

Tartalom

- ➤ <u>Ciklusok</u> specifikáció+,,algoritmika"+kódolás
- Egy bevezető példa a tömbhöz
- > A tömb
- Elágazás helyett tömb
- > Konstans tömbök

Feladat:

Add meg egy természetes szám (>1) 1-től különböző legkisebb osztóját!

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

 \gt Kimenet: $0 \in \mathbb{N}$

> Előfeltétel: N>1

> Utófeltétel: 1<O≤N és O | N és ∀i (2≤i<O): i ∤ N

A megoldás reprezentálása:

Programváltozók deklarálása

Reprezentációs "szabály" a specifikáció—reprezentáció áttéréskor:

 $\mathbb{N} \rightarrow \mathbf{Eg\acute{e}sz}$

A megoldás ötlete:

Próbáljuk ki a 2-t; ha nem jó, akkor a 3-at, ha az sem, akkor a 4-et, ...; legkésőbb az N jó lesz!

Az ezt kifejező lényegi algoritmus:

Az i változó szerepe: végigmenni egy halmaz elemein.

Specifikáció: > Bemenet: N∈N > Kimenet: O∈N > Előfeltétel: N>1 > Utófeltétel: 1<0≤N és O∫N és ∀i (2≤1<0): i∤N

Feladat:

Határozzuk meg egy természetes szám (N>1) 1-től különböző legkisebb és önmagától különböző legnagyobb osztóját!

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$
- ➤ Kimenet: Lko,Lno∈N
- ► Előfeltétel: N>1
- > Utófeltétel: 1<Lko≤N és 1≤Lno<N és

Lko | N és ∀i (2≤i<Lko): i ∤ N és

Lno N és ∀i (Lno<i≤N-1): i ∤ N

Specifikáció:

- > Bemenet: N ∈ N
- > Kimenet: O∈N
- ► Előfeltétel: N>1
- > Utófeltétel: 1<O≤N és O|N és

∀i (2≤i<O): i∤ N

Megjegyzés:

A specifikációból az algoritmus megkapható, de az Lno az utófeltételben az Lko ismeretében másképp is megfogalmazható: Lko*Lno=N!

Az erre építő algoritmus:

Specifikáció:
>Bemenet: N∈N
≻Kimenet: Lko,Lno∈N
≻Előfeltétel: N>1
> Utófeltétel: 1 <lko≤n 1≤lno<n="" th="" és="" és<=""></lko≤n>
Lko N és
∀i (2≤i <lko): i∤n="" td="" és<=""></lko):>
Lko*Lno=N

	Változó
i:=2	i:Egész
i∤N	
i:=i+1	
Lko:=i	
Lno:=N Div Lko	

Feladat:

Határozzuk meg egy természetes szám (N>1) 1-től és önmagától különböző legkisebb osztóját (ha van)!

Specifikáció:

> Bemenet: N ∈ N

 \triangleright Kimenet: $0 \in \mathbb{N}, \text{Van} \in \mathbb{L}$

► Előfeltétel: N>1

> Utófeltétel: Van=∃i (2≤i<N): i | N és

 $Van \rightarrow 2 \le O < N \text{ és } O \mid N \text{ és } \forall i \text{ (2} \le i < O): i \nmid N$

Algoritmus:

Specifikáció:

- > Bemenet: N ∈ N
- \triangleright Kimenet: $O \in \mathbb{N}$, $Van \in \mathbb{L}$
- ► Előfeltétel: N>1
- > Utófeltétel: Van=∃i (2≤i<N): i | N és Van→2≤O<N és O | N és

∀i (2≤i<O): i∤ N

Megjegyzés:

Ha i osztója N-nek, akkor (N Div i) is osztója, azaz elég az osztókat a szám gyökéig keresni!

 $i \le \sqrt{N}$

Feladat:

Határozzuk meg egy természetes szám (N>1) osztói összegét!

Specifikáció:

>Bemenet: $N \in \mathbb{N}$

 \succ Kimenet: $S \in \mathbb{N}$

> Előfeltétel: N>1

Vtófeltétel: $S = \sum_{\substack{i=1 \ i \mid N}}^{N} i$

A feltételes szumma értelmezéséhez egy példa:

$$N=15 \rightarrow$$

$$i=1: (1 | 15) \rightarrow S=1$$

$$i=2:(2 \nmid 15) \to S=1+0$$

$$i=3:(3|15) \rightarrow S=1+3$$

$$i=4: (4 \nmid 15) \rightarrow S=1+3+0$$

$$i=15: (15 \mid 15) \rightarrow S=1+3+...+15$$

Algoritmus:

Az S változót nem egy képlettel számoljuk, hanem gyűjtjük benne az eredményt.

Kérdés:

Lehetne itt is gyök (N) -ig menni

Feladat:

Határozzuk meg egy természetes szám (N>1) páratlan osztói összegét!

Specifikáció:

>Bemenet: $N \in \mathbb{N}$

 \gt Kimenet: $S \in \mathbb{N}$

► Előfeltétel: N>1_N

 \rightarrow Utófeltétel: $S = \sum_{i=1}^{n} i$

i N és páratlan(i)

Definíció: páratlan ...

Algoritmus₁:

Specifikáció:

- >Bemenet: N ∈ N
- \succ Kimenet: $S \in \mathbb{N}$
- >Előfeltétel: N>1
- ►Utófeltétel: S=

i N és páratlan(i)

Algoritmus₂:

Feladat:

Határozzuk meg egy természetes szám (N>1) prímosztói összegét!

Specifikáció:

- \triangleright Bemenet: $N \in \mathbb{N}$
- \gt Kimenet: $S \in \mathbb{N}$
- > Előfeltétel: N>1
- \rightarrow Utófeltétel: $S = \sum_{i=2}^{n} i_{i|N \text{ és prím(i)}}$
- Definíció: prím ...

$$N=i_{1}^{m_{1}}*i_{2}^{m_{2}}*...*i_{k}^{m_{k}}$$

$$\downarrow$$

$$S=i_{1}+i_{2}+...+i_{k}$$

Algoritmus:

a legkisebb osztó biztosan prím; ha N-t osztjuk vele ahányszor csak tudjuk, a következő osztója (a redukált N-nek) megint prím lesz.

Specifikáció:

- > Bemenet: N∈N
- \gt Kimenet: $S \in \mathbb{N}$
- ► Előfeltétel: N>1
- Vtófeltétel: S= $\sum_{i=2}^{N} i_{i|N \text{ és prin}}$

$$N=i_{1}^{m_{1}}*i_{2}^{m_{2}}*...*i_{k}^{m_{k}}$$

$$\downarrow$$

$$S=i_{1}+i_{2}+...+i_{k}$$

Változó i:Egész

Miért nem számlálós a külső ciklus?

Tanulságok:

- ➤ Ha az utófeltételben ∃, ∀, vagy ∑ jel van, akkor a megoldás mindig ciklus!
- ➤ Ha az utófeltételben ∃ vagy ∀ jel van, akkor a megoldás sokszor feltételes ciklus!
- \succ Ha az utófeltételben Σ jel van, akkor a megoldás sokszor számlálós ciklus! (Π is...)
- > Feltételes Σ esetén a ciklusban elágazás lesz.

2018. 09. 19. 15:19

algoritmus – kód

Feltételes ciklusok:

Tipikus előfordulás: a beolvasás ellenőrzésénél

feltétel

utasítások

utasítások

feltétel

while (feltétel) {
 utasítások
}

do{
 utasítások
}while (feltétel);

Számlálós ciklusok:

```
i=1..N
utasítások
```

i=1..N; x-esével utasítások

```
for (int i=1;i<=N;++i) {
  utasítások
}</pre>
```

```
for (int i=1;i<=N;i+=x) {
  utasítások
}</pre>
```

Feladat elágazásra, vagy más megoldás kell?

Feladat:

A japán naptár 60 éves ciklusokat tartalmaz, az éveket párosítják, s mindegyik párhoz valamilyen színt rendelnek (zöld, piros, sárga, fehér, fekete).

- o 1,2,11,12, ...,51,52: zöld évek
- o 3,4,13,14,...,53,54: piros évek
- o 5,6,15,16,...55,56: sárga évek
- o 7,8,17,18,...57,58: fehér évek
- o 9,10,19,20,...,59,60: fekete évek

Tudjuk, hogy 1984-ben indult az utolsó ciklus, amely 2043-ban fog véget érni.

Írj programot, amely megadja egy M évről (1984≤M≤2043), hogy milyen színű!

Feladat elágazásra,

vagy más megoldás kell?

Specifikáció₁:

- ▶ Bemenet: év∈N
- > Kimenet: s∈**Szín**
- ➤ Előfeltétel: 1984≤év és év≤2043
- ➤ Utófeltétel:((év–1984) Mod 10) Div 2=0 és s="zöld" vagy ((év–1984) Mod 10) Div 2=1 és s="piros" vagy ...
- > Definíció:

```
Szín:={"zöld","piros","sárga","fehér",

"fekete"}⊂S

A Szín halmaz
```

A Szín halmaz definiálása, visszavezetés a Szöveg halmazra Egy még "definiálatlan" halmaz

- 1,2,11,12, ...,51,52: zöld évek
- 3,4,13,14,...,53,54: piros évek
- 5,6,15,16,...55,56: sárga évek
- 7,8,17,18,...57,58: fehér évek
- 9,10,19,20,...,59,60: fekete évek

Feladat elágazásra,

vagy más megoldás kell?

Specifikáció₂:

- > Bemenet: év∈N
- ➤ Kimenet: s∈Szín

- ➤ Előfeltétel: 1984≤év és év≤2043
- ➤ Utófeltétel: ((év-1984) Mod 10) Div 2=0 és s="zöld" vagy ((év-1984) Mod 10) Div 2=1 és s="piros" vagy ...

A Szín halmaz definiálása itt is lehetséges

2018, 09, 19, 15:19

Feladat elágazásra,

vagy más megoldás kell?

Specifikáció₂:

- > Bemenet: év∈N
- > Kimenet: s∈**Szín**

```
Szín={"zöld","piros","sárga",
"fehér","fekete"}⊂S
```

- ➤ Előfeltétel: 1984≤év és év≤2043
- ➤ Utófeltétel:(((év-1984) Mod 10) Div 2=0 →
 s="zöld") és
 (((év-1984) Mod 10) Div 2=1 →
 s="piros") és ...

21/44

Feladat elágazásra, vagy más megoldás kell?

Lokális változó
deklarálása

Változó

y:Egész

➤ Utófeltétel: (((év-1984) Mod 10) Div 2=0 →
s="zöld") és
(((év-1984) Mod 10) Div 2=1 →
s="piros") és ...

Algoritmus:

y:=((év–1984) Mod 10) Div 2				
\ y=0	\ y=1	\ y=2	\ y=3	\ y=4
s:="zöld"	s:= "piros"	s:= "sárga"	s:= "fehér"	s:= "fekete"

Kérdés: Akkor is ezt tennénk, ha 5 helyett 90 ágat kellene írnunk?

A válasz előtt egy új adatszerkezet: a tömb.

Sorozatok

Specifikációbeli fogalmak:

- Sorozat: azonos halmazbeli elemek egymásutánja, az elemei sorszámozhatók.
- ➤ Elem: a sorozat i-edik elemére szokásos módon alulindexeléssel hivatkozhatunk: S_i.
- ➤ Index: 1..SorozatHossz.
- > Például:
 - HónapHosszak $\in \mathbb{N}^{12}$ a HónapHosszak 12 elemű, természetes számokból álló sorozat \cong (HónapHosszak₁, ..., HónapHosszak₁₂)
 - Évszakok \in S⁴ az Évszakok 4 elemű, szövegeket tartalmazó sorozat \cong (Évszakok₁, Évszakok₂, Évszakok₃, Évszakok₄)
- Kérdés: az elemek lehetnek sorozatok, azaz van-e sorozatok sorozata?

Algoritmikus fogalmak:

- ➤ Tömb: véges hosszúságú sorozat (→azonos típusú elemekből), a sorozat i-edik tagjával végezhetünk műveleteket (adott a legkisebb és a legnagyobb index, vagy az elemszám).
- ➤ Index: sokszor 1..N, időnként 0..N–1, ahol N az elemek számát jelöli. Más esetekben lehet a..b is (a≤b). Egyes nyelvekben nem csak számmal lehet indexelni (pl. hétfői ebéd, keddi ebéd, ...).
- > Tömbelem-műveletek: elemérték-hivatkozás, elemértékmódosítás (az elem-indexeléssel kiválasztva).

Sorozatok → Tömbök

Példa₁:

Specifikációban:

 $X,Y,Z \in \mathbb{R}^N$ — deklarációs példa

 $Z_1 = X_1 + Y_1$ — hivatkozási példa

Algoritmusban:

X,Y,Z:Tömb[1..N:Valós] — deklarációs példa

Z[1]:=X[1]+Y[1] — hivatkozási példa

Sorozatok → Tömbök

Példa₂:

Specifikációban:

Szk∈S⁵ – deklarációs példa

Szk₁="első szó" – hivatkozási példa

Algoritmusban:

Szk: Tömb [0..4: Szöveg] — deklarációs példa

Szk[0]:="első szó" – hivatkozási példa

Sorozatok → Tömbök

Példa₃:

Az előbbi feladat-példa Szín halmaza a specifikációban egy szöveg konstansokból álló sorozat:

```
Színek∈S<sup>5</sup>=
("zöld","piros","sárga","fehér","fekete")
```

Az algoritmusban reprezentálhatjuk így:

```
Konstans Színek:Tömb[0..4:Szöveg]= ("zöld","piros","sárga","fehér","fekete")
```

A lényeg az azonos elemszám!

Ügyelni kell az "indexek" konverziójára! Itt:

 $Szinek_i \rightarrow Szinek[i-1]$

Elágazás helyett tömb

Specifikáció:

- ▶ Bemenet: év∈N
- > Kimenet: s∈**Szín**

- ➤ Előfeltétel: 1984≤év és év≤2043
- ightharpoonup Utófeltétel: s=Színek_{(((év-1984) Mod 10) Div 2)+1}

Specifikáció₂:

- > Bemenet: év∈N
- ➤ Kimenet: s∈**Szín**

```
Szín={"zöld","piros","sárga",
"fehér","fekete"}⊂S
```

- > Előfeltétel: 1984≤év és év≤2043
- > Utófeltétel: ((év-1984) Mod 10) Div 2=0 és s="zöld" vagy ((év-1984) Mod 10) Div 2=1 és s="piros" vagy ...

Elágazás helyett tömb

Specifikáció (egyszerűsítve):

▶ Bemenet: év∈N

 \triangleright Kimenet: $s \in S$

Színek∈S⁵=("zöld","piros","sárga",
"fehér","fekete")

- ➤ Előfeltétel:1984≤év és év≤2043
- ightharpoonup Utófeltétel:s=Színek $_{(((\acute{\mathrm{ev}}-1984)\ \mathrm{Mod}\ 10)\ \mathrm{Div}\ 2)+1}$

Specifikáció₂:

- > Bemenet: év∈N
- > Kimenet: s∈**Szín**

Szín={"zöld","piros","sárga", "fehér","fekete"}⊂S

- ➤ Előfeltétel: 1984≤év és év≤2043
- > Utófeltétel: ((év-1984) Mod 10) Div 2=0 és s="zöld" vagy

s= zoid vagy ((év-1984) Mod 10) Div 2=1 és s="piros" vagy ...

Elágazás helyett tömb

Programparaméterek deklarálása

>Adatreprezentálás:

Változó

év:Egész

s:Szöveg

Konstans

Színek:**Tömb**[0..4:Szöveg]=

("zöld", "piros", "sárga", "fehér", "fekete")

Specifikáció (egyszerűsítve):

- > Bemenet: év∈N
- \triangleright Kimenet: $s \in S$

Színek∈S⁵=

("zöld", "piros", "sárga", "fehér", "fekete")

> Adatreprezentálás:

Változó

Konstans

év:Egész s:Szöveg

Elágazás helyett tömb

Változó

Változó

y:Egész

y:Egész

Algoritmus:

Színek:**Tömb**[0..4:**Szöveg**]=

("zöld", "piros", "sárga", "fehér", "fekete")

Tevékenység:

Specifikáció (egyszerűsítve):

- > Bemenet: év∈N
- > Kimenet: s∈S

2018, 09, 19, 15:19

Színek∈S⁵=
("zöld", "piros", "sárga", "fehér", "fekete")

- ➤ Előfeltétel: 1984≤év és év≤2043
- ightharpoonup Utófeltétel: s=Színek_{(((év-1984) Mod 10) Div 2)+1}

```
y:=(((év–1984) Mod 10) Div 2)+1
s:=Színek[y–1]
```

észrevéve az egyszerűsítési lehetőséget:

(Algoritmus→kód)

A C++ 0-val kezdi a tömbindexelést! De szabad nem használni a 0-dikat. ©

De negatív index sajnos nem használható. S

Deklarációs példák –

X:Tömb[1..N:Valós]

Y:**Tömb**[0..4:Szöveg]

Az előbbi Szín halmazos példa:

Konstans Színek: Tömb [0..4: Szöveg] = ("zöld", "piros", "sárga", "fehér", "fekete")

```
Tömb-elemszám ⇒
          indexelés 0...N
a C++ kódjukkal:
float X[N+1]
string Y[5]
        indexelés 0..??? \Rightarrow
        Tömb-elemszám
```


(C++ kódban – áttekintés)

Fordításkor kiderülő méret esete.

Statikus tömbök:

Deklaráció:

Eltérés a specifikációban szokásostól!

Hivatkozások:

```
... tömb[ind] ... //tömbérték-hivatkozás
...
tömb[ind]=kif;//tömbérték-módosítás
...
```


(C++ kódban – áttekintés)

Fordításkor kiderülő méret esete.

Statikus tömb konstansok:

Deklaráció:

vagy

```
const típ tömb[]={t1,t2,...,tN};
    //konstans tömb deklarációja
const int N=sizeof(tömb)/sizeof(típ);
    //tömb elemszáma,
    //indexek: 0..N-1 közötti
```


Csak futáskor kiderülő méret esete.

Dinamikus tömbök₁:

> Deklaráció:

Létrehozás:

Hivatkozások (nincs változás):

```
... tömb[ind] ... //tömbérték-hivatkozás
...
tömb[ind]=kif;//tömbérték-módosítás
...
```


Csak futáskor kiderülő méret esete.

Dinamikus tömbök₂:

Deklaráció:

Létrehozás:

```
N=???;//N meghatározása, pl. beolvasása tip^* t\"{o}mb=new t\'{i}p[N];//t\"{o}mbhelyfoglalás //N db t\'{i}p t\'{i}pus\'{u} elem számára
```

Hivatkozások (nincs változás):

```
... tömb[ind] ... //tömbérték-hivatkozás
...
tömb[ind]=kif;//tömbérték-módosítás
...
```


Feladat:

Írj programot, amely egy 1 és 99 közötti számot betűkkel ír ki!

Leglogikusabb helyre téve.

Az algoritmus szempontjából "adottság", azaz bemenet...

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}$

- \triangleright Kimenet: $S \in S$
- ➤ Előfeltétel: 1≤N≤99
- > Utófeltétel: N=10 → S="tíz" és N=20 → S="húsz" és N \notin {10,20} → S=tizes_{(N Div 10)+1}+egyes_{(N Mod 10)+1}

Programparaméterek deklarálása

Algoritmus:

Változó N:Egész

Konstans egyes:Tömb[0..9:Szöveg]=
("","egy",...,"kilenc")

Konstans tizes:Tömb[0..9:Szöveg]=
("","tizen",...,"kilencven")

Változó S:Szöveg

Figyelembe véve az index-elcsúszást:

N=10	N=20	N∉{10,20}
S:="tíz"	S:="húsz"	S:=tizes[N Div 10]+
		egyes[N Mod 10]

Specifikáció:

> Bemenet: $N \in \mathbb{N}$ $egyes \in S^{10} =$ ("","egy",...,"kilenc") $tizes \in S^{10} =$ ("","tizen",...,"kilencven")

> Kimenet: S∈S

> Utófeltétel:

N=10 → S="tíz" és N=20 → S="húsz" és N \notin {10,20} → S=tizes_{(N Div 10)+1} + egyes_{(N Mod 10)+1}

Feladat:

Írj programot, amely egy hónapnévhez a sorszámát rendeli!

Specifikáció:

 \triangleright Bemenet: $H \in S$

HóNév∈S¹²=("január",...,"december")

 \triangleright Kimenet: $S \in \mathbb{N}$

➤ Előfeltétel: H∈HóNév

> Utófeltétel:1≤S≤12 és HóNév_S=H

Programparaméterek deklarálása

Specifikáció:

 \triangleright Kimenet: $S \in \mathbb{N}$

> Bemenet: H∈S

HóNév∈**S**¹²=

("január",...,"december")

Algoritmus:

Változó H:Szöveg, S:Egész

Konstans HóNév:Tömb[1..12:Szöveg]=

("január",...,"december")

S:=1

HóNév[S]≠H

S:=S+1

- > Előfeltétel: H∈HóNév
- > Utófeltétel: 1≤S≤12 és HóNév_S=H

Kérdés:

Mi lenne, ha az előfeltétel nem teljesülne? Futási hiba? Végtelen ciklus?

Konstans tömb – mit tárolunk?

Feladat:

Egy nap a nem szökőév hányadik napja?

Specifikáció₁:

 \triangleright Bemenet: H,N∈N

$$h\acute{o} \in \mathbb{N}^{12} = (31, 28, 31, ..., 31)$$

 \triangleright Kimenet: $S \in \mathbb{N}$

➤ Előfeltétel: 1≤H≤12 és 1≤N≤hó_H

$$ightharpoonup$$
 Utófeltétel: $S = N + \sum_{i=1}^{N-1} h \acute{o}_i$

41/44

Konstans tömb – mit tárolunk?

Algoritmus:

Programparaméterek deklarálása

Specifikáció₁:

- > Bemenet: $H, N \in \mathbb{N}$
 - $h\phi \in \mathbb{N}^{12} = (31, 28, 31, ..., 31$
- \triangleright Kimenet: $S \in \mathbb{N}$
- ➤ Előfeltétel: 1≤H≤12 és 1≤N≤hón
- ightharpoonup Utófeltétel: $S = N + \sum_{i} h \acute{o}_{i}$

Változó H,N,S:Egész

Konstans hó:Tömb[1..12:Egész]=(31,28,31,...,31)

Változó S:=Ni=1..H-1S:=S+hó[i]

Lokális változó deklarálása

i:Egész

Megjegyzés:

Szökőév esetén H≥3 esetén S-et 1-gyel meg kellene

növelni! (És az előfeltétel is módosul.)

Horváth-Papné-Szlávi-Zsakó: Programozás 2. előadás

Konstans tömb – mit tárolunk?

Egy másik megoldás:

Tároljuk minden hónapra, hogy az előző hónapokban összesen hány nap van!

Specifikáció₂:

➤ Bemenet: ...

$$h\acute{o} \in \mathbb{N}^{12} = (0,31,59,90,...,334)$$

➤ Utófeltétel:S=hó_H+N

Kérdés:

Ez jobb megoldás? Mi lesz az előfeltétellel?

Áttekintés

- ➤ <u>Ciklusok</u> specifikáció+,,algoritmika"+kódolás
- Egy bevezető példa a tömbhöz
- > A tömb
- Elágazás helyett tömb
- ➤ Konstans tömbök

