Package 'ewoc'

October 13, 2022

Type Package
Title Escalation with Overdose Control
Version 0.3.0
Author Marcio A. Diniz <marcio.diniz@cshs.org></marcio.diniz@cshs.org>
Maintainer Marcio A. Diniz <marcio.diniz@cshs.org></marcio.diniz@cshs.org>
Description An implementation of a variety of escalation with overdose control designs introduced by Babb, Rogatko and Zacks (1998) <doi:10.1002 (sici)1097-0258(19980530)17:10%3c1103::aid-sim793%3e3.0.co;2-9="">. It calculates the next dose as a clinical trial proceeds and performs simulations to obtain operating characteristics.</doi:10.1002>
License GPL (>= 2)
LazyData TRUE
<pre>URL https://github.com/dnzmarcio/ewoc/</pre>
BugReports https://github.com/dnzmarcio/ewoc/issues
Imports Formula(>= 1.2-1), rjags(>= 4-6), coda(>= 0.18-1), ggplot2(>= 2.2.0), graphics(>= 3.3.1), stats(>= 3.3.1), foreach(>= 1.4.3), doParallel(>= 1.0.11), parallel (>= 3.4.0), doRNG (>= 1.7.1)
RoxygenNote 7.1.0
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-07 07:20:02 UTC
R topics documented:
accuracy_index 2 average_toxicity 3 dlt_curve_dlclassical 4 dlt_curve_dlextended 4 dlt_curve_dlph 5 dlt_rate 6

2 accuracy_index

Index		36
	stop_rule_d1ph	34
	stop_rule_d1extended	33
	stop_rule_d1classical	32
	stop_rule	31
	standard_dose	30
	response_d1ph	29
	response_d1extended	28
	response_d1classical	28
	pdlt_d1ph	27
	pdlt_dlextended	26
	pdlt_d1classical	25
	optimal_toxicity	24
	optimal_mtd	23
	opc	
	mtd_rho_d1extended	
	mtd mse	
	mtd_bias	
	logit	
	inv_standard_dose	
	ewoc_simulation	
	ewoc_dlph	
	ewoc dlextended	
	ewoc_d1classical	7

accuracy_index

Accuracy Index

Description

Calculate the Accuracy Index.

Usage

```
accuracy_index(
  mtd_estimate,
  dose_set,
  true_prob,
  theta,
  loss = c("squared", "absolute", "classification", "overdose"),
  alpha = NULL
)
```

average_toxicity 3

Arguments

loss

mtd_estimate a numerical vector of the MTD estimates.

dose_set a numerical vector of allowable doses in the trial.

true_prob a numerical vector of the true probabilities associated with 'dose_set'.

theta a numerical value defining the proportion of expected patients to experience a

medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.

a loss function between the true probabilities of toxicity 'true_prob' and the

target DLT rate 'theta'.

alpha a numerical value indicating the weight of overdose for the overdose loss func-

tion.

Value

Accuracy Index for given loss function of the MTD estimates.

References

Cheung, Y. K. (2011). Dose finding by the continual reassessment method. CRC Press.

Description

Calculate the Average Toxicity Number.

Usage

```
average_toxicity(dose, dose_set, true_prob, theta)
```

Arguments

dose a numerical matrix of assigned doses for each step of the trial (column) and for

each trial (row).

dose_set a numerical vector of allowable doses in the trial.

true_prob a numerical vector of the true probabilities associated with 'dose_set'.

theta a numerical value defining the proportion of expected patients to experience a

medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.

Value

Average Toxicity Number.

References

Cheung, Y. K. (2011). Dose finding by the continual reassessment method. CRC Press.

dlt_curve_d1classical Plot the DLT curve based on the EWOC classical model

Description

Plot the DLT curve based on the EWOC classical model

Usage

```
dlt_curve_d1classical(mtd, rho, theta, min_dose, max_dose, dose_set = NULL)
```

Arguments

mtd	a numarical value indicating the two value of the negrometer mtd
IIILU	a numerical value indicating the true value of the parameter mtd.
rho	a numerical value indicating the true value of the parameter rho.
theta	a numerical value defining the proportion of expected patients to experience a medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.
dose_set	a numerical vector of doses that probability of DLT will be calculated.

Description

Plot the DLT curve based on the EWOC extended model

Usage

```
dlt_curve_dlextended(rho, theta, min_dose, max_dose, dose_set = NULL)
```

Arguments

rho	a numerical vector indicating the true value of the parameters rho_0 and rho_1.
theta	a numerical value defining the proportion of expected patients to experience a medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.
dose_set	a numerical vector of doses that probability of DLT will be calculated.

dlt_curve_d1ph 5

 dlt_curve_d1ph

Plot the DLT curve based on the EWOC proportional hazards model

Description

Plot the DLT curve based on the EWOC proportional hazards model

Usage

```
dlt_curve_d1ph(
  mtd,
  rho,
  theta,
  min_dose,
  max_dose,
  shape,
  tau,
  distribution = "exponential",
  dose_set = NULL
)
```

Arguments

mtd	a numerical value indicating the true value of the parameter mtd.
rho	a numerical value indicating the true value of the parameter rho.
theta	a numerical value defining the proportion of expected patients to experience a medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.
shape	a numerical value indicating the true value of the parameter shape. It is only necessary if 'distribution' = "weibull".
tau	a numerical value defining the period of time for a possible toxicity be observed.
distribution	a character establishing the distribution for the time of events. It can be defined as 'exponential' or 'weibull'.
dose_set	a numerical vector of doses that probability of DLT will be calculated.

6 dlt_rate

dlt_rate

Evaluation of the DLT rate

Description

Calculate the DLT rate for each trial, the average DLT rate, the percent of trials which have $DLTrate > target_rate + margin$, the percent of trials which have $DLTrate < target_rate - margin$ and the percent of trials which have $target_rate - margin < DLTrate < target_rate + margin$.

Usage

```
dlt_rate(
  dlt_matrix,
  trial = FALSE,
  target_rate = NULL,
  margin = NULL,
  digits = 2
)
```

Arguments

dlt_matrix a matrix of the number of DLT for each step of the trial (column) and for each trial (row).

trial a logical value indicating if the DLT rate for each trial should be returned.

target_rate a numerical value of the target rate of DLT.

margin a numerical value of the acceptable distance from the target_rate.

digits a numerical value indicating the number of digits.

Value

trial a numerical vector of the DLT rate for each trial.

average a numerical value of the average of DLT rate considering a batch of trials.

upper the percent of trials which the DLT rate > target_rate + margin if margin != NULL and target_rate != NULL.

lower the percent of trials which the DLT rate < target_rate - margin if margin != NULL and target_rate != NULL.

interval the percent of trials which the target_rate - margin < DLT rate < target_rate + margin if margin != NULL and target_rate != NULL.

ewoc_d1classical 7

```
## Not run:
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                            theta = 0.33, alpha = 0.25,
                            min_dose = 0, max_dose = 100,
                            dose_set = seq(0, 100, 20),
                            rho_prior = matrix(1, ncol = 2, nrow = 1),
                            mtd_prior = matrix(1, ncol = 2, nrow = 1),
                            rounding = "nearest")
stop_rule_sim(step_zero)
response_sim <- response_d1classical(rho = 0.05, mtd = 20, theta = 0.33,
                                   min_dose = 10, max_dose = 50)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                       n_sim = 1, sample_size = 2,
                       alpha_strategy = "increasing",
                       response_sim = response_sim,
                       stop_rule_sim = stop_rule_sim,
                       ncores = 2)
dlt_rate(sim$dlt_sim)
## End(Not run)
## Not run:
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                           theta = 0.33, alpha = 0.25,
                            min_dose = 0, max_dose = 100,
                            dose_set = seq(0, 100, 20),
                            rho_prior = matrix(1, ncol = 2, nrow = 1),
                            mtd_prior = matrix(1, ncol = 2, nrow = 1),
                            rounding = "nearest")
stop_rule_sim(step_zero)
response_sim <- response_d1classical(rho = 0.05, mtd = 20, theta = 0.33,
                                   min_dose = 10, max_dose = 50)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                       n_sim = 2, sample_size = 30,
                       alpha_strategy = "increasing",
                       response_sim = response_sim,
                       stop_rule_sim = stop_rule_sim,
                       ncores = 2)
dlt_rate(sim$dlt_sim)
## End(Not run)
```

8 ewoc_d1classical

Description

Finding the next dose for a phase I clinical trial based on the Escalation with Overdose Control (EWOC) design considering the classical parametrization for binary responses and single agent.

Usage

```
ewoc_d1classical(
  formula,
  theta,
  alpha,
 mtd_prior,
  rho_prior,
 min_dose,
 max_dose,
  type = c("continuous", "discrete"),
  first_dose = NULL,
  last_dose = NULL,
  dose_set = NULL,
 max_increment = NULL,
 no_skip_dose = TRUE,
 rounding = c("down", "nearest"),
  n_adapt = 5000,
 burn_in = 1000,
 n_mcmc = 1000,
 n_{thin} = 1,
 n_{chains} = 1
)
```

Arguments

formula	an object of class Formula: a symbolic description of the model to be fitted with only one regressor term corresponding to the dose for the right side and a numeric vector a response containing number of DLT for the left side.
theta	a numerical value defining the proportion of expected patients to experience a medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.
alpha	a numerical value defining the probability that the dose selected by EWOC is higher than the MTD.
mtd_prior	a matrix 1×2 of hyperparameters for the Beta prior distribution associated with the parameter MTD.
rho_prior	a matrix 1 x 2 of hyperparameters for the Beta prior distribution associated with the parameter rho.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.
type	a character describing the type of the Maximum Tolerable Dose (MTD) variable.
first_dose	a numerical value for the first allowable dose in the trial. It is only necessary if $type = continuous$.

ewoc_d1classical 9

last_dose	a numerical value for the last allowable dose in the trial. It is only necessary if $type = 'continuous'$.
dose_set	a numerical vector of allowable doses in the trial. It is only necessary if type = 'discrete'.
max_increment	a numerical value indicating the maximum increment from the current dose to the next dose. It is only applied if type = 'continuous'.
no_skip_dose	a logical value indicating if it is allowed to skip doses. It is only necessary if type = 'discrete'. The default is TRUE.
rounding	a character indicating how to round a continuous dose to the one of elements of the dose set. It is only necessary if type = 'discrete'.
n_adapt	the number of iterations for adaptation. See adapt for details.
burn_in	numerical value indicating the number of iterations before to start monitoring.
n_mcmc	numerical value indicating the number of iterations to monitor.
n_thin	numerical value corresponding to the thinning interval for monitors.
n_chains	numerical value indicating the number of parallel chains for the model.

Value

next_dose the next recommend dose. mtd the posterior MTD distribution.

rho the posterior rho_0 distribution.

sample a list of the MCMC chains distribution.

trial a list of the trial conditions.

References

Babb, J., Rogatko, A. and Zacks, S., 1998. Cancer phase I clinical trials: efficient dose escalation with overdose control. Statistics in medicine, 17(10), pp.1103-1120.

10 ewoc_d1extended

ewoc_d1extended

Escalation With Overdose Control

Description

Finding the next dose for a phase I clinical trial based on the Escalation with Overdose Control (EWOC) design considering the extended parametrization for binary response and single agent.

Usage

```
ewoc_d1extended(
  formula,
  theta,
  alpha,
  rho_prior,
 min_dose,
 max_dose,
  type = c("continuous", "discrete"),
  first_dose = NULL,
  last_dose = NULL,
  dose_set = NULL,
 max_increment = NULL,
  no_skip_dose = TRUE,
  rounding = c("down", "nearest"),
  n_adapt = 5000,
  burn_in = 1000,
  n_mcmc = 1000,
  n_{thin} = 1,
  n_{chains} = 1
)
```

Arguments

formula	an object of class Formula: a symbolic description of the model to be fitted with only one regressor term corresponding to the dose for the right side and a numeric vector as a response containing number of DLT for the left side.
theta	a numerical value defining the proportion of expected patients to experience a medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.
alpha	a numerical value defining the probability that the dose selected by EWOC is higher than the MTD.
rho_prior	a matrix 3 x 2 of hyperparameters for the Beta prior distribution associated with each parameter rho. Each row corresponds to a parameter.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.
type	a character describing the type of the Maximum Tolerable Dose (MTD) variable.

ewoc_d1extended 11

first_dose	a numerical value for the first allowable dose in the trial.
last_dose	a numerical value for the last allowable dose in the trial.
dose_set	a numerical vector of allowable doses in the trial. It is only necessary if type = "discrete".
max_increment	a numerical value indicating the maximum increment from the current dose to the next dose. It is only applied if type = 'continuous'.
no_skip_dose	a logical value indicating if it is allowed to skip doses. It is only necessary if type = 'discrete'. The default is TRUE.
rounding	a character indicating how to round a continuous dose to the one of elements of the dose set. It is only necessary if type = "discrete".
n_adapt	the number of iterations for adaptation. See adapt for details.
burn_in	the number of iterations before to start monitoring.
n_mcmc	the number of iterations to monitor.
n_thin	thinning interval for monitors.
n_chains	the number of parallel chains for the model.

Value

next_dose the next recommend dose.

mtd a numerical vector for the posterior MTD distribution considering the next patient covariable.

rho a matrix for the posterior rho_0 and rho_1 distributions.

sample a list of the MCMC chains distribution.

trial a list of the trial conditions.

References

Tighiouart, M., Cook-Wiens, G., & Rogatko, A. (2018). A Bayesian adaptive design for cancer phase I trials using a flexible range of doses. Journal of biopharmaceutical statistics, 28(3), 562-574.

12 ewoc_d1ph

ewoc_d1ph

Escalation With Overdose Control

Description

Finding the next dose for a phase I clinical trial based on Escalation with Overdose Control (EWOC) design considering parametrization for time to event response and single agent.

Usage

```
ewoc_d1ph(
  formula,
  theta,
  alpha,
  tau,
  type = c("continuous", "discrete"),
  rho_prior,
 mtd_prior,
 shape_prior = NULL,
 min_dose,
 max_dose,
 first_dose = NULL,
  last_dose = NULL,
  dose_set = NULL,
 max_increment = NULL,
 no_skip_dose = TRUE,
 distribution = c("exponential", "weibull"),
  rounding = c("down", "nearest"),
  n_adapt = 5000,
 burn_in = 1000,
  n_mcmc = 1000,
 n_{thin} = 1,
 n_{chains} = 1
)
```

Arguments

formula	an object of class Formula: a symbolic description of the model to be fitted with only one regressor term corresponding to the dose for the right side and a matrix as a response containing time and status for the left side.
theta	a numerical value defining the proportion of expected patients to experience a medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.
alpha	a numerical value defining the probability that the dose selected by EWOC is higher than the MTD.
tau	a numerical value defining the period of time for a possible toxicity be observed.

ewoc_d1ph

type	a character describing the type of the Maximum Tolerable Dose (MTD) variable. It can be 'discrete' or 'continuous'.
rho_prior	a matrix $1x2$ of hyperparameters for the Beta prior distribution associated with the parameter rho.
mtd_prior	a matrix 1x2 of hyperparameters for the Beta prior distribution associated with the parameter MTD.
shape_prior	a matrix $1x2$ of hyperparameters for the Gamma prior distribution associated with the shape parameter r for the Weibull distribution. It is only necessary if distribution = 'weibull'.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.
first_dose	a numerical value for the first allowable dose in the trial. It is only necessary if type = 'continuous'.
last_dose	a numerical value for the last allowable dose in the trial. It is only necessary if type = 'continuous'.
dose_set	a numerical vector of allowable doses in the trial. It is only necessary if type = 'discrete'.
max_increment	a numerical value indicating the maximum increment from the current dose to the next dose. It is only applied if type = 'continuous'.
no_skip_dose	a logical value indicating if it is allowed to skip doses. It is only necessary if type = 'discrete'. The default is TRUE.
distribution	a character establishing the distribution for the time of events. It can be defined as 'exponential' or 'weibull'.
rounding	a character indicating how to round a continuous dose to the one of elements of the dose set. It can be 'nearest' or 'down'. It is only necessary if type = 'discrete'.
n_adapt	the number of iterations for adaptation. See adapt for details.
burn_in	the number of iterations before to start monitoring.
n_mcmc	the number of iterations to monitor.
n_thin	thinning interval for monitors.
n_chains	the number of parallel chains for the model.

Value

next_dose the next recommend dose.

mtd the posterior MTD distribution.

rho the posterior rho_0 distribution.

sample a list of the MCMC chains distribution.

trial a list of the trial conditions.

References

Tighiouart M, Liu Y, Rogatko A. Escalation with overdose control using time to toxicity for cancer phase I clinical trials. PloS one. 2014 Mar 24;9(3):e93070.

14 ewoc_simulation

Examples

ewoc_simulation

EWOC simulation

Description

Generic function for simulating EWOC trials.

Usage

```
ewoc_simulation(
   step_zero,
   n_sim,
   sample_size,
   response_sim,
   fixed_first_cohort = TRUE,
   n_cohort = 1,
   alpha_strategy = "conditional",
   alpha_rate = 0.05,
   stop_rule_sim = NULL,
   ncores = 1,
   seed = 1234,
   ...
)
```

Arguments

an object from the classes either 'ewoc_dlclassical' or 'ewoc_dlextended' or 'ewoc_dlph' created using the first cohort data.

n_sim a number indicating the number of phase I clinical trials to be simulated.

sample_size a number indicating the number of patients enrolled for each clinical trial.

ewoc_simulation 15

response_sim a function which is self-contained and will be used as a generator function of

the response variables in the simulation. Its only input is 'dose' and output is the indicator of DLT for classical and extended EWOC and the time until DLT for

proportional hazards EWOC.

fixed_first_cohort

a logical value indicating if the first cohort should be randomly generated or be

fixed as the input in 'step_zero'.

n_cohort a number indicating the number of patients enrolled at each cohort. It is only

used for 'ewoc_d1classical' and 'ewoc_d1extended'.

alpha_strategy a character indicating the strategy to apply for the feasibility value. Default is

"constant". Options are "increasing" and "conditional".

alpha_rate a numerical value indicating the rate of the feasibility strategy. Only necessary

if alpha_strategy is either 'increasing' or 'conditional'.

stop_rule_sim a function having as an input an object containing all the information related to

the trial as the returned object trial from either ewoc_d1classical, ewoc_d1extended,

ewoc_d1ph and as output a logical value indicating the trial should be stopped.

ncores a numeric value indicating the number of cores to be used in the simulation

performed in parallel. Use parallel::detectCores() to check the number of cores

available.

seed is an integer value, containing the random number generator (RNG) state for

random number generation.

For an object step_zero with class 'ewoo dlph', the argument rate_sim which

controls the rate of accrue of patients following a Poisson process. The default

is 1.

Value

alpha_sim a matrix n_sim x sample_size containing the values of feasibility used for each step in the trial and each trial in the simulation.

dlt_sim a matrix n_sim x sample_size containing ones and zeros indicating the occurrence of DLT (1) and the absence of DLT (0) for each step in the trial and each trial in the simulation.

dose_sim a matrix n_sim x sample_size containing the doses assigned for each step in the trial and each trial in the simulation.

mtd_sim a numeric vector n_sim x 1 containing the recommended MTD for each trial in the simulation.

rho_sim a numeric vector n_sim x k containing the estimated rho parameter(s) for each trial in the simulation, where k = 1 for ewoc_dlclassical, ewoc_dlph, and k = 2 for ewoc_dlextended.

Examples

Not run:
Classical EWOC
DLT <- 0
dose <- 20</pre>

16 ewoc_simulation

```
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                          theta = 0.33, alpha = 0.25,
                          min_dose = 20, max_dose = 100,
                          dose_set = seq(20, 100, 20),
                          rho_prior = matrix(1, ncol = 2, nrow = 1),
                          mtd_prior = matrix(1, ncol = 2, nrow = 1),
                           rounding = "nearest")
response_sim <- response_d1classical(rho = 0.05, mtd = 60, theta = 0.33,
                                  min_dose = 20, max_dose = 100)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                      n_sim = 2, sample_size = 30, n_cohort = 1,
                      alpha_strategy = "conditional",
                      response_sim = response_sim,
                      ncores = 1)
### Extended EWOC
DLT <- 0
dose <- 20
step_zero <- ewoc_d1extended(DLT ~ dose, type = 'discrete',</pre>
                          theta = 0.33, alpha = 0.25,
                          min_dose = 20, max_dose = 100,
                          dose_set = seq(20, 100, 20),
                          rho_prior = matrix(1, ncol = 2, nrow = 2),
                          rounding = "nearest")
response_sim <- response_d1extended(rho = c(0.05, 0.5),
                                  min_dose = 20, max_dose = 100)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                      n_sim = 2, sample_size = 30, n_cohort = 1,
                      alpha_strategy = "conditional",
                      response_sim = response_sim,
                      ncores = 1)
### PH EWOC
time <- 0
status <- 0
dose <- 20
step_zero <- ewoc_d1ph(cbind(time, status) ~ dose, type = 'discrete',</pre>
                     theta = 0.33, alpha = 0.25, tau = 10,
                     min_dose = 20, max_dose = 100,
                     dose_set = seq(20, 100, 20),
                     rho_prior = matrix(1, ncol = 2, nrow = 1),
                     mtd_prior = matrix(1, ncol = 2, nrow = 1),
                     distribution = 'exponential',
                     rounding = 'nearest')
response_sim <- response_d1ph(rho = 0.05, mtd = 60, theta = 0.33,
                            min_dose = 20, max_dose = 100,
                            tau = 10, distribution = "exponential")
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                      n_sim = 2, sample_size = 30, n_cohort = 1,
                      alpha_strategy = "conditional",
                      response_sim = response_sim,
                      ncores = 1)
```

inv_standard_dose 17

```
## End(Not run)
```

inv_standard_dose

Inverse standardization of the dose

Description

Unstandardizing a dose between minimum and maximum doses.

Usage

```
inv_standard_dose(dose, min_dose, max_dose)
```

Arguments

dose a numerical value defining the standardized dose to be unstandardized.

min_dose a numerical value defining the lower bound of the support of the MTD.

max_dose a numerical value defining the upper bound of the support of the MTD.

Value

dose a numerical value between min_dose and max_dose.

logit Logit

Description

Calculating the logit of a probability

Usage

logit(p)

Arguments

p a numerical value defining the probability to be transformed into logit scale.

Value

logit a numerical value in logit scale.

18 mtd_bias

mtd_bias

Bias of the MTD estimates

Description

Calculate the bias.

Usage

```
mtd_bias(mtd_estimate, true_mtd)
```

Arguments

```
mtd_estimate a numerical vector of the MTD estimates.

true_mtd a numerical value of the true Maximum Tolerable Dose.
```

Value

Bias of the MTD estimates.

```
## Not run:
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                           theta = 0.33, alpha = 0.25,
                           min_dose = 0, max_dose = 100,
                           dose_set = seq(0, 100, 20),
                           rho_prior = matrix(1, ncol = 2, nrow = 1),
                           mtd_prior = matrix(1, ncol = 2, nrow = 1),
                           rounding = "nearest")
response_sim <- response_d1classical(rho = 0.05, mtd = 20, theta = 0.33,
                                   min_dose = 10, max_dose = 50)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                       n_sim = 2, sample_size = 30,
                       alpha_strategy = "increasing",
                       response_sim = response_sim,
                       ncores = 2)
mtd_bias(sim$mtd_sim, true_mtd = 20)
## End(Not run)
```

mtd_mse 19

mtd_mse

Mean Square Error of the MTD estimates

Description

Calculate the Mean Square Error (MSE).

Usage

```
mtd_mse(mtd_estimate, true_mtd)
```

Arguments

```
mtd_estimate a numerical vector of the MTD estimates.

true_mtd a numerical value of the true Maximum Tolerable Dose.
```

Value

MSE of the MTD estimates.

```
## Not run:
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                           theta = 0.33, alpha = 0.25,
                           min_dose = 0, max_dose = 100,
                           dose_set = seq(0, 100, 20),
                           rho_prior = matrix(1, ncol = 2, nrow = 1),
                           mtd_prior = matrix(1, ncol = 2, nrow = 1),
                            rounding = "nearest")
response_sim <- response_d1classical(rho = 0.05, mtd = 20, theta = 0.33,
                                   min_dose = 10, max_dose = 50)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                       n_sim = 2, sample_size = 30,
                       alpha_strategy = "increasing",
                       response_sim = response_sim,
                       ncores = 2)
mtd_mse(sim$mtd_sim, true_mtd = 20)
## End(Not run)
```

20 opc

Description

Converting mtd to rho_1 given rho_0 for EWOC design using extended parametrization and viceversa.

Usage

```
mtd_rho_d1extended(mtd = NULL, rho_1 = NULL, rho_0, theta, min_dose, max_dose)
```

Arguments

mtd	a numerical value defining the mtd value to be converted into rho_1 value.
rho_1	a numerical value defining the probability of DLT at the max_dose.
rho_0	a numerical value defining the probability of DLT at the min_dose.
theta	a numerical value defining the proportion of expected patients to experience a medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.

Value

mtd a numerical value for the maximum tolerable dose.

rho_1 a numerical value for the probability of DLT at the max_dose.

opc	Operating characteristics for EWOC simulations

Description

Generic operating characteristics for one or more scenarios in EWOC simulations.

Usage

```
opc(sim_list, pdlt_list, mtd_list, toxicity_margin = NULL, mtd_margin = NULL)
```

opc 21

Arguments

a list of 'ewoc_simulation' objects for different scenarios created using the ewoc_simulation function.

pdlt_list a list of functions to calculate the probability of toxicity with a numeric vector of doses as input and a numeric vector of probabilities as output.

mtd_list a list of numerical values indicating the true MTD for each scenario.

toxicity_margin a numerical value of the acceptable margin of distance from the target_rate.

mtd_margin a numerical value of the acceptable margin of distance from the mtd_list.

Value

```
dlt_rate See dlt_rate.

dose_toxicity See optimal_toxicity.

mtd_toxicity See optimal_toxicity.

statistics See mtd_bias and mtd_mse.

dose_efficiency See optimal_mtd.

mtd_efficiency See optimal_mtd.

stop See stop_rule.
```

References

Diniz, M. A., Tighiouart, M., & Rogatko, A. (2019). Comparison between continuous and discrete doses for model based designs in cancer dose finding. PloS one, 14(1).

```
## Not run:
### Only one simulation
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                           theta = 0.33, alpha = 0.25,
                           min_dose = 20, max_dose = 100,
                           dose_set = seq(20, 100, 20),
                           rho_prior = matrix(1, ncol = 2, nrow = 1),
                           mtd_prior = matrix(1, ncol = 2, nrow = 1),
                           rounding = "nearest")
response_sim <- response_d1classical(rho = 0.05, mtd = 60, theta = 0.33,
                                  min_dose = 20, max_dose = 100)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                     n_sim = 1, sample_size = 30, n_cohort = 1,
                      alpha_strategy = "conditional",
                      response_sim = response_sim,
```

opc opc

```
fixed_first_cohort = TRUE,
                      ncores = 1)
pdlt <- pdlt_d1classical(rho = 0.05, mtd = 60, theta = 0.33,
                       min_dose = 20, max_dose = 100)
opc(sim_list = list(sim), pdlt_list = list(pdlt),
   mtd_list = list(60), toxicity_margin = 0.05, mtd_margin = 6)
### Two or more simulations
sim_list <- list()</pre>
mtd_list <- list()</pre>
pdlt_list <- list()</pre>
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                           theta = 0.33, alpha = 0.25,
                           min_dose = 20, max_dose = 100,
                           dose_set = seq(20, 100, 20),
                           rho_prior = matrix(1, ncol = 2, nrow = 1),
                           mtd_prior = matrix(1, ncol = 2, nrow = 1),
                           rounding = "nearest")
mtd_list[[1]] <- 60
response_sim <- response_d1classical(rho = 0.05, mtd = mtd_list[[1]],</pre>
                                  theta = 0.33,
                                  min_dose = 20, max_dose = 100)
sim_list[[1]] <- ewoc_simulation(step_zero = step_zero,</pre>
                      n_sim = 1, sample_size = 30, n_cohort = 1,
                      alpha_strategy = "conditional",
                      response_sim = response_sim,
                      fixed_first_cohort = TRUE,
                      ncores = 1)
pdlt_list[[1]] <- pdlt_d1classical(rho = 0.05, mtd = mtd_list[[1]],</pre>
                                theta = 0.33,
                                min_dose = 20, max_dose = 100)
mtd_list[[2]] <- 40
response_sim <- response_d1classical(rho = 0.05, mtd = mtd_list[[2]],
                                  theta = 0.33,
                                  min_dose = 20, max_dose = 100)
sim_list[[2]] <- ewoc_simulation(step_zero = step_zero,</pre>
                      n_sim = 1, sample_size = 30, n_cohort = 1,
                      alpha_strategy = "conditional",
                      response_sim = response_sim,
                      fixed_first_cohort = TRUE,
                      ncores = 1)
pdlt_list[[2]] <- pdlt_d1classical(rho = 0.05, mtd = mtd_list[[2]],</pre>
                                theta = 0.33,
                                min_dose = 20, max_dose = 100)
```

optimal_mtd 23

```
opc(sim_list = sim_list, pdlt_list = pdlt_list,
    mtd_list = mtd_list, toxicity_margin = 0.05, mtd_margin = 6)
## End(Not run)
```

optimal_mtd

Percent of doses in relation the optimal MTD interval

Description

Calculate the percent of doses which are inside the optimal MTD interval [true_MTD -margin; true_MTD + margin].

Usage

```
optimal_mtd(dose_matrix, true_mtd, margin, digits = 2)
```

Arguments

dose_matrix a numerical matrix or vector of assigned doses for each step of the trial (column)

and for each trial (row).

true_mtd a numerical value of the true Maximum Tolerable Dose.

margin a numerical value of the acceptable margin of distance from the true_mtd.

digits a numerical value indicating the number of digits.

Value

interval the average percent of doses which are inside the optimal MTD interval.

underdose the average percent of doses which are smaller than the lower limit of the optimal MTD interval.

overdose the average percent of doses which are greater than the upper limit of the optimal MTD interval.

24 optimal_toxicity

optimal_toxicity

Percent of doses in relation the optimal toxicity interval

Description

Calculate the percent of doses which are inside the optimal toxicity interval [target rate -margin; target rate + margin].

Usage

```
optimal_toxicity(dose_matrix, target_rate, margin, pdlt, digits = 2)
```

Arguments

dose_matrix a numerical matrix of assigned doses for each step of the trial (column) and for

each trial (row).

target_rate a numerical value of the target DLT rate.

margin a numerical value of the acceptable margin of distance from the target_rate.

pdlt a function to calculate the probability of toxicity with a numeric vector of doses

as input and a numeric vector of probabilities as output.

digits a numerical value indicating the number of digits.

Value

interval the average percent of doses which are inside the optimal toxicity interval.

underdose the average percent of doses which are smaller than the lower limit of the optimal toxicity interval.

overdose the average percent of doses which are greater than the upper limit of the optimal toxicity interval.

pdlt_d1classical 25

Examples

```
## Not run:
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                           theta = 0.33, alpha = 0.25,
                           min_dose = 0, max_dose = 100,
                           dose_set = seq(0, 100, 20),
                           rho_prior = matrix(1, ncol = 2, nrow = 1),
                           mtd_prior = matrix(1, ncol = 2, nrow = 1),
                           rounding = "nearest")
response_sim <- response_d1classical(rho = 0.05, mtd = 20, theta = 0.33,
                                  min_dose = 10, max_dose = 50)
pdlt_sim <- pdlt_d1classical(rho = 0.05, mtd = 20, theta = 0.33,
                          min_dose = 10, max_dose = 50)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                       n_sim = 2, sample_size = 30,
                       alpha_strategy = "increasing",
                       response_sim = response_sim,
                       ncores = 2)
optimal_toxicity(sim$mtd_sim, target_rate = 0.33, margin = 0.05, pdlt = pdlt_sim)
optimal_toxicity(sim$dose_sim, target_rate = 0.33, margin = 0.05, pdlt = pdlt_sim)
## End(Not run)
```

pdlt_d1classical

Generating a probability of DLT function based on the EWOC classical model

Description

Generating a probability of DLT function based on the EWOC classical model

Usage

```
pdlt_d1classical(rho, mtd, theta, min_dose, max_dose)
```

Arguments

rho	a numerical value indicating the true value of the parameter rho.
mtd	a numerical value indicating the true value of the parameter mtd.
theta	a numerical value defining the proportion of expected patients to experience a medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.

26 pdlt_d1extended

Value

A function with dose as an input and a probability based on the logistic regression and parameters as an output.

Examples

 $pdlt_d1extended$

Generating a probability of DLT function based on the EWOC extended model

Description

Generating a probability of DLT function based on the EWOC extended model

Usage

```
pdlt_d1extended(rho, min_dose, max_dose)
```

Arguments

rho a numerical vector indicating the true value of the parameters rho_0 and rho_1.

min_dose a numerical value defining the lower bound of the support of the MTD.

max_dose a numerical value defining the upper bound of the support of the MTD.

Value

A function with dose as an input and a probability based on the logistic regression and parameters as an output.

```
pdlt <- pdlt_d1extended(rho = c(0.05, 0.5),

min_dose = 10, max_dose = 50)

pdlt(20)
```

pdlt_d1ph 27

pdlt_d1ph	Generating a probability of DLT function based on the EWOC Proportional Hazards model

Description

Generating a probability of DLT function based on the EWOC Proportional Hazards model

Usage

```
pdlt_d1ph(rho, mtd, shape = NULL, theta, min_dose, max_dose, tau, distribution)
```

Arguments

rho	a numerical value indicating the true value of the parameter rho.
mtd	a numerical value indicating the true value of the parameter mtd.
shape	a numerical value indicating the true value of the parameter shape. It is only necessary if 'distribution' = "weibull".
theta	a numerical value defining the proportion of expected patients to experience a medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.
tau	a numerical value defining the period of time for a possible toxicity be observed.
distribution	a character establishing the distribution for the time of events. It can be defined as 'exponential' or 'weibull'.

Value

A function with dose as an input and a probability based on the logistic regression and parameters as an output.

response_d1extended

 ${\it response_d1classical} \quad {\it Generating~a~binary~response~function~based~on~the~EWOC~classical} \\ \quad {\it model}$

Description

Generating a binary response function based on the EWOC classical model

Usage

```
response_d1classical(rho, mtd, theta, min_dose, max_dose)
```

Arguments

rho	a numerical value indicating the true value of the parameter rho.
mtd	a numerical value indicating the true value of the parameter mtd.
theta	a numerical value defining the proportion of expected patients to experience a medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.

Value

A function with dose as an input and a Binomial variable based on the parameters as an output.

Examples

response_d1extended Generating a binary response function based on the EWOC extended model

Description

Generating a binary response function based on the EWOC extended model

Usage

```
response_dlextended(rho, min_dose, max_dose)
```

response_d1ph 29

Arguments

rho	a numerical vector indicating the true value of the parameters rho_0 and rho_1.
min_dose	a numerical value defining the lower bound of the support of the MTD.
max_dose	a numerical value defining the upper bound of the support of the MTD.

Value

A function with dose as an input and a Binomial variable based on the parameters as an output.

Examples

response_d1ph

Generating a response function based on the EWOC Proportional Hazards model

Description

Generating a response function based on the EWOC Proportional Hazards model

Usage

```
response_d1ph(
  rho,
  mtd,
  theta,
  min_dose,
  max_dose,
  tau,
  distribution,
  shape = NULL
)
```

Arguments

rho a numerical value indicating the true value of the parameter rho.

mtd a numerical value indicating the true value of the parameter mtd.

theta a numerical value defining the proportion of expected patients to experience a

medically unacceptable, dose-limiting toxicity (DLT) if administered the MTD.

medicary unacceptable, dose-initing toxicity (DEI) if administred the w

min_dose a numerical value defining the lower bound of the support of the MTD.

max_dose a numerical value defining the upper bound of the support of the MTD.

30 standard_dose

tau a numerical value defining the period of time for a possible toxicity be observed.

distribution a character establishing the distribution for the time of events.

shape a numerical value indicating the true value of the parameter shape. It is only

necessary if 'distribution' = "weibull".

Value

A function with dose as an input and a Binomial variable based on the parameters as an output.

Examples

standard_dose

Standardization of the dose

Description

Standardizing a dose between 0 and 1.

Usage

```
standard_dose(dose, min_dose, max_dose)
```

Arguments

dose a numerical value defining the dose to be standardized.

min_dose a numerical value defining the lower bound of the support of the MTD.

max_dose a numerical value defining the upper bound of the support of the MTD.

Value

standardized dose a numerical value between 0 and 1.

stop_rule 31

stop_rule

Evaluation of the stopping rule

Description

Calculate the average, minimum, maximum number of patients to stop a trial and the percent of stopped trials. Stopped trials contain NA after the last assigned dose.

Usage

```
stop_rule(dlt_matrix, sample_size, digits = 2)
```

Arguments

dlt_matrix Matrix of the number of DLT for each step of the trial (column) and for each trial (row).

sample_size a numerical value indicating the expected sample size.

digits a numerical value indicating the number of digits.

Value

A list consisting of

- average: Average number of patients to stop a trial.
- min: Minimum number of patients to stop a trial.
- max: Maximum number of patients to stop a trial.
- nstop: Percent of stopped trials.

```
## Not run:
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                            theta = 0.33, alpha = 0.25,
                            min_dose = 0, max_dose = 100,
                            dose_set = seq(0, 100, 20),
                            rho_prior = matrix(1, ncol = 2, nrow = 1),
                            mtd_prior = matrix(1, ncol = 2, nrow = 1),
                            rounding = "nearest")
stop_rule_sim(step_zero)
response_sim <- response_d1classical(rho = 0.05, mtd = 20, theta = 0.33,
                                   min_dose = 10, max_dose = 50)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                        n_sim = 1, sample_size = 2,
                        alpha_strategy = "increasing",
                        response_sim = response_sim,
                        stop_rule_sim = stop_rule_sim,
```

stop_rule_d1classical

```
ncores = 2)
stop_rule(sim$dlt_sim)
## End(Not run)
## Not run:
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                            theta = 0.33, alpha = 0.25,
                            min_dose = 0, max_dose = 100,
                            dose_set = seq(0, 100, 20),
                            rho_prior = matrix(1, ncol = 2, nrow = 1),
                            mtd_prior = matrix(1, ncol = 2, nrow = 1),
                            rounding = "nearest")
stop_rule_sim(step_zero)
response_sim <- response_d1classical(rho = 0.05, mtd = 20, theta = 0.33,
                                   min_dose = 10, max_dose = 50)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                        n_sim = 2, sample_size = 30,
                        alpha_strategy = "increasing",
                        response_sim = response_sim,
                        stop_rule_sim = stop_rule_sim,
                        ncores = 2)
stop_rule(sim$dlt_sim)
## End(Not run)
```

stop_rule_d1classical Generating a stop rule function for EWOC classical model

Description

Generating a stop rule function for EWOC classical model

Usage

```
stop_rule_d1classical(step)
```

Arguments

step an object from the class 'ewoc_d1classical'.

Details

The stop rule function is evaluated at each step of the trial. It can defined based on any information contained in the object 'step' that is the output from one of the functions 'ewoc_dlclassical'.

stop_rule_d1extended 33

Value

a logical character indicating if the trial should be stopped or not.

Examples

```
## Not run:
DLT <- 0
dose <- 20
step_zero <- ewoc_d1classical(DLT ~ dose, type = 'discrete',</pre>
                            theta = 0.33, alpha = 0.25,
                            min_dose = 0, max_dose = 100,
                            dose_set = seq(0, 100, 20),
                            rho_prior = matrix(1, ncol = 2, nrow = 1),
                            mtd_prior = matrix(1, ncol = 2, nrow = 1),
                            rounding = "nearest")
stop_rule_d1classical(step_zero)
response_sim <- response_d1classical(rho = 0.05, mtd = 20, theta = 0.33,
                                   min_dose = 10, max_dose = 50)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                        n_sim = 2, sample_size = 30,
                        alpha_strategy = "conditional",
                        response_sim = response_sim,
                        stop_rule_sim = stop_rule_d1_classical,
                       ncores = 1)
## End(Not run)
```

Description

Generating a stop rule function for EWOC extended model

Usage

```
stop_rule_d1extended(step)
```

Arguments

step

an object from the class 'ewoc_d1extended'.

Details

The stop rule function is evaluated at each step of the trial. It can defined based on any information contained in the object 'step' that is the output from one of the functions ewoc_dlextended'.

34 stop_rule_d1ph

Value

a logical character indicating if the trial should be stopped or not.

Examples

```
## Not run:
DLT <- 0
dose <- 20
step_zero <- ewoc_d1extended(DLT ~ dose, type = 'discrete',</pre>
                            theta = 0.33, alpha = 0.25,
                            min_dose = 0, max_dose = 100,
                            dose_set = seq(0, 100, 20),
                            rho_prior = matrix(1, ncol = 2, nrow = 2),
                            rounding = "nearest")
stop_rule_d1extended(step_zero)
response_sim <- response_d1extended(rho = c(0.05, 0.95),
                                    min_dose = 10, max_dose = 50)
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                        n_sim = 2, sample_size = 30,
                        alpha_strategy = "conditional",
                        response_sim = response_sim,
                        stop_rule_sim = stop_rule_d1extended,
                        ncores = 1)
## End(Not run)
```

stop_rule_d1ph

Generating a stop rule function for EWOC proportional hazards model

Description

Generating a stop rule function for EWOC proportional hazards model

Usage

```
stop_rule_d1ph(step)
```

Arguments

step

an object from the class 'ewoc_d1ph'.

Details

The stop rule function is evaluated at each step of the trial. It can defined based on any information contained in the object 'step' that is the output from one of the functions 'ewoc_d1ph'.

stop_rule_d1ph 35

Value

a logical character indicating if the trial should be stopped or not.

```
## Not run:
time <- 9
status <- 0
dose <- 20
step_zero <- ewoc_d1ph(cbind(time, status) ~ dose, type = 'discrete',</pre>
                      theta = 0.33, alpha = 0.25, tau = 10,
                      min_dose = 20, max_dose = 100,
                      dose_set = seq(20, 100, 20),
                      rho_prior = matrix(1, ncol = 2, nrow = 1),
                      mtd_prior = matrix(1, ncol = 2, nrow = 1),
                      distribution = 'exponential',
                      rounding = 'nearest')
stop_rule_d1ph(step_zero)
response_sim <- response_d1ph(rho = 0.05, mtd = 20, theta = 0.33,
                             min_dose = 10, max_dose = 50,
                             tau = 10, distribution = "exponential")
sim <- ewoc_simulation(step_zero = step_zero,</pre>
                      n_sim = 2, sample_size = 30,
                      alpha_strategy = "conditional",
                      response_sim = response_sim,
                      stop_rule_sim = stop_rule_d1ph,
                      ncores = 1)
## End(Not run)
```

Index

```
accuracy_index, 2
adapt, 9, 11, 13
average_toxicity, 3
dlt_curve_d1classical, 4
dlt_curve_d1extended, 4
dlt_curve_d1ph, 5
dlt_rate, 6, 21
ewoc_d1classical, 7
ewoc_d1extended, 10
ewoc_d1ph, 12
ewoc\_simulation, 14, 21
Formula, 8, 10, 12
inv_standard_dose, 17
logit, 17
mtd_bias, 18, 21
mtd_mse, 19, 21
mtd_rho_d1extended, 20
opc, 20
optimal_mtd, 21, 23
optimal_toxicity, 21, 24
pdlt_d1classical, 25
pdlt_d1extended, 26
pdlt_d1ph, 27
response_d1classical, 28
response_d1extended, 28
response_d1ph, 29
standard_dose, 30
stop_rule, 21, 31
stop_rule_d1classical, 32
stop_rule_d1extended, 33
stop_rule_d1ph, 34
```