Nome: Cognome: Matricola:	
---------------------------	--

Esercizio 1

Si consideri il seguente schema ER.

Lo studente fornisca i tre possibili schemi ER (COMPLETI) che si ottengono eliminando la generalizzazione.

Soluzione:

Esercizio 2

Si consideri il seguente schema E-R:

Parte A:

Lo studente traduca lo schema E-R di figura in tabelle, indicando le chiavi di ciascuna tabella.

Soluzione:

Studenti (NomeAteneo, Matricola, AnnoImmatr, NomeStudente)

Atenei (NomeAteneo, Città, NumIscritti)

Dipartimenti (NomeDipartimento, NumDipendenti, Indirizzo, NumTelefono, NomeAteneo)

CorsiLaurea (NomeLaurea, OreLaboratorio, NumCrediti)

AttivazioneCorsi (NomeLaurea, NomeAteneo)

Parte B:

Lo studente indichi i vincoli di integrità referenziale presenti tra le tabelle prodotte dalla traduzione dello schema E-R di figura.

Soluzione:

Vincolo di integrità referenziale tra l'attributo "NOMEATENEO" della tabella STUDENTI e la tabella Atenei

Vincolo di integrità referenziale tra l'attributo "Nomeateneo" della tabella Dipartimenti e la tabella Atenei

Vincolo di integrità referenziale tra l'attributo "NomeAteneo" della tabella AttivazioneCorsi e la tabella Atenei

Vincolo di integrità referenziale tra l'attributo "Nomelaurea" della tabella AttivazioneCorsi e la tabella Corsilaurea

Esercizio 3

Si considerino le seguenti tabelle:

- Attori (CodAtt, Nome, Cognome, AnnoNascita, Nazionalità)
- Registi (CodReg, Nome, Cognome, AnnoNascita, Nazionalità)
- Film (CodFilm, Titolo, Anno, Genere, Durata, CodReg)
- Interpreti (CodFilm, CodAtt, TitoloFilm, Ruolo)

Parte A:

Lo studente individui tutte le dipendenze funzionali non banali che valgono sulle tabelle date **Soluzione**:

Nella tabella Attori

CodAtt → Nome, Cognome, AnnoNascita, Nazionalità

Nella tabella Registi

- CodReg → Nome, Cognome, AnnoNascita, Nazionalità

Nella tabella Film

- CodFilm → Titolo, Anno, Genere, Durata, CodReg

Nella tabella Interpreti

- CodFilm, CodAtt → Ruolo
- CodFilm → TitoloFilm

Parte B:

Lo studente indichi se le tabelle sono in Forma Normale di Boyce Codd, specificando la motivazione.

Soluzione:

Le tabelle non sono in Forma Normale di Boyce-Codd perche'nella tabella Interpreti vale la dipendenza funzionale CodFilm → TitoloFilm e CodFilm non e'chiave della tabella.

Esercizio 4

Lo studente descriva una condizione sufficiente al fine di garantire la decomposizione priva di perdite di una tabella.

Soluzione:

Sia data una tabella di partenza con un insieme di attributi X. Supponiamo di suddividere tale tabella in due tabelle con insiemi di attributi X_1 e X_2 rispettivamente. Definiamo $X_0 = X_1 \cap X_2$; se $X_0 \to X_1$ oppure $X_0 \to X_2$ allora la decomposizione effettuata è sicuramente priva di perdite.

Esercizio 5

Si consideri la relazione r(A, B, C, D) con le dipendenze funzionali FD={ $AB \rightarrow C$, $CB \rightarrow A$, $B \rightarrow CD$ }, dire se FD è un insieme minimale o no, giustificando la risposta.

Soluzione

 $B \rightarrow CD$ si porta in forma canonica trasformandolo in $B \rightarrow C$, $B \rightarrow D$

Nella dipendenza $AB \rightarrow C$, A è estraneo e quindi si può togliere, l'intera dipendenza è quindi ridondante.

Nella dipendenza $CB \rightarrow A, C$ è estraneo e quindi si può togliere, la dipendenza diventa quindi $B \rightarrow A$.

FD non è perciò minimale.

Esercizio 6

Si consideri la seguente basi di dati:

- **Aeroporto** (Città, Nazione, Continente)
- Volo (<u>CodVolo</u>, TipoAereo, GiornoSettimana, CittàPartenza, OraPartenza, CittàArrivo, OraArrivo, CodCompagnia)
- **Aereo** (<u>TipoAereo</u>, NumPasseggeri, QuantMerci)
- **Compagnia** (CodCompagnia, Nome, Telefono)

Parte A

Scrivere un'espressione in algebra relazionale per elencare tutte le città europee da cui partono voli per l'Asia.

Soluzione

```
\Pi_{\text{Città}}\left(\Pi_{\text{Città}}\left(\sigma_{\text{Continente='Europa'}}\left(Aeroporto\right)\right) join_{\text{Città}=\text{Città}Partenza} \\ \Pi_{\text{Città}}\left(\Pi_{\text{Città}}\left(\sigma_{\text{Continente='Asia'}}\left(Aeroporto\right)\right) join_{\text{Città}=\text{Città}Arrivo} \\ \Pi_{\text{Città}Partenza,\text{Città}Arrivo}\left(Volo\right)\right)\right)
```

Parte B

Esprimere la query del punto A nel calcolo relazionale dei domini.

Soluzione

```
{Città: cp | Aeroporto( Città: cp, Nazione: n1, Continente: c1) ∧ Volo(..CittàPartenza: cp, CittàArrivo: ca, ..) ∧ Aeroporto( Città: ca, Nazione: n2, Continente: c2) ∧ c2='Asia' ∧c1='Europa'}
```

Parte C

Esprimere la query del punto A nel calcolo relazionale delle tuple.

Soluzione

```
{i.(CittàPartenza) | a1(Aeroporto), a2(Aeroporto), i(Volo) | i.CittàPartenza=a1.Città ∧ i.CittàArrivo=a2.Città ∧ a1.Nazione='Europa' ∧ a2.nazione='Asia' }
```