How to calculate the MEX measurement results from two raw input files

Analysis sequence: from raw data to report

Both the raw files look like this:

1	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	P	Q	R	
	[COMET X	RAY MEAS	SUREMENT]							This is the	machine	we are doi:	ng the mea	surement	s onwe a	re asking y	our team t	o focus on	this
	Filename		C:\CRData	\2Jul2021	-11-07_IBAF	C65-Gsn1	L612.csv			This is just	the locati	ion of whe	re this .csv	file lives					
	Date		#########							date of me	easuremei	nt							
	Chamber		IBA FC65-0	3 1612						chamber i	d								
	Descriptio	n	Standard r							text field									
	Software		S:\Medica	I_Rad\Rad	diotherapy\I	onizing F	Radiation\IF	S Inhouse S	oftware\	Twin Webl	ines LEX a	nd MEX\Tv	in Weblin	e Comet v	8_1_PROD	UCTION.vi	code that	took the n	neas
•	Backgroun	ıds	90							These cha	nge - chan	ges the ler	igth of the	file and re	cords				
	Measuren	nents	30							There are	the numb	er of readir	ngs taken d	during the	session - s	o we take I	Background	d measure	mer
9	Trolley (m	m)	1090							just a reco	rd					For the m	easuremei	nts - this m	iean
0	SCD (mm)		1000							just a reco	rd								
1	Aperture v	wheel	2 CM							Open, 1cm	n, 2cm6ci	m These ar	e fixed opt	tions (thes	e are the s	even optic	ns)		
2	Comment		QA chamb	er measu	rement set 1	L				Text field	for comm	ents							
3	Monitor e	lectromet	Medium							Low, Med,	High opti	ons							
4	Monitor H	V	300							number									
5	MEFAC-IC	electrome	Low							Low, Med,	High opti	ons							
6	IC HV		-300							number									
7	[DATA]																Don't nee	d this!	
8	kV	mA	BarCode	XraysOn	HVLFilter(F	Filter	FilterRead	HVLReady N	l .	Current1(Current2(P(kPa)	T(MC)	T(Air)	T(SC)	H(%)	Comment		
9	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	1	-0.2	0	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	reme
0	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	2	-0.35	0	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
1	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	3	0	0	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
2	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	4	0	0.001	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
3	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	5	0	0	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
4	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	6	0.1	0.001	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
5	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	7	-0.05	0.001	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
6	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	8	0	0.001	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
7	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	9	0.15	0.001	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
8	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	10	0.1	0	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
9	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	11	0	0.001	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
0	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	12	0	0.001	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
1	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	13	0.05	0.001	100.955				45.06609			
	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	14	0.2	0.002	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
2	40	20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	15	-0.15	0.001	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
		20	NXB	FALSE	1 0	NXJ40	FALSE	TRUE	16	-0.2	0.001	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	rem
2 3 4	40		NXB	FALSE	0.1	VX 10	FALSE	TRUE	17	0	0.002	100.955	22.94494	23.08626	23.13623	45.06609	QA chamb	er measu	reme
3	40 40	20	INXR	FALSE	0 1							100.955							

For each **Filter** (which we also call Beam Code, and Beam Quality) we need to produce a single number, the **calibration coefficient**.

The number of measurements for each filter can vary, although the number is specified in the header. ("Measurements" in this example 30).

We start by obtaining the background (the measurement with no radiation present). In this example there are 90 backgrounds. So we need to average Current1 and Current2 over the first lines where "XraysON = False", or we can average the first 90, to obtain the averages **BgdlC1_Before** and **BgdMC1_Before**.

The beam turns on at line 109 (in this example) and we have the first beam quality (Filter) NXJ40

					-					-	U.UUL	100,505	
104	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	86	-0.2	0.002	100.959	22.94381
105	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	87	-0.2	0.002	100.959	22.94381
106	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	88	-0.25	0.002	100.959	22.94381
107	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	89	-0.15	0.002	100.959	22.94381
108	40	20	NXB	FALSE	0	NXJ40	FALSE	TRUE	90	-0.15	0.002	100.959	22.94381
109	40	20	NXB	TRUE	0	NXJ40	FALSE	TRUE	1	3729	-39.7	100.96	22.94283
110	40	20	NXB	TRUE	0	NXJ40	FALSE	TRUE	2	3729	-39.69	100.96	22.94283
111	40	20	NXB	TRUE	0	NXJ40	FALSE	TRUE	3	3729	-39.7	100.96	22.94283
112	40	20	NXB	TRUE	0	NXJ40	FALSE	TRUE	4	3729	-39.69	100.96	22.94283
113	40	20	NXB	TRUE	0	NXJ40	FALSE	TRUE	5	3729	-39.68	100.96	22.94283
114	40	20	NXB	TRUE	0	NXJ40	FALSE	TRUE	6	3729	-39.68	100.96	22.94283
115	40	20	NXB	TRUE	0	NXJ40	FALSE	TRUE	7	3729	-39.68	100.96	22.94283
116	40	20	NXB	TRUE	0	NXJ40	FALSE	TRUE	8	3728	-39.67	100.96	22.94283

For the 30 readings in NXJ40, we determine 8 quantities, all averages:

```
MC1 = Average( Current1[i] - BgdMC1_Before )

IC1 = Average( Current2[i] - BgdIC1_Before )

R1 = Average ( (Current1[i] - BgdIC1_Before) / (Current2[i] - BgdMC1_Before) )

TM1 = Average (Tmon[i])

TA1 = Average (TAir[i])

TS1 = Average (TS[i])

P1 = Average (P[i])
H1 = Average (H[i])
```

(i=1 to 30 in this example)

Then we repeat this for the standard chamber (for the same beam quality in the other file).

MC2 =

Etc

So we have 8 numbers from the first file, and 8 from the second, for each beam quality. These are used to calculate the calibration coefficient **N**. However we need three more numbers before we do this. Two of these are nearly always the same but need to be stored as a record with the results. One more depends on the beam quality (Filter) are obtained by a lookup and stored with the result. Call these **Ma** (mass of air), **WE**, and **KK**.

Ma and WE:

	Mass of air a	at 20°C, 101.3	25 kPa	kg	6.1798E-06		ŀ
ĺ	Energy requi	red to create	33.97	eV			

KK is the Product from the Data tab:

-		_
BEAM		C
ID		
	Product	
Beam?		
CCRI-100	1.0030	
CCRI-135	1.0008	
CCRI-180	1.0018	
CCRI-250	1.0021	
NXJ40	1.0367	
NXJ50	1.0299	
NXJ60	1.0253	
NXJ70	1.0218	
NXJ80	1.0189	
NXJ90	1.0164	
NXJ100	1.0144	
NXK40	1.0198	
NXK50	1.0162	
	·	

Then:

$$N = R2 * WE * KK * (273.15+TS2) / (273.15 + TM2) / [Ma * R1 * (273.15+TA1) / (273.15 + TM1)]$$

In addition, for quality assurance, we want the backgrounds from after the measurements, which are stored at the end of the file. So average the last 90 to obtain the averages **Bgd1_After** and **Bgd1_After**, for both files.

It is a deterministic process to get from the raw data to the results. I am not sure if it is best to store the results as fields in a database table, or to generate them as needed.

Example results (from 'Results' tab of spreadsheet). For each Filter (Beam Quality e.g. NXJ40) we find the air kerma calibration coefficient NK, with units mGy/nC.

BEAM	Air
No.	kerma
	mGy/nC
NXJ40	47.741
NXJ50	47.310
NXJ60	46.937
NXJ70	46.679
NXJ80	46.467
NXJ90	46.246
NXJ100	46.074
NXK40	46.180
NXK50	46.004
NXK60	45.817
NXK70	45.717
NXK80	45.586
NXK90	45.487
NXK100	45.389
NXA40	45.192
NXA50	45.129
NXA60	45.183
NXA70	45.178
NXA80	45.104
NXA90	45.043