一、二极管和三极管

1、半导体基本概念

基本概念:

知识要点:

☑半导体;

☑价电子和共价键;

☑杂质半导体;

☑载流子;

☑多子和少子;

☑N型和P型半导体;

☑PN结

(1)	N型半导体	P型半导体
多子	自由电子	空穴
少子	空穴	自由电子

(2) 无论N型或P型半导体都是中性的,对外不显电性。

(3) PN结的单向导电性

正向偏置	导通状态
反向偏置	截止状态

2、二极管相关概念

(1) 伏安特性

材料	开启电压	导通电压	反向饱和电流
硅Si	0.5V	0.5~0.8V	1µA以下
锗Ge	0.1V	0.1~0.3V	几十μA

(2) 二极管的电流方程

$$i_D = I_s(e^{U_D/U_T} - 1)$$

(3) 伏安特性受温度影响

$i_D = I_s(e^{U_D/U_T} - 1)$ $U_T = \frac{kT}{s}(v)$ (常温26mv)

(4) 主要参数

- •最大整流电流 I_{F}
- •最高反向工作电压U_R
- •反向电流 I_{R}
- •最高工作频率f_M

分析方法

✓ 二极管电路分析方法

(1) 等效模型

分析方法

- ✓ 二极管电路分析方法
 - (2)分析方法

分析方法和步骤:

- ① 将二极管断开
- ② 分析二极管阴阳两极接入点间电压的极性和 大小;
- ③ 根据所选择的等效模型得到等效电路;
- 4 利用线性电路分析方法分析电路。

习题

电路图如图所示,设二极管的导通电压均为0.7V,则A点和B点的电压分别为多少? (需写清分析过程,判断各管状态)

3、晶体管相关概念

(1) 为什么叫三极管?

三极管的基本结构。三个级、三个区、两个结

(2) 为什么三极管能够放大?

三极管的电流分配

$$I_{\rm E} = I_{\rm B} + I_{\rm C}$$

3)
$$I_{\rm C} >> I_{\rm B}$$
, $I_{\rm C} \approx I_{\rm E}$

4)
$$\Delta I_{\rm C} >> \Delta I_{\rm B}$$

(3) 三极管在什么情况下才能放大?

发射结正偏、集电结反偏

几个重要公式:

$$I_E = I_C + I_B$$
 $I_C = \beta I_B$ $I_E = (1+\beta)I_B$
 $U_{BE} = 0.7V$

$$\alpha = \frac{\Delta I_C}{\Delta I_E} \qquad \beta = \frac{\Delta I_C}{\Delta I_B} \qquad \alpha = \frac{\beta}{1+\beta}$$

$$P_{C \max} = U_{CE}I_{C}$$

分析方法

✓ 三极管三种工作状态的判断方法

- (1) 结偏置判定方法
- (2) 电流判定方法

计算基极饱和电流,然后判断基极电流和饱和 电流的关系。 测得放大电路中六只晶体管的直流电位如图所示。在圆圈中画出管子,并分别说明它们是硅管还是锗管。

在图示电路中,VT为硅晶体管, $\beta = 50$ 。当开关S分别接到A、B、C端时,分析晶体管的工作状态(放大、饱和、截止),并确定 U_O 的近似值。

二、放大器基础

Basic of Amplifiers

- ◆一套概念
- ◆两个方法
- ◆n个电路

(1) 放大的概念

- * 放大的本质: 能量的控制与转换
- * 放大的对象: 变化量
- * 放大的特征: 功率放大
- * 放大的基本要求: 不失真——放大的前提

- (2) 放大电路的性能指标
- ① 放大倍数(Gain,增益);
- ② 输入电阻 (input impedance);
- ③ 输出电阻(output impedance);
- ④ 通频带(频率响应);
- ⑤ 非线性失真;
- ⑥ 最大输出幅度;
- ⑦ 最大输出功率、效率等

(3) 静态和动态的概念、静态工作点

静态: 放大电路没有输入信号时,电路中各点的电流和电压是直流信号, 称为直流工作状态或静止工作状态, 简称静态。

动态: 放大电路有输入信号时, 电路中的电压和电流随交流信号而变化, 称为动态。

*静态工作点(Quiescent Operating Point):

输入电压 u_i 为零时,晶体管各极的电流、b-e间的电压、管压降称为静态工作点Q,记作 $I_{\rm BQ}$ 、 $I_{\rm CO}$ $(I_{\rm EQ})$ 、 $U_{\rm BEO}$ 、 $U_{\rm CEQ}$ 。

4、放大电路的构成原则和工作原理

- 静态:外加直流电源的极性必须使三极管发射结正偏,集电 结反偏以保证其工作于放大区,保证合适的静态工作点;
- 动态: 进得去出的来
- 直流偏置
- 交流组态
- 放大电路正确性判断: 三种组态

下图所示放大电路中, T1和T2管分别构成()组态电路。

试判断以下电路能否放大交流信号,说明原因。

(1) 静态估算法

估算法的一般步骤如下:

- 1、画出放大电路的直流通路
- 2、根据基极回路求 $I_{\rm B}$
- 3、由BJT的电流分配关系求 $I_{\rm C}$
- 4、由集电极回路求 U_{CE}

(2) 微变等效电路法

$$r_{be} = \frac{U_{be}}{I_{b}} = r_{bb'} + r_{b'e}$$

$$\approx r_{bb'} + (1 + \beta) \frac{U_{T}}{I_{EQ}}$$

微变等效电路法基本步骤:

- 1、画出交流通路;
- 2、用h参数模型替换晶体管,得到微变等效电路;
- 3、用线性电路分析方法求解各性能指标;

(3)图解法

①斜率为 $-\frac{1}{R_L'}(R'_L = R_L // R_C)$

②经过Q点(u_i=0时)

(4) 非线性失真分析方法

非线性失真的判别原则:

- ✓ 静态工作点Q过高——饱和失真
- ✓ 静态工作点Q过低——截止失真

消除失真的途径:

- ✓ 尽量将Q点设置在交流负载线的中间位置
- ✓ 减小输入信号的幅度

现象—原因-消除方法

8、静态工作点稳定电路

- 稳定静态工作点原理
- 静态分析和动态分析
- 旁路电容的作用

9、其他组态放大电路

	共射极电路	共集电极电路	共基极电路
电路图	R_{b1} R_{c} R_{b2} R_{c} R_{b1} R_{b2} R_{c} R_{c} R_{b1} R_{b2} R_{c} R_{c} R_{c} R_{c} R_{c} R_{c} R_{c}	$ \begin{array}{c c} R_{b} & & \\ \hline C_{b1} & & \\ R_{s} & & \\ \hline V_{i} & & \\ \hline V_{s} & & \\ \hline \end{array} $ $ \begin{array}{c c} T & C_{b2} & \\ \hline R_{c} & & \\ \hline \end{array} $	R_{b1} R_{c} R_{b2} R_{b2} R_{c} R_{b2} R_{c}
电压增益 🗛	$A_v = -\frac{\beta R'_L}{r_{be} + (1+\beta)R_e}$	$A_{v} = \frac{(1+\beta)R'_{L}}{r_{be} + (1+\beta)R'_{L}}$	$A_v = \frac{\beta R'_L}{r_{\text{be}}}$
	$(R'_{L} = R_{c} \parallel R_{L})$	$(R'_{L} = R_{e} \parallel R_{L})$	$(R'_L = R_e \parallel R_L)$
v_o 与 v_i 的相位关系	反相	同相	同相
最大电流增益A _i	$A_{ m i}pproxoldsymbol{eta}$	$A_{\rm i} \approx 1 + oldsymbol{eta}$	$A_{ m i}pproxlpha$
输入电阻	$R_{\rm i} = R_{\rm b1} \parallel R_{\rm b2} \parallel [r_{\rm be} + (1+eta)R_{\rm e}]$	$R_{\rm i} = R_{\rm b} \parallel [r_{\rm be} + (1+eta)R'_{ m L}]$	$R_{\mathrm{i}} = R_{\mathrm{e}} \parallel \frac{r_{\mathrm{be}}}{1+oldsymbol{eta}}$
输出电阻	$R_{_{ m o}}pprox R_{_{ m c}}$	$R_{o} = \frac{r_{be} + R'_{s}}{1 + \beta} R_{e} (R'_{s} = R_{s} R_{b})$	$R_{ m o} pprox R_{ m c}$
用途	多级放大电路的中间级	输入级、中间级、输出级	高频或宽频带电路

11、多级放大电路

- 耦合方式 (优缺点)
- 静态分析
- 动态分析

后级作为前级的负载;前级作为后级的信号源

- ① 第i+1级放大电路的输入电阻应视为第i级放大电路的负载电阻;
- ② 第i-1级放大电路的输出电阻应视为第i级放大电路的信号源内阻;

共射放大电路如图所示,其中 β 和 U_{BE} 为已知,电容理想。

- (1) 试画出直流通路,确定电路的静态工作点(写出 I_{BO} 、 I_{CO} 和 U_{CEO} 的表达式)
- (2) 画出该放大器的微变等效电路;
- (3) 求出该放大器的输入电阻、输出电阻、电压增益Au(写表达式)

三、放大电路的频率响应

Frequency Response

- 1. 频率响应的相关概念
 - (1) 幅度失真和相位失真
 - (2) 频率响应的概念

放大器的增益与频率的关系可表示为:

$$\overset{\bullet}{Au} = |\overset{\bullet}{Au}(f)| \angle \varphi(f)$$

• 增益的幅值与频率
$$f$$
 的函数关系,称为幅 $|Au(f)|_{\underline{\qquad}}$ 频响应

$$\angle \varphi(f)$$
 ____ 增益的相位与频率 f 的函数关系称为相频 响应

4 177

33

- (3) 频率响应的波特图(Bode Plot)
 - ① 横坐标改线性增长为指数增长,以对数坐标表示;
 - ② 幅频纵坐标以分贝形式表示;
 - ③ 曲线做直线化处理。
 - □幅频特性曲线:

横轴 (f) —对数坐标;纵轴 (Au) — 201g | Au |

□相频特性曲线:

横轴 (f) —对数坐标;纵轴 — 相角 (φ)

(4) 晶体管频率参数

1.
$$f_T = \beta_0 f_\beta$$
 , $f_\alpha = (1+\beta_0) f_\beta$;

$$2. f_{\beta} < f_{\mathrm{T}} < f_{\alpha}$$

分析方法

- 2、单管共射电路的频率响应分析方法
 - (1) 分析思路

中频段: C_1 短路,极间电容开路。

低频段:考虑 C_i 的影响,极间电容开路。

高频段:考虑极间电容的影响, C_I 短路。

	低通	高通	
截止频率f _C	f_H	f_L	
电压增益	$\dot{A}_{u}(s) = \frac{1}{1+j\frac{f}{f_{H}}}$	$\dot{A}_{u}(s) = \frac{1}{1 - j\frac{f_{L}}{f}}$	
$f > f_C$	不通	通	
$f < f_C$	通	不通	
f << 0.1f _C	0_{0}	相位超前900	
$f >> 10f_C$	相位滞后900	0_{0}	

37

2、单管共射电路的频率响应分析方法

四、功率放大电路

Power Amplifiers

1.效率(η)

$$\eta = \frac{P_{o \max}}{P_D} \times 100\%$$

 P_{omax} :负载上得到的交流信号功率。

 P_D : 电源提供的直流功率。

2.主要指标参数

最大输出功率

$$P_{o\max} = \frac{u_{o\max}}{\sqrt{2}} \frac{i_{o\max}}{\sqrt{2}} = \frac{1}{2} u_{o\max} i_{o\max} = \frac{u_{o\max}^2}{2R_L} = \frac{1}{2} i_{o\max}^2 R_L$$

电源输出功率

$$P_{D} = \frac{1}{T} \int_{0}^{T} V_{DD} I_{c}(t) dt = \frac{1}{T} V_{DD} \int_{0}^{T} I_{c}(t) dt$$

$$P_C = P_D - P_{0\max}$$

$$\frac{\dot{\mathfrak{D}}\tilde{\mathbf{x}}}{\eta} = \frac{\mathbf{B} \, \mathbf{L} \, \hat{\mathbf{m}} \, \mathbf{H} \, \mathbf{H} \, \mathbf{P}_{o\,\text{max}}}{\mathbf{1} \, \hat{\mathbf{n}} \, \hat{\mathbf{n}} \, \mathbf{E} \, \mathbf{H} \, \hat{\mathbf{H}} \, \mathbf{H} \, \hat{\mathbf{H}} \, \mathbf{P}_{D}} = \frac{p_{o\,\text{max}}}{p_{o\,\text{max}} + P_{C}}$$

3. 晶体管的工作方式

甲类: 功率管在一个周期内导通(如小信号放大)。

乙类: 功率管仅在半个周期内导通(如射随器"互补"工作)。

甲乙类:管子在大于半个周期小于一个周期内导通(交越失真)。

丙类: 功率管小于半个周期内导通。

实际电路分析

(1) 乙类互补输出电路

(2) 交越失真

- ・产生原因
- 现象
- 消解电路

- 1. 在图所示电路中,已知 $V_{\rm CC}=16{\rm V}$, $R_{\rm L}=4\Omega$, T_1 和 T_2 管的饱和管压降 $|U_{\rm CES}|=2{\rm V}$,输入电压足够大。试问:
 - (1) 最大输出功率 P_{om} 和效率 η 各为多少?
 - (2) 晶体管的最大功耗 P_{Tmax} 为多少?

五、集成运算放大电路基础

Basic of Integrated Operational Amplifier

电路

1、恒流源

- (1) 电路结构
- (2) 各种恒流源的特点
- (3) 参考电流的寻找和计算
- (4) 镜像电流源和比例电流 源的分析
- (5) 恒流源的应用

$$I_o = I_{C2} = \frac{I_R}{1 + \frac{2}{\beta}} \approx I_R$$

电路

2、差分放大电路

- (1) 电路结构
- (2) 工作原理
- (3) 共模抑制比

$$K_{\rm CMR} = \frac{\left| A_{\rm d} \right|}{\left| A_{\rm C} \right|}$$

电路

2、差分放大电路

差分放大电路的四种接法

差分放大电路四种接法的性能比较

接法性能	差分输入 双端输出	差分输入 单端输出	单端输入 双端输出	单端输入 单端输出
$A_{\mathbf{d}}$	$-\frac{\beta(R_{\rm C}/\!/\frac{R_{\rm L}}{2})}{R+r_{\rm be}}$	$-\frac{1}{2}\frac{\beta(R_{\rm c} /\!/ R_{\rm L})}{R+r_{\rm be}}$	$-\frac{\beta(R_{\rm c} /\!/ \frac{R_{\rm L}}{2})}{R+r_{\rm be}}$	$-\frac{1}{2}\frac{\beta(R_{\rm c}/\!/R_{\rm L})}{R+r_{\rm be}}$
$K_{\rm CMR}$	很高	较高	很高	较高
R_{id}	$2(R+r_{\rm be})$	$2(R+r_{\rm be})$	$2(R+r_{\rm be})$	$2(R+r_{\rm be})$
$R_{\rm o}$	$2R_{ m c}$	$R_{ m c}$	2 <i>R</i> _c	$R_{ m c}$

六、电子电路中的反馈

Feedback

要点

- 1. What: 反馈的基本概念
- 2. Which: 判断电路中有无反馈及反馈的类型
- 3. Why: 负反馈对放大电路性能的影响
- 4. How: 根据需求引入合适的反馈

要点

1. What: 反馈的基本概念

反馈放大电路的三个环节:

基本放大电路 $\dot{A} = \dot{X}_o / \dot{X}_i$ 反馈电路 $\dot{F} = \dot{X}_f / \dot{X}_o$

开环增益 (open-loop gain)

比较环节
$$\dot{X}_{i} = \dot{X}_{i} - \dot{X}_{f}$$

(feedback factor)

概念体系

(3) 反馈放大电路增益的一般表达式

闭环增益(closed-loop gain):

$$\dot{A}_{f} = \frac{\dot{X}_{o}}{\dot{X}_{i}} = \frac{\dot{A}}{1 + \dot{A}\dot{F}}$$

环路增益(loop gain):

$$\dot{T} = \dot{X}_f / \dot{X}_i' = \dot{A}\dot{F}$$

反馈深度(feedback depth):

$$\left|\mathbf{1} + \dot{A}\dot{F}\right| = \left|\mathbf{1} + \dot{T}\right|$$

反馈深度(或环路增益)是衡量反馈强弱的 一项重要指标。其值直接影响电路性能。

1.4 四种类型负反馈放大器增益表达式

四种负反馈组态的电压放大倍数、反馈系数之比较

	输出 信号	反馈 信号	开环放大倍数	反馈系数	闭环放大倍数
电压串 联式	$\dot{m{U}}_{m{o}}$	$\dot{m{U}}_{\mathbf{f}}$	电压放 $\dot{A}_{uu} = \frac{\dot{U}_{o}}{\dot{U}_{i}}$	$\dot{F}_{uu} = \frac{\dot{U}_{f}}{\dot{U}_{o}}$	电压放大倍数
电压并联式	$\dot{m{U}}_{m{o}}$	$\dot{I}_{ m f}$	转移 $\dot{A}_{ui} = \frac{\dot{U}_{o}}{\dot{I}'_{i}}(\Omega)$	$\dot{F}_{iu} = \frac{\dot{I}_{f}}{\dot{U}_{o}}(S)$	互阻放大倍数
电流串 联式	\dot{I}_{0}	$\dot{m{U}}_{\mathbf{f}}$	转移 $\dot{A}_{iu} = \frac{\dot{I}_{o}}{\dot{U}_{i}}(S)$	$\dot{F}_{ui} = \frac{\dot{U}_{f}}{\dot{I}_{o}}(\Omega)$	互导放大倍数
电流并联式	\dot{I}_{0}	$\dot{I}_{ m f}$	电流放 $\dot{A}_{ii} = \frac{\dot{I}_{o}}{\dot{I}'_{i}}$	$\dot{F}_{ii} = \frac{\dot{I}_{f}}{\dot{I}_{o}}$	电流放大倍数

55

(1) 负反馈类型判别技巧

- 反馈的有无一找联系
- 反馈的交直流----电容观察法
- 反馈的极性—瞬时极性法
- 反馈的组态—看端子、输出短路法

- (2) 深度负反馈下的增益估算
 - 1. 确定反馈类型
 - 2. 找出反馈网络
 - 3. 根据反馈类型确定F 的含义、并计算F:

若串联反馈:将输入端交流开路

若并联反馈:将输入端交流短路

则反馈系数 $F = X_f / X_o$

$$F = X_{\rm f} / X_{\rm o}$$

- 4. 计算 $A_f = 1/F$;
- 5. 确定 $A_f = X_o/X_s$ 含义,将 A_f 转换成 $A_{uf} = U_o/U_s$

- (3) 负反馈对电路性能的影响
 - ① 降低增益
 - ② 减小增益灵敏度(或提高增益稳定性)
 - ③ 改变电路输入、输出电阻

	电压串联	电流串联	电压并联	电流并联
$r_{\rm i}$	増高	增高	减低	减低
r_{0}	减低	增高	减低	增高

- ④ 减小频率失真(或扩展通频带)
- ⑤ 减小非线性失真

(4) 按需引入反馈

由运放组成的放大电路如图示。为了使 A_u 稳定, R_o 小,应引入什么样的反馈?请在图中画出来。若要求电压放大倍数 $|A_u|$ =20,选用元件的数值要多大?

(4) 稳定性分析

 $f_0 < f_c$,电路不稳定,会产生自激振荡; $f_0 > f_c$,电路稳定,不会产生自激振荡。

电路设计

按需引入反馈

一. 在电路输出端

若要求电路 ν_o 稳定或 R_o 小 一 应引入电压负反馈。 若要求电路 i_o 稳定或 R_o 大 一 应引入电流负反馈。

二. 在电路输入端

若要求 R_i 大或索取信号源电流小 \longrightarrow 引入串联负反馈。 若要求 R_i 小或索取信号源电流大 \longrightarrow 引入并联负反馈。

三. 反馈效果与信号源内阻 R_s 的关系

若采用 R_S 较小的电压源激励若采用 R_S 较大的电流源激励

→ 应引入串联负反馈

→ 应引入并联负反馈。1

七、集成运放的应用

Op-Amp Applications

理想运放模型

(3) 理想运放工作在线性区的特点

因为 $u_0 = A_{u_0}(u_+ - u_-)$,所以

① 差模输入电压约等于 0 即 $u_{+}=u_{-}$,称"虚短"

电压传输特性

- ② 输入电流约等于 0 即 $i_{+}=i_{-}\approx 0$,称 "虚断"
- ③如果信号从反向端输入,同相端接地 $u_{+} \approx 0$, $u_{-} \approx 0$ 反相端电位接近于"地"电位,即虚地。

理想运放模型

(4) 理想运放工作在饱和区的特点

当
$$u_+ > u_-$$
时, $u_o = + U_{o(sat)}$ $u_+ < u_-$ 时, $u_o = - U_{o(sat)}$

- ① 不存在"虚短"现象
- ② $i_{+}=i_{-}\approx 0$,仍存在"虚断"现象

工作区间判别

集成运放工作在线性的电路特征:

电路引入深度负反馈

通过电路是否引入了负 反馈来判断电路是否工 作在线性区。若无负反 馈,则工作在非线性区

线性应用: 有虚断、有虚短

非线性应用:有虚断、无虚短

是为分析集成运放应用输入信号和输出信号关系 的基本出发点

线性电路

(1) 信号运算电路

比例、加减、电压跟随器、微积分(波形转换)

(2) 滤波电路

应用、分析方法、频率特性

- (1) "虚短"和"虚断"是分析输入和输出信号关系的出发点
- (2) 对于单一信号的运算电路,在分析运算关系时, 应首先列出关键节点的电流方程
- (3) 对于复杂电路可以优先考虑叠加原理

非线性电路

电压比较器

- (1) 分类
- (2) 描述方法
- (3) 分析方法

电压传输特性的三个要素:

- (1)输出高电平 $U_{
 m OH}$ 和输出低电平 $U_{
 m OL}$
- (2)阈值电压 $U_{
 m T}$
- (3) 输入电压过阈值电压时输出电压跃变的方向