Data Reduction

```
In [1]: %matplotlib inline
    import pandas as pd
    import numpy as np
    import scipy as sp
    import scipy.stats as stats
    import math
    from IPython.display import display, HTML # This keeps the nice formatting whe
    n printing more than 1 thing

import matplotlib.pyplot as plt # Required for plotting
    np.random.seed(33)
```

Sampling in Pandas

In [2]: df = pd.DataFrame(np.random.randn(50, 4), columns=list('ABCD'))
 df.head(5)

Out[2]:

	A	В	С	D
0	-0.318854	-1.602981	-1.535218	-0.570401
1	-0.216728	0.254874	-0.149450	2.010783
2	-0.096784	0.422202	-0.225462	-0.637943
3	-0.016286	1.044217	-1.084880	-2.205925
4	-0.951219	0.832973	-1.000208	0.343463

In [3]: #You can sample a fraction of the total dataframe
 df.sample(frac=0.1,random_state=33)

Out[3]:

	A	В	С	D
5	1.546030	0.690081	-2.045853	0.334467
27	-0.769156	0.869197	0.371381	-0.628362
37	-0.352427	0.274527	-1.386049	-1.775175
15	1.054113	-0.615562	0.437443	-2.809395
40	0.578353	-0.103730	-0.161044	0.894541

In [4]: #Or a raw number
 df.sample(n=7,random_state=33)

Out[4]:

	A	В	С	D
5	1.546030	0.690081	-2.045853	0.334467
27	-0.769156	0.869197	0.371381	-0.628362
37	-0.352427	0.274527	-1.386049	-1.775175
15	1.054113	-0.615562	0.437443	-2.809395
40	0.578353	-0.103730	-0.161044	0.894541
45	0.000855	-0.146146	-0.261976	0.108848
4	-0.951219	0.832973	-1.000208	0.343463

Out[5]:

	A	В	С	D
46	1.017882	-1.144546	0.781887	-0.173980
3	-0.016286	1.044217	-1.084880	-2.205925
22	0.604432	0.941819	-0.620143	0.814865
48	-0.637681	1.507013	-1.017813	-1.446111
39	0.346235	-0.449622	-1.355818	1.192042
9	-0.777376	-0.414635	-1.145641	0.325040
1	-0.216728	0.254874	-0.149450	2.010783
46	1.017882	-1.144546	0.781887	-0.173980
47	-0.341525	-1.879558	-0.993942	1.021854
8	1.734299	-0.206790	-0.733189	0.774163
5	1.546030	0.690081	-2.045853	0.334467
40	0.578353	-0.103730	-0.161044	0.894541
36	-0.818514	-1.850421	0.397142	-0.946225
12	-0.682350	1.487670	-1.094711	-1.654707
48	-0.637681	1.507013	-1.017813	-1.446111

Stratified Sampling has it's own functions

In [6]: from sklearn.cross_validation import StratifiedShuffleSplit

```
In [7]: class_labels = []
    for x in xrange(0,df.shape[0]):
        if x<20:
            class_labels.append(0)
        else:
            class_labels.append(1)

        df['labels']= class_labels
        display(df.head())
        print('')
        display(df.tail())</pre>
```

	A	В	С	D	labels
0	-0.318854	-1.602981	-1.535218	-0.570401	0
1	-0.216728	0.254874	-0.149450	2.010783	0
2	-0.096784	0.422202	-0.225462	-0.637943	0
3	-0.016286	1.044217	-1.084880	-2.205925	0
4	-0.951219	0.832973	-1.000208	0.343463	0

	A	В	С	D	labels
45	0.000855	-0.146146	-0.261976	0.108848	1
46	1.017882	-1.144546	0.781887	-0.173980	1
47	-0.341525	-1.879558	-0.993942	1.021854	1
48	-0.637681	1.507013	-1.017813	-1.446111	1
49	0.215798	-1.127582	0.439146	0.998467	1

```
In [8]: sss = StratifiedShuffleSplit(df['labels'], 1, test_size=0.1, random_state=0)

for train_index, test_index in sss:
    population_remaining, population_sample = df.iloc[train_index], df.iloc[test_index]
    population_sample
```

Out[8]:

	A	В	С	D	labels
15	1.054113	-0.615562	0.437443	-2.809395	0
12	-0.682350	1.487670	-1.094711	-1.654707	0
43	0.594309	-0.166302	1.272612	2.076016	1
27	-0.769156	0.869197	0.371381	-0.628362	1
26	-0.587376	1.751572	0.308274	-0.894283	1

In [9]: #Cluster Data Reduction
 import time
 from sklearn.cluster import DBSCAN
 from sklearn import metrics

df = pd.read_csv('cluster_reduce.csv', encoding='utf-8')
 df.head()

Out[9]:

	lat	lon	date	city	country
0	51.481292	-0.451011	05/14/2014 09:07	West Drayton	United Kingdom
1	51.474005	-0.450999	05/14/2014 09:22	Hounslow	United Kingdom
2	51.478199	-0.446081	05/14/2014 10:51	Hounslow	United Kingdom
3	51.478199	-0.446081	05/14/2014 11:24	Hounslow	United Kingdom
4	51.474146	-0.451562	05/14/2014 11:38	Hounslow	United Kingdom

In [10]: plt.scatter(df['lat'],df['lon'])
 print(df.shape)

(1759, 5)

/afs/crc.nd.edu/user/k/kfeldman/anaconda/lib/python2.7/site-packages/matplotl
ib/collections.py:590: FutureWarning: elementwise comparison failed; returnin
g scalar instead, but in the future will perform elementwise comparison
 if self._edgecolors == str('face'):


```
In [11]: # represent points consistently as (lat, lon)
kms_per_radian = 6371.0088
coords = df.as_matrix(columns=['lat', 'lon'])
# define epsilon as 1.5 kilometers, converted to radians for use by haversine
epsilon = 1.5 / kms_per_radian

db = DBSCAN(eps=epsilon, min_samples=1, algorithm='ball_tree', metric='haversi
ne').fit(np.radians(coords))
cluster_labels = db.labels_

# get the number of clusters
num_clusters = len(set(cluster_labels))

# all done, print the outcome
message = 'Clustered {:,} points down to {:,} clusters, for {:.1f}% compressio
n'
print(message.format(len(df), num_clusters, 100*(1 - float(num_clusters) /
len(df))))
```

Clustered 1,759 points down to 138 clusters, for 92.2% compression

```
In [13]: def centeroidnp(arr):
    length = arr.shape[0]
    sum_x = np.sum(arr[:, 0])
    sum_y = np.sum(arr[:, 1])
    return sum_x/length, sum_y/length
```

```
In [14]: centermost_points = clusters.map(centeroidnp)
    lats, lons = zip(*centermost_points)
    # from these Lats/Lons create a new df of one representative point for each cl
    uster
    rep_points = pd.DataFrame({'lon':lons, 'lat':lats})
    rep_points.tail()
```

Out[14]:

	lat	lon
133	37.933831	23.945850
134	40.979812	28.821654
135	41.032922	28.981427
136	41.016863	29.009547
137	48.356280	11.791802

In [15]: plt.scatter(rep_points['lat'],rep_points['lon'])
 print(rep_points.shape)

In [16]: # plot the final reduced set of coordinate points vs the original full set
 fig, ax = plt.subplots(figsize=[10, 6])
 rs_scatter = ax.scatter(rep_points['lat'],rep_points['lon'], c='#99cc99', edge
 color='None', alpha=0.7, s=120)
 df_scatter = ax.scatter(df['lat'], df['lon'], c='k', alpha=0.9, s=3)
 ax.set_title('Full data set vs DBSCAN reduced set')
 ax.set_xlabel('Longitude')
 ax.set_ylabel('Latitude')
 ax.legend([df_scatter, rs_scatter], ['Full set', 'Reduced set'], loc='upper ri
 ght')
 plt.show()

Feature Selection - Univariate

```
In [17]: from sklearn.datasets import load_iris
    fileURL = 'http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.
    data'
    data = pd.read_csv(fileURL, names=['Sepal Length', 'Sepal Width', 'Petal Lengt
    h', 'Petal Width', 'Name'], header=None)
    iris_data = data.dropna()
    iris_data.head()
```

Out[17]:

	Sepal Length	Sepal Width	Petal Length	Petal Width	Name
(5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [18]: X = iris_data[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal
Width']].copy()
y = iris_data[['Name']].copy()
```

These objects take as input a scoring function that returns univariate scores and p-values (or only scores for SelectKBest and SelectPercentile):

For regression: f_regression, mutual_info_regression For classification: chi2, f_classif, mutual_info_classif

The methods based on F-test estimate the degree of linear dependency between two random variables. On the other hand, mutual information methods can capture any kind of statistical dependency, but being nonparametric, they require more samples for accurate estimation.

```
In [19]: from sklearn.feature_selection import SelectPercentile
    from sklearn.feature_selection import SelectKBest
    from sklearn.feature_selection import chi2
    from sklearn.feature_selection import f_regression
    Selector_f = SelectKBest(chi2,k=1)
    Selector_f.fit(X,y)
    scores = []
    for n,s in zip(['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width'],Selector_f.scores_):
        scores.append((n,s))

scores = pd.DataFrame(scores)
    scores.sort(1,ascending=False)
```

/afs/crc.nd.edu/user/k/kfeldman/anaconda/lib/python2.7/site-packages/sklearn/utils/validation.py:449: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples,), for example using ravel().

y = column_or_1d(y, warn=True)

Out[19]:

	0	1
2	Petal Length	116.169847
3	Petal Width	67.244828
0	Sepal Length	10.817821
1	Sepal Width	3.594499

```
In [20]: from sklearn.datasets import make_friedman1
    from sklearn.feature_selection import RFE
        from sklearn.svm import SVR
        X, y = make_friedman1(n_samples=50, n_features=10, random_state=0)
        estimator = SVR(kernel="linear")
        selector = RFE(estimator, 5, step=1)
        selector = selector.fit(X, y)
        selector.support_
```

Out[20]: array([1, 1, 1, 1, 1, 6, 4, 3, 2, 5])

```
In [21]: #Extra - Feature Importances
    from sklearn.ensemble import RandomForestClassifier
    rf = RandomForestClassifier(n_estimators=20, max_depth=4)
    rfc = rf.fit(X,y)
    print(rfc.feature_importances_)
    scores = []
    for n,s in zip(['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal Width'],rfc.feature_importances_):
        scores.append((n,s))

scores = pd.DataFrame(scores)
    scores.sort(1,ascending=False)

[ 0.09318801    0.15037965    0.06433626    0.1112646    0.05650729    0.10239585
```

0.07682496 0.15486122 0.10674807]

Out[21]:

	0	1
1	Sepal Width	0.150380
3	Petal Width	0.111265
0	Sepal Length	0.093188
2	Petal Length	0.064336

0.0834941

PCA

For a full tutorial of PCA in python see the link below http://sebastianraschka.com/Articles/2014_pca_step_by_step.html (http://sebastianraschka.com/Articles/2014 pca step by step.html)

In [22]: from sklearn.preprocessing import StandardScaler
 fileURL = 'http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.
 data'
 data = pd.read_csv(fileURL, names=['Sepal Length', 'Sepal Width', 'Petal Lengt
 h', 'Petal Width', 'Name'], header=None)
 iris_data = data.dropna()
 iris_data.head()

X = iris_data[['Sepal Length', 'Sepal Width', 'Petal Length', 'Petal
 Width']].copy()
 y = iris_data[['Name']].copy()

X_std = StandardScaler().fit_transform(X)
 display(X.head())
 pd.DataFrame(X_std).head()

	Sepal Length	Sepal Width	Petal Length	Petal Width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

Out[22]:

	0	1	2	3
0	-0.900681	1.032057	-1.341272	-1.312977
1	-1.143017	-0.124958	-1.341272	-1.312977
2	-1.385353	0.337848	-1.398138	-1.312977
3	-1.506521	0.106445	-1.284407	-1.312977
4	-1.021849	1.263460	-1.341272	-1.312977

In [23]: mean_vec = np.mean(X_std, axis=0)
 cov_mat = (X_std - mean_vec).T.dot((X_std - mean_vec)) / (X_std.shape[0]-1)
 print('Covariance matrix \n%s' %cov_mat)

Covariance matrix

```
In [24]: cov mat = np.cov(X std.T)
         eig_vals, eig_vecs = np.linalg.eig(cov_mat)
         print('Eigenvectors \n%s' %eig_vecs)
         print('\nEigenvalues \n%s' %eig_vals)
         Eigenvectors
         [[ 0.52237162 -0.37231836 -0.72101681  0.26199559]
          [-0.26335492 -0.92555649 0.24203288 -0.12413481]
          [ 0.58125401 -0.02109478  0.14089226 -0.80115427]
          [ 0.56561105 -0.06541577  0.6338014
                                                 0.52354627]]
         Eigenvalues
         [ 2.93035378  0.92740362  0.14834223  0.02074601]
In [25]:
         # Make a list of (eigenvalue, eigenvector) tuples
         eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in
         range(len(eig vals))]
         # Sort the (eigenvalue, eigenvector) tuples from high to low
         eig pairs.sort(key=lambda x: x[0], reverse=True)
         # Visually confirm that the list is correctly sorted by decreasing eigenvalues
         print('Eigenvalues in descending order:')
         for i in eig_pairs:
             print(i[0])
         Eigenvalues in descending order:
         2.93035377559
         0.927403621517
         0.148342226482
         0.0207460139956
```


Matrix W:

[[0.52237162 -0.37231836]

[-0.26335492 -0.92555649]

[0.58125401 -0.02109478]

[0.56561105 -0.06541577]]


```
In [29]: existing_df = pd.read_csv('lecture5PCA.csv',index_col = 0, thousands = ',')
    existing_df.index.names = ['country']
    existing_df.columns.names = ['year']
    existing_df.head()
```

Out[29]:

year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	20
country													
Afghanistan	436	429	422	415	407	397	397	387	374	373	346	326	304
Albania	42	40	41	42	42	43	42	44	43	42	40	34	32
Algeria	45	44	44	43	43	42	43	44	45	46	48	49	50
American Samoa	42	14	4	18	17	22	0	25	12	8	8	6	5
Andorra	39	37	35	33	32	30	28	23	24	22	20	20	21

```
In [30]: from sklearn.decomposition import RandomizedPCA

pca = RandomizedPCA(n_components=2)
pca.fit(existing_df)
```

In [31]: existing_2d = pca.transform(existing_df)
 existing_df_2d = pd.DataFrame(existing_2d)
 existing_df_2d.index = existing_df.index
 existing_df_2d.columns = ['PC1','PC2']
 existing_df_2d.head()

Out[31]:

	PC1	PC2	
country			
Afghanistan	732.215864	203.381495	
Albania	-613.296510	4.715978	
Algeria	-569.303713	-36.837051	
American Samoa	-717.082766	5.464696	
Andorra	-661.802241	11.037736	

In [32]: print(pca.explained_variance_ratio_)

[0.91808789 0.060556]

In [33]: from sklearn.preprocessing import normalize

#We can scale the points by the countries mean value across the years, and can clearly see PCA seperate data based on the mean

existing_df_2d['country_mean'] = pd.Series(existing_df.mean(axis=1), index=exi
sting_df_2d.index)

country_mean_max = existing_df_2d['country_mean'].max()
country_mean_min = existing_df_2d['country_mean']_min()

country_mean_min = existing_df_2d['country_mean'].min()

country_mean_scaled = (existing_df_2d.country_mean-country_mean_min) / country
_mean_max

index=existing_df_2d.index)

existing df 2d.head()

Out[33]:

	PC1	PC2	country_mean	country_mean_scaled
country				
Afghanistan	732.215864	203.381495	353.333333	0.329731
Albania	-613.296510	4.715978	36.944444	0.032420
Algeria	-569.303713	-36.837051	47.388889	0.042234
American Samoa	-717.082766	5.464696	12.277778	0.009240
Andorra	-661.802241	11.037736	25.277778	0.021457

```
In [34]: existing_df_2d.plot(
          kind='scatter',
          x='PC2',
          y='PC1',
          s=existing_df_2d['country_mean_scaled']*100,
          figsize=(16,8))
```

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9d7d4879d0>


```
In [35]: pca = RandomizedPCA()
    pca.fit(existing_df)
    print(pca.explained_variance_ratio_)
    plt.plot(pca.explained_variance_ratio_)
```

```
9.18087891e-01
                 6.05560009e-02
                                   1.08051220e-02
                                                    2.39047545e-03
2.19038229e-03
                 1.64732996e-03
                                   1.19502740e-03
                                                    7.97856744e-04
6.35817920e-04
                 4.61460559e-04
                                   3.20989293e-04
                                                    2.66657191e-04
                 1.56998807e-04
2.42807240e-04
                                   1.08464204e-04
                                                    7.07768488e-05
4.20518883e-05
                 2.38906112e-05]
```

Out[35]: [<matplotlib.lines.Line2D at 0x7f9ce2cf1990>]

