Modelación y Simulación Laboratorio 3

1. Objetivo

El objetivo de este laboratorio es complementar el aprendizaje de modelos de estado y sistemas discretos, a través de la realización de actividades prácticas en MATLAB.

2. Modelos de estado

La función ss(A, B, C, D) es usada para obtener el modelo de estado de un sistema, dado las correspondientes matrices A, B, C y D. El modelo obtenido puede ser usado en funciones como step, impulse y lsim.

Un ejemplo de ss esto sería

```
A = [-2 2; 1 -5];
B = [1/2; 0];
C = [1 0; 0 1];
D = [0; 0];
M = ss(A, B, C y D);
step(M)
```

3. Respuestas de un sistema

Anteriormente, ya se ha trabajado con la función step(H), la cual retorna el comportamiento de un sistema representado por H con un escalón como entrada. Sin embargo, MATLAB ofrece dos funciones mas para analizar sistemas, impulse y lsim. impulse, como indica su nombre, retorna el comportamiento del sistema ante un impulso. lsim por el otro lado, retorna el comportamiento del sistema ante una función u(t) para t en un intervalo [a, b].

Un ejemplo de 1sim para un entrada sinusoidal definida entre $[0, 2\pi]$.

```
s = tf('s');
H = 1/(s + 1);
t = linspace(0, 2*pi, n);
u = sin(t);
lsim(H, u, t);
```

n corresponde a un valor entero que indica la cantidad de puntos a obtener del intervalo. Mientras mayor sea n, más precisión se tiene.

DIINF-USACH 17/12/2020

Profesor: Gonzalo Acuña Ayudante: Alan Barahona

4. Continuo a discreto

Dado un modelo continuo, se puede obtener la forma discreta de este a través de la función c2d(M, T_m, d), donde M corresponde al modelo, T_m al tiempo de muestreo, y d corresponde al tipo de discretización usado. Un modelo discreto también puede ser usado en la función step, impulse y lsim.

Un ejemplo de c2d corresponde a

```
A = [-2 2; 1 -5];
B = [1/2; 0];
C = [1 0; 0 1];
D = [0; 0];
M = ss(A, B, C y D);
M_z = c2d(M, 1e-4, 'zoh');
step(M_z);
```

En este laboratorio se hará uso de dos tipos de discretización: zoh (Zero order hold) y foh (First order hold).

5. Informe

El informe debe contener lo siguiente:

5.1. Primera parte

Dado el diagrama de bloques mostrado en la Figura 1, escriba una función llamada bam que reciba los valores a, b, c, d, e y f y retorne las matrices correspondientes del modelo de estados. De la misma forma, escriba una función llamada mab que tenga como entrada la salida de la función anterior y retorne las funciones H_1 y H_2 .

Nota: Desarrolle de manera algebraica primero, llegando así a las fórmulas correspondientes, las cuales son las que se deben implementar. El desarrollo algebraico debe ir en el informe.

Figura 1: Diagrama de bloque

5.2. Segunda parte

Dado el sistema mostrado en la Figura 2, y sabiendo que este se rige por la Ecuación 1, escriba un programa en el cual, al comienzo, se les dé valor a los parámetros del sistema y se obtenga el modelo de estado correspondiente.

$$F_i = \frac{h_1 - h_2}{R_1}$$

$$F_s = \frac{h_2}{R_2}$$
(1)

Figura 2: Diagrama de vasos comunicantes

En base al programa, analice la respuesta del sistema ante un impulso, un escalón y una función u(t) cuando $A_1=2m^2,\,A_2=4m^2,\,R_1=0.25\frac{s}{m^2}$ y $R_2=0.0625\frac{s}{m^2}$. La definición de u(t) corresponde a

```
t = linspace(0, 12*pi, 5000);

u = 100*sin(t/4);

u(u<0) = 0.;
```

Nota: La nota de la primera parte también aplica para esta.

5.3. Tercera parte

Para el sistema anterior, y teniendo en cuenta los mismos parámetros, obtener el sistema discreto para dos tipos de discretización: zero order hold y first order hold. Para ambos casos, tenga en cuenta un tiempo de muestreo $T_1 = 0.001s$, $T_2 = 0.1s$ y $T_3 = 2s$. Concluya sobre las diferencias de los dos tipos de discretización para los distintos tipos de muestreo.

DIINF-USACH 17/12/2020 Profesor: Gonzalo Acuña Ayudante: Alan Barahona

5.4. Formato del informe

El informe debe contener:

- 1. Portada
- 2. Introducción
- 3. Marco teórico (Modelos de Estado, Zero order hold, First order hold).
- 4. Desarrollo de la Primera Parte.
- 5. Desarrollo de la Segunda Parte.
- 6. Desarrollo de la Tercera Parte
- 7. Conclusiones.
- 8. Referencias (Formato APA).

El informe debe ser escrito según la plantilla disponible en el moodle.

El código fuente debe estar correctamente comentado.

Los laboratorios son en parejas.

Entrega: 10 de enero de 2021 (23:55).

¡Éxito!

Profesor: Gonzalo Acuña Ayudante: Alan Barahona