SC1015 MINI PROJECT Team 6

VEDA HO YONG QIAN (U2321709B)
TIFFANY MUN (U2330399H)
WANG LI LING KATIE (U2322083J)

INSPIRATION

Parents hunt for laptops, deal with distracted kids on first day of ongoing home-based learning

MOE lends 3,300 devices to students who need them for home-based learning amid Covid-19 pandemic

All secondary school students to get personal laptop or tablet for learning by 2021: Tharman

IT WAS REPORTED

98% of students need laptops in singapore!

PROBLEM STATEMENT

Students find it difficult to determine the price of a laptop with their wanted specifications given the large amount of information

AIM

Aid decision-making for students by estimating the cost of laptops based on required specifications

DATA SET Kaggle

Laptop Prices Based on its specifications

Exploring the Relationship Between Laptop Features and Pricing Trends

Variables laptop_ID, Company, Product, TypeName, Inches, ScreenResolution, Cpu, Ram, Memory, Gpu, OpSys, Weight, Price_euros, Price_SGD

Check if there are any null values

```
1 # Check if there is any NULL values in laptop data
In [5]: ▶
              2 laptop_data.isnull().sum()
   Out[5]: laptop_ID
                                0
            Company
                                0
            Product
                                0
            TypeName
            Inches
            ScreenResolution
            Cpu
            Ram
            Memory
                                0
            Gpu
            OpSys 

            Weight
            Price euros
            Price_SGD
            dtype: int64
```

Check if there are duplicates

```
In [6]: H  # Check if there is any duplicates in laptop data
2 laptop_data.duplicated().sum()
Out[6]: 0
```

Raw data

]: 	laptop_ID	Company	Product	TypeName	Inches	ScreenResolution	Cpu	Ram	Memory	Gpu	OpSys	Weight	Price_euros	Price_SGD
0	1	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 2.3GHz	8GB	128GB SSD	Intel Iris Plus Graphics 640	macOS	1.37kg	1339.69	1955.9474
1	2	Apple	Macbook Air	Ultrabook	13.3	1440x900	Intel Core i5 1.8GHz	8GB	128GB Flash Storage	Intel HD Graphics 6000	macOS	1.34kg	898.94	1312.4524
2	3	HP	250 G6	Notebook	15.6	Full HD 1920x1080	Intel Core i5 7200U 2.5GHz	8GB	256GB SSD	Intel HD Graphics 620	No OS	1.86kg	575.00	839.5000
3	4	Apple	MacBook Pro	Ultrabook	15.4	IPS Panel Retina Display 2880x1800	Intel Core i7 2.7GHz	16GB	512GB SSD	AMD Radeon Pro 455	macOS	1.83kg	2537.45	3704.6770
4	5	Apple	MacBook Pro	Ultrabook	13.3	IPS Panel Retina Display 2560x1600	Intel Core i5 3.1GHz	8GB	256GB SSD	Intel Iris Plus Graphics	macOS	1.37kg	1803.60	2633.2560

Cleaned data

In [11]: 📕	1 lapt	ор_	data.hea	d()									
Out[11]:	laptop_	ĮID	Company	Inches	ScreenResolution	Cpu	Ram	Memory	Gpu	Op S ys	Weight	Price_SGD	Touch Screen
	0	1	Apple	13.3	2560×1600	2.3	8	128	Intel	macOS	1.37	1955.95	False
	1	2	Apple	13.3	1440×900	1.8	8	128	Intel	macOS	1.34	1312.45	False
	2	3	HP	15.6	1920×1080	2.5	8	256	Intel	No OS	1.86	839.50	False
	3	4	Apple	15.4	2880x1800	2.7	16	512	AMD	macOS	1.83	3704.68	False
	4	5	Apple	13.3	2560×1600	3.1	8	256	Intel	macOS	1.37	2633.26	False

UNI-VARIATE BOX-PLOT OF LAPTOP PRICES

MEDIAN PRICE OF LAPTOPS = \$1400

CATEGORICAL PREDICTORS AND PRICE

SCREEN RESOLUTION

OPERATING SYSTEMS

CATEGORICAL PREDICTORS AND PRICE

SCREEN RESOLUTION

GPU VS PRICE

NO. OF UNIQUE GPU:4

Gpu Count
Intel 678
Nvidia 390
AMD 148

ARM

GPU VS PRICE

TOUCHSCREEN VS PRICE

FALSE: 1025 TRUE: 192

TOUCHSCREEN VS PRICE

NUMERICAL PREDICTORS

Out[32]:		Inches	Cpu	Ram	Memory	Weight	Price_SGD
	count	1217.00	1217.00	1217.00	1217.00	1217.00	1217.00
	mean	14.97	2.30	8.61	229.37	2.03	1696.93
	std	1.45	0.51	5.14	172.82	0.68	1021.17
	min	10.10	0.90	2.00	1.00	0.69	254.04
	25%	14.00	1.80	4.00	128.00	1.49	959.22
	50%	15.60	2.50	8.00	256.00	2.02	1477.51
	75%	15.60	2.70	8.00	256.00	2.31	2188.54
	max	18.40	3.60	64.00	512.00	4.70	8904.54

CORRELATION MATRIX

- ALL NUMERICAL VARIABLES ARE POSITIVELY RELATED TO THE PRICE OF LAPTOPS.
- RAM (0.73) HAS THE HIGHEST CORRELATION TO PRICE.

INSIGHTS FOR CATEGORICAL PREDICTORS

GPU AND TOUCHSCREEN HAVE GREATEST CORRELATION TO PRICE

INSIGHTS FOR NUMERICAL PREDICTORS

STEP 3: PREDICTION OF PRICE

MACHINE LEARNING MODELS

train - test data split: 75-25

ENCODING CATEGORAL VARIABLES

BEFORE:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1217 entries, 0 to 1216
Data columns (total 12 columns):
     Column
                       Non-Null Count
#
                                       Dtype
                                       int64
    laptop_ID
                       1217 non-null
                                       object
    Company
                       1217 non-null
                                       float64
    Inches
                       1217 non-null
    ScreenResolution
                                       object
                       1217 non-null
                                       float64
                       1217 non-null
    Cpu
                                       int32
                       1217 non-null
    Ram
                                       int32
    Memory
                       1217 non-null
                       1217 non-null
                                       object
    Gpu
                       1217 non-null
                                       object
    0pSys
                                       float64
    Weight
                       1217 non-null
 9
    Price SGD
                                       float64
                       1217 non-null
    TouchScreen
                       1217 non-null
                                       object
dtypes: float64(4), int32(2), int64(1), object(5)
memory usage: 104.7+ KB
```

AFTER:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1217 entries, 0 to 1216
Data columns (total 55 columns):
   Column
                                Non-Null Count Dtype
    Inches
                                               float64
                                1217 non-null
                               1217 non-null
                                               float64
    Ram
                                               int32
                                1217 non-null
                                               int32
                                1217 non-null
                                               float64
                                1217 non-null
                                               float64
    Company Acer
                               1217 non-null
    Company Apple
                               1217 non-null
                                               float64
                                1217 non-null
                                               float64
    Company Asus
                                               float64
    Company_Chuwi
                                1217 non-null
    Company Dell
                               1217 non-null
                                               float64
    Company Fujitsu
                                               float64
                                1217 non-null
   Company_Google
                                               float64
                               1217 non-null
12 Company HP
                                               float64
                               1217 non-null
13 Company Huawei
                               1217 non-null
                                               float64
14 Company LG
                               1217 non-null
                                               float64
                               1217 non-null
                                               float64
15 Company_Lenovo
                                               float64
16 Company MSI
                               1217 non-null
   Company_Mediacom
                                1217 non-null
                                               float64
18 Company_Microsoft
                                               float64
                               1217 non-null
   Company_Razer
                                1217 non-null
                                               float64
   Company Samsung
                               1217 non-null
                                               float64
21 Company Toshiba
                               1217 non-null
                                               float64
22 Company Vero
                               1217 non-null
                                               float64
23 Company Xiaomi
                                1217 non-null
                                               float64
24 ScreenResolution 1366x768
                               1217 non-null
                                               float64
   ScreenResolution 1440x900
                               1217 non-null
                                               float64
   ScreenResolution 1600x900
                               1217 non-null
                                               float64
    ScreenResolution 1920x1080 1217 non-null
                                               float64
   ScreenResolution 1920x1200 1217 non-null
                                               float64
   ScreenResolution 2160x1440 1217 non-null
                                               float64
   ScreenResolution 2256x1504 1217 non-null
                                                float64
31 ScreenResolution_2304x1440 1217 non-null
                                               float64
32 ScreenResolution_2400x1600 1217 non-null
                                               float64
33 ScreenResolution_2560x1440 1217 non-null
                                               float64
34 ScreenResolution_2560x1600 1217 non-null
                                               float64
```

LINEAR REGRESSION MODEL

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE)

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE)

Train Dataset : 0.7456667335456566 : 233895.502910667 : 483.62744226384325

Test Dataset : 0.716789044543215 : 396928.8821022894 : 630.0229218864099

LASSO REGRESSION MODEL

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE)

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE) Train Dataset

: 0.745555813824818 : 233997.5093223721 : 483.73289046990806

Test Dataset

: 0.7161956985325821 : 397760.4748220006 : 630.6825467872094

GRADIENT BOOSTING REGRESSION

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE)

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE)

Train Dataset : 0.8808627685801075

: 109563.5779259831 : 331.00389412510407

Test Dataset

: 0.7576485112568716 : 339663.0802910943 : 582.8062116099093

RANDOM FOREST

```
params = {
    'max_depth': [2, 3, 5, 10, 20],
    'min_samples_leaf': [5, 10, 20, 50, 100, 200],
    'n_estimators': [10, 25, 30, 50, 100, 200]
}
```

grid search

- test all combinations of the parameters
- optimise model for predicting price

RANDOM FOREST

	Varname	Imp
2	Ram	0.608318
4	Weight	0.150154
1	Cpu	0.097437
3	Memory	0.031591
0	Inches	0.022639
27	ScreenResolution_1920x1080	0.016083
50	0pSys_Windows 7	0.014256
39	Gpu_AMD	0.007895
12	Company_HP	0.005899
24	ScreenResolution_1366x768	0.005823
9	Company_Dell	0.005401
7	Company_Asus	0.004982

features ranked based on importance!

RANDOM FOREST

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE)

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE) : 641.3573170326831

Train Dataset

: 0.8611577463016726 : 127685.14007918959 : 357.3305753489191

Test Dataset

: 0.7065071971355441 : 411339.2081113616

STEP 4: INSIGHTS OF ALL MODELS

PREDICTED PRICE

ACTUAL PRICE: \$1955.95

Models	Predicted Price	Percentage Error
linear regression	2335.84	19.42%
Lasso	2309.87	18.09%
GBR	1948.64	0.37%
Random Forest	2063.90	5.52%

COMPARISON

	MSE	R2	RMSE
linear regression	396928.88	0.7168	630.02
Lasso	397760.47	0.7161	630.68
GBR	339663.08	0.7576	582.81
Random forest	411339.21	0.707	641.36

0.757

INSIGHTS: BEST MODEL

	MSE	R2	RMSE
GBR	339663.08	0.7576	582.81
	LOWEST	HIGHEST	LOWEST

STEP 5: REMOVING OUTLIERS TO TEST GBR MODEL

REMOVING OUTLIERS IN DATASET

Shape of DataFrame before removing Outliers: (1217, 55) Shape of DataFrame after removing Outliers: (1182, 55)

REDUCED BY 35 ROWS

GRADIENT BOOSTING REGRESSION -REMOVED OUTLIERS

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE)

Goodness of Fit of Model Explained Variance (R^2) Mean Squared Error (MSE) Root Mean Squared Error (RMSE) : 388.0378547567897

Train Dataset

: 0.8644329008584486 : 95731.18347040856 : 309.4045627821422

Test Dataset

: 0.8043662584351455 : 150573.37672425146

INSIGHTS

	MSE	R2	RMSE
BEFORE	339663.08	0.7576	582.81
AFTER	150573.38	0.8044	388.04

ACCURACY IS IMPROVED

CONCLUSION

- FROM OUR EXPLORATORY ANALYSIS, GPU, PRESENCE OF TOUCHSCREEN AND RAM HAVE THE GREATEST CORRELATION TO PRICE.
- IN THE PREDICTION OF PRICE, THE GRADIENT BOOSTING REGRESSION MODEL IS THE BEST MODEL

ANNEX