面向代码克隆检测的多维源代码表征学习方法研究

王丹

2024年5月

面向代码克隆检测的多维源代码表征学习方法研究

王丹

北京理工大学

中图分类号: TQ028.1 UDC 分类号: 540

面向代码克隆检测的多维源代码表征学习方法研究

作	者	姓	名	王丹
学	院	名	称	计算机学院
指	导	教	师	马锐教授
答辩	详委员	会是	È席	** 教授
申	请	学	位	工程硕士
学	科	类	别	计算机技术
学位授予单位			位位	北京理工大学
论文答辩日期				2024年6月4日

Research on Multidimensional Source Code **Representation Learning for Code Clone Detection**

Dan Wang School or Department: Beijing Institute of Technology Faculty Mentor: Associate Prof. Rui Ma Prof. ** Chair, Thesis Committee: Degree Applied: Master of Science Major: Computer Technology Degree by: Beijing Institute of Technology The Date of Defence: June, 4th, 2024

Candidate Name:

研究成果声明

本人郑重声明: 所提交的学位论文是我本人在指导教师的指导下独立完成的研究成果。文中所撰写内容符合以下学术规范(请勾选):

☑ 论文综述遵循"适当引用"的规范,全部引用的内容不 超过 50%。

论文中的研究数据及结果不存在篡改、剽窃、抄袭、伪造等 学术不端行为,并愿意承担因学术不端行为所带来的一切后果 和法律责任。

☑ 文中依法引用他人的成果,均已做出明确标注或得到许可。

☑ 论文内容未包含法律意义上已属于他人的任何形式的研究成果,也不包含本人已用于其他学位申请的论文或成果。

☑ 与本人一同工作的合作者对此研究工作所做的任何贡献 均已在学位论文中作了明确的说明并表示了谢意。

特此声明。

答 名:

日期:

关于学位论文使用权的说明

本人完全了解北京理工大学有关保管、使用学位论文的规定,其中包括:

- ① 学校有权保管、并向有关部门送交学位论文的原件与复印件:
- ② 学校可以采用影印、缩印或其它复制手段复制并保存学位论文;
 - ③ 学校可允许学位论文被查阅或借阅;
 - (4) 学校可以学术交流为目的, 复制赠送和交换学位论文;
- ⑤ 学校可以公布学位论文的全部或部分内容(保密学位论 文在解密后遵守此规定)。

签	名:	日期:
导师	· 签名:	日期:

摘要

代码克隆检测是软件工程领域的重要任务,如何对源代码进行表征学习决定了对源代码表征抽取的程度,进而影响下游任务所能检测的精度。作为代码克隆检测任务的核心技术和研究热点,现有的代码表征学习研究存在诸多不足,例如对代码结构信息和语义信息利用不充分,特征表达不够完善;表征模型对数据集、模型结构和优化算法等多方面因素的要求高等,这些不足导致代码克隆检测效率较低。本文提出了一种多维源代码表征学习方法,旨在通过构建三个不同维度的代码表征模型,将源代码的语义信息表示为稠密低维实值向量,以在低维空间中高效计算实体和关系的语义联系,并通过特征融合得到多维特征,实现对代码信息的充分利用,以更加全面准确与智能化的方式提高代码克隆测试效率。

关键词:代码克隆检测;深度学习;代码表征学习

Abstract

Code cloning detection is an important task in the field of software engineering. How to learn representation of source code determines the degree of source code representation extraction, which in turn affects the accuracy that downstream tasks can detect. As the core technology and research hotspot of code cloning detection task, existing research on code representation learning has many shortcomings, such as insufficient utilization of code structure and semantic information, and incomplete feature expression; The representation model has high requirements for various factors such as dataset, model structure, and optimization algorithms, which leads to low efficiency in code cloning detection. This project proposes a multi-dimensional source code representation learning method, aiming to construct three different dimensional code representation models to represent the semantic information of source code as dense low dimensional real value vectors, efficiently calculate the semantic connections of entities and relationships in low dimensional space, and obtain multi-dimensional features through feature fusion to fully utilize code information and improve the efficiency of code cloning testing in a more comprehensive, accurate, and intelligent way.

Key Words: Code cloning detections; Code representation learning; Deep learning

目录

第1章	绪论	1
1.1	研究背景与意义	1
1.2	研究现状与趋势	3
	1.2.1 代码克隆检测技术	3
	1.2.2 代码表征学习	4
1.3	研究内容	10
1.4	论文结构	11
第2章	多维源代码表征学习方法总体设计	14
2.1	代码表征学习面临的技术挑战	14
2.2	RLCCD 研究方案	15
	2.2.1 研究思路及总体框架	15
	2.2.2 代码预处理	17
	2.2.3 多维源代码表征学习	17
	2.2.4 克隆检测任务实现	19
2.3	RLCCD 定义描述	19
2.4	本章小结	21
第3章	基于预训练辅助模型的 Token 表征学习2	22
3.1	研究动机	22
3.2	Token 表征方法设计	23
	3.2.1 框架概述	23
	3.2.2 预训练辅助词嵌入设计	24
	3.2.3 Token 代码表征设计	25
3.3	Token 表征方法具体实现	28
3.4	实验验证	30
	3.4.1 实验环境	30
	3.4.2 实验数据集	30

北京理工大学工程硕士学位论文

	3.4.3 评估指标	31
	3.4.4 实验结果	33
3.5	本章小结	34
第4章	基于子树划分的抽象语法树表征学习3	35
4.1	研究动机	35
4.2	AST 表征方法设计	35
	4.2.1 框架概述	35
	4.2.2 子树划分	35
	4.2.3 抽象语法树表征学习	35
4.3	AST 表征方法具体实现	36
4.4	实验验证	36
	4.4.1 实验设计	36
	4.4.2 抽象语法树子树划分消融实验结果	36
4.5	本章小结	37
第5章	基于图过滤的程序依赖图表征学习	38
5.1	研究动机	38
5.2	PDG 表征方法方法设计	38
	5.2.1 框架概述	38
	5.2.2 图过滤机制	38
	5.2.3 程序依赖图表征学习	39
5.3	PDG 表征方法具体实现	39
5.4	实验验证	39
	5.4.1 实验设计	39
	5.4.2 图过滤机制消融实验结果	39
5.5	本章小结	39
第6章	特征融合及 RLCCD 框架验证4	11
6.1	特征融合 4	41

北京理工大学工程硕士学位论文

6.2	RLCC	D 框架验证	41		
		实验设置			
		对比工具			
	6.2.3	RLCCD 性能评估实验结果	42		
6.3	本章へ	N结	42		
结论			43		
参考文献					
攻读学位期间发表论文与研究成果清单4					
致谢			49		

插图

图 1.1	2018-2023 年 Synopsys 审计代码库中的开源代码及漏洞占比示意图	1
图 1.2	2022 年 Synopsys 审计代码库中包含易受攻击组件的百分比示意图	2
图 1.3	代码克隆检测流程	3
图 1.4	论文组织结构	12
图 2.1	研究思路	16
图 2.2	RLCCD 总体框架	16
图 2.3	C 语言代码片段示例	19
图 2.4	面向代码克隆检测的多维源代码表征学习方法 RLCCD 架构图	20
图 3.1	基于预训练辅助模型的 Token 表征学习框架	23
图 3.2	Token 代码表征: AttBiLSTM 模型设计	26
图 3.3	LSTM 模型时序结构图	26
图 3.4	BiLSTM 模型结构图	28
图 3.5	示例源代码对应的 Token 序列	28
图 3.6	基于预训练辅助模型的 Token 表征学习方法实现	29
图 4.1	示例源代码对应的抽象语法树	36
图 5.1	示例源代码对应的程序依赖图	39

表格

表 3.1	实验环境配置	30
表 3.2	POJ104 数据集	31
表 3.3	本文预处理后的 POJ104 数据集正负样本数	32
表 3.4	分类问题的混淆矩阵	32
表 3.5	预训练语料库规模对实验结果的影响	33
表 3.6	Token 表征模型对实验结果的影响 (%)	34
表 4.1	抽象语法树子树划分实验结果	37
表 5.1	图过滤机制实验结果	40
表 6.1	RLCCD 实验结果	42

第1章 绪论

1.1 研究背景与意义

代码克隆,也叫代码复用,是指在软件系统中存在两个或两个以上的相似代码片段^[1],是软件开发中的常见现象。随着互联网时代的发展,网络上各种开源项目越来越多样化,获取也更加便利。许多企业通过软件资源库、外部开源软件、软件产品线及开发框架等方式建立了多种多样的软件复用开发方法,同时开发人员自身也会通过多种方式大量复用已有的软件资源。在这些软件复用方法和资源的支持下,软件系统和软件产品大量引入了开源软件、网络资源、商业软件等第三方代码成分。这些第三方代码在多个软件系统中复制、传播和演化,给软件系统带来了软件质量的不确定性和风险,甚至导致漏洞的传播^[2]。

近年来,第三方代码中包含的漏洞数量呈现出快速增长的趋势。根据美国新思科技公司(Synopsys, Inc.)发布的《2024年开源安全和风险分析报告》^[3]显示,在 2023年审计的 1067个代码库中,96%的项目都包含开源代码,总审计代码库的 77%代码源自开源软件。其中,84%的代码库包含至少一个已知开源漏洞,有 74%代码库中包含高风险漏洞,比 2023年版的报告中增加了 54%。图1.1统计了 2018年至 2023年Synopsys 审计代码库中开源代码及漏洞占比,从图1.1中可以看出开源代码及漏洞数量整体呈上升趋势。

图 1.1 2018-2023 年 Synopsys 审计代码库中的开源代码及漏洞占比示意图

同时,Synopsys 按照行业划分,统计了各行业包含开源代码的占比,其中互联网等相关行业包含开源代码的代码库百分比均为 100%,其余行业占比如图1.2所示。此外,经过风险评估的代码库中,14% 包含 10 年以上的漏洞,漏洞的平均年龄为 2.8 年,49% 包含 24 个月内未更新的组件。一旦这些组件出现安全问题,通常会导致软件遭受供应链攻击。据 Gartner^[4]预测,到 2025 年,全球 45% 的组织将遭受软件供应链攻击,比 2021 年增加三倍。因此,准确地检测代码克隆对于软件开发和维护至关重要。

图 1.2 2022 年 Synopsys 审计代码库中包含易受攻击组件的百分比示意图

早期进行代码克隆检测通常采用人工检查并标注的方法,通过收集整理大量的代码逐行检查语法、语义结构,由人工复查筛选出正确的克隆代码并对其进行标注,由此形成了早期的代码克隆数据样本,例如,2015年 Svajlenko^[5]等三名克隆领域的专家评委花费了 216 小时通过人工验证方法构造了 BigcloneBench 数据集,该数据集总数据量达到 800 万条,其背后的人工花费巨大。这种利用人工的方法检测代码克隆效率低,成本高,并且无法保证准确率^[6],因此,有研究人员提出代码克隆检测技术,目的在于自动化定位软件系统中的代码克隆,并能够节约成本,减少出错风险^[7]。

早期代码克隆检测技术通常将代码视为自然语言文本进行处理,通过文本相似性 判断代码相似程度;随着编译技术的发展,研究者们将编译原理中的词法分析技术运用到代码克隆检测领域;近年来,基于多维源代码表征学习的代码克隆检测技术引起了学者们广泛的兴趣,有研究人员从代码克隆检测与代码表征学习技术相结合这一方面进行了探索,试图从关键技术点入手,找到合适的结合点,以提高定代码克隆检测技术的效率和智能化程度。

1.2 研究现状与趋势

1.2.1 代码克隆检测技术

代码克隆检测技术,旨在自动化定位软件系统中的代码克隆,节省成本,减少出错风险,从而更好地保证软件质量。目前已有的代码克隆方法大多需要对代码片段进行信息抽取,转换为中间表征,然后根据表征方式的不同,计算不同代码片段之间的相似度,完成克隆检测任务。其具体流程如图1.3所示。

图 1.3 代码克隆检测流程

从图1.3可以看出一个完整的代码克隆检测过程通常包括预处理与转换、代码表征、匹配检测、后处理几个阶段。具体而言,一般的代码克隆检测从代码预处理与转换开始,首先删除与检测无关的空白行、注释、缩进等元素,并根据检测粒度将源代码划分为单独的片段,比如类、函数等;然后在代码表征步骤,将比较单元转换为词法单元(Token)、抽象语法树(abstract syntax tree,AST)、程序依赖图(Program dependency graph,PDG)等常见的中间表示;在匹配检测阶段,将根据得到不同的中间表示采用相应的匹配算法进行相似度计算,例如抽象语法树的比较通常采用子树匹配算法,程序依赖图的比较则采用子图同构算法。此阶段将代码片段两两对比,以查找相似代码源片段,得到代码克隆对。最后在后处理阶段,通常会通过人工检测或者算法过滤掉错误的代码克隆,并以适当的方式呈现给开发人员提供帮助。

在这些步骤中,代码表征方式决定了匹配检测方法的预处理方式、模型设计、部署方式、运行效率,并影响最终结果^[8]。比如将源代码表征为文本,其预处理过程主

要为去除噪声,如空格、注释等,其比较算法可以利用文本相似的一系列方法,能够检测到语法相似的克隆代码;而如果表征为抽象语法树,则其预处理过程需要解释器的参与,相似比较算法也更多地考虑了结构相似等,能够检测到语法层面相似的代码克隆。由此可见,代码表征方式是代码克隆检测的关键步骤。

1.2.2 代码表征学习

表征学习是指学习数据的表示,使其在构建分类器或其他预测因子时更容易提取有用信息^[9]。代码表征学习是对源代码的语义和语法信息进行表征,得到源代码的特征向量,并将其应用在不同的下游任务上。在代码克隆检测中,代码表征学习可以用来提取代码片段更高层次的抽象特征表示,这些特征表示能够捕捉代码的语法、语义以及结构信息。通过学习到的代码表征,可以更准确地比较和识别不同代码片段之间的相似性,从而实现克隆代码的检测和管理,提高检测的准确性和鲁棒性。因此,代码表征学习为代码克隆检测提供了重要的技术支持。

早在 100 多年前,基于传统机器学习的数据特征学习就被广泛提出^[10],主成分分析 PCA(Principal Component Analysis)^[11]、线性判别分析 LDA(Linear Discriminant Analysis)^[12]都是经典的表征学习方法。随着神经网络的不断发展,基于深度学习的代码表征学习工作能够更有效地提取数据的特征,用于后续的分类或预测。2013 年,Y Bengio 等人^[9]发表了关于表征学习的经典综述。2016 年,Bengio 和 IGoodfellow 等人^[13]合著的《Deep Leanring》一书中为表征学习专著一章。近些年来,代码表征学习方法被用于代码克隆检测、代码推荐、代码剽窃等多个代码分析任务中,取得了一定的成就。根据源代码的抽象层次不同,现阶段代码表征学习工作可以分为基于 Token 的代码表征、基于树的代码表征、基于图的代码表征、基于语法和语义混合的代码表征四类。

(1) 基于 Token 的代码表征

基于 Token 的代码表征通常利用词法分析器将代码中的词汇单元(Token)划分出来。这些词汇单元通常包含关键字、数字、标识符等。将代码表示为词汇单元序列之后,对其进行建模,学习代码序列中所包含的有效信息,如功能语义信息、语法结构信息等,最后生成具有丰富代码信息的表征向量,应用于后续的代码克隆检测任务中。

著名的 CCFinder^[14]、CP-Miner^[15]等经典代码克隆检测工具都是基于 Token 级的,

可以很好地检测完全相同的代码对以及参数化后的代码对克隆问题。其中,CCFinder 将源代码中的每一行单独转换为 Token 序列,根据转化规则对 Token 进行修改,将类型名、变量名、常量的标识符替换为指定的特殊 Token,最后利用后缀树来查找相同的子序列并通过设置阈值来过滤克隆对。CP-Miner 增加了 Bug 检测,该工具的检测速度、检测精度相较于 CCFinder 有了很大的提高。

Jiang 等人^[16]首先使用神经网络在 Token 级别进行代码克隆检测,提出 CCLearner 方法。该方法使用 BigCloneBench^[5]作为训练样本,抽取了其中方法级别的 Token 序列,将保留字、类型标识符、方法标识符和变量标识符等 8 种符号表示为 8 种标记,随后将各种标记类型以及出现的频数作为代码的序列表示,并用于代码克隆检测。

Mikolov 等人^[17]利用 Word2vec、GloVe、BERT 进行 Token 的预训练,通过无标注样本训练深度网络结构,使用标注样本进行模型参数微调,从而提升模型性能。其中BERT^[18]是双向 Transformer 的编码器,通过遮蔽语言模型和下一句预测 2 种预训练目标来调整模型参数。

Sajnani 等人^[19]提出了一种基于词袋模型的代码表征方法 SourcererCC,使用代码段 Token 的组成来度量两段代码块中词法粒度上的重复度,从而检测两段代码的相似性。这种方法相对于纯文本的代码表示形式实现了更高层次的代码分析。

Tao 等人^[20]提出了一种跨语言克隆检测模型 C4,通过对比学习的思想,采用预先训练的模型 CodeBert 提取代码特征,并转换为高维代码表示。此外,还通过一个可以有效识别克隆对和非克隆对的约束学习目标来微调 C4 模型。实验结果表明,C4 在准确率、召回率、F1 方便显著优于最先进的基线。

上述方法均在 Token 上进行代码的表征学习,力图充分提取代码中的属性信息。

(2) 基于树的代码表征

抽象语法树 AST 最早由 Yourdon 等人^[21]提出,是源代码的抽象语法结构的树状表示,可以有效地表示程序的语法及其结构,利用深度神经网络对抽象语法树进行建模得到其向量表示,根据该特征向量完成代码克隆检测任务,实现基于树的源代码表征。

White 等人^[22]提出了一种基于循环神经网络的代码表征方法,该方法将代码分为词汇以及句法两个层次。对于词汇级别的信息,该方法在代码的词汇单元序列上使用RNN 神经网络进行建模。而对于代码的句法级别的信息,首先将代码转换为其对应的抽象语法树结构,之后将抽象语法树转换为其对应的满二叉树,最后将满二叉树转

换为橄榄树,并在其上使用另一个 RNN 神经网络进行建模。该方法将这两个特征相结合作为整个程序的特征向量,根据该向量进行代码克隆检测任务。

Mou 等人^[23]提出了一种基于树的卷积神经网络模型 TBCNN(Tree-based convolutional neural network)。该模型采用了"连续二叉树"的概念,直接在代码所对应的抽象语法树上进行卷积操作。在卷积操作之后获得了不同数目的 AST 结构特征向量,由于数目不同不能直接作为神经网络的输入,因此该方法还采用"动态池化"技术,最终将数目不同的特征向量转换为了一个向量。TBCNN是一个通用的代码表征生成模型,所生成的向量能够包含代码片段中特有的代码模式,因而可以应用于不同的代码分析任务中。

Wei 等人^[24]提出了一种基于哈希的代码表征方法 CDLH(Clone Detection with Learning to Hash)。该方法使用 Word2Vec 模型学习标记嵌入以捕获词汇信息,然后训练基于抽象语法树的 LSTM 模型将这些嵌入组合成一个二进制向量来表示代码片段,最后通过计算哈希码的汉明距离来检测代码克降。

Zhang 等人^[25]提出了一种基于抽象语法树的神经网络代码表征方法 ASTNN(A novel AST-based Neural Network)。该方法将完整的抽象语法树分割为多个语句子树。针对每个语句树,该方法设计了语句编码器用于将语句树转换为对应的语句表征向量,通过使用双向 GRU 神经网络对语句向量进行建模,对双向 GRU 层输出的隐含状态向量进行最大池化操作,以获得最显著的代码特征。该方法所生成的代码表征向量被应用于代码克隆检测任务中,在 POJ104^[23]和 BigcloneBench^[5]数据集上取得了当时最好的检测结果。

Yu 等人^[26]提出了一种基于树卷积的代码表征方法 TBCCD(Tree-Based Convolution for Clone Detection)。该方法提出了一种三角形卷积核对父节点和子节点卷积,通过自适应的参数编码树中的节点;同时考虑到抽象语法树的词法信息,通过位置相关的编码方式编码 Token 值,最后基于 CNN 进行克隆检测。

Ling 等人^[27]提出了一种树自动编码器架构 TAE。该方法使用无监督学习对大规模数据集的抽象语法树 AST 进行预训练,然后在下游任务代码克隆检测任务中对训练后的编码器进行微调,实现跨语言代码克隆检测。

Wu 等人^[28]提出了一种基于树的可扩展的语义代码克隆检测器 Amain,通过将抽象语法树转换为简单的马尔科夫链,并测量马尔科夫链中所有状态的距离,将距离值送入分类器中训练得到一个代码克隆检测器。

上述方法均在抽象语法树上进行代码的表征学习,力图充分提取代码中的结构信息。

(3) 基于图的代码表征

程序依赖图 PDG 最早由 Ferrante J 等人^[29]提出,是程序的一种图形表示,所含结构信息最多,能够表示程序的控制依赖,数据依赖以及地址依赖等关系,是一种带有标记的有向多重图。通过将程序表示为图的形式使得模型能够更好地理解代码中不同部分之间的依赖关系。

Allamanis 等人^[30]考虑到代码中的长依赖问题,如在代码中变量的定义位置与使用位置之间的距离问题,提出了基于图的代码表征方法,并介绍如何使用 GGNN (Gated Graph Neural Networks)训练。首先将代码转换为对应的抽象语法树,之后通过不同的连接规则连接抽象语法树各个节点,获得了包含变量之间依赖关系在内的不同节点之间的关联关系;最后将构建好的代码图数据作为输入,输入到图神经网络中进行表征学习。

Lu 等人^[31]提出了一种用于程序分类的图网络模型 GGANN (Gated Graph Attention Neural Networks)。该方法从代码中提取数据流与函数调用信息,将其融合到抽象语法树中,从而将代码构建为一个包含丰富信息的图结构表示 FDA。在传统的 GGNN模型上引入了注意力机制,用于获得图中每个节点的重要程度,进而获得更具有区分度的代码表征向量。

Brockschmidt 等人^[32]提出了一个生成代码模型,该模型利用部分生成程序的已知语义来指导生成过程。关键思想是在代码的抽象语法树上增加相应的边以构建代码图,之后使用图神经网络对已获得的部分程序的结构和数据流进行建模完成代码表征任务。这种表示有助于更好地指导生成过程的剩余部分。

Ben-Nun 等人^[33]提出了一种与语言以及平台无关的代码表征方法 inst2vec。该方法首先使用编译器对代码进行编译,得到代码的中间表示。但由于该中间表示并没有包含代码之中的数据流信息以及控制流信息,因此该方法将数据流和控制流也融合到该中间表示中,进而构建了代码上下文流图,最后在所构建的图上使用循环神经网络进行建模,获得代码的表征向量。该向量在程序分类实验中的准确率取得了当时最好的效果。

Wang 等人^[34]提出了一种称为流增强抽象语法树 FA-AST(Flow-Augmented Abstract Syntax Tree)的程序图表示,考虑了仅仅使用代码的抽象语法树进行代码表征

建模实际上仍然有代码结构上的缺失这一问题,构建了代码抽象语法树的图形表示 FA-AST,通过将抽象语法树各个叶子结点相连构建出适合图神经网络处理的数据,然 后应用两种不同类型的图神经网络 GNN 来检测克隆。

DeFreez 等人^[35]提出了一种学习嵌入方法 Fun2Vec,将每个函数映射到连续向量空间中的向量,以便使同义函数的向量非常接近。该方法采用随机游走算法,在程序的过程间控制流图上随机选择部分执行路径,捕获程序的层级结构,每条执行路径转换为一个标签序列,借助 Word2Vec 方法,把标签映射为连续实值向量,并通过神经网络训练函数的嵌入向量。

Kang 等人^[36]提出了一种针对代码补全问题的门控卷积网络模型 CC-CCNN。该方法通过从代码表示中获得有效的代码特征,提出了一种分类机制,通过使用已知的父节点对节点的表示进行分类,并在模型中构建训练图。实验结果表明,模型在数据集中最多优于最先进的方法 MRR 最多 9.2%,ACC 最多 11.4%。

上述方法均在图上进行代码的表征学习,力图充分提取代码中的语义信息。

(4) 基于语法和语义融合的代码表征

基于语法与语义融合的模型,结合抽象语法树 AST、数据流图 DFG、控制流图 CFG、词法单元 Token 序列,捕获程序的语法及语义结构信息。其中抽象语法树 AST 和 Token 序列反映了语法层面的信息,数据流图 DFG、控制流图 CFG 反映了语义层面的信息。

Tufano 等人^[37]采用四种不同的代码表征方法(即标识符 Token、抽象语法树 AST、字节码和控制流图 CFG)进行代码克隆检测,他们利用四种代码表示分别识别代码对的相似度,并计算平均值作为最终的相似度结果。

Saini 等人^[38]提出了一种基于多种度量的代码克隆检测框架 Oreo,该方法从程序的源代码中提取了包括被调用的外部方法的数量、变量的数量、语句的数量、循环的数量等 24 种度量,然后进一步从函数中抽取语义,并使用了基于哈希的方法进一步筛选,最后加入了深度学习的方法,将两个程序向量输入到孪生模型中来判断两个程序之间是否具有克隆关系。

Fang 等人^[39]结合抽象语法树,控制流图和调用图来学习代码特征,融合了语法和语义信息。首先,该方法从源码中分析出方法之间的调用图、每个方法的抽象语法树以及每个方法的控制流图;然后,用调用图找出每个功能的 AST 集合。通过 AST 集合抽取功能的语法信息;通过调用图组成每个功能的控制流图;通过控制流图抽取

功能的语义信息;最后,将抽取出来的语义信息送入前馈神经网络得到分类结果。

Hua 等人^[40]提出了一种使用注意力机制的功能代码克隆检测器 FCCA (Functional code clone detector using attention),结合标记、抽象语法树和控制流图三种方式实现检测目标。该方法通过保留多个代码特征,包括非结构化(顺序令牌形式的代码)和结构化(抽象语法树和控制流图形式的代码)信息,在混合代码表示的基础上进行代码克隆检测。将多个代码特征融合到混合表示中,该混合表示配备有注意力机制,有助于最终检测精度的重要代码部分和特征。

Dong 等人^[41]提出了一种基于 Token 和 AST 的代码表征方式,提取数量特征如 AST 中的 AST 树的高度、节点数以及标记中操作数的个数、字符串的个数等作为神 经网络的输入进行检测。

Feng 等[42]提出了一种多模态的预训练模型,利用不同模态的信息互补作用,有效提升了模型的整体表征能力。CodeBERT 基于文档和代码,在自然语言和程序语言双模态下,利用 BERT 进行预训练,提取自然语言和程序语言之间的语义连接,为下游任务提供通用表示向量。

Duan 等人^[43]提出了一种无监督的程序代码表示学习技术 DEEPBINDIFF,依靠代码语义信息和程序控制流信息生成基本块嵌入,并且采用 k-HOP 贪婪匹配算法,利用基本块嵌入发现最优的相似性结果。通过大量二进制文件和真实的 OpenSSL 漏洞对原型进行评估,结果表明 DEEPBINDIFF 相比于最先进的工具,跨版本和交叉优化级别都更优。

Wu 等人^[44]提出了一种基于序列和基于图的软件功能克隆检测方法 SCDetector。针对给定的方法源代码,首先生成控制流图,然后应用社交网络中心性分析将图转换为某些语义标记(即具有图细节的标记)。最后,这些语义标记被馈送到 Siamese 网络中,以训练模型并使用它来检测代码克隆对。

总体而言,代码克隆检测是提高软件开发质量的重要手段,如何对代码进行合适的表征是代码克隆检测的关键问题^[45]。代码表征学习决定了对源代码信息抽取程度的上限,决定了检测技术的预处理方法、模型设计、部署方式、运行效率,并会影响最终结果。面向代码克隆检测这一下游任务,基于 Token 的方法将代码视为文本,保留了源代码本身存在的噪声,缺少代码的语义、结构信息;基于树的方法在一定程度上提取了代码的结构信心,但在转换 AST 的过程中会丢失部分信息,并且存在信息冗余;基于图的方法保留了语法和语义信息,但在生成图的过程中需要付出较高代价。

以上单个维度的代码表征方法各有利弊,但总体对代码信息利用不充分,因此,研究人员一方面通过对源代码进行充分利用,提出多维源代码表征方法,从而提高代码克隆检测能力;另一方面,通过研究更先进的算法来提高表征模型的适应性和泛化能力,也是目前重要的发展趋势。

1.3 研究内容

本文主要围绕如何将源代码表征学习技术应用到代码克隆检测领域的问题,通过不同维度对程序进行表征学习,并基于学习得到的语义特征进行克隆对的判定,充分发挥代码表征学习技术检测代码克隆的能力。针对现有代码表征学习方法存在的对代码结构信息和语义信息利用不充分的问题,本文提出面向代码克隆检测的多维源代码表征学习方法 RLCCD,旨在通过构建三个不同维度的代码表征模型,将源代码的语义信息表示为稠密低维实值向量,以在低维空间中高效计算实体和关系的语义联系,并通过特征融合得到多维特征,实现对代码信息的充分利用,以更加全面准确与智能化的方式提高代码克隆测试效率。

本文的主要工作包括:

(1) 提出面向代码克隆检测的多维源代码表征学习方法 RLCCD

本文提出了一种面向代码克隆检测的多维源代码表征学习方法 RLCCD,该框架主要针对代码表征提出三个关键技术点,从 Token 序列、抽象语法树 AST、程序依赖图 PDG 三种不同维度对代码特征表示进行优化,分别形成了基于预训练辅助模型的Token 表征学习、基于子树划分的抽象语法树表征学习、基于图过滤的程序依赖图表征学习三种方法,然后通过特征融合将三种维度特征整合为一个多维特征,实现对代码信息的充分利用,以更加全面准确与智能化的方式提高代码克隆测试效率。

(2) 基于预训练辅助模型的 Token 表征学习

针对目前现有的基于 Token 的表征学习方法通常将代码表示为词汇单元,为了后续生成表征向量通常会将词汇单元规范化,丢失部分语法信息,出现在词汇表中不存在 Token 的难题,提出了一种基于预训练辅助模型的 Token 表征学习方法。该方法在模型训练之前,通过选取预训练辅助模型从代码语料库中学习基本单元的语法语义信息,以及这些单元之间的联系,最终给出一份单词-向量形式的词汇表,从而减少出现集外词问题的概率。在 POJ104 数据集上的消融实验评估表明,预训练辅助模型方法能够提高代码克隆检测准确率。

(3) 基于子树划分的抽象语法树表征学习

针对现有的基于树的表征学习方法通常将抽象语法树转换为完整二叉树,可能破坏源代码原有语法结构,增加 AST 高度,丢失长期上下文信息,削弱了神经网络模型捕捉更真实和复杂语义能力,导致梯度消失的难题,提出了一种基于子树划分的抽象语法树表征学习方法。该方法将每个大型的 AST 分割成小语句树序列,并通过捕获语句的词法和句法知识将每一个语句树都编码成一个向量,在得到一个语句向量序列后,将语句向量序列输入树卷积神经网络中生成代码片段的结构向量表示。在 POJ104数据集上的消融实验评估表明,子树划分方法能够有效提取结构特征,提高代码克隆检测准确率。

(4) 基于图过滤的程序依赖图表征学习

针对现有的基于图的表征学习方法通常将程序表征为有向多重图,继而采用图匹配算法将图中的控制流和数据流编码为一个紧凑的语义特征矩阵,矩阵中每个元素都是高维系数特征向量,所消耗的时间、空间开销巨大的难题,提出了一种基于图过滤的程序依赖图表征学习方法。该方法通过收集 PDG 的简单特征来过滤掉明显不可能为克隆的 PDG 对。具体的,根据 PDG 的节点个数、控制边数、执行边数、数据边数、声明节点数、函数调用数、传入参数、传出参数等代表特征进行过滤,从而减少候选PDG 对规模。在 POJ104 数据集上的消融实验评估表明,图过滤方法能够有效减少时间、空间开销,提高代码克隆检测准确率。

(5) 特征融合及实验验证

针对单个维度对代码信息利用不充分的问题,提出了基于多模态学习的特征融合方法,通过融合多个代码特征,包括非结构化 (顺序 Token 形式的代码) 和结构化 (抽象语法树和程序依赖图形式的代码) 信息,从多维数据中学到更好的特征表示。同时,选取了代码克隆检测领域常见的基准集 POJ104 进行实验验证,并与现有开源的 SourcererCC^[19]、ASTNN^[25]、SCDetector^[44]方法进行比较,主要通过精确度 (Precision)、召回率 (Recall)、F1 值三个指标评价实验结果,实验结果验证了 RLCCD 的可行性和有效性。

1.4 论文结构

本文总共分为六章,各章节的主要介绍内容如下,组织架构图如图1.4所示:

- 第1章 绪论部分首先对本文的研究背景与意义进行了阐述,之后对代码克隆 检测技术和代码表征学习技术的研究现状与趋势进行了分析总结,进而提出本文的主 要研究内容,最后介绍了全文的组织结构。
- 第2章 分析了代码表征学习领域的关键技术挑战,基于此,提出了本文的面向代码克隆检测的多维源代码表征学习方法 RLCCD,并对该方法的整体框架进行了介绍,进而根据所提框架简要论述了本文研究的关键技术,即基于预训练辅助模型的Token 表征学习方法、基于子树划分的抽象语法树表征学习方法、基于图过滤的程序依赖图表征学习方法,最后进行本章小结。
- 第3章 介绍基于预训练辅助模型的 Token 表征学习方法的设计与实现。首先,分析其研究动机,即目前 Token 表征学习面临的集外词问题,继而提出基于预训练辅助模型的方法设计,详细介绍该方法的设计思路和具体实现,最后,通过消融实验验证,评估本章提出的预训练辅助模型的有效性。
- **第4章** 介绍基于子树划分的抽象语法树表征学习方法设计与实现。首先,分析 其研究动机,即目前抽象语法树表征学习面临的梯度消失问题,继而提出基于子树划 分的方法设计,详细介绍该方法的设计思路和具体实现,最后,对该方法的有效性进

行消融实验验证。

- 第5章 介绍基于图过滤的程序依赖图表征学习方法设计与实现。首先,分析其研究动机,即目前图表征学习面临的规模开销问题,继而提出基于图过滤机制的方法设计,详细介绍该方法的设计思路和具体实现,并给出了针对该方法有效性的消融实验验证。
- 第6章 介绍特征融合及本文研究框架 RLCCD 的实验验证。首先,针对特征融合的方法设计与具体实现进行了介绍。接着,对 RLCCD 框架的有效性进行了评估,通过与现有开源技术 SourcererCC^[19]、ASTNN^[25]、SCDetector^[44]进行实验对比,验证RLCCD 方法的有效性。
- **结论** 首先对全文的研究工作进行了总结,并讨论本文的主要贡献与创新之处,最后对下一步可开展的工作提出展望。

第2章 多维源代码表征学习方法总体设计

本章首先阐述了当前代码表征学习面临的一些关键技术挑战,进而针对现有的问题提出面向代码克隆检测的多维源代码表征方法 RLCCD。然后就该框架的总体架构和处理流程进行详细阐述,最后,给出了下游代码克隆检测任务的问题定义,针对RLCCD 框架给出了形式化描述。

2.1 代码表征学习面临的技术挑战

目前已有的代码克隆检测方法大多遵循以下思路: (1) 首先对代码片段进行预处理; (2) 对处理好的代码片段进行代码表征,将其转换为中间表征; (3) 根据表征的方式不同计算不同代码片段之间的相似度,完成克隆检测任务。在代码克隆检测中,源代码表征方式决定了信息抽取的程度和粒度,进而影响了后续克隆检测的精度和效率。如何得到丰富且有效的源代码表征表示,是解决代码克隆检测任务的关键所在。从目前多种维度的代码表征方法来看,现有的代码表征方式存在以下技术挑战:

(1) Token 维度代码表征存在集外词问题

基于 Token 的方法一般会利用词法分析器将源代码中的词汇单元 Token 划分出来,得到 Token 序列,并过滤掉无用的空格、注释、字符等,然后利用深度学习技术对其进行建模,生成具有丰富代码信息的表征向量,应用于下游代码任务。这类方法和自然语言处理(NLP)领域中常用来处理文本的方式很相似,产生一个规模巨大且稀疏的词汇表。但是,在大多数基于 Token 的代码克隆检测工具中,通常会将词法单元规范化,例如:将变量名用统一的标识符来代替。经过规范化 Token 产生的词汇表较小,导致模型学习能力有限,并且在训练过程中会出现未见过或未包含在词汇表中的词语。这些词语可能是用户自定义词、拼写错误、缩写、专有名词等。由于模型在训练阶段没有足够的信息来学习这些词语的表示,因此在实际应用中无法正确处理这些词语,从而导致模型的性能下降,这就是集外词(Out of vocabulary,简称 OOV)问题。集外词问题会对模型的性能和泛化能力造成影响,严重限制了代码表征的有限性。

(2) 树维度代码表征存在梯度消失问题

基于树的方法将代码通过语法解析转换成相应的抽象语法树,从而有效地表示代码的语法及其结构信息。与自然语言处理领域的长文本类似,当上下文序列很长的时候,基于树的神经网络模型容易出现梯度消失的问题,即梯度在训练过程中变得越来

越小,特别是当树非常深的时候,模型会面临梯度消失问题。目前大多数基于树的代码克隆检测方法为了简化或者提高效率,通常会将生成的抽象语法树转换为完整的二叉树,在转换的过程中,不仅破坏了源代码原有的语法结构,也会增加树的高度,进一步削弱模型捕捉复杂语义的能力,导致检测性能下降。

(3) 图维度代码表征存在规模开销问题

基于图的方法会将源代码表征为数据流图或者控制流图,数据流图代表了源代码中数据的走向,控制流图代表了代码中语句执行时的跳转流向。大多数基于图的代码克隆检测工具任务的核心是将图中的每个节点映射到一个低维、稠密的特征向量中,并将这些特征编码为特征矩阵,这一步通常需要大量空间开销。同时子图匹配算法是NP 完全问题,计算成本过长,时间复杂度很高,因此图维度代码表征学习会存在算法计算开销大,可扩展性不好,检测结果召回率低等问题。

(4) 代码表征存在信息利用不充分问题

虽然目前代码表征在 Token、树、图等多种维度的研究已经取得了一定的进展,但还存在信息利用不充分的问题。代码不仅仅具有文本自然性,同时具有结构信息、语义信息。在现有的表征粒度中,Token 维度的代码表征通常只关注文本自然性,抽象语法树可以捕获程序的语法结构和模式,程序依赖图可以表达程序的部分语义信息,只使用单个特征来表示代码是远远不够的,很难覆盖所有信息,因此存在信息利用不充分,特征表达不完善的问题。

2.2 RLCCD 研究方案

2.2.1 研究思路及总体框架

针对2.1节提出的四个技术挑战,本文提出了如图2.1所示的研究思路。

具体地,本文主要针对代码表征学习的三个维度展开研究工作: (1) 针对 Token 序列特征挖掘,提出预训练增强辅助模型提取属性特征,从而解决传统基于 Token 序列的方法存在的集外词问题; (2) 针对抽象语法树 AST 特征挖掘,提出子树划分的改进方法提取结构特征,从而解决传统基于抽象语法树的方法存在的梯度消失问题; (3) 针对程序依赖图 PDG 特征挖掘,提出过滤机制提取语义特征,通过收集 PDG 的简单特征来过滤输入神经网络模型的输入,从而解决传统基于程序依赖图的方法存在的规模开销问题。

同时,考虑到经由不同表征方式处理所得到的信息通常具有互补性,且不同维度

的特征都是代码表示的平行语料,具有信息等价性,因此,本文提出基于多模态学习的特征融合方法,通过融合多个代码特征,包括非结构化 (顺序 Token 形式的代码) 和结构化 (抽象语法树和程序依赖图形式的代码) 信息,从多维数据中学到更好的特征表示,从而有利于提高下游代码克隆检测任务的检测精度。

图 2.1 研究思路

本文基于上述研究思路,设计了面向代码克隆检测的多维源代码表征方法 RL-CCD,框架如图2.2所示。由图2.2可见,本文提出的基本框架与1.2.1节提出的代码克隆检测的处理流程基本一致,并主要通过三个维度对代码表征学习环节进行改进,然后对三个维度得到的特征向量进行特征融合,得到的混合特征应用到下游代码克隆检测任务中。

图 2.2 RLCCD 总体框架

2.2.2 代码预处理

代码预处理的目标是生成源代码片段对应的词法单元 Token 序列、抽象语法树 AST 和程序依赖图 PDG, 主要包含 2 个流程:代码标准化、生成中间表示。

(1) 代码标准化

代码标准化的任务是去除与源代码无关的信息。首先是删除源代码片段中的注释、空行以及特殊符号,包括单行注释、多行注释、引入标准库的宏符号"#"、无关符号等。其次,由于代码本身是一段包含丰富信息的文本,开发者通常会通过个人命名习惯对常量等标识符进行命名,这些私人信息并没有大多实际意义,反而会降低后续代码处理的精确率。因此,本文定义了一定的转换规则,将代码中的某些标识符转换为对应的标记,在最大限度地保留原有重要信息的同时,减少缺失关键语义联系。

(2) 生成中间表示

基于标准化后的代码片段生成对应的中间表示: Token 序列、抽象语法树 AST 和程序依赖图 PDG。其中,词法单元 Token 序列可以通过词法分析器得到,词法分析器能够按照预定的语法规则将代码中的字符串分割为一个个词汇单元,这些词汇单元包含代码标准化处理后的标识符;抽象语法树 AST 以树状的形式抽象描述了程序语句的语法结构信息,生成抽象语法树时需要对源代码文本进行词法分析,然后依据语法规则分析整合 Token,得到树型结构;程序依赖图 PDG 能够表示源代码的控制依赖,数据依赖赖等关系,是一种带有标记的有向多重图。生成程序依赖图时,需要对程序进行语法分析,然后分析程序中变量的关联关系,根据这种关联关系描绘程序的数据依赖和控制依赖关系,形成图的描述。

2.2.3 多维源代码表征学习

RLCCD 框架的核心步骤是源代码表征学习,其目标是学习能够表示代码片段的连续向量,表现程序理解的认知层次,获取程序的语法、语义信息,创建程序更高抽象层次上的表示,它决定着对源代码信息抽取程度的上限,决定着检测方法的预处理方式、模型设计、部署方式、运行效率,并影响后续代码克隆检测任务所能检测的精度。本文提出的多维源代码表征学习方法包括 Token 序列、抽象语法树 AST、程序依赖图 PDG 三种不同维度。下面详细介绍研究方案并分析其优化改进。

(1) 词法单元 Token

传统的基于 Token 的表征学习方法通常将代码表示为词汇单元,为了后续生成表

征向量通常会将词汇单元规范化,丢失部分语法信息,出现在词汇表中不存在 Token 的难题。针对这样的问题,本文提出了一种预训练辅助模型的改进方法提取属性特征。具体来说,通过选取预训练辅助模型从代码语料库中学习基本单元的语法语义信息,以及这些单元之间的联系,最终给出一份单词-向量形式的词汇表,从而减少出现集外词问题的概率。

(2) 抽象语法树 AST

抽象语法树中包含了代码片段的结构信息,然而,传统的基于树的代码表征学习方法通常将抽象语法树转换为完整二叉树,可能破坏源代码原有的语法结构,增加 AST 高度,丢失长期上下文信息,削弱了神经网络模型捕捉更真实和复杂语义的能力,导致梯度消失的难题。针对这样的问题,本文提出子树划分的改进方法提取结构特征。具体来说,将每个大型的抽象语法树分解为小语句树序列,并通过捕获语句的词法和句法知识将每一个语句树都编码成一个向量。在得到一个语句向量序列后,将语句向量序列输入网络中生成代码片段的结构向量表示。这种细粒度的处理使得模型可以很好处理很深的抽象语法树,解决梯度消失问题。

(3) 程序依赖图 PDG

程序依赖图中包含代码片段的控制依赖,数据依赖赖等语义关系,然而,传统的基于图的代码表征学习方法通常采用图匹配算法将图中的控制流和数据流编码为一个紧凑的语义特征矩阵,矩阵中每个元素都是高维系数特征向量,面临消耗的时间、空间开销巨大的难题。针对这样的问题,本文提出了图过滤机制的改进方法提取语义特征。具体来说,根据 PDG 的节点个数、控制边数、执行边数、数据边数、声明节点数、函数调用数、传入参数、传出参数等代表特征进行过滤,减少模型的输入规模。

(4) 特征融合方法

特征融合的目标是将提取到的属性特性、结构特征、语义特征合并,得到一个更能代表代码信息的多维特征,更具有判别能力。具体来说,通过三个不同维度得到属性特性、结构特征、语义特征,然后将三个特征映射到相同的特征空间内,最简单的例子是对多个代码特征进行串联,除此之外,还可以使用神经网络、概率图模型等融合方法,将向量融合作为一个混合多维表征,包括非结构化 (顺序 Token 形式的代码)和结构化 (抽象语法树和程序依赖图形式的代码)信息。该多维特征能够在低维空间中高效计算实体和关系的语义联系,挖掘代码节点间更全面、层次更深的关系信息,从而提高后续下游的代码克隆检测任务的准确率。

2.2.4 克隆检测任务实现

克隆检测任务实现的核心任务是判断两个代码片段是否是真克隆对。经过2.2.2节代码预处理和2.2.3节多维源代码表征学习两个步骤,可以得到对应的混合特征向量表示作为输入,然后计算这两个向量之间的相似性判断是否存在代码克隆。目前,常见的计算向量相似性的方法包括计算距离度量、相似性度量两种,向量的距离越近相似度越大。一些研究倾向于把程序表征为向量形式,使用余弦相似度、Jaccard 相似度、欧几里得距离、汉明距离、曼哈顿距离等评估指标计算向量之间的相似度,当相似度大于某个固定阈值时则认为存在代码克隆。具体的,本文通过输入混合特征训练分类模型,以最小化模型损失为目标,完成代码克隆检测任务。

2.3 RLCCD 定义描述

为了更形象地描述代码克隆检测问题,本节首先给出示例源代码片段2.3,其中,图2.3(a)、图2.3(b)、图2.3(c)是三个简单的代码片段,函数的主要功能为:计算 *Data*数组的元素之和,其中图2.3(a)的第 10-13 行采用 for 循环,图2.3(b)的第 9-13 行采用 while 循环,这两个代码片段属于真克隆对;图2.3(b)的第 9-14 行采用 for 循环,但在内部需要判断 result 的现有状态,因此图2.3(a)和图2.3(c)的代码片段属于假克隆对。

图 2.3 C 语言代码片段示例

给定两个代码片段 C_a, C_b ,使用一个三元组 (C_a, C_b, y_{ab}) 的形式来表示一对代码片段,其中 y_{ab} 表示标签。如果 (C_a, C_b) 是一个克隆对,那么 y_{ab} 为 1,否则 y_{ab} 为 0。从 n 个代码片段中构建一个带有标签的训练集 $\{(C_a, C_b, y_{ab})|a, b \in n, a < b\}$,本文的

目的是训练一个深度学习模型来学习一个可以把代码 C 映射成一个特征向量 V 的函数 f。对于任意代码片段,计算出他们的相似度分数 $S_{ab}=f(C_a,C_b)$ 并进行分类,使其分类结果尽可能接近已知的标签 y_{ab} 。在预测阶段,为了推断出两个代码片段是否是克隆对,在真假克隆对之间设置了一个阈值 k,如果预测的相似度分数大于 k 值,那么认为两个代码片段是真克隆对,否则,认为它们是假克隆对。其中,训练一个深度学习模型将代码 C 映射成一个特征向量 V 的过程,可以视为代码表征学习的数值化过程,也是本文研究的重点。

面向代码克隆检测的多维源代码表征学习方法 RLCCD 架构如图2.4所示,采用 Siamese 架构。RLCCD 方法的输入是两个代码片段 C_a , C_b , 输出是一个 0 或 1 的标签, 1 表示这两个代码片段是真克隆对,0 表示是假克隆对。Siamese 架构采用两个不同的输入,通过两个具有共享权值的相似子网络,输出一个编码来计算两个输入之间的相似度。整个方法的执行包括四个步骤,分别是:

图 2.4 面向代码克降检测的多维源代码表征学习方法 RLCCD 架构图

代码预处理: RLCCD 接受两个代码片段 C_a , C_b 作为输入,通过代码预处理阶段,得到对应的中间表示: 词法单元 Token 序列、抽象语法树 AST、程序依赖图 PDG。

代码表征: 代码表征是本文的核心步骤,输入是代码片段 C_a , C_b 对应的中间表示,输出是对应的表征向量,分别记为代码片段 C_a 的属性特征 V_a^{Token} 、结构特征 V_a^{AST} 、语义特征 V_a^{PDG} ,代码片段 C_b 的属性特征 V_b^{Token} 、结构特征 V_b^{AST} 、语义特征 V_b^{PDG} 。

特征融合:特征融合阶段的输入是代码片段 C_a , C_b 的特征向量,输出是对应的混合向量 V_a , V_b 。本文将提取到的属性特性、结构特征、语义特征合并,得到一个更能代表代码信息的多维特征。我们用公式2.1表示特征融合。

$$V = W_{dt} \left[v^{\text{Token}} \bullet v^{\text{AST}} \bullet v^{\text{PDG}} \right] + b_{dt}$$
 (2.1)

其中 \bullet 表示特征融合方法,V 表示最终的多维混合代码表示。 W_{dt} 在生成的多维混合表示中平衡属性特征 V^{Token} 、结构特征 V^{AST} 、语义特征 V^{PDG} 的组成,而 b_{dt} 在训练模型时使模型偏向最终收敛。

克隆检测:经过三个步骤,可以得到代码片段对应的向量表示 V_a, V_b 。由于代码克隆检测问题是一个二分类问题,即给定两个代码片段,需要输出 0 或 1,0 表示它们之间不相似,1 表示相似。因此通过公式2.2计算代码片段 C_a 对应的多维表征 V_a 与代码片段 C_b 对应的多维表征 V_b 之间的距离 d,并将向量距离 d 映射到 $0\sim1$ 之间,将输出值作为两个代码片段的相似度 S_{ab} 。

$$d = |V_a - V_b|$$

$$S_{ab} = \text{sigmoid}(d) \in [0, 1]$$
(2.2)

并将损失函数定义为二元交叉熵,如公式2.3所示,训练模型的目标是最小化损失。

$$J(\Theta, S_{ab}, y_{ab}) = \sum (-(y_{ab} \cdot \log(S_{ab}) + (1 - y_{ab}) \cdot \log(1 - S_{ab})))$$
 (2.3)

其中,уа 表示两个代码片段的真实标签。

当所有参数都设置为最优化后,模型被存储起来。在预测阶段,通过公式2.4得到 预测值。

$$prediction = \begin{cases} 1, & S_{ab} > k \\ 0, & S_{ab} \le k \end{cases}, \tag{2.4}$$

2.4 本章小结

本章首先给出了代码克隆检测问题的定义,然后分析了源代码表征学习在代码克隆检测过程中所面临的关键技术挑战,主要表现为 Token 集外词问题、树梯度消失问题、图规模开销、单个表征维度对代码信息利用率低问题。针对四个问题,本文提出了面向代码克隆检测的多维源代码表征学习方法 RLCCD,在介绍了其整体框架后,对其中的关键技术点进行了简要的论述,最后详细描述了 RLCCD 的处理流程。

第3章 基于预训练辅助模型的 Token 表征学习

本章主要对本文提出的基于预训练辅助模型的 Token 表征学习方法进行详细介绍,首先介绍其研究动机,接着阐述其方法设计,以及具体的实现过程,最后介绍实验验证过程和结果。

3.1 研究动机

基于 Token 的代码表征方法本质上就是将源代码转换为一系列词法单元 Token 组成的序列,并对 Token 序列进行代码分析。类似于自然语言技术处理文本,由于源代码中存在大量用户自己定义的标识符,不同用户的命名习惯不同,在对源代码的词法单元建模时,会产生一个规模巨大且稀疏的词汇表。该词汇表的规模会直接影响代码分析任务的效率,因此现有方法大多都对 Token 进行规范化,比如将变量名用统一的标识符来代替,从而降低词汇表的规模。但是后续神经网络模型训练过程中,当出现某个词汇在词汇表中没有出现过,那么神经网络模型就无法对齐建模,即出现了在词汇表中不存在的 Token,集外词(Out-of-vocabulary,简称 OOV)问题。有研究[46]发现,针对代码表征中的集外词问题,在经典 BigcloneBench^[5]数据集中 OOV 比率高达62.68%,在 OJClone 数据集^[23]中 OOV 比率达到了 16.82%。

为了解决 OOV 问题,本文打算使用预训练模型增加词汇表的大小。近期,研究人员在大规模语料库上预训练各种语言模型,在解决各种自然语言处理任务方面取得了良好进展^[47]。在表征学习领域,也有基于大规模预训练模型提升代码表征能力的方法被提出。InferCode^[48]将自然语言处理中的自监督学习思想引入到代码的抽象语法树的表示中,通过预测从 AST 上下文中自动识别的子树来训练代码表征,并且使用 AST 的子树作为训练标签,从而无需任何人工标记工作。该预训练 InferCode 模型可以应用于下游的无监督学习,例如代码聚类、代码克隆检测、跨语言代码搜索等。GraphCodeBERT^[49]方法提出了一个基于数据流的代码表征预训练模型,与抽象语法树不同,数据流包含代码变量间"值从哪里来"的语义特征,并不会带来深层次不必要的复杂信息,使用该特征可以更有效的生成代码表征。然而这些预训练模型通常存在参数规模庞大、训练及使用代价大的问题。

因此,针对集外词 OOV 问题,本文提出了一种轻量级的基于预训练辅助模型的 Token 表征学习方法,该方法在提升代码表征能力的同时,并不会引入过多参数,造

成模型训练代价高的问题。

3.2 Token 表征方法设计

本节将主要介绍基于预训练辅助模型的 Token 表征学习方法的详细设计,首先介绍该方法的整体框架,并分别从预训练辅助词嵌入、Token 代码表征两方面介绍具体设计。

3.2.1 框架概述

本文提出的基于预训练辅助模型的 Token 表征学习方法整体框架如图3.1所示。该框架的输入是代码片段对应的 Token 序列,输出是对应的属性特征向量,主要包括预训练辅助词嵌入、Token 代码表征两个阶段。

图 3.1 基于预训练辅助模型的 Token 表征学习框架

首先,预训练辅助词嵌入阶段以代码片段的 Token 序列作为训练数据,构建一个预训练辅助词嵌入模型。该模型的输入是代码片段对应的 Token 序列,输出为与输入对应的 Token 词嵌入向量。然后通过对模型的训练,使得该模型具有正确识别 Token 的能力,并将该模型保存下来。需要注意的是,为了减少集外词 OOV 问题,本文对模型采用相邻单元迭代算法,即,通过多次迭代来更新词汇表。

其次,Token 代码表征阶段以 Token 词嵌入向量作为训练数据,构建一个 Token 表征模型。该模型的输入是 Token 序列对应的词向量,输出为一个固定长度的密集向量用来表示代码的属性特征。需要注意的是,本文选用的 AttBiLSTM 神经网络,主要包含两个部分:双向长短时记忆部分 (BiLSTM) 和自注意力机制部分 (Attention),前者主要目的是同时捕获序列的双向语义信息,后者的主要目的是总结序列的输入特征,并将每个代码片段缩减为一个单一的密集向量。

在上述框架中,本文的创新点主要体现在预训练辅助词嵌入阶段的相邻单元迭代算法、Token 代码表征阶段的模型设计两方面,下面将围绕这两个创新点来阐述本文

的方法。

3.2.2 预训练辅助词嵌入设计

与自然语言处理类似,源代码的词法单元 Token 可以视为句子中的单词,Token 维度的代码表征方法第一步就是将词法单元 Token 转换为机器易于理解和操作的数值向量,即词嵌入技术。它将词汇表中的每个单词转换成一个低维度、连续的向量表示,这种向量通常被称为词向量。目前,使用预训练词嵌入模型训练词向量的研究工作发展迅速,Word2vec、GloVe、FastText、ELMo 和 BERT 等模型也相继被提出。其中,Word2vec 模型通过从大规模无标注文本数据集中学习上下文信息,自动捕捉并编码词汇的语义关系,生成的词嵌入向量作为下游任务的输入特征,可以显著提升神经网络模型的性能和泛化能力。因此,本文采用 Word2vec 模型进行词嵌入。

同时,为了减少集外词 OOV 问题出现的概率,本文提出了一种相邻单元迭代算法(Adjacent token iterative algorithm,简称 ATIA),该算法通过组合 Token 序列中相邻单元构造新的代码表示单元,然后统计新单元出现的频率,根据频率信息多次迭代,不断更新词汇表。下面对相邻单元迭代算法进行介绍。

具体地,首先将代码数据集中的源代码经过代码预处理,得到对应的 Token 序列作为初始语料库,代码预处理的工作详见2.2.2节,这里不展开阐述。然后按照代码块组合相邻 Token 并查找出出现次数最频繁的 Token 组合,将这个组合称为新的迭代单元(Adjacent gram,简称 Agram)。最后将这个 Agram 当作新的独立单元,加入到词汇表中,而原本组成这个 Agram 的原始 Token 单元并不会从词汇表中删除。在第一次迭代的时候,选取相邻的两两 Token 作为组合,把出现最频繁的 Token 组合确定为一个 Agram 单元之后再进行二次迭代,每次迭代在原来的基本单元上再组合一个新的邻近 Token 作为新的判断单元,不断的进行迭代,每次迭代都要对应的更新词汇表。

相邻单元迭代算法 ATIA 的伪代码如1所示。该算法有两个输入: 待处理的初始 Token 语料库 Corpus、迭代次数 N,有两个输出: 经过多次迭代后生成的语料库 NewCorpus、词汇表 Vocab,具体包括初始化 AgramsSet、计算单元 Agram 出现的次数、更新语料库 3 个步骤,每个步骤的作用如下:

(1) 初始化: 首先初始化一个 AgramsSet 用来存放 Token 组合,初始化一个词汇 表用来存放 Token 及其出现次数,并且将目前已有的 Token 语料库 *Corpus* 添加进 *NewCorpus*。

Algorithm 1 Iterative algorithm main function

```
Input: Tokens Corpus Corpus
Input: The number of iterations N
Output: New Corpus NewCorpus
Output: Vocabulary Vocab
 1: AgramsSet = \emptyset
 2: NewCorpus \leftarrow Corpus
 3: Vocab = \{\}
                                                                         ▷ step1: 初始化
 4: for i \leftarrow 1 to N do
       if i == 1 then
           for token in Corpus do
 6:
               add adjacent token to AgramsSet
 7:
           end for
 8:
       else
 9:
           numbers[] =
10:
           for Agram in Aragms do
11:
              Calculate the number of Argram in Corpus
12.
              add number to numbers
                                                  ▷ step2: 计算单元 Agram 出现的次数
13:
           end for
14:
           n \leftarrow \text{Max(numbers)}
15:
           MaxAgram \leftarrow Agram in Agrams whose number is n
16:
                                                                    ▷ step3: 更新词汇表
17:
           add MaxAqram: n to Vocab
                                                                    ▷ step3: 更新语料库
           add Agram to NewCorpus
18:
       end if
19.
20: end for
21: return NewCorpus, Vocab
```

- (2) 计算单元 Agram 出现的次数:多次迭代,在第一次迭代时,组合相邻 Token,得到 Agram 组合,并添加进 AragmsSet 集合中。遍历语料库,计算 AgramsSet 中所有的 Aragm 出现的次数,并且把 Aragm 组合当作 key,组合出现的次数当作对应 key 的 value 值保存到词汇表。
- (3)更新: 遍历 AragmsSet 中所有的 Agram 的 value 值,将频率最高的 Agram 合 并到新语料库中。然后重复(2)、(3)步骤,直到迭代次数 N 减少为 0。

3.2.3 Token 代码表征设计

(1) 结构设计

为了提高 Token 维度代码表征能力,本文选用 AttBiLSTM 神经网络对上述得到词向量进行建模,具体的模型设计如图3.2所示。该模型主要包括输入层、双向长短时记忆层 (BiLSTM) 和自注意力机制层 (Attention)、输出层。

Token词向量 输入层 双向长短时记忆层 自注意力机制层 输出层

图 3.2 Token 代码表征: AttBiLSTM 模型设计

①输入层:输入层用于向模型输入训练数据,在本方法中模型的输入为经过预训练辅助嵌入模型得到的 Token 序列词向量,即每个词向量对应一个输入神经元。②双向长短时记忆层:由两层 LSTM 构成,同时捕获序列的双向语义信息。③自注意力机制层:本层的主要目的是总结序列的输入特征,并将每个代码片段缩减为一个单一的密集向量。④输出层:每个 Token 序列对应一个输出。

(2) 模型选型

考虑到代码的 Token 序列是一种序列化的输入,并且前后词法单元可能存在依赖关系,目前常见的学习序列中长依赖关系的递归神经网络模型为长短期记忆网络 LSTM,其时序结构如下图3.3所示。每一个 LSTM 单元都有一个细胞状态和三个门(输入、输出、遗忘),通过三个门调节信息的流动,控制输入、自身状态、输出所占的比重,使网络能够在长时间内保留或遗忘信息。

图 3.3 LSTM 模型时序结构图

具体来说,第一步需要接受上一个时间步的隐藏状态 h_{t-1} 和当前时间步的输入数据 x_t ,输入遗忘门。遗忘门用来决定在当前时间步的存储状态中传递哪些前一个时间步的信息。具体地,将合并的结果通过矩阵相乘、加偏置、非线性转换,得到一个介于 0 到 1 之间的输出值 f_t ,通过公式3.1决定是否需要保留和遗忘多少信息,其中 σ

表示为非线性激活 sigmoid 函数,得出的值越接近 0 越有可能被丢弃,越接近 1 越有可能被记住。

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right) \tag{3.1}$$

输入门用来确定输入的 x_t 中哪些信息能够传递到当前时间步,具体的计算公式如3.2,同时依赖于 tanh 和 sigmoid 函数,得到当前时间步中需要记录的值 \widetilde{C}_t 。

$$i_{t} = \sigma \left(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i} \right)$$

$$\widetilde{C}_{t} = \tanh \left(W_{c} \cdot [h_{t-1}, x_{t}] + b_{c} \right)$$
(3.2)

为了更新新旧细胞的状态,使用公式3.3计算当前时刻细胞的最终状态 C_t 。具体地,用 f_t 来控制丢弃旧细胞信息,同时加上新的重要信息。

$$C_t = f_t \otimes C_{t-1} + i_t \otimes \widetilde{C}_t \tag{3.3}$$

输出门用来确定当前时间步的信息有多少能够传递到下一个时间步,具体的计算 公式如3.4。

$$out_{t} = \sigma \left(W_{out} \cdot [h_{t-1}, x_{t}] + b_{o} \right)$$

$$h_{t} = out_{t} \otimes tanh \left(C_{t} \right)$$
(3.4)

通过上述三个门的时序操作,最终得到长期状态 C_t 和短期记忆 h_t 。长期状态 C_t 从左到右经过 LSTM 单元,通过遗忘门丢失一些前时间步信息,通过输入门添加当前时间步信息,最后通过输出门输出。但 LSTM 模型存在一个问题,即无法获取从后往前的信息。

为了更好地提高模型对 Token 序列数据的表征能力,本文选择了双向长短期记忆 网络 BiLSTM 模型来进行 Token 代码表征,模型的结构如图3.4所示。BiLSTM 模型 由一个正向的 LSTM 模型和一个反向的 LSTM 模型组成,主要思想是通过把序列向前、向后分别输入给两个独立的递归网络,这两个子网络连接到一个输出层,在每个词的输出部分把两个子网络的输出信息进行整合,这样网络就同时拥有了序列中每个词的过去时刻信息和未来时刻信息,更全面地捕捉序列信息,从而提高模型的性能。BiLSTM 可以捕获到序列前后的关系依赖,将代码片段的 Token 序列转换为可相互比较的向量。

图 3.4 BiLSTM 模型结构图

令 BiLSTM 的 t 时刻的前向隐藏状态为 $\overrightarrow{h_t}$,向前输出为 $\overrightarrow{y_t}$,向后隐藏状态为 $\overrightarrow{h_t}$,向后输出为 $\overleftarrow{y_t}$,输出层参数是 W_0 与 b_0 ,则当前状态 $\overrightarrow{y_t}$ 和 $\overleftarrow{y_t}$ 可以通过公式3.5计算.

$$\overrightarrow{y_t} = W_0 \cdot LSTM\left(x_t, \overrightarrow{h_{t-1}}\right) + b_0$$

$$\overleftarrow{y_t} = W_0 \cdot LSTM\left(x_t, \overleftarrow{h_{t-1}}\right) + b_0$$
(3.5)

对当前状态 $\overrightarrow{y_t}$ 和 $\overleftarrow{y_t}$ 进行拼接可以得到当前 t 时刻的最终输出 y_t ,如公式3.6所示。

$$y_t = \overrightarrow{y_t} \oplus \overleftarrow{y_t} \tag{3.6}$$

3.3 Token 表征方法具体实现

在介绍具体实现之前,本节首先给出 Token 表征方法的输入:经过2.2.2小节的代码预处理阶段,得到示例代码片段2.3对应的 Token 序列,如图3.5所示。

['include', '<', 'stdio', 'h', '>', \('\)
'int', 'main', 'int', 'i', '=', '0', \('\)
'int', 'data', '5', '=', '1', '2', '3', \('\)
'4' '5', 'int', 'result', '=', '0', \('\)
'for' 'i', '<', '5', 'i', 'result', '=', \('\)
'data', 'i', 'printf', '%', 'd', 'result', \('\)
'return', '0' | \('\)

['include', '<', 'stdio', 'h', '>', \('int', 'main', 'int', 'i', '=', '0', \('int', 'data', '5', '=', '1', '2', '3', \('4', '5', 'int', 'result', '=', '0', \('while' \) 'i', '<', '5', 'result', '=', \('data', 'i', 'i', 'printf', '%', 'd', \('result', 'return', '0' \) \('e' \) 'result', 'return', '0' \] \(('a') \)

['include', '<', 'stdio', 'h', '>', \('int', 'main', 'int', 'i', '=', '0', \('int', 'data', '5', '=', '1', '2', '3', \('4', '5', 'int', 'result', '=', '0', \('5', 'i', '5', 'i', 'if, 'result', \('<', '10', 'result', '=', 'data', 'i', 'result', \('printt', '%', 'd', 'result', \('resul

(a) 代码片段 1 对应的 Token 序列 (b) 代码片段 2 对应的 Token 序列 (c) 代码片段 3 对应的 Token 序列

图 3.5 示例源代码对应的 Token 序列

接下来,本章提出的基于预训练辅助模型的 Token 表征学习方法的实现如图3.6所示。该方法的输入是一对代码片段 C_a , C_b 对应的 Token 序列,表示为 $(w_1^a, w_2^a, \ldots, w_m^a)$ 和 $(w_1^b, w_2^b, \ldots, w_n^b)$,输出是 C_a , C_b 对应的属性特征向量 V_a^{Token} , V_b^{Token} ,整体采用 Siamese 架构,两个子网络共享权值,从下到上,主要包括预训练辅助词嵌入、Token 代码表征两个阶段。

图 3.6 基于预训练辅助模型的 Token 表征学习方法实现

具体来说,在预训练辅助词嵌入阶段,对于代码片段 C_a ,经过分割得到的 Token 序列 $(w_1^a, w_2^a, \ldots, w_m^a)$,(m 是代码片段 A 的长度),然后在词汇表 E_w 中查找每个 Token 对应的向量,将所有的 token w_i^a ($i \in [1, m]$) 转化为密集向量。其中查找词汇表 E_w 已经经过代码语料库使用相邻单元迭代算法 ATIA 基于 Word2vec 模型进行预训练,在模型中是固定的。其查找过程可以表示为公式3.7:

$$x_i^a = lookup\left(w_i^a, E_w\right) \tag{3.7}$$

经过嵌入阶段的预训练后,代码片段 C_a 生成了序列 $(x_1^a, x_2^a, \dots, x_m^a)$ 。使用同样的嵌入方式,可以得到对于 Token 序列 $(w_1^b, w_2^b, \dots, w_n^b)$,(n 是代码片段 B 的长度)的向量表示 $(x_1^b, x_2^b, \dots, x_n^b)$ 。

在 Token 代码表征阶段,将代码向量的 Token 序列作为输入,使用 BiLSTM 模型进行编码。处理过程分为两个步骤,如公式3.8所示:

$$h_1^{aBiLSTM}, h_2^{aBiLSTM}, \dots, h_n^{aBiLSTM} = BiLSTM (x_1^a, x_2^a, \dots, x_m^a)$$

$$V_a^{Token} = Attention (h_1^{aBiLSTM}, h_2^{aBiLSTM}, \dots, h_n^{aBiLSTM})$$
(3.8)

经过嵌入阶段的预训练后,每一个 Token w_i^a 都被转换为一个密集向量 x_i^a , 经过BiLSTM 编码后,生成了 $h_i^{aBiLSTM}$,然后经过 Attention 层的总结后,生成了 V_a^{Token} 作为代码片段 C_a 的最终 Token 表示,即属性特征向量。同样,可以使用相同的计算得以 $(x_1^b, x_2^b, \ldots, x_n^b)$ 作为输入为代码片段 C_b 计算 V_b^{Token} 。

3.4 实验验证

为了验证基于预训练辅助模型的 Token 表征方法的有效性,本节展开实验验证。 首先,介绍了实验整体的环境配置、数据集,以及实验评估指标;接着,对基于预训 练模型的 Token 表征方法进行了消融实验。

3.4.1 实验环境

本章的实验验证均运行于Linux系统下,其系统硬件配置如表3.1所示。

环境	配置		
操作系统	Ubuntu 20.04		
处理器	Intel Core i9-12900KF × 24		
内存	31.1G		
显卡	NVIDIA		
磁盘	1TB		

表 3.1 实验环境配置

3.4.2 实验数据集

为了验证预训练辅助模型在 Token 层面上表征学习的有效性,本文面向代码克隆检测任务对预训练辅助模型进行分析和评估,选取的实验数据为 POJ104 数据集。如表3.2所示,POJ104 数据集是一个基于 C 语言所构建的大型数据集。OJ 系统是一个以编程教学为目的公开评判系统,共存在 104 个编程问题,针对每个编程问题,学生们通过在线提交自己的代码来尝试解决,同时 OJ 系统将自动判断提交源代码的正确性和有效性。对于 OJ 系统来说,同一个问题的不同答案可以看作一对真克隆对,不同问题的答案可以视为一对假克隆对。POJ104 数据集针对每一个编程问题,均提供 500个学生提交源代码,即共有 52000 个样本。

表 3.2 POJ104 数据集

代码	属性
Dataset	POJ104 数据集
Language	C
Program	52000
Classes	104
Max tokens	8737
Avg tokens	245

得到 POJ104 数据集后,本文首先对数据集进行初步筛选,去掉其中包含乱码的样本,共得到 51485 个源代码样本。然后对源代码进行预处理,通过深入研究并比较现有标记转换规则,发现 CCLearner^[16]对转换规则进行了实验评估,验证各个标记的有效性,因此本文参考 CCLearner^[16]这篇文献的转换规则,对标识符进行了归一化处理。具体地,保留 IF、For 等关键词,数字常量值用 NUM 替代,字符串用 String 替代等。删除样本中包含的空白行和注释等多余代码,并将数据集保存到一个 program.pkl 文件中,program.pkl 文件中一共包含 51485 行×3 列的数据集,每一行数据代表一个源代码样本,第一列为源代码 id,第二列保存源代码样本 code,第三列为源代码的标签 label,即属于哪一个编程问题。

接着,本文随机两两组合同一标签 label 的源代码,组成 5200 个真克隆对,随机组合不同标签的源代码组成 44800 个假克隆对,一共给包含 50000 个克隆对,并将其保存到 oj_clone_ids.pkl 文件中,oj_clone_ids.pkl 文件中一共包含 50000 行×3 列的数据集,每一行数据代表一个克隆对样本,第一列为源代码 id1,第二列为源代码 id2,第三列为克隆对的标签 label,真克隆对标签为1,假克隆对标签为0。最后,依据随机种子将数据集按照3:1:1划分为训练集、测试集、验证集,其中的正负样本数如下表3.3所示。

3.4.3 评估指标

代码克隆检测问题是二分类问题,因此本文采用精确率(Precision)、召回率(Recall)、F1 值三个评估指标来度量实验结果,其中使用了混淆矩阵中的 TP、FN、FP、TN,如表3.4所示。

数据集	真克隆对	假克隆对	克隆对数
训练集 train	3162	26838	30000
测试集 test	1022	8978	10000
验证集 dev	1016	8984	10000
总计	5200	44800	50000

表 3.3 本文预处理后的 POJ104 数据集正负样本数

表 3.4 分类问题的混淆矩阵

实际值	预测	预测值		
	正样本 (P)	负样本 (N)		
正样本 (P)	TP	FN		
负样本 (N)	FP	TN		

其中,混淆矩阵中的真阳性、假阳性、真阴性、假阴性代表的含义如下:

真阳性 (True Positive, TP): 样本实际为正样本,并且被模型预测为正样本,即实际上标记为真克隆对并且被检测出来为真克隆对的代码对。

假阳性 (False Positive, FP): 样本实际为负样本,但是被模型预测为正样本,即实际上标记为假克隆对但是被检测出来为真克隆对的代码对。

假阴性 (False Negative, FN): 样本实际为正样本,但是被模型预测为负样本,即实际上标记为真克隆对但是被检测出来为假克隆对的代码对。

真阴性 (True Negative, TN): 样本实际为负样本,并且被模型预测为负样本,即实际上标记为假克隆对并且被检测出来为假克隆对的代码对。

精确率(Precision)表示正确检测到的代码克隆数量占全部预测为代码克隆的比例,计算公式如3.9所示:

$$Precision = \frac{TP}{TP + FP} \tag{3.9}$$

召回率 (Recall) 表示正确检测到的代码克隆数量占总体实际代码克隆数量的比例, 计算公式如3.10所示:

$$Recall = \frac{TP}{TP + FN} \tag{3.10}$$

精确率(Precision)和召回率(Recall)指标有时候会出现的矛盾的情况,这样就需要综合考虑两者的表现,最常见的方法就是F1,精确率和召回率的加权调和平均,用

于评价分类模型的好坏。计算公式如3.11。

$$F1 = \frac{2 * Precision * Recall}{Precision + Recall}$$
(3.11)

3.4.4 实验结果

(1) 预训练语料库规模的实验结果

为了探究预训练语料库规模对 Token 表征实验结果的影响,本文选取 POJ104 数据集中部分数据进行预训练,基于相邻单元迭代算法构造预训练语料库。具体地,在3.4.2数据库中随机选取了 100 对、200 对、500 对代码克隆对作为预训练数据集,构造预训练语料库,对 Token 表征模型进行预训练。具体实验结果如表3.5所示。

预训练数据集规模	词表长度	准确率 (%)	召回率 (%)	F1 值 (%)
100 对	231	XXX	XXX	XXX
300 对	444	XXX	xxx	XXX
500 对	600	89.74	87.84	88.78

表 3.5 预训练语料库规模对实验结果的影响

从表3.5可以看出,随着预训练语料库的增大,代码克隆检测任务的 F1 值呈现上升趋势,即对代码克隆的检测效果会不断增强。考虑到需要预留出足够的答案样本用来构造训练集和测试集,最终选择 500 对作为 C 语言实验中的预训练数据集大小。

(2) Token 表征模型实验结果

为了探究 Token 表征模型 AttBiLSTM 对实验结果的影响,本文基于预训练辅助的基础上,将 AttBiLSTM 模型与 LSTM 与 BiLSTM 模型进行对比,结果如表3.6所示。其中 LSTM 模型基于 Pytorch1.10 实现

AttBiLSTM 模型基于 pytorch 实现, 其参数设置为下表:

词嵌入层:将大小为600的词汇表映射到128维的向量空间。双向LSTM层:双向的LSTM单元堆叠而成,输入特征的维度与嵌入层匹配为104层,隐藏层维度设置104,由于设置为双向,因此输出维度为104*2=208层。全连接层:208层的输入映射到1维的输出中sigmoid层:激活函数,将全连接层的输出转换到0到1之间的概率值。

模型的优化器为 Adam 优化器, 学习率设置为 0.0001, dropout 为 0.1, epochs 为

150,参数的确定是通过多次调试后选择最优参数作为最后的结果。

Tensorflow[62] 和 Keras[63] 实现,其中 Tensorflow 作为后端,前端通过调用 Keras 的 API 接口来搭建 Sequential 顺序模型。整个多任务模型的实现包括输入层、共享层、任务分支解码器和输出层,具体模型层次设置如表 3.1 所示。

表征模型	准确率 (%)	召回率 (%)	F1 值 (%)
LSTM	XXX	XXX	xxx
BiLSTM	XXX	XXX	XXX
AttBiLSTM	89.74	87.84	88.78

表 3.6 Token 表征模型对实验结果的影响 (%)

从表3.5可以看出,随着预训练语料库的增大,克隆检测任务的 F1 值呈现上升趋势,即对代码克隆的检测效果会不断增强. 考虑到需要预留出足够的答案样本用来构造训练集和测试集,最终选择 AttBiLSTM 模型作为 Token 表征模型。

3.5 本章小结

本章主要对 RLCCD 中基于预训练辅助模型的 Token 表征学习方法的设计与实现进行详细阐述。首先介绍了 Token 维度的研究动机,其次介绍了 Token 表征学习的方法设计,具体论述了其整体框架、预训练辅助模型、表征学习,接着开展实验验证,结果表明了此方法的有效性和模型的准确性。

第 4 章 基于子树划分的抽象语法树表征学习

本章主要对本文提出的基于子树划分的抽象语法树表征学习方法进行详细介绍, 首先介绍其基本思想,其次阐述其具体方法设计与实现,最后进行实验验证。

4.1 研究动机

本文针对现有存在的问题,

抽象语法树 AST 是源代码语法结构的一种抽象表现形式,以树的形式包含了源代码中的语法信息和语法结构。利用深度神经网络对抽象语法树进行建模得到其向量表示,根据该特征向量完成代码克隆检测任务,实现基于树的源代码表征。现有的方法主要分为两类:一类是将 AST 转换为完整的二叉树,另一类是将 AST 直接视作二叉树,这两种方法都会或多或少破坏源代码原有的语法结构,而且在转换的过程会增加 AST 的高度,AST 树过高会导致梯度消失问题,可能会丢失长期上下文信息,削弱了神经模型捕捉更真实和复杂语义的能力。

4.2 AST 表征方法设计

本节将介绍基于子树划分的抽象语法树表征学习方法设计与实现,

4.2.1 框架概述

基于子树划分的抽象语法树表征学习:

4.2.2 子树划分

针对上述问题,本文将每个大型的 AST 分割成小语句树序列,并通过捕获语句的词法和句法知识将每一个语句树都编码成一个向量。

4.2.3 抽象语法树表征学习

在得到一个语句向量序列后,将语句向量序列输入 Tree LSTM 网络中生成代码片段的结构向量表示。与标准 LSTM 结构类似,Tree-LSTM 神经网络中每个神经元都包括类似的输入门,输出门和隐层输出。不同的是 Tree-LSTM 单元中门向量和神经元状态的更新依赖于所有与之相关的子单元的状态,另外,Tree-LSTM 拥有多个遗忘门,分别对应当前节点的每个子节点,因此 Tree-LSTM 可以选择性地从子节点中获取

信息,从而保存语义信息更加丰富的子节点的信息。通过 Tree LSTM 模型,本文能够学习到基于抽象语法树的结构向量,通过这种连续向量表现基于树的理解认知层次,获取程序的结构信息,创建更高抽象层次上的表示,从而提高后续代码克隆检测任务的精度。

4.3 AST 表征方法具体实现

在介绍具体实现之前,本节首先给出 AST 表征方法的输入:经过2.2.2小节的代码预处理阶段,得到示例代码片段2.3对应的抽象语法树,如图4.1所示。

图 4.1 示例源代码对应的抽象语法树

4.4 实验验证

为了验证基于子树划分的抽象语法树表征学习方法的有效性,本文

4.4.1 实验设计

和 3.3.1 相同

4.4.2 抽象语法树子树划分消融实验结果

消融对比实验:体现 AST 子树划分的有效性

基于 AST 的 Tree-LSTM

基于 AST 的 + 子树划分的 Tree-LSTM

表 4.1 抽象语法树子树划分实验结果

对比	P	R	F1
基于 AST 的 Tree-LSTM	0.xx	0.xx	0.xx
基于 AST 的 + 子树划分的 Tree-LSTM	0.xx	0.xx	0.xx

4.5 本章小结

本章

第5章 基于图过滤的程序依赖图表征学习

本章主要对本文提出的基于图过滤的程序依赖图表征学习方法进行详细介绍,首先介绍其基本思想,其次阐述其具体方法设计与实现,最后进行实验验证。

5.1 研究动机

本文针对现有存在的问题,

程序依赖图 PDG 是程序的一种图形表示,所含结构信息最多,能够表示程序的 控制依赖,数据依赖以及地址依赖等关系,是一种带有标记的有向多重图。程序依赖 图 PDG 结点代表语句,边代表依赖关系,依赖关系包括数据依赖和控制依赖。通过 将程序表示为图的形式使得模型能够更好地理解代码中不同部分之间的依赖关系。现有的方法大多通过图匹配的方法,将 PDG 图中的控制流和数据流编码为一个紧凑的 语义特征矩阵,其中每个元素都是一个高维的稀疏二值特征向量,通过寻找矩阵之间 的相似模式来判定克隆代码。但这些方法通常需要消耗大量的时间和空间,计算开销 大。

5.2 PDG 表征方法方法设计

本节将介绍基于图过滤的程序依赖图表征学习方法设计与实现,

5.2.1 框架概述

基于图过滤的程序依赖图表征学习:

5.2.2 图过滤机制

针对上述问题,本课题引入过滤机制,通过收集 PDG 的简单特征来过滤掉明显不可能为克隆的 PDG 对。具体的,根据 PDG 的节点个数、控制边数、执行边数、数据边数、声明节点数、函数调用数、传入参数、传出参数等代表特征进行过滤,在大幅减少候选 PDG 对规模的同时,保证真正的克隆对不会被过滤掉而导致整体克隆检出率的降低。

5.2.3 程序依赖图表征学习

对于提取到的程序依赖图,本课题拟通过图卷积神经网络将其转换成向量。图卷 积神经网络是一种特殊的前馈神经网络结构,为减少网络中参数个数,用卷积层来代 替传统的全连接层,提高神经网络的训练效率,卷积神经网络可以提取信息最多的数 据特征,生成一个固定大小的向量表示结构,从而挖掘深层次的语法和语义信息,在 代码克隆检测任务中有较好的性能表现。

5.3 PDG 表征方法具体实现

在介绍具体实现之前,本节首先给出 PDG 表征方法的输入:经过2.2.2小节的代码预处理阶段,得到示例代码片段2.3对应的程旭依赖图,如图5.1所示。

(a) C语言代码片段 1 对应的 PDG (b) C语言代码片段 2 对应的 PDG (c) C语言代码片段 3 对应的 PDG

图 5.1 示例源代码对应的程序依赖图

5.4 实验验证

为了验证基于图过滤的程序依赖图表征学习方法的有效性,本文

5.4.1 实验设计

和 3.3.1 相同

5.4.2 图过滤机制消融实验结果

消融对比实验: 体现图过滤机制的有效性

基于 PDG 的 GCN

基于 PDG 的 + 图过滤的 GCN

5.5 本章小结

本章

表 5.1 图过滤机制实验结果

对比	P	R	F1
基于 PDG 的 GCN	0.xx	0.xx	0.xx
基于 PDG 的 + 图过滤的 GCN	0.xx	0.xx	0.xx

第6章 特征融合及 RLCCD 框架验证

本章主要对面向代码克隆检测的多维源代码表征方法整体框架 RLCCD 进行介绍,同时进行实验评估及验证。具体地,RLCCD 是由上述基于预训练辅助模型的 Token 表征学习、基于子树划分的抽象语法树表征学习、基于图过滤的程序依赖图表征学习方法三种维度融合形成并进行实现的表征方法,最后通过与 SourcererCC、ASTNN、SCDetector 进行对比实验以验证该框架的有效性。

6.1 特征融合

特征融合

特征融合方法是指将不同来源或不同层次的特征进行组合,合并成一个比输入特征更具有判别能力的特征,该多维特征能够在低维空间中高效计算实体和关系的语义联系,提高特征的表达能力和分类效果,有利于下游代码克隆检测任务的学习。

6.2 RLCCD 框架验证

本文的实验设计主要围绕以下 4 个方面的研究问题:

- RO1: 本文提出的预训练辅助模型策略是否优于基线方法?(见 3.3 节)
- RO2: 本文提出的子树划分策略是否优于基线方法?(见 4.3 节)
- RO3: 本文提出的图过滤策略能否优于基线方法?(见 5.3 节)
- RO4: 与现有代码克隆检测工具相比, RLCCD 表现如何?

6.2.1 实验设置

(1) 系统环境

本章实验均在 Ubuntu 16.04 LTS (64 位) 系统下进行。

(2) 实验数据集

本章实验部分采用的数据集为代码克隆检测领域常见的基准集 POJ104,该数据集是一个基于 C 语言构建的大型数据集,包含了 104 个编程问题以及学生提交的对应问题的不同 C 语言源代码,在该数据集中,针对同一问题的不同源解法的代码被视为一个克隆对。

首先通过筛选,得到51485个源代码样本,然后随机生成50000个代码克隆对,

对比 P R F1 SourcererCC 0.xx0.xx0.xx**ASTNN** 0.xx0.xx0.xx**SCDetector** 0.xx0.xx0.xx**RLCDD** 0.xx0.xx0.xx

表 6.1 RLCCD 实验结果

其中包含 5200 个真克隆对,44800 个假克隆对。依据随机种子将数据集按照 3:1:1 划分为训练集、测试机、验证集,其中的正负样本数如下表。

6.2.2 对比工具

在对比整个方法的效果时,本文选取开源的 SourcererCC、ASTNN、SCDetector 方法进行比较。

SourcererCC: SourcererCC 是一种相对较新的基于 token 的克隆检测工具。该工具通过词袋模型,把收集的数据全部编码成词频信息,后将代码行转换成一个由词频构成的向量,通过向量的比较获取相似度。

ASTNN: 一种基于神经网络的源代码表示方法。它将整个抽象语法树 AST 分解成一系列小型语句子树,并通过捕获语句的词法和语法信息将语句子树分别编码为向量,最后采用了 RNN 模型生成代码片段的向量表示。ASTNN 方法完整保留了抽象语法树的结构信息,能够检测到所有类型的代码克隆。

SCDetector: 是基于令牌和基于图的方法的结合。给定一个方法源代码,我们首先生成 CFG,然后应用中心性分析将图转换为某些语义标记(即具有图细节的标记)。最后,这些语义标记被馈送到 Siamese 网络中,以训练模型并使用它来检测代码克隆对。

6.2.3 RLCCD 性能评估实验结果

对比实验: 体现框架的有效性

6.3 本章小结

本章节主要对 RLCCD 框架进行了实验验证,以验证 RLCCD 的 XXX 能力。

结论

本文采用……。(结论作为学位论文正文的最后部分单独排写,但不加章号。结论是对整个论文主要结果的总结。在结论中应明确指出本研究的创新点,对其应用前景和社会、经济价值等加以预测和评价,并指出今后进一步在本研究方向进行研究工作的展望与设想。结论部分的撰写应简明扼要,突出创新性。)

参考文献

- [1] 乐乔艺, 刘建勋, 孙晓平, 等. 代码克隆检测研究进展综述[J]. 计算机科学, 2021, 48(S02): 14.
- [2] 孙祥杰, 魏强, 王奕森, 等. 代码相似性检测技术综述[J]. 计算机应用, 2023: 1-14.
- [3] Synopsys, Inc. 2024 Open Source Security and Risk Analysis Report[Z]. https://www.synopsys.com/zh-cn/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html. 2024.
- [4] Moore S. 7 Top Trends in Cybersecurity for 2022[Z]. https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-for-2022. April 13, 2022.
- [5] Svajlenko J, Roy C K. Evaluating clone detection tools with BigCloneBench[C]. 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME). 2015: 131-140.
- [6] Dang Y, Zhang D, Ge S, et al. Transferring Code-Clone Detection and Analysis to Practice[C]. 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). 2017: 53-62.
- [7] Yang J, Hotta K, Higo Y, et al. Classification model for code clones based on machine learning[J]. Empirical Software Engineering, 2015, 20: 1095-1125.
- [8] 陈秋远, 李善平, 鄢萌, 等. 代码克隆检测研究进展[J]. 软件学报, 2019, 30(4): 19.
- [9] Bengio, Yoshua, Courville, et al. Representation Learning: A Review and New Perspectives[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(8): 1798-1828.
- [10] Wikipedia. Feature learning[Z]. https://en.wikipedia.org/wiki/Feature_learning.
- [11] Pearson K. On lines and planes of closest fit to systems of points in space.[J]. PHILOSOPHICAL MAGAZINE, 1901, 2(7-12): 559-572.
- [12] Fisher R A. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS[J]. Annals of Human Genetics, 2012, 7(7): 179-188.
- [13] Goodfellow I, Bengio Y, Courville A. Deep Learning[M]. MIT Press, 2016.
- [14] Kamiya T, Kusumoto S, Inoue K. CCFinder: a multilinguistic token-based code clone detection system for large scale source code[J]. IEEE Transactions on Software Engineering, 2002, 28(7): 654-670.
- [15] Li Z, Lu S, Myagmar S, et al. CP-Miner: finding copy-paste and related bugs in large-scale software code[J]. IEEE Transactions on Software Engineering, 2006, 32(3): 176-192.
- [16] Jiang L, Su Z, Chiu E. Context-based detection of clone-related bugs[C]. ESEC-FSE '07. Dubrovnik, Croatia: Association for Computing Machinery, 2007: 55-64.
- [17] Pennington J, Socher R, Manning C. GloVe: Global Vectors for Word Representation[C]. Moschitti A, Pang B, Daelemans W. Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-

- guage Processing (EMNLP). Doha, Qatar: Association for Computational Linguistics, 2014: 1532-1543.
- [18] Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]. Burstein J, Doran C, Solorio T. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, 2019: 4171-4186.
- [19] Sajnani H, Saini V, Svajlenko J, et al. SourcererCC: Scaling Code Clone Detection to Big-Code[C]. 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). 2016: 1157-1168.
- [20] Tao C, Zhan Q, Hu X, et al. C4: Contrastive Cross-Language Code Clone Detection[C]. 2022 IEEE/ACM 30th International Conference on Program Comprehension (ICPC). 2022: 413-424.
- [21] Yourdon E. Structured programming and structured design as art forms[C]. AFIPS '75. Anaheim, California: Association for Computing Machinery, 1975: 277.
- [22] White M, Tufano M, Vendome C, et al. Deep learning code fragments for code clone detection[J]. 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE), 2016: 87-98.
- [23] Mou L, Li G, Zhang L, et al. Convolutional Neural Networks over Tree Structures for Programming Language Processing[C]. AAAI Conference on Artificial Intelligence: THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE. 2016: 1287-1293.
- [24] Wei H H, Li M. Supervised deep features for software functional clone detection by exploiting lexical and syntactical information in source code[C]. IJCAI'17. Melbourne, Australia: AAAI Press, 2017: 3034-3040.
- [25] Zhang J, Wang X, Zhang H, et al. A Novel Neural Source Code Representation Based on Abstract Syntax Tree[C]. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). 2019: 783-794.
- [26] Yu H, Lam W, Chen L, et al. Neural Detection of Semantic Code Clones Via Tree-Based Convolution[C]. 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC). 2019: 70-80.
- [27] Ling H, Zhang A, Yin C, et al. Improve Representation for Cross-Language Clone Detection by Pretrain Using Tree Autoencoder[J]. Intelligent Automation & Computing, 2022.
- [28] Wu Y, Feng S, Zou D, et al. Detecting Semantic Code Clones by Building AST-based Markov Chains Model[C]. ASE '22: Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. <conf-loc>, <city>Rochester</city>, <state>MI</state>, <country>USA</country>, </conf-loc>: Association for Computing Machinery, 2023.

- [29] Ferrante J, Ottenstein K J, Warren J D. The program dependence graph and its use in optimization[J]. ACM Trans. Program. Lang. Syst., 1987, 9(3): 319-349.
- [30] Allamanis M, Brockschmidt M, Khademi M. Learning to Represent Programs with Graphs[J]. ArXiv, 2017, abs/1711.00740.
- [31] Lu M, Tan D, Xiong N N, et al. Program Classification Using Gated Graph Attention Neural Network for Online Programming Service[J]. ArXiv, 2019, abs/1903.03804.
- [32] Brockschmidt M, Allamanis M, Gaunt A L, et al. Generative Code Modeling with Graphs[J]. ArXiv, 2018, abs/1805.08490.
- [33] Ben-Nun T, Jakobovits A S, Hoefler T. Neural code comprehension: a learnable representation of code semantics[C]. NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada: Curran Associates Inc., 2018: 3589-3601.
- [34] Wang W, Li G, Ma B, et al. Detecting Code Clones with Graph Neural Network and Flow-Augmented Abstract Syntax Tree[C]. 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER). 2020: 261-271.
- [35] DeFreez D, Thakur A V, Rubio-González C. Path-based function embedding and its application to error-handling specification mining[C]. ESEC/FSE 2018. Lake Buena Vista, FL, USA: Association for Computing Machinery, 2018: 423-433.
- [36] Yang K, Yu H, Fan G, et al. A graph sequence neural architecture for code completion with semantic structure features[J]. Journal of Software: Evolution and Process, 2021, 34.
- [37] Tufano M, Watson C, Bavota G, et al. Deep Learning Similarities from Different Representations of Source Code[J]. 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR), 2018: 542-553.
- [38] Saini V, Farmahinifarahani F, Lu Y, et al. Oreo: detection of clones in the twilight zone[C]. ES-EC/FSE 2018. Lake Buena Vista, FL, USA: Association for Computing Machinery, 2018: 354-365.
- [39] Fang C, Liu Z, Shi Y, et al. Functional code clone detection with syntax and semantics fusion learning[J]. Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2020.
- [40] Hua W, Sui Y, Wan Y, et al. FCCA: Hybrid Code Representation for Functional Clone Detection Using Attention Networks[J]. IEEE Transactions on Reliability, 2020, 70: 304-318.
- [41] Dong W, Feng Z, Wei H, et al. A Novel Code Stylometry-based Code Clone Detection Strategy[C]. 2020 International Wireless Communications and Mobile Computing (IWCMC). 2020: 1516-1521.
- [42] Feng Z, Guo D, Tang D, et al. CodeBERT: A Pre-Trained Model for Programming and Natural Languages[J]. ArXiv, 2020, abs/2002.08155.

- [43] Duan Y, Li X, Wang J, et al. DEEPBINDIFF: Learning Program-Wide Code Representations for Binary Diffing[C]. 27TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2020). 2020.
- [44] Wu Y, Zou D, Dou S, et al. SCDetector: software functional clone detection based on semantic tokens analysis[C]. ASE '20. Virtual Event, Australia: Association for Computing Machinery, 2021: 821-833.
- [45] 吕泉润, 谢春丽, 万泽轩, 等. 基于对比学习的跨语言代码克隆检测方法[J]. 计算机应用研究, 2024: 1-7.
- [46] 冷林珊, 刘爽, 田承霖, 等. 预训练增强的代码克隆检测技术[J]. 软件学报, 2022, 33: 1758-1773.
- [47] Zhao W X, Zhou K, Li J, et al. A Survey of Large Language Models[Z]. 2023.
- [48] Bui N D Q, Yu Y, Jiang L. InferCode: Self-Supervised Learning of Code Representations by Predicting Subtrees[C]. 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). 2021: 1186-1197.
- [49] Guo D, Ren S, Lu S, et al. GraphCodeBERT: Pre-training Code Representations with Data Flow[Z]. 2021.
- [50] IJaDataset2.0. Ambient Software Evoluton Group[Z]. http://secold.org/projects/seclone. January 2013.
- [51] Rumelhart D E, Hinton G E, Williams R J. Learning Representations by Back Propagating Errors[J]. Nature, 1986, 323(6088): 533-536.
- [52] Hinton G E, Osindero S, Teh Y W. A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
- [53] Chen L, Ye W, Zhang S. Capturing source code semantics via tree-based convolution over API-enhanced AST[C]. CF '19: Proceedings of the 16th ACM International Conference on Computing Frontiers. Alghero, Italy: Association for Computing Machinery, 2019: 174-182.
- [54] 王亚芳. 基于图像相似度检测代码克隆[D]. 内蒙古师范大学, 2020.
- [55] Alomari H W, Stephan M. Clone Detection through srcClone: A Program Slicing Based Approach[J]. Journal of Systems and Software, 2022, 184: 111115.

攻读学位期间发表论文与研究成果清单

- [1] Doe J, **Zhang S**. The Book with Title[M]. Dummy Publisher, 2000. (己出版.)
- [2] **张三**, 李杰, 罗运军. 交联型与线形水性聚氨酯的形状记忆性能比较[J]. 化工进展, 2006(01): 78-81. (EI 收录, 检索号:06129773469. 已刊出.)
- [3] 李杰, 张三, 罗运军. 交联型与线形水性聚氨酯的形状记忆性能比较[J]. 化工进展, 2007(01): 78-81. (EI 收录, 检索号:06129773469. 已刊出.)
- [4] **Zhang S**. The Book without Title[M]. Dummy Publisher, 2100. (己出版.)

致谢

本论文的工作是在导师……。

致谢是对下列方面致谢:资助和支持者;协助完成研究工作和提供便利条件者; 在研究工作中提出建议和提供帮助者;给予转载和引用权的资料、图片、文献、研究 思想和设想的所有者;其他应感谢者。致谢语言要诚恳、恰当、简短。