# Лабораторная №1

Сетевые технологии

Жибицкая Е.Д.

Российский университет дружбы народов, Москва, Россия

## Цель

#### Цель работы

 Изучение методов кодирования и модуляции сигналов с помощью высокоуровнего языка программирования Octave. Определение спектра и параметров сигнала.
 Демонстрация принципов модуляции сигнала на примере аналоговой амплитудной модуляции. Исследование свойства самосинхронизации сигнала

# Ход работы

#### Подготовка

Перед началом работы подготавливаем пространтсво, скачиваем все необходимое



Рис. 1: Установка Octave

## Sin\_plot. Построение графика

```
plot sin.m
  2 x==10:0.1:10:
  3 % Формирование массива у.
  4 v1=sin(x)+1/3*sin(3*x)+1/5*sin(5*x);
  5 в Построение графика функции:
  6 plot(x,v1, "-ok; v1=sin(x)+(1/3)*sin(3*x)+(1/5)*sin(5*x);","markersi:
  7 % Отображение сети на графике
  8 grid on;
 10 xlabel('x');
 12 vlabel('v');
 13 % Название графика:
 14 title('vl=sin x+ (1/3)sin(3x)+(1/5)sin(5x)');
 15 % Экспорт рисунка в файл . ерз:
 16 print ("plot-sin.eps", "-mono", "-FArial:16", "-deps")
 17 % Экспорт рисунка в файл .png:
 18 print ("plot-sin.png");
```

Рис. 2: Код для sin\_plot



Рис. 3: График sin\_plot

#### Sin\_cos\_plot

```
plot sin cos.m 🛛
  1 % Формирование массива х:
    x=-10:0.1:10:
    % Формирование массива у.
     v1=\sin(x)+1/3*\sin(3*x)+1/5*\sin(5*x);
     v2=\cos(x)+1/3*\cos(3*x)+1/5*\cos(5*x);
    % Построение графика функции:
    plot(x, y1, "-ok; y1=sin(x)+(1/3)*sin(3*x)+(1/5)*sin(5*x);", "markersi:
  8 hold on;
    plot(x, v2, "-k; v2=cos(x)+1/3*cos(3*x)+1/5*cos(5*x);", "markersize", 4)
    % Отображение сетки на графике
    grid on;
    % Полпись оси Х:
     xlabel('x'):
    % Подпись оси Y:
    vlabel('v');
 16 % Название графика:
    title('v1=sin x+ (1/3)sin(3x)+(1/5)sin(5x), v2=cos(x)+1/3*cos(3*x)+1,
    % Экспорт рисунка в файл .eps:
    print ("plot-sin cos.eps", "-mono", "-FArial:16", "-deps")
    % Экспорт рисунка в файл .png:
    print ("plot-sin cos.png");
```

Рис. 4: Код для sin\_cos\_plot



**Рис. 5:** График sin\_cos\_plot

#### Разложение импульсного сигнала в частичный ряд Фурье

```
meandr.m 🔯
  1 % meandr.m
    % количество отсчетов (гармоник):
    % частота пискретизации:
     t=-1:0.01:1;
    % значение амплитулы:
     A=1:
    T=1;
 10 % амплитула гармоник
 11 nh=(1:N)*2-1;
 12 % массив коэффициентов пля ряда, заданного через соз:
 13 Am=2/pi ./ nh;
 14 Am(2:2:end) = -Am(2:2:end);
 15 % массив гармоник:
 16 harmonics ≈ cos (2 * pi * nh' * t/T);
 17 % массив элементов ряда:
 18 sl=harmonics.*repmat(Am',1,length(t));
 19 % Суммирование ряда:
 20 s2=cumsum(s1);
 21 % Построение графиков:
 22 Ffor k=1:N
 23 T subplot (4,2,k)
 24 plot (t. s2(k.:))
 25 Lend
 26 % Экспорт рисунка в файл .png:
    print("plot-meandr.png");
```

Рис. 6: Код для meandr.m

```
% meandr.m
    % количество отсчетов (гармоник):
    % частота дискретизации:
    t=-1:0.01:1;
    % значение амплитулы:
    A=1:
    % период:
    T=1;
   % амплитуда гармоник
    nh=(1:N) *2-1;
   % массив коэффициентов для ряда, заданного через sin:
    Am=2/ni ./ nh:
14 Am(2:2:end) = Am(2:2:end);
   % массив тармоник:
16 harmonics=sin(2 * pi * nh! * t/T):
   % массив элементов ряда:
   sl=harmonics.*repmat(Am',1,length(t));
19 % Суммирование ряда:
   s2=cumsum(s1):
21 % Построение графиков:
22 - for k=1:N
23 T subplot (4,2,k)
24 | plot(t, s2(k,:))
25 -end
    % Экспорт рисунка в файл .png:
   print("plot-meandr sin.png");
28
```

Рис. 7: Код для meandr.m через синус



Рис. 8: График meandr.m

#### Определение спектра и параметров сигнала



**Рис. 9:** График spectre.m

Создаем каталог spectre1 и в нем файл spectre.m

#### Доработка кода и графика

```
18 t = 0:1./fd:tmax;
20 fd2 = fd/2:
21 % Лва сигнала разной частоты:
22 signal1 = a1*sin(2*pi*t*f1);
23 signal2 = a2*sin(2*pi*t*f2);
24 % График 1-го сигнала:
25 plot(signall, 'b');
26 % График 2-го сигнала:
27 hold on
28 plot(signal2,'r');
30 title('Signal');
31 % Экспорт графика в файл в каталоге signal:
32 print 'signal/spectre.png';
33 % Посчитаем спектр
34 % Амплитулы преобразования Фурье сигнала 1:
35 spectrel = abs(fft(signall.fd));
36 % Амплитуды преобразования Фурье сигнала 2:
37 spectre2 = abs(fft(signal2,fd));
38 % Построение графиков спектров сигналов:
39 plot(spectrel, 'b');
40 hold on
41 plot(spectre2,'r');
42 hold off
43 title('Spectre');
44 print 'spectre/spectre.png';
45 % Исправление графика спектра
46 % Сетка частот:
47 f = 1000*(0:fd2)./(2*fd):
48 % Нормировка спектров по амплитуле:
49 spectre1 = 2*spectre1/fd2;
50 spectre2 = 2*spectre2/fd2;
51 % Построение графиков спектров сигналов:
52 plot(f, spectrel(1:fd2+1), 'b');
53 hold on
54 plot(f,spectre2(1:fd2+1),'r');
55 hold off
56 xlim([0 1001):
57 title('Fixed spectre');
58 xlabel ('Frequency (Hz)');
59 print 'spectre/spectre fix.png';
```



Рис. 11: Исправленный график

#### Спектр суммы рассмотренных сигналов



Рис. 12: Суммарный сигнал



10/16

Due 12. Chouth cummanuoro curuana

#### Амплитудная модуляция

Ознакомимся с амплитудной модуляцией, создадим каталог modulation со сценарием am.m, увидим, что спектр произведения представляет собой свертку спектров



Рис. 14: Спектр сигнала при амплитудной модуляции

### Свойства самосинхронизуемости кодов по заданным битовым последовательностям

| Имя             | Дата изменения   | Тип      |
|-----------------|------------------|----------|
| C main.m        | 02.09.2025 10:15 | Файл "М" |
| C maptowave.m   | 02.09.2025 10:16 | Файл "М" |
| 🔾 unipolar.m    | 02.09.2025 10:18 | Файл "М" |
| € ami.m         | 02.09.2025 10:19 | Файл "М" |
| € bipolarnrz.m  | 02.09.2025 10:19 | Файл "М" |
| € bipolarrz.m   | 02.09.2025 10:20 | Файл "М" |
| C manchester.m  | 02.09.2025 10:20 | Файл "М" |
| € diffmanc.m    | 02.09.2025 10:21 | Файл "М" |
| C calcspectre.m | 02.09.2025 10:21 | Файл "М" |

**Рис. 15:** Подготовка рабочего пространства

Создаем для работы каталог coding и в нём файлы main.m, maptowave.m,unipolar.m,ami.m,bipolarnrz.m,bipolarrz.m,manch diffmanc.m, calcspectre.m, убеждаемся, что у нас установлен пакет signal



Рис. 16: Функции

В файле main.m подключаем пакет signal,задаем входные кодовые последовательности, прописываем вызовы функций построения спектров, модуляций сигналов. В остальных файлах прописываем сами функции

### Графики



Рис. 17: Графики



Рис. 18: Графики

## Графики



Рис. 19: Графики



• В ходе работы было произведено знакомство с Octave. Были также изучены методы кодирования и модуляции сигнала, определены спектры и параметры сигнала, продемонстрированы принципы модуляции сигнала на примере аналоговой амплитудной модуляции и исследованы свойства самосинхронизации сигнала