https://youtu.be/hmtkywnc-Xc

IT융합공학부 송경주

- [1] 의 논문 리뷰
- 곱셈에 Reduction을 사용하지 않고 비트 shift 및 비트 순환 방식의 사용 제 안
- 위의 방법으로 복잡성을 줄인 Quantum-Classical, Quantum-Quantum 곱셈 기 제안
 - Quantum-Classical 연산 : 비트 Shift 사용
 - Quantum-Quantum 연산 : 비트 순환 사용
- 제안하는 모듈러 곱셈기는 [2]의 Quantum Carry-Lookahead Adder (QCLA) 모듈러 덧셈기를 반복해서 수행하는 방식
 - QCLA: 모든 비트를 병렬로 계산하기 때문에 가산기 중 가장 빠름

- Quantum-Classical operation
 - 연산하는 두 대상 중 1개는 Classic Value 1개는 Quantum Value

- Quantum-Quantum operation
 - 연산하는 두 대상 모두 Quantum Value

Quantum value
$$\Rightarrow$$
 $|x\rangle \not\stackrel{n}{\longleftarrow} U - |x\rangle$
Quantum value \Rightarrow $|y\rangle \not\stackrel{n}{\longleftarrow} U - |xy \mod N\rangle$

Quantum Modular Multiplication in $GF(2^n)$

Quantum-Classical Multiplication

- Classic-Quantum Multiplication $GF(2^n)$
 - n-bit 의 quantum value a 와 classic value B 의 모듈러 곱셈 수행
 - Partial product setting 단계와 Modular addition 단계로 이루어짐
- Partial product setting

버리/비트 Chiff) V	B_4 B_3	B_2 B_1	O			B_4	B_3	B_2	B_1	B_0	
버림(비트 Shift)×	a_4 a_3	a_2 a_1	a_0	_	×	a_4	a_3	a_2	a_1	a_0	
	a_0B_4 a_0B_3	$a_0B_2 a_0B$	a_0B_0			a_0B_4	a_0B_3	a_0B_2	a_0B_1	a_0B_0	← 1-th partial product
a_1B_4	$a_1B_3 a_1B_2$	$a_1B_1 \ a_1B_1$	Shift 1			a_1B_3	a_1B_2	a_1B_1	a_1B_0	(2-th partial product
$a_2B_4 a_2B_3$	a_2B_2 a_2B_1	a_2B_0 S	hift 2	\Box		a_2B_2	a_2B_1	a_2B_0	(- 3-th բ	partial product
$a_3B_4 \ a_3B_3 \ a_3B_2$	$a_3B_1 \ a_3B_0$ Shift 3					$a_3B_1 \ a_3B_0 \leftarrow 4$ -th partial product					
$+ a_4B_4 a_4B_3 a_4B_2 a_4B_1$	a_4B_0 Shift 4					$a_4B_0 \leftarrow 5$ -th partial product					
m'_{8} m'_{7} m'_{6} m'_{5}	m'_4 m'_3		m_4 m_3 m_2 m_1 m_0								
	m_4 m_3	$reduction \ m_4 m_3 m_2 m_1 m_0$ a_i 가 1일 a_i 가 1일 a_i								-th pa	rtial product 존재

- Classic-Quantum Multiplication $GF(2^n)$
- Partial product setting + Modular addition:(QCLA)사용

 a_i 가 1일 때만 i-th partial product 존재하므로 1일 때만 Add 실행

Quantum-Quantum Multiplication

- Quantum-Quantum Multiplication $GF(2^n)$
 - n-bit 의 quantum value a 와 Quantum value b 의 모듈러 곱셈 수행
 - Qubit setting 단계, Modular addition 단계, Inverse setting 단계로 이루어짐
- Partial product setting

Qubit setting

```
Algorithm 1 Qubit Setting
  input: quantum registers a, b, c0, and c1
  output: quantum registers c0 and c1
1 for i = 0 to n - 1 do
  Toffoli(a_0, b_i, c1_i); \rightarrow C1[0] ~ C1[n-1] 에 Setting 1 저장
3 for i = 0 to n - 1 do
    for j = 0 to n - 1 - i do
       Toffoli(a_i, b_j, c0_{i+j}); \rightarrow C1[0] ~ C1[n-1] 에 Setting 2-5 저장
6 Return c0, c1
```

• Quantum-Quantum Multiplication - $GF(2^n)$

Quantum Modular Multiplication in $GF(2^n - 1)$

Quantum-Classical Multiplication

- Classic-Quantum Multiplication $GF(2^n-1)$
 - n-bit 의 quantum value a 와 classic value B 의 모듈러 곱셈 수행
 - Partial product setting 단계와 Modular addition 단계로 이루어짐
- Partial product setting

- Classic-Quantum Multiplication $GF(2^n-1)$
- Partial product setting + Modular addition

 a_i 가 1일 때만 i-th partial product 존재하므로 1일 때만 Add 실행

Quantum-Quantum Multiplication

- Quantum-Quantum Multiplication $GF(2^n-1)$
 - n-bit 의 quantum value a 와 classic value B 의 모듈러 곱셈 수행
 - Qubit setting 단계, Modular addition 단계, inverse setting 단계로 이루어짐
- Partial product setting

Qubit setting

```
Algorithm 2 Qubit Setting
  input: quantum registers a, b, c0, and c1
  output: quantum registers c0 and c1
1 for i = 0 to n - 1 do
    Toffoli(a_0, b_i, c1_i);
3 for i = 1 to n - 1 do
    for j = 0 to n - 1 do
       Toffoli(a_i, b_j, c0_{(i+j) \mod n});
                          Rotation 해서 저장
6 Return c0, c1
```

• Quantum-Quantum Multiplication - $GF(2^n-1)$

Q&A