Editor: Mohammad Sanad AlTaher

Communication Systems: Transforms & Equations

Content:

- Fourier Transform Properties
- Fourier Transform Pairs
- Trigonometric Identities
- Integration
- Hilbert Transform
- Misc. Equations

Fourier Transform Properties:

Property	Mathematical Description				
1. Linearity	$ag_1(t) + bg_2(t) \rightleftharpoons aG_1(f) + bG_2(f)$				
	where a and b are constants				
2. Time scaling	$g(at) \rightleftharpoons \frac{1}{ a } G\left(\frac{f}{a}\right)$				
	where a is a constant				
3. Duality	If $g(t) \rightleftharpoons G(f)$,				
	then $G(t) \rightleftharpoons g(-f)$				
4. Time shifting	$g(t-t_0) \rightleftharpoons G(f) \exp(-j2\pi f t_0)$				
5. Frequency shifting	$\exp(j2\pi f_c t)g(t) \rightleftharpoons G(f - f_c)$				
6. Area under $g(t)$	$\int_{-\infty}^{\infty} g(t)dt = G(0)$				
7. Area under $G(f)$.	$g(0) = \int_{-\infty}^{\infty} G(f)df$				
8. Differentiation in the time domain $\frac{d}{dt}g(t) \rightleftharpoons j2\pi f G(f)$					
9. Integration in the time domain	$\int_{-\infty}^{t} g(\tau)d\tau \rightleftharpoons \frac{1}{j2\pi f}G(f) + \frac{G(0)}{2}\delta(f)$				
10. Conjugate functions	If $g(t) \rightleftharpoons G(f)$,				
	then $g^*(t) \rightleftharpoons G^*(-f)$				
11. Multiplication in the time domain $g_1(t)g_2(t) \rightleftharpoons \int_{-\infty}^{\infty} G_1(\lambda)G_2(f-\lambda)d\lambda$					
12. Convolution in the time domain	in $\int_{-\infty}^{\infty} g_1(\tau)g_2(t-\tau)d\tau \rightleftharpoons G_1(f)G_2(f).$				
Operation	g(t) $G(f)$				
Superposition	$g_1(t) + g_2(t)$ $G_1(f) + G_2(f)$				
Scalar multiplication	kg(t) $kG(f)$				
Duality	G(t) $g(-f)$				
Time scaling	$g(at) \qquad \frac{1}{ a }G\left(\frac{f}{a}\right)$				
Time shifting	$g(t-t_0) \qquad G(f)e^{-j2\pi f t_0}$ $g(t)e^{j2\pi f_0 t} \qquad G(f-f_0)$				
Frequency shifting Time convolution	$g(t)e^{j2\pi t f_0 t}$ $G(f-f_0)$ $g_1(t) * g_2(t)$ $G_1(f)G_2(f)$				
Frequency convolution	$g_1(t) * g_2(t)$ $G_1(f) * G_2(f)$ $G_1(f) * G_2(f)$				
Time differentiation	$\frac{d^n g(t)}{dt^n} \qquad (j2\pi f)^n G(f)$				
Time integration	$\int_{-\infty}^{t} g(x) dx \qquad \frac{G(f)}{j2\pi f} + \frac{1}{2}G(0)\delta(f)$				

Fourier Transform Pairs:

v(t)	V(f)
$\frac{x(t)}{\delta(t)}$	X(f)
	$\delta(f)$
$\frac{1}{\delta(t-t_0)}$	
	$e^{-j2\pi f t_0}$
$e^{j2\pi f_0 t}$	$\delta(f-f_0)$
$\cos(2\pi f_0 t)$	$\frac{1}{2}\Big[\delta(f-f_0)+\delta(f+f_0)\Big]$
$\sin(2\pi f_0 t)$	$\frac{1}{2} \left[\delta(f - f_0) + \delta(f + f_0) \right]$ $\frac{1}{2j} \left[\delta(f - f_0) - \delta(f + f_0) \right]$
rect(t)	sinc(f)
sin c(t)	rect(f)
$\Lambda(t)$	$\sin c^2(f)$
$\sin c^2(t)$	$\Lambda(f)$
$e^{-\alpha t}u(t), \alpha > 0$	$\frac{1}{\alpha + j2\pi f}$
$te^{-\alpha t}u(t), \alpha > 0$	$\frac{\alpha + j2\pi f}{1 \left(\alpha + j2\pi f\right)^2}$
$e^{-\alpha t }, \alpha > 0$	$\frac{2\alpha}{(\alpha^2 + (2\pi f)^2)}$
$e^{-\pi t^2}$	$e^{-\alpha f^2}$
sgn(t)	1
u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
$\frac{d}{dt}\delta(t)$	j2πf
$\frac{\frac{d}{dt}\delta(t)}{\sum_{n=-\infty}^{\infty}\delta(t-nT_0)}$	$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta \left(f - \frac{n}{T_0} \right)$

Time Function	Fourier Transform
$\delta(t)$	1
1	$\delta(f)$
$\delta(t-t_0)$	$\exp(-j2\pi f t_0)$
$\exp(j2\pi f_c t)$	$\delta(f-f_c)$
$\cos(2\pi f_c t)$	$\frac{1}{2}[\delta(f-f_c)+\delta(f+f_c)]$
$\sin(2\pi f_c t)$	$\frac{1}{2j} \left[\delta(f - f_c) - \delta(f + f_c) \right]$
sgn(t)	$\frac{1}{j\pi f}$
$\frac{1}{\pi t}$	$-j\operatorname{sgn}(f)$
u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$
$\sum_{n=-\infty}^{\infty} \delta(t-nT_0)$	$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} \delta \left(f - \frac{n}{T_0} \right)$
$\operatorname{rect}\left(\frac{t}{T}\right)$	$T\operatorname{sinc}(fT)$
$\operatorname{sinc}(2Wt)$	$\frac{1}{2W}\operatorname{rect}\left(\frac{f}{2W}\right)$
$\exp(-at)u(t), \qquad a > 0$	$\frac{1}{a+j2\pi f}$
$\exp(-\pi t^2)$	$\exp(-\pi f^2)$
$\begin{cases} 1 - \frac{ t }{T}, & t < T \\ 0, & t \ge T \end{cases}$	$T \operatorname{sinc}^2(fT)$

$$g(t)$$
 $G(f)$

 $\sigma\sqrt{2\pi}e^{-2(\sigma\pi f)^2}$

Trigonometric Identities:

$\sin^2 heta + \cos^2 heta = 1$	$1+\tan^2\theta=\sec^2\theta$
$\sin(\frac{\pi}{2} - \theta) = \cos \theta$	$\cos(\frac{\pi}{2} - \theta) = \sin \theta$
$\sec(rac{\pi}{2}- heta)=\csc heta$	$\csc(\frac{\pi}{2} - \theta) = \sec \theta$
$\sin(-\theta) = -\sin\theta$	$\cos(-\theta) = \cos \theta$
$\sin 2 heta = 2\sin heta\cos heta$	$\cos 2\theta = \cos^2 - \sin^2 = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta$
$\sin^2 \theta = rac{1-\cos 2 heta}{2}$	$\cos^2 heta = rac{1+\cos 2 heta}{2}$
$\sin\alpha+\sin\beta=2\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})$	$\sin lpha - \sin eta = 2\cos(rac{lpha + eta}{2})\sin(rac{lpha - eta}{2})$
$\cos lpha + \cos eta = 2 \cos(rac{lpha + eta}{2}) \cos(rac{lpha - eta}{2})$	$\cos lpha - \cos eta = -2 \sin(rac{lpha + eta}{2}) \sin(rac{lpha - eta}{2})$
$\sin lpha \sin eta = rac{1}{2} [\cos (lpha - eta) - \cos (lpha + eta)]$	$\cos lpha \cos eta = rac{1}{2} [\cos (lpha - eta) + \cos (lpha + eta)]$
$\sin lpha \cos eta = rac{1}{2} [\sin (lpha + eta) + \sin (lpha - eta)]$	$1+\cot^2=\csc^2$
$e^{j heta} = \cos heta + j \sin heta$	$\cos heta = rac{e^{j heta} + e^{-j heta}}{2}$
$e^{-j heta} = \cos heta - j\sin heta$	$\sin heta = rac{e^{j heta} - e^{-j heta}}{2j}$
$\tan(\frac{\pi}{2}-\theta)=\cot\theta$	$\cot(rac{\pi}{2}- heta)= an heta$
$\tan(-\theta) = -\tan\theta$	
$ an^2 heta=rac{1-\cos2 heta}{1+\cos2 heta}$	$ an 2 heta = rac{2 an heta}{1-tan^2 heta}$

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$

$$\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$$

Common Integrals:

$\int \cos(x)dx$	$\sin(x)$
$\int \sin(x)dx$	$-\cos(x)$
$\int x \cos(x) dx$	$\cos(x) + x\sin(x)$
$\int x \sin(x) dx$	$\sin(x) - x\cos(x)$
$\int x^2 \cos(x) dx$	$2x\cos(x) + (x^2 - 2)\sin(x)$
$\int x^2 \sin(x) dx$	$2x\sin(x) - (x^2 - 2)\cos(x)$
$\int e^{cx} dx$	$\frac{e^{\alpha \alpha}}{a}$
$\int xe^{ax} dx$	$e^{\alpha x} \left[\frac{x}{a} - \frac{1}{a^2} \right]$
$\int x^2 e^{\alpha x} dx$	$e^{ax} \left[\frac{x^2}{a} - \frac{2x}{a^2} - \frac{2}{a^3} \right]$
$\int \frac{dx}{\alpha + \beta x}$	$\frac{1}{\beta}\ln \alpha+\beta x $
$\int \frac{dx}{\alpha^2 + \beta^2 x^2}$	$\frac{1}{\alpha\beta}\tan^{-1}(\frac{\beta x}{\alpha})$

Integration Properties:

Table of Properties of Integrals				
	Rule	Conditions		
1	$\int adx=ax$			
2 Homogeniety	$\int af(x)dx=a\int f(x)dx$			
3 Associativity	$\int (f\pm g\pm h\pm\cdots)\ dx = \int fdx \pm \int gdx \pm \int hdx \pm\cdots$			
4 Integration by Parts	$\int_a^b fg'dx = [fg]_a^b - \int_a^b gf'dx$			
4 General Integration by Parts	$\int f^{(n)}gdx = f^{(n-1)}g' - f^{(n-2)}g'' + \ldots + (-1)^n \int fg^{(n)}dx$			
5	$\int f(ax) dx = \frac{1}{a} \int f(x) dx$			
6 Substitution Rule	$\int g\{f(x)\} dx = \int g(u) \frac{dx}{du} du = \int \frac{g(u)}{f'(x)} du$	u=f(x)		
7	$\int x^ndx=\frac{x^{n+1}}{n+1}$	n eq -1		
8	$\int \frac{1}{x} dx = \ln x $			
9	$\int e^x dx = e^x$			
10	$\int a^x dx = rac{a^x}{\ln a }$	a eq 1		
Notes:	1. f, g, h are functions of x 2. a, n are constants. 3. The constant of integration, C has been omitted from this table. It should be included in the	e working of the equation if applicable.		

Hilbert Transform:

Signal $s(t)$	Hilbert transform $\mathcal{H}\{s\}(t)$
$\sin(t)$	$-\cos(t)$
$\cos(t)$	$\sin(t)$
$\frac{1}{t^2+1}$	$\frac{t}{t^2+1}$
sinc(t) $\frac{\sin(t)}{t}$	$\frac{1-\cos(t)}{t}$
$rect(t)$ $\sqcap(t)$	$rac{1}{\pi} \ln \left rac{t + rac{1}{2}}{t - rac{1}{2}} ight $
$\delta(t)$	$\frac{1}{\pi t}$
$\chi_{[a,b]}(x)$	$rac{1}{\pi}\log\Bigl rac{x-a}{x-b}\Bigr $

Linear AM Modulation:

Type of Modulation	In-Phase Component s _I (t)	Quadrature Component s _Q (t)	Comments
DSB-SC	m(t)	0	m(t) = message signal
SSB: ^a	$\frac{1}{2}m(t)$	$\frac{1}{2}\hat{m}(t)$	$\hat{m}(t) = \text{Hilbert transform of } m(t)$
(a) Upper sideband transmitted		7	m(t) = Thibert transform of m(t)
(b) Lower sideband transmitted	$\frac{1}{2}m(t)$	$-\frac{1}{2}\hat{m}(t)$	
VSB:			
(a) Vestige of lower sideband transmitted	$\frac{1}{2}m(t)$	$\frac{1}{2}m'(t)$	$m'(t)$ = output of the filter of frequency response $H_O(f)$
(b) Vestige of upper sideband transmitted	$\frac{1}{2}m(t)$	$-\frac{1}{2}m'(t)$	due to $m(t)$. For the definition of $H_Q(f)$, see Eq. (2.16)

Where $S(t) = A_c \cdot S_I(t) \cdot \cos(2\pi f_c t) - A_c \cdot S_Q(t) \cdot \sin(2\pi f_c t)$,

Example: LSSB S(t)

$$S(t) = A_c \cdot \left(\frac{1}{2}m(t)\right) \cdot \cos(2\pi f_c t) - A_c \cdot \left(\frac{-1}{2}\widehat{m}(t)\right) \cdot \sin(2\pi f_c t) = \frac{A_c}{2}m(t) \cdot \cos(2\pi f_c t) + \frac{A_c}{2}\widehat{m}(t) \cdot \sin(2\pi f_c t)$$

Misc. Equations:

	$g_{+}(t) = g(t) + j\hat{g}(t)$	$g_{-}(t)$	=g(t)-jg	$\hat{j}(t)$	$\hat{g}(t)$): Hilbert transform of $g(t)$
Pre-envelope:	$\lambda a(t) \equiv a_{1}(t) + a_{2}(t)$		$g_+(t)$: pre-envelope for positive frequencies $g(t)$: pre-envelope for negative frequencies			
Complex envelope:	$\tilde{g}(t) = g_{+}(t) \cdot e^{-j2\pi f_{c}t}$		$g_+(t) = \tilde{g}(t) \cdot e^{j2\pi}$		$g(t) = Re\{\tilde{g}(t) \cdot e^{j2\pi f_c t}\}$	
(g(t)) is a	$g(t) - g_+(t) \cdot e^{-y-yt}$	$g_+(t) = g(t) \cdot t$		e,,		$g(t) = Re\{g_+(t)\}$
narrow-band signal)	$\tilde{g}(t) = g_I(t) + jg_Q(t)$		The complex envelope of a bandpass signal is a low-pass signal.			bandpass signal is a low-
	$g(t) = g_I(t)\cos(2\pi f_c t) - g_Q(t)\sin(2\pi f_c t)$		$g_I(t)$: In-phase component $g_Q(t)$: Quadrature component			
	Natural Envelope: $a(t) = \sqrt{[g_I(t)]^2 + [g_Q(t)]^2}$			Phase of $g(t)$:		
Canonical Signal Representation:			$\phi(t) = \tan^{-1}\left(\frac{g_Q(t)}{g_I(t)}\right)$			
	$\tilde{g}(t) = a(t) \cdot e^{j\phi(t)}$					
	$g(t) = a(t)\cos(2\pi f_c t + \epsilon)$	φ(t))				