I. Glavatskyi @ Ironhack

Mid BootCamp Project "Credit card customers classification"

Extracting criteria for acceptance of the credit card offer to better target the banks politics and identify potential customers

Uses: Python.Pandas, SQL, Matplotlib, Seaborn, Numpy, Getpass, SQLAlchemy

Data overview:

	Customer Number	Offer Accepted	Reward	Mailer Type	Income Level	# Bank Accounts Open	Overdraft Protection	Credit Rating	Credit Cards Held	# Homes Owned	Household Size	Own Your Home	Average Balance	Q1 Balance	Q2 Balance	Q3 Balance
0	1	No	Air Miles	Letter	High	1	No	High	2	1	4	No	1160.75	1669.0	877.0	1095.0
1	2	No	Air Miles	Letter	Medium	1	No	Medium	2	2	5	Yes	147.25	39.0	106.0	78.0
2	3	No	Air Miles	Postcard	High	2	No	Medium	2	1	2	Yes	276.50	367.0	352.0	145.0
3	4	No	Air Miles	Letter	Medium	2	No	High	1	1	4	No	1219.00	1578.0	1760.0	1119.0
4	5	No	Air Miles	Letter	Medium	1	No	Medium	2	1	6	Yes	1211.00	2140.0	1357.0	982.0
	11.	222	222	1221		0.22	222	202					220	7221		
17995	17996	No	Cash Back	Letter	High	1	No	Low	1	1	5	Yes	167.50	136.0	65.0	71.0
17996	17997	No	Cash Back	Letter	High	1	No	Low	3	1	3	Yes	850.50	984.0	940.0	943.0
17997	17998	No	Cash Back	Letter	High	1	No	Low	2	1	4	No	1087.25	918.0	767.0	1170.0
17998	17999	No	Cash Back	Letter	Medium	1	No	Medium	4	2	2	Yes	1022.25	626.0	983.0	865.0
17999	18000	No	Cash Back	Letter	Low	2	No	Medium	2	1	3	No	1056.00	265.0	1378.0	1978.0

18000 rows × 17 columns

Initial preparation

- nan_percentage = (df.isna().sum() / len(df)) * 100 -> average_balance 0.13% Dropped.
- Checked column types and adjusted to proper ->
- Created the DB with a table and dropped irrelevant data (Q4 balance)
- Checked the values of ordinal columns to ensure if standardization is necessary:

```
Column 'offer_accepted' has unique values: ['No' 'Yes']
Column 'reward' has unique values: ['Air Miles' 'Cash Back' 'Points']
Column 'mailer_type' has unique values: ['Letter' 'Postcard']
Column 'income_level' has unique values: ['High' 'Medium' 'Low']
Column 'overdraft_protection' has unique values: ['No' 'Yes']
Column 'credit_rating' has unique values: ['High' 'Medium' 'Low']
Column 'own_your_home' has unique values: ['No' 'Yes']
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17976 entries, 0 to 17975
Data columns (total 17 columns):

ala	COLUMNIS (COCAL 17 COLO	ulli 15).	
#	Column	Non-Null Count	Dtype
0	customer_number	17976 non-null	int64
1	offer_accepted	17976 non-null	object
2	reward	17976 non-null	object
3	mailer_type	17976 non-null	object
4	income_level	17976 non-null	object
5	bank_accounts_open	17976 non-null	int64
6	overdraft_protection	17976 non-null	object
7	credit_rating	17976 non-null	object
8	credit_cards_held	17976 non-null	int64
9	homes_owned	17976 non-null	int64
10	household_size	17976 non-null	int64
11	own_your_home	17976 non-null	object
12	average_balance	17976 non-null	float64
13	q1_balance	17976 non-null	float64
14	q2_balance	17976 non-null	float64
15	q3_balance	17976 non-null	float64
16	q4_balance	17976 non-null	float64
type	es: float64(5), int64(5), object(7)	

Strategy

Summary Statistics: Calculate summary statistics for relevant columns, such as average_balance, income_level, credit_cards_held, household_size, and others. Compare the statistics between customers who accepted the offer (offer_accepted = 'Yes') and those who didn't (offer_accepted = 'No'). Look for differences that may indicate criteria.

Visualization (EDA): Create visualizations like histograms, box plots, or bar plots to compare the distribution of numerical and categorical variables between the two groups (accepted vs. rejected offers).

Correlation Analysis: Calculate correlations between numerical variables and the offer_accepted column. This can help you identify variables that are strongly correlated with offer acceptance.

Feature Importance: to build a predictive model it is important to identify feature importance or logistic regression to determine which features are most influential in predicting offer acceptance.

Machine Learning Models: If you have additional data or features, you can train machine learning models to predict offer acceptance. Analyze the feature importances of these models to understand which factors are significant.

Investigating the data

- #10.1 Average Balance of All Customers by Income: [('High', 942.6), ('Medium', 940.9), ('Low', 937.7)] <u>difference neglectable</u>
- #10.2 Average balance of customers grouped by Income Level:

 Average Balance of All Customers by # Bank Accs: [(1, 941.5), (2, 936.5), (3, 948.3)] insignificant
- #10.3 Average balance of customers grouped by Income Level:

 Average Balance of All Customers by # Bank Accs: [(1, 941.5), (2, 936.5), (3, 948.3)] <u>insignificant</u>
- Selected a view of customers with the following properties:

(4949 <u>rows × 17 columns)</u>

- Credit rating medium or high &- Credit cards held 2 or less &
- Owns their own home &
- Household size 3 or more

And selected customers whose average balance is less

in the database:

1927 rows × 17 columns

Find out credit card acceptance criteria

- Filter only those accepted: 1021 entries
- Customers with medium-high ratings have clearly more money on the balance, as expected
- Communication is important: among the customers who accepted the offer, 721 were addressed by Postcards, while 300 by Letter.

Problems encountered:

- 1. Data is very imbalanced with only ~6% "YES" vs 94% "NO"
- 2. Hard to identify criteria because of #1 and obviously subjective human factors playing important role. we can consider this as random noise over low signal.

Tried Random Forest for feature extraction, but <u>failed to build the model.</u>

Thank you for your attention!