Piecewise Approximate Bayesian Computation

Fast inference for discretely observed Markov models

Theo Kypraios http://www.maths.nott.ac.uk/~tk

From Spectral Gaps to Particle Filters, Reading, September, 2013

Joint work:

- Simon Preston (Universty of Nottingham)
- Simon White (Biostatistics Unit, MRC @ Cambridge)

More details in:

http://arxiv.org/abs/1301.2975.

- Different focus compared to previous talks.
- Motivation:
 - 1. Given some observed data ...
 - that we assume to have been generated by a (stochastic) model . . .
 - 3. ... we wish to make inference for the model parameters.
- Interest is in cases where conventional methods fail, computationally expensive, or simply don't work
- Having a good understanding of the model dynamics is of great importance when designing new methods/algorithms

• Different focus compared to previous talks.

Motivation:

- 1. Given some observed data ...
- that we assume to have been generated by a (stochastic) model . . .
- 3. ... we wish to make inference for the model parameters.
- Interest is in cases where conventional methods fail, computationally expensive, or simply don't work
- Having a good understanding of the model dynamics is of great importance when designing new methods/algorithms

• Different focus compared to previous talks.

Motivation:

- 1. Given some observed data ...
- that we assume to have been generated by a (stochastic) model . . .
- 3. ... we wish to make inference for the model parameters.
- Interest is in cases where conventional methods fail, computationally expensive, or simply don't work
- Having a good understanding of the model dynamics is of great importance when designing new methods/algorithms

• Different focus compared to previous talks.

Motivation:

- 1. Given some observed data ...
- that we assume to have been generated by a (stochastic) model . . .
- 3. ... we wish to make inference for the model parameters.
- Interest is in cases where conventional methods fail, computationally expensive, or simply don't work
- Having a good understanding of the model dynamics is of great importance when designing new methods/algorithms.

A Motivating Example: Lotka-Volterra

Suppose our data are a set of observations denoted $\mathcal{X} = \{x_1, \dots, x_n\} = \{x(t_1), \dots, x(t_n)\}$ of state variable $x \in \mathbb{R}^m$ at time points t_1, \dots, t_n .

- Denote by ${\mathcal X}$ our observed data and by θ the parameter(s) of interest.
- If we were to employ a maximum likelihood approach then we must be able to write down/evaluate the likelihood $\pi(\mathcal{X}|\theta)$ i.e. the probability of observing the data \mathcal{X} what we have observed) for all parameter values θ . . .
- ullet ... and then find which parameter(s) heta maximise the likelihood.
- Use asymptotic theory and obtain (approximate) confidence intervals for θ to quantify uncertainty.
- In this talk we adopt a Bayesian framework.

Exact Bayesian Computation (EBC)

- Suppose we have discrete data \mathcal{X} , prior $\pi(\theta)$ for parameter(s) θ .
- Aim: Draw samples from the posterior distribution of the parameters, $\pi(\theta|\mathcal{X})$.
- Bayes Theorem gives

$$\pi(\theta|\mathcal{X}) = \pi(\mathcal{X}|\theta)\pi(\theta)/\pi(\mathcal{X})$$

where $\pi(\mathcal{X})$ is a normalising constant:

$$\pi(\mathcal{X}) = \int_{ heta} \pi(\mathcal{X}| heta)\pi(heta) \; \mathsf{d} heta$$

and therefore

$$\pi(\theta|\mathcal{X}) \propto \pi(\mathcal{X}|\theta)\pi(\theta)$$

Rejection Sampling

Consider the following algorithm:

Algorithm 1

Exact Bayesian Computation (EBC)

- 1: Sample θ^* from $\pi(\theta)$.
- **2**: Simulate dataset x^* from the model using parameters θ^* .
- **3**: Accept θ with probability equal to $\pi(\mathcal{X}|\theta)$
- 4: Repeat.

^{*} Note that this algorithm requires that we are able to compute the likelihood, $\pi(D|\theta)$, any θ (Step 2).

Rejection Sampling

Consider the following algorithm:

Algorithm 2

Exact Bayesian Computation (EBC)

- **1**: Sample θ^* from $\pi(\theta)$.
- **2**: Simulate dataset x^* from the model using parameters θ^* .
- **3**: Accept θ^* if $x^* = x$, otherwise reject.
- 4: Repeat.
- * Algorithm 2 is equivalent to Algorithm 1.
- * Evaluating $\pi(\mathcal{X}|\theta) \iff simulate$ an event which occurs with that probability.
- * That means that the calculation of the likelihood is unnecessary as long as we can simulate from our stochastic model.

Approximate Bayesian Computation

Algorithm 2 is only of practical use if \mathcal{X} is discrete, else the acceptance probability in Step 3 is zero.

For continuous distributions Pritchard *et al.* (1999) suggested the following algorithm:

Algorithm 3

Approximate Bayesian Computation (ABC)

As Algorithm 2, but with step 3 replaced by:

3': Accept θ^* if $d(s(\mathcal{X}), s(\mathcal{X}^*)) \leq \varepsilon$, otherwise reject.

where $d(\cdot, \cdot)$ is a distance function, usually taken to be the L^2 -norm of the difference between its arguments; $s(\cdot)$ is a function of the data; and ε is a tolerance.

Approximate Bayesian Computation

- In practice iss rarely possible to use an $s(\cdot)$ which is sufficient, or to take ε especially small (or zero).
- ABC requires a careful choice of $s(\cdot)$ and ε to make the acceptance rate tolerably large, at the same time as trying not to make the ABC posterior too different from the true posterior, $\pi(\theta|\mathcal{X})$.
- Over the last decade, a wide range of extensions to the original ABC algorithm have been developed (MCMC-ABC, SMC-ABC, Semi-Automatic ABC . . .)
- ..., however, computational cost remains a central issue since it determines the balance that can be made between Monte Carlo error/bias (via summary stats).

Piecewise Approximate Bayesian Computation (PW-ABC)

- Interested in exploring cases (i.e. models/data) and methods where ideally, exact Monte-Carlo inference can be drawn in practice without having to compute likelihoods either because it is
 - too expensive to compute
 - or, intractable;
- or, difficult to maximise or sample from the posterior distribution of interest.
- If exact inference seems infeasible → efficient, but approximate likelihood-free inference.
- A guiding principle is to take every opportunity to exploit model structure to minimize computational costs.

Exploting the Markovian Structure

The Markov property enables the likelihood to be written as

$$\pi(\mathcal{X}|\theta) = \left(\prod_{i=2}^{n} \pi(x_i|x_{i-1},\dots,x_1,\theta)\right) \pi(x_1|\theta)$$
$$= \left(\prod_{i=2}^{n} \pi(x_i|x_{i-1},\theta)\right) \pi(x_1|\theta), \tag{1}$$

if n is large then we can ignore the contribution of the first data point (x_1) to the likelihood, and write

$$\pi(\mathcal{X}|\theta) = \prod_{i=2}^n \pi(x_i|x_{i-1},\theta)$$

Hence the posterior as

$$\pi(\theta|\mathcal{X}) \propto \pi(\theta) \cdot \pi(\mathcal{X}|\theta)$$

$$\propto \pi(\theta) \cdot \prod_{i=2}^{n} \pi(x_{i}|x_{i-1}, \theta)$$

$$\propto \pi(\theta) \cdot \prod_{i=2}^{n} \left(\frac{\pi(x_{i}|x_{i-1}, \theta)\pi(\theta)}{\pi(\theta)}\right)$$

$$\propto \pi(\theta)^{(2-n)} \prod_{i=2}^{n} \pi(x_{i}|x_{i-1}, \theta)\pi(\theta)$$

$$\propto \pi(\theta)^{(2-n)} \prod_{i=2}^{n} \phi_{i}(\theta).$$

where

- $\bullet \ \phi_i(\theta) = c_i^{-1} \pi(x_i | x_{i-1}) \pi(\theta)$
- $c_i = \int \pi(x_i|x_{i-1})\pi(\theta) d\theta$ [normalising constant]

Factorising $\pi(\theta|\mathcal{X}) \to \mathsf{PW} ext{-EBC/PW-ABC}$

Essentially, the density of the posterior distribution of interest, $\pi(\theta|\mathcal{X})$, has been decomposed into a product involving densities $\phi_i(\theta)$, each of which depends only on a *pair* of data points $\{x_{i-1}, x_i\}$:

$$\pi(\theta|\mathcal{X}) \propto \pi(\theta)^{(2-n)} \prod_{i=2}^{n} \phi_i(\theta)$$
 (2)

- If $\pi(x_i|x_{i-1},\theta)$ is not available/intractable/difficult to compute then so $\phi_i(\theta)$ is and decomposing $\pi(\theta|\mathcal{X})$ will not be of much help.
- However, if we can simulate from each distribution with density $\propto \phi_i(\theta)$, i.e. simulate $x_i|x_{i-1}$, then it turns out that we can recover the posterior density, $\pi(\theta|\mathcal{X})$.

EBC/ABC Within in Each Interval

Although the transition density $\pi(x|x_{i-1})$ might be intractable, we can draw samples from each density

$$\phi_i(\theta) \propto \pi(\theta)\pi(x_i|x_{i-1},\theta), \qquad i=2,\ldots n.$$

using the following algorithm:

Algorithm 4: EBC (ABC) within each interval

- 1: Sample θ^* from $\pi(\theta)$.
- **2**: Simulate $x_i^*|x_{i-1}$ from the model using θ^* .
- **3**: Accept θ^* if $x_i = x_i^*$ (or $d(s(x_i), s(x_i^*)) \le \varepsilon$), otherwise reject.
- 4: Repeat.

In other words, apply (independent) EBC/ABC for each pair/inteval (x_i, x_{i-1}) to draw from each density $\phi_i(\theta)$.

Putting it altogether $\ldots \rightarrow \mathsf{PW}\text{-}\mathsf{ABC}$

Algorithm 5 Piece-Wise Approximate Bayesian Computation

for i = 2 to n do

a: Apply the ABC Algorithm to draw m approximate (or exact, if $s(\cdot) = \operatorname{Identity}(\cdot)$ and $\varepsilon = 0$) samples rom $\tilde{\varphi}_i(\theta)$;

b: Using the samples calculate a density estimate, $\hat{\varphi}_i(\theta)$, of $\tilde{\varphi}_i(\theta)$.

end for

Substitute the density estimates $\hat{\varphi}_i(\theta)$ into (2) to calculate an estimate, $\hat{\pi}(\theta|x)$, of $\pi(\theta|x)$.

(KDE) PW-ABC

- Somehow, we need to derive an estimate of each density using the samples derived in Step 2.
- Such an approach requires a kernel density estimation (KDE) on each $\phi_i(\theta)$...
- ... and then multiplying the KDEs pointwise adjusting for the (n-2) prior densities.
- In principle this should work ... and it does work, as long as you are careful and you have a descent number of posterior samples in each interval!

(Gaussian) PW-ABC

- KDEs can be hard to deal with; especially in high dimensions!
- Alternatively, we could approximate each $\phi_i(\theta)$ with a (multivariate) Gaussian distribution

$$\widehat{\phi_i(\theta)} = MVN(\mu_i, \Sigma_i)$$

where μ_i and Σ_i could be the sample mean and the sample variance-covariance matrix;

- Take advantage of the appealing property that the product $\prod_{i=2}^{n} \widehat{\phi_i(\theta)}$ leads to another Gaussian density too ...,
- ... which combined with (n-2) (Gaussian) prior densities leads, finally, to a Gaussian approximation to the full posterior density $\pi(\theta|\mathcal{X})$

(KDE) vs (Gaussian) PW-ABC

- KDEs are known to perform poorly on bounded supports \rightarrow transform the parameters (θ).
- Which Kernel to use?

We follow Fukunaga (1972) "sphering approach" which selects the bandwidth so that the shape of the kernel mimics the shape of the sample;

- Easy to select an "optimal" bandwidth when doing KDE in each interval, but not so easy when looking at the product of KDEs.
- The Gaussian approximation to each $\phi_i(\theta)$ may not be necessarily good and this will lead to biased estimates $\pi(\theta|\mathcal{X})$.

Applications of PW-EBC/ABC: INAR processes

 Consider the following integer-valued autoregressive model of order 1, known as INAR(1) [Al-Osh and Alzaid, 1987],:

$$X_t = \alpha \circ X_{t-i} + Z_t, \quad t \in \mathbb{Z},$$

where Z_t are i.i.d. integer-valued random variables and assumed to be independent of the X_t .

• The operator $\alpha \circ$ denotes binomial thinning defined by

$$\alpha \circ W = \begin{cases} \text{Binomial}(W, \alpha), & W > 0, \\ 0, & W = 0, \end{cases}$$

 This model falls into the class of models that one can take advantage of Piecewise approaches.

PW-EBC on INAR(1)

- We generated 100 observations from an INAR(1) process using parameters $\theta = (\alpha, \lambda) = (0.7, 1)$ and X(0) = 2
- We make inference on the transformed parameters $\widetilde{\alpha} = \operatorname{logit}(\alpha) = \operatorname{log}(\alpha) \operatorname{log}(1 \alpha)$ and $\widetilde{\lambda} = \operatorname{log}(\lambda) \dots$
- ... with priors of $Norm(0, 3^2)$ on the transformed parameters.
- For the EBC algorithm (on the whole dataset) the probability of acceptance is around 10^{-100} , which is prohibitively small.
- Even the ABC algorithm requires a value of ϵ so large that sequential approaches are needed, e.g. SMC-ABC, [Toni et al., 2009].

The INAR Dataset

PWEBC on INAR Models

(Gaussian)PW-EBC Does Not Seem to Work

Cox-Ingersoll-Ross Model

The CIR model is a stochastic differential equation (SDE) describing evolution of an interest rate, X(t):

$$dX(t) = a(b - X(t))dt + \sigma\sqrt{X(t)}dW(t),$$

where a, b and σ respectively determine the reversion speed,

long-run value and volatility, and where W(t) denotes a standard Brownian motion.

The density of $X(t_i)|X(t_j)$, a, b, σ $(t_i > t_j)$ is a non-central chi-square and hence the likelihood is known in closed form.

This examples allows to illustrate the use of PW-ABC in the context of continuous data.

Cox-Ingersoll-Ross Model: Some Data

- We generated n=10 equally spaced observations from a CIR process with parameters $(a,b,\sigma)=(0.5,1,0.15)$ and X(0)=1 on the interval $t\in[0,4.5]$.
- Treating a and σ as known, we performed inference on the transformed parameter $\theta = \log(b)$ with a Uniform prior on the interval (-5, 2).
- Using $\varepsilon=10^{-2}$ we drew samples of size m=10,000 for each $\varphi_i(\theta),\ i=1,\ldots,9$, achieving acceptance rates around 1.5% on average.

Cox-Ingersoll-Ross Model: Inference

The Figure below shows how the posterior density targeted by PW-ABC depends on ε , and how it converges to the true posterior density as $\varepsilon \to 0$.

Stochastic Lotka-Volterra Dynamics

- The stochastic(LV) model is a model of predator-prey dynamics.
- Let Y_1 and Y_2 denote the number of prey and predators respectively, and suppose Y_1 and Y_2 are subject to the following reactions

$$Y_1 \stackrel{r_1}{\rightarrow} 2 Y_1, \qquad Y_1 + Y_2 \stackrel{r_2}{\rightarrow} 2 Y_2, \qquad Y_2 \stackrel{r_3}{\rightarrow} \emptyset,$$

which respectively represent prey birth, predation and predator death.

• We wish to make inference for vector of rates $\mathbf{r} = (r_1, r_2, r_3)$.

Likelihood-Based Inference for the LV model

- Inference is simple if the type and precise time of each reaction is observed.
- However, a more common setting is where the population sizes are only observed at discrete time points → likelihood is not available.
- Reversible-Jump MCMC has been developed in this context [e.g. Boys et al., 2008] but require considerable expertise to implement.
- Other approaches include model approximations using SDEs (e.g. Goligthly and Wilkinson 2006, 2007) and more recently, Particle MCMC (Wilkinson, 2012)
- On the other hand, simulating realizations from this model is straightfoward (e.g. using the Gillespie algorithm).

PW-EBC vs Particle MCMC (sd=2)

Conclusions—Remarks

- If $pi(\theta)$ is too uninformative then PW–EBC/ABC will suffer from the same problems as (standard) EBC/ABC \rightarrow use SMC-EBC/ABC within each interval.
- Use a mixture of Gaussians rather than a single one to approximate the posterior in each interval. For efficiency, use some sort sparsity-induced priors.
- Employ PW-ABC within a Sequential Monte Carlo (aka Particle Filters) framework.
- Scope for the theoretical development on the choice of bandwidth for products of KDES.