

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 11

Subespaços Vetoriais - Operações

Intersecção, União, Soma, Soma Direta

Professora: Isamara C. Alves

Data: 08/04/2021

Subespaços Vetoriais Exemplos

1.
$$W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$

Subespaços Vetoriais Exemplos

1.
$$W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$
 é um subespaço vetorial do \mathbb{R}^2 .

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

1.
$$W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$
 é um subespaço vetorial do \mathbb{R}^2 .

(I) Adição de vetores:
$$\forall u = (x, x), v = (y, y) \in \mathcal{W}$$
;

1.
$$W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$
 é um subespaço vetorial do \mathbb{R}^2 .

(I) Adição de vetores:
$$\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow$$

1.
$$W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$
 é um subespaço vetorial do \mathbb{R}^2 .

(I) Adição de vetores:
$$\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar:

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R}$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$
- 2. $W = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$
- 2. $W = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ é um subespaço vetorial do \mathbb{R}^2 .

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$
- 2. $W = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$
- 2. $W = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, -x), v = (y, -y) \in \mathcal{W};$$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$
- 2. $W = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, -x), v = (y, -y) \in \mathcal{W}; \Rightarrow$$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$
- 2. $W = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, -x), v = (y, -y) \in \mathcal{W}; \Rightarrow u + v = (x + y, -(x + y)) \in \mathcal{W}$$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$
- 2. $W = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, -x), v = (y, -y) \in \mathcal{W}; \Rightarrow u + v = (x + y, -(x + y)) \in \mathcal{W}$$

(II) Multiplicação por escalar:

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$
- 2. $W = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, -x), v = (y, -y) \in \mathcal{W}; \Rightarrow u + v = (x + y, -(x + y)) \in \mathcal{W}$$

(II) Multiplicação por escalar: $\forall u = (x, -x) \in \mathcal{W}; \forall \lambda \in \mathbb{R}$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$
- 2. $W = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, -x), v = (y, -y) \in \mathcal{W}; \Rightarrow u + v = (x + y, -(x + y)) \in \mathcal{W}$$

(II) Multiplicação por escalar: $\forall u = (x, -x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = (\lambda x, -(\lambda x)) \in \mathcal{W}.$

- 1. $W = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores: $\forall u = (x, x), v = (y, y) \in \mathcal{W}; \Rightarrow u + v \in \mathcal{W}$
 - (II) Multiplicação por escalar: $\forall u = (x, x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u \in \mathcal{W}.$
- 2. $W = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ é um subespaço vetorial do \mathbb{R}^2 .
 - (I) Adição de vetores:

$$\forall u = (x, -x), v = (y, -y) \in \mathcal{W}; \Rightarrow u + v = (x + y, -(x + y)) \in \mathcal{W}$$

(II) Multiplicação por escalar: $\forall u = (x, -x) \in \mathcal{W}; \forall \lambda \in \mathbb{R} \Rightarrow \lambda u = (\lambda x, -(\lambda x)) \in \mathcal{W}.$

Sejam
$$\mathcal{W}_1 = \{u = (x,y) \in \mathbb{R}^2 | y = x\}$$

Sejam
$$\mathcal{W}_1=\{u=(x,y)\in\mathbb{R}^2|y=x\}$$
 e $\mathcal{W}_2=\{u=(x,y)\in\mathbb{R}^2|y=-x\}$

Exemplos

Sejam $W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$.

Sejam
$$W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$
 e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$.

Figura: W_1 e W_2 subespaços de V.

Sejam
$$\mathcal{W}_1 = \{u = (x,y) \in \mathbb{R}^2 | y = x\}$$

Sejam
$$\mathcal{W}_1=\{u=(x,y)\in\mathbb{R}^2|y=x\}$$
 e $\mathcal{W}_2=\{u=(x,y)\in\mathbb{R}^2|y=-x\}$

Sejam
$$W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$
 e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$.

Exemplos

Sejam $W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$.

Exemplos

Sejam $W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$ e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$.

Figura: $W_1 \cap W_2$ e $W_1 \cup W_2$.

Sejam
$$\mathcal{W}_1 = \{u = (x,y) \in \mathbb{R}^2 | y = x\}$$

Sejam
$$\mathcal{W}_1=\{u=(x,y)\in\mathbb{R}^2|y=x\}$$
 e $\mathcal{W}_2=\{u=(x,y)\in\mathbb{R}^2|y=-x\}$

Sejam
$$W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$
 e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$.

Sejam
$$W_1 = \{u = (x, y) \in \mathbb{R}^2 | y = x\}$$
 e $W_2 = \{u = (x, y) \in \mathbb{R}^2 | y = -x\}$ subespaços vetoriais do $V = \mathbb{R}^2$.

Figura: $W_1 + W_2 = V = \mathbb{R}^2$.

Operação: Intersecção

Definição:

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V.$

Operação: INTERSECÇÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap\mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$

Operação: INTERSECÇÃO

Definição:

Operação: Intersecção

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Indicamos por $\mathcal{W}_1 \cap \mathcal{W}_2$ e denominamos INTERSECÇÃO DOS SUBESPAÇOS W_1 e W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \cap \mathcal{W}_2 =$$

Operação: Intersecção

Definição:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: INTERSECÇÃO

Definição:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \mathbf{E}\}$$

Operação: INTERSECÇÃO

Definição:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

EXEMPLO:

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$,

Operação: Intersecção

Definição:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

EXEMPLO: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e

Operação: Intersecção

Definição:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

EXEMPLO: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y+z=0\}$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in \mathcal{W}_1 \mid \mathbf{E}\}$$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \to u \in W_2 \}$$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1\cap\mathcal{W}_2=\{u\in\mathcal{V}\mid$$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \to u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \; \mathbf{E} \}$$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \mathbf{E} \ y + z = 0 \}$$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \mathbf{E} \ y + z = 0 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2\}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \mathbf{E} \ y + z = 0 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (0, -z, z)\}$$

Operação: Intersecção

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cap \mathcal W_2$ e denominamos Intersecção dos Subespaços $\mathcal W_1$ e $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \mathbf{E} \ u \in W_2\}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \mathbf{E} \ y + z = 0 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (0, -z, z)\}$$

Operação: UNIÃO

Definição:

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V.$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1\cup\mathcal W_2$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos UNIÃO DOS SUBESPAÇOS $\mathcal W_1$ com $\mathcal W_2$

Operação: UNIÃO

Definição:

Operação: UNIÃO

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Indicamos por $\mathcal{W}_1 \cup \mathcal{W}_2$ e denominamos U_{NIAO} DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \cup \mathcal{W}_2 =$$

Operação: UNIÃO

Definição:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: UNIÃO

Definição:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ou}\}$$

Operação: UNIÃO

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Indicamos por $\mathcal{W}_1 \cup \mathcal{W}_2$ e denominamos U_{NIAO} DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde AO}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2\}$$

EXEMPLO:

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde{A}O}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V}=\mathbb{R}^3$,

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde{A}O}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

Exemplo: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde AO}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\text{Exemplo:} \quad \mathsf{Sejam} \,\, \mathcal{V} = \mathbb{R}^3, \, \mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\} \,\, \mathsf{e} \,\, \mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde AO}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde{A}O}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde{A}O}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ou}\}$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde{A}O}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos U_{NIAO} DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos U_{NIAO} DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ ou }$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde{A}O}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ ou } y + z = 0 \}$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde{A}O}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ ou } y + z = 0 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos $U_{NI\tilde AO}$ DOS SUBESPAÇOS W_1 com W_2 o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ ou } y + z = 0 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (0, y, z)\}$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos U_{NIAO} DOS SUBESPAÇOS $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ ou } y + z = 0 \}$$

$$W_1 \cup W_2 = \{u \in V \mid u = (0, y, z) \text{ ou } u = (x, -z, z)\}$$

Operação: UNIÃO

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1 \cup \mathcal W_2$ e denominamos U_{NIAO} DOS SUBESPAÇOS $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ ou } y + z = 0 \}$$

$$W_1 \cup W_2 = \{u \in V \mid u = (0, y, z) \text{ ou } u = (x, -z, z)\}$$

Operação: SOMA

Definição:

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V.$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$

Operação: SOMA

Definição:

Operação: SOMA

Definição:

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid$$

Operação: SOMA

Definição:

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 + u_2;$$

Operação: SOMA

Definição:

$$W_1 + W_2 = \{u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in V\}$$

Operação: SOMA

Definição:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO:

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V}=\mathbb{R}^3$,

Operação: SOMA

Definição:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e

Operação: SOMA

Definição:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y+z=0\}$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 + u_2;$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$W_1 + W_2 = \{u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in V\}$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 + u_2;$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$W_1 + W_2 = \{u \in V \mid u = u_1 + u_2; u_1 = (0, y_1, z_1) \in W_1 \text{ e}\}$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ e \ u_2 = (x_2, -z_2, z_2) \in W_2 \}$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 + u_2; \ u_1 = (0, y_1, z_1) \in W_1 \text{ e } u_2 = (x_2, -z_2, z_2) \in W_2\}$$

$$W_1 + W_2 = \{u \in V \mid$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 + u_2; \ u_1 = (0, y_1, z_1) \in W_1 \text{ e } u_2 = (x_2, -z_2, z_2) \in W_2\}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = 0 \}$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 + u_2; \ u_1 = (0, y_1, z_1) \in W_1 \text{ e } u_2 = (x_2, -z_2, z_2) \in W_2\}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = (x_2,$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 + u_2; \ u_1 \in W_1 \ \text{e} \ u_2 \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 + u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ \text{e} \ u_2 = (x_2, -z_2, z_2) \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = (x_2, y_1 - z_2, z_2) \in W_2 \}$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 + u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ \text{e} \ u_2 = (x_2, -z_2, z_2) \in W_2\}$$

$$W_1 + W_2 = \{u \in V \mid u = (x_2, y_1 - z_2, z_1 + z_2)\}$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 + u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ \text{e} \ u_2 = (x_2, -z_2, z_2) \in W_2\}$$

$$W_1 + W_2 = \{u \in V \mid u = (x_2, y_1 - z_2, z_1 + z_2)\}$$

Operação: SOMA

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$. Indicamos por $\mathcal W_1+\mathcal W_2$ e denominamos Soma dos Subespaços $\mathcal W_1$ com $\mathcal W_2$ o seguinte subconjunto do espaço vetorial $\mathcal V$:

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 + u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ \text{e} \ u_2 = (x_2, -z_2, z_2) \in W_2\}$$

$$W_1 + W_2 = \{u \in V \mid u = (x_2, y_1 - z_2, z_1 + z_2)\}$$

Operação: Soma Direta

Definição:

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$;

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}$. Indicamos por $\mathcal W_1\oplus\mathcal W_2$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $\mathcal{W}_1 \oplus \mathcal{W}_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2;$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in W_1 \in \mathcal{W}_1 \in \mathcal{V}\}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in \mathcal{W}_1 \in u_2 \in \mathcal{W}_2 \}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in \mathcal{W}_1 \in u_2 \in \mathcal{W}_2 \}$$

EXEMPLO:

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$,

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y=z=0\}$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in \mathcal{W}_1 \in u_2 \in \mathcal{W}_2 \}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$ subespaços vetoriais de \mathcal{V} .

Então, $W_{\bullet} \cap W_{\bullet} = \int u$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in \mathcal{W}_1 \in u_2 \in \mathcal{W}_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1\cap\mathcal{W}_2=\{u\in\mathcal{V}\mid x=0\ \textbf{E}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in \mathcal{W}_1 \in u_2 \in \mathcal{W}_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \mathbf{E} \ y = z = 0 \}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$W_1 \cap W_2 = \{u \in V \mid x = 0 \text{ } \mathbf{E} \text{ } y = z = 0\} = \{u = (0, 0, 0)\}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ } \mathbf{E} \text{ } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ E } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2;$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ } \mathbf{E} \text{ } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ e$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ E } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

$$W_1 \oplus W_2 = \{ u \in V \mid u = u_1 \oplus u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ e \ u_2 = (x_2, 0, 0) \in W_2 \}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ } \mathbf{E} \text{ } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 = (0, y_1, z_1) \in \mathcal{W}_1 \ e \ u_2 = (x_2, 0, 0) \in \mathcal{W}_2\}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ E } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ e \ u_2 = (x_2, 0, 0) \in W_2\}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = \}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetorials de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$ subespaços vetoriais de \mathcal{V} . Então.

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ } \mathbf{E} \text{ } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ \text{e} \ u_2 = (x_2, 0, 0) \in W_2 \}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = (x_2, x_2, y_1) \mid v \in \mathcal{V} \mid v \in \mathcal{V} \}$$

MAT A07 - Álgebra Linear A - Semestre Letivo Suplementar - 2021.1

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in W_1 \in u_2 \in W_2\}$$

EXEMPLO: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$ subespaços vetoriais de \mathcal{V} .

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ } \mathbf{E} \text{ } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 = (0, y_1, z_1) \in \mathcal{W}_1 \ e \ u_2 = (x_2, 0, 0) \in \mathcal{W}_2\}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ } \mathbf{E} \text{ } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 = (0, y_1, z_1) \in \mathcal{W}_1 \ \text{e} \ u_2 = (x_2, 0, 0) \in \mathcal{W}_2\}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = (x_2, y_1, z_1) \}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ } \mathbf{E} \text{ } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ e \ u_2 = (x_2, 0, 0) \in W_2\}$$

$$W_1 \oplus W_2 = \{ u \in V \mid u = (x_2, y_1, z_1) \}$$

Operação: Soma Direta

Definição:

Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$; tais que $\mathcal W_1\cap\mathcal W_2=\{0\}.$

Indicamos por $W_1 \oplus W_2$ e denominamos Soma Direta dos Subespaços W_1 com W_2 o seguinte subconjunto do espaço vetorial \mathcal{V} :

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 \in W_1 \in u_2 \in W_2 \}$$

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid x = 0 \text{ } \mathbf{E} \text{ } y = z = 0 \} = \{ u = (0, 0, 0) \} = \{ 0 \}$$

$$\mathcal{W}_1 \oplus \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = u_1 \oplus u_2; \ u_1 = (0, y_1, z_1) \in W_1 \ e \ u_2 = (x_2, 0, 0) \in W_2\}$$

$$W_1 \oplus W_2 = \{ u \in V \mid u = (x_2, y_1, z_1) \}$$

Subespaços Vetoriais Observações

1. Note que na SOMA DIRETA dos subespaços vetoriais,

Subespaços Vetoriais Observações

1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$;

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespacos.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço:

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$;

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e

Subespacos Vetoriais Observações

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

Observações

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

EXEMPLO:

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

Exemplo:
$$\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$$
 e

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

Exemplo:
$$\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$$
 e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

Exemplo:
$$\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$$
 e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$
Então, $u \in \mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow u = u_1 \oplus u_2 =$

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

```
EXEMPLO: W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \} e W_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}
Então.
                     u \in \mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow u = u_1 \oplus u_2 = (x_2,
```

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

```
EXEMPLO: W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \} e W_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}
Então.
                      u \in \mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow u = u_1 \oplus u_2 = (x_2, v_1, \dots, v_n)
```

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

```
EXEMPLO: W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \} e W_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}
Então.
                     u \in \mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow u = u_1 \oplus u_2 = (x_2, v_1, z_1):
```

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

```
EXEMPLO: W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \} e W_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}
Então.
                  u \in W_1 \oplus W_2 \Rightarrow u = u_1 \oplus u_2 = (x_2, y_1, z_1); \ u_1 \in W_1 e
```

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

```
EXEMPLO: W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \} e W_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}
Então.
                       u \in \mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow u = u_1 \oplus u_2 = (x_2, y_1, z_1); \ u_1 \in \mathcal{W}_1 \in \mathcal{W}_2 \in \mathcal{W}_2
```

Observações

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o **subespaço vetorial nulo** {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in \mathcal{W}_1$ e $u_2 \in \mathcal{W}_2$.

Exemplo:
$$\mathcal{W}_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \}$$
 e $\mathcal{W}_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}$
Então, $u \in \mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow u = u_1 \oplus u_2 = (x_2, y_1, z_1); \ u_1 \in \mathcal{W}_1 \text{ e } u_2 \in \mathcal{W}_2$

Note que se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então;

Observações

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

EXEMPLO:
$$W_1 = \{u \in \mathbb{R}^3 \mid x = 0\} \text{ e } W_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$$

Então, $u \in W_1 \oplus W_2 \Rightarrow u = u_1 \oplus u_2 = (x_2, y_1, z_1); \ u_1 \in W_1 \text{ e } u_2 \in W_2$

Note que se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então; u = (2, 4, -7) = (0, y, z) + (x, 0, 0)

OBSERVAÇÕES

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

EXEMPLO:
$$\mathcal{W}_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \}$$
 e $\mathcal{W}_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}$
Então, $u \in \mathcal{W}_1 \oplus \mathcal{W}_2 \Rightarrow u = u_1 \oplus u_2 = (x_2, y_1, z_1); \ u_1 \in \mathcal{W}_1 \text{ e } u_2 \in \mathcal{W}_2$

Note que se tomarmos, por exemplo, um vetor
$$u = (2, 4, -7) \in \mathcal{W}_1 + \mathcal{W}_2$$
, então; $u = (2, 4, -7) = (0, y, z) + (x, 0, 0) = \underbrace{(0, 4, -7)}_{u_1 \in \mathcal{W}_1}$

OBSERVAÇÕES

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o subespaço vetorial nulo {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

EXEMPLO:
$$W_1 = \{u \in \mathbb{R}^3 \mid x = 0\} \text{ e } W_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$$

Então, $u \in W_1 \oplus W_2 \Rightarrow u = u_1 \oplus u_2 = (x_2, y_1, z_1); \ u_1 \in W_1 \text{ e } u_2 \in W_2$

Note que se tomarmos, por exemplo, um vetor
$$u = (2, 4, -7) \in \mathcal{W}_1 + \mathcal{W}_2$$
, então; $u = (2, 4, -7) = (0, y, z) + (x, 0, 0) = \underbrace{(0, 4, -7)}_{u_1 \in \mathcal{W}_1} + \underbrace{(2, 0, 0)}_{u_2 \in \mathcal{W}_2}$;

Observações

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o **subespaço vetorial nulo** {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in \mathcal{W}_1$ e $u_2 \in \mathcal{W}_2$.

EXEMPLO:
$$\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$$
 e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y=z=0\}$ Então,

$$u\in\mathcal{W}_1\oplus\mathcal{W}_2\Rightarrow u=u_1\oplus u_2=(x_2,y_1,z_1);\ u_1\in\mathcal{W}_1\ e\ u_2\in\mathcal{W}_2$$

Note que se tomarmos, por exemplo, um vetor
$$u = (2, 4, -7) \in \mathcal{W}_1 + \mathcal{W}_2$$
, então; $u = (2, 4, -7) = (0, y, z) + (x, 0, 0) = \underbrace{(0, 4, -7)}_{u_1 \in \mathcal{W}_1} + \underbrace{(2, 0, 0)}_{u_2 \in \mathcal{W}_2}$;

não conseguimos outros vetores em W_1 e W_2 cuja soma resulte no vetor u.

Observações

- 1. Note que na SOMA DIRETA dos subespaços vetoriais, o **subespaço vetorial nulo** {0} é o conjunto intersecção destes susbespaços.
- 2. Os vetores $u \in \mathcal{W}_1 \oplus \mathcal{W}_2$; são obtidos de FORMA ÚNICA pela soma dos vetores oriundos de cada subespaço: $u = u_1 \oplus u_2$; $u_1 \in \mathcal{W}_1$ e $u_2 \in \mathcal{W}_2$.

EXEMPLO:
$$\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$$
 e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y=z=0\}$ Então,

$$u\in\mathcal{W}_1\oplus\mathcal{W}_2\Rightarrow u=u_1\oplus u_2=(x_2,y_1,z_1);\ u_1\in\mathcal{W}_1\ e\ u_2\in\mathcal{W}_2$$

Note que se tomarmos, por exemplo, um vetor
$$u = (2, 4, -7) \in \mathcal{W}_1 + \mathcal{W}_2$$
, então; $u = (2, 4, -7) = (0, y, z) + (x, 0, 0) = \underbrace{(0, 4, -7)}_{u_1 \in \mathcal{W}_1} + \underbrace{(2, 0, 0)}_{u_2 \in \mathcal{W}_2}$;

não conseguimos outros vetores em W_1 e W_2 cuja soma resulte no vetor u.

 ${\cal V}$ é Soma Direta dos Subespaços

Definição:

 \mathcal{V} é Soma Direta dos Subespaços

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

 \mathcal{V} é Soma Direta dos Subespaços

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Dizemos que V é Soma Direta dos Subespaços W_1 com W_2

 \mathcal{V} é Soma Direta dos Subespaços

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

 \mathcal{V} é Soma Direta dos Subespaços

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

 \mathcal{V} é Soma Direta dos Subespaços

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que \mathcal{V} é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

 \mathcal{V} é Soma Direta dos Subespacos

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que \mathcal{V} é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

NOTAÇÃO:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

 \mathcal{V} é Soma Direta dos Subespacos

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

Notação:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

Observe que $\forall u \in \mathcal{V}$

 \mathcal{V} é Soma Direta dos Subespacos

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

Notação:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

Observe que $\forall u \in \mathcal{V} \Rightarrow u = u_1 \oplus u_2$;

 \mathcal{V} é Soma Direta dos Subespacos

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que \mathcal{V} é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

Notação:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

 \mathcal{V} é Soma Direta dos Subespacos

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que \mathcal{V} é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

Notação:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

 \mathcal{V} é Soma Direta dos Subespacos

Definição:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que \mathcal{V} é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

Notação:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

Observe que
$$\forall u \in \mathcal{V} \Rightarrow u = u_1 \oplus u_2; \ u_1 \in W_1 \ e \ u_2 \in W_2.$$

EXEMPLO.1:

 \mathcal{V} é Soma Direta dos Subespacos

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que \mathcal{V} é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

Notação:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

Observe que $\forall u \in \mathcal{V} \Rightarrow u = u_1 \oplus u_2$: $u_1 \in W_1$ e $u_2 \in W_2$.

EXEMPLO.1: Sejam $\mathcal{V} = \mathbb{R}^3$.

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPACOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

Notação:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

Observe que $\forall u \in \mathcal{V} \Rightarrow u = u_1 \oplus u_2$; $u_1 \in W_1$ e $u_2 \in W_2$.

EXEMPLO.1: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPACOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

NOTAÇÃO:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

Observe que $\forall u \in \mathcal{V} \Rightarrow u = u_1 \oplus u_2$: $u_1 \in W_1$ e $u_2 \in W_2$.

EXEMPLO.1: Sejam $V = \mathbb{R}^3$, $W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \}$ e $W_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}$.

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPACOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

NOTAÇÃO:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

$$\text{Exemplo.1: Sejam } \mathcal{V} = \mathbb{R}^3, \; \mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\} \text{ e } \mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}.$$

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPACOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

NOTAÇÃO:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

EXEMPLO.1: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y=z=0\}$.

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 =$$

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPACOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

NOTAÇÃO:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

EXEMPLO.1: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$.

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 +$$

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPACOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

NOTAÇÃO:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

EXEMPLO.1: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$.

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 = (x_2, u_1) \mid u = u_1 + u_2 = (x_2, u_2) \}$$

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPACOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

NOTAÇÃO:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

EXEMPLO.1: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$.

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPACOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

NOTAÇÃO:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

Observe que $\forall u \in \mathcal{V} \Rightarrow u = u_1 \oplus u_2$: $u_1 \in W_1$ e $u_2 \in W_2$.

EXEMPLO.1: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$.

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 = (x_2, y_1, z_1);$$

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} . Dizemos que V é SOMA DIRETA DOS SUBESPACOS W_1 com W_2 se, e somente se,

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

NOTAÇÃO:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

Observe que $\forall u \in \mathcal{V} \Rightarrow u = u_1 \oplus u_2$: $u_1 \in W_1$ e $u_2 \in W_2$.

EXEMPLO.1: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y = z = 0\}$.

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 = (x_2, y_1, z_1); u_1 = (0, y_1, z_1) \in W_1 e$$

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Dizemos que V é SOMA DIRETA DOS SUBESPACOS W_1 com W_2 se, e somente se,

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$
; e

(II)
$$V = W_1 + W_2$$
.

NOTAÇÃO:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

Observe que $\forall u \in \mathcal{V} \Rightarrow u = u_1 \oplus u_2$: $u_1 \in W_1$ e $u_2 \in W_2$.

EXEMPLO.1: Sejam $V = \mathbb{R}^3$, $W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \}$ e $W_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}$.

- (I) $W_1 \cap W_2 = \{0\}$; e
- (II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 + u_2 = (x_2, y_1, z_1); u_1 = (0, y_1, z_1) \in \mathcal{W}_1 \text{ e } u_2 = (0, y_1, z_1) \in \mathcal{$ $(x_2, 0, 0) \in W_2$.

$${\cal V}$$
 é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Dizemos que \mathcal{V} é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$
; e

(II)
$$\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$$
.

Notação:
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$

Observe que $\forall u \in \mathcal{V} \Rightarrow u = u_1 \oplus u_2$: $u_1 \in W_1$ e $u_2 \in W_2$.

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

(II)
$$\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 + u_2 = (x_2, y_1, z_1); u_1 = (0, y_1, z_1) \in \mathcal{W}_1 \in \mathcal{U}_2 = (x_2, 0, 0) \in \mathcal{W}_2 \}.$$

EXEMPLO.1: Sejam $V = \mathbb{R}^3$, $W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \}$ e $W_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}$.

logo, por (I) e (II); $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$.

 \mathcal{V} é Soma Direta dos Subespaços

Definicão:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

EXEMPLO.1: Sejam $V = \mathbb{R}^3$, $W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \}$ e $W_2 = \{ u \in \mathbb{R}^3 \mid y = z = 0 \}$.

Dizemos que \mathcal{V} é SOMA DIRETA DOS SUBESPAÇOS W_1 com W_2 se, e somente se,

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{0\}$$
; e

(II)
$$\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2$$
.
NOTAÇÃO: $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$

Observe que
$$\forall u \in V \Rightarrow u = u \oplus u \in W$$

Observe que $\forall u \in \mathcal{V} \Rightarrow u = u_1 \oplus u_2$: $u_1 \in W_1$ e $u_2 \in W_2$.

(I)
$$W_1 \cap W_2 = \{0\}$$
; e

 $(x_2,0,0) \in W_2$.

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 = (x_2, y_1, z_1); u_1 = (0, y_1, z_1) \in W_1 \in u_2 = (y_1, y_2, y_3, z_4) \}$$

logo, por (I) e (II);
$$\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$$
.

 ${\cal V}$ é Soma Direta dos Subespaços

EXEMPLO.2:

 ${\cal V}$ é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $\mathcal{V} = \mathbb{R}^3$,

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $\mathcal{V}=\mathbb{R}^3$, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y+z=0\}$.

$$\text{Exemplo.2: Sejam } \mathcal{V} = \mathbb{R}^3, \ \mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\} \text{ e } \mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}.$$

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\}$$

$$\text{Exemplo.2: Sejam } \mathcal{V} = \mathbb{R}^3 \text{, } \mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\} \text{ e } \mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}.$$

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

EXEMPLO.2: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y+z=0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2)$

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = (0, 4, -7)$

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = (0, 4, -7) + (2, 0, 0);$ $u_1 \in W_1$

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = (0, 4, -7) + (2, 0, 0);$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2)$$

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{} + \underbrace{(2, 0, 0)}_{};$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u_1 \in W_1} \underbrace{0, 1, -4}_{u_1 \in W_1}$$

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$V = \mathbb{R}^3$$
, $W_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $W_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{\text{ell}} + \underbrace{(2, 0, 0)}_{\text{ell}};$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u_1 \in W_1} + \underbrace{(2, 3, -3)}_{u_2 \in W_2};$$

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então;

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{u_1 \in W_1} + \underbrace{(2, 0, 0)}_{u_2 \in W_2};$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u_1 \in W_1} + \underbrace{(2, 3, -3)}_{u_2 \in W_2};$$

ou. . . .

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então;

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{u_1 \in W_1} + \underbrace{(2, 0, 0)}_{u_2 \in W_2};$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u_1 \in W_1} + \underbrace{(2, 3, -3)}_{u_2 \in W_2};$$

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(1) $W_1 \cap W_2 = \{ u = (0, -z_2, z_2) \} \neq \{ 0 \}.$ W_1 não é soma direta com W_2 .

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{} + \underbrace{(2, 0, 0)}_{};$

$$u_1 = (2, 4, -7) - (0, 4, 7, 1) + (x_2, -7, 7, 2) - (0, 1, -4) + (2, 3, 3, 2)$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u_1 \in W_1} + \underbrace{(2, 3, -3)}_{u_2 \in W_2};$$

(II)
$$\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 =$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então;

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{y_1 \in W_1} + \underbrace{(2, 0, 0)}_{y_2 \in W_2}$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u_1 \in W_1} + \underbrace{(2, 3, -3)}_{u_2 \in W_2};$$

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 + u_2 + u_2 + u_3 + u_3 + u_4 + u_4 + u_4 + u_4 + u_4 + u_4 + u_5 + u_4 + u_5 +$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então;

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{u_1 \in W_1} + \underbrace{(2, 0, 0)}_{u_2 \in W_2};$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u \in W_1} + \underbrace{(2, 3, -3)}_{u \in W_2};$$

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2);$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então;

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{(2, 0, 0)} + \underbrace{(2, 0, 0)}_{(2, 0, 0)};$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u_1 \in W_1} + \underbrace{(2, 3, -3)}_{u_2 \in W_2};$$

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in W_1 \text{ e}$$

EXEMPLO.2: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y+z=0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então;

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{(0, 4, -7)} + \underbrace{(2, 0, 0)}_{(0, 2, 1)};$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u_1 \in W_1} + \underbrace{(2, 3, -3)}_{u_2 \in W_2};$$

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in W_1 \in u_2 = (x_2, -z_2, z_2) \in W_2\}.$$

$$\text{Exemplo.2: Sejam } \mathcal{V} = \mathbb{R}^3 \text{, } \mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\} \text{ e } \mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}.$$

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então;

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{y_1 \in W_2} + \underbrace{(2, 0, 0)}_{y_2 \in W_2};$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u_1 \in W_1} + \underbrace{(2, 3, -3)}_{u_2 \in W_2};$$

ou. ... Note que. u não é obtido de forma única!

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in W_1 \in u_2 = (x_2, -z_2, z_2) \in W_2\}.$$

logo, por (I); \mathcal{V} não é $\mathcal{W}_1 \oplus \mathcal{W}_2$.

EXEMPLO.2: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y+z=0\}.$

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então;

$$u = (2, 4, -7) = (0, y_1, z_1) + (x, -z_2, z_2) = \underbrace{(0, 4, -7)}_{y_1 \in W_2} + \underbrace{(2, 0, 0)}_{y_2 \in W_2};$$

ou,
$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = \underbrace{(0, 1, -4)}_{u_1 \in W_1} + \underbrace{(2, 3, -3)}_{u_2 \in W_2};$$

ou. ... Note que. u não é obtido de forma única!

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in W_1 \in u_2 = (x_2, -z_2, z_2) \in W_2\}.$$

logo, por (I); \mathcal{V} não é $\mathcal{W}_1 \oplus \mathcal{W}_2$.

 ${\cal V}$ é Soma Direta dos Subespaços

EXEMPLO.2:

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $\mathcal{V} = \mathbb{R}^3$,

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $V = \mathbb{R}^3$, $W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \}$ e $W_2 = \{ u \in \mathbb{R}^3 \mid y + z = 0 \}$.

$$\text{Exemplo.2: Sejam } \mathcal{V} = \mathbb{R}^3, \ \mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\} \text{ e } \mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}.$$

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\}$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

EXEMPLO.2: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y+z=0\}.$

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V}=\mathbb{R}^3$$
, $\mathcal{W}_1=\{u\in\mathbb{R}^3\mid x=0\}$ e $\mathcal{W}_2=\{u\in\mathbb{R}^3\mid y+z=0\}.$

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $V = \mathbb{R}^3$, $W_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $W_2 = \{u \in \mathbb{R}^3 \mid v + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .

Assim, se tomarmos, por exemplo, um vetor $u = (2, 4, -7) \in \mathcal{W}_1 + \mathcal{W}_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = (x_2, y_1 - z_2, z_1 + z_2).$

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $V = \mathbb{R}^3$, $W_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $W_2 = \{u \in \mathbb{R}^3 \mid v + z = 0\}$.

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$
 \mathcal{W}_1 não é soma direta com \mathcal{W}_2 . Assim, se tomarmos, por exemplo, um vetor $u = (2, 4, -7) \in \mathcal{W}_1 + \mathcal{W}_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = (x_2, y_1 - z_2, z_1 + z_2).$

$$\begin{cases} x_2 & = 2 \\ y_1 & -z_2 & = 4 \\ z_1 & +z_2 & = -7 \end{cases}$$

 ${\cal V}$ é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.
(I) $\mathcal{W}_1 \cap \mathcal{W}_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}$.
 \mathcal{W}_1 não é soma direta com \mathcal{W}_2 .

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então; $u=(2,4,-7)=(0,y_1,z_1)+(x_2,-z_2,z_2)=(x_2,y_1-z_2,z_1+z_2).$ $S: \begin{cases} x_2 & =2\\ y_1 & -z_2 & =4\\ z_1 & +z_2 & =-7 \end{cases}$ $C_{3\times 5}=\begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ \end{bmatrix}$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$
 \mathcal{W}_1 não é soma direta com \mathcal{W}_2 . Assim, se tomarmos, por exemplo, um vetor $u = (2, 4, -7) \in \mathcal{W}_1 + \mathcal{W}_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = (x_2, y_1 - z_2, z_1 + z_2).$
$$\begin{cases} x_2 & = 2 \\ y_1 & -z_2 & = 4 \\ z_1 & +z_2 & = -7 \end{cases}$$
 $C_{3 \times 5} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & -1 & | & 4 \end{bmatrix}$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$
 \mathcal{W}_1 não é soma direta com \mathcal{W}_2 . Assim, se tomarmos, por exemplo, um vetor $u = (2, 4, -7) \in \mathcal{W}_1 + \mathcal{W}_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = (x_2, y_1 - z_2, z_1 + z_2).$
$$\begin{cases} x_2 & = 2 \\ y_1 & -z_2 & = 4 \\ z_1 & +z_2 & = -7 \end{cases}$$
 $C_{3 \times 5} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & -1 & | & 4 \\ 0 & 0 & 1 & 1 & | & -7 \end{cases}$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$
 \mathcal{W}_1 não é soma direta com \mathcal{W}_2 . Assim, se tomarmos, por exemplo, um vetor $u = (2, 4, -7) \in \mathcal{W}_1 + \mathcal{W}_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = (x_2, y_1 - z_2, z_1 + z_2).$
$$\begin{cases} x_2 & = 2 \\ y_1 & -z_2 & = 4 \\ z_1 & +z_2 & = -7 \end{cases}$$
 $C_{3\times 5} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & -1 & | & 4 \\ 0 & 0 & 1 & 1 & | & -7 \end{bmatrix}$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$
 \mathcal{W}_1 não é soma direta com \mathcal{W}_2 . Assim, se tomarmos, por exemplo, um vetor $u = (2, 4, -7) \in \mathcal{W}_1 + \mathcal{W}_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = (x_2, y_1 - z_2, z_1 + z_2).$
$$\begin{cases} x_2 & = 2 \\ y_1 & -z_2 & = 4 \\ z_1 & +z_2 & = -7 \end{cases}$$
 $C_{3 \times 5} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & -1 & | & 4 \\ 0 & 0 & 1 & 1 & | & -7 \end{bmatrix} P(A) = P(C) = 3$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .
Assim, se tomarmos, por exemplo, um vetor $u = (2, 4, -7) \in W_1 + W_2$, então; $u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = (x_2, y_1 - z_2, z_1 + z_2).$

$$\begin{cases} x_2 & = 2 \\ y_1 & -z_2 & = 4 \\ z_1 & +z_2 & = -7 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & -1 & | & 4 \\ 0 & 0 & 1 & 1 & | & -7 \end{bmatrix} P(A) = P(C) = 3 \text{ e N}(A) = 4 - 3 = 1.$$

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 W_1 não é soma direta com W_2 .
Assim se tomarmos por exemplo, um

Assim, se tomarmos, por exemplo, um vetor $u=(2,4,-7)\in\mathcal{W}_1+\mathcal{W}_2$, então; $u=(2,4,-7)=(0,y_1,z_1)+(x_2,-z_2,z_2)=(x_2,y_1-z_2,z_1+z_2).$

$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = (x_2, y_1 - z_2, z_1 + z_2).$$

$$S : \begin{cases} x_2 & = 2 \\ y_1 & -z_2 & = 4 \\ z_1 & +z_2 & = -7 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & -1 & | & 4 \\ 0 & 0 & 1 & 1 & | & -7 \end{bmatrix} P(A) = P(C) = 3 \text{ e } N(A) = 4 - 3 = 1.$$

Sistema Possível e Indeterminado com uma variável livre.

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 \mathcal{W}_1 não é soma direta com \mathcal{W}_2 .

Assim, se tomarmos, por exemplo, um vetor $u = (2, 4, -7) \in W_1 + W_2$, então; $u = (2, 4, -7) = (0, 4, -7) + (x_2 - 7, x_3) = (x_2 + 7, x_3) + (x_3 - 7, x_3) = (x_3 + 7, x_3) + (x_4 - 7, x_3) + (x_5 - 7, x_3) = (x_5 - 7, x_4) + (x_5 - 7, x_3) + (x_5 - 7, x_4) + (x_5 - 7, x_5) = (x_5 - 7, x_5) + (x_5 - 7, x_5) + (x_5 - 7, x_5) = (x_5 - 7, x_5) + (x_5 - 7, x_5)$

$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = (x_2, y_1 - z_2, z_1 + z_2).$$

$$S : \begin{cases} x_2 & = 2 \\ y_1 & -z_2 & = 4 \\ z_1 & +z_2 & = -7 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & -1 & | & 4 \\ 0 & 0 & 1 & 1 & | & -7 \end{bmatrix} P(A) = P(C) = 3 \text{ e } N(A) = 4 - 3 = 1.$$

Sistema Possível e Indeterminado com uma variável livre.

Logo, como o sitema possui infinitas soluções, W_1 não é soma direta com W_2 .

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(I)
$$W_1 \cap W_2 = \{u = (0, -z_2, z_2)\} \neq \{0\}.$$

 \mathcal{W}_1 não é soma direta com \mathcal{W}_2 .

Assim, se tomarmos, por exemplo, um vetor $u = (2, 4, -7) \in W_1 + W_2$, então; $u = (2, 4, -7) = (0, 4, -7) + (x_2 - 7, x_3) = (x_2 + 7, x_3) + (x_3 - 7, x_3) = (x_3 + 7, x_3) + (x_4 - 7, x_3) + (x_5 - 7, x_3) = (x_5 - 7, x_4) + (x_5 - 7, x_3) + (x_5 - 7, x_4) + (x_5 - 7, x_5) = (x_5 - 7, x_5) + (x_5 - 7, x_5) + (x_5 - 7, x_5) = (x_5 - 7, x_5) + (x_5 - 7, x_5)$

$$u = (2, 4, -7) = (0, y_1, z_1) + (x_2, -z_2, z_2) = (x_2, y_1 - z_2, z_1 + z_2).$$

$$S : \begin{cases} x_2 & = 2 \\ y_1 & -z_2 & = 4 \\ z_1 & +z_2 & = -7 \end{cases}$$

$$C_{3\times5} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 2 \\ 0 & 1 & 0 & -1 & | & 4 \\ 0 & 0 & 1 & 1 & | & -7 \end{bmatrix} P(A) = P(C) = 3 \text{ e } N(A) = 4 - 3 = 1.$$

Sistema Possível e Indeterminado com uma variável livre.

Logo, como o sitema possui infinitas soluções, W_1 não é soma direta com W_2 .

 ${\cal V}$ é Soma Direta dos Subespaços

EXEMPLO.2:

 ${\cal V}$ é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $\mathcal{V} = \mathbb{R}^3$,

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $\mathcal{V} = \mathbb{R}^3$, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e

 \mathcal{V} é Soma Direta dos Subespaços

EXEMPLO.2: Sejam $V = \mathbb{R}^3$, $W_1 = \{ u \in \mathbb{R}^3 \mid x = 0 \}$ e $W_2 = \{ u \in \mathbb{R}^3 \mid y + z = 0 \}$.

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II)
$$V = W_1 + W_2 =$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = (x, y, z) = u_1 + u_2 = v \in V \mid u = (x, y, z) = u_1 + u_2 = v \in V \}$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2);$$

$$\text{Exemplo.2: Sejam } \mathcal{V} = \mathbb{R}^3, \ \mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\} \text{ e } \mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}.$$

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in W_1 e$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in W_1 \text{ e } u_2 = (x_2, -z_2, z_2) \in W_2\}.$$

$$\begin{split} & \text{Exemplo.2: Sejam } \mathcal{V} = \mathbb{R}^3, \ \mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\} \text{ e } \mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}. \\ & \text{(II)} \ \ \mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); \ u_1 = \\ & (0, y_1, z_1) \in \mathcal{W}_1 \text{ e } u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}. \\ & S: \left\{ \begin{array}{ccc} x_2 & = x \\ y_1 & -z_2 & = y \\ z_1 & +z_2 & = z \end{array} \right. \end{split}$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II)
$$V = W_1 + W_2 = \{u \in V \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in W_1 \text{ e } u_2 = (x_2, -z_2, z_2) \in W_2\}.$$

$$S: \left\{ \begin{array}{cccc} x_2 & = x & = x \\ y_1 & -z_2 & = y \\ z_1 & +z_2 & = z \end{array} \right. \Rightarrow \left\{ \begin{array}{cccc} x_2 & -x & = 0 \\ y_1 & -z_2 & -y & = 0 \\ z_1 & +z_2 & -z & = 0 \end{array} \right.$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \begin{cases} x_2 & = x \\ y_1 & -z_2 = y \\ z_1 + z_2 = z \end{cases} \begin{cases} x_2 & -x & = 0 \\ y_1 & -z_2 & -y & = 0 \\ z_1 + z_2 & -z = 0 \end{cases}$$

$$C_{3\times8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \end{bmatrix}$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \begin{cases} x_2 & = x \\ y_1 & -z_2 = y \\ z_1 + z_2 = z \end{cases} \begin{cases} x_2 & -x & = 0 \\ y_1 & -z_2 & -y & = 0 \\ z_1 + z_2 & -z = 0 \end{cases}$$

$$C_{3 \times 8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \begin{cases} x_2 & = x \\ y_1 & -z_2 = y \\ z_1 & +z_2 = z \end{cases} \begin{cases} x_2 & -x & = 0 \\ y_1 & -z_2 & -y & = 0 \\ z_1 & +z_2 & -z & = 0 \end{cases}$$

$$C_{3\times8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 & 0 \end{bmatrix}$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \left\{ \begin{array}{cccc} x_2 & = x & -x & = 0 \\ y_1 & -z_2 & = y & = 0 \\ z_1 & +z_2 & = z & -z & = 0 \end{array} \right.$$

$$C_{3\times8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \end{bmatrix} \Rightarrow S: \left\{ \begin{array}{cccc} x = x_2 & (1) \\ x = x_2 & (1) & (1) & (1) \\ x = x_2 & (2) & (3) \\ x = x_2 & (2) & (3) \\ x = x_2 & (3) & (3) \\ x = x_2 & (4) & (4) & (4) \\ x = x_2 & (2) & (3) \\ x = x_2 & (3) & (4) \\ x = x_2 & (4) \\ x$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \left\{ \begin{array}{cccc} x_2 & = x & -x & = 0 \\ y_1 & -z_2 & = y & = 0 \\ z_1 & +z_2 & = z & -z & = 0 \end{array} \right.$$

$$C_{3\times8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \end{bmatrix} \Rightarrow S: \left\{ \begin{array}{cccc} x = x_2 & (1) \\ y = y_1 - z_2 & (2) & (2) \end{array} \right.$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \begin{cases} x_2 & = x \\ y_1 & -z_2 = y \end{cases} \Rightarrow \begin{cases} x_2 & -x & = 0 \\ y_1 & -z_2 & -y & = 0 \\ z_1 & +z_2 & -z & = 0 \end{cases}$$

$$C_{3\times8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \end{bmatrix} \Rightarrow S: \begin{cases} x = x_2 & (1) \\ y = y_1 - z_2 & (2) \\ z = z_1 + z_2 & (3) \end{cases}$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \begin{cases} x_2 & = x \\ y_1 & -z_2 = y \end{cases} \Rightarrow \begin{cases} x_2 & -x & = 0 \\ y_1 & -z_2 & -y & = 0 \\ z_1 & +z_2 & -z & = 0 \end{cases}$$

$$C_{3\times8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \end{bmatrix} \Rightarrow S: \begin{cases} x = x_2 & (1) \\ y = y_1 - z_2 & (2) \\ z = z_1 + z_2 & (3) \end{cases}$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \left\{ \begin{array}{cccc} x_2 & = x & = 0 \\ y_1 & -z_2 & = y & \Rightarrow \\ z_1 & +z_2 & = z & -z_1 & -z_2 & -y & = 0 \\ z_1 & +z_2 & -z & = 0 \end{array} \right.$$

$$C_{3 \times 8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \end{bmatrix} \Rightarrow S: \left\{ \begin{array}{cccc} x = x_2 & (1) \\ y = y_1 - z_2 & (2) \\ z = z_1 + z_2 & (3) & (3) \end{array} \right.$$

$$(3): \qquad z_2 = z - z_1$$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \left\{ \begin{array}{cccc} x_2 & = x & x_2 & -x & = 0 \\ y_1 & -z_2 & = y & = 0 \\ z_1 & +z_2 & = z & z_1 & -z_2 & -y & = 0 \\ z_1 & +z_2 & -z & = 0 \end{array} \right.$$

$$C_{3\times8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \end{bmatrix} \Rightarrow S: \left\{ \begin{array}{c} x = x_2 & (1) \\ y = y_1 - z_2 & (2) \\ z = z_1 + z_2 & (3) \end{array} \right.$$

(3): $z_2 = z - z_1$

(3) \rightarrow (2): $y = y_1 + z_1 - z$ (y não depende diretamente de z)

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \left\{ \begin{array}{cccc} x_2 & = x & x_2 & -x & = 0 \\ y_1 & -z_2 & = y & \Rightarrow \\ z_1 & +z_2 & = z & -z_1 & -z & = 0 \end{array} \right.$$

$$C_{3 \times 8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \end{bmatrix} \Rightarrow S: \left\{ \begin{array}{c} x = x_2 & (1) \\ y = y_1 - z_2 & (2) \\ z = z_1 + z_2 & (3) \end{array} \right.$$
(3): $z_2 = z - z_1$
(3) \rightarrow (2): $y = y_1 + z_1 - z$ (y não depende diretamente de z)
(1): $x = x_2$

EXEMPLO.2: Sejam
$$\mathcal{V} = \mathbb{R}^3$$
, $\mathcal{W}_1 = \{u \in \mathbb{R}^3 \mid x = 0\}$ e $\mathcal{W}_2 = \{u \in \mathbb{R}^3 \mid y + z = 0\}$.

(II) $\mathcal{V} = \mathcal{W}_1 + \mathcal{W}_2 = \{u \in \mathcal{V} \mid u = (x, y, z) = u_1 + u_2 = (x_2, y_1 - z_2, z_1 + z_2); u_1 = (0, y_1, z_1) \in \mathcal{W}_1$ e $u_2 = (x_2, -z_2, z_2) \in \mathcal{W}_2\}$.

$$S: \left\{ \begin{array}{cccc} x_2 & = x & x_2 & -x & = 0 \\ y_1 & -z_2 & = y & \Rightarrow \\ z_1 & +z_2 & = z & -z_1 & -z & = 0 \end{array} \right.$$

$$C_{3 \times 8} = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & -1 & 0 \end{bmatrix} \Rightarrow S: \left\{ \begin{array}{c} x = x_2 & (1) \\ y = y_1 - z_2 & (2) \\ z = z_1 + z_2 & (3) \end{array} \right.$$
(3): $z_2 = z - z_1$
(3) \rightarrow (2): $y = y_1 + z_1 - z$ (y não depende diretamente de z)
(1): $x = x_2$

 ${\cal V}$ é Soma Direta dos Subespaços

logo, por (II); podemos obter qualquer vetor $u \in V$ utilizando a soma de W_1 com W_2 .

 ${\cal V}$ é Soma Direta dos Subespaços

logo, por (II); podemos obter qualquer vetor $u \in \mathcal{V}$ utilizando a soma de W_1 com W_2 .

Operações: Exercícios

Exercício.1:

Operações: Exercícios

Exercício.1:

Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$

Operações: Exercícios

Exercício.1:

Operações: Exercícios

Exercício.1:

Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

1. Determine o conjunto $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$.

Operações: Exercícios

Exercício.1:

- 1. Determine o conjunto $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 2. Determine o conjunto $(\mathcal{W}_1 \cup \mathcal{W}_2) \subset \mathcal{V}$.

Operações: Exercícios

Exercício.1:

- 1. Determine o conjunto $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 2. Determine o conjunto $(\mathcal{W}_1 \cup \mathcal{W}_2) \subseteq \mathcal{V}$.
- 3. Determine o conjunto $(\mathcal{V}_1 + \mathcal{V}_2) \subseteq \mathcal{V}$.

Exercício.1:

- 1. Determine o conjunto $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 2. Determine o conjunto $(\mathcal{W}_1 \cup \mathcal{W}_2) \subseteq \mathcal{V}$.
- 3. Determine o conjunto $(\mathcal{V}_1 + \mathcal{V}_2) \subseteq \mathcal{V}$.
- 4. Verifique se W_1 é soma direta com W_2 .

Exercício.1:

- 1. Determine o conjunto $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 2. Determine o conjunto $(\mathcal{W}_1 \cup \mathcal{W}_2) \subseteq \mathcal{V}$.
- 3. Determine o conjunto $(\mathcal{V}_1 + \mathcal{V}_2) \subseteq \mathcal{V}$.
- 4. Verifique se W_1 é soma direta com W_2 .
- 5. $V = W_1 \oplus W_2$? (JUSTIFIQUE SUA RESPOSTA)

Exercício.1:

- 1. Determine o conjunto $(\mathcal{V}_1 \cap \mathcal{V}_2) \subseteq \mathcal{V}$.
- 2. Determine o conjunto $(\mathcal{W}_1 \cup \mathcal{W}_2) \subseteq \mathcal{V}$.
- 3. Determine o conjunto $(\mathcal{V}_1 + \mathcal{V}_2) \subseteq \mathcal{V}$.
- 4. Verifique se W_1 é soma direta com W_2 .
- 5. $V = W_1 \oplus W_2$? (JUSTIFIQUE SUA RESPOSTA)

Operações: Exercícios

Exercício.2:

Operações: Exercícios

Exercício.2:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} ,

Operações: Exercícios

Exercício.2:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Operações: Exercícios

Exercício.2:

Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

1. Verifique se o subconjunto $\mathcal{W}_1 \cap \mathcal{W}_2$ é subespaço vetorial de \mathcal{V} ;

Operações: Exercícios

Exercício.2:

Sejam \mathcal{V} um espaco vetorial sobre o corpo \mathbb{K} . \mathcal{W}_1 e \mathcal{W}_2 subespacos vetoriais de \mathcal{V} .

- 1. Verifique se o subconjunto $\mathcal{W}_1 \cap \mathcal{W}_2$ é subespaco vetorial de \mathcal{V} :
- 2. Verifique se o subconjunto $\mathcal{W}_1 \cup \mathcal{W}_2$ é subespaco vetorial de \mathcal{V} :

Operações: Exercícios

Exercício.2:

Sejam \mathcal{V} um espaco vetorial sobre o corpo \mathbb{K} . \mathcal{W}_1 e \mathcal{W}_2 subespacos vetoriais de \mathcal{V} .

- 1. Verifique se o subconjunto $\mathcal{W}_1 \cap \mathcal{W}_2$ é subespaco vetorial de \mathcal{V} :
- 2. Verifique se o subconjunto $\mathcal{W}_1 \cup \mathcal{W}_2$ é subespaco vetorial de \mathcal{V} :
- 3. Verifique se o subconjunto $W_1 + W_2$ é subespaco vetorial de V:

Operações: Exercícios

Exercício.2:

Sejam \mathcal{V} um espaco vetorial sobre o corpo \mathbb{K} . \mathcal{W}_1 e \mathcal{W}_2 subespacos vetoriais de \mathcal{V} .

- 1. Verifique se o subconjunto $\mathcal{W}_1 \cap \mathcal{W}_2$ é subespaco vetorial de \mathcal{V} :
- 2. Verifique se o subconjunto $\mathcal{W}_1 \cup \mathcal{W}_2$ é subespaco vetorial de \mathcal{V} :
- 3. Verifique se o subconjunto $W_1 + W_2$ é subespaco vetorial de V: