Math 3070, Applied Statistics

Section 1

November 11, 2019

Lecture Outline, 11/11

Section 8.1

- Z-Tests for Proportion
- ullet T-Tests for Population Mean with unknown σ

Large-Sample z Test for Proportion

Given a random sample from a Bernoulli distribution with unknown parameter p, the z test for the null hypothesis $H_0: p=p_0$ based on the test statistic $Z=\frac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}}$ is given by the following rejection region:

Alternative hypothesis		Rejection region
(Upper-tailed test)	$H_a: p > p_0$	$Z \geq z_{\alpha}$
(Lower-tailed test)	$H_a : p < p_0$	$Z \leq -z_{\alpha}$
(Two-tailed test)	$H_a: p \neq p_0$	$ Z \ge z_{\alpha/2}$

Here α is the nominal significance level, and z_{α} is a critical value from the standard normal distribution.

We are given a coin which someone suggests may give outcomes with unequal proportions when we spin it on a table. We test this by spinning the coin 80 times. If we observe 54 heads, do we reject the null hypothesis at the $\alpha=.01$ significance level?

We will use a large-sample z test for the null hypothesis $H_0: p=\frac{1}{2}$ against the alternative $H_0: p\neq \frac{1}{2}$. The test statistic is

$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} = \frac{\frac{54}{80} - \frac{1}{2}}{\sqrt{\frac{1}{2}(1 - \frac{1}{2})/80}} = 3.13$$

The rejection region is $\{|Z|>z_{\alpha/2}\}$ where $z_{\alpha/2}=z_{.005}=2.58$. Since |Z|=3.13>2.58, we reject the null hypothesis.

In other words, the test provides strong evidence that the coin indeed gives heads more often than tails when spun.

We are given a coin which someone suggests may give outcomes with unequal proportions when we spin it on a table. We test this by spinning the coin 80 times. If we observe 54 heads, what is the P-value of the test?

Again, we are using a large-sample z test for the null hypothesis $H_0: p=\frac{1}{2}$ against the alternative $H_0: p\neq \frac{1}{2}$. We already calculated the test statistic:

$$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}} = \frac{\frac{54}{80} - \frac{1}{2}}{\sqrt{\frac{1}{2}(1 - \frac{1}{2})/80}} = 3.13$$

The P-value is the probability that we would observe a value of Z this extreme (i.e., a value of Z with $|Z| \ge 3.13$):

$$P = P(|Z| \ge 3.13) = 2\Phi(-3.13) \approx 2(.0009) = .0018$$

Given a random sample X_1, \ldots, X_n from a normal distribution with unknown standard deviation, the t test for the null hypothesis $H_0: \mu = \mu_0$, based on the test statistic $T = \frac{X - \mu_0}{S / \sqrt{n}}$, is given by the following rejection region:

Alternative hypothesis		Rejection region
(Upper-tailed test)	$H_{a}:\mu>\mu_{0}$	$T \geq t_{\alpha,n-1}$
(Lower-tailed test)	H_{a} : $\mu < \mu_{0}$	$T \leq -t_{\alpha,n-1}$
(Two-tailed test)	H_{a} : $\mu eq \mu_{0}$	$ T \ge t_{\alpha/2,n-1}$

Here α is the significance level (Type I error probability), and $t_{\alpha,n-1}$ is a critical value from the t distribution with n-1 degrees of freedom.

A type of candy bar is labeled 60 grams. Someone suggests that the candy bars weigh less than specified. To test this, we gather a random sample of size 5 and observe $\overline{X}=58.8$ and S=0.9. Do we reject the null hypothesis $H_0:\mu=60$ at the significance level $\alpha=.01$?

We use the t test with the one-tailed alternative H_a : μ < 60. The test statistic is

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} = \frac{58.8 - 60}{0.9/\sqrt{5}} = -2.98$$

The critical value is $t_{\alpha,n-1}=t_{.01,4}=3.747$. The rejection region is $\{T<-3.747\}$, whereas in our sample T=-2.98>-3.747, so we do not reject the null hypothesis.

In other words, the data does *not* allow us to conclude that the average weight of the candy bars is less than specified.

A type of candy bar is labeled 60 grams. Someone suggests that the candy bars weigh less than specified. To test this, we gather a random sample of size 5 and observe $\overline{X}=58.8$ and S=0.9. What is the P-value for the test?

We use the t test with the one-tailed alternative H_a : μ < 60. As before, the test statistic is

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} = \frac{58.9 - 60}{0.9/\sqrt{5}} = -2.98$$

We use a table to find the probability of observing a value for \mathcal{T} at least this extreme:

$$P = P(T \le -2.98) \approx .020$$

So P = .020 is the P-value for the test.

Summary

 $\alpha=$ probability of Type I error, that H_0 is true but is rejected $\beta=$ probability of a Type II error, that H_0 is false but is not rejected P= P-value = smallest α for which the test would reject H_0

Test	Null Hypothesis	Test Statistic
z test	$H_0: \mu = \mu_0$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$
t test	$H_0: \mu = \mu_0$	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$
z test for a proportion	$H_0: p=p_0$	$Z = \frac{\hat{p} - p_0}{\sqrt{p_0(1 - p_0)/n}}$

Alternative hypothesis		P-value for z test
(Upper-tailed test)	$H_a: \mu > \mu_0$	$P(Z \geq z)$
(Lower-tailed test)	$H_{a}:\mu<\mu_{0}$	$P(Z \leq z)$
(Two-tailed test)	$H_{a}:\mu eq\mu_{0}$	$P(Z \ge z)$

Given a fixed significance level α , we reject H_0 if and only if $P \leq \alpha$. Here, $z \sim N(0,1)$.

Alternative hypothesis		P-value for z test
(Upper-tailed test)	$H_{a}:\mu>\mu_0$	$P(T \ge t)$
(Lower-tailed test)	$H_{a}:\mu<\mu_{0}$	$P(T \leq t)$
(Two-tailed test)	$H_{a}:\mu eq\mu_{0}$	$P(T \geq t)$

Given a fixed significance level α , we reject H_0 if and only if $P \leq \alpha$. Here, $t \sim t(n-1)$.