ΛΥΣΗ

- α) Είναι $P(-2) = (-2)^3 (-2) + 6 = -8 + 2 + 6 = 0$.
- β) Αφού ο αριθμός -2 είναι ρίζα του πολυωνύμου P(x), άρα το x-(-2)=x+2 θα είναι παράγοντας του P(x).
- γ) Με βάση το β) ερώτημα, η διαίρεση P(x): (x+2) θα είναι τέλεια, αφού το υπόλοιπο αυτής της διαίρεσης είναι το P(-2)=0. Εκτελούμε το σχήμα Horner για να βρούμε το πηλίκο της παραπάνω διαίρεσης.

1	0	-1	6	- 2
	- 2	4	- 6	
1	- 2	3	0	

Άρα $P(x)=(x+2)(1x^2-2x+3)$. Παρατηρούμε τώρα, ότι η διακρίνουσα του τριωνύμου x^2-2x+3 είναι $\Delta=(-2)^2-4\cdot 1\cdot 3=-8<0$, άρα δεν αναλύεται σε γινόμενο.