(Clusterizare ierarhică aglomerativă: exemplificare pe date din \mathbb{R}^2 , folosind tipurile de similaritate "single-linkage") și "average-linkage")

Considerăm setul de date din figura

a. Realizaţi clusterizarea ierarhică a datelor în maniera bottom-up, folosind similaritate de tip "single-linkage" şi distanţa euclidiană între

 Realizaţi clusterizarea ierarhică a datelor, folosind de această dată similaritate de tip "average-linkage".

alăturat sunt listate distanțele dintre perechile de instanțe date mai sus. calculelor, în tabelul Pentru uşurinţa

J	I	H	G	F	E	D	C	B	A	
9.43	9.22	8.06	7.81	5.83	5.10	3.00	2.00	1.00	0.00	A
8.60	8.49	7.21	7.07	5.00	4.12	2.00	1.00	0.00	1.00	В
7.81	7.81	6.40	6.40	4.24	3.16	1.00	0.00	1.00	2.00	C
7.07	7.21	5.66	5.83	3.61	2.24	0.00	1.00	2.00	3.00	D
5.00	5.39	3.61	4.12	2.00	0.00	2.24	3.16	4.12	5.10	E
3.61	3.61	2.24	2.24	0.00	2.00	3.61	4.24	5.00	5.83	F
2.00	1.41	1.41	0.00	2.24	4.12	5.83	6.40	7.07	7.81	G
1.41	2.00	0.00	1.41	2.24)	3.61	5.66	6.40	7.21	8.06	Н
1.41	0.00	2.00	1.41	3.61	5.39	7.21	7.81	8.49	9.22	I
0.00	1.41	1.41	2.00	3.61	5.00	7.07	7.81	8.60	9.43	J
	-	-		A	× Bi		-			

Observație (1): Dacă la o iterație a algoritmului de clusterizare "distanțele" (adică similaritățile) dintre două perechi de clustere au aceeași valoare, prioritatea la alcătuirea noului cluster este dictată de ordinea alfabetică.

Observație (2): La construcția dendrogramelor, înălțimea [nodului rădăcină] pentru fiecare cluster C_i va fi dată de distanța (adică măsura de similaritate) dintre clusterele C_j și C_k din care a fost construit clusterul C_i .

Veți construi cele două dendrograme pornind de la reprezentările de mai jos.

Dendrograma single-linkage

0

Dendrograma average-linkage

d (4BCD, EFGF) = ... = 6,3908

c. La curs am afirmat că una dintre metodele de inițializare pentru algoritmul K-means este următoarea: clusterele inițiale sunt cele K clustere de la vârful dendrogramei (engl., top clustere) obținute cu ajutorul unei metode de clusterizare ierarhică.

Executați algoritmul K-means pe datele din enunț, pentru flecare dintre cele două variante de inițializare, folosind rezultatele de la punctele precedente. (Veți lucra cu K=2.) Folosiți pentru aceasta reprezentările de mai jos. Indicați la flecare iterație coordonatele centroizilor și componența flecărui cluster.

Setul de date din acest exercițiu este oarecumva particular. Judecând pe un caz [mai] general, care dintre cele două tipuri de funcții de similaritate folosite la punctele a și b vi se pare mai adecvată pentru pasul de inițializare a algoritmului K-means.?

d. Considerând cele două clustere de "top" obținute de către algoritmul de clusterizare ierarhică care foloseşte similaritate de tip "single-linkage" ca fiind nişte clase, trasați pe desenul din stânga de mai jos, separatorul decizional produs de algoritmul 1-NN.

K-means cu clusterele inițiale cf. clusterizării ierarhice single-linkage

ytonospia 2

K-means cu clusterele inițiale cf. clusterizării ierarhice average-linkage

$$y_{1}(x) = \frac{1}{2} \frac$$

Chistopele me se mai selventoa, centraisi nomena la fel, algorithmal s-a stabilizad: