Leçon 126. Exemples d'équations en arithmétiques.

I. Équations diophantiennes linéaires

1. DÉFINITION. Une équation diophantienne est la donnée d'une fonction $f: \mathbf{Z}^r \longrightarrow \mathbf{Z}^s$ dont on cherche ses zéros dans \mathbf{Z}^r , c'est-à-dire les r-uplet $x \in \mathbf{Z}^r$ vérifiant f(x) = 0.

I.1. Une seule équation linéaire

- 2. Proposition. Soient $a, b \in \mathbf{Z}$ deux entiers avec $a \neq 0$. Alors l'équation ax = b admet une solution entière si et seulement si $a \mid b$.
- 3. Exemple. L'équation 2x = 4 admet la solution x = 2.
- 4. PROPOSITION. Soient $a, b, c \in \mathbf{Z}$ trois entiers avec $(a, b) \neq (0, 0)$. Alors l'équation ax + by = c admet une solution entière si et seulement si $\operatorname{pgcd}(a, b) \mid c$.
- 5. Exemple. L'équation 6x + 4y = 10 admet au moins une solution entière.
- 6. Théorème (Bezout). Soient $a, b \in \mathbf{Z}$ deux entiers avec nous tous nuls. Alors il existe deux entiers $u, v \in \mathbf{Z}$ tels que $au + bv = \operatorname{pgcd}(a, b)$.
- 7. THÉORÈME (algorithme d'Euclide étendu). Soient $a, b \in \mathbf{Z}$ deux entiers non tous nuls. On définit les trois suites entières $(r_i)_{n \in \mathbf{N}}$, $(u_i)_{i \in \mathbf{N}}$ et $(v_i)_{i \in \mathbf{N}}$ telles que
 - $r_0 = a \text{ et } r_1 = b;$
 - si $r_i \neq 0$, alors
 - $\circ u_{i+1} = u_{i-1} qu_i;$
 - $v_{i+1} = v_{i-1} qu_i;$
 - où les entiers q et r_{i+1} sont respectivement le quotient et le reste de la division euclidienne de r_{i-1} par r_i ;
 - si $r_i = 0$, alors $r_{i+1} = 0$.

Alors il existe un plus petit entier $N \in \mathbb{N}$ tel que $r_{N+1} = 0$ et on a

$$\operatorname{pgcd}(a,b) = \pm r_N \quad \text{et} \quad r_N = au_N + bv_N.$$

- 8. Exemple. On a $2 = 6 \times 1 4 \times 1$.
- 9. Remarque. L'algorithme d'Euclide étendu appliqué aux entiers a et b permet de trouver une solution particulière à l'équation ax + by = 0.
- 10. PROPOSITION. Soient $a, b, c \in \mathbf{Z}$ trois entiers avec $(a, b) \neq (0, 0)$ et $\operatorname{pgcd}(a, b) \mid c$. Soit $(x_0, y_0) \in \mathbf{Z}^2$ une solution particulière de l'équation ax + by = c. Alors les solutions de cette dernière sont de la forme

$$(x_0 - kb/d, y_0 + ka/d)$$
 avec $k \in \mathbf{Z}$ et $d := \operatorname{pgcd}(a, b)$.

- 11. EXEMPLE. Une solution particulière de l'équation 6x+4y=10 est le couple (5,-5), donc les solutions de cette équation s'écrivent (5-2k,3k-5) avec $k \in \mathbb{Z}$.
- 12. PROPOSITION. Soient $a_1, \ldots, a_n \in \mathbf{Z}$ des entiers non tous nuls et $c \in \mathbf{Z}$. Alors l'équation $a_1x_1 + \cdots + a_nx_n = c$ admet une solution si et seulement si $\operatorname{pgcd}(a_1, \ldots, a_n) \mid c$.

I.2. Les systèmes d'équations linéaires

13. DÉFINITION. Un système linéaire diophantien est un système Ax = b d'inconnue $x \in \mathbf{Z}^n$ pour une matrice $A \in \mathcal{M}_{m,n}(\mathbf{Z})$ et un vecteur $b \in \mathbf{Z}^m$.

- 14. PROPOSITION. Une matrice est inversible dans l'anneau $\mathcal{M}_n(\mathbf{Z})$, c'est-à-dire appartient au groupe $\mathcal{M}_n(\mathbf{Z})^{\times} = \mathrm{GL}_n(\mathbf{Q}) \cap \mathcal{M}_n(\mathbf{Z})$ si et seulement si son déterminant vaut ± 1 .
- 15. PROPOSITION. Soient $A \in \mathcal{M}_n(\mathbf{Z})$ une matrice et $b \in \mathbf{Z}^n$ un vecteur. Si det $A = \pm 1$, alors le système Ax = b admet une unique solution entière.
- 16. PROPOSITION. Soient $d_1, \ldots, d_r \in \mathbf{Z}^*$ deux entiers et $b := (b_1, \ldots, b_n) \in \mathbf{Z}^n$ une vecteur. Alors le système Ax = b avec $A := \operatorname{diag}(d_1, \ldots, d_r, 0, \ldots, 0)$ admet des solutions si et seulement si

$$\forall i \leqslant r, d_i \mid b_i$$
 et $\forall i > r, b_i = 0.$

17. Théorème (forme normale de Smith). Soit $A \in \mathcal{M}_{m,n}(\mathbf{Z})$ une matrice. Alors elle est équivalente à une matrice $\operatorname{diag}(d_1,\ldots,d_r,0,\ldots,0)$ pour des entiers $d_1,\ldots,d_r \in \mathbf{Z}$ vérifiant $d_1 \mid \cdots \mid d_r$.

II. Équations modulaires

II.1. Théorème des restes chinois et systèmes de congruences

18. Théorème (des restes chinois). Soient A un anneau unitaire et $I_1, \ldots, I_n \subset A$ des idéaux deux à deux étrangers $(I_i + I_j = A \text{ si } i \neq j)$. Alors l'application

$$\begin{vmatrix} A \longrightarrow A/I_1 \times \dots \times A/I_n, \\ x \longmapsto (x \mod I_1, \dots, x \mod I_n) \end{vmatrix}$$

est un morphisme d'anneaux surjectif de noyau $I_1 \cap \cdots \cap I_n = I_1 \cdots I_n$. En particulier, il induit un isomorphisme d'anneaux

$$A/I_1 \cdots I_n \longrightarrow A/I_1 \times \cdots \times A/I_n$$
.

19. COROLLAIRE (des restes chinois dans \mathbf{Z}). Soient $m_1, \ldots, m_n \in \mathbf{N}^*$ des entiers deux à deux premiers entre eux et $v_1, \ldots, v_n \in \mathbf{Z}$ d'autres entiers. Alors il existe une unique solution $x \in [0, m_1 \cdots m_n - 1]$ du système

$$\forall i \in [1, r], \qquad x \equiv v_i \mod m_i. \tag{1}$$

20. PROPOSITION (interpolation de Lagrange). En reprenant les notations précédentes, pour tout indice $i \in [1, r]$, il existe un entier $N_i \in [0, m_i - 1]$ tel que $N_i M_i \equiv 1 \mod m_i$ avec $M_i = m_1 \cdots m_r / m_i$. Alors l'unique solution du système (1) est l'entier

$$\sum_{i=1}^{n} v_i N_i M_i.$$

21. Exemple. On souhaite résoudre le système

$$\begin{cases} x \equiv 0 & \mod 2, \\ x \equiv 2 & \mod 3, \\ x \equiv -2 & \mod 7. \end{cases}$$

On calcul d'abord $M := 2 \times 3 \times 7 = 42$. Les entiers 2, 3 et 7 étant premiers, ce système admet une unique solution dans l'intervalle [0, 41].

– L'élément $M_1 \coloneqq M/2 = 21 \equiv 1$ est d'inverse $N_1 = 1$ dans $\mathbf{Z}/2\mathbf{Z}$.

- L'élément $M_3 := M/7 = 6 \equiv -1$ est d'inverse $N_2 = -1$ dans $\mathbb{Z}/7\mathbb{Z}$.

Finalement, l'unique solution est $0 \times 21 \times 1 + 2 \times 14 \times (-1) - 2 \times 6 \times (-1) = -16$.

II.2. Les carrés dans les corps finis

- 22. DÉFINITION. Un élément x d'un corps K est un carré s'il existe un élément $y \in K$ tel que $x=y^2$. On note $K^2\subset K$ l'ensemble des carrés et on pose $K^{\times 2}:=K^2\cap K^{\times}$.
- 23. Proposition. Soit q une puissance d'un nombre premier p.

 - Si p = 2, alors $\mathbf{F}_q^{\times 2} = \mathbf{F}_q$. Si p > 2, alors $|\mathbf{F}_q^2| = (q+1)/2$ et $|\mathbf{F}_q^{\times 2}| = (q-1)/2$.
- 24. EXEMPLE. Les carrés dans \mathbf{F}_9 sont 0, 1, 4, 9 et 7.
- 25. Proposition. On suppose que p > 2. Pour $x \in \mathbf{F}_q$, on a $x \in \mathbf{F}_q^{\times 2} \Leftrightarrow x^{(q-1)/2} = 1$.
- 26. EXEMPLE. L'élément 2 est un carré dans \mathbf{F}_7 puisque $2^{(7-1)/2} = 2^3 = 1$, mais les éléments -1 et 3 n'en sont pas.
- 27. DÉFINITION. Soient p un nombre premier impair. Pour tout élément $a \in \mathbf{F}_{p}^{\times}$, son symbole de Legendre est l'entier

$$\left(\frac{a}{p}\right) \coloneqq a^{(p-1)/2} = \begin{cases} 1 & \text{si } a \in \mathbf{F}_p^{\times 2}, \\ -1 & \text{si } a \in \mathbf{F}_p^{\times} \setminus \mathbf{F}_p^{\times 2}. \end{cases}$$

- 28. EXEMPLE. En reprenant l'exemple précédent, on a $(\frac{2}{7}) = 1$ et $(\frac{-1}{7}) = (\frac{3}{7}) = -1$.
- 29. Lemme. Pour tout élément $a \in \mathbf{F}_n^{\times}$, on a

$$|\{x \in \mathbf{F}_p \mid ax^2 = 1\}| = 1 + \left(\frac{a}{p}\right).$$

30. Théorème (loi de réciprocité quadratique). Soient p et q deux nombres premiers impairs. Alors

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)/2 \times (q-1)/2}.$$

31. Proposition (lois spéciales). Pour tout nombre premier impair, on a

$$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$$
 et $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.

Autrement dit,

- l'entier –1 est un carré modulo p si et seulement si $p \equiv 1 \mod 4$;
- l'entier 2 est un carré modulo p si et seulement si $p \equiv \pm 1 \mod 8$;
- 32. Théorème. L'application $a \in \mathbf{F}_p^{\times} \longmapsto (\frac{a}{p}) \in \{\pm 1\}$ est un morphisme de groupes.
- 33. Exemple. Avec les trois derniers points, on trouve

$$\left(\frac{14}{23}\right) = \left(\frac{2}{23}\right)\left(\frac{7}{23}\right) = \left(\frac{7}{23}\right) = -\left(\frac{23}{7}\right) = -\left(\frac{2}{7}\right) = -1.$$

Par conséquent, l'entier 14 n'est pas un carré modulo 23, c'est-à-dire l'équation $x^2 = 14$ dans $\mathbb{Z}/23\mathbb{Z}$ n'admet pas de solution.

III. Méthode de résolution

III.1. Utilisation de la factorialité

34. Théorème. L'anneau Z est euclidien et donc factoriel.

35. COROLLAIRE. Tout entier positif $n \ge 2$ s'écrit de manière unique sous la forme $n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ pour des nombres premiers distincts p_i et des entiers $\alpha_i \in \mathbf{N}^*$. 36. Proposition. Les solutions entières de l'équation $x^2 + y^2 = z^2$ sont exactement les triplets de la forme

$$(2kmn, k(m^2 - n^2), k(m^2 + n^2))$$
 ou $(k(m^2 - n^2), 2kmn, k(m^2 + n^2))$

pour trois entiers $k, m, n \in \mathbb{N}$ tels que $k \neq 0$ et m > n.

- 37. COROLLAIRE. L'équation $x^4 + y^4 = z^4$ n'admet que la solution nulle.
- 38. Théorème. Soit $p \ge 3$ un nombre premier tel que le nombre 2p+1 soit premier. Alors il n'existe pas de triplet $(x, y, z) \in \mathbf{Z}^3$ tel que

$$xyz \not\equiv 0 \mod p$$
 et $x^p + y^p + z^p = 0$.

III.2. Utilisation des anneaux d'entiers

- 39. DÉFINITION. Soit $d \in \mathbf{Z}^*$ un entier sans facteur carré. Un élément $x \in \mathbf{Q}(\sqrt{d}) \subset \mathbf{C}$ est un entier s'il est racine d'un polynôme unitaire $P \in \mathbf{Z}[X]$. On note $\mathcal{O}_d \subset \mathbf{Q}(\sqrt{d})$ l'ensemble des éléments entiers du corps $\mathbf{Q}(\sqrt{d})$.
- 40. Exemple. Le nombre d'or $\varphi := \frac{1}{2}(1+\sqrt{5})$ est un entier du corps $\mathbf{Q}(\sqrt{5})$.
- 41. Théorème. Soit $d \in \mathbf{Z}^*$ un entier sans facteur carré. Alors

$$\mathcal{O}_d = \begin{cases} \mathbf{Z}[\sqrt{d}] & \text{si } d \equiv 2, 3 \mod 4, \\ \mathbf{Z}[\frac{1}{2}(1+\sqrt{d})] & \text{si } d \equiv 1 \mod 4. \end{cases}$$

- 42. Proposition. Un élément $\varepsilon := a + b\sqrt{d} \in \mathcal{O}_d$ est inversible dans l'anneau \mathcal{O}_d si et seulement si $N(\varepsilon) := a^2 - db^2 = \pm 1$.
- 43. Exemple. Les inverses de l'anneau $\mathbf{Z}[i]$ sont les éléments ± 1 et $\pm i$.
- 44. APPLICATION (équation de Mordell). Soit $k \in \mathbb{Z}$. Alors l'équation $y^2 = x^3 + k$ admet une unique solution entière (1,0).
- 45. THÉORÈME (équation de Pell-Fermat). L'équation $x^2 dy^2 = 1$ admet une infinité de solutions.

III.3. Un exemple : la somme de deux carrés

- 46. DÉFINITION. On définit l'ensemble $\Sigma := \{a^2 + b^2 \mid a, b \in \mathbf{Z}\} = \{N(z) \mid z \in \mathbf{Z}[i]\}.$
- 47. EXEMPLE. On a $0, 1, 2, 4, 5 \in \Sigma$ et $3, 6, 7, 11, 12 \notin \Sigma$.
- 48. Proposition. L'ensemble Σ est stable par multiplication.
- 49. Théorème. L'anneau $\mathbf{Z}[i]$ est euclidien et donc principal.
- 50. Théorème. Soit p un nombre premier. Alors

$$p \in \Sigma \iff p = 2 \text{ ou } p \equiv 1 \mod 4.$$

51. COROLLAIRE. Un entier appartient à l'ensemble Σ si et seulement si sa valuation p-adique est paire pour tout nombre premier congrus à 3 modulo 4.

Vincent Beck, Jérôme Malick et Gabriel Peyré. Objectif Agrégation. 2e édition. H&K, 2005.

Alin Bostan et al. Algorithmes Efficaces en Calcul Formel. 2017.

Philippe Caldero et Jérôme Germoni. Nouvelles histoires hédonistes de groupes et de géométries. T. Tome premier. Calvage & Mounet, 2017.

Daniel Duverney. Théorie des nombres. Dunod, 2007.

Daniel Perrin. Cours d'algèbre. Ellipses, 1996.