INDEX

Abbey, R.F., 513	American Society of Civil Engineers Structural
acceleration response, 524, 545	Engineering Institute (ASCE/SEI), 25, 234
access floors, 118	American Society of Heating, Refrigerating and
accidental torsion, 91–92	Air-Conditioning Engineers, 486
accidents, and collapse, 378	American Society of Mechanical Engineers (ASME),
Ackley, S.F., 458	486
acrosswind response, 545t	American Water Works Association (AWWA), 235
active fault, 57	American Wood Council (AWC), 375
additions	Ammann, W., 581
defined, 57	amusement structures, 148
snow loads and existing roofs, 435	anchorage
structurally dependent, 363	in concrete and masonry, 484
structurally independent, 363	concrete piles, 131
Admirat, P., 458	corrugated sheet metal, 136
aerodynamic loads, 523	to masonry, 136
aerodynamic shade, 427, 432–433	of nonstructural components, 115
Aeroelastic Model, 575	strength requirement, 131, 490
Air Structure Institute, 429	of structural walls, 5
Akins, R.E., 513, 571	structural walls and transfer of design forces
Alfred P. Murrah Federal Building, 378	into diaphragms, 96, 480–481
Allen, D.E., 581	of tanks and vessels, 151t, 152
allowable stress design, 468–469	Angelos, A., 462
combining nominal loads with, 8–9	appendage, 58
defined, 1	Applied Technology Council, 467
with overstrength factor, 87	approval, 58
specifications based on, 387	approved, 21, 241
along-wind equivalent static wind loading, 522	approximate fundamental frequency, 519–521
along-wind response, 519, 522–523, 544t, 545t	appurtenances, 47, 48. See also wind loads on other
alteration, 58, 363	structures and building appurtenances
alternate path method, 379	arched roofs, 286f
alternative path analysis, 393	architectural components, 361
Aluminum Association (AA), 374	area of special flood hazard, 21
American Architectural Manufacturers Assoc.	ASME (American Society of Mechanical Engineers),
(AAMA), 233	16, 234
American Association of State Highway and	Associate Committee on the National Building Code,
Transportation Officials (AASHTO), 16	447
American Concrete Institute (ACI), 233, 373	ASTM International, 235
American Forest and Paper Assoc. (AF&PA), 233,	atmospheric ice loads, 47–56, 455–462
374	calculating ice area, 51f
American Institute of Steel Construction (AISC),	Columbia River Gorge detail, 55f
233–234, 373	combinations including, 8
American Institute of Timber Construction (AITC),	consensus standards/other referenced
447	documents, 50
American Iron and Steel Institute (AISI), 234, 373	definitions, 47, 456–458
American National Standards Institute (ANSI), 50	design procedure, 49–50
American Petroleum Institute (API), 234	design temperatures for freezing rain, 462
American Society of Civil Engineers (ASCE), 50,	due to freezing rain, 48, 458–461
375, 495, 496t	dynamic loads, 47, 456
373, 773, 1700	Synamic Tours, 17, 150