

Département d'informatique

IFT615 — Intelligence artificielle

Plan de cours

Enseignant :	Courriel : Site du cours : Disponibilité :
Professeur r	esponsable :
Horaire :	
Description	officielle de l'activité pédagogique ¹
Objectifs	Connaître les fondements de l'intelligence artificielle. Comprendre les caractéristiques et propriétés des techniques de base utilisées en intelligence artificielle. Savoir choisir et appliquer les différentes approches en fonction du problème à résoudre.
Contenu	Notions d'agent et d'environnement. Recherche heuristique (A*) et locale. Raisonnement dans un jeu à deux adversaires. Satisfaction de contraintes. Logique de premier ordre. Réseaux bayésiens (dynamiques) et processus de décision de Markov. Apprentissage automatique (perceptron, régression logistique et réseaux de neurones artificiels). Apprentissage par renforcement. Autres sujets d'intelligence artificielle non couverts parmi les précédents.
Crédits	3
Organisation	3 heures d'exposé magistral par semaine 6 heures de travail personnel par semaine
Préalable	(IFT436 ou IFT438) et (STT389 et STT418)
Particularité	Aucune

IFT615 Plan de cours 1

¹ http://www.usherbrooke.ca/fiches-cours/ift159

1 Présentation

Cette section présente les objectifs spécifiques et le contenu détaillé de l'activité pédagogique. Cette section, non modifiable sans l'approbation d'un comité de programme du Département d'informatique, constitue la version officielle.

1.1 Mise en contexte

Les recherches en intelligence artificielle (IA) visent à concevoir et à développer des logiciels capables d'effectuer des tâches qui requièrent normalement une certaine forme d'intelligence humaine. Plusieurs techniques ont été développées permettant de programmer des systèmes capables, dans une certaine mesure, de raisonner, d'apprendre, de planifier, de prendre des décisions rationnelles dans plusieurs domaines ou de comprendre ou de parler un langage naturel comme le français. Les technologies actuelles issues de l'intelligence artificielle comprennent les interfaces vocales, les systèmes experts, les robots mobiles et les assistants intelligents sur le Web. Ces technologies sont certes significatives, mais l'objectif ultime d'avoir des machines capables de rivaliser avec l'intelligence humaine dans tous les aspects reste bien lointain. Par exemple, il est relativement facile de coder l'intelligence d'un expert dans un domaine aussi pointu que le diagnostic médical ou aussi complexe que le jeu d'échecs. Par contre on ne sait pas encore comment programmer un logiciel capable d'avoir un niveau d'intuition appréciable ou une capacité d'apprentissage d'un enfant de quatre ans. Ceci fait que l'intelligence artificielle demeure un des créneaux de l'informatique avec des défis de recherche très stimulants et d'énormes retombées potentielles dans plusieurs domaines.

Le cours IFT 615 couvre les méthodes et les outils fondamentaux sur lesquelles reposent la plupart des techniques actuelles pour programmer des logiciels dotés d'une certaine forme d'IA. Nous verrons les propriétés (forces et faiblesses) de ces méthodes et apprendrons à différencier les contextes d'application selon leur méthode la plus appropriée. Sur le plan pratique, les étudiants auront à programmer des algorithmes d'IA présentés dans le cours.

1.2 Objectifs spécifiques

À la fin de cette activité pédagogique, l'étudiante ou l'étudiant devra connaître, comprendre et être capable d'appliquer les approches de base concernant les éléments suivants :

- 1. notions de base en intelligence artificielle ;
- 2. recherche heuristique en intelligence artificielle (algorithme A*);
- 3. recherche locale;
- 4. intelligence artificielle dans un jeu à deux adversaires ;
- 5. résolution de problèmes par la satisfaction de contraintes ;
- 6. inférence pour la logique de premier ordre (preuve par résolution) ;
- 7. raisonnement probabiliste en intelligence artificielle (réseaux bayésiens et réseaux bayésiens dynamiques);
- 8. planification par les processus de décision de Markov;
- 9. apprentissage automatique, incluant les réseaux neuronaux ;
- 10. apprentissage par renforcement;
- 11. et, optionnellement, d'autres sujets d'intelligence artificielle non couverts parmi les précédents.

En plus, à la fin du cours, l'étudiant devra posséder une vision générale de ces méthodes et savoir choisir la meilleure méthode pour une situation d'application donnée.

1.3 Contenu détaillé

Thème	Contenu	Heures	Objectifs
1	Agents intelligents - Définition - Types d'environnements	1	1
2	Recherche heuristique globale - Recherche dans un graphe - Algorithme A* - Heuristiques admissibles et monotones	2	2
3	Recherche heuristique locale - Algorithme hill-climbing - Algorithme recuit-simulé - Algorithmes génétiques	1	3
4	Satisfaction des contraintes - backtracking search - AC-3	2	5
5	Recherche heuristique pour les jeux compétitifs - Minimax - Alpha-beta pruning	3	4
6	Logique du premier ordre - Syntaxe et sémantique - Modus ponens - Algorithme d'unification (pattern matching) - Preuve par résolution	4	6
7	Raisonnement probabiliste - Rappel de la théorie des probabilités - Réseaux bayésiens - Inférences dans un réseau bayésien - Indépendance et D-séparation	4	7
8	Raisonnement probabiliste temporel Inférence dans les modèles temporels Chaîne de Markov Modèle de Markov caché Inférence par programmation dynamique	4	7

9	Processus de décision Markoviens - Définition - Valeur d'un plan - Algorithme value-iteration - Algorithme policy-iteration	2	8
10	Apprentissage automatique : - Perceptron - Régression logistique - Réseaux de neurones artificiels - Apprentissage par renforcement Apprentissage passif (différence temporelle) Apprentissage actif (<i>Q-learning</i>) Dilemme exploration vs exploitation	6	10
11	Autres sujets choisis en intelligence artificielle	6	11

Tous les thèmes, à part le 11e, doivent être couverts. Les heures pour certains thèmes peuvent varier de plus ou moins une heure.

2 Organisation

Cette section présente la méthode pédagogique utilisée, le calendrier officiel du cours, la méthode d'évaluation ainsi que l'échéancier des travaux.

2.1 Méthode pédagogique

Le cours se donnera sous forme de trois heures d'exposé magistral par semaine.

Quatre travaux pratiques permettront aux étudiants de mettre en application des approches d'intelligence artificielle sélectionnées parmi celles vues en classe.

2.2 Calendrier

La version électronique sur la page web du cours a des liens hypertextes fonctionnels.

Date	Contenu	Diapo
	Introduction au langage Python et remises des devoirs	[pdf]
	Introduction et présentation du plan de cours	[html]

Agents intelligents (2)	
• Motivation (5:12)	[pdf]
• Définition (14:44)	[pdf]
• Types d'environnements (11:14)	[pdf]
• Types d'agents (8:59)	[pdf]
• Exemple (9:33)	[pdf]
Recherche heuristique (3, 7.1)	
• Motivation (7:01)	[pdf]
• Recherche dans un graphe (9:13)	[pdf]
• A* (15:45)	[pdf]
• Exemple (12:26)	[pdf]
• Propriétés théoriques (11:30)	[pdf]
• Variations et applications (10:47)	[pdf]
Exercices	
• A*	
Recherche locale (4.1)	
• Motivation (5:52)	[pdf]
• Hill climbing (14:16)	[pdf]
• Simulated annealing (12:46)	[pdf]
Algorithme génétique (15:55)	[pdf]
Jeux à deux adversaires (5.1-5.5)	

İ		
	• Motivation (5:40)	[pdf]
	Algorithme minimax (17:40)	[pdf]
	• Élagage alpha-bêta (16:36)	[pdf]
	• Exemple (13:01)	[pdf]
	• Décisions à temps réel (10:47)	[pdf]
	Exercices	
	Recherche locale	
	• Alpha-bêta	
	Satisfaction de contraintes (6.1-6.4)	
	• Motivation (6:01)	[pdf]
	• Définition (11:06)	[pdf]
	Backtracking search (14:27)	[pdf]
	Améliorations à backtracking search (22:50)	[pdf]
	• Algorithme AC-3 (17:34)	[pdf]
	• Recherche locale (6:03)	[pdf]
	Exercices	
	Satisfaction de contraintes	
	Logique du premier ordre (7, 8, 9.2, 9.5)	
	• Motivation (12:55)	[pdf]
	• Syntaxe (20:47)	[pdf]
	• Inférence (6:08)	[pdf]
	L .	

• Substitution (10:06)	[pdf]
• Unification (16:39)	[pdf]
• Forme normale conjonctive (13:52)	[pdf]
• Preuve par résolution (23:56)	[pdf]
• Autres concepts (11:49)	[pdf]
Exercices	
• Unification	
Formules en logique du premier ordre	
Preuve par résolution	
Raisonnement probabiliste (13)	
• Motivation (8:00)	[pdf]
• Définitions (10:00)	[pdf]
Calcul de probabilités (17:46)	[pdf]
• Distribution de probabilités (6:00)	[pdf]
• Règles de chaînage et de Bayes (12:53)	[pdf]
• Indépendance (14:06)	[pdf]
Exercices	
Probabilités marginales	
Probabilités conditionnelles	
Probabilités conditionnelles (2)	
Indépendance	

Réseaux bayésiens (14.1-14.5)	
• Motivation (9:23)	[pdf]
• Définition (9:21)	[pdf]
• Calcul de probabilités (16:34)	[pdf]
• Indépendance (16:45)	[pdf]
• D-séparation (10:06)	[pdf]
• Inférence (26:02)	[pdf]
• Spécifier les tables de probabilités (12:35)	[pdf]
• Spécifier la structure (17:04)	[pdf]
Exercices	
Probabilités conditionnelles	
Probabilités conditionnelles (2)	
Indépendance	
• Indépendance (2)	
Réseaux bayésiens dynamiques (15.1-15.3)	
• Motivation (7:42)	[pdf]
• Définition (12:56)	[pdf]
• Types d'inférences (8:13)	[pdf]
• Chaîne de Markov (7:33)	[pdf]
• Modèle de Markov caché (9:48)	[pdf]
• Probabilité marginale et filtrage (23:47)	[pdf]

• Lissage (19:32)	[pdf]
• Prédiction (10:23)	[pdf]
• Explication la plus plausible (15:27)	[pdf]
Exercices	
Définition	
Tableau alpha	
• Tableau beta	
Examens périodiques	
Matière à l'examen	
• Intra H2009	
• Intra E2009	
• Intra H2010	
Traitement automatique de la langue (22.1, 22.2)	
• Motivation (8:00)	[pdf]
Classification de documents (19:40)	[pdf]
Apprentissage en classification de documents (19:32)	[pdf]
• Modèle de langage (17:14)	[pdf]
• Évaluation d'un modèle de langage (17:09)	[pdf]
• Étiquetage syntaxique (12:14)	[pdf]
• Extraction d'information (6:28)	[pdf]
Processus de décision Markoviens (17.1-17.3)	

• Motivation (5:37)	[pdf]
• Définitions (14:26)	[pdf]
• Valeur d'un plan (10:51)	[pdf]
• Itération par valeurs (13:49)	[pdf]
• Itération par politiques (16:56)	[pdf]
Exercices	
Classification de documents	
Itération par valeurs	
Apprentissage automatique (18.1, 18.2, 18.4, 18.6-18.8)	
• Motivation (7:35)	[pdf]
• Définitions (6:18)	[pdf]
• k plus proches voisins (10:04)	[pdf]
• Perceptron (12.58)	[pdf]
• Exemple du perceptron (7:05)	[pdf]
Propriétés du perceptron (8:07)	[pdf]
• Dérivées (11:16)	[pdf]
Dérivées partielles et gradient (18:42)	[pdf]
• Minimisation de perte (24:10)	[pdf]
Apprentissage automatique (suite)	
• Régression logistique (11:03)	[pdf]
• Réseau de neurones (13:28)	[pdf]

• Rétropropagation (23:49)	[pdf]
• Exemple de réseau de neurones (12:59)	[pdf]
Généralisation (18:33)	[pdf]
Exercices	
• k plus proches voisins	
Perceptron	
Dérivées de fonction	
Dérivées partielles de fonction	
Régression logistique vs. perceptron	
Apprentissage par renforcement (21.1-21.4)	
• Motivation (10:35)	[pdf]
• Estimation directe (14:04)	[pdf]
Programmation dynamique adaptative (21:41)	[pdf]
• Différence temporelle (13:18)	[pdf]
• Passif vs. actif (9:16)	[pdf]
Dilemme exploration vs. exploitation (10:32)	[pdf]
• Q-learning (17:06)	[pdf]
• Recherche de plan (11:39)	[pdf]
Généralisation (15:19)	[pdf]
Exercices	
Estimation directe	

• Q-learning	
Recherche locale en apprentissage par renforcement	
Vision par ordinateur (24.2, 24.3)	
• Motivation (6:16)	[pdf]
• Représentation d'images (5:29)	[pdf]
Gradients d'images (19:12)	[pdf]
• Contours d'images (12:33)	[pdf]
Histogrammes de gradients (11:36)	[pdf]
• Reconnaissance d'objets (10:17)	[pdf]
Exercices	
• Convolution	
Reconnaissance d'objets	
Révision	[pdf]
• Final E2012	
• Final H2012	
• Final E2010 [solutions]	
• Final H2009	
• Final A2006 [solutions]	
• Final H2003 [solutions]	

2.3 Évaluation

Travaux pratiques:	
Examen périodique:	
Examen final:	

2.4 Qualité du français et de la présentation

Conformément à l'article 17 du règlement facultaire d'évaluation des apprentissages² l'enseignant peut retourner à l'étudiante ou à l'étudiant tout travail non conforme aux exigences quant à la qualité de la langue et aux normes de présentation.

2.5 Plagiat

Un document dont le texte et la structure se rapporte à des textes intégraux tirés d'un livre, d'une publication scientifique ou même d'un site Internet, doit être référencé adéquatement. Lors de la correction de tout travail individuel ou de groupe une attention spéciale sera portée au plagiat, défini dans le Règlement des études comme « le fait, dans une activité pédagogique évaluée, de faire passer indûment pour siens des passages ou des idées tirés de l'œuvre d'autrui. ». Le cas échéant, le plagiat est un délit qui contrevient à l'article 8.1.2 du Règlement des études³ : « tout acte ou manœuvre visant à tromper quant au rendement scolaire ou quant à la réussite d'une exigence relative à une activité pédagogique. »

À titre de sanction disciplinaire, les mesures suivantes peuvent être imposées : a) l'obligation de reprendre un travail, un examen ou une activité pédagogique et b) l'attribution de la note E ou de la note 0 pour un travail, un examen ou une activité évaluée. Tout travail suspecté de plagiat sera référé au Secrétaire de la Faculté des sciences.

2.6 Échéancier des devoirs

Devoir	Thème	Pondération	Date de remise

Directives particulières

²http://www.usherbrooke.ca/sciences/intranet/informations-academiques/reglement-devaluation/

³ http://www.usherbrooke.ca/programmes/etude

- 1. Les devoirs doivent être effectués de façon individuelle;
- 2. L'implémentation d'algorithmes dans le cadre des devoirs doit se faire dans le langage de programmation Python. Le code soumis doit être compatible avec (c'est-à-dire exécutable sous) la version 2.7 de Python, soit celle installée dans les laboratoires sous Ubuntu;
- 3. La qualité du français et de la présentation peut être considérée lors de l'évaluation des travaux;
- 4. Toute soumission en retard vaut zéro, sauf celles motivées par des raisons valables et conformes au règlement des études (par exemple, maladie avec attestation d'un médecin).

2.7 Matériel nécessaire pour le cours

Stuart Russel & Peter Norvig. Artificial Intelligence: A Modern Approach. Third Edition. Prentice Hall, 2009.

Vous pouvez aussi louer la version anglaise en ligne sur CourseSmart http://www.coursesmart.com/IR/3850425/9780136067337?__hdv=6.8

Stuart Russel & Peter Norvig. Artificial Intelligence: A Modern Approach. Third Edition. Prentice Hall, 2009.

Ressources en ligne:

- Plan de cours.
- Présentations (vidéo, PDF) de la matière du cours
- Forum de discussion