CSE 472

Machine Learning Sessional 1505004 - All Rubayet Ahmed Tusher 1605026 - Mohammad Abser Uddin

PROBLEM

Given images of microscopic views of blood components, we need to detect basic blood cell types RBC, WBC, Platelet & their counts from that image

TYPE:

Image-based, Object Detection, Computer Vision

PROBLEM

Given images of microscopic views of blood components, we need to detect basic blood cell types RBC, WBC, Platelet & their counts from that image

MODEL

YOLO (You Only Look Once) v5:

- Extremely fast (45 frames per second) (Real Time Demo)
- Reasons globally on the entire image
- Learn generalizable representations (to new domains, like art)

YOLO ARCHITECTURE

Model Summary:

- ▶ 270 layers (original 24)
- > 7027720 parameters
- ▶ 7027720 gradients
- **▶ 15.9** GFLOPs

YOLO

ARCHITECTURE

```
params module
                 from n
                                                                           arguments
                             3520 models.common.Conv
                                                                           [3, 32, 6, 2, 2]
                                   models.common.Conv
                  -1 1
                             18560
                                                                           [32, 64, 3, 2]
                  -1 1
                            18816 models.common.C3
                                                                           [64, 64, 1]
                  -1 1
                            73984
                                  models.common.Conv
                                                                           [64, 128, 3, 2]
                           115712 models.common.C3
                  -1 2
                                                                           [128, 128, 2]
                  -1 1
                           295424 models.common.Conv
                                                                           [128, 256, 3, 2]
                           625152 models.common.C3
                  -1 3
                                                                           [256, 256, 3]
                          1180672 models.common.Conv
                                                                           [256, 512, 3, 2]
                          1182720 models.common.C3
                  -1 1
                                                                           [512, 512, 1]
                           656896 models.common.SPPF
                                                                           [512, 512, 5]
                  -1 1
                           131584 models.common.Conv
                                                                           [512, 256, 1, 1]
 10
                                0 torch.nn.modules.upsampling.Upsample
 11
                  -1 1
                                                                           [None, 2, 'nearest']
                                0 models.common.Concat
                                                                           [1]
 12
             [-1, 6] 1
 13
                           361984 models.common.C3
                                                                           [512, 256, 1, False]
                  -1 1
 14
                  -1 1
                            33024 models.common.Conv
                                                                           [256, 128, 1, 1]
 15
                                0 torch.nn.modules.upsampling.Upsample
                  -1 1
                                                                           [None, 2, 'nearest']
                                0 models.common.Concat
 16
             [-1, 4] 1
                                                                           [1]
                            90880 models.common.C3
 17
                  -1 1
                                                                           [256, 128, 1, False]
 18
                  -1 1
                           147712 models.common.Conv
                                                                           [128, 128, 3, 2]
            [-1, 14] 1
                                0 models.common.Concat
                                                                           [1]
 19
                           296448 models.common.C3
 20
                  -1 1
                                                                           [256, 256, 1, False]
 21
                  -1 1
                           590336 models.common.Conv
                                                                           [256, 256, 3, 2]
 22
                                0 models.common.Concat
            [-1, 10] 1
                                                                           [1]
 23
                          1182720 models.common.C3
                                                                           [512, 512, 1, False]
        [17, 20, 23] 1
                            21576 models.yolo.Detect
                                                                           [3, [[10, 13, 16, 30, 33,
 24
Model Summary: 270 layers, 7027720 parameters, 7027720 gradients, 15.9 GFLOPs
```

```
# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
  [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
  [-1, 3, C3, [128]],
  [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
  [-1, 6, C3, [256]],
  [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
  [-1, 9, C3, [512]],
  [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
  [-1, 3, C3, [1024]],
  [-1, 1, SPPF, [1024, 5]], # 9
# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
  [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  [[-1, 6], 1, Concat, [1]], # cat backbone P4
  [-1, 3, C3, [512, False]], # 13
  [-1, 1, Conv, [256, 1, 1]],
  [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  [[-1, 4], 1, Concat, [1]], # cat backbone P3
  [-1, 3, C3, [256, False]], # 17 (P3/8-small)
  [-1, 1, Conv, [256, 3, 2]],
  [[-1, 14], 1, Concat, [1]], # cat head P4
  [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
  [-1, 1, Conv, [512, 3, 2]],
  [[-1, 10], 1, Concat, [1]], # cat head P5
  [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
  [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
```

YOLO ARCHITECTURE

Activation Function:

- ➤ Leaky ReLU in middle / hidden layers
- Sigmoid in the final detection layer

Optimization Function:

- SGD (Stochastic Gradient Descent)
- > Adam

In YOLO v5, default optimization function for training is SGD.

Loss Function:

- Binary Cross-Entropy with Logits Loss (default)
- Focal Loss

YOLO ARCHITECTURE

Loss Function

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2$$

$$+ \lambda_{ extbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{ ext{obj}} \left(\sqrt{w_i} - \sqrt{\hat{w}_i}
ight)^2 + \left(\sqrt{h_i} - \sqrt{\hat{h}_i}
ight)^2$$

$$+\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_i - \hat{C}_i \right)^2$$

$$+ \lambda_{ ext{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{ ext{noobj}} \left(C_i - \hat{C}_i
ight)^2$$

$$+\sum_{i=0}^{S^2}\mathbb{1}_i^{\text{obj}}\sum_{c\in ext{classes}}\left(p_i(c)-\hat{p}_i(c)
ight)^2$$

YOLO algorithm works using the following three techniques:

- Residual Blocks
- Bounding Box Regression
- ➤ Intersection Over Union (IOU)

Image is divided into S*S grid

Predicted box's center is shown in black which is the blue colored cell.

(x,y,w,h) and confidence of each box: P(object)

specifying the object in a grid cell.

Each cell predicts boxes and confidences: P(object)
Probability that the box contains an object.

Each cell also predicts a class probability conditioning on objects:

- Green = Dog,
- > Pink = Bicycle
- Orange = Car

Combining the box and class predictions.

P(class|object)*P(object) = P(class)

After performing threshold detection and Non-max suppression.

Discard all boxes with Probability ≤ 0.6

EVALUATION METRIC

$$IoU = \frac{area(B_p \cap B_{gt})}{area(B_p \cup B_{gt})}$$

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

EVALUATION METRIC

curve

- interpolated
- original

AP can then be defined as the area under the interpolated precision-recall curve, which can be calculated using the following formula:

$$AP = \sum_{i=1}^{n-1} (r_{i+1} - r_i) p_{interp}(r_{i+1}) \quad (5)$$

where r_1, r_2, \ldots, r_n is the recall levels (in an ascending order) at which the precision is first interpolated.

Mean Average Precision:

$$mAP = \frac{\sum_{i=1}^{K} AP_i}{K}$$

DATASET

BCCD

Overview

This is a dataset of blood cells photos, originally open sourced by <u>cosmicad</u> and <u>akshaylambda</u>.

There are 364 images across three classes: `wbc` (white blood cells), `rbc` (red blood cells), and `platelets`. There are 4888 labels across 3 classes (and 0 null examples).

Here's a class count from Roboflow's Dataset Health Check:

Data Splitting:

Partition	# of Images	%
Train	205	56.32 %
Validation	87	23.90 %
Test	72	19.78 %

TRAINING YOLO V5 100 epochs

Testing Results

mAP $0.5:.95 \rightarrow 62.5\%$

100 epochs completed in 0.543 hours.

Optimizer stripped from yolov5/runs/train/BCCM2/weights/last.pt, 14.4MB Optimizer stripped from yolov5/runs/train/BCCM2/weights/best.pt, 14.4MB

Validating yolov5/runs/train/BCCM2/weights/best.pt...

Fusing layers...

Model Summary: 213 layers, 7018216 parameters, 0 gradients, 15.8 GFLOPs

Class	Images	Labels	P	R	mAP@.5 r	mAP@.5:.95:	100% 6/6
all	87	1138	0.876	0.874	0.907	0.625	
Platelets	87	83	0.818	0.865	0.879	0.454	
RBC	87	968	0.825	0.756	0.854	0.61	
WBC	87	87	0.984	1	0.987	0.812	

Results saved to yolov5/runs/train/BCCM2

CPU times: user 18.7 s, sys: 3.08 s, total: 21.8 s

Wall time: 33min 3s

	Platelets	RBC	WBC
Ground Truth	69	805	71
Prediction	85	1268	79

Confusion Matrix

F1

Results

Comments on Platelets & RBC counts

	Platelets	RBC	WBC
Ground Truth	03	15	01
Prediction	04	20	01

FRBC 0.87 RBC 0.89	RBC 0.85 RBC
Platelets 0.77.8 RBC 0.90	RBC 0.58
Platelets RBC, 0.30	Platelets 0.75
RBC 0.88 RRBC 0.90 RBC 0	.89
R3C 0 42 RBC 0 4	2RBC 0.33

	Platelets	RBC	WBC
Ground Truth	69	805	71
Prediction	85	1268	79

Data Augmentation

TRAIN / TEST SPLIT

Training Set

88%

765 images

Validation Set

73 images

8%

4

36 images

Testing Set

Output Size Calculation

When you generate a version, we create a point-in-time snapshot of your dataset, locking in your preprocessing and augmentation selections for reproducibility.

Breakdown:

255 training images × 3 variants

- + 73 validation images
- + 36 testing images

≤ 874 image output size

Your version's final number of images may be smaller than this estimate because we de-duplicate images and certain options (like "Filter Null") can remove images from the output.

Done

TRAINING YOLO V5 100 epochs

Testing Results

$mAP@.5:.95 \rightarrow 64.2 \%$

100 epochs completed in 1.042 hours.

Optimizer stripped from yolov5/runs/train/BCCM/weights/last.pt, 14.3MB Optimizer stripped from yolov5/runs/train/BCCM/weights/best.pt, 14.3MB

Validating yolov5/runs/train/BCCM/weights/best.pt...

Fusing layers...

Model Summary: 213 layers, 7018216 parameters, 0 gradients, 15.8 GFLOPs

Class	Images	Labels	P	R	mAP@.5	mAP@.5:.95:	100% 5/5
all	73	967	0.875	0.905	0.925	0.642	
Platelets	73	76	0.882	0.881	0.908	0.507	
RBC	73	819	0.776	0.835	0.885	0.622	
WBC	73	72	0.967	1	0.983	0.796	

Results saved to yolov5/runs/train/BCCM

CPU times: user 45.1 s, sys: 6.88 s, total: 52 s

Wall time: 1h 3min 17s

	Platelets	RBC	WBC
Ground Truth	36	398	37
Prediction	45	692	40

Transfer Learning

Comparison
with other
state-of-the-art
Object Detection Models

```
model type yolo = models.ultralytics.yolov5
backbone yolo = model type yolo.backbones.small
model yolo = model type yolo.model(
             backbone = backbone yolo(pretrained=True),
             num classes=len(parser.class map), img size = size)
train dl yolo = model type yolo.train dl(train ds,
                      batch size=16, num workers=4, shuffle=True)
valid dl yolo = model type yolo.valid dl(valid ds,
                      batch size=16, num workers=4, shuffle=False)
learn yolo = model type yolo.fastai.learner(
                      dls=[train_dl yolo, valid dl yolo],
                      model=model yolo, metrics=metrics)
learn yolo.lr find()
learn yolo.fine tune(10, 1e-2, freeze epochs=1)
plot metrics(learn yolo,
              'Mean Average Precision and Losses for YOLOv5')
```

FASTER R-CNN

epoch	train_loss	valid_loss	COCOMetric	time
0	1.421260	1.033804	0.265108	01:11
1	1.162679	0.845835	0.370371	00:58
2	0.998871	0.725854	0.470032	00:58
3	0.902615	0.625586	0.510287	00:57
4	0.827155	0.613033	0.528075	00:58
5	0.770260	0.581217	0.556863	00:57
6	0.734273	0.588839	0.548724	00:57
7	0.698556	0.575590	0.550385	00:57
8	0.677905	0.567733	0.573396	00:57
9	0.660749	0.565578	0.572065	00:57

Retina Net

epoch	train_loss	valid_loss	COCOMetric	time
0	0.752289	0.699699	0.063327	00:39
1	0.667371	0.538277	0.151133	00:38
2	0.608886	0.496884	0.254696	00:38
3	0.557438	0.431085	0.386364	00:37
4	0.516701	0.416808	0.476085	00:37
5	0.487569	0.412279	0.512709	00:37
6	0.464997	0.399387	0.514859	00:37
7	0.450095	0.398680	0.524334	00:37
8	0.436650	0.389633	0.534338	00:38
9	0.428610	0.389472	0.532546	00:37

EfficientDet

epoch	train_loss	valid_loss	COCOMetric	time
0	0.779975	0.887384	0.140874	00:25
1	0.700151	0.723331	0.172714	00:23
2	0.644590	0.658918	0.294107	00:22
3	0.592794	0.606164	0.330704	00:23
4	0.550768	0.521928	0.384231	00:23
5	0.516472	0.480586	0.401486	00:23
6	0.491730	0.444813	0.417749	00:23
7	0.469823	0.417321	0.455171	00:23
8	0.451999	0.416150	0.457720	00:23
9	0.441310	0.405147	0.477708	00:23

YOLO-V5

epoch	train_loss	valid_loss	COCOMetric	time
0	0.924407	1.139100	0.118237	00:15
1	0.813875	1.455061	0.165457	00:15
2	0.747731	1.117861	0.223106	00:14
3	0.701412	0.866094	0.306402	00:14
4	0.664457	0.756519	0.303205	00:14
5	0.632931	0.643673	0.481163	00:14
6	0.604743	0.547221	0.538219	00:14
7	0.580869	0.525873	0.584507	00:14
8	0.561514	0.519982	0.595998	00:14
9	0.546258	0.512514	0.610488	00:14

Comparison

Model	LR	mAP	Avg. time
Faster R-CNN	2e-04	0.57	57 sec
Y0L0-V5	1e-02	0.61	14 sec
Retina Net	8e-05	0.53	37 sec
EfficientDet	1e-02	0.48	23 sec

Best Model YOLO-V5

```
41
          0.389574
                      0.548379
                                  0.622749
                                           00:13
   42
          0.384600
                      0.549746
                                  0.621227 00:14
                      0.559521
                                  0.624182 00:14
   43
          0.380539
          0.376359
                      0.552600
                                  0.612266 00:14
   44
   45
          0.371917
                      0.554087
                                  0.622479
                                           00:14
   46
          0.370168
                      0.553329
                                  0.615118 00:14
          0.369631
                      0.555480
                                  0.619671 00:14
                      0.554739
          0.368694
                                  0.618568 00:14
          0.366679
                      0.554078
                                  0.619776 00:14
Better model found at epoch 0 with COCOMetric value: 0.11712814851744503.
Better model found at epoch 1 with COCOMetric value: 0.23050699305620143.
Better model found at epoch 2 with COCOMetric value: 0.3785265946222327.
Better model found at epoch 3 with COCOMetric value: 0.4446381264126172.
Better model found at epoch 5 with COCOMetric value: 0.46801126206937094.
Better model found at epoch 8 with COCOMetric value: 0.5182532786877971.
Better model found at epoch 12 with COCOMetric value: 0.5223814597991697.
Better model found at epoch 13 with COCOMetric value: 0.5452902918600457.
Better model found at epoch 17 with COCOMetric value: 0.5495939167804712.
Better model found at epoch 22 with COCOMetric value: 0.5847185619932614.
Better model found at epoch 24 with COCOMetric value: 0.5997363300132839.
Better model found at epoch 32 with COCOMetric value: 0.6171018943293074.
Better model found at epoch 38 with COCOMetric value: 0.6210552059955694.
Better model found at epoch 41 with COCOMetric value: 0.6227487698173754.
Better model found at epoch 43 with COCOMetric value: 0.6241815784979853.
```

Challenges

- Scarcity of Computational Resources (Google Colab Free Account Restrictions)
- Small Dataset
- > Error Handling
- > RBC, Platelets overlapping problem

THANK YOU

