Assignment V

November 16, 2012

EXERCISE 1

Show from first principles that if f^1 , f^2 ,..., $f^k : \mathbb{R} \to \mathbb{R}$ are convex (concave) functions with the same domain, and if ω_1 ,..., ω_k are non-negative scalars, then the function $\omega_1 f^1 + ... + \omega_k f^k$ is also convex (concave).

Proof. Given f^1 , f^2 ,..., f^k as convex functions and ω_1 ,..., ω_k as non-negative scalars, we need to show that $\omega_1 f^1$ +...+ $\omega_k f^k$ is also convex; that is,

$$\sum_{i=1}^{k} \omega_i f_i$$

is a convex function.

Using first principles, we consider a linear combination $\lambda x + (1 - \lambda)y$ where $\lambda \in [0,1], x, y \in$ the domain of all f^k .

$$\begin{split} f(\lambda x + (1 - \lambda)y &= \sum_{i=1}^k \omega_i f_i (\lambda x + (1 - \lambda)y) \\ &\leq \sum_{i=1}^k \omega_i (\lambda f_i(x) + (1 - \lambda) f_i(y)) \\ &= \lambda \sum_{i=1}^k \omega_i f_i(x) = (1 - \lambda) \sum_{i=1}^k \omega f_i(y) \\ &= \lambda f(x) + (1 - \lambda) f(x). \end{split}$$

Thus we have shown that convexity holds under this operation.

EXERCISE 2

A) Let $f(x) : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Show that for any $\alpha \in \mathbb{R}$ the set $\{x \in \mathbb{R} : f(x) \le \alpha\}$ is a convex set.

Proof. Let f(x) be convex, where $f(x) : \mathbb{R} \to \mathbb{R}$. Let $\alpha \in \mathbb{R}$. Let $\lambda \in [0,1]$. Consider the set $\{x \in \mathbb{R} : f(x) \le \alpha\}$.

Take two vectors from this set: let $\mathbf{a} = (x_1, ..., x_n)$, let $\mathbf{b} = (w_1, ..., w_n) \in \{x \in \mathbb{R} : f(x) \le \alpha\}$, such that $f(x_1, ..., x_n) < y$, and $f(w_1, ..., w_n) < v$.

We NTS that the convex combination of these two vectors is still within the set; we check directly by considering $\lambda(x_1,\ldots,x_n)+(1-\lambda)(w_1,\ldots,w_n)$. By distributing and grouping we get the vector $t=\lambda x_1+(1-\lambda)w_1+\cdots+x_n+(1-\lambda)(w_1,\ldots,w_n)$.

Recall from lecture the general form for convex functions:

$$f(\lambda(a) + (1 - \lambda b) \le \lambda f(a) = (1 - \lambda) f(b).$$

In our instance, and since $f(a) \le y$ and $f(b) \le v$, we write

$$f(\lambda x_1 + (1 - \lambda)w_1 + \dots \lambda x_n + (1 - \lambda)w_n) \le \lambda f(x_1, \dots, x_n) + (1 - \lambda)f(w_1, \dots, w_n) \le \lambda y + (1 - \lambda)v.$$

B) Show that the converse is not true. Give an example of a non-convex function with the above sets for every α convex.

Proof. As a counterexample consider the non-concave function $f(x) = -e^x$, of which the epigraph is convex.

EXERCISE

The geometric mean function is $f(x_1,x_2,...,x_n)=\left(\Pi_{i=1}^n\right)^{\frac{1}{n}}$ defined on the positive orthant $\mathbb{R}^n_{>0}=(x_1,...,x_n): x_i>0, i=1,...,n$. Show that this function is concave by computing its Hessian and using similar methods as in the case of log-sum-exp function.

Proof. The Hessian of the geometric mean function is $\nabla^2 f(x) = \partial^2 f(x)$