Fairness Project

Creating a Tool

FU Berlin Supervisor: Eirini Ntoutsi, Siamak Ghodsi

Main functionality - Our Focus

Most important point:

-> evaluation of adaptability of algorithms to distribution shifts/context shifts

to make it interesting:

-> out of distribution testing (**new algorithms**)

We do this project in "part-time"

We are not sure if we can polish this paper up to "conference standard" Should we 'only' focus on one key aspect? -> No jack of all trades

How likely are we to attend a conference? -> What happens if we do not make it?

We do this project in "part-time"

We are not sure if we can polish this paper up to "conference standard" Should we 'only' focus on one key aspect? -> No jack of all trades

How likely are we to attend a conference? -> What happens if we do not make it?

We do this project in "part-time"

We are not sure if we can polish this paper up to "conference standard" Should we 'only' focus on one key aspect? -> No jack of all trades

How likely are we to attend a conference? -> What happens if we do not make it?

We do this project in "part-time"

We are not sure if we can polish this paper up to "conference standard"

Should we 'only' focus on one key aspect? -> No jack of all trades

How likely are we to attend a conference? -> What happens if we do not make it?

Main functionality - Our Focus

Main Questions:

- -Should we allow custom datasets?
- -Which Datasets can support such shifts?
- -Should we allow different evaluation methods/metrics?

Main functionality - Our Focus

What is a distribution shift precisely?

- -> Spatial -> "From where is the data?"
- -> Temporal -> "From when is the data?"
- -> Other Shifts?

Keywords: **covariate shift**, concept shift

- Standalone, Notebook or 'Library'?
- Step by Step selection of Parameters -> AIF360 Demo
- Evaluation/Quantification of context shifts (KL-Divergence)
- How much was the model affected by the shifts? How to evaluate?
 - Absolute and relative difference in **which** metrics (e.g. 90% acc vs 70% acc)
 - o Runtime?
- Should we have prepared/precomputed models to compare against?

- Standalone, Notebook or 'Library'?
- Step by Step selection of Parameters -> AIF360 Demo
- Evaluation/Quantification of context shifts (KL-Divergence)
- How much was the model affected by the shifts? How to evaluate?
 - Absolute and relative difference in **which** metrics (e.g. 90% acc vs 70% acc)
 - o Runtime?
- Should we have prepared/precomputed models to compare against?

- Standalone, Notebook or 'Library'?
- Step by Step selection of Parameters -> AIF360 Demo
- Evaluation/Quantification of context shifts (KL-Divergence)
- How much was the model affected by the shifts? How to evaluate?
 - Absolute and relative difference in **which** metrics (e.g. 90% acc vs 70% acc)
 - o Runtime?
- Should we have prepared/precomputed models to compare against?

- Standalone, Notebook or 'Library'?
- Step by Step selection of Parameters -> AIF360 Demo
- Evaluation/Quantification of context shifts (KL-Divergence)
- How much was the model affected by the shifts? How to evaluate?
 - Absolute and relative difference in which metrics (e.g. 90% acc vs 70% acc)
 - o Runtime?
- Should we have prepared/precomputed models to compare against?

- Standalone, Notebook or 'Library'?
- Step by Step selection of Parameters -> AIF360 Demo
- Evaluation/Quantification of context shifts (KL-Divergence)
- How much was the model affected by the shifts? How to evaluate?
 - Absolute and relative difference in which metrics (e.g. 90% acc vs 70% acc)
 - o Runtime?
- Should we have prepared/precomputed models to compare against?

Progress so far

• Pipeline:

	(Transform Predictions)	Calculate Metrics	Visualization		Compare Metrics	Context Shifts	Visualization/ "High Score"
Predictions : Numpy Array				Metrics: Diet			
Protected_Attribute_Values 1humpy Array							
Bonus Information : Dict							

Progress so far

• Pipeline:

Algorithms for developing fair models

Preprocessing

- Reweighing
- Disparate Impact Removing
- "Learning fair representations"
- "Optimized preprocessing"

Inprocessing

- Adversarial Debiasing
- "Meta Fair Classifier"
- Prejudice Removing
- "Gerry Fair Classifier"

Postprocessing

- Equalized Odds
 Postprocessing
- Reject Option
 Classification

Metrics for evaluating fairness

Three types of fairness:

Group

- (Conditional)Demographic Parity
- Error Parity
 - Equal Accuracy
 - ABROCA
 - Equality of Odds
 - Disparate Impact
 - Predictive Parity

<u>Individual</u>

- FTU/Blindness
- Fairness Through

Awareness

Causality-based

Observational

In total, we collected around **70 different metrics** for assessing classification performance and fairness.

General Dataset

ACI Income (also known as New "Adult Dataset")

-> Based on US Census (≈1-2% of USA Pop.)

Time scale: 2014 -2018

Features: 10 (e.g. Occupation, Worktime per Week, Race, ...)

Prediction goal: earn more than 50k? -> Yes / No

Datasets

- -Northern States
- -Southern States
- -East Coast
- -West Coast
- -None Coast
- -Urban States
- -Rural States

Sample Size: 1.6 Mio (2016) mean class: 34%

Data Overview:

Datasets	Size (in k)	Mean Label (in %)
All	1600	34
Northern	676	35
Southern	915	33
East Coast	526	37
West Coast	260	38
None Coast	831	31
Urban States	898	37
Rural States	719	31

Results - How to interpret

Results - Temporal Context

Results - Spatial Context

Results - Threshold - Disparate Impact

Limits

- Not every model could run on every data set
- Regional Context limited -> Only US States, not international
- Only limited comparisons with non-fairness aware models
- Only group fairness metrics, no individual fairness metric
- no/ few data set metrics

Possible Extensions

- Include more models
- Calculate more metrics (e.g. individual fairness)
- Use more data -> More datasets
- Use more data sources -> e.g. international data
- Run more experiments -> threshold, temporal/spatial context etc.

Thank you for listening!

But wait... there's more!

Results - Threshold - Accuracy

Results - Threshold - F1 Score

