

Agenda

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Summary

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras, YouTube
- We are drowning in data, but starving for knowledge!

SISNA SI

3

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful)
 patterns or knowledge from huge amount of data
 - Data mining: a misnomer?
- Alternative names
 - Knowledge Discovery (mining) in Databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Not everything is "data mining"...
 - Simple search and query processing
 - (Deductive) Expert systems

Δ

SJSU SAN JOSÉ STATE UNIVERSITY

CRISP-DM Methodology

- CRISP-DM: CRoss Industry Standard Process for Data Mining.
- A standard on data mining/data science process published in 1999.
- Six phases that naturally describes the data science life cycle.
- Usually implemented with other PM approaches.

/

Data Mining vs. Data Exploration

Which view do you prefer?

- KDD vs. ML vs. BI

Data Mining vs. Data Exploration

- Business Intelligence view
 - Warehouse, data cube, reporting but not much mining
- Business Objects vs. Data Mining Tools
- Supply chain example: mining vs. OLAP vs. presentation tools
- Data Presentation vs. Data Exploration

รโรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิรีเรมพิ

17

Multi-Dimensional View of Data Mining

- Data to be mined
 - Database data, data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks
- Knowledge to be mined or Data Mining Functions
 - Characterization, discrimination, association, classification, clustering, outlier analysis, ...
 - Descriptive vs. predictive data mining
 - Multiple/integrated functions and mining at multiple levels
- Techniques utilized
 - Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.
- Applications adapted
 - Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining,
 Web mining, etc.

Diversity of Data Types for Data Mining

- Structured: uniform, record- or table-like structures, defined by data dictionaries, with a fixed set of attributes, each with a fixed set of value ranges and semantic meaning
 - e.g. data stored in relational databases, data cubes, data matrices, and many data warehouses
- Semi-structured: allow a data object to contain a set value, a small set of heterogeneous typed values, or nested structures, or to allow the structure of objects or sub-objects to be defined flexibly and dynamically
- Data having certain structures with clearly defined semantic meaning, such as transactional data set, sequence data set (e.g., time-series data, gene or protein data, or Weblog data)
 - Graph or network data: A more sophisticated type of semi-structured data set
 - Unstructured data: text data and multimedia (e.g., audio, image, video) data

The real-world data can often be a mixture of structured, semi-structured & unstructured data

 ຊີເຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບລີຣົງຣບ

19

Diversity of Data Types for Data Mining

- · Different applications with different data sets and require different data analysis methods
 - Sequence data: Biological sequences vs. shopping transaction sequences
 - Time-series: ordered set of numerical values with equal time interval
 - Spatial, temporal and spatiotemporal data
 - Graph and network data: Social networks, computer communication networks, biological networks, and information networks may carry rather different semantics
- On the same data set, finding different kinds of patterns: require different mining methods
 - e.g. software programs: finding plagiarized modules vs. finding copy-and-paste bugs
- Stored vs. Streaming data
 - Stored data: Finite, stored in various kinds of large data repositories
 - Streaming data (e.g., video surveillance or remote sensing): Dynamic, constantly coming, infinite, real-time response—posing challenges on effective data mining

Mining Various Kinds of Knowledge

Multidimensional Data Summarization

Mining Frequent Patterns, Associations, and Correlations

Classification and Regression for Predictive Analysis

Cluster Analysis

Deep Learning

Outlier Analysis

Are All Mining Results Interesting?

21

- - Information integration and data warehouse construction
 - Data cleaning, transformation, integration, and multidimensional data model
 - Data Cube technology
 - Scalable methods for computing (i.e., materializing) multidimensional aggregates
 - OLAP (online analytical processing)
 - Multidimensional concept description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet region

Pattern Discovery: Mining Frequent Patterns, Associations, & Correlations

- Frequent patterns:
 - What items are frequently purchased together in your Walmart?
- Association and Correlation Analysis

- A typical association rule
 - Diaper → Beer [0.5%, 75%] (support, confidence)
 - Are strongly associated items also strongly correlated?
- How to mine such patterns and rules efficiently in large datasets?
- How to use such patterns for classification, clustering, and other applications?

23

Classification and Regression for Predictive Analysis

- Classification and Label Prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 e.g. Classify countries based on (climate)
 e.g. Classify cars based on (gas mileage)
 - Predict some unknown class labels

- Typical Methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rulebased classification, pattern-based classification, logistic regression, ...
- Typical Applications
 - Credit card fraud detection, direct marketing, classifying stars, diseases, web-pages, ...

Cluster Analysis

- Unsupervised Learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters)
 e.g. cluster houses to find distribution patterns
- Principle
 - Maximizing intra-class similarity & minimizing interclass similarity
- Many methods and applications...

SISON SI

25

Deep Learning

- Various neural network architectures are available:
 - Feed-forward neural networks
 - Convolutional neural networks
 - Recurrent neural networks
 - Graph neural networks
 - Transformer
- Broad applications in computer vision, natural language processing, machine translation, social network analysis, and so on
- Reshaping a variety of data mining tasks:
 - e.g. classification, clustering, outlier detection, and reinforcement learning

Outlier Analysis

- Outlier: A data object that does not comply with the general behavior of the data
- Noise or exception?—One person's garbage could be another person's treasure

- Methods: by product of clustering or regression analysis, ...
- Useful in fraud detection, rare events analysis

27

Time and Ordering: Sequential Pattern, Trend and Evolution Analysis

- Sequence, trend and evolution analysis
 - Trend, time-series, and deviation analysis
 - e.g., regression and value prediction
 - Sequential pattern mining
 - e.g., buy digital camera, then buy large memory cards
 - Periodicity analysis
 - Motifs and biological sequence analysis
 - Approximate and consecutive motifs
 - Similarity-based analysis
- Mining data streams
 - Ordered, time-varying, potentially infinite, data streams

Structure and Network Analysis

- Graph mining
 - Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)
- Information network analysis
 - Social networks: actors (objects, nodes) and relationships (edges)
 e.g. author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 e.g. A person could be multiple information networks: friends, family, classmates.
- Web mining
 - Web is a big information network: from PageRank to Google
 - Analysis of Web information networks
 - Web community discovery, opinion mining, usage mining, ...

29

Evaluation of Knowledge

- Are all mined knowledge interesting?
 - One can mine tremendous amount of "patterns"
 - Some may fit only certain dimension space (time, location, ...)
 - Some may not be representative, may be transient, ...

- Evaluation of mined knowledge → directly mining only interesting knowledge?
 - Descriptive vs Predictive
 - Coverage
 - Accuracy
 - Timeliness

Why Confluence of Multiple Disciplines?

- · Tremendous amount of data
 - Algorithms must be scalable to handle big data
- · High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- · High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social and information networks
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

Applications of Data Mining

- · Web page analysis: classification, clustering, ranking
- Collaborative analysis & recommender systems
- Basket data analysis to targeted marketing
- Biological and medical data analysis
- Data mining and software engineering
- Data mining and text analysis
- Data mining and social and information network analysis
- Built-in (invisible data mining) functions in Google, MS, Yahoo!, Linked, Facebook, ...
- Major dedicated data mining systems/tools
 - SAS, MS SQL-Server Analysis Manager, Oracle Data Mining Tools)

Summary

- Data mining: Discovering interesting patterns & knowledge from massive amounts of data.
- Traditional KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Different data mining method on a wide variety of data.
- Data Mining functionalities: summarization, pattern discovery, classification, clustering, deep learning, outlier analysis, trend and outlier analysis, ...
- Data Mining is a confluence of multiple disciplines
- Data Mining has broad applications

