Introducción a los sistemas secuenciales

Temas 11

π

Universidade de La Laguna

Contenido

- > Definición de sistema secuencial
- > Clasificación de los sistemas secuenciales
- > Elementos de memoria. Flip-flops
- > Asociación de biestables. Registros
- > Resumen del comportamiento de los flip-flops

Definición de sistema secuencial

 Sistema digital en que la salida depende de las entradas a cada instante y en instantes anteriores

F

Definición de sistema secuencial

> El circuito secuencial <u>recuerda</u> la historia pasada, es decir, tiene memoria

f es la función de transferencia de estado

q_i son las variables de estado (que codifican el estado del sistema)
clk es el reloj del sistema (clock)

g es la función de salida del sistema secuencial

Definición de sistema secuencial

- Las especificaciones de un sistema secuencial se representan mediante:
 - Diagramas de estado: es un grafo orientado
 - Tablas de estado: el equivalente tabular al caso anterior

Estado	Estado siguiente		Sal	ida
actual	x=0	x=1	x=0	x=1
s0	s1	s2	0	1
s1	s1	s2	0	0
s2	s0	s1	1	0

Universidad de La Laguna

Ejemplo: sea un sistema secuencial con:

Entrada $x=\{0,1\}$ Salida $z=\{x,1\}$ Estados (q1,q0): s0=(0,0) s1=(0,1) s2=(1,0)s3=(1,1)

Estado actual	Estado siguiente		Sal	ida
	x=0	x=1	x=0	x=1
s0	s3	s2	0	1
s1	s1	s0	1	0
s2	s2	s3	1	0
s3	s0	s1	0	1

Universidadde La Laguna

Ejemplo: sea un sistema secuencial con:

t=	0	1	2	3	4	5	6	7	8	9	10
X=	0	1	1	0	1	0	1	1	0	0	1
Estado actual s0	s3	s1	s0	s3	s1	s1	s0	s2	s2	s2	s3
Z=	0	1	0	0	1	1	0	1	1	1	0

Estado actual	Estado siguiente		Sal	ida
	x=0	x=1	x=0	x=1
s0	s3	s2	0	1
s1	s1	s0	1	0
s2	s2	s3	1	0
s3	s0	s1	0	1

Clasificación de los sistemas secuenciales

1. Según la forma en que se producen las transiçiones

Asíncronos => modelo Mealy

Estado			Sal	ida
actual	x=0	x=1	x=0	x=1
s0	s0	s1	0	0
s1	s2	s1	0	0
s2	s0	s1	0	1

Síncronos => modelo Moore

0 S ₀	s_1
S_3 0	0 0 0 1

Estado actual	Esta sigui	Salida	
	x=0	x=1	
s0	s0	s2	0
s1	s1	s0	1
s2	s2	s3	1
s3	s0	s1	0

F

Universidad

Clasificación de los sistemas secuenciales

1. Según la forma en que se producen las transiciones

Asíncronos => modelo Mealy

Estado	Est. sig.		Salida		
actual	x=0	x=1	x=0	x=1	
s0	s0	s1	0	0	
s1	s2	s1	0	0	
s2	s0	s1	0	1	

Síncronos => modelo Moore

Estado	Estado s	Salida	
actual	x=0	x=1	
s0	s0	s2	0
s1	s1	s0	1
s2	s2	s3	1
s3	s0	s1	0

Clasificación de los sistemas secuenciales

2. Atendiendo a si tienen entradas o no

Autónomos

Generalizados

Elementos de memoria

- > El elemento básico de memoria es el flip-flop (o biestable)
- Asume uno de los dos estados posibles
- > Suele tener una o dos salidas y una o más entradas que provocan el cambio de estado
- > Para construir un elemento de memoria, debemos introducir una realimentación (condición necesaria, pero no suficiente)

Elementos de memoria

 Ejemplos de realimentaciones que no infieren un elemento de memoria:

Es inestable. No tiene 2 estados estables

Tiene 2 estados estables, pero no podemos controlarlo

5

Elementos de memoria

> Flip-flop SR

- Si $S \neq R \Rightarrow P = \overline{Q}$
- Si $S = R = 1 \Rightarrow circuito inestable$
- S = 1 fuerza que Q = 1 y $\overline{Q} = 0$ (set)
- S = 0 fuerza que Q = 0 y $\bar{Q} = 1$ (reset)

π

F

Universidad de La Laguna

Elementos de memoria. Flip-flops

> Flip-flop SR

Comportamiento oscilante

- > Flip-flop SR
 - Su comportamiento se resume en la siguiente tabla:

No permitidos

S(t)	R(t)	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	-
1	1	1	-

R(t)	S(t) Q(t)	0	1
	00	0	1
	01		1
•	11	3	X
·	10	2	X

$$Q(t+1) = S(t) + \overline{R}(t)Q(t)$$

$$Q^{+} = S + \overline{R}Q \quad (SR = 0)$$

F

Universidado de La Laguna

Elementos de memoria. Flip-flops

- > Flip-flop T
 - Única entrada
 - Aplicando un pulso a la entrada el estado cambia

•
$$Si T = \mathbf{0} \Rightarrow \mathbf{Q}^{+} = \mathbf{Q}$$

• $Si T = \mathbf{1} \Rightarrow \mathbf{Q}^{+} = \overline{\mathbf{Q}}$
• $Si Q = 1 \Rightarrow R = 1 \land S = 0 \Rightarrow Q^{+} = 0$
• $Si Q = 0 \Rightarrow R = 0 \land S = 1 \Rightarrow Q^{+} = 1$
 $\mathbf{Q}^{+} = \overline{T}\mathbf{Q} + T\overline{\mathbf{Q}} = T \oplus \mathbf{Q}$

Т	Q	Q+
0	0	0
0	1	1
1	0	1
1	1	0

F

Universidad de la laguna

Elementos de memoria. Flip-flops

- > Flip-flop T síncrono
 - Los flip-flops suelen tener una señal de reloj para controlar los cambios de estado
 - Los flip-flops pueden ser sensibles a los flancos de subida o de bajada de la señal de reloj

$Q^+ =$	$\bar{T}Q$ +	$T\bar{Q} =$	T	\bigoplus	Q
---------	--------------	--------------	---	-------------	---

Т	Q	Q+
0	0	0
0	1	1
1	0	1
1	1	0

Desaparecen los problemas temporales y el biestable opera adecuadamente para un ancho rango de frecuencias de reloj

- > Flip-flop JK
 - Combina las características de los biestables tipo SR y T
 - > Si J=K, actúa como un biestable tipo T
 - > Si J≠K, actúa como un biestable tipo SR, con J=S y K=R

- $SiJ = 1 \land K = 0 \Rightarrow Q^+ = 1$
 - $Si Q = 1 \Rightarrow S = 0 \land R = 0 \Rightarrow Q^{+} = Q (= 1)$
 - $Si Q = 0 \Rightarrow S = 1 \land R = 0 \Rightarrow Q^+ = 1$
- $SiJ = 0 \land K = 1 \Rightarrow Q^+ = 0$
 - $Si Q = 1 \Rightarrow S = 0 \land R = 1 \Rightarrow Q^+ = 0$
 - $Si Q = 0 \Rightarrow R = 0 \land S = 0 \Rightarrow Q^+ = Q (= 0)$
- $Si J = K \Rightarrow Q^+ = K \oplus Q = J \oplus Q$

- > Flip-flop JK
 - Combina las características de los biestables tipo SR y T
 - > Si J=K, actúa como un biestable tipo T
 - > Si J≠K, actúa como un biestable tipo SR, con J=S y K=R

J	K	Q	Q+
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

J KQ	0	1	$Q^+ = \overline{K}Q + J\overline{Q}$
00	0	14	
01		1	
11	3	7	
10	2	1 ₆	

Si J=K tenemos los mismos problemas que con un biestable tipo T asíncrono

Universidac

Elementos de memoria. Flip-flops

- > Flip-flop JK síncrono
 - Se comporta igual que uno asíncrono, pero el cambio de estado lo gestiona el reloj

J	K	Q	Q+
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

- > Flip-flop JK síncrono
 - Se puede realizar un biestable JK síncrono con 2 biestables SR en cascada

El cambio de estado sólo ocurre en los flancos de bajada

F

Elementos de memoria. Flip-flops

- > Flip-flop D síncrono
 - Su comportamiento es el más sencillo

D	Q	Q+
0	0	0
0	1	0
1	0	1
1	1	1

 $Q^+ = D$

La salida almacena lo de la entrada en el flanco de bajada de reloj en el caso que nos ocupa

Universidad de la Laguna

Elementos de memoria. Flip-flops

- > Flip-flops con puertos de control adicionales
 - Normalmente los biestables suelen disponer de una o más entradas de control, tales como RESET, PRESET, CE (chip enable, habilitación)
 - RESET: resetea el flip-flop (lo pone en estado 0)
 - PRESET: hace un set (lo pone a estado 1)
 - CE: la salida está congelada si está deshabilitado. Si no, opera con normalidad

- > Flip-flops con puertos de control adicionales
 - Podemos tener biestables activos a flancos de subida, de bajada, con reset activo a alta, a baja; con preset activo a alta, a baja; con CE...
 - Ejemplos:

> Flip-flops con puertos de control adicionales

clk	D	Preset	Reset	Q ⁺
X	X	0	0	No permitido
X	X	0	1	1
X	X	1	0	0
↑	0	1	1	0
↑	1	1	1	1
0,1, ↓	X	1	1	Q (sin cambios)

Universida de la la agur

Asociación de biestables. Registros

- Varios flip-flops pueden agruparse formando un registro, donde cada flip-flop almacena un bit de información
- > En otros:
 - Registros de carga paralela
 - Registros de desplazamiento
- > Operaciones:
 - Almacenar información
 - Ceder información
 - Desplazamientos y rotaciones

Asociación de biestables. Registros

> Registros de carga paralela

Asociación de biestables. Registros

> Registros de desplazamiento

Ideal para multiplicaciones y divisiones potencia de 2

Resumen del comportamiento de los flip-flops

Biestable SR

Biestable

Biestable JK

Biestable

S	R	Q	Q+
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	-
1	1	1	-

Т	Q	Q+
0	0	0
0	1	1
1	0	1
1	1	0

J	K	Q	Q+
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

D	Q	Q+
0	0	0
0	1	0
1	0	1
1	1	1