HC-SR04

超音波距離測定

風户爭册

V-2020

概要

HC-SR04(バージョン2020)は、旧バージョンと完全にサイズ互換で、UARTとIICの機能が追加されたオープンエンド型の超音波距離測定モジュールです。デフォルトでは、ソフトウェアとハードウェアは旧バージョンのHC-SR04と完全互換です。抵抗を介してUARTまたはIICモードに設定できます。2CM超小型死角、4.5M標準最大範囲、2.2mA超低動作電流を実現しました。復調チップRCWL-9206をアップグレード、UARTとIIC機能のMCUを搭載、周辺部のコンパクト化、広い動作電圧(3~5.5V)、インターフェース機能の充実を実現しました。

特徵

- プロ用復調距離測定チップ RCWL-9206
- GPIO、UART、IICの3種類のインターフェースに対応。
- 3V~5.5Vのワイドな電圧供給
- 動作電流2.2mA
- 最小死角2cm
- デフォルトのソフトウェアとハードウェアは、旧バージョンの HC-SR04と完全に互換性があります
- 2cmから450cmまでの広い測定範囲(平らな壁面用)
- よりクリーンな外装

年 HC-SR04ューザー

● 動作温度: -10℃~70

性能パラメータ。

パラメータ 備考 最小値 代表的 最大の 名 な値 動作電圧 3 5.5 動作電流 2.2 3	
動作電圧 3 5.5	V
	V
動作電流 2.2 3	
	マイ
	クロ
	波
最大検出距離 壁の水平出し 350 450 600	
	ぎょ
*L/C = \hat{\tau}	てん
動作周波数 40	丰口
	ヘルッ
ブラインドス 不感帯のランダム 2 4	せい
ポット 値	ぎょ
	てん
検出精度 同温度 ±2	%
解像度 理論編 1	ミリ
	メー
	トル
検出角度 最大指向角 ±15 ±20	程度
測定サイクル 200	エム
タイム	エス
出力インター GPIO/UART/IIC	
フェースモー	
ド	$^{\circ}$
カ作価度 フラステックケー 一切 60 スプローブ(受注	
生産)	
動作温度 アルミニウム製ハ -10 70	$^{\circ}\mathbb{C}$
ウジングプローブ	

インターフェース定義。

シリアルン	インターフ ェース定義	商品説明
1	ブイシーシー	電源

2020年 HC-SR04ューザー

2	Trig/Rx/SCL	GPIOモード。 Trig トリガ信
		号
		UARTモードです。 Rx 受信信
		号
		IICモード。 SCL クロック
		信号
3	エコー	GPIOモードは エコー・ フィー
	/Tx/SDA	ドバック信号
		UARTモードです。 Tx
		送信信号
		ICCモード。 SCL データ信
		号
4	Gnd	グランド

モード選択。

シリ	モード	R4/R5抵抗設定		
アル				
ナン				
バー				
1	GPI0	R4=NC	R5=NC	デフォ
		ルト		
2	UART	R4=NC	R5=10K	
3	IIC	R4=10K	R5=NC	

操作性を測定する。

I: GPIOモード

超声波时序图

動作モードは旧バージョンのHC-SRO4と同じで、外部MCUからモジュール のTrig端子に10uS以上のハイレベルパルスを与え、モジュールは距離に比例 したハイレベルパルス信号を与え、パルス幅時間によって調整することが できる

"T"

鍛え上げる。

距離 = T*C/2 (Cは音速)

音速の温度式: c=(331.45+0.61t/℃)m-s-1 (ただし、330.45は0℃

の場合) 0℃の音速。 330.45M/S

20℃における音速。 342.62M/S

40℃における音速。 354.85M/S

0℃から40℃までの音速は7%程度の不正確さです。実用上、正確な距離値が

2020年
必要な場合は、以下のような配慮が必要です。HC-SR04ユーザー

暖かい

の影響を受け、温度補正されます。

II: UARTモード

UARTモードボーレート設定: 9600 N 1

受注状況	戻り値	商品説明
OXAO	BYTE_H	出力距離は
	BYTE_M	((byte_h<<16) + (byte_m<<<8) + byte_1)/1000
	BYTE_L	単位 mm
0XF1		会社・版数情報

シリアルポートに接続する。外部のMUやPCからコマンドOXAOを送信し、モジュールは測距終了後、BYTE_H、BYTE_M、BYTE_Lの3つのリターンディスタンスデータを送信します。

距離は次のように計算されます(単位: mm)。

距離 = ((BYTE_H<<<16) + (BYTE_M<<8) + BYTE_L)/1000

III: IICモー ド

IICアドレス:

0X57 IIC転送フ

ォーマット:

データを読み取る。

注文形式。

住所	受注状 況	戻り値	商品説明
アドレ	0X01		レンジスタートコマンド
スの書	ONOT		
き込み			
OXAE			
アドレ		byte_h	出力距離は
スを読		byte_m	((byte_h<<16) + (byte_m<<8) +)
む		byte_1	BYTE_L)/1000
ゼロエッ			単位 mm
クスエー			
エフ			

0X01を書き込んで測距を開始し、200mS待つ(モジュールの最大測距時間) 上図距離は次のように計算されます(単位: mm)。 距離 = ((BYTE_H<<<16) + (BYTE_M<<8) + BYTE_L)/1000

アプリケーションノート

- 1: このモジュールは電気で接続しないでください。電気で接続する場合は、モジュールのGnd端を先に接続させてください。
- 2: 試験面があまり規則的でない場合や、遠方の物体を試験する場合は、複数の測定値を用いて校正することができます。
- 3: 試験間隔は200mS以上とすること。
- 4: お客様が自社製品の金型にモジュールを入れる必要がある場合、モジュールの周辺パラメータを調整する必要がある場合がありますので、バッチ前にパラメータを決定するために当社に連絡することができます。

アプリケーションルーチン。

ARDUINOテストボードのPCBファイルとテストルーチンは添付ファイルをご覧ください。

外形寸法。

