

	Use Adaine network to train ANDNOT function with bipolar injute & targets Perform 2 ejochs								
inee.	Use Adarine network to water Perform 2 ejoch								
	with bipolar injute & targets								
	of training.								
	100000000000000000000000000000000000000								
1831	the maken's some at the grap and of gard the								
SOL-	1 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
3647	1 1 -1 -1								
	1 1 to also I								
	-1 1 win-1 md wait								
	1 -1 -1								
	-1 -1 -1								
	Le larning rate also 0-2.								
	The weights are calculated until Least Mean								
	square evoe is obtained.								
	For First Enjuty 1990M SMNACA								
	X121, X221, t2-1								
	4° 2 6+ w, x, + w, x2								
	2 0.2 + 0.2×1 + 0.2×1 = 6.6								
	W 1-11/1-								
	(t-yin) = (1-0-8) = -1.6 \$0								
	vidate weights,								
	vidate weights, withere = wotords + x(t- yis 1xi								
	6m								
	wichen) 2 willow) + x(t-yin)x1								
	z 0.2 + 0.2 (-1-0.6) L 2-0.12								
	wy (new) 2 wy locas + xlt-yisix								
	2 0.2 + 0.2 (-1-0.6) xx = -0.12								
340	b(new) ~ bloca) + x(t-yin)								
	2 0.2 10.2 x (1-6) = -0.12								
	$\Delta w_1 = -0.32$, $\Delta w_2 = -0.32$, $\Delta w_2 = -0.32$								

compute Error E2 (t-yin) 2 (-1.6) +2 2.56. For II (1/p. 840) + (+) x 460 + 10.0-X121, X2 > -1 1, EE L Yinz b + Sriwi 2 be wix, ewx 2 -0.12 + (-0.12) 3 + (-0.12)(-1) (12)(1-0:12) + 140 (t-yin) = (1+0-12) = 1-12 be date weights + was a country Wilnews = willows + alt-yin)x1 2 1-0.12 + 1 0.2 X 1.12 X 1 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$ = -0.34 Guyma I- Was 6(new) - 6(000) + d(t-gin) 2 -0.12 + 0.2 x 1.12 = 0.10 E2 (t- yin) = (1.12) = 1.25 For II i'll X12-1, X22 1, tet 00+1-1 40 2 6+ W, X2 + W2 X2 MM STANGE 2 0.10 + 0.10 x (+1) + (-0.34) (+1) 800 = 1(200=) 00034840 (t-yin) = (-1-(-0.34)) = -0.66 upaate with wilnew) = willow) + x(t-yin)xi = 0.10 + 0.7 x - 0.98 x -T = 0.24 W2(new) 2 W2(010) + X(t-yin)+2 $= 70.34 + 0.1 \times -0.66 \times 1 = -0.48$ (new) = bloca) + x(t-yin) =0 2 0.10 + 0.2×-0.66 = -003 DW, = 0.13, DW22 -0.13, ADD 2 -0.13 E = (t-4in)= (-0.86)= 6.43

```
for 1 4 9-
            X12 1, X22-1, ta-1
          \frac{1}{2} \frac{1}
                   spaate weighte,
       Wilnum) 2 willa) + alt-ying x1
                                                               = 0.24 + 0.2(-1.2)(-1)

2 0.24 + 0.24 2 0.48
        (102 ( new) 2 w2 (010) + x(t-yin) x2
                   2 -0.48 + 0.2(-1.2)(-1)
         b(new) ~ b(old) + x(t-yin)
                2 -0.08 + 0.2 \times -1.2 = -0.27
                     E 2 (t-40) = 1.47
   For Englited Association of the Completed Ass
                       01 x, = 1, x221, t = 10-
                                4in_2 b+ w,x, +w<sub>2</sub>x<sub>2</sub> = -0.27 + (0.48)(1) + (-0.24)(1)
= -0.02
                 (t-yin) = (-1+0.02)= -0.98
                 update wk, exam , you ad . . . .
         w, tnew) = 028 w,1010) + x(t-yin) x1
                     0 = 0.48++0.2(-0.98)1 = 0.28
                     Wy(new) 2 +0.43 20-1-1-1
               b(new) = -0.46 stanger
                      Error 2 (to yin) 200.95 = ( 000) 00
             7- x08 0- x x 0 + 010 =
                                       interms a whole + alt-year
00- = 370-×10 + 010
                            0-13 DW - - 0-15 AMO A - 0-16
```

										classmi	ite,	9
	×.	X	t	Yin	t-yin	Δω	DW2	06	w, w	, 6	Erro	1
501-I	1	1	-1								<u> </u>	-
-	1		-1	0.6	-1.6	-0:32	-0.32	-0.32	-0.12	0.12	-0.12	2:56
	-1	1	1	-0.12	1.12	0.12	-0.12	0.22	0-10	-0.54	010	125
	-1	-1	-1	-0.34	-0.66	0-13	-0.13	-0.13	0.24	-048	-6-03	043
			-1	0.21	-1.2	0.24	0.24	0.24		-0.24		1.47
GOCK IS	1	1	-1	70.00		100	13-66					
	1	-1	1	-0.02	-0.98	-0.195	-0.195	-0.195	0.28	-0.43	-0.46	095
	-1)	-1	0.25	0.76	1 0.15	-0.12	0.15	0.43	-0.78	-0-31	05)
	-1	-1		-1-33	0.33	- 0.065	0.065	0.065	0.37	-0.2		0106
A			1	-0.11	-0.90	0118	0.18	-0.15	0.72	-038	0.43	0.8
1	39	Sept.	Aliana.		2.3				V.			
	Me	an F	ror	in E	poch-I							
		., .				5 NO						
				236 +	1.25	+ 0.43	71-47	2 1	4295			
				1 . 3 .	4	A	9					
	1	Conth	- Tī	2 0	601×							
	5104-I 2 0.6065											
						Ad an age		-				
	Total nean square Euro											
	(0								•			
		-	4-1	4.76	+ 1.25	+ 0.43	+ 1.47	-	5.71			
			-	0.00		2 4 5						
		-	1-4	0 13	+ 0.5	1 + 0.10	6 + 0	.82	2.42	6		
										•		
											1	-