Data Science Homework: Linear Regression

Won Kim 2022

Exercise 1

 Using hand calculation, derive and interpret a covariance matrix for the following dataset.

Person	Age	Income	Yrs worked	Vacation
1	30	200	10	4
2	40	300	20	4
3	50	800	20	1
4	60	600	20	2
5	40	300	20	5

Using Numpy (1/3): Creating a Population Covariance Matrix

https://datatofish.com/covariance-matrix-python/

```
import numpy as np
# input data
A = [45,37,42,35,39]
B = [38,31,26,28,33]
C = [10, 15, 17, 21, 12]
data = np.array([A,B,C])
# population covariance matrix (N)
covMatrix = np.cov(data,bias=True)
print (covMatrix)
 [[ 12.64 7.68 -9.6 ]
  [ 7.68 17.36 -13.8 ]
   [ -9.6 -13.8 14.8 ]]
```


Using Numpy and Seaborn (2/3): Visualizing a Covariance Matrix

import seaborn as sn import matplotlib.pyplot as plt

sn.heatmap(covMatrix, annot=True, fmt='g')
plt.show()

Using Numpy (3/3): Creating a Sample Covariance Matrix

```
# sample covariance matrix (N-1)
covMatrix = np.cov(data,bias=False)
print (covMatrix)
```


Using Pandas (1/2): Creating a Sample Covariance Matrix

import pandas as pd data = $\{'A': [45,37,42,35,39],$ 'B': [38,31,26,28,33], 'C': [10,15,17,21,12] df = pd.DataFrame(data,columns=['A','B','C']) # sample covariance matrix covMatrix = pd.DataFrame.cov(df) print (covMatrix)

Using Pandas and Seaborn (2/2): Visualizing a Covariance Matrix

import seaborn as sn import matplotlib.pyplot as plt

sn.heatmap(covMatrix, annot=True, fmt='g')
plt.show()

Exercise 2

- As shown previously, using NumPy and Pandas (and Seaborn), create a covariance matrix and visualize it. For this exercise, use the dataset used for Exercise 1.
 - A population covariance matrix
 - A sample covariance matrix

Linear Regression Formula

$$\hat{y} = a + bX$$

a: intercept

b: slope

$$\hat{\mathbf{y}} = \overline{\mathbf{y}} + \mathbf{b}(\mathbf{x} - \overline{\mathbf{x}})$$

$$a = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma x y)}{n(\Sigma x^2) - (\Sigma x)^2}$$

$$b = \frac{n(\Sigma x y) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$$

Walkthrough Example

- https://towardsdatascience.com/linear-regression-byhand-ee7fe5a751bf
- Dataset: #of chimpanzees and hunting success

	Number of Chimpanzees	Percent Successful Hunts
0	1	30
1	2	45
2	3	51
3	4	57
4	5	60
5	6	65
6	7	70
7	8	71

First, Calculate All the Terms

Number of Chimpanzees (x)	Percent Successful Hunts (y)	ху	x²	y²
1	30	30	1	900
2	45	90	4	2025
3	51	153	9	2601
4	57	228	16	3249
5	60	300	25	3600
6	65	390	36	4225
7	70	490	49	4900
8	71	568	64	5041
Σx	Σγ	∑xy	∑x²	Σy²
36	449	2249	204	26541

Next, Plug the Values into the Formulas

$$m = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2} \qquad b = \frac{\Sigma y - m(\Sigma x)}{n}$$

$$m = \frac{8(2249) - (36)(449)}{8(204) - (36)^2} \quad b = \frac{449 - 5.4405(36)}{8}$$
$$m = 5.4405 \qquad b = 31.6429$$

$$y = mx + b$$

 $y = 5.4405x + 31.6429$

Homework

- The following dataset is the amount a person spends on recreation and the person's income.
- 1. Using the following dataset, hand calculate the least squares regression line. Then predict the income of two new persons who spend 3500 and 5300.
- 2. Using scikit-learn and seaborn library, find the regression line and also draw the line and a scatter plot of the dataset.

spends	income	
2400	41200	
2650	50100	
2350	52000	
4950	66000	
3100	44500	
2500	37700	
5106	73500	
3100	37500	
2900	56700	
1750	35600	

End of Homework

