1. Problems in Chapter 5

1.1. Use the method of contrapositive proof to prove the following statements. (In each case you should also think about how a direct proof would work. You will find in most cases that contrapositive is easier.)		
(1)	Suppose $n \in \mathbb{Z}$. if n^2 is even, then n is even.	
	<i>Proof.</i> (contrapositive) Assume n is odd.	
(2)	Suppose $n \in \mathbb{Z}$. if n^2 is odd, then n is odd.	
	Proof. (contrapositive) Assume n is even.	
(3)	Suppose $a, b \in \mathbb{Z}$. If $a^2(b^2 - 2b)$ is odd, then a and b are odd.	
	Proof. (Contrapositive) Assume a is an even number.	
(4)	Suppose $a, b, c \in \mathbb{Z}$. If a does not divide bc , then a does not divide b .	
	<i>Proof.</i> (contrapositive) Assume there exists $q \in \mathbb{Z}$ so that $b = qa$.	
(5)	Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$, then $x < 0$.	
	<i>Proof.</i> (contrapositive) Assume $x \ge 0$. Then $x^2 + 5x = x(x+5) \ge 0$.	
(6)	Suppose $x \in \mathbb{R}$. If $x^3 - x > 0$ then $x > -1$.	
	<i>Proof.</i> (contrapositive) Assume $x \le -1$. In that case, $x^3 - x = x(x+1)(x-1)$.	
(7)	Suppose $a, b \in \mathbb{Z}$. If both ab and $a+b$ are even, then both a and b are even.	
	Proof. (contrapositive) Assume a is odd.	
	TODO Suppose $x \in \mathbb{R}$. If $x^5 - 4x^4 + 3x^3 - x^2 + 3x - 4 \ge 0$, then $x \ge 0$. • $x^5 - x^2 - 4(x^4 + 1) + 3(x^3 + x) = x^2(x^3 - 1) + 3x(x^2 + 1) - 4(x^4 + 1)$ • $x^5 + 3x^3 + 3x < 4x^4 + x^2 + 4$ • $\setminus (x(x^4 + 3x^2 + 3) <$ Suppose $n \in \mathbb{Z}$. If $3 \nmid n^2$, then $3 \nmid n$.	
	<i>Proof.</i> (contrapositive) Assume n is a multiple of 3.	
(10)	Suppose $x, y, z \in \mathbb{Z}$ and $x \neq 0$. If $x \nmid yz$, then $x \nmid y$ and $x \nmid z$.	
	<i>Proof.</i> (contrapositive) Assume y is a multiple of x .	
(11)	Suppose $x, y \in \mathbb{Z}$. If $x^2(y+3)$ is even, then x is even or y is odd.	
	<i>Proof.</i> (contrapositive) Assume $x = 2a + 1$ and $y - 2b$ for some $a, b \in \mathbb{Z}$.	
(12)	Suppose $a \in \mathbb{Z}$. If a^2 is not divisible by 4, then a is odd.	
	<i>Proof.</i> (contrapositive) Assume $a = 2x$ for some $x \in \mathbb{Z}$.	

(13) **TODO** Suppose $x \in \mathbb{R}$. If $x^5 + 7x^3 + 5x \ge x^4 + x^2 + 8$, then $x \ge 0$.

1.2. Prove the following statements using either direct or contrapositive proof. Sometimes one approach will be much easier than the other.

(1) If $a, b \in \mathbb{Z}$ and a and b have the same parity, then 3a + 7 and 7b - 4 do not.

Case 1	Case 2
a = 2x, b = 2y	a = 2x + 1, b = 2y + 1
3a + 7 = 6x + 7 = 2(3x + 3) + 1	3a + 7 = 6x + 10 = 2(3x + 5)
7b - 4 = 14x - 4 = 2(7x - 2)	7b-4=14y-11=2(7y-5)-1

(2) Suppose $x \in \mathbb{Z}$. If $x^3 - 1$ is even, then x is odd.

Proof. (contrapositive) Assume x is even.

(3) Suppose $x \in \mathbb{Z}$. If x + y is even, then x and y have the same parity.

Proof. (contrapositive) Assume x = 2a and y = 2b + 1 for integers a, b.

(4) If *n* is odd, then $8|(n^2-1)$.

Proof. Assume n = 2a + 1 for some integer a. Then $n^2 - 1 = (2a + 1)^2 - 1 = 4a^2 + 4a = 4a(a + 1)$. Notice a and a + 1 have different parity.

(5) For any $a, b \in \mathbb{Z}$, it follows that $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$.

Proof. We have to prove that 3 divides $(a+b)^3 - a^3 - b^3$ for all $a, b \in \mathbb{Z}$.

- (6) Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$ and $a \equiv c \pmod{n}$, then $c \equiv b \pmod{n}$.
 - a b = qn for some q. Or b = a qn.
 - a-c=pn for some p. Or c=a-pn.
 - c b = a pn a + qn = (q p)n.
- (7) If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$.
 - a 1 = 5q for some q. Or a = 5q + 1
 - $a^2 = (5q+1)^2 = 25q+1+10q$, or $a^2-1=5\cdot 7q$.
- (8) Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, then $a^3 \equiv \hat{b}^3 \pmod{n}$.

Proof. Notice $a^3 - b^3 = (a - b)(a^2 + b^2 + ab)$.

(9) Let $a \in \mathbb{Z}$, $n \in \mathbb{N}$. If a has a remainder r when divided by n, then $a \equiv r \pmod{n}$.

Proof. a-r=qn.

(10) Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, then $ca \equiv cb \pmod{n}$.

Proof. ca - cb = c(a - b).

- (11) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv db \pmod{n}$.
 - a b = qn and c d = pn for some integers p, q.
 - a = b + qn, c = d + pn, and thus $ac = (b + qn)(d + n) = bd + bpn + dqn + pqn^2 = bd + n(bp + dq + pqn)$
- (12) If $n \in \mathbb{N}$ and $2^n 1$ is prime, then n is prime.

Proof. (contrapositive) Assume n is not prime. We can write it as n = pq where both p, q > 1. Then $2^n - 1 = 2^{pq} - 1$

TODO If $n = 2^k - 1$ for $k \in \mathbb{N}$, then every entry in Row n of Pascal's Triangle is odd.

- $n = 2^k 1$
- $\binom{n}{j} = (2^k 1)!/j!/(2^k 1 j)! = (2^k 1)(2^k 2)...(2^k j)/j!$
- Looks like there are exactly the same number of factors in numerator and denominator. Let's explore around this idea.
- $2^{k} 1$ are odd numbers. Same if we substitute 1 with another odd number.
- $\binom{2^k 1}{0} = 1$. $\binom{2^k 1}{1} = 2^k 1$.
- $\binom{2^{k-1}}{2} = \frac{(2^k-1)(2^k-2)}{2} = \frac{2(2^k-1)(2^{k-1}-1)}{2} = (2^k-1)(2^{k-1}-1)$. Product of two odd numbers.

- $\binom{2^k-1}{3} = \frac{(2^k-1)2(2^{k-1}-1)(2^k-3)}{3\cdot 2} = \frac{1}{3}(2^k-1)(2^k-3)$. More odd stuff. No two's. Notice how similar to the previous case. Also, maybe we could prove on the side that 3 divides $\binom{2^k-1}{2^k-3}$.
 $\binom{2^k-1}{4} = \frac{(2^k-1)2(2^{k-1}-1)(2^k-3)(2^k-4)}{4\cdot 3\cdot 2} = \binom{2^k-1}{3} \cdot \frac{2^k-4}{4} = \binom{2^k-1}{3}(2^{k-2}-1)$. A bunch of no-two's!
- ($^{7}_{4}$) = $^{4\cdot3\cdot2}$ So far, so good. ($^{2^{k}-1}$) = $\frac{(2^{k}-1)\cdots(2^{k}-5)}{5\cdot4!}$ = ($^{2^{k}-1}$) $\frac{2^{k}-5}{5}$. Hmmm. ($^{2^{k}-1}$) = ($^{2^{k}-1}$) $\frac{2^{k}-6}{6}$ = ($^{2^{k}-1}$) $\frac{2^{k-1}-3}{3}$. Still can't see it through, but almost. Back to the 5: ($^{2^{k}-1}$) = ($^{2^{k}-1}$) · $\frac{2^{k}-2}{2}$ · $\frac{2^{k}-3}{3}$ $\frac{2^{k}-4}{4}$ · $\frac{2^{k}-5}{5}$ = ($^{2^{k}-1}$)($^{2^{k-1}}$ 1)($^{2^{k-2}}$ 1) $\frac{2^{k}-3}{3}$ · $\frac{2^{k}-5}{5}$.

$${\binom{2^{k}-1}{5}} = (2^{k}-1) \cdot \frac{2^{k}-2}{2} \cdot \frac{2^{k}-3}{3} \cdot \frac{2^{k}-4}{4} \cdot \frac{2^{k}-5}{5}$$
$$= (2^{k}-1)(2^{k-1}-1)(2^{k-2}-1) \cdot \frac{2^{k}-3}{3} \cdot \frac{2^{k}-5}{5}$$

- (13) **DONE** If $a \equiv 0 \pmod{4}$ or $a \equiv 1 \pmod{4}$, then $\binom{a}{2}$ is even.
 - $\binom{a}{2} = (1/2)a!/(a-2)! = a(a-1)/2$
 - Čase 1: a = 4b.
 - $\binom{4b}{2} = 2b(4b-1)$, even.

 - Case 2: a = 4b + 1. $\binom{4b+1}{2} = (4b+1)2b$. even.
- (14) If $n \in \mathbb{Z}$, then 4 does not divide $(n^2 3)$.
- (a) A direct proof with cases:
 - Case 1: If $n \equiv 0 \pmod{4}$, then $n^2 \equiv 0 \pmod{4}$ as well.
 - Case 2: If $n \equiv 1 \pmod{4}$, then n = 4q + 1 and $n^2 = 16q^2 + 1 + 8q$ for some q. This means $n^2 \equiv 1 \pmod{4}$.
 - Case 3: If $n \equiv 2 \pmod{4}$, then n = 4q + 2 and $n^2 = 16q^2 + 4 + 16q$ for some q. This means $n^2 \equiv 0 \pmod{4}$,
 - Case 4: If $n \equiv 3 \pmod{4}$, then n = 4q + 3 and $n^2 = 16q^2 + 9 + 8q = 8(2q^2 + q + 1) + 1$ for some q, This means $n^2 \equiv 1 \pmod{4}$.
 - We've proven a bunch of things, actually, not only what we were given.
 - (b) A proof by contrapositive/contradiction.
 - Assume $n^2 \equiv 3 \pmod{4}$.
 - There exists q so that $n^2 = 4q + 3 = 2(2q + 1) + 1$.
 - n^2 is odd.
 - n is odd. n = 2a + 1 for some a
 - $n^2 = (2a+1)^2 = 4a^2 + 4a + 1 = 4(a^2 + a) + 1$
 - We have that $4(a^2 + a) + 1 = 4q + 3$
 - $4(a^2 + a q) = 2$ Not possible. n cannot be an integer.
- (15) **TODO** If integers a and b are not both zero, then gcd(a, b) = gcd(a b, b).
- (16) **TODO** If $a \equiv b \pmod{n}$, then gcd(a, n) = gcd(b, n).
 - Assume WLOG that a > b. (if they are equal, nothing to prove)
 - There is k that divides a and n but does not divide b and n.
 - Write a = kA, n = kN
 - $\bullet \ a-b=kA-b.$
 - \bullet a-b=qn
- (17) **TODO** Suppose the division algorithm applied to a and b yields a = qb + r. Then gcd(a,b) = $\gcd(r,b)$.