- GANESH -

Criptografia Moderna

- CRIPTO -

CODIFICAÇÃO VS ENCRIPTAÇÃO

Codificação vs Encriptação

✓ Codificação:

• Transformar dados para que estes possam ser própria e convenientemente utilizados por diferentes tipos de sistema.

✓ Encriptação:

 Transformar dados para que estes se tornem secretos. Ninguém consegue entendê-los, a não ser a pessoa para a qual a mensagem foi destinada.

Codificação

Sistemas de numeração (bases numéricas)

Binário: {0,1}

Decimal: {0,1,2,3,4,5,6,7,8,9}

Hexadecimal: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

American Standard Code for Information Interchange (ASCII)

- 7-bits (0 a 127)
- Inteligente, mas limitada em vários casos

Comando Linux: man ascii

HX Oct	Char	8	Dec	HX	Oct	Html	Chr	Dec	HX	Oct	Html	Chr	Dec	(H)	Oct	Html C	hr_
0 000	NUL	(null)	32	20	040		Space	64	40	100	@	0	96	60	140	`	10
1 001	SOH	(start of heading)				6#33;		65	41	101	a#65;	A	97	61	141	a	a
2 002	STX	(start of text)	34	22	042	a#34;	rr.	66	42	102	a#66;	В	98	62	142	a#98;	b
3 003	ETX	(end of text)	35	23	043	@#35;	#	67	43	103	a#67;	C				6#99;	C
4 004	EOT	(end of transmission)	36	24	044	@#36;	ş	68	44	104	a#68;	D	100	64	144	d	d
5 005	ENQ	(enquiry)	(7.57)		0.70.75	@#37;		69	37776		E		10000		10 TO 10 TO 10	e	
		(acknowledge)				%#38 ;		70			a#70;			1905. TH	1000	f	
		(bell)				@#39;		71			a#71;					a#103;	
8 010		(backspace)	3.55	-		(72			6.#72;		100 000 000			h	
		(horizontal tab)			2.705.77	a#41;		100		000000000000000000000000000000000000000	6#73;					i	
A 012		(NL line feed, new line)				6#42;		1006	004 T- 50	Panan To	6#74;					j	
B 013		(vertical tab)				+		P. 2000	Victor 0	0.000	6#75;					k	
C 014		(NP form feed, new page)				,			1.750	700000	a#76;			0.7.7		l	
D 015		(carriage return)				a#45;		77			6#77;		100000000000000000000000000000000000000			m	
E 016		(shift out)	- 27.70	5000	1505"34	a#46;		. 100 100	2000		a#78;					n	
F 017	80.00	(shift in)	100		7000 1	6#47;		79		W	6#79;					o	
		(data link escape)	0.5	PE - 12	NE THE	a#48;		5/707			6#80;			300		p	200
		(device control 1)				a#49;		200			£#81;					q	
		(device control 2)				a#50;		35.5			6#82;					r	
		(device control 3)				3		327.25	-		6#83;			33 2 V = 0		s	
		(device control 4)			ME4505	6#52;		5/7//70			a#84;			0.000		t	
		(negative acknowledge)	45.552	7.5	0.717.7	6#53;		60.0	1000		6#85;					u	
		(synchronous idle)			87.7	a#54;		355.365			4#86;					v	
		(end of trans. block)	17/5/3	75/5/		6#55;		367/55	5000		6#87;					6#119;	
		(cancel)				6#56;		5/707			X		0.019.027.2001			x	
19 031	1800	(end of medium)	05.55			6#57;		9.7.7	1000		6#89;				7001000	y	COLUMN TO SERVICE
		(substitute)				6#58;		0707		8555	Z		- T-	00.77		z	
		(escape)				6#59;		0.00			[· -	123			{	
1C 034		(file separator)			- FORES	<		X50/50			6#92;			5000	225		
1D 035		(group separator)	45.50		0.700.70	a#61;		9.5165	5550		6#93;	-	100000		7.0000	}	
1E 036		(record separator)				a#62;		0.77			a#94;					~	
1F 037	US	(unit separator)	63	3F	077	a#63;	?	95	5F	137	e#95;	_	127	7F	177	6#127;	DEL
Source: www.LookupTables.com																	

Unicode

- Padrão mundial de codificação de caracteres em computadores;
- Mais de 100 mil caracteres associados a números;
- Os símbolos não têm uma representação fixa (apenas 8, 16 ou 32 bits)

UTF-8 (Unicode Transformation Format - 8)

- Código multibyte mais usado
- Cada caractere Unicode é representado por uma sequência de 1 a 4 bytes (8 a 32 bits)
- https://www.ime.usp.br/~pf/alg oritmos/apend/unicode.html

Character	Code Point (Unicode designation)	Encoding Form	Code Unit Sequence				
	- 20	UTF-32	0000004D				
M	U+004D	UTF-16	004D				
	endonum och film film film film	UTF-8	4D				
	U+0430	UTF-32	00000430				
Α		UTF-16	0430				
,		UTF-8	D0 B0				
90 ×0		UTF-32	00004E8C				
	U+4E8C	UTF-16	4E8C				
		UTF-8	E4 BA 8C				
61	U+10302	UTF-32	00010302				
		UTF-16	D800 DF02				
,		UTF-8	F0 90 8C 82				

INTRODUÇÃO À CRIPTOGRAFIA MODERNA

Um pouco sobre Teoria da Informação

- Claude Shannon, 1948;
- "A Mathematical Theory of Communication"
- Marco da passagem da Criptografia Clássica para a Criptografia Moderna;
- Algoritmos desenvolvidos para serem utilizados por computadores: a informação é decodificada em cadeias de bits

Motivações para a Criptografia Moderna

Na criptografia clássica...

- Padrões na encriptação facilmente descobertos;
- Ataques estatísticos facilmente realizados. Exemplo: Carta do PCC;

Motivações para a Criptografia Moderna

Na criptografia moderna temos...

• Confidencialidade, Integridade, Autenticidade e Não-Repúdio

ONE TIME PAD (OTP)

One Time Pad

- Algoritmo criptográfico
- O funcionamento do algoritmo tem como base a função XOR (ou exclusivo)
- Critérios para a chave: única, randômica e pelo menos do tamanho do plaintext, ou seja, |k| ≥ |m|.
- Perfect Secrecy

XOR ^,⊕

Propriedades do XOR (ou exclusivo)

- Comutativa: A ⊕ B = B ⊕ A
- Associativa: $A \oplus (B \oplus C) = (A \oplus B) \oplus C$
- Identidade: $A \oplus 0 = A$
- Auto-inversiva: $A \oplus A = 0$
- A ⊕ B = C ⇔ C ⊕ B = A e C ⊕ A = B

А	В	A ⊕ B			
0	0	0			
0	1	1			
1	0	1			
18	1	0			

One Time Pad

Funcionamento do algoritmo

- Encriptação:
 - \circ E(k,m) = m \oplus k = c
- Decriptação:
 - \circ D(k,c) = c \oplus k = m
- E(k,m) e D(k,c) são determinísticos

Desvantagens do OTP

- Apesar de ser seguro é impraticável: As chaves são muito grandes
- Solução: Stream Ciphers

Curiosidade

- A cifra OTP foi implementada no Electronic
 Teleprinter Cryptographic Regenerative Repeater
 Mixer II (ETCRRM II)
- Esse aparelho foi utilizado na comunicação entre os presidentes dos EUA e da Rússia (hotline)

BIT FLIPPING

Caso simples

- Consiste em alterar o conteúdo do plaintext sem quebrar a cifra
 - Possuo c₁ = m₁ ⊕ k (Mensagem original)
 - Desejo c₂ = m₂ ⊕ k (Mensagem forjada)

Caso simples

- \circ Possuo $c_1 = m_1 \oplus k$
- Desejo c₂ = m₂ ⊕ k
- Assumindo que sei m₁, consigo achar c₂ fazendo
 - $om_1 \oplus m_2 \oplus c_1$
- Pois isso é efetivamente
 - o m₁⊕ m₂ ⊕ m₁⊕ k
 - o m₂⊕k

Outro caso

- O bit flipping também pode ocorrer quando sabemos apenas parte da mensagem original
- Isso é útil em mensagens de formato conhecido
 - Exemplo: protocolos públicos

Como evitar

- Utilizar mecanismos que assegurem a integridade da mensagem
 - MAC Message Authentication Code
 - Assinaturas digitais

DEMONSTRAÇÃO Modular conversion, encoding and encryption online

Kahooty

STREAM CIPHERS

Stream Ciphers

- Visam tratar o problema da chave grande no OTP
- Contam com a função PRNG para gerar bits pseudo-aleatórios
- Úteis para proteger conexão bluetooth, redes móveis, conexões TLS etc

Stream Ciphers

Entrada:

- o chave/semente(k) secreta
- nonce (n) não necessariamente secreto
- o par (k, n) deve ser único

Saída:

- Keystream (KS) pelo menos do tamanho da mensagem
- |KS| ≥ |m|

Stream Ciphers

Funcionamento do algoritmo

- Encriptação:
 - \circ E(k,n,m) = m \oplus PRNG(k,n) = c
- Decriptação:
 - \circ D(k,n,c) = c \oplus PRNG(k,n) = m

- PRNG(k,n) = KS
- E(k,n,m), D(k,n,c) e PRNG(k,n) são determinísticos

Stream Ciphers modernas

Cifras orientadas a hardware

- Grain-128a
- A5/1(comunicação por voz)

Cifras orientadas a software

- SNOW3G
- ZUC
- RC4
- Salsa20

Stream Ciphers modernas

- RC4 (Rivest Cipher 4)
 - Aplicações mais conhecidas:
 - WEP (Wireless Equivalent Privacy)
 - TLS (Transport Layer Security)
 - Não é seguro o suficiente

Stream Ciphers modernas

✓ Salsa20

- Variante mais conhecida: Chacha
- Baseada em contador (Ctr)
- Gera a Keystream processando repetidamente o contador incrementado para cada bloco

Fonte: Serious Cryptography book

- MANY TIME PAD-

Many Time Pad

■ Definição

- Many time pad ocorre quando a mesma chave é usada várias vezes
 - $\circ \quad \mathbf{c_1} = \mathbf{m_1} \oplus \mathbf{k}$
 - \circ $c_2 = m_2 \oplus k$
 - $\circ \quad \mathbf{c}_3 = \mathbf{m}_3 \oplus \mathbf{k} \dots$

Many Time Pad

Definição

- Many time pad ocorre quando a mesma chave é usada várias vezes
 - \circ $c_1 = m_1 \oplus k$
 - \circ $\mathbf{c_2} = \mathbf{m_2} \oplus \mathbf{k}$
 - $\circ \quad \mathbf{c_3} = \mathbf{m_3} \oplus \mathbf{k} \dots$
- Permite descobrir coisas sobre o texto ao fazer
 - $\circ \quad \mathbf{c_1} \oplus \mathbf{c_2} = \mathbf{m_1} \oplus \mathbf{m_2}$

Many Time Pad

Exemplos

- Esse erro ocorre com mais frequência do que se imagina!
 - Windows NT protocolo PPTP (comunicação com servidores)
 - WEP (protocolo wireless)
 - Encriptação de arquivos em disco

Many Time Pad - crib

Ataque crib

- Dado duas ou mais mensagens encriptadas com a mesma chave, do tipo c₁ = m₁ * k, c₂ = m₂ * k ...
- Podemos achar o XOR resultante de duas mensagens fazendo $\mathbf{c_1} \oplus \mathbf{c_2} = \mathbf{m_1} \oplus \mathbf{m_2}$
- Se sabemos uma parte de m_1 , podemos achar uma parte correspondente de m_2 .

Many Time Pad - crib

▲ Ataque crib

https://toolbox.lotusfa.com/crib_drag/

Many Time Pad - Spaces

Tabela ASCII

- Espaço = 32 = (0010 0000)
- [A-Z] = [65-90] = (010x xxxx)
- [a-z] = [97-122] = (011x xxxx)

Many Time Pad - Spaces

Tabela ASCII

- Ninguem pode ser sabio de estomago vazio.
- Quem eh que quer flores depois de morto?
- Viver eh negocio muito perigoso.
- nao ha regra sem excecao

Kahooty

INTEGRIDADE E AUTENTICAÇÃO

Motivação

Motivação

MAC - Message Authentication Code

MACs baseados em hash

- Função hash
 - \circ H: X \rightarrow T
 - X tam. variável, T tam. fixo
 - o Ex: MD5, SHA128, SHA256...
- Funções resistentes a colisão
 - Inviável encontrar $m_1 \neq m_2 \Rightarrow H(m_1) = H(m_2)$
 - o Distribuição uniforme
- MAC: hash + chave ⇒ tag

HMAC

Fonte: https://www.coursera.org/learn/crypto

MACs

Garantias

- Confidencialidade?
 - Não
- Integridade?
 - o Sim
- Autenticidade?
 - o Sim
- Não-repúdio?
 - Não

Encriptação Autenticada

$$k_{T}$$
 = chave mac k_{F} = chave enc.

Encriptação Autenticada

Garantias

- Confidencialidade?
 - o Sim
- Integridade?
 - o Sim
- Autenticidade?
 - o Sim
- Não-repúdio?
 - Não
 - Assinaturas digitais

msg

 $E(k_E, m)$

 $E(k_E, m)$

tag

CRIPTOGRAFIA ASSIMÉTRICA

✓ Motivação

- Compartilhamento de chaves secretas através de um canal inseguro
- Não-repúdio

Conceitos

- Chave pública
 - o É literalmente pública, todos têm acesso
- Chave privada
 - Somente o "dono" possui acesso
- Chaves diferentes ⇒ assimétricas!

Conceitos

- Chave pública
- Chave privada

Plaintext

Chave pública

Ciphertext

Ciphertext

Chave privada

Plaintext

Troca de chaves

Simétrica vs Assimétrica

- Simétricas são mais rápidas e mais simples
 - Utilizamos assimétricas somente para troca de chaves
- Assimétricas permitem a construção de Assinaturas Digitais
 - Garantia de não-repúdio

Não-repúdio

Kahooty

CONTATO:

- ganesh.icmc.usp.br
- ganesh@icmc.usp.br

REDES SOCIAIS:

@ganeshICMC

@ganeshicmc

