Local Type Inference for Polarised System F with Existentials

ANONYMOUS AUTHOR(S)

CHANGE!! This paper addresses the challenging problem of type inference for Impredicative System F with existential types, a critical aspect of many programming languages. While System F serves as the basis for type systems in numerous languages, existing type inference techniques for Impredicative System F are undecidable due to the presence of existential (\exists) and polymorphic (\forall) types. Consequently, current algorithms are often ad-hoc and sub-optimal. This paper presents novel contributions in the form of a local type inference algorithm for Impredicative System F with existential types. The algorithm introduces innovative techniques, such as a unique combination of unification and anti-unification, a full correctness proof, and the use of control structures inspired by Call-By-Push-Value . Additionally, the paper discusses a type inference framework that allows the algorithm to be applied to different type systems, offering insights into the under-researched area of impredicative existential type inference.

CCS Concepts: • **Do Not Use This Code** → **Generate the Correct Terms for Your Paper**; *Generate the Correct Terms for Your Paper*; Generate the Correct Terms for Your Paper; Generate the Correct Terms for Your Paper.

Additional Key Words and Phrases: Type Inference, System F, Call-by-Push-Value, Polarized Typing, Focalisation, Subtyping

ACM Reference Format:

1 INTRODUCTION

2 OVERVIEW

2.1 What types do we infer?

2.2 The Language of Types

The types of $F^{\pm}\exists$ are given in fig. 1. They are stratified into two syntactic categories (polarities): positive and negative, similarly to the Call-By-Push-Value system [Levy 2006]. The negative types represent computations, and the positive types represent values:

- $-\alpha^{-}$ is a negative type variable, which can be taken from a context or introduced by \exists .
- a function $P \rightarrow N$ takes a value as input and returns a computation;
- a polymorphic abstraction $\forall \overrightarrow{\alpha^+}$. N quantifies a computation over a list of positive type variables $\overrightarrow{\alpha^+}$. The polarities are chosen to follow the definition of functions.
- a shift $\uparrow P$ allows a value to be used as a computation, which at the term-level corresponds to a pure computation **return** v.
- + α^+ is a positive type variable, taken from a context or introduced by \forall .
- + $\exists \alpha^{-}$. P, symmetrically to \forall , binds negative variables in a positive type P.
- + a shift $\downarrow N$, symmetrically to the up-shift, thunks a computation, which at the term-level corresponds to $\{c\}$.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 \$15.00

https://doi.org/XXXXXXXXXXXXXXX

51

50

52 53

54 55 57

61

71

73

75

94 95

96 97 98

Fig. 1. Declarative Types of F[±]∃

Definitional Equalities. For simplicity, we assume alpha-equivalent terms equal. This way, we assume that substitutions do not capture bound variables. Besides, we equate $\forall \alpha^+$. $\forall \beta^+$. N with $\forall \overrightarrow{\alpha}^+, \overrightarrow{\beta}^+$. N, as well as $\exists \overrightarrow{\alpha}^-$. $\exists \overrightarrow{\beta}^-$. P with $\exists \overrightarrow{\alpha}^-, \overrightarrow{\beta}^-$. P, and lift these equations transitively and congruently to the whole system.

2.3 The Language of Terms

In fig. 2, we define the the language of terms of F^{\pm} 3. The language combines System F with the Call-By-Push-Value approach.

- + x denotes a (positive) term variable; Ilya: why no negatives?
- $+ \{c\}$ is a value corresponding to a thunked or suspended computation;
- \pm (c:N) and (v:P) allow one to annotate positive and negative terms;
- return v is a pure computation, returning a value;
- $-\lambda x: P$. c and $\Delta \alpha^+$. c are standard lambda abstractions. Notice that we require the type annotation for the argument of λ ;
- let x = v; c is a standard let, binding a value v to a variable x in a computation c;
- Applicative let forms let $x : P = v(\vec{v})$; c and let $x = v(\vec{v})$; c operate similarly to the bind of a monad: they take a suspended computation v, apply it to a list of arguments, bind the result (which is expected to be pure) to a variable x, and continue with a computation c. If the resulting type of the application is unique, one can omit the type annotation, as in the second form: it will be inferred by the algorithm;
- $\operatorname{let}^{\exists}(\overrightarrow{a}, x) = v$; c is the standard unpack of an existential type: expecting v to be an existential type, it binds the packed negative types to a list of variables $\vec{\alpha}$, binds the body of the existential to x, and continues with a computation c.

Missing constructors. Notice that the language does not have first-class applications: their role is played by the applicative let forms, binding the result of a *fully applied* function to a variable. Also notice that the language does not have a type application (i.e. the eliminator of \forall) and dually, it does not have pack (i.e. the constructor of ∃). This is because the instantiation of polymorphic and existential types is inferred by the algorithm. Ilya: refer to the extension chapter

```
Computation Terms
                                                                                       Value Terms
c, d
                                                                                        v. w
                    (c:N)
                                                                                                              x
                                                                                                              {c}
                    \lambda x : P. c
                    \Lambda \alpha^+. c
                                                                                                              (v:P)
                    return v
                    let x = v; c
                    let x : P = v(\overrightarrow{v}); c
                    let x = v(\overrightarrow{v}); c
                    let^{\exists}(\overrightarrow{\alpha}, x) = v; c
```

Fig. 2. Declarative Terms of F[±]∃

2.4 The key ideas of the algorithm

3 DECLARATIVE SYSTEM

The declarative system serves as a specification of the type inference algorithm. It consists of two main parts: the subtyping and the type inference.

3.1 Subtyping

 It is represented by a set of inference rules shown in fig. 3.

Fig. 3. Declarative Subtyping

Invariance of Shifts. An important restriction that we put on the subtyping system is that the subtyping on shifted types requires their equivalence, as shown in $(\downarrow^{>})$ and $(\uparrow^{<})$. Relaxing both of these invariants makes the system equivalent to System F , and thus, undecidable. However, $(\downarrow^{>})$ might be relaxed to a covariant form, as we will discuss in ??.

As discussed in ??, the polymorphic rules (\forall^{\leq}) and (\exists^{\geq}) are the only non-algorithmic ones. For convenience of representation, we compose the left-hand side rule and the right-hand side rule into one, and use substitution σ to represent instantiation.

The substitution application is defined in a standard way, avoiding capture of bound variables, and preserving the variables that are out of the substitution domain. The domain and the range of the substitutions are specified by notation $\Gamma_2 \vdash \sigma : \Gamma_1$. For instance, the notation $\Gamma, \overrightarrow{\beta^+} \vdash \sigma : \overrightarrow{\alpha^+}$ means that σ maps the variables from $\overrightarrow{\alpha^+}$ to (positive) types well-formed in $\Gamma, \overrightarrow{\beta^+}$.

3.2 Type Inference

3.3 Properties of the Declarative System

Now, we present selected properties of the declarative system, which are important for the correctness of the algorithm.

LEMMA 1. Variables do not have proper subtypes and supertypes

LEMMA 2. Free Variable propagation: $\Gamma \vdash N \leq M$ implies $\mathbf{fv}(N) \subseteq \mathbf{fv}(M)$.

111:4 Anon.

```
\Gamma; \Phi \vdash c: N Negative typing
148
149
                                                                                                                                                                                                                                                                                          \frac{\Gamma \vdash P \quad \Gamma; \Phi, x : P \vdash c : N}{\Gamma; \Phi \vdash \lambda x : P, c : P \to N} \quad (\lambda^{\text{INF}})
150
151
                                                                                                                                                                                                                                                                                                   \frac{\Gamma, \alpha^+; \Phi \vdash c \colon N}{\Gamma; \Phi \vdash \Lambda \alpha^+. \ c \colon \forall \alpha^+. \ N} \quad (\Lambda^{\text{inf}})
153
                                                                                                                                                                                                                                                                                                     \frac{\Gamma; \Phi \vdash \nu \colon \underline{P}}{\Gamma; \Phi \vdash \mathbf{return} \ \nu \colon \uparrow \underline{P}} \quad (\text{Ret}^{\text{Inf}})
155
156
                                                                                                                                                                                                                                                             \frac{\Gamma; \Phi \vdash \nu \colon P \quad \Gamma; \Phi, x \colon P \vdash c \colon N}{\Gamma; \Phi \vdash \text{let } x = \nu; \ c \colon N} \quad \text{(LET}^{\text{INF}})
157
158
159
                                                                                                                                                                                                            \Gamma; \Phi \vdash \nu: \downarrow M \quad \Gamma; \Phi \vdash M \bullet \overrightarrow{v} \Longrightarrow \uparrow O \text{ unique}
160
                                                                                                                                                                                                            \Gamma; \Phi, x : Q \vdash c : N
161
                                                                                                                                                                                                                                                                              \Gamma; \Phi \vdash \mathbf{let} \ x = v(\overrightarrow{v}); \ c: N
162
                                                                                                                                                                                                            \Gamma \vdash P \quad \Gamma; \Phi \vdash \nu : \downarrow M \quad \Gamma; \Phi \vdash M \bullet \overrightarrow{v} \Longrightarrow \uparrow Q
163
                                                                                                                                                                                                            \Gamma \vdash \uparrow Q \leq \uparrow P \quad \Gamma; \Phi, x : P \vdash c : N
164
                                                                                                                                                                                                                                                                   \Gamma : \Phi \vdash \mathbf{let} \ x : P = \nu(\overrightarrow{v}) : c : N
165
                                                                                                                                                                                                                        \Gamma; \Phi \vdash \nu : \exists \overrightarrow{\alpha} \cdot P \quad \mathbf{nf} (\exists \overrightarrow{\alpha} \cdot P) = \exists \overrightarrow{\alpha} \cdot P
                                                                                                                                                                                                                        \Gamma, \overrightarrow{\alpha}; \Phi, x : P \vdash c : N \quad \Gamma \vdash N
167
                                                                                                                                                                                                                                                                   \Gamma; \Phi \vdash \mathbf{let}^{\exists}(\overrightarrow{\alpha}, x) = \nu; \ c \colon N  (LET<sup>INF</sup><sub>\Beta</sub>)
                                                                                                                                                                                                                                              \Gamma \vdash M \quad \Gamma; \Phi \vdash c : N \quad \Gamma \vdash N \leq M
- \qquad \qquad (ANN_{-}^{INF})
169
170
                                                                                                                                                                                                                                                                                                       \Gamma; \Phi \vdash (c:M): M
171
                                                                                                                                                                                                                                                                          \frac{\Gamma; \Phi \vdash c \colon N \quad \Gamma \vdash N \simeq^{\leqslant} N'}{\Gamma \colon \Phi \vdash c \colon N'} \quad (\simeq^{\text{INF}}_{-})
172
173
174
                                                                                                                                                                                                                                                                                                                                                                                                                                                 \Gamma; \Phi \vdash N \bullet \overrightarrow{v} \implies M Application typing
                                                                                                      \Gamma; \Phi \vdash \nu: P Positive typing
175
176
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       \frac{\Gamma \vdash N \simeq^{\leqslant} N'}{\Gamma \colon \Phi \vdash N \bullet \cdot \Longrightarrow N'} \quad (\emptyset_{\bullet \Longrightarrow}^{\text{INF}})
177
                                                                                                                                 \frac{x: P \in \Phi}{\Gamma: \Phi \vdash x: P} \quad (VAR^{INF})
178
179
                                                                                                                            \frac{\Gamma; \Phi \vdash c \colon N}{\Gamma; \Phi \vdash \{c\} \colon \mathop{\downarrow}\! N} \quad (\{\}^{\text{inf}})

\frac{\Gamma; \Psi \vdash \mathcal{C}}{\Gamma; \Phi \vdash \{c\} \colon \downarrow N} \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f) \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} : \downarrow N \qquad (\{f \vdash f, f \in \mathcal{C}\} 
180
181
182
183
184
185
186
```

Fig. 4. Declarative Subtyping

LEMMA 3. Subtyping is Reflexive and Transitive, and is preserved by substitution

Lemma 4. $\Gamma \vdash N \simeq^{\leq} M$ is equivalent to $\mathbf{nf}(N) \simeq^D \mathbf{nf}(M)$.

LEMMA 5 (CHARACTERIZATION OF SUPERTYPES).

187 188

189 190 191

192

193 194

195 196

- 4 THE ALGORITHM
- ¹⁹⁸ 5 CORRECTNESS
- 200 6 **EXTENSIONS**

- 7 RELATED WORK
- 8 CONCLUSION

[Botlan et al. 2003] [Dunfield et al. 2020]

REFERENCES

Didier Le Botlan and Didier Rémy (Aug. 2003). "MLF Raising ML to the Power of System F." In: *ICFP '03*. Uppsala, Sweden: ACM Press, pp. 52–63.

Jana Dunfield and Neel Krishnaswami (Nov. 2020). "Bidirectional Typing." In: arXiv: 1908.05839.

Paul Blain Levy (Dec. 2006). "Call-by-Push-Value: Decomposing Call-by-Value and Call-by-Name." In: *Higher-Order and Symbolic Computation* 19.4, pp. 377–414. DOI: 10.1007/s10990-006-0480-6.

111:6 Anon.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009