Ardışıl Devre Modeli

Şimdiki durum daha önceki girişlere bağlıdır.

Senkron Ardışıl Devreler

- İşaretler bellek elemanlarını zamanın ayrık anlarında etkilerler.
- Ayrık anlar senkronizasyon gerektirir.
- Senkronizasyon ortak bir saat ile sağlanır.
- "Saat üreteci" periyodik darbe dizisi üreten bir devredir.
- Bellek elemanlarının durumu her saat darbesinde güncellenir.

Senkron Ardışıl Devreler

 Bellek elemanları 1-bitlik bilgi saklayabilen flipflop lardır.

Latch ler

- Temel bellek elemanları
- Bir latch ikili durumunu sonsuza kadar koruyabilen bir bellek elemanıdır.
- Latch ler asenkron devrelerdir ve çalışmak için saat işaretine ihtiyaçları yoktur.
- Bu sebeple senkron ardışıl devrelerde doğrudan kullanılmazlar.
- Flip-flop ları elde etmek için kullanılırlar.

Kontrol Girişli SR-Latch

С	5	R	Q Q'
0	X	X	Değişme yok
1	0	0	Değişme yok
1	0	1	Değişme yok Değişme yok Q = 0 Reset durumu Q = 1 Set durumu
1	1	0	Q = 1 Set durumu
1	1	1	Tanımsız

D-Latch

- Tanımsız hal devrede kararsızlığa sebep olabileceği için SR latch ler sık kullanılmaz.
- Çözüm: D-latch ler

Bu devre S ve R girişlerinin her zaman birbirlerinin tümleyeni olmasını sağlar.

	D	-Latch
С	D	Qʻnun sonraki durumu
0	X	Değişim yok
1	0	Q = 0; reset durumu
1	1	Q = 1; set durumu

• C=1 iken D girişi örneklenir.

Saklama elemanı olarak D-Latch

- D-latch ler geçici saklama için kullanılabilirler.
- C = 1 olduğu sürece D-latch girişi çıkışa aktarılır.
- C = 0 olduğu sürece bilgi korunur.
- Latch ler seviye tetiklemeli olarak adlandırılır.
 - C lojik-1 seviyesinde kaldığı sürece veri girişindeki değişim durumu ve latch çıkışını değiştirir.
- Bellek elemanlarının durumları senkron olarak değişmeli.
- Düşen veya yükselen kenar tetiklemeli bellek elemanlarına flip-flop lar denir.

Kenar Tetiklemeli D Flip-Flop

• Kenar tetiklemeli D flip-flop iki D latch kullanılarak yapılabilir.

11

Yükselen Kenar Tetiklemeli D Flip-Flop

12

10

D Flip-Flop Sembolleri

Yükselen kenar tetiklemeli D Flip-Flop

Düşen kenar tetiklemeli D Flip-Flop

Karakteristik denklem
 Q(t+1) = D

13

· Karakteristik denklem

- Q(t+1) = JQ'(t) + K'Q(t)

T (Toggle) Flip-Flop

Т	Q(†+1)	next state
0	Q(†)	no change
1	Q'(†)	Complement
L L	'arakteristi	k Tabla

· Karakteristik denklem

Senkron Ardışıl Devrelerin Analizi

- Amac
 - Senkron ardışıl devrelerin davranışını bulmak.
 - "Davranış"
 - Girişler
 - Çıkışlar
 - Flip-flop ların durumları kullanılarak elde edilir.
 - Çıkış ve sonraki durumun Boole fonksiyonlarını bulmak.
 - çıkış ve durum denklemleri
 - (durum) tablosu
 - (durum) diyagramı

1

Senkron Ardışıl Devrelerin Analizi

- t anındaki şimdiki durum flip-flop dizisinde saklanır.
- (t+1) anındaki sonraki durum durum ve girişlerin oluşturduğu bir Boole fonksiyonu.
- t anındaki çıkışlar şimdiki durumlar ve bazen de girişlere bağlı Boole fonksiyonları.

Durum Denklemleri

- Aynı zamanda geçiş denklemleri de denir.
 - Sonraki durumu şimdiki durum ve girişlerin bir fonksiyonu olarak verir.

Çıkış ve Durum Denklemleri

- $y_1(t+1) = (y_1(t) \oplus y_2(t)) x$
- $y_2(t+1) = x y_2(t)'$

Örnek: Durum (Geçiş) Tablosu $y_1(\uparrow+1)=?$ $y_2(\uparrow+1)=?$ z=?

Simdik	Şimdiki Durum		Sonrak	çıkış	
y ₁	y ₂	Giriş x	y ₁	Y ₂	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	1

m FF ve n girişi olan senkron ardışıl bir devrenin durum tablosunda $2^{m \cdot n}$ satır vardır.

Örnek: Durum Diyagramı

Durum diyagramı ile durum tablosu aynı bilgiyi verir.

JK tipi Flip-Flop lar ile Analiz

- D tipi flip-flop da durum denklemi flip-flop un giriş denklemi ile aynı
 - Q(t+1) = D
- JK tipi flip-flop larda bu iki denklem farklı
 - Amacımız durum denklemlerini bulmak.
 - Yöntem
 - 1. Flip-flop giriş denklemlerinin bulunması
 - 2. Her giriş denkleminin doğruluk tablosu oluşturulması
 - 3. Flip-flop ların karakteristik tablosu kullanılarak durum tablosundaki sonraki durum değerlerinin belirlenmesi

Örnek: JK tipi Flip-Flop lar ile Analiz

• Flip-flop input equations

$$-J_1 = xy_2$$

ve
$$K_1 = x' + y_2$$

$$-J_2 = x$$

ve
$$K_2 = 1$$

Örnek: JK tipi Flip-Flop lar ile Analiz

$$-J_1 = xy_2$$

ve
$$K_1 = x' + y_2$$

$$-J_{2} = x$$

$$K_2 = 1$$

Simdi	ki Durum	Giriş Sonraki Durum			FF girişleri			
Jillian	Ki Dui uiii	Oii iş			rr girişleri			
y ₁	y 2	×	y ₁	y ₂	J_1	K ₁	J ₂	K ₂
0	0	0	0	0	0	1	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	0	0	1	0	1
0	1	1	1	0	1	1	1	1
1	0	0	0	0	0	1	0	1
1	0	1	1	1	0	0	1	1
1	1	0	0	0	0	1	0	1
1	1	1	0	0	1	1	1	1

Örnek: JK tipi Flip-Flop lar ile Analiz

· Karakteristik Denklemler

$$-Y_1 = J_1 y_1' + K_1' y_1$$

 $-Y_2 = J_2 y_2' + K_2' y_2$

• Flip-flop giriş denklemleri

$$-J_1 = xy_2$$
 ve $K_1 = x' + y_2$
 $-J_2 = x$ ve $K_2 = 1$

· Durum denklemleri

$$-Y_1 = xy_2y_1' + (x' + y_2)'y_1 = xy_2y_1' + xy_2'y_1 = x(y_2 \oplus y_1)$$

-Y_2 = xy_2' + 1'y_2 = xy_2'

Durum Diyagramı

Devre ne yapıyor?

25

T tipi Flip-Flop lar ile Analiz

Örnek: T tipi Flip-Flop lar ile Analiz

• Karakteristik Denklemleri

$$- Y_0 = T_0 \oplus y_0$$
$$- Y_1 = T_1 \oplus y_1$$

· Flip-flop giriş denklemleri

$$-T_1 = x y_0$$

 $-T_0 = x$

· Durum denklemleri

$$-Y_0 = x \oplus y_0$$

$$-Y_1 = x y_0 \oplus y_1$$

28

Durum Tablosu ve Diyagramı

Moore ve Mealy Modelleri

- Senkron ardışıl devreler veya senkron makinalar aynı zamanda sonlu durum makinaları (Finite State Machines (FSMs)) olarak adlandırılırlar.
- İki tip model vardır:
- Moore Modeli
 - E. F. Moore tarafından ortaya atılmıştır.
 - Çıkışlar SADECE durumlara bağlıdır.
 - Çıkışlar durum diyagramında durumların üzerinde gösterilir.
- Mealy Modeli
 - G. Mealy tarafından ortaya atılmıştır.
 - Çıkışlar girişlere VE durumlara bağlıdır.
 - Çıkışlar durum diyagramında durum geçiş çizgilerinin üzerinde gösterilir.

Örnek: Mealy ve Moore Makinaları

- x ve y girişleri senkron değiller.
- · Bu sebeple, çıkışlar kısa süreli yanlış değerler alabilirler.
- · Girişler saat işareti ile senkron hale getirilmelidir veya
- Çıkışlar sadece saatin yükselen kenarında örneklenmelidir.

Örnek: Moore Makinası

• Çıkışlar saat işareti ile senkron olarak çalışır.

Moore ve Mealy Örnek Diyagramları

Mealy Modeli durum diyagramı

Moore ve Mealy Örnek Durum Tabloları

· Moore Model durum tablosu

Şimdiki	Sonraki	Durum	Çıkış
Durum	x=0	x=1	
0	0	1	0
1	0	2	0
2	0	2	1

Mealy Model durum tablosu

Şimdiki	Sonraki	Durum	Çıkış		
Durum	x=0	x=1	x=0	x=1	
0	0	1	0	0	
1	0	1	0	1	

Senkron Ardışıl Devre Tasarımı

- 1. Problemin sözle tanımı
- 2. Durum diyagramının çizilmesi
- 3. Durumların indirgenmesi: s = durum sayısı
- 4. Flip-flop sayısının belirlenmesi: $n = \lceil \log_2 s \rceil$
- 5. Durumların kodlanması: $\underbrace{00 \dots 0}_{n-bit}$, $\underbrace{00 \dots 1}_{n-bit}$, $\underbrace{00 \dots 1}_{n-bit}$, ...
- 6. Durum tablosunun çıkarılması
- 7. Flip-flopların tipinin belirlenmesi
- 8. Boole Fonksiyonlarının elde edilmesi
 - 1. Flip-flopların giriş fonksiyonları
 - 2. Çıkış fonksiyonları
- 9. Boole fonksiyonlarının gerçeklenmesi

Örnek: Senkron Ardışıl Devre Tasarımı

- Sözle tanım
 - 1. Adım: 1-bitlik girişinden ard arda 3 tane veya daha fazla 1 geldiğini sezen devreyi tasarlayınız.
 - Giriş: herhangibir uzunluktaki bit dizisi
 - Çıkış:
 - "1": eğer devre istenen diziyi yakalamışsa
 - "0" : diğer hallerde

Örnek: Durum Diyagramı

2. Adım: Durum diyagramının çizilmesi 0/0

D Tipi Flip-Floplar ile tasarım

- 3. Adim: Durum indirgeme
 - Mümkün değil
- 4. Adım: Flip-flop sayısı
 - 4 durum
 - ? flip-flop
- 5. Adım: Durum kodlama

37

D Tipi Flip-Floplar ile tasarım

• 6. Adım: Durum tablosunun çıkarılması

Şimdik	i Durum	Giriş	Sonrak	i Durum	Çıkış
y ₁	y ₂	×	У ₁	y_2	z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

D Tipi Flip-Floplar ile tasarım

- 7. Adım: Flip-flopların tipinin belirlenmesi
 D tipi flip-floplar
- 8. Adım: Boole Fonksiyonlarının elde edilmesi
 D₁ ve D₂ için Boole fonksiyonları

D Tipi Flip-Floplar ile tasarım

– Z için Boole fonksiyonu

D Tipi Flip-Floplar ile tasarım

• 9. Adım: Boole fonksiyonlarının gerçeklenmesi

JK Tipi Flip-Floplar ve MUX ile tasarım

Durum sayısı= 6

Durum değişkeni sayısı= 3 Flip-flop sayısı= 3

Giriş sayısı= 0

Çıkış sayısı= 6

•●= lojik-1 •O= lojik-0

Durum Diyagramı ve Tablosu

			· · · · · · · · · · · · · · · · · · ·
Şimdiki Durum	Sonraki Durum	Flip-flop girişleri	Çıkışlar
Y ₂ Y ₁ Y ₀	$y_2 y_1 y_0$	$J_2 K_2 J_1 K_1 J_0 K_0$	z ₅ z ₄ z ₃ z ₂ z ₁ z ₀
0 0 0	0 0 1	0 k 0 k 1 k	1 1 1 0 0 0
0 0 1	0 1 0	0 k 1 k k 1	011100
0 1 0	0 1 1	0 k k 0 1 k	0 0 1 1 1 0
0 1 1	100	1 k k 1 k 1	000111
1 0 0	1 0 1	k 0 0 k 1 k	001110
1 0 1	000	k 1 0 k k 1	011100

Flip-flop giriş Denklemlerinin Gerçeklenmesi

Flip-flop Çıkış Denklemlerinin Gerçeklenmesi

Flip-flop Çıkış Denklemlerinin Gerçeklenmesi

Flip-flop Çıkış Denklemlerinin Gerçeklenmesi

Lojik diyagram

 $J_2 = y_1 y_0' K_2 = y_0 J_1 = y_2' y_0 K_1 = y_0 J_0 = 1 K_1 = 1$

T Tipi Flip-Floplar ile tasarım

• Örnek: 3-bit ikili sayıcı $-0 \rightarrow 1 \rightarrow 2 \rightarrow ... \rightarrow 7 \rightarrow 0 \rightarrow 1 \rightarrow 2$

Durum Diyagramı

T Tipi Flip-Floplar ile tasarım

• Durum tablosu

Şimo	diki Du	ırum	Soni	aki Du	ırum	FF girişleri		
y ₂	y ₁	y o	y ₂	y_1	\mathbf{y}_{0}	T ₂	T_1	T_0
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1 5

T Tipi Flip-Floplar ile tasarım

• Flip-Flop giriş denklemleri

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 Y 0						′1 Y 0				
y ₂		00	01	11	10	y ₂	/	00	01	11	10
	0	0	0	1	0		0	0	1	1	0
	1	0	0	1	0		1	0	1	1	0
		T ₂ =	y 1 y 0					T ₁ =	y o		
		T ₀ :	= 1								

54

T Tipi Flip-Floplar ile tasarım

Kullanılmayan Durumlar

Ş	imdiki Dur	um	Sonraki Durum			
y ₂	y ₁	y ₀	Y ₂	Y_1	Y_0	
0	0	0	0	0	1	
0	0	1	0	1	0	
0	1	0	0	1	1	
0	1	1	1	0	0	
1	0	0	0	0	0	

Kullanılmayan Durumlar

Kullanılmayan Durumlar

- Tasarım Örneği

 1 bitlik girişinden son 1010 geldiğinde çıkışı 1 olan devreyi tasarlayınız.
- Örnek: x= 1010 1011 ise z= 0001 0000

Meally makinası

57

Durum Tablosu

Şimdiki Durum		Giriş	Sonraki Durum		Çıkış
y_1	y ₂	×	У ₁	y_2	z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	0	1	0

VHDL Kodu

library IEEE; use
IEEE.STD_LOGIC_1164
.ALL; entity MeallyMachine is Port (x : in STD_LOGIC; y : out STD_LOGIC; clk : in STD_LOGIC; rst : in STD_LOGIC); end MeallyMachine;

architecture Behavioral of MeallyMachine is type state_type is (BD,Bir,BirO,BirO1); signal durum : state_type; process(clk) begin if clk'event and clk='1' then if rst='1' then durum <= BD; y <= '0'; when BD => y <= '0'; if x='1' then durum <= Bir; else durum <= BD; end if; when Bir=> y <= '0'; if x='1' then durum <= Bir; else durum <= Bir0; end if; when Bir0 => when one - y <= 0; if x = 1 then durum <= Bir01; else durum <= BD; end if; when Bir01=> end case; end if; end if; end process; end Behavioral;

Devre Şeması

Zamanlama Diyagramı

İdeal Hal: Gecikmeler = 0

İdeal Olmayan Hal: Gecikmeler ≠ 0

61

Moore makinası Başlangıç 1 geldi 001 çıkış=0 çıkış=0 0 1010 0 0 çıkış=1 101 011 10 geldi geldi 010 çıkış=0 çıkış=0

62

VHDL Kodu

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; entity MooreMachine is Port (x:in STD_LOGIC; y:out STD_LOGIC; clk:in STD_LOGIC; rst:in STD_LOGIC); end MooreMachine;

architecture Behavioral of MooreMachine is type state_type is (BD,Bir,BirO,BirO10); signal durum: state_type; Begin process(clk) begin if clk'event and clk='1' then if rst='1' then durum <= BD; y <= '0'; else case durum is when BD => y <= '0'; if x='1' then durum <= Bir, else durum <= BD; end if; when Bir => y <= '0'; if x='1' then durum <= Bir, else durum <= Bir0; end if; when Bir0 => y <= '0'; if x='1' then durum <= BirO; else durum <= BirO; end if; when Bir0 => y <= '0'; if x='1' then durum <= BirO1; else durum <= BD; end if; when Bir0 => y <= 0'; if x='1' then durum <= BirO1; else durum <= BD; end if; when BirO => y <= 0'; if x='1' then durum <= BirO1; else durum <= BD; end if; m x=1 trient unit <= Bir01, when Bir01 => $y < 0^\circ$; if x='1' then durum <= Bir; else durum <= Bir010; end if; when Bir010 => $y \le '1'$; if x='1' then durum <= Bir; else durum <= BD; end if; if x= end case; end if; end if; end process; end Behavioral;

Devre Şeması

Zamanlama Diyagramı

İdeal Hal: Gecikmeler = 0

İdeal Olmayan Hal: Gecikmeler ≠ 0