## 2018 서보제어 실험

동양미래대학교 로봇자동화공학부



# 서보 제어계

• 서보 제어계의 구성 요소

- (1) Motor
- (2) 전력회로
- (3) 제어회로
- (4) 센서





## 서보 제어계

• 폐회로 제어(서보 제어)

정밀한 위치 및 속도를 제어하기 위하여 센서를 이용하여 실제 위치 및 속도를 측정하여 원하는 위치나 속도를 벗어나는 경우에는 오차 신호를 발생시켜 이 오차가 0이 되도록 제어함.





### 서보 제어계

#### • 모터 제어계의 구성요소

**(**1) 모터

대용량: 직류기, 교류기(유도기, 동기기)

소용량: DC 서보모터, 브러쉬리스 DC 모터, 스테핑 모터

(2) 전력회로

Linear 방식, Switching 방식

(3) 센서

Tachogenerator, Potentiometer, Optical Encoder

(4) 제어회로

Analog 방식: OP Amp

Digital 방식: Microprocessor



DC 서보모터의 구조





DC 서보모터의 구조





DC 서보모터의 동작원리





• Motor의 발생 토크 (플레밍의 왼손 법칙)

$$F=i_a\ l imes B$$
 
$$T=R\cdot F=R\ Ii_a\ l imes B=K_t\ i_a\ \Rightarrow\ T=K_t\ i_a$$
  $R:$  전기자 코일과 축 중심사이의 거리,  $K_t:$  토오크 상수

• Motor의 역기전력 (플레밍의 오른손 법칙)

$$E = v l \times B = K_e w \Rightarrow E = K_e w$$
  
v: 전기자 코일의 속도,  $w$ : 각속도,  $K_e$ : 토오크 상수





전기자 코일의 위치변화 따른 발생 토오크의 변화





#### 복수개의 전기자 코일이 등간격으로 배치된 경우의 발생토오크





$$V_a(t) = R_a I_a(t) + L_a \frac{dI_a(t)}{dt} + E(t)$$
 모터의 회로방정식

$$E(t) = K_e w(t)$$

$$T(t) = VI(t)$$

$$J\frac{dw(t)}{dt} + Bw(t) = T(t)$$
 부하 방정식

모터의 역기전력 관계식

모터의 토오크 관계식

(J:부하의관성모멘트, B:속도성분의마찰계수)

#### \* DC 서보 모터의 속도 토오크 특성곡선

$$V_a = R_a I_a + E$$

$$E = K_e w$$

$$T = K I$$

$$V_{a} = R_{a}I_{a} + E$$

$$E = K_{e}w$$

$$T = K_{t}I_{a}$$

$$V_{a} = R_{a}\frac{T}{K_{t}} + K_{e}w$$

$$T = K_{t}I_{a}$$

$$T = K_{t}I_{a}$$

$$(y = -ax + b)$$



#### -정상상태에서의 모터 속도의 결정

 $T_{M}(\omega)_{=}T_{L}(\omega)$  의 조건에서 속도 결정됨



모터의 속도 토오크 특성곡선과 부하 토오크의 관계



■ DC 서보모터의 규격 및 관련용어의 정의

M 1:4 RE 75 D75 mm, Graphite Brushes, 250 Watt



Maxon사의 DC 서보모터 Specification sheet



#### Line 1 ◆ Assigned power rating P<sub>27</sub> [W]

This figure represents the maximum power output when operating within the recommended output power range. It is dependent on motor type and can be correlated with the presentation in our Selection Guide (Please refer also to pages 50 - 146 under "Operating Ranges").

#### Line 2 Nominal voltage U [V]

All nominal values refer to operation at this voltage. It is normally chosen so as not to exceed the maximum recommended no load condition. Motor application is of course not limited to this voltage. To reach the assigned power rating (line 1), higher operating voltages are permissible. Maximum output power will increase accordingly (line 12).

Line 1 정격 전력 메이커에서 권장하는 사용조건하 에서 허용되는 최대 전력

 $P = T(torque) \times N(speed)$ 

Line 2 정격 전압 모터를 일반적으로 사용하는데 가할 수 있는 전압



사용 동작 영역: 일반적으로 높은 토오크를 낼 경우 속도는 낮추어 사용하게 됨





#### Line 3 No load speed n<sub>o</sub> [rpm]

This is the speed at which the motor turns at nominal voltage and without load. For practical purposes, this speed is proportional to the voltage applied.

#### Line 4 Stall torque M<sub>H</sub> [mNm]

This is the torque produced by the motor in a standstill condition, also called starting torque. The rapidly rising motor temperature leads to a corresponding decrease in the stall torque (see also "Heat behaviour" page 38). Line 3 무부하 속도 정격전압을 가하고 기계부하가 연결안된 경우의 모터 속도 무부하 속도는 가해진 전압에 비례함

Line 4 Stall torque 모터가 정지시 발생하는 토오크로 기동토오크와 같다.



#### 속도 토오크 특성곡선





#### Line 5 Speed / torque gradient Δn / ΔM [rpm / mNm]

This gradient says a lot about the power capability of a motor. The flatter the gradient, the less speed variation is experienced during load variations. The speed / torque gradient is calculated at 25°C winding temperature.

#### Line 6 No load current I [mA]

This is the current the unloaded motor draws. It depends on brush and bearing friction and varies slightly with varying speed.

#### Line 7 Starting current I, [mA], [A]

is the quotient "Voltage at terminals / DC-resistance" and is proportional to stall torque. Line 5 속도토오크 특성곡선의 기울기

Line 6 무부하 전류 정격전압을 가하여 무부하 속도로 회전할 때 모터에 흐르는 전류

Line 7 기동 전류 모터가 기동시 흐르는 전류 모터의 권선저항으로 모터 입력전압 값을 나눈 것과 같음



#### Line 8 Terminal resistance $R[\Omega]$

is the resistance at the terminals at 25°C and determines the starting current at a given voltage. In the case of graphite brushes it must be noted that contact resistance varies depending on the load. Line 8 단자 저항 모터의 전기자 권선의 저항값 기동전류값과 관계가 밀접함.

#### Line 9 Maximum permissible speed n<sub>max</sub> [rpm]

This speed should not be exceeded during normal operation. Commutation problems may be expected at higher speeds, in turn, this could lead to premature motor failure.

Line 9 최대 허용 속도 일반적으로 속도가 빨라지면 정류자에서 문제가 발생할 수 있으므로 제한함



#### Line 10 Maximum continuous current |<sub>cot</sub>[mA], [A]

Operating the motor continuously at this current level and at 25°C ambient will cause the winding to ultimately reach the specified max. winding temperature. This assumes no heat sinking. Depending how the motor is mounted, this value can be increased substantially.

Line 10 최대 연속 전류 모터에 흘릴 수 있는 연속적인 직류 전류값으로 발열문제와 관련이 있음

#### Line 11 Max. continuous torque M<sub>cont</sub>[mNm]

is the torque that can be supplied continuously or on an average, thereby heating up the winding to the maximum permissible temperature; based on an ambient temperature of 25°C. Line 11 최대 허용 토오크 모터가 연속적으로 낼 수 있는 최대 토오크



#### Line 12 Maximum power output P<sub>mx</sub> [mW], [W]

is the theoretical maximum output at 25°C rotor temperature. Permissible limits are frequently below this level (see max. continuous current and max. permissible speed). Line 12 최대 전력 출력 모터가 낼 수있는 최대 출력

#### Line 13 Maximum efficiency

 $\eta_{\text{max}}$  [%]

Efficiency is power or torque-dependent (see page 35 efficiency characteristics). Maximum efficiency is derived from the relationship between no load and starting current Line 13 최대 효율

#### Line 14 Torque constant k<sub>m</sub> [mNm / A]

This may also be referred to as "specific torque" and represents the quotient from generated torque and applicable current.



#### Line 15 Speed constant

 $k_n [rpm / V]$ 

shows the specific speed per volt of applied voltage, disregarding any frictional losses. The reciprocal of the speed constant is known as the voltage constant or back-EMF constant.

#### Line 16 Mechanical time constant τ<sub>m</sub>[ms]

is the time required by the rotor to accelerate from standstill to 63 % of its no load speed.

### Line 17 Rotor moment of inertia J<sub>a</sub> [gcm<sup>2</sup>]

is the mass moment of inertia of the rotor, based on the axis of rotation. Line 15 속도 상수 역기전력 상수로 모터의 회전수에 비례하여 발생하는 역기전력과의 비례관계를 나타내는 비례상수

Line 16 기계적 시정수 정지시에서 속도가 무부하속도의 63%에 도달할 때까지 걸리는 시간

Line 17 로터의 관성모멘트 회전자 부위의 관성모멘트



- Potentiometer : 가변저항과 동알한 원리로 측정된 전압으로부터 회전 각도 (또는 위치)를 알아낼 수 있음.



Potentiometer 의 외관



Potentiometer 의 원리





Potentiometer 의 구성도

가변저항의 양단(고정부위)에 +15, -15[V]의 전압 가함.

Vo에 출력되는 전압 측정

A위치( 90도): Vo=7.5[V]

B위치(180도): Vo=0[V]

C위치(270도): Vo=-7.5[V]



각도 (위치)를 파악할 수 있음.







Tachogenerator의 외관

Tachogenerator의 동작원리

Tachogenerator는 발전기와 동일함. 속도에 비례하는 전압 발생.

E≠KΦN (K:비례상수, Φ:자속(고전된 값, N:회전속도)

따라서 측정한 전압으로부터 회전속도를 알 수 있음.







Incremental Type Optical Encoder의 내부 구성도





Optical Encoder의 외관





Incremental Type Optical Encoder의 출력신호

- -출력신호파형의 주기측정에 따른 속도 측정이 가능
- -펄스 갯수를 계측하면 이동거리도 측정 가능함.









Absolute Type의 Optical Encoder의 내부 디스크 패턴 모양





| Position | Angle                   | D3 | D2 | D1 | D0 | Change |
|----------|-------------------------|----|----|----|----|--------|
| 0        | $0 \rightarrow 22.5$    | 0  | 0  | 0  | 0  | D3     |
| 1        | $22.5 \rightarrow 45$   | 0  | 0  | 0  | 1  | D0     |
| 2        | 45 → 67.5               | 0  | 0  | 1  | 1  | D1     |
| 3        | $67.5 \rightarrow 90$   | 0  | 0  | 1  | 0  | D0     |
| 4        | 90 → 112.5              | 0  | 1  | 1  | 0  | D2     |
| 5        | $112.5 \rightarrow 135$ | 0  | 1  | 1  | 1  | D0     |
| 6        | $135 \to 155.5$         | 0  | 1  | 0  | 1  | D1     |
| 7        | $155.5 \to 180$         | 0  | 1  | 0  | 0  | D0     |
| 8        | $180 \to 202.5$         | 1  | 1  | 0  | 0  | D3     |
| 9        | $202.5 \to 225$         | 1  | 1  | 0  | 1  | D0     |
| 10       | $225 \to 245.5$         | 1  | 1  | 1  | 1  | D1     |
| 11       | $245.5 \to 270$         | 1  | 1  | 1  | 0  | D0     |
| 12       | $270 \to 295.5$         | 1  | 0  | 1  | 0  | D2     |
| 13       | $295.5 \rightarrow 315$ | 1  | 0  | 1  | 1  | D0     |
| 14       | $315 \rightarrow 337.5$ | 1  | 0  | 0  | 1  | D1     |
| 15       | $337.5 \rightarrow 360$ | 1  | 0  | 0  | 0  | D0     |

Absolute Type Optical Encoder의 그레이 코드(4bit인 경우)



-그레이 코드(Gray Code)를 사용하는 이유

패턴 사이를 센서부가 통과할 때 검출되는 코드는 그림에서처럼 항상 1bit 변화만 있게 되면 잘 못 읽어도 인접한 2개의 코드 중 한 개의 코드로 검출된다.

그러나 일반 Binary Code를 사용하면 전혀 다른 코드로 검출될 경우가 발생한다.

<잘못 검출되는 경우의 예>



잘못 검출된 code 0 0 0 0





- $\mathbf{H}$  브리지 회로는  $\mathbf{DC}$  서보모터 정 역회전 제어에 주로 사용
- 제어방식
  - (1) PWM 방식 (일반)
  - (2) Linear 방식 (저전류, 저전력인 경우)









• Linear 방식과 PWM 방식의 비교

|           | 장 점         | 단 점        |
|-----------|-------------|------------|
| Linear 방식 | 전류 리플이 없다.  | 전력소비가 많다.  |
|           | 고속응답        | 사이즈가 커짐.   |
|           | 소전류 용량에 적합. |            |
| PWM 방식    | 전력소비가 적음.   | 전류 리플이 있다. |
|           | 사이즈가 적음.    |            |
|           | 대전류 용량에 적합. |            |





<정방향 전동기의 구동>
(1) Q1, Q4 On
Q1 → R → L →
M → Q4 → Vs
전원에서
전력공급

(2)Q1 On, Q4 Off  $L \rightarrow M \rightarrow D2 \rightarrow Q1 \rightarrow R$  L에서 에너지 방출





<역방향 전동기
의 구동>
(1) Q2, Q3 On
Q2  $\rightarrow$  M  $\rightarrow$  L  $\rightarrow$ R  $\rightarrow$  Q3  $\rightarrow$  Vs
전원에서
전력공급

(2)Q2 On, Q3 Off  $L \rightarrow R \rightarrow D1 \rightarrow Q2 \rightarrow M$  L에서 에너지 방출





<정방향 전동기의 구동 시 전압 전류 파형>



<역방향 전동기의 구동 시 전압 전류 파형>





정성적 해석

초기에 흐르는 전류 및 인덕터 전압값은 다음식에서

$$V_{S} = V_{R}(t) + V_{L}(t)$$
$$= i(t)R + L\frac{di(t)}{dt}$$

초기전류: i(t=0)=0

초기에는 L이 전류의 변화를 억제하는 특성이 있으므로 i(t)=0 이고 따라서 L에 걸리는 전압은 Vs 이다. 한참 시간이 경과하면 전류의 변화율은 0이 되므로 최종적으로 회로에 흐르는 전류 i(t)=Vs/R 가 되고 L에 걸리는 전압은 0가 된다.





#### 정량적 해석

다음의 폐회로 방정식에서 미분방정식을 푼다.

$$V_S = V_R(t) + V_L(t)$$
 
$$= i(t)R + L\frac{di(t)}{dt}$$
 초기전류:  $i(t=0)=0$ 

그 결과로 구한 전류식은 다음과 같다.

$$i(t) = \frac{V_S}{R} (1 - e^{-\frac{R}{L}t})$$



#### RL 부하를 갖는 회로





•L의 특성

회로에 전류가 흐르고 있을 때 스위치 S1을 차단(OFF)시키면 어떠한 일이 발생하는가 ?

스위치 양단에서 불꽃 방전이 일어남을 관찰 할 수 있다. ── 그 이유는 ?

높은 전압에 의한 아이크 방전

스위치에 좋지 않은 영향을 준다 (특히 반도체 사용시 소자파괴의 원인이 된다.) 따라서 보호회로가 필요하다.







#### 환류 다이오드 (Freewheeling Diode)

#### 동작

- 1. 스위치가 도통되면 (1)번 경로로 전류가 흐르며 지수함수적으로 전류가 증가하여 Vs/R값으로 된다.
- 2. 스위치가 차단되면 L에서 유기된 전압에 의하여 환류다이오드가 도통되 어 (2)번 경로로 전류가 흐르게 된다. 이때 L에 저장된 에너지는 전류가 흐름 에 따라 저항 R에서 W=I²R로 열에너지 로 소비되어진다.





#### 환류 다이오드 (Freewheeling Diode)

일반적으로 회로의 스위칭 동작을 빠르게 하면 다음과 같이 흐르는 전류를 평활화할 수 있다. ➡> 초퍼회로에 사용





# 서보 제어 실험 (위치제어의 동작원리)



| 기준위치 | 실제 위치      | 오차     | 전력회로 출력전압 |
|------|------------|--------|-----------|
| 4[V] | 0[V] (초기값) | + 4[V] | + 40[V]   |
| 4[V] | 2[V]       | + 2[V] | + 20[V]   |
| 4[V] | 3[V]       | + 1[V] | + 10[V]   |
| 4[V] | 4[V] (최종값) | 0[V]   | 0[V]      |



모터 제어

### 서보 제어 실험 (위치제어의 동작원리)

- 기준위치에서 실제위치를 뺀 오차에 비례하는 전압을 증폭시켜 전력회로에 출력시키면, 오차 크기에 비례하여 모터에 가해지는 전압이 결정되므로, 오차가 결국 0이 되어야 모터에 전압이 가해지지 않아서 정지하게 된다.
- 만일 실제위치가 5[V]와 같이 목표위치를 넘어간 경우에는 반대방향으로 모터가 회전하도록 오차신호가 발생하게 된다.
- 결국 오차가 0인 지점에 모터가 위치할 수 밖에 없도록 하는 것이다.

| 기준위치 | 실제 위치 | 오차     | 전력회로 출력전압 |
|------|-------|--------|-----------|
| 4[V] | 2[V]  | + 2[V] | + 20[V]   |
| 4[V] | 3[V]  | + 1[V] | + 10[V]   |
| 4[V] | 4[V]  | 0[V]   | 0[V]      |
| 4[V] | 5[V]  | - 1[V] | - 10[V]   |
| 4[V] | 6[V]  | - 2[V] | - 20[V]   |



• 서보제어 실험장비(사진)





#### DC Motor Module





• DC Motor Module의 신호 흐름도





• 입력 Potentiometer,PC Interface Module







# 서보 제어 실험 (위치제어의 구성도)







#### 서보 제어 실험 (위치제어실험 결선도)





(1) VCL 소프트웨어를 시작하고 Setup CA06PE06을 로드하라. (다음과 같은 화면이 PC의 모니터에 발생한다.)

| File             | Controller | Plant                       |              | Display |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|------------|-----------------------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CA06PE06         | Servo      | MS15 Analog                 | 5            | Graph   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signal Generator |            | Graph                       |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signal           | Step       | 1 Input                     | ON           | 5 Drive | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Level            | 20%        | 2 Position                  | ON           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Offset           | 0%         | 3 Error                     | OFF          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rate             | 10 msec    | 4 Velocity                  | OFF          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reference        | External   |                             |              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DC Motor         |            | <b>Output Potentiometer</b> |              | Engage  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Brake            | 0          | Command P                   | otentiometer | 180     | ATT OF THE CONTROL OF THE STATE |



- (2) P 제어기의 이득 Kc는 0.8, VFB(속도 피드백)이 Off 되도록 조정하 라.
- (3) 입력 Potentiometer를 30도에서 300도로 회전시키고 출력 Potentiometer 가 돌아가는 것을 확인하라. Kc(P제어기 이득)를 5로 증가시키고 입력 Potentiometer를 다시 돌려라. 이번에는 출력 Potentiometer가 보다 빨리 움직인다. 그러나 안정된 값에 이르기전에 다소 진동한다. 이 두 값 사이의 어떤 지점에 최적 조절점 (진동이 없고 가장 빠르게 목표위치에 도착하는 순간) 이 있다.



- (4) Reference 입력을 internal로 바꾸어라. 신호 발생기는 20%의 step으로 한다. 파란 궤적에서 닫힌 루프 위치 시스템의 단계 응답을 볼수 있을 것이다.
- (5) Kc값을 증감시키면서 다음의 표를 완성하라.

| Кс  | 궤적 1의 값 | 궤적 2의 최대 오버슈트 값 | 궤적2의 정상상태에서의 값 |
|-----|---------|-----------------|----------------|
| 0.8 |         |                 |                |
| 2   |         |                 |                |
| 3   |         |                 |                |
| 4   |         |                 |                |
| 5   |         |                 |                |
| 6   |         |                 |                |



(6) Kc값을 5로 놓은 후, Kv값을 다음 표 8.2와 같이 변경하면서 다음 표를 완성하여라. Kv 값이 증가하면서 궤적2의 파형의 변화는 어떠한 형태로 변화해 가는지 관찰하라.

| Kv  | 궤적 1의 값 | 궤적 2의 최대 오버슈트 값 | 궤적2의 정상상태에서의 값 |
|-----|---------|-----------------|----------------|
| 0.5 |         |                 |                |
| 1   |         |                 |                |
| 2   |         |                 |                |
| 3   |         |                 |                |
| 4   |         |                 |                |
| 5   |         |                 |                |



# 서보제어실험(정상상태오차의이해)



| 기준위치 | 실제 위치        | 오차      | 전력회로 출력전압                          |
|------|--------------|---------|------------------------------------|
| 4[V] | 0[V] (초기값)   | + 4[V]  | + 40[V]                            |
| 4[V] | 2[V]         | + 2[V]  | + 20[V]                            |
| 4[V] | 3[V]         | + 1[V]  | + 10[V]                            |
| 4[V] | 3.5[V] (최종값) | +0.5[V] | +5[V](모터의 발생토오크<br>와 마찰력이 같다면 정지함) |



모터 제어

# 서보제어실험(정상상태오차의이해)



오차와 P제어기 이득의 변화에 따른 모터의 발생토오크의 변화



## 서보제어실험(정상상태오차의이해)



정지마찰력에 의한 정상상태 오차와 P제어기 이득의 관계



#### 서보 제어 실험 (정상상태 오차의 이해)

 P제어기 사용시 이득의 증가는 다음과 같이 제어 계에 영향을 준다.

- (1) 정상상태 오차의 감소
- (2) 모터의 이동속도의 증가
- (3) 오차에 민감해진다.
- (4) 안정도가 문제가 될 수 있다.



### 서보 제어실험(과도상태응답의이해)



#### -Settlling Time

최종 목표치의 +- 5%이내로 오차가 정착되는데 걸리는 시간 제어계의 빠르기를 평가하는 척도



### 서보 제어실험(과도상태응답의이해)



A 제어계: 부족제동 (응답이 불안정한 진동형태를 가진다.)

B 제어계 : 임계제동 (가장 효과적인 응답형태)

C 제어계: 과제동 (안정적이나 응답속도가 너무 느리다.)



#### 서보 제어실험(과도상태응답의이해)



$$D = B^2 - 4JK_PK_SK_t / R_a$$

D는 판별식으로 D의 값이 -값으로 가게 되면 부족제동 형태를 가지게 되고, + 값으로 가게 되면 과제동이 되는 응답을 보임.

B(마찰계수) 가 커짐



과제동이 되는 방향으로 응답

J(관성 모멘트)가 커짐 Kp, Kt, Ks (이득)이 커짐



부족제동이 되는 방향으로 응답



- 디지털 방식의 서보 제어계
- 디지털 제어계의 장점
- (1) 복잡한 제어 알고리즘을 구현하기 쉽다.
- (2) 수정 및 보완작업이 용이하다.
- (3) 하드웨어적인 오차를 줄일 수 있다.
- (4) 전기적 잡음에 강인하다.





테이프 레코더의 녹음과정 (아나로그 방식)



아나로그와 디지털의 차이점



테이프 레코더의 재생과정 (아나로그 방식)



아나로그와 디지털의 차이점



CD의 녹음과정 (디지털 방식)



아나로그와 디지털의 차이점



CD의 재생과정 (디지털 방식)





#### 아나로그 제어계와 디지털 제어계의 구성









아나로그 제어계와 디지털 제어계의 잡음에 대한 영향





#### 마이크로프로세서를 이용한 디지털 제어계의 구성도



#### 단원 9 DAC 와 ADC



DAC의 내부구성도

1010 이란 비트가 입력된 경우 출력전압

$$Vgut = \frac{R/2}{R} \ Vref + \frac{R/8}{R} \ Vref = \frac{1}{2} \ Vref + \frac{1}{8} \ Vref = \frac{5}{8} \ Vref = \frac{10}{16} \ Vref$$

(1) 2<sup>0</sup> 디지트만 ON된 경우  

$$Vout = \frac{R/2}{8R} \ Vref = \frac{1}{16} \ Vref$$

(2) 
$$2^1$$
 디지트만 ON된 경우  $V_{Gut}=rac{R/2}{4R}\ Vref=rac{1}{8}\ Vref$ 

(3) 
$$2^2$$
 디지트만 ON된 경우  $V_{Gut}=rac{R/2}{2R}$   $V_{ref}=rac{1}{4}$   $V_{ref}$ 

(4) 
$$2^3$$
 디지트만 ON된 경우  $Vout = \frac{R/2}{R} \ Vref = \frac{1}{2} \ Vref$ 

| 디지털 입력(이진수) |         | 십진수 | 출력전압 |    |                |
|-------------|---------|-----|------|----|----------------|
| 23          | $2^{2}$ | 21  | 20   |    | Vref = 5V 인 경우 |
| 0           | 0       | 0   | 0    | 0  | 0 [V]          |
| 0           | 0       | 0   | 1    | 1  | (1/16) 5 [V]   |
| 0           | 0       | 1   | 0    | 2  | (2/16) 5 [V]   |
| 0           | 0       | 1   | 1    | 3  | (3/16) 5 [V]   |
| 0           | 1       | 0   | 0    | 4  | (4/16) 5 [V]   |
| 0           | 1       | 0   | 1    | 5  | (5/16) 5 [V]   |
| 0           | 1       | 1   | 0    | 6  | (6/16) 5 [V]   |
| 0           | 1       | 1   | 1    | 7  | (7/16) 5 [V]   |
| 1           | 0       | 0   | 0    | 8  | (8/16) 5 [V]   |
| 1           | 0       | 0   | 1    | 9  | (9/16) 5 [V]   |
| 1           | 0       | 1   | 0    | 10 | (10/16) 5 [V]  |
| 1           | 0       | 1   | 1    | 11 | (11/16) 5 [V]  |
| 1           | 1       | 0   | 0    | 12 | (12/16) 5 [V]  |
| 1           | 1       | 0   | 1    | 13 | (13/16) 5 [V]  |
| 1           | 1       | 1   | 0    | 14 | (14/16) 5 [V]  |
| 1           | 1       | 1   | 1    | 15 | (15/16) 5 [V]  |

DAC의 입력데이터와 과 출력전압의 관계



# 서보 제어 실험 (디지털제어)



ADC의 내부 구성도



# 서보 제어 실험 (디지털제어)



CLIO Interface 부의 구성도



# 서보 제어 실험 (디지털제어)



실험결선도 (DAC와 ADC)



# 서보 제어 실험 (디지털 제어)

1. VCL 프로그램을 시작하고 CA06PE12.INI 파일을 LOAD하라.

| File<br>CA06PE12                                    | Controller<br>DAC | Plant<br>MS15 Analog    | Display<br>Meter |
|-----------------------------------------------------|-------------------|-------------------------|------------------|
| Signal Generator Signal DC-Level Level 0% Offset 0% |                   | Graph                   |                  |
| Rate 100msec                                        |                   | 4 Velocity ON           |                  |
| Reference                                           | Internal          |                         |                  |
| DC Motor                                            |                   | Output<br>Potentiometer | Disengage        |
| Brake                                               | 0                 | Command Potentiometer   | 180。             |



# 서보 제어실험(디지털제어)

(2) 다음의 표에서 보여지는 상태로 비트들을 클릭하여 설정하고 그때 측정한 전압을 표에 기입하고 이론값과 비교하라.

| bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0<br>80mV | Decimal<br>Value | Expected Output | Voltage<br>Reading |
|-------|-------|-------|-------|-------|---------------|------------------|-----------------|--------------------|
|       |       |       |       |       | OUIIIV        | value            | Output          | Reauing            |
| 0     | 0     | 0     | 0     | 0     | 0             | 0                | 0               |                    |
| 0     | 0     | 0     | 0     | 0     | 1             | 1                | 80mV            |                    |
| 0     | 0     | 0     | 0     | 1     | 0             | 2                |                 |                    |
| 0     | 0     | 0     | 1     | 0     | 0             |                  |                 |                    |
| 0     | 0     | 1     | 0     | 0     | 0             |                  |                 |                    |
| 0     | 1     | 0     | 0     | 0     | 0             |                  |                 |                    |
| 1     | 0     | 0     | 0     | 0     | 0             |                  |                 |                    |
| 1     | 0     | 0     | 0     | 0     | 1             |                  |                 |                    |
| 1     | 1     | 1     | 1     | 1     | 1             | 63               | 5.04V           |                    |



### 단원 8 제어계의 주파수 응답



시스템에 정현파입력을 가했을 때 입력의 크기에 대한 정상상태에서의 출력의 크기의 비, 그리고 입력과 출력 사이의 위상 차.

주파수 응답



제어계의 특성 파악을 위한 테스트 방법

- (1) 시간 영역에서의 응답 테스트
  - 임펄스 응답
  - 스텝 응답
  - 램프 응답
- (2) 주파수 영역에서의 응답 테스트
  - 보드 선도



### - 임펄스 응답





제어시스템 출력







제어시스템 출력





### - 주파수 응답 (보드 선도)





-시스템에 정현파입력(sinusoidal input)을 저주파수에서 수 KHz까지 변화시키면서 가했을 때 입력의 크기에 대한 정상상태에서의 출력의 크기의 비, 그리고 입력과 출력 사이의 위상 차를 각 주파수에 따라 구하여 그림.



- 보드 선도

이득



위상





### Log 눈금의 사용 이유

Log 눈금의 사용은 이득의 큰 변화에서 작은 변화까지를 눈에 보이게 쉽게 한장의 그래프에 표현하기 위함

$$0| = [dB] = 20 \log \frac{Output \ Amplitude}{Input \ Amplitude}$$

$$20 \log 1 = 0 [dB]$$

$$20 \log 10 = 20 [dB]$$

$$20\log 100 = 20\log 10^2 = 40\log 10 = 40[dB]$$



### Gain Margin(이득 여유)과 Phase Margin(위상 여유)







실험결선도 (주파수 응답)



(1) VCL 소프트웨어를 시작하고 Setup CA06PE06을 로드하라. (다음과 같은 화면이 PC의 모니터에 발생한다.)

| File<br>CA06PE04                          | Controller<br>Open-loop      | Plant<br>MS15 Analog                | 5         | <b>Display</b><br>Graph |
|-------------------------------------------|------------------------------|-------------------------------------|-----------|-------------------------|
| Signal Generator Signal Level Offset Freq | Sine<br>60%<br>0%<br>100 mHz | Graph 1 Input 2 Position 4 Velocity | ON<br>OFF |                         |
| Reference DC Motor Brake                  | Internal 0                   | Output Poter                        |           | Disengage               |

(2) 다음의 표에서 보여준 주파수의 범위에서 속도신호의 크기와 위상을 측정하라.



| 주파수<br>(Frequency)<br>[Hz] | 출력전압 크기<br>Peak to Peak<br>[V] | 위상 지연<br>[Degree] | 진폭비율(A)<br>(출력전압크기/<br>입력전압) | 진폭비율<br>20 log A [dB] |
|----------------------------|--------------------------------|-------------------|------------------------------|-----------------------|
| 10mHz                      |                                |                   |                              |                       |
| 20mHz                      |                                |                   |                              |                       |
| 50mHz                      |                                |                   |                              |                       |
| 100mHz                     |                                |                   |                              |                       |
| 200mHz                     |                                |                   |                              |                       |
| 500mHz                     |                                |                   |                              |                       |
| 1Hz                        |                                |                   |                              |                       |
| 2Hz                        |                                |                   |                              |                       |
| 5Hz                        |                                |                   |                              |                       |
| 10Hz                       |                                |                   |                              |                       |



### • 실험 결과에 대한 분석

- (1) 주파수가 높아짐에 따라 출력신호의 파형의 크기가 감소하는 것을 관찰 할 수 있다.
- (2) 주파수가 높아짐에 따라 입력신호와 출력신호의 위상차가 커지는 것을 관찰 할 수 있다.
- (3) 낮은 주파수에서 측정할 때 입력신호가 사인파로 변하게 될 때 출력신호가 완벽한 사인파가 아닌 사인파의 시작 부분이 찌그러지는 부분이 관찰된다. 이는 정지 마찰력의 영향이다.



#### 단원 10 PID 제어



#### PID 제어기를 포함한 제어시스템



### PI 제어기



PI 제어기를 이용한 폐회로 위치제어계





P제어기와 PI 제어기의 출력신호



모터 제어

### PD 제어기



PD 제어기를 이용한 폐회로 위치제어계





운전할 때 건널목에서부터 남아있는 거리만 고려하여 운전하는 경우 → P 제어

차량의 속도까지 감안하여 운전하는 경우 → PD 제어







모터 제어



실험 결선도 (PID 제어)



- (1) 실험결선도(PID제어)와 같이 결선하라.
- (2) VCL을 시작하고 CA06PE09.INI 파일를 로드하라.

| File             | Controller | Plant               |              | Display    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|------------|---------------------|--------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CA06PE09         | PID        | MS15 Analog         | ,            | Graph      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signal Generator |            | Graph               |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signal           | Step       | 1 Input             | ON           | 5 Drive    | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Level            | 50%        |                     |              | 6 PB       | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Offset           | 0%         | 3 Error             | ON           | 7 Integral | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rate             | 10 msec    | 4 Velocity          | ON           | 8 Deriv    | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reference        | Internal   |                     |              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DC Motor         |            | <b>Output Poter</b> | ntiometer    | Disengage  | PROPERTY OF THE PROPERTY OF TH |
| Brake            | 0          | Command Po          | otentiometer | 180°       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



- (3) 적분 시정수와 미분 시정수를 0으로 두자. 그러면 제어기는 비례제어만 수행하게 된다. 비례제어는 PB라고 할 수 있다. PB는 Proportional Band(비례 대역)을 나타낸다. 비례 대역은 이득의 역함수와 같다. 퍼센트로 표현될때 % PB=100/Kc이다.
- (4) PB를 100%(Kc=1)로 만들고 시스템전원을 ON시킨다. 입력과 속도 사이에 상당한 에러가 보일 수도 있다.
- (5) PB를 40%(Kc=2.5)로 하여 제어기의 이득을 2.5로 늘리자. 에러가 줄어들었는지 여전히 상당히 남아 있는지 관찰하자. 또한 시스템이 빨라진 것을 알리는 응답시간이 줄어드는 것을 관찰할 수 있을 것이다.
- (6) PB를 4%(Kc=25)로 줄이자. 이득이 증가되면 정상상태 오차가 더욱 줄어들고 응답시간도 더욱 줄어드는 것을 관찰할 수 있다.



| PB(Kc)       | 정상상태 오차 [V] | 출력 파형의<br>간략한 그림 |
|--------------|-------------|------------------|
| 100% (Kc=1)  |             |                  |
| 40% (Kc=2.5) |             |                  |
| 4% (Kc=25)   |             |                  |



#### 적분 제어

- (7) 입력 레벨을 30%로 줄이고 PB를 40%로 놓자. 이젠 적분 시정수를 1초로 놓고 적분제어기를 on시킨다. 채널 7은 on으로 클릭하자.
- (8) 적절한 응답이 얻어질 때까지 적분 시정수를 감소시키자. 적분 시정수(ltc)가 0.1s 일때까지 조정하면서 관찰하라. 적분 Action은 정상상태의 에러를 제거한다. 시정수는 적분기의 응답속력을 설정한다. 적분시간이 짧아질수록 적분이득은 높아진다.

| 적분시정수(Itc) | 정상상태 오차 [V] | 출력 파형의 간략한 그림 |
|------------|-------------|---------------|
| 1[sec]     |             |               |
| 0.5[sec]   |             |               |
| 0.1[sec]   |             |               |



#### 미분 제어

(9) 화면에서 Plant를 Process로 설정하라.

(직류서보모터의 속도제어계에서는 진동이 잘 보이지 않으므로 Simulation Mode로 설정하여 미분제어의 효과를 보려고 함.)

(10) PB=30%, Itc=0.24s로 놓자. 출력은 진동하는 형태를 보일 것이다.

(11) 이 진동이 줄어들도록 미분 시정수를 증가시키자.

적절하게 진동이 줄어들었을 때 미분 세팅을 다음에 기록하라.

$$Dtc = \underline{s}$$

미분제어의 사용은 진동을 줄이는 제동의 효과가 있음을 실험을 통해 파악할 수 있다.



### 서보 제어 실험 (샘플링타임의 영향)

#### 샘플링 타임 및 데이터 레졸류션의 영향

#### 1.샘플링 타임

위치 및 속도 정보를 받은후 제어출력이 나가는 데 걸리는 시간으로 마이크로프로세서에서 제어 소프트웨어가 수행 되는 속도에 영향을 받는다. 이 샘플링 타임이 길어질 경우 제어계는 불안정해진다.

### 2. 데이터 레졸류션

위치 및 속도정보를 디지털 코드로 변환시의 비트수에 관 련된 것으로 레졸류션이 적으면 정밀한 제어가 불가능해진다.



# 서보 제어실험(샘플링타임의영향)

(1) VCL을 기동하고 CA06PE13.INI 파일을 로드한다.

| File<br>CA06PE13 | Controller<br>PID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Plant<br>MS15 Analog |              | <b>Display</b><br>Graph |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal Generator | TID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Graph                | )            | Graph                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signal           | Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 Input              | ON           | 5 Drive                 | Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Level            | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |              | 6 Proportional          | Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Offset           | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 Error              | ON           | 7 Integral              | Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rate             | 10 msec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 Velocity           | ON           | 8 Derivative            | Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reference        | Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                    |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DC Motor         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Output Poter         | itiometer    | Disengage               | VARIATE PARTY AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Brake            | ASSESSMENT AS A STATE OF THE ST | Command Po           | otentiometer | 180°                    | PETERSTANCE CONTROL CO |



### 서보 제어 실험 (샘플링타임의 영향)

- (2) 비트셋팅을 12비트에서 5비트로 변경하고 변화에 따른 결과를 관찰하라. 다음과 같은 다른 효과가 나타날 것이다.
- 1. 과도 응답은 1비트(320mV) 정도의 차이를 가지는 정도로 변화를 보일 것이다.
- 2. 정상상태는 안정되게 그대로 유지되지 않는다. 1 Bit(320mV)정도로 위 아래로 진동한다. 레졸류션이 줄어들면 정밀도가 떨어지는 결과를 가져온다.
- (3) 리솔루션을 12비트로 변경하라. 다음 표에 따라 신호 발생기 rate를 감소시키고 시스템 응답을 관찰 해 기록한다.



### 서보 제어 실험 (샘플링타임의 영향)

 샘플간의 시간이 증가함에 따라 시스템의 응답은 점차 불안정해진다. 결국 샘플링 속도는 너무 느려서 시스템 제어를 유지할 수 없게 하며, 진동을 유발한다.

| Rate msecs | error 파형 | Velocity 파형 | 안정도(Stability) |
|------------|----------|-------------|----------------|
| 10         |          |             |                |
| 20         |          |             |                |
| 50         |          |             |                |
| 100        |          |             |                |
| 200        |          |             |                |
| 300        |          |             |                |

