

Dose and schedule -dependence of Antibody Dependent Cell-mediated Cytotoxicity (ADCC) capacity and efficiency

Dean C Bottino
on behalf of the ADCC in GlycoMabs
working group
19 June 2013

Acknowledgements & main collaborators

- Sylvia Herter, Roche Glycart cell biology
- Marion Ott, onc translational medicine
- Marina Bacac, Roche Glycart cell biology
- Cheikh Diack, clinical pharmacology
- David Carlile, clinical pharmacology
- Eliezer Shochat, clinical pharmacology
- Alex Passioukov, onc translational medicine

ADCC background/definitions

- ADCC = Antibody Dependent Cell-mediated Cytotoxicity
- ADCC in cancer:
 - 1. mAb's variable region (fAb) binds to Receptor on tumor cell.
 - A Natural Killer (NK) cell or macrophage (MΦ) binds to the mAb's Fc
 - 3. Release of cytotoxins and death of the target cell
- Many anti-signaling mAbs may also elicit ADCC
- Glycoengineering the Fc domain → ↑affinity to Fc receptors (FcγRIIIa = CD16) on NK & MΦ's

Graphical model of NK-mediated ADCC

Comparison: ADCC induction by Glycomab vs other mAbs Roche

Experimental Conditions:

- T/E ratio = 1:2
- c [mAbs] = 200ng/ml
- YYY tumor cell labeled with green viability marker CMFDA (2µM for 30min prior to exp.)
- NK cells labbeled with red cell tracker PKH26 (2µM for 3 min)
- YYY cells grown on glass bottom culture dishes, then first add NK cells, wait a few min, then add antibody)
- Experiments performed by O. Mundigl, PLBDB

Motivating clinical questions

- Given that:
 - DrugA stimulates ADCC
 - ADCC transiently depletes
 CD16 on effector cells
 - CD16 is required for ADCC
- Can a lower DrugA dose actually give us better antitumor efficacy than a higher dose?
- Can a longer gap between DrugA doses give us better anti-tumor efficacy?
- Can we lower the dose from the recommended dose without losing efficacy?

Related modeling questions

- ADCC

DrugA

- Given a mathematical model based on:
 - In vitro concentration-dependent % ADCC killing data
 - In vitro %CD16+ depletion & recovery kinetic observations
 - In vitro "second ADCC" cell killing observations
 - Clinical DrugA population PK modeling
- Are there any physiologically reasonable parameter ranges for which the model predicts:
 - A bell-shaped dose-efficacy relationship?
 - Better efficacy from a longer dosing interval?
- If the model can be qualified for this purpose, is the predicted dose-response relationship flat in the dose range of interest?
- What are the major drivers of efficacy? Is dose one of them?

Let's ask the mechanistic model...

...developed in collaboration with Rosa Drug Development Partners

Sensitivity analysis points to key ADCC

parameters and processes requiring

further investigation

WorkFlow

- 1. Specify structural model & assumptions
- 2. Using data from in vitro assays with HV blood:
 - 1. Fit to ADCC & CD16 [DrugA]-response data
 - 2. Fit to ADCC & CD16 kinetic/recovery data (not yet done)
 - 3. Predict 2nd ADCC experiments, compare to data
- 3. Extrapolate to clinical scenario:
 - Use popPK model & additional assumptions to predict M(t)=[DrugA]_{tumor} over a range of doses & schedules
 - Use M(t) to 'drive' in vitro ADCC model & predict %CD16+ and tumor kill kinetics over several cycles
- Assess whether bell-shaped dose-efficacy is predicted or whether waiting longer between doses is predicted to increase efficacy

WorkFlow

- 1. Specify structural model & assumptions
- 2. Using data from in vitro assays with HV blood:
 - 1. Fit to ADCC & CD16 [DrugA]-response data
 - 2. Fit to ADCC & CD16 kinetic/recovery data (not yet done)
 - 3. Predict 2nd ADCC experiments, compare to data
- 3. Extrapolate to clinical scenario:
 - Use popPK model & additional assumptions to predict M(t)=[DrugA]_{tumor} over a range of doses & schedules
 - 2. Use M(t) to 'drive' in vitro ADCC model & predict %CD16+ and tumor kill kinetics over several cycles
- 4. Assess whether bell-shaped dose-efficacy is predicted or whether waiting longer between doses is predicted to increase efficacy

Simple cellular ADCC model: schematic

ASSUMPTIONS

- CD16+ effector cells (E) are produced/recover at a constant rate kE+. N+E = E_{tot} assumed constant.
- Absent ADCC, tumor cells

 (T) proliferate exponentially at a net rate g, which can be attenuated by Receptor inhibition as a function of [mAb]=M. AICC effects are implicit in g₀.
 - In the presence of E and mAb, ADCC can occur at an $[\underline{m}Ab]=M$ dependent rate a(M(t))ET. Each ADCC reaction results in loss of one tumor cell and r CD16+ effector cells.

Simple cellular ADCC model: equations pre-treatment

First order conversion of CD16- to CD16+ cells

Rate of change of CD16+
$$\frac{dE}{dt} = (E_{tot} - E)k_E^+$$

Rate of change of Tumor cells

Exponential tumor growth

Simple cellular ADCC model: equations on DrugA treatment

Simple cellular ADCC model: equations on DrugA treatment in XYZ^{mut}

mutant setting

Variables & parameters

$$\frac{dE}{dt} = (E_{tot} - E)k_E^+ - ra(M(t))E^rT$$

$$\frac{dT}{dt} = g(M(t))T - a(M(t))E^{r}T$$

	alias	Description	Units
E	E	#/vol of CD16+ Effector cells (state variable)	Cells (/vol)
T	Т	#/vol of viable Tumor (target) cells (state variable)	Cells (/vol)
M(t)	mab	m Ab concentration in tumor as function of time	ng/ml
E_{tot}	Etot	Total number of (CD16+ and CD16-) effector cells	Cells (/vol)
k_E^+	kEprod	Production/recovery rate of CD16+ Effector cells	1/day
r	r	Ratio: # of CD16+ cells depleted per tumor cell killed	1
a_{max}	amax	Max imum A DCC intensity as $M \to \infty$	1/(cells x day)
am_{50}	am50	mAb concentration giving 50% of max ADCC intensity	ng/ml
g_0	g0	Intrinsic tumor growth rate (including AICC offset)	1/day

Summary of model assumptions

- Closed system: Effector cells are neither destroyed nor replaced
- ADCC interaction: ADCC occurs when r (r~1) CD16+ cells encounter a tumor cell in the presence of mAb and cytokines. A single ADCC reaction kills one tumor cell and converts r CD16+ cells to CD16-.

CD16 Recovery:

- CD16- cells can return to CD16+ (1st order).
- CD16-/+ gating equivalent to ADCC incompetence/competence

This system of ODE's exhibits bi-stable behavior depending on the ratio ϕ of tumor growth rate g_0 to ADCC intensity a and total effector cell number E_{tot}

Nondimensionalized ODEs (r=1):

$$\frac{de}{d\tau} = 1 - e - \gamma_1 eu$$

$$\frac{du}{d\tau} = \gamma_2 u - \gamma_3 eu$$

Where:

$$e = \frac{E}{E_{tot}}, u = \frac{T}{T_0}, \tau = k_E^+ t,$$

$$\gamma_1 = \frac{aT_0}{k_E^+}, \gamma_2 = \frac{g_0}{k_E^+}, \gamma_3 = \frac{aE_{tot}}{k_E^+}$$

System behavior is highly sensitive to $\phi \equiv \frac{\gamma_2}{\gamma_3} = \frac{g_0}{aE_{tot}}$

WorkFlow

- 1. Specify structural model & assumptions
- 2. Using data from in vitro assays with HV blood:
 - 1. Fit to ADCC & CD16 [DrugA]-response 4h ADCC data
 - 2. Fit to ADCC & CD16 kinetic/recovery data
 - 3. Predict 2nd ADCC experiments, compare to data
- 3. Extrapolate to clinical scenario:
 - Use popPK model & additional assumptions to predict M(t)=[DrugA]_{tumor} over a range of doses & schedules
 - 2. Use M(t) to 'drive' in vitro ADCC model & predict %CD16+ and tumor kill kinetics over several cycles
- 4. Assess whether bell-shaped dose-efficacy is predicted or whether waiting longer between doses is predicted to increase efficacy

In vitro %ADCC %CD16+ assay probes [DrugA]-dependence of cell killing & CD16 depletion

- PBMCs from healthy volunteers incubated with (XYZ^{mut}) cells in presence of DrugA with NK:T ~ (2.5 & 1) for 4h.
- $\%ADCC \equiv 100 \frac{LDH_{exper} LDH_{spont}}{LDH_{max} LDH_{spont}}$
 - "experimental" is with given [DrugA] in presence of effector cells
 - "Spontaneous" is in presence of effector cells but no DrugA (~AICC)
 - "Maximal" is detergent treated
- $\%CD16^+ \equiv \frac{E(4h)}{E_{tot}}$ gives fraction of (NK) cells that are CD16 positive (rel to gate).

After 3-4h of incubation, %ADCC increases while %CD16+ decreases with increasing [DrugA]

The model parameters can be adjusted to simultaneously reproduce the observed in vitro concentration-response of %ADCC and %CD16+

Parameter estimates (least squares followed by shrinking step)

Roche

Stability analysis using parameter estimates from in vitro assays (at $a=a_{max}$, NK:T~1)

110405 (ϕ =1.03)

111027 (ϕ =0.07)

Roche

Simulated E:T & exposure dependence (24h incubation)

24h simulated incubation22h doubling time assumedNo effect on growth, ADCC only

2nd ADCC experiments & simulations

Second ADCC simulations

IN VITRO

- PBMCs isolated from subject 110711
- 1st ADCC conditions
 - NK:T ratio ~ 1
 - [DrugA] = 100ng/ml
 - 4 hours incubation
- Washout DrugA & tumor cells & allow PBMC recovery for 3 days
- PBMC's may become 'unhappy' in culture after 3 days
- 2nd ADCC conditions
 - NK:T ratio 1:1
 - [DrugA] = .1,1,10,100 ng/ml
 - 4 hours incubation

IN SILICO

- Parameters as calibrated to subjects 110405 & 111027
- 1st ADCC conditions
 - NK:T ratio ~ 1
 - [DrugA] = 100ng/ml
 - 4 hours simulated time
- Set [DrugA]=0 after 4h and allow CD16 recovery for 1h, 8h, 1, 2, 4, 7, 14, 21, 28days
- Virtual cells are always happy...
- 2nd ADCC conditions
 - Etot held constant, tumor cells set back to original TO value.
 - [DrugA] = $.01,0.1,1,10,100,10^3,10^4$
 - 4 hours simulated time

2nd ADCC simulations predict dependence on both concentration and recovery time.

Next slide: look at 100ng/ml "slice" through the above graphs

Model predicts that in vitro, ADCC is sensitive to recovery time up to ~14 days (but interindividual variability is even more important)

Conclusions of this section

In vitro model can capture:

- Mab-dependence of tumor cell killing and CD16+ depletion.
- CD16+ recovery kinetics after ADCC
- Qualitative 2nd ADCC
 dependence on recovery
 time and DrugA
 concentration

WorkFlow

- 1. Specify structural model & assumptions
- 2. Using data from in vitro assays with HV blood:
 - 1. Fit to ADCC & CD16 [DrugA]-response 4h ADCC data
 - 2. Fit to ADCC & CD16 kinetic/recovery data (not yet done)
 - 3. Predict 2nd ADCC experiments, compare to data
- 3. Extrapolate to clinical scenario:
 - Use popPK model & additional assumptions to predict M(t)=[DrugA]_{tumor} over a range of doses & schedules
 - Use M(t) to 'drive' in vitro ADCC model & predict %CD16+ and tumor kill kinetics over several cycles
- 4. Assess whether U-shaped dose-efficacy is predicted or whether waiting longer between doses is predicted to increase efficacy

Use popPK model & additional assumptions to predict M(t)=[DrugA]_{tumor} over a range of doses & schedules

For simplicity, we approximate M(t) = [DrugA]_{tumor} by assuming

$$M(t) \approx t b_{ratio} [DrugA]_{blood}^*$$

• Literature (Wittrup) suggests generic lgG1 tb_{ratio} (at vessel wall) to be $^{\circ}0.006$, so we use a range of 0.001 to 0.01

^{*[}DrugA] time profile at a given location in the tumor interstitium is a complex function of blood concentration, vascular permeability, diffusivity, distance from nearest vessel, Receptor density & internalization, CD16 density, and other factors.

WorkFlow

- 1. Specify structural model & assumptions
- 2. Using data from in vitro assays with HV blood:
 - 1. Fit to ADCC & CD16 [DrugA]-response 4h ADCC data
 - 2. Fit to ADCC & CD16 kinetic/recovery data (not yet done)
 - 3. Predict 2nd ADCC experiments, compare to data
- 3. Extrapolate to clinical scenario:
 - Use popPK model & additional assumptions to predict M(t)=[DrugA]_{tumor} over a range of doses & schedules
 - 2. Use M(t) to 'drive' in vitro ADCC model & predict %CD16+ and tumor kill kinetics over several cycles
- 4. Assess whether bell-shaped dose-efficacy is predicted or whether waiting longer between doses is predicted to increase efficacy ("inverse schedule dependence")

First some more definitions...

$$\frac{dE}{dt} = (E_{tot} - E)k_E^+ - rR_{ADCC}$$

$$\frac{dT}{dt} = g_0 T - R_{ADCC}$$

$$R_{ADCC} \equiv E^r T \left(\frac{a_{max} M^{h_m}}{a m_{50}^{h_m} + M^{h_m}} \right)$$

"%CD16+"(t)
$$\equiv \frac{E(t)}{E_{tot}}$$

$$ADCC_{cum}(t) \equiv \int_{0}^{t} R_{ADCC}(\tau) d\tau$$

$$maxCD16 \equiv \max_{t>28d} E(t)/E_{tot}$$

Simulations predict cumulative ADCC is neither bell-shaped in dose nor "reverse schedule-dependent"

... even though %CD16+ acts the way we think it would...

What's going on? Model predicts that most ADCC occurs when

[mAb]>am₅₀ & %CD16+ is low

Additional prediction/insight: cumulative ADCC is much more sensitive to E_{tot} :T ratio than to dose

Doubling dose 200 \rightarrow 400: ADCC 0.06 \rightarrow 0.08 (+33%) Doubling E:T 0.01 \rightarrow 0.02: ADCC 0.06 \rightarrow 0.17 (+200%)

Doubling dose 200 \rightarrow 400: ADCC 0.43 \rightarrow 0.45 (+4%) Doubling E:T 0.01 \rightarrow 0.02: ADCC 0.43 \rightarrow 0.86 (+100%)

Conclusions

- In spite of interesting ADCC/CD16 dynamics, both the complex and simple multi-scale models predict
 - Strictly monotonic dose-efficacy relationship
 - No inverse schedule dependence at relevant doses
 - Higher sensitivity to Effector: Target ratio than to Drug A dose
- Complex models are useful for
 - Encompassing many potential mechanisms and their interactions
 - Sensitivity analysis pointing to sub-models of interest
- Simpler models are useful for
 - Deconstructing counterintuitive behavior (of bigger model) via phase plane & bifurcation analysis
 - Faster analyses and better defined parameter estimation
 - Explaining quickly to wide audiences

Technical appendix

And archive of paths not taken or to be taken

Nondimensionalize

$$\frac{dE}{dt} = E_{tot}k_E^+ - (k_E^+ + k_E^-)E - ra'E^rT$$

$$\frac{dT}{dt} = g'T - \mathbf{a'}E^rT$$

- Scale time by CD16 turnover rate: $\tau = k_F^- t$
- Scale E by Etot so that e is the CD16+ ratio: $e = \frac{E}{E_{tot}}$.
- Scale T by initial tumor size: $u = \frac{T}{T_0}$.
- Let:

$$\bullet \quad \gamma_1 = \frac{k_E^+}{k_E^-}$$

•
$$\gamma_3 = \frac{g'}{k_E^-}$$

$$\bullet \quad \gamma_4 = \frac{a'_{E_{tot}}^r}{k_E^-}$$

$$\frac{de}{d\tau} = \frac{k_E^+}{k_E^-} - \left(\frac{k_E^+}{k_E^-} + 1\right)e - \frac{T_0 r E_{tot}^{r-1} a'}{k_E^-} e^r u$$

$$\frac{du}{d\tau} = \frac{g'}{k_E^-} u - \frac{a' E_{tot}^r}{k_E^-} e^r u$$

$$\frac{\frac{de}{d\tau}}{\frac{du}{d\tau}} = \gamma_1 - (\gamma_1 + 1)e - \gamma_2 e^r u$$

$$\frac{du}{d\tau} = \gamma_3 u - \gamma_4 e^r u$$

Stability analysis drug: g=g'>0, a'>0

$$\frac{\frac{de}{d\tau}}{\frac{du}{d\tau}} = \gamma_1 - (\gamma_1 + 1)e - \gamma_2 e^r u$$

$$\frac{du}{d\tau} = \gamma_3 u - \gamma_4 e^r u$$

$$\phi \equiv \left(\frac{\gamma_3}{\gamma_4}\right)^{\frac{1}{r}} = \left(\frac{g'}{a'}\right)^{\frac{1}{r}} \frac{1}{E_{tot}}$$

Bifurcation stuff

- Key parameter $\phi \equiv \frac{\gamma_3}{\gamma_4} = \frac{g'}{a'E_{tot}}$
- Absent drug, $\phi > \frac{\gamma_1}{\gamma_1 + 1}$, otherwise tumor wouldn't grow.
- As we add more drug, ϕ gets smaller because g' gets smaller and a' gets bigger. When $\phi < \frac{\gamma_1}{\gamma_1 + 1}$, we get a saddle at (ϕ, u^*) and two regions. If u is small enough the tumor shrinks to zero, otherwise it grows without bound.
- If Receptor inhibition is strong enough to actually shrink the tumor, ie, g' < 0, then we get down to $\phi < 0$, in which case the tumor shrinks no matter what.

$$\phi \equiv \left(\frac{\gamma_3}{\gamma_4}\right)^{\frac{1}{r}} = \left(\frac{g'}{a'}\right)^{\frac{1}{r}} \frac{1}{E_{tot}}$$

$$\frac{\gamma_1}{\gamma_1 + 1} = \frac{k_E^+}{k_E^+ + k_E^-}$$

This model predicts that significant ADCC can occur even when %CD16+ is tiny!

- 'Thought experiment': If we assume constant tumor T_0 and r = 1, what happens to the ADCC rate R_{ADCC} if we have sustained high concentrations of DrugA and a high a_{max} (max ADCC efficiency)?
 - No ADCC because %CD16+ gets knocked way down?
 - Some ADCC because we have DrugA on board?
 - Lots of ADCC because $a \sim a_{max}$, which is big?
- The answer, according to the model, is:

$$\%CD16^+ \rightarrow 0$$
, but $R_{ADCC} \rightarrow E_{tot}k_E^+ > 0$ as $a_{max} \rightarrow \infty$

• In other words, even if a_{max} is big enough to make $CD16^+{\sim}0$, the ADCC rate can still be nonzero!

New model

ASSUMPTIONS

- CD16+ effector cells (E) are produced/recover at a constant rate kE+ and 'decay' absent ADCC activity at a rate kE-. N is the number of CD16 Negative cells. N+E = E_{tot} assumed constant for now (in vitro).
- Absent ADCC/AICC, tumor cells (T)
 proliferate exponentially at a net rate
 g, which can be attenuated by
 Receptor inhibition as a function of
 [mAb]=M, ie g(M). AICC effects are
 implicit in g.
- In the presence of E and mAb, ADCC can occur at an $[\underline{m}Ab]=M$ dependent rate a(M(t))ET. Each ADCC reaction results in loss of one tumor cell and r CD16+ effector cells.

Effector cells:
$$\frac{dE}{dt} = (E_{tot} - E)k_E^+ - k_E^- E - ra(M(t))E^r T$$

Tumor cells:
$$\frac{dT}{dt} = g(M(t))T - a(M(t))E^{r}T$$

The model

$$\frac{dE}{dt} = (E_{tot} - E)k_E^+ - k_E^- E - ra(M(t))E^r T$$

$$\frac{dT}{dt} = g(M(t))T - a(M(t))E^{r}T$$

	Description	Value
E	#/vol of CD16+ Effector cells (state variable)	>0
T	#/vol of viable Tumor (target) cells (state variable)	>0
E_{tot}	Total number of (CD16+ and CD16-) effector cells	>0
k_E^+	Production/recovery rate of CD16+ Effector cells	>0
k_E^-	Baseline 1st order degradation rate of CD16+ Effector cells	>0
r	Ratio of how many CD16+ cells depleted per tumor cell killed	>0
a(M)	ADCC efficiency as function of mAb concentration	>0
M(t)	mAb concentration as function of time	>=0
g(M)	Tumor growth rate as function of mAb concentration Baseline growth rate g_0 includes AICC effects	$-\infty < g < +\infty$ $g(0) = g_0 > 0$

Stability analysis

No drug: $g=g_0$, a'=0

$$\frac{de}{d\tau} = \gamma_1 - (\gamma_1 + 1)e - \gamma_2 e^r u$$

$$\frac{du}{d\tau} = \gamma_3 u - \gamma_4 e^r u$$

Simple_cell_mode l.m

LDH data

$$\frac{dE}{dt} = E_{tot}k_E^+ - (k_E^+ + k_E^-)E - ra(M)E^rT$$

$$\frac{dE}{dT} = g(M)T - a(M)E^rT$$

- The %ADCC is calculated as: (experimental LDH release spontaneous LDH release)/(maximal LDH release spontaneous LDH release)x100. = 100α (see equation \rightarrow)
- $\alpha(M) \equiv \frac{L_M L_0}{L_d L_0}$

- "experimental" is with given conc of DrugA in presence of effector cells
- Spontaneous is in presence of effector cells but no DrugA
- Maximal is detergent treated

$$g_0 = \widetilde{g} - \underbrace{k_i E_{tot}}_{AICC} = \widetilde{g} - \widetilde{k_i}$$

$$T_0 = gT$$

$$\frac{dT}{dt} = gT$$

$$L_M - L_0$$

$$\frac{dT}{dt} = g(M)T - a(M)ET$$

$$L_d - L_0$$

$$\alpha(t;m) = \frac{T_0 e^{g_0 t} - T(t;M)}{T_0 e^{g_0 t}} = 1 - \frac{T(t;M)}{T_0 e^{g_0 t}} = 1 - u(t;M) e^{-g_0 t}$$

