Schur Complement

• the Schur complement: let

$$\mathbf{X} = egin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{D} \end{bmatrix},$$

where $\mathbf{A} \in \mathbb{S}^m$, $\mathbf{B} \in \mathbb{R}^{m \times n}$, $\mathbf{D} \in \mathbb{S}^n$ with $\mathbf{D} \succ \mathbf{0}$. Let

$$\mathbf{S}_D = \mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{B}^T,$$

which is called the Schur complement of **D**.

We have

$$\mathbf{X}\succeq\mathbf{0} \ (\mathsf{resp.}\ \mathbf{X}\succ\mathbf{0}) \iff \mathbf{S}_D\succeq\mathbf{0} \ (\mathsf{resp.}\ \mathbf{S}_D\succ\mathbf{0})$$

- example: let ${f D}$ be PD. By the Schur complement,

$$1 - \mathbf{b}^T \mathbf{D}^{-1} \mathbf{b} \ge 0 \iff \mathbf{D} - \mathbf{b} \mathbf{b}^T \succeq \mathbf{0}$$

(prove by yourself)

Schur Complement

let a PD matrix

$$\mathbf{X} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{b}^T & d \end{bmatrix},$$

where $\mathbf{A} \in \mathbb{S}^{m-1}$, $\mathbf{b} \in \mathbb{R}^m$, $d \in \mathbb{R}$.

- if $\mathbf{b} \neq \mathbf{0}$, the first m-1 diagonal elements of \mathbf{X}^{-1} are larger than or equal to the corresponding diagonal elements of \mathbf{A}^{-1} and the mth diagonal element of \mathbf{X}^{-1} is larger than d^{-1} .
- If b = 0, the diagonal elements of X^{-1} are equal to the corresponding diagonal elements of A^{-1} and d^{-1} .
- proof (via $s_A = d \mathbf{b}^T \mathbf{A}^{-1} \mathbf{b}$):

$$\mathbf{X}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{b}(d - \mathbf{b}^{T}\mathbf{A}^{-1}\mathbf{b})^{-1}\mathbf{b}^{T}\mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{b}(d - \mathbf{b}^{T}\mathbf{A}^{-1}\mathbf{b})^{-1} \\ -(d - \mathbf{b}^{T}\mathbf{A}^{-1}\mathbf{b})^{-1}\mathbf{b}^{T}\mathbf{A}^{-1} & (d - \mathbf{b}^{T}\mathbf{A}^{-1}\mathbf{b})^{-1} \end{bmatrix}$$

• proof (via $\mathbf{S}_d = \mathbf{A} - d^{-1}\mathbf{b}\mathbf{b}^T$):

$$\mathbf{X}^{-1} = \begin{bmatrix} (\mathbf{A} - d^{-1}\mathbf{b}\mathbf{b}^{T})^{-1} & -(\mathbf{A} - d^{-1}\mathbf{b}\mathbf{b}^{T})^{-1}\mathbf{b}d^{-1} \\ -d^{-1}\mathbf{b}^{T}(\mathbf{A} - d^{-1}\mathbf{b}\mathbf{b}^{T})^{-1} & d^{-1} + d^{-1}\mathbf{b}^{T}(\mathbf{A} - d^{-1}\mathbf{b}\mathbf{b}^{T})^{-1}\mathbf{b}d^{-1} \end{bmatrix}$$

Application: Linear Transformations of Random Vectors

- scalar multiplication: covariance matrix of ay is $a^2\Sigma$
- sum: given two uncorrelated random vectors \mathbf{y}_1 , \mathbf{y}_2 with covariance matrices Σ_1 and Σ_2 , resp., covariance matrix of $\mathbf{y}_1 + \mathbf{y}_2$ is $\Sigma_1 + \Sigma_2$
- affine transformation: define the m-dim. random vector $\mathbf{z} = \mathbf{A}\mathbf{y} + \mathbf{b}$ where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$ are deterministic, covariance matrix of \mathbf{z} is $\mathbf{A} \mathbf{\Sigma} \mathbf{A}^T$
 - suppose ${\bf x}$ is a random (column) vector with non-singular covariance matrix ${\bf \Sigma}$ and mean ${\bf 0}$, then the transformation

$$y = Wx$$

with a whitening matrix \mathbf{W} satisfying the condition $\mathbf{W}^T\mathbf{W} = \mathbf{\Sigma}^{-1}$ yields the whitened random vector \mathbf{y} with unit diagonal covariance

– infinitely many possible \mathbf{W} : $\mathbf{W} = \mathbf{\Sigma}^{-1/2}$ (Mahalanobis or ZCA whitening), $\mathbf{W} = \mathbf{L}^T$ with \mathbf{L} the Cholesky factor of $\mathbf{\Sigma}^{-1}$ (Cholesky whitening), the eigensystem of $\mathbf{\Sigma}$ (PCA whitening), or CCA whitening considering two random vectors

Application: Factor Model

• suppose a n-dim. random vector \mathbf{x} has covariance matrix

$$\mathbf{\Sigma} = \mathbf{A}\mathbf{A}^T + \sigma^2 \mathbf{I}$$

- ullet x can be interpreted as being generated by a model $\mathbf{x} = oldsymbol{\mu} + \mathbf{A}\mathbf{y} + \mathbf{w}$, where
 - $-\mu$ is the mean of ${\bf x}$
 - ${f y}$ is a random variable with mean zero and covariance matrix ${f I}$
 - w is random error or noise, uncorrelated with y, with E[w] = 0, $E[ww^T] = \sigma^2 I$
- in statistics and machine learning, this is known as a factor model
 - components of ${\bf y}$ are common factors in ${\bf x}$
 - $-\mathbf{x} \boldsymbol{\mu}$ is a vector $\mathbf{A}\mathbf{y}$ in a subspace $\mathcal{R}(\mathbf{A})$ plus noise \mathbf{w}

- a graph is made up of vertices (a.k.a. nodes or points) which are connected by edges (a.k.a. links or lines)
- a graph is completely determined by specifying either its adjacency structure or its incidence structure
 - In a graph, two vertices are adjacent if they are connected by an edge.
 - note: two edges are adjacent if they share a common vertex; the edge adjacency relations are not often used since they cannot uniquely determine a graph
 - In a graph, a vertex is incident to an edge (or an edge is incident to a vertex)
 if the vertex is one of the two vertices that the edge connects.
- these specifications provide far more efficient ways of representing a large or complicated graph than a pictorial representation
- as computers are more adept at manipulating numbers than at recognising pictures, it is standard to use matrix representations for the graph in computers
- the rank and eigenvalue (eigenvector) properties of graph matrices may dictate the structures of the graph

- we consider a simple graph, i.e., a graph without loops (a.k.a. self-loops, self-edges, or buckles) and multiple edges (a.k.a. parallel edges or a multi-edge)
- for a directed graph (i.e., digraph) with m vertices and n edges, the adjacency matrix is a matrix $\mathbf{A} \in \mathbb{R}^{m \times m}$ defined by
 - $a_{ij} = \begin{cases} 1 & \text{if vertex } i \text{ and vertex } j \text{ are adjacent with an edge from vertex } i \text{ to } j \\ 0 & \text{otherwise} \end{cases}$
- encodes the relation of "vertex-vertex" pairs; square (typically sparse) with zeros on its diagonal; if graph is undirected (directed), it is symmetric (asymmetric)

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- for a directed graph, in-degree of vertex k is $d_k^{\text{in}} = \sum_{i=1}^m a_{ik}$ ($\mathbf{d}^{\text{in}} = \mathbf{A}^T \mathbf{1}$); out-degree of vertex k is $d_k^{\text{out}} = \sum_{i=1}^m a_{ki}$ ($\mathbf{d}^{\text{out}} = \mathbf{A} \mathbf{1}$)
- degree of vertex k, i.e., number of edges incident with it, is $d_k = d_k^{\text{in}} + d_k^{\text{out}}$ $(\mathbf{d} = \mathbf{d}^{\text{in}} + \mathbf{d}^{\text{out}})$
- symmetrized adjacency matrix $\tilde{\mathbf{A}}$ (i.e., taking the graph as undirected) and (vertex-)degree matrix \mathbf{D} contains infor. about the degree of each vertex; degree of vertex k is $d_k = \sum_{i=1}^m \tilde{a}_{ik} = \sum_{i=1}^m \tilde{a}_{ki}$, i.e., $\mathbf{d} = \tilde{\mathbf{A}} \mathbf{1} = \tilde{\mathbf{A}}^T \mathbf{1}$

$$\tilde{\mathbf{A}} = \mathbf{A} \vee \mathbf{A}^T = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{D} = \text{Diag}(\mathbf{d}) = \begin{bmatrix} 3 & & & \\ & 2 & & \\ & & 3 & \\ & & & 2 \end{bmatrix}$$

• we can associate a nonnegative weight w_k with edge k and $\mathbf{w} = [w_1, \dots, w_n]^T$; the weighted adjaciency matrix and symmetrized weighted adjacency matrix are

$$\mathbf{A}_w = \begin{bmatrix} 0 & w_1 & 0 & w_2 \\ 0 & 0 & w_3 & 0 \\ w_4 & 0 & 0 & w_5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \tilde{\mathbf{A}}_w = \begin{bmatrix} 0 & w_1 & w_4 & w_2 \\ w_1 & 0 & w_3 & 0 \\ w_4 & w_3 & 0 & w_5 \\ w_2 & 0 & w_5 & 0 \end{bmatrix} \neq \mathbf{A}_w + \mathbf{A}_w^T$$

- the weighted in- and out-degree are $\mathbf{d}_w^{\text{in}} = \mathbf{A}_w^T \mathbf{1}$ and $\mathbf{d}_w^{\text{out}} = \mathbf{A}_w \mathbf{1}$; weighted degree $\mathbf{d}_w = \mathbf{d}_w^{\text{in}} + \mathbf{d}_w^{\text{out}} = \tilde{\mathbf{A}}_w \mathbf{1}$; weighted degree matrix $\mathbf{D}_w = \text{Diag}(\mathbf{d}_w)$
- the (symmetric) normalized adjacency $\bar{\mathbf{A}} = \mathbf{D}^{-1/2} \tilde{\mathbf{A}} \mathbf{D}^{-1/2}$ and the normalized weighted adjacency $\bar{\mathbf{A}}_w = \mathbf{D}_w^{-1/2} \tilde{\mathbf{A}}_w \mathbf{D}_w^{-1/2}$
- the row normalized (a.k.a. left normalized) and column normalized (a.k.a. right normalized) adjacency are $\bar{\mathbf{A}}_{\text{row}} = \mathbf{D}^{-1}\tilde{\mathbf{A}}$ and $\bar{\mathbf{A}}_{\text{col}} = \tilde{\mathbf{A}}\mathbf{D}^{-1}$, resp.; definitions for $\bar{\mathbf{A}}_{w,\text{row}}$ and $\bar{\mathbf{A}}_{w,\text{col}}$ follow
- ullet note the scaling of w_k has no effect on $ar{\mathbf{A}}_w$, $ar{\mathbf{A}}_{w,\mathsf{row}}$, and $ar{\mathbf{A}}_{w,\mathsf{col}}$

- If A is the adjacency matrix of a directed or undirected graph, the (i, j)-th element in A^k means the number of (directed or undirected) walks of length k from vertex i to vertex j.
- not to be confused with the distance matrix (or vertex-distance matrix or the minimum path matrix) of a graph, which cantains the length of the shortest path, i.e., the minimum number of edges, between any two vertices i and j
- The adjacency matrix can be used to determine whether a graph is connected.

• for a directed graph with m vertices and n edges, the (oriented) incidence matrix is a matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ defined by

$$b_{ij} = \begin{cases} 1 & \text{if edge } j \text{ ends at vertex } i \\ -1 & \text{if edge } j \text{ starts at vertex } i \\ 0 & \text{otherwise} \end{cases}$$

• it indicates whether "vertex-edge" pairs are incident or not

$$\mathbf{B} = \begin{bmatrix} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- ullet the "edge-vertex" incidence matrix is ${f B}^T$
- ullet we can also define the weighted incidence matrix ${f B}_w = {f B}{f D}_w^{1/2}$

- matrix $\mathbf{L} = \mathbf{B}\mathbf{B}^T$ is called (symmetric signed) Laplacian matrix or graph Laplacian
- ullet a symmetric $m \times m$ matrix with elements

$$\ell_{ij} = \begin{cases} \text{degree of vertex } i & \text{if } i = j \\ -1 & \text{if } i \neq j \text{ and vertices } i \text{ and } j \text{ are adjacent} \\ 0 & \text{otherwise} \end{cases}$$

• does not depend on the orientation of the edges; square and typically sparse

$$\begin{array}{c|c}
 & 3 & 3 \\
\hline
1 & 4 & 5 \\
\hline
1 & 2 & 4
\end{array}$$

$$\mathbf{L} = \mathbf{B}\mathbf{B}^T = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 3 & -1 \\ -1 & 0 & -1 & 2 \end{bmatrix}$$

- L is PSD; $rank(\mathbf{L}) = rank(\mathbf{B})$; $\lambda_{min}(\mathbf{L}) = 0$; $\mathbf{L} = \mathbf{D} \tilde{\mathbf{A}}$ and $\lambda(\mathbf{L}) = 1 \lambda(\tilde{\mathbf{A}})$ an "augmented vertex-adjacency matrix"; edge-based Laplacian is not often used
- ullet symm. normalized Laplacian $ar{\mathbf{L}} = \mathbf{I} ar{\mathbf{A}} = \mathbf{D}^{-1/2} (\mathbf{D} \tilde{\mathbf{A}}) \mathbf{D}^{-1/2} = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2}$

ullet the weighted graph Laplacian is the matrix $\mathbf{L}_w = \mathbf{B}_w \mathbf{B}_w^T = \mathbf{B} \mathbf{D}_w \mathbf{B}^T$

$$\ell_{w,ij} = \begin{cases} \sum_{k \in \mathcal{N}_i} w_k & \text{if } i = j \text{ (where } \mathcal{N}_i \text{ is the set of edges incident to vertex } i) \\ -w_k & \text{if } i \neq j \text{ and edge } k \text{ is between vertices } i \text{ and } j \\ 0 & \text{otherwise} \end{cases}$$

• still a PSD matrix; $\operatorname{rank}(\mathbf{L}_w) = \operatorname{rank}(\mathbf{B}_w)$; $\lambda_{\min}(\mathbf{L}_w) = 0$; $\mathbf{L}_w = \mathbf{D}_w - \tilde{\mathbf{A}}_w$

- it is the conductance matrix of a resistive circuit (w_k) is conductance in branch k
- the symmetric normalized weighted Laplacian $\bar{\mathbf{L}}_w = \mathbf{I} \bar{\mathbf{A}}_w = \mathbf{D}_w^{-1/2}(\mathbf{D}_w \tilde{\mathbf{A}}_w)\mathbf{D}_w^{-1/2} = \mathbf{D}_w^{-1/2}\mathbf{L}_w\mathbf{D}_w^{-1/2}$

- Laplacian matrix is used to characterize the "smoothness" of a graph
- smooth: if two vertices are adjacient, values of the two vertices should be close
- the Laplacian quadratic form (a.k.a. Dirichlet energy)

$$\mathbf{x}^{T}\mathbf{L}_{w}\mathbf{x} = \|\mathbf{B}_{w}^{T}\mathbf{x}\|_{2}^{2} = \begin{bmatrix} -\sqrt{w_{1}} & \sqrt{w_{1}} & 0 & 0 \\ -\sqrt{w_{2}} & 0 & 0 & \sqrt{w_{2}} \\ 0 & -\sqrt{w_{3}} & \sqrt{w_{3}} & 0 \\ \sqrt{w_{4}} & 0 & -\sqrt{w_{5}} & \sqrt{w_{5}} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} \Big|_{2}^{2} = \sum_{k \sim (i,j)} w_{k}(x_{i} - x_{j})^{2}$$

the normalized Laplacian quadratic form

$$\mathbf{x}^{T}\bar{\mathbf{L}}_{w}\mathbf{x} = \|\mathbf{B}_{w}^{T}\mathbf{D}_{w}^{-1/2}\mathbf{x}\|_{2}^{2} = \sum_{k \sim (i,j)} w_{k} \left(\frac{x_{i}}{\sqrt{d_{w,i}}} - \frac{x_{j}}{\sqrt{d_{w,j}}}\right)^{2}$$

• if x is a signal on the graph, minimize this enengy is to minimize the variation of the graph signal

• for a directed graph with m vertices and n edges, the (unoriented) incidence matrix is a matrix $\tilde{\mathbf{B}} \in \mathbb{R}^{m \times n}$ defined by

$$\tilde{b}_{ij} = \begin{cases} 1 & \text{if vertex } i \text{ is incident to edge } j \\ 0 & \text{otherwise} \end{cases}$$

• it indicates whether "vertex-edge" pairs are incident or not

$$\tilde{\mathbf{B}} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

- ullet the signless Laplacian is $ilde{\mathbf{L}} = ilde{\mathbf{B}} ilde{\mathbf{B}}^T$ which is PSD and $ilde{\mathbf{L}} = \mathbf{D} + ilde{\mathbf{A}}$
- ullet we can also define the weighted incidence matrix $ilde{\mathbf{B}}\mathbf{D}_w^{1/2}$ and the "edge-vertex" incidence matrix $ilde{\mathbf{B}}^T$

Convexity of Log-Determinant Function

• The logarithmic determinant (log-determinant) function is a function from \mathbb{S}^n , with domain the set of PD matrices, and with values

$$f(\mathbf{X}) = \begin{cases} \log \det \mathbf{X} & \text{if } \mathbf{X} \succ \mathbf{0} \\ +\infty & \text{otherwise.} \end{cases}$$

Through eigendecomposition, the function can be expressed in terms of the eigenvalues of X. It provides a measure of the volume of an ellipsoid.

• Precisely, the volume of the ellipsoid $\mathcal{E}(\mathbf{P}) = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}^T \mathbf{P}^{-1} \mathbf{x} \leq 1\}$ is given by $\operatorname{vol}(\mathcal{E}(\mathbf{P})) = C_n \prod_{i=1}^n \lambda_i^{1/2}(\mathbf{P})$, where C_n is a constant (given by the volume of the unit sphere in \mathbb{R}^n). Thus,

$$\log \operatorname{vol}(\mathcal{E}(\mathbf{P})) = \frac{1}{2}f(\mathbf{P}) + \text{constant}.$$

ullet This means that the volume of the ellipsoid is a function of the product of the eigenvalues of the matrix ${f P}$.

Convexity of Log-Determinant Function

- Log-determinant function $f(\mathbf{X}) = \log \det(\mathbf{X})$ is concave for PD \mathbf{X} .
- Fact: a function is convex if and only if its restriction to a line is.
- We can consider an arbitrary line, given by $\mathbf{X} = \mathbf{Z} + t\mathbf{V}$, where $\mathbf{Z}, \mathbf{V} \in \mathbb{S}^n$.
- We define $g(t) = f(\mathbf{Z} + t\mathbf{V})$, and restrict g to the interval of values of t for which $\mathbf{Z} + t\mathbf{V} \succ \mathbf{0}$. Without loss of generality, we can assume that t = 0 is inside this interval, i.e., $\mathbf{Z} \succ \mathbf{0}$. We have

$$g(t) = \log \det(\mathbf{Z} + t\mathbf{V})$$

$$= \log \det \left(\mathbf{Z}^{1/2} \left(\mathbf{I} + t\mathbf{Z}^{-1/2}\mathbf{V}\mathbf{Z}^{-1/2}\right)\mathbf{Z}^{1/2}\right)$$

$$= \sum_{i=1}^{n} \log (1 + t\lambda_i) + \log \det \mathbf{Z}$$

where λ_i is the eigenvalue of $\mathbf{Z}^{-1/2}\mathbf{V}\mathbf{Z}^{-1/2}$.

• It is easy to verify g(t) is concave, and hence $f(\mathbf{X})$ is concave.

Application: Spectral Analysis

consider the complex harmonic time-series

$$y_t = \sum_{i=1}^k \alpha_i e^{j2\pi f_i t} + w_t, \quad t = 0, 1, \dots, T - 1$$

where $\alpha_i \in \mathbb{C}$ is the amplitude-phase coefficient of the *i*th sinusoid; $f_i \in \left[-\frac{1}{2}, \frac{1}{2}\right)$ is the frequency of the *i*th sinusoid; w_t is noise; T is the observation time length

- Aim: estimate the frequencies f_1, \ldots, f_k from $\{y_t\}_{t=0}^{T-1}$
 - can be done by applying the Fourier transform
 - the spectral resolution of Fourier-based methods is often limited by ${\cal T}$
- our interest: study a subspace approach which can enable "super-resolution"
- suggested reading: [Stoica-Moses'97]

Application: Spectral Analysis

An illustration of the Fourier spectrum. $T=64,\ k=5,\ \{f_1,\ldots,f_k\}=\{-0.213,-0.1,-0.05,0.3,0.315\}.$

Spectral Analysis via Subspace: Formulation

• let $z_i = e^{j2\pi f_i}$. Given a positive integer d, let

$$\mathbf{y}_{t} = \begin{bmatrix} y_{t} \\ y_{t+1} \\ \vdots \\ y_{t+d-1} \end{bmatrix} = \sum_{i=1}^{k} \alpha_{i} \begin{bmatrix} z_{i}^{t} \\ z_{i}^{t+1} \\ \vdots \\ z_{i}^{t+d-1} \end{bmatrix} + \begin{bmatrix} w_{t} \\ w_{t+1} \\ \vdots \\ w_{t+d-1} \end{bmatrix} = \sum_{i=1}^{k} \alpha_{i} \underbrace{\begin{bmatrix} 1 \\ z_{i} \\ \vdots \\ z_{d-1}^{d-1} \end{bmatrix}}_{\mathbf{a}_{t}} z_{i}^{t} + \underbrace{\begin{bmatrix} w_{t} \\ w_{t+1} \\ \vdots \\ w_{t-d+1} \end{bmatrix}}_{\mathbf{w}_{t}}$$

• let $\mathbf{Y} = [\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_{T_d-1}]$ where $T_d = T - d + 1$. We can write

$$Y = ADS + W,$$

where $\mathbf{A}=[\ \mathbf{a}_1,\ldots,\mathbf{a}_k\]$, $\mathbf{D}=\mathrm{Diag}(\alpha_1,\ldots,\alpha_k)$, $\mathbf{W}=[\ \mathbf{w}_1,\ldots,\mathbf{w}_{T_d-1}\]$,

$$\mathbf{S} = egin{bmatrix} 1 & z_1 & z_1^2 & \dots & z_1^{T_d-1} \ 1 & z_2 & z_2^2 & \dots & z_2^{T_d-1} \ dots & & dots \ 1 & z_k & z_k^2 & \dots & z_k^{T_d-1} \end{bmatrix}$$

Spectral Analysis via Subspace: Formulation

• let $\mathbf{R}_y = \frac{1}{T_d} \sum_{t=0}^{T_d-1} \mathbf{y}_t \mathbf{y}_t^H = \frac{1}{T_d} \mathbf{Y} \mathbf{Y}^H$ be the correlation matrix of \mathbf{y}_t . We have

$$\mathbf{R}_{y} = \mathbf{A} \underbrace{\left(\frac{1}{T_{d}} \mathbf{D} \mathbf{S} \mathbf{S}^{H} \mathbf{D}^{H}\right)}_{=\mathbf{\Phi}} \mathbf{A}^{H} + \frac{1}{T_{d}} \mathbf{A} \mathbf{D} \mathbf{S} \mathbf{W}^{H} + \frac{1}{T_{d}} \mathbf{W} \mathbf{S}^{H} \mathbf{D}^{H} \mathbf{A}^{H} + \frac{1}{T_{d}} \mathbf{W} \mathbf{W}^{H}$$

• (this requires knowledge of random processes) assume that w_t is a temporally white circular Gaussian process with mean zero and variance σ^2 . Then, as $T_d \to \infty$,

$$\frac{1}{T_d} \mathbf{S} \mathbf{W}^H \to \mathbf{0}, \qquad \frac{1}{T_d} \mathbf{W} \mathbf{W}^H \to \sigma^2 \mathbf{I}$$

Spectral Analysis via Subspace: Formulation

- let us summarize
- ullet Model: the correlation matrix ${f R}_y=rac{1}{T_d}{f Y}{f Y}^H$ is modeled as

$$\mathbf{R}_y = \mathbf{A}\mathbf{\Phi}\mathbf{A}^H + \sigma^2 \mathbf{I}$$

where $\sigma^2 > 0$ is the noise power; $\mathbf{\Phi} = \frac{1}{T_d} \mathbf{D} \mathbf{S} \mathbf{S}^H \mathbf{D}^H$; $\mathbf{D} = \mathrm{Diag}(\alpha_1, \dots, \alpha_k)$;

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & & z_k \\ \vdots & \vdots & & \vdots \\ z_1^{d-1} & z_2^{d-1} & \dots & z_k^{d-1} \end{bmatrix} \in \mathbb{C}^{d \times k}, \ \mathbf{S} = \begin{bmatrix} 1 & z_1 & z_1^2 & \dots & z_1^{T_d-1} \\ 1 & z_2 & z_2^2 & \dots & z_2^{T_d-1} \\ \vdots & & & \vdots \\ 1 & z_k & z_k^2 & \dots & z_k^{T_d-1} \end{bmatrix} \in \mathbb{C}^{k \times T_d},$$

with $z_i = e^{\mathbf{j}2\pi f_i}$

• observation: A and S are both Vandemonde

- Assumptions: i) $\alpha_i \neq 0$ for all i, ii) $f_i \neq f_j$ for all $i \neq j$, iii) d > k, iv) $T_d \geq k$
- results:
 - $-\mathbf{A}$ has full column rank, \mathbf{S} has full row rank
 - Φ is positive definite (and thus nonsingular)
 - * proof: $\mathbf{x}^H \mathbf{D} \mathbf{S} \mathbf{S}^H \mathbf{D}^H \mathbf{x} = \|\mathbf{S}^H \mathbf{D}^H \mathbf{x}\|_2^2$, and $\mathbf{S}^H \mathbf{D}^H \mathbf{x} = \mathbf{0}$ if and only if \mathbf{S}^H does not have full column rank
 - $\mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H) = \mathcal{R}(\mathbf{A})$, by Property 2
 - $-\operatorname{rank}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H)=\operatorname{rank}(\mathbf{A})=k$, thus $\mathbf{A}\mathbf{\Phi}\mathbf{A}^H$ has k nonzero eigenvalues

- consider the eigendecomposition of $\mathbf{A}\Phi\mathbf{A}^H$. Let $\mathbf{A}\Phi\mathbf{A}^H=\mathbf{V}\Lambda\mathbf{V}^H$ and assume $\lambda_1\geq\lambda_2\geq\ldots\geq\lambda_d$.
- since $\lambda_i > 0$ for $i = 1, \dots, k$ and $\lambda_i = 0$ for $i = k + 1, \dots, d$,

$$\mathbf{A}\mathbf{\Phi}\mathbf{A}^H = egin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix} egin{bmatrix} oldsymbol{\Lambda}_1 & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{bmatrix} egin{bmatrix} \mathbf{V}_1^H \ \mathbf{V}_2^H \end{bmatrix} = \mathbf{V}_1 oldsymbol{\Lambda}_1 \mathbf{V}_1^H$$

where $\mathbf{V}_1 = [\mathbf{v}_1, \dots, \mathbf{v}_k] \in \mathbb{C}^{d \times k}$, $\mathbf{V}_2 = [\mathbf{v}_{k+1}, \dots, \mathbf{v}_d] \in \mathbb{C}^{d \times (d-k)}$, $\mathbf{\Lambda}_1 = \mathrm{Diag}(\lambda_1, \dots, \lambda_k)$.

- result: $\mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H) = \mathcal{R}(\mathbf{V}_1)$, $\mathcal{R}(\mathbf{A}\mathbf{\Phi}\mathbf{A}^H)^{\perp} = \mathcal{R}(\mathbf{V}_2)$

 \bullet consider the eigendecomposition of \mathbf{R}_y . Observe

$$\mathbf{R}_y = egin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix} egin{bmatrix} \mathbf{\Lambda}_1 + \sigma^2 \mathbf{I} & \mathbf{0} \ \mathbf{0} & \sigma^2 \mathbf{I} \end{bmatrix} egin{bmatrix} \mathbf{V}_1^H \ \mathbf{V}_2^H \end{bmatrix}$$

- results:
 - $\mathbf{V}(\mathbf{\Lambda} + \sigma^2 \mathbf{I})\mathbf{V}^H$ is the eigendecomposition of \mathbf{R}_y
 - ${f V}_1$ can be obtained from ${f R}_y$ by finding the eigenvectors associated with the first k largest eigenvalues of ${f R}_y$

- let us summarize
- compute the eigenvector matrix $\mathbf{V} \in \mathbb{C}^{d \times d}$ of \mathbf{R}_y . Partition $\mathbf{V} = [\mathbf{V}_1, \mathbf{V}_2]$ where $\mathbf{V}_1 \in \mathbb{C}^{n \times k}$ corresponds the first k largest eigenvalues. Then,

$$\mathcal{R}(\mathbf{V}_1) = \mathcal{R}(\mathbf{A}), \qquad \mathcal{R}(\mathbf{V}_2) = \mathcal{R}(\mathbf{A})^{\perp}$$

• Idea of subspace methods: let

$$\mathbf{a}(z) = \begin{bmatrix} 1 \\ z \\ \vdots \\ z^{d-1} \end{bmatrix}.$$

Find any $f \in [-\frac{1}{2}, \frac{1}{2})$ that satisfies $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$.

- Question: it is true that $f \in \{f_1, \dots f_k\}$ implies $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$. But is it also true that $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A})$ implies $f \in \{f_1, \dots f_k\}$?
- The answer is yes if d > k. The following matrix result gives the answer.

Theorem 3. Let $\mathbf{A} \in \mathbb{C}^{d \times k}$ any Vandemonde matrix with distinct roots z_1, \ldots, z_k and with $d \geq k+1$. Then it holds that

$$z \in \{z_1, \dots, z_k\} \iff \mathbf{a}(z) \in \mathcal{R}(\mathbf{A}).$$

- proof of Theorem 3: "⇒" is trivial, and we consider "⇐="
 - suppose there exists $\bar{z} \notin \{z_1, \dots, z_k\}$ such that $\mathbf{a}(\bar{z}) \in \mathcal{R}(\mathbf{A})$.
 - let $\tilde{\mathbf{A}} = [\mathbf{a}(\bar{z}) \mathbf{A}] \in \mathbb{C}^{d \times (k+1)}$.
 - $\mathbf{a}(\bar{z}) \in \mathcal{R}(\mathbf{A})$ implies that $\tilde{\mathbf{A}}$ has linearly dependent columns
 - however, $\tilde{\mathbf{A}}$ is Vandemonde with distinct roots $\bar{z}, z_1, \ldots, z_k$, and for $d \geq k+1$ $\tilde{\mathbf{A}}$ must have linearly independent columns—a contradiction

Spectral Analysis via Subspace: Algorithm

- there are many subspace methods, and multiple signal classification (MUSIC) is most well-known
- ullet MUSIC uses the fact that $\mathbf{a}(e^{\mathbf{j}2\pi f}) \in \mathcal{R}(\mathbf{A}) \Longleftrightarrow \mathbf{V}_2^H \mathbf{a}(e^{\mathbf{j}2\pi f}) = \mathbf{0}$

Algorithm: MUSIC

input: the correlation matrix $\mathbf{R}_y \in \mathbb{C}^{d \times d}$ and the model order k < d Perform eigendecomposition $\mathbf{R}_y = \mathbf{V} \Lambda \mathbf{V}^H$ with $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_d$. Let $\mathbf{V}_2 = [\ \mathbf{v}_{k+1}, \ldots, \mathbf{v}_d\]$, and compute

$$S(f) = \frac{1}{\|\mathbf{V}_2^H \mathbf{a}(e^{\mathbf{j}2\pi f})\|_2^2}$$

for $f \in \left[-\frac{1}{2}, \frac{1}{2}\right)$ (done by discretization).

output: $\bar{S}(\bar{f})$

Spectral Analysis via Subspace: Algorithm

An illustration of the MUSIC spectrum. $T=64,\ k=5,\ \{f_1,\ldots,f_k\}=\{-0.213,-0.1,-0.05,0.3,0.315\}.$

Application: Euclidean Distance Matrices

- ullet let $\mathbf{x}_1,\ldots,\mathbf{x}_n\in\mathbb{R}^d$ be a collection of points, and let $\mathbf{X}=[\ \mathbf{x}_1,\ldots,\mathbf{x}_n\]$
- let $d_{ij} = \|\mathbf{x}_i \mathbf{x}_j\|_2$ be the Euclidean distance between points i and j
- Problem: given d_{ij} 's for all $i, j \in \{1, ..., n\}$, recover \mathbf{X}
 - this problem is called the Euclidean distance matrix (EDM) problem
 - it is related to multidimensional scaling (MDS) in machine learning for dimensionality reduction
- applications: sensor network localization (SNL), molecular conformation,
- suggested reading: [Dokmanić-Parhizkar-et al.'15]

EDM Applications

(a) SNL. (b) Molecular transformation. Source: [Dokmanić-Parhizkar-et al.'15]

EDM: Formulation

- let $\mathbf{R} \in \mathbb{S}^n$ be matrix whose entries are $r_{ij} = d_{ij}^2$ for all i,j
- from

$$r_{ij} = d_{ij}^2 = \|\mathbf{x}_i\|_2^2 - 2\mathbf{x}_i^T\mathbf{x}_j + \|\mathbf{x}_j\|_2^2,$$

we see that ${f R}$ can be written as

$$\mathbf{R} = \mathbf{1}(\operatorname{diag}(\mathbf{X}^T \mathbf{X}))^T - 2\mathbf{X}^T \mathbf{X} + (\operatorname{diag}(\mathbf{X}^T \mathbf{X}))\mathbf{1}^T \tag{*}$$

where the notation diag means that $\operatorname{diag}(\mathbf{Y}) = [y_{11}, \dots, y_{nn}]^T$ for any square \mathbf{Y}

- observation: (*) also holds if we replace X by
 - $ilde{\mathbf{X}} = [\mathbf{x}_1 + \mathbf{b}, \dots, \mathbf{x}_n + \mathbf{b}]$ for any $\mathbf{b} \in \mathbb{R}^d$ $(d_{ij} = \| ilde{\mathbf{x}}_i ilde{\mathbf{x}}_j\|_2$ is also true)
 - $\tilde{\mathbf{X}} = \mathbf{Q}\mathbf{X}$ for any orthogonal \mathbf{Q} $(\tilde{\mathbf{X}}^T\tilde{\mathbf{X}} = \mathbf{X}^T\mathbf{X})$
- ullet implication: recovery of ${f X}$ from ${f R}$ is subjected to translations and rotations/reflections
 - in SNL we can use anchors to fix this issue

EDM: Formulation

ullet assume ${f x}_1={f 0}$ w.l.o.g. Then,

$$\mathbf{r}_{1} = \begin{bmatrix} \|\mathbf{x}_{1} - \mathbf{x}_{1}\|_{2}^{2} \\ \|\mathbf{x}_{2} - \mathbf{x}_{1}\|_{2}^{2} \\ \vdots \\ \|\mathbf{x}_{n} - \mathbf{x}_{1}\|_{2}^{2} \end{bmatrix} = \begin{bmatrix} 0 \\ \|\mathbf{x}_{2}\|_{2}^{2} \\ \vdots \\ \|\mathbf{x}_{n}\|_{2}^{2} \end{bmatrix}, \quad \operatorname{diag}(\mathbf{X}^{T}\mathbf{X}) = \begin{bmatrix} \|\mathbf{x}_{1}\|_{2}^{2} \\ \|\mathbf{x}_{2}\|_{2}^{2} \\ \vdots \\ \|\mathbf{x}_{n}\|_{2}^{2} \end{bmatrix} = \mathbf{r}_{1}$$

ullet construct from ${f R}$ the following matrix

$$\mathbf{G} = -rac{1}{2}(\mathbf{R} - \mathbf{1}\mathbf{r}_1^T - \mathbf{r}_1\mathbf{1}^T).$$

We have

$$\mathbf{G} = \mathbf{X}^T \mathbf{X}$$

ullet idea: do a symmetric factorization for ${f G}$ to try to recover ${f X}$

EDM: Method

- assumption: X has full row rank
- **G** is PSD and has $rank(\mathbf{G}) = d$
- denote the eigendecomposition of G as $G = V\Lambda V^T$. Assuming $\lambda_1 \geq \ldots \geq \lambda_n$, it takes the form

$$\mathbf{G} = egin{bmatrix} \mathbf{V}_1 & \mathbf{V}_2 \end{bmatrix} egin{bmatrix} \mathbf{\Lambda}_1 & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{bmatrix} egin{bmatrix} \mathbf{V}_1^T \ \mathbf{V}_2^T \end{bmatrix} = (\mathbf{\Lambda}_1^{1/2} \mathbf{V}_1^T)^T (\mathbf{\Lambda}_1^{1/2} \mathbf{V}_1^T)$$

where $\mathbf{V}_1 \in \mathbb{R}^{n \times d}$, $\mathbf{\Lambda}_1 = \mathrm{Diag}(\lambda_1, \ldots, \lambda_d)$

- ullet EDM solution: take $\hat{\mathbf{X}} = \mathbf{\Lambda}^{1/2} \mathbf{V}_1^T$ as an estimate of \mathbf{X}
- ullet recovery guarantee: by Property 3, we have $\hat{\mathbf{X}} = \mathbf{Q}\mathbf{X}$ for some orthogonal \mathbf{Q}

EDM: Further Discussion

- ullet in applications such as SNL, not all pairwise distances d_{ij} 's are available
- ullet or, there are missing entries with ${f R}$
- ullet possible solution: apply low-rank matrix completion to try to recover the full ${f R}$
- ullet to use low-rank matrix completion, we need to know a rank bound on ${f R}$
- by the result $rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$, we get

$$rank(\mathbf{R}) \le rank(\mathbf{1}(\operatorname{diag}(\mathbf{X}^T\mathbf{X}))^T) + rank(-2\mathbf{X}^T\mathbf{X}) + rank((\operatorname{diag}(\mathbf{X}^T\mathbf{X}))\mathbf{1}^T)$$

$$\le 1 + d + 1 = d + 2$$

• other issues: noisy distance measurements, resolving the orthogonal rotation problem with $\hat{\mathbf{X}}$. See the suggested reference [Dokmanić-Parhizkar-et al.'15].

References

[Brodie-Daubechies-et al.'09] J. Brodie, I. Daubechies, C. De Mol, D. Giannone, and I. Loris, "Sparse and stable Markowitz portfolios," *Proceedings of the National Academy of Sciences*, vol. 106, no. 30, pp. 12267–12272, 2009.

[Stoica-Moses'97] P. Stoica and R. L. Moses, *Introduction to Spectral Analysis*, Prentice Hall, 1997.

[Dokmanić-Parhizkar-et al.'15] I. Dokmanić, R. Parhizkar, J. Ranieri, and M. Vetterli, "Euclidean distance matrices," *IEEE Signal Processing Magazine*, vol. 32, no. 6, pp. 12–30, Nov. 2015.