GCE August, 2015

Jiamin JIAN

Exercise 1:

Use the Fubini theorem to prove that

$$\int_{\mathbb{R}^n} e^{-|\mathbf{x}|^2} \, d\mathbf{x} = \pi^{\frac{n}{2}}$$

Here $\mathbf{x} = (x_1, x_2, \dots, x_n)$. Hint: For n = 2, use polar coordinates.

Solution:

Firstly, for a > 0, we define

$$I(a) = \int_{-a}^{a} e^{-x^2} dx,$$

then we have

$$I^{2}(a) = \int_{-a}^{a} e^{-x^{2}} dx \int_{-a}^{a} e^{-y^{2}} dy.$$

As (-a, a) is an interval with finite measure and $|e^{-x^2}| \le 1$, by the Fubini theorem, we have

$$I^{2}(a) = \int_{-a}^{a} \int_{-a}^{a} e^{-(x^{2}+y^{2})} dx dy.$$

Take the polar coordinates transformation as follows,

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta, \end{cases}$$

then we have

$$\int_0^{2\pi} \int_0^a r e^{-r^2} \, dr \, d\theta < I^2(a) < \int_0^{2\pi} \int_0^{\sqrt{2}a} r e^{-r^2} \, dr \, d\theta.$$

By calculation, we can get the inequalities

$$(1 - e^{-a^2})\pi < I^2(a) < (1 - e^{-2a^2})\pi.$$

Let $a \to \infty$, we have

$$\lim_{a \to \infty} I^2(a) = \int_{\mathbb{R}^2} e^{-|\mathbf{x}|^2} d\mathbf{x} = \pi,$$

then we know that $\lim_{a\to\infty} I(a) = \int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$. For the *n* dimensional domain, we have

$$\int_{\mathbb{R}^n} e^{-|\mathbf{x}|^2} d\mathbf{x} = \int_{\mathbb{R}} \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{-(x_1^2 + x_2^2 + \cdots + x_n^2)} dx_1 dx_2 \cdots dx_n
= \left(\int_{\mathbb{R}} e^{-x_1^2} dx_1 \right)^n = \pi^{\frac{n}{2}}.$$

Exercise 2:

Let (X, \mathcal{A}, μ) be a measure space, and f be in $L^1(X)$. Let for all positive integers n set $B_n = \{x \in X : n - 1 \le |f(x)| < n\}$.

- (i) Show that $\mu(B_n) < \infty$ for all $n \ge 2$.
- (ii) Show that $\sum_{n=2}^{\infty} n\mu(B_n) < \infty$.
- (iii) Define $C_n = \{x \in X : n-1 \le |f(x)| \le n\}$. Is the sum $\sum_{n=2}^{\infty} n\mu(C_n)$ finite?
- (iv) Show that

$$\sum_{n=2}^{\infty} \sum_{m=2}^{n} \frac{m^2}{n^2} \mu(B_m) < \infty.$$

(v) Show that for $n \geq 2$

$$\int |f|^2 1_{\{|f| < n\}} = \int |f|^2 1_{\{|f| < 1\}} + \sum_{m=2}^n \int |f|^2 1_{B_m}$$

and infer that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \int |f|^2 1_{\{|f| < n\}} < \infty$$

Solution:

(i) Since $f \in L^1(X)$, we have $\int_X |f| d\mu < \infty$. For $n \ge 2$, we know that

$$\int_X |f| \, d\mu \ge \int_{B_n} |f| \, d\mu \ge (n-1) \int_{B_n} 1 \, d\mu = (n-1)\mu(B_n).$$

When $n \geq 2$, we have $n - 1 \geq 1$, then we know that $\mu(B_n) < \infty$. So, for any $n \geq 2$, we have $\mu(B_n) < \infty$.

(ii) Since $B_n = \{x \in X : n-1 \le |f(x)| < n\} = \{x \in X : n \le |f(x)| + 1 < n+1\}$, we have

$$\sum_{n=2}^{\infty} n\mu(B_n) = \sum_{n=2}^{\infty} \int_{B_n} n \, d\mu$$

$$\leq \sum_{n=2}^{\infty} \int_{B_n} |f(x)| + 1 \, d\mu$$

$$= \sum_{n=2}^{\infty} \int_{B_n} |f(x)| \, d\mu + \sum_{n=2}^{\infty} \int_{B_n} 1 \, d\mu$$

$$\leq 2 \int_{\bigcup_{n=2}^{\infty} B_n} |f(x)| \, d\mu$$

$$\leq 2 \int_{X} |f(x)| \, d\mu < \infty.$$

(iii) We claim that the sum $\sum_{n=2}^{\infty} n\mu(C_n)$ is finite. As $C_n = \{x \in X : n-1 \le |f(x)| \le n\} \subset B_n \cup B_{n+1}$, we have

$$\mu(C_n) \le \mu(B_n \cup B_{n+1}) \le \mu(B_n) + \mu(B_{n+1}),$$

thus

$$\sum_{n=2}^{\infty} n\mu(C_n) \le \sum_{n=2}^{\infty} n\mu(B_n) + \sum_{n=2}^{\infty} n\mu(B_{n+1}).$$

Since $\int_{B_{n+1}} |f| d\mu \ge n \int_{B_{n+1}} 1 d\mu = n\mu(B_{n+1})$, we have

$$\sum_{n=2}^{\infty} n\mu(B_{n+1}) \leq \sum_{n=2}^{\infty} \int_{B_{n+1}} |f| \, d\mu$$

$$= \int_{\bigcup_{n=2}^{\infty} B_{n+1}} |f| \, d\mu$$

$$< \int_{X} |f| \, d\mu < \infty.$$

As we showed $\sum_{n=2}^{\infty} n\mu(B_n) < \infty$ in (ii), hence we have

$$\sum_{n=2}^{\infty} n\mu(C_n) \le \sum_{n=2}^{\infty} n\mu(B_n) + \sum_{n=2}^{\infty} n\mu(B_{n+1}) < \infty.$$

(iv) We can rewrite the $\sum_{n=2}^{\infty} \sum_{m=2}^{n} \frac{m^2}{n^2} \mu(B_m)$ and get

$$\sum_{n=2}^{\infty} \sum_{m=2}^{n} \frac{m^{2}}{n^{2}} \mu(B_{m}) = \sum_{m=2}^{\infty} \mu(B_{m}) m^{2} \sum_{n=m}^{\infty} \frac{1}{n^{2}}$$
$$= \sum_{m=2}^{\infty} m \mu(B_{m}) \sum_{n=m}^{\infty} \frac{m}{n^{2}}.$$

Next we need to show that $\sum_{n=m}^{\infty} \frac{m}{n^2}$ is bounded. When $m \geq 2$, we have

$$\sum_{m=1}^{\infty} \frac{m}{n^2} < m \int_{m-1}^{\infty} \frac{1}{x^2} dx = \frac{m}{m-1} \le 2,$$

then we know that

$$\sum_{n=2}^{\infty} \sum_{m=2}^{n} \frac{m^2}{n^2} \mu(B_m) < 2 \sum_{m=2}^{\infty} m \mu(B_m) < \infty.$$

Or by the inequalities as follows,

$$\sum_{n=2}^{\infty} \sum_{m=2}^{n} \frac{m^{2}}{n^{2}} \mu(B_{m}) = \sum_{m=2}^{\infty} \mu(B_{m}) m^{2} \sum_{n=m}^{\infty} \frac{1}{n^{2}}$$

$$< \sum_{m=2}^{\infty} m^{2} \mu(B_{m}) \sum_{n=m}^{\infty} \frac{1}{n(n-1)}$$

$$= \sum_{m=2}^{\infty} m^{2} \mu(B_{m}) \frac{1}{m-1}$$

$$= \sum_{m=2}^{\infty} m \mu(B_{m}) \frac{m}{m-1}$$

$$< \sum_{m=2}^{\infty} 2m \mu(B_{m}) < \infty.$$

(v) Firstly, we show that

$$\int |f|^2 1_{\{|f| < n\}} d\mu = \int |f|^2 1_{\{|f| < 1\}} d\mu + \sum_{m=2}^n \int |f|^2 1_{B_m} d\mu.$$

By calculation, we have

$$\int |f|^2 1_{\{|f| < n\}} d\mu = \int |f|^2 1_{\{|f| < 1\}} d\mu + \int |f|^2 1_{\{1 \le |f| < n\}} d\mu$$

$$= \int |f|^2 1_{\{|f| < 1\}} d\mu + \int |f|^2 \sum_{m=2}^n 1_{\{m-1 \le |f| < m\}} d\mu$$

$$= \int |f|^2 1_{\{|f| < 1\}} d\mu + \sum_{m=2}^n \int |f|^2 1_{\{m-1 \le |f| < m\}} d\mu$$

$$= \int |f|^2 1_{\{|f| < 1\}} d\mu + \sum_{m=2}^n \int |f|^2 1_{B_m} d\mu,$$

then we get the equation we wanted. Next we show that $\sum_{n=1}^{\infty} \frac{1}{n^2} \int |f|^2 1_{\{|f| < n\}} < \infty$. Note that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \int |f|^2 1_{\{|f| < n\}} d\mu$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\int |f|^2 1_{\{|f| < 1\}} d\mu + \sum_{m=2}^{n} \int |f|^2 1_{B_m} d\mu \right)$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^2} \int |f|^2 1_{\{|f| < 1\}} d\mu + \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{m=2}^{n} \int |f|^2 1_{B_m} d\mu.$$

For the first term in the right hand side of the above equation, we have

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \int |f|^2 1_{\{|f|<1\}} d\mu < \sum_{n=1}^{\infty} \frac{1}{n^2} \int_X |f| d\mu < \infty.$$

And for the second term in the right hand side of the above equation, we have

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{m=2}^{n} \int |f|^2 1_{B_m} d\mu < \sum_{n=2}^{\infty} \frac{1}{n^2} \sum_{m=2}^{n} \int m^2 1_{B_m} d\mu$$
$$= \sum_{n=2}^{\infty} \sum_{m=2}^{n} \frac{m^2}{n^2} \mu(B_m) < \infty.$$

Thus we have

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \int |f|^2 1_{\{|f| < n\}} d\mu < \infty.$$

Exercise 3:

Prove or disprove: suppose that $f, g : \mathbb{R} \to \mathbb{R}$, with f being a measurable function, and g being a continuous function. Then $f \circ g$ is measurable. By definition, $(f \circ g)(x) = f(g(x))$, that is, it is the composition of the two functions.

Solution:

No, the statement is not true and we can find a counter example as follows. Suppose that C is the Cantor set and we define a mapping ϕ : for any $x \in C$, let $0.c_1c_2c_3\cdots$ be its ternary expansion, where $c_n = 0$ or $c_n = 2$, $n = 1, 2, \cdots$ and let

$$\phi(x) = 0.\frac{c_1}{2} \frac{c_2}{2} \frac{c_3}{2} \cdots ,$$

where the expansion on the right is now interpreted as a binary expansion in terms of digits 0 and 1. It is clear that the image of C, under ϕ , is a subset of [0,1]. And next we extend the domain to the entire unit interval [0,1]. If $x \in [0,1] \setminus C$, then x is a member of one of the open intervals (a,b) removed from [0,1] in the construction of C, and therefore $\phi(a) = \phi(b)$. And we define $\phi(x) = \phi(a) = \phi(b)$. Since $\phi(\cdot)$ is increasing on [0,1], and since the range of $\phi(\cdot)$ is the entire interval [0,1], $\phi(\cdot)$ has no jump discontinuities. Since a monotonic function can have no discontinuities other than jump discontinuities, we know that $\phi(\cdot)$ is continuous. Then we define

$$\varphi(x) = x + \phi(x), x \in [0, 1]$$

with range [0,2]. Since $\phi(\cdot)$ is increasing on [0,1] and continuous there, φ is strictly increasing and topological there (continuous and one-to-one with a continuous inverse on the range φ). Since each open interval removed from [0,1] in the construction of the Cantor set C is mapped by φ onto an interval of [0,2] of the equal length, $\mu(\varphi(I \setminus C)) = \mu(I \setminus C) = 1$. Since C is a set of measure zero, φ is an example of a topological mapping that maps a set of measure zero onto a set of positive measure.

Now let D is a non-measurable subset of $\varphi(C)$ and let $E = \varphi^{-1}(D)$. Then the characteristic function $f = 1_E(x)$ of the set E is measurable and $g = \varphi^{-1}$ is continuous, but the composite function f(g(x)) is non-measurable characteristic function of the non-measurable set D.

Claim: suppose that $f, g : \mathbb{R} \to \mathbb{R}$, with f being a measurable function, and g being a continuous function. Then $g \circ f$ is measurable.

Proof: Since $f:(\mathbb{R},\mathcal{B}_{\mathbb{R}}) \to (\mathbb{R},\mathcal{B}_{\mathbb{R}})$ is Lebesgue-measurable and as $g:\mathbb{R} \to \mathbb{R}$ is continuous, it is Borel-measurable. Take any $B \in \mathcal{B}_{\mathbb{R}}$, we want to show that $(g \circ f)^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$. By measurability of g, since $B \in \mathcal{B}_{\mathbb{R}}$, we have $B' = g^{-1}(B) \in \mathcal{B}_{\mathbb{R}}$. By the measurability of f, this implies that $f^{-1}(B') \in \mathcal{B}_{\mathbb{R}}$. This shows that $g \circ f$ is measurable for the σ -algebras $\mathcal{B}_{\mathbb{R}}$.