RCP216

Fouille de graphes et réseaux sociaux

Auteurs: Raphaël Fournier-S'niehotta, Michel Crucianu, Marin Ferecatu (fournier@cnam.fr, michel.crucianu@cnam.fr, marin.ferecatu@cnam.fr)

Département d'informatique Conservatoire National des Arts & Métiers, Paris, France

Plan

- Introduction
- 2 Analyse
- 3 Modélisation
- 4 Mesure
- 5 Algorithmique
- 6 GraphX

Introduction 1 / 63

Plan du cours

- 1 Introduction
 - Expérience de Milgram
 - Exemples de réseaux/graphes
 - Éléments de théorie des graphes
 - Présentation du cours

- 1 Introduction
 - Expérience de Milgram
 - Exemples de réseaux/graphes
 - Éléments de théorie des graphes

Expérience de Milgram (1967)

Stanley Milgram (1933-1984), psychologue social américain. Connu notamment pour les expériences de soumission à l'autorité.

■ Objectif de l'expérience : faire transiter une lettre de Omaha, NE à Boston, MA

Règle:

- une personne initie la chaîne
- transition de la main à la main à des personnes que l'on connaît, chacune étant supposée se rapprocher de la destination

Expérience de Milgram (1967)

Résultats

- 44 lettres sur 160 arrivent
- Chemins avec 5 intermédiaires en moyenne.

■ Remarques :

- Chemin interrompu \neq II n'existe pas de chemin.
- \blacksquare Chemin de longueur $x \neq II$ n'existe pas de chemin de longueur $<\!x$

Conclusions :

- Il existe des chemins courts.
- Les intermédiaires arrivent à les trouver sans connaissance globale du réseau.

Expérience de Milgram : modélisation

- Objectif : formaliser lexpérience de Milgram
- Travail de D. Watts/S. Strogatz, puis de J. Kleinberg
- Initialement une grille (amis proches).
- \blacksquare On ajoute q voisins quelconques à chaque sommet (amis lointains).

Expérience de Milgram : modélisation

■ Un sommet connaît :

- Sa position, celle de ses voisins, celle de la destination.
- Il envoie le message à son voisin le plus proche de la destination.

Expérience de Milgram : modélisation

- Un seul lien supplémentaire pour chaque sommet u.
- La destination choisie avec une probabilité dépendant de sa distance à u.
- Dans la majorité des cas, pas de chemins courts

- 1 Introduction
 - Expérience de Milgram
 - Exemples de réseaux/graphes
 - Éléments de théorie des graphes
 - Présentation du cours

Individus: nombre d'Erdős

Paul Erdős (1913-1996), mathématicien hongrois très prolifique et qui eut plus de 500 collaborateurs directs.

- Graphe de collaboration :
 - Deux scientifiques sont connectés s'ils ont co-écrit un article
 - Chaque scientifique à un nombre d'Erdős :
 - 0 = Erdős
 - 1 = collaboraeurs d'Erdős
 - 2 = collaborateurs de collaborateurs d'Erdős
 - Erdős Number project : http://www.oakland.edu/enp/
- Récupération de la liste des co-auteurs de tous les articles scientifiques
- Ensuite il ne reste qu'à faire des calculs de plus courts chemins d'Erdős vers les autres chercheurs.

Individus: Kevin Bacon Game

Kevin Bacon (1958–), acteur américain, qui a joué dans plus de 75 films.

- Graphe d'acteurs
 - Deux acteurs sont reliés s'ils ont joué dans un même film.
 - Distance entre acteurs ?
 - http://oracleofbacon.org/
 - Distance entre Tom Cruise et Clint Eastwood ? 2 (acteur commun entre Space Cowboys et Eyes Wide Shut)
 - Distance entre Mickey Mouse et Omar Sy ? 4
- graphes constructible à partir de http://www.imdb.com/interfaces
- calculs de plus courts chemins

Individus: possesseurs de fichiers P2P

- Propagation d'un fichier d'utilisateurs en utilisateurs
 - video
- Problèmes et biais de mesure
 - dynamicité du réseau
 - parcours non exhaustif et depuis une source

Individus: communications téléphoniques

- Suivi de communications :
 - Date, heure, durée, type, correspondant
 - Type d'appelant, mobilité, ...
 - http://senseable.mit.edu

Réseau personnel : LinkedIn Maps

Réseau routier national

- Noeuds : les villes / communes
- Arêtes : (auto)routes
- Valuation possible : distance, ou temps de parcours
- Orientation possible

Des questions :

- \blacksquare quel est le plus court chemin passant par des villes données ?
- quel chemin traverse le moins de villes pour aller d'un point à un autre ?
- peut-on passer par toutes les villes sans passer deux fois par la même route ? (voyageur de commerce)

Autres types de réseaux étudiés

- informatique : pages Web, routeurs, P2P, etc.
- biologie : protéines, neurones cérébraux, etc.
- sciences sociales : amitiés, collaboration, contacts sexuels, etc.
- économie : échanges financiers
- histoire : mariages
- linguistique : synonymie, co-occurrence
- transports : réseau aérien, électrique

Propriétés et problématiques communes

- 1 Introduction
 - Expérience de Milgram
 - Exemples de réseaux/graphes
 - Éléments de théorie des graphes
 - Présentation du cours

Définitions

Un graphe est défini par un couple G = (V,E) tel que :

- V (pour l'anglais *vertices*) est un ensemble fini de sommets
- E (pour l'anglais *edges*) est un ensemble fini de arêtes

Un graphe peut être orienté, ou non :

- si oui, les couples $(v_i, v_j) \in E$ sont ordonnés, v_i est le sommet initial, s_j est le sommet terminal.
- lacksquare on appelle alors le couple (v_i,v_j) un *arc*, représenté graphiquement par $v_i o v_j$.
- si non, les couples ne sont pas orientés et (v_i, v_j) est équivalent à (v_j, v_i) , et on l'appelle *arête*, représenté par $v_i v_j$

- l'**ordre** d'un graphe, c'est son nombre de sommets (souvent désigné par n).
- une **boucle** est un arc/une arête reliant un sommet à lui-même
- un graphe dépourvu de boucle est dit élémentaire
- un graphe simple ne comporte pas de boucle et au plus une arête entre deux sommets
- un graphe partiel est le graphe obtenu en supprimant certains arcs ou arêtes
- un sous-graphe est le graphe obtenu en supprimant certains sommets et tous les arcs/arêtes incidents aux sommets supprimés.
- un graphe est dit **complet** s'il comporte une arête (v_i, v_j) pour toute paire de sommets $(v_i, v_j) \in E^2$.
- un sommet v_i est dit adjacent (familièrement on parle de voisins) à un autre s'il existe une arête entre eux.
- le degré d'un sommet est le nombre de d'arêtes incidentes à ce sommet.

1 Introduction

- Expérience de Milgram
- Exemples de réseaux/graphes
- Éléments de théorie des graphes
- Présentation du cours

Objectifs

Comprendre le comportement des entités qui interagissent dans le système étudié, et les lois qui les gouvernent

- On cherche donc :
 - quelle est la structure des graphes
 - quelle est l'évolution de cette structure
 - quels sont les phénomènes reposant sur l'existence de ce réseau

Applications

Informatique

- Réseaux : routage, protocoles, sécurité
- P2P : conception de systèmes, déviances
- Web : indexation, moteurs de recherche
- Dessin de graphes

■ Sociologie :

- Diffusion d'innovations, rumeurs
- Identification de communautés

Épidémiologie

■ Diffusion de virus, vaccination

Méthodologie

- Outils formels
 - Théorie des graphes
 - Analyse statistique
 - Modélisation probabiliste
- Études expérimentales
 - Simulation
 - Utilisation de données réelles
- Étudier des applications
 - Comprendre en profondeur certains réseaux
 - Extraction de concepts généraux

Ce cours

- Problématiques classées dans 4 grandes catégories :
 - Mesure
 - Comment mesurer les réseaux réels ?
 - Modélisation
 - A quoi ressemblent-ils ?
 - Analyse
 - Peut-on créer des réseaux artificiels similaires ?
 - Algorithmique
 - Comment calculer des choses sur ces grands graphes ?
- Détection de communautés (clustering)
- Réputation, prédiction, innovations et leaders

- 2 Analyse
 - Propriétés classiques
 - Étude de cas

19/63

- 2 Analyse
 - Propriétés classiques
 - Etude de ca

Analyse?

- Objectifs de l'analyse (statistique) :
 - Description (statistique)
 - Obtenir de l'information pertinente
 - Interprétation des résultats obtenus
- Comment ?
 - Propriétés connues
 - Définition de propriétés (statistiques) pertinentes
 - Corrélations entre ces propriétés
 - Comparaison avec des graphes aléatoires
 - Observation de la croissance des graphes, etc.

■ Longueur des chemins : distance moyenne

- Clustering
 - densité de liens autour d'un nœud
 - comparé à la densité globale

$$c(i) = \frac{2*|(x,y) \in E, x, y \in N(i)|}{k_i(k_i-1)}$$
 (ou 0 si $d(i) < 2$))

- Distribution de degrés
 - Taille ou salaire des individus

$$P_d \sim d^{-\alpha}$$

- Composantes connexes
 - Ensemble maximal de sommets tel qu'il existe un chemin entre toute paire de sommets de l'ensemble
 - Graphe connexe = une seule composante connexe

- Communautés
 - ensemble de nœuds très densément liés
 - peu de connexion en dehors de l'ensemble

- Autres propriétés
 - Centralité
 - Nombre de plus courts chemins passant par un sommet, etc.
 - Taille des cliques

Propriétés des réseaux réels

- faible densité
- fort clustering
- faible distance moyenne
- distribution de degré fortement hétérogène
- composante géante
- présence de communautés

propriétés différentes de celles des graphes aléatoires

- 2 Analyse
 - Propriétés classiques
 - Étude de cas

Exemple d'analyse : réseau de contacts

- Nombreux équipements avec capacités sans-fil :
 - Ordinateurs, téléphones, PDA, GPS, cartes Navigo
 - Réseaux sans-fils de plus en plus omniprésents
- Contacts physiques ou virtuels permanents :
 - Rencontres physiques, appels téléphoniques, envoi de mails
- Objectifs:
 - Tirer parti des contacts naturels des individus
 - Transmission de linformation de proche en proche
 - Réseau dynamique, non connexe : problèmes de routage . . .

Proximité physique ou radio

- Quels contacts entre individus ?
 - Physique
 - proximité géographique
 - déplacements
- mesure de la mobilité
 - suivi de déplacements
 - géolocalisation : couteux, dur à mettre en uvre
 - équipement de chaque individu
 - application informatique/télécom : déploiement de réseau dans des environnements "hostiles" (zones militaire, forêts)
- Étude de cas
 - 41 capteurs pendant 3 jours
 - propriétés dynamique du réseau

Étude de cas

- Conférence INFOCOM 2005, dans un hôtel à Miami (USA)
- 54 capteurs Bluetooth initialement (perte, pannes)
- Fonctions :
 - recherche de contact (5s)
 - attente (110s env)
 - pas de géolocalisation
- données
 - ensemble de liens à chaque instant
 - liens non symétriques
 - http://plausible.lip6.fr

Étude de cas

- Effets sociologiques :
 - jour/nuit, repas, pauses, etc.
 - beaucoup de petites variations
 - 50% de sommets isolés
 - max 34 sommets connectés

Étude de cas

Durée de contacts

- distribution en loi de puissance
- certains liens sont fréquents, d'autres pas
- liens non fréquents pour atteindre des zones spécifiques

Composantes connexes

Composantes connexes

- Petites composantes : densité variable.
- Grosse composantes : faible densité ($max(nb_liens) \sim 4.5 \times nb_sommets$)

Approche fouille de données

- Graphe dynamique (liens x temps)
 - Rectangles maximaux de 1
 - Calcul exhaustif?
 - Graphes fréquents : seuils sur la durée.
 - Graphes significatifs : seuils sur le nombre de liens

	<u>t 1</u>	t2	t3	t4	t5	t6
a-b	1	1	1	1	0	0
а-с	0	0	0	0	0	0
a-d	0	0	0		1	1
b-c	1	1	1	1	0	0
b-d	0	0	0	1	1	1
c-d	1	1	1	1	1	1

Plan du cours

- 3 Modélisation
 - \blacksquare Application : robustesse

Modélisation 37 / 63

Générer des graphes réalistes

- Est-ce que les propriétés observées sur les graphes réels sont "normales"
 - On peut comparer avec un graphe aléatoire ayant certaines propriétés
- Simulation de phénomènes (attaques, diffusion, etc.)
- Évaluation de protocoles
- Compréhension
- Prévision

Tout aléatoire

- Créer n sommets/nœuds
- Ajouter au hasard m liens $(m <= n^2)$

Propriété attendue

- Graphe aléatoire, n = m = 4950
- Graphe réel : clique de 100 sommets, autres noeuds de degré 0
- Probable ?
 - proba degré 0 : $p = (1 \frac{2}{n})^n \sim 0.14$
 - \blacksquare on attend donc : $n \times p \sim 683$ sommets de degré 0
 - graphe réel peu probable

Modélisation 40 /

Propriétés observées

- densité fixée
- lacksquare Connexité : composante géante de taille O(n)
- \blacksquare Distance moyenne, diamètre $\sim log(n)$
- Distribution des degrés homogène
- Clustering proche de 0
- Pas de structure communautaire

Modélisation 41 / 63

Basé sur la distribution de degrés

- Attachement préférentiel
 - ajout de sommets un à un
 - ajout de lien à des sommets déjà connectés
- Modèle configurationnel (configuration model)
 - \blacksquare on prend n sommets
 - on fixe le degré de chaque sommet
 - on ajoute des liens au hasard en respectant les degrés
- ne génèrent pas de clustering

Basé sur le Coefficient de clustering

- Mélanger un graphe très rigide :
 - Donne du clustering et une distance moyenne courte
 - Ne donne pas de degrés hétérogènes!

régulier

p = 0 p = 0.25 p = 0.5 p = 0.75 p = 1

aléatoire

Plan du cours

- 3 Modélisation
 - Application : robustesse

Application: robustesse

- Étude des phénomènes visant des sommets :
 - Internet : pannes ou attaques sur routeurs.
 - Réseaux sociaux : maladies, rumeurs,
 - Échanges de-mails : virus informatiques.
- Deux types datteintes
 - Pannes : aléatoires.
 - Attaques : ciblées.
- But : Comprendre ces phénomènes pour pouvoir :
 - Prédire.
 - Construire des stratégies d'attaque/défense.

Impact d'une panne/attaque

- Critères :
 - Basés sur la distance.
 - Tailles des composantes connexes.
 - etc.

Résultats

- Suppression :
 - Panne = aléatoire
 - Attaque = ciblée (plus fort degré d'abord)
- Question : qui vacciner pour limiter une épidémie ?

Plan du cours

- 4 Mesure
 - Métrologie : exemple de l'Internet

45 / 63

Mesure de l'Internet

- Processus de mesure par parcours en largeur depuis plusieurs sources
- Réseau : orienté, non connexe, dynamique

Mesure de l'Internet

- Processus de mesure par parcours en largeur depuis plusieurs sources
- Réseau : orienté, non connexe, dynamique

Mesure de l'Internet

- Processus de mesure par parcours en largeur depuis plusieurs sources
- Réseau : orienté, non connexe, dynamique

Mesure de réseaux sociaux

Processus de mesure :

- Réseau égocentrés
- Listes de diffusion, communautés

Réseau : orienté, non connexe, dynamique

Mesure de réseaux sociaux

Processus de mesure :

- Réseau égocentrés
- Listes de diffusion, communautés

Réseau : orienté, non connexe, dynamique

Métrologie des réseaux d'échanges

Processus de mesure

■ trafic passant par un sommet

Réseau orienté, pondéré

Métrologie des réseaux d'échanges

Processus de mesure

■ trafic passant par un sommet

Réseau orienté, pondéré

Métrologie des réseaux d'échanges

Processus de mesure

■ trafic passant par un sommet

Réseau orienté, pondéré

Métrologie

- En général : impossibilité d'étudier l'objet réel, seulement une mesure
- Questions :
 - qui a fait la mesure ?
 - quelle proportion a été mesurée ?
 - combien de temps la mesure a-t-elle duré ?
 - quelles étaient les contraintes / biais ?
 - la mesure peut-elle être reproduite ?

Métrologie

- Étude du biais introduit par lobservation
- Que dire de lobjet réel à partir de lobservation ?
- Nouveaux protocoles de mesures, etc.

■ Évaluer la représentativité des "cartes"

50 / 63

Mesure 51 / 63

Une approche

- On simule la mesure sur un graphe aléatoire
- Modélisation du processus de mesure :
 - Internet : traceroute = chemins courts
 - Web : crawl = parcours en largeur
- Modélisation du réseau :
 - Graphes aléatoires
 - Respect des degrés, du clustering, etc.

Plan du cours

- 4 Mesure
 - Métrologie : exemple de l'Internet

Métrologie de l'Internet

- Processus de mesure :
 - Traceroute, plus courts chemins de plusieurs sources vers plusieurs destinations
- Réseau : (non) orienté, pondéré (RTT,...)

Métrologie de l'Internet

- Processus de mesure :
 - Traceroute, plus courts chemins de plusieurs sources vers plusieurs destinations
- Réseau : (non) orienté, pondéré (RTT,...)

Métrologie de l'Internet

- Processus de mesure :
 - Traceroute, plus courts chemins de plusieurs sources vers plusieurs destinations
- Réseau : (non) orienté, pondéré (RTT,...)

Questions

- Influence sur le résultat de :
 - Nombre de sources et destinations
 - Propriétés du réseau
 - Localisation des sources et destinations
- Modélisation :
 - $\blacksquare \ \, \mathsf{Traceroute} = \mathsf{plus} \ \mathsf{courts} \ \mathsf{chemins} \ \mathsf{(un \ ou \ tous)}$
 - $\blacksquare \ \, \mathsf{Graphe} = \mathsf{graphe} \,\, \mathsf{al\'{e}atoire} \,\, \big(\mathsf{mod\`{e}le} \,\, \mathsf{\grave{a}} \,\, \mathsf{choisir}\big)$

Que voit-on?

- D'une source vers tout le monde
 - liens rouges découverts (sur plus courts chemins)
 - on répète pour les autres destinations
 - liens noirs invisibles

Que voit-on?

- D'une source vers tout le monde
 - liens rouges découverts (sur plus courts chemins)
 - on répète pour les autres destinations
 - liens noirs invisibles

54 / 63

Que voit-on?

- D'une source vers tout le monde
 - liens rouges découverts (sur plus courts chemins)
 - on répète pour les autres destinations
 - liens noirs invisibles

Zones dures à mesurer

lacksquare Sommet de degré 1 : uniquement visible si source ou destination

■ graphe complet : visiter tous les liens

Distribution de degrés

- différences entre original et mesuré
 - beaucoup de sommets de faible degré
 - peu de sommets de fort degré
- mauvaise estimation de la propriété réelle

Plan du cours

5 Algorithmique

Algorithmique 57 / 63

Besoin d'algorithmes spécifiques

- Gros problème = taille :
 - Internet = Millions de sommets (routeurs)
 - Facebook = plus de 800 millions dutilisateurs actifs
 - $\begin{tabular}{ll} \blacksquare & Web = Google \ connait \ plus \ de \ 1000 \ milliards \ dURL \ distinctes \end{tabular}$
- il est non trivial de
 - stocker le graphe en mémoire
 - faire des calculs sur le graphe

Exemples

- Compter les triangles dun graphe (clustering) :
 - naïvement O(n*n*n)
 - $O(m*n^{(1/a)})$ si distribution des degrés en loi de puissance d'exposant a.
- Diamètre :
 - complexité théorique : O(nm)
 - approximation en O(m)
- Problèmes NP-complets
- Beaucoup de problèmes spécifiques aux graphes réels (détection de communautés).
 Approximation (non prouvée) linéaire.

Plan du cours

6 GraphX

GraphX

- librairie de Spark pour gérer les calculs sur les graphes
- en particulier, le parallèlisme
- introduit une abstraction Graph (au-dessus de RDD) :
 - un multigraphe orienté, avec des propriétés attachées à chaque sommet et chaque arête
 - facilite les cas où il y a plusieurs arêtes entre des noeuds
- $\blacksquare \ \, \text{https:}//\text{spark.apache.org}/\text{docs}/\text{latest}/\text{graphx-programming-guide.html}$

GraphX

Property Graph

Vertex Table

ld	Property (V)	
3	(rxin, student)	
7	(jgonzal, postdoc)	
5	(franklin, professor)	
2	(istoica, professor)	

Edge Table

SrcId	Dstld	Property (E)
3	7	Collaborator
5	3	Advisor
2	5	Colleague
5	7	PI

GraphX 61 / 63

GraphX

GraphX 62 / 63

GraphX : opérateurs

```
val graph: Graph[(String, String), String]
// Use the implicit GraphOps.inDegrees operator
val inDegrees: VertexRDD[Int] = graph.inDegrees
```

D'autres opérateurs :

- numEdges/numVertices
- collectNeighbors
- subgraph
- connectedComponents
- triangleCount

Références

- Ce cours repose sur les travaux de :
 - l'équipe ComplexNetworks du LIP6 (UPMC), http://www.complexnetworks.fr (membres passés et présents)
 - en particulier les cours de Jean-Loup Guillaume (PR, U. de La Rochelle) et de Clémence Magnien
 - le livre Mining Massive datasets (http://www.mmds.org), de Jure Leskovec, Anand Rajaraman, Jeff Ullman

