UNIF UNIVERSIDADE DE FUNDAÇÃO EDSOI ENSINANDO E AP	FORTALEZA N QUEIROZ	ASSINALE A AV 1 VERIFICAÇÃO CORRESPONDENTE A ESSE TRABALHO: AV 3			
CENTRO:	DISCIPLINA:	DATA:/ PROF(®):			
ALUNO(A):		MATRÍCULA:			

Lista de exercícios para composição de notas da AV2 de Computação Paralela e Concorrente

Esta lista de prática pode ser feita individualmente ou de dupla. Caso sejam detectados trabalhos iguais, os mesmos serão ZERADOS

Prazo de entrega: 30/10/2024

A entrega deste trabalho deve ser feita via AVA, disponibilizando o link do github Para a realização deste trabalho, pode-se utilizar QUAISQUER LINGUAGENS DE PROGRAMAÇÃO, DESDE QUE A MESMA APRESENTE UMA ESTRUTURA PARA LIDAR COM PARALELISMO E CONCORRÊNCIA.

Questão única:

A multiplicação de matrizes é uma ferramenta poderosa que permite que sistemas computacionais realizem uma ampla variedade de tarefas, desde o processamento de imagens até a tomada de decisões complexas em sistemas de inteligência artificial. Para se ter uma ideia, a multiplicação de matrizes é a base de muitos algoritmos de aprendizado de máquina, como redes neurais artificiais. Essas redes aprendem a partir de dados através de ajustes em matrizes de pesos. Isso ocorre pois as matrizes são excelentes estruturas para representar dados estruturados, como imagens e gráficos. Como é possível verificar, a eficiência com que essa operação é realizada é fundamental para o desempenho de muitos algoritmos e aplicações.

Um outro exemplo prático para a multiplicação de matrizes é a análise de redes sociais. Para a análise em redes sociais é possível representar os usuários como linhas e colunas. Imagine uma rede social com 5 usuários: Alice, Bob, Carol, David e Paul. A matriz de adjacência representa quem segue quem. Se Alice segue Bob, na posição (Alice, Bob) da matriz teremos um 1. Caso contrário, será 0. Considere a seguinte matriz de adjacência A como base desta análise.

	Alice	Bob	Carol	David	Paul
Alice	0	1	0	1	0
Bob	0	0	1	0	1
Carol	1	0	0	1	0
David	0	1	0	0	1
Paul	1	0	1	0	0

Com esta matriz é possível realizar 2 aferições muito simples, SE CALCULARMOS A²:

- i) Ao multiplicar a matriz de adjacência por ela mesma, encontramos conexões de segundo grau (amigos dos amigos) e,
- ii) A Coluna que possuir linhas com valores altos na matriz resultante indicam usuários que são seguidos por muitos outros, ou seja, influenciadores.

Para melhor explicar os resultados, seguem exemplos a saber:

- i) Se o valor de z (posição Alice, Bob) for 2, isso significa que Alice pode chegar até Bob através de dois caminhos de comprimento 2: Alice -> Carol-> Bob e Alice -> David -> Bob.
- ii) Um valor alto nas linhas da coluna de um usuário indica que muitos outros usuários estão conectados a ele de alguma forma, seja diretamente ou indiretamente.

Considere a matriz supracitada, realize as operações de multiplicação de maneira PARALELA, calcule A2 e responda:

- I) Demonstre a matriz resultante e demonstre as 2 pessoas com mais amigos em comum.
- II) Demonstre a pessoa mais influente deste grupo
- III) Calcule e demonstre os tempos que cada thread utilizou para fazer as multiplicações
- IV) Qual o tempo utilizado para calcular a matriz resultante? Qual o tempo gasto para calcular as pessoas com mais amigos em comum e a pessoa mais influente do grupo? Discuta as diferenças de tempo encontradas.