Agile Trajectory Generation for Tensile Perching with Aerial Robots

Project Aim

- Design and Implement a Framework capable of Learning Agile Perching Trajectories from a limited number of non-expert demontrations.
 - Aim to generate a set of complete trajectories that are feasible for a drone to complete.
 - Learning can utilise a small number of demonstrations.
 - The agent need to improve upon the demonstrations:
 - This is based on energy effiency and "smoothness" or non-volatility of trajecteries.
 - Robustness to poor demonstration datasets.
 - Compare to previously created trajectories for "smoothness", feasability and energy efficiency.

Evaluation

- Compare with previous demonstration algorithms
- Compare with previously generated trajectories for part 1 of the manoeuvre. Based on:
 - Speed
 - Smoothness of trajectories
 - Compare based on performance of demonstration data set (30%, 50%, 80%)
 - Learning Speed
- Successful completion of manoeuvre

Experiments

- Demonstration Data will need to be collected.
- Based on lab opportunity training could either be a mix of real and simulation or purely simulation.
- Final evaluation hopefully fully displaying the manoeuvre.

Timeline

- Demonstration Data Collection (10th March) (1/6 Weeks)
- Tether/Drone Dynamics Model (25th Feb) (1/4 Weeks)
- Learning from Demonstrations Model (21st April)
- Energy Efficiency (5th May)

Progress Update

(For 1pm meeting)

- More clearly defined the project aim and plan.
 - o Internally I've had an interim report deadline featuring background work, project plan, project evaluation I can send out a copy of this after the meeting.
- Experimented with physics simulators Video
- Started exploring some of the algorithms discussed in background research (NACfD, DQfD)

Progress Update

(For 2pm meeting)

Catching up on other modules after the interim report deadline.

From my aim for last week:

- Setup code repository
 - Done
- Bring in algorithms that have been looked at in background work (DQfD, NACfD, SAC, DQN)
 - Brought in as submodules in repo.
 - Started to reproduce the work (simulation experiments) (DQfD)

Progress Update

(For 2pm meeting)
From my aim for last week:

- Start investigating realistic simulators for tether dynamics (Box2D, PyBullet).
 - PyBullet Video set up a simple version.
- Work out how to start getting a demonstration data set.
 - TODO

Plans Until Next

- Mainly focus on the tether dynamics model
 - o More realistic incorporating some physics into the model as a first stage of training.
 - A way to improve the model based on demonstration/flight data.

Questions

Collecting Demonstration Data

- How can we arrange doing this?
- And any suggestions on timelines/when?