Week #3 : Derivatives - Applications

#### Goals:

- Calculate and interpret the first and second derivatives, as well as higher order derivatives.
- Define and calculate Taylor Polynomials.
- Use MATLAB to graph and compare functions with their Taylor polynomial approximations.
- Find and use critical points for global and local optimization problems.
- Use MATLAB optimizers and equation solvers to identify optimal values and critical points.

### Second and Higher Derivatives

The information about the graph of a function f provided by the sign of f'(x) and f''(x) on an interval (a, b) is expressed in the following table. (a and b are assumed to be finite.)

| f'(x) > 0  on  (a, b)  | f increasing on $[a, b]$   |
|------------------------|----------------------------|
| f'(x) < 0  on  (a, b)  | f decreasing on $[a, b]$   |
| f''(x) > 0  on  (a, b) | f concave up on $[a, b]$   |
| f''(x) < 0  on  (a, b) | f concave down on $[a, b]$ |

Aside from their graphical interpretation, second derivatives frequently have important physical interpretations in kinematics problems.

**Problem.** If  $x(t) = 4\sin(2t)$  gives the position of a particle at time t, what is particle's **speed** at  $t = \frac{\pi}{6}$ ?

For the same particle, what is its **acceleration** at  $t = \frac{\pi}{6}$ ?

While their interpretations are not as immediately obvious, it is possible to compute 3rd and higher derivatives of function if we want.

**Problem.** Find the first four derivatives of the function

$$f(x) = 7(2^x) + \ln(x).$$

### Taylor Polynomials

One application of higher derivative information is to help us build **polynomial approximations** to complicated functions.

Previously we found a formula for linear approximations to functions f(x) around a point x = a:

This linear approximation, or tangent line formula, can also be called the **Taylor polynomial of degree 1 approximating** f(x)**near** x = a. Sketch the graph of cos(x) around x = 0, and add its tangent line based at x = 0.



The linearization or tangent line is clearly a very limited approximation to this function. What might be a *slightly* more complex form of function that would work better in this case?

## Taylor Polynomial of Degree 2

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$$

is a quadratic approximation to f(x) near x = a.

For values of x close to a do you think this quadratic approximation will be a better or worse approximation than the tangent line? Why?

**Problem.** Find the quadratic Taylor approximation to  $f(x) = \cos(x)$  near x = 0.

**Problem.** Use MATLAB to draw the graph of cos(x) around x = 0, and add both its 1st and 2nd degree Taylor polynomial approximations for x near 0.

There is a very good reason for the particular form of the Taylor polynomial.

**Problem.** What mathematical features will f(x) and its 2nd degree Taylor approximation share at x = a?

### Taylor Polynomials of Higher Degree

**Problem.** If we wanted a still-better approximation for a function f(x) near a specific point x = a, how could we generalize our earlier 1st and 2nd degree Taylor polynomials?

This is the general formula for the terms in a Taylor polynomial, up to degree n.

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

- $f^{(n)}$  means "the *n*-th derivative of f".
- n! means "n factorial"

## Higher Degree Taylor Polynomials - Example

Consider the function  $f(x) = \sin(x)$ .

**Problem.** Find the first four derivatives of f(x).

**Problem.** Write out the Taylor poylnomial of degree 5 for  $f(x) = \sin(x)$ .

**Problem.** Write out the general form of the Taylor poylnomial of degree n for  $f(x) = \sin(x)$ .

**Problem.** Use MATLAB to plot the graph of  $f(x) = \sin(x)$  and the Taylor polynomial approximations up to degree 5.

MATLAB Demo of increasing higher degrees.

#### **Critical Points**

If f(x) is defined on the interval (a, b), then we call a point c in the interval a **critical point** if:

- f'(c) = 0, or
- f'(c) does not exist.

We will also refer to the point (c, f(c)) on the graph of f(x) as a critical point. We call the function value f(c) at a critical point c a **critical value**.

#### Technical Notes:

1. By this definition, f(c) must be **defined** for c to be a critical point.

Sketch f(x) = 1/x, and decide whether x = 0 is a critical point.

Sketch g(x) = |x|, and decide whether x = 0 is a critical point.

- 2. By the definition, if a function is defined on a closed interval, the endpoints of interval **cannot** be critical points.
  - Sketch the graph of  $f(x) = \sqrt{x}$  and decide whether x = 0 is a critical point.

Sketch the graph of  $g(x) = \sqrt[3]{x}$  and decide whether x = 0 is a critical point.

**Problem.** Identify all the critical points on the graph below, and characterize any other interesting points by continuity, limits, or other properties.



**Problem.** Consider the function

$$f(x) = \frac{x}{x^2 + 1}$$

Construct a sign chart for both f' and f'', and use this information to sketch f(x).



# Optimization - Introduction

# **Optimization - Critical Points**