Analysis Vs synthesis

Analysis >> Stright-forward technique

Analysis >> Determin the function of an existing

Logic circuit

synthesis > Perign a circuit to implement a given function.

Goal: ___ simplify the function

[minimum - cost logic circuit)

Tools: > Truth Table

> Timing diagram

> Boolean algebra

> Karnaugh map

SU·X = SULAX

Procedures: - Determine sum-of-product function-(sop)

or Determine product - of - sum Design a <u>canonieal</u> losic circuit

simplify the sop or pos function >> Develop a minimum-cost circuit.

M. R. C. Fall

Functionally equivalent circuit.

Boolean Algebra

$$\frac{A \times ioms}{0.0 = 0}$$

$$0.0 = 0$$

$$0.1 = 0 = 1.0$$

$$1.1 = 1$$

NOT
$$\begin{cases} \overline{0} = 1 \\ \overline{1} = 0 \end{cases}$$

single variable

$$\begin{array}{c} x \cdot 0 = 0 \\ x \cdot 1 = x \\ \hline x \cdot \overline{x} = 0 \\ x \cdot x = x \\ x + 0 = x \\ \hline x + \overline{x} = 1 \end{array}$$

$$\frac{x+x=1}{x+x=x}$$

Two/Three variables

$$(x+y), (x+y)$$

= $x+x+y+y+0$
= $x+x+y+0$

De Morgan's theorem

Given circuit

$$f = \overline{x_1} \cdot 1 + x_1 \cdot x_2$$

$$= \overline{x_1} \cdot (\overline{x_2} + x_2) + x_1 \cdot x_2$$

$$= \overline{x_1} \cdot (\overline{x_2} + x_1) + x_1 \cdot x_2$$
How do we know the third third third the repeater to the repeate

Simplification = $\overline{x_1} \cdot \overline{x_2} + \overline{x_1} \cdot \overline{x_2} + \overline{x_1} \cdot \overline{x_2} + \overline{x_1} \cdot \overline{x_2} + \overline{x_1} \cdot \overline{x_2}$ of the function = $\overline{x_1}(\overline{x_1} + x_2) + x_2(\overline{x_1} + x_1)$

= \(\overline{\pi_1} + \pi_2 \) \(\tag{Simplified equation.}

Simplified circuit

Sop Function $f(x_1, x_2) = (\overline{x_1}, \overline{x_2} + \overline{x_1}, x_2 + x_1, x_2)$ x_2 x_3 x_4 x_4 x_5 x_6 x_7 x_8 x_8

Canonical sop circuit

Simplification $f = \overline{x_1} \overline{x_2} + \overline{x_1} x_2 + \overline{x_1} x_2$ $= \overline{x_1} \overline{x_2} + \overline{x_1} x_2 + \overline{x_1} x_2 + \overline{x_1} x_2$ $= \overline{x_1} (\overline{x_2} + x_2) + \overline{x_1} (\overline{x_1} + x_1) x_2$ $= \overline{x_1} + x_2$

 x_1 x_2 x_3

Simplified circuit. from sop

POS Function
$$f(x_1, x_2) = TT M(2)$$

$$f(x_1, x_2) = TT M(2)$$

Another Example

Given function

-).				
- 24 / 21 Z		1		
0	0	0.	, J sum	
0	1	T. 50 P	f = Em(1,3)	
	0	Oa Pos	A= 7TM(0,2)
.1	1	12		
(•		

The state of the s

Another Example

\$ a Given Trut	n Table
24 x5 y3	7 2 2 7
0 6 0	.0
1 0 0 T	
2 0 1 0	02
3 0 1 1	0
4 1 0 0	1 16
5 1 0 1	
6 1 1 0	1
1	
7 1	1 0

Simplified =
$$\overline{\chi_1} \overline{\chi_2} \overline{\chi_3} + \overline{\chi_1} \overline{\chi_2} \overline{\chi_3} + \overline{\chi_1} \overline{\chi_2} \overline{\chi_3} + \overline{\chi_1} \overline{\chi_2} \overline{\chi_3}$$

Simplified = $\overline{\chi_2} \chi_3 (\overline{\chi_1} + \overline{\chi_1}) + \overline{\chi_1} \chi_3 (\overline{\chi_2} + \overline{\chi_2})$

equation = $\overline{\chi_2} \chi_3 + \overline{\chi_1} \overline{\chi_3}$

Draw the simplified circuit

