	(Uleah
Name:	\$
Roll No.:	A Space Williamship and Excited
Inviailator's Signature :	

2011 INSTRUMENTATION AND PROCESS CONTROL

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $10 \times 1 = 10$
 - i) Bourdon gauge is a
 - a) strain gauge
- b) screw gauge
- c) level gauge
- d) pressure gauge.
- ii) Typical input to a thermocouple is
 - a) voltage
- b) current
- c) temperature
- d) pressure.
- iii) Ramp input is expressed as
 - a) $x = x_0$
 - b) x = xt
 - c) $x = x_s \sin wt$
 - d) none of these.

7417 [Turn over

- iv) Which of the following is a flow meter?
 - a) LVDT

- b) Pyrommeter
- c) Rota-meter
- d) Potentiometer.
- v) A transducer is
 - a) signal processing unit b) senor unit
 - c) display unit
- d) amplification unit.
- vi) The system shown in the figure is critically damped for

- a) k = 0
- b) k = -1
- c) k = 3.
- vii) Improvement in accuracy in a PID controller is the effect of its
 - a) P mode
 - b) I mode
 - c) D mode.
- viii) A system will be stable if
 - a) $GM = 0.5 \& PM = 30^{\circ}$
 - b) $GM = 5 \& PM = -30^{\circ}$
 - c) $GM = \infty \& PM = 30^{\circ}$

- a) phase-lag system
- b) phase lead system
- c) none of these.
- x) Transfer function of a system depends on
 - a) input
 - b) frequency
 - c) both frequency & input.

GROUP - B

(Short Answer Type Questions)

Write short notes on any three of the following.

$$3 \times 5 = 15$$

2. Derive the transfer function y/x for the control system shown in figure below.

 Determine the condition for stability for a negative feedback system with forward path gain

$$G(s) = \frac{k}{(\tau_1 \ s + 1) \ (\tau_2 \ s + 1)}$$
 and

feedback path gain

$$H(s) = \frac{1}{s}$$

- a) Define closed loop and open loop systems with an example for each.
 - b) What are the differences between the two? 3 + 2
- 5. a) Why a Linear Variable Differential Transformer (LVDT) is used?
 - b) Briefly describe its working principle. 1 + 4
- 6. a) How is a thermistor prepared?
 - b) What is its general range of measurement?
 - c) Why is the sensitivity of a thermistor low? 3 + 1 + 1

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) How can you measure vacuum with the help of a McLeod gauge? Describe with a neat sketch.
 - b) How can ultrasonic method be used for liquid level measurement? 8 + 7
- 8. a) How does an electromagnetic flow-meter operate?
 - b) Describe the operating principle of a venturimeter. Compare its disadvantage/advantage with that of orificemeter. 6 + (6 + 3)

4

7417

- 9. a) Derive the transfer function of an ordinary mercury-inglass thermometer.
 - b) A thermometer having first-order dynamics with a time constant of 10 sec is allowed to come to equilibrium in the room air at 75°F. Then it is placed in the 400°F oil bath for a length of time less than 1 sec, and quickly removed from the bath and re-exposed to the 75°F ambient conditions. It may be estimated that the heat transfer coefficient to the thermometer in air is one-fifth of that in the oil bath. If 10 sec after the thermometer is removed from the bath it reads 98°F, estimate the length of time that the thermometer was in the bath.

7 + 8

10. a) A mixing process is described as follows:

a stream with solute concentration C_i (lb/volm) is fed to a perfectly stirred tank at a constant flow rate of q (volm/min). The perfectly mixed product is withdrawn

b) In the two-tank mixing process shown in the following figure, x varies from 0 lb salt/ft³ to 1 lb salt/ft³ according to a step function. At what time does the salt concentration in tank 2 reach 0.6 lb salt/ft³? The hold-up volume of each tank is 6 ft³.

6

7417

- 11. a) Derive the transfer function of two non-interactive first order liquid level systems connected in series.
 - b) The liquid-level process shown in the figure below is operating at steady state when the following disturbance occurs: at time t=0, $1\,\mathrm{ft}^3$ water is added suddenly (unit impulse) to the tank; at $t=1\,\mathrm{min}$, $2\,\mathrm{ft}^3$ of water is added suddenly to the tank. Sketch the response of the level in the tank versus time and determine the level at $t=0.5\,\mathrm{min}$, $1\,\mathrm{min}$ and $1.5\,\mathrm{min}$.

7417 7