大気放射の基礎

-Liou 著 藤枝・深堀訳 (2014) の講読-

北海道大学理学部 人見祥磨 令和 2 年 1 月 25 日

目次

大気の熱赤外放射伝達

大気の熱赤外放射伝達

大気の熱赤外放射伝達

アルベド: τ̄; 地球半径: α_e;

太陽定数: $S = 1366 \,\mathrm{W\,m^{-2}}$; 地球大気系の平衡温度: T_e

放射に関してのバランス方程式 ステファン・ボルツマンの法則から

$$S \cdot \pi \alpha_e^2 (1 - \overline{r}) = \sigma T_e^4 \cdot 4\pi \alpha_e^2$$

係数 4: 吸収と射出の面積の違い

バランス方程式より、

$$T_e = \sqrt[4]{S \frac{1 - \bar{r}}{4\sigma}} \sim 255 \, \text{K}$$

放射伝達のための一般的な方程式

放射束の放射強度: I_{γ} ; 吸収係数: k_{γ} ;

吸収気体の密度: ρ_a ; 光路長: s; 放射源関数: J_{γ}

$$-\frac{1}{k_{\nu}\rho_{\alpha}}\frac{dI_{n}u}{ds}=I_{\nu}-J_{\nu}$$

放射強度 時間に依存しないと考えて良い 平行平面大気 放射強度と大気パラメーターは鉛直方向にのみ変化