Chapter 4.1

Polynomial and Rational Functions

Example 6

Graphing a polynomial using its x-intercepts

For the polynomial

$$f(x) = x^2(x-2)$$

- (a) Find the x- and y-intercepts of the graph of f.
- (b) Use the *x*-intercepts to find the intervals on which the graph of f is above the *x*-axis and the intervals on which the graph of f is below the *x*-axis.
- (c) Locate other points on the graph and connect all the points plotted with a smooth, continuous curve.

Solution: (a) The y-intercept is f(0) = 0. To find the x-intercepts, solve the equation f(x) = 0.

Therefore, we get $f(x) = x^2(x-2) = 0$ giving x = 0 or x = 2.

(b) The two *x*-intercepts divide the real number line into three intervals:

$$(-\infty,0), (0,2), (2,+\infty)$$

Since the graph of f crosses or touches the x-axis at x=0 and x=2, it follows that the graph of f is either above the x-axis (f(x) > 0) or below the x-axis (f(x) < 0) on each of these three intervals. To see where the graph lies, we only need to pick a number in each interval, evaluate f there and see whether the value is positive (above the x-axis) or negative (below the x-axis). To draw the conclusion, prepare the following table:

Interval	Number picked	Value of f	Point on graph	Location of graph
$(-\infty,0)$	-1	f(-1) = -3	(-1, -3)	Below the x-axis
(0,2)	1	f(1) = -1	(1, -1)	Below the x-axis
(2,+∞)	3	f(3) = 9	(3, 9)	Above the x-axis

(c) From the above Table, we can see that the points on the graph are (-1, -3), (1, -1) and (3, 9).

Figure 11 illustrates these points, the intercepts, etc.

Conclusions

Since the points (-1, -3) and (1, -1) lies below the x-axis on both sides of 0, the graph of f touches the x-axis at x = 0 which is a zero of multiplicity 2.

Since the graph of f lies below the x-axis for x < 2 and above x-axis for x < 2, the graph of f crosses x-axis at x = 2 which is a zero of multiplicity 1.

The problem suggests the following results:

If r is a Zero of Even Multiplicity

Algebra	Geometry
The sign of $f(x)$ does not change from one side to the	The graph of f touches the x-axis at r.
other side of <i>r</i> .	

If r is a Zero of Odd Multiplicity

Algebra	Geometry
The sign of $f(x)$ changes from one side to the other	The graph of f crosses the x-axis at r.
side of r.	

Behavior Near a Zero

Now we see that the graph of $f(x) = x^2(x-2)$ behaves like the graph of $f(x) = -2x^2$ near x = 0.

Since the zero 0 comes from the factor x^2 , we evaluate all factors in the function f at 0 with the exception of x^2 . Therefore, we get

$$f(x) = x^{2}(x-2) \approx x^{2}(0-2) = -2x^{2}$$

(We keep the factor x^2 fixed and let x = 0 in the remaining factors)

Next we see that the graph of $f(x) = x^2(x-2)$ behaves like the graph of f(x) = 4(x-2) near x = 2.

Since the zero 2 comes from the factor x-2, we evaluate all factors in the function f at 2 with the exception of x-2. Therefore, we get

$$f(x) = x^{2}(x-2) \approx 2^{2}(x-2) = 4(x-2)$$

(We keep the factor x^2 fixed and let x = 0 in the remaining factors)

Figure 14 illustrates how we would use this information to begin to graph $f(x) = x^2(x-2)$.

Turning Points

The points at which a graph changes its direction are called **turning points**.

The following Theorem tells us the maximum number of turning points that the graph of a polynomial function can have.

Theorem

If f is a polynomial function of degree n, then the graph of f has at most n-1 turning points.

If the graph of a polynomial function f has n-1 turning points, the degree of f is at least n.

For very large values of x, either positive or negative, the graph of $f(x) = x^2(x-2)$ looks like the graph of $f(x) = x^3$.

To see why, rewrite f in the form

$$f(x) = x^{2}(x-2) = x^{3} - 2x^{2} = x^{3}\left(1 - \frac{2}{x}\right)$$

Now, for large values of x, either positive or negative, the term $\frac{2}{x}$ is close to 0, so for large values of x,

$$f(x) = x^3 - 2x^2 = x^3 \left(1 - \frac{2}{x}\right) \approx x^3.$$

The behavior of the graph of a function for LARGE values of x, either positive or negative, is referred as its **end behavior**.

This suggests the following theorem,

Theorem (End Behavior)

For large values of x, either positive or negative, the graph of the polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

resembles the graph of the power function

$$y = a_n x^n$$

For example, if $f(x) = -2x^3 + 5x^2 + x - 4$, then the graph of f will behave like the graph of $y = -2x^3$ for LARGE values of x, either positive or negative.

We describe the behavior of the graph of a function using notation.

We can symbolize "the value of f becomes a larger and larger negative number as x becomes a larger and larger positive number" by writing $f(x) \to -\infty$ as $f(x) \to \infty$ (read as **the values of** f **approach negative infinity** as x **approaches infinity**) where we use the symbolism

$$\lim_{x \to \infty} f(x) = -\infty$$

When the value of a limit equals infinity, we mean that the values of the function are unbounded in the positive or negative direction and we call the limit an **infinite limit**.

Based on the preceding theorem and above discussion on power functions, the end behavior of a polynomial function are of FOUR types. See Figure 18.

For example, if $f(x) = -2x^4 + x^3 + 4x^2 - 7x + 1$, the graph of f will resemble the graph of the power function $y = -2x^4$ for large |x|. The graph of f will behave like **Figure 18(b)** for large |x|.

SUMMARY

For the graph of a polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \ a_n \neq 0$$

- (a) Degree of the polynomial function f is n;
- (b) The graph f is smooth and continuous;
- (c) There are n-1 turning points;
- (d) At a zero of even multiplicity the graph f touches the x-axis;
- (e) At a zero of odd multiplicity the graph f crosses the x-axis;
- (f) Between zeros, the graph of f is either above or below the x-axis;
- (g) End behavior: For large |x|, the graph of f behaves like the graph of $y = a_n x^n$.

Example 9 Analyzing the Graph of a Polynomial Function

Analyze the graph of the polynomial function $f(x) = (2x+1)(x-3)^2$.

Example 10 Analyzing the Graph of a Polynomial Function

Analyze the graph of the polynomial function

$$f(x) = x^2(x-4)(x+1)$$

Solution

Step 1: End behavior: the graph of f resembles that of the power function $y = x^4$ for large values of |x|, i.e.

$$\lim_{x \to \infty} f(x) = +\infty$$
 and $\lim_{x \to \infty} f(x) = \infty$

Step 2: The y-intercept is f(0) = 0. To find the x-intercepts, solve the equation f(x) = 0.

Therefore, we get $f(x) = x^2(x-4)(x+1) = 0$ giving x = -1 or x = 0 or x = 4.

Thus, y-intercept is 0 and the x-intercepts are x = -1, 0 and 4.

Step 3: The intercept 0 is a zero of multiplicity 2, so the graph of f touches the x-axis at 0.

The other intercepts -1 and 4 are zeros of multiplicity 1, so the graph of f crosses the x-axis at -1 and 4.

Step 4: Since f is a polynomial function of degree 4, the graph of f contains at most three turning points.

Step 5: Behavior near zeros:

Near -1: $f(x) = x^2(x-4)(x+1) \approx (-1)^2(-1-4)(x+1) = -5(x+1)$ which is a line with slope -5 (We keep the factor x+1 fixed and let x=-1 in the remaining factors)

Near $0: f(x) = x^2(x-4)(x+1) \approx x^2(0-4)(0+1) = -4x^2$ which is a parabola that opens down (We keep the factor x^2 fixed and let x = 0 in the remaining factors)

Near 4: $f(x) = x^2(x-4)(x+1) \approx 4^2(x-4)(4+1) = 80(x-4)$ which is a line with slope 80 (We keep the factor x-4 fixed and let x=4 in the remaining factors)

Step 6: Figure 21(a) illustrates the information obtained from Step 1 to Step 5.

The graph of f is given in Figure 21(b).

To draw the conclusion, prepare the following table:

Interval	Number picked	Value of f	Point on graph	Location of graph
$(-\infty, -1)$	-2	f(-2) = 24	(-2, 24)	Above the <i>x</i> -axis
(-1,0)	$-\frac{1}{2}$	$f\left(-\frac{1}{2}\right) = -\frac{9}{16}$	$\left(-\frac{1}{2}, -\frac{9}{16}\right)$	Below the x-axis
(0,4)	2	f(2) = -24	(2, -24)	Below the <i>x</i> -axis
$(4,+\infty)$	5	f(5) = 150	(5, 150)	Above the x-axis

We evaluated f at -2, $-\frac{1}{2}$, 2 and 5 to help establish the scale on the y-axis.

- **49.** $y = 3(x-7)(x+3)^2$
- (a) Zeros: 7, multiplicity 1; −3, multiplicity 2;
 - (b) Graph touches the x-axis at -3 and crosses it at 7.
 - (c) Near -3: $f(x) \approx -30(x+3)^2$ which is a parabola that opens down Near 7: $f(x) \approx 300(x-7)$ which is a line with slope 300
 - (d) 2
 - (e) $y = 3x^3$

To draw the conclusion, prepare the following table:

Interval	Number picked	Value of f	Point on graph	Location of graph
$(-\infty, -3)$	-4	f(-4) = -33	(-4, -33)	Below the x-axis
(-3,7)	0	f(0) = -189	(0,-189)	Below the x-axis
$(7,+\infty)$	8	f(8) = 363	(8, 363)	Above the x-axis

51.
$$y = 4(x^2 + 1)(x - 2)^3$$

- (a) Zero 2, multiplicity 3;
 - (b) Graph crosses the x-axis at 2;
 - (c) Near 2: $f(x) \approx 20(x-2)^3$ which is a cubic function with its turning point at (2,0).
 - (d) 4
 - (e) $y = 4x^5$

Interval	Number picked	Value of f	Point on graph	Location of graph
$(-\infty,2)$	1	f(1) = -8	(1, -8)	Below the x-axis
$(2,+\infty)$	3	f(3) = 40	(3,40)	Above the x-axis

53.
$$y = -2\left(x + \frac{1}{2}\right)^2 (x+4)^3$$

- (a) Zeros: $-\frac{1}{2}$, multiplicity 2; -4, multiplicity 3;
 - (b) Graph touches the x-axis at $-\frac{1}{2}$, and crosses the x-axis at -4;

(c) Near
$$-\frac{1}{2}$$
: $f(x) \approx -85.75 \left(x + \frac{1}{2}\right)^2$ which is a parabola that opens down

Near -4: $f(x) \approx -24.5(x+4)^3$ which is a cubic function lying in the second and fourth quadrant

- (d) 4
- (e) $y = -2x^5$

Interval	Number picked	Value of f	Point on graph	Location of graph
$(-\infty, -4)$	-5	f(-4) = 40.5	(-4, 40.5)	Above the x-axis
$\left(-4,-\frac{1}{2}\right)$	-2	f(-2) = -36	(-2,-36)	Below the <i>x</i> -axis
$\left(-\frac{1}{2},+\infty\right)$	1	f(1) = -562.5	(1, -562.5)	Below the <i>x</i> -axis

55. $y = (x-5)^3(x+4)^2$

(a) Zeros: 5, multiplicity 3; -4, multiplicity 2;

(b) Graph touches the x-axis at -4, and crosses the x-axis at 5;

(c) Near -4: $f(x) \approx -729(x+4)^2$ which is a parabola that opens down

Near 5: $f(x) \approx 81(x-5)^3$ which is a cubic function lying in the first and third quadrant

(d) 4

(e)
$$y = x^5$$

Analyze each polynomial function:

69.
$$y = x^2(x-3)$$

69. Step 1: $y = x^3$

Step 2: *x*-intercepts: 0, 3; *y*-intercept: 0

Step 3: 0: multiplicity 2, touches; 3: multiplicity 1, crosses

Step 4: At most 2 turning points

Step 5: Near 0: $f(x) \approx -3x^2$; Near 3: $f(x) \approx 9(x-3)$

Step 6:

71.
$$y = (x+4)(x-2)^2$$

71. Step 1: $y = x^3$

Step 2: x-intercepts: -4, 2; y-intercept: 16

Step 3: -4: multiplicity 1, crosses; 2: multiplicity 2, touches

Step 4: At most 2 turning points

Step 5: Near -4: $f(x) \approx 36(x+4)$; Near 2: $f(x) \approx 6(x-2)^2$

Step 6:

- 73. $y = -2(x+2)(x-2)^3$
 - 73. Step 1: $y = -2x^4$
 - **Step 2:** x-intercepts: -2, 2; y-intercept: 32
 - **Step 3:** −2: multiplicity 1, crosses; 2: multiplicity 3, crosses
 - Step 4: At most 3 turning points
 - **Step 5:** Near $-2: f(x) \approx 128(x+2)$; Near $2: f(x) \approx -8(x-2)^3$
 - Step 6:

- **75.** y = (x+1)(x-2)(x+4)
 - **75. Step 1:** $y = x^3$
 - **Step 2:** *x*-intercepts: -4, -1, 2; *y*-intercept: -8
 - **Step 3:** -4, -1, 2: multiplicity 1, crosses
 - **Step 4:** At most 2 turning points
 - **Step 5:** Near -4: $f(x) \approx 18(x+4)$; Near -1: $f(x) \approx -9(x+1)$; Near 2: $f(x) \approx 18(x-2)$
 - Step 6:

Activate Windov

- 77. $y = x^2(x+2)(x-2)$
 - **77.** Step 1: $y = x^4$
 - **Step 2:** x-intercepts: -2, 0, 2; y-intercept: 0
 - **Step 3:** -2, 2, multiplicity 1, crosses; 0, multiplicity 2, touches
 - **Step 4:** At most 3 turning points
 - **Step 5:** Near -2: $f(x) \approx -16(x+2)$; Near 0: $f(x) \approx -4x^2$; Near 2: $f(x) \approx 16(x-2)$
 - Step 6:

79. $y = (x+1)^2(x-2)^2$

- **79.** Step 1: $y = x^4$
 - **Step 2:** x-intercepts: -1, 2; y-intercept: 4
 - **Step 3:** -1, 2: multiplicity 2, touches
 - **Step 4:** At most 3 turning points
 - **Step 5:** Near $-1: f(x) \approx 9(x+1)^2$; Near $2: f(x) \approx 9(x-2)^2$
 - Step 6:

81. $y = x^2(x-3)(x+1)$

- **81. Step 1:** $y = x^4$
 - **Step 2:** x-intercepts: -1, 0, 3; y-intercept: 0
 - **Step 3:** -1, 3: multiplicity 1, crosses; 0: multiplicity 2, touches
 - **Step 4:** At most 3 turning points
 - Step 5: Near -1: $f(x) \approx -4(x+1)$; Near 0: $f(x) \approx -3x^2$; Near 3: $f(x) \approx 36(x-3)$
 - Step 6:

83. $y = (x+2)^2(x-4)^2$

83. Step 1: $y = x^4$

Step 2: x-intercepts: -2, 4; y-intercept: 64

Step 3: -2, 4, multiplicity 2, touches

Step 4: At most 3 turning points

Step 5: Near $-2: f(x) \approx 36(x+2)^2$; Near $4: f(x) \approx 36(x-4)^2$

Step 6:

