Open-Source Prototyping of 5G Wireless Systems for UGV/UAV

TEAM: SDMAY20-36

TEAM MEMBERS: WILLIAM BYERS, IBRICA TUTIC, SAMUEL STANEK, NATHAN WHITCOME, ANDREW ESCHWEILER, NICHOLAS LORENZ FACULTY ADVISOR/CLIENT: HONGWEI ZHANG

Project Plan

High Level Overview

- Create a 5G wireless solution that allows for large scale simulation of wireless networks
 - ▶ Low latency
 - ▶ High throughput
 - ► Extremely reliable network
- ▶ Tools
 - ▶ Open Air Interface (OAI)
 - Simulation of Urban Mobility (SUMO)
- ▶ Future uses
 - Connected autonomous transport
 - ▶ Smart agriculture

Problem Statement

- Need to modify OAI to simulate 5G networks in various traffic conditions
 - ▶ Need to simulate 100s of nodes
 - ► Ensure simulation output matches theory (no bugs)
- Utilize open source tools to solve the above problem

Conceptual Sketch

Functional Requirements

- ▶ Design a scalable system to test 5G scheduling algorithms
- ► Ensure the solution is:
 - ▶ Reliable
 - ▶ Has low latency
 - ▶ Has high throughput
- Utilize open source tools and follow good software practices
 - ▶ CI/CD
 - ▶ Jenkins
 - ► Cloud Deployments
 - ► OAI
 - ► SUMO

Technical/Other Constraints

- Limited in terms of hardware
 - ► Current server specs:
 - ▶ Intel Xeon 8 core processor (2.4 Ghz)
 - ▶ 8 GB of RAM
 - ▶ 120 GB disk
- Simulator is difficult to use
 - Requires multiple computers for various components
 - Very specific hardware requirements
 - ► Linux Low Latency Kernel
 - ► AVX512 Instruction Support
 - ▶ Turbo Decoding
 - ▶ Disable Processor Power Saving Features

Potential Risks & Mitigation

Risks

- Difficulty scaling networks to many UEs and eNBs
- New scheduling algorithm integration
- Difficulty recreating system configurations
 - Similar issues with cloud deployments
- Unknown simulator bugs
 - ▶ Large software project
 - ▶ Lots of legacy code

Mitigation

- Potentially deploy to cloud services
 - ► Cloudlab, ExoGENI
- Use CI/CD to verify old functionality isn't broken
- Use scripts where possible to create network layouts
 - Cloud formation templates
- Verify experiments match theory

System Design

Functional Decomposition

- SUMO Traffic Generation
 - SUMO Server to create traffic simulations
 - Update positions of nodes in OAI using SUMO data
 - ▶ Interface between OAI and SUMO
- Network Emulation
 - Various eNB and UE in configurations
 - ▶ 1 eNB, 1 UE
 - ▶ 1 eNB, Many UEs
 - ► Many eNBs, Many UEs
- Scheduling Algorithm (CPS-V2X)
 - ▶ Based on PKRS, CPS, and UCS
 - ► Adjusted for dynamic node configurations

HW/SW/Technology Platforms Used

- OAI
 - ▶ Open Air Interface
 - Open source 5g network simulator/emulator/test bench
 - ► Highly optimized, written in C
- ► SUMO
 - Simulation of Urban Mobility
 - ▶ Open source, highly customizable traffic simulator
 - ► Include an API to get vehicle positioning data
- Jenkins
 - ► CI/CD
 - Pipelined build jobs for regression testing

Detailed Design – OAI Simulation

- Run UE and eNB on one server
 - ▶ Run EPC on another server
 - ▶ Network Access Controls, Packet Routing, Mobility Management, Security
- ► Integrate SUMO traffic data for dynamic situations
- Integrate new algorithm in MAC layer of test bed
- Measure network statistics
 - Latency
 - ▶ Throughput
 - Reliability
- Ensure any new code passes all previous tests

Detailed Design - Jenkins

Test Plan

- Configure simulation test bed
 - ▶ 1 UE, 1 eNB to start with
 - ▶ Use nFAPI to facilitate communication
 - ▶ Network functional API
 - ► Connects Physical Network to Virtual Network (Layer 1 to Layer 2)
 - ► Modify number of eNBs/UEs
 - ► Incorporate SUMO traffic data
- Implement new scheduling algorithm
 - Does the simulation test bed break?
 - ► Unit tests using simple UE/eNB sets
 - ▶ Reliability, throughput, and latency measurements

Prototype Implementations

- Currently running 1 UE and 1 eNB
 - ► Have configuration files for multiple UE/eNBs created
- Built a C client to support SUMO API
 - Used for traffic data
- Newest version of OAI running on server
 - ▶ Updated from v.5.2 -> 1.2.0 -> 1.2.1

Conclusion

Current Project Status

- Trying to finish three main tasks by early April
 - ► Algorithm implementation
 - ► Interfacing OAI/SUMO
 - ▶ OAI simulation test bed and physical layer abstraction
- Currently running 1 eNB and 1 UE on our server
 - ▶ Need to configure EPC to begin testing
- Jenkins server is set up, need to move to server with more RAM

Task Responsibility/Contribution

- ▶ Ibrica Tutic Phys. Layer Abstraction/OAI Simulation Environment
- William Byers Algorithm Development
- Andrew Eschweiler Algorithm Development
- Nathan Whitcome SUMO/OAI Interfacing
- Samuel Stanek SUMO/OAI Interfacing
- Nicholas Lorenz System Power Theoretical Analytics