Serie 2

Aufgabe 1:

Schreiben Sie ein Programm, das den Namen und das Alter des Benutzers einliest und dieses dann wie folgt zurückgibt. Hallo ich heiße <Name>, und bin <Alter> Jahre alt.

Aufgabe 2:

Schreiben Sie ein Programm, das zwei Zahlen, $n_1,n_2\in\mathbb{N}$ einliest und den Divisionsrest von n_1 geteilt durch n_2 ausgibt

Aufgabe 3:

Berechnen Sie für verschiedene Approximationen an π den relativen Fehler in Python. Geben Sie das Ergebnis mit schöner Formatierung aus (vernünftige Anzahl an Nachkommastellen).

Beispiel: Pi kann durch 3, mit einem relativen Fehler von 0.0451 approximiert werden. Das sind 4.51% Fehler.

- 1. $\pi \approx 3$
- 2. $\pi pprox 3.14$
- 3. $\pipproxrac{22}{7}$ 4. $\pipproxrac{355}{113}$

Der relative Fehler einer Approximation x von π ist definiert als $\frac{|\pi-x|}{\pi}$.

Aufgabe 4:

Geburtstagsparadoxon: Wir berechnen die Wahrscheinlichkeit, dass in einer Gruppe von $N \in \mathbb{N}$ Personen, mindestens 2 am selben Tag Geburtstag haben (ohne Schalttag). Die Formel dafür lautet:

$$P = 1 - \frac{365!}{365^N(365 - N)!}$$

Schreiben Sie ein Programm, das N einliest und P ausgibt. Bonus: Ab welchem Wert von N ist die Wahrscheinlichkeit größer als 50%?

Tipp: Faktorielle $n! := n(n-1)(n-2) \ldots 1$ kann mit <code>math.factorial(n)</code> berechnet werden.

Aufgabe 5:

Schreiben Sie ein Programm, das für zwei, von der Tastatur einzulesende Zahlen, $n_1,n_2\in\mathbb{N}$, die größere Zahl am Bildschirm ausgibt.

Aufgabe 6:

Schreiben Sie ein Programm, das das Würfeln mit zwei sechsseitigen Würfeln simulieren soll. Geben Sie die Summe der gewürfelten Zahlen so aus: Du hast eine <Summe> gewürfelt.

Tipp: verwenden Sie das random Modul