Part 7: Decoding

Building a GPS receiver from scratch

Chris Doble

Name	Number of bits	Emitted every
Pseudosymbol	1/20	1 ms

Name	Number of bits	Emitted every
Pseudosymbol	1/20	1 ms
Pseudobit / bit	1	20 ms

Name	Number of bits	Emitted every
Pseudosymbol	1/20	1 ms
Pseudobit / bit	1	20 ms
Word	30	0.6 s

Name	Number of bits	Emitted every
Pseudosymbol	1/20	1 ms
Pseudobit / bit	1	20 ms
Word	30	0.6 s
Subframe	300	6 s

Name	Number of bits	Emitted every
Pseudosymbol	1/20	1 ms
Pseudobit / bit	1	20 ms
Word	30	0.6 s
Subframe	300	6 s
Frame	1,500	30 s

Topics

- Pseudosymbol integration
- Pseudobit integration
- Oecoding subframes
- Decoding subframe parameters

$$-1$$
 -1 $+1$ $+1$ $+1$ $+1$ -1 -1 -1 -1 -1 -1 -1 $+1$ $+1$ $+1$

Offset	Score
0	
1	
2	
3	

$$0 \Rightarrow 0$$
 $0 \Rightarrow 0$ $-4 \Rightarrow 4$ $0 \Rightarrow 0$ $-1 -1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1$

$$0 \Rightarrow 0$$
 $0 \Rightarrow 0$ $-4 \Rightarrow 4$ $0 \Rightarrow 0$ $-1 -1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1$

Offset	Score
0	1.0
1	
2	4.0
3	

$$-1$$
 -1 $+1$ $+1$ $+1$ $+1$ -1 -1 -1 -1 -1 -1 -1 $+1$ $+1$ $+1$

Offset	Score
0	1.0
1	2.5
2	4.0
3	2.6
	'

$$-1$$
 -1 $+1$ $+1$ $+1$ $+1$ -1 -1 -1 -1 -1 -1 -1 $+1$ $+1$ $+1$

Score
1.0
2.5
4.0
2.6

Chris Doble 5 / 19 Part 7: Decoding

Topics

- Pseudosymbol integration
- Pseudobit integration
- Oecoding subframes
- Decoding subframe parameters

Pseudobit integration

Pseudobit integration

-1 +1 +1 +1 -1 +1 -1
$$\Rightarrow$$
 -1 maps to 1, +1 maps to 0

Pseudobit integration

$$-1$$
 +1 +1 +1 -1 +1 -1 +1 -1 \Rightarrow -1 maps to 1, +1 maps to 0 +1 -1 -1 +1 +1 $+1$ \Rightarrow +1 maps to 1, -1 maps to 0

Topics

- Pseudosymbol integration
- 2 Pseudobit integration
- Oecoding subframes
- 4 Decoding subframe parameters

Parity bits

```
D.
                                                  d₁ ⊕ D₂₀*
D_2
                                                  d₂ ⊕ D₂₀*
D_2
                                                  d₂ ⊕ D₂₀*
D_{24}
                                                  d24 @ D30*
D_{25}
                                                  D_{20}^{\star} \oplus d_1 \oplus d_2 \oplus d_3 \oplus d_4 \oplus d_5 \oplus d_6 \oplus d_{10} \oplus d_{11} \oplus d_{12} \oplus d_{13} \oplus d_{14} \oplus d_{12} \oplus d_{13} \oplus d_{16} \oplus d_{20} \oplus d_{21}
D_{26}
                                                  D_{30} ^{\star} \oplus d_2 \oplus d_3 \oplus d_4 \oplus d_6 \oplus d_7 \oplus d_{11} \oplus d_{12} \oplus d_{13} \oplus d_{14} \oplus d_{15} \oplus d_{18} \oplus d_{19} \oplus d_{21} \oplus d_{24}
D27
                                                  D_{20}^{\star} \oplus d_1 \oplus d_3 \oplus d_4 \oplus d_5 \oplus d_7 \oplus d_8 \oplus d_{12} \oplus d_{13} \oplus d_{14} \oplus d_{15} \oplus d_{16} \oplus d_{19} \oplus d_{20} \oplus d_{22}
D_{28}
                                                  D_{30}^{\star} \oplus d_2 \oplus d_4 \oplus d_5 \oplus d_6 \oplus d_8 \oplus d_9 \oplus d_{13} \oplus d_{14} \oplus d_{15} \oplus d_{16} \oplus d_{17} \oplus d_{20} \oplus d_{21} \oplus d_{23}
D29
                                                 D_{10}^{\star} \oplus d_1 \oplus d_2 \oplus d_3 \oplus d_4 \oplus d_7 \oplus d_9 \oplus d_{10} \oplus d_{10} \oplus d_{14} \oplus d_{15} \oplus d_{16} \oplus d_{17} \oplus d_{18} \oplus d_{21} \oplus d_{27} \oplus d_{28}
D_{10}
                                                  D_{20}^{\star} \oplus d_1 \oplus d_2 \oplus d_4 \oplus d_8 \oplus d_9 \oplus d_{10} \oplus d_{11} \oplus d_{11} \oplus d_{12} \oplus d_{13} \oplus d_{19} \oplus d_{22} \oplus d_{21} \oplus d_{24}
Where
                                 d1, d2, .... d24 are the source data bits:
                                 the symbol ★ is used to identify the last 2 bits of the previous word of the subframe;
                                 D25, D26, ..., D30 are the computed parity bits;
                                 D<sub>1</sub>, D<sub>2</sub>, ..., D<sub>20</sub>, D<sub>30</sub> are the bits transmitted by the SV:
                                 ⊕ is the "modulo-2" or "exclusive-or" operation.
```

The telemetry word

The handover word

 $Source: \ \ Figure \ 20-2, \ IS-GPS-200M, \ https://www.gps.gov/technical/icwg/IS-GPS-200M.pdf$

• GPS started operating at midnight UTC on the night of Saturday January 5, 1980

- GPS started operating at midnight UTC on the night of Saturday January 5, 1980
- The number of weeks that have passed since that night is called the GPS week number

- GPS started operating at midnight UTC on the night of Saturday January 5, 1980
- The number of weeks that have passed since that night is called the GPS week number
- The time-of-week count (TOW count) is the number of 1.5 s periods that have elapsed since the start of the current GPS week (since midnight UTC Saturday night)

- GPS started operating at midnight UTC on the night of Saturday January 5, 1980
- The number of weeks that have passed since that night is called the GPS week number
- The time-of-week count (TOW count) is the number of 1.5 s periods that have elapsed since the start of the current GPS week (since midnight UTC Saturday night)
- The TOW count is a 19 bit number

- GPS started operating at midnight UTC on the night of Saturday January 5, 1980
- The number of weeks that have passed since that night is called the GPS week number
- The time-of-week count (TOW count) is the number of 1.5 s periods that have elapsed since the start of the current GPS week (since midnight UTC Saturday night)
- The TOW count is a 19 bit number
- The truncated TOW count is the 17 most significant bits of the TOW count as it will appear at the time the next subframe begins transmission

- GPS started operating at midnight UTC on the night of Saturday January 5, 1980
- The number of weeks that have passed since that night is called the GPS week number
- The time-of-week count (TOW count) is the number of 1.5 s periods that have elapsed since the start of the current GPS week (since midnight UTC Saturday night)
- The TOW count is a 19 bit number
- The truncated TOW count is the 17 most significant bits of the TOW count as it will appear at the time the next subframe begins transmission
- This corresponds to a 6s period how long it takes to transmit a subframe so the truncated TOW count will increment by 1 with each subframe we receive

- GPS started operating at midnight UTC on the night of Saturday January 5, 1980
- The number of weeks that have passed since that night is called the GPS week number
- The time-of-week count (TOW count) is the number of 1.5 s periods that have elapsed since the start of the current GPS week (since midnight UTC Saturday night)
- The TOW count is a 19 bit number
- The truncated TOW count is the 17 most significant bits of the TOW count as it will appear at the time the next subframe begins transmission
- This corresponds to a 6s period how long it takes to transmit a subframe so the truncated TOW count will increment by 1 with each subframe we receive
- We can use this to calculate the signal's transmission time

The handover word

Source: Figure 20-2, IS-GPS-200M, https://www.gps.gov/technical/icwg/IS-GPS-200M.pdf

Subframes

Subframes

• Subframe 1

- Subframe 1
 - Clock parameters

Subfram<u>es</u>

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted
 - Correct for atomic clock drift

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted
 - Correct for atomic clock drift
 - Health information

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted
 - Correct for atomic clock drift
 - Health information
- Subframes 2 and 3

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted
 - Correct for atomic clock drift
 - Health information
- Subframes 2 and 3
 - Orbital parameters

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted
 - Correct for atomic clock drift
 - Health information
- Subframes 2 and 3
 - Orbital parameters
 - Calculate a satellite's position

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted
 - Correct for atomic clock drift
 - Health information
- Subframes 2 and 3
 - Orbital parameters
 - Calculate a satellite's position
- Subframes 4 and 5

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted
 - Correct for atomic clock drift
 - Health information
- Subframes 2 and 3
 - Orbital parameters
 - Calculate a satellite's position
- Subframes 4 and 5
 - Parameters change every frame over 25 frames (12.5 minutes)

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted
 - Correct for atomic clock drift
 - Health information
- Subframes 2 and 3
 - Orbital parameters
 - Calculate a satellite's position
- Subframes 4 and 5
 - Parameters change every frame over 25 frames (12.5 minutes)
 - Other satellites

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted
 - Correct for atomic clock drift
 - Health information
- Subframes 2 and 3
 - Orbital parameters
 - Calculate a satellite's position
- Subframes 4 and 5
 - Parameters change every frame over 25 frames (12.5 minutes)
 - Other satellites
 - Earth's atmospheric conditions

- Subframe 1
 - Clock parameters
 - Calculate when signals were transmitted
 - Correct for atomic clock drift
 - Health information
- Subframes 2 and 3
 - Orbital parameters
 - Calculate a satellite's position
- Subframes 4 and 5
 - Parameters change every frame over 25 frames (12.5 minutes)
 - Other satellites
 - Earth's atmospheric conditions
 - Etc.

Topics

- Pseudosymbol integration
- 2 Pseudobit integration
- Oecoding subframes
- 4 Decoding subframe parameters

Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
IODE	8			(see text)
Crs	16*	2-5		meters
Δn	16*	2-43		semi-circles/sec
M ₀	32*	2-31		semi-circles
Cuc	16*	2.29		radians
e	32	2-33	0.0 to 0.03	dimensionless
Cus	16*	2.29		radians
√A	32	2.19	2530 to 8192	√meters
toe	16	24	0 to 604,784	seconds
Cic	16*	2.29		radians
Ω_0	32*	2-31		semi-circles
Cis	16*	2.29		radians
io	32*	2-31		semi-circles
Crc	16*	2.5		meters
ω	32*	2-31		semi-circles
ά	24*	2-43	-6.33E-07 to 0	semi-circles/sec
IDOT	14*	2-43		semi-circles/sec

Parameters so indicated shall be two's complement, with the sign bit (+ or -) occupying the MSB;
 See Figure 20-1 for complete bit allocation in subframe:

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
IODE	8			(see text)
C_{rs}	16*	2-5		meters
Δn	16*	2-43		semi-circles/sec
M_0	32*	2-31		semi-circles
Cuc	16*	2.29		radians
e	32	2-33	0.0 to 0.03	dimensionless
Cus	16*	2-29		radians
\sqrt{A}	32	2-19	2530 to 8192	√meters
toe	16	24	0 to 604,784	seconds
Cic	16*	2.29		radians
Ω_0	32*	2-31		semi-circles
C_{is}	16*	2-29		radians
io	32*	2-31		semi-circles
C_{rc}	16*	2.5		meters
ω	32*	2-31		semi-circles
ά	24*	2-43	-6.33E-07 to 0	semi-circles/sec
IDOT	14*	2-43		semi-circles/sec

Parameters so indicated shall be two's complement, with the sign bit (+ or -) occupying the MSB;
 See Figure 20-1 for complete bit allocation in subframe:

Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
IODE	8			(see text)
Crs	16*	2-5		meters
Δn	16*	2-43		semi-circles/sec
M ₀	32*	2-31		semi-circles
Cuc	16*	2.29		radians
e	32	2-33	0.0 to 0.03	dimensionless
Cus	16*	2.29		radians
√A	32	2.19	2530 to 8192	√meters
toe	16	24	0 to 604,784	seconds
Cic	16*	2.29		radians
Ω_0	32*	2-31		semi-circles
Cis	16*	2.29		radians
io	32*	2-31		semi-circles
Crc	16*	2.5		meters
ω	32*	2-31		semi-circles
ά	24*	2-43	-6.33E-07 to 0	semi-circles/sec
IDOT	14*	2-43		semi-circles/sec

Parameters so indicated shall be two's complement, with the sign bit (+ or -) occupying the MSB;

See Figure 20-1 for complete bit allocation in subframe:

Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
IODE	8			(see text)
C_{rs}	16*	2-5		meters
Δn	16*	2-43		semi-circles/sec
M_0	32*	2-31		semi-circles
C_{uc}	16*	2.29		radians
e	32	2-33	0.0 to 0.03	dimensionless
C_{us}	16*	2.29		radians
\sqrt{A}	32	2-19	2530 to 8192	√meters
toe	16	24	0 to 604,784	seconds
C_{ic}	16*	2.29		radians
Ω_0	32*	2-31		semi-circles
C_{is}	16*	2.29		radians
io	32*	2-31		semi-circles
C_{rc}	16*	2.5		meters
ω	32*	2-31		semi-circles
$\dot{\Omega}$	24*	2-43	-6.33E-07 to 0	semi-circles/sec
IDOT	14*	2-43		semi-circles/sec

Parameters so indicated shall be two's complement, with the sign bit (+ or -) occupying the MSB;
 See Figure 20-1 for complete bit allocation in subframe:

^{***} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

Parse the bits as if they were a normal integer

- Parse the bits as if they were a normal integer
- Onvert the integer from two's complement representation (if necessary)

- Parse the bits as if they were a normal integer
- Onvert the integer from two's complement representation (if necessary)
- Multiply by the scale factor

Parameter	No. of Bits**	Scale Factor (LSB)	Valid Range***	Units
IODE	8			(see text)
Crs	16*	2-5		meters
Δn	16*	2-43		semi-circles/sec
M_0	32*	2-31		semi-circles
Cuc	16*	2.29		radians
e	32	2.33	0.0 to 0.03	dimensionless
Cus	16*	2.29		radians
√A	32	2.19	2530 to 8192	√meters
toe	16	24	0 to 604,784	seconds
Cic	16*	2.29		radians
Ω_0	32*	2-31		semi-circles
Cis	16*	2.29		radians
i ₀	32*	2-31		semi-circles
Crc	16*	2.5		meters
ω	32*	2-31		semi-circles
ά	24*	2-43	-6.33E-07 to 0	semi-circles/sec
IDOT	14*	2-43		semi-circles/sec

Parameters so indicated shall be two's complement, with the sign bit (+ or -) occupying the MSB;
 See Figure 20-1 for complete bit allocation in subframe:

^{**} Unless otherwise indicated in this column, valid range is the maximum range attainable with indicated bit allocation and scale factor.

 $\bullet \ \mathsf{Pseudosymbols} \to \mathsf{bits} \to \mathsf{words} \to \mathsf{subframes} \to \mathsf{frames} \\$

- ullet Pseudosymbols o bits o words o subframes o frames
- Group pseudosymbols into pseudobits

- ullet Pseudosymbols o bits o words o subframes o frames
- Group pseudosymbols into pseudobits
 - Collect several bits worth of pseudosymbols

- $\bullet \ \mathsf{Pseudosymbols} \to \mathsf{bits} \to \mathsf{words} \to \mathsf{subframes} \to \mathsf{frames} \\$
- Group pseudosymbols into pseudobits
 - Ollect several bits worth of pseudosymbols
 - Calculate a score for each possible grouping

- $\bullet \ \mathsf{Pseudosymbols} \to \mathsf{bits} \to \mathsf{words} \to \mathsf{subframes} \to \mathsf{frames} \\$
- Group pseudosymbols into pseudobits
 - Collect several bits worth of pseudosymbols
 - 2 Calculate a score for each possible grouping
 - Ohoose the one with the greatest score

- ullet Pseudosymbols o bits o words o subframes o frames
- Group pseudosymbols into pseudobits
 - Collect several bits worth of pseudosymbols
 - Calculate a score for each possible grouping
 - Ohoose the one with the greatest score
- Map pseudobits to bits

- ullet Pseudosymbols o bits o words o subframes o frames
- Group pseudosymbols into pseudobits
 - Collect several bits worth of pseudosymbols
 - Calculate a score for each possible grouping
 - Ohoose the one with the greatest score
- Map pseudobits to bits
 - Collect several subframes worth of pseudobits

- ullet Pseudosymbols o bits o words o subframes o frames
- Group pseudosymbols into pseudobits
 - Collect several bits worth of pseudosymbols
 - Calculate a score for each possible grouping
 - Ohoose the one with the greatest score
- Map pseudobits to bits
 - Collect several subframes worth of pseudobits
 - Search for the telemetry word preamble (or its inverse)

- ullet Pseudosymbols o bits o words o subframes o frames
- Group pseudosymbols into pseudobits
 - Collect several bits worth of pseudosymbols
 - Calculate a score for each possible grouping
 - **3** Choose the one with the greatest score
- Map pseudobits to bits
 - Collect several subframes worth of pseudobits
 - Search for the telemetry word preamble (or its inverse)
- Obtain subframes' data bits by applying the parity algorithm

- ullet Pseudosymbols o bits o words o subframes o frames
- Group pseudosymbols into pseudobits
 - Collect several bits worth of pseudosymbols
 - Calculate a score for each possible grouping
 - Ohoose the one with the greatest score
- Map pseudobits to bits
 - Collect several subframes worth of pseudobits
 - Search for the telemetry word preamble (or its inverse)
- Obtain subframes' data bits by applying the parity algorithm
- TOW count in handover word tells when the next subframe begins transmission

- ullet Pseudosymbols o bits o words o subframes o frames
- Group pseudosymbols into pseudobits
 - Collect several bits worth of pseudosymbols
 - Calculate a score for each possible grouping
 - Ohoose the one with the greatest score
- Map pseudobits to bits
 - Collect several subframes worth of pseudobits
 - Search for the telemetry word preamble (or its inverse)
- Obtain subframes' data bits by applying the parity algorithm
- TOW count in handover word tells when the next subframe begins transmission
- Different subframes contain different parameters we need 1, 2, and 3