Expedient Distance Transforms for Gaussian Object Representations

Brian

July 2024

Abstract

It is shown that the expected distance to surface represented by a sum of Gaussians can be expediently approximated by taking the log of Gaussians with slightly modified covariance. The main idea is to use the heat method with *probabilistic* boundary conditions given by the sum of Gaussians.

1 Introduction

Suppose we are given a representation of obstacle $\Omega \subset \mathbb{R}^D$ as surface containment probability $p_{\partial\Omega}(\mathbf{x})$:

$$p_{\partial\Omega}(\mathbf{x}) = \mathbb{P}(\mathbf{x} \in \partial\Omega). \tag{1}$$

In other words, $p_{\partial\Omega}(\mathbf{x})$ is the probability that \mathbf{x} is in $\partial\Omega$. In practice, $p_{\partial\Omega}$ could be built as an occupancy map (discrete or continuous), a Gaussian mixture model, or Gaussian splats¹. Here, we consider the special case where $p_{\Omega}(\mathbf{x})$ is a sum of Gaussians:

$$p_{\Omega}(\mathbf{x}) = \sum_{i} w_{i} G(\mathbf{x}; \mu_{i}, \Sigma_{i})$$
(2)

Our **objective** is to characterise the unsigned distance function $d_{\Omega}(\mathbf{x})$ given $p_{\partial\Omega}(\mathbf{x})$. To do so, we invoke the Varadhan's formula for heat equation²:

Theorem 1 (Varadhan's formula). Consider the solution to the heat equation:

$$\frac{\partial u}{\partial t} = \frac{1}{2} \nabla^2 u \tag{3}$$

with boundary condition $u(\mathbf{x},0)=1$ on $\partial\Omega$, and 0 otherwise. Then, we have:

$$\underline{\lim_{t \to 0} -2t \log u(\mathbf{x}, t)} = d_{\Omega}^{2}(\mathbf{x}). \tag{4}$$

 $^{^1\}mathrm{We}$ may treat Ω as a random $\mathit{compact}$ set

²Log-GPIS uses screened Poisson equation instead of heat equation to avoid taking the square-root of log, but here it will be more convenient to use the heat equation.

The key insight is that we can solve the heat PDE (3) with respect to a probabilistic boundary condition given by $p_{\Omega}(\mathbf{x})$. First, consider the determinstic case when $\partial\Omega$ is known. To solve boundary conditions, it is convenient to compute the kernel or the Green function:

$$\frac{\partial G(\mathbf{x}, \mathbf{y}, t)}{\partial t} = \nabla_{\mathbf{x}}^{2} G(\mathbf{x}, \mathbf{y}, t),
G(\mathbf{x}, \mathbf{y}, 0) = \delta(\mathbf{x}, \mathbf{y}).$$
(5)

For the heat equation, this is:

$$G(\mathbf{x}, \mathbf{y}, t) = (2\pi t)^{-N/2} \exp\left(-\frac{||\mathbf{x} - \mathbf{y}||^2}{2t}\right).$$
 (6)

Given the kernel $G(\mathbf{x}, \mathbf{y}, t)$, the heat equation for a deterministic $\partial \Omega$ is:

$$u(\mathbf{x},t) = \int G(\mathbf{x}, \mathbf{y}) 1_{\partial\Omega}(\mathbf{y}) d\mathbf{y}, \tag{7}$$

where $1_{\partial\Omega}(\mathbf{x})$ is the indicator function of $\partial\Omega$.

Taking the expectations of both sides with respect to random Ω :

$$\mathbb{E}_{\partial\Omega}[u(\mathbf{x},t)] = \mathbb{E}_{\partial\Omega} \int G(\mathbf{x},\mathbf{y}) 1_{\partial\Omega}(\mathbf{y}) d\mathbf{y},$$

$$= \int G(\mathbf{x},\mathbf{y}) \mathbb{E}_{\partial\Omega}[1_{\partial\Omega}(\mathbf{y})] d\mathbf{y},$$

$$= \int G(\mathbf{x},\mathbf{y}) p_{\partial\Omega}(\mathbf{y}) d\mathbf{y}.$$
(8)

In other words, the expectation of $u(\mathbf{x},t)$ is given by a convolution between $G(\mathbf{x},\mathbf{y})$ with $p_{\partial\Omega}$. Conveniently, since G is Gaussian, the convolution takes a closed form if $p_{\partial\Omega}$ is a sum of Gaussian:

$$\int G(\mathbf{x}, \mathbf{y}) p_{\partial\Omega}(\mathbf{y}) d\mathbf{y} = \sum w_i G(\mathbf{x}; \mu_i, \Sigma + tI), \tag{9}$$

So, we have:

$$\mathbb{E}[d_{\Omega}^{2}(\mathbf{x})] \approx_{t \to 0} -2t \mathbb{E}[\log u(\mathbf{x}, t)],$$

$$\geq -2t \log \mathbb{E}[u(\mathbf{x}, t)],$$

$$= -2t \log \left(\sum w_{i} G(\mathbf{x}; \mu_{i}, \Sigma + tI)\right),$$
(10)

where the second line makes use of Jensen's inequality. Using the third line, we can compute an approximate expected square distance to Ω .