Derin Öğrenme Tabanlı Otomatik Beyin Tümör Tespiti

Giriş ve Amaç

Araştırmanın Konusu ve Önemi

• Beyin Tümörleri:

Beyin tümörleri, dünya genelinde önde gelen ölüm nedenlerinden biri olup erken teşhis hayat kurtarıcı rol oynamaktadır.

• MRG Kullanımı:

Manyetik rezonans görüntüleme (MRG), beynin yumuşak dokusuna dair yüksek çözünürlüklü ve şekilsel bilgiler sunarak tümör tespitinde tercih edilen bir yöntemdir.

• Otomatik Tanı İhtiyacı:

Geleneksel, manuel yöntemlerin zaman alıcı ve hata yapma olasılığının yüksek olması nedeniyle, yapay zekâ tabanlı otomatik tespit sistemleri uzmanlara destek sağlamakta ve teşhis sürecini hızlandırmaktadır.

Çalışmanın Amaçları ve Katkıları

Amaç:

MRG görüntülerinden beyin tümörlerini otomatik olarak tespit edebilen etkili ve yüksek doğruluklu bir model geliştirmek.

• Kullanılan Yöntem:

Önerilen sistemde, önceden eğitilmiş MobileNetV2 ESA modeli kullanılarak derin öznitelik çıkarımı gerçekleştirilmiş; ardından bu öznitelikler k-en yakın komşu (k-EYK) sınıflandırıcısı ile sınıflandırılmıştır.

• Katkılar:

- Düşük hesaplama gücüne sahip cihazlarda dahi çalışabilecek hafif model kullanımı.
- o Veri çoğaltma (augmentation) ile sınırlı veri setinin genişletilmesi.
- o K-EYK sınıflandırıcı ile %96,44 doğruluk gibi yüksek başarımlar elde edilmesi.

Şekil 1: Önerilen modelin blok diyagramı

Materyal, Metodoloji ve Uygulama

Veri Seti ve Veri Coğaltma

• Veri Seti:

Toplam 253 MRG görüntüsünden oluşan veri seti, 155 tümörlü ve 98 tümörsüz görüntüyü içermektedir.

• Veri Coğaltma:

Görüntüler, yatay ve dikey çevirme, 90° ve 270° döndürme gibi yöntemlerle çoğaltılarak toplam 1265 görüntüye çıkarılmıştır.

Amaç:

Veri setinin genişletilmesi, modelin genelleme performansını artırmak ve aşırı ezberleme (overfitting) riskini azaltmaktır.

Model ve Yaklaşımlar

• Transfer Öğrenimi ve MobileNetV2:

- o MobileNetV2, ImageNet üzerinde eğitilmiş bir ESA modeli olarak kullanılmış; bu sayede önceden öğrenilmiş derin öznitelikler çıkarılmıştır.
- Modelin "Logits" tam bağlı katmanından alınan 1000 derin öznitelik, sonraki sınıflandırma için temel oluşturmuştur.

• k-En Yakın Komşu (k-EYK) Sınıflandırıcı:

• Çıkarılan derin öznitelikler, k-EYK sınıflandırıcısına uygulanarak, komşuların çoğunluk oyu ile görüntüler sınıflandırılmıştır.

o k değeri 5 olarak belirlenmiş ve 5 kat çapraz doğrulama yöntemi kullanılmıştır.

• Performans Ölçütleri:

Doğruluk, duyarlılık, özgüllük, keskinlik, F1 skoru ve Matthews Korelasyon Katsayısı (MCC) gibi kriterlerle model performansı değerlendirilmektedir.

Deneysel Uygulama

- Deneyler, MATLAB derin öğrenme araç kutusu kullanılarak, GPU destekli bir sistemde gerçekleştirilmiştir.
- MobileNetV2'nin parametreleri SGDM optimizasyon algoritması, sabit öğrenme oranı (0.0001), düşük yığın boyutu ve 5 tekrar üzerinden optimize edilmiştir.

Sonuçlar, Karşılaştırmalar ve Gelecek Perspektifleri

Deneysel Sonuçlar

• Orijinal Veri Üzerinde:

MobileNetV2 ESA modeli ve k-EYK sınıflandırıcısı, orijinal veri setinde sırasıyla %86,56 ve %89,72 doğruluk oranlarına ulaşmıştır.

• Veri Çoğaltma Sonrası:

Veri çoğaltma uygulandıktan sonra, MobileNetV2 Logits katmanından çıkarılan özniteliklerle k-EYK kullanılarak yapılan sınıflandırmada;

Doğruluk: %96,44

o Duyarlılık: %96,94

o Özgüllük: %96,13

Keskinlik: %94,06

F1 Skoru: %95,48

o MCC: 0.925

gibi üstün performans değerleri elde edilmiştir.

Veri Seti	Yöntem	Doğruluk	Duyarlılık	Özgüllük	Keskinlik	F1 Skor	MCC
Orijinal	MobileNetV2	86,56	86,73	86,45	80,19	83,33	0,722
	k-EYK	89,72	88,78	90,32	85,29	87,00	0,785
Çoğaltılmış	MobileNetV2	92,89	91,84	93,55	90,00	90,90	0,850
	k-EYK	96,44	96,94	96.13	94,06	95,48	0,925

Tablo 1: Orijinal ve çoğaltılmış veri setlerinde MobileNetV2 ve k-EYK performans karşılaştırma sonuçları

Karşılaştırma:

Önerilen yöntem, aynı veri seti üzerinde çalışan diğer ESA tabanlı modellerle karşılaştırıldığında daha hafif yapı ve daha yüksek sınıflandırma doğruluğu sağlamıştır.

Yöntem	Model	Doğruluk (%) 86,39	
Arı ve diğerleri [8]	Bölütleme+k-NN		
Bulut ve diğerleri [9]	MRF	87,00	
Mohsen ve diğerleri [10]	ADD+PCA	93,94	
Afşar ve diğerleri [11]	CapsNet	86,56	
Vani ve diğerleri [12]	DVM	81,48	
Çıtak ve diğerleri [13]	DVM+ÇKA+LR	93,00	
Shahzadi ve diğerleri [14]	VGG+UKSB	84,00	
Swati ve diğerleri [15]	VGG19	94,82	
Saxena ve diğerleri [17]	ResNet50	95,00	
Önerilen Yöntem	MobileNetV2+k-EYK	96,44	

Tablo 2: Bazı yöntemlerin performans karşılaştırmaları

Değerlendirme ve Sonuçlar

• Genel Basarım:

Önerilen yöntem, derin öznitelik çıkarımı ve k-EYK sınıflandırması sayesinde beyin tümörü tespitinde yüksek performans göstermiştir.

Verimlilik:

Transfer öğrenimi sayesinde eğitim süresi kısalmış, öznitelik çıkarım süreci yaklaşık 3 dakikada tamamlanmıştır.

Uygulama Kolaylığı:

Model, düşük kapasiteli donanımlarda dahi çalışabilir ve otomatik teşhis sistemleri için uygulanabilirliği yüksektir.

Gelecek Çalışma Önerileri

• Model Gelistirmeleri:

Farklı beyin tümörü tiplerini ayırt edebilecek daha geniş veri setleri ve yeni model mimarileri üzerinde çalışmalar yapılması.

• Performans İyileştirmeleri:

Ek hiper parametre optimizasyonları ve farklı sınıflandırıcıların denenmesi.

Klinik Uygulama: Geliştirilen modelin, klinik ortamda radyologlara karar verme sürecinde destek olması hedeflenmektedir.