Example 2.9b. To illustrate Theorem 2.9c, let

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}.$$

Then

$$\mathbf{AB} = \begin{pmatrix} 5 & 2 \\ 13 & 2 \end{pmatrix}, \quad |\mathbf{AB}| = -16,$$
$$|\mathbf{A}| = -2, \quad |\mathbf{B}| = 8, \quad |\mathbf{A}| \, |\mathbf{B}| = -16.$$

2.10 ORTHOGONAL VECTORS AND MATRICES

Two $n \times 1$ vectors **b** and **b** are said to be *orthogonal* if

$$\mathbf{a}'\mathbf{b} = a_1b_1 + a_2b_2 + \dots + a_nb_n = 0. \tag{2.80}$$

Note that the term *orthogonal* applies to *two* vectors, not to a single vector.

Geometrically, two orthogonal vectors are perpendicular to each other. This is illustrated in Figure 2.3 for the vectors $\mathbf{x}_1 = (4,2)'$ and $\mathbf{x}_2 = (-1,2)'$. Note that $\mathbf{x}_1'\mathbf{x}_2 = (4)(-1) + (2)(2) = 0$.

To show that two orthogonal vectors are perpendicular/let θ be the angle between vectors \mathbf{a} and \mathbf{b} in Figure 2.4. The vector from the terminal point of \mathbf{a} to the terminal point of \mathbf{b} can be represented as $\mathbf{c} = \mathbf{b} - \mathbf{a}$. The law of cosines for the relationship of

(-1,2) x_2 x_2 x_3 x_4 x_4 x_5 x_6 x_6 x_6 x_7 x_8 x_8 x_9 x_9 x

Figure 2.3 Two orthogonal (perpendicular) vectors.

Figure 2.4 Vectors a and b in 3-space.

 θ to the sides of the triangle can be stated in vector form as

$$\cos \theta = \frac{\mathbf{a}'\mathbf{a} + \mathbf{b}'\mathbf{b} - (\mathbf{b} - \mathbf{a})'(\mathbf{b} - \mathbf{a})}{2\sqrt{(\mathbf{a}'\mathbf{a})(\mathbf{b}'\mathbf{b})}}$$

$$= \frac{\mathbf{a}'\mathbf{a} + \mathbf{b}'\mathbf{b} - (\mathbf{b}'\mathbf{b} + \mathbf{a}'\mathbf{a} - 2\mathbf{a}'\mathbf{b})}{2\sqrt{(\mathbf{a}'\mathbf{a})(\mathbf{b}'\mathbf{b})}}$$

$$= \frac{\mathbf{a}'\mathbf{b}}{\sqrt{(\mathbf{a}'\mathbf{a})(\mathbf{b}'\mathbf{b})}}.$$
(2.81)

When $\theta = 90^{\circ}$, $\mathbf{a}'\mathbf{b} = 0$ since $\cos(90^{\circ}) = 0$. Thus \mathbf{a} and \mathbf{b} are perpendicular when $\mathbf{a}'\mathbf{b} = 0$.

If $\mathbf{a}'\mathbf{a} = 1$, the vector \mathbf{a} is said to be normalized. A vector \mathbf{b} can be normalized by dividing by its length, $\sqrt{\mathbf{b}'\mathbf{b}}$. Thus

by the said to be normalized by the said to be normalized. A vector \mathbf{b} can be normalized by the said to be normalized. A vector \mathbf{b} can be normalized by the said to be normalized. A vector \mathbf{b} can be normalized by the said to be normalized.

্ব ভাষা বিশ্ব বি

is normalized so that $\mathbf{c}'\mathbf{c} = 1$.

A set of $p \times 1$ vectors $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_p$ that are normalized $(\mathbf{c}_i'\mathbf{c}_i = 1 \text{ for all } i)$ and mutually orthogonal $(\mathbf{c}_i'\mathbf{c}_j = 0 \text{ for all } i \neq j)$ is said to be an *orthonormal set* of vectors. If the $p \times p$ matrix $\mathbf{C} = (\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_p)$ has orthonormal columns, \mathbf{C} is called an *orthogonal* matrix. Since the elements of $\mathbf{C}'\mathbf{C}$ are products of columns of

C [see Theorem 2.2c(i)], an orthogonal matrix C has the property

$$\mathbf{C}'\mathbf{C} = \mathbf{I}.$$
 Cincipal with $\mathbf{C}'\mathbf{C} = \mathbf{I}$ (2.83)

It can be shown that an orthogonal matrix C also satisfies

$$\mathbf{CC}' = \mathbf{I}$$
. (2.84)

Thus an orthogonal matrix \mathbf{C} has orthonormal rows as well as orthonormal columns. It is also clear from (2.83) and (2.84) that $\mathbf{C}' = \mathbf{C}^{-1}$ if \mathbf{C} is orthogonal.

Example 2.10. To illustrate an orthogonal matrix, we start with

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 1 & -1 \end{pmatrix},$$

whose columns are mutually orthogonal but not orthonormal. To normalize the three columns, we divide by their respective lengths, $\sqrt{3}$, $\sqrt{6}$, and $\sqrt{2}$, to obtain the matrix $\sqrt{5}$ $\sqrt{6}$ $\sqrt{6$

$$\mathbf{C} = \begin{pmatrix} 1/\sqrt{3} & 1/\sqrt{6} & 1/\sqrt{2} \\ 1/\sqrt{3} & -2/\sqrt{6} & 0 \\ 1/\sqrt{3} & 1/\sqrt{6} & -1/\sqrt{2} \end{pmatrix},$$

whose columns are orthonormal. Note that the rows of **C** are also orthonormal, so that **C** satisfies (2.84) as well as (2.83).

Multiplication of a vector by an orthogonal matrix has the effect of rotating axes; that is, if a point \mathbf{x} is transformed to $\mathbf{z} = \mathbf{C}\mathbf{x}$, where \mathbf{C} is orthogonal, then the distance from the origin to \mathbf{z} is the same as the distance to \mathbf{x} :

$$\mathbf{z}'\mathbf{z} = \mathbf{z}'\mathbf{c}' \cdot \mathbf{z}$$

$$\mathbf{z}'\mathbf{z} = (\mathbf{C}\mathbf{x})'(\mathbf{C}\mathbf{x}) = \mathbf{x}'\mathbf{C}'\mathbf{C}\mathbf{x} = \mathbf{x}'\mathbf{I}\mathbf{x} = \mathbf{x}'\mathbf{x}. \tag{2.85}$$

Hence, the transformation from \mathbf{x} to \mathbf{z} is a rotation.

Some properties of orthogonal matrices are given in the following theorem.

Theorem 2.10. If the $p \times p$ matrix **C** is orthogonal and if **A** is any $p \times p$ matrix, then

(i)
$$|\mathbf{C}| = +1$$
 or -1 .

C'C = $\mathbf{I} = \mathbf{I}$
 $|\mathbf{C}'C| = |\mathbf{I}| = 1$
 $|\mathbf{C}'C| = |\mathbf{C}|^2 = \mathbf{I}$
 $|\mathbf{C}'C| = |\mathbf{C}|^2 = \mathbf{I}$

44

MATRIX ALGEBRA
$$A |C'(|A|)|C| = |C|^2 |A| = |A|$$

- (ii) |C'AC| = |A|.
- (iii) $-1 \le c_{ij} \le 1$, where c_{ij} is any element of ${\bf C}$.

2.11 **TRACE**

The trace of an $n \times n$ matrix $\mathbf{A} = (a_{ij})$ is a scalar function defined as the sum of the diagonal elements of **A**; that is, $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$. For example, suppose

$$\mathbf{A} = \begin{pmatrix} 8 & 4 & 2 \\ 2 & 3 & 6 \\ 3 & 5 & 9 \end{pmatrix}.$$

Then

$$tr(\mathbf{A}) = 8 - 3 + 9 = 14.$$

Some properties of the trace are given in the following theorem.

Theorem 2.11

(i) If **A** and **B** are $n \times n$, then

$$tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B}). \tag{2.86}$$

(ii) If **A** is $n \times p$ and **B** is $p \times n$, then

$$tr(\mathbf{AB}) = tr(\mathbf{BA}). \tag{2.87}$$

Note that in (2.87) n can be less than, equal to, or greater than p.

(iii) If **A** is $n \times p$, then

$$\operatorname{tr}(\mathbf{A}'\mathbf{A}) = \sum_{i=1}^{p} \mathbf{a}'_{i}\mathbf{a}_{i}, \qquad (2.88)$$

$$\begin{pmatrix} a_{i,} \\ a_{2,.} \end{pmatrix} (a_{i}, a_{i,2}) = \begin{pmatrix} a_{i}a_{i} & a_{i}a_{2} \\ a_{i}a_{i} & a_{i}a_{2} \\ a_{i}a_{i} & a_{2}a_{2} \end{pmatrix}$$

where \mathbf{a}_i is the *i*th column of \mathbf{A} .

(iv) If **A** is $n \times p$, then

$$tr(\mathbf{A}\mathbf{A}') = \sum_{i=1}^{n} \mathbf{a}'_{i}\mathbf{a}_{i}, \tag{2.89}$$

where \mathbf{a}_{i}' is the *i*th row of \mathbf{A} .

(v) If $A = (a_{ij})$ is an $n \times p$ matrix with representative element a_{ij} , then

$$\operatorname{tr}(\mathbf{A}'\mathbf{A}) = \operatorname{tr}(\mathbf{A}\mathbf{A}') = \sum_{i=1}^{n} \sum_{j=1}^{p} a_{ij}^{2}.$$
 (2.90)

(vi) If **A** is any $n \times n$ matrix and **P** is any $n \times n$ nonsingular matrix, then

$$tr(\mathbf{P}^{-1}\mathbf{AP}) = tr(\mathbf{A}). \tag{2.91}$$

(vii) If **A** is any $n \times n$ matrix and **C** is any $n \times n$ orthogonal matrix, then

$$tr(\mathbf{C}'\mathbf{AC}) = tr(\mathbf{A}). \tag{2.92}$$

(viii) If A is $n \times p$ of rank r and A is a generalized inverse of A, then

$$tr(\mathbf{A}^{-}\mathbf{A}) = tr(\mathbf{A}\mathbf{A}^{-}) = r. \tag{2.93}$$

Proof. We prove parts (ii), (iii), and (vi).

(ii) By (2.13), the *i*th diagonal element of $\mathbf{E} = \mathbf{A}\mathbf{B}$ is $e_{ii} = \sum_{k} a_{ik} b_{ki}$. Then $\operatorname{tr}(\mathbf{A}\mathbf{B}) = \operatorname{tr}(\mathbf{E}) = \sum_{i} e_{ii} = \sum_{k} \sum_{k} a_{ik} b_{ki}$.

Similarly, the *i*th diagonal element of $\mathbf{F} = \mathbf{B}\mathbf{A}$ is $f_{ii} = \sum_k b_{ik} a_{ki}$, and

$$\operatorname{tr}(\mathbf{B}\mathbf{A}) = \operatorname{tr}(\mathbf{F}) = \sum_{i} f_{ii} = \sum_{i} \sum_{k} b_{ik} a_{ki}$$
$$= \sum_{k} \sum_{i} a_{ki} b_{ik} = \operatorname{tr}(\mathbf{E}) = \operatorname{tr}(\mathbf{A}\mathbf{B}).$$

- (iii) By Theorem 2.2c(i), A'A is obtained as products of columns of A. If a_i is the *i*th column of A, then the *i*th diagonal element of A'A is a'_ia_i .
- (vi) By (2.87) we obtain

$$\operatorname{tr}(\mathbf{AP}) = \operatorname{tr}(\mathbf{AP}) \qquad \operatorname{tr}(\mathbf{P}^{-1}\mathbf{AP}) = \operatorname{tr}(\mathbf{APP}^{-1}) = \operatorname{tr}(\mathbf{A}).$$

Example 2.11. We illustrate parts (ii) and (viii) of Theorem 2.11.

(ii) Let

$$\mathbf{A} = \begin{pmatrix} 1 & 3 \\ 2 & -1 \\ 4 & 6 \end{pmatrix} \quad \text{and} \quad \mathbf{B} = \begin{pmatrix} 3 & -2 & 1 \\ 2 & 4 & 5 \end{pmatrix}.$$

Then

$$\mathbf{AB} = \begin{pmatrix} 9 & 10 & 16 \\ 4 & -8 & -3 \\ 24 & 16 & 34 \end{pmatrix}, \quad \mathbf{BA} = \begin{pmatrix} 3 & 17 \\ 30 & 32 \end{pmatrix},$$
$$\operatorname{tr}(\mathbf{AB}) = 9 - 8 + 34 = 35, \quad \operatorname{tr}(\mathbf{BA}) = 3 + 32 = 35.$$

(viii) Using A in (2.59) and A_1^- in (2.60), we obtain

$$\mathbf{A}^{-}\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 \end{pmatrix}, \quad \mathbf{A}\mathbf{A}^{-} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix},$$

$$tr(\mathbf{A}^{-}\mathbf{A}) = 1 + 1 + 0 = 2 = rank(\mathbf{A}),$$

$$tr(\mathbf{A}\mathbf{A}^{-}) = 1 + 1 + 0 = 2 = rank(\mathbf{A}).$$

Wh.

2.12 EIGENVALUES AND EIGENVECTORS

2.12.1 Definition

For every square matrix A, a scalar λ and a nonzero vector x can be found such that

Figure 2.5 An eigenvector \mathbf{x} is transformed to $\lambda \mathbf{x}$.

where λ is an eigenvalue of **A** and **x** is an eigenvector. (These terms are sometimes referred to as characteristic root and characteristic vector, respectively.) Note that in (2.94), the vector x is transformed by A onto a multiple of itself, so that the point $\mathbf{A}\mathbf{x}$ is on the line passing through \mathbf{x} and the origin. This is illustrated in Figure 2.5.

To find λ and \mathbf{x} for a matrix \mathbf{A} , we write (2.94) as

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}. (2.95)$$

By (2.37), $(A - \lambda I)x$ is a linear combination of the columns of $A - \lambda I$, and by (2.40) and (2.95), these columns are linearly dependent. Thus the square matrix $(\mathbf{A} - \lambda \mathbf{I})$ is singular, and by Theorem 2.9a(iii), we can solve for λ using

$$\prod_{\substack{A \in S \text{ in gradual} \\ |A| = 0}} |\mathbf{A} - \lambda \mathbf{I}| = 0,$$
(2.96)

which is known as the *characteristic equation*.

If **A** is $n \times n$, the characteristic equation (2.96) will have n roots; that is, **A** will have *n* eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. The λ 's will not necessarily all be distinct, or all nonzero, or even all real. (However, the eigenvalues of a symmetric matrix are real; see Theorem 2.12c.) After finding $\lambda_1, \lambda_2, \dots, \lambda_n$ using (2.96), the accompanying eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ can be found using (2.95).

If an eigenvalue is 0, the corresponding eigenvector is not 0. To see this, note that if $\lambda = 0$, then $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ becomes $\mathbf{A}\mathbf{x} = \mathbf{0}$, which has solutions for \mathbf{x} because \mathbf{A} is singular, and the columns are therefore linearly dependent. [The matrix A is singular because it has a zero eigenvalue; see (63) and (2.107).]

If we multiply both sides of (2.95) by a scalar k, we obtain

$$k(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = k\mathbf{0} = \mathbf{0}.$$

which can be rewritten as

$$(\mathbf{A} - \lambda \mathbf{I})k\mathbf{x} = \mathbf{0}$$
 [by (2.12)].

Thus if x is an eigenvector of A, kx is also an eigenvector. Eigenvectors are therefore unique only up to multiplication by a scalar. (There are many solution vectors x because $A - \lambda I$ is singular; see Section 2.8) Hence, the length of x is arbitrary, but its direction from the origin is unique; that is, the relative values of (ratios of) the elements of $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$ are unique. Typically, an eigenvector \mathbf{x} is the elements of $\mathbf{x}=(\lambda_1,\lambda_2,\dots,\lambda_n)$, scaled to normalized form as in (2.82), $\mathbf{x}'\mathbf{x}=1$.

Example 2.12.1. To illustrate eigenvalues and eigenvectors, consider the matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}.$$

By (2.96), the characteristic equation is

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & 2 \\ -1 & 4 - \lambda \end{vmatrix} = (1 - \lambda)(4 - \lambda) + 2 = 0,$$

which becomes

$$\lambda^2 - 5\lambda + 6 = (\lambda - 3)(\lambda - 2) = 0$$

with roots $\lambda_1 = 3$ and $\lambda_2 = 2$.

To find the eigenvector \mathbf{x}_1 corresponding to $\lambda_1 = 3$, we use (2.95)

$$(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{x}_1 = \mathbf{0},$$

$$\begin{pmatrix} 1 - 3 & 2 \\ -1 & 4 - 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which can be written as

$$-2x_1 + 2x_2 = 0$$

$$-x_1 + x_2 = 0.$$

The second equation is a multiple of the first, and either equation yields $x_1 = x_2$. The solution vector can be written with $x_1 = x_2 = c$ as an arbitrary constant:

$$\mathbf{x}_1 = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = c \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

If c is set equal to $1/\sqrt{2}$ to normalize the eigenvector, we obtain

$$\mathbf{x}_1 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}.$$

Similarly, corresponding to $\lambda_2 = 2$, we obtain

$$\mathbf{x}_2 = \begin{pmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{pmatrix}.$$

100

2.12.2 Functions of a Matrix

If λ is an eigenvalue of **A** with corresponding eigenvector **x**, then for certain functions $g(\mathbf{A})$, an eigenvalue is given by $g(\lambda)$ and **x** is the corresponding eigenvector of $g(\mathbf{A})$ as well as of **A**. We illustrate some of these cases:

1. If
$$\lambda$$
 is an eigenvalue of \mathbf{A} /then $c\lambda$ is an eigenvalue of $c\mathbf{A}$ /where c is an arbitrary constant such that $c \neq 0$./This is easily demonstrated by multiplying the defining relationship $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ by c :

$$c\mathbf{A}\mathbf{x} = c\lambda\mathbf{x}.\tag{2.97}$$

Note that \mathbf{x} is an eigenvector of \mathbf{A} corresponding to λ , and \mathbf{x} is also an eigenvector of $c\mathbf{A}$ corresponding to $c\lambda$.

2. If λ is an eigenvalue of the **A** and **x** is the corresponding eigenvector of **A**, then $c\lambda + k$ is an eigenvalue of the matrix $c\mathbf{A} + k\mathbf{I}$ and **x** is an eigenvector of $c\mathbf{A} + k\mathbf{I}$, where c and k are scalars. To show this, we add $k\mathbf{x}$ to (2.97):

$$c\mathbf{A}\mathbf{x} + k\mathbf{x} = c\lambda\mathbf{x} + k\mathbf{x},$$

$$(c\mathbf{A} + k\mathbf{I})\mathbf{x} = (c\lambda + k)\mathbf{x}.$$
(2.98)

Thus $c\lambda + k$ is an eigenvalue of $c\mathbf{A} + k\mathbf{I}$ and \mathbf{x} is the corresponding eigenvector of $c\mathbf{A} + k\mathbf{I}$. Note that (2.98) does not extend to $\mathbf{A} + \mathbf{B}$ for arbitrary $n \times n$ matrices \mathbf{A} and \mathbf{B} ; that is, $\mathbf{A} + \mathbf{B}$ does not have $\lambda_A + \lambda_B$ for an eigenvalue, where λ_A is an eigenvalue of \mathbf{A} and λ_B is an eigenvalue of \mathbf{B} .

3. If λ is an eigenvalue of **A**, then λ^2 is an eigenvalue of **A**². This can be demonstrated by multiplying the defining relationship $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ by **A**:

$$\mathbf{A}(\mathbf{A}\mathbf{x}) = \mathbf{A}(\lambda \mathbf{x}),$$

$$\mathbf{A}^2 \mathbf{x} = \lambda \mathbf{A}\mathbf{x} = \lambda(\lambda \mathbf{x}) = \lambda^2 \mathbf{x}.$$
 (2.99)

Thus λ^2 is an eigenvalue of \mathbf{A}^2 , and \mathbf{x} is the corresponding eigenvector of \mathbf{A}^2 . This can be extended to any power of \mathbf{A} :

$$\mathbf{A}^k \mathbf{x} = \lambda^k \mathbf{x}; \tag{2.100}$$

that is, λ^k is an eigenvalue of \mathbf{A}^k , and \mathbf{x} is the corresponding eigenvector.

4. If λ is an eigenvalue of the nonsingular matrix **A**, then $1/\lambda$ is an eigenvalue of \mathbf{A}^{-1} . To demonstrate this, we multiply $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ by \mathbf{A}^{-1} to obtain

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\lambda\mathbf{x},$$

$$\mathbf{x} = \lambda\mathbf{A}^{-1}\mathbf{x},$$

$$\mathbf{A}^{-1}\mathbf{x} = \frac{1}{\lambda}\mathbf{x}.$$
(2.101)

Thus $1/\lambda$ is an eigenvalue of A^{-1} , and x is an eigenvector of both A and A^{-1} .

5. The results in (2.97) and (2.100) can be used to obtain eigenvalues and eigenvectors of a polynomial in **A**. For example, if λ is an eigenvalue of **A**, then

$$(\mathbf{A}^3 + 4\mathbf{A}^2 - 3\mathbf{A} + 5\mathbf{I})\mathbf{x} = \mathbf{A}^3\mathbf{x} + 4\mathbf{A}^2\mathbf{x} - 3\mathbf{A}\mathbf{x} + 5\mathbf{x}$$
$$= \lambda^3\mathbf{x} + 4\lambda^2\mathbf{x} - 3\lambda\mathbf{x} + 5\mathbf{x}$$
$$= (\lambda^3 + 4\lambda^2 - 3\lambda + 5)\mathbf{x}.$$

Thus $\lambda^3 + 4\lambda^2 - 3\lambda + 5$ is an eigenvalue of $\mathbf{A}^3 + 4\mathbf{A}^2 - 3\mathbf{A} + 5\mathbf{I}$, and \mathbf{x} is the corresponding eigenvector.

For certain matrices, property 5 can be extended to an infinite series. For example, if λ is an eigenvalue of \mathbf{A} , then, by (2.98), $1 - \lambda$ is an eigenvalue of $\mathbf{I} - \mathbf{A}$. If $\mathbf{I} - \mathbf{A}$ is nonsingular, then, by (2.101), $1/(1 - \lambda)$ is an eigenvalue of $(\mathbf{I} - \mathbf{A})^{-1}$. If $-1 < \lambda < 1$, then $1/(1 - \lambda)$ can be represented by the series

$$\frac{1}{1-\lambda}=1+\lambda+\lambda^2+\lambda^3+\cdots.$$

Correspondingly, if all eigenvalues of **A** satisfy $-1 < \lambda < 1$, then

$$(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \mathbf{A}^3 + \cdots$$
 (2.102)

2.12.3 Products

It was noted in a comment following (2.98) that the eigenvalues of $\mathbf{A} + \mathbf{B}$ are not of the form $\lambda_A + \lambda_B$, where λ_A is an eigenvalue of \mathbf{A} and λ_B is an eigenvalue of \mathbf{B} . Similarly, the eigenvalues of \mathbf{AB} are not products of the form $\lambda_A \lambda_B$. However, the eigenvalues of \mathbf{AB} are the same as those of \mathbf{BA} .

Theorem 2.12a. If \mathbf{A} and \mathbf{B} are $n \times n$ or if \mathbf{A} is $n \times p$ and \mathbf{B} is $p \times n$, then the (nonzero) eigenvalues of $\mathbf{A}\mathbf{B}$ are the same as those of $\mathbf{B}\mathbf{A}$. If \mathbf{x} is an eigenvector of $\mathbf{A}\mathbf{B}$, then $\mathbf{B}\mathbf{x}$ is an eigenvector of $\mathbf{B}\mathbf{A}$.

Two additional results involving eigenvalues of products are given in the following theorem.

- **Theorem 2.12b.** Let \mathbf{A} be any $n \times n$ matrix.

 Ax= \mathcal{A} Ax= \mathcal{A} Ax= \mathcal{A} Ax= \mathcal{A} Ax= \mathcal{A} Y= \mathcal{A} Y= \mathcal{A} Ax= \mathcal{A} Y= \mathcal{A} Ax= \mathcal{A} Ax= \mathcal{A} Y= \mathcal{A} Y= \mathcal{A} Ax= \mathcal{A} Y= \mathcal{A} Y= \mathcal{A} Ax= \mathcal{A} Ax= \mathcal{A} Y= \mathcal{A} Y= \mathcal{A} Ax= \mathcal{A} Y= \mathcal{A} Y= eigenvalues.
 - (ii) If C is any $n \times n$ orthogonal matrix, then A and C'AC have the same C'C=I, C-1 = C' eigenvalues.

Symmetric Matrices

Ax=
$$3\pi$$
. Also then y= 2π 3^{12} . A(C'y) = $3(C'y)$ π = $G'y$ π + Eq. (C'AC)y = 3π y of a symmetric matrix are given

Two properties of the eigenvalues and eigenvectors of a symmetric matrix are given in the following theorem.

Theorem 2.12c. Let **A** be an $n \times n$ symmetric matrix.

- (i) The eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ of **A** are real.
- (ii) The eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ of \mathbf{A} corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$ are mutually orthogonal; the eigenvectors $\mathbf{x}_{k+1}, \mathbf{x}_{k+2}, \dots, \mathbf{x}_n$ corresponding to the nondistinct eigenvalues can be chosen to be mutually orthogonal to each other and to the other eigenvectors;/that is, $\mathbf{x}_i'\mathbf{x}_j = 0$ for $i \neq i$.

If the eigenvectors of a symmetric matrix \mathbf{A} are normalized and placed as columns of a matrix C,/then by Theorem 2.12c(ii), C is an orthogonal matrix. This orthogonal matrix can be used to express A in terms of its eigenvalues and eigenvectors.

Theorem 2.12d. If $\widehat{\mathbf{A}}$ is an $n \times n$ symmetric matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ and normalized eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$, then \mathbf{A} can be expressed as

$$\mathbf{A} = \mathbf{CDC'} \tag{2.103}$$

$$=\sum_{i=1}^{n}\lambda_{i}\mathbf{x}_{i}\mathbf{x}_{i}',\tag{2.104}$$

where $\mathbf{D} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and \mathbf{C} is the orthogonal matrix $\mathbf{C} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$. The result in either (2.103) or (2.104) is often called the *spectral decomposition* of **A**. 스틱트랑 병해

PROOF. By Theorem 2.12c(ii), C is orthogonal. Then by (2.84), $\underline{I} = CC'$, and multiplication by A gives

$$\mathbf{A} = \mathbf{A} \mathbf{C} \mathbf{C}'.$$

We now substitute $C = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ to obtain

$$\mathbf{A} = \mathbf{A}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \mathbf{C}'$$

$$= (\mathbf{A}\mathbf{x}_1, \mathbf{A}\mathbf{x}_2, \dots, \mathbf{A}\mathbf{x}_n) \mathbf{C}' \qquad \text{[by (2.28)]}$$

$$= (\lambda_1 \mathbf{x}_1, \lambda_2 \mathbf{x}_2, \dots, \lambda_n \mathbf{x}_n) \mathbf{C}' \qquad \text{[by (2.94)]}$$

$$= \mathbf{C}\mathbf{D}\mathbf{C}', \qquad (2.105)$$

since multiplication on the right by $\mathbf{D} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ multiplies columns of \mathbf{C} by elements of **D** [see (2.30)]. Now writing \mathbf{C}' in the form

(2.105) becomes
$$\mathbf{C}' = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)' = \begin{pmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_n' \end{pmatrix} \quad [by (2.39)],$$

$$\mathbf{C}'$$

$$\mathbf{A} = (\lambda_1 \mathbf{x}_1, \lambda_2 \mathbf{x}_2, \dots, \lambda_n \mathbf{x}_n) \begin{pmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \vdots \\ \mathbf{x}_n' \end{pmatrix}$$

$$= \lambda_1 \mathbf{x}_1 \mathbf{x}_1' + \lambda_2 \mathbf{x}_2 \mathbf{x}_2' + \dots + \lambda_n \mathbf{x}_n \mathbf{x}_n'.$$

Corollary 1. If A is symmetric and C and D are defined as in Theorem 2.12d, then C diagonalizes A:

다구나나
$$\mathbf{C}'\mathbf{AC} = \mathbf{D}$$
. (2.106)

We can express the determinant and trace of a square matrix A in terms of its eigenvalues. → 質 新 API 西本立 [A] C + tr(A) 是 花性 가능

Theorem 2.12e. If **A** is any $n \times n$ matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, then

(i)
$$|A| = |C|C'|$$

$$|A| = |C|C'|$$

$$|A| = |C|C'|$$

$$|A| = \prod_{i=1}^{n} \lambda_i.$$
(ii)
$$|A| = \prod_{i=1}^{n} \lambda_i.$$

e. If **A** is any
$$n \times n$$
 matrix with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, then
$$\begin{vmatrix}
A = C DC' \\
|A| = |C| |D| |C'| = |D|
\end{vmatrix} = \prod_{i=1}^{n} \lambda_i. \qquad (2.107)$$

$$tr(A) = \sum_{i=1}^{n} \lambda_i. \qquad (2.108)$$

$$tr(A) = \frac{1}{1} \lambda_i =$$

We have included Theorem 2.12e here because it is easy to prove for a symmetric matrix A using Theorem 2.12d (see Problem 2.72). However, the theorem is true for any square matrix (Searle 1982, p. 278).

Example 2.12.4. To illustrate Theorem 2.12e, consider the matrix **A** in Example 2.12.1

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}, \quad \begin{vmatrix} 1-\lambda & 2 \\ -1 & 4-\lambda \end{vmatrix} = 0 \quad , \quad \begin{cases} -5\lambda + \lambda^{2} + 2 = 0 \\ -1 & 4-\lambda \end{cases}$$

which has eigenvalues $\lambda_1 = 3$ and $\lambda_2 = 2$. The product $\lambda_1 \lambda_2 = 6$ is the same as |A| = 4 - (-1)(2) = 6. The sum $\lambda_1 + \lambda_2 = 3 + 2 = 5$ is the same as $tr(\mathbf{A}) = 1 + 4 = 5.$

Positive Definite and Semidefinite Matrices

The eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ of positive definite and positive semidefinite matrices (Section 2.6) are positive and nonnegative, respectively.

Theorem 2.12f. Let **A** be $n \times n$ with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.

- (i) If **A** is positive definite, then $\lambda_i > 0$ for i = 1, 2, ..., n.
- (ii) If **A** is positive semidefinite, then $\lambda_i \geq 0$ for $i = 1, 2, \dots, n$. The number of eigenvalues λ_i for which $\lambda_i > 0$ is the rank of **A**.

Proof.

(i) For any λ_i , we have $\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{x}_i$. Multiplying by \mathbf{x}'_i , we obtain

$$\mathbf{x}_i'\mathbf{A}\mathbf{x}_i = \lambda_i\mathbf{x}_i'\mathbf{x}_i,$$

$$\lambda_i = \frac{\mathbf{x}_i'\mathbf{A}\mathbf{x}_i}{\mathbf{x}_i'\mathbf{x}_i} > 0.$$

$$\lambda_i = \frac{\mathbf{x}_i'\mathbf{A}\mathbf{x}_i}{\mathbf{x}_i'\mathbf{x}_i} > 0.$$

In the second expression, $\mathbf{x}_i' \mathbf{A} \mathbf{x}_i$ is positive because **A** is positive definite, and $\mathbf{x}_{i}'\mathbf{x}_{i}$ is positive because $\mathbf{x}_{i} \neq \mathbf{0}$.

If a matrix **A** is positive definite, we can find a *square root matrix* $\mathbf{A}^{1/2}$ as follows. Since the eigenvalues of **A** are positive, we can substitute the square roots $\sqrt{\lambda_i}$ for λ_i in the spectral decomposition of A in (2.103), to obtain

$$\mathbf{A}^{1/2} = \mathbf{C}\mathbf{D}^{1/2}\mathbf{C}',\tag{2.109}$$

where $\mathbf{D}^{1/2} = \operatorname{diag}(\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n})$. The matrix $\mathbf{A}^{1/2}$ is symmetric and has the property

$$\mathbf{A}^{1/2}\mathbf{A}^{1/2} = (\mathbf{A}^{1/2})^2 = \mathbf{A}.$$
 (2.110)