Метод Якоби

На примере системы N_2 -Ar сделаем преобразование координат, аналогичное введению приведенной массы в задаче двух тел, приводящее к возникновению виртуальных масс. Обозначим массы азотов за m_1 , m_2 , аргона – за m_3 . Радиус-векторам относительно лабораторной системы координат припишем соответстующие номера.

$$T = \frac{1}{2}m_1\dot{\mathbf{r}}_1^2 + \frac{1}{2}m_2\dot{\mathbf{r}}_2^2 + \frac{1}{2}m_3\dot{\mathbf{r}}_3^2 \tag{1}$$

Осуществим замену переменных $\mathbf{r}_1, \mathbf{r}_2 \longrightarrow \mathbf{r}_{12}, \boldsymbol{\rho}_{12}$:

$$\begin{cases}
 \rho_{12} = \mathbf{r}_1 - \mathbf{r}_2 \\
 \mathbf{r}_{12} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{m_1 + m_2}
\end{cases}
\iff
\begin{cases}
 \mathbf{r}_1 = \mathbf{r}_{12} + \frac{m_2}{m_1 + m_2} \boldsymbol{\rho}_{12} \\
 \mathbf{r}_2 = \mathbf{r}_{12} - \frac{m_1}{m_1 + m_2} \boldsymbol{\rho}_{12}
\end{cases}$$
(2)

Подставляя замену (2) в выражение кинетической энергии (1), получаем

$$T = \frac{1}{2}m_{12}\dot{\mathbf{r}}_{12}^2 + \frac{1}{2}\mu_{12}\dot{\boldsymbol{\rho}}_{12}^2 + \frac{1}{2}m_3\dot{\mathbf{r}}_3^2,\tag{3}$$

где были введены обозначения

$$m_{12} = m_1 + m_2, \qquad \frac{1}{\mu_{12}} = \frac{1}{m_1} + \frac{1}{m_2}.$$

Заметим, что вектор ρ_{12} направлен вдоль линейной молекулы N_2 , а вектор \mathbf{r}_{12} – к ее центру масс.

Проделаем аналогичную операцию с парой векторов $\mathbf{r}_{12}, \mathbf{r}_{3}$, введя переменные $\boldsymbol{\rho}_{\Sigma}, \mathbf{r}_{\Sigma}$:

$$\begin{cases}
\boldsymbol{\rho}_{\Sigma} = \mathbf{r}_{12} - \mathbf{r}_{3} \\
\mathbf{r}_{\Sigma} = \frac{m_{12}\mathbf{r}_{12} + m_{3}\mathbf{r}_{3}}{m_{12} + m_{3}}
\end{cases}
\iff
\begin{cases}
\mathbf{r}_{3} = \mathbf{r}_{\Sigma} - \frac{m_{12}}{m_{12} + m_{3}}\boldsymbol{\rho}_{\Sigma} \\
\mathbf{r}_{12} = \mathbf{r}_{\Sigma} + \frac{m_{3}}{m_{12} + m_{3}}\boldsymbol{\rho}_{\Sigma}
\end{cases}$$

$$T = \frac{1}{2}m_{\Sigma}\dot{\mathbf{r}}_{\Sigma}^{2} + \frac{1}{2}\mu_{\Sigma}\dot{\boldsymbol{\rho}}_{\Sigma}^{2} + \frac{1}{2}\mu_{12}\dot{\boldsymbol{\rho}}_{12}^{2},$$
(4)

где были введены обозначения

$$m_{\Sigma} = m_1 + m_2 + m_3$$
, (сумма масс мономеров) $\frac{1}{\mu_{\Sigma}} = \frac{1}{m_1 + m_2} + \frac{1}{m_3}$. (приведенная масса мономеров)

Переместив начало системы отсчета в центр масс системы, исключаем первое слагаемое в (5).

$$T = \frac{1}{2}\mu_{\Sigma}\dot{\boldsymbol{\rho}}_{\Sigma}^{2} + \frac{1}{2}\mu_{12}\dot{\boldsymbol{\rho}}_{12}^{2}.$$
 (6)

Это выражение может быть получено альтернативным путем. Вместо того, чтобы последовательно вводить вектора Якоби ρ_{12} , ρ_{Σ} , сразу выпишем выражения для них через исходные вектора \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 , дополненные выражением для вектора центра масс \mathbf{r}_{Σ} :

$$\begin{cases}
\boldsymbol{\rho}_{12} = \mathbf{r}_{1} - \mathbf{r}_{2} \\
\boldsymbol{\rho}_{\Sigma} = \mathbf{r}_{12} - \mathbf{r}_{3} = \frac{m_{1}\mathbf{r}_{1} + m_{2}\mathbf{r}_{2}}{m_{1} + m_{2}} - \mathbf{r}_{3} \\
\mathbf{r}_{\Sigma} = \frac{m_{1}\mathbf{r}_{1} + m_{2}\mathbf{r}_{2} + m_{3}\mathbf{r}_{3}}{m_{1} + m_{2} + m_{3}}
\end{cases}$$

$$\begin{bmatrix}
\boldsymbol{\rho}_{12} \\ \boldsymbol{\rho}_{\Sigma} \\ \mathbf{r}_{\Sigma}
\end{bmatrix} = \begin{bmatrix}
1 & -1 & 0 \\
\frac{m_{1}}{m_{1} + m_{2}} & \frac{m_{2}}{m_{1} + m_{2}} & -1 \\
\frac{m_{1}}{m_{1} + m_{2} + m_{3}} & \frac{m_{2}}{m_{1} + m_{2} + m_{3}} & \frac{m_{3}}{m_{1} + m_{2} + m_{3}}
\end{bmatrix}
\begin{bmatrix}
\mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3}
\end{bmatrix}$$

$$(7)$$

Обращая выписанную матрицу, выражаем исходные вектора $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$ через вектора Якоби $\boldsymbol{\rho}_{12}, \mathbf{r}_{\Sigma}, \mathbf{r}_{\Sigma}$. Затем отделяем центр масс системы, то есть исключаем вектор \mathbf{r}_{Σ} из выражений для $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$.

$$\begin{bmatrix}
\mathbf{r}_{1} \\
\mathbf{r}_{2} \\
\mathbf{r}_{3}
\end{bmatrix} = \begin{bmatrix}
\frac{m_{2}}{m_{1} + m_{2}} & \frac{m_{3}}{m_{1} + m_{2} + m_{3}} & 1 \\
-\frac{m_{1}}{m_{1} + m_{2}} & \frac{m_{3}}{m_{1} + m_{2} + m_{3}} & 1 \\
0 & -\frac{m_{1} + m_{2}}{m_{1} + m_{2} + m_{3}} & 1
\end{bmatrix} \begin{bmatrix}
\boldsymbol{\rho}_{12} \\
\boldsymbol{\rho}_{\Sigma} \\
\mathbf{r}_{\Sigma}
\end{bmatrix}$$
(8)

$$\begin{cases}
\mathbf{r}_{1} = \frac{m_{2}}{m_{1} + m_{2}} \boldsymbol{\rho}_{12} + \frac{m_{3}}{m_{1} + m_{2} + m_{3}} \boldsymbol{\rho}_{\Sigma} \\
\mathbf{r}_{2} = -\frac{m_{1}}{m_{1} + m_{2}} \boldsymbol{\rho}_{12} + \frac{m_{3}}{m_{1} + m_{2} + m_{3}} \boldsymbol{\rho}_{\Sigma} \\
\mathbf{r}_{3} = -\frac{m_{1} + m_{2}}{m_{1} + m_{2} + m_{3}} \boldsymbol{\rho}_{\Sigma}
\end{cases}$$
(9)

Продифференцировав полученные выражения и подставив в (1), приходим к (6)

$$T = \frac{1}{2}\mu_{\Sigma}\dot{\boldsymbol{\rho}}_{\Sigma}^{2} + \frac{1}{2}\mu_{12}\dot{\boldsymbol{\rho}}_{12}^{2}$$
 (10)

Введем подвижную систему координат таким образом, чтобы линейная молекула и атом всегда находились в плоскости XZ, а атом лежал на оси OZ. Введем внутренние координаты $\mathbf{q} = \{R, \Theta\}$; R – длина вектора $\boldsymbol{\rho}_{\Sigma}$, равная расстоянию между центром масс N_2 и Ar, Θ – угол поворота N_2 относительно линии связи в подвижной плоскости.

$$\begin{array}{ll} \boldsymbol{\rho}_{\Sigma} \rightarrow \mathbf{R}_{1} = \{0,0,R\} \\ \boldsymbol{\rho}_{12} \rightarrow \mathbf{R}_{2} = \{l\cos\Theta,0,l\sin\Theta\} \end{array} \iff \begin{array}{ll} X_{1} = 0 & X_{2} = l\sin\Theta \\ Y_{1} = 0 & Y_{2} = 0 \\ Z_{1} = R & Z_{2} = l\cos\Theta \end{array}$$

Гамильтониан молекулярной пары, в котором ориентация мономеров описывается относительно транслированной лабораторной системы координат

Рассмотрим два произвольных мономера. Обозначим радиус-векторы их центров масс через $\mathbf{r}_{\text{mon}_1}$ и $\mathbf{r}_{\text{mon}_2}$. Поместим начало системы отсчета в центр масс системы как целого; параметризуем ось, соединяющую центры масс мономеров, сферическими углами Θ, Φ ; обозначим вектор, направленный из центра масс первого мономера в центр масс второго за \mathbf{R} .

$$\mathbf{r}_{\text{mon}_{1}} = -\frac{m_{\text{mon}_{2}}}{M} \mathbf{R} = -\frac{m_{\text{mon}_{2}}}{M} \begin{bmatrix} R \sin \Theta \cos \Phi \\ R \sin \Theta \sin \Phi \\ R \cos \Theta \end{bmatrix},$$

$$\mathbf{r}_{\text{mon}_{2}} = \frac{m_{\text{mon}_{1}}}{M} \mathbf{R} = \frac{m_{\text{mon}_{1}}}{M} \begin{bmatrix} R \sin \Theta \cos \Phi \\ R \sin \Theta \sin \Phi \\ R \cos \Theta \end{bmatrix},$$

$$(11)$$

где M — сумма масс мономеров. Пусть второй мономер состоит из n точек, радиус-вектора которых во введенной системе отсчета обозначим $\left\{\mathbf{r}_{2}^{k}\right\}_{k=1...n}$, а относительно центра масс второго мономера — $\left\{\mathbf{r}_{\mathrm{mon}_{2}}^{k}\right\}_{k=1...n}$. Тогда для k-й точки вектора связаны соотношением

$$\mathbf{r}_2^k = \mathbf{r}_{\text{mon}_2} + \mathbf{r}_{\text{mon}_2}^k \tag{12}$$

Преобразуем выражение кинетической энергии второго мономера.

$$T_{2} = \frac{1}{2} \sum_{k=1}^{n} m_{k} \left(\dot{\mathbf{r}}_{2}^{k} \right)^{2} = \frac{1}{2} \sum_{k=1}^{n} m_{k} \left(\dot{\mathbf{r}}_{\text{mon}_{2}} + \dot{\mathbf{r}}_{\text{mon}_{2}}^{k} \right)^{2} = \frac{1}{2} \sum_{k=1}^{n} m_{k} \left[\dot{\mathbf{r}}_{\text{mon}_{2}}^{2} + 2 \dot{\mathbf{r}}_{\text{mon}_{2}} \dot{\mathbf{r}}_{\text{mon}_{2}}^{k} + \left(\dot{\mathbf{r}}_{\text{mon}_{2}}^{k} \right)^{2} \right] = \frac{1}{2} m_{\text{mon}_{2}} \dot{\mathbf{r}}_{\text{mon}_{2}}^{2} + \dot{\mathbf{r}}_{\text{mon}_{2}} \frac{d}{dt} \left[\sum_{k=1}^{n} m_{k} \mathbf{r}_{\text{mon}_{2}}^{k} \right] + \frac{1}{2} \sum_{k=1}^{n} m_{k} \left(\dot{\mathbf{r}}_{\text{mon}_{2}}^{k} \right)^{2}$$

$$(13)$$

Второе слагаемое в (13) равно нулю, т.к. в квадратных скобках представлен вектор, направленный в центр масс второго мономера, в системе, связанной с центром масс второго мономера, то есть нуль-вектор. Квадрат производной вектора \mathbf{R} , соединяющего центры масс мономеров, в сферической системе координат имеет следующий вид

$$\dot{\mathbf{R}}^2 = \dot{R}^2 + R^2 \dot{\Theta}^2 + R^2 \dot{\Phi}^2 \sin^2 \Theta \tag{14}$$

Подставим выражение для производной (14) в кинетическую энергию второго мономера (13) (вектор $\mathbf{r}_{\text{mon}_2}$ связан с вектором \mathbf{R} соотношением (11)):

$$T_{2} = \frac{1}{2} m_{\text{mon}_{2}} \frac{m_{\text{mon}_{1}}^{2}}{M^{2}} \left[\dot{R}^{2} + R^{2} \dot{\Theta}^{2} + R^{2} \dot{\Phi}^{2} \sin^{2} \Theta \right] + \frac{1}{2} \sum_{k=1}^{n} m_{k} \left(\dot{\mathbf{r}}_{\text{mon}_{2}}^{k} \right)^{2}$$
(15)

Будем описывать ориентацию второго мономера при помощи матрицы \mathbb{S}_2 . Обозначим систему векторов $\{\mathbf{r}_{\text{mon}_2}^k\}_{k=1...n}$ в начальный момент времени за $\{\mathbf{R}_{\text{mon}_2}^k\}_{k=1...n}$. Тогда в момент времени t системы векторов связаны при помощи матрицы \mathbb{S}_2 :

$$\mathbf{r}_{\text{mon}_2}^k(t) = \mathbb{S}_2(t) \,\mathbf{R}_{\text{mon}_2}^k, \qquad k = 1 \dots n \tag{16}$$

Получим выражение для производной k-го вектора $\mathbf{r}_{\mathrm{mon}_2}^k$:

$$\dot{\mathbf{r}}_{\text{mon}_2}^k = \dot{\mathbb{S}}_2 \, \mathbf{R}_{\text{mon}_2}^k = \dot{\mathbb{S}}_2 \, \mathbb{S}_2^{-1} \mathbf{r}_{\text{mon}_2}^k = \left[\boldsymbol{\omega}_2 \times \mathbf{r}_{\text{mon}_2}^k \right] = \mathbb{S}_2 \left[\mathbf{\Omega}_2 \times \mathbf{R}_{\text{mon}_2}^k \right]$$
(17)

Просуммируем масс-взвешенные производные векторов:

$$\begin{split} \frac{1}{2} \sum_{k=1}^{n} m_k \left(\dot{\mathbf{r}}_{\text{mon}_2}^k \right)^2 &= \frac{1}{2} \sum_{k=1}^{n} m_k \left[\mathbf{\Omega}_2 \times \mathbf{R}_{\text{mon}_2}^k \right]^\top \mathbb{S}_2^\top \mathbb{S}_2 \left[\mathbf{\Omega}_2 \times \mathbf{R}_{\text{mon}_2}^k \right] = \frac{1}{2} \sum_{k=1}^{n} m_k \left[\mathbf{\Omega}_2 \times \mathbf{R}_{\text{mon}_2}^k \right]^2 = \\ &= \frac{1}{2} \sum_{k=1}^{n} m_k \mathbf{\Omega}_2^\top \left[\mathbf{R}_{\text{mon}_2}^k \times \left[\mathbf{\Omega}_2 \times \mathbf{R}_{\text{mon}_2}^k \right] \right] = \frac{1}{2} \sum_{k=1}^{n} m_k \mathbf{\Omega}_2^\top \left(\left(\mathbf{R}_{\text{mon}_2}^k, \mathbf{R}_{\text{mon}_2}^k \right) \mathbf{\Omega}_2 - \mathbf{R}_{\text{mon}_2}^k \left(\mathbf{R}_{\text{mon}_2}^k, \mathbf{\Omega}_2 \right) \right) = \\ &= \frac{1}{2} \mathbf{\Omega}_2^\top \mathbb{I}_2 \mathbf{\Omega}_2, \end{split}$$

где \mathbb{I}_2 — тензор инерции второго мономера. Положим, что в начальный момент система координат, находящаяся в центре масс пары, совпадала с системой главных осей второго мономера. Тогда тензор инерции \mathbb{I}_2 принимает диагональный вид (верхний индекс — номер мономера)

$$\mathbb{I}_2 = \begin{bmatrix} I_1^2 & 0 & 0 \\ 0 & I_2^2 & 0 \\ 0 & 0 & I_3^2 \end{bmatrix}$$

Вектор угловой скорости Ω_2 связан с вектором эйлеровых скоростей $\dot{\mathbf{e}}_2$ матрицей \mathbb{V}_2 :

$$\mathbf{\Omega}_2 = \begin{bmatrix} \sin \theta_2 \sin \psi_2 & \cos \psi_2 & 0 \\ \sin \theta_2 \cos \psi_2 & -\sin \psi_2 & 0 \\ \cos \theta_2 & 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{\varphi}_2 \\ \dot{\theta}_2 \\ \dot{\psi}_2 \end{bmatrix} = \mathbb{V}_2 \, \dot{\mathbf{e}}_2$$

Итак, выражение кинетической энергии второго мономера T_2 приходит к виду

$$T_{2} = \frac{1}{2} m_{\text{mon}_{2}} \frac{m_{\text{mon}_{1}}^{2}}{M^{2}} \left[\dot{R}^{2} + R^{2} \dot{\Theta}^{2} + R^{2} \dot{\Phi}^{2} \sin^{2} \Theta \right] + \frac{1}{2} \dot{\mathbf{e}}_{2}^{\mathsf{T}} \mathbb{V}_{2}^{\mathsf{T}} \mathbb{I}_{2} \, \mathbb{V}_{2} \dot{\mathbf{e}}_{2}$$
(18)

Проводя аналогичные рассуждения приходим к выражению для кинетической энергии

первого мономера T_1 . Получаем выражение для полной кинетической энергии пары:

$$T = T_1 + T_2 = \frac{1}{2} \left[m_{\text{mon}_1} \frac{m_{\text{mon}_2}^2}{M^2} + m_{\text{mon}_2} \frac{m_{\text{mon}_1}^2}{M^2} \right] \times \left[\dot{R}^2 + R^2 \dot{\Theta}^2 + R^2 \dot{\Phi}^2 \sin^2 \Theta \right] + \frac{1}{2} \dot{\mathbf{e}}_1^{\top} \mathbb{V}_1^{\top} \mathbb{I}_1 \, \mathbb{V}_1 \dot{\mathbf{e}}_1 + \frac{1}{2} \dot{\mathbf{e}}_2^{\top} \mathbb{V}_2^{\top} \mathbb{I}_2 \, \mathbb{V}_2 \dot{\mathbf{e}}_2,$$
(19)

$$T = \frac{1}{2}\mu \left[\dot{R}^2 + R^2 \dot{\Theta}^2 + R^2 \dot{\Phi}^2 \sin^2 \Theta \right] + \frac{1}{2} \dot{\mathbf{e}}_1^{\mathsf{T}} \mathbb{V}_1^{\mathsf{T}} \mathbb{I}_1 \, \mathbb{V}_1 \dot{\mathbf{e}}_1 + \frac{1}{2} \dot{\mathbf{e}}_2^{\mathsf{T}} \mathbb{V}_2^{\mathsf{T}} \mathbb{I}_2 \, \mathbb{V}_2 \dot{\mathbf{e}}_2, \tag{20}$$

где $\mu = \frac{m_{\text{mon}_1} m_{\text{mon}_2}}{m_{\text{mon}_1} + m_{\text{mon}_2}}.$

Для перехода к гамильтоновой форме кинетической энергии выпишем выражения для эйлеровых импульсов второго волчка (нижний индекс обозначает номер волчка):

$$\mathbf{p}_{2}^{e} = \frac{\partial I'}{\partial \dot{\mathbf{e}}_{2}} = \mathbb{V}_{2}^{\top} \mathbb{I}_{2} \mathbb{V}_{2} \dot{\mathbf{e}}_{2}$$

$$p_{2}^{\varphi} = I_{1}^{2} \left(\dot{\varphi}_{2} \sin \theta_{2} \sin \psi_{2} + \dot{\theta}_{2} \cos \psi_{2} \right) \sin \theta_{2} \sin \psi_{2} +$$

$$+ I_{2}^{2} \left(\dot{\varphi}_{2} \sin \theta_{2} \cos \psi_{2} - \dot{\theta}_{2} \sin \psi_{2} \right) \sin \theta_{2} \cos \psi_{2} +$$

$$+ I_{3}^{2} \left(\dot{\varphi}_{2} \cos \theta_{2} + \dot{\psi}_{2} \right) \cos \theta_{2}$$

$$p_{2}^{\theta} = I_{1}^{2} \left(\dot{\varphi}_{2} \sin \theta_{2} \sin \psi_{2} + \dot{\theta}_{2} \cos \psi_{2} \right) \cos \psi_{2} -$$

$$- I_{2}^{2} \left(\dot{\varphi}_{2} \sin \theta_{2} \cos \psi_{2} - \dot{\theta}_{2} \sin \psi_{2} \right) \sin \psi_{2}$$

$$p_{2}^{\psi} = I_{3}^{2} \left(\dot{\varphi}_{2} \cos \theta_{2} + \dot{\psi}_{2} \right)$$

$$(21)$$

Перепишем систему в матричном виде и разрешим ее относительно вектора эйлеровых скоростей $\dot{\mathbf{e}}_2$:

$$\begin{bmatrix} \left(I_{1}^{2}\sin^{2}\psi_{2}+I_{2}^{2}\cos^{2}\psi_{2}\right)\sin^{2}\theta_{2}+I_{3}^{2}\cos^{2}\theta_{2} & \left(I_{1}^{2}-I_{2}^{2}\right)\sin\theta_{2}\sin\psi_{2}\cos\psi_{2} & I_{3}^{2}\cos\theta_{2} \\ \left(I_{1}^{2}-I_{2}^{2}\right)\sin\theta_{2}\sin\psi_{2}\cos\psi_{2} & I_{1}^{2}\cos^{2}\psi_{2}+I_{2}^{2}\sin^{2}\psi_{2} & 0 \\ I_{3}^{2}\cos\theta_{2} & 0 & I_{3}^{2} \end{bmatrix} \dot{\mathbf{e}}_{2}=\mathbf{p}_{2}^{e}$$

$$\dot{\mathbf{e}}_{2}=\frac{1}{I_{1}^{2}I_{2}^{2}\sin^{2}\theta_{2}} \times \begin{bmatrix} \alpha & \beta & -\alpha\cos\theta_{2} \\ \beta & \left(I_{1}^{2}\sin^{2}\psi_{2}+I_{2}^{2}\cos^{2}\psi_{2}\right)\sin^{2}\theta_{2} & -\beta\cos\theta_{2} \\ -\alpha\cos\theta_{2} & -\beta\cos\theta_{2} & \frac{I_{1}^{2}I_{2}^{2}}{I_{3}^{2}}\sin^{2}\theta_{2}+\alpha\cos^{2}\theta_{2} \end{bmatrix} \mathbf{p}_{2}^{e},$$

$$\alpha=I_{1}^{2}\cos^{2}\psi_{2}+I_{2}^{2}\sin^{2}\psi_{2}, \quad \beta=\left(I_{2}^{2}-I_{1}^{2}\right)\sin\theta_{2}\sin\psi_{2}\cos\psi_{2}$$

Подставив полученные выражения эйлеровых скоростей через эйлеровы импульсы в матричное произведение $\dot{\mathbf{e}}_2^\top \mathbb{V}_2^\top \mathbb{I}_2 \mathbb{V}_2 \dot{\mathbf{e}}_2$, получаем (?) угловую часть кинетической энергии второго мономера в гамильтоновой форме

$$\widetilde{T}_{2}^{\mathcal{H}}(\varphi_{2}, \theta_{2}, \psi_{2}, p_{2}^{\varphi}, p_{2}^{\theta}, p_{2}^{\psi}) = \frac{1}{2I_{1}^{2}\sin^{2}\theta_{2}} \left[\left(p_{2}^{\varphi} - p_{2}^{\psi}\cos\theta_{2} \right) \cos\psi_{2} - p_{2}^{\theta}\sin\theta_{2}\sin\psi_{2} \right]^{2} + \frac{1}{2I_{2}^{2}\sin^{2}\theta_{2}} \left[\left(p_{2}^{\varphi} - p_{2}^{\psi}\cos\theta_{2} \right) \sin\psi_{2} + p_{2}^{\theta}\sin\theta_{2}\cos\psi_{2} \right]^{2} + \frac{1}{2I_{3}^{2}} \left(p_{2}^{\psi} \right)^{2}.$$
(22)

Выражения для импульсов, сопряженных координатам $R, \Theta, \Phi,$ существенно проще:

$$p_{R} = \frac{\partial T}{\partial \dot{R}} = \mu \dot{R}$$

$$p_{\Theta} = \frac{\partial T}{\partial \dot{\Theta}} = \mu R^{2} \dot{\Theta}$$

$$p_{\Phi} = \frac{\partial T}{\partial \dot{\Phi}} = \mu R^{2} \dot{\Phi} \sin^{2} \Theta$$

Итого, приходим к следующему выражению для гамильтониана:

$$T_{\mathcal{H}} = \frac{p_R^2}{2\mu} + \frac{p_\Theta^2}{2\mu R^2} + \frac{p_\Phi^2}{2\mu R^2 \sin^2 \Theta} + \frac{1}{2I_1^2 \sin^2 \theta_2} \left[\left(p_2^{\varphi} - p_2^{\psi} \cos \theta_2 \right) \cos \psi_2 - p_2^{\theta} \sin \theta_2 \sin \psi_2 \right]^2 + \frac{1}{2I_2^2 \sin^2 \theta_2} \left[\left(p_2^{\varphi} - p_2^{\psi} \cos \theta_2 \right) \sin \psi_2 + p_2^{\theta} \sin \theta_2 \cos \psi_2 \right]^2 + \frac{1}{2I_3^2} \left(p_2^{\psi} \right)^2 + \frac{1}{2I_1^1 \sin^2 \theta_1} \left[\left(p_1^{\varphi} - p_1^{\psi} \cos \theta_1 \right) \cos \psi_1 - p_1^{\theta} \sin \theta_1 \sin \psi_1 \right]^2 + \frac{1}{2I_2^1 \sin^2 \theta_1} \left[\left(p_1^{\varphi} - p_1^{\psi} \cos \theta_1 \right) \sin \psi_1 + p_1^{\theta} \sin \theta_1 \cos \psi_1 \right]^2 + \frac{1}{2I_3^1} \left(p_1^{\psi} \right)^2$$

Рассмотрим якобиан замены переменных, приводящей гамильтониан к сумме квадратов.

$$T_{\mathcal{H}}(p_{R}, p_{\Theta}, p_{\Phi}, p_{1}^{\varphi}, p_{1}^{\theta}, p_{2}^{\psi}, p_{2}^{\psi}, p_{2}^{\psi}) \longrightarrow T_{\mathcal{H}}(x_{1}, \dots, x_{9}) = x_{1}^{2} + \dots + x_{9}^{2}$$

$$x_{1} = \frac{1}{\sqrt{2\mu}} p_{R}$$

$$x_{2} = \frac{1}{\sqrt{2\mu}R^{2}} p_{\Theta}$$

$$x_{3} = \frac{1}{\sqrt{2\mu}R^{2} \sin^{2}{\Theta}} p_{\Phi}$$

$$x_{4} = \frac{(p_{1}^{\varphi} - p_{1}^{\psi} \cos{\theta_{1}}) \cos{\psi_{1}} - p_{1}^{\theta} \sin{\theta_{1}} \sin{\psi_{1}}}{\sqrt{2I_{1}^{1}} \sin{\theta_{1}}}$$

$$x_{5} = \frac{(p_{1}^{\varphi} - p_{1}^{\psi} \cos{\theta_{1}}) \sin{\psi_{1}} + p_{1}^{\theta} \sin{\theta_{1}} \cos{\psi_{1}}}{\sqrt{2I_{2}^{1}} \sin^{2}{\theta_{1}}}$$

$$x_{6} = \frac{1}{\sqrt{2I_{3}^{1}}} p_{1}^{\psi}$$

$$x_{7} = \frac{(p_{2}^{\varphi} - p_{2}^{\psi} \cos{\theta_{2}}) \cos{\psi_{2}} - p_{2}^{\theta} \sin{\theta_{2}} \sin{\psi_{2}}}{\sqrt{2I_{1}^{2}} \sin{\theta_{2}}}$$

$$x_{8} = \frac{(p_{2}^{\varphi} - p_{2}^{\psi} \cos{\theta_{2}}) \sin{\psi_{2}} + p_{2}^{\theta} \sin{\theta_{2}} \cos{\psi_{2}}}{\sqrt{2I_{2}^{2}} \sin^{2}{\theta_{2}}}$$

$$x_{9} = \frac{1}{\sqrt{2I_{2}^{2}}} p_{2}^{\psi}$$

$$(23)$$

	0	0	0	0	0	0	$\frac{\cos\theta_2\cos\psi_2}{\sqrt{2I_1^2\sin^2\theta_2}}$	$\frac{\cos\theta_2\sin\psi_2}{\sqrt{2I_2^2\sin^2\theta_2}}$	$\frac{1}{\sqrt{2I_3^2}} \tag{25}$
	0	0	0	0	0	0	$\frac{\sin \theta_2 \sin \psi_2}{\sqrt{2I_1^2 \sin^2 \theta_2}}$	$\frac{\sin\theta_2\cos\psi_2}{\sqrt{2I_2^2\sin^2\theta_2}}$	0
	0	0	0	0	0	0	$\frac{\cos\psi_2}{\sqrt{2I_1^2\sin^2\theta_2}}$	$\frac{\sin\psi_2}{\sqrt{2I_2^2\sin^2\theta_2}}$	0
	0	0	0	$-\frac{\cos\theta_1\cos\psi_1}{\sqrt{2I_1^4\sin^2\theta_1}}$	$-\frac{\cos\theta_1\sin\psi_1}{\sqrt{2I_2^1\sin^2\theta_1}}$	$rac{1}{\sqrt{2I_3^1}}$	0	0	0
	0	0	0	$-\frac{\sin\theta_1\sin\psi_1}{\sqrt{2I_1^4\sin^2\theta_1}}$	$\frac{\sin\theta_1\cos\psi_1}{\sqrt{2I_2^1\sin^2\theta_1}}$	0	0	0	0
	0	0	0	$\frac{\cos\psi_1}{\sqrt{2I_1^1\sin^2\theta_1}}$	$\frac{\sin\psi_1}{\sqrt{2I_2^1\sin^2\theta_1}}$	0	0	0	0
	0	0	$\frac{1}{\sqrt{2\mu R^2 \sin \Theta}}$	0	0	0	0	0	0
	0	$\frac{1}{\sqrt{2\mu R^2}}$	0	0	0 0	0	0	0	0
	$\frac{1}{\sqrt{2\mu}}$	0	0	0		0	0	0	0
					Ш				

$$[Jac]_{\text{ham}} = 2^{9/2} \mu R^2 \sqrt{I_1^1 I_2^1 I_3^1 I_1^2 I_2^2 I_3^2} \sin \Theta \sin \theta_1 \sin \theta_2$$
 (26)

Определение углов Эйлера вращения, являющегося композицией двух вращений

Рассмотрим композицию двух вращений S_1 и S_2 , параметризованновых наборами углов Эйлера $(\alpha_1, \beta_1, \gamma_1)$ и $(\alpha_2, \beta_2, \gamma_2)$, соответственно, определенными в Голдстейне (zxz; 313 extrinsic).

$$S_1(\alpha_1, \beta_1, \gamma_1) \cdot S_2(\alpha_2, \beta_2, \gamma_2) = S_3(\alpha_3, \beta_3, \gamma_3)$$
(27)

Перейдем от представления вращений при помощи эйлеровых углов к кватернионному, которое позволяет более удобным образом описывать параметры вращения, являющегося композицией вращений. Рассчитав компоненты кватерниона, соотвествующего композиции вращений, через наборы углов Эйлера 1 и 2, выразим через них углы Эйлера результирующего вращения.

Компоненты кватерниона следующим образом связаны с углом вращения ω вокруг оси, заданной направляющими углами α , β , γ (с положительными направлениями осей x, y, z, соответственно):

$$q = \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ q_4 \end{bmatrix} = \begin{bmatrix} \cos \frac{\omega}{2} \\ \cos \alpha \sin \frac{\omega}{2} \\ \cos \beta \sin \frac{\omega}{2} \\ \cos \gamma \sin \frac{\omega}{2} \end{bmatrix}$$
(28)

Заметим, что записанный кватернион имеет единичную норму.

$$|q|^2 = q_1^2 + q_2^2 + q_3^2 + q_4^2 = \sin^2\frac{\omega}{2}(\cos^2\alpha + \cos^2\beta + \cos^2\gamma) + \cos^2\frac{\omega}{2} = 1$$
 (29)

Компоненты матрицы вращения, соотвествующей кватерниону $q=[q_1,q_2,q_3,q_4]$, связаны следующим образом с компонентами кватерниона.

$$M = \begin{bmatrix} q_1^2 + q_2^2 - q_3^2 - q_4^2 & 2(q_2q_3 - q_1q_4) & 2(q_2q_4 + q_1q_3) \\ 2(q_2q_3 + q_1q_4) & q_1^2 - q_2^2 + q_3^2 - q_4^2 & 2(q_3q_4 - q_1q_2) \\ 2(q_2q_4 - q_1q_3) & 2(q_3q_4 + q_1q_2) & q_1^2 - q_2^2 - q_3^2 + q_4^2 \end{bmatrix}$$
(30)

Приравнивая матрицы вращения, компоненты которых выражены через углы Эйлера и через компоненты кватерниона, получают выражения для компонент кватерниона через углы

Эйлера, [1]. (При этом матрица с углами Эйлера для получения этих выражений берется обратной по Голдстейну, судя по всему это не важно.)

$$M = \begin{bmatrix} \cos \psi \cos \varphi - \cos \theta \sin \varphi \sin \psi & -\sin \psi \cos \varphi - \cos \theta \sin \varphi \cos \psi & \sin \theta \sin \varphi \\ \cos \psi \sin \varphi + \cos \theta \cos \varphi \sin \psi & -\sin \psi \sin \varphi + \cos \theta \cos \varphi \cos \psi & -\sin \theta \cos \varphi \\ \sin \theta \sin \psi & \sin \theta \cos \psi & \cos \theta \end{bmatrix}$$
(31)

$$q_{1} = \begin{bmatrix} \cos\frac{\alpha_{1} + \gamma_{1}}{2}\cos\frac{\beta_{1}}{2} \\ \cos\frac{\alpha_{1} - \gamma_{1}}{2}\sin\frac{\beta_{1}}{2} \\ \sin\frac{\alpha_{1} - \gamma_{1}}{2}\sin\frac{\beta_{1}}{2} \\ \sin\frac{\alpha_{1} + \gamma_{1}}{2}\cos\frac{\beta_{1}}{2} \end{bmatrix}, \qquad q_{2} = \begin{bmatrix} \cos\frac{\alpha_{2} + \gamma_{2}}{2}\cos\frac{\beta_{2}}{2} \\ \cos\frac{\alpha_{2} - \gamma_{2}}{2}\sin\frac{\beta_{2}}{2} \\ \sin\frac{\alpha_{2} - \gamma_{2}}{2}\sin\frac{\beta_{2}}{2} \\ \sin\frac{\alpha_{2} + \gamma_{2}}{2}\cos\frac{\beta_{2}}{2} \end{bmatrix}$$

$$(32)$$

Кватернионы представляют в виде пары [действительное число q_1 , вектор $\mathbf{q}=[q_2,q_3,q_4]$]: $q_1=\left[q_1^1,\mathbf{q}_1\right]$ (нижний индекс — номер кватерниона, верхний индекс — номер компоненты). Произведение кватернионов в векторной форме представлено соотношением

$$q_1 \cdot q_2 = (q_1^1 q_2^1 - \mathbf{q}_1 \mathbf{q}_2) + q_1^1 \mathbf{q}_2 + q_2^1 \mathbf{q}_1 + [\mathbf{q}_1 \times \mathbf{q}_2]$$
(33)

Подставив выражения для q_1 и q_2 в определение (33), получаем выражение для компонент кватерниона $q_3 = q_1 \cdot q_2$:

$$q_{3} = \begin{bmatrix} \cos\frac{\beta_{1}}{2}\cos\frac{\beta_{2}}{2}\cos\left(\frac{\alpha_{1}+\gamma_{1}}{2} + \frac{\alpha_{2}+\gamma_{2}}{2}\right) - \sin\frac{\beta_{1}}{2}\sin\frac{\beta_{2}}{2}\cos\left(\frac{\alpha_{1}-\gamma_{1}}{2} - \frac{\alpha_{2}-\gamma_{2}}{2}\right) \\ \sin\frac{\beta_{1}}{2}\cos\frac{\beta_{2}}{2}\cos\left(\frac{\alpha_{1}-\gamma_{1}}{2} - \frac{\alpha_{2}+\gamma_{2}}{2}\right) + \cos\frac{\beta_{1}}{2}\sin\frac{\beta_{2}}{2}\cos\left(\frac{\alpha_{1}+\gamma_{1}}{2} + \frac{\alpha_{2}-\gamma_{2}}{2}\right) \\ \cos\frac{\beta_{1}}{2}\sin\frac{\beta_{2}}{2}\sin\left(\frac{\alpha_{1}+\gamma_{1}}{2} + \frac{\alpha_{2}-\gamma_{2}}{2}\right) + \sin\frac{\beta_{1}}{2}\cos\frac{\beta_{2}}{2}\sin\left(\frac{\alpha_{1}-\gamma_{1}}{2} - \frac{\alpha_{2}+\gamma_{2}}{2}\right) \\ \cos\frac{\beta_{1}}{2}\cos\frac{\beta_{2}}{2}\sin\left(\frac{\alpha_{1}+\gamma_{1}}{2} + \frac{\alpha_{2}+\gamma_{2}}{2}\right) + \sin\frac{\beta_{1}}{2}\sin\frac{\beta_{2}}{2}\sin\left(\frac{\alpha_{2}-\gamma_{2}}{2} - \frac{\alpha_{1}-\gamma_{1}}{2}\right) \end{bmatrix}$$

$$(34)$$

Исходя из равенства матриц вращения, компоненты которых выражены через углы Эйлера и через компоненты кватерниона, получим связь углов Эйлера с компонентами кватерниона.

$$\operatorname{tg} \psi = \operatorname{tg} \gamma_3 = \frac{M_{31}}{M_{32}} = \frac{q_2 q_4 - q_1 q_3}{q_3 q_4 + q_1 q_2} \tag{35}$$

$$\operatorname{tg}\varphi = \operatorname{tg}\alpha_3 = \frac{M_{13}}{M_{23}} = \frac{q_2q_4 + q_1q_3}{q_1q_2 - q_3q_4} \tag{36}$$

$$\cos \theta = \cos \beta_3 = q_1^2 - q_2^2 - q_3^2 + q_4^2 \tag{37}$$

Подстановка компонентов кватерниона (34) в выражения для углов Эйлера (35), (36), (37) была выполнена в Maple, затем выражения были автоматически упрощены. В итоге были получены следующие выражения:

$$tg \alpha_3 = \frac{\left[\sin(\alpha_2 + \gamma_1)\cos\alpha_1 + \cos\beta_1\sin\alpha_1\cos(\alpha_2 + \gamma_1)\right]\sin\beta_2 + \sin\alpha_1\sin\beta_1\cos\beta_2}{\left[\cos\beta_1\cos(\alpha_2 + \gamma_1)\cos\alpha_1 - \sin\alpha_1\sin(\alpha_2 + \gamma_1)\right]\sin\beta_2 + \cos\alpha_1\sin\beta_1\cos\beta_2}$$
(38)

$$\cos \beta_3 = -\sin \beta_2 \cos(\alpha_2 + \gamma_1) \sin \beta_1 + \cos \beta_1 \cos \beta_2 \tag{39}$$

$$tg \gamma_3 = \frac{\left[\sin(\alpha_2 + \gamma_1)\cos\gamma_2 + \cos\beta_2\sin\gamma_2\cos(\alpha_2 + \gamma_1)\right]\sin\beta_1 + \cos\beta_1\sin\gamma_2\sin\beta_2}{\left[\cos\beta_2\cos(\alpha_2 + \gamma_1)\cos\gamma_2 - \sin\gamma_2\sin(\alpha_2 + \gamma_1)\right]\sin\beta_1 + \cos\beta_1\cos\gamma_2\sin\beta_2}$$
(40)

Список литературы

- [1] D. M. Henderson. Shuttle program: Euler angles, quaternions, and transformation matrices. NASA Johnson Space Center; Houston, TX, United States, 1977.
- [2] Dr. H. Richter, Department of Mechanical Engineering Cleveland State University. Lecture handouts. Rigid motions and homogeneous transformations.