Radu Ionescu Bogdan Alexe Informatică opțional, anul 3

Vedere Artificială - Tema 2

Redimensionarea imaginilor cu păstrarea conținutului

Obiectiv:

Scopul acestei teme este implementarea și testarea unei versiuni a algoritmului de redimensionare a imaginilor cu păstrarea conținutului (Figura 1) propus de S. Avidan si A. Shamir în articolul "Seam Carving for Content-Aware Image Resizing" (găsiți articolul atașat în materialele pentru proiect).

Funcțiile Matlab care vă vor ajuta la implementarea proiectului sunt în directorul *cod;* imaginile pe care le veți folosi sunt în directorul *data.*

Pentru a înțelege tema citiți articolul în limba engleză și consultați slide-urile din cursul 4. Toate detaliile legate de predarea temei le găsiți la sfârșitul acestui document.

Punct de pornire

Scriptul *ruleazaProiect.m* vă oferă un punct de pornire în implementarea voastră. În acest script se citeşte imaginea ce urmează a fi redimensionată și sunt setați parametri folosiți. Acest script apelează funcția *redimensioneazaImagine.m* care la rândul ei apelează funcții pentru micșorarea sau mărirea în lățime sau înălțime a imaginii precum și eliminarea unui obiect.

1.1 Micșorarea imaginii pe lățime

Implementați mai întâi operația de micșorare a unei imagini. Funcția *micsoreazaLatime.m* realizează operația de eliminare a pixelilor de pe drumurile verticale ce conectează prima linie cu ultima linie din imagine. Această funcție apelează următoarele funcții:

- calculeazaEnergie.m funcția trebuie completată de către voi;
- *selecteazaDrumVertical.m* funcția este scrisă parțial, trebuie să o completați voi;
- ploteazaDrumVertical.m funcția este scrisă în întregime;
- eliminaDrumVertical.m funcția este scrisă parțial, trebuie să o completați voi.

Drumul optim vertical este drumul de cost minim şi se obţine prin metoda programării dinamice (vedeţi slide-urile de la curs). În script este scris codul pentru o metodă care alege aleator drumuri, fără să ţină cont de funcţia cost (funcţia selecteazaDrumVertical.m).

Figura 1: Redimensionare imaginilor. Imaginea de sus - algoritmul de redimensionare uzuală (folosind funcția 'imresize.m') scalează tot conținutul din imagine. Imaginea de jos - redimensionarea imaginii cu păstrarea conținutului.

Completați pentru început restul funcției *eliminaDrumVertical.m* și observați cum rulează scriptul *ruleazaProiect.m* pentru cazul drumurilor alese aleator. Apoi completați restul funcției *selecteazaDrumVertical.m* pentru cazurile 'greedy' și 'programareDinamica' și testați codul vostru pe imaginea 'castel.jpg' furnizată eliminând 50 de pixeli în lățime.

1.2 Micșorarea imaginii pe înălțime

Realizați operația de eliminare a pixelilor de pe drumurile orizontale ce conectează prima coloană cu ultima coloană dintr-o imagine scriind funcția *micsoreazaInaltime.m*. Inspirați-vă în scrierea ei din funcția *micsoreazaLatime.m*. Testați-vă codul pe imaginea 'praga.jpg' furnizată eliminând 100 de pixeli în înălțime.

1.3 Mărirea imaginilor

Secțiunea 4.3 din articol descrie cum puteți mări dimensiunea unei imagini prin inserarea de drumuri. Scrieți funcțiile *maresteLatime.m* și *maresteInaltime.m* care adaugă pixeli întro imagine. Testați algoritmul pe imaginea 'delfin.jpg' furnizată adăugând 50 de pixeli în lățime și în înălțime.

1.4 Eliminarea unui obiect din imagine

Secțiunea 4.6 din articol descrie cum puteți elimina un obiect dintr-o imagine marcat de un utilizator. Scrieți funcția *eliminaObiect.m* care micşorează imaginea cu scopul de a elimina obiectul delimitat. Folosiți funcțiile *getrect.m* sau *ginput.m*, *impoly.m* pentru a delimita obiectul. Testați-vă codul pe imaginea 'lac.jpg' furnizată.

1.5 Predarea proiectului

Puneți într-o arhivă cu numele *tema2_cod.zip* codul vostru Matlab.

Puneți într-un document cu numele tema2_rezultate.pdf următoarele:

- (a) (2 puncte) rezultatele obţinute la punctul (1.1) pentru imaginea 'castel.jpg';
- (b) (2 puncte) rezultatele obţinute la punctul (1.2) pentru imaginea 'praga.jpg';
- (c) (2 puncte) rezultatele obţinute la punctul (1.3) pentru imaginea 'delfin.jpg';
- (d) (2 puncte) rezultatele obţinute la punctul (1.4) pentru imaginea 'lac.jpg'.
- (e) (2 puncte) rezultatele obținute de voi pentru alte imagini (cel puțin 5) decât cele furnizate folosind cele 3 metode de selectare a drumurilor: metoda de selecție aleatoare, metoda greedy și metoda programării dinamică. Includeți cel puțin 3 exemple reușite și cel puțin 2 exemple nereușite explicând de fiecare dată de ce algoritmul vostru a reușit sau nu a reușit.

Pentru fiecare exemplu de la punctele (a) - (d) includeți 3 imagini: imaginea inițială, imaginea obținută cu algoritmul implementat și imaginea obținută cu redimensionarea uzuală - folosind funcția imresize. La punctul (e) includeți pentru fiecare exemplu 5 imagini: imaginea inițială, imaginea obținută cu algoritmul implementat pentru toate cele 3 metode (aleatoare, greedy, programare dinamică) și imaginea obținută cu redimensionarea uzuală - folosind funcția imresize.

Trimiteţi cele două fişiere (*tema2_cod.zip* şi *tema2_rezultate.pdf*) la adresa de email **bo-gdan.alexe@fmi.unibuc.ro** precizând numele şi grupa din care faceţi parte.

Termenul limită de predare a temei este duminică, 20 noiembrie 2015, ora 23:59. Fiecare zi de întârziere în predarea temei se penalizează cu 10% din valoarea ei.