Relatório PARTE 01: Fluxo de Funcionamento e Lógica de Resiliência

Projeto: Sistema Vestível de Monitoramento Cardíaco (Edge Computing)

Resumo Executivo

O sistema é um protótipo de Edge Computing baseado em ESP32 (ESP32 DevKit) para monitoramento de sinais vitais. Ele prioriza a resiliência por meio de armazenamento de dados em sistema de arquivos local (LittleFS) e memória RAM, garantindo que a coleta de dados não seja interrompida mesmo na ausência de conectividade Wi-Fi/MQTT.

1. * Arquitetura e Componentes de Hardware

O sistema é construído sobre a plataforma ESP32 e utiliza os seguintes componentes:

- Microcontrolador: ESP32 DevKit.
- Sensores:
 - o **IDHT22:** Leitura de temperatura e umidade.
 - Botão (HEART_RATE_BUTTON): Utilizado para simular a frequência cardíaca (BPM).
- Indicadores de Status (LEDs):
 - LED Azul (Wi-Fi)
 - LED Verde (MQTT)
 - LED Vermelho (Alertas).
- Armazenamento Local: LittleFS (substituindo o SPIFFS depreciado).

2. Fluxo de Coleta e Persistência de Dados (Edge Computing)

O fluxo de dados no Edge é executado periodicamente a cada 5 segundos (SENSOR_INTERVAL = 5000 ms) e foca em nunca perder uma leitura:

- 1. **Leitura e Simulação:** O sistema lê DHT22 e obtém o valor da frequência cardíaca (heartRate), que é simulado com variação orgânica entre 68 e 115 BPM.
- 2. **Criação do Pacote:** As leituras são empacotadas na estrutura SensorData ({temperature, humidity, heartRate, timestamp, sent}).
- 3. Persistência (Dupla Camada):
 - Memória RAM (Buffer): O pacote é imediatamente gravado no offlineBuffer. A capacidade é de 1000 amostras (MAX STORED READINGS).
 - LittleFS (Persistente): O pacote é anexado ao arquivo /sensor_data.json para garantir persistência offline.
- Publicação Imediata: Se ON-LINE (wifiConnected && mqttConnected), o sistema tenta publicar o pacote imediatamente via MQTT.

3. 🗍 Lógica de Resiliência Offline e Sincronização

A resiliência é gerenciada pela alternância simulada do status Wi-Fi e pela função de sincronização inteligente (syncOfflineData()).

Cenário	Status	Comportamento do Sistema
Wi-Fi/MQTT Desconectado	OFFLINE	Coleta continua a cada 5s e armazena em RAM e LittleFS. LEDs de comunicação ficam desligados.
Wi-Fi Reconectado	ONLINE	Restabelece a conexão MQTT. O LED Verde (MQTT) acende se for bem-sucedido.
Sincronização	SYNC ATIVO	syncOfflineData() publica registros pendentes do LittleFS um a um.
Limpeza	₩ LIMPEZA SEGURA	Após todos os dados serem confirmados como enviados (registros no arquivo persistente), clearOfflineData() remove o arquivo /sensor_data.json.
Reinício com Falha	H RECOVERY	loadOfflineData() verifica /sensor_data.json no boot e recarrega apenas os dados pendentes (sent == false) no buffer RAM.