

UNIDAD 3

APLICACIÓN DE LAS REDES INDUSTRIALES PLANEAMIENTO DE UNA RED INDUSTRIAL, ACCESO A REDES, TECNOLOGÍAS LAN.

Logro

- El alumnos al finalizar la unidad
 - Al finalizar la unidad el estudiante:
 - Comprende la importancia de los estándares empleados.

Temario: 3

- 1. MODELOS DE INTERCONEXIÓN
- 2. MODELO OSI
- 3. MODELO TCP/IP
- 4. DISPOSITIVOS DE ENLACE
- 5. REDES INALÁMBRICAS INDUSTRIALESCENET
- 6. SISTEMAS SCADA

DIRECCIONAMIENTO IPV4 Y SUBREDES

QUE ES UNA DIRECCION IP?

131 . 108 . 122 . 204

NOTACIÓN DECIMAL PUNTEADA

IDENTIFICADOR DE HOST

LA CANTIDAD DE BITS DE RED Y HOST DEPENDE DE LA CLASE A LA QUE PERTENECE LA DIRECCIÓN

CLASES DE DIRECCIONES IPV4

- Existen cinco clases de direcciones IP:
- CLASE A Soporta redes en Internet grandes.
- CLASE B Soporta redes en Internet moderadas.
- CLASE C Soporta redes en internet pequeñas.
- CDSE D Soporta Redes Multicast
- CLAFE E Sin uso. Redes experimentales.

Clase A	El primer octeto está comprendido entre 0 - 127
Clase B	El primer octeto está comprendido entre 128 - 191
Clase C	El primer octeto está comprendido entre 192 - 223
Clase D	El primer octeto está comprendido entre 224 - 239
Clase E	El primer octeto está comprendido entre 240 - 255

CLASEA

CLASE B

130,244.53.2 150.185.95.2 172 16.2.5 PRIMER OCTETO **ENTRE 128 Y 191** 172.16.2.5 /16 **IDENTIFICADOR DE HOST IDENTIFICADOR DE RED** 2 OCTETOS 2 OCTETOS 16 BITS 16 BITS PREFIJO DE RED

MÁSCARAS Y PREFIJOS

192.168.168.100 / 24 172.16.16.10 / 16 10.10.2.1 / 8

	Dirección IP	Clase	Máscara por Defecto	Dirección de RED
1)	199.46.36.200			
2)	111.211.11.1			
3)	7.141.30.89			
4)	222.8.56.107			
5)	192.168.16.2			
6)	63.100.5.1			
7)	192.0.0.2			
8)	130.1.1.1			
9)	64.55.47.100			
10)	10.192.168.100	io		

	Dirección IP	Clase	Máscara por Defecto	Dirección de RED
1)	199.46.36.200	Clase C	255.255.255.0	199.46.36.0
2)	111.211.11.1	Clase A	255.0.0.0	111.0.0.0
3)	7.141.30.89	Clase A	255.0.0.0	7.0.0.0
4)	222.8.56.107	Clase C	255.255.255.0	222.8.56.0
5)	192.168.16.2	Clase C	255.255.255.0	192.168.16.0
6)	63.100.5.1	Clase A	255.0.0.0	63.0.0.0
7)	192.0.0.2	Clase C	255.255.255.0	192.0.0.0
8)	130.1.1.1	Clase B	255.255.0.0	130.1.0.0
9)	64.55.47.100	Clase A	255.0.0.0	64.0.0.0
10)	10.192.168.100	Clase A	255.0.0.0	10.0.0.0

192.168.168.100/24 192.168.168.100 255.255.255.0

¿Por qué es necesaria la utilización de máscaras de red/subred?

```
Dirección IP = 192.168.55.44
Máscara = 255.255.255.0
```

192.168.55.0 = 11000000.10101000.00110111.00000000

Dirección de Red = 192.168.55.0

SUBREDES

Dirección de RED 10.0.0.0

 $\begin{array}{c} 00001010.00000000.00000000.00000000\\ \textbf{1111111}.00000000.0000000.000000000\end{array}$

Máscara 255.0.0.0

Bits de Host = 2^{24} = 16.777.216

Al Pedir prestados cuatro (4) bits de la porción de host, se crean $2^4 = 16$ subredes

Se utilizan para Dirección de RED representar subredes $2^3 = 8$ 192.168.168.0 11000000.10101000.10101000.00000000 Máscara 255.255.255.224 Tres (3) Bits prestados Al Pedir prestados tres (3) bits de la porción de host, se crean $2^3 = 8$ subredes

Máscara 255.255.254

SUBREDES CREADAS

CADA UNA DE ESTAS SUBREDES
TIENE CAPACIDAD PARA
DIRECCIONAR
5 BITS DE HOST:

192.168.168.224

11000000.10101000.10101000.11100001

HOST: 192.168.168.225

11000000.10101000.10101000.11100010

HOST: 192.168.168.226

11000000.10101000.10101000.11100011

HOST: 192.168.168.227

11000000.10101000.10101000.11100100

HOST: 192.168.168.228

HOST: 192.168.168.228

. .

. .

. .

ÚLTIMO HOST: 192.168.168.254

DIRECCIÓN DE DIFUSIÓN: 192.168.168.255

CONFIGURACIÓN DE LOS PARAMETROS DE RED ETHERNET

Configuración de equipos en una red Ethernet

Configuración de equipos en una red Ethernet

Configuración de equipos en una red Ethernet

Obtención de la Dirección IP a partir de un nombre

