	2402 Assignment 2 刘恒诚
	Q1: X~N(4,11) Y~N(6.14)
	then 2: 1-1 ~ NL-2, 25)
	= P(4<7*<16) = P(4<7<-1) + P(1<7<4)
	アレータとフィート)=ア(一生とくらーン学)=アノーテくらくの)=0.155%
	P(2<7<4)=P(5<5<4+2)=P(5<5<\frac{4+2}{5})=P(\fesc\frac{5}{5})=0.0968
	2. P(4<7,<1P) = 0.0968 + 0.1554 = 0-7275
	so the probability is 0.2522, approximately 0.25
	30 41 7 7 3 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	Q2. X2 B(1, P) Easy to see that a success have occurred
	In the atb-1 events, so total number is Catb-1
	Then P = Catb-1 Pa (1-P)
	Nel 1 COTE 1
	3(a). suppose we picked x=i, then the other dice must be
	smaller than or equal to i, so the probability is to and i,
	but we have to subtract the possibility of both getting i, then $P = \binom{1}{2} + \binom{1}{6} + \binom{1}{6} = \frac{2i-1}{6}$
	then $p(X) = \frac{3X-1}{36}$, $X=1,2,6$
. 1	(b). P(r) = p(1) + + P(k) = (k(t))(t-1)k-1++ (k(t))k(t-1) - (1 + t-1)k = 0 (1) 0 (T-1)k
	$= \left(\frac{1}{6} + \frac{1}{5}\right)^{k} - \left(\frac{1}{6}\right)^{6} \left(\frac{1}{5}\right)^{6} \left(\frac{1}{5}\right)^{k}$
	$= \left(\frac{1}{5}\right)^k - \left(\frac{1}{5}\right)^k$
	50 D(K) = (+)k - (+-1)k +=1) 3 6

4.(a). P(famiy) gnls) = P(2 diller) x P(2 girls) = (1-t) x 4

(b). P(elder boy & younger girl) = (1-r) x 1 x 1 = 4 x (1-r)

(c). $P(at | bose | boy) = P(|child) \times P(boy) + P(2 child) \times (|-P(noboy))$ = $r \times \pm + (|-r|) \times (|-\frac{1}{4}|) = \frac{3}{4} - \frac{1}{4}r$

5(a). TP=P(D+) xP(T+1D+)=1%x99% = 0.99% TN=P(D-) xP(T-1D-)=99%x95%=94.05%

: FN=101-TP= 1% - 0.99% = 0.01%

T-P=P(D)-TN=99%-94.05%=4.95%

 $\frac{(b). P(D+17+)}{P(T+)} = \frac{P(TP)}{P(T+)} = \frac{0.99\%}{0.91\% + 4.95\%} = \frac{0.79\%}{5.94\%} = 16.67\%$

. the probability that the patient has the disease when positive is 16.67%

 $\frac{(1 - 1)^{2}}{(1 - 1)^{2}} = \frac{1}{4} + \frac{1}{4} \times \frac{1}{13} \times \frac{1}{13} + \frac{1}{2} \times \frac{1}{13} = \frac{625}{676}$ $\frac{(1 - 1)^{2}}{(1 - 1)^{2}} = \frac{1}{4} + \frac{1}{4} \times \frac{1}{13} = \frac{1}{676} + \frac{1}{676} = \frac{50}{676}$

P(1=1) = 4×1/3×1/3 = 676

(a). $p(x=1) = \frac{p(x=1)}{p(x=2)} = \frac{p(x=2)}{4} = \frac{p(x=2)}{4} = \frac{24}{169}$

· P(Y=1 (X=2) = 169

___/___

(b).
$$p(1=0) = \frac{625}{676}$$
 $p(1=1) = \frac{50}{676}$ $p(1=2) = \frac{1}{676}$

$$\frac{(c)}{f(x-2)} \frac{f(x-2)}{f(x-1)} = \frac{f(x-2)}{f(x-1)} = \frac{(c)}{(c)} \frac{(c)}{(c$$

7. P(none defective) = 0.6 ×
$$\frac{C_{12}^{2}}{C_{12}^{2}}$$
 + 0.3 × $\frac{C_{19}^{2}}{C_{10}^{2}}$ + 0.1 × $\frac{C_{19}^{2}}{C_{10}^{2}}$ = $\frac{1806}{1900}$

(a).
$$P(Do|E) = P(DoE) = 0.6$$

$$P(E) = \frac{1806}{1900} \approx 63.12^{2}/6$$

$$(9. P(D_2|E) = \frac{P(D_2E)}{P(E)} = \frac{0.1 \times \frac{18 \times 17}{20 \times 19}}{\frac{1806}{1900}} \approx 8.470$$

$$\Sigma (X - \overline{X})^2 = (-1/2)^2 + \dots + (1/28)^2 = 518.8$$

(a). $b = r \frac{5y}{5x} = 0.9758 \times \frac{594.9975}{22.7772} = 25.4903$ a = y - bx = (03b - 36.2x 36.2 = 113.2 \vdots y = 25.49x + 113.2

(b). r=0.9758

- correlation coefficient is 0.9758

(c). if X=0, y=1|3.2 . Expected sales is: 1|3.2 million if X=58, then $y=25.49 \times 58 + |13.2 = |591.62$

if adverting is 58 million, then predicted sales would be 1591.62 million

9. $L(X) = f(X_1) + \cdots + f(X_n) = \theta^n e^{-\theta(X_1 + \cdots + X_n)}$ $| h L(X) = | h \theta^n e^{-\theta(X_1 + \cdots + X_n)} = | h \theta^n + | h e^{-\theta(X_1 + \cdots + X_n)}$ $= n | h \theta - (X_1 + \cdots + X_n) \theta$

let $\alpha = 1$, $b = (X_1 + \dots + X_n)$, then when $\theta = \frac{\alpha}{b}$.

In L(X) achieves maximum. So when $\theta = \frac{\alpha}{b} = \frac{n}{X_1 + \dots + X_n}$ So maximum lifelihand estimator for θ is $\frac{n}{X_1 + \dots + X_n}$

10 (1). Take word 2 for example: word 2 = word 2. (-wer()

1-word 2 = email. count (word 2) p-spain = p-spain * 0.66

1-nospain= p-nospain * 0.0

1-nospain= p-nospain * 0.0

1-posterior_odds_spain = prior_odds_spain * p-spain

1-posterior_odds_spain = p-no_spain= (1-prior_odds_spain) * p-no_spaine

,	1	,	1
/		/	

F	Zisspam:	poster	ior_olds_span	n/Cpostenior_oda	ls-gam					
)	+ posterior_odds_no_spame)									
(:	y. Spam	8.0	0.000/63	0.000/30	0-1017-5					
)	7 Spam	0.1	0.005753	0.00[5]	0.10175					
	Span	6.8	0.296208	0.236966	0 980170					
)	75pam	0.2	0.23970	0.004794	0.980 70					
				* (11					
				·	. !					
					~					
			X.	÷ 00						
)			, ** , -							
					. 31					
)				, , , , , , , , , , , , , , , , , , ,						
				- Mari						