Student Name	Lin Rui	
Maynooth ID	21124264	

Student Name	林锐	
FZU ID	832103316	

CS220 Computer Architecture

Practical 8 Report

Circuit description

A synchronous sequential circuit as a 3-bit left shift register.

- Using the J–K flip–flop module.
- · Displaying the value of its contents in decimal.

Design Details

1. Construct a transition diagram and table.

Q_2^n	Q_1^n	Q_0^n	Input/X	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	A2	0	0	A2
0	0	A2	A1	0	A2	A1
0	A2	A1	A0	A2	A1	A0

2. Derive Boolean expressions.

$$Q_0^{n+1} = X = X \left(Q_0^n + \overline{Q_0^n} \right) = X \overline{Q_0^n} + X Q_0^n$$

$$\begin{cases} J_0 = X \\ K_0 = \overline{X} \end{cases}$$

$$\begin{split} Q_1^{n+1} &= Q_0 = Q_0 \left(Q_1^n + \overline{Q_1^n} \right) = Q_0 \overline{Q_1^n} + Q_0 Q_1^n \\ \begin{cases} J_1 &= Q_0 \\ K_1 &= \overline{Q_0} \end{cases} \end{split}$$

$$\begin{split} Q_2^{n+1} &= Q_1 = Q_1 \left(Q_2^n + \overline{Q_2^n} \right) = Q_1 \overline{Q_2^n} + Q_1 Q_2^n \\ \begin{cases} J_2 &= Q_1 \\ K_2 &= \overline{Q_1} \\ \end{split}$$

Circuit schematic

