Diskrētās struktūras datorzinātnēs Ievadlekcija

Prasības sekmīga vērtējuma saņemšanai

Konroldarbus nedrīkst pārrakstīt

Kas jāzin?

- · Kas ir kopa un apakškopa?
- · Kādi ir kopu veidi?
- \cdot Ko apzīmē \subset , \subseteq , \in ?
- · Kā var pierakstīt kopas?
- · Pamatdarbības ar kopām.

Dekarta reizinājums

Definīcija: Dekarta reizinājums ir kopu A un B reizinājums $A \times B$, kas ir katru šo kopu elementu sakārtotu pāru kopa, t.i. $C = A \times B$, kur $\forall c \in C$, $\forall a \in A, \ \forall b \in B, \ c = \langle a, b \rangle$

Pieņemsim, ka $\overline{A} = \{ \#, @, \rightarrow \}$ un $B = \{ 3, 10 \}$ Tad $A \times B = \{ \langle \#, 3 \rangle, \langle \#, 10 \rangle, \langle @, 3 \rangle, \langle @, 10 \rangle, \langle \rightarrow, 3 \rangle, \langle \rightarrow, 10 \rangle \}$, bet $B \times A = \{ \langle 3, \# \rangle, \langle 3, @ \rangle, \langle 3, \rightarrow \rangle, \langle 10, \# \rangle, \langle 10, @ \rangle, \langle 10, \rightarrow \rangle \}$.

Attiecīgi $B imes A = \set{u = (), orall u' \in A imes B \mid orall u = (u_2', u_1')}$

$$|A \times B| = |A| \cdot |B|$$

 $\langle\langle x,y \rangle,z \rangle \equiv \langle x,y,z \rangle$ – 3-vietīgais kortežs

 $A_1 imes A_2 imes A_3 imes ... imes A_n = \{\, \langle ...
angle, \langle ...
angle, ..., \langle ...
angle \,\},$ kur ir n-vietīgi korteži

Dekarta reizinājuma uzdošanas veidi

- \cdot Uzdodot visu kortežu kopu
- · Matrica (līdzīgi reizrēķina tabulai)
- \cdot Orientets grafs
- · Grafiks (der tikai skaitļu kopām)

Kortežu projekcija

$$lpha=\langle a_1,a_2,...,a_n
angle$$

Definīcija: par korteža α projekciju uz asīm $i_1,i_2,...,i_s$ sauc kortežu $\beta=$

$$(a_{i_1}, a_{i_2}, ..., a_{i_s}) \ \mathrm{proj}_{i_1, i_2, ..., i_s} lpha = eta$$

$$lpha = \langle a, b, c, d, e, f, g, h
angle$$

$$\mathrm{proj}_2 lpha = \langle b
angle$$

$$\mathrm{proj}_{2,5,6}lpha=\langle b,e,f
angle$$

$$\mathrm{proj}_{7.3.1.5}lpha=\langle g,c,a,e
angle$$

Binārās attieksmes (attiecības)

 ${\bf Defin\bar{\imath}cija:}$ Attieksmi starp2objektiem sauc par bināro attieksmi un apzīmē ar R

$$R \subseteq A \times B$$

$$A=\set{a,b,c}, B=\set{2,4}$$

$$R_{n_1}=\set{ra{a,2}}$$

$$egin{aligned} R_{n_1} &= \set{\langle a,2
angle} \ R_{n_2} &= \set{\langle a,2
angle, \langle b,2
angle, \langle c,2
angle} \end{aligned}$$