Graph Theory

Part One

Graph Theory

For those of you who have already completed CS106B/X:

Chemical Bonds

facebook®

What's in Common

- Each of these structures consists of
 - a collection of objects and
 - links between those objects.
- *Goal:* find a general framework for describing these objects and their properties.

A graph consists of a set of *nodes* (or *vertices*) connected by *edges* (or *arcs*)

A graph consists of a set of *nodes* (or *vertices*) connected by *edges* (or *arcs*)

A graph consists of a set of *nodes* (or *vertices*) connected by *edges* (or *arcs*)

Some graphs are *directed*.

Some graphs are *undirected*.

Going forward, we're primarily going to focus on undirected graphs.

The term "graph" generally refers to undirected graphs with a finite number of nodes, unless specified otherwise.

Formalizing Graphs

- How might we define a graph mathematically?
- We need to specify
 - what the nodes in the graph are, and
 - which edges are in the graph.
- The nodes can be pretty much anything.
- What about the edges?

Formalizing Graphs

- An *unordered pair* is a set {*a*, *b*} of two elements *a* ≠ *b*. (Remember that sets are unordered).
 - $\{0, 1\} = \{1, 0\}$
- An *undirected graph* is an ordered pair G = (V, E), where
 - V is a set of nodes, which can be anything, and
 - E is a set of edges, which are unordered pairs of nodes drawn from V.
- [For your reference, but remember we won't be focusing on them in this class] A **directed graph** is an ordered pair G = (V, E), where
 - V is a set of nodes, which can be anything, and
 - E is a set of edges, which are ordered pairs of nodes drawn from V.

- An *unordered pair* is a set $\{a, b\}$ of two elements $a \neq b$.
- An *undirected graph* is an ordered pair G = (V, E), where
 - V is a set of nodes, which can be anything, and
 - *E* is a set of edges, which are unordered pairs of nodes drawn from *V*.

How many of these drawings are of valid undirected graphs?

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then a number.

Self-Loops

- An edge from a node to itself is called a *self-loop*.
- In undirected graphs, self-loops are generally not allowed.
 - Can you see how this follows from the definition?
- In directed graphs, self-loops are generally allowed unless specified otherwise.

Standard Graph Terminology

Using our Formalisms

- Let G = (V, E) be a graph.
- Intuitively, two nodes are adjacent if they're linked by an edge.
- Formally speaking, we say that two nodes $u, v \in V$ are *adjacent* if $\{u, v\} \in E$.

A **path** in a graph G = (V, E) is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

A **path** in a graph G = (V, E) is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *path* in a graph G = (V, E) is a sequence of one or more nodes $v_1, v_2, v_3, ..., v_n$ such that any two consecutive nodes in the sequence are adjacent.

The *length* of the path $v_1, ..., v_n$ is n - 1.

(This path has length 10, but visits 11 cities.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

(This cycle has length nine and visits nine different cities.)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A **simple path** in a graph is path that does not repeat any nodes or edges.

A **simple cycle** in a graph is cycle that does not repeat any nodes or edges except the first/last node.

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A **simple path** in a graph is path that does not repeat any nodes or edges.

A **simple cycle** in a graph is cycle that does not repeat any nodes or edges except the first/last node.

The *length* of the path $v_1, ..., v_n$ is n - 1.

A *cycle* in a graph is a path from a node back to itself. (By convention, a cycle cannot have length zero.)

A **simple path** in a graph is path that does not repeat any nodes or edges.

A **simple cycle** in a graph is cycle that does not repeat any nodes or edges except the first/last node.

Two nodes in a graph are called *connected* if there is a path between them.

Two nodes in a graph are called *connected* if there is a path between them.

(These nodes are not connected. No Grand Canyon for you.)

Two nodes in a graph are called *connected* if there is a path between them.

A graph *G* as a whole is called *connected* if all pairs of nodes in *G* are connected.

Two nodes in a graph are called *connected* if there is a path between them.

A graph *G* as a whole is called **connected** if all pairs of nodes in *G* are connected.

(This graph is not connected.)