CSE6706: Advanced Digital Image Processing

Dr. Md. Monirul Islam

Image Enhancement using Sharpening Filter

Objectives of Image Sharpening

- Highlight fine details
- Remove blurring

Smoothing Vs. Sharpening

Smoothing

Average

Integration

Smoothing Vs. Sharpening

Smoothing

Average

Integration

Sharpening

Difference

Differentiation

Image Sharpening

Sharpening

Difference

Differentiation

- Response of derivative is proportional to image discontinuity
- Sharp changes, noise point, edges, lines, grey ramp are easily detected

Image Sharpening

- 1st and 2nd order derivatives will be used
- Behavior to check
 - Constant gray level
 - At onset and end of discontinuities (ramp and step)
 - Along gray-ramp

Properties of Derivatives

- Value of 1st order derivative will be
 - 0 at constant gray level
 - Nonzero at onset of step and ramp
 - Nonzero along ramp

Properties of Derivatives

- Value of 1st order derivative will be
 - 0 at const gray level
 - Nonzero at onset of step and ramp
 - Nonzero along ramp

- Value of 2nd order derivative will be
 - 0 at const gray level
 - Nonzero at <u>onset and end of</u> step and ramp
 - 0 along ramp

Digital 1st Order Derivative

$$\frac{\partial f}{\partial x} = \frac{\text{change of } f}{\text{change of } x}$$

Digital 1st Order Derivative

$$\frac{\partial f}{\partial x} = \frac{f(x+1) - f(x)}{\text{change of } x}$$

Digital 1st Order Derivative

$$\frac{\partial f}{\partial x} = \frac{f(x+1) - f(x)}{x+1-x}$$

$$= f(x+1) - f(x)$$

Digital 2nd Order Derivative

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

- gray-ramp (smooth transition betn white and black)
- Isolated noise point
- Line
- Edge

Gray profile

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

- 1st order:
 - produce thicker edges
 - Strong response to step
- 2nd order:
 - double response to step changes
 - stronger to fine details
 - Thin line, noise point

2nd Order Derivative

- Laplacian 2nd order derivative
 - Rotation invariant or isotropic

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

2nd Order Derivative

- Laplacian 2nd order derivative
 - Rotation invariant or isotropic

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

We know,

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

and,

$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

2nd Order Derivative

Therefore,

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$= f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)$$

$$-4f(x,y)$$

Implementation of 2nd Order Derivative

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)$$
$$-4f(x,y)$$

0	1	0
1	-4	1
0	1	0

Implementation of 2nd Order Derivative

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)$$
$$-4f(x,y)$$

0	1	0
1	-4	1
0	1	0

 Isotropic or rotation invariant for 90° increments

Implementation of 2nd Order Derivative

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)$$
$$-4f(x,y)$$

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1

Rotation
 invariant for 45°
 increments

Other two Implementations of 2nd Order Derivatives

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1

Properties of Laplacian 2nd Order Derivatives

- Highlights discontinuities
- Deemphasizes slowly varying gray backgrounds
- Results in sharpened discontinuities superimposed on a dark featureless background

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1

Unsharpened moon image

Details not clear

Original Image

After applying Laplacian Operator

After applying -aplacian Operator

Way out from the side effects of Laplacian Operator

- Add/ subtract the sharpened image from original image
- Recovers everything but still preserves the sharpening effect

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{if center coeff} < 0\\ f(x,y) + \nabla^2 f(x,y) & \text{if center coeff} > 0 \end{cases}$$

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

After added with the original

-aplacian Operator

- Original Laplacian sharpening requires two passes
- It can be reduced to a single pass

We know,

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{if center coeff } < 0\\ f(x,y) + \nabla^2 f(x,y) & \text{if center coeff } > 0 \end{cases}$$

and,

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Simplification of Laplacian Operator

We know,

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{if center coeff} < 0\\ f(x,y) + \nabla^2 f(x,y) & \text{if center coeff} > 0 \end{cases}$$

and,

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Therefore,

$$g(x,y) = f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

= $5f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)]$

$$g(x,y) = f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

= $5f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)]$

0	-1	0
-1	5	-1
0	-1	0

$$g(x,y) = f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)]$$

= $5f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)]$

0	-1	0
-1	5	-1
0	-1	0

-1	-1	-1
-1	9	-1
-1	-1	-1

0	-1	0
-1	5	-1
0	-1	0

-1	-1	-1
-1	9	-1
-1	-1	-1

0	-1	0
-1	5	-1
0	-1	0

-1	-1	-1
-1	9	-1
-1	-1	-1

Sharpening through Unsharp masking

- Used in publishing industry for long
- A blur (unsharp) image is subtracted from the original image

$$f_s(x,y) = f(x,y) - \bar{f}(x,y)$$

Sharp image

Blurred or Unsharp or Average image

Generalization of unsharp masking

$$f_s(x,y) = f(x,y) - \bar{f}(x,y)$$
 Unsharp masking

$$f_{hb}(x,y) = Af(x,y) - \bar{f}(x,y)$$
 High-boost filtering

$$f_{hb}(x,y) = Af(x,y) - f(x,y)$$

= $(A-1)f(x,y) + f(x,y) - \bar{f}(x,y)$

$$\begin{split} f_{hb}(x,y) &= A f(x,y) - \bar{f}(x,y) \\ &= (A-1) f(x,y) + f(x,y) - \bar{f}(x,y) \\ &= (A-1) f(x,y) + f_s(x,y) \end{split}$$
 Sharp image

$$f_{hb}(x,y) = Af(x,y) - \bar{f}(x,y)$$

$$= (A-1)f(x,y) + f(x,y) - \bar{f}(x,y)$$

$$= (A-1)f(x,y) + f_s(x,y)$$

Sharp image by any model

$$f_{hb}(x,y) = Af(x,y) - \bar{f}(x,y)$$

$$= (A-1)f(x,y) + f(x,y) - \bar{f}(x,y)$$

$$= (A-1)f(x,y) + f_s(x,y)$$

Sharp image by any model

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{if center coeff} < 0\\ f(x,y) + \nabla^2 f(x,y) & \text{if center coeff} > 0 \end{cases}$$

$$f_{hb}(x,y) = Af(x,y) - \bar{f}(x,y)$$

$$= (A-1)f(x,y) + f(x,y) - \bar{f}(x,y)$$

$$= (A-1)f(x,y) + f_s(x,y)$$

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{if center coeff } < 0\\ f(x,y) + \nabla^2 f(x,y) & \text{if center coeff } > 0 \end{cases}$$

$$f_{hb}(x,y) = \begin{cases} Af(x,y) - \nabla^2 f(x,y) & \text{if center coeff } < 0\\ Af(x,y) + \nabla^2 f(x,y) & \text{if center coeff } > 0 \end{cases}$$

$$f_{hb}(x,y) = \begin{cases} Af(x,y) - \nabla^2 f(x,y) & \text{if center coeff} < 0\\ Af(x,y) + \nabla^2 f(x,y) & \text{if center coeff} > 0 \end{cases}$$

0	-1	0
-1	A + 4	-1
0	-1	0

$$f_{hb}(x,y) = \begin{cases} Af(x,y) - \nabla^2 f(x,y) & \text{if center coeff} < 0\\ Af(x,y) + \nabla^2 f(x,y) & \text{if center coeff} > 0 \end{cases}$$

0	-1	0	-1	-1	-1
-1	A + 4	-1	-1	A + 8	-1
0	-1	0	-1	-1	-1

Example of High Boost Filtering

-1	-1	-1
-1	A + 8	-1
-1	-1	-1

Previous Image but darkened

Sharpened with A=0

Sharpened with A=1.7

1st Order Derivative -The Gradient

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

1st Order Derivative –The Gradient

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

- Individual elements are linear
- Not rotation invariant

1st Order Derivative –The Gradient

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \text{mag}(\nabla \mathbf{f}) = \left[G_x^2 + G_y^2\right]^{1/2}$$
$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial x}\right)^2\right]^{1/2}$$

rotation invariant, but NOT linear

1st Order Derivative –The Gradient

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \text{mag}(\nabla \mathbf{f}) = \left[G_x^2 + G_y^2\right]^{1/2}$$
$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial x}\right)^2\right]^{1/2}$$

$$\nabla f \approx |G_x| + |G_y|$$

- approximation
- Linear, but rotation invariant for limited cases

$$\nabla f \approx |G_x| + |G_y|$$

A 3X3 image region

$$\nabla f \approx |G_x| + |G_y|$$

y

		<u> </u>	
	z_1	z_2	z_3
x	z_4	Z ₅	z ₆
	Z ₇	z_8	Z9

Many implementations (1)

$$G_x = Z_8 - Z_5$$

$$G_{y} = Z_6 - Z_5$$

$$\nabla f \approx |G_x| + |G_y|$$

 \mathcal{Y}

Many implementations (2)

$$G_x = Z_9 - Z_5$$

$$G_{y} = Z_{8} - Z_{6}$$

$$\nabla f = \left[G_x^2 + G_y^2 \right]^{1/2}$$

 \mathcal{V}

Many implementations (2)

$$G_x = Z_9 - Z_5$$

$$G_y = Z_8 - Z_6$$

$$\nabla f = \left[(z_9 - z_5)^2 + (z_8 - z_6)^2 \right]^{\frac{1}{2}}$$

			•
	z_1	z_2	z_3
x	z_4	z_5	z_6
	Z ₇	z_8	Z 9

$$\nabla f \approx |G_x| + |G_y|$$

 \mathcal{Y}

Many implementations (2)

$$G_x = Z_9 - Z_5$$

$$G_y = Z_8 - Z_6$$

$$\nabla f \approx \left| z_9 - z_5 \right| + \left| z_8 - z_6 \right|$$

Robert's Cross
Gradient Operator

z_1	z_2	z_3
Z ₄	z_5	z_6
Z ₇	z_8	Z9

$$CS_1$$
 $Z_9 - Z_5$

$$Z_8 - Z_6$$

Many implementations (2)

$$G_x = Z_9 - Z_5$$

$$G_{v} = Z_8 - Z_6$$

$$\nabla f \approx \left| z_9 - z_5 \right| + \left| z_8 - z_6 \right|$$

Robert's Cross
Gradient Operator

z_1	z_1 z_2 z_3	
Z ₄	z_5	<i>z</i> ₆
Z ₇	z_8	Z9

• Many implementations (3)

$$G_x = (Z_7 + 2Z_8 + Z_9) - (Z_1 + 2Z_2 + Z_3)$$

$$G_y = (Z_3 + 2Z_6 + Z_9) - (Z_1 + 2Z_4 + Z_7)$$

$$\nabla f = \left| (Z_7 + 2Z_8 + Z_9) - (Z_1 + 2Z_2 + Z_3) \right|$$

$$+ \left| (Z_3 + 2Z_6 + Z_9) - (Z_1 + 2Z_4 + Z_7) \right|$$

Sobel Operator

z_1	z_2	z_3
Z ₄	z_5	Z ₆
Z ₇	z_8	Z9

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel Operators

$$\nabla f = \left| (Z_7 + 2Z_8 + Z_9) - (Z_1 + 2Z_2 + Z_3) \right|$$

$$+ \left| (Z_3 + 2Z_6 + Z_9) - (Z_1 + 2Z_4 + Z_7) \right|$$

z_1	z_2	z_3
z_4	z_5	z_6
z ₇	z_8	Z9

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel Operators

- More importance to center pixel (z_5)
 - achieve some smoothing

Automatic factory inspection

Contact lens

Any defects?

Automatic factory inspection

Contact lens

Note defects at 4 and 5 o'clock positions

Automatic factory inspection

Original Image

Automatic factory inspection

Contact lens

Note defects at 4 and 5 o'clock positions

A single approach often cannot achieve good enhancement

- A nuclear body scan image
- Objective: enhance by sharpening to get the fine details.
- Challenges:
 - Noise
 - dynamic range of gray scale

Original image

After Laplacian applied

Original image

After Laplacian applied

Added 2 images

- Noisy
 - Laplacian enhances the noise, too
- Median filter removes noises
 - But, it also removes other details

Original image

After Laplacian applied

Added 2 images

- Noisy
 - Laplacian enhances the noise, too
- Gradient produces less noisy images
 - it also improves the edges

Original image

Added 2 images (

 We'll use smoothed gradient image as a mask to reduce noise from Laplacian output

After Sobel

After Laplacian applied

After Sobel

Sobel, smoothed by 5X5 avg. filter

After Laplacian applied

After Sobel

After masking

Sobel, smoothed

After Sobel

After Laplacian applied Sobel, smoothed

Added masked result

After masking

Sobel, smoothed

Added masked result

by 5X5 avg. filter

After Laplacian applied

After Sobel

After Power law transform