03/07/2016 P2 CG 2012.2

P2 CG 2012.2

Computação Gráfica 1 Prof. Rodrigo de Toledo Data: 20/02/2013 P2 2012.2

1) (2,5 pontos)

Faça um programa em OpenGL que desenhe de maneira otimizada um cubo alinhado com os eixos e com apenas uma face de cor diferente das demais. O seu código deve começar com glBegin(GL_QUADS) e terminar por glEnd(). Considere que o *back-face culling* está desligado e portanto você não precisa se preocupar com a ordem anti-horária dos vértices. Lembrando que os comandos glVertex $\Delta\Theta$, glNormal $\Delta\Theta$, glColor $\Delta\Theta$ variam o sufixo de acordo com: $\Delta=1, 2, 3$ ou 4 (dependendo do número de parâmetros passados); $\Theta=s$, i, f ou d (short, inteiro, float ou double).

Interseção com a esfera

2) (1,5 pontos) (questão da P2 2011.2)

No algoritmo de raytrace, às vezes não se deseja saber o ponto de interseção, mas apenas se houve interseção (útil para teste de sombra por exemplo, ou para bound-sphere de um objeto mais complexo). Qual é o teste (verdadeiro/falso) mais simples que devemos fazer para retornar apenas se houve interseção ou não entre um raio e uma esfera, usando a equação ao lado? (inspirada na questão 15.19 do Foley)

3) (1,0 ponto)

Suponha uma cena que contenha uma malha de dezenas de milhares de triângulos em uma posição fora do campo de visão da câmera. O algoritmo de Ray Tracing implementado é lento para renderizar esta cena, mesmo que a imagem final não contenha nenhum objeto. Cite uma técnica de aceleração do algoritmo que otimizaria a renderização da cena descrita, explicando sua razão.

4) (2,5 pontos) Dada uma malha triangular com 10 vértices e 16 arestas, cuja topologia 2D é descrita pela estrutura *half-edge*:

class Vertex { Point2D p; H_Edge hEdge;} //hEdge cuja origim é o ponto p
class H_Edge { Vertex vOrig; H_Edge eTwin; Face f; H_Edge eNext;}
class Face { H_Edge HEdge;}

- a) (0.5 pontos) Quantas faces possui essa malha considerando que não tenha buracos?
- b) (0,5 pontos) Quantas operações são necessárias para obter a half-edge anterior?
- c) (1,5 pontos) Escreva uma função que retorne a área total dos triângulos ao redor de um vértice. Considere que há um tipo vec2D com operações básicas, como a subtração de dois pontos e produtos escalar/vetorial. float areaTotal(Vertex* v);
- 5) (1,0 pontos) Por que os softwares de edição de imagem vetorial utilizam curvas de Bézier?
- **6)** (1,5 ponto) Dado uma curva de Bézier descrita pelos pontos: { (-1,-1), (1,0), (-1,1), (1,2) }, responda:
 - a) (1.0 ponto) Oual o ponto quando t = 0.4 (faca as contas no papel)?
 - b) (0,5 pontos) Qual o grau da curva gerada pelos 4 pontos?

Publicado por Google Drive – Denunciar abuso – 5Atualizado automaticamente a cada minutos