Physics 401. Set 1

(Each problem has equal weight.)
Due date: January 16. 2023

4th. Edition. Problems: 1.16, 1.21, 1.22, 1.39, 1.49, 1.64, 8.1, 8.2, 8.6

A. Practice with complex numbers:

Every complex number z can be written in the form z = x + iy where x and y are real; we call x the real part of z, written x = Re z, and likewise y is the imaginary part of z, y = Im z. We further define the complex conjugate of z as $z^* \equiv x - iy$.

a) Prove the following relations that hold for any complex numbers z, z_1 and z_2 :

$$\operatorname{Re} z = \frac{1}{2} (z + z^*) ,$$
 (1)

$$Im z = \frac{1}{2i} (z - z^*) , \qquad (2)$$

$$\operatorname{Re}(z_1 z_2) = (\operatorname{Re} z_1)(\operatorname{Re} z_2) - (\operatorname{Im} z_1)(\operatorname{Im} z_2),$$
 (3)

$$\operatorname{Im}(z_1 z_2) = (\operatorname{Re} z_1)(\operatorname{Im} z_2) + (\operatorname{Im} z_1)(\operatorname{Re} z_2). \tag{4}$$

- b) The modulus-squared of z is defined as $|z|^2 \equiv z^*z$. What is Im $|z|^2$, and what is Im z^2 ? In doing quantum mechanics confusing z^2 and $|z|^2$ is very common; be careful!
- c) Any complex number can also be written in the form $z = Ae^{i\theta}$, where A and θ are real and θ is usually taken to be in the range $[0, 2\pi)$; A and θ are called the *modulus* and the *phase* of z, respectively. Prove Euler's relation (use a Taylor expansion),

$$e^{ix} = \cos x + i\sin x. \tag{5}$$

- d) Use (5) to find Re z, Im z, z^* and |z| in terms of A and θ .
- e) Use the above relations on $e^{i(\alpha+\beta)} = e^{i\alpha}e^{i\beta}$ to derive trigonometric identities for $\sin(\alpha+\beta)$ and $\cos(\alpha+\beta)$.