10/574897, IAP9 Rec'd PCT/PTO 06 APR 2006

WO 2005/039618

1

SEQUENCE LISTING

5	<110>	INDE	NA S.p.A.					
10	<120>	p185	neu ENCODING	G DNA AND T	HERAPEUTICA	L USES THER	EOF	
15	<130>	71181	1					
20	<160>	42						
	<170>	Pater	ntIn versio	n 3.1				
25	<210>	1						
	<211>	922						
30	<212>	DNA						
	<213>	humar	n/rat					
35								
	<400> ccgggc	1 cgga q	gccgcaatga	tcatcatgga	gctggcggcc	tggtgccgct	gggggttcct	60
40	cctcgc	cctc o	etgecececg	gaatcgcggg	ttacctatac	atctcagcat	ggccggacag	120
40	cctgcc	tgac o	ctcagcgtct	tccagaacct	gcaagtaatc	cggggacgaa	ttctgcacaa	180
	tggcgc	ctac 1	tegetgaece	tgcaagggct	gggcatcagc	tggctggggc	tgcgctcact	240
45	gaggga	actg q	ggcagtggac	tggccctcat	ccaccataac	acccacctct	gcttcgtgca	300
	cacggt	gccc t	tgggaccagc	tctttcggaa	cccgcaccaa	gctctgctcc	acactgccaa	360
50	ccggcc	agag q	gacgagtgtg	tgggcgaggg	cctggcctgc	caccagctgt	gcgcccgagg	420
30	gcactg	ctgg (ggtccagggc	ccacccagtg	tgtcaactgc	agccagttcc	ttcggggcca	480
	ggagtg	cgtg (gaggaatgcc	gagtactgca	ggggctcccc	agggagtatg	tgaatgccag	540
55	gcactg	tttg (ccgtgccacc	ctgagtgtca	gccccagaat	ggctcagtga	cctgttttgg	600
	accgga	ggct q	gaccagtgtg	tggcctgtgc	ccactataag	gaccctccct	tctgcgtggc	660
60	ccgctg	cccc a	agcggtgtga	aacctgacct	ctcctacatg	cccatctgga	agtttccaga	720
UU	tgagga	gggc q	gcatgccagc	cttgccccat	caactgcacc	cactcctgtg	tggacctgga	780

•				
	WO 2005/039618	2	PCT/EP2004/011161	
	tgacaagggc tgccccgccg agcaga	gage cagecetetg aegtecateg	tctctgcggt 840	
	ggttggcatt ctgctggtcg tggtct	tggg ggtggtcttt gggatcctca	tcaagcgacg 900	
5	gcagcagaag atccggaagt aa		922	
	<210> 2			
10	<211> 2083			
	<212> DNA			
15	<213> human/rat			
20	<400> 2 ccgggccgga gccgcaatga tcatca	tgga getggeggee tggtgeeget	gggggttcct 60	
	cetegecete etgececeeg gaateg	cggg cacccaagtg tgtaccggca	cagacatgaa 120	
	gttgcggctc cctgccagtc ctgaga	cca cctggacatg ctccgccacc	tgtaccaggg 180	
25	ctgtcaggta gtgcagggca acttgg	agct tacctacgtg cctgccaatg	ccagcctctc 240	
	attcctgcag gacatccagg aagttc	aggg ttacatgctc atcgctcaca	accaggtgaa 300	
30	gegegteeca etgeaaagge tgegea	cgt gagagggacc cagctctttg	aggacaagta 360	
	tgccctggct gtgctagaca accgaga	atcc tcaggacaat gtcgccgcct	ccacccagg 420	
	cagaacccca gaggggctgc gggagc	gca gcttcgaagt ctcacagaga	tcctgaaggg 480	
35	aggagttttg atccgtggga accctca	aget etgetaceag gaeatggttt	tgtggaagga 540	
	cgtcttccgc aagaataacc aactggo	ctcc tgtcgatata gacaccaatc	gttcccgggc 600	

3(35 cgtcttccgc aagaataacc aactggctcc tgtcgatata gacaccaatc gttcccgggc 600 ctgtccacct tgtgcccccg cctgcaaaga caatcactgt tggggtgaga gtccggaaga 660 40 ctgtcagatc ttgactggca ccatctgtac cagtggttgt gcccggtgca agggccggct 720 gcccactgac tgctgccatg agcagtgtgc cgcaggctgc acgggcccca agcattctga 780 45 ctgcctggcc tgcctccact tcaatcatag tggtatctgt gagctgcact gcccagccct 840 cgtcacctac aacacagaca cctttgagtc catgcacaac cctgagggtc gctacacctt 900 tggtgccagc tgcgtgacca cctgccccta caactacctg tctacggaag tgggatcctg 960 50 cactotggtg tgtcccccga ataaccaaga ggtcacagct gaggacggaa cacagcgttg 1020 tgagaaatgc agcaagccct gtgctcgagt gtgctatggt ctgggcatgg agcaccttcg 1080 55 aggggcgagg gccatcacca gtgacaatgt ccaggagttt gatggctgca agaagatctt 1140 tgggagcctg gcatttttgc cggagagctt tgatggggac ccctcctccg gcattgctcc 1200 gctgaggcct gagcagctcc aagtgttcga aaccctggag gagatcacag gttacctata 1260 60 cateteagea tggeeggaea geetgeetga eeteagegte tteeagaace tgeaagtaat

	WO 2005	5/0396	18		3		PCT/EP2004/0)11161
	ccgggg	acga	attctgcaca	atggcgccta	ctcgctgacc	ctgcaagggc	tgggcatcag	1380
	ctggct	gggg	ctgcgctcac	tgagggaact	gggcagtgga	ctggccctca	tccaccataa	1440
5	caccca	cctc	tgcttcgtgc	acacggtgcc	ctgggaccag	ctctttcgga	accegcacca	1500
	agctct	gctc	cacactgcca	accggccaga	ggacgagtgt	gtgggcgagg	gcctggcctg	1560
10	ccacca	gctg	tgcgcccgag	ggcactgctg	gggtccaggg	cccacccagt	gtgtcaactg	1620
10	cagcca	gttc	cttcggggcc	aggagtgcgt	ggaggaatgc	cgagtactgc	aggggctccc	1680
	caggga	gtat	gtgaatgcca	ggcactgttt	gccgtgccac	cctgagtgtc	agccccagaa	1740
15	tggctc	agtg	acctgttttg	gaccggaggc	tgaccagtgt	gtggcctgtg	cccactataa	1800
	ggaccc	tccc	ttctgcgtgg	cccgctgccc	cagcggtgtg	aaacctgacc	tctcctacat	1860
20	gcccat	ctgg	aagtttccag	atgaggaggg	cgcatgccag	ccttgcccca	tcaactgcac	1920
	ccactc	ctgt	gtggacctgg	atgacaaggg	ctgccccgcc	gagcagagag	ccagccctct	1980
	gacgtc	catc	gtctctgcgg	tggttggcat	tctgctggtc	gtggtcttgg	gggtggtctt	2040
25	tgggat	cctc	atcaagcgac	ggcagcagaa	gatccggaag	taa		2083
	<210>	3						
30	<211>	1939)					
	<212>	DNA						
35	<213>	huma	an/rat					
	<400> ccgggc	3 cgga	gccgcaatga	tcatcatgga	gctggcggcc	tggtgccgct	gggggtteet	60
40	cctcgc	cctc	ctgccccccg	gaatcgcggc	tagcctgtcc	ttcctgcagg	atatccagga	120
	ggtgcag	gggc	tacgtgctca	tcgctcacaa	ccaagtgagg	caggtcccac	tgcagaggct	180
45	gcggatt	tgtg	cgaggcaccc	agctctttga	ggacaactat	gccctggccg	tgctagacaa	240
••	tggagad	cccg	ctgaacaata	ccacccctgt	cacaggggcc	tccccaggag	gcctgcggga	300
	gctgca	gctt	cgaagcctca	cagagatctt	gaaaggaggg	gtcttgatcc	agcggaaccc	360
50	ccagcto	ctgc	taccaggaca	cgattttgtg	gaaggacatc	ttccacaaga	acaaccagct	420
	ggctctc	caca	ctgatagaca	ccaaccgctc	tegggeetge	cacccctgtt	ctccgatgtg	480
55	taaggg	ctcc	cgctgctggg	gagagagttc	tgaggattgt	cagagcctga	cgcgcactgt	540
- -	ctgtgc	eggt	ggctgtgccc	gctgcaaggg	gccactgccc	actgactgct	gccatgagca	600
	gtgtgct	gcc	ggctgcacgg	gccccaagca	ctctgactgc	ctggcctgcc	tocacttcaa	660

ccacagtggc atctgtgagc tgcactgccc agccctggtc acctacaaca cagacacgtt

tgagtccatg cccaatcccg agggccggta tacattcggc gccagctgtg tgactgcctg

720

780

60

				7			
	tccctacaac	tacctttcta	cggacgtggg	atcctgcacc	ctcgtctgcc	ccctgcacaa	840
	ccaagaggtg	acagcagagg	atggaacaca	gcggtgtgag	aagtgcagca	agccctgtgc	900
5	ccgagtgtgc	tatggtctgg	gcatggagca	cttgcgagag	gtgagggcag	ttaccagtgc	960
	caatatccag	gagtttgctg	gctgcaagaa	gatctttggg	agcctggcat	ttctgccgga	020
10	gagctttgat	ggggacccag	cctccaacac	tgccccgctc	cagccagagc	agctccaagt	080
10	gtttgagact	ctggaagaga	tcacaggtta	cctatacatc	tcagcatggc	cggacagcct	140
	gcctgacctc	agcgtcttcc	agaacctgca	agtaatccgg	ggacgaattc	tgcacaatgg	1200
15	cgcctactcg	ctgaccctgc	aagggctggg	catcagctgg	ctggggctgc	gctcactgag	1260
	ggaactgggc	agtggactgg	ccctcatcca	ccataacacc	cacctctgct	tcgtgcacac	1320
20	ggtgccctgg	gaccagctct	ttcggaaccc	gcaccaagct	ctgctccaca	ctgccaaccg	1380
20	gccagaggac	gagtgtgtgg	gcgagggcct	ggcctgccac	cagctgtgcg	cccgagggca	1440
	ctgctggggt	ccagggccca	cccagtgtgt	caactgcagc	cagttccttc	ggggccagga	1500
25	gtgcgtggag	gaatgccgag	tactgcaggg	gctccccagg	gagtatgtga	atgccaggca	1560
	ctgtttgccg	tgccaccctg	agtgtcagcc	ccagaatggc	tcagtgacct	gttttggacc	1620
30	ggaggctgac	cagtgtgtgg	cctgtgccca	ctataaggac	cctcccttct	gcgtggcccg	1680
50	ctgccccagc	ggtgtgaaac	ctgacctctc	ctacatgccc	atctggaagt	ttccagatga	1740
	ggagggcgca	tgccagcctt	gccccatcaa	ctgcacccac	tcctgtgtgg	acctggatga	1800
35	caagggctgc	cccgccgagc	agagagccag	ccctctgacg	tccatcgtct	ctgcggtggt	1860
	tggcattctg	ctggtcgtgg	tcttgggggt	ggtctttggg	atcctcatca	agcgacggca	1920
40	gcagaagatc	cggaagtaa					1939
	<210> 4						
45	<211> 169	9					
43	<212> DNA						
	<213> huma	an/rat					
50	4400> 4						
	<400> 4 ccgggccgga	gccgcaatga	tcatcatgga	gctggcggcc	tggtgccgct	gggggttcct	60
55	cctcgccctc	ctgccccccg	gaatcgcggc	tagcggaggg	gtcttgatcc	agcggaaccc	120
JJ	ccagctctgc	taccaggaca	cgattttgtg	gaaggacatc	ttccacaaga	acaaccagct	180
	ggctctcaca	ctgatagaca	ccaaccgctc	tegggeetge	cacccctgtt	ctccgatgtg	240
60		cgctgctggg ggctgtgccc					300 360

	gtgtgctgc	c ggctgcacgq	gccccaagca	ctctgactgc	ctggcctgcc	tccacttcaa	420
	ccacagtgg	c atctgtgage	tgcactgccc	agccctggtc	acctacaaca	cagacacgtt	480
5	tgagtccat	g cccaatcccq	g agggccggta	tacattcggc	gccagctgtg	tgactgcctg	540
	tecetacaa	c tacctttcta	cggacgtggg	atcctgcacc	ctcgtctgcc	ccctgcacaa	600
	ccaagaggt	g acagcagag	g atggaacaca	gcggtgtgag	aagtgcagca	agccctgtgc	660
10	ccgagtgtg	gc tatggtctgg	g gcatggagca	cttgcgagag	gtgagggcag	ttaccagtgc	720
	caatatcca	ag gagtttgct	g gctgcaagaa	gatctttggg	agcctggcat	ttctgccgga	780
15	gagctttga	at ggggaccca	g cctccaacac	tgccccgctc	cagccagagc	agctccaagt	840
	gtttgagac	ct ctggaagag	a tcacaggtta	cctatacatc	tcagcatggc	cggacagcct	900
20	gcctgacct	c agogtotto	c agaacctgca	agtaatccgg	ggacgaattc	tgcacaatgg	960
20	cgcctacto	cg ctgaccctg	c aagggctggg	catcagctgg	ctggggctgc	gctcactgag	1020
	ggaactggg	gc agtggactg	g cectcateca	ccataacacc	cacctctgct	tcgtgcacac	1080
25	ggtgccctg	gg gaccagctc	t ttcggaaccc	gcaccaagct	ctgctccaca	ctgccaaccg	1140
	gccagagga	ac gagtgtgtg	g gegagggeet	ggcctgccac	cagctgtgcg	cccgagggca	1200
20	ctgctgggg	gt ccagggccc	a cccagtgtgt	caactgcagc	cagttccttc	ggggccagga	1260
30	gtgcgtgg	ag gaatgccga	g tactgcaggg	gctccccagg	gagtatgtga	atgccaggca	1320
	ctgtttgc	cg tgccaccct	g agtgtcagcc	ccagaatggc	tcagtgacct	gttttggacc	1380
35	ggaggctga	ac cagtgtgtg	g cctgtgccca	ctataaggac	cctcccttct	gcgtggcccg	1440
	ctgcccca	gc ggtgtgaaa	c ctgacctctc	: ctacatgccc	atctggaagt	ttccagatga	1500
40	ggagggcg	ca tgccagcct	t gccccatcaa	ctgcacccac	tcctgtgtgg	acctggatga	1560
40	caagggct	gc cccgccgag	c agagagccag	, ccctctgacg	tccatcgtct	ctgcggtggt	1620
	tggcattc	tg ctggtcgtg	g tcttgggggt	ggtctttggg	atcctcatca	agcgacggca	1680
45	gcagaaga	tc cggaagtaa					1699
	<210> 5						
50		459					
30							
		NA uman/rat					
55		•					
	<400> 5 ccgggccg	ga gccgcaatg	a tcatcatgga	a getggegge	tggtgccgct	gggggttcct	60
60	cctcgccc	te etgecece	g gaatcgcgg	c tagectgeed	actgactgct	gccatgagca	120

gtgtgctgcc ggctgcacgg gccccaagca ctctgactgc ctggcctgcc tccacttcaa

WO 2005/039618

ccacagtggc atctgtgagc tgcactgcc agccctggtc acctacaaca cagacacgtt
tgagtccatg cccaatcccg agggccgta tacatcggc gccagctgt tgactgcct 300

360 5 tecetacaac tacetteta eggacgtggg atectgeace etegtetgee ecetgeacaa ccaagaggtg acagcagagg atggaacaca gcggtgtgag aagtgcagca agccctgtgc 420 480 ccgagtgtgc tatggtctgg qcatggagca cttqcgagag gtgagggcag ttaccagtgc 10 caatatccag gagtttgctg gctgcaagaa gatctttggg agcctggcat ttctgccgga 540 600 gagetttgat ggggacccag cetecaacae tgeecegete eagecagage agetecaagt 15 qtttqaqact ctggaagaga tcacaggtta cctatacatc tcagcatggc cggacagcct 660 720 qcctgacctc agcgtcttcc agaacctgca agtaatccgg ggacgaattc tgcacaatgg cgcctactcg ctgaccctgc aagggctggg catcagctgg ctggggctgc gctcactgag 780 20 840 qqaactqqqc aqtqqactqq ccctcatcca ccataacacc cacctctgct tcgtgcacac 900 ggtgccctgg gaccagctct ttcggaaccc gcaccaagct ctgctccaca ctgccaaccg 25 gccagaggac gagtgtgtgg gcgagggcct ggcctgccac cagctgtgcg cccgagggca 960 1020 ctgctggggt ccagggccca cccagtgtgt caactgcagc cagttccttc ggggccagga 1080 gtgcgtggag gaatgccgag tactgcaggg gctccccagg gagtatgtga atgccaggca 30 1140 ctgtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc 1200 ggaggetgae cagtgtgtgg cetgtgeeca etataaggae cetecettet gegtggeeeg 35 1260 ctgccccagc ggtgtgaaac ctgacctctc ctacatgccc atctggaagt ttccagatga ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 1320 caagggetge eccgeegage agagageeag ceetetgaeg teeategtet etgeggtggt 1380 40 tggcattctg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca 1440

45 <210> 6

50 <212> DNA

<213> human/rat

<211> 1219

gcagaagatc cggaagtaa

1459

WO 2005/039618 PCT/EP2004/011161

				· ·			
	ccgagtgtgc	tatggtctgg	gcatggagca	cttgcgagag	gtgagggcag	ttaccagtgc	240
	caatatccag	gagtttgctg	gctgcaagaa	gatctttggg	agcctggcat	ttctgccgga	300
5	gagctttgat	ggggacccag	cctccaacac	tgccccgctc	cagccagagc	agctccaagt	360
	gtttgagact	ctggaagaga	tcacaggtta	cctatacatc	tcagcatggc	cggacagcct	420
10	gcctgacctc	agcgtcttcc	agaacctgca	agtaatccgg	ggacgaattc	tgcacaatgg	480
10	cgcctactcg	ctgaccctgc	aagggctggg	catcagctgg	ctggggctgc	gctcactgag	540
	ggaactgggc	agtggactgg	ccctcatcca	ccataacacc	cacctctgct	tcgtgcacac	600
15	ggtgccctgg	gaccagctct	ttcggaaccc	gcaccaagct	ctgctccaca	ctgccaaccg	660
	gccagaggac	gagtgtgtgg	gcgagggcct	ggcctgccac	cagctgtgcg	cccgagggca	720
20	ctgctggggt	ccagggccca	cccagtgtgt	caactgcagc	cagttccttc	ggggccagga	780
20	gtgcgtggag	gaatgccgag	tactgcaggg	gctccccagg	gagtatgtga	atgccaggca	840
	ctgtttgccg	tgccaccctg	agtgtcagcc	ccagaatggc	tcagtgacct	gttttggacc	900
25	ggaggctgac	cagtgtgtgg	cctgtgccca	ctataaggac	cctcccttct	gcgtggcccg	960
	ctgccccagc	ggtgtgaaac	ctgacctctc	ctacatgccc	atctggaagt	ttccagatga	1020
30	ggagggcgca	tgccagcctt	gccccatcaa	ctgcacccac	tcctgtgtgg	acctggatga	1080
50	caagggctgc	cccgccgagc	agagagccag	ccctctgacg	tccatcgtct	ctgcggtggt	1140
	tggcattctg	ctggtcgtgg	tcttgggggt	ggtctttggg	atcctcatca	agcgacggca	1200
35	gcagaagatc	cggaagtaa					1219
	<210> 7						
40	<211> 979						
40	<211> 979 <212> DNA						
		an/rat					
45	\213\/ mum	an/lac					
	<400> 7						
50		gccgcaatga	tcatcatgga	gctggcggcc	tggtgccgct	gggggttcct	60
30	cctcgccctc	ctgccccccg	gaatcgcggc	tagecegete	cagccagagc	agctccaagt	120
	gtttgagact	ctggaagaga	tcacaggtta	cctatacatc	tcagcatggc	cggacagcct	180
55	gcctgacctc	agcgtcttcc	agaacctgca	agtaatccgg	ggacgaattc	tgcacaatgg	240
	cgcctactcg	ctgaccctgc	aagggctggg	catcagctgg	ctggggctgc	gctcactgag	300
60	ggaactgggc	agtggactgg	ccctcatcca	ccataacacc	cacctctgct	tcgtgcacac	360

ggtgccctgg gaccagetet ttcggaaccc gcaccaaget ctgctccaca ctgccaaccg 420

	WO 2005	/0396	18		8		PCT/EP2004/0	011161
	gccagag	gac	gagtgtgtgg	gcgagggcct	ggcctgccac	cagctgtgcg	cccgagggca	480
	ctgctgg	ggt	ccagggccca	cccagtgtgt	caactgcagc	cagttccttc	ggggccagga	540
5	gtgcgtg	ıgag	gaatgccgag	tactgcaggg	gctccccagg	gagtatgtga	atgccaggca	600
	ctgtttg	ccg	tgccaccctg	agtgtcagcc	ccagaatggc	tcagtgacct	gttttggacc	660
10	ggaggct	gac	cagtgtgtgg	cctgtgccca	ctataaggac	cctcccttct	gcgtggcccg	720
10	ctgcccc	agc	ggtgtgaaac	ctgacctctc	ctacatgccc	atctggaagt	ttccagatga	780
	ggagggc	gca	tgccagcctt	gccccatcaa	ctgcacccac	tcctgtgtgg	acctggatga	840
15	caagggc	tgc	cccgccgagc	agagagccag	ccctctgacg	tccatcgtct	ctgcggtggt	900
	tggcatt	ctg	ctggtcgtgg	tcttgggggt	ggtctttggg	atcctcatca	agcgacggca	960
20	gcagaag	atc	cggaagtaa					979
	<210>	8						
		739						
25		DNA						
			ın/rat					
30								
	<400>	8						
	ccgggcc	gga	gccgcaatga	tcatcatgga	gctggcggcc	tggtgccgct	gggggttcct	60
35	cctcgcc	ctc	ctgcccccg	gaatcgcggc	tagcaacacc	cacctctgct	tcgtgcacac	120
	ggtgccc	tgg	gaccagctct	ttcggaaccc	gcaccaagct	ctgctccaca	ctgccaaccg	180
40	gccagag	gac	gagtgtgtgg	gcgagggcct	ggcctgccac	cagctgtgcg	cccgagggca	240
	ctgctgg	ggt	ccagggccca	cccagtgtgt	caactgcagc	cagttccttc	ggggccagga	300
	gtgcgtg	gag	gaatgccgag	tactgcaggg	gctccccagg	gagtatgtga	atgccaggca	360
45	ctgtttg	ccg	tgccaccctg	agtgtcagcc	ccagaatggc	tcagtgacct	gttttggacc	420
	ggaggct	gac	cagtgtgtgg	cctgtgccca	ctataaggac	cctcccttct	gcgtggcccg	480
50	ctgcccc	agc	ggtgtgaaac	ctgacctctc	ctacatgccc	atctggaagt	ttccagatga	540
	ggagggc	gca	tgccagcctt	gccccatcaa	ctgcacccac	tcctgtgtgg	acctggatga	600
	caagggc	tgc	cccgccgagc	agagagccag	ccctctgacg	tccatcgtct	ctgcggtggt	660
55	tggcatt	ctg	ctggtcgtgg	tcttgggggt	ggtctttggg	atcctcatca	agcgacggca	720
	gcagaag	atc	cggaagtaa					739
50	<210>	9						
	<211>	499						

PCT/EP2004/011161 WO 2005/039618 9 <212> DNA <213> human/rat 5 <400> 9 60 ccqqqccqqa qccqcaatqa tcatcatgga gctggcggcc tggtgccgct gggggttcct 120 10 cctcgccctc ctgccccccg gaatcgcggc tagccccagg gagtatgtga atgccaggca 180 ctqtttgccg tgccaccctg agtgtcagcc ccagaatggc tcagtgacct gttttggacc ggaggctgac cagtgtgtgg cctgtgccca ctataaggac cctcccttct gcgtggcccg 240 15 300 ctgccccage ggtgtgaaac ctgacctctc ctacatgccc atctggaagt ttccagatga ggagggcgca tgccagcctt gccccatcaa ctgcacccac tcctgtgtgg acctggatga 360 20 420 caagggctgc cccgccgagc agagagccag ccctctgacg tccatcgtct ctgcggtggt tggcattetg ctggtcgtgg tcttgggggt ggtctttggg atcctcatca agcgacggca 480 499 gcagaagatc cggaagtaa 25 <210> 10 <211> 2086 30 <212> DNA <213> human/rat 35

<400> 10 60 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct cctcgccctc ctgcccccg gaatcgcggg cacccaagtg tgtaccggca cagacatgaa 120 40 180 qttqcqqctc cctqccaqtc ctqaqaccca cctqqacatq ctccqccacc tqtaccaqqq ctgtcaggta gtgcagggca acttggagct tacctacgtg cctgccaatg ccagcgctag 240 45 cctgtccttc ctgcaggata tccaggaggt gcagggctac gtgctcatcg ctcacaacca 300 360 aqtqaqqcaq qtcccactgc agaggctgcg gattgtgcga ggcacccagc tctttgagga caactatgcc ctggccgtgc tagacaatgg agacccgctg aacaatacca cccctgtcac 420 50 aggggeetee ecaggaggee tgegggaget geagettega ageeteacag agatettgaa 480 aggaggggte ttgatccage ggaaccccca getetgetae caggacacga ttttgtggaa 540 55 600 ggacatette cacaagaaca accagetgge teteacaetg atagacaeca accgeteteg qqcctqccac ccctgttctc cgatgtgtaa gggctcccgc tgctggggag agagttctga 660 ggattgtcag agcctgacgc gcactgtctg tgccggtggc tgtgcccgct gcaaggggcc 720 60 780 actqcccact gactqctqcc atgagcagtg tgctgccggc tgcacgggcc ccaagcactc

10 gcgagaggtg agggcagtta ccagtgccaa tatccaggag tttgctggct gcaagaagat 1140 1200 ctttgggagc ctggcatttc tgccggagag ctttgatggg gacccagcct ccaacactgc cccgctccag ccagagcagc tccaagtgtt tgagactctg gaagagatca caggttacct 1260 15 atacatetea geatggeegg acageetgee tgaceteage gtetteeaga acetgeaagt 1320 aatcegggga cgaattetge acaatggege ctactegetg accetgeaag ggetgggeat 1380 20 cagetggetg gggetgeget caetgaggga actgggeagt ggaetggeee teatecaeca 1440 taacacccac ctctgcttcg tgcacacggt gccctgggac cagctctttc ggaacccgca 1500 1560 25 ccaagetetg etecacaetg ccaaceggee agaggaegag tgtgtgggeg agggeetgge 1620 ctgccaccag ctgtgcgccc gagggcactg ctggggtcca gggcccaccc agtgtgtcaa ctgcagccag ttccttcggg gccaggagtg cgtggaggaa tgccgagtac tgcaggggct 1680 30 1740 ccccagggag tatgtgaatg ccaggcactg tttgccgtgc caccctgagt gtcagcccca gaatggctca gtgacctgtt ttggaccgga ggctgaccag tgtgtggcct gtgcccacta 1800 taaggaccet ccettetgeg tggcccgetg ccccageggt gtgaaacetg aceteteeta 1860 35 1920 catgcccatc tggaagtttc cagatgagga gggcgcatgc cagccttgcc ccatcaactg

cacccactcc tgtgtggacc tggatgacaa gggctgcccc gccgagcaga gagccagccc 1980
tctgacgtcc atcgtctctg cggtggttgg cattctgctg gtcgtggtct tgggggtggt 2040

ctttgggatc ctcatcaagc gacggcagca gaagatccgg aagtaa 2086

45 <210> 11 <211> 2086

50 <212> DNA <213> human/rat

<400> 11

55

60 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct ctgcccccc ctgcccccg gaatcgcggg cacccaagtg tgtaccggca cagacatgaa 120

				11			
	gttgcggctc c	ctgccagtc	ctgagaccca	cctggacatg	ctccgccacc	tgtaccaggg	180
	ctgtcaggta g	gtgcagggca	acttggagct	tacctacgtg	cctgccaatg	ccagcctctc	240
5	attcctgcag g	gacatccagg	aagttcaggg	ttacatgctc	atcgctcaca	accaggtgaa	300
	gcgcgtccca c	ctgcaaaggc	tgcgcatcgt	gagagggacc	cagctctttg	aggacaagta	360
10	tgccctggct g	gtgctagaca	accgagatcc	tcaggacaat	gtcgccgcct	ccaccccagg	420
10	cagaacccca g	gaggggctgc	gggagctgca	gcttcgaagt	ctcacagaga	tcctggctag	480
	cggaggggtc t	ttgatccagc	ggaaccccca	gctctgctac	caggacacga	ttttgtggaa	540
15	ggacatcttc (cacaagaaca	accagctggc	tctcacactg	atagacacca	accgctctcg	600
	ggcctgccac o	ccctgttctc	cgatgtgtaa	gggctcccgc	tgctggggag	agagttctga	660
20	ggattgtcag a	agcctgacgc	gcactgtctg	tgccggtggc	tgtgcccgct	gcaaggggcc	720
20	actgcccact (gactgctgcc	atgagcagtg	tgctgccggc	tgcacgggcc	ccaagcactc	780
	tgactgcctg	gcctgcctcc	acttcaacca	cagtggcatc	tgtgagctgc	actgcccagc	840
25	cctggtcacc i	tacaacacag	acacgtttga	gtccatgccc	aatcccgagg	gccggtatac	900
	attcggcgcc	agctgtgtga	ctgcctgtcc	ctacaactac	ctttctacgg	acgtgggatc	960
20	ctgcaccctc	gtetgeecee	tgcacaacca	agaggtgaca	gcagaggatg	gaacacagcg	1020
30	gtgtgagaag	tgcagcaagc	cctgtgcccg	agtgtgctat	ggtctgggca	tggagcactt	1080
	gcgagaggtg	agggcagtta	ccagtgccaa	tatccaggag	tttgctggct	gcaagaagat	1140
35	ctttgggagc	ctggcatttc	tgccggagag	ctttgatggg	gacccagcct	ccaacactgc	1200
	cccgctccag	ccagagcagc	tccaagtgtt	tgagactctg	gaagagatca	caggttacct	1260
40	atacatetea	gcatggccgg	acagcctgcc	tgacctcagc	gtcttccaga	acctgcaagt	1320
40	aatccgggga	cgaattctgc	acaatggcgc	ctactcgctg	accetgeaag	ggctgggcat	1380
	cagctggctg	gggctgcgct	cactgaggga	actgggcagt	ggactggccc	tcatccacca	1440
45	taacacccac	ctctgcttcg	tgcacacggt	gccctgggac	cagctctttc	ggaacccgca	1500
	ccaagctctg	ctccacactg	ccaaccggco	: agaggacgag	tgtgtgggcg	agggcctggc	1560
50	ctgccaccag	ctgtgcgccc	gagggcactg	ctggggtcca	gggcccaccc	agtgtgtcaa	1620
30	ctgcagccag	ttccttcggg	gccaggagtg	g cgtggaggaa	tgccgagtac	tgcaggggct	168Ô
	ccccagggag	tatgtgaatg	ccaggcacto	tttgccgtgc	caccctgagt	gtcagcccca	1740
55	gaatggctca	gtgacctgtt	ttggaccgga	ggctgaccag	tgtgtggcct	gtgcccacta	1800
	taaggaccct	cccttctgcg	tggcccgctg	g ccccagcggt	gtgaaacctg	acctctccta	1860
60	catgcccatc	tggaagtttc	: cagatgagga	a gggcgcatgo	cageettgee	: ccatcaactg	1920
υυ	cacccactcc	tgtgtggaco	: tggatgacaa	a gggctgccc	geegageaga	gagccagccc	1980

120 180 240 300 360 420 480 540 cgtcttccgc aagaataacc aactggctcc tgtcgatata gacaccaatc gttcccgggc 600 35 ctgtccacct tgtgcccccg cctgcaaaga caatcactgt tggggtgaga gtccggaaga 660 ctgtcagatc ttgactggca ccatctgtac cagtggttgt gcccggtgca agggcgctag 720 cctgcccact gactgctgcc atgagcagtg tgctgccggc tgcacgggcc ccaagcactc 780 40 840 tgactgcctg gcctgcctcc acttcaacca cagtggcatc tgtgagctgc actgcccage cetggtcace tacaacacag acacgtttga gtccatgccc aatcccgagg gccggtatac 900 45 atteggegee agetgtgtga etgeetgtee etacaactae etttetaegg aegtgggate 960 1020 ctgcaccctc gtctgccccc tgcacaacca agaggtgaca gcagaggatg gaacacagcg 1080 gtgtgagaag tgcagcaagc cctgtgcccg agtgtgctat ggtctgggca tggagcactt 50 gcgagaggtg agggcagtta ccagtgccaa tatccaggag tttgctggct gcaagaagat 1140 1200 ctttgggagc ctggcatttc tgccggagag ctttgatggg gacccagcct ccaacactgc 55 cccgctccag ccagagcagc tccaagtgtt tgagactctg gaagagatca caggttacct 1260 atacatetea geatggeegg acageetgee tgaeeteage gtetteeaga acetgeaagt 1320 aatccgggga cgaattctgc acaatggcgc ctactcgctg accctgcaag ggctgggcat 1380 60 cagctggctg gggctgcgct cactgaggga actgggcagt ggactggccc tcatccacca 1440

taacacccac ctctgcttcg tgcacacggt gccctgggac cagctctttc ggaacccgca 1500 1560 ccaaqctctg ctccacactg ccaaccggcc agaggacgag tgtgtgggcg agggcctggc 1620 ctgccaccag ctgtgcgccc gagggcactg ctggggtcca gggcccaccc agtgtgtcaa 5 ctgcagccag ttccttcggg gccaggagtg cgtggaggaa tgccgagtac tgcaggggct 1680 ccccagggag tatgtgaatg ccaggcactg tttgccgtgc caccctgagt gtcagcccca 1740 10 gaatggctca gtgacctgtt ttggaccgga ggctgaccag tgtgtggcct gtgcccacta 1800 taaggaccct cccttctgcg tggcccgctg ccccagcggt gtgaaacctg acctctccta 1860 catgcccatc tggaagtttc cagatgagga gggcgcatgc cagccttgcc ccatcaactg 1920 15 1980 cacccactcc tgtgtggacc tggatgacaa gggctgcccc gccgagcaga gagccagccc tetgaegtee ategtetetg eggtggttgg cattetgetg gtegtggtet tgggggtggt 2040 20 2086 ctttgggatc ctcatcaagc gacggcagca gaagatccgg aagtaa <210> 13

25 <211> 2086 <212> DNA

30 <213> human/rat

<400> 13 35 ccgggccgga gccgcaatga tcatcatgga gctggcggcc tggtgccgct gggggttcct 60 cctcgccctc ctgccccccg gaatcgcggg cacccaagtg tgtaccggca cagacatgaa 120 gttgcggctc cctgccagtc ctgagaccca cctggacatg ctccgccacc tgtaccaggg 180 40 240 ctqtcaqqta gtgcagggca acttggagct tacctacgtg cctgccaatg ccagcctctc 300 attectqcaq gacatecagg aagtteaggg ttacatgete ategeteaca accaggtgaa 360 45 gcgcgtccca ctgcaaaggc tgcgcatcgt gagagggacc cagctctttg aggacaagta tgccctggct gtgctagaca accgagatcc tcaggacaat gtcgccgcct ccaccccagg 420 480 cagaacccca gaggggctgc gggagctgca gcttcgaagt ctcacagaga tcctgaaggg 50 aggagttttg atccgtggga accetcaget etgetaceag gaeatggttt tgtggaagga 540 cgtcttccgc aagaataacc aactggctcc tgtcgatata gacaccaatc gttcccgggc 600 ctgtccacct tgtgcccccg cctgcaaaga caatcactgt tggggtgaga gtccggaaga 660 55 720 ctgtcagatc ttgactggca ccatctgtac cagtggttgt gcccggtgca agggccggct 780 qcccactgac tgctgccatg agcagtgtgc cgcaggctgc acgggcccca agcattctga 60 840 ctgcctggcc tgcctccact tcaatcatag tggtatctgt gagctgcact gcccagccct

14

				17			
	cgtcacctac	aacacagaca	cctttgagtc	catgcacaac	cctgagggtc	gctacacctt	900
	tggtgccagc	tgcgtgacca	cctgccccta	caactacctg	tctacggaag	tgggagctag	960
5	ctgcaccctc	gtctgccccc	tgcacaacca	agaggtgaca	gcagaggatg	gaacacagcg	1020
	gtgtgagaag	tgcagcaagc	cctgtgcccg	agtgtgctat	ggtctgggca	tggagcactt	1080
١.	gcgagaggtg	agggcagtta	ccagtgccaa	tatccaggag	tttgctggct	gcaagaagat	1140
10	ctttgggagc	ctggcatttc	tgccggagag	ctttgatggg	gacccagcct	ccaacactgc	1200
	cccgctccag	ccagagcagc	tccaagtgtt	tgagactctg	gaagagatca	caggttacct	1260
15	atacatctca	gcatggccgg	acagcctgcc	tgacctcagc	gtcttccaga	acctgcaagt	1320
	aatccgggga	cgaattctgc	acaatggcgc	ctactcgctg	accctgcaag	ggctgggcat	1380
20	cagctggctg	gggctgcgct	cactgaggga	actgggcagt	ggactggccc	tcatccacca	1440
20	taacacccac	ctctgcttcg	tgcacacggt	gccctgggac	cagctctttc	ggaacccgca	1500
	ccaagctctg	ctccacactg	ccaaccggcc	agaggacgag	tgtgtgggcg	agggcctggc	1560
25	ctgccaccag	ctgtgcgccc	gagggcactg	ctggggtcca	gggcccaccc	agtgtgtcaa	1620
	ctgcagccag	ttccttcggg	gccaggagtg	cgtggaggaa	tgccgagtac	tgcaggggct	1680
30	ccccagggag	tatgtgaatg	ccaggcactg	tttgccgtgc	caccctgagt	gtcagcccca	1740
50	gaatggctca	gtgacctgtt	ttggaccgga	ggctgaccag	tgtgtggcct	gtgcccacta	1800
	taaggaccct	cccttctgcg	tggcccgctg	ccccagcggt	gtgaaacctg	acctctccta	1860
35	catgcccatc	tggaagtttc	cagatgagga	gggcgcatgc	cagccttgcc	ccatcaactg	1920
	cacccactcc	tgtgtggacc	tggatgacaa	gggctgcccc	gccgagcaga	gagccagccc	1980
40	tctgacgtcc	atcgtctctg	cggtggttgg	cattctgctg	gtcgtggtct	tgggggtggt	2040
40	ctttgggatc	ctcatcaagc	gacggcagca	gaagateegg	aagtaa		2086
	<210> 14						
45	<211> 2086	5					
	<212> DNA	•					
50		an/rat					
	1220	,					
	<400> 14						
55	ccgggccgga	gccgcaatga	tcatcatgga	gctggcggcc	tggtgccgct	gggggttcct	60
				cacccaagtg			120
60	gttgcggctc	cctgccagtc	ctgagaccca	cctggacatg	ctccgccacc	tgtaccaggg	180
	ctgtcaggta	gtgcagggca	acttggagct	tacctacgtg	cctgccaatg	ccagcctctc	240

				10			
	attcctgcag	gacatccagg	aagttcaggg	ttacatgctc	ategeteaca	accaggtgaa	300
	gcgcgtccca	ctgcaaaggc	tgcgcatcgt	gagagggacc	cagctctttg	aggacaagta	360
5	tgccctggct	gtgctagaca	accgagatcc	tcaggacaat	gtcgccgcct	ccaccccagg	420
	cagaacccca	gaggggctgc	gggagctgca	gcttcgaagt	ctcacagaga	tcctgaaggg	480
10	aggagttttg	atccgtggga	acceteaget	ctgctaccag	gacatggttt	tgtggaagga	540
10	cgtcttccgc	aagaataacc	aactggctcc	tgtcgatata	gacaccaatc	gttcccgggc	600
	ctgtccacct	tgtgcccccg	cctgcaaaga	caatcactgt	tggggtgaga	gtccggaaga	660
15	ctgtcagatc	ttgactggca	ccatctgtac	cagtggttgt	gcccggtgca	agggccggct	720
	gcccactgac	tgctgccatg	agcagtgtgc	cgcaggctgc	acgggcccca	agcattctga	780
00	ctgcctggcc	tgcctccact	tcaatcatag	tggtatctgt	gagctgcact	gcccagccct	840
20	cgtcacctac	aacacagaca	cctttgagtc	catgcacaac	cctgagggtc	gctacacctt	900
	tggtgccagc	tgcgtgacca	cctgccccta	caactacctg	tctacggaag	tgggatcctg	960
25	cactctggtg	tgtcccccga	ataaccaaga	ggtcacagct	gaggacggaa	cacagcgttg	1020
	tgagaaatgc	agcaagccct	gtgctcgagt	gtgctatggt	ctgggcatgg	agcaccttcg	1080
20	aggggcgagg	gccatcacca	gtgacaatgt	ccaggagttt	gatggctgca	agaagatctt	1140
30	tgggagcctg	gcatttttgc	cggagagctt	tgatggggac	ccctcctccg	gcattgctag	1200
	cccgctccag	ccagagcagc	tccaagtgtt	tgagactctg	gaagagatca	caggttacct	1260
35	atacatctca	gcatggccgg	acageetgee	tgacctcagc	gtcttccaga	acctgcaagt	1320
	aatccgggga	cgaattctgc	acaatggcgc	ctactcgctg	accctgcaag	ggctgggcat	1380
40	cagctggctg	gggctgcgct	cactgaggga	actgggcagt	ggactggccc	tcatccacca	1440
40	taacacccac	ctctgcttcg	tgcacacggt	gccctgggac	cagctctttc	ggaacccgca	1500
	ccaagctctg	ctccacactg	ccaaccggco	agaggacgag	tgtgtgggcg	agggcctggc	1560
45	ctgccaccag	ctgtgcgccc	gagggcactg	ctggggtcca	gggcccaccc	agtgtgtcaa	1620
	ctgcagccag	ttccttcggg	g gccaggagtg	cgtggaggaa	tgccgagtac	tgcaggggct	1680
50	ccccagggag	tatgtgaatg	g ccaggcacto	tttgccgtgc	: caccctgagt	gtcagcccca	1740
30	gaatggctca	gtgacctgtt	ttggaccgga	ggctgaccac	tgtgtggcct	gtgcccacta	1800
	taaggaccct	cccttctgcg	g tggcccgctg	, ccccagcggt	gtgaaacctg	acctctccta	1860
55	catgcccatc	: tggaagtttc	c cagatgagga	gggcgcatgo	cagcettgee	: ccatcaactg	1920
	cacccactcc	: tgtgtggaco	c tggatgacaa	gggctgccc	gccgagcaga	gagecagece	1980
60	tctgacgtcc	: atcgtctcto	g cggtggttg	g cattetgete	gtcgtggtct	: tgggggtggt	2040
00	ctttgggatc	ctcatcaago	c gacggcagca	gaagatccg	g aagtaa		2086

	WO 200	5/039618	16			PCT/EP2004/011161	
	<210>	15					
	<211>	71					
5	<212>	DNA					
	<213>	human/rat					
10							
	<400> ccggaa	15 gtaa ataatcgacg	ttcaaataat	cgacgttcaa	ataatcgacg	ttcaaataat	60
15	cgacgt <210>	tcaa t 16					71
	<211>	71					
20	<212>	DNA					
20	<213>	human/rat					
25	<400> ctagat	16 tgaa cgtcgattat	ttgaacgtcg	attatttgaa	cgtcgattat	ttgaacgtcg	60
	attatt	tact t					71
30	<210>	17					
	<211>	71					
35	<212>	DNA					
	<213>	human/rat					
40							
40	<400> ccggaa	17 gtaa ataatagagc	ttcaaataat	agagcttcaa	ataatagagc	ttcaaataat	60
45	agagct	tcaa t					71
	<210>	18					
50	<211>	71					
50	<212>	DNA					
	<213>	human/rat					
55							
•	<400>	18					
60	ctagat attatt	tgaa gctctattat tact t	ttgaagctct	attatttgaa	gctctattat	ttgaagctct	60 71

<210×		
\210 >	19	
<211>	27	
<212>	DNA	
<213>	human/rat	
		27
<210>	20	
<211>	27	
<212>	AND .	
<213>	human/rat	
<400> agctag	20 gctag caagttaaac aagcttc	27
<210>	21	
<211>	68	
<212>	DNA	
<213>	human/rat	
		taatcgacgt 60
tcaagt	tt	68
<210>	22	
<211>	64	
<212>	DNA	
<213>	human/rat	
aaactt		tgaacgtcga 60
	23	
<211>	68	
	<212> <213> <400> ctagga <210> <211> <212> <213> <400> agctag <210> <211> <212> <213> <400> ctagat tcaagt <210> <211> <212> <213> <400> ctagat tcaagt tcaagt tcaagt <210> <211> <210> <211> <210> <211> <211> <212> <213> <300 ctagat tcaagt tcaagt	<pre><211> 27 <212> DNA <213> human/rat <400> 19 ctaggaagct tgtttaactt gctagct <210> 20 <211> 27 <212> DNA <213> human/rat <400> 20 agctagctag caagttaaac aagcttc <210> 21 <211> 68 <212> DNA <213> human/rat <400> 22 agctagctag caagttaaac taatcgacgt tcaaataatc gacgttcaaa tcaagttt <210> 21 ctagataatc gacgttcaaa taatcgacgt tcaaataatc gacgttcaaa tcaagttt <210> 22 <211> 64 <212> DNA <213> human/rat <400> 22 aacttgaac gtcgattatt tgaacgtcga ttatttgaac gtcgattatt ttat <400> 22 aaacttgaac gtcgattatt tgaacgtcga ttatttgaac gtcgattatt ttat <210> 23</pre>

	WO 200:	5/039618		18		PCT/EP2004/011	161
	<212>	DNA					
	<213>	human/rat					
5							
	<400> ctagata	23 aata gagcttcaaa	taatagagct	tcaaataata	gagcttcaaa	taatagagct	60
10	tcaagtt	it .					68
	<210>	24					
15	<211>	64					
	<212>	AND					
20	<213>	human/rat					
25	<400> aaactt	24 gaag ctctattatt	tgaagctcta	ttatttgaag	ctctattatt	tgaagctcta	60
	ttat						64
30	<210>	25					
	<211>	20				•	
	<212>	DNA					
35	<213>	human/rat					
40	<400> taatac	25 gact cactataggg					20
4.5	<210>	26					
45	<211>	32					
	<212>	DNA					
50	<213>	human/rat					
55	<400> ggccgg	26 ttac ccgcgattcc	ggggggcagg	ag			32
60	<210>	27					
00	<211>	35					

		WO 200	5/039618	19	PCT/EP2004/011161
		<212>	DNA		
		<213>	human/rat		
	5				
		<400> ccggcta	27 aget ageetgteet teetgeage	ga tatcc	35
	10	<210>	28		
		<211>	35		
	15	<212>	DNA		
		<213>	human/rat		
	20				
			28 agct agcggagggg tottgate	ca gegga	35
	25	<210>	29		
		<211>	35 ·		
	30	<212>	DNA		
		<213>	human/rat		
	35	<400> ccggct	29 agct agcctgccca ctgactgc	tg ccatg	35
	40	<210>	30		
è		<211>	35		
	45	<212>	DNA		
	73	<213>	human/rat		
	50	<400> ccggct	30 aget agetgeacee tegtetge	ec cetge	35
	55	<210>	31		
	,,	<211>	35		
		<212>	DNA		
	60	<213>	human/rat		

	WO 2005/039618			20		PCT/EP2004/011161
		31 get agecegetee a	agccagagca	gctcc		35
5	<210>	32				
	<211>	35				
10	<212> I	DNA				
10	<213> 1	human/rat				
15		32 gct agcaacaccc	acctctgctt	cgtgc		35
20	<210>	33				
20	<211>	35				
	<212>	DNA				
25	<213>	human/rat				
30.		33 gct agccccaggg	agtatgtgaa	tgcca		35
	<210>	34				
35	<211>	20				
	<212>	DNA				
40	<213>	human/rat			·	
45		34				20
73	45 tagaaggcac agtcgaggct 20					
	<210>	35				
50	<211>	43				
	<212>	DNA				
55	<213>	human/rat				
60		35 .gct agccgcgatt	ccggggggca	ggagggcgag	gag	43

	WO 2005/039618		21		PCT/EP2004/011161		
	<210>	36					
	<211>	69					
5	<212>	DNA					
	<213>	human/rat					
10	<400> ctaggc	36 atca tcatcatcat	cataatggtc	ataccggtga	acaaaaactc	atctcagaag	60
15	aggato	tgg					69
	<210>	37					
20	<211>	69					
20	<212>	DNA					
	<213>	human/rat					
25	<400>	37					
	ctaged	agat cctcttctga	gatgagtttt	tgttcaccgg	tatgaccatt	atgatgatga	60
30	tgatga	tgc					69
	<210>	38					
35	<211>	35					
	<212>	DNA					
40	<213>	human/rat					
40							
45	<400> ccggct	38 agct agcgctggca	ttggcaggca	cgtag			35
	<210>	39					
50	<211>	35					
	<212>	DNA					
	<213>	human/rat					
55							
	<400> ccggc	39 tagct agccaggatc	tctgtgagac	ttcga			35
60	<210>	40					

	WO 200	5/039618		22	PCT/EP2004/011161
	<211>	35			
	<212>	DNA			
5	<213>	human/rat			
10	<400> ccggct	40 agct agegeeettg	cacegggcac	aacca	35
	<210>	41			
15	<211>	35			
13	<212>	DNA			
	<213>	human/rat			
20					
	<400> ccggct	41 aget ageteceact	tccgtagaca	ggtag	35
25	<210>	42			
	<211>	35			
30	<212>	DNA			
	<213>	human/rat			
35	<400> ccggct	42 agct agcaatgccg	gaggaggggt	cccca	35