Lec-02	Basic Notions in Measure Theory:
Def:	P(R): Set of all Subsets of R.
	Measure:
	A map $u: P(IR) \longrightarrow [0,\infty)$ is called a
	'
	measur 2;
	(2) $u(I) = \text{Penerth of } I = l(I), \forall I:$ intervals.
	(ii) {En} of dispoint sets:
	$-4\left(\bigcup_{n} E_{n}\right) = \sum_{n=1}^{\infty} 4\left(E_{n}\right)$
	(iii) M: franslation invasion t
	u(E) = u(E+y)
Dep	Outry measure:
	Outer measure ex is defined on E:
	$\mathcal{U}^*(E) = 2n f \sum_{n=1}^{\infty} \ell(I_n)$ $E \subseteq \bigcup_{n=1}^{\infty} I_n = 1$
	"
Def:	E is Lebesque measurable àp
	VACIR
	u*(A) = -u*(ENA) + u*(ENA)
R_{m}	_
7 m !	The outer measure u* is a measure on
	B = all Lebesque measurable sets.
	(a) E∈B ⇒ E'∈B

(b) {Fi} & B => UE; & B Def: $E \in B$, we say u(E) = 0 if YEZO, F EAiz spon Sets; F = UAi and -4 (UAi) < E A property childs u-a.e. if the set Where this property doesn't hold; E,

Ray -4(E) = 0. (x) -4([a,b]) = (([a,b]) = b-a (*) u({a}) = 0 $\frac{Ex:}{f(x)} = \begin{cases} x : x \in [0,\infty) \\ 1 : x \in (-\infty,0) \end{cases}$ at = 0 f is not continuous 4 ({0}) = 0 S Cont. on $R \setminus \{0\}$) Cont. a.e.

	(Stdx: 4: Lebesque measure)
(*)	Leberque Dominated Convergence theorem (LDCT)
	fi -> f - f: into a lola
	fi →f > fi : integrable 9 : integrable
	9 : integrable
	fi < g, then
	f is integrable and
	Stidu Stau
(*)	Monotone Covergence Thm (MCT):
	tfiz: integrable 0 <fi 1f="" a.e.<="" th=""></fi>
	If $\int f_i du \leqslant c < \infty$, then
	$\int_{\hat{z}} \hat{z} du = \int_{\hat{z} \to \infty} \int_{\hat{z}} f du \leq C$ 1 integrable
18)	Fatous Lemma
	Sfiz integralle Picco
	[103 ME 1 ADRE 1 TO 20
	$\{fi\}$ integrable, $fi \ge 0$ and $\int fi du < c < \infty$
	and S(liminf fi) dry < 00
	thin
	S(liminf fi) du « lininf fidu.
	Jan Mary 1919 and 1

(K)	Fubini's theorem:
	If $f: R^n \times R^n \longrightarrow R$, measurable
	buch that
	(P(x,y)) dxdy < 00
	T(X,y) axay (a
	ion IR ⁿ
	then:
	Then: $\int f(x,y) dxdy = \int \left(\int f(x,y) dx \right) dy$ $\mathbb{R}^n \times \mathbb{R}^n$ $\mathbb{R}^n \times \mathbb{R}^n$
	F(r,y) dxdy = \ (f(r,y) dx) dy
	Joh Joh
	IR"x IK"
	$= \int \left(\int_{\mathbb{R}^n} f(x,y) dy \right) dx$
) lon
	1/2h / 1k