Physics Equations Cheatsheet

Y12

Table of contents

1	Mechanics and Materials	1
2	Waves and Electricity	2
3	Further Mechanics, Fields and Particles	2
4	Thermodinamycs, Radiation, Oscillations and Cosmology	3
5	Data Sheet	4

1 Mechanics and Materials

Kinematic equations of motion		
Motion	$s = \frac{(u+v)\cdot t}{2}$	
	$v = u + a \cdot t$	
	$s = u \cdot t + \frac{1}{2}a \cdot t^2$	
	$v^2 = u^2 + 2as$	
Forces	$\sum F = m \cdot a$	
	$g = \frac{F}{m}$	
	$W = m \cdot g$	
Momentum	$p = m \cdot v$	
Moment of force	$= F \cdot x$	

Materials	
Density	$\rho = \frac{m}{V}$
Stoke's law	$F = 6\pi \cdot \eta \cdot r \cdot v$
Hooke's law	$\Delta F = k \cdot \Delta x$
Young modulus	stress $\sigma = \frac{F}{A}$
-	Strain $\epsilon = \frac{\Delta x}{x}$

$\frac{\text{Materials}}{E \text{ Elastic Strain Energy}} \ \ \frac{E = \frac{\sigma}{\epsilon}}{\Delta E_d = \frac{1}{2} F \cdot \Delta x}$

2 Waves and Electricity

Waves and particle nature of light	
Wave speed	$v = f \cdot \lambda$
Speed of a transverse wave on a string	$v = \sqrt{\frac{T}{\mu}}$
Intensity of radiation	$I = \frac{P}{A}$
Refractive index	$n_1 \cdot sin\theta_1 = n_1 \cdot sin\theta_2$ $n = \frac{c}{v}$
Critical angle	$sinC = \frac{1}{n}$
Difraction grating	$n \cdot \lambda = d \cdot \sin\theta$
De Broglie wavelenght	$\lambda = rac{h}{p}$
Photon model	$E = h \cdot f$
Einstein's photoelectric equation	$hf = \phi + \frac{1}{2}m \cdot v_{max}^2$

Electricity	
Current	$I = \frac{\Delta Q}{\Delta t}$
Potential difference	$V = \frac{\overline{W}}{Q}$
Resistance	$R = \frac{V}{I}$
Electrical power, energy and efficiency	$P = V \cdot I$
	$P = I^2 R$
	$P = \frac{V^2}{R}$
	W = VIt
Resistivity	$R = \frac{\rho l}{A}$
	$I = nq\nu A$

2

3 Further Mechanics, Fields and Particles

Further mechanics

Impulse	$F\Delta t = \Delta p$
Kinetic energy of a	$E_k = \frac{p^2}{2m}$
non-relativistic particle	
Motion in a circle	$v = \omega r$
	$T = \frac{2*\pi}{\omega}$ $a = \frac{v^2}{r}$ $a = r\omega^2$
	$a = \frac{v^2}{r}$
	$a = r\omega^2$

Electric and magnetic fields		
Electric field	$E = \frac{F}{O}$	
Coulomb's law	$E = \frac{F}{Q}$ $F = \frac{Q_1 Q_2}{4\pi \epsilon_0 r^2}$ $E = \frac{Q}{4\pi \epsilon_0 r^2}$	
	$E = \frac{Q}{4\pi\epsilon_0 r^2}$	
	$E = \frac{V}{d}$	
Electric potential	$V = \frac{{}^{\alpha}Q}{4\pi\epsilon_0 r}$	
Capacitance	$C = \frac{Q}{V}$	
Energy stored in a capacitor	$W = \frac{1}{2}QV$ $W = \frac{1}{2}CV^{2}$ $W = \frac{\frac{1}{2}Q^{2}}{C}$	
	$W = \frac{1}{2}CV^2$	
Capacitor discharge	$Q = Q_0 e^{\frac{-t}{RC}}$	
Resistor-Capacitor discharge	$I = I_0 e^{\frac{-t}{RC}}$	
	$V = V_0 e^{\frac{-t}{RC}}$	
	$\begin{array}{l} lnQ = lnQ_0 - \frac{-t}{RC} \\ lnI = lnI_0 - \frac{-t}{RC} \end{array}$	
	$lnI = lnI_0 - \frac{-t}{RC}$	
	$lnV = lnV_0 - \frac{-t}{RC}$	
In a magnetic field	$F = BqvSin\theta$	
	$F = BIlsin\theta$	
Faraday and Lenz's law	$\mathcal{E} = \frac{-d(N\phi)}{dt}$	

Nuclear and Particle Physics	
In a magnetic field	$r = \frac{p}{BQ}$
Mass energy	$\Delta E = \Delta m \cdot c^2$

4 Thermodinamycs, Radiation, Oscillations and Cosmology

Thermodinamycs	
Heating	$\Delta E = mc\Delta\theta$
	$\Delta E = L\Delta m$

Thermodinamycs

pV = NkTIdeal gas equation $\frac{1}{2}m < c^2 > = \frac{3}{2}kT$ Molecular kinetic theory

Nuclear decay

 $\Delta E = \Delta m \cdot c^2$ Mass-energy $A = \lambda N$ Radioactive decay $\frac{dN}{dt} = -\lambda N$ $\lambda = \frac{\ln 2}{t_{\frac{1}{2}}}$ $N = N_0 e^{-\lambda r}$ $A = \dot{A_0}e^{-\lambda r}$

Oscillations

Simple harmonic motion F = -kx $a = -\omega^2 x$ $x = A \cdot cos(\omega t)$ $v = -A\omega \cdot sin(\omega t)$ $a = -A\omega^2 \cdot \cos(\omega t)$ $T = \frac{1}{f} = \frac{2\pi}{\omega}$ $\omega = 2\pi f$ $T = 2\pi\sqrt{\frac{m}{k}}$ Simple harmonic oscillator $T = 2\pi \sqrt{\frac{l}{g}}$

Astrophysics and cosmology

 $g = \frac{F}{m}$ $F = \frac{Gm_1m_2}{r^2}$ $g = \frac{Gm}{r^2}$ $V_{grav} = \frac{-Gm}{r}$ $L = \sigma T^4 A$ Gravitational field strength Gravitational force Gravitational field Gravitational potential Stefan-Boltzmann law

 $\lambda_{max}T = 2.898 \cdot 10^{-3} m \cdot K$ Wien's law $\begin{array}{l} \lambda_{max} I = 2.656 \text{ I} \\ I = \frac{L}{4\pi d^2} \\ z = \frac{\Delta \lambda}{\lambda} \approx \frac{\Delta f}{f} \approx \frac{v}{c} \end{array}$

Intensity of radiation Redshift of electromagnetic

radiation

Cosmological expansion

 $v = H_0 d$

5 Data Sheet

Data sheet

Acceleration of the free fall

Boltzmann constant

 $g = 9.81 \frac{m}{s^2}$ $k = 1.38 \cdot 10^{-23} \frac{J}{K}$ $k = \frac{1}{4\pi\epsilon_0} = 8.99 \cdot 10^9 \frac{Nm^2}{C^2}$ $e = -1.60 \cdot 10^{-19} C$ Coulomb's law constant

Electron charge
$$\begin{split} m_e &= 9.11 \cdot 10^{-31} kg \\ 1eV &= 1.60 \cdot 10^{-19} J \end{split}$$
Electron mass Electronvolt $G = 6.67 \cdot 10^{-11} \frac{Nm^2}{kg^2}$ Gravitational constant

Gravitational field strength

 $g = 9.81 \frac{N}{kg}$ $h = 6.63 \cdot 10^{-34} Js$ Planck constant $\begin{aligned} &\epsilon_0 = 8.85 \cdot 10^{-12} \frac{F}{m} \\ &m_p = 1.67 \cdot 10^{-27} kg \\ &c = 3.00 \cdot 10^8 \frac{m}{s} \end{aligned}$ Permittivity of free space

Proton mass

Speed of light in vacuum