

Adjacency Matrix: D'							
. ,	, A ,	V В.	C.		FL		
A	0	3	8		-4		
B	Ø	0	∞	1	7		
C	∞	4	0	00	8		
0	2	00	-5	0	00		
E	(x)	00	00	6	0		

Create a new Matrix. (D)

Fill the diagonal with "0"

Fill the 1st row and 1st column with same values of D.

	A	B	C,	0,	En
A	D	3	8	00	-4
B	00	0			
C	00		0		*
D	2			0	
E	00				0

FAST School of Computing

Eq: O[u,v]=min(D[u,v], D[u,K]+D[K,v])

u="B", v="C", K="A"

we are interested to determine the shortest path from u i.e., from (B) to V i.e., (C).

D[u,v] will provide the previously calculated results we will check wether previously calculated value is minimum or we can get a minimum value via vertex "A"

D[u,K] => cont from source vertex to intermediate vertex.

D[K, v] => cost from intermediate vertex to destination vertex.

Read the values from the most recent calculated matrix and store them in a newly created matrix.

$$D[B,0]=min(D[B,0], D[B,A]+D[A,D])$$

$$min(1,0)$$

Minimum value is 1 so 1 will be stored at 0 [B, D]

0112

$$D'[B,E] = min(D[B,E], D[B,A] + D[A,E])$$
 $min(7, \infty + (-4))$
 T will be stored at $D'[B,E]$

Now move to next row:

No change will take place in the entire next row i.e. O(C,A), O(C,B), O(C,C), O(C,D) and O(C,E) will remain the same pas calculated in the last matrix.

Move to next row:

$$D'[D,A] = min(D[0,A], D[0,A] + O[A,A])$$

$$min(2, 2+ \delta)$$

2 will be stored at D'[0,A]

$$D'[0,B] = min (D[0,B], D[0,A] + D[A,B])$$

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix}$$

Since 5 is minimum so 5 will be stored at D[D,B]

The	wex	t d	ang	e w	W to	ake
	e f),E]		
0	0,E]:	mir	1010	,E],	0[0,4]	+ 0[A,E]
		i d	1		1	
		mi	n (00	, 1	2+	(-41)
-2	U	min	nimu	m s	0 -2	will
25. 24.5				15 HA 2222 H A 18	D,E]	
1000			trix	ofte	ex al	liter-
lati	ons:	(D)	C	Ď.	Fa	
A	0	3	8	00	-4	
B	00	0	00	1	7	
C	00	4	0	00	× ·	
D	2	5	-5	0	-1	
E	100	00	00	16	1.0	

Now check the shortest path via vextex "B".

→ Diagonal Remains O

> Rows and calumn representing vertex "B" will remain unchange

$$|\mathring{D}[A,D] = \min \Big(\mathring{D}[A,D], \mathring{D}[A,B] + \mathring{D}[B,D] \Big)$$

$$\min \Big(\underset{\sim}{\bowtie} , 3 + 1 \Big)$$

4 is minimum so 4 will be stored at D'[A.D]

FAST School of Computing

Page 10