Package 'SIMICO'

November 26, 2022

Title Set-Based Inference for Multiple Interval-Censored Outcomes

Type Package

Version 0.2.0
Description
Contains tests for association between a set of genetic variants and multiple correlated outcomes that are interval censored. Interval-censored data arises when the exact time of the onset of an outcome of interest is unknown but known to fall between two time points.
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.1
Imports bindata, fastGHQuad, CompQuadForm, stats, ICSKAT
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Jaihee Choi [aut, cre], Ryan Sun [aut]
Maintainer Jaihee Choi <jaiheechoi01@gmail.com></jaiheechoi01@gmail.com>
Repository CRAN
Date/Publication 2022-11-25 23:10:02 UTC
R topics documented:
fd_term gammasigma gammatheta gammatheta_off gamma_fd gamma_off gamma_on get_A Get_CausalSNPs_bynum

2 fd_term

	haz_left		 	 	. 10
	haz_right		 	 	. 10
	sd_off		 	 	. 11
	sd_on		 	 	. 12
	simico_fit_null		 	 	. 12
	simico_gen_dat		 	 	. 14
	simico_out		 	 	. 16
	sim_gmat		 	 	. 18
	ss_fd		 	 	. 19
	ss_sd		 	 	. 20
	st_off		 	 	. 21
	surv_diff				
	surv_left		 	 	. 22
	surv_right				
	without_one_phen .		 	 	. 23
	without_two_phen		 	 	. 24
Index					25
fd_te	erm	d/d_theta_l			

Description

Calculate the first derivative of the theta terms for outcome 1.

Usage

```
fd_term(1, temp_beta, phen,d, apply_diffs,
    A_i, no_l_all,HL_array, HR_array)
```

Arguments

1	Outcome of interest.
temp_beta	Vector of fitted coefficients.
phen	list containing the covariate design matrices.
d	Number of quadrature nodes.
apply_diffs	Matrix containing the differences between survival functions of the left and right time intervals.
A_i	Product of apply_diffs across all outcomes \boldsymbol{k} summed over all quadrature nodes $\boldsymbol{d}.$
no_l_all	n x $(k$ - 1) matrix containing the product of apply_diffs across all outcomes k excluding the current outcome l.
HL_array	n x k matrix containing all the hazard values for the left times.
HR_array	n x k matrix containing all the hazard values for the right times.

gammasigma 3

Value

The output is a 1 x (p + 2) vector of the first derivative terms for outcome 1.

gammasigma	d^2/d_gamma_ldsigma^2	

Description

Calculates the Information matrix term of I_eta gamma for one outcome of interest 1.

Usage

```
gammasigma(
    1, HL_array, HR_array, tpos_all, obs_all,
    apply_diffs, temp_beta, A_i, xDats, no_l_all,
    no_two_all, gMat, a1, a2, k, d)
```

Arguments

1	Index of first outcome of interest.
HL_array	n x K matrix containing all the hazard values for the left times.
HR_array	n x K matrix containing all the hazard values for the right times.
tpos_all	n x k matrix containing a indictor for whether that time is left-censored or not.
obs_all	n x k matrix containing a indictor for whether that time is right-censored or not.
apply_diffs	Matrix containing the differences between survival functions of the left and right time intervals.
temp_beta	vector of fitted coefficients.
A_i	Product of apply_diffs across all outcomes K summed over all quadrature nodes D.
xDats	List of design matrices.
no_l_all	n x $(k-1)$ matrix containing the product of apply_diffs across all outcomes K excluding the current outcome l.
no_two_all	n x $(k-2)$ matrix containing the product of apply_diffs across all outcomes k excluding the outcomes l and m .
gMat	n x q matrix of genetic information.
a1	First shape parameter of beta parameter.
a2	Second shape parameter of beta parameter.
k	Total number of outcomes.
d	Number of quadrature nodes.

Value

The output is a matrix containing the component of the information matrix of the gamma and sigma^2 parameters for outcome 1.

4 gammatheta

Description

Calculates the Information matrix term of I_eta gamma for outcome k.

Usage

```
gammatheta(1, HL_array, HR_array, tpos_all, obs_all, apply_diffs,
    temp_beta, A_i, xDats, no_l_all, gMat, a1, a2, d)
```

Arguments

1	Index of first outcome of interest.
HL_array	n x k matrix containing all the hazard values for the left times.
HR_array	n x k matrix containing all the hazard values for the right times.
tpos_all	n x k matrix containing a indictor for whether that time is left-censored or not.
obs_all	$n \ x \ k$ matrix containing a indictor for whether that time is right-censored or not.
apply_diffs	Matrix containing the differences between survival functions of the left and right time intervals.
temp_beta	vector of fitted coefficients.
A_i	Product of apply_diffs across all outcomes k summed over all quadrature nodes d.
xDats	List of design matrices for all outcomes.
no_l_all	n x (k - 1) matrix containing the product of apply_diffs across all outcomes k excluding the current outcome l.
gMat	n x q matrix of genetic information.
a1	First shape parameter of beta parameter.
a2	Second shape parameter of beta parameter.
d	Number of quadrature nodes.

Value

The output is a matrix containing the component of the information matrix of the gamma and theta parameters for outcome 1.

gammatheta_off 5

Description

Calculates the Information matrix term of I_eta gamma for outcomes l and m

Usage

```
\label{eq:continuous_matheta_off} $$gammatheta_off(1,m, HL_array, HR_array, xAll, apply_diffs, temp_beta, A_i, no_l_all, no_two_all, gMat, a1, a2, k, d)
```

Arguments

1	Index of first outcome of interest.
m	Index of second outcome of interest.
HL_array	n x k matrix containing all the hazard values for the left times.
HR_array	n x k matrix containing all the hazard values for the right times.
xAll	List of design matrices and censoring terms.
apply_diffs	Matrix containing the differences between survival functions of the left and right time intervals.
temp_beta	vector of fitted coefficients.
A_i	Product of apply_diffs across all outcomes K summed over all quadrature nodes d.
no_l_all	n x $(k-1)$ matrix containing the product of apply_diffs across all outcomes k excluding the current outcome 1.
no_two_all	n x $(k-2)$ matrix containing the product of apply_diffs across all outcomes k excluding the outcomes l and m .
gMat	n x q matrix of genetic information.
a1	First shape parameter of beta parameter.
a2	Second shape parameter of beta parameter.
k	Total number of outcomes.
d	Number of quadrature nodes.

Value

The output is a matrix containing the component of the information matrix of the gamma and theta parameters for outcomes l and m.

gamma_fd

Description

Calculates the gradient term for U_g for the score statistic.

Usage

```
gamma_fd(l, HL_array, HR_array, tpos_all, obs_all,
  temp_beta, A_i, no_l_all, gMat, a1, a2, d)
```

Arguments

1	Index of first outcome of interest.
HL_array	n x k matrix containing all the hazard values for the left times.
HR_array	n x k matrix containing all the hazard values for the right times.
tpos_all	$n \ x \ k$ matrix containing a indictor for whether that time is left-censored or not.
obs_all	$n \ x \ k$ matrix containing a indictor for whether that time is right-censored or not.
temp_beta	Vector of fitted coefficients.
A_i	Product of apply_diffs across all outcomes k summed over all quadrature nodes d.
no_l_all	n x $(K$ - 1) matrix containing the product of apply_diffs across all outcomes K excluding the current outcome l .
gMat	n x q matrix of genetic information.
a1	First shape parameter of beta parameter.
a2	Second shape parameter of beta parameter.
d	Number of quadrature nodes.

Value

The output is a vector containing the first derivative with respect to gamma.

gamma_off 7

gamma_off	d^2/d_gamma_ldgamma_m	
gaiiiiia_U11	a z/a_gamma_tagamma_m	

Description

Calculates the [off-diagonal] Information matrix term for I_gamma gamma with respect to outcome 1 and outcome m.

Usage

```
gamma_off(1, m, HL_array, HR_array,
  tpos_all, obs_all, temp_beta, A_i,
  no_l_all, no_two_all, gMat, a1, a2, k, d)
```

Arguments

1	Index of first outcome of interest.
m	Index of second outcome of interest.
HL_array	n x k matrix containing all the hazard values for the left times.
HR_array	n x k matrix containing all the hazard values for the right times.
tpos_all	n x k matrix containing a indictor for whether that time is left-censored or not.
obs_all	$n \times k$ matrix containing a indictor for whether that time is right-censored or not.
temp_beta	Vector of fitted coefficients.
A_i	Product of apply_diffs across all outcomes k summed over all quadrature nodes d.
no_l_all	n x $(k-1)$ matrix containing the product of apply_diffs across all outcomes k excluding the current outcome l .
no_two_all	n x $(k$ - 2) matrix containing the product of apply_diffs across all outcomes k excluding the outcomes l and m .
gMat	n x q matrix of genetic information.
a1	First shape parameter of beta parameter.
a2	Second shape parameter of beta parameter.
k	Total number of outcomes.
d	Number of quadrature nodes.

Value

The output is a matrix containing the component of the information matrix of the gamma parameter for outcomes 1 and m.

gamma_on

gamma_on	d^2/d_gamma_ldgamma_l	

Description

Calculates the [on-diagonal] Information matrix term for I_gamma gamma with respect to outcome 1.

Usage

```
gamma_on(l, HL_array, HR_array, tpos_all, obs_all,
    temp_beta, A_i, no_l_all, gMat, a1, a2, d)
```

Arguments

1	Index of first outcome of interest.
HL_array	n x k matrix containing all the hazard values for the left times.
HR_array	n x k matrix containing all the hazard values for the right times.
tpos_all	$n \ x \ k$ matrix containing a indictor for whether that time is left-censored or not.
obs_all	$n \ x \ k$ matrix containing a indictor for whether that time is right-censored or not.
temp_beta	Vector of fitted coefficients.
A_i	Product of apply_diffs across all outcomes k summed over all quadrature nodes d.
no_l_all	n x $(k-1)$ matrix containing the product of apply_diffs across all outcomes k excluding the current outcome l .
gMat	n x q matrix of genetic information.
a1	First shape parameter of beta parameter.
a2	Second shape parameter of beta parameter.
d	Number of quadrature nodes.

Value

The output is a matrix containing the component of the information matrix of the gamma parameter for outcome 1.

get_A 9

get_A	Get A vector
5C L_/\	Oct 11 vector

Description

Product of difference of survival terms of the left and right interval times, across all outcomes k, summed over all quadrature nodes d.

Usage

```
get_A(store, weights, d, n)
```

Arguments

store Matrix of difference of survival values of the left and right time intervals.

weights Gaussian quadrature weights.

d Total number of Gaussian quadrature nodes.

n Total number of observations.

Value

The output is a vector used to compute the derivative terms.

```
Get_CausalSNPs_bynum Get_CausalSNPs_bynum()
```

Description

Matrix of subsetted genetic information.

Usage

```
Get_CausalSNPs_bynum(gMat, num, Causal.MAF.Cutoff)
```

Arguments

gMat Matrix of SNPs.

num Number of causal variants.

Causal.MAF.Cutoff

Minor allele frequency value cutoff for causal SNPs.

Value

Output is a vector of indices to subset the full genetic matrix.

10 haz_right

haz_left	$H_{ik}(L_{ik})$	

Description

Calculates the hazard function of the left time interval for outcome 1.

Usage

```
haz_left(l, d, temp_beta, phen, r1, k)
```

Arguments

1	Outcome	of	interest.

d Total number of Gaussian quadrature nodes.

temp_beta vector of fitted coefficients.

phen list of data matrices containing both left and right information.

r1 Gaussian quadrature nodes. k Total number of outcomes.

Value

The output is a vector of the hazard values of the left times.

haz_right	$H_{-ik}(R_{-ik})$

Description

Calculates the hazard function of the right time interval for outcome 1.

Usage

```
haz_right(1, d, temp_beta, phen, r1, k)
```

Arguments

Ι	(C	outcome	ot	interest.

d Total number of Gaussian quadrature nodes.

temp_beta vector of fitted coefficients.

phen list of data matrices containing both left and right information.

r1 Gaussian quadrature nodes. k Total number of outcomes. sd_off 11

Value

The output is a vector of the hazard values of the right times.

sd_off	d^2/d_theta_kdsigma^2	

Description

Calculates the Information matrix term of I_theta sigma^2 for outcomes l and m.

Usage

```
sd_off(l, m, phen_l, phen_m, temp_beta, d, apply_diffs, A_i,
    HL_array, HR_array, no_l_all, no_two_all, tpos_all, obs_all, k)
```

Arguments

1	Index of first outcome of interest.
m	Index of second outcome of interest.
phen_l	List containing the left and right design matrices and interval times for outcome 1.
phen_m	List containing the left and right design matrices and interval times for outcome m.
temp_beta	vector of fitted coefficients.
d	Total number of quadrature nodes.
apply_diffs	Matrix containing the differences between survival functions of the left and right time intervals.
A_i	Product of apply_diffs across all outcomes k summed over all quadrature nodes d.
HL_array	n x k matrix containing all the hazard values for the left times.
HR_array	n x k matrix containing all the hazard values for the right times.
no_l_all	n x $(k-1)$ matrix containing the product of apply_diffs across all outcomes k excluding the current outcome l.
no_two_all	n x $(k-2)$ matrix containing the product of apply_diffs across all outcomes K excluding outcomes l and m.
tpos_all	n x k matrix containing a indictor for whether that time is left-censored or not.
obs_all	n x k matrix containing a indictor for whether that time is right-censored or not.
k	Total number of outcomes.

Value

The output is a matrix containing the component of the information matrix of the sigma and theta parameters.

simico_fit_null

sd_on	d^2/dsigma^2^2	

Description

Calculates the Information matrix term of I_sigma^2 sigma^2 for outcome l.

Usage

Arguments

1	Index of first outcome of interest.
k	Total number of outcomes.
temp_beta	vector of fitted coefficients.
phen	List containing the left and right design matrices and interval times for outcome 1.
d	Total number of quadrature nodes.
apply_diffs	Matrix containing the differences between survival functions of the left and right time intervals.
A_i	Product of apply_diffs across all outcomes K summed over all quadrature nodes D .
no_l_all	n x $(k-1)$ matrix containing the product of apply_diffs across all outcomes k excluding the current outcome l .
HL_array	n x k matrix containing all the hazard values for the left times.
HR_array	n x k matrix containing all the hazard values for the right times.

Value

The output is a single value for the second derivative with respect to sigma.

Description

Fit the null model via newton raphson for multiple outcomes interval-censored skat.

Usage

```
simico_fit_null(init_beta, epsilon, xDats, lt_all, rt_all, k, d)
```

simico_fit_null 13

Arguments

init_beta Starting values for NR.

epsilon Stopping criterion for NR.

xDats List of left and right design matrices.

lt_all n x k matrix of left times.

rt_all n x k matrix of right times.

k Total number of outcomes.

d Total number of quadrature nodes.

Value

beta_fit Vector of fitted coefficients.

iter Number of iterations needed for the Newton-Raphson to converge.

diff Difference between the current values of temp_beta and the previous iteration of temp_beta.

jmat Information matrix of the theta parameters.

grad Vector of the first derivaive of the theta parameters.

Examples

```
# Set number of outcomes
k = 2
# Set number of observations
n = 100
# Set number of covariates
p = 2
# Set number of SNPs
# Set number of causal SNPs
num = 5
# Set number of quadrature nodes
d = 100
# Variance of subject-specific random effect
tauSq = 1
# Define the effect sizes
effectSizes <- c(.03, .15)
# Set MAF cutoff for causal SNPs
Causal.MAF.Cutoff = 0.1
# the baseline cumulative hazard function
```

simico_gen_dat

```
bhFunInv <- function(x) {x}</pre>
set.seed(1)
# Generate covariate matrix
xMat <- cbind(rnorm(n), rbinom(n=n, size=1, prob=0.5))</pre>
# Generate genetic matrix
gMat <- matrix(data=rbinom(n=n*q, size=2, prob=0.1), nrow=n)</pre>
# Get indices to specific select causal variants
idx <- Get_CausalSNPs_bynum(gMat, num, Causal.MAF.Cutoff)</pre>
# Subset the gMat
gMatCausal <- gMat[,idx]</pre>
# Generate the multiple outcomes
exampleDat <- simico_gen_dat(bhFunInv = bhFunInv, obsTimes = 1:3,</pre>
                              windowHalf = 0.1, n, p, k, tauSq, gMatCausal,
                              xMat, effectSizes)
# Set the initial estimate values
init_beta <-c (rep(c(0, 0, 0, 1, 0), k), 1)
# Run the Newton-Raphson
nullFit <- simico_fit_null(init_beta = init_beta,</pre>
   epsilon = 10^-5, xDats = exampleDat$fullDat$xDats,
   lt_all = exampleDat$leftTimesMat,
   rt_all = exampleDat$rightTimesMat,
   k = k, d = d
```

simico_gen_dat

simico_gen_dat()

Description

Generate multiple interval-censored data under proportional hazards model.

Usage

```
simico_gen_dat(bhFunInv, obsTimes = 1:3, windowHalf = 0.1,
    n, p, k, tauSq, gMatCausal, xMat, effectSizes)
```

Arguments

bhFunInv The inverse of the baseline hazard function.

obsTimes Vector of the intended observation times.

simico_gen_dat 15

windowHalf The amount of time before or after the intended obsTimes that a visit might take

place.

n Total number of observations.p Total number of covariates.k Total number of outcomes.

tauSq Variance of the subject specific random effect.

gMatCausal Matrix of subsetted genetic information for only a select causal SNPs.

xMat Matrix of covariates.

effectSizes Vector of genetic effect sizes. Should be entered as a vector the same length as

the number of outcomes.

Value

exactTimesMat n x k matrix containing the simulated exact times that the event occurred.

leftTimesMat n x k matrix containing the left time interval that is observed. rightTimesMat n x k matrix containing the right time interval that is observed.

obsInd n x k matrix containing a indictor for whether that time is right-censored or not.

tposInd n x k matrix containing a indictor for whether that time is left-censored or not.

fullDat Data in complete form to enter into SIMICO functions.

Examples

```
# Set number of outcomes
k = 2

# Set number of observations
n = 100

# Set number of covariates
p = 2

# Set number of SNPs
q = 50

# Set number of causal SNPs
num = 5

# Set number of quadrature nodes
d = 100

# Variance of subject-specific random effect
tauSq = 1

# Define the effect sizes
effectSizes <- c(.03, .15)

# Set MAF cutoff for causal SNPs</pre>
```

simico_out

```
Causal.MAF.Cutoff = 0.1
# the baseline cumulative hazard function
bhFunInv <- function(x) \{x\}
set.seed(1)
# Generate covariate matrix
xMat <- cbind(rnorm(n), rbinom(n=n, size=1, prob=0.5))</pre>
# Generate genetic matrix
gMat <- matrix(data=rbinom(n=n*q, size=2, prob=0.1), nrow=n)</pre>
# Get indices to specific select causal variants
idx <- Get_CausalSNPs_bynum(gMat, num, Causal.MAF.Cutoff)</pre>
# Subset the gMat
gMatCausal <- gMat[,idx]</pre>
# Generate the multiple outcomes
exampleDat <- simico_gen_dat(bhFunInv = bhFunInv, obsTimes = 1:3,</pre>
                              windowHalf = 0.1, n, p, k, tauSq, gMatCausal,
                              xMat, effectSizes)
```

simico_out

Get P-Values

Description

Calculate test statistic and p-values for multiple outcome test and multiple burden test.

Usage

```
simico_out(nullFit, xDats, lt_all, rt_all, Itt, a1, a2, G, k, d)
```

Arguments

nullFit	Results of the Newton-Raphson: estimates of the beta coefficients.
xDats	List of design matrices.
lt_all	Matrix containing the generated left interval times.
rt_all	Matrix containing the generated right interval times.
Itt	I_theta theta - Information matrix of theta.
G	n x q matrix of genetic information.
a1	First shape parameter of beta parameter.
a2	Second shape parameter of beta parameter.
k	Total number of outcomes.
d	Number of quadrature nodes.

simico_out 17

Value

multQ	Score statistic for multiple outcome test.
multP	P-value for multiple outcome test.
burdQ	Score statistic for multiple burden test.
burdP	P-value for multiple burden test.

Examples

```
# Set number of outcomes
# Set number of observations
n = 100
# Set number of covariates
p = 2
# Set number of SNPs
q = 50
# Set number of causal SNPs
num = 5
# Set number of quadrature nodes
d = 100
# Variance of subject-specific random effect
tauSq = 1
# Define the effect sizes
effectSizes <- c(.03, .15)
# Set MAF cutoff for causal SNPs
Causal.MAF.Cutoff = 0.1
# the baseline cumulative hazard function
bhFunInv <- function(x) {x}</pre>
set.seed(1)
# Generate covariate matrix
xMat <- cbind(rnorm(n), rbinom(n=n, size=1, prob=0.5))</pre>
# Generate genetic matrix
gMat <- matrix(data=rbinom(n=n*q, size=2, prob=0.1), nrow=n)</pre>
# Get indices to specific select causal variants
idx <- Get_CausalSNPs_bynum(gMat, num, Causal.MAF.Cutoff)</pre>
# Subset the gMat
gMatCausal <- gMat[,idx]</pre>
```

sim_gmat

```
# Generate the multiple outcomes
exampleDat <- simico_gen_dat(bhFunInv = bhFunInv, obsTimes = 1:3,</pre>
                             windowHalf = 0.1, n, p, k, tauSq, gMatCausal,
                             xMat, effectSizes)
# Set the initial estimate values
init\_beta <-c (rep(c(0, 0, 0, 1, 0), k), 1)
# Run the newton-raphson
nullFit <- simico_fit_null(init_beta = init_beta,</pre>
  epsilon = 10^-5, xDats = exampleDat$fullDat$xDats,
  lt_all = exampleDat$leftTimesMat,
  rt_all = exampleDat$rightTimesMat,
  k = k, d = d
# Get the test statistics p-values
out <- simico_out(nullFit = nullFit$beta_fit,</pre>
  xDats = exampleDat$fullDat$xDats,
  lt_all = exampleDat$leftTimesMat,
  rt_all = exampleDat$rightTimesMat,
  Itt = nullFit$jmat, a1 = 1, a2 = 25,
  G = gMat, k = k, d = d
# Print results
# Score statistic
out$multQ
# P-values
out$multP
```

sim_gmat

Simulate genetic matrix.

Description

Simulates a n x q genetic matrix with the option to specify the common pairwise correlation.

Usage

```
sim_gmat(n,q,rho)
```

Arguments

q Total number of SNPs.

rho Common pairwise correlation parameter.

ss_fd 19

Value

The result of a n x q genetic matrix of q SNPs.

Examples

```
# Set sample size
n = 100

# Set number of SNPs
q = 5

# Set common pairwise correlation
rho = 0.1

# Simulate genetic matrix
gMat <- sim_gmat(n, q, rho)</pre>
```

 ss_fd

 d/d_sigma^2

Description

Calculates the first derivative term with respect to sigma^2.

Usage

```
ss_fd(l, phen, HL_array, HR_array, tpos_all, obs_all,
apply_diffs, temp_beta, A_i, no_l_all, k, d)
```

Arguments

1	Index of first outcome of interest.
phen	List containing all the left and right design matrices.
HL_array	n x k matrix containing all the hazard values for the left times.
HR_array	n x k matrix containing all the hazard values for the right times.
tpos_all	n x k matrix containing a indictor for whether that time is left-censored or not.
obs_all	n x k matrix containing a indictor for whether that time is right-censored or not.
apply_diffs	Matrix containing the differences between survival functions of the left and right time intervals.
temp_beta	vector of fitted coefficients.
A_i	Product of apply_diffs across all outcomes k summed over all quadrature nodes d.
no_l_all	n x $(k-1)$ matrix containing the product of apply_diffs across all outcomes k excluding the current outcome l.
k	Total number of outcomes.
d	Number of quadrature nodes.

20 ss_sd

Value

The output is a single value for the first derivative with respect to sigma.

ss_sd	d^2/d_sigma^2^2	

Description

Calculates the second derivative term with respect to sigma^2.

Usage

```
 ss\_sd(HL\_array,\ HR\_array,\ xAll,\ apply\_diffs,\ temp\_beta, \\ A\_i,\ no\_l\_all,\ no\_two\_all,\ k,\ d)
```

Arguments

HL_array	n x k matrix containing all the hazard values for the left times.	
HR_array	n x k matrix containing all the hazard values for the right times.	
xAll	List containing the left and right matrices and event times.	
apply_diffs	Matrix containing the differences between survival functions of the left and right time intervals.	
temp_beta	vector of fitted coefficients.	
A_i	Product of apply_diffs across all outcomes K summed over all quadrature nodes D.	
no_l_all	n x $(k$ - 1) matrix containing the product of apply_diffs across all outcomes k excluding the current outcome l .	
no_two_all	n x (k - 2) matrix containing the product of apply_diffs across all outcomes k excluding outcomes l and m.	
k	Total number of outcomes.	
d	Number of quadrature nodes.	

Value

The output is a single value for the second derivative with respect to sigma^2.

st_off 21

st_off	d^2/d_theta_ldsigma^2	

Description

Calculates the Information matrix term of I_eta theta for one outcome of interest l.

Usage

```
st_off(1, HL_array, HR_array, xAll, apply_diffs,
    temp_beta, A_i, no_l_all, no_two_all, k, d)
```

Arguments

1	Index of first outcome of interest.
HL_array	n x k matrix containing all the hazard values for the left times.
HR_array	n x k matrix containing all the hazard values for the right times.
xAll	List containing the left and right matrices and event times.
apply_diffs	Matrix containing the differences between survival functions of the left and right time intervals.
temp_beta	vector of fitted coefficients.
A_i	Product of apply_diffs across all outcomes K summed over all quadrature nodes D.
no_l_all	n x $(k-1)$ matrix containing the product of apply_diffs across all outcomes k excluding the current outcome l .
no_two_all	n x (k - 2) matrix containing the product of apply_diffs across all outcomes k excluding outcomes l and m .
k	Total number of outcomes.
d	Number of quadrature nodes.

Value

The output is a matrix containing the component of the information matrix of the theta eta parameters for outcome 1.

22 surv_left

surv_diff	$S_ik(L_ik) - S_ik(R_ik)$	

Description

Calculates the difference between the survival functions of the left and right time intervals for outcome k for quadrature node d.

Usage

```
surv_diff(1, d, temp_beta, phen, r1, k)
```

Arguments

1	Outcome	of	interest
1	Outcome	$\mathbf{o}_{\mathbf{I}}$	microst.

d Total number of Gaussian quadrature nodes.

temp_beta Vector of fitted coefficients.

phen List of data matrices containing both left and right information.

r1 Gaussian quadrature nodes.k Total number of outcomes.

Value

The output is a vector of the difference of the survival values of the left times and right times.

surv_left	$S_{ik}(L_{ik})$

Description

Calculates the survival function of the left time interval for outcome k for quadrature node d.

Usage

```
surv_left(1, d, temp_beta, phen, r1, k)
```

Arguments

d Total number of Gaussian quadrature nodes.

temp_beta Vector of fitted coefficients.

phen List of data matrices containing both left and right information.

r1 Gaussian quadrature nodes. k Total number of outcomes. surv_right 23

Value

The output is a vector of the survival values of the left times.

|--|

Description

Calculates the survival function of the right time interval for outcome k for quadrature node d.

Usage

```
surv_right(1, d, temp_beta, phen, r1, k)
```

Arguments

1 Outcome of interest.

d Total number of Gaussian quadrature nodes.

temp_beta Vector of fitted coefficients.

phen List of data matrices containing both left and right information.

r1 Gaussian quadrature nodes. k Total number of outcomes.

Value

The output is a vector of the survival values of the left times.

without_one_phen Survival Difference Product without Outcome l	
--	--

Description

Calculate the product of the difference between survival terms excluding that of the outcome of interest.

Usage

```
without_one_phen(1, k, store)
```

Arguments

1 Outcome of interest.

k Total number of outcomes.

store Array of difference between left and right survival values.

24 without_two_phen

Value

A n x (k-1) matrix where each column is the product of all the differences of left and right survival values across all outcomes excluding the column index outcome.

without_two_phen	Survival Difference Product without Outcomes l and m	

Description

Difference of survival functions multiplied across all outcomes excluding outcomes I and m.

Usage

```
without_two_phen(1, m, k, store, n, d)
```

Arguments

1	The first outcome of interest.
m	The second outcome of interest.
k	Total number of outcomes.
store	Array of difference between left and right survival values
n	Total number of observation.
d	Total number of quadrature nodes.

Value

A n x (k-2) matrix containing the product of all the differences of left and right survival values across all outcomes excluding outcomes l and m.

Index

```
fd\_term, 2
gamma_fd, 6
gamma\_off, 7
gamma_on, 8
gammasigma, 3
gammatheta, 4
gammatheta\_off, 5
get_A, 9
{\tt Get\_CausalSNPs\_bynum, 9}
haz_left, 10
haz\_right, 10
sd_off, 11
sd_on, 12
sim_gmat, 18
\verb|simico_fit_null|, \frac{12}{}
simico_gen_dat, 14
simico_out, 16
ss_fd, 19
ss_sd, 20
st_off, 21
surv\_diff, 22
surv_left, 22
\verb"surv_right", 23
without\_one\_phen, {\color{red}23}
without\_two\_phen, \textcolor{red}{24}
```