Zimski ispitni rok iz predmeta "Elektronika 2" 21.02.2019.

Zadatak 1. 10 - bodova

Za pojačalo na slici zadano je: $U_{DD}=U_{SS}=3$ V, $R_{D1}=R_{D2}=1$ kΩ i $R_S=500$ Ω. Tranzistori T_1 , T_2 i T_3 imaju jednake parametre $I_{DSS}=2$ mA i $U_P=-1$ V i može im se zanemariti porast struja odvoda I_D s naponima U_{DS} u području zasićenja. Uz izlazni diferencijski napon $u_{iz}=u_{iz2}$ - u_{iz1} odrediti zajedničko $A_{Vz}=u_{iz}/u_z$ i diferencijsko pojačanje $A_{Vd}=u_{iz}/u_d$, te faktor potiskivanja ρ . Izračunati izlazni napon uz sinusni izmjenični signal na ulazu amplitude $u_{ul1}=15$ sin (ωt) mV i $u_{ul2}=5$ sin (ωt) mV.

Zadatak 2. - 10 bodova

Za pojačalo na slici izračunati naponsko pojačanje A_{V0} = u_{iz}/u_{ul} na srednjim frekvencijama te donju graničnu frekvenciju tog pojačanja. U statičkoj analizi zanemariti porast izlazne struje s izlaznim naponom u zasićenju. Zadano je: R_{G1} =1 MΩ, R_{D} =6 kΩ, R_{S1} =1 kΩ, R_{G2} =1 MΩ, R_{S2} =1 kΩ, R_{T} =6 kΩ, C_{ul} =10 nF, C_{vl} =10 nF, C_{vl} =0,2 μF, C_{ul} =20 V, C_{ul} =10 nF, C_{vl} =10 nF,

Zadatak 3. - 10 bodova

Za pojačalo na slici odrediti naponsko pojačanje $A_{Vg} = U_{iz}/U_g$ na srednjim frekvencijama, te gornju graničnu frekvenciju tog pojačanja. Zadano je: $U_{CC} = U_{EE} = 12 \text{ V}$, $R_g = 50 \Omega$, $C_E = 150 \mu\text{F}$, $R_E = 4 \text{ k}\Omega$, $R_C = 2 \text{ k}\Omega$, $C_C = 2 \mu\text{F}$ i $R_T = 3 \text{ k}\Omega$. Parametri tranzistora su $\beta \approx h_{fe} = 100$, $U_{\gamma} = 0.7 \text{ V}$, $C_{b'e} = 50 \text{ pF}$ i $C_{b'c} = 3 \text{ pF}$. Zanemariti serijski otpor baze $r_{bb'}$ i porast struje kolektora s naponom u_{CE} normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$.

Zadatak 4. - 12 bodova

Za pojačalo s povratnom vezom izračunati: $A_{If} = \frac{i_{iz}}{i_{ul}}$, $A_{Vf} = \frac{u_{iz}}{u_{ul}}$, $A_{Igf} = \frac{i_{iz}}{i_g}$. Zadano je $R_g = 1$ k Ω , $R_{B1} = 75$ k Ω , $R_{C1} = 10$ k Ω , $R_{C2} = 1$ k Ω , $R_{E2} = 10$ k Ω , $\beta_1 \approx h_{fe1} = 75$, $\beta_2 \approx h_{fe2} = 50$ i $U_\gamma = 0.7$ V. Za oba tranzistora zanemariti porast struja kolektora s naponima u_{CE} u normalnom aktivnom području. Naponski ekvivalent temperature $U_T = 25$ mV.

Zadatak 5. - 8 bodova

Prijenosne funkcije A i β – grane su

$$A(jf) = -\frac{10^3}{(1+jf/10^4)(1+jf/10^5)^2}, \quad \beta(jf) = \beta_0 \frac{1+jf/10^5}{1+jf/10^6}.$$

Odrediti β_0 tako da fazno osiguranje bude 45°. Koliko je amplitudno osiguranje za taj slučaj?