Train in Python, deploy anywhere and anyhow

Christian Bourjau

July 26, 2023

QuantCo PyData Zurich

Outline

What makes deploying models difficult?

What is ONNX?

Expressing models in Spox

Summary

What makes deploying models

difficult?

Define pipeline with feature engineering: Python rocks!

Training environment

- Define pipeline with feature engineering: Python rocks!
- Train: Python rocks!

Source train Trained model Data

- Define pipeline with feature engineering: Python rocks!
- Train: Python rocks!
- Pickle the trained model: Python rocks?

Source train Trained model pickle Artefact Data

- Define pipeline with feature engineering: Python rocks!
- Train: Python rocks!
- Pickle the trained model: Python rocks?
- Deploy ...

Training environment

- Pickle makes it hard to:
 - Distribute models

- Pickle makes it hard to:
 - Distribute models
 - Archive models
 - Compose models from different sources
 - Keep training IP out of the distributed model

- Pickle makes it hard to:
 - Distribute models
 - Archive models
 - Compose models from different sources
 - Keep training IP out of the distributed model
- Insufficient performance:
 - Slow and single-threaded

- Pickle makes it hard to:
 - Distribute models
 - Archive models
 - Compose models from different sources
 - Keep training IP out of the distributed model
- Insufficient performance:
 - Slow and single-threaded
- No Python on deployment platform:
 - Deploy on the edge (e.g. mobile)

- Pickle makes it hard to:
 - Distribute models
 - Archive models
 - Compose models from different sources
 - Keep training IP out of the distributed model
- Insufficient performance:
 - Slow and single-threaded
- No Python on deployment platform:
 - Deploy on the edge (e.g. mobile)

Why is this so hard?

Non-ML software

Compilation environment

Non-ML software

Compilation environment

What we have

Training environment

Non-ML software

What we want

Non-ML software

What we want

Deployment with ONNX

```
import numpy as np
import onnxruntime
# Load the model into the runtime
session = onnxruntime.InferenceSession("model.onnx")
# Execute the model
def predict(**inputs: nd.ndarray) -> list[nd.ndarray]:
    return session.run(None, inputs)
```

About that magical step...

Serialise inference logic and weights

ONNX is a standard

ONNX is a standard

- Strongly typed computational DAG
 - Edges are Tensors
 - Nodes are operators
 - Nodes store state as attributes

ONNX is a standard

- Strongly typed computational DAG
 - Edges are Tensors
 - Nodes are operators
 - Nodes store state as attributes
- Set of standardized operators (\sim 180)

Creating ONNX graphs – with a beautiful abstraction

- ONNX is a tensor library API
- Spox¹exposes that API as Python library

¹github.com/Quantco/spox

Expressing models in Spox

Linear regression in NumPy

```
from numpy import ndarray
import numpy as np

def lin_reg(X: ndarray, coef, intercept) -> np.ndarray:
    return coef @ X + intercept
```

Linear regression in NumPy

```
from numpy import ndarray
import numpy as np
def lin_reg(X: ndarray, coef, intercept) -> np.ndarray:
    return coef @ X + intercept
def lin reg verbose(X: ndarray, coef, intercept) -> np.ndarray:
    return np.add(np.matmul(coef, X), intercept)
```

Linear regression in Spox/ONNX

```
from spox import Var
import spox.opset.ai.onnx.v18 as op
```

Linear regression in Spox/ONNX

```
from spox import Var
import spox.opset.ai.onnx.v18 as op
def lin_reg(X: Var, coef, intercept) -> Var:
    # Move state into constants
    coef = op.const(coef)
    intercept = op.const(intercept)
    return op.add(op.matmul(coef, X), intercept)
```


Expressing sklearn-like pipelines in Spox

```
class SpoxLinearRegression:
    def __init__(self, state: LinearRegression):
        self.state = state

    def predict(self, X: Var) -> Var:
        return ...
```

Expressing sklearn-like pipelines in Spox

```
class SpoxLinearRegression:
    def __init__(self, state: LinearRegression):
        self.state = state

def predict(self, X: Var) -> Var:
        coef = op.const(self.state.coef)
        intercept = op.const(self.state.intercept)
        return op.add(op.matmul(coef, X), intercept)
```

Composing converters in a Pipeline

```
def converter(model):
    if isinstance(model, LinearRegression):
        return SpoxLinearRegression(model)
    ...
```

Composing converters in a Pipeline

```
def converter(model):
    if isinstance(model, LinearRegression):
        return SpoxLinearRegression(model)
    . . .
class SpoxPipeline:
    . . .
    def predict(self, X: Var) -> Var:
        for step in self.model.steps[:-1]:
            X = converter(step).transform(X)
        last = self.model.steps[-1]
        return converter(last).predict(X)
```

Building the model

Building the model

```
pipe = Pipeline([("scaler", MinMaxScaler()),
                 ("linear", LinearRegression(...))])
pipe.fit(X train, v train)
. . .
import numpy as np
from spox import argument, build, Tensor
from your_converter_library import converter
X = argument(Tensor(np.float64, ("N",)))
y = converter(pipe).predict(X)
model = build({"X": X}, {"y": y})
onnx.save(model, "model.onnx")
```

Spox/ONNX is just another tensor library

Spox

¹data-apis.org/

- Spox
- NumPy

¹data-apis.org/

- Spox
- NumPy
- jax.numpy

¹data-apis.org/

- Spox
- NumPy
- jax.numpy
- tf.experimental.numpy

¹data-apis.org/

- Spox
- NumPy
- jax.numpy
- tf.experimental.numpy
- Dask

¹data-apis.org/

- Spox
- NumPy
- jax.numpy
- tf.experimental.numpy
- Dask
- PyTorch

¹data-apis.org/

- Spox
- NumPy
- jax.numpy
- tf.experimental.numpy
- Dask
- PyTorch
- CuPy

¹data-apis.org/

- Spox
- NumPy
- jax.numpy
- tf.experimental.numpy
- Dask
- PyTorch
- CuPy
- · ...

¹data-apis.org/

- Spox
- NumPy
- jax.numpy
- tf.experimental.numpy
- Dask
- PyTorch
- CuPy
- **-** ...

¹data-apis.org/

- Spox
- NumPy
- jax.numpy
- tf.experimental.numpy
- Dask
- PyTorch
- CuPy

¹data-apis.org/

Spox ♥ ONNX:

Compile your trained model to a self-contained artefact

- Compile your trained model to a self-contained artefact
- Stable, very fast, and maintainable deployment

- Compile your trained model to a self-contained artefact
- Stable, very fast, and maintainable deployment
- Ready for production use!

- Compile your trained model to a self-contained artefact
- Stable, very fast, and maintainable deployment
- Ready for production use!
- ONNX has corporate backing by Microsoft and others

- Compile your trained model to a self-contained artefact
- Stable, very fast, and maintainable deployment
- Ready for production use!
- ONNX has corporate backing by Microsoft and others
- It is a key technology at QuantCo

Spox ♥ ONNX:

- Compile your trained model to a self-contained artefact
- Stable, very fast, and maintainable deployment
- Ready for production use!
- ONNX has corporate backing by Microsoft and others
- It is a key technology at QuantCo

Tutorials and Docs: github.com/Quantco/spox

Appendix

Integrating existing converters

Spox also allows integration with existing converter libraries by way of inline.

```
class SpoxComplicatedRegressor:
    ...

def predict(X):
    onnx_model = skl2onnx.to_onnx(self.model, ...)
    (y,) = inline(onnx_model)(X)
    return y
```