Лабораторная работа 2.1.3 "Определение $\frac{C_p}{C_v}$ по скорость звука в газе"

Белов Михаил Б01-302 14 марта 2024 г.

Аннотация:

Цель лабораторной работы:

Измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу. Определение опказателя адиабаты с помощью уравнения состояния идеального газа.

В работе используются:

звуковой генератор, электронный осциллограф, микрофон, телефон, раздвижная труба, баллон со сжатым углекислым газом.

Теоретические сведения:

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ :

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где R – газовая постоянная, T – температура газа, μ – его молярная масса. преобразуя формулу получим:

$$\gamma = \frac{\mu}{RT}c^2 \ (1)$$

Звуковая волна, распространяющаяся вдоль трубы, испытыввает многократное отражение от торцов. Звуковые колебаия в труеб являются наложением всех отражённых волн и, вообще говоря, очень сложны. Картина упрощается, если длина труба L равна целому числу полуволн, то есть тогда:

$$L=n\frac{\lambda}{2},$$
 (2)

где λ — длина волны звука в трубе, а n — любое целое число. Если условие (2) выполнено, то волна, отражённая от торца трубы, вернувшаяся к её началу и вновь отражённая, совпадает по фазе с падающей. совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс. Скорость звука связана с его частотой f и его длиной волны λ соотношением:

$$c = \lambda f(3)$$

При неизменнной частоте f звукого генератора можно изменять длины трубы L, а значит менят число пучностей. Для этого применяетс яраздвижная труба. Для послежовательных резонансов имеем:

$$L_n = n\frac{\lambda}{2}, L_{n+1} = (n+1)\frac{\lambda}{2}, L_{n+k} = (n+k)\frac{\lambda}{2},$$

т.е. $\frac{\lambda}{2}$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k. скорость звука определиться по формуле (3).

Схема установки

Результаты измерений:

Для различных частот построим график зависимости резонансов от расстоняний между ними:

По углу наклона графиков определим величину $\frac{\lambda}{2}$ и оценим её погрешность по МНК, из формул (3) и (1) найдём значения скорсоти звука в газе и коэффициента аддиабаты:

частота, Нг	2600	2800	3000	3200	3400
k	0.0143	0.0165	0.0173	0.0177	0.0195
$\lambda/2,\mathrm{mm}$	69.9	60.6	57.8	56.5	51.3
$\delta \lambda$	1.7	0.3	1.7	1.9	2.7
c, m/c	364.0	339.4	346.8	362.0	349.07
δc	9.0	1.6	10.2	16.0	18.0
Cp/Cv	1.56	1.36	1.42	1.54	1.43
$\delta\gamma$	0.08	0.02	0.08	0.05	0.15

Повторим то же самое, заполнив трубу не воздухом, а углекислым газом:

частота, Нг	2000	3000
k	0.0159	0.0219
λ /2, mm	62.9	45.7
$\delta\lambda$	1.5	2.9
c, m/c	252.0	274.0
δc	6.0	17.4
Cp/Cv	1.13	1.34
$\delta\gamma$	0.05	0.17

Обсуждение результатов и вывод:

Таким образом мы нашли скорсть звука и показателя адиабаты в воздухе и углекислом газе.

Для воздуха мы получили значения $c=(352.0\pm 9.0) \frac{m}{c}$ и $\gamma=(1.46\pm 0.08).$

Для углекислого газа $c=(262.8\pm11.7)\frac{m}{c}$ и $\gamma=(1.23\pm0.12)$. Таким образом погрешность составила от 2 до 10 %, что можно считать хорошей точностью.