Análise multivariada

Patrícia de Siqueira Ramos

UNIFAL-MG, campus Varginha

4 de Setembro de 2018

Definições

- Matriz:
 - coleção de números ordenados por linhas e colunas
 - é comum organizá-los usando (), [] ou { }
 - na forma digital usamos a notação de negrito e letra maiúscula para uma matriz. Por exemplo, uma matriz pode ser representada como

$$\mathbf{Y} = \left[\begin{array}{ccc} 5 & 8 & 2 \\ -1 & 0 & 7 \end{array} \right]$$

Obs.: Na forma escrita manualmente, devido à dificuldade de representar o negrito, usaremos um til embaixo da letra maiúscula

Definições

Dimensão: número de linhas e colunas de uma matriz (n é o número de linhas e p é o número de colunas).
 Assim, uma matriz tem dimensão n × p.
 A matriz Y do exemplo tem dimensão 2 × 3.

Definições

- Dimensão: número de linhas e colunas de uma matriz (n é o número de linhas e p é o número de colunas).
 Assim, uma matriz tem dimensão n × p.
 A matriz Y do exemplo tem dimensão 2 × 3.
- Os elementos de uma matriz são numerados como

$$\mathbf{X} = [x_{ij}] = \begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{bmatrix}.$$

Assim, x_{ij} é o elemento correspondete à *i*-ésima linha e *j*-ésima coluna.

- No exemplo da matriz \mathbf{Y} , $y_{11}=5$, ..., $y_{23}=7$.

Definições

- Vetor: matriz com uma linha (vetor linha) ou uma coluna (vetor coluna).
 - Ex.: **a** é um vetor coluna e **b** é um vetor linha:

$$\mathbf{a} = \begin{bmatrix} 7 \\ 2 \\ 3 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} -2 & 7 & 4 \end{bmatrix}$$

Definições

- Vetor: matriz com uma linha (vetor linha) ou uma coluna (vetor coluna).
 - Ex.: a é um vetor coluna e b é um vetor linha:

$$\mathbf{a} = \begin{bmatrix} 7 \\ 2 \\ 3 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} -2 & 7 & 4 \end{bmatrix}$$

- Escalar: matriz com uma linha e uma coluna.
 - Ex.: x = 3, a = 0, w = -7.

- Soma e subtração de duas (ou mais) matrizes:
 - ambas devem ter mesma dimensão n imes p
 - a soma é feita elemento a elemento:

$$\mathbf{A} + \mathbf{B} = [a_{ij} \pm b_{ij}]$$

- Ex.:

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 1 & 9 & -2 \\ 3 & 6 & 0 \end{bmatrix} + \begin{bmatrix} 8 & 4 & -3 \\ -7 & 1 & 6 \end{bmatrix} = \begin{bmatrix} 9 & 13 & -5 \\ -4 & 7 & 6 \end{bmatrix}$$

• Multiplicação de uma matriz por um escalar c:

$$c\mathbf{A} = [c \cdot a_{ij}]$$

- Ex.: 4A

• Multiplicação de uma matriz por um escalar c:

$$c\mathbf{A} = [c \cdot a_{ij}]$$

- Ex.: 4A

$$4\mathbf{A} = \begin{bmatrix} 4 \cdot 1 & 4 \cdot 9 & 4 \cdot (-2) \\ 4 \cdot 3 & 4 \cdot 6 & 4 \cdot 0 \end{bmatrix} = \begin{bmatrix} 4 & 36 & -8 \\ 12 & 24 & 0 \end{bmatrix}$$

- Multiplicação de matrizes:
 - o número de colunas da primeira matriz $(n \times p)$ deve ser igual ao número de linhas da segunda matriz $(p \times m)$.
 - a matriz resultante será $n \times m$:

$$\mathbf{A}_{n \times p} \cdot \mathbf{B}_{p \times m} = \mathbf{C}_{n \times m}$$

Ex.:
$$\begin{bmatrix} 2 & 8 & -1 \\ 3 & 6 & 4 \end{bmatrix}_{2\times 3} \cdot \begin{bmatrix} 1 & 7 \\ 9 & -2 \\ 6 & 3 \end{bmatrix}_{3\times 2} =$$

- Multiplicação de matrizes:
 - o número de colunas da primeira matriz $(n \times p)$ deve ser igual ao número de linhas da segunda matriz $(p \times m)$.
 - a matriz resultante será $n \times m$:

$$\boldsymbol{A}_{n\times p}\cdot\boldsymbol{B}_{p\times m}=\boldsymbol{C}_{n\times m}$$

$$\operatorname{Ex.:} \left[\begin{array}{ccc} 2 & 8 & -1 \\ 3 & 6 & 4 \end{array} \right]_{2 \times 3} \cdot \left[\begin{array}{ccc} 1 & 7 \\ 9 & -2 \\ 6 & 3 \end{array} \right]_{3 \times 2} = \\ \left[\begin{array}{ccc} 2 \cdot 1 + 8 \cdot 9 + (-1) \cdot 6 & 2 \cdot 7 + 8 \cdot (-2) + (-1) \cdot 3 \\ 3 \cdot 1 + 6 \cdot 9 + 4 \cdot 6 & 3 \cdot 7 + 6 \cdot (-2) + 4 \cdot 3 \end{array} \right]_{2 \times 2} = \\ \left[\begin{array}{ccc} 68 & -5 \\ 81 & 21 \end{array} \right]_{2 \times 2}$$

Ex.: Se multiplicarmos um vetor linha por um vetor coluna teremos:

$$\begin{bmatrix} 1 & 7 & 5 \end{bmatrix}_{1\times 3} \cdot \begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}_{3\times 1} = 1 \cdot 2 + 7 \cdot 4 + 5 \cdot 1 = 35 \text{ (escalar)}$$

Porém, se multiplicarmos um vetor coluna por um vetor linha teremos:

$$\begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}_{3\times 1} \cdot \begin{bmatrix} 1 & 7 & 5 \end{bmatrix}_{1\times 3} = \begin{bmatrix} 2 & 14 & 10 \\ 4 & 28 & 20 \\ 1 & 7 & 5 \end{bmatrix}_{3\times 3}$$

Obs. a) Diferenças entre escalares e matrizes

	1	and the second s
	escalares	matrizes
a.1)	ab = ba	$AB \neq BA$
a.2)	Se $ab = ac$ e $a \neq 0$, então $b = c$	Se $\mathbf{AB} = \mathbf{AC}$ e $\mathbf{A} \neq 0$, então não necessariamente $\mathbf{B} = \mathbf{C}$
a.3)	Se $ab = 0$, então $a = 0$, ou $b = 0$ ou ambos são 0	Se $\mathbf{AB}=0$, não necessariamente $\mathbf{A}=0$, $\mathbf{B}=0$ ou ambos são 0
a.4)	Se $ab=0$, então $ba=0$	Se $\mathbf{AB} = 0$, não necessariamente $\mathbf{BA} = 0$.

Obs. a) Diferenças entre escalares e matrizes - exemplos

$$\mathrm{a.1)}\ \mathbf{A} = \left[\begin{array}{cc} 1 & 3 \\ 2 & -1 \end{array}\right], \mathbf{B} = \left[\begin{array}{cc} 2 & -1 \\ 0 & 2 \end{array}\right], \mathbf{AB} = \left[\begin{array}{cc} 2 & 5 \\ 4 & -4 \end{array}\right] \neq \mathbf{BA} = \left[\begin{array}{cc} 0 & 7 \\ 4 & -2 \end{array}\right]$$

Obs. a) Diferenças entre escalares e matrizes - exemplos

$$\mathrm{a.1)}\ \mathbf{A} = \left[\begin{array}{cc} 1 & 3 \\ 2 & -1 \end{array}\right], \mathbf{B} = \left[\begin{array}{cc} 2 & -1 \\ 0 & 2 \end{array}\right], \mathbf{AB} = \left[\begin{array}{cc} 2 & 5 \\ 4 & -4 \end{array}\right] \neq \mathbf{BA} = \left[\begin{array}{cc} 0 & 7 \\ 4 & -2 \end{array}\right]$$

a.2)
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix},$$

 $\mathbf{AC} = \begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} = \mathbf{BC}, \text{ mas } \mathbf{A} \neq \mathbf{B}$

Obs. a) Diferenças entre escalares e matrizes - exemplos

$$\mathrm{a.1)}\ \mathbf{A} = \left[\begin{array}{cc} 1 & 3 \\ 2 & -1 \end{array}\right], \mathbf{B} = \left[\begin{array}{cc} 2 & -1 \\ 0 & 2 \end{array}\right], \mathbf{AB} = \left[\begin{array}{cc} 2 & 5 \\ 4 & -4 \end{array}\right] \neq \mathbf{BA} = \left[\begin{array}{cc} 0 & 7 \\ 4 & -2 \end{array}\right]$$

a.2)
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & -2 \\ -1 & 2 \end{bmatrix},$$

 $\mathbf{AC} = \begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} = \mathbf{BC}, \text{ mas } \mathbf{A} \neq \mathbf{B}$

a.3)
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \mathbf{A}\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{B}\mathbf{A}, \ \max \mathbf{A} \neq \mathbf{0} \in \mathbf{B} \neq \mathbf{0}$$

Obs. b)

$$\mathbf{A}^p = \mathbf{A} \cdot \mathbf{A} \cdot \cdots \cdot \mathbf{A}$$
 (p fatores).
 $\mathbf{A}^p \mathbf{A}^q = \mathbf{A}^{p+q},$
 $(\mathbf{A}^p)^q = \mathbf{A}^{pq}$

 $(AB)^{\rho}$ não é necessariamente igual a $A^{\rho}B^{\rho}$.

Para escalares tal regra vale, por exemplo:

$$(2 \cdot 3)^2 = 6^2 = 36$$
 e $2^2 \cdot 3^2 = 36$.

Obs. c)

$$(\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T.$$

(T representa a transposta de uma matriz, tal definição será vista adiante).

Ex.)
$$\mathbf{A} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 2 & 3 \end{bmatrix}, \mathbf{A}\mathbf{B} = \begin{bmatrix} 8 & 13 \\ 2 & 3 \end{bmatrix}.$$

$$\mathbf{B}^{T} = \begin{bmatrix} 2 & 2 \\ 4 & 3 \end{bmatrix}, \mathbf{A}^{T} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, \mathbf{B}^{T}\mathbf{A}^{T} = \begin{bmatrix} 8 & 2 \\ 13 & 3 \end{bmatrix}.$$

$$(\mathbf{A}\mathbf{B})^{T} = \begin{bmatrix} 8 & 2 \\ 13 & 3 \end{bmatrix} = \mathbf{B}^{T}\mathbf{A}^{T}.$$

Produto de Hadamard

$$\mathbf{A}_{p\times q} \bigodot \mathbf{B}_{p\times q} = \mathbf{C}_{p\times q}.$$

- Menos comum do que a multiplicação de matrizes
- A multiplicação é feita elemento a elemento (a_{11} com b_{11} , a_{12} com b_{12} e assim por diante)
- As duas matrizes devem ter mesma dimensão

Matriz quadrada

 Matriz em que o número de linhas é igual ao número de colunas

Ex.:
$$\mathbf{A} = \begin{bmatrix} 1 & 6 \\ 3 & 2 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 0 & 10 & -2 \\ 4 & 11 & 2 \\ 7 & -8 & 9 \end{bmatrix}$$

são quadradas com dimensões 2×2 e 3×3 , respectivamente.

$$\mathbf{C} = \left[\begin{array}{cc} 1 & 9 \\ 0 & 3 \\ 7 & -2 \end{array} \right]$$

não é quadrada e tem dimensão 3×2 .

Matriz simétrica

- Matriz quadrada em que $x_{ij} = x_{ji} \ \forall \ i, j$, ou seja, inverter linhas e colunas não afeta a matriz
- Assim, $\mathbf{A}^T = \mathbf{A}$
- Exemplos:

$$\mathbf{A} = \left[\begin{array}{ccc} 9 & 1 & 5 \\ 1 & 6 & 2 \\ 5 & 2 & 7 \end{array} \right]$$

é simétrica.

$$\mathbf{B} = \left[\begin{array}{ccc} 9 & 1 & 5 \\ 5 & 6 & 2 \\ 1 & 2 & 7 \end{array} \right]$$

não é simétrica.

Matriz diagonal

 Matriz simétrica em que todos os elementos fora da diagonal são zero

$$\mathbf{D}_{
ho imes
ho} = \left[egin{array}{ccccc} d_{11} & 0 & 0 & \cdots & 0 \ 0 & d_{22} & 0 & \cdots & 0 \ dots & dots & \ddots & dots & dots \ 0 & 0 & 0 & \cdots & d_{pp} \end{array}
ight]$$

Matriz identidade

• Matriz diagonal de 1s

$$\mathbf{I} = \left[\begin{array}{ccccc} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{array} \right]$$

Matriz unitária

• Matriz composta de 1s:

$$\mathbf{J} = \begin{bmatrix} 1 & \cdots & 1 \\ 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}.$$

Matriz unitária

• Matriz composta de 1s:

$$\mathbf{J} = \left[\begin{array}{ccc} 1 & \cdots & 1 \\ 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{array} \right].$$

 A matriz J pode ser obtida a partir da multiplicação de um vetor de 1s pela transposta dele

$$\mathbf{J} = \mathbf{1} \cdot \mathbf{1}^{T} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 1 \\ 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}.$$

Matriz nula

Matriz composta de 0s:

$$\mathbf{0} = \left[\begin{array}{ccc} 0 & \cdots & 0 \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{array} \right].$$

Matriz ortogonal Q

• Matriz em que as seguintes relações valem:

$$\mathbf{Q}^T\mathbf{Q} = \mathbf{Q}\mathbf{Q}^T = \mathbf{I}.$$

Exemplo:

$$\mathbf{Q} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix},$$

Matriz ortogonal Q

• Matriz em que as seguintes relações valem:

$$\mathbf{Q}^T\mathbf{Q} = \mathbf{Q}\mathbf{Q}^T = \mathbf{I}.$$

Exemplo:

$$\mathbf{Q} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix},$$

$$\mathbf{Q}^T = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}, \mathbf{Q}^T \mathbf{Q} = \mathbf{Q} \mathbf{Q}^T = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Matriz idempotente

• Matriz em que

$$AA = A$$
.

Exemplo:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{bmatrix}.$$

• Qualquer matriz pré ou pós multiplicada por I resulta na própria matriz

$$\mathbf{AI} = \mathbf{A}$$

$$\mathbf{IA} = \mathbf{A}$$

 Qualquer matriz pré ou pós multiplicada por I resulta na própria matriz

$$AI = A$$
 $IA = A$

Exemplos:

$$\begin{bmatrix} 2 & 5 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -1 & 4 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -1 & 4 \end{bmatrix}.$$

 A pré ou pós multiplicação pela matriz nula 0 resulta na matriz nula 0:

$$\begin{aligned} \mathbf{A0} &= \mathbf{0} \\ \mathbf{0A} &= \mathbf{0} \end{aligned}$$

Exemplos:

$$\begin{bmatrix} 2 & 5 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Tópicos a serem vistos

- Posteriormente, veremos que o vetor ${\bf 1}$ é usado para obter o vetor de médias amostrais $\bar{\bf X}$ e a matriz de covariâncias amostrais ${\bf S}$
- O vetor de médias amostrais é dado por

$$\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i \cdot} = \frac{1}{n} \mathbf{X}^{T} \mathbf{1}$$

Tópicos a serem vistos

Exemplo: Seja a matriz de dados **X** que contém 4 observações medidas em 3 variáveis:

$$\mathbf{X} = \begin{bmatrix} 7 & 3 & 9 \\ 4 & 6 & 11 \\ 4 & 2 & 5 \\ 5 & 5 & 7 \end{bmatrix}_{4 \times 3}.$$

Vamos obter o vetor de médias amostrais usando a fórmula vista:

Tópicos a serem vistos

Exemplo: Seja a matriz de dados **X** que contém 4 observações medidas em 3 variáveis:

$$\mathbf{X} = \begin{bmatrix} 7 & 3 & 9 \\ 4 & 6 & 11 \\ 4 & 2 & 5 \\ 5 & 5 & 7 \end{bmatrix}_{4 \times 3}.$$

Vamos obter o vetor de médias amostrais usando a fórmula vista:

$$\bar{\mathbf{X}} = \frac{1}{4} \begin{bmatrix} 7 & 4 & 4 & 5 \\ 3 & 6 & 2 & 5 \\ 9 & 11 & 5 & 7 \end{bmatrix}_{3 \times 4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}_{4 \times 1} = \frac{1}{4} \begin{bmatrix} 7 + 4 + 4 + 5 \\ 3 + 6 + 2 + 5 \\ 9 + 11 + 5 + 7 \end{bmatrix}_{3 \times 1} = \begin{bmatrix} 5 \\ 4 \\ 8 \end{bmatrix}_{3 \times 1}$$

Traço

• Para uma matriz quadrada **A** de dimensão $n \times n$, o traço é a soma dos elementos da diagonal principal

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \cdots + a_{nn}.$$

Transposta

- Seja a matriz **A** de dimensão $n \times m$, representamos sua transposta por \mathbf{A}^T ou \mathbf{A}' e ela tem dimensão $m \times n$
- O elemento a_{ij} em **A** será o elemento a_{ji} em \mathbf{A}^T
- Propriedades:
 - Para **A** quadrada $n \times n$, $tr(\mathbf{A}^T) = tr(\mathbf{A})$
 - Para \mathbf{A} simétrica, $\mathbf{A}^T = \mathbf{A}$
 - Para **A** diagonal, $\mathbf{A}^T = \mathbf{A}$
 - $\mathbf{A} + \mathbf{A}^T$ e $\mathbf{A}^T + \mathbf{A}$ são simétricas:

Transposta

- Seja a matriz \mathbf{A} de dimensão $n \times m$, representamos sua transposta por \mathbf{A}^T ou \mathbf{A}' e ela tem dimensão $m \times n$
- ullet O elemento a_{ij} em ${\bf A}$ será o elemento a_{ji} em ${\bf A}^T$
- Propriedades:
 - Para **A** quadrada $n \times n$, $tr(\mathbf{A}^T) = tr(\mathbf{A})$
 - Para **A** simétrica, $\mathbf{A}^T = \mathbf{A}$
 - Para **A** diagonal, $\mathbf{A}^T = \mathbf{A}$
 - $\mathbf{A} + \mathbf{A}^T$ e $\mathbf{A}^T + \mathbf{A}$ são simétricas:

$$\mathbf{A} = \begin{bmatrix} 2 & 5 & 8 \\ 3 & 6 & 9 \\ 4 & 7 & 10 \end{bmatrix} . \mathbf{A} + \mathbf{A}^{T} = \begin{bmatrix} 4 & 8 & 12 \\ 8 & 12 & 16 \\ 12 & 16 & 20 \end{bmatrix} = \mathbf{A}^{T} + \mathbf{A}.$$

 Para uma matriz quadrada A n × n há dois métodos muito utilizados para obter o determinante de A:

1 - método direto: é o produto da diagonal principal menos o produto dos outros elementos.

Ex.: matriz 2×2

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 3 & -1 \end{bmatrix}.$$

$$|\mathbf{A}| = 2 \cdot (-1) - (3 \cdot 1)$$

$$= -2 - 3$$

$$|\mathbf{A}| = -5$$

Ex.: matriz 3×3

$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 1 \\ 4 & 5 & 3 \\ -2 & 0 & 0 \end{bmatrix}.$$

$$\begin{bmatrix} 4 & -1 & 1 & 4 & -1 \\ 4 & 5 & 3 & 4 & 5 \\ -2 & 0 & 0 & -2 & 0 \end{bmatrix}$$

$$|\mathbf{A}| = 4 \cdot 5 \cdot 0 + (-1) \cdot 3 \cdot (-2) + 1 \cdot 4 \cdot 0 - [1 \cdot 5 \cdot (-2) + 4 \cdot 3 \cdot 0 + (-1) \cdot 4 \cdot 0]$$

$$|\mathbf{A}| = 0 + 6 + 0 - (-10 + 0 - 0)$$

$$|\mathbf{A}| = 16.$$

2 - fórmula (pode ser utilizada para matrizes quadradas de quaisquer dimensões)

$$|\mathbf{A}| = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} |\mathbf{A}_{ij}|,$$

em que ${\bf A}_{ij}$ é denominado menor e é a matriz quadrada (n-1) imes (n-1) obtida com a eliminação da i-ésima linha e j-ésima coluna de ${\bf A}$

Ex.: matriz 3×3 (usando a fórmula):

$$\mathbf{A} = \left[\begin{array}{rrr} 4 & -1 & 1 \\ 4 & 5 & 3 \\ -2 & 0 & 0 \end{array} \right].$$

Temos que fixar uma linha ou coluna. Vamos escolher a linha 1 (i = 1). Assim, variamos o valor da coluna (j = 1, 2, 3):

$$\mathbf{A} = \begin{bmatrix} 4 & -1 & 1 \\ 4 & 5 & 3 \\ -2 & 0 & 0 \\ \frac{1}{1} \frac{1}{1} \frac{1}{1} & \frac{1}{1} \frac{1}{1} \frac{2}{1} & \frac{1}{1} \frac{1}{1} \frac{3}{1} \end{bmatrix}.$$

Ex.: Continuação

$$|\mathbf{A}| = (-1)^{1+1} a_{11} |\mathbf{A}_{11}| + (-1)^{1+2} a_{12} |\mathbf{A}_{12}| + (-1)^{1+3} a_{13} |\mathbf{A}_{13}|$$

$$= 1 \cdot 4 \cdot \begin{vmatrix} 5 & 3 \\ 0 & 0 \end{vmatrix} + (-1) \cdot (-1) \cdot \begin{vmatrix} 4 & 3 \\ -2 & 0 \end{vmatrix} + 1 \cdot 1 \cdot \begin{vmatrix} 4 & 5 \\ -2 & 0 \end{vmatrix}$$

$$= 4 \cdot 0 + 1 \cdot 6 + 1 \cdot 10 = 16.$$

Propriedades do determinante

1
$$|A| = |A^T|$$

$$|AB| = |A||B|$$

$$|c\mathbf{A}| = c^n |\mathbf{A}|$$

1 matriz ortogonal:
$$|\mathbf{A}| = \pm 1$$

$$oldsymbol{\circ}$$
 se duas linhas (ou colunas) de $oldsymbol{\mathsf{A}}$ são iguais, $|oldsymbol{\mathsf{A}}|=0$

Propriedades do determinante - exemplos

2.
$$\mathbf{A} = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}, \mathbf{B} = \begin{bmatrix} 4 & 2 \\ 3 & 5 \end{bmatrix}, \mathbf{AB} = \begin{bmatrix} 15 & 11 \\ 20 & 24 \end{bmatrix},$$

$$|\mathbf{AB}| = 14 \cdot 24 - 20 \cdot 11 = 140.$$

$$|\mathbf{A}| = 10 \; , \, |\mathbf{B}| = 14 \; , \, |\mathbf{A}\mathbf{B}| = |\mathbf{A}||\mathbf{B}| = 10 \cdot 14 = 140.$$

3.
$$\mathbf{D} = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}, \mathbf{E} = 3\mathbf{D} = \begin{bmatrix} 9 & 3 \\ 6 & 12 \end{bmatrix}, |\mathbf{E}| = 9 \cdot 12 - 3 \cdot 6 = 90.$$

$$|\mathbf{D}| = 12 - 2 = 10$$
, $|\mathbf{E}| = |3\mathbf{D}| = 3^2 |\mathbf{D}| = 9 \cdot 10 = 90$.

