EE-222: Microprocessor Systems

AVR Timers

Instructor: Dr. Arbab Latif

Timers

Timers: Why do we need them?

- Provide accurately timed delays or actions independent of code execution time
- How are Timers used?
 - Accurate delay
 - Read the timer, store value as K. Loop until timer reaches the delay value.
 - Schedule important events
 - Setup an Output Compare to trigger an interrupt at a precise time
 - Measure time between events
 - When event#1 happens, store timer value as K
 - When event#2 happens, read timer value and subtract K
 - The difference is the time elapsed between the two events

A Generic Timer/Counter

- Delay generating
- Counting
- Wave-form generating

- Counting Event: Connect the external source to the clock pin of the counter register
- Generate time delays: Connect oscillator to the clock pin of the counter

Overview of Atmega16 Timers

	Timer 0	Timer 1	Timer 2
Overall	- 8-bit counter - 10-bit prescaler	- 16-bit counter - 10-bit prescaler	- 8-bit counter - 10-bit prescaler
Functions	- PWM - Frequency generation - Event counter - Output compare	- PWM - Frequency generation - Event counter - Output compare 2 channels - Input capture	- PWM - Frequency generation - Event counter - Output compare
Operation modes	- Normal mode - Clear timer on compare match - Fast PWM - Phase correct PWM	- Normal mode - Clear timer on compare match - Fast PWM - Phase correct PWM	- Normal mode - Clear timer on compare match - Fast PWM - Phase correct PWM

Timer Registers

- TCNTn (Timer/Counter register)
- TOVn (Timer Overflow flag)
- Oscillator

 External source

 Counter/Timer

 Counter register

 Flag
- TCCRn (Timer Counter control register)
- OCRn (output compare register)
- OCFn (output compare match flag)

Programming Timer 0

Basic Registers: AVR Timer/Counter 0

TCNT0 Register

- TCNT0 [Timer/Counter] Register:
 - R/W
 - ZERO upon RESET
 - Contents of timer/counter can be accessed through this register.

TOV0 Flag

- TOV0 [Timer Overflow] Flag Register:
 - TOV0 sets, when a timer overflows

OCR0 Flag

OCR0 [Output Compare] Flag:

255

OCR

timer value.

 The content of the OCR0 is compared with the contents of the TCNT0

 OCR0 flag is set when both are equal.

TCCR0 Register

- TCCR0 [Timer/Counter Control] Register:
 - Used for various settings (see next)

TCCR0: Clock Selector

TCCR0: Mode Selector

Timer Registers in the I/O Register Memory

Address		Name	Add	ress	Name			
Mem.	1/0	Name	Mem.	1/0	Name			
\$20	\$00	TWBR	\$36	\$16	PINB			
\$21	\$01	TWSR	\$37	\$17	DDRB			
\$22	\$02	TWAR	\$38	\$18	PORTB			
\$23	\$03	TWDR	\$39	\$19	PINA			
\$24	\$04	ADCL	\$3A	\$1A	DDRA			
\$25	\$05	ADCH \$3B \$1B		\$1B	PORTA			
\$26				1				
\$27	Accessing Timer Registers using IN and							
\$28	OUT instructions i.e							
420		Instructio	ns i.e					
\$29	_ 001							
	001	LDI R	R20, 25					
\$29	001	LDI R		20				
\$29 \$2A	SUC SUC	LDI R	R20, 25	20 \$21	WDTCR			
\$29 \$2A \$2B		LDI R OUT	R20, 25 TCNT0, R		WDTCR			
\$29 \$2A \$2B \$2C	\$00	LDI R OUT	R20, 25 TCNT0, R	\$21				
\$29 \$2A \$2B \$2C \$2D	\$0C \$0D	LDI R OUT UDR SPCR	R20, 25 TCNT0, R \$41 \$42	\$21 \$22	ASSR			
\$29 \$2A \$2B \$2C \$2D \$2E \$2F \$30	\$0C \$0D \$0E	LDI R OUT UDR SPCR SPSR	R20, 25 TCNT0, R \$41 \$42 \$43	\$21 \$22 \$23	ASSR OCR2			
\$29 \$2A \$2B \$2C \$2D \$2E \$2F	\$0C \$0D \$0E \$0F	LDI R OUT UDR SPCR SPSR SPDR	R20, 25 TCNT0, R \$41 \$42 \$43 \$44	\$21 \$22 \$23 \$24	ASSR OCR2 TCNT2			
\$29 \$2A \$2B \$2C \$2D \$2E \$2F \$30	\$0C \$0D \$0E \$0F \$10	UDR SPCR SPSR SPDR PIND	\$41 \$42 \$43 \$44 \$45	\$21 \$22 \$23 \$24 \$25	ASSR OCR2 TCNT2 TCCR2			
\$29 \$2A \$2B \$2C \$2D \$2E \$2F \$30 \$31	\$0C \$0D \$0E \$0F \$10 \$11	LDI R OUT UDR SPCR SPSR SPDR PIND DDRD	\$41 \$42 \$43 \$44 \$45 \$46	\$21 \$22 \$23 \$24 \$25 \$26	ASSR OCR2 TCNT2 TCCR2 ICR1L			
\$29 \$2A \$2B \$2C \$2D \$2E \$2F \$30 \$31 \$32	\$0C \$0D \$0E \$0F \$10 \$11 \$12	LDI R OUT ODR SPCR SPSR SPDR PIND DDRD PORTD	\$41 \$42 \$43 \$44 \$45 \$46 \$47	\$21 \$22 \$23 \$24 \$25 \$26 \$27	ASSR OCR2 TCNT2 TCCR2 ICR1L ICR1H			

Addı	ess	Name	
Mem. I/O		Name	
\$4B	\$2B	OCR1AH	
\$4C	\$2C	TCNT1L	
\$4D	\$2D	TCNT1H	
\$4E	\$2E	TCCR1B	
\$4F	\$2F	TCCR1A	
\$50	\$30	SFIOR	
\$51	624	OCDR	
\$51	\$31	OSCCAL	
\$52	\$32	TCNT0	
\$53	\$33	TCCR0	
\$54	\$34	MCUCSR	
\$55	\$35	MCUCR	
\$56	\$36	TWCR	
\$57	\$37	SPMCR	
\$58	\$38	TIFR	
\$59	\$39	TIMSK	
\$5A	\$3A	GIFR	
\$5B	\$3B	GICR	
\$5C	\$3C	OCR0	
\$5D	\$3D	SPL	
\$5E	\$3E	SPH	
\$5F	\$3F	SREG	

Note: Although memory address \$20-\$5F is set aside for I /O registers (SFR) we can access them as I /O locations with addresses starting at \$00.

TIFR (Timer/Counter Interrupt Flag Register)

TOV0 and OCF0 are part of TIFR register

Bit	7	6	5	4	3	2	1	0
	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0
Read/Write Initial Value	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
TOV0	D0 0 =	Time Timer0 d		ow flag bi	t			
	1 = Timer0 has overflowed (going from \$FF to \$00).							
OCF0	D1 Timer0 output compare flag bit							
	0 = compare match did not occur.							
	1 = compare match occurred.							
TOV1	D2	Time	rl overflo	w flag bi	t			
OCF1B	D3	Time	r1 output	compare	B match f	lag		
OCF1A	D4	D4 Timer1 output compare A match flag						
ICF1	D5	1 1						
TOV2	D6	Time	r2 overflo	w flag				
OCF2	D 7			_	match flag	g		

Overall: Timer 0 Hardware Organization

Class Activity

- Find the value of TCCR0 if we want to program Timer0 in:
 - Normal Mode
 - No prescaler
 - Use AVR's Crystal Oscillator for the clock source

Sol:

Steps to Program Timer 0 in Normal Mode

Normal mode

TOV0: 1

Steps to Program Timer0 in Normal Mode

- 1. Load the TCNTO with the initial count value.
- 2. Configure timer/counter mode through TCCR0 register.
- 3. Keep monitoring the timer overflow flag (TOV0):
 - Get out of the loop when TOV0 becomes high
- 4. Stop the timer by disconnecting the clock source:
 - LDI R20, 0x00
 - TCCR0,R20
- 5. Clear the TOV0 flag for the next round.
- 6. Go back to Step 1 to load TCNT0 again.

Timer 0 Demo

- 1. Load the TCNT0
- 2. Configure TCCR0 register
- 3. Monitor TOV0
- 4. Stop the timer
- 5. Clear the TOV0

```
LDI R20, 0xF2
OUT TCNTO, R20
LDI R20, 0x01
OUT TCCR0, R20
AGAIN: IN R20, TIFR
       SBRS R20, TOV0
       RJMP AGAIN
LDI R20,0x0
OUT TCCR0, R20
LDI R20,0x01
OUT TIFR, R20
```

In example 1 calculate the delay. XTAL = 10 MHz.

Solution 1 (inaccurate):

1) Calculating T:

$$T = 1/f = 1/10M = 0.1 \mu s$$

2) Calculating num of machine cycles:

$$$100$$
 $-$F2$
 $$0E = 14$

3) Calculating delay

```
14 * 0.1 \mu s = 1.4 0 \mu s
```

```
R16,0x20
         LDI
                  DDRB,5 ; PB5 as an output
         SBI
                  R17,0
        LDI
        OUT
                  PORTB, R17
                  R20,0xF2
BEGIN:
         LDI
                  TCNT0,R20
                                    ;load timer0
         OUT
                  R20,0x0
         LDI
                  TCCR0A,R20
        OUT
                  R20,0x01
         LDI
        OUT
                  TCCR0B,R20; Normal mode, inter. clk
                  TIFR0,TOV0 ;if TOV0 is set skip next
AGAIN:
         SBIS
                  AGAIN
         RJMP
                  R20,0x0
         LDI
        OUT
                  TCCR0B,R20
                                    ;stop Timer0
                                    ;R20 = 0x01
                  R20, (1<<TOV0)
         LDI
                  TIFR0,R20
                                    ;clear TOV0 flag
         OUT
        EOR
                  R17,R16
                                    ;toggle D5 of R17
                                    ;toggle PB5
        OUT
                  PORTB, R17
        RJMP
                  BEGIN
```

Accurate calculating

Other than timer, executing the instructions consumes time; so if we want to calculate the accurate delay a program causes we should add the delay caused by instructions to the delay caused by the timer

	LDI	R16,0x20		
	SBI	DDRB,5		
	LDI	R17,0		
	OUT	PORTB,R17		
BEGIN:	LDI	R20,0xF2		1
	OUT	TCNT0,R20		1
	LDI	R20,0x00		1
	OUT	TCCR0A,R20	1	
	LDI	R20,0x01		1
	OUT	TCCR0B,R20	1	
AGAIN:	SBIS	TIFR0,TOV0		1/2
	RJMP	AGAIN		2
	LDI	R20,0x0		1
	OUT	TCCR0B,R20	1	
	LDI	R20,0x01		1
	OUT	TIFRO,R20		1
	EOR	R17,R16		1
	OUT	PORTB,R17		1
	RJMP	BEGIN		2
				18

Delay caused by timer = $14 * 0.1 \mu s = 1.4 \mu s$

Delay caused by instructions = $18 * 0.1 \mu s = 1.8$

Total delay = 3.2 μ s \Rightarrow wave period = 2*3.2 μ s = 6.4 μ s \Rightarrow wave frequency = 156.25 KHz

Finding values to be loaded into the Timer

- 1. Calculate the period of clock source.
 - Period = 1 / Frequency
 - E.g. For XTAL = 16 MHz \rightarrow T = 1/16MHz
- 2. Divide the desired time delay by period of clock.
- 3. Perform 256 n, where n is the decimal value we got in Step 2.
- 4. Set TCNT0 = 256 n

Example

• Assuming XTAL = 8 Mhz, write a program to generate a square wave with a period of 12.5 us on PIN PORTB.3.

Solution

For a square wave with $T=12.5~\mu s$ we must have a time delay of 6.25 μs . Because XTAL = 8 MHz, the counter counts up every 0.125 μs . This means that we need 6.25 μs / 0.125 μs = 50 clocks. 256 - 50 = 206 = 0xCE. Therefore, we have TCNT0 = 0xCE.

```
.INCLUDE "M32DEF.INC"
                       ;add its definition from Example 9-3
      INITSTACK
     LDI
           R16,0x08
          DDRB, 3
                       ;PB3 as an output
     SBI
          R17,0
     LDI
          PORTB, R17
     OUT
BEGIN: RCALL DELAY
                      ;toggle D3 of R17
     EOR
          R17,R16
     OUT
           PORTB, R17
                      ;toggle PB3
     RJMP BEGIN
      ----- Timer0 Delay
          R20.0xCE
DELAY:LDI
                       ;load Timer0
          TCNTO, R20
     OUT
      LDI
           R20,0x01
                       ;TimerO, Normal mode, int clk, no prescaler
           TCCR0,R20
      OUT
           R20,TIFR
                       :read TIFR
AGAIN: IN
                       ;if TOVO is set skip next instruction
      SBRS R20, TOV0
      RJMP
           AGAIN
           R20,0x00
      LDI
      OUT
           TCCR0,R20
                       ;stop Timer0
           R20, (1<<TOV0)
      LDI
                       ;clear TOVO flag
           TIFR, R20
      OUT
      RET
```

Prescalar and Generating a Large Time Delay

- Time delay depends on:
 - Crystal Frequency
 - Timer's 8-bit register
- Both are fixed
- How to generate large time delay?
 - Use prescalar to increase the delay by reducing the clock time period

Prescalar and Generating a Large Time Delay

Example

Find the timer's clock frequency and its period for various AVR-based systems, with the following crystal frequencies. Assume that a prescaler of 1:64 is used.

(a) 8 MHz

(b) 16 MHz

(c) 10 MHz

Solution:

- (a) $1/64 \times 8$ MHz = 125 kHz due to 1:64 prescaler and T = 1/125 kHz = 8 μ s
- (b) $1/64 \times 16$ MHz = 250 kHz due to prescaler and T = 1/250 kHz = 4 μ s
- (c) $1/64 \times 10$ MHz = 156.2 kHz due to prescaler and T = 1/156 kHz = 6.4 μ s

Example

Find the value for TCCR0 if we want to program Timer0 in Normal mode with a prescaler of 64 using internal clock for the clock source.

Solution:

From Figure 9-5 we have TCCR0 = 0000 0011; XTAL clock source, prescaler of 64.

Recommended Reading

- The AVR Microcontroller and Embedded Systems: Using Assembly and C by Mazidi et al., Prentice Hall
 - Chapter-9: 9.1
- Make sure you attempt and understand all the examples in the book.

THANK YOU

