Università degli Studi di Salerno. Corso di Laurea in Informatica. Corso di Ricerca Operativa A.A. 2009-2010. Esame del 22-02-2010

Nome	 Cognome	 	
3.6.4.1			
Matricola			

1. Dato il seguente problema di programmazione lineare:

Max
$$z = x_1$$

 $x_1 + \frac{1}{4} x_2 \ge 1$
 $x_1 - \frac{1}{2} x_2 \le 1$
 $2x_1 - \frac{1}{2} x_2 \le 3$
 $x_1, x_2 \ge 0$

- a. (3 punti) Si determini per via grafica il punto di ottimo, se esiste, ed il valore ottimo.
- b. (3 punti) Si determinino le basi associate ad ogni vertice della regione ammissibile.
- c. (4 punti) Si determinino, se esistono, le direzioni estreme del poliedro.
- d. (2 punti) Si aggiunga un vincolo al problema che renda la regione ammissibile un politopo.
- e. (4 punti) Si aggiunga un vincolo che renda il punto (1,0) ottimo.
- 2. Dato il seguente problema di programmazione lineare:

$$\begin{array}{ll} \text{Min z} &= 2x_1 - \frac{1}{2}x_2 + 3x_3 + x_4 \\ & x_1 - x_3 + x_4 & \leq 1 \\ & 3x_1 + 2\,x_2 - x_3 = 3 \\ & x_2 + 3x_3 - 4x_4 & \geq -3 \\ & x_1 & \text{n.v}, \, x_2 \geq 0, \, x_3 \leq 0, \, x_4 \geq 0 \end{array}$$

- a. (3 punti) Si scriva la formulazione matematica del suo duale.
- b. (3 punti) Scrivere il problema della prima fase (del metodo delle due fasi) senza risolverlo.
- 3. Si consideri a seguente tabella relativa ad un problema del trasporto con 3 origini e 4 destinazioni:

	\mathbf{D}_1	$\mathbf{D_2}$	\mathbf{D}_3	$\mathbf{D_4}$	
O_1	6	15	8	7	10
O_2	9	12	4	6	10 20
$egin{array}{c} \mathbf{O_1} \\ \mathbf{O_2} \\ \mathbf{O_3} \end{array}$	5	8	5	1	10
	5	5	15	15	

- a) (3 punti) Si scriva la formulazione matematica del modello corrispondente
- b) (4 punti) Si determini una soluzione ammissibile iniziale con la regola del nord-ovest e si applichi una iterazione dell'algoritmo del trasporto per determinare la nuova base ammissibile.
- 4. (2 punti) Dati i seguenti vettori A=(1 4 5), B=(4 1 7) e C=(6 1 4) si determini un vettore D ottenuto come lo loro combinazione convessa (specificare i coefficienti che sono stati scelti nella combinazione).