Linear Algebra Done Right

Jiuru Lyu

May 30, 2023

Contents

		tor Spaces	_
	1.1	\mathbb{R}^n and \mathbb{C}^n	2
	1.2	Definition of Vector Space	4
	1.3	Subspace	6
2 Finite-Dimensional Vector Spaces		te-Dimensional Vector Spaces	10
	2.1	Span and Linear Independence	10
	2.2	Bases	11
	2.3	Dimension	11

1 Vector Spaces

1.1 \mathbb{R}^n and \mathbb{C}^n

Definition 1.1.1 (Complex Number). A *complex number* is an ordered pair (a, b), where $a, b \in \mathbb{R}$, but we write it as a + bi.

Notation 1.1 $\mathbb{C} := \{a + bi \mid a, b \in \mathbb{R}\}$

Definition 1.1.2 (Addition & Multiplication).

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

Theorem 1.1.1 Properties of Complex Arithmetic

- 1. commutativity: $\alpha + \beta = \beta + \alpha$; $\alpha \beta = \beta \alpha$, $\forall \alpha, \beta \in \mathbb{C}$.
- 2. associativity: $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$; $(\alpha\beta)\lambda = \alpha(\beta\lambda)$, $\forall \alpha, \beta, \lambda \in \mathbb{C}$.
- 3. identities: $\lambda + 0 = \lambda$; $\lambda \cdot 1 = \lambda, \forall \lambda \in \mathbb{C}$.
- 4. additive inverse: $\forall \alpha \in \mathbb{C}, \exists \text{ unique } \beta \in \mathbb{C} \text{ s.t. } \alpha + \beta = 0.$
- 5. multiplicative inverse: $\forall \alpha \in \mathbb{C}, \alpha \neq 0, \exists \text{ unique } \beta \in \mathbb{C} \text{ s.t. } \alpha\beta = 1.$
- 6. distributivity: $\lambda(\alpha + \beta) = \lambda \alpha + \lambda \beta$, $\forall \lambda, \alpha, \beta \in \mathbb{C}$.

Definition 1.1.3 (Subtraction). If $-\alpha$ is the additive inverse of α , *subtraction* on $\mathbb C$ is defined by

$$\beta - \alpha = \beta + (-\alpha).$$

Definition 1.1.4 (Division). For $\alpha \neq 0$, let $\frac{1}{\alpha}$ denote the multiplicative inverse of α . Then, *division* on $\mathbb C$ is defined by

$$\frac{\beta}{\alpha} = \beta \cdot \left(\frac{1}{\alpha}\right)$$

Notation 1.2 \mathbb{F} *is either* \mathbb{R} *or* \mathbb{C} .

Definition 1.1.5 (List/Tuple). Suppose n is a non-negative integer. A list of length n is an ordered collection of n elements separated by commas and surrounded by parentheses: $(x_1, x_2, x_3, \dots, x_n)$. Two lists are equal if and only if they have the same length and the same elements in the same order.

Remark Lists must have a FINITE length.

Definition 1.1.6 (\mathbb{F}^n and Coordinate). \mathbb{F}^n is the set of all lists of length n of elements of \mathbb{F} :

$$\mathbb{F}^n := \{(x_1, \cdots, x_n) \mid x_i \in \mathbb{R} \forall i = 1, \cdots, n\},\$$

1.1 VECTOR SPACES 1.1 \mathbb{R}^n and \mathbb{C}^n

where x_i is the *i*th coordinate of (x_1, \dots, x_n) .

Example 1.1.1 $\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}\$ and $\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}.$

Definition 1.1.7 (Addition on \mathbb{F}^n **).** *Addition* on \mathbb{F}^n is defined by adding corresponding coordinates:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n).$$

Theorem 1.1.2 Commutativity of Addition on \mathbb{F}^n

If $x, y \in \mathbb{F}^n$, then x + y = y + x.

Proof 1. Suppose $x=(x_1,\cdots,x_n)$ and $y=(y_1,\cdots,y_n)$. Then

$$x + y = (x_1 + y_1, \dots, x_n + y_n)$$

= $(y_1 + x_1, \dots, y_n + x_n) = y + x$.

Definition 1.1.8 (Zero). Let 0 denote the list of length n whose coordinates are all $0: 0 := (0, \dots, 0)$. **Definition 1.1.9 (Additive Inverse on** \mathbb{F}^n **).** For $x \in \mathbb{F}^n$, the additive inverse of x, denoted -x, is the vector $-x \in \mathbb{F}^n$ s.t. x + (-x) = 0.

Definition 1.1.10 (Scalar Multiplication in \mathbb{F}^n **).** The product of a number $\lambda \in \mathbb{F}$ and a vector $x \in \mathbb{F}^n$ is computed by multiplying each coordinate of the vector by λ :

$$\lambda x = \lambda(x_1, \cdots, x_n) = (\lambda x_1, \cdots, \lambda x_n),$$

where $x = (x_1, \dots, x_n) \in \mathbb{F}^n$.

Theorem 1.1.3 Properties of Arithmetic Operations on \mathbb{F}^n

- 1. $(x+y)+z=x+(y+z) \quad \forall x,y,z\in\mathbb{F}^n$
- 2. $(ab)x = a(bx) \quad \forall x \in \mathbb{F}^n \text{ and } \forall a, b \in \mathbb{F}.$
- 3. $1 \cdot x = x \quad \forall x \in \mathbb{F}^n \text{ and } 1 \in \mathbb{F}.$
- 4. $\lambda(x+y) = \lambda x + \lambda y \quad \forall \lambda \in \mathbb{R} \text{ and } \forall x, y \in \mathbb{F}^n$.
- 5. $(a+b)x = ax + bx \quad \forall a, b \in \mathbb{F} \text{ and } \forall x \in \mathbb{F}^n$.

1.2 Definition of Vector Space

Definition 1.2.1 (Addition on V**).** An *addition* on V is a function $(u, v) \mapsto u + v$ for all $u, v \in V$.

Definition 1.2.2 (Scalar Multiplication on V**).** A *scalar multiplication* on V is a function $(\lambda, v) \mapsto \lambda v$ for all $\lambda \in \mathbb{F}$ and $v \in V$.

Definition 1.2.3 (Vector Space). A *vector space* is a set V along with an addition on V and a scalar multiplication s.t. the following properties hold:

- 1. commutativity: $u + v = v + u \quad \forall u, v \in V$
- 2. associativity: (u+v)+w=u+(v+w) and (ab)v=a(bv) $\forall u,v,w\in V$ and $\forall a,b\in\mathbb{F}$.
- 3. additive identity: $\exists 0 \in V \text{ s.t. } v + 0 = v \quad \forall v \in V.$
- 4. additive inverse: $\exists w \in V \text{ s.t. } v + w = 0 \quad \forall v \in V.$
- 5. multiplicative identity: $\exists 1 \in V \text{ s.t. } 1 \cdot v = v \quad \forall v \in V.$
- 6. distributive properties: a(u+v) = au + av and $(a+b)v = av + bv \quad \forall u, v \in V$ and $a, b \in \mathbb{F}$.

Definition 1.2.4 (Vector). Elements of a vector space are called *vectors* or points.

Notation 1.3 *V* is a vector space over \mathbb{F} .

Definition 1.2.5 (Real and Complex Vector Space). A vector space over \mathbb{R} is called a *real vector space*, and a vector space over \mathbb{C} is called a *complex vector space*.

Theorem 1.2.1 Unique Additive Identity of Vector Spaces

A vector space has a unique additive identity.

Proof 1. Suppose 0 and 0' are both additive identities for some vector space V. So,

$$0' = 0' + 0$$
 Since 0 is an additive identity
= $0 + 0'$ commutativity
= 0. Since 0' is an additive identity

Then, 0' = 0.

Theorem 1.2.2 Unique Additive Inverse of Vector Spaces

A vector in a vector space has a unique additive inverse.

Proof 2. Let V be a vector space. Suppose w and w' are additive inverses of v for some $v \in V$. Note that

$$w = w + 0$$

= $w + (v + w')$
= $(w + v) + w$
= $0 + w' = w'$.

Notation 1.4 *Let* $v, w \in V$. *Then,* -v *denotes the additive inverse of* v.

Definition 1.2.6 (Subtraction). w - v is defined to be w + (-v).

Theorem 1.2.3

$$0 \cdot v = 0 \quad \forall v \in V.$$

Proof 3. Since $v \in V$, we know

$$0 \cdot v = (0+0)v = 0 \cdot v + 0 \cdot v$$
$$0 \cdot v + (-0 \cdot v) = 0 \cdot +0 \cdot +(-0 \cdot v)$$
$$0 = 0 \cdot v$$

Theorem 1.2.4

$$a \cdot 0 = 0 \quad \forall a \in \mathbb{F}.$$

Proof 4. For $a \in \mathbb{F}$, we have

$$a \cdot 0 = a \cdot (0+0) = a \cdot 0 + a \cdot 0$$

 $a \cdot 0 + (-a \cdot 0) = a \cdot 0 + a \cdot 0 + (-a \cdot 0)$
 $0 = a \cdot 0$.

Theorem 1.2.5

$$(-1)v = -v \quad \forall v \in V.$$

Proof 5. For $v \in V$, we have

$$v + (-1)v = 1 \cdot v + (-1) \cdot v = (1 + (-1)) \cdot v = 0 \cdot v = 0.$$

Therefore, by definition, (-1)v = -v.

Notation 1.5 \mathbb{F}^S

- 1. If S is a set, then \mathbb{F}^S denotes the set of functions from S to \mathbb{F} .
- $\textbf{2. For } f,g \in \mathbb{F}^S, \textit{the } \underline{\textit{sum}} \, f+g \in \mathbb{F}^S \textit{ is the function defined by } (f+g)(x)=f(x)+g(x) \quad \forall x \in S.$
- 3. For $\lambda \in \mathbb{F}$ and $f \in \mathbb{F}^S$, the product $\lambda f \in \mathbb{F}^S$ is the function defined by $(\lambda f)(x) = \lambda f(x) \quad \forall x \in S$.

Theorem 1.2.6

 \mathbb{F}^S is a vector space.

1 VECTOR SPACES 1.3 Subspace

1.3 Subspace

Definition 1.3.1 (Subspace). A subset U of V is called a *subspace* of V if U is also a vector space using the same addition and scalar multiplication as on V.

Theorem 1.3.1 Conditions for a Subspace

A subset *U* of *V* is a subspace of *V* if and only if *U* satisfies the following conditions:

- 1. additive identity: $0 \in U$;
- 2. closed under addition: $u, w \in U \implies u + w \in U$;
- 3. closed under scalar multiplication: $a \in \mathbb{F}$ and $u \in U \implies au \in U$.

Proof 1.

- (\Rightarrow) Suppose U is a subspace of V. By definition, U is then a vector space, and so those conditions are automatically satisfied. \square
- (\Leftarrow) Suppose U satisfies the three conditions. Since U is a subset of V, U automatically has associativity, commutativity, multiplicative identity, and distributivity. So, we want to check U has additive inverse and additive identities.

For additive identity, we know $0 \in U$, by assumption.

For additive inverse, by condition #3, we know $-u = (-1)u \in U$.

Then, U is a vector space.

Example 1.3.1 If $b \in \mathbb{F}$, then $\{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 \mid x_3 = 5x_4 + b\}$ is a subspace of \mathbb{F}^4 if and only if b = 0. **Proof 2.**

- (⇒) Suppose $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 \mid x_3 = 5x_4 + b\}$ is a subspace of \mathbb{F}^4 . Then, $0 = (0, 0, 0, 0) \in U$. So, $0 = 5 \cdot 0 + b$, or b = 0. \square
 - (\Leftarrow) Suppose b = 0. Then, $x_3 = 5x_4$. So, $U = \{(x_1, x_2, 5x_4, x_4) \in \mathbb{F}^4\}$
 - ① $0 = (0, 0, 0, 0) \in U$
 - ② Note that

$$(x_1, x_2, 5x_4, x_4) + (y_1, y_2, 5y_4, y_4) = (x_1 + y_1, x_2 + y_2, 5(x_4 + y_4), x_4 + y_4) \in U$$

So, addition is closed under U.

 $3 \forall a \in \mathbb{F}$, we have

$$a(x_1, x_2, 5x_4, x_4) = (ax_1, ax_2, 5(ax_4), ax_4) \in U$$

Then, U is a subspace of \mathbb{F}^4 .

Example 1.3.2 The set of continuous real-valued functions on interval [0,1] is a subspace of $\mathbb{R}^{[0,1]}$. *Proof 3.*

- 1. 0 (zero mapping) $\in U$
- 2. Set f and $g \in \mathcal{C}[0,1]$, the set of continuous functions on interval [0,1]. Then, $f+g \in \mathcal{C}[0,1]$.

1.3 Subspace

3. From Calculus, we know that $\forall a \in \mathbb{F}, af \in \mathcal{C}[0,1]$.

Definition 1.3.2 (Sum of Subspaces). Suppose U_1, \dots, U_m are subspaces of V. The *sum* of U_1, \dots, U_m , denoted as $U_1 + \dots + U_m$, is the set of all possible sums of elements of U_1, \dots, U_m :

$$U_1 + \dots + U_m = \{u_1 + \dots + u_m \mid u_i \in U_i \quad \forall i = 1, \dots, m\}.$$

Example 1.3.3 Suppose $U = \{(x,0,0) \in \mathbb{F}^3 \mid x \in \mathbb{F}\}$ and $W = \{(0,y,0) \in \mathbb{F}^3 \mid y \in \mathbb{F}\}$, then

$$U + W = \{(x, y, 0) \in \mathbb{F}^3 \mid x, y \in \mathbb{F}\}.$$

Theorem 1.3.2

Suppose U_1, \dots, U_m are subspaces of V. Then, $U_1 + \dots + U_m$ is the *smallest subspace* of V containing U_1, \dots, U_m .

Proof 4. Suppose U_1, \dots, U_m are subspaces of U. Let $U_1 + \dots + U_m = \{u_1 + \dots + u_m \mid u_j \in U_j, j = 1, \dots m\}$. Suppose $w_j \in U_j$, then $w_1 + \dots + w_m \in U_1 + \dots + U_m$.

- 1. $U_1 + \cdots + U_m$ is a subspace of V.
 - (a) Note that

$$(u_1 + \dots + u_m) + (w_1 + \dots + w_m) = (u_1 + w_1) + \dots + (u_m + w_m) \in U_1 + \dots + U_m,$$

so $U_1 + \cdots + U_m$ is closed under addition.

- (b) Similarly, $U_1 + \cdots + U_m$ is closed under scalar multiplication.
- (c) Note that U_i is a subspace, so $0 \in U_i$. Hence, $(0, \dots, 0) = 0 \in U_1 + \dots + U_m$

Therefore, we've proven $U_1 + \cdots + U_m$ is a subspace of V. \square

2. Now, we want to show this subspace is the smallest subspace containing U_1, \dots, U_m . That is, we want to show $\forall W \supseteq U_1 \cup \dots \cup U_m$, we have $W \supseteq U_1 + \dots + U_m$.

Note that $U_j \subseteq U_1 + \cdots + U_m$, so we have $(U_1 \cup U_2 \cup \cdots \cup U_m) \subseteq U_1 + \cdots + U_m$. This means $U_1 + \cdots + U_m$ must contain U_1, \cdots, U_m . Let W be some subspace containing U_1, \cdots, U_m . Then, for $j = 1, \cdots, m$, we have $u_j \in U_j$, which indicates $u_j \in W$. Therefore, $u_1 + \cdots + u_m \in V$ and thus $U_1 + \cdots + U_m \subseteq W$.

Since W was arbitrary, we've shown $\forall W$ that contains $U_1, \dots, U_m, U_1 + \dots + U_m \subseteq W$. Therefore, $U_1 + \dots + U_m$ is the smallest.

Definition 1.3.3 (Direct Sum). Suppose U_1, \dots, U_m are subspaces of V. $U_1 + \dots + U_m$ is called a *direct sum* if each element of $U_1 + \dots + U_m$ can be written in only one way as a sum $u_1 + \dots + u_m$, where $u_i \in U_i$.

Notation 1.6 If $U_1 + \cdots + U_m$ is a direct sum, then we use $U_1 \oplus \cdots \oplus U_m$ to denote it.

1.3 Subspace

Example 1.3.4 Let $U = \{(x,y,0) \in \mathbb{F}^3 \mid x,y \in \mathbb{F}\}$ and $W = \{(0,0,z) \in \mathbb{F}^3 \mid z \in \mathbb{F}\}$. Then, $\mathbb{F}^3 = U \oplus W$. **Proof 5.** Note that $U + W = \{(x,y,z) \mid x,y,z \in \mathbb{F}\} = \mathbb{F}^3$. Suppose ①: (x,y,z) = (x,y,0) + (0,0,z), for some $x,y,z \in \mathbb{F}$ and ②: (x,y,z) = (x',y',0) + (0,0,z') for some $x',y',z' \in \mathbb{F}$. Then, ①—②:

$$(0,0,0) = (x - x', y - y', 0) + (0,0, z - z') = (x - x', y - y', z - z').$$

Then, x - x' = y - y' = z - z' = 0, which indicates x = x', y = y', z = z'. So, by definition U + W is a direct sum, or $\mathbb{F}^3 = U \oplus W$.

Example 1.3.5 Suppose U_i is the subspace of \mathbb{F}^n s.t.

$$U_{1} = \{x, 0, 0, \dots, 0 \mid x \in \mathbb{F}\}$$

$$U_{2} = \{0, x, 0, \dots, 0 \mid x \in \mathbb{F}\}$$

$$\vdots$$

$$U_{n} = \{0, 0, 0, \dots, x \mid x \in \mathbb{F}\}$$

Then, $\mathbb{F}^n = U_1 \oplus U_2 \oplus \cdots \oplus U_n$.

Proof 6. Note that $\mathbb{F}^n = U_1 + U_2 + \cdots + U_n$ is evident. Now, we'll prove that $U_1 + U_2 + \cdots + U_n$ is a direct sum. Consider $x = (x_1, x_2, \cdots, x_n) \in \mathbb{F}^n$. Assume that

$$x = (x_1, 0, \dots, 0) + \dots + (0, \dots, 0, x_n)$$
 and
$$x = (x'_1, 0, \dots, 0) + \dots + (0, \dots, 0, x'_n)$$
 ②

Then, from ①-②, we know that

$$0 = (x_1 - x_1', \dots, x_n - x_n') = (0, 0, \dots, 0).$$

Then, $\forall i=1,\cdots,n$ we have $x_i-x_i'=0$, or $x_i=x_i'$. Therefore, by definition, we know $U_1+\cdots+U_n$ is a direct sum.

Example 1.3.6 Let

$$U_1 = \{(x, y, 0) \mid x, y \in \mathbb{F}\}\$$

$$U_2 = \{(0, 0, z) \mid z \in \mathbb{F}\}\$$

$$U_3 = \{(0, y, y) \mid y \in \mathbb{F}\}\$$

Show that $U_1 + U_2 + U_3$ is not a direct sum.

Proof 7. Consider $(0,0,0) \in \mathbb{F}^3$. Note that

$$(0,0,0) = (0,0,0) + (0,0,0) + (0,0,0)$$

and

$$(0,0,0) = (0,1,0) + (0,0,1) + (0,-1,-1).$$

Then, $U_1 + U_2 + U_3$ is not a direct sum by definition.

Theorem 1.3.3

Suppose U_1, \dots, U_m are subspaces of V. Then, $U_1 + \dots + U_m$ is a direct sum if and only if the only way to write 0 as a sum $u_1 + \dots + u_m$ is by taking each $u_i = 0$.

1 VECTOR SPACES 1.3 Subspace

Proof 8.

 (\Rightarrow) Since $U_1 + \cdots + U_m$ is a direct sum, by definition, the only way to write $0 \in \mathbb{F}^n$ is to write it as

$$0 = 0 + \cdots + 0$$
 where $0 \in U_i \forall i = 1, \cdots, m$.

(\Leftarrow) Suppose the only way to write 0 as a sum $u_1 + \cdots + u_m$ is by taking each $u_j = 0$. Assume that for some $v \in V$, we have

$$v = u_1 + \dots + u_m, \quad u_j \in U_j$$
 ①

and
$$v = u'_1 + \dots + u'_m, \quad u'_j \in U_j$$
 ②.

Then, by ①-②, and according to the conclusion from Example 1.3.6, we have

$$0 = (u_1 - u_1') + \dots + (u_m - u_m') = 0 + \dots + 0.$$

So, $\forall i \in 1, \dots, m$, we have $u_i - u_i' = 0$. that is, $u_i = u_i'$. So, $\forall v \in V$, there is only one way to write v as a sum of $u_1 + \dots + u_n$. Therefore, by definition, $U_1 + \dots + U_m$ is a direct sum.

Theorem 1.3.4

Suppose U amd W are subspaces of V. Then, U+W is a direct sum if and only if $U\cap W=\{0\}$.

Proof 9.

 (\Rightarrow) Suppose U+W is a direct sum. Assume $v\in U\cap W$. Then, $v\in U$ and $v\in W$. By definition of subspace, we know $-v\in W$ as well. Note that

$$0 = v + (-v) \in U \cap W.$$

Then, by Theorem 1.3.4, we know that the only representation of $0 \in U \cap W$ is 0 = 0 + 0 since $U \cap W$ is a direct sum. Hence, it must be that v = -v = 0, and thus $U \cap W = \{0\}$.

(\Leftarrow) Suppose $U \cap W = \{0\}$. Let $u \in U$ and $w \in W$ s.t. u + w = 0. Then, we have u = -w. Since $-w \in W$, we know $u = -w \in W$. By $u \in U$ and $u \in W$, we know that $u \in U \cap W = \{0\}$. Therefore, 0 = 0 + 0 is the only to represent $0 \in U + W$. By Theorem 1.3.4, we know U + W is a direct sum.

Remark When extending Theorem 1.3.4 to 3 subspaces $U_1, U+2, U+3$, we cannot conclude $U_1 \oplus U_2 \oplus U_3$ if we have $U_1 \cap U_2 = U_1 \cap U_3 = U_2 \cap U_3 = \{0\}$. See Example 1.3.6 as a counter example.

2 Finite-Dimensional Vector Spaces

2.1 Span and Linear Independence

Notation 2.1 We usually write list of vectors without using parentheses.

Example 2.1.1 (4,1,6), (9,5,7) is a list of vectors of length 2 in \mathbb{R}^3 .

Definition 2.1.1 (Linear Combination). A *linear combination* of a list v_1, \dots, v_m of vectors in V is a vector of the form

$$a_1v_1 + \cdots + a_mv_m$$

where $a_1, \cdots, a_m \in \mathbb{F}$.

Example 2.1.2 Since (17, -4, 2) = 6(2, 1, -3) + 5(1, -2, 4), we say (17, -4, 2) is a linear combination of (2, 1, -3), (1, -2, 4).

Definition 2.1.2 (Span).

$$\operatorname{span}(v_1, \dots, v_m) = \{a_1v_1 + \dots + a_mv_m \mid a_1 \dots a_m \in \mathbb{F}\}.$$

Example 2.1.3 Consider span(e_1, e_2, e_3):

$$\operatorname{span}(e_1, e_2, e_3) = \{ a_1 e_1 + a_2 e_2 + a_3 e_3 \mid a_1, a_2, a_3 \in \mathbb{F} \}$$

$$= \{ (a_1, a_2, a_3) \mid a_1, a_2, a_3 \in \mathbb{F} \} = \mathbb{R}^3.$$

Theorem 2.1.1

The span of a list of vectors in V is the smallest subspace of V containing all the vectors in the list.

Proof 1. To prove this theorem, we will prove two parts: span is a subspace and span is the smallest subspace.

- 1. Span is a subspace of V.
 - (a) By definition of span, we know $\operatorname{span}(v_1, \dots, v_m) = \{a_1v_1 + \dots + a_mv_m \mid a_1, \dots, a_m \in \mathbb{F}\}$. If we set $a_1, \dots, a_m = 0$, then we have $0 = 0v_1 + \dots + 0v_m$. So, $0 \in \operatorname{span}(v_1, \dots, v_m)$.
 - (b) Let $a_1v_1 + \cdots + a_mv_m \in \operatorname{span}(v_1, \cdots, v_m)$ and $b_1v_1 + \cdots + b_mv_m \in \operatorname{span}(v_1, \cdots, v_m)$. Then,

$$(a_1v_1 + \dots + a_mv_m) + (b_1v_1 + \dots + b_mv_m) = (a_1 + b_1)v_1 + \dots + (a_m + b_m)v_m.$$

Since $(a_1+b_1), \dots, (a_m+b_m) \in \mathbb{F}$, we know $(a_1+b_1)v_1 + \dots + (a_m+b_m)v_m \in \operatorname{span}(v_1, \dots, v_m)$.

(c) Let $\lambda \in \mathbb{F}$ and $a_1v_1 + \cdots + a_mv_m \in \operatorname{span}(v_1, \cdots, v_m)$. Then,

$$\lambda(a_1v_1 + \dots + a_mv_m) = \lambda a_1v_1 + \dots + \lambda a_mv_m.$$

Since $\lambda a_1, \dots, \lambda a_m \in \mathbb{F}$, we know that $\lambda(a_1v_1 + \dots + a_mv_m) \in \operatorname{span}(v_1, \dots, v_m)$.

Therefore, we have proven that span is a subspace of V. \square

2. Now, we want to show that span is the smallest subspace.

Let U be a subspace of V containing v_1, \dots, v_m . If we can show that $\mathrm{span}(v_1, \dots, v_m) \subseteq U$, we then know span is the smallest subspace containing v_1, \dots, v_m . Since U is a subspace containing v_1, \dots, v_m , it is closed under addition and scalar multiplication. So, $a_1v_1 + \dots + a_mv_m \in \mathrm{span}(v_1, \dots, v_m)$. Therefore, $\mathrm{span}(v_1, \dots, v_m) \subseteq U$.

Definition 2.1.3 (Span as a Verb). If span $(v_1, \dots, v_m) = V$, we say v_1, \dots, v_m spans V.

Definition 2.1.4 (Finite-Dimensional Vector Space). A vector space V is called *finite-dimensional* if \exists a list of vectors, say v_1, \dots, v_m *s.t.* $\operatorname{span}(v_1, \dots, v_m) = V$. In the following of this notes, we will use F.D. as a shortcut for saying "finite-dimensional."

Definition 2.1.5 (Infinte-Dimensional Vector Space). A vector space V is infinite-dimensional if it is not F.D.. This is equivalent to say that \forall lists of vectors in V, they do not span V.

Definition 2.1.6 (Polynomial Functions). A function $p : \mathbb{F} \to \mathbb{F}$ is called a *polynomial* with coefficients in \mathbb{F} if $\exists a_0, \dots, a_m \in \mathbb{F}$ s.t. $p(z) = a_0 + a_1z + a_2z^2 + \dots + a_mz^m \quad \forall z \in \mathbb{F}$.

Notation 2.2 We use $\mathcal{P}(\mathbb{F})$ to denote the set of all polynomial with coefficients in \mathbb{F} .

Theorem 2.1.2

 $\mathcal{P}(\mathbb{F})$ is a vector space over \mathbb{F} .

Proof 2. Recall the definition of $\mathbb{F}^{\mathbb{F}}$. We will show $\mathcal{P}(\mathbb{F})$ is a subspace of $\mathbb{F}^{\mathbb{F}}$.

- 1. $0 = 0 + 0z + \cdots + 0z^m \in \mathcal{P}(\mathbb{F}).$
- 2. Suppose $p(z) = a_m z^m + \cdots + a_1 z + a_0$ and $q(z) = b_n z^n + \cdots + b_1 z + b_0 \in \mathcal{P}(\mathbb{F})$. WLOG, suppose m > n, then we have $p(z) + q(z) = a_m z^m + \cdots + (a_n + b_n) z^n + \cdots + (a_0 + b_0) \in \mathcal{P}(\mathbb{F})$.
- 3. Suppose $\lambda \in \mathbb{F}$. Then, $\lambda p(z) = \lambda (a_m z^m + \dots + a_1 z + a_0) = \lambda a_m z^m + \dots + \lambda a_0 \in \mathcal{P}(\mathbb{F})$.

Hence, we've shown $\mathcal{P}(\mathbb{F})$ is a subspace over \mathbb{F} .

Definition 2.1.7 (Degree of a Polynomial). A polynomial $p \in \mathcal{P}(\mathbb{F})$ is said to have *degree* m if \exists scalars $a_0, \dots, a_m \in \mathbb{F}$ with $a_m \neq 0$ *s.t.* $p(z) = a_m z^m + \dots + a_1 z + a_0 \quad \forall z \in \mathbb{F}$. We write $\deg p = m$. Specially, $\deg 0 := -\infty$ and $\deg a_0 := 0$ when $a_0 \neq 0$.

2.2 Bases

2.3 Dimension