Appl. No. 10/708,244 Amdt. dated May 20, 2005 Reply to Office action of March 25, 2005

Amendments to the Claims

Listing of Claims:

- Claim 1 (currently amended): A positioning apparatus installed inside a printer for controlling a position of a first printer part, the positioning apparatus comprising:
- 5 a motor for providing a rotational motion; and
 - a Scotch yoke coupled to the motor for converting the rotational motion into a linear motion[[;]] . the Scotch yoke comprising:
 - a rotating part for accepting the rotational motion from the motor, the rotating part possessing a gap to indicate the position of the rotating part;
- wherein the position of the first printer part is controlled by the rotational motion of the motor via the linear motion of the Scotch yoke.
 - Claim 2 (currently amended): The positioning apparatus in claim 1 wherein the Scotch yoke <u>further comprises</u>:
- 15 a-rotating part for accepting the rotational motion from the motor;
 - a sliding part coupled to the rotating part for converting the rotational motion into a linear motion; and
 - a protrusion extending from the sliding part for placing the Scotch yoke in contact with the first printer part;
- wherein the rotational motion of the rotating part causes the sliding part to move in a back-and-forth linear motion which in turn causes the protrusion to be in-and-out of contact with the first printer part.
- Claim 3 (currently amended): The positioning apparatus in claim [[2]] 1 wherein the rotating part is a disc.
 - Claim 4 (original): The positioning apparatus in claim 2 wherein the sliding part is an arm.

Appl. No. 10/708,244 Amdt. dated May 20, 2005 Reply to Office action of March 25, 2005

Claim 5 (currently amended): The positioning apparatus in claim [[2]] 1 wherein the rotational motion of the motor is transferred to the rotating part of the Scotch yoke via a rod.

5

10

Claim 6 (currently amended): The positioning apparatus in claim 2 wherein the rotating part possesses a connecting protrusion and the sliding part possesses a connecting protrusion-vertical slit wherein the sliding part is coupled to the rotating part via at the connecting protrusion extending from the rotating part into a the vertical slit of the sliding part.

Claim 7 (canceled)

Claim 8 (currently amended): The positioning apparatus in claim [[7]] 1 wherein the position of the rotating part is determined by using a detector to sense the gap located on the rotating part.

Claim 9 (original): The positioning apparatus in claim 1 wherein the actions of the positioning apparatus can be divided into a first action and a second action.

20

- Claim 10 (original): The positioning apparatus in claim 9 wherein the first action is a pressing action and the second action is a non-pressing action.
- Claim 11 (original): The positioning apparatus in claim 1 wherein the first printer part can be a pinch, a platen, a reverse ribbon, a clutch, or a lifter.
 - Claim 12 (currently amended): The positioning apparatus in claim 1 further comprising a plurality of non-uniform contours disc [[100]] coupled to the motor, the plurality of

Appl. No. 10/708,244 Amdt. dated May 20, 2005 Reply to Office action of March 25, 2005

non-uniform counters disc [[100]] having a non-uniform contour for controlling the position of a second printer part.

Claims 13-20 (canceled)

5

10

15

- Claim 21 (new): A positioning apparatus installed inside a printer for controlling a position of a first printer part, the positioning apparatus comprising: a motor for providing a rotational motion;
 - a Scotch yoke coupled to the motor for converting the rotational motion into a linear motion; and
 - a plurality of non-uniform contours disc coupled to the motor, the plurality of non-uniform counters disc having a non-uniform contour for controlling the position of a second printer part;
- wherein the position of the first printer part is controlled by the rotational motion of the motor via the linear motion of the Scotch yoke.