

Welcome to DSCI 101

Introduction to Data Science

Week 9-10 Recap

- Population vs. sample and parameters vs. statistics
 - sampling distribution of a statistic
 - point estimate and confidence interval
- Simulation based statistical inference:
 - generate many random samples from population
 - generate Bootstrap resamples from one original random sample
- Hypothesis testing apply statistical inference to decision making
 - general framework and rational
 - Permutation test A/B testing

Week 11 Preview

- Linear regression with numerical response
 - correlation and simple linear regression
 - multiple linear regression
 - categorical predictors
 - interpret regression coefficients
- Logistic regression with binary response
 - logit and logistic function
 - interpret logistic coefficients as log odds ratio

What is Regression?

- A set of statistical processes for estimating the relation between a dependent variable Y (outcome or response) and one or more independent variables X (predictors, covariates, or features).
- The goal is to estimate the relation using a regression function f(X) from observed data:
 - Y = f(X) + a random error
- What is a regression function good for?
 - Prediction: use X to predict Y
 - Inference: generalize relation between X and Y to a larger population

If there is a Data God

- for each value of x_i
- true regression function = $f(x_i)$
- random noise = ε_i
- response $y_i = f(x_i) + \varepsilon_i$

we only see data (x_i, y_i)

Describe scatter plot relations

Direction

- positive vs. negative
- Form
 - Linear vs. nonlinear
- Strength
 - weak moderate strong

Correlation

- <u>Pearson's</u><u>correlation</u>
- Liner
 association
 between 2
 numerical
 variables
- -1≤r ≤ 1
- r = 0: uncorrelated (not linear associated)

Simple Linear Regression

- Want to predict Y value for any given X.
- Model this relation using a linear function of x

•
$$y_i = f(x_i) + \epsilon_i$$

•
$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

•
$$\widehat{y_i} = \widehat{f}(x_i) = \widehat{\beta_0} + \widehat{\beta_1}x_i$$

• what's the best line?

Least Square Line

- RSS = $\sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$
 - RSS: residual sum of squares
 - find $\widehat{\beta_0}$ and $\widehat{\beta_1}$ such that RSS is minimized \rightarrow least square line
 - closed form solutions: $\widehat{\beta_1} = r \frac{s_y}{s_x}$ where r is the correlation, s is sample sd
- What do $\widehat{\beta_0}$ and $\widehat{\beta_1}$ mean? \rightarrow interpretation
 - intercept β_0 : average value of y when x = 0
 - slope β_1 : average change in y when x increase by 1 unit
 - slope is the key parameter of interest: quantify relation

Multiple Linear Regression

- Data: X n by p matrix, Y n by 1 vector
- Regression model: $y = f(x_1, x_2, \cdots x_p) + \epsilon$
- Linear regression model:
 - still assume f to be a linear function of X!
 - $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$ for $i = 1, 2, \dots n$
 - fitting the model means estimate coefficients $\beta_0, \beta_1, \cdots \beta_p$
- Why linear function?
 - a good approximation of "true" f
 - useful both conceptually and practically

Multiple Linear Regression

• RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (\widehat{\beta}_0 + \widehat{\beta}_1 x_{i1} + \widehat{\beta}_2 x_{i2} + \cdots))^2$$

- A linear function in higher dimension is a hyperplane
- Interpretation of model coefficients
 - Intercept: average value of y when all x = 0
 - Slope for x_1 : average change in y when x_1 increase by 1 unit while **holding** $x_2...x_p$ constant
 - interpretation of one slope means holding all the others constant!

Regression with categorical variable

- Y: cumulative GPA = $\beta_0 + \beta_1 \cdot X_1 + \cdots + \text{possible other } X's$
 - X_1 : categorical variable school at Rice, 7 categories;
- Dummy variable encoding: K-1 dummy variables for K categories
 - Why it is wrong to just use number coding for categories?
 - interpretation of model coefficients!!!

Student	School	Expand into 6 Dummy Variables	Natural Science	Social Science	Humanity	Business	Architecture	Music
Claire	Engineering	\rightarrow	0	0	0	0	0	0
Karla	Humanity	\rightarrow	0	0	1	0	0	0
Dhilani	Social Sci	\rightarrow	0	1	0	0	0	0
Priya	Natural Sci	\rightarrow	1	0	0	0	0	0
Isabella	Business	\rightarrow	0	0	0	1	0	0
Annelie	Social Sci	\rightarrow	0	1	0	0	0	0

Regression with categorical variable

Student	School	Expand into 6 Dummy Variables	Natural Science	Social Science	Humanity	Business	Architecture	Music
Claire	Engineering	\rightarrow	0	0	0	0	0	0
Karla	Humanity	\rightarrow	0	0	1	0	0	0
Dhilani	Social Sci	\rightarrow	0	1	0	0	0	0
Priya	Natural Sci	\rightarrow	1	0	0	0	0	0
Isabella	Business	\rightarrow	0	0	0	1	0	0
Annelie	Social Sci	\rightarrow	0	1	0	0	0	0

• GPA =
$$\beta_0 + \beta_1$$
*NaSci + β_2 *SoSci + β_3 *Hum + β_4 *Busi + β_5 *Arch + β_6 *Musi

Interpretation

- β_0 : average GPA in school of Engineering the baseline category!!!
- β_1 : average GPA in NaSci average GPA in SoE
- $\beta_2 \cdots \beta_5$: ???

Regression with categorical variable

Student	School	Natural Science	Social Science	Humanity	Business	Architecture	Music	Study hour
Claire	Engineering	0	0	0	0	0	0	5.5
Karla	Humanity	0	0	1	0	0	0	8
Dhilani	Social Sci	0	1	0	0	0	0	7.5
Priya	Natural Sci	1	0	0	0	0	0	6
Isabella	Business	0	0	0	1	0	0	6.5
Annelie	Social Sci	0	1	0	0	0	0	4

- GPA = $\beta_0 + \beta_1$ *NaSci + β_2 *SoSci + β_3 *Hum + β_4 *Busi + β_5 *Arch + β_6 *Musi + β_7 *study_hour
- Interpretation
 - β_0 : average GPA for school of Engineering when study hour is 0!!!
 - β_1 : difference in average GPA between NaSci and SoE for same study hour
 - $\beta_2 \cdots \beta_5$: ???

More on Linear Regression Models

- ML vs. Stats approaches
 - probabilistic models and maximum likelihood estimate
- Hypothesis testing
 - is the slope statistically different than 0?
- Check goodness of fit
 - R^2 , adjusted R^2 , Cp, AIC, BIC
- Residual plots and diagnostics
- Interactions, collinearity, heteroscedasticity...

Logistic Regression

- Suppose now the response variable is categorical binary
- A classification problem → predict y label
 - binary Y usually coded as 0 and 1
 - A Bernoulli random variable!
- A logistic regression model \rightarrow predict $\mathbb{P}(Y=1)$
 - A linear function of x can be arbitrary values
 - Logistic function to ensure output between 0 and 1

The Logistic Function

• logistic (t) = $\sigma(t) = \frac{1}{1+e^{-t}}$, also called sigmoid function

Properties of $\sigma(t)$:

•
$$t \to -\infty \Rightarrow \sigma(t) \to 0$$

•
$$t \to +\infty \Rightarrow \sigma(t) \to 1$$

•
$$t = 0 \Rightarrow \sigma(t) = 0.5$$

- More properties:
 - inverse function
 - derivative

Logistic Regression – model a probability

Assumption of logistic regression:

log-odds of y=1 is a linear function of X

• Let $p = \mathbb{P}(y = 1 | X = x)$:

• odds =
$$\frac{p}{1-p}$$

•
$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$

log-odds (p) =
$$\log \left(\frac{p}{1-p}\right)$$

$$p = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

$$p = \frac{1}{1 + e^{(\beta_0 + \beta_1 x)}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$
this is the logistic function!

- From probability to label:
 - predict $\hat{y} = 1$ if $\mathbb{P}(y = 1 \mid x) > \mathbb{P}(y = 0 \mid x)$, i.e., if $\mathbb{P}(y = 1 \mid x) > 0.5$

Fit a Logistic Regression Model

- Recall in linear regression we minimize RSS:
- Similar measure in logistic regression is Cross-entropy:
 - $\sum_{i=1}^{n} [-y_i \log(\hat{p}_i) (1-y_i) \log(1-\hat{p}_i)]$
- What is cross-entropy???
 - Information theory: info gain
 - Statistics: negative log likelihood function
 - Machine learning: a loss/cost function
- Model fitting by minimizing cross-entropy
 - estimate those parameters eta_0 and eta_1
 - how to interpret them?

Parameter Interpretation

- $\mathbb{P}(Y=1\mid X)=\frac{1}{1+e^{-(\beta_0+\beta_1\,x)}}$ with estimated $\hat{\beta}_0$ and $\hat{\beta}_1$
- $\log\left(\frac{\mathbb{P}(Y=1\mid X=x)}{\mathbb{P}(Y=0\mid X=x)}\right) = \hat{\beta}_0 + \hat{\beta}_1 x$
- When x increases by 1 unit, log odds for y=1 change by \hat{eta}_1
 - if $\widehat{\beta}_1 > 0$: increase X means $\mathbb{P}(Y = 1)$ increases
 - if $\widehat{\beta}_1$ <0: increase X means $\mathbb{P}(Y=1)$ decreases
- Log odds equals $\hat{\beta}_0$ when X=0
- Decision boundary: when predicted \hat{y} changes label
 - odds = 1 \Leftrightarrow log odds = 0 \Leftrightarrow $\hat{\beta}_0 + \hat{\beta}_1 x = 0 \Leftrightarrow$ linear function of x!!!

Multiple Logistic Regression

- Multiple predictors: $\mathbb{P}(y = 1 \mid X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots)}}$
- Interpretation:
 - increase X_1 by 1 unit while holding all other predictors constant
 - **log odds** change by β_1 -> **odds** multiply by e^{β_1}
 - interpret the sign:
 - β_1 >0 means increase X_1 (while holding...) will increase $\mathbb{P}(Y=1)$
 - β_1 >0 means increase X_1 (while holding...) will decrease $\mathbb{P}(Y=1)$
- Categorical predictors
 - same dummy coding trick!

Assess a Logistic Regression Model

• The Confusion Matrix – a pivot table!

	predicted y O	Predicted y 1
true y	True-	False-
0	Negatives	Positives
true y	False-	True-
1	Negatives	Positives

Evaluation metrics:

- accuracy:
 - (TN+TP) / total
- Misclassification:
 - (FN+FP) / total
- TPR = TP / (TP+FN)
 - sensitivity/recall
- TNR = TN / (TN+FP)
 - specificity
- PPV = TP / (TP+FP)
 - precision
- F1 score...

More on Logistic Regression

- General decision rule for binary classification:
 - predict $\hat{y} = 1$ if $\mathbb{P}(y = 1 \mid x) > \tau$ where τ is some threshold
 - treat au as hyperparameter to maximize accuracy
- Class imbalance:
 - weighted loss function
 - resampling
- Extension to multi-class logistic regression
 - soft-max function instead of sigmoid (logistic) function
- Generalized liner models
 - linear, logistic, multinomial, poison regression...

Take away message

- Understand these basic models well
 - extremely important and widely used
 - more in STAT courses
- Lots of extension to advanced models
 - add non-linear features x^2 , x^3 , ... and interaction terms
 - regularized linear regression, kernel regression, Generalized Additive Models...
- Interpretation is the key!
 - black box models are good at making predictions
 - interpretable models help us understand the world