——用机器码计算乘法

汇报人: 皮昊旋

#### 展示笔算乘法

```
0.1101

× 0.1011

1101

1101

00000

1101
```

就上式分析笔算乘法对计算机的困难:

- 1.机器难以一次性将4个数相加得到结果;
- 2.需要四个存储单元将每次计算的结果储存,造成空间浪费。

```
sum1 = 1;
sum2 = sum1 + 2;
sum3 = sum2 + 3;
sum4 = sum3 + 4;
```

```
for (i = 1; i <= 4; i++)
{
    sum = sum +i;
}
```

#### 展示笔算乘法

```
    0.1101
    被乘数

    × 0.1011
    乘数

    1101

    0000

    1101

    0.101
```

#### 规律:

```
1 If 尾数为1 + 被乘数
```

- 2 If 尾数为0 + 0
- 3 右移
- 4 JMP 1

•

#### 原码乘法



得出答案: 0.1101 x 0.1011 = 0.10001111

1.10001111

#### Booth算法

#### 基于乘数末两位判断操作(两位booth编码)

| 乘数末位 | 附加位 | 对应操作                    |
|------|-----|-------------------------|
| 0    | 0   | 右移                      |
| 0    | 1   | 部分积 + [x] <sub>补</sub>  |
| 1    | 0   | 部分积 + [-x] <sub>补</sub> |
| 1    | 1   | 右移                      |

#### Booth算法

#### $[x]_{\dot{z}h}=11.0011 \quad [y]_{\dot{z}h}=0.1011 \quad [-x]_{\dot{z}h}=00.1101$

-0.1101 0.1011

| 1 | 1 部分积 |   |   |    |   |   |   |   |  |  |  |
|---|-------|---|---|----|---|---|---|---|--|--|--|
|   |       |   | 0 | 0. | 0 | 0 | 0 | 0 |  |  |  |
|   | +     |   | 0 | 0. | 1 | 1 | 0 | 1 |  |  |  |
|   |       |   | 0 | 0. | 1 | 1 | 0 | 1 |  |  |  |
|   |       |   | 0 | 0. | 0 | 1 | 1 | 0 |  |  |  |
|   |       |   | 0 | 0. | 0 | 0 | 1 | 1 |  |  |  |
|   | +     |   | 1 | 1. | 0 | 0 | 1 | 1 |  |  |  |
|   |       |   | 1 | 1. | 0 | 1 | 1 | 0 |  |  |  |
|   |       |   | 1 | 1. | 1 | 0 | 1 | 1 |  |  |  |
|   | +     |   | 0 | 0. | 1 | 1 | 0 | 1 |  |  |  |
|   |       | 1 | 0 | 0. | 1 | 0 | 0 | 0 |  |  |  |
|   |       |   | 0 | 0. | 0 | 1 | 0 | 0 |  |  |  |
|   | +     |   | 1 | 1. | 0 | 0 | 1 | 1 |  |  |  |
|   |       |   | 1 | 1. | 0 | 1 | 1 | 1 |  |  |  |
|   |       |   |   |    |   |   |   |   |  |  |  |

乘数

0. 1 0 1 1 0

0. 1 0 1 1 0

1. 0 1 0 1 1 0

0. 1 0 1 0 1 1 0

0. 1 0 1 0 1 1 0

0. 0 1 0 1 0 1 1 0

0.01010110

0. 0 0 1 0 1 0 1 1 0

0.00101010

解释

部分积为0,乘数准备好,后加一位初始为0的附加位

+ [-x]<sub>补</sub>,更新部分积

右移, a = 0

右移, a =1

+ [x]<sub>补</sub>,更新部分积

右移, a = -1

+ [-x]<sub>补</sub>,更新部分积

右移, a = 1 + [x]<sub>补</sub>, 更新部分积 11.01110001

-0.10001111

#### 原码补码乘法的差异

### 原码



补码

进行n轮加法,n轮位移

每次加法可能 + 0或者  $+ [x]_{i}$ 

根据寄存器的最低位决定加什么

进行n轮加法,n轮位移,最后再多一次加法

每次加法可能 + 0、 $+[-x]_{i}$ 、 $+ [x]_{i}$ 

根据寄存器的最低位和附加位决定加什么

#### 计算机组成原理——用机器码计算乘法

## THANK YOU