Содержание

Must have		2
Задача 18А.	Happy Three Friends [0.1 sec, 256 mb]	2
Обязательны	ие задачи	3
Задача 18В.	Арифметическая прогрессия [0.2 sec, 256 mb]	3
Задача 18С.	Альфа Дерево [1.5 sec, 256 mb]	4
Для искател	ей острых ощущений	5
Задача 18D.	Первообразный корень [0.1 sec, 256 mb]	5
Задача 18Е.	Корни [0.2 sec, 256 mb]	6
Задача 18F.	Длинная дорога [0.4 sec, 256 mb]	7
Задача 18 G .	Необычный случай [3.0 sec, 256 mb]	8

У вас не получается читать/выводить данные? Воспользуйтесь примерами (c++) (python).

Обратите внимание, входные данные лежат в **стандартном потоке ввода** (он же stdin), вывести ответ нужно в **стандартный поток вывода** (он же stdout).

Обратите внимание на GNU C++ компиляторы с суффиксом inc.

Подни можно пользоваться дополнительной библиотекой (optimization.h).

То есть, использовать быстрый ввод-вывод: пример про числа и строки.

И быструю аллокацию памяти (ускоряет vector-set-map-весь-STL): пример.

Для тех, кто хочет разобраться, как всё это работает.

Короткая версия быстрого ввода-вывода (тык) и короткая версия аллокатора (тык).

Must have

Задача 18A. Happy Three Friends [0.1 sec, 256 mb]

Три весёлых друга расплющены в лепёшки. Каждая лепёшка имеет форму идеального круга. Координаты центра круга от 0 до 1, радиус круга от 0 до 1. Ваша задача — найти площадь части плоскости, покрытой всеми тремя друзьями.

Формат входных данных

Три строки, каждая содержит по три вещественных числа $x_i y_i r_i$.

Формат выходных данных

Выведите ответ с абсолютной погрешностью не более 0.01.

stdin	stdout
0.0 0.0 1.0	0.442960
1.0 1.0 1.0	
0.0 1.0 1.0	

Обязательные задачи

Задача 18В. Арифметическая прогрессия [0.2 sec, 256 mb]

Однажды Петя узнал очень важную последовательность из n чисел. Тщательно проанализировав ее, он обнаружил, что она является арифметической прогрессией. Чтобы не забыть он записал ее элементы на n карточках.

Но затем случилась неприятность. Не зная всю важность этой последовательности, его брат Вовочка взял еще n карточек и написал на них произвольные числа, а потом перемешал все 2n карточек.

Теперь Петя хочет восстановить исходную последовательность по этим карточкам. К сожалению возможно, что это можно сделать несколькими способами, но Петю устроят любые n чисел, образующие арифметическую прогрессию.

Петя не может сделать это вручную, поэтому обратился к вам за помощью.

Напомним что последовательность a_1, a_2, \ldots, a_n называется арифметической прогрессией, если $a_i = a_{i-1} + d$ для всех i от 2 до n и некоторого d. Число d называется paзностью арифметической прогрессии.

Формат входных данных

В первой строке входного файла находится целое число n ($1 \le n \le 100\,000$). В следующей строке находится 2n целых чисел по модулю не превосходящих 10^9 — числа, написанные на карточках, перечисленные в произвольном порядке. Гарантируется, что можно выбрать n из них так, чтобы они образовывали арифметическую прогрессию.

Формат выходных данных

В первой строке выходного файла выведите a_1 и d — первый элемент и разность найденной арифметической прогрессии. Если d=0, число a_1 должно встречаться среди заданных чисел n раз.

Если существует несколько решений, выведите любое.

stdin	stdout
3	1 3
8 7 1 5 4 3	

Задача 18С. Альфа Дерево [1.5 sec, 256 mb]

У вас есть полное бинарное дерево глубины $n \ (0 \le n \le 32)$.

В дереве 2^n листьев, они пронумерованы слева направо числами от 0 до 2^n-1 .

В *i*-м листе записано число $x_i = (ai^2 + bi + c) \mod m$.

Есть фишка, которая изначально находится в корне дерева. Двое играют в игру, двигая фишку вниз по дереву. Когда фишка достигает листа дерева, игра заканчивается. Цель первого игрока — максимизировать число в листе, цель второго — минимизировать.

Формат входных данных

Числа n, a, b, c, m. При этом $10 \le m \le 10^9$.

Все a, b, c сгенерированы равномерным распределением на [0, m).

Формат выходных данных

Выведите результат игры при оптимальной игре обоих.

Примеры

stdin	stdout
3 10 7 9 20	11

Замечание

Взятие остатка по модулю – небыстрая операция. Чем их меньше, тем лучше.

Для искателей острых ощущений

Задача 18D. Первообразный корень [0.1 sec, 256 mb]

Дано простое число p, найти первообразный корень g.

Первообразный корень — число, порождающее мультипликативную группу кольца вычетов по модулю $p: \langle 1, g, g^2, \dots, g^{p-2} \rangle = (\mathbb{Z}/p\mathbb{Z})^*$. Известно, что для любого p такое g существует.

Формат входных данных

Мультитест. Тестов не более 20.

Каждый тест – число $2 \le p \le 10^9$, p простое.

Формат выходных данных

Для каждого теста выведите любое подходящее g.

stdin	stdout
7	3
2	1

Задача 18Е. Корни [0.2 sec, 256 mb]

Дано целое число $n\geqslant 1$. Нужно найти такое g, что для любого $a\colon gcd(a,n)=1, 1\leqslant a< n\quad \exists$ целое $x\colon g^x=a\mod n$. Напомним, что gcd(a,b) — наибольший общий делитель чисел a и b.

Формат входных данных

Внимание, мультитест!

На каждой строке число $n \ (2 \le n \le 10^{12}).$

Сколько тестов, мы вам не скажем, но все в рамках приличия.

Формат выходных данных

Для каждого n на отдельной строке выведите g ($1 \leqslant g < n$) или -1, если такого g не существует.

stdin	stdout
5	2
10	3
9	2
15	-1

Задача 18F. Длинная дорога [0.4 sec, 256 mb]

Дорога, дорога, осталось немного...

Дан случайный неориентированный граф G из n вершин и m ребер. Ваша задача — найти гамильтонов путь. Гарантируется, что гамильтонов путь в графе есть.

Формат входных данных

На первой строке число вершин $n \ge 2$ и число ребер $m \ge 1$.

Следующие m строк содержат пары чисел от 1 до n — ребра графа.

В графе нет ни петель, ни кратных ребер.

Поскольку почти полный граф — совсем не интересный тест, $m \leq 500$.

Формат выходных данных

На первой строке выведите n различных чисел от 1 до n — вершины гамильтоного пути в порядке прохода по ним. Начинать и заканчивать можно в любой вершине. Если гамильтоновых путей несколько, выведите любой.

Система оценки

Подзадача 1 (20 баллов) $n \leq 26$.

Подзадача 2 (20 баллов) $n \leq 35$.

Подзадача 3 (20 баллов) $n \leq 50$.

Подзадача 4 (20 баллов) $n \leq 70$.

Подзадача 5 (20 баллов) $n \leq 100$.

stdin	stdout
5 8	1 4 3 5 2
3 1	
2 5	
5 4	
3 4	
1 4	
3 5	
3 2	
1 2	

Задача 18G. Необычный случай [3.0 sec, 256 mb]

Сэр Гамильтон любит длинные прогулки...

Дан случайный неориентированный граф из $10\,000$ вершин, $200\,000$ рёбер и число k. Ваша задача — найти в данном графе k непересекающихся гамильтоновых путей.

Путь называется гамильтоновым, если проходит по всем вершинам графа ровно по одному разу.

Формат входных данных

На первой строке число вершин n, число рёбер m, количество путей, которое нужно найти k. В данной задаче $n=10\,000,\,m=200\,000,\,1\leqslant k\leqslant 200\,000$. Далее m строк содержат описание рёбер графа. Ребро описывается парой чисел от 1 до n—номера вершин, которые соединяет ребро. В графе нет ни петель, ни кратных рёбер.

В этой задаче кроме примера имеется ровно 30 тестов.

Формат выходных данных

Выведите k строк. На каждой строке выведите гамильтонов путь — последовательность из n вершин в порядке прохода. Каждое ребро графа должно быть использовано не более чем в одном из выведенных путей.

Примеры

stdin	stdout
5 9 2	1 3 5 2 4
1 3	5 1 4 3 2
1 4	
1 5	
2 3	
2 4	
2 5	
3 5	
4 3	
5 4	

Замечание

Пример в условии — единственный тест, где $n \neq 10\,000, m \neq 200\,000, k \neq 200\,000$.

Он нужен, чтобы продемонстрировать формат данных.

В тестирующей системе тест из примера есть.