NIRS-SPM Instruction using Shimadzu Data

2009/12/07 Akihiro Ishikawa

Main Panel

Convert

Convert

We support to read our data format.

Shimadzu_FT_Right_4x4x2.TXT

For example... Shimadzu_FT_Right_4x4x2.mat

Time Series Analysis

Shimadzu_FT_Right_4x4x2.mat

Load NIRS File

Generate the predicated model

20 80 140 200 260 20

Filtering

Specify the Baseline

TimeSeries Analysis

Save

書き込みたいファイル	レを選択してください	? 🗙
保存する場所(Φ:	Direction Nires_SPM_v03	
最近使ったファイル デスクトップ マイ ドキュメント マイ コンピュータ マイ ネットワーク	shimadzu_filtered.mat shimadzu_mat hitach2.mat siss.mat spectratec.mat surf_raw.mat Charite_DPF_correction.mat COPE_e_coef.mat all_e_coef.mat Documentation fori_functions Sample_data	
		存(S) ンセル

For example....
Shimadzu_Filtered_FT_Right_4x4x2.mat

Specify 1st Level

Specify 1st Level

NIRS Specification

20 80 140 200 260

Created SPM_indiv_HbO.mat

Estimate

Estimate

Updated SPM_indiv_HbO.mat

Results NIRS

Results NIRS

Created cinterp_SPM_nirs_HbO1_dorsal.mat

Created cinterp_SPM_nirs_HbO1_right.mat

Created cinterp_SPM_nirs_HbO1_left.mat

Created cinterp_SPM_nirs_HbO1_frontal.mat

Deoxy-Hb

T-map of right finger tapping

OxyHb

High t value was indicated in primary motor cortex of left side.

DeoxyHb

The t value of the minus was indicated in primary motor cortex of left side.

The result showed that increased OxyHb and decreaed DeoxyHb was found at tapping

Appendix

Spatial Registration

Spatial Registration (with MRI)

Preparation

- MRI image
 - T1W
 - Normalized T1W
 - Gray Matter and White Matter images
- File for Coefficient
 - Mat file for conversion
- Location data of 4 Reference points and Probes
 - Measured using Fastrak
- Registration File
- Ch. Config File

Туре	Folder name	File name
T1W	WithMRI	mri.nii
Normalized T1W	WithMRI	wmri.nii
Gray Matter	WithMRI	c1mri.nii
White Matter	WithMRI	c2mri.nii
Mat file for conversion	WithMRI	mri_sn.mat
Location data	Registration	Shimadzu_Real_4x4x2_FingerT apping.txt
Ch. Config file	Ch_Config	Shimadzu_4x4x2_48ch.txt
Saved file	Registration	Shimadzu_Saved_48ch_with_ MRI

Set Reference Points and Optode

Select Real Coordinate File

MR Image (Select T1 and Normalized image)

Set Reference Points

NZ + CZ + AL + AR

Set Ch.Config File

NIRS-MRI Alignment

Select parameter file and then Gray matter and White matter file

MNI Coordinates

View Ch.

Save Ch.

Shimadzu_Saved_48ch_with_MRI.mat

Spatial Registration(without MRI)

Preperation

- Location data of Reference point
 - Shimadzu_4x4x2_FingerTapping_origin.csv

- Location data of Probe and Channel
 - Shimadzu_4x4x2_FingerTapping_others.csv

Shimadzu_4x4x2_FingerTapping_o rigin.csv

Shimadzu_4x4x2_FingerTapping_o thers.csv

T**, X, Y, Z R**, X, Y, Z CH**, X, Y, Z

CH is center point of logical target T, R

NIRS_Registration_S tandalone

MNI Estimation

Estimation result

Estimation result

Zoomed

Project....

Save Ch.

Shimadzu_Saved_48ch_without_MRI.mat