- 1. Give an example of a 2×2 matrix that has no real eigenvectors. Justify your solution with intuition (without solving completely for the eigenvectors and eigenvalues).
- 2. Consider an $n \times p$ matrix A. Show that the number of linear independent rows is the same as the number of linearly independent columns.

Hint: Write A = CR where C is a matrix of the linearly independent columns of A. Why can we write A like this? Then consider the CR product in the "row" interpretation of matrix multiplication.

- 3. Let A be an $m \times n$ matrix (assume m > n). The full singular value factorization $A = U \Sigma V^{\mathrm{T}}$ contains more information than necessary to reconstruct A.
 - (a) What are the smallest matrices \tilde{U} , $\tilde{\Sigma}$ and \tilde{V}^{T} such that $\tilde{U}\tilde{\Sigma}\tilde{V}^{T}=A$?
 - (b) Let $U = \begin{bmatrix} \tilde{U} & \hat{U} \end{bmatrix}$. That is, think about U from the full singular value factorization as a block matrix consisting of the matrix \tilde{U} found in part (a) and the remaining (unneeded) columns \hat{U} .

Find expressions for $\tilde{U}^{\mathrm{T}}\tilde{U}$ and $\tilde{U}\tilde{U}^{\mathrm{T}}$.

- (c) Use the *reduced* singular value factorization obtained in part (a) to find an expression for the matrix $H = A(A^{T}A)^{-1}A^{T}$. How many matrices must be inverted (diagonal and orthogonal matrices don't count)?
- 4. Let x and y be vectors of m elements. The least squares solution for a best-fit line for a plot of y versus x is

$$\hat{\beta} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y$$

where

$$X = \begin{bmatrix} | & | \\ 1 & x \\ | & | \end{bmatrix}$$

- (a) Suppose you know the **full** singular value factorization $X = U\Sigma V^{\mathrm{T}}$. Find an expression for $\hat{\beta}$ in terms of U, Σ , and V. Hint: only square matrices are invertible.
- (b) Repeat part (a) using the reduced singular value factorization $X = \tilde{U}\tilde{\Sigma}\tilde{V}^{\mathrm{T}}$.

5. Let \tilde{X} be an $m \times n$ matrix (m > n) whose columns have sample mean zero, and let $\tilde{X} = \tilde{U} \tilde{\Sigma} \tilde{V}^{\mathrm{T}}$ be a reduced singular value factorization of \tilde{X} . The squared *Mahalanobis* distance to the point \tilde{x}_i^{T} (the i^{th} row of \tilde{X}) is

$$d_i^2 = \tilde{x}_i^{\mathrm{T}} \hat{S}^{-1} \tilde{x}_i$$

where $\hat{S} = \frac{1}{m-1}\tilde{X}^{\mathrm{T}}\tilde{X} = \text{cov}(\tilde{X})$. Explain how to compute d_i^2 without inverting a matrix.