

(19) RÉPUBLIQUE FRANÇAISE
INSTITUT NATIONAL
DE LA PROPRIÉTÉ INDUSTRIELLE
PARIS

(11) N° de publication : 2 683 949
(à n'utiliser que pour les commandes de reproduction)
(21) N° d'enregistrement national : 91 14448
(51) Int Cl⁵ : H 01 M 4/24, 4/26

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 18.11.91.

(30) Priorité :

(71) Demandeur(s) : TEDJAR Farouk — DZ et GUILTON Jacques — FR.

(43) Date de la mise à disposition du public de la demande : 21.05.93 Bulletin 93/20.

(56) Liste des documents cités dans le rapport de recherche : Le rapport de recherche n'a pas été établi à la date de publication de la demande.

(60) Références à d'autres documents nationaux apparentés :

(72) Inventeur(s) : Tedjar Farouk et Guitton Jacques.

(73) Titulaire(s) :

(74) Mandataire :

(54) Nouvelle électrode négative pour générateurs alcalins et son procédé de fabrication.

(57) L'invention concerne une électrode constituée d'une pâte active à base de zinc. La dite pâte active à base de zinc est caractérisée par le fait qu'elle contient un composé susceptible d'assurer la rechargeabilité électrochimique des électrodes de zinc en présence d'un électrolyte approprié.

Application: utilisation de la dite électrode comme électrode négative dans les générateurs électrochimiques rechargeables alcalins.

FR 2 683 949 - A1

NOUVELLE ELECTRODE NEGATIVE
POUR GENERATEURS ELECTROCHIMIQUES ALCALINS RECHARGEABLES
ET SON PROCEDE DE FABRICATION.
par F.TEDJAR et J.GUITTON

5

La présente invention concerne une électrode destinée à être utilisée comme électrode négative de piles ou d'accumulateurs à électrolyte alcalin.

10

On sait que les électrodes négatives pour systèmes alcalins sont généralement constituées d'un métal qui est soit le zinc, soit le cadmium soit le fer.

15

Les problèmes de toxicité intense du cadmium ont conduit à de nombreuses recherches de substitution de ce métal comme anode. L'objectif est de rechercher un matériau anodique à même de procurer les bonnes performances de rechargeabilité du cadmium.

20

Les hydrures métalliques ont été proposés comme solution possible à la substitution du cadmium dans les générateurs électrochimiques alcalins. Cependant, les éléments réalisés avec des anodes métal-hydride présentent des différences de potentiels relativement faibles.

Les anodes métalliques en zinc ont de bonnes performances prouvées dans les générateurs électrochimiques:

- pile Leclanché saline.
- pile Leclanché alcaline.
- pile alcaline oxyde d'argent/zinc.
- pile alcaline oxyde de mercure/zinc.
- pile Zinc / halogène

25

Toutefois un gros inconvénient de l'anode en zinc réside en ce que cette électrode se comporte en électrode de 1^{ère} espèce en milieu salin et dans les milieux fortement alcalins en usage dans les générateurs électrochimiques. Dans ce dernier cas, les produits de réactions sont:

30

35

Les tentatives de redéposition électrochimique du zinc sur l'électrode négative conduisent à des problèmes sur cette électrode qui affectent les performances des générateurs électrochimiques.

40 La présente invention concerne la mise au point d'une anode en zinc et d'un électrolyte permettant le rechargeabilité de ce type de générateurs électrochimiques.

Les matériaux cathodiques utilisables avec l'objet de la présente invention sont : MnO₂, NiOOH, AgO, Ag₂O, Air,HgO.

45 L'invention est basée sur l'idée suivante :

les problèmes posés par la recharge des électrodes en zinc, se traduisant par la formation de dendrites, sont liés aux changements de pH et aux variations importantes de la concentration des ions zincate à l'interface métal-électrolyte ainsi qu'à l'absence d'effet tampon.

50 L'association du zinc avec un sel de zinc (ZnX insoluble dans la potasse) et son anion conjugué (Xⁿ⁻ solubilisé dans l'électrolyte) conduit à la réalisation d'une électrode ne présentant pas les inconvénients ci-dessus. Ces conditions sont obtenues en 55 associant au zinc, l'ion carbonate et le carbonate de zinc. La présente invention concerne donc d'abord la fabrication de l'électrode zinc / sel de zinc. Le procédé peut être étendu à une électrode à base de manganèse.

60 Fabrication de l'électrode zinc / sel de zinc:

Le comportement du zinc en milieu alcalin et les valeurs des constantes d'acidité des ions carbonate conduisent à une multiplicité de produits de précipitation selon la valeur du rapport des concentrations (Zn²⁺)/(CO₃²⁻). Les conditions de précipitation du carbonate basique approprié sont celles conduisant à un composé dont l'analyse chimique montre une composition selon:

65 et dont l'analyse aux rayons X doit montrer la répartition de l'eau selon des hydroxyles conduisant ainsi à une structure hydrozincite de formule Zn₅(CO₃)₂ OH₆. La solubilité de ce composé dans 70 l'électrolyte alcalin est de 1.08 × 10⁻⁵M/litre.

Préparation du carbonate basique de zinc:

Il est procédé à la préparation du carbonate de zinc par action de l'hydrogénocarbonate de potassium sur le sulfate de zinc hepta-hydraté à ébullition. On laisse réagir pendant au moins trois heures et l'on obtient un précipité blanc. Le précipité est filtré et lavé jusqu'à disparition des ions sulfate et des ions carbonate dans les eaux de lavage qui sont contrôlées par une solution de BaCl_2 5%. Quand l'addition de quelques gouttes de la solution de baryum ne donne plus de précipité dans les eaux de rinçage, le précipité est séché à 90°C puis broyé et tamisé.

Les carbonates basiques de zinc utilisables sont ceux résultant de:

- l'action de carbonate de sodium sur le sulfate de zinc:

- l'action de dicarbonate de sodium sur le sulfate de zinc,

- l'action de carbonate de potassium sur de l'oxyde de zinc en suspension, $4\text{ZnO} \cdot (\text{CO}_3) \cdot 2\text{H}_2\text{O}$.

Le contrôle par diffraction aux rayons X doit permettre de constater que le produit obtenu s'indexe selon un carbonate basique de zinc (exemple de l'hydrozincite de formule $\text{Zn}_5(\text{CO}_3)_2\text{OH}_6$: fiche A.S.T.M n° 19-1458).

Préparation de l'électrolyte:

L'électrolyte est obtenu par dissolution de 520 g. de K_2CO_3 par litre de KOH 40%. Après refroidissement la solution est filtrée sur un filtre en papier à bande blanche.

Préparation de l'anode composite:

L'électrode est alors préparée en mélangeant entre 15 et 35 % en poids de zinc et 65 à 85 % d'hydrozincite. Le mélange sec est agité entre 5 et 25 minutes selon le poids utilisé. Le mélange composite ainsi obtenu est mouillé par l'électrolyte introduit dans la présente invention. Le mélange sec obtenu est alors mouillé par l'électrolyte de potasse carbonatée. La pâte obtenue est additionnée de 2% de HgO et de 2% de stéarate dibasique de plomb, puis est étalée sur une grille en acier inoxydable et séchée

110 ans une étuve à 70°C dont l'atmosphère renferme entre 30% et 45 % de vapeur d'eau. L'opération de charge de l'électrode s'effectue dans l'électrolyte de potasse saturée en carbonate de potassium.

Première charge de l'électrode:

-Charge ex-situ:

115 La première charge de l'électrode est effectuée par voie intensiostatique entre 465 mAh/g à 870 mAh/g. de matière active. L'intensité est fixée à une valeur relative à la capacité de charge prévue et cela, dans un rapport du vingtième de la capacité. La charge est effectuée dans l'électrolyte objet de la présente invention. La température doit être contrôlée et fixée entre 15 et 120 35°C. La contre-électrode utilisable est une grille d'acier inoxydable.

125 La masse active obtenue peut être utilisée telle quelle dans un générateur à configuration de plaques. Elle peut aussi être détachée et broyée pour être utilisée dans une configuration tubulaire, ou bouton ou à anode centrale (type Leclanché alcaline).

-Charge in-situ:

130 La charge peut également être réalisée in-situ après avoir procédé au montage du générateur en associant l'électrode positive appropriée à l'électrode négative et l'électrolyte objets de la présente invention. Les conditions électriques sont les mêmes que pour la charge ex-situ. Toutefois les tensions de charge maximales admissibles pour le générateur sont fixées 135 selon la nature de l'électrode positive comme présenté ci-dessous :

	Electrode positive	Tension maximale admise (volts)
	MnO ₂	1,75
	NiOOH	1,65
	HgO	1,58
140	Ag ₂ O	1,70
	Air	1,60

Cette prescription reste valable pour les cycles de recharge ultérieurs. Le respect de cette limitation en tension permet le

145 maintien d'une bonne cohésion de la masse active de l'électrode négative objet de la présente invention et favorise une durabilité du générateur ainsi constitué.

Utilisation de la dite électrode négative :

150 1- Utilisation en électrolyte libre:

L'électrode négative objet de la présente invention est utilisable sous forme de plaque dans un électrolyte libre avec une électrode positive en NiOOH.

La courbe 1 représente l'allure des caractéristiques de décharge-charge.

La courbe 2 représente l'évolution de la tension du générateur ainsi constitué en fonction de la capacité pour deux régimes de décharge.

La courbe 3 représente l'évolution de la tension en fonction du nombre de cycles.

2- Utilisation en électrolyte confiné :

L'électrode négative objet de la présente invention est utilisée dans une pile IEC R20 dont l'électrode positive, à base de MnO₂, et le séparateur sont mouillés à l'aide de l'électrolyte objet de la présente invention.

La courbe 4 représente les caractéristiques de décharge sur une résistance fixe de 5 ohms, pour le 40ième et le 60ième cycle.

La courbe 5 représente les courbes de décharge et de recharge pour le 20ième, le 40ième et le 60ième cycle, les décharges étant faites avec une intensité constante de 100 mA et les recharges faites à C / n.

La courbe 6a représente l'évolution de la tension au cours des cycles décharge-recharge. Sur la figure 6b L'évolution de la tension est représentée en fonction du nombre de cycles en prenant comme valeur de la tension, la valeur Vf obtenue à la fin de chaque décharge (avant la recharge suivante) comme indiqué sur la courbe 6a.

REVENDICATIONS

1-Electrode négative pour générateurs électrochimiques à électrolytes aqueux alcalins caractérisée par la combinaison d'un matériau métallique qui est le zinc et des composés suivants :

- ZnCO₃, ZnO
- Zn₅(CO₃)₂(OH)₆
- K₂CO₃
- Stéarate dibasique de plomb

2-Electrode négative pour générateurs électrochimiques à électrolytes aqueux alcalins caractérisée par la combinaison d'un matériau métallique qui est le manganèse et des composés suivants :

- MnO,
- MnCO₃, x H₂O
- KOH, K₂CO₃
- Stéarate dibasique de plomb

3-Procédé de fabrication de l'électrode revendiquée, caractérisé par la réalisation d'une anode composite par association de métaux et de leurs carbonates correspondants selon les revendications 1 et 2, en association avec un électrolyte alcalin qui est composé de KOH et de carbonate de potassium.

4-Electrode négative selon les revendications 1 et 2 fabriquée selon la revendication 3 et fonctionnant avec les générateurs électrochimiques alcalins, dont les cathodes sont composées de MnO₂, NiOOH, AgO, Ag₂O, HgO. et air.

FIG. 1

FIG.2

C (Ah)

FIG.3

3/7

2683949

FIG. 4

FIG. 5

FIG. 6A

2683949

7/7

FIG. 6B

