Trabajo Tema 4 MED (MUM)

Beatriz Coronado Sanz

Curso 2018-2019

Índice

- Procesamiento de los datos
- Red neuronal
- Red mediante aprendizaje profundo
- Conclusiones

Conjunto de datos

- Cada fila de los conjuntos de datos contiene un número: la variable 785 identifica al dígito y las variables 1 hasta 784 se corresponden con los 28 × 28 píxeles que forman la imagen del número.
- Transformamos las variables 1 a 784 al intervalo [0,1] dividiendo cada una de ellas por 255

Selección de la muestra de entrenamiento y test

- Elegimos aleatoriamente 5 dígitos entre 0 y 9 y restringimos nuestros conjuntos de entrenamiento y test a esos números.
- Extraemos aleatoriamente 3000 casos del nuevo conjunto de entrenamiento y 1000 del nuevo conjunto de test.
- Los dígitos para nuestro problema serán 2, 4, 6, 8 y 9.

Representación del conjunto de entrenamiento

 En nuestra muestra tenemos el siguiente número de casos para cada dígito:

Dígito	2	4	6	8	9
Número de casos	597	582	614	602	605

 Observamos que tenemos una muestra balanceada donde el número de casos por dígito es parecido.

Representación del conjunto de entrenamiento

Representación del conjunto de test

 En nuestra muestra tenemos el siguiente número de casos para cada dígito:

Dígito	2	4	6	8	9
Número de casos	212	205	209	181	193

 Observamos que tenemos una muestra balanceada donde el número de casos por dígito es parecido.

Representación del conjunto de test

Eliminación de variables constantes

- El último preprocesado que hacemos a los datos consiste en eliminar aquellos píxeles que no varían para todos los elementos de nuestra muestra de entrenamiento.
- Eliminamos esas variables (píxeles) tanto en el conjunto de entrenamiento como en el de test.
- Esto nos permite pasar de 785 variables a 624.

Red neuronal sobre PCA

- Debido a que tenemos muchas variables para predecir el dígito de cada imagen (623), no podemos generar una red neuronal con todas ellas.
- Para solucionar esto aplicamos PCA a nuestro conjunto de entrenamiento y nos quedamos con los píxeles más representativos de cada imagen.
- De esta forma pasamos de tener 623 variables a tener 60, lo que representa un 84,75 % de la varianza total de nuestros datos.

Resumen PCA

• En la siguiente imagen podemos observar un resumen de las primeras componentes principales que hemos calculado:

	Eigenvalue	Percentage	Cumulative	percent.
[1,]	4.28	8.40		8.40
[2,]	4.10	8.05		16.45
[3,]	3.07	6.03		22.48
[4,]	2.92	5.74		28.22
[5,]	2.40	4.72		32.94
[6,]	1.82	3.57		36.51
[7,]	1.55	3.04		39.55
[8,]	1.48	2.91		42.46
[9,]	1.29	2.54		44.99
[10,]	1.17	2.29		47.29
[11,]	1.14	2.24		49.53
[12,]	0.96	1.89		51.43
[13,]	0.85	1.67		53.10

Conversión de los dígitos

- Lo último que hacemos antes de construir nuestra red neuronal es transformar cada uno de los dígitos que queremos averiguar a un formato vectorial de 5 elementos.
- De esta forma, una imagen será de la clase i si el i-ésimo elemento del vector vale 1 y el resto 0.
- Nuestro dígitos quedan de la forma:

```
1 2 3 4 5
[1,] 0 0 0 1 0
[2,] 0 0 1 0 0
[3,] 0 0 0 0 1
[4,] 0 0 1 0 0
[5,] 0 0 0 0 1
[6,] 0 0 0 0 1
```

Resultados en el conjunto de entrenamiento

 Para una red neuronal de 15 nodos ocultos y parámetro de regularización igual a 0 tenemos los siguientes resultados para el conjunto de entrenamiento:

• El porcentaje de acierto de la red neuronal es del 95,33 %.

Resultados en el conjunto de test

 Para una red neuronal de 15 nodos ocultos y parámetro de regularización igual a 0 tenemos los siguientes resultados para el conjunto de test:

• El porcentaje de acierto de la red neuronal es del 92,4 %.

Interpretación de los resultados

- Observamos que los resultados son muy buenos en ambos conjuntos pues el acierto está por encima del 90 %.
- La red neuronal es un poco mejor en el conjunto de entrenamiento que en el de test. Lo que es normal debido a que el conjunto de entrenamiento es con el que se ha entrenado la red.
- Observamos así que nuestra red neuronal tiene una gran capacidad de generalización al acertar casi siempre los nuevos dígitos que le llegan.
- Vemos que hay algunas confusiones entre el 4 y el 9 (en total 43 fallos en el conjunto de entrenamiento) y entre el 2 y el 8 (en total 25 fallos).

Red mediante aprendizaje profundo

- Vamos a generar una red de aprendizaje profundo con 2 capas ocultas de 200 neuronas cada una.
- Tendremos un porcentaje de dropout del 20 % y entrenaremos la red como mucho 50 veces.
- Para generar esta red usaremos la herramienta h2o.
- En este caso podemos evaluar nuestra muestra de entrenamiento con todas las variables (las que no son constantes), sin necesidad de aplicar PCA.

Resultados para el conjunto de entrenamiento

 Para el conjunto de entrenamiento obtenemos los siguientes resultados:

```
Error
                                     Rate
           1 1 3 0 0.0084 =
                                     597
        0 575 1 0 6 0.0120 =
                                  7 / 582
6
           0 614 0 0 0.0000 =
                                      614
8
               1 600 1 0.0033 =
                                      602
                  1 604
                       0.0017 =
                                      605
Totals 592 576 617 604
                    611 0.0050 = 15 /
```

• El porcentaje de acierto de la red neuronal es del 99,5 %.

Resultados para el conjunto de test

• Para el conjunto de test obtenemos los siguientes resultados:

• El porcentaje de acierto de la red neuronal es del 95,5 %.

Interpretación de los resultados

- En el conjunto de entrenamiento practicamente se aciertan todos los casos y en el de test el acierto está por encima del 95,5 %
- Observamos que en el conjunto de entrenamiento siempre se predice correctamente el número 6.

Conclusiones finales

- Comprobamos que la eficacia de una red de aprendizaje profundo es superior a la de una red neuronal.
- Podemos plantearnos si generar una red de aprendizaje profundo compensa para este problema ya que los resultados obtenidos de la red neuronal calculada son muy buenos.