Devoir surveillé n°4

Durée: 3 heures, calculatrices et documents interdits

I. Une application de $\mathcal{M}_2(\mathbb{R})$.

On définit l'application:

$$f: \left\{ \begin{array}{c} \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R}) \\ M \mapsto M^2 \end{array} \right.$$

1) Étude de l'injectivité de f

a) On pose
$$R = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$
 et $S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, calculer $f(R)$ et $f(S)$.

- **b)** L'application f est-elle injective? Justifier.
- 2) Étude de la surjectivité de f

Soit
$$M \in \mathcal{M}_2(\mathbb{R})$$
 une solution de l'équation $M^2 = D$ où $D = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$.

- a) Prouver que M et D commutent.
- **b)** En déduire M est une matrice diagonale.
- c) Conclure concernant les solutions de l'équation $M^2 = D$.
- d) L'application f est-elle surjective? Justifier.
- 3) Étude de $f^{\leftarrow}(\mathcal{S}_2(\mathbb{R}))$
 - a) Rappeler la définition d'une matrice symétrique et antisymétrique. On note $\mathcal{S}_2(\mathbb{R})$ l'ensemble des matrices symétriques et $\mathcal{A}_2(\mathbb{R})$ celui des matrices antisymétriques.
 - b) Prouver que si une matrice S de $\mathcal{M}_2(\mathbb{R})$ est symétrique alors f(S) est aussi symétrique.
 - c) Prouver que $f(\mathcal{A}_2(\mathbb{R})) \subset \mathcal{S}_2(\mathbb{R})$. A-t-on $f^{\leftarrow}(\mathcal{S}_2(\mathbb{R})) = \mathcal{A}_2(\mathbb{R})$?

II. Distance à un ensemble.

Dans ce problème, on travaille indifféremment avec la distance entre deux nombres réels (la valeur absolue) et la distance entre deux nombres complexes (le module). On considère donc que $E = \mathbb{R}$ ou $E = \mathbb{C}$.

Pour une partie A non vide de E et un élément x de E, on définit la distance de x à A comme

$$d(x, A) = \inf\{|x - a| ; a \in A\}.$$

L'objet de ce problème est d'étudier cette notion sur quelques exemples puis d'en dégager quelques propriétés.

1) Question de cours : Soit $B \subset \mathbb{R}$ et $y \in \mathbb{R}$. Rappeler une condition nécessaire et suffisante sous laquelle B admet une borne inférieure. Sous cette condition, montrer que $y = \inf(B)$ si et seulement si

$$\forall b \in B, \ y \leqslant b \ \text{ et } \ \forall \varepsilon > 0, \ \exists b \in B, \ b < y + \varepsilon.$$

- 2) Montrer que la borne inférieure apparaissant dans la définition de d(x, A) est bien définie.
- 3) Exemples réels. Dans cette partie, $E = \mathbb{R}$.
 - a) On prend $A = \{0\}$. Déterminer d(x, A) pour tout $x \in \mathbb{R}$.
 - **b)** On prend $A = \mathbb{Q}$. Déterminer d(x, A) pour tout $x \in \mathbb{R}$.
- 4) Exemples complexes: on pourra penser à faire des dessins (éventuellement au brouillon) et l' on choisira soigneusement la forme sous laquelle on exprime les nombres complexes manipulés. Dans cette partie, $E = \mathbb{C}$.
 - a) On prend $A=\{z\in\mathbb{C}\; ;\; \mathrm{Im}(z)>0\}$ (demi-plan de Poincaré). Déterminer d(x,A) pour tout $x\in\mathbb{C}$.
 - **b)** On prend $A = \{z \in \mathbb{C} : |z| \leq 1\}$ (disque unité). Déterminer d(x, A) pour tout $x \in \mathbb{C}$.
- 5) Soit $A \subset E$ non vide et $x \in E$. Quelle relation y a-t-il entre les propositions $(x \in A)$ et (d(x, A) = 0)?
- **6)** Soit $A \subset B \subset E$ non vides. Montrer que pour tout $x \in E$, $d(x, B) \leq d(x, A)$.
- 7) Soit $A \subset E$ non vide, soit $x, y \in E$. Montrer que $|d(x, A) d(y, A)| \leq |x y|$.
- 8) Dans le cas où $E = \mathbb{R}$ et pour $A \subset E$ non vide, en déduire que la fonction $x \mapsto d(x, A)$ est continue.

III. Une équation de Mordell.

On cherche déterminer l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ solutions de l'équation (de Mordell) suivante :

$$y^2 = x^3 + 16. \tag{M}$$

On désigne par *cube parfait* tout cube d'entier. Ainsi, un entier $a \in \mathbb{Z}$ est un cube parfait s'il existe $n \in \mathbb{Z}$ vérifiant $a = n^3$.

- 1) Résultats préliminaires. Ces deux questions sont indépendantes, et leurs résultats pourront être utilisées dans le reste du devoir.
 - a) Soit $a \in \mathbb{Z}$. Montrer que a est pair si et seulement si a^2 est pair et que a est pair si et seulement si a^3 est pair.
 - b) Soit $a, b \in \mathbb{Z}$ deux entiers premiers entre eux, tels que ab soit un cube parfait. Montrer que a et b sont des cubes parfaits.

Indication: On pourra partir de la décomposition en produit de facteurs premiers du nombre dont ab est le cube.

- 2) Soit $(x,y) \in \mathbb{Z}^2$ solution de (\mathcal{M}) tel que y soit impair.
 - a) Montrer que y^2 est impair et en déduire que x est impair.
 - b) Soit d un diviseur de y-4 et de y+4. Montrer que d est impair et que d divise 8.
 - c) En déduire que y-4 et y+4 sont premiers entre eux.
 - d) En déduire qu'il existe $a, b \in \mathbb{Z}$ tels que $y + 4 = a^3$ et $y 4 = b^3$.
 - e) Montrer que a b est pair et que $a^2 + ab + b^2$ est impair.
 - f) En factorisant $a^3 b^3$, montrer que a = b + 8 et $3b^2 + 24b + 64 = 1$.
 - g) Conclure en donnant l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ solution de (\mathcal{M}) tel que y soit impair
- 3) Soit $(x,y) \in \mathbb{Z}^2$ solution de (\mathcal{M}) tel que y soit pair.
 - a) Montrer que si $y \equiv 0[4]$ alors $y^2 \equiv 0[16]$, et si $y \equiv 2[4]$ alors $y^2 \equiv 4[16]$.
 - b) En démontrant des résultats analogues concernant x^3 , montrer que x et y sont divisibles par 4.
 - On note alors x = 4x' et y = 4y'.
 - c) Montrer que y' est impair.
 - On note alors y' = 2n + 1.
 - d) Montrer que n et n+1 sont premiers entre eux et sont des cubes parfaits.
 - On note alors $n = c^3$ et $n + 1 = d^3$.
 - e) Montrer que d = c + 1, et en déduire les valeurs de n, y', x', y et x.
- 4) Déterminer l'ensemble des couples $(x,y) \in \mathbb{Z}^2$ solutions de (\mathcal{M}) .

— FIN —