Graph Data Model

Example 1 (TouchGraph Sales Excel Sample)

- Contrast the relational and graph based models for the domain
- Reverse engineer to a conceptual model
- Which properties would you associate with nodes and edges?
- List in natural language some traversal queries and compare them with their SQL counterparts

PERSON(Name, Email, Level, Division)

Person -	Email	Sent #	Received #	Level	Division
Accounting	accounting@company.c	200	150	Associate	Business
Architect	architect@company.com	700	750	Senior	Technology
Designer	designer@company.com	500	550	Senior	Business; Technology
Developer1	developer1@company	350	400	Associate	Technology
Developer2	developer2@company	350	350	Associate	Technology
Developer3	developer3@company	300	350	Associate	Technology
Executive	executive@company.com	1000	900	Senior	Business
Sales1	sales1@company.com	800	900	Associate	Business
Sales2	sales2@company.com	700	800	Associate	Business
Tech support	tech support@compan	600	600	Associate	Technology

EMAILS(<u>Sender PERSON</u>, <u>Recipient PERSON</u>, NbrEmail)

Sender	Recipient	Sent #	
Developer1	Developer2	80	
Developer1	Developer3	70	
Developer2	Developer1	60	
Developer3	Developer1	50	
Architect	Designer	120	
Designer	Architect	120	
Executive	Designer	120	
Designer	Executive	150	
Executive	Architect	100	
Architect	Executive	90	
Sales 1	Tech support	40	
Sales2	Tech support	30	
Tech support	Sales 1	20	
Architect	Developer1	150	
Developer1	Architect	140	
Executive	Sales 1	40	
Executive	Sales2	40	
Sales 1	Executive	60	
Sales2	Executive	70	
Architect	Tech support	50	
Tech support	Architect	20	
Executive	Accounting	40	
Accounting	Executive	70	
Developer2	Developer3	60	
Developer3	Developer2	30	
Designer	Developer1	50	
Developer1	Designer	30	
Sales1	Accounting	20	

Proposed Exercise: Twitter

- Represent as a graph the information you find on twitter https://twitter.com
- Contrast the resulting graph with the corresponding relational schema for a subset of twitter information in what follows:

```
TWEET(<u>TweetId</u>, User<sup>USER</sup>, Date, Country, Retweet<sub>O</sub><sup>TWEET</sup>)
USER(<u>UserId</u>, Psswd, Name, Country, SubscrDate)
FOLLOWS(<u>Follower</u><sup>USER</sup>, <u>Followed</u><sup>USER</sup>, SinceWhen)
LIKES(<u>User</u><sup>USER</sup>, <u>Tweet</u><sup>TWEET</sup>)
```

- Reverse engineer to a conceptual model
- Identify and express in natural language the queries corresponding to typical functionalities of the application. Compare the graph and relational representation wrt such queries
- List in natural language some traversal queries and compare them with their SQL counterparts