- (1) Let $n \in \mathbb{N}$. f(n) = [n]
 - (a) f is an injection if $\forall x, y \in \mathbb{N}$. x = y . f(x) = f(y).

Thus, in order for f to be injective, $\forall x, y \cdot x \neq y \cdot f(x) \neq f(y)$ must be true.

So, let
$$x, y \in \mathbb{N}$$
 $\cdot x > y$. $f(n) = [n]$, so $f(x) = [x]$ and $f(y) = [y]$.

This is equivalent to $f(x) = \{1, 2, 3, ..., x\}$ and $f(y) = \{1, 2, 3, ..., y\}$

Because x > y, there are elements (numbers greater than y and less than x) that are in f(x) and not in f(y). So $f(x) \nsubseteq f(y)$.

Thus, $f(x) \neq f(y)$ when $x \neq y$ so f is injective \square .

(b) Using the function f(n) = [n], f is not a surjection if $\exists b \in \mathbb{PN} \cdot \forall n \in N \cdot f(n) \neq b$.

By definition, $\{\emptyset\}$ is an element of $\mathbb{P}(\mathbb{N})$.

However, there is no f(n) that can be equal to the empty set because $n \ge 1$, so [n] must have elements (i.e. $f(n) = \{1\}$ when n = 1).

So, there is no $n \in \mathbb{N}$. $f(n) = \{\emptyset\}$.

Thus, f is not a surjection \square .