Practical 03

Understanding TOSSIM for

- a. Mote-mote radio communication
- b. Mote-PC serial communication

TOSSIM:

Accurate and Scalable Simulation of Entire TinyOS Applications

Philip Lewis Nelson Lee Matt Weish David Culler

Presented by Anthony Fynn

Outline of Presentation

- · Introduction
 - Need for simulating sensor networks
 - Requirements for simulating sensor networks
- · TOSSIM
 - Overview
 - Architecture
 - Functions and Features
 - Evaluation
 - Future Work
- Conclusion

Introduction

- · Need for simulator
 - Study an entire system in a controlled environment
 - Explore system configuration that are hard to physically construct
 - Observe interactions that are difficult to capture in a live system

Introduction

- · Requirements for a TinyOS simulator
 - Scalability
 - Simulator must support network of very large numbers of nodes in a wide range of configurations
 - Completeness
 - Fidelity
 - Bridging

Introduction

- · Requirements for a TinyOS simulator
 - Scalability
 - Completeness
 - Simulator must accurately capture all system interactions
 - Fidelity
 - Bridging

Introduction

- · Requirements for a TinyOS simulator
 - Scalability
 - Completeness
 - Fidelity
 - Simulator must capture behavior of the network at a fine grain for evaluation and validation of code
 - Bridging

Introduction

- · Requirements for a TinyOS simulator
 - Scalability
 - Completeness
 - Fidelity
 - Bridging
 - Simulator must bridge the gap between algorithm and implementation to allow developers to test
 code.

Introduction

- · Prior simulators for sensor networks
 - -ns-2
 - · A general network simulator
 - Does not meet the requirements of simulating an application such as TinyOS
 - EmStar
 - Simulate sensor network applications running on Linux
 - -TOSSF
 - Simulates TinyOS code for a different simulation framework. Not evaluated
 - · Authors claim techniques borrowed from TOSSIM

TinyOS Recap

- · A TinyOS program is a graph of components
 - Components are mainly hardware resources such as ADC, sensors, computational entities
 - Components have 3 computational abstractions: commands, events and tasks
- TinyOS stack uses three network sampling rates – 40Kbps, 20Kbps and 10Kbps

TOSSIM - Overview

- Like TinyOS applications, TOSSIM is component based and event-driven
- Low-level components may be reimplemented to capture mote behavior at a fine grain
- · Simulation is based on a virtual clock

TOSSIM - Overview

- · Uses a directed graph to represent a network
 - Each vertex represents a node
 - Each edge has a bit error probability
 - Abstraction can capture most conditions

Hidden terminal problem

TOSSIM - Architecture

· Parts

- Compiling component graphs into simulation infrastructure
- Discrete event queue
- Hardware abstraction of component
- Radio and ADC models
- Communication services

TOSSIM – Network Simulation

- Receiver radio clock need to be adjusted to synchronize with sender signal
- Adjustments to radio bit rates are made by changing the period between radio clock events
- Network stack is simulated at bit level

TOSSIM - Features

- Single compiler support for simulation and hardware
 - Added a compiler option to the nesC Compiler to compile an application for simulation instead of mote hardware
- Visualization tool (TinyViz)
 - Allows simulations to be visualized, controlled and analyzed through a GUI
 - Allows for plugins for users to interact with simulation

TOSSIM - Evaluation

- Fidelity
 - Radio noise
 - Radio loss graphs generated physical topologies based on empirical data from real-world network
 - Conclusion: Shows that TOSSIM's bit-error mechanism allows for implementation of complex models

TOSSIM - Evaluation

- · Fidelity
 - Packet-level interactions
 - Investigated effects of transmission rate and network density on reliability of packet transmission
 - Simulated a TinyOS application at three network densities
 - Conclusion: The denser the network and higher the transmission rate resulted in more packet loss respectively

TOSSIM - Evaluation

- · Fidelity
 - Subtle race conditions
 - Race condition that occurred in the Media Access Control component was uncovered
 - Conclusion: Condition would not have been uncovered if TOSSIM did not have the ability to simulate at a very fine granularity

TOSSIM - Evaluation

- Completeness
 - -Surge
 - · Wide range of anomalous behavior uncovered
 - Packet overflow due to interactions between transmission policy and Active Messaging level acknowledgements
 - TinyDb
 - · SQL-based interface to query sensor network
 - Reported that TOSSIM provided a useful environment for prototyping new features
 - Evaluation mainly based on one application

TOSSIM - Evaluation

- Bridging
 - TOSSIM compiles directly from TinyOS code
 - Simulation code is almost identical to code running on hardware
 - Users can transition between simulation and real-world network
 - Users can step through simulation code with traditional debuggers without disrupting mote execution

TOSSIM - Evaluation

- · Scalability
 - TOSSIM is scalable for large number of nodes and more complex application

Simulations of three application of varying complexities

TOSSIM - Future Work

- Researchers are exploring connecting real-world motes to the TOSSIM networking model
- Researchers are modifying TOSSIM so that multiple running copies can communicate through a network proxy
- · Energy consumption need to be captured
- TOSSIM should be made less application specific

Conclusion

- TOSSIM captures a good deal of a realwork sensor network running a TinyOS application
- The effectiveness of TOSSIM cannot be generalized for all sensor networks
- It seems authors evaluated sensor network simulation based on the capabilities TOSSIM