USEFUL CONCLUSIONS FOR PROBLEM SETS

ZIMO LUO

The conclusions listed below are quite useful for grinding problem sets, but sadly they are not permitted to use unless first proven – that's why we have them right here.

Theorem 0.1 (Induction)

For every statement P(n) where $n \in \mathbb{Z}^+$, if P(1) is true and $P(s) \Rightarrow P(s+1)$ for some $s \in \mathbb{Z}^+$, then the statement P(n) is true for every $n \in \mathbb{Z}^+$.

Proof. Suppose P(n) is a statement such that P(1) is true and $P(s) \Rightarrow P(s+1)$ for some $s \in \mathbb{Z}^+$. Let $S = \{a \in \mathbb{Z}^+ | P(a) \text{ is false}\} \subseteq \mathbb{Z}^+$. By WOP, there exists $l \in S$ such that l is the least element in S. Since P(1) is true, $1 \notin S$, so $l \neq 1$. By OLE, 1 is the least element in \mathbb{Z}^+ overall. It thus follows l > 1. This implies $l - 1 \in \mathbb{Z}^+$. But since l is the least element of S, $l - 1 \notin S$. Therefore, P(l-1) is true. Hence, by definition of P(n), P(l-1+1) = P(l) is also true. This contradicts the fact that $l \in S$, implying that $S = \emptyset$. Therefore, P(n) is true for all $n \in \mathbb{Z}^+$

Theorem 0.2 (Division Algorithm)

For $a, b \in \mathbb{Z}^+$, we can write

$$a = bq + r$$
 for $r, q \in \mathbb{Z}^+, 0 \le r \le b$.

Proof. Consider $S = \{bq + r \mid \forall r \in \mathbb{Z}^+, 0 \le r < b\}$. We will show $a \in S$.

Now, say $B = \{a : a \notin S\}$ is a non-empty subset of \mathbb{Z}^+ . Since $B \subseteq \mathbb{Z}^+$, by WOP, B has a minimal element $1 \notin B$, because $1 = 0 \times 1 + 1$. Thus l, the least element of B, is greater than 1. Note that if $x \in S$, so is x + 1.

Thus consider l-1. Since l is the least value of B, $l-1 \notin B$ because l-1 < l. But if $l-1 \in S$, then $l \in S$ as well. This contradicts the fact that l is the least element of S, implying that $S = \emptyset$. \square

Date: June 27, 2023

2 Zimo Luo

Theorem 0.3 (Bezout's Identity)

For $a, b \in \mathbb{Z}$, we can express gcd(a, b) as an integer linear combination of a and b. That is, there exists integer solutions for

$$ax + by = \gcd(a, b).$$

Proof. Consider the equation s = ax + by, where $s \in \mathbb{Z}^+$. Let $S \subseteq \mathbb{Z}^+$ be the non-empty set of positive integers of solutions for ax + by.

Consider l, the least element of S. We thus have

$$ax + by = l$$

Now, apply the division algorithm to a and l.

$$a = ql + r, \quad 0 \le r < l$$

$$a = qax + qby + r$$

$$r = a(1 - qx) - b(qy)$$

Rearranging the equation, we find that r also satisfy the linear combination of a and b. But since r < l, in order not to contradict the fact that l is the least element of S, we must have r = 0.

Thus $l \mid a$. By a similar argument we can also show that $l \mid b$. Thus l is a common factor of a and b. Consider $d = \gcd(a, b)$. In Set #3 Problem 11 we've shown that $l \mid d$. Since $d \mid a$ and $d \mid b$, we have that d divides any linear combination of a and b, which includes l. Because $d \mid l$ and $l \mid d$, it follows that d = l. Thus there exists integer solutions for the equation

$$ax + by = \gcd(a, b).$$

Theorem 0.4

gcd(m, n) = 1 implies gcd(mn, m + n) = 1

Proof. Consider m, n where $\gcd(m, n) = 1$. Assume $\gcd(mn, m+n) > 1$. Then there must be some p that $\gcd(mn, m+n)$. Then $p \mid mn$. Thus $p \mid m$ or $p \mid n$. But since $p \mid m+n$, if p divides one of m and n, then it also divides the other one. But if $p \mid m$ and $p \mid n$, then $p \leq \gcd(m, n) = 1$, which is not possible. Thus $\gcd(m, n)$ implies $\gcd(mn, m+n) = 1$.

