CS/ECE/ME532 Assignment 3

- 1. Polynomial fitting. Suppose we observe pairs of points (a_i, b_i) , i = 1, ..., m representing measurements from a scientific experiment. The variables a_i are the experimental conditions and the b_i correspond to the measured response in each condition. We fit a degree d < m polynomial to these data. In other words, we want to find the coefficients of a degree p polynomial w(a) so that $w(a_i) \approx b_i$ for i = 1, 2, ..., m.
 - a) Suppose w(a) is a degree p polynomial. Write the general expression for $w(a_i) = b_i$.
 - b) Express the i = 1, ..., m equations as a system in matrix form $\mathbf{A}\mathbf{x} = \mathbf{d}$ while defining \mathbf{A} and \mathbf{d} . What is the form/structure of \mathbf{A} in terms of the given a_i ?
 - c) Write a script to find the least-squares model fit to the m=30 data points in polydata.mat. Plot the points and the polynomial fits for p=1,2,3.
- 2. Least Squares Approximation of Matrices.
 - a) Derive the solution to least-squares problem $\min_{\boldsymbol{w}} \|\boldsymbol{x} \boldsymbol{T}\boldsymbol{w}\|_2^2$ when \boldsymbol{T} is an n-by-r matrix of orthonormal columns. Your solution should not involve a matrix inverse.
 - b) Let $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_p \end{bmatrix}$ be an n-by-p matrix. Use the least-squares problems $\min_{\boldsymbol{w}_i} \|\boldsymbol{x}_i T\boldsymbol{w}_i\|_2^2$ to find $\boldsymbol{W} = \begin{bmatrix} \boldsymbol{w}_1 & \boldsymbol{w}_2 & \cdots & \boldsymbol{w}_p \end{bmatrix}$ in the approximation $\boldsymbol{X} \approx T\boldsymbol{W}$. Your solution should express \boldsymbol{W} as a function of \boldsymbol{T} and \boldsymbol{X} .
- **3.** We return to the movies rating problem of Activity 5. The ratings on a scale of 1-10 are:

Movie	Jake	Jennifer	Jada	Theo	Ioan	Во	Juanita
Star Trek	4	7	2	8	7	4	2
Pride and Prejudice	9	3	5	6	10	5	5
The Martian	4	8	3	7	6	4	1
Sense and Sensibility	9	2	6	5	9	5	4
Star Wars: Empire Strikes	4	9	2	8	7	4	1

A matrix X containing this data is available in the file movie.mat and the csv file movie.csv. Our goal is to approximate X using r "tastes", the columns of T, that

is, $X \approx TW$ where T is 5-by-r. You will use a Gram-Schmidt orthogonalization code to find a set of tastes that approximate the ratings. A script that implements Gram-Schmidt orthogonalization is available.

Define a 5-by-r taste matrix $T = \begin{bmatrix} t_1 & t_2 & \cdots & t_r \end{bmatrix}$ with orthonormal columns and the r-by-r weight matrix

$$\boldsymbol{W} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{17} \\ w_{21} & w_{22} & \cdots & w_{27} \\ & & \vdots & \\ w_{r1} & w_{r2} & \cdots & w_{r7} \end{bmatrix}$$

a) In Activity 5 you found the baseline (average) rating for each friend by requiring the first basis vector in the taste matrix to be

$$oldsymbol{t}_1 = rac{1}{\sqrt{5}} \left[egin{array}{c} 1 \ 1 \ 1 \ 1 \ 1 \end{array}
ight]$$

You have noticed by now that the first vector in the Gram-Schmidt procedure is a scaled version of the first vector of the matrix, so you decide to define an augmented matrix $\tilde{X} = \begin{bmatrix} 1 & X \end{bmatrix}$ where 1 is a column vector containing five unity entries. Apply a Gram-Schmidt orthogonalization code to \tilde{X} to find a set of orthonormal basis vectors. Is the first basis vector you obtain equal to t_1 ?

- b) Use your solution to the preceding problem in this homework assignment to find the rank-1 approximation of X using only t_1 . That is, find W so that $X \approx t_1 W$. Use W to compute $t_1 W$. This gives you each friend's baseline ratings. Also compute the residual error $X t_1 W$.
- c) Now find a rank-2 approximation using $T = [t_1 \ t_2]$. That is, find W so that $X \approx TW$. Use W to compute TW. This gives you a rank-2 approximation to the ratings. Also compute the residual error X TW. How does t_2 relate to the distinction between sci-fi and and romance movie preferences?
- d) Now find a rank-3 approximation using $T = [t_1 \ t_2 \ t_3]$. That is, find W so that $X \approx TW$. Use W to compute TW. This gives you a rank-3 approximation to the ratings. Also compute the residual error X TW. Qualitatively discuss the effect of increasing the rank of the approximation on the residual error.
- e) Suppose you interchange the order of Jake and Jennifer so that Jennifer's ratings are in the first column of X and Jake's ratings are in the second column. Does the

rank-2 approximation change? Why or why not? Does the rank-3 approximation change? Why or why not?

4. Let
$$Q = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
.

- a) Is $\mathbf{Q} \succ 0$?
- **b)** Sketch the surface $y = \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x}$ where $\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. If you find 3-D sketching too difficult, you may draw a contour map with labeled contours.
- **5.** Suppose $\mathbf{P} \succ 0$ and $\mathbf{Q} \succ 0$ are (symmetric) positive definite $n \times n$ matrices. Prove that $\mathbf{QPQ} \succ 0$.