Melhores momentos

AULA 13

Distância

A distância de um vértice s a um vértice t é o menor comprimento de um caminho de s a t. Se não existe caminho de s a t a distância é infinita

Exemplo: a distância de 2 a 5 é 4

Distância

A distância de um vértice s a um vértice t é o menor comprimento de um caminho de s a t. Se não existe caminho de s a t a distância é infinita

Exemplo: a distância de 0 a 2 é infinita

Calculando distâncias

Problema: dados um digrafo G e um vértice s, determinar a distância de s aos demais vértices do digrafo

Exemplo: para
$$s = 0$$
 $\frac{v}{\text{dist[v]}} \begin{vmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 3 & 1 & 1 & 1 & 2 \end{vmatrix}$

Busca em largura

A busca em largura (=breadth-first search search = BFS) começa por um vértice, digamos s, especificado pelo usuário.

O algoritmo

```
visita s,
depois visita vértices à distância 1 de s,
depois visita vértices à distância 2 de s,
depois visita vértices à distância 3 de s,
e assim por diante
```


i	0	1	2	3	4	5	V	0	1	2	3	4	5
q[i]							dist[v]	6	6	6	6	6	6

i	0	1	2	3	4	5	V	0	1	2	3	4	5
q[i]	0						dist[v]	6	6	6	6	6	6

	l				4	5	v						
q[i]	0	2	3	4			dist[v]	0	6	1	1	1	6

i	0	1	2	3	4	5	v	0	1	2	3	4	5	
a[i]	0	2	3	4			dist[v]	0	6	1	1	1	6	

i	0	1	2	3	4	5	v	0	1	2	3	4	5
q[i]	0	2	3	4			dist[v]	0	6	1	1	1	6

i	0	1	2	3	4	5	v	0	1	2	3	4	5
q[i]	0	2	3	4	5		dist[v]	0	6	1	1	1	2

i	0	1	2	3	4	5	V	0	1	2	3	4	5
a[i]	0	2	3	4	5		dist[v]	0	6	1	1	1	2

i	0	1	2	3	4	5	V	0	1	2	3	4	5
a[i]	0	2	3	4	5		dist[v]	0	6	1	1	1	2

						v						
q[i]	0	2	3	4	5	 dist[v]	0	6	1	1	1	2

i	0	1	2	3	4	5	V	0	1	2	3	4	5
a[i]	0	2	3	4	5	1	dist[v]	0	3	1	1	1	2

	l						v						
q[i]	0	2	3	4	5	1	dist[v]	0	3	1	1	1	2

	l						V						
q[i]	0	2	3	4	5	1	dist[v]	0	3	1	1	1	2

	l						v						
q[i]	0	2	3	4	5	1	dist[v]	0	3	1	1	1	2

i	0	1	2	3	4	5	v	0	1	2	3	4	5
a[i]	0	2	3	4	5	1	dist[v]	0	3	1	1	1	

DIGRAPHdist

```
#define INFINITO maxV
static int dist[maxV];
static Vertex parnt[maxV];
void DIGRAPHbfs (Digraph G, Vertex s) {
   Vertex v, w; link p;
2 for (v = 0; v < G > V; v++)
       dist[v] = INFINITO;
       parnt[v] = -1;
5
   QUEUEinit(G->V);
   dist[s] = 0;
   parnt[s] = s;
```

DIGRAPHdist

```
8
    QUEUEput(s);
 9
    while (!QUEUEempty()) {
10
        v = QUEUEget();
11
        for(p=G->adj[v];p!=NULL;p=p->next)
12
            if (dist[w=p->w] == INFINITO) {
13
               dist[w] = dist[v] + 1;
14
               parnt[w] = v;
15
               QUEUEput(w);
16
    QUEUEfree();
```

AULA 14

Digrafos com custos nos arcos

Muitas aplicações associam um número a cada arco de um digrafo Diremos que esse número é o custo da arco Vamos supor que esses números são do tipo **double**

```
typedef struct {
    Vertex v;
    Vertex w;
    double cst;
} Arc;
```

Matriz de adjacência

Matriz de adjacência indica a presença ausência e custo dos arcos:

se v-w é um arco, adj[v][w] é seu custo se v-w não é arco, adj[v][w] = \max CST

Exemplo:

	0	1	2	3
0	*	.3	2	*
1	*	*	*	.42
2	*	1	*	.12
3	*	*	*	*

* indica maxCST = INFINITO

Digrafo

Digraph G

Estruturas de dados

Vetor de listas de adjacência

A lista de adjacência de um vértice v é composta por nós do tipo node
Um link é um ponteiro para um node
Cada nó da lista contém um vizinho w de v, o custo do arco v-w e o endereço do nó seguinte da lista

```
typedef struct node *link;
struct node {
    Vertex w;
    double cst;
    link next;
};
```

Digrafo

Digraph G

Estruturas de dados

Custo de um caminho

Custo de um caminho é soma dos custos de seus arcos

Custo do caminho 0-2-4-5 é 16.

Custo do caminho 0-2-4-1-2-4-5 é 14.

Custo do caminho 0-2-4-1-2-4-1-2-4-5 é 12.

Caminho mínimo

Um caminho P tem **custo mínimo** se o custo de P é menor ou igual ao custo de todo caminho com a mesma origem e término

O caminho 0-3-4-5-1-2 é mínimo, tem custo -1

Problema

Problema dos Caminhos Mínimos com Origem Fixa (Single-source Shortest Paths Problem):

Dado um vértice s de um digrafo com custos não-negativos nos arcos, encontrar, para cada vértice tque pode ser alcançado a partir de s, um caminho mínimo simples de s a t.

Exemplo

Entra:

Exemplo

Sai:

Arborescência de caminhos mínimos

Uma arborescência com raiz s é de caminhos mínimos (= shortest-paths tree = SPT) se para todo vértice t que pode ser alcançado a partir de s, o único caminho de s a t na arborescência é um caminho mínimo

Problema da SPT

Problema: Dado um vértice s de um digrafo com custos não-negativos nos arcos, encontrar uma SPT com raiz s

Entra:

Problema da SPT

Problema: Dado um vértice s de um digrafo com custos não-negativos nos arcos, encontrar uma SPT com raiz s

Algoritmo de Dijkstra

S 21.1 e 21.2

Problema

O algoritmo de Dijkstra resolve o problema da SPT:

Dado um vértice s de um digrafo com custos

não-negativos nos arcos, encontrar uma SPT

com raiz s

Simulação

Simulação

Recebe digrafo G com custos não-negativos nos arcos e um vértice s

Calcula uma arborescência de caminhos mínimos com raiz s.

A arborescência é armazenada no vetor parnt As distâncias em relação a s são armazenadas no vetor cst

void

Fila com prioridades

A função dijkstra usa uma fila com prioridades A fila é manipulada pelas seguintes funções:

- ▶ PQinit(): inicializa uma fila de vértices em que cada vértice v tem prioridade cst[v]
- ► PQempty(): devolve 1 se a fila estiver vazia e 0 em caso contrário
- ▶ PQinsert(v): insere o vértice v na fila
- ► PQdelmin(): retira da fila um vértice de prioridade mínima.
- ► PQdec(w): reorganiza a fila depois que o valor de cst[w] foi decrementado.


```
#define INFINITO maxCST
void
dijkstra(Digraph G, Vertex s,
       Vertex parnt[], double cst[]);
   Vertex v, w; link p;
   for (v = 0; v < G -> V; v++) {
       cst[v] = INFINITO;
4
       parnt[v] = -1;
5
   PQinit(G->V);
6
  cst[s] = 0:
   parnt[s] = s;
                               4□ > 4同 > 4 = > 4 = > ■ 900
```

```
8
    PQinsert(s);
 9
    while (!PQempty()) {
10
         v = PQdelmin();
11
         for(p=G->adj[v];p!=NULL;p=p->next)
12
             if (cst[w=p->w] == INFINITO) {
13
                parnt[w]=v;
                cst[w] = cst[v] + p - > cst;
14
15
                PQinsert(w);
```

```
16
             else
17
             if(cst[w]>cst[v]+G->adj[v][w])
18
                cst[w] = cst[v] + G - > adj[v][w];
19
                parnt[w] = v;
20
                PQdec(w);
```

```
Consumo de tempo
linha
       número de execuções da linha
2-4 \qquad \Theta(\mathbf{V})
5
     = 1 PQinit
6-7 = 1
    =1 PQinsert
9-10 O(V) PQempty e PQdelmin
       O(A)
11
12 - 14
       O(V)
15
       O(V) PQinsert
16–19
       O(A)
       O(A) PQdec
20
21
      = 1 \, \mathtt{PQfree}
total = O(V + A) + ???
```

Conclusão

```
O consumo de tempo da função dijkstra é
  O(V + A) mais o consumo de tempo de
        execução de PQinit e PQfree.
        execuções de PQinsert.
 O(V) execuções de PQempty,
 O(V) execuções de PQdelmin, e
        execuções de
                     PQdec.
```

Implementação para digrafos densos

```
/* Item.h */
typedef Vertex Item;
/* QUEUE.h */
void PQinit(int);
int PQempty();
void PQinsert(Item);
ltem PQdelmin();
void PQdec(Item);
void POfree():
```

PQinit e PQempty

```
Item *q;
int inicio, fim;
void PQinit(int maxN) {
  q=(Item*)malloc(maxN*sizeof(Item));
  inicio = 0;
  fim = 0;
int PQempty() {
  return inicio==fim;
```

PQinsert e PQdelmin

```
void PQinsert(Item item){
  q[fim++] = item;
Item PQdelmin() {
  int i, j; Item x;
  i= inicio:
  for (j=i+1; j < fim; j++)
     if(cst[q[i]]) = cst[q[j]]) = j;
  x = a[i];
  q[i] = q[--fim];
  return x;
```

PQdec e PQfree

```
void PQdec(Vertexv) {
/* faz nada */
}

void QUEUEfree() {
  free(q);
}
```

PQinit	$\Theta(1)$
PQempty	$\Theta(1)$
PQinsert	$\Theta(1)$
PQdelmin	O(V)
PQdec	$\Theta(1)$
PQfree	$\Theta(1)$

Conclusão

O consumo de tempo da função dijkstra é $O(V^2)$.

Este consumo de tempo é ótimo para digrafos densos.

	heap	d-heap	fibonacci heap
PQinsert	O(lg V)	$\mathrm{O}(\log_D \mathtt{V})$	O(1)
PQdelmin	O(lg V)	$\mathrm{O}(\log_D \mathtt{V})$	O(lg V)
PQdec	O(lg V)	$O(\log_D V)$	O(1)
dijkstra	O(Alg V)	$\mathrm{O}(\mathtt{A}\log_D \mathtt{V})$	$O(A + V \lg V)$

	bucket heap	radix heap
PQinsert	O(1)	$O(\lg(VC)R$
PQdelmin	O(C)	$O(\lg(VC)$
PQdec	O(1)	$O(A + V \lg(VC))$
dijkstra	O(A + VC)	$O(A + V \lg(VC))$

C = maior custo de um arco.

	heap	d-heap	fibonacci heap
INSERT	O(lg V)	$O(\log_D V)$	O(1)
Extract-Min	O(lg V)	$O(\log_D V)$	O(lg V)
Decrease-Key	O(lg V)	$O(\log_D V)$	O(1)
dijkstra	O(Alg V)	$\mathrm{O}(\mathtt{A}\log_D \mathtt{V})$	$O(A + V \lg V)$

	bucket heap	radix heap
INSERT	O(1)	$O(\lg(VC)R$
Extract-Min	O(C)	$O(\lg({ t VC})$
Decrease-Key	O(1)	$O(A + V \lg(VC))$
dijkstra	O(A + VC)	$O(A + V \lg(VC))$

C = major custo de um arco.