离散数学讲义

陈建文

March~8,~2022

第二章映射

定义2.1. 设X和Y为两个集合。一个从X到Y的**映射**f为一个法则,根据f,对X中的每个元素x都有Y中唯一确定的元素y与之对应。从X到Y的映射f常记为 $f: X \to Y$ 。

例. 设集合 $X = \{-1,0,1\}$,集合 $Y = \{0,1,2\}$, $\forall x \in X, f(x) = x^2$,即f(-1) = 1, f(0) = 0, f(1) = 1,则f为从集合X到集合Y的映射。

定义2.2. 设X和Y为两个集合。一个从X到Y的**映射**为一个满足以下两个条件的 $X \times Y$ 的子集f:

- 1. 对X的每一个元素x,存在一个 $y \in Y$,使得 $(x,y) \in f$;
- 2. 若 $(x,y) \in f$, $(x,y') \in f$, 则y = y'。

 $(x,y) \in f$ 记为y = f(x)。

例. 设集合 $X = \{-1,0,1\}$,集合 $Y = \{0,1,2\}$, $f \subseteq X \times Y$, $f = \{(-1,1),(0,0),(1,1)\}$,则f为从集合X到集合Y的映射。

定义2.1和定义2.2是等价的。

练习**2.1.** 设 $X = \{0,1,2\}, Y = \{3,4,5\}, f \subseteq X \times Y, 则下列为映射的是 (D)$

A. $f = \{(0,3), (1,4)\}$

B. $f = \{(0,3), (0,4), (1,4), (2,5)\}$

C. $f = \{(0,3), (0,4)\}$

 $D. f = \{(0,5), (1,4), (2,3)\}$

映射定义的符号化表示:

 $f: X \to Y$

 $f \subseteq X \times Y$

1) $\forall x \in X \exists y \in Y(x, y) \in f$

 $\mathbb{II} \colon \forall xx \in X \to \exists yy \in Y \land (x,y) \in f$

2) $\forall x \in X \forall y \in Y \forall y' \in Y((x,y) \in f \land (x,y') \in f \rightarrow y = y')$

 $\mathbb{H} \colon \forall xx \in X \to (\forall yy \in Y \to \forall y'y' \in Y \to ((x,y) \in f \land (x,y') \in f \to y = y'))$

定义2.3. 设f为从集合X到集合Y的映射, $f:X\to Y$, 如果y=f(x),则称y为x在f下的**象**,称x为y的**原象**。X称为f的定义域;集合 $\{f(x)|x\in X\}$ 称为f的值域,记为Im(f)。

P(x):x为偶数

 $P: Z \to \{T, F\}$

 $P \subseteq Z \times \{T, F\}$

 $P = \{\dots, (-2, T), (-1, F), (0, T), (1, F), (2, T), \dots\}$

定义2.4. 设 $f: X \to Y$, $A \subseteq X$, 当把f的定义域限制在A上时,就得到了一个 $\phi: A \to Y$, $\forall x \in A$, $\phi(x) = f(x)$ 。 ϕ 称为f在A上的限制,并且常用f|A来表示 ϕ 。反过来,我们也称f为 ϕ 在X上的扩张。

定义2.5. 设 $f: A \to Y, A \subseteq X, 则称f为X上的一个部分映射。$

一个部分映射的例子:

定义2.6. 两个映射f与g称为是相等的当且仅当f和g都为从X到Y的映射,并且 $\forall x \in X$ 总有f(x) = g(x)。

定义2.7. 设 $f:X\to X$,如果 $\forall x\in X, f(x)=x$,则称f为X上的恒等映射。X上的恒等映射常记为 I_X 。

一个恒等映射的例子:

$$X \xrightarrow{f} X$$

$$0 \xrightarrow{1} 0$$

$$1$$

$$2$$

定义2.8. 设 $f:X\to Y$,如果 $\forall x_1,x_2\in X$,只要 $x_1\neq x_2$,就有 $f(x_1)\neq f(x_2)$,则称f为从X到Y的**单射**。

一个单射的例子:

$$X \xrightarrow{f} Y$$

$$0$$

$$1$$

$$2$$

单射的符号化表示:

 $f:X\to Y$

 $\forall x1 \in X \forall x2 \in X \\ x1 \neq x2 \rightarrow f(x1) \neq f(x2)$

 $\mathbb{D} \colon \forall x 1 \in X \forall x 2 \in X f(x 1) = f(x 2) \to x 1 = x 2$

定义2.9. 设 $f:X\to Y$,如果 $\forall y\in Y$, $\exists x\in X$ 使得f(x)=y,则称f为从X到Y的**满射**。

一个满射的例子:

满射的符号化表示:

 $f: X \to Y$

 $\forall y \in Y \exists x \in X f(x) = y$

定义2.10. 设 $f:X\to Y$,如果f既是单射又是满射,则称f为从X到Y的**双射**,或者称f为从X到Y的一一对应。这时也称X与Y**对等**,记为 $X\sim Y$ 。

一个双射的例子:

定义2.11. 从集合X到集合Y的所有映射之集记为 Y^X ,即 $\{f|f:X\to Y\}$ 。

$${2,3}^{{0,1}} = {\{(0,2),(1,2)\},\{(0,3),(1,3)\},\{(0,2),(1,3)\},\{(0,3),(1,2)\}\}}$$

定理2.1 (抽屉原理). 如果把n+1个物体放到n个盒子里,则必有一个盒子里至少放了两个物体。

例. $从1,2,\ldots,2n$ 中任意选出n+1个数,则这n+1个数中必有两个数,使得其中之一能除尽另一个。

证明. 每个整数均可写成 $2^l \cdot d$ 的形式,其中l为非负整数,d为奇数。因此,当把选出的n+1个整数都写成这种形式时,便得到了n+1个奇数 d_1,d_2,\cdots,d_{n+1} ,并且 $1 \leq d_i \leq 2n-1$, $i=1,2,\cdots,n+1$ 。但1到2n之间仅有n个奇数,由抽屉原理可知,必有i,j使得 $d_i=d_j$, $i \neq j$ 。于是, d_i 与 d_j 对应的两个整数 $2^{l_i} \cdot d_i$ 与 $2^{l_j} \cdot d_j$ 中必有一个可以整除另外一个。

例. 任何6个人中,或有3个人互相认识,或有3个人互相不认识。

定理2.2 (抽屉原理的强形式). 设 q_1, q_2, \ldots, q_n 为n个正整数。如果把 $q_1 + q_2 + \cdots + q_n - n + 1$ 个物体放到n个盒子中,则或者第一个盒子中至少含有 q_1 个物体,或者第二个盒子中至少含有 q_2 个物体,…,或者第n个盒子中至少含有 q_n 个物体。

推论2.1. 如果把n(r-1)+1个物体放入n个盒子里,则至少有一个盒子里放了不少于r个物体。

推论2.2. 如果n个正整数 m_1, m_2, \ldots, m_n 的平均值

$$\frac{m_1+m_2+\ldots+m_n}{n} > r-1,$$

则 m_1, m_2, \ldots, m_n 中至少有一个正整数不小于r。

例. $n^2 + 1$ 个士兵站成一排,则可以使其中的至少n + 1个士兵向前走一步站成一个按身高从小到大的队列,或站成一个按身高从大到小的队列。

对照以下的例子可以帮助我们理解证明过程。

证明. 从左到右依次用 $h_1, h_2, \cdots, h_{n^2+1}$ 表示此队列中各士兵的身高,于是,我们得到了一个 n^2+1 项的数列

$$h_1, h_2, \cdots, h_{n^2+1}$$
 (2.1)

我们的问题就是要证明此数列中或者有一个长(项数)至少为n+1的不减子序列,或者有一个长至少为n+1的不增子序列。

假设本题结论不成立,则数列(2.1)中每个不减子序列的长度至多为n,每个不增子序列的长度也至多为n。令 m_i 为以 h_i 为首项的(2.1)的最长不减子序列的长度, $i=1,2,\cdots,n^2+1$ 。于是得到 n^2+1 个数 m_1,m_2,\cdots,m_{n^2+1} ,其中每个数 m_i 满足 $1 < m_i < n$ 。现在把这 n^2+1 个数放到n个盒子 $1,2,\cdots,n$ 中,数 m_i 放

到第k个盒子中当且仅当 $m_i = k$,则必有某个盒子中至少含有n+1个数。由上述方法可知,在这同一个盒子中的至少n+1个数,它们是相等的。设这些数为 $m_{i_1}, m_{i_2}, \cdots, m_{i_k}, i_1 < i_2 < \cdots < i_k \le n^2 + 1, k > n$ 。相应的,我们有(2.1)的子序列

$$h_{i_1}, h_{i_2}, \cdots, h_{i_k}$$
 (2.2)

这是一个不增子序列。实际上,如若不然,例如 $h_{i_1} < h_{i_2}$,则由于以 h_{i_2} 为首项的最长不减子序列的长为 m_{i_2} ,所以前面加一项 h_{i_1} ,就得到了一个以 h_{i_1} 为首项长度大于 m_{i_1} 的不减子序列,这是不可能的。

于是,我们得到了一个长度至少为n+1的不增子序列(2.2),这又与假设相矛盾。所以,本题结论成立。

练习2.2. 设 a_1, a_2, \dots, a_n 为n个实数且 $a_1 < a_2 < \dots < a_n \circ \varphi$ 为从 $A = \{a_1, a_2, \dots, a_n\}$ 到A的 ——对应。试证: 如果 $a_1 + \varphi(a_1) < a_2 + \varphi(a_2) < \dots < a_n + \varphi(a_n), \quad \square \varphi = I_A \circ$

证明. 设 $\varphi(a_1) \neq a_1$,则由 φ 为双射知存在j,j > 1, $\varphi(a_j) = a_1$ 。于是,对任意的正整数i < j, $a_i + \varphi(a_i) < a_j + \varphi(a_j) = a_j + a_1$,由 $a_i \geq a_1$ 知 $\varphi(a_i) < a_j$,从而 $\varphi(a_i) = a_k, k < j$ 。于是,对任意的i,i < j, $\varphi(a_i) \in \{a_2, \ldots, a_{j-1}\}$,由鸽笼原理,必存在 $i_1 < i_2 < j$, $\varphi(i_1) = \varphi(i_2)$,这与 φ 为双射矛盾。类似可证, $\varphi(a_2) = a_2, \ldots, \varphi(a_n) = a_n$,即 $\varphi = I_A$ 。

练习2.3. 在一个半径为16的圆内任意放入650个点。给你一个形似垫圈的圆环,此圆环的外半径为3,内半径为2。现在要求你用这个垫圈盖住这650个点中的至少10个点,这可能吗?证明你的结论。

答. 用这个垫圈可以盖住650个点中的至少10个点。以圆内的650个点中的每个点为圆心放一个圆环,则所有圆环的面积之和为 $S_1=650*\pi*(3^2-2^2)=3250\pi$ 。所有圆环所覆盖的区域被包含在一个面积为 $\pi*(16+3)^2=361\pi$ 的圆C内。此时必存在10个圆环 R_1,R_2,\ldots,R_{10} 有公共的重叠区域,否则所有圆环的面积之和 S_1 将小于圆C之面积的9倍,即 $3250\pi<9*361\pi=3249\pi$,矛盾。任取圆环 R_1,R_2,\ldots,R_{10} 的公共重叠区域中的一点,在该点上放一个圆环,将覆盖住 R_1,R_2,\ldots,R_{10} 的圆心,这10个圆心都是圆内650个点中的点,结论得证。

第三章