FMI, Info, Anul I Logică matematică și computațională

Seminar 2

1 Breviar

Pentru orice e și orice Γ , notăm cu $e \models \Gamma$ (și spunem că e satisface Γ sau e este model pentru Γ) dacă, pentru orice $\varphi \in \Gamma$, $e \models \varphi$. Pentru orice Γ , notăm cu $Mod(\Gamma)$ mulţimea modelelor lui Γ .

Spunem că Γ este **satisfiabilă** dacă există $e:V\to\{0,1\}$ cu $e\models\Gamma$ și **nesatisfiabilă** în caz contrar, când nu există $e:V\to\{0,1\}$ cu $e\models\Gamma$, i.e. pentru orice $e:V\to\{0,1\}$ avem că $e\not\models\Gamma$. O mulțime Γ se numește **finit satisfiabilă** dacă există $\Delta\subseteq\Gamma$ finită satisfiabilă.

Pentru orice mulţime Γ de formule şi orice formulă φ , notăm $\Gamma \vDash \varphi$ (şi spunem că din Γ se deduce semantic φ sau că φ este consecință semantică a lui Γ) dacă pentru orice $e: V \to \{0,1\}$ cu $e \vDash \Gamma$ avem $e \vDash \varphi$. De asemenea, notăm $\Gamma \vDash_{fin} \varphi$ (şi citim din Γ se deduce semantic finit φ) faptul că există o submulţime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

Pentru orice $v \in V$ și $e: V \to \{0, 1\}$, vom defini

$$v^e := \begin{cases} v, & \text{dacă } e(v) = 1, \\ \neg v, & \text{dacă } e(v) = 0, \end{cases}$$

 $\sin \, \text{clar}, \, e^+(v^e) = 1.$

2 Exerciții

(S2.1) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

- (i) $\varphi \lor (\varphi \land \psi) \sim \varphi$;
- (ii) $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi)).$

Demonstrație: Vom mai folosi, pe lângă identitățile introduse în seminarul trecut, şi faptul că, pentru orice $a \in \{0,1\}$, $1 \vee a = 1$ şi $0 \vee a = a$.

(i) Fie $e: V \to \{0, 1\}$ o evaluare arbitrară. Trebuie să demonstrăm că $e^+(\varphi \lor (\varphi \land \psi)) = e^+(\varphi), \quad \text{deci că} \quad e^+(\varphi) \lor (e^+(\varphi) \land e^+(\psi)) = e^+(\varphi).$

Avem cazurile:

(a)
$$e^+(\varphi) = 1$$
. Atunci
$$e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = 1 \vee (1 \wedge e^+(\psi)) = 1 \vee e^+(\psi) = 1 = e^+(\varphi).$$

(b)
$$e^+(\varphi) = 0$$
. Atunci
$$e^+(\varphi) \vee (e^+(\varphi) \wedge e^+(\psi)) = 0 \vee (0 \wedge e^+(\psi)) = 0 \vee 0 = 0 = e^+(\varphi).$$

(ii) Fie $e: V \to \{0, 1\}$ o evaluare arbitrară. Avem că $e^+(\neg \varphi \to (\neg \psi \leftrightarrow (\psi \to \varphi))) = \neg e^+(\varphi) \to (\neg e^+(\psi) \leftrightarrow (e^+(\psi) \to e^+(\varphi))).$

Avem cazurile:

(a)
$$e^+(\varphi) = 1$$
. Atunci $\neg e^+(\varphi) = 0$ şi, prin urmare,

$$\neg e^+(\varphi) \to (\neg e^+(\psi) \leftrightarrow (e^+(\psi) \to e^+(\varphi))) = 0 \to (\neg e^+(\psi) \leftrightarrow (e^+(\psi) \to e^+(\varphi)))$$
= 1

(b)
$$e^{+}(\varphi) = 0$$
. Atunci

$$\neg e^{+}(\varphi) \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow e^{+}(\varphi))) = \neg 0 \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow 0))$$

$$= 1 \rightarrow (\neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow 0))$$

$$= \neg e^{+}(\psi) \leftrightarrow (e^{+}(\psi) \rightarrow 0)$$

$$= \neg e^{+}(\psi) \leftrightarrow \neg e^{+}(\psi)$$

$$= 1.$$

(S2.2) Să se găsească toate modelele fiecăreia dintre mulțimile de formule:

- (i) $\Gamma = \{v_n \to v_{n+1} \mid n \in \mathbb{N}\};$
- (ii) $\Gamma = \{v_0\} \cup \{v_n \to v_{n+1} \mid 0 \le n \le 7\}.$

Demonstrație:

2

- (i) Fie $e: V \to \{0, 1\}$ şi $n \in \mathbb{N}$. Atunci $e \models v_n \to v_{n+1}$ dacă şi numai dacă $e^+(v_n \to v_{n+1}) = 1$ dacă şi numai dacă $e^+(v_n) \to e^+(v_{n+1}) = 1$ dacă şi numai dacă $e(v_n) \to e(v_{n+1}) = 1$ dacă şi numai dacă $e(v_n) \le e(v_{n+1})$. Prin urmare,
 - $e \models \Gamma$ dacă și numai dacă pentru orice $n \in \mathbb{N}, e \models v_n \to v_{n+1}$ dacă și numai dacă pentru orice $n \in \mathbb{N}, e(v_n) \le e(v_{n+1})$ dacă și numai dacă $e(v_0) \le e(v_1) \le \ldots \le e(v_n) \le e(v_{n+1}) \le \ldots$ dacă și numai dacă (pentru orice $v \in V, e(v) = 0$) sau (există $k \in \mathbb{N}$ a.î. pentru orice $i < k, e(v_i) = 0$ și, pentru orice $i \ge k, e(v_i) = 1$).

Definim $e^{\infty}: V \to \{0,1\}$ astfel încât, pentru orice $v \in V$, $e^{\infty}(v) = 0$ şi, pentru orice $k \in \mathbb{N}$, $e_k: V \to \{0,1\}$, astfel încât, pentru orice $n \in \mathbb{N}$,

$$e_k(v_n) = \begin{cases} 0 & \text{dacă } n < k \\ 1 & \text{dacă } n \ge k. \end{cases}$$

Atunci

$$Mod(\Gamma) = \{e_k \mid k \in \mathbb{N}\} \cup \{e^{\infty}\}.$$

(ii) Fie $e: V \to \{0, 1\}$. Atunci

 $e \models \Gamma$ dacă şi numai dacă $e \models v_0$ şi, pentru orice $0 \le n \le 7$, $e \models v_n \to v_{n+1}$ dacă şi numai dacă $e(v_0) = 1$ şi $e(v_0) \le e(v_1) \le \ldots \le e(v_7) \le e(v_8)$ dacă şi numai dacă pentru orice $n \in \{0, 1, \ldots, 8\}$, $e(v_n) = 1$.

Aşadar,

$$Mod(\Gamma) = \{e : V \to \{0, 1\} \mid e(v_n) = 1 \text{ pentru orice } 0 \le n \le 8\}.$$

(S2.3) Fie $f: V \to \{0,1\}$. Găsiţi Γ astfel încât $Mod(\Gamma) = \{f\}$. Demonstraţie: Luăm $\Gamma := V^f = \{v^f \mid v \in V\}$.

Fie $e: V \to \{0, 1\}$. Avem $e \in Mod(\Gamma)$ dacă și numai dacă pentru orice $v \in V$, $e \models v^f$ dacă și numai dacă pentru orice $v \in V$, $e^+(v^f) = 1$. Vom arăta că ultima afirmație este echivalentă cu e = f.

Presupunem că pentru orice $v \in V$, $e^+(v^f) = 1$. Fie $v \in V$. Vrem e(v) = f(v). Dacă f(v) = 1, atunci $v^f = v$ și deci $e(v) = e^+(v) = e^+(v^f) = 1 = f(v)$. Dacă f(v) = 0, atunci $v^f = \neg v$ și deci

$$e(v) = e^+(v) = \neg \neg e^+(v) = \neg e^+(\neg v) = \neg e^+(v^f) = \neg 1 = 0 = f(v).$$

Invers, presupunem că e = f și vrem să arătăm că pentru orice $v \in V$, $e^+(v^f) = 1$. Fie $v \in Q$. Atunci $e^+(v^f) = f^+(v^f) = 1$.

(S2.4)

- (i) Să se arate că mulțimea modelelor unei mulțimi satisfiabile și finite de formule este infinită.
- (ii) Găsiți o mulțime (infinită) de formule cu proprietatea că nu există o mulțime finită de formule care să aibă exact aceleași modele.

Demonstrație:

(i) Fie Γ o mulţime de formule ca în enunţ. Dat fiind că Γ este satisfiabilă, admite un model şi fie acesta e. Pe de altă parte, dat fiind că Γ este finită, există un $n \in \mathbb{N}$ cu proprietatea că $\bigcup_{\varphi \in \Gamma} Var(\varphi) \subseteq \{v_0, v_1, \dots, v_n\}$.

Fie, atunci, pentru orice $k \in \mathbb{N}$, câte o funcție $e_k : V \to \{0,1\}$, definită, pentru orice $x \in V$, prin:

$$e_k(x) := \begin{cases} e(x), & \text{dacă } x \in \{v_0, \dots, v_n\} \\ 1, & \text{dacă } x \in \{v_{n+1}, \dots, v_{n+k}\} \\ 0, & \text{altfel.} \end{cases}$$

Atunci, pentru $k \neq l$ avem $e_k \neq e_l$. Prin urmare, $\{e_k \mid k \in \mathbb{N}\}$ este o mulţime numărabilă, deci infinită. Pentru orice $k \in \mathbb{N}$ şi $\varphi \in \Gamma$, aplicând Propoziţia 2.13 pentru φ , e şi e_k , avem că $e_k^+(\varphi) = e^+(\varphi) = 1$, deci $e_k \models \varphi$.

Am obținut astfel că $\{e_k \mid k \in \mathbb{N}\} \subseteq Mod(\Gamma)$. Aşadar, $Mod(\Gamma)$ este infinită.

(ii) Considerăm $\Gamma := V = \{v_n \mid n \in \mathbb{N}\}$, o mulțime infinită de formule. Demonstrăm că Γ nu este echivalentă cu nicio mulțime finită de formule. Observăm că o evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă și numai dacă $e(v_n) = 1$ pentru orice $n \in \mathbb{N}$ dacă și numai dacă e este funcția constant egală cu 1, funcție pe care o notăm cu 1. Prin urmare, $Mod(\Gamma) = \{1\}$.

Fie acum Δ o mulțime finită de formule. Avem două cazuri:

- (a) Δ nu este satisfiabilă. Atunci $Mod(\Delta) = \emptyset$.
- (b) Δ este satisfiabilă. Atunci aplicăm (i) pentru a concluziona că $Mod(\Delta)$ este infinită.

În ambele cazuri, obținem că $Mod(\Delta) \neq Mod(\Gamma)$, deci Γ nu este echivalentă cu Δ .

(S2.5) Să se arate că pentru orice mulțime de formule Γ și orice formulă φ avem că $\Gamma \vDash_{fin} \varphi$ dacă și numai dacă $\Gamma \cup \{\neg \varphi\}$ nu este finit satisfiabilă.

Demonstrație:

Avem întâi că $\Gamma \vDash_{fin} \varphi \iff \text{există } \Delta \subseteq \Gamma \text{ finită cu } \Delta \vDash \varphi \iff (\text{din Propoziția 2.30.(i)})$ există $\Delta \subseteq \Gamma \text{ finită cu } \Delta \cup \{\neg \varphi\} \text{ nesatisfiabilă (*).}$

Apoi, cum o mulţime finit satisfiabilă înseamnă o mulţime pentru care orice submulţime finită a sa e satisfiabilă, avem că $\Gamma \cup \{\neg \varphi\}$ nu e finit satisfiabilă \iff există $\Sigma \subseteq \Gamma \cup \{\neg \varphi\}$ finită astfel încât Σ e nesatisfiabilă (**).

Noi vrem să arătăm că (*) este echivalent cu (**).

Pentru "(*) implică (**)", luăm $\Sigma := \Delta \cup \{\neg \varphi\}$, ce este, clar, o submulţime finită a lui $\Gamma \cup \{\neg \varphi\}$.

Pentru "(**) implică (*)", luăm $\Delta := \Sigma \cap \Gamma$. Clar, Δ este o submulțime finită a lui Γ . Rămâne de arătat că $\Delta \cup \{\neg \varphi\}$ e nesatisfiabilă. Cum $\Sigma \subseteq \Gamma \cup \{\neg \varphi\}$, avem:

$$\Sigma = \Sigma \cap (\Gamma \cup \{\neg \varphi\}) = (\Sigma \cap \Gamma) \cup (\Sigma \cap \{\neg \varphi\}) = \Delta \cup (\Sigma \cap \{\neg \varphi\}) \subseteq \Delta \cup \{\neg \varphi\}.$$

Cum Σ e nesatisfiabilă, rezultă că și $\Delta \cup \{\neg \varphi\}$ e nesatisfiabilă.

(S2.6) Demonstrați că următoarele afirmații sunt echivalente:

- (V1) Pentru orice $\Gamma \subseteq Form$, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.
- (V2) Pentru orice $\Gamma \subseteq Form$, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.
- (V3) Pentru orice $\Gamma \subseteq Form, \varphi \in Form, \Gamma \vDash \varphi$ dacă și numai dacă $\Gamma \vDash_{fin} \varphi$.

Demonstrație:

Echivalența între (V1) și (V2) este evidentă.

```
Demonstrăm că (V2) \Rightarrow (V3):
```

$$\Gamma \vDash \varphi \iff \Gamma \cup \{\neg \varphi\}$$
 este nesatisfiabilă (conform Propoziției 2.30.(i))
 $\iff \Gamma \cup \{\neg \varphi\}$ nu este finit satisfiabilă (conform (V2) pentru $\Gamma \cup \{\neg \varphi\}$)
 $\iff \Gamma \vDash_{fin} \varphi$ (conform (S2.4)).

Demonstrăm că $(V3) \Rightarrow (V2)$:

 $\Gamma \text{ este nesatisfiabilă} \iff \Gamma \vDash \bot \text{ (conform Propoziției 2.29)} \\ \iff \Gamma \vDash_{fin} \bot \text{ (conform (V3) pentru } \Gamma \text{ și } \bot \text{)} \\ \iff \text{ există o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.î. } \Delta \vDash \bot \\ \iff \text{ există o submulțime finită } \Delta \text{ a lui } \Gamma \text{ a.î.} \\ \Delta \text{ este nesatisfiabilă (conform Propoziției 2.29)} \\ \iff \Gamma \text{ nu este finit satisfiabilă.}$