> Gates

- Logic gates are the basic building blocks of any digital system.
- It is an electronic circuit having one or more than one input and only one output. The relationship between the input and the output is based on certain logic.

1. AND Gate

- A circuit which performs an AND operation is shown in figure. It has n input $(n \ge 2)$ and one output.
- The AND gate produces the AND logic function, that is, the output is 1 if input A and input B are both equal to 1; otherwise the output is 0. The algebraic symbol of the AND function is the same as the multiplication symbol

```
Y = A AND B AND C ...... N
Y = A.B.C ...... N
Y = ABC ...... N
```

Logic diagram

Truth Table

Inpu	its	Output
Α	В	AB
0	0	0
0	1	0
1	0	0
1	1	1

2. OR Gate

- A circuit which performs an OR operation is shown in figure. It has n input $(n \ge 2)$ and one output.
- The OR gate produces the inclusive-OR function; that is, the output is 1 if input A or input B or both inputs are 1; otherwise, the output is 0. The algebraic symbol of the OR function is +

Logic diagram

Inpu	its	Output
Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

3. NOT Gate

- NOT gate is also known as Inverter. It has one input A and one output Y.
- The inverter circuit inverts the logic sense of a binary signal. It produces the NOT, or complement, function.
- The algebraic symbol used for the logic complement is a bar over the variable symbol.

$$Y$$
 = NOT A \overline{A}

Logic diagram

Inputs	Output
Α	В
0	1
1	0

4. NAND Gate

- A NOT-AND operation is known as NAND operation. It has n input (n >= 2) and one output.
- The NAND function is the complement of the AND function, as indicated by the graphic symbol, which consists of an AND graphic symbol followed by a small circle.
- The designation NAND is derived from the abbreviation of NOT-AND.

Y = A NOT AND B NOT AND C N Y = A NAND B NAND C N

Logic diagram

Inpu	its	Output
Α	В	AB
0	0	1
0	1	1
1	0	1
1	1	0

5. NOR Gate

- A NOT-OR operation is known as NOR operation. It has n input $(n \ge 2)$ and one output.
- The NOR gate is the complement of the OR gate and uses an OR graphic symbol followed by a small circle.

Logic diagram

Inpu	ts	Output
Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

6. XOR Gate

- XOR or Ex-OR gate is a special type of gate. It can be used in the half adder, full adder and subtractor. The exclusive-OR gate is abbreviated as EX-OR gate or sometime as X-OR gate. It has n input (n >= 2) and one output.
- The exclusive-OR gate has a graphic symbol similar to the OR gate except for the additional curved line on the input side.
- The output of the gate is 1 if any input is 1 but excludes the combination when both inputs are 1.

Y = A XOR B XOR C N Y = A \bigoplus B \bigoplus C N Y = AB + AB

Logic diagram

Inpu	its	Output
Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	0

7. XNOR Gate

- XNOR gate is a special type of gate. It can be used in the half adder, full adder and subtractor. The exclusive-NOR gate is abbreviated as EX-NOR gate or sometime as X-NOR gate. It has n input (n >= 2) and one output.
- The exclusive-NOR is the complement of the exclusive-OR, as indicated by the small circle in the graphic symbol.
- The output of this gate is 1 only if both the inputs are equal to 1 or both inputs are equal to 0.

Y = A XOR B XOR C N Y = A B C N Y = AB + AB

Logic diagram

Inpu	ts	Output
Α	В	A - B
0	0	1
0	1	0
1	0	0
1	1	1