Aprendizado de Máquina

Aula 7: Algoritmos baseados em probabilidade (parte 2)

André C. P. L. F de Carvalho ICMC/USP andre@icmc.usp.br

Tópicos a serem abordados nesta parte

- Aproximação de funções
- Tarefas de regressão
- Regressão linear simples

Introdução

- Regressão é uma das principais tarefas preditivas
- Objetivo:
 - o Aprender (aproximar) uma função que associa:
 - A descrição de um objeto, vetor de valores, conjunto de variáveis independentes (atributos preditivos), a
 - Um valor real de uma variável dependente (atributo alvo) que rotula o objeto
 - Que pode ser utilizada para prever, com boa capacidade preditiva, o rótulo de um novo objeto

- Procura uma função hipótese que se ajuste aos dados disponíveis
 - o Permite prever o valor de saída para um novo objeto
 - Representado por um vetor de valores de entrada
 - o Supor que você estudou 9 horas para a prova

- Procura uma função hipótese que se ajuste aos dados disponíveis
 - o Permite prever o valor de saída para um novo objeto
 - Representado por um vetor de valores de entrada
 - Supor que você estudou 9 horas para a prova

- Alternativa mais simples: aproximar por uma função linear
 - Função linear: Coeficiente angular
 Coeficiente linear
 - Descobrir valor de a e de b
 - Se você estudou 9 horas (x=9)
 - Sua nota será 5,0 (f(x)=5)

- o Função linear pode ser usada para prever valor da nota
 - Tarefa de regressão

- Alternativa mais simples: aproximar por uma função linear
 - Função linear: Coeficiente angular
 Coeficiente linear
 - Descobrir valor de a e de b
 - Se você estudou 9 horas (x=9)
 - Sua nota será 5,0 (f(x)=5)

- o Função linear pode ser usada para prever valor da nota
 - Tarefa de regressão

- Buscam função de regressão que melhor se aproxime aos dados
 - Minimizando o erro para todo o conjunto de dados
 - o Algoritmo de **regressão linear** ajuda a encontrar esta função (hipótese, modelo)

```
h_{\beta}(x) = \beta_0 + \beta_1 x_1 + \varepsilon (f(x) = ax + b)
```

onde:

 β_j é o j^{ésimo} parâmetro (j = 1,...,d)

 eta_0 é o termo de interceptação

 x_1 é a variável independente

 ε é o termo residual (ruído, erro de estimação da função verdadeira)

- Buscam função de regressão que melhor se aproxime aos dados
 - Minimizando o erro para todo o conjunto de dados
 - o Algoritmo de **regressão linear** ajuda a encontrar esta função (hipótese, modelo)

$$h_{\beta}(x) = \beta_0 + \beta_1 x_1 \text{ (f(x) = ax + b)}$$

onde:

 β_j é o j^{ésimo} parâmetro (j = 1,...,d) β_0 é o termo de interceptação x_1 é a variável independente

- Buscam função de regressão que melhor se aproxime aos dados
 - Minimizando o erro para todo o conjunto de dados
 - o Algoritmo de **regressão linear** ajuda a encontrar esta função (hipótese, modelo)

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 \quad (f(x) = ax + b)$$

onde:

 θ_i é o j^{ésimo} parâmetro (j = 1,...,d)

 $heta_0$ é o termo de interceptação

 x_1 é a variável independente

- Buscam função de regressão que melhor se aproxime aos dados
 - Minimizando o erro para todo o conjunto de dados
 - o Algoritmo de **regressão linear** ajuda a encontrar esta função (hipótese, modelo)

```
h_{\rm w}(x)={
m w}_0+{
m w}_1x_1 onde: {
m w}_j é o j<sup>ésimo</sup> parâmetro (j = 1,...,d) {
m w}_0 é o termo de interceptação {
m x}_1 é a variável independente
```


- Necessário encontrar valores dos parâmetros $w_0 e w_1$ que minimizem o erro da função hipótese $h_w(x) = w_0 + w_1 x$
 - o $h_w(x)$: função linear
 - o w₀: coeficiente linear da reta
 - o w₁: coeficiente angular da reta
- Erro cometido pela função hipótese pode ser estimado por uma função de custo $J(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n \left(y^i h_{\rm w}(x^i) \right)^2$

- Necessário encontrar valores dos parâmetros $w_0 e w_1$ que minimizem o erro da função hipótese $f(x) = w_0 + w_1 x$
 - o f(x): função linear
 - o w₀: coeficiente linear da reta
 - o w₁: coeficiente angular da reta
- Erro cometido pela função hipótese pode ser estimado por uma função de custo $J(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n \left(y^i f(x^i) \right)^2$

Aprendizado

- Buscam minimizar função de custo
 - Achar valores de w ($w_0 e w_1$) que gerem a função J(w) de menor custo (taxa de erro)
 - Pode ser ilustrado por um gráfico que mostra a relação entre valores de parâmetros e valor do erro

Aproximação da função hipótese

- Minimizar erro quadrático médio (MSE, Mean Squared Error)
 - Média da área dos quadrados entre saída real (y^i) e saída estimada $(f(x^i))$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y^{i} - f(x^{i}))^{2}$$

Trabalhamos com duas funções

• Função hipótese:

o
$$f(x) = 2 + w_1 x_1$$
 (seja w_0 fixo, = 2)

$$f(x) = 2 + 0.9x$$

Função de custo:

$$\circ$$
 J(0,9) = 0 + 0 + 0 + 0 = 0

Trabalhamos com duas funções

• Função hipótese:

o
$$f(x) = 2 + w_1 x_1$$
 (seja w_0 fixo, = 2)

$$f(x) = 2 + 0.9x$$

• Função de custo:

$$0 J(w_1) = \frac{1}{n} \sum_{i=1}^{n} (y^i - f(x^i))^2$$

$$\circ \quad J(0,9) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} / 4 = 1$$

Avaliando diferentes valores de W₁

- Função hipótese:
 - o $f(x) = 2 + w_1 x_1$ (seja w_0 fixo, = 2)
 - Diversos valores de w₁ (várias funções)

- Função de custo:
 - \circ Calculada para cada valor de w_1

$$O J(w_1) = \frac{1}{n} \sum_{i=1}^{n} (y^i - f(x^i))^2$$

Avaliando diferentes valores de W₁

- Função hipótese:
 - o $f(x) = 2 + w_1 x_1$ (seja w_0 fixo, = 2)
 - Diversos valores de w₁ (várias funções)

- Função de custo:
 - \circ Calculada para cada valor de w_1

$$f(x) = 28$$

$$f(x) = 26 + 0.5x$$

$$f(x) = 22 + x$$

$$f(x) = 20 + 1.5x$$

Sumarizando

- Regressão linear simples
- Função hipótese: $h_w(x) = w_0 + w_1 x$ ou $f(x) = w_0 + w_1 x$
- Parâmetros: w_0 , w_1
- Função custo: $J(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y^i f(x^i))^2$
 - Para simplificar cálculos, pode ser usada a função $J(w_0, w_1) = \frac{1}{2n} \sum_{i=1}^{n} (y^i f(x^i))^2$
- Objetivo: $\min_{w_0 w_1} J(w_0, w_1)$

Continua no próximo vídeo e conjunto de slídes

