LAST NAME SOLUTIONS

MCGILL ID#

FIRST NAME

SIGNATURE

- Only Faculty standard calculator accepted
- No cellphone allowed
- Show all your work

- Clearly indicate your final answer with the SI unit and multiplier
- You have 45 minutes to complete this quiz

Question 1: Consider the circuit shown below. Answer the following questions.

- a) Under the condition where $R_L = 0 \Omega$, what resistance value should R_A be to maximize the power delivered to R_A and what is the maximum power value that can be delivered to R_A ? [2 pt]
- b) Under the condition where $1/R_A = 0 \Omega^{-1}$, what resistance value should R_L be to maximize the power delivered to R_L and what is the maximum power value that can be delivered to R_L ? [2 pt]
- c) Under the same condition where $1/R_A = 0 \Omega^{-1}$, but with the constraint that the current through R_L must be at least 15 A, what resistance value should R_L be to maximize the power delivered to R_L and what is the maximum power value that can be delivered to R_L ? [3 pt] PUR TRANSFER THFOREIM

a) RiOR (short cirruit) MAX PWR: Skv (+) RA RL=C

PWr: Voc. icc

Par = 2.5kV. SOA Voc. Skv. (40.0+60.52)

Par = 31.25 kW

PWr: 31.25 kW

PWR: Voc. 100.52 - 2.5kV

Where RA RT Turning off supply. RT= (60+46)//(40-66)

ZIAB RL= RT for Max pur

RT = 200 TZ

b) 1= 052-1-> RA=00 (open circuit)

RA Pur = Voc isc Voc=5kV

2 Z (sc= Voc - 5kV - 25A Pur: 31.25 KW

max power at iAB=15A

C) LAB > 15A

VAB= 5KV - 15A-20052 = 2Kpage 1 of 4 (double-sided) RL= VAB = 2KV = 133 /3 JZ

Question 2: Consider the circuit shown below. Answer the following questions.

- a) Under the condition where $I_x = 0$ A, what is the voltage value v_0 ? [2 pt]
- b) Under the condition where $l_x = 1 A$, what is the current value i_0 ? [2 pt]
- c) Under the condition where $I_x = 2 A$, what is the current value i_G ? [2 pt]
- d) Under the same condition as in part c) where $I_x = 2 A$, what is the power delivered by the current source? [1 pt]

a)
$$I_{\times}$$
: OA (open-circuit) from ideal openup model $C_1 = C_2 = C_3$ $V_1 = V_2$
 $V_1 = -2V = V_2$ $V_2 = V_3$ $V_4 = V_4 = V_5$
 $V_5 = -2V = V_4$
 $V_7 = -2V = V_7$
 $V_8 = -2V = V_8$
 $V_8 = -2V = V_8$
 $V_9 = -2V = V_9$
 $V_9 = -2V = V_9$

ideal model i,= 12= 0 & v, = vz = -2V

io+ -52-(-2)+ -52 = 0 → io= 2A+5.2A

 $\frac{8V-(-2V)+2A+0A+-(-77)+(-2)}{10.52}+(-2)$ $\frac{7}{2}A = \frac{10.52}{10.52}$ $\frac{7}{2}A = \frac{10.7}{4}A + \frac{10.7}{4}A +$

Page 3 of 4 (double-sided)