Package 'PSSTools'

October 24, 2023

```
Type Package
Title PSSTools: Power and Sample Size Tools
Version 0.1.0
Description This package accompanies the textbook ``Power and Sample Size in R" by
     Catherine M. Crespi for calculating power and sample size requirements for designing studies.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Suggests designsize,
     longpower,
     npsurvSS,
     powerSurvEpi,
     rPowerSampleSize,
     ssanv,
     testthat (>= 3.0.0)
Config/testthat/edition 3
Imports clusterPower,
     dplyr,
     exact2x2,
     magrittr,
     MESS,
     MKmisc,
     mvtnorm,
     plyr,
     PowerTOST,
     precisely,
     presize,
     psych,
     purrr,
     pwr,
     pwr2,
     pwr2ppl,
     pwrAB,
     SampleSize4ClinicalTrials,
     stats,
     Superpower
Depends R (>= 2.10)
```

R topics documented:

nova3_ss	
nova4_ss	
rossover_power	 . 5
rossover_ss	 . 6
lelta.sign	
ncnemar_ss	
neandiff_ci_power	 . 8
neandiff_ci_ss	 . 9
nultendpoints_Ck_ss	 . 10
nultisite.data	 . 11
newfunction	
onemean_ci_power	 . 12
onemean_ci_ss	 . 13
oneprop_ss	 . 13
parallelCRT_power	
parallelCRT_ss	 . 15
oss.anova.bal.1w	 . 16
oss.anova.bal.1w.c	 . 17
oss.anova.bal.2w	 . 18
oss.anova.bal.2w.c	
oss.anova.bal.2w.se	
oss.anova.f.es	
oss.anova.unbal.1w	
oss.anova.unbal.1w.c	
oss.anova.unbal.2w	
oss.anova.unbal.2w.c	
oss.anova.unbal.2w.se	
oss.chisq.gof	
oss.chisq.indep	
oss.ci.mean	
oss.ci.meandiff	
oss.corr.1samp	
oss.corr.2samp	
oss.mcnemar.test	
oss.mlrF.overall	
oss.mlrF.partial	
oss.multisite.ate	
oss.multisite.ate.bal	
oss.multisite.bin	
oss.multisite.hte	
oss.multisite.re	
oss.prop.1samp	
oss.prop.2samp	
oss.prop.test.equiv	
oss.slr	
ss.t.test.1samp	
oss.t.test.2samp	
oss.t.test.paired	
oss.z.test.1samp	
oss z test ?samp	 45

anova3_ss

anova	One way ANOVA sample size calculation for omnibus F test with 3 group levels
Index	56
	tandz_ratio
	swd_2trt_linearcontrast_power
	swd_2trt_interaction_power
	swd_2trt_additive_power
	swd_1trt_ss
	swd_1trt_power
	search_power
	pss.z.test.paired

Description

This function searches through different group sample sizes until the specified power level is achieved. It allows for unequal standard deviations between groups and unequal group allocation. This function is a wrapper for the 'anova1f_3' function in the 'pwr2ppl' package.

Usage

```
anova3_ss(
  means,
  sds,
  alphalevel,
  powerlevel,
  groupratios = NULL,
  Nmin = NULL,
  Nmax = NULL,
  upperbound = 500
)
```

Arguments

means	A vector of group means.
sds	A vector of group standard deviations. This function allows unequal standard deviations between groups.
alphalevel	The significance level.
powerlevel	The level of power to achieve as a decimal.
groupratios	A 3 element vector of allocation ratios to each group. Default is a 1:1:1 ratio, supplied as $c(1,1,1)$.
Nmin	The minimum total sample size N to search through. Default start is 30.
Nmax	The maximum total sample size N to search through. Default ending is 300.
upperbound	The largest integer to multiply the allocation ratios by. Default is 500 meaning if there is even allocation, this will allow a search of up to 500 people per group.

anova4_ss

Value

Returns a data frame with sample sizes for each group indicated in n1, n2, and n3, actual power, and any notes from the computation.

Examples

```
# Sample Size for 3 groups with unequal allocation at 0.05 significance and 80% power # explores range itself from N = 30 to 300 anova3_ss(means = c(5, 10, 12), sds = c(10, 8, 10), alphalevel = 0.05, powerlevel = 0.8, groupratios = c(1, 1, 3), Nmin = NULL, Nmax = NULL)
```

anova4_ss

One way ANOVA sample size calculation for omnibus F test with 4 group levels

Description

This function searches through different group sample sizes until the specified power level is achieved. It allows for unequal standard deviations between groups and unequal group allocation. This is a wrapper for 'anova1f_4' function from the 'pwr2ppl' package.

Usage

```
anova4_ss(
  means,
  sds,
  alphalevel,
  powerlevel,
  groupratios = NULL,
  Nmin = NULL,
  Nmax = NULL,
  upperbound = 500
)
```

Arguments

means A vector of group means.

sds A vector of group standard deviations. This function allows unequal standard

deviations between groups.

alphalevel The significance level.

powerlevel The level of power to achieve.

groupratios A 4 element vector of allocation ratios to each group. Default is a 1:1:1:1 ratio,

supplied as c(1,1,1,1).

Nmin The minimum total sample size N to search through. Default start is 30.

Nmax The maximum total sample size N to search through. Default ending is 300.

upperbound The largest integer to multiply the allocation ratios by. Default is 500 meaning

if there is even allocation, this will allow a search of up to 500 people per group.

crossover_power 5

Value

Returns a data frame with sample sizes for each group indicated in n1, n2, n3, and n4, actual power, and any notes from the computation.

Examples

```
# We find the sample size per group required for 4 group ANOVA with equal # standard deviations and 2:1:1:2 group allocation ratio. anova4_ss(means = c(5, 10, 12, 15), sds = c(10, 10, 10, 10), alphalevel = 0.05, powerlevel = 0.8, groupratios = c(2, 1, 1, 2), Nmin = 60, Nmax = 120)
```

crossover_power

Cross Over Power Calculation

Description

Calculate power for either repeated cross sectional or closed cohort cross over designs.

Usage

```
crossover_power(design = "RCS", alpha, J, m, rho, rho_b, xi = 0, d)
```

Arguments

design	Either "RCS" for repeated cross-sectional design or "Cohort" for closed cohort design. Default is "RCS".
alpha	The significance level or type 1 error rate
J	Number of clusters
m	The number of individuals in each cluster at each time period
rho	Intraclass correlation coefficient (ICC)
rho_b	Between period ICC (correlation between outcomes of two individuals in the same cluster but different time periods)
xi	Within-cluster, within-subject correlation (correlation between two measurements within the same subject). Note this is different from subject autocorrelation. We expect xi to be larger than rho and rho_b. This is 0 for RCS cross over designs.
d	The standardized effect size

Value

power

6 crossover_ss

cro	ssove	r ss

Cross Over Sample Size Calculation

Description

Calculate sample size requirements for either repeated cross sectional or closed cohort cross over designs.

Usage

```
crossover_ss(design = "RCS", alpha, power, m, rho, rho_b, xi = 0, d)
```

Arguments

design	Either "RCS" for repeated cross-sectional design or "Cohort" for closed cohort design. Default is "RCS".
alpha	The significance level or type 1 error rate
power	Specified power level to achieve
m	The number of individuals in each cluster at each time period
rho	Intraclass correlation coefficient (ICC)
rho_b	Between period ICC (correlation between outcomes of two individuals in the same cluster but different time periods)
xi	Within-cluster, within-subject correlation (correlation between two measurements within the same subject). Note this is different from subject autocorrelation. We expect xi to be larger than rho and rho_b. This is 0 for RCS cross over designs.
d	The standardized effect size

Value

Calculated number of clusters required and adjusted number of clusters to account for normal approximation

```
# repeated cross sectional sample size as in Example 12.4 crossover_ss(design = "RCS", alpha = 0.05, power = 0.8, m = 30, rho = 0.05, rho_b = 0.025, xi = 0, d = 0.3) # closed cohort sample size requirement crossover_ss(design = "Cohort", alpha = 0.05, power = 0.8, m = 30, rho = 0.05, rho_b = 0.025, xi = 0.4, d = 0.3)
```

delta.sign 7

delta.sign	Delta Sign Table
acita. Dign	Dena Sign Tabi

Description

A table documenting the sign of delta for tests comparing two parameters.

Usage

```
delta.sign
```

Format

```
## 'delta.sign' A data frame with 3 rows and 3 columns:
```

columns Whether the test is for noninferiority of superirority by a marginrows Whether a higher or lower parameter value is betterxij The sign of delta given the row & column

Sample Size Calculation for McNemar's Test for paired proportions

Description

mcnemar_ss

Calculates the number of pairs needed to achieve specified level of power from marginal probabilities and the correlation between probabilities (p1, p2, rho) OR from discordant cell probabilities (p01 and p10).

Usage

```
mcnemar_ss(
  p1 = NULL,
  p2 = NULL,
  rho = NULL,
  p01 = NULL,
  p10 = NULL,
  alpha = 0.05,
  power = 0.8,
  one_or_twosides = "two"
)
```

Arguments

p1	Marginal probability of success for outcome 1. Either NULL or supplied along-side p2 and rho.
p2	Marginal probability of success for outcome 2. Either NULL or supplied along-side p1 and rho.
rho	Correlation between proportions. Either NULL or supplied alongside p1 and p2.

8 meandiff_ci_power

p01	First discordant cell probability. Either NULL or supplied alongside p10.
p10	Second discordant cell probability. Either NULL or supplied alongside p01.

alpha Significance level. Default is 0.05 power Required power. Default is 0.8.

one_or_twosides

Whether the hypothesis test of interest is one or two-sided. Default is "two".

Value

Returns a data frame with total number of observations needed (N_obs) and number of pairs needed (N_pairs).

Examples

```
# Calculate sample size supplying marginal probabilities of 0.8 and 0.9 # at 90% power without any correlation between probabilities. mcnemar_ss(p1 = 0.8, p2 = 0.9, rho = 0, alpha = 0.05, power = 0.9) # Calculate sample size supplying cell probabilities at 90% power mcnemar_ss(p10 = 0.18, p01 = 0.08, alpha = 0.05, power = 0.9)
```

Description

This function calculates the power of a confidence interval for the difference of two means accounting for estimating sigma and allowing for unequal allocation between the two groups.

Usage

```
meandiff_ci_power(n1, n2, alpha, d = NULL, halfwidth = NULL, sigma = NULL)
```

Arguments

n1	The sample size in group 1
n2	The sample size in group 2
alpha	The significance level
d	The standardized halfwidth (halfwidth / sigma). Either d OR halfwidth and sigma need specified.
halfwidth	The halfwidth; half of the confidence interval width. If halfwidth is specified, sigma needs specified too.
sigma	The estimated standard deviation. If sigma is specified, halfwidth needs speci-

Value

The total N, group sample sizes, and corresponding power.

fied too.

meandiff_ci_ss 9

Examples

```
# Calculate power for a 95% confidence interval to have 0.25 standard deviation width # when there are 100 and 160 people in each group meandiff_{ci_power}(n1 = 100, n2 = 160, alpha = 0.05, d = 0.25, halfwidth = NULL, sigma = NULL)
```

meandiff_ci_ss

Calculate Sample Size needed for adequate power for Confidence Interval of Difference in Means.

Description

Calculate sample sizes in two groups (allowing unequal allocation) that will adequately power the confidence interval of the difference of group means. This function accounts for estimating sigma, the standard deviation.

Usage

```
meandiff_ci_ss(
   N_min,
   N_max,
   ratios = c(1, 1),
   alpha,
   power,
   d = NULL,
   halfwidth = NULL,
   sigma = NULL
)
```

Arguments

N_min	The minimum total sample size.
N_max	The maximum total sample size
ratios	A 2 element vector of group allocation ratios. Equal allocation is default, which is specified as $c(1,1)$. A allocation ratio of 2 ($r = n2/n1$) would be specified as $c(1,2)$.
alpha	The significance level
power	The specified power to achieve
d	The standardized halfwidth (halfwidth / sigma). Either d OR halfwidth and sigma need specified.
halfwidth	The halfwidth; half of the confidence interval width. If halfwidth is specified, sigma needs specified too.
sigma	The estimated standard deviation. If sigma is specified, halfwidth needs specified too.

Value

returns all sample sizes and power that satisfy the specified power level.

Examples

```
# Find sample sizes with allocation ratio of 2 between two groups for a 95% confidence # interval to have 80% probability of a 0.25 standard deviation halfwidth or smaller. meandiff_ci_ss(N_min = 200, N_max = 325, r = c(1,2), alpha = 0.05, power = 0.8, d = 0.25)
```

 $\begin{tabular}{ll} multiple colline colline$

Description

Calculate the solution to Ck, the integral equation to calculate power for multiple endpoints introduced by Sozu et al in Sample Size Determination in Clinical Trials with Multiple Endpoints 2015.

Usage

```
multendpoints_Ck_ss(K, alpha, power, rho, gamma, a, r, delta)
```

Arguments

K	The number of K co-primary continuous endpoints. $K \ge 2$.
alpha	The significance level.
power	The power level.
rho	The correlation matrix $(K \ x \ K)$ that describes the relationship between each endpoint. Diagonal entries are 1.
gamma	The ratio of effect size(s). This can be either a value $(K = 2)$ or a vector $(K > 2)$.
a	A vector of length K. For continuous endpoints, $a_1 = = a_K = 1$. For binary endpoints using the chi-square method (without CC), this is a vector where each element is the ratio between sigma_k^star and sigma_k.
r	The allocation ratio between the number of people in the control and treatment condition (n_C / n_T).
delta	The standardized effect size (value or vector) for each endpoint.

The number of V as minimum continuous and sints V > -2

Details

The sample size provided is the solution to equation (4.5) in the Sozu text. This is the simple formula provided for practical use to calculate sample size requirements as if there were a single endpoint. Specifically, this formula is $n = (Ck + z_alpha)^2 / (kappa * delta_K^2)$

Value

A dataframe with the solution to the Ck algorithm and the sample size requirements per group.

multisite.data 11

Examples

multisite.data

Multisite Dataframe

Description

A simulated dataset for multisite trials with and without interactions.

Usage

multisite.data

Format

'multisite.data' A data frame with 200 rows and 9 columns:

- id Individual observation number which goes from id = 1 to 200 (N)
- **j** Site number which runs from j = 1 to 10 (J)
- i Within site observation number. This runs from i = 1 to 20 (m)
- **xij** Group level indicator variable coded so that within each site xij sums to 0.
- Yij Outcome variable with a site by group interaction.
- Wij Outcome variable without a site by group interaction.

12 onemean_ci_power

newfunction

This is test function

Description

This should be new description

Usage

```
newfunction(a, b)
```

Arguments

a First value to be addedb Second value to be added

Value

The sum of a + b

Examples

```
# Try to show new function
newfunction(a=3, b = 6)
```

onemean_ci_power

Calculate Power for a Confidence Interval for One Mean

Description

Calculates the power of a confidence interval for a single mean accounting for estimation in sigma, the standard deviation.

Usage

```
onemean_ci_power(N, d, alpha)
```

Arguments

N The number of observations

d The standardized halfwidth (halfwidth / standard deviation)

alpha The level of significance

Value

The statistical power associated with the number of observations.

```
# Calculate probability that a 95% confidence interval for group size of 73
# to have 0.25 standard deviation halfwidth or less
onemean_ci_power(N = 73, d=0.25, alpha=0.05)
```

onemean_ci_ss 13

onemean_ci_ss

Sample Size Calculation for One Mean Confidence Interval

Description

This function calculates the minimum sample size required to achieve certain precision in estimating a confidence interval for a single mean. This function accounts for estimation in sigma and searches over a range of supplied N. 'Power' used here is the power of a confidence interval, which is not true statistical power; instead it is the probability of the interval obtaining a certain halfwidth.

Usage

```
onemean_ci_ss(N_min, N_max, d, alpha, power)
```

Arguments

N_min The minimum number of observations to explore power.

N_max The maximum number of observations to explore power.

d The standardized halfwidth (halfwidth / standard deviation).

alpha The significance level.

power The desired level of power.

Value

The minimum sample size required to achieve the specified level of power.

Examples

```
# Example 1: Find the required sample size that achieves a half width of 0.25 standard deviations # at significance level of 0.05 with 80% power. We specify to search between 62 and 75 people. onemean_{ci_ss(N_min = 62, N_max = 75, d=0.25, alpha=0.05, power=0.8)
```

oneprop_ss

One proportion sample size calculation

Description

Calculate sample size requirements for one proportion using the conditional or unconditional method.

Usage

```
oneprop_ss(
  p0,
  pA,
  alpha,
  power,
  method = "conditional",
  one.or.two.sided = "two"
)
```

14 parallelCRT_power

Arguments

p0 Null hypothesis proportion.

pA Alternative hypothesis proportion.

alpha Significance level.

power Power level as a decimal (0.8 for 80 percent power).

method Either "conditional" or "unconditional" method for calculation. Default is conditional.

one.or.two.sided

Either "one" or "two" to specify a one or two sided hypothesis test. Default is

Value

Returns n, the sample size needed for a one proportion test.

Examples

parallelCRT_power

Parallel Cluster Randomized Trial Power Calculation

Description

Parallel Cluster Randomized Trial Power Calculation

Usage

```
parallelCRT_power(alpha, J, m, d, rho, rho_c, rho_s)
```

Arguments

aipna	The significance level or type 1 error rate
J	Number of clusters
m	The number of individuals in each cluster at each time period
d	The standardized effect size
rho	Intraclass correlation coefficient (ICC)

parallelCRT_ss 15

rho_c	Cluster autocorrelation (proportion of cluster-level variance that is time invariant)
rho_s	Subject autocorrelation (This is 0 in repeated cross sectional designs because people are measured only once)

Value

power

Examples

```
# closed cohort design as in Example 12.1 parallelCRT_power(alpha = 0.05, J = 16, m = 30, d = 0.3, rho = 0.05, rho_c = 0.4, rho_s = 0.5) # repeated cross sectional design as in Example 12.1 parallelCRT_power(alpha = 0.05, J = 16, m = 30, d = 0.3, rho = 0.05, rho_c = 0.4, rho_s = 0)
```

parallelCRT_ss

Parallel Cluster Randomized Trial Sample Size Calculation

Description

Parallel Cluster Randomized Trial Sample Size Calculation

Usage

```
parallelCRT_ss(alpha, power, m, d, rho, rho_c, rho_s)
```

Arguments

alpha	The significance level or type 1 error rate
power	The specified level of power to achieve
m	The number of individuals in each cluster at each time period
d	The standardized effect size
rho	Intraclass correlation coefficient (ICC)
rho_c	Cluster autocorrelation (proportion of cluster-level variance that is time invariant)
rho_s	Subject autocorrelation (This is 0 in repeated cross sectional designs because people are measured only once)

Value

Calculated number of clusters required, adjusted number of clusters, and suggested number of clusters that includes the value of \boldsymbol{K}

```
# example 12.2
parallelCRT_ss(alpha = 0.05, power = 0.8, m = 30, d = 0.3, rho = 0.05, rho_c = 0.4, rho_s = 0.5)
```

pss.anova.bal.1w

pss.anova.bal.1w	Power calculations for one-way balanced analysis of variance omnibus F test

Description

Power calculations for one-way balanced analysis of variance omnibus F test

Usage

```
pss.anova.bal.1w(
  n = NULL,
  mvec = NULL,
  sd = 1,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05,
  power = NULL
)
```

Arguments

n	The sample size per group.
mvec	A vector of group means c(mu1, mu2,).
sd	The estimated standard deviation within each group; defaults to 1.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

```
pss.anova.bal.1w(n = 20, mvec = c(5, 10, 12), sd = 10) 
pss.anova.bal.1w(n = NULL, mvec = c(-0.25, 0.25), sd = 1, Rsq = 0.5^2, ncov = 1, power = 0.8)
```

pss.anova.bal.1w.c

pss.anova.bal.1w.c	Power calculations for one-way balanced analysis of variance con-
	trast test

Description

Power calculations for one-way balanced analysis of variance contrast test

Usage

```
pss.anova.bal.1w.c(
  n = NULL,
  mvec = NULL,
  cvec = NULL,
  sd = 1,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05,
  power = NULL
)
```

Arguments

n	The sample size per group.
mvec	A vector of group means c(mu1, mu2,).
cvec	A vector of contrast coefficients c(c1, c2,).
sd	The estimated standard deviation within each group; defaults to 1.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

```
pss.anova.bal.1w.c(n = 20, mvec = c(5, 10, 12), cvec = c(1, -1, 0), sd = 10, alpha = 0.025) pss.anova.bal.1w.c(n = 20, mvec = c(5, 10, 12), cvec = c(1, 0, -1), sd = 10, alpha = 0.025)
```

18 pss.anova.bal.2w

pss.anova.bal.2w	Power calculations for two-way balanced analysis of variance omnibus F test

Description

Power calculations for two-way balanced analysis of variance omnibus F test

Usage

```
pss.anova.bal.2w(
  n = NULL,
  mmatrix = NULL,
  sd = 1,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05,
  power = NULL
)
```

Arguments

n	The sample size per group.
mmatrix	A matrix of group means (see example).
sd	The estimated standard deviation within each group; defaults to 1.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

```
\label{eq:matrix} $$ \operatorname{matrix}(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.9), \ \operatorname{nrow} = 2, \ \operatorname{byrow} = \operatorname{TRUE})$$ pss.anova.bal.2w(n = 30, \ \operatorname{mmatrix} = \operatorname{mmatrix}, \ \operatorname{sd} = 2, \ \operatorname{alpha} = 0.05)$$ mmatrix <- \ \operatorname{matrix}(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.3), \ \operatorname{nrow} = 2, \ \operatorname{byrow} = \operatorname{TRUE})$$ pss.anova.bal.2w(n = 30, \ \operatorname{mmatrix} = \operatorname{mmatrix}, \ \operatorname{sd} = 2, \ \operatorname{alpha} = 0.05)$$ mmatrix <- \ \operatorname{matrix}(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.9), \ \operatorname{nrow} = 2, \ \operatorname{byrow} = \operatorname{TRUE})$$ pss.anova.bal.2w(n = 30, \ \operatorname{mmatrix} = \operatorname{mmatrix}, \ \operatorname{sd} = 2, \ \operatorname{Rsq} = 0.4, \ \operatorname{ncov} = 1, \ \operatorname{alpha} = 0.05)$$
```

pss.anova.bal.2w.c

pss.anova.bal.2w.c	Power calculations for two-way balanced analysis of variance contrast test
--------------------	--

Description

Power calculations for two-way balanced analysis of variance contrast test

Usage

```
pss.anova.bal.2w.c(
  n = NULL,
  mmatrix = NULL,
  cvec = NULL,
  factor = c("a", "b"),
  sd = 1,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05,
  power = NULL
)
```

Arguments

n	The sample size per group.
mmatrix	A matrix of group means (see example).
cvec	A vector of contrast coefficients c(c1, c2,).
factor	Either "a" or "b" depending on which factor the contrast test is being made on.
sd	The estimated standard deviation within each group; defaults to 1.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

```
mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.3), nrow = 2, byrow = TRUE) pss.anova.bal.2w.c(n = 30, mmatrix = mmatrix, cvec = c(1, 0, -1), factor = "b", sd = 2, alpha = 0.05)
```

20 pss.anova.bal.2w.se

pss.anova.bal.2w.se Power calculations for two-way balanced analysis of variance simple effects test

Description

Power calculations for two-way balanced analysis of variance simple effects test

Usage

```
pss.anova.bal.2w.se(
  n = NULL,
  mmatrix = NULL,
  cmatrix = NULL,
  sd = 1,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05,
  power = NULL
)
```

Arguments

n	The sample size per group.
mmatrix	A matrix of group means (see example).
cmatrix	A matrix of contrast coefficients (see example).
sd	The estimated standard deviation within each group; defaults to 1.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

pss.anova.f.es 21

pss.anova.f.es	Cohen's f effect size calculation for one- or two- way analysis of vari-
	ance

Description

Cohen's f effect size calculation for one- or two- way analysis of variance

Usage

```
pss.anova.f.es(means = NULL, sd = NULL)
```

Arguments

sd The estimated standard deviation within each group.

mvec A vector of group means. One of mvec OR mmatrix must be specified.

A matrix of group means. One of mvec OR mmatrix must be specified.

Value

A list of the arguments and various f effect sizes.

Examples

```
pss.anova.f.es(means = c(5, 10, 12), sd = 10)
mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.9), nrow = 2, byrow = TRUE)
pss.anova.f.es(means = mmatrix, sd = 2)
```

pss.anova.unbal.1w Power calculations for one-way unbalanced analysis of variance omnibus F test

Description

Power calculations for one-way unbalanced analysis of variance omnibus F test

Usage

```
pss.anova.unbal.1w(
  nvec = NULL,
  mvec = NULL,
  sd = NULL,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05
)
```

22 pss.anova.unbal.1w.c

Arguments

nvec	A vector of group sample sizes c(n1, n2,).
mvec	A vector of group mvec c(mu1, mu2,).
sd	The estimated standard deviation within each group.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.

Value

A list of the arguments (including the computed power).

Examples

Description

Power calculations for one-way unbalanced analysis of variance contrast test

Usage

```
pss.anova.unbal.1w.c(
  nvec = NULL,
  mvec = NULL,
  cvec = NULL,
  sd = NULL,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05
)
```

Arguments

nvec	A vector of group sample sizes c(n1, n2,).
mvec	A vector of group mvec c(mu1, mu2,).
cvec	A vector of contrast evecicients c(c1, c2,).
sd	The estimated standard deviation within each group.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.

Value

A list of the arguments (including the computed power).

pss.anova.unbal.2w 23

Examples

```
pss.anova.unbal.1w.c(nvec = c(20, 20, 20), mvec = c(5, 10, 12), cvec = c(1, -1, 0), sd = 10, alpha = 0.025) pss.anova.unbal.1w.c(nvec = c(20, 20, 20), mvec = c(5, 10, 12), cvec = c(1, 0, -1), sd = 10, alpha = 0.025)
```

pss.anova.unbal.2w

Power calculations for two-way unbalanced analysis of variance omnibus F test

Description

Power calculations for two-way unbalanced analysis of variance omnibus F test

Usage

```
pss.anova.unbal.2w(
  nmatrix = NULL,
  mmatrix = NULL,
  sd = NULL,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05
)
```

Arguments

nmatrix A matrix of group sample sizes (see example).

Matrix of group means (see example).

Matrix of group sample sizes (see example).

Matrix of group means (see example).

Matrix of group me

Value

A list of the arguments (including the computed power).

```
nmatrix <- matrix(c(30, 30, 30, 30, 30, 30), nrow = 2, byrow = TRUE)

mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.9), nrow = 2, byrow = TRUE)

pss.anova.unbal.2w(nmatrix = nmatrix, mmatrix = mmatrix, sd = 2, alpha = 0.05)

nmatrix <- matrix(c(30, 30, 30, 30, 30), nrow = 2, byrow = TRUE)

mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.3), nrow = 2, byrow = TRUE)

pss.anova.unbal.2w(nmatrix = nmatrix, mmatrix = mmatrix, sd = 2, alpha = 0.05)

nmatrix <- matrix(c(30, 30, 30, 30, 30, 30), nrow = 2, byrow = TRUE)

mmatrix <- matrix(c(9.3, 8.9, 8.5, 8.7, 8.3, 7.9), nrow = 2, byrow = TRUE)

pss.anova.unbal.2w(nmatrix = nmatrix, mmatrix = mmatrix, sd = 2, Rsq = 0.4^2, ncov = 1, alpha = 0.05)
```

24 pss.anova.unbal.2w.c

```
pss.anova.unbal.2w.c Power calculations for two-way unbalanced analysis of variance contrast test
```

Description

Power calculations for two-way unbalanced analysis of variance contrast test

Usage

```
pss.anova.unbal.2w.c(
  nmatrix = nmatrix,
  mmatrix = NULL,
  cvec = NULL,
  factor = c("a", "b"),
  sd = NULL,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05
)
```

Arguments

nmatrix	A matrix of group sample sizes (see example).
mmatrix	A matrix of group means (see example).
cvec	A vector of contrast coefficients c(c1, c2,).
factor	Either "a" or "b" depending on which factor the contrast test is being made on.
sd	The estimated standard deviation within each group.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

pss.anova.unbal.2w.se 25

```
pss.anova.unbal.2w.se Power calculations for two-way unbalanced analysis of variance sim-
ple effects test
```

Description

Power calculations for two-way unbalanced analysis of variance simple effects test

Usage

```
pss.anova.unbal.2w.se(
  nmatrix = NULL,
  mmatrix = NULL,
  cmatrix = NULL,
  sd = 0,
  Rsq = 0,
  ncov = 0,
  alpha = 0.05
)
```

Arguments

nmatrix	A matrix of sample sizes (see example).
mmatrix	A matrix of group means (see example).
cmatrix	A matrix of contrast coefficients (see example).
sd	The estimated standard deviation within each group.
Rsq	The estimated R^2 for regressing the outcome on the covariates; defaults to 0.
ncov	The number of covariates adjusted for in the model; defaults to 0.
alpha	The significance level or type 1 error rate; defaults to 0.05.

Value

A list of the arguments (including the computed power).

26 pss.chisq.indep

pss.chisq.gof Power calculations for chi-square goodness-of-fit test
--

Description

Power calculations for chi-square goodness-of-fit test

Usage

```
pss.chisq.gof(p0vec = NULL, p1vec = NULL, N = NULL, alpha = 0.05, power = NULL)
```

Arguments

povec The first vector of probabilities (under the null).

p1vec The second vector of probabilities (under the alternative hypothesis).

N The number of total observations.

alpha The significance level or type 1 error rate; defaults to 0.05.

power The specified level of power.

Value

A list of the arguments (including the computed one).

Examples

```
pss.chisq.gof(p0vec = c(0.5, 0.3, 0.2), p1vec = c(0.7, 0.2, 0.1), N = 50)
```

	pss.chisq.indep	Power calculations for chi-squ	are test of independence
--	-----------------	--------------------------------	--------------------------

Description

Power calculations for chi-square test of independence

Usage

```
pss.chisq.indep(pmatrix = NULL, N = NULL, alpha = 0.05, power = NULL)
```

Arguments

pmatrix The two-way probability table under the alternative hypothesis.

N The number of total observations.

alpha The significance level or type 1 error rate; defaults to 0.05.

power The specified level of power.

Value

A list of the arguments (including the computed one).

pss.ci.mean 27

Examples

```
pss.chisq.indep(pmatrix = matrix(c(0.050, 0.350, 0.100, 0.075, 0.250, 0.175), nrow = 2, byrow = TRUE), N = 230) \\ pss.chisq.indep(pmatrix = matrix(c(0.3, 0.2, 0.4, 0.1), nrow = 2, byrow = TRUE), N = 200) \\
```

pss.ci.mean

Power calculations for precision analysis for one mean

Description

Power calculations for precision analysis for one mean

Usage

```
pss.ci.mean(
  N = NULL,
  h = NULL,
  sd = 1,
  alpha = 0.05,
  power = NULL,
  cond = FALSE
)
```

Arguments

N	The sample size.
h	The desired halfwidth.
sd	The estimated standard deviation; defaults to 1.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
cond	Specify using unconditional or conditional probability. Defaults to FALSE.

Value

A list of the arguments (including the computed one).

```
pss.ci.mean(N = NULL, h = 0.25, power = 0.8)
pss.ci.mean(N = 62, h = 0.25, power = NULL)
pss.ci.mean(N = 73, h = 0.25, cond = TRUE)
```

28 pss.ci.meandiff

pss.c1.meand1ff Power calculations for precision analysis for a difference between means	pss.ci.meandiff	Power calculations for precision analysis for a difference between means
--	-----------------	--

Description

Power calculations for precision analysis for a difference between means

Usage

```
pss.ci.meandiff(
  n = NULL,
  n.ratio = 1,
  h = NULL,
  sd = 1,
  alpha = 0.05,
  power = NULL,
  cond = FALSE
)
```

Arguments

n	The sample size for group 1.
n.ratio	The ratio $n2/n1$ between the sample sizes of two groups; defaults to 1 (equal group sizes).
h	The desired halfwidth for the difference in means.
sd	The estimated standard deviation; defaults to 1.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
cond	Specify using unconditional or conditional probability. Defaults to FALSE.

Value

A list of the arguments (including the computed one).

```
pss.ci.meandiff(n = NULL, h = 0.25, power = 0.8)
pss.ci.meandiff(n = 134, h = 0.25, cond = TRUE)
```

pss.corr.1samp 29

Description

Power calculations for one correlation coefficient

Usage

```
pss.corr.1samp(
  N = NULL,
  rho0 = 0,
  rhoA = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

N	The sample size.
rho0	The correlation coefficient under the null hypothesis; defaults to 0.
rhoA	The correlation coefficient under the alternative hypothesis.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

```
pss.corr.1samp(N = 100, rhoA = 0.2, sides = 1)
pss.corr.1samp(N = 100, rho0 = 0.2, rhoA = 0.4, sides = 1)
```

pss.corr.2samp Power calculations for comparing two correlation coefficients

Description

Power calculations for comparing two correlation coefficients

30 pss.mcnemar.test

Usage

```
pss.corr.2samp(
  n = NULL,
  n.ratio = 1,
  rho1 = NULL,
  rho2 = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

n	The sample size for group 1.
n.ratio	The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).
rho1	The correlation coefficient in the first group.
rho2	The correlation coefficient in the second group.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

Description

Power approximation for McNemar's test for two correlated proportions

Usage

```
pss.mcnemar.test(
  N = NULL,
  p1 = NULL,
  p2 = NULL,
  rho = NULL,
  paid = NULL,
  psi = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

pss.mlrF.overall 31

Arguments

N	The sample size; the number of pairs.
p1	The proportion in condition 1.
p2	The proportion in condition 2.
rho	The estimated correlation between the two conditions.
paid	The smaller of the two discordant probabilities. Either $p1$, $p2$, and rho, OR paid and psi must be specified.
psi	The discordant proportion ratio. Either p1, p2, and rho, OR paid and psi must be specified.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

Examples

```
pss.mcnemar.test(N = NULL, p1 = 0.8, p2 = 0.9, rho = 0, power = 0.9, sides = 2) pss.mcnemar.test(N = NULL, paid = 0.08, psi = 0.18 / 0.08, power = 0.9, sides = 2)
```

pss.mlrF.overall

Power calculations for a multiple linear regression overall F test

Description

Power calculations for a multiple linear regression overall F test

Usage

```
pss.mlrF.overall(
  N = NULL,
  p = NULL,
  Rsq = NULL,
  fsq = NULL,
  alpha = 0.05,
  power = NULL,
  random = FALSE
)
```

Arguments

N	The sample size.
р	The number of predictors.
Rsq	The squared sample multiple correlation coefficient.
fsq	The squared f effect size. Either Rsq OR fsq must be specified.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
random	Whether the values of the predictors are random; defaults to FALSE.

32 pss.mlrF.partial

Value

A list of the arguments (including the computed one).

Examples

```
pss.mlrF.overall(N = 400, p = 2, Rsq = 0.02)
pss.mlrF.overall(N = 400, p = 2, fsq = 0.02 / (1 - 0.02))
pss.mlrF.overall(N = 109, p = 1, Rsq = 0.3^2)
pss.mlrF.overall(N = 50, p = 1, Rsq = 0.2)
pss.mlrF.overall(N = 50, p = 3, Rsq = 0.2)
pss.mlrF.overall(N = 50, p = 5, Rsq = 0.2)
pss.mlrF.overall(N = 400, p = 2, Rsq = 0.02, random = TRUE)
```

pss.mlrF.partial

Power calculations for a multiple linear regression partial F test

Description

Power calculations for a multiple linear regression partial F test

Usage

```
pss.mlrF.partial(
  N = NULL,
  p = NULL,
  q = NULL,
  pc = NULL,
  Rsq.red = NULL,
  Rsq.full = NULL,
  alpha = 0.05,
  power = NULL)
```

Arguments

N	The sample size.
р	The number of control predictors.
q	The number of test predictors.
pc	The partial correlation coefficient. Either both Rsq terms OR pc must be specified.
Rsq.red	The squared sample multiple correlation coefficient in the reduced model.
Rsq.full	The squared sample multiple correlation coefficient in the full model.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.

Value

A list of the arguments (including the computed one).

pss.multisite.ate 33

Examples

```
pss.mlrF.partial(N = 80, p = 3, q = 2, Rsq.red = 0.25, Rsq.full = 0.35) pss.mlrF.partial(N = 150, p = 4, pc = 0.2)
```

pss.multisite.ate

Power for test of average treatment effect

Description

Power for test of average treatment effect

Usage

```
pss.multisite.ate(
  m = NULL,
  m.sd = 0,
  ICC = 0,
  J = NULL,
  delta = NULL,
  var = 1,
  rho0 = NULL,
  rho1 = NULL,
  rho.cov = 0,
  alpha = 0.05,
  sides = 2
)
```

Arguments

m	The number of subjects per site or the mean cluster size (if unequal number of participants per site).
m.sd	The standard deviation of cluster sizes (provide if unequal number of participants per site); defaults to 0.
ICC	The intraclass correlation between cluster sizes (provide if unequal number of participants per site); defaults to 0 .
J	The number of sites.
delta	The difference between the intervention and control means in the outcome variable.
var	The total variance of the outcome variable; defaults to 1.
rho0	The proportion of total variance of the outcome attributable to variation in site-level means.
rho1	The proportion of total variance of the outcome attributable to variation in the treatment effect across sites.
rho.cov	The proportion of variance in the outome attributable to an individual-level covariate; defaults to 0 .
alpha	The significance level or type 1 error rate; defaults to 0.05.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

34 pss.multisite.ate.bal

Value

A list of the arguments (including the computed power).

Examples

```
pss.multisite.ate(m = 20, J = 10, delta = 3, var = 40, rho0 = 0.1, rho1 = 0)
pss.multisite.ate(m = 20, J = 10, delta = 3, var = 48, rho0 = 0.095, rho1 = 0.048)
pss.multisite.ate(m = 20, m.sd = 5, ICC = 0.5, J = 10, delta = 3, var = 48, rho0 = 0.095, rho1 = 0.048)
pss.multisite.ate(m = 20, J = 10, delta = 3, var = 48, rho0 = 0.095, rho1 = 0.048, rho.cov = 0.5)
```

pss.multisite.ate.bal Power for test of average treatment effect

Description

Power for test of average treatment effect

Usage

```
pss.multisite.ate.bal(
    m = NULL,
    m.ratio = NULL,
    J = NULL,
    gamma = NULL,
    rho0 = NULL,
    rho1 = NULL,
    sq.Y = NULL,
    d = NULL,
    alpha = 0.05,
    sides = 2
)
```

Arguments

m	The number of subjects in the control for each site.
m.ratio	The allocation ratio per site
J	The number of sites.
gamma	The average treatment effect under the alternative.
rho0	The proportion of total variance of the outcome attributable to variation in site-level means.
rho1	The proportion of total variance of the outcome attributable to variation in the treatment effect across sites.
ssq.Y	The total variance of the outcome variable Y.
alpha	The significance level or type 1 error rate; defaults to 0.05.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed power).

pss.multisite.bin 35

Examples

```
pss.multisite.ate.bal(m = 20, m.ratio = 1.5, J = 10, gamma = 3, rho0 = 0.0952381, rho1 = 0.04761905, ssq.Y = 48)
```

pss.multisite.bin

Number of sites for multisite trials with binary outcomes

Description

Number of sites for multisite trials with binary outcomes

Usage

```
pss.multisite.bin(
  m = NULL,
  pc = NULL,
  pt = NULL,
  sigma.u = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

m	The number of subjects per site.
рс	The probability of the outcome in the control condition.
pt	The probability of the outcome in the treatment condition.
sigma.u	Standard deviation of the treatment effect across sites.
alpha	The significance level or type 1 error rate; defaults to 0.05.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed power).

```
pss.multisite.bin(m = 30, pc = 0.1, pt = 0.2, sigma.u = 0.4, power = 0.9)
```

36 pss.multisite.re

pss.multisite.hte

Power for test of heterogeneity of treatment effect

Description

Power for test of heterogeneity of treatment effect

Usage

```
pss.multisite.hte(
  m = NULL,
  J = NULL,
  ssq.u1 = NULL,
  ssq.e = NULL,
  alpha = 0.05
)
```

Arguments

m	The number of subjects per site.
J	The number of sites.
ssq.u1	The variance of the site-level treatment effects (sigma squared u1) under the alternative.
ssq.e	The variance of the observations within sites (sigma squared epsilon) under the alternative.
alpha	The significance level or type 1 error rate; defaults to 0.05.

Value

A list of the arguments (including the computed power).

Examples

```
pss.multisite.hte(m = 10, J = 30, ssq.u1 = 8, ssq.e = 36)
```

pss.multisite.re

Relative efficiency due to unequal number of participants per site

Description

Relative efficiency due to unequal number of participants per site

Usage

```
pss.multisite.re(m.mean = NULL, m.sd = NULL, rho = NULL)
```

pss.prop.1samp 37

Arguments

m. mean The mean cluster size.

m. sd The standard deviation of cluster sizes.

rho The intraclass correlation among cluster sizes.

Value

A list of the arguments (including the computed relative efficiency).

Examples

```
1 / pss.multisite.re(m.mean = 30, m.sd = 23, rho = 0.05)$re
1 / pss.multisite.re(m.mean = 30, m.sd = 23, rho = 0.1)$re
```

pss.prop.1samp

Power calculations for one sample proportion tests

Description

Power calculations for one sample proportion tests

Usage

```
pss.prop.1samp(
  N = NULL,
  p0 = NULL,
  pA = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

N The sample size.

p0 The proportion under the null.

pA The true proportion.

alpha The significance level or type 1 error rate; defaults to 0.05.

power The specified level of power.

sides Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

```
pss.prop.1samp(N = NULL, p0 = 0.2, pA = 0.3, power = 0.8, sides = 1) pss.prop.1samp(N = NULL, p0 = 0.4, pA = 0.5, power = 0.8, sides = 1)
```

38 pss.prop.2samp

Description

Power calculations for two sample proportion tests

Usage

```
pss.prop.2samp(
  n = NULL,
  p1 = NULL,
  p2 = NULL,
  delta = 0,
  alpha = 0.05,
  power = NULL,
  n.ratio = 1,
  sides = 2
)
```

Arguments

n	The sample size for group 1.
p1	The proportion in group 1.
p2	The proportion in group 2.
delta	The margin of noninferiority or superiority; defaults to 0 . See delta.sign for guidance on the sign of delta.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
n.ratio	The ratio $n2/n1$ between the sample sizes of two groups; defaults to 1 (equal group sizes).
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

```
pss.prop.2samp(n = NULL, p1 = 0.6, p2 = 0.8, alpha = 0.025, power = 0.9, sides = 1) pss.prop.2samp(n = NULL, p1 = 0.25, p2 = 0.25, delta = 0.1, alpha = 0.025, power = 0.8, sides = 1)
```

pss.prop.test.equiv 39

Description

Power calculations for test of equivalence of two proportions

Usage

```
pss.prop.test.equiv(
  n = NULL,
  n.ratio = 1,
  p1 = NULL,
  p2 = NULL,
  delta = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

n	The sample size for group 1.
n.ratio	The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).
p1	The outcome proportion in group 1.
p2	The outcome proportion in group 2.
delta	The equivalence margin.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

```
pss.prop.test.equiv(n = NULL, p1 = 0.5, p2 = 0.5, delta = 0.1, alpha = 0.05, power = 0.8, sides = 1)
```

40 pss.slr

pss.slr

Power calculations for a simple linear regression

Description

Power calculations for a simple linear regression

Usage

```
pss.slr(
  N = NULL,
  beta10 = 0,
  beta1A = NULL,
  sd.x.sq = NULL,
  sigma.e = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2
)
```

Arguments

N	The sample size.
beta10	The slope regression coefficient under the null hypothesis.
beta1A	The slope regression coefficient under the alternative hypothesis.
sd.x.sq	The sample variance of the covariate X.
sigma.e	The estimated standard deviation of the error terms.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.

Value

A list of the arguments (including the computed one).

```
Yi = beta0 + beta1 * Xi + ei, i = 1,...,N
pss.slr(N = 100, beta10 = 1, beta1A = 1.5, sd.x.sq = 25, sigma.e = 10, sides = 1)
```

pss.t.test.1samp 41

Description

Power calculations for one sample t tests

Usage

```
pss.t.test.1samp(
  N = NULL,
  delta = NULL,
  sd = 1,
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

Arguments

N	The sample size.
delta	muA (the true mean) - $mu0$ (the mean under the null).
sd	The estimated standard deviation; defaults to 1.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

Value

A list of the arguments (including the computed one).

```
pss.t.test.1samp(N = 36, delta = 4.9 - 5.7, sd = 2, sides = 1)
pss.t.test.1samp(N = 36, delta = 6.3 - 5.7, sd = 2, sides = 1)
pss.t.test.1samp(N = 36, delta = 4.9 - 5.7, sd = 2, sides = 2)
pss.t.test.1samp(delta = 0.6, sd = 1, power = 0.8, sides = 1)
```

42 pss.t.test.2samp

pss.t.test.2samp	Power calculations for two sample t tests allowing for unequal sample
	sizes and/or variances

Description

Power calculations for two sample t tests allowing for unequal sample sizes and/or variances

Usage

```
pss.t.test.2samp(
  n = NULL,
  n.ratio = 1,
  delta = NULL,
  sd = 1,
  sd.ratio = 1,
  df.method = c("welch", "classical"),
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

Arguments

n	The sample size for group 1.
n.ratio	The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).
delta	DeltaA (the true difference mu1 - mu2) - Delta0 (the difference under the null) - delta. See delta.sign for guidance on the sign of delta.
sd	The estimated standard deviation for group 1; defaults to 1 (equal standard deviations in the two groups).
sd.ratio	The ratio sd2/sd1 between the standard deviations of the two groups.
df.method	Method for calculating the degrees of freedom: "welch" (default) or "classical".
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

Value

A list of the arguments (including the computed one).

```
pss.t.test.2samp(n = 50, delta = 2, sd = 5, sides = 1)
pss.t.test.2samp(n = NULL, n.ratio = 2, delta = 0.5, sd = 1, power = 0.8, sides = 2)
pss.t.test.2samp(n = 49, n.ratio = 2, delta = 0.5, sd = 1, power = NULL, sides = 2)
pss.t.test.2samp(n = 25, n.ratio = 3, delta = 3, sd = 4, sd.ratio = 1.5, alpha = 0.025, sides = 1)
pss.t.test.2samp(n = NULL, delta = 0.5, sd = 1, power = 0.8, sides = 2)
```

pss.t.test.paired 43

pss.t.test.paired Power calculations for paired t tests

Description

Power calculations for paired t tests

Usage

```
pss.t.test.paired(
  N = NULL,
  delta = NULL,
  sd1 = 1,
  sd2 = 1,
  rho = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

Arguments

N	The sample size; the number of pairs.
delta	DeltaA (the true mean difference) - Delta0 (the mean difference under the null).
sd1	The estimated pre standard deviation; defaults to 1.
sd2	The estimated post standard deviation; defaults to 1.
rho	The estimated correlation between pre and post measurements on the same individual.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case: defaults to TRUE.

Value

A list of the arguments (including the computed one).

```
pss.t.test.paired(N = NULL, delta = 4, sd1 = 10, sd2 = 10, rho = 0.4, power = 0.8, sides = 2)
```

44 pss.z.test.1samp

pss.z.test.1samp

Power calculations for one sample z tests

Description

Power calculations for one sample z tests

Usage

```
pss.z.test.1samp(
  N = NULL,
  delta = NULL,
  sd = 1,
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

Arguments

N	The sample size.
delta	$muA\ (the\ true\ mean)$ - $mu0\ (the\ mean\ under\ the\ null).$
sd	The estimated standard deviation; defaults to 1.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

Value

A list of the arguments (including the computed one).

```
pss.z.test.1samp(N = NULL, delta = 6.5 - 5.7, sd = 2, power = 0.8, sides = 2) pss.z.test.1samp(N = 40, delta = NULL, sd = 1, power = 0.9, sides = 2) pss.z.test.1samp(N = NULL, delta = 0.6, sd = 1, power = 0.8, sides = 1)
```

pss.z.test.2samp 45

pss.z.test.2samp	Power calculations for two sample z tests allowing for unequal sample sizes and/or variances
	sizes and/or variances

Description

Power calculations for two sample z tests allowing for unequal sample sizes and/or variances

Usage

```
pss.z.test.2samp(
  n = NULL,
  n.ratio = 1,
  delta = NULL,
  sd = 1,
  sd.ratio = 1,
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

Arguments

n	The sample size for group 1.
n.ratio	The ratio n2/n1 between the sample sizes of two groups; defaults to 1 (equal group sizes).
delta	DeltaA (the true difference mu1 - mu2) - Delta0 (the difference under the null) - delta. See delta.sign for guidance on the sign of delta.
sd	The estimated standard deviation for group 1; defaults to 1 (equal standard deviations in the two groups).
sd.ratio	The ratio sd2/sd1 between the standard deviations of the two groups.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

Value

A list of the arguments (including the computed one).

```
pss.z.test.2samp(n = NULL, n.ratio = 1, delta = 0.5, sd = 1, power = 0.8, sides = 2)
```

46 pss.z.test.paired

pss.z.test.paired Power calculations for paired z tests

Description

Power calculations for paired z tests

Usage

```
pss.z.test.paired(
  N = NULL,
  delta = NULL,
  sd1 = 1,
  sd2 = 1,
  rho = NULL,
  alpha = 0.05,
  power = NULL,
  sides = 2,
  strict = TRUE
)
```

Arguments

N	The sample size; the number of pairs.
delta	$Delta A \ (the \ true \ mean \ difference) \ - \ Delta 0 \ (the \ mean \ difference \ under \ the \ null).$
sd1	The estimated pre standard deviation; defaults to 1.
sd2	The estimated post standard deviation; defaults to 1.
rho	The estimated correlation between pre and post measurements on the same individual.
alpha	The significance level or type 1 error rate; defaults to 0.05.
power	The specified level of power.
sides	Either 1 or 2 (default) to specify a one- or two- sided hypothesis test.
strict	Use strict interpretation in two-sided case; defaults to TRUE.

Value

A list of the arguments (including the computed one).

```
pss.z.test.paired(N = NULL, delta = 4, sd1 = 10, sd2 = 10, rho = 0.4, power = 0.8, sides = 2)
```

search_power 47

search_power

Search through multiple variables to achieve adequate power

Description

This function will search through any power function with up to 4 variables to search through. Because the search vectors are supplied without names, they must be provided in the default order of the power function.

Usage

```
search_power(
  powerfunction,
  searchvector1,
  searchvector2 = NULL,
  searchvector3 = NULL,
  searchvector4 = NULL,
  ...
)
```

Arguments

powerfunction	The power function of interest. Any function can be specified.
searchvector1	One vector of variable values to search through. This is a required argument.
searchvector2	Optional second vector of variable values to search through. This must either be the same length as the searchvector1 or can be a multiple of searchvector1. If searchvector1 has 4 elements then searchvector2 needs to have either 2, 4, 8, etc elements.
searchvector3	Optional third vector of variable values to search through. Similarly to searchvector2, this must either be the same length as other searchvectors or a multiple.
searchvector4	Optional fourth vector of variable values to search through. This must either be the same length as other searchvectors or a multiple.
	Additional arguments to pass to the specified powerfunction.

Value

A data frame with the resulting power at the specified search values.

48 swd_1trt_power

```
# allocation percents of 0.4 and 0.5 to group B (percent_B) library(pwrAB) search_power(powerfunction = AB_t2n, searchvector1 = c(80, 80, 100, 100, 120, 120), searchvector2 = c(0.4, 0.5), mean_diff = -2, sd_A = 4 , sd_B = 6, sig_level = 0.05, power = NULL, alt = c("less"))
```

 swd_1trt_power

Stepped Wedge Design Power Calculation with 1 Treatment

Description

Calculates power for stepped wedge design with one treatment and one control condition.

Usage

```
swd_1trt_power(alpha = 0.05, J, m, K, b, d, rho, rho_c, rho_s)
```

Arguments

alpha	The significance level or type 1 error rate
J	Number of clusters
m	The number of individuals in each cluster at each time period
K	The number of steps (if one baseline period, then this is periods - 1)
b	The number of baseline periods
d	The standardized effect size
rho	Intraclass correlation coefficient (ICC)
rho_c	Cluster autocorrelation (proportion of cluster-level variance that is time invariant)
rho_s	Subject autocorrelation (This is 0 in repeated cross sectional designs because people are measured only once)

Value

power

swd_1trt_ss 49

swd_1trt_ss	Stepped Wedge Design Sample Size Calculation with 1 Treatment

Description

Calculates sample size requirements for stepped wedge design with one treatment and one control condition.

Usage

```
swd_1trt_ss(alpha, power, m, K, b, d, rho, rho_c, rho_s)
```

Arguments

alpha	The significance level or type 1 error rate
power	The specified level of power
m	The number of individuals in each cluster at each time period
K	The number of steps (if one baseline period, then this is periods - 1)
b	The number of baseline periods
d	The standardized effect size
rho	Intraclass correlation coefficient (ICC)
rho_c	Cluster autocorrelation (proportion of cluster-level variance that is time invariant)
rho_s	Subject autocorrelation (This is 0 in repeated cross sectional designs because people are measured only once)

Value

Calculated number of clusters required, adjusted number of clusters, and suggested number of clusters that includes the value of \boldsymbol{K}

```
swd_2trt_additive_power
```

Additive Treatments Stepped Wedge Design Power Calculation

Description

Calculate power for detecting treatment effects in a two-treatment stepped wedge design with additive treatment effects. We only consider complete designs. This function is based on Power Analysis for Stepped Wedge Trials with Two Treatments published in Stat Med in 2022 by Phillip Sundin and Catherine Crespi. This manuscript uses the normal distribution and the Wald Test to derive power.

Usage

```
swd_2trt_additive_power(
  RhoW,
  ModelChoice,
  n.individuals,
  n.clusters,
  n.periods,
  delta_1,
  delta_2,
  RhoA,
  IAC,
  Sequence_Tx1,
  Sequence_Tx2,
  typeIerror
)
```

Arguments

RhoW The intraclass correlation coefficient, which re-	efers to the correlation between
--	----------------------------------

outcomes of two different individuals in the same cluster at the same time.

ModelChoice A string indicating either a repeated cross sectional design ("RCS"), nested ex-

changeable ("NEC"), Cohort ("Cohort"), or any one of these three designs in their standardized form. Only one of "RCS Standardized", "RCS", "Cohort Standardized", "Cohort", "NEC Standardized", or "NEC" can be specified. The standardized design refers to dividing by the standard deviation of y (the out-

come) in the covariance specification.

n.individuals The number of individuals in each condition at one time period.

n.clustersn.periodsThe number of clustersThe number of time periods.

delta_1 The standardized effect size for treatment 1 delta_2 The standardized effect size for treatment 2

RhoA The correlation between two observations in the same individual in the same

cluster but different time periods. RCS models assume RhoW = RhoA, and

Cohort models assume RhoA >= RhoW.

IAC The individual auto-correlation, which is the proportion of the individual-level

variance that is time-invariant. IAC = 0 in a RCS.

Sequence_Tx1 A vector representing the time points (periods) at which each cluster transitions

from control to treatment 1 (ie the first occurence).

Sequence_Tx2 A vector representing the time points (periods) at which each cluster transitions

from control to treatment 2 (ie the first occurence).

typeIerror The significance level.

Value

A list with power for detecting treatment effect for treatment 1 and 2

Examples

```
## For example, the 3 cluster, 4 period SWD,
##
      0 1 1 1
##
      0 0 1+2 1+2
##
      0 0 2 1+2
## where 0 denotes control condition, 1 denotes the condition with only
## treatment 1, 2 denote the condition with only treatment 2, and 1+2 denotes the condition
## where a cluster receives both treatment 1 and 2
## would have Sequence1 <- c(2,3,4) and Sequence2 <- c(NA,3,3)
## notice sequence 1 cluster 3 has time period 4 even though time period 3 had treatment 2,
## so it is the first occurrence of trt 1 in this cluster.
# 12-cluster concurrent repeated cross sectional design
# Sequencing has 2 clusters transition to treatment 1 at time 2,
# 2 clusters transition to treatment 1 at time 3, and 2 clusters transition
# to treatment 1 at time 3. These clusters never receive treatment 2
Sequence_Tx1 <- c(2, 2, 3, 3, 4, 4, NA, NA, NA, NA, NA, NA, NA)
# similar sequencing for treatment 2
Sequence_Tx2 <- c(NA, NA, NA, NA, NA, NA, 4, 4, 3, 3, 2, 2)
swd_2trt_additive_power(RhoW = 0.05, ModelChoice = "RCS", RhoA = 0.2, IAC = 0,
          n.individuals = 30, n.clusters = 12, n.periods = 4, delta_1 = 0.4, delta_2 = 0.1,
               Sequence_Tx1 = Sequence_Tx1, Sequence_Tx2 = Sequence_Tx2,
               typeIerror = 0.05)
```

swd_2trt_interaction_power

Stepped Wedge Design Power Calculation for Interaction Term

Description

Calculate power for detecting interaction effects in a two-treatment stepped wedge design. We only consider complete designs. This function is based on Power Analysis for Stepped Wedge Trials with Two Treatments published in Stat Med in 2022 by Phillip Sundin and Catherine Crespi. This manuscript uses the normal distribution and the Wald Test to derive power.

Usage

```
swd_2trt_interaction_power(
  RhoW,
  ModelChoice,
  n.individuals,
```

```
n.clusters,
n.periods,
delta_1,
delta_2,
delta_3,
RhoA,
IAC,
typeIerror,
Sequence_Tx1,
Sequence_Tx2
```

Arguments

RhoW The intraclass correlation coefficient, which refers to the correlation between

outcomes of two different individuals in the same cluster at the same time.

ModelChoice A string indicating either a repeated cross sectional design ("RCS"), nested ex-

changeable ("NEC"), Cohort ("Cohort"), or any one of these three designs in their standardized form. Only one of "RCS Standardized", "RCS", "Cohort Standardized", "Cohort", "NEC Standardized", or "NEC" can be specified. The standardized design refers to dividing by the standard deviation of y (the out-

come) in the covariance specification.

n.individuals The number of individuals in each condition at one time period.

n.clusters The number of clusters

n.periods The number of time periods.

delta_1 The standardized effect size for treatment 1 delta_2 The standardized effect size for treatment 2

delta_3 The standardized effect size for the interaction effect.

RhoA The correlation between two observations in the same individual in the same

cluster but different time periods. RCS models assume RhoW = RhoA, and

Cohort models assume RhoA >= RhoW.

IAC The individual auto-correlation, which is the proportion of the individual-level

variance that is time-invariant. IAC = 0 in a RCS.

typeIerror The significance level.

Sequence_Tx1 A vector representing the time points (periods) at which each cluster transitions

from control to treatment 1 (ie the first occurence).

Sequence_Tx2 A vector representing the time points (periods) at which each cluster transitions

from control to treatment 2 (ie the first occurence).

Value

A matrix with the standard error, statistic, and power for detecting effects for treatment 1, treatment 2, and interaction effects.

```
delta_2 = 0.6, delta_3 = 0.6, typeIerror = 0.05/3,
Sequence_Tx1 = c(2,3,2,3,4,5,NA,NA), Sequence_Tx2 = c(NA,NA,2,3,4,5,3,2)
```

```
swd_2trt_linearcontrast_power
```

Stepped Wedge Design Power Calculation for Linear Contrasts of Treatment Effects

Description

Calculate the power for detecting linear contrasts of two treatment effects in a two-treatment stepped wedge design (SWD) with additive treatment effects. We only consider complete designs. This function is based on Power Analysis for Stepped Wedge Trials with Two Treatments published in Stat Med in 2022 by Phillip Sundin and Catherine Crespi. This manuscript uses the normal distribution and the Wald Test to derive power.

Usage

```
swd_2trt_linearcontrast_power(
  RhoW,
  ModelChoice,
  n.individuals,
  n.clusters,
  n.periods,
  delta_12,
  RhoA,
  IAC,
  Sequence_Tx1,
  Sequence_Tx2,
  typeIerror
)
```

Arguments

n.periods

RhoW The intraclass correlation coefficient, which refers to the correlation between

outcomes of two different individuals in the same cluster at the same time.

ModelChoice A string indicating either a repeated cross sectional design ("RCS"), nested ex-

changeable ("NEC"), Cohort ("Cohort"), or any one of these three designs in their standardized form. Only one of "RCS Standardized", "RCS", "Cohort Standardized", "Cohort", "NEC Standardized", or "NEC" can be specified. The standardized design refers to dividing by the standard deviation of y (the out-

come) in the covariance specification.

The number of time periods.

n.individuals The number of individuals in each condition at one time period.

n.clusters The number of clusters

delta_12 The standardized difference between the two treatment effects to be powered on.

RhoA The correlation between two observations in the same individual in the same

cluster but different time periods. RCS models assume RhoW = RhoA, and

Cohort models assume RhoA >= RhoW.

The individual auto-correlation, which is the proportion of the individual-level variance that is time-invariant. IAC = 0 in a RCS.

Sequence_Tx1 A vector representing the time points (periods) at which each cluster transitions from control to treatment 1 (ie the first occurence).

Sequence_Tx2 A vector representing the time points (periods) at which each cluster transitions from control to treatment 2 (ie the first occurence).

typeIerror The significance level.

Value

Power for detecting the difference of treatment effects

```
# Late factorial SWD design with 12 clusters
swd_2trt_linearcontrast_power(RhoW = 0.2, ModelChoice="RCS", IAC = 0,
                      RhoA = 0.2, n.individuals = 15, delta_12 = 0.4,
                      n.clusters = 12, n.periods = 4,
                      Sequence_Tx1 = c(2,2,3,3,4,4,4,4,4,4,4,4),
                      Sequence_Tx2 = c(4,4,4,4,4,4,2,2,3,3,4,4),
                      typeIerror = 0.05)
# Example where there are different potential designs to be considered #
#creating data frame for power as a function of rho_w
PowerTable <- data.frame(RhoW = c(rep(seq(0,0.4,by=0.01),times=3)))
PowerTable$DesignChoice <- c(rep('"Late" Factorial Design, 12 clusters',times=41),</pre>
                              rep('"Early" Factorial Design, 10 clusters', times=41),
                              rep("Concurrent Design, 12 clusters",times=41))
PowerTable$n.clusters <- c(rep(12,times=41), rep(10,times=41), rep(12,times=41))
PowerTableSequence1 \leftarrow c(rep(list(c(2,2,3,3,4,4,4,4,4,4,4,4)),times=41),
                          rep(list(c(2,2,2,3,4,4,3,4,4,4)),times=41),
                          rep(list(c(2,2,3,3,4,4,NA,NA,NA,NA,NA,NA)),times=41))
PowerTableSequence2 <- c(rep(list(c(4,4,4,4,4,4,2,2,3,3,4,4)),times=41),
                          rep(list(c(4,4,4,3,4,4,3,2,2,2)),times=41),
                          rep(list(c(NA,NA,NA,NA,NA,4,4,3,3,2,2)),times=41))
PowerTable$Power <- mapply(swd_2trt_linearcontrast_power,</pre>
                        RhoW = PowerTable$RhoW,
                        ModelChoice="RCS",
                        IAC = 0, RhoA = PowerTable$RhoW,
                        n.individuals = 15, delta_12 = 0.4,
                        n.clusters = PowerTable$n.clusters,
                        n.periods = 4, typeIerror = 0.05,
                         Sequence_Tx1 = PowerTable$Sequence1,
                        Sequence_Tx2 = PowerTable$Sequence2)
##removing unnecessary columns of clusters
PowerTable <- PowerTable[ ,-which(names(PowerTable) %in%</pre>
            c("Sequence1","Sequence2","n.clusters"))]
PowerTable
```

tandz_ratio 55

tandz_ratio	Ratio Evaluating Accuracy of Normal Approximation for T Distribution in Sample Size Calculations
	non in sample size culculations

Description

This function calculates the ratio between $(t_{(nu, 1-beta)} + t_{(nu, 1 - alpha / 2))^2 / (z_{(1-beta)} + z_{(1-alpha/2))^2$. Sample size requirements using a normal distribution with include $(z_{(1-beta)} + z_{(1-alpha/2))^2$ as a term, and sample sizes using the t distribution will include $(t_{(nu, 1-beta)} + t_{(nu, 1 - alpha / 2))^2$ as a term. The ratio of these two terms provides the discrepancy between the normal approximation and t distribution. Ratio values that exceed 1 indicate the normal approximation is underestimating the required sample size. Sample size requirements can be adjusted based on this ratio such that adjusted N = (unadjusted N) * ratio.

Usage

```
tandz_ratio(alpha, power, df)
```

Arguments

alpha The level of precision or type 1 error

power The level of desired power

df Degrees of freedom

Value

Ratio that can be multiplied to normal approximation based sample size calculations.

```
# Suppose we calculated we needed 80 people using a normal approximation for # 80% power at 0.05 alpha, then we can update the sample size calculation as: original_ss <- 80 ratio <- tandz_ratio(alpha = 0.05, power = 0.8, df = 20) N_adjusted <- ceiling(original_ss * ratio) N_adjusted
```

Index

* datasets
delta.sign,7
multisite.data, 11
anova3_ss, 3 anova4_ss, 4
<pre>crossover_power, 5 crossover_ss, 6</pre>
delta.sign,7
<pre>mcnemar_ss, 7 meandiff_ci_power, 8 meandiff_ci_ss, 9 multendpoints_Ck_ss, 10 multisite.data, 11</pre>
newfunction, 12
onemean_ci_power, 12 onemean_ci_ss, 13 oneprop_ss, 13
parallelCRT_power, 14
parallelCRT_ss, 15
pss.anova.bal.1w, 16
pss.anova.bal.1w.c, 17
pss.anova.bal.2w, 18
pss.anova.bal.2w.c, 19
pss.anova.bal.2w.se, 20
pss.anova.f.es, 21
pss.anova.unbal.1w,21
pss.anova.unbal.1w.c, 22
pss.anova.unbal.2w, 23
pss.anova.unbal.2w.c,24
pss.anova.unbal.2w.se, 25
pss.chisq.gof, 26
pss.chisq.indep, 26
pss.ci.mean, 27
pss.ci.meandiff, 28
pss.corr.1samp, 29
pss.corr.2samp, 29
pss.mcnemar.test, 30
pss.mlrF.overall, 31

```
pss.mlrF.partial, 32
pss.multisite.ate, 33
pss.multisite.ate.bal, 34
pss.multisite.bin, 35
pss.multisite.hte, 36
pss.multisite.re, 36
pss.prop.1samp, 37
pss.prop.2samp, 38
pss.prop.test.equiv, 39
pss.slr, 40
pss.t.test.1samp,41
pss.t.test.2samp,42
pss.t.test.paired, 43
pss.z.test.1samp,44
pss.z.test.2samp, 45
pss.z.test.paired, 46
search_power, 47
swd_1trt_power, 48
swd_1trt_ss, 49
swd_2trt_additive_power, 50
swd_2trt_interaction_power, 51
swd_2trt_linearcontrast_power, 53
tandz_ratio, 55
```