JIANG Guartin

AMA10071- Calculus and Linear Algebra (2093962D) Assignment 1

Due: 10 March 2021 (Monday) at 5pm

1. Solve the following equations for
$$x$$
.

(a) $0.5^{x} = 8$
(b) $\log_{3}(x+5) = 2\log_{3}(x-1)$
(c) $(\frac{1}{2})^{x} = 8$
 $-x = 3$
 $\chi^{2} - 3\chi + \psi = 0$
 $\chi = 4, \chi = -1$

2. Find inverse functions for the following functions (Only need to find the formula of
$$f^{-1}$$
).

(a) $f(x) = (2x+1)^3$ (b) $f(x) = \sqrt[3]{5x+8}$ (C) $f(x) = \sqrt[4]{4-x}$ (b) $f(x) = \sqrt[3]{5x+8}$ (c) $f(x) = \frac{1+9x}{4-x}$ (d) $f(x) = \sqrt[3]{5x+8}$ (e) $f(x) = \sqrt[4]{5x+8}$ (formula of $x = \sqrt[3]{5x+8}$ (formula

3. Find the following limits. If the limit does not exist, write "This limit does not exist."

For infinite limit results, please indicate
$$+\infty$$
 or $-\infty$.

(a) $\lim_{x\to 1} \frac{x-1}{x^3-1}$
(b) $\lim_{x\to \infty} (\ln(1+2x)-\ln(x))$
(c) $\lim_{t\to 0} \sqrt[3]{t} \sin(\frac{1}{t^2})$
(d) $\lim_{x\to -\infty} x\cos(1/x)$
(e) $\lim_{x\to 0} (3x-\sqrt{9x^2-12x+1})$
(f) $\lim_{x\to \infty} (3x-\sqrt{9x^2-12x+1})$
(g) $\lim_{x\to 0} \frac{\ln(1+\sin(x))}{x}$
(g) $\lim_{x\to 0} \frac{\ln(1+\sin(x))}{x}$
(a) $\lim_{x\to 0} \frac{x-1}{x^3}$
(b) $\lim_{x\to 0} (\ln(1+2x)-\ln(x))$
(c) $\lim_{x\to \infty} \sqrt[3]{t} \sin(\frac{1}{t^2})$
(d) $\lim_{x\to -\infty} x\cos(1/x)$
(e) $\lim_{x\to 0} (3x-\sqrt{9x^2-12x+1})$
(f) $\lim_{x\to \infty} (3x-\sqrt{9x^2-12x+1})$
(g) $\lim_{x\to 0} \frac{\ln(1+\sin(x))}{x}$
(h) $\lim_{x\to 0} \frac{(3x-\sqrt{9x^2-12x+1})}{(3x-\sqrt{9x^2-12x+1})}$
(g) $\lim_{x\to 0} \frac{\ln(1+\sin(x))}{x}$
(h) $\lim_{x\to 0} \frac{(3x-\sqrt{9x^2-12x+1})}{x}$
(h) $\lim_{x\to 0} \frac{(3x-\sqrt{9x^2-12x+1})}{(3x-\sqrt{9x^2-12x+1})}$
(h) $\lim_{x\to 0} \frac{(3x-\sqrt{9x^2-12x+1})}{(3x-\sqrt{9x^2-12x+1}$

4. Find $\frac{df}{dx}$ for each of the following f(x).

(a)
$$f(x) = \sin(x) + \ln(2x)$$
 (b) $f(x) = x^3 \sin(x) - \frac{1}{2} \ln(x)$ (c) $f(x) = \tan(2x)$ (d) $f(x) = x^3 \cos(x) + \frac{1}{2} x \times 2$ (e) $f(x) = \tan(2x)$ (for $f(x) = \tan(2x)$ (e) $f(x) = x^3 \cos(x) + \frac{1}{2} x \times 2$ (for $f(x) = x^3 \cos(x) + \frac{1}{2} x \times 2$ (for $f(x) = x^3 \cos(x) + \frac{1}{2} x \times 2$ (for $f(x) = x^3 \cos(x) + \frac{1}{2} x \times 2$ (for $f(x) = x^3 \cos(x) + \frac{1}{2} x \times 2$ (for $f(x) = x^3 \cos(x) + \frac{1}{2} x \times 2$ (for $f(x) = x^3 \cos(x) + \frac{1}{2} x \times 2$ (for $f(x) = x^3 \cos(x) + \frac{1}{2} x \times 2$ (for $f(x) = x^3 \cos(x) + \frac{1}{2} x \times 2$)

(c)
$$f(x) = \tan(2x)$$

(d) $f(x) = 2\sin(3x + x^2)$
 $f(x) = x^3 \cos(x) + 3x^2 \sin(x) - \frac{7}{2x}$

(d)
$$f(x) = 2\sin(3x + x^2)$$
 $f(x) = x \cos(3x + x^2)$
(e) $f(x) = \frac{\sqrt{x} + 2x}{7x - 4x^2}$ $(x) + (x) = 3ec^2(2x) \times 2 = 2sec^2(2x)$
(d) $f(x) = 2\sin(3x + x^2)$
(e) $f(x) = \frac{\sqrt{x} + 2x}{7x - 4x^2}$ $(x) + (x) = 2sec^2(2x) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2)$
(d) $f(x) = 2\sin(3x + x^2)$
 $f(x) = 3ec^2(2x) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2)$
 $f(x) = 3ec^2(2x) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2)$
 $f(x) = 3ec^2(2x) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sec^2(2x)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sin(3x + x^2)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sin(3x + x^2)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sin(3x + x^2)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sin(3x + x^2)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sin(3x + x^2)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sin(3x + x^2)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sin(3x + x^2)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sin(3x + x^2)$
 $f(x) = 2sin(3x + x^2) \times 2 = 2sin(3x$

TX-21 =0

x-2+0 x+2 x=1,3

f (x)= 2(x=2) |x=2|

2(202)=0 12021 7C#2

Global min:

global max:

7(3)=3

f(0)=0

5. Single
$$e^{-xy} = \frac{1}{2} \frac{1}{2}$$