

Student Number

CATHOLIC SECONDARY SCHOOLS ASSOCIATION OF NEW SOUTH WALES

2003 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Chemistry

Afternoon Session Friday 8 August 2003

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- Draw diagrams using pencil
- Use Multiple Choice Answer Sheet provided
- Write your answers for Part B in the spaces provided
- A Data Sheet and Periodic Table are provided separately

Total marks - 100

Section I

Pages 3-15

75 marks

This section has two parts, Part A and Part B

Part A

15 marks

- Attempt Questions 1–15
- Allow about 30 minutes for this part

Part B

60 marks

- Attempt Questions 16–27
- Allow about 1 hour and 45 minutes for this part

Section II

Pages 17-24

25 marks

- Attempt ONE question from Questions 28–32
- Allow about 45 minutes for this section

Disclaimer

Every effort has been made to prepare these 'Trial' Higher School Certificate Examinations in accordance with the Board of Studies documents, Principles for Setting HSC Examinations in a Standards-Referenced Framework (BOS Bulletin, Vol 8, No 9, Nov/Dec 1999), and Principles for Developing Marking Guidelines Examinations in a Standards Referenced Framework (BOS Bulletin, Vol 9, No 3, May 2000). No guarantee or warranty is made or implied that the 'Trial' Examination papers mirror in every respect the actual HSC Examination question paper in any or all courses to be examined. These papers do not constitute 'advice' nor can they be construed as authoritative interpretations of Board of Studies intentions. The CSSA accepts no liability for any reliance use or purpose related to these 'Trial' question papers. Advice on HSC examination issues is only to be obtained from the NSW Board of Studies.

EXAMINERS

Anna Davis (convenor) Casimir Catholic College, Marrickville

Gillian Giesajtis Casimir Catholic College, Marrickville

Karen Bertinshaw Gilroy College, Castle Hill

Luke Hanson SCEGGS, Darlinghurst

Narelle Lovell Domremy College, Five Dock

Sources:

Curtis, H (1983) Biology (4th Edition), Worth Publishers Inc, New York, p.182

Question 30 (a) (i) – diagram

Kimball's Biology Pages http://users.rcn.com/jkimball.ma.ultranet/BiologyPages

Question 32 (d) – diagram

Section I Total marks – 75 marks

Part A
15 marks
Attempt Questions 1–15
Allow about 30 minutes for this part

Use the Multiple Choice Answer Sheet provided

- Which of the following reagents could be used to distinguish between hexane and 1-hexene?
 - (A) Universal indicator
 - (B) Sodium bromide solution
 - (C) Sodium hydroxide solution
 - (D) Bromine water
- Which of the following lists contains metals which will all displace lead from a solution of lead (II) nitrate?
 - (A) Copper, silver, zinc
 - (B) Zinc, magnesium, copper
 - (C) Silver, iron, zinc
 - (D) Iron, zinc, magnesium

A patient with a suspected liver disorder is to be injected with a radioisotope. The radioisotope will enter the bloodstream and accumulate in the liver. The radiation it emits will be measured by an instrument outside the patient's body, and be used to assess the health of the liver.

Which of the following properties of a radioisotope would make it suitable for such an application?

	Half-life	Type of emission
(A)	7.5 hours	alpha and gamma
(B)	3.2 minutes	gamma only
(C)	6 hours	gamma only
(D)	5,400 years	beta and gamma

	positiv	ve with respect to X.	eted is 1.24V, the silver electrode being	
	From	this information, metal X could be	e: Open in the second of the s	
	(A)	zinc	e granda de la companya del companya del companya de la companya d	
	(B)		en la granda de la estada de la Farencia de la composição de la composição de la Farencia de la Composição d	
	(C)		and the second of the second o	
	(D)		tal caleger attachtet makann	
	(D)	OWLIGHT		
			and Watership (1997)	
5	The h	eat of combustion of ethanol is 13 deeproduced theoretically by the	360 kJ/mol. Approximately how much energe complete combustion of 11.5 g of ethanol?	ЗУ
	(A)	118 kJ		
	(B)	340 kJ		
	(C)	521 kJ	gradien in de kommende de la servición de la commencia de la commencia de la commencia de la commencia de la c	
	(D)	5440 kJ		
6	Whic	ch of the following substances is a	cidic?	
	(A)	Orange juice		
	(B)	Ammonia		
	(C)	Loundry detergents		
	(D)	Distilled water	er de grande de la companya de la c La companya de la co	
7	Iden	tify the CORRECT statement abo	ut oxides.	
	(A)	Metals tend to form acidic oxid	des	
	(B)	Magnesium oxide is an acidic	oxide	
	(C)	Basic oxides neutralise basic s	olutions	
	(D)	Non-metals tend to form acidi		

8 Select the row which matches the compounds with the correct boiling points.

	Propanoic acid (°C)	Propane (°C)	1-Propanol (°C)
(A)	141	- 42	97
(B)	99	- 42	97
(C)	141	97	- 42
(D)	141	139	- 42

- 9 10.0g of calcium carbonate was reacted with 50 mL of 1.00 mol.L⁻¹ hydrochloric acid.

 Calculate the volume of carbon dioxide produced at 25 °C and 100kPa.
 - (A) 2.48 L
 - (B) 2.27 L
 - (C) 0.62 L
 - (D) 0.57 L
- A student uses a pH meter to obtain the pH for solutions of sodium hydroxide and sodium carbonate. The pH reading for each solution is 10.2.

The student can correctly conclude that:

- (A) both solutions are weak bases
- (B) each solution has the same concentration
- (C) only the sodium hydroxide contains OH ions
- (D) both solutions have an $[H_3O^+]$ of $10^{-10.2}$
- Identify the most common method for measuring the concentration of metal ions in water samples.
 - (A) Measuring the amount of light scattered by the water sample
 - (B) Using gravimetric analysis after filtering the water.
 - (C) Analyzing a sample using an Atomic Absorption Spectrometer.
 - (D) Precipitation of the metal salt by adding a solution of another salt.

12 Identify an **isomer** of 1,2–dichlorohexane.

(A)
$$CH_3 H CH_3 H (B)$$

 $H - C - C - C - C - H H - C$

The equation below represents the important industrial process for the production of ammonia.

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ}$

The information in this equation allows chemists to predict that the reaction for the production of ammonia will:

- (A) occur rapidly and spontaneously
- (B) be an exothermic reaction
- (C) require a special catalyst in order to proceed
- (D) be an endothermic reaction

14 Microscopic membrane filters

- (A) only remove suspended solids
- (B) are used after chemical treatment of water
- (C) have very small pores so the filtration rate is very slow
- (D) have a large surface area so the filtration rate is high

- 15 Identify the species that contains a coordinate covalent bond:
 - (A) CO_2
 - (B) NH_4^+
 - (C) NH_3
 - (D) NH_2^-

Section I

Part B 60 marks **Attempt Questions 16–27** Allow about 1 hour and 45 minutes for this part Answer the questions in the spaces provided. Show all relevant working in questions involving calculations. Marks **Question 16** (4 marks) Elements with an atomic number greater than 92 do not occur naturally on earth, but small amounts of the elements have been synthesised by scientists. Neptunium was first synthesised and isolated by American scientists in 1940. The incomplete nuclear equation describing the reaction that produced a sample of Neptunium is shown below. 238 U + X \longrightarrow 239 U \longrightarrow Y + 239 Np Identify particle X in the above equation. 1 (a) 3 Outline the process by which a more recently discovered element has been (b) synthesised and account for the fact that large samples of the element have generally been unable to be isolated.

.....

Que	stion 17 (5 marks)	Marks
	apare the type of reactions that occur to produce polyethylene and cellulose. Include vant formulae equations to assist in your answer.	5
•••••		
Ques	stion 18 (4 marks)	
	nol is used as a fuel extender. Recently, there has been a call from the NRMA to have s of ethanol added to petrol displayed at the point of sale.	
(a)	Draw the structural formula for ethanol.	1
(b)	Identify and explain implications of the use of ethanol as a fuel extender.	3
	······································	

Marks

Question 19 (7 marks)

A student was asked to choose accessible equipment that would be suitable for carrying out an investigation involving the fermentation of glucose. The mass change in the fermentation vessel would be monitored.

The student was given a list of specifications for the investigation, as shown below:

Investigation specifications

- 50 g of glucose powder is allowed to undergo fermentation in the presence of yeast.
- Air should be excluded from the vessel in which fermentation occurs.
- The gas produced in the reaction is to be trapped and passed through a suitable reagent to determine if it is carbon dioxide.

)	Identify the piece of equipment needed to collect data for this investigation.	1	1
)	Make a neat, labelled diagram of the assembled equipment that would meet the above specifications for the investigation.	3	
			, s
;)	After 1 day the mass of the fermentation vessel had decreased by 15.0 g. Calculate the theoretical volume of carbon dioxide gas produced if the reaction was carried out at 25 °C and 100 kPa, and state the assumption you made in carrying out the calculation.	3	

•	ation 20 (5 marks)	
You	have used two different methods to test the pH of acidic, basic and neutral solutions.	
(a)	Identify an indicator that you have used to determine the pH of a solution.	
(b)	Identify a limitation of using the indicator named in (a).	
(c)	Identify ONE advantage of using a pH meter instead of an indicator.	
(d)	Identify and describe procedures that are needed when using a pH meter in order to obtain accurate results.	17×
	and the managery of the state o	
	·	
Ques	tion 21 (5 marks)	
	g an example, outline a procedure for making an ester and explain the conditions sary for this to occur.	

Ques	stion 22 (6 marks)	Marks
(a)	Outline Davy's idea about acids.	1
		•
		•
(b)	Explain how the Bronsted-Lowry theory of acids and bases was an improvement on earlier ideas.	2
	•••••	•
		•
		•
(c)	Define the term – amphiprotic and use equations to describe the behaviour of an amphiprotic substance in acidic and basic solutions.	3
		•
		<u>a</u>

Qı	uestion 23 (4 m	narks)	Marks
		sulfite, $K_2S_2O_5$, is added to wine to prevent oxidation. It works by er and the acids in wine as follows –	4
	Then	$S_2O_5^{2-}(aq) + H_2O(l) \rightarrow 2HSO_3^{-}(aq)$ $HSO_3^{-}(aq) + H_3O^{+}(aq) \Longrightarrow SO_2(aq) + 2H_2O(l)$	
Use the	e the above eques 'wine'.	nations to explain how the addition of metabisulphite affects the pH of	
		······································	
	•••••••		
	••••••		
• • • •	••,••••••		
• • • •	••••••		
••••	••••••	•••••••••••••••••••••••••••••••••••••••	
Qu	estion 24 (4 m	arks)	
(a)	Identify a l	branch of chemistry.	1
(b)	Identify an	d explain a chemical principle used in this branch of chemistry.	3
	•••••	•••••••••••••••••••••••••••••••••••••••	
	•••••		
	•••••	······································	
	•••••		

Ques	stion 25 (5 marks)	Marks
	method used to determine the sulfate content of lawn fertiliser is to add barium ride and measure the mass of precipitate formed.	
(a)	Identify the name of the precipitate that is formed.	1
(b)	Discuss some precautions that should be taken to minimise errors and improve the reliability of this method.	4
	· · · · · · · · · · · · · · · · · · ·	
	·	
	and the second of the second o	
Ques	stion 26 (4 marks)	
	tify TWO common indicators of water quality that would be most useful in itoring waste water from a fruit cannery. Justify your choices.	4
		619
		▼ ::::::
	······································	

Question 27 (7 marks)	Mark
Discuss problems associated with the uses of CFC's, analyse their effects on the atmosphere using appropriate chemical equations, and evaluate the effectiveness of the steps taken to relieve this problem.	7
· · · · · · · · · · · · · · · · · · ·	

Section II

25 marks Attempt ONE question from Questions 28–32 Allow about 45 minutes for this section

Answer the question in a SEPARATE writing booklet.

Show all relevant working in questions involving calculations.

		Page
Question 28	Industrial Chemistry	18
Question 29	Shipwrecks, Corrosion and Conservation	19
Question 30	The Biochemistry of Movement	20-21
Question 31	The Chemistry of Art	22-23
Question 32	Forensic Chemistry	24

Que	stion	28 – Industrial Ch	n emistry (25 mark	as)		Marks	
(a)	(i)	Identify ONE pro underground mine		at allows it to be ex	xtracted from		
	(ii)	Describe the proc mineral deposits.	esses involved in	the extraction of s	ulfur from underground	2	
(b)	(i)		full formulae equa	,	ates, for the production	2	
	(ii)	The diaphragm prohydroxide.	rocess is one elect	rolysis method use	ed to extract sodium	4	
		Describe the diap phased out of use	hragm process and in industry.	d explain why this	process is being	**************************************	
(c)		ing your practical w rmation about the p			estigation to gather		
	(i)	(i) Identify the emulsion and outline the procedure used.					
	(ii)	Describe the prop	perties of the emul	sion and relate the	ese to its use.	3	
(d)		Haber process involutions			drogen under		
			$[N_2]$ (mol L ⁻¹)	$[H_2]$ (mol L^{-1})	$[NH_3]$ (mol L^{-1})		
	В	efore equilibrium	0.20	0.60	0	é [°]	
	A	t equilibrium			0.10		
	(i) Write an expression for the equilibrium constant, K, for this reaction.						
	(ii)	Calculate the equ working.	ilibrium constant,	K, for this reaction	on. Show relevant	3	
(e)		cuss environmental e issues are address		with the Solvay p	rocess and explain how	6	

. 4	Que	estion	29 – Shipwrecks, Corrosion and Conservation (25 marks)	Marks
	(a)	(i)	Identify the scientist who developed the Laws of Electrolysis.	1
		(ii)	Describe Davy's contribution to our understanding of electron transfer reactions.	2
	(b)	(i)	Identify the main metal present in steel.	1
		(ii)	Distinguish between active and passivating metals.	2
		(iii)	Identify ONE type of steel and explain how its composition determines its properties and uses.	3
5)	(c)	(i)	Outline the method you used to determine how ONE named factor affected an electrolysis reaction.	2
		(ii)	Justify the method you used in (c) (i).	3
	(d)	(i)	Identify AT LEAST THREE factors that affect the corrosion rate of a metal wreck as the ocean depth increases.	2
		(ii)	Choose ONE factor identified in (d) (i) and explain how this affects the corrosion rate of a metal wreck as the ocean depth increases.	3
	(e)		tify and evaluate ways in which ocean-going vessels may be protected from osion.	6

Question 30 – The Biochemistry of Movement (25 marks)

Marks

(a) (i) Identify the substance whose structure is shown below.

1

(ii) Account for the biological importance of this substance, clearly indicating the relevant bonds.

1

- (b) Athletes who "hit the wall" have used up most of their store of glycogen, but may still carry stores of fat in their body. To overcome this problem some athletes "carbohydrate load" the day before an event, eating large amounts of pasta, potatoes or rice.
 - (i) Describe how glycogen is stored in the body.

1

(ii) Fats are compounds formed from the bonding of glycerol and fatty acids. Draw the graphic formula for glycerol and give its systematic name.

2

3

(iii) Identify and explain whether carbohydrate loading is more likely to improve the performance of an athlete than eating a lot of fatty foods the day before an event.

(1)

- (c) During your practical work you performed a first-hand investigation that demonstrated the effect of changing either pH or temperature on the reaction of a named enzyme.
 - (i) Identifying by name the enzyme you used, describe the experimental procedure you used for this investigation.

2

(ii) Describe the results you obtained and use these results to identify what may have happened to the enzyme being investigated.

3

Question 30 continued on page 21

Que	stion.	30 (continued)	Marks		
(d)	(i)	Name the special protein fibres that form the contractile elements in skeletal 1 muscle.	1		
	(ii)	Describe briefly how a muscle cell contracts when a nerve impulse activates the muscle cell membrane, identifying the necessary substances involved.	4		
(e)	Discuss the problems encountered by a fast moving sprinter, relating these problems to the relevant parts of the respiratory cycle. Include relevant equations in your answer				

Que	stion	31 – The Chemistry o	1 Art (25	marks)					Marks
(a)	(i)	Identify the ligand present in all hydrated complex ions.					1		
	(ii)	Both boron and nitrogen form molecular compounds with hydrogen. The formulae of the molecules formed are BH ₃ and NH ₃ respectively.						2	
		Explain why a molecumolecule of boron tril		•	•	act as a l	igand ye	t a	
(b)	(i)	Identify the scientist who proposed an atomic model which included the presence of electrons in principal energy levels.						1	
	(ii)	Distinguish between t	he terms	emission	n spectra	and abso	rption sp	ectra.	2
	(iii)	Explain how careful of and hindered the compabove.			-			* *	3
(c)	(i)	Outline the method you used to gather information about the colour changes that occur as a result of changes in the oxidation state of a named transition metal.							2
	(ii)	Describe the results of the investigation and account for the colour changes observed by including relevant chemical equations.							3
(d)	The first ionisation energies of six consecutive elements in the Periodic Table are shown in the table below. The actual names of the elements have been replaced by letters A-F.								
	El	ement Letter	Α	В	C	D	Е	F	
		rst Ionisation Energy Jmol ⁻¹)	1310 168	1680	2080	494	736	577	
	(i)	State the electron contelement magnesium.	figuration	n, in term	s of shell	ls and su	bshells, f	for the	1
	(ii)	One of the elements (A	A-F) abo	ve is mag	gnesium.	Identify	the letter	of this	2

electronegativity. Explain why the element has the highest electronegativity

(iii) Identify the element (A-F) which you would expect to have the highest

2

element and justify your selection.

of this group of elements.

Question 31 (continued)

Marks

(e) Discuss the impact of minerals containing transition metals in the decoration of the environment and the people of TWO named early cultures (Aborigines and ancient Egyptians OR Romans).

6

Question 32 – Forensic Chemistry (25 marks)						
(a)	(i)	Identify BOTH functional groups of an amino acid.				
	(ii)	Describe the arrangement of amino acids in proteins.	2			
(b)	(i)	Account for the use of DNA analysis to identify relationships between people.	2			
	(ii)	Describe the processes used to analyse DNA.	4			
(c)	During your practical work you performed a first-hand investigation to distinguish between different types of carbohydrates.					
	(i)	Outline the procedure used to identify a reducing sugar.	2			
	(ii)	Explain the chemical basis of the reaction outlined in part (i).	3			

(d) A student separated components of a mixture as follows:

- (i) Explain the basis of the separation shown in step (b).
- (ii) Explain why step (c) was performed. 3
- (e) Discuss how the development of a sensitive analytical technique has impacted on forensic investigations. Describe the chemical basis of the technique.

End of Question 32 End of paper