Discriminative vs Generative Models: A Deep Learning Perspective

1 What Are Discriminative and Generative Models?

Discriminative and generative models are two major types of machine learning models used for classification, regression, and pattern recognition tasks.

Туре	Definition	Examples
Discriminative Models	Learn the boundary between different classes.	Logistic Regression, SVM, Neural Networks, CNNs
Generative Models	Learn the distribution of the data.	Naive Bayes, Gaussian Mixture Models, GANs, VAEs

Key Difference

- **Discriminative models** focus on learning $P(y \mid X) \rightarrow \text{Probability of class } y \text{ given input } X$.
- Generative models focus on learning $P(X \mid y) \rightarrow \text{Probability of input } X \text{ given a class } y$.

2 Intuition: The Cat vs. Dog Example 🚳 💆

Imagine you want to classify images as either "Cat" or "Dog".

Discriminative Approach

- It learns a function to **separate cats from dogs**.
- The model directly learns the decision boundary (e.g., CNNs, SVMs).
- Example:
 - o Given an image X, it predicts $P(\text{Cat} \mid X)$ or $P(\text{Dog} \mid X)$.

Generative Approach

- It learns what a cat looks like and what a dog looks like separately.
- It models the probability distribution of cats and dogs.
- Example:
 - o It first estimates $P(X \mid \text{Cat})$ and $P(X \mid \text{Dog})$.
 - \circ Then, using **Bayes' Theorem**, it computes $P(\text{Cat} \mid X)$.

3 Mathematical Formulation

Discriminative Models (Direct Classification)

They model the conditional probability $P(y \mid X)$ directly:

$$P(y \mid X) = f(X; \theta)$$

• Example: Logistic Regression

$$P(y = 1 \mid X) = \frac{1}{1 + e^{-(wX+b)}}$$

• No need to model the input distribution P(X).

Generative Models (Learn the Data Distribution)

They model the joint probability distribution P(X, y) and then use Bayes' Rule:

$$P(y \mid X) = \frac{P(X \mid y)P(y)}{P(X)}$$

• Example: Naive Bayes uses:

$$P(y \mid X) = \frac{P(X_1 \mid y)P(X_2 \mid y)...P(X_n \mid y)P(y)}{P(X)}$$

Examples of Discriminative and Generative Models

Discriminative Models

- 1. **Logistic Regression** \rightarrow Binary classification.
- 2. **Support Vector Machines (SVMs)** \rightarrow Separates data using hyperplanes.
- 3. **Neural Networks (MLP, CNNs, RNNs, Transformers)** → Complex nonlinear decision boundaries.
- 4. **Random Forests & Decision Trees** → Predict outcomes directly.

Generative Models

- 1. Naive Bayes → Assumes independent features.
- 2. Gaussian Mixture Models (GMMs) → Uses multiple Gaussian distributions.
- 3. Hidden Markov Models (HMMs) \rightarrow Used for time-series modeling.
- 4. **Generative Adversarial Networks (GANs)** → Generates realistic images.
- 5. Variational Autoencoders (VAEs) → Used for unsupervised learning and generative tasks.

5 When to Use Discriminative vs. Generative Models

Scenario	Best Model	Why?	
----------	-------------------	------	--

Scenario	Best Model	Why?
Large labeled dataset	Discriminative (CNN, SVM)	More powerful for classification tasks.
Small dataset with prior knowledge	Generative (Naive Bayes)	Uses prior probabilities for better results.
Need to generate new samples	Generative (GAN, VAE)	Learns the data distribution.
High accuracy in classification	Discriminative (Deep Networks)	Learns decision boundaries efficiently.

6 Real-World Applications

Application	Discriminative Models	Generative Models
Spam Detection	Logistic Regression, SVM	Naive Bayes
Medical Diagnosis 🖺	CNN, MLP	Bayesian Networks
Speech Recognition	RNNs, Transformers	Hidden Markov Models (HMMs)
Image Generation	CNN Classifiers	GANs, VAEs
Anomaly Detection 👗	SVM, Isolation Forests	Gaussian Mixture Models (GMMs)

7 Key Takeaways

Feature	Discriminative Models	Generative Models
What it learns	Decision boundary	Data distribution
Probability modeling	\$ P(y	X) \$
Computational cost	Lower	Higher
Data efficiency	Needs more labeled data	Works with less labeled data
Output	Classification score	New data generation
Common Examples	SVM, CNN, Transformers	Naive Bayes, GANs, VAEs

8 Final Thoughts

- Use Discriminative Models for classification when you have a large dataset.
- Use Generative Models when data is limited or when you want to generate new samples.