

Вопросы лекции

- Многомерная модель данных.
- Определение OLAP-систем.
- Apxutektypa OLAP-cuctem: ROLAP, MOLAP, HOLAP.
- Основные операции OLAP-систем.

Многомерная модель данных

В 1993 году Э. Кодд — основоположник реляционной модели БД — рассмотрел ее недостатки, указав в первую очередь на невозможность «объединять, просматривать и анализировать данные с точки зрения множественности измерений, т. е. самым понятным для аналитиков способом».

Многомерная модель данных

Измерение (Dimension) — это последовательность значений одного из анализируемых параметров.

Например, для параметра "время" это последовательность календарных дней, для параметра "регион" это может быть список городов.

Каждое измерение может быть представлено в виде иерархической структуры. Например, измерение "Исполнитель" может иметь следующие иерархические уровни: "предприятие — подразделение — отдел — служащий". Более того, некоторые измерения могут иметь несколько видов иерархического представления. Например, измерение "Время" может включать две иерархии со следующими уровнями: "год — квартал — месяц — день" и "неделя — день".

На пересечениях осей измерений располагаются данные, количественно характеризующие анализируемые факты, — меры (Measures).

Это могут быть объемы продаж, выраженные в единицах продукции или в денежном выражении, остатки на складе, издержки и т. п.

OLAP-система

OLAP (OnLine Analytical Processing — оперативная аналитическая обработка данных) — подход к аналитической обработке данных, базирующийся на их многомерном иерархическом представлении, являющийся частью более широкой области информационных технологий — бизнес-аналитики (BI — Business Intelligence).

Системы, построенные на основе технологии OLAP, предоставляют возможности по составлению отчетов, выполнению сложных аналитических расчетов, построению прогнозов и сценариев, разработке множества вариантов планов.

Требования к OLAP-системам

- Э. Кодд в 1993 году опубликовал статью «OLAP для пользователей-аналитиков: каким он должен быть», где изложил основные концепции оперативной аналитической обработки и определил 12 требований, которым должны удовлетворять продукты, позволяющие выполнять оперативную аналитическую обработку.
- В 1995 году Э. Кодд к приведенному перечню добавил 6 правил и разбил все 18 правил на четыре группы, назвав их особенностями. Эти группы получили названия В, S, R и D.

Требования к OLAP-системам

Основные особенности (В):

- 1. Многомерность (Multidimensional conceptual view).
- 2. Прозрачность (Transparency).
- 3. Доступность (Accessibility).
- 5. Клиент-серверная архитектура (Client/server architecture).
- 8. Поддержка многопользовательского режима (Multiuser support).
- 10. Интуитивная манипуляция данными (Intuitive data manipulation).
- 13. Пакетное извлечение против интерпретации.
- 14. Поддержка всех моделей OLAP-анализа.

Требования к OLAP-системам

Специальные особенности (S):

- 15. Обработка ненормализованных данных.
- 16. Сохранение результатов OLAP: хранение их отдельно от исходных данных.
- 17. Исключение отсутствующих значений.
- 18. Обработка отсутствующих значений.

Особенности представления отчетов (R):

- 4. Постоянная производительность при разработке отчетов (Consistent reporting performance).
- 7. Динамическое управление разреженными матрицами (Dynamic sparse matrix handling).
- 11. Гибкие возможности получения отчетов (Flexible reporting).

Требования к OLAP-системам

Управление измерениями (D):

- 6. Равноправие измерений (Generic Dimensionality).
- 9. Неограниченные перекрестные операции (Unrestricted cross-dimensional operations).
- 12. Неограниченная размерность и число уровней агрегации (Unlimited Dimensions and aggregation levels).

Требования к OLAP-системам

Найджел Пендс (Nigel Pendse) предложил использовать взамен предложенных Э. Коддом правил OLAP так называемый **тест FASMI** (Fast Analysis of Shared Multidimensional Information — быстрый анализ доступной многомерной информации), более точно харакетеризующий требования к таким системам.

Архитектура OLAP-систем

OLAP-система включает в себя два основных компонента:

- OLAP-сервер обеспечивает хранение данных, выполнение над ними необходимых операций и формирование многомерной модели на концептуальном уровне. В настоящее время OLAPсерверы объединяют с ХД или ВД;
- OLAP-клиент представляет пользователю интерфейс к многомерной модели данных, обеспечивая его возможностью удобно манипулировать данными для выполнения задач анализа.

Архитектура OLAP-систем

Выделяют три основных способа реализации многомерной модели:

- MOLAP многомерный (multivariate) OLAP используют многомерные БД;
- ROLAP реляционный (relational) OLAP используют реляционные БД;
- HOLAP гибридный (hybrid) OLAP используют и многомерные, и реляционные БД.

Часто в литературе по OLAP-системам можно встретить аббревиатуры DOLAP и JOLAP:

- DOLAP настольный (desktop) OLAP. Является недорогой и простой в использовании OLAPсистемой, предназначенной для локального анализа и представления данных, которые загружаются из реляционной или многомерной БД на машину клиента;
- JOLAP основанная на Java коллективная OLAP-API-инициатива, предназначенная для создания и управления данными и метаданными на серверах OLAP.

Измерения			Меры		
Клиент	Время	Продавец	Продукт	Сумма сделки	Объем сделки
Школа №25	20.08.2016	Юрий Т.	Карандаши	690	30
Школа №25	20.08.2016	Юрий Т.	Ручки	830	40
Школа №25	20.08.2016	Юрий Т.	Тетради	500	25
Школа №25	20.08.2016	Юрий Т.	Фломастеры	700	35
Школа №25	20.08.2016	Юрий Т.	Краски	600	15
Школа №25	20.08.2016	Юрий Т.	Маркеры	1 500	100
Школа №25	20.08.2016	Дмитрий А.	Карандаши	690	30
Школа №25	20.08.2016	Дмитрий А.	Ручки	830	40
Школа №25	20.08.2016	Дмитрий А.	Тетради	500	25
Школа №25	20.08.2016	Дмитрий А.	Фломастеры	700	35
Школа №25	20.08.2016	Дмитрий А.	Краски	2 000	50
Школа №25	20.08.2016	Дмитрий А.	Маркеры	2 250	150
Школа №25	20.08.2016	Алексей Ш.	Карандаши	230	10
Школа №25	20.08.2016	Алексей Ш.	Ручки	1 000	0

OLAP vs. OLTP					
Data Warehouse (OLAP)	Operational Database (OLTP)				
Involves historical processing of information.	Involves day-to-day processing.				
OLAP systems are used by knowledge	OLTP systems are used by clerks, DBAs, or				
workers such as executives, managers and analysts.	database professionals.				
Useful in analyzing the business.	Useful in running the business.				
It focuses on Information out.	It focuses on Data in.				
Based on Star Schema, Snowflake, Schema and Fact Constellation Schema.	Based on Entity Relationship Model.				
Contains historical data.	Contains current data.				
Provides summarized and consolidated data.	Provides primitive and highly detailed data.				
Provides summarized and multidimensional view of data.	Provides detailed and flat relational view of data.				
Number or users is in hundreds.	Number of users is in thousands.				
Number of records accessed is in millions.	Number of records accessed is in tens.				
Database size is from 100 GB to 1 TB	Database size is from 100 MB to 1 GB.				
Highly flexible.	Provides high performance.				

Основные операции OLAP-систем

Над гиперкубом могут выполняться следующие операции:

- Slice (двумерный (плоскостной) срез);
- Dice (многомерный подкуб);
- Roll-Up (консолидация, агрегация, обобщение);
- Drill down (детализация);
- Pivot (вращение).

Основная литература

- Анализ данных и процессов: учеб. пособие / А. А. Барсегян, М. С. Куприянов, И. И. Холод, М. Д. Тесс, С. И. Елизаров. 3-е изд., перераб. и доп. СПб: БХВ-Петербург, 2009. 512 с.
- Data Warehousing OLAP [Electronic resource] / TutorialsPoint. – Mode of access: https://www.tutorialspoint.com/dwh/dwh_olap. htm. – Date of access: 20.01.2017.
- OLAP-системы [Electronic resource] / TAdviser. Mode of access:
 http://www.tadviser.ru/index.php/Статья:OLAP-системы. Date of access: 20.01.2017.