Graphs Shortest Path and MST

Dijkstra, Bellman-Ford, Prim and Kruskal

SoftUni Team Technical Trainers

Software University

https://about.softuni.bg

Table of Contents

1. Shortest Paths in Graph

- Unweighted Graph
- Dijkstra Algorithm
- Bellman-Ford

2. MST

- Kruskal's Algorithm
- Prim's Algorithm

Shortest Path

Shortest Path in Unweighted Graph

Shortest Path in Unweighted Graph

• In unweighted graphs finding the shortest path can be done with BFS (all edges have the same weight):

BFS Shortest Path


```
bfs(G, start, end)
    visited[start] = true
    queue.enqueue(start)
    while (!queue.isEmpty())
          v = queue.dequeue()
          if v is end
          return v
          for all edges from v to w in G.adjacentEdges(v) do
             if w is not labeled as discovered then
                 label w as discovered
                 w.parent = v
                 queue.enqueue(w)
```


Dijkstra's Algorithm

Shortest Paths in Graph

Dijkstra's Algorithm

- <u>Dijkstra's algorithm</u> finds the <u>shortest path</u> from given vertex to all other vertices in a directed / undirected <u>weighted graph</u>
 - First described by Edsger W. Dijkstra in 1956
- Assumptions
 - Weights on edges are non-negative
 - Edges can be directed or not
 - Weights do not have to be distances
 - Shortest path is not necessarily unique
 - Not all edges need to be reachable

Weighted Shortest Paths with BFS

- In weighted graphs
 - Break the edges into sub-vertices and use BFS

* Too much memory usage even for smaller graphs!

Dijkstra's Algorithm

- Dijskstra's algorithm is similar to BFS
- V
 A
 B

 V
 A
 B
- Use a priority queue instead of queue d[v] 30 15
 - Keep the shortest distances so far
- Steps in Dijkstra's algorithm:

```
Initially calculate all direct distances d[] from S
Enqueue that start node S
While (queue not empty)
  Dequeue the nearest vertex B
  Enqueue all unvisited child nodes of B
  For each edge {B → A}, improve d[A] through B:
    d[S → A] = min(d[S → A], d[S → B] + weight[B → A])
```


- Initialize all distances d[] from s: d[0...n-1] = ∞; d[s] = 0
- Enqueue the start node (②)

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	-	-\	-	-	/-	_	-	-	-	-	-
prev[v]	_	_		-	_	_	-	_	-	-	-	-

- Dequeue the nearest vertex (0) and enqueue unvisited children: 6, 8
- Improve min distances through child edges of $0: \{0 \rightarrow 6\}, \{0 \rightarrow 8\}$

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	-	-\	-	-	/-	10	-	12	-/	-	-
prev[v]	-	-	-/	-	_	_	0	_	0	-	-	-

- Dequeue the nearest vertex (6) and enqueue unvisited children: 4, 5
- Improve min distances through child edges of 6: $\{6 \rightarrow 4\}$, $\{6 \rightarrow 5\}$

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	-	-\	-	27	16	10	-	12		-	-
prev[v]	-	-		_	6	6	0	_	0	-	\ <u>-</u>	-

- Dequeue the nearest vertex (8) and enqueue unvisited children: 2
- Improve min distances through child edges of 8: $\{8 \rightarrow 2\}$, $\{8 \rightarrow 5\}$

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	-	26	-	27	15	10	-	12	-	-	-
prev[v]	-	-	8	_	6	8	0	_	0	_	\ <u>-</u>	-

- Dequeue the nearest vertex (5) and enqueue unvisited children: 11
- Improve min distances through child edges of 5: {5 → 4}, {5 → 11}

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	-	26	-	20	15	10	-	12	-/	-	48
prev[v]	_	_	8	-	5	8	0	-	0	-	-	5

- Dequeue the nearest vertex (4) and enqueue unvisited children: 1
- Improve min distances through child edges of $4: \{4 \rightarrow 1\}, \{4 \rightarrow 1\}$

V	0	1	2	3	4	5	6	7	8	9	10	11
d[v]	0	40	26	_	20	15	10	-	12	_/	-	31
prev[v]	_	4	8	_	5	8	0	_	0	-	\-	4

- Dequeue the nearest vertex (2) and enqueue unvisited children: 7
- Improve min distances through child edges of 2: $\{2 \rightarrow 7\}$, $\{2 \rightarrow 11\}$

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	40	26	_	20	15	10	41	12	-/	-	31
prev[v]	_	4	8	_	5	8	0	2	0	-	-	4

- Dequeue the nearest vertex (11) and enqueue unvisited children: none
- Improve min distances through child edges of 11: $\{11 \rightarrow 1\}$, $\{11 \rightarrow 7\}$

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	37	26	_	20	15	10	41	12	-	-	31
prev[v]	_	11	8	-	5	8	0	2	0	-	\-	4

- Dequeue the nearest vertex (1) and enqueue unvisited children: 9
- Improve min distances through child edges of $1: \{1 \rightarrow 7\}, \{1 \rightarrow 9\}$

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	37	26	_	20	15	10	41	12	42	-	31
prev[v]	_	11	8	-	5	8	0	2	0	1	-	4

- Dequeue the nearest vertex (7) and enqueue unvisited children: none
- Improve min distances through child edges of 7: {7 → 9}

V	0	1	2	3	4	5	6	7	8	9	10	11
d[v]	0	37	26	_	20	15	10	41	12	42	-	31
prev[v]	_	11	8	_	5	8	0	2	0	1	\-	4

- Dequeue the nearest vertex (9) and enqueue unvisited children: none
- Improve min distances through child edges of 9: none

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	37	26	_	20	15	10	41	12	42	-	31
prev[v]	-	11	8	_	5	8	0	2	0	1	-	4

- The queue is empty → Dijkstra's algorithm is completed
- d[v] hold shortest distances; prev[v] holds shortest paths tree edges

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	37	26	_	20	15	10	41	12	42	_	31
 prev[v]	-	11	8	_	5	8	0	2	0	1		4

- The output is the shortest paths tree from the starting node to all others
- Reconstruct the path destination to source using prev[v]

V	0	1	2	3	4	5	6	7	8	9	10	11
d[<i>v</i>]	0	37	26	_	20	1 5	10	41	12	42	-	31
prev[v]	_	11	8	_	5	8	0	2	0	1	_	4

- prev[v] holds the
- shortest paths tree edges Path[9 → 0] =

 $\{9 \rightarrow 1 \rightarrow 11 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 0\}$

Dijkstra's Algorithm – Pseudo Code


```
d[0...n-1] = INFINITY; d[startNode] = 0
Q = priority queue holding nodes ordered by distance d[]
startNode add to Q
while (Q is not empty)
  minNode = dequeue the smallest node from Q
  if (d[minNode] == INFINITY) break;
  foreach (child c of minNode)
    if (c is unvisited) c add to Q
    newDistance = d[minNode] + distance {minNode → c}
    if (newDistance < d[c])</pre>
      d[c] = newDistance;
      reorder Q;
```

Dijkstra's Algorithm – More Details

- Modifications
 - Implementation with array, priority queue
 - Having a target node + stop when it is found
 - Saving the shortest paths tree (prev[v])
- Complexity depends on the implementation
 - Typical implementation (with array): O(|V|²)
 - With priority queue: O((|V|+|E|)*log(|V|))
- Applications maps, GPS, networks, air travel, etc.

Negative Cycles and Edges

Introducing The Undefined Graph Path

Negative Edge

- What is a negative edge:
 - Edge with weight less than zero
 - Can be presented in any context in the graph
 - Can be both directed or undirected
 - Can be a part of a cycle

Negative Weight Cycles

- Negative weight cycle in graph
 - Cycle with weights that sum to a negative number
 - If there is negative cycle reachable from the source node, then the path is undefined

Path from A to E is undefined

Negative Weights and Dijkstra

Dijkstra's Killer

Negative Weights and Dijkstra

Consider the following graph what is the shortest path (A, C)?

- The output will be 2 for A to C
- We can see that the correct answer is -5 for A to B to C

Negative Weights and Dijkstra

- Why does Dijkstra fail with negative edges?
 - Dijkstra assumes that once we mark the node as visited as a parent node the shortest path to it is found
 - The above assumption is true for non-negative weights
 - We never can change the minimum by adding any positive number, however we can by adding negative one

Bellman-Ford Algorithm

Shorts Path in Graph with Negative Edges

Bellman-Ford Algorithm

- Computes shortest paths from a source vertex to all of the other vertices in a weighted digraph
- Named after Richard Bellman and Lester Ford Jr., who published it in 1958 and 1956, respectively
- Can detect and report negative cycles
- Time complexity: O(VE)

Bellman-Ford Algorithm

- The Bellman-Ford algorithm will do V 1 iterations where V is the number of vertices
 - For each iteration:
 - For each edge in the graph (u, v, w)
 - If d[v] > d[u] + w(u, v) and d[v] is visited before
 - Update d[v] with d[u] + w(u, v)
 - Update the prev[v] = u
- Run the algorithm one more time for each edge
 - If you can update any d[v] there is a negative cycle

Bellman-Ford in Action (step 1)

• We have 6 vertices so 5 iterations and 5 is the starting vertex

V	S	A	E	D	В	C
d[v]	0	_	-	_	-	-

Bellman-Ford in Action (step 2)

Iteration #1:

v	S	A	E	D	В	С
d[v]	0	-	8	_	-	-

Bellman-Ford in Action (step 3)

Iteration #1:

V	S	A	E	D	В	С
d[v]	0	10	8	_	-	-

Bellman-Ford in Action (step 4)

V	S	A	E	D	В	С
d[v]	0	10	8	_	-	12

Bellman-Ford in Action (step 5)

V	S	Α	E	D	В	С
d[v]	0	10	8		10	12

Bellman-Ford in Action (step 6)

V	S	Α	E	D	В	С
d[<i>v</i>]	0	10	8	_	10	12

Bellman-Ford in Action (step 7)

V	S	Α	E	D	В	С
d[v]	0	10	8	_	10	12

Bellman-Ford in Action (step 8)

V	S	A	E	D	В	С
d[v]	0	10	8	9	10	12

Bellman-Ford in Action (step 9)

V	S	A	E	D	В	С
d[v]	0	10	8	9	10	12

Bellman-Ford in Action (step 10)

V	S	A	E	D	В	С
d[v]	0	10	8	9	10	12

Bellman-Ford in Action (step 11)

v	S	A	E	D	В	С
d[v]	0	10	8	9	10	12

Bellman-Ford in Action (step 12)

V	S	A	E	D	В	С
d[v]	0	10	8	9	10	12

Bellman-Ford in Action (step 13)

V	S	A	E	D	В	С
d[v]	0	10	8	9	10	12

Bellman-Ford in Action (step 14)

ν	S	A	E	D	В	С
d[v]	0	5	8	9	10	12

Bellman-Ford in Action (step 15)

V	S	A	E	D	В	С
d[v]	0	5	8	9	10	8

Bellman-Ford in Action (step 16)

V	S	A	E	D	В	С
d[v]	0	5	8	9	10 8	

Bellman-Ford Algorithm

• Algorithm steps pseudocode:

```
for v in G
   d[v] = infinity
   prev[v] = null
d[source] = 0
for vertex in G. vertices - 1
  for edge in edges
    if (d[edge.from] != infinity and
        d[edge.from] + edge.weight < d[edge.to])</pre>
      update d[edge.to]
// Run the algorithm second time if you can
// update any distance there is a negative cycle
```


Spanning Tree

Spanning tree

- Subgraph without cycles (tree)
- Connects all vertices together
- All connected graphs have a spanning tree
- All graphs with multiple components have spanning forest

Minimum Spanning Tree (MST)

- Minimum spanning tree (MST)
 - Weight <= weight(all other spanning trees)
- First used in electrical networks
 - Minimal cost of wiring

Minimum Spanning Forest (MSF)

- Minimum spanning forest
- Set of all minimum spanning trees (when the graph is not connected)

Kruskal's Algorithm

- Create a forest F holding all graph vertices and no edges
- Create a set 5 holding all edges in the graph
- While S is non-empty
 - Remove the edge e with min weight
 - If e connects two different trees
 - Add e to the forest
 - Join these two trees into a single tree
- The graph may not be connected

- Start from forest holding all vertices and no edges
- S = all edges, ordered by weight
- **F** = { }
- S = {BD=2, AB=4, AC=5, CE=7, HI=7, DE=8, GH=8, AD=9,
 GI=10, EF=12, CD=20}

- Take the smallest edge BD = 2
 - The edge BD connects different trees → add it to the forest
- F = {BD=2}
- S = {AB=4, AC=5, CE=7, HI=7, DE=8, GH=8, AD=9, GI=10, EF=12, CD=20}

- Take the smallest edge AB = 4
 - The edge AB connects different trees → add it to the forest
- \blacksquare F = {BD=2, AB=4}
- S = {AC=5, CE=7, HI=7, DE=8, GH=8, AD=9, GI=10, EF=12, CD=20}

- Take the smallest edge AC = 5
 - The edge AC connects different trees → add it to the forest
- \blacksquare F = {BD=2, AB=4, AC=5}
- S = {CE=7, HI=7, DE=8, GH=8, AD=9, GI=10, EF=12, CD=20}

- Take the smallest edge CE = 7
 - The edge CE connects different trees → add it to the forest
- \blacksquare F = {BD=2, AB=4, AC=5, CE=7}
- S = {HI=7, DE=8, GH=8, AD=9, GI=10, EF=12, CD=20}

- Take the smallest edge HI = 7
 - The edge CE connects different trees → add it to the forest
- \blacksquare F = {BD=2, AB=4, AC=5, CE=7, HI=7}
- S = {DE=8, GH=8, AD=9, GI=10, EF=12, CD=20}

- Take the smallest edge DE = 8
 - The edge DE causes a cycle (connects the same tree) → skip it
- \blacksquare F = {BD=2, AB=4, AC=5, CE=7, HI=7}
- S = {GH=8, AD=9, GI=10, EF=12, CD=20}

- Take the smallest edge GH = 8
 - The edge GH connects different trees → add it to the forest
- \blacksquare F = {BD=2, AB=4, AC=5, CE=7, HI=7, GH=7}
- \blacksquare S = {AD=9, GI=10, EF=12, CD=20}

- Take the smallest edge AD = 9
 - The edge AD causes a cycle (connects the same tree) → skip it
- F = {BD=2, AB=4, AC=5, CE=7, HI=7, GH=7}
- \blacksquare S = {GI=10, EF=12, CD=20}

- Take the smallest edge GI = 10
 - The edge GI causes a cycle (connects the same tree) → skip it
- F = {BD=2, AB=4, AC=5, CE=7, HI=7, GH=7}
- S = {EF=12, CD=20}

- Take the smallest edge EF = 12
 - The edge EF connects different trees → add it to the forest
- F = {BD=2, AB=4, AC=5, CE=7, HI=7, GH=7, EF=12}
- $S = \{CD = 20\}$

- Take the smallest edge CD = 20
 - The edge CD causes a cycle (connects the same tree) → skip it
- F = {BD=2, AB=4, AC=5, CE=7, HI=7, GH=7, EF=12}
- $S = \{\} \rightarrow \text{ stop the algorithm}$

Kruskal's Algorithm – Pseudo Code

• Time complexity: O(|E| * log* |E|)

```
foreach v ∈ graph edges
  parent[v] = v
foreach edge {u, v} ordered by weight(u, v)
  rootU = findRoot(u)
  rootV = findRoot(v)
  if rootU ≠ rootV
    print edge {u, v}
    parent[rootU] = rootV
findRoot(node)
  while (parent[node] ≠ node)
    node = parent[node]
  return node
```


Prim's Algorithm

- Given a graph G(V, E) find the minimum spanning forest T(V', E')
- Attach to the tree T the starting node
- While smallest edge exists
 - Attach to T the smallest possible edge from G without creating a cycle in T
 - Use the smallest edge (u, v),
 such that u ∈ T and v ∉ T
- Start the Prim's algorithm for each node from G

Prim's Algorithm - Step #1

- Start from the initial node A
- Enqueue all edges from A to other graph nodes: AB, AC, AD
- Spanning tree = {A}
- Priority queue = {AB = 4}, {AC = 5}, {AD = 9}

- Dequeue the shortest edge {AB = 4} and add it to the tree
- Enqueue all edges from B to other graph nodes: BD
- Spanning tree = {AB = 4}
- Priority queue = {BD = 2}, {AC = 5}, {AD = 9}

- Dequeue the shortest edge {BD = 2} and add it to the tree
- Enqueue all edges from D to other graph nodes: DC, DE
- Spanning tree = {AB = 4}, {BD = 2}
- Priority queue = {AC = 5}, {DE = 8}, {AD = 9}, {CD = 20}

- Dequeue the shortest edge {AC = 5} and add it to the tree
- Enqueue all edges from C to other graph nodes: CE
- Spanning tree = {AB = 4}, {BD = 2}, {AC = 5}
- Priority queue = {CE = 7}, {DE = 8}, {AD = 9}, {CD = 20}

- Dequeue the shortest edge {CE = 7} and add it to the tree
- Enqueue all edges from E to other graph nodes: EF
- Spanning tree = {AB = 4}, {BD = 2}, {AC = 5}, {CE = 7}
- Priority queue = {DE = 8}, {AD = 9}, {EF = 12}, {CD = 20}

- Dequeue the shortest edge {DE = 8}
 - It would create a loop in the spanning tree → skip it
- Spanning tree = {AB = 4}, {BD = 2}, {AC = 5}, {CE = 7}
- Priority queue = {AD = 9}, {EF = 12}, {CD = 20}

- Dequeue the shortest edge {AD = 9}
 - It would create a loop in the spanning tree → skip it
- Spanning tree = {AB = 4}, {BD = 2}, {AC = 5}, {CE = 7}
- Priority queue = {EF = 12}, {CD = 20}

- Dequeue the shortest edge {EF = 12} and add it to the tree
- Enqueue all edges from F to other graph nodes: no such edges
- Spanning tree = {AB = 4}, {BD = 2}, {AC = 5}, {CE = 7}, {EF = 12}
- Priority queue = {CD = 20}

- Dequeue the shortest edge {CD = 20}
 - It would create a loop in the spanning tree → skip it
- Spanning tree = {AB = 4}, {BD = 2}, {AC = 5}, {CE = 7}, {EF = 12}
- Priority queue = { } → stop the algorithm

- Start from the initial node G
- Enqueue all edges from G to other graph nodes: GH, GI
- Spanning tree = {AB, BD, AC, CE, EF}, {G}
- Priority queue = {GH = 8}, {GI = 10}

- Dequeue the shortest edge {GH = 8} and add it to the tree
- Enqueue all edges from H to other graph nodes: HI
- Spanning tree = {AB, BD, AC, CE, EF}, {GH = 8}
- Priority queue = {HI = 7}, {GI = 10}

- Dequeue the shortest edge {HI = 7} and add it to the tree
- Enqueue all edges from I to other graph nodes: no such edges
- Spanning tree = {AB, BD, AC, CE, EF}, {GH = 8}, {HI = 7}
- Priority queue = {GI = 10}

- Dequeue the shortest edge {GI = 7} and add it to the tree
 - It would create a loop in the spanning tree → skip it
- Spanning tree = {AB, BD, AC, CE, EF}, {GH = 8}, {HI = 7}
- Priority queue = { } → stop the algorithm

Prim's Algorithm (with Priority Queue)


```
Time complexity: O(|E| * \log |E|)
spanningTreeNodes = Ø
foreach (v ∈ graphVertices)
  if (v ∉ spanningTreeNodes)
    prim(v)
prim(startNode)
  spanningTreeNodes -> startNode
  var priorityQueue = Ø
  priorityQueue -> childEdges(startNode)
  while (priorityQueue is not empty)
    smallestEdge = priorityQueue.ExtractMin()
    if (smallestEdge connects tree node with non-tree node)
      print smallestEdge
      spanningTreeNodes -> smallestEdge.nonTreeNode
      priorityQueue -> childEdges(smallestEdge.nonTreeNode
```

Summary

- Shortest paths in a graph:
 - BFS in Unweighted Graph
 - Dijkstra's algorithm finds the shortest path from a single source
 - Bellman ford's algorithm finds the shortest path in graph with negative weights
- Minimum spanning tree (MST)
 - Solved by Prim's and Kruskal's algorithms

Questions?

SoftUni Diamond Partners

SUPER HOSTING .BG

Educational Partners

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity
- Software University Forums
 - forum.softuni.bg

