HIMANI SINHMAR

EDUCATION

Ph.D. Robotics, Cornell University with Prof. Hadas Kress-Gazit

Specialization in Dynamics and Controls, Minor in Computer Science

Bachelor and Master of Technology Indian Institute of Technology Bombay ('14 - '19) Specialization in System and Controls, Major in Aerospace Engineering, Minor in Physics

RESEARCH FOCUS

I develop verifiable-safe motion planners and controllers for robotic systems with minimal onboard capabilities to address real-world challenges. I utilize insights from diverse fields such as control theory, collective intelligence, formal methods, sensor networks, and optimization.

Research Interests: Motion Planning, Control for Autonomy, Autonomous Vehicles, Manipulation Robotic Platforms: Mobile manipulator Stretch Robot, Crazyflie UAV, and Mobile robot iRobot Create Programming Languages: C++, Python, MATLAB, C#

Tools: Unity Game engine, Robot Operating System (ROS), ANSYS, SolidWorks

PEER-REVIEWED PUBLICATIONS

- 10. Marcus Greiff, Stefano Di Cairano, **Himani Sinhmar** Motion Planning and Control with Multi-Stage Construction of Invariant Sets, US Patent, Pending, Filed March 2024
- 9. **Himani Sinhmar**, Hadas Kress-Gazit, *Multi-Source Encapsulation With Guaranteed Convergence Using Minimalist Robots*, under review in Distributed Autonomous Robotic Systems (DARS) 2024
- 8. **Himani Sinhmar**, Hadas Kress-Gazit, Decentralized Control of Minimalistic Robotic Swarms For Guaranteed Encapsulation Behavior, [Paper] International Conference on Intelligent Robots and Systems (IROS) 2022
- 7. **Himani Sinhmar**, Hadas Kress-Gazit, Guaranteed Encapsulation of Targets with Unknown Motion by a Minimalist Robotic Swarm, [Paper] Transactions on Robotics (T-RO) 2023
- 6. **Himani Sinhmar**, Marcus Greiff, Stefano Di Cairano *Practical and Safe Navigation Function Based Motion Planning of UAVs*, Aceppted in International Conference on Robotics and Automation (ICRA'24)
- Marcus Greiff, Himani Sinhmar, Avishai Weiss, Karl Berntorp, Stefano Di Cairano Graph-Based Invariant Set Planning for Quadrotors, under review in Transactions on Control Systems Technology (TCST) 2024
- 4. Qingkun Liu*, Wei Wang*, Himani Simhmar, Itay Griniasty, Jason Z. Kim, Jacob T. Pelster, Parag Chaudhari, Michael F. Reynolds, Michael C. Cao, David A. Muller, Alyssa B. Apsel, Nicholas L. Abbott, Hadas Kress-Gazit, Paul. L. McEuen, Itai Cohen Microscopic, continuum, compliant, and electronically configurable metasheet robots, in Revision Nature Materials, 2024
- 3. Pallavi Sinha, Srikant Sukumar, **Himani Sinhmar**, Consensus of networked double integrator systems under sensor bias, [Paper] International Journal of Adaptive Control and Signal Processing 2022
- 2. **Himani Sinhmar**, Srikant Sukumar, Distributed model independent algorithm for spacecraft synchronization under relative measurement bias [Paper], 5th CEAS Conference on Guidance, Navigation and Control 2019

1. **Himani Sinhmar**, Vinod Kumar, Relative Autonomous Navigation Without Communication Between Spacecraft Using Line of Sight Measurements [Paper] IEEE/CSAA Guidance, Navigation and Control Conference August 2018

INVITED TALKS

- Invited talk on "Control with Guarantees for Minimalist Multi-Robotic Systems" CSAIL MIT, Jan'24
- Invited talk on "Control with Guarantees for Minimalist Multi-Robotic Systems" The Robotic Institute CMU, Jan'24
- Invited talk on "Control with Guarantees for Minimalist Multi-Robotic Systems" GRASP Lab University of Pennsylvania, Feb'24
- Invited talk on "Control with Guarantees for Minimalist Multi-Robotic Systems" Brown University, Feb'24
- Invited talk on "Provably Correct Controllers for Minimalist Robotic Swarm" Collective Intelligence Lab Cornell University, Jan'23
- Guest Lecture on "Building Micro Robots for Encapsulating Biological Systems" Introduction to Computational Science and Engineering (ENGRI 1510) Cornell University, May'22

RESPONSIBILITIES

- Reviewer for IEEE Transactions on Robotics and IEEE Transactions on Automatic Control
- Session Chair for: Swarm Robotics IROS 2022, Navigation Technology IEEE/CSAA GNC 2018
- Teaching Assistant: Autonomous Mobile Robots, Spaceflight Mechanics, Dynamics and Control
- Graduate Resident Fellow at Willam T. Keeton House, Cornell University
- Chief Editor for department newsletter Lift-Off

(2016-17)

• Co-organizer for the International conference on Next Generation Skills Development and Challenges in Aeronautical and Aerospace Industry with Aeronautical Society of India

AWARDS

- Awarded the Institute Undergraduate Research Award at IIT Bombay
- Recipient of INSPIRE scholarship for being in the top 1% in Senior Secondary Examination

RESEARCH EXPERIENCE

Practical and Safe Motion Planning of UAVs

(Summer'23)

Research Intern with Dr. Marcus Greiff, Mitsubishi Electric Research Labs (MERL)

- Developed a reference governor-based motion planning framework by introducing a refined practical version of artificial potential functions for non-convex free spaces
- Demonstrated certifiable-safe real-time operation of a Crazyflie UAV, in an environment cluttered with polyhedral obstacles and significant input disturbances

Hardware Algorithm Co-Design for a Morphing Soft Robot

(Fall'19 - Fall'21)

Advisor Prof. Hadas Kress-Gazit, Cornell University

Created a physics-based simulator using C# scripts and Unity game engine for control synthesis of optimal gaits for micrometer-sized sheet robots (MetaBots) that could form 3D surfaces from 2D actuation patterns, cycle among different shapes, and locomote

Decentralized Control for a Minimalistic Robotic Swarm

(Spring'21 - present)

Project with Prof. Hadas Kress-Gazit, Cornell University

 Designed provably correct decentralized control algorithms ensuring complex desired swarm behavior for robots devoid of memory and localization abilities

Cooperative Control Under Bias in Measurements

(Summer'18 - Summer'19)

Thesis with Prof. Srikant Sukumar, IIT Bombay, Received Institute Undergraduate Research Award

• Created an adaptive control law, utilizing collective initial excitation-based results and Lyapunov stability theory to achieve exponential consensus and accurate bias estimation for bipartite network graphs

Learning for Task Allocation and Motion Planning

(Spring'23)

Project with Prof. Sanjiban Choudhury, Cornell University

- Developed automated task allocation and task execution using **imitation learning** to optimize resource utilization and cost minimization for a heterogeneous multi-robot team
- Demonstrated the effectiveness of **DAgger and Q-learning policies** in maximizing the collection of objects in maze scenarios with static obstacles and diverse agent capabilities
- Created a dynamic learning environment by generating 10,000 random complex maze instances

Motion Planning, Localization, and Mapping for iRobot Create [github]

(Spring'20)

Project with Prof. Hadas Kress-Gazit, Cornell University

• Implemented **SLAM** and motion planning algorithms, including **sampling-based methods**, roadmaps, and potential functions, alongside **EKF and particle filters** for state estimation, to enable goal navigation and collision avoidance on the iRobot Create platform using LiDAR and RGB-D data

Task and Motion Planner for Robot Manipulation [github]

(Spring'22)

Project with Prof. Tapomayukh Bhattacharjee, Cornell University

- Developed a reactive planner that automatically generates adaptable, physically feasible motion plans for diverse tasks given high-level task specifications and object affordances
- Implemented the planner on Stretch Robot for a series of reactive manipulation tasks

IMU Alignment of a Store Dropped from Aircraft

(Summer'18)

Research Internship with Dr. Aditya Paranjape, Imperial College London

- Engineered an in-flight Inertial Measurement Unit (IMU) transfer-alignment algorithm to facilitate accurate position and attitude estimation for dropped payloads across all flight phases
- Implemented sensor fusion and state estimation methodologies, utilizing a fifteen-state Kalman filter for data integration and error estimation within the INS/GPS integration framework

Autonomous Navigation for Spacecraft Rendezvous

(Fall'17)

Research Co-op with Control Dynamics & Simulations Group, ISRO

• Developed an algorithm for autonomous spacecraft navigation, using Line of Sight measurements (LOS) to estimate relative position, attitude, and angular rates, offering a **robust alternative** to traditional gyro-based methods and mitigating errors caused by gyro data loss or communication delays

Pratham - IIT Bombay Student Satellite Team

(Fall'14 - Summer'15)

Successfully launched on 26 th September 2016

- Assisted in modeling the satellite body, panels, and other onboard components in SolidWorks
- Performed structural and thermal simulations of the satellite in ANSYS along with the designing, modeling, and characterization of Cross Yagi antennas