

WHAT IS CLAIMED IS:

1. 1. A method of generating a non-integer frequency divided clock signal comprising the steps of:
 3. a) generating a number K of output signal phases P(0) to P(K-1);
 4. b) outputting a present value of an integer index in response to a logic transition of a shift clock signal;
 5. c) selecting one of the K output signal phases P(0) to P(K-1) corresponding to the present value of the integer index as a clock output signal using a glitch free clock selector circuit;
 6. d) clocking a synchronous divide by N counter with the clock output signal generating the non-integer frequency divided clock signal and the shift clock signal;
 7. e) determining when the synchronous divide by N counter has been clocked N times by the clock output signal, wherein the shift clock signal is generated by a transition of the clock output signal following an Nth transition of the clock output signal;
 8. f) receiving an integer fractional divisor having a value less than (K-1); and
 9. g) adding the value of the integer fractional divisor to the present value of the integer index in a modulo (K-1) adding circuit generating a new present value of the integer index.
1. 2. The method of claim 1, wherein the non-integer frequency divided clock signal is used as a feedback clock signal of a phase locked loop circuit having a multiphase voltage controlled oscillator generating the K of equally phased output signals P(0) to P(K-1).

- 1 3. The method of claim 1, wherein the K output signal phases P(0) to P(K-1)
2 each have a period T and are progressively phase shifted by an equal amount T/K.

- 1 4. A circuit for generating a non-integer frequency divided clock signal that is
2 frequency divided from a clock output signal comprising:
3 a multiple phase clock having a number K of output signal phases P(0) to
4 P(K-1);
5 circuitry for outputting a present value M of an integer index in response to a
6 logic transition of a shift clock signal;
7 glitch free clock selector circuitry for selecting one of the K output signal
8 phases P(M) as a clock output signal in response to the present value M of the integer
9 index;
10 a synchronous divide by N counter clocked by the clock output signal thereby
11 generating the frequency divided clock signal and the shift clock signal;
12 circuitry in the divide by N counter for determining when the divide by N
13 counter has been clocked N times by the clock output signal, wherein the shift clock
14 signal is generated by a transition of the clock output signal on a transition following
15 an Nth transition of the clock output signal;
16 circuitry for receiving an integer fractional divisor having a value S having a
17 value less than (K-1); and
18 modulo (K-1) adding circuitry for adding the value S to a value of the integer
19 index generating the present value M.

1 5. The circuit of claim 4, wherein the non-integer value is (N+S/K).

1 6. The circuit of claim 4, wherein the glitch free clock selector circuitry
2 comprises a K to one Phase multiplexer (MUX) receiving the K clock phase signals
3 and generating a Phase MUX output as P(M), a selected one of the K clock phase
4 signals, in response to a K bit MUX select signal, wherein only one of the K bits is a
5 logic one corresponding to the present value M of the integer index.

- 1 7. The circuit of claim 4, wherein the modulo (K-1) adding circuitry comprises:
2 circuitry for converting S to a K bit phase select signal wherein one of the K
3 bits is a logic one and K corresponds to the value S;
4 a number of K (K to one) Select MUXs, wherein each input of the K Select
5 MUXs is coupled to one of the K bits of the K bit MUX select signal and the ordering
6 of the coupling for each of the K Select MUXs is rotationally shifted by one from an
7 adjacent Select MUX; and
8 a K bit register, wherein each register bit stores a state of the output of each of
9 the K Select MUXs in response to the shift clock signal and the outputs of the K bit
10 register form the K bit MUX select signal.
- 1 8. The circuit of claim 6, wherein the glitch free clock selector circuitry further
2 comprises a logic circuit for generating the clock output signal as a logic combination
3 of the Phase MUX output and a sequential gating signal that depends on a previous
4 state of the clock output signal.
- 1 9. The circuit of claim 4, wherein the K output signal phases P(0) to P(K-1) each
2 have a period T and are progressively phase shifted by an equal amount T/K.

- 1 10. A phase locked loop circuit for generating a phase clock signal with a
2 frequency that is a non-integer multiple of a reference clock signal comprising:
3 a multiphase voltage controlled oscillator (MVCO) generating the phase clock
4 signal as one of a number K of output signal phases P(0) to P(K-1) and the frequency
5 of the phase clock signal is controlled by a control voltage;
6 a phase frequency detector for comparing a frequency divided clock signal to
7 the reference clock signal and generating a phase/frequency error signal;
8 circuitry for converting the phase/frequency error signal to the control voltage;
9 and
10 division circuitry for generating the frequency divided clock signal by
11 frequency dividing a selected one P(M) of the K equally phased output signals by a
12 non-integer value, wherein the division circuitry has circuitry for outputting a present
13 value M of an integer index in response to a logic transition of a shift clock signal,
14 glitch free clock selector circuitry for selecting one of the K equally phased output
15 signals P(M) as a clock output signal in response to the present value M of the integer
16 index, a synchronous divide by N counter clocked by the clock output signal thereby
17 generating the frequency divided clock signal and the shift clock signal, circuitry in
18 the divide by N counter for determining when the divide by N counter has been
19 clocked N times by the clock output signal, wherein the shift clock signal is generated
20 by a transition of the clock output signal on a transition following an Nth transition of
21 the clock output signal, circuitry for receiving an integer fractional divisor having a
22 value S having a value less than (K-1), and modulo (K-1) adding circuitry for adding
23 the value S to a value of the integer index generating the present value M.
- 1 11. The phase locked loop circuit of claim 10, wherein the non-integer multiple
2 has a value (N+S/K).

1 12. The phase locked loop circuit of claim 10, wherein the glitch free clock
2 selector circuitry comprises a K to one Phase multiplexer (MUX) receiving the K
3 clock phase signals and generating a Phase MUX output as P(M), a selected one of
4 the K clock phase signals, in response to a K bit MUX select signal, wherein only one
5 of the K bits is a logic one corresponding to the present value M of the integer index.

1 13. The phase locked loop circuit of claim 10, wherein the modulo (K-1) adding
2 circuitry comprises:

3 circuitry for converting S to a K bit phase select signal wherein one of the K
4 bits is a logic one and K corresponds to the value S;

5 a number of K (K to one) Select MUXs, wherein each input of the K Select
6 MUXs is coupled to one of the K bits of the K bit MUX select signal and the ordering
7 of the coupling for each of the K Select MUXs is rotationally shifted by one from an
8 adjacent Select MUX; and

9 a K bit register, wherein each register bit stores a state of the output of each of
10 the K Select MUXs in response to the shift clock signal and the outputs of the K bit
11 register form the K bit MUX select signal.

1 14. The phase locked loop circuit of claim 12, wherein the glitch free clock
2 selector circuitry further comprises a logic circuit for generating the clock output
3 signal as a logic combination of the Phase MUX output and a sequential gating signal
4 that depends on a previous state of the clock output signal.

1 15. The phase locked loop circuit of claim 10, wherein the K output signal phases
2 P(0) to P(K-1) each have a period T and are progressively phase shifted by an equal
3 amount T/K.

1 16. A data processing system comprising:

2 a central processing unit (CPU) clocked by a CPU clock signal;

3 a random access memory (RAM);

4 a read only memory (ROM);

5 an I/O adapter;

6 a bus system coupling said CPU to said ROM, said communications adapter,

7 said I/O adapter, and said RAM, wherein the CPU clock signal is generated by phase

8 locked loop circuitry as a non-integer multiple of a reference clock signal, the phase

9 locked loop circuitry having a multiphase voltage controlled oscillator (MVCO)

10 generating the CPU clock signal as one of a number K of output signal phases P(0) to

11 P(K-1) and the frequency of the CPU clock signal is controlled by a control voltage;

12 a phase frequency detector for comparing a frequency divided clock signal to

13 the reference clock signal and generating a phase/frequency error signal;

14 circuitry for converting the phase/frequency error signal to the control voltage;

15 and

16 division circuitry for generating the frequency divided clock signal by

17 frequency dividing a selected one P(M) of the K equally phased output signals by a

18 non-integer value, wherein the division circuitry has circuitry for outputting a present

19 value M of an integer index in response to a logic transition of a shift clock signal,

20 glitch free clock selector circuitry for selecting one of the K equally phased output

21 signals P(M) as a clock output signal in response to the present value M of the integer

22 index, a synchronous divide by N counter clocked by the clock output signal thereby

23 generating the frequency divided clock signal and the shift clock signal, circuitry in

24 the divide by N counter for determining when the divide by N counter has been

25 clocked N times by the clock output signal, wherein the shift clock signal is generated

26 by a transition of the clock output signal on a transition following an Nth transition of

27 the clock output signal, circuitry for receiving an integer fractional divisor having a
28 value S having a value less than (K-1), and modulo (K-1) adding circuitry for adding
29 the value S to a value of the integer index generating the present value M.

1 17. The data processing system of claim 16, wherein the glitch free clock selector
2 circuitry comprises a K to one Phase multiplexer (MUX) receiving the K clock phase
3 signals and generating a Phase MUX output as P(M), a selected one of the K clock
4 phase signals, in response to a K bit MUX select signal, wherein only one of the K
5 bits is a logic one corresponding to the present value M of the integer index.

1 18. The data processing system of claim 16, wherein the modulo (K-1) adding
2 circuitry comprises:

3 circuitry for converting S to a K bit phase select signal wherein one of the K
4 bits is a logic one and K corresponds to the value S;

5 a number of K (K to one) Select MUXs, wherein each input of the K Select
6 MUXs is coupled to one of the K bits of the K bit MUX select signal and the ordering
7 of the coupling for each of the K Select MUXs is rotationally shifted by one from an
8 adjacent Select MUX; and

9 a K bit register, wherein each register bit stores a state of the output of each of
10 the K Select MUXs in response to the shift clock signal and the outputs of the K bit
11 register form the K bit MUX select signal.

1 19. The data processing system of claim 17, wherein the glitch free clock selector
2 circuitry further comprises a logic circuit for generating the clock output signal as a
3 logic combination of the Phase MUX output and a sequential gating signal that
4 depends on a previous state of the clock output signal.

- 1 20. The data processing system of claim 16, wherein the K output signal phases
- 2 $P(0)$ to $P(K-1)$ each have a period T and are progressively phase shifted by an equal
- 3 amount T/K .