Universidade Federal do Ceará Departamento de Computação Disciplina: Métodos Numéricos Prof. João Paulo do Vale Madeiro

LISTA DE EXERCÍCIOS 03

1) Use a iteração de ponto fixo simples para localizar a raiz de $f(x) = 2 sen(\sqrt{x}) - x$.

Use a aproximação inicial $x_0 = 0.5$ e itere até $\varepsilon_a \le 0.001\%$.

- 2) Determine a maior raiz real de $f(x) = 2x^3 11,7x^2 + 17,7x 5$:
- (a) Graficamente;
- (b) Pelo método da iteração de ponto fixo (três iterações, $x_0 = 3$). Observação: certifique-se de desenvolver uma solução que convirja para a raiz.
- (c) Pelo método de Newton-Raphson (três iterações, $x_0 = 3$).
- (d) Pelo método da secante (três iterações, $x_{-1} = 3$, $x_0 = 4$).

Calcule os erros relativos percentuais aproximados para suas soluções.

- 3) Use o método de Newton-Raphson para determinar uma raiz real de $f(x) = -1 + 5.5x 4x^2 + 0.5x^3$ usando aproximações iniciais
 - (a) 4,52
 - (b) 4,54

Discuta e use métodos gráficos e analíticos para explicar quaisquer peculiaridades nos resultados.

4) Determine a menor raiz real de $f(x) = -12 - 21x + 18x^2 - 2.4x^3$: (a) graficamente, (b) usando o método da secante para um valor de ε_s correspondente a três algarismos significativos.

- 5) Localize a primeira raiz positiva de $f(x) = sen x + cos(1 + x^2) 1$ em que x está em radianos. Use quatro iterações do método da secante com aproximações iniciais:
- (a) $x_{i-1} = 1.0 \text{ e } x_i = 3.0$;
- (b) $x_{i-1} = 1.5 \text{ e } x_i = 2.5$;
- (c) $x_{i-1} = 1.5$ e $x_i = 2.25$.

Use o método gráfico para explicar seus resultados.

6) Determine a raiz real de $x^{3,5} = 80$, com o método da secante até $\varepsilon_s = 0,1\%$. Use uma aproximação inicial $x_{i-1} = 3,0$ e $x_i = 3,5$.