

PVSystem2 e InvControl2

Paulo Radatz Engineer/Scientist II – EPRI

2º Encontro do Grupo de Usuários do OpenDSS Brasil 20/01/2020

Visão Geral

- PVSystem2
 - Diagrama Esquemático
 - Dados de Entrada
 - Operação do Inversor
- InvControl2
 - Elemento de controle
 - Dados de Entrada
 - Funções Inteligentes
- Exemplos PVSystem2
- Exemplos PVSystem2 e InvControl2

Diagrama Esquemático

Dados de Entrada Painel

- Potência nominal do Painel: Pmpp
 - Potência definida para radiação de 1kW/m², temperatura nominal e operação no ponto de máxima potência
- Curva do fator de correção da potência gerada pelo painel em função de sua temperatura: P-TCurve

O fator de correção é unitário para a temperatura nominal

Dados de Entrada Inversor

- Potência aparente nominal do inversor: kVA
- Tensão AC nominal do inversor: kV
- Quantidade de fases do sistema: phases
- Conexão do sistema: conn
- Fator de potência de operação: PF
- Potência reativa fornecida/absorvida: kvar
- Limite de geração de potência ativa: %Pmpp
- Limite de "geração" de potência reativa: kvarMax
- Limite de "consumo" de potência reativa: kvarMaxAbj
- Possibilidade de operação noturna: VarFollowInverter
- Priorizar a potência ativa ou reativa: WattPriority
- Fixa o valor do fator de potência ao seu valor nominal: PFPriority

Quando kVA é excedido

Dados de Entrada Inversor

 O inversor é proibido de fornecer ou absorver potência reativa quando a sua potência ativa gerada for menor que esse valor:
 %PminNoVars

 O inversor pode fornecer ou absorver potência reativa em sua capacidade máxima kvarMax ou kvarMaxAbs, respectivamente, quando a sua potência ativa gerada for maior que esse valo:
 %PminkvarMax

Dados de Entrada Inversor

- Fornece potência ativa quando a potência DC é maior que um valor %kVA: %Cutin
- Não fornece potência ativa quando a potência DC é menor que um valor de %KVA: %Cutout
- Curva de eficiência do inversor: EffCurve

Simplificação no modelo: Considera-se sempre a mesma curva. No entanto, ela depende da tensão DC.

Dados de Entrada Condições de Operação

- SnapShot
 - Radiação de Operação: irradiance
 - Temperatura de Operação: Temperature
- Time-Series
 - Radiação de Base: irradiance
 - Curva diária de radiação: daily, yearly ou duty
 - Curva diária de temperatura: *Tdaily, Tyearly* ou *Tduty*

Operação do Inversor

Elemento de controle

Dados de Entrada Comuns

- Lista dos elementos PVSystem2 e ou Storage2 que são controlado: **DERList**
- Função inteligente: mode
- Função inteligente combinada: Combimode
- Tensão de base que é considerada para calcular a tensão monitorada em pu: voltage_curvex_ref
- Comprimento da janela móvel em escala de tempo: avgwindowlen
- Tolerância em pu da convergência do laço de controle associado a tensão monitorada: *VoltageChangeTolerance*
- Lista de barras com os seus nós que devem ser monitoradas: monBus
- Lista de tensões nominais das barras e seus nós presentes na lista da propriedade monBus: monBusesVbase
- Opções de calculo da tensão monitorada em V: monVoltageCalc

Dados de Entrada Controlam a Potência Reativa

- Define as potências de base para as potência reativa fornecida e absorvida: RefReactivePower
- Tolerância em pu da convergência do laço de controle associado a potência reativa: VarChangeTolerance
- deltaQ_factor

Dados de Entrada Limitam a Potência Ativa

- Tolerância em pu da convergência do processo de controle associado a potência ativa: ActivePChangeTolerance
- deltaP_factor

Funções Inteligentes Volt-Var

vvc_curve1

Funções Inteligentes Volt-Watt

- voltwatt_curve
- VoltwattYAxis

Funções Inteligentes **Outras**

- DRC
- VV-VW
- VV-DRC
- VW-PF

Equação do DRC

$$q_{Dfun}[t]_{j} = \begin{cases} -\Delta v_{mon_{drc}}[t]_{j} \times ArGraLowV \ se \ v_{mon_{drc}}[t]_{j} < DbvMin \\ -\Delta v_{mon_{drc}}[t]_{j} \times ArGraHiV \ se \ v_{mon_{drc}}[t]_{j} > DbvMax \\ 0, \ sen\~ao \end{cases}$$

Funções Inteligentes Em Desenvolvimento

Watt-PF

Watt-Var

Exemplo PVSystem2

Operação Normal

```
Clear

New Circuit.TheveninEquivalente bus1=A pu=1.0 basekv=13.8

~ Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]

New XYCurve.Eff npts=4 xarray=[.1 .2 .4 1.0] yarray=[1 1 1 1]

New XYCurve.FatorPvsT npts=4 xarray=[0 25 75 100] yarray=[1 1 1 1]

New PVSystem2.PV phases=3 bus1=A Pmpp=1000 kV=13.8 kVA=1200 conn=wye EffCurve=Eff

~ P-TCurve=FatorPvsT %Pmpp=100 Temperature=25 irradiance=1

Set voltagebases=[13.8]

Calcvoltagebases

set casename=SnapShot_Standard-PV2

Solve

Show Power kVA elements
```

$$P_{dc}[t] = Pmpp \times irradiance \times irradiance[t] \times PTCurve(Temperature[t])$$

$$P'_{ac}[t] = \begin{cases} 0, & \text{if the inverter status is OFF} \\ P_{LimitMin}[t], & \text{if } P_{dc}[t] \times EffCurve \ge P_{LimitMin}[t] \\ P_{dc}[t] \times EffCurve, & \text{otherwise} \end{cases}$$

$$P_{ac}[t] = P'_{ac}[t]$$

```
Power Conversion Elements
 Bus Phase
                    +j kvar
                                      kVA
                                                  PF
ELEMENT = "PVSystem2.PV"
             -333.3 +j
                          0.0
                                    333.3
                                               -1.0000
             -333.3 +i
                          0.0
                                    333.3
                                                1.0000
             -333.3 +j
                          0.0
                                    333.3
                                                1.0000
                0.0 + i
                          0.0
                                      0.0
                                                1.0000
 TERMINAL TOTAL -1000.0 +j
                                  0.0
                                          1000.0
```

DC-to-AC Ratio

```
Clear
```

Show Power kVA elements

```
New Circuit.TheveninEquivalente busl=A pu=1.0 basekv=13.8

~ Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]

New XYCurve.Eff npts=4 xarray=[.1 .2 .4 1.0] yarray=[1 1 1 1]

New XYCurve.FatorPvsT npts=4 xarray=[0 25 75 100] yarray=[1 1 1 1]

New PVSystem2.PV phases=3 busl=A Pmpp=2000 kV=13.8 kVA=1200 conn=wye EffCurve=Eff

~ P-TCurve=FatorPvsT Temperature=25 irradPance=0.8

Set voltagebases=[13.8]

Calcvoltagebases

set casename=DC-to-AC

DC-to-AC = Pmpp x 0.01/kVA = 2000/1200 = 1.66

Solve
```


Limite

Operação Limitada pela capacidade do Inversor

```
Clear
New Circuit. Thevenin Equivalente busl=A pu=1.0 basekv=13.8
~ Z0=[0.000000001, 0.000000001] Z1=[0.000000001, 0.000000001]
New XYCurve.Eff npts=4 xarray=[.1 .2 .4 1.0] yarray=[1 1 1 1]
New XYCurve.FatorPvsT npts=4 xarrav=[0 25 75 100] varrav=[1 1 1 1]
New Loadshape.Irrad npts=24 interval=1
~ mult=[0 0 0 0 0 0 .1 .2 .3 .5 .8 .9 1.0 1.0 .99 .9 .7 .4 .1 0 0 0 0 0]
New Tshape.Temp npts=24 interval=1
~ temp=[25 25 25 25 25 25 25 25 25 35 40 45 50 60 60 55 40 35 30 25 25 25 25 25 25]
New PVSvstem2.PV phases=3 busl=A Pmpp=1000 kV=13.8 kVA=1010 conn=wve effcurve=Eff pf=0.9
~ P-TCurve=FatorPvsT %Pmpp=100 irradiance=1 dailv=Irrad Tdailv=Temp pfprioritv=no
~ wattpriority=no
New Monitor.PV currents element=PVSystem2.PV terminal=1 mode=0
New Monitor.PV powers element=PVSystem2.PV terminal=1 mode=1 ppolar=no
                                                                                          Nova
New Monitor.PV s element=PVSystem2.PV terminal=1 mode=1
                                                                                      propriedade
Set voltagebases=[13.8]
Calcvoltagebases
set casename=Daily varP kvarlimitation-PV2
Set mode=dailv
Set stepsize=lh
Set number=24
Solve
```

Operação Limitada pela capacidade do Inversor –

Prioridade P

Operação Limitada pela capacidade do Inversor –

Prioridade Q

Reduzido

Operação Limitada pela capacidade do Inversor – Prioridade FP

Novas capacidades de Potência Reativa

```
New Circuit.TheveninEquivalente bus1=A pu=1.0 basekv=13.8
~ Z0=[0.00000001, 0.00000001] Z1=[0.000000001, 0.000000001]

New XYCurve.Eff npts=4 xarray=[.1 .2 .4 1.0] yarray=[1 1 1 1]

New XYCurve.FatorPvsT npts=4 xarray=[0 25 75 100] yarray=[1 1 1 1]

New PVSystem2.PV phases=3 bus1=A Pmpp=1000 kV=13.8 kVA=1200 conn=wye EffCurve=Eff
~ P-TCurve=FatorPvsT %Pmpp=100 Temperature=25 kvarMax=200 kvarMaxAbs=300 kvar=500 %cutout=0.1

Set voltagebases=[13.8]
Calcvoltagebases
set casename=PV_currentkvarLimit_kvar

Set maxcontroli=2000
```


Clear

Novas capacidades de Potência Reativa

%CutInAC < %PminNoVars

%PminkvarMax = 60% (600kW)

%PminNoVars = 40% (400kW)

CutInAC = CutIn/eff(Pdc) = 16.666% of kVA (200kW)/eff(Pdc)

Novas capacidades de Potência Reativa

Exemplo PVSystem2 e InvControl2

Volt-Var - Resultados

Resultados do monitor no modo 3

Voltage used in the voltvar curve

VV DRC

kW out desired

-watt DRC

hour	t(sec)	Irradiance	PanelkW	P_TFactor	Efficiency	Vreg 🛧	Vavg (DRC)	volt-var	vol
1	0	0	0	1	1	0.999973	9999	\ 0	
2	0	0	0	1	1	0.999983	9999	Q	
3	0	0	0	1	1	0.999989	9999	0	
4	0	0	0	1	1	0.999993	9999	0	
5	0	0	0	1	1	0.999994	9999	0	
6	0	0	0	1	1	0.999995	9999	0	
7	0	0.1	100	1	1	0.999996	9999	0	
8	0	0.2	200	1	1	0.999997	9999	0	
9	0	0.3	300	1	1	1.00863	9999	-1	
10	0	0.5	500	1	1	1.01419	9999	-1	
11	0	0.8	800	1	1	1.02225	9999	-1	
12	0	0.9	900	1	1	1.02487	9999	-1	
13	0	1	1000	1	1	1.02746	9999	-1	
14	0	1	1000	1	1	1.02746	9999	-1	
15	0	0.99	990	1	1	1.02719	9999	-1	
16	0	0.9	900	1	1	1.02487	9999	-1	
17	0	0.7	700	1	1	1.0196	9999	-1	
18	0	0.4	400	1	1	1.01143	9999	-1	
19	0	0.1	100	1	1	0.999982	9999	0	
20	0	0	0	1	1	0.999988	9999	0	
21	0	0	0	1	1	0.999992	9999	0	
22	0	0	0	1	1	0.999994	9999	0	
23	0	0	0	1	1	0.999995	9999	0	
24	0	0	0	1	1	0.999996	9999	0	

Negative value: var absorption

Positive value: var generation

1.0: volt-var operating as it supposed to

0.6: volt-var limited by inverter's kVA rating

0.2: volt-var limited by varmax/varmaxabs property of the PC element

Volt-Var – Capacidade do Inversor superada com prioridade P

Volt-Var – Limite de var

Volt-Watt

 Opera quando a potência em pu está fora da área definida pela curva volt-watt

Volt-watt

Monitorando outras barras

```
New PVSystem2.PV phases=3 bus1=C Pmpp=2000 kV=0.48 kVA=2400 conn=wye EffCurve=Eff
~ P-TCurve=FatorPvsT %Pmpp=100 irradiance=1 daily=Irrad Tdaily=Temp

New XYcurve.generic npts=5 yarray=[1 1 0 -1 -1] xarray=[0.5 0.92 1.0 1.05 1.5]

New InvControl2.VV_DRC CombiMode=VV_DRC voltage_curvex_ref=avg avgwindowlen=2s
~ DbVMin=1 DbVMax=1 ArGraLowV=50 arGraHiV=50 DynReacavgwindowlen=2s
~ vvc_curve1=generic deltaQ_factor=0.1 RefReactivePower=VARMAX varchangetolerance=0.001
~ monVoltageCalc=MAX MonBus=[A.1.2 A.2 C.1.2 C.2] monBusesVbase=[13800 7967.433415 480 277.128129]
```

www.epri.com

Materiais de suporte

- PVSytem2 and InvControl2 doc:
 https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/InverterModels/PVSystem2/PVSystem2_I_
- DSS examples:

nvControl2.pdf

https://sourceforge.net/p/electricdss/code/HEAD/tree/trunk/Version8/Distrib/Examples/InverterModels/PVSystem2/

Together...Shaping the Future of Electricity