Bibliografía

• Understanding Deep Learning. Capítulo 6.

Tema 2 – Optimización y Regularización (Parte 2)

Aprendizaje Automático II - Grado en Inteligencia Artificial Universidad Rey Juan Carlos

Iván Ramírez Díaz ivan.ramirez@urjc.es

José Miguel Buenaposada Biencinto josemiguel.buenaposada@urjc.es

 Deep Learning: CS 182 2021. Lecture 4. Sergey Levine. UC Berkeley. Curso en youtube.

Aprendizaje supervisado

 Conjunto de datos de entrenamiento. N pares de muestras entrada/salida:

$$D = \{x_i, y_i\}_{i=1}^N$$

Función de coste. Mide cómo de malo es el modelo:

$$J(\boldsymbol{w}, \boldsymbol{f}(\cdot; \boldsymbol{w}), \{\boldsymbol{x}_i, \boldsymbol{y}_i\}_{i=1}^N)$$

$$\downarrow$$

$$J(\boldsymbol{w}) \in \mathbb{R}$$

Pérdida media

• Función de coste. Mide cómo de malo es el modelo:

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \underbrace{L(f(\mathbf{x}_{i}, \mathbf{w}), \mathbf{y}_{i})}_{L_{i}(\mathbf{w})}$$

Entrenamiento. Encontrar los parámetros que minimizan la función de coste:

$$\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} J(\mathbf{w})$$

En general el aprendizaje supervisado minimizará la pérdida media sobre todo el conjunto de entrenamiento D

Ejemplo: regresión lineal 1D

• Función de coste:

$$J(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (f(\mathbf{x}_i; \mathbf{w}) - \mathbf{y}_i)^2$$

= $\frac{1}{N} \sum_{i=1}^{N} (w_1 \mathbf{x}_i + w_0 - \mathbf{y}_i)^2$

Función de coste basada en el "error cuadrático medio" ("Mean squared error") o problema de "mínimos cuadrados" ("least squares problem")

Ejemplo: regresión lineal 1D

Proceso de entrenamiento:

Ejemplo: regresión lineal 1D

Proceso de entrenamiento:

Ejemplo: regresión lineal 1D

Proceso de entrenamiento:

Ejemplo: regresión lineal 1D

Proceso de entrenamiento:

Ejemplo: regresión lineal 1D

Proceso de entrenamiento:

2.3 Entrenamiento de modelos

- Conceptos matemáticos
- Algoritmo de descenso de gradiente
- Ejemplo con regresión lineal
- Ejemplo con modelo de Gabor
- Descenso de Gradiente Estocástico (SGD)
- Momento
- Adam

- · Conceptos matemáticos
- · Algoritmo de descenso de gradiente
- Ejemplo con regresión lineal
- Ejemplo con modelo de Gabor
- Descenso de Gradiente Estocástico (SGD)
- Momento
- Adam

El concepto de vector gradiente

Función en 1D:

$$y=f(x)$$

El concepto de derivada

Función en 1D: y=f(x)

$$\frac{df(x)}{dx} = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$$

El concepto de vector gradiente

Función en 1D:

$$y=f(x)$$

El concepto de vector gradiente

Función en 1D:

$$y=f(x)$$

$$\left. \frac{df(x)}{dx} \right|_{x=3} = 2 \cdot 3 - 4 = 2$$

El concepto de vector gradiente

Función en 1D:

$$y=f(x)$$

Con x = 1:

$$\left. \frac{df(x)}{dx} \right|_{x=1} = 2 \cdot 1 - 4 = -2$$

El concepto de vector gradiente

Función en 1D:

$$y=f(x)$$

El concepto de vector gradiente

Función en 1D:

$$y=f(x)$$

Con x = 0:

$$\left. \frac{df(x)}{dx} \right|_{x=0} = 2 \cdot 0 - 4 = -4$$

El concepto de vector gradiente

Función en 2D:

$$f(\mathbf{x}) = x_0^2 + x_1^2 - 4x_0 - 4x_1 + 5$$

$$\frac{\partial f(\mathbf{x})}{\partial x_0} = 2x_0 - 4 \qquad \frac{\partial f(\mathbf{x})}{\partial x_1} = 2x_1 - 4$$

El concepto de vector gradiente

Función en 2D:

$$f(\mathbf{x}) = x_0^2 + x_1^2 - 4x_0 - 4x_1 + 5$$

$$\frac{\partial f(\mathbf{x})}{\partial x_0} = 2x_0 - 4 \qquad \frac{\partial f(\mathbf{x})}{\partial x_1} = 2x_1 - 4$$

Con x =
$$(-1, -1)^T$$
:

$$\left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_0} \right|_{\mathbf{x} = -(1, -1)^T} = 2 \cdot (-1) - 4 = -6$$

$$\frac{\partial f(x)}{\partial x_1}\Big|_{x=-(1,-1)^T} = 2 \cdot (-1) - 4 = -6$$

$$\left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = (-1, -1)^{y}} = \frac{\frac{\partial f(\mathbf{x})}{\partial x_{0}}}{\frac{\partial f(\mathbf{x})}{\partial x_{1}}} = \begin{bmatrix} -6 \\ -6 \end{bmatrix}$$

El concepto de vector gradiente

Función en 2D:

$$f(\mathbf{x}) = x_0^2 + x_1^2 - 4x_0 - 4x_1 + 5$$

$$\frac{\partial f(\mathbf{x})}{\partial x_0} = 2x_0 - 4 \qquad \frac{\partial f(\mathbf{x})}{\partial x_1} = 2x_1 - 4$$

Con $x = (3, 3)^T$:

$$\left. \frac{\partial f(\mathbf{x})}{\partial x_0} \right|_{\mathbf{x} = -(1, -1)^T} = 2 \cdot 3 - 4 = 2$$

$$\frac{\partial f(x)}{\partial x_1}\Big|_{x=-(1,-1)^T} = 2 \cdot 2 - 4 = 2$$

$$\frac{\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\Big|_{\mathbf{x}=(3,3)^{r}}}{\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_{0}}\Big|_{\mathbf{x}=(3,3)^{r}}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_{0}} \\ \frac{\partial f(\mathbf{x})}{\partial x_{1}} \end{bmatrix} = \begin{bmatrix} 2\\2 \end{bmatrix}$$

Aproximación numérica al gradiente

Función en 1D: Def

Definición de derivada:

$$y=f(x)$$

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

Aproximación numérica al gradiente

Función en 1D: Definición de derivada:

$$y=f(x)$$

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

Con x = 3:

$$\frac{df(x)}{dx}\Big|_{x=2} = 2 \cdot 3 - 4 = 2$$

2.3 Entrenamiento de modelos

- Conceptos matemáticos
- · Algoritmo de descenso de gradiente
- · Ejemplo con regresión lineal
- Ejemplo con modelo de Gabor
- Descenso de Gradiente Estocástico (SGD)
- Momento
- Adam

Aproximación numérica al gradiente

Función en 1D: Definición de derivada:

$$y=f(x)$$

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

Algoritmo de descenso de gradiente

- Paso 0. Inicializar los parámetros Φ₀.
- · Repetir:
 - Paso 1. Calcular derivadas de la función de coste con respecto a los parámetros Φ

$$\frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}}\Big|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{i}} = \begin{vmatrix}
\frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}_{0}} \\
\frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}_{1}} \\
\vdots \\
\frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}_{k}}
\end{vmatrix}$$

- Paso 2. Actualizar los parámetros de acuerdo con:

$$\left. \boldsymbol{\Phi}_{t+1} \leftarrow \boldsymbol{\Phi}_{t} - \alpha \frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}} \right|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}}$$

donde el escalar positivo α determina la magnitud del cambio.

- Conceptos matemáticos
- · Algoritmo de descenso de gradiente
- Ejemplo con regresión lineal
- Ejemplo con modelo de Gabor
- Descenso de Gradiente Estocástico (SGD)
- Momento
- Adam

Descenso de gradiente

Paso 0. Inicializar los parámetros Φ₀.

Descenso de gradiente

 Paso 1. Calcular derivadas de la función de coste con respecto a los parámetros

$$J(\boldsymbol{\phi}) = \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} (f[x_i, \boldsymbol{\phi}] - y_i)^2$$
$$= \sum_{i=1}^{N} (\phi_0 + \phi_1 x_i - y_i)^2$$

Descenso de gradiente

 Paso 1. Calcular derivadas de la función de coste con respecto a los parámetros

$$J(\mathbf{\Phi}) = \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} (f[x_i, \mathbf{\Phi}] - y_i)^2$$

= $\sum_{i=1}^{N} (\phi_0 + \phi_1 x_i - y_i)^2$

$$\frac{\partial J}{\partial \boldsymbol{\phi}} = \frac{\partial}{\partial \boldsymbol{\phi}} \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} \frac{\partial \ell_i}{\partial \boldsymbol{\phi}}$$

Descenso de gradiente

Paso 1. Calcular derivadas de la función de coste con respecto a los parámetros

$$J(\mathbf{\phi}) = \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{N} (\phi_0 + \phi_1 x_i - y_i)^2$$

$$\frac{\partial J}{\partial \phi} = \frac{\partial}{\partial \phi} \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} \frac{\partial \ell_i}{\partial \phi}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Descenso de gradiente

 Paso 1. Calcular derivadas de la función de coste con respecto a los parámetros

$$\frac{\partial J}{\partial \phi} = \frac{\partial}{\partial \phi} \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} \frac{\partial \ell_i}{\partial \phi}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Descenso de gradiente

 Paso 1. Calcular derivadas de la función de coste con respecto a los parámetros

$$\frac{\partial J}{\partial \phi} = \frac{\partial}{\partial \phi} \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} \frac{\partial \ell_i}{\partial \phi}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

 Paso 2. Actualizar los parámetros de acuerdo con:

$$\left. \boldsymbol{\Phi}_{t+1} \leftarrow \boldsymbol{\Phi}_{t} - \alpha \frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}} \right|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{t}}$$

α = tamaño del paso (ó learning rate si tiene valor fijo)

Descenso de gradiente

 Paso 1. Calcular derivadas de la función de coste con respecto a los parámetros

$$\frac{\partial J}{\partial \phi} = \frac{\partial}{\partial \phi} \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} \frac{\partial \ell_i}{\partial \phi}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

 Paso 2. Actualizar los parámetros de acuerdo con:

$$\left. \boldsymbol{\Phi}_{t+1} \leftarrow \boldsymbol{\Phi}_{t} - \alpha \frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}} \right|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{t}}$$

α = tamaño del paso

Descenso de gradiente

Slobe 2.0 (No. 1.0) (No.

Descenso de gradiente

 Paso 1. Calcular derivadas de la función de coste con respecto a los parámetros

$$\frac{\partial J}{\partial \phi} = \frac{\partial}{\partial \phi} \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} \frac{\partial \ell_i}{\partial \phi}$$

$$\frac{\partial \ell_i}{\partial \phi} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

 Paso 2. Actualizar los parámetros de acuerdo con:

$$\left. \boldsymbol{\Phi}_{t+1} \boldsymbol{\leftarrow} \boldsymbol{\Phi}_{t} - \alpha \frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}} \right|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{t}}$$

α = tamaño del paso

Descenso de gradiente

 Paso 1. Calcular derivadas de la función de coste con respecto a los parámetros

$$\frac{\partial J}{\partial \phi} = \frac{\partial}{\partial \phi} \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} \frac{\partial \ell_i}{\partial \phi}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

 Paso 2. Actualizar los parámetros de acuerdo con:

$$\left. \boldsymbol{\Phi}_{t+1} \!\leftarrow\! \boldsymbol{\Phi}_{t} \!-\! \alpha \frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}} \right|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{t}}$$

Descenso de gradiente

α = tamaño del paso

Descenso de gradiente

Descenso de gradiente

Cálculo del paso de descenso (line search)

Paso 1. Calcular derivadas de la función de coste con respecto a los parámetros

$$\frac{\partial J}{\partial \phi} = \frac{\partial}{\partial \phi} \sum_{i=1}^{N} \ell_i = \sum_{i=1}^{N} \frac{\partial \ell_i}{\partial \phi}$$

$$\frac{\partial \ell_i}{\partial \boldsymbol{\phi}} = \begin{bmatrix} \frac{\partial \ell_i}{\partial \phi_0} \\ \frac{\partial \ell_i}{\partial \phi_1} \end{bmatrix} = \begin{bmatrix} 2(\phi_0 + \phi_1 x_i - y_i) \\ 2x_i(\phi_0 + \phi_1 x_i - y_i) \end{bmatrix}$$

Paso 2. Actualizar los parámetros de acuerdo

$$\left. \boldsymbol{\Phi}_{t+1} \leftarrow \boldsymbol{\Phi}_{t} - \alpha \frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}} \right|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{t}}$$

Cálculo del paso de descenso (line search)

Algoritmo de acotación (bracketing):

α = tamaño del paso

Cálculo del paso de descenso (line search)

Algoritmo de acotación (bracketing):

Cálculo del paso de descenso (line search)

Algoritmo de acotación (bracketing):

Descenso de gradiente

Problemas de con func. de coste convexa

Problemas de con func. de coste convexa

No convexo Convexo No convexo No convexo

Cálculo del paso de descenso (line search)

• Hessiano (matriz de la derivada 2ª):

$$\mathbf{H}[oldsymbol{\phi}] = egin{bmatrix} rac{\partial^2 J}{\partial \phi_0^2} & rac{\partial^2 J}{\partial \phi_0 \partial \phi_1} \ rac{\partial^2 J}{\partial \phi_1 \partial \phi_0} & rac{\partial^2 J}{\partial \phi_2^2} \end{bmatrix}$$

Cálculo del paso de descenso (line search)

Hessiano (matriz de la derivada 2^a):

$$\mathbf{H}[\boldsymbol{\phi}] = \begin{bmatrix} \frac{\partial^2 J}{\partial \phi_0^2} & \frac{\partial^2 J}{\partial \phi_0 \partial \phi_1} \\ \frac{\partial^2 J}{\partial \phi_1 \partial \phi_0} & \frac{\partial^2 J}{\partial \phi_1^2} \end{bmatrix}$$

 El test de convexidad en 2D es que el determinante del Hessiano es positivo para todo punto Φ:

$$|\mathbf{H}[\boldsymbol{\phi}]| = \frac{\partial^2 J}{\partial \phi_0^2} \frac{\partial^2 J}{\partial \phi_1^2} - \frac{\partial^2 J}{\partial \phi_0 \partial \phi_1} \frac{\partial^2 J}{\partial \phi_1 \partial \phi_0}$$

Cálculo del paso de descenso (line search)

Hessiano (matriz de la derivada 2^a):

$$\mathbf{H}[oldsymbol{\phi}] = egin{bmatrix} rac{\partial^2 J}{\partial \phi_0^2} & rac{\partial^2 J}{\partial \phi_0 \partial \phi_1} \ rac{\partial^2 J}{\partial \phi_1 \partial \phi_0} & rac{\partial^2 J}{\partial \phi_1^2} \end{bmatrix}$$

- En un punto, Φ, donde el gradiente es 0 en todas direcciones:
 - Máximo. Si todos los autovalores de H[•] son positivos
 - Mínimo. Si todos los autovalores de H[₱] son negativos
 - Punto de silla (saddle point). Si los autovalores tienen distinto signo.

- Conceptos matemáticos
- · Algoritmo de descenso de gradiente
- Ejemplo con regresión lineal
- · Ejemplo con modelo de Gabor
- Descenso de Gradiente Estocástico (SGD)
- Momento
- Adam

Modelo de Gabor + Error Cuadrático

$$f[x, \phi] = \sin[\phi_0 + 0.06 \cdot \phi_1 x] \cdot \exp\left(-\frac{(\phi_0 + 0.06 \cdot \phi_1 x)^2}{8.0}\right)$$

$$J(\mathbf{w}) = \sum_{i=1}^{N} (f(\mathbf{x}_i; \mathbf{\Phi}) - y_i)^2$$

Modelo de Gabor

$$f[x, \phi] = \sin[\phi_0 + 0.06 \cdot \phi_1 x] \cdot \exp\left(-\frac{(\phi_0 + 0.06 \cdot \phi_1 x)^2}{8.0}\right)$$

- Conceptos matemáticos
- Algoritmo de descenso de gradiente
- Ejemplo con regresión lineal
- Ejemplo con modelo de Gabor
- Descenso de Gradiente Estocástico (SGD)
- Momento
- Adam

Decenso de gradiente

- El descenso de gradiente llega al mínimo global si comenzamos en el "valle" correcto.
- En otro caso, desciende hasta un mínimo local
- O se queda atrapado en un punto de silla (saddle point).

Decenso de Gradiente Estocástico (SGD)

• Hasta ahora (full batch descent):

$$\phi_{t+1} \longleftarrow \phi_t - \alpha \sum_{i=1}^N \frac{\partial \ell_i[\phi_t]}{\partial \phi},$$

Stochastic Gradient Descent (SGD):

$$\phi_{t+1} \longleftarrow \phi_t - \alpha \frac{\partial \ell_i[\phi_t]}{\partial \phi}$$

Con α , tasa de aprendizaje (*learning rate*), de valor fijo (en el epoch).

¡Un único ejemplo!

L. Bottou 2010. Large-Scale Machine Learning with Stochastic Gradient Descent

Decenso de Gradiente Estocástico (SGD)

• Hasta ahora (full batch descent):

$$\phi_{t+1} \longleftarrow \phi_t - \alpha \sum_{i=1}^N \frac{\partial \ell_i[\phi_t]}{\partial \phi},$$

 Stochastic Gradient Descent (SGD) con mini-batches:

$$\phi_{t+1} \longleftarrow \phi_t - \alpha \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi},$$

Con α , tasa de aprendizaje (*learning rate*), de valor fijo (en el epoch).

¡Múltiples ejemplos en el mini-batch!

Decenso de Gradiente Estocástico

Descenso de Gradiente Estocástico (SGD)

- Paso 0. Inicializar los parámetros Φ₀.
- Repetir:
 - Paso 1. Sacar una muestra de datos B_t de D (el mini-batch)
 - Paso 2. Calcular derivadas de la función de coste con respecto a los parámetros en B_t

$$\frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}}\bigg|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{i}} \leftarrow \frac{1}{N_{B}} \sum_{i \in B_{i}} \frac{\partial J(f(\boldsymbol{x}_{i}; \boldsymbol{\Phi}), \boldsymbol{y}_{i})}{\partial \boldsymbol{\Phi}}\bigg|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{i}}$$

Paso 3. Actualizar los parámetros de acuerdo con:

$$w_{t+1} \leftarrow \Phi_t - \alpha \frac{\partial J(\Phi)}{\partial \Phi} \bigg|_{\Phi = \Phi}$$

¡Muestrear aleatoriamente un subconjunto de datos es demasiado lento! (pensad en el acceso aleatorio a memoria con millones)

Descenso de Gradiente Estocástico (SGD)

- Paso 0. Inicializar los parámetros Φ₀.
- Repetir:
 - Paso 1. Sacar una muestra de datos B_t de D (el mini-batch)
 - Paso 2. Calcular derivadas de la función de coste con respecto a los parámetros en B

$$\left. \frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}} \right|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{i}} \leftarrow \frac{1}{N_{B}} \sum_{i \in B_{i}} \left. \frac{\partial J(f(\boldsymbol{x}_{i}; \boldsymbol{\Phi}), \boldsymbol{y}_{i})}{\partial \boldsymbol{\Phi}} \right|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{i}}$$

- Paso 3. Actualizar los parámetros de acuerdo con:

$$w_{t+1} \leftarrow \Phi_t - \alpha \frac{\partial J(\Phi)}{\partial \Phi} \bigg|_{\Phi = \Phi_t}$$

En la práctica:

1º se baraian los datos aleatoriamente (shuffle):

Descenso de Gradiente Estocástico (SGD)

- Paso 0. Inicializar los parámetros Φ₀.
- Repetir:
 - Paso 1. Sacar una muestra de datos B_t de D (el mini-batch)
 - Paso 2. Calcular derivadas de la función de coste con respecto a los parámetros en B

$$\frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}}\bigg|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_i} \leftarrow \frac{1}{N_B} \sum_{i \in B_i} \frac{\partial J(f(\boldsymbol{x}_i; \boldsymbol{\Phi}), \boldsymbol{y}_i)}{\partial \boldsymbol{\Phi}}\bigg|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_i}$$

- Paso 3. Actualizar los parámetros de acuerdo con:

$$w_{t+1} \leftarrow \Phi_t - \alpha \frac{\partial J(\Phi)}{\partial \Phi} \bigg|_{\Phi = \Phi_t}$$

En la práctica:

2º se toman los mini-baches secuencialmente desde el principio:

Descenso de Gradiente Estocástico (SGD)

- Paso 0. Inicializar los parámetros Φ₀.
- Repetir
 - Paso 1. Sacar una muestra de datos B_t de D (el mini-batch)
 - Paso 2. Calcular derivadas de la función de coste con respecto a los parámetros en B

$$\frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}}\bigg|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{i}} \leftarrow \frac{1}{N_{B}} \sum_{i \in B_{i}} \frac{\partial J(f(\boldsymbol{x}_{i}; \boldsymbol{\Phi}), \boldsymbol{y}_{i})}{\partial \boldsymbol{\Phi}}\bigg|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_{i}}$$

Paso 3. Actualizar los parámetros de acuerdo con:

$$w_{t+1} \leftarrow \Phi_t - \alpha \frac{\partial J(\Phi)}{\partial \Phi} \Big|_{\Phi = \Phi_t}$$

En la práctica:

2º se toman los mini-baches secuencialmente desde el principio:

Descenso de Gradiente Estocástico (SGD)

- Paso 0. Inicializar los parámetros Φ₀.
- Repetir:
 - Paso 1. Sacar una muestra de datos B_t de D (el mini-batch)
 - Paso 2. Calcular derivadas de la función de coste con respecto a los parámetros en B

$$\frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}}\bigg|_{\boldsymbol{\Phi}=\boldsymbol{\Phi}_{i}} \leftarrow \frac{1}{N_{B}} \sum_{i \in B_{i}} \frac{\partial J(f(\boldsymbol{x}_{i}; \boldsymbol{\Phi}), \boldsymbol{y}_{i})}{\partial \boldsymbol{\Phi}}\bigg|_{\boldsymbol{\Phi}=\boldsymbol{\Phi}_{i}}$$

- Paso 3. Actualizar los parámetros de acuerdo con:

$$w_{t+1} \leftarrow \Phi_t - \alpha \frac{\partial J(\Phi)}{\partial \Phi} \bigg|_{\Phi = \Phi_t}$$

En la práctica:

2º se toman los mini-baches secuencialmente desde el principio:

Descenso de Gradiente Estocástico (SGD)

- Paso 0. Inicializar los parámetros Φ₀.
- Repetir:
 - Paso 1. Sacar una muestra de datos B_t de D (el mini-batch)
 - Paso 2. Calcular derivadas de la función de coste con respecto a los parámetros en B

$$\frac{\partial J(\boldsymbol{\Phi})}{\partial \boldsymbol{\Phi}}\Big|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_i} \leftarrow \frac{1}{N_B} \sum_{i \in B_i} \frac{\partial J(f(\boldsymbol{x}_i; \boldsymbol{\Phi}), \boldsymbol{y}_i)}{\partial \boldsymbol{\Phi}}\Big|_{\boldsymbol{\Phi} = \boldsymbol{\Phi}_i}$$

- Paso 3. Actualizar los parámetros de acuerdo con:

$$w_{t+1} \leftarrow \Phi_t - \alpha \frac{\partial J(\Phi)}{\partial \Phi} \bigg|_{\Phi = \Phi_t}$$

En la práctica:

3º Cuando se terminan tenemos una época (epoch) y volvemos al principio

Problema: diferente magnitud en gradientes

Propiedades del SGD

- Puede escapar de mínimos locales
- Añade ruido, pero realiza actualizaciones razonables basada en parte de los datos
- Utiliza todos los datos por igual
- Menos costoso computacionalmente que la versión full batch
- Parece encontrar mejores soluciones
- No converge en el sentido tradicional
- Planificación del learning rate (learning rate schedule) disminuirlo (o aumentarlo) cada cierto número de épocas.

Planificación del learning rate

• Disminuirlo (o aumentarlo) cada cierto número de épocas.

Ejemplo: step decay

Planificación del learning rate

• SGD puede no converger si no se disminuye α :

Momento

• Suma ponderada del gradiente con los anteriores

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi}$$

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \mathbf{m}_{t+1}$$

Típicamente $\beta = 0.9$

2.3 Entrenamiento de modelos

- Conceptos matemáticos
- · Algoritmo de descenso de gradiente
- Ejemplo con regresión lineal
- · Ejemplo con modelo de Gabor
- Descenso de Gradiente Estocástico (SGD)
- Momento
- Adam

Con learning rate fijo ...

 Pasos cada vez más pequeños cuando J(w) disminuye la curvatura:

Momento

Suma ponderada del gradiente con los anteriores

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi}$$
$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \mathbf{m}_{t+1}$$

El α efectivo (el learning rate):

- se incrementa si todos los gradientes están alineados en múltiples iteraciones.
- decrece si el gradiente cambia de dirección repetidamente (los términos se cancelan).

Momento

· Suma ponderada del gradiente con los anteriores

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi}$$
$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \mathbf{m}_{t+1}$$

Reduce el comportamiento oscilatorio en los valles (la trayectoria es más suave).

SGD + Momento

Momento acelerado de Nesterov

 El momento es una "predicción" de hacia dónde vamos

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i[\phi_t]}{\partial \phi}$$
$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \mathbf{m}_{t+1}$$

 Nesterov: moverse primero en la dirección predicha y <u>DESPUÉS</u>, medir el gradiente:

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \sum_{i \in \mathcal{B}_t} \frac{\partial \ell_i [\phi_t - \alpha \cdot \mathbf{m}_t]}{\partial \phi}$$
$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \mathbf{m}_{t+1}$$

- Conceptos matemáticos
- · Algoritmo de descenso de gradiente
- Ejemplo con regresión lineal
- · Ejemplo con modelo de Gabor
- Descenso de Gradiente Estocástico (SGD)
- Momento
- Adam

Idea: Normalizar los gradientes

 Medir el gradiente en el mini-batch y su cuadrado para cada parámetro del modelo:

$$\mathbf{m}_{t+1} \leftarrow \frac{\partial J[\phi_t]}{\partial \phi}$$
 $\mathbf{v}_{t+1} \leftarrow \frac{\partial J[\phi_t]}{\partial \phi}^2$

· Normalizar el momento:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

v_{t+1} es diferente para cada parámetro. El learning rate efectivo es diferente para cada parámetro.

Problema: diferente magnitud en gradientes

Idea: Normalizar los gradientes

 Medir el gradiente en el mini-batch y su cuadrado para cada parámetro del modelo:

$$\mathbf{m}_{t+1} \leftarrow \frac{\partial J[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}$$
$$\mathbf{v}_{t+1} \leftarrow \frac{\partial J[\boldsymbol{\phi}_t]}{\partial \boldsymbol{\phi}}^2$$

Normalizar el momento:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

Idea: Normalizar los gradientes

Medir el gradiente en el mini-batch y su cuadrado para cada

parámetro del modelo:

$$\mathbf{m}_{t+1} \leftarrow rac{\partial J[oldsymbol{\phi}_t]}{\partial oldsymbol{\phi}} \ \mathbf{v}_{t+1} \leftarrow rac{\partial J[oldsymbol{\phi}_t]}{\partial oldsymbol{\phi}}^2$$

· Normalizar el momento:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

Adaptive moment estimation (Adam)

 Medir el gradiente en el mini-batch y su cuadrado para cada parámetro del modelo con momento:

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \frac{\partial J[\phi_t]}{\partial \phi}$$
$$\mathbf{v}_{t+1} \leftarrow \gamma \cdot \mathbf{v}_t + (1 - \gamma) \left(\frac{\partial J[\phi_t]}{\partial \phi} \right)^2$$

Típicamente $\beta = 0.9$; $\gamma = 0.990$

Adaptive moment estimation (Adam)

 Medir el gradiente en el mini-batch y su cuadrado para cada parámetro del modelo con momento:

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \frac{\partial J[\phi_t]}{\partial \phi}$$
$$\mathbf{v}_{t+1} \leftarrow \gamma \cdot \mathbf{v}_t + (1 - \gamma) \left(\frac{\partial J[\phi_t]}{\partial \phi} \right)^2$$

Típicamente
$$\beta = 0.9$$
; $\gamma = 0.990$

Problema: m_t y v_t son 0 al comenzar las iteraciones.

Adaptive moment estimation (Adam)

 Medir el gradiente en el mini-batch y su cuadrado para cada parámetro del modelo con momento:

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \frac{\partial J[\phi_t]}{\partial \phi}$$
$$\mathbf{v}_{t+1} \leftarrow \gamma \cdot \mathbf{v}_t + (1 - \gamma) \left(\frac{\partial J[\phi_t]}{\partial \phi} \right)^2$$

• Tener cuidado al comienzo: $\tilde{\mathbf{m}}_{t+1} \leftarrow \frac{\mathbf{m}_{t+1}}{1-\beta^{t+1}}$ $\tilde{\mathbf{v}}_{t+1} \leftarrow \frac{\mathbf{v}_{t+1}}{1-\gamma^{t+1}}$

Típicamente $\beta = 0.9$; $\gamma = 0.990$

Adaptive moment estimation (Adam)

• Medir el gradiente en el mini-batch y su cuadrado para cada parámetro del modelo con momento:

$$\mathbf{m}_{t+1} \leftarrow \beta \cdot \mathbf{m}_t + (1 - \beta) \frac{\partial J[\phi_t]}{\partial \phi}$$
$$\mathbf{v}_{t+1} \leftarrow \gamma \cdot \mathbf{v}_t + (1 - \gamma) \left(\frac{\partial J[\phi_t]}{\partial \phi} \right)^2$$

• Tener cuidado al comienzo: $ilde{\mathbf{m}}_{t+1} \leftarrow \frac{\mathbf{m}_{t+1}}{1-eta^{t+1}}$

$$\tilde{\mathbf{m}}_{t+1} \leftarrow \frac{\mathbf{m}_{t+1}}{1 - \beta^{t+1}}$$

$$\tilde{\mathbf{v}}_{t+1} \leftarrow \frac{\mathbf{v}_{t+1}}{1 - \gamma^{t+1}}$$

Actualizar los parámetros:

$$\phi_{t+1} \leftarrow \phi_t - \alpha \cdot \frac{\mathbf{m}_{t+1}}{\sqrt{\mathbf{v}_{t+1}} + \epsilon}$$

Adaptive moment estimation (Adam)

Adaptive moment estimation (Adam)

- Cada parámetro tiene su propio "learning rate efectivo" que se recalcula en cada iteración.
- ¡No es necesario el learning rate schedule! (En SGD sí que es necesario)

Hiperparámetros

- Elección del algoritmo de optimización
- Tasa de aprendizaje (learning rate)
- Momento

¡Son hiperparámetros del algoritmo de aprendizaje (del optimizador!