1.

Based on the graph, we can find out by comparing the benchmark with the first case where the gas (krypton) has been changed, the U FACTOR value decreases by 7%, SO the thermal transmittance of the window has increased.

in the second comparison, using a low emissivity coating, the U FACTOR value decreases by 36%, greatly improving the thermal transmittance compared to the benchmark.

in the last comparison, adding an extra pane, the U FACTOR value, still decreases by 36%, proving a great improvement in the thermal efficiency of the window.

	Bench	1	2	3
	mark			
Gap (mm)	13	13	13	13
€	0.84	0.84	0.1	0.84
N PANE	2	2	2	3
Gas	Air	Krypton	Air	Air
U _{factor} w/m ² k	2.8	2.6	1.8	1.8
percentage	100%	93%	64%	64%

						P	IACENZ	A, Italy						WMO#:	160840	
Lat	44.92N	Long:	9.73E	Elev:	138	StdP:	99.68		Time Zone:	1.00 (EU	W)	Period:	89-10	WBAN:	99999	
Innual H	eating and H	umidificati	on Design C	onditions												
Coldest	Coldest Heating DB Humidification DP/MCDB and HR				Coldest month WS/MCDB			MCWS	1							
	Heating	J DB	99.6%		99%		0.4%		1	1% to 99		6% DB				
Month	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	1	
(0)	(6)	(0)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)		
1	-6.2	-4.8	-11.6	1.4	3.1	-8.8	1.8	1.8	8.8	5.6	7.7	6.2	2.1	250		
nnual C	ooling, Dehu	midificatio	n, and Enth	alpy Design	Conditions											
Hottest Hottest			Cooling DB/MCWB					Evaporation WB/MCDB					MCWS/PCWD			
Month	Month	0.4% 1%		2% 0.		4% 1%		2%		to 0.4	% DB	ı				
	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
8	11 9	33 1	22 7	31 9	22 4	30.3	21 8	246	30.2	23 7	29 2	22 9	28 3	24	90	

Wood Frame

WINDOW 1 : East, fixed, wood frame, Area= 14,4 m²

Heating:

 $U_{w1 \text{ east}} = 2,84 \text{ W/m}^2 \text{ K}$

 $HF_{w1 \text{ east}} = U_{W1 \text{ east}} * \Delta T_{cooling} = 2.84 * 24.8 = 70.44$

 $Q_{w1 \text{ east}} = HF_{W1 \text{ east}} * A_{W1 \text{ east}} = 70.44 * 14.4 = 1014.2 W$

Cooling:

Heat transfer

 $CF_{W1 \text{ east}} = UW_{1 \text{ east}} * (\Delta T_{cooling} - 0.46 \text{ DR}) = 2,84 (7,9 - (0,46 * 11,9)) = 6,9 \text{ W/m}^2$

Irradiation

ED = 559 , Ed= 188

East window of a detached house - $FF_S = 0.31$

SHGC= 0.54

 $PXI_{W1 \text{ east}} = ED + Ed = 559 + 188 = 747$

 $CF_{W1 \text{ east}} = PXI * SHGC * IAC * FF_s = 747*0.54*1*0.31=125.1$

CF_{fen1 east}= $U_{w1 \text{ east}}$ * ($\Delta T_{cooling}$ – 0.46 DR) +PXI *SHGC *IAC * FFs = 6.9 +125.1 =132 W/m²

$$Q_{\text{w1 east}} = \text{CF}_{\text{fen1 east}} * A_{\text{W1 east}} = 132*14.4 = 1900.8 \text{ W}$$

WINDOW 2: West, Fixed, Wood frame, Area= 14,4 m²

Heating

$$U_{W2 \text{ west}} = 2.84 \text{ W/m}^2 \text{ K}$$

$$HF_{W2 \text{ west}} = U_{W2 \text{ west}} * \Delta T_{cooling} = 2.84 * 24.8 = 70.44$$

$$Q_{W2 \text{ west}} = HF_{W2 \text{ west}} * A_{W2 \text{ west}} = 70.44 * 14.4 = 1014.2 W$$

Cooling

Heat transfer

$$CF_{W2 \text{ west}} = U_{W2 \text{ west}} * (\Delta T_{cooling} - 0.46 \text{ DR}) = 2,84 (7,9 - (0,46 \cdot 11,9)) = 6,9 \text{ W/m}^2$$

ED = 559

Ed= 188

West window of a detached house - $FF_S = 0.31$

SHGC= 0.54

$$PXI_{W2 \text{ west}} = ED + Ed = 559 + 188 = 747$$

$$CF_{W2 \text{ west}} = PXI^* SHGC * IAC * FF_s = 747*0.54*1*0.56 = 225.9$$

CF fen 2 west =
$$U_{w2 \text{ west}}$$
 * ($\Delta T_{cooling} - 0.46DR$) +PXI *SHGC *IAC * FF_s = $6.9 + 225.9 = 232.8 \text{ W/}^{m2}$

$$Q_{W2 \text{ west}} = CF_{fen2 \text{ west}} * A_{W2 \text{ west}} = 232.8 * 14.4 = 3352.32 \text{ W}$$

WINDOW 3: South, Fixed, Wood Frame, Area= 3.6 m²

Heating:

 $U_{W3 \text{ south}=} 2,84 \text{ W/m}^2 \text{ K}$

 $HF_{W3 \text{ south}} = U_{W \text{ 3south}} * \Delta T_{cooling} = 2.84 * 24.8 = 70.44 \text{ W/ m}^2$

 $Q_{W3 \text{ south}} = HF_{W3 \text{ south}} * A_{W3 \text{ south}} = 70.44 * 3.6 = 253.6 W$

Cooling:

Heat transfer part

 $CF_{W3 \text{ south}} = U_{W3 \text{ south}} * (\Delta T_{cooling} - 0.46 * DR) = 2,84 (7,9 - (0,46 *11,9)) = 6,9 \text{ W/m}^2$

Part for Irradiation part

 $E_D = 348$

 $E_{d} = 209$

South window of a detached house - $FF_S = 0.31$

SHGC= 0.54

 $PXI_{W3 \text{ south}} = E_D + E_d = 348 + 209 = 557$

CF w₃ south = PXI* SHGC * IAC * FF_s= 557*0.54*1*0.47=141.4

CF_{fen3 south}= $U_{w3 \text{ south}}$ * ($\Delta T_{cooling}$ - 0.46 * DR) +PXI *SHGC *IAC * FF_s = 6.9 +141.4=148.3 W/m²

 $Q_{\text{w3 south}} = \text{CF}_{\text{fen3 south}} * A_{\text{W3 south}} = 148.3*3.6 = 533.88 \text{ W}$

WINDOW 4: South, Operable, wood frame, Area= 3.6 m²

Heating:

U_{W4 south=} 2,87 W/m² K

 $HF_{W4 \text{ south}} = U_{W4 \text{ south}} * \Delta T_{cooling} = 2.87 * 24.8 = 71.17 \text{ W/m}^2$

 $Q_{W4 \text{ south}} = HF_{W4 \text{ south}} * A_{W4 \text{ south}} = 71.17 * 3.6 = 256.2 W$

Cooling:

Heat transfer part

 $CF_{W4 \text{ south}} = U_{W4 \text{ south}} * (\Delta T_{cooling} - 0.46 * DR) = 2,87 (7,9 - 0,46 \cdot 11,9) = 6,96 \text{ W/m}^2$

Part for Irradiation part

 $E_D = 348$

 $E_{d} = 209$

South window of a detached house - $FF_S = 0.47$

SHGC= 0.46

 $PXI_{W4 \text{ south}} = E_D + E_d = 348 + 209 = 557$

CF w₄ south = PXI * SHGC * IAC * FF_s= 557*0.46*1*0.47=120.4

 $CF_{fen4 \ south} = U_{w3south} *(\Delta T_{cooling} - 0.46 * DR) +PXI *SHGC *IAC * FF_s = 6.9 +120.4=127.3 W/m²$

 $Q_{\text{w4 south}} = \text{CF}_{\text{fen4 south}} * A_{\text{W4 south}} = 127.3 * 3.6 = 458.28 \text{ W}$

 $Q_{\text{Total windows Cooling wood frame}} = 1900,.8 + 3352.32 + 533.88 + 458.28 = 6245.3 W$

 $Q_{\text{Total windows Heating wood frame}} = 1014.2 + 1014.2 + 253.6 + 256.2 = 2538.2 \text{ W}$

Aluminium Frame

Window 1: East, Fixed, Aluminium, Area= 14,4 m²

Heating:

$$U_{w1 \, east=} 3.61 \, W/m^2 \, K$$

$$HF_{w1 \text{ east}} = U_{w1 \text{ east}} * \Delta T_{cooling} = 3.61 * 24.8 = 89.52 \text{ W/m}^2$$

$$Q_{w1 \text{ east}}$$
= HF_{W1 east} * A_{W1 east} = 89.52 * 14.4 = 1289.1 W

Cooling:

Part for Heat transfer

$$CF_{W1 \text{ east}} = U_{W1 \text{ east}} * (\Delta T_{cooling} - 0.46 * DR) = 3.61* (7.9 - 0.46 \cdot 11.9) = 8.7 \text{ W/m}^2$$

Part for Irradiation part

$$E_{D} = 559$$

$$E_{d} = 188$$

East window of a detached house - $FF_S = 0.31$

SHGC= 0.56

$$PXI_{W1 \text{ east}} = E_D + E_d = 559 + 188 = 747$$

$$CF_{W1 \text{ east}} = PXI*SHGC*IAC*FF_s = 747*0.56*1*0.31=129.6$$

$$CF_{fen1 \, east} = U_{w1 \, east} * (\Delta T_{cooling} - 0.46 * DR) + PXI * SHGC * IAC * FF_s = 8.7 + 129.6 = 138.3 W/m2$$

$$Q_{\text{w1 east}} = \text{CF}_{\text{fen1 east}} * A_{\text{W1 east}} = 138.3*14.4 = 1991.5 \text{ W}$$

WINDOW 2: West, Fixed, Aluminium, Area= 14,4 m²

Heating:

 $U_{W2 \text{ west=}} 3.61 \text{ W/m}^2 \text{ K}$

 $HF_{W2 \text{ west}} = U_{W2 \text{ west}} * \Delta T_{cooling} = 3.61 * 24.8 = 70.44$

 $Q_{W2 \text{ west}} = HF_{W2 \text{ west}} * A_{W2 \text{ west}} = 89.52 * 14.4 = 1289.1 W$

Cooling;

Part for Heat transfer

 $CF_{W2 \text{ west}} = U_{W2 \text{ west}} * (\Delta T_{cooling} - 0.46 * DR) = 3.61 (7.9 - 0.46 \cdot 11.9) = 8.7 \text{ W/m}^2$

 $E_{D} = 559$

 $E_d = 188$

West window of a detached house - $FF_S = 0.56$

SHGC= 0.56

 $PXI_{W2 \text{ west}} = E_D + E_d = 559 + 188 = 747$

 $CF_{W2 \text{ west}} = PXI*SHGC*IAC*FF_s=747*0.56*1*0.56=234.26$

 $CF_{fen2 west} = U_{w2 west} * (\Delta T_{cooling} - 0.46 * DR) + PXI*SHGC*IAC*FF_s = 8.7+234.26=242.96 W/m²$

 $Q_{W2 \text{ west}} = CF_{fen2 \text{ west}} * A_{W2 \text{ west}} = 242.96 * 14.4 = 3498.6 W$

WINDOW 3: South, Fixed, Aluminium, Area= 3.6 m²

Heating:

 $U_{W3 \text{ south}=} 3.61 \text{ W/m}^2 \text{ K}$

 $HF_{W3 \text{ south}} = U_{W3 \text{ south}} * \Delta T_{cooling} = 3.61 * 24.8 = 89.52 \text{ W/m}^2$

 $Q_{W3 \text{ south}} = HF_{W3 \text{ south}} * A_{W3 \text{ south}} = 89.52 * 3.6 = 322.2 W$

Cooling:

Heat transfer part

 $CF_{W3 \text{ south}} = U_{W3 \text{ south}} *(\Delta T_{cooling} - 0.46 * DR) = 3.61 (7,9 - 0,46 \cdot 11,9) = 8.7 \text{ W/m}^2$

Part for Irradiation part

 $E_D = 348$

 $E_{d} = 209$

South window of a detached house - $FF_S = 0.47$

SHGC= 0.56

 $PXI_{W3 \text{ south}} = E_D + E_d = 348 + 209 = 557$

CF w₃ south = PXI*SHGC*IAC*FF_s= 557*0.56*1*0.47=146.6

CF_{fen3 south}= $U_{w3 \text{ south}}$ *($\Delta T_{cooling}$ - 0.46 * DR) +PXI *SHGC *IAC * FF_s = 8.7 +146.6=155.3 W/m²

 $Q_{\text{w3 south}} = \text{CF}_{\text{fen3 south}} * A_{\text{W3 south}} = 155.3*3.6 = 559.08 \text{ W}$

WINDOW 4: South, Operable, Aluminium, Area= 3.6 m²

Heating:

 $U_{W4south=}$ 4.62 W/m² K

 $HF_{W4south} = U_{W4south} * \Delta T_{cooling} = 4.62 * 24.8 = 114.57 \text{ W/ } \text{m}^2$

 $Q_{W4south} = HF_{W4south} * A_{W4south} = 114.57 * 3.6 = 412.4 W$

Cooling:

Heat transfer part

 $CF_{W4 \text{ south}} = U_{W4 \text{ south}} *(\Delta T_{cooling} - 0.46 * DR) = 4.62 (7.9 - 0.46 \cdot 11.9) = 11.2 \text{ W/m}^2$

Part for Irradiation part

 $E_D = 348$

 $E_{d} = 209$

South window of a detached house - $FF_S = 0.47$

SHGC= 0.55

 $PXI_{W4 \text{ south}} = E_D + E_d = 348 + 209 = 557$

CF w₄ south = PXI*SHGC*IAC*FF_s= 557*0.55*1*0.47=143.95

 $CF_{fen4 \ south} = U_{w3 \ south} *(\Delta T_{cooling} - 0.46 * DR) + PXI *SHGC *IAC * FF_s = 11.2 + 143.98 = 155.18 W/m²$

 $Q_{\text{w4 south}} = \text{CF}_{\text{fen4 south}} * A_{\text{W4 south}} = 155.18*3.6 = 558.65 \text{ W}$

 $Q_{\text{Total windows Cooling Aluminium frame}} = 1991.5 + 3498.6 + 559.08 + 558.65 = 6607.8 \, W$

 $Q_{\text{Total windows Heating Aluminium frame}} = 1289.1 + 1289.1 + 322.2 + 412.4 = 3312.8 \ W$