Przetwarzanie i rozpoznawanie obrazów

Projekt 1

1. Charakterystyka systemu

System porówywania obrazów został przygotowany na wzór frameworków, gdzie każda z cech liczona jest indywidualnie. W folderze features zawarto miary podobieństw dwóch obrazów (każda z nich może być aktywowana bądź dezaktywowana niezależnie od pozostałych).

Za poprawność działania odpowiada klasa Matcher, w której zastosowano listę cech (tj. pole self.features). Na podstawie sumy wartości podobieństw między obrazami zostaje przygotowana odpowiedź systemu w formacie zgodnym z wymaganiami projektu.

2. Wstępne przetwarzanie

Przed rozpoczęciem analizy cech obrazu i próbą porównania następuje proces przygotowania obrazu. Jego realizacja została zaprezentowana w postaci pseudokodu poniżej.

```
Wczytaj obraz z wykorzystaniem cv2.imread(filename, 0)
Dokonaj rotacji i przeskalowania obrazu
Wyznacz kontur dzięki funkcji cv2.findContours
Wyznacz polygon - cv2.approxPolyDP
Dokonaj obliczenia charakterystyki udziału koloru białego i czarnego w kolumnach
```

W przedstawionym powyżej pseudokodzie są dwie metody wymagające głębszej analizy. Pierwsza z nich to operacja rotacji i przeskalowania zaprezentowana w postaci następującego pseudokodu:

Podziel przeskalowany już obraz na kolumny o szerokości 1px Dla każdej z kolumn oblicz ile pikseli ma niezerową wartość Wynik zapisz na odpowiedniej pozycji w liście charakterystyki obrazu

3. Charakterystyki

Jak wskazano w rozdziale 1, system pozwala na wykorzystanie wielu miar podobieństw pomiędzy obrazami. Przygotowane implementacje zostaną zaprezentowane w ramach podrozdziałów.

3.1. Random

Pierwsza z charakterystyk polegająca na określeniu w sposób pseudolosowy podobieństw pomiędzy obrazami. Nie wykorzystuje w ogóle informacji o obrazach. Powstała do testowania formatu wejścia/wyjścia, ale w ostatecznej wersji projektu nie jest wykorzystywana (waga 0.0).

3.2. Liczba wierzchołków

W podobieństwie tym wykorzystuje się liczbę wierzchołków dla obu obrazów. Kontur wyznaczony w fazie preprocessingu (rozdział 2) jest wyznaczany z określoną czułością ϵ .

Podobieństwo opisuje się wzorem:

$$1 - \frac{|v_1 - v_2|}{\frac{1}{2} \cdot (v_1 + v_2)},$$

gdzie v_1 i v_2 to liczby wierzchołków w dwóch obrazach.

3.3. Wariancja udziału koloru białego

Bazując na wyznaczonych w fazie preprocessingu charakterystykach udziału koloru białego (lista z licznością pikseli w kolumnie) obliczana jest wariancja sumy tych list dla dwóch obrazów. W przypadku drugiego z obrazów, lista jest odwrotnej kolejności. Idea stojąca za metodą jest stosunkowo prosta: w przypadku pasujących do siebie obrazów, wariancja powinna być nieznaczna. Ma to miejsce, kiedy praktycznie każda z pozycji nowou tworzonej listy ma prawie taką samą wartość.

Zastosowano wzór:

$$\frac{x}{D^2(w_1 + w_2')},$$

gdzie x to szerokość obrazu, w_1 i w_2 to wysokości białych poziomych pasków, a D^2 oznacza wariancję z próby.

Takie użycie priorytetuje niską wariancję, a wraz z jej wzrostem maleje wartość podobieństwa.

3.4. Korelacja udziału koloru białego

Podobnie jak dla wariancji udziału białego koloru, również w przypadku koleracji bazujemy na wyznaczonej charakterystyce. Tym razem jednakże zastosowano współczynnik korelacji Pearsona. Dla jednego z obrazów charakterystyka jest dodatkowo podawana w odwrotnej kolejności. Z wyliczonych korelacji wyznacza się wartość bezwzględną i wybiera największą wartość.

$$\max(|\rho(w_1, w_2)|, |\rho(w_1, w_2')|)$$

4. Parametry i wagi cech

Parametry wstępnego przetwarzania i wagi cech dobrano eksperymentalnie, sprawdzając wyniki na zbiorze testowym. Użyte ostatecznie wartości to:

- znormalizowana szerokość: 300,
- znormalizowana wysokość: 200,
- czułość przybliżenia konturu wielokatem: 6,
- wysokość marginesu do wykrywania podstawy: 19,
- próg względnego oddalenia centroidu czarnego obszaru od środka: 0.25

zbiór	#1	#2	#3	#4	#5	wynik
set0	6	0	0	0	0	100.0%
set1	20	0	0	0	0	100.0%
set2	20	0	0	0	0	100.0%
set3	20	0	0	0	0	100.0%
set4	20	0	0	0	0	100.0%
set5	182	4	2	3	1	91.0%
set6	162	1	2	1	2	81.0%
set7	11	4	3	1	0	55.0%
set8	40	10	2	6	6	40.0%
razem	481	19	9	11	9	79.4%

Tabela 1. Wyniki na zbiorach testowych

Wagi cech ustawiono następująco:

- wariancja koloru białego: 42%
- liczba wierzchołków: 33%
- korelacja koloru białego: 25%

5. Wyniki na zbiorach testowych

Według przyjętej miary oceny, program uzyskał średnio 79.4% punktów na zbiorach testowych. Łączny czas działania to 13 sekund. Szczegóły przedstawia tabela 1.