(12) INTERNATIONAL ATLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property **Organization**

International Bureau

(43) International Publication Date 5 August 2004 (05.08.2004)

PCT

Rec'd PCT/PTO 22 JUL 2005

187

(10) International Publication Number WO 2004/064528 A1

A22B 3/00

(51) International Patent Classification7:

(21) International Application Number:

PCT/DK2004/000037

(22) International Filing Date: 22 January 2004 (22.01.2004)

(25) Filing Language:

Danish

(26) Publication Language:

English

(30) Priority Data:

PA 2003 00084

22 January 2003 (22.01.2003) DK

- (71) Applicant (for all designated States except US): LINCO FOOD SYSTEMS A/S [DK/DK]; Vestermollevej 9, DK-8380 Trige (DK).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, **ZW**.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

transport crates, and where the animals by means of a number of conveyors (18, 20, 24, 32) are conveyed successively through a stunning chamber (8), where the influence of the gas for stunning of the animals is adjusted by reducing or prolonging the conveying time and/or the conveying route of the animals on said conveyors through the stunning chamber (8).

Method and system for gas stunning of poultry for slaughter

Field of the invention

The present invention relates to a method for gas stunning of poultry and of the kind stated in the preamble of claim 1.

Background of the invention

5

Over time, many different methods have been proposed for gas stunning of poultry arriving at the poultry slaughterhouse in transport crates, with no remarkable success. In practice however, several parameters must be considered in order to be able to optimise a method for gas stunning of poultry for slaughter.

10

To optimise the method, the following parameters must be considered:

- Conveying speed (capacity of the system).
- Size and number of birds in the transport crates.
- The physical condition of the poultry flock which is determined by continuously observing variations in stress condition or resistance of the poultry which are significant for determining the time necessary for stunning the poultry which further may vary because of conditions in broiler houses, temperatures, transport time, and waiting time in the slaughterhouse.

20

25

To optimise the gas stunning it is furthermore necessary to be able to continuously consider all these parameters prior to and during gas stunning of the poultry supplies delivered to the slaughterhouse, and continuously apply the most advantageous parameters to achieve optimum gas stunning of the actual chicken flock at any time to be stunned and slaughtered, respectively.

To optimise these parameters, different periods of stunning time can be applied, but variations in the gas concentration, and variations of gas concentration in the different sections of the conveying route must also be considered, dependent on the conveying route length and conveying route location in the stunning chamber.

5

10

15

20

The gas concentration may be monitored and controlled by means of sensors having different locations, and a PLC control system. Adjustment of the stunning time and simultaneous variation of the gas concentration require a change in the previously used methods by which a given slaughtering capacity of number of birds per minute required a fixed conveying time through stunning chamber. A given rate of slaughtering (slaughtering capacity) will always be determined by other subsequent parameters that cannot be changed right away why they are maintained. Consequently it may furthermore be necessary to be able to change the degree of stunning, depending on the condition of the poultry upon arrival at the slaughterhouse and unloading for slaughter.

Purpose of the invention

On this background it is the purpose of the invention to provide an improved method for gas stunning of poultry for slaughter, which method by means of simple provisions and means makes it possible to optimise the stunning by being able to allow for all the parameters mentioned.

Brief description of the invention

25

30

The method according to the invention is characterised in that the influence of the gas for stunning of the animals is adjusted by reducing or prolonging the conveying time and/or the conveying route of the animals on said conveyors through the stunning chamber. It has surprisingly appeared that by means of such simple provisions it is possible to optimise the stunning, while at the same time allowing for all the parameters mentioned. As an especially important thing it should be mentioned that at the same time it is possible to consider the welfare of the animals by observing the

stunning condition of the animals before they reach the actual slaughter. If the stunning condition of the animals is not optimum, it will be easy to prolong or reduce the conveying time and/or the conveying route through the stunning chamber.

An optimum condition of stunning will be that the animals are so well stunned that with certainty they do not awaken before they reach slaughtering. On the other hand it is also important that the animals do not die in stunning because it is important that the pump function of the heart is maintained in order to contribute to the pumping out of blood when the necks of the animals are cut in the actual slaughter.

10

20

Appropriately, by the invention a method is used by which the adjustment of the conveying time through the stunning chamber is effected by increasing or reducing the speed of the said conveyors.

By the method according to the invention it may furthermore be advantageous that the adjustment of the conveying route through the stunning chamber is effected by reducing or prolonging the active conveyor runs of the respective conveyors.

Furthermore, the method according to the invention may be modified such that the influence of the gas for stunning of the animals moreover is adjusted by varying the gas concentration at varying heights in the stunning chamber in that increasing gas concentration is applied in a direction downwards in the stunning chamber.

cf. the method according to claim 1, and comprising a substantially horizontal conveyor arranged for receiving and introducing poultry for slaughter to a gas-filled stunning chamber in which a downwards running conveyor is arranged, which conveyor is arranged for successively conveying the poultry downwards in the stunning chamber, and an upwards running conveyor arranged for successively conveying the poultry downwards running chamber, said system being characterised in that said downwards running conveyor either is constituted by a conveyor having a downwards running course and a horizontal course, and by a

15

20

25

30

downwards running conveyor, said conveyors comprising mutually interacting telescopic members for adjustment of the active conveying route length, or are constituted by a helical conveyor interacting with a horizontal, telescopic conveyor.

Preferably, the system according to the invention is provided such that said upwards running conveyor is constituted by conveyors having mutually interacting telescopic members, viz. a horizontal conveyor and an upwards running conveyor having a slanting course.

Appropriately, the system according to the invention is provided such that the stunning chamber is divided into a number of horizontal zones, e.g. a lower zone having a gas concentration (CO²) of 50% (app. 45-51%), an intermediate zone having a gas concentration (CO²) of 25% (app. 32-46%), and an upper zone having a gas concentration (CO²) of 5% (app. 8-10%), in that sensors are provided in level with the upper zone limits for monitoring and control respectively of the gas concentration in the said zones. The actual gas concentration percentage varies a great deal in connection with shift between pause and operation, and upon changed rate of motion of the animals. This variation in gas concentration has relatively small influence on the stunning result, whereas the time of presence, especially in the first zone, and the total time of presence in the stunning chamber have great influence.

The system according to the invention is preferably provided such that it comprises a PLC control system for controlling a number of mutually dependent mechanical parameters, for example speed of conveyors, setting (17.6 metres/minute), number of birds (chickens) on conveyors, speed of slaughtering line, setting (148 animals/minute).

If one setting is changed, the other settings are changed correspondingly, for example if the birds are larger, it means that there are fewer animals on the conveyors, but the speed of the slaughtering line continues to be the same. Consequently it becomes necessary to convey more animals per minute through the stunning chamber, i.e. increased conveying speed. At the same time each individual bird is larger why it is

stunned for a longer time, i.e. longer conveying time and conveying route length respectively are required through the stunning chamber.

Brief description of the drawing

5

The invention is explained in more detail below with reference to the drawing in which

- Fig. 1 shows a longitudinal sectional view, partially in section, through an embodiment of a system for gas stunning of poultry for slaughter according to the invention, and
 - Fig. 2 shows a top view of another embodiment of a system for gas stunning of poultry for slaughter.

15

20

25

30

Detailed description of the invention

The system 2 shown in Fig. 1 for gas stunning of poultry for slaughter comprises a supply conveyor (not shown) for supply of poultry, which for example arrives at the slaughterhouse by truck, and which have been taken out of any transport crates before they are transferred to the stunning system 2. The poultry 4 is transferred successively to a stunning conveyor 6 which actually consists of a system of endless conveyors having a number of sections running downwards into a stunning chamber 8, the major part of which consists of a concrete pit 10 lowered in relation to the floor level, which chamber is filled with stunning gas, for example CO² with varying gas concentrations, viz. an upper or first zone 12 having a gas concentration of app. 5% (8-10%), an intermediate or second zone 14 having a gas concentration of app. 25% (32-46%), and a lower and third zone 16 having a gas concentration of app. 50% (45-51%).

The gas concentration in the said zones 12, 14, 16 can be further varied according to requirements, for example in relation to bird size or type. The gas concentration in the

10

15

20

·

respective zones is controlled by suitable gas sensors and an actually known gas filling/control system with filling valves.

6

From the stunning conveyor 6 the poultry 4 is successively conveyed into a downwards running conveyor section 18, which continues into a horizontal conveyor section 20, whose active length can be varied by means of a telescopic system 22. From the conveyor section 20 the poultry 4 is transferred to a downwards running conveyor section 24 whose active length can be varied by means of a telescopic system 26 which interacts with the telescopic system 22 for the conveyor section 20. From the conveyor section 24 the poultry 4, which by now is stunned, is conveyed onto a horizontally running conveyor 28 whose active conveying route length also can be varied by means of a telescopic system 30. The stunned poultry 4 is then conveyed upwards and out from the stunning chamber 8 by means of an upwards running conveyor 32, which, and for being able to interact with the conveyor 26, also comprises a telescopic system 34 for variation of the active conveying route length of the conveyor 28.

From the conveyor 32 the stunned poultry is transferred to an external conveyor for being shackled on a slaughtering line. Shortly after the stunned chickens have been shackled by their legs in slaughter shackles, the chickens pass a slaughter location where their necks are cut so that the chickens bleed out as the pumping function of their hearts is still intact if the gas stunning was optimum.

If it can be found that the gas stunning either is too deep, i.e. the chickens are already dead, the stunning must be adjusted by shortening the conveying route and/or the conveying time through the stunning chamber so that the stunning becomes lighter. If the chickens on the contrary show signs of too light stunning, the stunning must likewise be adjusted so that the conveying route and/or the conveying time through the stunning chamber are increased.

25

WO 2004/064528

In both situations, adjustment can be effected by reducing or prolonging the conveying time and/or by changing the active conveying route lengths of the conveyors 20, 24, 28, 32 by means of the telescopic systems 22, 26, 30, 34.

Sensors in given locations ensure that the respective conveyors are in correct positions, for example for small, medium-sized, or large chickens. An important thing which also influences the stunning result is that the poultry 4 is downwards step by step, starting in a low gas concentration of app. 5-10%. The stepwise downwards conveying ensures that the chickens upon start and stop lift their heads whereby they can freely breathe in the relatively low gas concentration. This prevents the poultry from becoming stressed, and injuries are avoided.

To reduce or prolong the conveying time through the stunning chamber 8, it is of course also possible to adjust the speed of the respective conveyors.

15

20

25

30

10

5

After the first part of the downwards movement, the poultry has "fallen asleep" and the continues further down where the gas concentration is max. 50% at the bottom of the chamber. Hereby it is ensured that the chickens will not wake up before their necks have been cut and they have bled out. As regards safety it is furthermore an advantage to lower the stunning chamber to below floor level so that gas leakage above head height is avoided.

The system 36 outlined in Fig. 2 comprises a stunning chamber 38 which like the system 2 (Fig. 1) described above comprises a concrete pit 40 lowered in relation to floor level. After unloading, poultry is transferred to the stunning chamber 38 via a horizontal supply conveyor 42 delivering the bird to a downwards running helical conveyor 44 which at the bottom of the stunning chamber 38 again delivers the now stunned bird to a horizontal, telescopic conveyor 46 from which the stunned bird is transferred to an upwards running conveyor 48 which conveys the stunned bird upwards and out of the stunning chamber 38 for further conveyance to shackling on a slaughtering line, etc.

10

15

The conveyors 42, 44, 46 have relatively large widths of for example app. 800 mm each, i.e. at a given speed, the capacity of these conveyors is large. In a simple manner the width of the conveyors 42, 44, 46 and thus their capacity can be reduced by means of laterally displaceable walls 43, 45, 47. By this lateral displacement of the walls 43, 45, 47 the conveying route length is moreover varied in that the length of the helical conveyor is prolonged by forcing the poultry outwards in the curve and oppositely, by forcing the poultry inwards in the curve.

Alternatively, the capacity of the cooperating conveyors 42, 44, 46 can be varied by varying the conveying speed or the conveying route length in that the number of "twists" of the helical conveyor 44 can be adjusted to the actual conveying need, just as the active length of the telescopic conveyor 46 can b varied. In this connection, it should be mentioned that the slanting position of the upwards running conveyor also can be adjusted. The upwards running conveyor is provided with transversely positioned carriers 50 which, if the conveyor 48 has a very steep course, can be replaced by cups so that the stunned birds will surely be conveyed upwards and out of the stunning chamber 38.

CLAIMS

1. A method for gas stunning of poultry for slaughter arriving at the poultry slaughterhouse for example in transport crates, where gas stunning of the animals is effected after the animals have been taken out of the transport crates, and where the animals by means of a number of conveyors are conveyed successively through a stunning chamber, characterised in that the influence of the gas for stunning of the animals is adjusted by reducing or prolonging the conveying time and/or the conveying route of the animals on said conveyors through the stunning chamber.

10

20

5

- 2. A method according to claim 1, characterised in that the adjustment of the conveying time through the stunning chamber is effected by increasing or reducing the speed of said conveyors.
- 3. A method according to claim 1, characterised in that the adjustment of the conveying route through the stunning chamber is effected by reducing or prolonging the active conveyor runs of the respective conveyors.
 - 4. A method according to claim 1, characterised in that the influence of the gas for stunning of the animals is moreover adjusted by varying the gas concentration at varying levels in the stunning chamber as increasing gas concentration is applied in a downwards direction in the stunning chamber.
- 5. A system for gas stunning of poultry for slaughter cf. the method according to claim
 1 and comprising a substantially horizontal conveyor arranged for receiving and introducing poultry for slaughter to a gas-filled stunning chamber in which a downwards running conveyor is arranged, said conveyor being arranged for successively conveying the poultry downwards in the stunning chamber, and an upwards running conveyor arranged for successively conveying the poultry upwards and out of the stunning chamber, characterised in that said downwards running conveyor either is constituted by a conveyor having a downwards running course and a horizontal course, and by a downwards running conveyor, said conveyors

comprising mutually interacting telescopic members for adjustment of the active conveying route length, or are constituted by a helical conveyor interacting with a horizontal, telescopic conveyor.

- 6. A system according to claim 5, c h a r a c t e r i s e d in that said upwards running conveyor is constituted by conveyors having mutually interacting telescopic members, viz. a horizontal conveyor and an upwards running conveyor having a slanting course.
- 7. A system according to claim 5, characterised in that the stunning chamber is divided into a number of horizontal zones, for example a lower zone having a gas concentration (CO²) of 50% (app. 45-51%), an intermediate zone having a gas concentration (CO²) of 25% (app. 32-46%), and an upper zone having a gas concentration (CO²) of 5% (app. 8-10%), as sensors are provided in level with the respective upper zone limits for monitoring and control respectively of the gas concentration in the said zones.
 - 8. A system according to claim 5, characterised in that it comprises a PLC control system for controlling a number of mutually dependent mechanical parameters, for example speed of conveyors, setting (17.6 metres/minute), number of birds (chickens) on conveyors, speed of slaughtering line, setting (148 animals/minute).

International application No. PCT/DK 2004/000037

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: A22B 3/00
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: A22B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE,DK,FI,NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-INTERNAL, WPI DATA, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	US 6174228 B1 (GRIMSLAND ET AL), 16 January 2001 (16.01.2001), column 3, line 67 - column 4, line 19; column 4, line 27 - line 34, figure 1	1,2,4
	-	
A	WO 9427425 A1 (SUN VALLEY POULTRY LTD), 8 December 1994 (08.12.1994), page 2, line 9 - line 16, claims 17,41	1,2,5
	· 	1
A	US 5788564 A (CHAMBERLAIN), 4 August 1998 (04.08.1998), column 2, line 1 - line 6; column 3, line 46 - line 48	1,2
l		
		·
		1

X	Further documents are listed in the continuation of Box	. C.	X See patent family annex.
* "A" "E" "L" "O" "P"	cited to establish the publication date of another citation or other special reason (as specified)	"T" "X" "Y"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family
1	te of the actual completion of the international search B April 2004	Date	of mailing of the international search report 2 8 -04- 2004
Sw	me and mailing address of the ISA/ edish Patent Office x 5055, S-102 42 STOCKHOLM rsimile No. + 46 8 666 02 86	Magi	nized officer nus Thorén/EK

International application No. PCT/DK 2004/000037

C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant pa	ssages	Relevant to claim No.
A	US 6135872 A (FREELAND ET AL), 24 October 2000 (24.10.2000), column 5, line 59 - line 62		1,4
E	EP 1405564 A1 (LINCO FOOD SYSTEMS A/S ET AL), 7 April 2004 (07.04.2004), abstract		1-5,7,8
·		1	
		•	
			1

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

Information on patent family members

31/03/2004

International application No. PCT/DK 2004/000037

						•
US	6174228	B1	16/01/2001	TA	214879 T	15/04/2002
03	017-7220	Dī	10/01/2001	ΑÚ	5350098 A	07/08/1998
				BR	9714209 A	28/03/2000
				CA	2278469 A	23/07/1998
				DE	69711448 D,T	31/10/2002
				DK	961550 T	29/07/2002
				EP	0961550 A,B	08/12/1999
				SE .	0961550 T3	, , , , , , , , , ,
			·	ES	. 2174320 T	01/11/2002
			•	NO	970229 D	00/00/0000
				NO	993196 A	28/06/1999
				PL	185938 B	30/09/2003
				PL	334768 A	13/03/2000
				WO	9831231 A	23/07/1998
WO	9427425	A1	08/12/1994	AU	6801694 A	20/12/1994
,,,,	3 121 129	• • •	00, 12, 111.	BR	9406780 A	06/02/1990
				CA	2164114 A	08/12/1994
				CN	1126941 A	17/07/1990
				EP	0701396 A	20/03/199
				GB	2306096 A,B	30/04/199
				GB	9311351 D	00/00/000
				GB	9622812 D	00/00/000
				HU	73292 A	29/07/199
				HU	9503451 D	00/00/000
				PL	311875 A	18/03/199
				GB	9323066 D	00/00/000
US	5788564	A	04/08/1998	CA	2187995 A,C	16/04/199
						02/05/200
us	6135872	Α	24/10/2000	US.	6056637 A	02/03/200
US	6135872	A	24/10/2000	WO WO	6056637 A 0137673 A	31/05/200