Mathematica Conic Art

Full Drawing

I designed the Among Us emergency meeting image, involving an Among Us character pressing the emergency button on the table. Below is an image of the final graph alongside the image I designed it after (a screenshot from Among Us).

Character Body

Below is an image of the character body. This includes the shape of the body, the eyes, and the rocket or backpack (?) on the character's back.

Character Body Shape

The left side of the body is made of an upside down parabola (a[x]), while the right side is the upper portion of an ellipse (b[x]). I chose different equations for each side because the right side curved down much more than the left side.

Character Eyes

The upper and lower outlines of the eyes are made of parabolas (c[x] and d[x]) while the sides are made of hyperbolas (e[x] and f[x]).

Rocket/Backpack

All parts of the rocket/backpack are made of parabolas, including the top (h[x]), the bottom (i[x]), and the side parallel to the back (g[x]).

$$ln[49]:= i[x_] := Piecewise[{{-(x-6.5)^2 + 10, 8 < x < 8.19}}]$$

Table

Below is a depiction of the table. It consists of an ellipse (j[x]) for the rounded segment and two parabolas (k[x]) and (k[x]) that appear close to a straight line.

$$ln[50] = j[x] := Piecewise[{{\sqrt{3 - \frac{3}{11} (x - 11)^2 + 6.25, x < 13}}}]$$

In[51]:=
$$k[x_]$$
 := Piecewise $[\{\{0.005 (x-10)^2+6.2, 7.7 < x < 13\}\}]$

$$ln[52] = 1[x_] := Piecewise[{{2000 (x - 13)^2 + 6.25, 13 < x < 13.0265}}]$$

Hand

Below is a zoomed in section of the hand, including the back of the hand and each of the fingers.

Thumb

This portion of the hand consists of an ellipse (p[x]) and q[x] for the end of the thumb and a parabola (o[x]) for the finger.

$$ln[56]:= o[x_] := Piecewise[{{-5 (x-10.3)^2 + 7.55, 10 < x < 10.3}}]$$

$$ln[57] = p[x_] := Piecewise [\{\{-\sqrt{0.01-0.5(x-10)^2} + 7, 6 < x < 11\}\}]$$

$$\ln[58] = q[x_] := Piecewise \left[\left\{ \left\{ \sqrt{0.01 - 0.5 (x - 10)^2} + 7, x < 10 \right\} \right\} \right]$$

Back of the Hand and 4th Finger

The back of the hand is a segment of a parabola (n[x]) and the 4th finger is a sin function (m[x]).

In[79]:=
$$m[x_]$$
 := Piecewise $\left[\left\{\left\{\frac{1}{3}Sin[4x-3]+7.3, 10.57 < x < 11.3\right\}\right\}\right]$

$$ln[80] = n[x_] := Piecewise[{{-(x-10.57)^2 + 7.63, 10.3 < x < 10.57}}]$$

Second Finger

The connector between the thumb and second finger is a \sin function (r[x]) while the 2nd fingertip is an

 $ln[59] = r[x] := Piecewise[{{0.125 Sin[10 x - 1] + 7, 10.13 < x < 10.58}}]$

$$ln[60]:=$$
 s[x_] := Piecewise[{{ $-\sqrt{0.01-0.5(x-10.7)^2}+6.93, x>10.59}}}]$

$$ln[61] = t[x_] := Piecewise[{{\sqrt{0.01 - 0.5(x - 10.7)^2} + 6.93, x > 10.75}}]$$

3rd and 4th Fingertips

The 3rd and 4th fingertips are each made out of ellipses (u[x] and v[x]).

$$ln[62] = u[x_] := Piecewise [{{-\sqrt{0.01 - \frac{1}{3}(x - 10.97)^2 + 6.9, x < 11.09}}}]$$

$$ln[63] = v[x_] := Piecewise [{{-\sqrt{0.01 - \frac{1}{3}(x - 11.17)^2} + 6.96, 11.06 < x < 11.5}}]$$

Button

A zoomed in image of the button, under the hand in the original drawing, is shown below. It consists of an ellipse (w[x] and y[x]).

In[65]:=
$$w[x_] := Piecewise \left[\left\{ \sqrt{0.09 * \left(1 - \frac{(x - 10.56)^2}{0.16} \right)} + 6.9, x < 10.293 \right\} \right]$$

In[66]:=
$$y[x_]$$
 := Piecewise $\left[\left\{\left\{-\sqrt{0.09 * \left(1-\frac{\left(x-10.56\right)^2}{0.16}\right)} + 6.9, 10.1 < x < 10.938\right\}\right\}\right]$