

# **Intel® Stratix 10 Device Datasheet**

*\$10-DATASHEET* 2017.08.04





# **Contents**

| Stratix® 10 Device Datasheet                     |    |
|--------------------------------------------------|----|
| Electrical Characteristics                       |    |
| Operating Conditions                             |    |
| Switching Characteristics                        |    |
| L-Tile Transceiver Performance Specifications    |    |
| H-Tile Transceiver Performance Specifications    |    |
| E-Tile Transceiver Performance Specifications    |    |
| Core Performance Specifications                  |    |
| Periphery Performance Specifications             |    |
| HPS Performance Specifications - Preliminary     |    |
| Configuration Specifications                     |    |
| POR Specifications                               |    |
| External Configuration Clock Source Requirements |    |
| JTAG Configuration Timing                        | 81 |
| AS Configuration Timing                          |    |
| Avalon-ST Configuration Timing                   |    |
| NAND Configuration Timing                        |    |
| SD/MMC Configuration Timing                      |    |
| Initialization                                   |    |
| Configuration Bit Stream Sizes                   |    |
| Minimum Configuration Time Estimation            |    |
| I/O Timing                                       |    |
| Glossary                                         |    |
| Document Revision History                        | go |



# Stratix® 10 Device Datasheet

This datasheet describes the electrical characteristics, switching characteristics, configuration specifications, and timing for Stratix® 10 devices.

Table 1. Stratix 10 Device Grades and Speed Grades Supported

| Device Grade | Speed Grade Supported |
|--------------|-----------------------|
| Extended     | -E1V (fastest)        |
|              | • -E2V                |
|              | • -E2L                |
|              | • -E3V                |
|              | • -E3X                |
| Industrial   | • -I1V                |
|              | • -I2V                |
|              | • -I2L                |
|              | • -I3V                |
|              | • -I3X                |

The suffix after the speed grade denotes the power options offered in Stratix 10 devices.

- V—SmartVID with standard static power
- L—0.85 V fixed voltage with low static power
- X-0.80 V fixed voltage with lowest static power

# **Electrical Characteristics**

The following sections describe the operating conditions and power consumption of Stratix 10 devices.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

ISO 9001:2008 Registered



# **Operating Conditions**

Stratix 10 devices are rated according to a set of defined parameters. To maintain the highest possible performance and reliability of the Stratix 10 devices, you must consider the operating requirements described in this section.

The Maximum Allowed Overshoot During Transitions specifications will be available in a future release of the *Stratix 10 Device Datasheet*.

# **Absolute Maximum Ratings**

This section defines the maximum operating conditions for Stratix 10 devices. The values are based on experiments conducted with the devices and theoretical modeling of breakdown and damage mechanisms. The functional operation of the device is not implied for these conditions.

#### Caution:

Conditions outside the range listed in the following table may cause permanent damage to the device. Additionally, device operation at the absolute maximum ratings for extended periods of time may have adverse effects on the device.

Table 2. Absolute Maximum Ratings for Stratix 10 Devices—Preliminary

| Symbol                | Description                                                            | Condition    | Minimum | Maximum | Unit      |
|-----------------------|------------------------------------------------------------------------|--------------|---------|---------|-----------|
| V <sub>CC</sub>       | Core voltage power supply                                              | _            | -0.50   | 1.26    | V         |
| V <sub>CCP</sub>      | Periphery circuitry and transceiver fabric interface power supply      | _            | -0.50   | 1.26    | V         |
| V <sub>CCERAM</sub>   | Embedded memory and digital transceiver power supply                   | _            | -0.50   | 1.24    | V         |
| V <sub>CCPT</sub>     | Power supply for programmable power technology and I/O pre-driver      | _            | -0.50   | 2.46    | V         |
| V <sub>CCBAT</sub>    | Battery back-up power supply for design security volatile key register | _            | -0.50   | 2.46    | V         |
| V <sub>CCIO_SDM</sub> | Configuration pins power supply                                        | _            | -0.50   | 2.46    | V         |
| V <sub>CCIO</sub>     | I/O buffers power supply                                               | 3 V I/O      | -0.50   | 4.10    | V         |
|                       |                                                                        | LVDS I/O (1) | -0.50   | 2.46    | V         |
| V <sub>CCA_PLL</sub>  | Phase-locked loop (PLL) analog power supply                            | _            | -0.50   | 2.46    | V         |
| V <sub>CCT_GXB</sub>  | Transmitter analog power supply                                        | _            | -0.50   | 1.47    | V         |
|                       |                                                                        | •            | •       |         | continued |

<sup>(1)</sup> The LVDS I/O values are applicable to all dedicated and dual-function configuration I/Os.



| Symbol                 | Description                                           | Condition    | Minimum | Maximum | Unit |
|------------------------|-------------------------------------------------------|--------------|---------|---------|------|
| V <sub>CCR_GXB</sub>   | Receiver analog power supply                          | _            | -0.50   | 1.47    | V    |
| V <sub>CCH_GXB</sub>   | Transmitter output buffer power supply                | _            | -0.50   | 2.46    | V    |
| V <sub>CCL_HPS</sub>   | HPS core voltage and periphery circuitry power supply | _            | -0.50   | 1.30    | V    |
| V <sub>CCIO_HPS</sub>  | HPS I/O buffers power supply                          | LVDS I/O (1) | -0.50   | 2.46    | V    |
| V <sub>CCPLL_HPS</sub> | HPS PLL power supply                                  | _            | -0.50   | 2.46    | V    |
| I <sub>OUT</sub>       | DC output current per pin                             | _            | -25     | 40      | mA   |
| T <sub>J</sub>         | Operating junction temperature                        | _            | -55     | 125     | °C   |
| T <sub>STG</sub>       | Storage temperature (no bias)                         | _            | -65     | 150     | °C   |

# **Maximum Allowed Overshoot and Undershoot Voltage**

During transitions, input signals may overshoot to the voltage listed in the following table and undershoot to -2.0 V for input currents less than 100 mA and periods shorter than 20 ns.

The maximum allowed overshoot duration is specified as a percentage of high time over the lifetime of the device. A DC signal is equivalent to 100% duty cycle.

For example, a signal that overshoots to 2.70 V for LVDS I/O can only be at 2.70 V for ~4% over the lifetime of the device.

# Table 3. Maximum Allowed Overshoot During Transitions for Stratix 10 Devices—Preliminary

This table lists the maximum allowed input overshoot voltage and the duration of the overshoot voltage as a percentage of device lifetime. The LVDS I/O values are applicable to the VREFP\_ADC and VREFN\_ADC I/O pins.

| Symbol  | Description      | Condition (V) |         | Overshoot Duration as % at T <sub>J</sub> = 100°C | Unit |  |  |  |  |
|---------|------------------|---------------|---------|---------------------------------------------------|------|--|--|--|--|
|         |                  | LVDS I/O (2)  | 3 V I/O |                                                   |      |  |  |  |  |
| Vi (AC) | AC input voltage | 2.50          | 3.80    | 100                                               | %    |  |  |  |  |
|         |                  | 2.55          | 3.85    | 42                                                | %    |  |  |  |  |
|         |                  | 2.60          | 3.90    | 18                                                | %    |  |  |  |  |
|         | continued        |               |         |                                                   |      |  |  |  |  |

<sup>(2)</sup> The LVDS I/O values are applicable to all dedicated and dual-function configuration I/Os.



| Symbol | Description | Condition (V) |         | Overshoot Duration as % at T <sub>J</sub> = 100°C | Unit |
|--------|-------------|---------------|---------|---------------------------------------------------|------|
|        |             | LVDS I/O (2)  | 3 V I/O |                                                   |      |
|        |             | 2.65          | 3.95    | 9                                                 | %    |
|        |             | 2.70          | 4.00    | 4                                                 | %    |
|        |             | > 2.70        | > 4.00  | No overshoot allowed                              | %    |

# **Recommended Operating Conditions**

This section lists the functional operation limits for the AC and DC parameters for Stratix 10 devices.

### **Recommended Operating Conditions**

#### Table 4. Recommended Operating Conditions for Stratix 10 Devices—Preliminary

This table lists the steady-state voltage values expected for Stratix 10 devices. Power supply ramps must all be strictly monotonic, without plateaus.

| Symbol           | Description                                                       | Condition                                            | Minimum (3) | Typical    | Maximum (3) | Unit |  |  |  |
|------------------|-------------------------------------------------------------------|------------------------------------------------------|-------------|------------|-------------|------|--|--|--|
| V <sub>CC</sub>  | Core voltage power supply                                         | -E1V, -I1V, -E2V, -I2V, -E3V,<br>-I3V <sup>(4)</sup> | 0.77 - 0.91 | 0.8 - 0.94 | 0.83 - 0.97 | V    |  |  |  |
|                  |                                                                   | -E2L, -I2L                                           | 0.82        | 0.85       | 0.88        | V    |  |  |  |
|                  |                                                                   | -E3X, -I3X                                           | 0.77        | 0.8        | 0.83        | V    |  |  |  |
| V <sub>CCP</sub> | Periphery circuitry and transceiver fabric interface power supply | -E1V, -I1V, -E2V, -I2V, -E3V,<br>-I3V <sup>(4)</sup> | 0.77 - 0.91 | 0.8 - 0.94 | 0.83 - 0.97 | V    |  |  |  |
|                  |                                                                   | -E2L, -I2L                                           | 0.82        | 0.85       | 0.88        | V    |  |  |  |
|                  |                                                                   | -E3X, -I3X                                           | 0.77        | 0.8        | 0.83        | V    |  |  |  |
|                  | continued                                                         |                                                      |             |            |             |      |  |  |  |

<sup>(2)</sup> The LVDS I/O values are applicable to all dedicated and dual-function configuration I/Os.

<sup>(3)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the power distribution network (PDN) tool for the additional budget for the dynamic tolerance requirements.

<sup>(4)</sup> SmartVID graded devices require the use of a configurable voltage regulator or system controller to receive the device's settings through the Power Management Bus (PMBus<sup>™</sup>) or Pulse-Width Modulation (PWM) interface for proper performance.

#### Stratix® 10 Device Datasheet



| Symbol                            | Description                                                                            | Condition                | Minimum <sup>(3)</sup> | Typical | Maximum <sup>(3)</sup> | Unit      |
|-----------------------------------|----------------------------------------------------------------------------------------|--------------------------|------------------------|---------|------------------------|-----------|
| V <sub>CCIO_SDM</sub>             | Configuration pins power supply                                                        | 1.8 V                    | 1.71                   | 1.8     | 1.89                   | V         |
| V <sub>CCPLLDIG_SDM</sub>         | Secure Device Manager (SDM) block PLL digital power supply                             | _                        | 0.87                   | 0.9     | 0.93                   | V         |
| V <sub>CCPLL_SDM</sub>            | SDM block PLL analog power supply                                                      | _                        | 1.71                   | 1.8     | 1.89                   | V         |
| V <sub>CCFUSEWR_SDM</sub>         | Fuse block writing power supply                                                        | _                        | 2.35                   | 2.4     | 2.45                   | V         |
| V <sub>CCADC</sub>                | ADC voltage sensor power supply                                                        | _                        | 1.71                   | 1.8     | 1.89                   | V         |
| V <sub>CCERAM</sub>               | Embedded memory and digital transceiver power supply                                   | 0.9 V                    | 0.87                   | 0.9     | 0.93                   | V         |
| V <sub>CCBAT</sub> <sup>(5)</sup> | Battery back-up power supply (For design security volatile key register)               | <del>-</del>             | 1.14                   | _       | 1.89                   | V         |
| V <sub>CCPT</sub>                 | Power supply for programmable power technology and I/O pre-driver                      | 1.8 V                    | 1.71                   | 1.8     | 1.89                   | V         |
| V <sub>CCIO</sub>                 | I/O buffers power supply                                                               | 3.0 V (for 3 V I/O only) | 2.85                   | 3       | 3.15                   | V         |
|                                   |                                                                                        | 2.5 V (for 3 V I/O only) | 2.375                  | 2.5     | 2.625                  | V         |
|                                   |                                                                                        | 1.8 V                    | 1.7                    | 1.8     | 1.9                    | V         |
|                                   |                                                                                        | 1.5 V                    | 1.4                    | 1.5     | 1.6                    | V         |
|                                   |                                                                                        | 1.2 V                    | 1.14                   | 1.2     | 1.26                   | V         |
| V <sub>CCIO_UIB</sub>             | Power supply for the Universal Interface Bus between the core and embedded HBM2 memory | 1.2 V                    | 0.9                    | 1.2     | 1.5                    | V         |
| V <sub>CCM</sub>                  | Power supply for the embedded HBM2 memory                                              | _                        | 2.375                  | 2.5     | 2.625                  | V         |
| V <sub>CCA_PLL</sub>              | PLL analog voltage regulator power supply                                              | _                        | 1.71                   | 1.8     | 1.89                   | V         |
| V <sub>REFP_ADC</sub>             | Precision voltage reference for voltage sensor                                         | -                        | 1.2475                 | 1.25    | 1.2525                 | V         |
|                                   |                                                                                        |                          | 1                      |         | 1                      | continued |

<sup>(3)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the power distribution network (PDN) tool for the additional budget for the dynamic tolerance requirements.

 $<sup>^{(5)}</sup>$  If you do not use the design security feature in Stratix 10 devices, connect  $V_{CCBAT}$  to a 1.8 V power supply. Stratix 10 power-on reset (POR) circuitry monitors  $V_{CCBAT}$ .



| Symbol                          | Description                    | Condition    | Minimum (3) | Typical | Maximum (3)       | Unit |
|---------------------------------|--------------------------------|--------------|-------------|---------|-------------------|------|
| V <sub>I</sub> (6)              | DC input voltage               | 3 V I/O      | -0.3        | _       | 3.6               | V    |
|                                 |                                | LVDS I/O     | -0.3        | _       | 2.46              | V    |
| Vo                              | Output voltage                 | _            | 0           | _       | V <sub>CCIO</sub> | V    |
| Т                               | Operating junction temperature | Extended     | 0           | _       | 100               | °C   |
|                                 |                                | Industrial   | -40         | _       | 100               | °C   |
| t <sub>RAMP</sub> (7)(8)(9)(10) | Power supply ramp time         | Standard POR | 200 μs      | _       | 100 ms            | _    |

<sup>(3)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements. Refer to the power distribution network (PDN) tool for the additional budget for the dynamic tolerance requirements.

<sup>(6)</sup> The LVDS I/O values are applicable to all dedicated and dual-function configuration I/Os.

<sup>(7)</sup> This is also applicable to HPS power supply. For HPS power supply, refer to  $t_{RAMP}$  specifications for standard POR when HPS\_PORSEL = 0 and  $t_{RAMP}$  specifications for fast POR when HPS\_PORSEL = 1.

<sup>(8)</sup>  $t_{RAMP}$  is the ramp time of each individual power supply, not the ramp time of all combined power supplies.

<sup>(9)</sup> To support AS fast mode, all power supplies to the Stratix 10 device must be fully ramped-up within 10 ms to the recommended operating conditions.

<sup>(10)</sup> To support AS normal mode, V<sub>CCIO\_SDM</sub> of the Stratix 10 device must be fully ramped-up within 10 ms to the recommended operating condition.



#### **Transceiver Power Supply Operating Conditions**

#### Table 5. Transceiver Power Supply Operating Conditions for Stratix 10 GX/SX L- and H-Tile Devices—Preliminary

| Symbol                    | Description                    | Condition (11)                                                            | Minimum (12) | Typical | Maximum | Unit |
|---------------------------|--------------------------------|---------------------------------------------------------------------------|--------------|---------|---------|------|
| V <sub>CCT_GXB[L,R]</sub> | Transmitter power supply       | Chip-to-Chip $^{(13)} \le 17.4$ Gbps Or Backplane $^{(14)} \le 12.5$ Gbps | 1.0          | 1.03    | 1.06    | V    |
| Vccr_gxb[l,r]             | Receiver power supply          | Chip-to-Chip $(13) \le 17.4$ Gbps Or Backplane $(14) \le 12.5$ Gbps       | 1.0          | 1.03    | 1.06    | V    |
| V <sub>CCH_GXB[L,R]</sub> | Transceiver high voltage power | _                                                                         | 1.710        | 1.8     | 1.890   | V    |

#### Table 6. Transceiver Power Supply Operating Conditions for Stratix 10 GX/SX/TX/MX E-Tile Devices—Preliminary

| Symbol                 | Description                  | Minimum (15) | Typical | Maximum (15) | Unit |  |
|------------------------|------------------------------|--------------|---------|--------------|------|--|
| V <sub>CCERT</sub>     | Transceiver power supply     | 0.87         | 0.9     | 0.93         | V    |  |
| V <sub>CCERT_PLL</sub> | Transceiver PLL power supply | 0.87         | 0.9     | 0.93         | V    |  |
| V <sub>CCEHT</sub>     | Analog power supply (15)     | 1.067        | 1.1     | 1.133        | V    |  |
| co                     |                              |              |         |              |      |  |

<sup>(11)</sup> These data rate ranges vary depending on the transceiver speed grade. Refer to Transceiver Performance for Stratix 10 GX/SX Devices for exact data rate ranges.

<sup>(12)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements.

Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

Bonded channels operating at data rates above 16 Gbps require 1.12 V  $\pm$  20 mV at the pin. For channels that are placed in the same side of the device as the channels that required 1.12 V  $\pm$  20 mV,  $V_{CCR}$  GXB and  $V_{CCT}$  GXB = 1.12 V  $\pm$  20 mV.

<sup>(14)</sup> Backplane applications assume advanced equalization circuitry, such as decision feedback equalization (DFE), is enabled to compensate for signal impairments. Chip-to-chip links are assumed to be applications with short reach channels that do not require DFE.

<sup>(15)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements.

Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.



| Symbol                  | Description                           | Minimum (15) | Typical | Maximum <sup>(15)</sup> | Unit |
|-------------------------|---------------------------------------|--------------|---------|-------------------------|------|
| V <sub>CCL</sub>        | Periphery circuitry power supply      | 0.725        | 0.75    | 0.775                   | V    |
| V <sub>CCN2P5V_IO</sub> | LVPECL REFCLK power supply            | 2.375        | 2.5     | 2.625                   | V    |
| V <sub>CCR</sub>        | Transceiver high voltage power supply | 1.71         | 1.8     | 1.89                    | V    |

#### Note:

Most VCCR\_GXB and VCCT\_GXB pins associated with unused transceiver channels can be grounded on a per-tile basis to minimize power consumption. Refer to the *Stratix 10 GX, GT, and SX Device Family Pin Connection Guidelines* and the Intel® Quartus® Prime pin report for information about pinning out the package to minimize power consumption for your specific design.

#### **Related Links**

Stratix 10 GX, GT, and SX Device Family Pin Connection Guidelines

#### **HPS Power Supply Operating Conditions**

# Table 7. HPS Power Supply Operating Conditions for Stratix 10 Devices—Preliminary

This table lists the steady-state voltage and current values expected for Stratix 10 system-on-a-chip (SoC) devices with ARM®-based hard processor system (HPS). Power supply ramps must all be strictly monotonic, without plateaus. Refer to Recommended Operating Conditions for Stratix 10 Devices table for the steady-state voltage values expected from the FPGA portion of the Stratix 10 SoC devices.

| Symbol                    | Description                                    | Condition                                             | Minimum     | Typical    | Maximum     | Unit      |
|---------------------------|------------------------------------------------|-------------------------------------------------------|-------------|------------|-------------|-----------|
| V <sub>CCL_HPS</sub>      | HPS core voltage and periphery circuitry power | -E2L, -I2L, -E3X, -I3X                                | 0.91        | 0.94       | 0.97        | V         |
|                           | supply                                         | -E1V, -I1V, -E2V, -I2V, -E3V,<br>-I3V <sup>(16)</sup> | 0.77 - 0.91 | 0.8 - 0.94 | 0.83 - 0.97 | V         |
| V <sub>CCPLLDIG_HPS</sub> | HPS PLL digital power supply                   | -E2L, -I2L, -E3X, -I3X                                | 0.91        | 0.94       | 0.97        | V         |
|                           |                                                |                                                       |             |            |             | continued |

<sup>(15)</sup> This value describes the budget for the DC (static) power supply tolerance and does not include the dynamic tolerance requirements.

Refer to the PDN tool for the additional budget for the dynamic tolerance requirements.

<sup>(16)</sup> SmartVID graded devices require the use of a configurable voltage regulator or system controller to receive the device's settings through PMBUS or PWM for proper performance.



| Symbol                 | Description                  | Condition                                             | Minimum     | Typical    | Maximum     | Unit |
|------------------------|------------------------------|-------------------------------------------------------|-------------|------------|-------------|------|
|                        |                              | -E1V, -I1V, -E2V, -I2V, -E3V,<br>-I3V <sup>(16)</sup> | 0.77 - 0.91 | 0.8 - 0.94 | 0.83 - 0.97 | ٧    |
| V <sub>CCPLL_HPS</sub> | HPS PLL analog power supply  | 1.8 V                                                 | 1.71        | 1.8        | 1.89        | V    |
| V <sub>CCIO_HPS</sub>  | HPS I/O buffers power supply | 1.8 V                                                 | 1.71        | 1.8        | 1.89        | V    |

#### **Related Links**

- Recommended Operating Conditions on page 6
   Provides the steady-state voltage values for the FPGA portion of the device.
- HPS Clock Performance Preliminary on page 51

#### **DC Characteristics**

The pin capacitance specifications will be available in a future release of the Stratix 10 Device Datasheet.

#### **Supply Current and Power Consumption**

Intel offers two ways to estimate power for your design—the Excel-based Early Power Estimator (EPE) and the Intel Quartus Prime Power Analyzer feature.

Use the Excel-based EPE before you start your design to estimate the supply current for your design. The EPE provides a magnitude estimate of the device power because these currents vary greatly with the usage of the resources.

The Intel Quartus Prime Power Analyzer provides better quality estimates based on the specifics of the design after you complete place-and-route. The Power Analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, when combined with detailed circuit models, yield very accurate power estimates.

# I/O Pin Leakage Current

Table 8. I/O Pin Leakage Current for Stratix 10 Devices—Preliminary

| Symbol          | Description        | Condition                                    | Min | Max | Unit |
|-----------------|--------------------|----------------------------------------------|-----|-----|------|
| II              | Input pin          | V <sub>I</sub> = 0 V to V <sub>CCIOMAX</sub> | -80 | 80  | μΑ   |
| I <sub>OZ</sub> | Tri-stated I/O pin | V <sub>O</sub> = 0 V to V <sub>CCIOMAX</sub> | -80 | 80  | μΑ   |



## **Bus Hold Specifications**

The bus-hold trip points are based on calculated input voltages from the JEDEC standard.

Table 9. Bus Hold Parameters for Stratix 10 Devices—Preliminary

| Parameter                          | Symbol            | Condition                                 |     | V <sub>CCIO</sub> (V) |      |      |      |      |     |      |    |
|------------------------------------|-------------------|-------------------------------------------|-----|-----------------------|------|------|------|------|-----|------|----|
|                                    |                   |                                           | 1   | 1.2                   |      | 1.5  |      | 1.8  |     | 3.0  |    |
|                                    |                   |                                           | Min | Max                   | Min  | Max  | Min  | Max  | Min | Max  |    |
| Bus-hold, low, sustaining current  | I <sub>SUSL</sub> | V <sub>IN</sub> > V <sub>IL</sub> (max)   | 8   | _                     | 12   | _    | 30   | _    | 70  | _    | μА |
| Bus-hold, high, sustaining current | I <sub>SUSH</sub> | V <sub>IN</sub> < V <sub>IH</sub> (min)   | -8  | _                     | -12  | _    | -30  | _    | -70 | _    | μΑ |
| Bus-hold, low, overdrive current   | I <sub>ODL</sub>  | 0 V < V <sub>IN</sub> < V <sub>CCIO</sub> | _   | 125                   | _    | 175  | _    | 200  | _   | 500  | μΑ |
| Bus-hold, high, overdrive current  | I <sub>ODH</sub>  | 0 V < V <sub>IN</sub> < V <sub>CCIO</sub> | _   | -125                  | _    | -175 | _    | -200 | _   | -500 | μА |
| Bus-hold trip point                | V <sub>TRIP</sub> | _                                         | 0.3 | 0.9                   | 0.38 | 1.13 | 0.68 | 1.07 | 0.8 | 2    | V  |

# **OCT Calibration Accuracy Specifications**

If you enable on-chip termination (OCT) calibration, calibration is automatically performed at power up for I/Os connected to the calibration block.

# Table 10. OCT Calibration Accuracy Specifications for Stratix 10 Devices—Preliminary

Calibration accuracy for the calibrated on-chip series termination ( $R_S$  OCT) and on-chip parallel termination ( $R_T$  OCT) are applicable at the moment of calibration. When process, voltage, and temperature (PVT) conditions change after calibration, the tolerance may change.

| Symbol                                       | Description                                                                                                           | Condition (V)                            | dition (V) Calibration Accuracy |          |          | Unit      |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------|----------|----------|-----------|
|                                              |                                                                                                                       |                                          | -E1, -I1                        | -E2, -I2 | -E3, -I3 |           |
| 48-Ω, 60-Ω, 80-Ω, and 240-Ω $R_S$            | Internal series termination with calibration (48- $\Omega$ , 60- $\Omega$ , 80- $\Omega$ , and 240- $\Omega$ setting) | V <sub>CCIO</sub> = 1.2                  | ±15                             | ±15      | ±15      | %         |
| 34- $\Omega$ and 40- $\Omega$ R <sub>S</sub> | Internal series termination with calibration (34- $\Omega$ and 40- $\Omega$ setting)                                  | V <sub>CCIO</sub> = 1.5, 1.35, 1.25, 1.2 | ±15                             | ±15      | ±15      | %         |
|                                              |                                                                                                                       |                                          |                                 |          |          | continued |



| Symbol                                                                                                                                  | Description                                                                                                                                                           | Condition (V)                                  | Ca         | alibration Accura | су         | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|-------------------|------------|------|
|                                                                                                                                         |                                                                                                                                                                       |                                                | -E1, -I1   | -E2, -I2          | -E3, -I3   |      |
| 25- $\Omega$ and 50- $\Omega$ R <sub>S</sub>                                                                                            | Internal series termination with calibration (25- $\Omega$ and 50- $\Omega$ setting)                                                                                  | V <sub>CCIO</sub> = 3.0, 1.8, 1.5, 1.2         | ±15        | ±15               | ±15        | %    |
| $34$ - $\Omega$ , $40$ - $\Omega$ , $48$ - $\Omega$ , $60$ - $\Omega$ , $80$ - $\Omega$ , $120$ - $\Omega$ , and $240$ - $\Omega$ $R_T$ | Internal parallel termination with calibration (34- $\Omega$ , 40- $\Omega$ , 48- $\Omega$ , 60- $\Omega$ , 80- $\Omega$ , 120- $\Omega$ , and 240- $\Omega$ setting) | POD12 I/O standard,<br>V <sub>CCIO</sub> = 1.2 | ±15        | ±15               | ±15        | %    |
| 34-Ω, 48-Ω, 80-Ω, and 240-Ω $R_T$                                                                                                       | Internal parallel termination with calibration (34- $\Omega$ , 48- $\Omega$ , 80- $\Omega$ , and 240- $\Omega$ setting)                                               | V <sub>CCIO</sub> = 1.2                        | -10 to +40 | -10 to +40        | -10 to +40 | %    |
| 40- $\Omega$ , 60- $\Omega$ , and 120- $\Omega$ R <sub>T</sub>                                                                          | Internal parallel termination with calibration (40- $\Omega$ , 60- $\Omega$ , and 120- $\Omega$ setting)                                                              | V <sub>CCIO</sub> = 1.5, 1.35, 1.25, 1.2       | -10 to +40 | -10 to +40        | -10 to +40 | %    |
| 25-Ω R <sub>T</sub>                                                                                                                     | Internal parallel termination with calibration (25- $\Omega$ setting)                                                                                                 | V <sub>CCIO</sub> = 1.5                        | -10 to +40 | -10 to +40        | -10 to +40 | %    |
| 50-Ω R <sub>T</sub>                                                                                                                     | Internal parallel termination with calibration (50- $\Omega$ setting)                                                                                                 | V <sub>CCIO</sub> = 1.8, 1.5, 1.2              | -10 to +40 | -10 to +40        | -10 to +40 | %    |

# **OCT Without Calibration Resistance Tolerance Specifications**

# Table 11. OCT Without Calibration Resistance Tolerance Specifications for Stratix 10 Devices—Preliminary

This table lists the Stratix 10 OCT without calibration resistance tolerance to PVT changes.

| Symbol               | Description                                               | Condition (V)                | Re       | sistance Toleran | се       | Unit |
|----------------------|-----------------------------------------------------------|------------------------------|----------|------------------|----------|------|
|                      |                                                           |                              | -E1, -I1 | -E2, -I2         | -E3, -I3 |      |
| 25-Ω R <sub>S</sub>  | Internal series termination without                       | V <sub>CCIO</sub> = 1.8, 1.5 | TBD      | TBD              | TBD      | %    |
|                      | calibration (25- $\Omega$ setting)                        | V <sub>CCIO</sub> = 1.2      | TBD      | TBD              | TBD      | %    |
| 50-Ω R <sub>S</sub>  | Internal series termination without                       | V <sub>CCIO</sub> = 1.8, 1.5 | TBD      | TBD              | TBD      | %    |
|                      | calibration (50- $\Omega$ setting)                        | V <sub>CCIO</sub> = 1.2      | TBD      | TBD              | TBD      | %    |
| 100-Ω R <sub>D</sub> | Internal differential termination (100- $\Omega$ setting) | V <sub>CCIO</sub> = 1.8      | ±25      | ±35              | ±40      | %    |



### Figure 1. Equation for OCT Variation Without Recalibration—Preliminary

$$R_{OCT} = R_{SCAL} \left( 1 + \left| \frac{dR}{dT} \times \Delta T \right| \pm \left| \frac{dR}{dV} \times \Delta V \right| \right)$$

The definitions for the equation are as follows:

- The R<sub>OCT</sub> value calculated shows the range of OCT resistance with the variation of temperature and V<sub>CCIO</sub>.
- R<sub>SCAL</sub> is the OCT resistance value at power-up.
- ΔT is the variation of temperature with respect to the temperature at power up.
- ΔV is the variation of voltage with respect to the V<sub>CCIO</sub> at power up.
- dR/dT is the percentage change of R<sub>SCAL</sub> with temperature.
- dR/dV is the percentage change of R<sub>SCAI</sub> with voltage.

### **Internal Weak Pull-Up Resistor**

All I/O pins, except configuration, test, and JTAG pins, have an option to enable weak pull-up. For SDM and HPS, the configuration I/O and peripheral I/O are supported with weak pull-up and weak pull-down options.

Table 12. Internal Weak Pull-Up Resistor Values for Stratix 10 Devices—Preliminary

| Symbol          | Description                                                                     | Condition (V)                | Nominal Value | Unit |
|-----------------|---------------------------------------------------------------------------------|------------------------------|---------------|------|
| R <sub>PU</sub> | Value of the I/O pin pull-up resistor before and during configuration, as       | V <sub>CCIO</sub> = 3.0 ±5%  | 25            | kΩ   |
|                 | well as user mode if you have enabled the programmable pull-up resistor option. | V <sub>CCIO</sub> = 1.8 ±5%  | 25            | kΩ   |
|                 |                                                                                 | V <sub>CCIO</sub> = 1.5 ±5%  | 25            | kΩ   |
|                 |                                                                                 | V <sub>CCIO</sub> = 1.35 ±5% | 25            | kΩ   |
|                 |                                                                                 | V <sub>CCIO</sub> = 1.25 ±5% | 25            | kΩ   |
|                 |                                                                                 | V <sub>CCIO</sub> = 1.2 ±5%  | 25            | kΩ   |

#### **Related Links**

Intel Stratix 10 GX, MX, and SX Device Family Pin Connection Guidelines

Provides more information about the pins that support internal weak pull-up and internal weak pull-down features.



# I/O Standard Specifications

Tables in this section list the input voltage ( $V_{IH}$  and  $V_{IL}$ ), output voltage ( $V_{OH}$  and  $V_{OL}$ ), and current drive characteristics ( $I_{OH}$  and  $I_{OL}$ ) for various I/O standards supported by Stratix 10 devices.

For minimum voltage values, use the minimum  $V_{CCIO}$  values. For maximum voltage values, use the maximum  $V_{CCIO}$  values.

You must perform timing closure analysis to determine the maximum achievable frequency for general purpose I/O standards.

#### **Related Links**

Recommended Operating Conditions on page 6

#### Single-Ended I/O Standards Specifications

Table 13. Single-Ended I/O Standards Specifications for Stratix 10 Devices—Preliminary

| I/O Standard |       | V <sub>CCIO</sub> (V) |       | V <sub>IL</sub> (V) |                          | V <sub>IH</sub> (V)      |                         | V <sub>OL</sub> (V)      | V <sub>OH</sub> (V)      |      | I <sub>OH</sub> (17) |
|--------------|-------|-----------------------|-------|---------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------------------------|------|----------------------|
|              | Min   | Тур                   | Max   | Min                 | Max                      | Min Max                  |                         | Max                      | Min                      | (mA) | (mA)                 |
| 3.0-V LVTTL  | 2.85  | 3                     | 3.15  | -0.3                | 0.8                      | 1.7                      | 3.6                     | 0.4                      | 2.4                      | 2    | -2                   |
| 3.0-V LVCMOS | 2.85  | 3                     | 3.15  | -0.3                | 0.8                      | 1.7                      | 3.6                     | 0.2                      | V <sub>CCIO</sub> - 0.2  | 0.1  | -0.1                 |
| 1.8 V        | 1.71  | 1.8                   | 1.89  | -0.3                | 0.35 × V <sub>CCIO</sub> | 0.65 × V <sub>CCIO</sub> | V <sub>CCIO</sub> + 0.3 | 0.45                     | V <sub>CCIO</sub> - 0.45 | 2    | -2                   |
| 1.5 V        | 1.425 | 1.5                   | 1.575 | -0.3                | 0.35 × V <sub>CCIO</sub> | 0.65 × V <sub>CCIO</sub> | V <sub>CCIO</sub> + 0.3 | 0.25 × V <sub>CCIO</sub> | 0.75 × V <sub>CCIO</sub> | 2    | -2                   |
| 1.2 V        | 1.14  | 1.2                   | 1.26  | -0.3                | 0.35 × V <sub>CCIO</sub> | 0.65 × V <sub>CCIO</sub> | V <sub>CCIO</sub> + 0.3 | 0.25 × V <sub>CCIO</sub> | 0.75 × V <sub>CCIO</sub> | 2    | -2                   |

To meet the  $I_{OL}$  and  $I_{OH}$  specifications, you must set the current strength settings accordingly. For example, to meet the 1.8- V LVCMOS specification (4 mA), you should set the current strength settings to 4 mA. Setting at lower current strength may not meet the  $I_{OL}$  and  $I_{OH}$  specifications in the datasheet.



# Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications

Table 14. Single-Ended SSTL, HSTL, and HSUL I/O Reference Voltage Specifications for Stratix 10 Devices—Preliminary

| I/O Standard            |       | V <sub>CCIO</sub> (V) |       |                          | V <sub>REF</sub> (V)    |                          |                          | V <sub>TT</sub> (V)     |                          |
|-------------------------|-------|-----------------------|-------|--------------------------|-------------------------|--------------------------|--------------------------|-------------------------|--------------------------|
|                         | Min   | Тур                   | Max   | Min                      | Тур                     | Max                      | Min                      | Тур                     | Max                      |
| SSTL-18<br>Class I, II  | 1.71  | 1.8                   | 1.89  | 0.833                    | 0.9                     | 0.969                    | V <sub>REF</sub> - 0.04  | V <sub>REF</sub>        | V <sub>REF</sub> + 0.04  |
| SSTL-15<br>Class I, II  | 1.425 | 1.5                   | 1.575 | 0.49 × V <sub>CCIO</sub> | 0.5 × V <sub>CCIO</sub> | 0.51 × V <sub>CCIO</sub> | 0.49 × V <sub>CCIO</sub> | 0.5 × V <sub>CCIO</sub> | 0.51 × V <sub>CCIO</sub> |
| SSTL-135<br>Class I, II | 1.283 | 1.35                  | 1.45  | 0.49 × V <sub>CCIO</sub> | 0.5 × V <sub>CCIO</sub> | 0.51 × V <sub>CCIO</sub> | 0.49 × V <sub>CCIO</sub> | 0.5 × V <sub>CCIO</sub> | 0.51 × V <sub>CCIO</sub> |
| SSTL-125<br>Class I, II | 1.19  | 1.25                  | 1.31  | 0.49 × V <sub>CCIO</sub> | 0.5 × V <sub>CCIO</sub> | 0.51 × V <sub>CCIO</sub> | 0.49 × V <sub>CCIO</sub> | 0.5 × V <sub>CCIO</sub> | 0.51 × V <sub>CCIO</sub> |
| HSTL-18<br>Class I, II  | 1.71  | 1.8                   | 1.89  | 0.85                     | 0.9                     | 0.95                     | _                        | V <sub>CCIO</sub> /2    | _                        |
| HSTL-15<br>Class I, II  | 1.425 | 1.5                   | 1.575 | 0.68                     | 0.75                    | 0.9                      | _                        | V <sub>CCIO</sub> /2    | _                        |
| HSTL-12<br>Class I, II  | 1.14  | 1.2                   | 1.26  | 0.47 × V <sub>CCIO</sub> | 0.5 × V <sub>CCIO</sub> | 0.53 × V <sub>CCIO</sub> | _                        | V <sub>CCIO</sub> /2    | _                        |
| HSUL-12                 | 1.14  | 1.2                   | 1.3   | 0.49 × V <sub>CCIO</sub> | 0.5 × V <sub>CCIO</sub> | 0.51 × V <sub>CCIO</sub> | _                        | _                       | _                        |
| POD12                   | 1.16  | 1.2                   | 1.24  | -                        | Internally calibrated   | -                        | _                        | V <sub>CCIO</sub>       | _                        |



# Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications

Table 15. Single-Ended SSTL, HSTL, and HSUL I/O Standards Signal Specifications for Stratix 10 Devices—Preliminary

| I/O Standard        | V     | IL(DC) (V)              | V <sub>IH(D</sub>        | <sub>c)</sub> (V)        | V <sub>IL(AC)</sub> (V)  | V <sub>IH(AC)</sub> (V)  | V <sub>OL</sub> (V)                 | V <sub>OH</sub> (V)                 | I <sub>OL</sub> (18) | I <sub>OH</sub> (18) |
|---------------------|-------|-------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------------------|-------------------------------------|----------------------|----------------------|
|                     | Min   | Max                     | Min                      | Max                      | Max                      | Min                      | Max                                 | Min                                 | (mA)                 | (mA)                 |
| SSTL-18 Class I     | -0.3  | V <sub>REF</sub> -0.125 | V <sub>REF</sub> + 0.125 | V <sub>CCIO</sub> + 0.3  | V <sub>REF</sub> - 0.25  | V <sub>REF</sub> + 0.25  | V <sub>TT</sub> - 0.603             | V <sub>TT</sub> + 0.603             | 6.7                  | -6.7                 |
| SSTL-18 Class<br>II | -0.3  | V <sub>REF</sub> -0.125 | V <sub>REF</sub> + 0.125 | V <sub>CCIO</sub> + 0.3  | V <sub>REF</sub> - 0.25  | V <sub>REF</sub> + 0.25  | 0.28                                | V <sub>CCIO</sub> -0.28             | 13.4                 | -13.4                |
| SSTL-15 Class I     | _     | V <sub>REF</sub> - 0.1  | V <sub>REF</sub> + 0.1   | _                        | V <sub>REF</sub> - 0.175 | V <sub>REF</sub> + 0.175 | 0.2 × V <sub>CCIO</sub>             | 0.8 × V <sub>CCIO</sub>             | 8                    | -8                   |
| SSTL-15 Class<br>II | _     | V <sub>REF</sub> - 0.1  | V <sub>REF</sub> + 0.1   | _                        | V <sub>REF</sub> - 0.175 | V <sub>REF</sub> + 0.175 | 0.2 × V <sub>CCIO</sub>             | 0.8 × V <sub>CCIO</sub>             | 16                   | -16                  |
| SSTL-135            | _     | V <sub>REF</sub> - 0.09 | V <sub>REF</sub> + 0.09  | _                        | V <sub>REF</sub> - 0.16  | V <sub>REF</sub> + 0.16  | 0.2 × V <sub>CCIO</sub>             | 0.8 × V <sub>CCIO</sub>             | _                    | _                    |
| SSTL-125            | _     | V <sub>REF</sub> - 0.09 | V <sub>REF</sub> + 0.09  | _                        | V <sub>REF</sub> - 0.15  | V <sub>REF</sub> + 0.15  | 0.2 × V <sub>CCIO</sub>             | 0.8 × V <sub>CCIO</sub>             | _                    | _                    |
| HSTL-18 Class I     | _     | V <sub>REF</sub> -0.1   | V <sub>REF</sub> + 0.1   | _                        | V <sub>REF</sub> - 0.2   | V <sub>REF</sub> + 0.2   | 0.4                                 | V <sub>CCIO</sub> - 0.4             | 8                    | -8                   |
| HSTL-18 Class<br>II | _     | V <sub>REF</sub> - 0.1  | V <sub>REF</sub> + 0.1   | _                        | V <sub>REF</sub> - 0.2   | V <sub>REF</sub> + 0.2   | 0.4                                 | V <sub>CCIO</sub> - 0.4             | 16                   | -16                  |
| HSTL-15 Class I     | _     | V <sub>REF</sub> - 0.1  | V <sub>REF</sub> + 0.1   | _                        | V <sub>REF</sub> - 0.2   | V <sub>REF</sub> + 0.2   | 0.4                                 | V <sub>CCIO</sub> - 0.4             | 8                    | -8                   |
| HSTL-15 Class<br>II | -     | V <sub>REF</sub> - 0.1  | V <sub>REF</sub> + 0.1   | _                        | V <sub>REF</sub> - 0.2   | V <sub>REF</sub> + 0.2   | 0.4                                 | V <sub>CCIO</sub> -0.4              | 16                   | -16                  |
| HSTL-12 Class I     | -0.15 | V <sub>REF</sub> - 0.08 | V <sub>REF</sub> + 0.08  | V <sub>CCIO</sub> + 0.15 | V <sub>REF</sub> - 0.15  | V <sub>REF</sub> + 0.15  | 0.25 × V <sub>CCIO</sub>            | 0.75 × V <sub>CCIO</sub>            | 8                    | -8                   |
| HSTL-12 Class<br>II | -0.15 | V <sub>REF</sub> - 0.08 | V <sub>REF</sub> + 0.08  | V <sub>CCIO</sub> + 0.15 | V <sub>REF</sub> - 0.15  | V <sub>REF</sub> + 0.15  | 0.25 × V <sub>CCIO</sub>            | 0.75 × V <sub>CCIO</sub>            | 16                   | -16                  |
| HSUL-12             | _     | V <sub>REF</sub> - 0.13 | V <sub>REF</sub> + 0.13  | _                        | V <sub>REF</sub> - 0.22  | V <sub>REF</sub> + 0.22  | 0.1 × V <sub>CCIO</sub>             | 0.9 × V <sub>CCIO</sub>             | _                    | _                    |
| POD12               | -0.15 | V <sub>REF</sub> - 0.08 | V <sub>REF</sub> + 0.08  | V <sub>CCIO</sub> + 0.15 | V <sub>REF</sub> - 0.15  | V <sub>REF</sub> + 0.15  | (0.7 - 0.15) ×<br>V <sub>CCIO</sub> | (0.7 + 0.15) ×<br>V <sub>CCIO</sub> | _                    | _                    |

To meet the  $I_{OL}$  and  $I_{OH}$  specifications, you must set the current strength settings accordingly. For example, to meet the SSTL15CI specification (8 mA), you should set the current strength settings to 8 mA. Setting at lower current strength may not meet the  $I_{OL}$  and  $I_{OH}$  specifications in the datasheet.



### **Differential SSTL I/O Standards Specifications**

Table 16. Differential SSTL I/O Standards Specifications for Stratix 10 Devices—Preliminary

| I/O Standard           | V <sub>CCIO</sub> (V) |      |       | V <sub>SWING(DC)</sub> (V) |                         | V <sub>SWING</sub>                         | (AC) (V)                                   | V <sub>X(AC)</sub> (V)       |                              |  |
|------------------------|-----------------------|------|-------|----------------------------|-------------------------|--------------------------------------------|--------------------------------------------|------------------------------|------------------------------|--|
|                        | Min                   | Тур  | Max   | Min                        | Max                     | Min                                        | Max                                        | Min                          | Max                          |  |
| SSTL-18 Class I,<br>II | 1.71                  | 1.8  | 1.89  | 0.25                       | V <sub>CCIO</sub> + 0.6 | 0.5                                        | V <sub>CCIO</sub> + 0.6                    | V <sub>CCIO</sub> /2 - 0.175 | V <sub>CCIO</sub> /2 + 0.175 |  |
| SSTL-15 Class I,<br>II | 1.425                 | 1.5  | 1.575 | 0.2                        | (19)                    | 2(V <sub>IH(AC)</sub> - V <sub>REF</sub> ) | 2(V <sub>REF</sub> - V <sub>IL(AC)</sub> ) | V <sub>CCIO</sub> /2 - 0.15  | V <sub>CCIO</sub> /2 + 0.15  |  |
| SSTL-135               | 1.283                 | 1.35 | 1.45  | 0.18                       | (19)                    | 2(V <sub>IH(AC)</sub> - V <sub>REF</sub> ) | 2(V <sub>IL(AC)</sub> - V <sub>REF</sub> ) | V <sub>CCIO</sub> /2 - 0.15  | V <sub>CCIO</sub> /2 + 0.15  |  |
| SSTL-125               | 1.19                  | 1.25 | 1.31  | 0.18                       | (19)                    | 2(V <sub>IH(AC)</sub> - V <sub>REF</sub> ) | 2(V <sub>IL(AC)</sub> - V <sub>REF</sub> ) | V <sub>CCIO</sub> /2 - 0.15  | V <sub>CCIO</sub> /2 + 0.15  |  |

# **Differential HSTL and HSUL I/O Standards Specifications**

Table 17. Differential HSTL and HSUL I/O Standards Specifications for Stratix 10 Devices—Preliminary

| I/O Standard           | 1     | V <sub>CCIO</sub> (V | )     | V <sub>DIF(DO</sub>                           | <sub>c)</sub> (V)                             | V <sub>DIF(AC</sub>                           | c) (V)                                        |                                      | V <sub>X(AC)</sub> (V)     |                                     |                            | V <sub>CM(DC)</sub> (V     | <b>'</b> )                 |
|------------------------|-------|----------------------|-------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------|----------------------------|-------------------------------------|----------------------------|----------------------------|----------------------------|
|                        | Min   | Тур                  | Max   | Min                                           | Max                                           | Min                                           | Max                                           | Min                                  | Тур                        | Max                                 | Min                        | Тур                        | Max                        |
| HSTL-18 Class<br>I, II | 1.71  | 1.8                  | 1.89  | 0.2                                           | _                                             | 0.4                                           | _                                             | 0.78                                 | _                          | 1.12                                | 0.78                       | _                          | 1.12                       |
| HSTL-15 Class<br>I, II | 1.425 | 1.5                  | 1.575 | 0.2                                           | _                                             | 0.4                                           | _                                             | 0.68                                 | -                          | 0.9                                 | 0.68                       | _                          | 0.9                        |
| HSTL-12 Class<br>I, II | 1.14  | 1.2                  | 1.26  | 0.16                                          | V <sub>CCIO</sub><br>+ 0.3                    | 0.3                                           | V <sub>CCIO</sub><br>+ 0.48                   | _                                    | 0.5 ×<br>V <sub>CCIO</sub> | _                                   | 0.4 ×<br>V <sub>CCIO</sub> | 0.5 ×<br>V <sub>CCIO</sub> | 0.6 ×<br>V <sub>CCIO</sub> |
| HSUL-12                | 1.14  | 1.2                  | 1.3   | 2(V <sub>IH(DC)</sub> –<br>V <sub>REF</sub> ) | 2(V <sub>REF</sub> –<br>V <sub>IH(DC)</sub> ) | 2(V <sub>IH(AC)</sub> –<br>V <sub>REF</sub> ) | 2(V <sub>REF</sub> –<br>V <sub>IH(AC)</sub> ) | 0.5 ×<br>V <sub>CCIO</sub> -<br>0.12 | 0.5 ×<br>V <sub>CCIO</sub> | 0.5 ×<br>V <sub>CCIO</sub><br>+0.12 | 0.4 ×<br>V <sub>CCIO</sub> | 0.5 ×<br>V <sub>CCIO</sub> | 0.6 ×<br>V <sub>CCIO</sub> |

The maximum value for  $V_{SWING(DC)}$  is not defined. However, each single-ended signal needs to be within the respective single-ended limits ( $V_{IH(DC)}$  and  $V_{IL(DC)}$ ).



#### **Differential I/O Standards Specifications**

Table 18. Differential I/O Standards Specifications for Stratix 10 Devices—Preliminary

| I/O Standard         | I/O Standard V <sub>CCIO</sub> (V) |     | V <sub>ID</sub> (mV) <sup>(20)</sup> V <sub>ICM(DC)</sub> (V) |     | V <sub>OD</sub> (V) (21) (22) |      | V <sub>OCM</sub> (V) <sup>(21)</sup> |       |       |     |     |       |      |       |
|----------------------|------------------------------------|-----|---------------------------------------------------------------|-----|-------------------------------|------|--------------------------------------|-------|-------|-----|-----|-------|------|-------|
|                      | Min                                | Тур | Max                                                           | Min | Max                           | Min  | Condition                            | Max   | Min   | Тур | Max | Min   | Тур  | Max   |
| LVDS <sup>(23)</sup> | 1.71                               | 1.8 | 1.89                                                          | 100 | _                             | 0.05 | Data rate<br>≤700 Mbps               | 1.65  | 0.247 | _   | 0.6 | 1.125 | 1.25 | 1.375 |
|                      |                                    |     |                                                               |     |                               | 1    | Data rate<br>>700 Mbps               | 1.6   |       |     |     |       |      |       |
| RSDS (24)            | 1.71                               | 1.8 | 1.89                                                          | 100 | _                             | 0.3  | _                                    | 1.4   | 0.1   | 0.2 | 0.6 | 0.5   | 1.2  | 1.4   |
| Mini-LVDS (25)       | 1.71                               | 1.8 | 1.89                                                          | 200 | 600                           | 0.4  | _                                    | 1.325 | 0.25  | _   | 0.6 | 1     | 1.2  | 1.4   |
| LVPECL (26)          | 1.71                               | 1.8 | 1.89                                                          | 300 | _                             | 0.6  | Data rate<br>≤700 Mbps               | 1.7   | _     | _   | _   | _     | _    | _     |
|                      |                                    |     |                                                               |     |                               | 1    | Data rate<br>>700 Mbps               | 1.6   |       |     |     |       |      |       |

# **Switching Characteristics**

This section provides the performance characteristics of Stratix 10 core and periphery blocks.

 $<sup>^{(20)}</sup>$  The minimum  $V_{\text{ID}}$  value is applicable over the entire common mode range,  $V_{\text{CM}}$ .

<sup>&</sup>lt;sup>(21)</sup>  $R_L$  range:  $90 \le R_L \le 110 \Omega$ .

 $<sup>^{(22)}</sup>$  The specification is only applicable to default  $V_{OD}$  setting.

<sup>(23)</sup> For optimized LVDS receiver performance, the receiver voltage input range must be within 1.0 V to 1.6 V for data rates above 700 Mbps and 0.05 V to 1.65 V for data rates below 700 Mbps.

 $<sup>^{(24)}</sup>$  For optimized RSDS receiver performance, the receiver voltage input range must be within 0.3 V to 1.4 V.

<sup>(25)</sup> For optimized Mini-LVDS receiver performance, the receiver voltage input range must be within 0.4 V to 1.325 V.

<sup>(26)</sup> For optimized LVPECL receiver performance, the receiver voltage input range must be within 0.85 V to 1.75 V for data rates above 700 Mbps and 0.45 V to 1.95 V for data rates below 700 Mbps.



# **L-Tile Transceiver Performance Specifications**

### **Transceiver Performance for Stratix 10 GX/SX L-Tile Devices**

### Table 19. L-Tile Transmitter and Receiver Data Rate Performance, VCCR\_GXB and VCCT\_GXB Specifications—Preliminary

| Symbol/Description     | Condition                           | Minimum | Typical | Maximum | Unit |
|------------------------|-------------------------------------|---------|---------|---------|------|
| Chip-to-Chip (27) (28) | 1 Gbps to 17.4 Gbps <sup>(29)</sup> | 1.0     | 1.03    | 1.06    | V    |
| Backplane (27) (30)    | 1 Gbps to 12.5 Gbps <sup>(29)</sup> | 1.0     | 1.03    | 1.06    | V    |

#### Table 20. L-Tile ATX PLL Performance—Preliminary

| Symbol/Description         | Condition         | Transceiver Speed Grade 3 | Unit |  |
|----------------------------|-------------------|---------------------------|------|--|
| Connected Output Francisco | Maximum Frequency | 8.7                       | GHz  |  |
| Supported Output Frequency | Minimum Frequency | 500                       | MHz  |  |

#### Table 21. L-Tile Fractional PLL Performance—Preliminary

| Symbol/Description         | Condition         | Transceiver Speed Grade 3 | Unit |  |
|----------------------------|-------------------|---------------------------|------|--|
| Compared Orderst Francisco | Maximum Frequency | 6.25                      | GHz  |  |
| Supported Output Frequency | Minimum Frequency | 500                       | MHz  |  |

Bonded channels operating at data rates above 16 Gbps require 1.12 V  $\pm$  20 mV at the pin. For channels that are placed in the same side of the device as the channels that required 1.12 V  $\pm$  20 mV,  $V_{CCR\_GXB}$  and  $V_{CCT\_GXB}$  = 1.12 V  $\pm$  20 mV.

<sup>(28)</sup> Chip-to-chip refers to transceiver links that are short reach and dont require advanced equalization such as decision feedback equalization (DFE).

<sup>(29)</sup> Stratix 10 transceivers can support data rates below 1 Gbps through over sampling.

<sup>(30)</sup> Backplane applications refer to ones which require advanced equalization, such as DFE enabled, to compensate for channel loss.



Table 22. L-Tile CMU PLL Performance—Preliminary

| Symbol/Description         | Condition         | Transceiver Speed Grade 3 | Unit |
|----------------------------|-------------------|---------------------------|------|
| Cupported Output Evaguepou | Maximum Frequency | 5.15625                   | GHz  |
| Supported Output Frequency | Minimum Frequency | 2.450                     | GHz  |

# **Transceiver Specifications for Stratix 10 GX/SX L-Tile Devices**

Table 23. L-Tile Reference Clock Specifications—Preliminary

| Symbol/Description                         | Condition                     | Tra                                      | ansceiver Speed Grad | de 3 | Unit      |  |  |
|--------------------------------------------|-------------------------------|------------------------------------------|----------------------|------|-----------|--|--|
|                                            |                               | Min                                      | Тур                  | Max  |           |  |  |
| Supported I/O Standards                    | Dedicated reference clock pin | CML, Differential LVPECL, LVDS, and HCSL |                      |      |           |  |  |
|                                            | RX reference clock pin        | CML, Differential LVPECL, and LVDS       |                      |      |           |  |  |
| Input Reference Clock Frequency (CMU PLL)  |                               | 61                                       | _                    | 800  | MHz       |  |  |
| Input Reference Clock Frequency (ATX PLL)  |                               | 100                                      | _                    | 800  | MHz       |  |  |
| Input Reference Clock Frequency (fPLL PLL) |                               | 50 (31)                                  | _                    | 800  | MHz       |  |  |
| Rise time                                  | 20% to 80%                    | _                                        | _                    | 400  | ps        |  |  |
| Fall time                                  | 80% to 20%                    | _                                        | _                    | 400  | ps        |  |  |
| Duty cycle                                 | _                             | 45                                       | _                    | 55   | %         |  |  |
| Spread-spectrum modulating clock frequency | PCIe                          | 30                                       | _                    | 33   | kHz       |  |  |
| Spread-spectrum downspread                 | PCIe                          | _                                        | 0 to -0.5            | _    | %         |  |  |
| On-chip termination resistors              | _                             | _                                        | 100                  | _    | Ω         |  |  |
| Absolute V <sub>MAX</sub>                  | Dedicated reference clock pin | _                                        | _                    | 1.6  | V         |  |  |
|                                            | RX reference clock pin        | _                                        | _                    | 1.2  | V         |  |  |
|                                            | <u>'</u>                      |                                          | •                    | •    | continued |  |  |

 $<sup>^{\</sup>rm (31)}$  The  $f_{MIN}$  is 29 MHz when the fPLL is used as a core PLL.



| Symbol/Description                            | Condition                                  | Tra  | ansceiver Speed Grad | de 3 | Unit     |
|-----------------------------------------------|--------------------------------------------|------|----------------------|------|----------|
|                                               |                                            | Min  | Тур                  | Max  |          |
| Absolute V <sub>MIN</sub>                     | _                                          | -0.4 | _                    | _    | V        |
| Peak-to-peak differential input voltage       | _                                          | 200  | _                    | 1600 | mV       |
| V <sub>ICM</sub> (AC coupled)                 | V <sub>CCR_GXB</sub> =1.03 V               | _    | 1.03                 | _    | V        |
| V <sub>ICM</sub> (DC coupled)                 | HCSL I/O standard for PCIe reference clock | 250  | _                    | 550  | mV       |
| Transmitter REFCLK Phase Noise (622 MHz) (32) | 100 Hz                                     | _    | _                    | -70  | dBc/Hz   |
|                                               | 1 kHz                                      | _    | _                    | -90  | dBc/Hz   |
|                                               | 10 kHz                                     | _    | _                    | -100 | dBc/Hz   |
|                                               | 100 kHz                                    | _    | _                    | -110 | dBc/Hz   |
|                                               | ≥ 1 MHz                                    | _    | _                    | -120 | dBc/Hz   |
| Transmitter REFCLK Phase Jitter (100 MHz)     | 1.5 MHz to 100 MHz (PCIe)                  | _    | _                    | 4.2  | ps (rms) |
| R <sub>REF</sub>                              | _                                          | _    | 2.0 k ±1%            | _    | Ω        |
| T <sub>SSC-MAX-PERIOD-SLEW</sub>              | Max spread spectrum clocking (SSC) df/dt   |      |                      | 0.75 |          |

Table 24. L-Tile Transceiver Clock Network Maximum Data Rate Specifications—Preliminary

| Clock Network |      | Maximum Performance (33) | )       | Channel Span                   | Unit |
|---------------|------|--------------------------|---------|--------------------------------|------|
|               | ATX  | fPLL CMU                 |         |                                |      |
| x1            | 17.4 | 12.5                     | 10.3125 | 6 channels                     | Gbps |
| x6            | 17.4 | 12.5                     | N/A     | 6 channels                     | Gbps |
| x24           | 16   | 12.5                     | N/A     | 2 banks up and 2 banks<br>down | Gbps |

<sup>(32)</sup> To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f (MHz) = REFCLK phase noise at 622 MHz + 20\*log(f/622).

<sup>(33)</sup> The maximum data rate depends on speed grade.



Table 25. L-Tile Receiver Specifications—Preliminary

| Symbol/Description                                                                                            | Condition                                     |      | Unit                           |                                |           |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|--------------------------------|--------------------------------|-----------|
|                                                                                                               | Condition                                     | Min  | Тур                            | Max                            | Unit      |
| Supported I/O Standards                                                                                       | _                                             | H    | gh Speed Differential I/O, CMI | L, Differential LVPECL, and LV | DS        |
| Absolute V <sub>MAX</sub> for a receiver pin <sup>(34)</sup>                                                  | _                                             | _    | _                              | 1.2                            | V         |
| Absolute V <sub>MIN</sub> for a receiver pin (34)                                                             | _                                             | -0.4 | _                              | _                              | V         |
| Maximum peak-to-peak differential input voltage $V_{\rm ID}$ (diff p-p) before device configuration $^{(35)}$ | _                                             | _    | _                              | 1.6                            | V         |
| Maximum peak-to-peak differential input voltage $V_{\rm ID}$ (diff p-p) after device configuration $^{(35)}$  | V <sub>CCR_GXB</sub> = 1.03 V <sup>(36)</sup> | _    | _                              | 2.0                            | V         |
| Minimum differential eye opening at receiver serial input pins (37)                                           | _                                             | 50   | -                              | _                              | mV        |
| Differential on-chip                                                                                          | 85-Ω setting                                  | _    | 85 ± 20%                       | _                              | Ω         |
| termination resistors                                                                                         | 100- $\Omega$ setting                         | _    | 100 ± 20%                      | _                              | Ω         |
| V <sub>ICM</sub> (AC and DC coupled)                                                                          | V <sub>CCR_GXB</sub> = 1.03 V                 | _    | 700                            | _                              | mV        |
| non-PCIe channels                                                                                             | V <sub>CCR_GXB</sub> = 1.12 V                 | _    | 750                            | _                              | mV        |
|                                                                                                               |                                               |      | '                              |                                | continued |

 $<sup>^{(34)}</sup>$  The device cannot tolerate prolonged operation at this absolute maximum.

<sup>(35)</sup> DC coupling specifications are pending silicon characterization.

<sup>(36)</sup> Bonded channels operating at data rates above 16 Gbps require 1.12 V  $\pm$  20 mV at the pin. For channels that are placed in the same side of the device as the channels that required 1.12 V  $\pm$  20 mV,  $V_{CCR}$  GXB and  $V_{CCT}$  GXB = 1.12 V  $\pm$  20 mV.

<sup>(37)</sup> The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.



| Symbol/Description                                    | Condition                     | ,     | Transceiver Speed Grade 3 | 1    | Unit |
|-------------------------------------------------------|-------------------------------|-------|---------------------------|------|------|
|                                                       | Condition                     | Min   | Тур                       | Max  |      |
| V <sub>ICM</sub> (AC and DC coupled)<br>PCIe channels | V <sub>CCR_GXB</sub> = 1.03 V | _     | 650                       | _    | mV   |
|                                                       | V <sub>CCR_GXB</sub> = 1.12 V | _     | 650                       | _    | mV   |
| t <sub>LTR</sub> (38)                                 | _                             | _     | _                         | 1    | ms   |
| t <sub>LTD</sub> (39)                                 | _                             | 4     | _                         | _    | μs   |
| t <sub>LTD_manual</sub> (40)                          | _                             | 4     | _                         | _    | μs   |
| t <sub>LTR_LTD_manual</sub> (41)                      | _                             | 15    | _                         | _    | μs   |
| Run Length                                            | _                             | _     | _                         | 200  | UI   |
|                                                       | PCIe-only                     | -300  | _                         | 300  | ppm  |
| CDR ppm tolerance                                     | All other protocols           | -1000 | _                         | 1000 | ppm  |

# **Table 26.** L-Tile Transmitter Specifications—Preliminary

| Symbol/Description      | Condition     |     | Unit      |     |       |  |
|-------------------------|---------------|-----|-----------|-----|-------|--|
|                         |               | Min | Тур       | Max | Jiilt |  |
| Supported I/O Standards | _             | ı   | _         |     |       |  |
| Differential on-chip    | 85-Ω setting  | _   | 85 ± 20%  | _   | Ω     |  |
| termination resistors   | 100-Ω setting | _   | 100 ± 20% | _   | Ω     |  |
|                         |               |     |           |     |       |  |

 $<sup>^{(38)}</sup>$   $t_{LTR}$  is the time required for the receiver CDR to lock to the input reference clock frequency after coming out of reset.

 $<sup>^{(39)}</sup>$   $t_{LTD}$  is time required for the receiver CDR to start recovering valid data after the  $rx_is_lockedtodata$  signal goes high.

 $t_{LTD\_manual}$  is the time required for the receiver CDR to start recovering valid data after the rx\_is\_lockedtodata signal goes high when the CDR is functioning in the manual mode.

 $t_{LTR\_LTD\_manual}$  is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx\_is\_lockedtoref signal goes high when the CDR is functioning in the manual mode.

 $<sup>^{(42)}</sup>$  High Speed Differential I/O is the dedicated I/O standard for the transmitter in Stratix 10 transceivers.



| Symbol/Description                | Condition                                         |     |     |     | IIia |
|-----------------------------------|---------------------------------------------------|-----|-----|-----|------|
|                                   | Condition                                         | Min | Тур | Max | Unit |
| V <sub>OCM</sub> (AC coupled)     | V <sub>CCT_GXB</sub> = 1.03 V                     | _   | 515 | _   | mV   |
| V <sub>OCM</sub> (DC coupled)     | V <sub>CCT_GXB</sub> = 1.03 V                     | _   | 515 | _   | mV   |
| Rise time (43)                    | 20% to 80%                                        | 20  | _   | 130 | ps   |
| Fall time (43)                    | 80% to 20%                                        | 20  | _   | 130 | ps   |
| Intra-differential pair skew (44) | TX V <sub>CM</sub> = 0.5 V and slew rate of 15 ps | -   | _   | 15  | ps   |

Table 27. L-Tile Typical Transmitter V<sub>OD</sub> Settings—Preliminary

| Symbol                                                                     | V <sub>OD</sub> Setting | V <sub>OD</sub> /V <sub>CCT_GXB</sub> Ratio |
|----------------------------------------------------------------------------|-------------------------|---------------------------------------------|
|                                                                            | 31                      | 1.00                                        |
|                                                                            | 30                      | 0.97                                        |
|                                                                            | 29                      | 0.93                                        |
|                                                                            | 28                      | 0.90                                        |
|                                                                            | 27                      | 0.87                                        |
| V differential value = V /V ratio v V                                      | 26                      | 0.83                                        |
| $V_{OD}$ differential value = $V_{OD}/V_{CCT\_GXB}$ ratio x $V_{CCT\_GXB}$ | 25                      | 0.80                                        |
|                                                                            | 24                      | 0.77                                        |
|                                                                            | 23                      | 0.73                                        |
|                                                                            | 22                      | 0.70                                        |
|                                                                            | 21                      | 0.67                                        |
|                                                                            | 20                      | 0.63                                        |
|                                                                            |                         | continued                                   |

<sup>(43)</sup> The Intel Quartus Prime software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.

<sup>(44)</sup> In QPI mode, if  $V_{CM} < 0.17$  V, the input Vid must be greater than 100 mV. If  $V_{CM} > 0.17$  V, the input Vid must be greater than 70 mV.



| Symbol | V <sub>OD</sub> Setting | V <sub>OD</sub> /V <sub>CCT_GXB</sub> Ratio |
|--------|-------------------------|---------------------------------------------|
|        | 19                      | 0.60                                        |
|        | 18                      | 0.57                                        |
|        | 17                      | 0.53                                        |
|        | 16                      | 0.50                                        |
|        | 15                      | 0.47                                        |
|        | 14                      | 0.43                                        |
|        | 13                      | 0.40                                        |
|        | 12                      | 0.37                                        |

# Table 28. L-Tile Transmitter Channel-to-channel Skew Specifications—Preliminary

| Mode Channel Span                     |  | Maximum Skew | Unit |
|---------------------------------------|--|--------------|------|
| x6 Clock Up to 6 channels in one bank |  | 61           | ps   |

# Table 29. Transceiver Clocks Specifications for Stratix 10 GX/SX L-Tile Devices—Preliminary

| Clock                               | Value     | Unit |
|-------------------------------------|-----------|------|
| reconfig_clk                        | ≤ 125     | MHz  |
| fixed_clk for the RX detect circuit | 250 ± 20% | MHz  |

For OSC\_CLK\_1 specifications, refer to the External Configuration Clock Source Requirements section.

#### **Related Links**

- External Configuration Clock Source Requirements on page 80
- PLLs and Clock Networks



# **H-Tile Transceiver Performance Specifications**

# **Transceiver Performance for Stratix 10 GX/SX H-Tile Devices**

Table 30. H-Tile Transmitter and Receiver Data Rate Performance, VCCR\_GXB and VCCT\_GXB Specifications—Preliminary

| Channel             | Symbol/Description | <b>Transceiver Speed Grades</b>        |                                        | Minimum                                | Typical | Maximum |      |      |
|---------------------|--------------------|----------------------------------------|----------------------------------------|----------------------------------------|---------|---------|------|------|
|                     |                    | -1                                     | -2                                     | -3                                     |         |         |      | Unit |
| GX (45) (46)        | Chip-to-Chip       | 1 Gbps to 17.4<br>Gbps<br>(47)         | 1 Gbps to 17.4<br>Gbps <sup>(47)</sup> | 1 Gbps to 17.4<br>Gbps <sup>(47)</sup> | 1.0     | 1.03    | 1.06 | V    |
|                     | Backplane          | 1 Gbps to 17.4<br>Gbps <sup>(47)</sup> | 1 Gbps to 17.4<br>Gbps <sup>(47)</sup> | 1 Gbps to 17.4<br>Gbps <sup>(47)</sup> | 1.0     | 1.03    | 1.06 | V    |
| GXT <sup>(48)</sup> | Chip-to-Chip       | 1 Gbps to 28.3<br>Gbps <sup>(47)</sup> | 1 Gbps to 26<br>Gbps <sup>(47)</sup>   | 1 Gbps to 17.4<br>Gbps <sup>(47)</sup> | 1.10    | 1.12    | 1.14 | V    |
|                     | Backplane          | 1 Gbps to 28.3<br>Gbps <sup>(47)</sup> | 1 Gbps to 26<br>Gbps <sup>(47)</sup>   | 1 Gbps to 17.4<br>Gbps <sup>(47)</sup> | 1.10    | 1.12    | 1.14 | V    |

#### Table 31. H-Tile ATX PLL Performance—Preliminary

| Symbol/Description | Condition         | Transceiver Speed<br>Grade 1 | Transceiver Speed<br>Grade 2 | Transceiver Speed<br>Grade 3 | Unit |
|--------------------|-------------------|------------------------------|------------------------------|------------------------------|------|
| Supported Output   | Maximum Frequency | 14.15                        | 13                           | 8.7                          | GHz  |
| Frequency          | Minimum Frequency | 500                          |                              |                              | MHz  |

<sup>(45)</sup> GX channels are the transceiver channels that run at datarates  $\leq$  17.4 Gbps.

Bonded channels operating at data rates above 16 Gbps require 1.12 V  $\pm$  20 mV at the pin. For channels that are placed in the same side of the device as the channels that require 1.12 V  $\pm$  20 mV, VCCR\_GXB and VCCT\_GXB = 1.12 V  $\pm$  20 mV.

<sup>(47)</sup> Stratix 10 transceivers can support data rates below 1 Gbps through over sampling.

 $<sup>^{(48)}</sup>$  GXT channels are the transceiver channels that run at datarates  $\leq$  28.3 Gbps.



# Table 32. H-Tile Fractional PLL Performance—Preliminary

| Symbol/Description Condition |                   | All Transceiver Speed Grades | Unit |
|------------------------------|-------------------|------------------------------|------|
| Command Outrot Francisco     | Maximum Frequency | 6.25                         | GHz  |
| Supported Output Frequency   | Minimum Frequency | 500                          | MHz  |

# Table 33. H-Tile CMU PLL Performance—Preliminary

| Symbol/Description         | Condition         | All Transceiver Speed Grades | Unit |
|----------------------------|-------------------|------------------------------|------|
|                            | Maximum Frequency |                              | GHz  |
| Supported Output Frequency | Minimum Frequency | 2.450                        | GHz  |

# **Transceiver Specifications for GX/SX H-Tile Devices**

# Table 34. H-Tile Reference Clock Specifications—Preliminary

| Symbol/Description                         | Condition                     | Min                                      | Тур       | Max | Unit      |
|--------------------------------------------|-------------------------------|------------------------------------------|-----------|-----|-----------|
| Supported I/O Standards                    | Dedicated reference clock pin | CML, Differential LVPECL, LVDS, and HCSL |           |     |           |
|                                            | RX reference clock pin        | CML, Differential LVPECL, and LVDS       |           |     |           |
| Input Reference Clock Frequency (CMU PLL)  |                               | 61 — 800 MHz                             |           |     | MHz       |
| Input Reference Clock Frequency (ATX PLL)  |                               | 100                                      | _         | 800 | MHz       |
| Input Reference Clock Frequency (fPLL PLL) |                               | 50 (49)                                  | _         | 800 | MHz       |
| Rise time                                  | 20% to 80%                    | _                                        | _         | 400 | ps        |
| Fall time                                  | 80% to 20%                    | _                                        | _         | 400 | ps        |
| Duty cycle                                 | _                             | 45                                       | _         | 55  | %         |
| Spread-spectrum modulating clock frequency | PCIe                          | 30                                       | _         | 33  | kHz       |
| Spread-spectrum downspread                 | PCIe                          | _                                        | 0 to -0.5 | _   | %         |
| On-chip termination resistors              | _                             | _                                        | 100       | _   | Ω         |
|                                            |                               | 1                                        |           | 1   | continued |

 $<sup>^{(49)}</sup>$  The  $f_{\mbox{\scriptsize MIN}}$  is 29 MHz when the fPLL is used as a core PLL.

#### Stratix® 10 Device Datasheet



| Symbol/Description                            | Condition                                  | Min  | Тур       | Max  | Unit     |
|-----------------------------------------------|--------------------------------------------|------|-----------|------|----------|
| Absolute V <sub>MAX</sub>                     | Dedicated reference clock pin              | _    | _         | 1.6  | V        |
|                                               | RX reference clock pin                     | _    | _         | 1.2  | V        |
| Absolute V <sub>MIN</sub>                     | _                                          | -0.4 | _         | _    | V        |
| Peak-to-peak differential input voltage       | _                                          | 200  | _         | 1600 | mV       |
| V <sub>ICM</sub> (AC coupled)                 | V <sub>CCR_GXB</sub> =1.03 V               | _    | 1.03      | _    | V        |
|                                               | V <sub>CCR_GXB</sub> = 1.12 V              | _    | 1.12      | _    | V        |
| V <sub>ICM</sub> (DC coupled)                 | HCSL I/O standard for PCIe reference clock | 250  | _         | 550  | mV       |
| Transmitter REFCLK Phase Noise (622 MHz) (50) | 100 Hz                                     | _    | _         | -70  | dBc/Hz   |
|                                               | 1 kHz                                      | _    | _         | -90  | dBc/Hz   |
|                                               | 10 kHz                                     | _    | _         | -100 | dBc/Hz   |
|                                               | 100 kHz                                    | _    | _         | -110 | dBc/Hz   |
|                                               | ≥ 1 MHz                                    | _    | _         | -120 | dBc/Hz   |
| Transmitter REFCLK Phase Jitter (100 MHz)     | 1.5 MHz to 100 MHz (PCIe)                  | _    | _         | 4.2  | ps (rms) |
| R <sub>REF</sub>                              | _                                          | _    | 2.0 k ±1% | _    | Ω        |
| T <sub>SSC-MAX-PERIOD-SLEW</sub>              | Max SSC df/dt                              |      |           | 0.75 |          |

<sup>(50)</sup> To calculate the REFCLK phase noise requirement at frequencies other than 622 MHz, use the following formula: REFCLK phase noise at f (MHz) = REFCLK phase noise at 622 MHz + 20\*log(f/622).



Table 35. H-Tile Transceiver Clock Network Maximum Data Rate Specifications—Preliminary

| Clock Network   | Network Maximum Performance (51) |      |         | Channel Span                                                                                        | Unit |
|-----------------|----------------------------------|------|---------|-----------------------------------------------------------------------------------------------------|------|
|                 | ATX                              | fPLL | СМИ     |                                                                                                     |      |
| x1              | 17.4                             | 12.5 | 10.3125 | 6 channels                                                                                          | Gbps |
| x6              | 17.4                             | 12.5 | N/A     | 6 channels                                                                                          | Gbps |
| x24             | 16                               | 12.5 | N/A     | 2 banks up and 2 banks<br>down                                                                      | Gbps |
| GXT clock lines | 28.3                             | N/A  | N/A     | 4 GXT channels within the same transceiver bank and 2 from the bank above or 2 from the bank below. | Gbps |

### Table 36. H-Tile Receiver Specifications—Preliminary

| Symbol/Description                                                                                                              | bol/Description Condition |                                                                 | Transceiver Speed Grade 3 | 11-2- |           |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|---------------------------|-------|-----------|
|                                                                                                                                 |                           | Min                                                             | Тур                       | Max   | Unit      |
| Supported I/O Standards                                                                                                         | _                         | High Speed Differential I/O, CML, Differential LVPECL, and LVDS |                           |       |           |
| Absolute V <sub>MAX</sub> for a receiver pin <sup>(53)</sup>                                                                    | _                         | -                                                               | _                         | 1.2   | V         |
| Absolute V <sub>MIN</sub> for a receiver pin <sup>(53)</sup>                                                                    | _                         | -0.4                                                            | _                         | -     | V         |
| Maximum peak-to-peak<br>differential input voltage<br>V <sub>ID</sub> (diff p-p) before device<br>configuration <sup>(54)</sup> | -                         | -                                                               | _                         | 1.6   | V         |
|                                                                                                                                 |                           |                                                                 |                           |       | continued |

<sup>(51)</sup> The maximum data rate depends on speed grade.

<sup>(52)</sup> If the upper ATX PLL in a bank is used, then the channel span includes two GXT channels from the bank above. If the lower ATX PLL in a bank is used, then the channel span includes two channels from the bank below.

<sup>(53)</sup> The device cannot tolerate prolonged operation at this absolute maximum.

<sup>(54)</sup> DC coupling specifications are pending silicon characterization.

#### Stratix® 10 Device Datasheet



| Symbol/Description                                                                                                             | nbol/Description Condition                    | <b>Transceiver Speed Grade 3</b> |           |      | Unit |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------|-----------|------|------|
| Condition                                                                                                                      | Min                                           | Тур                              | Max       | Onit |      |
| Maximum peak-to-peak<br>differential input voltage<br>V <sub>ID</sub> (diff p-p) after device<br>configuration <sup>(54)</sup> | V <sub>CCR, GXB</sub> = 1.03 V, 1.12 V        | -                                | _         | 2.0  | V    |
| Minimum differential eye opening at receiver serial input pins (56)                                                            | _                                             | 50                               | _         | _    | mV   |
| Differential on-chip                                                                                                           | 85-Ω setting                                  | _                                | 85 ± 20%  | _    | Ω    |
| termination resistors                                                                                                          | 100-Ω setting                                 | _                                | 100 ± 20% | _    | Ω    |
| V <sub>ICM</sub> (AC and DC coupled)                                                                                           | V <sub>CCR_GXB</sub> = 1.03 V <sup>(58)</sup> | _                                | 700       | _    | mV   |
| (57)                                                                                                                           | V <sub>CCR_GXB</sub> = 1.12 V <sup>(58)</sup> | _                                | 750       | _    | mV   |
| t <sub>LTR</sub> (59)                                                                                                          | _                                             | _                                | _         | 1    | ms   |
| t <sub>LTD</sub> (60)                                                                                                          | _                                             | 4                                | _         | _    | μs   |
| t <sub>LTD_manual</sub> (61)                                                                                                   | _                                             | 4                                | _         | _    | μs   |
| contin                                                                                                                         |                                               |                                  |           |      |      |

Bonded channels operating at data rates above 16 Gbps require 1.12 V  $\pm$  20 mV at the pin. For channels that are placed in the same side of the device as the channels that required 1.12 V  $\pm$  20 mV,  $V_{CCR}$  GXB = 1.12 V  $\pm$  20 mV.

<sup>(56)</sup> The differential eye opening specification at the receiver input pins assumes that Receiver Equalization is disabled. If you enable Receiver Equalization, the receiver circuitry can tolerate a lower minimum eye opening, depending on the equalization level.

<sup>(57)</sup> Stratix 10 devices support DC coupling to other Stratix 10 devices and other devices operating under the Hybrid Memory Cube (HMC) specifications.

For GXT channels,  $V_{CCR\_GXB}$  must be 1.12 V. For GX channels,  $V_{CCR\_GXB}$  must be 1.03 V.  $V_{CCR\_GXB}$  must be 1.12 V for the transceiver on the side of the device when using GX and GXT channels together.

 $<sup>^{(59)}</sup>$   $t_{LTR}$  is the time required for the receive CDR to lock to the input reference clock frequency after coming out of reset.

 $t_{\rm LTD}$  is time required for the receiver CDR to start recovering valid data after the rx is lockedtodata signal goes high.



| Symbol/Description               | Condition -         |       | Transceiver Speed Grade 3 |      |      |
|----------------------------------|---------------------|-------|---------------------------|------|------|
|                                  |                     | Min   | Тур                       | Max  | Unit |
| t <sub>LTR_LTD_manual</sub> (62) | _                   | 15    | _                         | _    | μs   |
| Run Length                       | _                   | _     | _                         | 200  | UI   |
| CDR ppm tolerance                | PCIe-only           | -300  | _                         | 300  | ppm  |
|                                  | All other protocols | -1000 | _                         | 1000 | ppm  |

# **Table 37.** H-Tile Transmitter Specifications—Preliminary

| Symbol/Description                         | Condition                                     | Transceiver Speed Grade 3 |                                             |     | 11-24 |  |  |
|--------------------------------------------|-----------------------------------------------|---------------------------|---------------------------------------------|-----|-------|--|--|
|                                            |                                               | Min                       | Тур                                         | Max | Unit  |  |  |
| Supported I/O Standards                    | _                                             |                           | High Speed Differential I/O <sup>(63)</sup> |     |       |  |  |
| Differential on-chip termination resistors | 85-Ω setting                                  | _                         | 85 ± 20%                                    | _   | Ω     |  |  |
|                                            | 100-Ω setting                                 | _                         | 100 ± 20%                                   | _   | Ω     |  |  |
| V <sub>OCM</sub> (AC coupled)              | V <sub>CCT_GXB</sub> = 1.03 V <sup>(64)</sup> | _                         | 515                                         | _   | mV    |  |  |
| V <sub>OCM</sub> (AC coupled)              | V <sub>CCT_GXB</sub> = 1.12 V <sup>(64)</sup> | _                         | 560                                         |     | mV    |  |  |
| V <sub>OCM</sub> (DC coupled)              | V <sub>CCT_GXB</sub> = 1.03 V <sup>(64)</sup> | _                         | 515                                         | _   | mV    |  |  |
| V <sub>OCM</sub> (DC coupled)              | V <sub>CCT_GXB</sub> = 1.12 V <sup>(64)</sup> | _                         | 560                                         | _   | mV    |  |  |
|                                            | continued                                     |                           |                                             |     |       |  |  |

 $<sup>^{(61)}</sup>$   $t_{LTD\_manual}$  is the time required for the receiver CDR to start recovering valid data after the  $rx\_is\_lockedtodata$  signal goes high when the CDR is functioning in the manual mode.

 $t_{LTR\_LTD\_manual}$  is the time the receiver CDR must be kept in lock to reference (LTR) mode after the rx\_is\_lockedtoref signal goes high when the CDR is functioning in the manual mode.

 $<sup>^{(63)}</sup>$  High Speed Differential I/O is the dedicated I/O standard for the transmitter in Stratix 10 transceivers.

<sup>&</sup>lt;sup>(64)</sup> For GXT channels,  $V_{CCT\_GXB}$  must be 1.12 V. For GX channels,  $V_{CCT\_GXB}$  must be 1.03 V.  $V_{CCT\_GXB}$  must be 1.12 V for the transceiver bank when using GX and GXT channels together within the same bank.



| Symbol/Description           | Condition -                                | Transceiver Speed Grade 3 |     |     | Unit |
|------------------------------|--------------------------------------------|---------------------------|-----|-----|------|
|                              |                                            | Min                       | Тур | Max | Onic |
| Rise time <sup>(65)</sup>    | 20% to 80%                                 | 20                        | _   | 130 | ps   |
| Fall time (65)               | 80% to 20%                                 | 20                        | _   | 130 | ps   |
| Intra-differential pair skew | $TX V_{CM} = 0.5 V$ and slew rate of 15 ps | -                         | _   | 15  | ps   |

Table 38. H-Tile Typical Transmitter V<sub>OD</sub> Settings—Preliminary

| Symbol                                                                     | V <sub>OD</sub> Setting | V <sub>OD</sub> /V <sub>CCT_GXB</sub> Ratio |  |  |  |
|----------------------------------------------------------------------------|-------------------------|---------------------------------------------|--|--|--|
|                                                                            | 31                      | 1.00                                        |  |  |  |
|                                                                            | 30                      | 0.97                                        |  |  |  |
|                                                                            | 29                      | 0.93                                        |  |  |  |
|                                                                            | 28                      | 0.90                                        |  |  |  |
|                                                                            | 27                      | 0.87                                        |  |  |  |
|                                                                            | 26                      | 0.83                                        |  |  |  |
|                                                                            | 25                      | 0.80                                        |  |  |  |
| $V_{OD}$ differential value = $V_{OD}/V_{CCT\_GXB}$ ratio x $V_{CCT\_GXB}$ | 24                      | 0.77                                        |  |  |  |
|                                                                            | 23                      | 0.73                                        |  |  |  |
|                                                                            | 22                      | 0.70                                        |  |  |  |
|                                                                            | 21                      | 0.67                                        |  |  |  |
|                                                                            | 20                      | 0.63                                        |  |  |  |
|                                                                            | 19                      | 0.60                                        |  |  |  |
|                                                                            | 18                      | 0.57                                        |  |  |  |
|                                                                            | 17                      | 0.53                                        |  |  |  |
| continued                                                                  |                         |                                             |  |  |  |

<sup>(65)</sup> The Intel Quartus Prime software automatically selects the appropriate slew rate depending on the configured data rate or functional mode.



| Symbol | V <sub>OD</sub> Setting | V <sub>OD</sub> /V <sub>CCT_GXB</sub> Ratio |
|--------|-------------------------|---------------------------------------------|
|        | 16                      | 0.50                                        |
|        | 15                      | 0.47                                        |
|        | 14                      | 0.43                                        |
|        | 13                      | 0.40                                        |
|        | 12                      | 0.37                                        |

# Table 39. H-Tile Transmitter Channel-to-channel Skew Specifications—Preliminary

| Mode                                  | Channel Span | Maximum Skew | Unit |
|---------------------------------------|--------------|--------------|------|
| x6 Clock Up to 6 channels in one bank |              | 61           | ps   |

### Table 40. Transceiver Clocks Specifications for Stratix 10 GX/SX H-Tile Devices—Preliminary

| Clock                               | Value     | Unit |
|-------------------------------------|-----------|------|
| reconfig_clk                        | ≤ 125     | MHz  |
| fixed_clk for the RX detect circuit | 250 ± 20% | MHz  |

For OSC\_CLK\_1 specifications, refer to the External Configuration Clock Source Requirements section.

#### **Related Links**

External Configuration Clock Source Requirements on page 80

# **E-Tile Transceiver Performance Specifications**

### **Transceiver Performance for Stratix 10 E-Tile Devices**

Table 41. E-Tile Transmitter and Receiver Data Rate Performance Specifications—Preliminary

| Symbol/Description                 | Condition | Minimum | Typical | Maximum            | Unit |
|------------------------------------|-----------|---------|---------|--------------------|------|
| Supported datarate <sup>(66)</sup> | NRZ       | 1       |         | 30                 | Gbps |
|                                    | PAM-4     | 2       |         | 56 <sup>(67)</sup> | Gbps |



# **Transceiver Reference Clock Specifications**

**Table 42. E-Tile Reference Clock Specifications—Preliminary** 

| Symbol/Description              | Condition                                         | Minimum         | Typical         | Maximum             | Unit |  |
|---------------------------------|---------------------------------------------------|-----------------|-----------------|---------------------|------|--|
| I/O standard                    |                                                   |                 | LVPECL          |                     |      |  |
| Termination voltage (Vtt)       | 2.5 V compliant                                   | 0.4             | 0.5             | 0.6                 | V    |  |
|                                 | 3.3 V tolerant                                    | 1.04            | 1.3             | 1.56                | V    |  |
| Termination resistor (Rtt)      |                                                   | 40              | 50              | 60                  | ohm  |  |
| Differential voltage (Vdiff)    |                                                   | 0.4             | 0.8             | 1.2                 | V    |  |
| Input common mode voltage (Vcm) | 2.5 V compliant, no internal termination resister | Vdiff/2         |                 | VCCN2P5V_IO-Vdiff/2 | V    |  |
|                                 | 2.5 V compliant, internal termination resister    | VCCN2P5V_IO-1.6 | VCCN2P5V_IO-1.3 | VCCN2P5V_IO-1       | V    |  |
|                                 | 3.3 V tolerant, no internal termination resister  | Vdiff/2         |                 | VCCN2P5V_IO-Vdiff/2 | V    |  |
|                                 | 3.3 V tolerant, internal termination resister     | 1.4             | 2               | 2.6                 | V    |  |
| Absolute voltage                |                                                   | -0.5            |                 | 2.8                 | V    |  |

<sup>(66)</sup> The supported datarate is for chip-to-chip and backplane links.

<sup>(67)</sup> Two channels are combined to support up to 56 Gbps.



# **Transmitter Specifications for Stratix 10 E-Tile Devices**

### Table 43. E-Tile Transmitter Specifications—Preliminary

| Symbol/Description                                   | Condition                           | Minimum | Typical               | Maximum | Unit |
|------------------------------------------------------|-------------------------------------|---------|-----------------------|---------|------|
| Transmitter differential output voltage peak-to-peak | No precursor/postcursor de-emphasis |         | 0.965                 |         | V    |
| Transmiter commom mode voltage                       |                                     |         | V <sub>CCERT</sub> /2 |         | V    |

# **Receiver Specifications for Stratix 10 E-Tile Devices**

# Table 44. E-Tile Receiver Specifications—Preliminary

| Symbol/Description                  | Condition                                                             | Minimum | Typical | Maximum             | Unit    |
|-------------------------------------|-----------------------------------------------------------------------|---------|---------|---------------------|---------|
| Receiver run length <sup>(68)</sup> |                                                                       |         |         | 100 <sup>(69)</sup> | symbols |
| DC input impedance                  |                                                                       | 40      |         | 60                  | ohm     |
| DC differential input impedance     |                                                                       | 80      | 100     | 120                 | ohm     |
| Powered down DC input impedance     | Receiver pin impendance when the receiver termination is powered down | 100k    |         |                     | ohm     |
| Electrical Idle detection voltage   | -                                                                     | 65      |         | 175                 | mV      |
| Differential termination            | From DC to 100 Mhz                                                    | 80      | 100     | 120                 | ohm     |
| PPM tolerance                       | Allowed frequency<br>mismatch between<br>REFCLK and RX data           |         |         | 750                 | ppm     |

<sup>(68)</sup> No additional transition density requirements apply.

<sup>(69)</sup> The incoming data must be statistically DC-balanced.



## **Core Performance Specifications**

## **Clock Tree Specifications**

Table 45. Clock Tree Performance for Stratix 10 Devices—Preliminary

| Parameter                  |            | Performance            |                        | Unit |  |  |  |  |
|----------------------------|------------|------------------------|------------------------|------|--|--|--|--|
|                            | -E1V, -I1V | -E2V, -E2L, -I2V, -I2L | -E3V, -E3X, -I3V, -I3X |      |  |  |  |  |
| Programmable clock routing | 1,100      | 1,100 900 780          |                        |      |  |  |  |  |

### **PLL Specifications**

#### **Fractional PLL Specifications**

#### Table 46. Fractional PLL Specifications for Stratix 10 Devices—Preliminary

These specifications are applicable when fPLL is used in core mode.

| Symbol                   | Parameter                                                                            | Condition | Min | Тур | Max      | Unit      |
|--------------------------|--------------------------------------------------------------------------------------|-----------|-----|-----|----------|-----------|
| f <sub>IN</sub>          | Input clock frequency                                                                | _         | 29  | _   | 800 (70) | MHz       |
| f <sub>INPFD</sub>       | Input clock frequency to the phase frequency detector (PFD)                          | _         | 29  | _   | 700      | MHz       |
| f <sub>VCO</sub>         | PLL voltage-controlled oscillator (VCO) operating range for transceiver applications | _         | 6   | _   | 12.5     | GHz       |
|                          | PLL voltage-controlled oscillator (VCO) operating range for core applications        | _         | 4.3 | _   | 12.5     | GHz       |
| t <sub>EINDUTY</sub>     | Input clock duty cycle                                                               | _         | 40  | _   | 60       | %         |
| f <sub>OUT</sub>         | Output frequency for internal clock                                                  | _         | _   | _   | 1        | GHz       |
| f <sub>DYCONFIGCLK</sub> | Dynamic configuration clock for reconfig_clk                                         | _         | _   | _   | 125      | MHz       |
|                          |                                                                                      |           | •   |     |          | continued |

<sup>(70)</sup> This specification is limited by the I/O maximum frequency. The maximum achievable I/O frequency is different for each I/O standard and is dependent on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.



| Symbol                        | Parameter                                                                                                | Condition                  | Min | Тур | Max  | Unit      |
|-------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|-----|-----|------|-----------|
| t <sub>LOCK</sub>             | Time required to lock from end-of-device configuration or deassertion of pll_powerdown                   | _                          | _   | _   | 1    | ms        |
| t <sub>DLOCK</sub>            | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) | _                          | _   | _   | 1    | ms        |
| f <sub>CLBW</sub>             | PLL closed-loop bandwidth                                                                                | _                          | 0.3 | _   | 4    | MHz       |
| t <sub>PLL_PSERR</sub>        | Accuracy of PLL phase shift                                                                              | Non-SmartVID               | _   | _   | ±50  | ps        |
|                               |                                                                                                          | SmartVID                   | _   | _   | ±75  | ps        |
| t <sub>ARESET</sub>           | Minimum pulse width on the pll_powerdown signal                                                          | _                          | 10  | _   | _    | ns        |
| t <sub>INCCJ</sub> (71), (72) | Input clock cycle-to-cycle jitter                                                                        | F <sub>REF</sub> ≥ 100 MHz | _   | _   | 0.13 | UI (p-p)  |
|                               |                                                                                                          | F <sub>REF</sub> < 100 MHz | _   | _   | ±650 | ps (p-p)  |
| t <sub>OUTPJ</sub> (73)       | Period jitter for clock output                                                                           | F <sub>OUT</sub> ≥ 100 MHz | _   | _   | 600  | ps (p-p)  |
|                               |                                                                                                          | F <sub>OUT</sub> < 100 MHz | _   | _   | 60   | mUI (p-p) |
| t <sub>OUTCCJ</sub> (73)      | Cycle-to-cycle jitter for clock output                                                                   | F <sub>OUT</sub> ≥ 100 MHz | _   | _   | 600  | ps (p-p)  |
|                               |                                                                                                          | F <sub>OUT</sub> < 100 MHz | _   | _   | 60   | mUI (p-p) |
| dK <sub>BIT</sub>             | Bit number of Delta Sigma Modulator (DSM)                                                                | _                          | _   | 32  | _    | bit       |

#### **Related Links**

Memory Output Clock Jitter Specifications on page 49

Provides more information about the external memory interface clock output jitter specifications.

<sup>(71)</sup> A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

<sup>&</sup>lt;sup>(72)</sup>  $F_{REF}$  is  $f_{IN}/N$ , specification applies when N = 1.

<sup>(73)</sup> External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specifications for Stratix 10 Devices table.



### I/O PLL Specifications

Table 47. I/O PLL Specifications for Stratix 10 Devices—Preliminary

| Symbol               | Parameter                                               | Condition      | Min      | Тур | Max                 | Unit      |
|----------------------|---------------------------------------------------------|----------------|----------|-----|---------------------|-----------|
| f <sub>IN</sub>      | Input clock frequency                                   | -1 speed grade | 10       | _   | 1,100 (74)          | MHz       |
|                      |                                                         | -2 speed grade | 10       | _   | 900 (74)            | MHz       |
|                      |                                                         | -3 speed grade | 10       | _   | 750 <sup>(74)</sup> | MHz       |
| f <sub>INPFD</sub>   | Input clock frequency to the PFD                        | _              | 10       | _   | 325                 | MHz       |
| f <sub>VCO</sub>     | PLL VCO operating range                                 | -1 speed grade | 600      | _   | 1,600               | MHz       |
|                      |                                                         | -2 speed grade | 600      | _   | 1,434               | MHz       |
|                      |                                                         | -3 speed grade | 600      | _   | 1,250               | MHz       |
| f <sub>CLBW</sub>    | PLL closed-loop bandwidth                               | _              | 0.5      | _   | 10                  | MHz       |
| t <sub>EINDUTY</sub> | Input clock or external feedback clock input duty cycle | _              | 40       | _   | 60                  | %         |
| f <sub>OUT</sub>     | Output frequency for internal clock (C counter)         | -1 speed grade | _        | _   | 1,100               | MHz       |
|                      |                                                         | -2 speed grade | _        | _   | 900                 | MHz       |
|                      |                                                         | -3 speed grade | _        | _   | 750                 | MHz       |
| f <sub>OUT_EXT</sub> | Output frequency for external clock output              | -1 speed grade | _        | _   | 800                 | MHz       |
|                      |                                                         | -2 speed grade | _        | _   | 720                 | MHz       |
|                      |                                                         | -3 speed grade | _        | _   | 650                 | MHz       |
| t <sub>OUTDUTY</sub> | Duty cycle for dedicated external clock output          | Non-SmartVID   | 45       | 50  | 55                  | %         |
|                      | (when set to 50%)                                       | SmartVID       | 42       | 50  | 58                  | %         |
| t <sub>FCOMP</sub>   | External feedback clock compensation time               | _              | _        | _   | 5                   | ns        |
|                      | '                                                       |                | <u>'</u> | •   | •                   | continued |

<sup>(74)</sup> This specification is limited by the I/O maximum frequency. The maximum achievable I/O frequency is different for each I/O standard and is dependent on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.



| Symbol                                | Parameter                                                                                                | Condition                  | Min | Тур | Max  | Unit      |
|---------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|-----|-----|------|-----------|
| f <sub>DYCONFIGCLK</sub>              | Dynamic configuration clock for mgmt_clk and scanclk                                                     | -                          | _   | -   | 200  | MHz       |
| t <sub>LOCK</sub>                     | Time required to lock from end-of-device configuration or deassertion of areset                          | _                          | _   | _   | 1    | ms        |
| t <sub>DLOCK</sub>                    | Time required to lock dynamically (after switchover or reconfiguring any non-post-scale counters/delays) | -                          | _   | _   | 1    | ms        |
| t <sub>PLL_PSERR</sub>                | Accuracy of PLL phase shift                                                                              | _                          | _   | _   | ±50  | ps        |
| t <sub>ARESET</sub>                   | Minimum pulse width on the areset signal                                                                 | _                          | 10  | _   | _    | ns        |
| t <sub>INCCJ</sub> (75)(76)           | Input clock cycle-to-cycle jitter                                                                        | F <sub>REF</sub> ≥ 100 MHz | _   | _   | 0.15 | UI (p-p)  |
|                                       |                                                                                                          | F <sub>REF</sub> < 100 MHz | _   | _   | ±750 | ps (p-p)  |
| t <sub>OUTPJ_DC</sub>                 | Period jitter for dedicated clock output                                                                 | F <sub>OUT</sub> ≥ 100 MHz | _   | _   | 175  | ps (p-p)  |
|                                       |                                                                                                          | F <sub>OUT</sub> < 100 MHz | _   | _   | 17.5 | mUI (p-p) |
| t <sub>OUTCC3_DC</sub>                | Cycle-to-cycle jitter for dedicated clock output                                                         | F <sub>OUT</sub> ≥ 100 MHz | _   | _   | 175  | ps (p-p)  |
|                                       |                                                                                                          | F <sub>OUT</sub> < 100 MHz | _   | _   | 17.5 | mUI (p-p) |
| t <sub>OUTPJ_IO</sub> <sup>(77)</sup> | Period jitter for clock output on the regular I/O                                                        | F <sub>OUT</sub> ≥ 100 MHz | _   | _   | 600  | ps (p-p)  |
|                                       |                                                                                                          | F <sub>OUT</sub> < 100 MHz | _   | _   | 60   | mUI (p-p) |
| t <sub>OUTCCJ_IO</sub> (77)           | Cycle-to-cycle jitter for clock output on the                                                            | F <sub>OUT</sub> ≥ 100 MHz | _   | _   | 600  | ps (p-p)  |
|                                       | regular I/O                                                                                              | F <sub>OUT</sub> < 100 MHz | _   | _   | 60   | mUI (p-p) |
| t <sub>CASC_OUTPJ_DC</sub>            | Period jitter for dedicated clock output in                                                              | F <sub>OUT</sub> ≥ 100 MHz | _   | _   | 175  | ps (p-p)  |
|                                       | cascaded PLLs                                                                                            | F <sub>OUT</sub> < 100 MHz | _   | _   | 17.5 | mUI (p-p) |

<sup>(75)</sup> A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source with jitter < 120 ps.

<sup>&</sup>lt;sup>(76)</sup>  $F_{REF}$  is  $f_{IN}/N$ , specification applies when N = 1.

<sup>(77)</sup> External memory interface clock output jitter specifications use a different measurement method, which are available in Memory Output Clock Jitter Specifications for Stratix 10 Devices table.



#### **Related Links**

Memory Output Clock Jitter Specifications on page 49

Provides more information about the external memory interface clock output jitter specifications.

### **DSP Block Specifications**

Table 48. DSP Block Performance Specifications for Stratix 10 Devices—Preliminary

| Mode                                                                               |            | Performance                |                            | Unit |
|------------------------------------------------------------------------------------|------------|----------------------------|----------------------------|------|
|                                                                                    | -E1V, -I1V | -E2V, -E2L, -I2V, -<br>I2L | -E3V, -E3X, -I3V, -<br>I3X |      |
| Fixed-point 18 × 19 multiplication mode                                            | 1,000      | 771                        | 667                        | MHz  |
| Fixed-point 27 × 27 multiplication mode <sup>(78)</sup>                            | 1,000      | 771                        | 667                        | MHz  |
| Fixed-point 18 × 18 multiplier adder mode <sup>(78)</sup>                          | 1,000      | 771                        | 667                        | MHz  |
| Fixed-point 18 $	imes$ 18 multiplier adder summed with 36-bit input mode $^{(78)}$ | 1,000      | 771                        | 667                        | MHz  |
| Fixed-point 18 × 19 systolic mode                                                  | 1,000      | 771                        | 667                        | MHz  |
| Complex 18 × 19 multiplication mode                                                | 1,000      | 771                        | 667                        | MHz  |
| Floating point multiplication mode                                                 | 750        | 579                        | 500                        | MHz  |
| Floating point adder or subtract mode                                              | 750        | 579                        | 500                        | MHz  |
| Floating point multiplier adder or subtract mode                                   | 750        | 579                        | 500                        | MHz  |
| Floating point multiplier accumulate mode                                          | 750        | 579                        | 500                        | MHz  |
| Floating point vector one mode                                                     | 750        | 579                        | 500                        | MHz  |
| Floating point vector two mode                                                     | 750        | 579                        | 500                        | MHz  |

<sup>(78)</sup> When chainin or chainout is enabled, the performance specifications for the following speed grades are as follows:

<sup>• -</sup>E1V and -I1V: 750 MHz

 $<sup>\</sup>bullet~$  –E2V, –E2L, –I2V, and –I2L: 578 MHz

<sup>• -</sup>E3V, -E3X, -I3V, and -I3X: 507 MHz



## **Memory Block Specifications**

To achieve the maximum memory block performance, use a memory block clock that comes through global clock routing from an on-chip PLL and set to 50% output duty cycle. Use the Intel Quartus Prime software to report timing for the memory block clocking schemes.

When you use the error detection cyclical redundancy check (CRC) feature, there is no degradation in f<sub>MAX</sub>.

Memory Block Performance Specifications for Stratix 10 Devices—Preliminary Table 49.

| Memory     | Mode                                                                                             |            | Perform                   | ance                      |      |
|------------|--------------------------------------------------------------------------------------------------|------------|---------------------------|---------------------------|------|
|            |                                                                                                  | -E1V, -I1V | -E2V, -E2L, -I2V,<br>-I2L | -E3V, -E3X, -I3V,<br>-I3X | Unit |
| MLAB       | Single port, all supported widths (×16/×32)                                                      | 1,000      | 782                       | 667                       | MHz  |
|            | Simple dual-port, all supported widths (×16/×32)                                                 | 1,000      | 782                       | 667                       | MHz  |
|            | Simple dual-port with read-during-write option                                                   | 550        | 450                       | 400                       | MHz  |
|            | ROM, all supported width (×16/×32)                                                               | 1,000      | 782                       | 667                       | MHz  |
| M20K Block | Single-port, all supported widths                                                                | 1,000      | 782                       | 667                       | MHz  |
|            | Simple dual-port, all supported widths                                                           | 1,000      | 782                       | 667                       | MHz  |
|            | Simple dual-port, coherent read enabled                                                          | 1,000      | 782                       | 667                       | MHz  |
|            | Simple dual-port with the read-during-write option set to <b>Old Data</b> , all supported widths | 800        | 640                       | 560                       | MHz  |
|            | Simple dual-port with ECC enabled, 512 × 32                                                      | 600        | 480                       | 420                       | MHz  |
|            | Simple dual-port with ECC and optional pipeline registers enabled, 512 × 32                      | 1,000      | 782                       | 667                       | MHz  |
|            | True dual port, all supported widths                                                             | 600        | 480                       | 420                       | MHz  |
|            | Simple quad-port, all supported widths                                                           | 600        | 480                       | 420                       | MHz  |
|            | ROM, all supported widths                                                                        | 1,000      | 782                       | 667                       | MHz  |
| eSRAM      | Simple dual-port                                                                                 | 500-750    | 500-700                   | 500-640                   | MHz  |



## **Internal Temperature Sensing Diode Specifications**

## Table 50. Internal Temperature Sensing Diode Specifications for Stratix 10 Devices—Preliminary

| Temperature Range | Accuracy | Offset Calibrated Option | Sampling Rate | Conversion<br>Time | Resolution | Minimum Resolution with no Missing Codes |
|-------------------|----------|--------------------------|---------------|--------------------|------------|------------------------------------------|
| -40 to 125 °C     | ±5 °C    | No                       | 1 KSPS        | < 5 ms             | 11 bits    | 11 bits                                  |

## **Internal Voltage Sensor Specifications**

Table 51. Internal Voltage Sensor Specifications for Stratix 10 Devices—Preliminary

|                          | Parameter                            | Minimum | Typical | Maximum             | Unit |
|--------------------------|--------------------------------------|---------|---------|---------------------|------|
| Resolution               |                                      | _       | 8       | _                   | Bit  |
| Sampling rate            |                                      | _       | _       | 1.0 <sup>(79)</sup> | KSPS |
| Differential non-lineari | ty (DNL)                             | _       | _       | ±1                  | LSB  |
| Integral non-linearity ( | INL)                                 | _       | _       | ±1                  | LSB  |
| Input capacitance        |                                      | _       | _       | 40                  | pF   |
| Clock frequency          |                                      | _       | _       | 550                 | MHz  |
| Unipolar Input Mode      | Input signal range for Vsigp         | 0       | _       | 1.5                 | V    |
|                          | Common mode voltage on Vsign         | 0       | _       | 0.25                | V    |
|                          | Input signal range for Vsigp – Vsign | 0       | _       | 1.25                | V    |

## **Periphery Performance Specifications**

This section describes the periphery performance, high-speed I/O, and external memory interface.

Actual achievable frequency depends on design and system specific factors. Ensure proper timing closure in your design and perform HSPICE/IBIS simulations based on your specific design and system setup to determine the maximum achievable frequency in your system.

<sup>(79)</sup> Pending silicon characterization.



### **High-Speed I/O Specifications**

#### Table 52. High-Speed I/O Specifications for Stratix 10 Devices—Preliminary

When serializer/deserializer (SERDES) factor J = 3 to 10, use the SERDES block.

For LVDS applications, you must use the PLLs in integer PLL mode.

You must calculate the leftover timing margin in the receiver by performing link timing closure analysis. You must consider the board skew margin, transmitter channel-to-channel skew, and receiver sampling margin to determine the leftover timing margin.

|                                                         | Symbol                                                                                | Condition                                     | Condition –E1V, –I1V |          | -E2V      | , -E2L, - | I2L, -I2V | -E3V,     | Unit     |     |           |      |
|---------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|----------------------|----------|-----------|-----------|-----------|-----------|----------|-----|-----------|------|
|                                                         |                                                                                       |                                               | Min                  | Тур      | Max       | Min       | Тур       | Max       | Min      | Тур | Max       |      |
| f <sub>HSCLK_in</sub> (input clo<br>Differential I/O St | ock frequency) True<br>andards                                                        | Clock boost factor<br>W = 1 to 40 (80)        | 10                   | _        | 800       | 10        | _         | 700       | 10       | _   | 625       | MHz  |
| f <sub>HSCLK_in</sub> (input clo<br>Ended I/O Standa    | ck frequency) Single-<br>rds                                                          | Clock boost factor<br>W = 1 to 40 (80)        | 10                   | -        | 625       | 10        | _         | 625       | 10       | _   | 525       | MHz  |
| f <sub>HSCLK_OUT</sub> (output                          | clock frequency)                                                                      | _                                             | _                    | _        | 800 (81)  | _         | _         | 700 (81)  | _        | _   | 625 (81)  | MHz  |
| Transmitter                                             | True Differential I/O<br>Standards - f <sub>HSDR</sub> (data<br>rate) <sup>(82)</sup> | SERDES factor<br>J = 4 to 10 (83)(85)<br>(84) | (85)                 | _        | 1600 (86) | (85)      | _         | 1434 (86) | (85)     | _   | 1250 (86) | Mbps |
|                                                         |                                                                                       | ,                                             |                      | <u>'</u> | •         | <u>'</u>  |           |           | <u>'</u> |     | conti     | nued |

<sup>(80)</sup> Clock Boost Factor (W) is the ratio between the input data rate and the input clock rate.

<sup>(81)</sup> This is achieved by using the PHY clock network.

<sup>(82)</sup> Requires package skew compensation with PCB trace length.

<sup>(83)</sup> The  $F_{max}$  specification is based on the fast clock used for serial data. The interface  $F_{max}$  is also dependent on the parallel clock domain which is design dependent and requires timing analysis.

<sup>(84)</sup> The  $V_{CC}$  and  $V_{CCP}$  must be on a combined power layer and a maximum load of 5 pF for chip-to-chip interface.

<sup>(85)</sup> The minimum specification depends on the clock source (for example, the PLL and clock pin) and the clock routing resource (global, regional, or local) that you use. The I/O differential buffer and serializer do not have a minimum toggle rate.

<sup>(86)</sup> Pending silicon characterization.

#### Stratix® 10 Device Datasheet



|          | Symbol                                                         | Condition                                                 |      | -E1V, - | -I1V         | -E2V | , -E2L, - | ·I2L, -I2V | -E3V | , -E3X, - | ·I3X, -I3V | Unit |
|----------|----------------------------------------------------------------|-----------------------------------------------------------|------|---------|--------------|------|-----------|------------|------|-----------|------------|------|
|          |                                                                |                                                           | Min  | Тур     | Max          | Min  | Тур       | Max        | Min  | Тур       | Max        |      |
|          |                                                                | SERDES factor<br>J = 3 (83)(85)(84)                       | (85) | _       | (86)         | (85) | _         | (86)       | (85) | _         | (86)       | Mbps |
|          |                                                                | SERDES factor J = 2, uses DDR registers                   | (85) | _       | 840 (86)(87) | (85) | -         | (86)(87)   | (85) | -         | (86)(87)   | Mbps |
|          |                                                                | SERDES factor J =<br>1, uses DDR<br>registers             | (85) | _       | 420 (86)(87) | (85) | _         | (86)(87)   | (85) | _         | (86)(87)   | Mbps |
|          | t <sub>x Jitter</sub> - True<br>Differential I/O<br>Standards  | Total jitter for data<br>rate, 600 Mbps –<br>1.6 Gbps     | -    | _       | 160          | _    | _         | 200        | -    | -         | 250        | ps   |
|          |                                                                | Total jitter for data rate, < 600 Mbps                    | _    | _       | 0.1          | _    | _         | 0.12       | -    | _         | 0.15       | UI   |
|          | t <sub>DUTY</sub> (88)                                         | TX output clock duty cycle for Differential I/O Standards | 45   | 50      | 55           | 45   | 50        | 55         | 45   | 50        | 55         | %    |
|          | t <sub>RISE</sub> & t <sub>FALL</sub> (84)(89)                 | True Differential I/O<br>Standards                        | _    | _       | 160          | _    | _         | 180        | -    | -         | 200        | ps   |
|          | TCCS (88)(82)                                                  | True Differential I/O<br>Standards                        | _    | _       | 150          | _    | _         | 150        | _    | _         | 150        | ps   |
| Receiver | True Differential I/O<br>Standards - f <sub>HSDRDPA</sub>      | SERDES factor<br>J = 4 to 10 (83)(85)(84)                 | _    | _       | 1600         | _    | _         | 1434       | _    | _         | 1250       | Mbps |
|          | (data rate)                                                    | SERDES factor<br>J = 3 (83)(85)(84)                       | _    | _       | (86)         | _    | _         | (86)       | _    | _         | (86)       | Mbps |
|          | f <sub>HSDR</sub> (data rate)<br>(without DPA) <sup>(82)</sup> | SERDES factor<br>J = 3 to 10                              | (85) | _       | (90)         | (85) | _         | (90)       | (85) | -         | (90)       | Mbps |
|          | <u>'</u>                                                       | <b>'</b>                                                  |      | 1       | '            |      |           | <b>'</b>   | 1    |           | conti      | nued |

<sup>(87)</sup> The maximum ideal data rate is the SERDES factor (J) x the PLL maximum output frequency ( $f_{OUT}$ ) provided you can close the design timing and the signal integrity meets the interface requirements.

<sup>(88)</sup> Not applicable for DIVCLK = 1.

 $<sup>^{\</sup>left(89\right)}$  This applies to default pre-emphasis and  $V_{OD}$  settings only.



| 5               | Symbol                    | Condition                                     |      | -E1V, - | ·I1V                                | -E2V | , -E2L, - | ·I2L, -I2V                          | -E3V, | , <b>–ЕЗХ</b> , – | -I3X, -I3V                          | Unit |
|-----------------|---------------------------|-----------------------------------------------|------|---------|-------------------------------------|------|-----------|-------------------------------------|-------|-------------------|-------------------------------------|------|
|                 |                           |                                               | Min  | Тур     | Max                                 | Min  | Тур       | Max                                 | Min   | Тур               | Max                                 |      |
|                 |                           | SERDES factor J = 2, uses DDR registers       | (85) | _       | (87)                                | (85) | _         | (87)                                | (85)  | _                 | (87)                                | Mbps |
|                 |                           | SERDES factor J =<br>1, uses DDR<br>registers | (85) | _       | (87)                                | (85) | _         | (87)                                | (85)  | _                 | (87)                                | Mbps |
| DPA (FIFO mode) | DPA run length            | _                                             | _    | _       | 10000                               | _    | _         | 10000                               | _     | -                 | 10000                               | UI   |
| DPA (soft CDR   | DPA run length            | SGMII/GbE protocol                            | _    | _       | 5                                   | _    | -         | 5                                   | _     | -                 | 5                                   | UI   |
| mode)           |                           | All other protocols                           | -    | _       | 50 data<br>transition<br>per 208 UI | _    | _         | 50 data<br>transition<br>per 208 UI | _     | _                 | 50 data<br>transition<br>per 208 UI | _    |
| Soft CDR mode   | Soft-CDR ppm<br>tolerance | _                                             | -300 | _       | 300                                 | -300 | _         | 300                                 | -300  | _                 | 300                                 | ppm  |
| Non DPA mode    | Sampling Window           | _                                             | _    | _       | 300                                 | _    | _         | 300                                 | _     | _                 | 300                                 | ps   |

## **DPA Lock Time Specifications**

Figure 2. DPA Lock Time Specifications with DPA PLL Calibration Enabled



<sup>(90)</sup> You can estimate the achievable maximum data rate for non-DPA mode by performing link timing closure analysis. You must consider the board skew margin, transmitter delay margin, and receiver sampling margin to determine the maximum data rate supported.



Table 53. DPA Lock Time Specifications for Stratix 10 Devices—Preliminary

The specifications are applicable to both commercial and industrial grades. The DPA lock time is for one channel. One data transition is defined as a 0-to-1 or 1-to-0 transition.

| Standard           | Training Pattern    | Number of Data Transitions in<br>One Repetition of the Training<br>Pattern | Number of Repetitions per 256<br>Data Transitions (91) | Maximum Data<br>Transition |
|--------------------|---------------------|----------------------------------------------------------------------------|--------------------------------------------------------|----------------------------|
| SPI-4              | 0000000001111111111 | 2                                                                          | 128                                                    | 640                        |
| Parallel Rapid I/O | 00001111            | 2                                                                          | 128                                                    | 640                        |
|                    | 10010000            | 4                                                                          | 64                                                     | 640                        |
| Miscellaneous      | 10101010            | 8                                                                          | 32                                                     | 640                        |
|                    | 01010101            | 8                                                                          | 32                                                     | 640                        |

## **LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications**

Figure 3. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications for a Data Rate Equal to 1.6 Gbps

LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specification



<sup>(91)</sup> This is the number of repetitions for the stated training pattern to achieve the 256 data transitions.



LVDS Soft-CDR/DPA Sinusoidal Jitter Mask Values for a Data Rate Equal to 1.6 Gbps—Preliminary Table 54.

| Jitter Freq | Sinusoidal Jitter (UI) |       |
|-------------|------------------------|-------|
| F1          | 10,000                 | 25.00 |
| F2          | 17,565                 | 25.00 |
| F3          | 1,493,000              | 0.35  |
| F4          | 50,000,000             | 0.35  |

Figure 4. LVDS Soft-CDR/DPA Sinusoidal Jitter Tolerance Specifications for a Data Rate Less than 1.6 Gbps



## **DLL Range Specifications**

Table 55. **DLL Frequency Range Specifications for Stratix 10 Devices—Preliminary** 

| Parameter                     | Performance (for All Speed Grades) | Unit |
|-------------------------------|------------------------------------|------|
| DLL operating frequency range | 600 - 1,333 <sup>(92)</sup>        | MHz  |
| DLL reference clock input     | Minimum 667 <sup>(93)</sup>        | MHz  |



### **DQS Logic Block Specifications**

### Table 56. DQS Phase Shift Error Specifications for DLL-Delayed Clock (t<sub>DOS PSERR</sub>) for Stratix 10 Devices—Preliminary

This error specification is the absolute maximum and minimum error.

| Symbol                 |                                              | Performance |   | Unit |
|------------------------|----------------------------------------------|-------------|---|------|
|                        | -1 Speed Grade -2 Speed Grade -3 Speed Grade |             |   |      |
| t <sub>DQS_PSERR</sub> | 4                                            | 6           | 8 | ps   |

### **Memory Output Clock Jitter Specifications**

#### Table 57. Memory Output Clock Jitter Specifications for Stratix 10 Devices—Preliminary

The clock jitter specification applies to the memory output clock pins clocked by an I/O PLL, or generated using differential signal-splitter and double data I/O circuits clocked by a PLL output routed on a PHY clock network as specified. Intel recommends using PHY clock networks for better jitter performance.

The memory output clock jitter is applicable when an input jitter of 10 ps peak-to-peak is applied with bit error rate (BER) 10<sup>-12</sup>, equivalent to 14 sigma.

| Clock     | Parameter                    | Symbol                 |                | Performance    |                |    |
|-----------|------------------------------|------------------------|----------------|----------------|----------------|----|
| Network   |                              |                        | -1 Speed Grade | -2 Speed Grade | -3 Speed Grade |    |
| PHY clock | Clock period jitter          | t <sub>JIT(per)</sub>  | 58             | 58             | 58             | ps |
|           | Cycle-to-cycle period jitter | t <sub>JIT(cc)</sub>   | 58             | 58             | 58             | ps |
|           | Duty cycle jitter            | t <sub>JIT(duty)</sub> | 58             | 58             | 58             | ps |

<sup>(92)</sup> In the SX device family, if the HPS EMIF is instantiated, the maximum speed for that instantiation is 1,066 MHz.

<sup>(93)</sup> To support interfaces below 667 MHz, multiply the reference clock feeding the DLL to ensure the frequency is within the supported range.



## **OCT Calibration Block Specifications**

Table 58. **OCT Calibration Block Specifications for Stratix 10 Devices—Preliminary** 

| Symbol                | Description                                                                                                                                                 | Min    | Тур | Max | Unit   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|-----|--------|
| OCTUSRCLK             | Clock required by OCT calibration blocks                                                                                                                    | _      | _   | 20  | MHz    |
| T <sub>OCTCAL</sub>   | Number of OCTUSRCLK clock cycles required for $R_S$ OCT $/R_T$ OCT calibration                                                                              | > 2000 | _   | _   | Cycles |
| T <sub>OCTSHIFT</sub> | Number of OCTUSRCLK clock cycles required for OCT code to shift out                                                                                         | _      | 32  | _   | Cycles |
| T <sub>RS_RT</sub>    | Time required between the $dyn\_term\_ctrl$ and $oe$ signal transitions in a bidirectional I/O buffer to dynamically switch between $R_S$ OCT and $R_T$ OCT | _      | TBD | _   | ns     |

Figure 5. Timing Diagram for on oe and dyn\_term\_ctrl Signals





## **HPS Performance Specifications - Preliminary**

This section provides hard processor system (HPS) specifications and timing for Intel Stratix 10 devices.

### **HPS Clock Performance - Preliminary**

Table 59. Maximum HPS Clock Frequencies for Intel Stratix 10 Devices

| Performance                | VCCL_HPS (V) | MPU Frequency (MHz) | SDRAM Interconnect<br>Frequency <sup>(94)</sup> (MHz) | L3 Interconnect Frequency (MHz) |
|----------------------------|--------------|---------------------|-------------------------------------------------------|---------------------------------|
|                            | SmartVID     | 1200                | 533                                                   | 400                             |
| -E1V, -I1V                 | 0.9          | 1200                | 533                                                   | 400                             |
|                            | 0.94         | TBD                 | 533                                                   | 400                             |
|                            | SmartVID     | 1000                | 467                                                   | 400                             |
| -E2V, -I2V                 | 0.9          | 1000                | 467                                                   | 400                             |
|                            | 0.94         | 1000                | 467                                                   | 400                             |
|                            | SmartVID     | 800                 | 400                                                   | 333                             |
| -E3V, -I3V                 | 0.9          | 800                 | 400                                                   | 333                             |
|                            | 0.94         | 1000                | 400                                                   | 400                             |
| F21                        | 0.9          | 1200                | 467                                                   | 400                             |
| -E2L, -I2L <sup>(95)</sup> | 0.94         | TBD                 | 467                                                   | 400                             |
| -E3X, -I3X <sup>(95)</sup> | 0.9          | 1200                | 400                                                   | 400                             |
| -L3A, -13A (99)            | 0.94         | TBD                 | 400                                                   | 400                             |

#### **Related Links**

External Memory Interface Spec Estimator

Provides the specific details of the maximum allowed SDRAM operating frequency, which is twice the frequency of hmc\_free\_clk.

<sup>(94)</sup> hmc\_free\_clk

 $<sup>^{(95)}</sup>$  Note that  $V_{CCL\_HPS}$  can not be connected to SmartVID for -E2L, -I2L, -E3X, and -I3X devices.



## **HPS PLL Specifications - Preliminary**

### **HPS PLL Input Requirements - Preliminary**

#### Table 60. HPS PLL Input Requirements for Intel Stratix 10 Devices

The main HPS PLL receives its clock signals from the HPS\_OSC\_CLK pin. Refer to the *Intel Stratix 10 GX, MX, and SX Device Family Pin Connection Guidelines* for information about assigning this pin.

| Description            | Min | Тур | Max | Unit |
|------------------------|-----|-----|-----|------|
| Clock input range      | 25  | _   | 125 | MHz  |
| Clock input accuracy   | TBD | _   | 50  | PPM  |
| Clock input duty cycle | 45  | 50  | 55  | %    |

### **HPS PLL Performance - Preliminary**

#### Table 61. HPS PLL Performance for Intel Stratix 10 Devices

| Description               | Min | Max  | Unit |
|---------------------------|-----|------|------|
| Main PLL VCO output       | _   | 3000 | MHz  |
| Peripheral PLL VCO output | _   | 3000 | MHz  |
| h2f_user0_clk (96)        | _   | 500  | MHz  |
| h2f_user1_clk (96)        | _   | 500  | MHz  |

<sup>(96)</sup> The HPS PLL provides this clock to the FPGA fabric.



## **HPS SPI Timing Characteristics - Preliminary**

### Table 62. SPI Master Timing Requirements for Intel Stratix 10 Devices

You can adjust the input delay timing by programming the rx\_sample\_dly register.

| Symbol                    | Description                                                              | Min                                                          | Тур | Max | Unit |
|---------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|-----|-----|------|
| T <sub>spi_ref_clk</sub>  | The period of the SPI internal reference clock, sourced from l4_main_clk | 5                                                            | _   | _   | ns   |
| T <sub>clk</sub>          | SPIM_CLK clock period                                                    | 16.67                                                        | _   | _   | ns   |
| T <sub>dutycycle</sub>    | SPIM_CLK duty cycle                                                      | 45                                                           | 50  | 55  | %    |
| T <sub>ck_jitter</sub>    | SPIM_CLK output jitter                                                   | _                                                            | _   | 2   | %    |
| T <sub>dio</sub>          | Master-out slave-in (MOSI) output skew                                   | -3                                                           | _   | 2   | ns   |
| T <sub>dssfrst</sub> (97) | SPI_SS_N asserted to first SPIM_CLK edge                                 | $(1.5 \times T_{\text{spi\_ref\_clk}}) - 2$                  | _   | _   | ns   |
| T <sub>dsslst</sub> (97)  | Last SPIM_CLK edge to SPI_SS_N deasserted                                | T <sub>spi_ref_clk</sub> - 2                                 | _   | _   | ns   |
| T <sub>su</sub> (98)      | SPIM_MISO setup time with respect to SPIM_CLK capture edge               | 4.5 -<br>(rx_sample_dly<br>× T <sub>spi_ref_clk</sub> ) (99) | _   | _   | ns   |
| T <sub>h</sub> (98)       | Input hold in respect to SPIM_CLK capture edge                           | 1.3 + (rx_sample_dly× T <sub>spi_ref_clk</sub> )             | _   | _   | ns   |

<sup>(97)</sup> SPI\_SS\_N behavior differs depending on Motorola SPI, TI SSP or Microwire operational mode.

<sup>(98)</sup> The capture edge differs depending on the operational mode. For Motorola SPI, the capture edge can be the rising or falling edge depending on the scpol register bit; for TI SSP, the capture edge is the falling edge; for Microwire, the capture edge is the rising edge.

 $<sup>^{(99)}</sup>$  Valid values of rx\_sample\_dly range from 1 to 64 (units are in T  $_{spi\_ref\_clk}$  steps)



Figure 6. SPI Master Output Timing Diagram

# scph\* = 0





<sup>\*</sup>Serial clock phase configuration bit, in the SPI controller's CTRLRO register



Figure 7. SPI Master Input Timing Diagram





\*Serial clock phase configuration bit, in the SPI controller's CTRLRO register



#### Table 63. **SPI Slave Timing Requirements for Intel Stratix 10 Devices**

| Symbol                   | Description                                                              | Min                                       | Тур | Max                                        | Unit |
|--------------------------|--------------------------------------------------------------------------|-------------------------------------------|-----|--------------------------------------------|------|
| T <sub>spi_ref_clk</sub> | The period of the SPI internal reference clock, sourced from 14_main_clk | 5                                         | _   | _                                          | ns   |
| T <sub>clk</sub>         | SPIM_CLK clock period                                                    | 30                                        | _   | _                                          | ns   |
| T <sub>dutycycle</sub>   | SPIM_CLK duty cycle                                                      | 45                                        | 50  | 55                                         | %    |
| T <sub>d</sub>           | Master-in slave-out (MISO) output skew                                   | $(2 \times T_{\text{spi\_ref\_clk}}) + 3$ | _   | $(3 \times T_{\text{spi\_ref\_clk}}) + 11$ | ns   |
| T <sub>su</sub>          | Master-out slave-in (MOSI) setup time                                    | 4                                         | _   | _                                          | ns   |
| T <sub>h</sub>           | Master-out slave-in (MOSI) hold time                                     | 0                                         | _   | _                                          | ns   |
| T <sub>suss</sub>        | SPI_SS_N asserted to first SPIM_CLK edge                                 | T <sub>spi_ref_clk</sub> + 4              | _   | _                                          | ns   |
| T <sub>hss</sub>         | Last SPIM_CLK edge to SPI_SS_N deasserted                                | T <sub>spi_ref_clk</sub> + 4              | _   | _                                          | ns   |



Figure 8. SPI Slave Output Timing Diagram







<sup>\*</sup>Serial clock phase configuration bit, in the SPI controller's CTRLRO register



Figure 9. **SPI Slave Input Timing Diagram** 







<sup>\*</sup>Serial clock phase configuration bit, in the SPI controller's CTRLR0 register

#### Stratix® 10 Device Datasheet



### **Related Links**

### SPI Controller

For more information about the SPI controller and timing, refer to the SPI Controller chapter in the Stratix 10 Hard Processor System Technical Reference Manual



## **HPS SD/MMC Timing Characteristics - Preliminary**

#### Secure Digital (SD)/MultiMediaCard (MMC) Timing Requirements for Intel Stratix 10 Devices Table 64.

These timings apply to SD, MMC, and embedded MMC (eMMC) cards operating at 1.8 V.

| Symbol                         | Description                                                         | Min                                                | Тур | Max                                           | Unit |
|--------------------------------|---------------------------------------------------------------------|----------------------------------------------------|-----|-----------------------------------------------|------|
| T <sub>sdmmc_cclk</sub>        | SDMMC_CCLK clock period (Identification mode)                       | 2500                                               | _   | _                                             | ns   |
|                                | SDMMC_CCLK clock period (SDR12)                                     | 40                                                 | _   | _                                             | ns   |
|                                | SDMMC_CCLK clock period (SDR25)                                     | 20                                                 | _   | _                                             | ns   |
| T <sub>dutycycle</sub>         | SDMMC_CCLK duty cycle                                               | 45                                                 | 50  | 55                                            | %    |
| T <sub>sdmmc_cclk_jitter</sub> | SDMMC_CCLK output jitter                                            | _                                                  | _   | 2                                             | %    |
| T <sub>sdmmc_clk</sub>         | Internal reference clock before division by 4. Sourced by I4_mp_clk | 5                                                  | _   | _                                             | ns   |
| T <sub>d</sub>                 | SDMMC_CMD/SDMMC_DATA[7:0] output delay (100)                        | T <sub>sdmmc_clk</sub> × drvsel/2 <sup>(101)</sup> | _   | 3 + (T <sub>sdmmc_clk</sub> × drvsel/2) (101) | ns   |
| T <sub>su</sub>                | SDMMC_CMD/SDMMC_DATA[7:0] input setup (102)                         | 6 - (T <sub>sdmmc_clk</sub> × smplsel/2)           | _   | _                                             | ns   |
| T <sub>h</sub>                 | SDMMC_CMD/SDMMC_DATA[7:0] input hold (102)                          | $0.5 + (T_{sdmmc\_clk} \times smplsel/2)$          | _   | _                                             | ns   |

None of the HPS I/Os supports 3 V mode, while SD/MMC cards must operate at 3 V at power on. eMMC devices can operate at 1.8 V at power on.

Note:

SD cards power up at 3 V. To support SD, your design must include a level shifter between the SD card and the HPS SD/MMC interface.

<sup>(100</sup> When the drvsel bitfield in the sdmmc register is set to 3 (in the system manager) and the reference clock (14\_mp\_clk) is 200 MHz ) for example, the output delay time is 7.5 to 10.5 ns.

 $<sup>^{(101)}</sup>$  sdmmc\_clk, sourced from 14\_mp\_clk, is the SD/MMC controller reference clock.

<sup>(102</sup> When the smplsel bitfield in the sdmmc register is set to 2 (in the system manager) and the reference clock (14 mp clk) is 200 MHz for example, the setup time is 1 ns and the hold time is 5.5 ns.



Figure 10. SD/MMC Timing Diagram



### **Related Links**

#### SD/MMC Controller

For more information about the SD/MMC controller and timing, refer to the SD/MMC Controller chapter in the Stratix 10 Hard Processor System Technical Reference Manual



### **HPS USB UPLI Timing Characteristics - Preliminary**

USB 2.0 Transceiver Macrocell Interface Plus (UTMI+) Low Pin Interface (ULPI) Timing Requirements for Intel Table 65. **Stratix 10 Devices** 

| Symbol               | Description                                  | Min | Тур    | Max | Unit |
|----------------------|----------------------------------------------|-----|--------|-----|------|
| T <sub>usb_clk</sub> | USB_CLK clock period                         | _   | 16.667 | _   | ns   |
| T <sub>d</sub>       | Clock to USB_STP/USB_DATA[7:0] output delay  | 1.5 | _      | 7   | ns   |
| T <sub>su</sub>      | Setup time for USB_DIR/USB_NXT/USB_DATA[7:0] | 3.5 | _      | _   | ns   |
| T <sub>h</sub>       | Hold time for USB_DIR/USB_NXT/USB_DATA[7:0]  | 0.5 | _      | _   | ns   |

Figure 11. USB ULPI Timing Diagram



The USB interface supports single data rate (SDR) timing only. Note:

#### **Related Links**

USB 2.0 OTG Controller

For more information about the USB 2.0 OTG controller and timing, refer to the USB 2.0 OTG Controller chapter in the Stratix 10 Hard Processor System Technical Reference Manual



### **HPS Ethernet Media Access Controller (EMAC) Timing Characteristics - Preliminary**

Table 66. Reduced Gigabit Media Independent Interface (RGMII) TX Timing Requirements for Intel Stratix 10 Devices

| Symbol                                | Description                      | Min          | Тур | Max          | Unit |
|---------------------------------------|----------------------------------|--------------|-----|--------------|------|
| T <sub>clk</sub> (1000Base-T)         | TX_CLK clock period              | 8 – 50 PPM   | 8   | 8 + 50 PPM   | ns   |
| T <sub>clk</sub> (100Base-T)          | TX_CLK clock period              | 40 - 50 PPM  | 40  | 40 + 50 PPM  | ns   |
| T <sub>clk</sub> (10Base-T)           | TX_CLK clock period              | 400 - 50 PPM | 400 | 400 + 50 PPM | ns   |
| T <sub>dutycycle</sub> (1000Base-T)   | TX_CLK duty cycle                | 45           | 50  | 55           | %    |
| T <sub>dutycycle</sub> (10/100Base-T) | TX_CLK duty cycle                | 40           | 50  | 60           | %    |
| T <sub>d</sub> (103) (104)            | TXD/TX_CTL to TX_CLK output skew | -0.5         | _   | 0.5          | ns   |

Figure 12. RGMII TX Timing Diagram



 Table 67.
 RGMII RX Timing Requirements for Intel Stratix 10 Devices

| Symbol                        | Description         | Min         | Тур | Max         | Unit      |
|-------------------------------|---------------------|-------------|-----|-------------|-----------|
| T <sub>clk</sub> (1000Base-T) | RX_CLK clock period | 8 - 50 PPM  | 8   | 8 + 50 PPM  | ns        |
| T <sub>clk</sub> (100Base-T)  | RX_CLK clock period | 40 - 50 PPM | 40  | 40 + 50 PPM | ns        |
|                               |                     |             |     |             | continued |

 $<sup>^{(103)}</sup>$  Rise and fall times depend on the I/O standard, drive strength, and loading. Intel recommends simulating your configuration.

<sup>(104</sup> If you connect a PHY that does not implement clock-to-data skew, you can delay TX\_CLK by 1.5—2.0 ns with the HPS I/O programmable delay, to meet the PHY's 1-ns data-to-clock skew requirement.



| Symbol                                | Description                      | Min          | Тур | Max          | Unit |
|---------------------------------------|----------------------------------|--------------|-----|--------------|------|
| T <sub>clk</sub> (10Base-T)           | RX_CLK clock period              | 400 - 50 PPM | 400 | 400 + 50 PPM | ns   |
| T <sub>dutycycle</sub> (1000Base-T)   | RX_CLK duty cycle                | 45           | 50  | 55           | %    |
| T <sub>dutycycle</sub> (10/100Base-T) | RX_CLK duty cycle                | 40           | 50  | 60           | %    |
| T <sub>su</sub>                       | RX_D/RX_CTL to RX_CLK setup time | 1            | _   | _            | ns   |
| T <sub>h</sub> (105)                  | RX_CLK to RX_D/RX_CTL hold time  | 1            | _   | _            | ns   |

Figure 13. RGMII RX Timing Diagram



Table 68. Reduced Media Independent Interface (RMII) Clock Timing Requirements for Intel Stratix 10 Devices

| Symbol Description         |                                                            | Min         | Тур | Max         | Unit |
|----------------------------|------------------------------------------------------------|-------------|-----|-------------|------|
| T <sub>clk</sub>           | REF_CLK clock period, sourced by HPS TX_CLK                | 20 - 50 PPM | 20  | 20 + 50 PPM | ns   |
|                            | REF_CLK clock period, sourced by external clock source     | 20 - 50 PPM | 20  | 20 + 50 PPM | ns   |
| T <sub>dutycycle_int</sub> | Clock duty cycle, REF_CLK sourced by TX_CLK                | 35          | 50  | 65          | %    |
| T <sub>dutycycle_ext</sub> | Clock duty cycle, REF_CLK sourced by external clock source | 35          | 50  | 65          | %    |

## Table 69. RMII TX Timing Requirements for Intel Stratix 10 Devices

| Symbol | Description                            | Min | Тур | Max | Unit |
|--------|----------------------------------------|-----|-----|-----|------|
| $T_d$  | TX_CLK to TXD/TX_CTL output data delay | 2   | _   | 10  | ns   |

<sup>(105</sup> If you connect a PHY that does not implement clock-to-data skew, you can meet the HPS EMAC's 1 ns setup time by delaying RX\_CLK by 1.5-2 ns, using the HPS I/O programmable delay.



Table 70. RMII RX Timing Requirements for Intel Stratix 10 Devices

| Symbol          | Description            | Min | Тур | Max | Unit |
|-----------------|------------------------|-----|-----|-----|------|
| T <sub>su</sub> | RX_D/RX_CTL setup time | 2   | _   | _   | ns   |
| T <sub>h</sub>  | RX_D/RX_CTL hold time  | 1   | _   | _   | ns   |

Table 71. Management Data Input/Output (MDIO) Timing Requirements for Intel Stratix 10 Devices

| Symbol           | Description                   | Min | Тур | Max | Unit |
|------------------|-------------------------------|-----|-----|-----|------|
| T <sub>clk</sub> | MDC clock period              | _   | 400 | _   | ns   |
| T <sub>d</sub>   | MDC to MDIO output data delay | 10  | _   | 20  | ns   |
| T <sub>su</sub>  | Setup time for MDIO data      | 10  | _   | _   | ns   |
| T <sub>h</sub>   | Hold time for MDIO data       | 0   | _   | _   | ns   |

Figure 14. MDIO Timing Diagram



#### **Related Links**

#### Ethernet Media Access Controller

For more information about the Ethernet MAC and timing, refer to the *Ethernet Media Access Controller* chapter in the *Stratix 10 Hard Processor System Technical Reference Manual* 



## **HPS I<sup>2</sup>C Timing Characteristics - Preliminary**

Table 72. I<sup>2</sup>C Timing Requirements for Intel Stratix 10 Devices

| Symbol                                               | Description                                       | Standa    | rd Mode    | Fast Mode |           | Unit |  |  |
|------------------------------------------------------|---------------------------------------------------|-----------|------------|-----------|-----------|------|--|--|
|                                                      |                                                   | Min       | Max        | Min       | Max       |      |  |  |
| T <sub>clk</sub>                                     | Serial clock (SCL) clock period                   | 10        | _          | 2.5       | _         | μs   |  |  |
| T <sub>clk_jitter</sub>                              | I2C clock output jitter                           | _         | 2          | _         | 2         | %    |  |  |
| T <sub>HIGH</sub> (106)                              | SCL high period                                   | 4 (107)   | _          | 0.6 (108) | _         | μs   |  |  |
| T <sub>LOW</sub> (109)                               | SCL low period                                    | 4.7 (110) | _          | 1.3 (111) | _         | μs   |  |  |
| T <sub>SU;DAT</sub>                                  | Setup time for serial data line (SDA) data to SCL | 0.25      | _          | 0.1       | _         | μs   |  |  |
| T <sub>HD;DAT</sub> (112)                            | Hold time for SCL to SDA data                     | 0         | 3.15       | 0         | 0.6       | μs   |  |  |
| T <sub>VD;DAT</sub> and<br>T <sub>VD;ACK</sub> (113) | SCL to SDA output data delay                      | _         | 3.45 (114) | _         | 0.9 (115) | μs   |  |  |
|                                                      | continued                                         |           |            |           |           |      |  |  |

You can adjust  $T_{high}$  using the <code>ic\_ss\_scl\_hcnt</code> or <code>ic\_fs\_scl\_hcnt</code> register.

The recommended minimum setting for ic\_ss\_scl\_hcnt is 440.

(108 The recommended minimum setting for ic\_fs\_scl\_hcnt is 71.

You can adjust  $T_{low}$  using the <code>ic\_ss\_scl\_lcnt</code> or <code>ic\_fs\_scl\_lcnt</code> register.

(110 The recommended minimum setting for ic\_ss\_scl\_lcnt is 500. )

(111 The recommended minimum setting for ic\_fs\_scl\_lcnt is 141. )

 $^{(112}$   $T_{\mbox{\scriptsize HD;DAT}}$  is affected by the rise and fall time.

#### Stratix® 10 Device Datasheet



| Symbol                   | Description                                    | Standa | Standard Mode |      | Fast Mode |    |  |
|--------------------------|------------------------------------------------|--------|---------------|------|-----------|----|--|
|                          |                                                | Min    | Max           | Min  | Max       |    |  |
| T <sub>SU;STA</sub>      | Setup time for a repeated start condition      | 4.7    | _             | 0.6  | _         | μs |  |
| T <sub>HD;STA</sub>      | Hold time for a repeated start condition       | 4      | _             | 0.6  | _         | μs |  |
| T <sub>SU;STO</sub>      | Setup time for a stop condition                | 4      | _             | 0.6  | _         | μs |  |
| T <sub>BUF</sub>         | SDA high pulse duration between STOP and START | 4.7    | _             | 1.3  | _         | μs |  |
| T <sub>scl:r</sub> (116) | SCL rise time                                  | _      | 1000          | 20   | 300       | ns |  |
| T <sub>scl:f</sub> (116) | SCL fall time                                  | _      | 300           | 6.54 | 300       | ns |  |
| T <sub>sda:r</sub> (116) | SDA rise time                                  | _      | 1000          | 20   | 300       | ns |  |
| T <sub>sda:f</sub> (116) | SDA fall time                                  | _      | 300           | 6.54 | 300       | ns |  |

 $T_{VD;DAT}$  and  $T_{VD;ACK}$  are affected by the rise and fall time, as well as the SDA hold time (set by adjusting the ic\_sda\_hold register).

Use maximum  $\mbox{\tt SDA\_HOLD}$  = 240 to be within the specification.

Use maximum  ${\tt SDA\_HOLD}$  = 60 to be within the specification.

<sup>(116</sup> Rise and fall time parameters vary depending on external factors such as the characteristics of the IO driver, pull-up resistor value, ) and total capacitance on the transmission line.



Figure 15. I<sup>2</sup>C Timing Diagram



### **Related Links**

### I<sup>2</sup>C Controller

For more information about the  $I^2C$  controller and timing, refer to the  $I^2C$  Controller chapter in the Stratix 10 Hard Processor System Technical Reference Manual



## **HPS NAND Timing Characteristics - Preliminary**

# Table 73. NAND ONFI 1.0 Timing Requirements for Intel Stratix 10 Devices

| Symbol                 | Description                                     | Min | Max | Unit |
|------------------------|-------------------------------------------------|-----|-----|------|
| T <sub>WP</sub> (117)  | Write enable pulse width                        | 10  | _   | ns   |
| T <sub>WH</sub> (117)  | Write enable hold time                          | 7   | _   | ns   |
| T <sub>RP</sub> (117)  | Read enable pulse width                         | 10  | _   | ns   |
| T <sub>REH</sub> (117) | Read enable hold time                           | 7   | _   | ns   |
| T <sub>CLS</sub> (117) | Command latch enable to write enable setup time | 10  | _   | ns   |
| T <sub>CLH</sub> (117) | Command latch enable to write enable hold time  | 5   | _   | ns   |
| T <sub>CS</sub> (117)  | Chip enable to write enable setup time          | 15  | _   | ns   |
| T <sub>CH</sub> (117)  | Chip enable to write enable hold time           | 5   | _   | ns   |
| T <sub>ALS</sub> (117) | Address latch enable to write enable setup time | 10  | _   | ns   |
| T <sub>ALH</sub> (117) | Address latch enable to write enable hold time  | 5   | _   | ns   |
| T <sub>DS</sub> (117)  | Data to write enable setup time                 | 7   | _   | ns   |
| T <sub>DH</sub> (117)  | Data to write enable hold time                  | 5   | _   | ns   |
| T <sub>WB</sub> (117)  | Write enable high to R/B low                    | -   | 200 | ns   |
| T <sub>CEA</sub>       | Chip enable to data access time                 | -   | 100 | ns   |
| T <sub>REA</sub>       | Read enable to data access time                 | _   | 40  | ns   |
| T <sub>RHZ</sub>       | Read enable to data high impedance              | _   | 200 | ns   |
| T <sub>RR</sub>        | Ready to read enable low                        | 20  | _   | ns   |

<sup>(117</sup> This timing is software programmable. Refer to the *NAND Flash Controller* chapter in the *Stratix 10 Hard Processor System Technical*) *Reference Manual* for more information about software-programmable timing in the NAND flash controller.



Figure 16. NAND Command Latch Timing Diagram





Figure 17. NAND Address Latch Timing Diagram





Figure 18. NAND Data Output Cycle Timing Diagram



Figure 19. NAND Data Input Cycle Timing Diagram





Figure 20. NAND Data Input Timing Diagram for Extended Data Output (EDO) Cycle





Figure 21. NAND Read Status Timing Diagram





Figure 22. NAND Read Status Enhanced Timing Diagram



#### **Related Links**

#### NAND Flash Controller

Refer to the NAND Flash Controller chapter in the Stratix 10 Hard Processor System Technical Reference Manual for more information about the NAND flash controller and timing, particularly software-programmable timing.



### **HPS Trace Timing Characteristics - Preliminary**

#### Table 74. Trace Timing Requirements for Intel Stratix 10 Devices

To increase the trace bandwidth, Intel recommends routing the trace interface to the FPGA in the HPS Qsys component. The FPGA trace interface offers a 64-bit single data rate path that can be converted to double data rate to minimize FPGA I/O usage.

Depending on the trace module that you connect to the HPS trace interface, you may need to include board termination to achieve the maximum sampling speed possible. Refer to your trace module datasheet for termination recommendations.

Most trace modules implement programmable clock and data skew, to improve trace data timing margins. Alternatively, you can change the clock-to-data timing relationship with the HPS programmable I/O delay.

| Symbol                  | Description                                  | Min   | Тур | Max | Unit |
|-------------------------|----------------------------------------------|-------|-----|-----|------|
| T <sub>clk</sub>        | Trace clock period                           | 6.667 | _   | _   | ns   |
| T <sub>clk_jitter</sub> | Trace clock output jitter                    | _     | _   | 2   | %    |
| T <sub>dutycycle</sub>  | Trace clock maximum duty cycle               | 45    | 50  | 55  | %    |
| T <sub>d</sub>          | T <sub>clk</sub> to D0–D15 output data delay | 0     | _   | 1.8 | ns   |

Figure 23. Trace Timing Diagram





#### **HPS GPIO Interface - Preliminary**

The general-purpose I/O (GPIO) interface has debounce circuitry included to remove signal glitches. The debounce clock frequency ranges from 125 Hz to 32 kHz. The minimum pulse width is 1 debounce clock cycle and the minimum detectable GPIO pulse width is 62.5 µs (at 32 kHz). Any pulses shorter than 2 debounce clock cycles are filtered by the GPIO peripheral.

If the external signal is driven into the GPIO for less than one clock cycle, the external signal is filtered. If the external signal is between one and two clock cycles, the external signal may or may not be filtered depending on the phase of the signal. If the external signal is more than two clock cycles, the external signal is not filtered.

#### **Related Links**

#### General-Purpose I/O Interface

For more information about the GPIO interface and timing, refer to the *General-Purpose I/O Interface* chapter in the *Stratix 10 Hard Processor System Technical Reference Manual* 



## **HPS JTAG Timing Characteristics - Preliminary**

#### Table 75. **HPS JTAG Timing Requirements for Intel Stratix 10 Devices**

| Symbol                  | Description                              | Min   | Тур | Max | Unit |
|-------------------------|------------------------------------------|-------|-----|-----|------|
| t <sub>JCP</sub>        | TCK clock period                         | 41.66 | _   | _   | ns   |
| t <sub>JCH</sub>        | TCK clock high time                      | 20    | _   | _   | ns   |
| t <sub>JCL</sub>        | TCK clock low time                       | 20    | _   | _   | ns   |
| t <sub>JPSU</sub> (TDI) | TDI JTAG port setup time                 | 5     | _   | _   | ns   |
| t <sub>JPSU</sub> (TMS) | TMS JTAG port setup time                 | 5     | _   | _   | ns   |
| t <sub>JPH</sub>        | JTAG port hold time                      | 0     | _   | _   | ns   |
| t <sub>JPCO</sub>       | JTAG port clock to output                | 0     | _   | 8   | ns   |
| t <sub>JPZX</sub>       | JTAG port high impedance to valid output | _     | _   | 10  | ns   |
| t <sub>JPXZ</sub>       | JTAG port valid output to high impedance | _     | _   | 10  | ns   |



### **HPS Programmable I/O Timing Characteristics - Preliminary**

Table 76. Programmable I/O Delay for Intel Stratix 10 Device

| Programmable<br>Delay | Description   | Min | Typ <sup>(118)</sup> | Max | Unit |
|-----------------------|---------------|-----|----------------------|-----|------|
| 0                     | Delay Step 1  | TBD | TBD                  | TBD | ps   |
| 1                     | Delay Step 2  | TBD | TBD                  | TBD | ps   |
| 2                     | Delay Step 3  | TBD | TBD                  | TBD | ps   |
| 3                     | Delay Step 4  | TBD | TBD                  | TBD | ps   |
| 4                     | Delay Step 5  | TBD | TBD                  | TBD | ps   |
| 5                     | Delay Step 6  | TBD | TBD                  | TBD | ps   |
| 6                     | Delay Step 7  | TBD | TBD                  | TBD | ps   |
| 7                     | Delay Step 8  | TBD | TBD                  | TBD | ps   |
| 8                     | Delay Step 9  | TBD | TBD                  | TBD | ps   |
| 9                     | Delay Step 10 | TBD | TBD                  | TBD | ps   |
| 10                    | Delay Step 11 | TBD | TBD                  | TBD | ps   |
| 11                    | Delay Step 12 | TBD | TBD                  | TBD | ps   |
| 12                    | Delay Step 13 | TBD | TBD                  | TBD | ps   |
| 13                    | Delay Step 14 | TBD | TBD                  | TBD | ps   |
| 14                    | Delay Step 15 | TBD | TBD                  | TBD | ps   |
| 15                    | Delay Step 16 | TBD | TBD                  | TBD | ps   |

You can program the number of delay steps by adjusting the I/O Delay register (io0\_delay through io47\_delay for I/Os 0 through 47).

 $<sup>\</sup>stackrel{\mbox{\scriptsize (118}}{\mbox{\scriptsize bach delay step is approximately 150 ps.}}{\mbox{\scriptsize )}}$ 



## **Configuration Specifications**

## **POR Specifications**

Power-on reset (POR) delay is defined as the delay between the time when all the power supplies monitored by the POR circuitry reach the minimum recommended operating voltage to the time when the nSTATUS is released high and your device is ready to begin configuration.

**Table 77.** POR Delay Specification for Stratix 10 Devices

| POR Delay                                                   | Minimum | Maximum | Unit |
|-------------------------------------------------------------|---------|---------|------|
| AS (Normal mode), AVST ×8, AVST ×16, AVST ×32, NAND, SD/MMC | 12      | 20      | ms   |
| AS (Fast mode)                                              | 2       | 6.5     | ms   |

## **External Configuration Clock Source Requirements**

#### Table 78. External Configuration Clock Source (OSC\_CLK\_1) Clock Input Requirements—Preliminary

| Description                  | External Clock Source            | Min | Тур        | Max | Unit |
|------------------------------|----------------------------------|-----|------------|-----|------|
| Clock input frequency (119)  | Powered by V <sub>CCIO_SDM</sub> |     | 25/100/125 |     | MHz  |
| Clock input jitter tolerance |                                  | _   | _          | 2   | %    |
| Clock input duty cycle       |                                  | 45  | 50         | 55  | %    |

 $<sup>^{(119)}</sup>$  The acceptable clock frequencies are 25 MHz, 100 MHz, and 125 MHz only. Other frequencies in the range are not supported.



## **JTAG Configuration Timing**

Table 79. JTAG Timing Parameters and Values for Stratix 10 Devices—Preliminary

| Symbol                  | Description                              | Requirement              |         | Unit |
|-------------------------|------------------------------------------|--------------------------|---------|------|
|                         |                                          | Minimum                  | Maximum |      |
| t <sub>JCP</sub>        | TCK clock period                         | 30, 167 <sup>(120)</sup> | _       | ns   |
| t <sub>JCH</sub>        | TCK clock high time                      | 14                       | _       | ns   |
| t <sub>JCL</sub>        | TCK clock low time                       | 14                       | _       | ns   |
| t <sub>JPSU (TDI)</sub> | TDI JTAG port setup time                 | 2                        | _       | ns   |
| t <sub>JPSU (TMS)</sub> | TMS JTAG port setup time                 | 3                        | _       | ns   |
| t <sub>JPH</sub>        | JTAG port hold time                      | 5                        | _       | ns   |
| t <sub>JPCO</sub>       | JTAG port clock to output                | _                        | 7       | ns   |
| t <sub>JPZX</sub>       | JTAG port high impedance to valid output | _                        | 14      | ns   |
| t <sub>JPXZ</sub>       | JTAG port valid output to high impedance | _                        | 14      | ns   |

Figure 24. JTAG Timing Diagram



The minimum TCK clock period is 167 ns if  $V_{CCBAT}$  is within the range 1.2 V – 1.8 V when you perform the volatile key programming.



## **AS Configuration Timing**

#### Table 80. AS Timing Parameters for Stratix 10 Devices—Preliminary

Intel recommends performing trace length matching for nCSO and  $AS\_DATA$  pins to  $AS\_CLK$  to minimize the skew. The maximum tolerance for skew between nCSO and  $AS\_CLK$  is less than 200 ps. The tolerance for skew between  $AS\_DATA$  and  $AS\_CLK$  ranges between 200 ps - 400 ps.

| Symbol                       | Description                                                                  | Minimum    | Typical | Maximum    | Unit   |
|------------------------------|------------------------------------------------------------------------------|------------|---------|------------|--------|
| T <sub>clk</sub>             | AS_CLK clock period                                                          | 7.52       | _       | _          | ns     |
| T <sub>dutycycle</sub>       | AS_CLK duty cycle                                                            | 45         | 50      | 55         | %      |
| T <sub>dcsfrs</sub>          | AS_nCSO[3:0] asserted to first AS_CLK edge                                   | 4.21 (121) | _       | 6.05 (121) | ns     |
| T <sub>dcslst</sub>          | Last AS_CLK edge to AS_nCSO[3:0] deasserted                                  | 5.18 (121) | _       | 7.03 (121) | ns     |
| T <sub>do</sub>              | AS_DATA0 output delay                                                        | 0          | _       | 1.31       | ns     |
| T <sub>ext_delay</sub> (122) | Total external propagation delay on AS signals                               | 0          | _       | 15         | ns     |
| T <sub>ext_skew</sub>        | Skew delay for AS_DATA signals                                               | _          | _       | 2          | ns     |
| T <sub>dcsb2b</sub>          | Minimum delay of slave select deassertion between two back-to-back transfers | 1          | _       | _          | AS_CLK |

Tbd\_clk: Propagation delay for AS\_CLK between FPGA and flash device.

Tco: Output hold time of flash device.

Tbd\_data: Propagation delay for AS\_DATA bus between FPGA and flash device.

 ${\tt Tadd: Propagation \ delay \ for \ active/passive \ components \ on \ {\tt AS\_DATA \ interfaces.}}$ 

 $<sup>^{(121)}</sup>$  AS operating at maximum clock frequency = 133 MHz. The delay is larger when operating at AS clock frequency lower than 133 MHz.

<sup>(122</sup> Text\_delay = Tbd\_clk + Tco + Tbd\_data + Tadd



Figure 25. AS Configuration Serial Output Timing Diagram



Figure 26. AS Configuration Serial Input Timing Diagram



## **Avalon-ST Configuration Timing**

Table 81. Avalon-ST Timing Parameters for ×8, ×16, and ×32 Configurations in Stratix 10 Devices—Preliminary

| Symbol                  | Description                                         | Minimum | Maximum | Unit |  |
|-------------------------|-----------------------------------------------------|---------|---------|------|--|
| t <sub>ST0</sub>        | nSTATUS low pulse during configuration error        | 0.5     | 1.5     | ms   |  |
| t <sub>ACLKH</sub>      | AVST_CLK high time                                  | 3.6     | _       | ns   |  |
| t <sub>ACLKL</sub>      | AVST_CLK low time                                   | 3.6     | _       | ns   |  |
| t <sub>ACLKP</sub>      | AVST_CLK period                                     | 8       | _       | ns   |  |
| t <sub>ADSU</sub> (123) | AVST_DATA setup time before rising edge of AVST_CLK | 5.5     | _       | ns   |  |
|                         | continued                                           |         |         |      |  |



| Symbol                 | Description                                          | Minimum | Maximum | Unit |
|------------------------|------------------------------------------------------|---------|---------|------|
| t <sub>ADH</sub> (123) | AVST_DATA hold time after rising edge of AVST_CLK    | 0       | _       | ns   |
| t <sub>AVSU</sub>      | AVST_VALID setup time before rising edge of AVST_CLK | 5.5     | _       | ns   |
| t <sub>AVDH</sub>      | AVST_VALID hold time after rising edge of AVST_CLK   | 0       | _       | ns   |

**Avalon-ST Configuration Timing Diagram** Figure 27.



#### Notes:

- 1. For Avalon-ST x16 and x32, this signal is AVST\_CLK. These clocks must be running throughout the configuration (until CONF\_DONE goes high).
- 2. AVST\_READY is valid only when nSTATUS is high. AVST\_READY is an asynchronous signal to AVSTx8\_CLK.
- 3. For Avalon-ST x16 and x32, this signal is AVST\_VALID.
- 4. The waveforms shows the interface signals with a host which uses ready latency = 2. The AVSTx8\_VALID signal is delayed from AVST\_READY signal by 2 clock cycles.
- 5. For Avalon-ST x16 and x32, this signal is AVST\_DATA[15:0] and AVST\_DATA[31:0] respectively.
- 6. Host may send up to 6 more data after AVST\_READY has de-asserted.

 $<sup>^{(123)}</sup>$  Data sampled by the FPGA (sink) at the next rising clock edge.



## **NAND Configuration Timing**

### Table 82. NAND ONFI 1.0 Mode 0-5 Timing Requirements for Stratix 10 Devices—Preliminary

This table shows Mode 5 timing.

| Symbol           | Description                                     | Minimum | Maximum | Unit |
|------------------|-------------------------------------------------|---------|---------|------|
| t <sub>WP</sub>  | Write enable pulse width                        | 10      | _       | ns   |
| t <sub>WH</sub>  | Write enable hold time                          | 7       | _       | ns   |
| t <sub>RP</sub>  | Read enable pulse width                         | 10      | _       | ns   |
| t <sub>REH</sub> | Read enable hold time                           | 7       | _       | ns   |
| t <sub>CLS</sub> | Command latch enable to write enable setup time | 10      | _       | ns   |
| t <sub>CLH</sub> | Command latch enable to write enable hold time  | 5       | _       | ns   |
| t <sub>CS</sub>  | Chip enable to write enable setup time          | 15      | _       | ns   |
| t <sub>CH</sub>  | Chip enable to write enable hold time           | 5       | _       | ns   |
| t <sub>ALS</sub> | Address latch enable to write enable setup time | 10      | _       | ns   |
| t <sub>ALH</sub> | Address latch enable to write enable hold time  | 5       | _       | ns   |
| t <sub>DS</sub>  | Data to write enable setup time                 | 7       | _       | ns   |
| t <sub>DH</sub>  | Data to write enable hold time                  | 5       | _       | ns   |
| t <sub>CEA</sub> | Chip enable to data access time                 | _       | 100     | ns   |
| t <sub>REA</sub> | Read enable to data access time                 | _       | 40      | ns   |
| t <sub>RHZ</sub> | Read enable to data high impedance              | _       | 200     | ns   |
| t <sub>RR</sub>  | Ready to read enable low                        | 20      | _       | ns   |
| t <sub>WB</sub>  | Write enable high to R/B low                    | _       | 200     | ns   |



Figure 28. NAND Command Latch Timing Diagram





Figure 29. NAND Address Latch Timing Diagram





Figure 30. NAND Data Output Cycle Timing Diagram



Figure 31. NAND Data Input Cycle Timing Diagram





Figure 32. NAND Data Input Timing Diagram for Extended Data Output (EDO) Cycle





Figure 33. NAND Read Status Timing Diagram





Figure 34. NAND Read Status Enhanced Timing Diagram



## **SD/MMC Configuration Timing**

Table 83. SD/MMC Timing Parameters for Stratix 10 Devices—Preliminary

| Symbol                 | Description                                       | Minimum | Typical | Maximum | Unit |
|------------------------|---------------------------------------------------|---------|---------|---------|------|
| t <sub>SDCLKP</sub>    | SDMMC_CFG_CCLK clock period (Identification mode) | 2,500   | _       | _       | ns   |
|                        | SDMMC_CFG_CCLK clock period (Standard SD mode)    | 40      | _       | _       | ns   |
|                        | SDMMC_CFG_CCLK clock period (High-speed SD mode)  | 20      | _       | _       | ns   |
| t <sub>DUTYCYCLE</sub> | SDMMC_CFG_CCLK duty cycle                         | 45      | 50      | 55      | %    |
| t <sub>d</sub>         | SDMMC_CFG_CMD/SDMMC_CFG_DATA output delay         | 7.3     | _       | 10.1    | ns   |
| t <sub>SU</sub>        | SDMMC_CFG_CMD/SDMMC_CFG_DATA input setup          | 4.37    | _       | _       | ns   |
| t <sub>H</sub>         | SDMMC_CFG_CMD/SDMMC_CFG_DATA input hold           | 0       | _       | _       | ns   |



Figure 35. SD/MMC Timing Diagram



#### **Initialization**

#### **Initialization Time for Stratix 10 Devices—Preliminary** Table 84.

| Configuration Scheme                          | Maximum duration required for initialization |
|-----------------------------------------------|----------------------------------------------|
| AS, AVST ×8, AVST ×16, AVST ×32, NAND, SD/MMC | 2 ms <sup>(124)</sup>                        |

## **Configuration Bit Stream Sizes**

#### Table 85. Configuration Bit Stream Sizes for Stratix 10 Devices—Preliminary

This table shows the estimated configuration bit stream sizes of the EPCQ-L serial configuration device or external flash size before design compilation. The sizes are for compressed bit stream. The actual sizes may vary based on your design. The actual sizes may be equal or smaller than the bit stream sizes in this table.

| Variant       | Product Line     | Compressed Configuration Bit Stream Size (Mbits) |
|---------------|------------------|--------------------------------------------------|
| Stratix 10 GX | GX 400, GX 650   | 79                                               |
|               | GX 850, GX 1100  | 133                                              |
|               | GX 1650, GX 2100 | 227                                              |
|               |                  | continued                                        |

<sup>(124</sup> This specification is the initialization time that indicates the time from CONF\_DONE signal goes high to INIT\_DONE signal goes high.



| Variant       | Product Line     | Compressed Configuration Bit Stream Size (Mbits) |
|---------------|------------------|--------------------------------------------------|
|               | GX 2500, GX 2800 | 336                                              |
|               | GX 4500, GX 5500 | 448                                              |
| Stratix 10 SX | SX 400, SX 650   | 79                                               |
|               | SX 850, SX 1100  | 133                                              |
|               | SX 1650, SX 2100 | 227                                              |
|               | SX 2500, SX 2800 | 336                                              |
|               | SX 4500, SX 5500 | 448                                              |

## **Minimum Configuration Time Estimation**

Hyper Initialization is an option that can be enabled or disabled through the setting in the Intel Quartus Prime software to initialize or reset the HyperFlex registers to a known state at device configuration.

Maximum configuration time does not exceed 2× of the minimum configuration time.

Table 86. Minimum Configuration Time Estimation for Stratix 10 Devices (JTAG and Avalon-ST)—Preliminary

| Variant       | Product Line        |                                                                           | Minimum Configuration Time (ms) [Hyper Initialization Off/Hyper Initialization On] |                                                                           |                                                                     |                                                                           |                                                                     |                                                                           |                                                                     |
|---------------|---------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|
|               |                     | JTAG AVST ×8                                                              |                                                                                    | AVST ×16                                                                  |                                                                     | AVST ×32                                                                  |                                                                     |                                                                           |                                                                     |
|               |                     | 170 - 230<br>MHz Internal<br>Clock (Using<br>Internal<br>Clock<br>Source) | 250 MHz<br>Internal<br>Clock (Using<br>External<br>Clock<br>Source)                | 170 - 230<br>MHz Internal<br>Clock (Using<br>Internal<br>Clock<br>Source) | 250 MHz<br>Internal<br>Clock (Using<br>External<br>Clock<br>Source) | 170 - 230<br>MHz Internal<br>Clock (Using<br>Internal<br>Clock<br>Source) | 250 MHz<br>Internal<br>Clock (Using<br>External<br>Clock<br>Source) | 170 - 230<br>MHz Internal<br>Clock (Using<br>Internal<br>Clock<br>Source) | 250 MHz<br>Internal<br>Clock (Using<br>External<br>Clock<br>Source) |
| Stratix 10 GX | GX 400, GX<br>650   | 3000/3100                                                                 | 3000/3100                                                                          | 137/167                                                                   | 91/111                                                              | 77/108                                                                    | 51/72                                                               | 60/92                                                                     | 40/61                                                               |
|               | GX 850, GX<br>1100  | 5300/5600                                                                 | 5300/5600                                                                          | 228/284                                                                   | 152/189                                                             | 123/179                                                                   | 82/119                                                              | 95/150                                                                    | 63/100                                                              |
|               | GX 1650, GX<br>2100 | 9000/9500                                                                 | 9000/9500                                                                          | 377/426                                                                   | 251/284                                                             | 197/248                                                                   | 131/165                                                             | 107/158                                                                   | 71/105                                                              |
|               |                     |                                                                           |                                                                                    |                                                                           |                                                                     |                                                                           |                                                                     |                                                                           | continued                                                           |



| Variant       | Product Line        |                                                                           | Minimum                                                             | Configuration Ti                                                          | me (ms) [Hyper                                                      | Initialization O                                                          | ff/Hyper Initiali                                                   | zation On]                                                                |                                                                     |
|---------------|---------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|
|               |                     | JTAG                                                                      |                                                                     | AVST ×8                                                                   |                                                                     | AVST ×16                                                                  |                                                                     | AVST ×32                                                                  |                                                                     |
|               |                     | 170 - 230<br>MHz Internal<br>Clock (Using<br>Internal<br>Clock<br>Source) | 250 MHz<br>Internal<br>Clock (Using<br>External<br>Clock<br>Source) | 170 - 230<br>MHz Internal<br>Clock (Using<br>Internal<br>Clock<br>Source) | 250 MHz<br>Internal<br>Clock (Using<br>External<br>Clock<br>Source) | 170 - 230<br>MHz Internal<br>Clock (Using<br>Internal<br>Clock<br>Source) | 250 MHz<br>Internal<br>Clock (Using<br>External<br>Clock<br>Source) | 170 - 230<br>MHz Internal<br>Clock (Using<br>Internal<br>Clock<br>Source) | 250 MHz<br>Internal<br>Clock (Using<br>External<br>Clock<br>Source) |
|               | GX 2500, GX<br>2800 | 13300/14000                                                               | 13300/14000                                                         | 551/620                                                                   | 367/413                                                             | 284/354                                                                   | 189/236                                                             | 150/221                                                                   | 100/147                                                             |
|               | GX 4500, GX<br>5500 | 17600/18700                                                               | 17600/18700                                                         | 723/831                                                                   | 482/554                                                             | 371/480                                                                   | 247/320                                                             | 194/303                                                                   | 129/202                                                             |
| Stratix 10 SX | SX 400, SX<br>650   | 3000/3100                                                                 | 3000/3100                                                           | 137/167                                                                   | 91/111                                                              | 77/108                                                                    | 51/72                                                               | 60/92                                                                     | 40/61                                                               |
|               | SX 850, SX<br>1100  | 5300/5600                                                                 | 5300/5600                                                           | 228/284                                                                   | 152/189                                                             | 123/179                                                                   | 82/119                                                              | 95/150                                                                    | 63/100                                                              |
|               | SX 1650, SX<br>2100 | 9000/9500                                                                 | 9000/9500                                                           | 377/426                                                                   | 251/284                                                             | 197/248                                                                   | 131/165                                                             | 107/158                                                                   | 71/105                                                              |
|               | SX 2500, SX<br>2800 | 13300/14000                                                               | 13300/14000                                                         | 551/620                                                                   | 367/413                                                             | 284/354                                                                   | 189/236                                                             | 150/221                                                                   | 100/147                                                             |
|               | SX 4500, SX<br>5500 | 17600/18700                                                               | 17600/18700                                                         | 723/831                                                                   | 482/554                                                             | 371/480                                                                   | 247/320                                                             | 194/303                                                                   | 129/202                                                             |

Table 87. Minimum Configuration Time Estimation for Stratix 10 Devices (AS, NAND, and SD/MMC)—Preliminary

| Variant       | Product Line     | Minimum Configuration Time (ms) [Hyper Initialization Off/Hyper Initialization On] |                                                               |                                                                     |                                                               |                                                                     |                                                               |
|---------------|------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
|               |                  | AS ×4                                                                              |                                                               | NA                                                                  | IND                                                           | SD/                                                                 | ммс                                                           |
|               |                  | 170 - 230 MHz<br>Internal Clock<br>(Using Internal<br>Clock Source)                | 250 MHz Internal<br>Clock (Using<br>External Clock<br>Source) | 170 - 230 MHz<br>Internal Clock<br>(Using Internal<br>Clock Source) | 250 MHz Internal<br>Clock (Using<br>External Clock<br>Source) | 170 - 230 MHz<br>Internal Clock<br>(Using Internal<br>Clock Source) | 250 MHz Internal<br>Clock (Using<br>External Clock<br>Source) |
| Stratix 10 GX | GX 400, GX 650   | 284/315                                                                            | 189/210                                                       | 366/396                                                             | 244/264                                                       | 366/396                                                             | 244/264                                                       |
|               | GX 850, GX 1100  | 450/506                                                                            | 300/337                                                       | 597/653                                                             | 398/435                                                       | 597/653                                                             | 398/435                                                       |
|               | GX 1650, GX 2100 | 716/767                                                                            | 477/511                                                       | 966/1017                                                            | 644/678                                                       | 966/1017                                                            | 644/678                                                       |
|               |                  |                                                                                    |                                                               |                                                                     |                                                               |                                                                     | continued                                                     |



| Variant       | Product Line     | Minimum Configuration Time (ms) [Hyper Initialization Off/Hyper Initialization On] |                                                               |                                                                     |                                                               |                                                                     |                                                               |
|---------------|------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|
|               |                  | AS ×4                                                                              |                                                               | NAND                                                                |                                                               | SD/MMC                                                              |                                                               |
|               |                  | 170 - 230 MHz<br>Internal Clock<br>(Using Internal<br>Clock Source)                | 250 MHz Internal<br>Clock (Using<br>External Clock<br>Source) | 170 - 230 MHz<br>Internal Clock<br>(Using Internal<br>Clock Source) | 250 MHz Internal<br>Clock (Using<br>External Clock<br>Source) | 170 - 230 MHz<br>Internal Clock<br>(Using Internal<br>Clock Source) | 250 MHz Internal<br>Clock (Using<br>External Clock<br>Source) |
|               | GX 2500, GX 2800 | 1029/1100                                                                          | 686/733                                                       | 1403/1472                                                           | 935/981                                                       | 1403/1472                                                           | 935/981                                                       |
|               | GX 4500, GX 5500 | 1338/1449                                                                          | 892/966                                                       | 1800/1950                                                           | 1200/1300                                                     | 1800/1950                                                           | 1200/1300                                                     |
| Stratix 10 SX | SX 400, SX 650   | 284/315                                                                            | 189/210                                                       | 366/396                                                             | 244/264                                                       | 366/396                                                             | 244/264                                                       |
|               | SX 850, SX 1100  | 450/506                                                                            | 300/337                                                       | 597/653                                                             | 398/435                                                       | 597/653                                                             | 398/435                                                       |
|               | SX 1650, SX 2100 | 716/767                                                                            | 477/511                                                       | 966/1017                                                            | 644/678                                                       | 966/1017                                                            | 644/678                                                       |
|               | SX 2500, SX 2800 | 1029/1100                                                                          | 686/733                                                       | 1403/1472                                                           | 935/981                                                       | 1403/1472                                                           | 935/981                                                       |
|               | SX 4500, SX 5500 | 1338/1449                                                                          | 892/966                                                       | 1800/1950                                                           | 1200/1300                                                     | 1800/1950                                                           | 1200/1300                                                     |

## I/O Timing

The Intel Quartus Prime Timing Analyzer provides accurate and precise I/O timing data based on the specifics of the design after you complete place-and-route.

The I/O Timing specifications will be available in a future release of the Stratix 10 Device Datasheet.

## **Glossary**

#### Table 88. Glossary

| Term                       | Definition               |
|----------------------------|--------------------------|
| Differential I/O Standards | Receiver Input Waveforms |
|                            | continued                |



| Term                       | Definition                                                                                                                                                            |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                            | Single-Ended Waveform  Positive Channel (p) = V <sub>IH</sub> Negative Channel (n) = V <sub>IL</sub> Ground                                                           |  |  |  |
|                            | Differential Waveform  VID  Transmitter Output Waveforms  Single-Ended Waveform  Positive Channel (p) = V <sub>OH</sub> Negative Channel (n) = V <sub>OL</sub> Ground |  |  |  |
|                            | Differential Waveform                                                                                                                                                 |  |  |  |
| f <sub>HSCLK</sub>         | I/O PLL input clock frequency.                                                                                                                                        |  |  |  |
| f <sub>HSDR</sub>          | High-speed I/O block—Maximum/minimum LVDS data transfer rate ( $f_{\mbox{\scriptsize HSDR}} = 1/\mbox{\scriptsize TUI}$ ), non-DPA.                                   |  |  |  |
| f <sub>HSDRDPA</sub>       | High-speed I/O block—Maximum/minimum LVDS data transfer rate (f <sub>HSDRDPA</sub> = 1/TUI), DPA.                                                                     |  |  |  |
| J                          | High-speed I/O block—Deserialization factor (width of parallel data bus).                                                                                             |  |  |  |
| JTAG Timing Specifications | JTAG Timing Specifications:                                                                                                                                           |  |  |  |
|                            | continued                                                                                                                                                             |  |  |  |







| Term                           | Definition                    |                                                                                                                                                                                                                                                                         |                          |                |  |  |
|--------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|--|--|
|                                |                               |                                                                                                                                                                                                                                                                         | V <sub>CC10</sub>        |                |  |  |
|                                |                               |                                                                                                                                                                                                                                                                         |                          | _              |  |  |
|                                | V <sub>OH</sub>               | <u>\</u>                                                                                                                                                                                                                                                                | / V <sub>IH(AC)</sub>    | _              |  |  |
|                                |                               | ·                                                                                                                                                                                                                                                                       | V IH(DC)                 | <u>-</u><br>-  |  |  |
|                                |                               | V <sub>REF</sub>                                                                                                                                                                                                                                                        | / V <sub>IL(DC)</sub>    | -              |  |  |
|                                |                               |                                                                                                                                                                                                                                                                         | V <sub>IL(AC)</sub>      | -              |  |  |
|                                | V <sub>0L</sub>               | \                                                                                                                                                                                                                                                                       |                          | <del>.</del> . |  |  |
|                                |                               |                                                                                                                                                                                                                                                                         |                          | -              |  |  |
| t <sub>C</sub>                 | High-speed receiver/          | transmitter input and out                                                                                                                                                                                                                                               | put clock period.        |                |  |  |
| TCCS (channel-to-channel-skew) | channels driven by the        | The timing difference between the fastest and slowest output edges, including the $t_{CO}$ variation and clock skew, across channels driven by the same PLL. The clock is included in the TCCS measurement (refer to the Timing Diagram figure under SW in this table). |                          |                |  |  |
| t <sub>DUTY</sub>              | High-speed I/O block          | —Duty cycle on high-spe                                                                                                                                                                                                                                                 | ed transmitter output cl | lock.          |  |  |
| t <sub>FALL</sub>              | Signal high-to-low tr         | ansition time (80–20%).                                                                                                                                                                                                                                                 |                          |                |  |  |
| t <sub>INCC</sub>              | Cycle-to-cycle jitter t       | colerance on the PLL clock                                                                                                                                                                                                                                              | input.                   |                |  |  |
| t <sub>OUTPJ_IO</sub>          | Period jitter on the G        | PIO driven by a PLL.                                                                                                                                                                                                                                                    |                          |                |  |  |
| t <sub>OUTPJ_DC</sub>          | Period jitter on the d        | edicated clock output driv                                                                                                                                                                                                                                              | ven by a PLL.            |                |  |  |
| t <sub>RISE</sub>              | Signal low-to-high tr         | ansition time (20-80%).                                                                                                                                                                                                                                                 |                          |                |  |  |
| Timing Unit Interval (TUI)     |                               | lowed for skew, propagat<br>nput Clock Frequency Mu                                                                                                                                                                                                                     |                          |                |  |  |
| V <sub>CM(DC)</sub>            | DC Common mode in             | put voltage.                                                                                                                                                                                                                                                            |                          |                |  |  |
| V <sub>ICM</sub>               | Input Common mode             | Input Common mode voltage—The common mode of the differential signal at the receiver.                                                                                                                                                                                   |                          |                |  |  |
| V <sub>ICM(DC)</sub>           | V <sub>CM(DC)</sub> DC Common | V <sub>CM(DC)</sub> DC Common mode input voltage.                                                                                                                                                                                                                       |                          |                |  |  |
| V <sub>ID</sub>                |                               | Input differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver.                                                                                                            |                          |                |  |  |
| V <sub>DIF(AC)</sub>           | AC differential input         | AC differential input voltage—Minimum AC input differential voltage required for switching.                                                                                                                                                                             |                          |                |  |  |
| V <sub>DIF(DC)</sub>           | DC differential input         | DC differential input voltage— Minimum DC input differential voltage required for switching.                                                                                                                                                                            |                          |                |  |  |
|                                | •                             |                                                                                                                                                                                                                                                                         |                          | continued      |  |  |



| Term                | Definition                                                                                                                                                            |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>IH</sub>     | Voltage input high—The minimum positive voltage applied to the input which is accepted by the device as a logic high.                                                 |
| V <sub>IH(AC)</sub> | High-level AC input voltage.                                                                                                                                          |
| V <sub>IH(DC)</sub> | High-level DC input voltage.                                                                                                                                          |
| V <sub>IL</sub>     | Voltage input low—The maximum positive voltage applied to the input which is accepted by the device as a logic low.                                                   |
| V <sub>IL(AC)</sub> | Low-level AC input voltage.                                                                                                                                           |
| V <sub>IL(DC)</sub> | Low-level DC input voltage.                                                                                                                                           |
| V <sub>OCM</sub>    | Output Common mode voltage—The common mode of the differential signal at the transmitter.                                                                             |
| V <sub>OD</sub>     | Output differential voltage swing—The difference in voltage between the positive and complementary conductors of a differential transmission line at the transmitter. |
| V <sub>SWING</sub>  | Differential input voltage.                                                                                                                                           |
| V <sub>IX</sub>     | Input differential cross point voltage.                                                                                                                               |
| V <sub>ox</sub>     | Output differential cross point voltage.                                                                                                                              |
| V <sub>X(AC)</sub>  | V <sub>IX</sub> Input differential cross point voltage.                                                                                                               |
| W                   | High-speed I/O block—Clock Boost Factor.                                                                                                                              |

# **Document Revision History**

| Date        | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
|-------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| August 2017 | 2017.08.04 | <ul> <li>Clarified DLL operating frequency range in "DLL Range Specifications"</li> <li>Clarified reference clock specifications in "HPS SPI Timing Characteristics"</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| May 2017    | 2017.05.08 | <ul> <li>Updated description for V<sub>CCERAM</sub> in Absolute Maximum Ratings for Stratix 10 Devices table.</li> <li>Added Maximum Allowed Overshoot During Transitions for Stratix 10 Devices table.</li> <li>Updated Recommended Operating Conditions for Stratix 10 Devices table.         <ul> <li>Updated V<sub>CC</sub>, V<sub>CCIO</sub>, and V<sub>CCBAT</sub> specifications.</li> <li>Updated symbol from V<sub>CCPFUSE_SDM</sub> to V<sub>CCFUSEWR_SDM</sub>.</li> <li>Updated description for V<sub>CCERAM</sub> and V<sub>CCIO_UIB</sub>.</li> <li>Added V<sub>CCM</sub> specifications.</li> <li>Added footnotes to t<sub>RAMP</sub> and V suffix speed grades.</li> </ul> </li> <li>Removed table: Temperature Compensation for SmartVID for Stratix 10 Devices.</li> </ul> |           |
|             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | continued |



| Date          | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date          | VEISION    | <ul> <li>Updated the note in the "Transceiver Power Supply Operating Conditions" section.</li> <li>Updated HPS Power Supply Operating Conditions for Stratix 10 Devices table.</li> <li>Updated V<sub>CCL_HPS</sub> and V<sub>CCPLLDIG_HPS</sub> specifications.</li> <li>Added footnote for SmartVID.</li> <li>Updated Footnote for Io<sub>L</sub> and Io<sub>Dt</sub> in Single-Ended I/O Standards Specifications for Stratix 10 Devices table.</li> <li>Updated Differential I/O Standards Specifications for Stratix 10 Devices table.</li> <li>Changed Differential I/O Standards Specifications for Stratix 10 Devices table.</li> <li>Added a note to V<sub>OD</sub>.</li> <li>Updated to_UTPI_DC and to_UTCC_DC specifications in I/O PLL Specifications for Stratix 10 Devices.</li> <li>Changed the units of measure for the minimum frequency in the "L-Tile CMU PLL Performance" table.</li> <li>Changed the units of measure for the minimum frequency in the "H-Tile CMU PLL Performance" table.</li> <li>Updated ti<sub>NCC</sub>: specification for F<sub>REF</sub> &lt; 100 MHz in the following tables:         <ul> <li>Fractional PLL Specifications for Stratix 10 Devices</li> <li>I/O PLL Specifications for Stratix 10 Devices</li> <li>Added footnote to the following modes in DSP Block Performance Specifications for Stratix 10 Devices table:</li> <li>Fixed-point 18 × 18 multiplier adder mode</li> <li>Updated Soft CDR mode specifications in High-Speed I/O Specifications for Stratix 10 Devices table.</li> </ul> </li> <li>Updated Tog, maximum specification in AS Timing Parameters for Stratix 10 Devices table.</li> <li>Updated Tog, updated table title from "Initialization Timing Diagram.</li> <li>Added description in NAND ONFI 1.0 Mode 0-5 Timing Requirements for Stratix 10 Devices table.</li> <li>Updated table title from "Initialization Clock Source Option and the Maximum Frequency for Stratix 10 Devices" to "Initialization Time for Stratix 10 Devices".</li> <li>Updated descript</li></ul> |
| February 2017 | 2017.02.17 | Made the following changes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |            | continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### Stratix® 10 Device Datasheet



| Date          | Version    | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |            | <ul> <li>Added the "Transceiver Power Supply Operating Conditions for Stratix 10 GX/SX E-Tile Devices" table.</li> <li>Added the "E-Tile Transceiver Performance Specifications" section.</li> <li>Added the "Transceiver Performance forStratix 10 E-Tile Devices" section.</li> <li>Added the "Transceiver Reference Clock Specifications" section.</li> <li>Added the "Transmitter Specifications for Stratix 10 E-Tile Devices" section.</li> <li>Added the "Receiver Specifications for Stratix 10 E-Tile Devices" section.</li> <li>Updated the "AS Timing Parameters for Stratix 10 Devices" table.</li> <li>Updated T<sub>dcsfrs</sub> and T<sub>dcsfst</sub>.</li> <li>Added T<sub>ext_delay</sub> and T<sub>ext_skew</sub>.</li> <li>Removed T<sub>su</sub> and T<sub>h</sub>.</li> <li>Updated AS Configuration Serial Input Timing Diagram.</li> </ul>                                                       |
| December 2016 | 2016.12.09 | <ul> <li>Made the following changes:</li> <li>Changed the max t<sub>LTR</sub> value and unit of measure in the "L-Tile Receiver Specifications" table.</li> <li>Made the following changes to the "Transceiver Clocks Specifications for Stratix 10 GX/SX L-Tile Devices" table:  — Changed the value of the reconfig_clk signal  — Added a new footnote to the GX channel  — Changed the minimum values for the GXT channel</li> <li>Changed the max t<sub>LTR</sub> value and unit of measure in the "H-Tile Receiver Specifications" table.</li> <li>Removed the QPI footnote from the "H-Tile Transmitter Specifications" table.</li> <li>Changed the value of the reconfig_clk signal in the "Transceiver Clocks Specifications for Stratix 10 GX/SX H-Tile Devices" table.</li> <li>Changed the minimum value of f<sub>INPFD</sub> in the "Fractional PLL Specifications for Stratix 10 Devices" table.</li> </ul> |
| October 2016  | 2016.10.31 | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |