

GIOVANA RAFAELA GALVÃO GARCIA LUAN OLGUIN FALEIRO UBA

TERMÔMETRO DIGITAL UTILIZANDO SENSOR DE TEMPERATURA TMP36

TRABALHO ACADÊMICO DE SISTEMAS DIGITAIS

CURITIBA 2025

GIOVANA RAFAELA GALVÃO GARCIA LUAN OLGUIN FALEIRO UBA

TERMÔMETRO DIGITAL UTILIZANDO SENSOR DE TEMPERATURA TMP36

TRABALHO ACADÊMICO DE SISTEMAS DIGITAIS

Trabalho apresentado à disciplina Sistemas Digitais (ELT72B), turma S02, ofertada pela Universidade Tecnológica Federal do Paraná, campus Curitiba, como requisito de composição parcial da nota e trabalho final.

Orientação: Prof. Adriano Ruseler

1.	INTRODUÇÃO	. 4
	LISTA DE MATERIAIS	
	2.1. IMAGENS COMPONENTES	.5
3.	DIAGRAMA ELETRÔNICO	. 5
	SIMULAÇÃO	
	4.1. LINK SIMULAÇÃO	6
	PROGRAMAÇÃO	
	PRINCIPAIS DIFICULDADES ENCONTRADAS	
	LINK VÍDEO DE EXPLICAÇÃO	
8.	CONCLUSÃO	. 8

1. INTRODUÇÃO

O objetivo de desenvolver um termômetro digital com um sensor TMP36 em Arduino é criar um dispositivo capaz de medir a temperatura ambiente de forma precisa, acessível e em tempo real. O sensor TMP36 converte a temperatura ambiente em um sinal elétrico analógico que pode ser lido pelo Arduino. A temperatura é mostrada em um display LCD 16x2.

Este Sensor de Temperatura TMP36 possui alta precisão e funciona na faixa de 2.7V a 5.5VDC. Além disso, o sensor fornece uma saída de tensão linearmente proporcional a temperatura em graus celsius e o mesmo não necessita de calibração externa para fornecer uma leitura com precisão de 1° a 25°C e ±2° para a faixa de -40° a 125°C. O sinal de saída (OUT) do Sensor de Temperatura TMP36 é analógico e cada 10mV de tensão representa 1°C.

2. LISTA DE MATERIAIS

QUANTIDADE	COMPONENTES
1	Arduino Uno
1	Sensor Temperatura TMP36
1	Display LCD 16x2
1	Protoboard
1	Potenciômetro
1	Resistor 220 ohms
-	Fios jumpers diversos

2.1. IMAGENS COMPONENTES

3. DIAGRAMA ELETRÔNICO

4. SIMULAÇÃO

4.1. LINK SIMULAÇÃO

https://www.tinkercad.com/things/g7U2pGeleB4-termometro-digital-com-sens or-tmp36-?sharecode=yYlkoSH1ydlBulNggT5t4L5d8x-51k9j6V6He5emoms

5. PROGRAMAÇÃO

```
#include <LiquidCrystal.h>

// Inicializar a biblioteca com os números dos pinos digitais
LiquidCrystal lcd(12, 11, 2, 3, 4, 5);

// Variáveis para leitura e interpretação das leituras do TMP36
const int TEMP=0;
int val = 0;
float celsius=0.0;

void setup()
{
    // Configurar o número de colunas e linhas do LCD:
    lcd.begin(16, 2);

    // Texto a ser mostrado no LCD (texto fixo, primeira linha):
    lcd.print("Temp. °C");
}

void loop()
{
```

```
// Posicionar o cursor na coluna 0 e linha 1 (segunda linha):
    lcd.setCursor(0, 1);
   // Ler o valor enviado pelo sensor
    val = analogRead(TEMP);
    // Calcular e ajustar a temperatura em graus Celsius
    celsius = map(((val - 20) * 3.04), 0, 1023, -40, 125);
   // Imprimir no LCD a temperatura
    lcd.print(celsius);
}
     sketch_feb24a.ino
         #include <LiquidCrystal.h>
           // Inicializar a biblioteca com os números dos pinos digitais
            // Variáveis para leitura e interpretação das leituras do TMP36
           float celsius=0.0:
           void setup()
             // Configurar o número de colunas e linhas do LCD:
lcd.begin(16, 2);
             // Texto a ser mostrado no LCD (texto fixo, primeira linha):
lcd.print("Temp. °C");
       21
                             rsor na coluna 0 e linha 1 (segunda linha):
              lcd.setCursor(0, 1);
             // Ler o valor enviado pelo sensor
val = analogRead(TEMP);
              // Calcular e ajustar a temperatura em graus Celsius
```

6. PRINCIPAIS DIFICULDADES ENCONTRADAS

No primeiro momento, iríamos utilizar o sensor de temperatura e pressão BMP280, porém, ao tentar simular o circuito, percebemos que apenas o software de simulação Protheus possui esse sensor em sua biblioteca. No entanto, ao tentar utilizar o componente Arduino Uno, observamos que precisaríamos adicioná-lo à biblioteca. Por estarmos utilizando o software Protheus da versão de demonstração (gratuita), isso não é possível.

Por esse motivo, precisamos alterar nosso sensor BMP280 para o sensor TMP36, algo mais básico e que fornece apenas temperatura. Com isso, conseguimos simular utilizando o software Tinkercad.

7. LINK VÍDEO DE EXPLICAÇÃO

https://drive.google.com/file/d/1G_KDMijwMByALx2kk3B8AkUqtkPcOosQ/view?usp=drive_link

8. CONCLUSÃO

O desenvolvimento do termômetro digital com o sensor TMP36 e Arduino demonstrou ser uma solução eficiente, acessível e educativa para medição de temperatura em tempo real. Durante o projeto, foi possível entender o funcionamento de sensores analógicos, a conversão de sinais elétricos para valores de temperatura e a integração com diferentes interfaces, como displays LCD e monitor serial.

Além do aprendizado técnico, o projeto destacou a versatilidade do TMP36, que oferece medições precisas sem necessidade de calibração, e a flexibilidade do Arduino, permitindo futuras expansões.

Com isso, este termômetro digital se mostrou uma ferramenta útil reforçando a importância da eletrônica e programação na criação de soluções inteligentes e acessíveis.