- 2 n を 2 以上の自然数とする.平面上の $\triangle OA_1A_2$ は $\angle OA_2A_1=90^\circ$, $OA_1=1$, $A_1A_2=rac{1}{\sqrt{n}}$ をみたすとする. A_2 から OA_1 へ垂線をおろし,交点を A_3 とする. A_3 から OA_2 へ垂線をおろし,交点を A_4 とする.以下同様に, $k=4,5,\cdots$ について, A_k から OA_{k-1} へ垂線をおろし,交点を A_{k+1} として,順番に A_5,A_6,\cdots を定める. $\overrightarrow{h_k}=\overrightarrow{A_kA_{k+1}}$ とおくとき,以下の問いに答えよ.
- (1) $k=1,2,\cdots$ のとき,ベクトル $\overrightarrow{h_k}$ と $\overrightarrow{h_{k+1}}$ の内積 $\overrightarrow{h_k}\cdot\overrightarrow{h_{k+1}}$ を n と k で表せ.
- $S_n=\sum_{k=1}^n\overrightarrow{h_k}\cdot\overrightarrow{h_{k+1}}$ とおくとき,極限値 $\lim_{n o\infty}S_n$ を求めよ.ここで、自然対数の底e について, $e=\lim_{n o\infty}\left(1+rac{1}{n}
 ight)^n$ であることを用いてもよい.