LaTex Sample (STAT 564 hw 2)

Stephen Beecher

9/9/2020

These are my answers to a class assignment, but I include this as an example of my use of LaTex and not for the math itself.

Problems

1. (a)
$$\frac{(335)_{25}}{(365)_{25}} = 0.1084563$$

(b)
$$\frac{\binom{30}{3}\binom{335}{22}}{\binom{365}{25}} = .20008$$

(c)
$$\frac{\binom{30}{x}\binom{335}{25-x}}{\binom{365}{25}}$$
 $0 \le x \le 25$

2. (a)
$$\frac{4}{13} \cdot \frac{3}{12} \cdot \frac{6}{11} \cdot \frac{5}{10} \cdot \frac{3}{9} \cdot \frac{2}{8} = \frac{1}{572} = .001748$$

(b)
$$\frac{\binom{4}{2}\binom{6}{3}\binom{3}{2}}{\binom{13}{6}} = .157343$$

(c) i.
$$\left(\frac{4}{13}\right)^2 \cdot \left(\frac{6}{13}\right)^2 \cdot \left(\frac{3}{13}\right)^2 = \frac{5184}{4826809} = .001074$$

ii.
$$\frac{(4)_2 \cdot (6)_2 \cdot (3)_2}{((13)_2)^3} = .000569$$

3. Event A: testing positive

Event C: having dengue

$$P(A|C^C) = .1$$

$$P(A^C|C) = .01$$

(a)
$$P(A|C) = .99$$

(b)
$$P(C) = .01$$

$$P(A) = P(A|C)P(C) + P(A|C^{C})P(C^{C})$$

= (.99)(.01) + (.1)(.99)

$$= .1089$$

(c)
$$P(C|A) = \frac{P(A \cap C)}{P(A)} = \frac{P(A|C)P(C)}{P(A)}$$

= $\frac{(.99)(.01)}{.1089} = .09091$

(d)
$$P(C) = .5 \text{ now}$$

$$P(C|A) = \frac{P(A|C)P(C)}{P(A|C)P(C) + P(A|C^{C})P(C^{C})}$$

$$= \frac{(.99)(.5)}{(.99)(.5) + (.1)(.5)}$$

$$= .908257$$

(e)

Probability that an individual has dengue given they test positive

Challenging Problems

1. (a) i. Let A be the event Player A wins.

$$P(A) = \lim_{n \to \infty} \frac{1}{2} + \left(\frac{1}{2}\right)^4 + \left(\frac{1}{2}\right)^7 + \dots + \left(\frac{1}{2}\right)^{3n-2}$$

Since this is a geometric sum with $a_1 = \frac{1}{2}$ and $r = \frac{1}{8}$, the sum

$$S = \frac{a_1}{1 - r} = \frac{\frac{1}{2}}{1 - \frac{1}{8}} = \frac{4}{7}$$

Therefore $P(A) = \frac{4}{7}$

ii. P(B) is $\frac{1}{2}P(A)$ since every term is multiplied by another $\frac{1}{2}$ since player A goes first (another flip before B), so

$$P(B) = \frac{2}{7}$$

iii. For the same reasons, $P(C) = \frac{1}{2}P(B)$, so

$$P(C) = \frac{1}{7}$$

(b) i.
$$P(A) = \lim_{n \to \infty} p + p(1-p)^3 + p(1-p)^6 + \dots + p(1-p)^{3n}$$

This is a geometric sum with $a_1 = p$ and $r = (1 - p)^3$, the sum

$$S = P(A) = \frac{a_1}{1 - r} = \frac{p}{1 - (1 - p)^3} = \frac{p}{p^3 - 3p^2 + 3p}$$

$$=\frac{1}{p^2-3p+3}$$

ii. P(B) is (1-p)P(A) since every term is multiplied by another (1-p) since player A goes first (another tails flip before B), so

$$P(B) = \frac{1 - p}{p^2 - 3p + 3}$$

iii. For the same reasons, P(C) = (1 - p)P(B), so

$$P(C) = \frac{(1-p)^2}{p^2 - 3p + 3}$$

(c) As $p \to 0$,

$$P(A) \to \frac{1}{3}$$

$$P(B) o \frac{1}{3}$$

$$P(C) o \frac{1}{3}$$

2. (a) $f_Y(y) = f_x(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$

where $g(x) = x^p$ for p > 0.

$$q^{-1}(x) = x^{\frac{1}{p}}$$

$$f_Y(y) = \frac{\beta}{y^{\frac{\beta+1}{p}}} \left(\frac{1}{p} y^{\frac{1}{p}-1} \right) = \frac{\beta}{py^{\frac{\beta+p}{p}}}, \quad p > 0$$

$$f_Y(y) = \begin{cases} 0 & x < 1\\ \frac{\beta}{py^{\frac{\beta+p}{p}}} & x \ge 1 \end{cases}$$

$$P\{Y > 2\} = \int_{2}^{\infty} f_{Y}(y) = \frac{\beta}{p} \int_{2}^{\infty} y^{-\frac{\beta+p}{p}}$$

$$=\lim_{a\to\infty}-y^{-\frac{\beta}{p}}\Big|_2^a$$

$$= \lim_{a \to \infty} -\frac{1}{a^{\frac{\beta}{p}}} + 2^{-\frac{\beta}{p}}$$

$$=2^{-\frac{\beta}{p}}$$

	X		$P\{X=x\}$	
	1	3!	6	
(b)	2	$\frac{\overline{(\alpha+3)_3}}{\alpha(2\cdot 1+3\cdot 1+2\cdot 3)}$	$(\alpha+3)_3$ 11α	
		$\frac{(\alpha+3)_3}{\alpha^2(1+2+3)}$	$\overline{(\alpha+3)_3}$	
	3	$\frac{\alpha^2(1+2+3)}{\alpha^2}$	$\frac{6\alpha^2}{(1-\alpha)^2}$	
		$\frac{\alpha+3)_3}{\alpha^3}$	$\frac{(\alpha+3)_3}{\alpha^3}$	
	4	$\frac{\alpha}{(\alpha+3)_3}$	$\frac{\alpha}{(\alpha+3)_3}$	
$EX_4 = 1\frac{6}{(\alpha+3)_3} + 2\frac{11\alpha}{(\alpha+3)_3} + 3\frac{6\alpha^2}{(\alpha+3)_3} + 4\frac{\alpha^3}{(\alpha+3)_3}$				
$= \frac{4\alpha^3 + 18\alpha^2 + 22\alpha + 6}{4\alpha^3 + 18\alpha^2 + 22\alpha + 6}$				
$(\alpha+3)_3$				