Matlab avec module Signal

A) Signal sinusoïdal

Créer un signal échantillonné sur N = 1000 valeurs réparties par pas constant entre 0 et 1 seconde, comme suit :

```
>> N = 1000;
>> t = 0:1/N:1;
>> x = sin(2*pi*100*t);
```

Puis taper l'appel au module d'analyse du signal

>> signalAnalyzer

Il s'ensuit alors l'apparition d'une fenêtre :

Sélectionner la variable « x » à gauche dans la rubrique « Wokspace Browser » et effectuer un glisser-déplacer dans la grille ; le signal temporel apparait.

- 1) Interpréter la courbe affichée, les valeurs notifiées en abscisse et en ordonnées ; quelle est la valeur de la fréquence du signal ainsi affiché.
- 2) En haut et au centre, sélectionner l'option « Spectrum » et interpréter la forme du graphique ainsi obtenu.
- 3) Qu'est-ce que la « fréquence normalisée » ? A quoi correspond exactement la valeur maximale « 1 » affichée sur l'axe des abscisses ?
- 4) Comment choisir le nombre d'échantillons « N » pour obtenir une fréquence normalisée de 0,1 correspondant à la fréquence de 100 Hz ?
- 5) Dégrader progressivement le nombre « N » d'échantillons 1000, 500, 250 ... Qu'observe-ton tant sur la représentation temporelle que sur la représentation spectrale ?

B) Influence de la phase sur la représentation spectrale

Toujours sur une durée d'une seconde, créer 3 signaux comme suit :

```
>> N = 1000;

>> t=0:1/N:1;

>> x=sin(2*pi*100*t);

>> y=sin(2*pi*100*t + pi/8);

>> z=sin(2*pi*100*t + pi/4);
```

Observer les représentations temporelles et spectrales des 3 signaux et conclure sur l'influence de la phase.

C) Influence de la fenêtre temporelle

Reprendre le signal x(t) initialement créé au A.

Faire varier la dimension de la fenêtre temporelle et conclure sur la forme du spectre obtenu.

Remarque : on consignera directement les valeurs Min et Max de la rubrique « Time limits ».

D) Addition de deux signaux sinusoïdaux

1) Il est demandé d'afficher le spectre d'un signal obtenu par la somme des deux signaux suivants :

```
x(t) = \sin(2\pi f_1 t) avec f_1 = 100 Hz

y(t) = \sin(2\pi f_2 t) avec f_2 = 600 Hz

Le signal affiché sera z(t) = x(t) + y(t)
```

Comme précédemment la période temporelle étudiée dure 1 seconde.

Justifier le choix du nombre d'échantillons « N » permettant une lecture aussi directe que possible des valeurs des fréquences des signaux composant le signal z (cf question A-4).

- 2) Dégrader de moitié le nombre d'échantillons « N » déterminé précédemment en conservant le même signal z(t). Afficher et interpréter le résultat.
- 3) D'après les observations précédentes, quelle serait la fréquence maximale observable pour un signal échantillonné avec N=4000 ?

Conclusion : sous quelle condition Matlab permet-il de constituer et d'observer le spectre d'un signal décrit par une fonction : $x(t) = \sin(2\pi f t)$?