

(19) Weltorganisation für geistiges Eigentum Internationales Büro

HI LI I HILLI I BERTA KULI ALKA ATIK BIRLI I DELI ARKA ALKA KULI KULI BERTA BILI BERTA BILI BILI BILI BILI BIL

(43) Internationales Veröffentlichungsdatum 8. Januar 2004 (08.01.2004)

(10) Internationale Veröffentlichungsnummer WO 2004/003355 A1

(51) Internationale Patentklassifikation7:

F01N 11/00

PCT/EP2003/005271 (21) Internationales Aktenzeichen:

(22) Internationales Anmeldedatum:

20. Mai 2003 (20.05.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

102 28 659.0

27. Juni 2002 (27.06.2002)

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): DAIMLERCHRYSLER AG [DE/DE]; Epplestrasse 225, 70567 Stuttgart (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): BRAUN, Tillmann [DE/DE]; Mozartstrasse 19/1, 73663 Berglen (DE).
- (74) Anwälte: KOCHER, Klaus-Peter usw.; DaimlerChrysler AG, Intellectual Property Management, 70546 Stuttgart (DE).
- (81) Bestimmungsstaaten (national): JP, US.
- (84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Veröffentlicht:

- mit internationalem Recherchenbericht
- mit geänderten Ansprüchen

(15) of the exhaust gas pipe, said calculated value (T2*) being determined based on the heat-accumulating effect and/or flow effect of the effective purifying component (4). The inventive method applies to motor vehicles.

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: 1. Es wird ein Verfahren zur Überwachung einer Abgasanlage eines Kraftfahrzeugs mit einer Brennkraftmaschine (1) und mit einer Überwachungselektronik (7) vorgeschlagen, wobei an der Ausströmseite eines für die Aufnahme eines reinigungswirksamen Bauteils (4) vorgesehenen Abgasleitungsabschnitts (15) ein Temperatursensor (6) zur Messung einer ausströmseitigen Abgastemperatur angeordnet ist. 2. Erfindungsgemäß wird von der Überwachungselektronik (7) ein zeitlicher Verlauf der ausströmseitigen Abgastemperatur T2 mit einem zeitlichen Verlauf einer einströmseitigen Abgastemperatur T1 an der Einströmseite (13) des Abgasleitungsabschnitts (15) und/oder mit einem zeitlichen Verlauf eines errechneten Werts T2* für die Abgastemperatur an der Ausströmseite (14) des Abgasleitungsabschnitts (15) verglichen wird, wobei der errechnete Wert T2* anhand der wärmespeichernden und/oder strömungstechnischen Wirkung des reinigungswirksamen Bauteils (4) ermittelt. 3. Anwendung in Kraftfahrzeugen.

Verfahren zur Überwachung einer Abgasanlage eines Kraftfahrzeuges

Die vorliegende Erfindung betrifft ein Verfahren zur Überwachung einer Abgasanlage eines Kraftfahrzeugs mit einer Brennkraftmaschine und mit einer Überwachungselektronik mit den Merkmalen des Oberbegriffs des Anspruchs 1.

Aus der Offenlegungsschrift DE 100 13 893 A1 ist ein Verfahren zur Überwachung einer Abgasanlage eines Kraftfahrzeuges mit einer Brennkraftmaschine bekannt. Beurteilt wird bei diesem Verfahren die katalytische Aktivität eines in einem Abgasleitungsabschnitt angeordneten Katalysators als reinigungswirksames Bauteil. Die katalytische Aktivität wird über die Ermittlung der Anspringtemperatur der Kohlenmonoxidoxidationsreaktion beurteilt. Das Ablaufen der Kohlenmonoxidoxidationsreaktion wird durch entsprechende Sensoren, welche vor und hinter dem Katalysator angeordnet sind erfasst. Zusätzlich wird die Abgastemperatur hinter dem Katalysator gemessen, wozu ein Temperatursensor an der Ausströmseite des zur Aufnahme des Katalysators vorgesehenen Abgasleitungsabschnitts angeordnet ist. Von einer Überwachungselektronik wird die Differenz zwischen der Abgastemperatur hinter dem Katalysator und der Anspringtemperatur ermittelt. Auf der Basis dieses Ergebnisses und der sensorisch erfassten Kohlenmonoxidumsetzung wird die Aktivität des Katalysators beurteilt und auf diese Weise die Abgasanlage überwacht.

Aufgabe der Erfindung ist es demgegenüber, ein Verfahren anzugeben, welches eine allgemeinere Überwachung einer Abgasanlage ermöglicht.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.

Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass von der Überwachungselektronik ein zeitlicher Verlauf der ausströmseitigen Abgastemperatur T2 mit einem zeitlichen Verlauf einer einströmseitigen Abgastemperatur T1 an der Einströmseite des Abgasleitungsabschnitts und/oder mit einem zeitlichen Verlauf eines errechneten Wertes T2* für die Abgastemperatur an der Ausströmseite des Abgasleitungsabschnitts verglichen wird, wobei der errechnete Wert T2* anhand der wärmespeichernden und/oder strömungstechnischen Wirkung des reinigungswirksamen Bauteils ermittelt wird.

Mit dieser Vorgehensweise wird in vorteilhafter Weise die Erscheinung genutzt, dass ein in einem Abgasleitungsabschnitt eingebautes reinigungswirksames Bauteil die Abgastemperatur und deren zeitlichen Verlauf beeinflusst. Als reinigungswirksames Bauteil kommt hier in erster Linie ein Partikelfilter oder ein Abgaskatalysator in Betracht, von welchem die Abgastemperatur auch ohne das Auftreten von Reaktionswärmetönungen auf Grund seiner wärmespeichernden Wirkung beeinflusst wird. Als reinigungswirksames Bauteil kommt jedoch beispielsweise auch eine schaltbare Kühlschleife oder ein anderweitig, vorzugsweise wärmetechnisch passiv wirkendes Bauteil in Betracht. Treten wärmespeichernden Wirkungen nicht auf, so kann daraus beispielsweise auf das Fehlen des Bauteils geschlossen werden. Werden daher die Verläufe der Temperaturen an der Einströmseite und an der Ausströmseite des Abgasleitungsabschnittes ermittelt und auf geeignete Weise miteinander verglichen, so kann beurteilt werden, ob in diesem Abgasleitungsabschnitt ein reinigungswirksames Bauteil eingebaut ist. Das erfindungsgemäße Verfahren erlaubt es ferner, über einen geeigneten Vergleich

der Temperaturverläufe ein diesbezüglich ungewöhnliches Verhalten dahingehend zu deuten, dass in diesem Fall ein falsches Bauteil in dem Abgasleitungsabschnitt angeordnet ist. Desgleichen ermöglicht das erfindungsgemäße Verfahren auch eine Erkennung von Leckagen in dem zwischen Einströmseite und Ausströmseite liegenden Leitungsabschnitt auf Grund der strömungstechnischen Wirkung einer Leckage. Falls bei der Überwachung der Abgasanlage Unregelmäßigkeiten festgestellt werden, kann natürlich auf beliebige Weise, beispielsweise in Form eines Warnsignals, darüber informiert werden.

Der angesprochene Vergleich kann zwischen einem Verlauf der ausströmseitigen Temperatur T2 und einem Verlauf einer einströmseitigen Temperatur T1 durchgeführt werden. Es kann aber auch der Verlauf der ausströmseitigen Temperatur T2 mit einem Verlauf einer ausströmseitig zu erwartenden Temperatur T2* verglichen werden. Letzteres wird vorzugsweise unter Berücksichtigung wärmetechnischer und strömungstechnischer Aspekte sowie unter Berücksichtigung des zu erwartenden Verhaltens des reinigungswirksamen Bauteils und des aktuellen Betriebszustands des Kraftfahrzeuges modellgestützt oder kennfeldgestützt ermittelt. In ähnlicher Weise kann natürlich auch die einströmseitige Temperatur T1 und ihr Verlauf rechnerisch oder kennfeldgestützt ermittelt werden. Die ausströmseitige Temperatur T2 wird dagegen direkt mittels eines geeigneten Messfühlers an der Ausströmseite des Abgasleitungsabschnitts, d.h. innerhalb der Querschnittsfläche, welche den Abgasleitungsabschnitt ausströmseitig begrenzt, gemessen. Vorzugsweise werden die Zeitabschnitte, in welchen der Vergleich der Temperaturverläufe ausgewertet wird, unter Berücksichtigung zusätzlicher Kriterien ausgewählt.

In Ausgestaltung des Verfahrens werden die zeitliche Ableitungen dT1/dt und dT2/dt der einströmseitigen Temperatur T1 und der ausströmseitigen Temperatur T2, und die Differenz dT1/dt - dT2/dt der Ableitungen ermittelt und das Ergebnis bewertet. Durch Bildung der zeitlichen Ableitungen der Temperaturen kann

.

der Verlauf der Temperaturen besonders gut charakterisiert werden. Die Differenzbildung ist hingegen für einen Vergleich besonders gut geeignet.

In weiterer Ausgestaltung des Verfahrens wird von der Überwachungselektronik ein Signal erzeugt, welches auf das Fehlen des reinigungswirksamen Bauteils oder auf das Vorhandensein eines falschen Bauteils hinweist, wenn die Differenz dT1/dt - dT2/dt der Ableitungen innerhalb eines vorgegebenen Wertebereichs liegt. Grundlage für diese Ausgestaltung bildet die Erkenntnis, dass ein reinigungswirksames Bauteil in vielen Betriebssituationen als Wärmesenke oder als Wärmequelle in Erscheinung tritt. Hauptsächlich auf Grund seiner wärmekapazitive Wirkung macht sich die Anwesenheit eines reinigungswirksamen Bauteils durch eine mehr oder weniger große, positive oder negative Differenz dT1/dt - dT2/dt bemerkbar. Ist dies nicht in ausreichendem Maß zu beobachten, d.h. liegt die Differenz dT1/dt dT2/dt innerhalb eines durch zwei Grenzwerte vorgegebenen, vorzugsweise vergleichsweise kleinen, um Null liegenden, Wertebereichs, so kann daraus geschlossen werden, dass ein reinigungswirksames Bauteil in dem Abgasleitungsabschnitt nicht vorhanden ist. Dies wird dann durch die Erzeugung und Ausgabe eines entsprechenden Signals angezeigt. Analog hierzu kann eine entsprechende Abweichung von dem zu erwartenden Einfluss eines reinigungswirksamen Bauteils auf die Temperaturverläufe auch dahingehend interpretiert werden, dass ein falsches Bauteil eingebaut wurde, weil das richtige Bauteil eine Differenz außerhalb des vorgegebenen Wertebereichs ergeben hätte.

In weiterer Ausgestaltung des Verfahrens wird von der Überwachungselektronik ein Signal erzeugt, welches auf das Fehlen des reinigungswirksamen Bauteils oder auf das Vorhandensein eines falschen Bauteils hinweist, wenn die Differenz dT1/dt - dT2/dt der Ableitungen innerhalb eines vorgegebenen Wertebereichs liegt, und die zeitliche Ableitung dT1/dt der einströmseitigen

Temperatur T1 außerhalb eines vorgegebenen Wertebereichs liegt. Durch die Berücksichtigung der Änderungsgeschwindigkeit dT1/dt der Temperatur T1 an der Einströmseite des Abgasleitungsabschnitts bei der Auswertung der Differenz dT1/dt - dT2/dt wird die Dynamik des eingangsseitigen Temperaturverlaufs mit berücksichtigt. Da sich bei einer großen Dynamik des eingangsseitigen Temperaturverlaufs die wärmespeichernde Wirkung eines Bauteils in dem Abgasleitungsabschnitt besonders stark bemerkbar macht, wird damit auch eine besonders zuverlässige Beurteilung des Abgasleitungsabschnitts ermöglicht und somit die getroffene Aussage besonders zuverlässig. Durch die Berücksichtigung der Änderungsgeschwindigkeit dT1/dt der Temperatur T1 an der Einströmseite des Abgasleitungsabschnitts werden außerdem in vorteilhafter Weise Einflüsse von Wärmetönungen, welche vom reinigungswirksamen Bauteil erzeugt werden können, minimiert.

In weiterer Ausgestaltung des Verfahrens werden von der Überwachungselektronik die zeitlichen Ableitungen dT2/dt und dT2*/dt der ausströmseitigen Abgastemperatur T2 und des errechneten Werts T2*, und die Differenz dT2*/dt - dT2/dt der Ableitungen ermittelt. Es wird demnach die Änderungsgeschwindigkeit der Temperatur T2 an der Ausströmseite des Abgasleitungsabschnitts und die Änderungsgeschwindigkeit der dort zu erwartenden Temperatur T2* ermittelt und auf diese Weise der Verlauf der Temperaturen erfasst. Mittels Differenzbildung wird der Vergleich durchgeführt. Auf diese Weise kann ebenfalls beurteilt werden, ob ein reinigungswirksames Bauteil in dem Abgasleitungsabschnitt vorhanden ist, bzw. ob dort ein falsches Bauteil angeordnet ist.

In weiterer Ausgestaltung des Verfahrens wird von der Überwachungselektronik ein Signal erzeugt, welches auf das Fehlen des reinigungswirksamen Bauteils oder auf das Vorhandensein eines falschen Bauteils hinweist, wenn die Differenz dT2*/dt - dT2/dt der Ableitungen außerhalb eines vorgegebenen Wertebereichs liegt. Dies ist möglich, da bei

T/EP2003/005271

Anwesenheit eines reinigungswirksamen Bauteils an der Ausströmseite des Abgasleitungsabschnitts eine Temperatur T2 gemessen werden sollte, welche der dort zu erwartenden und rechnerisch ermittelten Temperatur T2* entspricht. Dies bedeutet, dass bei Anwesenheit des zu erwartenden Bauteils für die Differenz dT2*/dt - dT2/dt ein Wert innerhalb eines durch zwei vorgebbare Grenzwerte gegebenen Wertebereichs erwartet werden kann. Ist dies nicht der Fall, so kann davon ausgegangen werden, dass in dem Abgasleitungsabschnitt das dort vorgesehene Bauteil nicht vorhanden ist.

In weiterer Ausgestaltung des Verfahrens wird von der Überwachungselektronik die zeitliche Ableitung dT1/dt der einströmseitigen Abgastemperatur T1 ermittelt, und ein Signal erzeugt, welches auf das Fehlen des reinigungswirksamen Bauteils oder auf das Vorhandensein eines falschen Bauteils hinweist, wenn die Differenz dT2*/dt - dT2/dt der Ableitungen außerhalb eines vorgegebenen Wertebereichs liegt und die zeitliche Ableitung dT1/dt der einströmseitigen Temperatur außerhalb eines vorgebbaren Wertebereichs liegt. Die zusätzliche Einbeziehung der Änderungsgeschwindigkeit dT1/dt der einströmseitigen Temperatur T1 des Abgasleitungsabschnitts in den Vergleich hat den Vorteil, die Zuverlässigkeit der getroffenen Entscheidung zu verbessern.

Im Folgenden wird die Erfindung anhand von Zeichnungen und zugehörigen Beispielen näher erläutert. Dabei zeigen:

- Fig. 1 ein schematisches Blockbild einer Brennkraftmaschine mit einem in einer Abgasleitung angeordneten Katalysator als reinigungswirksames Bauteil,
- Fig. 2 ein Diagramm mit den zeitlichen Verläufen der vor und hinter einem Katalysator gemessenen Temperaturen T1 und T2 bei einem typischen Brennkraftmaschinenbetrieb,

- Fig. 3 ein Diagramm mit den zeitlichen Verläufen der vor und hinter einem Katalysator gemessenen Temperaturen T1 und T2 bei einem Brennkraftmaschinenbetrieb mit einem Lastwechsel von niedriger Last zu höherer Last,
- Fig. 4 ein Diagramm mit den zeitlichen Verläufen der zeitlichen Ableitungen dT1/dt und dT2/dt der vor und hinter einem Katalysator gemessenen Temperaturen T1 und T2 bei einem Brennkraftmaschinenbetrieb mit einem Lastwechsel von niedriger Last zu höherer Last,
- Fig. 5 ein Diagramm mit dem zeitlichen Verläufen der Differenz dT1/dt dT2/dt der zeitlichen Ableitungen dT1/dt und dT2/dt der vor und hinter einem Katalysator gemessenen Temperaturen T1 und T2 bei einem Brennkraftmaschinenbetrieb mit einem Lastwechsel von niedriger Last zu höherer Last,
- Fig. 6 ein Diagramm mit den zeitlichen Verläufen der vor und hinter einem Katalysator gemessenen Temperaturen T1 und T2 bei einem Brennkraftmaschinenbetrieb mit einem Lastwechsel von höherer Last zu niedriger Last,
- Fig. 7 ein Diagramm mit den zeitlichen Verläufen der zeitlichen Ableitungen dT1/dt und dT2/dt der vor und hinter einem Katalysator gemessenen Temperaturen T1 und T2 bei einem Brennkraftmaschinenbetrieb mit einem Lastwechsel von höherer Last zu niedriger Last,
 - Fig. 8 ein Diagramm mit dem zeitlichen Verläufen der Differenz dT1/dt dT2/dt der zeitlichen Ableitungen dT1/dt und dT2/dt der vor und hinter einem Katalysator gemessenen Temperaturen T1 und T2 bei einem Brennkraftmaschinenbetrieb mit einem Lastwechsel von höherer Last zu niedriger Last,

- Fig. 9 ein Ablaufdiagramm für eine bevorzugte Vorgehensweise bei der Durchführung des erfindungsgemäßen Verfahrens,
- Fig. 10 ein weiteres Ablaufdiagramm für eine weitere bevorzugte Vorgehensweise bei der Durchführung des erfindungsgemäßen Verfahrens.

Gemäß Fig. 1 wird einer hier beispielhaft vierzylindrig ausgeführten Brennkraftmaschine 1 Verbrennungsluft über eine Ansaugluftleitung 2 zugeführt. Das im Verbrennungsprozess erzeugte Abgas wird über eine Abgasleitung 3 einem reinigungswirksamen Bauteil 4 zugeführt. Das reinigungswirksame Bauteil 4 ist als Abgaskatalysator ausgeführt und in einem Abgasleitungsabschnitt 15 der Abgasleitung 3 angeordnet. Der Abgasleitungsabschnitt 15 weist eine mit 13 bezeichnete Einströmseite und eine mit 14 bezeichnete Ausströmseite auf. Im Querschnittsbereich der Einströmseite 13 ist ein Temperaturfühler 5 angeordnet. Im Querschnittsbereich der Ausströmseite 14 ist ein weiterer Temperaturfühler 6 angeordnet. Der, beispielsweise als Dieselmotor ausgeführten, Brennkraftmaschine 1 ist eine elektronische Steuer-/Regeleinrichtung 8 zugeordnet, welche den gesamten Motorbetrieb steuert bzw. regelt. Die Steuer-/Regeleinrichtung 8 verfügt über die üblichen Möglichkeiten moderner Motorsteuergeräte und weist hierfür insbesondere eine Recheneinheit, eine Speichereinheit und Ein-/Ausgabeeinheiten auf. Zur Realisierung der Steuer-/Regelfunktionen erhält die Steuer-/Regeleinrichtung 8 eine Vielzahl von Signalen über entsprechende Signalleitungen. Von diesen sind in der Fig. 1 nur die Signalleitungen 9 und 10 eingezeichnet. Von der Signalleitung 9 erhält die Steuer-/Regeleinrichtung 8 Informationen über den Betriebszustand des Motors 1, insbesondere Informationen über die Motordrehzahl und die Motorlast. Die Steuer-/Regeleinrichtung 8 steht über die bidirektionale Datenleitung 10 mit einer Überwachungselektronik 7 in Verbindung. Die Überwachungselektronik verfügt ebenfalls über eine Recheneinheit, mit welcher die über die Signalleitungen 11 und 12 übertragenen Messwerte der Temperaturfühler 5, 6 ausgewertet werden. Weitere zum Betrieb der

WO 2004/003355

Brennkraftmaschine 1 und der gesamten Abgasanlage eingesetzte Bauteile wie Kraftstoffzufuhrleitungen, Lambdasonden in der Abgasleitung 3 und dergl. sind aus Gründen der Übersichtlichkeit nicht in die Fig. 1 mit aufgenommen. In der Abgasleitung 3 können natürlich zusätzlich zum Katalysator 4 hier ebenfalls nicht dargestellte, weitere Komponenten zur Abgasreinigung angeordnet sein. Ferner kann selbstverständlich die Überwachungselektronik 7 mit der Steuer-/Regeleinrichtung 8 zu einer integrierten Baueinheit zusammengefasst sein.

In einer ersten Ausführungsform des erfindungsgemäßen Verfahren ermittelt die Überwachungselektronik 7 die Verläufe der von den Temperaturfühlern 5 und 6 erfassten, bezüglich des Abgasleitungsabschnitts 15 einströmseitigen und ausströmseitigen Abgastemperaturen T1 und T2.

Im Diagramm der Fig. 2 sind die Verhältnisse bei einem typischen Motorbetrieb verdeutlicht. Eingezeichnet sind die Verläufe der Temperaturen T1 und T2 während eines etwa 30-minütigen Zeitintervalls. Zum Zeitpunkt t₀ ändert sich der Motorbetrieb sprunghaft von einem niedrigen Lastpunkt zu einem höheren Lastpunkt. Als Folge hiervon steigt gleichzeitig die Temperatur des vom Motor 1 abgegebenen Abgases sprunghaft an. Es wird daher unmittelbar nach dem Lastwechsel das Auftreten eines sehr steilen Anstiegs der Temperatur T1 an der Einströmseite 13 des Abgasleitungsabschnitts 15, in welchem der Katalysator 4 angeordnet ist, festgestellt. Im Gegensatz hierzu wird an der Ausströmseite 14 ein vergleichsweise gedämpfter, geringerer Anstieg der Temperatur T2 festgestellt, welcher außerdem mit deutlicher Verzögerung auftritt. Im weiteren Verlauf treten weitere, weniger starke Lastwechsel während des Motorbetriebs auf. Diese machen sich ebenfalls durch spontane Änderungen der Temperatur T1 bemerkbar, während die Änderungen der Temperatur T2 demgegenüber gering sind.

Aus dem dargestellten Verhalten der Temperaturen T1 und T2 wird ersichtlich, dass mittels eines Vergleichs der Verläufe der

Temperaturen T1 und T2 beurteilt bzw. festgestellt werden kann, ob in dem Abgasleitungsabschnitt 15 ein reinigungswirksames Bauteil vorhanden ist. Dieses beeinflusst, hauptsächlich auf Grund seiner Wärmekapazität, die Temperatur des Abgases, so dass an der Ausströmseite 14 des Abgasleitungsabschnitts 15 ein anderer Temperaturverlauf auftritt, als an der Einströmseite 13. Ist dagegen im Abgasleitungsabschnitt kein reinigungswirksames Bauteil vorhanden, so sind die Verläufe der Temperaturen T1 und T2 nahezu identisch. Es ist klar, dass die Art des im Abgasleitungsabschnitt 15 angeordneten Bauteils den Verlauf der Temperatur T2 ebenfalls beeinflusst. Durch einen geeigneten Vergleich der Verläufe der Temperaturen T1 und T2 kann daher der Abgasleitungsabschnitt auch hinsichtlich der Art des zwischen Einströmseite 13 und Ausströmseite 14 angeordneten Bauteils beurteilt werden. Im Folgenden wird die erfindungsgemäße Vorgehensweise bei dem Vergleich der Temperaturverläufe näher erläutert.

Im Diagramm der Fig. 3 ist zu diesem Zweck der Verlauf der Temperaturen T1 und T2 bei einem Lastwechsel des Motors 1 von niedriger Last zu höherer Last eingezeichnet. Vor und nach dem Lastwechsel sind jeweils stationäre Verhältnisse gegeben. Wie dem Diagramm entnommen werden kann, steigt die Temperatur T1 nach dem beim Zeitpunkt to vorgenommenen Lastwechsel steil an, während die Temperatur T2 im Vergleich hierzu deutlich weniger steil ansteigt. In einem breiten Zeitintervall bleibt deshalb die Temperatur T2 deutlich hinter der Temperatur T1 zurück. Erfindungsgemäß werden die Verläufe der Temperaturen T1 und T2 miteinander verglichen, indem die zeitlichen Ableitungen dT1/dt und dT2/dt und die Differenz dT1/dt - dT2/dt der Ableitungen gebildet werden, was durch Ausführung der entsprechenden Rechenoperationen in der Überwachungselektronik 7 geleistet werden kann.

Die Diagramme der Fig. 4 und der Fig. 5 zeigen die sich ergebenden Verhältnisse. Das Diagramm der Fig. 4 zeigt die Verläufe der zeitlichen Ableitungen dT1/dt und dT2/dt der vor und hinter

dem Katalysator 4 gemessenen Temperaturen T1 und T2 bei einem Motorlastwechsel, welcher die diskutierten Temperaturverläufe der Fig. 3 zur Folge hat. Durch die Bildung der zeitlichen Ableitungen treten die Unterschiede im Verlauf der Temperaturen T1 und T2 noch deutlicher in Erscheinung, als im Diagramm der Fig. 3 dargestellt.

Insbesondere durch die im Diagramm der Fig. 5 dargestellten Differenz dT1/dt - dT2/dt der zeitlichen Ableitungen dT1/dt und dT2/dt werden die Unterschiede ersichtlich. Da kurz nach dem Lastwechsel die Temperatur T1 rasch ansteigt, die Temperatur T2 dagegen nur vergleichsweise langsam, tritt in diesem Zeitbereich ein mehr oder weniger hoher positiver Wert für die Differenz dT1/dt - dT2/dt auf (vergl. Fig. 5). Da die Temperatur T1 jedoch auch vergleichsweise rasch einem Beharrungswert entgegenstrebt, bzw. diesen erreicht, während die Temperatur T2 noch weiter ansteigt, durchläuft die Differenz dT1/dt - dT2/dt ein ausgeprägtes Maximum. Anschließend wechselt der Wert für die Differenz dT1/dt - dT2/dt das Vorzeichen und wird negativ. Im negativen Wertebereich wird ein Minimum durchschritten und mit der Annäherung an stationärer Temperaturverhältnisse nähert sich auch die Differenz dT1/dt - dT2/dt ausgehend von negativen Werten der Nulllinie an. Als Folge der Anwesenheit des Katalysators 4 werden demnach, insbesondere bei einem Lastwechsel, meist vergleichsweise große Werte für den Betrag der Differenz dT1/dt - dT2/dt erhalten. Dieser Effekt beruht hauptsächlich auf der wärmespeichernden Wirkung des Katalysators 4, wogegen Wärmetönungen auf Grund von katalytischen Reaktionen im Katalysator 4, insbesondere bei einem Lastsprung, eine geringe Auswirkung haben. Umgekehrt treten kleine Beträge für Differenz dT1/dt - dT2/dt insbesondere dann auf, wenn sich kein Bauteil in dem zu beurteilenden Leitungsabschnitt 12 befindet. Es kann daher ein Wertebereich für die Differenz dT1/dt - dT2/dt vorgegeben werden, innerhalb dessen ein Signal erzeugt wird, welches auf das Fehlen eines reiniqunqswirksamen Bauteils im Leitungsabschnitt 12 hinweist. Die

einen solchen Wertebereich begrenzenden Grenzwerte D1 und D2 sind im Diagramm der Fig. 5 eingezeichnet.

Vorzugsweise wird das Signal für ein fehlendes Bauteil nur dann erzeugt, wenn die Differenz dT1/dt - dT2/dt innerhalb des durch die Grenzwerte D1 und D2 vorgegebenen Wertebereichs liegt und gleichzeitig bestimmte Bedingungen, wie z.B. bestimmte Motorbetriebsbedingungen, vorliegen. Beispielsweise kann die Ausgabe eines Signals für das Fehlen eines reinigungswirksamen Bauteils unterdrückt werden, wenn eine vorbestimmbare Zeit stationäre Motorbetriebsbedingungen vorliegen, oder es kann die Höhe eines Lastwechsels mitberücksichtigt werden. Vorteilhaft ist ferner die Berücksichtigung des Abgasmassenstroms bei der Vorgabe der Grenzwerte D1 und D2.

Besonders bevorzugt wird zusätzlich der Verlauf der Temperatur T1 bzw. die zeitliche Ableitung dT1/dt mitberücksichtigt. Hierzu wird ein Wertebereich für die zeitliche Ableitung dT1/dt der Temperatur T1 an der Einströmseite 13 des Abgasleitungsabschnitts 15 vorgegeben. Dieser Wertebereich für die zeitliche Ableitung dT1/dt für die Temperatur T1 wird ebenfalls durch einen variabel vorgegebenen oberen Grenzwert und durch einen variabel vorgegebenen unteren Grenzwert definiert. Im Diagramm der Fig. 4 ist ein hier mit G1 bezeichneter oberer Grenzwert eingetragen. Der zugeordnete untere Grenzwert ist vorzugsweise negativ und deshalb nicht im Diagramm der Fig. 4 eingezeichnet. Mit den in den Diagrammen der Fig. 4 und 5 eingetragenen Grenzwerten G1, D1, D2 wird daher im Zeitbereich zwischen tx und ty (vergl. Fig. 4 und 5) in diesem Fall das Kriterium erfüllt, welches für die Erzeugung und Ausgabe eines Fehlersignals "fehlendes reinigungswirksames Bauteil" maßgebend ist. Dadurch, dass zusätzlich die Änderungsgeschwindigkeit dT1/dt der Abgastemperatur T1 vor dem Katalysator 4 berücksichtigt wird, kann eine Fehldiagnose auf Grund von Reaktionswärmeeinflüssen vermieden werden, da die Freisetzung von Reaktionswärme im Katalysator 4 keine Auswirkung auf die einströmseitige Temperatur T1 hat.

In Analogie zu Fig. 3 zeigt das Diagramm der Fig. 6 den Verlauf der Temperaturen T1 und T2 bei einem Lastwechsel des Motors 1 von höherer Last zu niedriger Last. Vor und nach dem Lastwechsel sind jeweils stationäre Verhältnisse gegeben. Wie dem Diagramm entnommen werden kann, fällt die Temperatur T1 nach dem beim Zeitpunkt to vorgenommenen Lastwechsel steil ab, weil als Folge der geringeren Motorlast vom Motor 1 ein Abgas mit geringerer Temperatur abgegeben wird. Die Temperatur T2 fällt im Vergleich hierzu deutlich weniger steil ab. Die Ursache für dieses Verhalten liegt hauptsächlich im Wärmespeichervermögen des Katalysators 4. Der auf eine vergleichsweise hohe Temperatur aufgeheizte Katalysator 4 gibt die gespeicherte Wärme an das ihn durchströmende, nunmehr kältere Abgas langsam ab. In einem breiten Zeitintervall ist deshalb die Temperatur T2 deutlich höher als die Temperatur T1. Erfindungsgemäß werden die Verläufe der Temperaturen T1 und T2 miteinander verglichen, indem die zeitlichen Ableitungen dT1/dt und dT2/dt und die Differenz dT1/dt - dT2/dt gebildet werden, was durch Ausführung der entsprechenden Rechenoperationen in der Überwachungselektronik 7 geleistet werden kann.

Die Diagramme der Fig. 7 und der Fig. 8 zeigen die sich ergebenden Verhältnisse. Das Diagramm der Fig. 7 zeigt die Verläufe der zeitlichen Ableitungen dT1/dt und dT2/dt der vor und hinter dem Katalysator 4 gemessenen Temperaturen T1 und T2 bei einem Motorlastwechsel, welcher die diskutierten Temperaturverläufe in Fig. 6 zur Folge hat. Durch die Bildung der zeitlichen Ableitungen treten die Unterschiede im Verlauf der Temperaturen T1 und T2 noch deutlicher in Erscheinung, als im Diagramm der Fig. 6 dargestellt. Insbesondere durch die im Diagramm der Fig. 8 dargestellten Differenz dT1/dt - dT2/dt der zeitlichen Ableitungen dT1/dt und dT2/dt werden die Unterschiede ersichtlich. Da kurz nach dem Lastwechsel die Temperatur T1 rasch absinkt, die Temperatur T2 dagegen nur vergleichsweise langsam, tritt in diesem Zeitbereich ein mehr oder weniger großer negativer Wert für die Differenz dT1/dt - dT2/dt auf (vergl. Fig. 8). Da die

Temperatur T1 jedoch auch vergleichsweise rasch einem Beharrungswert entgegenstrebt, bzw. diesen erreicht, während die Temperatur T2 noch weiter absinkt, durchläuft die Differenz dT1/dt - dT2/dt ein ausgeprägtes Minimum. Anschließend wechselt der Wert für die Differenz dT1/dt - dT2/dt das Vorzeichen und wird positiv. Im positiven Wertebereich wird ein Maximum durchschritten und mit der Annäherung an stationäre Temperaturverhältnisse nähert sich auch die Differenz dT1/dt - dT2/dt ausgehend von positiven Werten der Nulllinie an. Als Folge der Anwesenheit des Katalysators 4 werden demnach, insbesondere bei einem Lastwechsel, meist vergleichsweise große Werte für den Betrag der Differenz dT1/dt - dT2/dt erhalten. Umgekehrt treten kleine Beträge für Differenz dT1/dt - dT2/dt insbesondere dann auf, wenn sich kein Bauteil in dem zu beurteilenden Leitungsabschnitt 15 befindet. Es kann daher ein Wertebereich für die Differenz dT1/dt - dT2/dt vorgegeben werden, innerhalb dessen ein Signal erzeugt wird, welches auf das Fehlen eines reinigungswirksamen Bauteils im Leitungsabschnitt 15 hinweist. Ein durch die vorgebbaren Grenzwerte D1 und D2 definierter Wertebereich ist im Diagramm der Fig. 8 eingezeichnet.

In Analogie zu den oben beschriebenen Verhältnissen bei einem Lastwechsel von niedriger Last zu höherer Last können auch im umgekehrten Fall zusätzlich bestimmte Motorbetriebsparameter für die Ausgabe eines Signals, welches das Fehlen eines reinigungswirksamen Bauteils anzeigt, berücksichtigt werden. Die Grenzwerte G1, D1, D2 können auch in Abhängigkeit von den Motorbetriebsbedingungen oder in Abhängigkeit vom Abgasmassenstrom vorgegeben werden.

Besonders bevorzugt wird zusätzlich der Verlauf der Temperatur T1 bzw. die zeitliche Ableitung dT1/dt mit berücksichtigt. Hierzu wird ein Wertebereich für die zeitliche Ableitung dT1/dt für die Temperatur T1 an der Einströmseite 13 des Abgasleitungsabschnitts 15 vorgegeben. Der den Wertebereich für die zeitliche Ableitung dT1/dt der Temperatur T1 begrenzende untere Grenzwert G2 ist im Diagramm der Fig. 7 eingetragen. Mit den in

den Diagrammen der Fig. 7 und 8 eingetragenen Grenzwerten Gl, D1, D2 wird daher im Zeitbereich zwischen t_x und t_y (vergl. Fig. 7 und 8) ebenfalls das Kriterium erfüllt, welches für die Erzeugung und Ausgabe eines Fehlersignals "fehlendes reinigungswirksames Bauteil" maßgebend ist.

Der Verfahrensablauf für die geschilderte bevorzugte Vorgehensweise ist im Ablaufdiagramm der Fig. 9 wiedergegeben. Gemäß diesem Ablaufdiagramm wird das Verfahren durch Setzen eines Zählers i auf den Anfangswert Null gestartet. Im nächsten Verfahrensschritt 91 bzw. 92 werden von der Überwachungselektronik 7 in einem Zeitintervall mit wählbarer Dauer die Temperaturen T1 und T2 sowie die aktuelle Systemzeit t eingelesen und die Werte für die zeitlichen Ableitungen dT1/dt und dT2/dt ermittelt. Aus diesen Werten wird im Block 93 die Differenz $\Delta dT/dt = dT1/dt - dT2/dt$ ermittelt. Im Block 94 wird abgefragt, ob die Änderungsgeschwindigkeit dT1/dt der Temperatur T1 im Einströmbereich 13 des Leitungsabschnitts 15 den vorgebbaren Grenzwert G1 überschreitet, d.h. ob ein entsprechend steiler Temperaturanstieg vorhanden ist. Ist dies der Fall, so wird im Block 96 abgefragt, ob die Differenz \(\Delta dT \) den vorgebbaren Grenzwert D1 überschreitet. Ist dies ebenfalls der Fall, so wird kein Fehler erkannt und es wird zum Anfang zurückgegangen.

Ergibt die Abfrage des Blocks 94, dass die Änderungsgeschwindigkeit dT1/dt der Temperatur T1 den vorgebbaren Grenzwert G1 nicht überschreitet, so wird weiter im Block 95 abgefragt, ob sie den vorgebbaren Grenzwert G2 unterschreitet. Wird dies ebenso wie beim Block 94 mit "nein" beantwortet, so liegen zumindest annähernd stationäre Verhältnisse vor. Eine Beurteilung des Abgasleitungsabschnitts 15 hinsichtlich der Anwesenheit eines reinigungswirksamen Bauteils wird dann nicht vorgenommen und es wird an den Anfang der Routine zurückgesprungen. Ergibt die Abfrage im Block 95, dass die Änderungsgeschwindigkeit dT1/dt der Temperatur T1 den Grenzwert G2 unterschreitet, so wird weiter im Block 97 abgefragt, ob die Differenz ΔdT/dt den vorgebbaren Grenzwert D2 unterschreitet. Ist dies ebenfalls

der Fall, so wird kein Fehler erkannt und es wird zum Anfang zurückgegangen.

Werden die Abfragen im Block 96 bzw. im Block 97 mit "nein" beantwortet, so liegt eine Anomalie vor, da eine Differenz zu erwarten war, welche außerhalb des durch D1 und D2 begrenzten Wertebereichs liegt. Um einen Zufallseinfluss auszuschalten, wird der Zähler i inkrementiert (Block 98) und abgefragt, ob ein Grenzwert i_{Grenz} bereits erreicht wurde (Block 99), d.h. ob das auf die Anomalie hindeutende Ergebnis hinreichend oft aufgetreten ist. Ist dies der Fall, so wird das Ende der Routine mit dem Block 100 erreicht, und die Fehlermeldung "fehlendes reinigungswirksames Bauteil" oder "falsches Bauteil" wird ausgegeben.

Es versteht sich, dass die Temperatur T1 nicht notwendigerweise durch Messung ermittelt werden muss. Vielmehr kann der an der Einströmseite 13 des zu beurteilenden Abgasleitungsabschnitts 15 vorhandene Temperaturwert bzw. Temperaturverlauf durch Modellbildung oder auf der Basis von Kennfeldern für den Motorbetrieb oder auf andere Weise rechnerisch ermittelt werden. Es versteht sich ferner, dass auch bei einer solchen Vorgehensweise beurteilt werden kann, ob ein artfremdes Bauteil im Abgasleitungsabschnitt 15 angeordnet ist. Dies ist dann der Fall, wenn bei instationären Motorbetriebsbedingungen das Bauteil als größere oder kleinere Wärmequelle oder Wärmesenke in Erscheinung tritt, als das im Leitungsabschnitt 15 vorgesehene Bauteil. Um eine diesbezüglich ausreichende Beurteilungszuverlässigkeit zu erzielen, können beispielsweise die Grenzwerte D1, D2, G1, G2 angepasst werden. Beispielsweise kann der durch die Grenzwerte G1, G2 bestimmte Bereich vergrößert werden.

In einer zweiten Ausführungsform des erfindungsgemäßen Verfahrens wird von der Überwachungselektronik 7 ein errechneter Wert T2* für die Temperatur an der Ausströmseite 14 des zu beurteilenden Abgasleitungsabschnitts 15 zur Verfügung gestellt. In Abhängigkeit von den Betriebsbedingungen des Motors ergibt sich

somit ein rechnerisch ermittelter Verlauf für die Temperatur T2*, welcher mit dem Verlauf der an der Ausströmseite des Abgasleitungsabschnitts 12 gemessenen Temperatur T2 verglichen wird. Analog zur ersten Ausführungsform des erfindungsgemäßen Verfahrens werden auch hier die zeitlichen Ableitungen der Temperaturen und die Differenz der erhaltenen Werte gebildet. Der ermittelte Wert dT2*/dt – dT2/dT wird nun auf Plausibilität geprüft. Die Prüfung kann auch hier an das Vorhandensein motorischer, strömungstechnischer oder wärme-speichernder Kriterien geknüpft werden. Die Plausibilität ist in diesem Fall dann gegeben, wenn die Differenz dT2*/dt – dT2/dT innerhalb eines durch wahlfrei vorgegebene Grenzwerte D1 und D2 bestimmten Wertebereichs liegt. In diesem Fall wird das normale Verhalten des vorgesehenen Bauteils festgestellt.

Eine vorteilhafte Vorgehensweise wird durch das Ablaufdiagramm der Fig. 10 wiedergegeben. Im Block 101 werden nunmehr unter Verwendung verschiedener Eingangsdaten wie T1 (einströmseitige Temperatur), t (Systemzeit), mabg (Abgasmassenstrom) ein zu erwartender Wert T2* für die ausströmseitige Temperatur T2 sowie dessen zeitliche Ableitung dT2*/dt ermittelt. Im Block 102 wird auf der Basis des vom Messfühler 6 gelieferten Messwertes und der Systemzeit t die Änderungsgeschwindigkeit dT2/dt der Temperatur T2 ermittelt. Im Block 103 wird die Differenz $\Delta dT/dt = dT2*/dt - dT2/dt$ aus diesen Werten ermittelt. In den Blöcken 104 bzw. 105 wird abgefragt, ob diese Differenz oberhalb eines oberen Grenzwertes D1, bzw. unterhalb eines unteren Grenzwertes D2 liegt. Ist dies in beiden Fällen nicht gegeben, so wird der Abgasleitungsabschnitt 15 als ordnungsgemäß befunden, da keine Abweichung vom erwartungsgemäßen, normalen Verhalten vorhanden ist. Daher wird in diesem Fall zum Anfang der Routine zurückgesprungen. Wird jedoch eine der Abfragen mit "ja" beantwortet, so wird eine Anomalie erkannt, da der Verlauf der Temperatur T2 in vergleichsweise großem Maß vom zu erwartenden, rechnerischen Verlauf abweicht. In diesem Fall wird der Zähler i im Block 106 inkrementiert und danach abgefragt, ob ein Grenzwert i Grenz bereits erreicht wurde (Block 107), d.h. ob

das auf die Anomalie hindeutende Ergebnis hinreichend oft aufgetreten ist. Ist dies der Fall, so wird das Ende der Routine mit dem Block 108 erreicht, und die Fehlermeldung "fehlendes oder falsches Bauteil" wird ausgegeben.

Besonders vorteilhaft ist die zusätzliche Berücksichtigung eines bestimmten Wertebereichs für die Änderungsgeschwindigkeit dT1/dt der Temperatur T1. Das Fehlen eines reinigungswirksamen Bauteils oder die Anwesenheit eines falschen Bauteils wird dann erkannt, wenn der Wert für dT1/dt außerhalb eines mittels wahlfrei vorgegebenen Grenzwerten festlegbaren Wertebereichs liegt und gleichzeitig die Differenz dT2*/dt - dT2/dT ebenfalls außerhalb eines durch wahlfrei vorgebbare Grenzwerte festlegbaren Wertebereichs liegt. Es wird also zusätzlich abgefragt und berücksichtigt, ob eine hinreichend steile Temperaturänderung an der Einströmseite 13 des zu beurteilenden Abgasleitungsabschnitts 15 vorliegt. Werden diese Grenzwerte wieder mit G1, G2 und D1, D2 bezeichnet, so kann in Analogie zu der im Ablaufdiagramm der Fig. 9 im Sinne des Ablaufdiagramms der Fig. 10 vorgegangen werden.

Es versteht sich, dass die beschriebenen Vorgehensweise auch zur Überwachung mehrerer Abgasleitungsabschnitte der gesamten Abgasanlage angewendet werden kann. Die Abgasleitungsabschnitte können parallel oder seriell angeordnet sein. Im Fall einer seriellen Anordnung kann der Temperaturverlauf an der Ausströmseite eines Leitungsabschnitts auch als Temperaturverlauf an der Einströmseite des nachfolgenden Leitungsabschnitts betrachtet werden.

Patentansprüche

- 1. Verfahren zur Überwachung einer Abgasanlage eines Kraftfahrzeugs mit einer Brennkraftmaschine (1) und mit einer Überwachungselektronik (7), wobei an der Ausströmseite (14) eines für die Aufnahme eines reinigungswirksamen Bauteils (4) vorgesehenen Abgasleitungsabschnitts (15) ein Temperatursensor (6) zur Messung einer ausströmseitigen Abgastemperatur (T2) angeordnet ist, dadurch gekennzeichnet, dass von der Überwachungselektronik (7) ein zeitlicher Verlauf der ausströmseitigen Abgastemperatur (T2) mit einem zeitlichen Verlauf einer einströmseitigen Abgastemperatur (T1) an der Einströmseite (13) des Abgasleitungsabschnitts (15) und/oder mit einem zeitlichen Verlauf eines errechneten Werts (T2*) für die Abgastemperatur an der Ausströmseite (14) des Abgasleitungsabschnitts (15) verglichen wird, wobei der errechnete Wert (T2*) anhand der wärmespeichernden und/oder strömungstechnischen Wirkung des reinigungswirksamen Bauteils (4) ermittelt wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass von der Überwachungselektronik (7) die zeitlichen Ableitungen (dT1/dt) und (dT2/dt) der einströmseitigen Abgastemperatur (T1) und der ausströmseitigen Abgastemperatur (T2), und die Differenz (dT1/dt - dT2/dt) der Ableitungen ermittelt werden.

- 3. Verfahren nach Anspruch 2,
 dadurch gekennzeichnet, dass
 von der Überwachungselektronik (7) ein Signal erzeugt wird,
 welches auf das Fehlen des reinigungswirksamen Bauteils (4)
 oder auf das Vorhandensein eines falschen Bauteils hinweist,
 wenn die Differenz (dT1/dt dT2/dt) der Ableitungen
 innerhalb eines vorgegebenen Wertebereichs liegt.
- 4. Verfahren nach Anspruch 2,
 dadurch gekennzeichnet, dass
 von der Überwachungselektronik (7) ein Signal erzeugt wird,
 welches auf das Fehlen des reinigungswirksamen Bauteils(4)
 oder auf das Vorhandensein eines falschen Bauteils hinweist,
 wenn die Differenz (dT1/dt dT2/dt) der Ableitungen
 innerhalb eines vorgegebenen Wertebereichs liegt und die
 zeitliche Ableitung (dT1/dt) der einströmseitigen
 Abgastemperatur (T1) außerhalb eines vorgegebenen
 Wertebereichs liegt.
- 5. Verfahren nach Anspruch 1,
 dadurch gekennzeichnet, dass
 von der Überwachungselektronik (7) die zeitlichen
 Ableitungen (dT2/dt) und (dT2*/dt) der ausströmseitigen
 Abgastemperatur (T2) und der errechneten Temperatur (T2*),
 und die Differenz (dT2*/dt dT2/dt) der Ableitungen
 ermittelt werden.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass von der Überwachungselektronik (7) ein Signal erzeugt wird, welches auf das Fehlen des reinigungswirksamen Bauteils (4) oder auf das Vorhandensein eines falschen Bauteils hinweist, wenn die Differenz (dT2*/dt - dT2/dt) der Ableitungen außerhalb eines vorgegebenen Wertebereichs liegt.

7. Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass
von der Überwachungselektronik (7) die zeitliche Ableitung
(dT1/dt) der einströmseitigen Abgastemperatur (T1) ermittelt
wird und ein Signal erzeugt wird, welches auf das Fehlen des
reinigungswirksamen Bauteils (4) oder auf das Vorhandensein
eines falschen Bauteils hinweist, wenn die Differenz
(dT2*/dt - dT2/dt) der Ableitungen außerhalb eines
vorgegebenen Wertebereichs liegt und die zeitliche Ableitung
(dT1/dt) der einströmseitigen Abgastemperatur (T1) außerhalb
eines vorgegebenen Wertebereichs liegt.

GEÄNDERTE ANSPRÜCHE

[beim Internationalen Büro am 16 Oktober 2003 (16.10.03) eingegangen; ursprüngliche Ansprüche 1-7 durch geänderte Ansprüche 1-9 ersetzt (3 Seiten)]

- 1. Verfahren zur Überwachung einer Abgasanlage eines Kraftfahrzeugs mit einer Brennkraftmaschine (1) und mit einer Überwachungselektronik (7), wobei an der Ausströmseite (14)
 eines für die Aufnahme eines reinigungswirksamen Bauteils
 (4) vorgesehenen Abgasleitungsabschnitts (15) ein Temperatursensor (6) zur Messung einer ausströmseitigen Abgastemperatur (T2) angeordnet ist und von der Überwachungselektronik
 (7) ein zeitlicher Verlauf der ausströmseitigen Abgastemperatur (T2) mit einem zeitlichen Verlauf einer einströmseitigen Abgastemperatur (T1) an der Einströmseite (13) des Abgasleitungsabschnitts (15) verglichen wird,
 d a d u r c h g e k e n n z e i c h n e t , d a s s
 der Vergleich die Bildung einer zeitlichen Ableitung
 umfasst.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass von der Überwachungselektronik (7) die zeitlichen Ableitungen (dT1/dt) und (dT2/dt) der einströmseitigen Abgastemperatur (T1) und der ausströmseitigen Abgastemperatur (T2), und die Differenz (dT1/dt - dT2/dt) der Ableitungen ermittelt werden.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass von der Überwachungselektronik (7) ein Signal erzeugt wird, welches auf das Fehlen des reinigungswirksamen Bauteils (4) oder auf das Vorhandensein eines falschen Bauteils hinweist,

wenn die Differenz (dT1/dt - dT2/dt) der Ableitungen innerhalb eines vorgegebenen Wertebereichs liegt.

- 4. Verfahren nach Anspruch 2,
 dadurch gekennzeichnet, dass
 von der Überwachungselektronik (7) ein Signal erzeugt wird,
 welches auf das Fehlen des reinigungswirksamen Bauteils(4)
 oder auf das Vorhandensein eines falschen Bauteils hinweist,
 wenn die Differenz (dT1/dt dT2/dt) der Ableitungen innerhalb eines vorgegebenen Wertebereichs liegt und die zeitliche Ableitung (dT1/dt) der einströmseitigen Abgastemperatur
 (T1) außerhalb eines vorgegebenen Wertebereichs liegt.
- 5. Verfahren zur Überwachung einer Abgasanlage eines Kraftfahrzeugs mit einer Brennkraftmaschine (1) und mit einer Überwachungselektronik (7), wobei an der Ausströmseite (14)
 eines für die Aufnahme eines reinigungswirksamen Bauteils
 (4) vorgesehenen Abgasleitungsabschnitts (15) ein Temperatursensor (6) zur Messung einer ausströmseitigen Abgastemperatur (T2) angeordnet ist,
 dadurch gekennzeichnet, dass
 von der Überwachungselektronik (7) ein zeitlicher Verlauf
 der ausströmseitigen Abgastemperatur (T2) mit einem zeitlichen Verlauf eines errechneten Werts (T2*) für die
 Abgastemperatur an der Ausströmseite (14) des Abgasleitungsabschnitts (15) verglichen wird.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der errechnete Wert (T2*) anhand der wärmespeichernden und/oder strömungstechnischen Wirkung des reinigungswirksamen Bauteils (4) ermittelt wird.

- 7. Verfahren nach Anspruch 5 oder 6,
 dadurch gekennzeichnet, dass
 von der Überwachungselektronik (7) die zeitlichen Ableitungen (dT2/dt) und (dT2*/dt) der ausströmseitigen Abgastemperatur (T2) und der errechneten Temperatur (T2*), und die
 Differenz (dT2*/dt dT2/dt) der Ableitungen ermittelt
 werden.
- 8. Verfahren nach Anspruch 7,
 dadurch gekennzeichnet, dass
 von der Überwachungselektronik (7) ein Signal erzeugt wird,
 welches auf das Fehlen des reinigungswirksamen Bauteils (4)
 oder auf das Vorhandensein eines falschen Bauteils hinweist,
 wenn die Differenz (dT2*/dt dT2/dt) der Ableitungen außerhalb eines vorgegebenen Wertebereichs liegt.
- 9. Verfahren nach Anspruch 1 und 5,
 dadurch gekennzeichnet, dass
 von der Überwachungselektronik (7) die zeitlichen Ableitungen (dT1/dt) und (dT2/dt) der einströmseitigen Abgastemperatur (T1) und der ausströmseitigen Abgastemperatur (T2) sowie die zeitliche Ableitung (dT2*/dt) des errechneten Werts (T2*) für die Abgastemperatur an der Ausströmseite (14) des Abgasleitungsabschnitts (15) ermittelt werden und ein Signal erzeugt wird, welches auf das Fehlen des reinigungswirksamen Bauteils (4) oder auf das Vorhandensein eines falschen Bauteils hinweist, wenn die Differenz (dT2*/dt dT2/dt) der Ableitungen außerhalb eines vorgegebenen Wertebereichs liegt und die zeitliche Ableitung (dT1/dt) der einströmseitigen Abgastemperatur (T1) außerhalb eines vorgegebenen Wertebereichs liegt.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

5/6

Fig. 9

6/6

Fig. 10

A. CLASSIF IPC 7	FICATION OF SUBJECT MATTER F01N11/00		
	International Patent Classification (IPC) or to both national classification	ation and IPC	
B. FIELDS :	SEARCHED cumentation searched (classification system followed by classification	on symbols)	
IPC 7	F01N		
		had a see inchested in the fields are	
Documentati	ion searched other than minimum documentation to the extent that so	uch documents are included. In the helds sea	raied
Electronic da	ata base consulted during the international search (name of data bas	se and, where practical, search terms used)	
1	ta, PAJ, EPO-Internal		
"	ou, 1110, 2110 211100111101		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the re-	evant passages	neisvailt to Gaint No.
x	EP 0 442 648 A (LUCAS IND PLC)		1
	21 August 1991 (1991-08-21) abstract; figures		
			•
X	US 6 357 225 B1 (TANAKA HIROSHI) 19 March 2002 (2002-03-19)		1
Α	claim 1; figures		2
A	US 5 610 844 A (BRUECK ROLF ET	AL)	1,2
	11 March 1997 (1997-03-11) column 7, line 5 - line 20; figu	res 1.2	
ł			
A	DE 42 27 207 A (EMITEC EMISSIONS 24 February 1994 (1994-02-24)	(ECHNIK)	
A	DE 100 13 893 A (DMC2 DEGUSSA ME	TALS	
	CATALYSTS) 27 September 2001 (20)	01-09-27)	
	cited in the application		
Furl	ther documents are listed in the $$ continuation of box C.	Patent family members are listed	in annex.
° Special ca	ategories of cited documents :	"T" later document published after the inte or priority date and not in conflict with	rnational filing date the application but
consi	nent defining the general state of the art which is not dered to be of particular relevance	cited to understand the principle or the invention	eory underlying the
filing		"X" document of particular relevance; the c cannot be considered novel or cannot involve an inventive step when the do	be considered to
l which	ent which may throw doubts on priority claim(s) or n is cited to establish the publication date of another on or other special reason (as specified)	"Y" document of particular relevance; the c	stairmed invention ventive step when the
O docum other	nent referring to an oral disclosure, use, exhibition or means	document is combined with one or moments, such combination being obvious in the art.	ore other such docu-
P docum	nent published prior to the international filing date but than the priority date claimed	*&* document member of the same patent	
Date of the	e actual completion of the international search	Date of mailing of the international se	arch report
1	10 September 2003	16/09/2003	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.	Sideris, M	
ı	Fax: (+31-70) 340-3016	3140113, 11	

ir ,		plication No	 	_
PCT	/ET	03/05271		

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 0442648	A	21-08-1991	CA	2036293 A1	15-08-1991
LI 0442040	••		DE	69112859 D1	19-10-1995
			DE	69112859 T2	15-02-1996
			EP	0442648 A2	21-08-1991
			JΡ	4219412 A	10-08-1992
			US	5177463 A	05-01-1993
 US 6357225	 B1	19-03-2002	JP	11093645 A	06-04-1999
03 035/225	51	19 00 2002	ÜS	6158212 A	12-12-2000
us 5610844	 A	11-03-1997	DE	4227207 A1	24-02-1994
03 3010044	^	11 00 1337	DE	4319924 A1	22-12-1994
			DE	59307823 D1	22-01-1998
			WO	9404800 A1	03-03-1994
			EP	0655104 A1	31-05-1995
			ES	2112525 T3	01-04-1998
			JP	2851433 B2	27-01-1999
				7509551 T	19-10-1995
			JP	268751 B1	16-10-2000
			KR	5751602 A	12-05-1998
			US 		
DE 4227207	Α	24-02-1994	DE	4227207 A1	24-02-1994
55 (111)			DE	59307823 D1	22-01-1998
			WO	9404800 A1	03-03-1994
			EP	0655104 A1	31-05-1995
			ES	2112525 T3	01-04-1998
			JP	2851433 B2	27-01-1999
			ĴΡ	7509551 T	19-10-1995
			KR	268751 B1	16-10-2000
			ÜS	5610844 A	11-03-1997
			US	5751602 A	12-05-1998
DE 10013893	A	27-09-2001	DE	10013893 A1	27-09-2001
AF 10013033	^	_, J, _,	AT	244816 T	15-07-2003
			AU	2809401 A	27-09-200
			BR	0101110 A	06-11-2001
			CA	2341065 A1	21-09-2001
			CN	1314544 A	26-09-200
			CZ	20010882 A3	14-11-200
			DE	50100354 D1	14-08-200
				1136671 A1	26-09-200
			EP		07-12-200
			JP	2001336415 A	24-09-200
			PL	346557 A1	
			US	2001033815 A1	25-10-200
			ZA	200102335 A	21-09-200

A.	KLA	SSIFIZIERUNG	DES	ANME	DUNGSO	EGENSTAN	DES
Ť	οŸ	7 F01N1	l 1 /(ገበ			

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

IPK 7 FO1N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

WPI Data, PAJ, EPO-Internal

(ategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
(EP 0 442 648 A (LUCAS IND PLC) 21. August 1991 (1991-08-21) Zusammenfassung; Abbildungen	1
(US 6 357 225 B1 (TANAKA HIROSHI) 19. März 2002 (2002-03-19)	1
\	Anspruch 1; Abbildungen	2
1	US 5 610 844 A (BRUECK ROLF ET AL) 11. Mārz 1997 (1997-03-11) Spalte 7, Zeile 5 - Zeile 20; Abbildungen 1,2	1,2
4	DE 42 27 207 A (EMITEC EMISSIONSTECHNIK) 24. Februar 1994 (1994-02-24)	
	-/	

T	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen
	entnehmen

X Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen
- "A" Veröffentlichung, die den altgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung,
- eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
 dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundellegenden Prinzips oder der ihr zugrundellegenden Theorie angegeben ist
- "X' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkelt beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Absendedatum des internationalen Recherchenberichts

Datum des Abschlusses der internationalen Recherche

10. September 2003

Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NI – 2280 HV Rijswijk

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016

16/09/2003

Bevollmächtigter Bediensteter

Sideris, M

(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
ategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
DE 100 13 893 A (DMC2 DEGUSSA METALS CATALYSTS) 27. September 2001 (2001-09-27) in der Anmeldung erwähnt	

tot denzeichen
PCT/E1 03/05271

Im Recherchenbericht ngeführtes Patentdokument	-	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0442648	A	21-08-1991	CA	2036293 A1	15-08-1991
21 0112010	• •		DE	69112859 D1	19-10-1995
			DE	69112859 T2	15-02-1996
			EP	0442648 A2	21-08-1991
			ĴΡ	4219412 A	10-08-1992
			ÜS	5177463 A	05-01-1993
US 6357225	 В1	19-03-2002	JP	11093645 A	06-04-1999
00 0007110		20 00 000	US	6158212 A	12-12-2000
US 5610844	Α	 11-03-1997	DE	4227207 A1	24-02-1994
55 5515511	••		DE	4319924 A1	22-12-1994
			DE	59307823 D1	22-01-1998
			WO	9404800 A1	03-03-1994
			EP	0655104 A1	31-05-1995
			ES.	2112525 T3	01-04-1998
			JP	2851433 B2	27-01-1999
			JP	7509551 T	19-10-1995
			KR	268751 B1	16-10-2000
			US	5751602 A	12-05-1998
DE 4227207		24-02-1994	DE	4227207 A1	24-02-1994
DE 422/20/	^	24 02 1334	DE	59307823 D1	22-01-1998
			WO	9404800 A1	03-03-1994
			EP	0655104 A1	31-05-1995
			ES	2112525 T3	01-04-1998
			JP	2851433 B2	27-01-1999
				7509551 T	19-10-1995
			JP	268751 B1	16-10-2000
			KR		11-03-1997
			US	5610844 A 5751602 A	12-05-1998
			US		
DE 10013893	Α	27-09-2001	DE	10013893 A1	27-09-2001
			ΑT	244816 T	15-07-2003
			AU	2809401 A	27-09-2001
			BR	0101110 A	06-11-2001
			CA	2341065 A1	21-09-2001
			CN	1314544 A	26-09-2001
			CZ	20010882 A3	14-11-2001
			DE	50100354 D1	14-08-2003
			EP	1136671 A1	26-09-2001
			ĴΡ	2001336415 A	07-12-2001
			PL	346557 A1	24-09-2001
			บร	2001033815 A1	25-10-2001
			ZA	200102335 A	21-09-2001