Explicações em Figuras – ALP

Claudio Cesar de Sá claudio.sa@udesc.br

Departamento de Ciência da Computação Centro de Ciências e Tecnológias Universidade do Estado de Santa Catarina

8 de março de 2017

Os primeiros computadores

Computador digital – veja a fita em papel

A fita perfurada = codificada

Troque furos por $\mathbf{0}$ e espaços por $\mathbf{1}$ e bem-vindo ao mundo digital!

$$2^{0} = 1 = sim! = 1$$

 $2^{1} = 2 = sim! = 1$
 $2^{2} = 4 = não! = 0$
 $2^{3} = 8 = sim! = 1$
Da direita pra esquerda:
 $11 = 1011$

Melhorando a leitura dos $\mathbf{0's}$ e $\mathbf{1's} \rightarrow \text{sistemas}$ de codificação

Internamente ao processador temos algo análogo a:

Eyte		Char	Eyte	Coa.	Char	Byte	Cod.	Char	Byte	Cod.	Char
00000000		Null	00100000	32	Spc	01000000	64	@	01100000	96	1100
00000001	1	Start of heading	00100001	33		01000001	65	A	01100001	97	a
0.0000010	2	Start of text	00100010	34	"	01000010	6.6	В	01100010	98	b
00000011	3	End of text	00100011	35	#	01000011	67	C	01100011	99	e
00000100	4	End of transmit	00100100	36	\$	01000100	68	D	01100100	100	d
10100000	5	Enquiry	00100101	37	%	01000101	69	E	01100101	101	e
00000110	6	Acknowledge	00100110	38	8	01000110	70	F	01100110	102	f
00000111	7	Audible bell	00100111	39	2	01000111	71	G	01100111	103	g
00001000	0	Backspace	00101000	40	(01001000	72	H	01101000	104	h
1001000	9	Horizontal tab	00101001	41	3	01001001	73	I	01101001	105	i
00001010	10	Line feed	00101010	42		01001010	74	J.	01101010	106	i
00001011	11	Vertical tab	00101011	43	+	01001011	75	K	01101011	107	k
00001100	12	Form Feed	00101100	44		01001100	7.6	I.	01101100	108	1
10110000	13	Carriage return	00101101	45	1	01001101	77	M	01101101	109	m
00001110	14	Shift out	00101110	46		01001110	78	N	01101110	110	m
00001111	1.5	Shift in	00101111	47	1	01001111	79	0	01101111	111	0
00010000	16	Data link escape	00110000	48	0	01010000	80	P	01110000	112	D
00010001	17	Device control 1	00110001	49	1	01010001	81	O	01110001	113	q
00010010	18	Device control 2	00110010	50	2	01010010	82	Ř	01110010	114	r
00010011	19	Device control 3	00110011	51	3	01010011	83	S	01110011	115	5
00010100	20	Device control 4	00110100	52	4	01010100	84	T	01110100	116	
00010101	21	Neg. acknowledge	00110101	53	5	01010101	85	II	01110101	117	71
00010110	22	Synchronous idle	00110110	54	6	01010110	86	v	01110110	118	7/
00010111	23	End trans, block	00110111	55	7	01010111	87	w	01110111	119	w
00011000	24	Cancel	00111000	56	8	01011000	88	X	01111000	120	x
10011000	25	End of medium	00111001	57	9	01011001	89	v	01111001	121	y
00011010	26	Substitution	00111010	58		01011010	90	Z	01111010	122	-
00011011	27	Escape	00111011	59		01011011	91	1	01111011	123	-
00011100		File separator	00111100	60		01011100	92	1	01111100	124	1
10111000		Group separator	00111101	61	-	01011101	93	1	01111101	125	3
00011110		Record Separator	00111110	62	>	01011110	94	^	01111110	126	-
00011111		Unit separator	00111111	63	9	01011111	95	91(0)	01111111	127	Del

Figura: Acreditem ... há sequências binárias, decimais e mnêmonicos!

Logo, apenas binários nas memórias ...

\$185\$(\$888)\$1185\$(\$1818)\$\$1818\$\$11818\$\$1185\$(\$1818)\$1186\$\$18181\$1185\$1185\$185\$(\$1186)\$\$. #18118#1818#1788#1818#1818#1818#8#184#1818#111118#1818#1818#1818#1818#1818#1818#1818#1818#1818#1818#1818#1818# #1014041016171700245410014170101461017146417001744417001466170014170014170014171001419101761917017619170174170 \$185\$[\$710]\$[\$810]\$[\$8118]\$[\$82]\$[\$186]\$[\$186]\$[\$186]\$[\$180]\$\$181]\$[\$186]\$[\$1818]\$[\$1818]\$[\$181]\$[\$1818]\$[\$1818]\$[\$1818]\$[\$1818]\$[\$1818]\$[\$1818]\$[\$1818]\$[\$1818]\$[\$1818]\$[\$1818]\$[\$1818] #18585#1865##1851#518581#1185#1818##165851185851185851118551111885##1818###155#18185#18185#18185###151#67#1818 \$18188\$1818111001\$241801\$1101818181911101\$110111001\$11000\$110188\$18188\$181805\$111805\$18181188\$188\$188\$188\$1818 \$1828C\$11018C\$61038C\$61318C\$6106164C\$101058C\$101058C\$10038C\$10018C\$101558C\$01058C\$101558C\$101558C\$101558C\$1010 4[0] #[#000] #[[[0] #[4[4] #[4[4] #[4] #[4] #[4] [0] #[4] 181851[180]818180]81181852618155318153181581318858188888181863111865818185818818818818581818185

Relembrando um PC internamente ≡ computador

Sistema decimal (compreensível para nós) logo: decimal ⇔ binário

10 of 17

Binário para decimal

Decimal para Binário

71 se escribe en sistema binario como 1000111

O que vamos fazer no curso (gravem esta figura):

Figura 01 - Processo simprificado de compilação

Figura 02 - Exemplo de compilação - programa na linguagem C

Válido para qualquer Sistema Operacional (SO):

Pois vamos fazer aplicações (fontes e executáveis) usuários!

Programas aos usuários!

Epílogo

