Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних циклічних алгоритмів»

Варіант 10

Виконав студент <u>ІП-11, Друзенко Олександра Юріївна</u> (шифр, прізвище, ім'я, по батькові)

Перевірив <u>Мартинова Оксана Петрівна</u> (прізвище, ім'я, по батькові)

Лабораторна робота 5

Дослідження складних циклічних алгоритмів

Мета – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 10

Дано натуральне число n. Знайти всі числа Мерсена, що не перевищують число n. Просте число називається числом Мерсена, якщо його можна представити у вигляді $2^p - 1$, де p — теж просте число.

1.Постановка задачі

Потрібно організувати складний цикл, який буде виводити в консоль числа Мерсена не більші за введене число п. Спочатку потрібно створити цикл, який буде шукати прості числа. Для цього потрібно створити цикл, який рахує кількість часток без остачі й за допомогою розгалуження з умовною формою вибору перевірити чи є число простим (максимум дві частки без остачі). Потім знайти число Мерсена, вивести на екран, і якщо воно менше за введене нами число, повторити кроки, збільшивши число для перевірки на один. Інакше, завершити програму.

2. Математична модель

Змінна	Тип	Ім'я	Призначення
Задане число	int	n	Початкове дане
Число для перевірки	int	num	проміжне дане
Остача від ділення	int	ostat	проміжне дане
Лічильник	int	lich	проміжне дане
Лічильник циклу	int	i	проміжне дане
число Мерсена	int	mersen	результат

Функція pow(x, i) – піднесення х до степеня і

Функція input(n) – введення числа n

Функція print(n) – виведення n

Крок 1. Визначимо основні дії;

Крок 2. Введення числа умови та задання значень;

Крок 3. Деталізуємо перевірку на виконання умови;

Крок 4. Деталізуємо знаходження простого числа;

Крок 5. Деталізуємо знаходження та виведення числа Мерсена.

3.Псевдокод

```
Крок 1.
```

Початок

- 1. Введення числа умови та задання значень;
- 2. Перевірка виконання умови;
- 3. Знаходження простого числа;
- 4. Знаходження та виведення числа Мерсена;

Кінець

Крок 2.

Початок

- 1. input(n); num:=1, mersen:=1;
- 2. Перевірка виконання умови;
- 3. Знаходження простого числа;
- 4. Знаходження та виведення числа Мерсена;

Кінець

Крок 3.

Початок

- 1. input(n); num:=1, mersen:=1;
- 2. Повторити поки mersen<=n
 - 3. Знаходження простого числа;
 - 4. Знаходження та виведення числа Мерсена;

все повторити

Кінець

Крок 4.

Початок

- 1. input(n); num:=1, mersen:=1;
- 2. Повторити поки mersen<=n
 - 3. lich:=0;

Повторити для i від 1 до num включно з кроком 1

ostat:=num%i;

Якщо ostat == 0

lich+=1;

Все якщо

Все повторити

Якщо *lich*<=2

4. Знаходження та виведення числа Мерсена;

Все якщо

num+=1;

Все повторити

Кінець

Крок 5.

Початок

- 1. input(n); num:=1, mersen:=1;
- 2. Повторити поки mersen<=n
 - 3. lich:=0

Повторити для i від I до num включно з кроком 1

ostat:=num%i;

Якщо ostat == 0

lich+=1;

Все якщо

Все повторити

Якщо lich<=2

4. mersen:=pow(2,num)-1;

Якщо mersen<=n

print(mersen);

Все якщо

Все якщо

num+=1;

Все повторити

Кінець

4.Блок-схема

5. Випробування алгоритму

Блок	Дія
	Початок
1	Задання n=6
	num:=1, mersen:=1;
2.1	1<=6? так
3.1	lich:=0;
	lich=1;
	lich<=2? так
4.1	mersen= $2^1-1=1$;
	1<=6? так
	<pre>print(mersen = 1);</pre>
	num+=1=1+1=2;
2.2	1<=6? так
3.2	lich:=0;
	lich=2;
	lich<=2? так
4.2	mersen= $2^2-1=3$;
	3<=6? так
	<pre>print(mersen = 3);</pre>
	num+=1=1+1=3;
2.3	3<=6? так
3.3	lich:=0;
	lich=2;
	lich<=2? так
4.3	mersen= $2^3-1=7$;
	7<=6? ні
	num+=1=4;
2.4	7<=6? ні
	Кінець

6. Висновок

Отже, сьогодні я дослідила особливості роботи складного циклу та набула практичних навичок його створення та використання. В результаті лабораторної роботи я розробила алгоритм який виводить числа Мерсена. В алгоритмі присутній один ітераційний цикл з передумовою в середині якого ϵ : один арифметичний цикл основного виду та три умовні розгалуження. Випробувавши алгоритм, я отримала шукані результати. Алгоритм працю ϵ .