For the symmetric stress tensor $\Theta^{\mu\nu}$, the corresponding integrals in (12.106) are

$$\int \Theta^{00} d^3 x = \frac{1}{8\pi} \int \left(\mathbf{E}^2 + \mathbf{B}^2 \right) d^3 x \qquad \qquad \int \Theta^{0i} d^3 x = \frac{1}{4\pi} \int \left(\mathbf{E} \times \mathbf{B} \right)_i d^3 x \tag{1}$$

This form is not manifestly covariant because of the 3-space integral volume element d^3x . To generalize this for all inertial frames, we will write d^3x as covariant vector $n_v d\sigma$, where

$$n^{\nu} = (\gamma, \gamma \beta) = \frac{U^{\nu}}{c} \tag{2}$$

is 1/c times the 4-velocity and $d\sigma$ is the Lorentz invariant volume element which is equal to dxdydz in the rest frame S. If S' moves with relative velocity βc with respect to S, then the hyperplane in S' with constant time $t' = t'_0$ (i.e., the "now" plane at $t' = t'_0$) is represented in S by the equation

$$n_{\mu}x^{\mu} - ct_{0}' = 0 \tag{3}$$

which is identical to the Lorentz transformation between S and S'. The volume element on this hyperplane, seen from S is $n^{\mu}d\sigma$.

The manifestly covariant form of the integrals in (1) is thus

$$P^{\mu} = \int \Theta^{\mu\nu} n_{\nu} d\sigma \tag{4}$$

Note for S, $n^{\mu}=(1,0,0,0)$, (4) and (1) are equivalent. But as seen from S', the integration domain's hyperplane involves both time component and space component, justifying the sum over μ index in (4). Another way to justify the inner product $\Theta^{\mu\nu}n_{\nu}$ is to think of the integral (4) as the flux of tensor $\Theta^{\mu\nu}$ through the hyperplane with normal n^{ν} (see equation (6.122) as an analogy in 3-space).

Because it is covariant, it certainly transforms as a 4-vector between inertial frames, but it may not be a "constant" 4-vector in the sense that it might be dependent on a particular choice of frame (or rather, a hyperplane Σ in the 4-spacetime). To prove its constancy, we must invoke the "source-free" condition

$$\partial_{\mu}\Theta^{\mu\nu} = 0$$

$$ct$$

$$ct'$$

$$light cone$$

$$\Sigma'$$

$$\Sigma'$$

$$\Sigma'$$

$$\Sigma$$

Now consider two inertial frames S and S', whose "now" hyperplanes are Σ and Σ' respectively. In other words, the lightcone shall bisect Σ and ct (or Σ' and ct') as shown in the diagram above. Let V_4 be the 4-volume enclosed by Σ and Σ' (but divided into two regions V_\pm as indicated in the diagram), and a time-like hypersurface Σ_∞ connecting them at infinity, i.e.,

$$V_4 = V_+ \cup V_- \qquad \qquad \partial V_4 = \Sigma \cup \Sigma' \cup \Sigma_{\infty} \tag{6}$$

Then by Gauss theorem, we have

$$\int_{V_{\perp}} \partial_{\mu} \Theta^{\mu\nu} dV_4 + \int_{V_{-}} \left(-\partial_{\mu} \Theta^{\mu\nu} \right) dV_4 = \int_{\Sigma} \Theta^{\mu\nu} n_{\nu} d\sigma - \int_{\Sigma'} \Theta^{\mu\nu} n'_{\nu} d\sigma' + \int_{\Sigma_{\infty}} (7)$$

The second term has minus sign because the normal vector must be pointing "outwards". Now with the source-free condition, LHS vanishes. Because of the boundedness of the field, the third term also vanishes, leaving the two surface integrals on Σ and Σ' equal to each other, i.e., the integral (4) is independent of the choice of Σ .

In particular, if Σ and Σ' are parallel to each other (i.e., $V_- = \emptyset$) but separated by infinitesimal dt, the RHS of (7) becomes the differential of the space integral $d\int \Theta^{\mu\nu}d^3x$. Recognizing that $dV_4 = d^3xdt$, we see that the LHS is $dt\int \partial_\mu\Theta^{\mu\nu}d^3x$. This turns (7) into the conservation law

$$\frac{d}{dt} \int \Theta^{\mu\nu} d^3 x = 0 \tag{8}$$