Reg. No.								

B.Tech / M.Tech (Integrated) DEGREE EXAMINATION, MAY 2024

First and Second Semester

21PYB101J - PHYSICS: ELECTROMAGNETIC THEORY, QUANTUM MECHANICS, WAVES AND OPTICS

(For the candidates admitted from the academic year 2022-2023 onwards)

Note: (i)	Part - A should be answered in OM over to hall invigilator at the end of 4	Oth minute		t shoul	d be	han	ded
(ii)	Part - B and Part - C should be answ	vered in a	nswer booklet.				
Time	e: 3 Hours			Max.	Ma	rks:	75
	PART – A (20 ×	1 = 20 I	Marks)	Marks	BL	СО	РО
	Answer ALI						
	1. The vector field whose curl is zer	-		1	1	1	1
	(A) Conservative		Rotational				
	(C) Irrotational		Solenoid				
	2. The differential form of Maxwell	's second	l equation is	1	1	1	1
	(A) Div $B = 0$		Curl B = 0				
	(C) Curl $E = 0$	` '	Div b = dE / dt				
	3. Orientation polarization arises du	e to prese	ence of	1	1	1	1
	(A) Conductor		Polar molecule				
	(C) Semiconductor	(D)	Superconductor				
	4. The electronic polarizability of			1	2	1	2
	atoms/m³ and the relative permitti	vity r	is				4
	(A) $7.9 \times 10^{-41} \text{Fm}^2$	` '	$7.9 \times 10^{-41} \text{Fm}$				
	(C) $7.9 \times 10^{-41} \mathrm{F/m^2}$	(D)	$7.9 \times 10^{-41} \text{ F/m}$				
	5. In soft magnetic materials the nat	-		1	1	2	1
	(A) Straight line	` '	Very broad				
	(C) Negligible	(D)	Very steep				
	6. Ferrites are the modified structure	e of		1	1	2	1
	(A) Cobalt	` '	Iron				
	(C) Nickel	(D)	Gold				
	7. Magneto resistance is the property			1	1	2	1
	(A) Magnetic moment	(B)	Magnetism				
	(C) Mobility	(D)	Electrical resistance				
	 The magnetic field strength of susceptibility is -0.35 × 10⁻⁵, then -3.15 × 10⁻³ A/m 	the valu	- C	1	2	2	2
	(C) $-3.15 \times 10^{-4} \text{ A/m}$	` /	$-3.5 \times 10^{-4} \text{ A/m}$				

9.	In photoelectric effect, work function needed to liberate an electron from t			1	1	3	1
			$\phi = (1/2)mv^2$				
	, ,		$\phi = mv \times hv$				
10.	The wavelength of photon is 3.6Å	, if th	e velocity of photon is equal to	1	2	3	2
	velocity of light then the mass of ph	oton is	s given by				
	(A) $4.125 \times 10^{-33} \text{ kg}$	(B)	$5.235 \times 10^{-30} \text{ kg}$ $7.434 \times 10^{-30} \text{ kg}$				
	(C) $6.135 \times 10^{-33} \text{ kg}$	(D)	$7.434 \times 10^{-30} \text{ kg}$				
11.	The energy levels of an electron in 1	D bo	x are	1	1	3	1
	(A) Discrete		Continuous				
	(C) Random	(D)	Unified				
12.	The probability of finding the partic process called as	ele insi	ide the box can be done using the	1	1	3	1
	(A) Quantization	(B)	Normalization				
	(C) Hybridization	(D)	Interference				
13.	Superposition of light waves from tas	two or	more coherent sources is known	1	1	4	1
	(A) Reflection	(B)	Refraction				
	(C) Interference	(D)	Polarization				
14.	In Fraunhofer diffraction, the incide	nt way	ve front should be	1	1	4	1
	(A) Elliptical	(B)	Plane				
	(C) Spherical	(D)	Cylindrical				
15.	The refractive index of a polarizer in angle?	is 1.92	218. What will be the polarization	1	2	4	2
	(A) 45° 30'	(B)	50° 55'				
	(C) 90°	(D)	62° 24'				
16.	The expression for the thickness of	Quarte	er wave plate is given by	1	1	4	1
			$d = \lambda/3(\mu_e - \mu_0)$			2	
	(C) $d = \lambda/4 \left(\mu_e - \mu_0\right)$	(D)	$d = \lambda / 5 \left(\mu_e - \mu_0 \right)$				
17.	The atom in the excited state emit state is called	ts a pl	noton and returned to the ground	1	1	5	
	(A) Spontaneous Emission	(B)	Spontaneous Absorption				
	(C) Stimulated Emission	(D)	Stimulated Absorption				
18.	lasers are used in designators.	n milit	ary as range finders and target	1	1	5	į
	(A) CO_2	(B)	Semiconductor				
	(C) Ruby	(D)	YAG				

19.	The numerical aperture of fiber with a core index of 1.52 and index of 1.42 is	d a cladding	1	2	5	2
7. 10.	index of 1.42 is					
	(A) 0.54 (C) 0.34 (B) 0.64 (D) 0.24					
20.	r-y-	ical variable	1	1	5	1
	into another.					
	(A) Optical fibre (B) Sensor					
	(C) Capacitor (D) Light					
	$PART - B (5 \times 8 = 40 Marks)$		Marks	BL	СО	PO
	Answer ALL Questions					
21. a.	. Illustrate the Maxwell's equations in free space and obtain the for velocity of light in free space.	e expression	8	3	1	1
	(OR)					
b .	Describe the concept of various polarization with necessary diderive the Langevin – Debye equation.	iagrams and	8	3	1	1
22 a	. Illustrate the concept of		8	3	2	1
22. a.	i. Magnetic Bubble Memory	(4 Marks)				
	ii. Giant Magnetoresistance with necessary diagrams	(4 Marks)				
	· (OR)					
b.i.	. A magnetic field of 1800 ampere / metre produces a magn	etic flux of	4	3	2	2
	3×10^{-5} Weber in an iron bar if cross – section area 0.2 cm permeability.					
ii.	. Illustrate the inverse spinel structure of ferrites with neat diagram	m.	4	3	2	2
23. a.	. Derive the expression for time independent Schrodinger wave e	quation.	8	4	3	1
	(OR)					
b.i.	. Illustrate the concept of Photoelectric effect.		4	3	3	1
ii.	Determine the de Broglie wavelength of an electron that	t has been	4	3	3	1
24. a.	accelerated through a potential difference of 100 V. Explain the Fraunhofer diffraction at single slit and determine to	the width of	8	3	.4	1
9.	central maxima.	iio widii or				
	(OP)					
h	(OR)	. 1.4	8	3	4	1
υ.	Explain the production and detection of elliptically polarized liquarter wave plate.	ignt using a	0	J	7	1
25. a.	. Illustrate the construction and working of the CO ₂ laser wi diagrams.	th the neat	8	2	5	1
	(OR)					
b.	Define the numerical aperture. Obtain the expression for	numerical	8	3	5	1
	aperture.					

14MF1&2-21PYB101J

Page 3 of 4

$PART - C (1 \times 15 = 15 Marks)$ Answer ANY ONE Question

26.i. Illustrate the Basic Laws of Electrostatics and Magnetostatics and obtain 12 the differential and integral form all the FOUR Maxwell's equation with 2 12

Marks BL CO PO

ii. Write any six differences between soft and hard magnetic materials.

necessary steps.

27.i. Discuss the application of Schrodinger wave equation to a particle enclosed in one dimension (1D) box. Illustrate the Energy eigen value and eigen function of particle in a 1 D box by applying Normalization condition.

> 3 2 5 1

ii. Explain the concept of construction and reconstruction of Hologram with necessary diagrams.