

Objetos no modelo DART 3D: Criação e Implementação

Autor: Douglas Galimberti Barbosa Orientador: Cristiano Lima Hackmann

1. Introdução

- DART é basicamente um software de renderização.
 - Opções de modelagem limitadas;
 - Basicamente recupera a geometria dos objetos.

- Objetos devem ser previamente construídos e modelados em programas especializados como por exemplo Blender.
 - Devem atender a certos pré-requisitos para obter melhores resultados no DART.

2. Grupos ou elementos ópticos

De acordo com o manual de objetos 3D do modelo DART:"Um objeto é geralmente composto de vários elementos ópticos diferentes. No DART esses elementos são chamados de "grupos" ou "elementos", e estão organizados hierarquicamente, com um objeto que pode conter vários grupos e um grupos vários elementos." Os objetos precisam ser divididos em grupos para poderem ser assinaladas propriedades ópticas diferentes a cada grupo; cada um será afetado de maneira diferenciada pelo modelo DART de acordo com propriedades.

3. Modelagem e recuperação da geometria dos objetos

- O modelo DART apenas recupera a geometria dos objetos 3D providos.
 - Únicos aspectos importantes: vértices, faces e "grupos" ou "elementos" ópticos.
 - Arquivo material: definição dos grupos e estética do objeto.
- Divisão em grupos deve ser aplicada durante a modelagem do objeto antes de ser carregado no DART; não é possível fazê-la diretamente na interface do DART.
- Não há restrições para a geometria: pode ser uma malha de polígonos perfeitamente conectados definindo um volume, assim como uma nuvem de triângulos ou círculos formando um objeto regular ou irregular.

3.1 Representação gráfica de objetos

Figura (a): criação de um cone formado por discos; Figura (b): Modelo 3D de uma garrafa plástica. Visualizador de objetos 3D do modelo DART 3D.

4. Formatos dos arquivos

- Formatos de representação gráfica 3D suportados pelo modelo DART 3D:
 - VRML, extensão .wrl;
 - X3D, extensão .x3d;
 - Object, extensão .obj, geralmente acompanhado de um arquivo "material", de extensão .mtl.
- Objetos na base de dados do DART são na extensão .obj.

4.1 Extensão de arquivo OBJECT

- Arquivos Wavefront OBJ (object) são utilizados para armazenar objetos geométricos compostos de: linhas, polígonos, faces, curvas ou superfícies.
 - ASCII (há também uma versão binária no formato "MOD", porém é proprietária);
 - Suporta objetos poligonais e de formato livre;
 - Contem definições para um ou mais objetos 3D;
 - Contem informações de cor;
 - Descreve aspectos visuais de materiais, como sombreamento, a partir do arquivo MTL.

4.1 Extensão de arquivo OBJECT

Caractere/Palavra	Significado
#	Linha de comentário.
v	Define vértices geométricos no espaço 3D,
	coordenadas X, Y e Z (W opcional).
vt	Define coordenadas de textura (u, v, w),
	onde W é opcional.
vn	Define as normais (X, Y e Z).
f	Define uma face, composta de um índice de:
	vértice/textura/normal. Textura e normal
	são opcionais.
mtllib	Materiais que descrevem os aspectos visuais
	(arquivo .mtl). Arquivo .mtl pode conter
	uma ou mais definições de materiais.
О	Nome do objeto.
g	Nome do grupo.
usemtl	Define um material para uso, esse material
	vai continuar a ser usado até a próxima linha
	"usemtl" (correspondente ao arquivo .mtl).
S	Sombreamento suave.
mtllib	Salva os materiais do objeto no arquivo
	".mtl".

Algumas
características
básicas que podem
ser definidas para
um objeto através
da edição do
arquivo ASCII.

Fonte: Guidance to write a parser for .OBJ and .MTL files – University of Ohio

4.1 Extensão de arquivo OBJECT

4.2 Extensão de arquivo MTL

Caractere/Palavra	Significado
newmtl	Começa a definição de um novo material.
Ka	Cor do ambiente (R, G, B).
Kd	Cor difusa (R, G, B).
Ks	Cor especular (R, G, B).
illum	Define o modelo de iluminação: illum = 1 material
	fosco, illum = 2 denota a presença de realce especular
	(reflexão espelhada).
Ns	Brilho do material.
d ou Tr	Transparência do material.
map_Ka	Mapa de texturas.

Características de cor, textura e iluminação que podem ser modificadas no objeto.

Fonte: Guidance to write a parser for .OBJ and .MTL files – University of Ohio

4.3 Extensão de arquivo MTL

Exemplo de arquivo material (MTL) # Número de materiais: 1

newmtl material0

Ka 1.000000 1.000000 1.000000

Kd 1.000000 1.000000 1.000000

Ks 0.000000 0.000000 0.000000

Tr 1.000000

illum 1

Ns 0 0000000

map_Kd capsule0.jpg

Minimal textured obj file – Paul Borke, 2012

O arquivo material "capsule.mtl" define a as propriedades visuais. Pode definir vários materiais (grupos) diferentes; as faces do objeto podem "herdar" as características definidas pelo arquivo material através do comando: usemtl.

5. Criação de objetos

- a) Softwares de modelagem especializados: Blender, Maya, 3DS Max, Cinema 4D, etc.
 - Construção de objetos específicos/complexos;
 - Estética;
 - Maior realismo dos objetos.
- b) Criação de objetos simples: DART Tool Creation of 3D Objects.
- c) Divisão do(s) objeto(s) em grupos ópticos.

5.1 DART Tool – Creation of 3D Objects

Criação de objetos a partir da fusão de objetos pré-existentes na base de dados do DART.

Software utilizado

Date: 2017-09-11 10:43 Hash: 5bd8ac9

Programa livre e open-source usado para modelagem tridimensional, animações, edição de vídeo, etc.

 Importação de arquivo 3D.

Depois de selecionar o objeto pressionar TAB para mudar de "Object Mode" para "Edit Mode".

(1) Ctrl+Tab para selecionar o modo face de cada grupo; (2) Ctrl+N para recalcular as normais do objeto interamente selecionado

Selecionar todas as faces que vão compor o grupo e separar por seleção (tecla P em Edit Mode).

Reagrupamento dos objetos: selecionar todos os grupos em "Object Mode" e pressionar Ctrl+J para reuní-los.

 Exportar o arquivo com as seguintes definições para que o objeto tenha seus elementos ópticos definidos.

5.2 Visualização no modelo DART

6. Conclusão

- Objetos devem ser construídos previamente e divididos em grupos ópticos para serem inseridos no modelo DART.
- Liberdade de criação na forma e estética dos objetos.
- III. Propriedades físicas, como por exemplo a reflectância, serão adicionadas durante a edição de simulação no DART.

7. Referências bibliográficas

DART User Manual (5.6.7), 2017. CESBIO. Paul Sabatier University. < http://www.cesbio.ups-tlse.fr/dart/Public/documentation/contenu/documentation/DART User Manual.pdf Acessado em 14/11/2017, às 21:30 (BRT).

LAURET, N. DART Manuel D'utilisation (Objets 3D), 2008. CESBIO. Paul Sabatier University.

Appendix B1. Object Files (.obj), Advance Visualizer Manual. University of Utah, School of Computing. https://www.cs.utah.edu/~boulos/cs3505/obj_spec.pdf Acessado em 14/11/2017, às 21:39 (BRT).

Guidance to write a parser for .Obj and mtl file. The Ohio State University. Department of Computer Science and Engineering. http://web.cse.ohio-state.edu/~shen.94/581/Site/Lab3 files/Labhelp Obj parser.htm Acessado em 14/11/2017, às 21:42 (BRT).

BOURKE, P. Minimal textured obj file, 2012. Data Formats: 3D, Audio, Image. http://paulbourke.net/dataformats/obj/minobj.html Acessado em 14/11/2017, às 21:46.

GASTELLU-ETCHEGORRY, J.P., GRAU, E., LAURET, N. DART: a 3D model for remote sensing images and radiative budget of earth surfaces. Modeling and simulation in Engineering, 2012, pp.ISBN 978-953-307-959-2.