Reasoning under Uncertainty Part I

Artificial Intelligence, 2015 TIN172/DIT410

Prasanth Kolachina

based on slides by

Poole, Mackworth and slides from 2015

Chalmers University of Technology

April 21, 2016

Learning Objectives

At the end of the class you should be able to:

- justify the use and semantics of probability
- know how to compute marginals and apply Bayes' theorem
- build a belief network for a domain
- perform inference in a belief network
- explain the predictions of a causal model

Using Uncertain Knowledge

- Complete knowledge about the world not possible.
- Decisions are still needed!
- Example: wearing a seat belt.

Why Probability?

- Prediction approaches:
 - definitive: you will be run over tomorrow
 - point probabilities: P(you will be run over tomorrow) = 0.002
 - probability ranges: $P(\text{you will be run over tomorrow}) \in [0.001, 0.34]$
- Acting is gambling! Dutch books.

Bayesian Probability

- Probabilities can be learned from data.
- Bayes rule specifies how to combine data and prior knowledge.

Probability

- Probability can model one's belief in some proposition subjective probability.
- An agent's belief depends on its prior assumptions and on observations.

Numerical Measures of Belief

- ullet a a proposition
- P(a) **probability of** a, or the belief in a, is a number between 0 and 1
 - P(a) = 0 a is believed to be definitely false.
 - P(a) = 1 a is believed to be definitely true.
- Using 0 and 1 is purely a convention.

Random Variables

- A random variable is a variable that can take one of a number of different values.
- The range of a variable X, written range(X), is the set of values X can take.
- Assignment X = x means variable X has value x.
- Each assignment to a random variable is associated to a probability, P(X=x).
- A proposition is a Boolean formula made from assignments of values to variables.

Axioms of Probability

Three axioms define what follows from a set of probabilities:

- Axiom 1 $0 \le P(a)$ for any proposition a.
- Axiom 2 P(true) = 1
- Axiom 3 $P(a \lor b) = P(a) + P(b)$ if a and b cannot both be true.

Probability Distributions

- A probability distribution P(X) on a random variable X is a function $range(X) \rightarrow [0,1].$
- Joint distribution of several variables: P(X, Y, Z).
- A (discrete) distribution always has to sum to one:

$$\sum_{x \in range(X)} P(X = x) = 1$$

.

 For continuous random variables, the distribution has a probability density function (PDF).

Probabilistic Conditioning

- How to revise beliefs based on new information.
- Prior probability: the belief before observing evidence
- Let e be the observed evidence, the conditional probability P(h|e) of h given e is the posterior probability of h.

Conditional Probability

ullet The conditional probability of h given evidence e is

$$P(h|e) = \frac{P(h \land e)}{P(e)}$$

Conditional Probability: Example

We toss a die.

Someone tells you that the outcome is an even number.

What is the probability that the outcome is 6?

Conditional Probability: Example

We toss a die.

Someone tells you that the outcome is an even number.

What is the probability that the outcome is 6?

Conditioning

Possible values before evidence:

Conditioning

Possible values before evidence:

Observe Color = orange:

Marginals

If you have a joint probability distribution P(X,Y) over some random variables X,Y, the marginal distribution P(X) can be computed by summing over all values of Y:

•
$$P(X) = \sum_{Y} P(X, Y)$$

Exercise

Flu	Sneeze	Snore	μ
true	true	true	8/125
true	true	false	12/125
true	false	true	2/125
true	false	false	3/125
false	true	true	12/125
false	true	false	18/125
false	false	true	28/125
false	false	false	42/125

What is:

- (a) $P(flu \land sneeze)$
- (b) $P(flu \land \neg sneeze)$
- (c) P(flu)
- (d) $P(sneeze \mid flu)$
- (e) $P(\neg flu \land sneeze)$
- (f) $P(flu \mid sneeze)$
- (g) $P(sneeze \mid flu \land snore)$
- (h) $P(flu \mid sneeze \land snore)$

Chain Rule

$$P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) =$$

Chain Rule

$$P(f_1 \wedge f_2 \wedge \ldots \wedge f_n)$$

$$= P(f_n | f_1 \wedge \cdots \wedge f_{n-1}) \times P(f_1 \wedge \cdots \wedge f_{n-1})$$

$$=$$

Chain Rule

$$P(f_{1} \wedge f_{2} \wedge \dots \wedge f_{n})$$

$$= P(f_{n}|f_{1} \wedge \dots \wedge f_{n-1}) \times P(f_{1} \wedge \dots \wedge f_{n-1}) \times P(f_{1} \wedge \dots \wedge f_{n-1}) \times P(f_{n}|f_{1} \wedge \dots \wedge f_{n-1}) \times P(f_{n-1}|f_{1} \wedge \dots \wedge f_{n-2}) \times P(f_{1} \wedge \dots \wedge f_{n-2}) \times P(f_{1} \wedge \dots \wedge f_{n-2}) \times P(f_{n-1}|f_{1} \wedge \dots \wedge f_{n-1}) \times P(f_{n-1}|f_{1} \wedge \dots \wedge f_{n-2}) \times \dots \times P(f_{n-1}|f_{n} \wedge \dots \wedge f_{n-2})$$

$$= \prod_{i=1}^{n} P(f_{i}|f_{1} \wedge \dots \wedge f_{i-1})$$

The chain rule and commutativity of conjunction $(h \land e \text{ is equivalent to } e \land h)$ gives us:

$$P(h \wedge e) =$$

The chain rule and commutativity of conjunction $(h \land e \text{ is equivalent to } e \land h)$ gives us:

$$P(h \wedge e) = P(h|e) \times P(e)$$

The chain rule and commutativity of conjunction $(h \land e \text{ is equivalent to } e \land h)$ gives us:

$$P(h \wedge e) = P(h|e) \times P(e)$$

= $P(e|h) \times P(h)$.

The chain rule and commutativity of conjunction $(h \land e \text{ is equivalent to } e \land h)$ gives us:

$$P(h \wedge e) = P(h|e) \times P(e)$$

= $P(e|h) \times P(h)$.

If $P(e) \neq 0$, divide the right hand sides by P(e):

$$P(h|e) =$$

The chain rule and commutativity of conjunction ($h \wedge e$ is equivalent to $e \wedge h$) gives us:

$$P(h \wedge e) = P(h|e) \times P(e)$$

= $P(e|h) \times P(h)$.

If $P(e) \neq 0$, divide the right hand sides by P(e):

$$P(h|e) = \frac{P(e|h) \times P(h)}{P(e)}.$$

This is Bayes' theorem.

Why is Bayes' theorem interesting?

- Often you have causal knowledge: P(symptom | disease)
- and want to do evidential reasoning: $P(disease \mid symptom)$

Exercise

A cab was involved in a hit-and-run accident at night. Two cab companies, the Green and the Blue, operate in the city. You are given:

- 85% of the cabs in the city are Green and 15% are Blue.
- A witness identified the cab as Blue.
- The witness reliability is 80%.

What is the probability that the cab involved in the accident was Blue?

D. Kahneman, Thinking Fast and Slow, 2011, p. 166.

Exercise: Solution

P(cab is blue|witness says cab is blue) =

$$\frac{P(\text{witness says blue}|\text{cab is blue}) \times P(\text{cab is blue})}{P(\text{witness says blue})} =$$

$$\frac{0.8\times0.15}{0.29}\approx$$

0.41

(The normalizing constant (P(witness says blue)) can be computed by marginalizing (summing over hypotheses):

$$0.8 * 0.15 + 0.2 * 0.85 = 0.29.$$

Conditional independence

Random variable X is **independent** of random variable Y given random variable Z if,

$$P(X|Y,Z) = P(X|Z)$$

Conditional independence

Random variable X is **independent** of random variable Y given random variable Z if,

$$P(X|Y,Z) = P(X|Z)$$

i.e. for all $x_i \in dom(X)$, $y_j \in dom(Y)$, $y_k \in dom(Y)$ and $z_m \in dom(Z)$,

$$P(X = x_i | Y = y_j, Z = z_m)$$

= $P(X = x_i | Y = y_k, Z = z_m)$
= $P(X = x_i | Z = z_m)$.

That is, knowledge of Y's value doesn't affect the belief in the value of X, given a value of Z.

Example domain (diagnostic assistant)

Examples of conditional independence?

- The identity of the queen of Canada is dependent or independent of whether light l1 is lit given whether there is outside power?
- Whether there is someone in a room is independent of whether a light l2 is lit given what?
- Whether light l1 is lit is independent of the position of light switch s2 given what?
- ullet Every other variable may be independent of whether light l1 is lit given

Examples of conditional independence?

- The identity of the queen of Canada is dependent or independent of whether light l1 is lit given whether there is outside power?
- Whether there is someone in a room is independent of whether a light l2 is lit given what?
- Whether light l1 is lit is independent of the position of light switch s2 given what?
- Every other variable may be independent of whether light l1 is lit given whether there is power in wire w_0 and the status of light l1 (if it's ok, or if not, how it's broken).

Idea of belief networks

- l1 is lit (L1_lit) depends only on the status of the light (L1_st) and whether there is power in wire w0.
- In a belief network, W0 and $L1_st$ are parents of $L1_lit$.
- W0 depends only on

Idea of belief networks

- l1 is lit (L1_lit) depends only on the status of the light (L1_st) and whether there is power in wire w0.
- In a belief network, W0 and $L1_st$ are parents of $L1_lit$.

• W0 depends only on whether there is power in w1, whether there is power in w2, the position of switch s2 ($S2_pos$), and the status of switch s2 ($S2_st$).

Belief networks

- Totally order the variables of interest: X_1, \ldots, X_n
- Theorem of probability theory (chain rule): $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i|X_1, ..., X_{i-1})$
- The parents $parents(X_i)$ of X_i are those predecessors of X_i that render X_i independent of the other predecessors. That is,

Belief networks

- Totally order the variables of interest: X_1, \ldots, X_n
- Theorem of probability theory (chain rule): $P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$
- The parents $parents(X_i)$ of X_i are those predecessors of X_i that render X_i independent of the other predecessors. That is, $parents(X_i) \subseteq X_1, \ldots, X_{i-1}$ and $P(X_i|parents(X_i)) = P(X_i|X_1, \ldots, X_{i-1})$
- So $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i|parents(X_i))$
- A belief network is a graph: the nodes are random variables; there is an arc from the parents of each node into that node.

Example: fire alarm belief network

Variables:

- Fire: there is a fire in the building
- Tampering: someone has been tampering with the fire alarm
- Smoke: what appears to be smoke is coming from an upstairs window
- Alarm: the fire alarm goes off
- Leaving: people are leaving the building *en masse*.
- Report: a colleague says that people are leaving the building en masse. (A noisy sensor for leaving.)

Components of a belief network

A belief network consists of:

- a directed acyclic graph with nodes labeled with random variables
- a domain for each random variable
- a set of conditional probability tables for each variable given its parents (including prior probabilities for nodes with no parents).

Example belief network

Components of a belief network

A belief network consists of:

- a directed acyclic graph with nodes labeled with random variables
- a domain for each random variable
- a set of conditional probability tables for each variable given its parents (including prior probabilities for nodes with no parents).

Example belief network

Example belief network (continued)

The belief network also specifies:

• The domain of the variables: W_0, \ldots, W_6 have domain $\{live, dead\}$ S_1_pos, S_2_pos , and S_3_pos have domain $\{up, down\}$ S_1_st has $\{ok, upside_down, short, intermittent, broken\}$.

• Conditional probabilities, such as: $P(W_1 = live | s_1_pos = up \land S_1_st = ok \land W_3 = live)$

Belief network summary

- A belief network is a directed acyclic graph (DAG).
- Its nodes are random variables.
- The **parents** of *X* are those that *X* directly depends on.
- Acyclic by construction.
- A representation of dependence and independence:
 - X is independent of its non-descendants given its parents.

Constructing belief networks

- What are the relevant variables?
 - Observed?
 - Query variables?
 - Variables that make the model simpler?
- What values should these variables take?
- What is the relationship between them?
- How does the value of each variable depend on its parents?

Using belief networks

An example of how the power network can be used:

- Given values for:
 - switches,
 - outside power,
 - whether the lights are lit,
- you can determine the posterior probability that each switch or circuit breaker is ok or not.

Using belief networks

This is called inference.

speechtimefun!

Understanding independence: example

Understanding independence: questions

- On which given probabilities does P(N) depend?
- If you were to observe a value for B, which variables' probabilities will change?
- If you were to observe a value for N, which variables' probabilities will change?
- Suppose you had observed a value for M; if you were to then observe a value for N, which variables' probabilities will change?
- Suppose you had observed B and Q; which variables' probabilities will change when you observe N?

What variables are affected by observing?

- If you observe variable \overline{Y} , the variables whose posterior probability is different from their prior are:
 - ullet The ancestors of \overline{Y} and
 - their descendants.
- Intuitively (if you have a causal belief network):
 - You do abduction to possible causes and
 - prediction from the causes.

Common descendants

- tampering and fire are independent
- tampering and fire are dependent given alarm
- Intuitively, tampering can explain away fire

Common ancestors

- alarm and smoke are dependent
- alarm and smoke are independent given fire
- Intuitively, fire can explain alarm and smoke; learning one can affect the other by changing your belief in fire.

Chain

- alarm and report are dependent
- alarm and report are independent given leaving
- Intuitively, the only way that the alarm affects report is by affecting leaving.

Belief network inference

- Variable Elimination: exploit the structure of the network to eliminate (sum out) the non-observed, non-query variables one at a time.
- Search-based approaches: enumerate some of the possible assignments, and estimate posterior probabilities.
- Stochastic simulation: generate random assignments according to the probability distributions.
- Variational methods: find the closest tractable distribution to the (posterior) distribution.

Factors

Function from a set of random variables to a number.

$$f(X_1,\ldots,X_j).$$

Some or all of the variables of a factor can be assigned:

- $f(X_1 = v_1, X_2, ..., X_j)$, is a factor on $X_2, ..., X_j$.
- $f(X_1 = v_1, X_2 = v_2, \dots, X_j = v_j)$ is a number that is the value of f when each X_i has value v_i .

	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X,Y,Z):	t	f	f	8.0
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7
	`			

$$r(X=t,Y,Z)$$
: $egin{array}{c|c} Y & Z & \mathsf{val} \\ \hline \mathsf{t} & \mathsf{t} & \mathsf{0.1} \\ \mathsf{t} & \mathsf{f} & \mathsf{f} \\ \mathsf{f} & \mathsf{f} & \mathsf{f} \\ \hline \end{cases}$

	X	\overline{Y}	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X,Y,Z):	t	f	f	0.8
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t,Y,Z): egin{array}{c|cccc} Y & Z & {\sf val} \\ \hline t & t & 0.1 \\ t & f & 0.9 \\ f & t & 0.2 \\ f & f & 0.8 \\ \hline \end{array}$$

$$r(X=t,Y,Z=f)$$
:

	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X,Y,Z):	t	f	f	8.0
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X{=}t,Y,Z){:}\begin{array}{|c|c|}\hline Y&Z&\text{val}\\\hline t&t&0.1\\t&f\\f&t\\f&f\end{array}$$

	X	Y	Z	val
	t	t	t	0.1
	t	t	f	0.9
	t	f	t	0.2
r(X,Y,Z):	t	f	f	8.0
	f	t	t	0.4
	f	t	f	0.6
	f	f	t	0.3
	f	f	f	0.7

$$r(X=t,Y,Z)$$
: $egin{array}{c|ccc} Y & Z & \text{val} \\ t & t & 0.1 \\ t & f \\ f & t \\ f & f \end{array}$

Multiplying factors

The **product** of factor $f_1(\overline{X}, \overline{Y})$ and $f_2(\overline{Y}, \overline{Z})$, where \overline{Y} are the variables in common, is the factor $(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z})$ defined by:

$$(f_1 \times f_2)(\overline{X}, \overline{Y}, \overline{Z}) = f_1(\overline{X}, \overline{Y})f_2(\overline{Y}, \overline{Z}).$$

Multiplying factors example

	A	B	val
	t	t	0.1
f_1 :	t	f	0.9
JI	f	t	0.2
	f	f	0.8

	B	C'	val
	t	t	0.3
f_2 :	t	f	0.7
•	f	t	0.6
	f	f	0.4

	A	B	C	val
	t	t	t	0.03
	t	t	f	
	t	f	t	
$f_1 \times f_2$:	t	f	f	
, 1 , 2	f	t	t	
	f	t	f	
	f	f	t	
	f	f	f	

Multiplying factors example

	A	B	val
	t	t	0.1
f_1 :	t	f	0.9
	f	t	0.2
	f	f	0.8

	B	C'	val
	t	t	0.3
f_2 :	t	f	0.7
•	f	t	0.6
	f	f	0.4

	A	B	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
$f_1 \times f_2$:	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32
	<u>†</u>	Ť	t	0.32

Summing out variables

We can **sum out** a variable, say X_1 with domain $\{v_1, \ldots, v_k\}$, from factor $f(X_1, \ldots, X_j)$, resulting in a factor on X_2, \ldots, X_j defined by:

$$(\sum_{X_1} f)(X_2, \dots, X_j)$$
= $f(X_1 = v_1, \dots, X_j) + \dots + f(X_1 = v_k, \dots, X_j)$

Summing out a variable example

A B C val t t t 0.03 t t t 0.07	
+ + t 0.02	
t t f 0.07	
t f t 0.54	
f_3 : t f f 0.36	
f t t 0.06	
f t f 0.14	
f f t 0.48	
f f f 0.32	

	A	C	val
	t	t	0.57
$\sum_B f_3$:	t	f	
	f	t	
	f	f	

Summing out a variable example

	A	В	C	val
	t	t	t	0.03
	t	t	f	0.07
	t	f	t	0.54
f_3 :	t	f	f	0.36
	f	t	t	0.06
	f	t	f	0.14
	f	f	t	0.48
	f	f	f	0.32

	A	C	val
	t	t	0.57
$\sum_B f_3$:	t	f	0.43
_	f	t	0.54
	f	f	0.46

Exercise

Given factors:

	A	val
s:	t	0.75
	f	0.25

A	В	val
t	t	0.6
t	f	0.4
f	t	0.2
f	f	0.8

t:

	A	val
o:	t	0.3
	f	0.1

What is?

(a)
$$s \times t$$

(b)
$$\sum_{A} s \times t$$

(c)
$$\sum_{B} s \times t$$

(d)
$$s \times t \times o$$

(e)
$$\sum_{A} s \times t \times o$$

(f)
$$\sum_{b} s \times t \times o$$

Evidence

If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_j = v_j$:

$$P(Z|Y_1=v_1,\ldots,Y_j=v_j)$$

Evidence

If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_j = v_j$:

$$P(Z|Y_1 = v_1, \dots, Y_j = v_j)$$

$$= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{P(Y_1 = v_1, \dots, Y_j = v_j)}$$

Evidence

If we want to compute the posterior probability of Z given evidence $Y_1 = v_1 \wedge \ldots \wedge Y_i = v_i$:

$$P(Z|Y_1 = v_1, \dots, Y_j = v_j)$$

$$= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{P(Y_1 = v_1, \dots, Y_j = v_j)}$$

$$= \frac{P(Z, Y_1 = v_1, \dots, Y_j = v_j)}{\sum_{Z} P(Z, Y_1 = v_1, \dots, Y_j = v_j)}.$$

So the computation reduces to the probability of $P(Z,Y_1=v_1,\ldots,Y_j=v_j)$. We normalize at the end.

