PRN

QP Code CS-238

D.K.T.E. Society's TEXTILE AND ENGINEERING INSTITUTE, ICHALKARANJI.

(An Autonomous Institute)

Semester End Examination - Summer 2018-19

Class - Program	Third Year B.Tech. (CS)	Day & Date	Thursday,16/05/2019
Course Code	CSL303	Time	10 am To 1 pm
Course Title	Machine Learning	Max.Marks	100

Instructions:

- 1. All Questions are compulsory; assume suitable data if necessary and mention it clearly.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper(except PRN), exchange/sharing of stationery, calculator etc. are not allowed.

Que	e No	Question							Marks	BL	СО
1	Α	Identify two clusters in following data using Agglomerative Hierarchical							5	3	3
		clustering	technique	2							
		Object	Α	В	С	D	E				
		X1	4	9	13	40	46				
		Attempt	any one	e of B&	С						
	В	Design roo				etermine	driving risk	using following	10	3	3
		Data	ick Table								
			isk Table	` T	D		Dial.				
		Age		ar Type		lanes	Risk				
		< 25		amily	1		High				
		< 25		amily	4		Low				
		< 25		ports	1		High				
		< 25		ports	4		Low				
		> 25		ports	1		Low				
		> 25		amily	4		Low				
		> 25		ruck	1		Low				
		< 25		ruck	1		High				
		< 25	Т	ruck	4		Low				
	С	Use data in Q.1 B to predict driving risk for attributes as age < 25 ,Road lanes = 4 and Car Type = Sports, using Bayesian Classifier.							10	3	3
		4 and Car	Type = Sp	orts, using	g Bayesian C	lassitier.					
2		Attempt	any thr	oo of A	R C & D						
-	Α	Explain lea			-				5	2	1
	В	Explain dif			'				5	2	1
	C	-			or multiple l	inear reg	ression.		5	2	1
	D	What is gi	•		•		<u> </u>		5	2	1
										1 1	1 1
3		Attempt									
	A	•			mender sys		1	. 1	5	2	1
	В						r multilayer	perceptron.	5	2	1
	C	1	•		clustering 7	Гесhniqu	es?		5	2	1
	D	Explain Ba	yesian Cla	assifier.					5	2	1

PRN	QP Code	CS-238

Que	No	Questi	on					Marks	BL	СО
4	Α	i) Calcu	ulate linear re	gression par	rameter	s for following	g data.	15	3	3
			1,,							
		X	Y							
		5 10	21 38							
		15	62							
		20	83							
		25	101							
			lict whether a on given data				on with given attribute	S		
		Age	Income	Cards						
		30	35000	2						
		Traini	ing Data							
		Age	Income	Cards	Loan	<u> </u>				
		35	35000	3	No					
		22	50000	2	Yes					
		63	200000	1	No					
		25	45000	2	Yes					
		59	175000	1	No					
5			npt any two					1		
	Α	1 '	lowing confus cy, precision a			imal classifier, ers.	determine	10	4	2
						Actual Class				
						Animal	Non Animal			
		Predi		Animal		15	3			
		class		Non Anim	ial	1	12			
		Comm	ent on the cla	ssification p	performa	ance of this cla	assifier.			
	В	Analyz	e the followin	g Artificial N	Neural w	vith hardlimit T	Thresholding function a	and 10	4	2
		1 '	nine the logica							

QPT5 CS-238 / Page **2** of **3**

Que	No	Question		Marks	BL	СО
	С	X ₁ W X ₂ W A dataset to	w ₁ = -1 be used for predicting weight is given below. Is it suitable for diction? Why? Weight (Kg) 25 38 55 60 65	10	4	2
6		Attempt a	ny four of A, B, C, D & E			
	Α	What are th	e reasons of incorporating recommender system in information	5	2	1
		systems?				
	В	What is mad	5	2	1	
	С	What is over	5	2	1	
	D	Explain activ	vation functions used in an artificial neural network.	5	2	1
	E	What is Data	a Cleaning? Explain techniques used for data cleaning.	5	2	1

----- X ----- X -----

D.K.T.E. Society's TEXTILE AND ENGINEERING INSTITUTE, ICHALKARANJI.

(An Autonomous Institute)

Semester End Examination - Summer 2018-19

Class - Program Third Year B. Tech. (CS)			Day &Date	Saturday, 11/05/2019
Course Code	CSL304		Time	10 am To 1 pm
Course Title	Information Security	ſ	Max.Marks	100

Instructions:

- 1. All Questions are compulsory; assume suitable data if necessary and mention it clearly.
- 2. Mobile phones and programmable calculators are strictly prohibited.
- 3. Writing anything on question paper(except PRN), exchange/sharing of stationery, calculator etc. are not allowed.

Que	No	Question	Marks	BL	СО
1	Α	llustrate following substitution cipher techniques	8	2	1
		a. Monoalphabetic cipher			
		b. Polyalphabetic Cipher			
	В	Compare Symmetric and Asymmetric cryptographic system?	7	2	1
2	Α	What are the principles of public key cryptosystems?	8	1	1
		Attempt any one of B & C			
	В	Explain with Block diagram, Encryption and Decryption in DES Algorithm	7	2	1
	С	Explain Block cipher design principles	7	2	1
3	Α	Apply Diffie-Hellman key exchange algorithm to find out shared	8	3	1
		secret key for following data. q= 11, α=2, YA=9, YB=3			
	В	What is MAC? What are the requirements of MAC?	7	1	2
4	Α	Explain hierarchy of Certificate Authorities (CA's).	8	2	3
		Attempt any one of B & C			
	В	How are the certification authorities useful for distribution of public keys?	7	1	3
	С	What is Woo-Lam approach for authentication protocol	7	1	3
5		Attempt any one of A&B			
	Α	What are the functions provided by S/MIME?	8	1	4
	В	What are the operations performed in PGP	8	1	4
		Attempt any twoof C, D & E			
	С	Explain IPSec AH (Authentication Header) format	6	2	4
	D	Explain IPSec ESP (Encapsulating Security Payload) format	6	2	4
	Ε	How Key is derived from pass phrase in Pretty good privacy	6	2	4
6		Attempt any one of A&B			
	Α	Explain SSL Handshake protocol	8	2	4
	В	Explain SSL architecture	8	2	4
		Attempt any twoof C, D & E	•		
	С	List in detail the Key Features of Secure Electronic Transaction (SET) Protocol ?.	6	1	4
	D	What is SSL Record protocol	6	1	4
	Ε	What is TLS	6	1	4

CS-123/ Page 1 of 1 QPT1