TP 2 - Relatório de Resultados

Kleyann Barros, Ian Marcel, Davi Silva, Rafael Augusto

1 Problema

O problema da laminação de barras de ferros consiste em reduzir a espessura de uma barra de ferro para 4mm, para isso a barra com uma espessura inicial passa por uma sequência de rolos onde cada rolo reduzirá a espessura da barra com um custo. Para resolver o problema é necessário descobrir a sequencia de rolos necessária para que se tenha o menor custo total de redução.

2 Computador

O computador utilizado para os testes contém as seguintes configurações:

CPU: i5 9300H 2.40 GHz RAM: 16GB 2666hz (2x8)

Sistema Operacional: Windows 11 Home x64

3 Resultados

Para este trabalho, foi solicitado o planejamento e implementação de três algoritmos: Programação Dinâmica, Backtracking e Guloso. O resultado obtido após a implementação dos algoritmos se encontra na tabela abaixo:

	Prog. Dinâmica		Backtracking		Guloso	
Arquivos (esp. inicial)	Custo	Tempo (ms)	Custo	Tempo(ms)	Custo	Tempo(ms)
10mm	24	0,0504	24	0,1526	24	0,0513
15mm	51	0,0241	51	1,3353	51	0,051
20mm	57	0,0476	57	5,2034	58	0,0879
25mm	95	0,035	95	11,0437	95	0,0626

Através destes resultados, é possível observar que o único algoritmo a apresentar resultados errôneos é o algoritmo guloso, isso ocorre justamente por conta desse algoritmo calcular a melhor solução para cada subproblema, sem enxergar todo o problema simultaneamente. É possível observar também que o tempo de execução do algoritmo de backtracking cresce muito mais que os outros por precisar refazer operações já feitas anteriormente. Já o algoritmo de programação dinâmica consegue resolver o problema dos dois anteriores, pois ele armazena todos os resultados já calculados para que não precise refazer operações desnecessárias, isso o torna rápido como o algoritmo guloso e garante uma solução correta como o backtracking, com a única desvantagem de usar mais espaço de memória que os outros dois. Os tempos de execução da programação dinâmica e do algoritmo guloso apesar de serem parecidos, é notável o quanto a programação dinâmica conseguiu velocidades melhores, isso provavelmente ocorre por interferências do sistema, já que algoritmos gulosos tendem a ser mais rápidos.

3.1 Resultados Gerais

Os resultados gerais dos testes incluindo as sequências de rolos e tabelas do algoritmo de programação dinâmica se encontram no arquivo resultados.txt.