

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2021

Problem H Convex Hull

A convex-hull of a set of 2-dimensional points P is defined as the polygon with the smallest perimeter that encloses all points in P. It is "convex" because such a polygon will always have a convex shape.

You are given a set P that contains N points. For each point $(x_i,y_i) \in P$, you should output the number of points in $P \setminus \{(x_i,y_i)\}$ that lies exactly at the convex-hull enclosing all points in $P \setminus \{(x_i,y_i)\}$. Note that the notation $P \setminus \{(x_i,y_i)\}$ means that the point (x_i,y_i) is taken out from set P. In other words, the i^{th} point is taken out from P when the convex-hull in consideration is built. Also note that the constructed convex-hull can also degenerate into a line or a point depends on the set of points in consideration.

Consider the following example. Let there be N=5 points: (1,0), (5,0), (7,0), (3,4), and (3,2).

The set of all points P.

The convex-hull when $P_1=(1,0)$ is removed. There are 4 points that lies at the convex-hull.

The convex-hull when $P_2=(5,0)$ is removed. There are 3 points that lies at the convex-hull.

The convex-hull when $P_3=(7,0)$ is removed. There are 3 points that lies at the convex-hull.

The convex-hull when $P_4=(3,4)$ is removed. There are 4 points that lies at the convex-hull.

The convex-hull when $P_5=(3,2)$ is removed. There are 4 points that lies at the convex-hull.

international collegiate programming contest INDONESIA NATIONAL CONTEST INC 2021

Input

Input begins with a line containing an integer N ($2 \le N \le 100\,000$) representing the number of points in the set P. The next N lines each contains two integers x_i y_i ($-10^9 \le x_i, y_i \le 10^9$) representing the (x,y) coordinate of the i^{th} point. You are guaranteed that there are no two points located at the same coordinate.

Output

Output contains N lines. The i^{th} line contains an integer representing the number of points in $P \setminus \{(x_i, y_i)\}$ that lies exactly at the convex-hull of $P \setminus \{(x_i, y_i)\}$.

S	Sample Input #1					
5	5					
1	1 0					
5	5 0					
7	7 0					
3	3 4					
3	3 2					

Sample Output #1

4		
3		
3		
4		
4		

Explanation for the sample input/output #1

This is the example from the problem description.

Sample Input #2

3		
0 0		
0 100 100 0		
100 0		

Sample Output #2

2		
2		
2		

ICPC INC 2021 Problem H. Convex Hull