Raport - Ćwiczenie nr 2

Grzegorz Janysek

12 kwietnia 2022

1

Zmontowano układ różniczkujący, podano na jego wejście napięcia sinusoidalne w szerokim zakresie częstotliwości. Mierzono amplitudę wyjściową oraz kąt przesunięcia fazowego.

$$C = 1.67 \,\mathrm{nF} \tag{1}$$

$$R = 1.98 \,\mathrm{k}\Omega \tag{2}$$

$$\tau = RC = 3.3066 \cdot 10^{-6} \,\mathrm{s} \tag{3}$$

$$f_0 = \frac{1}{2\pi \tau} = \frac{1}{2\pi RC} = 48.135 \text{ kHz}$$
 (4)

Rysunek 1: Schemat układu różniczkującego

f [Hz]	ϕ [deg]	U_{we} [V]	U_{wy} [V]
1k	88.4	9.81	144m
2k	85.4	9.80	292m
5k	84.2	9.80	722m
10k	81.0	9.80	1.42
20k	70.9	9.80	2.72
50k	48.9	9.58	5.52
100k	30.3	9.48	7.48
200k	13.1	9.47	8.37
500k	6.8	9.51	8.26
1M	2.7	9.31	8.39

Tabela 1: Zmierzone napięcia wejściowego, wyjściowego oraz kąta przesunięcia fazowego dla zadanych częstotliwości

Rysunek 2: Odpowiedź układu w funkcji częstotliwości

Rysunek 3: Przesunięcie fazowe w funkcji częstotliwości

Sprawdzono odpowiedź układu różniczkującego na falę prostokątną o okresie T mniejszym, porównywalnym i większym od stałej czasowej. Zaobserwowano odpowiedź układu sygnał trójkątny.

Rysunek 4: Obserwacja odpowiedzi układu na falę prostokątną o $f=200\mathrm{kHz}$

Rysunek 5: Obserwacja odpowiedzi układu na falę prostokątną o $f=500 \mathrm{kHz}$

Rysunek 6: Obserwacja odpowiedzi układu na falę trójkątną o $f=300 \mathrm{kHz}$

Skonstruowano układ całkujący. Zmierzono następnie jego charakterystykę amplitudową i fazową. Z pomiarów wyznaczono górną częstotliwość graniczną i porównano ją z wartością teoretyczną. Zaobserwowano następnie odpowiedź układu na falę prostokątną.

$$C = 1.67 \,\mathrm{nF} \tag{5}$$

$$R = 1.98 \,\mathrm{k}\Omega \tag{6}$$

$$\tau = RC = 3.3066 \cdot 10^{-6} \,\mathrm{s} \tag{7}$$

$$f_0 = \frac{1}{2\pi \tau} = \frac{1}{2\pi RC} = 48.135 \text{ kHz}$$
 (8)

Rysunek 7: Schemat układu różniczkującego

f [Hz]	ϕ [deg]	U_{we} [V]	U_{wy} [V]
1k	-0.9	9.80	9.80
2k	-2.9	9.80	9.80
5k	-5.4	9.80	9.79
		0.00	
10k	-8.2	9.80	9.64
20k	-14.7	9.80	9.20
50k	-42.8	9.68	7.63
100k	-58.0	9.52	5.02
200k	-72.4	9.41	2.85
500k	-81.7	9.44	1.21
1M	-89.3	9.33	0.59

Tabela 2: Zmierzone napięcia wejściowego, wyjściowego oraz kąta przesunięcia fazowego dla zadanych częstotliwości

Rysunek 8: Odpowiedź układu w funkcji częstotliwości

Rysunek 9: Przesunięcie fazowe w funkcji częstotliwości

Rysunek 10: Obserwacja odpowiedzi układu na falę prostokątną o $f=20\mathrm{kHz}$

Rysunek 11: Obserwacja odpowiedzi układu na falę prostokątną o $f = 50 \mathrm{kHz}$

4

Zbudowano czwórnik pokazany na Rys. 9. Zmierzono jego charakterystykę amplitudową i fazową dla sygnałów sinusoidalnych oraz Wyznaczono wartości częstotliwości rezonansowej i porównano z wartością teoretyczną.

$$R = 47\,\Omega\tag{9}$$

$$L = 92.9 \,\mathrm{mH} \tag{10}$$

$$C = 1.67 \,\mathrm{nF} \tag{11}$$

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 12.778 \,\mathrm{kHz}$$
 (12)

Rysunek 12: Schemat czwórnika

f [Hz]	ϕ [deg]	U_{we} [V]	U_{wy} [V]
10k	-94.0	9.79	62m
11k	-89.8	9.80	82m
12k	-85.3	9.79	124m
13k	-80,8	9.79	210m
13.5k	-77.7	9.70	296m
14.0k	-53,0	9.41	578m
14.2k	-30.1	8.81	971m
14.385k	-0.9	8.33	1.6
14.6k	20.1	8.52	992m
14.8k	42.7	8.91	803m
15.0k	67.3	9.44	596m
15.5k	77.4	9.67	391m
16k	80.5	9.67	302m
17k	83.1	9.80	163m
18k	86.0	9.80	116m
19k	86,1	9.79	92m
20k	90,8	9.79	76m

Tabela 3: Zmierzone napięcia wejściowego, wyjściowego oraz kąta przesunięcia fazowego dla zadanych częstotliwości

Rysunek 13: Odpowiedź układu w funkcji częstotliwości

Rysunek 14: Przesunięcie fazowe w funkcji częstotliwości

Podano na linię długą falę prostokątną o częstotliwości 1Mhz i przy braku połączenia drugiego końca lini $(R \approx \infty)$ zaobserwowano nałożenie się fali biegnącej i fali odbitej. Pomiar powtórzono dla lini zwartej $R \approx 0$ oraz dla R dopasowanego tak aby uzyskać możliwie najmniejsze odbicia. Zmierzono również opóźnienie czasowe powstałe na skutek różnego czasu propagacji sygnału.

Znaleziona impedancja charakterystyczna $Z=57.3\Omega$, co odpowiada założeniu prawidłowo zwartej linii tj. impedancja źródłowa i obciążenia są sobie równe, (znamionowa impedancja wyjściowa generatora to 50Ω). Długość linii długiej l=16.3m co dla zmierzonego czasu propagacji t=72ns daje $v=226.4\cdot 10^6\frac{m}{s}=0.755c$, typowy czas to $\sim 5\frac{\rm ns}{\rm m}$ co dla badanej linii daje ~ 81.5 ns, wartość zbliżoną do zmierzonej.

Rysunek 15: Schemat układu pomiarowego

Rysunek 16: Pomiar odbicia dla $R \approx \infty$

Rysunek 17: Pomiar odbicia dla $R\approx 0$

Rysunek 18: Pomiar odbicia dla $R = 57.3\Omega$