CS M146 - Week 1

Xinzhu Bei

xzbei@cs.ucla.edu

January 12, 2018

Overview

- Miscellaneous
 - Xinzhu Bei, xzbei@cs.ucla.edu
 - Discussion: Friday 2:00 3:50 pm, PUB AFF 1337
 - Office Hour: Monday 12-2 pm, Eng VI 386 (Tentative)
- Suggested Math Resources
 - Linear Algebra Review and Reference by Zico Kolter and Chuong Do: http://cs229.stanford.edu/section/cs229-linalg.pdf
 - Probability Theory Review by Arian Maleki and Tom Do: http://cs229.stanford.edu/section/cs229-prob.pdf
 - Convex Optimation Review by Zico Kolter and Honglak Lee: https://see.stanford.edu/materials/aimlcs229/cs229-cvxopt.pdf

Linear Algebra Review - Basic Notation

• By $A \in \mathbb{R}^{m \times n}$ we denote a matrix with m rows and n columns

$$A = \begin{bmatrix} a_{11}a_{12} & \cdots a_{1n} \\ a_{21}a_{22} & \cdots a_{2n} \\ & \cdots \\ a_{m1}a_{m2} & \cdots a_{mn} \end{bmatrix}$$

• By $x \in \mathbb{R}^n$, we denote a vector with n entries.

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

Linear Algebra Review - Multiplication

• Matrix Multiplication: The product of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is the matrix

$$C = AB \in R^{m \times p}$$
, where $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$

• **Vector-Vector Product**(sometimes called the **inner product** or dot product of the vectors): Given two vectors $x, y \in \mathbb{R}^n$,

$$x^T y \in R = [x_1 x_2 \cdots x_n] \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i$$

Linear Algebra Review - Multiplication

• Matrix-Vector Products:

$$y = Ax = \begin{bmatrix} -a_{1}^{T} & - \\ -a_{2}^{T} & - \\ \cdots \\ -a_{m}^{T} & - \end{bmatrix} x = \begin{bmatrix} a_{1}^{T}x \\ a_{2}^{T}x \\ \cdots \\ a_{m}^{T}x \end{bmatrix}$$

$$= \begin{bmatrix} | & | & | \\ a_{1} & a_{2} \cdots & a_{n} \\ | & | & | \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \cdots \\ x_{n} \end{bmatrix} = [a_{1}]x_{1} + [a_{2}]x_{2} + \cdots + [a_{n}]x_{n}$$

$$(1)$$

Linear Algebra Review - The Inverse

- Example: consider the linear system of equations, Ax = b where $A \in R^{n \times n}$, and $x, b \in R^n$. If A is invertible, then $x = A^{-1}b$.
- The **inverse** of a square matrix $A \in R^{n \times n}$ is denoted A^{-1} , and is the unique matrix such that $A^{-1}A = I = AA^{-1}$.
- A square matrix A has an inverse iff the determinant $|A| \neq 0$.
- In particular, we say that A is **invertible** or **non-singular** if A^{-1} exists and **non-invertible** or **singular** otherwise.

Linear Algebra Review - The Inverse

Example: How to calculate inverse?

$$\begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & 0 \\ 1 & 4 & 3 & | & 0 & 1 & 0 \\ 1 & 3 & 4 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-R_1 + R_2} \xrightarrow{-R_1 + R_2} \begin{bmatrix} 1 & 3 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{-3R_2 + R_1} \xrightarrow{-3R_3 + R_1} \begin{bmatrix} 1 & 0 & 0 & | & 7 & -3 & -3 \\ 0 & 1 & 0 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 1 & 0 \\ 0 & 0 & 1 & | & -1 & 0 & 1 \end{bmatrix}$$

• Example: A general case of 2×2 matrix

$$\left[\begin{array}{cccc} a & b & 1 & 0 \\ c & d & 0 & 1 \end{array}\right]$$

Linear Algebra Review - Linear Independence and Rank

If

$$x_n = \sum_{i=1}^{n-1} \alpha_i x_i$$

for some scalar values $\alpha_1, \dots, \alpha_{n-1} \in R$, then we say that the vectors x_1, \dots, x_n are **linearly dependent**; otherwise, the vectors are **linearly independent**.

• The **rank** of a matrix $A \in R^{m \times n}$ is the size of the largest subset of columns(rows) of A that constitute a linearly independent set.

<□ > < Ē > 〈Ē > 〈Ē > 〈Ē > 〉 돌 · ♡Q ()

Linear Algebra Review - Norm

A **norm** of a vector ||x|| is informally a measure of the length of the vector.

- L2-norm: $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$, Note that $||x||_2^2 = x^T x$
- I1-norm: $||x||_1 = \sum_{i=1}^n |x_i|$
- 1∞ -norm: $||x||_{\infty} = \max_i |x_i|$
- Ip-norm: $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$

Linear Algebra Review - The Determinant

The **determinant** of a square matrix $A \in \mathbb{R}^{n \times n}$, is a function $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$, and is denoted |A| or $\det A$. Geometric interpretation: given a matrix

$$\begin{bmatrix} -a_1^T - \\ & \ddots \\ -a_n^T - \end{bmatrix}$$

consider the set of points $S \subset R^n$

$$S = \{v \in \mathbb{R}^n : v = \sum_{i=1}^n \alpha_i \alpha_i, \text{ where } 0 \leq a_i \leq 1, i = 1, \dots, n\}$$

The absolute value of the determinant of A, it turns out, is a measure of the volume of the set S.

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

Linear Algebra Review - The Determinant

Example: consider the 2 × 2 matrix

the set S corresponds to the shaded region (i.e., the parallelogram).

The general (recursive) formula for the determinant is:

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}| \text{ for any } j \in 1, \dots, n$$

$$= \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}| \text{ for any } i \in 1, \dots, n$$

$$(2)$$

January 12, 2018

Linear Algebra Review - Eigenvalues and Eigenvectors

• Given a square matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an **eigenvalue** of A and $x \in \mathbb{C}^n$ is the corresponding **eigenvector** if

$$Ax = \lambda x, x \neq 0$$

We assume that the eigenvector is normalized to have length 1.

• We can rewrite the equation above to state that (λ, x) is an eigenvalue-eigenvector pair of A if,

$$(\lambda I - A)x = 0, x \neq 0$$

Linear Algebra - Matrix Calculus

• Suppose that $f: R^{m \times n} \to R$ is a function that takes as input a matrix A of size $m \times n$ and returns a real value. Then the **gradient** of f

$$\nabla_{A}f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \dots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \dots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \dots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

• Suppose that $f: R^n \to R$ is a function that takes a vector in R^n and returns a real number. Then the **Hessian** matrix with respect to x is the $n \times n$ matrix of partial derivatives,

$$\nabla_x^2 f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{bmatrix}.$$

Probability Review - Basic Definition

• **Sample Space**: a set of all possible outcomes or realizations of some random trial.

```
Example: Toss a coin twice; the sample space is \Omega = \{HH, HT, TH, TT\}.
```

- Event: A subset of sample space
 Example: the event that at least one toss is a head is
 A = {HH, HT, TH}.
- **Probability**: We assign a real number P(A) to each event A, called the probability of A.
- **Probability Axioms**: The probability P must satisfy three axioms: $P(A) \geq 0$ for every A; $P(\Omega) = 1$; If A_1, A_2, \cdots are disjoint, then $P(U_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
- A **random variable** is a function that maps from the sample space to the reals $(X : \Omega \to R)$.

Probability Review - Distribution Function

Definition: Suppose X is a random variable, x is a specific value that it can take,

Cumulative distribution function (CDF) is the function $F: R \to [0,1]$, where $F(x) = P(X \le x)$.

If X is discrete \Rightarrow probability mass function: f(x) = P(X = x). If X is continuous \Rightarrow probability density function for X if there exists a function f such that $f(x) \geq 0$ for all x, $\int_{-\infty}^{\infty} f(x) dx = 1$ and for every $a \leq b$,

$$P(a \le X \le b) = \int_a^b f(x) dx$$

If F(x) is differentiable everywhere, f(x) = F'(x).

Probability Review - Expectation

Expected Values

- Discrete random variable X, $E[g(X)] = \sum_{x \in \mathcal{X}} g(x)f(x)$;
- Continuous random variable X, $E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)$
- * To make the above two definitions more explicit: $E[g(X)] = \sum_{X=x \in \mathcal{X}} g(X=x) f(X=x)$, \mathcal{X} is the set of all possible values, e.g. $\{0,1\}$ when tossing a coin.

Mean and Variance $\mu = E[X]$ is the mean; $var[X] = E[(X - E[X])^2]$ is the variance.

- E[a] for any constant $a \in \mathbb{R}$.
- E[af(X)] = aE[f(X)] for any constant $a \in R$.
- (Linearity of Expectation) E[f(X) + g(X)] = E[f(X)] + E[g(X)].
- $var[X] = E[X^2] (E[X])^2$.

Example: Mean and Variance of Uniform (n, p)

$$\begin{split} E(X) &= \int_{-\infty}^{\infty} x f(x) \mathrm{d}x = \int_{a}^{b} x \frac{1}{b-a} \mathrm{d}x = \frac{1}{2(b-a)} \left[x^{2} \right]_{a}^{b} \\ &= \frac{b^{2}-a^{2}}{2(b-a)} \\ &= \frac{b+a}{2} \\ V(X) &= E(X^{2}) - [E(X)]^{2} \\ &= \int_{a}^{b} x^{2} \cdot \frac{1}{b-a} \mathrm{d}x - \left(\frac{b+a}{2} \right)^{2} = \frac{1}{3(b-a)} \left[x^{3} \right]_{a}^{b} - \left(\frac{b+a}{2} \right)^{2} \\ &= \frac{b^{3}-a^{3}}{3(b-a)} - \left(\frac{b+a}{2} \right)^{2} \\ &= \frac{b^{2}+ab+a^{2}}{3} - \frac{b^{2}+2ab+a^{2}}{4} \\ &= \frac{(b-a)^{2}}{12} \end{split}$$

Probability Review - Common Distribution

Distribution	PDF or PMF	Mean	Variance
$oxed{Bernoulli(p)}$	$\left\{\begin{array}{ll} p, & \text{if } x = 1 \\ 1 - p, & \text{if } x = 0. \end{array}\right.$	p	p(1-p)
Binomial(n,p)	$\binom{n}{k} p^k (1-p)^{n-k}$ for $0 \le k \le n$	np	npq
Geometric(p)	$p(1-p)^{k-1}$ for $k = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$e^{-\lambda}\lambda^x/x!$ for $k=1,2,\ldots$	λ	λ
Uniform(a,b)	$\frac{1}{b-a} \ \forall x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$Gaussian(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
$Exponential(\lambda)$	$\lambda e^{-\lambda x} \ x \ge 0, \lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Probability Review - Multivariate Distributions

Definition: joint cumulative distribution function

$$F_{X,Y}(x,y) = P(X \le x, Y \le y)$$

and

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}(x,y)}{\partial x \partial y}$$

Marginal Distribution of X (Discrete case):

$$f_X(x) = P(X = x) = \sum_y P(X = x, Y = y) = \sum_y f_{X,Y}(x,y)$$

or $f_X(x) = \int_Y f_{X,Y}(x,y) dy$ for continous variable.

Conditional Probability and Bayes Rule

Conditional Probability of X given Y = y is

$$f_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

Bayes Rule:

$$\frac{P(X|Y)}{P(X)} = \frac{P(Y|X)}{P(Y)}$$

Chain Rule for multiple random variables:

$$f(x_{1},x_{2},\cdots,x_{n}) = f(x_{n}|x_{1},x_{2},\cdots,x_{n-1})f(x_{1},x_{2},\cdots,x_{n-1})$$

$$= f(x_{n}|x_{1},x_{2},\cdots,x_{n-1})f(x_{n-1}|x_{1},x_{2},\cdots,x_{n-2})f(x_{1},x_{2},\cdots,x_{n-2})$$

$$= \cdots = f(x_{1})\prod_{i=2}^{n} f(x_{i}|x_{1},\cdots,x_{i-1})$$
(3)

Independence

Independent Variables *X* and *Y* are independent if and only if:

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

or $f_{X,Y}(x,y) = f_X(x)f_Y(y)$ for all values x and y.

IID variables: Independent and identically distributed (IID) random variables are drawn from the same distribution and are all mutually independent.

Law of Large Numbers

 The weak law of large numbers states that the sample average converges in probability towards the expected value

$$\overline{X}_n \xrightarrow{P} \mu$$
 when $n \to \infty$

That is to say that for any positive number ϵ ,

$$\lim_{n\to\infty} \Pr(|\overline{X}_n - \mu| > \varepsilon) = 0.$$

 The strong law of large numbers states that the sample average converges almost surely to the expected value

$$\bar{X}_n \xrightarrow{\mathsf{a.s.}} \mu \quad \text{when } n \to \infty$$

That is,

$$\Pr\Bigl(\lim_{n\to\infty}\bar{X}_n=\mu\Bigr)=1.$$

Central Limit Theorem

Central Limit Theorem Suppose $\{X_1, X_2, \cdots\}$ is a sequence of i.i.d. random variables with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$:

$$\sqrt{n}\left(\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu\right)\xrightarrow{n\to\infty}\mathcal{N}(0,\sigma^{2})\right)$$

Where $S_n = \frac{X_1 + \cdots + X_n}{n}$ is the sample average. In probability theory, the central limit theorem (CLT) establishes that, in most situations, when independent random variables are added, their properly normalized sum tends toward a normal distribution (informally a "bell curve") even if the original variables themselves are not normally distributed.

Optimization - Lagrange multipliers

- In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints.
- Consider an optimization problem:

minimize
$$f(x_1, \dots, x_n)$$

subject to $g_k(x_1, \dots, x_n) = 0, \quad k = 1, \dots, M$ (4)

The Lagrangian takes the form

$$\mathcal{L}(x_1,\dots,x_n,\lambda_1,\dots,\lambda_M)=f(x_1,\dots,x_n)-\sum_{k=1}^M\lambda_kg_k(x_1,\dots,x_n)$$

Methods of solving optimizaiton using Lagrangian multipliers:

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - り Q (C)

Optimization - Lagrange multipliers

• Solve the following system of equations.

$$\frac{\partial L(x_1, \cdots, x_n, \lambda_1, \cdots, \lambda_M)}{\partial x_i} = 0 \text{ , where } i = 1 \cdots n$$

$$\frac{\partial L(x_1, \cdots, x_n, \lambda_1, \cdots, \lambda_M)}{\partial \lambda_k} = 0 \text{ , where } k = 1 \cdots M$$

$$(5)$$

$$g_k(x_1,\cdots,x_n)=0$$
 , where $k=1\cdots M$

• Plug in all solutions x_1, \dots, x_n , from the first step into $f(x_1, \dots, x_n)$ and identify the minimum and maximum values, provided they exist.

Optimization - Lagrange multipliers

Find the extrema of the function f(x,y) = 2y + x subject to the constraint $0 = g(x,y) = y^2 + xy - 1$. Solution: Set $\mathcal{L}(x,y,\lambda) = f(x,y) + \lambda g(x,y)$, then

$$\frac{\partial L}{\partial x} = 1 + \lambda y$$

$$\frac{\partial L}{\partial y} = 2 + 2\lambda y + \lambda x$$

$$\frac{\partial L}{\partial \lambda} = y^2 + xy - 1$$
(6)

Setting these equal to zero, we see from the third equation that $y \neq 0$, and from the first equation that $\lambda = \frac{-1}{y}$, so that from the second equation $0 = \frac{-x}{y}$ implying that x = 0. From the third equation, we obtain $y = \pm 1$.

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

References

 This slide is adapted from course material by Zico Kolter, Chuong Do, Arian Maleki, Tom Do and Ameet Talwalker.

The End