21. Základní principy činnosti protokolů sítě Internet – IP, TCP, UDP. Domain Name System, jeho role a činnost, DNS servery, postup řešení dotazu, reverzní DNS

Protokol IP (Internet Protocol)

Je datový protokol na síťové vrstvě a tvoří základní protokol dnešnímu internetu. Data se posílají po blocích (datagramy, pakety), putují sítí nezávisle, není zajištěna spolehlivost doručení (to se řeší o vrstvu výš např. TCP). Každerozhraní má svoji IP adresu a v každém datagramu je IP příjemce i odesílatele. Na základě těchto adres probíhá směrování.

Verze IP: IPv4 - každý datagram má hlavičku (Id, celk. délka, TTL, adresa odesílatele a příjemce, více http://cs.wikipedia.org/wiki/IPv4) adresa 32 bitů, zápis v desítkové soustavě (192.168.56.101), rozdělení na privátní a veřejné adresy (privátní se nesměrují), obsahuje NET ID (část adresy pro sítě) a HOST ID (část adresy konkrétního rozhraní)

IPv6 - 128 bitů dlouhé adresy, zápis v šestnáctkové soustavě výhody:

- dostatečně bohatý adresní prostor
- podpora služeb se zaručenou kvalitou
- design odpovídající vysokorychlostním sítím
- bezpečnostní mechanismy přímo v IP
- podpora mobilních zařízení
- automatická konfigurace
- kooperace s IPv4 a co nejhladší přechod ze stávajícího protokolu na nový (více http://cs.wikipedia.org/wiki/IPv6).

TCP (Transmisson Control Protocol)

Transportní protokol, zaručuje spolehlivé potvrzení o doručení dat (pomocí sequence a acknowledge čísel), je spojový, kontrolním součtem ověřuje data, udžuje spojení Je spolehlivý, ale právě kvůli režii spojení je pomalejší než UDP.

Port - slouží k rozlišení komunikujících apllikací, počet je 2^16 **192.168.56.101:12345** - jednoznačné určení IP adresy i komunikujícího portu na síti, některé porty jsou rezervované pro klasické protokoly (HTTP - 80). (více http://cs.wikipedia.org/wiki/TCP).

UDP (User Datagram Protocol)

Transportní protokol, není záruka ani o potvrzení ani o doručení datagramu, používá se pro

komunikaci typu otázka - odpověď (DNS, DHCP), rychlejší než TCP. Jeho bezstavovost se využívá u serverů, které obsluhují mnoho klientů a nevadí, že se občas datagram ztratí (VoIP). **Hlavička UDP -** zdrojový port, cílový port, délka a kontrolní součet

Rozdíly TCP a UDP:

TCP:

- spolehlivost TCP používá potvrzování o přijetí, opětovné posílání a překročení časového limitu. Pokud se jakákoliv data ztratí po cestě, server si je opětovně vyžádá. U TCP nejsou žádná ztracená data, jen pokud několikrát po sobě vyprší časový limit, tak je celé spojení ukončeno.
- zachování pořadí Pokud pakety dorazí ve špatném pořadí, TCP vrstva příjemce se postará o to, aby se některá data pozdržela a finálně je předala správně seřazená.
- vyšší režie TCP protokol potřebuje např. tři pakety pro otevření spojení, umožňuje to však zaručit spolehlivost celého spojení.

UDP:

- bez záruky Protokol neumožňuje ověřit, jestli data došla zamýšlenému příjemci.
 Datagram se může po cestě ztratit. UDP nemá žádné potvrzování, přeposílání ani časové limity. V případě potřeby musí uvedené problémy řešit vyšší vrstva.
- nezachovává pořadí Při odeslání dvou zpráv jednomu příjemci nelze předvídat, v
 jakém pořadí budou doručeny.
- jednoduchost Nižší režie než u TCP (není zde řazení, žádné sledování spojení atd.). (více http://cs.wikipedia.org/wiki/UDP).

DNS (Domain Name System)

Hiearchický systém pro převod doménového jména na IP adresu a opačně. Prostor doménových jmen tvoří strom. Každý uzel stromu má info o své doméně a odkazy na domény podřízené. Kořenem stromu je kořenová doména (samotná tečka), pod ní jsou domény nejvyšší úrovně (tématické - com, edu, nebo státní - cz, sk). Strom je rozdělen do zón a každou spravují určití správci.

Doménové jméno:

Celé jméno se skládá z několika částí oddělených tečkami. Na jeho konci se nacházejí domény nejobecnější, směrem doleva se postupně konkretizuje.

- část nejvíce vpravo je doména nejvyšší úrovně, např. wikipedia.org má nejvýšší org.
- jednotlivé části (subdomény) mohou mít až 63 znaků a skládat se mohou až do celkové délky doménového jména 255 znaků.

DNS server

DNS server má jednu ze tří rolí::

- Primární server je ten, na němž data vznikají. Pokud je třeba provést v doméně změnu, musí se editovat data na jejím primárním serveru. Každá doména má právě jeden primární server.
- Sekundární server je automatickou kopií primárního. Průběžně si aktualizuje data a slouží jednak jako záloha pro případ výpadku primárního serveru, jednak pro rozkládání zátěže u frekventovaných domén. Každá doména musí mít alespoň jeden sekundární server.
- Pomocný (caching only) server slouží jako vyrovnávací paměť pro snížení zátěže celého systému. Uchovává si odpovědi a poskytuje je při opakování dotazů, dokud nevyprší jejich životnost.

Téměř každý DNS server funguje zároveň jako DNS cache. Při opakovaných dotazech pak nedochází k rekurzivnímu prohledávání stromu, ale odpověď je získána lokálně. V DNS

záznamech je totiž uložena i informace jak dlouho lze záznam používat (TTL) a lze také zjistit, zda byl záznam změněn. Po vypršení platnosti je záznam z DNS cache odstraněn.

Postup řešení dotazu

Každé PC má ve své konfiguraci síťových parametrů obsaženu i adresu lokálního DNS serveru, na nějž se má obracet s dotazy. Adresu lokálního serveru počítač typicky obdrží prostřednictvím DHCP.

Pokud počítač hledá určitou informaci v DNS, obrátí se s dotazem na tento lokální server. Každý DNS server má ve své konfiguraci uvedeny IP adresy kořenových serverů. Obrátí se tedy s dotazem na některý z nich. Kořenové servery mají autoritativní informace o kořenové doméně. Konkrétně znají všechny existující domény nejvyšší úrovně a jejich autoritativní servery. Dotaz je tedy následně směrován na některý z autoritativních serverů domény nejvyšší úrovně, v níž se nachází cílové jméno. Ten je opět schopen poskytnout informace o své doméně a posunout řešení o jedno patro dolů v doménovém stromě. Tímto způsobem řešení postupuje po jednotlivých patrech doménové hierarchie směrem k cíli, až se dostane k serveru autoritativnímu pro hledané jméno, který pošle definitivní odpověď.

Získávání informací z takového systému probíhá rekurzí. Resolver (program zajišťující překlad) postupuje od kořene postupně stromem směrem dolů dokud nenalezne autoritativní záznam o hledané doméně. Jednotlivé DNS servery jej postupně odkazují na autoritativní DNS pro jednotlivé části jména.

Postup řešení dotazu pro "www.wikipedia.org"

Reverzní DNS

Úkolem DNS je poskytnout informace (nejčastěji IP adresu) pro zadané doménové jméno. Dovede ale i opak – sdělit jméno, pod kterým je daná IP adresa zaregistrována. Při vkládání dat pro zpětné dotazy bylo ale třeba vyřešit problém s opačným uspořádáním IP adresy a doménového jména. Zatímco IP adresa má na začátku obecné informace (adresu sítě), které se směrem doprava zpřesňují až k adrese počítače, doménové jméno má pořadí přesně opačné. Instituce připojená k Internetu typicky má přidělen začátek svých IP adres a konec svých doménových jmen.

Tento nesoulad řeší DNS tak, že při reverzních dotazech obrací pořadí bajtů v adrese. K obrácené adrese pak připojí doménu *in-addr.arpa* a výsledné "jméno" pak vyhledává standardním postupem. Hledá-li například jméno k IP adrese 145.97.39.155, vytvoří dotaz na 155.39.97.145.in-addr.arpa. Obrácení IP adresy umožňuje delegovat správu reverzních domén odpovídajících sítím a podsítím správcům dotyčných sítí a podsítí. Je dobré mít na paměti, že na data z reverzních domén nelze zcela spoléhat. Do reverzní domény se v principu dají zapsat téměř libovolná jména. Nikdo například nemůže zabránit SURFnetu, aby o počítači 145.97.1.1 prohlásil v reverzní zóně, že se jedná třeba o *www.seznam.cz*. Pokud na tom záleží, je záhodno si poskytnutou informaci ověřit normálním dotazem (zde nalézt IP adresu k *www.seznam.cz* a porovnat ji s 145.97.1.1). Jestliže odpovědí na něj bude původní IP adresa, jsou data důvěryhodná – správce klasické i reverzní domény tvrdí totéž. Pokud se liší, znamená to, že data v reverzní doméně jsou nekorektní.