

Inhalt

- Grundlagen
 - Historie
 - Bauformen
 - Aufbau (2-Dioden-Modell)
 - Weg der Ladungsträger
 - Planartransistor
 - Gleichstromverstärkung
- Kennlinien, Grenzwerte und Arbeitsbereiche
- Grundschaltungen, Kleinsignalbetrachung und Arbeitspunkt
- Emitterschaltung
- Kollektor- und Basisschaltung
- Differenzverstärker

Von der Elektronenröhre bis zum Transistor

ab ca. 1960

heute

Auslöser einer technologischen Revolution:

W. Brattain, W. Shockley und J. Bardeen bauen den ersten Transistor.

(Bell Labs 3

Bell Labs 33

Bauformen von diskreten* Transistoren

* diskrete Transistoren: Einzeltransistoren (im Gegensatz zu integrierten Transistoren in Ics)

Einteilung nach:

- Einsatzzweck (Verstärkung, Schaltanwendung)
- Belastbarkeit (Kleinsignaltypen, Leistungstypen)
- Frequenzbereich (NF, HF und UHF)

Aufbau (2-Dioden-Modell)

Der Bipolartransistor (engl. bipolar junction transistor; BJT) ist ein aktives (= verstärkendes) Bauelement mit drei Zonen, die abwechselnd n- bzw. p-dotiert sind.

Aktiver Normalbetrieb:

Ein NPN-Transistor wird üblicherweise so betrieben, dass ...

3 Spannungen:
$$U_{CE} = U_{CB} + U_{BE}$$

2 "unabhängige": U_{BE} , U_{CE}

3 Ströme:
$$I_E = I_C + I_B$$

2 "unabhängige": I_B , I_C

- der Emitter (E) auf einem niedrigen Potential liegt,
- der Kollektor (C) auf einem hohen
- und die Basis (B) so, dass die Basis-Emitter-Diode leitet.

Schleusentormodell

Die Basis wirkt als Steuerelektrode:

Elektronik 1

Grundversuch: Bipolartransistor

Normalbetrieb in Emitterschaltung:

Basisstromkreis (steuernd)

Kollektorstromkreis (gesteuert)

Ein kleiner Basisstrom verursacht einen um den Faktor B größeren Kollektorstrom: $I_C = B \cdot I_B$

Grundversuch – zwei Stromkreise

Einfache Ersatzschaltung für Emitterschaltung:

Basisstromkreis (steuernd)

Kollektorstromkreis (gesteuert)

Der Kollektor-Emitter Zweig wirkt wie eine strom-gesteuerte Stromquelle: $I_C = B \cdot I_B$

Weg der Ladungsträger beim NPN-Transistor

Der Emitter sendet Elektronen aus, der Kollektor sammelt sie ein.

Weg der Ladungsträger beim NPN-Transistor

- Der Emitter sendet Elektronen aus, der Kollektor sammelt sie ein.
- Die Emitterrelektronen überschwemmen die schwach dotierte Basis. Nur wenige dieser negativen Ladungsträger gehen durch Rekombination verloren.

Weg der Ladungsträger beim NPN-Transistor

- Der Emitter sendet Elektronen aus, der Kollektor sammelt sie ein.
- Die Emitterrelektronen überschwemmen die schwach dotierte Basis. Nur wenige dieser negativen Ladungsträger gehen durch Rekombination verloren.
- Der größte Teil der Elektronen wird von der Feldkraft in der CB-Sperrschicht zum positiven Kollektor hinüber beschleunigt.
- Transistoreffekt: Obwohl die Kollektordiode in Sperrichtung gepolt ist (!), fließt ein großer Strom I_C , der sich durch einen kleinen Strom I_B steuern lässt.

Planartransistor (Standardtechnologie)

- Die Basis wird möglichst dünn gemacht und nur schwach dotiert.
- Durch die Bauweise von C sollen alle Ladungsträger eingefangen werden.
- Vertauschung von C und E ist prinzipiell möglich, aber nicht empfehlenswert, denn ...
- Der BJT ist ein unsymmetrisches Bauteil.

Gleichstromverstärkung, Definition: B

Den Quotienten

$$B = \frac{I_C}{I_B}$$

bezeichnet man als <u>Gleichstromverstärkung</u> des Transistors (in der Emitterschaltung).

Nährungsweise gilt: $B \approx const \Rightarrow I_C \sim I_B$

B ist eine wichtige Kenngröße (Datenblatt). Gute Transistoren haben eine hohe Stromverstärkung. Typische Werte: B = 50...500 (Exemplarstreuungen, Arbeitspunkt-, Temperaturabhängigkeit)

Gleichstromverstärkung, Definition: A

Da $I_B \ll I_C$, ist $I_E \approx I_C$,

d. h. für das Verhältnis der beiden Ströme gilt $\frac{I_C}{I_E} \approx 1$.

Genauer: $I_E = I_C + I_B$ (Strombilanz nach Kirchhoff)

$$I_E = I_C \cdot \left(1 + \frac{1}{B}\right) = I_C \cdot \frac{B+1}{B}$$

$$\implies A = \frac{I_C}{I_E} = \frac{B}{B+1} < 1$$

Beispiel: Für B = 50 (bzw. 100) ist A = 0.98 (bzw. 0.99).

Die Größe A kennzeichnet ebenfalls die Stromverstärkung des Transistors (entspricht der Gleichstromverstärkung in der Basisschaltung).

Beispiele (1)

<u>Beispiel 1</u>: Die Gleichstromquelle ($I_q = 5 \, mA$) steuert den Transistor gerade so weit auf, dass U_{CE} gleich der halben Versorgungsspannung ist. Wie groß ist also die Stromverstärkung B?

Dieser Strom wird durch $I_B = I_q = 5mA$ verursacht. Daher gilt für die Stromverstärkung des Transistors:

$$B = \frac{I_C}{I_B} = \frac{250 \, mA}{5 \, mA} = 50$$

Alternative Darstellung:

Beispiele (2)

<u>Beispiel 2</u>: Die Widerstände R_B und R_C sollen so dimensioniert werden, dass sich ein Strom $I_C = 7 \, mA \, (B = 250)$ sowie ein Potential von 5 V am Kollektor einstellen. (Man benutze für die Emitterdiode das Modell der konstanten Durchlassspannung).

Der erforderliche Basisstrom beträgt

$$I_B = \frac{I_C}{B} = \frac{7 mA}{250} = 28 \,\mu A$$

Aus der Masche $U_{CC} = R_B I_B + 0.7 V$ folgt

$$R_B = \frac{U_{CC} - 0.7 V}{I_B} = \frac{11.3 V}{28 \mu A}$$

= $404 k\Omega$ (gewählt: 390 k Ω)

Die Spannung U_{CE} hängt von der richtigen Bemessung des Kollektorwiderstands ab:

$$R_C = \frac{U_{CC} - U_{CE}}{I_C} = \frac{12 V - 5 V}{7 mA} = 1 k\Omega$$

Hausaufgabe:

Welche Abweichung ist durch die Wahl von 390 k Ω statt 404 k Ω entstanden? (U_C =4,76V)

Beispiele (3)

Beispiel 3: Die beiden Transistoren haben Stromverstärkungen von $B_1 = 250$ bzw. $B_2 = 100$.

Wie groß ist das Potential am Emitter von T_2 ?

Man bestimme des Weiteren I_{B1} .

(Die Basis-Emitter-Spannungen der Transistoren dürfen mit 0,7 V = const. angenommen werden.)

Die Spannung U_E lässt sich sofort angeben:

$$U_E = U_{BB} - 0.7 V - 0.7 V$$

= 5 V - 1.4 V = 3.6 V

Damit muss für den Emitterstrom von T_2 gelten:

$$I_{E2} = \frac{U_E}{R_E} = \frac{3.6 V}{33 \Omega} = 109 mA$$

Nun ist der Baisstrom von T_2 zu bestimmen:

$$I_{E2} = I_{C2} + I_{B2} = \underbrace{I_{B2} \cdot B_2}_{=I_{C2}} + I_{B2} = I_{B2} \cdot (B_2 + 1) \implies I_{B2} = \frac{I_{E2}}{(B_2 + 1)}$$
 Beachte: $I_{B2} = I_{E1}$

Man erhält dem-

Elektronik 1

entsprechend für
$$T_1$$
: $I_{B1} = \frac{I_{E1}}{(B_1+1)} = \frac{I_{B2}}{(B_1+1)} = \frac{I_{E2}}{(B_1+1)\cdot(B_2+1)} = \frac{109 \, mA}{251\cdot 101} = 4,30 \, \mu A$

Transistorkennlinien

Eingangsgrößen: U_{BE} , I_{B}

Ausgangsgrößen: U_{CE} , I_C

Transistor als Vierpol (Emitter-Konfiguration)

Das stationäre Klemmverhalten des Transistors lässt sich durch vier *I-U-* Beziehungen (Kennlinienfelder) vollständig beschreiben:

- Eingangskennlinie: $I_B = f(U_{BE})$
- Steuerkennlinie: $I_C = f(I_B)$ alternativ $I_C = f(U_{BE})$
- Ausgangskennlinie: $I_C = f(U_{CE})$ mit I_B bzw. U_{BE} als Parameter
- Rückwirkungskennlinie: $U_{EB} = f(U_{CE})$ (wird nicht betrachtet)

Eingangskennlinie: $I_B = f(U_{BE})$

Die Eingangskennlinie entspricht der Charakteristik der Basis-Emitter-Diode:

$$I_B = I_{BS} \cdot e^{\frac{U_{BE}}{U_{Temp}}} \quad (n \approx 1)$$

Der differentielle Eingangswiderstand der Basis-Emitter-Strecke beträgt:

$$r_{BE} = \left. \frac{dU_{BE}}{dI_B} \right|_A = \left. \frac{U_{Temp}}{I'_B} \right|_B = \left. \frac{25 \text{ mV}}{I'_B} \right|_B \otimes 20^\circ C$$

Temperaturdrift:

Die Eingangskennlinie verschiebt sich bei Temperaturerhöhung nach links (vgl. Kap. 2)

Strom-Steuerkennlinie: $I_C = f(I_B)$

Beschreibung der Steuerwirkung des Basisstroms:

Gleichstromverstärkung (statische Stromverstärkung):

$$B = \frac{I_C}{I_B} \bigg|_A \approx const$$

Differentielle Stromverstärkung (Wechselstromverstärkung):

$$\beta = \frac{dI_C}{dI_B}\Big|_A$$

 β ist gleich der Steigung der Kennlinie im Arbeitspunkt. Aufgrund der guten Linearität im aktiven Bereich gilt nährungsweise $\beta \approx B$.

Spannungs-Steuerkennlinie: $I_C = f(U_{BE})$

Beschreibung der Steuerwirkung der Basis-Emitter-Spannung:

Aus der Shockley-Gleichung Für die Emitter-Diode folgt:
$$I_C = \underbrace{B \cdot I_{BS}}_{=I_{CS}} \cdot e^{\frac{U_{BE}}{U_{Temp}}} \quad (n \approx 1)$$

Die Steigung der Kennlinie im Arbeitspunkt bezeichnet man als Steilheit (Übertragungsleitwert, Transkonduktanz). Sie ist ein Maß für die

Steuerwirkung von U_{BE} :

$$g_m = \frac{dI_C}{dU_{BE}}\Big|_{A} = \frac{1}{U_{Temp}} \cdot \underbrace{I_{CS} \cdot e^{\frac{U_{BE}}{U_{Temp}}}}_{=I_C}$$

$$\left|g_{m} = \frac{dI_{C}}{dU_{BE}}\right|_{A} = \frac{I'_{C}}{U_{Temp}} = \frac{I'_{C}}{25 \text{ mV}} @ 20^{\circ} C$$

$$[g_m] = \frac{1 A}{1 V} = 1 S$$
 (Siemens)

Ausgangskennlinienfeld (I_B): $I_C = f(U_{CE})$

Strom-Spannungs-Charakteristik des Ausgangs (mit I_B als Parameter):

- Erwartungsgemäß besteht starke Abhängigkeit vom Parameter I_B .
- I_C hängt im linearen Teil der Parameterkennlinien nur geringfügig von U_{CE} ab.
- Die Kennlinien verlaufen fast waagerecht (aber nur fast ...).
- Der differentielle Ausgangsleitwert (=1/Ausgangswiderstand) ist gleich der Tangentensteigung im Arbeitspunkt des Transistors:

$$\left. \frac{1}{r_{CE}} = \left. \frac{dI_C}{dU_{CE}} \right|_{A}$$

• Je größer r_{CE} desto besser!

Ausgangskennlinienfeld (U_{BE}): $I_{C} = f(U_{CE})$

Alternative Darstellung: Kennlinienschar mit U_{BE} als Parameter

 Der Abstand der Parameterkennlinien ist für gleich große Änderungen von U_{BE} nicht konstant.

$$\left(I_C \sim e^{\frac{U_{BE}}{U_{Temp}}}\right)$$

Arbeitsbereiche des Transistors

 $I_E = I_B + I_C$

■ Sperrbereich: Emitterdiode "off" $\Rightarrow I_B \approx 0$; $I_C \approx 0$

■ Aktiver Bereich: Emitterdiode "on" $U_{BE} \approx 0.6 \dots 0.7V$

Kollektordiode "off"; $I_C = B \cdot I_B$

■ Sättigungsbereich: Emitterdiode "on" $U_{BE} \approx 0.6 \dots 0.7V$

Kollektordiode "on"; $U_{CEsat} = 0.2V$

(Grenze zum Sättigungsbereich bei $U_{CB} = 0$).

Inhalt

- Grundlagen
- Kennlinien, Grenzwerte und Arbeitsbereiche
 - Transistorersatzschaltung (DC)
 - Was versteht man unter dem Early-Effekt?
 - Grenzwerte
 - npn- und pnp Transistor
- Grundschaltungen, Kleinsignalbetrachung und Arbeitspunkt
- Emitterschaltung
- Kollektor- und Basisschaltung
- Differenzverstärker

Early-Effekt: Beschreibung

- Die Ausgangskennlinien im aktiven Bereich sind nicht ganz waagerecht \Rightarrow I_C steigt mit U_{CE} leicht an \Rightarrow endliches r_{CE}
- Early-Effekt (Basisweitenmodulation): Bei steigendem U_{CE} steigt auch die Sperrspannung $U_{CB} \Rightarrow$ Sperrschicht der Kollektordiode dehnt sich aus und macht die Basis schmal $\Rightarrow I_C$ steigt
- Die extrapolierten Kennlinien schneiden sich nährungsweise in einem gemeinsamen Punkt auf der U_{CE} -Achse bei $-U_A$.
- U_A wird als die Early-Spannung bezeichnet. Typische Werte $U_A = 50 \dots 150 V f \ddot{u} r NPN$, $30 \dots 100 V f \ddot{u} r PNP$.

Early-Effekt: Berechnung

Für den differentiellen Ausgangswiderstand erhält man: (ähnliche Dreiecke)

$$r_{CE} pprox rac{U_A}{I'_C}$$

$$\implies r_{CE} \sim \frac{1}{I'_C}$$

Für den Strom im Arbeitspunkt A gilt unter Berücksichtigung der Kennliniensteigung somit:

Datenblatt:

$$h_{oe} = h_{22} = \frac{1}{r_{CE}}$$

@ $I_C = 2 \, mA$

$$I'_{C} = B \cdot I_{B} + \Delta I_{C} = B \cdot I_{B} + \underbrace{\frac{B \cdot I_{B}}{U_{A}}}_{Steigung} \cdot \Delta U_{CE} \approx B \cdot I_{B} + \frac{B \cdot I_{B}}{U_{A}} \cdot U'_{CE} \Longrightarrow$$

$$I'_{C} = B \cdot I_{B} \cdot \left(1 + \frac{U'_{CE}}{U_{A}}\right)$$

oder
$$I'_{CE} = I_{CS} \cdot e^{\frac{U_{BE}}{U_{Temp}}} \cdot \left(1 + \frac{U'_{CE}}{U_A}\right)$$

Transistorersatzschaltung (DC)

- Großsignalersatzschaltung für die DC-Analyse (Arbeitspunktberechnung) im aktiven Arbeitsbereich:
 - Basis-Emitter Diode
 - Kollektor-Emitter stromgesteuerte Stromquelle

$$B = \beta_{DC} = \frac{I_C}{I_B}$$

$$\beta = \left. \frac{dI_C}{dI_B} \right|_A = \frac{i_C}{i_B}$$

Grenzwerte

• P_{Vmax} (max. zulässige Verlustleistung):

$$P_V \leq P_{Vmax}$$

$$P_{V} = I_{C} \cdot U_{CE} + I_{B} \cdot U_{BE} = I_{C} \cdot U_{CE} + \frac{I_{C}}{\beta} \cdot U_{BE}$$
$$= I_{C} \left(U_{CE} + \frac{U_{BE}}{\beta} \right) \approx I_{C} \cdot U_{CE}$$

■ *U_{CEmax}* (max. zulässige Kollektor-Emitter-Spannung):

Wahl der Zählpfeile beim NPN => PNP

Damit beim pnp die Basis-Emitter-Diode leitet, muss die Spannung am Emitter höher liegen als die an der Basis Damit beim pnp die CB-Diode NICHT leitet, muss die Spannung am Kollektor tiefer liegen als die an der Basis

$$U_{BE} < 0$$
 $I_B < 0$
 $U_{CE} < 0$ $I_C < 0$

$$U_{CB} < 0$$
 $I_E < 0$

Wahl der Zählpfeile beim PNP

■ 1. Möglichkeit: Wie beim NPN (zwar üblich, aber alle Zahlenwerte sind dann < 0!)

■ 2. Möglichkeit: Alle Zählpfeile umkehren (empfohlen!)

Inhalt

- Grundlagen
- Kennlinien, Grenzwerte und Arbeitsbereiche
 - In welchem Betriebszustand befindet sich der Transistor?
 - Ermittlung des Arbeitsbereichs
 - Transistor im Linearbereich oder im Sättigungsbereich
 - Arbeitspunktberechnungen /Großsignal Verhalten (Beispiel)
 - Ermittlung der Spannungen und Ströme in der Schaltung
- Grundschaltungen, Kleinsignalbetrachtung und Arbeitspunkt
- Emitterschaltung
- Kollektor- und Basisschaltung
- Differenzverstärker

Transistorersatzschaltung (DC)

- Großsignalersatzschaltung für die DC-Analyse (Arbeitspunktberechnung) im aktiven Arbeitsbereich:
 - Basis-Emitter Diode
 - Kollektor-Emitter stromgesteuerte Stromquelle

$$B = \beta_{DC} = \frac{I_C}{I_B}$$

$$\beta = \left. \frac{dI_C}{dI_B} \right|_A = \frac{i_C}{i_B}$$

Ermittlung des Arbeitsbereichs

Frage: Wie findet man heraus, in welchem der 3 Betriebszustände sich ein Transistor befindet?

1. Prüfe, ob der Transistor leitet.

(Sehr einfach: leitet die Basis-Emitter-Diode?)

2. Falls ja,

führe eine Berechnung des Arbeitspunktes durch (Spannungen und Ströme in der Schaltung) unter der **Annahme, dass sich der Transistor im aktiven Bereich befinde**,

d. h. es gelte $I_C = B \cdot I_B$ etc. $(U_{BE} \approx 0.7V = const. \& U_{CE} \gg 0V)$

3. Falls das Ergebnis nicht physikalisch sinnvoll ist, liegt ein Widerspruch zur Annahme vor

→ Der Transistor arbeitet also nicht im aktiven Bereich, sondern im Sättigungsbereich: $I_C \neq B \cdot I_B \ (U_{BE} \approx 0.7V = const. \ \& \ U_{CE} \approx 0.2V)$

Ermittlung des Arbeitsbereichs: Beispiel

Beispiel:

Der Transistor ist offensichtlich "on" ($U_{BE} \approx 0.7V \approx const.$).

Wir gehen zunächst davon aus, das er im aktiven Bereich arbeitet und setzen an:

$$I_B = \frac{U_{BB} - U_{BE}}{R_B} = \frac{10 V - 0.7 V}{100 k\Omega} = 93 \mu A$$
 $I_C = B \cdot I_B = 100 \cdot 93 \mu A = 9.3 \text{ mA}$

Demnach beträgt die Kollektor-Emitter-Spannung:

$$U_{CE} = U_{CC} - R_C \cdot I_C$$

= $20 V - 10 k\Omega \cdot 9.3 mA = -73 V$? \implies Widerspruch zur Annahme!

Der Transistor kann sich also nicht im aktiven Bereich befinden, sondern arbeitet im Sättigungsbereich.

(Übung 1: R_C auf 1 k Ω ändern und diese Rechnung wiederholen)

Transistor im Sättigungsbereich

■ Beachte: Für $I_C \neq 0$ kann U_{CE} nie ganz zu null werden! Der erreichbare Minimalwert U_{CEsat} kann im Ausgangskennlinienfeld durch Schnitt mit der Widerstandsgeraden von R_C ermittelt werden.

Typische Werte:

Die im Kollektorkreis maximal mögliche Stromstärke wird durch R_C begrenzt

(Annahme: Transistor vollständig "ein": $U_{CE} \approx 0$):

$$I_{C max} = \frac{U_{CC} - U_{CE min}}{R_C} \approx \frac{20 \text{ V}}{10 \text{ k}\Omega} = 2 \text{ mA}$$

$$I_{B \ ist} = 93 \ \mu A; \quad \left(B_{eff} = \frac{I_{C \ max}}{I_{B \ ist}} \approx 21.5\right)$$

Um diesen Strom zu verursachen (und den Transistor an die Sättigungsgrenze zu bringen), genügt theoretisch bereits ein Basisstrom von:

$$I_{B \ soll} = \frac{I_{C \ max}}{B} = \frac{2 \ mA}{100} = 20 \ \mu A \ !$$

(Übung 2: wie groß ist dann R_B ?)

(Übung 3: das Beispiel mit $R_B = 1 \text{ M}\Omega$ neu berechnen)

 $\overline{U_{CC}\ U_{CE}}$

 U_{CEsat}

 U_{CC}

Arbeitspunktberechnungen: Beispiele 1 & 2

Man bestimme für die folgenden Beispiele alle sich einstellenden Ströme und Potentiale – das ist der Arbeitspunkt (Annahmen: B = 100; Betrieb im Aktivbereich).

Beispiel 1:

+10 V

Aktivbereich?

$$U_{BE} = 0V \implies \text{Sperrbereich}$$

Beispiel 2:

Aktivbereich?

$$U_{CE} = 2V > U_{BE} \implies \text{Aktivbereich}$$

Arbeitspunktberechnungen: Beispiel 3

Beispiel 3: PNP mit dualer Spannungsversorgung

(Annahme: $U_{RE} = -0.7V, B = 50$)

(Übung: Wie ändern sich die Werte, wenn alle Spannungen um 10V nach oben verschoben werden?)

Arbeitspunktberechnungen: Beispiel 4

Arbeitspunktberechnungen: Beispiel 5

Beispiel 5: Spannungsteiler (B=100)

Eine Möglichkeit: *I*_B vernachlässigen!

$$U_{CE} = 3.6V > U_{BE} \Longrightarrow \text{Aktivbereich}$$

Arbeitspunktberechnungen: Beispiel 5 (mit I_B)

Beispiel 5: Spannungsteiler (B=100)

Zweite Möglichkeit: Ersatzspannungsquelle

$$R_{ie} = R_1 \parallel R_2$$

$$U_{qe} = U_{CC} \cdot \frac{R_2}{R_1 + R_2}$$

Methode	$I_B[\mu A]$	$I_C[mA]$	$U_E[V]$	$U_{C}[V]$
1. IB vernachlässigt	14,2	1,42	4,3	7,9
2. Ersatzspannungsquelle	12,8	1,28	3,87	8,6

Inhalt

- Grundlagen
- Kennlinien, Grenzwerte und Arbeitsbereiche
- Arbeitspunkt, Kleinsignalbetrachtung und die Grundschaltungen
 - Welche Grundschaltungen sind mit dem Bipolartransistor realisierbar?
 - Das Grundprinzip der Signalverstärkung
 - Die AC/DC-Zerlegung
 - Kleinsignalbetrachtung
 - Transistorersatzschaltungen (AC)
- Emitterschaltung
- Kollektor- und Basisschaltung
- Differenzverstärker

Die 3 Grundschaltungen des Transistors

	Emitterschaltung	Kollektorschaltung	Basisschaltung	
Spannungsverstärkung	groß	≈ 1	groß	
Stromverstärkung	groß	groß	≈ 1	
Eingangswiderstand	mittel	groß	klein	
Ausgangswiderstand	mittel	klein	mittel	
Grenzfrequenz niedrig		mittel bis hoch	hoch	
Phasendrehung 180°		0°	0°	
Engl. Bezeichnung	Common Emitter	Common Collector	Common Base	

Grundprinzip der Signalverstärkung

Idee: Der Arbeitspunkt der Schaltung ist ermittelt

und eingestellt: U'_{BE} , U'_{CE} , I'_{B} , I'_{C}

Der Basisvorspannung U'_{BE} wird das zu verstärkende Signal überlagert.

Konzept eines Wechselspannungsverstärkers in Emitterschaltung

Signalverstärkung Graphisch

- Positive Aussteuerung am Eingang: $+\Delta U'_{BE} \rightarrow +\Delta I'_{B}$ Negative Aussteuerung am Ausgang: $\rightarrow +\Delta I'_{C} \rightarrow +\Delta U'_{RC} \rightarrow -\Delta U'_{CE}$
- Negative Aussteuerung am Eingang: $-\Delta U'_{BE} \rightarrow -\Delta I'_{B}$ Positive Aussteuerung am Ausgang: $-\Delta I'_{C} \rightarrow -\Delta U'_{RC} \rightarrow +\Delta U'_{CE}$

Kleinsignalbetrachtung: Graphisch

$$I_B \approx I_{BS} \cdot e^{\frac{U_{BE}}{U_{Temp}}} \quad I_C = B \cdot I_B$$

Nichtlineare Abhängigkeit: $U'_{BE} \rightarrow I'_{B} \rightarrow I'_{C}$

$$g_{m} = \frac{dI_{C}}{dU_{BE}}\Big|_{A} = \frac{I'_{C}}{U_{Temp}}$$

$$g_{m} = \frac{i_{C}}{u_{BE}}$$

$$\Rightarrow i_{C} = g_{m} \cdot u_{BE}$$

Lineare Abhängigkeit: $u_{BE}
ightarrow i_{B}
ightarrow i_{C}$

- Für die AC-Analyse betrachten wir nur infinitesimal kleine Änderungen um den Arbeitspunkt herum, bzw. Signale mit sehr kleiner Amplitude (= Kleinsignal).
- Unter dieser Voraussetzung dürfen alle Transistorkennlinien durch ihre Tangenten im Arbeitspunkt ersetzt werden (Linearisierung).
- Die entsprechenden differentiellen Größen fungieren als Rechengrößen
 (= Kleinsignalparameter) im Wechselstromersatzschaltbild des Transistors.

AC/DC-Zerlegung

 $I'_{\mathcal{C}}$

 Die DC-Analyse berücksichtigt nur die Gleichgrößen, die AC-Analyse nur die Wechselgrößen.

AC/DC-Zerlegung

 Die DC-Analyse berücksichtigt nur die Gleichgrößen, die AC-Analyse nur die Wechselgrößen.

Transistorersatzschaltungen (AC) – 2 Varianten

Kleinsignalersatzschaltungen als lineares Modell für die AC-Analyse – Stromgesteuerte Variante:

Transistorersatzschaltungen (AC) – 2 Varianten

Kleinsignalersatzschaltungen als lineares Modell für die AC-Analyse – Stromgesteuerte Variante:

$$\beta = \frac{dI_C}{dI_B}\Big|_A = \frac{i_C}{i_B}\Big|_{u_{CE=0}} \approx B$$

$$r_{BE} = \frac{dU_{BE}}{dI_B}\Big|_A = \frac{u_{BE}}{i_B} = \frac{U_{Temp}}{I_{I_B}}$$

$$R = \frac{dU_{BE}}{dI_B}\Big|_A = \frac{u_{BE}}{i_B} = \frac{U_{Temp}}{I_{I_B}}$$

Kleinsignalersatzschaltungen als lineares Modell für die AC-Analyse – Spannungsgesteuerte Variante:

$$g_{m} = \frac{dI_{C}}{dU_{BE}}\Big|_{A} = \frac{i_{C}}{u_{BE}}\Big|_{u_{CE=0}} = \frac{I_{C}}{U_{Temp}}$$

$$r_{BE} = \frac{dU_{BE}}{dI_{B}}\Big|_{A} = \frac{u_{BE}}{i_{B}} = \frac{U_{Temp}}{I_{B}}$$

$$u_{BE}$$

$$u_{BE}$$

$$v_{CE}$$

$$r_{CE} = \frac{dU_{BE}}{dI_{C}}\Big|_{A} = \frac{u_{CE}}{i_{C}} \approx \frac{U_{A}}{I_{C}}$$

$$E$$

Kleinsignalbetrachtung: Modelle

1. Kleinsignalmodell (spannungsgesteuert)

Für den Eingangswiderstand, auf den die Quelle sieht, gilt:

$$r_{Ein} = \frac{dU_{Ein}}{dI_{Ein}}\Big|_{A} = \frac{dU_{BE}}{dI_{B}}\Big|_{A} = r_{BE} = \frac{u_{BE}}{i_{B}}$$

Der Ausgangswiderstand des gesamten Verstärkers ist offensichtlich: $r_{CE} \gg R_C$

$$r_{Aus} = \frac{dU_{Aus}}{dI_{Aus}}\Big|_{A} = \frac{dU_{CE}}{dI_{C}}\Big|_{A} = \frac{u_{CE}}{i_{C}} = r_{CE} \parallel R_{C} \approx R_{C}$$

Die Ausgangsspannung errechnet sich (1. Modell) zu:

$$u_{Aus} = u_{CE} = -i_{Aus} \cdot r_{Aus} = -g_m \cdot u_{BE} \cdot (r_{CE} || R_C)$$

2. Kleinsignalmodell (stromgesteuert)

bzw. für das stromgesteuerte Transistormodell (2. Modell):

$$u_{Aus} = u_{CE} = -i_{Aus} \cdot r_{Aus} = -\beta \cdot i_B \cdot (r_{CE} || R_C)$$

Kleinsignalbetrachtung: Verstärkung

Die Ausgangsspannung errechnet sich zu: $u_{CE} = -i_{CE} \cdot (r_{CE} || R_C)$ mit $i_{CE} = g_m \cdot u_{BE}$ $= -g_m \cdot u_{BE} \cdot (r_{CE} || R_C)$

Damit erhält man für die Spannungsverstärkung $A_U = u_{out}/u_{in} = u_{CE} / u_{BE}$

$$A_U = -g_m \cdot (r_{CE} || R_C) \stackrel{r_{CE} \gg R_C}{\approx} g_m \cdot R_C \quad bzw.$$

$$A_U = -\frac{\beta}{r_{BE}} \cdot (r_{CE} || R_C) \stackrel{r_{CE} \gg R_C}{\approx} -\beta \cdot \frac{R_C}{r_{BE}}$$

Das negative Vorzeichen bedeutet eine Invertierung (Phasenumkehr) des Ausgangssignals. Dies wird deutlich, wenn wir die folgende Ursache-Wirkungs-Kette betrachten:

$$u_{BE} \uparrow \Rightarrow i_B \uparrow \Rightarrow i_C \uparrow \Rightarrow u_{RC} \uparrow \Rightarrow u_{CE} \downarrow$$

Die Emitterschaltung bewirkt eine Phasenverschiebung von 180° zwischen dem Eingangs- und dem Ausgangssignal.

Zusammenhang zwischen g_m und β

Die Kleinsignalanalyse kann mit beiden Ersatzschaltungen durchgeführt werden. Beide Modelle sind äquivalent und durch folgende Beziehung miteinander verknüpft:

$$i_C = g_m \cdot u_{BE} = \beta \cdot i_B$$
 bzw. $g_m \cdot r_{BE} = \beta$ $(u_{BE} = i_B \cdot r_{BE})$

Zur Erinnerung:

$$g_m = \frac{dI_C}{dU_{BE}}\bigg|_A = \frac{{I'}_C}{U_{Temp}}$$

$$g_m = \frac{dI_C}{dU_{BE}}\Big|_{A} = \frac{I'_C}{U_{Temp}}$$
 $r_{BE} = \frac{dU_{BE}}{dI_B}\Big|_{A} = \frac{U_{Temp}}{I'_B}$

Machen wir die Probe:

$$g_m \cdot r_{BE} = \frac{dI_C}{dU_{BE}} \cdot \frac{dU_{BE}}{dI_B} \bigg|_A = \frac{dI_C}{dI_B} \bigg|_A = \beta \quad \checkmark$$

$$g_m \cdot r_{BE} = \frac{I'_C}{U_{Temp}} \cdot \frac{U_{Temp}}{I'_B} = \frac{I'_C}{I_B} = B \approx \beta \sqrt{1}$$

Typische BJT Parameterwerte

Großsignal Parameter:

$$I_{CB,off}$$
 (collector-base cut-off current)

$$f_T$$
 (current gain bandwidth product)

Kleinsignal Parameter:

$$g_m = \frac{I_C}{U_{Temp}}\Big|_{AP} = \frac{dI_C}{dU_{BE}}$$

$$r_{BE} = \frac{U_{Temp}}{I_B} \Big|_{AP} \approx \frac{\beta}{I_C/U_{Temp}} \Big|_{AP}$$

$$r_{CE} = \left. \frac{dU_{CE}}{dI_C} \right|_{AP} = \frac{u_{CE}}{i_C} \approx \frac{U_A}{I_{C}}$$

(ideal: $r_{CE} \rightarrow \infty$)

	PNP		NPN			
Тур	BC556	BC640	BC548A/C	BC 107 B		
$ I_{C.max} [mA]$	100	1000	100	100		
$ I_{CBoff} [nA]$	5	100	15	15		
$ U_{CE,sat} [V]$	0,2	0,5	0,25	0,15		
B (hFE)	125-475	20-160	110-220 (A) 420-800 (C)	110-450		
$f_T[MHz]$	100	100	300	125		
$ U_{BE(on)} [V]$	0,65	1	0,66	0,65		
$ U_A [V]$	73	144	128 (A) 25 (C)	60		
Arbeitspunkt: $I_C = 2mA$						
$g_m[mS]$	77	77	77	77		
$r_{BE}[k\Omega]$	1,6-6,15	0,26-2,08	1,43-286(A) 5,45-10,4 (C)	1,43-5,85		
$r_{\it CE}[k\Omega]$	36,5	72	64 (A) 12,5 (C)	30		

typ:
$$r_{CE} \gg r_{BE}$$

$$U_{Temp} = \frac{k \cdot t}{q} \bigg|_{T=300K} \approx 26mV$$

Inhalt

- Grundlagen
- Kennlinien, Grenzwerte und Arbeitsbereiche
- Grundschaltungen, Arbeitspunkt und Kleinsignalbetrachtung
 - Wahl des Arbeitspunktes
 - Biasing beim Emitterverstärker
- Emitterschaltung
- Kollektor- und Baisschaltung
- Differenzverstärker

Wahl des Arbeitspunkts (1)

- Der Ruhe-Arbeitspunkt wird in den aktiven Bereich des Ausgangskennlinienfelds gelegt. Er bewegt sich bei Änderung von I_C nur auf der Arbeitsgeraden.
- Die Aussteuerung soll symmetrisch um den Ruhe-Arbeitspunkt erfolgen. Für die Aussteuergrenzen gilt: $u_{Aus,max} = U_{CC}$ $u_{Aus,min} = U_{CEsat}$
- Mitte des max. möglichen Aussteuerbereichs: $U'_{CE} = U_{CEsat} + \frac{U_{CC} U_{CEsat}}{2} \approx \frac{U_{CC}}{2}$

Wahl des Arbeitspunkts (2)

Fazit:

- Die Lage des Ruhe-Arbeitspunkts bestimmt die maximal mögliche Amplitude der Ausgangswechselspannung.
- Den größtmöglichen Aussteuerungsbereich erhält man, wenn man die Kollektor-Emitter-Spannung in etwa gleich der halben Betriebsspannung wählt.
- Bei Überschreiten der Aussteuerungsgrenzen wird der Verstärker übersteuert. Das Ausgangssignal wird beschnitten (engl. "clipping").

Wahl des Arbeitspunkts (3)

Symmetrisches Aussteuern (richtig):

Falsch eingestellter Ruhe-Arbeitspunkt:

Übersteuerung:

Biasing beim Emitterverstärker

- Sinnvolle Wahl des Arbeitspunkts: $U'_{CE} \approx 1/2 \ U_{CC}$, Widerstand R_C bzw. Ruhestrom I'_C je nach Erfordernissen
- Zwei einfache Arten der Arbeitspunkteinstellung (engl. biasing):
 - 1. mit Basisvorwiderstand

B muss ziemlich genau bekannt sein. Evtl. Abgleich erforderlich. Schaltung ist nicht temperaturstabil (wegen Temperaturgang von B). 2. mit Basisspannungsteiler

$$R_2 = \frac{U_{BE}}{I_q}$$
 $R_1 = \frac{U_{CC} - U_{BE}}{I_q + I_B}$ $I_B = I_C/B$

Abgleich normalwerweise erforderlich. Keine Temperaturstabilität (wegen Temperaturgang von U_{BE} bzw. I_{B}).

Inhalt

- Grundlagen
- Kennlinien, Grenzwerte und Arbeitsbereiche
- Grundschaltungen, Arbeitspunkt und Kleinsignalbetrachtung
- Emitterschaltung
 - Einfache Emitterstufe implementieren
 - Arbeitspunktberechnung
 - Kleinsignalparameter
 - Verstärkung
 - Großsignalaussteuerung
 - Koppelkondensatoren
- Kollektor- und Basisschaltung
- Differenzverstärker

Einfache Emitterstufe: Arbeitspunktberechnung

<u>Beispiel</u>: Eine Emitterstufe mit Basisspannungsteiler soll so dimensioniert werden, dass sich der Arbeitspunkt am Ausgang bei $I'_{C}=2\ mA\ und\ {U'}_{CE}=1/2\ U_{CC}$ einstellt $(U_{CC}=10V)$. Für den verwendeten Transistor wird B = 200 angenommen.

Berechnung des Kollektorwiderstands:

$$R_C = \frac{U_{CC} - U'_{CE}}{I'_C} = \frac{10 V - 5 V}{2 mA} = 2,5 k\Omega$$
(E24-Normwert: 2,4 k $\Omega \rightarrow U_{CE} = 5,2 V$)

Für die Dimensionierung des Basisspannungsteilers sollte U_{BE} möglichst genau bekannt sein. Dem Ausgangskennlinienfeld im Datenblatt lässt sich $U_{BE}=0,65~V$ bei $I_{C}=2~mA$ entnehmen. Für den Querstrom soll $I_{q}=n\cdot I_{B}~(mit~n~\approx 5)$ angesetzt werden.

$$R_{2} = \frac{U'_{BE}}{I_{q}} = \frac{0,65 \, V}{5 \cdot 10 \, \mu A} = 13 \, k\Omega \qquad \qquad R_{1} = \frac{U_{CC} - U'_{BE}}{I_{q} + I_{B}} = \frac{10 \, V - 0,65 \, V}{50 \, \mu A + 10 \, \mu A} = 156 \, k\Omega$$
 (E24-Normwert: 13 k Ω) (E24-Normwert: 160 k Ω)
$$I'_{B} = 8,5 \, \mu A \qquad \qquad I'_{C} = 1,7 \, mA \qquad \qquad U'_{CE} = 5,92 \, V$$

Einfache Emitterstufe: Kleinsignalparameter

$$r_{BE} = \frac{U_{Temp}}{I_{B}} = \frac{25 mV}{10 \mu A} = 2,5 k\Omega$$

$$r_{CE} = \frac{U_A}{I_{C}} = \frac{100 V}{2 mA} = 50 k\Omega \gg R_C = 2.5 k\Omega$$

$$g_m = \frac{I'_C}{U_{Temp}} = \frac{2 mA}{25 mV} oder g_m = \frac{g}{r_{BE}} = 80 mS$$

Der resultierende (Kleinsignal-) Eingangswiderstand des Verstärkers wird durch den Spannungsteiler herabgesetzt! (U_{CC} wechselstrommäßig durch Kurzschluss ersetzt)

$$r_{Ein} = R_1 ||R_2|| r_{BE} = 156 k\Omega ||13 k\Omega ||2,5 k\Omega \approx 2 k\Omega$$

Der (Kleinsignal-) Ausgangswiderstand liegt bei: $r_{Aus} = R_C || r_{CE} = 2.4 k\Omega \approx R_C$

Einfache Emitterstufe: Verstärkung

Über die Steilheit des Transistors lässt sich die Spannungsverstärkung bestimmen:

$$A_U = -g_m \cdot (R_C || r_{CE}) \approx -g_m \cdot R_C \quad (r_{CE} \gg R_C)$$
 $A_U \approx -80 \text{ mS} \cdot 2.5 \text{ k}\Omega = -200 \text{ } (-190 \text{ genau})$

Die Amplitude der (unbelasteten) Ausgangswechselspannung beträgt damit:

$$|A_{II}| \cdot U_{Fin} = 200 \cdot 20 \ mV = 4.0 \ V$$

Es soll nun eine Last angeschlossen werden (Messkopf: 1 M Ω und 10 k Ω , Lautsprecher: 25 Ω)

Der Ausgangswiderstand ändert sich daher auf den Wert:
$$R_L = 1 M\Omega \Rightarrow r_{Aus} \approx 2.4 k\Omega$$

 $R_L = 10 \ k\Omega \Longrightarrow r_{Aus} \approx 1.9 \ k\Omega \qquad A_U \approx -80 \ mS \cdot 1.9 \ k\Omega \approx -150 \quad |A_U| \cdot U_{Ein} = 150 \cdot 20 \ mV = 3.0 \ V$ $R_L = 25 \ \Omega \Longrightarrow r_{Aus} \approx 24.7 \ \Omega \qquad A_U \approx -80 \ mS \cdot 25 \ \Omega \approx -2 \qquad |A_U| \cdot U_{Ein} = 2 \cdot 20 \ mV = 40 \ mV$

 $r_{Aus} = R_C ||r_{CE}|| R_L$

Emitterstufe: Zusammenfassung

$$r_{BE} = \frac{U_{Temp}}{I_{B}} = \frac{25 \, mV}{10 \, \mu A} = 2,5 \, k\Omega$$

$$r_{CE} = \frac{U_A}{I_{C}} = \frac{100 \, V}{2 \, mA} = 50 \, k\Omega \gg R_C$$

$$g_m = \frac{I'_C}{U_{Temp}} = \frac{I'_C}{25 \, mV} \ oder \ g_m = \frac{g}{r_{BE}} = 80 \, mS$$

$$r_{Ein} = R_1 ||R_2|| r_{BE} = 12 k\Omega ||160 k\Omega ||2,5 k\Omega = 2 k\Omega$$

$$r_{Aus} = R_C || r_{CE} \approx R_C = 2.4k\Omega$$

Über die Steilheit des Transistors lässt sich die Spannungsverstärkung bestimmen:

$$A_U = -g_m \cdot (R_C || r_{CE}) \approx -g_m \cdot R_C \qquad (r_{CE} \gg R_C)$$

$$A_U \approx -80 \ mS \cdot 2,4 \ k\Omega = -190$$

Großsignalaussteuerung

 Aufgrund der Krümmung der exponentiellen Eingangskennlinie führen größere Eingangsspannungen zu nicht linearen Verzerrungen.

Koppelkondensatoren: Funktion

Koppelkondensatoren (Abblockkondensatoren) dienen zur Trennung von Gleich- und Wechselgrößen. Gleichstrom wird gesperrt!

- C₁ verhindert, dass Gleichstrom über die Signalquelle fließt.
 (Innenwiderstand der Quelle würde sonst den Basisspannungsteiler beeinflussen.)
- C_2 blockt den Gleichspannungsanteil am Ausgang ab.

Koppelkondensatoren: Funktion

• Die Größe der Kapazitäten hängt ab von der geforderten unteren Grenzfrequenz des Verstärkers (z. B. f_g = 20 Hz für Audioanwendungen):

- Beachte: Alle mit C_1 bzw. C_2 in Reihe liegenden Widerstände müssen berücksichtigt werden.
- Bei n Hochpässen im Verstärker mit gleichem f_g beträgt die resultierende untere Grenzfrequenz der Gesamtschaltung: $f_{g,res} \approx \sqrt{n} \cdot f_g$

Einfache Emitterstufe: Koppelkondensatoren

Über den Koppelkondensator C_1 soll eine Signalquelle mit der Leerlaufamplitude U_0 = 10 mV und dem Innenwiderstand R_i = 500 Ω angeschlossen werden. Für den Scheitelwert der Klemmenspannung gilt somit:

$$u_{Aus}$$
 $U_{Ein} = U_0 \cdot \frac{r_{Ein}}{r_{Ein} + R_i} = 10 \ mV \cdot \frac{2 \ k\Omega}{2 \ k\Omega + 0.5 \ k\Omega} = 8 \ mV$

Mit gewählten $f_g = 20 \, Hz$ ergibt sich für C_1 :

$$c_1 = \frac{1}{2\pi \cdot 20Hz \cdot (2 k\Omega + 0.5 k\Omega)}$$
$$= 3.1 \,\mu F \left(E6 - Normwert: 3.3 \,\mu F\right)$$

Dimensionierung des ausgangsseitigen Koppelkondensators ($R_L = 10k\Omega$):

$$c_2 = \frac{1}{2\pi \cdot 20Hz \cdot (2,4 \,k\Omega + 10 \,k\Omega)}$$
$$= 642 \,nF \,(E6 - Normwert: 680 \,nF)$$

Mit den durch C_1 und C_2 gebildeten Hochpässen liegt die untere 3-dB-Grenzfrequenz der gesamten Emitterstufe nunmehr bei: $f_{g,res} \approx \sqrt{2} \cdot 20~Hz = 28~Hz$

Inhalt

- Grundlagen
- Kennlinien, Grenzwerte und Arbeitsbereiche
- Grundschaltungen, Kleinsignalbetrachtung und Arbeitspunkt
- Emitterschaltung
 - Temperaturdrift
 - Emitterschaltung mit Stromgegenkopplung
 - Ein- und Ausgangswiderstand bei Stromgegenkopplung
 - Spannungsverstärkung bei Stromgegenkopplung
 - Beispiel zur Stromgegenkopplung
- Kollektor- und Basisschaltung
- Differenzverstärker

Temperaturdrift

Wegen Exemplarstreuungen beim Transistor kann zur genauen Arbeitspunkteinstellung ein nachträglicher Abgleich erforderlich sein (daher für Serienproduktion nicht geeignet.)

Die Arbeitspunkteinstellung gilt nur für eine bestimmte Temperatur. Wege des Temperaturgangs von U_{BE} bzw. I_{C} kann der Arbeitspunkt bei Erwärmung im Betrieb leicht "davonlaufen".

Berechnung des Temperaturdrifts der Ausgangsspannung:

Hierfür wird eine Spannungsquelle dU_{BE} mit $\frac{dU_{BE}}{dT} \approx -2 \ mV/K$ in das Kleinsignalersatzschaltbild eingefügt. (ohne Eingangssignal – wird auf Masse gelegt)

 U'_{BE} U_{BE}

Sie wirkt wie eine Signalquelle mit dem Innenwiderstand $R_1 || R_2$.

Daraus folgt:

$$\frac{dU_{Aus}}{dT} = -A_U \cdot \frac{dU_{BE}}{dT} \cdot \frac{r_{BE}}{r_{BE} + (R_1 || R_2)}$$

$$\approx -190 \cdot 2 \frac{mV}{K} \cdot \frac{2.5 k\Omega}{2.5 k\Omega + (13 k\Omega)}$$

 $\frac{1}{100} = -65 \, mV/K \quad Abhilfe?$

Emitterschaltung mit Stromgegenkopplung

- R_E bewirkt eine Stromgegenkopplung: Die Ausgangsgröße I_C wirkt gegensinnig auf den Eingang zurück.
- Stabilisierung des Arbeitspunkts: Die Auswirkungen von Exemplarstreuungen und Temperaturänderungen werden stark reduziert.
- Ursache-Wirkungs-Kette:

$$T \uparrow \Rightarrow I_C \uparrow \Rightarrow U_{RE} \uparrow$$

da aber $U_{R2} = U_{BE} + U_{RE} = const \Rightarrow$
 $U_{BE} \downarrow \Rightarrow I_C \downarrow$ Gegenkopplung
(neg. feedback)

Bei Temperaturerhöhung gilt: $\Delta U_E \approx \Delta I_C \cdot R_E \approx -\Delta U_{BE} \approx 2 \ mV \ je \ Kelvin$

Damit ist der Stromanstieg begrenzt auf den Wert:

$$\frac{dI_C}{dT} \approx \frac{dU_{BE} \wedge dT}{R_E} \approx \frac{2 \, mV/K}{R_E} \Longrightarrow$$

$$\frac{dU_{Aus}}{dT} = -R_C \cdot \frac{dI_C}{dT} \approx -R_C \cdot \frac{dU_{BE} / dT}{R_E} \approx -2 \, mV/K \cdot \frac{R_C}{R_E}$$

 R_E bestimmt dabei die Güte der Stabilisierung.

Eingangswiderstand bei Stromgegenkopplung

Entkopplungskondensatoren?
Wir betrachten nur
"durchgelassene"
Frequenzen

Berechnung des Eingangswiderstands am Transistor: $(r_{CE} \text{ vernachlässigt})$:

$$u_{Ein} = u_{BE} + R_E \cdot i_E = r_{BE} \cdot i_B + R_E \cdot (1 + \beta) \cdot i_B$$

$$\frac{u_{Ein}}{i_B} = r_{BE} + R_E \cdot (1 + \beta) \approx r_{BE} + R_E \cdot \beta$$

• Eingangswiderstand der Schaltung r_{Ein} : Parallelschaltung von R1, R2 und des Eingangswiderstandes am Transistor

$$\Rightarrow r_{Ein} \approx R_1 ||R_2|| (r_{BE} + R_E \cdot \beta)$$

• Durch die Gegenkopplung wird der Eingangswiderstand erheblich erhöht. Der Emitterwiderstand R_E geht in etwa um den Faktor β vergrößert in die Berechnung ein.

Berechnung des Ausgangswiderstand einer Quelle

Wiederholung:

Wie kann man den Ausgangs(innen)widerstand einer realen Quelle bestimmen?

Es gilt:
$$R_i = \frac{\Delta U}{\Delta I} = \frac{U_q}{I_K}$$
 Daraus leitet sich folgendes Vorgehen ab:

- 1. Bestimme die Leerlaufspannung
- 2. Bestimme den Kurzschlussstrom
- 3. Berechne: $R_i = \frac{Leerlaufspannung}{Kurzschlussstrom}$

Ausgangswiderstand bei Stromgegenkopplung

Kleinsignalersatzschaltung (r_{CE} vernachlässig)

Bei vorgegebener Eingangsspannung u_{Ein} gilt für den Ausgangswiderstand:

$$r_{Aus} = rac{Leerlaufspannung}{Kurzschlussstrom} = rac{u_{Aus}}{i_K}$$
 $u_{Aus} = -i_C \cdot R_C = -eta \cdot i_B \cdot R_C$
 $i_K = -i_C = -i_B \cdot eta$
 $r_{Aus} = rac{u_{Aus}}{i_K} = rac{-i_B \cdot eta \cdot R_C}{-i_B \cdot eta} = R_C$

Kleinsignalverstärkung bei Stromgegenkopplung

Kleinsignalersatzschaltung $(r_{CE} \text{ vernachlässig})$

Berechnung der Spannungsverstärkung:

$$u_{Aus} = -i_C \cdot R_C = -\beta \cdot i_B \cdot R_C \qquad \left(i_B = \frac{u_{Ein}}{r_{Ein}} = \frac{u_{Ein}}{r_{BE} + (\beta + 1)R_E}\right)$$

$$A_{U} = \frac{u_{Aus}}{u_{Ein}} = \frac{-\frac{u_{Ein}}{r_{BE} + R_{E} \cdot (1+\beta)} \cdot \beta \cdot R_{c}}{u_{Ein}} = -\frac{\beta \cdot R_{c}}{r_{BE} + R_{E} \cdot (1+\beta)} \approx -\frac{R_{c}}{\frac{r_{BE}}{\beta} + R_{E}}$$

Da meist $\frac{r_{BE}}{R} \ll R_E$ gilt, erhält man als Näherung: Zur Erinnerung (therm. Stabilität):

$$A_U \approx -\frac{R_C}{R_E}$$

$$\frac{R_C}{R_E}$$

$$\frac{dU_{CE}}{dT} \approx \frac{dU_{BE}}{dT} \cdot \frac{R_C}{R_E} \qquad \frac{R_C}{R_E} \searrow$$

$$\frac{R_C}{R_E}$$

Beispiel zur Stromgegenkopplung: r_{Ein}

Beispiel: Für eine stromgegengekoppelte Emitterstufe mit $U_{CC} = 10 V$ und $I'_{C} = 2mA$ werden R_E und R_C wie folgt dimensioniert:

$$R_E = \frac{U'_{RE}}{I'_C} = \frac{1 V}{2 mA} = 500 \Omega$$

(Faustregel: Spannung an R_E etwa 10 % der $R_E = \frac{U'_{RE}}{I'_C} = \frac{1 V}{2 mA} = 500 \Omega$ (Faustregel. Spanning an R_E etwa 10 % 0 Versorgungsspannung, jedoch mind. 1 V). Achtung: die Basisspannung ist nun: $U_{BE} + U_{RE}$

Für einen maximalen, symmetrischen Aussteuerungsbereich ist wieder U'_{CE} = $1/2U_{CC} = 5 V$ anzusetzen. Damit ergibt sich für den Kollektorwiderstand:

$$R_C = \frac{10 V - 5 V - 1 V}{I'_C} = \frac{4 V}{2 mA} = 2 k\Omega$$

Mit $\beta = 200$ und $r_{BE} = 2.5 k\Omega$ erhält man für den Eingangswiderstand: $r_{BE} + R_E \cdot \beta \approx 100 \ k\Omega$

$$\Rightarrow r_{Ein} \approx R_1 ||R_2|| (r_{BE} + R_E \cdot \beta)$$

= 156 $k\Omega ||13 k\Omega ||100 k\Omega \approx 10.5 k\Omega$

Man beachte: Durch den Basisspannungsteiler wird der wirksame Eingangswiderstand allerdings noch erheblich reduziert! u_{Ein}

$$\binom{ohne\ Stromgegenkopplung\ dominiert\ r_{BE}}{r_{Ein}=\ R_1\|R_2\|r_{BE}=2\ k\Omega}$$

Beispiel zur Stromgegenkopplung: A_U

 $+U_{CC}$

Die Spannungsverstärkung beträgt jetzt nur noch

$$A_U \approx -\frac{R_C}{R_E} = -\frac{2 k\Omega}{0.5 k\Omega} = -4$$

- Die Spannungsverstärkung ist somit erheblich kleiner als ohne Gegenkopplung.
- Aber: Sie ist nahezu unabhängig von den differentiellen Transistorparametern bzw. dem benutzten Kennlinienbereich, denn sie wird nur vom konstanten Verhältnis zweier Widerstände bestimmt.

$$A_U \approx -\frac{R_C}{\frac{r_{BE}}{\beta} + R_E}$$
 Bedingung: $\frac{r_{BE}}{\beta} \ll R_E$ $\left(\frac{r_{BE}}{R_E} = \frac{2.5 \text{ k}\Omega}{0.5 \text{ k}\Omega} \ll \beta\right)$

 Durch die Gegenkopplung werden daher nicht lineare Signalverzerrungen erheblich reduziert.

Und die Temperaturdrift beträgt jetzt nur noch:

$$\frac{dU_{CE}}{dT} \approx \frac{dU_{BE}}{dT} \cdot \frac{R_C}{R_E} = -8 \ mV/K$$

Elektronik 1

Inhalt

- Grundlagen
- Kennlinien, Grenzwerte und Arbeitsbereiche
- Grundschaltungen, Kleinsignalbetrachtung und Arbeitspunkt
- Emitterschaltung
 - Wie kann die AC-Signalgegenkopplung unterdrückt werden?
 - Wie funktioniert eine Emitterstufe mit Spannungsgegenkopplung?
- Kollektor- und Basisschaltung
- Differenzverstärker

Unterdrückung der AC-Signalgegenkoppplung

- Die Kapazität unterbindet die Rückkopplung des Wechselsignals (AC feedback).
 Die Arbeitspunktstabilisierung (DC feedback) bleibt dagegen erhalten.
- Die Kapazität des Überbrückungskondensators muss so groß sein, dass für alle relevanten Signalfrequenzen $1/\omega \cdot C_E \ll R_E$ gilt.

Frequenzgangbestimmende Kapazitäten

$$X_C = \frac{1}{\omega \cdot c}$$
 Grenzfälle:
 $f = 0 \Rightarrow X_C = \infty$ (Unterbrechung)
 $f = \infty \Rightarrow X_C = 0$ (Kurzschluss)

Basis-Kollektor-Kapazität

LHochpässe → untere \int Grenzfrequenz f_{ao}

Parasitäre Kapazitäten des Transistors

Emitterstufe mit Spannungsgegenkopplung

- Spannungsgegenkopplung: Die Ausgangsgröße U_{CE} wirkt über R_1 gegensinnig auf den Eingang zurück.
- Ursache-Wirkungs-Kette: $T \uparrow \Rightarrow I_C \uparrow \Rightarrow U_{RC} \uparrow \Rightarrow U_{CE} \downarrow \Rightarrow U_{R2} = U_{BE} \downarrow \Rightarrow I_C \downarrow$
- Thermische Stabilität / Unempfindlichkeit gegenüber Parameterstreuungen, da Änderungen des Arbeitspunkts wie bei Strom-GK selbsttätig ausgeregelt werden (Stabilisierung allerdings deutlich schlechter).

Inhalt

- Grundlagen
- Kennlinien, Grenzwerte und Arbeitsbereiche
- Grundschaltungen, Kleinsignalbetrachtung und Arbeitspunkt
- Emitterschaltung
- Kollektor- und Basisschaltung
 - Die Kollektorschaltung
 - Wie groß ist die Verstärkung der Kollektorschaltung?
 - Wie werden Ein- und Ausgangswiderstand der Kollektorschaltung bestimmt?
 - Die Kollektorschaltung als Impedanzwandler
 - Basisschaltung
 - Die drei Grundschaltungen des Transistors im Überblick
 - Mehrstufiger Verstärker
- Differenzverstärker

Kollektorschaltung (Emitterfolger)

- Der Kollektor ist kleinsignalmäßig die gemeinsame Bezugselektrode für Ein- und Ausgang.
- Emitterfolger: "Emitter folgt Basis" Das Emitterpotential ist stets um $U_{BE} \approx 0.7 \ V$ kleiner als das Basispotential $\implies u_{Aus} \approx u_{Ein} \implies A_U \approx 1$.
- Stromgegenkopplung: Die gesamte Ausgangsspannung wird auf den Eingang zurückgeführt (vollständige Gegenkopplung). Arbeitspunktstabilität ist gewährleistet. (in der Emitterschaltung wird nur ein Teil (R_E/R_C) des Ausgangssignals am Emitter zurückgeführt)

Kleinsignalverstärkung der Kollektorschaltung

Die Spannungsverstärkung ist geringfügig kleiner eins (<1). Aus- und Eingangsspannung sind phasengleich.

Stromsverstärkung (Spannungsteiler und Last seien hier unberücksichtigt:

$$i_{Ein} = i_B$$
):

$$A_I = rac{i_E}{i_B} = eta + 1$$
 Die Kollektorschaltung besitzt eine sehr hohe Stromverstärkung.

Eingangswiderstand der Kollektorschaltung

Unter Berücksichtigung der angeschlossenen Last gilt für den Eingangswiderstand:

$$r_{Ein} = R_1 \|R_2\| \left(r_{BE} + (\beta + 1) \cdot \left(R_E \|R_L\right)\right) \qquad \text{(Wie bei Emitterstufe mit Strom-GK)}$$

$$r_{Ein} = R_1 \|R_2\| \left(r_{BE} + (\beta + 1) \cdot \left(R_E \|R_L\| r_{CE}\right)\right) \qquad \text{(falls r_{CE} nicht vernachlässigbar)}$$

 Der Eingangswiderstand der Kollektorschaltung ist groß (hochohmiger Basisspannungsteiler vorausgesetzt).

Ausgangswiderstand der Kollektorschaltung

• Ausgangswiderstand:

$$r_{Aus} = \frac{u_{Aus}}{i_K} = \frac{i_{B0} \cdot (\beta + 1) \cdot R_E}{(\beta + 1) \cdot i_{BK}}$$

(Basisstrom bei Leerlauf):
$$i_{B0} = \frac{u_{qe}}{R_{ie} + r_{Be} + (\beta + 1) \cdot R_E}$$

(Basisstrom bei Kurzschluss): $i_{BK} = \frac{u_{qe}}{R_{ie} + r_{BE}}$

$$\Rightarrow r_{Aus} = \frac{(R_{ie} + r_{BE}) \cdot R_E}{R_{ie} + r_{BE} + (\beta + 1) \cdot R_E} = \frac{1}{\frac{1}{R_E} + \frac{\beta + 1}{R_{ie} + r_{BE}}} = R_E \| \frac{R_{ie} + r_{BE}}{\beta + 1} \approx \frac{R_{ie} + r_{BE}}{\beta}$$

Kollektorschaltung als Impedanzwandler

• Problem:

Hochohmige Signalquelle soll niederohmige Last treiben. Was passiert?

⇒ Die Klemmenspannung "bricht" zusammen.

 <u>Lösung</u>: Verwendung eine Puffers (engl. buffer)

$$\beta = 500$$

$$r_{BE} = 313 \Omega$$

94

Basisschaltung

Einspeisung am Emitter (Basis konstant):
 Die Signalquelle muss den hohen Emitterstrom aufbringen.
 Der Eingangswiderstand ist daher sehr klein.

 $r_{Ein} \approx \frac{r_{BE}}{\beta + 1}$ (Differentieller Widerstand der BE-Diode vom Emitter aus gesehen)

- Ausgangswiderstand: $r_{Aus} \approx R_C$ (Wie bei Emitterschaltung)
- Spannungsverstärkung: $A_U = \frac{u_{AuS}}{u_{Ein}} \approx g_m \cdot R_C$ (Wie bei Emitterschaltung, aber ohne Invertierung)
- Stromverstärkung: $A_I = \frac{i_C}{i_E} \approx 1 = \frac{\beta}{\beta + 1}$ (Stets kleiner als 1)

Die Basisschaltung eignet sich besonders als Spannungsverstärker im HF-Bereich (kein Miller-Effekt durch parasitäre Rückwirkungskapazitäten).

Die 3 Grundschaltungen des Transistors

B=200 lc=2mA	Emitterschaltung	Kollektorschaltung	Basisschaltung
Spannungsverstärkung	groß, z.B 200	≈ 1	groß, z.B. 200
Stromverstärkung	groß, z. B 200	groß, z.B. 200	≈ 1
Eingangswiderstand	mittel, z. B. 2 kΩ	groß, z. B. 20 kΩ	klein, z. B. 20 Ω
Ausgangswiderstand	mittel, z. B. 2 kΩ	klein, z. B. 50 Ω	mittel, z. B. 2 kΩ
obere Grenzfrequenz	niedrig, z. B. 500 kHz	mittel bis hoch, z. B. 5 MHz	hoch, z. B. 20 MHz
Phasendrehung	180°	0°	0°

Mehrstufiger Verstärker

Die Kollektorschaltung hat zwar keine Spannungsverstärkung, aber ...

- einen hohen Eingangswiderstand, der die Signalquelle kaum belastet,
- einen niedrigen Ausgangswiderstand, d. h.
 niederohmige Lasten können mit großen Strömen versorgt werden,
- daher eignet sie sich als Treiberstufe bzw. Impedanzwandler.

Inhalt

- Grundlagen
- Kennlinien, Grenzwerte und Arbeitsbereiche
- Grundschaltungen, Kleinsignalbetrachtung und Arbeitspunkt
- Emitterschaltung
- Kollektor- und Basisschaltung
- Differenzverstärker
 - Was versteht man unter dem Gleichtakt- und Gegentaktanteil von Signalen?
 - Wie verhält sich eine Differenzstufe bei Gleichtaktaussteuerung?
 - Wie verhält sich eine Differenzstufe bei Gegentaktaussteuerung?
 - Verhalten des Differenzverstärkers

Differenzverstärker

Emitterschaltung:

- Arbeitspunktempfindlich
- Temperaturabhängig
- AC-Kopplung am Ein- und Ausgang: nur AC Signale möglich
- Große Kapazitäten der Koppelkondensatoren verringern die Eckfrequenz.
- Symmetrischer Aufbau aus zwei gleichen Emitterstufen (T_1 , T_2 identisch).
- Thermisch stabil (da Temperaturänderungen wie ein Gleichtaktsignal wirken).
- Eine Stromquelle hält die Summe der Ströme konstant: $I_{E1} + I_{E2} = I_q = const$
- 2 Eingänge U_{B1} , U_{B2} ; $U_D = U_{B1} U_{B2}$ (Eingangsdifferenzspannung)
 - 2 massebezogene Ausgänge U_{C1} , U_{C2} (asymmetrisch)
 - 1 massefreier Ausgang U_A (symmetrisch); $U_A = U_{C1} U_{C2}$ (Ausgangsdifferenz)

Gleichtakt / Gegentakt

Umgekehrt können beide Signale als Überlagerung dieser Komponenten dargestellt werden:

- Zwei (zeitveränderliche) Signale sind im Gleichtakt, wenn stets $u_1 = u_2$ bzw. $u_D = 0$ gilt: $u_{CM} = u_1 = u_2$
- Sie sind im Gegentakt, wenn stets $u_1 = -u_2$ bzw. $u_{CM} = 0$ gilt:

$$u_D = u_1 - (-u_2) = 2 \cdot u_1$$

Zerlegung von Gegentaktsignalen

- Zwei Eingangssignale u_1 und u_2
- Zerlegung der beiden Eingangssignale in ihre Anteile:
 - 1. Gleichtakt Anteil der Signale u_{CM}
 - 2. Differenzsignal aus u_1 und u_2 : u_{DM}

Differenzstufe bei Gleichtaktaussteuerung

<u>Fall 1</u>: Gleich große Eingangsspannungen $U_{B1} = U_{B2} = U_{CM}$, $U_D = 0$ (reiner Gleichtakt).

Bei Änderung der Gleichtaktspannung verschieben sich die Potential an den Ausgängen nicht. Der Quellstrom verteilt sich stets gleichmäßig auf beide Emitterzweige:

$$I_{E1} = I_{E2} = \frac{1}{2}I_q \approx I_{C1} = I_{C2} \implies U_{C1} = U_{C2} = U_{CC} - \frac{1}{2}I_q \cdot R_C$$
 bzw. $U_A = 0$

Die Gleichtaktverstärkung ist in diesem Beispiel idealerweise null:

$$A_{U,CM} = \frac{dU_{C1}}{dU_{CM}} = \frac{dU_{C2}}{dU_{CM}} = \frac{0 V}{1 V} = 0$$

Der Gummi-Transistor

Differenzstufe bei Gegentaktaussteuerung (1)

Fall 2: Die Eingangsspannungen seien entgegengesetzt gleich groß (reiner Differenzbetrieb). Betrachtet werden nur kleine Spannungen (bzw. deren Änderungen).

Bei reiner Differenzaussteuerung ist die Spannung am Emitter konstant und es gilt:

 T_1 und T_2 arbeiten als einfache Emitterstufen. Da das Superpositionsprinzip gilt, wird die Differenzverstärkung bei asymmetrischer Auskopplung (*single ended*) betrachtet:

z.B.:
$$dU_D = dU_{B1} - dU_{B2} \approx 10mV$$

$$dU_{B1} = -dU_{B2} = \frac{1}{2}dU_D \qquad \text{d.h.}$$

$$dU_{B1} = 5 mV, dU_{B2} = -5mV$$

$$I_{C1} \uparrow I_{C2} \downarrow \implies U_{C1} \downarrow U_{C2} \uparrow$$

$$\text{weil } I_{C1} + I_{C2} \approx I_q = const.$$

$$\implies dI_{C1} = -dI_{C2} \implies dU_{C1} = -dU_{C2}$$

$$dI_{C1} = g_m \cdot dU_{BE1} \quad dI_{C2} = g_m \cdot dU_{BE2}$$

$$dU_{B1} = dU_{BE1} = \frac{1}{2}dU_{D}$$

 $dU_{B2} = dU_{BE2} = -\frac{1}{2}dU_{D}$

$$A_{U,D} = \frac{dU_{C1}}{dU_D} = \frac{dU_{C1}}{2dU_{BE1}} = -\frac{1}{2}g_mR_C$$

Differenzstufe bei Gegentaktaussteuerung (2)

Bei symmetrischer, massefreier Auskopplung (fully differential) beträgt die Differenzverstärkung:

$$A_{U,D} = \frac{dU_A}{dU_D} = -g_m R_C$$

$$\begin{pmatrix} Da \ dU_{C1} = -dU_{C2}, \\ dU_A = dU_{C1} - dU_{C2} = 2dU_{C1} \end{pmatrix}$$
 und die Ströme?

<u>Beispiel</u>: Bei $I_{C1} = I_{C2} = \frac{1}{2}I_q$ gilt für die Steilheiten von T_1 und T_2 $g_m = \frac{1 mA}{25 mV} = 40 mS$ und damit für die single-ended Differenzverstärkung $A_{U,D} = \frac{dU_{C1}}{dU_D} = -\frac{1}{2}40 \, mS \cdot 5 \, k\Omega = -100$

Somit betragen die Anderungen der Ausgangsspannungen:

$$dU_{C1} = A_{U,D} \cdot dU_D = -100 \cdot 10 \ mV = -1 \ V$$

$$dU_{C2} = -dU_{C1} = +1 \ V$$

$$dU_{C2} = -dU_{C1} = +1 V$$

$$dU_{A} = dU_{C1} - dU_{C2} = -2 V$$

$$g_{m} = \frac{I_{C}}{U_{Temp}} = g_{m2}?$$

$$g_m = \frac{I_C}{U_{Temp}} = g_{m2}?$$

und die Stromänderungen:

$$dI_{C1} = -dI_{C2} = \frac{-dU_{C1}}{R} = \frac{1V}{5 k\Omega} = 0.2 \text{ mA}$$

Verhalten des Differenzverstärkers

Die Differenzstufe verstärkt nur die Differenzspannung zwischen den beiden Eingängen. Der Gleichtaktanteil wird unterdrückt.