Rappels sur les nombres complexes

- ightharpoonup L'écriture d'un nombre complexe sous la forme z=x+iy avec $x\in\mathbb{R}$, $y\in\mathbb{R}$ st appelée forme algébrique
 - Le réel x est appelé **partie réelle** de z : x=Re(z)
 - Le réel y est appelé partie imaginaire de z : y=Im(z)

On appelle c<u>onjugu</u>é du nombre complexe z=x+iy le nombre complexe $\overline{z}=x-iy$ $\begin{cases} Re(z)=Re(\overline{z}) \\ Im(z)=-Im(\overline{z}) \end{cases}$

$$z \times \overline{z} = (x + iy)(x - iy) = x + y > 0$$

Z	Re(z)	Im(z)	\overline{z}	$z \overline{z}$
z=2+3i	Re(z) = 2	Im(z)=3	$\overline{z} = 2 - 3i$	$z\overline{z} = 2^{2} + 3^{2} = 13$
$z = \sqrt{2} + \frac{i}{2}$	$Re(z) = \sqrt{2}$	$Im(z) = \frac{1}{2}$	$\overline{z} = \sqrt{2} - \frac{i}{2}$	$z\overline{z} = \sqrt{2^2 + \frac{1}{2}^2} = 2 + \frac{1}{4} = \frac{9}{4}$

Le quotient de deux nombres complexes est aussi un nombre complexe $\frac{z}{z'} = \frac{z \overline{z'}}{z' \overline{z}'}$

$$\frac{1+i}{2+3i} = \frac{(1+i)(2-3i)}{(2+3i)(2-3i)} = \frac{5-i}{2^2+3^2} = \frac{5}{13} - \frac{1}{13}i$$

L'écriture d'un nombre complexe sous la forme z = r ($cos \theta + i s i n \theta$) est appelée forme trigonométrique

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \Rightarrow z = x + iy = r \cos \theta + i r \sin \theta$$

r est appelé module de z, $r=|z|=OM=\sqrt{x^2+y^2}$ >0

$$\theta$$
 est appelé argument de $z:\theta=\arg(z)=\overrightarrow{(i,\mathrm{OM})}$ à 2π près { $\sup_{|z|} \theta = \sup_{|z|} \theta =$

Propriétés du module	Propriétés de l'argument	
$ zz' = z \times z' $ $ z^n = z ^n$ $ \frac{1}{z} = \frac{1}{ z }$ $ \frac{z}{z'} = \frac{ 1 }{ z' }$ $ \overline{z} = z $ $ -z = z $	$arg(zz') = arg(z) + arg(z')$ $arg(z'') = narg(z)$ $arg(\frac{1}{z'}) = -arg(z)$ $arg(\frac{3}{z'}) = arg(z) - arg(z')$ $arg(\overline{z}) = -arg(z)$ $arg(\overline{-z}) = \pi + arg(z)$	$[2\pi]$ $[2\pi]$ $[2\pi]$ $[2\pi]$ $[2\pi]$ $[2\pi]$

ATTENTION!! la somme des modules n'est pas égale au module de la somme $|z| + |z'| \neq |z + z'|$

L'écriture d'un nombre complexe sous la forme z=|z| ei θ est appelée forme exponentielle

La forme trigonométrique est souvent utilisée comme intermédiaire pour passer de l'écriture exponentielle à l'écriture algébrique.

Forme algébrique	Forme trigonométrique	Forme exponentielle
z = 1 + i	$z = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$	$z = \sqrt{2} e^{i\frac{\pi}{4}}$
$z = 1 - i\sqrt{3}$	$z = 2(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3}))$	$z = 2e^{-i\frac{\pi}{3}}$
z = 3 - 3i	$z = 3\sqrt{2}(\cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4})$	$z = 3\sqrt{2} \ e^{i\frac{\pi}{4}}$
$z = \sqrt{6} + i\sqrt{2}$	$z = 2\sqrt{2(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})}$	$z = 2\sqrt{2}e^{i\frac{\pi}{6}}$
z = 2i	$z=2(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2})$	$z = 2e^{-i\frac{\pi}{2}}$

Formule de **MOIVRE** : $(\cos\theta + i\sin\theta)n = eni\theta = \cos(n\theta) + i\sin(n\theta)$

Formules d'**EULER**: $\cos \theta = \frac{ei\theta + e^{-}}{2}i^{\theta}$ $\sin \theta = \frac{ei\theta - e^{-}}{2i}i^{\theta}$