Unsupervised Recurrent Neural Network Grammar

Wang Ge Group Meeting 2019/5/29

Kim et al. 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics

What is Recurrent Neural Network Grammar

A transition-based generative model proposed by Dyer et al in 2016

	Stack	Terminals	Action	Two basic action
0			NT(S)	generation(shif
1	(S		NT(NP)	generation(Silli
2	(S (NP		GEN(The)	
3	(S (NP The	The	GEN(hungry)	•
4	(S (NP The hungry	The hungry	GEN(cat)	Actions determine
5	(S (NP The hungry cat	The hungry cat	REDUCE	stacks, buffere
6	(S (NP The hungry cat)	The hungry cat	NT(VP)	and previous ac
7	(S (NP The hungry cat) (VP	The hungry cat	GEN(meows)	
8	(S (NP The hungry cat) (VP meows	The hungry cat meows	REDUCE	
9	(S (NP The hungry cat) (VP meows)	The hungry cat meows	GEN(.)	Composition of
10	(S (NP The hungry cat) (VP meows) .	The hungry cat meows .	REDUCE	and bi-direction
11	(S (NP The hungry cat) (VP meows).)	The hungry cat meows .		una bi-aliectio

- ons: ft), reduce
- nined by ed generations ctions
- stack LSTMs onal LSTMs

Network Structure of RNNG

The overall network structure: concatenate stack, buffer and action representations, then use MLPs to decide next action

The part for reduce: form the representation of the reduced span with bi-directional LSTM

What Does RNNG Learn About Syntax

Further studies on RNNG find following facts:

- The composition function, i.e. the reduce part is the key to RNNG's good performance in parsing
- The information in buffers and actions and redundant, determining actions on the stack only is enough
- Non-terminal Labels add only a little information about phrase behavior, a good grammar can be learned without them

Is it possible to learn an RNNG without golden tree annotation?

Learn RNNG with an Autoencoder

- It is natural to learn a grammar like RNNG unsupervisedly with an autoencoder
- Use an inference network $q(\mathbf{z}|\mathbf{x})$ to sample parse trees \mathbf{z} according to input sentence
- ${\color{blue} \bullet}$ Learn a generative model $p(\mathbf{z},\mathbf{x})$ that maximize the probability to reconstruct input sentence
- Ensure that backpropagation is possible for every step

Approach Overview

Inference Network $q_{\phi}(\mathbf{z} \,|\, \mathbf{x})$

Generative Model $p_{\theta}(\mathbf{x}, \mathbf{z})$

- The inference network predicts a binary tree, indicated by boolean variables that decide if two spans form a subtree
- The generative model is similar to that of the original RNNG, except that the reduce action is realized by tree LSTMs and no non-terminal labels are involved

Encoder Details

Use bi-directional LSTMs to compute the span score

$$s_{ij} = \text{MLP}([\overrightarrow{\mathbf{h}}_{j+1} - \overrightarrow{\mathbf{h}}_i; \overleftarrow{\mathbf{h}}_{i-1} - \overleftarrow{\mathbf{h}}_j])$$

Formulate the inference network as a CRF parser

$$q_{\phi}(\mathbf{B} \mid \mathbf{x}) = \frac{1}{Z_T(\mathbf{x})} \exp\left(\sum_{i \leq j} \mathbf{B}_{ij} s_{ij}\right), \quad Z_T(\mathbf{x}) = \sum_{\mathbf{B}' \in \mathcal{B}_T} \exp\left(\sum_{i \leq j} \mathbf{B}'_{ij} s_{ij}\right),$$

Finally map the boolean variables to RNNG actions

Define that
$$f: \mathcal{B}_T \to \mathcal{Z}_T$$
 $q_{\phi}(\mathbf{z} \,|\, \mathbf{x}) \triangleq q_{\phi}(f^{-1}(\mathbf{z}) \,|\, \mathbf{x}).$

Optimization Details

The optimization objective function is the ELBO:

$$\mathbb{E}_{q_{\phi}(\mathbf{z} \mid \mathbf{x})}[\log p_{\theta}(\mathbf{x}, \mathbf{z})] + \mathbb{H}[q_{\phi}(\mathbf{z} \mid \mathbf{x})],$$

The optimization of decoder and encoder parameter:

$$\nabla_{\theta} \operatorname{ELBO}(\theta, \phi; \mathbf{x}) \approx \frac{1}{K} \sum_{k=1}^{K} \nabla_{\theta} \log p_{\theta}(\mathbf{x}, \mathbf{z}^{(k)}), \qquad \frac{1}{K} \sum_{k=1}^{K} (\log p_{\theta}(\mathbf{x}, \mathbf{z}^{(k)}) - r^{(k)}) \nabla_{\phi} \log q_{\phi}(\mathbf{z}^{(k)} \mid \mathbf{x}),$$

where
$$r^{(k)} = \frac{1}{K-1} \sum_{j \neq k} \log p_{ heta}(\mathbf{x}, \mathbf{z}^{(j)})$$
 is used to control variance

Experimental Results

	PT	В	CTB		
Model	PPL	F_1	PPL	F_1	
RNNLM	93.2	_	201.3	_	
PRPN (default)	126.2	32.9	290.9	32.9	
PRPN (tuned)	96.7	41.2	216.0	36.1	
Left Branching Trees	100.9	10.3	223.6	12.4	
Right Branching Trees	93.3	34.8	203.5	20.6	
Random Trees	113.2	17.0	209.1	17.4	
URNNG	90.6	40.7	195.7	29.1	
RNNG	88.7	68.1	193.1	52.3	
$RNNG \rightarrow URNNG$	85.9	67.7	181.1	51.9	
Oracle Binary Trees	_	82.5	_	88.6	

Experimental Results

Tree	PTB	СТВ	Label	URNNG	PRPN		RNNLM	PRPN	RNNG	URNNG
Gold	40.7	29.1	SBAR	74.8%	28.9%	PPL	93.2	96.7	88.7	90.6
Left	9.2	8.4	NP	39.5%	63.9%	Overall	62.5%	61.9%	69.3%	64.6%
Right	68.3	51.2	VP	76.6%	27.3%	Subj.	63.5%	63.7%	89.4%	67.2%
Self	92.3	87.3	PP	55.8%	55.1%	Obj. R		61.0%	67.6%	65.7%
RNNG	55.4	47.1	ADJP	33.9%	42.5%	Refl.	60.7%	68.8%	57.3%	60.5%
PRPN	41.0	47.2	ADVP	50.4%	45.1%	NPI	58.7%	39.5%	46.8%	55.0%

Experimental Results from further analysis on trees learned by URNNG