LA FONCTION INVERSE

Remarque n°1.

Dans ce cours, nous utiliserons la notion de limite. Conformément au programme nous nous contenterons d'une approche intuitive.

Pour une fonction f, D_f représentera son ensemble de définition et sera un intervalle ou une réunion d'intervalles.

I Qu'est-ce qu'une limite?

Connaissance n°1 Limite finie en un point

si on peut rendre f(x) aussi proche de l que l'on veut en approchant suffisamment x de a.

Connaissance n°2 Limite finie en l'infini

Soit $f: \begin{cases} D_f \to \mathbb{R} \\ x \mapsto f(x) \end{cases}$, D_f ayant $+\infty$ pour extrémité et $l \in \mathbb{R}$.

On dit que f a pour limite l en $+\infty$ et on note $\lim_{x \to +\infty} f(x) = l$ si on peut rendre f(x) aussi proche de l que l'on veut en augmentant

suffisamment x.

Vocabulaire
Lorsque x grandit, la courbe s'approche de plus en plus de la droite d'équation y = l.
On dit que cette droite est **asymptote**horizontale à la courbe en $+\infty$.

Connaissance n°3 Limite infinie en un point

Vocabulaire Lorsque x s'approche de a, la courbe s'approche de plus en plus de la droite d'équation x = a. On dit que cette droite est asymptote verticale à la courbe en a.

Remarque n°2.

Limite à droite, limite à gauche

Il arrive parfois que des phénomènes différents se produisent selon que l'on s'approche de *a* par la gauche ou par la droite.

On peut par exemple avoir
$$\lim_{\substack{x \to a \\ x < a}} f(x) = -\infty$$
 et $\lim_{\substack{x \to a \\ x > a}} f(x) = +\infty$

Ici, la limite de f à gauche en a est $-\infty$ et la limite à droite de f en a est $+\infty$

IIEt la fonction inverse dans tout ça?

Nous allons à présent pouvoir parler du comportement de la fonction inverse aux bornes de son ensemble de définition...

Définition n°1.

On appelle fonction inverse, la fonction
$$f: \begin{cases} \mathbb{R}^* \to \mathbb{R} \\ x \to \frac{1}{x} \end{cases}$$
.
Avec $\mathbb{R}^* =]-\infty$; $0[\ \cup\]0$; $+\infty[\ .$

Propriété n°1.

Limites de la fonction inverse aux bornes de son ensemble de définition.

L'axe des abscisses est asymptote horizontale à l'hyperbole.

L'axe des ordonnées est asymptote verticale à l'hyperbole.

Propriété n°2. Dérivée de la fonction inverse

Soit
$$f: \begin{cases} \mathbb{R}^* \to \mathbb{R} \\ x \to \frac{1}{x} \end{cases}$$
.

 $f \text{ est dérivable sur }]-\infty ; 0[$

et pour $x \text{ dans l'un ou l'autre de ces intervalles}$
 $f'(x) = -\frac{1}{x^2}$

preuve:

• Soit $a \in]-\infty$; 0[et h tel que]a-h; $a+h[\subset]-\infty$; 0[On peut écrire :

$$\frac{f(a+h)-f(a)}{a+h-a} = \frac{\frac{1}{a+h} - \frac{1}{a}}{h} = \frac{\frac{a-(a+h)}{a(a+h)}}{h} = \frac{\frac{-h}{a(a+h)}}{h} = \frac{-h}{a(a+h)} \times \frac{1}{h} = \frac{-1}{a(a+h)}$$

En faisant tendre h vers 0, on obtient : $-\frac{1}{a^2}$

Le nombre dérivée de f en a existe donc pour tout $a \in]-\infty$; 0[et vaut $-\frac{1}{a^2}$.

On a donc démontré que f est dérivable sur $]-\infty$; 0[et que pour $x \in]-\infty ; 0[, f'(x) = -\frac{1}{x^2}.$

- On procède de la même façon sur $]0; +\infty[$ (faites-le).
- Ce qui achève la démonstration.

Remarque n°3.

- On a f'(x) < 0 sur $]-\infty$; 0 donc f est strictement décroissante sur $]-\infty$; 0[. • On a f'(x) < 0 sur $]0 ; +\infty[$

donc f est strictement décroissante sur]0; $+\infty[$.

• Mais f n'est pas strictement décroissante sur $]-\infty$; 0[\cup]0; $+\infty[$.

On peut à présent dresser le tableau de variation de la fonction inverse.

Connaissance n°4 Tableau de variation complet de la fonction inverse.

III Complément de cours

Vous ne serez pas interrogés sur cette partie, mais elle vous aidera à comprendre les exercices...

On peut mener des calculs avec les limites en respectant les règles suivantes :

Dans tout ce qui suit, la notation « FI » désigne une Forme Indéterminée, c'est à dire qu'on ne sait pas calculer par une opération élémentaire.

Ici a et b désignent deux nombres réels et f et g sont des fonctions.

Propriété n°3. Limite d'une somme

lim f	а	а	+∞	$-\infty$	$-\infty$
lim g	ь	±∞	+∞	$-\infty$	+∞
$\lim (f+g)$	a+b	±∞	+∞	$-\infty$	FI

Propriété n°4. Limite d'un produit

* signifie qu'il faut appliquer la règle des signes.

lim f	а	$a \neq 0$	±∞	0
lim g	b	±∞	±∞	±∞
$\lim (f \times g)$	$a \times b$	* ∞	* ∞	FI

Propriété n°5. Limite d'un quotient

* signifie qu'il faut appliquer la règle des signes.

lim f	а	а	а	±∞	$\pm \infty$	0
lim g	$b\neq 0$	$\pm \infty$	0	b	$\pm \infty$	0
$\lim \left(\frac{f}{g}\right)$	$\frac{a}{b}$	0	* ∞	* ∞	FI	FI