Université Toulouse III - Paul Sabatier

Cahier des charges fonctionnel

SOIVD – Système optimisé d'intégration virtuelle de données

Membres du groupe :

- ERREBIAI Chaimae
- KEBIRI Issam Eddine : kebiri.isam.dine@gmail.com
- GHORBEL Ahmed Amine: ghorbelahmedaminelfet@gmail.com
- HADDOU khalid : khalidhaddou99@gmail.com
- ABAKAR Issa: issaabakar17@gmail.com

Responsable pédagogique :

■ SHAOYI Yin: shaoyi.yin@irit.fr

Plan:

1. Présentation	1
a- Projet	1
b- Contexte	1
c- Solution proposée	1
d- Objectif	1
2. Conception	2
a. Architecture globale	2
b. Modélisation UML	2
c. Fonctionnalités	3
d. Bases de données	4
3. Développement	5
a. Environnement de développement	5
b. Implémentation de fonctionnalités	5
4. Gestion de proiet	6

1. Présentation

a- Projet

Création d'un Système Optimisé d'Intégration Virtuelle De Données - SOIVD pour mieux comprendre le contexte actuel de crise d'énergies.

b-Contexte

- Évolution vers de grosses quantités de données (Big Data)
- Plusieurs sources d'informations (SGBD relationnels, fichiers, applications,pages Web ...)
- Des données de plus en plus hétérogènes et interfaces d'accès variées (langages d'interrogation, modèle de données, interfaces d'appel ...)

c- Solution proposée

Un Système Optimisé d'Intégration Virtuelle De Données - SOIVD avec une architecture médiateur-adaptateur et une capacité d'intégration de plusieurs sources de données hétérogènes.

d- Objectif

Un accès uniforme à des sources multiples, autonomes et hétérogènes et structurés.

2. Conception

a. Architecture globale

b. Modélisation UML

- Modélisation des quatre schémas de bases de données :
 - BD 1 API Meteomatics
 - BD 2 API Energie ODRE
 - BD 3 API Energie ODE

• BD 4 - BD locale

- Diagramme de séquence

c. Fonctionnalités

- Interrogation du SOIVD
- Décomposition des requêtes en sous-requêtes
- Traduction / mapping des sous-requêtes
- Envois des sous-requêtes réécrites à l'adaptateur associé à chaque source
- L'adaptateur interroge les sources de données
- Récupérer les réponses des requêtes et les fusionner
- Afficher les résultats dans une interface
- # Optioennel : Optimiser les requêtes des BDs

d. Bases de données

Choix des BDs Description des BDs choisies

3. Développement

a. Environnement de développement

Python + framework flask

Bibliothèque: requests / JSON / contextlib.closing/ beautifulsoup/ pandas/

API

SQL + JSON + CSV

Interface: Swiger / HTML / CSS

Outils de gestion de versions et dépôt du code : Git / GitHub (gestion centralisée)

b. Implémentation de fonctionnalités

[Médiateur / adaptateur]

- 1- Implémenter l'interface swagger
- 2- Trois adaptateurs extract_from_API
- 4- Fonction decompose requests
- 5- Fonction fusion_reponses
- 6- Dictionnaire mapping
- 7- Optimisation pandasql

4. Gestion de projet

Méthode agile SCRUM