ALGEBRAIC FIXITY FOR CLASSICAL GROUPS

Raffaele Rainone

School of Mathematics University of Southampton England

June 12, 2012

Let G be a permutation group on a finite set Ω , i.e. $G \leq \text{Sym}(\Omega)$.

Let G be a permutation group on a finite set Ω , i.e. $G \leq \operatorname{Sym}(\Omega)$. For $\alpha \in \Omega$, the **stabilizer** of α is

$$G_{\alpha} = \{ x \in G \mid x \cdot \alpha = \alpha \} \leqslant G$$

Let G be a permutation group on a finite set Ω , i.e. $G \leq \operatorname{Sym}(\Omega)$. For $\alpha \in \Omega$, the **stabilizer** of α is

$$G_{\alpha} = \{ x \in G \mid x \cdot \alpha = \alpha \} \leqslant G$$

We say that the action is

• **Transitive** if for every $\alpha, \beta \in \Omega$ there exists $x \in G$ such that $x.\alpha = \beta$;

Let G be a permutation group on a finite set Ω , i.e. $G \leq \operatorname{Sym}(\Omega)$. For $\alpha \in \Omega$, the **stabilizer** of α is

$$G_{\alpha} = \{ x \in G \mid x \cdot \alpha = \alpha \} \leqslant G$$

We say that the action is

- **Transitive** if for every $\alpha, \beta \in \Omega$ there exists $x \in G$ such that $x.\alpha = \beta$;
- **Primitive** if it is transitive and there is no non-trivial G-invariant partition of Ω .

Let G be a permutation group on a finite set Ω , i.e. $G \leq \operatorname{Sym}(\Omega)$. For $\alpha \in \Omega$, the **stabilizer** of α is

$$G_{\alpha} = \{ x \in G \mid x \cdot \alpha = \alpha \} \leqslant G$$

We say that the action is

- **Transitive** if for every $\alpha, \beta \in \Omega$ there exists $x \in G$ such that $x.\alpha = \beta$;
- **Primitive** if it is transitive and there is no non-trivial G-invariant partition of Ω .

Proposition

G is primitive if, and only, if G_{α} is a maximal subgroup of G. Moreover the action of G on Ω is equivalent to the action of G on the set of cosets G/G_{α} .

Let G be a permutation group on a finite set Ω . For $x \in G$ we define the **fixed point set**

$$C_{\Omega}(x) = \{ \alpha \in \Omega \mid x \cdot \alpha = \alpha \}$$

Let G be a permutation group on a finite set Ω . For $x \in G$ we define the **fixed point set**

$$C_{\Omega}(x) = \{ \alpha \in \Omega \mid x \cdot \alpha = \alpha \}$$

The fixed point ratio

$$fpr(x) = \frac{|C_{\Omega}(x)|}{|\Omega|}$$

Let G be a permutation group on a finite set Ω . For $x \in G$ we define the **fixed point set**

$$C_{\Omega}(x) = \{ \alpha \in \Omega \mid x \cdot \alpha = \alpha \}$$

The fixed point ratio

$$fpr(x) = \frac{|C_{\Omega}(x)|}{|\Omega|} = \frac{|x^G \cap H|}{|x^G|}$$

for transitive action, where $H = G_{\alpha}$.

Let G be a permutation group on a finite set Ω . For $x \in G$ we define the **fixed point set**

$$C_{\Omega}(x) = \{ \alpha \in \Omega \mid x \cdot \alpha = \alpha \}$$

The fixed point ratio

$$fpr(x) = \frac{|C_{\Omega}(x)|}{|\Omega|} = \frac{|x^{G} \cap H|}{|x^{G}|}$$

for transitive action, where $H = G_{\alpha}$.

The **fixity** of G is

$$Fix(G) = \max_{x \in G^{\sharp}} \{|C_{\Omega}(x)|\}$$

Example (omit?)

Let $G = S_n$ acting on $\Omega = \{1, ..., n\}$. The action is transitive because for any i, j we have $(i, j) \in G$.

Let $\pi=(1,2)$, then $\mathcal{C}_{\Omega}(\pi)=\{3,\ldots,n\}$. Therefore

$$\mathsf{fpr}(\pi) = \frac{n-2}{n} = 1 - \frac{2}{n}$$

Example (omit?)

Let $G = S_n$ acting on $\Omega = \{1, ..., n\}$. The action is transitive because for any i, j we have $(i, j) \in G$.

Let $\pi=(1,2)$, then $C_{\Omega}(\pi)=\{3,\ldots,n\}$. Therefore

$$\mathsf{fpr}(\pi) = \frac{n-2}{n} = 1 - \frac{2}{n}$$

Or, in a different way, $\pi^G = \{(i,j) \mid i \neq j\}$, therefore

$$|\pi^{\mathsf{G}}| = \frac{n(n-1)}{2}$$

here $G_{\alpha} = S_{n-1}$, so

$$|\pi^{\mathsf{G}}\cap \mathsf{G}_{\alpha}|=\frac{(n-1)(n-2)}{2}$$

And fpr(π) = 1 – 2/n.

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \geqslant 0$ acting on the coset variety $\Omega = G/H$, where $H \leqslant G$ is closed.

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \geqslant 0$ acting on the coset variety $\Omega = G/H$, where $H \leqslant G$ is closed.

Remark

An algebraic group is said to be **simple** if it does not contain any proper nontrivial normal connected closed subgroup (of positive dimension).

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \geqslant 0$ acting on the coset variety $\Omega = G/H$, where $H \leqslant G$ is closed.

Remark

An algebraic group is said to be **simple** if it does not contain any proper nontrivial normal connected closed subgroup (of positive dimension).

A classification of the simple algebraic groups is given by the Dynkin diagrams A_n , B_n , C_n , D_n , E_6 , E_7 , E_8 , F_4 , G_2 .

Let G be a simple algebraic group over an algebraically closed field k of characteristic $p \geqslant 0$ acting on the coset variety $\Omega = G/H$, where $H \leqslant G$ is closed.

Remark

An algebraic group is said to be **simple** if it does not contain any proper nontrivial normal connected closed subgroup (of positive dimension).

A classification of the simple algebraic groups is given by the Dynkin diagrams A_n , B_n , C_n , D_n , E_6 , E_7 , E_8 , F_4 , G_2 .

Example

The Dynkin diagram A_n corresponds to the **special linear group**

$$\mathsf{SL}_{n+1}(k) = \{ A \in \mathcal{M}_{n+1}(k) \mid \det(A) = 1 \}$$

Fixed point space

For an algebraic group ${\it G}$ acting transitively on the variety Ω

$$C_{\Omega}(x) = \{ \alpha \in \Omega \mid x \cdot \alpha = \alpha \}$$

is a subvariety of Ω

Fixed point space

For an algebraic group G acting transitively on the variety Ω

$$C_{\Omega}(x) = \{ \alpha \in \Omega \mid x \cdot \alpha = \alpha \}$$

is a subvariety of Ω and

$$\dim C_{\Omega}(x) = \dim \Omega - \dim x^{G} + \dim(x^{G} \cap H)$$

where $H = G_{\omega}$ is a point stabilizer.

Fixed point space

For an algebraic group G acting transitively on the variety Ω

$$C_{\Omega}(x) = \{ \alpha \in \Omega \mid x \cdot \alpha = \alpha \}$$

is a subvariety of Ω and

$$\dim C_{\Omega}(x) = \dim \Omega - \dim x^{G} + \dim(x^{G} \cap H)$$

where $H = G_{\omega}$ is a point stabilizer.

The analogue of the fixity for algebraic groups is the **algebraic fixity**:

$$\mathsf{Fix}(G) = \max_{x \in G^{\sharp}} \{ \mathsf{dim} \, C_{\Omega}(x) \}$$

Known results

Theorem (Burness (2003))

Let G be a simple algebraic group of adjoint type. Then there exists an involution $x \in G$

$$f_{\Omega}(x) = \frac{\dim C_{\Omega}(x)}{\dim \Omega} \geqslant \frac{1}{2} - \frac{1}{2h+1}$$

where h is the Coxeter number of G, or (G,Ω) is in a finite list of known exceptions.

Aim

Determine bounds on

$$f_{\Omega}(x) = \frac{\dim C_{\Omega}(x)}{\dim \Omega}$$
, for all $x \in G$ of prime order

Conjugacy classes I

For $x \in GL_n(k)$ we have $x = x_s x_u = x_u x_s$.

Conjugacy classes I

For $x \in GL_n(k)$ we have $x = x_s x_u = x_u x_s$. Up to conjugation,

$$x_s = [\lambda_1 I_{a_1}, \lambda_2 I_{a_2}, \dots, \lambda_\ell I_{a_\ell}]$$

$$x_u = [J_m^{a_m}, \dots, J_1^{a_1}]$$

Conjugacy classes I

For $x \in GL_n(k)$ we have $x = x_s x_u = x_u x_s$. Up to conjugation,

$$x_s = [\lambda_1 I_{a_1}, \lambda_2 I_{a_2}, \dots, \lambda_\ell I_{a_\ell}]$$

$$x_u = [J_m^{a_m}, \dots, J_1^{a_1}]$$

It is well known how to compute $\dim x^G$ for unipotent and semisimple elements:

$$\dim x_u^G = n^2 - 2 \sum_{1 \le i < j \le m} i a_i a_j - \sum_{i=1}^m i a_i^2$$

$$\dim x_s^G = n^2 - \sum_{i=1}^\ell a_i^2$$

Subgroup structure

Given a classical group $G = C\ell(V)$, six families of subgroups arise naturally from the underlying geometry of V, denoted $\mathscr{C}_1, \ldots, \mathscr{C}_6$. We call the union $\mathscr{C}(G)$.

- \mathscr{C}_1 stabilizers of subspaces $U \subset V$;
- \mathscr{C}_2 stabilizers of direct sum decomposition $V = V_1 \oplus \ldots \oplus V_t$, if $G = \operatorname{Sp}$ or SO the V_i are non-degenerate;
- \mathscr{C}_3
- \mathscr{C}_4 stabilizers of tensor product decomposition $V = V_1 \otimes \ldots \otimes V_t$;
- \mathscr{C}_5 normalizers of r-groups, $r \neq p$ (finite);
- \mathscr{C}_6 stabilizers of a non-degenerate form on V.

The Theorem

Example

In $G = \operatorname{GL}_n(k)$, \mathscr{C}_2 consists of the groups H that stabilizer a decomposition $V_1 \oplus \ldots \oplus V_t$ of V where dim $V_i = n/t$. Indeed $H = \operatorname{GL}_{n/t}(k) \wr S_t$. And $H^\circ = \operatorname{GL}_{n/t}(k) \times \ldots \times \operatorname{GL}_{n/t}(k)$.

The Theorem

Example

In $G = \operatorname{GL}_n(k)$, \mathscr{C}_2 consists of the groups H that stabilizer a decomposition $V_1 \oplus \ldots \oplus V_t$ of V where dim $V_i = n/t$. Indeed $H = \operatorname{GL}_{n/t}(k) \wr S_t$. And $H^\circ = \operatorname{GL}_{n/t}(k) \times \ldots \times \operatorname{GL}_{n/t}(k)$.

Theorem (Liebeck - Seitz, 1998)

Let $G = C\ell(V)$ a classical group. Let H be a closed subgroup of G. Then either H is contained in a member of $\mathscr{C}(G)$, or H° is simple, modulo scalar, and acts irreducibly on V.

Conjugacy classes II

Recall dim
$$C_{\Omega}(x) = \dim \Omega - \dim x^G + \dim(x^G \cap H)$$
.

Conjugacy classes II

Recall dim
$$C_{\Omega}(x) = \dim \Omega - \dim x^G + \dim(x^G \cap H)$$
.

In general it is hard to compute $\dim(x^G \cap H)$, if H is reductive

$$x^G \cap H = x_1^H \cup \ldots \cup x_m^H$$

and $\dim(x^G \cap H) = \max_i \{\dim x_i^H\}.$

Example

$$G = \mathsf{GL}_{12}(k), \mathrm{char} k = 3, t = 3 \text{ and } H^{\circ} = \mathsf{GL}_4 \times \mathsf{GL}_4 \times \mathsf{GL}_4.$$

- $x = [I_1, \omega I_2, \omega^2 I_3, \omega^3 I_4, \omega^4 I_2];$
- $x = [J_3, J_2^2, J_1^5].$

Example

$$G = \mathsf{GL}_{12}(k), \mathrm{char} k = 3, t = 3 \text{ and } H^{\circ} = \mathsf{GL}_4 \times \mathsf{GL}_4 \times \mathsf{GL}_4.$$

- $x = [I_1, \omega I_2, \omega^2 I_3, \omega^3 I_4, \omega^4 I_2];$
- $x = [J_3, J_2^2, J_1^5].$

Proposition

Let $x \in H^{\circ}$ be a semisimple element of order r, say $x = [I_{a_0}, \omega I_{a_1}, \dots, \omega^{r-1} I_{a_{r-1}}]$. Then

$$\dim(x^G \cap H^\circ) = \frac{n^2}{t} - n + \sum_{i=0}^{r-1} \left(t \left\lfloor \frac{a_i}{t} \right\rfloor^2 + (t - 2a_i) \left\lfloor \frac{a_i}{t} \right\rfloor\right)$$

Main result

Theorem (R. 2012)

Let $G = GL_n(k)$ and $\Omega = G/H$ where $H = GL_{n/t}(k) \wr S_t$. Let $x \in H$ of prime order r. Then

$$\frac{1}{r} - \epsilon \le f_{\Omega}(x) = \frac{\dim C_{\Omega}(x)}{\dim \Omega} \le 1 - \frac{2}{n}$$

where

- for r = p, $\epsilon = 0$.
- for $r \neq p$, then

$$r > n \epsilon = \frac{1}{r};$$

 $r = n \epsilon = 0;$
 $r < n \epsilon < \frac{r}{n}(1 + \frac{r}{n});$

Remark on sharpness

Main result II

Theorem (R. 2012)

Let $x \in H$ be an involution, $x = [I_{n-s}, -I_s]$ or $[J_2^s, J_1^{n-2s}]$. Then

$$f_{\Omega}(x) = 1 - \frac{2s(n-s)-s}{n^2(1-\frac{1}{t})} - \frac{n-t}{2n(t-1)}$$

if t = n, or $\frac{n}{t}$ odd and $\mathcal{P}(s)$. Otherwise,

$$f_{\Omega}(x) = 1 - \frac{2s(n-s)}{n^2} - \frac{2b(t-b)}{n^2(t-1)}$$

where s = at + b and $0 \le b < t$.

Remark on $\nu(x) = s$ (?)

Future work

- Bounds for $f_{\Omega}(x)$, $H \in \mathcal{C}_2$, for other classical groups;
- Bounds for $f_{\Omega}(x)$, $H \in \mathcal{C}_i$, $i \neq 2$, G = CI(V);
- Bounds for exceptional groups;
- Use the results obtained to study the fixed point ratio in finite simple groups of Lie type.

THANK YOU!