# **Introduction:**

This project is concentrated on the failure analysis of a thin walled aluminum can (*Figure 1*) by axial compressive forces acting resulting in the crushing of the aluminum can. A thin-walled can that is included in this project is manufactured in the United States, which is an alloy containing 92.5% to 97% aluminum, <5.5% magnesium, <1.6% manganese, <0.15% chromium and some trace of iron, silicon and copper according to MSDS from aluminum producer Alcoa. Alloys used include 3004, 3105, or other 3xxx/5xxx series aluminum [1].

The body is made from a rectangular block that is rolled into a cylinder with a small overlap and then welded along the overlap by a high-speed resistance welding process. The two ends are mechanically joined to the body by a two-stage process known as double seaming. The design and manufacturing processes are highly efficient and very conservative of materials and energy.

The Failure of the aluminum can (<u>Figure 2</u>) is because of the axial compressive forces acting on the top of the can resulting in general buckling followed by wrinkling of facings of the can which we call a crushed can.



Figure 1: Aluminum Can



Figure 2: Crushed Aluminum Can

## **Analysis Section:**

The buckling of the deformed can caves in around the indentation in the sidewall of the can pushing the sides adjacent to the dented face to deform outward. The side of the can then buckles along the line of the dent as well as the smaller areas on the opposite side of the dent dimples.

The axial compression is studied by moving down the upper plate (hand) while the lower plate is stationary. The force was calculated as we did the experiment while placing the aluminum can on a weighing machine. For theoretical Calculation, the gamma value was found using (*Figure 3*) The calculation for force required to crush the aluminum can is shown in the appendix section which is found out to be 243 lbs.

# Appendix:

| 105   | Comment of the commen |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 1116 PATE TIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 3 / 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | =>   => ( Crushing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| facir | A THE TIME AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | General Whiteling Backling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | o / gracing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | Separation from Coro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | Trem Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Equation for Buckling & 19ers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | $\sigma_{\chi} = \frac{\gamma E}{\sqrt{3(1-\mu^2)}} \frac{t}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | where $h_i^2 = 1.065$ in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | $t_{i} = 0.003in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 710 tu = 0.00 627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | Jaking Al properties from 3004 Aluminium Material property sata street.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | E = 0,100,000 ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | In order to use buckling 29,7 we need to have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 0 1 100 1 10 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | lingle values & h & t \ Weighted aug & h = 0.7 h + 0.3 hi (skewed toward body & car)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | The state of the s |
|       | \$ for t = 0.7ty + .3ty =>  t = 0.0039]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 1 = 315<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





Figure 3: Correlation factors for isotropic circular cylinders subjected to axial compression

#### Discussion:

Applying our theory to the design of actual cylindrical shells becomes complicated because of the discrepancies between our experiment and the theory. In our case where we the longitudinal compression is predominant; the primary source of error is the dependence of the buckling load of cylindrical shells or small deviations from the nominal circular cylindrical shape of the structure. Because the unloaded shape of the aluminum can is usually not being stringently controlled. It is also said that the edge values of longitudinal and circumferential displacements of forces are not usually controlled and can cause an added error [3].

With our set boundary conditions of a static end and another is moving end causing compression it is found that it leads to better energy absorption because of asymmetric folds <sup>[2]</sup>.

The other common cause of the buckling can be anything ranging from surface roughness, inclusions, transverse surface tears, initial off-flatness of sheet, presence of hard particles to circumferential direction of the can <sup>[4]</sup>

The velocity of impact and the location of the impact on the can, have the greatest effect on the indentation of the can. So, the initial velocity of the impact is directly proportional to the amount of can deflection and the max force. Also, the impact height along the length of the can caused greater deflection at the top as compared to bottom of the sidewall.

In order reduce the buckling, we can see to the force applied to the can causing it buckling where we come to conclusion of increasing the thickness of the walls, or a material with high "E" value.

Most of the changes are basically the way you approach the force interaction with the can, in case of increasing the thickness and a material in making for the can it might result in increased material usage over the time, causing the cost price of the product to go up, with less to no effect on the function but a greater customer satisfaction

## Conclusion:

From the project findings, we can conclude that even though the buckling of the aluminum can is a result of multiple things like the amount of force, height of impact etc. But the thickness variation of the sidewall of the can is major cause of the buckling of the can, as it impacts the Amount of force required to cause buckling directly.

# **References:**

[1] En.wikipedia.org. (2017). Beverage can. [online]

Available at: https://en.wikipedia.org/wiki/Beverage\_can [Accessed 16 Nov. 2017].

[2] Arxiv.org. (2017). [online]

Available at: https://arxiv.org/ftp/arxiv/papers/1408/1408.5390.pdf [Accessed 16 Nov. 2017].

[3] Shellbuckling.com. (2017). [online]

Available at: http://shellbuckling.com/papers/classicNASAReports/NASASP-8007.pdf [Accessed 16 Nov. 2017].

[4] Dynalook.com. (2017). [online]

Available at: http://www.dynalook.com/international-conf-2000/session10-3.pdf [Accessed 17 Nov. 2017].