Practice Problems for Quiz 5 Math 2000A

Quiz #5 will take place in class on Thursday, October 9th. (This is the last quiz before the midterm!)

- 1. Determine the negations of the definitions for the union, intersection, and difference of sets, in order to complete the following sentences:
 - (a) $x \notin A \cup B$ if and only if ...
 - (b) $x \notin A \cap B$ if and only if ...
 - (c) $x \notin A \setminus B$ if and only if ...
- 2. Let P, Q, R and S be subsets of some universal set U. Assume that $(P \setminus Q) \subseteq (R \cap S)$.
 - (a) Complete the following sentence: For all $x \in U$, if $x \in (P \setminus Q)$, then ...
 - (b) Write a useful negation of the sentence in part (a).
 - (c) Write the contrapositive of the sentence in part (a).
- 3. Let $A = \{x \in \mathbb{R} : x^2 < 4\}$ and $B = \{x \in \mathbb{R} : x < 2\}$.
 - (a) Is $A \subseteq B$? Justify your conclusion with a suitable proof or counterexample.
 - (b) Is $B \subseteq A$? Justify your conclusion with a suitable proof or counterexample.
- 4. Prove the following proposition: For all subsets A and B of some universal set U, $A \subseteq B$, if and only if $B^c \subseteq A^c$, where A^c , B^c denote the complements of A and B, respectively.
- 5. Let A, B, C, and D be subsets of some universal set U. For each of the following propositions, either prove that it is true, or show that it is false by giving a counterexample:
 - (a) If $A \subseteq B$ and $C \subseteq D$, and A and C are disjoint, then B and D are disjoint.
 - (b) If $A \subseteq B$ and $C \subseteq D$, and B and D are disjoint, then A and C are disjoint.

(Recall that two sets U and V are disjoint if $U \cap V = \emptyset$.)

- 6. Determine whether the following biconditional statements are true or false. If a statement is found to be false, indicate whether one direction or the other (either the "if" part, or the "only if" part) is true.
 - (a) For all subsets A and B of some universal set $U, A \subseteq B$ if and only if $A \cap B^c = \emptyset$.

- (b) For all subsets A and B of some universal set $U, A \subseteq B$ if and only if $A \cup B = B$.
- (c) For all subsets A, B, C of some universal set $U, A \subseteq B \cup C$ if and only if $A \subseteq B$ or $A \subseteq C$.
- 7. Prove the following set equalities:

$$A \setminus \emptyset = A \quad (A^c)^c = A \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \quad (A \cap B)^c = A^c \cup B^c$$

- 8. Prove or disprove (via counterexample) the following set equalities:
 - (a) $A \setminus (A \cap B^c) = A \cap B$
 - (b) $(A^c \cup B)^c \cap A = A \setminus B$
 - (c) $(A \cup B) \setminus A = B \setminus A$
 - (d) $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$
- 9. For each natural number n, let $A_n = \{n, n+1, n+2, n+3\}$. Determine the elements of the following sets:

$$\bigcap_{j=1}^{3} A_j \quad \bigcup_{k=3}^{7} A_k \quad A_9 \cap \left(\bigcup_{n=3}^{7} A_n\right) \quad \bigcup_{i=3}^{7} (A_9 \cap A_i)$$

- 10. Let I be a nonempty indexing set, and let $A = \{A_{\beta} : \beta \in I\}$ be an indexed family of sets.
 - (a) Prove that for each $\beta \in I$, $A_{\beta} \subseteq \bigcup_{\alpha \in I} A_{\alpha}$.
 - (b) Prove that $\left(\bigcup_{\gamma \in I} A_{\gamma}\right)^{c} = \bigcap_{\gamma \in I} A_{\gamma}^{c}$.
 - (c) Prove that for any set $B, B \cup \left(\bigcap_{\beta \in I} A_{\beta}\right) = \bigcap_{\beta \in I} (B \cup A_{\beta}).$