FORMULARIO DE DERIVADAS

k es una constante que pertenece a todos los reales $(k \in R)$.

Forma básica de derivación.

$$\frac{d}{dx}(x^n) = n(x)^{n-1}$$

$$\frac{d}{dx}(kx^n) = k * \left[\frac{d}{dx}(x^n)\right] = kn(x)^{n-1}$$

$$\frac{d}{dx}(k) = 0$$

Derivada de una suma y resta.

$$\frac{d}{dx}(f(x) \pm g(x) \pm z(x)) = f'(x) \pm g'(x) \pm z'(x)$$

Derivada de un producto de funciones.

$$\frac{d}{dx}[f(x)\cdot g(x)] = [f'(x)\cdot g(x)] + [f(x)\cdot g'(x)]$$

Derivada de un cociente de funciones.

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right)' = \frac{[g(x)\cdot f'(x)] - [f(x)\cdot g'(x)]}{[g(x)]^2}$$

Derivada de un función de funciones (Regla de la cadena)

$$\frac{d}{dx}(f(x))^n = n(f(x))^{n-1} \cdot f'(x)$$

DERIVADAS TRIGONOMÉTRICAS SIN CONSTANTES

FUNCIÓN	DERIVADA
sen(x)	$\cos(x)$
cos(x)	-sen(x)
tang(x)	$sec^2(x)$
cotg(x)	$-csc^2(x)$
sec(x)	$sec(x) \cdot tang(x)$
csc(x)	$-csc(x) \cdot cotg(x)$

DERIVADAS TRIGONOMÉTRICAS CON CONSTANTES

FUNCIÓN	DERIVADA
sen(kx)	$(kx)' \cdot cos(kx)$
cos(kx)	$-(kx)' \cdot sen(kx)$
tang(kx)	$(kx)' \cdot \sec^2(kx)$
cotg(kx)	$-(kx)' \cdot \csc^2(kx)$
sec(kx)	$(kx)' \cdot sec(kx) \cdot tan(kx)$
csc(kx)	$-(kx)' \cdot cotg(kx) \cdot csc(kx)$

DERIVADAS DE FUNCIONES LOGARITMÍCAS

FUNCIÓN	DERIVADA
$log_b x$	$\frac{1}{x \cdot Ln(b)}$
$log_b k x$	$\frac{1}{\ln(b)} \cdot \frac{1}{kx} \cdot (kx)'$
Ln x	$\frac{1}{x}$
Ln(kx)	$\frac{(kx)'}{kx}$

DERIVADAS DE FUNCIONES EXPONENCIALES

FUNCIÓN	DERIVADA
A^{x}	$A^x \cdot Ln(A)$
A^{kx}	$(kx)' \cdot A^{kx} \cdot ln(A)$
e^x	e^x
e^{kx}	$(kx)' \cdot e^{kx}$

<u>DERIVADAS TRIGONOMÉTRICAS INVERSAS SIN CONSTANTES</u>

$sin^{-1}(x) = arcsen(x)$	$\frac{1}{\sqrt{1-x^2}}$
$cos^{-1}(x) = arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}$
$tan^{-1}(x) = arctang(x)$	$\frac{1}{x^2+1}$
$cot^{-1}(x) = arccotg(x)$	$-\frac{1}{x^2+1}$
$sec^{-1}(x) = arcsec(x)$	$\frac{1}{x \cdot \sqrt{x^2 - 1}}$
$csc^{-1}(x) = arccsc(x)$	$-\frac{1}{x\cdot\sqrt{x^2-1}}$

<u>DERIVADAS TRIGONOMÉTRICAS INVERSAS CON CONSTANTES</u>

FUNCIÓN	DERIVADA
$\sin^{-1}(kx) = arcsen(kx)$	(kx)'
	$\sqrt{1-(kx)^2}$
$\cos^{-1}(kx) = \arccos(kx)$	$-\frac{(kx)'}{\sqrt{1-(kx)^2}}$
$\tan^{-1}(kx) = \arctan(kx)$	$\frac{(kx)'}{(kx)^2+1}$
$\cot^{-1}(kx) = \operatorname{arccot}g(kx)$	$-\frac{(kx)'}{(kx)^2+1}$
$\sec^{-1}(kx) = \operatorname{arcsec}(kx)$	$\frac{1}{x \cdot \sqrt{(kx)^2 - 1}}$
$\csc^{-1}(kx) = \operatorname{arccsc}(kx)$	_ 1
	$-\frac{1}{x\cdot\sqrt{(kx)^2-1}}$