3 Optimal and Adaptive Filtering 3.1: Wiener-Hopf filter

1. Wiener-Hopf filter

- Minimum Mean Square Error Estimation
- The Wiener-Hopf solution

2. Applications of the Wiener-Hopf filter

- Interference cancelation in biological signals
- Linear prediction for signal coding

3. Adaptive filtering

- Steepest descend
- Least Mean Square approach

4. Applications of adaptive filtering

• ...

Wiener-Hopf filter

1. Introduction

Problem modelling and filter configuration

2. Minimum Mean Square Error (MMSE) prediction

- Principle of orthogonality
- Some results of the MMSE prediction

3. The Wiener-Hopf filter

- The Wiener-Hopf solution
- The error performance surface
- The Wiener-Hopf filter using a finite number of samples

4. Conclusions

Usefulness of the Wiener-Hopf filter

Several **estimation problems** can be modeled relying on a similar formulation:

Given a set of data from an observed noisy process (observations x[n]) and a desired target process that we want to estimate (reference d[n]), produce an estimated of the target process (estimation y[n]) by linear time-invariant (LTI) filtering (T[n] = h[n]) of the observed samples.

We assume known stationary signal and noise spectra (correlation) as well as additive noise.

Note: We will assume **FIR filters** and, in the second part of the Unit, **non-stationary** scenarios

Norbert Wiener: Research Laboratory of Electronics MIT

This formulation can be applied to a large family of problems that are commonly sorted into four wide classes:

• System identification:

- Noisy reference
- Noise-free observations

System inversion:

- Noisy observations
- Noise-free reference

Signal prediction:

 Observations and reference are samples of the same noisy process

Signal cancellation:

- Noisy observations with interferences
- Noisy interferences as reference(s)

System identification: We want to identify a given system, that can be real or some abstraction of a complex nature.

We **model** this system as an LTI system plus an additive noise source (w[n]).

Design and Use: We excite the system with a known signal (x[n]) and obtain the filter that models the system.

The application assumes:

- Noisy reference
- Noise-free observations

Example of application:

Geological prospections

The features of the various geological layers can be estimated through the modeling of a wave distortion

3.1

System inversion

System inversion: We want to estimate a system an apply its inverse to the signal.

We **model** this system as an LTI system plus an additive noise source (w[n]).

Design: we excite the system with a known signal (x[n]) and obtain the filter that models the system.

Use: The filter is concatenated to the system to recover the estimated signal

The application assumes:

- Noisy observations
- Noise-free reference

Example of application:

Optical deconvolution

S. Bikkannavar and D. Redding, "Software for Optical Systems Spells the End of Blur" IEEE Spectrum, Feb. 2010

Optical evolution of Hubble's primary camera system: Spiral galaxy M100 as seen with WFPC1 in 1993 before corrective optics (left), with WFPC2 in 1994 after correction (center), and with WFC3 in 2018 (right)

Signal prediction

Signal prediction: We estimate the value of a random signal at a given time instance $(x[n_0])$, based on other time instance values (e.g.: $x[n_0 - 1], x[n_0 - 2], \cdots$).

Design: We compare the current signal value $(x[n_0])$ with its estimation $(y[n_0])$

Use: The current signal value $(x[n_0])$ may not be available and we produce an estimation. If $x[n_0]$ is available, we produce the prediction error $(e[n_0])$

The application assumes:

 Observations and reference belong to the same noisy process

Example of application:

Speech coding and synthesis

The prediction error has a lower dynamic range and its quantization decreases the quantization noise power

Signal cancelation: We estimate the value of a primary signal which contains an interference. This interference has been isolated through other sensors in additional signals.

Design: We compare the primary signal (d[n]) with the interference (x[n])

Use: We obtain the clean signal as the estimation error (e[n])

The application assumes:

- Noisy interferences as observations
- Noisy signal and interferences as reference

Example of application:

Interference cancelation

The sound of the engine interferes with the pilot communications

http://www.wildlandfirefighter.com/2019/11/21/ meet-cal-fires-first-female-helicopter-pilot/

Wiener-Hopf filter

1. Introduction

Problem modelling and filter configuration

2. Minimum Mean Square Error (MMSE) prediction

- Principle of orthogonality
- Some results of the MMSE prediction

3. The Wiener-Hopf filter

- The Wiener-Hopf solution
- The error performance surface
- The Wiener-Hopf filter using a finite number of samples

4. Conclusions

Given the generic formulation, we restrict the analysis to the **FIR filter** case:

- It is the **optimal solution** if x[n] and d[n] are Gaussian jointly distributed processes.
- The filter is assumed to have **N** coefficients

The **MSE** is used as optimization criterion:

- It is mathematically tractable.
- It leads to useful solutions for real applications
- It can be used as benchmark for other solutions

$$h[n] * x[n] = \mathbf{\underline{h}}^T \mathbf{\underline{x}}[n]$$

$$\underline{\mathbf{x}}[n] = \begin{bmatrix} x[n] \\ x[n-1] \\ \dots \\ x[n-N+1] \end{bmatrix}$$

$$\min_{\mathbf{h}} E\{e[n]^2\}$$

$$\underline{\mathbf{x}}[n] \longrightarrow \underbrace{\underline{\mathbf{h}}}_{y[n]} \xrightarrow{d[n]}$$

$$e[n] = d[n] - y[n] = d[n] - \mathbf{\underline{h}}^T \mathbf{\underline{x}}[n]$$

$$\min_{\underline{\mathbf{h}}} E\{e[n]^2\} = \min_{\underline{\mathbf{h}}} E\left\{\left(d[n] - \underline{\mathbf{h}}^T \underline{\mathbf{x}}[n]\right)^2\right\}$$

Principle of orthogonality

The **minimization** of the Mean Square Error implies:

$$\min_{\underline{\mathbf{h}}} E\{e[n]^2\} \quad \Rightarrow \quad \nabla_{\underline{\mathbf{h}}} E\{e[n]^2\} = \underline{0}$$

Note: We assume that the observations and the reference (x[n]) and d[n]) have zero mean.

$$\nabla_{\underline{\mathbf{h}}} E\left\{ \left(d[n] - \underline{\mathbf{h}}^T \underline{\mathbf{x}}[n] \right)^2 \right\} = \underline{0}$$

$$E\left\{ \nabla_{\underline{\mathbf{h}}} \left(d[n] - \underline{\mathbf{h}}^T \underline{\mathbf{x}}[n] \right)^2 \right\} = E\left\{ 2 \left(d[n] - \underline{\mathbf{h}}^T \underline{\mathbf{x}}[n] \right) \underline{\mathbf{x}}[n](-1) \right\} = \underline{0}$$

$$\nabla_{\underline{\mathbf{h}}} E\left\{ e[n]^2 \right\} = \underline{0} \quad \Rightarrow \quad E\left\{ e[n] \underline{\mathbf{x}}[n] \right\} = \underline{0}$$

The error is said to be orthogonal to the observations

Wiener-Hopf filter

1. Introduction

Problem modelling and filter configuration

2. Minimum Mean Square Error (MMSE) prediction

- Principle of orthogonality
- Some results of the MMSE prediction

3. The Wiener-Hopf filter

- The Wiener-Hopf solution
- The error performance surface
- The Wiener-Hopf filter using a finite number of samples

4. Conclusions

3.1

In order to analyze some results of the MMSE prediction, let us define a specific signal scenario:

- The **observation process** can be split into two parts: x[n] = a[n] + b[n]
- The **reference process** can be split into two parts: d[n] = a'[n] + c[n]
- These parts have the following correlation properties:
 - $r_{ab}[l] = E\{a[n+l]b[n]\} = 0$
 - $r_{a'c}[l] = E\{a'[n+l]c[n]\} = 0$
 - $r_{aa'}[l] = E\{a[n+l]a'[n]\} \neq 0 \Leftarrow \text{ The only two parts that are correlated}$
 - $r_{ac}[l] = E\{a[n+l]c[n]\} = 0$
 - $r_{a'b}[l] = E\{a'[n+l]b[n]\} = 0$
 - $r_{bc}[l] = E\{b[n+l]c[n]\} = 0$
 - ☐ How does the optimal filter behave in this scenario?

3.1

When using the filter that minimizes the MSE ($\underline{\mathbf{h}}_{opt}$), the following property stands:

Note: Analyze a generic case and the specific previous one: x[n] = a[n] + b[n] and d[n] = a'[n] + c[n]

At a time instance, the estimation and the error signals are not correlated:

$$E\{y[n]e[n]\} = 0$$

3.1

When using the filter that minimizes the MSE ($\underline{\mathbf{h}}_{opt}$), the following property stands:

Note: Analyze a generic case and the specific previous one: x[n] = a[n] + b[n] and d[n] = a'[n] + c[n]

The variance of the reference signal is greater than or equal to the variance of the error signal:

$$E\{(d[n])^2\} \ge E\{(e[n])^2\}$$

b)
$$E\{\{d[n]\}^2\} = [d[n] = \gamma[n] + e[n]] = E\{\{\gamma[n]\} + e[n]\}^2\} = [h = hoor] = E\{\gamma[n] = [n]\} + E\{e^2[n]\} = [h = hoor] = [E\{\gamma[n] = [n]\} = E\{\gamma^2[n]\} + E\{e^2[n]\} > E\{e^2[n]\} = [h = hoor] = [h$$

3.1

When using the filter that minimizes the MSE ($\underline{\mathbf{h}}_{opt}$), the following property stands:

Note: Analyze a generic case and the specific previous one: x[n] = a[n] + b[n] and d[n] = a'[n] + c[n]

☐ If the observation and the reference signals are not correlated, the **variance of the estimation** is zero:

$$E\{\underline{\mathbf{x}}[n]d[n]\} = \underline{0} \implies E\{(y[n])^2\} = 0$$

3.1

When using the filter that minimizes the MSE ($\underline{\mathbf{h}}_{opt}$), the following property stands:

Note: Analyze a generic case and the specific previous one: x[n] = a[n] + b[n] and d[n] = a'[n] + c[n]

☐ The **minimum variance** (power) of the error signal is:

$$\varepsilon = r_d[0] - \mathbf{\underline{h}}_{opt}^T \, \mathbf{\underline{r}}_{xd}$$

3.1

The conditions on the processes of the previous **signal scenario** can be **redefined** (relaxed) taken into account the **actual samples** involved in the filtering problem:

- The observation process can be split into two parts: x[n] = a[n] + b[n]
- The **reference process** can be split into two parts: d[n] = a'[n] + c[n]
- These parts have the following correlation properties:

•
$$r_{ab}[l] = E\{a[n+l]b[n]\} = 0$$

•
$$r_{a'c}[l] = E\{a'[n+l]c[n]\} = 0$$

•
$$r_{aa'}[l] = E\{a[n+l]a'[n]\} \neq 0$$

•
$$r_{ac}[l] = E\{a[n+l]c[n]\} = 0$$

•
$$r_{a'b}[l] = E\{a'[n+l]b[n]\} = 0$$

•
$$r_{bc}[l] = E\{b[n+l]c[n]\} = 0$$

•
$$E\{\underline{\mathbf{a}}[n]\,\underline{\mathbf{b}}^T[n]\} = \underline{\mathbf{0}}$$

•
$$E\{a'[n]c[n]\}=0$$

•
$$E\{\underline{\mathbf{a}}[n] \ a'[n]\} \neq \underline{\mathbf{0}}$$

•
$$E\{\underline{\mathbf{a}}[n]\ c[n]\} = \underline{\mathbf{0}}$$

•
$$E\{\underline{\mathbf{b}}[n] \ a'[n]\} = \underline{\mathbf{0}}$$

•
$$E\{\underline{\mathbf{b}}[n] \ c[n]\} = \underline{\mathbf{0}}$$

3.1

Wiener-Hopf filter

Introduction

Problem modelling and filter configuration

Minimum Mean Square Error (MMSE) prediction

- Principle of orthogonality
- Some results of the MMSE prediction

3. The Wiener-Hopf filter

- The Wiener-Hopf solution
- The error performance surface
- The Wiener-Hopf filter using a finite number of samples

4. Conclusions

The Wiener-Hopf solution

3.1

So far, we have analyze some properties of the optimal filter, but not yet obtain it:

$$e[n] = d[n] - \underline{\mathbf{h}}^{T} \underline{\mathbf{x}}[n]$$

$$\Rightarrow E\{\underline{\mathbf{x}}[n]e[n]\} = \underline{\mathbf{0}}$$

$$\Rightarrow E\{\underline{\mathbf{x}}[n](d[n] - \underline{\mathbf{h}}^{T} \underline{\mathbf{x}}[n])\} = \underline{\mathbf{0}}$$

$$E\{\underline{\mathbf{x}}[n](d[n] - \underline{\mathbf{h}}^T\underline{\mathbf{x}}[n])\} = E\{\underline{\mathbf{x}}[n]d[n]\} - E\{\underline{\mathbf{x}}[n]\underline{\mathbf{h}}^T\underline{\mathbf{x}}[n]\} = \underline{\mathbf{0}}$$

$$E\{\underline{\mathbf{x}}[n]d[n]\} - E\{\underline{\mathbf{x}}[n]\ \underline{\mathbf{x}}^T[n]\ \underline{\mathbf{h}}\} = \underline{r}_{xd}[0] - E\{\underline{\mathbf{x}}[n]\ \underline{\mathbf{x}}^T[n]\}\underline{\mathbf{h}} = \underline{\mathbf{0}}$$

$$\underline{\mathbf{r}}_{xd}[0] - \underline{\underline{\mathbf{R}}}_{x}[0]\underline{\mathbf{h}} = \underline{\mathbf{0}}$$

$$\underline{\mathbf{h}}_{opt} = \underline{\underline{\mathbf{R}}}_{x}^{-1}\underline{\mathbf{r}}_{xd}$$

Commonly, we drop

◀ the evaluation in 0

in the notation

The Wiener-Hopf solution

The **optimal filter** in the sense of the MSE criterion is:

$$\underline{\mathbf{h}}_{opt} = \underline{\underline{\mathbf{R}}}_{x}^{-1}\underline{\mathbf{r}}_{xd}$$

$$\underline{\mathbf{r}}_{xd} = E\{\underline{\mathbf{x}}[n]d[n]\} = \begin{bmatrix} E\{x[n]d[n]\} \\ E\{x[n-1]d[n]\} \\ \dots \\ E\{x[n-N+1]d[n]\} \end{bmatrix} = \begin{bmatrix} r_{xd}[0] \\ r_{xd}[-1] \\ \dots \\ r_{xd}[-N+1] \end{bmatrix}$$
 Cross-correlation vector

$$\underline{\mathbf{R}}_{x} = E\{\underline{\mathbf{x}}[n] \ \underline{\mathbf{x}}^{T}[n]\} = \begin{bmatrix} r_{x}[0] & r_{x}[1] & r_{x}[N-1] \\ r_{x}[-1] & r_{x}[0] & r_{x}[N-2] \\ \dots & \dots & \dots \\ r_{x}[-N+1] & r_{x}[-N+2] & r_{x}[0] \end{bmatrix} \quad \blacktriangleleft \text{ Correlation matrix}$$

The **optimal filter** depends on the second order statistics of the processes:

- We will further analyze the properties of the correlation matrix
- We will study how to proceed when such statistics are not available

The error performance surface

The Wiener-Hopf filter is optimal in the sense that it **minimizes the MSE of the prediction**; that is, the variance (power) of e[n].

☐ For any filter, the MSE can be expressed as:

$$\begin{split} &E\{(e[n])^2\} = \varepsilon + \left(\underline{\mathbf{h}}_{opt} - \underline{\mathbf{h}}\right)^T \underline{\mathbf{R}}_{x} \left(\underline{\mathbf{h}}_{opt} - \underline{\mathbf{h}}\right) \\ & = \mathcal{L} \cdot \left[e[n] + d[n] - \underline{\mathbf{h}}^T \underline{\mathbf{r}}[n]\right] = \left[\exists T \exists S \land \delta \overline{T} \underline{\mathbf{h}}_{opt} \overrightarrow{\nabla}\right] \\ &= \mathcal{E} \cdot \left(\partial [n] - \underline{\mathbf{h}}^T \underline{\mathbf{r}}[n]\right) \left(\partial [n] - \underline{\mathbf{h}}^T \underline{\mathbf{r}}[n]\right) \cdot \left[\vdots \\ &= \mathcal{E} \cdot \left[\partial [n] - \underline{\mathbf{h}}^T \underline{\mathbf{r}}[n]\right) \cdot \left[\partial [n] - \underline{\mathbf{h}}^T \underline{\mathbf{r}}[n]\right] \cdot \left[\underbrace{\mathbf{h}}^T \underline{\mathbf{r}}[n] + \mathcal{E} \cdot \underbrace{\mathbf{h}}^T \underline{\mathbf{r}}[n] \cdot \underbrace{\mathbf{h}}^T \underline{\mathbf{r}}[n]\right] \cdot \left[\underbrace{\mathbf{h}}^T \underline{\mathbf{r}}[n] \cdot \underbrace{\mathbf{h}}^T \underline{\mathbf{h}}[n] \cdot \underbrace{\mathbf{h}}^T \underline{\mathbf{r}}[n] \cdot \underbrace{\mathbf{h}}^T \underline{\mathbf{h}}[n] \cdot \underbrace{\mathbf{h}}^T \underline{\mathbf{h}}[n] \cdot \underbrace$$

The error performance surface

$$E\{(e[n])^{2}\} = \varepsilon + (\underline{\mathbf{h}}_{opt} - \underline{\mathbf{h}})^{T} \underline{\mathbf{R}}_{x} (\underline{\mathbf{h}}_{opt} - \underline{\mathbf{h}})$$

$$= rd[\rho] - 2 \underline{\mathbf{h}}^{T} \underline{\mathbf{r}}_{x}d + \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \underline{\mathbf{h}} = \left[\varepsilon = rd[\rho] - \underline{\mathbf{h}}^{T} \underline{\mathbf{r}}_{x}d \right] =$$

$$= rd[\rho] - \underline{\mathbf{h}}^{T} \underline{\mathbf{r}}_{x}d + \underline{\mathbf{h}}^{T} \underline{\mathbf{r}}_{x}d - 2 \underline{\mathbf{h}}^{T} \underline{\mathbf{r}}_{x}d + \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \underline{\mathbf{h}} =$$

$$= \varepsilon + \underline{\mathbf{h}}^{T} \underline{\mathbf{r}}_{x} \cdot \underline{\mathbf{r}}_{x}d - 2 \underline{\mathbf{h}}^{T} \underline{\mathbf{r}}_{x}d + \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \underline{\mathbf{h}} =$$

$$= \varepsilon + \underline{\mathbf{h}}^{T} \underline{\mathbf{r}}_{x} \cdot \underline{\mathbf{h}}_{opr} - 2 \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \underline{\mathbf{h}}_{opr} + \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \underline{\mathbf{h}} =$$

$$= \left[\underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \cdot \underline{\mathbf{h}}_{opr} - 2 \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \cdot \underline{\mathbf{h}}_{opr} + \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \underline{\mathbf{h}} + \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \underline{\mathbf{h}} =$$

$$= \left[\underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \cdot \underline{\mathbf{h}}_{opr} - \left[\underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \cdot \underline{\mathbf{h}}_{opr} - \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \cdot \underline{\mathbf{h}} + \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \cdot \underline{\mathbf{h}} + \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \cdot \underline{\mathbf{h}} \right] =$$

$$= \varepsilon + \underline{\mathbf{h}}^{T} \underline{\mathbf{r}}_{x} \cdot \underline{\mathbf{h}}_{opr} - \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \cdot \underline{\mathbf{h}}_{opr} - \underline{\mathbf{h}}^{T} \underline{\mathbf{R}}_{x} \cdot \underline{\mathbf{h}} + \underline{\mathbf$$

3.1

The Wiener-Hopf filter is optimal in the sense that it **minimizes the MSE of the prediction**; that is, the variance (power) of e[n].

For any filter, the MSE can be expressed as:

$$E\{(e[n])^2\} = \varepsilon + \left(\underline{\mathbf{h}}_{opt} - \underline{\mathbf{h}}\right)^T \underline{\underline{\mathbf{R}}}_x \left(\underline{\mathbf{h}}_{opt} - \underline{\mathbf{h}}\right)$$

The **error performance surface**:

- Is a quadratic function of the filter coefficients and represents an N-dimensional surface:
 - Mathematically treatable
- As $\underline{\underline{\mathbf{R}}}_{x}$ is positive definite, the quadratic function is **convex** (bowl-shaped):
 - A unique extreme that is a minimum
- Provides a simple way to assess the quality of any filter implementation:
 - Very useful when working with quantized filter coefficients

3.1

For any filter, the MSE can be expressed as:

$$E\{(e[n])^2\} = \varepsilon + \left(\underline{\mathbf{h}}_{opt} - \underline{\mathbf{h}}\right)^T \underline{\underline{\mathbf{R}}}_x \left(\underline{\mathbf{h}}_{opt} - \underline{\mathbf{h}}\right)$$

$$\underline{\mathbf{h}}_{opt} = \underline{\underline{\mathbf{R}}}_{x}^{-1}\underline{\mathbf{r}}_{xd}$$

$$\varepsilon = r_d[0] - \underline{\mathbf{h}}_{opt}^T \, \underline{\mathbf{r}}_{xd}$$

The **error performance surface**:

- The reference signal d[n] only impacts on the **optimal solution**:
 - Position and value of the minimum.
- $\underline{\underline{\mathbf{R}}}_{x}$ is positive definite: any deviation from the optimum increases the MSE. The increase depends on $\underline{\mathbf{R}}_{x}$ only; that is, on x[n] only:
 - Very useful in the design of adaptive filters

Signal cancelation:

We estimate the value of a primary signal which contains an interference. This interference has been isolated through other sensors in additional signals


```
MICROPHONE: NOTE + ENGINE + NOTSE - ENGINE, + NOTSE,

REFERENCE SENSOR (S): ENGINE + NOTSE - ENGINE, + NOTSES

- NOTE: UNCORRELATED WITH THE OTHER STANKS

- ENGINE, / ENGINE,: CORRELATED STANKS. CABON EFFECT.

- NOTSES: ENERYTHING IN THE SENSOR THAT DOES NOT AFFERD

IN THE MIC. UNCORRECATED.

- NOTSEM: INTRINGIC SYSTEM NOTSE, LOW POWER, UNCORRECATED.
```

3.1

HOW TO SOLVE THE PROBLEK? (IT IS ALREADY SOLVED!)

INSTIAL SITUATION:
$$V_{\underline{n}}(e^{2}[n]) = 0$$

3.1

3 1

Example: Interference cancelation

Signal cancelation:

We estimate the value of a primary signal which contains an interference. This interference has been isolated through other sensors in additional signals

Microphone signal:
$$m[n] = v[n] + e_m[n] + w_m[n] \Rightarrow d[n]$$

Sensor signal: $s[n] = e_s[n] + w_s[n] \Rightarrow x[n]$

Sensor signal:
$$s[n] = e_s[n] + w_s[n] \Rightarrow x[n]$$

The analysis of this problem leads to the following solution:

$$\left(\underline{\underline{\mathbf{R}}}_{e_s} + \underline{\underline{\mathbf{R}}}_{w_s}\right)\underline{\mathbf{h}}_{opt} = \underline{\mathbf{r}}_{e_s e_m}$$

- The double function of the filter is evident in this solution:
 - It adapts the correlated part of s[n] (with m[n]) while cancelling the uncorrelated one.
- What would be the impact of including the noise in the mic $(w_m|n|)$?

3.1

Wiener-Hopf filter

1. Introduction

Problem modelling and filter configuration

2. Minimum Mean Square Error (MMSE) prediction

- Principle of orthogonality
- Some results of the MMSE prediction

3. The Wiener-Hopf filter

- The Wiener-Hopf solution
- The error performance surface
- The Wiener-Hopf filter using a finite number of samples

4. Conclusions

- The optimal filter depends on the second order statistics of the signals.
- However, in a typical case, we only have a (small) finite number of available samples from both the observable and reference signals.

$$\mathbf{\underline{\underline{R}}}_{x} \; \mathbf{\underline{h}}_{opt} = \mathbf{\underline{r}}_{xd}$$

$$\underline{\mathbf{h}}_{opt} = \underline{\underline{\mathbf{R}}}_{x}^{-1}\underline{\mathbf{r}}_{xd}$$

- In that case, we can minimize an estimation of the Mean Square Error over the available set of samples.
- Let us assume that we have M samples of the reference signal and, given that the filter has N coefficients, M+N-1 samples of the observation signal. We can define:

MSE
$$\equiv \frac{1}{M} \sum_{m=0}^{M-1} (e[m])^2 = \frac{1}{M} \sum_{m=0}^{M-1} (d[m] - \underline{\mathbf{h}}^T \underline{\mathbf{x}}[m])^2$$

Let us assume that we have M samples of the reference signal and, given that the filter has N coefficients, M+N-1 samples of the observation signal:

MSE
$$\equiv \frac{1}{M} \sum_{m=0}^{M-1} (e[m])^2 = \frac{1}{M} \sum_{m=0}^{M-1} (d[m] - \underline{\mathbf{h}}^T \underline{\mathbf{x}}[m])^2$$

Let us write this expression as combination of vectors. If we arrange the M sample equations ($e[n] = d[n] - \mathbf{h}^T \mathbf{x}[n]$) in a vector:

$$\underline{\mathbf{h}} = \begin{bmatrix} h[0] \\ h[1] \\ \dots \\ h[N-1] \end{bmatrix} \quad \underline{\mathbf{x}}[n] = \begin{bmatrix} x[n] \\ x[n-1] \\ \dots \\ x[n-N+1] \end{bmatrix}$$

$$\underline{\mathbf{e}}^T = [e[0], e[1], \dots, e[M-1]]$$

$$\underline{\mathbf{d}}^T = [d[0], d[1], \dots, d[M-1]]$$

$$\underline{\mathbf{x}} = \begin{bmatrix} x[0] & x[1] & x[M-1] \\ x[-1] & x[0] & x[M-2] \\ \dots & \dots & \dots \\ x[-N+1] & x[-N+2] & x[M-N] \end{bmatrix}$$

The optimal filter should minimize the MSE:

$$\underline{\mathbf{e}}^T = \underline{\mathbf{d}}^T - \underline{\mathbf{h}}^T \underline{\mathbf{X}}$$

$$MSE = \frac{1}{M} \sum_{m=0}^{M-1} (e[m])^2 = \frac{1}{M} \underline{\mathbf{e}}^T \underline{\mathbf{e}} = \frac{1}{M} (\underline{\mathbf{d}}^T - \underline{\mathbf{h}}^T \underline{\mathbf{x}}) (\underline{\mathbf{d}}^T - \underline{\mathbf{h}}^T \underline{\mathbf{x}})^T \Rightarrow \nabla_{\underline{\mathbf{h}}} MSE = \underline{\mathbf{0}}$$

$$\nabla_{\underline{\mathbf{h}}} MSE = \left[\left(\underline{\mathbf{d}}^T - \underline{\mathbf{h}}^T \underline{\underline{\mathbf{X}}} \right)^T = \left(\underline{\mathbf{d}} - \underline{\underline{\mathbf{X}}}^T \underline{\mathbf{h}} \right) \right] = \nabla_{\underline{\mathbf{h}}} \frac{1}{M} \left(\underline{\mathbf{d}}^T - \underline{\mathbf{h}}^T \underline{\underline{\mathbf{X}}} \right) \left(\underline{\mathbf{d}} - \underline{\underline{\mathbf{X}}}^T \underline{\mathbf{h}} \right) = \underline{\mathbf{0}}$$

$$\nabla_{\underline{\mathbf{h}}} MSE = \nabla_{\underline{\mathbf{h}}} \frac{1}{M} (\underline{\mathbf{d}}^T \underline{\mathbf{d}} - \underline{\mathbf{d}}^T \underline{\underline{\mathbf{X}}}^T \underline{\mathbf{h}} - \underline{\mathbf{h}}^T \underline{\underline{\mathbf{X}}} \underline{\mathbf{d}} + \underline{\mathbf{h}}^T \underline{\underline{\mathbf{X}}} \underline{\underline{\mathbf{X}}}^T \underline{\mathbf{h}}) = \underline{\mathbf{0}}$$

$$\nabla_{\underline{\mathbf{h}}} MSE = \frac{1}{M} \left(-2 \underline{\mathbf{X}} \underline{\mathbf{d}} + 2 \underline{\mathbf{X}} \underline{\mathbf{X}}^T \underline{\mathbf{h}} \right) = \underline{\mathbf{0}}$$

$$\underline{\mathbf{h}}_{opt} = (\underline{\underline{\mathbf{X}}} \, \underline{\underline{\mathbf{X}}}^T)^{-1} \underline{\underline{\mathbf{X}}} \, \underline{\mathbf{d}}$$

By comparison with the optimal expression when having infinite samples:

$$\underline{\mathbf{h}}_{opt} = (\underline{\underline{\mathbf{X}}}\,\underline{\underline{\mathbf{X}}}^T)^{-1}\underline{\underline{\mathbf{X}}}\,\underline{\mathbf{d}}$$

Optimal filter (MMSE) using a finite number of samples

$$\underline{\mathbf{h}}_{opt} = \underline{\underline{\mathbf{R}}}_{x}^{-1}\underline{\mathbf{r}}_{xd}$$

Optimal filter (MMSE) using the exact second order statistics

We can see that we are implicitly estimating the cross-correlation vector and correlation matrix, based on the available samples:

$$\underline{\hat{\mathbf{r}}}_{xd}(\underline{\mathbf{x}},\underline{\mathbf{d}}) = \frac{1}{M}\underline{\underline{\mathbf{x}}}\underline{\mathbf{d}} = \frac{1}{M}\sum_{m=1}^{M}\underline{\mathbf{x}}[m]d[m]$$

$$\widehat{\underline{\mathbf{R}}}_{x}(\underline{\mathbf{x}}) = \frac{1}{M}\underline{\underline{\mathbf{X}}}\underline{\underline{\mathbf{X}}}^{T} = \frac{1}{M}\sum_{m=1}^{M}\underline{\mathbf{x}}[m]\underline{\mathbf{x}}^{T}[m]$$

□ How have these estimates been built up?

We can interpret the optimal filter (MMSE) using a finite number of samples, as an estimate of the Wiener-Hopf filter using exact second order statistics:

$$\underline{\mathbf{h}}_{opt} = \underline{\underline{\mathbf{R}}}_{x}^{-1}\underline{\mathbf{r}}_{xd} \quad \Rightarrow \quad \underline{\hat{\mathbf{h}}}_{opt} = (\underline{\underline{\mathbf{X}}}\,\underline{\underline{\mathbf{X}}}^{T})^{-1}\underline{\underline{\mathbf{X}}}\,\underline{\mathbf{d}}$$

In order to assess this estimator, let us fix a (simple) **system identification scenario**. The application assumes:

- Noise-free observations (known signal: $\underline{\underline{X}}$)
- Noisy reference: $\underline{\mathbf{d}}^T = \mathbf{g}^T \underline{\mathbf{X}} + \underline{\mathbf{w}}^T$

Note: The additive noise is modeled as white and Gaussian

How do we assess the quality of this estimator?

Performance of the estimator

3.1

Analyze the performance of the optimal filter (MMSE) using a finite number of samples, as an estimator of the Wiener-Hopf filter using second order statistics

Note: w[n] is a Gaussian, stationary, white noise.

$$\frac{d^{-1}}{d^{-1}} = \frac{d^{-1}}{d^{-1}} = \frac{d$$

Wiener-Hopf filter

1. Introduction

Problem modelling and filter configuration

2. Minimum Mean Square Error (MMSE) prediction

- Principle of orthogonality
- Some results of the MMSE prediction

3. The Wiener-Hopf filter

- The Wiener-Hopf solution
- The error performance surface
- The Wiener-Hopf filter using a finite number of samples

4. Conclusions