MLE Sheet-2

May 2025

Exercise 3: Statistical Darts

Task 5

We model the dart thrower's aiming point $\mu \in \mathbb{R}^2$ as a latent variable with:

- Likelihood: $p(x_i|\mu) = \mathcal{N}(\mu, \Sigma_{\text{true}})$ (Gaussian throws around μ)
- **Prior**: $p(\mu) = \mathcal{N}(\mu_0, \Sigma_0)$ (Gaussian belief about μ before seeing data)

The **posterior distribution** after observing N throws is Gaussian:

$$p(\mu|\{x_i\}) = \mathcal{N}(\mu_{\text{post}}, \Sigma_{\text{post}}), \tag{1}$$

where:

$$\Sigma_{\text{post}} = \left(\Sigma_0^{-1} + N \Sigma_{\text{true}}^{-1}\right)^{-1},\tag{2}$$

$$\mu_{\text{post}} = \Sigma_{\text{post}} \left(\Sigma_0^{-1} \mu_0 + N \Sigma_{\text{true}}^{-1} \hat{\mu}_{\text{MLE}} \right). \tag{3}$$

Here, $\hat{\mu}_{\text{MLE}} = \frac{1}{N} \sum_{i=1}^{N} x_i$ is the MLE estimate.

Role of the Prior

The prior influences the posterior through Σ_0 (prior covariance) and μ_0 (prior mean). We analyze three cases:

0.1 Strong (Concentrated) Prior

- **Prior**: $\Sigma_0 \to 0$ (e.g., $\Sigma_0 = \epsilon I$, $\epsilon \ll 1$)
- Posterior:

$$\Sigma_{\rm post} \approx \Sigma_0$$

$$\mu_{\rm post} \approx \mu_0$$

• Interpretation: The coach is highly confident that $\mu \approx \mu_0$. Data must be overwhelming to shift μ_{post} away from μ_0 .

0.2 Weak (Diffuse) Prior

- Prior: $\Sigma_0 \to \infty$ (e.g., $\Sigma_0 = kI, k \gg 1$)
- Posterior:

$$\Sigma_{
m post} pprox rac{\Sigma_{
m true}}{N}$$
 $\mu_{
m post} pprox \hat{\mu}_{
m MLE}$

• Interpretation: The coach has minimal preconceptions about μ . Inference reduces to MLE-like behavior.

0.3 Non-Informative Prior

- **Prior**: $\Sigma_0^{-1} \to 0$ (improper prior, $p(\mu) \propto 1$)
- Posterior:

$$\Sigma_{\mathrm{post}} = \frac{\Sigma_{\mathrm{true}}}{N}$$

• Interpretation: Mathematically equivalent to MLE. No regularization; entirely data-driven.

Contrast with MLE

• MLE:

$$\begin{split} \hat{\mu}_{\mathrm{MLE}} &= \mathrm{argmax}_{\mu} \, p(\{x_i\} | \mu) \\ E[\hat{\mu}_{\mathrm{MLE}}] &= \mu_{\mathrm{true}} \\ \mathrm{Cov}(\hat{\mu}_{\mathrm{MLE}}) &= \frac{\Sigma_{\mathrm{true}}}{N} \end{split}$$

Limitation: No mechanism to incorporate prior knowledge.

- Bayesian Inference:
 - Estimate: μ_{post} balances prior (μ_0) and data $(\hat{\mu}_{\text{MLE}})$
 - Uncertainty: $\Sigma_{\rm post}$ combines prior and data precision
 - Advantage: Naturally regularizes for small N

Implications

- Strong Prior:
 - Use for beginners expected to aim at bullseye
 - Conservative corrections; resists overreacting
- Weak Prior:
 - Use for experienced players with unique styles
 - Quickly adapts to observed throws
- Non-Informative Prior:
 - Fully data-driven coaching
 - Equivalent to MLE

Theoretical Takeaways

- 1. Prior as Regularization: Shrinks μ_{post} toward μ_0
- 2. Uncertainty Quantification: Σ_{post} reflects total uncertainty
- 3. Asymptotic Behavior: As $N \to \infty$, $\mu_{\text{post}} \to \hat{\mu}_{\text{MLE}}$
- 4. Bias-Variance Tradeoff:
 - Strong prior \Rightarrow low variance, high bias
 - Weak prior ⇒ high variance, low bias

Task 6

Conditions for Coincidence

From the posterior mean expression:

$$\mu_{\text{post}} = \Sigma_{\text{post}} \left(\Sigma_0^{-1} \mu_0 + N \Sigma_{\text{true}}^{-1} \hat{\mu}_{\text{MLE}} \right), \tag{4}$$

where $\Sigma_{\text{post}} = (\Sigma_0^{-1} + N \Sigma_{\text{true}}^{-1})^{-1}$, the **MAP estimate** (μ_{post}) coincides with the **MLE estimate** $(\hat{\mu}_{\text{MLE}})$ under two conditions:

- 1. Non-Informative Prior $(\Sigma_0^{-1} \to 0)$
 - Interpretation: The prior carries no weight (infinite variance).
 - Effect:
 - $\Sigma_0^{-1} \to 0$ cancels the prior term in $\mu_{\rm post}$
 - Posterior mean reduces to:

$$\mu_{\text{post}} = \left(N\Sigma_{\text{true}}^{-1}\right)^{-1} \left(N\Sigma_{\text{true}}^{-1}\hat{\mu}_{\text{MLE}}\right) = \hat{\mu}_{\text{MLE}} \tag{5}$$

• Intuition: With no prior influence, inference relies entirely on data.

2. Infinite Data $(N \to \infty)$

- Interpretation: The data dominates the prior.
- Effect:
 - The term $N\Sigma_{\text{true}}^{-1}$ overwhelms Σ_0^{-1} in Σ_{post} :

$$\Sigma_{\rm post} \approx \left(N\Sigma_{\rm true}^{-1}\right)^{-1} = \frac{\Sigma_{\rm true}}{N}$$
 (6)

- Posterior mean becomes:

$$\mu_{\text{post}} \approx \frac{\Sigma_{\text{true}}}{N} \left(N \Sigma_{\text{true}}^{-1} \hat{\mu}_{\text{MLE}} \right) = \hat{\mu}_{\text{MLE}}$$
 (7)

• Intuition: Even a strong prior is overridden by sufficient data.

Key Observations

- 1. Prior Irrelevance:
 - \bullet In both cases, the prior term $\Sigma_0^{-1}\mu_0$ vanishes in $\mu_{\rm post}$
 - The MLE (pure data-driven estimate) emerges as the limiting case

2. Uncertainty:

• Under these conditions, $\Sigma_{\rm post} \to \frac{\Sigma_{\rm true}}{N}$, matching the MLE's asymptotic covariance

3. Practical Implications:

- For small N, MAP and MLE diverge unless the prior is non-informative
- \bullet For large N, all reasonable estimators (MLE, MAP, posterior mean) converge

Task 7

Medical Diagnosis

- Scenario: Predicting patient disease risk from medical test results
- Why Uncertainty Matters:
 - False positives/negatives have serious consequences
 - Uncertainty estimates help clinicians:
 - * Determine if additional tests are needed
 - * Assess confidence in treatment decisions
 - * Communicate risk probabilities to patients
- Example: A cancer prediction model with 60% confidence requires different follow-up than one with 95% confidence

Autonomous Vehicle Navigation

- Scenario: Real-time object detection and path planning
- Why Uncertainty Matters:
 - Safety-critical decisions require reliability estimates
 - High uncertainty triggers:
 - * Reduced vehicle speed
 - * Request for human intervention
 - * Alternative sensor verification
- \bullet **Example**: A pedestrian detection with 80% uncertainty should cause more caution than one with 5% uncertainty