[Aseem: I am currently using same e syntax for source and target. Please understand as: the programmer always writes public versions of the operators, conditionals etc. Then our compiler translates some of them to secret operators, leaving some of them as public. Note in the typing rules, the source expression always has public subscript.]

[Aseem: Also, I am still using the i notation in the premises of the inference rules as a convenience for now.]

[Aseem: The new bit is the circuit part in the evaluation semantics. Expressions evaluate to a value, and emit a circuit. The circuits are stitched together with wires. r represents a range of wire ids that represent a source level value. A meta-function next_range() gives the next ids. It can be implemented using a counter, for example.]

```
Secret label
m
                       \mathcal{A}
                       \mathcal{B}
                                                                                      Label
                      \mathcal{P}
                      m
                                                                                       Base type
                       \mathsf{uint}^\ell
                       \mathsf{bool}^\ell
                                                                                       Type
             ::=
                      \sigma
                      \sigma[\ ]
            ::=
                                                                                       Constant
c
                      n
                       \top
                                                                                       Expression
                       c
                       \boldsymbol{x}
                       e_1 +_{\ell} e_2
                       e_1 \times_{\ell} e_2
                      \mathbf{cond}_{\ell}(\mathit{e},\mathit{e}_{1},\mathit{e}_{2})
                       e_1 >_{\ell} e_2
                      x[e]
                       e \rhd m
             ::=
                                                                                       Statement
s
                      \tau x
                      x := e
                      \mathbf{for}(x := n_1; x < n_2; x := x + 1) s
                      x[e_1] := e_2
                      \mathbf{if}(e,s_1,s_2)
                      \mathbf{out}\; e
                      s_1; s_2
Γ
                                                                                       Type environment
             \Gamma, x : \tau
```

$\Gamma \vdash e : \tau \leadsto e'$

 $\rho \vdash e \Downarrow v; \kappa$