TD 4

Exercises on: Frequency-domain characteristics of Random signal

4.1 Exercise 1

The process X(t) is normal with zero mean and $R_X(\tau) = e^{-a|\tau|}cos\beta\tau$. Show that if $Y(t) = X^2(t)$, then $C_Y(\tau) = e^{-2a|\tau|}(1 + cos2\beta\tau)$. Find $S_Y(\omega)$.

Hint: if the random variables *X* and *Y* are jointly normal with zero mean. then $E\{X^2Y^2\} = E\{X^2\}E\{Y^2\} + 2E^2\{XY\}$.

4.2 Exercise 2

Consider the power spectrum $S(\omega)$ is impulsive, such that,

$$S(\omega) = \delta(\omega + \omega_0) + \delta(\omega - \omega_0)$$

find the autocorrelation by using integrated spectrum.

4.3 Exercise 3

If the process X(t) is MS continuous, show that its mean is continuous.

4.4 Exercise 4

Given a complex process X(t) with autocorrelation $R_X(\tau)$, show that if $R_X(\tau_1) = R_X(0)e^{j\omega_0\tau_1}$, $Y(t) = e^{-j\omega_0t}X(t)$, then

$$R_X(\tau) = e^{j\omega_0\tau}\omega(\tau)$$

where $\omega(\tau)$ is a periodic function with period τ_1 and Y(t) is an MS periodic process with the same period.

4.5 Exercise 5

Given $R_X(m) = a^{|m|}, |a| < 1$, find $S_X(\omega)$.