Contents

0	导论	1
	0.1 Brouwer 不动点定理	
	基本拓扑概念 1.1 同伦	5

导论

0.1 Brouwer 不动点定理

我们首先概述 Brouwer 不动点定理的证明: 如果 $f: D^n \to D^n$ 是连续映射, 那么存在 $x \in D^n$ 使得 f(x) = x. 当 n = 1 的时候, 这个定理是容易证明的, 此时 D^1 是闭区间 [-1,1],我们在正方形 $D^1 \times D^1$ 内观察 f 的图像.

定理 0.1. 每个连续映射 $f: D^1 \to D^1$ 都有一个不动点.

Proof. 设 f(-1) = a 以及 f(1) = b. 要是 f(-1) = -1 或者 f(1) = 1, 那么这就已 经存在不动点,所以我们假设 f(-1) = a > -1 以及 f(1) = b < 1. 设 G 是 f 的图像, Δ 是恒等映射的图像(对角线),我们需要证明 $G \cap \Delta \neq \emptyset$. 想法是利用连通性说明 $D^1 \times D^1$ 中从 a 到 b 的道路必须与 Δ 相交. f 连续表明 $G = \{(x, f(x)) | x \in D^1\}$ 是连通的. 定义 $A = \{(x, f(x)) | f(x) > x\}$ 和 $B = \{(x, f(x)) | f(x) < x\}$,注意到 $a \in A$ 和 $b \in B$. 假设 $G \cap \Delta = \emptyset$,那么这表明 $G = A \cup B$ 是无交并,而 A, B 都是 G 中的非空开集,与 G 连通矛盾.

不幸的是,当 n > 1 的时候没有人知道如何应用这个初等的拓扑证明,所以必须引入新的思想. 通过代数拓扑可以给出 Brouwer 不动点定理的一个证明. 我们最终将证明,对于每个 $n \geq 0$,存在一个**同调函子** H_n 使得:对于每个拓扑空间 X,都给出一个交换群 $H_n(X)$;对于每个连续映射 $f: X \to Y$,都给出一个同态 $H_n(f): H_n(X) \to H_n(Y)$ 使得

$$H_n(g \circ f) = H_n(g) \circ H_n(f) \tag{1}$$

以及 $H_n(1_X)$ 是 $H_n(X)$ 上的恒等映射; 此外还有

$$H_n(D^{n+1}) = 0 \quad \text{for all } n \ge 1, \tag{2}$$

$$H_n(\mathbb{S}^n) \neq 0$$
 for all $n \ge 1$. (3)

使用 H_n 的这些性质, 我们现在可以证明 Brouwer 不动点定理.

定义 0.2. 拓扑空间 Y 的一个子空间 X 被称为 Y 的一个**收缩**,如果存在连续映射 $r: Y \to X$ 使得对于所有的 $x \in X$ 有 r(x) = x. 这样的 r 被称为一个**收缩映射**.

注释 0.3. (1) 我们可以使用映射的语言重新叙述收缩映射的定义. 如果 $\iota: X \hookrightarrow Y$ 是包含映射, 那么连续映射 $r: Y \to X$ 是收缩映射当且仅当 ι 是 r 的右逆, 即 $r \circ \iota = 1_X$.

(2) 对于交换群来说,可以证明 G 的子群 H 是 G 的收缩当且仅当 H 是 G 的一个 直和项,也即存在 G 的子群 K 使得 $G = H \oplus K$.

引理 0.4. 如果 n > 0, 那么 \mathbb{S}^n 不是 D^{n+1} 的收缩.

Proof. 假设存在收缩 $r: D^{n+1} \to \mathbb{S}^n$, 那么我们有交换图

利用函子 H_n ,给出了交换群的一个交换图

$$H_n(D^{n+1})$$

$$H_n(\mathfrak{S}^n) \xrightarrow{H_n(\mathfrak{I})} H_n(\mathfrak{S}^n),$$

由于 $H_n(D^{n+1}) = 0$,所以 $H_n(1) = H_n(\iota) \circ H_n(r) = 0$,但是 $H_n(1)$ 又必须是恒等映射,所以 $H_n(\mathbb{S}^n) = 0$,这和 (3) 矛盾.

注意到同调函子 H_n 将拓扑问题转化为了代数问题. 此外, 引理 0.4 在 n=0 的时候有很简单的证明, 此时收缩 $r:D^1\to \mathbb{S}^0=\{\pm 1\}$ 将连通空间映射到不连通空间, 这是不可能的.

定理 0.5 (Brouwer). 如果 $f: D^n \to D^n$ 是连续映射, 那么 f 有一个不动点.

Proof. 假设对于所有的 $x \in D^n$ 都有 $f(x) \neq x$,此时 x 和 f(x) 确定了一条直线. 定义 $g: D^n \to \mathbb{S}^{n-1}$ 将 x 映射为 f(x) 到 x 的射线与 \mathbb{S}^{n-1} 的交点.

CHAPTER O 导论 3

显然 $x \in \mathbb{S}^{n-1}$ 表明 g(x) = x. 利用坐标不难计算得 g 是连续映射. 这样 g 就构成了一个收缩映射,与前面的引理矛盾.

 $0-1 \Leftrightarrow H$ 是交换群 G 的子群. 如果存在同态 $r: G \to H$ 使得对任意 $x \in H$ 有 r(x) = x, 那么 $G = H \oplus \ker r$.

Proof. 任取 $y \in G$, 那么 r(y - r(y)) = r(y) - r(y) = 0, 所以 $y - r(y) \in \ker r$, 所以 $y = r(y) + y - r(y) \in H + \ker r$, 所以 $G = H + \ker r$. 下面设 $x \in H \cap \ker r$, 那么 x = r(x) = 0, 所以 $H \cap \ker r = \emptyset$.

0-2 假设在 $n \ge 1$ 的时候已知

$$H_i(\mathbb{S}^n) = \begin{cases} \mathbb{Z} & i = 0, n, \\ 0 & \text{otherwise,} \end{cases}$$

证明 \$" 的赤道不是一个收缩.

Proof. 设 $r: \mathbb{S}^n \to \mathbb{S}^{n-1}$ 是收缩映射. 那么我们有交换图

取 i = n - 1 即可得出矛盾.

0-3 如果 X 是同胚于 D^n 的拓扑空间,那么连续映射 $f: X \to X$ 有不动点.

Proof. 设 $\varphi: D^n \to X$ 是同胚映射, 那么 $\varphi^{-1} \circ f \circ \varphi: D^n \to D^n$ 是连续映射且有不动 点, 即存在 x 使得 $\varphi^{-1}(f(\varphi(x))) = x$, 即 $f(\varphi(x)) = \varphi(x)$, 所以 f 有不动点 $\varphi(x)$. □

0-4 令 $f,g:I\to I\times I$ 是连续映射,并且 f(0)=(a,0),f(1)=(b,1),g(0)=(0,c),g(1)=(1,d). 证明存在 $s,t\in I$ 使得 f(s)=g(t),也就是说 f和 g 的像集一定是相交的道路.

Proof. 定义 $h: I \times I \to I \times I$ 为

0.2 范畴与函子

定义 **0.6.** 范畴 C 上的一个**共轭**指的是所有态射的类 $\bigcup_{(A,B)} \operatorname{Hom}(A,B)$ 上的一个等价 关系 \sim ,满足:

- 1. 如果 $f \in \text{Hom}(A, B)$ 以及 $f \sim f'$, 那么 $f' \in \text{Hom}(A, B)$;
- 2. 如果 $f \sim f'$ 和 $g \sim g'$ 并且 $g \circ f$ 存在, 那么 $g \circ f \sim g' \circ f'$.

定理 0.7. 令 C 是一个范畴附带一个共轭 \sim , 令 [f] 表示态射 f 的等价类. 定义 C' 为:

$$ob C' = ob C;$$

$$Hom_{C'}(A, B) = \{ [f] \mid f \in Hom_{C}(A, B) \};$$

$$[g] \circ [f] = [g \circ f].$$

那么 C′ 是一个范畴, 称为 C′ 的**商范畴.**

基本拓扑概念

1.1 同伦

定义 1.1. 如果 X, Y 是拓扑空间, f_0, f_1 是 X 到 Y 的连续映射,存在连续映射 $F: X \times I \to Y$ 使得

$$F(x,0) = f_0(x), \quad F(x,1) = f_1(x),$$

那么我们说 F 是一个**同伦映射**,并且 f_0 **同伦于** f_1 ,记为 $f_0 \simeq f_1$. 当需要强调同伦映射的时候,我们写作 $F: f_0 \simeq f_1$.

如果记 $f_t: X \to Y$ 为 $f_t(s) = F(x,t)$, 那么同伦 F 给出了一族从 f_0 变形到 f_1 的单参数连续映射. 我们可以认为 f_t 随着时间 t 变形.

引理 1.2 (**粘连引理**). 假设 X 是有限个闭子集的并集: $X = \bigcup_{i=1}^n X_i$. 如果对于某个空间 Y,存在一族连续映射 $f_i: X_i \to Y$,它们在重叠区域相同,即对于任意 i, j 有 $f_i|_{X_i \cap X_j} = f_j|_{X_i \cap X_j}$,那么存在唯一的连续映射 $f: X \to Y$ 使得对于所有的 i 有 $f|_{X_i} = f_i$.

Proof. 任取 $x \in X$, 如果 $x \in X_i$, 我们定义 $f(x) = f_i(x)$. 由于 f_i , f_j 在重叠区域相同, 所以这个定义是良好的, 我们只需要说明连续性. 任取 Y 的闭子集 C, 那么

$$f^{-1}(C) = \bigcup (X_i \cap f^{-1}(C)) = \bigcup f_i^{-1}(C),$$

由于 $f_i^{-1}(C)$ 是 X_i 的闭集, 所以是 X 的闭集. 所以 $f^{-1}(C)$ 是闭集, 即 f 是连续映射.

粘合引理也可以有开集的版本, 其证明是完全一致的.

引理 1.3. 假设 X 是任意个开子集的并集: $X = \bigcup_i X_i$. 如果对于某个空间 Y,存在一族连续映射 $f_i: X_i \to Y$,它们在重叠区域相同,那么存在唯一的连续映射 $f: X \to Y$ 使得对于所有的 i 有 $f|_{X_i} = f_i$.

定理 1.4. 同伦是所有连续映射 $X \to Y$ 集合上的一个等价关系.

Proof. **自反性.** 如果 $f: X \to Y$ 是连续映射, 定义 F(x,t) = f(x), 显然 $F: f \simeq f$. **对称性.** 假设 $f \simeq g$, 即存在连续映射 $F: X \times I \to Y$ 使得 F(x,0) = f(x) 和 F(x,1) = g(x). 定义 $G: X \times I \to Y$ 为 G(x,t) = F(x,1-t), 那么 $G: g \simeq f$.

传递性. 假设 $F: f \simeq g$ 以及 $G: g \simeq h$. 定义 $H: X \times I \to Y$ 为

$$H(x,t) = \begin{cases} F(x,2t) & 0 \le t \le \frac{1}{2}, \\ G(x,2t-1) & \frac{1}{2} \le t \le 1. \end{cases}$$

根据粘合引理, 所以 H 连续, 所以 $H: f \simeq h$.

定义 1.5. 如果 $f: X \to Y$ 是连续映射, 我们说

$$[f] = \{g : X \to Y \mid g \simeq f\}$$

是 f 的**同伦类**.

所有同伦类的集合记为 [X,Y].

定理 1.6. 对于 i = 0, 1,令 $f_i : X \to Y$ 和 $g_i : Y \to Z$ 是连续映射. 如果 $f_0 \simeq f_1$ 和 $g_0 \simeq g_1$,那么 $g_0 \circ f_0 \simeq g_1 \circ f_1$,即 $[g_0 \circ f_0] = [g_1 \circ f_1]$.

Proof. 令 $F: f_0 \simeq f_1$ 和 $G: g_0 \simeq g_1$ 是同伦映射. 首先定义 $H: X \times I \to Z$ 为 $H(x,t) = G(f_0(x),t)$,那么 $H: g_0 \circ f_0 \simeq g_1 \circ f_0$. 另一方面,定义 $K: X \times I \to Z$ 为 $K(x,t) = g_1 \circ F(x,t)$,那么 $K: g_1 \circ f_0 \simeq g_1 \circ f_1$. 根据同伦的传递性,就有 $g_1 \circ f_1 \simeq g_0 \circ f_0$.

推论 1.7. 同伦是拓扑范畴 Top 上的一个共轭.

这意味着存在一个商范畴,其对象是拓扑空间 X,态射集合 $\operatorname{Hom}(X,Y) = [X,Y]$,复合为 $[g] \circ [f] = [g \circ f]$.

定义 1.8. 上述商范畴被称为同伦范畴, 记为 hTop.

我们即将构造的所有从 Top 到某个"代数"范畴 A (例如 Ab, Grp, Ring) 的函子 $T: \mathsf{Top} \to \mathsf{A}$ 都有性质使得 $f \simeq g$ 的时候有 T(f) = T(g). 事实上,除开自然地希望 将同伦映射视为等同的之外,这保证了通过 T 将拓扑问题转化为 A 中的代数问题是 比原问题更加简单的. 此外,练习表明每个这样的函子都会给出一个函子 hTop $\to \mathsf{A}$,所以同伦范畴是相当基本的.

定义 1.9. 一个连续映射 $f: X \to Y$ 被称为**同伦等价**,如果存在连续映射 $g: Y \to X$ 使得 $g \circ f \simeq 1_X$ 和 $f \circ g \simeq 1_Y$. 如果存在同伦等价 $f: X \to Y$,那么我们说空间 X 和 Y 有相同的**同伦型**.

显然, 同胚的空间有相同的同伦型, 但是反过来不对, 我们将在后面看到.

下面的两个结果表明同伦可以和一些有趣的问题联系起来.

定义 1.10. 令 X, Y 是拓扑空间, $y_0 \in Y$. y_0 处的**常值映射**指的是映射 $c: X \to Y$ 使得 $c(x) \equiv y_0$. 对于连续映射 $f: X \to Y$,如果存在常值映射 c 使得 $f \simeq c$,那么我们说 f 是 **零伦的**.

注释 1.11. 我们将在后面看到 $\mathbb{C} \setminus \{0\}$ 实质上是圆周 \mathbb{S}^1 ,即 $\mathbb{C} \setminus \{0\}$ 和 \mathbb{S}^1 有相同的同 伦型.