MATH 131 Homework 2 Jesse Cai 304634445

1. Prove that addition is associative.

We need to show $\forall a, b, c \in \mathbb{N} : (a+b) + c = a + (b+c)$.

We will use the definition of addition: $\forall n, m \in \mathbb{N} : n + S(m) = s(n+m)$, as well as P5 of the Peanno axioms. Let a, b be fixed and P(n) = (a+b) + n = a + (b+n).

Base case: P(0) is TRUE by inspection.

$$(a + b) + 0 = a + b = a + (b) = a + (b + 0)$$

Inductive step: Assume P(n) is true, then consider P(S(n))

$$(a+b) + S(n) = S((a+b) + n) = byP(n) S(a+(b+n)) = a + S(b+c) = a + (b+S(n))$$

so $P(n) \implies P(S(n))$ and by P5 $\forall n \in \mathbb{N} P(n)$ holds.

2. Prove $\forall m, n, r \in \mathbb{N} : m \leq n \implies r \cdot m \leq r \cdot n$.

Let n, m be fixed and $P(r) = m \le n \implies r \cdot m \le r$. Base case (r = 0): If n > m the implication holds be default otherwise $0 \cdot m = 0 = 0 \cdot n$ so this is TRUE.

Inductive step: Assume P(r) is true, then consider P(S(r))

$$m \le n \implies S(r) \cdot m \le S(r) \cdot n$$

$$m \le n \implies r \cdot m + m \le r \cdot n + n$$

Either $m \le n$ in which case $r \cdot m \le r \cdot n \implies r \cdot m + m \le r \cdot n + n$ or m > n, in which case the P(r+1) is true by default.

so $P(r) \implies P(S(r))$ and by P5 $\forall r \in \mathbb{N} P(r)$ holds.

3. Show $\sqrt[3]{5-\sqrt{3}}$ is not rational.

Assume that $\sqrt[3]{5-\sqrt{3}} \in \mathbb{Q}$. Then, $\left(\sqrt[3]{5-\sqrt{3}}\right)^3 \in \mathbb{Q}$, since the rationals are closed under multiplication. This means that $5-\sqrt{3} \in \mathbb{Q}$. But since \mathbb{Q} is closed under subtraction $5-(5-\sqrt{3}) \in \mathbb{Q} \implies \sqrt{3} \in \mathbb{Q}$ which is a contradiction of the RRT. Therefore $\sqrt[3]{5-\sqrt{3}} \notin \mathbb{Q}$.

4. Prove (v) 0 < 1 and (vii) $\forall a, b, c \in \mathbb{R}$ $0 < a < b \implies 0 < b^{-1} < a^{-1}$

To prove 0 < 1 we will use (iv). Let a = 1, then by (iv) $0 < 1^2 \implies 0 < 1$

To prove (vii), notice by (vi) we get $0 < b^{-1}$ and $0 < a^{-1}$, so we just need to show that $b^{-1} < a^{-1}$.

By (iii) we get $0 < a^{-1}b^{-1}$ and we can use (i) to get $-a^{-1}b^{-1} < -0$ We can apply (ii) with $c = -a^{-1}b^{-1}$ to get $bc \le ac$ so $-a^{-1} \le -b-1$. But then we can apply (i) again to get $b^{-1} \le a^{-1}$

5. Prove $\forall a, b, c \in \mathbb{R} | a + b + c | \le |a| + |b| + |c|$

Because addition is commutative $a+b+c=(a+b)+c \implies |a+b+c|=|(a+b)+c|$ By triangle inequality we get $|(a+b)+c| \le |a+b|+|c|$ so

$$|a+b+c| < |a+b| + |c|$$

Again by triangle inequality, $|a + b| \le |a| + |b|$ so

$$|a+b+c| \le |a+b| + |c| \le |a| + |b| + |c|$$

Prove $|a_1 + a_2 + \ldots + a_n| \le |a_1| + |a_2| + \ldots + |a_n|$

Let
$$P(n) = |a_1 + a_2 + \ldots + a_n| \le |a_1| + |a_2| + \ldots + |a_n|$$

Base case: n=0 is trivial |emtpy| = nothign

Inductive step: Assume P(n) is TRUE, then consider P(n+1)

$$|a_1+a_2+\ldots+a_n+a_{n+1}| = |(a_1+a_2+\ldots+a_n)+a_{n+1}| \le |a_1+a_2+\ldots+a_n|+|a_{n+1}| = |a_1|+|a_2|+\ldots+|a_n|+|a_{n+1}|$$

So
$$P(n) \implies P(n+1)$$
 and $\forall n \in \mathbb{N} P(n)$ holds.

6. Prove $\inf S \leq \sup S$

By definition $\forall x \in S$. $\sup S > x > \inf S$ so $\inf S \leq \sup S$.

What can you say about S if $\inf S = \sup S$.

S is just one element.

7. Let $S = \{1\}$ and $T = \{1, 2\}$ then $S \cap T = \{1\} \neq \emptyset$ Let $S = \{r \in \mathbb{Q} : r^2 < 7\}$ and $T = \{r \in \mathbb{Q} : r^2 > 7\}$ then $S \cap T = \emptyset$ and $\sup S = \inf T = \sqrt{7}$.

8. First we show $\{r+\sqrt{2}:r\in\mathbb{Q}\}\subset I$. By RRT we know that $\sqrt{2}\notin\mathbb{Q}$.

Let $x \in \{r + \sqrt{2} : r \in \mathbb{Q}\}$. Suppose that $x = (r + i) \in \mathbb{Q}$, then $(r + i) - r = i \in \mathbb{Q}$, since \mathbb{Q} is closed under subtraction, but this is a contradiction of RRT, so therefore $x \notin \mathbb{Q} \implies x \in I$.

Now for any a < b we can find a $r \in \mathbb{Q}$: $a - \sqrt{2} < r < b - \sqrt{2}$, by the denseness of \mathbb{Q} (Theorem 4.7). But then if we take $r + \sqrt{2}$ we get $a < r + \sqrt{2} < b$ and we showed $r + \sqrt{2} \in I$, so there will always exists an irrational number a < i < b.

9. Prove $\sup(A+B) = \sup A + \sup B$.

To show $\sup(A+B) = \sup A + \sup B$, we will first show $\sup A + \sup B \ge \sup(A+B)$.

Let $x \in A + B : x = a + b \le \sup A + \sup B$ since $\forall a \in A.a \le \sup A$ and likewise $\forall b \in B.b \le \sup B$. So $\sup(A + B) \le \sup A + \sup B$.

Consider the set $A + \sup B = \{ \forall a \in A : a + \sup B \}$. Clearly $A + \sup B \subset A + B$ so taking the suprema yields $\sup(A + \sup B) \leq \sup(A + B)$.

But $\sup(A + \sup B) = \sup A + \sup B \le \sup(A + B)$. So since

 $\sup A + \sup B \le \sup (A+B) \wedge \sup A + \sup B \ge \sup (A+B) \implies \sup A + \sup B = \sup (A+B)$

٠