用混合量热法测定冰的熔解热

2013599 田佳业

目的要求

- 1. 正确使用量热器,熟练使用温度计;
- 2. 用混合量热法测定冰的熔解热;
- 3. 讲行实验安排和参量选取;
- 4. 学会一种粗略修正散热的方法——抵偿法。

引言

物质从固相转变为液相的相变过程称为熔解。一定压强下晶体开始熔解时的温度称为该晶体在此压强下的熔点。对于晶体而言,熔解是组成物质的粒子由规则排列向不规则排列的过程,破坏晶体的点阵结构需要能量,因此,晶体在熔解过程中虽吸收能量,但其温度却保持不变。1kg物质的某种晶体熔解成为同温度的液体所吸收的能量,叫做该晶体的熔解潜热。单位: $J \cdot kg^{-1}$

本实验用混合量热法测定冰的熔解热。其基本做法如下: 把待测系统 A 与某已知热容的系统 B 相混合,并设法使其成为一个与外界无热量交换的孤立系统。这样 A (或 B) 所放出的热量将全部为 B (或 A) 所吸收,因而满足热平衡方程:

$$Q_{\dot{ ext{m}}}=Q_{ ext{W}}$$

已知热容的系统在实验过程中所传递的热量Q是可以由其温度的改变 $\Delta \theta$ 及其热容计算出来的:

$$Q=C_s\Delta heta$$

于是, 待测系统在实验过程中所传递的热量即可求得。冰的熔解热也就可以据此测 定。 由上所述,保持实验系统为孤立系统是混合量热法所要求的基本实验条件。为此,整个实验在量热器内进行,同时要求实验者本人在测量方法及实验操作等方面去设法保证。当实验过程中系统与外界的热量交换不能忽略时,就必须作一定的散热修正。

原理

质量 M 、温度 θ'_0 的冰块与质量 m 、温度 θ_1 的水相混合, 冰全部熔解为水后, 测得平衡 温度为 θ_2 。假定量热器内筒与搅拌器的质量分别为 m_1 、 m_2 , 其比热容分别为 c_1 和 c_2 ; 水 及冰的比热容分别为 c 和 c_i (在 -40° C $\sim 0^{\circ}$ C 范围内, $c_i = 1.8 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$); 冰的熔点为 θ_0 。则由热平衡方程可得:

$$c_{i}M\left(heta_{0}- heta_{0}^{\prime}
ight)+ML+cM\left(heta_{2}- heta_{0}
ight)=\left(cm+c_{1}m_{1}+c_{2}m_{2}
ight)\left(heta_{1}- heta_{2}
ight)$$

本实验条件下,冰的熔点可认为是 0° C,也可选取冰块的温度 $\theta'_0 = 0^{\circ}$ C。于是,冰的熔 解热可由下式求出:

$$L=rac{1}{M}(cm+c_1m_1+c_2m_2)\left(heta_1- heta_2
ight)-c heta_2$$

由于量热器的绝热条件并不十分完善,实际实验系统并非严格的孤立系统,所以,在做精密测量时,就需设法求出实验过程中系统与外界交换的热量,以作适当的散热修正。

本实验介绍一种粗略修正散热的所谓抵偿法。其依据是牛顿冷却定律。当系统的温度高于环境温度时,它就要散失热量。实验证明: 当温差较小(一般不超过 15 K)时,(非自然对流)系统的散热制冷速率与温差成正比。此即牛顿冷却定律:

$$rac{\mathrm{d}q}{\mathrm{d}t} = -k\left(heta - heta_\mathrm{e}
ight)$$

其中, dq 表 dt 时间内系统与外界交换的热量。比例系数 k 为一个与系统表面积成正比并随 表面辐射本领而变的常数, 称为散热常数。其物理意义为: 单位温差下, 单位时间的热量损失。其单位为: $J \cdot K^{-1} \cdot s^{-1}$ 。负号的意义表示当系统温度高于环境温度时散失热量, 即: 当 $\theta > \theta_e$ 时, dq/dt < 0, 系统向外界放出热量; 反之, dq/dt > 0, 系统从外界吸收热量。 在实验过程中, 如果恰当地将系统的初温和末温分别选择在室温的两侧, 即: $\theta_1 > \theta_e > \theta_2$, 并且使整个实验过程中系统与外界的热量传递前后彼

此抵消,则可以达到散热修正之目的。 量热器中水温随时间的变化应该是一条指数下降的曲线,如图 18-1 所示。

对牛顿冷却定律式求积分,即可得到由 t_1 到 t_2 (对应温度 θ_1 及 θ_2)时间内,整个系统与外界 交换的热量 q:

$$egin{aligned} q &= -k \int_{t_1}^{t_2} \left[heta(t) - heta_\mathrm{e}
ight] \mathrm{d}t \ &= -k \int_{t_1}^{t_\mathrm{e}} \left(heta - heta_\mathrm{e}
ight) \mathrm{d}t + k \int_{t_\mathrm{e}}^{t_2} \left(heta_\mathrm{e} - heta
ight) \mathrm{d}t \ &= -k S_\mathrm{A} + k S_\mathrm{B} \end{aligned}$$

其中, $S_{\rm A} = -\int_{t_1}^{t_{\rm c}} (\theta - \theta_{\rm e}) \mathrm{d}t$ 及 $S_{\rm B} = \int_{t_{\rm e}}^{t_2} (\theta_{\rm e} - \theta) \mathrm{d}t$ 表示图 18 - 1 中的阴影面积。

由上式可见, 当 $S_A = S_B$ 时, 实验过程中系统与外界交换的热量 q = 0 。因此, 只要适当地 选择参数, 使曲线与环境温度 $\theta = \theta_e$ 直线围成的两块面积近似相等, 即: $S_A \approx S_B$, 就可以 使系统很好地近似为一个孤立系统。

由曲线可知, 欲使 $S_{\rm A} \approx S_{\rm B}$, 就必须使 $\theta_1 - \theta_{\rm e} > \theta_{\rm e} - \theta_2 > 0$ 。实验前, 应做出明确的计划, 实验中注意选取及适当调整参数 m, M 及 θ_1 等, 使满足上式。但应注意到 $\theta_2 > 0$ 的条件, 否则, 冰将不能全部熔解。

仪器用品

包括量热器,温度计,电子天平,塑料绝热桶,干拭布,冰及热水等。

量热器由一个半径较小的铜质内筒 (容积约 $3.2 \times 10^{-4}~\mathrm{m}^3$) 和一个较大的铜质外筒组成。

内筒置于环形绝热架上,外筒又用绝热盖盖住。因此,内部空气夹层与外界对流很小。又因空气是热的不良导体,故内、外筒之间由传导所传递的热量可减到很小。同时,内筒的外壁及外筒的内、外壁都电镀得十分光亮,使得它们发射或吸收热量的本领变得很小。所以,因辐射而产生的热量传递也可以减至最小。

由上所述,量热器的这种结构,使将热量传递的三种方式一传导、对流及辐射都尽可能

地减到了最小;因而,它成为量热实验的常用仪器。

使用时,通常是首先注入适量的水 (约为容量的 $1/2 \sim 2/3$),并将温度计、搅拌器等通过绝热盖的小孔插入,构成所谓已知热容的系统。

应当指出,上述量热器的绝热条件并不十分完善,因此在进行精确的量热实验时还必

须据牛顿冷却定律进行散热修正。

实验步骤

- 1.打开数字温度计, 电子天平, 测定环境温度 θ_{e1} ;
- 2.测量内筒质量 m_1 ,搅拌器质量 m_2
- 3.配置温水: 配置 $\frac{1}{2} \sim \frac{2}{3}$ 的温水至内筒 (温水高于室温 $10^{\sim}15^{\circ}{\rm C}$)
- 4.测定内筒、搅拌器和水的质量 $m + m_1 + m_2$ (实际上可以只测 $m + m_2$)
- 5.将内筒放入量热器,插好温度计,投冰前,每隔一分钟记录一次读数,"外推法"记录投冰时刻水的初温 θ_1 ,并不断低频大幅搅拌:
- 6.投冰后,每10~20s记录一次温度直至温度达到最小 θ_2 ,并略有上升;
- 7.取出内筒称量 $m+m_1+m_2+m_i$ (实际上可以只测 $m+m_2+m_i$),测定环境温度 θ_{e2}
- 8.拟合 $\theta \sim t$ 曲线, 求溶解热
- 9.调整参数反复实验寻求最佳散热修正,减少实验误差

实验数据

第一次

 θ_{e1} 18.6

m1 105.25g

m2 12.14g

m1+m 275.92g

O	1	2	3	4	5
43.7	43.0	42.5	42.0	41.6	41.2

6	6.1	6.2	etc				
40.9	39.6	37.4	35.7	35.0	33.8	331	321

31.5	30.6	30.4	29.7	29.0	29.1	29.1	29.0

m+m1+mi 294.98g

 $heta_{e2}$ 18.4

失败原因: 初温过高

第二次

 $heta_{e1}$ 18.6

 m_1 105.25g

 m_2 12.14g

 $m + m_2$ 285.17g

o	1	2	3	4	5
30.6	29.3	28.1	28.0	27.8	27.8

6	6.2	6.4	7	7.2	7.4	8	8.2	8.4	9
27.8	25.3	23.0	21.5	19.9	18.7	17.6	17.2	16.8	16.3

9.2	9.4	10	10.2	10.4	11	11.2	11.4	12	12.2
16.0	15.5	15.2	14.8	14.7	14.6	14.4	14.2	14.1	14.1

 $m_1 + m + m_i$ 315.90g

 θ_{e2} 18.4

```
m1 = 105.25/1000

m2 = 12.14/1000

mi = (315.90 - 285.17) / 1000

c = 4.1868*1000

c1 = 0.385*1000

c2 = 0.370*1000

m = (285.17 - 105.25) / 1000

t1 = 27.8

t2 = 14.1

L = (1 / mi) * (c * m + c1 * m1 + c2 * m2) * (t1 - t2) - c * t2

print(L)
```

算得熔解热 $\mathbf{2.9686x10}^{5}J\cdot kg^{-1}$

拟合曲线:

考查题

- 1. 混合量热法所要求的基本实验条件是什么?本实验是如何得到满足的?体系绝热。使用双层隔热筒,使用抵偿法减少因散热带来的误差。
- 2. 本实验中的"热力学系统"是由哪些组成的? 量热器内筒、外筒、温度计、搅拌器等都属于该热力学系统吗?

量热器内筒、水、冰块、搅拌器。

- 3. 冰块投入量热器之前应做好哪些准备工作? 投冰时应注意什么? 用推测法得到水的初始温度。注意擦干冰块, 水不要溅出。
- 4. 若粗测后发现面积 $S_a < S_b$,则它说明了什么?应怎样改变条件重做?说明水的初温低或水少,增加水的质量和/或温度
- 5. 下述诸量: θ_1 及冰块质量何时测量? 怎样测量?
- θ_1 使用前五次测量的水的温度合理推测;用内筒+烧杯+水的质量减去内筒+水的质量。(不能直接使用"去皮")
- 6. 怎样由系统温度的变化推断冰已全部溶解? 末温 θ_2 是如何确定的? 作图时对应末温的时刻 t_2 应如何确定?

温度降低到最低并不变或略有上升时, θ_2 取温度的最低点,t2取温度最低点对应的温度。

7. 哪些因素会影响 M测量的准确性?实验中应怎样注意?

水的溅出、隔热不良、补偿法条件不满足。擦干冰块、避免水的溅出、加入冰块后迅速盖上筒盖、保证多次测量取 $S_a=S_b$

- 8. 试定性说明下述情况给L的测量结果带来的影响。
 - (1) 测 θ_1 之前没有搅拌;偏大或偏小
 - (2) 测 θ_1 后到投冰之前相隔了一段时间;偏大
 - (3) 搅拌过程中有水溅出;偏小
 - (4) 冰未拭干就投入量热器;偏小
 - (5) 实验过程中打开量热器盖子看了看。偏大或偏小

思考题

1.有气泡或杂质不影响,有水泡会偏小,原理和冰未拭干就投入量热器相同,会使 认为的质量增大。

2.0.01m

3.3.7236x $10^4 J \cdot kg^{-1}$

误差主要来源为初始水温稍低,室温测量不准确。