TTT4110 Project - Part 1

Table of Contents

Valid numbers and characters
Frequencys
Duration and delay
Main code

In this project we will look into the practical application where sinusoidal signals are used to transmit information. This will be done through a touched-tone phone dialer. In this part we will generate the sinusoidal signals to transmit a phone number. Part 2 of the project will focus on extracting the information encoded in the sinusoidal signals.

Valid numbers and characters

```
valid_numbers=[1,2,3,4,5,6,7,8,9,0];
valid_chars=['*', '#'];
```

Frequencys

The frequencys are defined as upper and lower bound frequencys. They will be combined later to define the characteristic sinusoidal signal for each number and character.

```
lower_frequencies = [697, 770, 852, 941];
upper_frequencies = [1209, 1336, 1477];
Fs=8000;
```

Duration and delay

Each of the signals will have the duration time and there will be a delay between each signal of delay.

```
time=0.2; % duration in # sec.
delay=0.05; % delay in # sec.
```

Main code

The major part of the code is based in a single for-loop. This will greatly increase the possibility to reuse all the code without using separate function files.

```
phoneNr = input('Write phone number: ', 's'); % Input defined as string
% Initializing temporary variables
lower=0;
upper=0;
% Looping through all characters in the string with a for-loop:
for number=phoneNr
```

```
% Check if input is a valid character, and sets lower and upper
% frequencies accordingly
if(number == valid_chars(1) | | number == valid_chars(2))
    switch number
        case '#'
            lower=lower_frequencies(4);
            upper=upper_frequencies(3);
            lower=lower_frequencies(4);
            upper=upper_frequencies(1);
    end
% Check if input is zero
elseif (number == '0')
    lower=lower frequencies(4);
    upper=upper_frequencies(2);
% Handle numbers 1-9 accordingly, print error message if value is
% neither a number nor in the valid character set and continue to next input.
else
    number=str2num(number); % Trying to convert string-character to number
    if(isempty(number) | | number==i | | number==j) % Convertion returns and emp
        disp('Not a number or valid character, ignoring');
        continue; % Skip to next character from input string.
    end % End if
    % Calculates the 'upper' frequency of the sinusoidal signal based on
    % number value.
    switch mod(number, 3)
        case 0
            upper=upper_frequencies(3);
        case 1
            upper=upper_frequencies(1);
        case 2
            upper=upper_frequencies(2);
    end % End switch #1
    % Calculates the 'lower' frequency of the sinusoidal signal based on
    % number value.
    switch number
        case \{1, 2, 3\}
            lower=lower_frequencies(1);
        case {4,5,6}
           lower=lower_frequencies(2);
        case {7,8,9}
            lower=lower_frequencies(3);
    end % End switch #2
end
t=0:1/Fs:time;
xLower=sin(2*pi*lower*t); % Generate the 'lower' sinusoidal siganl
xUpper=sin(2*pi*upper*t); % Generate the 'upper' sinusoidal signal
```

```
sound(xUpper+xLower, Fs); % Play the combined sinusoidal signal
pause(delay+time); % Pause program to allow delay between signals
end % End for-loop
```

Published with MATLAB® R2013a