§4 酉空间的分解与投影

程光辉

2020年3月13日

1 欧式 (酉) 空间

定义 1 若 $V_n(P)$ 上的映射 (x,y): $V_n(P) \times V_n(P) \to P$ 满足:

- (1) $(x,x) \ge 0$; (x,x) = 0 当且仅当 x = 0; (正定性)
- (2) $(x,y) = \overline{(y,x)}, \forall x,y \in V_n(P); ((共轭) 对称性)$
- (3) $(x, \lambda y) = \lambda(x, y), \forall \lambda \in P, \forall x, y \in V_n(P); (齐次性)$
- (4) $(x,y+z) = (x,y) + (x,z), \forall x,y,z \in V_n(P), (可加性)$

则称映射 (x,y) 是 $V_n(\mathbf{P})$ 上的内积; 若在 n 维线性空间 $V_n(\mathbf{P})$ 中定义了内积, 则称该空间为内积空间.

例 1 (1) \mathbb{C}^n 中的标准内积, $\forall x, y \in \mathbb{C}^n$ 定义 $(x, y) = x^H y$;

(2) $\mathbb{C}^{m \times n}$ 中的标准内积, $\forall A, B \in \mathbb{C}^{m \times n}$, 定义

$$(A,B) = tr(A^H B);$$

(3) 闭区间 [a,b] 全体连续函数构成的空间 C[a,b] 中的内积, $\forall f,g \in C[a,b]$, 定义

$$(f,g)=\int_{a}^{b}\overline{f}gdt;$$

(4) 若 A 为实对称正定矩阵, 则 \mathbb{R}^n 可定义内积

$$(x,y)_A = \sqrt{x^T A y},$$

称为 A-内积.

定义 2 当 P = R 时, $V_n(R)$ 称为欧式空间; 当 P = C 时, $V_n(C)$ 称为酉空间.

定义 3 对任意 $x \in V_n(\mathbb{C})$, 称

$$||x|| = \sqrt{(x,x)}$$

为向量 x 的长度.

定理 1 向量长度的性质:

- $(1) \|\lambda x\| = |\lambda| \|x\|;$
- (2) $||x y||^2 + ||x + y||^2 = 2||x||^2 + 2||y||^2$ (平行四边形法则);
- (3) $|(x,y)| \le ||x|| ||y||$ (Cauchy 不等式);
- (4) $||x + y|| \le ||x|| + ||y||$ (三角不等式).

定义 4 两个非零向量 x 和 y 之间的夹角定义为

$$\cos \theta = \frac{|(x,y)|}{\sqrt{(x,x)}\sqrt{(y,y)}} = \frac{|x^Hy|}{\|x\|\|y\|}.$$

显然,当 $x^Hy=0$ 时, $\theta=\frac{\pi}{2}$,此时称向量 x 和 y 正交. 因此,两个常数向量正交定义如下.

定义 5 若两个常数向量 x 和 y 的内积为零, 即 $(x,y)=x^Hy=0$, 则称它们是正交的, 并记为 $x\perp y$.

定义 6 若 V_1 和 V_2 是 $V_n(C)$ 的两个子空间, 若 $\forall v_1 \in V_1$ 和 $\forall v_2 \in V_2$, 有 $(v_1, v_2) = 0$, 则称它们是正交的, 并记为 $V_1 \perp V_2$.

2 正交补子空间

定义 7 设 $A \in \mathbb{C}^{m \times n}$, 称 $\mathbf{N}(A) = \{x | Ax = 0, x \in \mathbb{C}^n\}$ 为 A 的核 (或零空间 Null), $\mathbf{R}(A) = \{y | y = Ax, \forall x \in \mathbb{C}^n\}$ 为 A 的值域 (Range).

定理 2 设 $A \in \mathbb{C}^{n \times m}$, $B \in \mathbb{C}^{n \times s}$, 则 $\mathrm{R}(A) \perp \mathrm{R}(B)$ 的充要条件是 $A^H B = O$.

证明: \mathcal{C} $A = (\alpha_1, \dots, \alpha_m), B = (\beta_1, \dots, \beta_s).$

(必要性) 易知 $\alpha_i \in \mathbf{R}(A)$, $i=1,\cdots,m$ 和 $\beta_j \in \mathbf{R}(B)$, $j=1,\cdots,s$, 因 $\mathbf{R}(A) \perp \mathbf{R}(B)$, 有 $(\alpha_i,\beta_j)=\alpha_i^H\beta_j=0$, 即 $A^HB=O$.

(充分性) 对 $\forall y_A \in \mathbf{R}(A)$ 和 $\forall y_B \in \mathbf{R}(B)$,则存在向量 $x_A \in \mathbf{C}^m$ 和 $x_B \in \mathbf{C}^s$ 使得 $y_A = Ax_A$ 和 $y_B = Bx_B$.

 $A^HB = O$, 于是有

$$(y_A,y_B)=y_A^Hy_B=x_A^HA^HBx_B=0.$$

由于 y_A 和 y_B 的任意性, 即 $\mathbf{R}(A) \perp \mathbf{R}(B)$.

推论 1 设 $A \in \mathbb{C}^{m \times n}$, 则

$$R(A) \perp N(A^H); \quad N(A) \perp R(A^H).$$

推论 2 设 $A \in \mathbb{C}^{m \times n}$, 则

- (1) $\dim \mathbf{R}(A) + \dim \mathbf{N}(A^H) = m;$
- (2) $\dim \mathbf{R}(A^H) + \dim \mathbf{N}(A) = n;$
- (3) $\mathbf{C}^m = \mathbf{R}(A) \oplus \mathbf{N}(A^H);$
- (4) $\mathbf{C}^n = \mathbf{R}(A^H) \oplus \mathbf{N}(A)$.

定义 8 设酉空间 $V_n(\mathbf{C})$ 的两个正交子空间 V_1 , V_2 , 有 $V_1 \perp V_2$, 且 $V_1 + V_2 = V_n(\mathbf{C})$, 则称 V_2 为 V_1 的正交补空间,记为 $V_2 = V_1^{\perp}$.

定理 3 酉空间 $V_n(C)$ 的任意子空间 V_1 都有唯一的正交补.

证明: 若 V_1 是平凡子空间 $\{0\}$ 或 $V_n(\mathbb{C})$,则显然成立.

若 V_1 不是平凡子空间,取 $\epsilon_1, \cdots, \epsilon_m$ 为标准正交基,它可以扩充为 $V_n(\mathbf{C})$ 的一组标准正交基

$$\epsilon_1, \cdots, \epsilon_m, \epsilon_{m+1}, \cdots, \epsilon_n.$$

即有 $V_2 = L(\epsilon_{m+1}, \dots, \epsilon_n)$ 为 V_1 的正交补.

(唯一性) 设 V_2 , V_3 都是 V_1 的正交补,则

$$V_n(C) = V_1 + V_2, \quad V_n(C) = V_1 + V_3.$$

对 $\forall \alpha_2 \in V_2$,即有 $\alpha_2 \in V_n(C)$,于是 $\alpha_2 = \alpha_1 + \alpha_3$,其中 $\alpha_1 \in V_1$, $\alpha_3 \in V_3$. 又因为 $\alpha_2 \perp \alpha_1$ 和 $\alpha_3 \perp \alpha_1$,所以

$$0 = (\alpha_2, \alpha_1) = (\alpha_1 + \alpha_3, \alpha_1) = (\alpha_1, \alpha_1) + (\alpha_3, \alpha_1) = (\alpha_1, \alpha_1),$$

即 $\alpha_1=0$. 因此, $\alpha_2=\alpha_3\in V_3$,即 $V_2\subseteq V_3$.

同理可证 $V_3 \subseteq V_2$, 即 $V_2 = V_3$. 唯一性得证.

3 投影与幂等矩阵

定义 9 设 $V_n(\mathbf{C})$ 是线性空间,如果线性变换 $T:V_n(\mathbf{C})\to V_n(\mathbf{C})$ 具有 $T^2=T$ 的性质,则称 T 是 $V_n(\mathbf{C})$ 上的投影 (也称投影算子或幂等算子).

定理 4 设 T 是 $V_n(C)$ 上的投影,则

$$V_n(\mathbf{C}) = \mathbf{R}(T) \oplus \mathbf{N}(T)$$
.

证明: 对 $\forall \alpha \in V_n(\mathbf{C})$,则有 $\alpha_1 = T(\alpha)$,记 $\alpha_2 = \alpha - \alpha_1$. 因为 $T = T^2$,有

$$T(\alpha_2) = T(\alpha - \alpha_1) = T(\alpha) - T(\alpha_1) = T(\alpha) - T^2(\alpha) = 0.$$

因此, $\alpha_2 \in \mathbf{N}(T)$. 所以 $V_n(\mathbf{C}) = \mathbf{R}(T) + \mathbf{N}(T)$.

 $\forall \beta \in \mathbf{R}(T) \cap \mathbf{N}(T)$,则 $\beta \in \mathbf{R}(T)$ 且 $\beta \in \mathbf{N}(T)$,即有 $\exists \gamma \in V_n(\mathbf{C})$,使得 $\beta = T(\gamma)$ 和 $T(\beta) = 0$. 进一步可得

$$\beta = T(\gamma) = T^2(\gamma) = T(\beta) = 0.$$

综上,有 $V_n(\mathbf{C}) = \mathbf{R}(T) \oplus \mathbf{N}(T)$.

定理 5 设 $V_n(C) = V_1 \oplus V_2$, 则存在投影 T, 使得

$$R(T) = V_1, N(T) = V_2.$$

证明:因为 $V_n(\mathbf{C}) = V_1 \oplus V_2$,对 $\forall \alpha \in V_n(\mathbf{C})$,则 α 可以唯一的分解为 $\alpha = \alpha_1 + \alpha_2$,其中 $\alpha_1 \in V_1$, $\alpha_2 \in V_2$. 定义线性映射 T 满足 $T(\alpha) = \alpha_1$,即

$$T(\alpha) = T(\alpha_1 + \alpha_2) = T(\alpha_1) + T(\alpha_2) = \alpha_1,$$

由于 α 的任意性, 有 $T(\alpha_1)=\alpha_1$, 进而可得 $T(\alpha_2)=0$. 因此, $\alpha_2\in \mathbf{N}(T)$. 由于 α 的任意性和直和关系,有 $\mathbf{R}(T)=V_1$, $\mathbf{N}(T)=V_2$.

又因为

$$T^2(\alpha) = T(\alpha_1) = \alpha_1 = T(\alpha),$$

有 T 为投影.

4 正交投影

定义 10 设 T 是 $V_n(\mathbf{C})$ 上的投影, $V_n(\mathbf{C}) = \mathbf{R}(T) \oplus \mathbf{N}(T)$. 如果 $\mathbf{R}^{\perp}(T) = \mathbf{N}(T)$, 则 称 T 是正交投影.

定理 6 设 $A \in \mathbb{C}^{n \times n}$, $A^2 = A$, 则 A 是正交投影的充分必要条件是 $A^H = A$.

证明: (充分性) 因为 $A^2=A$,知 $\mathbf{C}^n=\mathbf{R}(A)\oplus\mathbf{N}(A)$. $\forall y\in\mathbf{R}(A)$, $\forall x\in\mathbf{N}(A)$,则 $\exists z\in\mathbf{C}^n$ 使得 y=Az,Ax=0. 于是有

$$(u, x) = u^H x = z^H A^H x = z^H A x = 0.$$

即 $y \perp x$. 由于 y, x 的任意性, 得 $\mathbf{R}^{\perp}(A) = \mathbf{N}(A)$.

(必要性) 因为 $A^2=A$, $\forall x\in \mathbf{C}^n$, 则 $Ax\in \mathbf{R}(A)$, $x-Ax\in \mathbf{N}(A)$. 因为 $\mathbf{R}^\perp(A)=\mathbf{N}(A)$, 有

$$0 = (x - Ax, Ax) = x^{H}Ax - x^{H}A^{H}Ax = x^{H}(A - A^{H}A)x,$$

由 x 的任意性,知 $A = AA^H$ 为 Hermitian 矩阵,即 $A = A^H$.