

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transient Solution

Classification of States

Steady State

Reversed Chain

Reversible Chains

Research Example: Aloha

Finite Absorbing

Stochastic Network Modeling (SNM)

Llorenç Cerdà-Alabern Universitat Politècnica de Catalunya Departament d'Arquitectura de Computadors llorenc@ac.upc.edu

Parts

- Introduction
- ① Discrete Time Markov Chains (DTMC)
- Continuous Time Markov Chains (CTMC)
- Queuing Theory

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transient Solution

Classification

Steady State

Reversed Chair

Reversible Chains

Research Example: Aloha

Finite Absorbing

Part II

Discrete Time Markov Chains (DTMC)

Outline

- Definition of a DTMC
- Transient Solution
- Classification of States
- Steady State

- Reversed Chain
- Reversible Chains
- Research Example: Aloha
- Finite Absorbing Chains

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

State Transition Diagram

State Transition Diagram

- We are interested in a process that evolve in stages.
- For the model to be tractable, it is convenient to represent the SP by giving all possible states (there may be ∞), and the possible transitions between them:

For the model to be consistent:

$$\sum_{\forall j} p_{ij} = 1$$

Mathematically:

$$p_{ij} = P(X(n) = j \mid X(n-1) = i)$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Properties of a DTMC

Properties of a DTMC

• The event X(n) = i (at step n the system is in state i) must satisfy (memoryless property):

$$P(X(n) = j \mid X(n-1) = i, X(n-2) = k, \dots) =$$

 $P(X(n) = j \mid X(n-1) = i)$

- If $P(X(n) = j \mid X(n-1) = i) = P(X(1) = j \mid X(0) = i)$ for any nwe have an homogeneous DTMC. We shall only consider homogeneous DTMC.
- We call one-step transition probabilities to:

$$p_{ij} = P(X(n) = j \mid X(n-1) = i)$$

 The SP is called a Markov Process (MP) or Markov Chain (MC) depending on the state being continuous or discrete.

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Transition Matrix

Transition Matrix

Transition probabilities:

$$p_{ij} = P(X(n) = j \mid X(n-1) = i)$$

In matrix form:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Transition Matrix

Transition Matrix

We have

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}, \text{ where } p_{ij} = P(X(n) = j \mid X(n-1) = i)$$

 For the model to be consistent, the probability to move from *i* to any state must be 1. Mathematically:

$$\sum_{\forall j} p_{ij} = \sum_{\forall j} P(X(n) = j \mid X(n-1) = i) =$$

$$\sum_{\forall j} \frac{P\big(X(n-1)=i \bigm| X(n)=j\big) P\big(X(n)=j\big)}{P(X(n-1)=i)} = \frac{P(X(n-1)=i)}{P(X(n-1)=i)} = \boxed{1}$$

• P is a stochastic matrix, i.e. a matrix which rows sum 1.

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of DTMC

Diagram

Properties of a DT

Transition Matrix

Absorbing Chai

State Probabilities

Chapman-Kolmogoro Equations

Transier

Classificat

Steady Sta

Reversed Chair

Reversib

Example

- Assume a terminal can be in 3 states:
 - State 1: Idle.
 - State 2: Active without sending data.
 - State 3: Active and sending data at a rate v bps.

$$\mathbf{P} = \begin{bmatrix} \mathbf{to} \text{ state} \\ 1 & 2 & 3 \\ 0.8 & 0.2 & 0 \\ 0 & 0.2 & 0.8 \\ 0.2 & 0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 1 & \text{from} \\ 2 & \text{state} \\ 3 \end{bmatrix}$$

• The average transmission rate (throughput), v_a , is:

 $v_a = P$ (the terminal is in state 3) × v

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of DTMC

Diagram

Properties of a DTM

Transition Matrix

Absorbing Chains

State Probabilities
Chapman-Kolmogorov
Equations

Sojourn or Holding Time

Solution Classificati

Steady Stat

Reversed Chai

Revers

Absorbing Chains

- It is possible to have chains with absorbing states.
- A state *i* is absorbing if $p_{ii} = 1$.
- Example: State 1 is absorbing.

$$\mathbf{P} = \begin{bmatrix} \mathbf{to} \ \mathbf{state} \\ 1 & 2 & 3 \\ 1 & 0 & 0 \\ 0,1 & 0,1 & 0,8 \\ 0,2 & 0,3 & 0,5 \end{bmatrix} \begin{bmatrix} 1 & \text{from} \\ 2 & \text{state} \\ 3 \end{bmatrix}$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of

State Transition

Diagram

Properties of a DTM

Transition Matrix

n-step transition

State Probabilities

Equations

Transient

Classification of States

teady Stat

Reversed Chair

n-step transition probabilities

- Transition probabilities: $p_{ij} = P(X(n) = j \mid X(n-1) = i)$
- In matrix form:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots \\ p_{21} & p_{22} & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$

• We define the **n-step** transition probabilities:

$$p_{ij}(n) = P(X(n) = j \mid X(0) = i)$$

$$\mathbf{P}(n) = \begin{bmatrix} p_{11}(n) & p_{12}(n) & \cdots \\ p_{21}(n) & p_{22}(n) & \cdots \\ \cdots & \cdots & \cdots \end{bmatrix}$$

• **P** and P(n) are stochastic matrices: Their rows sum 1.

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

State Transition
Diagram
Properties of a DT

Absorbing Chains n-step transition

State Probabilities

Equations
Sojourn or Holding
Time

Transient Solution

Classificatio of States

Reversed Chai

Reversed Chai

Revers

State Probabilities

• Define the probability of being in state *i* at step *n*:

$$\pi_i(n) = P(X(n) = i)$$

In vector form (row vector)

$$\boldsymbol{\pi}(n) = (\pi_1(n), \pi_2(n), \cdots) = (P(X(n) = 1), P(X(n) = 2), \cdots).$$

• Thus, the vector $\pi(n)$ is the distribution of the random variable X(n), and it is called the state probability at step n.

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

State Probabilities

State Probabilities

State probability:

$$\boldsymbol{\pi}(n) = (\pi_1(n), \pi_2(n), \cdots) = (P(X(n) = 1), P(X(n) = 2), \cdots).$$

• Law of total prob. $P(A) = \sum_{n} P(A \cap B_n) = \sum_{n} P(A|B_n)P(B_n)$:

$$\pi_i(n) = \sum_k P(X(n-1) = k) \ P\big(X(n) = i \ \big| \ X(n-1) = k\big) = \sum_k \pi_k(n-1) \ p_{ki}$$

$$\pi_i(n) = \sum_k P(X(0) = k) \ P\big(X(n) = i \ \big| \ X(0) = k\big) = \sum_k \pi_k(0) \ p_{ki}(n)$$

In matrix form:

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(n-1)\,\mathbf{P}$$

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}(n)$$

where $\pi(0)$ is the initial distribution.

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

State Probabilities

State Probabilities

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(n-1) \mathbf{P}$$
$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \mathbf{P}(n)$$

Iterating

$$\pi(n) = \pi(n-1) \mathbf{P} = \pi(n-2) \mathbf{P} \mathbf{P} = \pi(n-3) \mathbf{P} \mathbf{P} \mathbf{P} = \dots = \pi(0) \mathbf{P}^n$$

Thus:

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}^n$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Chapman-Kolmogorov

Equations

Chapman-Kolmogorov Equations

$$p_{ij}(n) = \sum_{k} p_{ik}(r) \ p_{kj}(n-r)$$

Proof:

$$p_{ij}(n) = P(X(n) = j \mid X(0) = i) = \sum_{k} P(X(n) = j, X(r) = k \mid X(0) = i)$$

$$= \sum_{k} \frac{P(X(n) = j, X(r) = k, X(0) = i)}{P(X(0) = i)} \times \frac{P(X(r) = k, X(0) = i)}{P(X(r) = k, X(0) = i)}$$

$$= \sum_{k} P(X(n) = j \mid X(r) = k, X(0) = i) P(X(r) = k \mid X(0) = i)$$

$$= \sum_{k} P(X(n) = j \mid X(r) = k) P(X(r) = k \mid X(0) = i)$$

$$= \sum_{k} P(X(n) = j \mid X(r) = k) P(X(r) = k \mid X(0) = i)$$

$$= \sum_{k} P(X(n) = j \mid X(r) = k) P(X(r) = k \mid X(0) = i)$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

State Transition

Diagram

Properties of a

..

n-step transiti

State Probabilities

Chapman-Kolmogorov

Equations
Sojourn or Holding

Transient Solution

of States

Steady Stat

Reversed Chair

Revers

Chapman-Kolmogorov Equations

$$p_{ij}(n) = \sum_{k} p_{ik}(r) \ p_{kj}(n-r)$$

Graphical interpretation:

In matrix form:

$$\mathbf{P}(n) = \mathbf{P}(r)\,\mathbf{P}(n-r)$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

State Transition

Diagram

Transition Mat

Absorbing Cha

n-step transitie

probabilities

State Probabilities

Chapman-Kolmogorov

Equations Sojourn or Holding

Sojourn or Holding Time

Classification

Classification of States

Reversed Chai

Chains

Chapman-Kolmogorov Equations

$$\mathbf{P}(n) = \mathbf{P}(r)\,\mathbf{P}(n-r)$$

• Particularly:

$$P(n) = P(1)P(n-1) = PP(n-1) = P(n-1)P$$

Iterating:

$$\mathbf{P}(n) = \mathbf{P}^n$$

• Thus:

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}^n$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Sojourn or Holding

Sojourn or Holding Time

• Sojourn or holding time in state k: Is the RV H_k equal to the number of steps that the chain remains in state *k* before leaving to a different state:

The Markov property implies:

$$H_i(n) = P(H_i = n) = p_{ii}^{n-1} (1 - p_{ii}), n \ge 1$$

• Which is a geometric distribution with mean:

$$E[H_i] = \sum_{n=1}^{\infty} nP(H_i = n) = \frac{1}{1 - p_{ii}}.$$

Definition of a DTMC

Sojourn or Holding Time NOTE: We allow that:

Discrete Time Markov Chains (DTMC)

Sojourn or Holding

 $p_{ii} = 0 \Rightarrow H_i(n) = I(n = 1) = \begin{cases} 1, & n = 1, \\ 0, & \text{otherwise.} \end{cases}$, and

 $p_{ii} = 1 \Rightarrow E[H_i] = \infty$ (absorbing state).

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Sojourn or Holding

Theorem

A stochastic process is a DTMC if and only if the sojourn times are geometrically distributed.

Proof.

We have seen that a DTMC has a sojourn time

$$H_i(n) = P(H_i = n) = p_{ii}^{n-1} (1 - p_{ii}), n \ge 1$$

- Which is geometrically distributed.
- We need to prove that the geometric distribution satisfies the memoryless property (aka Markov property).

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

State Transition

Diagram

Properties of a

11411311101111111

Thospioling Citi

n-step transitio

State Probabilities

Sojourn or Holding

Transient Solution

Classification of States

of States

Reversed Chai

Reversit

The geometric distribution satisfies the Markov property (1)

Proof

Markov property:

$$P\big(X(n_2) = i \mid X(n_1) = i, X(n_0) = i\big) = P\big(X(n_2) = i \mid X(n_1) = i\big)$$

 Thus, the Markov property in terms of the sojourn time can be written as:

$$P(H_i > n_2 - n_0 \mid H_i > n_1 - n_0) = P(H_i > n_2 - n_1)$$

Definition of a DTMC

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

State Transitio

Diagram

Properties of a

Transition Mai

Absorbing Cha

probabilities

State Probabilities

Equations

Sojourn or Holding Time

Transient Solution

Classification of States

Reversed Cha

Reversed Cha

Chains

The geometric distribution satisfies the Markov property (2)

$$P(H_i > n_2 - n_0 \mid H_i > n_1 - n_0) = P(H_i > n_2 - n_1)$$

Since

$$P(H_i > k) = 1 - P(H_i \le k) = 1 - \sum_{n=1}^k p^{n-1} (1-p) = 1 - (1-p) \frac{1-p^k}{1-p} = p^k$$

• We have:

$$P(H_i > n_2 - n_0 \mid H_i > n_1 - n_0) = \frac{P(H_i > n_2 - n_0, H_i > n_1 - n_0)}{P(H_i > n_1 - n_0)} =$$

$$\frac{P(H_i > n_2 - n_0)}{P(H_i > n_1 - n_0)} = \frac{p^{n_2 - n_0}}{p^{n_1 - n_0}} = p^{n_2 - n_1} = P(H_i > n_2 - n_1) \quad \Box$$

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Discrete Time Markov Chains (DTMC)

Transient Solution

Part II

Discrete Time Markov Chains (DTMC)

Outline

- Transient Solution

Transient Solution

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Solution

Transient Solution

Eigenvalues of a Stochastic Matrix Chain with a Defecti

Chain with a Defecti Matrix Example

Classification of States

Steady State

Reversed Chai

Research

Research Example: Aloh

Transient Solution

- If we are interested in the transient evolution we shall study $\pi(n) = \pi(0) \mathbf{P}^n$.
- If we can diagonalize **P**, we can obtain the transient evolution in close form.
- **P** can be diagonalized if **P** can be decomposed as:

$$\mathbf{P} = \mathbf{L}^{-1} \Lambda \mathbf{L}$$

where ${\bf L}$ is some invertible matrix and ${\boldsymbol \Lambda}$ is the diagonal matrix

$$\Lambda = \operatorname{diag}(\lambda_1, \dots \lambda_N) = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_N \end{bmatrix}$$

with λ_l , $l = 1, \dots N$ the eigenvalues of **P**.

Transient Solution

Discrete Time Markov Chains (DTMC)

Transient Solution

Eigenvalues

• The eigenvalues λ_l of a matrix **A** are scalars that satisfy: $l\mathbf{A} = \lambda_l \mathbf{l}$ (or $\mathbf{A}\mathbf{r} = \lambda_l \mathbf{r}$) for some row vectors \mathbf{l} (column vectors *r*), referred to as *left* and *right* eigenvectors, respectively.

$$l\mathbf{A} = \lambda_l \, l \Rightarrow l(\mathbf{A} - \mathbf{I}\lambda_l) = 0 \Rightarrow \det(\lambda_l \mathbf{I} - \mathbf{A}) = 0$$

 $\mathbf{A} \, \mathbf{r} = \lambda_l \, \mathbf{r} \Rightarrow (\mathbf{A} - \mathbf{I}\lambda_l) \, \mathbf{r} = 0 \Rightarrow \det(\lambda_l \mathbf{I} - \mathbf{A}) = 0$

$$\mathbf{A}I = \lambda_l I \Rightarrow (\mathbf{A} - \mathbf{I}\lambda_l)I = 0 \Rightarrow \det(\lambda_l \mathbf{I} - \mathbf{A}) = 0$$

- Thus, λ_I solve the characteristic polynomial $\det(\lambda \mathbf{I} \mathbf{A}) = 0$.
- Note that, in general, left and right eigenvectors are different, but eigenvalues are the same (they solve the same characteristic polynomial).
- A matrix can be diagonalized if all eigenvalues are single (multiplicity = 1). If a matrix cannot be diagonalized it is called defective.

Transient Solution

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transien Solution

Transient Solution

Eigenvalues of a Stochastic Matri:

Chain with a Defectiv Matrix Example

Classification of States

Steady State

Reversed Chair

Research

Research Example: Aloha

Determinants

$$\det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11} a_{22} - a_{12} a_{21}$$

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{pmatrix} +a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{21} a_{32} a_{13} \\ -a_{31} a_{22} a_{13} - a_{12} a_{21} a_{33} - a_{23} a_{32} a_{11} \end{bmatrix}$$

Cofactor Formula: expanding along a row i:

$$\det \mathbf{A} = \sum_{j=1}^{N} a_{ij} (-1)^{i+j} \det M_{ij},$$

where the minor matrices M_{ij} are obtained removing the row i and column j from \mathbf{A} . $(-1)^{i+j} \det M_{ij}$ is called the cofactor of a_{ij} .

Transient Solution

Discrete Time Markov Chains (DTMC)

Definition of DTMC

Transien Solution

Transient Solution

Evamula

Eigenvalues of a Stochastic Matrix

Chain with a Defe

Example

of States

Steady State

Reversed Cha

Reversible Chains

Research Example: Aloh

Properties of the determinants

 $\det \mathbf{A} = \prod \text{eigenvalues of } \mathbf{A}$

trace $\mathbf{A} = \sum$ eigenvalues of \mathbf{A}

where trace $A = \sum$ elements of the diagonal of A.

Transient Solution

Discrete Time Markov Chains (DTMC)

Definition of DTMC

Transien Solution

Transient Solution

Eigenvalues of a Stochastic Matrix Chain with a Defectiv

Chain with a Defectiv Matrix Example

Classification of States

Steady State

Reversed Chair

Research Example: Aloh

Transient Solution

- Assume a finite DTMC with N states. Then $P = P^{N \times N}$.
- Assume that **P** can be diagonalized: $\mathbf{P} = \mathbf{L}^{-1} \Lambda \mathbf{L}$, where Λ is the diagonal matrix $\Lambda = \text{diag}(\lambda_1, \dots \lambda_N)$, with λ_l , $l = 1, \dots N$ the eigenvalues of **P**.
- Since $\Lambda^n = \operatorname{diag}(\lambda_1^n, \dots, \lambda_N^n)$, we have that

$$\boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \mathbf{P}(n) = \boldsymbol{\pi}(0) \mathbf{P}^n = \boldsymbol{\pi}(0) (\mathbf{L}^{-1} \Lambda^n \mathbf{L}) = \boldsymbol{\pi}(0) (\mathbf{L}^{-1} \operatorname{diag}(\lambda_1^n, \dots \lambda_N^n) \mathbf{L})$$

Transient Solution

Discrete Time Markov Chains (DTMC)

Transient Solution

Transient Solution

• But L^{-1} diag($\lambda_1^n, \dots \lambda_N^n$) L are linear combinations of $\lambda_1^n, \dots, \lambda_N^n$. Thus, the probability of being in state *i* is given bv:

$$\pi_i(n) = (\boldsymbol{\pi}(n))_i = \sum_{l=1}^N a_i^{(l)} \lambda_l^n$$

where the unknown coefficients $a_i^{(l)}$ can be obtained solving the system of equations:

$$\sum_{l=1}^{N} a_{i}^{(l)} \lambda_{l}^{n} = (\boldsymbol{\pi}(n))_{i} = (\boldsymbol{\pi}(0) \mathbf{P}^{n})_{i}, n = 0, \dots N - 1$$

Transient Solution

Discrete Time Markov Chains (DTMC)

Example

Example

Assume a DTMC with

$$\mathbf{P} = \begin{bmatrix} 4/5 & 1/5 \\ 2/5 & 3/5 \end{bmatrix}$$

• We want the probability of being in state 2 in n steps starting from state 1: $\pi_2(n)$ with $\pi(0) = \begin{bmatrix} 1 & 0 \end{bmatrix}$.

Transient Solution

Discrete Time Markov Chains (DTMC)

Solution

• It can be easily found that the eigenvalues of **P** are $\lambda_1 = 1$ and $\lambda_2 = 2/5$.

$$\pi_2(n) = \lambda_1^n a + b \lambda_2^n = a + b(2/5)^n$$

• Imposing the boundary conditions $\pi_i(n) = (\pi(0) \mathbf{P}^n)_i$:

$$\pi_2(0) = a + b = (\begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{P}^0)_2 = (\mathbf{P}^0)_{12} = 0$$

$$\pi_2(1) = a + b(2/5) = (\begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{P}^1)_2 = (\mathbf{P})_{12} = 1/5$$

we have that a = 1/3, b = -1/3, thus:

$$\pi_2(n) = 1/3 - 1/3 (2/5)^n, \quad n \ge 0$$

 $\pi_1(n) = 1 - \pi_2(n) = 2/3 + 1/3 (2/5)^n, \quad n \ge 0$

Transient Solution

Discrete Time Markov Chains (DTMC)

Eigenvalues of a

Eigenvalues of a Stochastic Matrix

- P has an eigenvalue equal to 1 ($Px = \lambda x$, for $\lambda = 1$). **Proof:** $\mathbf{Pe} = \mathbf{e}$, where $\mathbf{e} = \begin{bmatrix} 1 & 1 & \cdots \end{bmatrix}^{\mathrm{T}}$ is a column vector of 1 (all rows of **P** add to 1).
- All eigenvalues of **P** are $|\lambda_l| \leq 1$. **Proof:** Using Gerschgorin's theorem *The* eigenvalues of a matrix $\mathbf{P}_{n \times n}$ lie within the union of the n circular disks with center p_{ii} and radius $\sum_{i\neq i} |p_{ij}|$ in \mathbb{C} . Since $\sum_i p_{ij} = 1$, the property is proved.

• The eigenvalue $\lambda = 1$ is single if **P** is irreducible (Perron-Frobenius theorem). **P** is irreducible if all states communicate: for some n, $p_{ij}(n) = (\mathbf{P}^n)_{ij} > 0$, $\forall i, j$.

Transient Solution

Discrete Time Markov Chains (DTMC)

Eigenvalues of a

Proof of Gerschgorin's theorem

Gerschgorin's theorem: The eigenvalues of a matrix $\mathbf{P}_{n \times n}$ lie within the union of the n circular disks with center p_{ii} and radius $\sum_{i\neq i} |p_{ij}|$ in C.

Proof: From $\mathbf{P} \mathbf{x} = \lambda \mathbf{x}$ we have

$$\sum_{i} p_{ij} x_j = \lambda x_i \quad \forall i \in \{1, \dots, n\}.$$

We choose *i* such that $|x_i| = \max_i |x_i|$. Thus,

$$\sum_{i\neq i} p_{ij} x_i = \lambda x_i - p_{ii} x_i$$
, and

$$|\lambda - p_{ii}| = \left| \sum_{j \neq i} p_{ij} \frac{x_j}{x_i} \right| \le \sum_{j \neq i} \left| p_{ij} \frac{x_j}{x_i} \right| \le \sum_{j \neq i} |p_{ij}|$$

and the equation $|x-c| \le r$, $x,c \in \mathbb{C}, r \in \mathbb{R}$ is a disk of center c and radius r in \mathbb{C} .

Transient Solution

Discrete Time Markov Chains (DTMC)

Chain with a Defective

Chain with a Defective Matrix

- What if P cannot be diagonalized? (defective matrix).
- Let λ_l , $l = 1, \dots L$ be the eigenvalues of $\mathbf{P}^{N \times N}$, each with multiplicity k_l ($k_l \ge 1$, $\sum_l k_l = N$), and a possible eigenvalue $\lambda_1 = 0$ with multiplicity k_1 . Then [1]:

$$\pi_{j}(n) = \sum_{m=0}^{k_{1}-1} a_{j}^{(1,m)} I(n=m) + \sum_{l=2}^{L} \lambda_{l}^{n} \sum_{m=0}^{k_{l}-1} a_{j}^{(l,m)} n^{m},$$

$$1 \le j \le N, n \ge 0$$

I(n = m) is the indicator func.: I(n) = 1 if n = m, I(n) = 0 if $n \neq m$.

[1]Llorenc Cerdà-Alabern. Transient Solution of Markov Chains Using the Uniformized Vandermonde Method. Tech. rep.

UPC-DAC-RR-XCSD-2010-2. Universitat Politècnica de Catalunya, Dec. 2010. URL: https://www.ac.upc.edu/app/researchreports/html/research_center_index-XCSD-2010, en.html.

Transient Solution

Discrete Time Markov Chains (DTMC)

Example

Example

Assume a DTMC with

$$\mathbf{P} = \begin{bmatrix} 3/4 & 1/4 & 0 \\ 0 & 3/4 & 1/4 \\ 1 & 0 & 0 \end{bmatrix}$$

- We want the probability of being in state 1 in n steps starting from state 1: $\pi_1(n)$ with $\pi_1(0) = 1$.
- It can be easily found that the eigenvalues of **P** are $\lambda_1 = 1$ and $\lambda_2 = 1/4$ with multiplicity 2. We guess:

$$\pi_1(n) = a + 1/4^n(b + cn)$$

• Imposing $\pi_1(0) = 1$, $\pi_1(1) = 3/4$, $\pi_1(2) = (3/4)^2$, we have:

$$\pi_1(n) = \frac{4}{9} + \frac{1}{4^n} \left(\frac{5}{9} + \frac{2}{3} \, n \right)$$

Master in Innovation and Research in Informatics (MIRI) Computer Networks and Distributed Systems

Stochastic Network Modeling (SNM)

Discrete Time Markov Chains (DTMC)

Classification of States

Part II

Discrete Time Markov Chains (DTMC)

Outline

- Classification of States

Classification of States

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transien Solution

Classification of States

Objective

Irreducil

Example

Recurrent

First Passa

and $p_{ii}(n)$

Generalization to An State Pair

Recursive Equation the First Passage Probabilities

Example: Recurrer Times Using the Definition

Example: First Passage

Objective

- Identify the different types of behavior that the chain can have.
- Introduce the concepts of first passage probability and mean recurrence time.

Classification of States

Discrete Time Markov Chains (DTMC)

Definition of a

Transient Solution

Classification of States

Objective Irreducibility

Transient and Recurrent First Passage (Transition) Probabilities

Probabilities

Relation between $f_{ii}(n)$ and $p_{ii}(n)$ Generalization to Any
State Pair

he First Passage Probabilities Example: Recurrence Times Using the Definition Example: First Passage

Irreducibility

- A state j is said to communicate with i, $i \leftrightarrow j$, if $p_{ij}(m_1) > 0$, $p_{ii}(m_2) > 0$ for some $m_1, m_2 \ge 0$.
- We define an irreducible closed set, ICS C_k as a set where all states communicate with each other, and have no transitions to other states out of the set: $i \leftrightarrow j$, $\forall i,j \in C_k$ and $p_{ij} = 0$, $\forall i \in C_k, j \notin C_k$ (note that for $i \in C_k, j \notin C_k$ we have: $p_{ij}(2) = \sum_k p_{ik} p_{ki} = 0$, since $p_{ik} = 0$ if
- $k \notin C_k$, and $p_{kj} = 0$ if $k \in C_k$. Thus, $p_{ij}(n) = 0$, $\forall n$.)

 An absorbing state form an ICS of only one element. This state, i, must have $p_{ii} = 1$, $p_{ij} = 0 \ \forall j \neq i$.
- Transient states do not belong to any ICS.
- A MC is irreducible if all the states form a unique ICS.

Classification of States

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transient Solution

Classificatior of States

Irreducibility
Example

Transient and Recurrent First Passage (Transition)

Relation between $f_{ii}(n)$ and $p_{ii}(n)$ Generalization to Any

the First Passage Probabilities Example: Recurrence Times Using the Definition

Irreducibility

- Assume a MC has M ICSs: By properly numbering the states, we can write P as an M block diagonal matrix with the probabilities of the transient states in the last rows.
- Example, if M = 3:

$$\mathbf{P} = \begin{bmatrix} \mathbf{P}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_2 \\ \mathbf{P}_3 \\ \text{at least one } > 0 & \mathbf{T} \end{bmatrix} \Rightarrow \boldsymbol{\pi}(n) = \boldsymbol{\pi}(0) \, \mathbf{P}^n = \boldsymbol{\pi}(0) \begin{bmatrix} \mathbf{P}_1^n & \mathbf{0} \\ \mathbf{0} & \mathbf{P}_2^n \\ \mathbf{P}_3^n \\ \text{at least one } > 0 & \mathbf{T}^n \end{bmatrix}$$

• Note that the *M* sub-matrices are stochastic (their rows sum 1).

Classification of States

Discrete Time Markov Chains (DTMC)

Example

Example

• What is the meaning of the probabilities in \mathbf{P}^{∞} ? (recall that $(\mathbf{P}^n)_{ij} = p_{ij}(n) = P(X(n) = j \mid X(0) = i).$

Classification of States

Discrete Time Markov Chains (DTMC)

Definition of a

Transien Solution

Classification of States

Irreducibility
Example

Transient and Recurrent First Passage (Transition) Probabilities Relation between

And $p_{ii}(n)$ and $p_{ii}(n)$ Generalization to Any State Pair

Recursive Equation for the First Passage

ecursive Equation for the First Passage robabilities xample: Recurrence times Using the efinition xample: First Passage

Example

$$\mathbf{P} = \begin{bmatrix} \mathbf{P}_1 & \mathbf{0} \\ \mathbf{P}_2 \\ \mathbf{0} & \mathbf{P}_3 \\ \text{at least one } > \mathbf{0} & \mathbf{T} \end{bmatrix}$$

Theorem The multiplicity of the eigenvalue $\lambda = 1$ is equal to the number of irreducible closed sets.

Proof The characteristic polynomial of **P** is equal to the product of the characteristic polynomials of the sub-matrices \mathbf{P}_i and \mathbf{T} . Since \mathbf{P}_i are irreducible stochastic, each will have a single eigenvalue equal to 1. For the transitorial states it must be $\lim_{n\to\infty}\mathbf{T}^n=\mathbf{0}$. Thus, all the eigenvalues of \mathbf{T} must be $|\lambda|<1$. NOTE: in the closed form solution there is only one unknown associated with $\lambda=1$, otherwise $\sum_{m=0}^{k_i-1}a_j^{(l,m)}n^m$ will diverge as $n\to\infty$ (i.e. $a_j^{(l,m)}=0, m>0$), and $a_j^{(l,0)}=\lim_{n\to\infty}\pi_j(n)$.

Classification of States

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transien Solution

Classification of States

Objective

Irreducibility Example

Transient and Recurrent

(Transition)
Probabilities
Relation between f_{ii} (

Generalization to Any

Recursive Equation fo the First Passage Probabilities

Probabilities
Example: Recurrence
Times Using the
Definition

Transient and Recurrent

- Recurrent: States that, being visited, they are visited again with probability 1. They are visited an infinite number of times when $n \to \infty$.
- Transient: States that, being visited, have a probability > 0 of never being visited again. They are visited a finite number of times when $n \to \infty$.
- Absorbing: A single (recurrent) state where the chain remains with probability = 1.

State 1 is transient States 2 and 3 are recurrent State 4 is absorbing

Classification of States

Discrete Time Markov Chains (DTMC)

(Transition) Probabilities

First Passage (Transition) Probabilities

 To derive a classification criteria, we shall study the distribution of the number of steps to go for the first time from a state *i* another state *j*. Definition:

$$f_{ii}(n) = P \begin{cases} \text{first transition into state } i \\ \text{in } n \text{ steps starting from } i \end{cases}$$

first transition in 1 step

first transition in 3 steps

• Do not confuse with the n-step transition probability $p_{ii}(n)$, where the state *i* can be visited in the intermediate states.

Classification of States

Discrete Time Markov Chains (DTMC)

Relation between $f_{ii}(n)$

and $p_{ii}(n)$

Relation between $f_{ii}(n)$ and $p_{ii}(n)$

• $f_{ii}(n)$ and $p_{ii}(n)$ satisfy:

$$f_{ii}(1) = p_{ii}(1)$$

$$p_{ii}(n) = \sum_{l=1}^{n} f_{ii}(l) p_{ii}(n-l), n >= 1$$

• The probability that the MC eventually enters state i starting from *i* is given by:

$$f_{ii} = \sum_{n=1}^{\infty} f_{ii}(n)$$

- If $f_{ii} = 1$ we say i is a recurrent state.
- If $f_{ii} < 1$ we say i is a transient state.

Classification of States

Discrete Time Markov Chains (DTMC)

Generalization to Any

Generalization to Any State Pair

- Analogously to $f_{ii}(n)$, we define the probability of the first passage to state j starting from any state i in n steps: $f_{ii}(n)$.
- $f_{ii}(n)$ and $p_{ii}(n)$ satisfy:

$$p_{ij}(n) = \sum_{l=1}^{n} f_{ij}(l) p_{ij}(n-l), n \ge 1$$

Classification of States

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transien Solution

Classificatior of States

Objective Irreducibil

Example
Transient

Recurrent First Passage

Probabilities

Relation between f_{ii} (and $p_{ii}(n)$

Generalization to Any State Pair Recursive Equation for

the First Passage Probabilities Example: Recurrent Times Using the

es Using the nition mple: First Passage

Recursive Equation for the First Passage Probabilities

- Recall that the The probability that the MC eventually enters state j starting from i is given by: $f_{ij} = \sum_{n=1}^{\infty} f_{ij}(n)$
- f_{ij} can be computed as follows: Assume we are in i. With probability p_{ij} we will go to j in one step. Otherwise, we will go to k, $k \neq j$, and then we will reach j with probability f_{kj} . Thus:

$$f_{ij} = p_{ij} + \sum_{k \neq j} p_{ik} f_{kj}$$

• If there are more than 1 absorbing states, we can compute the probability to reach them using this method (if there is only 1, say j, then $f_{ij} = 1$, $\forall i$).

Classification of States

Discrete Time Markov Chains (DTMC)

Times Using the

Example: Recurrence Definition

Example: Recurrence Times Using the Definition

$$f_{21}(n) = f_{31}(n) = 0$$

$$f_{11}(n) = 0.7 I(n = 1)$$

$$f_{22}(n) = f_{33}(n) = I(n=2)$$

$$f_{23}(n) = f_{32}(n) = I(n = 1)$$

$$\mathbf{P} = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

$$f_{12}(n) = \begin{cases} 0.2, & n = 1\\ 0.7^{n-1} \ 0.2 + 0.7^{n-2} \ 0.1, & n > 1 \end{cases}$$

$$f_{13}(n) = \begin{cases} 0.1, & n = 1\\ 0.7^{n-1} \ 0.1 + 0.7^{n-2} \ 0.2, & n > 1 \end{cases}$$

$$f_{11} = 0.7$$

 $f_{12} = f_{13} = 1$ $f_{22} = f_{23} = 1$
 $f_{32} = f_{33} = 1$ $f_{21} = f_{31} = 0$

State 1 is transient. States 2 and 3 are recurrent.

Classification of States

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transien Solution

Classification of States

.....

Irreducibi

Example

Transiant

Direct Dans

(Transitior Probabiliti

and $p_{ii}(n)$

Generalization to Ar State Pair

the First Pass Probabilities

Example: Recurrer Times Using the

Times Using the Definition

Example: First Passage

Example: First Passage Probability Using Recursion

$$\mathbf{P} = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

We have:

$$f_{12} = p_{11}f_{12} + p_{12} + p_{13}f_{32}$$

• Clearly $f_{32} = 1$, thus:

$$f_{12} = 0.7f_{12} + 0.2 + 0.1 \times 1 \Rightarrow f_{12} = 1$$

as before.

Classification of States

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transient Solution

Classification of States

Objective Irreducibility Example

Fransient and Recurrent First Passage (Transition) Probabilities

Relation between $f_{ii}(n)$ and $p_{ii}(n)$ Generalization to Any State Pair

Accursive Equation for the First Passage Probabilities Example: Recurrence Firmes Using the Definition

Mean Recurrence Time

- If $f_{ii} = 1$ we say *i* is a recurrent state.
- If $f_{ii} < 1$ we say i is a transient state.
- When $f_{ii} = 1$, we define the mean recurrence time m_{ii} as:

$$m_{ii} = \sum_{n=1}^{\infty} n f_{ii}(n)$$

- m_{ii} is the average number of steps to eventually reach i starting from i. If $f_{ii} < 1$ (transient state) then we define $m_{ii} = \infty$.
- Classification of recurrent states ($f_{ii} = 1$):
 - If m_{ii} = ∞ the state is null recurrent: it takes an ∞ time to reach the state after leave it. Can only happen in chains with an infinite number of states.
 - If m_{ii} < ∞ the state is positive recurrent: the state is reached in a finite time after leave it.

Classification of States

Discrete Time Markov Chains (DTMC)

Property of States

In finite MC:

- 1 States can be only of type positive recurrent or transient.
- At least one state must be positive recurrent.
- There are not null recurrent states.
 - Example:

• State 1 is transient. States 2 and 3 are positive recurrent.

Classification of States

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transien Solution

Classification of States

Of States
Objective
Irreducibility

Transient and Recurrent First Passage (Transition)

Relation between f_{ii} and $p_{ii}(n)$

Generalization to Any State Pair

Probabilities

Example: Recurrence
Times Using the
Definition

Generalization to Any State Pair

• When $f_{ij} = 1$, the average number of steps to eventually reach j starting from i, m_{ij} is given by:

$$m_{ij} = \sum_{n=1}^{\infty} n f_{ij}(n)$$

• If state *j* can not be reached starting from state *i* with probability one (if $f_{ij} < 1$), then we define $m_{ij} = \infty$.

Classification of States

Discrete Time Markov Chains (DTMC)

Recursive Equation for the Mean Recurrence Time

• Recall that the mean recurrence time $m_{ii} = \sum_{n \ge 1} n f_{ii}(n)$ is the average number of steps to eventually reach *j* starting from i, i.e. it is the mean first passage time from state i to j.

• When $f_{ii} = 1$, m_{ii} can be computed as follows: Assume we are in *i*. With probability p_{ij} we will go to *j* in one step. Otherwise, we will go to k, $k \neq j$, and then it will take m_{ki} steps to reach *i*. Thus:

$$m_{ij} = p_{ij} + \sum_{k \neq j} p_{ik} (1 + m_{kj}) = 1 + \sum_{k \neq j} p_{ik} m_{kj}$$

since $\sum_i p_{ij} = 1$.

Classification of States

Discrete Time Markov Chains (DTMC)

Definition of a DTMC

Transien Solution

Classification

oi state

Objective

Irreducibil

Example

Transient

First Passa

Relation between

Generalization to Ai

State Pair

Probabilities

xample: Recurren imes Using the efinition

Example: Mean Recurrence Time Using Recursion

$$\mathbf{P} = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

• We have:

$$m_{12} = p_{12} + p_{11} (1 + m_{12}) + p_{13} (1 + m_{32}) = 1 + p_{11} m_{12} + p_{13} m_{32}$$

• Clearly $m_{32} = 1$, thus:

$$m_{12} = 1 + 0.7 m_{12} + 0.1 \times 1 \Rightarrow m_{12} = 11/3.$$