1. Compute asymptotic worst case time complexity of the following algorithm (see pseudocode conventions in [Cormen, Section 2.1]). You must use Θ -notation. For justification, provide execution cost and frequency count for each line in the body of the secret procedure. Optionally, you may provide details for the computation of the running time T (n) for worst case scenario. Proof for the asymptotic bound is not required for this exercise.

```
1
         /* A is a 0-indexed array,
2
         * n is the number of items in A */
3
         secret(A, n):
4
                  k := 0
5
                  for i = 1 to n-1:
                          k := k + 1
6
7
                          j := i
8
                          while j \le n and A[j-1] \ge A[j]:
9
                                   j := j + k
                           exchange A[i] with A[j]
10
```

Solution:

cost	time			
c3	1			
c4	1			
c5	n			
с6	n-1			
c7	n-1			
c8	$\Sigma_1^{n-1}(t_i/i)$			
с9	$\Sigma_1^{n-1} (t_i - 1/i)$			
c10	n-1			

```
\begin{split} f(n) &= \Theta(g(n)) \qquad \Omega(g(n)) \leq \Theta(g(n)) \leq O(g(n)) \\ \exists \ (c1, \ c2, \ n_0) \ \forall \ (n \geq n_0) \ | \ c1 * g(n) \leq f(n) \leq c2 * g(n) \\ &\quad \text{Array is already sorted - the best case - } \Theta(n) \end{split}
```

the array is reverse sorted and the while loop is never ignored until i=n - the worst case $-\Theta(n*log(n))$

If the array is reverse sorted then the algorithm has the same time complexity as the following code's algorithm:

```
| k=0
| for i in range(0, n):
| k+=1
| j=i
| while(j<n):
| j = j+k
```

$$\Sigma_1^{n-1}((t_{i}-1)/i) = n+n/2+n/3+n/4...+n/(n-2)+n/(n-1) = \Theta(n*log(n-1))$$

$$\Theta(n*log(n-1)) = \Theta(n*log(n))$$

2. Indicate, for each pair of expressions (A, B) in the table below whether A = O(B), A = o(B), A = O(B), or A = O(B). Write your answer in the form of the table with yes or no written in each box:

A	В	A=O(B)	A=o(B)	Α=Ω(Β)	Α=ω(Β)	A=Θ(B)
log ⁵ n	⁴ √n					
n ¹⁰⁰⁰	1.0001 ⁿ					
n ^{cos n}	log n					
3 ⁿ	3 ^{0.5n}					

Solution:

A	В	A=O(B)	A=o(B)	A=Ω(B)	A=ω(B)	A=Θ(B)
log ⁵ n	⁴ √n	no	no	yes	yes	no
n ¹⁰⁰⁰	1.0001 ⁿ	no	no	yes	yes	no
n ^{cos n}	log n	no	no	no	no	yes
3 ⁿ	$3^{0.5n}$	yes	no	yes	no	yes

3. Let f and g be functions from positive integers to positive reals. Assume f(n) > n for n > 0. Using definition of asymptotic notation, prove formally that

$$\min(f(n) - n, g(n) + n) = O(f(n) + g(n))$$

Solution:

$$\begin{aligned} & \min(f(n) - n, \, g(n) + n) = O(f(n) + g(n)) \\ & \exists \ (c, \, n_0) \ \forall \ (n \ge n_0) \ | \ f(n) \le c * g(n) \\ & \min(f(n) - n, \, g(n) + n) \le c * (f(n) + g(n)) \end{aligned}$$

 1^{st} case: if (n + g(n)) is minimum then n + g(n) < f(n) + g(n) because f(n) > n > 0,

 2^{nd} case: if (f(n) – n) is minimum f(n) - n < f(n) + g(n) because g(n) > 0 and n > 0, (x - positive) is always less than (x + positive)

when $c \ge 1$, return value of **min** function is always less than c * (f(n) + g(n)) = O(f(n) + g(n))