FPSAC 2020 Online Poster #50: Crystal for stable Grothendieck polynomials

arXiv: 1911.08732

Joint with Jennifer Morse (UV), Wencin Poh and Anne Schilling

University of Virginia University of California, Davis

July 18, 2020

Motivation: Schubert Calculus

Polynomial Representatives for Schubert Cells

	Grassmannian $\mathbb{G}_{m,n}$	Flag Varieties Fl _n
cohomology	s_{λ}	$\mathfrak{S}_w \to F_w$
k-theory	\mathfrak{G}_{λ}	\mathfrak{G}_w

Grassmannian Grothendieck polynomials: \mathfrak{G}_{λ} Lascoux, Schützenberger 1982 Stable Grothendieck polynomials: \mathfrak{G}_{w} Fomin, Kirillov 1994

Question: How to compute $\mathfrak{G}_u\mathfrak{G}_v = \sum_{w \in S_\infty} c_{u,v}^w \mathfrak{G}_w$?

Observation

- symmetric functions
- Schur positive
- character of irreducible crystals are Schur

Combinatorial Approach?

- Crystal Structure on F_w (Morse & Schilling 2015)
- Nonlocal crystal structure on \mathfrak{G}_w (Monical & Pechenik & Scrimshaw 2018)

0-Hecke Monoid

Definition

The 0-Hecke monoid, denoted by $\mathcal{H}_0(n)$, where $n \in \mathbb{N}$, is the monoid of all finite words in $[n-1] := \{1, 2, \dots, n-1\}$, such that for all $p, q \in [n]$,

$$pp \equiv p, \quad pqp \equiv qpq,$$

if |p-q|>1 we also have $pq\equiv qp$.

- $2112 \equiv 212 \equiv 121$
- $2121 \equiv 1211 \equiv 121 \equiv 212$
- $31312 \equiv 3132 \equiv 312 \equiv 132$

Decreasing factorizations in $\mathcal{H}_0(n)$

Definition

A decreasing factorization of $w \in \mathcal{H}_0(n)$ into m factors is a product of decreasing factors

$$\mathbf{h}=h^m\ldots h^2h^1$$

such that $\mathbf{h} \equiv w$ in $\mathcal{H}_0(n)$.

 \mathcal{H}_{w}^{m} = set of decreasing factorizations of w in $\mathcal{H}_{0}(n)$ with m factors

Example

Decreasing factorizations for $132 \in \mathcal{H}_0(3)$ of length 5 with 3 factors:

$$(31)(31)(2)$$
 $(31)(32)(2)$ $(31)(1)(32)$ $(31)(3)(32)$ $(1)(31)(32)$ $(3)(31)(32)$

Stable Grothendieck Polynomials for w

Definition

Stable Grothendieck polynomial (or K-Stanley symmetric function):

$$\mathfrak{G}_{w}(\mathbf{x},\beta) = \sum_{h^{m}\dots h^{2}h^{1} \in \mathcal{H}_{w}^{m}} \beta^{\ell(h^{1})+\dots+\ell(h^{m})-\ell(w)} x_{1}^{\ell(h^{1})} \dots x_{m}^{\ell(h^{m})}$$

where $\ell(w)$ is the length of any reduced word of w.

Example

$$w = 132 \in \mathcal{H}_0(4)$$

Reduced Hecke words 132, 312

Decreasing factorizations for constant term:

$$\beta^0: (x_1^2x_2 + x_1^2x_3 + x_2^2x_3 + x_1x_2^2 + x_1x_3^2 + x_2x_3^2) + 2x_1x_2x_3 = s_{21}$$

Schur posivity

Schur positivity (Fomin, Greene 1998)

$$\mathfrak{G}_w(\mathbf{x},eta) = \sum_{\lambda} eta^{|\lambda|-\ell(w)} g_w^{\lambda} s_{\lambda}(x)$$

 $g_w^{\lambda} = |\{T \in SST^n(\lambda')| \text{ column reading of } T \equiv w\}|$

$$\mathfrak{G}_{132}(\mathbf{x},\beta) = s_{21} + \beta(2s_{211} + s_{22}) + \beta^2(3s_{2111} + 2s_{221}) + \cdots$$

321-avoiding Hecke words (braid-free)

Definition

An element $w \in \mathcal{H}_0(n)$ is 321-avoiding if none of the reduced expressions for w contain a consecutive subword of the form i i+1 i for any $i \in [n-1] = \{1, 2, \ldots, n-1\}$.

Examples

- ullet 121 \equiv 212 is not 321-avoiding
- $132 \equiv 312$ is 321-avoiding
- ullet 22132 \equiv 2132 \equiv 2312 is 321-avoiding

Denote $\mathcal{H}^{m,\star}(n)$ as the set of all 321-avoiding decreasing factorizations of $\mathcal{H}_0(n)$ with m factors.

- ()(1)(21) $\in \mathcal{H}^3, \notin \mathcal{H}^{3,\star}$.
- $(31)(2) \in \mathcal{H}^{2,\star}$

Grothendieck polynomials for skew shapes

$$\mathfrak{G}_{\nu/\lambda}(\mathbf{x};\beta) = \sum_{T \in \mathsf{SVT}(\nu/\lambda)} \beta^{\mathsf{ex}(T)} x_1^{\#\mathsf{of 1's}} x_2^{\#\mathsf{of 2's}} \dots \tag{\mathsf{Buch 2002}}$$

 ${
m SVT}(
u/\lambda)={
m set}$ of semistandard set-valued tableaux of shape u/λ Excess in T is ${
m ex}(T)$

Semistandard set-valued tableaux $\mathsf{SVT}(\nu/\lambda)$

Fill boxes of skew shape ν/λ with nonempty sets. Semistandardness:

Example (Which one is a valid filling?)

✓	34	45		
		12	25	

34	35	
	12	456

2	35	
	14	56

Crystal Structure on SVT

A Signature Rule

Assign — to every column of T containing an i but not an i+1. Similarly, assign + to every column of T containing an i+1 but not an i. Then successively pair each + that is adjacent to a —.

Crystal Operator fi

- changes the rightmost unpaired i —to i+1, except
- if its right neighbor contains both i, i + 1, then *move* the i over and turn it to be i + 1

Uncrowding Algorithm SVT

Uncrowding Operator uncrowd Lenart 2000; Buch 2002; Bandlow, Morse 2012; Patrias 2016; Reiner, Tenner, Yong 2018

- Identify the topmost row in T containing a multicell.
- Let x be the largest letter in that row which lies in a multicell.
- Delete this x and perform RSK algorithm into the rows above.
- Resulting a single-valued skew Tableau.

The Residue Map

 $\mathcal{H}^{m,\star}$ = set of 321-avoiding decreasing factorizations with m factors

Definition: res(T)

- res : $\mathsf{SVT}^m(\lambda/\mu) \to \mathcal{H}^{m,\star}$
- Associate cell (i,j) with $\ell(\lambda) + j i$
- Forming the *i*th factor h^i by taking the labels of all cells in T containing i in decreasing order

Example (m=5)

$$\begin{array}{c|c} \hline 34_{1} & 45_{2} \\ \hline & 12_{3} & 25_{4} \\ \hline \end{array} \xrightarrow{\text{res}} (42)(21)(1)(43)(3) \in \mathcal{H}^{5}, \mathcal{H}^{5,\star}$$

The Hecke Insertion Algorithm Buch 2008, Patrias, Pylyavskyy 2016

Insert x to row R of an increasing tableau

- Try to append x to the right of R (record and terminate)
- ullet Try to bump the smallest letter that is bigger than x (proceed to the next row)

$$\mathcal{H}^m \longleftrightarrow (P,Q)$$

The Hecke Insertion and the Residue Map

Theorem (Morse, P., Poh, Schilling, 2019)

Let $T \in SVT(\lambda)$ and $[\mathbf{k}, \mathbf{h}]^t = res(T)$. Apply Hecke row insertion from the right on $[\mathbf{k}, \mathbf{h}]^t$ to obtain the pair of tableaux (P, Q). Then Q = T.

$$T = \begin{array}{|c|c|c|}\hline 2_1 & 4_2 \\ \hline 1_2 & 23_3 \end{array} \xrightarrow{\text{res}} (2)(3)(31)(2) = \begin{bmatrix} 4 & 3 & 2 & 2 & 1 \\ 2 & 3 & 3 & 1 & 2 \end{bmatrix}$$

\star -Crystal Structure on $\mathcal{H}^{m,\star}$

Bracketing rule on $h^m ext{...} h^{i+1} h^i ext{...} h^1$

- Start with the **largest** letter b in h^{i+1} , pair it with the smallest $a \ge b$ in h^i . If there is no such a, then b is unpaired.
- 2 Proceed in decreasing order in h^{i+1} , ignore previously paired letters.

Crystal operator f_i^* , x: largest unpaired letter in h^i

- If $x + 1 \in h^i \cap h^{i+1}$, then remove x + 1 from h^i , add x to h^{i+1} .
- Otherwise, remove x from h^i and add x to h^{i+1} .

- $(1)(32) \xrightarrow{\text{bracket}} (1)(32) \xrightarrow{f_1^{\star}} (31)(2)$
- $(7532)(621) \xrightarrow{\text{bracket}} (7532)(621) \xrightarrow{f_1^*} (75321)(61)$

Vertices and Edges

$$w = 132, \ \beta^{1}$$

$$(3,1)(3,2)()$$

$$(3,1)(1)(2)$$

$$(3,1)(2)(2)$$

$$(3,1)(3)(2)$$

$$(3,1)(3)(2)$$

$$(1)(3,1)(2)$$

$$(1)(3,1)(2)$$

$$(1)(3,1)(2)$$

$$(1)(3,2)(2)$$

$$(1)(3,2)(2)$$

$$(1)(3,2)(2)$$

$$(3)(3,1)(2)$$

$$(3)(3,1)(2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

$$(3,1)(3,2)$$

The Residue as an Crystal Isomorphism

Theorem (Morse, P., Poh, Schilling, 2019)

The crystal on skew semistandard set-valued tableaux and the crystal on decreasing factorizations $\mathcal{H}^{m,*}$ intertwine under the residue map. That is, the following diagram commutes:

$$\mathsf{SVT}^m(\lambda/\mu) \xrightarrow{\mathsf{res}} \mathcal{H}^{m,\star} \\ \downarrow^{f_k} \qquad \qquad \downarrow^{f_k^\star} \\ \mathsf{SVT}^m(\lambda/\mu) \xrightarrow{\mathsf{res}} \mathcal{H}^{m,\star}.$$

*-Insertion Algorithm Morse, P., Poh, Schilling, 2019

Insert x into row R of a transpose of a semistandard tableau

- **1** Try to append x to the right of R (terminate and record)
- 2 $x \notin R$, bump the minimal z > x (proceed to the next row)
- **3** $x \in R$, proceed to next row with y minimal such that $[y,x] \subseteq R$

$$\mathbf{h} = (42)(42)(31) = \begin{bmatrix} \mathbf{3} & \mathbf{3} & \mathbf{2} & \mathbf{2} & \mathbf{1} & \mathbf{1} \\ \mathbf{4} & \mathbf{2} & \mathbf{4} & \mathbf{2} & \mathbf{3} & \mathbf{1} \end{bmatrix}$$

Association with ⋆-crystal

Theorem (Morse, P., Poh, Schilling, 2019)

Let $h \in \mathcal{H}^{m,\star}$ and $(P^{\star}(h), Q^{\star}(h)) = \star(h)$.

•
$$f_i^*(\mathbf{h}) \neq 0$$
 if and only if $f_i(Q^*(\mathbf{h})) \neq 0$. $\mathcal{H}_i^{m,\star} \xrightarrow{Q^*} \mathsf{SSYT}^m$

In other words, the following diagram commutes: $\mathcal{H}^{m,\star} \xrightarrow{Q^n} SSYT^m$

Connection to the Uncrowding map

Let $T \in \mathsf{SVT}^m(\lambda)$, $(\tilde{P}, \tilde{Q}) = \mathsf{uncrowd}(T)$, and $(P, Q) = \star \circ \mathsf{res}(T)$. Then $Q = \tilde{P}$.

Thank you!

A Solution to $\mathcal{H}^m(3)$

A Counterexample

Desired properties:

- f_i only changes the i-th and (i + 1)-st factors;
- ② f_i is determined by the first (i+1) factors;
- f_i does not change w and excess.

Our crystal on $\mathcal{H}^m(3)$ has these properties.

However, we found a counter examle in $\mathcal{H}^4(4)$.

Pop Motivation: Why crystals?

- ullet Irreducible representations V_{λ} and V_{μ}
- •

$$V_{\lambda}\otimes V_{\mu}\cong igoplus_{
u}c_{\lambda\mu}^{
u}V_{
u}$$

Question: How to count multiplicities $c_{\lambda\mu}^{\nu}$?

- Crystals $\mathcal{B}_{\lambda} \longleftrightarrow V_{\lambda}$, $\mathcal{B}_{\mu} \longleftrightarrow V_{\mu}$
- •

$$\mathcal{B}_{\lambda}\otimes\mathcal{B}_{\mu}=igoplus_{
u}c_{\lambda\mu}^{
u}\mathcal{B}_{
u}$$

- $c_{\lambda\mu}^{\nu}=\#\{{
 m Yamanouchi\ tableaux\ of\ shape\ }
 u/\lambda\ {
 m and\ content\ } \mu\}$ Littlewood-Richardson Coefficients
- Character of crystal $\mathcal{B}_{\lambda} = s_{\lambda}$

An Illustration on Lie Algebra \$13

Figure: Std Rep of $\mathfrak{sl}_3:V_{(1,0)}$

Figure: Tensor Product

Characters:

- $x_1^2 + x_1x_2 + x_2^2 + x_1x_3 + x_2x_3 + x_3^2 = s_2$
- $x_2x_1 + x_3x_1 + x_3x_2 = s_{11}$

Tensor Product Using Crystals

$$1 \xrightarrow{\quad 1\quad } 2 \xrightarrow{\quad 2\quad } 3$$