# **CNN**

Convolutional Neural Network It's a type of artificial neural network designed specifically for processing structured grid data, such as images. The main strength of CNNs lies in their ability to automatically and adaptively learn spatial hierarchies of features from the input data.



### **Terms**

### > Convolution operation

In CNNs, the input data (e.g., an image) and a smaller filter (also called a kernel) move across each other, element-wise multiplying and summing at each position.



Convolutional layers

Building blocks for CNN which have convolution operation



### > Filter/kernel@

 is a small matrix used for feature extraction. It slides or convolves across the input data, performing element-wise multiplication, adding up, and producing a feature map that highlights specific patterns.

### > Pooling layers

Pooling layers reduce the spatial dimensions of the input data, effectively downsampling it. This helps in reducing the computational load and controlling overfitting.



Here are the types of pooling

- Max pool
- Min pool
- Average pool

### > Activation functions

Activation functions introduce non-linearities to the neural network, allowing it to learn complex patterns. Common activation functions include ReLU (Rectified Linear Unit), Sigmoid, and Tanh.

### > Padding

is the addition of extra pixels around the input data. It is used to ensure that the convolutional operations do not reduce the spatial dimensions too quickly, preserving more information.

### > Stride

is the step size with which the filter moves across the input data. A larger stride reduces the spatial dimensions of the output feature map.

> The formula for the Convolution Layer

$$W_{out} = \frac{W - F + 2P}{S} + 1$$

> Fully connected layers

also known as dense layers, connect every neuron in one layer to every neuron in the next layer. In CNNs, these layers are typically used after convolutional and pooling layers to make final predictions.

> Flatten

Flattening is the process of converting the multidimensional data into a one-dimensional array.

Backpropagation

It involves updating the model's weights based on the error between predicted and actual outputs.

➤ Batch →

is a subset of the dataset used to train the model in each iteration.

> Dropout

Dropout is a regularization technique used during training to deactivate some neurons, reducing overfitting randomly.

> Transfer Learning

Transfer learning involves using a pre-trained model on a similar task and fine-tuning it for a specific task.

> Data Augmentation

involves applying various transformations (rotation, scaling, flipping, etc.) to existing data, creating new variations. This helps in increasing the diversity of the training dataset.

> Vanishing gradient

A vanishing gradient occurs when the gradients during backpropagation become extremely small, causing the model to learn very slowly or stop learning altogether.

> adversarial attacks

Adversarial attacks involve deliberately manipulating input data to mislead a model's predictions.

### **Advantages**

- > It is good for capturing spatial hierarchies and local patterns in data
- Using shared weights for convolutional layers
- robust to variations in the position of features
- > Feature engineering is not required.
- > It has outstanding performance in image classification tasks
- > Transfer learning is possible

### **Disadvantages**

- High computational requirements
- > Difficulty with small datasets
- > CNNs also require large datasets to achieve high accuracy rates.
- > Vulnerability to adversarial attacks
- > Limited ability to generalize to new situations

> Interpretability is hard

## **Applications**

- > Image classification
- > Object detection
- > Facial recognition
- > Image segmentation
- > Neural style transfer
- > Image super-resolution
- > Gesture recognition
- > Optical Character Recognition (OCR)

### Networks

- ➤ LeNet-5 → 1998
- ➤ AlexNet → 2012 → ImageNet Classification with Deep CNN.pdf
- > VGG-16, 19 → 2014 → Very Deep Convolutional Networks .pdf
- ➤ ResNet-50 → 2016 → Deep Residual Learning for Image Recognition.pdf
- ➤ Inception (v1, v2), v3 → 2015 → v1 (Going deeper with convolutions.pdf)
- ➤ MobileNet (v1, v2), v3 → 2019
- ➤ EfficientNet → 2019
- ➤ DenseNet → 2016
- ➤ Faster-RCNN → 2015
- > YOLO (v...), v8 → 2023

### **Notebooks**

- > CNN Tensorflow.ipynb
- > CNN torch.ipynb



# **VGG-16**



| Layer  |                 | Feature<br>Map | Size            | Kernel Size | Stride   | Activation |
|--------|-----------------|----------------|-----------------|-------------|----------|------------|
| Input  | Image           | 1              | 224 x 224 x 3   |             | -        | -          |
| 1      | 2 X Convolution | 64             | 224 x 224 x 64  | 3x3         | 1        | relu       |
|        | Max Pooling     | 64             | 112 x 112 x 64  | 3x3         | 2        | relu       |
| 3      | 2 X Convolution | 128            | 112 x 112 x 128 | 3x3         | 1        | relu       |
|        | Max Pooling     | 128            | 56 x 56 x 128   | 3x3         | 2        | relu       |
| 5      | 2 X Convolution | 256            | 56 x 56 x 256   | 3x3         | 1        | relu       |
|        | Max Pooling     | 256            | 28 x 28 x 256   | 3x3         | 2        | relu       |
| 7      | 3 X Convolution | 512            | 28 x 28 x 512   | 3x3         | 1        | relu       |
|        | Max Pooling     | 512            | 14 x 14 x 512   | 3x3         | 2        | relu       |
| 10     | 3 X Convolution | 512            | 14 x 14 x 512   | 3x3         | 1        | relu       |
|        | Max Pooling     | 512            | 7 x 7 x 512     | 3x3         | 2        | relu       |
| 13     | FC              | -              | 25088           | -:          | -        | relu       |
| 14     | FC              | -              | 4096            | -           | -        | relu       |
| 15     | FC              | 220            | 4096            | =           | <u>-</u> | relu       |
| Output | FC              | <del></del>    | 1000            | 50          | =        | Softmax    |

# Advantages

- ➤ Simplicity and Uniformity → consists of stacks of 3x3 convolutional layers with small filter sizes, followed by max-pooling layers.
- > Transfer Learning Capabilities
- ➤ Good Generalization
- > Effective Feature Extraction

# Disadvantages

- > computationally intensive, especially compared to more modern architectures like ResNet or EfficientNet
- > high memory requirements needed during training and inference.
- > Overfitting on Small Datasets
- > The computational complexity of VGG16 makes it less suitable for real-time applications

**Params** → 138 million

*Notebook* → <u>VGG16\_torch.ipynb</u>

# **VGG-19**



|    | VGG16 - Structural Details |       |              |     |       |      |           |        |     |                 |       |      |             |
|----|----------------------------|-------|--------------|-----|-------|------|-----------|--------|-----|-----------------|-------|------|-------------|
| #  | In                         | out L | $_{ m nage}$ | (   | outpu | ıt   | Layer     | Stride | Ker | $\mathbf{rnel}$ | in    | out  | Param       |
| 1  | 224                        | 224   | 3            | 224 | 224   | 64   | conv3-64  | 1      | 3   | 3               | 3     | 64   | 1792        |
| 2  | 224                        | 224   | 64           | 224 | 224   | 64   | conv3064  | 1      | 3   | 3               | 64    | 64   | 36928       |
|    | 224                        | 224   | 64           | 112 | 112   | 64   | maxpool   | 2      | 2   | 2               | 64    | 64   | 0           |
| 3  | 112                        | 112   | 64           | 112 | 112   | 128  | conv3-128 | 1      | 3   | 3               | 64    | 128  | 73856       |
| 4  | 112                        | 112   | 128          | 112 | 112   | 128  | conv3-128 | 1      | 3   | 3               | 128   | 128  | 147584      |
|    | 112                        | 112   | 128          | 56  | 56    | 128  | maxpool   | 2      | 2   | 2               | 128   | 128  | 65664       |
| 5  | 56                         | 56    | 128          | 56  | 56    | 256  | conv3-256 | 1      | 3   | 3               | 128   | 256  | 295168      |
| 6  | 56                         | 56    | 256          | 56  | 56    | 256  | conv3-256 | 1      | 3   | 3               | 256   | 256  | 590080      |
| 7  | 56                         | 56    | 256          | 56  | 56    | 256  | conv3-256 | 1      | 3   | 3               | 256   | 256  | 590080      |
|    | 56                         | 56    | 256          | 28  | 28    | 256  | maxpool   | 2      | 2   | 2               | 256   | 256  | 0           |
| 8  | 28                         | 28    | 256          | 28  | 28    | 512  | conv3-512 | 1      | 3   | 3               | 256   | 512  | 1180160     |
| 9  | 28                         | 28    | 512          | 28  | 28    | 512  | conv3-512 | 1      | 3   | 3               | 512   | 512  | 2359808     |
| 10 | 28                         | 28    | 512          | 28  | 28    | 512  | conv3-512 | 1      | 3   | 3               | 512   | 512  | 2359808     |
|    | 28                         | 28    | 512          | 14  | 14    | 512  | maxpool   | 2      | 2   | 2               | 512   | 512  | 0           |
| 11 | 14                         | 14    | 512          | 14  | 14    | 512  | conv3-512 | 1      | 3   | 3               | 512   | 512  | 2359808     |
| 12 | 14                         | 14    | 512          | 14  | 14    | 512  | conv3-512 | 1      | 3   | 3               | 512   | 512  | 2359808     |
| 13 | 14                         | 14    | 512          | 14  | 14    | 512  | conv3-512 | 1      | 3   | 3               | 512   | 512  | 2359808     |
|    | 14                         | 14    | 512          | 7   | 7     | 512  | maxpool   | 2      | 2   | 2               | 512   | 512  | 0           |
| 14 | 1                          | 1     | 25088        | 1   | 1     |      | fc        |        | 1   | 1               | 25088 | 4096 | 102764544   |
| 15 | 1                          | 1     | 4096         | 1   | 1     |      | fc        |        | 1   | 1               | 4096  | 4096 | 16781312    |
| 16 | 1                          | 1     | 4096         | 1   | 1     | 1000 | fc        |        | 1   | 1               | 4096  | 1000 | 4097000     |
|    |                            |       |              |     |       |      | Total     |        |     |                 |       |      | 138,423,208 |

# Advantages and disadvantages

\*same as vgg16

**Params** → 144 million

# ResNet

short for Residual Networks, is a type of neural network architecture that was introduced to address the challenge of training very deep networks

### **Variations**

- > ResNet-18
  - 18 layers (17 convolutional layers + 1 fully connected layer)
  - Basic building block: BasicBlock
  - Designed for less computationally intensive tasks or when resources are limited.

### > ResNet-34

- 34 layers (33 convolutional layers + 1 fully connected layer)
- o Basic building block: BasicBlock
- Similar to ResNet-18 but with increased depth, providing better representation capabilities.

### > ResNet-50

- o 50 layers (49 convolutional layers + 1 fully connected layer)
- o Basic building block: Bottleneck
- Introduces the bottleneck architecture to improve efficiency and reduce the number of parameters. It consists of 1x1, 3x3, and 1x1 convolutional layers.

#### ➤ ResNet-101

- 101 layers (100 convolutional layers + 1 fully connected layer)
- o Basic building block: Bottleneck
- Similar to ResNet-50 but deeper, offering improved representation learning capabilities.

### > ResNet-152

- 152 layers (151 convolutional layers + 1 fully connected layer)
- o Basic building block: Bottleneck
- The deepest ResNet model among those listed provides an even stronger representation of learning abilities.

### **Advantages**

- > Residual connections help with the training of very deep networks
- > residual connections enable the optimization of deeper networks
- > Better Performance on Deeper Architectures
- > Pretrained models are available
- > Global average pooling is computationally efficient

### Disadvantages

- Complex and not needed for most of the problems
- > Hard to interpret
- > High chance of overfitting in a small dataset
- > High training time because of the deep network

### **Params**

| Number of Layers | Number of Parameters |  |  |  |
|------------------|----------------------|--|--|--|
| ResNet 18        | 11.174M              |  |  |  |
| ResNet 34        | 21.282M              |  |  |  |
| ResNet 50        | 23.521M              |  |  |  |
| ResNet 101       | 42.513M              |  |  |  |
| ResNet 152       | 58.157M              |  |  |  |

### **Terms**

### > Residual connection



# > Basic building blocks

o identity



o convolutional



# ➤ Global average pooling (GAP)

In global average pooling, instead of using a local window or filter, the average is calculated over the entire feature map. The result is a single value for each feature map, effectively reducing the spatial dimensions to 1x1.

Notebook → ResNet\_torch

# LeNet

LeNet-5 was designed back in 1998 for handwritten digit recognition and played a significant role in the development of modern deep learning



| Layer  |                    | Feature<br>Map | Size  | Kernel<br>Size | Stride | Activation |
|--------|--------------------|----------------|-------|----------------|--------|------------|
| Input  | Image              | 1              | 32x32 | 586            | -      | -          |
| 1      | Convolution        | 6              | 28x28 | 5x5            | 1      | tanh       |
| 2      | Average<br>Pooling | 6              | 14x14 | 2x2            | 2      | tanh       |
| 3      | Convolution        | 16             | 10x10 | 5x5            | 1      | tanh       |
| 4      | Average<br>Pooling | 16             | 5x5   | 2x2            | 2      | tanh       |
| 5      | Convolution        | 120            | 1x1   | 5x5            | 1      | tanh       |
| 6      | FC                 | 2              | 84    | 1941           | -      | tanh       |
| Output | FC                 | 20             | 10    | 121            | 127    | softmax    |

**Total params** → 60k

**Notebook** → LeNet torch.ipynb

# **AlexNet**

AlexNet was developed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton and won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012



| Layer      | # filters /<br>neurons | Filter size | Stride | Padding | Size of feature<br>map | Activation function |
|------------|------------------------|-------------|--------|---------|------------------------|---------------------|
| Input      | -                      | -           |        | -       | 227 x 227 x 3          | -                   |
| Conv 1     | 96                     | 11 x 11     | 4      | ¥       | 55 x 55 x 96           | ReLU                |
| Max Pool 1 | -                      | 3 x 3       | 2      | -       | 27 x 27 x 96           | -                   |
| Conv 2     | 256                    | 5 x 5       | 1      | 2       | 27 x 27 x 256          | ReLU                |
| Max Pool 2 | -                      | 3 x 3       | 2      |         | 13 x 13 x 256          | -                   |
| Conv 3     | 384                    | 3 x 3       | 1      | 1       | 13 x 13 x 384          | ReLU                |
| Conv 4     | 384                    | 3 x 3       | 1      | 1       | 13 x 13 x 384          | ReLU                |
| Conv 5     | 256                    | 3 x 3       | 1      | 1       | 13 x 13 x 256          | ReLU                |
| Max Pool 3 | -                      | 3 x 3       | 2      | -       | 6 x 6 x 256            |                     |
| Dropout 1  | rate = 0.5             | -           | -      | -       | 6 x 6 x 256            | -                   |

**Total params** → 62.3 million

# Advantages

- > Deep Architecture
- > Parallelization
- > Regularization

Notebook → AlexNet torch.ipynb