## IN THE CLAIMS

Please amend the claims as follows.

1.-12. (Canceled)

- 13. (Currently Amended) A device comprising:
  - a first supply node to provide a voltage and a second supply node;
- a plurality of memory segments connected in parallel with each other between the first supply node and a plurality of internal nodes, wherein each of the internal nodes is to receive the voltage from the supply node;
- a plurality of switching units, each of the switching units connecting in series with one a corresponding memory segment of the memory segments between the second supply node and one a corresponding internal node of the internal nodes, wherein each of the switching units includes an input node for receiving a select signal to electrically disconnect one of the memory segments the corresponding memory segment from the second supply corresponding internal node based on a state of the select signal; and
- a redundant array for replacing at least one memory segment of the plurality of memory segments.
- 14. (Original) The device of claim 13 further comprising a redundancy controller connected to the switching units for selectively setting the state of the select signal based on a number of programming signals.
- 15. (Original) The device of claim 14 further comprising a programming unit for generating the programming signals based on a programmed address stored in the programming unit.
- 16. (Original) The device of claim 13, wherein each of the memory segments includes memory cells arranged memory cell groups, wherein at least one of the memory groups of at least one of the memory segments is defective.

CIRCUITS AND METHODS FOR REPAIRING DEFECTS IN MEMORY DEVICES

## 17.-47. (Canceled)

## 48. (Currently Amended) A device comprising:

a first supply node to provide a first supply source and a second supply node to provide a second supply source;

a plurality of memory segments, each of the memory segments including a plurality of memory cells connected to a first internal node and a second internal node, the first internal node to receive the first supply source from the first supply node, the second internal node to receive the second supply source from the second supply node, each of the memory cells including:

a first storage node and a second storage node;

a latch connected to the first and second storage [[node]] nodes and connected in between [[a]] the first internal node and [[a]] the second internal node;

a first access element for accessing the first storage node; and

a second access element for accessing the second storage node;

a plurality of first switching units, each of the first switching units connecting in between the first supply node and [[one]] a corresponding memory segment of the memory to prevent the corresponding memory segment from receiving the supply source from the first internal node connected to the corresponding memory segment when the corresponding memory segment has a defect; and

a plurality of second switching units, each of the second switching units connecting between the second supply node and [[one]] a corresponding memory segment of the memory segments to prevent the corresponding memory segment from receiving a supply source from the second internal node connected to the corresponding memory segment when the corresponding memory segment is defective.

- 49. (Original) The device of claim 48, wherein at least one of the memory segments is defective.
- 50. (Original) The device of claim 48, wherein at least one of the memory segments has a circuit short between the first and second internal nodes

Serial Number: 10/609,312 Filing Date: June 24, 2003

Title:

CIRCUITS AND METHODS FOR REPAIRING DEFECTS IN MEMORY DEVICES

Page 4 Dkt: 303.859US1

51. (Original) The device of claim 48, wherein each of the memory segments includes memory cells arranged memory cell groups, wherein at least one of the memory groups of at least one of the memory segments is defective.

- 52. (Original) The device of claim 48, wherein in each of the memory segments, the plurality of memory cells are arranged in a plurality of rows connected in parallel between one of the first switching unit and one of the second switching units.
- 53. (Original) The device of claim 48, wherein each of the first switching units includes a transistor having a source and a drain connected between the first supply node and one of the memory segments.
- 54. (Original) The device of claim 48, wherein each of the second switching units includes a transistor having a source and a drain connected between the second supply node and one of the memory segments.
- 55. (Original) The device of claim 48, wherein the latch includes:
- a first inverter having an input node connected to the first storage node and an output node connected to the second storage node; and
- a second inverter having an input node connected to the second storage node and an output node connected to the first storage node.
- 56. (Original) The device of claim 55, wherein one of the first and second access elements includes a transistor having a source and a drain connected between one of the first and second storage nodes and a bit line.
- 57. (Original) The device of claim 48, wherein the latch includes:
- a first pair of transistors having a common drain connected to the first storage node and a common gate connected to the second storage node; and

Serial Number: 10/609,312

Filing Date: June 24, 2003

CIRCUITS AND METHODS FOR REPAIRING DEFECTS IN MEMORY DEVICES

Page 5

Dkt: 303.859US1

a second pair of transistors having a common drain connected to the second storage node and a common gate connected to the first storage node.

- 58. (Currently Amended) A system comprising:
  - a processor; and
  - a memory device connected to the processor, the memory device including:
    - a supply node for providing a voltage source;
- a memory array connected to the supply node via a supply path for receiving the voltage source, the memory array including a plurality of memory segments, each of the memory segment to receive the supply source via a portion of the supply path;
- a supply control circuit connected in the supply path for isolating a corresponding memory segment of the memory array segments from the portion of the supply path connected to the corresponding memory segment supply node if the corresponding memory segment is defective; and
- a redundant array for replacing the memory segment if the memory segment is defective.
- 59. (Currently Amended) The system of claim 58, wherein memory array includes a plurality of the memory segments connected in parallel with each other, each of the memory segments connecting in series with the supply control circuits and the supply node.
- 60. (Original) The system of claim 59, wherein at least one of the memory segments is defective.
- 61. (Currently Amended) The system of claim 59, wherein the supply control circuit includes a plurality of switching units, each of the switching units connecting in series with [[one]] a corresponding memory segment of the memory segments and the supply node to isolate the corresponding memory segment from the portion of supply path connected to the corresponding memory segment if the corresponding memory segment is defective.

Serial Number: 10/609,312 Filing Date: June 24, 2003

Title: CIRCUITS AND METHODS FOR REPAIRING DEFECTS IN MEMORY DEVICES

Page 6 Dkt: 303.859US1

62. (Currently Amended) The system of claim 58 further comprising a redundant array for replacing the <u>corresponding</u> memory segment if the memory segment is defective.

63. (Currently Amended) A method comprising:

determining a condition of a memory device, the memory device including a plurality of memory segments, each of the memory segments connecting to a corresponding internal node of a plurality of internal node to receive a supply source from the corresponding internal node;

isolating a <u>selected</u> memory segment of the memory <u>device</u> <u>segments</u> from <u>a supply</u> source <u>the corresponding internal node connected to the selected memory segment</u> if the <u>selected</u> memory segment is defective <u>to prevent the selected memory segment from receiving the supply</u> source at the corresponding internal node connected to the selected memory segment; and

replacing the memory segment with a redundant segment if the <u>selected</u> memory segment is defective.

- 64. (Original) The method of claim 63, wherein determining a condition of a memory device includes detecting for a defect in a memory array of the memory device.
- 65. (Currently Amended) The method of claim 63, wherein isolating the <u>selected</u> memory segment includes electrically disconnecting the <u>selected</u> memory segment from the <u>supply source</u> <u>corresponding internal node connected to the selected memory segment</u>.

66.-75. (Canceled)

- 76. (Previously Presented) The device of claim 13, wherein the memory segments include a number of static random access memory (SRAM) cells.
- 77. (Previously Presented) The system of claim 58, wherein the memory segment includes a number of static random access memory (SRAM) cells.

Page 7 Dkt: 303.859US1

Serial Number: 10/609,312

Filing Date: June 24, 2003
Title: CIRCUITS AND METHODS FOR REPAIRING DEFECTS IN MEMORY DEVICES

78. (Currently Amended) The method of claim 63, wherein isolating the selected memory segment includes isolating a number of static random access memory (SRAM) cells of the selected memory segment from the supply source corresponding internal node connected to the selected memory segment.