Model Predictive Control of a Sewer System

June 14, 2018

Group 1030

Jacob Naundrup Pedersen Thomas Holm Pilgaard

Department of Electronic Systems Aalborg University Denmark

Group 1030

Diskussion/Konklusion

Introduktion

Kloakker og rensningsanlæg Problem formulering

System beskrivelse

Løsninger og begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

42

Typisk opbygning af kloak ledning

Agenda Group 1030

Kloakker og

rensningsanlæg

Modellering

Simulering

Agenda

Group 1030

troduktion

Kloakker og rensningsanlæg

Problem formularing

System beskrivelse

Løsninger og

Løsninger og

Modellering

Simulen

Preissmann

Implementeri

Kontro

Linearisering

Resultat

Diakusaian/Kankhusia

► Mekanisk rensning.

Agenda

Group 1030

Kloakker og rensningsanlæg

System beskrivelse

Modellering

Resultat

- ► Mekanisk rensning.
- Sandfang.

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninger

Modellering

1110000110111

0.....

Preissmann

Implementeri

Implementerin

Kontro

Lineariserin

Dogulto

- ► Mekanisk rensning.
- Sandfang.
- Primær rensning.

Agenda

Group 1030

Kloakker og rensningsanlæg

System beskrivelse

- Mekanisk rensning.
- Sandfang.
- Primær rensning.
- Sekundær rensning.

Agenda

Group 1030

Kloakker og rensningsanlæg

System beskrivelse

- Mekanisk rensning.
- Sandfang.
- Primær rensning.
- Sekundær rensning.
- ► Kemisk rensning.

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivels

Løsninger og

begrænsninger

Modellerin

Simulering

Struktur

Preissman

Implementerin

Kontro

Linearisering

Dooulte

Diskussion/Konklusion

Virksomheds besøg ved Fredericia Spildevand og Energi A/S.

Agenda

Group 1030

Kloakker og rensningsanlæg

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel

Agenda

Group 1030

Kloakker og rensningsanlæg

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - Problemer for aerobe bakterier

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivel:

Løsninger og

Modellerin

Simulering

Struktur

Preissmann

Implementering

Kontro

Lineariserin

Regults

- ▶ Virksomheds besøg ved Fredericia Spildevand og Energi A/S.
 - Større udledninger uden varsel
 - ▶ Problemer for aerobe bakterier
 - Andre forstyrelser

Problem formulering

Agenda

Group 1030

Problem formulering

Diskussion/Konklusion

How can a simulation environment be constructed, which mimic the behavior of a real sewer system, where MPC is utilized as the control scheme to obtain stable sewage output such that optimal performance can be obtained from a WWTP.

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

øsninger og

Modellering

Simulering

Preissman

Implemente

Kontrol

Lineariserin

Resultat

Udgangspunkt i et virkeligt setup

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

System beskrivelse

Løsninger og

Modellerina

Modellelll

Charleton

Preissmann

Implementerin

Kontroi

Dogulto

- Data fra industri.
- ► Flow profiler af beboelse og mindre industri.

Group 1030

System beskrivelse

Løsninger og

begrænsninger

Modellering

Simulering

Kontrol

Resultat

► Indsættelse af tank.

Group 1030

System beskrivelse

Løsninger og

begrænsninger

Modellering

Resultat

Indsættelse af tank.

► Afgrænse simulering til enkelt kemisk component.

Group 1030

System beskrivelse

Løsninger og

begrænsninger

Modellering

Resultat

- Indsættelse af tank.
- ► Afgrænse simulering til enkelt kemisk component.
- Runde kloak rør.

4 modeller

Agenda

Group 1030

System beskrivelse

Modellering

Kloak ledning.

- Transport af concentrat i kloak ledning.
- ► Sammenkobling af kloakledninger.
- Tank.

Group 1030

tradulation

Kloakker og rensningsanlæg

Problem formulering

System beskrivel

Løsninger og

begrænsninger

Modellering

Simulerii

Ou untui

Preissmann

Implementeri

Kontrol

Lineariserin

Resultat

Diskussion/Konklusio

► Kontinuitets ligning:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrive

Løsninger og

Modellering

Modellerini

Ottoridation

Droinemann

Preissmann

Implementer

Linearieeri

Lineariser

Resultat

Diskussion/Konklusion

► Kontinuitets ligning:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

► Impuls ligning:

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) +$$

$$\frac{\partial h}{\partial x} + S_f - S_b = 0$$

42

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivel

Løsninger og

begrænsninger

Modellering

Simulering

Droinomann

Preissmann

Implementer

Linearicer

Lineariserin

Resultat

Diskussion/Konklusion

► Kontinuitets ligning:

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

► Impuls ligning:

$$\frac{1}{gA}\frac{\partial Q}{\partial t} + \frac{1}{gA}\frac{\partial}{\partial x}\left(\frac{Q^2}{A}\right) +$$

$$\frac{\partial h}{\partial x} + S_f - S_b = 0$$

 Approksimationer af momentum ligningen.

42

Agenda

Group 1030

System beskrivelse

Modellering

Kontrol

Agenda

Group 1030

Modellerina

$$C \cdot \frac{\partial(A)}{\partial t} + C \cdot \frac{\partial(Q)}{\partial x} = 0$$

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

Modellering

....

Simulering

Struktur

Preisemann

Implementeri

Kontro

Lineariserin

Resulta

$$C \cdot \frac{\partial(A)}{\partial t} + C \cdot \frac{\partial(Q)}{\partial x} = 0$$

$$A \cdot \frac{\partial C}{\partial t} + Q \cdot \frac{\partial C}{\partial x} = 0$$

Agenda

Group 1030

Modellerina

Diskussion/Konklusion

$$C \cdot \frac{\partial(A)}{\partial t} + C \cdot \frac{\partial(Q)}{\partial x} = 0$$

$$A \cdot \frac{\partial C}{\partial t} + Q \cdot \frac{\partial C}{\partial x} = 0$$

► Afhænger af kendt A og Q.

Sammenkobling af kloak ledninger

Agenda

Group 1030

System beskrivelse

Modellering

Simulering

Resultat

► Flow:

$$Q_3 = Q_1 + Q_2$$

Sammenkobling af kloak ledninger

Agenda

Group 1030

Modellering

► Flow:

$$Q_3 = Q_1 + Q_2$$

Koncentrat:

$$C_3 = \frac{C_1 \cdot Q_1 + C_2 \cdot Q_2}{Q_1 + Q_2}$$

Group 1030

System beskrivelse

Modellering

Kontrol

Resultat

► Højde:

$$\frac{dh(t)}{dt} = \frac{1}{A} \left(Q_{in}(t) - u(t) \cdot \overline{Q} \right)$$

Group 1030

Modellerina

Diskussion/Konklusion

Højde:

$$\frac{dh(t)}{dt} = \frac{1}{A} \left(Q_{in}(t) - u(t) \cdot \overline{Q} \right)$$

Koncentrat:

$$\frac{\textit{dC}_{\textit{tank}}(t)}{\textit{dt}} = \frac{1}{\textit{A}} \left(\textit{C}_{\textit{in}}(t) \cdot \frac{\textit{Q}_{\textit{in}}(t)}{\textit{h}(t)} - \textit{C}_{\textit{tank}}(t) \cdot \frac{\textit{Q}_{\textit{out}}(t)}{\textit{h}(t)} \right)$$

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

Modellelli

Simulering

Struktur

ssmann

Implementerin

Kontrol

Lineariseri

Resultat

Diskussion/Konklusion

Group 1030

System beskrivelse

Modellering

Simulering Struktur

Resultat

► Intialisering

► Opsætning af komponenter.

Group 1030

Introduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

pegrænsninge

Modellering

Simulering Struktur

truktur

FIEISSIIIdIIII

Implementerin

...,

Lineariserin

Resultat

Diskussion/Konklusion

- ► Opsætning af komponenter.
- ► System i steady state.

Group 1030

Introduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellering

Simulering Struktur

iuktui

Implementaring

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

- Opsætning af komponenter.
- ► System i steady state.
- Simulering

Group 1030

Introduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

. .

Modellerin

Simularing

Struktur

traigamann

Implementaria

Implementerin

Lineariserin

Resulta

Diskussion/Konklusion

- ► Opsætning af komponenter.
- ► System i steady state.
- Simulering
- ► Iterativ beregning af komponenterne

Group 1030

System beskrivelse

Struktur

Diskussion/Konklusion

- Opsætning af komponenter.
- System i steady state.
- Simulering
- Iterativ beregning af komponenterne
- Gennemgang af resultat

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

Struktur

ruktur

Preissmann

Implementerin

KOHITOI

Lineariserii

MPC

Resultat

Diskussion/Konklusion

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellering

Simulerin

Struktur

Preissmann

Implementeri

.

Lineariserin

Resultat

Diskussion/Konklusion

► Kinematisk bølge aproksimering.

► Fyldningsgrad kurve for rør.

Group 1030

ntroduktio

rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Modellering

Jiiiiuiei

Preissmann

land land and

Implemente

Kontrol Lineariserir

MPC

Resultat

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Preissmann iteration

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivel

Løsninger og

Modellering

Cianulada

Struktur

Preissmann

Implementerin

Lineariserin

Resultat

Diskussion/Konklusion

Preissmann stabilitet

Agenda

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulerir

Preissmann

Implementeri

Implementen

Kontrol

Lineariserin

Resulta

Diskussion/Konklusion

Ubetinget stabilitet

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellering

Simulering

Preissmann

Implemente

IIIIpioilioilioil

Kontrol

Lineariseri

Resultat

Diskussion/Konklusion

► Indikation af præcision

Courant's tal

Agenda

Group 1030

Introduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Cystom besimives

Løsninger og

begrænsning

Modellering

Simulering

Preissmann

1 1010011141111

Implementerir

IZ. . I . . I

Kontrol

Lineariserin

Resultat

Diskussion/Konklusion

► Indikation af præcision

$$C_r = \frac{\sqrt{g \cdot \overline{\mathsf{H}} \cdot \Delta t}}{\Delta x}$$

Group 1030

ntroduktio

Kloakker og

Problem formulering

System beskrivel

Løsninger og

begrænsninger

Modellering

Simulerin

Preissmann

Implementer

Kontrol Lineariserin

Resultat

Diskussion/Konklusion

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrive

Løsninger og

Modellering

Simulem

Preissmann

Implementer

Kontrol

Lineariseri

Resultat

Diskussion/Konklusion

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsninger

Modellering

Modelleriii

Cimularia

Struktu

Preissmann

Preissmann

Implementering

Kontrol

Lineariserin

MPC

Resultat

Diskussion/Konklusion

- ► Implementering
- ► Kontrol
- Resultater
- ▶ Diskussion/Konklusion

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellering

Simulering

Struktur

Preissmann

Implementering

Kontrol

Linearisering

MPC

Resultat

Diskussion/Konklusion

Group 1030

ntroduktio

Kloakker og

Problem formulering

System beskrivel

Løsninger og

begrænsninger

WOOGCHCIIII

Simulering

Struktur

Preissmann

Implementering

Kontrol

Linearisering

Resultat

Diskussion/Konklusion

1. Pipe

- ► Længde [m]
- Sektioner
- ► S_b (Hældning) [‰]
- $ightharpoonup \Delta x = Længde/Sektioner [m]$
- ▶ Diameter [m]
- ► Theta
- Ineta
- ► Q_f[m³/s]
- Side inflow
- Placering i data

2. Tank

- ► Størrelse [m³]
- ► Højde [m]
- Areal = Størrelse / Højde [m²]
- ► Maximum outflow [m³/s]
- Placering i data

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

begrænsninger

Modellering

Modelleriii

Simulering

Preissman

Implementering

implemente

Lineariserin

Resultat

Diskussion/Konklusion

▶ Steady state

► System opsætning

Fields	type type	□ component	sections
1	'Pipe'	1	35
2	'Tank'	1	1
3	'Pipe'	17	207
4	'Tank'	1	1
5	'Pipe'	1	38
6	'Total'	21	282

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellering

01----

Struktur

Preissmann

Implementering

Implementaling

Kontrol

Linearisering

MPC

Resulta

Diskussion/Konklusion

Iterere igennem rør og tank for hvert tidsskridt

Group 1030

ntroduktio

rensningsanlæg

Problem formuler

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulerin

Preissmann

Implementering

IIIIpieiiieiitei

Kontrol

MPC

Resultat

Diskussion/Konklusio

28

42

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

- Kloakker og rensningsanlæg
- Problem formulerin

System beskrivel

Laeninger og

Løsninger og

Modellering

Wiodelielili

Simulering

Struktur

Preissmann

Implementeri

Kontro

Linearisering

Resultat

Diskussion/Konklusion

- ► Linear model til MPC
- ► Linearisering af kontinuitets ligningen
- ► Højde states
- ► Priessmann scheme

$$\frac{\partial A(x,t)}{\partial t} + \frac{\partial Q(x,t)}{\partial x} = 0$$

$$\frac{\partial A(h)}{\partial h} \frac{\partial h(x,t)}{\partial t} + \frac{\partial Q(h)}{\partial h} \frac{\partial h(x,t)}{\partial x} = 0$$

Group 1030

Introduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrive

Løsninger og

Degrænsning

Modellerin

Simulerin

Struktur

Preissmann

Implementeri

Kontre

Linearisering

MPC

Resulta

Diskussion/Konklusion

► Opsat på matrix og vektor form

Opstilles på state space form

$$\left[\underbrace{\frac{1}{2\Delta t} \frac{\partial A}{\partial h} - \frac{\theta}{\Delta x} \frac{\partial Q}{\partial h}}_{a} \underbrace{\frac{1}{2\Delta t} \frac{\partial A}{\partial h} + \frac{\theta}{\Delta x} \frac{\partial Q}{\partial h}}_{b} \right] \begin{bmatrix} h_{j+1}^{i+1} \\ h_{j+1}^{i+1} \end{bmatrix} =$$

$$- \left[\underbrace{\frac{-1}{2\Delta t} \frac{\partial A}{\partial h} - \frac{(1-\theta)}{\Delta x} \frac{\partial Q}{\partial h}}_{G} \underbrace{\frac{-1}{2\Delta t} \frac{\partial A}{\partial h} + \frac{(1-\theta)}{\Delta x} \frac{\partial Q}{\partial h}}_{d} \right] \begin{bmatrix} h_{j+1}^{i} \\ h_{j+1}^{i} \end{bmatrix}$$

Group 1030

ntroduktion

Kloakker og rensningsanlæg

Problem formulerin

System beskrivels

Løsninger og

begrænsninger

Modellering

Cinculation

Simulem

Preissmann

Implementer

Kontrol

Linearisering

MPG

Resultat

Diskussion/Konklusion

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & b_1 & 0 & \cdots & 0 \\ 0 & a_1 & b_2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & 0 & a_{m-1} & b_m \end{bmatrix}}_{\xi} \underbrace{\begin{bmatrix} h_0^{i+1} \\ h_1^{i+1} \\ h_2^{i+1} \\ \vdots \\ h_m^{i+1} \end{bmatrix}}_{x(k+1)} = \underbrace{\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ c_0 & d_1 & 0 & \cdots & 0 \\ 0 & c_1 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & c_{m-1} & d_m \end{bmatrix}}_{X(k)} \underbrace{\begin{bmatrix} h_0^i \\ h_1^i \\ h_2^i \\ \vdots \\ h_m^i \end{bmatrix}}_{x(k)}$$

 $-a_0$

 \overline{dQ}

 B_d

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formuler

System beskrivel

Løsninger og

Modellerina

WOOGCHCIIII

Simulerir

Struktur

Preissmann

Implementer

Kontro

Linearisering

MPC

Resultat

Diskussion/Konklusion

► e - Forøgelse af højde i tank(inflow)

- ► f Reducering af højde i tank(Outflow)
- ► g Inflow i efterfølgende rør

$$= \underbrace{ \begin{bmatrix} b_{1,2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & a_{2,1} & b_{2,2} \end{bmatrix} \underbrace{ \begin{bmatrix} h_{1,2}^{i+1} \\ h_{2,0}^{i+1} \\ h_{2,1}^{i+1} \end{bmatrix}}_{x(k+1)} }_{x(k+1)} + \underbrace{ \begin{bmatrix} 0 & 0 \\ 0 & -f \\ 0 & g \\ 0 & 0 \end{bmatrix} }_{A} \underbrace{ \begin{bmatrix} h_{1,2}^{i} \\ h_{2,0}^{i} \\ h_{2,1}^{i} \end{bmatrix} }_{x(k)} + \underbrace{ \begin{bmatrix} 0 & 0 \\ 0 & -f \\ 0 & g \\ 0 & 0 \end{bmatrix} }_{B} \underbrace{ \begin{bmatrix} h_{0}^{i+1} \\ u_{tank} \end{bmatrix} }_{B}$$

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsninger

Modellering

. . . .

Preissmann

Implementeri

Kontrol

Linearisering

Resultat

Diskussion/Konklusio

 Samligning af ulineær og linear model

- ► System setup
- ▶ Sinus input

Type	Components	Sections
Pipe	1	35
Tank	1	1
Pipe	18	227
Total	20	263

5

Height [m]

Group 1030

Modellering

Linearisering

Tank højde

Nonlinear

Linear

Dept. of Electronic Systems

Group 1030

ntroduktio

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsninge

Modellering

0.....

- .

FIEISSIIIdIIII

Implementeri

Kontrol

Lineariseri

MPC

Resultat

Diskussion/Konklusion

► Cost function

- Afgrænset til at minimiere flow variationer
- ▶ Constraints
 - ► Højde
 - ► Kontrol input
- ► Prediction model

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formuleri

System beskrivels

Løsninger og

begrænsninger

Modellering

Simulering

Struktur

Preissmann

Implemente

Kontrol

Lineariseri MPC

Resultat

Diskussion/Konklusion

Begrænsning af Prediction horizon

- System setup
- ▶ Forstyrrelses input

Fields	type type	component	⊞ sections
1	'Pipe'] 1	5
2	'Tank'	1	1
3	'Pipe'	1	5
4	'Total'	3	11

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formuleri

System beskrive

Løsninger og

begrænsninger

Modellering

Simulering

Struktur

Fielssillallii

Kontro

Linearisering

MPC Results

ricounta

Diskussion/Konklusion

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

Modellering

MPC

Resultat

Dept. of Electronic Systems Aalborg University Denmark

Group 1030

ntroduktio

Kloakker og rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

Modellering

1410000110111

Simulering

Droinomono

Preissmann

Implementerii

Kontrol

Linearisering

Resultat

Diskussion/Konklusio

 System setup, efterligning af Fredericia

▶ Flow profiler

Type	Component	Sections
Pipe	1	35
Tank	1	1
Pipe	17	207
Tank	1	1
Pipe	1	38
Total	21	282

0.4

Group 1030

Modellering

Resultat

10:15

13:40

Time [hh:mm]

17:05

20:30

00:00

06:50

03:25

Group 1030

atroduktio

Kloakker og rensningsanlæg

Problem formulering

System beskrivelse

Løsninger og

Løsninger og

Modellering

....

Simulering

Struktur

Preissmann

Implementeri

Kontrol

Lineariserin

Resultat

Diskussion/Konklusi

Dept. of Electronic Systems Aalborg University Denmark

Diskussion/Konklusion

Agenda

Group 1030

and the latest

rensningsanlæg

Problem formulerin

System beskrivelse

Løsninger og

begrænsning

Modellering

....

Simulering

Struktur

Preissmann

Implomontori

IZ. . I . . I

Linearisering

MPC

Resultat

Diskussion/Konklusion 42

- ► Courant's tal
- ▶ Model reduktion
- Simulering
- ► MPC