SEQUENTIAL CIRCUITS - II

©COPYRIGHT CHUA DINGJUAN. ALL RIGHTS RESERVED.

Ask Week 6 Questions here...

You can ask questions during the week using slido here:

https://app.sli.do/event/eaDnCNnRsdRpc7vviSMziF

Or at slido.com + #2026 002

Or the tiny little QR:

Counters

Asynchronous: Circuit elements do **not** get the clock input simultaneously **Synchronous Counters:** Circuit elements get the clock input simultaneously

Counters

Asynchronous: Circuit elements do **not** get the clock input simultaneously **Synchronous Counters:** Circuit elements get the clock input simultaneously

Ripple Counter (Asynchronous):

State Transition Diagram

Counters: Mod-X

- Each FF successively halves the input clock frequency
- \circ The 4-bit counter counts from $0000(0) \rightarrow 1111(15)$
- → 16 distinct count states ⇒ called a mod-16 counter
- N x FFs connected this way will have ____ states ⇒ mod-

How to obtain a counter with mod- $X < 2^{N}$?

- 1. Use FFs with CLR functions
- 2. Assume counter starts from 0
- 3. Identify FFs that will be in HIGH state when count = X
- CLK CLR J K Q^+ X L X X L \downarrow H L L Q \downarrow H L H L \downarrow H H L H \downarrow H H H D
- 4. Feed those FFs outputs to a NAND gate
- 5. Connect NAND gate output to asynchronous CLR

t_{pd} → limiting frequency

- Ripple counters are very easy to implement
- But they have a major drawback → they cannot operate beyond a limiting frequency

__O>clk

- Due to propagation delays of the FFs in the chain adding up:
 - 1. Clock input FF_1 : t_0
 - 2. Clock input FF_2 : $t_0 + \Delta tpd$
 - 3. Clock input FF_3 : $t_0 + 2*\Delta tpd$
 - 4. Clock input FF_N : $t_0 + (n 1) * \Delta tpd$
 - \rightarrow the nth FF changes state at n* Δ t after t₀

 $Tclock \ge (n*\Delta tpd)$

 $fmax \le 1 / (n*\Delta tpd)$

?>clk

Synchronous (Parallel) Counters

Mod-16 Synchronous Parallel Counter:

- Since all FFs are triggered simultaneously by the clock, this counter can operate at higher frequencies.
- Critical Path Delay = Δ tpd (FF) + Δ tpd (AND)
- Operating frequency is irrespective of the number of FFs
- <u>D</u>isadvantages?

B toggles when ____

C toggles when _____

D toggles when _____

Count	_			
Count	D	С	В	Α
0	0	0	0_	0
1	0	0	0	
2	0	0	1	0
3	0	0		1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	\forall	1	\forall
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
0	0	0	0	0
	С	0	n	t

Counting Down...

What about a count down mod-16 counter?

B toggles when C toggles when D toggles when

Count	D	С	В	Α
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
0	0	0	0	0
	С	0	n	t

Up/Down Synchronous Counters

$$\circ$$
 Counting Up : $Direction = 1$, $\overline{Direction} = 0$

$$J,K_{FFB} =$$

$$J,K_{FFC} =$$

 \circ Counting Down : Direction = 0, $\overline{Direction} = 1$

$$J,K_{FFB} =$$

$$J,K_{FFC} =$$

Example (D Flip-Flops)

Mod-8 Count-Up Counter Using D-FFs:

Count	С	В	Α
0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
0	0	0	0
С	0	n	t

CLK	D	Q ⁺

Verilog for Synchronous Counters


```
module mod8 ( input clk,
               output reg [2:0] q);
initial begin
                                              000
   q = 3'b000;
                                                       001
end
always @ (posedge clk)
                               110
                                                              010
begin
                                     101
                                                        011
                                               100
end
endmodule
```



```
module mod8 ( input clk,
              output reg [2:0] q);
initial begin
   q = 3'b000;
end
always @ (posedge clk)
begin
   q \leq q + 1;
end
endmodule
```



```
module mod5( input clk, clr,
              output reg [2:0] q);
initial begin
   q = 3'b000;
end
always @ (posedge clk, posedge clr)
begin
   q <=
end
```



```
module mod5( input clk, clr,
              output reg [2:0] q);
                                            000
initial begin
   q = 3'b000;
                                                       001
end
always @ (posedge clk, posedge clr)
                                                              010
begin
q \le (q == 3'b100) ? 3'b000 : q + 1;
                                                        011
                                            100
end
```


Last Slide!

- Incrementing / Counting is easy in Verilog! → COUNT <= COUNT + 1;
- O What about the following features?
 - Positive / Negative clock edge triggered
 - Counting Up / Counting Down
 - o mod-X Counters
 - Synchronous / Asynchronous Resets
 - Synchronous / Asynchronous Presets

```
module counter(input clear, clk, output reg [3:0] q);
always @ (posedge clk) begin
   q \le clear ? (q - 1) : 4'b0000;
end
     dule
```

- O What counter does this code describe?
- Positive/Negative Edge clock triggered?
- Asynchronous / Synchronous Clear?
- Count Up / Down Counter?

SEQUENTIAL CIRCUITS - III

DESIGN METHOD FOR SYNCHRONOUS COUNTERS

Design Method - Synchronous Counters

Goal: Given the state diagram of a counter realize it using common FFs (and combinational logic).

Example: Design a 3-bit counter having the following state diagram. Use D FFs.

3-bit synchronous counter

D Q
D Q
D Q
D Q
Combinational circuit
D Q
CLK

FF outputs are **fed back** to combinational circuit inputs.

Combinational circuit outputs D_A , D_B , & D_C are connected to D FF inputs and will be transferred to the output at next active clock edge.

Key: Design combinational circuit to take previous counter outputs & produce the next state.

Systematic design method is similar to that used for FF conversion considered before.

Design Method: Steps

Step 1

 Draw a State Diagram for the desired Count Sequence

Step 2

 Determine the Functional Block Diagram of the N-bit Counter. 1) Number of flip-flops?

2) Inputs and Outputs of combinational circuit?

1) Number of flip-flops?

Design Method: Steps

Step 1

 Draw a State Diagram for the desired Count Sequence

Step 2

 Determine the Functional Block Diagram of the N-bit Counter.

- 1) Number of flip-flops?
- 2) Inputs and Outputs of combinational circuit?

- 1) Number of flip-flops?
- 2) Inputs and Outputs of combinational circuit?

Design Method: Steps

Step 1

 Draw a State Diagram for the desired Count Sequence

Step 2

Determine the Functional Block Diagram of the N-bit Counter.

1) Number of flip-flops?

2) Inputs and Outputs of combinational circuit?

3-bit synchronous counter

Combinational Circuit

Inputs: Present-state counter outputs (A,B,C).

Outputs: Next-state counter outputs to connect to FF inputs. (D_A, D_B, D_C)

Design Method - Cont'd

Step 3A

Truth table of the combinational circuit.

A. Determine **next state table** for the counter.

Present-state outputs	Next-state outputs
人	Α

				$\overline{}$	
С	В	Α	C ⁺	B ⁺	A ⁺
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Next-State Table

A synchronous counter can be realized with D FFs or with any other FF

Design Method - Cont'd

*Excitation Table:

Specifies what the **FF** inputs should be for a specific $Q \rightarrow Q^+$ transition to occur.

Step 3B

 Truth table of the combinational circuit.
 B. Using the excitation table, determine the output values of the combinational circuit.

D			Next	-state c	utputs	Requi	red FF ii	nput
Presei	nt-state	outputs	\bigcap	↑	1	—	\rightarrow	
С	В	Α	C ⁺	B ⁺	A ⁺	D_C	D_B	D_A
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	0	0	1	0	0
1	0	0	1	0	1	1	0	1
1	0	1	1	1	0	1	1	0
1	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0

D	Q	
>	Q	

D Flip Flop Excitation Table

Q	Q ⁺	D
0	0	0
0	1	1
1	0	0
1	1	1

Next-State Table

We now have a truth table for the combinational circuit!

Excitation Table

What is the value of J and K to achieve Q

$$=0 -> Q + = 0$$

$$J = 0, K = 0$$

$$J = 0, K = 1$$

$$J = 1, K = 0$$

$$J = 1, K = 1$$

None of the above

JK Flip Flop Excitation Table

Q	Q ⁺	7	K
0	0	?	?
0	1		
1	0		
1	1		

*Excitation Table:

Specifies what the **FF** inputs should be for a specific Q → Q⁺ transition to occur.

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Design Method - Cont'd

Step 4

Realize the circuit. Present-state outputs Required FF input

	$\overline{}$	$\overline{}$		$\overline{}$	
С	В	Α	D_C	D_B	D _A
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

$$D_C = AB\overline{C} + \overline{B}C + \overline{A}C$$

$$D_B = A\overline{B} + \overline{A}B = A \oplus B$$

Synchronous Counter Example 2

Design a synchronous counter with count sequence using DFFs:

The counter also has an external **active high** <u>synchronous</u> CLEAR input which will clear the counter to 000 at next active clock edge when set to '1'.

CLEAR

1) State Diagram

2) Functional Block Diagram

3) Next State Table / Truth table of C.C.

4) Final Implementation

Step1: Write state diagram.

Step2: Determine functional block diagram of counter.

Step3: Functional block diagram of combinational circuit.

Step4: Get TT of combinational circuit using FF excitation table.

Step5: Realize circuit.

MSOP for flip-flop inputs

$$D_{\scriptscriptstyle C} = \overline{CLEAR} \bullet B + \overline{CLEAR} \bullet C \bullet \overline{A}$$

$$D_{\scriptscriptstyle B} = \overline{CLEAR} \bullet \overline{C} \bullet \overline{A}$$

$$D_{A} = \overline{CLEAR} \bullet C \bullet \overline{B}$$

