

VTENNE I – ANTENNE PER SISTEMI DI TELECOMUNICAZIONI

Lezione 11 – Antenne ad apertura

APERTURA RETTANGOLARE IN UNO SCHERMO METALLICO Approssimazione di Kirchhoff

Si supponga di aver determinato in qualche modo il campo elettrico, \mathbf{E}_a , e magnetico, \mathbf{H}_a , sulla superficie S di equivalenza

Si supponga che i campi siano diversi da zero solo nella porzione di superficie S_a

$$\begin{cases} \mathbf{J}_{s} = \hat{n} \times \mathbf{H}_{a} \\ \mathbf{M}_{s} = -\hat{n} \times \mathbf{E}_{a} \end{cases} \quad \text{su S}_{s}$$

$$\begin{cases} \mathbf{J}_s = 0 \\ \mathbf{M}_s = 0 \end{cases}$$
 altrove

ANTENNE

7/26

Lezione 11 – Antenne ad apertura

APERTURA RETTANGOLARE IN UNO SCHERMO METALLICO Approssimazione di Kirchhoff

 $r' = x' \; \hat{x} + y' \; \hat{y}$

$$R = |\mathbf{r} - \mathbf{r}'|$$

$$\mathbf{E} = -j\omega \mathbf{A} + \frac{\nabla \nabla \cdot \mathbf{A}}{j\omega\varepsilon\mu} - \frac{1}{\varepsilon} \nabla \times \mathbf{F}$$

$$\begin{cases} \mathbf{J}_{s} = \hat{n} \times \mathbf{H}_{a} \\ \mathbf{M}_{s} = -\hat{n} \times \mathbf{E}_{a} \end{cases}$$

$$\mathbf{A} = \mathbf{A} \left(\mathbf{r}; \mathbf{J}^{s} \right) = \frac{\mu}{4\pi} \iint_{S_{a}} \mathbf{J}^{s} (\mathbf{r}') \frac{e^{-jkR}}{R} dS' = \frac{\mu}{4\pi} \hat{n} \times \iint_{S_{a}} \mathbf{H}_{a} (\mathbf{r}') \frac{e^{-jkR}}{R} dS'$$

$$\mathbf{F} = \mathbf{F} \left(\mathbf{r}, \mathbf{M}^{s} \right) = -\frac{\varepsilon}{4\pi} \hat{n} \times \iint_{S_{a}} \mathbf{E}_{a} (\mathbf{r}') \frac{e^{-jkR}}{R} dS'$$

al denominatore $\frac{1}{R} \approx \frac{1}{r}$

all'esponente $R \approx r - \mathbf{r}' \cdot \hat{r}$

NTENNE I – ANTENNE PER SISTEMI DI TELECOMUNICAZIONI

Lezione 11 - Antenne ad apertura

APERTURA RETTANGOLARE IN UNO SCHERMO METALLICO Approssimazione di Kirchhoff

Potenziali vettori in campo lontano

 $\mathbf{A} = \mu \frac{e^{-jkr}}{4\pi r} \hat{n} \times \iint_{S_a} \mathbf{H}_a e^{jk\hat{r} \cdot \mathbf{r}'} dS'$

$$\mathbf{Q} = \iint_{S_a} \mathbf{H}_a e^{jk\hat{r}\cdot\mathbf{r}'} dS' = Q_x \hat{x} + Q_y \hat{y}$$

$$\mathbf{F} = -\varepsilon \frac{e^{-jkr}}{4\pi r} \hat{n} \times \iint_{S_a} \mathbf{E}_a e^{jk\hat{r}\cdot\mathbf{r}'} dS'$$

$$\mathbf{P} = \iint_{S_a} \mathbf{E}_a e^{jk\hat{r}\cdot\mathbf{r}'} dS' = P_x \hat{x} + P_y \hat{y}$$

 $\hat{r} \cdot \mathbf{r}' = (\hat{x} \sin \theta \cos \phi + \hat{y} \sin \theta \sin \phi + \hat{z} \cos \theta) \cdot (\hat{x} x' + \hat{y} y') = x' \sin \theta \cos \phi + y' \sin \theta \sin \phi$

9/26

Lezione 11 – Antenne ad apertura

APERTURA RETTANGOLARE IN UNO SCHERMO METALLICO Approssimazione di Kirchhoff

IONI

$$P_x = \iint\limits_{S_a} E_{ax}(x', y') e^{jk(x'\sin\vartheta\cos\phi + y'\sin\vartheta\sin\phi)} dx' dy'$$

$$P_y = \iint\limits_{S_a} E_{ay}(x',y') e^{jk(x'\sin\vartheta\cos\phi + y'\sin\vartheta\sin\phi)} dx'dy'$$

$$Q_x = \iint_{S_a} H_{ax}(x', y') e^{jk(x'\sin\vartheta\cos\phi + y'\sin\vartheta\sin\phi)} dx' dy'$$

$$Q_y = \iint_{S_a} H_{ay}(x', y') e^{jk(x'\sin\vartheta\cos\phi + y'\sin\vartheta\sin\phi)} dx' dy'$$

$$\hat{n} = \hat{z}$$

$$\mathbf{A} = \mu \frac{e^{-jkr}}{4\pi r} \left(-Q_y \hat{x} + Q_x \hat{y} \right)$$

$$\mathbf{F} = -\varepsilon \frac{e^{-jkr}}{4\pi r} \left(-P_{y}\hat{x} + P_{x}\hat{y} \right)$$

NTENNE I – ANTENNE PER SISTEMI DI TELECOMUNICAZIONI

Lezione 11 – Antenne ad apertura

APERTURA RETTANGOLARE IN UNO SCHERMO METALLICO Approssimazione di Kirchhoff

Esprimendo i versori in coordinate sferiche e lasciando soltanto le componenti trasverse alla direzione radiale

$$\hat{x} = \hat{r} \sin \theta \cos \phi + \hat{\theta} \cos \theta \cos \phi - \hat{\phi} \sin \phi$$
$$\hat{y} = \hat{r} \sin \theta \sin \phi + \hat{\theta} \cos \theta \sin \phi + \hat{\phi} \cos \phi$$

$$\mathbf{A} = \mu \frac{e^{-jkr}}{4\pi r} \left[\hat{g} \cos \theta \left(Q_x \sin \phi - Q_y \cos \phi \right) + \hat{\phi} \left(Q_x \cos \phi + Q_y \sin \phi \right) \right]$$

$$\mathbf{F} = -\varepsilon \frac{e^{-jkr}}{4\pi r} \left[\hat{\mathcal{G}} \cos \mathcal{G} \left(P_x \sin \phi - P_y \cos \phi \right) + \hat{\phi} \left(P_x \cos \phi + P_y \sin \phi \right) \right]$$

11/26

Lezione 11 – Antenne ad apertura

APERTURA RETTANGOLARE IN UNO SCHERMO METALLICO Approssimazione di Kirchhoff

$$\mathbf{E} = -j\omega \,\mathbf{A} + \frac{\nabla \nabla \cdot \mathbf{A}}{j\omega\varepsilon\mu} - \frac{1}{\varepsilon} \nabla \times \mathbf{F}$$

in campo lontano: $\mathbf{E} \approx -j\omega\left(A_{\theta}\ \hat{\theta} + A_{\phi}\ \hat{\phi}\right) + j\omega\zeta\ \hat{r} \times \mathbf{F}$

$$E_{\mathcal{G}} = jk \frac{e^{-jkr}}{4\pi r} \Big[P_x \cos \phi + P_y \sin \phi + \zeta \cos \theta \Big(Q_y \cos \phi - Q_x \sin \phi \Big) \Big]$$

$$E_{\phi} = jk \frac{e^{-jkr}}{4\pi r} \left[\cos \theta \left(P_y \cos \phi - P_x \sin \phi \right) - \zeta \left(Q_y \sin \phi + Q_x \cos \phi \right) \right]$$

TTENNE I – ANTENNE PER SISTEMI DITTELECOMUNICAZIONI

Lezione 11 – Antenne ad apertura

APERTURA RETTANGOLARE UNIFORME

Piano E

 $\phi = \frac{\pi}{2}$

diagramma normalizzato

$$\begin{split} E_{\mathcal{G}} &= jk \, \frac{e^{-jkr}}{2\pi r} \, E_0 \, ab \, \frac{\sin[(kb/2)\sin{\mathcal{G}}]}{(kb/2)\sin{\mathcal{G}}} \\ E_r &= E_{\phi} = 0 \end{split}$$

$$F_E(\theta) = \frac{\sin[(kb/2)\sin\theta]}{(kb/2)\sin\theta}$$

Nulli diagramma di radiazione

$$\frac{kb}{2}\sin\theta = n\pi , \quad n = 1, 2, 3...$$

$$\theta_n = \sin^{-1}\frac{n\lambda}{b}$$
, $n = 1, 2, 3...$

15/26

Lezione 11 – Antenne ad apertura

APERTURA RETTANGOLARE UNIFORME

Piano H

 $\phi = 0$

diagramma normalizzato

$$E_{\phi} = jk \frac{e^{-jkr}}{2\pi r} E_0 \ ab\cos\theta \frac{\sin[(ka/2)\sin\theta]}{(ka/2)\sin\theta}$$

$$F_H(\theta) = \cos \theta \frac{\sin[(ka_x/2)\sin \theta]}{(ka/2)\sin \theta}$$

ANTENNE I – ANTENNE PER SISTEMI DI TELECOMUNICAZIONI
POI G. Pebsi - Laboratorio di Eletromagnetismo Numerico
Por G. Pebsi - Laboratorio di Eletromagnetismo Numerico
Por G. Pebsi - California de Propositionia de

L'andamento del campo è identico a quello sul piano H a meno del fattore $\cos\theta.$

Quando a è grande rispetto alla lunghezza d'onda questo fattore è lentamente variabile rispetto al "sinc"

In prima approssimazione le relazioni valide per il piano E risultano ancora valide a patto di scambiare $a \ {\rm con} \ b$

	Half-power beamwidth – (degrees)	E-plane $b \gg \lambda$	$\frac{50.6}{b/\lambda}$	$\frac{50.6}{b/\lambda}$	$\frac{50.6}{b/\lambda}$
		H -plane $a \gg \lambda$	$\frac{50.6}{a/\lambda}$	$\frac{50.6}{a/\lambda}$	$\frac{68.8}{a/\lambda}$
	First null beamwidth (degrees)	E-plane $b \gg \lambda$	$\frac{114.6}{b/\lambda}$	$\frac{114.6}{b/\lambda}$	114.6 b/\lambda
		H -plane $a \gg \lambda$	$\frac{114.6}{a/\lambda}$	$\frac{114.6}{a/\lambda}$	$\frac{171.9}{a/\lambda}$
	First side lobe max. (to main max.) (dB)	E-plane	-13.26	-13.26	-13.26
		H-plane	-13.26 a ≫ λ	-13.26 a ≫ λ	-23 a ≫ λ
	Directivity D ₀ (dimensionless)		$\frac{4\pi}{\lambda^2} \text{ (area)} = 4\pi \left(\frac{ab}{\lambda^2} \right)$	$\frac{4\pi}{\lambda^2} \text{ (area)} = 4\pi \left(\frac{ab}{\lambda^2}\right)$	$\frac{8}{\pi^2} \left[4\pi \left(\frac{ab}{\lambda^2} \right) \right] = 0.81 \left[4\pi \left(\frac{ab}{\lambda^2} \right) \right]$

Half-power beamwidth (degrees)	
(degrees) H-plane $a \gg \lambda$ $a \wedge \lambda$	
First null $a \gg \lambda$ a/λ	
(degrees) H-plane $a \gg \lambda$	
First side lobe max. E-plane -17.6 -17.6 (to main max.)	
(dB) H-plane -17.6 -26.2	
Directivity D_0 (dimensionless) $\frac{4\pi}{\lambda^2} (area) = \frac{4\pi}{\lambda^2} (\pi a^2) = \left(\frac{2\pi a}{\lambda}\right)^2 \qquad 0.836 \left(\frac{2\pi a}{\lambda}\right)^2 = 10.$	$5\pi \left(\frac{a}{\lambda}\right)^2$