

Microeletrônica: Introdução ao Projeto Físico de Portas Lógicas

Rafael Schivittz, Roberto Almeida, Giane Ulloa, Fábio Silva Cristina Meinhardt, Paulo F. Butzen

Organização do Curso

- Aula 1 Álgebra booleana → Tabela Verdade
 → Rede de chaves.
 - Introdução ao NGSPICE → Fontes DC e PWL
- Aula 2 Transistores → Lógica Complementar
 » (Pull-up/Pull-down)
- Aula 3 Construção das portas lógicas complementares
 » INV, NAND2, NOR2, AOI
- Aulas 4 Atrasos
- Aulas 5 e 6 Dimensionamento, Sub-circuitos.

Organização do Curso

- Aula 1 Álgebra booleana → Tabela Verdade
 → Rede de chaves.
 - Introdução ao NGSPICE → Fontes DC e PWL
- Aula 2 Transistores → Lógica Complementar
 » (Pull-up/Pull-down)
- Aula 3 Construção das portas lógicas complementares
 » INV, NAND2, NOR2, AOI
- Aulas 4 Atrasos
- Aulas 5 e 6 Dimensionamento, Sub-circuitos.

Resumo das Aulas Passadas

- Construção de portas lógicas complementares
- Construção das ondas com PWL
- Arranjo de transistores
- Validação lógica
- Atrasos

Resumo das Aulas Passadas

- Construção de portas lógicas complementares
- Construção das ondas com PWL
- Arranjo de transistores
- Validação lógica
- Atrasos

Dúvidas??

NAND de 2 entradas – Chaves Complementares

Validação lógica na NAND2

- Definir os sinais de entrada
 - 2 entradas, A e B
 - Testar todas as combinações possíveis
 - Sugestão: Definir sinais de entrada correspondentes a tabela verdade

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Arquivo de Simulação para a NAND2

Validação Lógica da NAND2

.include 32nm_HP.pm

* Declaração das fontes

Vvdd vdd gnd 0.9

Vb

Va

*Declaração do Netlist

• • • • • •

*Tipo de Simulação

.tran 0.01n TEMPO TOTAL

.end

Definir 2 fontes Pulse (B e A)

Definir 2 fontes Pulse (B e A)

Construir o netlist

Esquemático de Transistores

*Rede Pull up

Mpa s a vdd vdd PMOS W=100n L=32n MPb s b vdd vdd PMOS W=100n L=32n

* Rede Pull down

Mna s a x gnd NMOS W=100n L=32n Mnb x b gnd gnd NMOS W=100n L=32n

 * Capacitância da saída Cload s gnd 1f

Validação lógica

 Verifique se seu circuito descrito em SPICE corresponde a uma NAND2

Caracterização Elétrica

- Definir os atrasos da NAND2
- Medir a ENERGIA total consumida na simulação
 - Determinar a potência

- B deve estar estável
- A saída deve mudar
- Observar a tabela verdade

A	В	S	
0	0	1	ַ
0	1	1	\
1	0	1	
1	1	0	

- B deve estar estável
- A saída deve mudar
- Observar a tabela verdade

A	В	S	
0	0	1	
0	1	1	A mudoù B mudou
1	0	1	Saída não mudou
1	1	0	

- B deve estar estável
- A saída deve mudar
- Observar a tabela verdade

A	В	S	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

- B deve estar estável
- A saída deve mudar
- Observar a tabela verdade

A	В	S	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

- B deve estar estável
- A saída deve mudar
- Observar a tabela verdade

Tabela-Verdade

A	В	S	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

A mudou B não mudou Saída mudou

- B deve estar estável
- A saída deve mudar
- Observar a tabela verdade

Tabela-Verdade

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

A mudou B não mudou Saída mudou

- A deve estar estável
- A saída deve mudar
- Observar a tabela verdade

AB(S) -> AB(S)				
01(1) -> 11(0) TpHL_a, Tfall_a				
11(0) -> 01(0) TpLH_a, Trise_a				
11(0) -> 10(0) TpLH_b, Trise_b				

Tabela-Verdade

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

A não mudou B mudou Saída mudou

- A deve estar estável
- A saída deve mudar
- Observar a tabela verdade

AB(S) -> AB(S)
01(1) -> 11(0) TpHL_a, Tfall_a
11(0) -> 01(1) TpLH_a, Trise_a
11(0) -> 10(1) TpLH_b, Trise_b
10(1) -> 11(0) TpHL_b, Tfall_b

Tabela-Verdade

A	В	S	
0	0	1	
0	1	1	
1	0	1	
1	1	0	
			V

A não mudou B mudou Saída mudou

Atrasos da NAND2

Temos:

- TpHL_a
- TpHL_b
- TpLH_a
- TpLH_b
- Trise a
- Trise b
- Tfall a
- Tfall b
- Como medi-los?
 - Definir novos formatos para as ondas de entrada, possibilitando que todos os atrasos sejam medidos na simulação

```
AB(S) -> AB(S)
01(1) -> 11(0) TpHL_a, Tfall_a
11(0) -> 01(1) TpLH_a, Trise_a
11(0) -> 10(1) TpLH_b, Trise_b
10(1) -> 11(0) TpHL_b, Tfall_b
```

Medir os atrasos em simulação

- Identificar os pontos onde acontecem cada um dos atrasos
- Definir as novas formas de onda usando fontes PWL
- Definir os comandos de medida para os 8 atrasos, usando o comando measure

Medindo atrasos e corrente das funções

Atrasos e corrente da NAND2

.include 32nm HP.pm

* Declaração das fontes

Vvdd vdd gnd 0.9

Vb

Va

*Declaração do Netlist

• • • • • •

*Tipo de Simulação

.tran 0.01n TEMPO_TOTAL

* Measures

.end

Declarando as fontes


```
AB(S) \rightarrow AB(S)
01(1) -> 11(0) TpHL_a, Tfall_a
11(0) -> 01(1) TpLH_a, Trise_a
11(0) -> 10(1) TpLH_b, Trise_b
10(1) -> 11(0) TpHL_b, Tfall_b
```


- Fonte PWL Piece-Wise Linear
 - Fonte moldada conforme for declarada
 - V < nome > < n1 > < n2 > PWL (< t0 > < v0 > < t1 > < v1 > $\langle t2 \rangle \langle v2 \rangle \langle t3 \rangle \langle v3 \rangle \dots \langle tn \rangle \langle vn \rangle$

Atrasos da porta NAND2

- Definir as formas de onda que permitam medir os 8 atrasos da porta NAND2
- Definir os comandos para medir os 4 tempos de propagação da porta NAND2
- Simular e anotar os resultados

Resultados

	Tp_hl_a	Tp_lh_a	Tp_hl_b	Tp_lh_b	Máx
NAND2	25ps	11.9ps	26ps	13.7ps	Tp_hl_b = 26ps

$$ps = 10^{-12}$$

$$E = 3.34 ^-15$$

Como medir a Potência?

- Potência = Energia * V / tempo
- Energia = Integral da Corrente ao longo do tempo

$$E = \int_{t_0}^{t_f} I(fonte) dt \qquad P = \frac{E * V}{\Delta t}$$

.measure tran Name INTEG i(fonte) from= t₀ to=t_f

Exemplo:

.measure tran Iint INTEG i(vvdd) from=0n to=12n

Dimensionamento

- Para equalizar o tempo de resposta das redes pull- up e pull-down de um circuito, é necessário dimensionar os transistores
- Transistores PMOS são mais "lentos"
- Dimensionamento envolve aumentar a largura (Width) dos transistores para aumentar a sua velocidade

Resultados

NAND2_WP_Wn	Tp_hl_a	Tp_lh_a	Tp_hl_b	Tp_lh_b	Máx	Energia
NAND2_100_100						
NAND2_200_100						
NAND2_140_70						
NAND2_100_200						

Subcircuitos

- Tornam a descrição mais clara
- Permitem a reutilização de componentes (instanciação)

Subckt

Declaração
 .SUBCKT subnam N1 < N2 N3 . . . >
 netlist do subcircuito

.ENDS <SUBNAM>

Chamada (instanciação)

X1 N1 N2 N3 subnam X2 A B C subnam

Exemplo – NAND2

. Subckt NAND2 In1 In2 V G Out

Mpa out in1 v v PMOS W=100n L=32n

MPb out in 2 v v PMOS W=100n L=32n

Mna out in1 x g NMOS W=100n L=32n

Mnb x in 2 g g NMOS W=100n L=32n

.Ends NAND2

Instanciação:

X1 A B Vdd Gnd S NAND2 Cload S gnd 1f

Exercício

 Substituir no arquivo de validação lógica o netlist da NAND2 pela utilização de subcircuito e instanciação

Arquivo de Simulação para a NAND2

Validação Lógica da NAND2

- .include 32nm_HP.pm
- *Declaração Subcircuitos
- .subckt NAND2 in1 in2 v g s
- ****
- .ends NAND2
- * Declaração das fontes
- *Declaração do Netlist

X1 a b vdd gnd s NAND2

Cload s gnd 1f

- *Tipo de Simulação
- .tran 0.01n TEMPO_TOTAL