Signali i sustavi – Zadaci za aktivnost – Tjedan 10.

Akademska školska godina 2006./2007.

- 1. Nadite model s varijablama stanja SISO LTI sustava II. reda zadanih ulazno izlaznim diferencijalnim jednadžbama.
 - a. $\ddot{y}(t) + 2\dot{y}(t) + 4y(t) = 2u(t)$
 - b. $\ddot{y}(t) 4y(t) = u(t)$

Rješenje:

a)
$$\ddot{y} + 2\ddot{y} + 4\dot{y} = 2m(t)$$
 $x_{1}(t) = y(t)$
 $\dot{x}_{1}(t) = x_{2}(t)$
 $\dot{x}_{2}(t) = y(t)$
 $\dot{x}_{1}(t) = x_{2}(t)$
 $\dot{x}_{2}(t) = -2\dot{y}(t) - 4\dot{y}(t) + 2m(t)$
 $\begin{vmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ -4 & -2 \end{vmatrix} \begin{vmatrix} x_{1} \\ x_{2} \end{vmatrix} + \begin{vmatrix} 0 \\ 2 \end{pmatrix} m(t)$
 $y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} + 0m(t)$

b)
$$ij - 4g = M(t)$$
 $x_{1}(t) = ij(t)$
 $y_{2}(t) = ij(t)$
 $y_{1}(t) = x_{2}(t)$
 $x_{1}(t) = x_{2}(t)$
 $x_{2}(t) = 4g(t)$
 $x_{3}(t) = x_{2}(t)$
 $x_{4}(t) = x_{2}(t)$
 $x_{5}(t) = x_{5}(t)$
 $x_{6}(t) = x_{1}(t)$
 $x_{1}(t) = x_{2}(t)$
 $x_{2}(t) = x_{3}(t)$
 $x_{4}(t) = x_{2}(t)$
 $x_{5}(t) = x_{5}(t)$
 $x_{1}(t) = x_{2}(t)$
 $x_{2}(t) = x_{3}(t)$
 $x_{4}(t) = x_{2}(t)$
 $x_{5}(t) = x_{5}(t)$
 $x_{6}(t) = x_{1}(t)$
 $x_{1}(t) = x_{2}(t)$
 $x_{2}(t) = x_{3}(t)$
 $x_{3}(t) = x_{4}(t)$

2. Nađite ulazno – izlazni model SISO LTI sustava II. reda zadanog modelom s varijablama stanja. Usporedite diferencijalne jednadžbe dobivene pod a. i pod b. Zašto su modeli s varijablama stanja različiti? Dobivene sustave prikažite pomoću blokovskog dijagrama.

a.
$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

b.
$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -2 & 3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 4 \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Rješenje:

Diferencijalne jednadžbe dobivene pod a. i b. dijelom zadatka su jednake. Modeli s varijablama stanja su različiti, jer je na mnogo različitih načina moguće izabrati varijable stanja. Ovdje su u a. slučaju odabrane kao $x_1(t)=y(t)$, a u b. $x_2(t)=y(t)$. (Ovo nije jedini mogući izbor varijabli stanja, više o tome kasnije...)

3. Izračunajte:

- a. Nađite odziv nepobuđenog SISO LTI sustava zadanog modelom s varijablama stanja iz zadatka 2.a. Neka je početno stanje $x(0^-) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
- b. Nađite odziv nepobuđenog SISO LTI sustava zadanog diferencijalnom jednadžbom dobivenom u zadatku 2.a. Neka su početni uvjeti $y(0^-) = 1$, $\dot{y}(0^-) = 0$.
- c. Usporedite rješenja a. i b. dijela zadatka. Je li zadani sustav stabilan?

 $\begin{bmatrix} \dot{x}_{A}(t) \\ \dot{x}_{A}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} X_{A}(t) \\ X_{A}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 4 \end{bmatrix} u(t)$ $y(t)=[1 \ 0] \left[\begin{array}{c} x_n(t) \\ x_n(t) \end{array}\right], \quad C=[1 \ 0], \quad A=\begin{bmatrix} 0 \ 1 \\ 3-2 \end{array}\right]$ $\delta^2 - T_{\Delta} + \Delta = 0$, T = -2, $\Delta = -3$ $\Delta^2 + 2 \Delta - 3 = 0$ $\Delta_{1,2} = \frac{-2 \pm \sqrt{4 + 12}}{2} = \frac{-2 \pm 4}{2} - 1 \pm 2$ $\Delta_1 = \Lambda_1$ $\Delta_2 = -3$ => $\Delta_1 - \Delta_2$ $e^{At} = \begin{bmatrix} \frac{3e^{t}}{4} + \frac{1}{4}e^{-3t} & \frac{1}{4}e^{t} - \frac{1}{4}e^{-3t} \\ \frac{3}{4}e^{t} - \frac{3}{4}e^{-3t} & \frac{1}{4}e^{t} + \frac{3}{4}e^{-3t} \end{bmatrix}$ y(t)= Ce At X(0) = [1 0] e At [1]= $= \begin{bmatrix} \frac{3}{4}e^{t} + \frac{1}{4}e^{-3t} \\ \frac{1}{4}e^{t} - \frac{1}{4}e^{-3t} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{3}{4}e^{t} + \frac{1}{4}e^{-3t}$ $y(t) = \frac{3}{4}e^{t} + \frac{1}{4}e^{-3t}$, t > 0

b)
$$y(0)=0$$
 $y''(t)+2y'(t)-3y(t)=4n(t)$
 $0^{2}+20-3=0$
 $0^{2}+20-3=0$
 $0^{2}+20-3=0$
 $0^{2}+20-3=0$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+20=3$
 $0^{2}+2$

Rješavanje jednadžbi preko matrica je još jedna od metoda rješavanja diferencijalnih jednadžbi i jednadžbi diferencija.

4. Odredite odzive varijabli stanja $x_1(t)$ i $x_2(t)$ nepobuđenog SISO LTI sustava II. reda zadanog varijablama stanja

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -25 & -6 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

uz početne uvjete $\begin{bmatrix} x_1(0^-) \\ x_2(0^-) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Nacrtajte dobivene odzive, kao i trajektoriju stanja.

Rješenje:

$$\frac{(4)}{x_{2}(t)} \begin{bmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -25 & -6 \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \end{bmatrix} = \begin{bmatrix} x_{1}(0) \\ x_{2}(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\frac{\Lambda^{2} - T_{0} + \Lambda}{\Lambda^{2} + 6_{0} + 25} = 0, \quad T = -6_{0}, \quad \Delta = 25$$

$$\Lambda^{2} + 6_{0} + 25 = 0, \quad \Delta_{1,2} = \frac{-6 \pm \sqrt{36 - n_{00}}}{2} = -3 \pm 4j$$

$$x_{1}(t) = \left(\frac{\alpha_{11} - \alpha_{2}}{\alpha_{1} - \alpha_{2}} e^{\alpha_{1}t} + \frac{\alpha_{1} - \alpha_{11}}{\alpha_{1} - \alpha_{2}} e^{\alpha_{2}t}\right) \times n(0^{-}) + 0$$

$$x_{2}(t) = \left(\frac{\alpha_{21}}{\alpha_{1} - \alpha_{2}} e^{\alpha_{1}t} - \frac{\alpha_{21}}{\alpha_{1} - \alpha_{2}} e^{\alpha_{2}t}\right) \times n(0^{-}) + 0$$

$$\lambda_1 - \lambda_2 = -3 + 4\dot{g} + 3 + 4\dot{g} = 8\dot{g}$$

$$\times_1(t) = \frac{4 - 3\dot{g}}{8} e^{(-3 + 4\dot{g})t} + \frac{4 + 3\dot{g}}{8} e^{(-3 - 4\dot{g})t}$$

$$\times_2(t) = \frac{25\dot{g}}{8} e^{(-3 + 4\dot{g})t} + \frac{-25\dot{g}}{8} e^{(-3 - 4\dot{g})t}$$

$$x_1(t) = \frac{e^{-3t}}{4} (3\sin 4t + 4\cos 4t)\mu(t)$$

$$x_2(t) = -\frac{25}{4}e^{-3t}\sin 4t\mu(t)$$

Odziv x_1 :

Odziv x_2 :

Trajektorija:

5. Dan je mirni SISO LTI sustav II. reda:

$$\ddot{y}(t) + 10\dot{y}(t) + 100y(t) = 10u(t)$$

- a. Odredite vlastite frekvencije ovog sustava. Skicirajte ih u koordinatnom sustavu s realnom i imaginarnom osi. Identificirajte stupanj prigušenja i neprigušenu prirodnu frekvenciju. Što možete zaključiti o danom sustavu na temelju stupnja prigušenja?
- b. Nađite odziv na jediničnu stepenicu i skicirajte ga.

Rješenje:

a.

b.

Radi se o mirnom sustavu pa je $y(0^-) = y'(0^-) = 0$, a kako je pobuda $u(t) = \mu(t)$ slijedi $v(0^+) = v'(0^+) = 0$.

Pretpostavljamo partikularno rješenje $y_p(t) = K\mu(t)$ i uvrštavanjem u zadanu jednadžbu dobivamo $100K\mu(t) = 10\mu(t)$, odakle je $K = \frac{1}{10}$.

Sada imamo...

$$y(t) = e^{-5t} \left(C_1 e^{5\sqrt{3}jt} + C_2 e^{-5\sqrt{3}jt} \right) + \frac{1}{10} \mu(t)$$

$$y'(t) = e^{-5t} \left[5C_1 e^{5\sqrt{3}jt} \left(\sqrt{3}j - 1 \right) - 5C_2 e^{-5\sqrt{3}jt} \left(\sqrt{3}j + 1 \right) \right] + \frac{1}{10} \delta(t)$$

Koristeći početne uvjete dobivamo sustav jednadžbi

$$C_1 + C_2 = -\frac{1}{10},$$

 $C_1(\sqrt{3}j - 1) = C_2(\sqrt{3}j + 1),$

čija su rješenja
$$C_1 = -\frac{1}{20} + \frac{\sqrt{3}}{60} j$$
 i $C_2 = -\frac{1}{20} - \frac{\sqrt{3}}{60} j$.

Konačno dolazimo do odziva...

$$y(t) = e^{-5t} \left[-\frac{1}{20} \left(e^{5\sqrt{3}jt} + e^{-5\sqrt{3}jt} \right) + \frac{\sqrt{3}}{60} j \left(e^{5\sqrt{3}jt} - e^{-5\sqrt{3}jt} \right) \right] + \frac{1}{10} \mu(t)$$

$$y(t) = e^{-5t} \left(-\frac{1}{10} \cos 5\sqrt{3}t - \frac{\sqrt{3}}{30} \sin 5\sqrt{3}t \right) + \frac{1}{10} \mu(t)$$

Skica odziva:

6. Za mirni SISO sustav iz 5. zadatka $\ddot{y}(t)+10\dot{y}(t)+100y(t)=10u(t)$ odredite odziv kada $t\to\infty$ na pobudu $u(t)=\cos(10t)\cdot\mu(t)$.

Rješenje:

Već imamo
$$y_h(t) = e^{-5t} \left(C_1 e^{5\sqrt{3}jt} + C_2 e^{-5\sqrt{3}jt} \right)$$
.

Pretpostavljamo partikularno rješenje oblika $y_p(t) = (A \sin 10t + B \cos 10t)\mu(t)$.

Imamo derivacije za t > 0:

$$y_p'(t) = 10(A\cos 10t - B\sin 10t)$$

 $y_p''(t) = -100(A\sin 10t + B\cos 10t) = -100y_p(t)$

Uvrštavanjem u početnu jednadžbu dobivamo

$$10y_{p}'(t) = 10\cos 10t$$

$$100(A\cos 10t - B\sin 10t) = 10\cos 10t$$

odakle je
$$A = \frac{1}{10}$$
 i $B = 0$.

Sada imamo:

$$y(t) = e^{-5t} \left(C_1 e^{5\sqrt{3}jt} + C_2 e^{-5\sqrt{3}jt} \right) + \frac{1}{10} \sin 10t \cdot \mu(t)$$

$$y'(t) = e^{-5t} \left[5C_1 e^{5\sqrt{3}jt} \left(\sqrt{3}j - 1 \right) - 5C_2 e^{-5\sqrt{3}jt} \left(\sqrt{3}j + 1 \right) \right] + \cos 10t \cdot \mu(t) + \frac{1}{10} \sin 10t \cdot \delta(t)$$

Koristeći iste početne uvjete kao u 5. zadatku dobijemo sustav jednadžbi

$$C_1 + C_2 = 0$$
,
 $5C_1(\sqrt{3}j - 1) + 1 = 5C_2(\sqrt{3}j + 1)$,

čija su rješenja $C_1 = \frac{\sqrt{3}}{30} j$ i $C_2 = -\frac{\sqrt{3}}{30} j$.

Konačno, uvrštavanjem i sređivanjem dobijemo odziv $y(t) = -\frac{\sqrt{3}}{15}e^{-5t}\sin 5\sqrt{3}t + \frac{1}{10}\sin 10t \cdot \mu(t)$.

Odziv kada $t \to +\infty$ zbog padajuće eksponencijale je zapravo $\lim_{t \to +\infty} y(t) = \frac{1}{10} \sin 10t$.

Primijetite da kada $t \to \infty$ više ne postoji homogeni dio rješenja, tj. mogli smo i bez poznavanja konstanti C_1 i C_2 odrediti odziv u $t \to \infty$.

- 7. Zadan je mirni SISO LTI sustav $\ddot{y}(t) + 100y(t) = 10u(t)$.
 - a. Nađite impulsni odziv ovog sustava.
 - b. Nađite odziv na pobudu $u(t) = \sin(10t)\mu(t)$ koristeći konvoluciju.
 - c. Skicirajte odziv. Kako se naziva dobivena pojava? Kada dolazi do nje?

Rješenje:

a) Nađite impulsni odziv ovog sustava.

Kako se radi o mirnom sustavu, a pobuda je
$$u(t) = \delta(t)$$
, iz $y(0^-) = y'(0^-) = 0$ slijedi $y(0^+) = y(0^-) = 0$ i $y'(0^+) = 10\delta(0) = 10$.

Karakteristična jednadžba $s^2 + 100 = 0$ ima rješenja $s_{1,2} = \pm 10j$.

Imamo oblik homogenog rješenja $y_h(t) = C_1 e^{10jt} + C_2 e^{-10jt}$.

Odavde je
$$y_h'(t) = 10 j C_1 e^{10 j t} - 10 j C_2 e^{-10 j t}$$
.

Za $t>0\,$ dana diferencijalna jednadžba je homogena, pa iz početnih uvjeta možemo odrediti konstante C_1 i C_2 . Dobijemo sustav jednadžbi

$$\begin{split} &C_1 + C_2 = 0 \;, \\ &10 \, j \big(C_1 - C_2 \big) = 10 \;, \end{split}$$

čija su rješenja $C_1 = -\frac{1}{2}j$ i $C_2 = \frac{1}{2}j$.

Dakle,
$$y_h(t) = -\frac{1}{2} j e^{10jt} + \frac{1}{2} j e^{-10jt} = -j^2 \frac{1}{2j} (e^{10jt} - e^{-10jt}) = \sin 10t$$
.

Impulsni odziv je $h(t) = \sin 10t$, $t \ge 0$.

b) Nađite odziv na pobudu $u(t) = \sin 10t \cdot \mu(t)$ koristeći konvoluciju.

Odziv na danu pobudu je $y_1(t) = h(t) * u(t)$.

$$y_{1}(t) = \int_{-\infty}^{t} h(t-\tau)u(\tau)d\tau = \int_{0}^{t} \sin(10t-10\tau)\sin 10\tau d\tau$$

$$y_{1}(t) = \frac{1}{2} \int_{0}^{t} \cos(10t-10\tau-10\tau)d\tau - \frac{1}{2} \int_{0}^{t} \cos(10t-10\tau+10\tau)d\tau$$

$$y_{1}(t) = \frac{1}{2} \int_{0}^{t} \cos(20\tau-10t)d\tau - \frac{1}{2} \cos 10t \int_{0}^{t} d\tau$$

$$y_{1}(t) = \frac{1}{2} \frac{1}{20} \sin(20\tau-10t)\Big|_{0}^{t} - \frac{1}{2}t \cos 10t$$

$$y_{1}(t) = \frac{1}{40} \sin 10t - \frac{1}{40} \sin(-10t) - \frac{1}{2}t \cos 10t$$

$$y_{1}(t) = \frac{1}{20} \sin 10t - \frac{1}{2}t \cos 10t$$

SIGNALI I SUSTAVI - AKTIVNOST - TJEDAN 11

c) Skicirajte odziv. Kako se naziva dobivena pojava? Kada dolazi do nje?

Dobivena pojava je rezonancija, a javlja se kada je frekvencija pobude jednaka vlastitoj frekvenciji sustava.

- 8. Idealni Hilbertov transformator je linearni stacionarni sustav koji na pobudu $u(t) = \cos(\omega_0 t)$ daje odziv $y(t) = \sin(\omega_0 t)$, za svaki $\omega_0 \ge 0$.
 - a. Nađite diferencijalnu jednadžbu koja opisuje ovaj sustav.
 - b. Nađite odziv ovog sustava na pobude $u(t) = e^{j\omega_0 t}$, $u(t) = e^{-j\omega_0 t}$ te $u(t) = \sin \omega_0 t$.

Rješenje:

(8)
$$u(t) = \cos(\omega_0 t)$$
 $y(t) = \sin(\omega_0 t)$
 $y'(t) = \omega_0 \cdot \cos(\omega_0 t)$
 $y'(t) = \omega_0 \cdot u(t)$
 $y'(t) = \int_0^{\infty} u(t) dt = \int_0^{\infty} u(u_0 t) + \int_0^{\infty} \sin(\omega_0 t) dt$
 $y'(t) = \int_0^{\infty} u(t) dt = \int_0^{\infty} u(u_0 t) + \int_0^{\infty} \sin(\omega_0 t) dt$

III. $u(t) = \sin(\omega_0 t)$
 $y(t) = \int_0^{\infty} u(t) dt = \sin(\omega_0 t)$

III. $u(t) = \sin(\omega_0 t)$
 $y'(t) = \int_0^{\infty} u(t) dt = \cos(\omega_0 t)$

III. $u(t) = \sin(\omega_0 t)$
 $y'(t) = \int_0^{\infty} u(t) dt = \cos(\omega_0 t)$