### Интенсив по математическому анализу и линейной алгебре, 2018 год.

#### Организационная информация.

- Занятия ведет Нина Caxapoba (saharnina@gmail.com)
  Вопросы по математике и не только можно отправлять на электронные адреса преподавателей или писать в наш telegrem-канал.
- В конце части занятий будет выдано домашнее задание. Задание нужно аккуратно записать (можно набрать в TeXe), отсканировать, собрать в один pdf-файл и выслать по адресу отправить на почту ассистенту: (dvishnev@nes.ru). с темой письма «Интенсив по математике, занятие (номер), Иванов Иван.»
- Мы будем решать довольно много задач. Задания со знаком «\*» предназначены для слушателей, которые уже хорошо знакомы со всем, что обсуждается в данный момент. Эти задания скорее всего разбираться со всеми не будут, но их можно и нужно решать самостоятельно, по желанию обсуждать с Ниной отдельно.

# 4 Занятие: Анализ функций от двух и более переменных, часть 2 (26 сентября, среда).

Все (или почти все) определения, формулировки и объяснения здесь и далее – короткие и неформальные.

За длинными и формальными определениями можно обращаться к следующей литературе:

- Зорич, В.А. Математический анализ, ч. 1 и 2., Фазис, 1997.
- Stewart, J. Calculus Early Transcendentals 6e 2008.
- Д. Письменный. Конспект лекций по высшей математике, 2002 (введение).

Часть картинок и задач заимствованы из книги Stewart, J. «Calculus - Early Transcendentals».

#### 4.1 Частные производные.

**Определение 1.** Если f(x,y) – функция от двух переменных, то частные производные  $f_x$  (по отношении к переменной x) и  $f_y$  (по отношении к переменной y) определяются так:

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \lim_{\triangle x \to 0} \frac{f(x + \triangle x, y) - f(x, y)}{\triangle x},$$

$$f_y(x,y) = f_x = \frac{\partial f}{\partial y} = \lim_{\triangle y \to 0} \frac{f(x,y+\triangle y) - f(x,y)}{\triangle y}.$$

Чтобы найти частную производную по x,  $f_x$ , необходимо зафиксировать переменную y (то есть считать ее константой) и продифференцировать f(x,y) как функцию от одной переменной x.

**Геометрически.** Частные производные  $f_x(a,b)$  и  $f_y(a,b)$  – это угловые коэффициенты касательных прямых  $T_1$ ,  $T_2$  к кривым  $C_1$ ,  $C_2$ , которые получаются при пересечении поверхности z = f(x,y) с плоскостями x = a и y = b.



**Задание 4.1.** Вычислите частные производные функции  $f(x,y) = \sin(x^2 + 3y^3)$ . Найдите вторые частные производные:  $f_{xx}, f_{xy}, f_{yx}, f_{yy}$ .

# 4.2 Производная по направлению и градиент.

Частные производные  $f_x(x,y)$  и  $f_y(x,y)$  дают представление о скорости роста функции, если мы меняем только одну координату (а вторую оставляем прежней), иными словами, если мы двигаемся на плоскости x-y по направлению единичных векторов, (1,0) или (0,1), и смотрим как меняется при таком движении координата z=f(x,y).

Если мы хотим узнать о скорости изменения функции при движении по какому-нибудь другому направлению (скажем, при движении вдоль единичного вектора  $u = (\alpha, \beta)$ , то необходимо узнать производную функции, вычисленную по этому направлению:

**Определение 2.** Производная функции f(x,y) по направлению единичного вектора  $u=(\alpha,\beta)$ , вычисленная в точке (x,y) – это

$$f_u(a,b) = D_u f(x,y) = \lim_{h \to 0} \frac{f(x + h\alpha, y + h\beta) - f(x,y)}{h}.$$



**Определение 3.** Градиентом функции f(x,y),  $\nabla f$ , называется вектор из частных производных этой функции:

$$\nabla f(x,y) = (f_x(x,y), f_y(x,y)).$$

Производная функции по направлению в данной точке может быть найдена при помощи вектораградиента функции:

**Теорема 1.** Пусть  $u = (\alpha, \beta)$  – произвольный вектор единичной длины, тогда

$$D_u f(x, y) = \alpha f_x(x, y) + \beta f_y(x, y).$$

**Задание 4.2.** Вычислите производную функции  $f(x,y) = x^2y^3 - 4y$  в точке (2,-1) по направлению вектора u = (3,4).

Предположим, мы хотим выяснить, в каком направлении нужно двигаться, чтобы скорость роста функции была максимальной (или, наоборот, минимальной). По-простому: если мы идем по поверхности, то интересно понять, в какую сторону идти, чтобы быстрее всего подняться на вершину, то есть где подъем самый крутой.



**Теорема 2.** Пусть f(x,y) дифференцируемая функция от двух (или более) переменных. Тогда максимальное значение производной по направлению  $D_u f(x,y)$  равно  $|\nabla f(x,y)|$  и достигается, когда вектор и имеет то же направление, что и вектор-градиент  $\nabla f$ .

**Задание 4.3.** Пусть функция  $f(x,y) = xe^y$ . Найдите направление, в котором скорость роста функции максимальна. Чему равна эта скорость?

**Задание 4.4.** На картинке ниже нарисованы линии уровня функции  $f(x,y) = x^2 - y^2$ . Нарисуйте график этой функции. Сопоставьте синие стрелки на картинки с градиентами функции в соответствующих точках. Почему они выглядят именно так?



**Задание 4.5.** На картинке ниже нарисованы графики и их линии уровня. Сопоставьте картинки друг другу. На какой-нибудь картинке нарисуйте градиенты.



## 4.3 Экстремумы.

**Теорема 3.** Если функция f(x,y) имеет локальный максимум или минимум (экстремум) в точке (a,b) и у нее существуют частные производные первого порядка в этой точке, то

$$f_x(a,b) = f_y(a,b) = 0.$$

\* Такие точки, в которые частные производные равны нулю или не существуют, называют **критическими точками.** 

**Достаточное условие экстремума**. Пусть (a,b) – критическая точка функции f(x,y) и предположим, что в окрестности этой точки функция имеет непрерывные производные второго порядка. Пусть

$$D = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^{2}.$$

Тогда, если

- 1. D>0 и  $f_{xx}(a,b)>0$ , то в точке (a,b) локальный минимум функции;
- 2. D > 0 и  $f_{xx}(a,b) < 0$ , то в точке (a,b) локальный максимум функции;
- 3. D < 0, то в точке (a, b) ни максимум, ни минимум (седловая точка).
- 4. D = 0, то в точке (a, b) может быть все что угодно (требуется дополнительное исследование).

**Задание 4.6.** Найдите локальные максимумы, минимумы и седловые точки (если есть) функции а)  $f(x,y) = 9 - 2x + 4y - x^2 - 4y^2$ ; b)  $f(x,y) = x^4 + y^4 - x^2 - 2xy - y^2$ ; c\*)  $f(x,y) = (x^2 + y^2)e^{-(x^2 + y^2)}$ .

! Для функций трех и более переменных нам потребуется немного знаний из линейной алгебры (квадратичная форма, соответствующая матрице из вторых частных производных — матрице Гессе), поэтому к этой задаче мы еще вернемся, но чуть позже.

# 4.4 Касательная плоскость, линейная аппроксимация функции.

Касательная плоскость к поверхности S, заданной уравнением f(x,y)=z, и проходящая через точку (a,b), это плоскость, проходящая через две касательных прямых  $T_1$  и  $T_2$  (обозначения части 4). По аналогии с касаетльной прямой к графику функции, заданной уравнением y=f(a)+f'(a)(x-a), касательная плоскость к поверхности в точке (a,b) задается линейным уравнением:

$$z - f(a,b) = f_x(a,b)(x-a) + f_y(a,b)(x-a).$$

Задание 4.7. Найдите касательную плоскость к поверхности

а) 
$$z = y \cos(x - y)$$
 в точке  $(2, 2)$ ; b)  $x^5 - x^3 + y^2 + z^2 = 0$  в точке  $(2, 2, 2)$ .

Если функция имеет непрерывные частные производные в точке (a,b), то касательная плоскость в достаточно малой окрестности данной точки довольно неплохо приближает (или аппроксимирует) поверхность, заданную этой функцией. Пользуясь этим, можно находить примерное значение функции в точке (x,y), близкой к (a,b) (разумеется с некоторой погрешностью):

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(x-a).$$

**Задание 4.8.** а) Используя линейную аппроксимацию, найдите примерное значение функции  $f(x,y) = 2x^2 + y^2$  в точке (1.1, 0.95).

b) Найдите примерное значение  $\sqrt{(3,02)^2 + (1,97)^2 + (5,99)^2}$ .

## 4.5 Условный экстремум, метод множителей Лагранжа.

Пусть функция  $f(x,y) = f(x_1,x_2,...,x_n,y_1,y_2,...,y_m)$  определена в некоторой области  $D \subseteq \mathbb{R}^{n+m}$ . Пусть, кроме того, на x и y наложено m дополнительных условий (уравнений связи):

$$\begin{cases} g_1(x,y) = 0 \\ \dots \\ g_m(x,y) = 0. \end{cases}$$

Говорят, что f имеет в точке  $(x_0, y_0)$  условный максимум (или условный минимум), если неравенство  $f(x, y) \leq f(x_0, y_0)$  (или, соответственно  $f(x, y) \geq f(x_0, y_0)$ ) выполняется в некоторой окрестности точки  $(x_0, y_0)$  при условии, что  $(x_0, y_0)$  удовлетворяет уравнениям связи.



#### План нахождения условного экстремума:

1) Ввести функцию Лагранжа

$$L(x,y) = \lambda_0 f(x,y) - \sum_{i=1}^{m} \lambda_i g_i(x,y)$$

(числа  $\lambda_i$  называются множителями Лагранжа. а саму функцию – Лагранжианом).

2) Найти все частные производные функции L(x,y) (по переменным  $x_i, y_i, \lambda_i$ ), приравнять их к нулю. Из полученных уравнений составить систему

$$\nabla \lambda_0 f(x, y) = \sum_{i=1}^m \lambda_i \nabla g_i(x, y)$$

и найти ее решение (критическую точку  $(x_i^*, y_i^*, \lambda_i^*)$  – или точку «подозрительную» на условный экстремум).

- 3) Полученное решение может быть условным экстремумом функции (это необходимое, но недостаточное условие).
- \* Для определения типа критической точки (максимум, минимум или перегиб) Имеется и достаточное условие экстремума, но оно формулируются в матричных терминах (в терминах «окаймленного Гессиана»).
- \*\* Обобщение метода множителей Лагранжа на случай, когда некоторые ограничения могут быть неравенствами  $g_i(x,y) \leq 0$  называется теоремой Куна-Таккера.

**Задание 4.9.** Найдите условный максимум или минимум функции f(x,y)=x-2y при ограничении  $g(x,y)=\frac{x^2}{4}+y^2=2.$ 

**Задание 4.10.** Найдите максимум функции f(x,y)=y при ограничении  $g(x,y):x^2+y^3=0.$ 

**Задание 4.11.** а) При каких значениях высоты h и радиуса круга в основании r цилиндр фиксированного объема имеет минимальную площадь поверхности? (Объем цилиндра  $V(r,h)=h\pi r^2=1,$ 

площадь поверхности цилиндра  $S(r,h) = 2\pi rh + 2\pi r^2$ .)

# 4.6 Ряд Тейлора.

Как и в случае функции от одной переменной, некоторые функции от двух переменных можно представить в виде сумме многочлена Тейлора и остаточного члена, то есть аппроксимировать функции, обладающие непрерывными частными производными до (n+1)-го порядка включительно, многочленом степени n (формула для многочлена степени 2):

$$f(x,y) = f(a,b) + (f_x(a,b)(x-a) + f_y(a,b)(y-b)) +$$

$$+ \frac{1}{2!} \left( f_{xx}(a,b)(x-a)^2 + 2f_{xy}(a,b)(x-a)(y-b) + f_{yy}(a,b)(y-b)^2 \right) + \dots + R_n, \quad (1)$$

где 
$$R_n(x,y) = \frac{\mathbf{T}^{(n+1)}f(\xi,\zeta)}{(n+1)!}, \ \xi \in [a,x], \ \zeta \in [b,y]$$
 и  $\mathbf{T} = (x-a)\frac{\partial}{\partial x} + (y-b)\frac{\partial}{\partial y}.$ 

(в общем виде:  $f(x,y) = \sum_{k=0}^{n} \frac{\mathrm{T}^k f(x_0,y_0)}{k!} + R_n(x,y)$ , где  $R_n(x,y)$  – остаточный член в форме Лагранжа).

**Задание 4.12.** Найдите многочлен P(x,y) степени 2, такой, что P(2,1)=1,  $P_x(2,1)=-1,$   $P_y(2,1)=2,$   $P(2,1)_{xx}=4,$   $P_{yy}(2,1)=-2,$   $P_{xy}(2,1)=3.$ 

# 4.7 Объемы и интегралы.

Пусть, для начала,  $R_{x,y}$  – это прямоугольник на плоскости x-y: a < x < b и c < y < d.

Для функции от двух переменных двойной определенный интеграл (обозначается  $\int \int_R x, y f(x,y) dA$ ) имеет следующий геометрический смысл: он равен объему, заключенному между графиком функции и плоскостью x-y над прямоугольной областью  $R_{x,y}$ . Согласно теореме Фубини этот двойной интеграл может быть сведен к повторному:

$$\int \int_{R_{x,y}} f(x,y) \ dA = \int_a^b \int_c^d f(x,y) \ dydx = \int_c^d \int_a^b f(x,y) \ dxdy$$

Если область R над которой мы ищем объем – непрямоугольная, то можно попробовать сделать замену координат (то есть перейти в новые координаты u(x,y) и v(x,y), в которых область  $R_{u,v}$  уже прямоугольная) б предварительно вычислив функцию  $J(u,v) = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v}$  (это определитель матрицы Якоби). Тогда

$$\int \int_{Rx,y} f(x,y) \ dx \ dy = \int \int_{Ru,v} f(x(u,v),y(u,v)) \ J(u,v) du \ dv.$$



**Задание 4.13.** Вычислите двойной интеграл а)  $\int \int_R e^{x+3y}\ dxdy$ , где область  $R=[0,1]\times[0,3];$  b)  $\int \int_R (x+y)\ dxdy$ , где область R ограничена кривыми  $y=x^2$  и  $y=\sqrt{x}.$ 

**Задание 4.14\*.** Используя теорему Фубини, найдите гауссов интеграл  $\int_{-\infty}^{+\infty} e^{-x^2/2} \ dx$ .

**Задание 4.15\*.** Вычислите площадь кругового кольца  $1 \le x^2 + y^2 \le 3$ , используя двойной интеграл (не иначе!).

Задание 4.16\*. Вычислите объем шара радиуса 1 при помощи тройного интеграла.

#### 4.8 Простая версия метода градиентного спуска.

\*картинки позаимствованы с сайта http://www.machinelearning.ru

#### Напоминание:

**Определение 4.** Градиентом функции f(x,y),  $\nabla f$ , называется вектор из частных производных этой функции:

$$\nabla f(x,y) = (f_x(x,y), f_y(x,y)).$$

Предположим, мы хотим выяснить, в каком направлении нужно двигаться, чтобы скорость роста функции была максимальной (или, наоборот, минимальной). По-простому: если мы идем по поверхности, то интересно понять, в какую сторону идти, чтобы быстрее всего подняться на вершину, то есть где подъем самый крутой.

**Теорема 4.** Пусть f(x,y) дифференцируемая функция от двух (или более) переменных. Тогда максимальное значение производной по направлению  $D_u f(x,y)$  равно  $|\nabla f(x,y)|$  и достигается, когда вектор и имеет то же направление, что и вектор-градиент  $\nabla f$ .

Предположим, мы столкнулись с такой проблемой: требуется найти минимум некоторой функции, но функция не выписывается аналитически, или уравнение  $\nabla f = 0$  (необходимое условие экстремума в точке) слишком сложное для решения. Тогда можно использовать приближенные методы нахождения экстремумов (или численные методы).

- 1. Метод градиентного спуска это метод нахождения локального экстремума (минимума или максимума) функции с помощью движения вдоль градиента (или в противоположную сторону от градиента). Известно, что направление вектора градиента совпадает с направлением наибольшего возрастания функции f в данной точке. Противоположное направление (направление антиградиента) это направление наиболее крутого убывания. Последним фактом мы и будем пользоваться для нахождения минимума (примерного) функции в самой простой модели градиентного спуска (с постоянным шагом).
- 2. Пусть функция f(x,y) допускает разложение в ряд Тейлора в окрестности точки  $(x_k,y_k)$ :

$$f(x,y) = f(x_k, y_k) + (f_x(x_k, y_k)(x - x_k) + f_y(x_k, y_k)(y - y_k)) + o(||(x - x_k, y - y_k)||),$$
(2)

Если  $\langle \; , \; \rangle$  — стандартное школьное скалярное произведение (сумма попарных произведений координат двух векторов), то линейное приближение функции в окрестности точки  $(x_k, y_k)$  можно переписать так:

$$f(x,y) - f(x_k, y_k) \approx \langle \nabla f(x_k, y_k), (x - x_k, y - y_k) \rangle$$
.

3. Скалярное произведение минимально, когда векторы разнонаправлены. Следовательно, если

$$(x - x_k, y - y_k) = -a\nabla f(x_k, y_k),$$

где a > 0 — маленькое положительно число, то

$$f(x,y) - f(x_k, y_k) \approx \langle \nabla f(x_k, y_k), (x - x_k, y - y_k) \rangle = \langle \nabla f(x_k, y_k), -a \nabla f(x_k, y_k) \rangle = -a ||\nabla f(x_k, y_k)||^2 < 0$$

Значит, положив следующей точку

$$(x_{k+1}, y_{k+1}) = (x_k, y_k) - a||\nabla f(x_k, y_k)||^2,$$

мы уменьшим значение функции,  $f(x_{k+1}, y_{k+1}) < f(x_k, y_k)$ . Таким образом, можно построить последовательность точек  $(x_k, y_k), (x_{k+1}, y_{k+1}), (x_{k+2}, y_{k+2}), ...$ , на которой значения нашей функции будут убывать.

4. Число a называется **длиной шага**, который мы делаем в направлении антиградиента. Мы рассмотрим метод, в котором шаг не меняется. Положим a = 0, 1.

Остановка алгоритма. Условием окончания поиска минимума может являться малость градиента f(x,y), например, если на каком-нибудь n-ом шаге  $||\nabla f(x_n,y_n)|| < \delta$  (как только такая точка  $(x_n,y_n)$  найдена, мы можем остановиться и считать, что нашли примерный минимум функции).  $\delta$  – это погрешность вычисления. Проблема метода: при малых  $\delta$ , например при  $\delta = 0.1$  метод может «расходиться» (иными словами, последовательность точек, которые мы получаем не будет сходится к точке минимума).



**Пример-задача 4.17.** Найдите минимум функции  $f(x,y) = x^2 + 2y^2 + e^{x+y}$  методом градиентного спуска с постоянным шагом, если погрешность вычисления  $\delta = 0.1$ , коэффициент шага a = 0, 1, выбрав начальное приближение (начальную точку)  $(x_0, y_0) = (0, 0)$ .

В таблице ниже приведены типовые расчеты:

|    | x       | y       | f(x,y) | $\frac{\partial f}{\partial x}$ | $\frac{\partial f}{\partial y}$ | $ \nabla f(x,y) $ |
|----|---------|---------|--------|---------------------------------|---------------------------------|-------------------|
| 1  | 0,0000  | 0,0000  | 1,0000 | 1,0000                          | 1,0000                          | 1,4142            |
| 2  | -0,1000 | -0,1000 | 0,8487 | 0,6187                          | 0,4187                          | 0,7471            |
| 3  | -0,1619 | -0,1419 | 0,8045 | 0,4143                          | 0,1706                          | 0,4480            |
| 4  | -0,2033 | -0,1589 | 0,7880 | 0,2895                          | 0,0604                          | 0,2957            |
| 5  | -0,2323 | -0,1650 | 0,7806 | 0,2077                          | 0,0123                          | 0,2080            |
| 6  | -0,2530 | -0,1662 | 0,7768 | 0,1515                          | -0,0072                         | 0,1517            |
| 7  | -0,2682 | -0,1655 | 0,7748 | 0,1118                          | -0,0138                         | 0,1126            |
| 8  | -0,2794 | -0,1641 | 0,7737 | 0,0831                          | -0,0146                         | 0,0844            |
| 9  | -0,2877 | -0,1626 | 0,7731 | 0,0621                          | -0,0131                         | 0,0635            |
| 10 | -0,2939 | -0,1613 | 0,7727 | 0,0466                          | -0,0110                         | 0,0479            |

Сделайте выводы и примерном минимуме функции и величине этого минимума.

Вариация метода: метод наискорейшего спуска. В этом методе градиентного спуска величину шага  $a_k$  мы уже не будем считать постоянной, а будем выбираетт так, чтобы следующая итерация была точкой минимума функции f на луче L. (см. картинку ниже)



Геометрически это означает, что в этом методе направления соседних шагов ортогональны.

Этот вариант градиентного метода основывается на выборе шага из следующего соображения. Из точки  $X_k=(x_k,y_k)$  будем двигаться в направлении антиградиента до тех пор пока не достигнем минимума функции f на этом направлении, т. е. на луче

$$L = \left\{ X = X_k - af'(X_k); \quad a \le 0 \right\},\,$$

направленном по антиградиенту, введем функцию одной скалярной переменной а:

$$F_k(a) = f(X_k - af'(X_k)).$$

Определим a решая задачу  $F_k(a) \to min$ ,  $a \ge 0$ . Полученный минимум и будет шагом  $a_k$ , используя который мы придем к новой точке на функции (а затем найдем новый шаг и новую точку и .т д).

! Метод наискорейшего спуска требует на каждом шаге решения задачи одномерной оптимизации (нахождение  $a_k$ ). Однако на практике этот метод часто требует меньшего числа операций, чем градиентный метод с постоянным шагом.

#### Домашнее задание 4.

Задача 1. Найдите локальные максимумы, минимумы и седловые точки (если есть) функции

$$f(x,y) = x^4 + y^4 - 4xy + 2.$$

**Задача 2.** а) Найдите касательную плоскость к поверхности  $ye^{xy}$ ;

b) Используя линейную аппроксимацию, найдите примерно значение данной функции в точке (-0.1, 1.1).

Задача 3. Найдите ряд Тейлора до второго порядка включительно для функции

$$f(x,y) = \sin(x+y) - \cos(x^2)$$

с центром в точке (0,0).

**Задача 4.** Найдите двойной интеграл по области R, ограниченной кривыми  $y^2=2x$  и x=1:  $\int \int_R xy^2 \ dx dy$ .

**Задача 5.** (из прошлого листка) а) Изобразите эскиз кривой, заданной вектор-функцией  $r(t) = (t, \cos 2t, \sin 2t);$ 

b) Найдите и нарисуйте касательные векторы в точках  $(\pi, 1, 0)$  и  $(\pi/2, -1, 0)$ .

Задача 6\*. (из прошлого листка) Сходится ли ряд

$$1 + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{1 \cdot 2 \cdot 3 \cdot 4} + \dots + \frac{1}{n!} + \dots$$
?

**Задача 7\*.** (из прошлого листка) Вычислите  $e^{1/4}$  с точностью до тысячных.