Aqueous XO₄³⁻ ions form a precipitate with aqueous silver ions, Ag⁺. Write a 1. (a) balanced equation for the reaction, including state symbols. $3A_{3}^{+} + XQ_{4}^{2} \longrightarrow A_{3} \times O_{4}$ (s) When 41.18 cm³ of a solution of aqueous silver ions with a concentration of 0.2040 mol dm⁻³ is added to a solution of XO₄³⁻ ions, 1.172 g of the precipitate is formed. Calculate the amount (in moles) of Ag⁺ ions used in the reaction. NA3+ = 0.041 18 x 0.2040 = 8.4 × 10-3 mol Calculate the amount (in moles) of the precipitate formed. MAJ3XQ = MAST = 2.8 ~ 10-5 ml Calculate the molar mass of the precipitate. $M = \frac{|\mathcal{X}|^2}{|\mathcal{Y}|^{3/2}} = 418.69 \text{ g/m}$ (iv) Determine the relative atomic mass of X and identify the element. X=M-3May-4M0= 3096 =31 A solution of hydrochloric acid has a concentration of 0.10 mol dm⁻³ and a pH 2. (a) value of 1. The solution is diluted by a factor of 100. Determine the concentration of the acid and the pH value in the diluted solution. [Ha] = asol md/2 (ii) Explain why 0.10 mol dm⁻³ ethanoic acid solution and the diluted solution in (a) (i) have similar [H⁺] values. Because CHIESH Solution has don tonized CH2 COO- and H' more solone exist as molecule.

	(b)	Suggest one method, other than measuring pH, which could be used to distinguish between solutions of a strong acid and a weak acid of the same concentration. State the expected results.
		Putting Cass, in the Two solutions the one react
		faster is the strong and
3.	(i)	Calcium carbonate is added to separate solutions of hydrochloric acid and ethanoic acid of the same concentration. State one similarity and one difference in the observations you could make.
		O The final amount of CO2 formed at last are
		the same.
		@ All read with Califa of a higher speed
		compared to Chast
	(ii)	Write an equation for the reaction between hydrochloric acid and calcium carbonate.
		2H+ + CO22 -> H20 + CO2
	(iii)	Determine the volume of 1.50 mol dm ⁻³ hydrochloric acid that would react with exactly 1.25 g of calcium carbonate.
		Macoz = 40+12+3×16=100
		1. Mcaco = Mcaco = 1,25 = 0,0125 Mal
		2H++ CO22- > the + CO2
		$N_{H}t = 2haco = 0.05 mc$ $V = \frac{hHt}{cH^{2}} = \frac{0.015}{6.5} = 0.016/L = 16.7 cm^{2}$
	(iv)	Calculate the volume of carbon dioxide, measured at 273 K and 1.01×10^5 Pa, which would be produced when 1.25 g of calcium carbonate reacts completely with the hydrochloric acid.
		Noor= Ncaco3 = 00125 ml
		Vcol= 0.012 × 27 = 0.5675 L.

4. The pH values of solutions of three organic acids of the same concentration were measured.	
acid X $pH = 5$ acid Y $pH = 2$ acid Z $pH = 3$	
(i) Identify which solution is the least acidic.	
(i) acid ×	(1)
(ii) Deduce how the [H⁺] values compare in solutions of acids Y and Z.	
	(2)
(1) THI in acid & 3 to times of THII m	Z
(iii) Arrange the solutions of the three acids in decreasing order of electrical conductivity, starting with the greatest conductivity, giving a reason for your choice.	(2)
(ini) Y>Z>X	(-)
then pH is lover, more free ions money and greater conductivity.	