HW4

Y. Konpaku

1. QUESTION

- 1. Prove that $\mathbf{G1m} \vdash \Rightarrow ((((\varphi\psi)\varphi)\varphi)\psi)\psi$.
- 2. [Basic Proof Theory Ex. 3.1.3A] Prove in **G1m** that $\varphi \Rightarrow \varphi$ for arbitrary φ from prime instances $p \Rightarrow p$.
- 3. Prove that if $\mathbf{G1m} \vdash \Gamma \Rightarrow \Delta$ then $\Delta \neq \emptyset$.
- 4. [Optional] Prove that if $G1[ic] \vdash \Gamma \Rightarrow \Delta, \bot$ then $G1[ic] \vdash \Gamma \Rightarrow \Delta$ (in $G1i, \Delta = \emptyset$).

2. ANSWER

1.

$$\frac{\frac{\overline{\varphi} \Rightarrow \overline{\varphi} \cdot Ax}{\varphi, (\varphi \psi) \varphi \Rightarrow \varphi} LW}{\frac{\varphi}{\varphi} \cdot ((\varphi \psi) \varphi) \varphi} \xrightarrow{R \rightarrow} \frac{\overline{\psi} \Rightarrow \psi}{\varphi} \xrightarrow{L \rightarrow} LW} \xrightarrow{\overline{\varphi} \Rightarrow \varphi} \xrightarrow{Ax} RW \xrightarrow{\underline{(((\varphi \psi) \varphi) \varphi) \psi, \varphi \Rightarrow \psi}} L \rightarrow \underline{\frac{(((\varphi \psi) \varphi) \varphi) \psi, (\varphi \psi) \varphi \Rightarrow \varphi}{((((\varphi \psi) \varphi) \varphi) \psi) \psi} \xrightarrow{R \rightarrow} L \rightarrow \underline{\frac{(((\varphi \psi) \varphi) \varphi) \psi, ((\varphi \psi) \varphi) \varphi}{((((\varphi \psi) \varphi) \varphi) \psi) \psi) \psi}} \xrightarrow{L \rightarrow} LW \xrightarrow{\underline{(((\varphi \psi) \varphi) \varphi) \psi) \psi} ((((\varphi \psi) \varphi) \varphi) \psi) \psi} L \rightarrow \underline{\frac{(((\varphi \psi) \varphi) \varphi) \psi) \psi}{((((\varphi \psi) \varphi) \varphi) \psi) \psi) \psi}} \xrightarrow{L \rightarrow} LC$$
We prove that by induction on the formation rules of the wff.

• BASE G1m $\vdash p \Rightarrow p$ for $p = \bot$ or p atomics holds by definition.

• LH By induction hypothesis G1m $\vdash \varphi \Rightarrow \varphi$ and G1m $\vdash \psi \Rightarrow \psi$ holds, we prove that we can

- 2. We prove that by induction on the formation rules of the wff.

 - IH By induction hypothesis $G1m \vdash \varphi \Rightarrow \varphi$ and $G1m \vdash \psi \Rightarrow \psi$ holds, we prove that we can derive $\varphi * \psi \Rightarrow \varphi * \psi$ for $* = \land, \lor, \rightarrow$ and $Qx\varphi \Rightarrow Qx\varphi$ for $Q = \forall, \exists$ in **G1m**.

$$-\frac{\overline{\varphi \Rightarrow \varphi} \text{ IH}}{\varphi \land \psi \Rightarrow \varphi} \stackrel{}{L} \land \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \land \psi \Rightarrow \psi} \stackrel{}{R} \land \frac{\overline{\psi \Rightarrow \psi} \text{ R}}{R} \land \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \Rightarrow \varphi \lor \psi} \stackrel{}{R} \land \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \Rightarrow \varphi \lor \psi} \stackrel{}{R} \lor \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \Rightarrow \varphi \lor \psi} \stackrel{}{L} \lor \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \varphi \lor \psi} \stackrel{}{L} \lor \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \lor \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow \psi} \stackrel{}{L} \to \frac{\overline{\psi \Rightarrow \psi} \text{ IH}}{\varphi \lor \psi \Rightarrow$$

Q.E.D

3. In this and the next question we would do induction on the formation rules of the sequent, i.e., the derivation rules of G1[mic].

- BASE (Ax) Obviously, the succedent must have exactly one formula so Δ can not be empty.
- IH Every rule except RW and L→ simply hold the cardinality of the succedent in every premises, L→ holds the second and RW add exactly one formula on the right hand side so their succedent are all non-empty multiset by induction hypothesis.

Q.E.D

- 4. We can prove that in **G1c** and **G1i** simultaneously and just let the induction hypothesis to be "if $\Gamma \Rightarrow \Delta$ is derivable in **G1[ic]** and $\bot \in \Delta$, then $\Gamma \Rightarrow \Theta$ is also derivable s.t. $\bot \notin \Theta \land \forall \varphi \neq \bot (\varphi \in \Delta \rightarrow \varphi \in \Theta)$ (denoted as $\Theta = \Delta/\bot$)".
 - BASE (Ax, L \perp) For $\perp \Rightarrow$ and $\varphi \Rightarrow \varphi(\varphi \neq \perp)$, the property holds vacuously. In the case of $\perp \Rightarrow \perp$, we always have $\perp \Rightarrow$ from L \perp .
 - IH
 - L* for * ≠→ In these cases, all formulas in the succedent are side formula and the rules just simply keep them up. We can easily eliminate the \bot in conclusion by apply the induction hypothesis before the application of rules. We choose L∧ to prove, and the others are similar.

Assume that from a derivation of $\varphi, \Gamma \Rightarrow \Delta$ we can conclude the existence of a derivation of $\varphi, \Gamma \Rightarrow \Theta$ s.t. $\Theta = \Delta/\bot$. Then we can derive $\varphi \land \psi, \Gamma \Rightarrow \Theta$ instead of $\varphi \land \psi, \Gamma \Rightarrow \Delta$ via the following application of $L \land :$

$$\frac{\overline{\varphi, \Gamma \Rightarrow \Theta} \text{ IH}}{\varphi \land \psi, \Gamma \Rightarrow \Theta} \text{ L} \land$$

- \mathbf{R}^* for $*=\land,\lor,\to,\forall,\exists$ In these cases, since \bot cannot match any principal formula in the conclusion so it can only fall into the side formulas. In $\mathbf{G1i}$, there is no place for side formula in the succedent and this assertion is vacuously true. In $\mathbf{G1c}$, applying the induction hypothesis directly may cause the corresponding rule invalid when \bot is an active formula, we shall use RW to rectify that. We choose R∧ to prove, and the other cases are similar.

From the induction hypothesis, we can obtain $\Gamma \Rightarrow \Theta, \varphi$ and $\Gamma \Rightarrow \Theta, \psi$ from $\Gamma \Rightarrow \Delta, \varphi$ and $\Gamma \Rightarrow \Delta, \psi$ s.t. $\Theta = \Delta/\bot$. Moreover, if φ or ψ is \bot , we can only obtain $\Gamma \Rightarrow \Theta$. We can construct a derivation of $\Gamma \Rightarrow \Theta, \varphi \wedge \psi$ from the latter by $R \wedge :$

$$\frac{\frac{\Gamma \Rightarrow \Theta}{\Gamma \Rightarrow \Theta, \varphi} \overset{\text{IH}}{\text{RW}} \quad \frac{}{\Gamma \Rightarrow \Theta, \psi} \overset{\text{IH}}{\text{R} \land} \\ \frac{\Gamma \Rightarrow \Theta, \varphi \land \psi}{} \xrightarrow{\text{R} \land} \frac{}{\text{R} \land}$$

This derivation exhibited how to handle the case that one of the active formula(φ) is \bot , and the derivation for the other three cases are highly similar.

- L \rightarrow This rule is slightly different in **G1c** and **G1i**. From the induction hypothesis, we can obtain $\Gamma \Rightarrow \Theta, \varphi$ from $\Gamma \Rightarrow \Delta, \varphi$ for $\varphi \neq \bot$ in **G1c**, $\Gamma \Rightarrow \Theta$ from $\Gamma \Rightarrow \Delta, \varphi$ in **G1c** and $\Gamma \Rightarrow$ from $\Gamma \Rightarrow \varphi$ in **G1i** for $\varphi = \bot$ s.t. $\Theta = \Delta/\bot$. The second premise is similar. We choose one of these cases(**G1c**, $\varphi = \bot$) to prove:

$$\frac{ \frac{\overline{\Gamma \Rightarrow \Theta}}{\Gamma \Rightarrow \Theta, \varphi} \overset{IH}{RW} \quad }{\frac{\psi, \Gamma \Rightarrow \Theta}{\varphi \rightarrow \psi, \Gamma \Rightarrow \Theta} \overset{IH}{L \rightarrow}$$

- **RC** This rule only exists in **G1c**. We also let Δ to denote the side formulas in succedent and $\Theta = \Delta/\bot$. If the principal(active) formula φ is \bot , we can obtain $\Gamma \Rightarrow \Theta$ from $\Gamma \Rightarrow \Delta, \varphi, \varphi$ immediately. Otherwise, there exists a derivation of $\Gamma \Rightarrow \Theta, \varphi, \varphi$ from induction hypothesis and we can derive $\Gamma \Rightarrow \Theta, \varphi$ from it easily:

$$\frac{\Gamma \Rightarrow \Theta, \varphi, \varphi}{\Gamma \Rightarrow \Theta, \varphi} \stackrel{\text{IH}}{\text{RW}}$$

- **RW** If the principal(weak) formula φ is \bot , by using induction hypothesis on the premise $\Gamma \Rightarrow \Delta$ we can obtain $\Gamma \Rightarrow \Theta$ for $\Theta = \Delta/\bot$ immediately, and which is exactly what we want. Otherwise, we simply applying RW again:

$$\frac{\overline{\Gamma \Rightarrow \Theta} \text{ IH}}{\Gamma \Rightarrow \Theta, \varphi} \text{RW}$$

In **G1i**, there is at most one formula on the right hand side so we already finished the proof. In **G1c**, we just simply applying RW finite many times to eliminate exactly one \bot in the succedent and preserve the others. Q.E.D