Project – Sentimental Analysis on Amazon Data (P116)

Group 6 - Tripti, Rushikesh, Adarsh, Mukund, Harshitha, Ajinkya

Guided by - Parth Sagar

Project start date - 05/05/2022

Business Problem

To perform Sentimental Analysis on a Amazon product

Objective

The objective of the analysis is to get daily Analysis of a product such as emotions, sentiment etc. using Amazon data of our choice.

Data Insights

The product chosen for our Data extraction for Sentimental Analysis is Redmi Note 8. The dataset contains over 3000 product reviews from Amazon.com along with their corresponding rating stars and usernames of the customers.

Project Flow

Amazon Product chosen for Sentiment Analysis

Product name – Redmi Note 8 (Space Black, 4GB RAM, 64GB Storage)

Product URL - https://www.amazon.in/Redmi-Note-Space-Black-Storage/product-reviews/B07X4PXKZ7/ref=cm_cr_dp_d_show_all_btm?ie=UTF8&reviewerType=all_reviews

Redmi Note 8 (Space Black, 4GB RAM, 64GB Storage) | Snapdragon 665 Processor | 48 MP Quad Camera by Redmi

Customer reviews ★★★★ 4.3 out of 5 1,62,615 global ratings 5 star 58% 4 star 26% 3 star 9% 2 star 3% 1 star 5%

Data Extraction

The data was extracted using Beautiful Soup Tool

Number of ratings -1,62,615Number of reviews -42,084

Number of extracted reviews and ratings - 3100

name	reviews	stars	
Ashraf	The media could not be loaded.\n	1	0
Anil kumar sharma	Febulas performance Redmi Note 8I love it	5	1
Mahendra	best mobile under 10000	5	2
Shah Arsalan	Redmi note 8 is the best Smartphone under 10k	5	3
R.T	Loving the phonePurchased with bank discou	5	4
Sadhna agrawal	Pros- batteryCameraPriceLookCons- delicate. So	5	5
Amazon Customer	Excellent phone under 10,000. Specialy 18 watt	5	6
Aman Singh	Redmi has been a prominent smartphone brand wh	2	7
Rao	Excellent phone in this price point \delta \delta \delta	5	8
Arjun	I purchased it from redmi store. Its performan	5	9
VaLLaRaSu V	Nice productIndia's No One. Brand	5	10
Abhishek k.	If u are a WiFi userthen pls don't buy th	1	11
Anand	King of budget phones, but 3 star because of v	3	12
vikash kumar bharti	This product is very good and very good qualit	5	13
Nikita	Camera not good. Bad performance . Battery ch	1	14
C.Suresh	You may miss such like a worthy mobile in just	5	15
Kushal Dutta	I got this device on 1st November 1 week befor	5	16
Naeem Abbas	It took around 9 days to get the product deliv	5	17
Amazon Customer	Purple is too good.	5	18
siddharth	Very Bad experience with this 😖 phone quality	1	19

Data Pre-processing

Steps followed for pre-processing -

Data Cleaning

- Converting text to lowercase
- Removing punctuations
- Removing stopwords
- Removing accents
- Removing empty text spaces
- Removing hyperlinks

Tokenization

A way of separating a piece of text into smaller units called tokens

POS(part of speech) Labelling

The tag in case of is a part-of-speech tag, and signifies whether the word is a noun, adjective, verb

Lemmatization

Normally aiming to remove inflectional endings only and to return the base or dictionary form of a word, which is known as the lemma

Step 4

Step 3

Step 2

Step 1

	stars	reviews	cleaned_reviews	tokens	POS_tagging	Lemmas
0	1	The media could not be loaded.\n	media could loaded phone hanged many times ret	[media, could, loaded, phone, hanged, many, ti	[(media, n), (could, None), (loaded, v), (phon	medium could load phone hang many time retur
1	5	Febulas performance Redmi Note 8I love it	febulas performance redmi note 8 love first ti	[febulas, performance, redmi, note, 8, love, f	[(febulas, n), (performance, n), (redmi, v), (febulas performance redmi note 8 love first
2	5	best mobile under 10000	best mobile 10000	[best, mobile, 10000]	[(best, r), (mobile, a), (10000, None)]	best mobile 10000
3	5	Redmi note 8 is the best Smartphone under 10k	redmi note 8 best smartphone 10k year 2019	[redmi, note, 8, best, smartphone, 10k, year,	[(redmi, a), (note, n), (8, None), (best, a),	redmi note 8 best smartphone 10k year 2019
4	5	Loving the phonePurchased with bank discou	loving phone purchased bank discount 6gb 128gb	[loving, phone, purchased, bank, discount, 6gb	[(loving, v), (phone, n), (purchased, v), (ban	love phone purchase bank discount 6gb 128gb
5	5	Pros- batteryCameraPriceLookCons- delicate. So	pros batterycamerapricelookcon s delicate handl	[pros, batterycamerapricelookco ns, delicate, h	[(pros, n), (batterycamerapricelo okcons, n), (pro batterycamerapricelookc ons delicate hand
6	5	Excellent phone under 10,000. Specialy 18 watt	excellent phone 10 000 specialy 18 watt fast c	[excellent, phone, 10, 000, specialy, 18, watt	[(excellent, a), (phone, n), (10, None), (000,	excellent phone 10 000 specialy 18 watt fast
7	2	Redmi has been a prominent smartphone brand wh	redmi prominent smartphone brand given quality	[redmi, prominent, smartphone, brand, given, q	[(redmi, n), (prominent, a), (smartphone, n),	redmi prominent smartphone brand give qualit
8	5	Excellent phone in this price point (8) (8)	excellent phone price point	[excellent, phone, price, point]	[(excellent, a), (phone, n), (price, n), (poin	excellent phone price point
9	5	I purchased it from redmi store. Its performan	purchased redmi store performance awesome supe	[purchased, redmi, store, performance, awesome	[(purchased, v), (redmi, n), (store, n), (perf	purchase redmi store performance awesome sup

Exploratory Data Analysis (EDA)

- 40.1% ratings are positive reviews with 5 stars
- Whereas the reviews with 4 stars or less contribute to 60% of total ratings.
- On an average the reviews are having ratings around 3.5 to 4.5 marking up to combined total of 42.3% of the total ratings and only 17.7% of the total reviews are rated between 1 and 2 star.

Plotting top 20 most frequent occuring words

Sentimental Analysis

Using VADER SentimentIntensityAnalyser to calculate the sentiment score

VADER (Valence Aware Dictionary for Sentiment Reasoning) is a model used for text sentiment analysis that is sensitive to both polarity (positive/negative) and intensity (strength) of emotion

		stars	reviews	cleaned_reviews	tokens	POS_Tagging	Lemmas	sentiment_score
30	095	5	Very good and premium look. Excellent sound qu	good premium look excellent sound quality fast	[good, premium, look, excellent, sound, qualit	[(good, a), (premium, n), (look, n), (excellen	good premium look excellent sound quality fa	0.93
30	096	4	It is gud phone while playing heavy graphics g	gud phone playing heavy graphics game phone he	[gud, phone, playing, heavy, graphics, game, p	[(gud, n), (phone, n), (playing, v), (heavy, a	gud phone play heavy graphic game phone heat	0.57
30	097	5	Gohead buy it guys.	gohead buy guys	[gohead, buy, guys]	[(gohead, a), (buy, n), (guys, n)]	gohead buy guy	0.00
30	098	5	Good product	good product	[good, product]	[(good, a), (product, n)]	good product	0.44
30	099	4	Good	good	[good]	[(good, a)]	good	0.44

the positivity rate and negativity rate of the reviews
 The Compound score(comp_score) is a metric that calculates the sum of all the lexicon ratings which have been normalized between -

Since we are classifying only the negative and positive sentiments we will consider only those and further using the LabelEncoder from

Polarity Classification(scores) – since we are classifying the reviews as either positive and negative the polarity scores will help us know

- 1(most extreme negative) and +1 (most extreme positive). positive sentiment : (compound score >= 0.05) neutral sentiment : (compound score > -0.05) and (compound score < 0.05) negative sentiment : (compound score <= -0.05)
- data['y'] Positives as 1, Negatives as 0

Loving the

discou...

ed with bank

phone....Purchas

loving phone

discount 6gb

128gb...

purchased bank

sklearn.pre-processing we will convert the text categories to numeric categories as follows

	stars	reviews	Cleaned_reviews	tokens	POS_Tagging	Lemmas	sentimen t_scores	Scores	compound	comp_score	у
0		The media could not be loaded.\n	media could loaded phone hanged many times ret	[media, could, loaded, phone, hanged, many, ti	[(media, n), (could, None), (loaded, v), (phon	medium could load phone hang many time retur	-0.42	{'neg': 0.158, 'neu': 0.766, 'pos': 0.077, 'co	-0.4215	neg	0
1	5	Febulas performance Redmi Note 8I love it	febulas performance redmi note 8 love first ti	[febulas, performance, redmi, note, 8, love, f	[(febulas, n), (performance, n), (redmi, v), (febulas performance redmi note 8 love first	0.91	{'neg': 0.0, 'neu': 0.451, 'pos': 0.549, 'comp	0.9081	pos	1
2	ו ה	best mobile under 10000	best mobile 10000	[best, mobile, 10000]	[(best, r), (mobile, a), (10000, None)]	best mobile 10000	0.64	{'neg': 0.0, 'neu': 0.323, 'pos': 0.677, 'comp	0.6369	pos	1
3	5	Redmi note 8 is the best Smartphone under 10k	I radmi nota x naet	[redmi, note, 8, best, smartphone, 10k, year,	[(redmi, a), (note, n), (8, None), (best, a),	redmi note 8 best smartphone 10k year 2019	0.64	{'neg': 0.0, 'neu': 0.588, 'pos': 0.412, 'comp	0.6369	pos	1
	_			[loving,							

love phone

bank discount

6gb 128gb ...

0.99

purchase

{'neg': 0.0, 'neu': 0.659,

'pos': 0.341, 'comp...

0.9940

pos

[(loving, v),

(phone, n),

(ban...

(purchased, v),

phone.

bank.

6gb...

purchased,

discount,

Bag of Words(BOW) Feature Extraction

Feature Engineering

Using Bag of Words(BOW) and Tf-IDF term frequency-inverse document frequency

- 1. The bag-of-words (BOW) model converts text into fixed-length vectors by counting how many times each word appears
- 2. TF-IDF model contains information on the more important words and the less important ones as well.

with 73739 stored elements in Compressed Sparse Row format>

Model Building(Imbalanced Data)

Using both Bag of Words(BOW) and Tf-IDF term frequency-inverse document frequency we will build different classifier models for imbalanced data

We have build 7 different models for both feature engineering techniques using train_test_split from sklearn.model_selection for classifying positive and negative sentiments and the accuracy results are as follows -

Test Accuracy of different classifiers using TF-IDF

Test Accuracy of different classifiers using BOW

	TF-IDF		scores based on test predictions			BOW		scores based on test predictions		
Models	Train accuracy	Test accuracy	precision	recall	f1 score	Train accuracy	Test accuracy	precision	recall	fl score
1. Multinomial Naïve Bayes	81.36%	81.29%	99.60%	81.55%	89.67%	90.76%	84.68%	88.33%	92.54%	90.39%
2.Extratreeclassifier	100.00%	81.61%	99.60%	81.81%	89.83%	100.00%	82.42%	99.60%	82.48%	90.24%
3. ADAboostclassifier	90.76%	90.81%	96.83%	92.27%	94.50%	90.48%	90.81%	95.65%	93.25%	94.43%
4. SVC	99.56%	87.90%	99.01%	87.74%	93.06%	95.16%	87.58%	98.02%	88.09%	92.79%
5. DecisionTreeclassifier	100.00%	87.58%	92.68%	92.14%	92.41%	100.00%	85.16%	90.90%	90.90%	90.90%
6.GradientBoostingClassifier	92.98%	88.71%	96.44%	90.37%	93.30%	92.25%	87.74%	96.83%	89.09%	92.80%
7. Logistic Regression	91.04%	87.10%	99.01%	86.97%	92.60%	99.48%	91.45%	96.24%	93.47%	94.83%

Thus the model with the highest accuracy is Logistic regression demonstrating an accuracy for testing of 91.45% with BOW as the feature extraction technique and the following are the statistics for same

Actual total = 620

Model Building(Balanced Data)

Using SMOTE to balance out the data for both Bag of Words(BOW) and Tf-IDF term frequency-inverse document frequency we will build different classifier models and compare to find the best model for further deployment

As in the previous slide we can see that the number of positive and negatives were unbalanced which was causing the biasness in the model. Therefore to improve the model SMOTE (Oversampling technique to make the same count of negatives(0s) as positives(1s)) was used for both feature extraction techniques to balance the data by creating synthetic samples by doing upsampling. Further we have build 7 different models for both feature engineering techniques using train_test_split from sklearn.model_selection for classifying positive and negative sentiments and the accuracy results are as follows -

Test accuracy of different models using TFIDF

Test accuracy of different models using BOW

After Balancing the data using SMOTE

Martin	5	scores base	BOW scores based on test predictions							
Models	Train accuracy	Test Accuracy	precision	recall	f1 score	Train accuracy	Test accurac y	precisio n	recall	f1 score
Multinomial Naïve Bayes	92.72%	88.53%	80.88%	95.26%	87.48%	79.18%	74.08%	85.31%	69.39%	76.53%
2.Extratreeclassifier	100.00%	96.11%	93.36%	98.72%	95.96%	99.83%	89.13%	91.14%	87.45%	89.26%
3. ADAboostclassifier	90.88%	89.53%	90.94%	89.59%	89.53%	89.55%	88.53%	84.41%	92.07%	87.90%
4. SVC	99.93%	96.41%	98.18%	94.75%	96.44%	96.71%	90.23%	91.46%	89.34%	90.23%
5. DecisionTreeclassifier	100.00%	89.33%	88.12%	90.12%	89.11%	99.83%	87.04%	86.51%	87.22%	86.86%
6. GradientBoostingClassifier	94.37%	90.53%	91.95%	89.25%	90.58%	90.88%	89.03%	84.70%	92.52%	88.44%
7. LogisticRegression	96.73%	92.22%	88.73%	95.24%	91.87%	98.23%	90.83%	88.53%	92.63%	90.53%

As a conclusion, the model having the highest accuracy, precision and recall scores will be our best fit for the deployment. So from the previous table we can see that the ExtraTreeClassifier and SVC both using TF-IDF are having highest values of all three metrics. But we will chose the SVC as the best model amongst all other models as it shows much better metric scores as compared to the ExtraTreeClassifier and the statistics for same can also be seen below –

Deep Learning Model (Unbalanced Data)

Bi-directional LSTM Architecture using tensorflow.keras package

Bidirectional long-short term memory(bi-lstm) is the process of making any neural network o have the sequence information in both directions backwards (future to past) or forward(past to future). In bidirectional, our input flows in two directions, making a bi-lstm different from the regular LSTM.

Model Summary -

Model: "sequential"

Layer (type)	Output	Shape	Param #
embedding (Embedding)	(None,	100, 64)	640000
spatial_dropout1d (SpatialDr	(None,	100, 64)	0
bidirectional (Bidirectional	(None,	256)	197632
dense (Dense)	(None,	1)	257
Total params: 837,889 Trainable params: 837,889 Non-trainable params: 0			

accuracy

training (min: 0.800, max: 0.999, cur: 0.998)
validation (min: 0.810, max: 0.927, cur: 0.895)

Loss

training (min: 0.004, max: 0.511, cur: 0.007) validation (min: 0.250, max: 0.451, cur: 0.417)

Loss:0.6593921780586243 Accuracy:0.8629032373428345

-	precision	recall	f1-score	support
0	0.68	0.59	0.63	123
1	0.90	0.93	0.92	497
accuracy			0.86	620
macro avg	0.79	0.76	0.77	620
weighted avg	0.86	0.86	0.86	620

Deep Learning Model (Balanced Data)

Balancing data by using EarlyStopping and building Bi-directional LSTM Architecture

Model Summary -

Model: "sequential_1"									
Layer (type)	Output	Shape	Param #						
embedding_1 (Embedding)	(None,	100, 64)	640000						
spatial_dropout1d_1 (Spatial	(None,	100, 64)	0						
bidirectional_1 (Bidirection	(None,	256)	197632						
dense_1 (Dense)	(None,	1)	257						

Total params: 837,889 Trainable params: 837,889 Non-trainable params: 0

Loss:0.6091829538345337

Accuracy: 0.8790322542190552

Precision: 0.918812 Recall: 0.931727 F1 score: 0.925224

	precision	recall	f1-score	support
0 1	0.70 0.92	0.66 0.93	0.68 0.93	122 498
accuracy macro avg weighted avg	0.81 0.88	0.80 0.88	0.88 0.80 0.88	620 620 620

https://share.streamlit.io/triptideshpande/sentimentanalysis_nlp_project/main/Final_Deployment.py

Text Sentiment Analysis

Type a sentence in the below text box and press enter to get the sentiment value

Enter the sentence

Press Enter to apply

Waiting

Thank you!