Lezione del 26 marzo

Definizione 0.1. Sia ω una 1-forma differenziale esatta su D

- ω è esatta se $\exists F: D \to \mathbb{C}$ con $\omega = \mathrm{d} F$
- ω è chiusa se è localmente esatta, ovvero

$$\forall p \in D \; \exists U \subset D \; \text{con} \; p \in U \; \text{e} \; F_U : U \to \mathbb{C} \; \text{con} \; \mathrm{d}F_U = \omega_{|U|}$$

In tal caso F si chiama primitiva di ω , mentre F_U primitiva locale di ω

Osservazione 1. Ricordando che d $F = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy$ da cui $\omega = P dx + Q dy$ è esatta se esiste F tale che $P = \frac{\partial F}{\partial x}$ e $Q = \frac{\partial F}{\partial y}$

1 Integrali curvilinei

Definizione 1.1 (Integrali complessi).

Sia $f: [a,b] \to \mathbb{C}$ continua, poniamo

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} Re(f(t)) dt + i \int_{a}^{b} Im(f(t)) dt$$

Definizione 1.2. Sia D un dominio aperto connesso di \mathbb{C} e fissiamo ω una 1-forma differenziale complessa su D.

Se $\gamma: [a,b] \to D$ è un cammino C^1 definiamo

$$\int_{\gamma} \omega = \int_{a}^{b} \omega_{\gamma(t)}(\gamma'(t)) \, \mathrm{d}t$$

dove se $\gamma(t)=(x(t),y(t))=x(t)+iy(t)$ allora $\gamma'(t)=(x'(t),y'(t))=x'(t)+iy'(t)$ mentre $\omega_{\gamma(t)}=\omega(\gamma(t))$

Osservazione 2. Se $\omega = Pdx + Qdy$ allora

$$\omega_{\gamma(t)}(\gamma'(t)) = P(\gamma(t))dx(\gamma'(t)) + Q(\gamma(t))dy(\gamma'(t)) = P(\gamma(t))x'(t) + Q(\gamma(t))y'(t)$$

Esempio 1.1. Sia $D = \mathbb{C}^* = \mathbb{C} \setminus \{0\}$, $\omega = \frac{1}{z} dz$ $e \gamma(t) = e^{2\pi i t} = \cos(2\pi t) + \sin(2\pi t)$ Calcolare $\int_{\gamma} \omega$

Ricordando che dz è l'identità di \mathbb{C} e poichè $\gamma'(t) = 2\pi i \gamma(t)$ ottengo

$$\omega_{\gamma(t)}(\gamma'(t)) = \frac{\mathrm{d}z}{\gamma(t)} \cdot 2\pi i \gamma(t) = 2\pi i$$

da cui $\int_{\gamma} \omega = \int_0^1 2\pi i \, dt = 2\pi i$.

Svolgiamo lo stesso conto in coordinate (usando dx e dy)

$$\frac{dz}{z} = \frac{1}{x + iy}(dx + idy) = \frac{x - iy}{x^2 + y^2}(dx + idy) = \frac{xdx + ydy}{x^2 + y^2} + i\frac{xdy - ydx}{x^2 + y^2}$$

1

Ora
$$\gamma(t) = x(t) + iy(t)$$
 dove $x(t) = \cos(2\pi t)$ e $y(t) = \sin(2\pi t)$

$$dx(\gamma'(t)) = x'(t) = -2\pi \sin(2\pi t)$$

$$dy(\gamma'(t)) = y'(t) = 2\pi \cos(2\pi t)$$

da cui

$$(xdx + ydy)_{\gamma(t)}(\gamma'(t)) = \cos(2\pi t)(-2\pi\sin(2\pi t)) + \sin(2\pi t)(2\pi\cos(2\pi t)) = 0$$

$$\left(i\frac{xdy - ydx}{x^2 + y^2}\right)_{\gamma(t)} (\gamma'(t)) = i\frac{2pi(\cos^2(2\pi t) + \sin^2(2\pi t))}{\cos^2(2\pi t) + \sin^2(2\pi t)} = 2\pi$$

 $Abbiamo\ ritrovato$

$$\int_{\gamma} \frac{\mathrm{d}z}{x} = \int_{\gamma} \frac{x \mathrm{d}x + y \mathrm{d}y}{x^2 + y^2} + i \int_{\gamma} \frac{x \mathrm{d}y - y \mathrm{d}y}{x^2 + y^2} = 2\pi i$$

Proposizione 1.2. Proprietà elementari dell'integrale curvileneo

1. Sia $\gamma: [a,b] \to D$, se $\psi: [c,d] \to [a,b]$ è C^1 con $\psi(c) = a$ e $\psi(d) = b$ allora

$$\int_{\gamma} \omega = \int_{\gamma \circ \psi} \omega$$

ovvero l'integrale non dipende dalle riparametrizzazioni che preservano il verso

2. Sia $\gamma: [a,b] \to D$, se $\psi: [c,d] \to [a,b]$ è C^1 con $\psi(c) = b$ e $\psi(d) = a$ allora

$$\int_{\gamma} \omega = -\int_{\gamma \circ \psi} \omega$$

3. Se $\gamma = \gamma_1 \star \gamma_2$ giunzione di cammini C^1 allora

$$\int_{\gamma} \omega = \int_{\gamma_1} \omega + \int_{\gamma_2} \omega$$

4. Se $\gamma: [a,b] \to D$ è un cammino C^1 a tratti (ovvero continua e tale che esistono $a=t_0 < t_1 < \cdots < t_n = b$ tali che $\gamma_{|[t_i,t_{i+1}]}$ sia C^1 allora

$$\int_{\gamma} \omega = \sum_{i=0}^{n} \int_{\gamma_{|[t_{i},t_{i+1}]}} \omega$$

Dimostrazione.

1.

$$\int_{\gamma \circ \psi} \omega = \int_{c}^{d} \omega_{\gamma(\psi(t))}((\gamma \circ \psi)'(t)) dt = \int_{c}^{d} \omega_{\gamma(\psi(t))}(\gamma'(\psi(t))\psi'(t)) dt = \int_{c}^{d} \psi'(t) \cdot \omega_{\gamma(\psi(t))}(\gamma'(\psi(t))) dt$$

in quanto $\psi'(t) \in \mathbb{R}$ da cui

$$\int_{\gamma \circ \psi} \omega = \int_{\psi(c)}^{\psi(t)} \omega(\gamma(s)) \gamma'(s) ds = \int_{a}^{b} \omega(\gamma(s)) \gamma'(s) ds = \int_{\gamma} \omega(\gamma(s)) \gamma'(s) ds$$

2. Stessa dimostrazione del punto precedente ma usando il fatto che $\int_a^b f(t) dt = \int_b^a f(t) dt$

Lemma 1.3. Sia $D \subseteq \mathbb{C}$ aperto connesso. Allora D è connesso per archi (in particolare per archi C^1 a tratti)

Dimostrazione. Quasi identica a localmente connessa per archi implica connesso per archi. Basta osservare che ogni punto di D ha un intorno connesso per archi C^1 : preso $x_0 \in D$ si mostra che l'insieme dei punti di D connessi a x_0 da un arco C^1 a tratti è aperto e chiuso

Lemma 1.4. Sia ω una 1-forma differenziale esatta su D con $\omega = dF$. Allora $\forall \gamma : [a,b] \to D$ che è C^1 a tratti vale

$$\int_{\gamma} \omega = F(\gamma(b)) - F(\gamma(a))$$

Dimostrazione. Sia $a = t_0 < t_1 < \cdots < t_n = b$ una partizione tale che $\gamma_{|[t_i, t_{i+1}]}$ sia C^1 . Basta provare che $\forall i$ vale

$$\int_{\gamma_{|[t_i,t_{i+1}]}} \omega = F(\gamma(t_{i+1})) - F(\gamma(t_i))$$

(in quanto si ha

$$\int_{\gamma} \omega = \sum_{i=0}^{n-1} \int_{\gamma_{[[t_i, t_{i+1}]}} \omega = F(\gamma(t_n)) - F(\gamma(t_0)) = F(\gamma(b)) - F(\gamma(a))$$

i termini centrali si cancellano) Ma

$$\int_{\gamma_{|[t_i,t_{i+1}]}} \omega = \int_{\gamma_{|[t_i,t_{i+1}]}} dF = \int_{t_i}^{t_{i+1}} dF_{\gamma(t)}(\gamma'(t))dt = \int_{t_1}^{t_{i+1}} (F \circ \gamma)'(t) dt = F(\gamma(t_{i+1})) - F(\gamma(t_i))$$

Corollario 1.5. Sia $D \subseteq \mathbb{C}$ aperto connesso, $F: D \to \mathbb{C}$.

$$dF = 0 \implies F \ costante$$

Dimostrazione. $\forall a, b \in D$ esiste γ che connette a a b che è C^1 a tratti da cui

$$F(b) - F(a) = \int_{\gamma} dF = 0$$

Corollario 1.6. Sia $D \subseteq \mathbb{C}$ aperto connesso. Se F è una primitiva di ω , tutte e sole le primitive di ω si ottengono sommando una costante a F

Dimostrazione. Se G è un'altra primitiva, dG = dF allora d(G - F) = 0 dunque G = F + cost. Il viceversaè ovvio in quanto d(F + cost) = dF

Teorema 1.7. Sia $D \subseteq \mathbb{C}$ aperto connesso, e ω una 1-forma differenziale su D

$$\omega$$
 esatta \Leftrightarrow $\int_{\gamma} \omega = 0$ per ogni γ loop C^1 a tratti a valori in D

 $Dimostrazione. \Rightarrow \text{Se } \gamma: [a,b] \to D$ è un loop e ω è esatta, $\omega = \mathrm{d}F$ da cui

$$\int_{\gamma} \omega = F(\gamma(b)) - F(\gamma(a)) = 0$$

se γ è un loop allora $\gamma(a) = \gamma(b)$

 \Leftarrow Costruiamo una primitiva di ω come segue.

Fissato $x_0 \in D$, allora $\forall p \in D$ scelgo un cammino $\gamma_p : [0,1] \to D$ C^1 a tratti con $\gamma(0) = x_0$ e $\gamma(1) = p$ e pongo

$$F(p) = \int_{\gamma_p} \omega$$

Mostriamo che F(p) è ben definita, cioè non dipende dalla scelta di γ_p .

Sia α_p un altro cammino che congiunge x_0 a p, ora $\gamma_p \star \overline{\alpha_p}$ è un loop, dunque, per ipotesi

$$0 = \int_{\gamma_p \star \overline{\alpha}_p} \omega = \int_{\gamma_p} \omega + \int_{\overline{\alpha}_p} \omega = \int_{\gamma_p} \omega - \int_{\alpha_p} \omega$$

cioè $\int_{\gamma_p} \omega = \int_{\alpha_p} \omega$

Mostriamo che F è differenziabile con d $F = \omega$. Se $\omega = P dx + Q dy$ basta vedere che $\frac{\partial F}{\partial x} = P$ e $\frac{\partial F}{\partial y} = Q$ (in quanto P e Q sono continue per ipotesi da cui per il teorema del differenziale totale, F ammetterebbe derivati parziali continue dunque è differenziabile con $dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy$).

Mostriamo che $\frac{\partial F}{\partial x} = P$ (l'altra si fa in modo analogo). Sia γ_{z_0} un cammino che connette x_0 a z_0 C^1 a tratti, sia γ_h un cammino che congiunge z_0 a $z_0 + h$ dunque

$$F(z_0 + h) - F(z_0) = \int_{\gamma_{z_0} \circ \gamma_h} \omega - \int_{\gamma_{z_0}} \omega = \int_{\gamma_h} \omega$$

Sia $\gamma_h(t) = z_0 + t$ (cammino lungo x e costante lungo y) per cui

$$\omega_{\gamma_{h(t)}}(\gamma_h'(t)) = \omega_{h(t)}(1) = P(z_0 + t)dx(1) + Q(z_0 + t)dy(1) = P(z_0 + t)$$

dunque

$$F(z_0 + h) - F(z_0) = \int_0^h P(z_0 + t) dt$$

dividendo per h otteniamo

$$\frac{F(z_0+h)-F(z_0)}{h} = \frac{1}{h} \int_0^h P(z_0+t) dt = P(z_0+\xi_h)$$

dove l'ultima uguaglianza deriva dal teorema della media integrale con $0 \le \xi_h \le h$ Passando al limite per $h \to 0$ e usando la continuità di P otteniamo $\frac{\partial F}{\partial x}(z_0) = P(z_0)$