

IEEE R5 Robotics Competition

•••

Charlie Coleman, Heli Wang, Amy Guo

HC

Overview

- Competition between the 90+ student bodies within IEEE
 Region 5
- Autonomous Robot
- Sort cubes based on stencilled-on letters
- Avoid obstacles placed throughout course

Market

Pick and Place Robots → Speed & Consistency

Uses in manufacturers

- Assembly
- Packaging
- Bin picking
- Inspection

Social

IEEE (Institute of Electrical and Electronics Engineers)

- Latest technology
- Networking
- Career development

SLU IEEE Student Chapter

IEEE Region 5 Conference

IEEE Region 5 Robotics Competition

Ethics

Robo-ethics

- Poses no threat
- Simulated environment
- No human robot interaction
- No decision making tactic from data

Design Parameters

Robot

- Fit within 12" x 12"
- Total Weight < 40 lbs

Obstacles & Blocks

- Avoid gray pipes
- Pick up lettered blocks

Competition Board

 Multiple pieces will be cut and they will be placed as required

Corner Lights

- Blue LEDs
- Signals vehicle orientation

Mothership

Stores sorted blocks

- 10 minutes prep time
- No repairs/changes after start time
- No explosive/volatile liquid
- Only wheeled/tracked/legged robots allowed
- Always one point in contact with competition board

Solution Approach

- Simple, 4-wheel chassis design
- Optical character recognition (OCR) to identify cubes
 - Using OpenCV & Tesseract
 - Detect letter orientation & rotate
- Claw
 - Concept based on rack & pinion gear
- Navigation
 - o Path found based on supplied JSON file
- Power supply
 - Needs to power all subsystems for ~2x the length of the competition

Alternate Solutions

- Navigation
 - Computer vision + obstacle detection
 - To computationally intensive for our processor
 - Would require multiple cameras for 360 degree vision
 - Sonar
 - Unreliable detection of small obstacles
 - Would be unable to distinguish between cubes/obstacles/mothership
- Claw
 - o "Scissor" design
 - Would potentially push the cube out of range

Testing Plan

OCR

- Computer generated images based off stencil
- Images taken with RPi camera
- Running on RPi w / camera

• Claw

- Test on/off chassis, needs high reliability
- Navigation
 - Test on competition board
 - Use JSON files formatted like examples given
 - Tested at all difficulty levels

Completed Robot

- Test all subsystems individually again
- Replicate competition scenario
- Record time and points according to competition rules

Implementation Plan

- Milestones
 - Optical Character Recognition (OCR)
 - Accuracy improvement, Rotation detection
 - Navigation
 - Obstacle avoidance, cube/mothership detection
 - Chassis
 - Mounting Raspberry Pi, cameras, battery, etc.
 - Match rules for robot design given in competition rules
 - Claw
 - Mounted on robot
 - Reliable picking & placing of cube
 - Power supply
 - Power all subsystems for length of competition, with plenty of room for error

Resources

- Facilities
 - Fabrication Lab
 - Senior Design Lab
 - Electronics Lab
 - Microprocessors Lab
- Lab Equipment
 - Laser cutter
 - o Digital Multimeter
 - Power Supply
 - Oscilloscope
- Computer Applications
 - OpenCV

- Tesseract OCR
- o Raspbian
- Specialized Hardware
 - o Raspberry Pi
 - Raspberry Pi Camera Module
 - Servo Motors
 - o DC Motors
- Communication Protocols
 - Universal Serial Bus
 - Camera Serial Interface

References

Robert Shapiro, IEEE Region 5 Website, 2018, http://ieeer5.org.

IEEE Region 5 Robotics Competition, 2018, http://r5conferences.org/competitions/roboticscompetition/.

Robotics Online Marketing Team, Pick and Place Robots: What Are They Used For and How Do They Benefit Manufacturers?, 03/13/2018, https://www.robotics.org/blogarticle.cfm/Pick-and-Place-Robots-What-Are-They-Used-For-and-How-Do-TheyBenefit-Manufacturers/88.

IEEE, The Benefits of Membership, https://ewh.ieee.org/reg/3/IEEE_member_value.pdf.