YΣ13 - Computer Security

Symmetric Cryptography

Κώστας Χατζηκοκολάκης

Context

- Goal
 - Confidentiality
 - Alice wants to send a message P (plaintext) to Bob
 - Only Bob should be able to read it
- Solution : symmetric encryption
 - Share a key K with Bob
 - Only Alice and Bob should know the key
 - Alice constructs an (encrypted) message C (ciphertext) from P, K
 - Bob uses K to decrypt C and obtain P

Context

Correctness: P = Dec(K, Enc(K, P)))

Context

Adversary model

- Knows everything except P, K
- Including all algorithms, protocols, conventions
 - Important: obscurity is not security
- Having all information public actually makes the system more secure

- Caesar's cipher (50 BC)
 - Replace $A \rightarrow D$, $B \rightarrow E$, . . .
 - In other words $C_i = P_i + K \mod 26$
 - K = 4 (or K = "D") is the key

- Caesar's cipher (50 BC)
 - Replace $A \rightarrow D$, $B \rightarrow E$, ...
 - In other words $C_i = P_i + K \mod 26$
 - K = 4 (or K = "D") is the key
- Augustus Caesar used A→C, ...
 - i.e. changed the key to K = "C"

- Caesar's cipher (50 BC)
 - Replace $A \rightarrow D$, $B \rightarrow E$, . . .
 - In other words $C_i = P_i + K \mod 26$
 - K = 4 (or K = "D") is the key
- Augustus Caesar used A→C, ...
 - i.e. changed the key to K = "C"
- ROT13
 - K = 13 (decrypt is the same as encrypt)
 - Win XP registry keys!

- Generally: mono-alphabetic substitution cipher
 - use a single permutation of the alphabet
 - How can we break this?

- Generally: mono-alphabetic substitution cipher
 - use a single permutation of the alphabet
 - How can we break this?
- Frequency analysis
 - observe the frequence of each symbol in the ciphertext

- Generally: mono-alphabetic substitution cipher
 - use a single permutation of the alphabet
 - How can we break this?
- Frequency analysis
 - observe the frequence of each symbol in the ciphertext
- How can we do better?

- Generally: mono-alphabetic substitution cipher
 - use a single permutation of the alphabet
 - How can we break this?
- Frequency analysis
 - observe the frequence of each symbol in the ciphertext
- How can we do better?
 - Stream cipher: substitution depends on the character's position
 - Block cipher: encrypt many letters at once in a block

Vigenère cipher

An early stream cipher (1553)

- Idea
 - Key: cccccccccc... change to
 - Key: WORDWORDWORD...
- Frequency analysis much harder
 - Unbreakable for 300 years

Vigenère cipher

An early stream cipher (1553)

- Idea
 - Key: **c**ccccccccc... change to
 - Key: WORDWORDWORD...
- Frequency analysis much harder
 - Unbreakable for 300 years
- Problem
 - Repeated patters at multiples of the keyword length
 - Find out the keyword length
 - Then?

- Repeating key letters was problematic
- Solution?

- Repeating key letters was problematic
- · Solution?
 - Key at least as big as the plaintext
 - Randomly chosen (uniformly)
 - Key: AFEMIONOASNEPOZLMOIUW...

- Repeating key letters was problematic
- Solution?
 - Key at least as big as the plaintext
 - Randomly chosen (uniformly)
 - Key: AFEMIONOASNEPOZLMOIUW...
- How good is this cipher?

- Repeating key letters was problematic
- · Solution?
 - Key at least as big as the plaintext
 - Randomly chosen (uniformly)
 - Key: AFEMIONOASNEPOZLMOIUW...
- How good is this cipher?
 - **Perfect!** : unconditional security
 - $\rho(P|C) = \rho(P)$ equivalently $\rho(C|P) = \rho(C|P')$

- Repeating key letters was problematic
- · Solution?
 - Key at least as big as the plaintext
 - Randomly chosen (uniformly)
 - Key: AFEMIONOASNEPOZLMOIUW...

$$p(P|C) = p(P)$$
 equivalently $p(C|P) = p(C|P')$

- Idea: choose P = 0|1 arbitrarily, choose K = 0|1 uniformly
 - · What is the probability that $P \oplus K = 0$?

- Repeating key letters was problematic
- · Solution?
 - Key at least as big as the plaintext
 - Randomly chosen (uniformly)
 - Key: AFEMIONOASNEPOZLMOIUW...
- How good is this cipher?
 - Perfect! : unconditional security
 - $\rho(P|C) = \rho(P)$ equivalently $\rho(C|P) = \rho(C|P')$
 - Idea: choose P = 0|1 arbitrarily, choose K = 0|1 uniformly
 - · What is the probability that $P \oplus K = 0$?
- Why "one time"?

- Repeating key letters was problematic
- Solution?
 - Key at least as big as the plaintext
 - Randomly chosen (uniformly)
 - Key: AFEMIONOASNEPOZLMOIUW...
- How good is this cipher?
 - **Perfect!** : unconditional security
 - $\rho(P|C) = \rho(P)$ equivalently $\rho(C|P) = \rho(C|P')$
 - Idea: choose P = 0|1 arbitrarily, choose K = 0|1 uniformly
 - · What is the probability that $P \oplus K = 0$?
- Why "one time"?
- Drawbacks?

Playfair Cipher

An early block cipher (1854)

- Key: 5x5 permutation of all letters (I/J combined)
- Encrypt pairs of letters (blocksize: 2 letters)

P	A	L	M	Е
R	S	T	O	N
В	С	D	F	G
Н	I	K	Q	U
V	W	X	Y	Z

Playfair Cipher

An early block cipher (1854)

- Key: 5x5 permutation of all letters (I/J combined)
- Encrypt pairs of letters (blocksize: 2 letters)
- Same row/column : replace by succeeding letters
 - $AM \rightarrow LE$
- Different row/column: replace by opposite corners
 - LO \rightarrow MT

P	A	L	M	Е
R	S	T	O	N
В	С	D	F	G
Н	I	K	Q	U
V	W	X	Y	Z

Playfair Cipher

An early block cipher (1854)

- Key: 5x5 permutation of all letters (I/J combined)
- Encrypt pairs of letters (blocksize: 2 letters)
- Same row/column : replace by succeeding letters
 - $AM \rightarrow LE$
- Different row/column: replace by opposite corners
 - LO \rightarrow MT
- Much better than Vigenère
 - But how much better?
 - Change a single letter of plaintext?

P	A	L	M	Е
R	S	T	O	N
В	С	D	F	G
Н	I	K	Q	U
V	W	X	Y	Z

- Reverse question
 - what is an ideal cipher?

- Reverse question
 - what is an ideal cipher?
- Random Oracle
 - Generate a random answer
 - Repeat it in future queries

- Reverse question
 - what is an ideal cipher?
- Random Oracle
 - Generate a random answer
 - Repeat it in future queries
- Ideal ciphers
 - Stream : key \rightarrow long keystream
 - Block : key \rightarrow random permutation

- Reverse question
 - what is an ideal cipher?
- Random Oracle
 - Generate a random answer
 - Repeat it in future queries
- Ideal ciphers
 - Stream : key ightarrow long keystream
 - Block : key \rightarrow random permutation
- Good real cipher
 - indistinguishable from a suitable oracle
 - given certain abilities of the adversary

How can we create a good block cipher?

Principles

- Confusion
 - Drastic (non-linear) change to the input
 - Basic tool: substitution
 - Inverible function $\{0,1\}^n \to \{0,1\}^n$ (permutation of $\{0,1\}^n$)

How can we create a good block cipher?

Principles

- Confusion
 - Drastic (non-linear) change to the input
 - Basic tool: substitution
 - Inverible function $\{0,1\}^n \to \{0,1\}^n$ (permutation of $\{0,1\}^n$)
- Diffusion
 - changing a single character of the input will change many characters of the output.
 - Basic tool: permutation of bits

How can we create a good block cipher?

- Substitution (confusion)
- Permutation (diffusion)

Substitution–permutation network

Feistel cipher

- No need for invertible F!
- IF F is a random function then
 - indist. from random permutation
 - 3 rounds: chosen plaintext
 - 4 rounds: chosen plaintext/ciphertext

Data Encryption Standard (DES)

- IBM, 1975
- · Feistel cipher
- 56bit keys
- 64bit block size

Data Encryption Standard (DES)

- IBM, 1975
- · Feistel cipher
- 56bit keys
- 64bit block size

Data Encryption Standard (DES)

- IBM, 1975
- · Feistel cipher
- 56bit keys
- 64bit block size
- Weaknesses
 - Brute force (< day)
 - Linear cryptanalysis

- NIST, 2001
 - Key: 128, 192, 256 bits
 - Block: 128
 - 64bit block size
- SP-network: multiple rounds of
 - Substitution
 - · SubBytes
 - Permutation
 - · MixColums
 - · ShiftRows
- No known practical attack

$\lceil b_0$	b_4	b_8	b_{12} $ ceil$
b_1	b_5	b_9	b_{13}
b_2	b_6	b_{10}	b_{14}
$\lfloor b_3 floor$	b_7	b_{11}	b_{15} $ floor$

- NIST, 2001
 - Key: 128, 192, 256 bits
 - Block: 128
 - 64bit block size
- SP-network: multiple rounds of
 - Substitution
 - · SubBytes
 - Permutation
 - MixColums
 - · ShiftRows
- No known practical attack

- NIST, 2001
 - Key: 128, 192, 256 bits
 - Block: 128
 - 64bit block size
- SP-network: multiple rounds of
 - Substitution
 - · SubBytes
 - Permutation
 - · MixColums
 - ShiftRows
- No known practical attack

- NIST, 2001
 - Key: 128, 192, 256 bits
 - Block: 128
 - 64bit block size
- SP-network: multiple rounds of
 - Substitution
 - · SubBytes
 - Permutation
 - · MixColums
 - ShiftRows
- No known practical attack

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

References

- Ross Anderson, Security Engineering, Sections 5.1 5.5
- https://blog.filippo.io/the-ecb-penguin/