Course Code: 22UPCSC1E19 / 22UPCSC2E19 Credits: 4

Computer Vision

Course Objectives:

- To get understanding about Computer vision techniques behind a wide variety of real- world applications.
- To get familiar with various Computer Vision fundamental algorithms and how to implement and apply.
- To get an idea of how to build a computer vision application with Python language.
- To understand various machine learning techniques that are used in computer vision tasks.
- To incorporate machine learning techniques with computer vision systems.

Unit-I

Basic Image Handling and Processing: PIL – the Python Imaging Library-Matplotlib-NumPy-SciPy-Advanced example: Image de-noising. **Local Image Descriptors:** Harris corner detector-SIFT - Scale-Invariant Feature Transform-Matching Geotagged Images.

Unit-II

Image to Image Mappings: Homographies-Warping images-Creating Panoramas. Camera Models and Augmented Reality: The Pin-hole Camera Model-Camera Calibration-Pose Estimation from Planes and Markers-Augmented Reality.

Unit-III

Multiple View Geometry: Epipolar Geometry-Computing with Cameras and 3D Structure-Multiple View Reconstruction-Stereo Images. **Clustering Images:** K-means Clustering-Hierarchical Clustering-Spectral Clustering.

Unit-IV

Searching Images: Content based Image Retrieval-Visual Words-Indexing Images- Searching the Database for Images-Ranking Results using Geometry-Building Demos and Web Applications. **Classifying Image Content:** K-Nearest Neighbors-Bayes Classifier-Support Vector Machines-Optical Character Recognition.

Unit-V

Image Segmentation: Graph Cuts-Segmentation using Clustering-Variational Methods. **OpenCV:** Python Interface-OpenCV Basics-Processing Video-Tracking.

Course Outcome:

On the successful completion of the course, students will be able to,

CO1	To understand and recall computer vision and its application	
	areas	
CO2	To develop build a computer vision system	
CO3	To apply and analyze a design range of algorithms for image	
COS	processing and computer vision	K1-K6
CO4	To develop incorporate machine learning techniques with	
C04	computer vision system	
CO5	To apply and analyze image segmentation and image registration	

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	L	М	L	L	L	М	М	М	S	S	L
CO2	S	М	L	М	М	L	S	L	S	L	S	L
CO3	S	S	S	М	М	L	М	L	М	L	М	L
CO4	S	S	S	М	М	L	М	L	М	L	S	L
CO5	S	S	S	М	М	L	S	L	S	L	S	L

L - Low, M- Medium, S - Strong

Course Code: 22UPCSC1E20 / 22UPCSC2E20 Credits: 2

Computer Vision Lab

Course Objectives:

- To get an idea of how to build a computer vision application with Python language.
- To learn the basic image handling and processing
- To get familiar with various Computer Vision fundamental algorithms and how to implement and apply.
- To get an idea of how to implement the image transforms.
- To understand various image segmentation algorithms.

Implement the following problems using Python with OpenCV

- 1. Image Loading, Exploring, and displaying an Image.
- 2. Access and Manipulate of Image Pixels.
- 3. Image Transformations.
 - i) Resizing
 - ii) Rotation
- 4. Addition operation of Two Images.
- 5. Image filtering operations
 - i) Mean Filtering
 - ii) Gaussian Filtering
- 6. Image Binarization Using Simple Thresholding method.
- 7. Edge Detection operation using Sobel and Scharr Gradients.
- 8. Find Grayscale and RGB Histograms of an Image.
- 9. Segment an Image using K-means Clustering algorithm.
- 10. Write a program to classify an Image using KNN Classification algorithm.

Course Outcome:

On the successful completion of the course, students will be able to,

CO1	To develop and implement the image loading and exploring	
CO2	To Evaluate the image transforms	
CO3	To apply and analyze for image processing denoising algorithms	K1-K6
CO4	To design and develop the Image Segmentation using Edge	
CO5	To apply and analyze image clustering and classification algorithms	

K1- Remember, K2 - Understand, K3 - Apply, K4 - Analyze, K5 - Evaluate, K6 - Create

Mapping with Programme Outcomes:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	S	L	М	اـ	L	اـ	М	М	М	S	S	L
CO2	S	М	٦	М	М	٦	S	L	S	L	S	L
CO3	S	S	S	М	М	L	М	L	М	L	М	L
CO4	S	S	S	М	М	L	М	L	М	L	S	L
CO5	S	S	S	М	М	L	S	L	S	L	S	L

L - Low, M- Medium, S - Strong