ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Notes de Cours en

Analyse I

Contents

1	Rap	pels		7
	1.1	Fonct	ions trigonométriques	7
	1.2	Logar	ithme	7
	1.3	Paires	s de fonctions réciproques	8
2	Cha	apitre	1 : Ensembles	8
	2.1	Notat	ions	9
		2.1.1	Le produit cartésien	9
		2.1.2	Classes d'équivalence	9
		2.1.3	Fonctions, applications	10
		2.1.4	Notation et terminologie	11
		2.1.5	Le graphe d'une fonction f	11
		2.1.6	Définition d'une fonction par son graphe	11
		2.1.7	Composition de fonction	11
		2.1.8	Compositions multiples	11
		2.1.9	Fonction réciproque	12
	2.2	Les er	ntiers (\mathbb{N},\mathbb{Z})	12
		2.2.1	Relation d'ordre (totale) $\leq \dots \dots \dots$	12
		2.2.2	Opérations :	13
		2.2.3	Élément neutre	13
		2.2.4	Compatibilité de \leq avec $+$ et \cdot	13
		2.2.5	Les entiers (relatifs)	13
		2.2.6	PGDC	14
	2.3	Raison	nnement par récurrence (principe d'induction)	14
		2.3.1	Notation \sum , \prod	15
	2.4	Les no	ombres rationnels $\mathbb Q$	16
		2.4.1	Proposition : \mathbb{Q} est un corps ordonné	16
		2.4.2	Démonstration par l'absurde :	17

2.5	5 Les nombres réels \mathbb{R}		
2.6	Minor	cants, majorants	19
	2.6.1	1	20
	2.6.2	2	20
	2.6.3	Exemples	20
	2.6.4	Intervalles (notation	21
	2.6.5	Sous ensembles (générales) de $\mathbb R$	21
	2.6.6	Valeur absolue	22
2.7	un tru	ıc qu'on verra après	23
2.8	Introd	duction aux nombres complexes	23
	2.8.1	Définition du corps des nombres complexes \mathbb{C}	23
	2.8.2	Représentation cartésienne	23
	2.8.3	Définitions	24
	2.8.4	Élément inverse pour la multiplication	25
	2.8.5	Formules d'Euler et de Moïvre	25
	2.8.6	Forme polaire d'un nombre complexe	26
	2.8.7	Exemples	27
	2.8.8	La fonction et sa réciproque	28
2.9	Résolu	ution des équations	29
	2.9.1	"Racines" n-ièmes	29
	2.9.2	Le cas $n=2$ (méthode cartésienne)	30
	2.9.3	Théorème fondamental de l'algèbre	30
	2.9.4	Quelques résultats généraux	30
Suit	te de r	nombres réels	31
3.1		ples :	31
0.1	3.1.1	Suite harmonique	31
	3.1.2	Suite harmonique alternée	
	3.1.3	Suite arithmétique	
	0.1.0	Danie arminienque	94

		3.1.4	Suite géométrique	32
	3.2	Suites	définies par récurrence	33
	3.3	Définiti	ions	34
	3.4	Limite	d'une suite	35
	3.5	Suite d	ivergentes et fortement divergentes	36
	3.6	Opérat	ions algébriques sur les limites	37
	3.7	Théorè	me des deux gendarmes	38
	3.8	Critère	s de convergence	39
	3.9	Conver	gence d'une suite définie par récurrence (un exemple)	40
	3.10	Suites	de Cauchy	41
	3.11	Applica	ation : Suites récurrentes linéaires	42
	3.12	Généra	lisation : théorème de point fixe de Banach	43
	3.13	Théorè	me de Bolzano-Weierstrass	43
	3.14	Limites	s inférieurs et limite supérieure d'une suite a_n bornée	44
4	Séri	es num	ériques	44
	4.1	Définiti	on	44
	4.2	Exemples		
		4.2.1	La série harmonique	45
		4.2.2	La série harmonique alternée	46
		4.2.3	La série géométrique	46
	4.3	Critère	s de convergence	46
		4.3.1	Critère nécessaire	46
		4.3.2	Critère de Leibnitz	47
		4.3.3	Critère de comparaison	47
		4.3.4	Critère de d'Alembert et de Cauchy	48
	4.4	Série av	vec paramètres	48
5	Fore	etione :	réelles d'une variable réelle	49
J	5.1		ologie, conventions	49
	77.1			

Dér	Dérivée d'une fonction d'une variable				
	5.8.4	Intervalles fermés	63		
	5.8.3	Fonctions "élémentaires"	62		
	5.8.2	Propriétés des fonctions continues	62		
	5.8.1	Exemple:	61		
5.8	Foncti	ons continues	61		
	5.7.8	Définition de la limite (épointée) avec ϵ et δ	60		
	5.7.7	Exemples	59		
	5.7.6	Théorème des deux gendarmes	58		
	5.7.5	"Limites infinies" et comportement à ∞	58		
	5.7.4	Limites épointées et composition de fonctions	57		
	5.7.3	Opérations algébriques sur les limites	57		
	5.7.2	Limites	56		
	5.7.1	Définitions	54		
5.7	Limite	S	54		
5.6	Transf	formation affines (rappel, voir les pré-requis)	54		
	5.5.2	Les fonction signum et Heaviside	54		
	5.5.1	Composition (un exemple)	53		
5.5	Exemp	oles	52		
	5.4.2	Fonctions périodiques	52		
	5.4.1	Fonctions avec parité	51		
5.4	Opéra	tions algébriques	51		
5.3	Les fonctions sinh et cosh				
5.2	Défini	tions	50		
	5.1.4	Fonctions transcendantes	49		
	5.1.3	Fonctions algébriques	49		
	5.1.2	Fonctions rationnelles	49		
	5.1.1	Fonctions polynômes	49		

6.1	Définit	ions	66
6.2	Exemples (à savoir par coeur		
6.3	Dérival	bilité implique continuité	68
6.4	Interva	lles fermées	69
6.5	Opérat	ions algébriques sur les dérivées	69
6.6	Dérivée	e de la composition de deux fonctions	70
6.7	Contin	uité de la fonction dérivée	70
6.8	Dérivée	e logarithmique	71
6.9	Dérivée	e des fonctions réciproques	72
	6.9.1	Continuité des fonctions réciproques	72
	6.9.2	Dérivabilité de la fonction réciproque	72
	6.9.3	Identité	72
6.10	Applica	ation du calcul différentiel	73
	6.10.1	Théorème de Rolle	73
	6.10.2	Théorème des accroissements finis	74
	6.10.3	Exemples	75
	6.10.4	Théorème des accroissements finis généralisés	76
	6.10.5	Règle de Bernoulli de l'Hospital	76
6.11	Etude	des fonctions	78
	6.11.1	Définitions	78
	6.11.2	Discuter le graphe d'une fonction	80
	6.11.3	Exemples	81
	6.11.4	Exemples avec limites	82
6.12	Dévelo	ppement en séries et développement limité	83
	6.12.1	Définitions	83
	6.12.2	Fonctions définies par une série entière	84
	6.12.3	Dérivée des fonctions définies par une série	84
	6.12.4	Théorème de Taylor	85
	6.12.5	Développement d'une fonction en une série	86

		6.12.6 Les fonctions exp, sinh, cosh, sin, cos, ln, $(1-x)^{\alpha}$ 88
		6.12.7 La notation o et O
7	Inté	grales indéfinies et définies 91
	7.1	Définition de l'intégrale indéfinie
	7.2	Définition de l'intégrale définie
	7.3	Propriétés de l'intégrale définie
	7.4	Théorème de la moyenne
	7.5	Théorème fondamental du calcul intégral
	7.6	Application du théorème de la moyenne
	7.7	Méthode d'intégration
		7.7.1 Intégration "immédiate"
		7.7.2 Intégration par changement de variable
		7.7.3 Intégration par partie
	7.8	Intégration d'un développement limité
	7.9	Intégration d'une série entière
	7.10	Intégrales généralisées (ou impropres)
	7.11	Intégration des foncitons rationnelles
		7.11.1 Exemple
		7.11.2 Le cas général
	7.12	Divers
	7.13	Glossaire
	7.14	Règles
		7.14.1 Complexes
		7.14.2 Limites
	7.15	Fonctions

1 Rappels

1.1 Fonctions trigonométriques

$$\cos(x) = \sin(\frac{\pi}{2} + x)$$

1.2 Logarithme

- $\log_a(x) = y \iff x = a^y, \forall$
- $\bullet \ a^{\log_a(x)} = x$
- $\log_a(a^x) = x \log_a(a) = x \cdot 1 = x$
- $log_a(1) = 0, log_a(a) = 1$

1.3 Paires de fonctions réciproques

Deux fonctions f et g sont réciproques si f(g(x)) = g(f(x)) = xPar exemple :

- x^2 et \sqrt{x} sont réciproques pour tout nombre ≥ 0
- $e^x = \exp(x)$ et $\ln(x)(e \simeq 2.71828)$ sont réciproques pour tout nombre positif.
- a^x et $\log(x)$

- $\log_a(x \cdot y) = \log_a(x) + \log_a(y)$
- $\log_a(\frac{1}{x}) = \log_a(x^{-1}) = -\log(x)$
- $\log_a(\frac{x}{y}) = \log_a(x \cdot \frac{1}{y}) = \log_a(x) + \log_a(\frac{1}{y}) = \log_a(x) \log_a(y)$
- $\log_a(x^r) = r \cdot \log_a(x)$

2 Chapitre 1 : Ensembles

On peut définir $Y = \{x \in X : \text{couleur}(x) = \text{rouge}\}\$

2.1 Notations

\in	est élément de	$a \in y$
∉	n'est pas élément de	$c \not\in y$
\subset	est un sous-ensemble	$y \subset y$
$\not\subset$	n'est pas un sous-ensemble	$x\not\subset y$
=	est le même ensemble que	y = y
\neq	n'est pas le même ensemble que	$x \neq y$
Ø	ensemble vide, ensemble sans élément	

Nota bene:

- $\bullet \ \emptyset \subset x \forall x$
- \bullet $x \subset x$
- $\{a,b\} = \{b,a\}$, mais $\{a,b\} \neq \{\{a\},\{b\}\}\}$
- |**X**| Cardinalité d'un ensemble. $\mathbf{X} = \{a,b,c,d\} \rightarrow |\mathbf{X}| = 4$
- $P(\mathbf{X})$ l'ensemble de tous les sous-ensembles de X. Il vaut $2^{|\mathbf{X}|}=2^4=16$ sous-ensembles.

2.1.1 Le produit cartésien

 \mathbf{X}, \mathbf{Y} des ensembles. $\mathbf{X} \times \mathbf{Y} := \{(x, y) : x \in \mathbf{X}, y \in \mathbf{Y}\}$

Exemple: $X = \{1,2\}, Y = \{3,4\}. X \times Y = \{(1,3), (2,3), (1,4)(2,4)\}$

2.1.2 Classes d'équivalence

On peut vouloir décomposer un ensemble X en classes d'équivalences.

Remarque : Le symbole \sim définit une relation d'équivalence

3 relations d'équivalence sur X :

Réflexive $x \sim x, \forall x \in \mathbf{X}$

Symétrique $x \sim y \Rightarrow y \sim x$

Transitive $x \sim y$, $y \sim z \Rightarrow x \sim z$

<u>Définition</u>: $C_x := \{ y \in \mathbf{X} : \sim x \} \equiv [x]$

 $C_x \in \mathbf{X}$ la classe d'équivalence de x

<u>Définition</u> : L'ensemble quotient \mathbf{X}/\sim est l'ensemble des classes d'équivalences distinctes de X

Terminologie : Soit $C \in X/\sim$ alors $x \in C$ est appelé un représentant de C

2.1.3 Fonctions, applications

Surjection Tout point de Y est atteint par au moins un x, soir si Im(f) = Y

Injection Tous les points de **X** ont un et un seul y. **Y** peut avoir des points "vides" \rightarrow $f(x_1) = f(x_2) \rightarrow x_1 = x_2$

Bijection Chaque point de X et de Y a une et une seule réciproque

Domaine de définition de f:

 $\mathbf{D} \equiv \mathbf{D}_f \equiv \mathbf{D}(f) := \{x \in \mathbf{X} : \text{ une flèche (et une seule) va de } x \in \mathbf{X} \text{ vers un } y \in \mathbf{Y} \}$ Si $\mathbf{D} = \mathbf{X}$, on parle aussi d'une application

Image de f : $Im(f) \equiv f(\mathbf{D}) := \{ y \in \mathbf{Y} : y = f(x) \text{ pour un } x \in \mathbf{D} \}$

Remarque: Toute fonction $f: \mathbf{D} \to \mathbf{Y}$ définit une fonction surjective si on remplace \mathbf{Y} par $\mathrm{Im}(\mathbf{f}) < \mathbf{y}$

Définition: Une fonction qui est injective et surjective est appelée bijective.

Remarque : Toute fonction $f: \mathbf{D} \to \mathbf{Y}$ qui est injective définit une fonction bijective de $\mathbf{D} \to Im(f)$.

2.1.4 Notation et terminologie

- 1. Donné g. h = g|_{\mathbf{D}_h}. = "h est égal à g restreint à $\mathbf{D}_h \subset \mathbf{D}_g$ ou h est une restriction de g.
- 2. Donné h : g $\|_{\mathbf{D}_h} = \mathbf{h} = \mathbf{g}$ est un prolongement de h.

2.1.5 Le graphe d'une fonction f

<u>Définition</u>: Le graphe d'une fonction $f: \mathbf{D} \to \mathbf{Y}$ est l'ensemble $G_f = \equiv$ $G(f) := \{(x, y) \in \mathbf{D} \times \mathbf{Y} : y = f(x)\}$

2.1.6 Définition d'une fonction par son graphe

Soit $G \subset \mathbf{D} \times \mathbf{Y}$ tel que pour tout $x \in \mathbf{D}$, alors il existe un y et un seul tel que $(x,y) \in G$. Alors G est le graphe d'une fonction (application) $f: \mathbf{D} \to Y$, qui pour $(x,y) \in G$ associe y à x

2.1.7 Composition de fonction

$$h = f \circ g \tag{1}$$

Soit

$$\mathbf{D} := \{ x \in \mathbf{D}_f : y = f(x) \in \mathbf{D}_g \} \subset \mathbf{D}_f$$
 (2)

Alors on peut définir la fonction $h: \mathbf{D} \to Z$ par h(x) := g(f(x)). Notation on écrit $h = g \circ f$ pour une fonction définie ainsi. On dit que h est la composition de g avec f, ou que h est "g rond f"

2.1.8 Compositions multiples

$$(h \circ g) \circ f = h \circ (g \circ f) = h \circ g \circ f \tag{3}$$

La loi de composition de fonctions est associative

2.1.9 Fonction réciproque

Soit $f: \mathbf{X} \to \mathbf{Y}$ avec $D_f = x$ une fonction bijective. Alors on peut définir une fonction dite $r\acute{e}ciproque\ \mathrm{g}(\mathrm{f}(\mathrm{x})) = \mathrm{x}\ , \mathrm{x} \in \mathrm{X}$

$$f(g(y)) = y , y \in Y$$

ou $g \circ f = Id$ (identité)

 $f \circ g = Id.$

<u>Définition</u>: Soit $f: \mathbf{X} \to \mathbf{Y}$ avec $\mathbf{D}_f = X$ une fonction bijective. Alors on peut définir une fonction dite réciproque $g \equiv f^{-1}: Y \to X$. par : g(y) = x où x est l'unique solution de l'équation f(x) = y. On a $\mathbf{D}_{f^{-1}} = Y$ et f^{-1} est bijective

2.2 Les entiers (\mathbb{N}, \mathbb{Z})

Les entiers naturels

$$\mathbb{N}=\{0,1,2,3,\ldots\}$$

$$\mathbb{N}* = \{1, 2, 3, \ldots\} \quad = \mathbb{N}$$
 privé de 0

$$= \mathbb{N} \setminus \{0\}$$

Nota bene : 0 est un nombre pair.

2.2.1 Relation d'ordre (totale) \leq

Pour tout $x, y, z \in \mathbb{N}$

- 1. $x \le y$ et $y \le z \Rightarrow x \le z$
- 2. $x \le y$ et $y \le x \Rightarrow x = y$
- 3. on a soit $x \leq y$ soit $y \leq x$ (ordre totale)

Notation: on écrit x < y si $x \le y$ et $x \ne y$, $x \ge y$ si $y \le x$, x > y si y < x

Remarque : \Leftrightarrow 3' : on a soit x < y, soit x = y, soit x > y

<u>Propriété de bon ordre :</u> Tout sous-ensemble non-vide X de $\mathbb N$ a un plus petit élément, CàD :

$$\forall X \subset \mathbb{N}, \exists x \in X \text{ tel que } x \leq y \text{ pour tout } y \in X$$
 (4)

Exemple : X = {1,2,3} , x = 1, le plus petit élément car pour tout $x \in X$, on a $1 \le x$

2.2.2 Opérations :

$$+ \underset{(m,n)}{\mathbb{N}} \times \underset{(m+n)}{\mathbb{N}} \to \underset{(m+n)}{\mathbb{N}}$$

$$\begin{array}{ccc} \cdot & \mathbb{N} \times \mathbb{N} & \rightarrow & \mathbb{N} \\ & (m,n) & \rightarrow & (m \cdot n) \end{array}$$

2.2.3 Élément neutre

- 0 pour l'addition : $n + 0 = n \forall n \in \mathbb{N}$
- 1 pour la multiplication : $n \cdot 1 = n \forall n \in \mathbb{N}$

On n'a pas encore (sur $\mathbb N$) d'élément "inverse" pour l'addition et la multiplication.

2.2.4 Compatibilité de \leq avec + et \cdot

- 1. Si $x \leq y$ alors $x + z \leq y + z \forall z \in \mathbb{N}$
- 2. Si $0 \le x$ et $0 \le y$ alors $0 \le x \cdot y$

2.2.5 Les entiers (relatifs)

$$\mathbb{Z} = \{-2, -1, 0, 1, 2, 3, ...\}$$

 $\mathbb{Z}* = \mathbb{Z} \setminus \{0\} = \text{le même sans le } 0.$

Élément inverse pour + Pour tout $x \in \mathbb{Z}$ il existe $y \in \mathbb{Z}$ tel que x+y=0

Notation : on écrit 2 -3 au lieu de 2 + (-3) car -(-3) = 3

2.2.6 PGDC

Algorithme d'Euclide, Algorithme de Joseph Stein.

Remarque de base : Soit $0 \le b \le a$. Si r divise a et si r divise b, alors r divise a-b.

Algorithme de Stein

- 1. pgdc(a,b) = pgdc(b,a).
- 2. $pgdc(a,b) = 2 \cdot pgdc(\frac{a}{2}, \frac{b}{2})$ si a et b pairs
- 3. $pgdc(a,b) = pgdc(\frac{a}{2}, b)$ si a pair b impair.
- 4. pgdc (a,b) = pgdc($\frac{a-b}{2}$, b), $a \ge b$, a,b impair
- 5. pgdc (a,0) = a.

2.3 Raisonnement par récurrence (principe d'induction)

Exemple: on aimerait démontrer que pour $n \in \mathbb{N}$ *

$$1 + 3 + 5 + \dots + (2n - 1) = n^2 : P(n)$$
(5)

<u>Théorème</u>:

- 1. Si P(n) est vrai pour $n \in \mathbb{N}$ (initialisation)
- 2. Si pour tout $n \ge n_0 P(n) \Rightarrow P(n+1)$

Alors P(n) es vrai pour tout $n \ge n_0$

Dans notre exemple, :

- $n_0 = 1 : 1 = 1^2 = 1$
- $1+3+5+...+2((n+1)-1) \stackrel{?}{=} (n+1)^2 P(n+1) \iff 1+3+5+...+2(n-1)+2(n+1)$ [trou]

Si les points 1 et 2 sont vrais, ils impliquent que P(n) est vrai pour tout $n \ge 1$ attention! 1 est obligatoire!

 $P(n): 3^{2n+4} - 2^n$ est un multiple de 7

- 2. $P(n+1): 3^{2(n+1)+4} 2^{n+1} = 9 \cdot (3^{2n+4} 2^n) + 2^n \cdot (9-2)$ Donc $P(n) \to P(n+1)$ pour tout $n \in \mathbb{N}$
- 1. $P(1): 3^6-2=727$, qui n'est pas un multiple de 7 (car pgcd(727,7)=1)

Donc P(1) n'est pas vrai, donc P(n) n'est pas démontré.

Il reste la possibilité logique que P(n) soit vrai à partir de $n_0 > 1$ mais en fait P(n) est faux pour tout n. Ceci suit 2. par une démonstration par l'absurde.

2.3.1 Notation \sum , \prod

$$\sum_{k=m}^{n} a_k \text{ est la somme} : a_m + a_{m+1} + \dots + a_n$$

$$\prod_{k=m}^{n} a_k \text{ est la multiplication} : a_m \cdot a_{m+1} \cdot \dots \cdot a_n$$

Par exemple:

$$\sum_{k=1}^{n} (2k+1) = 1 + 3 + 5 + \dots + (2n-1) = n^{2}$$

Définition

Si n < m, il s'agit d'une somme / un produit vide, donc :

$$\sum_{k=m}^{n} a_k = 0, \prod_{k=m}^{n} a_k = 1 \tag{6}$$

Règles de calcul

$$\sum_{k=l}^{m} a_k + \sum_{k=m+1}^{n} a_k = \sum_{k=l}^{n} a_k$$

$$\left(\prod_{k=l}^{m} a_k\right) \cdot \left(\prod_{k=m+1}^{n} a_k\right) = \prod_{k=l}^{n} a_k$$

$$\sum_{k=m}^{n} (a_k + b_k) = \sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k$$

$$\prod_{k=m}^{n} (a_k \cdot b_k) = \prod_{k=m}^{n} a_k \cdot \prod_{k=m}^{n} b_k$$

2.4 Les nombres rationnels Q

 $\mathbb{Q} = \{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z} * \}$

$$+ \mathbb{Q} \times \mathbb{Q} \to \mathbb{N}_{\frac{a}{b} + \frac{c}{d}} \to \mathbb{Q} \to \mathbb{Q}$$

$$\cdot \underset{\left(\frac{a}{b},\frac{c}{d}\right)}{\mathbb{N}} \to \underset{\left(\frac{a\cdot c}{b\cdot d}\right)}{\mathbb{N}}$$

Sur \mathbb{Q} on a une relation d'équivalence. $\frac{a}{b} \sim \frac{c}{d}$ si ad = bc.

Exemple: $\frac{1}{2} = \frac{2}{4} \text{ car } 1 \cdot 4 = 2 \cdot 2.$

Notation : on écrit $\frac{1}{2} = \frac{2}{4}$ au lieu de \sim

<u>Important</u>: +, · sont compatibles avec la relation d'équivalence (vérifier !), c'est à dire : si $\frac{a}{b} \sim \frac{a'}{b'}$ et $\frac{c}{d} \sim \frac{c'}{d'}$ alors $\frac{a}{b} + \frac{c}{d} \sim \frac{a'}{b'} + \frac{c'}{d'}$ et $\frac{a}{b} \cdot \frac{c}{d} \sim \frac{a'}{b'} \cdot \frac{c'}{d'}$

Le représentant privilégié d'un nombre rationnel $x \in \mathbb{Q}$ est $\frac{p}{q}$ avec q > 0 et pgdc(|p|, q) = 1

Soit $x = \frac{a}{1}, y = \frac{b}{1}$. Alors $x + y = \frac{a+b}{1}$ et $x \cdot y = \frac{a \cdot b}{1}$. On récupère donc les opérateurs donc les opérations sur \mathbb{Z} on identifie donc $\frac{p}{1} \in \mathbb{Q}$ avec $p \in \mathbb{Z}$. Donc $\mathbb{Z} \in \mathbb{Q}$.

<u>"Inverse" pour +</u> pour $x^{\underline{p}}_q \in \mathbb{Q}$, on définit $-x \in \mathbb{Q}$ par $-x = \frac{-p}{q} (=\frac{p}{-q})$. et on a

$$x + (-x) = \frac{p}{q} + (\frac{-p}{q}) = \frac{p-p}{q} = \frac{0}{q} = 0$$

<u>Inverse pour</u> soit $x = \frac{p}{q} \in \mathbb{Q}, p, q \neq 0$. Alors $y = \frac{q}{p} \in \mathbb{Q}$ est bien défini, et on a $x \cdot y = \frac{p}{q} \cdot \frac{q}{p} = \frac{qp}{pq} = \frac{1}{1} = 1$

Notation pour l'inverse de $x \in \mathbb{Q}$ *, on écrit x^{-1} ou $\frac{1}{x}$

2.4.1 Proposition : Q est un corps ordonné

 $x, y, z \in \mathbb{Q}$, \mathbb{Q} est un corps ordonné car

- L'addition dans Q
 - est associative : x + (y + z) = (x + y) + z
 - est commutative : x + y = y + x
 - a un élément neutre : x + 0 = x
 - a un élément "inverse": x + (-x) = 0
- ullet La multiplication dans $\mathbb Q$
 - est associative : $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
 - est commutative : $x \cdot y = y \cdot x$
 - a un élément neutre : $x \cdot 1 = x$
 - a un élément inverse pour $x \neq 0$: $x \cdot x^{-1} = 1$
- Distributé des opérations "multiplications" et "addition" : $x \cdot (y+z) = x \cdot y + x \cdot z$

relation d'ordre totale sur \mathbb{Q}

Pour ordonner $x=\frac{a}{b}$ et $y=\frac{c}{d},b,d>0,$ on utilise les représentants

$$x = \frac{ad}{bd}, y = \frac{bc}{bd} \tag{7}$$

Définition

Si $\frac{a}{b} \in \mathbb{Q}, \frac{c}{d} \in \mathbb{Q}, b, d > 0$, alors $\frac{a}{b} \leq \frac{c}{d} \iff ad \leq bc$ dans \mathbb{Z}

Remarques

- \le d\(\text{effinit une relation d'ordre totale}\)
- \leq est compatible avec les opérations $+,\cdot$
- \leq est compatible avec \sim

Propriété importante Q est archimédien (Axiome d'Archimède)

Pour tout $x, y \in \mathbb{Q}, x, y > 0$, il existe $n \in \mathbb{N}*$ tel que $n \cdot x = y$

Démonstration

Si x > y alors x > y (trivial, n = 1).

En revanche, si $y \ge x > 0$, alors on peut écrire $x = \frac{a}{b}, y = \frac{c}{d}$, avec a, b, c, d > 0. On choisit $n = (b \cdot c) + 1$

$$(ad) \cdot n = (ad) \cdot ((bc) + 1) = (ad)(bc) + (ad)$$

Donc
$$n \cdot x = n \frac{a}{b} = n \cdot \frac{ad}{bd} \frac{bc}{bd} = cd = y$$

2.4.2 Démonstration par l'absurde :

Proposition Soit $x \in \mathbb{Q}$, alors $x^2 \neq 2$

Démonstration(Par l'absurde)

Soit $x^2 = 2$, on a $x = \frac{p}{q}, p, q \in \mathbb{N}*, pgcd(p, 1) = 1$

$$x^{2} = 2 \Rightarrow \left(\frac{p}{q}\right)^{2} = 2$$

$$\Rightarrow \frac{p^{2}}{q^{2}} = 2$$

$$\Rightarrow p^{2} = 2q^{2}$$

$$\Rightarrow (2a)^{2} = 2q^{2}, a \in \mathbb{N} * \text{ (p es pair)}$$

$$\Rightarrow 2 \cdot 2 \cdot a^{2} = 2q^{2}$$

$$\Rightarrow 2a^{2} = q^{2}$$

$$\Rightarrow 1 = pgdc(p, q)$$

$$\Rightarrow 1 = pgdc(2p, 2q) \text{ Contradiction !}$$

Donc $x^2 \neq 2$ donc l'équation $x^2 = 2$ n'a pas de solution dans $\mathbb Q$

2.5 Les nombres réels $\mathbb R$

Introduction Axiomatique de \mathbb{R}

On demande de l'ensemble \mathbb{R} la même structure algébrique que pour \mathbb{Q} .

- 1. \mathbb{R} est un corps
- 2. \mathbb{R} est pourvu d'une relation d'ordre totale,

Puis on demande en plus:

1. \mathbb{R} a la propriété de la borne inférieure

"Tout sous ensemble non-vide minoré de \mathbb{R} admet (dans \mathbb{R}) un plus grand minorant.

Remarque : 3 est équivalent à la propriété " \mathbb{R} a la propriété de la borne supérieure" ou " \mathbb{R} a la propriété de la complétude"

Remarque : \mathbb{R} est archimédien (sans démonstration)

<u>Remarque</u>: L'axiome d'Archimède implique que si $a \in \mathbb{R}$ tel que $0 \le a \le \frac{1}{n}$ pour tout $n \in \mathbb{N}*$ alors a = 0

Remarque : $\mathbb{Q} \subset \mathbb{R}, \mathbb{R} \setminus \mathbb{Q}$: les nombres irrationnels.

Existence de \mathbb{R}^2

- 1. la droite numérique
- 2. L'ensemble des nombres à virgule. Attention : $0.9999999... \sim 1.000000...$
- 3. Des classes d'équivalence des suites de Cauchy d'un nombre rationnel

Définition

Pour avoir la droite numérique achevée, on ajoute deux symboles. $\overline{R}:=\mathbb{R}\cup\{-\infty,+\infty\equiv\infty\}$

Propriétés

- $-\inf < +\infty$
- $-\infty < x < \infty \forall x \in \mathbb{R}$

2.6 Minorants, majorants

Définition:

 $a \in \mathbb{R}$ est un minorant de $\mathbf{A} \cap \mathbb{R}, \mathbf{A} \neq \emptyset$ si $a \leq x \forall x \in \mathbf{A}$

Définition:

 $a \in \mathbb{R}$ est un majorant de $\mathbf{A} \cap \mathbb{R}, \mathbf{A} \neq \emptyset$ si $a \geq x \forall x \in \mathbf{A}$

Définition:

 $\mathbf{A} \in \mathbb{R}, \mathbf{A} \neq \emptyset$ est minoré ou borné inférieurement si \mathbf{A} admet un minorant.

<u>Définition</u>:

 $\mathbf{A} \in \mathbb{R}, \mathbf{A} \neq \emptyset$ est majoré ou borné supérieurement si \mathbf{A} admet un majorant.

<u>Définition</u>:

 $\mathbf{A} \in \mathbb{R}, \mathbf{A} \neq \emptyset$ est borné s'il est majoré ou minoré.

Définition:

Un minorant (majorant) a de $\mathbf{A} \subset \mathbb{R}$, $\mathbf{A} \neq \emptyset$ est appelé infimum (suppremum) ou borne inférieur (borne supérieur) si a est le plus grand minorant (plus petit minorant) de \mathbf{A} , c'est à dire si tout minorant (majorant) b de \mathbf{A} satisfait la condition $b \leq a$ ($b \geq a$)

Autrement dit on a:

- 1. $\forall x \in \mathbf{A} \text{ on a } a := \inf(\mathbf{A}) \leq x$
- 2. $\forall \epsilon \in \mathbb{R}, \epsilon > 0$, il existe $x \in \mathbf{A}$ tel que $x \geq a + \epsilon$

<u>Remarque</u> inf(**A**) et sup(**A**) existent par définition de \mathbb{R} (axiome 3). <u>Remarque</u> Soit $\mathbf{A} \subset \mathbb{R}$, $\mathbf{A} \neq \emptyset$, et soit $\mathbf{B} := \{x \in \mathbb{R} : -x \in \mathbf{A}\}$. Alors sup(**A**) $= -\inf(\mathbf{A})$

Exemple: $\mathbf{A} = \{x \in \mathbb{R} : 1 \le x \le 2\}$ Alors $\inf(\mathbf{A}) = 1, \sup(\mathbf{A}) = 2$. Voir avec '-**A**'

Définition (minimum)

Si $\inf(\mathbf{A}) \in \mathbf{A}$, alors $\inf(\mathbf{A}) = \min(\mathbf{A})$

Définition (maximum)

 $\operatorname{Si} \sup(\mathbf{A}) \in \mathbf{A}, \operatorname{alors} \sup(\mathbf{A}) = \max(\mathbf{A})$

- 2.6.1 1
- 2.6.2 2

2.6.3 Exemples

- 1. $A = \{x \in \mathbb{R} : x < 1\}$. "inf(A) = $-\infty$ ", sup(A) = 1
- 2. $A = \{x \in \mathbb{R} : x \le 1\}$ " $\inf(A) = -\infty$, $\sup(A) = 1 = \max(A)$.
- 3. $A = \{x \in \mathbb{R} : 0 \le x, x^2 < 2\}$, $\inf(A) = \min(A) = 0$. $\sup(A) = \sqrt{2}$, ou par déf $\sup(A)^2 = 2$.

Proposition : $a := \sup(A) = \sqrt{2} = \text{solution de } x^2 = 2.$

- 1. supposons que $a^2 < 2$ puisque \mathbb{R} est archimédien. $\exists n \in \mathbb{N}$ tel que $n \cdot \left(\frac{2-a^2}{2a+1}\right) > 1 \Leftrightarrow \frac{2a+1}{n} < 2-a^2 < a^2+2-a^2=2$ avec de n : $(a+\frac{1}{n})^2 = a^2 + \frac{2a}{n} + \frac{1}{n^2} \le a^2 + \frac{2a}{n} + \frac{1}{n}$, et donc $a+\frac{1}{n} \in A$ est en contradiction avec $a = \sup(A)$.
- 2. <u>supposons que $a^2 > 2$ </u> Puisque $\mathbb R$ est archimédien. $\exists n \in \mathbb N \text{ tel que } n(\frac{a^2-2}{2a}) > 1 \Leftrightarrow \frac{2a}{n} < a^2-2 \Leftrightarrow -\frac{2a}{n} > 2-a^2$

<u>avec ce n</u> : [trou =3] 1 et 2 impliquent que $a^2 = 2$ car $a^2 \ge 2$ par 1 et $a^2 \le 2$...[trou mika]

2.6.4 Intervalles (notation

Soit $a, b \in \mathbb{R}, a \leq b$

Intervalle ouvert $]a, b[:= \{x \in \mathbb{R} : a < x < b\}]$

Intervalle fermé $[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$

$$]a,a[=\emptyset$$

$$]-\infty,\infty[=\mathbb{R}$$

$$[-\infty,b]=\{x\in\mathbb{R}:-\infty< x< b\}$$

2.6.5 Sous ensembles (générales) de $\mathbb R$

exemple : $A = [1, 2] \cup \{3\}$ [trou mika]

Définitions:

- $E \subset \mathbb{R}$ est ouvert si pour tout $a \in E$ il existe r > 0 tel que $]a r, a + r[\subset E]$. Exemple : E =]0, 1[est (un ensemble) ouvert.
- L'intérieur \dot{E} de E est le plus grand ensemble ouvert contenu dans E. C'est à dire si $A \subset E$, A ouvert, alors $A \subset \dot{E}$
- $E \subset \mathbb{R}$ est fermé si $E^c \equiv \mathbb{R} \setminus E$ est ouvert $\underline{\text{exemple}} : E =]-\infty, 0[\cup\{1\} \cup [2, \infty[\text{ est fermé, alors } E^c =]0, 1[\cup]1, 2[$
- <u>L'adhérence</u> \overline{E} de E est le plus petit sous-ensemble formé de \mathbb{R} qui contient E. C'est à dire si $\mathbb{R} \supset A \supset E$, A fermé, alors $A \supset \overline{E}$. On a $\overline{E} = \mathbb{R} \setminus (\mathbb{R} \setminus E)$ ou encore $\overline{E} = \{a \in \mathbb{R} : \forall r > 0,]a - r, a + r[\cap E \neq \emptyset\}$
- le bord ∂E de E On a $\partial E = \overline{E} \setminus \dot{E}$ ou encore $\partial E = \{a \in \mathbb{R} : \forall r > 0,]a r, a + r[\cap E \neq \emptyset,]a r, a + r[\cap (\mathbb{R} \setminus E)\}$
- $a \in E$ est un point isolé de E s'il existe r ; 0 tel que $]a-r,a+r[\cap E=\{a\}$
- {points limites} = $\overline{E} \setminus \{\text{point isolés}\}\$

Remarques:

- Soit $E \subset \mathbb{R}$ est borné et fermé, alors $\inf(E) \in E$ et $\sup(E) \in E$
- inf et sup d'un ensemble sont uniques
- \emptyset , \mathbb{R} sont à la fois ouverts et fermés.
- $E = \dot{E} \Leftrightarrow E$ est ouvert $E = \overline{E} \Leftrightarrow E$ est fermé

2.6.6 Valeur absolue

Définition : pour $x \in \mathbb{R}$ on définit la valeur absolue par |x| := x pour x > 0, -x pour x < 0

propriétés :trou

inégalité triangulaire : $|x+-y| \leq |x| + |y|$

$$|x + -y| \ge ||x| - |y||$$

Identités (voir les exercices :)

$$|x + y| + |x - y| = |x| + |y| + ||x| - |y|| = 2max\{|x|, |y|\}$$

$$||x+y| - |x-y|| = |x| + |y| - ||x| - |y|| = 2min\{|x|, |y|\}$$

2.7 un truc qu'on verra après

2.8 Introduction aux nombres complexes

motivation: Soit $x \in \mathbb{R}$, alors $x^2 + 1 \neq 0$

2.8.1 Définition du corps des nombres complexes $\mathbb C$

$$X = \mathbb{R} \times \mathbb{R} =: \mathbb{R}^2 \text{ donc } (a, b), (c, d) \in X$$

$$\mathbb{C} = \{X, +, \cdot\}$$

$$+: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$$

$$(a,b)(c,d) := (a+c,b+d)$$

$$\cdot: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{C}$$

$$(a,b)(c,d) := (ac - bd, ad + bc)$$

 $\mathbb C$ est un corps, appelé le corps ds nombres complexes.

2.8.2 Représentation cartésienne

On a
$$(a, 0) + (b, 0) = (a + b, o)$$

on identifie $(a,0) \in \mathbb{C}$ avec $a \in \mathbb{R}$

on a
$$(0,1)[=i] \cdot (0,1) = (0-1,0+0) = (-1,0) \equiv -1$$

$$(0,1) \equiv i$$

Donc $i^2 = -1$, ou encore $i^2 + 1 = 0$

Pour
$$z = (a, b) \in \mathbb{C}$$

$$z = (a, 0)[\equiv a] \cdot (1, 0)[\equiv 1] + (b, 0)[\equiv b](0, 1)[\equiv i] \equiv a + bi$$

donc

$$z = a + bi$$

C'est la forme ou représentation cartésienne de $z\in\mathbb{R}$ Soit $z_1=a+bi, z_2=c+id, a,b,c,d\in\mathbb{R}$

En utilisant les règles de calculs "habituelles", plus $i^2 = -1$, on trouve

$$z_1 + z_2 = (a+ib) + (c+id) = a+c+i(b+d)$$

$$z_1 \cdot z_2 = (a+ib) \cdot (c+ib) = (ac-bd) + i(ad+bc)$$

et on retrouve les opérations + et \cdot de la définition de \mathbb{C}

2.8.3 Définitions

Soit $z = a + bi \in \mathbb{C}, a, b \in \mathbb{R}$

Complexe conjugué de Z : $\overline{z} = a - bi \equiv a + i(-b)$ Propriétés:

- $\overline{\overline{z}} = z, \forall z \in \mathbb{C}$
- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}, z_1, z_2 \in \mathbb{C}$
- $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}, z_1, z_2 \in \mathbb{C}$

Partie réelle de z = a + ib : $Re(z) \equiv R(z) := a \in \mathbb{R}$

Partie imaginaire de z = a + ib: $Im(z) := b \in \mathbb{R}$

Valeur absolue (ou module) de Z : $|z| = (z \cdot \overline{z})^{\frac{1}{2}} = \sqrt{z \cdot \overline{z}}$

En fait, on a pour z = ib

$$z \cdot \overline{z} = (a+ib)(a-ib) = a^2 - b^2 > 0$$

Remarque:

$$Re(z) = \frac{z \cdot \overline{z}}{2} \in \mathbb{R}$$

$$Im(z) = \frac{z \cdot \overline{z}}{2i} \in \mathbb{R}$$

2.8.4 Élément inverse pour la multiplication

Soit $z \in \mathbb{C}, z \neq 0$, On cherche $z \in \mathbb{C}$ tel que $z \cdot \overline{z} = 1 \in \mathbb{R} \subset \mathbb{C}$

On a
$$z_1 = \frac{1}{|z|^2}\overline{z}$$

En effet $z \cdot z_1 = z \cdot \frac{1}{|z|^2} \overline{z} = \frac{1}{|z|^2} \overline{z} \cdot z$ or $\overline{z} \cdot z = |z|^2$ par définition, alors = 1

Notation pour l'inverse $\frac{1}{z}$ ou z^{-1}

Remarque: "
$$\frac{1}{z} = \frac{1}{z} \cdot \frac{\overline{z}}{\overline{z}} = \frac{1}{z \cdot \overline{z}} \overline{z} = \frac{1}{|z|^2} \cdot \overline{z}$$
"

explicitement, pour z = ib [trou cours]...= $\frac{ac+bd}{c^2+d^2} + i \cdot \frac{bc-ad}{c^2+d^2}$

2.8.5 Formules d'Euler et de Moïvre

Soit $\varphi \in \mathbb{R}$.

On pose
$$e^{i\varphi} = \cos(\varphi) + i\sin(\varphi)$$
 Formule d'Euler

avec les règles de calcul habituelles pour la fonction exponentielle :

$$\underline{\text{pour } z_1, z_2 \in \mathbb{C}} : e^{z_1} \cdot e^{z_2} = e^{z_1 + z_2}$$
$$(e^z)^n = e^{nz} \text{ pour } n \in \mathbb{N}*$$
ainsi que $\overline{e^z} = e^{\overline{z}}$

avec
$$z = a + ib$$
, $e^z = e^{a+ib} = e^i + e^{ib}$
 $e^a \in \mathbb{R}$ (exponentielle réelle)
 $e^{ib} = \cos(b) + i\sin(b)$
 $Re(e^{a+ib}) = e^a\cos(b), Im(e^{a+ib}) = e^a\sin(b)$

On a aussi (Euler et règles pour Re, Im)

$$\cos(\varphi) = Re(e^{i\varphi} = [troucours]$$

Formule de Moïvre : Pour $n \in \mathbb{N}^*, \varphi \in \mathbb{R}$, on a

$$\cos(n\varphi) + i\sin(n\varphi) = e^{in\varphi} = (e^{i\varphi})^n = (\cos(\varphi) + i\sin(\varphi))^n \text{ [trou cours] } n = 3 :$$

$$\sin(3\varphi) = Im(\cos(\varphi) + i(\sin(\varphi))^3 = \cos(\varphi)^2 \cdot \sin(\varphi) - \sin(\varphi)^3$$

2.8.6 Forme polaire d'un nombre complexe

$$\begin{split} z \neq 0, \, z &= |z| \cdot \zeta \text{ où } \zeta = \tfrac{1}{|z|} z, \, |\zeta| = \tfrac{1}{|z|} |z| = 1. \\ \zeta &= \cos(\varphi) + i \sin(\varphi) = e^{1\varphi} \end{split}$$

Donc tout $z \neq 0$ est de la forme

$$a + ib = z = |z| \cdot e^{i\varphi} \tag{8}$$

où
$$\varphi=2\arctan(\frac{b}{1+\sqrt{a^2+b^2}})$$
 si $z\in\mathbb{C}\backslash]-\infty,0]$ (ou π sinon)

la forme ou la représentation polaire de z.

la forme polaire est mieux adaptée à la multiplication des nombres complexes.

Soit
$$z_1, z_2 \in \mathbb{C} * \equiv \mathbb{C} \setminus \{0\}$$
, alors

$$z_1 = |z_1| \cdot e^{e\varphi_1}, z_2 = |z_2| \cdot e^{i\varphi_2}$$
 et

$$z_1 \cdot z_2 = |z_1| \cdot |z_2| e^{i(\varphi_1 + \varphi_2)} \tag{9}$$

Soit $r > 0, \varphi \in \mathbb{R}$. L'inverse :

$$z = r \cdot e^{i\varphi}$$

$$= r(\cos(\varphi) + i\sin(\varphi))$$

$$= r\cos(\varphi) + i \cdot r \cdot \sin(\varphi)$$

$$\frac{1}{z} = \frac{1}{re^{i\varphi}} = \frac{1}{r}e^{-i\varphi} = \frac{1}{e^{i\varphi}}$$

2.8.7 Exemples

$$i = e^{i \frac{\pi}{2}}, \quad -1 = e^{i \pi}$$

$$2). \qquad -i = e^{i\frac{3\pi}{2}} \quad \left(=e^{-i\frac{\pi}{2}}\right)$$

Done arg
$$(-i) = \frac{3\pi}{2}$$
,

3)
$$\frac{1}{4}$$
 = $12 e^{i\frac{\pi}{4}}$ et donc:

$$2i = 1 + 2i + i^2 = (1 + i)^2 = (12i)^2 = 2i$$

4).
$$\frac{1}{1+i} = \frac{1}{\sqrt{2!}} e^{i\frac{\pi}{4}} = \frac{1}{\sqrt{2!}} e^{-i\frac{\pi}{4}} = \frac{1-i}{\sqrt{2!}} e^{-i\frac{\pi}$$

5),
$$2_1 = -1 + i = \sqrt{2}$$
. $e^{i\frac{3}{4}\pi}$.
6) $2_2 = 1 - \sqrt{3} i = 2 \cdot e^{-i\frac{\pi}{3}}$.
 $7) 2_1 \cdot 2_2 = 2 \cdot \sqrt{2}$. $e^{i\pi (\frac{3}{4} - \frac{1}{3})}$.
 $2 \cdot 2\pi x = \frac{1}{2}$.
 $2 \cdot 2\pi x = \frac{1}{2}$.
 $2 \cdot 2\pi x = \frac{1}{2}$.

8)
$$(1-\sqrt{37}i)^{30} = (2\cdot e^{-i\frac{\pi}{3}})^{30} = 2^{30} e^{-i\frac{\pi}{3}\cdot 30} = 2^{30}$$

$$= (2^{10})^3 = (1024)^3 = 1^{1073} + 41^{1824}$$

9),
$$\left(\frac{1-i}{1+i}\right)^{\frac{1}{4}} = \left(\frac{12!}{12!}e^{-i\frac{\pi}{4}}\right)^{\frac{1}{4}} = \left(e^{-i\frac{\pi}{2}}\right)^{\frac{1}{4}} = \left(e^{-i\frac{\pi}{2}}\right)^{\frac{$$

10)
$$\sin(3\varphi) = \ln(e^{i3\varphi}) = \ln((e^{i\varphi})^3)$$

$$= \ln((\cos(\varphi) + i\sin(\varphi))^3)$$

$$= 3\cos(\varphi)^2 \cdot \sin(\varphi) - \sin(\varphi)^3$$

2.8.8 La fonction et sa réciproque

Soit
$$z = r \cdot e^{i\varphi}, r > 0, \varphi \in]-\frac{\pi}{2}, \frac{\pi}{2}[$$

$$z^2 = r^2 \cdot e^{12\varphi}, 2\varphi \in]-\pi, \pi[$$

$$z = \sqrt{\omega} = \begin{cases} \sqrt{\omega} = \sqrt{x} & \text{pour } y = 0, x > 0 \text{ cas } 1\\ \frac{1}{\sqrt{2}}(\sqrt{|\omega| + x} + i\sqrt{|\omega| - x}) & \text{pour } y > 0 & \text{cas } 2\\ \frac{1}{\sqrt{2}}(\sqrt{|\omega| + x} - i\sqrt{|\omega| - x}) & \text{pour } y < 0 & \text{cas } 3 \end{cases}$$

Cas 2
$$(\frac{1}{\sqrt{2}}(\sqrt{|\omega|+x}+i\sqrt{|\omega|-x}))^2 = \frac{1}{2}(|\omega|+x-|\omega|+x+2i\sqrt{\omega^2-x^2}) = x+iy$$

2.9 Résolution des équations

2.9.1 "Racines" n-ièmes

Dans C, l'équation

$$z^n = \omega \in \mathbb{C}, n \in \mathbb{N}* \tag{10}$$

a toujours
n solutions si $\omega \neq 0.$ $z=\omega$ est la seule solution pour
 $\omega=0$

Méthode "polaire"

- $\omega = |\omega| \cdot e^{i(\varphi + k2\pi)}$, avec k = 0, ..., n 1
- $z_k = |\omega|^{\frac{1}{n}} \cdot e^{i(\frac{\varphi}{n} + \frac{k}{n} \cdot 2\pi)}$ avec k = 0, ..., -n1

Exemples

- $z^2 = 1 = e^{i(0+k2\pi)}$ avec k = 0, 1 $z_k = e^{1\frac{k}{2}2\pi}$ avec k = 0, 1 $z_0 = e^0 = 1, z_1 = e^{i\pi} = -1$
- $z^3 = 1 = e^{i(0+k2\pi)}$ avec k = 0, 1, 2 $z_k = e^{i\frac{k}{3}2\pi}$ avec k = 0, 1, 2

$$z_0 = e^0 = 1, z_1 = e^{\frac{2\pi}{3}}, z_2 = e^{i\frac{4\pi}{3}} = e^{-i\frac{2\pi}{3}}$$

- $z^3 = i = e^{i(\frac{\pi}{2} + 2\pi k)}, k = 0,1,2$ $z_0 e^{i\frac{\pi}{6}} = \frac{\sqrt{3}}{2} + i\frac{1}{2}$ $z_1 = e^{i(\frac{\pi}{6} + \frac{2\pi}{3})} = e^{i\frac{5\pi}{6}} = -\frac{\sqrt{3}}{2} + i\frac{1}{2}$ $z_2 = e^{i(\frac{\pi}{6} + \frac{4\pi}{3})} = e^{i\frac{3\pi}{2}} = -i$
- $z^6 = 1 + i = \sqrt{2} \cdot e^{i(\frac{\pi}{2} + k2\pi)}, k = 0-5$ $z_k = 2^{\frac{1}{12}} e^{i(\frac{\pi}{24} + \frac{k}{6}\pi)}$

2.9.2 Le cas n = 2 (méthode cartésienne)

Le cas $z^2 = \omega = x + iy$.

$$y = 0, x \ge 0 \to z_0 = \sqrt{x} \text{ et } z_1 = -\sqrt{x}$$

$$y = 0, x < 0 \rightarrow z_0 = i\sqrt{|x|}$$
 et $z_1 = -i\sqrt{|x|}$

$$y \neq 0 \rightarrow z_0 = \sqrt{\omega}, z_1 = -\sqrt{\omega}$$

avec $\sqrt{.}$ la fonction réelle (y = 0) ou complexe (y \neq 0)

Puisque $z^2+pz+q=(z+\frac{p}{2})^2-(\frac{p}{2})^2+q$ l'équation $z^2+pz+q=0$ peut [trou mika]

2.9.3 Théorème fondamental de l'algèbre

Tout polyne $p(z) = a_n z^n + ... + a_i z^i + a_0, n \in \mathbb{N} * a_0, ... a_n \in \mathbb{C}, a_n \neq 0$ admet dans \mathbb{C} n "racines" c'est à dire il existent $z_0, ... z_n \in \mathbb{C}$ tels que $p(z_k) = 0, k = 0, ... n - 1$ et on a la représentation $p(z) = a_n (n_n - z_0) ... (z - z_n - 1)$

Exemples:

$$p(2) = 2^{2} - 22 + 1 = (2 - 1)^{2} = (2 - 1) \cdot (2 - 1)$$

$$p(2) = 2^{2} - 1 = (2 + 1) \cdot (2 - 1)$$

$$p(2) = 2^{3} - 1 = (2 - 1) \cdot (2^{2} + 2 + 1)$$

$$= (2 - 1) \cdot (2 - (-\frac{1}{2} + i \frac{3}{2})) \cdot (2 - (-\frac{1}{2} - i \frac{3}{2}))$$

2.9.4 Quelques résultats généraux

Si les a_k sont réels (polynôme réel), alors $\overline{p(z)} = p(\overline{z})$ (vérifier. Dans ce cas, $p(\overline{z_k} = 0$ si $p(z_k) = 0$, $car\overline{0} = 0$.

Explication : ou bien $z_k \in \mathbb{R}$ et on a un facteur réel, ou $z_k \notin \mathbb{R}$ ce qui donne des facteurs complexes conjugués $(z - z_k)(z - \overline{z_k})$

Théorème : Tout polynôme à coefficients réels peut être factorisé dans $\mathbb R$ en facteurs linéaires ou quadratiques

Explication:
$$(z - z_k)(z - \overline{z_k}) = (z^2 - (z + \overline{z_k}) - z + z_k \overline{z_k})$$

3 Suite de nombres réels

<u>Définition</u>: On appelle suite de nombres réels toute application $f: \mathbb{N} \to \mathbb{R}$

<u>Notation</u>: On pose $a_n = f(n)$ et on écrit (a_n) ou $(a_n)_{n\geq 0}$ ou $a_0, a_1, ...$ pour la suite <u>Remarque</u>: On écrira $(a_n)_{n\geq n_0}$ pour une suite numérotée par $n_0, n_{0+1}, ...$

On s'intéresse à l'image de f : $Im(f) = \{x \in \mathbb{R} : x = a_n \text{ pour un } n \in \mathbb{N}\} = \{a_0, a_1, a_2, \ldots\}$

3.1 Exemples:

3.1.1 Suite harmonique

$$a_{n} = \frac{1}{n}, n \in \mathbb{N}*$$

$$a_{1} = 1, a_{2} = \frac{1}{2}, a_{3} = \frac{1}{3}, \dots$$

$$a_{n} = \frac{1}{2}, a_{n} = \frac{1}{2}, \dots$$

$$a_{n} = \frac{1}{2}, a_{n} = \frac{1}{2}, \dots$$

$$a_{n} = \frac{1}{2}, \dots$$

$$a_{n} = \frac{1}{2}, \dots$$

3.1.2 Suite harmonique alternée

$$a_n = (-1)^{n-1} \cdot \frac{1}{n}, n \in \mathbb{N}*$$

 $a_1 = 1, a_2 = -\frac{1}{2}, a_3 = \frac{1}{3}, a_4 = -\frac{1}{4}, \dots$

3.1.3 Suite arithmétique

$$a_n = a_1 + (n-1) \cdot d, a, d \in \mathbb{R}, n \in \mathbb{N}$$

3.1.4 Suite géométrique

 $a_n = a_1 \cdot q^{n-1}, a, q \in \mathbb{R}, q \neq 0, n \in \mathbb{N}*$

- Si $q = 1 : a_n = a1$ pour tout $n \in \mathbb{N}$
- $\operatorname{si} q = -1$:
- $\operatorname{si} q > 1$ o a_1 a_2 a_3 a_4 $\operatorname{pour } a=1, q=2$

• $\operatorname{si} q < 1$:

3.2 Suites définies par récurrence

Soit
$$a_1 \in \mathbb{R}$$
 et soit $g : \mathbb{R} \to \mathbb{R}$, $\mathbf{D}(g) = \mathbb{R}$
 $a_n = g(a_{n-1}), n = 2, 3, 4, ...$

Exemples:

- $g(x) = x + d \Rightarrow a_{n+1} = a_n + d$ Suite arithmétique (démonstration par récurrence)
- $g(x) = x \cdot q \Rightarrow a_{n+1} = a_n \cdot q$ suite géométrique (démonstration par récurrence également)

• $g(x) = \frac{x}{x+1}$ pour $a_1 = 1$ on obtient la suite harmonique. démonstration par récurrence :

$$-a_1 = 1, a_2 = \frac{1}{1+1} = \frac{1}{2}$$

$$-g(a_{n-1}P(n-1).g(\frac{1}{n-1}) = \frac{\frac{1}{n-1}}{1+\frac{1}{n-1}} = \frac{1}{n} = a_n$$

• $a_1 = \sqrt{2}, g(x) = (\sqrt{2})^x = (1.414...)^x$ $a_n = (\sqrt{2})^{a_{n-1}}$ $a_1 = \sqrt{2} = 1.414..., a_2 = \sqrt{2}^{\sqrt{2}} = 1.63..., a_3 = \sqrt{2}^{(\sqrt{2}^{\sqrt{2}})}, ...a_{10} = 1.983..., a_{1000} = 1.999...$

3.3 Définitions

<u>Suite croissante</u> une suite (a_n) est croissante si $a_{n+1} \ge a_n, \forall n \in \mathbb{N}$

<u>Suite décroissante</u> une suite (a_n) est décroissante si $a_{n+1} \leq a_n, \forall n \in \mathbb{N}$

<u>Suite monotone</u> Une suite (a_n) est monotone si elle est soit croissante, soit décroissante.

Suite majorée Une suite (a_n) est majorée si $E = \{a_0, a_1, ---\} \subset \mathbb{R}$ est majoré

<u>Suite minorée</u> Une suite (a_n) est minorée si $E = \{a_0, a_1, ---\} \subset \mathbb{R}$ est minoré

Suite bornée Une suite (a_n) est bornée si elle est minorée et majorée

Plus petit majorant d'une suite $\sup(a_n) := \sup\{a_0, a_1, a_2, ...\}$

Plut grand minorant d'une suite $\inf(a_n) := \inf\{a_0, a_1, a_2, ...\}$

Minimum et maximum d'une suite

$$\max(a_n) := \max\{a_0, a_1, a_2, ...\}$$
 s'il existe

$$\min(a_n) := \min\{a_0, a_1, a_2, \ldots\} \text{ s'il existe}$$

Exemple 2.3

$$a_n = 1 + \frac{1}{n}, n \in \mathbb{N}, a_1 = 2, a; 2 = \frac{3}{2}$$

 $1 \le a_n \le 2$ La suite est bornée

$$\sup(a_n) = \max(a_n) = 2$$

 $\inf(a_n) = 1$, pas de minimum.

3.4 Limite d'une suite

<u>Définition</u>: une suite $(a_n \text{ est convergente et admet pour limite (ou converge vers) <math>a \in \mathbb{R}$ et l'on écrit

$$\lim_{n \to \infty} a_n = a \tag{1}$$

si pour tout $\epsilon > 0$ il existe n_0 tel que $|a_n - a| < \epsilon, \forall n \ge n_0$

remarque : $\Rightarrow a$ est un point adhérent à $\{a_0, a_1, ...\}$

remarque :
$$|a_n - a| < \epsilon \Leftrightarrow a - \epsilon < a_n < a + \epsilon$$

<u>remarque</u>: La démonstration dans l'exemple 2.3 montre que la suite $a_n = 1 + \frac{1}{n}$ converge vers a = 1, car $\forall \epsilon > 0$ on a $1 \le a_n \le 1 + \epsilon, \forall n \ge n_0 > \frac{1}{\epsilon}$

Notations équivalentes

$$\lim_{n\to\infty} a_n = a \in \mathbb{R} \Leftrightarrow a_n \to a \Leftrightarrow a : n \to a \text{ lorsque } n \to \infty$$

exemples:

1.
$$\lim_{n \to \infty} (1 + \frac{1}{n}) = 1$$

2.
$$\lim_{n\to\infty}\frac{1}{n}=0$$
 même demonstration que dans l'exemple 2.3

3.
$$\lim_{n\to\infty} \underbrace{(-1)^n}_{a_n}$$
 pas de limite

Proposution : Si une suite converge, sa limite est unique.

Démontration par l'absurde

than, an than 2, an than are are be supposons a = b

oit $\lim_{n \to \infty} = a$ et $\lim_{n \to \infty} a_n = b$ avec $b \neq a$

Soit
$$\epsilon \le \frac{1}{3}(b-a)$$

$$\lim_{n \to \infty} a_n = a \Leftrightarrow \exists n_1 t. q. \forall n \ge n_1 |a - a_n| < \epsilon$$

$$\lim_{n \to \infty} a_n = b \Leftrightarrow \exists n_2 t. q. \forall n \ge n_2 |b - a_n| < \epsilon$$

Soit $n_0 = \max\{n_1, n_2\}$, alors pour $n \ge n_0$ on a

$$|a - a_n| < \epsilon \ \underline{\mathrm{ET}} \ |b - a_n| < \epsilon$$

Donc
$$|b - a| = |(b - a_n) - (a - a_n)| \le |b - a_n| + a - a_n| \le \epsilon + \epsilon \le \frac{2}{3}|b - a|$$

Donc
$$0 \le \frac{1}{3}|b-a| \le 0$$

Donc
$$b - a = 0 \rightarrow b = a$$

3.5 Suite divergentes et fortement divergentes

<u>Définition</u>: Une suite (a_n) qui n'est pas convergente est appelée divergente.

Exemple: $a_n = (-1)^n, n \in \mathbb{N}$ est une suite divergente. Suites "fortement divergentes"

<u>Définition</u>: Soit (a_n) une suite telle que pour tout $r \geq 0$ il existe n_0 tel que

 $\forall n \ge n_0, a_n \ge r$ alors on écrit $\lim_{n \to \infty} a_n = \infty$

Exemple: $\lim_{n\to\infty} n = \infty$

<u>Définition</u>: Soit (a_n) une suite telle que pour tout r > 0 il existe n_0 tel que

 $\forall n \geq n_0, a_n \leq r$, alors on écrit $\lim_{n \to \infty} a_n = -\infty$

 $\underline{\text{Exemple}:} \lim_{n \to \infty} -n = -\infty$

Attention: Par abus de langage, on dit souvent que la suite (a_n) "converge" vers ∞ ou $-\infty$ si $\lim_{n\to\infty} a_n = \infty$ ou $\lim_{n\to\infty} a_n = -\infty$

Remarque : La suite $a_n = (-1)^n \cdot n$ diverge, et elle ne "converge" pas non plus vers ∞ ou $-\infty$

3.6 Opérations algébriques sur les limites

Si! $\lim_{n\to\infty} a_n = a \in \mathbb{R}, \lim_{n\to\infty} b_n = b \in \mathbb{R}, \text{ et } \alpha, \beta \in \mathbb{R}$ alors (à vérifier en utilisant les définitions!)

•
$$\lim_{n \to \infty} (\alpha a_n + \beta b_n) = \alpha \lim_{n \to \infty} a_n + \beta \lim_{n \to \infty} b_n = \alpha a + \beta b$$

•
$$\lim_{n \to \infty} (a_n \cdot b_n) = (\lim_{n \to \infty} a_n) \cdot (\lim_{n \to \infty} b_n) = a \cdot b$$

•
$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \dots = \frac{a}{b} \text{ si } b_n \neq 0, b \neq 0$$

$$\underline{\text{Cons\'equences}: \lim_{n \to \infty} a_n = a \Leftrightarrow \lim_{n \to \infty} (a_n \underbrace{-a}) = 0$$

Attention aux hypothèses:

$$1 = \lim_{n \to \infty} 1 = \lim_{n \to \infty} \frac{n}{n} = \frac{\lim_{n \to \infty} n}{\lim_{n \to \infty} n} = \frac{\infty}{\infty}$$

Manipulation de ∞ et 0 :

•
$$\infty + \infty = \infty$$

$$\bullet \ \infty \cdot \infty = \infty$$

$$\bullet$$
 $\frac{0}{\infty} = 0$

- $c + \infty = \infty$
- $\frac{c}{\infty} = 0 \forall c \in \mathbb{R}$
- $c \cdot \infty = \infty, c > 0$

3.7 Théorème des deux gendarmes

Théorème: Soit $(a_n), (b_n), (c_n)$, trois suites telles que $a_n \leq c_n \leq b_n$, $\forall b \geq n_o \in \mathbb{N}$, $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = a$, alors $\lim_{n \to \infty} c_n = a$

<u>Démonstration</u>:

 $\forall \epsilon > 0, \exists n_o \text{ tel que } |a_n - a| \le \epsilon \text{ et } |b_n - a| \le \epsilon$

Donc

$$-\epsilon \le a_n - a \le c_n - a \le b_n - a \le \epsilon \tag{2}$$

$$\Rightarrow |c_n - a| \le \epsilon$$

Exemples:

•
$$a_n := \underbrace{\frac{-1}{n^2 + 1}}_{n \to \infty, \text{ donc } 0} \le c_n = \frac{\cos(7n^2 + 3)}{n^2 + 1} \le \underbrace{\frac{1}{n^2 + 1}}_{n \to \infty, \text{ donc } 0}$$

• $a_n := \underbrace{1}_{n \to \infty, \text{ donc } 1} \le c_n = \sqrt{1 + \frac{1}{n}} \le \sqrt{1 + \frac{2}{n} + \frac{1}{n^2}} = \underbrace{1 + \frac{1}{n}}_{n \to \infty, \text{ donc } 1}$

•

3.8 Critères de convergence

<u>Théorème</u>: Toute suite <u>croissante et majorée</u> (décroissante et minorée) est convergente et $\lim_{n\to\infty} a_n = \sup(a_n)$ (et $\lim_{n\to\infty} a_n = \inf(a_n)$)

<u>Corollaire</u>: Toute suite monotone et bornée est convergente

<u>Démonstration</u> (pour le sup, pur l'inf voir l'Exemple 2.3

- $\forall \epsilon > 0, \exists n_0 \text{ tel que } a_{n_0} > a \epsilon \text{ par définition du sup.}$
- $\forall na_n \leq a$ Par définition du sup
- $a_n \ge a_{n_0}, \forall n \ge n_0$ car la suite est croissante

Donc: $\forall \epsilon > 0, \exists n_0 \text{ tel que } \forall n \geq n_0, a - \epsilon \leq a_{n_0} \leq a_n \leq a \leq a + \epsilon$

C'est à dire $|a_n - a| < \epsilon$ et donc $\lim_{n \to \infty} a_n = a$ par définition de la suite.

Rappels:
$$\frac{n!}{\binom{n}{k}} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k!}, 0! = 1$$

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^{n-k} B^k = A^n + nA^{n-1}B + \dots$$

$$\sum_{k=0}^{n-1} a^k = \frac{1-a^n}{1-a}$$

Exemple: (majoré + croissant \Rightarrow converge) $a^n = (1 + \frac{1}{n})^n, n \in \mathbb{N}* \text{ (série 6, exo 6)}$

La suite est majorée
$$a_n = 1 + \sum_{k=1}^n \binom{n}{k} = (\frac{1}{n})^k = 1 + \sum_{k=1}^n \frac{n(n-1)\dots(n-k+1)}{k!} (\frac{1}{n}^k)$$

$$= 1 + \sum_{k=1}^n \frac{1}{k!} 1(1 - \frac{1}{n})\dots(1 - \frac{k-1}{n})$$

$$\leq 1 + \sum_{k=1}^n \frac{1}{k!} \leq 1 + \sum_{k=1}^n \frac{1}{2^{k-1}} = 1 + \sum_{k=1}^n (\frac{1}{2})^k$$

$$k! = 1 \cdot 2\dots \cdot k \geq 2^k - 1$$

$$= 1 + \frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}} \leq 1 + \frac{1}{1 - \frac{1}{2}} = 3$$

La suite est croissante
$$a_n = 1 + \sum_{k=1}^n \frac{1}{k!} 1(1 - \frac{1}{n})...(1 - \frac{k-1}{n})$$

$$\leq 1 + \sum_{k=1}^n \frac{1}{k!} 1(1 - \frac{1}{n+1})...(1 - \frac{k-1}{n+1}) + \frac{1}{(n+1)!} 1(1 - \frac{1}{n+1})...(1 - \frac{n}{n+1}) = a_{n+1}$$

1+2 implique que $\lim_{n\to\infty}(1+\frac{1}{n})^n:=e=2.718..$ (nombre d'Euler)

3.9 Convergence d'une suite définie par récurrence (un exemple)

$$a_1 = 3, a_n = g(a_{n-1}), n = 2, 3, g(x) = \frac{1}{2}x + \frac{5}{2}\frac{1}{x}$$

c'est à dire : $a_n = \frac{1}{2}a_{n-1} + \frac{5}{2}\frac{1}{a_{n-1}}$

Montrons que l'asuite est minorée et décroissante (converge)

- 1. $a_n > 0, \forall n \in \mathbb{N}*$ (éa suite est bien définie) par récurrence : $a_1 = 3 > 0 \to a_n > 0$ si $a_{n-1} > 0, n = 2...$
- 2. On calcule la limite sous l'hypothèse qu'elle existe $a = \lim_{n \to \infty} a_n = \frac{1}{2} \lim_{n \to \infty} a_{n-1} + \frac{5}{2} \frac{1}{\lim_{n \to \infty} a_{n-1}} = \frac{1}{2}a + \frac{5}{2} \frac{1}{a}$ $\Rightarrow \frac{1}{2}a^2 \frac{5}{2} = 0 \Rightarrow a = \sqrt{5} \left(-\sqrt{5} \text{ n'est pas posible} \right)$
- 3. La suite est minorée par $\sqrt{5}(\sqrt{5} = \inf(a_n)$ Démonstration par récurrence $(P_n : a_n \ge \sqrt{5})$
 - $a_1 = 3 \ge \sqrt{5}$

•
$$a_n = \frac{1}{2}(a_{n-1} + \frac{5}{<_{n-1}}) = \frac{1}{2a_{n-1}}(a_{n-1}^2 + 5) = \frac{1}{2a_{n-1}}(a_{n-1} - \sqrt{5})^2 + \sqrt{5} \ge \sqrt{5}(P_n)$$

4. La suite est décroissante (car $a_n \ge \sqrt{5}$ ou par récurrence) $a_n - a_{n-1} = \frac{1}{2}a_{n-1} + \frac{5}{2}\frac{1}{a_{n-1}} = \frac{-a_{n-1}^2 + 5}{2 \cdot a_{n-1}} \le 0$

$$2 + \underbrace{3+4}_{n \to \infty} : \lim_{n \to \infty} a_n = \sqrt{5}$$
 série convegergente

Remarques

- Toute suite convergente est bornée
- Si $\lim_{n\to\infty} a_n = a$ et $\lim_{n\to\infty} b_n = b$ et si pour $n\geq n_0$ on a $a_n\leq b_n \Rightarrow a\leq b$
- Critère du quotient pour les suites : si

$$\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}=\rho$$
 existe, alors
$$\lim_{n\to\infty}a_n=0\text{ si }0\leq\rho<1\text{ et la suite diverge si }\rho>1.$$
 Aucune conclusion si $\rho=1$

• Si a_n est une suite croissante, et b_n est une suite décroissante, et si $\lim_{n\to\infty} (b_n - a_n) = 0$, alors :

$$- a_0 \le a_n \le a_{n+1} \le b_{n+1} \le b_{n+1} \le b_0$$
$$- a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = b \text{ existent}$$

3.10 Suites de Cauchy

<u>Critère de convergence</u> \Leftrightarrow à la définition de convergence pour les suites de nombres réels

<u>Définition</u>: Une suite $(a_n)a_n \in \mathbb{R}$ est une suite de Cauchy si pour tout $\epsilon > 0$, il existe n_0 tel que pour tout $n, m \ge n_0$

$$|a_n - a_m| < \epsilon \tag{3}$$

<u>Théorème</u>: Une suite de nombres réels est une suite de Cauchy si et seulement si la suite est une suite convergente.

Démonstration:

$$\Leftarrow \lim_{n \to \infty} a_n = a : \forall \epsilon > 0, \exists n_0 \text{ t.q. } \forall n \geq n_0 | a - a_n | < \frac{\epsilon}{2}$$

donc, $\forall m, n \geq n_0 | a_n - a_m | + | a_m - a | < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$
" \Rightarrow " nécessite B.W. (Bolzano-Weierstrass), voir 2.13

3.11 Application : Suites récurrentes linéaires

Soit
$$g(x) = qx + b, q \neq 1$$
 et $a : \frac{b}{1-q}$
On a $g(a) = a$

<u>Théorème</u>: Soit $a \in R, a_n = g(a_{n-1}), n = 2, ...$

- si |q| < 1 alors la suite converge
- si |q| > 1 et $a_1 \neq a$ la suite diverge

Exemple:
$$(a_1 = 3), a_n = \frac{1}{2}a_{n-1} + 1, n = 2$$

Démonstration:

- $\lim_{n\to\infty} a_n = a = ag(a)$ si la simite eciste
- $n \ge 2.|a_n a_{n-1}| = |(qa_{n-1} + b) (qa_{n-a} + b)| = |q(a_{n-1} a_{n-2})| = |q||a_{n-1} a_{n-2}| = \dots = |q|^{n-2}|a_2 a_1| \text{ (= par récurrence)}$ $\Rightarrow \text{ divergente si } |q| > 1, a_2 \ne a_1 \ne a)$
- Soit $n > m \ge n_0$ $|a_n - a_m| = |(a_n - a_{n-1} + (a_{n-1} - a_{n-2}) + \dots + (a_{m+1} - a_m)|$ $\le (|q|^{n-2} + |q|^{n-3} + \dots + |q|^{m-1})|a_2 - a_1|$ $= |q|^{m-1} \underbrace{(1 + |q| + \dots + |q|^{n-m-1})}_{\sum_{k=0}^{n-m-1} |q|^k = \frac{1 - |q|^{n-m}}{1 - |q|}} |a_2 - a_1|$ $\le \frac{1}{1 - |q|} |q|^m [trou]$

$$2+3: \lim_{n\to\infty} a_n = a$$

Cauchy, limite existe

3.12 Généralisation : théorème de point fixe de Banach

<u>Théorème</u>: Soit I un intervalle fermé et $g:I \to I$ tel que

$$|g(x) - g(y)| \le |q| \cdot |x - y|, \forall x, y \in I, |q| < 1$$
 (4)

alors

- il existe un unique $a \in I$ tel que a = g(a)
- $\lim_{n\to\infty} a_n = a$ pour toute suite $a_n, a \in I$ et $a_n = g(a_{n-1}), n = 2. ---$

3.13 Théorème de Bolzano-Weierstrass

<u>Définition</u>: Soit (n_k) une suite d'entiers naturels telle que $n_k > n_l$ si k > lAlors la suite $(b_k), b_k = a_{n_k}$ est appelée une sous-suite de la suite a_k

<u>Théorème</u>: B.W. De toute suite bornée, on peut extraire une sous-suite convergente.

Exemple: $a_n = (-1)^n$

 $a_n \in [-2, 2]$, donc (a_n) bornée

$$b_k = a_{\underbrace{2k}_{n_k}} = (-1)^{2k} = 1$$

$$c_k = a_{2k+1} = (-1)^{2k+1} = -1$$

Donc $\lim_{k\to\infty} b_k = 1$ et $\lim_{k\to\infty} c_k = -1$ mais $\lim_{n\to\infty} a_n$ n'existe pas.

Explication:

On divise par deux l'intervalle [a,b] qui contient tous les (a_n) et on retient une moitié qui contient un nombre infini des a_n . Puis on recommence. Par récurrence on détermine l'existence d'une limite

3.14 Limites inférieurs et limite supérieure d'une suite a_n bornée

<u>Définition</u>: $a \in \mathbb{R}$ est un point d'accumulation de (a_n) s'il existe une soussuite (b_k) telle que $\lim_{k\to\infty}b_k=a$

$$E_1 = \{a_1, ...\} \inf(E_1) = b_1, \sup(E_1) = c_1$$

$$E_2 = \{a_2, ...\} \inf(E_2) = b_2, \sup(E_2) = c_2$$

$$E_3 = \{a_n, ...\} \inf(E_n) = b_n, \sup(E_n) = c_n$$

$$(b_n) \text{ une suite croissante et bornée}$$

$$(c_n) \text{ une suite décroissante et bornée}$$

$$\Rightarrow b := \lim_{n \to \infty} b_n =: \liminf_{n \to \infty} a_n$$

$$\Rightarrow c := \lim_{n \to \infty} c_n =: \limsup_{n \to \infty} a_n$$

Remarque: Si
$$\limsup_{n \to \infty} a_n = \liminf_{n \to \infty} = a$$
 alors
$$\lim_{n \to \infty} a_n = a$$
 (5)

4 Séries numériques

4.1 Définition

On aimerait définir des "sommes infinies" $\sum_{k=0}^{\infty} a_k$, pour $a_k \in \mathbb{R}$, c'est à dire pour (a_k) une suite donnée. Une telle somme infinie est appelée une série numérique.

Définition:
$$\sum_{k=0}^{\infty} a_k := \lim_{n \to \infty} s_n, s_n = \sum_{k=0}^{n}$$

$$Donc: s_0 = a_0$$

$$s_1 = a_0 + a_1 = s_0 + a_1$$

$$s_2 = a_0 + a_1 + a_2 = s_1 + a_2$$

Terminologie

- les a_n sont appelés les termes de la "somme infinie"
- La somme finie s_n est appelée n-ième somme partielle de la somme infinie.

Exemple:
$$\sum_{k=0}^{\infty} \frac{1}{2^k} := \lim_{n \to \infty} \sum_{k=0}^{n} (\frac{1}{2})^k = \lim_{n \to \infty} \frac{1 - (\frac{1}{2})^{n+1}}{1 - \frac{1}{2}} = 2$$

<u>Définition</u>: une <u>série</u> numérique est dite convergente si la suite (s_n) des sommes partielles converge. La limite $s = \lim_{n \to \infty} s_n$ est appelée la <u>somme</u> de la série

<u>Définition</u>: une série $\sum_{k=0}^{\infty} a_n$ est <u>absolument</u> convergente si la série $\sum_{k=0}^{\infty} |a_k|$ converge

Remarques:

- toute série absolument convergente est convergente
- La somme dune série absolument convergente ne dépend pas de la numérotation de ses termes.

4.2 Exemples

4.2.1 La série harmonique

$$(S =) \sum_{k=1}^{\infty} \underbrace{\frac{1}{k}}_{a_k}$$
 cette série diverge

 $\lim_{n \to \infty} s_n = \infty \text{ (la limite n'existe pas)}$

<u>Démonstration</u> (raisonnement par l'absurde)

$$s_n = \sum_{k=1}^n \frac{1}{k}, b_n = s_{2n} = \sum_{k=1}^{2n} \frac{1}{k}$$

Supposons que $\lim_{n\to\infty} s_n = s \in \mathbb{R} \Rightarrow \lim_{n\to\infty} b_n = s$ Hypothèse Par définition de la limite Alors $b_n - s_n = \sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n}$

La série harmonique alternée

$$S = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k} (= \ln 2), (-1)^0 = 1$$
 (1)

• La série converge, mais pas absolument.

4.2.3 La série géométrique

$$S = \sum_{k=0}^{\infty} q^k, q \in \mathbb{R}$$
 (2)

- $\bullet\,$ La série géométrique converge absolument pour $0 \leq |q| < 1$
- La série géométrique diverge pour $|q| \ge 1$

Démonstration

$$s_n = \sum_{k=0}^n q^k = \frac{1 - q^{n+1}}{1 - q} \tag{3}$$

si $|q| < 1, n \to \infty$ alors

$$\frac{1}{1-q} \tag{4}$$

4.3Critères de convergence

4.3.1 Critère nécessaire

$$\sum_{k=1}^{\infty} a_k \text{ converge} \to \lim_{k \to \infty} a_k = 0$$

$$\Leftrightarrow$$

$$\lim_{k \to \infty} \neq 0 \to \sum_{k=1}^{\infty} \text{ ne converge } \underline{\text{pas}}$$

Démonstration

Si la série numérique converge, la suite $s_n = \sum_{k=0}^n a_k$ est une suite de Cauchy. Cela veut dire que $\forall \epsilon > 0, \exists n_0$ tel que $\forall n, m \geq n_0, |s_n - s_m| < \epsilon$. En particulier $|s_n - s_{n-1}| < \epsilon$. Mais si $|s_n - s_{n-1}| = a_n$, alors $|a_n| < \epsilon$. On a donc que $\forall \epsilon > 0$ il existe n_0 tel que $|a_n - 0| < \epsilon \Leftrightarrow \lim_{n \to \infty} a_n = 0$

4.3.2 Critère de Leibnitz

Si (a_k) est une suite alternée $((-1)^{k-1}a_k \ge 0 \text{ ou } \le 0 \text{ pour tout k})$. Si $(|a_k|)$ est strictement décroissante $(|a_{k+1}| < |a_k| \forall k)$ et si $\lim_{k \to \infty} a_k = 0$, alors la série converge.

Exemple

$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k}, a_k = \frac{1}{k} \tag{5}$$

Les 3 critères sont donc à respecter pour que ce soit une suite de Leibnitz :

- La suite doit être alternée
- $|a_k|$ doit être strictement décroissant
- $|a_k|$ doit tendre vers 0

4.3.3 Critère de comparaison

- Si $(0 \le)|a_k| \le b_k \forall k$ et si $\sum_{k=1}^{\infty} b_k$ converge, alors $\sum_{k=1}^{\infty} a_k$ converge (absolument)
- si $0 \le b_l \le a_k$ et si $\sum_{k=1}^{\infty} b_k$ diverge, alors $\sum_{k=1}^{\infty} a_k$ diverge.

4.3.4 Critère de d'Alembert et de Cauchy

ThéorèmeSi

$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = q \text{ existe (d'Alembert)}$$
 (6)

ou si

$$\lim_{k \to \infty} |a_k|^{\frac{1}{k}} \text{ existe (Cauchy)} \tag{7}$$

Alors

- $\bullet\,$ si $0 \leq q < 1$ La série converge
- $\bullet\,$ si $q\geq 1$ La série diverge
- \bullet si q = 1, pas de conclusion par cette méthode

RemarqueLes deux méthodes donnent la même valeur pour q. [trou exemple]

4.4 Série avec paramètres

1. Soit la série

$$s = \sum_{k=1}^{\infty} \frac{k^2}{b^k}, b \neq 0 \text{ un paramètre}$$
 (8)

La converge dépend du choix de b. Selon d'Alembert,

$$\lim_{k \to \infty} \left| \frac{\frac{(k+1)^2}{b^{k+1}}}{\frac{k^2}{b^k}} \right| = \lim_{k \to \infty} \left| \frac{(k+1)^2}{bk^2} \right| = \frac{1}{b} = q \tag{9}$$

- La série converge absolument pour |b| > 1
- La série diverge pour 0 < |b| < 1
- Le critère ne s'applique pas pour $b=\pm 1$. Dans ce cas, on a $\sum_{k=1}^{\infty} k^2$ ou $\sum_{k=1}^{\infty} (-1)^k k^2$. Ces séries divergent par les critères des sections précédentes.
- 2. Soit la série $s = \sum_{k=0}^{\infty} \frac{1}{k!} x^k, x \in \mathbb{R}$. Selon d'Alembert, $\lim_{k \to \infty} \left| \frac{\frac{1}{(k+1)!} x^{k+1}}{\frac{1}{k!} x^k} \right| = \lim_{k \to \infty} \left| \frac{x}{k+1} \right| = 0 = q$ La série converge donc pour tout x.

5 Fonctions réelles d'une variable réelle

5.1 Terminologie, conventions

Nous considérons des fonctions $f: \mathbb{R} \to \mathbb{R}, x \to y = f(x)$ pour $x \in D(f) \subset \mathbb{R}$ le domaine de définition de f

Convention:

En pratique, une fonction est souvent donnée par une expression (une formule, par exemple $f(x) = x^2$). Alors, il est entendu que le domaine de définition que D(f) soit le plus grand sous-ensemble de \mathbb{R} sur lequel l'expression est bien définie.

Exemples

$$f(x) = \sin(x) \iff f : \mathbb{R} \to \mathbb{R}, D(f) = \mathbb{R}$$

$$x \to y = \sin(x)$$

$$f(x) = \frac{2}{1-x^2} \iff f : \mathbb{R} \to \mathbb{R}, D(f) = \mathbb{R} \setminus \{-1, 1\}$$

$$x \to y = \frac{2}{1-x^2}$$

5.1.1 Fonctions polynômes

$$f(x) = \sum_{k=0}^{n} a_k x^k, a_k \in \mathbb{R}, D(f) = \mathbb{R}$$

$$\tag{1}$$

5.1.2 Fonctions rationnelles

$$f(x) = \frac{p(x)}{q(x)}$$
, p,q, des fonctions polynômes $D(f) = \mathbb{R} \setminus \{x : q(x) = 0\}$ (2)

5.1.3 Fonctions algébriques

Fonctions construites à partir de fonctions polynômes et un nombre fini d'opérations $+,-,\cdot,/,\sqrt[n]{}$

5.1.4 Fonctions transcendantes

Toutes les fonctions qui ne sont pas algébriques.

Par exemple: $\sin(x), \ln(x), e^x, \cos(x), \dots$

5.2 Définitions

<u>Croissant</u> une fonction $f : \mathbb{R} \to \mathbb{R}$ est *croissante* si $x_1 \leq x_2 \to f(x_1) \leq f(x_2)$ pour tout $x_1, x_2 \in D(f)$. Elle est *strictement croissante* si $x_1 < x_2 \to f(x_1) < f(x_2)$

<u>Décroissant</u> une fonction $f : \mathbb{R} \to \mathbb{R}$ est décroissante si $x_1 \ge x_2 \to f(x_1) \ge f(x_2)$ pour tout $x_1, x_2 \in D(f)$. Elle est strictement décroissante si $x_1 > x_2 \to f(x_1) > f(x_2)$

 $\underline{\mathbf{Monotone}}$ Une fonction est monotone si elle est soit croissante soit décroissante.

<u>Symétrique</u> Un ensemble est *symétrique* (par rapport à 0) si $x \in \mathbf{X} \to -x \in \mathbf{X} \forall x \in \mathbf{X}$.

Exemples: [-1,2] et [-2,1] ne sont pas symétriques, alors que [-3,3] et $[-2,1] \cup [1,2]$ le sont.

<u>Paire</u> Une fonction $f: \mathbb{R} \to \mathbb{R}$ est paire si D(f) est symétrique et si $f(x) = f(-x) \forall x \in D(f)$

Exemples: $0, 1, x^2, \cos x \frac{e^x + e^{-x}}{2}, \dots$

<u>Impaire</u> Une fonction $f : \mathbb{R} \to \mathbb{R}$ est *impaire* si D(f) est symétrique et si $f(-x) = -f(x) \forall x \in D(f)$

Exemples: $0, x, x^3 \sin(x), \frac{e^x - e^{-x}}{2}$

<u>Périodique</u> Une fonction $f: \mathbb{R} \to \mathbb{R}$ est appelée *périodique* de période $\mathbf{T} > 0$ si $D(f) = \mathbb{R}$ et si $f(x + \mathbf{T}) = f(x), \forall x \in \mathbb{R}$. Le plus petit $\mathbf{T} > 0$ tel que les conditions sont respectées est appelé <u>la</u> *période* de f

Exemple : la fonction $\sin^2(x)$ est 2π périodique, mais la période est de π

5.3 Les fonctions sinh et cosh

<u>Remarque</u> Soit $f : \mathbb{R} \to \mathbb{R}$ avec D(f) symétrique. Alors $f = f_+ + f_-$, avec f_+ une fonction paire, et f_- une fonction impaire. On a

$$f_{+}(x) = \frac{1}{2}(f(x) + f(-x))$$
$$f_{-}(x) = \frac{1}{2}(f(x) - f(-x))$$

Exemple: $f(x) = e^x$

$$e^{x} = \cosh(x) + \sinh(x)$$
$$\cosh(x) = \frac{1}{2}(e^{x} + e^{-x})$$
$$\sinh(x) = \frac{1}{2}(e^{x} - e^{-x})$$

$$\cosh^2(x) - \sinh^2(x) = 1$$

5.4 Opérations algébriques

5.4.1 Fonctions avec parité

Soient p_1, p_2, p_3 des fonctions paires, et i_1, i_2, i_3 des fonctions impaires définies sur un domaine symétrique $D, f : \mathbb{R} \to \mathbb{R}$.

Alors:

- $p_1 + p_2$ est pair
- $p_1 \cdot_2$ est pair
- $i_1 + i_2$ est impair
- $i_1 \cdot i_2$ est **pair**
- $p \cdot i$ est impair

- $i_1 \circ i_2$ est impair $\Im(i_2) \in D(i_1)$
- $f \circ p$ est pair, $\Im(p) \in D(f)$
- $p \circ 1$ est pair, $\Im(i) \in D$

<u>Vérification-Exemple</u>: $(i_1 \circ i_2)(-x) = i_1(1_2(-x)) = i_1(-i_2(x)) = -i_1(i_2(x)) = -(i_1 \circ i_2)(x)$

Exemples:

Fonction pairs $\cos(x) + x^2, \sin(x^2), \cos(\sin(x)), \exp(\cosh(x))$

Fonction impairs $\sin(x) + x$, $\sin(x^3)$, $\sin(\sinh(x))$, $\sin^3(x)$

5.4.2 Fonctions périodiques

Soient f, g de fonctions périodiques de période T_f et T_g T_f , $T_g > 0$, $h: \mathbb{R} \to \mathbb{R}$, Alors

$$\left. \begin{array}{c} f+g \\ f \cdot g \end{array} \right\} \text{ est T-périodique} \iff \frac{T_f}{T_g} \in \mathbb{Q} \\ h \circ f \text{ est } T_f \text{ périodique} \end{array}$$

 $\underline{\textbf{Remarque}} \ \underline{\frac{T_f}{T_g}} \in \mathbb{Q} \to \underline{\frac{T_f}{T_g}} = \underline{\frac{r}{s}}, r, s \in \mathbb{N} *$

$$T = T_f \cdot s = T_g \cdot r$$

<u>Attention</u> Même si T_f et T_g sont <u>la</u> période de f et g, T n'est typiquement pas la période de f+g ou $f \cdot g$, et T_f n'est typiquement pas <u>la</u> période de $h \circ f$)

5.5 Exemples

1.
$$f(x) = \frac{x^3 \cos(x)}{x + \tan(x)}$$

$$\mathbf{D}(\tan) = \mathbb{R} \setminus \{ \frac{\pi}{2} + n \cdot \pi, n \in \mathbb{Z} \}$$

- la fonction est paire
- f n'est pas périodique
- 2. $\frac{\sin(3x)}{\cos(5x)}$, $\mathbf{D}(f) = \{x \in \mathbb{R} : \cos(5x) \neq 0\}$ $\underline{\mathbf{la}}$ période de $\cos(\mathbf{x})$ est de 2π \rightarrow la période de $\cos(5\mathbf{x})$ est de $\frac{2\pi}{5} = T_f$ $\underline{\mathbf{la}}$ période de $\sin(3\mathbf{x})$ est de $\frac{2\pi}{3} = T_g$ on a $\frac{2\pi}{5}$ = $\frac{3}{5} \in \mathbb{Q} \rightarrow$ f est périodique de $\frac{2\pi}{5} \cdot 5 = \frac{2\pi}{3} \cdot 3 = 2\pi$
 - f est une fonction impaire
 - Après inspection du graph, on trouve que la période est de π la période est de 2

3.
$$f(x) = -\sin(\pi \cdot x) + \cos(x)$$

la période est de 2π

- fonction pas périodique, car $\frac{2\pi}{2} \notin \mathbb{Q}$
- f n'a pas de parité

Définie sur le domaine de tan(x)

4.
$$f(x) = \overline{\sin(\tan(x))} - \underline{\tan(\sin(x))}$$

Bien définie sur $x \in \mathbb{R}$

- période de 2π
- impaire

5.5.1 Composition (un exemple)

$$f(x) = \begin{cases} x & \text{pour } x > 1 \\ -x & \text{pour } x < 1 \end{cases}$$

$$g(x) = \begin{cases} x^2 & \text{pour } x \ge 0 \\ 2x + 3 & \text{pour } x < 0 \end{cases}$$

$$h(x) = (f \circ g)(x) = f(g(x)) = \begin{cases} x^2 & \text{pour } x \ge 1 \\ -x^2 & \text{pour } 0 \le x < 1 \\ 2x + 3 & \text{pour } -1 \ge x < 0 \\ -(2x + 3) & \text{pour } x < 1 \end{cases}$$

5.5.2 Les fonction signum et Heaviside

$$\operatorname{sign}(x) = \begin{cases} +1 & \text{pour } x > 0 \\ 0 & \text{pour } x = 0 \\ -1 & \text{pour } x < 0 \end{cases}$$

$$H(x) = \begin{cases} +1 & \text{pour } x > 0 \\ 0 & \text{pour } x \le 0 \end{cases}$$

5.6 Transformation affines (rappel, voir les pré-requis)

$$f(3x - 4) \equiv f(3x) - 4 \equiv g(3x) \to g(x) = f(x - 4)$$
$$f(3x - 4) \equiv f(3(x - \frac{4}{3})) = h(x - \frac{4}{3}) \to h(x) = f(3x)$$

5.7 Limites

5.7.1 Définitions

Dans ce chapitre, $f : \mathbb{R} \to \mathbb{R}$ et $\mathbf{D}(f) \subset]a, b[, a, b \in \mathbb{R}, a < b \text{ Soit } (x_n)_{n \ge 1} \text{ une suite}$ telle que $x_n \in \mathbf{D}(f)$ et supposons que $\lim_{n \to \infty} x_n = x^* \in]a, b[$

Question: Que peut-on dire de la suite $(y_n)_{n\geq 1}$ où $y_n=f(x)$ pour f quelconque? Réponse: Rien du tout: Donnés (x_n) et (y_n) on peut trouver une fonction telle que $f(x_n)=y_n$ (on définit f de cette manière).

Définition (limite épointée)

La fonction $f: \mathbb{R} \to \mathbb{R}$ admet pour limite (épointée) $l \in \mathbb{R}$ lorsque x tend 1. vers x^* . Si pour toute suite $(x_n), x_n \in \mathbf{D}(f) \setminus \{x^*\}$ tel que $\lim_{n \to \infty} x_n = x^*$. La suite $(y_n), y_n = f(x_n)$ converge et $\lim_{n \to \infty} y_n = l$ (\iff la même limite pour toutes les suites admises)

Définition (limite du doc de référence)

La fonction $f: \mathbb{R} \to \mathbb{R}$ admet pour limite $l \in \mathbb{R}$ lorsque x tend vers x^* . Si pour toute suite $(x_n), x_n \in \mathbf{D}(f)$ tel que $\lim_{n \to \infty} x_n = x^*$. La suite $(y_n), y_n =$ $f(x_n)$ converge et $\lim_{n\to\infty}y_n=l(\iff$ la même limite pour toutes les suites admises)

Remarques importantes

- 1. Si $x^* \notin \mathbf{D}(f)$, les deux définitions coïncident
- 2. Si $x^* \in \mathbf{D}(f)$
 - la limite dans 1. (la valeur de n) peut être différente de $f(x^*)$ car on ne regarde jamais la valeur de $f(x^*)$ dans le calcul de l
 - On a $l = f(x^*)$ dans 2. (si la limite existe) car (x_n) avec $x_n = x^*$ pour tout n est une suite admise dans 2. (mais pas dans 1.)

Notations:

- 1. $\lim_{n\to\infty} f(x) \equiv \lim_{\substack{x\to x^* \\ \neg \neq -*}} f(x) = l$ Limite épointée
- 2. $\lim_{n\to\infty} f(x) = l$ Limite selon le document de référence.

Remarques (au cas ou $x^* \in \mathbf{D}(f)$

• Il se peut que 1. existe mais pas 2 $0 \quad \text{pour} \quad x \neq 0$ $1 \quad \text{pour} \quad x = 0$

$$\frac{\text{ex:}}{1}$$
 pour $x = 0$

$$\lim_{\substack{x \to x^* \\ x \neq x^*}} f(x) = 0$$

- 2. $\lim_{n\to\infty} f(x)$ n'existe pas
- Il se peut que 2 existe mais pas $1 \underline{\text{ex}} : f : [0,0] \to \mathbb{R}, f(0) = 1$
 - 1. $\lim_{\substack{x \to x^* \\ x \neq x^*}} f(x)$ n'existe pas
 - $2. \lim_{n \to \infty} f(x) = 1$

Exemple : (avec $x \notin \mathbf{D}(f)$

1.
$$f(x) = \frac{p(x)}{q(x)}, p(x) = x^2 + 2x + 1, q(x) = x + 1$$

$$\mathbf{D}(f) = \mathbb{R} \setminus \{-1\}, \text{ on choisit } x^* = -1$$

$$\lim_{\substack{x \to -1 \\ x \neq -1}} f(x) = \lim_{\substack{x \to -1 \\ x \neq -1}} \frac{x^2 + 2x + 1}{x + 1} = \lim_{\substack{x \to -1 \\ x \neq -1}} \frac{(x + 1)^2}{x + 1} = \lim_{\substack{x \to -1 \\ x \neq -1}} (x + 1) = \lim_{\substack{x \to -1 \\ x \neq -1}} \lim_{\substack{n \to \infty \\ n \to \infty}} (x_n + 1) \text{ II faut }$$

$$\text{contrôler toutes les suites } (x_n) \text{ telles que } x_n \neq -1, \lim_{\substack{n \to \infty \\ n \to \infty}} x_n = -1$$

$$= (\lim_{n \to \infty} x_n) + 1 = 0$$

2. Non-existence d'une limite

$$f(x) = \sin(\frac{1}{x}), \mathbf{D}(f) = \mathbb{R} \setminus \{0\}$$

Soit $x^* = 0$

 $\lim_{\substack{x\to 0\\x\neq 0}} f(x)$ n'existe pas. Pour montrer cela :

- Il suffit de trouver <u>une</u> suite (x_n) telle que $x_n \neq x^*$ et $\lim_{n \to \infty} x_n = x^*$ mais telle que $\lim_{n \to \infty} f(x_n)$ n'existe pas.
- on trouve <u>deux</u> suites (x_n) et $\overset{\sim}{x_n}$ telles que $x_n \neq x^*, \overset{\sim}{x_n} \neq x^*, \underset{n \to \infty}{\lim} f(x_n) = l \underset{n \to \infty}{\lim} \overset{\sim}{x_n} = \tilde{l}$ [trou mika, jusqu'aux 2 graphiques concentrés]

5.7.2 Limites

<u>Définition</u>: Une fonction $f: \mathbb{R} \to \mathbb{R}$ admet pour limite à droite (à gauche) $l_+ \in \mathbb{R}(l_- \in \mathbb{R})$ lorsque q tend vers x^* , si pour toue suite $(x_n), x_n \in \mathbf{D}(f)$ telleque $x_n > x^*(x_n < x^*)$. La suite $(y_n), y_n = f(x_n)$ converge et $\lim_{n \to \infty} y_n = l_+ (\lim_{n \to \infty} y_n = l_-)$.

Notations

$$\lceil \lim_{x \to x^* +} f(x) \rfloor \equiv \lim_{\substack{x \to x^* \\ x > x^*}} f(x) = l_+$$

$$\lceil \lim_{x \to x^* -} f(x) \rfloor \equiv \lim_{\substack{x \to x^* \\ x < x^*}} f(x) = l_-$$

petit trou

Exemple:
$$f(x) = \frac{|x|}{x} \cdot \lim_{\substack{x \to 0 \\ x \neq 0}} \text{ n'existe pas. } \lim_{\substack{x \to 0 \\ x > 0}} cf(x) = 1, \lim_{\substack{x \to 0 \\ x < 0}} cf(x) = -1 \text{ et } -1 \neq 1$$

5.7.3 Opérations algébriques sur les limites

lim

$$x \to x^*$$

Si
$$x \neq x^*$$

$$x > x^*$$

$$x < x^*$$

[trou mika]

$$\underline{\text{Exemple}}_{\substack{x \to 2 \\ x \neq 2}} \lim_{\substack{x \to 2 \\ x \neq 2}} (3x^2 - 2xx + 5) = \dots = 3(\lim_{\substack{x \to 2 \\ x \neq 2}} x)^2 - 2(\lim_{\substack{x \to 2 \\ x \neq 2}} x) + 5 = 3 \cdot 2^2 - 2 \cdot 2 + 5 = 3$$

5.7.4 Limites épointées et composition de fonctions

(attention au piège) soit

avec
$$\lim_{\substack{x \to x^* \\ x \neq x^*}} f(x) = y^*, \lim_{\substack{y \to y^* \\ y \neq u^*}} g(x) = l$$

Alors (attention aux conditions)

$$\lim_{\substack{x\to x^*\\x\neq x^*}}h(x)=\lim_{\substack{x\to x^*\\x\neq x^*}}g(f(x))=l$$
 Pourvu que pour toute suite $(x_n),x_n=x^*$ et $\lim_{n\to\infty}x_n=x^*$ il existe un n_0 tel que $f(x_n)yequivy_n\neq y^*$ pour tout $n\geq n_0$

Remarque : Cette difficulté disparaîtra pour f,g des fonctions continues.

Exemple:
$$g(x) = \begin{cases} 0 & \text{pour} \quad x = 1\\ 2 & \text{pour} \quad x \neq 1 \end{cases}$$

$$f(x) = 1 \text{ pour tout } x \in \mathbb{R}$$

$$g(f(x))=0$$
 pour tout x, mais $\lim_{\substack{x\to x^*\\x\neq x^*}}f(x)=1=y^*$ et $\lim_{\substack{y\to y^*\\y\neq y^*}}g(y)=2\neq\lim_{\substack{x\to 0=x^*\\x\neq 0}}$ [petit trou]

5.7.5 "Limites infinies" et comportement à ∞

Conventions:

- $\lim_{\substack{x \to x^* \\ x \neq x^* \\ x = m}} f(x) = +\infty (ou \infty)$ veut dire que pour toute suite $xn, x_n \in \mathbf{D}(f), x_n \neq x_n = x^*$ on a $(ou \infty)$
- encore un trou...

5.7.6 Théorème des deux gendarmes

<u>Théorème</u> soit f,g, des fonctions de $\mathbb{R} \to \mathbb{R}$ telles que

- $\mathbf{D}(h) \subset \mathbf{D}(f) \cap \mathbf{D}(g)$ pour x proche de x^*
- pour x proche de x*

$$f(x) \le h() \le g(x) \tag{3}$$

• f(x) = g(x) = 1

Alors h(x) = 1

Démonstration

soit (x_n) une suite dans $\mathbf{D}(h), x_n \neq x^*, \lim_{n \to \infty} x_n = x^*$. Par hypothèse 1 et 2, on a

$$f(x_n) \le h(x_n) \le g(x_n) \tag{4}$$

pour n suffisamment grand. En utilisant le point 3. et le théorème des deux gendarmes pour les suites, alors $h(x_n)$ tend vers l

[&]quot;x proche de x*" : $\exists \epsilon > 0$ tel que $\forall x \neq x_0$ avec $|x - x^*| < \epsilon$

5.7.7 Exemples

1.
$$\lim_{x \to \infty} (\sqrt{x^2 + x} - x) = \lim_{x \to \infty} \underbrace{\frac{x}{\sqrt{x^2 + x} + x}}_{=h(x)}$$

Sans restriction x > 0:

$$\begin{split} h(x) & \leq \frac{x}{\sqrt{x^2} + x} = \frac{1}{2} \\ & \geq \frac{x}{2\sqrt{x^2 + x}} = \frac{1}{2} - \frac{\sqrt{x^2 + x} - x}{2\sqrt{x^2} + x} \\ & = \frac{1}{2} - \underbrace{\frac{x}{2\sqrt{x^2 + x}} \underbrace{(\sqrt{x^2 + x} + x)}}_{\geq x} \geq \frac{1}{2} - \frac{1}{4x} \\ & \frac{1}{2} \geq h(x) \geq \underbrace{\frac{1}{2} - \frac{1}{4x}}_{x \to \infty: \frac{1}{2} - \frac{1}{4\infty} = \frac{1}{2}} \end{split}$$

Donc $\frac{1}{2} \ge \lim_{x \to \infty} h(x) \ge \frac{1}{2}$ et donc $\lim_{x \to \infty} h(x) = \frac{1}{2}$

2. Reminder: pour
$$0 \le x \le \frac{\pi}{4} \to 0 \le \sin x \le x \le \tan x$$

 $\lim_{x \to \neq 0} \cos(x) = 1.$ Une fonction paire : on peut se limiter à x>0. On va prendre $0 < x < \frac{\pi}{4}$

$$1 \ge \cos(x) = \sqrt{1 - \sin(x)^2} \ge \sqrt{1 - 2\sin(x)^2 + \sin(x)^4}$$
$$= 1 - \sin(x)^2 \ge 1 - x^2$$

Donc
$$\underbrace{1}_{1} \ge \cos(x) \underbrace{\ge 1 - x^2}_{1}$$

Remarque : $\lim_{n\to\infty}\cos(\frac{1}{n})$

3. $\lim_{x \to \neq 0} \frac{\sin(x)}{x} = 1$; $\frac{\sin(x)}{x}$ est une fonction paire.

Pour $0 < x < \frac{\pi}{4}$.

 $0 < \sin(x) \le x \le \tan(x) = \frac{\sin(x)}{\cos(x)}$. On multiplie par $\frac{1}{\sin(x)}$

$$1 \le \frac{x}{\sin(x)} \le \frac{1}{\cos(x)} \Leftrightarrow \underbrace{\cos(x)}_{\rightarrow 1 \text{ quand } x \rightarrow 0} \le \frac{\sin(x)}{x} \le 1$$

4.
$$\lim_{x \to \neq 0} \frac{1 - \cos(x)}{x} = \lim_{x \to \geq 0} \left(\frac{1 - \cos(x)^2}{x^2} \cdot \frac{1}{1 + \cos(x)} \right) = \left(\left(\frac{\sin(x)}{x} \right)^2 \cdot \frac{1}{1 + \cos(x)} \right)$$
$$= 1^2 \cdot \frac{1}{1 + 1} = \frac{1}{2}$$

5.
$$\lim_{n \to \infty} e^x = \infty$$
$$\lim_{x \to -\infty} e^x = 0$$

6.
$$f(x) = e^{\frac{1}{x}}$$
$$\mathbf{D}(f) = \mathbb{R}^*$$
$$\lim_{x \to 0} e^{\frac{1}{x}} = \lim_{y \to \infty} e^y = 0$$

5.7.8 Définition de la limite (épointée) avec ϵ et δ

(Définition équivalente à la définition avec les suites)

<u>Définition</u>: La fonction f: $\mathbb{R} \to \mathbb{R}$ admet par limite $l \in \mathbb{R}$ lorsque x tend vers x^* , si $\forall \epsilon > a, \exists \delta > 0$ tel que $|f(x) - l| < \epsilon, \forall x \in \mathbf{D}(f)$ tels que $0 < |x - x^*| < \delta$

$$\underline{\text{Exemple}}: f(x) = 2x, x^* = 0, \lim_{\substack{x \to 0 \\ x \neq 0}} = 0 = l$$

A montrer: $\forall \epsilon > 0, \exists \delta \text{ tel que } |2x - 0| < \epsilon \text{ (ok pour } \delta = \frac{\epsilon}{2})$

Car
$$|2x - 0| = |2x| = 2|x| = 2|x - 0| \le 2\delta \le \epsilon$$

5.8 Fonctions continues

Notation : A partir de maintenant, on écrira x_0 au lieu de x^* pour les points qui nous intéressent

Définition: La fonction f:
$$\mathbb{R} \to \mathbb{R}$$
 est continue en $x_0 \in \mathbf{D}(f)$ si
$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = f(x_0) (\Leftrightarrow \lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) \text{ existe})$$

5.8.1 Exemple:

$$f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{pour} \quad x \neq 0\\ 1 & \text{pour} \quad x = 0 \\ (\to f(0)) \end{cases}$$
est continu en $x_0 = 0$ car

$$\lim_{\substack{x \to 0 \\ x \neq 0}} f(x) = \lim_{\substack{x \to 0 \\ x \neq 0}} \frac{\sin(x)}{x} = 1 = f(0)$$
 (5)

Remarque:
$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = f(x_0) = f\left(\lim_{x \to x_0} x\right)$$

Si f est continue en x_0

Prolongement par continuité

(voir exemple 4.9.1) Si $\lim_{\substack{x\to x_0\\x\neq 0}} f(x)=l\in\mathbb{R}$ mais $x_0\not\in\mathbf{D}(f)$ alors on peut définir une fonction g sur $\mathbf{D}(f)\cup\{x_0\}$ par

$$g(x) = \begin{cases} f(x) & \text{pour } x \neq x_0 \\ l & \text{pour } x = x_0 \end{cases}$$
 Par définition g est continue en x_0

= <u>Définition</u> La fonction $f: \mathbb{R} \to \mathbb{R}$ est continue sur $I =]a, b[\subset \mathbf{D}(f)$ si f est continue en tout point $x_0 \in I$

5.8.2 Propriétés des fonctions continues

Remarque La composition de deux fonctions continues (sur]a,b[) est une fonction continue

Remarque L'image d'une intervalle ouvert par une fonction continue est un intervalle, ais pas forcément ouvert et pas forcément borné

<u>Remarque</u>L'image d'un intervalle ouvert par une fonction continue strictement monotone est un intervalle ouvert (éventuellement non-borné)

5.8.3 Fonctions "élémentaires"

<u>Théorème</u>: Les fonctions "élémentaires" sont toutes continues sur leur domaine de définition

Conséquences pour les fonctions "élémentaires" on a pour $x_0 \in \mathbf{D}(f)$ que $\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = f(x_0)$

Exemple
$$\lim_{\substack{x \ tox_0 \ x \neq x_0}} \cos(x) = \cos(0) = 1$$

$$\lim_{\substack{x \ tox_0 \ x \neq x_0}} \exp(\cos(\ln(\sqrt{\cosh(x)}))) = e$$

$$\lim_{\substack{x \ tox_0 \ x \neq x_0 \ x \neq x_0}} \sin(\frac{1}{x}) = \sin(\frac{1}{x_0}), \forall x_0 \in \mathbf{D}(\sin(\frac{1}{x})) = \mathbb{R}*$$

5.8.4 Intervalles fermés

<u>Définition</u> La fonction $f:\mathbb{R} \to \mathbb{R}$ est continue à droite (à gauche) en $x_0 \in I = [a, b[(]a, b]) \subset \mathbf{D}(f)$ si

$$\lim_{\substack{x \text{ to} x_0 \\ x > x_0}} f(x) = f(x_0) (\lim_{\substack{x \text{ to} x_0 \\ x < x_0}} f(x) = f(x_0)$$
 (6)

Remarquef continue en $x_0 \Leftrightarrow f$ continue à droite en x_0 et f continue à gauche en x_0

<u>Définition</u> La fonction $f: \mathbb{R} \to \mathbb{R}$ est continue sur $I = [a, b] \subset \mathbf{D}(f)$ si f est continue sur a, b, continue à droite en a = a et continue à gauche en a = b

<u>Théorème</u>1 :; Toute fonction continue $f:[a,b]\to\mathbb{R}$ admet un <u>maximum</u> et un <u>minimum</u> c'est à dire il existe $c,d\in[a,b]$ tels que $f(c)\leq f(x)\leq f(d)$ pour tout $x\in[a,b]$

<u>Démonstration</u> utilise B.W.

$$\underline{\text{Notation}}\ \underbrace{m}_{\min} = \min_{x \in [a,b]}^{\min f(x)}, \underbrace{M}_{\max} = \max_{x \in [a,b]}^{\max f(x)}$$

Théorème2 : (de la valeur intermédiaire) Toute fonction continue f:[a,b] → \mathbb{R} prend (une fois au moins) toutes les valeurs entre f(a)etf(b)

<u>Démonstration</u> Supposons que f(a) < f(b). On cherche $u \in [a, b]$ tel que f(u) = c pour $c \in [f(a), f(b)]$ pour c donné.

Les suites (a_n) et (b_n) se construisent en appliquant la méthode de bissection à la fonction $g(x) = f(x) - c/g(x) = 0 \Leftrightarrow f(x) = c$

Méthode de bissection

Si la fonction $g:[a,b]\to\mathbb{R}$ est continue et si g(a)<0 et g(b)>0, alors il existe $u\in[a,b]$ tel que g(u)=0

Exemple Soit
$$g(x) = x^2 - 2, g: [1, 2] \to \mathbb{R}$$
 $g(1) = -1 < 0, g(2) => 0$

$$\frac{5}{4} \le \frac{3}{2} \le \frac{3}{2}$$

Avantages:

- la convergence est garantie
- convergence seulement linéaire

On a $u_n \in [a_n, b_n]$, longueur de $[a_n, b_n] = \frac{b-a}{2^n}$

On a
$$\ln(\frac{b-a}{n^2}) = \ln(b-a) - \underbrace{n \cdot \ln(2)}_{}$$

linéaire en n

(le # de digits corrects croit linéairement)

<u>Définition</u> la fonction $f: \mathbb{R} \to \mathbb{R}$ admet un point fixe si l'équation f(x) = x admet une solution

Théorème (du point fixe) Toute fonction continue $f:[a,b] \to [a,b]$ admet un point fixe

<u>Démonstration</u> appliquer la méthode de bissection à g(x) = f(x) - x (ou g(x) = x - f(x)

Dérivée d'une fonction d'une variable 6

Dans ce chapitre $f_{\mathbb{R}} \to \mathbb{R}, x_0 \in]a, b[\subset \mathbf{D}(f)$

6.1 **Définitions**

 $\underline{\text{D\'efinition}}$ (dérivable) La fonction f est dérivable en $x_0,$ si la limite

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0} \equiv d_{x_0} \text{ existe}$$
 (1)

Nota Bene d_{x_0} est un nombre $a_{x_0+h\Leftrightarrow h=x-x_0}$

Remarque:
$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{f(x) - f(x_0)} = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(x_0 + h) - f(x_0)}{h}$$

Remarque Si f est continue en $x_0 \lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) - f(x_0) = 0$

<u>Définition</u> (différentiable) La fonction f est différentiable en $x_0 \in]a,b[\to \mathbb{R}$ s'il existe un nombre $\alpha \in \mathbb{R}$ et une fonction $r:]a, b[\to \mathbb{R}$ tel que

$$f(x_0 + h) = f(h_0) + \alpha h + r(x_0 + h) \cdot h$$
 (2)

avec
$$\lim_{\substack{h \to 0 \\ h \neq 0}} r(x_0 + h) = 0$$
 $\iff \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{r(x_0 + h) \cdot h}{h} = 0$

$$\iff \lim_{\substack{h \to 0 \\ h \to 0}} \frac{r(x_0 + h) \cdot h}{h} = 0$$

$$r(x_0 + h) = 0$$
 est o(h)

Remarque dérivable \iff différentiable

"
$$\to$$
" $\lim_{\begin{subarray}{c} h \to 0 \\ h \neq 0 \end{subarray}} \frac{f(x_0 + h) - f(x_0)}{h} = d(x_0) =: \alpha$ on a

$$r(x_0 + h)\frac{f(x_0 + h) - f(x_0) - \alpha h}{h} = \frac{f(x_0 + h) - f(x_0)}{h} - \alpha$$

Donc

$$\lim_{h \to 0} r(x_0 + h) = d(x_0) - \alpha = |0 \text{ pour } \alpha = d(x_0)$$
" \(\times \text{"ona} \frac{f(x_0 + h) - f(x_0)}{h} = \alpha + r(x_0 + h) \)
$$\dim \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \alpha + \lim_{h \to 0} r(x_0 + h) = \alpha \)$$

Définition

On dit que f est dérivable (différentiable) sur $]a,b[\subset D(f)$ si f est dérivable (différentiable) en tout point $x_0 \in]a,b[$

Définition

Soit la fonction f dérivable sur]a,b[. Alors on peut définir la fonction f', appelée la dérivée de f par

$$f'(x) = dx \equiv \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (3)

Définition (fonction dérivée d'ordre n)

Si la fonction f' est dérivable sur]a,b[, on peut définir la fonction f'' appelée la deuxième dérivée (ou dérivée seconde) de f par f''(x) = (f')'(x) et puis par récurrence, si la (n-1)ème dérivée de la fonction f est dérivable sur]a,b[on peut définir la fonction $f^{(n)}$ (la n-ième dérivée de f) par $f^{(n)}(x) = (f^{(n-1)})'(x), n = 2,3,...$

6.2 Exemples (à savoir par coeur

(Sans démonstration)

6.3 Dérivabilité implique continuité

 $\frac{\text{Th\'eor\`eme}}{\text{Une fonction qui est}}\underbrace{\text{d\'erivable en }x_0}_{A} \text{ est }\underbrace{\text{continue en }x_0}_{B}$

 $A \to B$

$$\underline{\underline{\mathbf{D\acute{e}monstration}}} \lim_{\substack{x \to x_0 \\ x \neq x_0}} (f(x) - f(x_0)) = \lim_{\substack{x \to x_0 \\ x \neq x_0}} \left(\frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \right)$$

$$= \underbrace{\left(\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0} \right)}_{d(x_0) \in \mathbb{R}} \underbrace{\left(\lim_{\substack{x \to x_0 \\ x \neq x_0}} (x - x_0) \right)}_{=0} = 0$$

La réciproque du théorème est fausse ! $(B \not\to A)$

6.4 Intervalles fermées

Définition (voir l'exemple précédent)

La fonction $f: \mathbb{R} \to \mathbb{R}$ est dérivable à droite (à gauche) en $x_0 \in I, I = [a, b[(]a, b]), \subset D(f)$ si

$$\lim_{\substack{x \to 0 \\ h > 0}} \frac{f(x_0 + H) - f(x_0)}{h} \equiv d_+(x_0) \in \mathbb{R} \text{ existe}$$
 (4)

$$\left(\lim_{\substack{x\to 0\\h<0}} \frac{f(x_0+H)-f(x_0)}{h} \equiv d_-(x_0) \in \mathbb{R} \text{ existe}\right)$$
 (5)

Remarque

f dérivable en $x_0 \in]a, b[\iff$ f dérivable à droite en x_0 et f dérivable à gauche en x_0 et $d_+(x_0) = d_-(x_0) (= d(x_0))$

<u>Définition</u> La fonction $f:\mathbb{R} \to \mathbb{R}$ est dérivable sur $I = [a, b] \subset D(f)$ si f est dérivable sur [a, b], dérivable à droite en a et dérivable à gauche en b

$$\lim_{\substack{substackh \to 0h > 0}} \frac{f(-1+h)-f(-1)}{h} = \infty, \lim_{\substack{h \to 0 \\ h < 0}} \frac{f(1+h)-f(1)}{h} = -\infty$$

6.5 Opérations algébriques sur les dérivées

 $f,g:\mathbb{R}\to\mathbb{R}$ dérivable sur $]a,b[\subset D(f)\cap D(g),\alpha,\beta\in\mathbb{R}$

$$(\alpha f + \beta g)' = \alpha f' + \beta g'$$

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$

Exemple
$$a_k \in \mathbb{R}, k = 0, ...n$$

$$f(x) = \sum_{k=0}^{n} a_k \cdot x^k = a_0 + a_1 \cdot x + \dots$$

$$f'(x) = \sum_{k=1}^{n} a_k \cdot k \cdot x^{k-1} = \sum_{k=0}^{n-1} a_{k+1}(k+1)x^k$$

6.6 Dérivée de la composition de deux fonctions

 $]a, b[\xrightarrow{f}]c, d[\xrightarrow{g} \mathbb{R} \text{ f dérivable en } x_0, \text{ g dérivable en } y_0 \text{ [trou]}]$

Théorème (dérivation en chaine

$$(g \circ f)'(x_0) = (g' \circ f)(x_0) \circ f'(x_0)$$

Ceci se généralise par récurrence (exemple)

$$f(x) = \cos(\ln(\sqrt{1+x^2})), D(f) = \mathbb{R}$$

$$f'(x) = -\sin(\ln(\sqrt{1+x^2})) \cdot \frac{1}{\sqrt{1+x^2}} \cdot \frac{1}{2\sqrt{1+x^2}} \cdot 2x$$

Démonstration

$$((g \circ f)(x_0 + h) = (g \circ f)(x_0) + (g \circ f)'(x_0)h + o(h)$$
 [trou mika]

6.7 Continuité de la fonction dérivée

(Ne pas confondre avec 5.3!)

Un contre-exemple: (f n'est pas nécessairement continue)

soit
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{pour } x \neq 0 \\ 0 & \text{pour } x = 0 \end{cases}$$

 $D(f) \in \mathbb{R}$ n'est pas continue sur \mathbb{R} (vérifier!)

f est dérivable sur $\mathbb{R} \ (\to f \text{ est continue sur } \mathbb{R} \)$

i. pour
$$x \neq 0$$
 on a

$$f'(x) = 2x\sin(\frac{2}{x}) + x^2\cos(\frac{1}{x})\frac{-1}{x^2}$$
 (6)

ii. Pour x = 0 on a (utiliser la définition)

$$f'(0) = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{f(0+h) - f(0)}{h} = \lim_{\substack{h \to 0 \\ h \neq 0}} \frac{h^2 \sin(\frac{1}{h} - 0)}{h} = \lim_{\substack{h \to 0 \\ h \neq 0}} (h \sin(\frac{1}{h})) = 0$$
 (7)
Théorème des deux gendarmes

Donc
$$f'(x) = \begin{cases} \frac{1}{1} [????] \\ D(f') = \end{cases}$$

f' n'est pas continue sur \mathbb{R} , car f' n'est pas continue en x = 0.

<u>Démonstration</u> Soit $x_n = \frac{1}{2\pi n}, n \in \mathbb{N}*$

$$\lim_{n \to \infty} f'(x_n) = \lim_{n \to \infty} = \lim_{n \to \infty} \left(\frac{2}{2\pi n} \sin(2\pi n) - \cos(2\pi n)\right) = -1 \neq 0 = f'(0)$$

Par contre, est pas possible comme dérivée d'une fonction.

<u>Théorème</u>: Soit $f: \mathbb{R} \to \mathbb{R}$, $x_0 \in]a, b[\subset D(f)]$. Soit f continue sur]a, b[, et dérivable. $[a, b] \setminus \{x_0\}$ et soit $\lim_{\substack{x \to x_0 \\ c \neq x_0}} (f'(x)) = l$ Alors f est dérivable en x_0 et f'(x) = l

Attention à la logique Dans exemple (i), $\lim_{\substack{x \to x_0 \\ x \neq x_0}} (f'(x)) = n$ 'existe pas. Néanmoins la dérivée en $x_0 = 0$ existe!

6.8 Dérivée logarithmique

Une astuce pour :

- i. Calculer $\frac{f'}{f}$ pour f donné
- ii. calculer facilement la dérivée d'un produit de plusieurs fonctions

À propos

i.
$$g(x) = \ln(|f(x)|)$$
 alors $g'(x) = \frac{1}{f(x)}f'(x)$
Exemple $f(x) = (x+1)^2(x^211)^3$
 $g(x) = 2\ln(|x+1|) + \ln|x^2 + 1|$ [????]

6.9 Dérivée des fonctions réciproques

Rappel (critère) Toute fonction strictement monotone est injective

Explication

3 dessins

6.9.1 Continuité des fonctions réciproques

<u>Théorème</u>La réciproque d'une fonction injective continue est continue sur l'image de tout intervalle

Explication

dessin

Démonstration Utiliser la définition de la continuité

6.9.2 Dérivabilité de la fonction réciproque

<u>Théorème</u>La réciproque d'une fonction injective dérivable est dérivable sur l'image de tout intervalle I, tel que $f'(x) \neq 0, \forall x \in I$

Explication

2 dessins

6.9.3 Identité

On a pour $y = f(x), f(f^{-1}(y)) = y, \forall y \in D(f^{-1})$ ou encore $f(f^{-1}(x)) = x, \forall x \in D)f^{-1}$) Par dérivation en chaine :

$$f'(f^{-1}(x))(f^{-1})'(x) = 1, \forall x \in D(f^{-1})$$
(8)

donc

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

i
$$f(x) = e^x$$
, $f'(x) = e^x$, $f^{-1}(x) = \ln(x)$, $(f^{-1})'(x) = \frac{1}{e^{\ln(x)}}$

ii $f(x) = \sin(x) \sin(x) \frac{-\pi}{2}, \frac{\pi}{2}[f'(x)] = \cos(x), f'(x) = 0, \text{ pour } x \in]-\frac{\pi}{2}, \frac{\pi}{2}[f'(x)] = \arcsin(x)$ [???]

6.10 Application du calcul différentiel

6.10.1 Théorème de Rolle

<u>Théorème</u>Soit f: $\mathbb{R} \to \mathbb{R}$, $[a,b] \subset D(f), b > a, f$ continue sur [a,b] et dérivable sur [a,b]. Si f(a)=f(b)=0, alors il existe un $u \in]a,b[$ tel que f'(u)=0

Explication (des hypothèses)

$$f(x) = \sqrt{-x^2}$$

$$D(f) = [-1, 1]$$

f continue sur [-1,1]

f dérivable sur]-1,1[

Démonstration

i f continue sur [a,b]. Alors il existe un maximum M et un minimum m.

ii
$$M = 0, m = 0 \iff f(x) = 0 \forall x \in I \to f'(u) = 0 \forall u \in]a, b[$$

iii ou bien M ou m est différent de 0.

• Cas $M \neq 0 \rightarrow \exists x \in]a, b[$ tel que f(c) = M, c'est à dire

$$f(x) \le M = f(c), \forall x \in [a, b] \tag{9}$$

$$0 \underbrace{\leq}_{(1)x < c} \frac{f(x) - f(c)}{x - c} \underbrace{\leq}_{(2)x > 0} 0 \tag{10}$$

1.
$$0 \le \lim_{\substack{x \to c \\ x < c}} \left(\frac{f(x) - f(c)}{x - c} \right) = f'(c)$$

2.
$$0 \ge \lim_{\substack{x \to c \ x>c}} \left(\frac{f(x)-f(c)}{x-c}\right) = f'(c)$$

1+2 +
$$\mathbb{R}$$
 ordonné $\to f'(c) = 0$

6.10.2 Théorème des accroissements finis

<u>Théorème</u>Soit $f: \mathbb{R} \to \mathbb{R}[a,b] \subset D(f), b > a$ f continue sur [a,b], dérivable sur]a,b[. Alors il existe un $u \in]a,b[$ tel que

$$f'(u) = \frac{f(b) - f(a)}{b - a} \tag{11}$$

Explications

Démonstration

Soit
$$g(x) = f(x) - (f(a) + \frac{f(b) - f(a)}{b - a)}(x - a))$$

$$g(a)=g(b)=0,\!\mathrm{g}$$
 continue sur [a,b], g dérivable sur]a,b[

Par le théorème de Rolle, $\exists u \in]a,b[$ tel que g'(u) = 0

$$g'(u) = f'(u) - \frac{f(b) - f(a)}{b - a} = 0$$
, donc $f'(u) = \frac{f(b) - f(a)}{b - a}$

<u>Corollaire 1</u> Soit $[a,b] = [x,x+h] \in D(f)$, h > 0, f continue sur [x,x+h] et dérivable sur [x,x+h]- Alors il existe $\theta \in]0,1[$ tel que

$$f(x+h) = f(x) + f'(x+\vartheta h)h \tag{12}$$

<u>Corollaire 2</u> Soit $[a,b] \subset D(f), b > a, f$ continue sur [a,b], dérivable sur l'intervalle]a,b[. Alors

- i) $f'(x) \ge 0$ sur $[a, b] \to f$ croissant sur [a, b]
- ii) f' > 0 sur $]a, b[\rightarrow f$ strictement croissant sur [a, b]
- iii) $f'(x) \leq 0$ sur $[a, b] \rightarrow f$ décroissant sur [a, b]
- iv) f' < 0 sur $]a, b[\rightarrow f$ strictement décroissant sur [a, b]

<u>Corollaire</u> 3 Soit $[a,b] \subset D(f), b > a, f$ continue sur a,b, dérivable sur [a,b[. Alors $f(a)=0, f' \geq 0 \rightarrow f > 0$ sur [a,b]

Corollaire 4: Soit $[a,b] \subset D(f), b > a, f$ continue sur a,b, dérivable sur [a,b]. Alors f'=0 sur $[a,b] \to f$ est constant sur [a,b]

6.10.3 Exemples

i) Estimer la valeur de $\sin(31^\circ)(f(x) = \sin(x))$

$$\frac{\pi}{6} < \frac{31}{180}\pi = \frac{\pi}{6} + \frac{\pi}{180} < \frac{\pi}{4}$$

$$\sin(\frac{\pi}{6} + h) = \underbrace{\sin(\frac{\pi}{6})}_{\frac{1}{2}} + \cos(\frac{\pi}{6} + \vartheta \frac{\pi}{180}) \frac{\pi}{180}$$

 $g(x)=\cos(x)$ est strictement décroissant sur $\left[\frac{\pi}{6},\frac{\pi}{4}\right]$ car $g'(x)=-\sin(x)<0$ pour $x\in\left[\frac{\pi}{6},\frac{\pi}{4}\right]$

Donc
$$\frac{1}{2} + \frac{\sqrt{2}}{2} \frac{\pi}{180} \le \sin(31^\circ) \le \frac{1}{2} + \frac{\sqrt{3}}{2} \frac{\pi}{180}$$

ii) Montrer que $f(x)=\cos(x)-1+\frac{1}{2}x^2\geq 0, \forall x\in\mathbb{R}$. Puisque f est pair, il suffit de contrôler $x\geq 0$. On a

$$f(0) = \cos(0) - 1 = 0$$
 $\xrightarrow{coroll.3}$ il suffit de montrer $f'(x) \ge 0$ pour $x \ge 0$ (13)

On
$$f'(x) = -\sin(x) + x$$

$$f'(0) = 0 \rightarrow \text{il suffit de montrer } f''(x) \ge 0 \text{ pour } x \ge 0$$

On a

$$f''(x) = -\cos(x) + 1 \ge 9$$
 $(\rightarrow f'(x)[\text{trou}]$

6.10.4 Théorème des accroissements finis généralisés

<u>Théorème</u>Soit $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}[a,b] \subset D(f) \cap D(g), f, g$ continues sur [a,b], dérivables sur $[a,b[,g'(x)\neq 0 \forall x\in]a,b[$. Alors Il existe $u\in]a,b[$ tel que

$$\frac{f'(u)}{g'(u)} = \frac{f(b) - f(a)}{g(b) - g(a)} \tag{14}$$

Pour g(x) = x c'est le théorème des accroissements finis. <u>Démonstration</u> On pose $h(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a))\right)$ puis on utilise le théorème de Rolle.

6.10.5 Règle de Bernoulli de l'Hospital

Théorème Soit f et g deux fonctions déribales sur $]a,b[\subset D(f)\cap D(g)$ avec $g'(x)\neq 0 \forall x\in]a,b[$. Si $\lim_{\substack{x\to a\\x>a}}(f)(x)=\lim_{\substack{x\to a\\x>a}}(g)(x)=0$ et si

Remarque (généralisation, BH) On a le théorème analogue pour $\lim_{\substack{x \to b \\ x < b}} (.) ..$ pour le cas $\frac{\pm \infty}{\pm \infty}$ au lieu de $\frac{0}{0}$ et pour a $=-\infty$ ou b $=+\infty$

Exemples

I)
$$\lim_{\substack{x \to 0 \\ x \neq 0}} \left(\frac{\sin(x)}{x}\right) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{\sin(x)}{x}\right) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{\cos(x)}{1}\right) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\cos(x)\right) = \cos(0) = 1$$

II)

III)

IV)
$$limitex \to 0 \\ x > 0 \\ x^x = \lim_{\substack{x \to 0 \\ x > 0}} \left(e^{x \ln(x)} \right) \xrightarrow{expcontinue} e^{\lim_{\substack{x \to 0 \\ x > 0}} (x \ln(x))} = e^0 = 1$$

V)
$$\lim_{n \to \infty} (1 + \frac{2}{n})^n \stackrel{!}{=} \lim_{x \to \infty} (1 + \frac{2}{x})^x = \lim_{x \to \infty} e^{x \ln(1 + \frac{2}{x})}$$

$$x e^{\lim_{x \to \infty} (x \ln(1 + \frac{2}{x}))} = e^{\lim_{x \to \infty} \frac{\ln(1 + \frac{2}{x})}{\frac{1}{x}}} = e^{\lim_{x \to \infty} \frac{1 + \frac{2}{x} - \frac{2}{x}}{\frac{1}{x^2}}} = ???$$

VI)
$$\lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{1}{x^p} e^{-\frac{1}{x} = 0} \right) ???$$

$$\lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{1}{x^p} e^{-\frac{1}{x}} \right) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{\frac{1}{x^p}}{e^{\frac{1}{x}}} \right) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{\frac{-p}{x^{p+1}}}{e^{\frac{2}{x}} \frac{-1}{x^2}} \right) = \lim_{\substack{x \to 0 \\ x > 0}} \left((p \frac{1}{x^{p-1}} e^{-\frac{1}{x}})???$$
iii. ?????

Bémol : Attention !!!!!! La réciproque e BH est fausse !

Bemol: Attention !!!!!! th.des2gendarmes
$$\lim_{\substack{x \to 0 \\ x > 0}} \left(x sin\left(\frac{2}{x}\right)\right) = 0$$

$$0 = \lim_{\substack{x \to 0 \\ x > 0}} \left(x \sin(\frac{1}{x})\right) = \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{x^2 \sin(\frac{1}{x})}{x}\right) \stackrel{BH}{=} \lim_{\substack{x \to 0 \\ x > 0}} \left(\frac{2x \sin(\frac{1}{x} - \cos(\frac{1}{x})}{1}\right) \text{ n'existe pas.}$$

Démonstration de BH

- i) f.g continues $\sup a, x \in a, b \in a$ pour tout a < x < b
- ii) f,g continues sur [a, x] par prolongement continu, si on définit f(a) = g(a) = 0.
- iii) On a le théorème des accroissements finis généralisé sur [a, x] (si $g'(u) \neq 0$ pour tout $u \in]a, x[)$

iv)
$$\frac{f(x)}{g(x)} = \frac{f(x)-0}{g(x)-0} = \frac{f(x)-f(a)}{g(x)-g(a)}$$
 $\stackrel{th.desaccroissements finis}{=} \frac{f'(u)}{g'(u)}$ pour $u \in]a, x[$.

Puisque $u \to a$ lorsque $x \to a$ on a

$$\lim_{\substack{x \to a \\ x > a}} \left(\frac{f(x)}{g(x)} \right) = \lim_{\substack{u \to a \\ u > a}} \left(\frac{f'(u)}{g'(u)} \right)$$
 Si cette limite existe !

Ici on regarde toutes les suites (u_n) telles que $u_n > a$, $\lim_{n \to \infty} u_n = a$. Mais $u \in]a, x[$ Dépend de x et on ne devrait regarder que les suites (u_n) générées par les suites (x_n) dans la limite originale.

Démonstration du théorème de la section 5.7 Rappel :

Théorème: Soit $f:\mathbb{R} \to \mathbb{R}$, $x_0 \in]a,b[\subset D(f)]$. Soit f continue sur]a,b[, et dérivable. $[a,b] \setminus \{x_0\}$ et soit $\lim_{\substack{x \to x_0 \\ c \neq x_0}} (f'(x)) = l$ Alors f est dérivable en x_0 et f'(x) = l

$$\underline{ \textbf{Démonstration}} \ f'(x_0) \overset{def}{=} \lim_{\substack{h \to 0 \\ x \neq 0}} \left(\frac{f(x_o + h) - f(x_0)}{h} \right) \overset{BH}{=} \lim_{\substack{h \to 0 \\ h > 0 \\ h < 0}} \left(\frac{f'(x_0 + h)}{1'} \right) \overset{}{=} hypothesel$$

6.11 Etude des fonctions

Dans ce chapitre, f: $\mathbb{R} \to \mathbb{R}$, $I = [a,b] \subset D(f)$, a < b.

6.11.1 Définitions

[dessin courbe étrange]

Convexe f est convexe sur $I_0si\forall x_1, x_2 \in I_0, x_1 \neq x_2, x_1 < x_2, \lambda x_1 + (1 - \lambda)x_2 \in [x_1, x_2]$ pour $\lambda \in [0, 1]$ -

Si
$$f(\lambda x_1 + (1 - \lambda)x_2 \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Concave f est concave sur I_0 si $\forall x_1, x_2, x_1 < x_2$

$$f(\lambda x_1 + (1 - \lambda)x_2 \ge \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Point critique f admet un point critique en $x_0 \in]a,b[$ si $f'(x_0)=0$

Maximum local f admet un maximum local en $x_0 \in]a.b[$ si $f'(x_0) \ge f(x)$ pour x proche de x_0) $\exists \epsilon > 0$ tel que $\forall x$ tels que $|x - x_0 < \epsilon)$

Maximum local f admet un maximum local en $x_0 \in]a.b[$ si $f'(x_0) \leq f(x)$ pour x proche de x_0) $\exists \epsilon > 0$ tel que $\forall x$ tels que $|x - x_0 < \epsilon)$

Extremum local f admet un maximum local ou un minimum local.

Maximum local f admet un maximum global en $x_0 \in [a, b]$ si $f(x_0) \ge f(x)$ pour tout $x \in [a, b]$.

Minimum local local f admet un minimum global en $x_0 \in [a, b]$ si $f(x_0) \le f(x)$ pour tout $x \in [a, b]$.

Points d'inflexion f admet un point d'inflexion en $x_0 \in]a, b[$, si f est dérivable en x_0 et s'il existe un $\epsilon > 0$ tel que f soit convexe (concave) sur $[x_0 - \epsilon, x_0]$ et concave (convexe) sur $[x_0, x_0 + \epsilon]$

Théorème (convexe)

Si f' est une fonction croissante sur I_0 (en particulier si $f'' \ge 0$ sur I_0 voir corollaire 2, section 5.10.2) Alors f est convexe sur I_0

<u>Théorème</u>(concave)

Si f' est une fonction décroissante sur I_0 (en particulier si $f'' \le 0$ sur I_0 voir corollaire 2, section 5.10.2) Alors f est concave sur I_0

Remarque Toujours avoir en tête les exemples.

$$f(x) = x^2$$
 (convexe sur \mathbb{R})

$$f(x) = -x^2$$
 (convexe sur \mathbb{R})

Théorème (extremum local)

- 1. si f admet un extremum local en $x_0 \in]a, b[$ et si $f'(x_0)$ existe, alors $f'(x_0) = 0$
- 2. f admet un maximum local en x_0 , si $f'(x_0) = 0$ et $f''(x_0) < 0$
- 3. f admet un minimum local en x_0 , si $f'(x_0) = 0$ et $f''(x_0) > 0$

Remarque (cas général, voir développement limités)

- 1. maximum local si $f'(x_0) = \dots = f^{(n-1)}(x_0) = 0, f^{(n)}(x_0) < 0$ (n pair)
- 2. maximum local si $f'(x_0) = \dots = f^{(n-1)}(x_0) = 0, f^{(n)}(x_0) > 0$ (n impair)

Théorème(extremum global)

Soit $f: \mathbb{R} \to \mathbb{R}[a,b] \subset D(f)$, f continue sur [a,b]. Les points $x_0 \in [a,b]$ pour lesquels f admet un extremum global sont éléments de :

- i) $\{a, b\}$
- ii) {des points où f' n'existe pas}
- iii) {les points ou f' = 0}

<u>Théorème</u>(points d'inflexion)

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ deux fois dérivables sur $]a, b[\subset D(f)]$

- i) si f admet un point d'inflexion en $x_0 \in]a, b[$, alors f''(x) = 0
- ii) f admet un point d'inflexion en $x_0 \in]a,b[$ si f''(x)=0, si f'''(x) existe et si $f'''(x) \neq 0$

Remarque (cas général)

f admet un point d'inflexion si $f''(x) = \dots = f^{(n-1)} = 0, f^{(n)} \neq 0, n$ impair

L'exemple a retenir : x^5, x^7, \dots

6.11.2 Discuter le graphe d'une fonction

- 1. Trouver D(f), $\Im(f)$
- 2. symétries (paire, impaire, périodique)
- 3. zéros de f
- 4. continuité (limites à gauche et à droite pour les poins de discontinuité de f et les points au bord du domaine)
- 5. Dérivabilité de f ("calculer" f', f'', \dots trouver le domaine de définition de ces fonctions)
- 6. Points particuliers (points critiques, extremums, points ou f' n'existe pas)
- 7. monotonie de f (signe de f'), convexité/concavité de f (signe de f'')
- 8. Asymptotes
- 9. Tracer le graphe

6.11.3 Exemples

[magnifique dessin qui ressemble a une paire de fesses]

$$f(x) = |2x - 1| - x^2 + 1 \text{ sur } [-3, 3]$$

$$= \begin{cases} 2x - x^2 & \text{pour } x \in [\frac{1}{2}, 3] \\ 2 - 2x - x^2 & \text{pour } x \in [-3, \frac{1}{2}] \end{cases}$$

- 1. $D(f) = [-3, 3], \Im(f) = [m, M]$ à trouver
- 2. pas de symétrie

3.
$$2x - x^2 = 0$$
 sur $\left[\frac{1}{2}, 3\right], x = 2$
 $2 - 2x - x^2 = 0$ sur $\left[-3, \frac{1}{2}\right], x = 1 - \sqrt{1+2} = -1 - \sqrt{3}\$ = 2, 7...$

- 4. f continue sur [-3,3] (composition de fonctions continues)
- 5. f dérivable sur $[-3, \frac{1}{2}[(I_1) \text{ et sur } [\frac{1}{2}, 3](I_2) \text{ (mais } f \text{ pas dérivable sur } [-3, 3]$

Sur
$$I_1: f(x) = -2x - x^2 + 2$$

 $f'(x) = -2 - 2x$
 $f''(x) = -2$
 $I_2: f(x) = 2 - x^2$
 $f(x) = 2 - 2x$
 $f''(x) - 2$

6. Points particuliers :
$$x = \frac{1}{2}$$
, $\lim_{\substack{x \to \frac{1}{2} \\ x > \frac{1}{2}}} (f'(x)) = 1 \neq \lim_{\substack{x \to \frac{1}{2} \\ x < \frac{1}{2}}} (f'(x)) = -3$ on a $f(\frac{1}{2}) = \frac{3}{4}$ (minimum local)

Points où $f' = 0$:

sur $[\frac{1}{2}, 3], 2 - 2x = 0, x = 1, f''(1) = -2 \rightarrow f$ admet un maximum local : $f(1) = 1$

sur $[-3, \frac{1}{2}[, -2 - 2x = 0x = -1, f''(-1) = -2 \rightarrow f$ admet un maximum local en f(-1) = 3

Maximum et minimum global

valeurs aux bords : f(-3) = -1, f(3) = -3

$$M = \max\{-1, -3, 1, 3\} = 3$$

$$m = \min\{-1, -3, \frac{3}{4}\} = -3$$

d'où
$$\Im(f) = [-3, 3].$$

7. monotonicité (tableau des signes)

$$f'(-1) = f'(1) = 0, f'$$
 pas défini en $x = \frac{1}{2}$

- i) sur [-3,-1], f'(-3)=4 et f''(x)=-2 sur cet intervalle. f' est donc décroissant sur [-3,-1] et $0 \le f'(x) \le 4$. f est donc croisant sur cet intervalle.
- ii) Sur $[-1, \frac{1}{2}]$: f'(-1) = 0 et f''(x) = -2, f' est décroissant sur $[-1, \frac{1}{2}]$ et $-3 \le f'(x) \le 0$. f est donc décroissant sur cet intervalle
- iii) Sur $\left[\frac{1}{2},1\right]$, $f'(\frac{1}{2})=1$ et f''(x)=-2, f' est décroissant et $0\leq f'(x)\leq 1$ f est donc croissant
- iv) Sur [1,3]: f'(1) = 0 et f''(x) = -2, f est décroissant et $\le f'(x) \le 0$. f est donc décroissant

concavité, convexité f est concave sur I_1 et I_2 et f n'a donc aucun point d'inflexion. Attention ! f est concave sur I_1 et I_2 mais f n'est ni concave ni convexe sur $I=I_1\cup I_2$

6.11.4 Exemples avec limites

(Discussions à compléter!)

Exemple $f(x) = \ln(x)$

$$\lim_{\substack{x \to 0 \\ x > 0}} (f(x)) = -\infty \text{ (tangente verticale)}$$

$$\lim_{x \to \pm \infty} f(x) = b_{\pm} \in \mathbb{R}, \text{ asymptote horizontal}$$

exemple e^x

Cas de droites de la forme y = ax + b

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = a_{\pm}, \lim_{x \to \pm \infty} (f(x) - a_{\pm}x) = b_{\pm}$$

[trou exemple $x\hat{5}$]

6.12 Développement en séries et développement limité

6.12.1 Définitions

Définition une série de la forme

$$s = \sum_{k=0}^{\infty} \underbrace{a_k (x-a)^k}_{b_k} := \lim_{n \to \infty} \underbrace{\sum_{k=0}^n a_k (x-a)^k}_{s_n}$$
(15)

avec $a \in \mathbb{R}$, $a_k \in \mathbb{R}$ (donnés) et $x \in \mathbb{R}$ (un paramètre) est appelé une série entière (à cause des puissances "entières" de (x-a), au lieu de $|x-a|^{\frac{1}{3}k}$ par exemple.

- Le nombre a et les a_k sont considérés comme fixes, et on s'intéresse à la convergence de la série et sa somme en fonction du paramètre x
- Souvent on pose $x=a+\xi$ (étude locale proche de x=a). Donc $|\zeta| < r \iff |x-a| < r \iff [\text{dessin}]$

<u>Théorème</u>Il existe $\mathbf{r} \in \mathbb{R}, 0 \le r \le \infty$, tel que la série entière

$$s = \sum_{k=0}^{\infty} a_x (x - a)^k = \sum_{k=0}^{\infty} a_k \xi^k$$
 (16)

Converge absolument pour $|\xi| < r$ (r dans l'intervalle]a-r,a+r[). La série diverge pour $|\xi| > r(x \notin [a-r,a+r])$

<u>Définition</u> Le nombre r dans le théorème est appelé "rayon de convergence" de la série

Théorème(*) On a
$$r = \lim_{k \to \infty} (|a_k|^{\frac{1}{k(]-1}} \text{ Cauchy}$$
ou $r = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|$ D'Alembert
Si ces limites existent

Remarques

- Le théorème ne dit rien sur la convergence de la série pour x = a + r et x = a r (à contrôler séparément)
- Si $r = \infty$ (d'Alembert) la série converge pour tout $x \in \mathbb{R}$
- Si r=0 la série ne converge que pour x=a et $s=a_0$

<u>Remarque</u> La série converge en fait pour tout $z \in \mathbb{C}$ tel que |z - a| < r, c'est à dire pour z dans un disque centré en a de rayon r d'où le nom rayon de convergence.

Démonstration du théorème (*)
$$s = \sum_{k=0}^{\infty} \underbrace{b_k}_{a_k(x-a)^k}$$

Critère de d'Alembert

$$q = \lim_{k \to \infty} \left| \frac{b_{k+1}}{k_k} \right| = |x - 1| \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| < 1 \text{ [trou]}$$

6.12.2 Fonctions définies par une série entière

Nouveau point de vue : une série entière définie une fonction (pour a_1, a_k donnés)

$$f(x) = \sum_{k=0}^{\infty} a_x (x - a)^k (\text{si r} > 0)$$
 (17)

et
$$D(f) \supset]a - r, a + r[$$

6.12.3 Dérivée des fonctions définies par une série

<u>Théorème</u>Soit $f(x) := \sum_{k=0}^{\infty} a_k (x-a)^k$ et soit le rayon de converge r > 0. Alors

$$f'(x) = \sum_{k=0}^{\infty} a_{k+1}(k+1)(x-a)^k$$
 (18)

Explication On dérive terme par terme dans la série pour

$$f: \underbrace{\left(\sum_{k=0}^{\infty} a_k (x-a)^k\right)}_{a_0+a_1(x-1)+\ldots} = \sum_{k=1}^{\infty} a_k k (x-a)^{k-1} \text{ [trou]}$$

<u>Théorème</u>Soit $f(x) := \sum_{k=0}^{\infty} a_k (x-a)^k$ et soit le rayon de convergence r > 0.

Alors

$$f^{(n)}(x) = \sum_{k=0}^{\infty} a_{k+n} \frac{(k+n)!}{k!} (x-a)^k$$
 (19)

et le rayon de convergence de la série pour $f^{(n)}$ est r.

Conséquence Si f est définie par série entière, on a $f^{(n)}(a) = n!a_n$, ou

$$a_k = \frac{1}{x!} f^{(k)}(a)$$

Notation Soit I un intervalle ouvert. Alors on note

- $C^{\circ}(I) = \{ f : \mathbb{R} \to \mathbb{R} : I \subset D(f), \text{ f continue sur I} \}$
- $C^k(I) = \{f: \mathbb{R} \to \mathbb{R} I \subset D(f), fk$ -fois dérivable sur I et $f^{(k)}$ est continue sur des fonctions de classe C^k i} [trou]

6.12.4 Théorème de Taylor

<u>Théorème</u>(formule de Taylor avec reste, ou développement limité d'ordre n) Soit f une fonction de classe $C^{n+1}(I)$ pour un $n \in \mathbb{N}$ et soit $a, x \in I$

$$f(x) = \underbrace{\sum_{k=0}^{n} a_k (x - a)^k}_{p_n(x)} + R_n(a, x)$$
 (20)

avec $a_k = \frac{1}{k!} f^{(k)}(a)$. Alors

$$R_n(a,x) = \frac{1}{(n+1)!} f^{(n+1)}(u)(x-a)^{n+1}$$

où $u \in]a, x[$ si x > a et $u \in]x, a[$ si x < a

<u>Remarque</u> Pour n=0 on a $f(x) = f(a) + R_0(a, x)$ avec $R_0(a, x) = f'(u)(x - a)$ ce qui n'est rien d'autre que le théorème des accroissements finis.

Idée de la démonstration

Interprétation géométrique du théorème de Taylor

graphique Pour $f(x) = \sin(x)eta = 0$ on trouve

$$a_0 = \frac{1}{0!}f(0) = 0$$
 $p_0(x) = 0$

$$a_1 = \frac{1}{1!}f'(0) = 1$$
 $p_1(x) = x$

$$a_2 = \frac{1}{2!}f''(0) = 0$$
 $p_2(x) = x$

$$a_3 = \frac{1}{3!}f'''(0) = -\frac{1}{6} \quad p_3(x) = x$$

6.12.5 Développement d'une fonction en une série

<u>Remarque</u> Si f est de classe $C^{\infty}(I)$ on peut utiliser la formule d Taylor avec reste pour n arbitraire (mais à priori $n \leq \infty$).

<u>Théorème</u>(série de Taylor)

Si f est de classe $C^{\infty}(I)$ et si $\lim_{n\to\infty} R_n(a,x) = 0$ on obtient à partir du théorème de Taylor avec reste (pour x fixe)

$$f(x) = \sum_{k=0}^{\infty} a_x (x - a)^k \text{ (série de taylor)}$$
 (21)

et si a=0

$$fx$$
) = $\sum_{k=0}^{\infty} a_k x^k$ (Série de Mac Laurin) (22)

trou

Donc (formule de Taylor)

$$f(x) = \sum_{k=0}^{n} \underbrace{1}_{a_k} x^k + R_n(x)$$
 (23)

avec

$$R_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(n) x^{n+1} = \frac{1}{(1-u)^{n+2}} x^{n+1} = \frac{1}{1-u} \left(\frac{x}{1-u}\right)^{n+1}$$
(24)

avec $u \in]0, x[$ si x > 0 et $u \in]x, 0[$ si x < 0

Puisque $x \in I =]-\frac{1}{4}, \frac{1}{4}[$ trou

En fait on a cette égalité pour $x \in]-1,1[$ mais pas dans $D(f) = \mathbb{R} \setminus \{1\}$ <u>Contre</u> <u>exemple</u> <u>remarque</u> la condition $f \in C^{\infty}(I)$ n'est pas suffisant pour que f puisse être développé en une série entière

Soit
$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{pour } x > 0 \\ 0 & \text{pour } x < 0 \end{cases}$$

On a

- $\lim_{\substack{x\to 0\\x>0}} (f(x)) = 0 = f(0) \to f$ continue sur $\mathbb R$
- $f'(x) = \frac{1}{x^2}e^{-\frac{1}{x}}$ pour x > 0 f'(x) = 0 pour $x \le 0$ $\lim_{\substack{x \to 0 \\ x > 0}} (f'(x)) = 0 = f'(0) \text{ (voir le théorème chapitre 5.7 pour cette égalité)}$
- Par récurrence, on montre que $D(f^k)=\mathbb{R}$ et que $f^{(k)}(0)=0$

Donc $f \in C^{\infty}(\mathbb{R})$ et $f^{(k)}(0) = 0, k = 0, 1, 2, ...$

Formule de Taylor avec reste en x = a = 0

$$a_k = \frac{1}{k!} f^{(k)}(0) = 0$$

•
$$x < 0 : f(x) = 0 = \sum_{k=0}^{n} a_k x^k + R_n(x)$$

 $\to \mathbb{R}_n(x) = 0, n = 0, 1, 2, ...$

•
$$x > 0: f(x) = e^{-\frac{1}{x}} = \underbrace{\sum_{k=0}^{n} a_k x^k}_{=0} + R_n(x)$$

$$\to R_n(x) = e^{-\frac{1}{x}}$$

Donc pour x > 0 $\lim_{n \to \infty} R_n(x) = e^{-\frac{1}{x}} (= f(x))$

Conclusion : $f \in C^{\infty}(\mathbb{R})$ mais $f \notin C^{\omega}(\mathbb{R})$ car f ne peut pas être représenté proche de x=0 par une série entière.

6.12.6 Les fonctions exp, \sinh , \cosh , \sin , \cos , \ln , $(1-x)^{\alpha}$

Développement limité de e^x

Soit $I = \mathbb{R}$, a = 0, et $f(x) = e^x$, $f^{(n)}(x) = e^x$ et $f^{(n)}(0) = 1$

$$e^{x} = \sum_{k=0}^{n} \frac{1}{k!} x^{k} + \underbrace{\frac{1}{(n+1)!} e^{u} x^{n+1}}_{=R_{n}(x), |u| < |x|}$$
(25)

Développement de e^x en une série entière

On a
$$|R_n(0,x)| \le \underbrace{\frac{|x|}{|x|^{n+1}}}_{n\to\infty=0}, \forall x \in \mathbb{R}$$

et donc

$$e^x = \sum_{k=0}^{\infty} \frac{1}{k!} x^k, \forall x \in \mathbb{R}$$

$$r = \lim_{k \to \infty} \frac{\frac{1}{k!}}{\frac{1}{(x+1)!}} = \lim_{k \to \infty} (k+1) = \infty$$
 Les fonctions \sinh et \cosh

Avec la même procédure :

$$\sinh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1}$$
 (26)

$$\cosh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k)!} x^{2k}$$
 (27)

Les fonction \sin, \cos

Avec la même procédure

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$
(28)

$$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$
 (29)

La fonction ln(1+x)

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k, x \in], 1, 1[$$

Démonstration

$$\underbrace{\frac{d}{dx}\ln(1+x)}_{=\frac{1}{1+x}} = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \cdot k \cdot x = \sum_{k-1=l,l=0}^{\infty} (-1)^{l} x^{l} = \sum_{l=0}^{\infty} (-x)^{l} = \frac{1}{1-(-x)} = \frac{1}{1+x} \underline{La}$$

fonction $(1+x)^{\alpha}, \alpha \in \mathbb{R}$

On a
$$\frac{1}{n!} \frac{d^n}{dx^n} (1+x)^{\alpha} = \frac{1}{n!} \alpha(\alpha-1) ... (\alpha-n+1) = {\binom{\alpha}{n}}$$

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose n} x^n, \forall x \in]-,1[$$
 (30)

Fonction exponentielle complexe et formule d'Euler

Démonstration de la formule d'Euler :

On définit l'exponentielle $\exp(z) = \sum_{k=0}^{\infty} \frac{1}{k!} z^k$

$$\exp(ix) = \sum_{k=0}^{\infty} \frac{1}{k!} i^k x^k = \underbrace{\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}}_{\cos(x)} + i \cdot \underbrace{\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}}_{\sin(x)} = \cos(x) + i \sin(x)$$

6.12.7 La notation o et O

<u>Définition</u> Soit $n \in \mathbb{N}$. On écrit que $f(x) = o((x-a)^n), x \to a$ si

$$\lim_{\substack{x \to a \\ x \neq a}} \left(\frac{f(x)}{(x-a)^n} \right) = 0 \tag{31}$$

et on écrit que $f(x) = O((x-a)^n), x \to a$

Si

$$\left| \frac{f(x)}{(x-a)^n} \right| < C \in \mathbb{R} \text{ Proche de x=a, x \neq a}$$
 (32)

Remarque Cas n=0 : $f(x) = o(1), x \to a$ veut dire

$$\lim_{x \to a} \frac{f(x)}{1} = 0 \tag{33}$$

Remarque Si $f(x) = o(x^n), x \to 0$, alors $cf(x) = o(x^n), x \to 0$ **Remarque** Si

$$f(x) = o(/x - a)^n, x \to a$$

$$\frac{f(x)}{(x-a)^m} = o((x-a)^{n-m})x \to a$$
 (34)

 $0 < m < n, m, n \in \mathbb{N}$

Pour le développement limité d'une fonction en x = a, on a avec cette notation:

$$f(x) = p_n(x) + R_n(a, x)$$
$$= p_n(x) + o((x - a)^n), x \to a$$

Car
$$\frac{R_n(a,x)}{(x-a)^n} = \frac{1}{(n+1)!} \underbrace{f^{(n+1)}(u)}_{=f^{(n+1)}(a)} (x-a) \underset{x\neq a}{\overset{\to}{\to}} a0$$
 Exemples:

•
$$\frac{1}{1-x} = 1 + \underbrace{x + x^2 + x^3 + o(x^3)}_{o(x)} = 1 + o(1)$$

- —
- $e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + o(x^3)$
- $\sin(x) = x \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + o(x^5)$
- $\cos(x) = 1 \frac{1}{2!}x^2 + \frac{1}{4!x^4 + o(x_4)}$
- $\ln(1+x) = x \frac{1}{2}x^2 + \frac{1}{3}x^3 \frac{1}{4}x^4 + o(x^4)$

•
$$\ln(x) = \ln(1 + \underbrace{(x-1)}_{X \to 0(x \to 1)}) = \dots$$

1.
$$\frac{1}{\cos(x)} = \frac{1}{(1 + (\cos(x) - 1))}$$
$$X = \frac{-1}{2}x^2 + \underbrace{\frac{1}{24}x^4 + o(x^4)}_{o(x^2)}, \text{ donc } x \xrightarrow{\to 0} 0$$

$$\begin{split} &\frac{1}{(1+X)} = 1 - X + X^2 + o(X^2) \\ &\frac{1}{\cos(x)} = 1 - \left(\frac{-1}{2}x^2 + \frac{1}{24}x^4 + o(x^4)\right) + \left(-\frac{1}{2}x^2 + \underbrace{\frac{1}{24}x^4 + o(x^4)}^2\right) + o(x^4) \\ &= 1 + \frac{1}{2}x^2 - \frac{1}{24}x^4 + o(x^4) + \frac{1}{4}x^4 + o(x^4) \\ &= 1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + o(x^4) \end{split}$$

2.
$$\tan(x) = \frac{\sin(x)}{\cos(x)} = \sin(x) \frac{1}{\cos(x)}, x \to 0$$

$$= (x - \frac{1}{6}x^3 + o(x^3)) \cdot (1 + \frac{1}{2}x^2 + o(x^2))$$

$$= x + \frac{1}{2}x^3 - \frac{1}{6}x^3 + o(x^3)$$

$$= x + \frac{1}{3}x^3 + o(x^3)$$

3.
$$f(x) = \sin(\tan(x)) - \tan(\sin(x))$$
$$\sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + o(x^5)$$
$$\cos(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!x^4 + o(x_4)}$$
$$= x + \frac{1}{3}x^3 + o(x^3) - \frac{1}{6}(x + o(x))^3$$
$$- (x - \frac{1}{6}x^3 + o(x^3) + \frac{1}{3}(x + o(x))^3$$
$$= x + \frac{1}{3}x^3 - \frac{1}{6}x^3 - x + \frac{1}{6}x^3 - \frac{1}{3}x^3 + o(x^3)$$
$$= o(x^3)$$
En fait (vérifier !)
$$f(x) = -\frac{1}{20}x^7 + o(x^7)$$

7 Intégrales indéfinies et définies

7.1 Définition de l'intégrale indéfinie

 $\eth = d\acute{e}riv\acute{e}e$

 $\eth: C^1(]a,b[) \to C^0(]a,b[)$ ($C^1:$ les fonctions dérivées une fois, et qui sont encore continues sur la fonction dérivée) (pas injectif)

 $f:\to D(f)=f'$ (surjectif). Il s'agit de la fonction dérivée.

attention, f + c arrive aussi sur f'. c est une constante.

$$\eth^{-1}:C^1(]a,b[\leftarrow C^0(]a,b[)$$

$$\eth^{-1}(f) \leftarrow f$$

$$\eth^{-1}(f =: \{F \in C^1(]a,b[) : F' = f\}$$

Définition Soit
$$f \in C^0(]a, b[)$$
. Une primitive de f est une fonction $F \in C^1(]a, b[)$ telle que $F'(x) = f(x)$ pour $x \in]a, b[$

Remarque F est dérivable sur [a, b] car F' = f et continue sur [a, b] (voir le théorème de la section 5.7)

RemarqueDeux primitives d'une fonction ne diffèrent que d'une constante.

<u>Définition</u> On appelle intégrale indéfinie de f l'ensemble des primitives de f.

Notation $F(x) = \int f(x)dx$ ou $\int_{-\infty}^{\infty} f(t)dt$.

Exemples:

f	F	Domaine de Définition
x^n	$\frac{1}{n+1}x^{n+1} + C$	$n \neq 1, C \in \mathbb{R} (n \in \mathbb{R} \setminus \{-1\})$
$\frac{1}{x}$	$\ln(x) + c$	$x \in \mathbb{R}^*$
$\cos(x)$	$\sin(x) + C$	
$\sin(x)$	$-\cos(x) + C$	
e^x	$e^x + c$	
ln(x)	$x \cdot \ln(x) - x + C$	x > 0
$\tan(x) = \frac{\sin(x)}{\cos(x)}$	$-\ln(\cos(x)) + C$	$x \in D(\tan(x)$
$\frac{f'(x)}{f(x)}$	$\ln(f(x)) + C$	
$\frac{1}{1+x^2}$	$\arctan(x) + C$	
$\frac{f'(x)}{1+f(x)^2}$	$\arctan(f(x)) + C$	
$e^{x^2}2x$	e^{x^2}	
$nx^{n-1} + 2xn + 1e^{x^2}$	$x^n e^{x^2} + C$	

Remarque

L'application $\eth: C^1(]a,b[) \to C^0(]a,b[)$ est Linéaire : $\eth(\alpha f + \beta g) = \alpha \eth(f) + \beta \eth(g), \alpha\beta \in \mathbb{R}, f,g \in C^1(]a,b[).\eth^{-1}$ est aussi linéaire.

$$\int (\alpha f(x) + \beta g(x))dx = \alpha \int f(x)dx + \beta \int f(x)dx$$
 (1)

7.2 Définition de l'intégrale définie

Soit f une fonction continue de $\mathbb{R} \to \mathbb{R}$ $[a, b] \subset D(f), a \leq b$

<u>Définition</u> Soit $n \in \mathbb{N}^*$. alors une suite $(x_n), a \equiv x_0 \leq x_1 \leq x_2 \dots \leq x_n \equiv b$ est appelée une partition de [a,b]

Notation On écrira $\wp(x_0, x_1,x_n)$ pour une partition d'une intervalle [a, b]

Soit $n \in \mathbb{N}^3$, $\wp(x_o, ...x_n)$ une partition de $[a, b], u_i \in [x_{i_1}, x_i], i = 1, ..., n$.

Alors on appelle

$$S_n = \sum_{i=1}^n f(u_i)(x_i - x_{i-1})$$
 (2)

La somme de Riemann de f pour la partition $\wp(x_0,\ldots,x_n)$ et le choix de $(u_i)_{i=1,\ldots,n}$

RemarqueSi $f \leq 0$ sur [a, b], alors la somme de Riemann est une approximation de la "surface sous le graph de f".

Remarque Puisque la fonction f est continue sur [a, b] on a

$$m \cdot (b - a) \le S_n \le M(b - a) \tag{3}$$

où m et M dont le minimum et le maximum global de f sur [a,b].

Remarque Puisque f est continue sur [a, b], f est continue sur $[x_{i-1}, x_i]$ et f admet un minimum m_i et un maximum M_i sur $[x_{i-1}, x_i]$ et

$$(b-a)m \le \underline{S_n} \le S_n \le \overline{S_n} \le (b-a)M$$
, ou:

•
$$\underline{S_n} = \sum_{i=1}^n m_i (x_1 - x_{i-1})$$

<u>Définition</u> Soit $n \in \mathbb{N}^*$. Donnée une partition $\wp(x_0, \dots x_n)$, on définit $\Delta x \equiv \Delta x(\wp) := \max\{x_1 - x_0.x_2 - x_1, \dots\}$ la taille de la partition.

Exemple (découpage régulier).

On définit

$$x_i = a + \frac{b-a}{n}i, i = 0, 1, \dots n$$
$$\Delta x = \frac{b-a}{n}$$

Définition / Théorème (intégrale définie de f sur [a,b])

Soit f une fonction contiunue sur [a,b] $\wp_n \equiv \wp(x_0,\ldots,x_m), n \in \mathbb{N}^*$ une suite de partitions telles que $\lim_{n\to\infty} \Delta x(\wp_n) = 0$. Alors es $\lim_{n\to\infty} \underline{S} = \lim_{n\to\infty} \underline{S}$ et $\overline{S} = \lim_{n\to\infty} \overline{S}$ existent, sont indépendants du choix des la suite des partitions et $\underline{S} = \overline{S} =: S$. Le nombre S est apelé "intégrale définie de f sur [a,b]

Explication de $\underline{S} = \overline{S}$

La continuité de f sur [a,b] implique^(*) que $\forall \epsilon > 0$, il existe n_0 tel que $\forall n \geq n_0. |M_i - m_i| < \frac{\epsilon}{b-a}, i01, ..., n$, c'est à dire $|\overline{S} - \underline{S}| \leq \epsilon$

Limite épointée trou

continuité en $x \in D(f)$ trou **Notation** on écrit $\int_a^b f(x)dx$ pour l'intégrale définie sur [a,b]

trou

7.3 Propriétés de l'intégrale définie

1. linéarité trou

7.4 Théorème de la moyenne

<u>Théorème</u>Soit $f: \mathbb{R} \to \mathbb{R}[a,b] \subset D(f), b > a, f$ continue sur [a,b]. Alors il existe $u \in]a,b[$ tel que

$$\int_{a}^{b} f(x)dx = f(u)(b-a) \tag{4}$$

<u>Remarque</u> $f(u) = \frac{1}{b-a} \int_a^b f(x) dx$ = valeur moyenne de f sur [a, b].

<u>Démonstration</u>: Théorème des accroissements finis (donné le théorème fondamental du calcul intégral).

Théorème généralisé

Soit $f, g\mathbb{R} \to \mathbb{R}$, $[a, b] \subset D(f) \cap D(g)$, f, g continues sur [a, b], g(x) > 0, $\forall x \in [a, b]$. Alors il existe $u \in]a, b[$ tel que

$$\int_{a}^{b} f(x) \cdot g(x) \, \mathrm{d}x = f(u) \cdot \int_{a}^{b} g(x) \, \mathrm{d}x \tag{5}$$

Pour g(x) = 1 c'est le théorème précédent <u>Démonstration</u> Théorème de accroissements finis généralisé + théorème fondamental du calcul intégral.

7.5 Théorème fondamental du calcul intégral

<u>Théorème</u>Soit $f: \mathbb{R} \to \mathbb{R}, [a, b] \subset D(f), f$ continue sur [a,b], alors

- 1. La fonction G définie par $G(x) = \int_a^b f(t)dt$ est une primitive de f sur]a,b[, c'est à dire G est dérivable sur]a,b[et G'(x) = f(x).
- 2. Si F est une primitive de f sur]a,b[,alors

$$\int_{a}^{b} f(x)dx = F(b) - F(a) \tag{6}$$

i) Soit
$$x \in]a, b[$$
 alors $\frac{G(x+h)-G(x)}{h} = \frac{1}{h} \left(\int_a^{x+h} f(t) dt - \int_a^x f(t) dt \right) = \frac{1}{h} \int_x^{x+h} f(t) dt = \frac{1}{x} f(u)h = f(u)$ pour $u \in]x, x+h[, h > 0$ et $u \in]x+h, x[, h < 0]$ par le théorème de la avec $g(x) = 1$

Donc $u \to x$ lorsque $h \to 0$ et $f(u) \to f(x)$ car f est une fonction continue sur [x, x+h]([x+h, x])

ii) Soit F une primitive de f. Alors il existe $C \in \mathbb{R}$ tel que

$$F(x) = G(x) + C \text{ POur tout } x \in [a, b]$$
 (7)

Pour x = a on a F(a) = 0 + C = C

Donc F(x) = G(x) + F(a) et on trouve

$$F(b) = \underbrace{G(b)}_{=\int_a^b f(x) dx} + F(a)$$

$$= \underbrace{\int_a^b f(x) dx}_{a}$$
D'où
$$\underbrace{\int_a^b f(x) dx}_{a} = F(b) - F(a)$$

Remarque Pour f continue sur]a,b[la fonction $G(x) = \int_c^x f(t) dt$ est une primitive de f pour tout choix de $c \in]a,b[$. L'application $\eth: C^1(]a,b[) \to C^0(]a,b[)$ est donc surjective.

Notation On écrira

$$\int_a^b f(x) \, \mathrm{d}x = [F(x)]_a^b \equiv F(b) - F(a)$$

Exemples

1)
$$\int_0^1 1 \, \mathrm{d}x = [x]_0^1 = 1 - 0 = 1$$

2)
$$\int_0^{2\pi} \sin(x) dx = [-\cos(x)]_0^{2\pi} = -1 - (-1) = 0$$

Résumé du Théorème fondamental du calcul Intégral

<u>Définition</u> Soit $f \in C^0([a,b])$. Une primitive de f est une fonction $F \in C^1([a,b[)$ telle que F'(x)=f(x) pour tout $x \in]a,b[$

Remarque F est dérivable sur [a,b] (voir le théorème section 5,7) et F est donc continue sur [a,b]

<u>Définition</u> Soit $f \in C^0$ [a,b]). La limite $S := \underline{S} = \overline{S}$ où $\overline{S} = \lim_{n \to \infty} \overline{S_n}, \underline{S} = \lim_{n \to \infty} \underline{S_n}$ est appelé intégrale définie de f sur [a,b]

Notation

 $\int_a^b f(x)dx \in \mathbb{R} \to \text{intégrale définie}$

 $\int f(x)dx \equiv \int^x f(t)dt \to \text{intégrale indéfinie} = \{F \in C^1(]a,b[): F'=f\}$

on montre que $\lim_{\substack{x \to a \\ x > a}} (G(x)) = 0 =: G(a)$

ThéorèmeSoit $f \in C^0([a, b])$. Alors

- i) G est une primitive de f
- ii) $\int_a^b f(x) dx = F(b) F(a)$ pour toute primitive F de f

Théorème de la moyenne

soit $f \in C^0([a,b]), g \in C^0([a,b]), g(x) > 0$ pour tout $x \in [a,b]$, Alors il existe $u \in]a,b[$ tel que

$$\int_{a}^{b} f(x)g(x) dx = f(u) \int_{a}^{b} g(x) dx$$
 (8)

<u>Démonstration</u> Soient m et M le minimum et le maximum global de f sur [a,b]. Alors $m \cdot g(x) \leq f(x)g(x) \leq Mg(x)$ et donc

$$m \int_{a}^{b} g(x) dx \le \int_{a}^{b} f(x)g(x) dx \le M \int_{a}^{b} g(x) dx$$
 (9)

et il existe donc $v \in [m, M]$ tel que

$$\int_{a}^{b} f(x)g(x) dx = v \int_{a}^{b} g(x) dx$$
(10)

Par le théorème de la valeur intermédiaire, il existe $u \in]a,b[$ tel que v=f(u)

7.6 Application du théorème de la moyenne

Proposition:
$$\frac{2}{7} \le \underbrace{\int_0^\pi \frac{\sin(x)}{5 + \sqrt[3]{x}} dx}_{5} \le \frac{2}{5}$$

Démonstration On a $\sin(x) > 0$ pour $x \in]0, \pi[$. On pose

$$f(x) = \frac{1}{5 + \sqrt[3]{x}}, g(x) = \sin(x)$$

 $\exists u \in]0, \pi[$ tel que

$$I = f(u) \cdot \underbrace{\int_{0}^{\pi} \sin(x) dx}_{=[-\cos(x)]_{0}^{\pi} = 1+1=2}$$

f est une fonction décroissante sur $[0,\pi]$ et $f(0)=\frac{1}{5}, f(\pi)=\frac{1}{5+\sqrt[3]{\pi}}>\frac{1}{7}$

Donc $\frac{2}{7} \le I \le \frac{2}{5}$

7.7 Méthode d'intégration

7.7.1 Intégration "immédiate"

Voir le tableau

1.
$$a > 0$$
, $\int a^x dx = \int e^{x \ln(a)} dx = \frac{1}{\ln(a)} e^{x \ln(a)} + C = a^x \frac{1}{\ln(a)} + C$

2.
$$\int f(x) \cdot f'(x) dx = \frac{1}{2} f(x)^2 + C$$

Exemple: $\int \sin(x)\cos(x) dx = \frac{1}{2}\sin(x)^2 + C = -\frac{1}{2}\cos(x)^2 + C \text{ (à cause de la constante)}$

3.
$$\int \frac{f'(x)}{f(x)} dx = \ln(|f(x)|) + C$$

Exemple:
$$\int \tan(x) dx = -\int \frac{-\sin(x)}{\cos(x)} dx = -\ln(|\cos(x)|) + C$$

4.
$$\int_0^{\frac{\pi}{2}} \sin(x)^2 dx = \int_0^{\frac{\pi}{2}} \frac{1}{2} (1 - \cos(2x)) dx = \left[\frac{x}{2} - \frac{1}{4}\sin(2x)\right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}$$

5.
$$\int_0^{n \cdot \frac{\pi}{2}} \sin(x)^2 dx = n \cdot \frac{\pi}{4}$$
 (on fait n fois la même aire)

7.7.2 Intégration par changement de variable

Théorèmesoit $f: \mathbb{R} \to \mathbb{R}, [a,b] \subset D(f), f$ continue sur [a,b]. Soit $\varphi: [\alpha,\beta] \to [a,b], \varphi$ dérivable sur $[\alpha,\beta]$, et et φ' continue sur $[\alpha,\beta]$. De plus :

$$\varphi(\alpha) = a, \varphi(\beta) = b$$

d

Alors
$$\int_a^b f(x) dx = \int_\alpha^\beta f(\varphi(u)) \cdot \varphi'(u) du$$

Démonstration

Soit F une primitive de f sur [a,b], alors la fonction $F:G(u)=F(\varphi(u))$ est une primitive de $f(\varphi(u))\cdot\varphi'(u)$ sur $[\alpha,\beta]$, car

$$G'(u) = F'(\varphi(u)) \cdot \varphi'(u) = f(\varphi(u)) \cdot \varphi'(u) \tag{11}$$

En plus
$$\int_{\alpha}^{\beta} f(\varphi(u)) \cdot \varphi'(u) du = [G(u)]_{\alpha}^{\beta} = G(\beta) - G(\alpha)$$

= $F(\varphi(\beta)) - F(\varphi(\alpha)) = F(b) - F(a) = \int_{a}^{b} f(x) dx$

Remarque: Si φ est bijective, alors $F(x) = G(\varphi^{-1}(x))$

Exemples:

1.
$$I = \int_0^1 \sqrt{1 - x^2} \, dx = \frac{\pi}{4}$$
. On pose $x = \varphi(u) = \sin(u); \varphi : [0, \frac{\pi}{2}] \to [0, 1]$

$$I = \int_0^{\frac{\pi}{2}} \underbrace{\sqrt{1 - \sin^2(u)}}_{|\cos(u)|} \cdot \underbrace{\cos(u)}_{\varphi'(u)} \, du$$

$$= \int_0^{\frac{\pi}{2}} \cos^2(u) \, du = \int_0^{\frac{\pi}{2}} (1 - \sin^2(u)) \, du = \frac{\pi}{2} - \int_0^{\frac{\pi}{2}} \sin^2(x) \, du = \frac{\pi}{4}$$

2. Cas d'une intégrale indéfinie (voir la remarque)

$$\begin{split} F(x) &= \int \sqrt{1-x^2} \, \mathrm{d}x \\ x &= \varphi(u) = \sin(x), \varphi : [0, \frac{\pi}{2}] \to [0, 1] \\ G(u) &= \int (1-\sin^2(u) \, \mathrm{d}u = u - (\frac{1}{2}u - \frac{1}{4}\sin(2u)) = \frac{1}{2}u + \frac{1}{4} \underbrace{\sin(2u)}_{=2\sin(u)\cos(u)} \\ &= \frac{1}{2}u + \frac{1}{2}\sin(u)\sqrt{1-\sin^2(u)} \\ \mathrm{Donc} \ \mathrm{F}(\mathbf{x}) &= G(\varphi^{-1}(x)) == G(\arcsin(x)) = \frac{1}{2}\arcsin(x) + \frac{1}{2}x\sqrt{1-x^2} \end{split}$$

7.7.3 Intégration par partie

<u>Théorème</u>Soit $f:[a,b] \to \mathbb{R}, g:[a,b] \to R$ continûment dérivable sur [a,b] (= dérivable avec une fonction dérivée qui est continue). Alors

$$\int_{a}^{b} f'(x)g(x) dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx$$
 (12)

Remarque

En pratique, on écrit l'identité plutôt comme

$$\int_{a}^{b} f(x)g(x) dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x) dx$$
 (13)

Avec f continue sur [a,b] et g continûment dérivable sur [a,b].

Remarque (cas d'une intégrale indéfinie)

$$\int f(x)g(x) dx = F(x)g(x) - \int F(x)g'(x) dx$$
(14)

f continue, g continûment dérivable, F une primitive de F.

Démonstration

$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$$
(15)

et donc

$$\int_{a}^{b} (f \cdot g)' \, \mathrm{d}x = \int_{a}^{b} f'(x)g(x) \, \mathrm{d}x + \int_{a}^{b} f(x)g'(x) \, \mathrm{d}x \tag{16}$$

Exemples

1.
$$\int_0^1 e^x x \, dx = [e^x x]_0^1 - \int_0^1 e^x 1 \, dx$$

2.
$$\int_0^1 x^2 e^x \, dx = \left[e^x x^2 \right]_0^1 - \underbrace{\int_0^1 e^x (2x) \, dx}_{2 \int_0^1 e^x x \, dx}$$

3.
$$\int \ln(x) dx = x \ln(x) - \int \underbrace{x \frac{1}{x}}_{=1} = x \ln(x) - x + C$$

4.
$$\int_0^{\frac{\pi}{2}} \sin(x)^n dx = I_n, I_0 = \frac{\pi}{2}, I_1 = 1, n \in \mathbb{N}^*$$

$$n \ge 2 : I_n = \int_0^{\frac{\pi}{2}} \sin(x) \sin(x)^{n-1} dx$$

$$= \left[-\cos(x) \sin(x)^{n-1} \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} \cos(x) (n-1) (\sin(x)^{n-2} \cos(x) dx$$

$$= (n-1) \int_0^{\frac{\pi}{2}} \sin(x)^{n-2} (1 - \sin(x)^2) dx$$

$$= (n-1) I_{n-2} - (n-1) I_n$$
Donc $nI_n = (n-1) I_{n-2}$ ou $I_n = \frac{n-1}{n} I_{n-2}$
Donc $I_2 = \frac{1}{2} I_0 = \frac{\pi}{4}$

5.
$$\int \frac{1}{(x^{2}+1)^{n}} dx = I_{n}, I_{0} = x + C, I_{1} = \arctan(x) + C.$$

$$n \geq 1 : I_{n} = \int 1 \cdot \frac{1}{(x^{2}+1)^{n}} dx$$

$$= x \frac{1}{(x^{2}+1)^{n}} + 2n \int \underbrace{x \frac{1}{(x^{2}+1)^{n+1}} x}_{=\frac{(x^{2}+1)^{n+1}}{(x^{2}+1)^{n+1}}} dx$$

$$= \frac{x}{(x^{2}+1)^{n}} + 2nI_{n} - 2nI_{n+1}$$

$$I_{n} = \frac{x}{(x^{2}+1)^{n}} + 2nI_{n} - 2nI_{n+1}$$

$$Donc I_{n+1} = \frac{1}{2n} \frac{x}{(x^{2}+1)^{n}} + \frac{2n-1}{2n} I_{n}, n = 1, 2, 3....$$

$$\rightarrow I_{2} = \frac{1}{2} \frac{x}{x^{2}+1} + \frac{1}{2} \arctan(x) + C$$

7.8 Intégration d'un développement limité

$$f(x) = f(a) + f'(a)(x - a) + \ldots + \frac{1}{n!}f^{(n)}(a) = (x - a)^n + \emptyset((x - a)^n)$$
 (17)

lorsque $x \to a$ Alors :

Proposition: Soit

$$F(x) := \int_a^x f(x) dt$$

$$= f(a)(x-a) + \frac{f'(a)}{2}(x-a)^2 + \ldots + \frac{1}{(n+1)!} f^{(n)}(a)(x-a)^{n+1} + o((x-a)^n)$$
lorsque $x \to a$

Exemples

Soit $F(x) := \int_0^x \sin(\cos(x)) dt$. calculer le DL_5 (développement limité d'ordre 5) de F en x = 0. ON a besoin du DL_4 de $f(t) = \sin(\cos(t))$ en t = 0.

i)
$$\cos(t) = 1 - \underbrace{\frac{1}{2}t^2 + \frac{1}{24}t^4 + o(t^4)}_{=T \text{ et } T \to 0 \text{ pour } t \to 0}$$

ii) il nous faut le développement limité de sin en x=1 (car $\cos(0) = 1$). Il suffit de calculer le DL_2 de $\sin(x)$ en x=1 (car $T \equiv t^2$)

$$\sin(x) = \sin(1) + \cos(1)(x - 1) - \frac{1}{2}\sin(1)(x - 1)^2 + o((x - 1)^2)$$
$$\sin(\cos(t)) = \sin(1 + T) = \sin(1) + \cos(1)T - \frac{1}{2}\sin(1)T^2 + o(T^2)$$

iii)
$$f(t) = \sin(1) + \cos(1)(\frac{1}{2}t^2 + \frac{1}{24}t^4 + o(t^4)) - \frac{1}{2}\sin(1)(-\frac{1}{2}t^2 + o(t^2))^2 + o(t^4)$$

 $f(t) = \sin(1) - \frac{1}{2}\cos(1)t^2 + (\frac{1}{24}\cos(1) - \frac{1}{8}\sin(1))t^4 + o(t^4)$

iv)
$$F(x) = \sin(1)x - \frac{1}{6}\cos(1)x^3$$

7.9 Intégration d'une série entière

Théorème Une Série entière peut être intégrée terme par terme. Soit

$$f(x) = \sum_{k=0}^{k=0} a_k (x - a)^k$$
 (18)

avec rayon de convergence r > 0. Alors

$$F(x) := \int_{a}^{x} f(t) dt = \sum_{k=0}^{\infty} a_{k} \frac{1}{k+1} (x-a)^{k+1}$$
 (19)

avec rayon de convergence r.

<u>Démonstration</u>: F(a) = 0, F'(x) = f(x)

Exemple:

Soit
$$f(x) = \frac{2}{\sqrt{\pi}}e^{-x^2}$$
. $e^x = \sum_{\infty}^{k=0} \frac{1}{k!}x^k$

Donc
$$f(x) = \frac{2}{\sqrt{\pi}} \sum_{\infty}^{k=0} \frac{1}{k!(-1)^k x^{2k}}$$

7.10 Intégrales généralisées (ou in propréségrales INDÉFINIES ET DÉFINIES

Alors
$$erf(x) := \int_0^x f(t) dt = \frac{2}{\sqrt{\pi}} \sum_{\infty}^{k=0} \frac{1}{k!} \frac{1}{2k+1} (-1)^k x^{2k+1}$$

7.10 Intégrales généralisées (ou impropres)

 $I = \int_a^b f(x) dx$, trois types:

1. **Type 1:**

f continue sur [a, b[, ou]a, b[, ou]a, b[[image]

2. **Type 2:**

f continue sur $]-\infty,b],[a,\infty[,]-\infty,\infty[$ $(a=-\infty,b=\infty,$ ou les deux) [image]

3. **Type 3:**

Combinaison des types 1 et 2.

Exemples explicites:

$$\int_{\infty}^{\infty} \int_{\mathbb{R}^{n}} e^{-x} dx = ? \qquad type 3.$$

<u>Définition</u> (type 1)

• Si f est continue sur [a, b]

$$\int_{a}^{b} f(x) dx := \lim_{\substack{\epsilon \to 0 \\ \epsilon \neq 0}} \left(\int_{a+\epsilon}^{b} f(x) dx \right)$$
 (20)

• Si f est continue sur [a, b[

$$\int_{a}^{b} f(x) dx := \lim_{\substack{\epsilon \to 0 \\ \epsilon \neq 0}} \left(\int_{a}^{b-\epsilon} f(x) dx \right)$$
 (21)

• Si f est continue sur]a, b[

$$\int_{a}^{b} f(x) dx := \lim_{\substack{\epsilon_{1} \to 0 \\ \epsilon_{1} > 0 \\ \epsilon_{2} \to 0}} \int_{a+\epsilon}^{b-\epsilon} f(x) dx$$
(22)

(une limite après l'autre, l'ordre ne joue pas d'ordre).

Exemples

1.
$$\int_0^1 \ln(x) dx \stackrel{def}{=} \lim_{\substack{\epsilon \to 0 \\ \epsilon > 0}} \left(\int_{\epsilon}^1 1 \ln(x) dx \right)$$
$$= \lim_{\substack{\epsilon \to 0 \\ \epsilon > 0}} \left(([x \ln(x)]_{\epsilon}^1 - \int_{\epsilon}^1 1 dx) \right) \text{ trou}$$

- 2. trou
- 3.

<u>Définition</u> (type 2)

• Si f est continue $\sup[a, \infty[$

$$\int_{a}^{\infty} f(x) \, \mathrm{d}x := \lim_{R \to \infty} \int_{a}^{R} f(x) \, \mathrm{d}x \tag{23}$$

• Si f est conit
nue sur] $-\infty,b]$

$$\int_{-\infty}^{b} f(x) dx := \lim_{R \to \infty} \int_{R}^{b} f(x) dx$$
 (24)

• Si f est continue sur] $-\infty, \infty$ [

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{\substack{R_2 \to \infty \\ R_1 \to -\infty}} \left(\int_{R_1}^{R_2} f(x) dx \right)$$
 (25)

De nouveau, n'importe quel ordre.

Exemples:

1.
$$\int_0^\infty e^{-x} dx = \lim_{R \to \infty} \int_0^R e^{-x} dx$$
$$= \lim_{R \to \infty} [-e^{-x}]_0^R = \lim_{R \to \infty} (-e^{-R} + 1) = 1$$

2. trou

3.
$$r \neq 1, r > 0$$
 $\int_{1}^{\infty} \frac{1}{x^{r}} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{1}{x^{r}} dx = \lim_{R \to \infty} \left[\frac{1}{1 - r} \frac{1}{x^{r-1}} \right]_{1}^{R}$

$$= \lim_{R \to \infty} \left(\frac{1}{1 - r} \frac{1}{R^{r-1}} - \frac{1}{1 - r} \right) = \begin{cases} +\infty & r < 1 \\ \frac{1}{r - 1} & r > 1 \end{cases}$$

$$\operatorname{cas} r = 1 : \int_{1}^{\infty} \frac{1}{x} dx = \lim_{R \to \infty} \int_{1}^{R} \frac{1}{x} dx$$

$$= \lim_{R \to \infty} [\ln(x)]_{1}^{R} = \lim_{R \to \infty} (\ln(R) - 0) = +\infty$$

Définition: (type 3)

Si f est continue sur $]a, \infty[$ ou $]-\infty, b[$:

$$\int_{a}^{\infty} f(x) dx := \int_{a}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx \text{ avec } c \in]a, \infty[$$
 (26)

$$\int_{\infty}^{b} f(x) dx := \int_{-\infty}^{c} f(x) dx + \int_{c}^{b} f(x) dx \text{ avec } c \in]-\infty, b[\qquad (27)$$

Remarque:

$$\int_{a}^{\infty} f(x) dx = \lim_{\substack{R \to \infty \\ \epsilon \to 0 \\ \epsilon > 0}} \int_{a+\epsilon}^{R} f(x) dx$$
$$\int_{-\infty}^{b} f(x) dx = \lim_{\substack{R \to -\infty \\ \epsilon \to 0 \\ \epsilon > 0}} \int_{R}^{b-\epsilon} f(x) dx$$

Exemple:

$$\int_0^\infty \frac{1}{\sqrt{x}} e^{-x} \, \mathrm{d}x = \lim_{\substack{R \to \infty \\ \epsilon \to 0}} \int_{\epsilon}^R \frac{1}{\sqrt{x}} e^{-x} \, \mathrm{d}x =: I. \text{ Pour se débarrasser de la racine, on pose}$$

$$x=\varphi(u)=u^2, u>0, \varphi(\sqrt{\epsilon})=\epsilon, \varphi(\sqrt{R})=R$$

$$I = \lim_{\substack{R \to \infty \\ \epsilon \to 0 \\ \epsilon > 0}} \int_{\sqrt{\epsilon}}^{\sqrt{R}} \frac{1}{u} e^{-u^2} \cdot 2u \, du \text{ (on se rappelle que } erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} \, du)$$

$$= \lim_{\substack{R \to \infty \\ \epsilon \to 0 \\ \epsilon \to 0}} [\sqrt{\pi}erf(x)]_{\sqrt{\epsilon}}^{\sqrt{R}]}$$

$$= \lim_{\substack{R \to \infty \\ \epsilon \to 0 \\ \epsilon > 0}} (\sqrt{\pi} erf(\sqrt{R} - \sqrt{\pi} erf(\sqrt{\epsilon})) = \sqrt{\pi}$$

7.11 Intégration des foncitons rationnelles

Soit $f(x) = \frac{p(x)}{q(x)}$ avec p,q des polynpmee, de gré de p trou

Exemple:
$$\frac{x^3+1}{x^2+1} = x + \frac{-x+1}{x^2+1}$$

Soit donc degré p < degré de q.

7.11.1 Exemple

1. Décomposition de q(x) (sur $\mathbb R$) en facteur irréductibles.

Exemple:

$$x^2 - 1 = (x - 1)(x + 1)$$

 $x^2 + 1 = x^2 + 1$ pas de factorisation sur les reels

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$

$$x^3 + 1 = (x+1)(x^2 - x + 1)$$

$$x^4 - 1 = (x^2 + 1)(x^2 - 1) = (x^2 + 1)(x - 1)(x + 1)$$

 $x^4 + 1 = (x^2 + \sqrt{2}x + 1)(x^2 - \sqrt{2}x + 1)$ voir le chapitre des nombres complexes)

2. Décomposition de $f(x) = \frac{p(x)}{q(x)}$ en éléments simples

Exemple:
$$f(x) = \frac{2x^3}{x^4 - 1} = \frac{\alpha}{x - 1} + \frac{\beta}{x - 1} + \frac{\gamma x + \delta}{x^2 + 1}$$

$$2x^3 = \alpha(x + 1)(x^2 + 1) + \beta(x - 1)(x^2 + 1) + (\gamma x + \delta)(x^2 - 1)$$

On regarde les coefficients de chaque puissance :

$$x^{3}: 2 = \alpha + \beta + \gamma$$

$$x^{2}: 0 = \alpha - \beta + \delta$$

$$x: 0 = \alpha + \beta - \gamma$$

$$1: 0 = \alpha - \beta - \gamma$$
algèbre linéaire : $\alpha = \beta = \frac{1}{2}, \gamma = 1, \delta = 0$

3. Intégration des éléments simples

$$\int f(x) dx = \frac{1}{2} \int \frac{1}{x-1} dx + \frac{1}{2} \int \frac{1}{x+1} dx + \frac{1}{2} \int \frac{2x}{x^2+1} dx$$

$$= \frac{1}{2} \ln(|x-1|) + \frac{1}{2} \ln(|x+1|) = \frac{1}{2} \ln(|x^2+1|) + C$$

$$= \frac{1}{2} (\ln(|(x-1)(x+1)(x^2+1)|)) + C$$

$$= \frac{1}{2} \ln(|x^4-1|) + C = \ln(\sqrt{x^4-1}) + C \text{ En fait (ouvrir les yeux):}$$

$$f(x) = \frac{1}{2} \frac{g'(x)}{g(x)} \text{ avec } g(x) = x^4 - 1$$

$$\text{Donc } \int f(x) dx = \frac{1}{2} \text{trou}$$

7.11.2 Le cas général

Soit
$$f(x) = \frac{p(x)}{q(x)}, \deg p < \deg q$$

1. Décomposition de q(x) en facteurs irreductibles

$$q(x) = (\ldots)(\ldots)(\ldots)\ldots$$

2. Décomposition en éléments simples

$$f(x) = \frac{p(x)}{(x^{2} + bx + c)^{m}} = \frac{1}{(x^{2} + bx + c)^{m}} + \dots$$

$$fackers dans q(x) \qquad \text{from s dans } f(x)$$

$$x - a. \qquad \frac{a}{x - a}$$

$$x - a. \qquad \frac{a}{x - a}$$

$$x - a. \qquad \frac{a}{(x - a)^{2}}$$

Remettre sur le même dénominateur, comparer les puissances, utiliser algèbre linéaire pour déterminerles coefficients α, β, γ

3. Intégration des éléments simples.

$$\bullet \int \frac{1}{x-a} \, \mathrm{d}x = \ln(|x-a|) + C$$

•
$$intx \frac{1}{(x-a)^k} = -\frac{1}{k-1} \frac{1}{(x-a)^k} + C$$
, $k \ge 2$

•
$$\int \frac{\beta x + \gamma}{x^2 + bx + c} \, dx = \int \frac{\frac{\beta}{2} (2x + b) + \gamma - \frac{1}{2} \beta b}{x^2 + bx + c} \, dx$$
$$= \frac{\beta}{2} \ln(|x^2 + bx + c|) + (\gamma + \frac{1}{2} \beta b) \int \underbrace{\frac{1}{x^2 + bx + c}}_{=(x + \frac{b}{2})^2 + c + \frac{b^2}{4}} \, dx$$

On a $c - \frac{b^2}{4} > 0$ sinon on aurait des facteurs linéaires!

On pose
$$x = \varphi(u) = \sqrt{x - \frac{b^2}{4}}u - \frac{b}{2}$$

$$\begin{split} &\int \frac{1}{x^2+bx+c} \, \mathrm{d}x = \frac{1}{\sqrt{c+\frac{b^2}{4}}} \int \frac{1}{u^2+1} \, \mathrm{d}u \\ &= \frac{\beta}{2} \ln(|x^2+bx+c|) + \frac{\gamma\frac{1}{2}\beta b}{\sqrt{c-\frac{b^2}{4}}} \arctan(\frac{x+\frac{b}{2}}{\sqrt{c-\frac{b^2}{4}}} + C \\ &\text{Finalement, pour } k \geq 2 \\ &\int \frac{\beta x+\gamma}{(x^2+bx+x)^k} = \text{même procédure que pour k} = 1 \\ &\text{trou} \end{split}$$

7.12 Divers

$$\begin{split} &\int_{1}^{3} \frac{1}{\sqrt{t}(1+t)} \, \mathrm{d}t. \\ &\text{On pose } t = \varphi(s) = s^{2}, \text{ avec } s > 0 \\ &1 = \varphi(1), 3 = \varphi(\sqrt{3}) \\ &\text{Donc notre } : &\int_{1}^{3} \frac{1}{\sqrt{t}(1+t)} \, \mathrm{d}t \ = \ \int_{1}^{\sqrt{3}} \frac{1}{s(1+s^{2}} 2s \, \mathrm{d}s \ = \ 2[\arctan(s)]_{1}^{\sqrt{3}} \ = \ 2(\arctan(\sqrt{3}) - \arctan(1)) = 2(\frac{\pi}{3} - \frac{\pi}{4}) \text{ (voir dessins)} = \frac{\pi}{12} 2 = \frac{\pi}{6} \end{split}$$

Cas indéfini : $\int \frac{1}{\sqrt{t}(1+t)} \, \mathrm{d}t = 2\arctan(s) + C = 2\arctan(\sqrt{t}) + C$

7.13 Glossaire

 \sim Relation d'équivalence

:= est défini par

≡ Équivalent à

 \forall Pour tout (x par exemple)

 \in est élément de

 C_x Classe d'équivalence de $\mathbf x$

: tel que

7.14 Règles

7.14.1 Complexes

7.14.2 Limites

- $\bullet \lim_{n \to \infty} \frac{\sin(n)}{n} = 1$
- $\lim_{n \to \infty} n \cdot \sin(\frac{1}{n}) = 1$
- $\bullet \lim_{n \to \infty} (1 + \frac{1}{n})^n = e$

7.15 Fonctions

- $g(x) = |x| \to g'(x) = \begin{cases} -1 & x < 0 \\ 1 & x > 0 \end{cases}$ et pas dérivable en x = 0
- \bullet dérivée de la fonction réciproque donnée par $(f^{-1})'(x)=\frac{1}{f'(f^{-1}(x))}$
- $\cos(x) = \sqrt{1 \sin(x)^2}$