Wzory, równania, zależności Analogowe układy elektroniczne

Łukasz Przystupa

 $27~\mathrm{marca}~2023$

Spis treści

1	Tra	nzystory bipolarne	3
	1.1	Struktura tranzystory	3
		Schemat mało-sygnałowy	
		Układ ze wspólnym emiterem (OE)	

1. Tranzystory bipolarne

1.1. Struktura tranzystory

Rysunek 1: Struktura wewnętrzna tranzystora NPN, schemat tranzystory

Stało-prądowa zależności między prądami:

$$I_C \approx I_E$$
 (1)

$$I_C = I_{ES} \cdot \left(e^{\frac{U_{BE}}{U_T}} - 1\right) \approx I_{ES} \cdot e^{\frac{U_{BE}}{U_T}} \tag{2}$$

Dla prostych obliczeń można wykorzystać stało-prądowy współczynnik wzmocnienia β :

$$I_C = \beta \cdot I_B \tag{3}$$

1.2. Schemat mało-sygnałowy

Układ mało-sygnałowy rozpatrujemy przy zwartych źródłach napięcia <u>stałego</u> oraz rozwartych źródłach prądu stałego! Parametry układu:

Rysunek 2: Schemat mało-sygnałowy, tranzystora NPN

$$g_m = \frac{I_C}{U_T} \qquad r_d = \frac{\beta}{g_m} \qquad (4)$$

$$r_{CE} = \frac{U_A}{I_C}$$

Wzmocnienie napięciowe tranzystory:

$$k_u = \frac{dU_o}{dU_i} = -g_m \cdot r_{CE} \tag{5}$$

Wzmocnienie prądowe:

$$k_i = \beta \tag{6}$$

1.3. Układ ze wspólnym emiterem (OE)

Rysunek 3: Schemat wzmacniacza OE i model mało-sygnałowy

$$k_u = -g_m \cdot (R_C || r_{CE}) \approx -g_m \cdot R_C = \frac{I_C \cdot R_C}{U_T}$$
(7)

$$k_{u_{max}} = -g_m \cdot r_{CE} \tag{8}$$