数学分析 B 期末试题(A 卷)

班级	学号	姓名
----	----	----

(本试卷共5页, 九个大题)

题号	<u> </u>	二	Ξ.	四	五.	六	七	八	九	总分	
得分											
评阅人											

- 一. 填空题 (每小题 4 分, 共 28 分)
- $1. \frac{d(\arcsin x)}{d\sqrt{1-x^2}} = \underline{\hspace{1cm}}.$

- 5. 函数 $f(x) = x \ln(1+x) e^{x^2}$ 的 5 阶麦克劳林公式(带佩亚诺余项)为 $f(x) = \underline{\hspace{1cm}}.$
- 7. 极限 $\lim_{x \to 0} \frac{\int_{0}^{\sin x} (1+t)^{\frac{1}{t}} dt}{\int_{0}^{\tan x} \frac{\sin t}{t} dt} = \underline{\qquad}$

- 二. (9分) 求微分方程 $y'' + y' 2y = e^x$ 的通解.
- 三. (9 分) 求不定积分 $\int x^2 \arctan x dx$.

四. (9 分) 设
$$\lim_{x\to 0} \frac{\ln(1+x)-(ax+bx^2)}{x^2} = 1$$
, 求 a 和 b 的值.

- 五. (9 分) 已知油罐车上的油罐是半径为R的圆柱体,两边的封头是半径为R米的圆板 (如图),若油的密度 $\mu = 800 \, \text{kg/m}^3$,并假定油罐 接满了油,求油罐的每个封头所受的侧压力.
- 六. (9 分) 求反常积分 $\int_{1}^{+\infty} \frac{dx}{x\sqrt{x+1}}$.
- 七. (9 分) 已知函数 f(x) 在[1,+∞)上单调增加,且对任意 t>1,曲线 y=f(x) 在[1,t]上的 弧长等于此曲线与直线 x=1, x=t 及 x 轴所围图形面积的 2 倍,又曲线过点 $(1,\frac{1}{2})$,求 f(x).
- 八. (9 分) (1)设 $I_1 = \int_0^{\pi} e^{\sin x} \sin x dx$, $I_2 = \int_{\pi}^{2\pi} e^{\sin x} \sin x dx$, 比较 I_1, I_2 的大小(要说明理由); (2) 设 $F(x) = \int_x^{x+2\pi} e^{\sin t} \sin t dt$, 证明 F(x) 恒为正的常数.
- 九. (9 分) 设 f(x) 在 [0,2] 上二阶可导,且 $|f''(x)| \le 1$,又 $\lim_{x \to 1} \frac{f(x)}{x-1} = 0$. (1) 证明 f(x) 在 (0,2) 内存在驻点; (2) 证明 $|f'(0)| + |f'(2)| \le 2$.