21 Abgeschlossene Unterprävarietäten

Sei X Prävarietät, $Z \subseteq X$ abgeschlossen irreduzibel.

Ziel. (Z, \mathcal{O}_Z') Raum von Funktionen erklären. Definiere dazu:

$$\mathcal{O}'_Z := \{ f \in Abb(U, k) \mid \forall x \in U \ \exists x \in V \subseteq X \ \text{offen}, \ g \in \mathcal{O}_X(V) \}$$

mit $f_{|_{U\cap V}}=g_{|_{U\cap V}}$ für $U\subset Z$ offen. Damit ist (Z,\mathcal{O}_Z') Raum von Funktionen (klar!) mit $\mathcal{O}_X'=\mathcal{O}_X$.

Lemma 49 (orig. 46). $X \subseteq \mathbb{A}^n(k)$ irreduzible affine algebraische Menge, und $Z \subset X$ sei ein irreduzibler abgeschlossener Teil. Dann ist $(Z, \mathcal{O}_Z) = (Z, \mathcal{O}_Z')$.

Bezeichne ab jetzt stets \mathcal{O}_Z für $\mathcal{O}_{Z'}$.

Proof. $Z \subseteq X$ ist in beiden Fällen mit der Teilraumtopologie ausgestattet! Ferner wissen wir, dass der Morphismus $Z \hookrightarrow X$ affiner algebraischer Mengen einen Morphismus $(Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ von Prävarietäten induziert. Nach Definition von \mathcal{O}' folgt dann:

$$\mathcal{O}'_Z \subseteq \mathcal{O}_Z(U)$$
 für $U \subseteq Z$ offen.

Dies gilt da:

$$x \in V_x \subseteq X \cup V$$

$$f_{|_{U \cap V_x}} = g_{x|_{U \cap V_x}} \in \mathcal{O}_Z(U \cap V_x)$$

mit $g \in \mathcal{O}_X(V_x) \Rightarrow \text{(Morphismus!)} \ g_{|_{Z_{cap}V_x}} \in \mathcal{O}_Z(Z \cap V_x)$

Verklebungsaxiom $\Rightarrow f \in \mathcal{O}_Z(U)$.

Sei $f \in \mathcal{O}_Z(U)$ und $x \in U$ beliebig. Es folgt: $\exists h \in \Gamma(Z)$ mit $x \in \mathcal{D}(h) \subseteq U$ und

$$f_{|_{\mathcal{D}(h)}} = \frac{g}{h^n} \in \Gamma(Z)_h = \mathcal{O}_Z(\mathcal{D}(h))$$

für $h \geq 0$, $g \in \Gamma(Z)$ geieignet. Lifte $g, h \in \Gamma(Z) \twoheadleftarrow \Gamma(X)$ zu $\overline{g}, \overline{h} \in \Gamma(X)$ und setze $V := D(\overline{h}) \subseteq X$.

$$\Rightarrow x \in V, \ \frac{\overline{g}}{\overline{h}^n} \in \mathcal{O}_X(\mathcal{D}(\overline{h})) \text{ und } f_{|_{U \cap V}} = \frac{\overline{g}}{\overline{h}^n}|_{U \cap V}.$$
$$\Rightarrow f \in \mathcal{O}_Z'(U).$$

Corollary 50 (orig. 47). Wenn X eine Prävarietät ist, und $Z \subseteq X$ irreduzibel abgeschlossen. Dann ist (Z, \mathcal{O}_Z) ebenfalls eine Prävarietät.

Proof. Es ist $X = \bigcup_{\text{endl.}} X_i$ endliche affine offene Überdeckung. Damit ist

$$Z = \bigcup (Z \cap X_i) := \bigcup Z_i$$

mit (Z_i, \mathcal{O}_{Z_i}) affine Varietät nach Lemma 46.