## REPORT

### Amulya Vince Chemparathy

#### August 2024

#### Theorem 1. Statement:

Let G be a connected AT-free graph. If there exists a vertex x in G such that the BFS levels of x are  $H_0, H_1, H_2, \ldots$ , then there exists a minimum cardinality dominating set D and a minimum cardinality total dominating set T in G such that:

For all  $i \in \{0, 1, ..., l\}$  and  $j \in \{0, 1, ..., l - i\}$ , the set of all vertices common to D and BFS levels from i to i + j is less than or equal to j + 3.

For all  $i \in \{0, 1, ..., l\}$  and  $j \in \{0, 1, ..., l - i\}$ , the set of all vertices common to T and BFS levels from i to i + j is less than or equal to j + 3.

*Proof.* This proof makes use of property (3) which states that for a graph with a dominating shortest path and BFS levels, there exists a minimum cardinality dominating set and a minimum cardinality total dominating set T such that for all  $i \in \{0, 1, \ldots, l\}$  and  $j \in \{0, 1, \ldots, l-i\}$ , the set of all vertices common to D and BFS levels from i to i + j is less than or equal to j + 4.

We begin by calculating a dominating pair (x, y), which can be done in AT-free graphs, and constructing a path P based on the BFS levels of x, where P is the path corresponding to the dominating pair. Since V(P) is a dominating set, each vertex in  $H_i$  is adjacent to  $x_{i-1}$ ,  $x_i$ , or  $x_{i+1}$ .

Let G be a connected AT-free graph, and let  $D_r$  be a minimum cardinality dominating set of G, where r is a positive integer. Suppose  $D_r$  violates property (3). Then, the number of vertices in its BFS levels from  $H_i$  to  $H_{i+j}$  will be greater than j+4.

We define a subpath A as the set of vertices  $\{x_{i'_r-2}, x_{i'_r-1}, \dots, x_{i'_r+j'_r+1}\}$ . The neighborhood of A is the superset of BFS levels from  $i'_r-1$  to  $i'_r+j'_r+1$ .

The replacement of  $D_r$  by  $D_{r+1}$  is called an exchange step. If  $D_{r+1}$  satisfies property (3), then G has a minimum cardinality dominating set with property (3).

This process continues until a  $Q_r$  is obtained that does not violate the theorem. Hence, starting with a minimum cardinality dominating set  $D_1$  of G, we ultimately obtain a minimum cardinality dominating set D such that it satisfies the theorem.

## Algorithm

The following algorithm computes a minimum cardinality dominating set for a given connected graph G. If the input graph is an AT-free graph, then the algorithm computes a minimum cardinality dominating set of G.

Input: Connected AT-free graph G Output: Dominating set D

- 1. Initialize D = V.
- 2. For each vertex x in V:
  - (a) Compute the BFS levels of x as  $H_0, H_1, H_2, \ldots$
- 3. Assume:
  - (a) Queue  $A_1$  is initialized to contain a tuple (S, S, val(S)) for all non-empty subsets S of the closed neighborhood of x, such that  $val(S) = |S| \le w$ .
- 4. While  $A_i$  is not empty and i < l:
  - (a) Increment i.

- (b) For each triple (S, S', val(S')) in queue  $A_{i-1}$ , where S' is the subsolution set which is a subset of the union of all  $H_j$  with  $j \in \{0, \ldots, i-1\}$ :
  - i. For every subset U of  $H_i$  where  $|S \cup U| \leq w$ , do:
    - A. If the neighborhood of  $S \cup U$  is a superset of  $H_{i-1}$ :
    - B. Assign R as the set containing vertices of S and U, then remove vertices of  $H_{i-2}$  from it.
    - C. Assign R' as the set containing vertices of S' and U.
    - D. Compute val(R') as val(S') + cardinality of U.
    - E. If there is no triple with R as the first entry in the queue, insert (R, R', val(R')) into queue  $A_i$ .
    - F. If there is a triple (R, R', val(R')) where val(R') < newly computed <math>val(R'), replace the triple with the new values (R, R', val(R')).
- 5. Among all triples (S, (S', val(S'))) in queue  $A_l$  that satisfy the conditions, find the triple with minimum val(S'). If val(S') < |D|, then D = S'.

**Output:** The minimum cardinality dominating set D. This is proved by the following theorem.

## Algorithm Analysis

### Theorem: Running Time Analysis of BFS-levels

The running time of the algorithm to check the BFS-levels of a fixed vertex is  $O(n^{w+1})$  since it includes the time taken to test all subsets of S and U contained in three consecutive BFS-levels of x. The time taken to test each subset is O(n), and there are  $O(n^w)$  subsets to be tested in total. Also, to avoid duplicates, the triples  $(S, S', \operatorname{val}(S'))$  are stored simultaneously in the queue  $A_i$  and according to S in a w-dimensional array. For any such triple, S' represents the subsolution corresponding to S and  $\operatorname{val}(S')$ . However, only S and  $\operatorname{val}(S')$  are used in dynamic programming. The main purpose of storing S' is to find a dominating set S' corresponding to  $\operatorname{val}(S')$  that has at most S' vertices across any three consecutive BFS-levels of a vertex S'.

We claim that for any triplet in the queue A, S is defined as  $S' \cup H_{i-1} \cup H_i$ ,  $\operatorname{val}(S') = |S'|$ , and the neighborhood of S' is the superset of the union of all  $H_j$  from j = 0 to i - 1. This is true for i = 1. By initializing  $A_1$  for all triplets in  $A_1$ , S = S' and S is a subset of the neighborhood of X. Hence, the closed neighborhood of S, which is a superset of  $H_0$ , is equal to X.

Suppose the claim is true for i-1 from 1 to i-1. By the algorithm, the triple  $(R,R',\operatorname{val}(R'))$  is in  $A_i$  only if there is a triple  $(S,S',\operatorname{val}(S'))$  in  $A_{i-1}$  and a subset  $U\subseteq H_i$  such that  $|S\cup U|\leq w$  and the closed neighborhood of  $S\cup U$  is a superset of  $H_{i-1}$ , where  $R=S\cup U-H_{i-1}$ ,  $R'=S'\cup U$ , and  $\operatorname{val}(R')=\operatorname{val}(S')+|U|$ . Consequently,  $R=R'\cap (H_{i-1}\cup H_i)$ ,  $\operatorname{val}(R')=|R'|$ , and the closed neighborhood of R' is a superset of the union of all  $H_i$  for i=1. This hence proves the claim.

Hence, for any triple (S, S', val(S')) in  $A_l$ , where the closed neighborhood of S is a superset of all  $H_l$ , S' is a dominating set of the graph G. Also, for any minimum cardinality dominating set D of G such that it has at most w vertices across any three consecutive BFS levels of x, there exists a triple  $(D \cap (H_{l-1} \cup H_l), D', |D'|)$  in  $A_l$  such that the closed neighborhood of D is a superset of all  $H_l$  when the algorithm checks all BFS levels of x. Hence, the output will be a minimum cardinality dominating set.

# Theorem on Weakly Connected Graphs

Assume u and v are two vertices in R, where R and L denote the right and left halves of  $D_r$ . Let  $u_1$  be the last vertex in R before entering L when traveling leftward from R to L. Let  $y_1$  be in  $H_{i'}$  or  $H_{i'+j'}$ , while  $u_1$  is in  $H_{i'-1}$  or  $H_{i'+j'+1}$ .

Let  $w_2$  be a vertex in A that is adjacent to  $u_1$ , and let  $w_1$  be a vertex adjacent to  $y_2$ . Also, x is adjacent to y, where y is in layers  $H_{i'+1}$  to  $H_{i'+j'}$  while x is in layers  $H_{i-1}$ ,  $H_i$ ,  $H_{i'+j'+1}$ . A dominates all these layers, and there is an edge from A to x.



Figure 1: Representation of the figure as proposed