- Q1) considerity F many, elements between 0 and 1: $\{0,1\}$, and mod 2, all its elements are: (0,0), (1,0), (0,1), (1,1) $\stackrel{?}{}$ since F_2^2 has dimentionality of 2, its basis has to b (at least) 2 elements. So for example $\{(1,0),(0,1)\}$ are both linindep and span F_2^2 .
- (1,0,1),(-1,0,1),(0,1,0)} (1 chose this bos it seems correct)

 (1) Bassistep. it has to span IR3.

So since $\left(\left(-\frac{2x}{2} + \frac{2+x}{2}\right), y, \frac{2+x}{2} + \frac{2-x}{2}\right) = (x, y, z)$ if spans R^3 .

1 lin. indep.

for
$$a(1,0,1)+b(-1,0,1)+((0,1,0)=(0,0,0)$$

= $(a-b, c,a+b)=(0,0,0)=>c=0$
, $a-b=a+b=0=>a=b=>a+b=0=>a=b=0$
So its lin. indep.

so its a valid basis a

Q3) my approach is to add a vector which is non-constructable, through using $0 \le .50$ B= $\{(1,-1,1),(0,1,1),(4,0,0)\}$.

Spanning
$$\mathbb{R}^3$$
.

Let $a_1b_1c \in \mathbb{R}$, $(x_1y_1,z) \in \mathbb{R}^3$.

 $a_1(t_1-t_1) + b(0,1,1) + c(t_10,0) = (x_1y_1,z)$
 $a_1(t_1-t_1) + a_1(t_1) + a_1(t_1)$
 $a_1(t_1-t_1) + a_1(t_1) + a_1(t_1)$
 $a_1(t_1-t_1) + a_1(t_1) + a_1(t_1)$
 $a_1(t_1) + a_1(t_1) + a_1(t_1)$

@ In. indep.

for
$$(a+c,b-a,a+b) = (0,0,0)$$
,
 $\{a+c=0\}$
 $\{b-a=0\}$ $a=b=0$ $a+a=0=0$ $a=b=0$, $a+c=0$

so v is linindep.

hence v is a basis. []

Q4) B, = {(1,0,1), (-1,0,1), (0,1,0)}, Bz={(1,-1,1), (0,1,1), (1,0,0)} let (x,y,z) + R and (x,y,z) = av, + bv2+cv3 = aw, + 6w2+cw3 * I'm not sure to express U as w; or vice-verse so I'll do one * V; = n, w, + n2 w2 + n3 w3 or W; = m, v, + m2 v2 + m3 v3. (1,0,1) = n, (1,-1,1) + nz (0,1,1) + nz (1,0,0) = (n,+nz, nz-n,, n,+nz) $\begin{cases} n_1 + n_3 = 1 \\ n_2 - n_1 = 0 = 2 \end{cases} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_2 + n_2 = 1 \end{array} \quad \begin{array}{l} = 2 \\ n_1 +$ $= \sum_{i=1}^{n} \sqrt{3} = -\frac{1}{2} w_{1} + \frac{1}{2} w_{2} + \frac{1}{2} w_{3}$ $= \sum_{i=1}^{n} \sqrt{3} = -\frac{1}{2} w_{1} + \frac{1}{2} w_{2} + \frac{1}{2} w_{3}$ $= \sum_{i=1}^{n} \sqrt{3} = -\frac{1}{2} - \frac{1}{2} - \frac{$ => [W1=1V1+0V2+(-1)V3 $\begin{cases} m_1 - m_2 = 0 \\ m_3 = 1 \\ m_1 + m_2 = 1 \end{cases} = \gamma m_1 = m_2 = \frac{1}{2} v_1 + \frac{1}{2} v_2 + v_3$ now, (x,y,z)= a,v, + az +z+ a3 v3 = a, (=w,+= w2+= w3)+az(=w,+= w2-3 w3) + a3 (- 2w, + 1 w2 + 2w3) = w, (a, + a2 3- a3) + w2 (a, + a2 + a3) + w3 (\frac{\alpha_1}{2} + \frac{-3\alpha_2}{2} + \frac{\alpha_3}{2}) = w, b, + w2 b2 + w3 b3 damn, I understand now 101:) I didn't eun have to itil be (f, (a,, a2, a3) = \frac{1}{2} (a, + a2 - a3) solve for both, but pretty $\begin{cases} f_2(\alpha_1, \alpha_2, \alpha_3) = \frac{1}{2}(\alpha_1 + \alpha_2 + \alpha_3) \\ f_3(\alpha_1, \alpha_2, \alpha_3) = \frac{1}{2}(\alpha_1 - 3\alpha_2 + \alpha_3) \end{cases}$ sure it'll work both ways.

I

Scanned with CS CamScanner

Q5) let $\{v_1, v_2, v_3, v_4\} = B$ be a basis of V. this implies $v_1 \dots v_4$ are linindep and span V. let $\tilde{B} = \{v_1, v_2\}$, we still know v_1, v_2 are linindep so we just have to prove they span $u \in V$ for \tilde{B} to be a basis of u.

so let (x,y) e u, a, be F.

for $(x,y) = a(v_1) + b(v_2)$ but this not have enough evidence so $\{v_1, v_2\}$ don't nece span \mathcal{U} .

counterexample

Let V = iR', $V_1 = (1,0,0,0)$, $V_2 = (0,1,0,0)$,..., $V_4 = (0,0,0,0)$ (this notee B) which is a list's define $U = \{(a,b,0,0) | a,b \in IR\}$ a basis of V

So $V_1, V_2 \in \mathcal{U}$, $V_3, V_4 \notin \mathcal{U}$. Whis case $V_1, V_2 \in \mathcal{U}$, $V_3, V_4 \notin \mathcal{U}$ consider $U = \text{spon}\{V_1 + V_3, V_2\}$ in this case $V_1, V_2 \in \mathcal{U}$, $V_3, V_4 \notin \mathcal{U}$ now $U = a(V_1 + V_3) + bV_2 = (a, b, a, a)$ we'll need $V_3 = (o, o, v, o)$ to constant this but $V_3 \notin \mathcal{U}$, $(c) \in \mathcal{U}$

So the startement is false 121