Krystian Jasionek MDL Lista 7

Wiech SCn) ornered linky usushow offers, john messe yhend n per osob svedy ydyny aling fynstele. Wtedy zavvodny, de problemella uper meden polidlos nen dua propodlem: (i-1) par aroz (n-i) par, Možem to zrobio uy bisogrec jeolne pare sposiot n i wybor dva podebroug por vordend one pares te poure. Zilustrujny metooly olla n = h.

Analogiamo meron postrpiò ella n por . Uteoly i-ter por rembrielajara mozem ny broi na nyposobor, stad

Jahrupeprechich zodanisch, chicemy polici lui problem na alua probproblem, tzn. schody vysodroświ n podrodno na dvoje mnojsych schoolsw zysodroświ (i-1) orac(n-i). Zastanowny stz, jeh zrobio to usposob jednicznaczny.

Wyserego nijmy elementy na preligtnej (X) i u le nym dohym rogh (X). Flementy (X) poineleusujny od I do n, livyc od nej nisaego stopnia. Wtody kosoba pere (X) (X) umestrny U jednym prostokycie,

teles prostolyt jest jedy ny. Stuon to product na oluoje, poolschool du'uy solusie (i-1) over (n-i), goluie ; to indehis (x), htog jest causity w wyohodony in practohace zpora (x)(x).

Zo history ny metoche obla n = 4, Niech P(n) to lieba prostolyton olle schodow wysoliosan.

Metody moremy no golimic de olo volnego n. Wtooly P(n) = = P(i-1) P(n-i).

Zameeny, že (1,3,7,13...) to kolejne poteg; dvojho zmniejsone o 1. Nozwjyten crzy bn, mech an toczą holegych poteg olody w i bri (0,13,7...) an = (1,2,4,8...). Funli, ja tvensa an to. $A(x) = 2x^{0} + 2x + \dots = \sum_{n=0}^{\infty} 2^{n} x^{n} = \frac{1}{1-2x} \text{ where } B(x) = \sum_{n=0}^{\infty} 2^{n} x^{n} - \sum_{n=0}^{\infty} x^{n} = \frac{1}{1-2x} - \frac{1}{1-x} = \frac{x}{(1-2x)(1-x)}.$

(CO,0,0,1,3,7,15...) to creat on presuntity a dute penyle w parawo, nac wijing telió clarge wn. Litroly 1000 f unlight trongo $W(x) = \frac{1}{(1-2x)(1-x)}$ $W(x) = \sqrt{(1-2x)(1-x)}$

oraz $b_0 = \ldots = b_{k-1} = 0$ jest funkcja $x^k A(x)$.

A jak otrzymać funkcję tworzącą ciągu c_n postaci $(a_k, a_{k+1}, \ldots,)$, czyli takiego że $a_n = \frac{1}{2}$

$$A(x) = \alpha_0 x^0 + \alpha_0 x^1 + \alpha_2 x^2 + \dots = \sum_{n=0}^{\infty} \alpha_n x^n$$

bn = (0,0,...,0,a,0,1,a2,...), bu = = a; , bo = ... = bu-1 = D. Polisony ise fully trong a bn jest $\beta(x) = x^h \overline{A(x)}$.

Lawordy it clary by to clay an presungty u pravo o k pory you. Wheely B (x)= = bnx = bxtb, x'+b2x+ + bu-1x + bnx $=0 \qquad \infty \qquad \text{nth} = \times k \underset{n=0}{\overset{\infty}{\sum}} a_n x^n = \times k A(x), \quad \text{otherwising policies}.$

Da ciqque Cn = (an ,an+1,...), +zn. C; = den+; cheen otynes funley, two reca. Modern to iroles usuage le prorusych elementors an i presnuge otymen ciqque leve alea Zatem moverny replised, position ciqque prelimitation

$$A(x) = \alpha \cdot x^{0} + \alpha_{1} x^{1} + \dots + \alpha_{k-1} x^{k-1}) = \alpha_{1} x^{1} + \dots + \alpha_{k-1} x^{k-1} = A(x) - \sum_{i=0}^{k-1} \alpha_{i} x^{i}$$

$$C(x) = \frac{A(x) - \sum_{i=0}^{k-1} \alpha_{i} x^{i}}{x^{k}} = \frac{A(x) - \sum_{i=0}^{k-1} \alpha_{i} x^{i}}{x^{k}}, \text{ of deriv}$$

$$C(x) = \frac{A(x) - \sum_{i=0}^{k-1} \alpha_{i} x^{i}}{x^{k}} + \text{of unly in two vary a} \quad C_{N} = (\alpha_{N}, \alpha_{N+1}, \dots)$$

- n (czyli rozkładów liczby nna sumę składników naturalnych, gdy rozkładów różniących się kolejnością nie uważamy za różne):

a) Chaen podruduo ludor nóm na olevalne sludodnýtu. Zastosujny olo tego fuduje tworące. Spracióny zapomog jednoch him bk mozny predétavió liuben. Zapuzentún ten spasob tabelleg. Zahtaolamy ze n=0 możeny predstavne lesidy listoge le juystorow wiszole.
Zawodny, de modeny reprezentavoù n jako kombinacja killu liub L podobnojak pry prytwodzie o wodowaniu rosit z ny Wadu). Jestwalsey
wymnegó liedy paraetów n modeny zaplóro i locyn funkcji tworzych leobejnych liebte, wterdy współagnnie z nestojny pry x jestwany to habie postatow. Np. oll n=3 pry h=1,2, goline Fre (x) conver Junky tuon of che of (0, ke, 2ke, 3h...)

F(x). F2(x) = (x°+x'+x²+x²+x²+x). (x°+x²+x+1...) = (...+2x³+...), zotar may oluc tolus spesoly.

Moseny tr metodogenogo ln: i ole olovohny dekomb innji liab k. W tedy liaba pohudoù liuly n to a stejza pry x u ilo cymi Punky i tranzych Fa. Takvilo cyn mosen zopisoù joko

k\	0	1	2	3	4	funlaj
1	1	1	١	١	1	, ‡,(x) = Z x"
2)	0	1	0	1	F ₂ (x)= \(\frac{2}{5}\), \(\frac{2}{5}\)
3	1	Q	0	1	Q	F3(x)= \$\frac{7}{28}\chi^3 n
4	-	9	0	0	1	Fy(x) = 2 X

$$|p(x)| = \prod_{i=1}^{\infty} |F_i(x)| = \prod_{i=1}^{\infty} \sum_{n=0}^{\infty} |\mathbf{x}^{in}| = \prod_{i=1}^{\infty} \frac{1}{1-x^i}$$

ijest to fuly a tuong co poisy as holy polastou n.

6) Modery postapti androjenni co u a). Musim tylko og vanny i stalo rožnych lub nopystych. 2ktl. Zatan u tabeli korode k more representansi tylko O i svoja pieruszą violokratnosi.

K	0	1	2	3	4		
1	1 -	1	0	0	0	$F_{1}(x)=(1+x')$	Broton sty dane le, np. admeany 2= 1+1 lub 5= 1+2+2,
,	١	ρ	1		_	188	J. T.
							enter of days la madage ?
3	1	Q	0	1	0	F3 (x)=(1+x3)	The set in the set in the second of the seco
,		_		^			
7		Ť			l l	·	

lo sostosovanta rommananta produbnego co u a) otrymjen judije tuorque

$$P(x) = \frac{\infty}{\prod_{i=1}^{\infty} (1 + x^{2i+1})}$$

C) Znōw, moung analogiane poolojsie co u a)

tylhe og voninen sigolo k Lm.

10								
K	0	1	2	3	9		m -1	M
1	1)	1	1	1	/		
2)	0	1	0	1			
3	1	Q	0	1	Ō	`		
4	I	9	0	0	1			
m-1	(0	0	0	0		1	0
ν'n	1	0	0	0	\mathcal{O}		0	\dashv

$$\begin{aligned}
F_{1}(x) &= \sum_{n=0}^{\infty} x^{n} \\
F_{2}(x) &= \sum_{n=0}^{\infty} x^{2n} \\
&\downarrow^{2}
\end{aligned}$$

Stepl funkque tworry can to
$$P(x) = \prod_{i=1}^{m-1} F_i(x) = \prod_{i=1}^{m-1} \frac{1}{1-x^i}$$

d) Analogianio jale u b), odmecany inne k mi potagi oluojtu. Musiny teregnumyo stra olo brama danyo ktylho jeden voz. Zatem tabela i finkuje tvorne vyglądoją nestąpująco.

	k	0	1	2	3	9		8	9	
	1	1)	0	9	0	/	0	0	F. (x) = 1+x
	2)	0	1	0	9		O	0	$F_2(x) = t _x^2$
	3	1	Q	Q		0	c = 3	0		_
	4		9	0	0	1		6	0	F4(x) = 1+x4
_	Å	;						:		
	8	9	0	0	Q	0		1	0	= (x)= +x8
	:						1			

Stool sulvan, Julye twon ce up glevolo. no sterpuje co
$$P(x) = \prod_{i=1}^{\infty} F_2; = \prod_{i=1}^{\infty} (1 + x^2)$$

$$P(x) = \prod_{i=1}^{\infty} (1 + x^2)$$