Math 320 Final Notes - Week 6

Christopher Kapic

December 2020

3.2 - Open and Closed Sets

Definition 1 (open). A set $O \subseteq \mathbb{R}$ is open if for all points $a \in O$ there exists an ϵ -neighborhood $V_{\epsilon}(a) \subseteq O$.

Theorem 1 (3.2.3). (i) The union of an arbitrary collection of open sets is open.

(ii) The intersection of a finite collection of open sets is open.

Definition 2 (limit point). A point x is a limit point of a set A if every ϵ -neighborhood $V_{\epsilon}(x)$ of x intersects the set A at some point other than x.

Theorem 2 (3.2.5). A point x is a limit point of a set A if and only if $x = \lim a_n$ for some sequence (a_n) contained in A satisfying $a_n \neq x$ for all $n \in \mathbb{N}$.

Definition 3 (isolated point). A point $a \in A$ is an isolated point of A if it is not a limit point of A.

Definition 4 (closed). A set $F \subseteq \mathbb{R}$ is closed if it contains its limit points.

Theorem 3 (3.2.8). A set $F \subseteq \mathbb{R}$ is closed if and only if every Cauchy sequence contained in F has a limit that is also an element of F.

Theorem 4 (Density of \mathbb{Q} in \mathbb{R}). For every $y \in \mathbb{R}$, there exists a sequence of rational numbers that converges to y.

Definition 5 (closure). Given a set $A \subseteq \mathbb{R}$, let L be the set of all limit points of A. The closure of A is defined to be $\overline{A} = A \cup L$.

Theorem 5 (3.2.12). For any $A \subseteq \mathbb{R}$, the closure \overline{A} is a closed set and is the smallest closed set containing A.

Theorem 6 (3.2.13). A set O is open if and only if O^c is closed. Likewise, a set F is closed if and only if F^c is open.

Theorem 7 (3.2.14). (i) The union of a finite collection of closed sets is closed.

(ii) The intersection of an arbitrary collection of closed sets is closed.

3.3 - Compact Sets

Definition 6 (compactness). A set $K \subseteq \mathbb{R}$ is compact if every sequence in K has a subsequence that converges to a limit that is also in K.

Definition 7 (bounded). A set $A \subseteq \mathbb{R}$ is bounded if there exists M > 0 such that $|a| \leq M$ for all $a \in A$.

Theorem 8 (Characterization of Compactness in \mathbb{R} - 3.3.4). A set $K \subseteq \mathbb{R}$ is compact if and only if it is closed and bounded.

Proof on page 96.

Theorem 9 (Nested Compact Set Property - 3.3.5). If

$$K_1 \supseteq K_2 \supseteq K_3 \supseteq K_4 \supseteq \dots$$

is a nested sequence of nonempty compact sets, then the intersection $\bigcap_{n=1}^{\infty} K_n$ is not empty. Proof on page 97.

Definition 8 (open cover, finite subcover). Let $A \subseteq \mathbb{R}$. An open cover for A is a (possibly infinite) collection of open sets $\{O_{\lambda} : \lambda \in \Lambda\}$ whose union contains the set A; that is, $A \subseteq \bigcup_{\lambda \in \Lambda} O_{\lambda}$. Given an open cover for A, a finite subcover is a finite subcollection of open sets from the original open cover whose union still manages to completely contain A.

Theorem 10 (Heine-Borel Theorem - 3.3.8). Let K be a subset of \mathbb{R} . All of the following statements are equivalent in the sense that any one of them implies the two others:

- (i) K is compact.
- (ii) K is closed and bounded.
- (iii) Every open cover for K has a finite subcover.

Proof on page 98.

3.4 - Perfect Sets and Connected Sets

Definition 9 (perfect). A set $P \subseteq \mathbb{R}$ is perfect if it is closed and contains no isolated points.

Theorem 11 (3.4.3). A nonempty perfect set is uncountable. Proof on page 102.

Definition 10 (separated, disconnected, connected). Two nonempty sets $A, B \subseteq \mathbb{R}$ are separated if $\overline{A} \cap B$ and $A \cap \overline{B}$ are both empty. A set $E \subseteq \mathbb{R}$ is disconnected if it can be written as $E = A \cup B$, where A and B are nonempty separated sets.

A set that is not disconnected is called a connected set.

Theorem 12 (3.4.6). A set $E \subseteq \mathbb{R}$ is connected if and only if, for all nonempty disjoint sets A and B satisfying $E = A \cup B$, there always exists a convergent sequence $(x_n) \to x$ with (x_n) contained in one of A or B, and x an element of the other.

Proof on page 104.

Theorem 13 (3.4.7). A set $E \subseteq \mathbb{R}$ is connected if and only if whenever a < c < b with $a, b \in E$, it follows that $c \in E$ as well.

Proof on page 105.