Algorytmiczna Analiza Danych Wykład 2

Uczenie nadzorowane

2025-10-09

1. Zbiór danych z etykietami

$$D = \left\{ \left(\bar{x}^{(1)}, y_{(1)}\right), \cdots, \left(\bar{x}^{(n)}, y^{(n)}\right) \right\} \tag{1}$$

 $\overline{x}^{(i)}=\left(x_1^{(i)},\cdots,x_p^{(i)}\right)$ - cechy, zmienne wyjaś
inające, predyktory $y^{(i)}$ - etykieta, zmienna wyjaśniająca

Problem: wyznaczyć ukrytą relację (ang. underlying realtion) f

$$y^{(i)} = f(\bar{x}^{(i)}) + \varepsilon^{(i)} \tag{2}$$

 $arepsilon^{(i)}$ - szum

1.1. Etykieta

Regresja - zmienna ciągła Klasyfikacja - zmienna dyskretna

2. Statistical learning vs Machine Learning

Statistical learning	Machine learning
 proste modele z mocnym wsparciem teoretycznym, np. regresja liniowa, łatwa interpretacja modelu, modele parametryczne 	 złożone modele, weryfikowane empirycznie, np. KNN, DT zazwyczaj nieparametryczne lub z dużą ilością parametrów
łatwe wnioskowanie,nie wymaga mocy obliczeniowej	duża moc predykcyjnanie wymaha założeń o danych
 słaba moc predykcyjna, wymaga silnych założeń o danych, wymaga aby szum (ε) miał rozkład normalny 	trudne w interpreacji (black box), wymaga dużej mocy obliczeniowej

[→] wnioskowanie (ang. inference)

3. Przygotowanie danych

1. Brakujące dane

[→] predykcja, przewidywanie

- usuwanie obserwacji,
- zastępowanie:
 - średnią
 - ► medianą
 - dominantą dla danych dyskretnych
 - ▶ losowanie zgodne z rozkładem
 - ▶ dodatkowa etykieta "unknown"
- 2. Usuwanie podejrzanych obserwacji
 - outlier (nietypowy),
 - high leverage points,
 - histogram etykiet
- 3. Inżynieria cech
 - dostosować dane, tak by predykcja była łatwiejsza
- 4. Podział danych
 - część treningowa $\approx 75\%$,
 - część walidacyjna $\approx 15\%$,
 - część testowa $\approx 10\%$,
 - typowo podział jest losowy

4. Bład średnio kwadratowy (ang. MSE - Mean Square Error)

$$\begin{aligned} \text{MSE} &= \mathbb{E} \Big(\left(\hat{f} \big(\bar{x}^{(0)} \big) - y^{(0)} \right)^2 \Big) \\ &= \text{Bias} \Big(\hat{f} \big(\bar{x}^{(0)} \big) \Big)^2 + \text{Var} \Big(\hat{f}^2 \big(\bar{x}^{(0)} \big) \Big) + \text{Var}(\varepsilon) \end{aligned} \tag{3}$$

$$Bias(\hat{f}(\bar{x}^{(0)})) = \mathbb{E}(f(\bar{x}^{(0)}) - \hat{f}(\bar{x}^{(0)}))$$
(4)