Лекция 5

Ilya Yaroshevskiy

12 марта 2021 г.

Сод	ержание	
1 Π _Ι 1.1 1.2 1.3	1.1.1 Сокращение записи . Теория моделей	2
1 l	Предикаты	
програ	амма(функция)	
	$P \cdot \alpha \rightarrow \beta$ — September α - Postpania	er B
• 1	$\alpha : \alpha \rightarrow \beta$ — берег α , возвраща	51 <i>p</i>
•]	P- доказательство, что из $lpha$ с	ты пление предикатов
-		
1 -	f a = a	
e	f:A o A-f доказывает что,	из A следует A
	логическок исчесления	Типизированное λ -исчесление
	логическая формула	ТИП
	доказательство	значение
	доказуемая формула	
	\rightarrow	функция
	&	· - · ·
	V	алг. тип(тип-сумма)
Прим	ер. 5 доказывает Int	
type	list = record	
nu	l: boolean;	
ca	se nul of	
	true: ;	
	<pre>false: next: ^list;</pre>	
en	d	

```
end;
struct list {
        *list next;
};
struct tree {
        tree* left;
        tree* right;
        int value;
};
```

Определение. Отмеченное (дизъюнктное) объединение множеств:

- A, B множества
- $\bullet \ A \sqcup B = \{\langle ``A``, a \rangle | a \in A \} \cup \{\langle ``B``, a \rangle | b \in B \}$

Пусть $S \in A \sqcup B$. Мы знаем откуда S

```
data List a = Nil | Cons a (List a)
example = Cons 1 (Cons 2 (Cons 3 Nil)) -- [1; 2; 3]

union {
   int a;
   char b;
};
```

Пример.

$$\frac{\Gamma \vdash \overset{\text{Nil}}{\alpha} \to \gamma \quad \Gamma \vdash \overset{\text{Cons}}{\beta} \to \gamma \quad \vdash \alpha \lor \beta}{\Gamma \vdash \gamma}$$
int.

1.1 Исчесление предикатов

Определение. Язык исчесление предикатов

- логические выражения "предикаты"/формулы
- предметные выражния "термы"

 Θ — метаперменные для термов

Термы:

- Атомы:
 - $-a,b,c,d,\ldots$ предметные переменные
 - -x,y,z метапеременные для предметных перменных
- Применение Функциональных Символов
 - -f, g, h Функциональные символы
 - $f(\Theta_1, \dots \Theta_n)$
- Лп. выражения:
 - Применение предикатных символов $P(\Theta_1, \dots, \Theta_n)$
 - P метаперменные для предикатных символов

Недописано

1.1.1 Сокращение записи

$$\mathrm{M.B} + \mathrm{жадность} \ \forall, \exists$$

$$\forall x. (P(x)\&(\forall y.P(y)))$$

Правильный вариант:

 $\forall a.B(A)\&\forall b.B(b)$

1.2 Теория моделей

Оценка формулы в исчеслении предикатов:

- 1. Фиксируем D предметное множетво
- 2. Кажодму $f_i(x_1,\dots,x_n)$ сопоставим функцию $D^2 \to D$
- 3. Каждому $P_j(x_1,\dots,x_m)$ сопоставим функцию(предикат) $D^2 \to V$
- 4. Каждой x_i сопоставим элемент из D

 $\forall x. \forall y \ E(x,y)$ Пусть $D = \mathbb{N}$

$$E(x,y) = \begin{cases} \mathbf{M} & , x = y \\ \mathbf{\Pi} & , x \neq y \end{cases}$$

 $\forall x. \forall y. E(x,y)$

- $\bullet \ \llbracket x \rrbracket = f_{x_i}$
- $\llbracket \alpha \star \beta \rrbracket$ смотри
- $[P_i(\Theta_1,\ldots,\Theta_n)] = f_{p_i}([\Theta_1],\ldots,[\Theta_n])$
- $\llbracket f_j(\Theta_1, \dots, \Theta_n) \rrbracket = f_{f_j}(\llbracket \Theta_1 \rrbracket, \dots, \llbracket \Theta_n \rrbracket)$

•

$$[\![orall x. arphi]\!] = egin{cases} \mathrm{M} &, \mathrm{если} \ [\![arphi]\!] = \mathrm{M}, f_x = k \ \mathrm{при} \ \mathrm{всеx} \ k \in D \\ \mathrm{M} &, \mathrm{иначe} \end{cases}$$

Недописано

Пример.

$$\forall > 0 \exists N \forall n > N | a_n - a | < \varepsilon$$

$$\forall \varepsilon :> 0 \to \exists N . \forall n . (n > N) \to (|a_n - a| < \varepsilon)$$

$$\forall e . G(e, m_0) \to \exists n_0 . \forall n . G(n, n_0) \to G(e, m, (m_a(n), a)))$$

Недописано

1.3 Теория доказательств

Все аксимомы И.В + M.Р.

(cx. 11)
$$(\forall x.\varphi) \rightarrow \varphi[x := \Theta]$$

(cx. 12)
$$\varphi[x := \Theta] \to \exists x. \varphi$$

Недописано

```
int y;
int f(int x) {
    x = y;
}
```

Заменим у:=х

(Пр.
$$\forall$$
)
$$\frac{\varphi \to \psi}{\varphi \to \forall x.}$$
 (Пр. \exists)
$$\frac{\psi \to \varphi}{\neg \neg \neg \neg \neg \neg \neg \neg}$$

xне входит свободно в φ

 Π ример.

$$\frac{x=5\rightarrow x^2=25}{x=5\rightarrow \forall x.x^2=25}$$

Нарушено ограничение

Пример.

$$\exists y.x = y$$

$$\forall x. \exists y.x = y \rightarrow \exists y.y + 1 = y$$

Делаем замену **x**:=**y**+1. Нарушено правило свобод