

IC SEM RE Tutorial using AI Part 2: Image Processing and Computer Vision

Olivia Dizon-Paradis, Ronald Wilson, Domenic Forte, Damon Woodard

Florida Institute for National Security (FINS)

Objective

- Hardware Reverse Engineering Project using AI
 - Hands-on tutorial
 - Practical application in hardware assurance
 - Resume-builder / professional development
- Last Time
 - Introduction of the IC SEM RE problem
 - Code pipeline setup
- This lecture:
 - Introduce Image Processing and Computer Vision
 - Improve upon previous code pipeline

Refer to the prerequisites and documentation!

Image Processing and Computer Vision

- <u>Image Processing (IP)</u> transforms an image into another image
- <u>Computer Vision (CV)</u> recognizes patterns in an image

- TL;DR:
 - IP: Image in, Image out
 - CV: Image in, Knowledge out

Typical IP/CV Segmentation Pipeline

- IP technique to enhance/remove features in an image
- Image blurring, sharpening, edge enhancement, etc.
- Needs: input image, kernel (i.e. filter)
- Example:

input image

1	0	0	О
1	О	0	0
1	1	О	О
1	О	О	1

kernel

x 1/9	x 1/9	x 1/9
x 1/9	x 1/9	x 1/9
x 1/9	x 1/9	x 1/9

- IP technique to enhance/remove features in an image
- Image blurring, sharpening, edge enhancement, etc.
- Needs: input image, kernel (i.e. filter)
- Example:

• .	•
inniit	image
mpac	111145

1 x 1/9	0 x 1/9	0 x 1/9	0
1 x 1/9	o x 1/9	o x 1/9	О
1 x 1/9	1 x 1/9	o x 1/9	О
1	О	О	1

output image

4/9	

 $(1+0+0+1+0+0+1+1+0) \times 1/9 = 4/9$

- IP technique to enhance/remove features in an image
- Image blurring, sharpening, edge enhancement, etc.
- Needs: input image, kernel (i.e. filter)
- Example:

input image

1	o x 1/9	o x 1/9	o x 1/9
1	o x 1/9	o x 1/9	o x 1/9
1	1 x 1/9	o x 1/9	o x 1/9
1	О	0	1

output image

4/9	1/9

 $(0+0+0+0+0+0+1+0+0) \times 1/9 = 1/9$

- IP technique to enhance/remove features in an image
- Image blurring, sharpening, edge enhancement, etc.
- Needs: input image, kernel (i.e. filter)
- Example:

input image

1	О	О	0
1 x 1/9	0 x 1/9	0 x 1/9	0
1 x 1/9	1 x 1/9	0 x 1/9	О
1 x 1/9	0 x 1/9	0 x 1/9	1

output image

4/9	1/9
4/9	

$$(1+0+0+1+1+0+1+0+0) \times 1/9 = 4/9$$

- IP technique to enhance/remove features in an image
- Image blurring, sharpening, edge enhancement, etc.
- Needs: input image, kernel (i.e. filter)
- Example:

input image

1	О	О	О
1	0 x 1/9	o x 1/9	o x 1/9
1	1 x 1/9	o x 1/9	o x 1/9
1	o x 1/9	o x 1/9	1 x 1/9

output image

4/9	1/9
4/9	2/9

$$(0+0+0+1+0+0+0+0+1) \times 1/9 = 2/9$$

Segmentation Method 2: Otsu Thresholding

- CV technique to automatically segment an image
- Works by maximizing histogram inter-class variance

• Example:

- IP techniques that concern image shapes and structures
- · Shape erosion and dilation, gap opening and closing
- Needs: input image, structuring element
- Example:

input image

1	0	0	0
1	О	О	О
1	1	0	О
1	О	О	1

structuring element

- IP techniques that concern image shapes and structures
- · Shape erosion and dilation, gap opening and closing
- Needs: input image, structuring element
- Example:

input image

2			
1 ==1	0	О	0
1 ==1	0	0	0
1	1	О	О
1	О	О	1

output image (erosion)

1		

$$(1==1)$$
 AND $(1==1)=1$

- IP techniques that concern image shapes and structures
- · Shape erosion and dilation, gap opening and closing
- Needs: input image, structuring element
- Example:

input image

1	0 ==1	0	0
1	O ==1	0	0
1	1	О	О
1	О	О	1

output image (erosion)

1	0	

$$(0==1)$$
 AND $(0==1)=0$

- IP techniques that concern image shapes and structures
- · Shape erosion and dilation, gap opening and closing
- Needs: input image, structuring element
- Example:

input image

1	О	0	0
1	O ==1	0	0
1	1 ==1	О	О
1	О	О	1

output image (erosion)

1	О	О	0
1	О		

$$(0==1) \text{ AND } (1==1) = 0$$

- IP techniques that concern image shapes and structures
- · Shape erosion and dilation, gap opening and closing
- Needs: input image, structuring element
- Example:

input image

1	0	0	0
1	О	0	О
1	1	О	O ==1
1	О	О	1 ==1

output image (dilation)

1	О	О	О
1	1	О	О
1	1	О	1

- IP techniques that concern image shapes and structures
- · Shape erosion and dilation, gap opening and closing
- Needs: input image, structuring element
- Binary Morphological Operations: 4 techniques
 - Erosion: reduces shape sizes
 - Dilation: increases shape sizes
 - Opening: removes background noise, separate shapes
 - Closing: removes foreground noise, connects shapes

Extensions

- Preprocessing:
 - Kernel parameters
 - Other filters: Gaussian, Median
- Segmentation:
 - Adaptive thresholding
- Postprocessing
 - Structuring element parameters
 - Other morphological operations: hole filling

Experiment!

Key Takeaways

- 1. Image Processing and Computer Vision
- 2. Preprocessing: Mean filtering
- 3. Segmentation: Otsu thresholding
- 4. Postprocessing: Opening and Closing
- 5. Extensions

Next: Machine Learning