CS143 Homework#1:

1. Suppose relation R(A, B, C) has the tuples:

A	В	С
7	5	3
2	1	2
1	4	3
5	8	7
6	7	9□

and relation S(A, B, C) has the tuples:

Α	В	С
2	1	2
1	4	4
8	3	2
5	8	7

Compute $(R-S) \cup (S-R)$, often called the "symmetric difference" of R and S. List all the tuples in the result relation.

Answer:

(R - S) has the tuples:

, , , , , , , , , , , , , , , , , , , ,		
A	В	С
7	5	5
1	4	3
6	7	9

(S - R) has the tuples:

Α	В	С
1	4	4
8	3	2

 $(R-S) \cup (S-R)$ has the tuples:

Α	В	С
7	5	5
1	4	3
6	7	9
1	4	4
8	3	4

2. Suppose relation R(L, M) has the tuples:

L	M
4	3
6	5
8	7

and relation S(M,N,P) has the tuples:

M	N	P
6	1	8
1	6	4
2	5	1
3	4	7

Compute $\sigma_{R.L>S.M \wedge R.M < S.P}(R \times S)$. List all the tuples in the result relation.

$(R \times S)$ has the tuples:

	(· · · · · ·) · · · · · · · · · · · ·				
L	R.M	S.M	N	Р	
4	3	6	1	8	
4	3	1	6	4	
4	3	2	5	1	
4	3	3	4	7	
6	5	6	1	8	
6	5	1	6	4	
6	5	2	5	1	
6	5	3	4	7	
8	7	6	1	8	
8	7	1	6	4	
8	7	2	5	1	
8	7	3	4	7	

$\sigma R.L>S.M \land R.M< S.P$ (R × S) has the tuples:

L	R.M	S.M	N	Р
4	3	1	6	4
4	3	3	4	7
6	5	3	4	7
8	7	6	1	8

Problem3:

$$\Pi_{i.ID,i.name}\left((\sigma_{i.salary > w.salary}(\varrho_i(instructor) \times \sigma_{w.id=12121}(\varrho_w(instructor))))\right)$$

 σ_{dept_name} ="Physics"(instructor \bowtie instructor.ID=teaches.ID teaches)

$$(\sigma_{deptname=\text{``Physics''}}(instructor)) \bowtie_{instructor.ID=teaches.ID} teaches$$

 $\sigma_{dept \text{name} = \text{building}}(\text{department})$

 $Student \bowtie_{Student.Student-name} Enrollment.Student-name \ Enrollment$

a). Find the names of all students who are not enrolled in the 'Database Management Systems' course.

 $\Pi_{\textit{Student-name}}(\textit{Student}) - \Pi_{\textit{Student-name}}(\sigma_{\textit{Course-name}="Database \ Management \ Systems"}(\textit{Enrollment}))$

b). Find the names of all students who are enrolled in at least one course not offered by their home department. $Student_Enrolled \subset Student \bowtie_{Student.Student-name=Enrollment.Student-name} Enrollment$ // Result schema is: // Student_Enrolled(Student.Student-name, Department, Enrollment.Student-name, Course-name) Result2 \leftarrow Student_Enrolled $\bowtie_{Result1.Course-name=Course.Course-name}$ Course // Result schema is: // Result2 (Student.Student-name, Student_Enrolled.Department, Enrollment.Student-name, Student_Enrolled.Course-name, Course.Coursename, Courese.Department) $\Pi_{Student.Student-name}(\sigma_{\textit{Student_Enrolled.Department}} \diamond \text{Course.Department}(Result2)\)$ c). Find the names of all courses which have no students enrolled. $\Pi_{\textit{Course-name}}(\text{Course}) - \Pi_{\textit{Course-name}}(\text{Enrollment})$

d). Find the department names that students belong to if the students takes at least one class offered by the CS department.

 $\Pi_{Student.Student-name}$, Student_Enrolled.Department($\sigma_{Courese.Department} = \text{"CS"}(Result2)$)

e). Find the department names of all students who are enrolled in at most one course.

Result_e1 <- Enrollment $\times Q_{Enrollment2}(Enrollment)$

 $Result_e2 < -\sigma_{Enrollment.Student-name} = Enrollment2.Student-name \ AND \ Enrollment.Course-name <> Enrollment2.Course-name (Result_e1)$

// Student who are taking more than 1 course:

 $Result_e3 <- Q_{\textit{Studnet_taking_more_than_one(Student-name)}} (\Pi_{Enrollment.Student-name} Result_e2)$

 $Result_e3 < -- Result_e3 \bowtie_{Result_e3.Student-name=Student.Student-name} Student$

 $Q_{Studnet_taking_more_than_one_course(Student-name, Department)}(\Pi_{Student.Student-name, Department})$

 $Final_relation < - \ Student - Student_taking_more_than_one_course$

 $\varrho_{Company2}$ (Company)

Not_Cheapest_Companies <- $\Pi_{\text{Company.company-name}}(\sigma_{\text{Company.company-name}} > Company_{\text{company-name}})$ (Company <- Company_

 $\label{eq:company} Cheapest_Company = \Pi_{company-name}(Company) \ - \ Not_Cheapest_Companies$