

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

HAC T-Coil TEST REPORT

KYOCERA CORPORATION

1-34, Sanyo-cho, Daito-Shi, Osaka, 574-8501, JAPAN

Date of Issue:

Aug. 22, 2013

Test Report No.:

HCTA1307FT02

Test Site: HCT CO., LTD.

FCC ID: V65C6522

APPLICANT: KYOCERA CORPORATION

Application Type

Certification

EUT Type

GSM/ WCDMA/ LTE Phone with Bluetooth/ WLAN

Tx Frequency

824.20 - 848.80 MHz (GSM850)

: 1850.20 - 1909.80 MHz (GSM1900)

826.4 - 846.6 MHz (WCDMA850)

1712.4 - 1752.6 MHz (WCDMA1700)

1 852.4 - 1 907.6 MHz (WCDMA1900)

706.5 - 713.5 MHz (LTE Band 17)

1 710.7 - 1 754.3 MHz (LTE Band 4)

2412.0 - 2462.0 MHz (2.4GHz WLAN)

Trade Name/Model(s)

: KYOCERA CORPORATION / C6522N

FCC Classification

: Licensed Portable Transmitter Held to Ear (PCE)

FCC Rule Part(s)

: §20.19

HAC Standard

: ANSI C63.19-2011

T Category: T3

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19 and had been tested in accordance with the specified measurement procedures. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

HCT Co., Ltd. Certifies that no party to this application has been denied FCC benefits pursuant to section 5301 of the Anti- Drug Abuse Act of 1998, 21 U.S. C. 862.

Report prepared by

: Young-Seok Yoo

Test Engineer of SAR Part

Approved by

: Jae-Sang So

Manager of SAR Part

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Report No.: HCTA1307FT02 FCC ID: V65C6522 Aug. 22, 2013 Date of Issue:

Version

Rev DATE		DESCRIPTION
	Jul. 12, 2013	First Approval Report
1	Aug. 22, 2013	Page 5 was revised

Table of Contents

1. INTRODUCTION	4
2. APLICANT / EUT DESCRIPTION	4
3. TEST CONDITIONS	6
4. HAC T-Coil MEASUREMENT SET UP	10
5. SYSTEM SPECIFICATIONS	11
6. ANSI/IEEE C63.19 PERFORMANCE CATEGORIES	13
7. TEST PROCEDURE	15
8. AUDIO SIGNALS	16
9. T-COIL MEASUREMENT POINT AND REFERENCE PLANE	18
10. SIGNAL VERIFICATION	20
11. TEST SNR RESULTS	22
12. MEASUREMENT UNCERTAINTY OF AUDIO BAND MAGNETIC MEASUREMENTS	24
13. T-COIL MESUREMENT RESULTS	25
13.1 Field Strength and Signal Quality	25
13.2 Frequency Response	28
13.3 T-Rating Results	36
APPENDIX A: AMBIENT NOISE PLOTS	41
APPENDIX B: AUDIO MAGNETIC PROBE CERTIFICATE	44
APPENDIX C. AMCC CERTIFICATE (HEI MHOLZ COIL)	47

1. INTRODUCTION

This test report describes the Hearing Aid Compatibility (HAC) measurement of a wireless portable device manufactured by Pantech Co., Ltd. These measurements were performed for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC). The testing was performed in accordance with ANSI C63.19-2011.

2. APPLICANT / EUT DESCRIPTION

2.1 Applicant

Company Name: KYOCERA CORPORATION

Address: 1-34, Sanyo-cho, Daito-Shi, Osaka, 574-8501, JAPAN

• Tel. / Fax: +82-2-368-8972

2.2 EUT Description

• EUT Type: GSM/WCDMA Phone with Bluetooth

• Trade Name: KYOCERA CORPORATION

Model(s): C6522NFCC ID: V65C6522

• Serial Number(s): #1

• Tx Frequency: 824.20 – 848.80 MHz (GSM850)

1 850.20 – 1 909.80 MHz (GSM1900) 826.4 – 846.6 MHz (WCDMA850) 1 712.4 – 1 752.6 MHz (WCDMA1700) 1 852.4 – 1 907.6 MHz (WCDMA1900) 706.5 – 713.5 MHz (LTE Band 17) 1 710.7 – 1 754.3 MHz (LTE Band 4) 2412.0 – 2462.0 MHz (2.4GHz WLAN)

• FCC Classification: Licensed Portable Transmitter Held to Ear (PCE)

• FCC Rule Part(s): § 20.19(b);

Modulation(s): GSM850/GSM1900/WCDMA850/WCDMA1700/WCDMA1900

Antenna Type: Intenna
Date(s) of Tests: Jul. 4, 2013
Place of Tests: HCT CO., LTD.

Icheon, Kyoung ki-Do, KOREA

• Report Serial No.: HCTA1307FT02

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

4 of 49

ИСТ

Report No.: HCTA1307FT02 FCC ID: V65C6522 Date of Issue: Aug. 22, 2013

Air-Interface	Band (MHz)	Туре	HAC Tested	Simultaneous Transmissions Note: Not to be tested	concurrent HAC Tested or not Tested	Reduced Power 20.19(C)(1)	Voice over Digital Transport OTT Capability	WiFi Low Power
	850	VO	Yes	Yes: BT	Not tested ¹	NI/A	NI/A	NI/A
GSM	1900	VO	res	res. di	Not tested	N/A	N/A	N/A
	GPRS	DT	N/A	Yes: BT	N/A	N/A	Yes	N/A
	850	VO		Yes: BT	Not tested ¹	N/A	N/A	N/A
MCDMA	1700	VO	Yes					
WCDMA	1900	VO						
	HSPA	DT	N/A	Yes: BT	N/A	N/A	Yes	N/A
LTE	700	VD	No ²	Vac. W/I ANI ex DT		N/A	Yes	N/A
LTE	1700	VD	INO	Yes: WLAN or BT	Not tested ²			
WLAN	2450	DT	No	Yes: GSM, WCDMA or LTE	N/A	N/A	Yes	N/A
BT	2450	DT	NO	Yes: GSM or WCDMA	N/A	N/A	N/A	N/A

Type Transport VO=Voice Only

DT= Digital Data-Not intended for CMRS Service

^{1.} Non-concurrent mode was found to be the Worst Case mode

² In accordance to KDB Guidance285076 D02 T-Coil testing for CMRS IP v01, CMRS Vol.TE testing for M and T rating was not performed because instrumentation for testing Vol.TE was not available for T-Coil testing at the time of testing. Operational test instrumentation is expected to be available by the 1st Quarter of 2014.

3. TEST CONDITIONS

3.1 Environmental Conditions

All tests were performed under the following environmental conditions:

1) Ambient Temperature: (23 ± 2) °C

2) Relative Humidity (R.H.): 30 % < R.H. < 80 %

3.2 Ambient Noise of the test site

The test site's ambient magnetic level were determined and found to be at least 10 dB below the measurement data ABM2, unless a very low level of AMB2. Measurement of the ambient level was performed for each probe orientation and results are shown in Appendix A.

3.3 Conducted RF Power Test Data

The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing HAC and are recommended for evaluating HAC. Measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The HAC measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5 % occurred, the tests were repeated.

3.3.1 HAC Measurement Conditions for UMTS

Output Power Verification

Maximum output power is verified on the High, Middle and Low channel according to the general description in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC(transmit power control) set to all "1s".

HAC Measurements

HAC is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". HAC in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 1/4 dB higher than that measured in 12.2 kbps RMC. Otherwise, HAC is measured on the maximum output channel in AMR with a 3.4kbps SRB (signaling radio bearer) using the configuration that results in the highest HAC for that RF channel in 12.2 RMC.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

6 of 49

Maximum Average Output Power Measurement for FCC ID: V65C6522

		Voice GPRS Data						EDGE Data			
Dond	Channel	GSM	GPRS	GPRS	GPRS	GPRS	EDGE	EDGE	EDGE	EDGE	
Band		(dBm)	1 TX Slot	2 TX Slot	3 TX Slot	4 TX Slot	1 TX Slot	2 TX Slot	3 TX Slot	4 TX Slot	
			(dBm)								
CSM	128	31.80	31.85	31.53	29.70	29.34	25.15	25.20	24.10	23.99	
GSM 850	190	32.10	32.12	31.19	29.83	29.47	25.13	25.18	24.06	24.00	
030	251	31.71	31.70	31.40	30.02	29.70	25.13	25.11	24.05	23.95	
CSM	512	30.53	30.60	30.44	30.26	29.95	25.20	25.27	25.10	24.90	
1900	661	30.61	30.67	30.52	30.31	30.00	25.23	25.30	25.07	24.92	
1900	810	30.29	30.24	30.05	29.90	29.60	25.50	25.40	25.10	24.91	

Table 1. Maximum average GSM Conducted output powers (Burst-Average)

Report No.: HCTA1307FT02 FCC ID: V65C6522 Aug. 22, 2013 Date of Issue:

3GPP Release	Mode	3GPP 34.121 Subtest		Cellular Band [dBm]			
Version	Mode		UL 4132 DL 4357	UL 4183 DL 4408	UL 4233 DL 4458	Target	
99	WCDMA	12.2 kbps RMC	24.07	24.05	23.90	-	
99	WCDMA	12.2 kbps AMR	24.00	24.03	23.85	-	
5		Subtest 1	22.88	22.76	22.70	0	
5		Subtest 2	22.91	22.80	22.65	0	
5	HSDPA	Subtest 3	22.38	22.32	22.16	-0.5	
5		Subtest 4	22.37	22.30	22.25	-0.5	
6		Subtest 1	22.85	22.98	22.40	0	
6		Subtest 2	21.93	21.89	21.79	-2	
6	HSUPA	Subtest 3	21.82	21.66	21.58	-1	
6		Subtest 4	22.36	22.15	22.00	-2	
6		Subtest 5	22.41	22.26	22.10	0	

3GPP		3GPP 34.121		AWS Band [dBm]		
Release	Mode	Subtest		MPR		
Version			UL 1312 DL 1537	UL 1412 DL 1637	UL 1512 DL 1737	Target
99	WCDMA	12.2 kbps RMC	23.62	23.79	23.70	-
99	WCDMA	12.2 kbps AMR	23.61	23.68	23.65	-
5		Subtest 1	22.70	22.68	22.65	0
5		Subtest 2	22.57	22.68	22.60	0
5	HSDPA	Subtest 3	22.15	22.16	22.14	-0.5
5		Subtest 4	22.14	22.14	22.12	-0.5
6		Subtest 1	22.38	22.75	21.95	0
6		Subtest 2	21.54	21.38	21.32	-2
6	HSUPA	Subtest 3	21.43	21.68	21.48	-1
6		Subtest 4	21.88	21.50	21.97	-2
6		Subtest 5	21.65	22.33	21.90	0

Report No.: HCTA1307FT02 FCC ID: V65C6522 Aug. 22, 2013 Date of Issue:

3GPP Release		3GPP 34.121 Subtest		PCS Band [dBm]			
Version	Mode		UL 9262 DL 9662	UL 9400 DL 9800	UL 9538 DL 9938	Target	
99	WCDMA	12.2 kbps RMC	23.04	23.30	23.03	-	
99	WCDMA	12.2 kbps AMR	22.95	22.98	23.00	-	
5		Subtest 1	21.98	21.97	22.03	0	
5		Subtest 2	21.95	21.96	22.01	0	
5	HSDPA	Subtest 3	21.40	21.44	21.55	-0.5	
5		Subtest 4	21.39	21.43	21.54	-0.5	
6		Subtest 1	21.33	21.73	21.40	0	
6		Subtest 2	20.68	20.93	20.97	-2	
6	HSUPA	Subtest 3	20.89	20.90	20.68	-1	
6		Subtest 4	21.00	21.05	21.20	-2	
6		Subtest 5	21.93	21.27	21.34	0	

Table 2. WCDMA Conducted output powers

4. HAC T-Coil MEASUREMENT SET-UP

Figure 1: T-Coil setup with HAC Test Arch and AMCC.

10 of 49

Figure 2: T-Coil setup cabling.

HCT CO., LTD.

5. SYSTEM SPECIFICATIONS

The HCT utilizes a Dosimetric Assessment system manufactured by Schmid & Partner Engineering AG (SPEAGTM) of Zurich, Switzerland. All T-coil measurements are taken within a shielded enclosure. The measurement uncertainty budget is shown in Table 7. The list of calibrated equipment used for the measurements is shown in Table 2.

Manufacturer	Type / Model	S/N	Calib. Date	Calib.	Calib.Due
SPEAG	DAE4	869	09/18/12	Annual	09/18/13
SPEAG	Audio Magnetic 1D Field Probe	1013	N/A	N/A	N/A
SPEAG	AMMI SE UMS 010 AB	1015	N/A	N/A	N/A
SPEAG	AMCC SD HAC P02 A	1001	N/A	N/A	N/A
SPEAG	Test Arch SD HAC D01 BA	-	N/A	N/A	N/A
R&S	Base Station CMU200	110740	07/23/12	Annual	07/23/13

Table 3: Test Equipment

5.1 Audio Magnetic Probe Description

Audio Magnetic Probe (AM1DV2) is an active probe with a single sensor. The same probe coil is used to measure three orthogonal field components (axial, radial 1, radial 2). The probe is rotated to properly orient the coil for each field component.

5.2 AMMI (Audio Magnetic Measurement Instrument)

AMMI is a desktop unit containing a sampling unit, a waveform generator for test, calibration signals and a USB interface. Front connectors include: Audio Out – predefined or user definable audio signals for injection into the WD; Probe In – the probe signal is evaluated by AMMI; Coil Out – test and calibration signal to the AMCC; Coil In – monitor signal from the AMCC.

5.3 AMCC (Audio Magnetic Calibration Coil)

AMCC is a Helmoltz coil for calibration of the AM1D probe. The two horizontal coils create a homogeneous magnetic field in the z direction. Refer to Appendix C for more details on AMCC coil. The probe is calibrated in AMCC coil. The frequency response and sensitivity are measured and stored. Sensitivity includes both probe sensitivity and pre-amplifier sensitivity.

Figure 3: Frequency Response measured in AMCC

Sensitivity measured in AMCC: 0.0661246 V / (A/m)

The sensitivity is for 1 kHz sine signal. The sensitivity includes both probe sensitivity and pre-amplifier sensitivity. It is the total calibration, and there are no additional probe calibration factors. The voltage into the Helmholtz coil is across the shunt resistor.

6. ANSI/IEEE C63.19 PERFORMANCE CATEGORIES

Field Intensity

The T-Coil signal shall be ≥ -18 dB (A/m) at 1 kHz, in a 1/3 octave band filter for all orientations.

Frequency Response

The frequency response of the perpendicular component of the magnetic field, measured in 1/3 octave bands, shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300-3 000 Hz. These response curves are for true field strength measurements of the T-Coil signal.

Figure 4: Magnetic field frequency response for WDs with field strength ≤ −15 dB (A/m) at 1 kHz

Figure 5 : Magnetic field frequency response for WDs with a field that exceeds –15 dB(A/m) at 1 kHz

Signal Quality

This section provides the signal quality requirement for the intended T-Coil signal from a WD. Only the RF immunity of the hearing aid is measured in T-Coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. So, the only criteria that can be measured is the RF immunity in T-Coil mode. This is measured using the same procedure as for the audio coupling mode and at the same levels.

A device may be classified according to its audio coupling mode (M1 through M4), its T-Coil mode (T1 through T4), or both. Note: the T mode rating may be higher than the M mode rating.

Category	Telephone parameters WD signal quality [(signal + noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

Table 4: T-Coil signal quality categories

7. TEST PROCEDURE

The device was positioned and setup according to ANSI C63.19-2011. Figure 6 shows the T-Coil Signal measurement flowchart:

Figure 6: T-Coil measurement flowchart

8. AUDIO SIGNALS

During tests signal was fed to the EUT via communication Test set. Proper gain setting was used in software to ensure correct signal level fed to communication test set speech input.

The following audio signals were pre-defined by DASY5 and used for calibration and measurements:

48k voice 1kHz 1 s (duration 1 s): The signal is voice like and has been further processed from the below signal to have a narrow bandwidth mainly within the 1 kHz third-octave band and an even shorter duration of 1 second for faster measurement. This signal passes through a large variety of codecs and permits a direct amplitude and signal quality measurement without considerable bandwidth compensation.

Peak to RMS ratio: 15.7 dB

The spectrum is shown in a practical measurement in figure 7.

Figure 7: 1 KHz Voice signal spectrum

48k voice 300-3000 2 s (duration 2 seconds): The signals voice-like and has been processed to have duration of 2 seconds for fast measurement. At the same time, it has a flat spectrum across all third-octave band filters between 300 Hz to 3 kHz and is vanishing at the beginning and end in order to permit longer measurement sequences without transients. It has bandwidth sufficient for frequency response measurements. The spectrum is similar to the measurement in Figure. 8 but considerably flatter. The measurement window length of this signal must be set to a multiple of 2 seconds in order to integrate over the full voice sample.

Peak to RMS ratio: 21.6 dB

Figure 8: Broadband signal spectrum

9. T-COIL MEASUREMENT POINTS AND REFERENCE PLANE

Figure 9: Axis and planes for WD audio frequency magnetic field measurements

Figure. 9 illustrates the three standard probe orientations. Position 1 is the axial orientation of the probe coil; orientation 2 and orientation 3 are radial orientations. The space between the measurement positions is not fixed. It is recommended that a scan of the WD be done for each probe coil orientation and that the maximum level recorded be used as the reading for that orientation of the probe coil.

- 1) The reference plane is the planar area that contains the highest point in the area of the phone that normally rests against the user's ear. It is parallel to the centerline of the receiver area of the phone and is defined by the points of the receiver-end of the WD handset, which, in normal handset use, rest against the ear.
- 2) The measurement plane is parallel to, and 10 mm in front of, the reference plane.
- 3) The reference axis is normal to the reference plane and passes through the center of the receiver speaker section (or the center of the hole array); or may be centered on a secondary inductive source. The actual location of the measurement point shall be noted in the test report as the measurement reference point.

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

18 of 49

4) The measurement points may be located where the axial and radial field intensity measurements are optimum with regard to the requirements. However, the measurement points should be near

the acoustic output of the WD and shall be located in the same half of the phone as the WD receiver. In a WD handset with a centered receiver and a circularly symmetrical magnetic field, the measurement axis and the reference axis would coincide.

- 5) The relative spacing of each measurement orientation is not fixed. The axial and two radial orientations should be chosen to select the optimal position.
- 6) The measurement point for the axial position is located 10 mm from the reference plane on the measurement axis. The actual location of the measurement point shall be noted in test reports and designated as the measurement reference point.

10. SIGNAL VERIFICATION

An Input Level is measured to verify that it is within \pm 0.2 dB from the Reference Input Level in section 6.3.2.1 of ANSI C63.19-2011.

Figure 10: Signal Verification Setup

In Figure 10 setup, "Audio Out" of the AMMI is connected to the "Coil In" of the AMMI.

Decoder: When an acoustic signal is provided to the phone of the device under test it travels through the device audio path. At the CMU this digital signal is Decoder and an analog voltage is generated at the CMU output. This voltage is measured and related to the dBm0 level according to the voltage generated and the dBm0 level.

When the CMU Decoder CAL is selected the CMU generated a voltage equivalent to the full-scale value (3.14 dBm0). The measured RMS voltage was $0.747 \text{ V} = 20 \text{ x} \log (0.747) = -2.53 \text{ dBV}$

Section 7.4.2.1 of ANSI C63.19-2011 specifies the reference input level to be - 16 dBm0 for GSM and UMTS (WCDMA), and - 18 dBm0 for CDMA. Each CMU has a slightly different "0 dBm0 Input Reference" value that must be measured. When the CMU box is replaced or externally re-calibrated, an internal calibration procedure must be completed in each transmission mode.

To get the reference level of the CMU200, establish a call to a WD. If call is established, select Network Bistream Decoder Cal, and a signal of 3.14 dBm0 will appear at the OUT. Read the RMS voltage which is - 2.53 dBV (0.747 V).

The desired level is calculated, e.g. -16 dBm0 for GSM signal. The level of the signal in this coder shall therefore appear -19.14 dB lower than the previous, in our system it would be - 2.53 - 19.14 = - 21.67 dBV.

The Target Level for "Audio Out" of the AMMI is shown in Table 4. This target level takes into account the difference between AMMI's and CMU's reference levels.

Z = Y - (3.14 - X)

Where;

Z: signal required into CMU(dBV)

Y: desired dBm0 level(- 16 dBm0 for GSM HAC T-coil testing)

X: measured actual level in the DecoderCal.(dBV)

Y = -16 dBm0, X = 0.747 V = -2.53 dBV

Therefore, Z = -16 - (3.14 + 2.53) = -21.67 dBV

The CMU's 0 dBm0 Input reference Value is - 3.14 - 2.53 = - 5.67 dBV

Table 5: Measured Input Level

Modulation	Reference Input Level Form ANSI C63.19 (dBm0)	CMU's 0 dBm0 Input Reference Value(dB)	Target Level For "Audio Out" of AMMI (dBm0)	
GSM	- 16	- 5.67	- 21.67	

The signal level for "Audio Out" of the AMMI is measured. Signal Verification has been conducted on the same days as DUT measurements. If it is not within \pm 0.2 dB, the gain settings in the DASY template are adjusted. The obtained results are displayed In Table 5.

Table 6: Measured Input Level

Modulation	Measured date	Signal	Measured Level for "Audio Out" of AMMI (dBm0)	Target Level For "Audio Out" of AMMI (dBm0)
GG) f	Jun. 27, 2013	Narrowband	- 21.65	2. 55
GSM		Broadband	- 21.69	- 21.67

HCT

Report No.: HCTA1307FT02 FCC ID: V65C6522 Date of Issue: Aug. 22, 2013

11. TEST SNR RESULTS

The DASY5 measurement system specified in section 3 was utilized within the intended operations as set by

the SPEAG[™] setup. The test Arch provided by SPEAG is used to position the DUT. This phone has one

configuration for the ear use - folder open. This configuration is tested at the high, middle and low frequency

channel of each applicable frequency band. All tests are done via conducted setup with CMU200. The

volume on the phone is adjusted to maximum. Backlight was off during testing, and HAC compliance will be

explained in the manual. The tests are performed using normal operation mode.

The distance is established by positioning the device beneath the test arch phantom so that it is touching the

frame. The location and thickness of the arch, and the location/orientation of the coil within the probe

housing, are precisely known values in the DASY software. The height of the measurement plane is further

fine-tuned by performing a Surface Detection job at the beginning of each test. The end result is that the

probe sensor is very precisely located 10 mm above the device reference plane.

T-coil SNR measurements are shown in Table 6. The sequence of the T-coil SNR measurement is listed in

steps below.

a) Geometry & signal check.

b) Background noise measurement. The background noise is measured at the center of the listening

area.

c) Coarse resolution axial scans (narrow band signal, 1 second measurement times, 50 x 50 mm grid

with 5.55 mm spacing). Only ABM1 is measured in order to find the location of the T- coil source.

d) Fine resolution axial, radial-transverse, & radial-longitudinal scans, positioned appropriately based

on optimal ABM1 of coarse resolution axial scan (narrowband signal, 1 second measurement times,

variable grid size with 2 mm spacing). Both ABM1 and ABM2 are measured in order to find the

location of the SNR point.

TEL: +82 31 645 6300

e) ABM1 & ABM2 point measurements in axial, radial-transverse, & radial-longitudinal coil orientations,

positioned appropriately based on optimal signal quality of fine resolution scans (narrowband signal,

2 seconds measurement times). SNR is calculated for each coil orientation.

f) Frequency Response point measurement in axial coil orientation, positioned appropriately based on

optimal signal quality of fine resolution axial scan (broadband signal, 12 seconds measurement

time).

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811

FAX: +82 31 645 6401

act co kr

22 of 49

The ABM1, SNR and T-coil Rating results are shown in Table 6. Also shown are the measured conducted output power, location of the measured point, noise and ABM2. The delta between Ambient Noise measurement and ABM2 measurement should be greater than 10 dB. However, in cases where ABM2 is very low, it is suitable for the delta to be less than 10 dB. For the three probe positions, contour plots are given in Appendix D. For the three probe positions, noise spectrum plots for the highest ambient with an Aweight filter applied.

T-coil SNR Limits					
ABM 1	Greater or equal to - 18 dB A/m				
CNID	Т3	Greater than 20 dB			
SNR	Т4	Greater than 30 dB			

Table 7: T-coil SNR Limits

12.MEASUREMENT UNCERTAINTY OF AUDIO BAND MAGNETIC MEASUREMENTS

	Uncertainty	Prob.		С	С	Std. Unc.	Std. Unc.
Error Description	value [%]	Dist.	Div.	ABM1	ABM2	ABM1 [%]	ABM2 [%]
PROBE SENSITIVITY							
Reference level	3.0	N	1.0	1	1	3.0	3.0
AMCC geometry	0.4	R	1.7	1	1	0.2	0.2
AMCC current	0.6	R	1.7	1	1	0.4	0.4
Probe positioning during calibration	0.1	R	1.7	1	1	0.1	0.1
Noise contribution	0.7	R	1.7	0.0143	1	0.0	0.4
Frequency slope	5.9	R	1.7	0.1	1.0	0.3	3.5
PROBE SYSTEM		\vdash	\vdash	<u> </u>	<u> </u>		
Repeatability / Drift	1.0	R	1.7	1	1	0.6	0.6
Linearity / Dynamic range	0.6		1.7	1	_	0.4	
Acoustic noise		R	1.7	0.1	1	0.1	0.6
Probe angle	2.3		1.7	1	1	1.4	1.4
Spectral processing	0.9	R	1.7	1	1	0.5	0.5
Integration time		N	1.0	1	5	0.6	
Field disturbation		R	1.7	1	1	0.1	
TEST SIGNAL		\vdash	\vdash				
Reference signal spectral response	0.6	R	1.7	0	1	0.0	0.4
POSITIONING		\vdash	┢				
Probe positioning	1.9	R	1.7	1	1	1.1	1.1
Phantom thickness	0.9	R	1.7	1	1	0.5	0.5
DUT positioning	1.9	R	1.7	1	1	1.1	1.1
EXTERNAL CONTRIBUTIONS		\vdash	\vdash				
RF interference	0.0	R	1.7	1	1	0.0	0.0
Test signal variation		R	1.7	1	1	1.2	1.2
COMBINED UNCERTAINTY		\vdash	\vdash				
Combined Std. uncertainty (ABM field)						4.1	6.1
Expanded Std. uncertainty [%]						8.1	12.3

Table 7: Measurement uncertainty of audio band magnetic measurements

Notes for table

- 1. N: Nomal
- 2. R: Rectangular

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

24 of 49

13. T-COIL MEASUREMENT RESULTS

13.1 Field Strength and Signal Quality

13.1.1 Field Strength and Signal Quality (GSM 850)

Mode	Measurement Position	Channel	Probe Position	Measured Point Location (x mm/ y mm)	ABM2 (dB A/m)	ABM1 (dB A/m)	SNR (dB)	T-Rating
	GSM	120	Axial (Z)	(- 12.5, 16.7)	- 46.10	- 10.42	35.69	T4
		128	Radial (Y)	(-8.3, 4.2)	- 35.56	- 7.95	27.62	Т3
GSM		190	Axial (Z)	(- 12.5, 16.7)	- 45.39	- 10.38	35.01	T4
850			Radial (Y)	(-8.3, 4.2)	- 35.49	- 7.94	27.55	Т3
		251	Axial (Z)	(- 12.5, 16.7)	- 46.21	- 10.47	35.74	T4
		251	Radial (Y)	(- 8.3, 4.2)	- 35.15	- 7.96	27.20	Т3

13.1.2 Field Strength and Signal Quality (GSM 1900)

Mode	Measurement Position	Channel	Probe Position	Measured Point Location (x mm/ y mm)	ABM2 (dB A/m)	ABM1 (dB A/m)	SNR (dB)	T-Rating
	GSM Acoustic	512	Axial (Z)	(- 12.5, 16.7)	- 46.65	- 10.43	36.23	T4
		512	Radial (Y)	(- 12.5, 0)	- 41.60	- 12.08	29.52	Т3
GSM		661	Axial (Z)	(- 12.5, 16.7)	- 44.97	- 10.39	34.59	T4
1900			Radial (Y)	(- 12.5, 0)	- 41.31	- 12.22	29.09	Т3
		810	Axial (Z)	(- 12.5, 16.7)	- 46.59	- 10.43	36.17	T4
			Radial (Y)	(- 12.5, 0)	- 41.35	- 12.08	29.27	Т3

Note:

- 1) Volume is set to maximum and LCD backlight is off during T-coil measurement.
- 2) Minimum Limit: ABM1 ≥-18 dB A/m.
- 3) SNR = ABM1/ABM2.

HCT CO., LTD.

13.1.3 Field Strength and Signal Quality (WCDMA 850)

Mode	Measurement Position	Channel	Probe Position	Measured Point Location (x mm/ y mm)	ABM2 (dB A/m)	ABM1 (dB A/m)	SNR (dB)	T-Rating
	WCDMA 850 Acoustic	4132	Axial (Z)	(- 8.3, 12.5)	- 46.69	- 0.96	45.72	T4
		4132	Radial (Y)	(-4.2, 4.2)	- 48.03	- 5.87	42.16	T4
WCDMA		4183	Axial (Z)	(- 8.3, 12.5)	- 46.98	- 1.13	45.85	T4
850			Radial (Y)	(- 12.5, 4.2)	- 53.70	- 12.11	41.59	T4
		4233	Axial (Z)	(- 8.3, 12.5)	- 46.46	- 1.16	45.29	T4
			Radial (Y)	(- 12.5, 4.2)	- 53.84	- 12.11	41.73	T4

13.1.4 Field Strength and Signal Quality (WCDMA1700)

Mode	Measurement Position	Channel	Probe Position	Measured Point Location (x mm/ y mm)	ABM2 (dB A/m)	ABM1 (dB A/m)	SNR (dB)	T-Rating
	WCDMA 1700 Acoustic	1312	Axial (Z)	(-8.3, 12.5)	- 47.37	- 0.86	46.50	T4
			Radial (Y)	(-4.2, 4.2)	- 51.11	- 5.95	45.16	T4
WCDMA		1412	Axial (Z)	(- 8.3, 12.5)	- 47.00	- 0.86	46.14	T4
1700			Radial (Y)	(-4.2, 4.2)	- 49.98	- 5.95	44.03	T4
			Axial (Z)	(- 12.5, 12.5)	- 53.66	- 7.43	46.23	T4
		1512	Radial (Y)	(- 4.2, 4.2)	- 49.55	- 5.99	43.56	T4

Note:

- 1) Volume is set to maximum and LCD backlight is off during T-coil measurement.
- 2) Minimum Limit: ABM1 ≥-18 dB A/m.
- 3) SNR = ABM1/ABM2.

26 of 49

13.1.5 Field Strength and Signal Quality (WCDMA1900)

Mode	Measurement Position	Channel	Probe Position	Measured Point Location (x mm/ y mm)	ABM2 (dB A/m)	ABM1 (dB A/m)	SNR (dB)	T-Rating
	WCDMA 1900 Acoustic	0262	Axial (Z)	(- 8.3, 12.5)	- 46.01	- 1.14	44.88	T4
		9262	Radial (Y)	(- 12.5, 4.2)	- 54.24	- 12.12	42.13	T4
WCDMA		9400	Axial (Z)	(- 8.3, 12.5)	- 46.74	- 1.24	45.50	T4
1900			Radial (Y)	(- 12.5, 4.2)	- 54.20	- 12.08	42.12	T4
		9583	Axial (Z)	(- 8.3, 12.5)	- 45.89	- 1.39	44.51	T4
			Radial (Y)	(- 12.5, 4.2)	- 53.75	- 12.21	41.54	T4

Note:

- 1) Volume is set to maximum and LCD backlight is off during T-coil measurement.
- 2) Minimum Limit: ABM1 ≥-18 dB A/m.
- 3) SNR = ABM1/ABM2.

13.2 Frequency Response

Graph 1: GSM 850 (CH 128) Frequency Response

Graph 2: GSM 850(CH 190) Frequency Response

HCT CO., LTD.

Graph 3: GSM 850 (CH 251) Frequency Response

Graph 4: GSM 1900(CH 512) Frequency Response

HCT CO., LTD.

Graph 5: GSM 1900 (CH 661) Frequency Response

Graph 6: GSM 1900 (CH 810) Frequency Response

HCT CO., LTD.

Graph 7: WCDMA 850 (CH 4132) Frequency Response

Graph 8: WCDMA 850(CH 4183) Frequency Response

HCT CO., LTD.

Graph 9: WCDMA 850 (CH 4233) Frequency Response

Graph 10: WCDMA 1700 (CH 1312) Frequency Response

Graph 11: WCDMA 1700 (CH 1412) Frequency Response

Graph 12: WCDMA 1700 (CH 1512) Frequency Response

HCT CO., LTD.

Graph 13: WCDMA 1900 (CH 9262) Frequency Response

Graph 14: WCDMA 1900 (CH 9400) Frequency Response

Graph 15: WCDMA 1900 (CH 9583) Frequency Response

13.3 T-Rating Results

For each probe position and frequency band, the T-rating is determined from lower of T-coil SNR and T-coil Environment.

13.3.1 T-Rating Results (GSM 850)

Frequency Band (MHz)	Measurement Position	Channel	Probe Position	ABM1	Frequency Response	T-coil SNR Rating	T-rating
		120	Axial (Z)	pass	pass	T4	T4
		128	Radial (Y)	pass	-	Т3	Т3
GGM 050		190	Axial (Z)	pass	pass	T4	T4
GSM 850	GSM 850 Acoustic		Radial (Y)	pass	-	Т3	Т3
		251	Axial (Z)	pass	pass	T4	T4
		251	Radial (Y)	pass	-	Т3	Т3

This GSM850 rating is the lowest category across channels and probe positions and measurement positions.

13.3.2 T-Rating Results (GSM 1900)

Frequency Band (MHz)	Measurement Position	Channel	Probe Position	ABM1	Frequency Response	T-coil SNR Rating	T-rating	
		512	Axial (Z)	pass	pass	T4	T4	
			Radial (Y)	pass	-	Т3	Т3	
GGM 1000		Acoustic 661	Axial (Z)	pass	pass	T4	T4	
GSM 1900	Acoustic		Radial (Y)	pass	-	Т3	Т3	
			Axial (Z)	pass	pass	T4	T4	
				810	Radial (Y)	pass	-	Т3

This GSM 1900 rating is the lowest category across channels and probe positions and measurement positions.

GSM 1900 T-rating	Т3

13.3.3 T-Rating Results (WCDMA 850)

Frequency Band (MHz)	Measurement Position	Channel	Probe Position	ABM1	Frequency Response	T-coil SNR Rating	T-rating
		Axial (Z)	pass	pass	T4	T4	
		4132	Radial (Y)	pass	-	T4	T4
W.GD. 1 1 0 2 0		4183	Axial (Z)	pass	pass	T4	T4
WCDMA 850	WCDMA 850 Acoustic		Radial (Y)	pass	-	T4	T4
			Axial (Z)	pass	pass	T4	T4
			4233	Radial (Y)	pass	-	T4

This WCDMA 850 rating is the lowest category across channels and probe positions and measurement positions.

WCDMA 850 T-rating	T4
--------------------	-----------

HCT CO., LTD.

13.3.4 T-Rating Results (WCDMA 1700)

Frequency Band (MHz)	Measurement Position	Channel	Probe Position	ABM1	Frequency Response	T-coil SNR Rating	T-rating
		1312	Axial (Z)	pass	pass	T4	T4
			Radial (Y)	pass	-	T4	T4
WCDMA		1412	Axial (Z)	pass	pass	T4	T4
Acoustic 1700	Acoustic		Radial (Y)	pass	-	T4	T4
	1512	Axial (Z)	pass	pass	T4	T4	
		Radial (Y)	pass	-	T4	T4	

This WCDMA 1700 rating is the lowest category across channels and probe positions and measurement positions.

WCDMA 1700 T-rating T4

13.3.5 T-Rating Results (WCDMA 1900)

Frequency Band (MHz)	Measurement Position	Channel	Probe Position	ABM1	Frequency Response	T-coil SNR Rating	T-rating
		9262	Axial (Z)	pass	pass	T4	T4
			Radial (Y)	pass	-	T4	T4
WCDMA		Acoustic 9400	Axial (Z)	pass	pass	T4	T4
1900	Acoustic		Radial (Y)	pass	-	T4	T4
		Axial (Z)	pass	pass	T4	T4	
	9583	Radial (Y)	pass	-	T4	T4	

This WCDMA 1900 rating is the lowest category across channels and probe positions and measurement positions.

WCDMA 1900 T-rating T4

Report No.: FCC ID: V65C6522 Aug. 22, 2013 HCTA1307FT02 Date of Issue:

Appendix A

Ambient Noise Plots

Ambient Noise Spectrum Plot Axial (Z)

Ambient Noise Spectrum Plot Radial (X)

Ambient Noise Spectrum Plot Radial (Y)

Report No.: HCTA1307FT02 FCC ID: V65C6522 Aug. 22, 2013 Date of Issue:

Appendix B

Audio Magnetic Probe Certificate

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Client

HCT (Dymstec)

Certificate of test and configuration

Item	AM1DV2 Audio Magnetic 1D Field Probe	
Type No	SP AM1 001 AF	
Series No	1013	
Manufacturer / Origin	Schmid & Partner Engineering AG, Zürich, Switzerland	

Description of the item

The Audio Magnetic Field Probe is a fully shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The pickup coil is compliant with the dimensional requirements of [1]. The probe includes a symmetric 40dB low noise amplifier for the signal available at the shielded 3 pin connector at the side. Power is supplied via the same connector (phantom power supply) and monitored via the LED near the connector. The 7 pin connector at the end of the probe does not carry any signals, but determines the angle of the sensor when mounted on the DAE. The probe supports mechanical detection of the surface. The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components when rotating the probe by 120° around its axis. It is aligned with the perpendicular component of the field, if the probe axis is tilted 35.3° above the measurement plane, using the

connector rotation and Sensor angle stated below.

The probe is fully RF shielded when operated with the matching signal cable (shielded) and allows measurement of audio magnetic fields in the close vicinity of RF emitting wireless devices according to [1] without additional shielding.

Handling of the item

The probe is manufactured from stainless steel. In order to maintain the performance and calibration of the probe, it must not be opened. The probe is designed for operation in air and shall not be exposed to humidity or liquids. For proper operation of the surface detection and emergency stop functions in the DASY system, the probe must be operated with the special probe cup provided (larger diameter). Verify that the probe can slide in the probe cup rubber smoothly.

Functional test, configuration data and sensitivity

The probe configuration data were evaluated after a functional test including noise level and RF immunity. Connector rotation, sensor angle and sensitivity are specific for this probe.

DASY configuration data for the probe

Configuration item	Condition	Configuration Data	Dimension
Overall length	mounted on DAE in DASY system	296	mm
Tip diameter	at the cylindrical part	6	mm
Sensor offset	center of sensor, from tip	3	mm
Connector rotation	Evaluated in homogeneous 1 kHz	286.8	
Sensor angle	magnetic field generated with AMCC Helmholtz Calibration Coil	3.43	James et al.
Sensitivity	at 1 kHz	0.0657	V / (A/m)

Standards

[1] ANSI-C63.19-2007

Test date

13.3.2008 MM

Issue date

14.3.2008

Signature

Doc No 884 - SP AM1 001 AF - 1013 - 080313 - G

Page

1 (1)

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401

HCT CO., LTD.

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zunch, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Certificate of conformity

Item	Audio Magnetic 1D Field Probe AM1DV2
Type No	SP AM1 001 A
Series No	1001 ff.
Manufacturer / Origin	Schmid & Partner Engineering AG Zurich, Switzerland

Description of the item

The Audio Magnetic Field Probe AM1DV2 is a fully RF shielded magnetic field probe for the frequency range from 100 Hz to 20 kHz. The signal from the pickup coil is amplified in a symmetric 40dB low noise amplifier and fed to a 3 pin connector at the side. Power is supplied via the same and monitored via the LED near the connector. The single sensor in the probe is arranged in a tilt angle allowing measurement of 3 orthogonal field components by rotating the probe around its axis.

Handling of the item

The probe is manufactured and designed for operation in air and shall not be exposed to humidity or liquids. In order to keep the performance and alignment, the probe must not be disassembled. The full performance can only be achieved using the SPEAG provided accessories and following the corresponding manual.

Tests

Test	Requirement	Details	Units tested
Sensor angle	Probe configuration data for alignment with field	see corresponding probe certificate	all
Dimensions according to corresponding probe certificate		verified at delivery / light beam alignment prior to measurement usage	all / in setup by user
Frequency response	within +/- 0.5 dB of ideal differentiator from 100 Hz to 10 kHz	Coil current of AMCC measured with R&S UPL, probe including amplifier and AMMI ADC input	First article
Dynamic range	max. + 21 dB A/m @ 1 kHz Noise level typ70 dB A/m @ 1 kHz ABM2 typ60 dB A/m	with AMMI	Samples / all
Linearity	within < 0.1 dB from 5 dB below limitation to 16 dB above noise level	tested betwen +15 dB A/m @ 1 kHz, to -70 dB A/m @ 10 kHz	Samples
Sensitivity	typ24 dBV / A/m @ 1 kHz at probe output	verified at delivery / calibrated in setup prior to measurement usage	all / in setup by user
RF shielding	immunity to AM modulated RF signal	1 kHz 80 % AM	all

Standards

[1] ANSI PC63.19-2006 Draft 3.12

Conformity

Based on the tests above, we certify that this item is in compliance with the requirements of [1].

Date

22.5.2006

Stamp / Signature

Schmidt Poers Engineering AG Zaugtemstrykse 63, 8004 furjeb - Azerland Phops 481 J. 2005 P.S. 451 F245 9779

info@speag.com, http://www.speag.com

Doc No 880 - SP AM1 001 A - A

Page

1 (1)

46 of 49

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

Appendix C

AMCC Certificate (Helmholz Coil)

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43. B004 Zunch, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Certificate of conformity

Item	Audio Magnetic Calibration Coil AMCC	
Type No	SD HAC P02 A	
Series No	1001 ff.	
Manufacturer / Origin	Schmid & Partner Engineering AG Zurich, Switzerland	

Description of the item

The Audio Magnetic Calibration coil (AMCC) is a Helmholtz Coil designed according to standard [1], section D.9 for calibration of the AM1D probe. Two horizontal coils are positioned above a non-metallic base plate and generate a homogeneous magnetic field in the z direction (normal to it).

Configuration

The AMCC consists of two parallel coils of 20 turns with radius 143 mm connected in parallel in a distance of 143 mm. With this design, a current of 10 mA produces a field of 1 A/m.

The DC input resistance at the input BNC socket is adjusted by a series resistor to a DC resistance of approximately 50 Ohm. The voltage required to produce a field of 1 A/m is consequently approx. 500 mV.

To current through the coil is monitored via a shunt resistor of 10 Ohm +/- 1%. The voltage is available on a BNO socket with 100 mV corresponding to 1 A/m.

Handling of the item

The coil shall be positioned in a non-metallic environment to avoid distortion of the magnetic field.

Tests

Test	Requirement	Details	Units tested
Number of turns	N = 20 per coil	Resistance measurment	all
Orientation of coils	parallel coils with same direction of windings	Magnetic field variation in the AMCC axis	all
Coil radius	r = 143 mm	mechanical dimension	First article
Coil distance	d = 143 mm distance between coil centers	mechanical dimension	First article
Input resistance	51.7 +/- 2 Ohm	DC resistance at BNC input connector	all
Shunt resistance	R = 10.0 Ohm +/- 1 %	DC resistance at BNO output connector	all
Shunt sensitivity	Hc = 1 A/m per 100 mV according to formula Hc = (U / R) * N / r / (1.25^1.5)	Field measurement compared with Narda ELT400 + BN2300/90.10	First article

Standards

[1] ANSI PC63.19-2006 Draft 3.12

Conformity

Based on the tests above, we certify that this item is in compliance with the requirements of [1].

Date 22.5.2006

Stamp / Signature

Schmidt Filling Engineering AG Zeochinsthauf 43, 9004 Zuich Adestend Phora +411 Zeo-William 211 45 9779 Info Espeeg.com, http://www.speeg.com

Doc No 880 - SD HAC P02 A - A

Page

1 (1)

48 of 49

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

Appendix D: HAC T-Coil Contour Plots

(See attachment)

Appendix E: HAC T-Coil Setup Photos

(See attachment)

HCT CO., LTD.

74, Seoicheon-ro 578 beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Korea 467-811 TEL: +82 31 645 6300 FAX: +82 31 645 6401 www.hct.co.kr

Appendix E

HAC T-Coil Test Setup Photos

HAC T-Coil Test Setup

HAC T-Coil Test Setup

Appendix D

Contour Plots

GSM 850 128CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, GSM 850 (0); Frequency: 824.2 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -10.42 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 35.69 dB

ABM1 comp = -10.42 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -46.10 dBA/m

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -7.95 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 27.62 dB

ABM1 comp = -7.95 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -35.56 dBA/m

Location: -8.3, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.70 dB

BWC Factor = 10.79 dB

Location: -12.3, 16.2, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

GSM 850 190CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, GSM 850 (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -10.38 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 35.01 dB

ABM1 comp = -10.38 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

 $ABM2 = -45.39 \, dBA/m$

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -7.94 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 27.55 dB

ABM1 comp = -7.94 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -35.49 dBA/m

Location: -8.3, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.61 dB

BWC Factor = 10.79 dB

Location: -12.1, 16.3, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

GSM 850 251CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, GSM 850 (0); Frequency: 848.8 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -10.47 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 35.74 dB

ABM1 comp = -10.47 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -46.21 dBA/m

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -7.96 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 27.20 dB

ABM1 comp = -7.96 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -35.15 dBA/m

Location: -8.3, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.80 dB

BWC Factor = 10.79 dB

Location: -12.3, 16.1, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

GSM 1900 512CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, GSM 1900 (0); Frequency: 1850.2 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -10.43 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 36.23 dB

ABM1 comp = -10.43 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -46.65 dBA/m

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -12.08 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 0, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 29.52 dB

ABM1 comp = -12.08 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 0, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -41.60 dBA/m

Location: -12.5, 0, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.70 dB

BWC Factor = 10.79 dB

Location: -12.3, 16.3, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

GSM 1900 661CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, GSM 1900 (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -10.39 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 34.59 dB

ABM1 comp = -10.39 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -44.97 dBA/m

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -12.22 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 0, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 29.09 dB

ABM1 comp = -12.22 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 0, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -41.31 dBA/m

Location: -12.5, 0, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.22 dB

BWC Factor = 10.79 dB

Location: -12.3, 16.6, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

GSM 1900 810CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, GSM 1900 (0); Frequency: 1909.8 MHz; Duty Cycle: 1:8.30042

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -10.43 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 36.17 dB

ABM1 comp = -10.43 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -46.59 dBA/m

Location: -12.5, 16.7, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -12.08 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 0, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 29.27 dB

ABM1 comp = -12.08 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 0, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -41.35 dBA/m

Location: -12.5, 0, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.47 dB

BWC Factor = 10.79 dB

Location: -12.3, 16.3, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

WCDMA 850 4132CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, WCDMA850 (0); Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -0.96 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 45.72 dB

ABM1 comp = -0.96 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

 $ABM2 = -46.69 \, dBA/m$

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -5.87 dBA/m

BWC Factor = 0.15 dB

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 42.16 dB

ABM1 comp = -5.87 dBA/m

BWC Factor = 0.15 dB

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -48.03 dBA/m

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.59 dB

BWC Factor = 10.80 dB

Location: -8.1, 13.1, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

WCDMA 850 4183CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, WCDMA850 (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -1.13 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 45.85 dB

ABM1 comp = -1.13 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -46.98 dBA/m

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -12.11 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 41.59 dB

ABM1 comp = -12.11 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -53.70 dBA/m

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.65 dB

BWC Factor = 10.79 dB

Location: -8.1, 13, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

WCDMA 850 4233CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, WCDMA850 (0); Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -1.16 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 45.29 dB

ABM1 comp = -1.16 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -46.46 dBA/m

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -12.11 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 41.73 dB

ABM1 comp = -12.11 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -53.84 dBA/m

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.79 dB

BWC Factor = 10.79 dB

Location: -7.9, 12.4, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

WCDMA 1700 1312CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, WCDMA IV (0); Frequency: 1712.4 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -0.86 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 46.50 dB

ABM1 comp = -0.86 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -47.37 dBA/m

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -5.95 dBA/m

BWC Factor = 0.15 dB

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 45.16 dB

ABM1 comp = -5.95 dBA/m

BWC Factor = 0.15 dB

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -51.11 dBA/m

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.78 dB

BWC Factor = 10.79 dB

Location: -9.6, 13.7, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

WCDMA 1700 1412CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, WCDMA IV (0); Frequency: 1732.4 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -0.86 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 46.14 dB

ABM1 comp = -0.86 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -47.00 dBA/m

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -5.95 dBA/m

BWC Factor = 0.15 dB

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 44.03 dB

ABM1 comp = -5.95 dBA/m

BWC Factor = 0.15 dB

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

 $ABM2 = -49.98 \, dBA/m$

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.71 dB

BWC Factor = 10.80 dB

Location: -9.7, 13.8, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

WCDMA 1700 1512CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, WCDMA IV (0); Frequency: 1752.6 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -7.43 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 46.23 dB

ABM1 comp = -7.43 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -53.66 dBA/m

Location: -12.5, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -5.99 dBA/m

BWC Factor = 0.15 dB

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 43.56 dB

ABM1 comp = -5.99 dBA/m

BWC Factor = 0.15 dB

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -49.55 dBA/m

Location: -4.2, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.77 dB

BWC Factor = 10.80 dB

Location: -11.9, 12.8, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

WCDMA 1900 9262CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, WCDMA1900 (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

• Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -1.14 dBA/m

BWC Factor = 0.16 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 44.88 dB

ABM1 comp = -1.14 dBA/m

BWC Factor = 0.16 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -46.01 dBA/m

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -12.12 dBA/m

BWC Factor = 0.16 dB

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 42.13 dB

ABM1 comp = -12.12 dBA/m

BWC Factor = 0.16 dB

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -54.24 dBA/m

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.84 dB

BWC Factor = 10.80 dB

Location: -8.2, 13.3, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

WCDMA 1900 9400CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, WCDMA1900 (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -1.24 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 45.50 dB

ABM1 comp = -1.24 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -46.74 dBA/m

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -12.08 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 42.12 dB

ABM1 comp = -12.08 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -54.20 dBA/m

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.79 dB

BWC Factor = 10.80 dB

Location: -7.9, 12.2, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m

WCDMA 1900 9538CH

DUT: C6522N; Type: Bar; Serial: #1
Procedure Name: General Scans

Communication System: UID 0, WCDMA1900 (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ S/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

Probe: AM1DV2 - 1013; ; Calibrated: 18/04/2006

Sensor-Surface: 0mm (Fix Surface)

• Electronics: DAE4 Sn869; Calibrated: 18/09/2012

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA

Measurement SW: DASY52, Version 52.8 (7); SEMCAD X Version 14.6.10 (7164)

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -1.39 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 44.51 dB

ABM1 comp = -1.39 dBA/m

BWC Factor = 0.15 dB

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

 $ABM2 = -45.89 \, dBA/m$

Location: -8.3, 12.5, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Signal(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1 comp = -12.21 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM SNR(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM1/ABM2 = 41.54 dB

ABM1 comp = -12.21 dBA/m

BWC Factor = 0.15 dB

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/y (transversal) 4.2mm 50 x 50/ABM Noise(x,y,z) (13x13x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

ABM2 = -53.75 dBA/m

Location: -12.5, 4.2, 3.7 mm

T-Coil scan (scan for ANSI C63.19-2007 & 2011 compliance)/General Scans/z (axial) wideband at best S/N/ABM Freq Resp(x,y,z,f) (1x1x1): Measurement grid: dx=10mm, dy=10mm

Cursor:

Diff = 1.91 dB

BWC Factor = 10.79 dB

Location: -7.7, 12.1, 3.7 mm

0 dB = 1.000 A/m = 0.00 dBA/m