

INTRODUCTION TO EECS II

DIGITAL COMMUNICATION SYSTEMS

6.02 Fall 2010 Lecture #4

- Signals and Noise
 - Noise sources and bit errors
- Analyzing Noise:
 - •PDF, CDF, and Noise + Noisefree decomposition
- •Computing Bit Error Rates:
 - •The No ISI case, the impact of the Noise PDF.

Noise Can Be Due to Fundamental Processes

Electron Moving Through Crystal with Vibrating Atoms

http://www4.nau.edu/meteorite/Meteorite/Images/Sodium_chloride_crystal.png

Randomized path leads to noisy current flow

Effect of Many Interactions Can Be Modeled as Noise

http://www.imageteck.net/PCB%20Board%203.JPG

Many components connected by thin wires (that have inductance and resistance) to single power supply - 1000's of devices switching on and off creates "noisy" power supply.

6.02 IR Transceiver Noise Source - Room Light

Noisy Signal Can Cause Bit Errors

Key Noise Questions For A Channel

- · For a given Transmission Scheme:
 - What's the Bit Error Rate (BER)?
 - · BER: Fraction of erroneously received bits
- · If the Signal is increased:
 - How much is BER reduced?
- · If ISI is reduced:
 - Is BER reduced significantly?

To Answer these questions

- · Need to Characterize the Noise
 - What "shape" (probability density function)?
 - How "big" (variance)?

Experiment to see Noise "Shape"

- Create histograms of sample values from trials of increasing lengths
- Assumption of independence and stationarity implies histogram should converge to a shape known as a probability density function (PDF)

"Shape" = Probability Density Function PDF

- Define X as a random variable whose PDF has the same shape as the histogram we just obtained
- Denote PDF of X as f_x(x)
 - Scale $f_X(x)$ such that its overall area is 1

$$\Rightarrow \int_{-\infty}^{\infty} f_X(x) = 1$$

This shape is referred to as a Gaussian PDF

PDF → Probability and PDF → CDF

• The probability that random variable X takes on a value in the range of x_1 to x_2 is calculated from the PDF of X as:

$$\operatorname{Prob}(x_1 \le x \le x_2) = \int_{x_1}^{x_2} f_X(x) dx$$

$$\operatorname{PDF}$$

• The probability that random variable X takes on a value less than x_1 is the cumulative distribution function $CDF(x_1)$

$$CDF(x_1) = Prob(x \le x_1) = \int_{-\infty}^{x_1} f_X(x) dx$$

Example Probability Calculation

· Verify that overall area is 1:

$$\int_{-\infty}^{\infty} f_X(x) dx = \int_{0}^{2} 0.5 \, dx = \boxed{1}$$

• Probability that x takes on a value between 0.5 and 1.0:

$$Prob(0.5 \le x \le 1.0) = \int_{0.5}^{1.0} 0.5 \, dx = \boxed{0.25}$$

Noise Modeled Using Normal (Gaussian) PDF

$$f_X(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{x^2}{2\sigma^2}}$$

$$\sigma = \text{standard deviation}$$

Why the Normal PDF?

Histogram for 10,000 trials of sums of 1000 uniformly (right) or triangularly (left) distributed [-1,1] random variables

Key Point: Sums of Noise from many sources well approximated by the Normal(Gaussian) PDF

Unit Normal (Gaussian) PDF and CDF

Estimating Probability of Bit Error

Decompose Into Noisefree + Noise

Mean and Variance

- The mean of random variable X, μ_x , corresponds to its average value
 - Computed as

$$\mu_X = \int_{-\infty}^{\infty} x f_X(x) dx$$

- The variance of random variable x, σ_x^2 , gives an indication of its variability
 - Computed as

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_x)^2 f_X(x) dx$$

· The standard deviation of a random variable X, is denoted σ_X

Example Mean and Variance Calculation

· Mean:

$$\mu_X = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^2 x \frac{1}{2} dx = \frac{1}{4} x^2 \Big|_0^2 = \boxed{1}$$

· Variance:

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_x)^2 f_X(x) dx = \int_0^2 (x - 1)^2 \frac{1}{2} dx$$
$$= \frac{1}{6} (x - 1)^3 \Big|_0^2 = \frac{1}{6} + \frac{1}{6} = \boxed{\frac{1}{3}}$$

Visualizing Mean and Variance from PDF

- Changes in mean shift the center of mass of PDF
- Changes in variance narrow or broaden the PDF
 - Variance tells us how "big" the noise is!

Summary

 Assume Gaussian PDF for noise and no intersymbol interference (ISI next time) yields the following picture:

• We can estimate the bit-error rate (BER) as

$$P(bit\ error) = p0 * p01 + p1 * p10$$