${\bf Gaussian\text{-}Process\text{-}Model\text{-}based~System\text{-}Identification}\\ {\bf Toolbox~for~Matlab}$

Version 1.2.2

Martin Stepančič and Juš Kocijan

	·	

1 Introduction

The idea of this toolbox is to facilitate dynamic systems identification with Gaussian-process (GP) models. The presented toolbox is continuously developing and is put together with hope to be useful as a springboard for the modelling of dynamic systems with GP models.

The GP model belongs to the class of black-box models. GP modelling differs from most other black-box identification approaches in that it does not try to approximate the modelled system by fitting the parameters of the selected basis functions, but rather it searches for the relationship among the measured data. The model is composed of input-output data that describes the behaviour of the modelled system and the covariance function that describes the relation with respect to the input-output data. The prediction of the GP model output is given as a normal distribution, expressed in terms of the mean and the variance. The mean value represents the most likely output, and the variance can be interpreted as a measure of its confidence.

System identification is composed of methods to build mathematical models of dynamic systems from measured data. It is one of the scientific pillars used for dynamic-systems analysis and control design. The identification of a dynamic system means that we are looking for a relationship between past observations and future outputs. Identification can be interpreted as the concatenation of a mapping from measured data to a regression vector, followed by a nonlinear mapping from the regression vector to the output space. Various machine-learning methods and statistical methods are employed to determine the nonlinear mapping from the regression vector to the output space. One of the possible methods for a description of the nonlinear mapping used in identification is GP models. It is straightforward to employ GP models for the discrete-time modelling of dynamic systems within the prediction-error framework.

Many dynamic systems are often considered as complex; however, simplified input-output behaviour representations are sufficient for certain purposes, e.g., feedback control design, prediction models for supervisory control, etc.

More on the topic of system identification with GP models and the use of this models for control design can be found in the book:

Juš Kocijan (2016) Modelling and Control of Dynamic Systems Using Gaussian Process Models, Springer.

2 GP-Model-based System-Identification Toolbox for Matlab

2.1 Prerequisites

As this toolbox is intended to use within Matlab environment the user should have Matlab installed. It works on Matlab 7 and later, but there should be no problems using the toolbox on previous versions of Matlab, e.g., 6 or 5.

It is also assumed that the GPML toolbox¹, general purpose GP modelling toolbox for Matlab, is installed. The GP-model-based system-identification toolbox serves as upgrade to GPML toolbox.

The user should posses some familiarity with the Matlab structure and programming.

2.2 Installing GPdyn toolbox

Unzip the file GPdyn into chosen directory and add path, with subdirectories, to Matlab path.

2.3 Overview of the GPdyn toolbox

GPdyn files are contained in several directories, depending on their purpose:

training functions, used for training GP models of dynamic systems;

GP-model evaluation functions, used for simulating the dynamic GP model;

LMGP-model evaluation functions, which are used when modelling and simulating the system with a GP model with incorporated local models (LMGP model);

utilities functions, that are various support functions;

demo functions, which demonstrate the use of the toolbox for identification of dynamic systems.

¹It can be obtained from http://www.gaussianprocess.org/qpml.

The list of included functions, demos and one model is given in following tables.

GP-model training functions:

trainGParx	GP-model training of ARX model
trainGPoe	GP-model training of OE model
gp_initial	- finding initial values of hyperparameters with random search
minimizeDE	minimize a multivariate function using differential evolution

Covariance functions:

Included and explained in enclosed GPML toolbox

GP-model evaluation:

simulGPnaive	GP model simulation without the propagation of uncertainty	
simulGPmcmc	GP model simulation with Monte Carlo approximation	
simulGPtaylorSE	GP model simulation with analytical approximation of statistical	
	moments with a Taylor expansion for the squared exponential	
	covariance function	
simulGPexactSE	GP model simulation with exact matching of statistical moments	
	for the squared exponential covariance function	
simulGPexactLIN	GP model simulation with exact matching of statistical moments	
	for the linear covariance function	
predGPnaive	multi-step-ahead prediction of GP model without	
	the propagation of uncertainty	
gpx	modified version of GP rutine from the GPML toolbox	
$\mathtt{gmx_sample}$	creates samples of mixture components	
gpTaylorSEard	GP model prediction with stochastic inputs for	
	the squared exponential covariance function with Taylor expansion	
gpExactLINard	GP model prediction with stochastic inputs for	
	the linear covariance function	
gpExactSEard	GP model prediction with stochastic inputs for	
	the squared exponential covariance function	

LMGP-model evaluation:

simulLMGPnaive	LMGP model simulation without the propagation of uncertainty
simulLMGPmcmc	LMGP model simulation with Monte Carlo approximation
trainLMGP	LMGP model training
gpSD00	- LMGP model prediction
	- data likelihood and its derivatives

Supporting functions:

add_noise_to_vector	adding white noise to noise-free simulation results	
construct	construction of the input regressors	
	from system's input signals	
eval_func	method to evaluate covariance, mean and likelihood functions	
likelihood	calculates negative log marginal likelihood	
lipschitz	the method for the lag-space selection, based on Lipschitz quotients	
validate	checking of the parameters match	
loss	performance measures	
mcmc_test_pdfs	testing sampled probability distributions	
plotgp	plot results (output and error) of the GP model prediction	
plotgpe	plot error of the GP model prediction	
plotgpy	plot output of the GP model prediction	
preNorm	preprocessing of data	
postNorm	postprocessing of data	
postNormVar	postprocessing of predicted variance	
sig_prbs	generating pseudo-random binary signal	
sig_prs_minmax	generating pseudo-random signal	

Demos:

demo_example_present	present the system used in demos
demo_example_gp_data	generate data for the identification and validation
	of the GP model
demo_example_gp_norm	normalization of input and output data
demo_example_gp_training	training of the GP model
$\boxed{\texttt{demo_example_gp_simulation}}$	validation with simulation of the GP model
demo_example_lmgp_data	generate data for the identification and validation
	of the LMGP model
demo_example_lmgp_training	training of the LMGP model
demo_example_lmgp_simulation	simulation of the LMGP model
demo_example	system simulation
demo_example_derivative	obtaining system's derivatives
demo_example_LM_ident	identification of system's local models

2.4 How to use this toolbox

2.4.1 Demos

A simple nonlinear dynamic system is used to demonstrate the identification and simulation of the GP models:

$$y(k+1) = \frac{y(k)}{1+y^2(k)} + u^3(k) \tag{1}$$

The system was used as an example of dynamic system identification with artificial neural networks in:

K.S. Narendra and K. Parthasarathy. Identification and Control of Dynamical Systems Using Neural Networks, IEEE Transactions on Neural Networks, Vol.1 No. 1, 4–27, 1990.

demo_example_present, presents this system.

Following three demos present the identification of dynamic systems with the GP model:

demo_example_gp_data, which presents how to obtain and assemble data for identification;

demo_example_gp_norm, which shows how to normalise input and output data for training;

demo_example_gp_training, which demonstrates the identification with a GP model; demo_example_gp_simulation, which shows how to simulate the GP model.

The use of the GP model with incorporated local models is presented with demos:

demo_example_lmgp_data, which presents how to obtain and assemble data for identification;

demo_example_lmgp_training, which demonstrates the training (=identifying) the LMGP model;

demo_example_lmgp_simulation, which shows how to simulate the LMGP model.

2.4.2 Acknowledgements

We would like to thank all past, present and future contributors to this toolbox.