1.

The image above is a screen shot of the opuput of HW1_tables.py. As seen above, all tables have been moved to be on the PR2's side of the room.

2.

The above image is a screen shot of the output of HW1_puma.py. As seen above, PR2 is touching Puma with its left gripper. The command line terminal indicates the collision of the two robots to be

True.

The above image is a screen shot of the output of HW1_drawing.py. 35 blue points have been drawn around the entire environment and red rectangles have been drawn around the boundaries of the table.

The above image is a screen shot of the output of HW1_collision.py. As seen above, The robot was

placed at the center of the environment, facing the wall. The command line terminal indicates its collision with the environment/wall as *False*. The joint values were set to the point the right arm pointing straight forward. The collision with the robot is is found (and displayed) to be *True* before the controller is called.

Explain why you placed waitrobot() inside/outside the "with env:". What would happen if it were placed in the other location and why?

"with env:" is used to lock the environment to be thread safe. The waitrobot() must be placed outside the "with env:" block. Waitrobot() ensures that the true configuration of the robot that was assigned to it in the "with env:" construct takes effect on the OpenRave GUI. It is a function that waits while the robot is busy.

If waitrobot() was placed inside the "with env:" block, then the changes being made inside the block's body will be interrupted and this is anti intuitive to the usage of "with env:" which locks the environment from external threads making changes.

	classmate
	Classmate Date Page
1.	For a general rigid body in \mathbb{R}^3 , the dimension of the C-space is $\mathring{\circ}$
	roll, pitch, your & S3 (with twist) and & Rp3 (with twist).
	out
	roll pitch your e)53 (with twist) and
	RP3 (with twist).
	The C-space is given by
	$C = C_1 \times C_2 = \mathbb{R}^3 \cdot \mathbb{RP}^3$
	$C = C_1 \times C_2 = \mathbb{R}^3 \cdot \mathbb{RP}^3$ dimension = 6.
	Since the rod dow not whitsit any detectable
	Since the rod does not exhibit any detectable Change in position / orientation if notated about it's central axis, its C2 reduces to
	C2 = {RP2 (with twist) S2 (without twist).
	(without twist).
100	Thus He Carper is also bear
	Thus, the C-space is given by:
	C=SR3×RP2 (with twist) or R3×S2 (without twist)
	[R3 x S = (without twist)
	At discharge of the Course is - 5
	The dimension of the c-space is = 5
*	Since the guestion does not talk about
·	Swist, we can assume that the C-space is
	Since the question does not talk about- dwist, we can assume that the C-space is given by:
	C = R3 x S2 with a dimension of 5
	70.00

2. Astroids-style game:

The screen is a Torus (T²)

A space craft in 2D has 3 properties that-tell us its location on the screen:

 $x, y \in \mathbb{R}^2$ ξ ϕ (orientation ξ S' δ) δ δ

Thus C, = R2 & C2 = S'

C = C, x C,

 $C = R^2 \times S^1$

Considering the property of the seven, the C-space could be affected by its this since the space craft can enter and exil— the 2 identified side pairs. This makes the C-space $T^2 \times S^2$

2/3 After slicing the Mobius
13 After slicing the Mobius 13 band as shown, the
rusultant is 2 inter linked
mo bi us bands, Where One is
longer (and thinner) than the second.
The geed this of office
after tearing holes out
of the plane is not a
around the pariphery of the
holy have lost the points in their sitinity:

	classmate
	Date Page
3 A.	Let
	$h_1 = a + bi + cj + dk.$
	then
	$a = \cos\left(\frac{\theta}{2}\right)$
	$b = v_i \sin\left(\frac{\theta}{2}\right)$
	$c = \sqrt{2} \sin \left(\frac{0}{2}\right)$
	$d = \sqrt{3} \operatorname{cm} \left(\frac{0}{2} \right)$
	when $\theta = \text{rotation} = \frac{\pi}{2}$ (given)
	$\mathcal{E}_{1} = [v_{1}, v_{2}, v_{3}] = [\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}] $ (given)
-	$a_1 = \frac{1}{\sqrt{2}}$
	$J_{0} = \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{6}}$
	$C_1 = \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{6}}$
	$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{6}}$
	$\int_{\Omega} h_{i} = \frac{1}{\Omega} + \frac{1}{\Omega} \left(i + j + k \right)$

β.	Similar to part A, now we have
	$V = [0, 1, 0]$ and rotation $Q = \pi$.
	$a = 0 \left(= \log \overline{x} \right)$
	b = 0. sin T = 0
	$C_2 = 1 \cdot \lim_{ } \overline{1} = 1$
	$d_2 = 0. \sin \hat{x} = 0$
	i. h = 1.j
<u> </u>	let he supresent rotation supresented by he followed by notation supresented by he Then
	$h_3 = h_2 \cdot h_2 = a_3 + b_3 i + c_3 j + d_3 k$ $= \left(\frac{1}{\sqrt{1 + c_3}} + \frac{1}{\sqrt{1 + c_3}}$
	- 1 + 1 (-1) *
lil	- h = a + b i + C i j + d k & h z = a z + b z i + C z j + d z k
	$a_3 = a_1 a_2 - b_1 b_2 - c_1 c_2 - d_1 d_2 = -1$
	$b_3 = a_1b_2 + a_2b_1 + c_1d_2 - c_2d_1 = 1/1 0 + 0 + 0 - 1 = -1$
	$c_3 = a_1c_1 + a_2c_1 + b_2a_1 - b_1a_2 = \frac{1}{\sqrt{2}} + 0 + 0 - 0 = 1$
	$d_3 = a_1 d_2 + a_2 d_1 + b_1 c_2 - b_2 c_1 = 0 + 0 + \frac{1}{16} - 0 = \frac{1}{16}$

o's
$$h_3 = -\frac{1}{16} - \frac{1}{16} + \frac{1}{12} + \frac{1}{16} \times \frac{1}{16}$$

$$\therefore \theta = 2 \cos^{-1}(a_3)$$

$$= 2 \cos \left(-\frac{1}{J_6}\right)$$

$$\frac{\sqrt{1 + \beta_3}}{\sin(\frac{\theta}{2})} = \frac{\beta_3}{1 - \cos(\frac{\theta}{2})} = \frac{\beta_3}{1 - a_3^2}$$

$$V_2 = \frac{C_3}{1 - \alpha_3^2} = \frac{\sqrt{2}}{5} = \frac{\sqrt{3}}{5} = \frac{3}{5}$$

$$\sqrt{3} = \frac{d_3}{\sqrt{1-a_3^2}} = \frac{1}{\sqrt{5}}$$

$$\sqrt{\frac{1}{5}}, \sqrt{\frac{3}{5}}, \frac{1}{\sqrt{5}}$$
 (aiis)

	classmate Date Page
4.	For a single polyhedral body in 3D:
	$C = \mathbb{R}^3 \cdot \mathbb{R}\mathbb{P}^3 \qquad \bigcirc$
	For n polyhedral bodies, the c space is simply a cartesian product of eq (i), n-times. il C = (R ³ · RP ³) ⁿ Inbodies
	given: 6 pohyhedral bodies >> n=6
	$= \frac{(R^3 \times RP^3)^6}{(RP^3)^6}$
	:. The dimension of the C-space = 36