DEPARTAMENTO DE ANALISIS MATEMATICO Y MATEMATICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID

Análisis de Variable Real. Curso 18–19. Series numéricas. Hoja 5

- 110 $Si \sum_{n=1}^{\infty} a_n$ es condicionalmente convergente, probar que la serie de los terminos positivos y la serie de los términos negativos de a_n son divergentes.
- 111 Si $\sum_{n=1}^{\infty} a_n$ es absolutamente convergente y b_n es acotada, probar que $\sum_{n=1}^{\infty} a_n b_n$ converge absolutamente.
- **112** i) Si $a_n \ge 0$ es monótona decreciente y $\sum_{n=1}^{\infty} a_n$ converge probar que entonces $\lim_{n\to\infty} na_n = 0$. ii) Si $a_n \ge 0$ y existe $\lim_{n\to\infty} n^p a_n$ con p > 1, entonces $\sum_{n=1}^{\infty} a_n$ converge. Probar que con p = 1 lo anterior es falso.
- 113 i) Si $\sum_{n=1}^{\infty} a_n^2 \ y \sum_{n=1}^{\infty} b_n^2$ son convergentes probar que $\sum_{n=1}^{\infty} |a_n b_n|$ converge. Indicación: Usar la desigualdad de Cauchy.

- ii) Si $\sum_{n=1}^{\infty} n^2 a_n^2$ converge, probar que $\sum_{n=1}^{\infty} |a_n|$ converge.
- 114 Si las sumas parciales de a_n son acotadas, probar que $\sum_{n=1}^{\infty} a_n e^{-nt}$ es convergente para todo t > 0.
- 115 Series telescópicas Una serie $\sum_{n=1}^{\infty} a_n$ es telescópica si $a_n = x_n x_{n+1}$ para cierta sucesión de números x_n .
- i) Probar que si la serie $\sum_{n=1}^{\infty} a_n$ es telescópica y $\lim_{n\to\infty} x_n = 0$ entonces $\sum_{n=1}^{\infty} a_n = x_1$.
- ii) Usar esto para probar que si $a \ge 0$ y $n_0 \in \mathbb{N}$,

$$\sum_{n=n_0}^{\infty} \frac{1}{(n+a)(n+1+a)} = \frac{1}{n_0+a}$$

(observa el caso particular $n_0 = 1$, a = 0, 1, 2).

- iii) Descomponiendo en fracciones simples, prueba que $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$

i)
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$$
, ii) $\sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)}$, iii) $\sum_{n=1}^{\infty} \frac{1}{\frac{1}{\sqrt[n]{2}}}$, iv) $\sum_{n=1}^{\infty} \frac{n}{2^n}$, v) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$, vi)

$$\begin{array}{lll} \textbf{116} \ \ Estudiar \ la \ convergencia \ absoluta \ y \ condicional \ de \ las \ series \\ i) \ \sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}, & ii) \ \sum_{n=1}^{\infty} \frac{n}{(n+1)(n+2)}, & iii) \ \sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{2}}, & iv) \ \sum_{n=1}^{\infty} \frac{n}{2^n}, & v) \ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}, & vi) \ \sum_{n=1}^{\infty} \frac{n!}{n^n}, & vii) \ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2(n+1)}}, & viii) \ \sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}, & ix) \ \sum_{n=1}^{\infty} n^n e^{-n}, & x) \ \sum_{n=1}^{\infty} n! e^{-n}, & xi) \ \sum_{n=1}^{\infty} n! e^{-n^2}, & xii) \ \sum_{n=1}^{\infty} \frac{1}{(2n+1)^2} + \frac{1}{(2n)^3}, & xiii) \ \sum_{n=1}^{\infty} \frac{1}{(an+b)^p}, \ a,b,p>0, & xiv) \ \sum_{n=1}^{\infty} 2^n e^{-n} \end{array}$$

- 117 Aplicar el criterio de Condensación de Cauchy para decidir la convergencia de las siguientes series:
 - i) $\sum_{n=1}^{\infty} \frac{1}{n^p} para \ p > 0$. ii) $\sum_{n=1}^{\infty} \frac{1}{n(\ln(n))^p} para \ p > 0$. iii) $\sum_{n=1}^{\infty} \frac{1}{n \ln(n) \ln(\ln(n))}$.
- **118** Aplicar el criterio de Leibnitz para decidir la convergencia de las series i) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ ii) $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$
- 119 Determinar la convergencia o no de las siguientes series:
- $i) \sum_{n=1}^{\infty} \frac{1}{(3n-1)^2}, \quad ii) \sum_{n=1}^{\infty} \frac{1}{n^{\ln(n)}}, \quad iii) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3+1}}, \quad iv) \sum_{n=1}^{\infty} \frac{3n+1}{(\sqrt{2})^n} \quad v) \sum_{n=1}^{\infty} (\sqrt[n]{n}-1)^n \quad vi) \sum_{n=1}^{\infty} \left(\frac{n+1}{2n-1}\right)^n, \quad vii) \sum_{n=1}^{\infty} \left(\frac{n+1}{n}\right)^{n^2} 3^{-n}, \quad viii) \sum_{n=1}^{\infty} (\sqrt{n+1}-\sqrt{n}), \quad ix) \sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1}-\sqrt{n})$

120 Estudiar la convergencia absoluta y condicional de las series

$$i) \sum_{n=1}^{\infty} (3^{n} - \operatorname{sen}(n))^{-1}, \quad ii) \sum_{n=1}^{\infty} \frac{2 + \cos(n)}{n}, \quad iii) \sum_{n=1}^{\infty} (n^{n})^{-1}, \quad iv) \sum_{n=1}^{\infty} (n!)^{-1}, \quad v) \sum_{n=1}^{\infty} \frac{2^{n} + 3^{n}}{5^{n} + n^{2}},$$

$$vi) \sum_{n=1}^{\infty} \frac{1}{3^{n} \operatorname{sen}(n)}, \quad vii) \sum_{n=1}^{\infty} \frac{2^{n}}{(n!)^{2}}, \quad viii) \sum_{n=1}^{\infty} \frac{(n+1)! - n!}{4^{n}}, \quad ix) \sum_{n=1}^{\infty} n! x^{n}, \quad x) \sum_{n=1}^{\infty} \frac{1}{(\ln(n))^{n}},$$

$$xi) \sum_{n=1}^{\infty} \frac{n^{n^{2}}}{(n+1)^{n^{2}}}, \quad xii) \sum_{n=1}^{\infty} \frac{n}{(n+1)!}, \quad xiii) \sum_{n=1}^{\infty} (\frac{2n-1}{n+1})^{2n} x^{2n}$$

$$vi) \ \sum_{n=1}^{\infty} \frac{1}{3^n \operatorname{sen}(n)}, \quad vii) \ \sum_{n=1}^{\infty} \frac{2^n}{(n!)^2}, \quad viii) \ \sum_{n=1}^{\infty} \frac{(n+1)!-n!}{4^n}, \quad ix) \ \sum_{n=1}^{\infty} n! x^n, \quad x) \ \sum_{n=1}^{\infty} \frac{1}{(\ln(n))^n},$$

$$xi) \sum_{n=1}^{\infty} \frac{n^{n^2}}{(n+1)^{n^2}}, \quad xii) \sum_{n=1}^{\infty} \frac{n}{(n+1)!}, \quad xiii) \sum_{n=1}^{\infty} (\frac{2n-1}{n+1})^{2n} x^{2n}$$

121 Estudiar la convergencia absoluta y condicional de las series
i)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$$
, ii) $\sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n+3)}$, iii) $\sum_{n=1}^{\infty} \frac{2^{n-1}}{(1+2^n)(1+2^{n-1})}$, iv) $\sum_{n=1}^{\infty} \frac{1}{2^n} \operatorname{tg}(\frac{1}{2^n})$, v) $\sum_{n=1}^{\infty} \frac{1}{4^n \cos^2(\frac{a}{2^n})}$, vi) $\sum_{n=1}^{\infty} 3^n \sin^3(\frac{a}{3n+1})$, vii) $\sum_{n=1}^{\infty} \frac{(-1)^n \cos^3(3^n a)}{3^n}$

122 Probar que la serie $\sum_{n=1}^{\infty} \cos(n)$ no converge pero la serie $\sum_{n=1}^{\infty} \frac{\cos(n)}{n^2}$ es convergente.

$$i) \sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}, \quad ii) \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}, \quad iii) \sum_{n=1}^{\infty} \frac{(2n)!!}{(2n+1)!!}, \quad iv) \sum_{n=1}^{\infty} \frac{(2n)!!}{(2n+3)!!}, \quad v) \sum_{n=1}^{\infty} a^{2n+1} + a^{2n},$$

123 Estudiar la convergencia absoluta y condicional de las series
i)
$$\sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}$$
, ii) $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$, iii) $\sum_{n=1}^{\infty} \frac{(2n)!!}{(2n+1)!!}$, iv) $\sum_{n=1}^{\infty} \frac{(2n)!!}{(2n+3)!!}$, v) $\sum_{n=1}^{\infty} a^{2n+1} + a^{2n}$, vi) $\sum_{n=1}^{\infty} \frac{1}{2n} - \frac{1}{2n+1}$, vii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2+1}$, viii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$, ix) $\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{(n+1)^{n+1}}$, x) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n}}$, ri) $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$, $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$, viii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+1}$, viii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)^{n+1}}$, viii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$,

 $xi) \sum_{n=1}^{\infty} \frac{1}{1+a^n}, \ a > 0.$ Notación: $k!! = k(k-2)(k-4) \cdots$.

124 Si es
$$\sum_{n=1}^{\infty} a_n$$
 absolutamente convergente, ¿convergen las series i) $\sum_{n=1}^{\infty} a_n^2$, ii) $\sum_{n=1}^{\infty} \sqrt{a_n}$ (supuesto $a_n \ge 0$), iii) $\sum_{n=1}^{\infty} \sqrt{a_{n+1}a_n}$ (supuesto $a_n \ge 0$), iv) $\sum_{n=1}^{\infty} \frac{a_n}{n}$, v) $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ (supuesto $a_n \ge 0$), vi) $\sum_{n=1}^{\infty} a_n \sin(n)$, vii) $\sum_{n=1}^{\infty} \sqrt{\frac{a_n}{n}}$ (supuesto $a_n \ge 0$), viii) $\sum_{n=1}^{\infty} n^{\frac{1}{n}} a_n$, ix) $\sum_{n=1}^{\infty} \frac{a_n}{a_{n+1}}$?

¿Y si la convergencia es condicional?

$$\sum_{n=1}^{\infty} \frac{a_n}{n}, \quad v) \sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n} \text{ (supues to } a_n \geq 0), \quad vi) \sum_{n=1}^{\infty} a_n \operatorname{sen}(n), \quad vii) \sum_{n=1}^{\infty} \sqrt{\frac{a_n}{n}} \text{ (supues to } a_n \geq 0)$$

0),
$$viii$$
) $\sum_{n=1}^{\infty} n^{\frac{1}{n}} a_n$, ix) $\sum_{n=1}^{\infty} \frac{a_n}{a_{n+1}}$?

125 Teorema de Cauchy–Hadamard

Sea $\{a_n\}_n \subset \mathbb{R}, x \in \mathbb{R} \text{ fijo } y \text{ consideremos la serie de potencias } f(x) = \sum_{n=1}^{\infty} a_n x^n.$ Sea $R = \frac{1}{\lim \sup_{n \to \infty} \sqrt[n]{|a_n|}}.$

$$Sea R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}.$$

i) Probar que si |x| < R entonces la serie converge absolutamente.

ii) Si |x| > R probar que la serie no converge.

iii) si
$$x_0 \in \mathbb{R}$$
 fijo, discutir para que $x \in \mathbb{R}$ converge la serie de potencias $g(x) = \sum_{n=1}^{\infty} a_n (x - x_0)^n$.
iv) Estudia la convergencia de las series $\sum_{n=1}^{\infty} \frac{x^n}{n}$, $\sum_{n=1}^{\infty} \frac{x^n}{n!}$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} (x+1)^n$.

126 Consideremos la serie $\sum_{n=0}^{\infty} \frac{1}{n!}$. Se pide,

i) Probar que la serie es convergente.

ii) Probar que se tiene

$$s_n = \sum_{k=0}^n \frac{1}{k!} \ge \left(1 + \frac{1}{n}\right)^n, \quad \forall n \in \mathbb{N}$$

(Indicación: desarrollar la potencia por el binomio de Newton y comparar término a término con la

iii) Probar que se verifica: para todo $n \in \mathbb{N}$ y para todo $\varepsilon > 0$ existe un $N \in \mathbb{N}$ suficientemente grande

$$(1-\varepsilon)\sum_{k=0}^{n} \frac{1}{k!} \le \left(1 + \frac{1}{N}\right)^{N}$$

(Indicación: desarrollar la potencia por el binomio de Newton, quedándose con los primeros n términos y comparar término a término con la suma).

iv) Concluir que
$$\sum_{n=0}^{\infty} \frac{1}{n!} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$