Likelihood free MCMC STAT 540- Project; ABC methods

Amal Agarwal

PENNSTATE

Department of Statistics Pennsylvania State University

Idea

- Difference in acceptance probability between regular MCMC and Likelihood free MCMC.
- What if likelihood function is analytically unavailable/ computationally expensive to evaluate?
- Likelihood free Rejection sampling algorithm¹:
 - Sample $\theta' \sim \pi(\theta)$ from the prior.
 - Generate dataset \underline{x} from the model $\pi(\underline{x}|\theta')$.
 - Accept θ' if $\underline{x} \approx \underline{y}$.
- $d(\underline{x}, \underline{y}) \approx d(T(\underline{x}), T(\underline{y}))$, for some sufficient statistics T(.) of θ .

¹S.A. Sisson and Y.Fan, Likelihood free MCMC, Chapter 12, Handbook of Markov Chain Monte Carlo, Chapman and Hall CRC. (27) (27)

Why it works?

Consider the following target:

$$\pi_{\mathsf{LF}}(heta, \underline{x}|y) \propto \pi(y|\underline{x}, heta)\pi(\underline{x}| heta)\pi(heta)$$

Proposal can can factorized as

$$q[(\theta, \underline{x}), (\theta', \underline{x}')] = q(\theta, \theta')\pi(\underline{x}'|\theta')$$

 The acceptance probability in Metropolis hastings algorithm simplifies as:

$$\alpha[(\theta, \underline{x}), (\theta', \underline{x}')] = \frac{\pi_{\mathsf{LF}}(\theta', \underline{x}'|\underline{y}) \ q[(\theta', \underline{x}'), (\theta, \underline{x})]}{\pi_{\mathsf{LF}}(\theta, \underline{x}|\underline{y}) \ q[(\theta, \underline{x}), (\theta', \underline{x}')]}$$

$$= \frac{\pi(\underline{y}|\underline{x}', \theta') \pi(\underline{x}'|\theta') \pi(\theta') \ q(\theta', \theta) \pi(\underline{x}|\theta')}{\pi(\underline{y}|\underline{x}, \theta) \pi(\underline{x}|\theta) \pi(\theta) \ q(\theta, \theta') \pi(\underline{x}'|\theta')}$$

Variants of LF-MCMC Algorithms

• Kernel density estimation for $\pi_{\epsilon}(\underline{y}|\underline{x}, \theta)$ via sufficient statistic T(.) for θ .

$$\pi_{\epsilon}(\underline{y}|\underline{x}, \theta) \propto \frac{1}{\epsilon} K\left(\frac{d(T(\underline{y}), T(\underline{x}))}{\epsilon}\right)$$

Error augmented LF MCMC:

$$\pi_{\mathsf{LF}}(heta, \mathbf{x}, \epsilon | \mathbf{y}) \propto \pi_{\epsilon}(\mathbf{y} | \mathbf{x}, heta) \pi(\mathbf{x} | heta) \pi(heta) \pi(\epsilon)$$

• Multiple augmented LF MCMC:

$$\pi_{\mathsf{LF}}(\theta, \underbrace{x}_{\mathsf{1:S}}, \epsilon | \underbrace{y}) \propto \frac{1}{S} \sum_{s=1}^{S} \pi_{\epsilon}(\underbrace{y} | \underbrace{x}^{s}, \theta) \prod_{s=1}^{S} \pi(\underbrace{x}^{s} | \theta) \pi(\theta)$$

• Marginal space LF MCMC:

$$\pi_{\mathsf{LF}}(\theta|\underline{y}) pprox rac{\pi(\theta)}{S} \sum_{s=1}^{S} \pi_{\epsilon}(\underline{y}|\underline{x}^{s}, \theta)$$

LF MCMC for high dimensions

- Curse of dimensionality²
 - $\dim(\underline{\mathcal{T}}) > \dim(\underline{\theta})$ for parameter identifiablity.
 - KDE reliable only in low dimensions.
- $C(\underline{\theta})$ is the distribution of $(G_1(\theta_1), G_2(\theta_2), ..., G_p(\theta_p))$.
- Meta Gaussian family of distributions:

$$g(\underline{\theta}) = \frac{1}{|\Lambda|^{1/2}} \exp\left[\frac{1}{2}\eta^{T}(I - \Lambda^{-1})\eta\right] \prod_{i=1}^{p} g_{i}(\theta_{i})$$

where $\eta_i = \Phi^{-1}[G_i(\theta_i)]$

• Matrix Normal distribution: For a $n \times p$ random matrix X, the pdf $\mathcal{MN}_{n,p}(M,U,V)$ is given as:

$$p(X|M,U,V) \propto rac{\exp\left(-rac{1}{2} tr(V^{-1}(X-M)^T U^{-1}(X-M))
ight)}{|V|^{n/2}|U|^{p/2}}$$

²J.Li, J.Nott, Y.Fan and S.A.Sisson, "Extending approximate Bayesian computation methods to high dimensions via Gaussian copula", 2015, atXivo ← №

Results

Table: LF MCMC for different matrix normal sizes via Gaussian copula

Basic LF MCMC	ESS	ESS/s	Accept rate	Run time
2 × 2	161	20.05	0.124	48
3 × 2	159	21.39	0.092	115
3 × 3	147	17.20	0.061	309
4 × 3	143	16.05	0.047	592
4 × 4	137	14.15	0.037	1164

Figure: Comparing ESS/s for different variants of LF MCMC across various matrix normal sizes

Conclusion and Future scope

- Minkowski distance with p = 3 and Uniform kernel gave maximum ESS/s for all the variants and matrix sizes.
- Error augmented LF MCMC sampler appears to be performing better in terms of effective sample size per second.
- With increase in matrix sizes, ESS/s decreases for each variant in general. The run times increase exponentially.
- It would be interesting to implement the LF methods via Gaussian copula for higher order tensors following normal distribution.