Priyasri Sankaran

Project 4

- 1. Three factor ANOVA, marketing research: Consider the marketing research data of problem 24.9 (pp. 1023-1024).
- (1) Obtain the conditional and averaged interaction plots for these data and discuss whether the various two-factor interactions might be necessary. Broadly discuss the impact of fee schedule, work scope, and supervisory control on quality based on these plots.

Interpretation: Based on the interaction plot, We observe that the fee(x1) and the scope(x2) and fee(x1) and supervision do not interact. The lines are parallel. However score(x2) and the supervision (x3) are interacting with each other.

(2) Looking at the Type III tests from fitting the full three-way interaction model, check whether you can drop the three-way interaction and one or more of the two-way interactions that have Type III p-values larger than 0.05 with one overall F-test.

By looking at the three way interaction(x1*x2*x3) the Pvalue=0.7674>0.05 which is not statistically insignificant and can be dropped. On two way interaction(x1*x2) p value=0.8977>0.05 and x1*x3 p-value=0.9482>0.05, suggesting these interactions are not significant.

Source	DF	Type III SS	Mean Square	F Value	Pr > I	Source	DF	Sum of Square	Mean Square	F Value	Pr > F
- Course		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	. vaido		Model	9	16287.8127	1 1809.75697	254.63	<.0001
x1	2	10044.27125	5022.13562	679.34	<.000	Error	38	270.0804	7.10738		
x2	1	1833.97687	1833.97687	248.08	<.000	Corrected Total	47	16557.8931	3		
x1*x2	2	1.60125	0.80062	0.11	0.897	0.983927	2	2.718444	2.718954	100.01	88
х3	1	3832.40021	3832.40021	518.40	<.000	R-Square	С	oeff Var	Root MSE	y Mean	
x1*x3	2	0.78792	0.39396	0.05	0.948						
x2*x3	1	574.77521	574.77521	77.75	<.000						
x1*x2*x3	2	3.94292	1.97146	0.27	0.767						

(3) For the reduced model in part 2, obtain the standard diagnostic panel and comment on modeling assumptions. Also obtain plots of the raw residuals $e_{ijkm} = Y_{ijkm} - Y_{ijkm}$ versus the indices of each of the three factors i, j, and k, and comment. Write out the fitted, reduced model. In SAS you can use PROC GLM to obtain the output if you ask for the solution.

H₀:Normality holds

Ha: normality does not hold

The residual plos for the reduced model shows no patter. Confirming that the assumptions of normality and homoscedasticity are reasonably met. The R-square value 0.983927 which indicated a strong fit to the data. The adj R-square value further supports the model.

But on the Q-Q plot we see that the data points are not perfectly align with the 45⁰ line. The shapiro-wilks tests indicates that it deviates from normality.

The reduced fitted model:

$$\begin{split} Y_{ijkl} &= \mu...+ \alpha_i + \beta_j + \gamma_k + (\beta\gamma)_{jk} + \epsilon_{ijkl} \\ y &= 60.758 + 31.82 \\ (x1=1) + 30.23(x1=2) + 19.48(x1=3) + 25.06(x3=1) - \\ 13.8417(x2=1*x3=1) + \epsilon \end{split}$$

Parameter	Estimate		Standard Error	t Value	Pr > t
Intercept	60.75833333	В	1.21684183	49.93	<.0001
x1 1	31.81875000	В	1.63256463	19.49	<.0001
x1 2	30.23125000	В	1.63256463	18.52	<.0001
x1 3	0.00000000	В			
x2 1	19.48333333	В	1.53919669	12.66	<.0001
x2 2	0.00000000	В			
x3 1	25.05833333	В	1.53919669	16.28	<.0001
x3 2	0.00000000	В			
x1*x2 1 1	-0.71250000	В	1.88512326	-0.38	0.7076
x1*x2 1 2	0.00000000	В			
x1*x2 2 1	0.11250000	В	1.88512326	0.06	0.9527
x1*x2 2 2	0.00000000	В			
x1*x2 3 1	0.00000000	В			
x1*x2 3 2	0.00000000	В			
x1*x3 1 1	-0.61250000	В	1.88512326	-0.32	0.7470
x1*x3 1 2	0.00000000	В			
x1*x3 2 1	-0.18750000	В	1.88512326	-0.10	0.9213
x1*x3 2 2	0.00000000	В			
x1*x3 3 1	0.00000000	В			
x1*x3 3 2	0.00000000	В			
x2*x3 1 1	-13.84166667	В	1.53919669	-8.99	<.0001
x2*x3 1 2	0.00000000	В			
x2*x3 2 1	0.00000000	В			
x2*x3 2 2	0.00000000	В			

			Probab	ility Plot for	raw_resid			
6 -								
4 -								
2 -					000m30°°°	•		
o o				80000 B	5			
-2 -		0.0	000000000	JOSOSO				
-4 -	。 /	• • •						
-e-								
1	5	10	25	50	75	90	95	99
				Normal Percent	lles			
			Normal Line	NA	0, Sigma=2.39	72		

Tests for Normality									
Test	St	atistic	p Value						
Shapiro-Wilk	W	0.943519	Pr < W	0.0222					
Kolmogorov-Smirnov	D	0.121483	Pr > D	0.0761					
Cramer-von Mises	W-Sq	0.130756	Pr > W-Sq	0.0430					
Anderson-Darling	A-Sq	0.860218	Pr > A-Sq	0.0249					

The residual plots are scatted evenly around the horizontal axis zero. There is no clear pattern.

(4) Examine pairwise differences in fee schedule using Tukey's approach, as well as the two differences in work scope across levels of supervisory control using Bonferroni's correction. Use FER = 0.05 in both cases.

V	We observer the										
	Least Squares Means for Effect x1										
1	J	Difference Between Means	Simultaneous 95% Confidence	Limits for LSMean(i)-LSMean(j)							
1	2	0.962500	-1.336235	3.261235							
1	3	31.156250	28.857515	33.454985							
2	3	30 193750	27.895015	32 492485							

Tukey's pairwise comparison: We notice the intervals. X1=1 and x1=2 contains zero in the interval, suggest that there is no statistically significant difference in quality ratings.

X1=2 vs x1=3 and x1=2 vs x1=3 are significant, the intervals does not contain zero.

		Leas	t Squares Means for Effect x2*x3	1
i.	j	Difference Between Means	Simultaneous 95% Confidence	Limits for LSMean(i)-LSMean(j)
1	2	10.950000	7.920532	13.979468
1	3	5.441667	2.412199	8.471134
1	4	30.233333	27.203866	33.262801
2	3	-5.508333	-8.537801	-2.478866
2	4	19.283333	16.253866	22.312801
3	4	24.791667	21.762199	27.821134

Bonferroni Correction: Non of the intervals contain zero in the interval. They all are significantly influence quality ratings.

- 2. In class we derived $E\{MSTR\}$ for the balanced case. Derive the results in (25.10) and (25.10a) when sample sizes are unequal.
- 3. Imitation Pearls: Consider the data set in Problem 17, Chapter 25. We will not be using the restricted version of the mixed effects model shown in 25.42, but will use the unrestricted version instead.
 - (1) Generate an interaction plot and comment.

Comments: The interaction plot shows lines for different levels of p1(factor A coating) across p2(factor B batch). Lines are approximately parallel. We also observe the small slope. We do not

see any intersection of the lines. The interaction between coating and the batch is not significant. Same for the lacquer coats. The interaction terms(AB) does not have a significant impact on market value.

(2) For Problem 25.17a, construct an interaction model in PROC GLM and PROC GLIMMIX. In PROC GLM, report results for the test of the interaction term. In PROC GLIMMIX, estimate the variance component for interaction using both restricted maximum likelihood (the default method) and maximum likelihood. Comment.

H₀: The interaction has no sinigicant effect on the market value($\sigma^2_{AB} = 0$)

H₀: The interaction has a sinigicant effect on the market value ($\sigma^2_{AB}>0$)

Interpretation: The P-value for the interaction is very high=0.9988 and F value=0.06 is very small. We accept the null hypothesis. This confirms that the interaction term is not significant. The estimated G matrix is not positive definite. The interaction is estimated as 0, which aligns with the interaction plot. This confirms that the lack of significance for the interaction term obtained my MSPL and RSPL.

(3) For Problem 25.17b, carry out tests of main effects in PROC GLM. Test the fixed effect A and estimate the variance component for B in PROC GLIMMIX; compare results.

H₀: The level of p1(coating type) have no significant effect on market value

H1: At least one level of p1(coating type) has a significant effect on market value.

For the mixed mode:

 $F_{\text{stat}} = \frac{MSA}{MSE} = \frac{75.19}{4.823} = 15.59$ with a Pvalue <0.05. Indicates that the fixed effect p1 is highly significant. We don't have enough evidence to support null hypothesis and conclude that coating (p1) levels significantly affect the market value of the pearls.

$$F = \frac{MSA}{MSAB} = \frac{75.19}{0.3087} = 243.57 > F_{critical} = 5.14.$$

For batch B(p2): $F_{\text{stat}} = \frac{MSB}{MSAB} = \frac{50.95}{0.3087} = 165.05$ with a small p value.

The F_{stat} of coats(p1) is 18.85 with a P=value=0.0026. The estimate of B is 2.8521. But the covariance of p1*p2 is 0. Both Proc Glimmix and the Proc Glm gives the similar results for main effects.

(4) Compare differences in factor A means using PROC GLIMMIX.

 H_0 : means of the levels of p1 are equal

H_a: At least one pair of means for p1 is significantly different

LSMEANS Estimates:

p1=1;Mea	[72.1520,
n = 73.11	74.8213]
p1=2;Mea	[75.5015,
n = 76.79	78.0860]
p1=3;Mea	[75.8053,78.474
n = 76.93	7].

• We noticed that the Means of p1=1 is different. p1=2

p1 Least Squares Means										
p1	Estimate	Standard Error	DF	t Value	Pr > t	Alpha	Lower	Upper		
1	73.1063	0.6753	45	108.26	<.0001	0.05	71.7462	74.4663		
2	76.7938	0.6753	45	113.72	<.0001	0.05	75.4337	78.1538		
3	76.9250	0.6753	45	113.91	<.0001	0.05	75.5649	78.2851		

and p1=3 are very close and similar value. Not significantly different, this suggest their means are similar.

- We observe that non of the intervals contains zero. Gives us evidence of all means are significantly different.
- Pairwise comparison of p1=2 and p1=3 are not significant, align with our conclusion.
- The F value=10.31 and the P-value<0.05, we reject the null hypothesis, and conclude that the at least one pair of p1 is not significant.

	Differences of p1 Least Squares Means Adjustment for Multiple Comparisons: Tukey											
p1	_p1	Estimate	Standard Error	DF	t Value	Pr > t	Adj P	Alpha	Lower	Upper	Adj Lower	Adj Upper
1	2	-3.6875	0.9550	45	-3.86	0.0004	0.0010	0.05	-5.6110	-1.7640	-6.0020	-1.3730
1	3	-3.8187	0.9550	45	-4.00	0.0002	0.0007	0.05	-5.7422	-1.8953	-6.1333	-1.5042
2	3	-0.1312	0.9550	45	-0.14	0.8913	0.9896	0.05	-2.0547	1.7922	-2.4458	2.1833

(5) For Problem 25.27a, obtain the ML estimates in PROC GLIMMIX for the fixed effect A and the variance components for B and AB. Are any of the variance components equal to zero?

H₀: Variance components for B and ABare 0

Ha: variance components for B and AB are greater than 0

Covariance estimates:

 σ_B = 2.9937, and the P-value=0.0971>0.05, not significant at 0.05 level, but it's closer.

 $\sigma_{AB}=0$, interaction effect p1 * p2, does not contribute to variability.

F value= 21.14 and the P value=0.0019 < 0.05

Fixed effect p1=1; Estimate -3.8196, Pvalue=0.0010<0.05

Fixed effect p1=2; Estimate-0.444, Pvalue=0.5099 >0.05

Interpretation:

Fixed effect p1 is highly significant P value=0.0019

Yes, the variance components are p1*p2 is 0.

Fixed effects estimates for p1 levels shows that p1=1 has a significant contribution to the model. Fixed effect p1 is highly significant P value=0.0019, indicating that the coating(p1) significantly strong and meaningful influences on the response.

(6) For Problem 25.27b, test in PROC GLIMMIX whether the variance component for B is 0. Construct a confidence interval for $\sigma_{2\beta}$. Are the ML estimates for the fixed effect A different? Test whether the A main effect is significant and again compare differences in factor A means. Are the results different from Part (4)?

does not have a significant impact on the beads' performance.
Yes, the results match with part(4).

	Solution for Random Effects									
Effect	p1	p2	Estimate	Std Err Pred	DF	t Value	Pr > t			
p2		1	-1.0285	0.9696	34	-1.06	0.2963			
p2		2	1.4655	0.9696	34	1.51	0.1399			
p2		3	1.7414	0.9641	34	1.81	0.0797			
p2		4	-2.1784	0.9641	34	-2.26	0.0304			

	Covariance Parameter Estimates									
Cov Parm	Estimate	Standard Error	Wald 95% Con	ald 95% Confidence Bounds						
p2	2.9938	2.3056	1.0063	33.0894						
Residual	3.1030	0.6770	2.1097	5.0124						

	Solutions for Fixed Effects									
Effect	p1	Estimate	Standard Error DF		t Value	Pr > t				
Intercept		77.2377	0.9778	3	78.99	<.0001				
p1	1	-3.8196	0.6450	40	-5.92	<.0001				
p1	2	-0.4440	0.6338	40	-0.70	0.4877				
p1	3	0								

Type III Tests of Fixed Effects				
Effect	Num DF	Den DF	F Value	Pr > F
p1	2	40	21.14	<.0001