实验报告

一、实验目的

了解程序设计语言的发展历史,了解不同程序设计语言的各自特点;感受编译执行和解释 执行两种不同的执行方式,初步体验语言对编译器设计的影响,为后续编译程序的设计和开发 奠定良好的基础。

学习和使用 C/C++、Python、Java、Haskell 四种编程语言,并用四种语言编写实现同一功能的简单程序,并体会不同的编程语言的语言、语法特点,了解不同编程语言的特性、运行效率的高低、代码规模大小等特征。通过实际编程实验,横向对比不同语言之间的特点和特性。

二、实验内容

分别使用 C/C++、Java、Python 和 Haskell 实现快速排序。对采用这几种语言实现的变成效率、编程规模、程序运行效率进行对比分析。

三、实验步骤

1、环境搭建

本实验在 Ubuntu 18.04.4 LTS 系统下进行。apt-get 命令提供了 Linux 系统下,对软件的管理,可以方便的完成各个语言环境的安装。通过使用相应的命令,使用 Linux 系统的程序管理器,即可快速完成对实验环境的搭建。使用 Visual Studio code 作为实验代码的编辑器。使用的各语言运行环境版本如下:

- C/C++: gcc 7.5.0
- Java: openjdk 1.9.0_282
- Python: Python 3.6.9
- Haskell: GHCI 8.0.2v

2、数据准备

预先使用 Python 语言编写简单程序,生成测试数据。使用 random 库,生成一个由 500000 个 $0\sim10000$ 间数字组成的随机数组作为测试数据,并保存为: 5000000. txt。同时,生成一个大小为 7 的数据用于验证程序正确性,保存为: 7. txt。

3、代码编写

使用四种编程语言,对快速排序进行实现。快速排序是一种时间复杂度为 0 (logn) 的快速排序算法。它使用递归的方式进行实现,可以快速完成对数据的排序。为了方便测试,将待排序的数据存储在.txt 文件中,使用文件操作读入这些数据并完成排序。使用不同语言所提供的时间模块完成对排序过程的计时。

对于四种语言,均使用函数的方式封装快速排序算法为 qsort (),在主程序中完成对数据文件的读取、排序计时等操作。

在代码开发效率方面,Python 语言使用最为简单,开发效率最高。C、Java 语言的开发效率相近。由于它们的语法要求较为严格,因此需要耗费一定的时间进行调试。Haskell语言的语法较为特殊,因此在涉及到循环、函数操作时需要花费更多的时间进行设计,开发效率偏低。

4、实验操作

Visual Studio code 中的 Code Runner 插件提供了对上述语言运行的支持。使用此插件实现代码的执行。分别执行四个程序,并记录相应的程序执行时间等输出。

四、实验结果

1, C

```
[Running] cd "/home/wxz/桌面/codes/C/src/" && gcc qsort.c -o qsor Before sort(top 10): 1962 1559 8169 924 7450 2328 4300 8972 3505 Start Finish!

After sort(top 10): 0 0 0 0 0 0 0 0 0 0 run time: 3.236601

[Done] exited with code=0 in 3.7 seconds
```

上图展示了对 5000000 个数字作排序的过程。代码第一行输出排序前的前 10 个数字,此时程序已经完成对文件的读取。Start、Finish 标志快速排序函数的执行开始和结束。最后程序会输出程序的执行时间,为: 3.23s

2、Java

```
[Running] cd "/home/wxz/桌面/codes/Java/src/" && javac qsort.ja
Before sort(top 10): 1962 1559 8169 924 7450 2328 4300 8972 356
Start
Finish!
After sort(top 10): 0 0 0 0 0 0 0 0 0
run time: 1.960493905
[Done] exited with code=0 in 4.669 seconds
```

上图展示使用 Java 语言实现的快排对 5000000 个数字的排序输出结果。输出的结构与 C++输出结构相同。可以看到,它的运行时间为: 1.96s

3、Python

```
[Running] python3 "/home/wxz/桌面/codes/Python/src/qsort.py"
Before sort(top 10): [1962, 1559, 8169, 924, 7450, 2328, 4300,
Start
Finish!
After sort(top 10): [0, 0, 0, 0, 0, 0, 0, 0, 0]
run time: 98.78083872795105
[Done] exited with code=0 in 101.29 seconds
```

上图为使用 Python 执行排序后的结果。明显,此次排序的时间相较于前两种较长,为: 98.78s。

4、Haskell

```
[Running] runhaskell "/home/wxz/桌面/codes/Haskell/src/qsort.hs"
Before sort(top 3):
1962
1559
8169

Start
Finish!

After sort(top 3): |
0
0
0
[Done] exited with code=0 in 21.674 seconds
```

上图为使用 Haskell 执行排序后的结果。由于 Haskell 没有提供易用的时间模块,因此使用 Visual Studio code 所提供的程序运行时间作为排序的时间。这个时间是包括程序对数据文件进行读取操作的时间,因此应比实际运行时长便大。在实验中,尝试使用 Haskell 所提供的时间库对精确的排序程序运行时间做计算,但经实验发现此库会对程序运行效率产生极大影响,因此最终采用前述方法进行计时。由于文件操作时长较短(约为 0.3s),因此使用次方法作为排序函数运行时间是可以接受的。运行时间为: 21.67s。

五、语言易用性和程序规模对比分析

1、语言易用性

Python 的使用最为简单,不需要考虑变量类型,使用时它会自动完成数据类型的转换和匹配。它提供的各函数及库可以简单的、忽略底层实现的完成相应的功能,因此编写程序的体验最好。对于数据读取方面,使用 split 方法可以方便的完成对字符串的切割。同时 python 的列表支持对表头、表尾的随机插入删除操作并且提供切片,因此对于列表的操

作及列表输出提供了极大的便利。Python 的这些特性使得它的学习较为简单,编程效率也较高。

C语言的使用相对比较复杂。它有严格的语法要求,对于变量、函数在使用前均需要进行声明,并说明其数据类型、返回值的类型。因此在使用时,需要预先对语言的语法有较为详细的了解。同时,C语言更接近机器的底层,并且提供了指针等操作。在编写程序时,需要程序设计者对及其硬件有一定的了解。同时,这也使得 C语言编写程序时针对硬件进行优化的空间更大。但这也使得程序发生内存泄露的可能性增大,因此需要程序设计者有较高的设计水平。由于 C语言严格的语法并且需要对硬件有一定的认识,它的学习难度较为适中。而程序的开发效率也较为适中,更多的时间可能花费在程序的调试方面

Java 语言比 C 语言的使用稍复杂。他在对变量、函数进行使用前也需要进行声明,并说明其确定的变量类型、返回值类型。在各类库方面,这两种语言的支持也更为完善。相较下,C 的类库更偏向底层,因此提供的借口更为简单和开放;而 Java 语言的接口使用则相对较为复杂,需要对相关的对象、操作有清晰的了解。同时在权限管理方面,由于 Java 是面向对象的编程语言,因此在有涉及到静态变量等共有变量时,会产生较为复杂的权限控制,需要程序编写者对 Java 语言的语法有清晰明确的认识。Java 语言程序运行在 Java 虚拟机上,因此程序不直接控制计算机硬件。这使得 Java 程序更为安全,发生内存泄漏的概率更低,因此对程序设计者的要求也相较更低。Java 语言上手较为容易,但是要对 Java 语言的语法特性又充分的认识需要学习者花费一定的时间进行学习。在开发效率方面,Java 的类库较为丰富,因此开发效率相对较高。

Haskell语言是一种纯函数编程语言,它的程序编写较有独特的性。它的语法相比更为特殊,如没有一般性的循环,需要通过递归来实现循环功能。同时它也是强类型语言,变量在使用过程中的数据类型是明确的。在对数据与处理方面,由于 Haskell 的不同于一般面向过程的编程语言,因此使用起来较为困难。同时,在类库支持方面,Haskell 的资料相对来说较少。而在编写快速排序程序中,Haskell语言的本身特性使得算法实现极为简洁和简单。因此 Haskell语言对于科学计算、数学函数的实现较为简便。在学习方面,由于 Haskell语言是函数编程语言,因此不同于其它三种程序设计语言,它的学习个人认为相对较为困难。在开发效率方面,由于自身特性,对于数学函数的实现较为容易,而对于涉及到循环及多参数函数的设计,则需要花费一定的时间。

2、程序规模

各个语言程序的代码行数如下:

表1 各语言代码行数

	qsort	main	总合						
С	20	45	65						
Java	20	43	63						
Python	19	31	50						
Haskell	6	32	38						

C、Java、Python 三种语言的排序实现代码部分长度基本相同,而 Haskell 的排序函数 实现代码相较短的多。这是由于 Haskell 自身的语法特性,使得它对于快速排序的实现较 为简单。而另外三种语言,由于通过同样的方式编写程序,因此代码长度基本相同。

对于支持部分代码,C、Java、Haskell 语言的长度相似,Python 语言的长度则短得多。这是由于 Python 语言所提供的文件操作对象简单易用,因此节约了大量的代码行数。这也使得 Python 的开发速度较快。

从总代码行数来看,Haskell、Python 两种语言的代码长度较短,这是由他们各自的特点所造成的结果。而 C、Java 两种语言在代码行数上基本相同.

六、程序运行性能对比分析

1、软、硬件环境

- 操作系统: Ubuntu 18.04.4 LTS
- CPU: Intel® Core™ i5-8250U
- CPU 核数: 4 核 8 线程
- CPU 主频: 1.6GHz
- Cache 大小: 三级缓存 6MB
- 内存: 8G

2、性能分析

使用 5000000 规模的数据作为测试数据,分别运行各语言编写的程序 7 次,并记录程序运行时间如下表:

表2 各语言运行时间(s)

	1	2	3	4	5	6	7	平均值
С	3. 192	3. 171	3. 171	3. 171	3. 240	3. 236	3. 204	3. 20
	1.888							
Python	104.013	100.055	101.520	100.497	100.691	99.557	99.419	100.82
	20.997							

从上表中可以看到, Java 的执行速度最快, 平均为 1.94s, C 语言平均速度为 3.20s。而 Python、Haskell 的执行速度显著较慢, 分别为 100.82s、20.32s。

由于 C、Java 在执行前需要编译为可执行文件或字节码,因此可以进行充分的优化,也从而使得执行的速度更快。而 Python、Haskell 为解释型语言,在执行到相应的语句时才会确定接下来所要执行的内容,因此优化空间较小,执行速度较慢。同时对于 Python,由于它的数组提供了更为方便用户的访问操作,因此程序访问执行时更加耗时。因此,Python、Haskell 这两种解释型语言的执行速度显著慢于 C、Java 这两种需要编译、预编译的程序。

七、心得体会

本次实验中,我学习使用了4种不同的编程语言,实现快速排序这一重要算法。通过 实际的程序设计语言学习、编程实践、代码运行分析,我对这四种不同的编程语言的特点 有了充分的认识和了解。不同的编程语言有不同的设计思路和特点。在程序设计语言的易 用性、执行速度、复杂性、安全性等方面,不同的编程语言有这不同的权衡。 以 C 语言来说,它更加贴近底层,可以使程序设计者有更多的空间直接控制硬件并进行充分优化,因此性能较好。但同时这也使得水平较低的程序开发者在程序设计中,可能出现内存泄漏等错误,增加了程序出现 BUG 的风险。而 Java 语言的代码需要运行在 Java 虚拟机上,并通过虚拟机完成内存回收等任务,有效避免了内存泄漏等错误的出现。但这样的对硬件不透明,又可能增加程序设计者对程序进一步优化的难度。Python 语言使解释型语言。它相较于前两种语言,语法要求更加宽松,更加贴合人类语言的表达方式,功能使用更加方便,因此学习与编写较为简单。同时丰富的类库也使得 Python 可以使用较短的代码行数,完成更为复杂的任务。而这样易用性的代价,便是程序的执行效率较低。在本次实验中,Python 与 C 语言的性能差距在 30 倍左右。Haskell 语言的语法规则较为独特,它是一种函数式编程语言。它的语法中没有循环,需要通过递归来实现循环。因此对于一些数学公式的编程实现更为简单,更符合数学的思维方式。同时在本次编写程序过程中,Haskell 语言的本身特性也使得编写的代码极为简短。但同时,它的执行效率也是最低的。

因此,对于程序语言设计者来说,需要权衡好易用性、性能、复杂性、安全性、拓展性、可移植性等多个方面的内容,这样才能设计出一款优秀的程序语言。而对于程序开发者,则需要熟悉各类程序语言的特点,根据自己的实际任务需求选择适合的程序设计语言,这样才能更加高效的完成程序设计任务。