I | Loi des nœuds en terme de potentiel

On considère le circuit 1 suivant. On appelle $V_A,\,V_B$ et V_C les potentiels aux points $A,\,B$ et C.

Figure 4.1: Circuit 1

1. En utilisant un pont diviseur de tension, calculer V_B en fonction de V_A , V_C , R_1 et R_2 .

On ajoute une nouvelle résistance au point B comme sur le circuit 2 et on appelle V_D le potentiel au point D.

Figure 4.2: Circuit 2

2. Calculer, par la méthode de votre choix, le nouveau potentiel V_B en fonction de V_A , V_C , V_D , R_1 , R_2 et R_3 .

On suppose maintenant que N résistances sont reliées au point O de potentiel V_0 . On appelle V_i le potentiel à l'extrémité de la résistance i comme sur le circuit O.

Figure 4.3: Circuit 3

3. Montrer la formule de la loi des nœuds en terme de potentiel (appelée aussi également théorème de Millman) :

$$V_0 = \frac{\sum_{i=1}^{N} \frac{V_i}{R_i}}{\sum_{i=1}^{N} \frac{1}{R_i}}$$

4. Vérifier l'homogénéité de cette équation.

On considère maintenant le montage du circuit 4.

Figure 4.4: Circuit 4

Dans ce circuit, l'amplificateur linéaire intégré (ALI) est symbolisé par un carré et dispose de 2 entrées et une sortie. On admet qu'ici, son unique rôle est d'imposer que :

$$V_{+} = V_{-}$$
.

- 5. Que vaut par convention le potentiel au point V_+ ?
- 6. Comment appelle-t-on ce point dans un circuit électrique ?
- 7. Que vaut alors le potentiel au point V_{-} ?
- 8. Calculer le potentiel V_s en fonction de V_e , R_1 et R_2 .

${f I}^{}$ Pont de Wheatstone

1.

En électronique, on réalise régulièrement des ponts de mesure pour mesurer indirectement une résistance. On dispose d'un circuit comprenant un générateur de tension qui alimente un pont de Wheatstone composé des résistances R_1 et R_2 . La résistance R_i est inconnue, et la résistance R est variable (il s'agit d'un potentiomètre). On fait évoluer R jusqu'à ce que le voltmètre indique une tension E nulle. Le pont est alors équilibré.

À l'aide des lois de Kirchhoff, déterminer l'expression de la valeur de R_i en fonction des valeurs des autres résistances lorsque le pont est équilibré.

I | Bilan de puissance

On donne $i=0,2\,\mathrm{A},\ i_4=-0,1\,\mathrm{A},\ i_5=-0,5\,\mathrm{A},\ V_A=-2\,\mathrm{V},\ V_C=4\,\mathrm{V},\ u_5=1\,\mathrm{V}$ et $u_4=2\,\mathrm{V}.$

- 1. Déterminer la puissance reçue par chaque dipôle D_i avec $i \in [1,5]$. Préciser le caractère récepteur ou générateur de chaque dipôle.
- 2. En déduire la puissance reçue P_{AB} du dipôle AB. Préciser son caractère.

I Batterie tampon

On donne $e_2=2\,\mathrm{V}=cte,\,r_2=0,2\,\Omega,\,r_3=50\,\Omega.$ La tension e_1 décroît linéairement de 6 V à 5 V en 24 h. La résistance r_1 est choisie de telle sorte que la fermeture de l'interrupteur K à t=0 ne provoque aucun courant dans r_2 .

- 1. Exprimer les intensités $i_1(t)$ et $i_2(t)$. Le temps t sera exprimé en jour. En déduire la valeur de r_1 .
- 2. Déterminer la diminution relative de l'intensité i(t) qui traverse la résistance r_3 en un jour :
 - \bullet si K est ouvert
 - $\bullet\,$ si Kest fermé

En déduire le rôle du générateur de tension e_2 .

I | Association de générateurs : application

- 1. Deux générateurs de tension (E_1, r_1) et (E_2, r_2) sont placés en parallèle l'un de l'autre. Ils alimentent une résistance R_4 , également placée en parallèle sur les générateurs.
 - (a) Dessiner le schéma normalisé de ce montage et flécher les courants et les tensions.
 - (b) Exprimer l'intensité du courant qui circule dans R_4 .
 - (c) Exprimer la tension aux bornes de R_4 .