Homodyne receiver

April 12, 2017

This block of code simulates the reception and demodulation of an optical signal (which is the input signal of the system) outputing a binary signal. A simplified schematic representation of this block is shown in figure 1.

Figure 1: Basic configuration of the MQAM receiver

Functional description

This block accepts one optical input signal and outputs one binary signal that corresponds to the M-QAM demodulation of the input signal. It is a complex block (as it can be seen from figure 2) of code made up of several simpler blocks whose description can be found in the *lib* repository.

In can also be seen from figure 2 that there's an extra internal (generated inside the homodyne receiver block) input signal generated by the *Clock*. This block is used to provide the sampling frequency to the *Sampler*.

Figure 2: Schematic representation of the block homodyne receiver.

Input parameters

This block has some input parameters that can be manipulated by the user in order oto change the basic configuration of the receiver. Each parameter has associated a function that allows for its change. In the following table (table 1) the input parameters and corresponding functions are summarized.

Input parameters	Function	Type	Accepted values
IQ amplitudes	${\it set} {\it Iq} Amplitudes$	Vector of coordinate points in the I-Q plane	Example for a 4-qam mapping: { { 1.0, 1.0 }, { -1.0, 1.0 }, { 1.0, -1.0 }, }
Local oscillator power (in dBm)	$setLocalOscillatorOpticalPower_dBm$	double(t_real)	Any double greater than zero
Local oscillator phase	setLocalOscillatorPhase	double(t_real)	Any double greater than zero
Responsivity of the photodiodes	setResponsivity	double(t_real)	∈ [0,1]
Amplification (of the TI amplifier)	setAmplification	double(t_real)	Positive real number
Noise amplitude (introduced by the TI amplifier)	${\bf set Noise Amplitude}$	double(t_real)	Real number greater than zero
Samples to skipe	setSamplesToSkip	$int(t_integer)$	
Save internal signals	setSaveInternalSignals	bool	True or False
Sampling period	setSamplingPeriod	double	Givem by $symbolPe-riod/samplesPerSymbol$

Table 1: List of input parameters of the block MQAM receiver

Methods

```
HomodyneReceiver(vector<Signal *> &inputSignal, vector<Signal *> &outputSignal) (constructor)
void setIqAmplitudes(vector<t_iqValues> iqAmplitudesValues)
vector<t_iqValues> const getIqAmplitudes(void)
void setLocalOscillatorSamplingPeriod(double sPeriod)
void setLocalOscillatorOpticalPower(double opticalPower)
void setLocalOscillatorOpticalPower_dBm(double opticalPower_dBm)
void setLocalOscillatorPhase(double lOscillatorPhase)
void\ set Local Oscillator Optical Wavelength (double\ lOscillator Wavelength)
void setSamplingPeriod(double sPeriod)
void setResponsivity(t_real Responsivity)
void setAmplification(t_real Amplification)
void setNoiseAmplitude(t_real NoiseAmplitude)
void setImpulseResponseTimeLength(int impResponseTimeLength)
void setFilterType(PulseShaperFilter fType)
void setRollOffFactor(double rOffFactor)
void setClockPeriod(double per)
void\ setSamplesToSkip(int\ sToSkip)
```

Input Signals

Number: 1

Type: Optical signal

Output Signals

Number: 1

Type: Binary signal

Example

Sugestions for future improvement