SAD 2022Z

Część 2 Projektu

Termin oddania 13 czerwca 2022

Efektem projektu powinien być raport w formacie pdf. Dla każdego problemu powinien on zawierać trzy elementy:

- a) Metodę rozwiązania problemu
- b) Otrzymane wyniki zaprezentowane w przejrzystej formie
- c) Interpretacja wyników i/lub komentarze i/lub wnioski

Wraz z raportem należy też przekazać kody źródłowe.

Problem 1 (estymacja)

Zadanie dotyczy analizy jakości estymatora największej wiarygodności parametru λ rozkładu wykładniczego. Przyjąć λ równe numerowi zespołu podzielonemu przez 2.

1. Za pomocą symulacji komputerowych proszę zbadać <u>wariancję i obciążenie</u> estymatora parametru λ w zależności od liczności próby n. Wariancję estymatora należy odnieść do kresu Cramera-Rao.

Wynikiem powinny być więc przynajmniej 2 wykresy:

- a. zależność obciążenia od liczności próby n,
- b. zależność wariancji i kresu C-R od liczności próby n.

Podczas interpretacji wyników proszę odnieść się do teorii, zgodnie z którą estymator największej wiarygodności jest zgodny, a jego wariancja zbiega do kresu Cramera-Rao gdy liczność próby rośnie.

- Wskazówka: do generacji prób losowych można użyć funkcji rexp ().
- 2. Proszę zilustrować asymptotyczną normalność estymatora dla rosnącego rozmiaru próby losowej *n*.

Problem 2 (weryfikacja hipotez statystycznych)

Rozważmy problem weryfikacji niezerowości wartości oczekiwanej w gaussowskiej próbie losowej o nieznanej wariancji, tzn,:

$$H_0$$
: $\mu_X = 0$

$$H_1: \mu_X \neq 0$$

dla próby losowej $X_1,...,X_n$ takiej, że każdy jej element $X_i \sim N(\mu_X, \sigma_X^2)$ dla pewnej nieznanej wariancji.

Proszę zaproponować właściwy test i za pomocą symulacji komputerowych zbadać dla poziomu istotności α =0.01 i różnych wartości n, μ_X oraz σ_X :

- a) czy poziom istotności jest zgodny z zakładanym poziomem
- b) jaka jest moc testu (istotna jest logiczna interpretacja zależności mocy od n, μ_X oraz σ_X ; proszę uwzględnić, że moc testu można tu interpretować jako zdolność wiarygodnego wykrycia niezerowości wartości oczekiwanej μ_X).