Amendments to the Claims:

Please cancel claims 1-9 without prejudice. Please add new claims 10-27, as shown below in the List of Claims:

Listing of Claims:

- 1-9. Cancelled.
- 10. (New) A process for the hydrogenation of an aromatic compound, wherein said aromatic compound is an aliphatic-substituted aromatic or a heteroaromatic compound having an asymmetrical carbon atom, comprising hydrogenating said aromatic compound in the presence of a platinum-rhodium mixed catalyst.
- 11. (New) The process of claim 10, wherein said aromatic compound is an amino acid or an aromatic-substituted amino alcohol.
- 12. (New) The process of claim 10, wherein the ratio of platinum to rhodium in said platinum-rhodium mixed catalyst is between 20:1 and 1:1 (w/w).
- 13. (New) The process of claim 10, wherein said platinum-rhodium mixed catalyst is used in a quantity of 0.1 to 20 wt%, relative to the compound undergoing hydrogenation.
- 14. (New) The process of claim 10, wherein said platinum-rhodium mixed catalyst is adsorbed on a support.
- 15. (New) The process of claim 10, wherein said hydrogenation is performed in the presence of a solvent selected from the group consisting of: water; an alcohol; an ether; and mixtures thereof.
- 16. (New) The process of claim 10, wherein said hydrogenation is performed under hydrogen pressures of between 1 and 100 bar.

- 17. (New) The process of claim 10, wherein said hydrogenation is performed at a temperature of 10°C to 150°C.
- 18. (New) The process of claim 10, wherein:
 - a) said aromatic compound is an amino acid or an aromatic-substituted amino alcohol;
 - b) the ratio of platinum to rhodium in said platinum-rhodium mixed catalyst is between 20:1 and 1:1 (w/w);
 - c) said platinum-rhodium mixed catalyst is used in a quantity of 0.1 to 20 wt%, relative to the compound undergoing hydrogenation;
 - d) said platinum-rhodium mixed catalyst is adsorbed on a support;
 - e) said hydrogenation is performed in the presence of a solvent selected from the group consisting of: water; an alcohol; an ether; and mixtures thereof;
 - f) said hydrogenation is performed under a hydrogen pressure of between 1 and 100 bar; and
 - g) said hydrogenation is performed at a temperature of 10°C to 150°C.
- 19. (New) A process for the hydrogenation of the aromatic nucleus of a compound, comprising hydrogenating said compound in the presence of a platinum-rhodium mixed catalyst, wherein said compound has the general formula (I):

$$P^{1}$$
 R^{2}
 P^{2}
 R^{1}
 R^{3}
 R^{4}
(I)

wherein n can be 0, 1, 2

 R^1 represents unsubstituted or substituted (C_6 - C_{18}) aryl, (C_7 - C_{19}) aralkyl, ((C_1 - C_8) alkyl)₁₋₃ (C_6 - C_{18}) aralkyl ((C_1 - C_8) alkyl)₁₋₃ (C_6 - C_{18}) aryl, (C_3 - C_{18}) heteroaryl, (C_4 - C_{19}) heteroaralkyl, ((C_1 - C_8) alkyl)₁₋₃ (C_3 - C_{18}) heteroaryl,

 R^2 denotes H, OH, (C_1-C_8) alkyl, (C_2-C_8) alkoxyalkyl, (C_6-C_{18}) aryl, (C_7-C_{19}) aralkyl, (C_3-C_{18}) heteroaryl, (C_4-C_{19}) heteroaralkyl, $((C_1-C_8)$ alkyl)₁₋₃ (C_6-C_{18}) aryl, $((C_1-C_8)$

alkyl)₁₋₃ (C₃-C₁₈) heteroaryl, (C₃-C₈) cycloalkyl, ((C₁-C₈) alkyl)₁₋₃ (C₃-C₈) cycloalkyl, (C₃-C₈) cycloalkyl, (C₃-C₈) alkyl;

 R^3 and R^4 together denote an =O function or H or (C_1-C_8) alkyl, (C_6-C_{18}) aryl,

P¹ and P² mutually independently stand for hydrogen or an amino protective group or together stand for a bifunctional amino protective group,

P³ represents hydrogen or a hydroxyl protective group or carboxyl protective group and

the C atom marked with * is an asymmetrical C atom.

- 20. (New) The process of claim 19, wherein said compound is an aromatic amino acid or an aromatic-substituted amino alcohol.
- 21. (New) The process of claim 20, wherein the ratio of platinum to rhodium in said platinum-rhodium mixed catalyst is between 20:1 and 1:1 (w/w).
- 22. (New) The process of claim 20, wherein said platinum-rhodium mixed catalyst is used in a quantity of 0.1 to 20 wt%, relative to the compound undergoing hydrogenation.
- 23. (New) The process of claim 20, wherein said platinum-rhodium mixed catalyst is adsorbed on a support.
- 24. (New) The process of claim 20, wherein said hydrogenation is performed in the presence of a solvent selected from the group consisting of: water; an alcohol; an ether; and mixtures thereof.
- 25. (New) The process of claim 20, wherein said hydrogenation is performed under hydrogen pressures of between 1 and 100 bar.
- 26. (New) The process of claim 20, wherein said hydrogenation is performed at a temperature of 10°C to 150°C.

27. (New) The process of claim 20, wherein:

- a) said aromatic compound is an amino acid or aromatic-substituted amino alcohol;
- b) the ratio of platinum to rhodium in said platinum-rhodium mixed catalyst is between 20:1 and 1:1 (w/w);
- c) said platinum-rhodium mixed catalyst is used in a quantity of 0.1 to 20 wt%, relative to the compound undergoing hydrogenation;
- d) said platinum-rhodium mixed catalyst is adsorbed on a support;
- e) said hydrogenation is performed in the presence of a solvent selected from the group consisting of: water; and an alcohol;
- f) said hydrogenation is performed under a hydrogen pressure of between 1 and 100 bar; and
- g) said hydrogenation is performed at a temperature of 10°C to 150°C.