关于深度相机的精度问题

CASIA

常用的三种类型的深度相机^[1],大致分为以下三种:基于主动投射结构光的深度相机(如**Kinect 1.0**, Intel RealSense, Enshape, Ensenso等)、被动双目相机(如STEROLABS 推出的 **ZED 2K Stereo Camera**, Point Grey 公司推出的 BumbleBee)以及ToF ^[2]相机(如微软的**Kinect 2.0**, MESA 的 SR4000,Google Project Tango 中使用的PMD Tech 的TOF相机,Intel 的 SoftKinect DepthSense,Basler基于松下的芯片开发的TOF相机以及国内一些初创公司基于TI的方案开发的TOF相机等等)

目前市面上常有的 3D 相机方案就就是下面3种,对应上面的:

- (1) 结构光(Structured-light), 代表公司有奥比中光(国产,比较推荐,性价比可以,也有高分辨率的款),苹果(Prime Sense),微软 Kinect-1,英特尔RealSense, Mantis Vision等。
- (2) 双目视觉(Stereo), 代表公司 Leap Motion, ZED, 大疆;
- (3) 光飞行时间法(TOF), 代表公司微软 Kinect-2, PMD, SoftKinect, 联想Phab。

性能指标	主动投射结构光	被动双目视觉	TOF
测量范围	0.1m ——10m	中距	0.1 m100 m
精度	短工作范围内能够达到高精度 0.01mm——1mm	短工作范围能够达到高精度 0.01mm——1cm	典型精度(1cm)
软件复杂度	中	非常高	低
帧率	较低,几十H2	低到中 <百Hz	可以做到非常商
户外工作情况	影响较大,功率小的时候基本无 法工作	无影响	有影响但较低,功率小的时候影响较大
黑暗环境能否 工作	可以	不可以	可以
价格	随精度价格不同: 1mm級精度千元量級; 0.1mm級万元量級; 0.01mm級几十万量級;	非常便宜: 千元量級	依測量范围、幀率不同: 几千-几百万
典型应用场景	1.近距体感识别、VR、AR; 2.近距物体识别、姿态检测、测量 等;	尚不明朗	1.近距体感识别、VR、AR; 2.近距物体识别、姿态检测、测量等; 3.远距环境建模、物体识别、测量等;

1. Kinect

先给出结论,**KinectV2的精度在2mm~4mm左右**,距离越近精度越高,越远精度稍微差点;kinectV1误差约**2mm~30mm。**

Kinectv2 for Mobile Robot Navigation: Evaluation and Modeling

• Kinect v2在不同位置的精度问题

如上图所示,右侧大三角是KinectV2在纵向(垂直于地面)的精度分布,下侧大三角是KinectV2在水平面(平行于地面)上的精度分布。在绿色区域精度最高,误差**小于2mm**,在黄色区域误差在**2~4mm**,红色区域误差**大于4mm**。所以在设计交互场景时,在黄色区域以内会达到最好的效果(3.5m内)。如果对精度要求很高,如控制机械,最好在绿色区域进行交互。

2 Kinect v2和Kinect v1

		Kinect v1	Kinect v2预览版
## (Calau)	分辨率(Resolution)	640×480	1920×1080
颜色(Color)	fps	30fps	30fps
河庄 (Double)	分辨率(Resolution)	320×240	512×424
深度(Depth)	fps	30fps	30fps
人物数量(Player)		6人	6人
人物姿势(S	keleton)	2人	6人
関節 (Joint)		20関節/人	25関節/人
手的開閉状態(Hand State)	△ (Developer Toolkit)	○ (SDK)
检测範囲(Range of Detection)		0.8~4.0m	0.5~4.5m
各性 (Augla) (Bauth)	水平 (Horizontal)	57度	70度
角度(Angle)(Depth)	垂直 (Vertical)	43度	60度
(Tilt Motor)		0	× (手動)
複数的App		×(単一的App)	0

Kinect v2的rgb视场 (FOV^[3])是84.1 x 53.8 , 关于FOV的建模和模型可以参考。

Fig. 9. a) Depth accuracy and b) depth standard deviation of Kinect v1 and v2 at all ranges.

Fig. 10. Depth resolution of Kinect v1 and v2 at all ranges.

如图所示,KinectV1随着距离增加,误差指数性增加,在距离达到4m时,kinectV1误差接近 0.2m。而KinectV2的误差几乎不随距离增加而变化。V2比V1追踪准确度好20%。V2可以在 户外进行人体跟踪,最远到4m。V2在近距离有比V1高2倍的精度,在6m有高数十倍的精度。

• kinectv1和kinectv2比较

-	KinectV1	KinectV2
检测范围(Range of Detecton)	0.8–6.0m	0.5 –4.5m
深度误差(depth Uncertainty)	2mm-30mm	<0.5% of range
角度(Angle , horizontal-vertical)	57-43	70-60

3. LeapMotion

LeapMotion的精度平均下来是0.7mm的精度,也是达不到所谓的0.01mm的。

Analysis of the Accuracy and Robustness of the Leap Motion Controller

上面的论文对初步版本中的Leap Motion控制器进行研究,分别在静态与动态设置下的精度和准确性,考虑到人手的可达到的平均约为0.4mm,实验用设备使用参考笔,位置精度可达0.2mm,且参考笔对仪器精度测量无可观察到的影响。在基于静态设置的测量下,获得了期望的3D位置与**小于0.2mm**的测量位置之间的与轴无关的偏差。在动态情况下,独立于平面,可以获得**小于2.5mm**的精度(平均1.2毫米)。重复性**平均小于0.17毫米**。在基于姿势的用户界面方面,在实际条件下不可能实现0.01mm的理论精度,而是高精度(总平均精度为**0.7mm**)。

最后比较一下以上设备的优缺点

1. Microsoft Kinect

优点:

- 可以获取深度数据 (320 * 240)、rgb
- 数据(640 * 480)、声音、骨骼节点(20个)
- 拥有三套 SDK: 微软 SDK、OpenNI、libfreenect
- 后两个 SDK 是跨平台, 支持各种开发语言
- 价格便宜
- 社区成熟,开发资源丰富

缺点:

- 传感器分辨率不够,看不清手指
- 由于使用结构光技术,深度传感器的可视范围无法重叠
- OpenNI 和 libfreenect 虽然跨平台,但是功能远不如微软 SDK
- 设备尺寸大,需要一坨电源线
- 致命缺点,微软已宣布停止生产 Kinect 一代

2. Microsoft Kinect One

优点:

• 分辨率更大、可以看到更广阔的场景

- 可以检测到的人体关节点更多(25个),能看清手指
- 拥有两套 SDK: 微软 SDK、libfreenect2
- 可以开发 Windows Store 应用

缺点:

- libfreenect2 基本不能检测骨骼,功能缺太多,同时 OpenNI 也不支持它,因此局限于 Windows 平台
- 设备尺寸比一代更大,需要一坨电源线,比一代贵一些
- 致命缺点:只能运行在 64 位 Windows 8 系统上,必须使用 USB 3.0 端口

3. Intel / Creative / SoftKinetic

优点:

- 小巧, 普通 USB 摄像头的尺寸
- 不需要外界电源线
- 近距离使用,可实现表情分析和手势识别

缺点:

• 不适合远距离交互, 也无法检测完整的身体

• 只能在中高端的 Intel CPU 上才能运行

4. Leap Motion

优点:

- 小巧, 一根 usb 线就可以使用
- 跨平台
- 支持的开发语言比较多,甚至通过 WebSocket
- 实现了浏览器中的 JavaScript API
- 跟踪手指和手掌,精度较高

缺点:

- 检测范围小,手臂酸疼(见上图)
- 不能检测身体和脸部
- 作为生产力工具,完全无法替代鼠标键盘
- 致命缺点:找不到合适的使用场景

5. PrimeSense / Apple / 华硕 (ASUS)

[1] https://zhuanlan.zhihu.com/p/28274727 ↔

- [2] https://baike.baidu.com/item/TOF/19952376?fr=aladdin \leftrightarrow
- [3] http://www.coloreye.cn/wiki/doc-view-716.html ↔