MTH 331 – Statement 1

Robert Ritchie

August 27, 2015

Statement 0. Let n be an integer. If $n \ge 3$ then $n^3 > (n+1)^2$

Proof. For
$$n \ge 3$$
, $n-2 \ge 1$ and $n+1 \ge 4$ so $n(n-2)(n+1) \ge 3 \cdot 4 \cdot 1 = 12 > 1$ $n(n-2)(n+1) > 1$ $n^3 - n^2 - 2n > 1$ $n^3 > n^2 + 2n + 1$ $n^3 > (n+1)^2$