

Distributed Algorithms

CS 308 Compiler Techniques

160001026 - Niranjan Joshi

160001028 - Kanishkar J

160001048 - Rishabh Kumar Verma

160001052 - Sahaj Khandelwal

Distributed Systems: Overview

 A model in which components located on networked computers communicate and coordinate their actions by passing messages.

Source: medium.com

Network Topologies

Source: Wikipedia

Grid

Source: http://wiki.expertiza.ncsu.edu

Ring

Source: Wikipedia

Torus 2D

Source: www.computer.org

Hypercubes

Tree And Fat Tree

Fat Tree

Source: Wikipedia

Topology Parameters

- Number of Links
- Diameter
- Bisection Width
- Bisection Bandwidth
- Congestion

$$C = \Omega(B_L/B_p)$$

Topology Related Complexities

Topology	Metric		
	# Links	Diameter	Bisection Width
Linear	p - 1	p - 1	1
2D Mesh	$2p - 2\sqrt{p}$	$2(\sqrt{p}-1)$	\sqrt{p}
kD Mesh	$kp - kp^{\left(\frac{k-1}{k}\right)}$	$kp^{\frac{1}{k}}$	$p^{\frac{(k-1)}{k}}$
Ring	р	p/2	2
2D Torus (Doughnut)	2 <i>p</i>	$\sqrt{p}-1$	$2\sqrt{p}$
kD Torus	kp	$\frac{k}{2}(p^{\frac{1}{k}}-1)$	$2p^{(\frac{k-1}{k})}$
log(p) D Hypercube	<u>p log(p)</u> 2	log(p)	<i>p</i> /2
Binary Tree	p – 1	2log(p)	1
Fully Connected	<u>p (p−1)</u> 2	1	<u>p²</u> 4

Distributed Algorithms

Broadcast Algorithm

Scatter Algorithm

Source: UNC-Charlotte

Algorithm Complexity Parameters

- α = latency (units of time)
- β = inverse bandwidth (units of time/word)
- Time to send a message of n-words between two nodes :

$$T(n) = \alpha + \beta n$$

Algorithm Complexity Parameters

Time during K-way congestion :

$$T(n) = \alpha + \beta nk$$

Topology	Time Complexity
Linear	$(\alpha + \beta m)(p)$
Ring	$(\alpha + \beta m) log(p)$
Mesh	$(\alpha + \beta m) \log(p)$
Torus (2-D)	$(\alpha + \beta m) \log(p)$
Hypercube	$(\alpha + \beta m) \log(p)$
Tree	$(\alpha + \beta m) p$
FCG	$(\alpha + \beta m) log(p)$
	Linear Ring Mesh Torus (2-D) Hypercube Tree

All-to-all Broadcast All-to-all Reduction	Linear	$(\alpha + \beta m)(p-1)$
	Ring	$(\alpha + \beta m)(p-1)$
	Mesh	$2\alpha(\sqrt{p}-1) + \beta m(p-1)$
	Torus (2-D)	$2\alpha(\sqrt{p}-1) + \beta m(p-1)$
	Hypercube	$alog(p) + \beta m(p-1)$
	Tree	$(\alpha + \beta m)(p-1)$
	FCG	$(\alpha + \beta m)(p-1)$

Linear	$(\alpha + \beta m) \log(p)$
Ring	$(\alpha + \beta m) log(p)$
Mesh	$(\alpha + \beta m) log(p)$
Torus (2-D)	$(\alpha + \beta m) log(p)$
Hypercube	$(\alpha + \beta m) \log(p)$
Tree	$(\alpha + \beta m) p$
FCG	$(\alpha + \beta m) \log(p)$
	Ring Mesh Torus (2-D) Hypercube Tree

Scatter Gather	Linear	$\alpha log(p) + \beta m(p-1)$
	Ring	$\alpha log(p) + \beta m(p-1)$
	Mesh	$\alpha log(p) + \beta m(p-1)$
	Torus (2-D)	$\alpha log(p) + \beta m(p-1)$
	Hypercube	$\alpha log(p) + \beta m(p-1)$
	Tree	$\alpha log(p) + \beta m(p-1)$
	FCG	$\alpha log(p) + \beta m(p-1)$

Linear	$(\alpha + \beta m_2^p) (p-1)$
Ring	$(\alpha + \beta m_2^p) (p-1)$
Mesh	$(2\alpha + \beta mp)(\sqrt{p} - 1)$
Torus (2-D)	$(2\alpha + \beta mp)(\sqrt{p} - 1)$
Hypercube	$(\alpha + \beta m)(p-1)$
Tree	$(\alpha + \beta m_{\frac{p}{2}}^{p})(p-1)$
FCG	$(\alpha + \beta m_{\frac{p}{2}}^{p}) (p-1)$
	Ring Mesh Torus (2-D) Hypercube Tree

Simulations & Plots

MPI

 Message Passing Interface (MPI) is a standardized and portable message-passing standard designed by a group of researchers from academia and industry to function on a wide variety of parallel computing architectures.

SimGrid

SimGrid is a scientific instrument to study the behavior of large-scale distributed systems such as Grids, Clouds, HPC or P2P systems.

Simgrid and its features

- Allows one to configure :
 - Per host computing power
 - Link latency and bandwidth
 - Simulate MPI programs without modifications
 - Simulate on different architectures

Simgrid and its features

- Provides one with:
 - Link to link message count
 - Power consumption node wise
 - Execution time
- The trace information provided by Simgrid can be visualized using a tool pajeng.

Sample Trace Data after filtering

Source	Dest	Hop Count
1	2	4
1	9	1
1	3	3
3	4	5
1	5	2
5	6	7
5	7	6
7	8	8

References

- https://www.cs.uky.edu/~jzhang/CS621/chapter5.pdf
- http://parallelcomp.uw.hu/ch04lev1sec1.html
- https://www8.cs.umu.se/kurser/5DV050/VT13/coll.pdf
- https://www8.cs.umu.se/kurser/5DV050/VT12/F1b.pdf
- https://s3.amazonaws.com/content.udacity-data.com/courses/gt-cse6220/Course +Notes/Lesson2-1+Basic+Model.pdf
- Udacity
- https://simgrid.org/tutorials/simgrid-smpi-101.pdf
- http://mpitutorial.com/tutorials/

Thank You