a. Resolvent b. Reproduction c. Reconstruction d.Revolution
- 78) What happens when variables and it compliment were connected to the same OR gate in two level of product of Sum
- a. Static -0 hazards occur only b. static -1 hazards occur only c. Dynamic hazards d.Dynamic-0
- 79) In dynamic hazards multiple output transition can occur if
- a. Circuit have single path with different delay b. Circuit have multiple path with different delay
- c. Circuit have single path with single delay d. Circuit have multiple path with single delay
- 80) Hazard analysis and elimination are typically needed in
- a. Combinational circuit b. Synchronous Sequential circuit c. Asynchronous sequential circuit
- 81) Which hazard is overcome by properly designed two level AND -OR or OR-AND circuit
- a. Dynamic hazard b. Static-0 hazard c. Static-1 hazard d. None
- 82) To eliminate the hazards from the logic circuits, which is used from the following

- a. Adding Consensus b. Removing consensus c. Adding momentary values d. Adding glitch
- 83) This set of Automata Theory Multiple Choice Questions & Answers (MCQs) focuses on "Moore Machine".
- 1. Moore Machine is an application of:
- a) Finite automata without input b) Finite automata with output
- c) Non- Finite automata with output d) None of the mentioned
- 84) In Moore machine, output is produced over the change of:
- a) transitions b) states c) Both d) None of the mentioned
- 85) For a give Moore Machine, Given Input='101010', thus the output would be of length:
- a) |Input|+1 b) |Input| c) |Input-1| d) Cannot be predicted
- 86) The total number of states and transitions required to form a moore machine that will produce residue mod 3.
- a) 3 and 6 b) 3 and 5 c) 2 and 4 d) 2 and 5
- 87) In mealy machine, the O/P depends upon?
- a) State b) Previous State c) State and Input d) Only Input
- 88) The ratio of number of input to the number of output in a mealy machine can be given as:
- a) 1 b) n: n+1 c) n+1: n d) None of the mentioned
- 89) Mealy and Moore machine can be categorized as:
- a) Inducers b) Transducers c) Turing Machines d) Linearly Bounder Automata
- 90) The major difference between Mealy and Moore machine is about:
- a) Output Variations b) Input Variations c) Both d) None of the mentioned
- 91) In mealy machine, the O/P depends upon?
- a) State b) Previous State c) State and Input d) Only Input
- 92) Which of the given are correct?
- a) Moore machine has 6-tuples b) Mealy machine has 6-tuples
- c) Both Mealy and Moore has 6-tuples d) None of the mentioned
- 93) The following mealy machine outputs which of the following?

- a) 9's Complement b) 2's Complement c) 1's Complement d) 10's Complement
- 94) The O/P of Mealy machine can be represented in the following format:
- a) $Op(t) = \delta(Op(t))$ b) $Op(t) = \delta(Op(t)i(t))$ c) Op(t): $\sum d$) None of the mentioned
- 95) The ratio of number of input to the number of output in a mealy machine can be given as:
- a) 1 b) n: n+1 c) n+1: n d) None of the mentioned
- 96) Mealy and Moore machine can be categorized as:
- a) Inducers b) Transducers c) Turing Machines d) Linearly Bounder Automata
- 97) The major difference between Mealy and Moore machine is about:
- a) Output Variations b) Input Variations c) Both d) None of the mentioned
- 98) Which of the following does the given Mealy machine represents?

- a) 9's Complement b) 2's Complement c) 1's Complement d) 10's Complement
- 99) Which one among the following is true?

A mealy machine

- a) produces a language b) produces a grammar c) can be converted to NFA
- d) has less circuit delays
- 100) Moore Machine is an application of:
- a) Finite automata without input b) Finite automata with output c) Non-Finite automata with output

PART-B

- 1. Find minimal SOP expressions for the following:
 - a. Z=AD+BCD+A†C
 - b. $Z=AB(A\dagger CD+AE+EG)$
 - c. Z=ABC+AB†CE+ACDE+A†B†D+B†CDE
- 2. With the state diagram as example, list the difference between Mealy and Moore circuit.
- 3. i. Write a short notes on PROM.
 - ii. Implement the Boolean function using PAL $F = \sum (2,12,13)$.
- 4. List the types of operator available in VHDL and explain any two.
- 5. Explain the package in VHDL.
- 6. Write a VHDL code for D-flip flop.
- 7. Design a single bit comparator and write the VHDL code for the same.
- 8. Implement Full Adder only using 2:1 MUX in Shannon's expansion.
- 9. Explain Static-1 hazard using an example.
- 10. Write the differences between Moore and Mealy Machine.
- 11. Implement F (A, B, C) = \sum (1, 3, 4, 7) using ROM.
- 12. Compare PAL, PLA and ROM.
- 13. Prove A'B'C'D'+A'BC'D'+A'BD+A'BC'D+ABCD+ACD'+B'CD'=
- A'C'D'+A'BD+B'CD'+ABC using Consensus Theorem
- 14. Implement 2 input NAND Gate using 2:1 and 4:1 MUX.
- 15. What is the difference between Signal and Variable? Give an example.
- 16. Explain the various wait statements in VHDL.
- 17. What is the use of Procedure? How it will be called in the main program?
- 18. Write a VHDL code for Half Subtractor using dataflow model.
- 19. Using behavioral model, write a VHDL program for D flip-flop.
- 20. What is the use of Concurrent Select statement? Explain with an example.
- 21. How Generate statement is used? Give example.
- 22. With an example, Explain the Enumerated data type.
- 23. Write a program for 1X4 De-multiplexer using structural model.
- 24. Implement 4:2 Encoder using behavioral model.

PART-C

- 1. a) i) Implement $F(A,B,C,D) = \sum (5, 7, 10, 15)$ using Reed-Muller Expansion. (6)
 - ii) Find the hazard free circuit for the function $F(A, B, C) = \sum (1, 3, 6, 7)$. (6)
- b) Design mod-5 Synchronous Counter using JK Flip-Flops. (12
- 2. a) Draw a Logic Diagram, State Table and State Diagram using Moore Model for the sequential circuit which consists of two JK Flip-Flops, an input x and an output y. The input to the flip-flops and output are as

$$J_A=B$$
, $J_B=x'$, $K_A=Bx'$, $K_B=A \oplus x$ and output $y=AB$ (12)

- b) With neat diagram elaborate the details of Xilinx XC-4000 CLB. (12)
- a) Draw a state diagram to detect the sequence "1101" without overlapping using Mealy Model and also design it using D Flip-Flops. (12)
 - b) Implement the following functions using PLA (12)

$$F_1(A,B,C) = \sum (3,5,6,7)$$
 $F_2(A,B,C) = \sum (0,2,4,7)$

4. a) Realize the following using PAL

(12)

- 1. $W(A,B,C,D) = \sum (2,12,13)$
- 2. $X(A,B,C,D) = \sum (7,8,9,10,11,12,13,14,15)$
- 3. $Y(A,B,C,D) = \sum (0,2,3,4,5,6,7,8,10,11,15)$
- 4. $Z(A,B,C,D) = \sum (1,2,8,12,13)$

5 b) (12)

Draw the reduced State Diagram using State Reduction Technique.

- a) i) Implement the expression F=(A·B) + (B'·C) + D using Shannon's Expansion Theorem.
 - ii) Draw the state diagram for Moore Machine to detect the sequence "11011" with overlapping.
 - 7 b) Reduce the number of Gates required for the circuit which has the following Multiple Output functions $F1(w,x,y,z) = \sum (3,6,7,11,12,13,14,15)$

$F2(w,x,y,z) = \sum (4,6,7,12,14,15)$ $F3(w,x,y,z) = \sum (3,4,11,12,13)$

- 8. Explain Reed Muller expansion theorem with an example.
- 9. By applying the Shannon's expansion theorem implement the following function using one
- 2xl multiplexer and logic gates. F X'Y'Z'+ X'Y'Z'+ X'YZ + XY'Z'+ XY'Z
- 10. Simplify the following Boolean equation and eliminate the consensus terms.
- $F_1 = A'C' + ABD + BC'D + AB'D' + ABCD'$

F₂=A'B+ABD+AB'CD'+BC

- 11. a With the design example, explain how multiplexer is working as logic function generator.
- b. A sequential circuit has one input (X) and one output (Z). The circuit produces an output
- Z=1 ior the input sequence 101. Find the Mealy state graph and design the circuit using D flip
- flop. X = 001 101 1001010100; Z = 00AA010000010100
- 12. Design a synchronous 3-bit gray code up-counter using JK flip flops.
- 13. With a neat sketch explain the Xilinx 4000 architecture.
- 14 . i. What is an entity in VHDL?
 - ii. What is the significance of architecture declaration in VHDL?
 - iii. Define process statement and list its types and explain any two.
- 15 b. i. Explain the different types of data objects present in VHDL.
- ii. Distinguish between concurrent and sequential signal assignment with e6ample.
- 16. a. Develop a VHDL program for BCD adder using full adders and logic gates as a component.
- 17 b.i. Write a VHDL program for 3x8 decoder with enable input in dataflow modeling.
- ii. Write a VHDL program for 4-bit up/down counter in behavioral modeling.
- 18. Write a program to design 1X16 De-multiplexer using 1X4 De-multiplexer.
- 19. Implement 4-bit Up counter using behavioral model.
- 20. What are the different Data Types in VHDL? Explain with examples.
- 21. What are the different types of Data Objects in VHDL? Explain with examples.
- 22. Design and implement 8X1 Multiplexer using 4X1 and 2X1 Multiplexer.
- 23. i) Using case statement, write a program for JK Flipflop.
 - ii) How Function is declared in package and how it is called in main program?
- 24. Convert 4-bit i) Binary to Gray code ii) Gray to Binary code.