Floating Point Numbers

Chapter 3 of the Book of John P.
Hayes
PP-196 to 202 of David A. Patterson

Need for Floating Point Number

- ✓ The range of number represented by a fixed-point number is insufficient for many <u>applications</u>, particularly, when very large and very small numbers are required.
- \checkmark Example: 1.0 * 10¹⁸
- ✓ Scientific notation allows to represent such numbers using relatively few digits.

Basic Format of Floating Point Number

- ✓ A real number is represented as $M \times B^F$ where M= mantissa, E= exponent and B= base
- Example: 1.0×10^{18} where 1.0 = sign magnitude mantissa
 - 10 = base and 18 = sign magnitude exponent.

Representation of Floating Point Number

- ✓ A floating point number is represented as a word (M, E) consisting of a pair of fixed-point numbers: M, which is usually a fraction or integer and E, which is an integer.
- ✓ Since, B is constant, it is not stored but is simply built into the circuit that process the number.

Example of Floating-point Number

- ✓ M,E= 3 bit sign magnitude numbers and assume the values ± 0 , ± 1 , ± 2 , ± 3 and B=2.
- \checkmark (M, E) = (x00, xxx) represent 0.

Negative, negative

Positive, negative

Floating-Point Number

- ✓ The floating point representation of most real numbers is only approximate. For example, 1.25 is approximated by (011,101) representing 1.5 or by either (001, 000) or (001, 100).
- ✓ The result of most calculations with floating point arithmetic only approximate the correct result. For example, the exact result of the addition (011,001) + (011, 010) = 18 which is not representable. The closest representative number of 18 is 16 (010, 011).

Normalization

- The same number can be represented in many ways. For example: 1.0×10^{18} , 0.1×10^{19} , 1000000×10^{12} etc.
- ✓ It is desirable to have a unique or normal form for each representable number in a floating point system.
- A binary number is normalized when it have one non-zero digit to the left of the decimal point.
- ✓ Example: for IEEE 754 the normalized form 1.M.
- ✓ An un-normalized number is normalized by shifting the mantissa to the right or left and appropriately incrementing or decrementing the exponent.

Normalization

Advantages:

- ✓ It simplifies the exchange of data.
- ✓ It simplifies the floating point arithmetic algorithm
- ✓ It increases the accuracy of the numbers that can be stored in a word, since the unnecessary leading 0s are replaced by real digits to the right of the binary point.

Biasing

- If we use 2's complement or other notation in which negative exponents have 1 in MSB, a negative number will look like a big number. For example, 1.0×2^{-1} is represented as

 - 1.0×2 is represented as,
- ✓ It is desirable to represent most negative exponent as 00...000 and most positive as 11....111. This convention is called biased notation.
- ✓ In biased notation, bias is the number to be subtracted from normal, unsigned representation to determine the real value.
- -1+127=126=011111110 and +1+127=128=10000000

Biasing

Exponent E	Unsigned value	Bias 127	Bias 128
11111	255	+128	+127
11110	254	+127	+126
10001	129	+2	+1
10000	128	+1	0
01111	127	0	-1
01110	126	-1	-2
00001	1	-126	-127
00000	0	-127	-128

8-bit biased exponent with bias=127 (excess-127) and bias = 128 (excess-128)

IEEE 754 Floating Point Number

IEEE 754 standard 32-bit floating-point number format

- \checkmark S= 1 bit sign representation
- \checkmark E = 8 bit excess=127. The actual exponent is E-127.
- ✓ M=23 bit mantissa [fraction part of sign-magnitude binary significand with hidden bit]

IEEE 754 Floating Point Number

- ✓ A real number $N = (-1)^{s}2^{E-127}(1.M)$ where, 0 < E < 255
- \sim N=-1.5 is represented as

$$1 \underbrace{01111111}_{N} 100000000000....0$$

IEEE 754 Floating Point Number

(1)	52
S E	M

IEEE 754 standard 64-bit floating-point number format

✓ A real number $N = (-1)^{s}2^{E-1023}(1.M)$ where, 0 < E < 2047

Converting from Binary to Decimal Floating Point

- Use the equation

Converting from Decimal to Binary Floating Point

- What is the binary representation for the single-precision floating point number that corresponds to $X = -12.25_{10}$?
- What is the normalized binary representation for the number?

$$-12.25_{10} = -1100.01_2 = -1.10001_2 \times 2^{3}$$

• What are the sign, stored exponent, and normalized mantissa?

Overflow:

A situation in which a positive exponent becomes to large to fit in the exponent field.

Underflow:

A situation in which a negative exponent becomes too large to fit in the exponent field.

Handling Different Exceptional Conditions

- ✓ If E=255 and M \neq 0, then N=NAN
- ✓ If E=255 and M=0, then N= $(-1)^{S}$ ∞
- ✓ If $0 \le E \le 255$, then $N = (-1)^{s} 2^{E-127} (1.M)$
- ✓ If E=0 and M≠0, then N= $(-1)^{s}2^{E-126}(0.M)$
- ✓ If E=0 and M=0, then $N = (-1)^{S}0$.

