Identificador

Son las palabras que cumplen el iniciar con una letra y pueden estar seguidas de muchas letras o muchos dígitos.

Creando una posible expresión regular

Expresión regular: (a-z A-Z) (a-z A-Z | 0-9)*

Convirtiendo a una gramática regular

$$\L (\L \mid \d)^* => S -> \L$$

Resultado: S -> \L A

 $A \rightarrow BA \mid \epsilon$ $B \rightarrow L \mid d$

Creando un posible autómata finito determinista

FT	E	a-z A-Z	0-9
s0	s1 = A	(A, a-z A-Z) = s2 = B	(A, 0-9) = {}
s2	s3, s4, s6 = B	(B, a-z A-Z) = s5 = C	(B, 0-9) = s7 = D
s5	s2, s3, s4, s6 = C	(C, a-z A-Z) = s5 = C	(C, 0-9) = s7 = D
s7	s2, s3, s4, s6 = D	(C, a-z A-Z) = s5 = C	(C, 0-9) = s7 = D

1. No hay estados inaccesibles

2.

Estados $=> Q = \{ A, B, C, D \}$

=> A Estado Inicial

 $=>\Sigma = \{\,\{\,\{\,a\text{-}z\,\},\,\{\,A\text{-}Z\,\}\,\},\,\{0\text{-}9\}\,\} = \{\,a\text{-}z\,\,A\text{-}Z,\,0\text{-}9\,\}$ Alfabeto

Aceptación => B, C, D

Funciones de Transición =>

$$\partial(A, a-z A-Z) = B$$
 $\partial(B, a-z A-Z) = C$ $\partial(C, a-z A-Z) = C$ $\partial(D, a-z A-Z) = C$ $\partial(B, 0-9) = D$ $\partial(D, 0-9) = D$

$$3.0-9) = D$$
 $\partial(C.0-9) = D$ $\partial(D.0-9) = D$

3.		N Acept		A	ceptacio	on
		Α		В	С	D
	a-z A-Z	В		С	С	С
	0-9			D	D	D

4.		N Acept		A	ceptacio	n
		Α		В	С	D
	a-z A-Z	В		С	С	С
	0-9			D	D	D

5. No Ace		ptación	A	ceptacio	on	
		s0 = A		s1 =	= { B, C,	D}
	a-z A-Z	В		С	С	С
	0-9			D	D	D

6.
$$\partial(s0, a-z A-Z) = s1$$
 $\partial(s1, a-z A-Z) = s1$ $\partial(s1, 0-9) = s1$

7.

Estados
$$\Rightarrow$$
 Q = { s0, s1 }

Estado Inicial => s0

Alfabeto => $\Sigma = \{ \{ \{ a-z \}, \{ A-Z \} \}, \{0-9\} \} = \{ a-z A-Z, 0-9 \}$

Aceptación => s Funciones de Transición =>

$$\partial(s0, a-z A-Z) = s1$$
 $\partial(s1, a-z A-Z) = s1$ $\partial(s1, 0-9) = s1$

Número

Son palabras que cumplen con tener al menos un dígito o más, y solo puede contener dígitos.

Creando una posible expresión regular

Alfabeto \Rightarrow { { 0-9 } } = { 0-9 }

Expresión regular: (0-9)+

Convirtiendo a una gramática regular

Para mayor compresión: { 0-9 } = \d

$$d+ => S -> dS | d$$

Resultado: $S \rightarrow d S \mid d$

Definiendo Posible AFD

FT	ε	0-9
s0	s1 = A	(A, 0-9) = s2 = B
s2	s3 = B	(B, 0-9) = s4 = C
s4	s2, s3 = C	(C, 0-9) = s4 = C

1. No hay estados inaccesibles

3. No Aceptacion Aceptación Α В С С 0-9 В C

2.

Estados $=> Q = \{ A, B, C \}$

Estado Inicial

 $\Rightarrow \Sigma = \{ \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \} \} = \{ 0-9 \}$ Alfabeto

=> B, C Aceptación

Funciones de Transición =>

 $\partial(A, 0-9) = B$

 $\partial(B, 0-9) = C$

 $\partial(C, 0-9) = C$

4.		N Acept		Acept	acion
		Α		В	С
	0-9	В		С	С

5.		N Acept	_	Acept	acion
		s0 = A		s1 = {	B, C }
	0-9	В		С	С

6.

 $\partial(s0, 0-9) = s1$ $\partial(s1, 0-9) = s1$

7.

 $=> Q = \{ s0, s1 \}$ Estados

Estado Inicial

Alfabeto $\Rightarrow \Sigma = \{ \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \} \} = \{ 0-9 \}$

=> s1 Aceptación

Funciones de Transición =>

 $\partial(s0, 0-9) = s1$ $\partial(s1, 0-9) = s1$

Decimal

Son palabras que cumplen con tener al menos un dígito o más, seguido de un punto, seguido de uno o más dígitos.

Creando una posible expresión regular

Alfabeto => { { 0-9 }, punto } = { 0-9, punto }

Expresión regular: (0-9)+ (punto) (0-9)+ <=> (0-9)+ [.] (0-9)+

Convirtiendo a una gramática regular

Para mayor compresión: $\{ 0-9 \} = \d ; . = \p$

Resultado: S -> A \p A <-> A . A $A \rightarrow A$

Definiendo Posible AFD

FT	€	0-9	
s0	s1 = A	(A, 0-9) = s2 = B	(A, .) = {}
s2	s1, s3 = B	(B, 0-9) = s2 = B	(B, .) = s4 = C
s4	s5 = C	(C, 0-9) = s6 = D	(C, .) = {}
s6	s5 = D	(D, 0-9) = s6 = D	(D, 0-9) = {}

1. No hay estados inaccesibles

3.		No.	Aceptad	Acept	acion	
		Α	В	С		D
	0-9	В	В	D		D
	-		С			

4.		No .	Aceptad	ción	Acept	acion
		Α	В	С		D
	0-9	В	В	D		D
			С			

2.

Estados => Q = { A, B, C, D }
Estado Inicial => A
Alfabeto =>
$$\Sigma$$
 = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }, punto } = { 0-9, punto }
Aceptación => D
Funciones de Transición =>

$$\partial(A, 0-9) = B$$
 $\partial(B, 0-9) = B$ $\partial(C, 0-9) = D$ $\partial(D, 0-9) = D$ $\partial(B, .) = C$

No se puede reducir más el AFD, por lo cual, se tomara el anterior resultado como final.

Puntuación

Ser alguno de los signos de puntuación.

Creando una posible expresión regular

Alfabeto => { [.], [,], [:], [;] }

Expresión regular: [.] | [,] | [:] | [;]

Convirtiendo a una gramática regular

Resultado [.] | [,] | [:] | [;] =>
$$S \rightarrow A \mid B \mid C \mid D$$

 $A \rightarrow .$
 $B \rightarrow .$
 $C \rightarrow :$
 $D \rightarrow ;$

Definiendo Posible AFD

FT	E		,	:	;
s0	s1, s3, s4, s5 = A	(A, .) = s2 = B	(A, ,) = s2 = B	(A, :) = s2 = B	(A, ;) = s2 = B
s2	-				

1. No hay estados inaccesibles

3.		N Acept	Acept	acion
		Α		В
		В		
	,	В		
	:	В		
		В		

4.		N Acept	o ación	Acept	acion	
		Α			В	
	-	В				
	,	В				
	:	В				
	•	В				

2.

Estados => Q = { A, B }
Estado Inicial => A
Alfabeto =>
$$\Sigma$$
 = { [.], [,], [:], [;] }
Aceptación => B
Funciones de Transición =>

$$\partial(A, .) = B$$
 $\partial(A, .) = B$

$$\partial(A, ,) = E$$

$$\partial(A, :) = B$$

No se puede reducir más el AFD, por lo cual, se tomara el anterior resultado como final.

Operador

Ser alguno de los operadores aritméticos.

Creando una posible expresión regular

Alfabeto => { +, -, *, /, % }

Expresión regular: [+] | [-] | [*] | [/] | [%]

Convirtiendo a una gramática regular

Resultado [+] | [-] | [*] | [/] | [%]

=> S->A|B|C|D|E

A -> +

B -> -

C -> *

D -> /

E -> %

Definiendo Posible AFD

FT	ε	+	-	*	/	%
s0	s1, s3, s4, s5, s6 = A	(A, +) = s2 = B	(A, -) = s2 = B	(A, *) = s2 = B	(A, /) = s2 = B	(A, %) = s2 = B
s2	-					

1. No hay estados inaccesibles

3.		No Aceptación		Aceptacion		
		Α			В	
	+	В				
	-	В				
	*	В				
	1	В				
	%	В				

4.		N Acept	Acept	acion
		Α		В
	+	В		
	-	В		
	*	В		
	1	В		
	%	В		

2.

Estados => Q = { A, B }
Estado Inicial => A
Alfabeto =>
$$\Sigma$$
 = { +, -, *, /, % }
Aceptación => B
Funciones de Transición =>

$$\partial(A, +) = B$$
 $\partial(A, -) = B$ $\partial(A, *) = B$ $\partial(A, /) = B$ $\partial(A, %) = B$

No se puede reducir más el AFD, por lo cual, se tomara el anterior resultado como final.

Agrupación

Ser alguno de los signos de agrupación.

Creando una posible expresión regular

Alfabeto => { (,), [,], {, } }

Expresión regular: [(] | [)] | [[] | []] | [{] | [}]

Convirtiendo a una gramática regular

Definiendo Posible AFD

FT	ε	()	[]	{	}
s0	s1, s3, s4, s5, s6, s7 = A	(A, () = s2 = B	(A,)) = s2 = B	(A, [) = s2 = B	(A,]) = s2 = B	$(A, \{) = s2 = B$	$(A, \}) = s2 = B$
s2	-						

1. No hay estados inaccesibles

3	١.	

	N Acept	Aceptacion		
	Α		В	
(В			
)	В			
[В			
]	В			
{	В			
}	В			

4.

	N Acept	Acept	acion
	Α		В
(В		
)	В		
[В		
]	В		
{	В		
}	В		

2.

Estados => Q = { A, B }
Estado Inicial => A
Alfabeto =>
$$\Sigma$$
 = { (,), [,], {, } }
Aceptación => B
Funciones de Transición =>

$$\partial(\mathsf{A},\,()=\mathsf{B}\qquad \partial(\mathsf{A},\,))=\mathsf{B}\qquad \partial(\mathsf{A},\,[)=\mathsf{B}\qquad \partial(\mathsf{A},\,])=\mathsf{B}\qquad \partial(\mathsf{A},\,\{)=\mathsf{B}\qquad \partial(\mathsf{A},\,\{)=\mathsf{B}$$

No se puede reducir más el AFD, por lo cual, se tomara el anterior resultado como final.

Estado	\L	\d		pun	ope	agr	\s
s0 = Q0	s1 = Q1	s2, s3 = Q2	s6 = Q3	s6 = Q3	s7 = Q4	s8 = Q5	
Q1	s1 = Q1	s1 = Q1					s0 = Q0
Q2		s2, s3 = Q2	s4 = Q6				s0 = Q0
Q3			s6 = Q3	s6 = Q3			s0 = Q0
Q4					s7 = Q4		s0 = Q0
Q5						s8 = Q5	s0 = Q0
Q6		s5 = Q7					
Q7		s5 = Q7					s0 = Q0

Definición Formal

Estados => Q = { Q0, Q1, Q2, Q4, Q5, Q6, Q7 }

Estado Inicial => Q0

Alfabeto => Σ = { a-z A-z, 0-9, ., { [.], [,], [:], [,], }, { +, -, *, /, % }, { (,), [,], {, }

}}

Aceptación => B, C, D

Funciones de Transición =>

 $\partial(Q0, a-z A-Z) = Q1$ $\partial(Q1, a-z A-Z) = Q1$

 $\partial(Q0, 0-9) = Q2$ $\partial(Q1, 0-9) = Q1$ $\partial(Q2, 0-9) = Q2$

 $\partial(Q6, 0-9) = Q7$ $\partial(Q7, 0-9) = Q7$

 $\partial(Q0, .) = Q3$ $\partial(Q2, .) = Q6$ $\partial(Q3, .) = Q3$

 $\partial(Q0, pun) = Q3$ $\partial(Q3, pun) = Q1$ $\partial(Q0, ope) = Q4$ $\partial(Q4, ope) = Q4$

 $\partial(Q0, agr) = Q5$ $\partial(Q5, agr) = Q5$

 $\partial(Q1, \slash s) = Q0$ $\partial(Q2, \slash s) = Q0$ $\partial(Q3, \slash s) = Q0$ $\partial(Q4, \slash s) = Q0$ $\partial(Q5, \slash s) = Q0$ $\partial(Q7, \slash s) = Q0$

