Class 14: RNAseq Mini-Project

Zoe Matsunaga (PID: A16853288)

Table of contents

Data Import	2
Tidying up Data	3
Remove zero count genes	4
Setup DESeq object for analysis	4
Run DESeq analysis	5
Extract the results	5
Add gene annotation	6
Save my results to a CSV file	7
Result Visualization	8
Pathway Anlysis	9
Gene Ontology (GO) genesets	20
Reactome Analysis Online	21

The data for for hands-on session comes from GEO entry: GSE37704, which is associated with the following publication:

Trapnell C, Hendrickson DG, Sauvageau M, Goff L et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq". Nat Biotechnol 2013 Jan;31(1):46-53. PMID: 23222703

The authors report on differential analysis of lung fibroblasts in response to loss of the developmental transcription factor HOXA1. Their results and others indicate that HOXA1 is

required for lung fibroblast and HeLa cell cycle progression. In particular their analysis show that "loss of HOXA1 results in significant expression level changes in thousands of individual transcripts, along with isoform switching events in key regulators of the cell cycle".

For our session we have used their Sailfish gene-level estimated counts and hence are restricted to protein-coding genes only.

```
library(DESeq2)
library(AnnotationDbi)
library(org.Hs.eg.db)
library(pathview)
library(gage)
library(gageData)
```

Data Import

```
colData <- read.csv("GSE37704_metadata.csv", row.names=1)
countData <- read.csv("GSE37704_featurecounts.csv", row.names=1)
head(colData)</pre>
```

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

head(countData)

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				

ENSG00000186092	0
ENSG00000279928	0
ENSG00000279457	46
ENSG00000278566	0
ENSG00000273547	0
ENSG00000187634	258

Tidying up Data

Check the corespondance of colData rows and countData columns.

```
rownames(colData)

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

colnames(countData)

[1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"

[7] "SRR493371"

counts <- colData[,-1]

rownames(colData) == colnames(counts)

logical(0)

Remove the troublesome

counts <- countData[,-1]</pre>
```

head	(count:	3
IICaa	(COurre	ر ب

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
all (rownames(colData) == colnames(counts))
```

[1] TRUE

Remove zero count genes

We will have rows in **counts** for genes that we can not say anything about because they have zero expression in the particular tissue we are looking at.

head(counts)			

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

If the rowSums() is zero then a given gene (i.e. row) has no count data and we should exclude these genes from further consideration.

```
to.keep <- rowSums(counts) != 0
cleancounts <- counts[to.keep, ]</pre>
```

Q. How many genes do we have left?

```
nrow(cleancounts)
```

[1] 15975

Setup DESeq object for analysis

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

```
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing</pre>
```

Extract the results

```
res <- results(dds)
head(res)</pre>
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 6 columns

	baseMean	${\tt log2FoldChange}$	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000279457	29.9136	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.2296	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.1881	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.6379	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.2551	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.9798	0.5428105	0.5215599	1.040744	2.97994e-01
	pac	dj			
	<numerio< td=""><td>c></td><td></td><td></td><td></td></numerio<>	c>			

ENSG00000279457 6.86555e-01 ENSG00000187634 5.15718e-03

```
ENSG00000188976 1.76549e-35
ENSG00000187961 1.13413e-07
ENSG00000187583 9.19031e-01
ENSG00000187642 4.03379e-01
```

Add gene annotation

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                    "ALIAS"
                                   "ENSEMBL"
                                                  "ENSEMBLPROT"
                                                                 "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                   "EVIDENCE"
                                                  "EVIDENCEALL"
                                                                 "GENENAME"
[11] "GENETYPE"
                    "GO"
                                   "GOALL"
                                                  "IPI"
                                                                 "MAP"
[16] "OMIM"
                    "ONTOLOGY"
                                   "ONTOLOGYALL" "PATH"
                                                                 "PFAM"
                                                  "SYMBOL"
[21] "PMID"
                    "PROSITE"
                                   "REFSEQ"
                                                                 "UCSCKG"
[26] "UNIPROT"
res$symbol = mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="SYMBOL",
                    multiVals="first")
'select()' returned 1:many mapping between keys and columns
res$entrez = mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="ENTREZID",
                    multiVals="first")
'select()' returned 1:many mapping between keys and columns
res$name =
             mapIds(org.Hs.eg.db,
                    keys=row.names(res),
                    keytype="ENSEMBL",
                    column="GENENAME",
                    multiVals="first")
```

head(res, 10)

 $\log 2$ fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns

	baseMean	log2FoldChange	lfcSH	E stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<pre> <numeric></numeric></pre>	<numeric></numeric>
ENSG00000279457	29.913579	0.1792571	0.3248216	0.551863	5.81042e-01
ENSG00000187634	183.229650	0.4264571	0.1402658	3.040350	2.36304e-03
ENSG00000188976	1651.188076	-0.6927205	0.0548465	-12.630158	1.43989e-36
ENSG00000187961	209.637938	0.7297556	0.1318599	5.534326	3.12428e-08
ENSG00000187583	47.255123	0.0405765	0.2718928	0.149237	8.81366e-01
ENSG00000187642	11.979750	0.5428105	0.5215599	1.040744	2.97994e-01
ENSG00000188290	108.922128	2.0570638	0.1969053	3 10.446970	1.51282e-25
ENSG00000187608	350.716868	0.2573837	0.1027266	2.505522	1.22271e-02
ENSG00000188157	9128.439422	0.3899088	0.0467163	8.346304	7.04321e-17
ENSG00000237330	0.158192	0.7859552	4.0804729	0.192614	8.47261e-01
	padj	symbol	entrez		name
	<numeric></numeric>	<character> <c< td=""><td>haracter></td><td>•</td><td><pre><character></character></pre></td></c<></character>	haracter>	•	<pre><character></character></pre>
ENSG00000279457	6.86555e-01	NA	NA		NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alph	na motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nu	ıcleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like	family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin h	nomology
ENSG00000187642	4.03379e-01	PERM1	84808	${\tt PPARGC1} \ {\tt and} \\$	ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family 1	oHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiqua	itin like
ENSG00000188157	4.21963e-16	AGRN	375790		agrin
ENSG00000237330	NA	RNF223	401934	ring finger	protein

Save my results to a CSV file

```
write.csv(res, file="results.csv")
```

Result Visualization

```
mycols <- rep("gray", nrow(res))
mycols[res$log2FoldChange <= -2] <- "blue"
mycols[res$log2FoldChange >= +2] <- "blue"

mycols[ res$padj >= 0.05 ] <- "gray"

plot(res$log2FoldChange, -log(res$padj), col=mycols)
abline(v=-2, col="red")
abline(v=+2, col="red")
abline(h=-log(0.05), col="red")</pre>
```



```
library(ggplot2)
ggplot(as.data.frame(res)) +
    aes(log2FoldChange, -log(padj), col=) +
    geom_point(alpha=0.6, col=mycols) +
    geom_vline(xintercept = c(-2, 2), color = "red") +
    geom_hline(yintercept = -log(0.05), color = "red") +
    theme_bw()
```

Warning: Removed 1237 rows containing missing values or values outside the scale range (`geom_point()`) .

labs(title="Volcano Plot", x= "log2 Fold-Change", y="-log(Adjusted P-Value) ")

```
$x
[1] "log2 Fold-Change"

$y
[1] "-log(Adjusted P-Value) "

$title
[1] "Volcano Plot"

attr(,"class")
[1] "labels"
```

Pathway Anlysis

```
data(kegg.sets.hs)
data(sigmet.idx.hs)
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
            "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                         "10720"
                                  "10941"
                                            "151531" "1548"
                                                                "1549"
                                                                          "1551"
 [9] "1553"
               "1576"
                         "1577"
                                   "1806"
                                            "1807"
                                                      "1890"
                                                                "221223" "2990"
[17] "3251"
                                   "3704"
                                            "51733"
                                                                "54575"
               "3614"
                         "3615"
                                                      "54490"
                                                                          "54576"
                                  "54600"
[25] "54577"
               "54578"
                         "54579"
                                            "54657"
                                                      "54658"
                                                                "54659"
                                                                          "54963"
[33] "574537" "64816"
                         "7083"
                                   "7084"
                                            "7172"
                                                      "7363"
                                                                "7364"
                                                                          "7365"
                         "7371"
                                                                "79799"
[41] "7366"
               "7367"
                                  "7372"
                                            "7378"
                                                      "7498"
                                                                          "83549"
                         "9"
                                   "978"
[49] "8824"
               "8833"
$`hsa00230 Purine metabolism`
                                    "10621"
  [1] "100"
                "10201"
                          "10606"
                                             "10622"
                                                       "10623"
                                                                 "107"
                                                                           "10714"
  [9] "108"
                "10846"
                          "109"
                                    "111"
                                              "11128"
                                                       "11164"
                                                                 "112"
                                                                           "113"
                "115"
                                             "124583" "132"
                                                                           "159"
 [17] "114"
                          "122481" "122622"
                                                                 "158"
 [25] "1633"
                "171568" "1716"
                                    "196883" "203"
                                                       "204"
                                                                 "205"
                                                                           "221823"
                "22978"
                                    "246721"
                                                                           "270"
 [33] "2272"
                          "23649"
                                             "25885"
                                                       "2618"
                                                                 "26289"
                          "272"
 [41] "271"
                "27115"
                                    "2766"
                                             "2977"
                                                       "2982"
                                                                 "2983"
                                                                           "2984"
                "2987"
                                                                 "318"
                                                                           "3251"
 [49] "2986"
                          "29922"
                                    "3000"
                                             "30833"
                                                       "30834"
                                    "3704"
                                             "377841" "471"
 [57] "353"
                "3614"
                          "3615"
                                                                 "4830"
                                                                           "4831"
 [65] "4832"
                "4833"
                          "4860"
                                    "4881"
                                              "4882"
                                                       "4907"
                                                                 "50484"
                                                                           "50940"
                                    "5136"
                                             "5137"
                                                       "5138"
                                                                 "5139"
                                                                           "5140"
 [73] "51082"
                "51251"
                          "51292"
 [81] "5141"
                "5142"
                          "5143"
                                    "5144"
                                             "5145"
                                                       "5146"
                                                                 "5147"
                                                                           "5148"
 [89] "5149"
                "5150"
                          "5151"
                                    "5152"
                                             "5153"
                                                       "5158"
                                                                 "5167"
                                                                           "5169"
 [97] "51728"
                "5198"
                          "5236"
                                    "5313"
                                             "5315"
                                                       "53343"
                                                                 "54107"
                                                                           "5422"
                          "5426"
                                    "5427"
                                                       "5431"
[105] "5424"
                "5425"
                                             "5430"
                                                                 "5432"
                                                                           "5433"
[113] "5434"
                "5435"
                          "5436"
                                    "5437"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                           "5441"
[121] "5471"
                "548644" "55276"
                                    "5557"
                                              "5558"
                                                       "55703"
                                                                 "55811"
                                                                           "55821"
[129] "5631"
                "5634"
                          "56655"
                                    "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                           "6240"
[137] "6241"
                "64425"
                          "646625" "654364"
                                             "661"
                                                       "7498"
                                                                 "8382"
                                                                           "84172"
[145] "84265"
                "84284"
                          "84618"
                                    "8622"
                                                       "87178"
                                                                 "8833"
                                                                           "9060"
                                              "8654"
[153] "9061"
                "93034"
                          "953"
                                    "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                           "957"
```

"9615"

[161] "9583"

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

attributes(keggres)

\$names

[1] "greater" "less" "stats"

head(keggres\$less)

		p.geomean	stat.mear	n p.val
hsa04110	Cell cycle	8.995727e-06	-4.378644	8.995727e-06
hsa03030	DNA replication	9.424076e-05	-3.951803	9.424076e-05
hsa03013	RNA transport	1.246882e-03	-3.059466	3 1.246882e-03
hsa03440	Homologous recombination	3.066756e-03	-2.852899	3.066756e-03
hsa04114	Oocyte meiosis	3.784520e-03	-2.698128	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	8.961413e-03	-2.405398	8 8.961413e-03
		q.val	set.size	exp1
hsa04110	Cell cycle	0.001448312	121 8	3.995727e-06
hsa03030	DNA replication	0.007586381	36 9	0.424076e-05
hsa03013	RNA transport	0.066915974	144 1	.246882e-03
hsa03440	Homologous recombination	0.121861535	28 3	3.066756e-03
hsa04114	Oocyte meiosis	0.121861535	102 3	3.784520e-03
hsa00010	Glycolysis / Gluconeogenesis	0.212222694	53 8	3.961413e-03

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/zoematsunaga/class14

Info: Writing image file hsa04110.pathview.png

Figure 1: Cell Cycle Pathway

```
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
```

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

Info: Working in directory /Users/zoematsunaga/class14

```
Info: Writing image file hsa04110.pathview.pdf
keggrespathways <- rownames(keggres$greater)[1:5]</pre>
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/zoematsunaga/class14
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/zoematsunaga/class14
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/zoematsunaga/class14
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory /Users/zoematsunaga/class14
Info: Writing image file hsa04142.pathview.png
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory /Users/zoematsunaga/class14

Info: Writing image file hsa04330.pathview.png

Figure 2: Hematopoietic Cell Lineage

Figure 3: Lysosome Pathway

Figure 4: Notch Signaling Pathway

Figure 5: JAK-STAT Signaling Pathway

Figure 6: Steroid Hormone Biosynthesis

Gene Ontology (GO) genesets

```
data(go.sets.hs)
data(go.subs.hs)
gobpsets = go.sets.hs[go.subs.hs$BP]
gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
lapply(gobpres, head)
```

GO:0007067 mitosis

GO:0007059 chromosome segregation

```
$greater
                                            p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                         8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GO:0007610 behavior
                                          1.925222e-04 3.565432 1.925222e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                         5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                         0.1951953
                                                        113 8.519724e-05
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                        339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
                                                        424 1.432451e-04
GO:0007610 behavior
                                         0.1967577
                                                        426 1.925222e-04
GO:0060562 epithelial tube morphogenesis 0.3565320
                                                         257 5.932837e-04
GO:0035295 tube development
                                          0.3565320
                                                         391 5.953254e-04
$less
                                           p.geomean stat.mean
                                                                      p.val
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                        1.729553e-10 -6.695966 1.729553e-10
                                               q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                        5.841698e-12
                                                          376 1.536227e-15
GO:0000280 nuclear division
                                        5.841698e-12
                                                          352 4.286961e-15
```

GO:0000087 M phase of mitotic cell cycle 1.195672e-11

5.841698e-12

1.658603e-08

352 4.286961e-15

362 1.169934e-14

142 2.028624e-11

```
GO:0000236 mitotic prometaphase
                                  1.178402e-07
                                                           84 1.729553e-10
$stats
                                         stat.mean
                                                       exp1
GO:0007156 homophilic cell adhesion
                                          3.824205 3.824205
GO:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                          3.643242 3.643242
GD:0007610 behavior
                                          3.565432 3.565432
GO:0060562 epithelial tube morphogenesis
                                          3.261376 3.261376
GO:0035295 tube development
                                          3.253665 3.253665
```

head(gobpres\$less, 5)

```
p.geomean stat.mean
                                                                      p.val
GO:0048285 organelle fission
                                        1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                        4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis
                                        4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                        2.028624e-11 -6.878340 2.028624e-11
                                               q.val set.size
GO:0048285 organelle fission
                                        5.841698e-12
                                                          376 1.536227e-15
GO:0000280 nuclear division
                                        5.841698e-12
                                                          352 4.286961e-15
                                                          352 4.286961e-15
GO:0007067 mitosis
                                        5.841698e-12
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                          362 1.169934e-14
GO:0007059 chromosome segregation
                                        1.658603e-08
                                                          142 2.028624e-11
```

Reactome Analysis Online

We need to make an over-representation enrichment analysis and pathway-topology analysis with Reactome using the previous list of significant genes generated from our differential expression results above.

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
sig_genes[6]
```

ENSG00000188157 "AGRN"

Then, to perform pathway analysis online go to the Reactome website (https://reactome.org/PathwayBrowser/# Select "choose file" to upload your significant gene list. Then, select the parameters "Project to Humans", then click "Analyze".

Figure 7: R-HSA-69620