MAT233 – MATEMÁTICA DISCRETA A

PROBLEMA	RELAÇÃO DE RECORRÊNCIA	FORMA FECHADA OU SOLUÇÃO
F _n determina o número de casal	Sequência de Fibonacci:	-
de coelhos no mês n, começando		Para n ≥ 0:
com um casal recém-nascido e	$F_0 = 0$	
sabendo que com dois meses de	$F_1 = 1$	$F_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$
idade cada casal gera um novo	Para n≥ 2:	$\int_{0}^{2\pi} \sqrt{5} \left(\begin{array}{cc} 2 \end{array} \right) \sqrt{5} \left(\begin{array}{cc} 2 \end{array} \right)$
casal.	$F_n = F_{n-2} + F_{n-1}$	
r _n determina o número de	$r_0 = 1$	Para n ≥ 0:
regiões criadas num plano por um conjunto de n retas concorrentes,	$r_0 = r$ $r_n = r_{n-1} + n$, para n ≥ 1	_
onde a intersecção de qualquer	n = 1 + i	$r_n = \frac{n^2 + n + 2}{2}$
subconjunto de 3 retas é vazio.		2
$r_{k,n}$ determina o número de	Para k ≥ 1, n ≥ 0	
regiões criadas num plano por um	$r_{k,n} = r_{k-1,n} + n + 1$	Para $k \ge 0$, $n \ge 0$:
conjunto de k retas paralelas e n		
retas concorrentes(com a mesma	Ou para $k \ge 0$, $n \ge 1$	$r_{k,n} = \frac{n^2 + n}{2} + k (n+1)$
condição anterior)	$r_{k,n} = r_{k,n-1} + k + n$	$r_{k,n} = 2$
T _n determina o menor número de	Torre de Hanoi:	
movimentos para transpor n	T _ 1	Para n ≥ 1:
discos de um eixo para outro, movendo um disco de cada vez e	$T_1=1$ $T_n=2$ $T_{n-1}=1$, para $n\geq 2$	$T_n = 2^n - 1$
não podendo sobrepor um disco	$n - 2 n - 1 - 1$, para $n \ge 2$	$I_n - Z - I$
maior sobre um menor.		
D _n conta o número de		Para n ≥ 0:
permutações caóticas dos	$D_1 = 0$	$D = m! \begin{pmatrix} 1 & 1 & (-1)^n \end{pmatrix}$
números positivos de 1 a n	$D_n = nD_{n-1} + (-1)^n, \ n \ge 2$	$D_n = n! \left(\frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!} \right)$
P _n determina de quantas		
maneiras é possível dividir um	$P_2 = 1$ (por definição)	(2m 4)1
polígono convexo em triângulos por meio de diagonais que não se	$P_n = \sum_{k=2}^{n-1} P_k P_{n+1-k}, \ n \ge 3$	$P_n = \frac{(2n-4)!}{(n-1)!(n-2)!}$
interceptam.		(n-1)!(n-2)!
a _n determina o número de	Sequências Ternárias:	
sequências de n dígitos, usando	$a_1 = 1, b_1 = 1, c_1 = 1$	
0, 1 e 2, que possuem número	$a_n = a_{n-1} + b_{n-1} + c_{n-1}$	$a_n = \frac{2 + (-1)^n + 3^n}{4}$
par de 0's e de 1's.	$b_n = 3^{n-1} - c_{n-1}$	$u_n = 4$
M _n determina o número de	$c_n = 3^{n-1} - b_{n-1}$	
alocações distintas de n pares ao	Cavaleiros da Távola Redonda:	
redor de um círculo de forma que	Cavaleiros da Tavola Nedolida.	
cada par não fique em posições	$M_1 = 0, N_1 = 1, O_1 = 1$	
adjacentes.	$M_2 = 2, N_2 = 0, O_2 = 4$	
N _n : número de alocações de n	Para n≥3:	
pares distintos com exatamente	$M_n = 2(2n-3)[(n-1)M_{n-1} + N_{n-1}] + 2O_{n-1}$	
um par que não pode ficar junto	$N_n = 2n[2(n-1)M_{n-1} + N_{n-1}]$	
O _n : número de alocações de n pares distintos com exatamente	$N_n - 2n[2(n-1)N_{n-1} + N_{n-1}]$	
dois pares que não podem ficar	$O_n = 2n[(n-1)M_{n-1} + N_{n-1}]$	
juntos.		
•	I	

PROBLEMA	RELAÇÃO DE RECORRÊNCIA	FORMA FECHADA OU SOLUÇÃO
t _n determina o número de triân-		
gulos não-semelhantes de lados	$t_0 = 0, t_1 = 0, t_2 = 0$	
inteiros e perímetro inteiro n	t_{n-3} , se $n \in par$, $n \geq 4$	
	$\left \left\{ \left \frac{n+1}{4} \right + t_{n-3}, se \text{ n\'e impar, } n \ge 3 \right. \right $	
Problema de Josephus:		
J _n determina a posição n da	$J_1 = 1$	Para n≥ 1:
pessoa que no final não será	$J_{2k} = 2J_k - 1, para \ k \ge 1$	$J_n = 2(n - 2^{\lfloor \log_2 n \rfloor}) + 1$
eliminada	$J_{2k+1} = 2J_k + 1, para \ k \ge 1$	
S _{n,k} determina o número de	Número de Stirling do 2º tipo:	
maneiras de distribuir n objetos	$S_{n,1} = 1$; $S_{n,n} = 1$	
distintos em k caixas idênticas,	Para 1 < k < n e n > 2:	
com nenhuma caixa vazia	$S_{n,k} = S_{n-1,k-1} + S_{n-1,k}$	
S _{n,k} determina o número de	Número de Stirling do 1º tipo:	
maneiras de distribuir n objetos	$S_{n,1} = (n-1)!$; $S_{n,n} = 1$	
distintos em k ciclos	Para 1 < k < n:	
	$S_{n,k} = S_{n-1,k-1} + (n-1)S_{n-1,k}$	

SOLUÇÃO DE RELAÇÕES DE RECORRÊNCIAS

SOLUÇÃO DE RELAÇÕES DE RECORRÊNCIAS				
	Uma relação de recorrência	linear de ordem k com coeficientes		
Relação de Recorrência Linear	constantes em uma variável é da forma			
de ordem k	$f_n = c_1 f_{n-1} + c_2 f$	$f_n = c_1 f_{n-1} + c_2 f_{n-2} + \dots + c_k f_{n-k} + g(n)$		
	Se $g(n) = 0 \Rightarrow$ relação homogê	enea		
	Se $g(n) = 0 \Rightarrow$ relação não-hom	nogênea		
	1. Substitui-se $f_n = \alpha^n$			
Solução de uma relação de	2. Divide-se a equação por \propto^{n-k}			
recorrência linear homogênea	3. Resolve-se a equação			
	característica resultante, determinando-se as k raízes.			
	4. Escreve-se a solução geral, para k raízes distintas:			
	$f_n = A \propto_1^n + B \propto_2^n + \dots + K \propto_k^n$			
	Se uma raiz <i>i</i> tem multiplicidade <i>m</i> , então a esta raiz estão associadas			
	m soluções: \propto_i^n , $n \propto_i^n$, $n^2 \propto_i^n$,, $n^{m-1} \propto_i^n$			
	5. Aplica-se as condições iniciais para se obter um sistema linear que			
	determina as constantes A, B,, K.			
	ação homogênea, encontrando-se			
Solução de uma relação	$h(n) = A \propto_1^n + B \propto_2^n + \dots + K \propto_k^n.$			
de recorrência linear	De acordo com a forma do termo $g(n)$, conforme tabela abaixo,			
não- homogênea	determina-se uma solução particular $p(n)$ e escreve-se a solução geral			
	$f_n = h(n) + p(n).$			
		Se q não é raiz da equação		
Resumo das soluções		característica		
particulares	Se $g(n) = c. q^n$	$p(n) = Aq^n$		
	onde c, q são constantes	q é raiz de multiplicidade m da		
		equação característica:		
		$p(n) = An^m q^n$		
		Se 1 não é raiz da equação		
	Se $g(n) = c. n^l$	característica		
	onde c é constante	$p(n) = A_0 + A_1 n + A_2 n^2 + \cdots$		
		$+A_k n^l$		
		Se 1 é raiz da equação característ.		
		$p(n) = A_0 n^m + A_1 n^{m+1} +$		
		$A_2 n^{m+2} + \dots + A_l n^{m+l}$		