

$\begin{array}{l} Lecture \ \# \ 18 \\ {\tt Binary \ Decision \ Diagram \ | \ Reduction \ rules \ for \ BDDs} \end{array}$

x, y : Boolean variables

$$f(x,y)=x+y$$
 Boolean function

 $0+0 = 0$
 $0+1 = 1$ Logical OR

 $1+0 = 1$
 $1+1 = 1$
 $x \quad y \quad f(x,y)$
 $0 \quad 0 \quad 0$
 $0 \quad 1 \quad 1$
 $1 \quad 0 \quad 1$
 $1 \quad 1 \quad 1$

Truth table

x, y: Boolean variables

$$f(x,y) = x \cdot y$$
 Boolean function
 $0 \cdot 0 = 0$
 $0 \cdot 1 = 0$ Logical AND
 $1 \cdot 0 = 0$
 $1 \cdot 1 = 1$
 x y $f(x,y)$
 0 0 0
 0 1 0
 1 0 0
 1 0 0
 1 0 0

x: **Boolean** variable

$$f(x) = \overline{x}$$
 Boolean function
$$\overline{0} = 1$$

$$\overline{1} = 0$$
 Logical NOT

$$\begin{array}{c|cc}
x & f(x) \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Truth table

$$x_1, x_2, \dots, x_n$$
: Boolean variables

$$f: \{x_1, x_2, \dots, x_n\} \rightarrow \{0, 1\}$$
 Boolean function

Boolean operations

Examples:
$$f_1(x)$$

$$f_1(x, y) = \overline{x} + y$$

Examples:
$$f_1(x, y) = \overline{x} + y$$
, $f_2(x, y, z) = x \cdot y + \overline{y} \cdot z$, $f_3(x, y, z) = \overline{x + \overline{y} \cdot z}$

$$f_3(x, y, z) = \overline{x + \overline{y} \cdot z}$$

Representing Boolean functions

$$f(x, y, z) = x \cdot y + \overline{y} \cdot z$$

X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Truth table

Binary Decision Tree

Operations on truth tables

$$g(x, y, z) = f(x, y, z) = \overline{x \cdot y + \overline{y} \cdot z}$$

X	У	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

X	у	z	g
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

X	у	z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

X	У	Z	g
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

$$f(x,y,z) = x \cdot y + \overline{y} \cdot z$$
$$g(x,y,z) = \overline{x} \cdot \overline{y}$$
$$h(x,y,z) = f(x,y,z) + g(x,y,z)$$

X	y	z	h
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

х	y	Z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

X	У	Z	g
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$f(x,y,z) = x \cdot y + \overline{y} \cdot z$$
$$g(x,y,z) = x$$
$$h(x,y,z) = f(x,y,z) \cdot g(x,y,z)$$

\mathcal{X}	у	Z	h
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Truth table representation for boolean functions

- \supset Space: For *n* variables, needs to store $2^n \cdot (n+1)$ bits
- ⊃ Operations: Visit each entry of truth table

⊃ Sequential circuits can be modeled using boolean functions

If boolean functions are represented using truth tables, a circuit with 100 variables needs more than 2¹⁰⁰ bits!

Binary Decision Diagram

Binary Decision Diagrams

Reduction rules for BDDs

⊃ C1: Removal of duplicate leaves

□ C2: Removal of redundant tests

⊃ C3: Removal of duplicate sub-trees

 $\bar{x} \cdot \bar{y}$

