Speech Coding Notes on Spoken Language Processing

Chia-Ping Chen

Department of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan ROC

Introduction

- Speech coding refers to the study of encoding speech signals (digitally), often under bandwidth limitation.
 - Digital representation can be transmitted over data network.
 - Bandwidth limitation often requires the speech signal to be compressed.
- Other audio signals such as music may need to be compressed too, such as MP3. That is referred to as audio coding.

Coder Attributes

- bit rate (bandwidth)
 - telephone speech (300 3400 Hz, sampled at 8kHz)
 - wideband speech (50 7000 Hz, sampled at 16kHz)
 - audio coding (44.1kHz)
- fixed-rate vs. variable-rate
- lossy vs. lossless

Quality Measure

- mean opinion score (MOS)
 - excellent
 - good
 - fair
 - poor
 - bad
- signal-to-noise ratio (SNR)

SNR =
$$\frac{\sigma_x^2}{\sigma_e^2} = \frac{E\{x^2[n]\}}{E\{e^2[n]\}}$$

Delays

- algorithmic delay: due to block (frame) encoding
- computational delay: time for frame processing
- multiplexing delay: time for adding error correction
- transmission delay: time to traverse the channel
- decoder delay: time to reconstruct signal
- Delay of more than 150 ms is not acceptable in an interactive conversation.

Graceful Degradation

- Transmission errors may occur, especially in a wireless setting.
 - **channel** errors
 - missing frames
- Graceful degradation of speech quality under channel errors is desired.
- Likewise, graceful degradation of speech quality with missing frames is also desired.

Pulse Code Modulation (PCM)

- quantize a signal sample to 2^B levels and use B bits for representation
 - linear PCM: the quantization levels are linearly spaced
 - μ -law PCM: the idea is to have same SNR regardless of the signal level; the step size is proportional to the signal
 - adaptive PCM: the step size is proportional to signal standard deviation

Delta Modulation (DM)

Instead of quantizing the samples, DM quantizes the differences in subsequent samples.

$$d[n] = x[n] - \tilde{x}[n]; \ \hat{d}[n] = d[n] + e[n]; \ \hat{x}[n] = \tilde{x}[n] + \hat{d}[n]$$

where \tilde{x} is the predicted signal, \hat{d} is the quantized difference.

The simplest case is the 1-bit DM.

$$\hat{x}[n] = \tilde{x}[n] \pm \Delta$$

Adaptive DM (ADM) has a step size that increases if subsequent errors have the same sign, in order to "catch up".

Improved DPCM

Uses linear prediction of past quantized values instead of just the previous one.

$$\tilde{x}[n] = \sum_{k=1}^{p} a_k \hat{x}[n-k]$$

- **The coefficients** a_k can be adapted.
- ADPCM combines differential quantization with adaptive step size. Used in ITU-T Recommendations.

Frequency-Domain Coder

- advantages of working in frequency domain
 - Frequency domain components are approximately uncorrelated.
 - The masking effect can be more easily implemented in the frequency domain.

Masking

- The masking effect is a phenomenon that human cannot perceive a sound below a certain level in the presence of another sound of a near frequency.
- We don't need to encode such a sound.
- This is the basic idea of the MPEG-1 Layer I audio encoding standard.
- MP3 stands for MPEG-1 Layer III, which is not far from the main idea introduced here.

Adaptive Spectral Entropy Coding

- ASPEC is used in high-quality music signals.
- The DFT coefficients are grouped into 128 subbands, with 128 scalar quantizers.
- Entropy coding is used to encode the coefficients of that subband.
- Suppose subband j has k_j levels of step size T_j , then

$$k_j = 1 + 2 \times \operatorname{rnd}\left(\frac{P_j}{T_j}\right),$$

where rnd() is a rounding function (to the nearest integer) and P_j is the quantized magnitude of largest component.

Consumer Audio

- Dolby Digital: multichannel, lossy AC-3 coding, sampling rate 48 kHz, up to 24 bits.
- MPEG: MPEG-1 up to 384 kbps; MPEG-2 16-bit linear PCM at 48 kHz.
 - MPEG-1: up to 384 kbps
 - MPEG-2: 16-bit linear PCM at 48 kHz; used in DVD audio; variable rate from 32 to 912 kbps.
- Digital Theater Systems (DTS): multichannel, 20-bit PCM at 48 kHz; variable rate from 64 to 1536 kbps

Digital Audio Broadcasting

- DAB is a radio with high sound quality, service availability, flexible coverage scenarios, and spectrum efficiency.
- Most widely used system is the Eureka 147 DAB.
 - Each channel has a bandwidth of 1.536 MHz, with a raw data rate of 2304 kbps.
 - The useful data rate is between 600 1800 kbps, used for audio and data programs.
 - Audio programs are compressed by MUSICAM (MPEG-1 Layer II).

LPC Vocoder

- Speech production can be modelled by an excitation source driving a time-varying filter.
 - For voiced speech, the source is a periodic impulse train.
 - For voiceless speech, the source is a random white noise.
- Using linear prediction removes the redundancy in the signal, so a simpler quantizer can be used on the residual signal.
- For example, Federal Standard 1015 is based on a 2.4 kbps LPC vocoder.

Code Excited Linear Prediction

The residual is defined by

$$e[n] = x[n] - \sum_{i=1}^{p} a_i x[n-i].$$

- The residual signal is quantized using VQ. It is represented by a codeword.
- In CELP, the LP coefficients are quantized and transmitted, as well as the codeword index.
- The prediction using LPC is called short-term prediction. The prediction of the residual based on pitch is called long-term prediction.

Open-loop Estimation

- We first estimate LPC and quantize them.
- We can obtain the transfer function of the LPC filter.
- Then we can estimate the optimal codeword index for excitation vector, as well as the optimal gain, based on the minimization of error signal (analyss by synthesis).
- The quantized LPC, the codeword index, and the optimal gain are transmitted.

CELP Standards

- Various standards for bit-rate/quality constraints.
- VoIP: voice over internet protocol, adopts many audio coding standards.
 - G.728: toll-quality, low-delay CELP at 16 kbps.
 - G.729: toll-quality, 10-ms delay CELP at 8 kbps.
 - **G**.723.1: 30-ms delay CELP at 5.3/6.3 kbps.
- They are under the H.323 umbrella standard.

GSM

- General System for Mobile communication
- voice coding: regular pulse excited-linear predicative coder (RPE-LPC) with long-term predictor loop
 - full rate = 13 kbps
 - half rate = 5.6 kbps
- Enhanced full-rate (EFR) standard based on ACELP achieves toll quality.

Low-Bit-Rate Speech Coders

- CELP is an example of waveform-approximating coder, which approximates the speech waveforms.
- In contrast, a low-bit-rate coder does not do that.

 Rather, the goal in low-bit-rate coding is to compress the signal into a perceptually equivalent one.
- Consequently, low-bit-rate coders have small SNR and is sensitive to noise.