Bài 1. Tính đao hàm của các hàm số sau:

1.
$$f(x) = x \ln x - x; (x > 0)$$
 2. $f(x) = \ln^2 (1 + x^2)$ 3. $y = x^{\cos x}; x > 0$

2.
$$f(x) = \ln^2(1+x^2)$$

3.
$$y = x^{\cos x}; x > 0$$

4.
$$f(x) = 2^{x^2}$$

5.
$$f(x) = e^{x^2} (\sin x + \cos x)$$
 6. $f(x) = \sqrt{1 + \arcsin x}$

6.
$$f(x) = \sqrt{1 + \arcsin x}$$

7.
$$f(x) = \sqrt{1 + \sin 2x}$$

8.
$$f(x) = (\arcsin x)^2$$

7.
$$f(x) = \sqrt{1 + \sin 2x}$$
 8. $f(x) = (\arcsin x)^2$ 9. $y = \frac{\sin x + \cos x}{1 - \cos x}$

10.
$$y = \frac{\arccos x}{1 - x^2}$$

11.
$$f(x) = \ln \sqrt{1 + x + x^2}$$

11.
$$f(x) = \ln \sqrt{1 + x + x^2}$$
 12. $f(x) = \ln \sqrt{\frac{1 + x^2}{1 - x^2}}$

Bài 2. Tính đao hàm của các hàm số sau:

1.
$$f(x) = \begin{cases} 1-x & , x < 1 \\ (1-x)(2-x) & , 1 \le x \le 2 \\ 2-x & , x > 2 \end{cases}$$
 2. $f(x) = \begin{cases} x^2 - 3x + 1 & , x > 1 \\ 2 + 2x & , x \le 1 \end{cases}$

2.
$$f(x) = \begin{cases} x^2 - 3x + 1 & , x > 1 \\ 2 + 2x & , x \le 1 \end{cases}$$

3.
$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

4.
$$f(x) = x|x|$$
.

5.
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}; x \neq 0 \\ 0; x = 0 \end{cases}$$

6.
$$f(x) = \begin{cases} (x-a)^2 (x-b)^2; x \in [a,b] \\ 0; x \in [a,b] \end{cases}$$
.

Bài 3. Với điều kiện nào của hàm số: $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$; $n \in \mathbb{N}$. Thì:

- 1. Hàm số liên tục tại x=0.
- 2. Hàm số khả vi tai x=0.
- 3. Hàm số khả vi liên tục tại x=0.

Bài 4. Xác định a,b để hàm số sau $f(x) = \begin{cases} \sin x + a & ; x < 0 \\ bx & ; x > 0 \end{cases}$ khả vi tại x = 0.

Bài 5. Chứng minh rằng hàm $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}$ khả vi với $\forall x \in \mathbb{R}$, tuy nhiên f'(x) không

liên tục tại x = 0.

Bài 6. Tìm vi phân của các hàm số sau:

1.
$$y = \frac{1}{a} \arctan \frac{x}{a}, a \neq 0$$

2.
$$y = \arcsin \frac{x}{a}; a \neq 0$$

3.
$$y = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right|; a \neq 0$$
 4. $y = \ln \left| x + \sqrt{x^2 + a} \right|$

$$4. \ \ y = \ln\left|x + \sqrt{x^2 + a}\right|$$

Bài 7. Sử dụng công thức $f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \Delta x$ để tính gần đúng:

1.
$$\tan 46^{\circ}$$

3.
$$\sqrt{64,5}$$

5.
$$\sin 88^{\circ}$$

7.
$$\sin 29^{\circ}$$

10.
$$\sqrt{3,99}$$

11.
$$\sqrt{\frac{2,037^2-3}{2,037^2+5}}$$

Bài 8. Tính đạo hàm cấp n của các hàm số sau:

1.
$$y = \sin x$$

$$2. \ y = \sin(ax + b)$$

3.
$$y = \cos x$$

3.
$$y = \cos x$$
 4. $y = \cos(ax + b)$

5.
$$y = e^x$$

6.
$$y = e^{ax+b}$$

7.
$$y = \frac{1}{ax + b}$$

7.
$$y = \frac{1}{ax + b}$$
 8. $y = \ln|ax + b|$

9.
$$y = \frac{3x}{x^2 - 3x + 2}$$

10.
$$y = \frac{4x-3}{x^2+4x-12}$$
 11. $y = (x^2+x+1)e^x$

11.
$$y = (x^2 + x + 1)e^{-x^2}$$

12.
$$f(x) = \sin 3x \cdot \cos 2x$$
 13. $f(x) = \frac{1}{x^2 - 4}$

13.
$$f(x) = \frac{1}{x^2 - 4}$$

$$14. \ f(x) = \sin^2 x$$

15.
$$f(x) = (x^2 + 4)e^{2x}$$

16.
$$f(x) = x^2 \sin 2x$$
 17. $f(x) = \frac{x^2}{1 - x^2}$

17.
$$f(x) = \frac{x^2}{1-x}$$

18.
$$f(x) = \frac{x^2 - x}{x + 4}$$

19.
$$f(x) = \frac{1+x}{\sqrt{1-x}}$$
 20. $y = \frac{x}{x^2-1}$

20.
$$y = \frac{x}{x^2 - 1}$$

21.
$$y = \frac{1}{x^2 - 3x + 2}$$

22.
$$y = e^{ax} \sin(bx + c)$$
 23. $y = \ln|x^2 + x - 2|$

23.
$$y = \ln |x^2 + x - 2|$$

24.
$$y = \ln |x^2 + 5x + 6|$$
 25. $y = \ln \left| \frac{x - 2}{x + 2} \right|$

25.
$$y = \ln \left| \frac{x-2}{x+2} \right|$$

Bài 9.

1. Tính đạo hàm cấp 4 của hàm $y = x^3 e^{4x+5}$

Vũ Thị Hương Giang

2. Tính đạo hàm cấp 5 của
$$y = \frac{x^3 - 2x + 1}{x^2 - 5x - 14}$$

3. Tính đạo hàm cấp 3 của $f(x) = \cos 2x \cdot \cos 4x$

Bài 10. Tính đạo hàm cấp cao:

a.
$$y = \frac{x^2}{1-x}$$
, tính $y^{(8)}$

a.
$$y = \frac{x^2}{1-x}$$
, tính $y^{(8)}$ b. $y = \frac{1+x}{\sqrt{1-x}}$, tính $y^{(100)}$

c.
$$y = x^2 e^{2x}$$
, tính $y^{(10)}$

c.
$$y = x^2 e^{2x}$$
, tính $y^{(10)}$ d. $y = x^2 \sin x$, tính $y^{(50)}$

Bài 11. Tìm khai triển Mac Laurin của các hàm số sau:

1.
$$f(x) = e^{x^2}$$

2.
$$f(x) = \frac{1}{3x-1}$$

3.
$$f(x) = \frac{1}{(x+1)(x-2)}$$

Bài 12. Viết khai triển Mac Laurin với phần dư dạng Peano cho các hàm sau:

1.
$$f(x) = \tan x$$
 đến x^3

2.
$$f(x) = \sin(\sin x)$$
 đến x^5 .

Bài 13. Viết đa thức sau dưới dạng lũy thừa của x-2

1.
$$f(x) = x^4 - 5x^3 + 6x^2 - x + 9$$

2.
$$f(x) = -2x^4 + 11x^3 - 18x^2 + 8x - 1$$

Bài 14. Dùng quy tắc L'Hospital để tính:

$$1. \quad \lim_{x \to 0} \frac{\sin x - x}{x^3}$$

$$2. \lim_{x\to 0^+} \frac{\ln\sin x}{\ln(1-\cos x)}$$

2.
$$\lim_{x \to 0^{+}} \frac{\ln \sin x}{\ln (1 - \cos x)}$$
 3. $\lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1} \right)$

4.
$$\lim_{x\to 0} \frac{1}{x} \left(\frac{1}{x} - \cot x \right)$$

4.
$$\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{x} - \cot x \right)$$
 5. $\lim_{x \to +\infty} \left(x + \sqrt{x^2 + 1} \right)^{\frac{1}{\ln x}}$ 6. $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$

$$6. \lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{\frac{1}{x^2}}$$

Bài 15. Khai triển Taylor để tính các giới hạn sau:

1.
$$\lim_{x \to 0} \frac{\sin x - x \cdot \sqrt[3]{1 - x^2}}{x^3}$$

2.
$$\lim_{x\to 0} \frac{(1+x)^x - 1}{1-\cos x}$$

3.
$$\lim_{x\to 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}$$

4.
$$\lim_{x \to 0} \frac{\sin(\sin x) - x}{\tan x - \sin x}$$

Bài 16. Trong các công thức sau, công thức nào đúng:

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^5)$$

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^6)$$

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} + o(x^6)$$

Bài 17. Sử dụng công thức Taylor để tính đạo hàm cấp n tại x = 0 của các hàm số sau:

1.
$$y = x^3 e^x$$

2.
$$y = \arctan x$$

3.
$$y = \arcsin x$$

Bài 18. Sử dụng công thức tính gần đúng:

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{4!}$$

$$\cos x \approx 1 - \frac{x^2}{2} + \frac{x^4}{4!}$$
 $\ln(1+x) \approx x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$

Hãy tính cos 0,05 và ln(1,5) và đánh giá sai số.

Bài 19. Viết khai triển Mac Laurin của các hàm số sau đây:

a)
$$y = e^x$$

b)
$$y = \sin x$$

c)
$$y = \cos x$$

c)
$$y = \cos x$$
 d) $y = (1+x)^m$

e)
$$y = \frac{1}{1 \pm x}$$

$$f) y = \ln(1 \pm x)$$

g)
$$y = \frac{x^2 + 5}{x^2 + x - 12}$$

e)
$$y = \frac{1}{1 \pm x}$$
 f) $y = \ln(1 \pm x)$ g) $y = \frac{x^2 + 5}{x^2 + x - 12}$ h) $y = \frac{1}{x^4 - 3x^2 - 4}$

$$i) y = \ln \frac{3+x}{2-x}$$

$$k) y = \cos^3 x$$

i)
$$y = \ln \frac{3+x}{2-x}$$
 k) $y = \cos^3 x$ l) $y = x^3 - 2x^2 + 3x + 5$ theo $(x-2)$

Bài 20.

1. Khai triển $P(x) = x^3 + x - 1$ theo luỹ thừa nguyên dương của x - 1.

2. Khai triển đa thức $P(x) = x^5 + x^3 - 3x^2 + 1$ theo luỹ thừa nguyên dương của x - 1.

3. Khai triển Taylor đến cấp 2 tại điểm $x = \frac{1}{2}$ với phần dư dạng peano của hàm số f(x) = arcsinx.

4. Khai triển Taylor đến cấp 5 tại điểm x=1 với phần dư dạng peano của hàm \hat{so} f(x) = (x-1)3arccos(x-1).

5. Khai triển hàm số $f(x) = \sqrt[3]{x+7}$ theo luỹ thừa của x-1 đến bậc 3 với phần dư dạng peano.

6. Khai triển Mac – Laurin đến cấp 4 của hàm số $f(x) = \int_{0}^{x} ln(1+t)dt$.

Bài 21.

1. Khai triển Mac – Laurin của hàm số $f(x) = x^2 \sin 2x + 3$.

2. Khai triển Mac – Laurin của hàm số $f(x) = \frac{1}{2x+3}$.

Vũ Thị Hương Giang

3. Khai triển Taylor theo các luỹ thừa của x-1 đến bậc ba của hàm số $f(x) = \frac{1}{\sqrt{x}}$.

4. Khai triển Taylor theo theo luỹ thừa của x-1 đến bậc ba của hàm số $f(x) = x^x - 1$.

5. Khai triển Taylor theo theo luỹ thừa của x-2 đến bậc ba của hàm số $f(x) = \frac{x}{x-1}$.

6. Khai triển Taylor theo theo luỹ thừa của x-1 đến bậc ba của hàm số $f(x) = \ln(1-x+x^2)$.

7. Khai triển Mac – Laurin của hàm số $f(x) = e^{\frac{-x^2}{2}}$.

8. Khai triển Mac – Laurin đến luỹ thừa bậc 3 của x của hàm số $f(x) = e^{\sin x}$.

9. Khai triển Mac – Laurin của hàm số $f(x) = e^{\tan x}$ đến bậc 5 của x.

10. Khai triển Mac – Laurin của hàm số $f(x) = \frac{x^2 + 5}{x^2 + x - 12}$.

11. Khai triển Mac – Laurin của hàm số $f(x) = cos^3 x$.

12. Khai triển Taylor của hàm số $f(x) = \ln\left(\frac{(x-1)^{x-2}}{3-x}\right)$ đếp cấp 4 của x-2 với phần dư dạng Peano.

Bài 22. Sử dụng khai triển Taylor để tính giới hạn:

1.
$$\lim_{x\to 0} \frac{x - \arctan x}{x^3}$$
.

2.
$$\lim_{x\to 0} \frac{e^{x^3}-1-x^3}{\sin^6 x}$$
.

3.
$$\lim_{x\to 0} \left(\frac{1}{\ln(1-x)} - \frac{1}{x} \right)$$
.

4.
$$\lim_{x\to 0} x^2 e^{\frac{1}{x^2}}$$
.

$$5. \lim_{x \to 0} \left(\cot x - \frac{1}{x} \right)$$

6.
$$\lim_{x \to 0} \frac{x^2}{\sqrt[5]{1+5x} - x - 1}.$$

7.
$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x^3 + 3x^4}.$$

8.
$$\lim_{x\to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2} \right)$$

9. $\lim_{x\to 0} \frac{\sin x^2 - x^2}{x^5 \sin x}$.

Bài 23*. Sử dụng khai triển Taylor để chứng minh bất đẳng thức:

5. Cho x > -1. Chứng minh rằng:

Vũ Thị Hương Giang

a.
$$(1+x)^{\alpha} \ge 1+\alpha x, \alpha \in (-\infty,0) \cup (1,+\infty)$$

b.
$$(1+x)^{\alpha} \le 1 + \alpha x, \alpha \in (0,1)$$

6.
$$\forall x \ge 0, \alpha > 2: (1+x)^{\alpha} \ge 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2$$
.

7.
$$\frac{1}{x+1} > 1 - x + x^2 - x^3, \forall x > 0$$
.

8.
$$\frac{1}{x+1} < 1 - x + x^2 - x^3 + x^4, \forall x > 0$$
.

9.
$$e^x \ge 1 + x, \forall x \in \mathbb{R}$$
.

10.
$$a^x \ge 1 + x, \forall x \in \mathbb{R}^+, a \ge e$$
.

11.
$$e^x \ge 1 + x + \frac{x^2}{2}, \forall x \ge 0$$
.

12.
$$e^x \le 1 + x + \frac{x^2}{2}, \forall x \le 0$$

Bài 24. Sử dụng khai triển Taylor để tính đạo hàm cấp cao tại điểm x_0 .

1. Tính đạo hàm cấp n của hàm số: $y = x^3 e^x$ tại x = 0.

2. Cho hàm số $f(x) = \frac{x}{1+x^3}$. Tính $f^{(7)}(0)$.

3. Cho hàm số $f(x) = \sin(\sin x)$. Tính $f^{(3)}(0)$, $f^{(4)}(0)$.

4. Tính đạo hàm cấp 3 tại x = 0 của hàm số $f(x) = e^x \sin x$.

5. Tính đạo hàm cấp 3 tại x = 0 của hàm số $f(x) = \ln(1 + x + x^2)$.

6. Tính đạo hàm cấp 12 tại x = 0 của hàm số $f(x) = \frac{1}{2+x^3}$.

7. Khai triển Mac – Laurin của hàm số $f(x) = (x^3 + 1)e^{x^3}$ từ đó tính đạo hàm $f^{(2019)}(0)$.

8. Khai triển Mac – Laurin của hàm số $f(x) = (x^2 + 1)cosx$, từ đó tính đạo hàm $f^{(2020)}(0)$.

9. Khai triển Mac – Laurin của hàm số $f(x) = \ln(1+x^2)$ từ đó tính $f^{(2020)}(0)$.

Bài 25. Sử dụng khai triển taylor để tính giá trị gần đúng:

1: Khai triển Taylor hàm số $f(x) = \sqrt[5]{x+1}$ đến cấp 2 tại điểm x = 31, từ đó tính $\sqrt[5]{33}$ và đánh giá sai số.

2. Tính gần đúng $\cos \frac{\pi}{18}$ chính xác đến 0,0001.

Vũ Thị Hương Giang

2. Dùng công thức tính gần đúng $\ln(1+x) \approx x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$ để tính gần đúng $\ln(1,5)$ và đánh giá sai số.

4. Tính gần đúng: $e^{0,1}$.

Bài 26. Viết khai triển Mac Laurin đến số hạng chứa x^3 của hàm số: $f(x) = \arctan x$.

Áp dụng tính gần đúng $\arctan(0,1)$.

Áp dụng tính:
$$\lim_{x\to 0} \frac{x - \arctan x}{x^3}$$
.

Bài 27. Viết khai triển Mac laurin đến số hạng chứa x^3 của hàm số: $f(x) = \sqrt[3]{1+2x}$.

Áp dụng tính gần đúng $\sqrt[3]{1,02}$.

Bài 28. Viết khai triển Taylor đến cấp 3 của hàm số: $f(x) = \ln x$ xung quanh điểm $x_0 = 1$.

Áp dụng tính gần đúng ln(1,1).

Bài 29. Viết khai triển Mac Laurin đến cấp 3 của hàm số: $f(x) = \sqrt{1-3x}$ xung quanh điểm $x_0 = 1$.

Áp dụng tính gần đúng $\sqrt{0,7}$.

Bài 30. Viết khai triển Taylor đến cấp 3 của hàm số: $f(x) = \cos 2x$ xung quanh điểm $x_0 = 0$.

Áp dụng tính
$$\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$$
.

Bài 31. Dùng định lý Lagrange để chứng minh:

$$1. \left| \sin x - \sin y \right| \le \left| x - y \right|.$$

$$2. \left| \cos x - \cos y \right| \le \left| x - y \right|.$$

3.
$$|\tan x - \tan y| \ge |x - y|, \forall x, y \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right).$$

4.
$$\arcsin x < \frac{x}{1-x^2}, x \in (0,1)$$
.

5.
$$\arctan x < \frac{x}{1+x^2}, x > 0.$$

6. Chứng minh:
$$\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b}; a > b > 0$$
.

.