Total No. of Pages: 4

Seat	
No.	

S.Y. B.Tech. (Computer Science and Engineering) (Part - II) (Semester - III) (CBCS) Examination, January - 2023 DISCRETE MATHEMATICAL STRUCTURES

]			ETE MATHE	,	CAL STRUCTURES		
Day and Date : Monday, 23 - 01 - 2023 Time : 10.30 a.m. to 1.00 p.m.								
Instructions:		1) 2)	All questions are c Assume suitable d	_	~			
Q1) Solv	e M	CQs.	(2 Marks Each).				
a) Infix to Prefix of the give					n express	sion $P -> Q \land RV S$ is		
		i)	->	PV^QRS	ii)	$-> P V Q R ^ S$		
		iii)	->	PVQ^RS	iv)	$-> P V Q ^R S$		
b) $P \rightarrow (Q \rightarrow R)$ is equivalent to.								
		i)	(P ^	$(Q) \rightarrow R$	ii)	$(P \land Q) \to Q$		
		iii)	R		iv)	Tautology		
	c) Let D30 = {1, 2, 3, 5, 6, 10, 15, 30} and relation x divides y be a p ordering on D30. The LUB of 10 and 15 is.							
		i)	10		ii)	15		
		iii)	30		iv)	6		
d) Let A and B be two sets such that $A = \{1, 3, 5, 7, 11\}$, $B = \{2, \text{then the set A-B is equal to.}$				= $\{1, 3, 5, 7, 11\}$, B = $\{2, 6, 8, 5, 11\}$				
		i)	{1,	2, 3, 5, 6, 7, 8, 11	} ii)	{1, 3, 5, 7, 11}		
		iii)	{2,	6, 8}	iv)	{1, 3, 7}		
	e)	Partial ordered relation is transitive, reflexive and						
		i)	Ant	isymmetric	ii)	Bisymmetric		
		iii)	Ant	i reflexive	iv)	Asymmetric		

[7]

- f) Let $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ Let R be a relation defined on X given as $R = \{\langle x, y \rangle | x + y = 10\}$. Then R is.
 - i) Reflexive, Symmetric and Transitive
 - ii) Irreflexive Antisymmetric and Transitive
 - iii) Only Symmetric
 - iv) Only Antisymmetric
- g) Let n be a positive integer and Dn be set of all positive divisors of n. Then Dn is a lattice under the relation of divisibility. Then what are the elements of D20?
 - i) $D20 = \{1, 2, 4, 5, 10, 20\}$ ii) $D20 = \{1, 2, 4, 10, 20\}$
 - iii) $D20 = \{1, 2, 4, 10, 20\}$ iv) $D20 = \{1, 2, 4, 5, 6, 10, 20\}$
- Q2) Solve any 2 of the following. (7 Marks Each).
 - a) Show the following without constructing truth table:
 - $i) \hspace{0.5cm} ((P \vee \mathbb{k} P) \to Q) \to ((P \vee \mathbb{k} P) \to R) \Longrightarrow (Q \to R)$
 - ii) $\exists (P \leftrightarrow Q) \Leftrightarrow (P \lor Q) \land \exists (P \land Q)$
 - b) Consider the set $X = \{1, 2, 3, 4, 5, 6, 7\}$ and $R = \{\langle x, y \rangle \mid x y \text{ is divisible by 5}\}.$ [7]
 - i) Write the relation set R
 - ii) Identify which properties are satisfied by R
 - iii) Is R an Equivalence relation
 - iv) Write the matrix of R and sketch its graph
 - c) Define Lattice and Totally ordered set. Give one example of totally ordered set. Let $S = \{a, b, c\}$. Draw the diagram of $< \rho(S)$. $\subseteq >$. Is it a lattice?[7]

Q3) Solve any 2 of the following. (7 Marks Each).

[7]

- a) Define and give one example of each.
 - i) Graph
 - ii) Geodesic path
 - iii) Mixed graph
 - iv) Weighted graph
 - v) Unilaterally connected graph
 - vi) Null graph
 - vii) Complement of a Graph
- b) Define Monoid Homomorphism. Give an example.

[7]

- c) Define Semigroup, Monoid and path Group. Give an example of each.[7]
- **Q4**) Solve any 2 of the following. (7 Marks Each).
 - a) Define adjacency matrix and path matrix, Find adjacency matrix and path matrix for the given graph. [7]

Write one Simple path and one Elementary path from v1 to v3.

b) Write a note on PERT. Compute the earliest completion time & latest completion time for the given graph. Identify and write the critical path in the given graph? [7]

- c) Define the following terms and give one example of each.
- [7]

- i) Bounded lattice
- ii) Complete lattice
- iii) Complemented lattice
- iv) Distributive lattice

Q5) Solve any 2 of the following. (7 Mark Each).

- a) Given $S = \{a1, a2, a3, a4, a5, a6, a7, a8\}$ what subsets are represented by B_{17} , and B_{31} ? Also write how will you designate the subsets $\{a2, a6, a7\}$ and $\{a1, a8\}$.
- b) Describe the terms.

[7]

- i) Proper inclusion
- ii) Relative complement
- iii) Absolute complement
- iv) Symmetric difference

$$A = \{1, 2, 3, 4, 5\} B = \{a, b, 5, 6\}$$

Is A proper subset of B?

Find A-B and B-A

Find A+B

c) For the function $f(x, y, z) = x + \tilde{y} + z$ give.

[7]

- i) Truth table representation.
- ii) K-map representation
- iii) Cube representation
- iv) n-space representation

