House prices

1) Implement by hand equations of derivative using LaTeX (I will use similar format in LibreOffice/ODF, sorry)

Entire Office (ODI), sorry)
$$f_x = \frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
why did I wrote them here?
$$f_x = \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

2) Writing equations for housings:
$$dw \, linear : \frac{\delta}{\delta \, W} [\, W \cdot x + b\,] = x$$
$$dx \, linear : \frac{\delta}{\delta \, x} [\, W \cdot x + b\,] = W$$
$$db \, linear : \frac{\delta}{\delta \, b} [\, W \cdot x + b\,] = 1$$

3) Cost function

We will use mean squared error cost function:

$$J(\theta_0, \theta_1) = L_{MSE} = \frac{1}{N} \cdot \sum_{i=0}^{N} (h_{\theta}(x_i) - y_i)^2$$

where $h_{\theta}(x_i) = \theta_0 + \theta_1 \cdot x_i$ (is our model)

We need to minimize cost function's result.

4) Gradient descent

$$\theta_0 := \theta_0 - \alpha \cdot \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$
$$b := b - \alpha \cdot \frac{\partial}{\partial b} J(b, W)$$

$$\begin{split} \boldsymbol{\theta}_{1} &:= \boldsymbol{\theta}_{1} - \boldsymbol{\alpha} \cdot \frac{\partial}{\partial \boldsymbol{\theta}_{1}} J(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1}) \\ \boldsymbol{W} &:= \boldsymbol{W} - \boldsymbol{\alpha} \cdot \frac{\partial}{\partial \boldsymbol{W}} J(\boldsymbol{b}, \boldsymbol{W}) \end{split}$$

Sorry, I still don't get how to write the rest. I have watched tons of Khan Academy videos on youtube regarding derivatives. I have watched lessons on Coursera regarding Machine Learning, Cost function, Gradient Descent... All the different notations of the same things drive me crazy.