1

<u>ΠΛΗ30 – ΤΕΣΤ18</u>

ΘΕΜΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

(Α) Να ταξινομηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη μεγέθους:

$$f_1(n) = n \log^2 n + n^2 \log n + (n \log n)^2$$

$$f_2(n) = \log n + \ln n + \log_4 n$$

$$f_3(n) = n^{2n} + n^n$$

$$f_4(n) = n^{\log n} + (\log n)^n$$

Ο συμβολισμός $\log \pi$ αριστάνει λογάριθμο με βάση το 2. . Η συνάρτηση f έχει την ίδια τάξη μεγέθους (ίδιο ρυθμό αύξησης) με την g (f = g), αν $f = \Theta(g)$ (ισοδύναμα $\Theta(f) = \Theta(g)$). Η συνάρτηση f έχει μικρότερη τάξη μεγέθους (μικρότερο ρυθμό αύξησης) από την g (f < g), αν f = o(g).

(Β) Να λύσετε τις αναδρομές:

$$(1) \quad T(n) = 16T\left(\frac{n}{2}\right) + 2n^4$$

(2)
$$T(n) = 64T \left(\frac{n}{128}\right) + \sqrt[7]{n^6}$$

$$(3) \quad T(n) = T\left(\frac{n}{5}\right) + \frac{n}{10}$$

Στη συνέχεια, να διαταχθούν οι λύσεις τους κατά αύξουσα τάξη μεγέθους.

Θεώρημα Κυριαρχίας: Έστω η αναδρομική εξίσωση T(n) = aT(n/b) + f(n), όπου $a \ge 1$, b > 1 είναι σταθερές, και f(n) είναι μια ασυμπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις:

- $(1) \ \alpha v f(n) = O(n^{\log_b a \varepsilon}), \ \gamma ια \ κάποια \ σταθερά \ \varepsilon > 0, \ τότε \ T(n) = \Theta(n^{\log_b a})$
- (2) $\alpha v f(n) = \Theta(n^{\log_b a}), \ \tau \acute{o} \tau \varepsilon \ T(n) = \Theta(n^{\log_b a} \log n)$
- $(3) \ av f(n) = \mathbf{\Omega}(n^{\log_b a + \varepsilon}), \ \gamma ια \ κάποια \ σταθερά \ \varepsilon > 0, \ και \ av \ vπάρχει \ σταθερά \ n_0, \ τέτοια$ $\dot{\omega} στε, \ \gamma ια \ κάθε \ n \geq n_0, \ af\left(\frac{n}{b}\right) \leq cf(n) \ \gamma ια \ κάποια \ σταθερά \ c < 1, \ τότε \ T(n) = \Theta(f(n)).$

ΘΕΜΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

Άσκηση 1: Κατασκευάστε ΜΠΑ για τις κανονικές εκφράσεις:

$$L_1 = 110*11$$

$$L_2 = (01+11+00)*$$

$$L_3 = 1*0*1*+0*1*0*$$

$$L_4 = (00)*(11)*(01)*(100)*$$

$$L_5 = (101*11)*$$

Άσκηση 2: Δίδεται η κανονική έκφραση: 00*1*+1

(Α) Δώστε Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο (ΜΠΑ) της L

(Β) Δώστε το ισοδύναμο Ντετερμινιστικό Πεπερασμένο Αυτόματο (ΝΠΑ) της L

δίνοντας ένα κατάλληλο πλήθος διακρινόμενων ανά δύο συμβολοσειρών.

ΘΕΜΑ 4: ΓΛΩΣΣΕΣ ΑΝΕΞΑΡΤΗΤΕΣ ΣΥΜΦΡΑΖΟΜΕΝΩΝ

Άσκηση 1: Δώστε γραμματικές χωρίς συμφραζόμενα για τις γλώσσες:

$$\mathsf{L}_1 = \{a^{3n+2}b^{2n}|\ n \geq 0\}$$

$${\rm L}_2 = \{a^m b^{n+1} c^n d^m | \; n, m \geq 0 \}$$

$$\mathsf{L}_3 = \{a^{2n+4}b^{3n+1} | \ n \geq 0\}$$

$$L_4 = \{ w \in \{a, b\}^* \mid w είναι παλινδρομική \}$$

$$L_5 = \{b^n a^m c^{n+m} b^k a^k | n, m, k \ge 0\}$$

$$L_6 = \{bba^nb^m | n > m\}$$

$$L_7 = \{a^n b^m | n = m + 1 \acute{\eta} m = 2n\}$$

Άσκηση 2

Δίδονται οι γλώσσες του αλφαβήτου $\{a,b,c\}$: $L_1 = \{a^ncb^m \mid n>m\}$, $L_2 = \{a^ncb^m \mid n,m\geq 0\}$ εκ των οποίων η μία είναι κανονική και η άλλη δεν είναι κανονική.

- (A) Επιλέξτε την γλώσσα που είναι κανονική και αποδείξτε το, δίνοντας την κανονική έκφραση που παράγει τις συμβολοσειρές της.
- (Β) Για την γλώσσα που δεν είναι κανονική: (1) Αποδείξτε με το λήμμα άντλησης ότι δεν είναι κανονική. (2) Δωστε Γραμματική Χωρίς Συμφραζόμενα που παράγει τις συμβολοσειρές της (3) Δώστε Ντετερμινιστικό Αυτόματο Στοίβας που αναγνωρίζει τις συμβολοσειρές της

Το Λήμμα Αντλησης για Κανονικές Γλώσσες:

Έστω L μια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθμός n (μήκος άντλησης) τέτοιος ώστε κάθε $x \in L$ με $|\mathbf{x}| \ge n$ να μπορεί να γραφεί στην μορφή x = uvw όπου για τις συμβολοσειρές u,v και w ισχύει:

- $\triangleright |uv| \leq n$
- $\triangleright v \neq \varepsilon$
- $ightharpoonup uv^m w \in L$ για κάθε φυσικό $m \geq 0$