電子學(一) HW6

- 1. The overall voltage gain of a CS amplifier ($\lambda = 0$) with a drain resistance R_D and resistance $R_S = 0.5 \text{ k}\Omega$ in the source lead was measured and found to be -10 V/V. When R_S was shorted, but the circuit operation remained linear, the gain doubled. What must g_M be? What value of R_S is needed to obtain an overall voltage gain of -16 V/V?
- 2. A CG amplifier using an NMOS transistor for which gm = 2 mA/V, $\lambda = 0$ has a 5-k Ω drain resistance R_D and a 5-k Ω load resistance R_L . The amplifier is driven by a voltage source having a 750- Ω resistance. What is the input resistance of the amplifier? What is the overall voltage gain Av?
- 3. An NMOS transistor is connected in the bias circuit of Fig. 7.48, with $V_G = 5$ V and $R_S = 3$ k Ω . The transistor has $V_t = 1$ V and $k_n = 2$ mA/V². What bias current results? If a transistor for which k_n is 50% higher is used, what is the resulting percentage increase in I_D ?

Fig. 7.48

4. Compute the output resistance of the circuit in Fig. 7.18 (a)&(b) if M_1 and M_2 are identical.

Fig. 7.18