AGLA II / Geometrie

Stefan Wiedmann / Verena Spratte – Sommersemester 2021

Aufgabenblatt 7

Vorname	Nachname	1	2	3	4	Σ

Gruppenabgabe im Stud.IP: Mittwoch 26.05.2021 bis 18 Uhr.

Geben Sie bitte jede Aufgabe in einzelnen Dateien in den zugehörigen Abgabeordner im Stud. IP ab. Verwenden Sie außschließlich die Formate

- NachnameBlatt6A1.pdf für Aufgabe 1.
- NachnameNachnameBlatt6A3.pdf bzw. NachnameNachnameNachnameBlatt6A2uA4.pdf für die Aufgaben 2,3 und 4.

Aufgabe 7.1. (20 Punkte, Einzelabgabe)

Wir betrachten die beiden Kreise $K_1 = \{(x,y)^T \in \mathbb{R}^2 \mid (x-12)^2 + (y-5)^2 = 25\}$ und $K_2 = \{(x,y)^T \in \mathbb{R}^2 \mid (x-2)^2 + \left(y + \frac{5}{2}\right)^2 = \frac{25}{4}\}$ im euklidschen Raum \mathbb{R}^2 . Wir betrachten drei potentielle Abstandsbegriffe für zwei Kreise K, K':

- $d_1(K, K')$ sei der Abstand der Mittelpunkte.
- $d_2(K, K')$ sei die Länge der kürzesten Strecke zwischen den beiden Kreislinien.
- $d_3(K, K')$ sei die Summe der Abstände der Mittelpunkte vom Ursprung.
- 1) Bestimmen Sie d_1 , d_2 und d_3 für die beiden gegebenen Kreise. (Hinweis: Zeigen Sie für d_2 zunächst, dass die Endpunkte dieser kürzesten Strecke immer auf einer Geraden mit den beiden Mittelpunkten liegen.)
- 2) Überprüfen Sie Ihr Ergebnis durch eine entsprechende Zeichnung in Geogebra und binden Sie einen Screenshot in Ihre Lösung ein.
- 3) Welche der drei Begriffe sind sinnvolle Abstandsbegriffe? Betrachten Sie verschiedene Konstellationen in Geogebra und erörtern Sie unter Einbindung von Screenshots.

Aufgabe 7.2. (20 Punkte)

Sei $V = \mathbb{R}^4$ versehen mit dem Standard-Skalarprodukt und der Standard-Basis (e_1, e_2, e_3, e_4) .

Sei

$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

- 1) Zeigen Sie, dass $A \in O(4)$ ist.
- 2) Zerlegen Sie A in ein Produkt von Spiegelungen, d.h. finden Sie Vektoren $a, b, c, \ldots \in V$, sodass $L_A = S_a \circ S_b \circ S_c \circ \cdots$ ist.

Hinweis: Sind $x \neq y \in V \setminus \{0\}$ mit ||x|| = ||y||, dann gilt für die Spiegelung s_{x-y} , dass $s_{x-y}(x) = y$. Verfolgen Sie nun die Bilder der Basisvektoren unter der Abbildung L_A und machen Sie deren Wirkung durch entsprechende Spiegelungen rückgängig.

Aufgabe 7.3. (20 Punkte)

Der folgende Auszug stammt aus dem Schulbuch Elemente der Mathematik, Klasse 7.

Für jede Verschiebung gilt:

- Figur und Bildfigur sind kongruent (deckungsgleich) zueinander.
- (2) Strecke und Bildstrecke sind gleich lang.
- (3) Winkel und Bildwinkel sind gleich groß.
- (4) Strecke und Bildstrecke sind parallel zueinander.
- Figur und Bildfigur haben denselben Umlaufsinn.

Sei (V,b) eine metrische Struktur. Ein **affiner Unterraum** $A\subseteq V$ ist eine Teilmenge der Form $A=v+U=\{v+u\mid u\in U\}$ für ein $v\in V$ und einen Untervektorraum U. Zwei affine Unterräume A=v+U, B=w+W heißen **parallel**, wenn $U\subseteq W$ oder $W\subseteq U$ gilt. Wir betrachten für beliebiges $a\in V$ die Abbildung $\varphi_a\colon V\to V$ mit $\varphi_a(x)=x+a$.

- 1) Zeigen Sie, dass für einen affinen Unterraum $A \subseteq V$ der zugehörige Untervektorraum U eindeutig ist und daher dim $A := \dim U$ und parallel wohldefiniert sind.
- 2) Zeigen Sie, dass das Bild eines affinen Unterraums unter der Abbildung φ_a wieder ein affiner Unterraum ist und dass Eigenschaft (4) für die Abbildung φ_a gilt.

- 3) Längen und Winkel werden im euklidischen Fall über b(x, y), bzw. q(x) = b(x, x) definiert. Zeigen Sie, dass mit diesen Begriffen Eigenschaften (2) und (3) für φ_a gelten.
- 4) Zeigen Sie: $b(\varphi_a(x), \varphi_a(y)) = b(x, y)$ für alle $x, y \in V$, genau dann wenn $a \in \text{Rad}(V, b)$.

Aufgabe 7.4. (20 Punkte)

Sei (V, b) ein nicht ausgearteter n-dimensionaler Vektorraum und sei $[v_1, \dots, v_n]$ eine orthogonale Basis.

- 1) Zeigen Sie: $s_{v_n} \circ \cdots \circ s_{v_1} = -id$
- 2) Zeigen Sie: Ist $\sigma \in O(V, b)$ und ist $\sigma = s_1 \circ \cdots \circ s_m$ eine Zerlegung in m < n Spiegelungen, dann gibt es $0 \neq x \in V$ mit $\sigma(x) = x$.
- 3) Folgern Sie, dass jede Zerlegung von $\sigma = -\mathrm{id}$ in Spiegelungen immer mindestens n Spiegelungen erfordert.