```
import warnings
In [1]:
          warnings.filterwarnings('ignore')
In [2]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          sns.set_style('darkgrid')
          df = pd.read_csv("master.csv")
In [3]:
          df.head()
Out[3]:
                                                                                              HDI
                                                                   suicides/100k
                                                                                                   gdp_for_year gdp_p
                                                                                    country-
             country year
                              sex
                                     age suicides_no population
                                                                                               for
                                                                           pop
                                                                                       year
                                                                                                             ($)
                                                                                             year
                                     15-
              Albania 1987
                              male
                                      24
                                                   21
                                                          312900
                                                                           6.71 Albania1987 NaN 2,156,624,900
                                   years
                                     35-
             Albania 1987
                              male
                                      54
                                                   16
                                                          308000
                                                                                Albania1987 NaN 2,156,624,900
                                                                           5.19
                                    years
                                     15-
              Albania 1987 female
                                                   14
                                                          289700
                                                                                Albania1987 NaN 2,156,624,900
                                      24
                                                                           4.83
                                    years
                                     75+
              Albania 1987
                                                           21800
                                                                                 Albania1987 NaN 2,156,624,900
                              male
                                                    1
                                    years
                                     25-
             Albania 1987
                                                    9
                                                          274300
                                                                           3.28 Albania1987 NaN 2,156,624,900
                              male
                                      34
                                   years
In [4]:
          df.describe()
                                                           suicides/100k pop
Out[4]:
                         year
                                suicides_no
                                                population
                                                                              HDI for year
                                                                                          gdp_per_capita ($)
          count 27820.000000
                               27820.000000
                                             2.782000e+04
                                                                27820.000000
                                                                             8364.000000
                                                                                               27820.000000
          mean
                  2001.258375
                                 242.574407 1.844794e+06
                                                                   12.816097
                                                                                 0.776601
                                                                                               16866.464414
                     8.469055
                                 902.047917
                                             3.911779e+06
                                                                   18.961511
                                                                                 0.093367
                                                                                               18887.576472
            std
            min
                                                                                                 251.000000
                  1985.000000
                                   0.000000
                                            2.780000e+02
                                                                    0.000000
                                                                                 0.483000
           25%
                  1995.000000
                                   3.000000
                                             9.749850e+04
                                                                    0.920000
                                                                                 0.713000
                                                                                                3447.000000
           50%
                  2002.000000
                                  25.000000
                                            4.301500e+05
                                                                    5.990000
                                                                                 0.779000
                                                                                                9372.000000
           75%
                  2008.000000
                                 131.000000
                                            1.486143e+06
                                                                   16.620000
                                                                                 0.855000
                                                                                               24874.000000
                  2016.000000
                               22338.000000
                                            4.380521e+07
                                                                  224.970000
                                                                                 0.944000
                                                                                              126352.000000
           max
In [5]:
          df.columns
          Index(['country', 'year', 'sex', 'age', 'suicides_no', 'population',
Out[5]:
                   'suicides/100k pop', 'country-year', 'HDI for year',
' gdp_for_year ($) ', 'gdp_per_capita ($)', 'generation'],
                 dtype='object')
In [6]:
          df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 27820 entries, 0 to 27819
        Data columns (total 12 columns):
             Column
                                Non-Null Count Dtype
        - - -
         0
             country
                                27820 non-null object
                                27820 non-null int64
         1
             year
         2
                                27820 non-null object
            sex
         3
            age
                               27820 non-null object
         4
                               27820 non-null int64
            suicides_no
         5
             population
                               27820 non-null int64
             suicides/100k pop 27820 non-null float64
         7
             country-year
                                27820 non-null object
             HDI for year
                                8364 non-null
                                                float64
         9
             gdp_for_year ($)
                                27820 non-null object
         10 gdp_per_capita ($) 27820 non-null int64
                                27820 non-null object
         11 generation
        dtypes: float64(2), int64(4), object(6)
        memory usage: 2.5+ MB
        def missing_check(df):
In [7]:
            total = df.isnull().sum().sort_values(ascending=False) # total number of null valu
            percent = (df.isnull().sum()/df.isnull().count()).sort_values(ascending=False) # pe
            missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) # put
            return missing_data # return the dataframe
        missing_check(df)
```

Out[7]:

	Total	Percent
HDI for year	19456	0.699353
country	0	0.000000
year	0	0.000000
sex	0	0.000000
age	0	0.000000
suicides_no	0	0.000000
population	0	0.000000
suicides/100k pop	0	0.000000
country-year	0	0.000000
gdp_for_year (\$)	0	0.000000
gdp_per_capita (\$)	0	0.000000
generation	0	0.000000

In [8]: df[['suicides_no','population','suicides/100k pop','gdp_per_capita (\$)']].describe() #de

```
Out[8]:
                                population suicides/100k pop gdp_per_capita ($)
                 suicides_no
          count 27820.000000 2.782000e+04
                                               27820.000000
                                                                 27820.000000
                  242.574407 1.844794e+06
                                                  12.816097
                                                                 16866.464414
          mean
                  902.047917 3.911779e+06
                                                  18.961511
                                                                 18887.576472
            std
                    0.000000 2.780000e+02
                                                   0.000000
                                                                   251.000000
           min
           25%
                    3.000000 9.749850e+04
                                                   0.920000
                                                                  3447.000000
           50%
                   25.000000 4.301500e+05
                                                   5.990000
                                                                  9372.000000
                  131.000000 1.486143e+06
           75%
                                                  16.620000
                                                                 24874.000000
           max 22338.000000 4.380521e+07
                                                 224.970000
                                                                126352.000000
In [9]:
         #frequency table for age
          my_tab = pd.crosstab(index=df["age"],
                                                       # Make a crosstab
                                  columns="count")
                                                                          # Name the count column
         my_tab
Out[9]:
               col_0 count
                age
```

number of suicides in top countries

4642

4642

4642

4610

4642

4642

15-24 years

25-34 years

35-54 years

5-14 years

55-74 years

75+ years

the top 3 countries with the highest suicides are Russia, USA and Japan

```
In [16]: #group number of suicides by buttom 10 countries and plot it on a bar graph
df.groupby(
    by=['country'])['suicides_no'].sum().reset_index().sort_values(['suicides_no'], asce

plt.show()
```



```
In [18]: #### number of suicides vs age
plt.figure(figsize=(10,5)) # setting the figure size
ax = sns.barplot(x='age', y='suicides_no', data=df, palette='muted') # barplot
```


we find more people in the 35-54 years committing suicide followed by 55-74 years

```
In [19]: #### number of suicides vs sex
plt.figure(figsize=(8,4)) # setting the figure size
ax = sns.barplot(x='sex', y='suicides_no', data=df) # barplot
```


we find more males committing suicide compared to females

```
In [20]: #### number of suicides vs generation
plt.figure(figsize=(8,4)) # setting the figure size
ax = sns.barplot(x='generation', y='suicides_no', data=df) # barplot
```


the generation with the most suicide are the Boomers

number of suicide vs population

In [21]:

```
figure = plt.figure(figsize=(15,5))
           ax = sns.scatterplot(x=df['population'], y='suicides_no', data=df, size = "suicides_no")
                                                                                                              suicides_no
             20000
                                                                                                                 4000
                                                                                                                 8000
                                                                                                                 12000
                                                                                                                 16000
             15000
                                                                                                                 20000
           suicides_no
             10000
             5000
                                                                population
                                                                                                                   1e7
In [23]:
            # regression plot - scatter plot with a regression line
           figure = plt.figure(figsize=(50,15))
```

 $ax = sns.regplot(x='population', y='suicides_no', data=df) # regression plot - scatter p$


```
In [28]: #Here we plotting a line plot.
sns.lineplot(x='population',y='suicides_no', data=df.head(),)
```

Out[28]: <AxesSubplot:xlabel='population', ylabel='suicides_no'>

Scatter plot for Number of Suicides/100k Population Vs GDP Per Capita

```
In [29]: figure = plt.figure(figsize=(15,7))
sns.scatterplot(x='gdp_per_capita ($)', y='suicides/100k pop', data=df) # scatter plot
plt.show()
```


Looks like higher suicide rates are a bit more prevalent in countries with lower GDP Per Capita.

However, it doesn't look like there is any significant correlation between the two.

Checking the correlation among pairs of continuous variables

The darker the color the higher the correlation.

None of the attributes seem to have a correlation of real significance.

Some obvious correlations are that in a larger population, it is very likely that the number of suicides will be more in number.

Human Development Index - gdp per capita is the only pair with the high correlation.

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js s not soo high correlation

Bar plot to check Number of suicides by sex and age (three variables used to generate a single plot)

Suicides are high among Boomers, both male and female.

No.of suicides: Country Vs Sex

```
In [35]: suic_sum_m = df['suicides_no'].groupby([df['country'],df['sex']]).sum() # number of sui
    suic_sum_m = suic_sum_m.reset_index().sort_values(by='suicides_no',ascending=False) # so
    most_cont_m = suic_sum_m.head(10) # getting the top ten countries in terms of suicides

fig = plt.figure(figsize=(15,5))
    plt.title('Count of suicides for 31 years.')

sns.barplot(y='country',x='suicides_no',hue='sex',data=most_cont_m,palette='Set2');

plt.ylabel('Count of suicides')
    plt.tight_layout()
```

*In comparison to other countries with high suicide rates, Japan has a larger proportion of female suicides.

Average number of suicides across each generation for a given gender along with the confidence intervals - Point Plot

generation Z have an almost an equal number of suicides among males and females suicide among men flatuates among the men but its fairly equal among the females

distribution of population across each generation

```
In [39]: plt.figure(figsize=(15,5))
    sns.boxplot(x=df.generation, y=df['population'])
    plt.show()
```


from the boxplot distribution of population across generation is highly skewed with alot of outliers

Trend of suicide accross the years

n [42]:	df	head()										
ut[42]:		country	year	sex	age	suicides_no	population	suicides/100k pop	country- year	HDI for year	gdp_for_year (\$)	gdp_p
	0	Albania	1987	male	15- 24 years	21	312900	6.71	Albania1987	NaN	2,156,624,900	
	1	Albania	1987	male	35- 54 years	16	308000	5.19	Albania1987	NaN	2,156,624,900	
	2	Albania	1987	female	15- 24 years	14	289700	4.83	Albania1987	NaN	2,156,624,900	
	3	Albania	1987	male	75+ years	1	21800	4.59	Albania1987	NaN	2,156,624,900	
	4	Albania	1987	male	25- 34 years	9	274300	3.28	Albania1987	NaN	2,156,624,900	
In [43]:		[["year .t.show(uicide	s_no"]].groupby([["year"])	.sum().plot(figsize=(1	.5,5))	

In [44]: df[["year", "population"]].groupby(["year"]).sum().plot(figsize=(15,5))
 plt.show()

In [45]: df[["year", "suicides/100k pop"]].groupby(["year"]).sum().plot(figsize=(15,5))
 plt.show()

we find suicides/100k pop peaking in 1995

```
In []:
In []:
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

In []:	
In []:	