UCLA Math151A Fall 2021 Lecture 14 20211027

Cubic Splines: Properties and Facts

Introductory Example

A spline is a piecewise defined polynomial.

First let's look at an example of piecewise linear functions.

Example 14.1.
$$(1, f(1))$$
 piecewise linear function $L(x)$
$$L(x) = \begin{cases} \frac{f(2) - f(1)}{x_2 - x_1} (x - x_1) + f(x_1) & x \in [1, 2] \\ \dots & x \in [2, 3] \end{cases}$$
 (2, $f(2)$)

More points will lead to better approximation.

In general, piecewise linear splines L(x) are simple and powerful.

But, they are not smooth (or "regular"). I.e.,

$$L(x) \in C([a, b])$$
 but $L(x) \neq C^{1}([a, b])$.

Note that each piece is a line (y = mx + b). In particular, it has two degrees of freedom: slope m and b.

Cubic Splines Degrees of Freedom

Cubic splines have more degrees of freedom.

This also implies more regularity (better differentiability properties).

Recall the definition of cubic splines from last lecture:

Definition 13.1 (Cubic Spline Interpolant).

Given f defined on [a,b], $\{x_j\}_{j=0}^n \in [a,b]$ $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$. The **spline** is a function S(x) that satisfies:

- 1. On each sub-interval $[x_j, x_{j+1}], j = 0, ..., n-1, S(x)$ is a cubic polynomal: $S(x) = S_j(x) = a_j + b_j(x x_j) + c_j(x x_j)^2 + d_j(x x_j)^3$
- 2. S(x) interpolates f at each x_j . I.e., $S(x_j) = f(x_j)$.
- 3. Conituity: $S \in C([a, b])$.
- 4. Differentiability: $S \in C^2([a, b])$.

1. On each sub-interval $[x_j, x_{j+1}], j = 0, \ldots, n-1, S(x)$ is a cubic polynomal:

$$S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

- 2. S(x) interpolates f at each x_j . I.e., $S(x_j) = f(x_j)$.
- 3. Conituity: $S \in C([a, b])$. 4. Differentiability: $S \in C^2([a, b])$.

Theorem 14.1. $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$.

f(x) has a unique "natural" spline interpolant on [a,b] for the points $\{x_j\}_{j=0}^n$.

$$S''(a) = S''(b) = 0.$$

Proof. Totally we have 4n unknowns.

(1) Firstly, by property 1 and 2, we have

$$S_0(x_0) = a_0 = f(x_0)$$

$$S_1(x_1) = a_1 = f(x_1)$$

. . .

$$S_j(x_h) = a_j = f(x_j), \quad j = 0, 1, \dots, n-1$$
introduce notation $a_n := f(x_n)$

$$a_j = f(x_j), \quad j = 0, 1, 2, \dots, n$$

$$S_{n-1}(x_{n-1}) = a_{n-1} = f(x_{n-1})$$

1. On each sub-interval $[x_j, x_{j+1}], j = 0, \ldots, n-1, S(x)$ is a cubic polynomal:

$$S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

- 2. S(x) interpolates f at each x_i . I.e., $S(x_i) = f(x_i)$.
- 3. Conituity: $S \in C([a,b])$. 4. Differentiability: $S \in C^2([a,b])$.

Theorem 14.1. $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$.

f(x) has a unique "natural" spline interpolant on [a,b] for the points $\{x_j\}_{j=0}^n$.

(1)
$$S_{j}(x_{h}) = a_{j} = f(x_{j}), \quad j = 0, 1, \dots, n-1$$
 $a_{j} = f(x_{j}), \quad j = 0, 1, 2, \dots, n$
(2) Next, property 3 tells us that $h_{j} = x_{j+1} - x_{j}$
 $S_{0}(x_{1}) = S_{1}(x_{1})$ $A_{0} + b_{0}h_{0} + c_{0}h_{0}^{2} + d_{0}h_{0}^{3} = S_{0}(x_{1}) = a_{1}$
 $S_{n-2}(x_{n-1}) = S_{n-1}(x_{n-1})$ $A_{1} + b_{1}h_{1} + c_{1}h_{1}^{2} + d_{1}h_{1}^{3} = S_{1}(x_{2}) = a_{2}$
 $S_{n-1}(x_{n}) = f(x_{n}) =: a_{n}$ $a_{1} + b_{1}h_{1} + c_{1}h_{1}^{2} + d_{1}h_{1}^{3} = S_{1}(x_{2}) = a_{2}$
 $a_{1} + b_{1}h_{1} + c_{1}h_{1}^{2} + d_{1}h_{1}^{3} = S_{1}(x_{2}) = a_{2}$
 $a_{1} + b_{1}h_{1} + c_{1}h_{1}^{2} + d_{1}h_{1}^{3} = S_{1}(x_{2}) = a_{2}$

1. On each sub-interval
$$[x_j, x_{j+1}], j = 0, \ldots, n-1, S(x)$$
 is a cubic polynomal: $S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$
2. $S(x)$ interpolates f at each x_j . I.e., $S(x_j) = f(x_j)$.
3. Conituity: $S \in C([a, b])$. 4. Differentiability: $S \in C^2([a, b])$.

Theorem 14.1. $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$.

 $f(x)$ has a unique "natural" spline interpolant on $[a, b]$ for the points $\{x_j\}_{j=0}^n$.

 $a_{j-1} + b_{j-1}h_{j-1} + c_{j-1}h_{j-1}^2 + d_{j-1}h_{j-1}^3 = a_j, \quad j = 1, 2, \dots n$

(1)
$$S_j(x_h) = a_j = f(x_j), \quad j = 0, 1, \dots, n-1 | a_j = f(x_j), \quad j = 0, 1, 2, \dots, n$$

(2)
$$a_{j-1} + b_{j-1}h_{j-1} + c_{j-1}h_{j-1}^2 + d_{j-1}h_{j-1}^3 = a_j, \quad j = 1, 2, \dots n$$

(3) Similarly, property 4 on first derivative tells us that

$$S'_{0}(x_{1}) = S'_{1}(x_{1})$$

$$S'_{1}(x_{2}) = S'_{2}(x_{2})$$

$$\vdots$$

$$S'_{n-2}(x_{n-1}) = S'_{n-1}(x_{n-1})$$

$$S'_{n-1}(x_{n}) =: b_{n}$$

$$b_{0} + 2c_{0}h_{0} + 3d_{0}h_{0}^{2} = b_{1}$$

$$b_{1} + 2c_{1}h_{1} + 3d_{1}h_{1}^{2} = b_{2}$$

$$\vdots$$

$$\vdots$$

$$b_{n-2} + 2c_{n-2}h_{n-2} + 3d_{n-2}h_{n-2}^{2} = b_{n-1}$$

$$b_{n-1} + 2c_{n-1}h_{n-1} + 3d_{n-1}h_{n-1}^{2} = b_{n}$$

$$b_{j-1} + 2c_{j-1}h_{j-1} + 3d_{j-1}h_{j-1}^{2} = b_{j}, \quad j = 1, 2, \dots n$$

1. On each sub-interval
$$[x_j, x_{j+1}], j = 0, \ldots, n-1, S(x)$$
 is a cubic polynomal: $S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$ 2. $S(x)$ interpolates f at each x_j . I.e., $S(x_j) = f(x_j)$. 3. Conituity: $S \in C([a, b])$. 4. Differentiability: $S \in C^2([a, b])$. $S''(a) = S''(b) = 0$. Theorem 14.1. $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$. $f(x)$ has a unique "natural" spline interpolant on $[a, b]$ for the points $\{x_j\}_{j=0}^n$.

(1)
$$S_j(x_h) = a_j = f(x_j), \quad j = 0, 1, \dots, n-1 | a_j = f(x_j), \quad j = 0, 1, 2, \dots, n$$

(2)
$$a_{j-1} + b_{j-1}h_{j-1} + c_{j-1}h_{j-1}^2 + d_{j-1}h_{j-1}^3 = a_j, \quad j = 1, 2, \dots n$$

(3)
$$b_{j-1} + 2c_{j-1}h_{j-1} + 3d_{j-1}h_{j-1}^2 = b_j, \quad j = 1, 2, \dots n$$

(4) Similarly, property 4 on second derivative tells us that

1. On each sub-interval $[x_j, x_{j+1}], j = 0, \ldots, n-1, S(x)$ is a cubic polynomal: $S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$ 2. S(x) interpolates f at each x_j . I.e., $S(x_j) = f(x_j)$. 3. Conituity: $S \in C([a,b])$. 4. Differentiability: $S \in C^2([a,b])$. S''(a) = S''(b) = 0. Theorem 14.1. $a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$. f(x) has a unique "natural" spline interpolant on [a,b] for the points $\{x_j\}_{j=0}^n$.

(1)
$$S_j(x_h) = a_j = f(x_j), \quad j = 0, 1, \dots, n-1 | a_j = f(x_j), \quad j = 0, 1, 2, \dots, n$$

$$(2) | a_{j-1} + b_{j-1}h_{j-1} + c_{j-1}h_{j-1}^2 + d_{j-1}h_{j-1}^3 = a_j, \quad j = 1, 2, \dots n$$

(3)
$$b_{j-1} + 2c_{j-1}h_{j-1} + 3d_{j-1}h_{j-1}^2 = b_j, \quad j = 1, 2, \dots n$$

(4)
$$c_{j-1} + 3d_{j-1}h_{j-1} = c_j, \quad j = 1, 2, \dots n$$

(5) The natural boundary condition

$$S_0''(x_0) = 0 \qquad 2c_0 = 0$$

$$S_{n-1}''(x_n) = 0 \qquad 2c_n = 0$$

1. On each sub-interval $[x_j, x_{j+1}], j = 0, \ldots, n-1, S(x)$ is a cubic polynomal:

$$S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$$

- 2. S(x) interpolates f at each x_j . I.e., $S(x_j) = f(x_j)$.
- 3. Conituity: $S \in C([a,b])$. 4. Differentiability: $S \in C^2([a,b])$.

Theorem 14.1. $a = x_0 < x_1 < \underbrace{x_2 < \cdots < x_{n-1} < x_n = b}$.

f(x) has a unique "natural" spline interpolant on [a,b] for the points $\{x_j\}_{j=0}^n$.

$$a_{j} = f(x_{j}), \quad j = 0, 1, 2, \dots, n$$

 $b_{n} = S'(x_{n})$
 $c_{n} = S''(x_{n})/2$
 $a_{j} + b_{j}h_{j} + c_{j}h_{j}^{2} + d_{j}h_{j}^{3} = a_{j+1}, \quad j = 0, 1, 2, \dots, n-1$
 $b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} = b_{j+1}, \quad j = 0, 1, 2, \dots, n-1$
 $c_{j} + 3d_{j}h_{j} = c_{j+1}, \quad j = 0, 1, 2, \dots, n-1$
 $c_{0} = c_{n} = 0$

Variables:

$$a_j, b_j, c_j, d_j, \quad j = 0, 1, 2, 3, \dots, n-1$$

 a_n, b_n, c_n

Goal: eliminate to equations of c only

$$\begin{array}{c}
a_{j} = f(x_{j}), \quad j = 0, 1, 2, \dots, n \\
b_{n} = S'(x_{n}) \\
c_{n} = S''(x_{n})/2 \\
a_{j} + b_{j}h_{j} + c_{j}h_{j}^{2} + d_{j}h_{j}^{3} = a_{j+1}, \quad j = 0, 1, 2, \dots n - 1 \\
b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} = b_{j+1}, \quad j = 0, 1, 2, \dots n - 1 \\
c_{j} + 3d_{j}h_{j} = c_{j+1}, \quad j = 0, 1, 2, \dots n - 1 \\
c_{0} = c_{n} = 0
\end{array}$$

• All a_j values for j = 0, 1, ..., n can be determined

$$a_{j} = f(x_{j}), \quad j = 0, 1, 2, \dots, n$$

$$b_{n} = S'(x_{n})$$

$$c_{n} = S''(x_{n})/2$$

$$a_{j} + b_{j}h_{j} + c_{j}h_{j}^{2} + d_{j}h_{j}^{3} = a_{j+1}, \quad j = 0, 1, 2, \dots, n-1$$

$$b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} = b_{j+1}, \quad j = 0, 1, 2, \dots, n-1$$

$$c_{j} + 3d_{j}h_{j} = c_{j+1}, \quad j = 0, 1, 2, \dots, n-1$$

$$c_{0} = c_{n} = 0$$

$$d_{j} = \frac{c_{j+1} - c_{j}}{3h_{j}} \text{ for } j = 0, 1, \dots, n-1.$$

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1})$$
 (*)
 $b_{j+1} = b_j + h_j (c_j + c_{j+1})$ (**)
 $a_{j+1} = b_j + h_j (c_j + c_{j+1})$ (**)

Summarizing the above
$$b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}), \quad j = 0, 1, \dots, n-1$$

$$a_{j} = f(x_{j}), \quad j = 0, 1, 2, ... /, n$$

$$b_{n} = S'(x_{n}) \quad b_{j+1} = \frac{1}{h_{j+1}} (a_{j+2} - a_{j+1}) - \frac{h_{j+1}}{3} (2c_{j+1} + c_{j+2}), \quad j = 0, ..., n - 2.$$

$$c_{n} = S''(x_{n}) / 2$$

$$a_{j} + b_{j}h_{j} + c_{j}h_{j}^{2} + d_{j}h_{j}^{3} = a_{j+1}, \quad j = 0, 1, 2, ..., n - 1$$

$$b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} \neq b_{j+1}, \quad j = 0, 1, 2, ..., n - 1$$

$$c_{j} + 3d_{j}h_{j} = c_{j+1}, \quad j = 0, 1, 2, ..., n - 1$$

$$c_{0} = c_{n} = 0$$

$$d_{j} = \frac{c_{j} + 1 - c_{j}}{3h_{j}} \text{ for } j = 0, 1, ..., n - 1.$$

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}) \quad (*)$$

$$b_{j+1} = b_j + h_j (c_j + c_{j+1}) \quad (**)$$
for $j = 0, 1, \dots, n-1$.

Summarizing the above
$$b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}), \quad j = 0, 1, \dots, n-1$$

$$a_{j} = f(x_{j}), \quad j = 0, 1, 2, \dots /, n$$

$$b_{n} = S'(x_{n}) \quad b_{j+1} = \frac{1}{h_{j+1}} (a_{j+2} - a_{j+1}) - \frac{h_{j+1}}{3} (2c_{j+1} + c_{j+2}), \quad j = 0, \dots, n-2.$$

$$c_{n} = S''(x_{n})/2 \quad /$$

$$a_{j} + b_{j}h_{j} + c_{j}h_{j}^{2} + d_{j}h_{j}^{3} = a_{j+1}, \quad j = 0, 1, 2, \dots n-1$$

$$b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} \neq b_{j+1}, \quad j = 0, 1, 2, \dots n-1$$

$$c_{j} + 3d_{j}h_{j} = c_{j+1}, \quad j = 0, 1, 2, \dots n-1$$

$$c_{0} = c_{n} = 0$$

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1})$$
 (*)
 $b_{j+1} = b_j + h_j (c_j + c_{j+1})$ (**) for $j = 0, 1, \dots, n-1$.

Summarizing the above
$$b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}), \quad j = 0, 1, \dots, n-1$$

$$a_{j} = f(x_{j}), \quad j = 0, 1, 2, \dots, n$$

$$b_{n} = S'(x_{n}) \quad b_{j+1} = \frac{1}{h_{j+1}} (a_{j+2} - a_{j+1}) - \frac{h_{j+1}}{3} (2c_{j+1} + c_{j+2}), \quad j = 0, \dots, n-2.$$

$$c_{n} = S''(x_{n})/2$$

$$a_{j} + b_{j}h_{j} + c_{j}h_{j}^{2} + d_{j}h_{j}^{3} = a_{j+1}, \quad j = 0, 1, 2, \dots, n-1$$

$$b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} = b_{j+1}, \quad j = 0, 1, 2, \dots, n-1$$

$$c_{j} + 3d_{j}h_{j} = c_{j+1}, \quad j = 0, 1, 2, \dots, n-1$$

$$c_{0} = c_{n} = 0$$

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}) / (*)$$
 for $j = 0, 1, ..., n-1$.
$$b_{j+1} = b_j + h_j (c_j + c_{j+1}) / (**)$$

Summarizing the above
$$b_j = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}), \quad j = 0, 1, \dots, n-1$$

$$a_{j} = f(x_{j}), \quad j = 0, 1, 2, \dots, n$$
 $b_{n} = S'(x_{n}) \quad b_{j+1} = \frac{1}{h_{j+1}} (a_{j+2} - a_{j+1}) - \frac{h_{j+1}}{3} (2c_{j+1} + c_{j+2}), \quad j = 0, \dots, n-2.$
 $c_{n} = S''(x_{n})/2$

$$a_j + b_j h_j + c_j h_j^2 + d_j h_j^3 = a_{j+1}, \quad j = 0, 1, 2, \dots n-1$$

 $b_j + 2c_j h_j + 3d_j h_j^2 = b_{j+1}, \quad j = 0, 1, 2, \dots n-1$

$$c_j + 3d_j h_j = c_{j+1}, \quad j = 0, 1, 2, \dots, n-1$$

$$\frac{1}{h_{j+1}}(a_{j+2} - a_{j+1}) - \frac{h_{j+1}}{3}(2c_{j+1} + c_{j+2}) = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}) + h_j(c_j + c_{j+1}).$$
for $j = 0, \dots, n-2$,

$$a_{j+1} = a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}) / (*)$$
 for $j = 0, 1, ..., n-1$.
 $b_{j+1} = b_j + h_j (c_j + c_{j+1}) / (**)$

$$a_{j} = f(x_{j}), \quad j = 0, 1, 2, \dots, n$$

 $b_{n} = S'(x_{n})$
 $c_{n} = S''(x_{n})/2$
 $a_{j} + b_{j}h_{j} + c_{j}h_{j}^{2} + d_{j}h_{j}^{3} = a_{j+1}, \quad j = 0, 1, 2, \dots, n-1$
 $b_{j} + 2c_{j}h_{j} + 3d_{j}h_{j}^{2} = b_{j+1}, \quad j = 0, 1, 2, \dots, n-1$
 $c_{j} + 3d_{j}h_{j} = c_{j+1}, \quad j = 0, 1, 2, \dots, n-1$

$$\frac{1}{h_{j+1}}(a_{j+2} - a_{j+1}) - \frac{h_{j+1}}{3}(2c_{j+1} + c_{j+2}) = \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}) + h_j(c_j + c_{j+1}).$$
for $j = 0, \dots, n-2$,

Shifting index by 1 and simplify, we get for j = 1, 2, ..., n - 1,

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1}).$$