Line integrals

On veut intégrer f(x,y)=z (en bleu) selon le cercle, que l'on paramétrise comme $\vec{r}(t)=g(t)\vec{i}+h(t)\vec{j}$.

On peut d'abord réécrire notre fonction comme f(t)=f(g(t),h(t)). Pour quoi ? Parce que les seuls points qui nous intéressent sont ceux selon g(h),h(t)!

Notre fonction aurait pu être comme ça, mais on veut juste être sur les points du cercle.

Ici on veut l'aire donc

$$\begin{split} A_k &= f(x_k,y_k) \Delta s_k \\ A_k &= f(x_k,y_k) \sqrt{\left(\Delta x_k\right)^2 + \left(\Delta y_k\right)^2} \\ \Rightarrow dA &= f(g(t),h(t)) \sqrt{g'(t)^2 + h'(t)^2} dt \end{split}$$