

Gabarito da AP1 - Fundamentos de Algoritmos para Computação

2007-1

1. (1.5) Verifique se cada uma das afirmações abaixo é falsa ou verdadeira. Se for verdadeira, prove, se for falsa justifique.

(a)
$$\{\emptyset\} \notin \{\{\emptyset\}, 1\}$$

Resposta:

A afirmativa é falsa porque $\{\emptyset\}$ é um elemento do conjunto $A = \{\{\emptyset\}, 1\}$ e, usamos o símbolo pertence (\in) para estudarmos a relação entre elementos e conjuntos.

(b)
$$\emptyset \subseteq \{\{\emptyset\}, 1\}$$

Resposta: A afirmação é verdadeira, pois \emptyset é um conjunto e, para todo conjunto A, temos que o conjunto vazio, \emptyset , está contido em A, isto é, $\emptyset \subseteq A$.

(c)
$$n(A \cup B) = n(A) + n(B)$$

Resposta: A afirmação é falsa.

De fato, temos que $n(A \cup B) = n(A) + n(B) - n(A \cap B)$. Como $n(A \cap B) \ge 0$ então $-n(A \cap B) \le 0$.

Logo, podemos concluir que:

$$n(A) + n(B) - n(A \cap B) \leq n(A) + n(B)$$
isto é,
$$n(A \cup B) \leq n(A) + n(B)$$

Observemos que se A e B são disjuntos, $A \cap B = \emptyset$ então $n(A \cap B) = 0$ e vale a igualdade na relação acima.

As afirmações corretas são:

$$n(A \cup B) \le n(A) + n(B)$$

ΟU

$$n(A \cup B) = n(A) + n(B)$$
 se $A \cap B = \emptyset$

2. (2.0) Seja q > 0 e $q \neq 1$. Então, prove por indução matemática que:

$$\sum_{i=0}^n q^i = \frac{q^{n+1}-1}{q-1},$$
 para todo n inteiro natural.

Prova:

Seja
$$P(n):\sum_{i=0}^n q^i = \frac{q^{n+1}-1}{q-1},$$
onde $q>0$ e $q\neq 1.$

Base da indução:

Para
$$n = 0$$
, $\sum_{i=0}^{0} q^i = q^0 = 1 = \frac{q^{0+1}-1}{q-1}$, logo $P(0)$ é verdadeira.

Hipótese de Indução:

Suponha verdadeiro para n = k, isto é, P(k) é verdadeira:

$$\sum_{i=0}^{k} q^i = \frac{q^{k+1} - 1}{q - 1}$$

Vamos mostrar que se P(k) é verdadeiro então P(k+1) é verdadeiro, isto é:

Temos que provar que: P(k+1) : $\sum_{i=0}^{k+1} q^i = \frac{q^{k+2}-1}{q-1}$ é verdadeira.

De fato, desenvolvendo para n = k + 1 e usando a hipótese de indução, temos que:

$$\sum_{i=0}^{k+1} q^{i} = \sum_{i=0}^{k} q^{i} + q^{k+1} = \sum_{i=0}^{k} q^{i} + q^{k+1} = \frac{q^{k+1}-1}{q-1} + q^{k+1} = \frac{q^{k+1}-1+q^{k+2}-q^{k+1}}{q-1} = \frac{q^{k+2}-1}{q-1}$$

Logo, pelo princípio da indução, a expressão é verdadeira, $\forall n \in \mathbb{N}, \ q>0$ e $q\neq 1$.

3. (1.5) Quantos números distintos de 5 algarismos diferentes podem ser formados com os algarismos 1, 2, . . . , 9 de maneira que 5 e 7 apareçam sempre juntos (em qualquer ordem)? Justifique.

Dado que o enunciado pode ser interpretado das 2 maneiras abaixo, consideraremos corretas qualquer uma das duas.

Solução 1: Considerando que 5 e 7 podem ou não aparecer:

Resposta: Vamos contar separadamente:

- (i) os números que não contém os algarismos 5 e 7; (ii) os números que contém os algarismos 5 e 7 e estes estão sempre juntos.
 - (i) os números que não contém os algarismos 5 e 7;

Para escolhermos a primeira posição do número podemos considerar que temos 7 posições para serem preenchidas; a segunda posição pode ser preenchida de 6 maneiras; a terceira posição pode ser preenchida de 5 maneiras; a quarta posição, de 4 maneiras e a quinta posição, de 3 maneiras. Então, pelo princípio multiplicativo tem-se que os números que não contém os algarismos 5 e 7 podem ser escolhidos de 7.6.5.4.3 = 2520 maneiras.

Observemos que também corresponde a um problema de arranjos simples de 7 elementos tomados 5 a 5, $A_7^5=\frac{7!}{5!2!}=2520$.

(ii) os números que contém os algarismos 5 e 7 e estes estão sempre juntos.

Dado que 5 e 7 devem aparecer juntos, os consideraremos como sendo um elemento. Portanto, restam 8 algarismos diferentes para colocar em 4 posições. Logo, temos A_8^4 modos diferentes de colocá-los. Por outro lado, os modos de aparecer 5 e 7 juntos é P_2 (57 ou 75). Usando o princípio multiplicativo, temos $P_2.A_8^4 = 2!\frac{8!}{4!} = 3360$ modos diferentes para esta possibilidade.

A resposta é 2520 + 3360 = 5880.

Solução 2: Considerando que 5 e 7 sempre aparecem.

Resposta: Observemos que corresponde ao item (ii) da solução 1, portanto, a resposta é $P_2.A_8^4 = 3360$.

4. (1.5) Um comitê de 3 membros deve ser formado a partir de 6 mulheres e 4 homens. O comitê deve incluir pelo menos 2 mulheres. De quantas maneiras este comitê pode ser formado? Justifique.

Resposta: As alternativas exclusivas são:

1 homem e 2 mulheres; OU 3 mulheres

Para a primeira alternativa temos que o número de escolhas de 2 mulheres dentre 6 corresponde a C_6^2 . Por outro lado, fixada 2 mulheres, um homem deve ser escolhido entre 4, dando lugar a C_4^1 possibilidades. Logo, pelo princípio multiplicativo, o número de possibilidades de formar um comitê constituido por um homem e 2

mulheres é $C_4^1.C_6^2 = \frac{4!}{3!1!}.\frac{6!}{4!2!} = 60$. Para a segunda alternativa, temos de considerar os modos de escolher 3 mulheres dentre 6, ou seja, $C_6^3 = \frac{6!}{3!3!} = 20$. Logo, pelo princípio de inclusão e exclusão, a resposta é 60 + 20 = 80.

Outro raciocínio: Poderíamos também contar todas as escolhas de 3 pessoas (C_{10}^3) e abater as escolhas sem mulheres (C_4^3) e com apenas uma mulher $(C_6^1.C_4^2)$:

$$C_{10}^3 - (C_4^3 + C_6^1, C_4^2) = \frac{10!}{7!3!} - \frac{4!}{1!3!} - \frac{6!}{5!1!} \cdot \frac{4!}{2!2!} = 120 - 4 - 36 = 80.$$

- 5. (1.5) Quantos são os anagramas possíveis da palavra PARALEPIPEDO tais que:
 - (a) terminam em A? Justifique.

Prova: Os anagramas da palavra PARALEPIPEDO tais que terminam em A são $P_{11}^{3,2} = \frac{11!}{3!2!}$, pois correspondem a permutações de 11 elementos, aparecendo repetidas as letras E (2 vezes) e P (3 vezes).

(b) começam com P e terminam com A? Justifique.

Prova: Os anagramas da palavra PARALEPIPEDO tais que começam com P e terminam com A são $P_{10}^{2,2}=\frac{10!}{2!2!}$, pois correspondem a permutações com repetição de 10 elementos, sendo repetidos as letras P (2 vezes) e E (2 vezes).

6. (2.0) Quantas são as soluções inteiras não negativas de x + y + z + w = 25 tais que y > 0 e w > 2? Justifique.

Prova: Como y > 0 e $w \ge 2$ equivale a $y \ge 1$ e $w \ge 2$, então temos de encontrar quantas são as soluções inteiras não-negativas da equação x + y + z + w = 25 com as restrições: $y \ge 1$ e $w \ge 2$.

Definindo por y' = y - 1 e w' = w - 2, e substituindo y por y' + 1 e w por w' + 2, a equação x + y + z + w = 25 resulta equivalente a: x + y' + 1 + z + w' + 2 = 25, com $x, y', z, w' \ge 0$, ou seja, x + y' + z + w' = 22, com x, y', z, w' inteiros não-negativos.

Logo, o número de soluções inteiras não-negativas da equação x+y+z+w=25, com $y\geq 1$ e $w\geq 2$ é igual ao número de soluções inteiras não-negativas de x+y'+z+w'=22, que é $CR_4^{22}=C_{25}^{22}=\frac{25!}{22!3!}=2300$.