	. 1	г
Jméno a příjmení:		

Příklad číslo:	1	2	3	4	\sum
Počet bodů:					

Příklad 1. V čase t=0 vyjelo auto z bodu A=[0,0] rychlostí 2 jednotky za sekundu směrem (1,0). Ve stejném čase vyjelo druhé auto z bodu B=[1,-1] rychlostí 3 jednotky za sekundu směrem (0,1). Kdy si budou auta nejblíže a jaká bude tato vzdálenost?

Řešení. V čase $t = \frac{5}{13} s$ si budou auta nejblíže a to $\frac{13}{\sqrt{13}}$ jednotky.

Příklad 2. Vyšetřete funkci $\ln\left(\frac{x-1}{x+2}\right)$. Zejména určete definiční obor, intervaly monotónnosti, nulové body, extrémy, inflexní body, asymptoty a načrtněte graf.

Řešení. Definiční obor $(-\infty, -2) \cup (1, \infty)$, rostoucí na int $(-\infty, -2)$ i na $(1, \infty)$, nemá extrémy, nulové body ani inflexní body, asymptoty bez směrnice x = 1, x = -2, se směrnicí y = 0.

Příklad 3. Určete integrál

$$\int_{\frac{\sqrt{15}+1}{4}}^{\infty} \frac{(x+1)}{2x^3 + x^2 + x + 2} \, \mathrm{d}x.$$

Výsledek zapište v co nejjednodušší formě.

Řešení.
$$\frac{\sqrt{15}\pi}{30}$$
.

Příklad 4. V závislosti na $a \in \mathbb{R}^+$ určete integrál $\int_0^1 \frac{1}{x^a} dx$.

Řešení.
$$\frac{1}{1-a}$$
 pro $a\in(0,1),$ ∞ jinak.