Assignment - 2 Dept: STCS, TIFR

Email: soham.chatterjee@tifr.res.in

Course: Algorithmic Game Theory

Dept: STCS, TIFR

Date: March 11, 2025

Problem 1 10 Marks

Consider the bimatrix game (A, B) where $A, B \in \mathbb{R}^{n \times n}$ and, further, $\operatorname{rank}(A) = \operatorname{rank}(B) = k$. Give an algorithm that computes a Nash equilibrium in this game in time poly $(n^{O(k)}, |A|, |B|)$ where, as before, |x| is the bit-complexity of x. You may need to use Caratheodory's theorem:

Theorem 1. Let $S = \{x_1, x_2, ..., x_n\}$ be a set of points in \mathbb{R}^k , and y lie in the convex hull of S. Then there exists $\overline{S} \subseteq S$ of cardinality k + 1, so that y lies in the convex hull of the points in \overline{S} .

Solution: Let Δ_i denote the set of mixed strategies for player i. Now since $\operatorname{rank}(R) = k$ the vector space $V := \operatorname{Span}_{\mathbb{R}}\{Ry \mid y \in \Delta_2\}$ has dimension k. Therefore V is isomorphic to \mathbb{R}^k . Suppose $f: V \to \mathbb{R}^k$ is the isomorphism. Let R_i denote the i^{th} row of R for $i \in [n]$. Suppose $\tilde{R}_i = f(R_i)$. Now for any y the vector Ry is basically the y-convex combination the rows R_i . Therefore $f(Ry) = \sum_{i=1}^n y_i \tilde{R}_i$. Now by Caratheodory's Theorem

we get that $\exists S \subseteq \{\tilde{R}_i \mid i \in [n]\}$ with |S| = k + 1 such that f(Ry) is convex combination of $\{\tilde{R}_i \mid i \in S\}$. Hence there exists a probability distribution y' with $y'_i > 0 \iff i \in S$ such that f(Ry) is y'-convex combination of $\{\tilde{R}_i \mid i \in S\}$ i.e.

 $f(Ry) = \sum_{i \in S} y_i' \tilde{R}_i \iff Ry = \sum_{i \in S} y_i' R_i$

Therefore we obtain a new strategy y' for player 2 which is supported on at most k+1 pure strategies. Instead of doing this process for all $\{R_i \mid i \in [n]\}$ whose y-convex sum is giving the value Ry if we started with the set of vectors $\{R_i \mid i \in \operatorname{Supp}(y)\}$ we would have gotten a y' such that $\operatorname{Supp}(y') \subseteq \operatorname{Supp}(y)$ with Ry' = Ry. Hence we can assume that for any strategy $y \in \Delta_2$ there exists $y' \in \Delta_2$ such that $\operatorname{Supp}(y') \subseteq \operatorname{Supp}(y)$ and $|\operatorname{Supp}(y')| \le k+1$ with Ry = Ry'. Similarly we can also assume if player 1 plays any mixed strategy $x \in \Delta_1$ then by the above process on the rows of C we obtain $x' \in \Delta_1$ such that $\operatorname{Supp}(x') \subseteq \operatorname{Supp}(x)$ and $|\operatorname{Supp}(x')| \le k+1$ with $C^Tx = C^Tx'$.

Now suppose (x^*, y^*) is an MNE . Then $\exists \, \tilde{y}^* \in \Delta_2 \, \text{such that Supp}(\tilde{y}^*) \subseteq \text{Supp}(y^*) \, \text{and} \, |\, \text{Supp}(\tilde{y}^*)| \le k+1 \, \text{with} \, Ry^* = R\tilde{y}^*$. Now since $\text{Supp}(\tilde{y}^*) \subseteq \text{Supp}(y^*)$, \tilde{y}^* is a best response to x^* . And since $Ry^* = R\tilde{y}^*$ we have $x^{*T}Ry^* = x^{*T}R\tilde{y}^*$. Therefore x^* is also best response to \tilde{y}^* . Now by the same way from (x^*, \tilde{y}^*) we $\exists \, \tilde{x}^* \in \Delta_1 \, \text{such that Supp}(\tilde{x}^*) \subseteq \text{Supp}(x^*)$ and $|\, \text{Supp}(\tilde{x}^*)| \le k+1 \, \text{with} \, C^Tx^* = C^T\tilde{x}^*$. Since $\text{Supp}(\tilde{x}^*) \subseteq \text{Supp}(x^*)$, \tilde{x}^* is best response to \tilde{y}^* . And since $C^Tx^* = C^T\tilde{x}^*$ we have $\tilde{y}^*C^Tx^* = \tilde{y}^*C^T\tilde{x}^*$. Therefore \tilde{y}^* is best response to \tilde{x}^* . Therefore $(\tilde{x}^*, \tilde{y}^*)$ is also MNE . Therefore from (x^*, y^*) we obtained an $(\tilde{x}^*, \tilde{y}^*)$ which is also an MNE but both of the strategies are supported on at most k+1 pure strategies. So we have the following algorithm:

- (1): Choose all possible $S_1, S_2 \subseteq [n]$ with $|S_1|, |S_2| \le k + 1$.
- (2): For each (S_1, S_2) consider the matrices $A_{S_1, S_2} = (A(i, j))_{i \in S_1, j \in S_2}$ $B_{S_1, S_2} = (B(i, j))_{i \in S_1, j \in S_2}$.
- (3): Run the Lemke-Howson Algorithm on $(A_{S_1,S_2},B_{S_1,S_2})$ find Nash Equilibrium $(x_{S_1,S_2}^*,y_{S_1,S_2}^*)$ in the reduced matrices
- (4): For each (S_1, S_2) check if $(x_{S_1, S_2}^*, y_{S_1, S_2}^*)$ satisfies the Nash Equilibrium conditions in the full game and if it satisfies return that strategy.

The all possible choice of $S_1, S_2 \subseteq [n]$ with $|S_1|, |S_2| \le k+1$ takes at most $2\sum\limits_{i=1}^{k+1} {n \choose i} \le poly(n^{O(k)})$ time. Now each of the reduced matrices can also be computed in poly(|A|, |B|). For each reduced matrix the Lemke-Howson Algorithm runs on $(K=1)\times (k+1)$ matrix. Therefore the algorithm takes at most $poly(k^{O(k)})$ time. Therefore the total running time is $poly(n^{O(k)}, |A|, |B|)$.

1

Problem 2 10 Marks

Recall the single-agent regret-minimization problem with n pure strategies studied in class, for which we showed that the multiplicative weight algorithm with $\epsilon = \sqrt{\ln n/T}$ has regret $2\sqrt{\ln n/T}$. Modify the algorithm to remove the assumption that T is known to the algorithm, while maintaining a bound of $O(\sqrt{\ln n}/\sqrt{T})$ on the regret.

Solution: Let \mathcal{A} be the algorithm for single-agent no regret on input T and the set of n pure strategies gives a no-regret dynamics. So we will have the following algorithm which has no knowledge of T:

Algorithm 1: Multiplicative Weight Without Knowing *T*

```
Input: A set S of n \ge 2 actions
   Output: No regret Dynamics
1 begin
       i \leftarrow 0
2
        while True do
3
             i \leftarrow i + 1
4
             t \longleftarrow 2^i
5
             p^t \longleftarrow \mathcal{A}(t,S)
6
             if It is the end then
7
8
                 return p<sup>t</sup>
```

Basically the algorithm has $\lfloor \log T \rfloor + 1$ phases during T. In phase $k \geq 0$ it consists of steps $2^k, \ldots, 2^{k+1}-1$ steps i.e. total 2^k steps. At beginning of a phase we restart the no-regret algorithm with $t=2^k$. As the last phase may not be complete the algorithm is stopped in the last phase after the number of rounds is over. We will denote $p_{2^k}^t$ be the distribution at the t^{th} iteration in the phase k. Now before we go into the calculation of the regret we have to first handle the case of the last phase where from $2^{\lfloor \log T \rfloor}$ to $2^{\lfloor \log T \rfloor + 1}$, T can be any value between them. And for all such T's we are running the algorithm with the same $\epsilon = \sqrt{\frac{\ln n}{2^{\lfloor \log T \rfloor}}}$. We have to show that for all T this choice of ϵ gives the same regret $O\left(\sqrt{\frac{\ln n}{2^{\lfloor \log T \rfloor}}}\right)$.

Lemma 1. For any T for the above algorithm in the last phase \mathcal{A} will run for $T - 2^{\lfloor \log T \rfloor}$ many rounds with the choice of $\epsilon_1 = \sqrt{\frac{\ln n}{2^{\lfloor \log T \rfloor}}}$ instead of $\epsilon_2 = \sqrt{\frac{\ln n}{T - 2^{\lfloor \log T \rfloor}}}$. Let the regret for any ϵ is denoted R_{ϵ} . Then

$$R_{\epsilon_2}^{T-2^{\lfloor \log T \rfloor}} = \Theta\left(R_{\epsilon_1}^{T-2^{\lfloor \log T \rfloor}}\right)$$

Proof: In the analysis of the algorithm \mathcal{A} if it runs for t rounds for any ϵ we have

$$R_{\epsilon}^{t} \leq \frac{1}{t} \left(\epsilon t + \frac{1}{\epsilon} \ln n \right) \iff t \cdot R_{\epsilon}^{t} \leq \epsilon T + \frac{1}{\epsilon} \ln n$$

So we will show that

$$\epsilon_1 \left(T - 2^{\lfloor \log T \rfloor} \right) + \frac{1}{\epsilon_1} \ln n = \Theta \left(\epsilon_2 \left(T - 2^{\lfloor \log T \rfloor} \right) + \frac{1}{\epsilon_2} \ln n \right)$$

Now

$$\begin{split} &\epsilon_{2}\left(T-2^{\lfloor\log T\rfloor}\right)+\frac{1}{\epsilon_{2}}\ln n=\Theta\left(\epsilon_{1}\left(T-2^{\lfloor\log T\rfloor}\right)+\frac{1}{\epsilon_{1}}\ln n\right)\\ &\Longleftrightarrow\sqrt{\frac{\ln n}{T-2^{\lfloor\log T\rfloor}}}\left(T-2^{\lfloor\log T\rfloor}\right)+\frac{1}{\sqrt{\frac{\ln n}{T-2^{\lfloor\log T\rfloor}}}}\ln n=\Theta\left(\sqrt{\frac{\ln n}{2^{\lfloor\log T\rfloor}}}\left(T-2^{\lfloor\log T\rfloor}\right)+\frac{1}{\sqrt{\frac{\ln n}{2^{\lfloor\log T\rfloor}}}}\ln n\right)\\ &\Longleftrightarrow2\sqrt{T-2^{\lfloor\log T\rfloor}}=\Theta\left(\frac{1}{\sqrt{2^{\lfloor\log T\rfloor}}}\left(T-2^{\lfloor\log T\rfloor}\right)+\sqrt{2^{\lfloor\log T\rfloor}}\right)\\ &\Longleftrightarrow2\sqrt{T-2^{\lfloor\log T\rfloor}}=\Theta\left(\frac{T}{\sqrt{2^{\lfloor\log T\rfloor}}}\right)\\ &\Longleftrightarrow4(T-2^{\lfloor\log T\rfloor})=\Theta\left(\frac{T^{2}}{2^{\lfloor\log T\rfloor}}\right)\\ &\Longleftrightarrow4(T-2^{\lfloor\log T\rfloor})=\Theta(T)=\Theta\left(\frac{T^{2}}{2^{\lfloor\log T\rfloor}}\right) \end{split}$$

Therefore the regret in the last phase can be at most $O\left(\sqrt{\frac{\ln n}{T-2^{\lfloor \log T \rfloor}}}\right)$. Suppose regret is at most $\delta\sqrt{\frac{\ln n}{T-2^{\lfloor \log T \rfloor}}}$ for some $\delta \in \mathbb{N}$, $\delta \geq 2$. Therefore in the last phase we have

$$\sum_{t=0}^{2^m-1} \sum_{a \in S} p_{2\lfloor \log T \rfloor}^t(a) c^{t+2^m}(a) - \min_{a \in S} \sum_{t=0}^{2\lfloor \log T \rfloor - 1} c^{t+2\lfloor \log T \rfloor}(a) \leq \delta \sqrt{\left(T - 2^{\lfloor \log T \rfloor}\right) \ln n} \leq \delta \sqrt{2^{\lfloor \log T \rfloor} \ln n}$$

Now for $k \in \{0, ..., m-2\}$ by the analysis of \mathcal{A} we know

$$\sum_{t=0}^{2^{k}-1} \sum_{a \in S} p_{2^{k}}^{t}(a) c^{t+2^{k}}(a) - \min_{a \in S} \sum_{t=0}^{2^{k}-1} c^{t+2^{k}}(a) \le 2\sqrt{2^{k} \ln n} \le \delta \sqrt{2^{k} \ln n}$$

Therefore we have

Hence $R_{\epsilon_2}^{T-2^{\lfloor \log T \rfloor}} = \Theta\left(R_{\epsilon_1}^{T-2^{\lfloor \log T \rfloor}}\right)$

$$\sum_{k=0}^{\lfloor \log T \rfloor} \sum_{t=0}^{2^k-1} \sum_{a \in S} p_{2^k}^t(a) c^{t+2^k}(a) - \sum_{k=0}^{\lfloor \log T \rfloor} \min_{a \in S} \sum_{t=0}^{2^k-1} c^{t+2^k}(a) \leq \sum_{k=0}^m \delta \sqrt{2^k \ln n}$$

Now we have

$$\sum_{k=0}^{\lfloor \log T \rfloor} \min_{a \in S} \sum_{t=0}^{2^{k}-1} c^{t+2^{k}}(a) \le \min_{a \in S} \sum_{k=0}^{\lfloor \log T \rfloor} \sum_{t=0}^{2^{k}-1} c^{t+2^{k}}(a)$$

Therefore we have

$$\sum_{k=0}^{\lfloor \log T \rfloor} \sum_{t=0}^{2^{k}-1} \sum_{a \in S} p_{2^{k}}^{t}(a) c^{t+2^{k}}(a) - \min_{a \in S} \sum_{k=0}^{m} \sum_{t=0}^{2^{k}-1} c^{t+2^{k}}(a) \le \sum_{k=0}^{\lfloor \log T \rfloor} \sum_{t=0}^{2^{k}-1} \sum_{a \in S} p_{2^{k}}^{t}(a) c^{t+2^{k}}(a) - \sum_{k=0}^{\lfloor \log T \rfloor} \min_{a \in S} \sum_{t=0}^{2^{k}-1} c^{t+2^{k}}(a)$$

$$\le \sum_{k=0}^{\lfloor \log T \rfloor} \delta \sqrt{2^{k} \ln n} = \delta \sqrt{\ln n} \sum_{k=0}^{\lfloor \log T \rfloor} \sqrt{2^{k}}$$

$$= \delta \sqrt{\ln n} \frac{(\sqrt{2})^{\lfloor \log T \rfloor + 1} - 1}{\sqrt{2} - 1} = O(\sqrt{T \ln n})$$

Hence

$$\frac{1}{T} \left[\sum_{k=0}^{m} \sum_{t=1}^{2^k - 1} \sum_{a \in S} p^{t + 2^k}(a) c^{t + 2^k}(a) - \min_{a \in S} \sum_{k=0}^{m} \sum_{t=1}^{2^k - 1} c^{t + 2^k}(a) \right] \le O\left(\sqrt{\frac{\ln n}{T}}\right)$$

Therefore this algorithm gives the same external regret as the algorithm. Therefore this algorithm has no regret as $T \to \infty$.

Problem 3 10 Marks

We saw in class that any deterministic regret-minimization algorithm, that selects a point distribution p^t at each time t, has regret at least 1-1/n. Consider the deterministic regret-minimization algorithm that at each time t, selects the pure strategy that has least cumulative cost so far. That is, $p^t(a) = 1$ for some $a \in \arg\min\sum_{\tau \le t} c^{\tau}(a)$. Show the regret of this algorithm (called "Follow-the-Leader") is at most

$$\frac{(n-1)\mathsf{OPT}}{T} + \frac{n}{T}$$

Solution: Let a_t denotes the action taken at time t. Let the actions are a_1, \ldots, a_n . Therefore $a_t \in \arg\min_{i \in [n]} \sum_{\tau \le t} c^{\tau}(a_i)$. Now total cost of the algorithm after T time is $\sum_{t=1}^{T} c^{t}(a_t)$. Let t_i denote the last time when the algorithm choose the action a_i for all $i \in [n]$. Let $c_i = \sum_{t=1}^{t_i-1} c^{t}(a_i)$. Now OPT $= \min_{i \in [n]} \sum_{t=1}^{T} c^{t}(a_i)$. If $a^* = \arg\min_{i \in [n]} \sum_{t=1}^{T} c^{t}(a_i)$ then define OPT $_t = \sum_{\tau \le t-1} c^{\tau}(a^*)$.

Lemma 2. $c_i \leq \text{OPT for all } i \in [n]$

Proof: For any $i \in [n]$ we have $c_i \leq \mathsf{OPT}_{t_i}$ since t_i is the last time the action a_i was chosen by the algorithm and henceforth $a_i \in \arg\min_{j \in [n]} \sum_{\tau \leq t_i} c^{\tau}(a_j)$. Since $\mathsf{OPT}_t \leq \mathsf{OPT}$ for all $i \in [T]$ we have $c_i \leq \mathsf{OPT}$. Since $i \in [n]$ is arbitrary we have the lemma.

Lemma 3. $\sum_{t=1}^{T} c^{t}(a_{t}) \leq \sum_{i=1}^{n} c_{i} + \sum_{i=1}^{n} c^{t_{i}}(a_{i}).$

Proof: For $i \in [n]$ denote $d_i = \sum_{\substack{t \leq T \\ a_t = a_i}} c^{\tau}(a_i) = \sum_{\substack{t \leq t_i \\ a_t = a_i}} c^{\tau}(a_i)$. Then we have $\forall i \in [n]$, $d_i - c^{t_i}(a_i) \leq c_i$ since every summand in $d_i - c^{t_i}(a_i)$ i.e. every summand except the last element appears as a summand in c_i . Since $\sum_{i \in [n]} d_i = \sum_{t=1}^T c^t(a_t)$ we have $\sum_{t=1}^T c^t(a_t) \leq \sum_{i=1}^n c_i + \sum_{i=1}^n c^{t_i}(a_i)$.

Now since $c^t(a_i) \in [0, 1]$ for all $i \in [n]$, for all $t \in [T]$. Therefore

$$\sum_{t=1}^{T} c^t(a_t) \le n \operatorname{OPT} + n \implies \sum_{t=1}^{T} c^t(a_t) - \operatorname{OPT} \le (n-1) \operatorname{OPT} + n \implies \frac{1}{T} \left(\sum_{t=1}^{T} c^t(a_t) - \operatorname{OPT} \right) \le \frac{(n-1) \operatorname{OPT}}{T} + \frac{n}{T} \operatorname{OPT} + \frac$$

Hence the regret is at most $\frac{(n-1)OPT}{T} + \frac{n}{T}$

Problem 4 10 Marks

Recall the value of a zero-sum game: this was the payoff for the row player in any Nash equilibrium of the game. Show that, in fact, this extends to CCE of zero-sum games as well: any CCE has the same payoff for the row-player.

Solution: Suppose (x^*, y^*) is an MNE in the zero sum game. And the payoff obtained by the player 1 is w^* . Now we have the lemma

Lemma 4. Let μ is a CCE . And μ_1 and μ_2 are the marginals of μ for player 1 and player 2. Then

$$\mathbb{E}_{\substack{s \sim n}}[u_i(s)] = u_i(\mu_1, \mu_2)$$

Proof: Suppose for some $i \in [2]$, $\underset{s \sim \mu}{\mathbb{E}}[u_i(s)] \neq u_i(\mu_1, \mu_2)$. So either $\underset{s \sim \mu}{\mathbb{E}}[u_i(s)] < u_i(\mu_1, \mu_2)$ or $\underset{s \sim \mu}{\mathbb{E}}[u_i(s)] > u_i(\mu_1, \mu_2)$. If

$$\underset{s \sim \mu}{\mathbb{E}} \left[u_i(s) \right] > u_i(\mu_1, \mu_2) \implies - \underset{s \sim \mu}{\mathbb{E}} \left[u_i(s) \right] < -u_i(\mu_1, \mu_2) \implies \underset{s \sim \mu}{\mathbb{E}} \left[u_{3-i}(s) \right] < u_{3-i}(\mu_1, \mu_2)$$

So it is reduced to the case that $\mathbb{E}_{s \sim \mu}[u_i(s)] < u_i(\mu_1, \mu_2)$. Now there exists $s_1 \in S_1$ such that $u_i(\mu_1, \mu_2) \le u_i(s_1, \mu_2)$. Then $\exists s_1 \in S_1$ such that $\mathbb{E}_{s \sim \mu}[u_i(s)] < u_i(s_1, \mu_2)$. Hence it contradicts the fact that μ is an CCE . Which is not possible. Contradiction f Therefore $\mathbb{E}_{s \sim \mu}[u_i(s)] = u_i(\mu_1, \mu_2)$.

Since (x^*, y^*) is an MNE we have $u_1(\mu_1, \mu_2) \le u_1(x^*, y^*) = w^* \implies \underset{s \sim \mu}{\mathbb{E}} [u_1(s)] \le w^*$. Now we also have $u_2(\mu_1, \mu_2) \le u_2(x^*, y^*) = -w^*$. Therefore

$$\underset{s \sim \mu}{\mathbb{E}} \left[u_2(s) \right] \leq -w^* \implies -\underset{s \sim \mu}{\mathbb{E}} \left[u_1(s) \right] \leq -w^* \implies \underset{s \sim \mu}{\mathbb{E}} \left[u_1(s) \right] \geq w^*$$

Therefore we got $\underset{s \sim \mu}{\mathbb{E}}[u_1(s)] = w^*$. Hence any CCE has the same payoff for the row-player.

Problem 5 5 Marks

In a 3-player zero sum game, for any pure strategy profile s, $\sum_{i=1}^{3} u_i(s) = 0$. Either give an efficient algorithm for computing an MNE in a 3-player zero-sum game, or prove that computing a MNE in a 3-player zero-sum game is PPAD-hard.

Solution: We will show a polynomial time reduction from 2NASH to 3-player zero sum. Suppose we have a bimatrix game (R, C) where $R, C \in \mathbb{R}^{m \times n}$. Let u_1 and u_2 were the payoff functions of the bimatrix game. We construct a 3-player zero sum game we add a new third player. Let the payoff functions in the new 3-player are \tilde{u}_i for $i \in [3]$. For the first player and the second player for any strategy profile $s = (s_1, s_2, s_3)$ becomes

$$u_i(s_1, s_2, s_3) = u_i(s_1, s_2) \ \forall \ i \in [2]$$

Now for any strategy profile $s = (s_1, s_2, s_3)$ the payoff for the third player given by

$$u_3(s_1, s_2, s_3) = -u_1(s_1, s_2) - u_2(s_1, s_2)$$

So we can think that the player 3 has only one strategy $S_3 = \{s_3\}$. Hence the new game has payoff matrices (A, B, C) where $A, B, C \in \mathbb{R}^{m \times n \times 1}$, where for any $s = (i, j, s_3)$, $i \in [m]$, $j \in [n]$ we have

$$A(i, j, s_3) = R(i, j),$$
 $B(i, j, s_3) = C(i, j)$ $C(i, j, s_3) = -R(i, j) - C(i, j)$

game is indeed a 3-player zero sum game. And the reduction from the 2NASH game is polynomial time. Since 2NASH is PPAD-hard we can conclude that 3-player zero sum games are also PPAD-hard.

Problem 6 10 Marks

Given a 2-player game (R, C), prove that the following problems are either in P or are NP-complete:

- Determine if there exists an MNE (x^*, y^*) where both players play each pure strategy with positive probability (i.e., $x_i^* > 0$ for all i, and $y_i^* > 0$ for all j).
- Determine if there exists an MNE (x^*, y^*) where $x_1^* = 1$ (i.e., a given pure strategy is played with probability 1).

Solution: In the following games we will assume that the row player has m strategies and the column player has n strategies.

• Here we have to find an MNE (x^*, y^*) with the property that $\sup(x^*) = [m]$ and $\sup(y^*) = [n]$ i.e. they have full support. Since their support size is full we have $(Ry^*)_k = \arg\max_{i \in [m]} (Ry^*)_i$ for all $k \in [m]$. Hence $(Ry^*)_i = (Ry^*)_k$ for all $i, k \in [m]$. Similarly we have $(C^Tx^*)_j = (C^Tx^*)_l$ for all $j, l \in [n]$. Hence consider the following LP:

maximize 0
subject to
$$(Ry)_i = (Ry)_k \quad \forall i, k \in [m],$$

 $(C^Tx)_j = (C^Tx)_l \quad \forall j, l \in [n],$
 $\sum_{i=1}^m x_i = \sum_{j=1}^n y_i = 1,$
 $x > 0, y > 0$

Any solution of the above LP will give a MNE with full support size. Since LP can be solved in polynomial time this problem is in P.

• Here we have to find an MNE (x^*, y^*) with the property that $x_1^* = 1$. That means the row player is playing the first pure strategy with full probability. Since y^* is the best response for x^* we have

$$\operatorname{Supp}(y^*) \subseteq \arg \max_{j \in [n]} C(1, j)$$

So suppose $T = \arg \max_{j \in [n]} C(1, j)$. Since (x^*, y^*) is MNE we have to ensure that $1 \in \arg \max_{i \in [m]} (Ry^*)_i$. So consider the following LP:

maximize 0
$$(Ry)_1 \geq (Ry)_i \ \forall \ i \in [m],$$

$$y_j = 0 \qquad \forall \ j \notin T,$$

$$\sum_{j \in T} y_j = 1,$$

$$y \geq 0$$

Any solution of the above LP will give a MNE (x^*, y^*) such that $x_1^* = 1$ and the first constraint of LP will ensure x^* is best response for y^* and the second and third condition will ensure $\operatorname{Supp}(y^*) \subseteq \arg\max_{j\in[n]} C(1,j)$ i.e. y^* is best response for x^* . Since LP can be solved in polynomial time this problem is in P.

Problem 7 10 Marks

Players 1 and 2 choose an element of the set $\{1, \dots, K\}$. If the players choose the same number, then player 2 pays 1 rupee to player 1; otherwise no payment is made. Find all pure and mixed strategy Nash equilibrium of this game.

Solution: If both players chooses same number then player 2 pays 1 rupee to player 1 otherwise no payment is made. So consider the matrices $R, C \in \{0, 1\}^{K \times K}$ where for any $i, j \in [K]$

$$R(i,j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \qquad C(i,j) = \begin{cases} -1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Lemma 5. There is no PNE in the bimatrix game (R, C)

Proof: Suppose there is a PNE. Let (i,j) where $i,j \in [K]$ is the PNE. Now if i=j then the payoff of the player 2 is −1. But player 2 could play $l \in [K]$, $l \neq i$ and get a pay-off of 0. Hence this is not an equilibrium. So then $i \neq j$. But then the player 1 is getting a payoff 0. But instead player 2 could have played j and gotten a pay-off of 1.. Hence this also not a PNE. Therefore for al (i,j) where $i,j \in [K]$, (i,j) is not a PNE. But we assumed that there is a PNE. Hence contradiction f So there is no PNE in the bimatrix game

Since this is a finite game with each player having finitely many strategies. By Nash's theorem there exists a mixed nash equilibrium.

Lemma 6. Choosing all the numbers uniformly at random for both players is an MNE in the bimatrix game (R, C).

Proof: First we will show that (x, y) where $x_i = y_j = \frac{1}{K}$ for all $i, j \in [K]$ is an MNE. Now in the matrix R it has 1's on the diagonal and the rest of the entries are zero and similarly in C it has -1's on the diagonal and the rest of the entries are zero. Then

$$Ry = \begin{bmatrix} \frac{1}{K} \\ \vdots \\ \frac{1}{K} \end{bmatrix} \qquad C^T x = - \begin{bmatrix} \frac{1}{K} \\ \vdots \\ \frac{1}{K} \end{bmatrix}$$

Therefore $\arg\max_{i\in[K]}(Ry)_i=[K]$ and $\arg\max_{j\in[K]}(C^Tx)_j=[K]$. Hence x is indeed a best response to y and y is indeed best response to x. Therefore (x,y) is an MNE .

Now we will show if (x, y) is a mixed strategy of player 1 and 2 respectively. Then for all $i, j \in [K]$. Now Ry = y and $C^Tx = -x$ and the expected payoff $u_1(x, y) = \sum_{i \in [K]} x_i y_i = -u_2(x, y)$. Since the game is zero sum the value of the game is $= \min_{y \in \Delta(K)} \max_{i \in [K]} y_i$. Player 1 benefits when their probability distribution x is concentrated where y is highest. So in order to minimize the payoff of player 1, player 2 will try to minimize $\max_{i \in [K]} y_i$. Now for any distribution $y \in \Delta(K)$, $\max_{i \in [K]} y_i \ge \frac{1}{K}$. Hence $\max_{i \in [K]} y_i = \frac{1}{K}$. Hence $y^* = \frac{1}{K}$ where $\mathbb{1}$ is the all 1's vector minimizes the payoff of player 1 the most. So for any pure strategy $i \in [K]$ of player 1 the expected payoff is $u_1(i, y^*) = y^* = \frac{1}{K} = u_2(i, y^*)$. So every pure strategy gives the same payoff.

expected payoff is $u_1(i, y^*) = y_i^* = \frac{1}{K} = u_2(i, y^*)$. So every pure strategy gives the same payoff. Therefore if x^* is best response to y^* then $\operatorname{Supp}(x^*) \subseteq [K]$. Now suppose $\operatorname{Supp}(x^*) \subseteq [K]$. Let $i, j \in [K]$, $i \neq j$ such that $i \notin \operatorname{Supp}(x^*)$ but $j \in \operatorname{Supp} x^*$. Then $C^Tx^* = -x^*$. So $j \notin \arg\max_{l \in [K]} -x_l^*$ as $-x_j^* < 0$ and $-x_i^* = 0$. Therefore the y_j^* has to be 0. But we know $y_j^* > 0$. So y^* is not best response to x^* . Therefore $\operatorname{Supp}(x^*) = [K]$. Now again with the same logic since $C^Tx^* = -x^*$ and y^* is best response of x^* with $y_i^* > 0$ for all $i \in [K]$ we have $x_i^* = x_j^*$ for all $i, j \in [K]$. Therefore $x^* = \frac{1}{K}\mathbb{I}$. Therefore the only MNE is (x^*, y^*) with $x_i^* = y_j^* = \frac{1}{K}$ for all $i, j \in [K]$.