

# AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

# Metody Obliczeniowe w Nauce i Technice

Zagadnienie Hermite'a Zadanie 2b

Maciej Kmąk Informatyka WI AGH, II rok

#### 1 Treść Zadania

Dla funkcji f(x) widocznej na rysunku 1.

$$f(x) = e^{-3 \cdot \sin(x)} + 3 \cdot \cos(x)$$
 na przedziale  $[-2\pi, 4\pi]$ 

wyznacz dla zagadnienia Hermite'a wielomian interpolujący. Interpolację przeprowadź dla różnego nej liczby węzłów. Dla każdego przypadku interpolacji porównaj wyniki otrzymane dla różnego rozmieszczenia węzłów:

- równoodległe
- zera wielomianu Czebyszewa

Dla wyznaczonych wielomianów:

- Oceń dokładność, z jaką wielomian przybliża zadaną funkcję.
- Poszukaj wielomianu, który najlepiej przybliża zadaną funkcję.
- Wyszukaj stopień wielomianu, dla którego można zauważyć efekt Runge'go (dla równomiernego rozmieszczenia węzłów). Porównaj z wyznaczonym wielomianem dla węzłów Czebyszewa.



**Rysunek 1:** Funkcja f(x) na przedziale  $[-2\pi, 4\pi]$ 

## 2 Dane techniczne

Doświadczenie zostało przeprowadzone na komputerze osobistym o specyfikacji:

- System Operacyjny: Windows 11 Pro
- Procesor: 12th Gen Intel(R) Core(TM) i5-1235U 1.3 GHz
- Język: Python 3.12

## 3 Przebieg Doświadczenia

Wyznaczono wartości wielomianu interpolującego w N= 500 równomiernie rozłożonych punktach z przedziału  $[-2\pi, 4\pi]$ .

Obliczenia przeprowadzono dla różnych wartości liczby węzłów n:

$$n \in \{3, 4, 5, 6, \dots 49, 50\}$$

Dla każdej liczby węzłów wykonano interpolację Hermite'a, wykorzystując wzór Newtona oraz zastosowano dwa sposoby rozmieszczenia węzłów: równomierny oraz zgodny z zerami wielomianu Czebyszewa.

Dla każdego przypadku obliczono błąd maksymalny i błąd średni w N=500 równomiernie rozłożonych punktach z przedziału  $[-2\pi, 4\pi]$ .

#### 3.1 Wzory na błąd maksymalny i błąd średni

Maksymalny bład:

$$e_{\max} = \max_{i \in \{1,\dots,N\}} (|f(x_i) - p(x_i)|)$$

Średni błąd:

$$e_{\text{avg}} = \frac{\sqrt{\sum_{i=1}^{N} (f(x_i) - p(x_i))^2}}{N}$$

Gdzie:

 $f(x_i)$  – wartość funkcji w punkcie  $x_i$ ;  $p(x_i)$  – wartość wielomianu interpolującego w punkcie  $x_i$ 

## 4 Wyniki doświadczenia

Poniżej w tabelach 1 i 2 przedstawiono wyniki obliczeń błędów dla różnych sposobów rozmieszczenia węzłów.

Na następnych stronach na wykresach 2a i 2b przedstawiono wykresy porównania błędów maksymalnych i średnich dla wybranego rodzaju rozmieszczenia węzłów. Przygotowano także wykresy - 3a i 3b ograniczone do n=25. Pozwalają na lepszą obserwację błędów wynikającą z efektu Rungego i błędów arytmetyki liczb zmiennoprzecinkowych.

Na rysunkach 4a-9 przedstawiono wybrane wykresy wielomianów interpolowanych wraz z zaznaczonymi węzłami.

**Tabela 1:** Tabela wartości błędów dla interpolacji Hermite'a z węzłami równomiernymi

| n  | $e_{\mathbf{max}}$  | $e_{\mathbf{avg}}$  |
|----|---------------------|---------------------|
| 3  | 28.85204            | 10.56944            |
| 4  | 21.89162            | 8.46054             |
| 5  | 15.48693            | 6.413069            |
| 6  | 79.90326            | 22.39861            |
| 7  | 16.24899            | 6.321256            |
| 8  | 192.8464            | 45.97154            |
| 9  | 544.7366            | 118.8487            |
| 10 | 2312.914            | 578.9348            |
| 11 | 5382.852            | 1264.311            |
| 12 | 8218.87             | 1729.789            |
| 13 | 7186.53             | 1627.078            |
| 14 | 12616.9             | 2202.159            |
| 15 | 94318.02            | 14406.08            |
| 16 | 341740.0            | 55676.75            |
| 17 | 920969.5            | 155139.8            |
| 18 | 1916024.0           | 324835.3            |
| 19 | 2970402.0           | 514847.0            |
| 20 | 3779749.0           | 543128.2            |
| 21 | 5439797.0           | 698968.4            |
| 22 | 33334990.0          | 4087071.0           |
| 23 | 106560200.0         | 13866120.0          |
| 24 | 264356800.0         | 35336610.0          |
| 25 | 525635400.0         | 72352930.0          |
| 26 | 798035900.0         | 117906300.0         |
| 27 | 1131246000.0        | 135898200.0         |
| 28 | 1023553000.0        | 134086700.0         |
| 29 | 6994494000.0        | 710581500.0         |
| 30 | 22136400000.0       | 2384335000.0        |
| 31 | 53067670000.0       | 5975122000.0        |
| 32 | 103316700000.0      | 12241150000.0       |
| 33 | 157116100000.0      | 20301530000.0       |
| 34 | 239268200000.0      | 27391980000.0       |
| 35 | 242954800000.0      | 23099490000.0       |
| 36 | 1015271000000.0     | 73332860000.0       |
| 37 | 2528148000000.0     | 247763100000.0      |
| 38 | 22254640000000.0    | 1989627000000.0     |
| 39 | 67496620000000.0    | 5446766000000.0     |
| 40 | 2568755000000000.0  | 224679700000000.0   |
| 41 | 16392320000000000.0 | 1325643000000000.0  |
| 42 | $1.383448e{+}16$    | 760966100000000.0   |
| 43 | 6.908126e + 16      | 59613890000000000.0 |
| 44 | 3.705939e + 17      | 2.952425e + 16      |
| 45 | 6.292775e + 17      | 4.166973e + 16      |
| 46 | 2.789033e + 18      | 2.113363e + 17      |
| 47 | 2.714774e + 19      | 2.378662e + 18      |
| 48 | 7.982341e + 19      | 5.964506e + 18      |
| 49 | 2.849644e+20        | 1.611755e + 19      |
| 50 | 1.157134e + 21      | 8.515042e + 19      |

Tabela 2: Tabela wartości błędów dla interpolacji Hermite'a z węzłami Czebyszewa

|    | $e_{\mathbf{max}}$   | $e_{\mathbf{avg}}$  |
|----|----------------------|---------------------|
| 3  | 30.42252             | 13.66006            |
| 4  | 22.98044             | 8.483339            |
| 5  | 18.86694             | 7.606524            |
| 6  | 17.03004             | 8.102802            |
| 7  | 21.78739             | 7.950123            |
| 8  | 23.36295             | 7.896287            |
| 9  | 25.30293<br>15.19489 | 4.501073            |
| 10 | 9.72115              | 3.399672            |
| 11 | 9.72113<br>8.888931  | 2.744508            |
| 12 | 8.546502             | 2.744508            |
|    |                      |                     |
| 13 | 5.664915             | 1.864891            |
| 14 | 3.628152             | 1.348219            |
| 15 | 2.936271             | 0.9881942           |
| 16 | 3.052019             | 0.850489            |
| 17 | 3.176504             | 0.8069854           |
| 18 | 2.31754              | 0.6069626           |
| 19 | 1.368014             | 0.3803096           |
| 20 | 2.634045             | 0.3993102           |
| 21 | 6.912625             | 0.6361925           |
| 22 | 54.92461             | 4.785671            |
| 23 | 848.5963             | 109.4798            |
| 24 | 984.257              | 107.596             |
| 25 | 31166.95             | 3310.931            |
| 26 | 42952.92             | 4080.734            |
| 27 | 205411.0             | 17503.6             |
| 28 | 1768690.0            | 133714.1            |
| 29 | 3571133.0            | 337421.7            |
| 30 | 29414530.0           | 2333537.0           |
| 31 | 640153000.0          | 48823320.0          |
| 32 | 708219300.0          | 81532790.0          |
| 33 | 5016702000.0         | 403051400.0         |
| 34 | 8794343000.0         | 837643800.0         |
| 35 | 79943150000.0        | 5443765000.0        |
| 36 | 884302200000.0       | 68676380000.0       |
| 37 | 866836100000.0       | 69854340000.0       |
| 38 | 84470690000000.0     | 829873400000.0      |
| 39 | 1074737000000000.0   | 10442460000000.0    |
| 40 | 1290965000000000.0   | 124376700000000.0   |
| 41 | 11213810000000000.0  | 1286052000000000.0  |
| 42 | 51371980000000000.0  | 4039669000000000.0  |
| 43 | 77729560000000000.0  | 7117869000000000.0  |
| 44 | 1.072288e + 17       | 95693560000000000.0 |
| 45 | 6.478972e + 17       | 4.317468e + 16      |
| 46 | 5.085139e + 18       | 4.675169e + 17      |
| 47 | 2.231442e + 19       | 2.432805e + 18      |
| 48 | 1.207746e + 20       | $6.035584e{+}18$    |
| 49 | 5.280303e + 20       | 3.938448e + 19      |
| 50 | 1.491005e + 21       | 1.369317e + 20      |



(a) Błąd interpolacji Hermite'a dla węzłów równomiernych



(b) Błąd interpolacji Hermite'a dla węzłów Czebyszewa

Rysunek 2: Porównanie błędu średniego  $(e_{avg})$  i maksymalnego  $(e_{max})$  w skali logarytmicznej dla różnych metod rozmieszczenia węzłów dla interpolacji **Hermite'a** 

Na wykresie 2<br/>a dotyczącym równomiernego rozmieszczenia węzłów widzimy, że zarówno błąd maksymalny, jak i średni rosną wraz ze wzrostem n. Efekt Rungego pojawia się już przy stosunkowo niewielkiej liczbie węzłów (około n=6), objawiając się wzrastającą oscylacyjnością wielomianu interpolacyjnego na brzegach przedziału. Dla  $n \geq 34$  coraz większą rolę odgrywają też błędy arytmetyki komputerowej, które powodują niestabilność obliczeń i dalszy gwałtowny wzrost błędu.

Na wykresie 2<br/>b widzimy, że błąd interpolacji znacznie się zmniejsza, osiągając minimum w okolicach n=19. W tym punkcie wielomian jest najlepiej dopasowany do funkcji, a oscylacje są silnie zredukowane. Zauważmy, że już od n=20 zaczynają być widoczne błędy arytmetyki liczb zmiennoprzecinkowych, które przy wysokich stopniach wielomianu kumulują się i prowadzą do gwałtownego wzrostu błędu, wraz ze wzrostem liczby n.



(a) Błąd interpolacji Hermite'a dla węzłów równomiernych



(b) Błąd interpolacji Hermite'a dla węzłów Czebyszewa

**Rysunek 3:** Porównanie błędu średniego  $(e_{avg})$  i maksymalnego  $(e_{max})$  w skali logarytmicznej dla różnych metod rozmieszczenia węzłów dla interpolacji **Hermite'a** (do n = 25).

Obcięcie zakresu liczby węzłów do n=25 pozwoliło na bardziej szczegółowe uwidocznienie zachowania interpolowanej funkcji. Dzięki temu można lepiej zauważyć, że:

- W przypadku węzłów równomiernych efekt Rungego jest wyraźnie widoczny błędy (zarówno średni, jak i maksymalny) rosną wraz ze wzrostem liczby węzłów, co jest szczególnie zauważalne przy  $n \geq 14$ .
- Dla węzłów Czebyszewa obserwujemy znaczące zmniejszenie błędu interpolacji, osiągające minimum w okolicach n=19. Jednak już od n=20 zaczynają dominować błędy arytmetyki komputerowej, co skutkuje nagłym wzrostem błędów.

Podsumowując, ograniczenie zakresu do n=25 umożliwiło lepszą analizę zachowania funkcji interpolacyjnej oraz wyraźne uwidocznienie wpływu ograniczeń precyzji obliczeń zmiennoprzecinkowych na stabilność interpolacji Hermite'a, zwłaszcza dla węzłów Czebyszewa.



(a) Wykres funkcji dla n = 5 – złe dopasowanie wielomianu.



(b) Wykres funkcji dla n=6 – Uwidacznianie się efektu Rungego.



(c) Wykres funkcji dla n=7 – Nietypowe zachowanie funkcji spowodowane okresowością funkcji.

**Rysunek 4:** Wahanie się wartości błędów: maksymalnego i średniego, dla n = 5, 6, 7 dla węzłów równoodległych.



**Rysunek 5:** Uwidacznianie się efektu Rungego dla n=6,11,28



**Rysunek 6:** Niewidoczny efekt Rungego, chaotyczne zachowanie funkcji na prawym krańcu przedziału, n=35



Rysunek 7: Porównanie wielomianów dla n = 18 w zależności od rozmieszczenia węzłów



**Rysunek 8:** Wielomian najlepiej dopasowany (zarówno pod względem błędu maksymalnego jak i średniego) przy użyciu węzłów Czebyszewa dla n=19 oraz wielomian dla n=20, dla którego na lewym krańcu przedziału widoczne są już błędy arytmetyki



Rysunek 9: Niestabliny wielomian dla n = 26 – węzły Czebyszewa

## 5 Opracowanie Danych

#### 5.1 Wahanie się wartości błędów dla n = 5, 6, 7

Na rysunkach 4a–4c możemy zaobserwować interesujące wahanie się wartości dla n=5,6,7 widoczne na wykresach 2a i 3a. Dla n=5 obserwujemy, że wielomian interpolacyjny jest słabo dopasowany do zadanej funkcji. Wynika to z niewystarczającej liczby węzłów. Dla n=6 pojawia się pierwszy wyraźny efekt Rungego. Już przy tej liczbie węzłów oscylacje wielomianu, szczególnie na prawym brzegu przedziału, stają się zauważalne. Natomiast dla n=7 kształt funkcji interpolującej nabiera bardzo interesującego charakteru. Ze względu na okresowość zadanej funkcji, trafiamy w punkty, gdzie wartości funkcji i jej pochodnej powtarzają się cyklicznie. W efekcie interpolacja oddaje funkcję okresową, która jednak różni się od badanej funkcji.

#### 5.2 Efekt Rungego

Efekt Rungego, wyraźnie obserwowany na brzegach przedziału przy rosnącym stopniu wielomianu, pojawia się w badanym zagadnieniu Hermite'a już od n=6 i staje się silny około n=11 (rys. 5a–5c). Przypomnijmy, że przy liczbie węzłów n dla interpolacji Hermite'a wielomian ma stopień (2n-1), co dodatkowo sprzyja szybkiemu narastaniu oscylacji, jak i problemów numerycznych w miarę zwiększania liczby węzłów (rys. 6).

#### 5.3 Rozmieszczenie węzłów

Na rysunku 7a (n=18) widać już wyraźny wpływ efektu Rungego – wielomian Hermite'a zaczyna oscylować na krańcach przedziału, generując spory błąd przybliżenia. Dalsze zwiększanie liczby węzłów (jak w rys. 6, n=35) uwidacznia ponadto rolę błędów arytmetyki liczb zmiennoprzecinkowych, które przy tak wysokim stopniu wielomianu mogą dominować nad błędami czysto interpolacyjnymi.

Z kolei na rysunku 7b (również n=18) ukazano, że węzły Czebyszewa wyraźnie łagodzą efekt Rungego – oscylacje na brzegach nie występują. Dzięki temu wielomian Hermite'a daje tu zdecydowanie mniejszy błąd maksymalny i średni w porównaniu z węzłami równomiernymi.

## 5.4 Arytmetyka komputerowa

Interpolacja Hermite'a jest wrażliwa na błędy liczb zmiennoprzecinkowych, głównie dlatego, że stopień wielomianu (2n-1) bardzo szybko rośnie z n. Na rysunku 8a (n=19) można dostrzec najlepsze uzyskane przybliżenie wielomianu, ale już na rysunkach 8b (n=20) i 9(n=26) widać narastające rozbieżności wynikające z błędów obliczeń zmiennoprzecinkowych (m.in. odejmowania liczb bliskich sobie, zaokrągleń itp.).

## 6 Podsumowanie Zagadnienia

Zarówno węzły równomierne, jak i Czebyszewa przy dużym n mogą więc dawać rozbieżne wyniki z powodu ograniczonej precyzji obliczeń. Mimo to, w obecnym eksperymencie węzły Czebyszewa wypadają lepiej, ponieważ eliminują efekt Rungego, a dla umiarkowanego n niewidoczne są jeszcze błędy obliczeń na liczbach zmiennooprzecinkowych. Przy jeszcze większych n błędy arytmetyczne stają się jednak porównywalnie istotne, co przekłada się na gwałtowny wzrost błędu.