

Sept 2,2014

ESP8266 用户手册

Status	
Current version	V 0.3
Author	Yu Fei&Jackie
Completion Date	2014.9.2
Reviewer	
Completion Date	

CONFIDENTIAL

[] INTERNAL

[√] PUBLIC

版本信息

日期	版本	撰写人	审核人	修改说明
2014.6.17	0.1	喻菲		初稿
2014.9.2	0.2	Jackie		增加章节 1.12 、1.2 和 1.3 的
				内容
2014.9.2	0.3	喻菲		更新 AT 指令集

免责申明和版权公告

本文中的信息,包括供参考的URL地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归©2014 乐鑫信息技术有限公司所有。保留所有权利。

目录

版本信	版本信息2				
目录		3			
1. 产	品概述				
1.1.	概述	5			
1.1.1.	特点				
1.1.2.	模块参数	7			
1.1.3.	主要应用领域				
1.2.	硬件介绍	9			
1.2.1.	管脚定义	9			
1.2.2.	电气特性	11			
1.2.3.	ESP8266 封装尺寸图	12			
1.2.4.	开发套件				
1.3.	典型应用	13			
1.3.1.	UART 应用硬件连接	13			
1.3.2.	传感器应用硬件连接	13			
1.3.3.	智能灯应用硬件连接	14			
1.3.4.	WIFI 智能开关应用硬件连接	15			
2 . 马	力能介绍	17			
2.1.	无线组网	17			
2.1.1.	ESP8266 在 SoftAP 模式	17			
2.1.2.	ESP8266 在 station 模式	17			
2.1.3.	ESP8266 在 SoftAP + station 共存模式	18			
2.2.	透传功能	18			
2.3.	UART 成帧机制	19			

2.4.	加密20
2.5.	省电机制
2.6.	固件升级 2 2
3. 仿	吏用指南 2 2
3.1.	Website 操作指南22
3.1.1.	设备开发23
3.1.2.	产品管理
3.2.	模块使用介绍28
3.2.1.	软件调试工具28
3.2.2.	网络连接28
3.2.3.	初始参数
3.3.	应用举例
3.3.1.	无线遥控应用29
3.3.2.	远程连接应用29
3.3.3.	透明串口30
4. A	T 指令说明32
4.1.	AT 指令集概述
4.1.1.	AT 指令分类32
4.1.2.	指令集32
5. ‡	其他详细资料46
附录:	乐鑫联系方式4

1.产品概述

1.1. 概述

乐鑫智能互联平台——ESP8266 拥有高性能无线 SOC,给移动平台设计师带来福音,它以最低成本提供最大实用性,为 WiFi 功能嵌入其他系统提供无限可能。

图 1: ESP8266 结构图

ESP8266 是一个完整且自成体系的 WiFi 网络解决方案,能够独立运行, 也可以作为 slave 搭载于其他 Host 运行。

ESP8266 在搭载应用并作为设备中唯一的应用处理器时,能够直接从外接 闪存中启动。内置的高速缓冲存储器有利于提高系统性能,并减少内存需求。

另外一种情况是,无线上网接入承担 WiFi 适配器的任务时,可以将其添加到任何基于微控制器的设计中,连接简单易行,只需通过 SPI/SDIO 接口或中央处理器 AHB 桥接口即可。

ESP8266 强大的片上处理和存储能力,使其可通过 GPIO 口集成传感器及其他应用的特定设备,实现了最低前期的开发和运行中最少地占用系统资源。

5 | Page Espressif Systems Sept 2,2014

ESP8266 高度片内集成,包括天线开关balun、电源管理转换器,因此仅需极少的外部电路,且包括前端模块在内的整个解决方案在设计时将所占PCB空间降到最低。

装有ESP8266的系统表现出来的领先特征有:节能VoIP在睡眠/唤醒模式之间的快速切换、配合低功率操作的自适应无线电偏置、前端信号的处理功能、故障排除和无线电系统共存特性为消除蜂窝/蓝牙/DDR/LVDS/LCD干扰。

1.1.1.特点

- > 802.11 b/g/n
- ▶ WIFI @2.4 GHz,支持 WPA/WPA2 安全模式
- ➤ 超小尺寸模组 11.5mm*11.5mm
- ▶ 内置 10 bit 高精度 ADC
- ▶ 内置 TCP/IP 协议栈
- ▶ 内置 TR 开关、balun、LNA、功率放大器和匹配网络
- ▶ 内置 PLL、稳压器和电源管理组件
- ▶ 802.11b 模式下+19.5dBm 的输出功率
- > 支持天线分集
- ▶ 断电泄露电流小于10uA
- ▶ 内置低功率 32 位 CPU: 可以兼作应用处理器
- ➤ SDIO 2.0、 SPI、UART
- ➤ STBC、1x1 MIMO、2x1 MIMO
- A-MPDU 、A-MSDU 的聚合和 0.4 s的保护间隔
- > 2ms之内唤醒、连接并传递数据包
- ➤ 待机状态消耗功率小于1.0mW (DTIM3)
- ▶ 工作温度范围 -40~125℃

1.1.2. 模块参数

分类	参数	取值	
无线参数	标准认证	CCC/FCC/CE	
	无线标准	802.11 b/g/n	
	频率范围	2.4G-2.5G(2400M-2483.5M)	
	发射功率	802.11 b: 20 dBm	
		802.11 g: 17 dBm	
		802.11 n: 14 dBm	
	接收灵敏度	802.11 b: (11Mbps) -91db	
		802.11 g: (54Mbps) -75db	
		802.11 n: (MCS7) -72db	
	天线选项	PCB板载天线、外置天线、	
		IPEX接口天线、陶瓷贴片天线	
硬件参数	数据接口	UART	
		PWM、GPIO	
	工作电压	3.3V	
	工作电流	平均电流 80mA	
	工作温度	-40° ~125°	
	存储温度	常温	
	尺寸	5x5mm	
	外部接口	N/A	
软件参数	无线网络模式	station/softAP/SoftAP+station	
	安全机制	WPA/WPA2	
	加密类型	WEP/TKIP/AES	

	云端升级
定制开发	支持客户自定义服务器
	提供 SDK 给客户二次开发
网络协议	IPv4, TCP/UDP/HTTP/FTP
用户配置	AT+指令集,WebSite操作,
	Android/iOS终端

1.1.3.主要应用领域

- ▶ 智能电源插头
- ▶ 家庭自动化
- > 网状网络
- ▶ 工业无线控制
- ▶ 婴儿监控器
- ▶ 网络摄像机
- ▶ 传感器网络
- ▶ 可穿戴电子产品
- > 无线位置感知设备
- ➤ 安全ID标签
- > 无线定位系统信号

1.2. 硬件介绍

1.2.1.管脚定义

图 2: ESP8266 管脚定义图

Table 1 ESP8266 管脚功能定义

Pin	Name	Function	
1	VDDA	模拟电源3.0~3.3V	
		射频天线接口,芯片输出阻抗为 50 Ω,无	
2	LNA	需对芯片进行匹配,但建议保留 π 型匹配网络	
		对天线进行匹配	
3	VDD3P3	功放电源3.0~3.3V	
4	VDD3P3	功放电源3.0~3.3V	
5	VDD_RTC	NC(1.1V)	
6	TOUT	adc 管脚	
7	CHIP_EN	芯片使能端。高电平:有效,芯片正常工作;	

	低电平:芯片关闭,电流很小。		
XPD_DCDC	Deep-Sleep Wakeup; GPIO16		
MTMS	GPIO14; HSPICLK		
MTDI	GPIO12;HSPIQ		
VDDPST	数字和IO电源(1.8V~3.3V)		
MTCK	GPIO13;HSPID		
MTDO	GPIO15;HSPICS		
GPIO2	可用作烧写 Flash 时 UART Tx; GPIO2		
GPIO0	GPIO0;SPICS2		
GPIO4	GPIO4		
VDDPST	数字和IO电源(1.8V~3.3V)		
SDIO_DATA_2	连接到SD_D2 (串联 200Ω);SPIHD; HSPIHD		
SDIO_DATA_3	连接到SD_D3 (串联 200Ω); SPIWP; HSPIWP		
SDIO_CMD 连接到SD_CMD(串联 200Ω); S			
SDIO_CLK	连接到SD_CLK (串联 200Ω); SPICLK		
SDIO_DATA_0	连接到SD_D0 (串联 200Ω); SPIQ		
SDIO_DATA_1	连接到SD_D1 (串联 200Ω); SPID		
GPIO5	GPIO5		
U0RXD	可用作烧写 Flash 时 UART Rx; GPIO3		
U0TXD	GPIO1; SPICS1		
XTAL_OUT	连接晶振输出端,可用于提供BT的时钟输入		
XTAL_IN	连接晶振输入端		
VDDD	模拟电源 3.0~3.3V		
VDDA	模拟电源 3.0~3.3V		
RES12K	串联 12kΩ 电阻到地		
EXT_RSTB	_RSTB 外部 reset 信号(低电平有效)		
	MTMS MTDI VDDPST MTCK MTDO GPIO2 GPIO0 GPIO4 VDDPST SDIO_DATA_2 SDIO_DATA_3 SDIO_CMD SDIO_CLK SDIO_DATA_0 SDIO_DATA_1 GPIO5 U0RXD U0TXD XTAL_OUT XTAL_IN VDDD VDDA RES12K		

注: GPIO2、GPIO0、MTDO 构成 3bit 可进行 SDIO 模式的选择。

1.2.2.电气特性

Table 2 ESP8266 电气特性

参数	条件	最小值	典型值	最大值	单位
存放温度范围		-45		125	$^{\circ}$
最大焊接温度	IPC/JEDEC			260	$^{\circ}$
	J-STD-020				
工作电压		0		3.8	٧
任意I/O脚电压		0		3.3	V
静电释放量(人体模型)	TAMB=25℃			2	KV
静电释放量(充电设备模型)	TAMB=25℃			1	KV

Table 3 ESP8266 功耗

参数	最小值	典型值	最大值	单位
传送 802.11b, CCK 11Mbps, P OUT=+17dBm		170		mA
传送 802.11g, OFDM 54Mbps, P OUT =+15dBm		140		mA
传送 802.11n, MCS7, P OUT =+13dBm		120		mA
接收 802.11b, 包长 1024 字节,-80dBm		50		mA
接收 802.11g,包长 1024 字节,-70dBm		56		mA
接收 802.11n, 包长 1024 字节, -65dBm		56		mA
Modem-Sleep①		15		mA
Light-Sleep②		0.9		mA
Deep-Sleep③		10		uA
关机		5		uA

注①: Modem-Sleep 用于需要 CPU 一直 处于工作状态 如 PWM 或 I2S 应用等。在保持 WiFi 连接时, 如果没有数据传输,可根据 802.11 标准(如 U-APSD),关闭 WiFi Modem 电路来省电。例如,在 DTIM3 时,每 sleep 300mS,醒来 3mS 接收 AP 的 Beacon 包等,则整体平均电流约 15mA。

注②: Light-Sleep 用于 CPU 可暂停的应用,如 WiFi 开关。在保持 WiFi 连接时,如果没有数据传输, 可根据 802.11 标准(如 U-APSD),关闭 WiFi Modem 电路并 暂停 CPU 来省电。例如,在 DTIM3 时, 每 sleep 300mS,醒来 3mS 接收 AP 的 Beacon 包等,则整体平均电流约 0.9mA。

注③: Deep-Sleep 不需一直保持 WiFi 连接,很长时间才发送一次 数据包的 应用,如每 100 秒测量一 次温度的传感器。例如,每 300S 醒来后需 0.3~1s 连上 AP 发送数据,则整体平均电流可远小于 1mA。

1.2.3.ESP8266 封装尺寸图

0.400±0.050 \subset \subset 0.250±0.050 3.700±0.050 Exp.DAP 0.500 Bsc. —3.500 Ref.-

3.700±0.050

Exp.DAP

PIN #1 IDENTIFICATION CHAMFER $0.300 \times 45^{\circ}$

TOP VIEW

BOTTOM VIEW

NOTE:

1) TSLP AND SLP SHARE THE SAME EXPOSE DUTLINE BUT WITH DIFFERENT THICKNESS:

			TSLP	SLP
		MAX.	0.800	0.900
	A	N□M.	0.750	0.850
		MIN.	0.700	0.800

图 3: ESP8266 封装尺寸图

1.2.4. 开发套件

图 4: ESP8266 开发板示意图

1.3. 典型应用

1.3.1.UART 应用硬件连接

我司已根据UART应用定义以下pin脚:

UARTO: (PIN 25) UORXD+ (PIN 26) UOTXD---通信

UART1: (PIN 14) GPIO2(TXD)---打印

目前 uart0 可以用来收发用户自己的数据包, uart1 用作打印信息。

已应用方案:

如图4所示ESP8266开发板

1.3.2. 传感器应用硬件连接

我司已根据传感器应用定义以下pin脚:

(PIN 9) MTMS---I2C_SCL;

(PIN 14) GPIO2---I2C SDA;

(PIN 12) MTCK---复位按键 (按住复位按键重新上电,可完成复位);

(PIN 15) GPIO0---wifi 工作状态指示灯;

(PIN 10) MTDI--- 与服务器通信的指示灯;

(PIN 25) UORXD---Button, 暂未定义功能;

(PIN 13) MTDO---LED, 暂未定义功能。

已应用方案:

如图5所示我司传感器应用demo板

图 5: 基于 ESP8266 的传感器应用硬件示意图

1.3.3.智能灯应用硬件连接

我司已根据智能灯应用定义以下pin脚:

(PIN 9) MTMS---红外接收;

三路 PWM 输出:

(PIN 10) MTDI---红色灯控制;

(PIN 13) MTDO---绿色灯控制;

(PIN 12) MTCK---蓝色灯控制;

己应用方案:

如图6所示我司智能灯应用demo板

图 6: 基于 ESP8266 的智能灯应用硬件示意图

1.3.4.WIFI 智能开关应用硬件连接

我司已根据WIFI智能开关应用定义以下pin脚:

(PIN 13) MTDO---控制继电器,可高低电平控制;

(PIN 15) GPIOO--- 指示 wifi 工作状态;

(PIN 12) MTCK---接复位按键(长按 5s 可完成复位功能);

己应用方案:

如图7所示我司WIFI智能开关应用demo板

图 7: 基于 ESP8266 的 WIFI 智能开关应用硬件示意图 (我司芯片在背面)

2.功能介绍

2.1. 无线组网

ESP8266 支持 softAP 模式, station 模式, softAP + station 共存模式三种。 利用 ESP8266 可以实现十分灵活的组网方式和网络拓扑。

注,

SoftAP: 即无线接入点,是一个无线网络的中心节点。通常使用的无线路由器就是一个无线接入点。

Station: 即无线终端,是一个无线网络的终端端。

2.1.1.ESP8266 在 SoftAP 模式

ESP8266 作为 softAP,手机、电脑、用户设备、其他 ESP8266 station 接口等均可以作为 station 连入ESP8266,组建成一个局域网。

2.1.2.ESP8266 在 station 模式

ESP8266 作为 station,通过路由器(AP)连入 internet ,可向云端服务器上传、下载数据。用户可随时使用移动终端(手机、笔记本等),通过云端

17 | Page Espressif Systems Sept 2,2014

监控 ESP8266 模块的状况,向 ESP8266 模块发送控制指令。

2.1.3.ESP8266 在 SoftAP + station 共存模式

ESP8266 支持 softAP+station 共存的模式,用户设备、手机等可以作为 station 连入 ESP8266 的 softAP 接口,同时,可以控制 ESP8266 的 station 接口通过路由器(AP)连入 internet。

2.2. 透传功能

透传,即透明传输功能。Host 通过 uart 将数据发给 ESP8266,ESP8266 再通过无线网络将数据传出去;ESP8266 通过无线网络接收到的数据,同理通过 uart 传到 Host。ESP8266 只负责将数据传到目标地址,不对数据进行处理,发送 方和接收方的数据内容、长度完全一致,传输过程就好像透明一样。

透传需要先建立连接:

- > 无线网络参数:
 - ◆ 网络名称(SSID)
 - ◆ 安全模式
 - ◆ 密钥(password)
- > TCP 连接参数
 - ♦ 协议类型
 - ◆ 连接类型(client)
 - ◆ 目的 IP 地址
 - ♦ 目的端口
- ▶ 串口参数
 - ◇ 波特率
 - ◆ 数据位
 - ♦ 检验位
 - ◆ 停止位
 - ◆ 硬件流控

2.3. UART 成帧机制

ESP8266 判断 UART 传来的数据时间间隔,若时间间隔大于 20ms,则认为一帧结束;否则,一直接收数据到上限值 2KB,认为一帧结束。ESP8266 模块判断 UART 来的数据一帧结束后,通过 WIFI 接口将数据转发出去。

成帧时间间隔为 20ms,一帧上限值为 2KB。

2.4. 加密

ESP8266 支持多种无线网络加密方式,包括:

- ➤ WEP (only station)
- ➤ WPA-PSK/TKIP
- ➤ WPA-PSK/AES
- ➤ WPA2-PSK/TKIP
- ➤ WPA2-PSK/AES

2.5. 省电机制

ESP8266 IOT 支持三种省电模式:

模式	Modem-Sleep	Light-Sleep	Deep-Sleep
动作	关闭 WiFi Modem	关闭 WiFi Modem	仅 RTC 电路工作,
	电路;	电路、晶振和 PLL;	关闭其他电路,芯
	CPU 和其他外设正	CPU 和其他外设处	片处于极低功耗待
	常运行。	于时钟暂停待机状	机状态。
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	态。	
电流	10~20mA	0.5mA	10~20uA
唤醒	可唤醒	可唤醒	无法唤醒,设备依
			照设定,定时醒来。
应用场景	用于 CPU 需要一直	用于 CPU 可暂停的	用于不需一直保持
	工作的场景。	应用。	WiFi 连接,很长时
	如 PWM 或 I2S 应	如 WiFi 开关。	间才发送一次数据
	用等。	如果没有数据传输,	包的应用。
	如果没有数据传输,	可根据 802.11 标准	如每 100 秒测量一
	可根据 802.11 标准	(如 U-APSD),关	次温度的传感器。

(如 U-APSD),关 闭 WiFi Modem 电路 来省电。 例如,在 DTIM3 时, 每 sleep 300ms,醒 来 3ms 接收 AP 的 Beacon 包等,整体 平均电流约 15mA。 闭 WiFi Modem 电路, 并暂停 CPU 来省电。 例如,在 DTIM3 时, 每 sleep 300ms,醒来 3mS 接收 AP 的 Beacon 包等,则整体 平均电流约 0.9mA。

例如,每300S 醒来 后需 0.3~1s 连上 AP 发送数据,则整 体平均电流可远小 于 1mA。

2.6. 固件升级

ESP8266 除了传统的串口烧录方式,还支持云端升级的方式来更新固件。只需将新版固件上传至服务器,在 ESP8266 联网的情况下,服务器会推送更新消息到用户,用户可自行选择是否升级。

串口烧录升级,请参见文档"Espressif IoT SDK 使用手册"。 云端升级,请参见文档"云端升级实现方案"。

3.使用指南

3.1. Website 操作指南

1) 打开网址 http://iot.espressif.cn/#/

"开始"->"开发者API": 设备控制的相关API说明。

"开始"->"帮助": 使用帮助示例说明,用户可参照创建自己的产品。

"注册": 新用户注册。

"登录": 已注册用户登录。

- 2) 点击"设备开发"显示用户常用于调试的设备列表,针对开发者。
 - "搜索": 输入设备名称或device key等信息查找设备。
 - "导出":用于导出设备列表。
 - "创建":创建一个新设备。

3) "产品管理"显示用户的产品列表,适用于商业管理各类产品。 可通过"搜索"、"产品"、"状态"设置过滤条件,查询产品。

3.1.1.设备开发

针对设备,可以查看设备历史数据,增添定时器,云端升级,自定义反向控制。

3.1.1.1. 历史数据

在设备页面 -> "数据模型" -> "数据",可查看设备的历史数据。

23 | Page Espressif Systems Sept 2,2014

3.1.1.2. 调试信息

"请求日志"记录了服务器收到的指令,用于设备调试。

请求日志

3.1.1.3. 定时器

Espressif 支持三种定时器:

- 1) 精确时间:在特定的某时间,执行某动作。
- 2) 周期循环:每隔特定时长,执行一遍某动作,循环往复。
- 3) 按周循环:每周的某几天的某固定时间,执行某动作,循环往复。

Timer

在 20140709131520 执行动作 action1	在 20140709131520 执行动作 action1			
每 4 hour 执行动作 action2				
每周 [1,3,5] 在 161000 执行动作 action3				
类型: ● 精确时间 ○ 周期循环 ○ 按周循环				
时间 20141011121314	动作			
保存 保存到设备 取消				

3.1.1.4. 自定义的反向控制

用户可以自定义动作, 反向控制设备。

RPC 请求

3.1.1.5. 云端升级

用户可以通过网站, 更新设备的软件版本。

ROM 发布

3.1.2.产品管理

在产品管理中,可以对产品销量进行管控,上传产品固件更新。

1) 产品管理会列出产品列表,其中 Activated/Total 就显示了该产品在客户端已激活的数目/产品总数。可用于销量管控。

lotBucket

产品管理

2) 为某一产品更新固件,只需上传至服务器,Espressif server 会向各个设备推送固件升级消息,用户可自行选择是否升级。

ROM 发布

3.2. 模块使用介绍

3.2.1.软件调试工具

Espressif 推荐使用如下一些工具作为ESP8266的调试工具。(用户也可以自行选择其他同类型的工具。)

- ▶ 烧录工具: FLASH_DOWNLOAD_TOOLS.exe
- ▶ 串口传输工具: SecureCRTPortable.exe
- ➤ 网络调试工具: NetAssist.exe

3.2.2. 网络连接

ESP8266 有两种组网接口,softAP 接口和 station 接口,且两种接口可同时并存使用。

用户按照实际需求应用:

➤ softAP 接口

Phone 或 PC 作为 station, 连入 ESP8266 的 softAP 接口, 如需调试,可用 PC 连接 ESP8266 的串口查看 log 信息。

▶ station 接口

ESP8266 作为 station, 连入无线路由(AP), 如需调试,可用 PC 连接 ESP8266 的串口查看 log 信息。

3.2.3. 初始参数

- ▶ 模块默认SSID 为: ESP XXXXXX (XXXXXX 为模块 MAC 地址后6位)
- ▶ 默认加密方式: WPA/WPA2

- ▶ 用户串口参数默认为: 74880, 8, 1, None
- ➤ 模块作为 softAP, 默认IP: 192.168.4.1

3.3. 应用举例

3.3.1. 无线遥控应用

Phone 作为 station,连入 ESP8266 提供的 softAP,ESP8266 可通过 UART 与设备相连,进行无线控制。

3.3.2.远程连接应用

ESP8266 作为 station,通过无线路由(AP)连入 internet,可以向云端服务器上传数据、下载固件更新;移动终端(手机、笔记本等)也可以通过云端服务器,远程控制 ESP8266。

29 | Page

Espressif Systems

Sept 2,2014

3.3.3.透明串口

用户设备的主 IC 作为 Host, 通过 UART 向 ESP8266 发送数据, ESP8266 再将数据通过无线网络传输给目的地址,实现透明传输的功能。

User Device ESP8266

4. AT 指令说明

描述 Espressif ESP8266 模块 AT 指令集功能以及使用方法。

4.1. AT 指令集概述

指令集分为:基础 AT 命令、Wifi 功能 AT 命令、TCP/IP 工具箱 AT 命令等。

4.1.1.AT 指令分类

分类	指令格式	指令功能
测试命令	AT+ <x>=?</x>	该命令用于查询设置命令或内部程序设置的
		参数以及其取值范围。
查询命令	AT+ <x>?</x>	该命令用于返回参数的当前值。
设置命令	AT+ <x>=<></x>	该命令用于设置用户自定义的参数值。
执行命令	AT+ <x></x>	该命令用于执行受模块内部程序控制的变参
		数不可变的功能。

注意:

- 1) 不是每条 AT 指令都具备上述 4 类命令。
- 2) 后文指令中[]内数据为缺省值,不必填写或可能不显示。
- 3)波特率 115200。
- 4)参数为字符串的,需要加上双引号。例如:

AT+CWSAP="ESP 756190","20130826",1,4

4.1.2.指令集

命令	描述
基础指令	
AT	测试 AT 启动
AT+RST	重启模块
AT+GMR	查看版本信息
wifi 功能指令	
AT+CWMODE	选择 WIFI 应用模式
AT+CWJAP	加入AP
AT+CWLAP	列出当前可用 AP
AT+CWQAP	退出与 AP 的连接
AT+CWSAP	设置 AP 模式下的参数
AT+ CWLIF	查看已接入设备的 IP
TCP/IP 指令	
AT+CIPSTATUS	获得连接状态
AT+CIPSTART	建立 TCP 连接或注册 UDP 端口号
AT+CIPSEND	发送数据
AT+CIPCLOSE	关闭 TCP 或 UDP
AT+CIFSR	获取本地 IP 地址
AT+CIPMUX	启动多连接
AT+CIPSERVER	配置为服务器
AT+CIPMODE	设置模块传输模式
AT+CIPSTO	设置服务器超时时间
接收的数据	
+IPD	接收到的数据

4.1.2.1. AT

AT: 测试 AT 启动			
执行指令:	响应	ОК	
AT	说明	None	

4.1.2.2. AT+RST

AT+RST: 重启模块			
执行指令:	响应	ОК	
AT+RST	说明	None	

4.1.2.3. AT+GMR

AT+GMR: 查看版本信息			
执行指令:	响应	<number></number>	
AT+GMR		ОК	
	说明	< number >: 8 位版本号	

4.1.2.4. AT+CWMODE

AT+CWMODE: 选择 WIFI 应用模式			
		+CWMODE:(<mode>取值列表)</mode>	
测试指令:	响应		
AT+CWMODE=?		OK	
	说明	响应返回当前可支持哪些模式?	

		+CWMODE: <mode></mode>
查询命令:	响应	
AT+CWMODE?		ОК
	说明	响应当前处于哪种模式?
	响应	ОК
		此指令需重启后生效(AT+RST)。
设置指令:		
AT+CWMODE= <mode></mode>	说明	指令参数 <mode>:</mode>
		1 - Station 模式;
		2 - AP 模式;
		3 - AP + Station 共存模式。

4.1.2.5. AT+CWJAP

AT+CWJAP: 加入 AP			
		+ CWJAP: <ssid></ssid>	
查询命令:	响应		
AT+ CWJAP?		ОК	
	说明	响应返回当前选择的 AP	
	响应	OK 或 ERROR	
设置指令:		指令参数:	
AT+ CWJAP = <ssid>,<pwd></pwd></ssid>	说明	<ssid>字符串参数,接入点名称</ssid>	
		<pwd>字符串参数,密码最长 64</pwd>	
		字节 ASCII	

4.1.2.6. AT+CWLAP

А	T+CWLAP:	列出当前可用 AP
		成功,返回AP列表
		+ CWLAP: <ecn>,<ssid>,<rssi></rssi></ssid></ecn>
	响应	ОК
		或者
		失败,返回
执行指令:		ERROR
AT+CWLAP		
		响应参数说明:
		<ecn>0 OPEN</ecn>
		1 WEP
	说明	2 WPA_PSK
		3 WPA2_PSK
		4 WPA_WPA2_PSK
		<ssid>字符串参数,接入点名称</ssid>
		<rssi>信号强度</rssi>

4.1.2.7. AT+CWQAP

AT+CWQAP: 退出与 AP 的连接		
测试指令:	响应	ОК
AT+CWQAP=?	说明	None
执行指令:	响应	ОК

AT+ CWQAP	说明	None	
-----------	----	------	--

4.1.2.8. AT+ CWSAP

А	T+CWSAP:	设置 AP 模式下的参数
测试指令	响应	
	说明	
查询命令:	响应	返回当前 AP 参数
AT+CWSAP?		+CWSAP: <ssid>,<pwd>,<chl>,<ecn></ecn></chl></pwd></ssid>
	说明	None
	响应	OK 或 ERROR
		指令参数:
设置指令:		<ssid>字符串参数,接入点名称</ssid>
AT+CWSAP=	说明	<pwd>字符串参数,密码最长 64 字节</pwd>
<ssid>,<pwd>,<chl>,</chl></pwd></ssid>		ASCII
<ecn></ecn>		<chl>通道号</chl>
		<ecn>加密方式</ecn>
		0 OPEN
		1 WEP
		2 WPA_PSK
		3 WPA2_PSK
		4 WPA_WPA2_PSK
说明	该组	指令只有在 AP 模式开启后有效

4.1.2.9. AT+CWLIF

	AT+CWLIF: 查看已接入设备的 IP			
执行指令:	响应	<ip addr=""></ip>		
AT+ CWLIF				
		ОК		
	说明	<ip addr="">: 已接入设备的 IP 地址</ip>		

4.1.2.10. AT+ CIPSTATUS

AT+CIPSTATUS: 获得连接状态		
测试指令	响应	OK
	说明	None
		返回当前模块的连接状态和连接参数。
		STATUS: <stat></stat>
	响应	+ CIPSTATUS: <id>,<type>,<addr>,<port>,<tetype></tetype></port></addr></type></id>
执行指令:		
AT+ CIPSTATUS	·	ОК
		响应值说明:
		<id>连接的 id 号 0-4</id>
	说明	<type>字符串参数,类型 TCP 或 UDP</type>
		<addr>字符串参数,IP 地址</addr>
		<port>端口号</port>
		<tetype></tetype>
		0:本模块做 client 的连接
		1:本模块做 server 的连接

4.1.2.11. AT+CIPSTART

AT+CIPSTA	ART:建立 T	CP 连接或注册 UDP 端口号
		1) 若设置 AT+CIPMUX=0
测试指令	响应	+CIPSTART:(<type>取值列表),(<ip< td=""></ip<></type>
AT+CIPSTART=?		address>范围),(<port>范围)</port>
		+CIPSTART:(<type>取值列表),(<domain< td=""></domain<></type>
		name>范围),(<port>范围)</port>
		ОК
		2) 若设置 AT+CIPMUX=1
		+CIPSTART:(id),(<type>取值列表),(<ip< td=""></ip<></type>
		address>范围),(<port>范围)</port>
4		+CIPSTART: (id), (<type>取值列</type>
		表),(<domain name="">范围),(<port>范</port></domain>
		围)
	说明	None
		OK - 格式正确且连接成功
		或者
设置命令	响应	ERROR - 失败
1)单路连接		或者
(+CIPMUX=0)		ALREAY CONNECT - 连接已存在
AT+CIPSTART=		
<type>,<addr>,<port></port></addr></type>		指令参数:
		<id>0-4 连接的 id 号</id>
2)多路连接		<type>字符串参数,表明连接类</type>

Sept 2,2014

(+CIPMUX=1)	说明	型。"TCP"建立 tcp 连接; "udp"建立
AT+CIPSTART=		UDP 连接
<id><type>,<addr>,</addr></type></id>		<addr>字符串参数,远程服务器</addr>
<port></port>		IP 地址
		<port>远程服务器端口号</port>
说明		

4.1.2.12. AT+CIPSEND

	AT+CIPSEN	ND: 发送数据
测试指令:	响应	OK
AT+CIPSEND=?		
	说明	None
		响应返回指定长度的数据。
设置指令:		
1)单路连接时		收到指令后先换行返回">",然后开始
(+CIPMUX=0)	响应	接收串口数据,当数据长度满 length
AT+CIPSEND= <length></length>		时发送数据。
2)多路连接时		如果未建立连接或连接被断开,返回
(+CIPMUX=1)		ERROR
AT+CIPSEND=		如果数据发送成功,返回 SEND OK
<id>,<length></length></id>		
		指令参数:
	说明	<id>需要用于传输连接的 id 号</id>
		<length>数字参数,表明发送数据的</length>

		长度,最大为 2048
执行指令:	响应	收到指令后先换行返回">"
AT+CIPSEND		然后就进入了透传模式,每包数
只在透传模式下有效		据以 20ms 间隔区分,每包最大 2048
		字节。
		当输入单独一包"+++"返回指令
		模式。
	说明	该指令必须在开启透传且为单连
		接的情况下使用。

4.1.2.13. AT+CIPCLOSE

AT+CIPCLOSE: 关闭 TCP 或 UDP		
测试指令:	响应	ОК
AT+CIPCLOSE=?	说明	None
		如果输入正确,返回
		ОК
设置命令:		如果没有该连接则,返回
多路连接时	响应	Link is not
AT+CIPCLOSE= <id></id>		
	说明	指令参数:
		<id>需要关闭的连接 id</id>
		当 id 为 5 时关闭所有连接(开启
		server 后 id 为 5 无效)

		如果输入正确,返回
		ОК
执行指令:		
单路连接时	响应	如果没有连接则,返回
AT+CIPCLOSE		ERROR
	说明	None
说明	关闭后的:	状态为 unlink

4.1.2.14. AT+CIFSR

	AT+CIFSR:	获取本地 IP 地址
测试指令:	响应	ОК
AT+CIFSR=?	说明	None
		+CIFSR: <ip address=""></ip>
	响应	
执行命令:		ОК
AT+ CIFSR		ERROR
	说明	AP 模式下该指令无效。
		响应返回:
Y		<ip address=""> - 本机当前 IP 地址(station)</ip>

4.1.2.15. AT+ CIPMUX

AT+CIPMU	JX: 启动多连接
响应	+CIPMUX: <mode></mode>

查询命令:		
AT+CIPMUX?		ОК
	说明	None
		ОК
	响应	如果已经处于连接状态则,返回
		Link is builded
设置指令:		只有当连接都断开后才能更改,如果开
AT+CIPMUX= <mode></mode>	说明	启过 server 需要重启模块。
		指令参数:
		<mode></mode>
		0 单路连接模式
		1 多路连接模式

4.1.2.16. AT+ CIPSERVER

AT+CIPSERVER: 配置为服务器		
		开启 server 后自动建立 server 监听
	响应	OK
设置指令:		
AT+CIPSERVER=		关闭 server 需要重启
<mode>[,<port>]</port></mode>		指令参数:
		<mode></mode>
	说明	0 关闭 server 模式
		1 开启 server 模式
		<port>端口号,缺省值为 333</port>
说明	开启 server 后自动建立 server 监听	
	当有 client 接入会自动按顺序占用一个连接	
	AT+ CIPMUX=1 时才能开启服务器	

4.1.2.17. AT+ CIPMODE

	AT+CIPMO	DDE: 选择传输模式
	响应	+CIPMODE: <mode></mode>
查询命令:		
AT+ CIPMODE?		ОК
	说明	响应当前处于哪种模式?
	响应	OK
设置指令:		如果已经处于连接状态,则返回
AT+ CIPMODE = <mode></mode>		Link is builded
		指令参数 <mode>:</mode>
	说明	0- 非透传模式;
		1- 透传模式;

4.1.2.18. AT+ CIPSTO

AT+CIPSTO: 设置服务器超时时间				
	响应	+CIPSTO: <time></time>		
查询命令:				
AT+ CIPSTO?		ОК		
	说明	响应当前超时时长		
	响应	ОК		
设置指令:		< time>:		
AT+ CIPMODE = <mode></mode>	说明	0~28800 服务器超时时间,单位为 s		

4.1.2.19. +IPD 接收到的网络数据

+IPD:接收到网络数据				
参考	说明			
1)单路连接时	此指令是模块发出指令,当模块接收到网络			
(+CIPMUX=0)	数据时向串口发送+IPD 和数据			
+IPD, <len>:<data></data></len>				
	<id>收到连接的 id 号</id>			
1)多路连接时	<len>数据长度</len>			
(+CIPMUX=1)	<data>收到的数据</data>			
+IPD, <id>>,<len>:<data></data></len></id>				

5. 其他详细资料

如需基于 ESP8266 模块做二次开发,我司将提供更多详细的参考资料,以下 为部分参考文档列表:

- ➤ Espressif IoT SDK 使用手册 介绍 ESP8266 的开发环境如何搭建。
- ➤ Espressif IoT Demo 使用手册
 介绍 ESP8266 IOT Demo 如何调试使用。
- ➤ Espressif IoT SDK 编程手册 介绍 ESP8266 IOT SDK 提供的所有软件接口。
- ➤ Espressif Cloud Introduction
 介绍 Espressif 的云端服务如何使用。
- ▶ Espressif Flash Operation 技术细节文档,介绍 ESP8266 Flash 读写操作。
- ➤ Espressif 定时器功能 技术细节文档,介绍 ESP8266 基于云端服务的定时功能如何实现。
- ➤ 云端升级实现方案 技术细节文档,介绍 ESP8266 基于 WIFI 的云端升级如何实现。

附录: 乐鑫联系方式

地址:上海市浦东张江高科技园区碧波路 456 号 A201 室 邮编: 201203

电话: (86) 021-61062079

网址: http://www.espressif.com/

邮件联系: sales@espressif.com

了解更多关于乐鑫信息科技的资讯,请访问网站: http://www.espressif.com/

<结束>