GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA		
Arquitectura de computadoras		
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Segundo Semestre	210201	85

OBJETIVO(S) GENERAL(ES) DA LA ASIGNATURA

Proporcionar al estudiante los conceptos teóricos, las bases metodológicas y las técnicas de diseño relacionadas con la implementación de arquitecturas de procesadores de alto rendimiento.

TEMAS Y SUBTEMAS

Fundamentos del diseño de computadoras

- 1.1 Terminología
- 1.2 Requerimientos funcionales
- 1.3 Nuevas tendencias en tecnología
- 1.4. Cinco componentes clásicos de una computadora
- 1.5. Generaciones de computadoras

Rendimiento

- 2.1 Definiciones de rendimiento
- 2.2 Medición del rendimiento
- 2.3 Elección de programas para evaluar el rendimiento
- 2.4 Comparación y resumen de rendimientos
- 2.5 Tiempo de ejecución ponderado
- 2.6 Principios cuantitativos de diseño de computadoras
- 2.7 Conjuntos de benchmarks del SPEC

Diseño de repertorios de instrucciones

- 3.1 Clasificación de las arquitecturas a nivel lenguaje máquina
- 3.2 Direccionamiento de memoria
- 3.3 Modos de direccionamiento
- 3.4 Operaciones del repertorio de instrucciones
- 3.5 Tipo y tamaño de los operandos
- 3.6 Codificación del repertorio de instrucciones

Ejemplos de las arquitecturas de nivel lenguaje máquina

- 4.1 La arquitectura MIPS64
- 4.2 Arquitectura de x86 de Intel. Arquitectura I-64 de Intel

Segmentación del path de datos

- 5.1 Implementación de MIPS sin segmentación
- 5.2 Segmentación básica para una máquina RISC
- 5.3 Rendimiento para caso de segmentación
- 5.4 Riesgos de la segmentación
- 5.5 Extensión de la segmentación de MIPS para manipular operaciones multiciclo
- 5.6 Riesgos y adelantamiento en el caso de la segmentación con latencia grande

COORDINACIÓN

GENERAL DE EDUCACIÓN

MEDIA SUPERIOR Y SUPERIOR

I.E.E.P.D

6. Planificación estática de segmentación

- 6.1 Paralelismo del nivel de instrucción
- 6.2 Planificación básica de la segmentación y el desenrollamiento del ciclo
- 6.3 Dependencias
- 6.4 Paralelismo del nivel de ciclo

7. Planificación dinámica de segmentación

- 7.1 Planificación dinámica con el marcador
- 7.2 El algoritmo de Tomasulo

8. Procesadores de emisión múltiple

- 8.1 Emisión múltiple
- 8.2 Procesadores superescalares con planificación estática
- 8.3 Emisión múltiple con planificación dinámica
- 8.4 Especulación basada en hardware
- 8.5 Emisión múltiple estática, enfoque de VLIW
- 8.6 Tecnología Hyperthreading (HT) de Intel

9. Memoria cache

- 9.1 La cache de datos
- 9.2 Cache de instrucciones
- 9.3 Rendimiento de la cache
- 9.4 Fuentes de los fallos de la cache
- 9.5 Reducción de la penalización de fallos
- 9.6 Caches de dos y tres niveles.

10. Memoria principal

- 10.1 Tecnología de memoria principal
- 10.2 Organizaciones para mejorar el rendimiento de la memoria principal
- 10.3 Memoria virtual
- 10.4 Técnicas para traducción rápida de direcciones
- 10.5 Selección del tamaño de página
- 10.6 Protección de procesos

11. Dispositivos de memoria. Entradas/Salidas. Buses.

- 11.1 Discos magnéticos
- 11.2 Discos ópticos
- 11.3 Buses
- 11.4 Conexión de los dispositivos de E/S a CPU/memoria
- 11.5 Buses estándares

ACTIVIDADES DE APRENDIZAJE

Exposición por parte del maestro; lecturas enfocadas y actualizadas; una variedad de estudios de arquitecturas reales o basados en los modelos y algoritmos presentados en curso; investigaciones del comportamiento de los diferentes modelos del path de datos de computadora con diferentes ejemplos del código; desarrollo de los diagramas de temporización; estudio de la planificación estática y dinámica de segmentación para el caso de procesadores de emisión simple y emisión múltiple.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Resolución de los problemas en clase con la evaluación de la habilidad de los estudiantes de aplicar los conocimientos obtenidos en la práctica; evaluación de la habilidad los estudiantes trabajar independiente por medio de las tareas y proyectos de corto plazo; exámenes parciales y examen final.

BIBLIOGRAFÍA

Libros básicos:

- Computer Organization and Design: The Hardware/Software Interface. David A. Patterson, John L. Hennessy, 4-th edition, Morgan Kaufmann Publishers, Inc. San Francisco, CA, USA, 2008.
- Computer Architecture: A Quantitative Approach. John L. Hennessy, David A. Patterson., 4-ra edit Morgan Kaufmann Publishers, Inc. San Francisco, CA, USA, 2006.
- Los microprocesadores Intel 8086/8088, 80186, 80286, 80386 y 80486. Arquitectura, programació Interfaces. Barry B. Bray. 3-ra edición. Prentice-Hall Hispanoamericana, S.A., 1995.
- The 80386, 80486, and Pentium Processor. Hardware, Software and Interfacing. Walter A. Triebel. Prentice-Hall. Inc., 1998.

Libros de consulta:

- Computer Organization and Architecture. Designing for Performance. Stalling W., 6-th edition, Prentice Hall, USA, 2002.
- Intel Microprocessors. Barry B. Brey, Prentice Hall, 2008.
- Intel 64 and IA-32 Architectures Software Developer's Manual. Intel Corp., 2009.

PERFIL PROFESIONAL DEL DOCENTE

Estudios formales mínimo de maestría y de preferencia doctorado completados en electrónica y computación o un área relacionada; habilidades y técnicas docentes dinámicas y actualizadas.

