

CUMULATIVE INDEXES

CONTRIBUTING AUTHORS, VOLUMES 62-66

A

Abrahamson D, 62:649-71
Accili D, 65:313-32
Ahima RS, 62:413-37
Ahn S, 62:803-23
Al-Awqati Q, 65:567-83
Alper SL, 64:899-923
Anderson ME, 64:431-75
Anderson SR, 62:697-722
Andreoli TE, 63:631-45
Anversa P, 66:29-48
Aperia AC, 62:621-47
Araque A, 63:795-813
Arias IM, 64:595-608
Armstrong N, 66:161-81
Arshavsky VY, 64:153-87
Auwerx J, 65:261-311

B

Baines CP, 62:79-109
Balasubramanian K,
65:701-34
Balser JR, 64:431-75
Barker DS, 65:161-75
Barrett KE, 62:535-72
Baumgartner I, 63:427-50
Behar KL, 65:401-27
Belcredo S, 66:291-313
Bell PD, 65:481-500
Bennett MJ, 64:477-502
Bezprozvanny I, 63:847-69
Biber J, 65:531-42
Bichet DG, 63:607-30
Binart N, 64:47-67
Bindels RJM, 64:529-49
Boon WC, 64:93-127
Booth FW, 66:799-828
Borkan SC, 64:503-27
Branco LGS, 64:263-88

Breyer MD, 63:579-605

Breyer RM, 63:579-605
Britt K, 64:93-127
Butler AA, 63:141-64

C

Cancela JM, 63:99-117
Canessa CM, 62:573-94
Cardoso WV, 63:471-94
Carmignoto G, 63:795-813
Ciana P, 66:291-313
Clyne C, 64:93-127
Cohen MV, 62:79-109
Conkright JJ, 63:555-78
Contreras D, 63:815-46
Cossins AR, 65:231-59
Costa DP, 66:209-38
Cote GJ, 62:377-411
Crofts AR, 66:689-733
Crouch E, 63:521-54
Cyr JL, 66:521-45
Czech MP, 65:791-815

D

Dahlhoff EP, 66:183-207
Daniel H, 66:361-84
Daniel TO, 62:649-71
Davies PL, 63:359-90
Davis GW, 63:847-69
de la Rosa DA, 62:573-94
Delpire E, 64:803-43
DeMayo FJ, 66:647-63
Deutsch C, 64:19-46
Devlin PF, 63:677-94
De Weer P, 62:919-26
Dimaline R, 63:119-39
Dockray GJ, 63:119-39
Dohlman HG, 64:129-52
Dorn GW II, 63:391-426;

64:407-29

Downey JM, 62:79-109
Driskell RR, 65:585-612
Dudley R, 62:135-55
Duman JG, 63:327-57
Dunlap JC, 63:757-94
Dunlap WC, 64:223-62

E

Ellington WR, 63:289-325
Else PL, 62:207-35
Endow SA, 65:161-75
Engelhardt JF, 65:585-612
Espey LL, 64:69-92

F

Fayard E, 65:261-311
Filipek S, 65:851-79
Fleming RE, 64:663-80
Fletcher GL, 63:359-90
Flier JS, 62:413-37
Forbush B III, 62:515-34
Forster I, 65:531-42
Forte JG, 65:103-31
Forte LR, 62:673-95
Francis GA, 65:261-311
Frappell PB, 62:847-74
Freeman RH, 62:673-95
Frey N, 65:45-79
Fyfe GK, 62:573-94

G

Gagel RF, 62:377-411
Garbers DL, 63:215-34
Gazdar AF, 64:681-708
Geiser F, 66:239-74
George AL Jr, 64:431-75
Gillespie PG, 66:521-45
Ginty DD, 62:803-23

G

- Glynn IM, 64:1-18
- Goffin V, 64:47-67
- Goldin AL, 63:871-94
- Goodman MB, 65:429-52
- Gracey AY, 65:231-59
- Gratzl M, 65:371-82
- Greger R, 62:467-91
- Gullans SR, 64:503-27
- Gustafsson J-Å, 63:165-92

H

- Haas M, 62:515-34
- Håkansson KO, 65:817-49
- Hardie RC, 65:735-59
- Harrison JF, 62:179-205
- Hawgood S, 63:495-519
- Haydon PG, 63:795-813
- Heinemann SH, 66:131-59
- Heintz N, 62:779-802
- Heller HC, 66:275-89
- Hernando N, 65:531-42
- Hew CL, 63:359-90
- Hilgemann DW, 65:697-700
- Hinkle KL, 65:383-400
- Hoenderop JGJ, 64:529-49
- Hoff AO, 62:377-411
- Hood DA, 65:177-201
- Hoshi T, 66:131-59
- Hulbert AJ, 62:207-35
- Hummler E, 64:877-97
- Hunninghake GW, 65:643-67
- Hyatt BA, 66:625-45
- Hyder F, 65:401-27

I

- Ichikawa I, 64:551-61
- Ikegami M, 62:825-46
- Isner JM, 63:427-50

K

- Kahn CR, 65:313-32
- Karlish SJ, 65:817-49
- Kauer JA, 66:447-75
- Kaupp UB, 63:235-57
- Kay SA, 63:677-94
- Keely SJ, 62:535-72
- Kelly PA, 64:47-67
- Kidd JF, 62:493-513
- Kipp H, 64:595-608
- Kiriazis H, 62:321-51
- Kitamura T, 65:313-32
- Koch WJ, 62:236-60; 66:49-75
- Kranias EG, 62:321-51, 965-69
- Krause WJ, 62:673-95
- Kung C, 64:289-311
- Kwak I, 66:647-63

L

- Lamb TD, 64:153-87
- Lany JK, 66:665-88
- Lapointe JY, 65:481-500
- Lazar MA, 62:439-66
- Leaf A, 63:1-14
- Lefkowitz RJ, 62:236-60
- Le Roith D, 63:141-64
- Levine DZ, 65:501-29
- Lewis JF, 65:613-42
- Li D, 62:51-77
- Li X, 64:609-33
- Lightfoot DW, 62:697-722
- Logothetis NK, 66:735-69
- London RM, 62:673-95
- López-Barneo J, 63:259-87
- Loros JJ, 63:757-94
- Lu Z, 66:103-29

M

- MacLellan WR, 62:289-319
- Maggi A, 66:291-313
- Mann DL, 65:81-101
- Marden JH, 62:157-78
- Masereseeuw R, 64:563-94
- Massaro D, 62:951-60
- Matern D, 64:477-502

N

- Matsusaka T, 64:551-61
- Mayer ML, 66:161-81
- McCleskey EW, 65:133-59
- McCormick DA, 63:815-46
- McCray PB Jr, 64:709-48
- Meier PJ, 64:635-61
- Melchers K, 65:349-69
- Mendelson CR, 62:875-915
- Minna JD, 64:681-708
- Miyazaki Y, 64:551-61
- Mochly-Rosen D, 64:407-29
- Molkentin JD, 63:391-426
- Monick MM, 65:643-67
- Moon C, 64:189-222
- Morello J-P, 63:607-30
- Mortola JP, 62:847-74
- Mount DB, 64:803-43
- Moyes CD, 65:177-201
- Murer H, 65:531-42

O

- Nattel S, 62:51-77
- Nicoll DA, 62:111-33
- Niell CM, 66:771-98
- Nigam K, 62:595-620
- Nilius B, 64:529-49
- Nimchinsky EA, 64:313-53
- Nogee LM, 66:601-23

P

- Ochsner S, 64:69-92
- Olson EN, 65:45-79
- Olver RE, 66:77-101
- Ortega-Sáenz P, 63:259-87
- Osborne N, 65:23-43

P

- Pak DTS, 62:755-78
- Palczewski K, 65:851-79
- Pardal R, 63:259-87
- Pearson KG, 62:723-53
- Peti-Peterdi J, 65:481-500
- Pettersson K, 63:165-92
- Philipson KD, 62:111-33
- Picard F, 65:261-311
- Pohl M, 62:595-620
- Poulain FR, 63:495-519

Powell FL, 65:203-30
 Pradervand S, 64:877-97
 Prinz C, 65:371-82
 Privalsky ML, 66:315-60
 Pugh EN Jr, 64:153-87

R

Raghvendra DK, 66:571-99
 Rao MC, 66:385-417
 Reeves WB, 63:631-45
 Regehr WG, 64:355-405
 Renfree MB, 62:353-75
 Rennie MJ, 66:799-828
 Reppert SM, 63:647-76
 Reuss L, 62:939-46
 Rhodes KJ, 66:477-519
 Riccio A, 62:803-23
 Richards JS, 64:69-92
 Rinaldo P, 64:477-502
 Robbins J, 62:261-87,
 961-63
 Roberts SP, 62:179-205
 Robertson K, 64:93-127
 Robinson RB, 65:453-80
 Rockman HA, 62:236-60
 Roden DM, 64:431-75
 Ronnett GV, 64:189-222
 Rossier BC, 64:877-97
 Rothman DL, 63:15-48;
 65:401-27
 Rozengurt E, 63:49-75
 Rubin G, 64:93-127
 Ruby NF, 66:275-89
 Russel FGM, 64:563-94
 Russell DL, 64:69-92

S

Sabatini BL, 64:313-53
 Sachs G, 65:349-69
 Said HM, 66:419-46
 Saimi Y, 64:289-311
 Sakurai H, 62:595-620
 Samuelson LC, 65:383-400
 Sands JM, 65:543-66
 Santarelli LC, 66:131-59
 Sather WA, 65:133-59
 Schild L, 64:877-97

Schneider MD, 62:289-319
 Schnermann J, 65:501-29
 Schroit AJ, 65:701-34
 Schutte BC, 64:709-48
 Schwarz EM, 65:429-52
 Scott DR, 65:349-69
 Sehgal A, 63:729-55
 Seifert R, 63:235-57
 Shannon JM, 66:625-45
 Shaul PW, 64:749-74
 Shaw G, 62:353-75
 Sheng M, 62:755-78
 Shick JM, 64:223-62
 Shulman RG, 63:15-48;
 65:401-27
 Siegelbaum SA, 65:453-80
 Simpson ER, 64:93-127
 Sinervo B, 66:209-38
 Singer SJ, 66:1-27
 Sly WS, 64:663-80
 Smith SJ, 66:771-98
 Sokoloff L, 62:1-24
 Somero GN, 62:927-37
 Spangenburg EE,
 66:799-828
 Speed C, 64:93-127
 Srivastava D, 63:451-69
 Stainier DYR, 65:23-43
 Steiner AA, 64:263-88
 Stenkamp RE, 65:851-79
 Stieger B, 64:635-61
 Stocco DM, 63:193-213
 Stuart RO, 62:595-620
 Sussman MA, 66:29-48
 Svoboda K, 64:313-53

T

Tang XD, 66:131-59
 Teller DC, 65:851-79
 Thorn P, 62:493-513
 Touraine P, 64:47-67
 Trapnell BC, 64:775-802
 Trimmer JS, 66:477-519
 Tsai SY, 66:647-63

U

Unger RH, 65:333-47

V

van Aubel RAMH, 64:563-94
 Varro A, 63:119-39
 Vegeto E, 66:291-313
 Veldhuizen R, 65:613-42

W

Wackerhage H,
 66:799-828
 Walsh JH, 63:49-75
 Walters DV, 66:77-101
 Wandell BA, 66:735-69
 Wang T, 63:119-39
 Wang WH, 66:547-69
 Warnock DG, 64:845-76
 Weaver DR, 63:647-76
 Weaver TE, 63:555-78
 Wedel BJ, 63:215-34
 Weeks DL, 65:349-69
 Weinman SA, 64:609-33
 Whitsett JA, 64:775-802
 Williams John A, 63:77-97
 Williams Julie A,
 63:729-55

Williams MC, 65:669-95
 Williams ML, 66:49-75
 Wilson JD, 62:947-50;
 65:1-21
 Wilson SM, 66:77-101
 Winters CJ, 63:631-45
 Wright JR, 63:521-54

Y

Yao X, 65:103-31
 Yin HL, 65:761-89
 Yue L, 62:51-77

Z

Zanner R, 65:371-82
 Zhang J, 62:439-66
 Zhang P, 62:573-94
 Zöchbauer-Müller S,
 64:681-708
 Zoghbi HY,
 62:779-802
 Zucker RS,
 64:355-405

CHAPTER TITLES, VOLUMES 62-66

Cardiovascular Physiology

Ventricular Fibrillation: Mechanisms of Initiation and Maintenance	J Jalife	62:25-50
Basic Mechanisms of Atrial Fibrillation—Very New Insights into Very Old Ideas	S Nattel, D Li, L Yue	62:51-77
Ischemic Preconditioning: From Adenosine Receptor to K _{ATP} Channel	MV Cohen, CP Baines, JM Downey	62:79-109
Cytoplasmic Signaling Pathways that Regulate Cardiac Hypertrophy	JD Molkentin, GW Dorn II	63:391-426
Somatic Gene Therapy in the Cardiovascular System	I Baumgartner, JM Isner	63:427-50
Genetic Assembly of the Heart: Implications for Congenital Heart Disease	D Srivastava	63:451-69
Intracellular Transport Mechanisms of Signal Transducers	GW Dorn II, D Mochly-Rosen	64:407-29
Cardiac Ion Channels	DM Roden, JR Balser, AL George Jr, ME Anderson	64:431-75
Fatty Acid Oxidation Disorders	P Rinaldo, D Matern, MJ Bennett	64:477-502
Lipid Receptors in Cardiovascular Development	N Osborne, DYR Stainier	65:23-43
Cardiac Hypertrophy: The Good, the Bad, and the Ugly	N Frey, EN Olson	65:45-79
Stress-Activated Cytokines and the Heart: From Adaptation to Maladaptation	DL Mann	65:81-101
Myocardial Aging and Senescence: Where Have the Stem Cells Gone?	MA Sussman, P Anversa	66:29-48
Viral-Based Myocardial Gene Therapy Approaches to Alter Cardiac Function	ML Williams, WJ Koch	66:49-75

Cell Physiology

Sodium-Calcium Exchange: A Molecular Perspective	KD Philipson, DA Nicoll	62:111-33
Molecular Diversity of Pacemaker Ion Channels	UB Kaupp, R Seifert	63:235-57
Cellular Mechanisms of Oxygen Sensing	J López-Barneo, R Pardal, P Ortega-Sáenz	63:259-87
Potassium Channel Ontogeny	C Deutsch	64:19-46
Cell Biology of Acid Secretion by the Parietal Cell	X Yao, JG Forte	65:103-31
Permeation and Selectivity in Calcium Channels	WA Sather, EW McCleskey	65:133-59
Processive and Nonprocessive Models of Kinesin Movement	SA Endow, DS Barker	65:161-75
Developmental Regulation of Lung Liquid Transport	RE Olver, DV Walters, SM Wilson	66:77-101
Mechanism of Rectification in Inward-Rectifier K ⁺ Channels	Z Lu	66:103-29
Metabolic Regulation of Potassium Channels	XD Tang, LC Santarelli, SH Heinemann, T Hoshi	66:131-59
Structure and Function of Glutamate Receptor Ion Channels	ML Mayer, N Armstrong	66:161-81

Comparative Physiology

The Evolutionary Physiology of Animal Flight: Paleobiological and Present Perspectives	R Dudley	62:135-55
Variability in the Size, Composition, and Function of Insect Flight Muscles	JH Marden	62:157-78
Flight Respiration and Energetics	JF Harrison, SP Roberts	62:179-205
Mechanisms Underlying the Cost of Living in Animals	AJ Hulbert, PL Else	62:207-35
Evolution and Physiological Roles of Phosphagen Systems	WR Ellington	63:289-325
Antifreeze and Ice Nucleator Proteins in Terrestrial Arthropods	JG Duman	63:327-57

Antifreeze Proteins of Teleost Fishes	GL Fletcher, CL Hew, PL Davies	63:359-90
Mycosporine-Like Amino Acids and Related Gadusols: Biosynthesis, Accumulation, and UV-Protected Functions in Aquatic Organisms	JM Shick, WC Dunlap	64:223-62
Hypoxia-Induced Anapyrexia: Implications and Putative Mediators	AA Steiner, LGS Branco	64:263-88
Origin and Consequences of Mitochondrial Variation in Vertebrate Muscle	CD Moyes, DA Hood	65:177-201
Functional Genomics and the Comparative Physiology of Hypoxia	FL Powell	65:203-30
Application of Microarray Technology in Environmental and Comparative Physiology	AY Gracey, AR Cossins	65:231-59
Biochemical Indicators of Stress and Metabolism: Applications for Marine Ecological Studies	EP Dahlhoff	66:183-207
Field Physiology: Physiological Insights from Animals in Nature	DP Costa, B Sinervo	66:209-38
Metabolic Rate and Body Temperature Reduction During Hibernation and Daily Torpor	F Geiser	66:239-74
Sleep and Circadian Rhythms in Mammalian Torpor	HC Heller, NF Ruby	66:275-89

Endocrinology

Diapause	MB Renfree, G Shaw	62:353-75
Multiple Endocrine Neoplasias	AO Hoff, GJ Cote, RF Gagel	62:377-411
Leptin	RS Ahima, JS Flier	62:413-37
The Mechanism of Action of Thyroid Hormones	J Zhang, MA Lazar	62:439-66
Control of Growth by the Somatotropic Axis: Growth Hormone and the Insulin-Like Growth Factors Have Related and Independent Roles	AA Butler, D Le Roith	63:141-64
Role of Estrogen Receptor Beta in Estrogen Action	K Pettersson, J-Å Gustafsson	63:165-92
StAR Protein and the Regulation of Steroid Hormone Biosynthesis	DM Stocco	63:193-213
The Guanylyl Cyclase Family at Y2K	BJ Wedel, DL Garbers	63:215-34

Prolactin: The New Biology of an Old Hormone	V Goffin, N Binart, P Touraine, PA Kelly	64:47-67
Ovulation: New Dimensions and New Regulators of the Inflammatory-Like Response	JS Richards, DL Russell, S Ochsner, LL Espey	64:69-92
Aromatase—A Brief Overview	ER Simpson, C Clyne, G Rubin, WC Boon, K Robertson, K Britt, C Speed, M Jones	64:93-127
Nuclear Receptors and the Control of Metabolism	GA Francis, E Fayard, F Picard, J Auwerx	65:261-311
Insulin Receptor Knockout Mice	T Kitamura, CR Kahn, D Accili	65:313-32
The Physiology of Cellular Liporegulation Estrogens in the Nervous System: Mechanisms and Nonreproductive Functions	RH Unger	65:333-47
The Role of Corepressors in Transcriptional Regulation by Nuclear Hormone Receptors	A Maggi, P Ciana, S Belcredo, E Vegeto	66:291-313
Gastrointestinal Physiology	ML Privalsky	66:315-60
Role of CFTR in the Colon	R Greger	62:467-91
Intracellular Ca^{2+} and Cl^- Channel Activation in Secretory Cells	JF Kidd, P Thorn	62:493-513
The Na-K-Cl Cotransporter of Secretory Epithelia	M Haas, B Forbush, III	62:515-34
Chloride Secretion by the Intestinal Epithelium: Molecular Basis	KE Barrett, SJ Keely	62:535-72
Gastrin, CCK, Signaling, and Cancer	E Rozengurt, JH Walsh	63:49-75
Intracellular Signaling Mechanisms Activated by Cholecystokinin-Regulating Synthesis and Secretion of Digestive Enzymes in Pancreatic Acinar Cells	JA Williams	63:77-97

Specific Ca^{2+} Signaling Evoked by Cholecystokinin and Acetylcholine: The Roles of NAADP, cADPR, and IP ₃	JM Cancela	63:99-117
The Gastrins: Their Production and Biological Activities	GJ Dockray, A Varro, R Dimaline, T Wang	63:119-39
Trafficking of Canalicular ABC Transporters in Hepatocytes	H Kipp, IM Arias	64:595-608
Chloride Channels and Hepatocellular Function: Prospects for Molecular Identification	X Li , SA Weinman	64:609-33
Bile Salt Transporters	PJ Meier, B Stieger	64:635-61
Mechanisms of Iron Accumulation in Hereditary Hemochromatosis	RE Fleming, WS Sly	64:663-80
The Gastric Biology of <i>Helicobacter pylori</i>	G Sachs, DL Weeks, K Melchers, DR Scott	65:349-69
Physiology of Gastric Enterochromaffin-Like Cells	C Prinz, R Zanner, M Gratzl	65:371-82
Insights into the Regulation of Gastric Acid Secretion Through Analysis of Genetically Engineered Mice	LC Samuelson, KL Hinkle	65:383-400
Molecular and Integrative Physiology of Intestinal Peptide Transport	H Daniel	66:361-84
Oral Rehydration Therapy: New Explanations for an Old Remedy	MC Rao	66:385-417
Recent Advances in Carrier-Mediated Intestinal Absorption of Water-Soluble Vitamins	HM Said	66:419-46
Neurophysiology		
Neural Adaptation in the Generation of Rhythmic Behavior	KG Pearson	62:723-53
Ligand-Gated Ion Channel Interactions with Cytoskeletal and Signaling Proteins	M Sheng, DTS Pak	62:755-78
Insights from Mouse Models into the Molecular Basis of Neurodegeneration	N Heintz, HY Zoghbi	62:779-802
Spatial Considerations for Stimulus-Dependent Transcription in Neurons	S Ahn, A Riccio, DD Ginty	62:803-23

Dynamic Signaling Between Astrocytes and Neurons	A Araque, G Carmignoto, PG Haydon	63:795-813
On the Cellular and Network Bases of Epileptic Seizures	DA McCormick, D Contreras	63:815-46
Maintaining the Stability of Neural Function: A Homeostatic Hypothesis	GW Davis, I Bezprozvanny	63:847-69
Resurgence of Sodium Channel Research	AL Goldin	63:871-94
Calmodulin as an Ion Channel Subunit	Y Saimi, C Kung	64:289-311
Structure and Function of Dendritic Spines	EA Nimchinsky, BL Sabatini, K Svoboda	64:313-53
Short-Term Synaptic Plasticity	RS Zucker, WG Regehr	64:355-405
In Vivo NMR Studies of the Glutamate Neurotransmitter Flux and Neuroenergetics: Implications for Brain Function	DL Rothman, KL Behar, F Hyder, RG Shulman	65:401-27
Transducing Touch in <i>Caenorhabditis elegans</i>	MB Goodman, EM Schwarz	65:429-52
Hyperpolarization-Activated Cation Currents: From Molecules to Physiological Function	RB Robinson, SA Siegelbaum	65:453-80
Learning Mechanisms in Addiction: Synaptic Plasticity in the Ventral Tegmental Area as a Result of Exposure to Drugs of Abuse	JA Kauer	66:447-75
Localization of Voltage-Gated Ion Channels in Mammalian Brain	JS Trimmer, KJ Rhodes	66:477-519
Myosin-1c, the Hair Cell's Adaptation Motor	PG Gillespie, JL Cyr	66:521-45
Perspectives		
In Vivo Veritas: Probing Brain Function Through the Use of Quantitative In Vivo Biochemical Techniques	L Sokoloff	62:1-24
Medicine or Physiology: My Personal Mix	A Leaf	63:1-14

¹³ C NMR of Intermediary Metabolism: Implications for Systemic Physiology	RG Shulman, DL Rothman	63:15-48
A Hundred Years of Sodium Pumping A Double Life: Academic Physician and Androgen Physiologist Some Early History of Membrane Molecular Biology	IM Glynn JD Wilson SJ Singer	64:1-18 65:1-21 66:1-27
Renal and Electrolyte Physiology		
Structure and Regulation of Amiloride-Sensitive Sodium Channels	DA de la Rosa, CM Canessa, GK Fyfe, P Zhang	62:573-94
Branching Morphogenesis During Kidney Development	M Pohl, RO Stuart, H Sakurai, K Nigam	62:595-620
Intrarenal Dopamine: A Key Signal in the Interactive Regulation of Sodium Metabolism	AC Aperia	62:621-47
Endothelial Signal Integration in Vascular Assembly	TO Daniel, D Abrahamson	62:649-71
Mechanisms of Guanylin Action Via Cyclic GMP in the Kidney	LR Forte, RM London, WJ Krause, RH Freeman	62:673-95
G Protein-Coupled Prostanoid Receptors and the Kidney	MD Breyer, RM Breyer	63:579-605
Nephrogenic Diabetes Insipidus	J-P Morello, DG Bichet	63:607-30
Chloride Channels in the Loop of Henle	WB Reeves, CJ Winters, TE Andreoli	63:631-45
Molecular Chaperones in the Kidney	SC Borkan, SR Gullans	64:503-27
Molecular Mechanism of Active Ca ²⁺ Reabsorption in the Distal Nephron	JGJ Hoenderop, B Nilius, RJM Bindels	64:529-49
The Renin Angiotensin System and Kidney Development	T Matsusaka, Y Miyazaki, I Ichikawa	64:551-61

Molecular Aspects of Renal Anionic Drug Transporters	FGM Russel, R Masereeuw, RAMH van Aubel	64:563-94
Macula Densa Cell Signaling	PD Bell, JY Lapointe, J Peti-Peterdi	65:481-500
Paracrine Factors in Tubuloglomerular Feedback: Adenosine, ATP, and Nitric Oxide	J Schnermann, DZ Levine	65:501-29
Regulation of Na/Pi Transporter in the Proximal Tubule	H Murer, N Hernando, I Forster, J Biber	65:531-42
Mammalian Urea Transporters	JM Sands	65:543-66
Terminal Differentiation of Intercalated Cells: The Role of Hensin	Q Al-Awqati	65:567-83
Regulation of Renal K Transport by Dietary K Intake	WH Wang	66:547-69
The Extracellular Cyclic AMP-Adenosine Pathway in Renal Physiology	EK Jackson, DK Raghvendra	66:571-99

Respiratory Physiology

Lung Development and Function in Preterm Infants in the Surfactant Treatment Era	AH Jobe, M Ikegami	62:825-46
Ventilatory Responses to Changes in Temperature in Mammals and Other Vertebrates	JP Mortola, PB Frappell	62:847-74
Role of Transcription Factors in Fetal Lung Development and Surfactant Protein Gene Expression	CR Mendelson	62:875-915
Molecular Regulation of Lung Development	WV Cardoso	63:471-94
The Pulmonary Collectins and Surfactant Metabolism	S Hawgood, FR Poulain	63:495-519
Surfactant Proteins A and D and Pulmonary Host Defense	E Crouch, JR Wright	63:521-54
Function of Surfactant Proteins B and C	TE Weaver, JJ Conkright	63:555-78
Molecular Pathogenesis of Lung Cancer	S Zöchbauer-Müller, AF Gazdar, JD Minna	64:681-708
β -Defensins in Lung Host Defense	BC Schutte, PB McCray Jr.	64:709-48

Regulation of Endothelial Nitric Oxide Synthase: Location, Location, Location	PW Shaul	64:749-74
GM-CSF Regulates Pulmonary Surfactant Homeostasis and Alveolar Macrophage-Mediated Innate Host Defense	BC Trapnell, JA Whitsett	64:775-802
Current Status of Gene Therapy for Inherited Lung Diseases	RR Driskell, JF Engelhardt	65:585-612
The Role of Exogenous Surfactant in the Treatment of Acute Lung Injury	JF Lewis, R Veldhuizen	65:613-42
Second Messenger Pathways in Pulmonary Host Defense	MM Monick, GW Hunninghake	65:643-67
Alveolar Type I Cells: Molecular Phenotype and Development	MC Williams	65:669-95
Alterations in SP-B and SP-C Expression in Neonatal Lung Disease	LM Nogee	66:601-23
Epithelial-Mesenchymal Interactions in the Developing Lung	JM Shannon, BA Hyatt	66:625-45
Genetically Engineered Mouse Models for Lung Cancer	I Kwak, SY Tsai, FJ DeMayo	66:647-63

Special Chapter

Muscle Physiology

Control of the Size of the Human Muscle Mass	MJ Rennie, H Wackerhage, EE Spangenburg, FW Booth	66:799-828
--	--	------------

Special Topics

Circadian Rhythms

Molecular Analysis of Mammalian Circadian Rhythms	SM Reppert, DR Weaver	63:647-76
Circadian Photoperception	PF Devlin, SA Kay	63:677-94
Endogenous Timekeepers in Photosynthetic Organisms	CH Johnson	63:695-728

Molecular Components of the Circadian System in *Drosophila*

JA Williams,
A Sehgal 63:729-55

Genetic and Molecular Analysis of Circadian Rhythms in *Neurospora*

JJ Loros, JC Dunlap 63:757-94

Functional Imaging in Physiology

Interpreting the BOLD Signal	NK Logothetis, BA Wandell	66:735-69
Live Optical Imaging of Nervous System Development	CM Niell, SJ Smith	66:771-98

G Protein Effector Mechanisms

G Proteins and Pheromone Signaling	HG Dohlman	64:129-52
G Proteins and Phototransduction	VY Arshavsky, TD Lamb, EN Pugh Jr.	64:153-87
G Proteins and Olfactory Signal Transduction	GV Ronnett, C Moon	64:189-222

Language Faculty as an Organ

The Human Language Faculty as an Organ	SR Anderson, DW Lightfoot	62:697-722
--	------------------------------	------------

Lipid Receptor Processes

Getting Ready for the Decade of the Lipids	DW Hilgemann	65:697-700
Aminophospholipid Asymmetry: A Matter of Life and Death	K Balasubramanian, AJ Schroit	65:701-34
Regulation of TRP Channels Via Lipid Second Messengers	RC Hardie	65:735-59
Phosphoinositide Regulation of the Actin Cytoskeleton	HL Yin, PA Janmey	65:761-89
Dynamics of Phosphoinositides in Membrane Retrieval and Insertion	MP Czech	65:791-815

Membrane Protein Structure

Structure and Mechanism of Na,K-ATPase: Functional Sites and Their Interactions	PL Jorgensen, KO Häkansson, SJ Karlish	65:817-49
---	--	-----------

G Protein-Coupled Receptor Rhodopsin: A Prospectus	S Filipek, RE Stenkamp, DC Teller, K Palczewski	65:851-79
Proton and Electron Transporters		
Bacteriorhodopsin	JK Lanyi	66:665-88
The Cytochrome <i>bc</i> ₁ Complex: Function in the Context of Structure	AR Crofts	66:689-733
Transgenic Models		
Functional Consequences of Altering Myocardial Adrenergic Receptor Signaling	WJ Koch, RJ Lefkowitz, HA Rockman	62:236-60
Remodeling the Cardiac Sarcomere Using Transgenesis	J Robbins	62:261-87
Genetic Dissection of Cardiac Growth Control Pathways	WR MacLellan, MD Schneider	62:289-319
Genetically Engineered Models with Alterations in Cardiac Membrane Calcium Handling Proteins	H Kiriazis, EG Kranias	62:321-51
Transportopathies		
Human and Murine Phenotypes Associated with Defects in Cation-Chloride Cotransport	E Delpire, DB Mount	64:803-43
Renal Genetic Disorders Related to K ⁺ and Mg ²⁺	DG Warnock	64:845-76
Epithelial Sodium Channel and the Control of Sodium Balance: Interaction Between Genetic and Environmental Factors	BC Rossier, S Pradervand, L Schild, E Hummler	64:877-97
Genetic Diseases of Acid-Base Transporters	SL Alper	64:899-923
Views and Overviews of the 20th Century		
A Century of Thinking About Cell Membranes	P De Weer	62:919-26

Unity in Diversity: A Perspective on the Methods, Contributions, and Future of Comparative Physiology	GN Somero	62:927-37
One-Hundred Years of Inquiry: The Mechanism of Glucose Absorption in the Intestine	L Reuss	62:939-46
Endocrinology: Survival as a Discipline in the 21st Century?	JD Wilson	62:947-50
The 20th Century in Respiratory Physiology: One View	D Massaro	62:951-60
Toward the New Millennium	J Robbins	62:961-63
Commentary on the Special Topic Section on the Use of Transgenic Models	EG Kranias	62:965-69