

Kongeriget Danmark

Patent application No.:

PA 2002 01991

Date of filing:

20 December 2002

Applicant:

NOVO NORDISK A/S

(Name and address)

Novo Allé

DK-2880 Bagsværd

Denmark

Title: Nye forbindelser

IPC: -

This is to certify that the attached documents are exact copies of the above mentioned patent application as originally filed.

Patent- og Varemærkestyrelsen Økonomi- og Erhvervsministeriet

06_December 2003

Bo Zillo Tidemann

PATENT- OG VAREMÆRKESTYRELSEN

10

15

20

25

20 DEC. 2002

STABILISED INSULIN PREPARATIONS

PVS

FIELD OF THE INVENTION

This invention relates to insulin preparations stabilised by adding ligands for the His^{B10} Zn²⁺ sites of the R-state insulin hexamer, as well as methods for preparation and use of such preparations.

BACKGROUND OF THE INVENTION

Diabetes is a general term for disorders in man having excessive urine excretion as in diabetes mellitus and diabetes insipidus. Diabetes mellitus is a metabolic disorder in which the ability to utilize glucose is partly or completely lost.

Since the discovery of insulin in the 1920's, continuous strides have been made to improve the treatment of diabetes mellitus. To help avoid extreme glycaemia levels, diabetic patients often practice multiple injection therapy, whereby insulin is administered with each meal. Many diabetic patients are treated with multiple daily insulin injections in a regimen comprising one or two daily injections of a protracted insulin composition to cover the basal requirement, supplemented by bolus injections of rapid acting insulin to cover the meal-related requirements.

Insulin compositions having a protracted profile of action are well known in the art. Thus, one main type of such insulin compositions comprises injectable aqueous suspensions of insulin crystals or amorphous insulin. Typically, the insulin in these compositions is provided in the form of protamine insulin, zinc insulin or protamine zinc insulin

Soluble, rapid acting insulin preparations usually comprise insulin, insulin analogue or insulin derivative together with zinc ion, phenolic preservative, isotonicity agent, and a buffer substance. In addition, the preparation may optionally contain some salts and/or surfactants. Such preparations contain insulin in the form of an R-state hexamer.

Insulin Allostery.

The insulin hexamer is an allosteric protein that exhibits both positive and negative cooperativity and half-of-the-sites reactivity in ligand binding. This allosteric behaviour consists of two interrelated allosteric transitions designated L^A₀ and L^B₀, three interconverting allosteric conformation states (eq. 1),

10

15

20

$$L_0^A \qquad L_0^B$$

$$T_6 \leftrightarrow T_3R_3 \leftrightarrow R_6 \qquad (1)$$

designated T_8 , T_3R_3 , and R_8 and two classes of allosteric ligand binding sites designated as the phenolic pockets and the His^{B10} anion sites. These allosteric sites are associated only with insulin subunits in the R conformation.

Insulin Hexamer Structures and Ligand Binding.

The T- to R-transition of the insulin hexamer involves transformation of the first nine residues of the B chain from an extended conformation in the T-state to an alpha-helical conformation in the R-state. This coil-to-helix transition causes the N-terminal residue, Phe^{B1}, to undergo an ~ 30 Å change in position. This conformational change creates hydrophobic pockets (the phenolic pockets) at the subunit interfaces (three in T_3R_3 , and six in R_0), and the new B-chain helices form 3-helix bundles (one in T_3R_3 and two in R_0) with the bundle axis aligned along the hexamer three-fold symmetry axis. The His^{B10} Zn^{2+} in each R_3 unit is forced to change coordination geometry from octahedral to either tetrahedral (monodentate ligands) or pentahedral (bidentate ligands). Formation of the helix bundle creates a narrow hydrophobic tunnel in each R_3 unit that extends from the surface ~12 Å down to the His^{B10} metal ion. This tunnel and the His^{B10} Zn^{2+} ion form the anion binding site. Ligands for the His^{B10} Zn^{2+} sites of the R-state insulin hexamer have been disclosed in US 5830999.

25 Hexamer Ligand Binding and Stability of Insulin Preparations.

The *in vivo* role of the T to R transition is unknown. However, the addition of allosteric ligands (e.g. phenol and chloride ion) to insulin preparations is widely used. Hexamerization is driven by coordination of Zn²⁺ at the His^{B10} sites to give T₆. Following subcutaneous injection, some dilution of the depot will take place over time and the ligands of soluble hexamers most likely diffuse away from the protein relatively rapidly. This is probably due to one or more phenomena including the binding of Zn²⁺ by surrounding tissue and albumin, the relatively larger space available for diffusion of the hydrophobic phenolic preservatives, and the generally larger diffusion coefficients characteristic of the smaller sized molecules.

30

Insulin preparations are usually stored for extended periods of time e.g. in vials or cartridges. Furthermore, insulin pumps are becoming more widely used, which places an additional demand on the chemical and physical stability of the insulin preparation due to the elevated temperatures and physical stress these preparations are exposed to. There is thus a need for insulin preparations that are more physically and chemically stable. It has been found that stabilising Zn²⁺-site ligands may be added to insulin preparations to improve these properties.

SUMMARY OF THE INVENTION

10

5

The present invention provides pharmaceutical preparations comprising insulin and novel ligands for the His^{B10} Zn²⁺ sites of the R-state insulin hexamer. The resulting preparations have improved physical and chemical stability.

DESCRIPTION OF THE DRAWINGS

15

30

Figure 1 shows

DEFINITIONS

The following is a detailed definition of the terms used to describe the invention:

20 "Halogen" designates an atom selected from the group consisting of F, Cl, Br and I.

The term "alkyl" as used herein represents a saturated, branched or straight hydrocarbon group having the indicated number of carbon atoms. Representative examples include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, n-hexyl, isobexyl and the like.

The term "alkylene" as used herein represents a saturated, branched or straight bivalent hydrocarbon group having the indicated number of carbon atoms. Representative examples include, but are not limited to, methylene, 1,2-ethylene, 1,3-propylene, 1,2-propylene, 1,4-butylene, 1,5-pentylene, 1,6-hexylene, and the like.

The term "alkenyl" as used herein represents a branched or straight hydrocarbon group having the indicated number of carbon atoms and at least one double bond. Examples of such groups include, but are not limited to, vinyl, 1-propenyl, 2-propenyl, iso-propenyl, 1,3-butadienyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 1-pentenyl, 2-pentenyl, 3-butenyl, 3-buten

10

15

20

25

pentenyl, 4-pentenyl, 3-methyl-2-butenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 2,4-hexadienyl, 5-hexenyl and the like.

The term "alkynyl" as used herein represents a branched or straight hydrocarbon group having the indicated number of carbon atoms and at least one triple bond. Examples of such groups include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexadiynyl and the like.

The term "alkoxy" as used herein refers to the radical -O- alkyl, wherein alkyl is as defined above. Representative examples are methoxy, ethoxy, n-propoxy, isopropoxy, butoxy, secbutoxy, tert-butoxy, pentoxy, isopentoxy, hexoxy, isohexoxy and the like.

The term "cycloalkyl" as used herein represents a saturated, carbocyclic group having the indicated number of carbon atoms. Representative examples are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohex

The term "cycloalkenyl" as used herein represents a non-aromatic, carbocyclic group having the indicated number of carbon atoms containing one or two double bonds. Representative examples are 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, 1-cyclohexenyl, 2-cyclohexenyl, 2-cyclohexenyl, 2-cyclohexenyl, 1,4-cyclooctadienyl and the like.

The term "heterocyclyl" as used herein represents a non-aromatic 3 to 10 membered ring containing one or more heteroatoms selected from nitrogen, oxygen and sulphur and optionally containing one or two double bonds. Representative examples are pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, aziridinyl, tetrahydrofuranyl and the like.

The term "aryl" as used herein is intended to include carbocyclic, aromatic ring systems such as 6 membered monocyclic and 9 to 14 membered bi- and tricyclic, carbocyclic, aromatic ring systems. Representative examples are phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, indenyl, azulenyl and the like. Aryl is also intended to include the partially hydrogenated derivatives of the ring systems enumerated above. Non-limiting examples of such partially hydrogenated derivatives are 1,2,3,4-tetrahydronaphthyl, 1,4-dihydronaphthyl and the like.

The term "arylene" as used herein is intended to include divalent, carbocyclic, aromatic ring systems such as 6 membered monocyclic and 9 to 14 membered bi- and tricyclic, divalent, carbocyclic, aromatic ring systems. Representative examples are phenylene, biphenylylene, naphthylene, anthracenylene, phenanthrenylene, fluorenylene, indenylene, azulenylene and the like. Arylene is also intended to include the partially hydrogenated derivatives of the ring

systems enumerated above. Non-limiting examples of such partially hydrogenated derivatives are 1,2,3,4-tetrahydronaphthylene, 1,4-dihydronaphthylene and the like.

The term "aryloxy" as used herein denotes a group -O-aryl, wherein aryl is as defined above. The term "aroyl" as used herein denotes a group -C(O)-aryl, wherein aryl is as defined above.

5

10

15

20

25

30

35

The term "heteroaryl" as used herein is intended to include aromatic, heterocyclic ring systems containing one or more heteroatoms selected from nitrogen, oxygen and sulphur such as 5 to 7 membered monocyclic and 8 to 14 membered bi- and tricyclic aromatic, heterocyclic ring systems containing one or more heteroatoms selected from nitrogen. oxygen and sulphur. Representative examples are furyl, thienyl, pyrrolyl, pyrazolyl, 3oxopyrazolyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4triazolyl, pyranyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5- triazinyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,3thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, tetrazolyl, thiadiazinyl, indolyl, isoindolyl, benzofuryl, benzothienyl, indazolyl, benzimidazolyl, benzthiazolyl, benzisothiazolyl, benzoxazolyl, benzisoxazolyl, purinyl, quinazolinyl, quinolizinyl, quinolinyl, isoquinolinyl, quinoxalinyl, naphthyridinyl, pteridinyl, carbazolyl, azepinyl, diazepinyl, acridinyl, thiazolidinyl, 2-thiooxothiazolidinyl and the like. Heteroaryl is also intended to include the partially hydrogenated derivatives of the ring systems enumerated above. Nonlimiting examples of such partially hydrogenated derivatives are 2,3-dihydrobenzofuranyl, pyrrolinyl, pyrazolinyl, indolinyl, oxazolidinyl, oxazolinyl, oxazepinyl and the like.

The term "heteroarylene" as used herein is intended to include divalent, aromatic, heterocyclic ring systems containing one or more heteroatoms selected from nitrogen, oxygen and sulphur such as 5 to 7 membered monocyclic and 8 to 14 membered bi- and tricyclic aromatic, heterocyclic ring systems containing one or more heteroatoms selected from nitrogen, oxygen and sulphur. Representative examples are furylene, thienylene, pyrrolylene, oxazolylene, thiazolylene, imidazolylene, isoxazolylene, isothiazolylene, 1,2,3triazolylene, 1,2,4-triazolylene, pyranylene, pyridylene, pyridazinylene, pyrimidinylene, pyrazinylene, 1,2,3-triazinylene, 1,2,4-triazinylene, 1,3,5- triazinylene, 1,2,3-oxadiazolylene, 1,2,4-oxadiazolylene, 1,2,5-oxadiazolylene, 1,3,4-oxadiazolylene, 1,2,3-thiadiazolylene, 1,2,4thiadiazolylene, 1,2,5-thiadiazolylene, 1,3,4-thiadiazolylene, tetrazolylene, thiadiazinylene, indolylene, isoindolylene, benzofurylene, benzothienylene, indazolylene, benzimidazolylene, benzthiazolylene, benzisothiazolylene, benzoxazolylene, benzisoxazolylene, purinylene, quinazolinylene. quinolizinylene. quinolinylene. isoquinolinylene. quinoxalinylene, naphthyridinylene, pteridinylene, carbazolylene, azepinylene, diazepinylene, acridinylene and

15

20

25

30

35

the like. Heteroaryl is also intended to include the partially hydrogenated derivatives of the ring systems enumerated above. Non-limiting examples of such partially hydrogenated derivatives are 2,3-dihydrobenzofuranylene, pyrrolinylene, pyrazolinylene, indolinylene, oxazolidinylene, oxazolinylene, oxazolinylene and the like.

The term "ArG1" as used herein is intended to include an aryl or arylene radical as applicable, where aryl or arylene are as defined above but limited to phenyl, biphenylyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, indenyl, and azulenyl as well as the corresponding divalent radicals.

The term "ArG2" as used herein is intended to include an aryl or arylene radical as applicable, where aryl or arylene are as defined above but limited to phenyl, biphenylyl, naphthyl, fluorenyl, and indenyl, as well as the corrresponding divalent radicals.

The term "Het1" as used herein is intended to include a heteroaryl or heteroarylene radical as applicable, where heteroaryl or heteroarylene are as defined above but limited to furyl, thienyl, pyrrolyl, pyrazolyl, 3-oxopyrazolyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, pyranyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5- triazinyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-thiadiazolyl, 1,3,4-thiadiazolyl, tetrazolyl, thiadiazinyl, indolyl, isoindolyl, benzofuryl, benzothienyl, indazolyl, benzimidazolyl, benzimidazolyl, benzimidazolyl, benzimidazolyl, benzimidazolyl, benzimidazolyl, purinyl, quinazolinyl, quinolizinyl, quinolinyl, isoquinolinyl, quinoxalinyl, naphthyridinyl, pteridinyl, carbazolyl, azepinyl, diazepinyl, acridinyl, thiazolidinyl, 2-thiooxothiazolidinyl, as well as the corrresponding divalent radicals.

The term "Het2" as used herein is intended to include a heteroaryl or heteroarylene radical as applicable, where heteroaryl or heteroarylene are as defined above but limited to furyl, thienyl, pyrrolyl, pyrazolyl, 3-oxopyrazolyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, isothiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, pyranyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, 1,2,3-triazinyl, 1,2,4-triazinyl, 1,3,5- triazinyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, tetrazolyl, thiadiazinyl, indolyl, isoindolyl, benzofuryl, benzothienyl, benzimidazolyl, benzimidazolyl, benzisothiazolyl, benzisothiazolyl, benzoxazolyl, quinolinyl, isoquinolinyl, quinoxalinyl, carbazolyl, thiazolidinyl, 2-thiooxothiazolidinyl, as well as the corrresponding divalent radicals.

The term "Het3" as used herein is intended to include a heteroaryl or heteroarylene radical as applicable, where heteroaryl or heteroarylene are as defined above but limited to furyl, thienyl, pyrrolyl, pyrazolyl, 3-oxopyrazolyl, oxazolyl, thiazolyl, imidazolyl, isoxazolyl, isothiazolyl,

1,2,3-triazolyl, 1,2,4-triazolyl, pyridyl, tetrazolyl, indolyl, isoindolyl, benzofuryl, benzothienyl, benzimidazolyl, benzithiazolyl, benzisothiazolyl, benzisoxazolyl, quinolyl, isoquinolyl, quinoxalinyl, carbazolyl, thiazolidinyl, 2-thiooxothiazolidinyl, as well as the corresponding divalent radicals.

"Aryl-C₁-C₆-alkyl", "heteroaryl-C₁-C₆-alkyl", "aryl-C₂-C₆-alkenyl" etc. is intended to mean C₁-C₆-alkyl or C₂-C₆-alkenyl as defined above, substituted with an aryl or heteroaryl as defined above, for example:

The term "optionally substituted" as used herein means that the groups in question are either unsubstituted or substituted with one or more of the substituents specified. When the groups in question are substituted with more than one substituent the substituents may be the same or different.

Certain of the above defined terms may occur more than once in the structural formulae, and upon such occurrence each term shall be defined independently of the other.

Furthermore, when using the terms "independently are" and "independently selected from" it should be understood that the groups in question may be the same or different.

The term "substituted with one or more substituents" as used herein is intended to include one to four substituents, such as one to three substituents, one to two substituents, or even one substituent.

The term "treatment" as used herein means the management and care of a patient for the purpose of combating a disease, disorder or condition. The term is intended to include the delaying of the progression of the disease, disorder or condition, the alleviation or relief of symptoms and complications, and/or the cure or elimination of the disease, disorder or condition. The patient to be treated is preferably a mammal, in particular a human being.

When in the specification or claims mention is made of groups of compounds such as benzotriazoles, 3-hydroxy 2-napthoic acids, salicylic acids, tetrazoles, thiazolidinediones, 5-mercaptotetrazoles, or 4-cyano-1,2,3-triazoles, these groups of compounds are intended to include also derivatives of the compounds from which the groups take their name.

The term "insulin" as used herein refers to human insulin as well as derivatives ans analogues hereof as defined below.

15

The term "human insulin" as used herein refers to insulin naturally produced in the human body or recombinantly produced insulin identical thereto. Recombinant human insulin may be produced in any suitable host cell, for example the host cells may be bacterial, fungal (including yeast), insect, animal or plant cells.

The term "insulin derivative" as used herein (and related terms) refers to human insulin or an analogue thereof in which at least one organic substituent is bound to one or more of the amino acids.

By the term "analogue of human insulin" as used herein (and related terms) is meant human insulin in which one or more amino acids have been deleted and/or replaced by other amino acids, including non-codeable amino acids, or human insulin comprising additional amino acids, i.e. more than 51 amino acids, such that the resulting analogue possesses insulin activity.

Rapid acting insulin is intended to mean human insulin, insulin analogues or insulin derivatives having an onset of action after injection or any other form of administration faster or equal to that of soluble and neutral formulations of human insulin.

The term "phenolic compound" or similar expressions as used herein refers to a compound in which a hydroxyl group is bound directly to a benzene or substituted benzene ring. Examples of such compounds include, but are not limited to, phenol, o-cresol, m-cresol, p-cresol, chloro-cresol, thymol, and 7-hydroxyindole.

20 DESCRIPTION OF THE INVENTION

The present invention is based on the discovery that the two known ligand binding sites of the R-state insulin hexamer can be used to obtain an insulin preparation having improved physical and chemical stability.

25

The basic concept underlying the present invention involves reversible attachment of a ligand to the His^{B10} Zn²⁺ site of the R-state hexamer. The anions currently used in insulin preparations as allosteric ligands for the R-state hexamers (notably chloride ion) bind only weakly to the His^{B10} anion site.

The His^{B10} Zn²⁺ site consists of a tunnel or cavity with a triangular-shaped cross-section that extends ~12 Å from the surface of the hexamer down to the His^{B10} Zn²⁺ ion. The diameter of the tunnel varies along its length and, depending on the nature of the ligand occupying the site, the opening can be capped over by the Asn^{B3} and Phe^{B1} side chains. The walls of the tunnel are made up of the side chains of the amino acid residues along one face each of the

10

15

20

25

30

three alpha-helices. The side chains from each helix that make up the lining of the tunnel are Phe^{B1}, Asn^{B3}, and Leu^{B6}. Therefore, except for the zinc ion, which is coordinated to three His^{B10} residues and is positioned at the bottom of the tunnel, the site is principally hydrophobic. Depending on the ligand structure, it may be possible for substituents on the ligand to make H-bonding interactions with Asn^{B3} and with the peptide linkage to Cys^{B7}.

In one aspect the invention provides a pharmaceutical composition comprising insulin and a zinc-binding ligand which reversibly binds to a His⁸¹⁰ Zn²⁺ site of an insulin hexamer, wherein the ligand is selected from the group consisting of benzotriazoles, 3-hydroxy 2-napthoic acids, salicylic acids, tetrazoles, thiazolidinediones, 5-mercaptotetrazoles, or 4-cyano-1,2,3-triazoles, or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

In one embodiment the invention provides a pharmaceutical composition wherein the zincbinding ligand is

wherein

X is =0, =S or =NH

Y is -S-, -O- or -NH-

R¹ and R⁴ are independently selected from hydrogen or C₁-C₅-alkyl,

 R^2 is hydrogen or C_1 - C_8 -alkyl or aryl, R^1 and R^2 may optionally be combined to form a double bond,

 R^3 and R^5 are independently selected from hydrogen, halogen, aryl, C_1 - C_8 -alkyl, or $-C(O)NR^{11}R^{12}$,

A and B are independently selected from C_1 - C_6 -alkyl, aryl- C_1 - C_6 -alkyl, aryl- C_2 - C_6 -alkenyl or heteroaryl, wherein the alkyl or alkenyl is optionally substituted with one or more substituents independently selected from R^6 and the aryl or heteroaryl is optionally substituted with up to four substituents R^7 , R^8 , R^9 , and R^{10} ,

A and R³ may be connected through one or two valence bonds, B and R⁵ may be connected through one or two valence bonds.

10

15

20

25

30

 R^8 is independently selected from halogen, -CN, -CF₃, -OCF₃, aryl, -COOH and -NH₂, R^7 , R^8 , R^9 and R^{10} are independently selected from

• C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl, each of which may optionally be substituted with one or more substituents independently selected from R^{13} ,

• aryl, aryloxy, aryloxycarbonyl, aroyl, arylsulfanyl, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkoxy, aryl- C_2 - C_6 -alkenyl, aryl- C_2 - C_6 -alkenyl, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkyl, heteroaryl- C_3 - C_6 -alkyl,

of which each cyclic moiety may optionally be substituted with one or more substituents independently selected from R¹⁴,

R¹¹ and R¹² are independently selected from hydrogen, OH, C₁-C₂₀-alkyl, aryl-C₁-C₆-alkyl or aryl, wherein the alkyl groups may optionally be substituted with one or more substituents independently selected from R¹⁵, and the aryl groups may optionally be substituted one or more substituents independently selected from R¹⁶; R¹¹ and R¹² when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom, the heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

R¹³ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR¹¹, -C(O)OR¹¹, -NR¹¹R¹², and -C(O)NR¹¹R¹².

10

25

 R^{14} is independently selected from halogen, $-C(O)OR^{11}$, $-CH_2C(O)OR^{11}$, $-CH_2OR^{11}$, -CN, $-CF_3$, $-OCF_3$, $-NO_2$, $-OR^{11}$, $-NR^{11}R^{12}$, $S(O)_2R^{11}$, aryl and C_1-C_8 -alkyl,

R¹⁵ is independently selected from halogen, -CN, -CF₃, -OC₁-C₆-alkyl, -C(O)OC₁-C₆-alkyl, -COOH and -NH₂,

 R^{16} is independently selected from halogen, $-C(O)OC_1-C_6$ -alkyl, -COOH, -CN, $-CF_3$, $-OCF_3$, $-NO_2$, -OH, $-OC_1-C_6$ -alkyl, $-NH_2$, C(=O) or C_1-C_6 -alkyl, or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

In another embodiment the invention provides a pharmaceutical composition wherein X is =O or =S.

In another embodiment the invention provides a pharmaceutical composition wherein X is =0.

In another embodiment the invention provides a pharmaceutical composition wherein X is =S.

In another embodiment the invention provides a pharmaceutical composition wherein Y is -O- or -S-.

20 In another embodiment the invention provides a pharmaceutical composition wherein Y is -O-.

In another embodiment the invention provides a pharmaceutical composition wherein Y is -S-.

In another embodiment the invention provides a pharmaceutical composition wherein A is aryl optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein A is selected from ArG1 optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein A is phenyl or naphtyl optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein A is

15

$$\bigcap_{\mathsf{R}^7}^{\mathsf{R}^9} \qquad \text{or} \qquad \bigcap_{\mathsf{R}^7}^{\mathsf{R}^9}$$

In another embodiment the invention provides a pharmaceutical composition wherein A is phenyl.

In another embodiment the invention provides a pharmaceutical composition wherein A is heteroaryl optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein A is selected from Het1 optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein A is selected from Het2 optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein A is selected from Het3 optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein A is selected from the group consisting of indolyl, benzofuranyl, quinolyl, furyl, thienyl, or pyrrolyl, wherein each heteroaryl may optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein A is benzofuranyl optionally substituted with up to four substituents R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein A is

$$\bigcap_{\mathsf{R}^{\mathsf{7}}}^{\mathsf{R}^{\mathsf{8}}} \quad \text{or} \quad \bigcap_{\mathsf{R}^{\mathsf{8}}}^{\mathsf{R}^{\mathsf{8}}} \quad \text{or} \quad \bigcap_{\mathsf{R}^{\mathsf{7}}}^{\mathsf{R}^{\mathsf{8}}}$$

In another embodiment the invention provides a pharmaceutical composition wherein A is carbazolyl optionally substituted with up to four substituents R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein A is

In another embodiment the invention provides a pharmaceutical composition wherein A is quinolyl optionally substituted with up to four substituents R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

5 In another embodiment the invention provides a pharmaceutical composition wherein A is

$$\mathbb{R}^{\mathbb{R}^{0}}$$
 or $\mathbb{R}^{\mathbb{R}^{0}}$

In another embodiment the invention provides a pharmaceutical composition wherein A is indolyl optionally substituted with up to four substituents R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

10 In another embodiment the invention provides a pharmaceutical composition wherein A is

In another embodiment the invention provides a pharmaceutical composition wherein R¹ is hydrogen.

In another embodiment the invention provides a pharmaceutical composition wherein R² is hydrogen.

In another embodiment the invention provides a pharmaceutical composition wherein R^1 and R^2 are combined to form a double bond.

In another embodiment the invention provides a pharmaceutical composition wherein R^3 is C_1 - C_6 -alkyl, halogen, or $C(O)NR^{16}R^{17}$.

In another embodiment the invention provides a pharmaceutical composition wherein R^3 is C_1 - C_8 -alkyl or $C(0)NR^{16}R^{17}$.

In another embodiment the invention provides a pharmaceutical composition wherein R³ is methyl.

20

25

35

In another embodiment the invention provides a pharmaceutical composition wherein B is phenyl optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

In another embodiment the invention provides a pharmaceutical composition wherein R⁴ is hydrogen.

In another embodiment the invention provides a pharmaceutical composition wherein R⁵ is hydrogen.

In another embodiment the invention provides a pharmaceutical composition wherein R⁶ is aryl.

10 In another embodiment the invention provides a pharmaceutical composition wherein R⁶ is phenyl.

In another embodiment the invention provides a pharmaceutical composition wherein R^7 , R^8 , R^9 and R^{10} are independently selected from

 $\bullet \text{hydrogen, halogen, -NO}_2, \ -\text{OR}^{11}, \ -\text{NR}^{11}\text{R}^{12}, \ -\text{SR}^{11}, \ -\text{NR}^{11}\text{S}(\text{O})_2\text{R}^{12}, \ -\text{S}(\text{O})_2\text{NR}^{11}\text{R}^{12}, \\ -\text{S}(\text{O})\text{NR}^{11}\text{R}^{12}, \ -\text{S}(\text{O})_2\text{R}^{11}, \ -\text{OS}(\text{O})_2\ \text{R}^{11}, \ -\text{NR}^{11}\text{C}(\text{O})\text{R}^{12}, \ -\text{CH}_2\text{OR}^{11}, \ -\text{CH}_2\text{OR}^{11}, \ -\text{OC}_1\text{-C}_6\text{-alkyl-C}(\text{O})\text{OR}^{11}, \ -\text{OC}_1\text{-C}_6\text{-alkyl-OR}^{11}, \ -\text{OC}_1\text{-C}_6\text{-alkyl-OR}^{11}, \ -\text{C}_2\text{-C}_6\text{-alkenyl-C}(\text{O})\text{OR}^{11}, \ -\text{C}_2\text{-C}_6\text{-alkenyl-C}(\text{O})\text{OR}^{11}$

• C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl or C_2 - C_8 -alkynyl, which may each optionally be substituted with one or more substituents independently selected from R^{13}

• aryl, aryloxy, aroyl, arylsulfanyl, aryl-C₁-C₈-alkoxy, aryl-C₁-C₈-alkyl, aryl-C₂-C₆-alkenyl, aroyl-C₂-C₆-alkenyl, aryl-C₂-C₈-alkynyl, heteroaryl, heteroaryl-C₁-C₆-alkyl, wherein each of the cyclic moieties optionally may be substituted with one or more substituents independently selected from R¹⁴

In another embodiment the invention provides a pharmaceutical composition wherein R⁷, R⁸, 30 R⁹ and R¹⁰ are independently selected from

• hydrogen, halogen, -NO₂, -OR¹¹, -NR¹¹R¹², -SR¹¹, -S(O)₂R¹¹, -OS(O)₂ R¹¹, -CH₂OC(O)R¹¹, -OC(O)R¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, -CC₁-C₆-alkyl-C(O)OR¹¹, or -C₂-C₆-alkenyl-C(O)R¹¹,

20

30

35

- C₁-C₆-alkyl or C₁-C₆-alkenyl which may each optionally be substituted with one or more substituents independently selected from R¹³
- aryl, aryloxy, aroyl, aryl-C₁-C₆-alkoxy, aryl-C₁-C₆-alkyl, heteroaryl,

of which each of the cyclic moieties optionally may be substituted with one or more substituents independently selected from R¹⁴

- In another embodiment the invention provides a pharmaceutical composition wherein R⁷, R⁸, R⁹ and R¹⁰ are independently selected from
 - hydrogen, halogen, -NO₂, -OR¹¹, -NR¹¹R¹², -SR¹¹, -S(O)₂R¹¹, -OS(O)₂ R¹¹, CH₂OC(O)R¹¹, -OC(O)R¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, -OC₁-C₆-alkyl-OR¹¹, -SC₁-C₆-alkyl-C(O)OR¹¹, -C(O)OR¹¹, or -C₂-C₆-alkenyl-C(=O)R¹¹,
 - C₁-C₆-alkyl or C₁-C₆- which may each optionally be substituted with one or more substituents independently selected from R¹³
 - aryl, aryloxy, aroyl, aryl-C₁-C₀-alkoxy, aryl-C₁-C₀-alkyl, heteroaryl,
 - of which each of the cyclic moieties optionally may be substituted with one or more substituents independently selected from R¹⁴.
- In another embodiment the invention provides a pharmaceutical composition wherein R⁷, R⁸, R⁹ and R¹⁰ are independently selected from
 - \bullet hydrogen, halogen, -OR¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, or -C(O)OR¹¹,
 - \bullet C₁-C₆-alkyl which may each optionally be substituted with one or more substituents independently selected from R^{13}
 - aryl, aryloxy, aryl-C₁-C₈-alkoxy,
 - of which each of the cyclic moieties optionally may be substituted with one or more substituents independently selected from R¹⁴.

15

30

In another embodiment the invention provides a pharmaceutical composition wherein R⁷, R⁸, R⁹ and R¹⁰ are independently selected from

- hydrogen, halogen, -OR¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, or -C(O)OR¹¹,
- C₁-C₆-alkyl which may optionally be substituted with one or more substituents independently selected from R¹³
 - phenyl, phenyloxy, phenyl-C₁-C₈-alkoxy, wherein each of the cyclic moieties optionally may be substituted with one or more substituents independently selected from R¹⁴.

In another embodiment the invention provides a pharmaceutical composition wherein R¹¹ and R¹² are independently selected from hydrogen, C₁-C₂₀-alkyl, aryl or aryl-C₁-C₆-alkyl, wherein the alkyl groups may optionally be substituted with one or more substituents independently selected from R¹⁵, and the aryl groups may optionally be substituted one or more substituents independently selected from R¹⁶; R¹¹ and R¹² when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom, the heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds.

- In another embodiment the invention provides a pharmaceutical composition wherein R¹¹ and R¹² are independently selected from hydrogen, C₁-C₂₀-alkyl, aryl or aryl-C₁-C₆-alkyl, wherein the alkyl groups may optionally be substituted with one or more substituents independently selected from R¹⁵, and the aryl groups may optionally be substituted one or more substituents independently selected from R¹⁶.
- In another embodiment the invention provides a pharmaceutical composition wherein R¹¹ and R¹² are independently selected from phenyl or phenyl-C₁-C₆-alkyl.
 - In another embodiment the invention provides a pharmaceutical composition wherein one or both of R^{11} and R^{12} are methyl.
 - In another embodiment the invention provides a pharmaceutical composition wherein R¹³ is independently selected from halogen, CF₃, OR¹¹ or NR¹¹R¹².
 - In another embodiment the invention provides a pharmaceutical composition wherein R¹³ is independently selected from halogen or OR¹¹.
 - In another embodiment the invention provides a pharmaceutical composition wherein R¹³ is OR¹¹.

In another embodiment the invention provides a pharmaceutical composition wherein R^{14} is independently selected from halogen, $-C(O)OR^{11}$, -CN, $-CF_3$, $-OR^{11}$, $S(O)_2R^{11}$, and C_1-C_8 -alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein R¹⁴ is independently selected from halogen, -C(O)OR¹¹, or -OR¹¹.

In another embodiment the invention provides a pharmaceutical composition wherein R¹⁵ is independently selected from halogen, -CN, -CF₃, -C(O)OC₁-C₆-alkyl, and -COOH.

In another embodiment the invention provides a pharmaceutical composition wherein R^{15} is independently selected from halogen or $-C(O)OC_1-C_6$ -alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein R¹⁶ is independently selected from halogen, -C(O)OC₁-C₈-alkyl, -COOH, -NO₂, -OC₁-C₈-alkyl, -NH₂, C(=O) or C₁-C₈-alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein R^{10} is independently selected from halogen, $-C(O)OC_1-C_6$ -alkyl, -COOH, $-NO_2$, or C_1-C_6 -alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein the zinc-binding ligand is

wherein

25

20 R¹⁹ is hydrogen or C₁-C₆-alkyl, R²⁰ is hydrogen or C₁-C₆-alkyl,

D and F are a valence bond or C_1 - C_6 -alkylene optionally substituted with one or more substituents independently selected from R^{72} .

R⁷² is independently selected from hydroxy, C₁-C₈-alkyl, or aryl,

E is C_1 - C_6 -alkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with up to three substituents R^{21} , R^{22} and R^{23} ,

30 G is C₁-C₆-alkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with up to three substituents R²⁴, R²⁵ and R²⁶.

10

15

20

30

35

R¹⁷, R¹⁸, R²¹, R²², R²³, R²⁴, R²⁵ and R²⁶ are independently selected from

• hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -SCF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷S(O)₂R²⁸, -S(O)₂NR²⁷R²⁸, -S(O)NR²⁷R²⁸, -S(O)R²⁷, -S(O)₂R²⁷, -C(O)NR²⁷R²⁸, -OC(O)NR²⁷R²⁸, -OC(O)NR²⁷R²⁸, -OC₁CO)OR²⁸, -CH₂C(O)NR²⁷R²⁸, -OCH₂C(O)NR²⁷R²⁸, -CH₂OR²⁷, -CH₂NR²⁷R²⁸, -OC(O)R²⁷, -OC₁-C₈-alkyl-C(O)OR²⁷, -SC₁-C₈-alkyl-C(O)OR²⁷, -C₂-C₈-alkyl-C(=O)OR²⁷, -NR²⁷-C(=O)-C₁-C₈-alkyl-C(=O)OR²⁷, -C₁-C₈-alkyl-C(=O)OR²⁷, -C₁-C₈-alkyl-C(=O)OR

C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl,

which may optionally be substituted with one or more substituents independently selected from R²⁹,

• aryl, aryloxy, aryloxycarbonyl, aroyl, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkyl, aryl- C_2 - C_6 -alkenyl, aryl- C_2 - C_6 -alkynyl, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkenyl or heteroaryl- C_2 - C_6 -alkynyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰,

R²⁷ and R²⁸ are independently selected from hydrogen, C₁-C₆-alkyl, aryl-C₁-C₆-alkyl or aryl, or R²⁷ and R²⁸ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

R²⁹ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR²⁷, and -NR²⁷R²⁸,

 R^{30} is independently selected from halogen, $-C(O)OR^{27}$, -CN, $-CF_3$, $-OCF_3$, $-NO_2$, $-OR^{27}$, $-NR^{27}R^{28}$ and C_1 - C_8 -alkyl, or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

In another embodiment the invention provides a pharmaceutical composition wherein D is a valence bond.

In another embodiment the invention provides a pharmaceutical composition wherein D is C_1 - C_6 -alkylene optionally substituted with one or more hydroxy, C_1 - C_6 -alkyl, or aryl.

In another embodiment the invention provides a pharmaceutical composition wherein E is aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with up to three substituents independently selected from R²¹, R²² and R²³.

In another embodiment the invention provides a pharmaceutical composition wherein E is aryl optionally substituted with up to three substituents independently selected from R²¹, R²² and R²³.

In another embodiment the invention provides a pharmaceutical composition wherein E is selected from ArG1 and optionally substituted with up to three substituents independently selected from R²¹, R²² and R²³.

In another embodiment the invention provides a pharmaceutical composition wherein E is phenyl optionally substituted with up to three substituents independently selected from R²¹, R²² and R²³.

In another embodiment the invention provides a pharmaceutical composition wherein the zinc-binding ligand is

20

10

15

In another embodiment the invention provides a pharmaceutical composition wherein R^{21} , R^{22} and R^{23} are independently selected from

25

30

• C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl,

35

which may optionally be substituted with one or more substituents independently selected from R²⁹

• aryl., aryloxy, aryloxycarbonyl, aroyl, aryl-C₁-C₆-alkoxy, aryl-C₁-C₈-alkyl, aryl-C₂-C₆-alkynyl, heteroaryl-C₁-C₆-alkyl, heteroaryl-C₂-C₆-alkynyl, aryl-C₂-C₆-alkynyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R^{21} , R^{22} and R^{23} are independently selected from

- hydrogen; halogen, $-OCF_3$, $-OR^{27}$, $-NR^{27}R^{28}$, $-SR^{27}$, $-NR^{27}C(O)R^{28}$, $-NR^{27}C(O)OR^{28}$, $-OC(O)R^{27}$, $-OC_1-C_6$ -alkyl- $-C(O)OR^{27}$, $-SC_1-C_6$ -alkyl- $-C(O)OR^{27}$, $-C_2-C_6$ -alkenyl- $-C(O)OR^{27}$, $-C(O)OR^{27}$, $-C(O)OR^{27}$, or $-C(O)OR^{27}$,
- C₁-C₀-alkyl optionally substituted with one or more substituents independently selected from R²9
 - aryl, aryloxy, aroyl, aryl-C₁-C₈-alkoxy, aryl-C₁-C₆-alkyl, heteroaryl, heteroaryl-C₁-C₈-alkyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R²¹, R²² and R²³ are independently selected from

• hydrogen, halogen, $-OCF_3$, $-OR^{27}$, $-NR^{27}R^{28}$, $-SR^{27}$, $-NR^{27}C(O)R^{28}$, $-NR^{27}C(O)OR^{28}$, $-OC(O)R^{27}$, $-OC_1-C_8$ -alkyl- $-C(O)OR^{27}$, $-SC_1-C_8$ -alkyl- $-C(O)OR^{27}$, $-C_2-C_8$ -alkyl- $-C(C_8-C_8)OR^{27}$, $-C_1-C_8$ -alkyl- $-C(C_8-C_8)OR^{27}$, or $-C(C_8-C_8)$

30

- methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
- aryl, aryloxy, aroyl, aryl-C₁-C₈-alkoxy, aryl-C₁-C₈-alkyl, heteroaryl, heteroaryl-C₁-C₈-alkyl

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R²¹, R²² and R²³ are independently selected from

- hydrogen, halogen, $-OCF_3$, $-OR^{27}$, $-NR^{27}R^{28}$, $-SR^{27}$, $-NR^{27}C(O)R^{28}$, $-NR^{27}C(O)OR^{28}$, $-OC(O)R^{27}$, $-OC_1-C_6$ -alkyl- $C(O)OR^{27}$, $-SC_1-C_6$ -alkyl- $C(O)OR^{27}$, $-C_2-C_6$ -alkenyl- $C(=O)OR^{27}$, $-C(=O)NR^{27}-C_1-C_6$ -alkyl- $C(=O)OR^{27}$, $-C_1-C_6$ -alkyl- $C(=O)OR^{27}$, or $-C(O)OR^{27}$,
 - methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
- •ArG1, ArG1-O-, ArG1-C(O)-, ArG1-C₁-C₆-alkoxy, ArG1-C₁-C₆-alkyl Het3, Het3-C₁-C₆-alkyl

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

- In another embodiment the invention provides a pharmaceutical composition wherein R^{21} , R^{22} and R^{23} are independently selected from
 - hydrogen, halogen, $-OCF_3$, $-OR^{27}$, $-NR^{27}R^{28}$, $-SR^{27}$, $-NR^{27}C(O)R^{28}$, $-NR^{27}C(O)OR^{28}$, $-OC(O)R^{27}$, $-OC_1-C_6$ -alkyl- $C(O)OR^{27}$, $-SC_1-C_6$ -alkyl- $C(O)OR^{27}$, $-C_2-C_6$ -alkyl- $C(O)OR^{27}$, or $-C(O)OR^{27}$, $-C_1-C_6$ -alkyl- $-C(O)OR^{27}$, $-C_1-C_6$ -alkyl- $-C(O)OR^{27}$, or $-C(O)OR^{27}$, $-C_1-C_6$ -alkyl- $-C(O)OR^{27}$, $-C_1-C_6$ - $-C_1-C_$
 - ${ullet}$ C₁-C₆-alkyl optionally substituted with one or more substituents independently selected from R^{29}
- phenyl, phenyloxy, phenyl-C₁-C₀-alkyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R¹⁹ is hydrogen or methyl.

In another embodiment the invention provides a pharmaceutical composition wherein R¹⁸ is hydrogen.

In another embodiment the invention provides a pharmaceutical composition wherein R^{27} is Hydrogen, C_1 - C_6 -alkyl or aryl.

In another embodiment the invention provides a pharmaceutical composition wherein R²⁷ is hydrogen or C₁-C₆-alkyt.

In another embodiment the invention provides a pharmaceutical composition wherein R^{28} is hydrogen or C_1 - C_8 -alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein F is a valence bond.

In another embodiment the invention provides a pharmaceutical composition wherein F is C_{1} - C_{8} -alkylene optionally substituted with one or more hydroxy, C_{1} - C_{8} -alkyl, or aryl.

In another embodiment the invention provides a pharmaceutical composition wherein G is C_1 - C_8 -alkyl or aryl, wherein the aryl is optionally substituted with up to three substituents R^{24} , R^{25} and R^{26} .

In another embodiment the invention provides a pharmaceutical composition wherein G is C_1 - C_6 -alkyl or ArG1, wherein the aryl is optionally substituted with up to three substituents R^{24} , R^{25} and R^{26} .

In another embodiment the invention provides a pharmaceutical composition wherein G is C₁-C₆-alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein G is phenyl optionally substituted with up to three substituents R²⁴, R²⁵ and R²⁶.

In another embodiment the invention provides a pharmaceutical composition wherein R^{24} , R^{25} and R^{26} are independently selected from

30

35

15

20

25

• hydrogen, halogen, -CHF₂, -CF₃, -OCF₃, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -C(O)NR²⁷R²⁸, -OC(O)NR²⁷R²⁸, -NR²⁷C(O)OR²⁸, -CH₂C(O)NR²⁷R²⁸, -CH₂OR²⁷, -CH₂NR²⁷R²⁸, -OC(O)R²⁷, -CH₂NR²⁷R²⁸, -OC(O)R²⁷, -OC₁-C₈-alkyl-C(O)OR²⁷, -SC₁-C₈-alkyl-C(O)OR²⁷, -NR²⁷-C(=O)-C₁-C₈-alkyl-C(=O)OR²⁷, -NR²⁷-C(=O)-C₁-C₈-alkyl-C(O)OR²⁷, -NR²⁷-C(=O)-C₁-C₈-alkyl-C(O)OR

alkenyl-C(=O)OR²⁷-, -C(=O)NR²⁷-C₁-C₆-alkyl-C(=O)OR²⁷, -C₁-C₆-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷,

C₁-C₀-alkyl, C₂-C₀-alkenyl or C₂-C₀-alkynyl,

5

which may optionally be substituted with one or more substituents independently selected from R²⁹

10

• aryl, aryloxy, aryloxycarbonyl, aroyl, aryl- C_1 - C_8 -alkoxy, aryl- C_1 - C_6 -alkyl, aryl- C_2 - C_6 -alkenyl, aryl- C_2 - C_6 -alkynyl, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkynyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

15

In another embodiment the invention provides a pharmaceutical composition wherein R^{24} , R^{25} and R^{28} are independently selected from

20

25

C₁-C₀-alkył, C₂-C₀-alkenyl or C₂-C₀-alkynyl,

alkenyl or heteroaryl-C2-C6-alkynyl,

substituents selected from R³⁰.

30

selected from R²⁹

aryl, aryloxy, aryloxycarbonyl, aroyl, aryl-C₁-C₈-alkoxy, aryl-C₁-C₈-alkyl, aryl-C₂-

C₆-alkenyl, aryl-C₂-C₆-alkynyl, heteroaryl, heteroaryl-C₁-C₆-alkyl, heteroaryl-C₂-C₆-

which may optionally be substituted with one or more substituents independently

of which the cyclic moieties optionally may be substituted with one or more

35

20

25

35

In another embodiment the invention provides a pharmaceutical composition wherein R²⁴, R²⁵ and R²⁸ are independently selected from

- hydrogen, halogen, -OCF₃, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸,
 -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, -C₂-C₆-alkenyl-C(=O)OR²⁷, -C(=O)NR²⁷-C₁-C₆-alkyl-C(=O)OR²⁷, -C₁-C₆-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷,
- C₁-C₆-alkyl optionally substituted with one or more substituents independently selected from R²⁹
 - aryl, aryloxy, aroyl, aryl- C_1 - C_8 -alkoxy, aryl- C_1 - C_8 -alkyl, heteroaryl- C_1 - C_8 -alkyl,
- of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R^{21} , R^{22} and R^{23} are independently selected from

- hydrogen, halogen, -OCF₃, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸, -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, -C₂-C₆-alkenyl-C(=O)OR²⁷, -C(=O)NR²⁷-C₁-C₆-alkyl-C(=O)OR²⁷, -C₁-C₆-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷,
- methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
- •ArG1, ArG1-O-, ArG1-C(O)-, ArG1-C $_1$ -C $_8$ -alkoxy, ArG1-C $_1$ -C $_8$ -alkyl C $_8$ -alkyl

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R^{21} , R^{22} and R^{23} are independently selected from

• hydrogen, halogen, -OCF₃, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸, -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, -C₂-C₆-alkenyl-C(=O)OR²⁷, -C(=O)NR²⁷-C₁-C₆-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷,

5

- methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
- ArG1, ArG1-O-, ArG1-C(O)-, ArG1-C₁-C₆-alkoxy, ArG1-C₁-C₆-alkyl, Het3, Het3-C₁-C₆-alkyl

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R²¹, R²² and R²³ are independently selected from

15

10

- hydrogen, halogen, -OCF₃, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸, -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, -C₂-C₆-alkenyl-C(=O)OR²⁷, -C(=O)NR²⁷-C₁-C₆-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷,
- methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
 - ArG1, ArG1-O-, ArG1-C₁-C₆-alkoxy, ArG1-C₁-C₆-alkyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R²⁰ is hydrogen or methyl.

In another embodiment the invention provides a pharmaceutical composition wherein R²⁰ is hydrogen.

In another embodiment the invention provides a pharmaceutical composition wherein R^{27} is hydrogen, C_1 - C_6 -alkyl or aryl.

In another embodiment the invention provides a pharmaceutical composition wherein R²⁷ is hydrogen or C₁-C₆-alkyl or ArG1.

30

In another embodiment the invention provides a pharmaceutical composition wherein R^{27} is hydrogen or C_1 - C_6 -alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein R^{28} is hydrogen or C_1 - C_8 -alkyl.

- In another embodiment the invention provides a pharmaceutical composition wherein R¹⁷ and R¹⁸ are independently selected from
 - hydrogen, halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -S(O)R²⁷, -S(O)₂R²⁷, -C(O)NR²⁷R²⁸, -CH₂OR²⁷, -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, or -C(O)OR²⁷,
 - \bullet C₁-C₆-alkyl, C₂-C₈-alkenyl or C₂-C₈-alkynyl, optionally substituted with one or more substituents independently selected from R²⁹
- aryl, aryloxy, aroyl, aryl-C₁-C₆-alkoxy, aryl-C₁-C₆-alkyl, heteroaryl, heteroaryl-C₁-C₆-alkyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

- In another embodiment the invention provides a pharmaceutical composition wherein R¹⁷ and R¹⁸ are independently selected from
 - hydrogen, halogen, -CN, -CF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, or -C(O)OR²⁷,
- C₁-C₆-alkyl optionally substituted with one or more substituents independently selected from R²⁹
 - aryl, aryloxy, aroyl, aryl-C₁-C₈-alkoxy, aryl-C₁-C₈-alkyl, heteroaryl, heteroaryl-C₁-C₈-alkyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R¹⁷ and R¹⁸ are independently selected from

10

20

- hydrogen, halogen, -CN, -CF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, or -C(O)OR²⁷
- methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
- aryl, aryloxy, aroyl, aryl-C₁-C₈-alkoxy, aryl-C₁-C₈-alkyl, heteroaryl, heteroaryl-C₁-C₈-alkyl

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R¹⁷ and R¹⁸ are independently selected from

- hydrogen, halogen, -CN, -CF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, or -C(O)OR²⁷
- methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
- ArG1, ArG1-O-, ArG1-C(O)-, ArG1-C₁-C₈-alkoxy, ArG1-C₁-C₈-alkyl, Het3, Het3-C₁-C₈-alkyl
- of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R¹⁷ and R¹⁸ are independently selected from

- hydrogen, halogen, -CN, -CF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, or -C(O)OR²⁷
- C₁-C₆-alkyl optionally substituted with one or more substituents independently selected from R²⁶
 - phenyl, phenyloxy, phenyl-C₁-C₆-alkoxy, phenyl-C₁-C₆-alkyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

In another embodiment the invention provides a pharmaceutical composition wherein R²⁷ is hydrogen or C₁-C₈-alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein R²⁷ is hydrogen, methyl or ethyl.

In another embodiment the invention provides a pharmaceutical composition wherein R²⁸ is hydrogen or C₁-C₈-alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein R²⁸ is hydrogen, methyl or ethyl.

In another embodiment the invention provides a pharmaceutical composition wherein R⁷² is -OH or phenyl.

30

In another embodiment the invention provides a pharmaceutical composition wherein the zinc-binding ligand is

In another embodiment the invention provides a pharmaceutical composition wherein the zinc-binding ligand is of the form H-I-J

wherein H is

wherein the phenyl, naphthalene or benzocarbazole rings are optionally substituted with one or more substituents independently selected from R³¹

I is selected from

a valence bond,

• -CH₂N(R³²)- or -SO₂N(R³³)-,

$$-z^{1}-N$$

• wherein Z¹ is S(O)₂ or CH₂, Z² is -NH-, -O-or -S-, and n is 1 or 2,

J is

20

25

- C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl or C_2 - C_8 -alkynyl, which may each optionally be substituted with one or more substituents selected from R^{34} ,
- Aryl, aryloxy, aryl-oxycarbonyl-, aroyl, aryl- C_1 - C_8 -alkoxy-, aryl- C_1 - C_8 -alkyl-, aryl- C_2 - C_6 -alkynyl-, heteroaryl- C_1 - C_6 -alkyl-, heteroaryl- C_2 - C_6 -alkynyl-, wherein the cyclic moieties are optionally substituted with one or more substituents selected from \mathbb{R}^{37} .
- 30 hydrogen,

10

15

20

R³¹ is independently selected from hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -SCF₃, -NO₂, -OR³⁵, -C(O)R³⁵, -NR³⁵R³⁶, -SR³⁵, -NR³⁵S(O)₂R³⁶, -S(O)₂NR³⁵R³⁶, -S(O)NR³⁵R³⁶, -S(O)R³⁵, -S(O)₂R³⁵, -C(O)NR³⁵R³⁶, -C(O)NR³⁵R³⁶, -CH₂C(O)NR³⁵R³⁶, -OC(O)NR³⁵R³⁶, -CH₂OR³⁵, -CH₂C(O)NR³⁵R³⁶, -OC(O)R³⁵, -CH₂OR³⁵, -CH₂OR

R³² and R³³ are independently selected from hydrogen, C₁-C₆-alkyl or C₁-C₆-alkanoyl,

R³⁴ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR³⁵, and -NR³⁵R³⁶,

R³⁵ and R³⁶ are independently selected from hydrogen, C₁-C₆-alkyl, aryl-C₁-C₆-alkyl or aryl, or R³⁵ and R³⁶ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

R³⁷ is independently selected from halogen, -C(O)OR³⁵, -C(O)H, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶, C₁-C₆-alkyl or C₁-C₆-alkanovl.

or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

In another embodiment the invention provides a pharmaceutical composition wherein the zinc-binding ligand is of the form H-I-J, wherein H is

wherein the phenyl, naphthalene or benzocarbazole rings are optionally substituted with one or more substituents independently selected from R³¹.

30 I is selected from

- a valence bond,
- -CH₂N(R³²)- or -SO₂N(R³³)-,

$$-z^{1}-N z^{2}$$

wherein Z^1 is $S(O)_2$ or CH_2 , Z^2 is N,-O-or -S-, and n is 1 or 2,

5 Jis

10

25

30

• C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl or C_2 - C_8 -alkynyl, which may each optionally be substituted with one or more substituents selected from R^{34} ,

• Aryl, aryloxy, aryl-oxycarbonyl-, aroyl, aryl- C_1 - C_8 -alkoxy-, aryl- C_1 - C_8 -alkyl-, aryl- C_2 - C_8 -alkynyl-, heteroaryl- C_1 - C_8 -alkyl-, heteroaryl- C_2 - C_8 -alkynyl-, wherein the cyclic moieties are optionally substituted with one or more substituents selected from R^{37} ,

hydrogen,

R³² and R³³ are independently selected from hydrogen, C₁-C₆-alkyl or C₁-C₆-alkanoyl,

R³⁴ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR³⁵, and -NR³⁵R³⁶,

R³⁵ and R³⁶ are independently selected from hydrogen, C₁-C₈-alkyl, aryl-C₁-C₆-alkyl or aryl, or R³⁵ and R³⁶ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

 R^{37} is independently selected from halogen, $-C(O)OR^{35}$, -C(O)H, -CN, $-CF_3$, $-OCF_3$, $-NO_2$, $-OR^{35}$, $-NR^{35}R^{36}$, C_1-C_8 -alkyl or C_1-C_8 -alkanoyl,

or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base,

With the proviso that R31 and J cannot both be hydrogen.

In another embodiment the invention provides a pharmaceutical composition wherein H is

In another embodiment the invention provides a pharmaceutical composition wherein H is

10

In another embodiment the invention provides a pharmaceutical composition wherein H is

In another embodiment the invention provides a pharmaceutical composition wherein I is a valence bond, $-CH_2N(R^{32})$ -, or $-SO_2N(R^{33})$ -.

In another embodiment the invention provides a pharmaceutical composition wherein I is a valence bond.

In another embodiment the invention provides a pharmaceutical composition wherein J is

- hydrogen,
- C₁-C₀-alkyl, C₂-C₀-alkenyl or C₂-C₀-alkynyl,

which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -OR³⁵, and -NR³⁵R³⁶,

• aryl, or heteroaryl, wherein the cyclic moieties are optionally substituted with one or more substituents independently selected from R³⁷.

In another embodiment the invention provides a pharmaceutical composition wherein J is

10

15

25

35

- hydrogen,
- aryl or heteroaryl, wherein the cyclic moieties are optionally substituted with one or more substituents independently selected from R³⁷.

In another embodiment the invention provides a pharmaceutical composition wherein J is

- hydrogen,
- ArG1 or Het3, wherein the cyclic moieties are optionally substituted with one or more substituents independently selected from R³⁷.

In another embodiment the invention provides a pharmaceutical composition wherein J is

- hydrogen,
- phenyl or naphthyl optionally substituted with one or more substituents independently selected from R³⁷.

In another embodiment the invention provides a pharmaceutical composition wherein J is hydrogen.

In another embodiment the invention provides a pharmaceutical composition wherein R^{32} and R^{33} are independently selected from hydrogen or C_1 - C_6 -alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein R^{34} is hydrogen, halogen, -CN, -CF₃, -OCF₃, -SCF₃, -NO₂, -OR³⁵, -C(O)R³⁵, -NR³⁵R³⁶, -SR³⁵, -C(O)NR³⁵R³⁶, -OC(O)NR³⁵R³⁶, -NR³⁵C(O)R³⁶, -OC(O)R³⁵, -OC₁-C₆-alkyl-C(O)OR³⁵, -SC₁-C₆-alkyl-C(O)OR³⁵ or -C(O)OR³⁵.

In another embodiment the invention provides a pharmaceutical composition wherein R³⁴ is hydrogen, halogen, -CF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶, -SR³⁵, -NR³⁵C(O)R³⁶, or -C(O)OR³⁵.

In another embodiment the invention provides a pharmaceutical composition wherein R³⁴ is hydrogen, halogen, -CF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶, or -NR³⁵C(O)R³⁶.

In another embodiment the invention provides a pharmaceutical composition wherein R³⁴ is hydrogen, halogen, or -OR³⁵.

In another embodiment the invention provides a pharmaceutical composition wherein R^{35} and R^{36} are independently selected from hydrogen, C_1 - C_6 -alkyl, or aryl.

In another embodiment the invention provides a pharmaceutical composition wherein R^{35} and R^{36} are independently selected from hydrogen or C_1 - C_6 -alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein R³⁷ is halogen, -C(O)OR³⁵, -CN, -CF₃, -OR³⁵, -NR³⁵R³⁶, C₁-C₆-alkyl or C₁-C₆-alkanoyl.

In another embodiment the invention provides a pharmaceutical composition wherein R^{37} is halogen, $-C(O)OR^{35}$, $-OR^{35}$, $-OR^{$

In another embodiment the invention provides a pharmaceutical composition wherein R³⁷ is halogen, -C(O)OR³⁵ or -OR³⁵.

15

In another embodiment the invention provides a pharmaceutical composition wherein the zinc-binding ligand is

wherein K is a valence bond, C₁-C₆-alkylene, -NH-C(=O)-U-, -C₁-C₆-alkyl-S-, -C₁-C₆-alkyl-O-, -C(=O)-, or -C(=O)-NH-, wherein any C₁-C₆-alkyl moiety is optionally substituted with R³⁸,

U is a valence bond, C_1 - C_6 -alkenylene, $-C_1$ - C_6 -alkyl-O- or C_1 - C_6 -alkylene wherein any C_1 - C_6 -alkyl moiety is optionally substituted with C_1 - C_6 -alkyl,

 R^{38} is C_1 - C_8 -alkyl, aryl, wherein the alkyl or aryl moieties are optionally substituted with one or more substituents independently selected from R^{39} ,

R³⁹ is independently selected from halogen, cyano, nitro, amino,

M is a valence bond, arylene or heteroarylene, wherein the aryl or heteroaryl moieties are optionally substituted with one or more substituents independently selected from R⁴⁰,

R⁴⁰ is selected from

• C₁-C₆-alkyl, C₂-C₈-alkenyl or C₂-C₈-alkynyl, which may each optionally be substituted with one or more substituents selected from R⁴³.

10

15

• aryl, aryloxy, aryloxycarbonyl, aroyl, arylsulfanyl, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkyl, aryl- C_2 - C_6 -alkenyl, aroyl- C_2 - C_6 -alkenyl, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkenyl or heteroaryl- C_2 - C_6 -alkyl, wherein the cyclic moieties optionally may be substituted with one or more substituents selected from R^{44} .

R⁴¹ and R⁴² are independently selected from hydrogen, -OH, C₁-C₆-alkyl, C₁-C₆-alkenyl, aryl-C₁-C₆-alkyl or aryl, wherein the alkyl moieties may optionally be substituted with one or more substituents independently selected from R⁴⁵, and the aryl moieties may optionally be substituted with one or more substituents independently selected from R⁴⁶; R⁴¹ and R⁴² when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom, the heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

R⁴³ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR⁴¹, and -NR⁴¹R⁴²

 R^{44} is independently selected from halogen, -C(O)OR⁴¹, -CH₂C(O)OR⁴¹, -CH₂OR⁴¹, -CN, -CF₃, -OCF₃, -NO₂, -QR⁴¹, -NR⁴¹R⁴² and C₁-C₆-alkyl,

20 R^{45} is independently selected from halogen, -CN, -CF₃, -OCF₃, -O-C₁-C₆-alkyl, -C(O)-O-C₁-C₈-alkyl, -COOH and -NH₂,

 R^{46} is independently selected from halogen, $-C(O)OC_1-C_6$ -alkyl, -COOH, -CN, $-CF_3$, $-OCF_3$, $-NO_2$, -OH, $-OC_1-C_6$ -alkyl, $-NH_2$, C(=O) or C_1-C_6 -alkyl,

Q is a valence bond, C₁-C₆-alkylene, -C₁-C₆-alkyl-O-, -C₁-C₆-alkyl-NH-, -NH-C₁-C₆-alkyl, -NH-C(=O)-, -C(=O)-NH-, -O-C₁-C₆-alkyl, -C(=O)-, or -C₁-C₆-alkyl-C(=O)-N(R⁴⁷)- wherein the alkyl moieties are optionally substituted with one or more substituents independently selected from R⁴⁸,

30 R⁴⁷ and R⁴⁸ are independently selected from hydrogen, C₁-C₈-alkyl, aryl optionally substituted with one or more R⁴⁹,

R⁴⁹ is independently selected from halogen and –COOH,

35 T is

25

35

- hydrogen,
- C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_1 - C_6 -alkyloxy-carbonyl, wherein the alkyl, alkenyl and alkynyl moieties are optionally substituted with one or more substituents independently selected from R^{50} ,
- aryl, aryloxy, aryloxy-carbonyl, aryl- C_1 - C_6 -alkyl, aroyl, aryl- C_1 - C_6 -alkoxy, aryl- C_2 - C_6 -alkenyl, aryl- C_2 - C_6 -alkyny-, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkynyl,
- wherein any alkyl, alkenyl, aryl and heteroaryl moiety is optionally substituted with one or more substituents independently selected from R⁵⁰,

R⁵⁰ is C₁-C₆-alkyl, C₁-C₆-alkoxy, aryl, aryloxy, aryl-C₁-C₆-alkoxy, -C(=O)-NH-C₁-C₆-alkyl-aryl, heteroaryl-C₁-C₆-alkoxy, -C₁-C₆-alkyl-COOH, -O-C₁-C₆-alkyl-COOH, -S(O)₂R⁵¹, -C₂-C₆-alkenyl-COOH, -OR⁵¹, -NO₂, halogen, -COOH, -CF₃, -CN, =O, -N(R⁵¹R⁵²), wherein the aryl or heteroaryl moieties are optionally substituted with one or more R⁵³.

R⁵¹ and R⁵² are independently selected from hydrogen and C₁-C₈-alkyl,

R⁵³ is independently selected from C₁-C₈-alkyl, C₁-C₆-alkoxy, -C₁-C₈-alkyl-COOH, -C₂
C₆-alkenyl-COOH, -OR⁵¹, -NO₂, halogen, -COOH, -CF₃, -CN, or -N(R⁵¹R⁵²),

or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

In another embodiment the invention provides a pharmaceutical composition wherein K is a valence bond, C_1 - C_6 -alkylene, -NH-C(=O)-U-, - C_1 - C_6 -alkyl-S-, - C_1 - C_6 -alkyl-O-, or -C(=O)-, wherein any C_1 - C_6 -alkyl moiety is optionally substituted with R^{36} .

In another embodiment the invention provides a pharmaceutical composition wherein K is a valence bond, C_1 - C_6 -alkylene, -NH-C(=O)-U-, - C_1 - C_6 -alkyl-S-, or - C_1 - C_6 -alkyl moiety is optionally substituted with R^{36} .

In another embodiment the invention provides a pharmaceutical composition wherein K is a valence bond, C₁-C₈-alkylene, or -NH-C(=O)-U, wherein any C₁-C₈-alkyl moiety is optionally substituted with R³⁸.

In another embodiment the invention provides a pharmaceutical composition wherein K is a valence bond or C_1 - C_6 -alkylene, wherein any C_1 - C_6 -alkyl moiety is optionally substituted with R^{38} .

20

25

30

In another embodiment the invention provides a pharmaceutical composition wherein K is a valence bond or -NH-C(=O)-U.

In another embodiment the invention provides a pharmaceutical composition wherein K is a valence bond.

In another embodiment the invention provides a pharmaceutical composition wherein U is a valence bond or -C₁-C₆-alkyl-O-.

In another embodiment the invention provides a pharmaceutical composition wherein U is a valence bond.

In another embodiment the invention provides a pharmaceutical composition wherein M is arylene or heteroarylene, wherein the arylene or heteroarylene moieties are optionally substituted with one or more substituents independently selected from R⁴⁰.

In another embodiment the invention provides a pharmaceutical composition wherein M is ArG1 or Het1, wherein the arylene or heteroarylene moieties are optionally substituted with one or more substituents independently selected from R⁴⁰.

In another embodiment the invention provides a pharmaceutical composition wherein M is ArG1 or Het2, wherein the arylene or heteroarylene moieties are optionally substituted with one or more substituents independently selected from R⁴⁰.

In another embodiment the invention provides a pharmaceutical composition wherein M is ArG1 or Het3, wherein the arylene or heteroarylene moieties are optionally substituted with one or more substituents independently selected from R⁴⁰.

In another embodiment the invention provides a pharmaceutical composition wherein M is phenylene optionally substituted with one or more substituents independently selected from R⁴⁰.

In another embodiment the invention provides a pharmaceutical composition wherein M is indolylene optionally substituted with one or more substituents independently selected from R⁴⁰.

In another embodiment the invention provides a pharmaceutical composition wherein M is

In another embodiment the invention provides a pharmaceutical composition wherein M is carbazolylene optionally substituted with one or more substituents independently selected from R⁴⁰.

In another embodiment the invention provides a pharmaceutical composition wherein M is

10

15

20

25

In another embodiment the invention provides a pharmaceutical composition wherein R⁴⁰ is selected from

• hydrogen, halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR⁴¹, -NR⁴¹R⁴², -SR⁴¹, -S(O)₂R⁴¹, -NR⁴¹C(O)R⁴², -OC₁-C₆-alkyl-C(O)NR⁴¹R⁴², -C₂-C₆-alkenyl-C(=O)OR⁴¹, -C(O)OR⁴¹, =O, -NH-C(=O)-O-C₁-C₆-alkyl, or -NH-C(=O)-C(=O)-O-C₁-C₆-alkyl,

 C_1 - C_6 -alkyl or C_2 - C_8 - alkenyl which may each optionally be substituted with one or more substituents independently selected from R^{43} ,

• aryl. aryloxy, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkyl, aryl- C_2 - C_6 -alkenyl, heteroaryl- C_1 - C_6 -alkyl, or heteroaryl- C_2 - C_6 -alkenyl, wherein the cyclic moieties optionally may be substituted with one or more substituents selected from R^{44} .

In another embodiment the invention provides a pharmaceutical composition wherein R⁴⁰ is selected from

• hydrogen, halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR⁴¹, -NR⁴¹R⁴², -SR⁴¹, -S(O)₂R⁴¹, -NR⁴¹C(O)R⁴², -OC₁-C₈-alkyl-C(O)NR⁴¹R⁴², -C₂-C₈-alkenyl-C(=O)OR⁴¹, -C(O)OR⁴¹, =O, -NH-C(=O)-O-C₁-C₈-alkyl, or -NH-C(=O)-C(=O)-O-C₁-C₈-alkyl,

C₁-C₆-alkyl or C₂-C₆- alkenyl which may each optionally be substituted with one or more substituents independently selected from R⁴³,

• ArG1, ArG1-O-, ArG1-C₁-C₈-alkoxy, ArG1-C₁-C₈-alkyl, ArG1-C₂-C₈-alkenyl, Het3, Het3-C₁-C₈-alkyl, or Het3-C₂-C₈-alkenyl, wherein the cyclic moieties optionally may be substituted with one or more substituents selected from R⁴⁴.

In another embodiment the invention provides a pharmaceutical composition wherein R⁴⁰ is selected from

- hydrogen, halogen, -CF₃, -NO₂, -OR⁴¹, -NR⁴¹R⁴², -C(O)OR⁴¹, =O, or -NR⁴¹C(O)R⁴²,
- C₁-C₆-alkyl,

30 • ArG1.

In another embodiment the invention provides a pharmaceutical composition wherein R⁴⁰ is selected from

- Halogen, -NO₂, -OR⁴¹, -NR⁴¹R⁴², -C(O)OR⁴¹, or -NR⁴¹C(O)R⁴²,
- Methyl,
- Phenyl.

In another embodiment the invention provides a pharmaceutical composition wherein R⁴¹ and R⁴² are independently selected from hydrogen, C₁-C₈-alkyl, or aryl, wherein the aryl moieties may optionally be substituted with halogen or –COOH.

In another embodiment the invention provides a pharmaceutical composition wherein R⁴¹ and R⁴² are independently selected from hydrogen, methyl, ethyl, or phenyl, wherein the phenyl moieties may optionally be substituted with halogen or –COOH.

In another embodiment the invention provides a pharmaceutical composition wherein Q is a valence bond, C₁-C₆-alkylene, -C₁-C₆-alkyl-O-, -C₁-C₆-alkyl-NH-, -NH-C₁-C₈-alkyl, -NH-C(=O)-, -C(=O)-NH-, -O-C₁-C₆-alkyl, -C(=O)-, or -C₁-C₆-alkyl-C(=O)-N(R⁴⁷)- wherein the alkyl moieties are optionally substituted with one or more substituents independently selected from R⁴⁸.

In another embodiment the invention provides a pharmaceutical composition wherein Q is a valence bond, -CH₂-, -CH₂-CH₂-, -CH₂-O-, -CH₂-CH₂-O-, -CH₂-NH-, -CH₂-NH-, -NH-CH₂-, -NH-CH₂-, -NH-C(=O)-, -C(=O)-NH-, -O-CH₂-, -O-CH₂-CH₂-, or -C(=O)-. In another embodiment the invention provides a pharmaceutical composition wherein R⁴⁷ and R⁴⁸ are independently selected from hydrogen, methyl and phenyl.

20 In another embodiment the invention provides a pharmaceutical composition wherein T is

- hydrogen,
- \bullet C₁-C₈-alkyl optionally substituted with one or more substituents independently selected from R^{50} .
- aryl. aryl-C₁-C₆-alkyl, heteroaryl, wherein the alkyl, aryl and heteroaryl moieties are optionally substituted with one or more substituents independently selected from R⁵⁰.

In another embodiment the invention provides a pharmaceutical composition wherein T is

hydrogen,

25

- C_1 - C_0 -alkyl optionally substituted with one or more substituents independently selected from R^{50} .
- ArG1, ArG1-C₁-C₈-alkyl, Het3, wherein the alkyl, aryl and heteroaryl moieties are optionally substituted with one or more substituents independently selected from R⁵⁰.

In another embodiment the invention provides a pharmaceutical composition wherein T is
• hydrogen,

- C₁-C₆-alkyl, optionally substituted with one or more substituents independently selected from R⁵⁰.
- phenyl, phenyl-C₁-C₆-alkyl, wherein the alkyl and phenyl moieties are optionally substituted with one or more substituents independently selected from R⁵⁰.

10

25

In another embodiment the invention provides a pharmaceutical composition wherein R^{50} is C_1 – C_6 -alkyl, C_1 - C_6 -alkoxy, aryl, aryloxy, aryl- C_1 - C_6 -alkoxy, -C(=O)-NH- C_1 - C_6 -alkyl-aryl, heteroaryl, -C₁- C_6 -alkyl-COOH, -O- C_1 - C_6 -alkyl-COOH, -S(O)₂ R^{51} , -C₂- C_6 -alkenyl-COOH, -OR⁵¹, -NO₂, halogen, -COOH, -CF₃, -CN, =O, -N($R^{51}R^{52}$), wherein the aryl or heteroaryl moieties are optionally substituted with one or more R^{53} .

In another embodiment the invention provides a pharmaceutical composition wherein R^{50} is C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, aryl, aryloxy, aryl- C_1 - C_8 -alkoxy, -OR 51 , -NO $_2$, halogen, -COOH, -CF $_3$, wherein any aryl moiety is optionally substituted with one or more R^{53} .

In another embodiment the invention provides a pharmaceutical composition wherein R⁵⁰ is C₁-C₈-alkyl, aryloxy, aryl-C₁-C₈-alkoxy, -OR⁵¹, halogen, -COOH, -CF₃, wherein any aryl moiety is optionally substituted with one or more R⁵³.

In another embodiment the invention provides a pharmaceutical composition wherein R⁵⁰ is C₁-C₈-alkyl, ArG1-O-, ArG1-C₁-C₆-alkoxy, -OR⁵¹, halogen, -COOH, -CF₃, wherein any aryl moiety is optionally substituted with one or more R⁵³.

In another embodiment the invention provides a pharmaceutical composition wherein R⁵⁰ is phenyl, methyl or ethyl.

In another embodiment the invention provides a pharmaceutical composition wherein R⁵⁰ is methyl or ethyl.

In another embodiment the invention provides a pharmaceutical composition wherein R⁵¹ is methyl.

In another embodiment the invention provides a pharmaceutical composition wherein R^{53} is C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, - OR^{51} , halogen, or - CF_3 .

In another embodiment the invention provides a pharmaceutical composition wherein the 30 zinc-binding ligand is

wherein V is C_1 - C_8 -alkyl, aryl, heteroaryl, aryl- $C_{1.8}$ -alkyl- or aryl- $C_{2.8}$ -alkenyl-, wherein the alkyl or alkenyl is optionally substituted with one or more substituents independently selected from R^{54} , and the aryl or heteroaryl is optionally substituted with one or more substituents independently selected from R^{55} ,

5

 R^{54} is independently selected from halogen, -CN, -CF₃, -OCF₃, aryl, -COOH and -NH₂, R^{55} is independently selected from

10

• hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -OS(O)₂CF₃, -SCF₃, -NO₂, -OR⁵⁸, -NR⁵⁸R⁵⁷, -SR⁵⁸, -NR⁵⁸S(O)₂R⁵⁷, -S(O)₂NR⁵⁸R⁵⁷, -S(O)NR⁵⁸R⁵⁷, -S(O)R⁵⁸, -S(O)₂R⁵⁸, -OS(O)₂ R⁵⁸, -C(O)NR⁵⁸R⁵⁷, -OC(O)NR⁵⁸R⁵⁷, -OC(O)NR⁵⁸R⁵⁷, -OC₁-C₈-alkyl-C(O)NR⁵⁸R⁵⁷, -CH₂OR⁵⁸, -CH₂OC(O)R⁵⁸, -CH₂NR⁵⁸R⁵⁷, -OC(O)R⁵⁸, -OC₁-C₈-alkyl-C(O)OR⁵⁸, -OC₁-C₈-alkyl-C(O)OR⁵⁸, -OC₁-C₈-alkyl-C(O)OR⁵⁸, -NR⁵⁸-C(=O)-C₁-C₈-alkyl-C(=O)OR⁵⁸, -NR⁵⁸-C(=O)-C₁-C₈-alkyl-C(=O)OR⁵⁸, -NR⁵⁸-C(=O)-C₁-C₈-alkenyl-C(=O)OR⁵⁸, -C(O)OR⁵⁸, -C(O)O

15

• C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl,

20

which may optionally be substituted with one or more substituents selected from R58,

• aryl, aryloxy, aryloxycarbonyl, aroyl, arylsulfanyl, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkoxy, aryl- C_2 - C_6 -alkenyl, aryl- C_2 - C_6 -alkoxyl, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkenyl or heteroaryl- C_2 - C_6 -alkynyl,

25

30

35

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R^{59} ,

R⁵⁶ and R⁵⁷ are independently selected from hydrogen, OH, CF₃, C₁-C₁₂-alkyl, aryl-C₁-C₆-alkyl, -C(=O)-C₁-C₆-alkyl or aryl, wherein the alkyl groups may optionally be substituted with one or more substituents independently selected from R⁶⁰, and the aryl groups may optionally be substituted with one or more substituents independently selected from R⁶¹; R⁵⁶ and R⁵⁷ when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom, the heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds.

20

25

30

R⁵⁸ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR⁵⁶, and -NR⁵⁶R⁵⁷,

 R^{59} is independently selected from halogen, -C(O)OR⁵⁶, -CH₂C(O)OR⁵⁶, -CH₂OR⁵⁶, -CN, - CF₃, -OCF₃, -NO₂, -OR⁵⁶, -NR⁵⁶R⁵⁷ and C₁-C₆-alkyl,

 R^{80} is independently selected from halogen, -CN, -CF₃, -OCF₃, -OC₁-C₆-alkyl, -C(O)OC₁-C₆-alkyl, -C(=O)- R^{82} , -COOH and -NH₂,

R⁶¹ is independently selected from halogen, -C(O)OC₁-C₆-alkyl, -COOH, -CN, -CF₃, -OCF₃, -NO₂, -OH, -OC₁-C₆-alkyl, -NH₂, C(=O) or C₁-C₆-alkyl,

 R^{62} is C_1 - C_6 -alkyl, aryl optionally substituted with one or more substituents independently selected from halogen, or heteroaryl optionally substituted with one or more C_1 - C_6 -alkyl independently,

or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

In another embodiment the invention provides a pharmaceutical composition wherein V is aryl, heteroaryl, or aryl-C₁₋₆-alkyl-, wherein the alkyl is optionally substituted with one or more substituents independently selected R⁵⁴, and the aryl or heteroaryl is optionally substituted with one or more substituents independently selected from R⁵⁵.

In another embodiment the invention provides a pharmaceutical composition wherein V is aryl, Het1, or aryl-C₁₋₆-alkyl-, wherein the alkyl is optionally substituted with one or more substituents independently selected from R⁵⁴, and the aryl or heteroaryl moiety is optionally substituted with one or more substituents independently selected from R⁵⁵.

In another embodiment the invention provides a pharmaceutical composition wherein V is aryl, Het2, or aryl-C₁₋₈-alkyl-, wherein the alkyl is optionally substituted with one or more substituents independently selected from R⁵⁴, and the aryl or heteroaryl moiety is optionally substituted with one or more substituents independently selected from R⁵⁵.

In another embodiment the invention provides a pharmaceutical composition wherein V is aryl, Het3, or aryl-C₁₋₈-alkyl-, wherein the alkyl is optionally substituted with one or more substituents independently selected from R⁵⁴, and the aryl or heteroaryl moiety is optionally substituted with one or more substituents independently selected from R⁵⁵.

20

25

30

In another embodiment the invention provides a pharmaceutical composition wherein V is aryl optionally substituted with one or more substitutents independently selected from R⁵⁵.

In another embodiment the invention provides a pharmaceutical composition wherein V is ArG1 optionally substituted with one or more substituents independently selected from R^{55} .

In another embodiment the invention provides a pharmaceutical composition wherein V is phenyl, naphthyl or anthranyl optionally substituted with one or more substituents independently selected from R⁵⁵.

In another embodiment the invention provides a pharmaceutical composition wherein V is phenyl optionally substituted with one or more substituents independently selected from R⁵⁵.

- In another embodiment the invention provides a pharmaceutical composition wherein R⁵⁵ is independently selected from
 - halogen, C_1 - C_6 -alkyl, -CN, -OCF₃, -CF₃, -NO₂, -OR⁵⁶, -NR⁵⁶R⁵⁷, -NR⁵⁶C(O)R⁵⁷ -SR⁵⁶, -OC₁- C_8 -alkyl-C(O)OR⁵⁶, or -C(O)OR⁵⁶,
 - C₁-C₆-alkyl optionally substituted with one or more substituents independently selected from R⁵⁶
 - aryl, aryl-C₁-C₆-alkyl, heteroaryl, or heteroaryl-C₁-C₆-alkyl of which the cyclic moieties optionally may be substituted with one or more substituents independently selected from R⁵⁹.

In another embodiment the invention provides a pharmaceutical composition wherein R⁵⁵ is independently selected from

- halogen, C_1 - C_6 -alkyl, -CN, -OCF₃, -CF₃, -NO₂, -OR⁵⁶, -NR⁵⁶R⁵⁷, -NR⁵⁶C(O)R⁵⁷ -SR⁵⁶, -OC₁- C_8 -alkyl-C(O)OR⁵⁶, or -C(O)OR⁵⁸
- ${ullet}$ C₁-C₆-alkyl optionally substituted with one or more substituents independently selected from R^{58}
- ArG1, ArG1-C₁-C₈-alkyl, Het3, or Het3-C₁-C₆-alkyl of which the cyclic moieties optionally may be substituted with one or more substituents independently selected from R⁵⁹.

In another embodiment the invention provides a pharmaceutical composition wherein R⁵⁵ is independently selected from halogen, -OR⁵⁶, -NR⁵⁶R⁵⁷, -C(O)OR⁵⁶, -OC₁-C₈-alkyl-C(O)OR⁵⁶, -NR⁵⁶C(O)R⁵⁷ or C₁-C₈-alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein R^{55} is independently selected from halogen, -OR⁵⁶, -NR⁵⁶R⁵⁷, -C(O)OR⁵⁶, -OC₁-C₈-alkyl-C(O)OR⁵⁶, -NR⁵⁶C(O)R⁵⁷, methyl or ethyl.

In another embodiment the invention provides a pharmaceutical composition wherein R⁵⁸ and R⁵⁷ are independently selected from hydrogen, CF₃, C₁-C₁₂-alkyl, or -C(=O)-C₁-C₈-alkyl; R⁵⁸ and R⁵⁷ when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom.

In another embodiment the invention provides a pharmaceutical composition wherein R⁵⁶ and R⁵⁷ are independently selected from hydrogen or C₁-C₁₂-alkyl, R⁵⁶ and R⁵⁷ when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom.

In another embodiment the invention provides a pharmaceutical composition wherein R⁵⁶ and R⁵⁷ are independently selected from hydrogen or methyl, ethyl, propyl butyl, R⁵⁶ and R⁵⁷ when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom.

In another embodiment the invention provides a pharmaceutical composition 1 wherein the zinc-binding ligand is

15

20

30

10

wherein AA is C_1 - C_6 -alkyl, aryl, heteroaryl, aryl- C_{1-6} -alkyl- or aryl- C_{2-6} -alkenyl-, wherein the alkyl or alkenyl is optionally substituted with one or more substituents independently selected from R^{63} , and the aryl or heteroaryl is optionally substituted with one or more substituents independently selected from R^{64} ,

R⁶³ is independently selected from halogen, -CN, -CF₃, -OCF₃, aryl, -COOH and -NH₂,

25 R⁶⁴ is independently selected from

• hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -OS(O)₂CF₃, -SCF₃, -NO₂, -OR⁶⁵, -NR⁶⁵R⁶⁶, -SR⁶⁵, -NR⁶⁵S(O)₂R⁶⁶, -S(O)₂NR⁶⁵R⁶⁶, -S(O)NR⁶⁵R⁶⁶, -S(O)R⁶⁵, -S(O)₂R⁶⁵, -OS(O)₂ R⁶⁵, -OC(O)NR⁶⁵R⁶⁶, -OC(O)NR⁶⁵R⁶⁶, -OC(O)NR⁶⁵R⁶⁶, -OC₁-C₆-alkyl-C(O)NR⁶⁵R⁶⁶, -CH₂OR⁶⁵, -CH₂OC(O)R⁶⁵, -CH₂NR⁶⁵R⁶⁶, -OC(O)R⁶⁵, -OC₁-C₆-alkyl-C(O)OR⁶⁵, -OC₁-C₆-alkyl-C(O)OR⁶⁵, -C₂-C₆-alkenyl-

10

15

20

30

 $C(=O)OR^{65}$, $-NR^{65}-C(=O)-C_1-C_6$ -alkyl- $C(=O)OR^{65}$, $-NR^{65}-C(=O)-C_1-C_6$ -alkenyl- $C(=O)OR^{65}$, $-C(O)OR^{65}$, or $-C_2-C_6$ -alkenyl- $C(=O)R^{65}$,

• C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl or C_2 - C_8 -alkynyl, each of which may optionally be substituted with one or more substituents selected from R^{67} .

• aryl, aryloxy, aryloxycarbonyl, aroyl, arylsulfanyl, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkoxy, aryl- C_2 - C_6 -alkenyl, aryl- C_2 - C_6 -alkenyl, aryl- C_2 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkenyl or heteroaryl- C_2 - C_6 -alkynyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R⁶⁸.

R⁶⁵ and R⁶⁶ are independently selected from hydrogen, OH, CF₃, C₁-C₁₂-alkyl, aryl-C₁-C₆-alkyl, -C(=O)-R⁶⁹, aryl or heteroaryl, wherein the alkyl groups may optionally be substituted with one or more substituents selected from R⁷⁰, and the aryl and heteroaryl groups may optionally be substituted with one or more substituents independently selected from R⁷¹; R⁶⁵ and R⁶⁶ when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom, the heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

R⁶⁷ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR⁶⁵, and -NR⁶⁵R⁶⁶,

25 R^{68} is independently selected from halogen, -C(O)OR⁶⁵, -CH₂C(O)OR⁶⁵, -CH₂OR⁶⁵, -CN, -CF₃, -OCF₃, -NO₂, -OR⁶⁵, -NR⁶⁵R⁶⁶ and C₁-C₆-alkyl,

 R^{69} is independently selected from C_1 - C_6 -alkyl, aryl optionally substituted with one or more halogen, or heteroaryl optionally substituted with one or more C_1 - C_6 -alkyl,

 R^{70} is independently selected from halogen, -CN, -CF₃, -OCF₃, -OC₁-C₆-alkyl, -C(O)OC₁-C₆-alkyl, -COOH and -NH₂,

R⁷¹ is independently selected from halogen, -C(O)OC₁-C₆-alkyl, -COOH, -CN, -CF₃, -OCF₃, - NO₂, -OH, -OC₁-C₆-alkyl, -NH₂, C(=O) or C₁-C₆-alkyl,

10

25

30

35

or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

In another embodiment the invention provides a pharmaceutical composition wherein AA is aryl, heteroaryl or aryl-C₁₋₆-alkyl-, wherein the alkyl is optionally substituted with one or more R⁶³, and the aryl or heteroaryl is optionally substituted with one or more substituents independently selected from R⁶⁴.

In another embodiment the invention provides a pharmaceutical composition wherein AA is aryl or heteroaryl optionally substituted with one or more substituents independently selected from R⁶⁴.

In another embodiment the invention provides a pharmaceutical composition wherein AA is ArG1 or Het1 optionally substituted with one or more substituents independently selected from R⁶⁴.

In another embodiment the invention provides a pharmaceutical composition wherein AA is

ArG1 or Het2 optionally substituted with one or more substituents independently selected from R⁶⁴.

In another embodiment the invention provides a pharmaceutical composition wherein AA is ArG1 or Het3 optionally substituted with one or more substituents independently selected from R⁶⁴.

In another embodiment the invention provides a pharmaceutical composition wherein AA is phenyl, naphtyl, anthryl, carbazolyl, thienyl, pyridyl, or benzodioxyl optionally substituted with one or more substituents independently selected from R⁶⁴.

In another embodiment the invention provides a pharmaceutical composition wherein AA is phenyl or naphtyl optionally substituted with one or more substituents independently selected from R⁶⁴.

In another embodiment the invention provides a pharmaceutical composition wherein R^{64} is independently selected from hydrogen, halogen, -CF₃, -OCF₃, -OR⁶⁵, -NR⁶⁵R⁶⁶, C₁-C₆-alkyl, -OC(O)R⁶⁵, -OC₁-C₆-alkyl-C(O)OR⁶⁵, aryl-C₂-C₆-alkenyl, aryloxy or aryl, wherein C₁-C₆-alkyl is optionally substituted with one or more substituents independently selected from R^{67} , and the cyclic moieties optionally are substituted with one or more substituents independently selected from R^{66} .

In another embodiment the invention provides a pharmaceutical composition wherein R⁶⁴ is independently selected from halogen, -CF₃, -OCF₃, -OR⁶⁵, -NR⁶⁵R⁶⁶, methyl, ethyl, propyl, -OC(O)R⁶⁵, -OCH₂-C(O)OR⁶⁵, -OCH₂-C(O)OR⁶⁵, phenoxy optionally substituted with one or more substituents independently selected from R⁶⁸.

15

25

In another embodiment the invention provides a pharmaceutical composition wherein R^{65} and R^{68} are independently selected from hydrogen, CF_{3} , C_{1} - C_{12} -alkyl, aryl, or heteroaryl optionally substituted with one or more substituents independently selected from R^{71} .

In another embodiment the invention provides a pharmaceutical composition wherein R⁶⁵ and R⁶⁶ are independently hydrogen, C₁-C₁₂-alkyl, aryl, or heteroaryl optionally substituted with one or more substituents independently selected from R⁷¹.

In another embodiment the invention provides a pharmaceutical composition wherein R⁶⁵ and R⁶⁶ are independently hydrogen, methyl, ethyl, propyl, butyl, 2,2-dimethyl-propyl, ArG1 or Het1 optionally substituted with one or more substituents independently selected from R⁷¹.

In another embodiment the invention provides a pharmaceutical composition wherein R⁶⁵ and R⁶⁶ are independently hydrogen, methyl, ethyl, propyl, butyl, 2,2-dimethyl-propyl, ArG1 or Het2 optionally substituted with one or more substituents independently selected from R⁷¹.

In another embodiment the invention provides a pharmaceutical composition wherein R⁸⁵ and R⁸⁶ are independently hydrogen, methyl, ethyl, propyl, butyl, 2,2-dimethyl-propyl, ArG1 or

Het3 optionally substituted with one or more substituents independently selected from R⁷¹.

In another embodiment the invention provides a pharmaceutical composition wherein R⁶⁵ a

In another embodiment the invention provides a pharmaceutical composition wherein R⁶⁵ and R⁶⁸ are independently hydrogen, methyl, ethyl, propyl, butyl, 2,2-dimethyl-propyl, phenyl, naphtyl, thiadiazolyl optionally substituted with one or more R⁷¹ independently; or isoxazolyl optionally substituted with one or more substituents independently selected from R⁷¹.

In another embodiment the invention provides a pharmaceutical composition wherein R⁷¹ is halogen or C₁-C₈-alkyl.

In another embodiment the invention provides a pharmaceutical composition wherein R⁷¹ is halogen or methyl.

In another embodiment the invention provides a pharmaceutical composition wherein the insulin is rapid acting insulin.

In another embodiment the invention provides a pharmaceutical composition wherein the insulin is selected from the group consisting of human insulin, an analogue thereof, a derivative thereof, and combinations of any of these.

In another embodiment the invention provides a pharmaceutical composition wherein the insulin is an analogue of human insulin selected from the group consisting of

i.An analogue wherein position B28 is Asp, Lys, Leu, Val, or Ala and position B29 is Lys or Pro; and

ii.des(B28-B30), des(B27) or des(B30) human insulin.

10

15

20

30

In another embodiment the invention provides a pharmaceutical composition wherein the insulin is an analogue of human insulin wherein position B28 is Asp or Lys, and position B29 is Lys or Pro.

In another embodiment the invention provides a pharmaceutical composition wherein the insulin is des(B30) human insulin.

In another embodiment the invention provides a pharmaceutical composition wherein the insulin is is an analogue of human insulin wherein position B3 is Lys and position B29 is Glu or Asp.

In another embodiment the invention provides a pharmaceutical composition wherein the insulin is a derivative of human insulin having one or more lipophilic substituents.

In another embodiment the invention provides a pharmaceutical composition wherein the insulin derivative is selected from the group consisting of B29-N^e-myristoyl-des(B30) human insulin, B29-N^e-palmitoyl-des(B30) human insulin, B29-N^e-myristoyl human insulin, B29-N^e-palmitoyl palmitoyl human insulin, B28-N^e-myristoyl Lys^{B28} Pro^{B29} human insulin, B28-N^e-palmitoyl Lys^{B28} Pro^{B29} human insulin, B30-N^e-myristoyl-Thr^{B29}Lys^{B30} human insulin, B30-N^e-palmitoyl-Thr^{B29}Lys^{B30} human insulin, B29-N^e-(N-palmitoyl- γ -glutamyl)-des(B30) human insulin, B29-N^e-(N-lithocholyl- γ -glutamyl)-des(B30) human insulin, B29-N^e-(ω -carboxyheptadecanoyl)-des(B30) human insulin and B29-N^e-(ω -carboxyheptadecanoyl) human insulin.

In another embodiment the invention provides a pharmaceutical composition wherein the insulin derivative is B29-N^e-myristoyl-des(B30) human insulin.

In another embodiment the invention provides a pharmaceutical composition further comprising at least 3 molecules of a phenolic compound per insulin hexamer.

In another embodiment the invention provides a pharmaceutical composition further comprising an isotonicity agent.

25 In another embodiment the invention provides a pharmaceutical composition further comprising a buffer substance.

A method of stabilising an insulin preparation comprising adding a zinc-binding ligand to the insulin preparation.

A method of treating type 1 or type 2 diabetes comprising administering to a patient in need thereof a pharmaceutically effective dose of an insulin preparation.

In one embodiment of the invention the concentration of added ligand for the zinc site is between 0.2 and 10 times that of zinc ion in the preparation. In another embodiment the

10

15

20

25

30

concentration is between 0.5 and 5 times that of zinc ion. In another embodiment the ligand concentration is identical to that of zinc ion in the preparation.

The compounds of the present invention may be chiral, and it is intended that any enantiomers, as separated, pure or partially purified enantiomers or racemic mixtures thereof are included within the scope of the invention.

Furthermore, when a double bond or a fully or partially saturated ring system or more than one centre of asymmetry or a bond with restricted rotatability is present in the molecule diastereomers may be formed. It is intended that any diastereomers, as separated, pure or partially purified diastereomers or mixtures thereof are included within the scope of the invention.

Furthermore, some of the compounds of the present invention may exist in different tautomeric forms and it is intended that any tautomeric forms, which the compounds are able to form, are included within the scope of the present invention.

The present invention also encompasses pharmaceutically acceptable salts of the present compounds. Such salts include pharmaceutically acceptable acid addition salts, pharmaceutically acceptable metal salts, ammonium and alkylated ammonium salts. Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable inorganic acids include hydrochloric, hydrobromic, hydroiodic, phosphoric, sulphuric, nitric acids and the like. Representative examples of suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, picric, pyruvic, succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, , ethanedisulfonic, gluconic, citraconic, aspartic, stearic, palmitic, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids and the like. Further examples of pharmaceutically acceptable inorganic or organic acid addition salts include the pharmaceutically acceptable salts listed in J. Pharm. Sci. 1977, 66, 2, which is incorporated herein by reference. Examples of metal salts include lithium, sodium, potassium, magnesium salts and the like. Examples of ammonium and alkylated ammonium salts include ammonium, methyl-, dimethyl-, trimethyl-, ethyl-, hydroxyethyl-, diethyl-, n-butyl-, sec-butyl-, tert-butyl-, tetramethylammonium salts and the like.

Also intended as pharmaceutically acceptable acid addition salts are the hydrates, which the present compounds, are able to form.

Furthermore, the pharmaceutically acceptable salts comprise basic amino acid salts such as lysine, arginine and ornithine.

15

20

30

The acid addition salts may be obtained as the direct products of compound synthesis. In the alternative, the free base may be dissolved in a suitable solvent containing the appropriate acid, and the salt isolated by evaporating the solvent or otherwise separating the salt and solvent.

The compounds of the present invention may form solvates with standard low molecular weight solvents using methods well known to the person skilled in the art. Such solvates are also contemplated as being within the scope of the present invention.

In one embodiment of the invention the stabilized preparations are used in connection with insulin pumps. The insulin pumps may be prefilled and disposable, or the insulin preparations may be supplied from a reservoir which is removable. Insulin pumps may be skin-mounted or carried, and the path of the insulin preparation from the storage compartment of the pump to the patient may be more or less tortuous. The elevated temperature and increased physical stress the insulin preparation is thus exposed to challenges the stability of the constituent insulin. Non-limiting examples of insulin pumps are disclosed in US 5,957,895, US 5,858,001, US 4,468,221, US 4,468,221, US 5,957,895, US 5,858,001, US 6,074,369, US 5,858,001, US 5,527,288, and US 6,074,369.

In another embodiment the stabilized preparations are used in connection with pen-like injection devices, which may be prefilled and disposable, or the insulin preparations may be supplied from a reservoir which is removable. Non-limiting examples of pen-like injection devices are FlexPen[®], InnoLet[®], InDuoTM, Innovo[®].

In a further embodiment stabilized preparations are used in connection with devices for pulmonary administration of aqueous insulin preparations, a non-limiting example of which is the AerX® device.

In one aspect of the invention, the ligands are added to rapid acting insulin. The resulting preparations have improved physical and chemical stability while still retaining a high rate of absorbtion from subcutaneous tissue.

The present invention also relates to pharmaceutical compositions for the treatment of diabetes in a patient in need of such a treatment comprising an R-state hexamer of insulin according to the invention together with a pharmaceutically acceptable carrier.

In one embodiment of the invention the insulin preparation comprises 60 to 3000 nmol/ml of insulin.

In another embodiment of the invention the insulin preparation comprises 240 to 1200 nmol/ml of insulin.

In another embodiment of the invention the insulin preparation comprises about 600 nmol/ml of insulin.

Zinc ions may be present in an amount corresponding to 13 to 33 μg Zn/100 U insulin, more preferably 15 to 26 μg Zn/100 U insulin.

Insulin formulations of the invention are usually administered from multi-dose containers
where a preservative effect is desired. Since phenolic preservatives also stabilize the R-state
hexamer the formulations may contain up to 50 mM of phenolic molecules. Non-limiting
examples of phenolic molecules are phenol, m-cresol, chloro-cresol, thymol, 7-hydroxyindole or
any mixture thereof.

In one embodiment of the invention 0.5 to 4.0 mg/ml of phenolic compound may be employed.

In another embodiment of the invention 0.6 to 4.0 mg/ml of m-cresol may be employed.

In another embodiment of the invention 0.5 to 4.0 mg/ml of phenol may be employed.

In another embodiment of the invention 1.4 to 4.0 mg/ml of phenol may be employed.

In another embodiment of the invention 0.5 to 4.0 mg/ml of a mixture of m-cresol or phenol may be employed.

In another embodiment of the invention 1.4 to 4.0 mg/ml of a mixture of m-cresol or phenol may be employed.

The pharmaceutical preparation may further comprise a buffer substance, such as a TRIS, phosphate, glycine or glycylglycine (or another zwitterionic substance) buffer, an isotonicity agent, such as NaCl, glycerol, mannitol and/or lactose. Chloride would be used at moderate concentrations, in one embodiment of the invention up to 50 mM to avoid competition with the zinc-site ligands of the present invention. In another embodiment the chloride concentration would be from 3 to 20 mM.

The *in vivo* action of insulin may be modified by the addition of physiologically acceptable agents that increase the viscosity of the pharmaceutical preparation. Thus, the

pharmaceutical preparation according to the invention may furthermore comprise an agent which increases the viscosity, such as polyethylene glycol, polypropylene glycol, copolymers thereof, dextrans and/or polylactides.

In one embodiment the insulin preparation of the invention comprises between 0.0005 % by weight and 1 % by weight of a non-ionic or zwitter-ionic surfactant, for example tween 20 or

Polox 188. A nonionic detergent can be added to stabilise insulin against fibrillation during storage and handling.

The insulin preparation of the present invention may have a pH value in the range of 3.0 to 8.5, e.g. 7.4 to 7.9.

5

10

15

20

EXAMPLES

The following examples and general procedures refer to intermediate compounds and final products identified in the specification and in the synthesis schemes. The preparation of the compounds of the present invention is described in detail using the following examples, but the chemical reactions described are disclosed in terms of their general applicability to the preparation of compounds of the invention. Occasionally, the reaction may not be applicable as described to each compound included within the disclosed scope of the invention. The compounds for which this occurs will be readily recognised by those skilled in the art. In these cases the reactions can be successfully performed by conventional modifications known to those skilled in the art, that is, by appropriate protection of interfering groups, by changing to other conventional reagents, or by routine modification of reaction conditions. Alternatively, other reactions disclosed herein or otherwise conventional will be applicable to the preparation of the corresponding compounds of the invention. In all preparative methods, all starting materials are known or may easily be prepared from known starting materials. All temperatures are set forth in degrees Celsius and unless otherwise indicated, all parts and percentages are by weight when referring to yields and all parts are by volume when referring to solvents and eluents.

25

30

HPLC-MS (Method A)

The following instrumentation was used:

- Hewlett Packard series 1100 G1312A Bin Pump
- Hewlett Packard series 1100 Column compartment
- Hewlett Packard series 1100 G13 15A DAD diode array detector
- Hewlett Packard series 1100 MSD

The instrument was controlled by HP Chemstation software.

The HPLC pump was connected to two eluent reservoirs containing:

A: 0.01% TFA in water

B: 0.01% TFA in acetonitrile

The analysis was performed at 40 °C by injecting an appropriate volume of the sample (preferably 1 µL) onto the column, which was eluted with a gradient of acetonitrile. The HPLC conditions, detector settings and mass spectrometer settings used are given in the following table.

Column	Waters Xterra MS C-18 X 3 mm id	,
Gradient	10% - 100% acetonitrile lineary during 7.5 min at 1.0 mL/min	
Detection	UV: 210 nm (analog output from DAD)	
MS	Ionisation mode: API-ES	
	Scan 100-1000 amu step 0.1 amu	

10 HPLC-MS (Method B)

The following instrumentation was used:

Sciex API 100 Single quadropole mass spectrometer

Perkin Elmer Series 200 Quard pump

Perkin Elmer Series 200 autosampler

15 Applied Biosystems 785A UV detector

Sedex 55 evaporative light scattering detector

A Valco column switch with a Valco actuator controlled by timed events from the pump.

The Sciex Sample control software running on a Macintosh PowerPC 7200 computer was used for the instrument control and data acquisition.

The HPLC pump was connected to four eluent reservoirs containing:

A: Acetonitrile

B: Water

C: 0.5% TFA in water

D: 0.02 M ammonium acetate

The requirements for samples are that they contain approximately 500 µg/mL of the compound to be analysed in an acceptable solvent such as methanol, ethanol, acetonitrile, THF, water and mixtures thereof. (High concentrations of strongly eluting solvents will interfere with the chromatography at low acetonitrile concentrations.)

5

The analysis was performed at room temperature by injecting 20 μ L of the sample solution on the column, which was eluted with a gradient of acetonitrile in either 0.05% TFA or 0.002 M ammonium acetate. Depending on the analysis method varying elution conditions were used.

10

The eluate from the column was passed through a flow splitting T-connector, which passed approximately 20 μ L/min through approx. 1 m. 75 μ fused silica capillary to the API interface of API 100 spectrometer.

15 The remaining 1.48 mL/min was passed through the UV detector and to the ELS detector.

During the LC-analysis the detection data were acquired concurrently from the mass spectrometer, the UV detector and the ELS detector.

The LC conditions, detector settings and mass spectrometer settings used for the different methods are given in the following table.

Column	YMC ODS-A 120Å s - 5µ 3 mm x 50 mm id					
Gradient	5% - 90% acetonitrile in 0.05% TFA linearly during 7.5 min at 1.5 mL/min					
Detection	UV: 214 nm ELS: 40 °C					
MS	Experiment: Start: 100 amu Stop: 800 amu Step: 0.2 amu Dwell: 0.571 msec Method: Scan 284 times = 9.5 min					

HPLC-MS (Method C) The following instrumentation is used:

25

- Hewlett Packard series 1100 G1312A Bin Pump
- Hewlett Packard series 1100 Column compartment
- Hewlett Packard series 1100 G1315A DAD diode array detector

- Hewlett Packard series 1100 MSD
- Sedere 75 Evaporative Light Scattering detector

The instrument is controlled by HP Chemstation software.

The HPLC pump is connected to two eluent reservoirs containing:

Α	0.01% TFA in water
В	0.01% TFA in acetonitrile

5

The analysis is performed at 40 °C by injecting an appropriate volume of the sample (preferably 1 μ I) onto the column which is eluted with a gradient of acetonitrile. The HPLC conditions, detector settings and mass spectrometer settings used are given in

Column	Waters Xterra MS C-18 X 3 mm id 5 μm		
Gradient	5% - 100% acetonitrile linear during 7.5 min at 1.5		
	ml/min		
Detection	210 nm (analogue output from DAD)		
	ELS (analogue output from ELS)		
MS	ionisation mode API-ES		
	Scan 100-1000 amu step 0.1 amu		

10

After the DAD the flow is divided yielding approximately 1 ml/min to the ELS and 0.5 ml/min to the MS.

HPLC-MS (Method D)

the following table.

15 The following instrumentation was used:

Sciex API 150 Single Quadropole mass spectrometer

Hewlett Packard Series 1100 G1312A Bin pump

Gilson 215 micro injector

Hewlett Packard Series 1100 G1315A DAD diode array detector

20 Sedex 55 evaporative light scattering detector

A Valco column switch with a Valco actuator controlled by timed events from the pump.

The Sciex Sample control software running on a Macintosh Power G3 computer was used for the instrument control and data acquisition.

The HPLC pump was connected to two eluent reservoirs containing:

10

A: Acetonitrile containing 0.05% TFA

B: Water containing 0.05% TFA

The requirements for the samples are that they contain approximately 500 μ g/ml of the compound to be analysed in an acceptable solvent such as methanol, ethanol, acetonitrile, THF, water and mixtures thereof. (High concentrations of strongly eluting solvents will interfere with the chromatography at low acetonitrile concentrations.)

The analysis was performed at room temperature by injecting 20 μ l of the sample solution on the column, which was eluted with a gradient of acetonitrile in 0.05% TFA

The eluate from the column was passed through a flow splitting T-connector, which passed approximately 20 μ l/min through approx. 1 m 75 μ fused silica capillary to the API interface of API 150 spectrometer.

The remaining 1.48 ml/min was passed through the UV detector and to the ELS detector. During the LC-analysis the detection data were acquired concurrently from the mass spectrometer, the UV detector and the ELS detector.

The LC conditions, detector settings and mass spectrometer settings used for the different methods are given in the following table.

Column	Waters X-terra C18 5µ 3 mm x 50 mm id							
Gradient	5% - 90% acetonitrile in 0.05% TFA linearly during 7.5 min at 1.5 ml/min							
Detection	UV: 214 nm			ELS: 40 °C				
MS	Experiment:	Start: 100 amu	Sto	p: 800 amu	Step: 0.2 amu			
	Dwell:	0.571 msec						
	Method:	Scan 284 times = 9.5 min						

EXAMPLES

Example 1

1*H*-Benzotriazole

5

Example 2

5,6-Dimethyl-1*H*-benzotriazole

10 Example 3

1H-Benzotriazole-5-carboxylic acid

Example 4

15 4-Nitro-1*H*-benzotriazole

Example 5

5-Amino-1H-benzotriazole

5 Example 6

5-Chloro-1H-benzotriazole

Example 7

10 5-Nitro-1H-benzotriazole

Example 8

4-[(1H-Benzotriazole-5-carbonyl)amino]benzoic acid

4-[(1*H*-Benzotriazole-5-carbonyl)amino]benzoic acid methyl ester (5.2 g, 17.6 mmol) was dissolved in THF (60 mL) and methanol (10 mL) was added followed by 1N sodium hydroxide (35 mL). The mixture was stirred at room temperature for 16 hours and then 1N hydrochloric acid (45 mL) was added. The mixture was added water (200 mL) and extracted with ethyl acetate (2 x 500 mL). The combined organic phases were evaporated *in vacuo* to afford 0.44 g of 4-[(1*H*-benzotriazole-5-carbonyl)amino]benzoic acid. By filtration of the

15

20

25

aqueous phase a further crop of 4-[(1*H*-benzotriazole-5-carbonyl)amino]benzoic acid was isolated (0.52 g).

¹H-NMR (DMSO-d₆): δ 7.97 (4H, s), 8.03 (2H, m), 8.66 (1H, bs), 10.7 (1H, s), 12.6 (1H, bs); 5 HPLC-MS (Method A): m/z: 283 (M+1); Rt = 1.85 min.

General procedure (A) for preparation of compounds of general formula in:

wherein D, E and R^{19} are as defined above, and E is optionally substituted with up to three substituents R^{21} , R^{22} and R^{23} independently as defined above.

The carboxylic acid of 1H-benzotriazole-5-carboxylic acid is activated, ie the OH functionality is converted into a leaving group L (selected from eg fluorine, chlorine, bromine, iodine, 1imidazolyl. 1,2,4-triazolyl, 1-benzotriazolyloxy, 1-(4-aza benzotriazolyl)oxy, pentafluorophenoxy, N-succinyloxy 3,4-dihydro-4-oxo-3-(1,2,3-benzotriazinyl)oxy, benzotriazole 5-COO, or any other leaving group known to act as a leaving group in acylation reactions. The activated benzotriazole-5-carboxylic acid is then reacted with R2-(CH2)0-B' in the presence of a base. The base can be either absent (i.e. R2-(CH2)n-B' acts as a base) or triethylamine, N-ethyl-N,N.-diisopropylamine, N-methylmorpholine, 2,6-lutidine, 2,2,6,6tetramethylpiperidine, potassium carbonate, sodium carbonate, caesium carbonate or any other base known to be useful in acylation reactions. The reaction is performed in a solvent solvent such as THF, dioxane, toluene, dichloromethane, DMF, NMP or a mixture of two or more of these. The reaction is performed between 0 °C and 80 °C, preferably between 20 °C and 40 °C. When the acylation is complete, the product is isolated by extraction, filtration, chromatography or other methods known to those skilled in the art.

The general procedure (A) is further illustrated in the following example:

Example 9 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid phenylamide

Benzotriazole-5-carboxylic acid (856 mg), HOAt (715 mg) and EDAC (1.00 g) were dissolved in DMF (17.5 mL) and the mixture was stirred at room temperature 1 hour. A 0.5 mL aliqot of this mixture was added to aniline (13.7 μ L, 0.15 mmol) and the resulting mixture was vigorously shaken at room temperature for 16 hours. 1N hydrochloric acid (2 mL) and ethyl acetate (1 mL) were added and the mixture was vigorously shaken at room temperature for 2 hours. The organic phase was isolated and concentrated *in vacuo* to afford the title compound.

10 HPLC-MS (Method B): m/z: 239 (M+1); Rt = 3.93 min.

The compounds in the following examples were similarly made. Optionally, the compounds may be isolated by filtration or by chromatography.

15 Example 10 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid (4-methoxyphenyl)amide

HPLC-MS (Method A): m/z: 269 (M+1) & 291 (M+23); Rt = 2.41 min

HPLC-MS (Method B): m/z: 239 (M+1); Rt = 3.93 min.

20

25

Example 11 (General Procedure (A))

{4-[(1H-Benzotriazole-5-carbonyl)amino]phenyl}carbamic acid tert-butyl ester

HPLC-MS (Method B): m/z: 354 (M+1); Rt = 4.58 min.

Example 12 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid (4-acetylaminophenyl)amide

HPLC-MS (Method B): m/z: 296 (M+1); Rt = 3.32 min.

5

Example 13 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid (3-fluorophenyl)amide

HPLC-MS (Method B): m/z: 257 (M+1); Rt = 4.33 min.

10

Example 14 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid (2-chlorophenyl)amide

HPLC-MS (Method B): m/z: 273 (M+1); Rt = 4.18 min.

15

Example 15 (General Procedure (A))

4-[(1H-Benzotriazole-5-carbonyl)amino]benzoic acid methyl ester

HPLC-MS (Method A):m/z: 297 (M+1); Rt : 2,60 min. HPLC-MS (Method B): m/z: 297 (M+1); 20 Rt = 4.30 min.

Example 16 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid (4-butylphenyl)amide

HPLC-MS (Method B): m/z: 295 (M+1); Rt = 5.80 min.

5

Example 17 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid (1-phenylethyl)amide

HPLC-MS (Method B): m/z: 267 (M+1); Rt = 4.08 min.

10

Example 18 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid benzylamide

HPLC-MS (Method B): m/z: 253 (M+1); Rt = 3.88 min.

15

Example 19 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid 4-chlorobenzylamide

HPLC-MS (Method B): m/z: 287 (M+1); Rt = 4.40 min.

20

Example 20 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid 2-chlorobenzylamide

HPLC-MS (Method B): m/z: 287 (M+1); Rt = 4.25 min.

Example 21 (General Procedure (A))

5 1H-Benzotriazole-5-carboxylic acid 4-methoxybenzylamide

HPLC-MS (Method B): m/z: 283 (M+1); Rt = 3.93 min.

Example 22 (General Procedure (A))

10 1H-Benzotriazole-5-carboxylic acid 3-methoxybenzylamide

HPLC-MS (Method B): m/z: 283 (M+1); Rt = 3.97 min.

Example 23 (General Procedure (A))

15 1H-Benzotriazole-5-carboxylic acid (1,2-diphenylethyl)amide

HPLC-MS (Method B): m/z: 343 (M+1); Rt = 5.05 min.

Example 24 (General Procedure (A))

20 1H-Benzotriazole-5-carboxylic acid 3-bromobenzylamide

HPLC-MS (Method B): m/z: 331 (M+1); Rt = 4.45 min.

Example 25 (General Procedure (A))

4-{[(1H-Benzotriazole-5-carbonyl)amino]methyl}benzoic acid

HPLC-MS (Method B): m/z: 297 (M+1); Rt = 3.35 min.

Example 26 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid phenethylamide

10

5

HPLC-MS (Method B): m/z: 267 (M+1); Rt = 4.08 min.

Example 27 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid [2-(4-chlorophenyl)ethyl]amide

15

HPLC-MS (Method B): m/z: 301 (M+1); Rt = 4.50 min.

Example 28 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid [2-(4-methoxyphenyl)ethyl]amide

20

HPLC-MS (Method B): m/z: 297 (M+1); Rt = 4.15 min.

Example 29 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid [2-(3-methoxyphenyl)ethyl]amide

HPLC-MS (Method B): m/z: 297 (M+1); Rt = 4.13 min.

5

Example 30 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid [2-(3-chlorophenyl)ethyl]amide

HPLC-MS (Method B): m/z: 301 (M+1); Rt = 4.55 min.

10

Example 31 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid (2,2-diphenylethyl)amide

HPLC-MS (Method B): m/z: 343 (M+1); Rt = 5.00 min.

15

Example 32 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid (3,4-dichlorophenyl)methylamide

HPLC-MS (Method B): m/z: 321 (M+1); Rt = 4.67 min.

20

Example 33 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid methylphenylamide

HPLC-MS (Method B): m/z: 253 (M+1); Rt = 3.82 min.

Example 34 (General Procedure (A))

5 1H-Benzotriazole-5-carboxylic acid benzylmethylamide

HPLC-MS (Method B): m/z: 267 (M+1); Rt = 4.05 min.

Example 35 (General Procedure (A))

10 1H-Benzotriazole-5-carboxylic acid [2-(3-chloro-4-methoxyphenyl)ethyl]methyl-amide

HPLC-MS (Method B): m/z: 345 (M+1); Rt = 4.37 min.

Example 36 (General Procedure (A))

15 1H-Benzotriazole-5-carboxylic acid methylphenethylamide

HPLC-MS (Method B): m/z: 281 (M+1); Rt = 4.15 min.

Example 37 (General Procedure (A))

20 1H-Benzotriazole-5-carboxylic acid [2-(3,4-dimethoxyphenyl)ethyl]methylamide

10

15

20

HPLC-MS (Method B): m/z: 341 (M+1); Rt = 3.78 min;

Example 38 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid (2-hydroxy-2-phenylethyl)methylamide

HPLC-MS (Method B): rn/z: 297 (M+1); Rt = 3.48 min.

Example 39 (General procedure (A))

1H-Benzotriazole-5-carboxylic acid (3-bromophenyl)amide

HPLC-MS (Method A): m/z: 317 (M+1); Rt = 3.19 min.

Example 40 (General procedure (A))

1H-Benzotriazole-5-carboxylic acid (4-bromophenyl)amide

HPLC-MS (Method A): m/z: 317 (M+1); Rt = 3.18 min.

Example 41 (General procedure (A))

{4-[(1H-Benzotriazole-5-carbonyl)amino]benzoylamino}acetic acid

10

15

HPLC-MS (Method A): m/z: 340 (M+1); Rt = 1.71 min.

Example 42 (General procedure (A))

{4-[(1H-Benzotriazole-5-carbonyl)amino]phenyl}acetic acid

HPLC-MS (Method A): m/z: 297 (M+1); Rt = 2.02 min.

Example 43 (General procedure (A))

3-{4-[(1H-Benzotriazole-5-carbonyl)amino]phenyl)acrylic acid

HPLC-MS (Method A): m/z: 309 (M+1); Rt = 3.19 min.

Example 44 (General procedure (A))

{3-[(1H-Benzotriazole-5-carbonyl)amino]phenyl}acetic acid

HPLC-MS (Method A): m/z: 297 (M+1); Rt = 2.10 min.

Example 45 (General procedure (A))

2-{4-[(1H-Benzotriazole-5-carbonyl)amino]phenoxy}-2-methylpropionic acid

HPLC-MS (Method A): m/z: 341 (M+1); Rt = 2.42 min.

Example 46 (General procedure (A))

5 3-{4-[(1H-Benzotriazole-5-carbonyl)amino]benzoylamino}propionic acid

HPLC-MS (Method A): m/z: 354 (M+1); Rt = 1.78 min.

Example 47 (General procedure (A))

10 3-{4-[(1H-Benzotriazole-5-carbonyl)amino]phenyl}propionic acid

HPLC-MS (Method A): m/z: 311 (M+1); Rt = 2.20 min.

Example 48 (General procedure (A))

15 1H-Benzotriazole-5-carboxylic acid (4-benzyloxyphenyl)amide

HPLC-MS (Method A): m/z: 345 (M+1); Rt = 3.60 min.

Example 49 (General procedure (A))

1H-Benzotriazole-5-carboxylic acid (3-chloro-4-methoxyphenyl)amide

HPLC-MS (Method A): m/z: 303 (M+1); Rt = 2.88 min.

5

Example 50 (General procedure (A))

1H-Benzotriazole-5-carboxylic acid (4-phenoxyphenyl)amide

HPLC-MS (Method A): m/z: 331 (M+1); Rt = 3.62 min.

10

Example 51 (General procedure (A))

1H-Benzotriazole-5-carboxylic acid (4-butoxyphenyl)amide

HPLC-MS (Method A): m/z: 311 (M+1); Rt = 3.59 min.

15

Example 52 (General procedure (A))

1H-Benzotriazole-5-carboxylic acid (3-bromo-4-trifluoromethoxyphenyl)amide

HPLC-MS (Method A): m/z: 402 (M+1); Rt = 3.93 min.

20

Example 53 (General procedure (A))

1H-Benzotriazole-5-carboxylic acid (3,5-dichloro-4-hydroxyphenyl)amide

HPLC-MS (Method A): m/z: 323 (M+1); Rt = 2.57 min.

5

Example 54 (General procedure (A))

4-[[(1H-Benzotriazole-5-carbonyl)amino]methyl}benzoic acid

HPLC-MS (Method A): m/z: 297 (M+1); Rt = 1.86 min.

10

Example 55 (General procedure (A))

{4-[(1H-Benzotriazole-5-carbonyl)amino]phenylsulfanyl}acetic acid

HPLC-MS (Method A): m/z: 329 (M+1); Rt = 2.34 min.

15

Example 56

N-(1H-Benzotriazol-5-yl)acetamide

HPLC-MS (Method A): m/z: 177 (M+1); Rt = 0.84 min.

Example 57 (General Procedure (A))

1H-Benzotriazole-5-carboxylic acid 4-nitrobenzylamide

5 The following compound is prepared according to general procedure (N) as described below:

Example 58 (General procedure (N))

1H-Benzotriazole-5-carboxylic acid 4-chlorobenzylamide

HPLC-MS (Method B): m/z: 287 (M+1); Rt = 4.40 min.

10

20

General procedure (B) for preparation of compounds of general formula 12:

wherein X, Y, A and R³ are as defined above and A is optionally substituted with up to four substituents R⁷, R⁸, R⁹, and R¹⁰ as defined above.

The chemistry is well known (eg Lohray et al., J. Med. Chem., 1999, 42, 2569-81) and is generally performed by reacting a carbonyl compound (aldehyde or ketone) with the heterocyclic ring (eg thiazolidine-2,4-dione (X = O; Y = S), rhodanine (X = Y = S) and hydantoin (X = O; Y = NH) in the presence of a base, such as sodium acetate, potassium acetate, ammonium acetate, piperidinium benzoate or an amine (eg piperidine, triethylamine and the like) in a solvent (eg acetic acid, ethanol, methanol, DMSO, DMF, NMP, toluene, benzene) or in a mixture of two or more of these solvents. The reaction is performed at room

temperature or at elevated temperature, most often at or near the boiling point of the mixture. Optionally, azeotropic removal of the formed water can be done.

This general procedure (B) is further illustrated in the following example:

5 Example 59 (General procedure (B))

5-(3-Phenoxybenzylidene)thiazolidine-2,4-dione

A solution of thiazolidine-2,4-dione (90%, 78 mg, 0.6 mmol) and ammonium acetate (92 mg, 1.2 mmol) in acetic acid (1 mL) was added to 3-phenoxybenzaldehyde (52 μL, 0.6 mmol) and the resulting mixture was shaken at 115 °C for 16 hours. After cooling, the mixture was concentrated *in vacuo* to afford the title compound.

HPLC-MS (Method A): m/z: 298 (M+1); Rt = 4.54 min.

- The compounds in the following examples were similarly prepared. Optionally, the compounds can be further purified by filtration and washing with water, ethanol and / or heptane instead of concentration *in vacuo*. Also optionally the compounds can be purified by washing with ethanol, water and/or heptane, or by chromatography, such as preparative HPLC.
- 20 Example 60 (General procedure (B))

5-(4-Dimethylaminobenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 249 (M+1); Rt = 4.90 min

Example 61 (General procedure (B))

25 5-Naphthalen-1-ylmethylenethiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 256 (M+1); Rt = 4,16 min.

Example 62 (General procedure (B))

5 5-Benzylidene-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 206 (M+1); Rt = 4,87 min.

Example 63 (General procedure (B))

10 5-(4-Methoxy-benzylidene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 263 (M+1); Rt = 4,90 min.

Example 64 (General procedure (B))

15 5-(4-Chloro-benzylidene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 240 (M+1); Rt = 5,53 min.

Example 65 (General procedure (B))

5-(4-Nitro-benzylidene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 251 (M+1); Rt = 4,87 min.

5

Example 66 (General procedure (B))

5-(4-Hydroxy-3-methoxy-benzylidene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 252 (M+1); Rt = 4,07 min.

10

Example 67 (General procedure (B))

5-(4-Methylsulfanylbenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 252 (M+1); Rt = 5,43 min.

15

Example 68 (General procedure (B))

5-(2-Pentyloxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 292 (M+1); Rt = 4.75 min. ¹H NMR (DMSO- d_0): δ = 0.90 (3H, t), 1.39 (4H, m), 1.77 (2H, p), 4.08 (2H, t), 7.08 (1H, t), 7.14 (1H, d), 7.43 (2H, m), 8.03 (1H, s), 12.6 (1H, bs).

Example 69 (General procedure (B))

5 5-(3-Fluoro-4-methoxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 354 (M+1); Rt = 4,97 min.

Example 70 (General procedure (B))

10 5-(4-tert-Butylbenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 262 (M+1); Rt = 6,70 min.

Example 71 (General procedure (B))

15 N-[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)phenyl]acetamide

HPLC-MS (Method A): m/z: 263 (M+1); Rt = 3,90 min.

Example 72 (General procedure (B))

20 5-Biphenyl-4-ylmethylene-thiazolidine-2,4-dione

5

10

15

20

HPLC-MS (Method A): m/z: 282 (M+1); Rt = 4,52 min.

Example 73 (General procedure (B))

5-(4-Phenoxy-benzylidene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 298 (M+1); Rt = 6,50 min.

Example 74 (General procedure (B))

5-(3-Benzyloxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 312 (M+1); Rt = 6,37 min.

Example 75 (General procedure (B))

5-(3-p-Tolyloxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 312 (M+1); Rt = 6,87 min.

Example 76 (General procedure (B))

5-Naphthalen-2-ylmethylene-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 256 (M+1); Rt = 4.15 min.

Example 77 (General procedure (B))

5-Benzo[1,3]dioxol-5-ylmethylenethiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 250 (M+1), Rt = 3.18 min.

5

Example 78 (General procedure (B))

5-(4-Chlorobenzylidene)-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 256 (M+1); Rt = 4,51 min.

10

Example 79 (General procedure (B))

5-(4-Dimethylaminobenzylidene)-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 265 (M+1); Rt = 5,66 min.

15

Example 80 (General procedure (B))

5-(4-Nitrobenzylidene)-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 267 (M+1); Rt = 3,94 min.

Example 81 (General procedure (B))

5-(4-Methylsulfanylbenzylidene)-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 268 (M+1); Rt = 6,39 min.

5

Example 82 (General procedure (B))

5-(3-Fluoro-4-methoxybenzylidene)-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 270 (M+1); Rt = 5,52 min.

10

Example 83 (General procedure (B))

5-Naphthalen-2-ylmethylene-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 272 (M+1); Rt = 6,75 min.

15

Example 84 (General procedure (B))

5-(4-Diethylaminobenzylidene)-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 293 (M+1); Rt = 5,99 min.

Example 85 (General procedure (B))

5-Biphenyl-4-ylmethylene-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 298 (M+1); Rt = 7,03 min.

5

Example 86 (General procedure (B))

5-(3-Phenoxybenzylidene)-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 314 (M+1); Rt = 6,89 min.

10

Example 87 (General procedure (B))

5-(3-Benzyloxybenzylidene)-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 328 (M+1); Rt = 6,95 min.

15

Example 88 (General procedure (B))

5-(4-Benzyloxybenzylidene)-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 328 (M+1); RT = 6,89 min.

Example 89 (General procedure (B))

5-Naphthalen-1-ylmethylene-2-thioxothiazolidin-4-one

HPLC-MS (Method A): m/z: 272 (M+1); Rt = 6,43 min.

5

* Example 90 (General procedure (B))

5-(3-Methoxybenzyl)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 236 (M+1); Rt = 3,05 min.

10

Example 91 (General procedure (D))

4-[2-Chloro-4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]butyric acid ethyl ester

HPLC-MS (Method A): m/z: 392 (M+23), Rt = 4.32 min.

15

Example 92 (General procedure (D))

4-[2-Bromo-4-(2,4-dioxothiazolidin-5-ylidenemethyl)-phenoxy]-butyric acid

HPLC-MS (Method A): m/z: 410 (M+23); Rt = 3,35 min.

20

Example 93 (General procedure (B))

5-(3-Bromobenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 285 (M+1); Rt = 4.01 min.

Example 94 (General procedure (B))

5 5-(4-Bromobenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 285 (M+1); Rt = 4.05 min.

Example 95 (General procedure (B))

10 5-(3-Chlorobenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 240 (M+1); Rt = 3.91 min.

Example 96 (General procedure (B))

15 5-Thiophen-2-ylmethylenethiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 212 (M+1); Rt = 3.09 min.

Example 97 (General procedure (B))

5-(4-Bromothiophen-2-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 291 (M+1); Rt = 3.85 min.

5

Example 98 (General procedure (B))

5-(3,5-Dichlorobenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 274 (M+1); Rt = 4.52 min.

10

Example 99 (General procedure (B))

5-(1-Methyl-1H-indol-3-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 259 (M+1); Rt = 3.55 min.

15

Example 100 (General procedure (B))

5-(1H-Indol-3-ylmethylene)thiazolidine-2,4-dione

5

10

15

HPLC-MS (Method A): m/z: 245 (M+1); Rt = 2.73 min.

Example 101 (General procedure (B))

5-Fluoren-9-ylidenethiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 280 (M+1); Rt = 4.34 min.

Example 102 (General procedure (B))

5-(1-Phenylethylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 220 (M+1); Rt = 3,38 min.

Example 103 (General procedure (B))

5-[1-(4-Methoxyphenyl)-ethylidene]-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 250 (M+1); Rt = 3.55 min.

Example 104 (General procedure (B))

5-(1-Naphthalen-2-yl-ethylidene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 270 (M+1); Rt = 4,30 min.

Example 105 (General procedure (B))

5 5-[1-(4-Bromophenyl)-ethylidene]-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 300 (M+1); Rt = 4,18 min.

Example 106 (General procedure (B))

10 5-(2,2-Diphenylethylidene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 296 (M+1); Rt = 4,49 min.

Example 107 (General procedure (B))

15 5-[1-(3-Methoxyphenyl)-ethylidene]-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 250 (M+1); Rt = 3,60 min.

Example 108 (General procedure (B))

5-[1-(6-Methoxynaphthalen-2-yl)-ethylidene]-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 300 (M+1); Rt = 4,26 min.

5

Example 109 (General procedure (B))

5-[1-(4-Phenoxyphenyl)-ethylidene]-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 312 (M+1); Rt = 4,68 min.

10

Example 110 (General procedure (B))

5-[1-(3-Fluoro-4-methoxyphenyl)ethylidene]thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 268 (M+1); Rt = 3,58 min.

15

Example 111 (General procedure (B))

5-[1-(3-Bromophenyl)-ethylidene]-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 300 (M+1); Rt = 4,13 min.

Example 112 (General procedure (B))

5-Anthracen-9-ylmethylenethiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 306 (M+1); Rt = 4,64 min.

5

Example 113 (General procedure (B))

5-(2-Methoxynaphthalen-1-ylmethylene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 286 (M+1); Rt = 4,02 min.

10

Example 114 (General procedure (B))

5-(4-Methoxynaphthalen-1-ylmethylene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 286 (M+1); Rt = 4,31 min.

15

Example 115 (General procedure (B))

5-(4-Dimethylaminonaphthalen-1-ylmethylene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 299 (M+1); Rt = 4,22 min.

Example 116 (General procedure (B))

5-(4-Methylnaphthalen-1-ylmethylene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 270 (M+1); Rt = 4,47 min.

Example 117 (General procedure (B))

5-Pyridin-2-ylmethylene-thiazolidine-2,4-dione

10

5

Example 118

5-Pyridin-2-ylmethyl-thiazolidine-2,4-dione

5-Pyridin-2-ylmethylene-thiazolidine-2,4-dione (5 g) in tetrahydrofuran (300 ml) was added 10% Pd/C (1 g) and the mixture was hydrogenated at ambient pressure for 16 hours. More 10% Pd/C (5 g) was added and the mixture was hydrogenated at 50 psi for 16 hours. After filtration and evaporation *in vacuo*, the residue was purified by column chromatography eluting with a mixture of ethyl acetate and heptane (1:1). This afforded the title compound (0.8 g, 16%) as a solid.

TLC: $R_f = 0.30$ (SiO₂; EtOAc: heptane 1:1)

Example 119 (General procedure (B))

5-(1H-Imidazol-4-ylmethylene)-thiazolidine-2,4-dione

5

Example 120 (General procedure (B))

5-(4-Benzyloxy-benzylidene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 6,43 min; 99 % (2A)

10

Example 121 (General procedure (B))

5-[4-(4-Fluorobenzyloxy)benzylidene]-2-thioxothiazolidin-4-one

15 Example 122 (General procedure (B))

5-(4-Butoxybenzylidene)-2-thioxothiazolidin-4-one

Example 123 (General procedure (B))

5-(3-Methoxybenzylidene)thiazolidine-2,4-dione

5 HPLC-MS (Method A): m/z: 236 (M+1); Rt = 4,97 min

Example 124 (General procedure (B))

10 5-(3-Methoxybenzylidene)imidazolidine-2,4-dione

HPLC-MS (Method A): m/z; 219 (M+1); Rt = 2.43 min.

Example 125 (General procedure (B))

15 5-(4-Methoxybenzylidene)imidazolidine-2,4-dione

HPLC-MS (Method A): m/z: 219 (M+1); Rt = 2.38 min.

Example 126 (General procedure (B))

5-(2,3-Dichlorobenzylidene)thiazolidine-2,4-dione

Example 127 (General procedure (B))

5-Benzofuran-7-ylmethylenethiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 247 (M+1); Rt = 4,57 min.

5

Example 128 (General procedure (B))

5-Benzo[1,3]dioxol-4-ylmethylenethiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 250 (M+1); Rt = 4,00 min.

10

Example 129 (General procedure (B))

5-(4-Methoxy-2,3-dimethylbenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 264 (M+1); Rt = 5,05 min.

15

Example 130 (General procedure (B))

5-(2-Benzyloxy-3-methoxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 342 (M+1); Rt = 5,14 min.

Example 131 (General procedure (B))

5-(2-Hydroxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 222 (M+1); Rt = 3,67 min.

5

Example 132 (General procedure (B))

5-(2,4-Dichlorobenzylidene)thiazolidine-2,4-dione

¹H-NMR (DMSO-d₆): 7.60 (2H, "s"), 7.78 (1H, s), 7.82 (1H, s).

10

Example 133 (General procedure (B))

5-(2-Chlorobenzylidene)thiazolidine-2,4-dione

¹H-NMR (DMSO-d₆): 7.40 (1H, t), 7.46 (1H, t), 7.57 (1H, d), 7.62 (1H, d), 7.74 (1H, s).

15

Example 134 (General procedure (B))

5-(2-Bromobenzylidene)thiazolidine-2,4-dione

¹H-NMR (DMSO-d₆): 7.33 (1H, t), 7.52 (1H, t), 7.60 (1H, d), 7.71 (1H, s), 7.77 (1H, d).

20

Example 135 (General procedure (B))

5-(2,4-Dimethoxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 266 (M+1) Rt = 4,40 min.

Example 136 (General procedure (B))

5 5-(2-Methoxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 236 (M+1); Rt = 4,17 min.

Example 137 (General procedure (B))

10 5-(2,6-Difluorobenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 242 (M+1); Rt = 4,30 min.

Example 138 (General procedure (B))

15 5-(2,4-Dimethylbenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 234 (M+1); Rt = 5,00 min.

Example 139 (General procedure (B))

20 5-(2,4,6-Trimethoxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 296 (M+1); Rt = 4,27 min.

Example 140 (General procedure (B))

5 5-(4-Hydroxy-2-methoxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 252 (M+1); Rt = 3,64 min.

Example 141 (General procedure (B))

10 5-(4-Hydroxynaphthalen-1-ylmethylene)thiazolidine-2,4-dione

 1 H-NMR (DMSO- d_{θ}): δ = 7.04 (1H, d), 7.57 (2H, m), 7.67 (1H, t), 8.11 (1H, d), 8.25 (1H, d), 8.39 (1H, s) 11.1 (1H, s), 12.5 (1H, bs). HPLC-MS (Method C): m/z: 272 (M+1); Rt = 3.44 min.

15

20

Example 142 (General procedure (B))

5-(2-Trifluoromethoxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 290 (M+1); Rt = 4,94 min.

Example 143 (General procedure (B))

5-Biphenyl-2-ylmethylenethiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 282 (M+1); Rt = 5,17 min.

5

Example 144 (General procedure (B))

5-(2-Benzyloxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 312 (M+1); Rt = 5,40 min.

10

Example 145 (General procedure (B)) 5-Adamantan-2-ylidenethiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 250 (M+1); Rt = 4,30 min.

15 Example 146 (General Procedure (B))

5-[3-(4-Nitrophenyl)allylidene]thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 277 (M+1); Rt = 3.63 min.

Example 147 (General Procedure (B))

5-[3-(2-Methoxyphenyl)allylidene]thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 262 (M+1); Rt = 3.81 min.

5

Example 148 (General Procedure (B))

5-[3-(4-Methoxyphenyl)allylidene]thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 262 (M+1); Rt = 3.67 min.

10

General procedure (C) for preparation of compounds of general formula I₂:

wherein X, Y, A, and R³ are as defined above and A is optionally substituted with up to four substituents R⁷, R⁸, R⁹, and R¹⁰ as defined above.

This general procedure (C) is quite similar to general procedure (B) and is further illustrated in the following example:

20 Example 149 (General procedure (C))

5-(3,4-Dibromobenzylidene)thiazolidine-2,4-dione

15

20

A mixture of thiazolidine-2,4-dione (90%, 65 mg, 0.5 mmol), 3,4-dibromobenzaldehyde (132 mg, 0.5 mmol), and piperidine (247 μ L, 2.5 mmol) was shaken in acetic acid (2 mL) at 110 °C for 16 hours. After cooling, the mixture was concentrated to dryness *in vacuo* .

- The resulting crude product was shaken with water, centrifuged, and the supernatant was discarded. Subsequently the residue was shaken with ethanol, centrifuged, the supernatant was discarded and the residue was further evaporated to dryness to afford the title compound.
- ¹H NMR (Acetone- d_6): δ_H 7.99 (d,1H), 7.90 (d,1H), 7.70 (s,1H), 7.54 (d,1H); HPLC-MS (Method A): m/z: 364 (M+1); Rt = 4.31 min.

The compounds in the following examples were similarly prepared. Optionally, the compounds can be further purified by filtration and washing with water instead of concentration *in vacuo*. Also optionally the compounds can be purified by washing with ethanol, water and/or heptane, or by preparative HPLC.

Example 150 (General procedure (C))

5-(4-Hydroxy-3-iodo-5-methoxybenzylidene)thiazolidine-2,4-dione

Mp = 256 °C; ¹H NMR (DMSO- d_{θ}) δ = 12.5 (s,broad,1H), 10.5 (s,broad,1H), 7.69 (s,1H), 7.51 (d,1H), 7.19 (d,1H)3.88 (s,3H), ¹³C NMR (DMSO- d_{θ}) δ_{C} = 168.0, 167.7, 149.0, 147.4, 133.0, 131.2, 126.7, 121.2, 113.5, 85.5, 56.5; HPLC-MS (Method A): m/z: 378 (M+1); Rt = 3.21 min.

Example 151 (General procedure (C))
 5-(4-Hydroxy-2,6-dimethylbenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 250 (M+1); Rt.= 2.45 min.

5 Example 152 (General procedure (C))

4-[5-Bromo-6-(2,4-dioxothiazolidin-5-ylidenemethyl)-naphthalen-2-yloxymethyl]-benzoic acid

HPLC-MS (Method C): m/z: 506 (M+23); Rt.= 4.27 min.

10

Example 153 (General procedure (C))

5-(4-Bromo-2,6-dichlorobenzylidene)thiazolidine-2,4-dione

15 HPLC-MS (Method C): m/z: 354 (M+1); Rt.= 4.36 min.

Example 154 (General procedure (C))

5-(6-Hydroxy-2-naphthylmethylene) thiazolidine-2,4-dione

Mp 310-314 °C, ¹H NMR (DMSO- d_{θ}): δ_{H} = 12.5 (s,broad,1H), 8.06(d,1H), 7.90-7.78(m,2H),7.86 (s,1H), 7.58 (dd,1H),7.20 7.12 (m,2H). ¹³C NMR (DMSO- d_{θ}): δ_{C} = 166.2, 165.8, 155.4, 133.3, 130.1, 129.1, 128.6, 125.4, 125.3, 125.1, 124.3, 120.0, 117.8, 106.8; HPLC-MS (Method A): m/z: 272 (M+1); Rt = 3.12 min.

5

10

15

20

25

30

Preparation of the starting material, 6-hydroxy-2-naphtalenecarbaldehyde:

6-Cyano-2-naphthalenecarbaldehyde (1.0 g, 5.9 mmol) was dissolved in dry hexane (15 mL) under nitrogen. The solution was cooled to -60 °C and a solution of diisobutyl aluminium hydride (DIBAH) (15 mL, 1M in hexane) was added dropwise. After the addition, the solution was left at room temperature overnight. Saturated ammonium chloride solution (20 mL) was added and the mixture was stirred at room temperature for 20 min, subsequently aqueous H₂SO₄ (10% solution, 15 mL) was added followed by water until all salt was dissolved. The resulting solution was extracted with ethyl acetate (3x), the combined organic phases were dried with MgSO₄, evaporated to dryness to afford 0.89 g of 6-hydroxy-2-naphtalenecarbaldehyde.

Mp.: 153.5-156.5 °C; HPLC-MS (Method A): m/z: 173 (M+1); Rt = 2.67 min; ¹ H NMR (DMSO- d_{θ}): δ_{H} = 10.32(s,1H), 8.95 (d,1H), 10.02 (s,1H), 8.42 (s,broad,1H), 8.01 (d,1H), 7.82-7.78 (m,2H), 7.23-7.18 (m,2H).

Alternative preparation of 6-hydroxy-2-naphtalenecarbaldehyde:

To a stirred cooled mixture of 6-bromo-2-hydroxynaphthalene (25.3 g, 0.113 mol) in THF (600 mL) at -78 °C was added n-BuLi (2.5 M, 100 mL, 0.250 mol) dropwise. The mixture turned yellow and the temperature rose to -64 °C. After ca 5 min a suspension appeared. After addition, the mixture was maintained at -78 °C. After 20 minutes, a solution of DMF (28.9 mL, 0.373 mol) in THF (100 mL) was added over 20 minutes. After addition, the mixture was allowed to warm slowly to room temperature. After 1 hour, the mixture was poured in ice/water (200 mL). To the mixture citric acid was added to a pH of 5. The mixture was stirred for 0.5 hour. Ethyl acetate (200 mL) was added and the organic layer was separated and washed with brine (100 mL), dried over Na₂SO₄ and concentrated. To the residue was added heptane with 20% ethyl acetate (ca 50 mL) and the mixture was stirred for 1 hour. The mixture was filtered and the solid was washed with ethyl acetate and dried *in vacuo* to afford 16 g of the title compound.

Example 155 (General procedure (C))

5-(3-lodo-4-methoxybenzylidene)thiazolidiene-2,4-dione

¹H NMR (DMSO-d₆): $\delta_{\rm H}$ 12.55 (s,broad,1H), 8.02 (d,1H), 7.72 (s,1H), 7.61 (d,1H)7.18(d,1H), 3.88 (s,3H); ¹³C NMR (DMSO-d₆): $\delta_{\rm C}$ 168.1, 167.7, 159.8, 141.5, 132.0, 130.8, 128.0, 122.1, 112.5, 87.5, 57.3. HPLC-MS (Method A): m/z: 362 (M+1); Rt = 4.08 min.

Preparation of the starting material, 3-iodo-4-methoxybenzaldehyde:

4-Methoxybenzaldehyde (0.5 g, 3.67 mmol) and silver trifluoroacetate (0.92 g, 4.19 mmol) were mixed in dichloromethane (25 mL). Iodine (1.19 g, 4.7 mmol) was added in small portions and the mixture was stirred overnight at room temperature under nitrogen. The mixture was subsequently filtered and the residue washed with DCM. The combined filtrates were treated with an acqueous sodium thiosulfate solution (1 M) until the colour disappeared.
 Subsequent extraction with dichloromethane (3 x 20 mL) followed by drying with MgSO₄ and evaporation *in vacuo* afforded 0.94 g of 3-iodo-4-methoxybenzaldehyde.

Mp 104-107 °C; HPLC-MS (Method A): m/z:263 (M+1); Rt = 3.56 min.; H NMR (CDCl₃): $\delta_{\rm H}$ = 8.80 (s,1H), 8.31 (d,1H), 7.85 (dd,1H) 6.92 (d,1H), 3.99 (s, 3H).

20

Example 156 (General procedure (C))

5-(1-Bromonaphthalen-2-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: =336 (M+1); Rt = 4.46 min.

25

Example 157 (General procedure (C))

1-[5-(2,4-Dioxothiazolidin-5-ylidenemethyl)thiazol-2-yl]piperidine-4-carboxylic acid ethyl ester

¹H NMR (DMSO- d_6): δ_H = 7.88 (s,1H), 7.78 (s,1H), 4.10 (q,2H), 4.0-3.8 (m,2H), 3.40-3.18 (m,2H), 2.75-2.60 (m,1H), 2.04-1.88 (m,2H), 1.73-1.49 (m,2H), 1.08 (t,3H); HPLC-MS (Method A): m/z: 368 (M+1); Rt = 3.41 min.

5

15

Example 158 (General procedure (C))

5-(2-Phenyl-[1,2,3]triazol-4-ylmethylene) thiazolidine-2,4-dione

¹H NMR (DMSO- d_0): δ_H = 12.6 (s,broad,1H), 8.46 (s,1H), 8.08 (dd,2H), 7.82 (s,1H), 7.70-7.45 (m, 3H). HPLC-MS (Method A): m/z: 273 (M+1); Rt = 3.76 min.

Example 159 (General procedure (C))

5-(Quinolin-4-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 257 (M+1); Rt = 2.40 min.

Example 160 (General procedure (C))

5-(6-Methylpyridin-2-ylmethylene)thiazolidine-2,4-dione

¹H NMR (DMSO- d_6): δ_H = 12.35 (s,broad,1H), 7.82 (t,1H), 7.78 (s,1H), 7.65 (d,1H), 7.18 (d,1H), 2.52 (s,3 H); HPLC-MS (Method A): m/z: 221 (M+1); Rt = 3.03 min.

5 Example 161 (General procedure (C))

5-(2,4-dioxothiazolidin-5-ylidenemethyl)-furan-2-ylmethylacetate

¹H NMR (DMSO- d_8): δ_H = 12.46 (s,broad,1H), 7.58 (s,1H), 7.05 (d,1H), 6.74 (s,1H), 5.13 (s,2H), 2.10 (s,3H). HPLC-MS (Method A): m/z: 208 (M-CH₃COO); Rt = 2.67 min.

10

Example 162 (General procedure (C))

5-(2,4-Dioxothiazolidin-5-ylidenemethyl)furan-2-sulfonic acid

HPLC-MS (Method A): m/z:276 (M+1); Rt = 0.98 min.

15

Example 163 (General procedure (C))

5-(5-Benzyloxy-1H-pyrrolo[2,3-c]pyridin-3-ylmethylene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 352 (M+1); Rt = 3.01 min.

Example 164 (General procedure (C))

5-(Quinolin-2-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 257 (M+1); Rt = 3.40 min.

5

Example 165 (General procedure (C))

5-(2,4-Dioxothiazolidin-5-ylidenemethyl)thiophene-2-carboxylic acid

HPLC-MS (Method A): m/z: 256 (M+1); Rt = 1.96 min.

10

Example 166 (General procedure (C))

5-(2-Phenyl-1H-imidazol-4-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 272 (M+1); Rt = 2.89 min.

15

Example 167 (General procedure (C))

5-(4-Imidazol-1-yl-benzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 272 (M+1); Rt = 1.38 min.

Example 168 (General procedure (C))

5-(9-Ethyl-9H-carbazol-3-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 323 (M+1); Rt = 4.52 min.

5

Example 169 (General procedure (C))

5-(1,4-Dimethyl-9H-carbazol-3-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 323 (M+1); Rt = 4.35 min.

10

Example 170 (General procedure (C))

5-(2-Methyl-1H-indol-3-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 259 (M+1); Rt = 3.24 min.

15

Example 171 (General procedure (C))

5-(2-Ethylindol-3-ylmethylene)thiazolidine-2,4-dione

20

2-Methylindole (1.0 g, 7.6mmol) dissolved in diethyl ether (100 mL) under nitrogen was treated with n-Butyl lithium (2 M in pentane, 22.8 mmol) and potassium *tert*-butoxide (15.2

5

mmol) with stirring at RT for 30 min. The temperature was lowered to -70 C and methyl lodide (15.2 mmol) was added and the resulting mixture was stirred at -70 for 2 h. Then 5 drops of water was added and the mixture allowed to warm up to RT. Subsequently, the mixture was poured into water (300 mL), pH was adjusted to 6 by means of 1N hydrochloric acid and the mixture was extracted with diethyl ether. The organic phase was dried with Na₂SO₄ and evaporated to dryness. The residue was purified by column chromatography on silica gel using heptane/ether(4/1) as eluent. This afforded 720 mg (69 %) of 2-ethylindole.

¹H NMR (DMSO- d_{θ}): δ = 10.85 (1H,s); 7.39 (1H,d); 7.25 (1H,d); 6.98(1H,t); 6.90(1H,t); 6.10 (1H,s); 2.71 (2H,q); 1.28 (3H,t).

2-Ethylindole (0.5 g, 3.4mmol) dissolved in DMF (2 mL) was added to a cold (0 °C) premixed (30 minutes) mixture of DMF (1.15 mL) and phosphorous oxychloride (0.64 g, 4.16 mmol). After addition of 2-ethylindole, the mixture was heated to 40 °C for 1 h, water (5 mL) was added and the pH adjusted to 5 by means of 1 N sodium hydroxide. The mixture was subsequently extracted with diethyl ether, the organic phase isolated, dried with MgSO₄ and evaporated to dryness affording 2-ethylindole-3-carbaldehyde (300 mg).

HPLC-MS (Method C): m/z:174 (M+1); Rt. =2.47 min.

2-Ethylindole-3-carbaldehyde (170 mg) was treated with thiazolidine-2,4-dione using the general procedure (C) to afford the title compound (50 mg).

HPLC-MS (Method C):m/z: 273 (M+1); Rt.= 3.26 min.

25

15

20

Example 172 (General procedure (C))

5-[2-(4-Bromophenylsulfanyl)-1-methyl-1H-indol-3-ylmethylene]thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 447 (M+1); Rt = 5.25 min.

Example 173 (General procedure (C))

5-[2-(2,4-Dichlorobenzyloxy)-naphthalen-1-ylmethylene]thiazolidine-2,4-dione

5 HPLC-MS (Method A): (anyone 1) m/z: 430 (M+1); Rt = 5.47 min.

Example 174 (General procedure (C))

5-{4-[3-(4-Bromophenyl)-3-oxopropenyl]-benzylidene}thiazolidine-2,4-dione

10 HPLC-MS (Method A): m/z: 416 (M+1); Rt = 5.02 min.

Example 175 (General procedure (C))

5-(4-Pyridin-2-ylbenzylidene)thiazolidine-2,4-dione

15 HPLC-MS (Method A): m/z: 283 (M+1), Rt = 2.97 min.

Example 176 (General procedure (C))

5-(3,4-Bisbenzyloxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 418 (M+1); Rt = 5.13 min.

Example 177 (General procedure (C))

5 5-[4-(4-Nitrobenzyloxy)-benzylidene]thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 357 (M+1); Rt = 4.45 min.

Example 178 (General procedure (C))

10 5-(2-Phenyl-1H-indol-3-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 321 (M+1); Rt = 3.93 min.

Example 179 (General procedure (C))

15 5-(5-Benzyloxy-1H-indol-3-ylmethylene)thiazolidine-2,4-dione

5

15

20

HPLC-MS (Method A): m/z: 351 (M+1); Rt = 4.18 min.

Example 180 (General procedure (C))

5-(4-Hydroxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 222 (M+1); Rt = 2.42 min.

Example 181 (General procedure (C)) 5-(1-Methyl-1H-indol-2-ylmethylene)thiazolidine-2,4-dione

¹H NMR (DMSO- d_{θ}): δ_{H} = 12.60 (s,broad,1H), 7.85 (s,1H), 7.68 (dd,1H), 7.55 (dd,1H), 7.38 (dt,1H), 7.11 (dt,1H) 6.84 (s,1H), 3.88 (s,3H); HPLC-MS (Method A): m/z: 259 (M+1); Rt = 4.00 min.

Example 182 (General procedure (C)) 5-(5-Nitro-1H-indol-3-ylmethylene)thiazolidine-2,4-dione

.Mp 330-333 °C, ¹H NMR (DMSO- d_6): δ_H = 12.62 (s,broad,1H), 8.95 (d,1H), 8.20 (s,1H), 8.12 (dd,1H), 7.98 (s,broad,1H), 7.68 (d,1H); HPLC-MS (Method A): m/z: 290 (M+1); Rt = 3.18 min.

Example 183 (General procedure (C)) 5-(6-Methoxynaphthalen-2-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 286 (M+1); Rt = 4.27 min.

5

Example 184 (General procedure (C)) 5-(3-Bromo-4-methoxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 314 (M+1), Rt = 3.96 min.

10

Example 185 (General procedure (C)) 3-{(2-Cyanoethyl)-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenyl]amino}propionitrile

HPLC-MS (Method A): m/z: 327 (M+1); Rt = 2.90 min.

15

Example 186 (General procedure (C)) 3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indole-6-carboxylic acid methyl ester

HPLC-MS (Method A): m/z: 303 (M+1); Rt = 3.22-3-90 min.

20

3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indole-6-carboxylic acid pentyl ester.

3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indole-6-carboxylic acid methyl ester (example 186,
 59 mg; 0.195mmol) was stirred in pentanol (20 mL) at 145 °C for 16 hours. The mixture was evaporated to dryness affording the title compound (69 mg).

HPLC-MS (Method C): m/z: 359 (M+1); Rt.= 4.25 min.

10 Example 188 (General procedure (C)) 3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indole-7-carboxylic acid

HPLC-MS (Method A): m/z: 289 (M+1); Rt = 2.67 min.

15 Example 189 (General procedure (C)) 5-(1-Benzylindol-3-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 335 (M+1); Rt = 4.55 min.

Example 190 (General procedure (C)) 5-(1-Benzenesulfonylindol-3-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: = 385 (M+1); Rt = 4.59 min.

5

Example 191 (General procedure (C)) 5-(4-[1,2,3]Thiadiazol-4-ylbenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 290 (M+1); Rt = 3.45 min.

10

Example 192 (General procedure (C)) 5-[4-(4-Nitrobenzyloxy)-benzylidene]thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 357 (M+1); Rt = 4.42 min.

15

Example 193 (General procedure (C)) 3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indole-1-carboxylic acid ethyl ester

HPLC-MS (Method A): m/z: 317 (M+1); Rt = 4.35 min.

5

Example 194 (General procedure (C)) 5-[2-(4-Pentylbenzoyl)-benzofuran-5-ylmethylene]thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 420 (M+1); Rt = 5.92 min.

10

Example 195 (**General procedure (C))** 5-[1-(2-Fluorobenzyl)-4-nitroindol-3-ylmethylene]thiazolidine-2,4-dione

HPLC-MS (Method A): (Anyone 1) m/z: 398 (M+1); Rt = 4.42 min.

15

Example 196 (General procedure (C)) 5-(4-Benzyloxyindol-3-ylmethylene)thiazolidine-2,4-dione

20

HPLC-MS (Method A): m/z: 351 (M+1); Rt = 3.95 min.

Example 197 (General procedure (C)) 5-(4-Isobutylbenzylidene)-thiazolidine-2,4-dione

5 HPLC-MS (Method A): m/z: 262 (M+1); Rt = 4.97 min.

Example 198 (General procedure (C)) Trifluoromethanesulfonic acid 4-(2,4-dioxothiazolidin-5-ylidenemethył)naphthalen-1-yl ester

10 HPLC-MS (Method A): m/z: 404 (M+1); Rt = 4.96 min.

Preparation of starting material:

4-Hydroxy-1-naphthaldehyde (10 g, 58 mmol) was dissolved in pyridin (50 ml) and the mixture was cooled to 0-5 °C. With stirring, trifluoromethanesulfonic acid anhydride (11.7 ml, 70 mmol) was added drop-wise. After addition was complete, the mixture was allowed to warm up to room temperature, and diethyl ether (200 ml) was added. The mixture was washed with water (2 x 250 ml), hydrochloric acid (3N, 200 ml), and saturated aqueous sodium chloride (100 ml). After drying (MgSO4), filtration and concentration in vacuo, the residue was purified by column chromatography on silica gel eluting with a mixture of ethyl acetate and heptane (1:4). This afforded 8.35 g (47%) trifluoromethanesulfonic acid 4-formylnaphthalen-1-yl ester, mp 44-46.6 °C.

Example 199 (General procedure (C)) 5-(4-Nitroindol-3-ylmethylene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 290 (M+1); Rt = 3.14 min.

5 Example 200 (General procedure (C)) 5-(3,5-Dibromo-4-hydroxy-benzylidene)thiazolidine-2,4-dione

¹H NMR (DMSO- d_6): δ_H = 12.65 (broad,1H), 10.85 (broad,1H), 7.78 (s,2H), 7.70 (s,1H); HPLC-MS (Method A): m/z: 380 (M+1); Rt = 3.56 min.

10

15

Example 201 (General procedure (C))

HPLC-MS (Method A): m/z: 385 (M+1); Rt = 5.08 min.

General procedure for preparation of starting materials for examples 201 - 204: Indole-3-carbaldehyde (3.8 g, 26 mmol) was stirred with potassium hydroxide (1.7 g) in

acetone (200 mL) at RT until a solution was obtained indicating full conversion to the indole potassium salt. Subsequently the solution was evaporated to dryness *in vacuo*. The residue was dissolved in aceton to give a solution containing 2.6 mm 1/20 mL

was dissolved in acetone to give a solution containing 2.6 mmol/20 mL.

20 mL portions of this solution were mixed with equimolar amounts of arylmethylbromides in acetone (10 mL). The mixtures were stirred at RT for 4 days and subsequently evaporated to dryness and checked by HPLC-MS. The crude products, 1-benzylated indole-3-carbaldehydes, were used for the reaction with thiazolidine-2,4-dione using the general procedure C.

Example 202 (General procedure (C)) 4-[3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indol-1-ylmethyl]benzoic acid methyl ester

5 HPLC-MS (Method A): m/z: 393 (M+1); Rt = 4.60 min.

Example 203 **(General procedure (C))** 5-[1-(9,10-Dioxo-9,10-dihydroanthracen-2-ylmethyl)-1*H*-indol-3-ylmethylene]thiazolidine-2,4-dione

10 HPLC-MS (Method A): m/z: 465 (M+1); Rt = 5.02 min.

Example 204 (General procedure (C)) 4'-[3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indol-1-ylmethyl]biphenyl-2-carbonitrile

15 HPLC-MS (Method A): m/z: 458 (M+23); Rt = 4.81 min.

Example 205 (General procedure (C))

3-[3-(2,4-Dioxothiazolidin-5-ylidenemethyl)-2-methylindol-1-ylmethyl]benzonitrile.

15

2-Methylindole-3-carbaldehyde (200 mg, 1.26 mmol) was added to a slurry of 3-bromomethylbenzenecarbonitrile (1.26 mmol) followed by sodium hydride, 60%, (1.26 mmol) in DMF (2 mL). The mixture was shaken for 16 hours, evaporated to dryness and washed with water and ethanol. The residue was treated with thiazolidine-2,4-dione following the general procedure C to afford the title compound (100 mg).

HPLC-MS (Method C): m/z: 374 (M+1); Rt. = 3.95 min.

10 Example 206 (General procedure (C))

5-(1-Benzyl-2-methylindol-3-ylmethylene)thiazolidine-2,4-dione.

This compound was prepared in analogy with the compound described in example 205 from benzyl bromide and 2-methylindole-3-carbaldehyde, followed by reaction with thiazolidine-2,4-dione resulting in 50 mg of the title compound.

HPLC-MS (Method C): m/z: 349 (M+1); Rt. = 4.19 min.

Example 207

20 4-[3-(2,4-Dioxothiazolidin-5-ylidenemethyl)-2-methylindol-1-ylmethyl]benzoic acid methyl ester

10

15

This compound was prepared in analogy with the compound described in example 205 from 4-(bromomethyl)benzoic acid methyl ester and 2-methylindole-3-carbaldehyde, followed by reaction with thiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 407 (M+1); Rt.= 4.19 min.

Example 208 (General procedure (C)) 5-(2-Chloro-1-methyl-1H-indol-3-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 293 (M+1); Rt = 4.10 min.

Example 209 (General procedure (C)) 5-(4-Hydroxy-3,5-diiodo-benzylidene)-thiazolidine-2,4-dione

HPLC-MS (Method A): m/z: 474 (M+1); Rt = 6.61 min.

Example 210 (General procedure (C))

5-(4-Hydroxy-3-iodobenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 348 (M+1); Rt. = 3.13 min

¹H-NMR: (DMSO-*d*₈): 11.5 (1H,broad); 7.95(1H,d); 7.65(1H,s); 7.45 (1H,dd); 7.01(1H,dd); 3.4 (1H,broad).

Example 211 (General procedure (C))5-(2,3,6-Trichlorobenzylidene)thiazolidine-2,4-dione

10

H PLC-MS (Method C): m/z: 309 (M+1); Rt = 4.07 min

Example 212 (General procedure (C))

15 5-(2,6-Dichlorobenzylidene)thiazolidine-2,4-dione

Mp. 152-154°C.

HPLC-MS (Method C): m/z: 274 (M+1), Rt.= 3.70 min

¹H-NMR: (DMSO-d_θ): 12.8 (1H, broad); 7.72 (1H,s); 7.60 (2H,d); 7.50 (1H,t).

20

Example 213 (General procedure (C))

5-[1-(2,6-Dichloro-4-trifluoromethylphenyl)-2,5-dimethyl-1*H*-pyrrol-3-ylmethylene]thiazolidine-2,4-dione

5 HPLC-MS (Method C): m/z: 436 (M+1); Rt. 4.81 min

Example 214 (General procedure (C))

5-[1-(3,5-Dichlorophenyl)-5-(4-methanesulfonylphenyl)-2-methyl-1*H*-pyrrol-3-ylmethylene]-thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 508 (M+1); Rt. = 4.31 min

Example 215 (General procedure (C))

5-[1-(2,5-Dimethoxyphenyl)-5-(4-methanesulfonylphenyl)-2-methyl-1*H*-pyrrol-3-ylmethylene]thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 499 (M+1); Rt. = 3.70 min

Example 216 (General procedure (C))

20 4-[3-(2,4-Dioxothiazolidin-5-ylidenemethyl)-2,5-dimethylpyrrol-1-yl]benzoic acid

HPLC-MS (Method C): m/z:342 (M+1); Rt.= 3.19 min

Example 217 (General procedure (C))

5 5-(4-Hydroxy-2,6-dimethoxybenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z:282(M+1); Rt = 2.56, mp=331-333 °C

10 Example 218 (General procedure (C))

5-(2,6-Dimethylbenzylidene)thiazolidine-2,4-dione

M.p: 104-105 °C

HPLC-MS (Method C): m/z: 234 (M+1); Rt.= 3.58 min,

15

Example 219 (General procedure (C))

5-(2,6-Dimethoxybenzylidene)thiazolidine-2,4-dione

Mp: 241-242 °C

HPLC-MS (Method C): m/z: 266 (M+1); Rt.= 3.25 min;

5 Example 220 (General procedure (C))

5-[4-(2-Fluoro-6-nitrobenzyloxy)-2,6-dimethoxybenzylidene]thiazolidine-2,4-dione

Mp: 255-256 °C

HPLC-MS (Method C): m/z: 435 (M+1), Rt 4.13 min,

10

Example 221 (General procedure (C))

5-Benzofuran-2-ylmethylenethiazolidine-2,4-dione

HPLC-MS (Method C): m/z:246 (M+1); Rt.= 3.65 min, mp = 265-266 °C.

15

Example 222 (General procedure (C))

5-[3-(4-Dimethylaminophenyl)allylidene]thiazolidine-2,4-dione

HPLC-MS (Method C): m/z:276(M+1); Rt.= 3.63, mp = 259-263 °C

¹H-NMR: (DMSO- d_8) δ = 12.3 (1H,broad); 7.46 (2H,d); 7.39 (1H,d); 7.11 (1H,d); 6.69 (2H,d); 6.59 (1H, dd); 2.98 (3H,s).

Example 223 (General procedure (C))

5 5-(2-Methyl-3-phenylallylidene)thiazolidine-2,4-dione

Mp: 203-210 °C

HPLC-MS (Method C): m/z: 246 (M+1); Rt = 3.79 min.

10 Example 224 (General procedure (C))

5-(2-Chloro-3-phenylallylidene)thiazolidine-2,4-dione

Mp: 251-254 °C

HPLC-MS (Method C): m/z: 266 (M+1; Rt = 3.90 min

15

Example 225 (General procedure (C))

5-(2-Oxo-1,2-dihydroquinolin-3-ylmethylene)thiazolidine-2,4-dione

20 Mp: 338-347 °C

HPLC-MS (Method C): m/z: 273 (M+1); Rt. = 2.59 min.

Example 226 (General procedure (C))

5-(2,4,6-Tribromo-3-hydroxybenzylidene)thiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 459 (M+1);Rt.= 3.65 min.

Example 227 (General procedure (C))

5 5-(5-Bromo-2-methylindol-3-ylmethylene)thiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 339 (M+1); Rt = 3.37min.

Example 228 (General procedure (C))

10 5-(7-Bromo-2-methylindol-3-ylmethylene)thiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 319 (M+1); Rt = 3.48min.

Example 229 (General procedure (C))

15 5-(6-Bromoindol-3-ylmethylene)thiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 325 (M+1); Rt = 3.54 min.

Example 230 (General procedure (C))

5-(8-Methyl-2-oxo-1,2-dihydroquinolin-3-ylmethylene)thiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 287 (M+1); Rt = 2.86 min.

5 Example 231 (General procedure (C))

5-(6-Methoxy-2-oxo-1,2-dihydroquinolin-3-ylmethylene)thiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 303 (M+1); Rt = 2.65 min.

10 Example 232 (General procedure (C))

5-Quinolin-3-ylmethylenethiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 257 (M+1); Rt = 2.77 min.

15 Example 233 (General procedure (C))

5-(8-Hydroxyquinolin-2-ylmethylene)thiazolidine-2,4-dione.

HPLC-MS (Method C): rn/z: 273 (M+1); Rt = 3.44 min.

20 Example 234 (General procedure (C))

5-Quinolin-8-ylmethylenethiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 257 (M+1); Rt = 3.15 min.

Example 235 (General procedure (C))

5 5-(1-Bromo-6-methoxynaphthalen-2-ylmethylene)thiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 366 (M+1); Rt = 4.44 min.

Example 236 (General procedure (C))

10 5-(6-Methyl-2-oxo-1,2-dihydroquinolin-3-ylmethylene)thiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 287 (M+1); Rt. = 2.89 min.

Example 237 (General procedure (D))

15 5-(2,6-Dichloro-4-dibenzylaminobenzylidene)thiazolidine-2,4-dione.

HPLC-MS (Method C): m/z: 469 (M+1); Rt = 5.35 min.

Example 238 (General Procedure (C))

20 7-(2,4-Dioxothiazolidin-5-ylidenemethyl)-4-methoxybenzofuran-2-carboxylic acid

10

15

20

25

HPLC-MS (Method C): m/z: 320 (M+1); Rt = 2.71 mln.

Preparation of the intermediate, 7-formyl-4-methoxybenzofuran-2-carboxylic acid:

A mixture of 2-hydroxy-6-methoxybenzaldehyde (6.4 g, 42 mmol), ethyl bromoacetate (14.2 mL, 128 mmol) and potassium carbonate (26 g, 185 mmol) was heated to 130 °C. After 3 h the mixture was cooled to room temperature and acetone (100 mL) was added, the mixture was subsequently filtered and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel eluting with a mixture of ethyl acetate and heptane (1:4). This afforded 7.5 g (55%) of ethyl 4-methoxybenzofuran-2-carboxylate.

A solution of ethyl 4-methoxybenzofuran-2-carboxylate (6.9 g, 31.3 mmol) in dichloromethane (70 ml) was cooled to 0 °C and a solution of titanium tetrachloride (13.08 g, 69 mmol) was added drop wise. After 10 minutes dichloromethoxymethane (3.958 g, 34 mmol) was added over 10 minutes. After addition, the mixture was warmed to room temperature for 18 hours and the mixture poured into hydrochloric acid (2N, 100 mL). The mixture was stirred for 0.5 hour and then extracted with a mixture of ethyl acetate and toluene (1:1). The organic phase was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel eluting with a mixture of ethyl acetate and heptane (1:4). This afforded 5.8 g (80%) of ethyl 7-formyl-4-methoxybenzofuran-2-carboxylate.

7-formyl-4-methoxybenzofuran-2-carboxylate (5.0 g, 21.5 mmol) and sodium carbonate (43 mmol) in water (100 mL) was refluxed until a clear solution appeared (about 0.5 hour). The solution was filtered and acidified to pH =1 with hydrochloric acid (2 N), the resulting product was filtered off and washed with ethyl acetate and ethanol and dried to afford 3.5 g (74%) of 7-formyl-4-methoxybenzofuran-2-carboxylic acid as a solid.

¹H NMR (DMSO- d_{θ}): δ = 10.20 (s, 1H); 8.07 (d, 1H); 7.70 (s, 1H); 7.17 (d, 1H); 4.08 (s, 3H).

Example 239 (General Procedure (C))

5-(4-Methoxybenzofuran-7-ylmethylene)thiazolidine-2,4-dione

5 HPLC-MS (Method C): m/z: 267 (M+1); Rt = 3.30 min.

Preparation of the intermediate, 4-methoxybenzofuran-7-carbaldehyde:

A mixture of 7-formyl-4-methoxybenzofuran-2-carboxylic acid (3.0 g, 13.6 mmol) and Cu (0.6 g, 9.44 mmol) in quinoline (6 mL) was refluxed. After 0.5 h the mixture was cooled to room temperature and water (100 mL) and hydrochloric acid (10 N, 20 mL) were added. The mixture was extracted with a mixture of ethyl acetate and toluene (1:1), filtered through celite and the organic layer separated and washed with a sodium carbonate solution, dried over Na₂SO₄ and concentrated *in vacuo* to afford 1.5 g crude product. Column chromatography SiO₂, EtOAc/heptanes=1/4 gave 1.1 g (46%) of 4-methoxybenzofuran-7-carbaldehyde as a solid.

¹H NMR (CDCl₃): δ : 10.30 (s,1H); 7.85 (d,1H); 7.75 (d,1H); 6.98 (d,1H); 6.87 (d,1H); 4.10 (s,3H). HPLC-MS (Method C):m/z: 177 (M+1); Rt. = 7.65 min.

20

10

15

Example 240 (General Procedure (C))

5-(4-Hydroxybenzofuran-7-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: = 262 (M+1); Rt 2.45 min.

25

Preparation of the intermediate, 4-hydroxybenzofuran-7-carbaldehyde

15

20

25

30

A mixture of 4-methoxybenzofuran-7-carbaldehyde (1.6 g, 9.1 mmol) and pyridine hydrochloride (4.8 g, 41.7mmol) in quinoline (8 mL) was refluxed. After 8 h the mixture was cooled to room temperature and poured into water (100 mL) and hydrochloric acid (2 N) was added to pH = 2. The mixture was extracted with a mixture of ethyl acetate and toluene (1:1), washed with a sodium carbonate solution, dried with Na₂SO₄ and concentrated *in vacuo* to afford 0.8 g crude product. This was purified by column chromatography on silica gel, eluting with a mixture of ethyl acetate and heptane (1:3). This afforded 250 mg of 4-hydroxybenzofuran-7-carbaldehyde as a solid.

¹H NMR (DMSO- d_{θ}): δ = 11.35 (s, broad.1H); 10.15 (s, 1H); 8.05 (d, 1H); 7.75 (d, 1H); 7.10 (d, 1H); 6.83 (d, 1H). HPLC-MS (Method C): m/z: 163 (M+1); Rt. = 6.36 min.

Example 241 (General Procedure (C))

5-(5-Bromo-2,3-dihydrobenzofuran-7-ylmethylene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 328 (M+1); Rt = 3.66 min.

Preparation of the intermediate, 5-bromo-2,3-dihydrobenzofuran-7-carbaldehyde:

To a cooled (15 °C) stirred mixture dihydrobenzofuran (50.9 g, 0.424 mol) in acetic acid (500 mL), a solution of bromine (65.5 mL, 1.27 mol) in acetic acid (200 mL) was added drop wise over 1 hour. After stirring for 18 hours, a mixture of Na₂S₂O₅ (150 g) in water (250 mL) was added carefully, and the mixture was concentrated *in vacuo*. Water (200 mL) was added and the mixture was extracted with ethyl acetate containing 10% heptane, dried over Na₂SO₄ and concentrated *in vacuo* to give crude 5,7-dibromo-2,3-dihydrobenzofuran which was used as such for the following reaction steps. To a cooled solution (-78 °C) of crude 5,7-dibromo-2,3-dihydrobenzofuran (50.7 g, 0.182 mol) in THF (375 mL) a solution of n-BuLi (2.5 M, 80 mL, 0.200 mol) in hexane was added. After addition, the mixture was stirred for 20 min. DMF (16 mL) was then added drop wise at -78 °C. After addition, the mixture was stirred at room temperature for 3 h and then the mixture was poured into a mixture of ice water, (500 mL) and hydrochloric acid (10 N, 40 mL) and extracted with toluene, dried over Na₂SO₄ and concentrated *in vacuo*. Column chromatography on silica gel eluting with a mixture of ethyl

acetate and heptane (1:4) afforede 23 g of 5-bromo-2,3-dihydrobenzofuran-7-carbaldehyde as a solid.

¹H NMR (CDCl₃): δ:10.18 (s,1H) ; 7.75 (d,1H) ;7.55 (d,1H) ; 4.80 (t,2H) ; 3.28 (t,2H).

5

Example 242 (General Procedure (?))

5-(4-Cyclohexylbenzylidene)thiazolidine-2,4-dione

HPLC-MS (Method C): m/z: 288 (M+1); Rt = 5.03 min.

10

Preparation of the intermediate, 4-cyclohexylbenzaldehyde:

This compound was synthesized according to a modified literature procedure (*J. Org. Chem.*, **37**, No.24, (1972), 3972-3973).

15 Cyclohexylbenzene (112.5 g, 0.702 mol) and hexamethylenetetramine (99.3 g, 0.708 mol) were mixed in TFA (375 mL). The mixture was stirred under nitrogen at 90 °C for 3 days. After cooling to room temperature the red-brown mixture was poured into ice-water (3600 ml) and stirred for 1 hour. The solution was neutralized with Na₂CO₃ (2 M solution in water) and extracted with dichloromethane (2.5 L). The organic phase was dried (Na₂SO₄) and the solvent was removed *in vacuo*. The remaining red-brown oil was purified by fractional distillation to afford the title compound (51 g, 39%).

¹H NMR (CDCl₃): δ 9.96 (s, 1H), 7.80 (d, 2H), 7.35 (d, 2H), 2.58 (m, 1H), 1.94-1.70 (m, 5 H), 1.51-1.17 (m, 5H)

25 Other ligands of the invention include

3',5'-Dichloro-4'-(2,4-dioxothiazolidin-5-ylidenemethyl)biphenyl-4-carboxylic acid:

The following compounds are commercially available and may be prepared using general procedures (B) and / or (C).

5 Example 243

5-(5-Bromo-1H-indol-3-ylmethylene)thiazolidine-2,4-dione

Example 244

5-Pyridin-4-ylmethylenethiazolidine-2,4-dione

10

Example 245

5-(3-Bromo-4-methoxybenzylidene)thiazolidine-2,4-dione

15 Example 246

5-(3-Nitrobenzylidene)thiazolidine-2,4-dione

5-Cyclohexylidene-1,3-thiazolidine-2,4-dione

5

Example 248

5-(3,4-Dihydroxybenzylidene)thiazolidine-2,4-dione

10

Example 249

5-(3-Ethoxy-4-hydroxybenzylidene)thiazolidine-2,4-dione

15 Example 250

5-(4-Hydroxy-3-methoxy-5-nitrobenzylidene)thiazolidine-2,4-dione

5-(3-Ethoxy-4-hydroxybenzylidene)thiazolidine-2,4-dione

5

Example 252

5-(4-Hydroxy-3,5-dimethoxybenzylidene)thiazolidine-2,4-dione

10

Example 253

5-(3-Bromo-5-ethoxy-4-hydroxybenzylidene)thiazolidine-2,4-dione

15 Example 254

5-(3-Ethoxy-4-hydroxy-5-nitrobenzylidene)thiazolidine-2,4-dione

5

Example 256

Example 259

Example 260

5

5

Example 263

Example 264

10

Example 266

5

Example 267

5-(3-Hydroxy-5-methyl-phenylamino)-thiazolidine-2,4-dione

10

Example 270

Example 271

5

Example 273

Example 274

Example 275

Example 278

5

Example 279

Example 282

Example 283

10

5

Example 286

Example 287

10

5

Example 290

20

General procedure (D) for preparation of compounds of general formula

l₃:

5 wherein X, Y, and R³ are as defined above, n is 1 or 3-20,

E is arylene or heterarylene (including up to four optional substituents, R¹³, R¹⁴, R¹⁵, and R^{15A} as defined above).

R' is a standard carboxylic acid protecting group, such as C₁-C₈-alkyl or benzyl and Lea is a leaving group, such as chloro, bromo, iodo, methanesulfonyloxy, toluenesulfonyloxy or the like.

Step 1 is an alkylation of a phenol moiety. The reaction is preformed by reacting R¹⁰-C(=O)-E-OH with an ω -bromo-alkane-carboxylic acid ester (or a synthetic equivalent) in the presence of a base such as sodium or potassium carbonate, sodium or potassium hydroxide, sodium hydride, sodium or potassium alkoxide in a solvent, such as DMF, NMP, DMSO, acetone, acetonitrile, ethyl acetate or isopropyl acetate. The reaction is performed at 20 – 160 °C, usually at room temperature, but when the phenol moiety has one or more substituents heating to 50 °C or more can be beneficial, especially when the substituents are in the ortho position relatively to the phenol. This will readily be recognised by those skilled in the art.

Step 2 is a hydrolysis of the product from step 1.

25 Step 3 is similar to general procedure (B) and (C).

This general procedure (D) is further illustrated in the following examples:

Example 292 (General procedure (D))

5 4-[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)phenoxy]butyric acid

Step 1:

10

15

20

25

30

A mixture of 4-hydroxybenzaldehyde (9.21 g, 75 mmol), potassium carbonate (56 g, 410 mmol) and 4-bromobutyric acid ethyl ester (12.9 mL, 90 mmol) in *N*,*N*-dimethylformamide (250 mL) was stirred vigorously for 16 hours at room temperature. The mixture was filtered and concentrated *in vacuo* to afford 19.6 g (100%) of 4-(4-formylphenoxy)butyric acid ethyl ester as an oil. 1 H-NMR (DMSO- d_6): δ 1.21 (3H, t), 2.05 (2H, p), 2.49 (2H, t), 4.12 (4H, m), 7.13 (2H, d), 7.87 (2H, d), 9.90 (1H, s). HPLC-MS (Method A): m/z = 237 (M+1); R_t = 3.46 min.

Step 2:

4-(4-Formylphenoxy)butyric acid ethyl ester (19.6 g, 75 mmol) was dissolved in methanol (250 mL) and 1N sodium hydroxide (100 mL) was added and the resulting mixture was stirred at room temperature for 16 hours. The organic solvent was evaporated *in vacuo* (40 °C, 120 mBar) and the residue was acidified with 1N hydrochloric acid (110 mL). The mixture was filtered and washed with water and dried in vacuo to afford 14.3 g (91%) 4-(4-formylphenoxy)butyric acid as a solid. 1 H-NMR (DMSO- d_6): δ 1.99 (2H, p), 2.42 (2H, t), 4.13 (2H, t), 7.14 (2H, d), 7.88 (2H, d), 9.90 (1H, s), 12.2 (1H, bs). HPLC-MS (Method A): m/z = 209 (M+1); R₁ = 2.19 min.

Step 3:

Thiazolidine-2,4-dione (3.55 g, 27.6 mmol), 4-(4-formylphenoxy)butyric acid (5.74 g, 27.6 mmol), anhydrous sodium acetate (11.3 g, 138 mmol) and acetic acid (100 mL) was refluxed for 16 h. After cooling, the mixture was filtered and washed with acetic acid and water. Drying in vacuo afforded 2.74 g (32%) of 4-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]butyric acid as a solid.

¹H-NMR (DMSO- d_6): δ 1.97 (2H, p), 2.40 (2H, t), 4.07 (2H, t), 7.08 (2H, d), 7.56 (2H, d), 7.77 (1H, s), 12.2 (1H, bs), 12.5 (1H, bs); HPLC-MS (Method A): m/z: 308 (M+1); Rt = 2.89 min.

Example 293 (General procedure (D))

5 [3-(2,4-Dioxothiazolidin-5-ylidenemethyl)phenoxy]acetic acid

Step 3:

10

15

20

Thiazolidine-2,4-dione (3.9 g, 33 mmol), 3-formylphenoxyacetic acid (6.0 g, 33 mmol), anhydrous sodium acetate (13.6 g, 165 mmol) and acetic acid (100 mL) was refluxed for 16 h. After cooling, the mixture was filtered and washed with acetic acid and water. Drying in vacuo afforded 5.13 g (56%) of [3-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]acetic acid as a solid.

¹H-NMR (DMSO- d_6): δ 4.69 (2H, s), 6.95 (1H, dd), 7.09 (1H, t), 7.15 (1H, d), 7.39 (1H, t),7.53 (1H, s); HPLC-MS (Method A): m/z = 280 (M+1) (poor ionisation); R_i = 2.49 min.

The compounds in the following examples were similarly prepared.

Example 294 (General procedure (D))

3-[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)phenyl]acrylic acid

¹H-NMR (DMSO- d_{θ}): δ 6.63 (1H, d), 7.59-7.64 (3H, m), 7.77 (1H, s), 7.83 (2H, m).

Example 295 (General procedure (D))

[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)phenoxylacetic acid

Triethylamine salt: 1 H-NMR (DMSO- d_{θ}): δ 4.27 (2H, s), 6.90 (2H, d), 7.26 (1H, s), 7.40 (2H, d).

5

20

Example 296 (General procedure (D))

4-(2,4-Dioxothiazolidin-5-ylidenemethyl)benzoic acid

10 Example 297 (General procedure (D))

3-(2,4-Dioxothiazolidin-5-ylidenemethyl)benzoic acid

 1 H-NMR (DMSO- d_{θ}): δ 7.57 (1H, s), 7.60 (1H, t), 7.79 (1H, dt), 7.92 (1H, dt), 8.14 (1H, t).

15 Example 298 (General procedure (D))

4-[2-Chloro-4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]butyric acid

¹H-NMR (DMSO- d_{θ}): δ 2.00 (2H, p), 2.45 (2H, t), 4.17 (2H, t), 7.31 (1H, d), 7.54 (1H, dd), 7.69 (1H, d), 7.74 (1H, s), 12.2 (1H, bs), 12.6 (1H, bs). HPLC-MS (Method A): m/z: 364 (M+23); Rt = 3.19 min.

Example 299 (General procedure (D))

4-[2-Bromo-4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]butyric acid

¹H-NMR (DMSO- d_6): δ 1.99 (2H, p), 2.46 (2H, t), 4.17 (2H, t), 7.28 (1H, d), 7.57 (1H, dd), 7.25 (1H, s), 7.85 (1H, d), 12.2 (1H, bs), 12.6 (1H, bs). HPLC-MS (Method A): m/z: 410 (M+23); Rt = 3.35 min.

Example 300 (General procedure (D))

10 4-[2-Bromo-4-(4-oxo-2-thioxothiazolidin-5-ylidenemethyl)phenoxy]butyric acid

¹H-NMR (DMSO- d_6): δ 1.99 (2H, p), 2.45 (2H, t), 4.18 (2H, t), 7.28 (1H, d), 7.55 (1H, dd), 7.60 (1H, s), 7.86 (1H, d), 12.2 (1H, bs), 13.8 (1H, bs). HPLC-MS (Method A): m/z: 424 (M+23); Rt = 3.84 min.

15 HPLC-MS (Method A): m/z: 424 (M+23); Rt = 3,84 min

Example 301 (General procedure (D))

4-[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-1-yloxy]butyric acid

¹H-NMR (DMSO-*d₆*): δ 2.12 (2H, p), 2.5 (below DMSO), 4.28 (2H, t), 7.12 (1H, d), 7.6-7.7 (3H, m), 8.12 (1H, d), 8.31 (1H, d), 8.39 (1H, s), 12.2 (1H, bs), 12.6 (1H, bs). HPLC-MS (Method A): m/z: 380 (M+23); Rt = 3.76 min.

Example 302 (General procedure (D))

5-[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-1-yloxy]pentanoic acid

HPLC-MS (Method A): m/z: 394 (M+23); Rt = 3.62 min.

¹H-NMR (DMSO- d_6): δ 1.78 (2H, m), 1.90 (2H, m), 2.38 (2H, t), 4.27 (2H, t), 7.16 (1H, d), 7.6-7.75 (3H, m), 8.13 (1H, d), 8.28 (1H, d), 8.39 (1H, s), 12.1 (1H, bs), 12.6 (1H, bs).

Example 303

5-[2-Bromo-4-(2,4-dioxothiazolidin-5-ylidenemethyl)naphthalen-1-yloxy]pentanoic acid.

10

15

5-[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)-naphthalen-1-yloxy]pentanoic acid (example 302, 185 mg, 0.5 mmol) was treated with an equimolar amount of bromine in acetic acid (10 mL). Stirring at RT for 14 days followed by evaporation to dryness afforded a mixture of the brominated compound and unchanged starting material. Purification by preparative HPLC on a C18 column using acetonitrile and water as eluent afforded 8 mg of the title compound.

HPLC-MS (Method C): m/z: 473 (M+23), Rt. = 3.77 min

20 Example 304

4-[2-Bromo-4-(2,4-dioxothiazolidin-5-ylidenemethyl)naphthalen-1-yloxy]butyric acid.

Starting with 4-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)-naphthalen-1-yloxy]-butyric acid (example 301, 0.5 mmol) using the same method as in example 303 afforded 66 mg of the title compound.

5 HPLC-MS (Method C): m/z: 459 (M+23); Rt. = 3.59 min.

Example 305 (General procedure (D))

[2-Bromo-4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]acetic acid

¹H-NMR (DMSO- d_{θ}): δ 4.90 (2H, s), 7.12 (1H, d), 7.52 (1H, dd), 7.65 (1H, s) 7.84 (1H, d).HPLC-MS (Method A): m/z: not observed; Rt = 2.89 min.

Example 306 (General procedure (D))

4-[3-(2,4-Dioxothiazolidin-5-ylidenemethyl)phenoxy]butyric acid

¹H-NMR (DMSO- d_6): δ 1.98 (2H, p), 2.42 (2H, t), 4.04 (2H, t), 7.05 (1H, dd), 7.15 (2H, m), 7.45 (1H, t), 7.77 (1H, s), 12.1 (1H, bs), 12.6 (1H, bs). HPLC-MS (Method A): m/z: 330 (M+23); Rt = 3.05 min.

20 Example 307 (General procedure (D))

[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)-3-methoxyphenoxy]acetic acid

HPLC-MS (Method B): m/z: 310 (M+1); Rt = 3,43 min.

Example 308 (General procedure (D))

[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-1-yloxy]acetic acid

HPLC-MS (Method A): m/z: 330 (M+1); Rt = 3.25 min.

Example 309 (General procedure (D))8-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalene-1-carboxylic acid

10

5

HPLC-MS (Method A): m/z: 299 (M+1); Rt = 2,49 min.

Example 310 (General procedure (D)) [3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indol-1-

15 yl]acetic acid

HPLC-MS (Method A): m/z: 303 (M+1); Rt = 2.90 min.

Preparation of starting material:

3-Formylindol (10 g, 69 mmol) was dissolved in N,N-dimethylformamide (100 mL) and under an atmosphere of nitrogenand with external cooling, keeping the temperature below 15 °C,

15

20

25

sodium hydride (60% in mineral oil, 3.0 g, 76 mmol) was added in portions. Then a solution of ethyl bromoacetate (8.4 mL, 76 mmol) in *N*,*N*-dimethylformamide (15 mL) was added dropwise over 30 minutes and the resulting mixture was stirred at room temperature for 16 hours. The mixture was concentrated *in vacuo* and the residue was partitioned between water (300 mL) and ethyl acetate (2 x 150 mL). The combined organic extracts were washed with a saturated aqueous solution of ammonium chloride (100 mL), dried (MgSO₄) and concentrated in vacuo to afford 15.9 g (quant.) of (3-formylindol-1-yl)acetic acid ethyl ester as an oil.

¹H-NMR (CDCl₃): $\delta_{\rm H}$ = 1.30 (3H, t), 4.23 (2H, q), 4.90 (2H, s), 7.3 (3H, m), 7.77 (1H, s), 8.32 (1H, d), 10.0 (1H, s).

(3-Formylindol-1-yl)acetic acid ethyl ester (15.9 g 69 mmol) was dissolved in 1,4-dioxane (100 mL) and 1N sodium hydroxide (10 mL) was added and the resulting mixture was stirred at room temperature for 4 days. Water (500 mL) was added and the mixture was washed with diethyl ether (150 mL). The aqueous phase was acidified with 5N hydrochloric acid and extracted with ethyl acetate (250 + 150 mL). The combined organic extracts were dried (MgSO₄) and concentrated in vacuo to afford 10.3 g (73%) of (3-formylindol-1-yl)acetic acid as a solid.

¹H-NMR (DMSO- d_6): δ_H = 5.20 (2H, s), 7.3 (2H, m), 7.55 (1H, d), 8.12 (1H, d), 8.30 (1H, s), 9.95 (1H, s), 13.3 (1H, bs).

Example 311 (General procedure (D))3-[3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indol-1-yl]propionic acid

HPLC-MS (Method A): m/z: 317 (M+1); Rt = 3.08 min.

Preparation of starting material:

A mixture of 3-formylindol (10 g, 69 mmol), ethyl 3-bromopropionate (10.5 mL, 83 mmol) and potassium carbonate (28.5 g, 207 mmol) and acetonitrile (100 mL) was stirred vigorously at refux temperature for 2 days. After cooling, the mixture was filtered and the filtrate was concentrated *in vacuo* to afford 17.5 g (quant.) of 3-(3-formylindol-1-yl)propionic acid ethyl ester as a solid.

¹H-NMR (DMSO- d_6): δ_H = 1.10 (3H, t), 2.94 (2H, t), 4.02 (2H, q), 4.55 (2H, t), 7.3 (2H, m), 7.67 (1H, d), 8.12 (1H, d), 8.30 (1H, s), 9.90 (1H, s).

3-(3-Formylindol-1-yl)propionic acid ethyl ester (17.5 g 69 mmol) was hydrolysed as described above to afford 12.5 g (83%) of 3-(3-formylindol-1-yl)propionic acid as a solid.

¹H-NMR (DMSO- d_6): δ_H = 2.87 (2H, t), 4.50 (2H, t), 7.3 (2H, m), 7.68 (1H, d), 8.12 (1H, d), 8.31 (1H, s), 9.95 (1H, s), 12.5 (1H, bs).

15

Example 312 (General procedure (D)){5-[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)benzylidene]-4-oxo-2-thioxothiazolidin-3-yl}acetic acid

HPLC-MS (Method A): m/z: 429 (M+23); Rt = 3.89 min.

20

Example 313 (General procedure (D))

6-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-2-yloxyoctanoic acid

25 HPLC-MS (Method C): m/z: 436 (M+23); Rt.= 4.36 min

The intermediate aldehyde for this compound was prepared by a slightly modified procedure: 6-Hydroxynaphthalene-2-carbaldehyde (1.0 g, 5.8 mmol) was dissolved in DMF (10 mL) and sodium hydride 60% (278 mg) was added and the mixture stirred at RT for 15 min. 8-Bromooctanoic acid (0.37 g, 1.7 mmol) was converted to the sodium salt by addition of sodium hydride 60% and added to an aliquot (2.5 mL) of the above naphtholate solution and the resulting mixture was stirred at RT for 16 hours. Aqueous acetic acid (10 %) was added and the mixture was extracted 3 times with diethyl ether. The combined organic phases were dried with MgSO₄ and evaporated to dryness affording 300 mg of 8-(6-formylnaphthalen-2-yloxy)octanoic acid.

10 HPLC-MS (Method C): m/z 315 (M+1); Rt. = 4.24 min.

Example 314 (General procedure (D))

12-[6-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-2-yloxy]dodecanoic acid.

15 HPLC-MS (Method C): m/z: 492 (M+23); Rt.= 5.3 min.

The intermediate aldehyde was prepared similarly as described in example 313.

Example 315 (General procedure (D))

20 11-[6-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-2-yloxy]undecanoic acid.

HPLC-MS (Method C): m/z:478 (M+23); Rt.= 5.17 min.

25 The intermediate aldehyde was prepared similarly as described in example 313.

Example 316 (General procedure (D))

15-[6-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-2-yloxy]pentadecanoic acid.

HPLC-MS (Method C): m/z: 534 (M+23); Rt.= 6.07 min.

The intermediate aldehyde was prepared similarly as described in example 313.

5

Example 317 (General procedure (D))

6-[6-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-2-yloxy]hexanoic acid.

HPLC-MS (Method C): m/z: 408 (M+23); Rt.= 3.71 min.

10

Example 318 (General procedure (D))

4-[6-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-2-yloxy]butyric acid.

HPLC-MS (Method C): m/z: 380 (M+23); Rt.= 3.23 min.

15

Example 319 (General procedure (D))

6-[6-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-2-yloxy]hexanoic acid ethyl ester.

HPLC-MS (Method C): m/z: 436 (M+23); Rt.= 4.64 min.

20

Example 320 (General procedure (D))

4-[6-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-2-yloxy]butyric acid ethyl ester.

10

15

HPLC-MS (Method C): m/z: 408 (M+23); Rt.= 4.28 min.

Example 321

N-(3-Aminopropyl)-4-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)-naphthalen-1-yloxy]-butyramide

To a mixture of 4-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)naphthalen-1-yloxy]butyric acid (example 301, 5.9 g, 16.5 mmol) and 1-hydroxybenzotriazole (3.35 g, 24.8 mmol) in DMF (60 mL) was added 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride (4.75 g, 24.8 mmol) and the resulting mixture was stirred at room temperature for 2 hours. *N*-(3-aminopropylcarbamic acid *tert*-butyl ester (3.45 g, 19.8 mmol) was added and the resulting mixture was stirred at room temperature for 16 hours. The mixture was concentrated *in vacuo* and ethyl acetate and dichloromethane were added to the residue. The mixture was filtered, washed with water and dried *in vacuo* to afford 4.98 g (59%) of (3-{4-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)naphthalen-1-yloxy]butyrylamino}propyl)carbamic acid tert-butyl ester.

HPLC-MS (Method C): m/z: 515 (M+1); Rt = 3.79 min.

20 (3-{4-[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)naphthalen-1-yloxy]butyrylamino}-propyl)carbamic acid tert-butyl ester (4.9 g, 9.5 mmol) was added dichloromethane (50 mL) and trifluoroacetic acid (50 mL) and the resulting mixture was stirred at room temperature for 45 minutes. The mixture was concentrated *in vacuo* and co-evaporated with toluene. To the residue was added ethyl acetate (100 mL) and the mixture was filtered and dried *in vacuo* to afford the title compound as the trifluoroacetic acid salt.

HPLC-MS (Method C): m/z: 414 (M+1); Rt = 2,27 min.

Compounds of the invention includes:

Example 324

Example 325

Example 326

Example 327

Example 329

Example 330

Example 331

Example 332

10

25

Example 333 (Prepared analogously to General Procedure (D))

2-{5-{4-(2,4-Thiazolidindion-5-ylidenemethyl)naphthalen-1-yloxy]pentyl}malonic acid

A solution of 4-hydroxy-1-naphtaldehyde (1.0 g, 5.81 mmol), 2-(5-bromopentyl)malonic acid diethyl ester (2.07 g, 6.68 mmol) and potassium carbonate (4.01 g, 29 mmol) in DMF (50 mL) was stirred at 100° C for 3 hours. The mixture was cooled and the salt was filtered off. The solvent was then removed under reduced pressure to afford 2.9 g of crude 2-[5-(4-formylnaphtalen-1-yloxy)pentyl]malonic acid diethyl ester which was used for the next reaction without further purification.

HPLC-MS (Method C): m/z: 401 (M+1); Rt = 5.16 min. 1 H-NMR (DMSO- α 6): δ = 1.18 (t, 6 H), 1,39 (m, 2 H), 1.55 (m, 2 H), 1.87 (m, 4 H), 3.48 (t, 1 H), 4.13 (m, 4 H), 4.27 (t, 2 H), 7.17 (d, 1 H), 7.64(t, 1 H), 7.75 (t, 1 H), 8.13 (d, 1 H), 8.29 (d, 1 H), 9.24 (d, 1 H), 10.19 (s, 1 H).

1.4 g (3.5 mmol) of crude 2-[5-(4-formylnaphtalen-1-yloxy)pentyl]malonic acid diethyl ester was treated with aqueous sodium hydroxide (1N, 8.75 mL, 8.75 mmol) and methanol (50 mL). The solution was stirred at 70° C for 5 hours and the mixture was concentrated under reduced pressure. Hydrochloric acid (6 N) was added until pH <2. The resulting slurry was stirred untill it solidified. The crystals were filtered off, washed with water and then dried in vacuo to afford 1.1 g (92%) of 2-[5-(4-formylnaphtalen-1-yloxy)pentyl]malonic acid. The product was used in the next step without further purification.

HPLC-MS (Method C): m/z: 345 (M+1); Rt = 3.52 min. 1 H-NMR(DMSO-d6): δ = 1,40 (m, 2 H), 1.55 (m, 2 H), 1.80 (m, 2 H), 1.90 (m, 2 H), 3.24 (t, 1 H), 4.29 (t, 2 H), 7.19 (d, 1 H), 7.64(t, 1 H), 7.75 (t, 1 H), 8.14 (d, 1 H), 8.30 (d, 1 H), 9.23 (d, 1 H), 10.18 (s, 1 H), 12.69 (s, 2 H).

To a solution of 2-[5-(4-formylnaphtalen-1-yloxy) pentyl]malonic acid (0.36 g, 1.05 mmol) in acetic acid (10 mL) was added 2,4-thiazolidindione (0.16 g,1.36 mmol) and piperidine (0.52

mL, 5.25 mmol). The solution was heated to 105 °C for 24 hours. After cooling to room temperature, the solvents were removed *in vacuo*. Water was added to the residue. The precipitate was filtered off and washed with water. Recrystalisation from acetonitrile afforded 200 mg (43%) of the title compound as a solid.

5

HPLC-MS (Method C): m/z: 422 (M-CO₂+Na); Rt = 4.08 min. 1 H-NMR(DMSO- d_{6}): δ = 1,41 (m, 2 H), 1.55 (m, 4 H), 1.88 (m, 2 H), 2.23 (t, 1 H), 4.24 (t, 2 H), 7.61-7.74 (m, 3 H), 8.12 (d, 1 H), 8.28 (d, 1 H), 8.38 (s, 1 H), 12.00 (s, 1 H), 12.59 (s, 2 H).

10

The following compounds are commercially available and may be prepared according to general procedure (D):

Example 334

15

Example 335

20 Example 336

5 Example 338

Example 339

10

Example 340

General procedure (N) for solution phase preparation of amides of general formula 1₁₃:

wherein Frag is any fragment carrying a carboxylic acid group, R is hydrogen, optionally substituted aryl or C_{1.8}-alkyl and R' is hydrogen or C_{1.4}-alkyl.

Frag-CO₂H may be prepared eg by general procedure (D) or by other similar procedures described herein, or may be commercially available.

10 The procedure is further illustrated in the following example 341:

Example 341 (General procedure (N))

N-(4-Chlorobenzyl)-2-[3-(2,4-dioxothiazolidin-5-ylidenemethyl)-1H-indol-1-yl]acetamide

- [3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indol-1-yl]acetic acid (example 310, 90.7 mg, 0.3 mmol) was dissolved in NMP (1 mL) and added to a mixture of 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide, hydrochloride (86.4 mg, 0.45 mmol) and 1-hydroxybenzotriazol (68.8 mg, 0.45 mmol) in NMP (1 mL). The resulting mixture was shaken at RT for 2 h. 4-Chlorobenzylamine (51 mg, 0.36 mmol) and DIPEA (46.4 mg, 0.36 mmol) in NMP (1 mL) were added to the mixture and the resulting mixture shaken at RT for 2 days. Subsequently ethyl acetate (10 mL) was added and the resulting mixture washed with 2x10 mL water followed by saturated ammonium chloride (5 mL). The organic phase was evaporated to dryness giving 75 mg (57%) of the title compound.
- 25 HPLC-MS (Method C): m/z: 426 (M+1); Rt. = 3.79 min.

Example 342 (General procedure (N))

N-(4-Chlorobenzyl)-4-[2-chloro-4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]butyramide

HPLC-MS (Method A): m/z: 465 (M+1); Rt = 4.35 min.

5

Example 343 (General procedure (N))

N-(4-Chlorobenzyl)-4-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]butyramide

HPLC-MS (Method A): m/z: 431 (M+1); Rt = 3.68 min.

10

Example 344 (General procedure (N))

2-[2-Bromo-4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]-N-(4-chlorobenzyl)acetamide

HPLC-MS (Method A): m/z: 483 (M+1); Rt = 4.06 min.

15

Example 345 (General procedure (N))

N-(4-Chlorobenzyl)-2-[3-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]acetamide

HPLC-MS (Method A): m/z: 403 (M+1); Rt = 4.03 min.

20

Example 346 (General procedure (N))

N-(4-Chlorobenzyl)-3-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenyl]acrylamide

HPLC-MS (Method A): m/z: 399 (M+1); Rt = 3.82.

Example 347 (General procedure (N))

5 N-(4-Chlorobenzyl)-4-[3-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]butyramide

HPLC-MS (Method A): m/z: 431 (M+1); Rt = 3.84 min.

Example 348 (General procedure (N))

10 4-[2-Bromo-4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenoxy]-N-(4-chlorobenzyl)butyramide

HPLC-MS (Method A): m/z: 511 (M+1); Rt = 4.05 min.

Example 349 (General procedure (N))

4-[2-Bromo-4-(4-oxo-2-thioxothiazolidin-5-ylidenemethyl)-phenoxy]-*N*-(4-chlorobenzyl)-butyramide

HPLC-MS (Method A): m/z: 527 (M+1); Rt = 4.77 min.

20 Example 350 (General procedure (N))

N-(4-Chlorobenzyl)-2-[4-(2,4-dioxothiazolidin-5-ylidenemethyl) naphthalen-1-yloxy] acetamide

HPLC-MS (Method C): m/z: 431 (M+1); Rt. = 4.03 min.

Example 351 (General procedure (N))

5 N-(4-Chlorobenzyl)-3-[3-(2,4-dioxothiazolidin-5-ylidenemethyl)-1H-indol-1-yl]propionamide

HPLC-MS (Method C): m/z: 440 (M+1); Rt. = 3.57 min.

Example 352 (General procedure (N))

10 N-(4-Chlorobenzyl)-4-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)naphthalen-1-yloxy]butyramide

HPLC-MS (Method C): m/z: 481 (M+1); Rt = 4.08 min.

Example 353 (General procedure (N))

15 4-[4-(2,4-Dioxothiazolidin-5-ylidenemethyl)-naphthalen-1-yloxy]-N-hexylbutyramide

HPLC-MS (Method C): m/z: 441 (M+1); Rt = 4.31 min.

Example 354 (General Procedure (N))

4-({[3-(2,4-Dioxothiazolidin-5-ylidenemethyl)indole-7-carbonyl]amino}methyl)benzoic acid methyl ester

HPLC-MS (Method C): m/z: 436 (M+1); Rt.= 3.55 min.

The following salicylic acid derivatives do all bind to the His B10 Zn²⁺ site of the insulin hexamer:

10 Example 355

Salicylic acid

Example 356

15 Thiosalicylic acid (or: 2-Mercaptobenzoic acid)

Example 357

2-Hydroxy-5-nitrobenzoic acid

3-Nitrosalicyclic acid

5

Example 359

5,5'-Methylenedisalicylic acid

10

Example 360

2-Amino-5-trifluoromethylbenzoesyre

15 Example 361

2-Amino-4-chlorobenzoic acid

2-Amino-5-methoxybenzoesyre

Example 363

10

15

5

Example 364

Example 365

5 Example 367

Example 368

10

Example 369

5-lodosalicylic acid

15 Example 370

5-Chlorosalicylic acid

1-Hydroxy-2-naphthoic acid

5

Example 372

3,5-Dihydroxy-2-naphthoic acid

10

Example 373

3-Hydroxy-2-naphthoic acid

15 Example 374

3,7-Dihydroxy-2-naphthoic acid

2-Hydroxybenzo[a]carbazole-3-carboxylic acid

5

Example 376

7-Bromo-3-hydroxy-2-naphthoic acid

This compound was prepared according to Murphy et al., J. Med. Chem. 1990, 33, 171-8. HPLC-MS (Method A): m/z: 267 (M+1); Rt: = 3.78 min.

Example 377

1,6-Dibromo-2-hydroxynaphthalene-3-carboxylic acid

15

This compound was prepared according to Murphy et al., J. Med. Chem. 1990, 33, 171-8. HPLC-MS (Method A): m/z: 346 (M+1); Rt: = 4,19 min.

Example 378

20 7-Formyl-3-hydroxynaphthalene-2-carboxylic Acid

10

A solution of 7-bromo-3-hydroxynaphthalene-2-carboxylic acid (15.0 g, 56.2 mmol) (example 376) in tetrahydrofuran (100 mL) was added to a solution of lithium hydride (893 mg, 112 mmol) in tetrahydrofuran (350 mL). After 30 minutes stirring at room temperature, the resulting solution was heated to 50 °C for 2 minutes and then allowed to cool to ambient temperature over a period of 30 minutes. The mixture was cooled to -78 °C, and butyllithium (1.6 M in hexanes, 53 mL, 85 mmol) was added over a period of 15 minutes. *N,N*-Dimethylformamide (8.7 mL, 8.2 g, 112 mmol) was added after 90 minutes additional stirring. The cooling was discontinued, and the reaction mixture was stirred at room temperature for 17 hours before it was poured into 1 N hydrochloric acid (aq.) (750 mL). The organic solvents were evaporated in vacuo, and the resulting precipitate was filtered off and rinsed with water (3 x 100 mL) to yield the crude product (16.2 g). Purification on silica gel (dichloromethane / methanol / acetic acid = 90:9:1) furnished the title compound as a solid.

¹H-NMR (DMSO- d_6): δ 11.95 (1H, bs), 10.02 (1H, s), 8.61 (1H, s), 8.54 (1H, s), 7.80 (2H, bs), 7.24 (1H, s); HPLC-MS (Method (A)): m/z: 217 (M+1); Rt = 2.49 min.

Example 379

3-Hydroxy-7-methoxy-2-naphthoic acid

Example 380

4-Amino-2-hydroxybenzoic acid

25

20

5-Acetylamino-2-hydroxybenzoic acid

5 Example 382

2-Hydroxy-5-methoxybenzoic acid

The following compounds were prepared as described below:

10 Example 383

15

4-Bromo-3-hydroxynaphthalene-2-carboxylic acid

3-Hydroxynaphthalene-2-carboxylic acid (3.0 g, 15.9 mmol) was suspended in acetic acid (40 mL) and with vigorous stirring a solution of bromine (817 μ L, 15.9 mmol) in acetic acid (10 mL) was added drop wise during 30 minutes. The suspension was stirred at room temperature for 1 hour, filtered and washed with water. Drying in vacuo afforded 3.74 g (88%) of 4-bromo-3-hydroxynaphthalene-2-carboxylic acid as a solid. 1 H-NMR (DMSO- d_{8}): δ 7.49 (1H, t), 7.75 (1H, t), 8.07 (2H, "t"), 8.64 (1H, s). The substitution pattern was confirmed by a COSY experiment, showing connectivities between the 3 (4)

20 hydrogen) "triplets". HPLC-MS (Method A): m/z: 267 (M+1); Rt = 3.73 min.

3-Hydroxy-4-iodonaphthalene-2-carboxylic acid

3-Hydroxynaphthalene-2-carboxylic acid (0.5 g, 2.7 mmol) was suspended in acetic acid (5 mL) and with stirring iodine monochloride (135 μ L, 2.7 mml) was added. The suspension was stirred at room temperature for 1 hour, filtered and washed with water. Drying afforded 0.72 g (85%) of 4-iodo-3-hydroxynaphthalene-2-carboxylic acid as a solid.

¹H-NMR (DMSO- d_6): δ 7.47 (1H, t), 7.73 (1H, t), 7.98 (1H, d), 8.05 (1H, d), 8.66 (1H, s). HPLC-MS (Method A): m/z: 315 (M+1); Rt = 3.94 min.

10

5

Example 385

2-Hydroxy-5-[(4-methoxyphenylamino)methyl]benzoic acid

- p-Anisidine (1.3 g, 10.6 mmol) was dissolved in methanol (20 mL) and 5-formylsalicylic acid (1.75 g, 10.6 mmol)was added and the resulting mixture was stirred at room temperature for 16 hours. The solid formed was isolated by filtration, re-dissolved in N-methyl pyrrolidone (20 mL) and methanol (2 mL). To the mixture was added sodium cyanoborohydride (1.2 g) and the mixture was heated to 70 °C for 3 hours. To the cooled mixture was added ethyl acetate (100 mL) and the mixture was extracted with water (100 mL) and saturated aqueous ammonium chloride (100 mL). The combined aqueous phases were concentrated *in vacuo* and a 2 g aliquot was purified by SepPac chromatography eluting with mixtures of aetonitrile and water containing 0.1% trifluoroacetic acid to afford the title compound.
- 25 HPLC-MS (Method A): m/z: 274 (M+1); Rt = 1.77 min.

15

25

¹H-NMR (methanol- d_4): δ 3.82 (3H, s), 4.45 (2H, s), 6.96 (1H, d), 7.03 (2H, d), 7.23 (2H, d), 7.45 (1H, dd), 7.92 (1H, d).

Example 386

5 2-Hydroxy-5-(4-methoxyphenylsulfamoyl)benzoic acid

A solution of 5-chlrosulfonylsalicylic acid (0.96 g, 4.1 mmol) in dichloromethane (20 mL) and triethylamine (1.69 mL, 12.2 mmol) was added p-anisidine (0.49 g, 4.1 mmol) and the resulting mixture was stirred at room temperature for 16 hours. The mixture was added dichloromethane (50 mL) and was washed with water (2 x 100 mL). Drying (MgSO₄) of the organic phase and concentration *in vacuo* afforded 0.57 g crude product. Purification by column chromatography on silica gel eluting first with ethyl acetate:heptane (1:1) then with methanol afforded 0.1 g of *the title compound*.

HPLC-MS (Method A): m/z: 346 (M+23); Rt = 2.89 min.

¹H-NMR (DMSO- d_{θ}): δ 3.67 (3H, s), 6.62 (1H, d), 6.77 (2H, d), 6.96 (2H, d), 7.40 (1H, dd), 8.05 (1H, d), 9.6 (1H, bs).

20 General procedure (E) for preparation of compounds of general formula 14:

wherein Lea is a leaving group such as Cl, Br, I or OSO₂CF₃, R is hydrogen or C₁-C₆-alkyl, optionally the two R-groups may together form a 5-8 membered ring, a cyclic boronic acid ester, and J is as defined above.

15

20

25

30

An analogous chemical transformation has previously been described in the literature (Burnagin et al., *Tetrahedron*, **1997**, *53*, 14437-14450). The reaction is generally known as the Suzuki coupling reaction and is generally performed by reacting an aryl halide or triflate with an arylboronic acid or a heteroarylboronic acid in the presence of a palladium catalyst and a base such as sodium acetate, sodium carbonate or sodium hydroxide. The solvent can be water, acetone, DMF, NMP, HMPA, methanol, ethanol toluene or a mixture of two or more of these solvents. The reaction is performed at room temperature or at elevated temperature.

10 The general procedure (E) is further illustrated in the following example:

Example 387 (General Procedure (E))

7-(4-Acetylphenyl)-3-hydroxynaphthalene-2-carboxylic Acid

To 7-bromo-3-hydroxynaphthalene-2-carboxylic acid (100 mg, 0.37 mmol) (example 376) was added a solution of 4-acetylphenylboronic acid (92 mg, 0.56 mmol) in acetone (2.2 mL) followed by a solution of sodium carbonate (198 mg, 1.87 mmol) in water (3.3 mL). A suspension of palladium(II) acetate (4 mg, 0.02 mmol) in acetone (0.5 mL) was filtered and added to the above solution. The mixture was purged with N_2 and stirred vigorously for 24 hours at room temperature. The reaction mixture was poured into 1 N hydrochloric acid (aq.) (60 mL) and the precipitate was filtered off and rinsed with water (3 x 40 mL). The crude product was dissolved in acetone (25 mL) and dried with magnesium sulfate (1 h). Filtration followed by concentration furnished the title compound as a solid (92 mg).

1-NMR (DMSO- d_6): δ 12.60 (1H, bs), 8.64 (1H, s), 8.42 (1H, s), 8.08 (2H, d), 7.97 (2H, d), 7.92 (2H, m), 7.33 (1H, s), 2.63 (3H, s); HPLC-MS (Method (A): m/z: 307 (M+1); Rt = 3.84 min.

The compounds in the following examples were prepared in a similar fashion. Optionally, the compounds can be further purified by recrystallization from e.g. ethanol or by chromatography.

Example 388 (General Procedure (E))

3-Hydroxy-7-(3-methoxyphenyl)naphthalene-2-carboxylic acid

HPLC-MS (Method (A)): m/z: 295 (M+1); Rt = 4.60 min.

5

Example 389 (General Procedure (E))

3-Hydroxy-7-phenylnaphthalene-2-carboxylic acid

HPLC-MS (Method (A)): m/z: 265 (M+1); Rt = 4.6 min.

10

Example 390 (General Procedure (E))

3-Hydroxy-7-p-tolylnaphthalene-2-carboxylic acid

HPLC-MS (Method (A)): m/z: 279 (M+1); Rt = 4.95 min.

15

Example 391 (General Procedure (E))

7-(4-Formylphenyl)-3-hydroxynaphthalene-2-carboxylic acid

HPLC-MS (Method (A)): m/z: 293 (M+1); Rt = 4.4 min.

20

Example 392 (General Procedure (E))

6-Hydroxy-[1,2]binaphthalenyl-7-carboxylic acid

HPLC-MS (Method (A)): m/z: 315 (M+1); Rt = 5.17 min.

5

Example 393 (General Procedure (E))

7-(4-Carboxy-phenyl)-3-hydroxynaphthalene-2-carboxylic acid

HPLC-MS (Method (A)): m/z: 309 (M+1); Rt = 3.60 min.

10

Example 394 (General Procedure (E))

7-Benzofuran-2-yl-3-hydroxynaphthalene-2-carboxylic acid

HPLC-MS (Method (A)): m/z: 305 (M+1); Rt = 4.97 min.

15

Example 395 (General Procedure (E))

3-Hydroxy-7-(4-methoxyphenyl)-naphthalene-2-carboxylic acid

HPLC-MS (Method (A)): m/z: 295 (M+1); Rt = 4.68 min.

20

Example 396 (General Procedure (E))

7-(3-Ethoxyphenyl)-3-hydroxynaphthalene-2-carboxylic acid

HPLC-MS (Method (A)): m/z: 309 (M+1); Rt = 4.89 min.

5

Example 397 (General Procedure (E))

7-Benzo[1,3]dioxol-5-yl-3-hydroxynaphthalene-2-carboxylic acid

HPLC-MS (Method (A)): m/z: 309 (M+1); Rt = 5.61 min.

10

Example 398 (General Procedure (E))

7-Biphenyl-3-yl-3-hydroxynaphthalene-2-carboxylic acid

HPLC-MS (Method (A)): m/z: 341 (M+1); Rt = 5.45 min.

15

20

General procedure (F) for preparation of compounds of general formula 15:

wherein R^{30} is hydrogen or $C_1\text{--}C_6\text{--alkyl}$ and T is as defined above

This general procedure (F) is further illustrated in the following example:

Example 399 (General procedure (F))

3-Hydroxy-7-[(4-(2-propyl)phenylamino)methyl]naphthalene-2-carboxylic Acid

7-Formyl-3-hydroxynaphthalene-2-carboxylic acid (40 mg, 0.19 mmol) (example 378) was suspended in methanol (300 μL). Acetic acid (16 μL, 17 mg, 0.28 mmol) and 4-(2-propyl)aniline (40 μL, 40 mg, 0.30 mmol) were added consecutively, and the resulting mixture was stirred vigorously at room temperature for 2 hours. Sodium cyanoborohydride (1.0 M in tetrahydrofuran, 300 μL, 0.3 mmol) was added, and the stirring was continued for another 17 hours. The reaction mixture was poured into 6 N hydrochloric acid (aq.) (6 mL), and the precipitate was filtered off and rinsed with water (3 x 2 mL) to yield the title compound (40 mg) as its hydrochloride salt. No further purification was necessary.

¹H-NMR (DMSO-*d*₆): δ 10.95 (1H, bs), 8.45 (1H, s), 7.96 (1H, s), 7.78 (1H, d), 7.62 (1H, d), 7.32 (1H, s), 7.13 (2H, bd), 6.98 (2H, bd), 4.48 (2H, s), 2.79 (1H, sept), 1.14 (6H, d); HPLC-MS (Method (A)): m/z: 336 (M+1); Rt = 3.92 min.

The compounds in the following examples were made using this general procedure (F).

20 Example 400 (General procedure (F))

7-{[(4-Bromophenyl)amino]methyl}-3-hydroxynaphthalene-2-carboxylic Acid

HPLC-MS (Method C): m/z: 372 (M+1); Rt = 4.31min.

25 Example 401 (General procedure (F))

7-{[(3,5-Dichlorophenyl)amino]methyl}-3-hydroxynaphthalene-2-carboxylic Acid

HPLC-MS (Method C): m/z: 362 (M+1); Rt = 4.75 min.

Example 402 (General procedure (F))

5 7-{[(Benzothiazol-6-yl)amino]methyl)-3-hydroxynaphthalene-2-carboxylic Acid

HPLC-MS (Method C): m/z: 351 (M+1); Rt = 3.43 min.

Example 403 (General procedure (F))

10 3-Hydroxy-7-{[(quinolin-6-yl)amino]methyl}naphthalene-2-carboxylic Acid

HPLC-MS (Method C): m/z: 345 (M+1); Rt = 2.26 min.

Example 404 (General procedure (F))

15 3-Hydroxy-7-{[(4-methoxyphenyl)amino]methyl}naphthalene-2-carboxylic Acid

HPLC-MS (Method C): m/z: 324 (M+1); Rt = 2.57min.

Example 405 (General procedure (F))

7-{[(2,3-Dihydrobenzofuran-5-ylmethyl)amino]methyl}-3-hydroxynaphthalene-2-carboxylic Acid

5 HPLC-MS (Method C): m/z: 350 (M+1); Rt = 2.22 min.

Example 406 (General procedure (F))

7-{[(4-Chlorobenzyl)amino]methyl}-3-hydroxynaphthalene-2-carboxylic Acid

10 HPLC-MS (Method C): m/z: 342 (M+1); Rt = 2.45 min.

Example 407 (General procedure (F))

3-Hydroxy-7-{[(naphthalen-1-ylmethyl)amino]methyl}naphthalene-2-carboxylic Acid

15 HPLC-MS (Method C): m/z: 357 (M+1); Rt = 2.63 min.

Example 408 (General procedure (F))

7-{[(Biphenyl-2-ylmethyl)amino]methyl}-3-hydroxynaphthalene-2-carboxylic Acid

20 HPLC-MS (Method C): m/z: 384 (M+1); Rt = 2.90 min.

Example 409 (General procedure (F))

3-Hydroxy-7-{[(4-phenoxybenzyl)amino]methyl}naphthalene-2-carboxylic Acid

HPLC-MS (Method C): m/z: 400 (M+1); Rt = 3.15 min.

5

Example 410 (General procedure (F))

3-Hydroxy-7-{[(4-methoxybenzyl)amino]methyl}naphthalene-2-carboxylic Acid

HPLC-MS (Method C): m/z: 338 (M+1); Rt = 2.32 min.

10

General procedure (G) for preparation of compounds of general formula Is:

15

wherein J is as defined above and the moiety (C₁-C₀-alkanoyl)₂O is an anhydride.

The general procedure (G) is illustrated by the following example:

Example 411 (General procedure (G))

N-Acetyl-3-hydroxy-7-[(4-(2-propyl)phenylamino)methyl]naphthalene-2-carboxylic Acid

20

5

25

3-Hydroxy-7-[(4-(2-propyl)phenylamino)methyl]naphthalene-2-carboxylic acid (25 mg, 0.07 mmol) (example 399) was suspended in tetrahydrofuran (200 μ L). A solution of sodium hydrogencarbonate (23 mg, 0.27 mmol) in water (200 μ L) was added followed by acetic anhydride (14 μ L, 15 mg, 0.15 mmol). The reaction mixture was stirred vigorously for 65 hours at room temperature before 6 N hydrochloric acid (4 mL) was added. The precipitate was filtered off and rinsed with water (3 x 1 mL) to yield the title compound (21 mg). No further purification was necessary.

¹H-NMR (DMSO- d_6): δ 10.96 (1H, bs), 8.48 (1H, s), 7.73 (1H, s), 7.72 (1H, d), 7.41 (1H, dd), 7.28 (1H, s), 7.23 (2H, d), 7.18 (2H, d), 4.96 (2H, s), 2.85 (1H, sept), 1.86 (3H, s), 1.15 (6H, d); HPLC-MS (Method (A)): m/z: 378 (M+1); Rt = 3.90 min.

The compounds in the following examples were prepared in a similar fashion.

15 Example 412 (General procedure (G))

N-Acetyl-7-{[(4-bromophenyl)amino]methyl}-3-hydroxynaphthalene-2-carboxylic Acid

HPLC-MS (Method C): m/z: 414 (M+1); Rt = 3.76 min.

20 Example 413 (General procedure (G))

N-Acetyl-7-{[(2,3-dihydrobenzofuran-5-ylmethyl)amino]methyl}-3-hydroxynaphthalene-2-carboxylic Acid

HPLC-MS (Method C): m/z: 392 (M+1); Rt = 3.26 min.

Example 414 (General procedure (G))

N-Acetyl-7-{[(4-chlorobenzyl)amino]methyl}-3-hydroxynaphthalene-2-carboxylic Acid

HPLC-MS (Method C): m/z: 384 (M+1); Rt = 3.67 min.

Compounds of the invention may also include tetrazoles:

5 Example 415

10

25

5-(3-(Naphthalen-2-yloxymethyl)-phenyl)-1H-tetrazole

To a mixture of 2-naphthol (10 g, 0.07 mol) and potassium carbonate (10 g, 0.073 mol) in acetone (150 mL), alpha-bromo-m-tolunitril (13.6 g, 0.07 mol) was added in portions. The reaction mixture was stirred at reflux temperature for 2.5 hours. The cooled reaction mixture was filtered and evaporated in vacuo affording an oily residue (19 g) which was dissolved in diethyl ether (150 mL) and stirred with a mixture of active carbon and MgSO₄ for 16 hours. The mixture was filtered and evaporated in vacuo affording crude 18.0 g (100 %) of 3-(naphthalen-2-yloxymethyl)-benzonitrile as a solid.

15 12 g of the above benzonitrile was recrystallised from ethanol (150 mL) affording 8.3 g (69 %) of 3-(naphthalen-2-yloxymethyl)-benzonitrile as a solid.

M.p. 60 - 61 °C.

Calculated for C₁₈H₁₃NO:

20 C, 83.37 %; H, 5.05 %; N, 5.40 %; Found C, 83.51 %; H, 5.03 %; N, 5.38 %.

To a mixture of sodium azide (1.46 g, 22.5 mmol) and ammonium chloride (1.28 g, 24.0 mmol) in dry dimethylformamide (20 mL) under an atmosphere of nitrogen, 3-(naphthalen-2-yloxymethyl)-benzonitrile (3.9 g, 15 mmol) was added and the reaction mixture was stirred at 125 °C for 4 hours. The cooled reaction mixture was poured on to ice water (300 mL) and acidified to pH = 1 with 1 N hydrochloric acid. The precipitate was filtered off and washed with water, dried at 100 °C for 4 hours affording 4.2 g (93 %) of the title compound.

M.p. 200 - 202 °C.

Calculated for C₁₈H₁₄N₄O:

C, 71.51 %; H, 4.67 %; N, 18.54 %; Found

C, 72.11 %; H, 4.65 %; N, 17.43 %.

5

15

20

¹H NMR (400 MHz, DMSO-d₆) δ_{H} 5.36 (s, 2H), 7.29 (dd, 1H), 7.36 (dt, 1H), 7.47 (m, 2H), 7.66 (t, 1H), 7.74 (d, 1H), 7.84 (m, 3H), 8.02 (d, 1H), 8.22 (s, 1H).

Example 416

10 N-(3-(Tetrazol-5-yl)phenyl)-2-naphtoic acid amide

2-Naphtoic acid (10 g, 58 mmol) was dissolved in dichloromethane (100 mL) and N,N-dimethylformamide (0.2 mL) was added followed by thionyl chloride (5.1 ml, 70 mmol). The mixture was heated at reflux temperature for 2 hours. After cooling to room temperature, the mixture was added dropwise to a mixture of 3-aminobenzonitril (6.90 g, 58 mmol) and triethyl amine (10 mL) in dichloromethane (75 mL). The resulting mixture was stirred at room temperature for 30 minutes. Water (50 mL) was added and the volatiles was exaporated in vacuo. The resulting mixture was filtered and the filter cake was washed with water followed by heptane (2 x 25 mL). Drying in vacuo at 50 °C for 16 hours afforded 15.0 g (95 %) of N-(3-cyanophenyl)-2-naphtoic acid amide.

M.p. 138-140 °C

The above naphthoic acid amide (10 g, 37 mmol) was dissolved in N,N-dimethylformamide (200 mL) and sodium azide (2.63 g, 40 mmol) and ammonium chloride (2.16 g, 40 mmol) were added and the mixture heated at 125 °C for 6 hours. Sodium azide (1.2 g) and ammonium chloride (0.98 g) were added and the mixture heated at 125 °C for 16 hours. After cooling, the mixture was poured into water (1.5 l) and stirred at room temperature for 30 minutes. The solid formed was filtered off, washed with water and dried in vacuo at 50 °C for

3 days affording 9.69 g (84 %) of the <u>title compound</u> as a solid which could be further purified by treatment with ethanol at reflux temperature.

¹H NMR (200 MHz, DMSO-d₈): $\delta_{\rm H}$ 7.58-7.70 (m, 3H), 7.77 (d, 1H), 8.04-8.13 (m, 5H), 8.65 (d, 1H), 10.7 (s, 1H).

Calculated for C₁₈H₁₃N₅O, 0.75 H₂O:

C, 65.74 %; H, 4.44 %; N, 21.30 %. Found:

C, 65.58 %; H, 4.50 %; N, 21.05 %.

10

15

20

30

5

Example 417

5-[3-(Biphenyl-4-yloxymethyl)phenyl]-1H-tetrazole

To a solution of 4-phenylphenol (10.0 g, 59 mmol) in dry N,N-dimethyl-formamide (45 mL) kept under an atmosphere of nitrogen, sodium hydride (2.82 g, 71 mmol, 60 % dispersion in oil) was added in portions and the reaction mixture was stirred until gas evolution ceased. A solution of m-cyanobenzyl bromide (13 g, 65 mmol) in dry N,N-dimethylformamide (45 mL) was added dropwise and the reaction mixture was stirred at room temperature for 18 hours. The reaction mixture was poured on to ice water (150 mL). The precipitate was filtered of and washed with 50 % ethanol

(3 x 50 mL), ethanol (2 x 50 mL), diethyl ether (80 mL), and dried <u>in vacuo</u> at 50 °C for 18 hours affording crude 17.39 g of 3-(biphenyl-4-yloxymethyl)-benzonitrile as a solid.

25 ¹H NMR (200 MHz, CDCl₃) δ_H 5.14 (s, 2H), 7.05 (m, 2H), 7.30 - 7.78 (m, 11H).

To a mixture of sodium azide (2.96 g, 45.6 mmol) and ammonium chloride (2.44 g, 45.6 mmol) in dry N,N-dimethylformamide (100 mL) under an atmosphere of nitrogen, 3-(biphenyl-4-yloxymethyl)-benzonitrile (10.0 g, 35.0 mmol) was added and the reaction mixture was stirred at 125 °C for 18 hours. The cooled reaction mixture was poured on to a mixture of 1N

hydrochloric acid (60 mL) and ice water (500 mL). The precipitate was filtered off and washed with water (3 x 100 mL), 50 % ethanol (3 x 100 mL), ethanol (50 mL), diethyl ether (50 mL), ethanol (80 mL), and dried in vacuo at 50 °C for 18 hours affording 8.02 g (70 %) of the title compound.

5

 1 H NMR (200 MHz, DMSO-d_θ) δ_{H} 5.31 (s, 2H), 7.19 (m, 2H), 7.34 (m, 1H), 7.47 (m, 2H), 7.69 (m, 6H), 8.05 (dt, 1H), 8.24 (s, 1H).

Example 418

10 5-(3-Phenoxymethyl)-phenyl)-tetrazole

3-Bromomethylbenzonitrile (5.00 g, 25.5 mmol) was dissolved in N,N-dimethylformamide (50 mL), phenol (2.40 g, 25.5 mmol) and potassium carbonate (10.6 g, 77 mmol) were added. The mixture was stirred at room temperature for 16 hours. The mixture was poured into water (400 mL) and extracted with ethyl acetate (2 x 200 mL). The combined organic extracts were washed with water (2 x 100 mL), dried (MgSO₄) and evaporated in vacuo to afford 5.19 g (97 %) 3-(phenoxymethyl)benzonitrile as an oil.

TLC: $R_f = 0.38$ (Ethyl acetate/heptane = 1:4)

20

15

The above benzonitrile (5.19 g, 24.8 mmol) was dissolved in N,N-dimethylformamide (100 mL) and sodium azide (1.93 g, 30 mmol) and ammonium chloride (1.59 g, 30 mmol) were added and the mixture was heated at 140 °C for 16 hours. After cooling, the mixture was poured into water (800 mL). The ageous mixture was washed with ethyl acetate (200 mL).

The pH of the aqueous phase was adjusted to 1 with 5 N hydrochloric acid and stirred at room temperature for 30 minutes. Filtration, washing with water and drying in vacuo at 50 °C afforded 2.06 g (33 %) of the title compound as a solid.

¹H NMR (200 MHz, CDCl₃ + DMSO- d_6) δ_H 5.05 (s, 2H), 6.88 (m, 3H), 7.21 (m, 2H), 7.51 (m, 2H), 7.96 (dt, 1H), 8.14 (s, 1H).

30

5

10

20

Example 419

5-[3-(Biphenyl-4-ylmethoxy)phenyl]-1H-tetrazole

To a solution of 3-cyanophenol (5.0 g, 40.72 mmol) in dry N,N-dimethylformamide (100 mL) kept under an atmosphere of nitrogen, sodium hydride (2 g, 48.86 mmol, 60 % dispersion in oil) was added in portions and the reaction mixture was stirred until gas evolution ceased. p-Phenylbenzyl chloride (9.26 g, 44.79 mmol) and potassium iodide (0.2 g, 1.21 mmol) were added and the reaction mixture was stirred at room temperature for 60 hours. The reaction mixture was poured on to a mixture of saturated sodium carbonate (100 mL) and ice water (300 mL). The precipitate was filtered of and washed with water (3 x 100 mL), n-hexane (2 x 80 mL) and dried in vacuo at 50 °C for 18 hours affording 11.34 g (98 %) of 3-(biphenyl-4-ylmethoxy)-benzonitrile as a solid.

To a mixture of sodium azide (2.37 g, 36.45 mmol) and ammonium chloride (1.95 g, 36.45 mmol) in dry N,N-dimethylformamide (100 mL) under an atmosphere of nitrogen, 3-(biphenyl-4-ylmethoxy)-benzonitrile (8.0 g, 28.04 mmol) was added and the reaction mixture was stirred at

125 °C for 18 hours. To the cooled reaction mixture water (100 mL) was added and the reaction mixture stirred for 0.75 hour. The precipitate was filtered off and washed with water, 96 % ethanol (2 x 50 mL), and dried in vacuo at 50°C for 18 hours affording 5.13 g (56 %) of the title compound.

 1 H NMR (200 MHz, DMSO-d₆) δ_{H} 5.29 (s, 2H), 7.31 (dd, 1H), 7.37 - 7.77 (m, 12H).

25 Example 420

5-[4-(Biphenyl-4-ylmethoxy)-3-methoxyphenyl]-1H-tetrazol

This compound was made similarly as described in example 419.

5

Example 422

5-(2-Naphtylmethyl)-1H-tetrazole

This compound was prepared similarly as described in example 415, step 2.

10

Example 423

5-(1-Naphtylmethyl)-1H-tetrazole

This compound was prepared similarly as described in example 415, step 2.

15

20

Example 424

5-[4-(Biphenyl-4-yloxymethyl)phenyl]-1H-tetrazole

A solution of alpha-bromo-p-tolunitrile (5.00 g, 25.5 mmol), 4-phenylphenol (4.56 g, 26.8 mmol), and potassium carbonate (10.6 g, 76.5 mmol) in N,N-dimethylformamide (75 mL) was stirred vigorously for 16 hours at room temperature. Water (75 mL) was added and the

mixture was stirred at room temperature for 1 hour. The precipitate was filtered off and washed with thoroughly with water. Drying <u>in vacuo</u> over night at 50 °C afforded 7.09 g (97 %) of 4-(biphenyl-4-yloxymethyl)benzonitrile as a solid.

The above benzonitrile (3.00 g, 10.5 mmol) was dissolved in N,N-dimethylformamide (50 mL), and sodium azide (1.03 g, 15.8 mmol) and ammonium chloride (0.84 g, 15.8 mmol) were added and the mixture was stirred 16 hours at 125 °C. The mixture was cooled to room temperature and water (50 mL) was added. The suspension was stirred overnight, filtered, washed with water and dried in vacuo at 50 °C for 3 days to give crude 3.07 g (89 %) of the title compound. From the mother liquor crystals were colected and washed with water, dried by suction to give 0.18 g

(5 %) of the title compound as a solid.

¹H NMR (200 MHz, DMSO-d₈): δ_{H} 5.21 (s, 2H), 7.12 (d, 2H), 7.30 (t, 1H), 7.42 (t, 2H), 7.56-7.63 (m, 6H), 8.03 (d, 2H).

Calculated for C₂₀H₁₈N₄O, 2H₂O: C, 65.92 %; H, 5.53 %; N, 15.37 %. Found: C, 65.65 %; H, 5.01 %; N, 14.92 %.

20

Example 425

This compound was prepared similarly as described in example 419.

25

Example 428

10

5

Example 429

5-(3-(Biphenyl-4-yloxymethyl)-benzyl)-1H-tetrazole

15 Example 430

5-(1-Naphthyl)-1H-tetrazole

This compound was prepared similarly as described in example 415, step 2.

Example 431

5 5-[3-Methoxy-4-(4-methylsulfonylbenzyloxy)phenyl]-1*H*-tetrazole

This compound was made similarly as described in example 419.

Example 432

10 5-(2-Naphthyl)-1H-tetrazole

This compound was prepared similarly as described in example 415, step 2.

Example 433

15 2-Amino-N-(1H-tetrazol-5-yl)-benzamide

5-(4-Hydroxy-3-methoxyphenyl)-1H-tetrazole

This compound was prepared similarly as described in example 415, step 2.

5

10

15

20

25

Example 435

4-(2H-Tetrazol-5-ylmethoxy)benzoic acid

To a mixture of methyl 4-hydroxybenzoate (30.0 g, 0.20 mol), sodium iodide (30.0 g, 0.20 mol) and potassium carbonate (27.6 g, 0.20 mol) in acetone (2000 mL) was added chloroacetonitrile (14.9 g, 0.20 mol). The mixture was stirred at RT for 3 days. Water was added and the mixture was acidified with 1N hydrochloric acid and the mixture was extracted with diethyl ether. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was dissolved in acetone and chloroacetonitrile (6.04 g,0.08 mol), sodium iodide (12.0 g, 0.08 mol) and potassium carbonate (11.1 g, 0.08 mol) were added and the mixture was stirred for 16 hours at RT and at 60 °C. More chloroacetonitrile was added until the conversion was 97%. Water was added and the mixture was acidified with 1N hydrochloric acid and the mixture was extracted with diethyl ether. The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo* to afford methyl 4-cyanomethyloxybenzoate in quantitative yield. This compound was used without further purification in the following step.

A mixture of methyl 4-cyanomethyloxybenzoate (53.5 g,0.20 mol), sodium azide (16.9 g, 0.26 mol) and ammonium chloride (13.9 g, 0.26 mol) in DMF 1000 (mL) was refluxed overnight under N₂. After cooling, the mixture was concentrated *in vacuo*. The residue was suspended in cold water and extracted with ethyl acetate. The combined organic phases were washed

with brine, dried over Na₂SO₄ and concentrated *in vacuo*, to afford methyl 4-(2*H*-tetrazol-5-ylmethoxy)benzoate. This compound was used as such in the following step.

Methyl 4-(2H-Tetrazol-5-ylmethoxy)-benzoate was refluxed in 3N sodium hydroxide. The reaction was followed by TLC (DCM:MeOH = 9:1). The reaction mixture was cooled, acidified and the product filtered off. The impure product was washed with DCM, dissolved in MeOH, filtered and purified by column chromatography on silica gel (DCM:MeOH = 9:1). The resulting product was recrystallised from DCM:MeOH=95:5. This was repeated until the product was pure. This afforded 13.82 g (30 %) of the title compound.

10

5

¹H-NMR (DMSO-d₆): 4.70 (2H, s), 7.48 (2H, d), 7.73 (2H, d), 13 (1H, bs).

Example 436

4-(2H-Tetrazol-5-ylmethylsulfanyl)benzoic acid

15

20

To a solution of sodium hydroxide (10.4 g, 0.26 mol) in degassed water (600 mL) was added 4-mercaptobenzoic acid (20.0 g, 0.13 mol). This solution was stirred for 30 minutes. To a solution of potassium carbonate (9.0 g, 65 mmol) in degassed water (400 mL) was added chloroacetonitrile (9.8 g, (0.13 mol) portion-wise. These two solutions were mixed and stirred for 48 hours at RT under N_2 . The mixture was filtered and washed with heptane. The aqueous phase was acidified with 3N hydrochloric acid and the product was filtered off, washed with water and dried, affording 4-cyanomethylsulfanylbenzoic acid (27.2 g, 88%). This compound was used without further purification in the following step.

25

30

A mixture of 4-cyanomethylsulfanylbenzoic acid (27.2 g, 0.14 mol), sodium azide (11.8 g, 0,18 mol) and ammonium chloride (9.7 g, 0.18 mol) in DMF (1000 mL) was refluxed overnight under N₂. The mixture was concentrated *in vacuo*. The residue was suspended in cold water and extracted with diethyl ether. The combined organic phases were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. Water was added and the precipitate was filtered off. The aqueous layer was concentrated *in vacuo*, water was added and the precipitate filtered off. The combined impure products were purified by column

chromatography using DCM:MeOH = 9:1 as eluent, affording the title compound (5.2 g, 16%).

¹H-NMR (DMSO-d₈): 5.58 (2H, s), 7.15 (2H, d), 7.93 (2H, d), 12.7 (1H, bs).

5

10

15

Example 437

3-(2H-Tetrazol-5-yl)-9H-carbazole

3-Bromo-9*H*-carbazole was prepared as described by Smith *et al.* in *Tetrahedron* **1992**, *48*, 7479-7488.

A solution of 3-bromo-9*H*-carbazole (23.08 g, 0.094 mol) and cuprous cyanide (9.33 g, 0.103 mol) in *N*-methyl-pyrrolidone (300 ml) was heated at 200 °C for 5 h. The cooled reaction mixture was poured on to water (600 ml) and the precipitate was filtered off and washed with ethyl acetate (3 x 50 ml). The filtrate was extracted with ethyl acetate (3 x 250 ml) and the combined ethyl acetate extracts were washed with water (150 ml), brine (150 ml), dried (MgSO₄) and concentrated *in vacuo*. The residue was crystallised from heptanes and recrystallised from acetonitrile (70 ml) affording 7.16 g (40 %) of 3-cyano-9*H*-carbazole as a solid. M.p. 180 - 181 °C.

3-Cyano-9*H*-carbazole (5.77 g, 30 mmol) was dissolved in *N*,*N*-dimethylformamide (150 ml), and sodium azide (9.85 g, 152 mmol), ammonium chloride (8.04 g, 150 mmol) and lithium chloride (1.93 g, 46 mmol) were added and the mixture was stirred for 20 h at 125 °C. To the reaction mixture was added an additional portion of sodium azide (9.85 g, 152 mmol) and ammonium chloride (8.04 g, 150 mmol) and the reaction mixture was stirred for an additional 24 h at 125 °C. The cooled reaction mixture was poured on to water (500 ml). The suspension was stirred for 0.5 h, and the precipitate was filtered off and washed with water (3 x 200 ml) and dried *in vacuo* at 50 °C. The dried crude product was suspended in diethyl ether (500 ml) and stirred for 2 h, filtered off and washed with diethyl ether (2 x 200 ml) and dried *in vacuo* at 50 °C affording 5.79 g (82 %) of the title compound as a solid.

30

¹H-NMR (DMSO- d_0): δ 11.78 (1H, bs), 8.93 (1H, d), 8.23 (1H, d), 8.14 (1H, dd), 7.72 (1H, d), 7.60 (1H, d), 7.49 (1H, t), 7.28 (1H, t); HPLC-MS (Method C): m/z: 236 (M+1); Rt = 2.77 min.

The following commercially available tetrazoles do all bind to the His B10 Zn²⁺ site of the insulin hexamer:

Example 438

5-(3-Tolyl)-1H-tetrazole

10

5

Example 439

5-(2-Bromophenyl)tetrazole

15 Example 440

5-(4-Ethoxalylamino-3-nitrophenyl)tetrazole

5 Example 442

Example 443

10

15

Tetrazole

5 Example 446

5-Methyltetrazole

Example 447

10 5-Benzyl-2H-tetrazole

Example 448

4-(2H-Tetrazol-5-yl)benzoic acid

15

Example 449

5-Phenyl-2H-tetrazole

20

5-(4-Chlorophenylsulfanylmethyl)-2H-tetrazole

5 Example 451

5-(3-Benzyloxyphenyl)-2H-tetrazole

Example 452

10 2-Phenyl-6-(1H-tetrazol-5-yl)-chromen-4-one

Example 453

Example 454

15

Example 456

10

5

5-(4-Bromo-phenyl)-1H-tetrazole

5 Example 459

Example 460

10

15

Example 461

5

Example 464

10 Example 465

Example 466

15

Example 468

10

5

Example 469

5 Example 472

Example 473

10

15

5

Example 476

10 Example 477

Example 478

15

Example 481

10

15

5 Example 484

Example 485

10

Example 488

10

5

Example 489

5-(2,6-Dichlorobenzyl)-2H-tetrazole

General procedure (H) for preparation of compounds of general formula I7:

wherein K, M, and T are as defined above.

5 The reaction is generally known as a reductive alkylation reaction and is generally performed by stirring an aldehyde with an amine at low pH (by addition of an acid, such as acetic acid or formic acid) in a solvent such as THF, DMF, NMP, methanol, ethanol, DMSO, dichloromethane, 1,2-dichloroethane, trimethyl orthoformate, triethyl orthoformate, or a mixture of two or more of these. As reducing agent sodium cyano borohydride or sodium triacetoxy borohydride may be used. The reaction is performed between 20°C and 120°C, preferably at room temperature.

When the reductive alkylation is complete, the product is isolated by extraction, filtration, chromatography or other methods known to those skilled in the art.

The general procedure (H) is further illustrated in the following example 490:

Example 490 (General procedure (H))

Biphenyl-4-ylmethyl-[3-(2H-tetrazol-5-yl)phenyl]amine

20

25

15

A solution of 5-(3-aminophenyl)-2H-tetrazole (example 706, 48 mg, 0.3 mmol) in DMF (250 μ L) was mixed with a solution of 4-biphenylylcarbaldehyde (54 mg, 0.3 mmol) in DMF (250 μ L) and acetic acid glacial (250 μ L) was added to the mixture followed by a solution of sodium cyano borohydride (15 mg, 0.24 mmol) in methanol (250 μ L). The resulting mixture was shaken at room temperature for 2 hours. Water (2 mL) was added to the mixture and the resulting mixture was shaken at room temperature for 16 hours. The mixture was centrifugated (6000 rpm, 10 minutes) and the supernatant was removed by a pipette. The

residue was washed with water (3 mL), centrifugated (6000 rpm, 10 minutes) and the supernatant was removed by a pipette. The residue was dried *in vacuo* at 40 °C for 16 hours to afford the title compound as a solid.

5 HPLC-MS (Method C): m/z: 328 (M+1), 350 (M+23); Rt = 4.09 min.

Example 491 (General procedure (H))

Benzyl-[3-(2H-tetrazol-5-yl)phenyl]amine

10 HPLC-MS (Method D): m/z: 252 (M+1); Rt = 3,74 min.

Example 492 (General procedure (H))

(4-Methoxybenzyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

15 HPLC-MS (Method D): m/z: 282,2 (M+1); Rt = 3,57min.

Example 493 (General procedure (H))

4-{[3-(2H-Tetrazol-5-yl)phenylamino]methyl}phenol

20 HPLC-MS (Method D): m/z: 268,4 (M+1); Rt = 2,64 min.

Example 494 (General procedure (H))

(4-Nitrobenzyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 297,4 (M+1); Rt = 3,94 min.

Example 495 (General procedure (H))

5 (4-Chlorobenzyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 287,2 (M+1); Rt = 4,30 min.

Example 496 (General procedure (H))

10 (2-Chlorobenzyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 286 (M+1); Rt = 4,40 min.

Example 497 (General procedure (H))

15 (4-Bromobenzyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z:332 (M+1); Rt = 4,50 min.

Example 498 (General procedure (H))

20 (3-Benzyloxybenzyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 358 (M+1); Rt = 4,94 min.

Example 499 (General procedure (H))

5 Naphthalen-1-ylmethyl-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 302 (M+1); Rt = 4,70 min.

Example 500 (General procedure (H))

10 Naphthalen-2-ylmethyl-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 302 (M+1); Rt = 4,60 min.

Example 501 (General procedure (H))

15 4-{[3-(2H-Tetrazol-5-yl)phenylamino]methyl}benzoic acid

HPLC-MS (Method D): m/z: 296 (M+1); Rt = 3,24 min.

Example 502 (General procedure (H))

20 [3-(2H-Tetrazol-5-yl)-phenyl]-[3-(3-trifluoromethyl-phenoxy)benzyl]amine

HPLC-MS (Method D): m/z: 412 (M+1); Rt = 5,54 min.

Example 503 (General procedure (H))

5 (3-Phenoxybenzyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 344 (M+1); Rt = 5,04 min.

Example 504 (General procedure (H))

10 (4-Phenoxy-benzyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 344 (M+1); Rt = 5,00 min.

Example 505 (General procedure (H))

15 (4-{[3-(2H-Tetrazol-5-yl)phenylamino]methyl}phenoxy)acetic acid

HPLC-MS (Method D): m/z: 326 (M+1); Rt = 3,10 min.

Example 506 (General procedure (H))

20 (4-Benzyloxybenzyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 358 (M+1); Rt = 4,97 min.

Example 507 (General procedure (H))

5 3-(4-{[3-(2H-Tetrazol-5-yl)phenylamino]methyl}phenyl)acrylic acid

HPLC-MS (Method D): m/z: 322 (M+1); Rt = 3,60 min.

Example 508 (General procedure (H))

10 Dimethyl-(4-[[3-(2H-tetrazol-5-yl)phenylamino]methyl]naphthalen-1-yl)amine

HPLC-MS (Method D): m/z: 345 (M+1); Rt = 3,07 min.

Example 509 (General procedure (H))

15 (4'-Methoxybiphenyl-4-ylmethyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 358 (M+1); Rt = 4,97 min.

Example 510 (General procedure (H))

(2'-Chlorobiphenyl-4-ylmethyl)-[3-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 362 (M+1); Rt = 5,27 min.

5

Example 511 (General procedure (H))

Benzyl-[4-(2H-tetrazol-5-yl)phenyl]amine

For preparation of starting material, see example 707.

10 HPLC-MS (Method D): m/z: 252 (M+1); Rt = 3,97 min.

Example 512 (General procedure (H))

(4-Methoxybenzyl)-[4-(2H-tetrazol-5-yl)phenyl]amine

15 HPLC-MS (Method D): m/z: 282 (M+1); Rt = 3,94 min.

Example 513 (General procedure (H))

4-{[4-(2H-Tetrazol-5-yl)phenylamino]methyl}phenol

20 HPLC-MS (Method D): m/z: 268 (M+1); Rt = 3,14 min.

Example 514 (General procedure (H))

(4-Nitrobenzyl)-[4-(2H-tetrazol-5-yl)phenyl]amine

5 HPLC-MS (Method D): m/z: (M+1); Rt = 3,94 min.

Example 515 (General procedure (H))

(4-Chlorobenzyl)-[4-(2H-tetrazol-5-yl)phenyl]amine

10 HPLC-MS (Method D): m/z: (M+1); Rt = 4,47 min.

Example 516 (General procedure (H))

(2-Chlorobenzyl)-[4-(2H-tetrazol-5-yl)phenyl]amine

15 HPLC-MS (Method D): m/z: 286 (M+1); Rt = 4,37 min.

Example 517 (General procedure (H))

(4-Bromobenzyl)-[4-(2H-tetrazol-5-yl)phenyl]amine

20 HPLC-MS (Method D): m/z: 331 (M+1); Rt = 4,57 min.

Example 518 (General procedure (H))

(3-Benzyloxybenzyl)-[4-(2H-tetrazol-5-yl)phenyl]amine

5 HPLC-MS (Method D): m/z: 358 (M+1); Rt = 5,07min.

Example 519 (General procedure (H))

Naphthalen-1-ylmethyl-[4-(2H-tetrazol-5-yl)phenyl]amine

10 HPLC-MS (Method D): m/z: 302 (M+1); Rt = 4,70 min.

Example 520 (General procedure (H))

Naphthalen-2-ylmethyl-[4-(2H-tetrazol-5-yl)phenyl]amine

15 HPLC-MS (Method D): m/z: 302 (M+1); Rt = 4,70 min.

Example 521 (General procedure (H))

Biphenyl-4-ylmethyl-[4-(2H-tetrazol-5-yl)phenyl]amine

10

15

HPLC-MS (Method D): m/z: 328 (M+1); Rt = 5,07 min.

Example 522 (General procedure (H))

4-{[4-(2H-Tetrazol-5-yl)phenylamino]methyl}benzoic acid

HPLC-MS (Method D): m/z: 296 (M+1); Rt = 3,34 min.

Example 523 (General procedure (H))

[4-(2H-Tetrazol-5-yl)phenyl]-[3-(3-trifluoromethylphenoxy)benzyl]amine

HPLC-MS (Method D): m/z: 412 (M+1); Rt = 5,54 min.

Example 524 (General procedure (H))

(3-Phenoxybenzyl)-[4-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 344 (M+1); Rt = 5,07 min.

Example 525 (General procedure (H))

(4-Phenoxybenzyl)-[4-(2H-tetrazol-5-yl)-phenyl]-amine

20

10

15

20

HPLC-MS (Method D): m/z: 344 (M+1); Rt = 5,03 min.

Example 526 (General procedure (H))

3-[[4-(2H-Tetrazol-5-yl)phenylamino]methyl)benzoic acid

HPLC-MS (Method D): m/z: 286 (M+1); Rt = 3,47 min.

Example 527 (General procedure (H))

(4-{[4-(2H-Tetrazol-5-yl)phenylamino]methyl}phenoxy)acetic acid

HPLC-MS (Method D): m/z: 326 (M+1); Rt = 3,40 min.

Example 528 (General procedure (H))

(4-Benzyloxybenzyl)-[4-(2H-tetrazol-5-yl)phenyl]amine

HPLC-MS (Method D): m/z: 358 (M+1); Rt = 5,14 min.

Example 529 (General procedure (H))

3-(4-{[4-(2H-Tetrazol-5-yl)phenylamino]methyl)phenyl)acrylic acid

HPLC-MS (Method D): m/z: 322 (M+1); Rt = 3,66 min.

Example 530 (General procedure (H))

Dimethyl-(4-{[4-(2H-tetrazol-5-yl)phenylamino]methyl}naphthalen-1-yl)amine

HPLC-MS (Method D): m/z: 345 (M+1); Rt = 3,10 min.

Example 531 (General procedure (H))

(4'-Methoxybiphenyl-4-ylmethyl)-[4-(2H-tetrazol-5-yl)phenyl]amine

10

5

HPLC-MS (Method D): m/z: 358 (M+1); Rt = 5,04 min.

Example 532 (General procedure (H))

(2'-Chlorobiphenyl-4-ylmethyl)-[4-(2H-tetrazol-5-yl)-phenyl]-amine

15

HPLC-MS (Method D): m/z: 362 (M+1); Rt = 5,30 min.

General procedure (I) for preparation of compounds of general formula la:

15

20

wherein K, M and T are as defined above.

This procedure is very similar to general procedure (A), the only difference being the carboxylic acid is containing a tetrazole moiety. When the acylation is complete, the product is isolated by extraction, filtration, chromatography or other methods known to those skilled in the art.

The general procedure (I) is further illustrated in the following example 533:

10 Example 533 (General procedure (I))

4-(4-(2H-Tetrazol-5-yl)benzoylamino]benzoic acid

To a solution of 4-(2H-tetrazol-5-yl)benzoic acid (example 448, 4 mmol) and HOAt (4.2 mmol) in DMF (6 mL) was added 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide hydrochloride (4.2 mmol) and the resulting mixture was stirred at room temperature for 1 hour. An alquot of this HOAt-ester solution (0.45 mL) was mixed with 0.25 mL of a solution of 4-aminobenzoic acid (1.2 mmol in 1 mL DMF). (Anilines as hydrochlorides can also be utilised, a slight excess of triethylamine was added to the hydrochloride suspension in DMF prior to mixing with the HOAt-ester.) The resulting mixture was shaken for 3 days at room temperature. 1N hydrochloric acid (2 mL) was added and the mixture was shaken for 16 hours at room temperature. The solid was isolated by centrifugation (alternatively by filtration or extraction) and was washed with water (3 mL). Drying *in vacuo* at 40 °C for 2 days afforded the title compound.

25 HPLC-MS (Method D): m/z: 310 (M+1); Rt = 2.83 min.

Example 534 (General procedure (I))

3-[4-(2H-Tetrazol-5-yl)benzoylamino]benzoic acid

HPLC-MS (Method D): m/z: 310 (M+1); Rt = 2.89 min.

Example 535 (General procedure (I))

5 3-{4-[4-(2H-Tetrazol-5-yl)benzoylamino]phenyl}acrylic acid

HPLC-MS (Method D): m/z: 336 (M+1); Rt = 3.10 min.

Example 536 (General procedure (I))

10 3-{4-[4-(2H-Tetrazol-5-yl)benzoylamino]phenyl}propionic acid

HPLC-MS (Method D): m/z: 338 (M+1); Rt = 2.97 min.

Example 537 (General procedure (I))

15 3-Methoxy-4-[4-(2H-tetrazol-5-yl)benzoylamino]benzoic acid

HPLC-MS (Method D): m/z: 340 (M+1); Rt = 3.03 min.

Example 538 (General procedure (I))

N-(4-Benzyloxyphenyl)-4-(2H-tetrazol-5-yl)benzamide

HPLC-MS (Method D): m/z: 372 (M+1); Rt = 4.47 min.

5

Example 539 (General procedure (I))

N-(4-Phenoxyphenyl)-4-(2H-tetrazol-5-yl)benzamide

HPLC-MS (Method D): m/z: 358 (M+1); Rt = 4.50 min.

10

Example 540 (General procedure (I))

N-(9H-Fluoren-2-yl)-4-(2H-tetrazol-5-yl)benzamide

HPLC-MS (Method D): m/z: 354 (M+1); Rt = 4.60 min.

15

Example 541 (General procedure (I))

N-(9-Ethyl-9H-carbazol-2-yl)-4-(2H-tetrazol-5-yl)benzamide

HPLC-MS (Method D): m/z: 383 (M+1); Rt = 4.60 min.

20

Example 542 (General procedure (i))

N-Phenyl-4-(2H-tetrazol-5-yl)benzamide

HPLC-MS (Method D): m/z: 266 (M+1); Rt = 3.23 min.

5

15

Example 543 (General procedure (I))

4-[4-(2H-Tetrazol-5-ylmethoxy)benzoylamino]benzoic acid

The starting material was prepared as described in example 435.

10 HPLC-MS (Method D): m/z: 340 (M+1); Rt = 2.83 min.

Example 544 (General procedure (I))

3-[4-(2H-Tetrazol-5-ylmethoxy)benzoylamino]benzoic acid

HPLC-MS (Method D): m/z: 340 (M+1); Rt = 2.90 min.

Example 545 (General procedure (I))

3-{4-[4-(2H-Tetrazol-5-ylmethoxy)benzoylamino]phenyl}acrylic acid

20 HPLC-MS (Method D): m/z: 366 (M+1); Rt = 3.07 min.

Example 546 (General procedure (I))

3-{4-[4-(2H-Tetrazol-5-ylmethoxy)benzoylamino]phenyl)propionic acid

5 HPLC-MS (Method D): m/z: 368 (M+1); Rt = 2.97 min.

Example 547 (General procedure (I))

3-Methoxy-4-[4-(2H-tetrazol-5-ylmethoxy)benzoylamino]benzoic acid

10 HPLC-MS (Method D): m/z: 370 (M+1); Rt = 3.07 min.

Example 548 (General procedure (I))

N-(4-Benzyloxyphenyl)-4-(2H-tetrazol-5-ylmethoxy)benzamide

15 HPLC-MS (Method D): m/z: 402 (M+1); Rt = 4.43 min.

Example 549 (General procedure (I))

N-(4-Phenoxyphenyl)-4-(2H-tetrazol-5-ylmethoxy)benzamide

20 HPLC-MS (Method D): m/z: 388 (M+1); Rt = 4.50 min.

Example 550 (General procedure (I))

N-(9H-Fluoren-2-yl)-4-(2H-tetrazol-5-ylmethoxy)benzamide

5 HPLC-MS (Method D): m/z: 384 (M+1); Rt = 4.57 min.

Example 551 (General procedure (I))

N-(9-Ethyl-9H-carbazol-2-yl)-4-(2H-tetrazol-5-ylmethoxy)benzamide

10 HPLC-MS (Method D): m/z: 413 (M+1); Rt = 4.57 min.

Example 552 (General procedure (I))

N-Phenyl-4-(2H-tetrazol-5-ylmethoxy)benzamide

15 HPLC-MS (Method D): m/z: 296 (M+1); Rt = 3.23 min.

Example 553 (General procedure (!))

4-[4-(2H-Tetrazol-5-ylmethylsulfanyl)benzoylamino]benzoic acid

The starting material was prepared as described in example 436.

HPLC-MS (Method D): m/z: 356 (M+1); Rt = 2.93 min.

Example 554 (General procedure (I))

3-[4-(2H-Tetrazol-5-ylmethylsulfanyl)benzoylamino]benzoic acid

HPLC-MS (Method D): m/z: 356 (M+1); Rt = 3.00 min.

Example 555 (General procedure (I))

3-{4-[4-(2H-Tetrazol-5-ylmethylsulfanyl)benzoylamino]phenyl}acrylic acid

10

5

HPLC-MS (Method D): m/z: 382 (M+1); Rt = 3.26 min.

Example 556 (General procedure (i))

3-{4-[4-(2H-Tetrazol-5-ylmethylsulfanyl)benzoylamino]phenyl}propionic acid

15

HPLC-MS (Method D): m/z: 384 (M+1); Rt = 3.10 min.

Example 557 (General procedure (I))

3-Methoxy-4-[4-(2H-tetrazol-5-ylmethylsulfanyl)benzoylamino]benzoic acid

20

HPLC-MS (Method D): m/z: 386 (M+1); Rt = 3.20 min.

Example 558 (General procedure (I))

N-(4-Benzyloxyphenyl)-4-(2H-tetrazol-5-ylmethylsulfanyl)benzamide

5

HPLC-MS (Method D): m/z: 418 (M+1); Rt = 4.57 min.

Example 559 (General procedure (I))

N-(4-Phenoxyphenyl)-4-(2H-tetrazol-5-ylmethylsulfanyl)benzamide

10

HPLC-MS (Method D): m/z: 404 (M+1); Rt = 4.60 min.

Example 560 (General procedure (I))

N-(9H-Fluoren-2-yl)-4-(2H-tetrazol-5-ylmethylsulfanyl)benzamide

15

HPLC-MS (Method D): m/z: 400 (M+1); Rt = 4.67 min.

Example 561 (General procedure (I))

N-(9-Ethyl-9H-carbazol-2-yl)-4-(2H-tetrazol-5-ylmethylsulfanyl)benzamide

20

HPLC-MS (Method D): m/z: 429 (M+1); Rt = 4.67 min.

Example 562 (General procedure (i))

N-Phenyl-4-(2H-tetrazol-5-ylmethylsulfanyl)benzamide

5 HPLC-MS (Method D): m/z: 312 (M+1); Rt = 3.40 min.

General procedure (J) for solution phase preparation of amides of general formula Is:

10 wherein T is as defined above.

This general procedure (J) is further illustrated in the following example.

Example 563 (General procedure (J)).

15 9-(3-Chlorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

3-(2*H*-Tetrazol-5-yl)-9*H*-carbazole (example 437, 17 g, 72.26 mmol) was dissolved in *N*,*N*-dimethylformamide (150 mL). Triphenylmethyl chloride (21.153 g, 75.88 mmol) and triethylamine (20.14 mL, 14.62 g, 144.50 mmol) were added consecutively. The reaction

10

15

25

30

mixture was stirred for 18 hours at room temperature, poured into water (1.5 L) and stirred for an additional 1 hour. The crude product was filtered off and dissolved in dichloromethane (500 mL). The organic phase was washed with water (2 x 250 mL) and dried with magnesium sulfate (1 h). Filtration followed by concentration yielded a solid which was triturated in heptanes (200 mL). Filtration furnished 3-[2-(triphenylmethyl)-2*H*-tetrazol-5-yl]-9*H*-carbazole (31.5 g) which was used without further purification.

1H-NMR (CDCl₃): δ 8.87 (1H, d), 8.28 (1H, bs), 8.22 (1H, dd), 8.13 (1H, d), 7.49 (1H, d), 7.47-7.19 (18H, m); HPLC-MS (Method C): m/z: 243 (triphenylmethyl); Rt = 5.72 min.

3-[2-(Triphenylmethyl)-2*H*-tetrazol-5-yl]-9*H*-carbazole (200 mg, 0.42 mmol) was dissolved in methyl sulfoxide (1.5 mL). Sodium hydride (34 mg, 60 %, 0.85 mmol) was added, and the resulting suspension was stirred for 30 min at room temperature. 3-Chlorobenzyl chloride (85 μ L, 108 mg, 0.67 mmol) was added, and the stirring was continued at 40 °C for 18 hours. The reaction mixture was cooled to ambient temperature and poured into 0.1 N hydrochloric acid (aq.) (15 mL). The precipitated solid was filtered off and washed with water (3 x 10 mL) to furnish 9-(3-chlorobenzyl)-3-[2-(triphenylmethyl)-2*H*-tetrazol-5-yl]-9*H*-carbazole, which was

mL) to yield the title compound (127 mg). No further purification was necessary.

1H-NMR (DMSO-d_θ): δ8.89 (1H, d), 8.29 (1H, d), 8.12 (1H, dd), 7.90 (1H, d), 7.72 (1H, d), 7.53 (1H, t), 7.36-7.27 (4H, m), 7.08 (1H, bt), 5.78 (2H, s); HPLC-MS (Method B): m/z: 360 (M+1); Rt = 5.07 min.

dissolved in a mixture of tetrahydrofuran and 6 N hydrochloric acid (aq.) (9:1) (10 mL) and stirred at room temperature for 18 hours. The reaction mixture was poured into water (100 mL). The solid was filtered off and rinsed with water (3 x 10 mL) and dichloromethane (3 x 10 mL) and d

The compounds in the following examples were prepared in a similar fashion. Optionally, the compounds can be further purified by recrystallization from e.g. aqueous sodium hydroxide (1 N) or by chromatography.

Example 564 (General Procedure (J)). 9-(4-Chlorobenzyl)-3-(2*H*-tetrazol-5-yl)-9*H*-carbazole

10

15

HPLC-MS (Method C): m/z: 360 (M+1); Rt = 4.31 min.

Example 565 (General Procedure (J)).

9-(4-Methylbenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 340 (M+1); Rt = 4.26 min.

Example 566 (General Procedure (J)).

3-(2H-Tetrazol-5-yl)-9-(4-trifluoromethylbenzyl)-9H-carbazole

HPLC-MS (Method C): m/z: 394 (M+1); Rt = 4.40 min.

Example 567 (General Procedure (J)).

9-(4-Benzyloxybenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 432 (M+1); Rt = 4.70 min.

Example 568 (General Procedure (J)).

9-(3-Methylbenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 340 (M+1); Rt = 4.25 min.

5

Example 569 (General Procedure (J)).

9-Benzyl-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO- d_{θ}): δ 8.91 (1H, dd), 8.30 (1H, d), 8.13 (1H, dd), 7.90 (1H, d), 7.73 (1H, d), 7.53 (1H, t), 7.36-7.20 (6H, m), 5.77 (2H, s).

Example 570 (General Procedure (J)).

9-(4-Phenylbenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO- d_6): δ8.94 (1H, s), 8.33 (1H, d), 8.17 (1H, dd), 7.95 (1H, d), 7.77 (1H, d), 7.61-7.27 (11H, m), 5.82 (2H, s).

Example 571 (General Procedure (J)).

9-(3-Methoxybenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 356 (M+1); Rt = 3.99 min.

Example 572 (General Procedure (J)).

5 9-(Naphthalen-2-ylmethyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 376 (M+1); Rt = 4.48 min.

Example 573 (General Procedure (J)).

10 9-(3-Bromobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 404 (M+1); Rt = 4.33 min.

Example 574 (General Procedure (J)).

15 9-(Biphenyl-2-ylmethyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 402 (M+1); Rt = 4.80 min.

Example 575 (General Procedure (J)).

5 3-(2H-Tetrazol-5-yl)-9-[4-(1,2,3-thiadiazol-4-yl)benzyl]-9H-carbazole

Example 576 (General Procedure (J)).

9-(2'-Cyanobiphenyl-4-ylmethyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

10

¹H-NMR (DMSO- d_6): &8.91 (1H, d), 8.31 (1H, d), 8.13 (1H, dd), 7.95 (1H, d), 7.92 (1H, d), 7.78 (1H, d), 7.75 (1H, dt), 7.60-7.47 (5H, m), 7.38-7.28 (3H, m), 5.86 (2H, s); HPLC-MS (Method C): m/z: 427 (M+1); Rt = 4.38 min.

15 Example 577 (General Procedure (J)).

9-(4-lodobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 452 (M+1); Rt = 4.37 min.

Example 578 (General Procedure (J)).

5 9-(3,5-Bis(trifluoromethyl)benzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 462 (M+1); Rt = 4.70 min.

Example 579 (General Procedure (J)).

10 9-(4-Bromobenzyl)-3-(2*H*-tetrazol-5-yl)-9*H*-carbazole

¹H-NMR (DMSO- d_6): δ 8.89 (1H, d), 8.29 (1H, d), 8.11 (1H, dd), 7.88 (1H, d), 7.70 (1H, d), 7.52 (1H, t), 7.49 (2H, d), 7.31 (1H, t), 7.14 (2H, d), 5.74 (2H, s); HPLC-MS (Method C): m/z: 404 (M+1); Rt = 4.40 min.

Example 580 (General Procedure (J)).

9-(Anthracen-9-ylmethyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 426 (M+1); Rt = 4.78 min.

Example 581 (General Procedure (J)).

5 9-(4-Carboxybenzyl)-3-(2*H*-tetrazol-5-yl)-9*H*-carbazole

3.6 fold excess sodium hydride was used.

¹H-NMR (DMSO- d_0): δ 12.89 (1H, bs), 8.89 (1H, d), 8.30 (1H, d), 8.10 (1H, dd), 7.87 (1H, d), 7.86 (2H, d), 7.68 (1H, d), 7.51 (1H, t), 7.32 (1H, t), 7.27 (2H, d), 5.84 (2H, s); HPLC-MS (Method C): m/z: 370 (M+1); Rt = 3.37 min.

Example 582 (General Procedure (J)).

9-(2-Chlorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

15

HPLC-MS (Method B): m/z: 360 (M+1); Rt = 5.30 min.

Example 583 (General Procedure (J)).

9-(4-Fluorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO-*d*₆): δ 8.88 (1H, d), 8.28 (1H, d), 8.10 (1H, dd), 7.89 (1H, d), 7.72 (1H, d), 7.52 (1H, t), 7.31 (1H, t), 7.31-7.08 (4H, m), 5.74 (2H, s); HPLC-MS (Method C): m/z: 344 (M+1); Rt = 4.10 min.

Example 584 (General Procedure (J)).

9-(3-Fluorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

10

¹H-NMR (DMSO- d_{θ}): δ 8.89 (1H, d), 8.29 (1H, d), 8.12 (1H, dd), 7.90 (1H, d), 7.72 (1H, d), 7.53 (1H, t), 7.37-7.27 (2H, m), 7.12-7.02 (2H, m), 6.97 (1H, d), 5.78 (2H, s); HPLC-MS (Method C): m/z: 344 (M+1); Rt = 4.10 min.

15 Example 585 (General Procedure (J)).

9-(2-lodobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 452 (M+1); Rt = 4.58 min.

15

Example 586 (General Procedure (J)).

9-(3-Carboxybenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

3.6 fold excess sodium hydride was used.

¹H-NMR (DMSO- d_8): δ 12.97 (1H, bs), 8.90 (1H, bs), 8.30 (1H, d), 8.12 (1H, bd), 7.89 (1H, d), 7.82 (1H, m), 7.77 (1H, bs), 7.71 (1H, d), 7.53 (1H, t), 7.46-7.41 (2H, m), 7.32 (1H, t), 5.84 (2H, s); HPLC-MS (Method C): m/z: 370 (M+1); Rt = 3.35 min.

10 Example 587 (General Procedure (J)).

9-[4-(2-Propyl)benzyl]-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO- d_6): δ 8.87 (1H, d), 8.27 (1H, d), 8.10 (1H, dd), 7.87 (1H, d), 7.71 (1H, d), 7.51 (1H, t), 7.31 (1H, t), 7.15 (2H, d), 7.12 (2H, d), 5.69 (2H, s), 2.80 (1H, sept), 1.12 (6H, d); HPLC-MS (Method C): m/z: 368 (M+1); Rt = 4.73 min.

Example 588 (General Procedure (J)).

9-(3,5-Dimethoxybenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 386 (M+1); Rt = 4.03 min.

Example 589 (General Procedure (J)).

5 3-(2H-Tetrazol-5-yl)-9-(2,4,5-trifluorobenzyl)-9H-carbazole

HPLC-MS (Method B): m/z: 380 (M+1); Rt = 5.00 min.

Example 590 (General Procedure (J)).

10 N-Methyl-N-phenyl-2-[3-(2H-tetrazol-5-yl)carbazol-9-yl]acetamide

HPLC-MS (Method B): m/z: 383 (M+1); Rt = 4.30 min.

Example 591 (General Procedure (J)).

15 9-(4-Methoxybenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO- d_6): δ 8.86 (1H, d), 8.26 (1H, d), 8.10 (1H, dd), 7.90 (1H, d), 7.73 (1H, d), 7.51 (1H, t), 7.30 (1H, t), 7.18 (2H, d), 6.84 (2H, d), 5.66 (2H, s), 3.67 (3H, s); HPLC-MS (Method B): m/z: 356 (M+1); Rt = 4.73 min.

5

Example 592 (General Procedure (J)).

9-(2-Methoxybenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO- d_6): δ 8.87 (1H, d), 8.27 (1H, d), 8.09 (1H, dd), 7.77 (1H, d), 7.60 (1H, d), 7.49 (1H, t), 7.29 (1H, t), 7.23 (1H, bt), 7.07 (1H, bd), 6.74 (1H, bt), 6.61 (1H, bd), 5.65 (2H, s), 3.88 (3H, s); HPLC-MS (Method B): m/z: 356 (M+1); Rt = 4.97 min.

Example 593 (General Procedure (J)).

9-(4-Cyanobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

15

HPLC-MS (Method C): m/z: 351 (M+1); Rt = 3.74 min.

Example 594 (General Procedure (J)).

9-(3-Cyanobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 351 (M+1); Rt = 3.73 min.

5

Example 595 (General Procedure (J)).

9-(5-Chloro-2-methoxybenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO- d_6): δ8.87 (1H, d), 8.35 (1H, d), 8.10 (1H, dd), 7.73 (1H, d), 7.59 (1H, d), 7.49 (1H, t), 7.29 (1H, t), 7.27 (1H, dd), 7.11 (1H, d), 6.51 (1H, d), 5.63 (2H, s), 3.88 (3H, s); HPLC-MS (Method C): m/z: 390 (M+1); Rt = 4.37 min.

Example 596 (General Procedure (J)).

N-Phenyl-2-[3-(2H-tetrazol-5-yl)carbazol-9-yl]acetamide

15

¹H-NMR (DMSO- d_6): δ 10.54 (1H, s), 8.87 (1H, bs), 8.27 (1H, d), 8.12 (1H, bd), 7.83 (1H, d), 7.66 (1H, d), 7.61 (2H, d), 7.53 (1H,t), 7.32 (1H, t), 7.32 (2H, t), 7.07 (1H, t), 5.36 (2H, s); HPLC-MS (Method C): m/z: 369 (M+1); Rt = 3.44 min.

5 Example 597 (General Procedure (J)).

N-Butyl-2-[3-(2H-tetrazol-5-yl)carbazol-9-yl]acetamide

¹H-NMR (DMSO- d_6): δ 8.85 (1H, d), 8.31 (1H, t), 8.25 (1H, d), 8.10 (1H, dd), 7.75 (1H, d), 7.58 (1H, d), 7.52 (1H, t), 7.30 (1H, t), 5.09 (2H, s), 3.11 (2H, q), 1.42 (2H, quint), 1.30 (2H, sext), 0.87 (3H, t); HPLC-MS (Method C): m/z: 349 (M+1); Rt = 3.20 min.

Example 598 (General Procedure (J)).

9-(2,4-Dichlorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO- d_6): δ8.92 (1H, d), 8.32 (1H, d), 8.09 (1H, dd), 7.76 (1H, d), 7.74 (1H, d), 7.58 (1H, d), 7.51 (1H, t), 7.33 (1H, t), 7.23 (1H, dd), 6.42 (1H, d), 5.80 (2H, s); HPLC-MS (Method B): m/z: 394 (M+1); Rt = 5.87 min.

Example 599 (General Procedure (J)).

20 9-(2-Methylbenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO- d_6): δ 8.92 (1H, d), 8.32 (1H, d), 8.08 (1H, dd), 7.72 (1H, d), 7.55 (1H, d), 7.48 (1H, t), 7.32 (1H, t), 7.26 (1H, d), 7.12 (1H, t), 6.92 (1H, t), 6.17 (1H, d), 5.73 (2H, s), 2.46 (3H, s); HPLC-MS (Method B): m/z: 340 (M+1); Rt = 5.30 min.

5

Example 600 (General Procedure (J)).

9-(3-Nitrobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 371 (M+1); Rt = 3.78 min.

10

Example 601 (General Procedure (J)).

9-(3,4-Dichlorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method B): m/z: 394 (M+1); Rt = 5.62 min.

15

Example 602 (General Procedure (J)).

9-(2,4-Difluorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO- d_0): δ 8.89 (1H, d), 8.29 (1H, d), 8.11 (1H, dd), 7.88 (1H, d), 7.69 (1H, d), 7.52 (1H, t), 7.36-7.24 (2H, m), 7.06-6.91 (2H, m), 5.78 (2H, s); HPLC-MS (Method B): m/z: 362 (M+1); Rt = 5.17 min.

5

Example 603 (General Procedure (J)).

9-(3,5-Difluorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

¹H-NMR (DMSO-*d*₆): δ8.90 (1H, bs), 8.31 (1H, d), 8.13 (1H, bd), 7.90 (1H, d), 7.73 (1H, d), 7.54 (1H, t), 7.34 (1H, t), 7.14 (1H, t), 6.87 (2H, bd), 5.80 (2H, s); HPLC-MS (Method B): m/z: 362 (M+1); Rt = 5.17 min.

Example 604 (General Procedure (J)).

9-(3,4-Difluorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

15

¹H-NMR (DMSO- d_6): δ 8.89 (1H, bs), 8.29 (1H, d), 8.12 (1H, bd), 7.92 (1H, d), 7.74 (1H, d), 7.54 (1H, t), 7.42-7.25 (3H, m), 6.97 (1H, bm), 5.75 (2H, s); HPLC-MS (Method B): m/z: 362 (M+1); Rt = 5.17 min.

Example 605 (General Procedure (J)).

9-(3-lodobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method B): m/z: 452 (M+1); Rt = 5.50 min.

5

Example 606 (General Procedure (J)).

3-(2H-Tetrazol-5-yl)-9-[3-(trifluoromethyl)benzyl]-9H-carbazole

¹H-NMR (DMSO-*d_d*): δ8.89 (1H, d), 8.30 (1H, d), 8.11 (1H, dd), 7.90 (1H, d), 7.72 (1H, d), 7.67 (1H, bs), 7.62 (1H, bd), 7.53 (1H, t), 7.50 (1H, bt), 7.33 (1H, bd), 7.32 (1H, t), 5.87 (2H, s); HPLC-MS (Method B): m/z: 394 (M+1); Rt = 5.40 min.

Example 607 (General Procedure (J)).

N-(4-Carboxyphenyl)-2-[3-(2H-tetrazol-5-yl)carbazol-9-yl]acetamide

15

3.6 fold excess sodium hydride was used.

10

15

HPLC-MS (Method B): m/z: 413 (M+1); Rt = 3.92 min.

Example 608 (General Procedure (J)).

N-(2-Propyl)-2-[3-(2H-tetrazol-5-yl)carbazol-9-yl]acetamide

HPLC-MS (Method B): m/z: 335 (M+1); Rt = 3.70 min.

Example 609 (General Procedure (J)).

N-Benzyl-N-phenyl-2-[3-(2H-tetrazol-5-yl)carbazol-9-yl]acetamide

HPLC-MS (Method B): m/z: 459 (M+1); Rt = 5.37 min.

Example 610 (General Procedure (J)).

N-[4-(2-Methyl-2-propyl)phenyl]-2-[3-(2H-tetrazol-5-yl)carbazol-9-yl]acetamide

HPLC-MS (Method B): m/z: 425 (M+1); Rt = 5.35 min.

Example 611 (General Procedure (J)).

N-Phenethyl-2-[3-(2H-tetrazol-5-yl)carbazol-9-yl]acetamide

5 HPLC-MS (Method C): m/z: 397 (M+1); Rt = 3.43 min.

Example 612 (General Procedure (J)).

3-(2H-Tetrazol-5-yl)-9-[2-(trifluoromethyl)benzyl]-9H-carbazole

10 HPLC-MS (Method C): m/z: 394 (M+1); Rt = 4.44 min.

Example 613 (General Procedure (J)).

9-[2-Fluoro-6-(trifluoromethyl)benzyl]-3-(2H-tetrazol-5-yl)-9H-carbazole

15 HPLC-MS (Method C): m/z: 412 (M+1); Rt = 4.21 min.

Example 614 (General Procedure (J)).

9-[2,4-Bis(trifluoromethyl)benzyl)]-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 462 (M+1); Rt = 4.82 min.

5

Example 615 (General Procedure (J)).

3-(2H-Tetrazol-5-yl)-9-(2,4,6-trimethylbenzyl)-9H-carbazole

HPLC-MS (Method C): m/z: 368 (M+1); Rt = 4.59 min.

10

Example 616 (General Procedure (J)).

9-(2,3,5,6-Tetramethylbenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 382 (M+1); Rt = 4.47 min.

15

Example 617 (General Procedure (J)).

9-[(Naphthalen-1-yl)methyl]-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 376 (M+1); Rt = 4.43 min.

Example 618 (General Procedure (J)).

5 9-[Bis(4-fluorophenyi)methyl]-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 438 (M+1); Rt = 4.60 min.

Example 619 (General Procedure (J)).

10 9-(2-Bromobenzyl)-3-(2*H*-tetrazol-5-yl)-9*H*-carbazole

HPLC-MS (Method C): m/z: 404 (M+1); Rt = 4.50 min.

Example 620 (General Procedure (J)).

15 9-(2-Fluorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 344 (M+1); Rt = 4.09 min.

Example 621 (General Procedure (J)).

5 9-(4-Carboxy-2-methylbenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

In this preparation, a 3.6-fold excess of sodium hydride was used. HPLC-MS (Method C): m/z: 384 (M+1); Rt = 3.56 min.

10 Example 622 (General Procedure (J)).

9-(2-Phenylethyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

HPLC-MS (Method C): m/z: 340 (M+1); Rt = 4.08 min.

15 Example 623 (General Procedure (J)).

9-[2-Fluoro-5-(trifluoromethyl)benzyl]-3-(2H-tetrazol-5-yl)-9H-carbazole

20

HPLC-MS (Method C): m/z: 412 (M+1); Rt = 4.34 min.

Example 624 (General Procedure (J)).

9-(4-Carboxy-2-fluorobenzyl)-3-(2H-tetrazol-5-yl)-9H-carbazole

3-Fluoro-4-methylbenzoic acid (3.0 g, 19.5 mmol) and benzoyl peroxide (0.18 g, 0.74 mmol) were suspended in benzene. The mixture was purged with N₂ and heated to reflux. N-Bromosuccinimide (3.47 g, 19.5 mmol) was added portionwise, and reflux was maintained for 18 hours. The reaction mixture was concentrated, and the residue was washed with water (20 mL) at 70 °C for 1 hour. The crude product was isolated by filtration and washed with additional water (2 x 10 mL). The dry product was recrystallized from heptanes. Filtration furnished 4-bromomethyl-3-fluorobenzoic acid (1.92 g) which was used in the following step according to General Procedure (J).

In this preparation, a 3.6-fold excess of sodium hydride was used. HPLC-MS (Method C): m/z: 388 (M+1); Rt = 3.49 min.

Example 625 (General Procedure (J)).

5-{4-[[(3-(2H-Tetrazol-5-yl)carbazol-9-yl)methyl]naphthalen-1-yl]oxy}pentanoic Acid

10

5-[(4-Formylnaphthalen-1-yl)oxy]pentanoic acid intermediate obtained in example 302(3.0 g, 11.0 mmol) was dissolved in a mixture of methanol and tetrahydrofuran (9:1) (100 mL), and sodium borohydride (1.67 g, 44.1 mmol) was added portionwise at ambient temperature. After 30 minutes, the reaction mixture was concentrated to 50 mL and added to hydrochloric acid (0.1 N, 500 mL). Additional hydrochloric acid (1 N, 40 mL) was added, and 5-[(4-hydroxymethyl-naphthalen-1-yl)oxy]pentanoic acid (2.90 g) was collected by filtration. To the crude product was added concentrated hydrochloric acid (100 mL), and the suspension was stirred vigorously for 48 hours at room temperature. The crude product was filtered off and washed with water, until the pH was essentially neutral. The material was washed with heptanes to furnish 5-[(4-chloromethylnaphthalen-1-yl)oxy]pentanoic acid (3.0 g) which was used in the following step according to General Procedure (J).

In this preparation, a 3.6-fold excess of sodium hydride was used. HPLC-MS (Method C): rn/z: 492 (M+1); Rt = 4.27 min.

15

Further compounds of the invention that may be prepared according to general procedure (J), and includes:

20

Example 626	Example 627	Example 628 N=N N F ₃ C
Example 629	Example 630	Example 631
Example 632	Example 633	Example 634
Example 635	Example 636	Example 637
Example 638		

The following compounds of the invention may be prepared eg. from 9-(4-bromobenzyl)-3-(2*H*-tetrazol-5-yl)-9*H*-carbazole (example 579) or from 9-(3-bromobenzyl)-3-(2*H*-tetrazol-5-yl)-9*H*-carbazole (example 573) and aryl boronic acids *via* the Suzuki coupling reaction eg as described in Littke, Dai & Fu *J. Am. Chem. Soc.*, **2000**, *122*, 4020-8 (or references cited

therein), or using the methodology described in general procedure (E), optionally changing the palladium catalyst to bis(tri-tert-butylphosphine)palladium (0).

Example 639	Example 640	Example 641
Example 642	Example 643	Example 644

5 General procedure (K) for preparation of compounds of general formula I_{10} :

wherein T is as defined above.

10

The general procedure (K) is further illustrated by the following example:

Example 645 (General procedure (K)).1-Benzyl-5-(2H-tetrazol-5-yl)-1H-indole

5-Cyanoindole (1.0 g, 7.0 mmol) was dissolved in *N*,*N*-dimethylformamide (14 mL) and cooled in an ice-water bath. Sodium hydride (0.31 g, 60 %, 7.8 mmol) was added, and the resulting suspension was stirred for 30 min. Benzyl chloride (0.85 mL, 0.94 g, 7.4 mmol) was added, and the cooling was discontinued. The stirring was continued for 65 hours at room temperature. Water (150 mL) was added, and the mixture was extracted with ethyl acetate (3 x 25 mL). The combined organic phases were washed with brine (30 mL) and dried with sodium sulfate (1 hour). Filtration and concentration yielded the crude material. Purification by flash chromatography on silica gel eluting with ethyl acetate/heptanes = 1:3 afforded 1.60 g 1-benzyl-1*H*-indole-5-carbonitrile.

HPLC-MS (Method C): m/z: 233 (M+1); Rt = 4.17 min.

15 1-Benzyl-1*H*-indole-5-carbonitrile was transformed into 1-benzyl-5-(2*H*-tetrazol-5-yl)-1*H*-indole by the method described in general procedure (J) and in example **437**. Purification was done by flash chromatography on silica gel eluting with dichloromethane/methanol = 9:1.

HPLC-MS (Method C): m/z: 276 (M+1); Rt = 3.35 min.

20

10

The compounds in the following examples were prepared by the same procedure.

Example 646 (General procedure (K)).1-(4-Bromobenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

25 HPLC-MS (Method C): m/z: 354 (M+1); Rt = 3.80 min.

Example 647 (General procedure (K)).1-(4-Phenylbenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

¹H-NMR (200 MHz, DMSO- d_{θ}): δ = 5.52 (2H, s), 6.70 (1H, d), 7.3-7.45 (6H, m), 7.6 (4H, m), 7.7-7.8 (2H, m), 7.85(1H, dd), 8.35 (1H, d).

5 Calculated for C₂₂H₁₇N₅, H₂O:

73.32% C; 5.03% H; 19.43% N. Found:

73.81% C; 4.90% H; 19.31% N.

Example 648 (General procedure (K)).5-(2H-Tetrazol-5-yl)-1H-indole

5-(2*H*-Tetrazol-5-yl)-1*H*-indole was prepared from 5-cyanoindole according to the method described in example 437.

HPLC-MS (Method C): m/z: 186 (M+1); Rt = 1.68 min.

Example 649 (General procedure (K)).1-Benzyl-4-(2H-tetrazol-5-yl)-1H-indole

1-Benzyl-1*H*-indole-4-carbonitrile was prepared from 4-cyanoindole according to the method described in example 645.

HPLC-MS (Method C): m/z: 233 (M+1); Rt = 4.24 min.

1-Benzyl-4-(2*H*-tetrazol-5-yl)-1*H*-indole was prepared from 1-benzyl-1*H*-indole-4-carbonitrile according to the method described in example 437.

HPLC-MS (Method C): m/z: 276 (M+1); Rt = 3.44 min.

5

General procedure (L) for preparation of compounds of general formula I11:

10 wherein T is as defined above and

Pol- is a polystyrene resin loaded with a 2-chlorotrityl linker, graphically shown below:

This general procedure (L) is further illustrated by the following example:

10

15

20

Example 650 (General procedure (L)).5-(2H-Tetrazol-5-yl)-1-[3-(trifluoromethyl)benzyl]-1H-indole

2-Chlorotritylchloride resin (100 mg, 0.114 mmol active chloride) was swelled in dichloromethane (2 mL) for 30 min. The solvent was drained, and a solution of 5-(2Htetrazol-5-yl)-1H-indole (example 648) (63 mg, 0.34 mmol) in a mixture of N,Ndimethylformamide, dichloromethane and N,N-di(2-propyl)ethylamine (DIPEA) (5:5:2) (1.1 mL) was added. The reaction mixture was shaken at room temperature for 20 hours. The solvent was removed by filtration, and the resin was washed consecutively with N.Ndimethylformamide $(2 \times 4 \text{ mL})$, dichloromethane $(6 \times 4 \text{ mL})$ and methyl sulfoxide $(2 \times 4 \text{ mL})$. Methyl sulfoxide (1 mL) was added, followed by the addition of a solution of lithium bis(trimethylsilyl)amide in tetrahydrofuran (1.0 M, 0.57 mL, 0.57 mmol). The mixture was shaken for 30 min at room temperature, before 3-(trifluoromethyl)benzyl bromide (273 mg, 1.14 mmol) was added as a solution in methyl sulfoxide (0.2 mL). The reaction mixture was shaken for 20 hours at room temperature. The drained resin was washed consecutively with methyl sulfoxide (2 x 4 mL), dichloromethane (2 x 4 mL), methanol (2 x 4 mL), dichloromethane (2 x 4 mL) and tetrahydrofuran (4 mL). The resin was treated with a solution of hydrogen chloride in tetrahydrofuran, ethyl ether and ethanol = 8:1:1 (0.1 M, 3 mL) for 6 hours at room temperature. The resin was drained and the filtrate was concentrated in vacuo. The crude product was re-suspended in dichloromethane (1.5 mL) and concentrated three times to afford the title compound (35 mg). No further purification was necessary.

HPLC-MS (Method B): rn/z: 344 (M+1); Rt = 4.35 min.

¹H-NMR (DMSO- d_6): δ 8.29 (1H, s), 7.80 (1H, dd), 7.72 (2H, m), 7.64 (2H, bs), 7.56 (1H, t), 7.48 (1H, d), 6.70 (1H, d), 5.62 (2H, s).

The compounds in the following examples were prepared in a similar fashion. Optionally, the compounds can be further purified by recrystallization or by chromatography.

Example 651 (General procedure (L)).1-(4-Chlorobenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 310 (M+1); Rt = 4.11 min.

5 Example 652 (General procedure (L)).1-(2-Chlorobenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 310 (M+1); Rt = 4.05 min.

Example 653 (General procedure (L)).AKP1-(4-Methoxybenzyl)-5-(2*H*-tetrazol-5-yl)-1*H*-indole

HPLC-MS (Method B): m/z: 306 (M+1); Rt = 3.68 min.

Example 654 (General procedure (L)).AKP1-(4-Methylbenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

10

15

HPLC-MS (Method B): m/z: 290 (M+1); Rt = 3.98 min.

Example 655 (**General procedure (L)).AKP**5-(2*H*-Tetrazol-5-yl)-1-[4-(trifluoromethyl)benzyl]-1*H*-indole

HPLC-MS (Method B): m/z: 344 (M+1); Rt = 4.18 min.

Example 656 (General procedure (L)).AKP1-(3-Chlorobenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

10 HPLC-MS (Method B): m/z: 310 (M+1); Rt = 4.01 min.

Example 657 (General procedure (L)).AKP1-(3-Methylbenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 290 (M+1); Rt = 3.98 min.

Example 658 (General procedure (L)).AKP1-(2,4-Dichlorobenzyl)-5-(2*H*-tetrazol-5-yl)-1*H*-indole

HPLC-MS (Method B): m/z: 344 (M+1); Rt = 4.41 min.

5

Example 659 (General procedure (L))_AKP1-(3-Methoxybenzyl)-5-(2*H*-tetrazol-5-yl)-1*H*-indole

HPLC-MS (Method B): m/z: 306 (M+1); Rt = 3.64 min.

10

Example 660 (General procedure (L)).AKP1-(4-Fluorobenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 294 (M+1); Rt = 3.71 min.

Example 661 (General procedure (L)).AKP1-(3-Fluorobenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 294 (M+1); Rt = 3.68 min.

5 Example 662 (General procedure (L)).AKP1-(2-lodobenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 402 (M+1); Rt = 4.11 min.

Example 663 (General procedure (L)).AKP1-[(Naphthalen-2-yi)methyl]-5-(2*H*-tetrazoi-5-yi)-1*H*-indole

HPLC-MS (Method B): m/z: 326 (M+1); Rt = 4.18 min.

Example 664 (General procedure (L)).AKP1-(3-Bromobenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 354 (M+1); Rt = 4.08 min.

5 Example 665 (General procedure (L)).AKP1-(4-Carboxybenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

In this preparation, a larger excess of lithium bis(trimethylsilyl)amide in tetrahydrofuran (1.0 M, 1.7 mL, 1.7 mmol) was used.

10 HPLC-MS (Method B): m/z: 320 (M+1); Rt = 2.84 min.

Example 666 (General procedure (L)).AKP1-(3-Carboxybenzyl)-5-(2*H*-tetrazol-5-yl)-1*H*-indole

15 In this preparation, a larger excess of lithium bis(trimethylsilyl)amide in tetrahydrofuran (1.0 M, 1.7 mL, 1.7 mmol) was used.

HPLC-MS (Method B): m/z: 320 (M+1); Rt = 2.91 min.

Example 667 (General procedure (L)).AKP1-(2,4-Difluorobenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 312 (M+1); Rt = 3.78 min.

5

Example 668 (General procedure (L)).AKP1-(3,5-Difluorobenzyl)-5-(2*H*-tetrazol-5-yl)-1*H*-indole

HPLC-MS (Method B): m/z: 312 (M+1); Rt = 3.78 min.

10

Example 669 (General procedure (L)).AKP1-(3,4-Difluorobenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 312 (M+1); Rt = 3.81 min.

15

Example 670 (General procedure (L)).AKP1-[4-(2-Propyl)benzyl]-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 318 (M+1); Rt = 4.61 min.

5

Example 671 (General procedure (L)).AKP1-(3,5-Dimethoxybenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 336 (M+1); Rt = 3.68 min.

10

Example 672 (General procedure (L)).AKP1-(2'-Cyanobiphenyl-4-ylmethyl)-5-(2*H*-tetrazol-5-yl)-1*H*-indole

HPLC-MS (Method B): m/z: 377 (M+1); Rt = 4.11 min.

15

Example 673 (General procedure (L)).AKP1-(2-Methylbenzyl)-5-(2H-tetrazol-5-yl)-1H-indole

HPLC-MS (Method B): m/z: 290 (M+1); Rt = 3.98 min.

5

Further compounds of the invention that may be prepared according to general procedure (K) and/or (L) includes:

Example 674	Example 675	Example 676
Example 677	Example 678	Example 679
Example 680	Example 681	Example 682
Example 683	Example 684	Example 685
Example 686	Example 687	Example 688
Example 689	Example 690	Example 691

Example 692	Example 693	Example 694
Example 695	Example 696	Example 697

The following compounds of the invention may be prepared eg. from 1-(4-bromobenzyl)-5-(2*H*-tetrazol-5-yl)-1*H*-indole (example 646) or from the analogue 1-(3-bromobenzyl)-5-(2*H*-tetrazol-5-yl)-1*H*-indole and aryl boronic acids *via* the Suzuki coupling reaction eg as described in Littke, Dai & Fu *J. Am. Chem. Soc.*, **2000**, *122*, 4020-8 (or references cited therein), or using the methodology described in general procedure (E), optionally changing the palladium catalyst to bis(tri-tert-butylphosphine)palladium (0).

	Example 698	Example 699
Example 700	Example 701	Example 702

General procedure (M) for preparation of compounds of general formula I12:

wherein T is as defined above.

5

10

15

The general procedure (M) is further illustrated by the following example:

Example 703 (General procedure (M)).1-Benzoyl-5-(2H-tetrazol-5-yl)-1H-indole

To a solution of 5-cyanoindole (1.0 g, 7.0 mmol) in dichloromethane (8 mL) was added 4-(dimethylamino)pyridine (0.171 g, 1.4 mmol), triethylamine (1.96 mL, 1.42 g, 14 mmol) and benzoyl chloride (0.89 mL, 1.08 g, 7.7 mmol). The resulting mixture was stirred for 18 hours at room temperature. The mixture was diluted with dichloromethane (80 mL) and washed consecutively with a saturated solution of sodium hydrogencarbonate (40 mL) and brine (40 mL). The organic phase was dried with magnesium sulfate (1 hour). Filtration and concentration furnished the crude material which was purified by flash chromatography on silica gel, eluting with ethyl acetate/heptanes = 2:3. 1-Benzoyl-1*H*-indole-5-carbonitrile was obtained as a solid.

HPLC-MS (Method C): m/z: 247 (M+1); Rt = 4.07 min.

20

1-Benzoyl-1*H*-indole-5-carbonitrile was transformed into 1-benzoyl-5-(2*H*-tetrazol-5-yl)-1*H*-indole by the method described in example 437.

HPLC (Method C): Rt = 1.68 min.

25

The compound in the following example was prepared by the same procedure.

Example 704 (General procedure (M)).1-Benzoyl-4-(2H-tetrazol-5-yl)-1H-indole

5

1-Benzoyl-1*H*-indole-4-carbonitrile was prepared from 4-cyanoindole according to the method described in example 703.

HPLC-MS (Method C): m/z: 247 (M+1); Rt = 4.24 min.

10 1-Benzoyl-4-(2*H*-tetrazol-5-yl)-1*H*-indole was prepared from 1-benzoyl-1*H*-indole-4-carbonitrile according to the method described in example 437.

HPLC (Method C): Rt = 1.56 min.

The following known and commercially available compounds do all bind to the His B10 Zn²⁺ site of the insulin hexamer:

Example 7051-(4-Fluorophenyl)-5-(2H-tetrazol-5-yl)-1H-indole

20

Example 7061-Amino-3-(2H-tetrazol-5-yl)benzene

10

Example 7071-Amino-4-(2H-tetrazol-5-yl)benzene

A mixture of 4-aminobenzonitrile (10 g, 84.6 mmol), sodium azide (16.5 g, 254 mmol) and ammonium chloride (13.6 g, 254 mmol) in DMF was heated at 125 °C for 16 hours. The cooled mixture was filtered and the filtrate was concentrated *in vacuo*. The residue was added water (200 mL) and diethyl ether (200 mL) which resulted in crystallisation. The mixture was filtered and the solid was dried *in vacuo* at 40 °C for 16 hours to afford 5-(4-aminophenyl)-2*H*-tetrazole.

¹H NMR DMSO- d_6): δ = 5.7 (3H, bs), 6.69 (2H, d), 7.69 (2H, d). 15 HPLC-MS (Method C): m/z: 162 (M+1); Rt = 0,55 min.

Example 7081-Nitro-4-(2H-tetrazol-5-yl)benzene

20 Example 7091-Bromo-4-(2H-tetrazol-5-yl)benzene

Example 710 (General procedure (N))

N-(4-Chlorobenzyl)-4-[3-(2H-tetrazol-5-yl)carbazol-9-ylmethyl]benzamide

HPLC-MS (Method C): m/z:493 (M+1); Rt = 4.19 min.

5

Example 711 (General procedure (N))

N- (4-Chlorobenzyl)-3-[3-(2H-tetrazol-5-yl)carbazol-9-ylmethyl] benzamide

HPLC-MS (Method C): m/z: 493 (M+1); Rt = 4.20 min.

10

Example 712 (General Procedure (N))

N-(4-Chlorobenzyl)-3-methyl-4-[3-(2H-tetrazol-5-yl)-carbazol-9-ylmethyl]benzamide

HPLC-MS (Method C): m/z: 507 (M+1); Rt = 4.37min.

The commercially available compounds in the following examples do all bind to the HisB10 5 Zn²⁺site:

Example 713

1-(4-Bromo-3-methylphenyl)-1,4-dihydrotetrazole-5-thione

10

Example 714

1-(4-fodophenyl)-1,4-dihydrotetrazole-5-thione

15 Example 715

1-(2,4,5-Trichlorophenyl)-1H-tetrazole-5-thiol

Example 716

20 1-(2,6-Dimethylphenyl)-1,4-dihydrotetrazole-5-thione

1-(2,4,6-Trimethylphenyl)-1,4-dihydrotetrazole-5-thione

5

Example 718

 $\hbox{\it 1-(4-Dimethylaminophenyl)-1} \textit{\it H-} tetrazole-5-thiol$

10 Example 719

1-(3,4-Dichlorophenyl)-1,4-dihydro-1*H*-tetrazole-5-thione

Example 720

15 1-(4-Propylphenyl)-1,4-dihydro-1H-tetrazole-5-thione

1-(3-Chlorophenyl)-1,4-dihydro-1H-tetrazole-5-thione

5 Example 722

1-(2-Fluorophenyl)-1,4-dihydro-1H-tetrazole-5-thione

Example 723

10 1-(2,4-Dichlorophenyl)-1,4-dihydro-1*H*-tetrazole-5-thione

Example 724

1-(4-Trifluoromethoxyphenyl)-1,4-dihydro-1*H*-tetrazole-5-thione

15

Example 725

N-[4-(5-Mercaptotetrazol-1-yl)-phenyl]-acetamide

1-(4-Chlorophenyl)-1,4-dihydrotetrazole-5-thione

5

Example 727

1-(4-Methoxyphenyl)-1,4-dihydrotetrazole-5-thione

10

Example 728

1-(3-Fluoro-4-pyrrolidin-1-ylphenyl)-1,4-dihydrotetrazole-5-thione

15 Example 729

N-[3-(5-Mercaptotetrazol-1-yl)phenyl]acetamide

1-(4-Hydroxyphenyl)-5-mercaptotetrazole

5

Example 731

10

15

Preparation of 1-aryl-1,4-dihydrotetrazole-5-thiones (or the tautomeric 1-aryltetrazole-5-thiols) is described in the literature (eg. by Kauer & Sheppard, *J. Org. Chem.*, **32**, 3580-92 (1967)) and is generally performed eg. by reaction of aryl-isothiocyanates with sodium azide followed by acidification

1-Aryl-1,4-dihydrotetrazole-5-thiones with a carboxylic acid tethered to the aryl group may be prepared as shown in the following scheme:

Step 1 is a phenol alkylation and is very similar to steps 1 and 2 of general procedure (D) and may also be prepared similarly as described in example 313.

5 Step 2 is a reduction of the nitro group. SnCl₂, H₂ over Pd/C and many other procedures known to those skilled in the art may be utilised.

Step 3 is formation of an arylisothiocyanate from the corresponding aniline. As reagents CS_2 , $CSCI_2$, or other reagents known to those skilled in the art, may be utilised.

Step 4 is a conversion to mercaptotetrazole as described above.

Compounds of the invention includes:

Example 732 N=N HN S	Example 733
Example 734 N=N HN S O OH	Example 735 N=N HN N O OH
Example 736 N=N HN N O O OH	Example 737 N=N HN S O OH
Example 738 HN S OH	

5

4-(4-Hydroxyphenyl)-1H-[1,2,3]triazole-5-carbonitrile

Phenylsulphonyl acetonitrile (2.0 g, 11.04 mmol) was mixed with 4-hydroxybenzaldehyde (1.35 g, 11.04 mmol) in DMF (10 mL) and toluene (20 mL). The mixture was refluxed for 3 hours and subsequently evaporated to dryness *in vacuo*. The residue was treated with

diethyl ether and toluene. The solid formed was filtered to afford 2.08 g (66%) of 2-benzenesulfonyl-3-(4-hydroxyphenyl)acrylonitrile. HPLC-MS (Method C): m/z: 286 (M+1); Rt. = 3.56 min.

A mixture of 2-benzenesulfonyl-3-(4-hydroxyphenyl)acrylonitrile (2.08 g, 7.3 mmol) and sodium azide (0.47g,7.3 mmol) in DMF (50 mL) was heated at reflux temperature 2 hours. After cooling, the mixture was poured on ice. The mixture was evaporated in vacuo to almost dryness and toluene was added. After filtration, the organic phase was evaporated *in vacuo*. The residue was purified by silicagel chromatography eluting with a mixture of ethyl acetate and heptane (1:2). This afforded 1.2 g (76%) of the title compound.

1H NMR (DMSO- d_0): 10.2 (broad,1H); 7.74 (d,2H); 6.99 (d,2H); 3.6-3.2 (broad,1H). HPLC-MS (Method C) m/z: = 187 (M+1); Rt. = 1.93 min

15 General procedure (O) for preparation of compounds of general formula I₁₄:

wherein

20

AA is as defined above,

Steps 1 and 2 are described in the literature (eg Beck & Gûnther, *Chem. Ber.*, **106**, 2758-66 (1973))

Step 1 is a Knoevenagel condensation of the aldehyde AA-CHO with phenylsulfonylacetonitrile and step 2 is a reaction of the vinylsulfonyl compound obtained in step 1 with sodium azide. This reaction is usually performed in DMF at 90 – 110 °C.

This general procedure is further illustrated in the following example 740:

10

Example 740 (General Procedure (O))

[4-(5-Cyano-1H-[1,2,3]triazol-4-yl)phenoxy]acetic acid

Phenylsulphonylacetonitrile (0.1 g, 0.55 mmol) was mixed with 4-formylphenoxyactic acid (0.099 g, 0.55 mmol) in DMF (3 mL) and heated to 110 °C for 3 h and subsequently cooled to RT. Sodium azide (0.036 g, 0.55 mmol) was added and the resulting mixture was heated to 110 °C for 3 h and cooled to RT. The mixture was poured into water (20 mL) and centrifuged. The supernatant was discarded, ethanol (5 mL) was added and the mixture was centrifuged again. After discarding the supernatant, the residue was dried *in vacuo* to afford 50 mg (37%) of [4-(5-Cyano-1*H*-[1,2,3]triazol-4-yl)phenoxy]acetic acid.

HPLC-MS (Method C): m/z: 245 (M+1) Rt. 2.19 min.

Example 741 (General Procedure (O))

15 5-(Naphthalen-1-yl)-3*H*-[1,2,3]triazole-4-carbonitrile

HPLC-MS (Method C): m/z: 221 (M+1); Rt. 3.43 min.

Example 742 (General Procedure (O))

20 5-(Naphthalen-2-yl)-3H-[1,2,3]triazole-4-carbonitrile

HPLC-MS (Method C): m/z: 221 (M+1); Rt = 3.66 min.

Example 743 (General Procedure (O))

5 5-(Anthracen-9-yl)-3*H*-[1,2,3]triazole-4-carbonitrile

HPLC-MS (Method C): m/z: 271 (M+1); Rt = 3.87 min.

Example 744 (General Procedure (O))

10 5-(4-Methoxynaphthalen-1-yl)-3*H*-[1,2,3]triazole-4-carbonitrile

HPLC-MS (Method C): m/z: 251 (M+1); Rt = 3.57 min.

Example 745 (General Procedure (O))

15 5-(1,4-Dimethyl-9*H*-carbazol-3-yl)-3*H*-[1,2,3]triazole-4-carbonitrile

HPLC-MS (Method C): m/z: 288 (M+1); Rt = 3.67 min.

The compounds in the following examples are commercially available and may be prepared using a similar methodology:

Example 746

4-(4-Trifluoromethoxyphenyl)-1H-[1,2,3]triazole-5-carbonitrile

10

5

Example 747

4-Benzo[1,3]dioxol-5-yl-1H-[1,2,3]triazole-5-carbonitrile

15 **Example 748**

4-(3-Trifluoromethylphenyl)-1H-[1,2,3]triazole-5-carbonitrile

4-Pyridin-3-yl-1H-[1,2,3]triazole-5-carbonitrile

5

Example 750

4-(2,6-Dichlorophenyl)-1*H*-[1,2,3]triazole-5-carbonitrile

10

Example 751

4-Thiophen-2-yl-1H-[1,2,3]triazole-5-carbonitrile

15 **Example 752**

3,5-Dimethylisoxazole-4-carboxylic acid 4-(5-cyano-1H-[1,2,3]triazol-4-yl)phenyl ester

Example 753

5 3,3-Dimethyl-butyric acid 4-(5-cyano-1*H*-[1,2,3]triazol-4-yl)phenyl ester

Example 754

4-Methyl-[1,2,3]thiadiazole-5-carboxylic acid 4-(5-cyano-1H-[1,2,3]triazol-4-yl)phenyl ester

10

Example 755

4-Chlorobenzoic acid 4-(5-cyano-1*H*-[1,2,3]triazol-4-yl)phenyl ester

4-(3-Phenoxyphenyl)-1H-[1,2,3]triazole-5-carbonitrile

5

Example 757

4-(5-Bromo-2-methoxyphenyl)-1H-[1,2,3]triazole-5-carbonitrile

10 Example 758

4-(2-Chloro-6-fluorophenyl)-1H-[1,2,3]triazole-5-carbonitrile

The following cyanotriazoles are also compounds of the invention:

15

4-(2-Chloro-6-fluorophenyl)-1H-[1,2,3]triazole-5-carbonitrile.

Terephthalic acid mono[4-(5-cyano-1H-[1,2,3]triazol-4-yl)phenyl] ester.

N- [4-(5-cyano-1H-[1,2,3]triazol-4-yl)-phenyl]terephthalamic acid

4-(4-Octyloxyphenyl)-1H-[1,2,3]triazole-5-carbonitrile

20 4-(4-Styrylphenyl)-1*H*-[1,2,3]triazole-5-carbonitrile.

4-(4'-Trifluoromethylbiphenyl-4-yl)-1H-[1,2,3]triazole-5-carbonitrile.

4-(4'-Chlorobiphenyl-4-yl)-1H-[1,2,3]triazole-5-carbonitrile.

4-(4'-Methoxybiphenyl-4-yl)-1H-[1,2,3]triazole-5-carbonitrile.

4-(1-Naphthyl)-1H-[1,2,3]triazole-5-carbonitrile.

4-(9-Anthranyl)-1H-(1,2,3)triazole-5-carbonitrile.

4-(4-Methoxy-1-naphthyl)-1H-[1,2,3]triazole-5-carbonitrile.

- 4-(4-Aminophenyl)-1H-[1,2,3]triazole-5-carbonitrile.
- 4-(2-Naphthyl)-1H-[1,2,3]triazole-5-carbonitrile.

5

General procedure (P) for preparation of compounds of general formula I₁₅:

$$O \rightarrow AA \rightarrow CH_2)_n O \rightarrow R'' \rightarrow CH_2)_n O \rightarrow R'' \rightarrow CH_2)_n O \rightarrow R'' \rightarrow CH_2)_n O \rightarrow CH_2$$

10 wherein

15

n is 1 or 3-20,

AA is as defined above.

R" is a standard carboxylic acid protecting group, such as C_1 - C_6 -alkyl or benzyl and Lea is a leaving group, such as chloro, bromo, iodo, methanesulfonyloxy, toluenesulfonyloxy or the like.

This procedure is very similar to general procedure (D), steps 1 and 2 are identical.

Steps 3 and 4 are described in the literature (eg Beck & Gûnther, *Chem. Ber.*, **106**, 2758-66 (1973))

Step 3 is a Knoevenagel condensation of the aldehyde obtained in step 2 with phenylsulfonylacetonitrile and step 4 is a reaction of the vinylsulfonyl compound obtained in step 3 with sodium azide. This reaction is usually performed in DMF at 90 – 110 °C.

The following compounds may be prepared according to this general procedure (P):

4-(4-(5-Cyano-1H-[1,2,3]triazol-4-yl)phenoxy)butyric acid:

5

2-(4-(5-Cyano-1*H*-[1,2,3]triazol-4-yl)phenoxy)acetic acid:

10

4-(4-(5-Cyano-1*H*-[1,2,3]triazol-4-yl)phenoxy)butyric acid ethyl ester

5-(4-(5-Cyano-1H-[1,2,3]triazol-4-yl)phenoxy)pentanoic acid

8-(4-(5-Cyano-1H-[1,2,3]triazol-4-yl)phenoxy)octanoic acid

10-(4-(5-Cyano-1*H*-[1,2,3]triazol-4-yl)phenoxy)decanoic acid

12-(4-(5-Cyano-1H-[1,2,3]triazol-4-yl)phenoxy)dodecanoic acid

15

Example 759 Characterization of ligand effects on physical stability of formulations by the Thioflavine T fluorescence assay.

20

Low physical stability of insulin formulations may lead to amyloid fibril formation, which is observed as well-ordered, thread-like macromolecular structures in the sample eventually resulting in gel formation. This has traditionally been measured by visual inspection of the

sample. However, the application of a small molecule indicator probe is much more preferable. Thioflavin T is such a probe and has a distinct fluorescence signature when binding to fibrils (or rather β-sheet rich proteins) [Naiki et al. (1989) Anal. Biochem. 177, 244-249; LeVine (1999) Methods. Enzymol. 309, 274-284]. Its application to insulin fibrillation has recently been validated [Nielsen et al. (2001) Biochemistry 40, 6036-6046].

The time course for fibril formation can be described by a sigmoidal curve with the following expression:

$$F = f_i + m_i t + \frac{f_f + m_f t}{1 + e^{-[(t - t_0)/\tau]}} \quad \text{Eq.(1)}$$

10

15

5

Here, F is the ThT fluorescence at the time t. The constant t_0 is the time needed to reach 50% of maximum fluorescence. The minimum and maximum fluorescence is denoted f_i and f_i , respectively, and the expressions $m_i t$ and $m_i t$ describe the linear development of the bottom and top base lines. The two important parameters describing fibril formation are the lag-time calculated by $t_0 - 2\tau$ and the apparent rate constant $k_{app} = 1/\tau$.

20

Formation of a partially folded intermediate of the protein is suggested as a general initiating mechanism for fibrillation. Few of those intermediates nucleate to form a template onto which further intermediates may assembly and the fibrillation is initiated. The lag-time corresponds to the interval in which the critical mass of nucleus is built up and the apparent rate constant is the rate with which the fibril itself is formed.

10

15

20

In accordance with this mechanism, insulin needs to dissociate to its monomeric form before a partially folded intermediate may be formed. Keeping insulin on a multimeric form may therefore result in increased physical stability. Ligands binding to the insulin hexamer zinc site should stabilize the hexameric form and draw the equilibrium even further away from the monomeric form. Hence, an increased physical stability could be achieved.

Sample preparation

Insulin formulations were prepared freshly before each assay from appropriate stock solutions. Typical final concentrations were 0.6 mM human insulin or insulin aspart analogue, 0.2 mM ZnAc, 30 mM phenol, 10 mM Tris pH 8. ThT was added from a 1 mM stock solution in water to a final concentration of 1 μ M. The formulations were typically prepared in double concentration and mixed with an equal volume of test compound in appropriate concentration in 4% DMSO, 10 mM Tris pH 8.

Alternatively, insulin aspart formulations (100 U/ml) from the production line were used directly. ThT was added to 1 μ M and DMSO containing test compound in appropriate concentration to 2%.

Sample aliquots of 200 µl were placed in a 96 well microtiter plate (Packard OptiPlate[™]-96, white polystyrene). Usually, eight replica of each sample (corresponding to one test compound concentration) was placed in one column of wells. The plate was sealed with Scotch Pad (Qiagen).

Control experiments for possible test compound quenching of the ThT emission were carried out using human insulin without Zn²⁺ and phenol i.e. in a non-hexameric configuration. Hence, the fibrillation process as well as the ThT emission should be unaffected by the presence of test compound, unless it quenched the ThT signal.

25

30

35

Incubation and fluorescence measurement

Temperature incubation, shaking and measurement of the ThT fluorescence were done in a Fluoroskan Ascent FL fluorescence platereader (Thermo Labsystems). Temperature setting is possible up till 45 °C, but usually sat at 30 °C. Heating was initiated at first measurement. The orbital shaking is selectable up till 1200 rpm, but adjusted to 960 rpm in all the presented data with an amplitude of 1 mm.

Fluorescence measurement was done using excitation trough a 444 nm filter and measurement of emission through a 485 nm filter. Each run was initiated by a measurement and intervals between measurements were usually 20 min. The plate was shaken and heated as adjusted between each measurement. The assay time was regulated by the

number of measurements and the interval in between. Usually the plate was measured 46 times with 20 min between, i.e. over 15 hours.

Data handling

- The measurement points were saved in Microsoft Excel format for further processing and curve drawing and fitting was performed using GraphPad Prism. The background emission from ThT in the absence of fibrils was negligible. Some test compounds had background fluorescence under the applied experimental conditions. This was eliminated by subtracting the mean value of the first measurement from the data set for this test compound. The data points are shown with standard deviation.
 - The data set may be fitted to Eq. (1). However, since the stabilizing effect of the test compounds/ligands were so significant that a full sigmoid curve was not obtained during the usual assay time, curve fitting to such a data set would be imprecise and hence meaningless.
- Only data obtained in the same experiment (i.e. samples on the same plate) are presented in the same graph.

Examples & Results

20

The various ligands are shown below with structure and affinity towards the zinc site as measured by the TZD-assay described in "Analytical Methods".

Reference	Example	Compound	<i>K</i> _d (app) (nM)
A	376	HO Br	383
С	294	m) con	58
D	581		171
E	61	70	23

10

15

20

F	599	Maria Cons	3
G	1		3879
н	68	H.C. J. J. M.	82
	602		23

The ThT assays of various combinations of insulin formulations and ligands are shown in Fig. 1-8.

Addition of ligands improves the physical stability of insulin formulations. This holds for human insulin formulations (see Fig 1) as well as insulin aspart formulations (rest of data set).

The improved stability can be obtained by using various compound classes as zinc site anchor, e.g. benzothriazoles (G, Fig 1), naphthosalicylic acids (A, Fig 2), thiazolidine-diones (E, Figs 4, 7; C, Fig 2; H, Figs 6, 8) and tetrazoles (D, Fig 3; F, Fig 8; I, Fig 5).

Increased affinity of the ligand results in higher stability of the formulation. Compare the effect of the weakest binding ligand in 2 mM (G, Fig. 1) with the effect on an insulin aspart formulation of 0,5 mM E (Fig. 4). Also compare the effects of similar concentrations of A and C (Fig 2); and of D (fig. 3) and E (Fig 4) on insulin aspart formulations.

Increasing the concentration of ligand tends to improve the stabilization (see Figs. 1, 3, 4, 5, 6). In some instants, more pronounced effects are seen with the ligand in slight molar excess to the zinc sites, see Figs. 4, 6, whereas it seems to plateau around the stoichiometric concentration in other instances (Figs. 3, 5).

Of the presented ligands, A, C, D, E, F were tested in a disappearance assay for the effect on release of insulin aspart from a subcutaneous inject site. Surprisingly, the ligands had no effect on the insulin aspart disappearance. In a very limited way, this can be mimicked in the ThT assay by increasing the assay temperature to 37 °C (see Figs. 7, 8). The stabilizing

effect is somewhat attenuated, e.g. compare E at 30 °C (Fig 4) and 37 °C (Fig 7), and H (Fig 6 and 8). The ligand with highest affinity (F) has the most stabilizing effect at 37 °C (Fig. 8).

Fig 3 Aspart Formulation, 1 µM ThT, 30 °C, 960 rpm.

5 Example 760 Retention of fast absorption characteristics of formulations stabilized by addition of His^{B10} Zn²⁺-site ligands.

Formulations of the present invention were characterized by the disappearance rate from the subcutaneous depot following injection in pigs. Formulations of B28 Asp human insulin containing A14Tyr(1251) B28 Asp human insulin were followed with an external y-counter

10

(Ribel et al., The pig as a model for subcutaneous absorption in man. In: Serrano-Ritos & Lefebre (Eds.): Diabetes (1985) proceedings of the 12th congress of the international diabetes federation, Madrid, Spain, 1985 (Excerpta Medica, Amsterdam (1986) 891-896. Formulations of Insulin Aspart (0.6 mM, U100) containing 0.3 mM Zn²⁺, 30 mM phenol, 2 mM phosphate buffer, and 1.6% glycerol, pH 7.4, were compared with the corresponding formulations containing 0.3 mM of the ligands shown below: where T_{50%} is the time when 50% of the A14Tyr(¹²⁵I) B28 Asp insulin has disappeared from the site of injection and K_d is the affinity of the ligand as measured by the TZD-assay described in "Analytical methods" below. It is evident that the stabilizing ligands do not affect the fast absorption properties of the formulations

	Example #	Compound	T50%	K₄ (app) (nM)
reference			1.3± 0.3	-
A	376	HO Br	10.000	383
В	308	ON SOUTOH	1.0± 0.23	68
С	294	HN S OH	1.1± 0.37 0.9± 0.19	58
D	581	HN.N.N		171
		о́н	1.3± 0.36	

Ε	61	O S S	1.2± 0.41	23
F	599	HN N CH ₃	1.2± 0.27	3

Example 761

5

Reference experiment

The chemical stability of insulin formulations of the invention was characterised by HPLC (RPC, reverse phase chromatography and SEC, size exclusion chromatography). As reference, insulin formulated without ligands of the invention but with 0.3 % DMSO was also investigated and shown below:

10

Figure 9

Fig 1. Reverse phase chromatography of formulated human insulin with 3 Zn²⁺ per hexamer. 30 mM phenol, 150 mM mannitol, 3 mM phosphoric acid, sodium hydroxide to pH 7.4 and 0.3 % DMSO corresponding to 3 ligands per hexamer at start (upper panel) and after storage for 2 weeks at 37 °C (lower panel): Preservatives before 20 min., "hydrophilic derivatives" (desamido-insulins) 20 min to main top insulin, "hydrophobic derivatives 1" main top to 64 min., and "hydrophobic derivatives 2" (insulin dimers) after 64 min.

Storage in HPLC 1 ml vials at 45 °C (5 d), 37 °C (2 w), 30 °C (6 w), 25 °C (10 w), 15 °C (30 w) gave about the same increase of transformation products correlating to an increase in reactions constants of a factor 3-4 per 10 degree..

15 RPC (reverse phase chromatography) on Waters SymmetryShield RP₈ column, 150×4.6 mm and 3.5 μ m, eluted by A: 0.2 M sodium sulfate + 0.04 M sodium phosphate pH 7.2 + 10 %

acetonitrile and isocratically (i) or a gradient (g) of **B:** 70 % acetonitrile [minutes/%B(i/g): 0/19, 21/24(i)(sudden change), 51/24(i), 81/39(g), 81.1/0(i), 82.3/19(i)] at flow of 0.9 mL/min and 30 °C.

SEC (size exclusion chromatography) on Waters insulin HMWP column, 300×7.8 mm, eluted by 15:20:65 of acetic acid: acetonitrile: arginine 1 g/L at flow of 1 mL/min and ambient temperature.

% formed/year	RPC	SEC		
70 tottiledryear	hphil	dimer		
45°C	153.3	47.5	23.4	21.9
37°C	57.2	15.6	5.20	6.24
30°C	24.5	4.16	1.30	2.08
25°C	14.2	2.13	0.68	1.09
15°C	4.12	0.43	0.22	0.31
5°predicted	(1.001)	(0.066)	(0.027)	(0.052)

The chemical stability of insulin formulations of the invention were likewise characterised by HPLC (RPC, reverse phase chromatography and SEC, size exclusion chromatography). Compared to the reference the formulations of the invention were shown to be more chemically stable.

Example 762

Chemical stability of insulin formulated with the compound of example 376 , 7-bromo-3-hydroxy-2-naphthoic acid:

5

10

Figure 10

Fig 2. Reverse phase chromatography of formulated human insulin as described for the reference example and added 3 ligands of Example 376 and 3 Zn²⁺ per hexamer at start (upper panel) and after storage for 2 weeks at 37 °C (lower panel): Preservatives before 20 min., "hydrophilic derivatives" (desamido-insulins) 20 min to main top insulin, "hydrophobic derivatives 1" main top to 64 min., and "hydrophobic derivatives 2" (insulin dimers) after 64 min.

Storage in HPLC 1 ml vials at 45 °C (5 d), 37 °C (2 w), 30 °C (6 w), 25 °C (10 w), 15 °C (30 w) will give about the same increase in transformation products correlating to an increase in reaction constants of a factor 3-4 per 10 degrees...

RPC (reverse phase chromatography) on Waters SymmetryShield RP₈ column, 150×4.6 mm and 3.5 μm, eluted by **A**: 0.2 M sodium sulfate + 0.04 M sodium phosphate pH 7.2 + 10 % acetonitrile and isocratically (i) or a gradient (g) of **B**: 70 % acetonitrile [minutes/%B(i/g): 0/19, 21/24(i)(sudden change), 51/24(i), 81/39(g), 81.1/0(i), 82.3/19(i)] at flow of 0.9 mL/min and 30 °C.

10

SEC (size exclusion chromatography) on Waters insulin HMWP column, 300×7.8 mm, eluted by 15:20:65 of acetic acid: acetonitrile:arginine 1 g/L at flow of 1 mL/min and ambient temperature.

% formed/year	RPC	SEC		
70 IOITHGU/YEAI	hphil hphob1		hphob2	dimer
45°C	30.7	62.1	23.4	26.3
37°C	12.5	22.4	7.02	7.02
30°C	6.76	6.42	2.25	2.86
25°C	4.06	5.67	1.46	1.61
15°C	1.80	0.85	0.42	0.45
5°predicted	(0.55)	(0.19)	(0.079)	(0.087)

Example 763

Chemical stability of insulin formulated with the compound of Example 294, 3-[4-(2,4-dioxothiazolidin-5-ylidenemethyl)phenyl]acrylic acid:

Figure 11

Fig 3. Reverse phase chromatography of formulated human insulin as described for the reference example and added 3 ligands of example 294 and 3 Zn²⁺ per hexamer at start (upper panel) and after storage for 2 weeks at 37 °C (lower panel): Preservatives before 20 min., "hydrophilic derivatives" (desamido-insulins) 20 min to main top insulin, "hydrophobic derivatives 1" main top to 64 min., and "hydrophobic derivatives 2" (insulin dimers) after 64 min.

Storage in HPLC 1 ml vials at 45 °C (5 d), 37 °C (2 w), 30 °C (6 w), 25 °C (10 w), 15 °C (30 w) will give about the same increase in transformation products correlating to an increase in reaction constants of a factor 3-4 per 10 degrees.

RPC (reverse phase chromatography) on Waters SymmetryShield RP₈ column, 150×4.6 mm and 3.5 μm, eluted by **A:** 0.2 M sodium sulfate + 0.04 M sodium phosphate pH 7.2 + 10 % acetonitrile and isocratically (i) or a gradient (g) of **B:** 70 % acetonitrile [minutes/%B(i/g): 0/19, 21/24(i)(sudden change), 51/24(i), 81/39(g), 81.1/0(i), 82.3/19(i)] at flow of 0.9 mL/min and 30 °C.

10

SEC (size exclusion chromatography) on Waters insulin HMWP column, 300×7.8 mm, eluted by 15:20:65 of acetic acid: acetonitrile:arginine 1 g/L at flow of 1 mL/min and ambient temperature.

% formed/year	RPC	SEC			
· · · · · ·	hphil hphob1 hphob2			Dimer	
45°C	20.4	43.8	17.5	21.2	
37°C	9.88	19.5	4.68	6.24	
30°C	4.07	4.42	1.65	2.17	
25°C	2.60	6.14	0.78	1.09	
15°C	1.02	1.28	0.38	0.28	
5°predicted	(0.293)	(0.336)	(0.062)	(0.048)	

ANALYTICAL METHODS

Assays to quantify the binding affinity of ligands to the metal site of the insulin R₆ hexamers:

5 4H3N-assay:

The binding affinity of ligands to the metal site of insulin R_{θ} hexamers are measured in a UV/vis based displacement assay. The UV/vis spectrum of 3-hydroxy-4-nitro benzoic acid (4H3N) which is a known ligand for the metal site of insulin R_{θ} shows a shift in absorption maximum upon displacement from the metal site to the solution (Huang et al., 1997,

Biochemistry 36, 9878-9888). Titration of a ligand to a solution of insulin R₆ hexamers with 4H3N mounted in the metal site allows the binding affinity of these ligands to be determined following the reduction of absorption at 444 nm.

A stock solution with the following composition 0.2 mM human insulin, 0.067 mM Zn-acetate, 40 mM phenol, 0.101 mM 4H3N is prepared in a 10mL quantum as described below. Buffer is always 50mM tris buffer adjusted to pH=8.0 with NaOH/ClO₄.

1000 μL of 2.0mM human insulin in buffer 66.7 μL of 10mM Zn-acetate in buffer 20 800 μL of 500mM phenol in H₂O 201 μL of 4H3N in H₂O 7.93 ml buffer

The ligand is dissolved in DMSO to a concentration of 20 mM.

The ligand solution is titrated to a cuvette containing 2 mL stock solution and after each addition the UV/vis spectrum is measured. The titration points are listed in Table 3 below.

Table 3

ligand addition (µl)	ligand conc. (mM)	dilution factor
1	0.010	1.0005
1	0.020	1.0010
1	0.030	1.0015
2	0.050	1.0025
5	0.100	1.0050
10	0.198	1.0100
20	0.392	1.0200
20	0.583	1.0300
20	0.769	1.0400
20	0.952	1.0500

The UV/vis spectra resulting from a titration of the compound 3-hydroxy-2-naphthoic acid is shown in Figure 5. Inserted in the upper right corner is the absorbance at 444nm vs. the concentration of ligand.

The following equation is fitted to these datapoints to determine the two parameters $K_D(obs)$, the observed dissociation constant, and abs_{max} the absorbance at maximal ligand concentration.

10 abs ([ligand]_{free}) = (abs_{max} * [ligand]_{free})/ (
$$K_0$$
(obs) + [ligand]_{free})

The observed dissociation constant is recalculated to obtain the apparent dissociation constant

15
$$K_D(app) = K_D(obs) / (1+[4H3N]/K_{4H3N})$$

The value of K_{H3N} =50 μ M is taken from Huang et al., 1997, Biochemistry 36, 9878-9888.

TZD-assay:

The binding affinity of ligands to the metal site of insulin R₆ hexamers are measured in a fluorescense based displacement assay. The fluorescence of 5-(4-dimethylaminobenzylidene)thiazolidine-2,4-dione (TZD) which is a ligand for the metal site of insulin R₆ is quenched upon displacement from the metal site to the solution. Titration of a ligand to a stock solution of insulin R₆ hexamers with this compound mounted in the metal

site allows the binding affinity of these ligands to be determined measuring the fluorescence at 455nm upon excitation at 410nm.

Preparation

5 Stock solution: 0.02 mM human insulin, 0.007 mM Zn-acetate, 40 mM phenol, 0.01 mM TZD in 50mM tris buffer adjusted to pH=8.0 with NaOH/ClO₄⁻.

The ligand is dissolved in DMSO to a concentration of 5 mM and added in aliquots to the stock solution to final concentrations of 0-250 \square M.

10 Measurements

Fluorescence measurements were carried out on a Perkin Elmer Spectrofluorometer LS50B. The main absorption band was excited at 410 nm and emission was detected at 455 nm. The resolution was 10 nm and 2.5 nm for excitation and emission, respectively.

15 Data analysis

This equation is fitted to the datapoints

 $\Delta F(455nm)$) = ΔF_{max} * [ligand]_{free}/($K_D(app)$ * (1+[TZD]/ K_{TZD})+ [ligand]_{free}))

 K_D (app) is the apparent dissociation constant and F_{max} is the fluorescence at maximal ligand concentration. The value of K_{TZD} is measured separately to 230 nM

20

Two different fitting-procedures can be used. One in which both parameters, $K_D(app)$ and F_{max} , are adjusted to best fit the data and a second in which the value of F_{max} is fixed (F_{max} =1) and only $K_D(app)$ is adjusted. The given data are from the second fitting procedure. The Solver module of Microsoft Excel can be used to generate the fits from the data points.

CLAIMS

1. A pharmaceutical composition comprising

insulin and a zinc-binding ligand which reversibly binds to a His^{B10} Zn²⁺ site of an insulin hexamer, wherein the ligand is selected from the group consisting of

benzotriazoles, 3-hydroxy 2-napthoic acids, salicylic acids, tetrazoles, thiazolidinediones, 5-mercaptotetrazoles, or 4-cyano-1,2,3-triazoles, or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

10 2. A pharmaceutical composition according to claim 1 wherein the zinc-binding ligand is

wherein

X is = 0, = S or = NH

Y is -S-, -O- or -NH-

15

20

25

R¹ and R⁴ are independently selected from hydrogen or C₁-C₆-alkyl,

 R^2 is hydrogen or C_1 - C_6 -alkyl or aryl, R^1 and R^2 may optionally be combined to form a double bond,

R³ and R⁵ are independently selected from hydrogen, halogen, aryl, C₁-C₆-alkyl, or -C(O)NR¹¹R¹².

A and B are independently selected from C_1 - C_6 -alkyl, aryl- C_1 - C_6 -alkyl, aryl- C_2 - C_6 -alkenyl or heteroaryl, wherein the alkyl or alkenyl is optionally substituted with one or more substituents independently selected from R^6 and the aryl or heteroaryl is optionally substituted with up to four substituents R^7 , R^8 , R^9 , and R^{10} ,

A and R³ may be connected through one or two valence bonds, B and R⁵ may be connected through one or two valence bonds,

 R^6 is independently selected from halogen, -CN, -CF₃, -OCF₃, aryl, -COOH and -NH₂, R^7 , R^6 , R^9 and R^{10} are independently selected from

30

• hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -OS(O)₂CF₃, -SCF₃, -NO₂, -OR¹¹, -NR¹¹R¹², -SR¹¹.

10

15

20

25

35

• C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl, each of which may optionally be substituted with one or more substituents independently selected from R^{13} ,

• aryl, aryloxy, aryloxycarbonyl, aroyl, arylsulfanyl, aryl- C_1 - C_8 -alkoxy, aryl- C_1 - C_8 -alkyl, aryl- C_2 - C_6 -alkenyl, aryl- C_2 - C_6 -alkynyl, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkyl, heteroaryl- C_3 - C_6 -alkyl,

of which each cyclic moiety may optionally be substituted with one or more substituents independently selected from R¹⁴,

R¹¹ and R¹² are independently selected from hydrogen, OH, C₁-C₂₀-alkyl, aryl-C₁-C₈-alkyl or aryl, wherein the alkyl groups may optionally be substituted with one or more substituents independently selected from R¹⁵, and the aryl groups may optionally be substituted one or more substituents independently selected from R¹⁶; R¹¹ and R¹² when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom, the heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

 R^{13} is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR¹¹, -C(O)OR¹¹, -NR¹¹R¹², and -C(O)NR¹¹R¹²,

30 R^{14} is independently selected from halogen, $-C(O)OR^{11}$, $-CH_2C(O)OR^{11}$, $-CH_2OR^{11}$, -CN, $-CF_3$, $-OCF_3$, $-NO_2$, $-OR^{11}$, $-NR^{11}R^{12}$, $S(O)_2R^{11}$, aryl and C_1-C_8 -alkyl,

 R^{15} is independently selected from halogen, -CN, -CF₃, -OCF₃, -OC₁-C₆-alkyl, -C(O)OC₁-C₆-alkyl, -COOH and -NH₂,

 R^{16} is independently selected from halogen, $-C(O)OC_1-C_6$ -alkyl, -COOH, -CN, $-CF_3$, $-OCF_3$, $-NO_2$, -OH, $-OC_1-C_6$ -alkyl, $-NH_2$, C(=O) or C_1-C_6 -alkyl, or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

5

15

20

- 3. A pharmaceutical composition according to claim 2 wherein X is =O or =S.
- 4. A pharmaceutical composition according to claim 3 wherein X is =O.
- 5. A pharmaceutical composition according to claim 3 wherein X is =S.
- 6. A pharmaceutical composition according to any one of the claims 2 to 5 wherein Y is -O-10 or -S-.
 - 7. A pharmaceutical composition according to claim 6 wherein Y is -O-.
 - 8. A pharmaceutical composition according to claim 6 wherein Y is -S-.
 - 9. A pharmaceutical composition according to any one of the claims 2 to 8 wherein A is aryl optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
 - 10. A pharmaceutical composition according to claim 9 wherein A is selected from ArG1 optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
 - 11. A pharmaceutical composition according to claim 10 wherein A is phenyl or naphtyl optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
 - 12. A pharmaceutical composition according to claim 11 wherein A is

- 13. A pharmaceutical composition according to claim 11 wherein A is phenyl.
- 25 14. A pharmaceutical composition according to any one of the claims 2 to 8 wherein A is heteroaryl optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
 - 15. A pharmaceutical composition according to claim 14 wherein A is selected from Het1 optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.

10

15

- 16. A pharmaceutical composition according to claim 15 wherein A is selected from Het2 optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
- 17. A pharmaceutical composition according to claim 16 wherein A is selected from Het3 optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
- 18. A pharmaceutical composition according to claim 17 wherein A is selected from the group consisting of indolyl, benzofuranyl, quinolyl, furyl, thienyl, or pyrrolyl, wherein each heteroaryl may optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
- 19. A pharmaceutical composition according to claim 17 wherein A is benzofuranyl optionally substituted with up to four substituents R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
- 20. A pharmaceutical composition according to claim 19 wherein A is

$$\bigcap_{R'}^{R^8} \quad \text{or} \quad \bigcap_{R'}^{R^8} \quad \text{or} \quad \bigcap_{R'}^{R^8}$$

- 21. A pharmaceutical composition according to claim 17 wherein A is carbazolyl optionally substituted with up to four substituents R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
- 22. A pharmaceutical composition according to claim 21 wherein A is

- 23. A pharmaceutical composition according to claim 17 wherein A is quinolyl optionally substituted with up to four substituents R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
- 24. A pharmaceutical composition according to claim 23 wherein A is

- 25. A pharmaceutical composition according to claim 17 wherein A is indolyl optionally substituted with up to four substituents R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
- 5 26. A pharmaceutical composition according to claim 25 wherein A is

- 27. A pharmaceutical composition according to any one of the claims 2 to 26 wherein R¹ is hydrogen.
- 28. A pharmaceutical composition according to any one of the claims 2 to 27 wherein R² is hydrogen.
 - 29. A pharmaceutical composition according to any one of the claims 2 to 26 wherein R¹ and R² are combined to form a double bond.
 - 30. A pharmaceutical composition according to any one of the claims 2 to 29 wherein R^3 is C_1 - C_6 -alkyl, halogen, or $C(O)NR^{16}R^{17}$.
- 15 31. A pharmaceutical composition according to claim 30 wherein R³ is C₁-C₆-alkyl or C(O)NR¹⁶R¹⁷.
 - 32. A pharmaceutical composition according to claim 31 wherein R3 is methyl.
 - 33. A pharmaceutical composition according to any one of the claims 2 to 8 wherein B is phenyl optionally substituted with up to four substituents, R⁷, R⁸, R⁹, and R¹⁰ which may be the same or different.
 - 34. A pharmaceutical composition according to any one of the claims 2 to 8 or 33 wherein R⁴ is hydrogen.
 - 35. A pharmaceutical composition according to any one of the claims 2 to 8 or 33 to 34 wherein R⁵ is hydrogen.
- 25 36. A pharmaceutical composition according to any one of the claims 2 to 35 wherein R⁶ is arvl.
 - 37. A pharmaceutical composition according to claim 36 wherein R⁶ is phenyl.

15

20

- 38. A pharmaceutical composition according to any one of the claims 2 to 37 wherein R⁷, R⁸, R⁹ and R¹⁰ are independently selected from
 - hydrogen, halogen, -NO₂, -OR¹¹, -NR¹¹R¹², -SR¹¹, -NR¹¹S(O)₂R¹², -S(O)₂NR¹¹R¹², -S(O)_{NR}R¹¹R¹², -S(O)₂R¹¹, -OS(O)₂R¹¹, -NR¹¹C(O)R¹², -CH₂OR¹¹, -CH₂OR¹¹, -CH₂NR¹¹R¹², -OC(O)R¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, -C₂-C₆-alkenyl-C(O)OR¹¹, -C₂-C₆-alkenyl-C(O)OR¹¹, -C₂-C₆-alkenyl-C(O)OR¹¹, -C(O)OR¹¹, or -C₂-C₆-alkenyl-C(O)OR¹¹, -C(O)OR¹¹, -C₂-C₆-alkenyl-C(O)OR¹¹, -C(O)OR¹¹, -C(O)OR
- C₁-C₈-alkyl, C₂-C₈-alkenyl or C₂-C₈-alkynyl, which may each optionally be substituted with one or more substituents independently selected from R¹³
 - aryl, aryloxy, aroyl, arylsulfanyl, aryl-C₁-C₆-alkoxy, aryl-C₁-C₆-alkyl, aryl-C₂-C₆-alkenyl, aroyl-C₂-C₆-alkenyl, aryl-C₂-C₆-alkynyl, heteroaryl, heteroaryl-C₁-C₆-alkyl, wherein each of the cyclic moieties optionally may be substituted with one or more substituents independently selected from R¹⁴
 - 39. A pharmaceutical composition according to claim 38 wherein R^7 , R^6 , R^9 and R^{10} are independently selected from
 - hydrogen, halogen, -NO₂, -OR¹¹, -NR¹¹R¹², -SR¹¹, -S(O)₂R¹¹, -OS(O)₂ R¹¹, -CH₂OC(O)R¹¹, -OC(O)R¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, -OC₁-C₆-alkyl-OR¹¹, -SC₁-C₆-alkyl-C(O)OR¹¹, -C(O)OR¹¹, or -C₂-C₆-alkenyl-C(=O)R¹¹,
- C₁-C₈-alkyl or C₁-C₆-alkenyl which may each optionally be substituted with one or more substituents independently selected from R¹³
 - aryl, aryloxy, aroyl, aryl-C₁-C₈-alkoxy, aryl-C₁-C₈-alkyl, heteroaryl,
- of which each of the cyclic moieties optionally may be substituted with one or more substituents independently selected from R¹⁴
 - 40. A pharmaceutical composition according to claim 39 wherein R⁷, R⁸, R⁹ and R¹⁰ are independently selected from

- hydrogen, halogen, -NO₂, -OR¹¹, -NR¹¹R¹², -SR¹¹, -S(O)₂R¹¹, -OS(O)₂ R¹¹, -CH₂OC(O)R¹¹, -OC(O)R¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, -OC₁-C₆-alkyl-OR¹¹, -SC₁-C₆-alkyl-C(O)OR¹¹, -C(O)OR¹¹, or -C₂-C₆-alkenyl-C(=O)R¹¹,
- C₁-C₈-alkyl or C₁-C₈- which may each optionally be substituted with one or more substituents independently selected from R¹³
 - aryl, aryloxy, aroyl, aryl-C₁-C₆-alkoxy, aryl-C₁-C₆-alkyl, heteroaryl,
- of which each of the cyclic moieties optionally may be substituted with one or more substituents independently selected from R¹⁴.
 - 41. A pharmaceutical composition according to claim 40 wherein R⁷, R⁸, R⁹ and R¹⁰ are independently selected from
- hydrogen, halogen, -OR¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, or -C(O)OR¹¹,
 - C₁-C₈-alkyl which may each optionally be substituted with one or more substituents independently selected from R¹³
- aryl, aryloxy, aryl-C₁-C₈-alkoxy,

of which each of the cyclic moieties optionally may be substituted with one or more substituents independently selected from R¹⁴.

- 25 42. A pharmaceutical composition according to claim 41 wherein R⁷, R⁸, R⁹ and R¹⁰ are independently selected from
 - hydrogen, halogen, -OR¹¹, -OC₁-C₆-alkyl-C(O)OR¹¹, or -C(O)OR¹¹,
- C₁-C₆-alkyl which may optionally be substituted with one or more substituents independently selected from R¹³
 - phenyl, phenyloxy, phenyl- C_1 - C_6 -alkoxy, wherein each of the cyclic moieties optionally may be substituted with one or more substituents independently selected from R^{14} .

- 43. A pharmaceutical composition according to any one of the claims 2 to 42 wherein R^{11} and R^{12} are independently selected from hydrogen, C_1 - C_{20} -alkyl, aryl or aryl- C_1 - C_6 -alkyl, wherein the alkyl groups may optionally be substituted with one or more substituents independently selected from R^{15} , and the aryl groups may optionally be substituted one or more substituents independently selected from R^{16} ; R^{11} and R^{12} when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom, the heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds.
- 44. A pharmaceutical composition according to claim 43 wherein R¹¹ and R¹² are independently selected from hydrogen, C₁-C₂₀-alkyl, aryl or aryl-C₁-C₆-alkyl, wherein the alkyl groups may optionally be substituted with one or more substituents independently selected from R¹⁵, and the aryl groups may optionally be substituted one or more substituents independently selected from R¹⁶.
- 45. A pharmaceutical composition according to claim 44 wherein R¹¹ and R¹² are independently selected from phenyl or phenyl-C₁-C₆-alkyl.
 - 46. A pharmaceutical composition according to claim 44 wherein one or both of R¹¹ and R¹² are methyl.
 - 47. A pharmaceutical composition according to any one of the claims 2 to 46 wherein R¹³ is independently selected from halogen, CF₃, OR¹¹ or NR¹¹R¹².
- 48. A pharmaceutical composition according to claim 47 wherein R¹³ is independently selected from halogen or OR¹¹.
 - 49. A pharmaceutical composition according to claim 48 wherein R¹³ is OR¹¹.
 - 50. A pharmaceutical composition according to any one of the claims 2 to 49 wherein R^{14} is independently selected from halogen, $-C(O)OR^{11}$, -CN, $-CF_3$, $-OR^{11}$, $S(O)_2R^{11}$, and C_1 - C_8 -alkyl.
 - 51. A pharmaceutical composition according to claim 50 wherein R¹⁴ is independently selected from halogen, -C(O)OR¹¹, or -OR¹¹.
 - 52. A pharmaceutical composition according to any one of the claims 2 to 51 wherein R^{15} is independently selected from halogen, -CN, -CF₃, -C(O)OC₁-C₆-alkyl, and -COOH.
- 30 53. A pharmaceutical composition according to claim 52 wherein R¹⁵ is independently selected from halogen or -C(O)OC₁-C₆-alkyl.
 - 54. A pharmaceutical composition according to any one of the claims 2 to 53 wherein R^{16} is independently selected from halogen, $-C(O)OC_1-C_8$ -alkyl, -COOH, $-NO_2$, $-OC_1-C_6$ -alkyl, $-NH_2$, C(=O) or C_1-C_6 -alkyl.

55. A pharmaceutical composition according to claim 54 wherein R^{16} is independently selected from halogen, $-C(O)OC_1-C_6$ -alkyl, -COOH, $-NO_2$, or C_1-C_6 -alkyl.

56. A pharmaceutical composition according to claim 1 wherein the zinc-binding ligand is

wherein

5

25

30

R¹⁹ is hydrogen or C₁-C₆-alkyl,

R²⁰ is hydrogen or C₁-C₆-alkyl.

10 D and F are a valence bond or C₁-C₈-alkylene optionally substituted with one or more substituents independently selected from R⁷²,

 R^{72} is independently selected from hydroxy, $\mathsf{C}_1\text{-}\mathsf{C}_8\text{-alkyl}$, or aryl,

15 E is C₁-C₈-alkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with up to three substituents R²¹, R²² and R²³,

G is C_1 - C_6 -alkyl, aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with up to three substituents R^{24} , R^{25} and R^{26} .

20 R¹⁷, R¹⁸, R²¹, R²², R²³, R²⁴, R²⁵ and R²⁶ are independently selected from

• hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -SCF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷S(O)₂R²⁸, -S(O)₂NR²⁷R²⁸, -S(O)NR²⁷R²⁸, -S(O)R²⁷, -S(O)₂R²⁷, -C(O)NR²⁷R²⁸, -OC(O)NR²⁷R²⁸, -OC(O)NR²⁷R²⁸, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸, -CH₂C(O)NR²⁷R²⁸, -OCH₂C(O)NR²⁷R²⁸, -CH₂OR²⁷, -CH₂NR²⁷R²⁸, -OC(O)R²⁷, -OC₁-C₈-alkyl-C(O)OR²⁷, -SC₁-C₈-alkyl-C(O)OR²⁷, -C₂-C₈-alkenyl-C(=O)OR²⁷, -NR²⁷-C(=O)-C₁-C₈-alkyl-C(=O)OR²⁷, -C₁-C₈-alkyl-C(=O)OR²⁷, -C₁-C₈-alkyl-C(=O)OR²⁷, -C₁-C₈-alkyl-C(=O)OR²⁷, -C₁-C₈-alkyl-C(=O)OR²⁷, -C(O)OR²⁷, -C(O)OR²⁷,

• C₁-C₀-alkyl, C₂-C₀-alkenyl or C₂-C₀-alkynyl.

which may optionally be substituted with one or more substituents independently selected from R²⁹,

• aryl, aryloxy, aryloxycarbonyl, aroyl, aryl-C₁-C₆-alkoxy, aryl-C₁-C₆-alkyl, aryl-C₂-C₆-alkynyl, heteroaryl-C₁-C₆-alkyl, heteroaryl-C₂-C₆-alkynyl, aryl-C₂-C₆-alkynyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰,

10

15

25

30

5

R²⁷ and R²⁸ are independently selected from hydrogen, C₁-C₆-alkyl, aryl-C₁-C₆-alkyl or aryl, or R²⁷ and R²⁸ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds.

R²⁹ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR²⁷, and -NR²⁷R²⁸,

- 20 R³⁰ is independently selected from halogen, -C(O)OR²⁷, -CN, -CF₃, -OCF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸ and C₁-C₆-alkyl, or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.
 - 57. A pharmaceutical composition according to claim 56 wherein D is a valence bond.
 - 58. A pharmaceutical composition according to claim 56 wherein D is C_1 - C_6 -alkylene optionally substituted with one or more hydroxy, C_1 - C_6 -alkyl, or aryl.
 - 59. A pharmaceutical composition according to any one of the claims 56 to 58 wherein E is aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with up to three substituents independently selected from R²¹, R²² and R²³.
 - 60. A pharmaceutical composition according to claim 59 wherein E is aryl optionally substituted with up to three substituents independently selected from R²¹, R²² and R²³.
 - 61. A pharmaceutical composition according to claim 60 wherein E is selected from ArG1 and optionally substituted with up to three substituents independently selected from R^{21} , R^{22} and R^{23} .
- 62. A pharmaceutical composition according to claim 61 wherein E is phenyl optionally substituted with up to three substituents independently selected from R²¹, R²² and R²³.

25

63. A pharmaceutical composition according to claim 62 wherein the zinc-binding ligand is

64. A pharmaceutical composition according to any one of the claims 56 to 63 wherein R²¹, R²² and R²³ are independently selected from

• hydrogen, halogen, -CHF₂, -CF₃, -OCF₃, -OCH₂CF₃, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -C(O)NR²⁷R²⁸, -OC(O)NR²⁷R²⁸, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸, -CH₂C(O)NR²⁷R²⁸, -OCH₂C(O)NR²⁷R²⁸, -CH₂OR²⁷, -CH₂NR²⁷R²⁸, -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₈-alkyl-C(O)OR²⁷, -C₂-C₆-alkenyl-C(=O)OR²⁷, -NR²⁷-C(=O)-C₁-C₆-alkyl-C(=O)OR²⁷, -NR²⁷-C(=O)-C₁-C₆-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷, -C(=O)OR²⁷, -C(=O)OR²⁷, or -C(O)OR²⁷,

• C₁-C₈-alkyl, C₂-C₈-alkenyl or C₂-C₈-alkynyl.

which may optionally be substituted with one or more substituents independently selected from R²⁹

• aryl, aryloxy, aryloxycarbonyl, aroyl, aryl-C₁-C₆-alkoxy, aryl-C₁-C₆-alkyl, aryl-C₂-C₆-alkynyl, heteroaryl-C₁-C₆-alkyl, heteroaryl-C₂-C₆-alkynyl, heteroaryl-C₂-C₆-alkynyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

65. A pharmaceutical composition according to claim 64 wherein R^{21} , R^{22} and R^{23} are independently selected from

hydrogen, halogen, -OCF₃, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸,
 -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, -C₂-C₆-alkenyl-

15

20

25

30

35

 $C(=O)OR^{27}$, $-C(=O)NR^{27}-C_1-C_6$ -alkyl- $C(=O)OR^{27}$, $-C_1-C_6$ -alkyl- $C(=O)OR^{27}$, or $-C(O)OR^{27}$,

- C₁-C₆-alkyl optionally substituted with one or more substituents independently selected from R²⁹
- aryl, aryloxy, aroyl, aryl- C_1 - C_8 -alkoxy, aryl- C_1 - C_6 -alkyl, heteroaryl, heteroaryl- C_1 - C_8 -alkyl,
- of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.
 - 66. A pharmaceutical composition according to claim 65 wherein R^{21} , R^{22} and R^{23} are independently selected from

 - methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
 - \bullet aryl, aryloxy, aroyl, aryl-C₁-C₈-alkoxy, aryl-C₁-C₈-alkyl, heteroaryl, heteroaryl-C₁-C₆-alkyl
 - of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.
 - 67. A pharmaceutical composition according to claim 66 wherein R^{21} , R^{22} and R^{23} are independently selected from
 - hydrogen, halogen, $-OCF_3$, $-OR^{27}$, $-NR^{27}R^{28}$, $-SR^{27}$, $-NR^{27}C(O)R^{28}$, $-NR^{27}C(O)OR^{28}$, $-OC(O)R^{27}$, $-OC_1-C_6$ -alkyl- $C(O)OR^{27}$, $-SC_1-C_6$ -alkyl- $C(O)OR^{27}$, $-C_2-C_6$ -alkenyl- $C(-O)OR^{27}$, $-C_1-C_6$ -alkyl- $C(-O)OR^{27}$, or $-C(O)OR^{27}$,

15

- methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
- ArG1, ArG1-O-, ArG1-C(O)-, ArG1-C₁-C₈-alkoxy, ArG1-C₁-C₈-alkyl, Het3, Het3-C₁
 C₈-alkyl

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

- 68. A pharmaceutical composition according to claim 67 wherein R²¹, R²² and R²³ are independently selected from
 - hydrogen, halogen, -OCF₃, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸, -OC(O)R²⁷, -OC₁-C₈-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, -C₂-C₆-alkenyl-C(=O)OR²⁷, -C(=O)NR²⁷-C₁-C₆-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷,
 - ${ullet}$ ${\bf C}_1{\ullet}$ ${\bf C}_8{\ullet}$ alkyl optionally substituted with one or more substituents independently selected from ${\bf R}^{29}$
- phenyl, phenyl-C₁-C₆-alkoxy, phenyl-C₁-C₆-alkyl,
 of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.
 - 69. A pharmaceutical composition according to any one of the claims 56 to 68 wherein R¹⁹ is hydrogen or methyl.
- 25 70. A pharmaceutical composition according to claim 69 wherein R¹⁹ is hydrogen.
 - 71. A pharmaceutical composition according to any one of the claims 56 to 70 wherein R^{27} is Hydrogen, C_1 - C_8 -alkyl or aryl.
 - 72. A pharmaceutical composition according to claim 71 wherein R^{27} is hydrogen or C_1 - C_6 -alkyl.
- 73. A pharmaceutical composition according to any one of the claims 56 to 72 wherein R²8 is hydrogen or C₁-C₀-alkyl.
 - 74. A pharmaceutical composition according to claim 56 wherein F is a valence bond.
 - 75. A pharmaceutical composition according to claim 56 wherein F is C₁-C₆-alkylene optionally substituted with one or more hydroxy, C₁-C₆-alkyl, or aryl.

- 76. A pharmaceutical composition according to any one of the claims 56 or 74 to 75 wherein G is C_1 - C_6 -alkyl or aryl, wherein the aryl is optionally substituted with up to three substituents R^{24} , R^{25} and R^{26} .
- 77. A pharmaceutical composition according to any one of the claims 56 or 74 to 75 wherein 5 G is C₁-C₆-alkyl or ArG1, wherein the aryl is optionally substituted with up to three substituents R²⁴, R²⁵ and R²⁶.
 - 78. A pharmaceutical composition according to claim 76 wherein G is C₁-C₆-alkyl.
 - 79. A pharmaceutical composition according to claim 78 wherein G is phenyl optionally substituted with up to three substituents R²⁴, R²⁵ and R²⁶.
- 10 80. A pharmaceutical composition according to any one of the claims 56 to 79 wherein R²⁴, R²⁵ and R²⁶ are independently selected from
 - hydrogen, halogen, -CHF₂, -CF₃, -OCF₃, -OCH₂CF₃, -OCF₂CHF₂, -SCF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -C(O)NR²⁷R²⁸, -OC(O)NR²⁷R²⁸, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸, -CH₂C(O)NR²⁷R²⁸, -OCH₂C(O)NR²⁷R²⁸, -CH₂OR²⁷, -CH₂NR²⁷R²⁸, -OC(O)R²⁷, -OC₁-C₈-alkyl-C(O)OR²⁷, -SC₁-C₈-alkyl-C(O)OR²⁷, -C₂-C₈-alkenyl-C(=O)OR²⁷, -NR²⁷-C(=O)-C₁-C₆-alkyl-C(=O)OR²⁷, -NR²⁷-C(=O)-C₁-C₆-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷,

15

• C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl,

which may optionally be substituted with one or more substituents independently selected from R²⁸

25

• aryl, aryloxy, aryloxycarbonyl, aroyl, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkyl, aryl- C_2 - C_6 -alkenyl, aryl- C_2 - C_6 -alkynyl, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkynyl,

30

- of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.
- 81. A pharmaceutical composition according to claim 80 wherein R²⁴, R²⁵ and R²⁸ are independently selected from

5

C₁-C₀-alkyl, C₂-C₀-alkenyl or C₂-C₀-alkynyl,

which may optionally be substituted with one or more substituents independently selected from R²⁹

10

• aryl. aryloxy, aryloxycarbonyl, aroyl, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkyl, aryl- C_2 - C_6 -alkynyl, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkynyl, aryl- C_2 - C_6 -alkynyl,

15

of which the cyclic moieties optionally may be substituted with one or more substituents selected from ${\sf R}^{\sf 30}$.

82. A pharmaceutical composition according to claim 81 wherein R^{24} , R^{25} and R^{28} are independently selected from

20

• hydrogen, halogen, -OCF₃, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸, -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, -C₂-C₆-alkenyl-C(=O)OR²⁷, -C(=O)NR²⁷-C₁-C₆-alkyl-C(=O)OR²⁷, -C₁-C₆-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷,

25

 \bullet C₁-C₅-alkyl optionally substituted with one or more substituents independently selected from R^{29}

30

• aryl, aryloxy, aroyl, aryl- C_1 - C_8 -alkoxy, aryl- C_1 - C_8 -alkyl, heteroaryl- C_1 - C_8 -alkyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

- 83. A pharmaceutical composition according to claim 82 wherein R^{21} , R^{22} and R^{23} are independently selected from
- hydrogen, halogen, -OCF₃, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸,
 -OC(O)R²⁷, -OC₁-C₈-alkyl-C(O)OR²⁷, -SC₁-C₈-alkyl-C(O)OR²⁷, -C₂-C₈-alkenyl-C(=O)OR²⁷, -C(=O)NR²⁷-C₁-C₈-alkyl-C(=O)OR²⁷, -C₁-C₈-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷,
- methyl, ethyl propyl optionally substituted with one or more substituents
 independently selected from R²⁹
 - ArG1, ArG1-O-, ArG1-C(O)-, ArG1-C₁-C₈-alkoxy, ArG1-C₁-C₈-alkyl, Het3, Het3-C₁-C₈-alkyl

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

- 84. A pharmaceutical composition according to claim 83 wherein R^{21} , R^{22} and R^{23} are independently selected from
- hydrogen, halogen, -OCF₃, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸,
 -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, -C₂-C₆-alkenyl-C(=O)OR²⁷, -C(=O)NR²⁷-C₁-C₆-alkyl-C(=O)OR²⁷, -C₁-C₆-alkyl-C(=O)OR²⁷, or -C(O)OR²⁷,
- methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
 - ArG1, ArG1-O-, ArG1-C(O)-, ArG1-C₁-C₈-alkoxy, ArG1-C₁-C₆-alkyl, Het3, Het3-C₁-C₈-alkyl
 - of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.
 - 85. A pharmaceutical composition according to claim 84 wherein R^{21} , R^{22} and R^{23} are independently selected from
- hydrogen, halogen, -OCF₃, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -NR²⁷C(O)R²⁸, -NR²⁷C(O)OR²⁸, -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, -C₂-C₆-alkenyl-

 $C(=O)OR^{27}$, $-C(=O)NR^{27}-C_1-C_6$ -alkyl- $C(=O)OR^{27}$, $-C_1-C_6$ -alkyl- $C(=O)OR^{27}$, or $-C(O)OR^{27}$,

• methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹

5

ArG1, ArG1-O-, ArG1-C₁-C₆-alkoxy, ArG1-C₁-C₆-alkyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

- 10 86. A pharmaceutical composition according to any one of the claims 56 or 74 to 85 wherein R²⁰ is hydrogen or methyl.
 - 87. A pharmaceutical composition according to claim 86 wherein R²⁰ is hydrogen.
 - 88. A pharmaceutical composition according to any one of the claims 56 or 74 to 87 wherein R²⁷ is hydrogen, C₁-C₆-alkyl or aryl.
- 89. A pharmaceutical composition according to claim 88 wherein R²⁷ is hydrogen or C₁-C₈-alkyl or ArG1.
 - 90. A pharmaceutical composition according to claim 89 wherein R^{27} is hydrogen or C_1 - C_6 -alkyl.
 - 91. A pharmaceutical composition according to any one of the claims 56 or 74 to 89 wherein R²⁸ is hydrogen or C₁-C₈-alkyl.
 - 92. A pharmaceutical composition according to claim 56 wherein R^{17} and R^{18} are independently selected from

25

20

- hydrogen, halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, -SR²⁷, -S(O)R²⁷, -S(O)₂R²⁷, -C(O)NR²⁷R²⁸, -CH₂OR²⁷, -OC(O)R²⁷, -OC₁-C₆-alkyl-C(O)OR²⁷, -SC₁-C₆-alkyl-C(O)OR²⁷, or -C(O)OR²⁷,
- \bullet C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl, optionally substituted with one or more substituents independently selected from R²⁹

30

- aryl, aryloxy, aroyl, aryl-C₁-C₆-alkoxy, aryl-C₁-C₆-alkyl, heteroaryl, heteroaryl-C₁-C₆-alkyl,
- of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

- 93. A pharmaceutical composition according to claim 92 wherein R¹⁷ and R¹⁸ are independently selected from
 - hydrogen, halogen, -CN, -CF₃, -NO₂, -OR²⁷, -NR²⁷R²⁶, or -C(O)OR²⁷,

30

- C₁-C₈-alkyl optionally substituted with one or more substituents independently selected from R²⁹
- aryl, aryloxy, aroyl, aryl- C_1 - C_8 -alkoxy, aryl- C_1 - C_6 -alkyl, heteroaryl- C_1 - C_8 -alkyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

- 15 94. A pharmaceutical composition according to claim 93 wherein R¹⁷ and R¹⁸ are independently selected from
 - hydrogen, halogen, -CN, -CF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, or -C(O)OR²⁷
 - methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
- aryl, aryloxy, aroyl, aryl-C₁-C₆-alkoxy, aryl-C₁-C₆-alkyl, heteroaryl, heteroaryl-C₁-C₆-alkyl
 - of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.
- 95. A pharmaceutical composition according to claim 94 wherein R¹⁷ and R¹⁸ are independently selected from
 - hydrogen, halogen, -CN, -CF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, or -C(O)OR²⁷
 - methyl, ethyl propyl optionally substituted with one or more substituents independently selected from R²⁹
 - ArG1, ArG1-O-, ArG1-C(O)-, ArG1-C₁-C₈-alkoxy, ArG1-C₁-C₆-alkyl, Het3, Het3-C₁-C₈-alkyl

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

- 96. A pharmaceutical composition according to claim 95 wherein R¹⁷ and R¹⁸ are independently selected from
- hydrogen, halogen, -CN, -CF₃, -NO₂, -OR²⁷, -NR²⁷R²⁸, or -C(O)OR²⁷

- \bullet C₁-C₈-alkyl optionally substituted with one or more substituents independently selected from R^{29}
- phenyl, phenyloxy, phenyl-C₁-C₆-alkoxy, phenyl-C₁-C₆-alkyl.

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R³⁰.

- 97. A pharmaceutical composition according to any one of the claims 56 to 96 wherein R^{27} is hydrogen or C_1 - C_8 -alkyl.
- 98. A pharmaceutical composition according to claim 97 wherein R²⁷ is hydrogen, methyl or ethyl.
- 10 99. A pharmaceutical composition according to any one of the claims 56 to 98 wherein R²⁸ is hydrogen or C₁-C₆-alkyl.
 - 100. A pharmaceutical composition according to claim 99 wherein R²⁸ is hydrogen, methyl or ethyl.
- 101. A pharmaceutical composition according to any one of the claims 56 to 100 wherein R⁷² is –OH or phenyl.
 - 102. A pharmaceutical composition according to claim 56 wherein the zinc-binding ligand is

20 103. A pharmaceutical composition according to claim 1 wherein the zinc-binding ligand is of the form H-I-J

wherein H is

wherein the phenyl, naphthalene or benzocarbazole rings are optionally substituted with one or more substituents independently selected from R³¹

I is selected from

- a valence bond,
- -CH₂N(R³²)- or -SO₂N(R³³)-,

$$-z^{1}-N$$

wherein Z^1 is $S(O)_2$ or CH_2 , Z^2 is -NH-, -O-or -S-, and n is 1 or 2,

5 Jis

10

25

30

- C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl, which may each optionally be substituted with one or more substituents selected from R^{34} ,
- Aryl, aryloxy, aryl-oxycarbonyl-, aroyl, aryl- C_1 - C_6 -alkoxy-, aryl- C_1 - C_6 -alkyl-, aryl- C_2 - C_6 -alkynyl-, heteroaryl- C_1 - C_6 -alkyl-, heteroaryl- C_2 - C_6 -alkynyl-, wherein the cyclic moieties are optionally substituted with one or more substituents selected from R^{37} ,

Hydrogen,

R³¹ is independently selected from hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCH₂C, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -SCF₃, -NO₂, -OR³⁵, -C(O)R³⁵, -NR³⁵R³⁶, -SR³⁵, -NR³⁵S(O)₂R³⁶, -S(O)₂NR³⁵R³⁶, -S(O)NR³⁵R³⁶, -S(O)R³⁵, -S(O)₂R³⁵, -C(O)NR³⁵R³⁶, -OC(O)NR³⁵R³⁶, -OC(O)NR³⁵R³⁶, -OC₂C(O)R³⁶, -CH₂C(O)NR³⁵R³⁶, -OCH₂C(O)NR³⁵R³⁶, -CH₂OR³⁵, -CH₂NR³⁵R³⁶, -OC(O)R³⁵, -OC₁-C₆-alkyl-C(O)OR³⁵, -SC₁-C₆-alkyl-C(O)OR³⁵ -C₂-C₆-alkenyl-C(=O)OR³⁵, -NR³⁵-C(=O)-C₁-C₆-alkyl-C(=O)OR³⁵, -NR³⁵-C(=O)-C₁-C₆-alkanoyl or -C(O)OR³⁵,

R³² and R³³ are independently selected from hydrogen, C₁-C₆-alkyl or C₁-C₆-alkanoyl,

R³⁴ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR³⁵, and -NR³⁵R³⁶,

 R^{35} and R^{36} are independently selected from hydrogen, C_1 - C_8 -alkyl, aryl- C_1 - C_8 -alkyl or aryl, or R^{35} and R^{36} when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

 R^{37} is independently selected from halogen, -C(O)OR³⁵, -C(O)H, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶, C₁-C₆-alkyl or C₁-C₆-alkanoyl,

or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

104. A pharmaceutical composition according to claim 103 wherein the zinc-binding ligand is of the form H-I-J, wherein H is

wherein the phenyl, naphthalene or benzocarbazole rings are optionally substituted with one or more substituents independently selected from R³¹,

I is selected from

- a valence bond,
- -CH2N(R32)- or -SO2N(R33)-,

$$-z^1-N-\left\{-1\right\}_n$$

• wherein Z¹ is S(O)₂ or CH₂, Z² is N,-O-or -S-, and n is 1 or 2,

J is

15

- C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl, which may each optionally be substituted with one or more substituents selected from R^{34} ,
- Aryl, aryloxy, aryl-oxycarbonyl-, aroyl, aryl-C₁-C₈-alkoxy-, aryl-C₁-C₆-alkyl-, aryl-C₂-C₆-alkynyl-, heteroaryl-C₁-C₆-alkyl-, heteroaryl-C₂-C₆-alkynyl-, wherein the cyclic moieties are optionally substituted with one or more substituents selected from R³⁷,
 - hydrogen,

25

R³¹ is independently selected from hydrogen, halogen, -CN, -CH₂CN, -CH₂, -CF₃, -OCF₃, -OCH₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -SCF₃, -NO₂, -OR³⁵, -C(O)R³⁵, -NR³⁵R³⁶, -SR³⁵,

10

15

25

 $-NR^{35}S(O)_2R^{36}, \quad -S(O)_2NR^{35}R^{36}, \quad -S(O)NR^{35}R^{36}, \quad -S(O)R^{35}, \quad -S(O)_2R^{35}, \quad -C(O)NR^{35}R^{36}, \\ -OC(O)NR^{35}R^{36}, \quad -NR^{35}C(O)R^{36}, \quad -CH_2C(O)NR^{35}R^{36}, \quad -OCH_2C(O)NR^{35}R^{36}, \quad -CH_2OR^{35}, \\ -CH_2NR^{35}R^{36}, \quad -OC(O)R^{35}, \quad -OC_1-C_6-alkyl-C(O)OR^{35}, \quad -SC_1-C_6-alkyl-C(O)OR^{35} \quad -C_2-C_6-alkenyl-C(O)OR^{35}, \quad -NR^{35}-C(O)-C_1-C_6-alkyl-C(O)OR^{35}, \quad -NR^{35}-C(O)-C_1-C_6-alkenyl-C(O)OR^{35}, \quad -NR^{35}-C(O$

 R^{32} and R^{33} are independently selected from hydrogen, C_1 - C_6 -alkaloyl,

R³⁴ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR³⁵, and -NR³⁵R³⁶,

R³⁵ and R³⁶ are independently selected from hydrogen, C₁-C₈-alkyl, aryl-C₁-C₈-alkyl or aryl, or R³⁵ and R³⁶ when attached to the same nitrogen atom together with the said nitrogen atom may form a 3 to 8 membered heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

 R^{37} is independently selected from halogen, -C(O)OR³⁵, -C(O)H, -CN, -CF₃, -OCF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶, C₁-C₆-alkyl or C₁-C₆-alkanoyl,

or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base,

With the proviso that R³¹ and J cannot both be hydrogen.

105. A pharmaceutical composition according to any one of the claims 103 or 104 wherein H is

106. A pharmaceutical composition according to claim 105 wherein H is

107. A pharmaceutical composition according to claim 105 wherein H is

- 108. A pharmaceutical composition according to any one of the claims 103 to 107wherein I is a valence bond, $-CH_2N(R^{32})$ -, or $-SO_2N(R^{33})$ -.
- 5 109. A pharmaceutical composition according to claim 108 wherein I is a valence bond.
 - 110. A pharmaceutical composition according to any one of the claims 103 to 109 wherein J is
 - hydrogen,
 - C₁-C₀-alkyl, C₂-C₀-alkenyl or C₂-C₀-alkynyl,
- which may optionally be substituted with one or more substituents selected from halogen, -CN, -CF₃, -OCF₃, -OR³⁵, and -NR³⁵R³⁶,
 - aryl, or heteroaryl, wherein the cyclic moieties are optionally substituted with one or more substituents independently selected from R³⁷.
 - 111. A pharmaceutical composition according to claim 110 wherein J is
- 15 hydrogen,

- aryl or heteroaryl, wherein the cyclic moieties are optionally substituted with one or more substituents independently selected from R³⁷.
- 112. A pharmaceutical composition according to claim 110 wherein J is
 - hydrogen,
- •ArG1 or Het3, wherein the cyclic moieties are optionally substituted with one or more substituents independently selected from R³⁷.
 - 113. A pharmaceutical composition according to claim 112 wherein J is
 - hydrogen,
 - phenyl or naphthyl optionally substituted with one or more substituents independently selected from R³⁷.
 - 114. A pharmaceutical composition according to claim 113 wherein J is hydrogen.
 - 115. A pharmaceutical composition according to any one of the claims 103 to 114 wherein R^{32} and R^{33} are independently selected from hydrogen or C_1 - C_8 -alkyl.
- 116. A pharmaceutical composition according to any one of the claims 103 to 115 wherein R³⁴ is hydrogen, halogen, -CN, -CF₃, -OCF₃, -SCF₃, -NO₂, -OR³⁵, -C(O)R³⁵, -NR³⁵R³⁸, -SR³⁵,

 $-C(O)NR^{35}R^{36}$, $-OC(O)NR^{35}R^{36}$, $-NR^{35}C(O)R^{36}$, $-OC(O)R^{35}$, $-OC_1-C_6$ -alkyl-C(O)OR³⁵, $-SC_1-C_6$ -alkyl-C(O)OR³⁵ or $-C(O)OR^{35}$.

- 117. A pharmaceutical composition according to claim 116 wherein R³⁴ is hydrogen, halogen, -CF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶, -SR³⁵, -NR³⁵C(O)R³⁶, or -C(O)OR³⁵.
- 118. A pharmaceutical composition according to claim 117 wherein R³⁴ is hydrogen, halogen, -CF₃, -NO₂, -OR³⁵, -NR³⁵R³⁶, or -NR³⁵C(O)R³⁶.
 - 119. A pharmaceutical composition according to claim 118 wherein R³⁴ is hydrogen, halogen, or -OR³⁵.
- 120. A pharmaceutical composition according to any one of the claims 103 to 119 wherein 10 R³⁵ and R³⁶ are independently selected from hydrogen, C₁-C₆-alkyl, or aryl.
 - 121. A pharmaceutical composition according to claim 120 wherein R^{35} and R^{36} are independently selected from hydrogen or C_1 - C_6 -alkyl.
 - 122. A pharmaceutical composition according to any one of the claims 103 to 121 wherein R³⁷ is halogen, -C(O)OR³⁵, -CN, -CF₃, -OR³⁵, -NR³⁵R³⁶, C₁-C₆-alkyl or C₁-C₆-alkanoyl.
- 15 123. A pharmaceutical composition according to claim 122 wherein R³⁷ is halogen, C(O)OR³⁵, -OR³⁵, -NR³⁵R³⁶, C₁-C₆-alkyl or C₁-C₆-alkanoyl.
 - 124. A pharmaceutical composition according to claim 123 wherein R^{37} is halogen, $C(O)OR^{35}$ or $-OR^{35}$.
 - 125. A pharmaceutical composition according to claim 1 wherein the zinc-binding ligand is

20

30

wherein K is a valence bond, C_1 - C_6 -alkylene, -NH-C(=O)-U-, - C_1 - C_6 -alkyl-O-, -C(=O)-, or -C(=O)-NH-, wherein any C_1 - C_6 -alkyl moiety is optionally substituted with \mathbb{R}^{38} ,

U is a valence bond, C_1 - C_6 -alkenylene, $-C_1$ - C_6 -alkyl-O- or C_1 - C_6 -alkylene wherein any C_1 - C_6 -alkyl moiety is optionally substituted with C_1 - C_6 -alkyl,

 R^{38} is C_1 - C_8 -alkyl, aryl, wherein the alkyl or aryl moieties are optionally substituted with one or more substituents independently selected from R^{39} ,

R³⁹ is independently selected from halogen, cyano, nitro, amino,

10

15

20

25

30

M is a valence bond, arylene or heteroarylene, wherein the aryl or heteroaryl moieties are optionally substituted with one or more substituents independently selected from R⁴⁰,

R⁴⁰ is selected from

• hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -OS(O)₂CF₃, -SCF₃, -NO₂, -OR⁴¹, -NR⁴¹R⁴², -SR⁴¹, -NR⁴¹S(O)₂R⁴², -S(O)₂NR⁴¹R⁴², -S(O)NR⁴¹R⁴², -S(O)R⁴¹, -S(O)₂R⁴¹, -OS(O)₂ R⁴¹, -C(O)NR⁴¹R⁴², -OC(O)NR⁴¹R⁴², -OC₁-C₆-alkyl-C(O)NR⁴¹R⁴², -CH₂OR⁴¹, -CH₂OC(O)R⁴¹, -CH₂NR⁴¹R⁴², -OC(O)R⁴¹, -OC₁-C₆-alkyl-C(O)OR⁴¹, -OC₁-C₆-alkyl-C(O)OR⁴¹, -C₂-C₆-alkyl-OR⁴¹, -S-C₁-C₆-alkyl-C(O)OR⁴¹, -C₂-C₆-alkenyl-C(=O)OR⁴¹, -NR⁴¹-C(=O)-C₁-C₆-alkyl-C(=O)OR⁴¹, -C₂-C₆-alkenyl-C(=O)OR⁴¹, -OC₁-C₆-alkyl-C(=O)OR⁴¹, -OC₁-C₆-alkyl-C(=O)OR⁴¹, -OC₁-C₆-alkyl-C(=O)OR⁴¹, -OC₁-C₆-alkyl, or -NH-C(=O)-C(=O)-C₁-C₆-alkyl,

C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl, which may each optionally be substituted with one or more substituents selected from R⁴³.

• aryl, aryloxy, aryloxycarbonyl, aroyl, arylsulfanyl, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkoxy, aryl- C_2 - C_6 -alkenyl, aroyl- C_2 - C_6 -alkenyl, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkenyl or heteroaryl- C_2 - C_6 -alkynyl, wherein the cyclic moieties optionally may be substituted with one or more substituents selected from R^{44} .

R⁴¹ and R⁴² are independently selected from hydrogen, -OH, C₁-C₆-alkyl, C₁-C₆-alkenyl, aryl-C₁-C₆-alkyl or aryl, wherein the alkyl moieties may optionally be substituted with one or more substituents independently selected from R⁴⁵, and the aryl moieties may optionally be substituted with one or more substituents independently selected from R⁴⁶; R⁴¹ and R⁴² when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom, the heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

R⁴³ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR⁴¹, and -NR⁴¹R⁴²

15

25

30

35

 R^{44} is independently selected from halogen, $-C(O)OR^{41}$, $-CH_2C(O)OR^{41}$, $-CH_2OR^{41}$, -CN, $-CF_3$, $-OCF_3$, $-NO_2$, $-OR^{41}$, $-NR^{41}R^{42}$ and C_1-C_8 -alkyl,

 R^{45} is independently selected from halogen, -CN, -CF₃, -OCF₃, -O-C₁-C₆-alkyl, -C(O)-O-C₁-C₆-alkyl, -COOH and -NH₂,

5 R^{46} is independently selected from halogen, -C(O)OC₁-C₆-alkyl, -COOH, -CN, -CF₃, -OCF₃, -NO₂, -OH, -OC₁-C₆-alkyl, -NH₂, C(=O) or C₁-C₆-alkyl,

Q is a valence bond, C_1 - C_6 -alkylene, $-C_1$ - C_6 -alkyl-O-, $-C_1$ - C_6 -alkyl-NH-, -NH- C_1 - C_6 -alkyl, -NH-C(=O)-, -C(=O)-NH-, -O- C_1 - C_6 -alkyl, -C(=O)-, or $-C_1$ - C_6 -alkyl--C(=O)- $-N(R^{47})$ - wherein the alkyl moieties are optionally substituted with one or more substituents independently selected from R^{46} .

 R^{47} and R^{48} are independently selected from hydrogen, C_1 - C_6 -alkyl, anyl optionally substituted with one or more R^{49} .

R⁴⁰ is independently selected from halogen and -COOH,

T is

20 ◆hydrogen,

 \bullet C₁-C₈-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₈-alkyloxy-carbonyl, wherein the alkyl, alkenyl and alkynyl moieties are optionally substituted with one or more substituents independently selected from R^{50} ,

• aryl, aryloxy, aryloxy-carbonyl, aryl- C_1 - C_6 -alkyl, aroyl, aryl- C_1 - C_6 -alkoxy, aryl- C_2 - C_6 -alkenyl, aryl- C_2 - C_6 -alkyny-, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkynyl,

wherein any alkyl, alkenyl, alkynyl, aryl and heteroaryl moiety is optionally substituted with one or more substituents independently selected from R⁵⁰,

25

- R^{51} and R^{52} are independently selected from hydrogen and C_1 - C_8 -alkyl,
- R^{53} is independently selected from C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, $-C_1$ - C_6 -alkyl-COOH, $-C_2$ - C_6 -alkenyl-COOH, $-OR^{51}$, $-NO_2$, halogen, -COOH, $-CF_3$, -CN, or $-N(R^{51}R^{52})$,
- or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.
 - 126. A pharmaceutical composition according to claim 125 wherein K is a valence bond, C_1 - C_8 -alkylene, -NH-C(=O)-U-, - C_1 - C_8 -alkyl-S-, - C_1 - C_8 -alkyl-O-, or -C(=O)-, wherein any C_1 - C_8 -alkyl moiety is optionally substituted with R^{38} .
- 10 127. A pharmaceutical composition according to claim 126 wherein K is a valence bond, C₁-C₈-alkylene, -NH-C(=O)-U-, -C₁-C₈-alkyl-S-, or -C₁-C₈-alkyl-O, wherein any C₁-C₈-alkyl moiety is optionally substituted with R³⁸.
 - 128. A pharmaceutical composition according to claim 127 wherein K is a valence bond, C₁-C₈-alkylene, or -NH-C(=O)-U, wherein any C₁-C₈-alkyl moiety is optionally substituted with R³⁶.
 - 129. A pharmaceutical composition according to claim 128 wherein K is a valence bond or C_1 - C_6 -alkylene, wherein any C_1 - C_6 -alkylene wherein any C_1 - C_6 -alkylene, wherein any C_1 - C_6 -alkylene wherein any C_1 - C_6 - C_6
 - 130. A pharmaceutical composition according to claim 128 wherein K is a valence bond or -NH-C(=O)-U.
- 20 131. A pharmaceutical composition according to claim 129 wherein K is a valence bond.
 - 132. A pharmaceutical composition according to any one of the claims 125 to 131 wherein U is a valence bond or $-C_1-C_6$ -alkyl-O-.
 - 133. A pharmaceutical composition according to claim 132 wherein U is a valence bond
 - 134. A pharmaceutical composition according to any one of the claims 125 to 133 wherein M is arylene or heteroarylene, wherein the arylene or heteroarylene moieties are optionally substituted with one or more substituents independently selected from R⁴⁰.
 - 135. A pharmaceutical composition according to claim 134 wherein M is ArG1 or Het1, wherein the arylene or heteroarylene moieties are optionally substituted with one or more substituents independently selected from R⁴⁰.
- 30 136. A pharmaceutical composition according to claim 135 wherein M is ArG1 or Het2, wherein the arylene or heteroarylene moieties are optionally substituted with one or more substituents independently selected from R⁴⁰.
 - 137. A pharmaceutical composition according to claim 136 wherein M is ArG1 or Het3, wherein the arylene or heteroarylene moieties are optionally substituted with one or more substituents independently selected from R⁴⁰.

- 138. A pharmaceutical composition according to claim 137 wherein M is phenylene optionally substituted with one or more substituents independently selected from R⁴⁰.
- 139. A pharmaceutical composition according to claim 137 wherein M is indolylene optionally substituted with one or more substituents independently selected from R⁴⁰.
- 140. A pharmaceutical composition according to claim 139 wherein M is

- 141. A pharmaceutical composition according to claim 137 wherein M is carbazolylene optionally substituted with one or more substituents independently selected from R⁴⁰.
- 142. A pharmaceutical composition according to claim 141 wherein M is

5

- 143. A pharmaceutical composition according to any one of the claims 125 to 142 wherein R⁴⁰ is selected from
 - hydrogen, halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR⁴¹, -NR⁴¹R⁴², -SR⁴¹, -S(O)₂R⁴¹, -NR⁴¹C(O)R⁴², -OC₁-C₆-alkyl-C(O)NR⁴¹R⁴², -C₂-C₆-alkenyl-C(=O)OR⁴¹, -C(O)OR⁴¹, =O, -NH-C(=O)-O-C₁-C₆-alkyl, or -NH-C(=O)-C(=O)-O-C₁-C₆-alkyl,

15

 C_{1} - C_{8} -alkyl or C_{2} - C_{8} - alkenyl which may each optionally be substituted with one or more substituents independently selected from R^{43} ,

20

• aryl, aryloxy, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkyl, aryl- C_2 - C_6 -alkenyl, heteroaryl- C_1 - C_6 -alkyl, or heteroaryl- C_2 - C_6 -alkenyl, wherein the cyclic moieties optionally may be substituted with one or more substituents selected from R^{44} .

144. A pharmaceutical composition according to claim 143 wherein R⁴⁰ is selected from

• hydrogen, halogen, -CN, -CF₃, -OCF₃, -NO₂, -OR⁴¹, -NR⁴¹R⁴², -SR⁴¹, -S(O)₂R⁴¹,

-NR⁴¹C(O)R⁴², -OC₁-C₆-alkyl-C(O)NR⁴¹R⁴², -C₂-C₆-alkenyl-C(=O)OR⁴¹, -C(O)OR⁴¹,

=O, -NH-C(=O)-O-C₁-C₆-alkyl, or -NH-C(=O)-C(=O)-O-C₁-C₆-alkyl.

25

 C_1 - C_6 -alkyl or C_2 - C_6 - alkenyl which may each optionally be substituted with one or more substituents independently selected from R^{43} ,

20

- ArG1, ArG1-O-, ArG1-C₁-C₈-alkoxy, ArG1-C₁-C₈-alkyl, ArG1-C₂-C₆-alkenyl, Het3, Het3-C₁-C₈-alkyl, or Het3-C₂-C₆-alkenyl, wherein the cyclic moieties optionally may be substituted with one or more substituents selected from R⁴⁴.
- 145. A pharmaceutical composition according to claim 144 wherein R⁴⁰ is selected from
 - hydrogen, halogen, -CF₃, -NO₂, -OR⁴¹, -NR⁴¹R⁴², -C(O)OR⁴¹, =O, or -NR⁴¹C(O)R⁴²,
 - C₁-C₀-alkyl,
 - ArG1.
- 146. A pharmaceutical composition according to claim 145 wherein R⁴⁰ is selected from
 - Halogen, -NO₂, -OR⁴¹, -NR⁴¹R⁴², -C(O)OR⁴¹, or -NR⁴¹C(O)R⁴².
- 10 Methyl,
 - Phenyl.
 - 147. A pharmaceutical composition according to any one of the claims 125 to 146 wherein R^{41} and R^{42} are independently selected from hydrogen, C_1 - C_8 -alkyl, or aryl, wherein the aryl moieties may optionally be substituted with halogen or –COOH.
- 15 148. A pharmaceutical composition according to claim 147 wherein R⁴¹ and R⁴² are independently selected from hydrogen, methyl, ethyl, or phenyl, wherein the phenyl moieties may optionally be substituted with halogen or –COOH.
 - 149. A pharmaceutical composition according to any one of the claims 125 to 148 wherein Q is a valence bond, C_1 - C_6 -alkylene, $-C_1$ - C_6 -alkyl-O-, $-C_1$ - C_6 -alkyl-NH-, -NH- C_1 - C_6 -alkyl, -NH-C(=O)-, -C(=O)-NH-, -O- C_1 - C_6 -alkyl, -C(=O)-, or $-C_1$ - C_6 -alkyl--C(=O)-N(-C(=O
 - 150. A pharmaceutical composition according to claim 149 wherein Q is a valence bond, $-CH_{2^-}$, $-CH_{2^-}CH_{2^-}$, or -C(=O)-.
 - 151. A pharmaceutical composition according to any one of the claims 125 to 150 wherein R⁴⁷ and R⁴⁸ are independently selected from hydrogen, methyl and phenyl.
 - 152. A pharmaceutical composition according to any one of the claims 125 to 151 wherein T is
- 30 Hydrogen,
 - C_1 - C_8 -alkyl optionally substituted with one or more substituents independently selected from R^{50} ,
 - aryl, aryl-C₁-C₈-alkyl, heteroaryl, wherein the alkyl, aryl and heteroaryl moieties are optionally substituted with one or more substituents independently selected from R⁵⁰.
- 35 153. A pharmaceutical composition according to claim 152 wherein T is

- hydrogen,
- \bullet C₁-C₆-alkyl optionally substituted with one or more substituents independently selected from R^{50} ,
- ArG1, ArG1-C₁-C₈-alkyl, Het3, wherein the alkyl, aryl and heteroaryl moieties are optionally substituted with one or more substituents independently selected from R⁵⁰.
- 154. A pharmaceutical composition according to claim 153 wherein T is
 - hydrogen,
 - C₁-C₈-alkyl, optionally substituted with one or more substituents independently selected from R⁵⁰,
 - phenyl, phenyl- C_1 - C_0 -alkyl, wherein the alkyl and phenyl moieties are optionally substituted with one or more substituents independently selected from R^{50} .
- 155. A pharmaceutical composition according to any one of the claims 125 to 154 wherein R⁵⁰ is C₁-C₆-alkyl, C₁-C₆-alkoxy, aryl, aryloxy, aryl-C₁-C₆-alkoxy, -C(=O)-NH-C₁-C₆-alkyl-aryl, heteroaryl, -C₁-C₆-alkyl-COOH, -O-C₁-C₆-alkyl-COOH, -S(O)₂R⁵¹, -C₂-C₆-alkenyl-COOH, -OR⁵¹, -NO₂, halogen, -COOH, -CF₃, -CN, =O, -N(R⁵¹R⁵²), wherein the aryl or heteroaryl moieties are optionally substituted with one or more R⁵³.
- 156. A pharmaceutical composition according to claim 155 wherein R⁵⁰ is C₁-C₈-alkyl, C₁20 C₈-alkoxy, aryl, aryloxy, aryl-C₁-C₈-alkoxy, -OR⁵¹, -NO₂, halogen, -COOH, -CF₃, wherein any aryl moiety is optionally substituted with one or more R⁵³.
 - 157. A pharmaceutical composition according to claim 156 wherein R^{50} is C_1 - C_6 -alkyl, aryloxy, aryl- C_1 - C_6 -alkoxy , -OR⁵¹, halogen, -COOH, -CF₃, wherein any aryl moiety is optionally substituted with one or more R^{53} .
- 158. A pharmaceutical composition according to claim 157 wherein R⁵⁰ is C₁-C₆-alkyl, ArG1-O-, ArG1-C₁-C₆-alkoxy , -OR⁵¹, halogen, -COOH, -CF₃, wherein any aryl moiety is optionally substituted with one or more R⁵³.
 - 159. A pharmaceutical composition according to claim 158 wherein R⁵⁰ is phenyl, methyl or ethyl.
- 30 160. A pharmaceutical composition according to claim 159 wherein R⁵⁰ is methyl or ethyl.
 - 161. A pharmaceutical composition according to any one of the claims 125 to 160 wherein R⁵¹ is methyl.
 - 162. A pharmaceutical composition according to any one of the claims 125 to 161 wherein R^{53} is C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, -OR 51 , halogen, or -CF₃.

163. A pharmaceutical composition according to claim 1 wherein the zinc-binding ligand is

wherein V is C₁-C₆-alkyl, aryl, heteroaryl, aryl-C_{1.6}-alkyl- or aryl-C_{2.6}-alkenyl-, wherein the alkyl or alkenyl is optionally substituted with one or more substituents independently selected from R⁵⁴, and the aryl or heteroaryl is optionally substituted with one or more substituents independently selected from R⁵⁶,

- 10 R⁵⁴ is independently selected from halogen, -CN, -CF₃, -OCF₃, aryl, -COOH and -NH₂, R⁵⁵ is independently selected from
 - hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -OS(O)₂CF₃, -SCF₃, -NO₂, -OR⁵⁶, -NR⁵⁶R⁵⁷, -SR⁵⁶, -NR⁵⁶S(O)₂R⁵⁷, -S(O)₂NR⁵⁶R⁵⁷, -S(O)NR⁵⁶R⁵⁷, -S(O)R⁵⁶, -S(O)₂R⁵⁶, -OS(O)₂ R⁵⁶, -C(O)NR⁵⁶R⁵⁷, -OC(O)NR⁵⁶R⁵⁷, -NR⁵⁶C(O)R⁵⁷, -CH₂C(O)NR⁵⁶R⁵⁷, -OC₁-C₆-alkyl-C(O)NR⁵⁶R⁵⁷, -CH₂OR⁵⁶, -CH₂OC(O)R⁵⁶, -CH₂NR⁵⁶R⁵⁷, -OC(O)R⁵⁶, -OC₁-C₈-alkyl-C(O)OR⁵⁶, -OC₁-C₆-alkyl-OR⁵⁶, -SC₁-C₆-alkyl-C(O)OR⁵⁶, -C₂-C₆-alkenyl-C(=O)OR⁵⁶, -NR⁵⁶-C(=O)-C₁-C₆-alkyl-C(=O)OR⁵⁶, -NR⁵⁶-C(=O)-C₁-C₆-alkyl-C(=O)OR⁵⁶, -NR⁵⁶-C(=O)-C₁-C₆-alkyl-C(=O)OR⁵⁶, -C(=O)-C₁-C₆-alkyl-C(=O)OR⁵⁶, -C(=O)-C₁-C₆-alkyl-C(=O)OR⁵⁶, -C(=O)-C₁-C₆-alkenyl-C(=O)OR⁵⁶, -C(=O)-C₁

20

15

C₁-C₀-alkyl, C₂-C₀-alkenyl or C₂-C₀-alkynyl,

which may optionally be substituted with one or more substituents selected from R⁵⁸,

25

30

- aryl, aryloxy, aryloxycarbonyl, aroyl, arylsulfanyl, aryl-C₁-C₆-alkoxy, aryl-C₁-C₆-alkyl, aryl-C₂-C₆-alkenyl, aroyl-C₂-C₆-alkenyl, aryl-C₂-C₆-alkynyl, heteroaryl-C₁-C₆-alkyl, heteroaryl-C₂-C₆-alkenyl or heteroaryl-C₂-C₆-alkynyl,
- of which the cyclic moieties optionally may be substituted with one or more substituents selected from R⁵⁹.

 R^{56} and R^{57} are independently selected from hydrogen, OH, CF_3 , C_1 - C_{12} -alkyl, aryl- C_1 - C_6 -alkyl, -C(=O)- C_1 - C_6 -alkyl or aryl, wherein the alkyl groups may optionally be substituted with

15

20

25

30

one or more substituents independently selected from R⁶⁰, and the aryl groups may optionally be substituted with one or more substituents independently selected from R⁶¹; R⁵⁶ and R⁵⁷ when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom, the heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

R⁵⁸ is independently selected from halogen, -CN, -CF₃, -OCF₃, -OR⁵⁶, and -NR⁵⁶R⁵⁷.

10 R^{59} is independently selected from halogen, $-C(O)OR^{56}$, $-CH_2C(O)OR^{56}$, $-CH_2OR^{56}$, $-CN_1$ $-CF_3$, $-OCF_3$, $-NO_2$, $-OR^{56}$, $-NR^{56}R^{57}$ and C_1-C_8 -alkyl,

 R^{60} is independently selected from halogen, -CN, -CF₃, -OCF₃, -OC₁-C₆-alkyl, -C(O)OC₁-C₆-alkyl, -C(=O)- R^{62} , -COOH and -NH₂,

 R^{61} is independently selected from halogen, -C(O)OC₁-C₆-alkyl, -COOH, -CN, -CF₃, -OCF₃, -NO₂, -OH, -OC₁-C₆-alkyl, -NH₂, C(=O) or C₁-C₆-alkyl,

 R^{82} is C_1 - C_6 -alkyl, aryl optionally substituted with one or more substituents independently selected from halogen, or heteroaryl optionally substituted with one or more C_1 - C_6 -alkyl independently,

or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.

164. A pharmaceutical composition according to claim 163 wherein V is aryl, heteroaryl, or aryl-C₁₋₆-alkyl-, wherein the alkyl is optionally substituted with one or more substituents independently selected R⁵⁴, and the aryl or heteroaryl is optionally substituted with one or more substituents independently selected from R⁵⁵.

165. A pharmaceutical composition according to claim 164 wherein V is aryl, Het1, or aryl-C₁. ₆-alkyl-, wherein the alkyl is optionally substituted with one or more substituents independently selected from R⁵⁴, and the aryl or heteroaryl moiety is optionally substituted with one or more substituents independently selected from R⁵⁵.

166. A pharmaceutical composition according to claim 165 wherein V is aryl, Het2, or aryl-C₁. 6-alkyl-, wherein the alkyl is optionally substituted with one or more substituents

10

20

30

independently selected from R⁵⁴, and the aryl or heteroaryl moiety is optionally substituted with one or more substituents independently selected from R⁵⁵.

- 167. A pharmaceutical composition according to claim 166 wherein V is aryl, Het3, or aryl-C₁. ₆-alkyl-, wherein the alkyl is optionally substituted with one or more substituents independently selected from R⁵⁴, and the aryl or heteroaryl moiety is optionally substituted with one or more substituents independently selected from R⁵⁵.
- 168. A pharmaceutical composition according to claim 167 wherein V is anyl optionally substituted with one or more substituents independently selected from R⁵⁵.
- 169. A pharmaceutical composition according to claim 168 wherein V is ArG1 optionally substituted with one or more substituents independently selected from R⁵⁵.
 - 170. A pharmaceutical composition according to claim 169 wherein V is phenyl, naphthyl or anthranyl optionally substituted with one or more substituents independently selected from R⁵⁵.
- 171. A pharmaceutical composition according to claim 170 wherein V is phenyl optionally substituted with one or more substituents independently selected from R⁵⁵.
 - 172. A pharmaceutical composition according to any one of the claims 163 to 171 wherein R⁵⁵ is independently selected from
 - halogen, C_1 - C_8 -alkyl, -CN, -OCF₃, -CF₃, -NO₂, -OR⁵⁶, -NR⁵⁶R⁵⁷, -NR⁵⁶C(O)R⁵⁷ -SR⁵⁶, -OC₁- C_8 -alkyl-C(O)OR⁵⁶, or -C(O)OR⁵⁶,
 - C₁-C₆-alkyl optionally substituted with one or more substituents independently selected from R⁵⁶
 - aryl, aryl- C_1 - C_6 -alkyl, heteroaryl, or heteroaryl- C_1 - C_6 -alkyl of which the cyclic moieties optionally may be substituted with one or more substituents independently selected from R^{59} .
- 25 173. A pharmaceutical composition according to claim 172 wherein R⁵⁵ is independently selected from
 - halogen, C_1 - C_6 -alkyl, -CN, -OCF₃ ,-CF₃, -NO₂, -OR⁵⁶, -NR⁵⁶R⁵⁷, -NR⁵⁶C(O)R⁵⁷ -SR⁵⁶, -OC₁- C_6 -alkyl-C(O)OR⁵⁶, or -C(O)OR⁵⁸
 - C₁-C₈-alkyl optionally substituted with one or more substituents independently selected from R⁵⁸
 - \bullet ArG1, ArG1-C₁-C₆-alkyl, Het3, or Het3-C₁-C₆-alkyl
 - of which the cyclic moieties optionally may be substituted with one or more substituents independently selected from R⁵⁹.

174. A pharmaceutical composition according to claim 173 wherein R^{55} is independently selected from halogen, $-OR^{56}$, $-NR^{56}R^{57}$, $-C(O)OR^{56}$, $-OC_1-C_8$ -alkyl- $C(O)OR^{56}$, $-NR^{56}C(O)R^{57}$ or C_1-C_8 -alkyl.

175. A pharmaceutical composition according to claim 174 wherein R^{55} is independently selected from halogen, $-OR^{56}$, $-NR^{56}R^{57}$, $-C(O)OR^{56}$, $-OC_1-C_8$ -alkyl- $C(O)OR^{56}$, $-NR^{56}C(O)R^{57}$, methyl or ethyl.

176. A pharmaceutical composition according to any one of the claims 163 to 175 wherein R⁵⁶ and R⁵⁷ are independently selected from hydrogen, CF₃, C₁-C₁₂-alkyl, or -C(=O)-C₁-C₆-alkyl; R⁵⁶ and R⁵⁷ when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom.

177. A pharmaceutical composition according to claim 176 wherein R^{56} and R^{57} are independently selected from hydrogen or C_1 – C_{12} –alkyl, R^{56} and R^{57} when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom.

15 178. A pharmaceutical composition according to claim 177 wherein R⁵⁸ and R⁵⁷ are independently selected from hydrogen or methyl, ethyl, propyl butyl, R⁵⁸ and R⁵⁷ when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom.

179. A pharmaceutical composition according to claim 1 wherein the zinc-binding ligand is

25

wherein AA is C_1 - C_6 -alkyl, aryl, heteroaryl, aryl- C_{1-6} -alkyl- or aryl- C_{2-6} -alkenyl-, wherein the alkyl or alkenyl is optionally substituted with one or more substituents independently selected from R^{63} , and the aryl or heteroaryl is optionally substituted with one or more substituents independently selected from R^{64} ,

R⁶³ is independently selected from halogen, -CN, -CF₃, -OCF₃, aryl, -COOH and -NH₂,

30 R⁶⁴ is independently selected from

15

30

• hydrogen, halogen, -CN, -CH₂CN, -CHF₂, -CF₃, -OCF₃, -OCHF₂, -OCH₂CF₃, -OCF₂CHF₂, -S(O)₂CF₃, -OS(O)₂CF₃, -SCF₃, -NO₂, -OR⁶⁵, -NR⁶⁵R⁶⁸, -S(O)₂R⁶⁵, -S(O)₂R⁶⁵, -S(O)₂R⁶⁵, -S(O)₂R⁶⁵, -OS(O)₂ R⁶⁵, -C(O)NR⁶⁵R⁶⁶, -OC(O)NR⁶⁵R⁶⁶, -OC(O)NR⁶⁵R⁶⁶, -OC(O)NR⁶⁵R⁶⁶, -OC₁-C₆-alkyl-C(O)NR⁶⁵R⁶⁶, -CH₂OR⁶⁵, -CH₂OC(O)R⁶⁵, -CH₂NR⁶⁵R⁶⁶, -OC(O)R⁶⁵, -OC₁-C₈-alkyl-C(O)OR⁶⁵, -OC₁-C₈-alkyl-C(O)OR⁶⁵, -OC₁-C₈-alkyl-C(O)OR⁶⁵, -NR⁶⁵-C(=O)-C₁-C₆-alkyl-C(=O)OR⁶⁵, -NR⁶⁵-C(=O)-C₁-C₆-alkyl-C(=O)OR⁶⁵, -NR⁶⁵-C(=O)-C₁-C₆-alkyl-C(=O)OR⁶⁵, -NR⁶⁵-C(=O)-C₁-C₆-alkyl-C(=O)OR⁶⁵, -C(O)OR⁶⁵, -C(O)OR

• C₁-C₈-alkyl, C₂-C₈-alkenyl or C₂-C₈-alkynyl, each of which may optionally be substituted with one or more substituents selected from R⁶⁷,

• aryl, aryloxy, aryloxycarbonyl, aroyl, arylsulfanyl, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkoxy, aryl- C_2 - C_6 -alkoxy, aryl- C_2 - C_6 -alkoxyl, heteroaryl- C_1 - C_6 -alkyl, heteroaryl- C_2 - C_6 -alkylyl, heteroaryl- C_2 - C_6 -alkylyl,

of which the cyclic moieties optionally may be substituted with one or more substituents selected from R⁶⁸.

20 R⁸⁵ and R⁸⁶ are independently selected from hydrogen, OH, CF₃, C₁-C₁₂-alkyl, aryl-C₁-C₆-alkyl, -C(=O)-R⁶⁹, aryl or heteroaryl, wherein the alkyl groups may optionally be substituted with one or more substituents selected from R⁷⁰, and the aryl and heteroaryl groups may optionally be substituted with one or more substituents independently selected from R⁷¹; R⁶⁵ and R⁶⁶ when attached to the same nitrogen atom may form a 3 to 8 membered heterocyclic ring with the said nitrogen atom, the heterocyclic ring optionally containing one or two further heteroatoms selected from nitrogen, oxygen and sulphur, and optionally containing one or two double bonds,

 R^{67} is independently selected from halogen, -CN, -CF3, -OCF3, -OR 65 , and -NR 65 R 66 ,

 R^{68} is independently selected from halogen, -C(O)OR⁶⁵, -CH₂C(O)OR⁶⁵, -CH₂OR⁶⁵, -CN, -CF₃, -OCF₃, -NO₂, -OR⁶⁵, -NR⁶⁵R⁶⁶ and C₁-C₆-alkyl,

 R^{69} is independently selected from C_1 – C_6 -alkyl, aryl optionally substituted with one or more halogen, or heteroaryl optionally substituted with one or more C_1 – C_6 -alkyl,

30

 R^{70} is independently selected from halogen, -CN, -CF₃, -OCF₃, -OC₁-C₆-alkyl, -C(O)OC₁-C₆-alkyl, -COOH and -NH₂,

- 5 R⁷¹ is independently selected from halogen, -C(O)OC₁-C₆-alkyl, -COOH, -CN, -CF₃, -OCF₃, -NO₂, -OH, -OC₁-C₆-alkyl, -NH₂, C(=O) or C₁-C₆-alkyl,
 - or any enantiomer, diastereomer, including a racemic mixture, tautomer as well as a salt thereof with a pharmaceutically acceptable acid or base.
- 10 180. A pharmaceutical composition according to claim 179 wherein AA is aryl, heteroaryl or aryl-C₁₋₈-alkyl-, wherein the alkyl is optionally substituted with one or more R⁶³, and the aryl or heteroaryl is optionally substituted with one or more substituents independently selected from R⁸⁴.
 - 181. A pharmaceutical composition according to claim 180 wherein AA is aryl or heteroaryl optionally substituted with one or more substituents independently selected from R⁶⁴.
 - 182. A pharmaceutical composition according to claim 181 wherein AA is ArG1 or Het1 optionally substituted with one or more substituents independently selected from R⁶⁴.
 - 183. A pharmaceutical composition according to claim 182 wherein AA is ArG1 or Het2 optionally substituted with one or more substituents independently selected from R⁶⁴.
- 20 184. A pharmaceutical composition according to claim 183 wherein AA is ArG1 or Het3 optionally substituted with one or more substituents independently selected from R⁶⁴.
 - 185. A pharmaceutical composition according to claim 184 wherein AA is phenyl, naphtyl, anthryl, carbazolyl, thienyl, pyridyl, or benzodioxyl optionally substituted with one or more substituents independently selected from R⁶⁴.
- 25 186. A pharmaceutical composition according to claim 185 wherein AA is phenyl or naphtyl optionally substituted with one or more substituents independently selected from R⁶⁴.
 - 187. A pharmaceutical composition according to any one of the claims 179 to 186 wherein R^{64} is independently selected from hydrogen, halogen, -CF₃, -OCF₃, -OR⁶⁵, -NR⁶⁵R⁸⁶, C₁-C₆-alkyl , -OC(O)R⁶⁵, -OC₁-C₈-alkyl-C(O)OR⁶⁵, aryl-C₂-C₆-alkenyl, aryloxy or aryl, wherein C₁-C₆-alkyl is optionally substituted with one or more substituents independently selected from R^{67} , and the cyclic moieties optionally are substituted with one or more substituents independently selected from R^{68} .
 - 188. A pharmaceutical composition according to claim 187 wherein R⁶⁴ is independently selected from halogen, -CF₃, -OCF₃, -OR⁶⁵, -NR⁶⁵R⁶⁶, methyl, ethyl, propyl, -OC(O)R⁶⁵,

10

- -OCH₂-C(O)OR⁶⁵, -OCH₂-CH₂-C(O)OR⁶⁵, phenoxy optionally substituted with one or more substituents independently selected from R⁶⁸.
- 189. A pharmaceutical composition according to any one of the claims 179 to 188 wherein R⁶⁵ and R⁶⁶ are independently selected from hydrogen, CF₃, C₁-C₁₂-alkyl, aryl, or heteroaryl optionally substituted with one or more substituents independently selected from R⁷¹.
- 190. A pharmaceutical composition according to claim 189 wherein R⁸⁵ and R⁸⁶ are independently hydrogen, C₁-C₁₂-alkyl, aryl, or heteroaryl optionally substituted with one or more substituents independently selected from R⁷¹.
- 191. A pharmaceutical composition according to claim 190 wherein R⁶⁵ and R⁶⁶ are independently hydrogen, methyl, ethyl, propyl, butyl, 2,2-dimethyl-propyl, ArG1 or Het1 optionally substituted with one or more substituents independently selected from R⁷¹.
 - 192. A pharmaceutical composition according to claim 191 wherein R⁶⁵ and R⁶⁶ are independently hydrogen, methyl, ethyl, propyl, butyl, 2,2-dimethyl-propyl, ArG1 or Het2 optionally substituted with one or more substituents independently selected from R⁷¹.
- 15 193. A pharmaceutical composition according to claim 192 wherein R⁶⁵ and R⁶⁶ are independently hydrogen, methyl, ethyl, propyl, butyl, 2,2-dimethyl-propyl, ArG1 or Het3 optionally substituted with one or more substituents independently selected from R⁷¹.
 - 194. A pharmaceutical composition according to claim 193 wherein R⁶⁵ and R⁶⁶ are independently hydrogen, methyl, ethyl, propyl, butyl, 2,2-dimethyl-propyl, phenyl, naphtyl, thiadiazolyl optionally substituted with one or more R⁷¹ independently; or isoxazolyl optionally substituted with one or more substituents independently selected from R⁷¹.
 - 195. A pharmaceutical composition according to any one of the claims 179 to 194 wherein R^{71} is halogen or C_1 - C_8 -alkyl.
 - 196. A pharmaceutical composition according to claim 195 wherein R⁷¹ is halogen or methyl.
- 25 197. A pharmaceutical composition according to any one of the claims 1 to 196 wherein the insulin is rapid acting insulin.
 - 198. A pharmaceutical composition according to any one of the claims 1 to 197 wherein the insulin is selected from the group consisting of human insulin, an analogue thereof, a derivative thereof, and combinations of any of these.
- 30 199. A pharmaceutical composition according to claim 198 wherein the insulin is an analogue of human insulin selected from the group consisting of
 - iii.An analogue wherein position B28 is Asp, Lys, Leu, Val, or Ala and position B29 is Lys or Pro; and
 - iv.des(B28-B30), des(B27) or des(B30) human insulin.

25

- 200. A pharmaceutical composition according to claim 199, wherein the insulin is an analogue of human insulin wherein position B28 is Asp or Lys, and position B29 is Lys or Pro.
- 201. A pharmaceutical composition according to claim 199 wherein the insulin is des(B30) human insulin.
- 202. A pharmaceutical composition according to claim 199 wherein the insulin is is an analogue of human insulin wherein position B3 is Lys and position B29 is Glu or Asp.
- 203. A pharmaceutical composition according to claim 198 wherein the insulin is a derivative of human insulin having one or more lipophilic substituents.
- 204. A pharmaceutical composition according to claim 203 wherein the insulin derivative is selected from the group consisting of B29-N^ε-myristoyl-des(B30) human insulin, B29-N^ε-palmitoyl-des(B30) human insulin, B29-N^ε-palmitoyl human insulin, B29-N^ε-palmitoyl human insulin, B28-N^ε-palmitoyl Lys^{B28} Pro^{B29} human insulin, B28-N^ε-palmitoyl Lys^{B28} Pro^{B29} human insulin, B30-N^ε-palmitoyl-Thr^{B29}Lys^{B30} human insulin, B30-N^ε-palmitoyl-Thr^{B29}Lys^{B30} human insulin, B29-N^ε-(N-palmitoyl-γ-glutamyl)-des(B30) human insulin, B29-N^ε-(N-lithocholyl-γ-glutamyl)-des(B30) human insulin, B29-N^ε-(ω-carboxyheptadecanoyl)-des(B30) human insulin.
 - 205. A pharmaceutical composition according to claim 204 wherein the insulin derivative is B29-N^c-myristoyl-des(B30) human insulin.
- 20 206. A pharmaceutical composition according to any one of the claims 1 to 205 further comprising at least 3 molecules of a phenolic compound per insulin hexamer.
 - 207. A pharmaceutical composition according to any one of the claims 1 to 206 further comprising an isotonicity agent.
 - 208. A pharmaceutical composition according to any one of the claims 1 to 207 further comprising a buffer substance.
 - 209. A method of stabilising an insulin preparation comprising adding a zinc-binding ligand according to any one of the claims 1 to 196 to the insulin preparation.
 - 210. A method of treating type 1 or type 2 diabetes comprising administering to a patient in need thereof a pharmaceutically effective dose of an insulin preparation according to any one of the claims 1 to 196.

ABSTRACT

The present invention provides pharmaceutical preparations comprising insulin and novel ligands for the His^{B10} Zn²⁺ sites of the R-state insulin hexamer. The resulting preparations have improved physical and chemical stability.