Simple Linear Regression

- Useful for Predicting quantitative Response
- Predicting Y on the basis of a single predictor variable X
- ullet Assuming that there is a linear relationship between X and Y

$$Y pprox eta_0 + eta_1 X$$

- This can be read as regressing Y on X
- or Y onto X

Example :

- ullet TV ads o X
- Sales o Y
- Sales $pprox eta_0 + eta_1 TV$
 - β_0 , β_1 two unknown constants
 - $eta_0 o {\sf Slop}$ of X
 - ullet $eta_1 o$ intercept of Y
 - They are called model Coefficients or Parameters

After Using Training data to estimate \hat{eta}_0,\hat{eta}_1

$$\hat{y}=\hat{eta}_0+\hat{eta}_1 x$$

Estimating the Coefficients

- In practice β_0, β_1 are unknown, we usually use <u>Training Data</u> to estimate them $(x_1, y_1), \dots, (x_n, y_n)$
- we try to estimate β_0,β_1 as close as possible to the data points so:

$$ullet yipprox\hateta_0+\hateta_1x_i$$

• To minimize as much as possible \rightarrow we use Least squares criterion

Let
$$\hat{y} = \hat{eta}_0 + \hat{eta}_1 x_i
ightarrow e_i = y_i - \hat{y}_i$$

- y_i observed response
- \hat{y}_i predicted response

With that we have Residual Sum of Squares