On the spectrum of limit models

Jeremy Beard

Carnegie Mellon University

Based on work with Marcos Mazari-Armida [Beard and Mazari-Armida, 2025]

Overview

1. Preliminaries

2. Results

3. Applications

Preliminaries - Setting, universal models

For this talk, $\mathbf{K} = (K, \leq_{\mathbf{K}})$ is an abstract elementary class (AEC) with amalgamation, joint embedding, and no maximal models, and $\lambda \geq LS(\mathbf{K})$. \mathbf{K}_{λ} is the set of models in \mathbf{K} of size λ .

Definition

For $M, N \in \mathbf{K}_{\lambda}$, N is universal over M if $M \leq_{\mathbf{K}} N$ and whenever $N' \in \mathbf{K}_{\lambda}$ and $M \leq_{\mathbf{K}} N'$, there exists a \mathbf{K} -embedding $f : N' \to N$ fixing M. We write $M \leq_{\mathbf{K}}^{u} N$.

Preliminaries - Limit models

Definition

Say $\lambda \geq \mathsf{LS}(\mathbf{K})$, $\delta < \lambda^+$ is a limit ordinal. $N \in \mathbf{K}$ is a (λ, δ) -limit model over M if there exists a $\leq^{\mathsf{u}}_{\mathbf{K}}$ -increasing sequence $\langle M_i : i < \delta \rangle$ where $M_0 = M$ and $N = \bigcup_{i < \delta} M_i$.

• If κ is regular and $cf(\delta) \geq \kappa$, we say N is a $(\lambda, \geq \kappa)$ -limit model over M.

Preliminaries - Limit model

Fact (Existence of limit models)

If **K** is λ -stable, then for any $M \in \mathbf{K}_{\lambda}$, there exists $N \in \mathbf{K}_{\lambda}$ universal over M. And for any $\delta < \lambda^+$ limit, there is a (λ, δ) -limit N over M.

Question

Under what circumstances are two limit models isomorphic?

Fact (Uniqueness up to cofinality)

Suppose **K** is λ -stable, $\delta_1, \delta_2 < \lambda^+$ are limits with $\mathrm{cf}(\delta_1) = \mathrm{cf}(\delta_2)$ and N_l is a (λ, δ_l) -limit model over M for l=1,2. Then $N_1 \underset{M}{\cong} N_2$.

With this in mind, we may as well focus on when δ is a regular cardinal.

Preliminaries - Independence relations

Before we state the theorem, we briefly introduce independence relations.

Definition

Let \mathbf{K}' be a sub-AC of \mathbf{K} . An independence relation on \mathbf{K} is a relation on triples (M_0, a, M, N) where $M_0 \leq_{\mathbf{K}} M \leq_{\mathbf{K}} N$ and $a \in N$ (written $a \underset{M_0}{\overset{N}{\smile}} M$) that satisfies invariance, monotonicity, and base monotonicity.

If $p \in \mathbf{gS}(M)$ where $M_0 \leq_{\mathbf{K}} M$, we say $p \perp$ -does not fork over M_0 if there exist $N \geq_{\mathbf{K}} M$ and $a \in N$ such that $p = \mathbf{gtp}(a/M, N)$ and $a \downarrow_M M$.

Similarly to first order, we can define notions of uniqueness, extension, (universal) continuity, ($\geq \kappa$)-local character, and non-forking amalgamation.

Though non-forking is an obvious choice in first order complete stable theories, such don't exist in general in stable AECs.

Results - Main result

Theorem (B., Mazari-Armida)

Suppose **K** is an AEC stable in $\lambda \geq \mathsf{LS}(\mathbf{K})$, with amalgamation, joint embedding, and no maximal models, and **K** is \aleph_0 -tame. Suppose \downarrow is an independence relation on \mathbf{K}_λ that satisfies uniqueness, extension, continuity, non-forking amalgamation, and $(\geq \kappa)$ -universal local character in some regular $\kappa < \lambda^+$. Let $\kappa(\downarrow, \mathbf{K}_\lambda, \leq^u_{\mathbf{K}})$ be the least such κ .

Suppose $N_1, N_2, M \in \mathbf{K}_{\lambda}$, and $\mu_1 < \mu_2 < \lambda^+$ are regular, and N_l is a (λ, μ_1) -limit model over M for l = 1, 2. Then $N_1 \cong N_2$ if and only if $\mu_1 \geq \kappa(\downarrow, \mathbf{K}_{\lambda}, \leq^u_{\mathbf{K}})$.

Results - Long limits are isomorphic

To prove long limit models are isomorphic, we build a theory of towers similar to [Vasey, 2019]. Our constructions widen the assumptions to allow general independence relations, possibly with $\kappa(\downarrow, \mathbf{K}_{\lambda}, \leq^{u}_{\mathbf{K}}) > \aleph_{0}$, and possibly defined only on $(\lambda, \geq \kappa)$ -limit models. \aleph_0 -tameness is not needed for this argument.

Results - Short limits are non-isomorphic

To prove short limit models are non-isomorphic, we show that \downarrow is 'close' to a relation called λ -non-splitting.

Using \aleph_0 -tameness, we can show that if a (λ,μ_1) -limit model and a (λ,μ_2) -limit model are isomorphic with $\mu_1<\mu_2$ both regular, then we have μ_1 -local character of λ -non-splitting. This is where \aleph_0 -tameness is used.

This implies μ_1 -local character of \downarrow , since \downarrow and λ -non-splitting are 'close' to each other. So $\mu_1 \geq \kappa(\downarrow, \mathbf{K}_{\lambda}, \leq^u_{\mathbf{K}})$.

As isomorphic limit models are long, we must have that the short limit models are non-isomorphic.

Results - Global version

If we assume we have a relation satisfying our conditions at all λ , the cardinal $\kappa(\downarrow,\mathbf{K}_{\lambda},\leq^u_{\mathbf{K}})$ stabilises for high enough stable λ to a value $\chi(\downarrow,\mathbf{K},\leq^u_{\mathbf{K}})$. This gives the following:

Theorem (B., Mazari-Armida)

Assume \downarrow is defined on **K** and has all the properties from before, with $\kappa \leq \mathsf{LS}(\mathbf{K})$. Let $\lambda \geq \beth_{\beth_{(2^{\mathsf{LS}}(\mathbf{K}))^+}}$ such that **K** is stable in λ .

Suppose $\delta_1, \delta_2 < \lambda^+$ with $cf(\delta_1) < cf(\delta_2)$. Then for any $N_1, N_2, M \in \mathbf{K}_{\lambda}$ where N_l is a (λ, δ_l) -limit model over M for l = 1, 2,

 N_1 is isomorphic to N_2 over $M \iff \operatorname{cf}(\delta_1) \geq \chi(\downarrow, \mathbf{K}, \leq^u_{\mathbf{K}})$

Applications - First order stable theories

Given first order complete stable theory T, non-forking is a relations satisfying our hypotheses in $\mathbf{K} = (\operatorname{Mod}(T), \preccurlyeq)$ with $\kappa(\downarrow, \mathbf{K}_{\lambda}, \leq^{u}_{\mathbf{K}}) = \kappa_{r}(T) \leq |T|$ for all stable $\lambda \geq LS(\mathbf{K})$. Thus we have:

Theorem

Let T be a first order complete stable theory. Then for every stable $\lambda \geq |T|$, and any $N_1, N_2, M \in \mathbf{K}_{\lambda}$ where N_l is a (λ, δ_l) -limit model over M for l = 1, 2,

$$N_1$$
 is isomorphic to N_2 over $M \iff \operatorname{cf}(\delta_1) \geq \kappa_r(T)$

Though the \Leftarrow implication was known, the \Rightarrow implication was previously unexplored.

In fact, in nice μ -tame AECs, Vasey showed in [Vasey, 2016] the existence of an independence relation with many nice properties. With a little work, our 'long limit' result gives the uniqueness of $(\lambda, \geq \mu^+)$ -limit models for all $\lambda \geq \mu^+$.

Applications - Algebraic AECs

There are several examples of algebraic AECs satisfying the assumptions of our theorem, but let's focus on one.

Let $\mathbf{K}^{R-\mathrm{mod}}$ be the AEC of modules over a fixed ring R with \subseteq (or \leq_p , pure substructure). In this case, $\chi(\downarrow, \mathbf{K}^{R-\mathrm{mod}}, \leq^u_{\mathbf{K}}) = \gamma_r(R)$. In fact, considering when these are \aleph_0 , we have

Theorem

The following are equivalent:

- 1. R is Noetherian
- 2. for any $\lambda \geq \beth_{\beth_{(2^{\aleph_0})^+}}$, all λ -limit models in $\mathbf{K}^{R-\mathrm{mod}}$ are isomorphic

References

Beard, J. and Mazari-Armida, M. (2025).

The categoricity spectrum of large abstract elementary classes.

arXiv: https://arxiv.org/abs/2503.11605.

Vasey, S. (2016).

Forking and superstability in tame aecs.

The Journal of Symbolic Logic, 81(1):357–383.

Vasey, S. (2019).

The categoricity spectrum of large abstract elementary classes.

Selecta Mathematica, 23(5).

Thanks for listening!