Содержание

1	Эле	ементы теории меры и интеграла	1
	1.1	Пространства с мерой	1
	1.2	Интегрирование простых функций	3
	1.3	Интегрирование измеримых функций	6
	1.4	Пространства Лебега	7

1 Элементы теории меры и интеграла

1.1 Пространства с мерой

Определение 1.1. Пусть X — непустое множество. Семейство подмножеств $\mathcal F$ из X называется σ -алгеброй, если выполняются следующие условия:

- 1. $X \in \mathcal{F}$;
- 2. $X \setminus A \in \mathcal{F}$ для всех A из \mathcal{F} ;
- 3. $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ для всех $A_i, i \in \mathbb{N}$ из \mathcal{F} .

Подмножества, принадлежащие этому семейству, называются измеримыми.

Определение 1.2. Отображение $\mu\colon \mathcal{F}\to \mathbb{R}\cup\{\infty\}$ называется мерой, если

- 1. $\mu(A) \geqslant 0$ для всех измеримых подмножеств A;
- 2. $\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mu(A_i)$ для любой последовательности $\{A_i\}$ взаимно непересекающихся измеримых подмножеств.

Теорема 1.1. Справедливы следующие свойства:

- 1. Пересечение конечного или счетного числа измеримых множеств есть измеримое множество;
- 2. Если E_1 и E_2 измеримые множества и $E_1 \subset E_2$, то

$$\mu(E_1) \leqslant \mu(E_2).$$

Определение 1.3. Тройка (X, \mathcal{F}, μ) , где X — непустое множество, \mathcal{F} — σ -алгебра измеримых подмножеств из X, а μ — мера, называется пространством c мерой.

Пример 1.1. Пусть X — некоторое непустое множество. В качестве \mathcal{F} возьмем всевозможные подмножества из X. Очевидно, что они образуют σ -алгебру. Меру $\mu_a \colon \mathcal{F} \to \mathbb{R}$, где a — некоторый элемент из X, определим следующим образом:

$$\mu_a(A) = \begin{cases} 1, & \text{если } a \in A \\ 0 & \text{в противном случае.} \end{cases}$$

Доказательство того, что определенная таким образом функция в самом деле является мерой, элементарно (см. методичку).

Построенная мера называется мерой Дирака, сосредоточенной в точке a. \diamondsuit

Пример 1.2. В качестве X возьмем вещественную прямую \mathbb{R} . Определим длину интервала (a,b) равенством $\mu((a,b))=b-a$. Любое открытое множество на прямой представимо в виде объединения не более чем счетного числа взаимно непересекающихся интервалов. Тогда определим меру открытого множеств по формуле

$$\mu(G) = \sum_{i=1}^{\infty} (b_i - a_i)$$
, где $G = \bigcup_{i=1}^{\infty} (a_i, b_i)$.

Пусть $E \subset \mathbb{R}$ — ограниченное множество на прямой. Его можно покрыть некоторым открытым множеством $G \supset E$. Величина $\mu^*(E) = \inf_{G \supset E} \mu(G)$, где инфимум берется по всем открытым покрытиям E, называется верхней мерой множества E.

Hижняя мера множества E определяется по формуле $\mu_*(E) = b - a - \mu([a,b] \setminus E)$, где [a,b] — наименьший отрезок, содержащий множество E.

Назовём ограниченное множество E измеримым по Лебегу, если $\mu_*(E) = \mu^*(E)$. Тогда мерой Лебега множества E назовём общее значение верхней и нижней мер этого множества.

Мера Лебега также определяется и для неограниченных множеств. Для этого в качестве нижней меры множества E берется предел нижних мер множеств вида $E_n = E \cap [-n,n]$ при $n \to \infty$. Этот предел существует или бесконечен, поскольку последовательность $\mu_*(E_n)$, как можно показать, монотонно неубывает.

Теорема 1.2. Тройка $(\mathbb{R}, \mathcal{F}, \mu)$, где \mathcal{F} — множество измеримых по Лебегу множеств на прямой, а μ — мера Лебега, является пространством с мерой.

Пример 1.3. Тройка $(\Omega, \mathfrak{A}, P)$, где Ω — пространство элементарных исходов, \mathfrak{A} — алгебра событий, P — вероятностная мера,

является пространством с мерой.

1.2 Простые функции. Интегрирование простых функций

Пусть далее (X, \mathcal{F}, μ) — пространство с мерой, $E \in \mathcal{F}$ — некоторое измеримое подмножество.

Определение 1.4. Функция $f \colon E \to \mathbb{R}$ называется *простой*, если E можно представить в виде счетного объединения взаимно непересекающихся измеримых подмножеств E_i так, что функция f принимает на этих подмножествах постоянное значение: $f(x) = a_i$ для всех x из E_i .

Функция f называется $\mathit{cmynehuamoй},$ если такое объединение конечно.

Пример 1.4. Пусть $(\mathbb{R}, \mathcal{F}, \mu)$ — прямая с мерой Лебега, E = [0, 1]. Функция Дирихле, определенная на E и принимающая значение 1 для рациональных аргументов и 0 для иррациональных, является простой (и даже ступенчатой). В качестве E_1 можно взять множество рациональных чисел из отрезка E, а в качестве E_2 — множество иррациональных чисел из того же отрезка. Оба этих множества измеримы по Лебегу.

Лемма 1.1. Линейная комбинация простых функций, определенных на измеримом множестве E является простой функцией.

ДОКАЗАТЕЛЬСТВО. Покажем, что $\alpha f + \beta g$ также простая функция для простых функций $f,g\colon E\to\mathbb{R}$ и чисел $\alpha,\beta\in\mathbb{R}$.

Пусть

$$E = \bigcup_{i=1}^{\infty} E_i = \bigcup_{j=1}^{\infty} F_j,$$

причем

$$f(x) = a_i, \quad x \in E_i,$$

 $g(x) = b_j, \quad x \in F_j.$

Обозначим $G_{ij}=E_i\cap F_j$. Это также измеримые множества. Более того непосредственно проверяется, что

$$E = \bigcup_{i,j=1}^{\infty} G_{ij}.$$

На множестве G_{ij} функция $\alpha f + \beta g$ принимает значение

$$(\alpha f + \beta g) = \alpha a_i + \beta b_j.$$

Этим доказано, что функция $\alpha f + \beta g$ простая, принимающая постоянные значения на множествах G_{ij} .

Из этой леммы следует, что простые функции образуют линейное пространство.

Далее будем считать, что мера множества E конечна.

Определение 1.5. Простая функция $f: E \to \mathbb{R}$ называется *абсолютно суммируемой*, если конечна величина

$$\sum_{i=1}^{\infty} |a_i| \, \mu(E_i),$$

в обозначениях предыдущего определения.

Определение 1.6. *Интегралом* от абсолютно суммируемой функции f называется сумма вида

$$\int_{E} f(x) d\mu(x) := \sum_{i=1}^{\infty} a_i \mu(E_i).$$

Аргумент в записи интеграла часто опускают и пишут просто

$$\int_{E} f \, \mathrm{d}\mu.$$

В следующей теореме доказываются основные свойства интеграла от абсолютно суммируемых функций.

Теорема 1.3. Пусть $f,g: E \to \mathbb{R}$ — абсолютно суммируемые функции. Тогда справедливы следующие свойства:

1. Линейность: для любых $\alpha, \beta \in \mathbb{R}$ функция $\alpha f + \beta g$ абсолютно суммируема и справедливо равенство

$$\int_{E} (\alpha f + \beta g) d\mu = \alpha \int_{E} f d\mu + \beta \int_{E} g d\mu;$$

2. Оценка модуля интеграла:

$$\left| \int_{E} f \, \mathrm{d}\mu \right| \leqslant \mu(E) \sup_{x \in E} |f(x)|;$$

3. Неотрицательность: если $f \geqslant 0$, то

$$\int_{\mathbb{F}} f \, \mathrm{d}\mu \geqslant 0;$$

4. Монотонность: если $f \geqslant g$, то

$$\int_{E} f \, \mathrm{d}\mu \geqslant \int_{E} g \, \mathrm{d}\mu;$$

5. Аддитивность: если E представимо в виде объединения не более чем счетного числа взаимно непересекающихся измеримых подмножеств A_k , то

$$\int_{E} f \, \mathrm{d}\mu = \sum_{k} \int_{A_{k}} f \, \mathrm{d}\mu.$$

Доказательство.

 Абсолютная суммируемость линейной комбинации следует из предыдущей леммы, свойств абсолютно сходящихся числовых рядов и из свойства монотонности меры.

Покажем, что справедливо указанное в утверждении теоремы равенство. Будем пользоваться обозначениями из леммы.

$$\int_{E} (\alpha f + \beta g) d\mu = \sum_{i,j=1}^{\infty} (\alpha a_{i} + \beta b_{j}) \mu(G_{ij}) =$$

$$= \alpha \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i} \mu(G_{ij}) + \beta \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} b_{j} \mu(G_{ij}) =$$

$$= \alpha \sum_{i=1}^{\infty} a_{i} \sum_{j=1}^{\infty} \mu(G_{ij}) + \beta \sum_{i=1}^{\infty} b_{j} \sum_{i=1}^{\infty} \mu(G_{ij}).$$

Поскольку, как нетрудно видеть, $E_i = \bigcup_{j=1}^\infty G_{ij}, \ F_j = \bigcup_{i=1}^\infty G_{ij},$ а множества G_{ij} взаимно не пересекаются, из свойства аддитивности меры получаем

$$\sum_{i=1}^{\infty} \mu(G_{ij}) = \mu(E_i); \quad \sum_{i=1}^{\infty} \mu(G_{ij}) = \mu(F_j).$$

Таким образом

$$\alpha \sum_{i=1}^{\infty} a_i \sum_{j=1}^{\infty} \mu(G_{ij}) + \beta \sum_{i=1}^{\infty} b_j \sum_{j=1}^{\infty} \mu(G_{ij}) = \alpha \sum_{j=1}^{\infty} a_i \mu(E_i) +$$

$$+\beta \sum_{j=1}^{\infty} b_j \mu(F_j) = \alpha \int_E f \, \mathrm{d}\mu + \beta \int_E g \, \mathrm{d}\mu.$$

- 2. Тривиально (неравенство треугольника, аддитивность меры).
- 3. Тривиально.
- 4. Рассмотреть функцию f-g и применить линейность и предыдущее свойство.
- 5. Рассмотреть взаимно непересекающиеся множества вида $H_{ik} = E_i \cap A_k$, на которых функция принимает постоянные значения c_{ik} , и которые образуют разбиение E:

$$\int_{E} f \, \mathrm{d}\mu = \sum_{i} \sum_{k} c_{ik} \mu(H_{ik}) = \sum_{k} \sum_{i} c_{ik} \mu(H_{ik}) = \sum_{k} \int_{A_{k}} f \, \mathrm{d}\mu$$

1.3 Измеримые функции. Интегрирование измеримых функций

Определение 1.7. Функция $f \colon E \to \mathbb{R}$, определенная на измеримом множестве E, называется измеримой, если она является равномерным пределом на E последовательности простых функций, т.е. существует такая последовательность $\{f_n\}$, $f_n \colon E \to \mathbb{R}$, что

$$\sup_{x \in E} |f(x) - f_n(x)| \to \infty, \quad n \to \infty.$$

Определение 1.8. Функция $f \colon E \to \mathbb{R}$ называется uзмеpимо \check{u} , если

$$f^{-1}((-\infty, x)) \in \mathcal{F}, \quad \forall x \in \mathbb{R}.$$

Теорема 1.4. Вышеприведенные определения измеримой функции эквивалентны.

Доказательство. см. в методичке на с. 51 (требуется только необходимость). \Box

Определение 1.9. Если существует последовательность простых интегрируемых функций, сходящаяся равномерно к измеримой функции f, то *интегралом* функции f назовем предел

$$\int_{E} f \, \mathrm{d}\mu := \lim_{n \to \infty} \int_{E} f_n \, \mathrm{d}\mu.$$

Можно показать, что предел (быть может, бесконечный) всегда существует и не зависит от выбора последовательности f_n .

Определение 1.10. Неотрицательная функция f называется *интегрируемой* на множестве E, если предел из предыдущего определения конечен.

Всякая измеримая функция f представима в виде разности двух неотрицательных измеримых функций:

$$f_{+}(x) = \begin{cases} f(x), & f(x) \ge 0 \\ 0, & f(x) < 0 \end{cases}, \quad f_{-}(x) = \begin{cases} -f(x), & f(x) \le 0 \\ 0, & f(x) > 0 \end{cases}.$$
$$f(x) = f_{+}(x) - f_{-}(x).$$

Тогда если хотя бы одна из функций f_+ или f_- интегрируема, интегралом функции f назовём величину

$$\int_E f \, \mathrm{d}\mu = \int_E f_+ \, \mathrm{d}\mu - \int_E f_- \, \mathrm{d}\mu.$$

Определение 1.11. В случае, когда $X = \mathbb{R}$, $\mathcal{F} - \sigma$ -алгебра измеримых по Лебегу множеств на \mathbb{R} , μ — мера Лебега, интеграл, определённый по схеме, приведённой в данном разделе, называется интегралом Лебега на прямой.

Теорема 1.5. Если $(\mathbb{R}, \mathcal{F}, \mu)$ — прямая с мерой Лебега, $f: [a,b] \to \mathbb{R}$ интегрируема по Риману, то тогда она интегрируема по Лебегу и значения интегралов Римана и Лебега совпадают.

1.4 Пространства Лебега

Определение 1.12. Функция $f \colon E \to \mathbb{R}$, определенная на измеримом множестве E, называется *суммируемой со степенью* p, $p \geqslant 1$, если величина

$$\int_E |f(x)|^p \, \mathrm{d}\mu(x)$$

определена и конечна.

Определение 1.13. Будем говорить, что некоторое свойство выполнено noumu ecody на измеримом множестве E, если оно выполнено на всём множестве E, за исключением, быть может, множества меры нуль.

Определение 1.14. Две функции $f_1, f_2 \colon E \to \mathbb{R}$ назовём *эквивалентными* на множестве E, если их значения совпадают почти всюду.

Отношение \sim , введённое в определении выше, является отношением эквивалентности.

Пусть $\mathcal{L}_p(E,\mu),\, p\geqslant 1$ — линейное пространство суммируемых со степенью p функций, определенных на множестве E.

Рассмотрим фактормножество $L_p(E,\mu)=\mathcal{L}_p(E,\mu)/\sim$. Оно также будет являться линейным пространством. В нём можно ввести норму по формуле

$$\left\| \tilde{f} \right\|_p = \left(\int_E |f(x)|^p \, d\mu(x) \right)^{1/p}.$$

Классы эквивалентности из $L_p(E,\mu)$, допуская неточность, часто отождествляют с функциями-представителями из этого класса.

Если $E=[a,b]\subset\mathbb{R},\ \mu$ — мера Лебега на прямой, то вместо $L_p([a,b],\mu)$ обычно пишут просто $L_p[a,b].$

Теорема 1.6 (Лебега). $L_p(E,\mu)$ — банахово пространство.