Mining Social-Network Graphs

Analysis of Large Graphs: Community Detection

Networks & Communities

■ We often think of networks being organized into modules, cluster, communities:

Goal: Find Densely Linked Clusters

Micro-Markets in Sponsored Search

☐ Find micro-markets by partitioning the query-to-advertiser graph:

Movies and Actors

☐ Clusters in Movies-to-Actors graph:

Twitter & Facebook

☐ Discovering social circles, circles of trust:

friends under the same advisor

highschool friends

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]

COMMUNITY DETECTION (GRAPH BASICS)

How to find communities?

COMMUNITY DETECTION (ALGORITHMS AND METHODS)

How to find communities?

We will work with undirected (unweighted) networks

Recall: Methods of Clustering

☐ Hierarchical:

- Agglomerative (bottom up):
 - Initially, each point is a cluster
 - Repeatedly combine the two "nearest" clusters into one
 - Used a distance metric

Today: ➤ Divisive (top down):

Start with one cluster and recursively split it

□ Point assignment:

- Maintain a set of clusters
- Points belong to "nearest" cluster
- Used a distance metric

Betweenness Concept

☐ Edge betweenness: Number of shortest paths passing over the edge

☐ Intuition:

Edge strengths (call volume) in a real network

Edge betweenness in a real network

Betweenness Concept (Cont'd)

- ☐ Find edges in a social network graph that are least likely to be inside a community
- ☐ Betweenness of edge (a, b):
 - \triangleright number of pairs of nodes x and y -> x, y \in C
 - > edge (a,b) lies on the shortest path between x and y
- If there are several shortest paths between x and y, edge (a,b) is credited with the fraction of those shortest paths that include edge (a,b)
- ☐ A high score is bad: suggests that edge (a,b) runs between two different communities
 - > a and b are in different communities.

The Russian Bridge

WE NEED TO RESOLVE 2 QUESTIONS

- 1. How to compute betweenness?
- 2. How to select the number of clusters?

The Girvan-Newman Algorithm

- Want to discover communities using divisive hierarchical clustering
 - > Start with one cluster (the social network) and recursively split it
- Will do this based on the notion of edge betweenness:
 Number of shortest paths passing through the edge
- ☐ Girvan-Newman Algorithm:
 - Visits each node X once
 - Computes the number of shortest paths from X to each of the other nodes that go through each of the edges
- ☐ Repeat:
 - Calculate betweenness of edges
 - 1. Thresholding to remove high betweeness edges, or
 - 2. Remove edges with highest betweenness: between communities
- Connected components are communities
- ☐ Gives a hierarchical decomposition of the network.

Girvan-Newman Algorithm (1)

- Visit each node X once and compute the number of shortest paths from X to each of the other nodes that go through each of the edges
- 1) Perform a breadth-first search (BFS) of the graph, starting at node X
 - The level of each node in BFS is length of the shortest path from X to that node
 - So edges that go between nodes on the same level can never be part of a shortest path from X
 - Edges between levels are called DAG edges (DAG = Directed Acyclic Graph)
 - > Each DAG edge is part of at least one shortest path from root X.

Girvan-Newman Algorithm (2)

- □ 2) Label each node by the number of shortest paths that reach it from the root node
 - > Example: BFS starting from node E, labels assigned

16

Girvan-Newman Algorithm (3)

- □ 3) Calculate for each edge *e*, the sum over all nodes Y (of the fraction) of the shortest paths from the root X to Y that go through edge *e*
 - Compute this sum for nodes and edges, starting from the bottom of the graph
 - Each node other than the root node is given a credit of 1
 - Each leaf node in the DAG gets a credit of 1
 - ➤ Each node that is not a leaf gets credit = 1 + sum of credits of the DAG edges from that node to level below
 - ➤ A DAG edge e entering node Z (from the level above) is given a share of the credit of Z proportional to the fraction of shortest paths from the root to Z that go through e.

Girvan-Newman Algorithm (4)

☐ Assign node and edge values starting from bottom

Figure 10.5: Final step of the Girvan-Newman Algorithm – levels 3 and 2

Girvan-Newman Algorithm (5)

Assigning credits:

- A and C are leaves: get credit = 1
- Each of these nodes has only one parent, so their credit=1 is given to edges (B,A) and (B,C)
- ☐ At level 2, G is a leaf: gets credit = 1
- B gets credit 1 + credit of DAG edges entering from below = 1 + 1 + 1 = 3
- B has only one parent, so edge (D,B) gets entire credit of node B = 3
- Node G has 2 parents (D and F): how do we divide credit of G between the edges?

Girvan-Newman Algorithm (6)

- ☐ In this case, both D and F have just one shortest path from E to each of those nodes
 - So, give half credit of node G to each of those edges 1
 - ightharpoonup Credit = 1/(1+1) = 0.5
- In general, how we distribute credit of a node to its edges depends on number of shortest paths
 - Say there were 5 shortest paths to D and only 3 to F
 - Then credit of edge (D,G) = 5/8 and credit of edge (F,G) = 3/8
- Node D gets credit = 1 + credits of edges below it = 1 + 3 + 0.5 = 4.5
- Node F gets credit = 1 + 0.5 = 1.5
- ☐ D has only one parent, so Edge (E,D) gets credit = 4.5 from D
- ☐ Likewise for F: Edge (E,F) gets credit = 1.5 from F.

Girvan-Newman Algorithm (7): Completion of Credit Calculation starting at node E

Figure 10.6: Final step of the Girvan-Newman Algorithm – completing the credit calculation

Girvan-Newman Algorithm (8): Overall Betweenness Calculation

- ☐ To complete betweenness calculation, must:
 - Repeat this for every node as root
 - > Sum the contributions on each edge
 - > Divide by 2 to get true betweenness
 - since every shortest path will be counted twice, once for each of its endpoints.

Using Betweenness to Find Communities: Clustering

- Betweenness scores for edges of a graph behave something like a distance metric
 - Not a true distance metric
- ☐ Could cluster by taking edges in increasing order of betweenness and adding to graph one at a time
 - At each step, connected components of graph form clusters
- ☐ Girvan-Newman: Start with the graph and all its edges and remove edges with highest betweenness
 - Continue until graph has broken into suitable number of connected components
 - Divisive hierarchical clustering (top down)
 - Start with one cluster (the social network) and recursively split it.

Using Betweenness to Find Communities (2)

- ☐ (B,D) has highest betweenness (12)
- Removing edge would give natural communities we identified earlier: {A,B,C} and {D,E,F,G}

Figure 10.7: Betweenness scores for the graph of Fig. 10.1

Using Betweenness to Find Communities (3): Thresholding

☐ Could continue to remove edges with highest betweenness

Figure 10.8: All the edges with betweenness 4 or more have been removed

Run Girvan-Newman Iteratively for Community Detection

■ Recall: Divisive hierarchical clustering based on the notion of edge betweenness:

Number of shortest paths passing through the edge

- ☐ Girvan-Newman Algorithm:
 - » Undirected unweighted networks
 - Repeat until no edges are left:
 - Calculate betweenness of edges
 - This time: remove edges with highest betweenness
 - Connected components are communities
 - Gives a hierarchical decomposition of the network.

Girvan-Newman: Example

Girvan-Newman: Example

Recall: Twitter & Facebook

☐ Discovering social circles, circles of trust:

friends under the same advisor

highschool friends

[McAuley, Leskovec: Discovering social circles in ego networks, 2012]

Girvan-Newman: Results

Girvan-Newman: Results

☐ Zachary's Karate club:

Hierarchical decomposition

Mining Social-Network Graphs

Analysis of Large Graphs: Community Detection Cont.

Networks & Communities

■ We often think of networks being organized into modules, cluster, communities:

WE NEED TO RESOLVE 2 QUESTIONS

- 1. How to compute betweenness?
- 2. How to select the number of clusters?

Network Communities

- Communities: sets of tightly connected nodes
- ☐ Define: Modularity Q
 - ➤ A measure of how well a network is partitioned into communities
 - Given a partitioning of the

network into groups
$$s \in S$$
:

$$Q = \sum_{s \in S} [(\# \text{ edges within group } s) - (\text{expected } \# \text{ edges within group } s)]$$

Null Model: Configuration Model

- \square Given real G on n nodes and m edges, construct rewired network G'
 - Same degree distribution but random connections

Consider G' as a multigraph

$$i$$
 and j of degrees k_i and k_j equals to: $k_i \cdot \frac{k_j}{2m} = \frac{k_i k_j}{2m}$

• The expected number of edges in (multigraph) G':

$$- = \frac{1}{2} \sum_{i \in N} \sum_{j \in N} \frac{k_i k_j}{2m} = \frac{1}{2} \cdot \frac{1}{2m} \sum_{i \in N} k_i \left(\sum_{j \in N} k_j \right) =$$

$$- = \frac{1}{4m} 2m \cdot 2m = m$$
Note:

Note: $\sum_{u \in N} k_u = 2m$

Modularity

■ Modularity of partitioning S of graph G:

 $ightharpoonup Q = \sum_{s \in S} [(\# edges within group s) - (expected # edges within group s)]$

■ Modularity values take range [-1,1]

- ➤ It is positive if the number of edges within groups exceeds the expected number
- > 0.3-0.7<Q means significant community structure.

Modularity: Number of clusters

■ Modularity is useful for selecting the number of clusters:

Another approach to organizing social-network graphs

SPECTRAL CLUSTERING

Partitioning Graphs

- Another approach to organizing social networking graphs
- □ Problem: partitioning a graph to minimize the number of edges that connect different components (communities)
- ☐ Goal of minimizing the cut size
- ☐ If you just joined Facebook with only one friend
 - Don't want to partition the graph with you disconnected from rest of the world
 - Want components to be not too unequal in size.

Graph Partitioning

Undirected graph

☐ Bi-partitioning task:

Divide vertices into two disjoint groups

- ➤ How can we define a "good" partition of ?
- > How can we efficiently identify such a partition?

Graph Partitioning

☐ What makes a good partition?

- Divide nodes into two sets so that the cut (set of edges that connect nodes in different sets) is minimized
- Want the two sets to be approximately equal in size
- Maximize the number of within-group connections
- Minimize the number of between-group connections

Example 10.14

- ☐ If we minimize cut: best choice is to put H in one set, other nodes in other set
- ☐ But: we reject partitions where one set is too small
- Better is to use cut with (B,D) and (C,G)
- Smallest cut is not necessarily the best cut

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition
- ☐ Cut: Set of edges with only one vertex in a group:

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

Graph Cut Criterion

- ☐ Criterion: Minimum-cut
 - Minimize weight of connections between groups

 $arg min_{A,B} cut(A,B)$

Degenerate case:

- Only considers external cluster connections
- > Does not consider internal cluster connectivity

Graph Cut Criteria

- ☐ Criterion: Normalized-cut [Shi-Malik, '97]
 - Connectivity between groups relative to the density of each group

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

vol(A): total weight of the edges with at least one endpoint in $A: vol(A) = \sum_{i \in A} k_i$

- Why use this criterion?
 - Produces more balanced partitions
- ☐ How do we efficiently find a good partition?
 - Problem: Computing optimal cut is NP-hard

Example 10.15

- Partition nodes of graph into two disjoint sets S and T
- Normalized Cut for S and T is:

$$\frac{\text{Cut}(S,T)}{\text{Vol}(S)} + \frac{\text{Cut}(S,T)}{\text{Vol}(T)}$$

- ☐ If we choose $S=\{H\}$ and $T=\{A,B,C,D,E,F,G\}$ then Cut(S,T)=1
 - ➤ Vol(S) = 1 (number of edges with at least one end in S)
 - ➤ Vol(T) = 11: all edges have at least one node in T
 - \rightarrow Normalized cut is 1/1 + 1/11 = 1.09
- □ For cut (B,D) and (C,G): $S = \{A,B,C,H\}$, $T = \{D,E,F,G\}$, Cut(S,T) = 2
- \square Vol(S) = 6, Vol(T) = 7, normalized cut: 2/6 + 2/7 = 0.62

Using Matrix Algebra to Find Good Graph Partitions

- ☐ Three matrices that describe aspects of a graph:
 - Adjacency Matrix
 - Degree Matrix
 - Laplacian Matrix: difference between degree and adjacency matrix
- Then get a good idea of how to partition graph from eigenvalues and eigenvectors of its Laplacian matrix.

Finding clusters

Spectral Graph Partitioning

- $\square A$: adjacency matrix of undirected **G**
 - $A_{ij} = 1$ if (i, j) is an edge, else 0
- $\square x$ is a vector in \Re^n with components $(x_1, ..., x_n)$
 - Think of it as a label/value of each node of **G**
- \square What is the meaning of $A \cdot x$?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

$$y_i = \sum_{j=1}^n A_{ij} x_j = \sum_{(i,j) \in E} x_j$$

 \square Entry y_i is a sum of labels x_i of neighbors of i

Eigenvectors and Eigenvalues

- An **eigenvector** of a <u>square matrix</u> **A** is a non-zero <u>vector</u> **v** that, when the matrix <u>multiplies</u> **v**, yields the same as when some scalar multiplies **v**, the scalar multiplier often being denoted by λ
- ☐ That is:

$$Av = \lambda v$$

The number λ is called the **eigenvalue** of **A** corresponding to **v**.

Eigenvalues and Eigenvectors Example

The transformation matrix $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ preserves the direction of vectors parallel to $\mathbf{v} = (1,-1)^T$ (in purple) and $\mathbf{w} = (1,1)^T$ (in blue). The vectors in red are not parallel to either eigenvector, so, their directions are changed by the transformation.

$$Ax = \lambda x$$

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors http://setosa.io/ev/eigenvectors-and-eigenvalues/

What is the meaning of Ax?

- of neighbors of *i*
- Make this a new value at node j

$$A \cdot x = \lambda \cdot x$$

■ Spectral Graph Theory:

- \triangleright Analyze the "spectrum" of matrix representing G
- \triangleright Spectrum: Eigenvectors x_i of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues λ_i :

$$\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$$
$$\lambda_1 \le \lambda_2 \le ... \le \lambda_n$$

Example: d-regular graph

- \square Suppose all nodes in G have degree d and G is connected
- \square What are some eigenvalues/vectors of G?
- $\square A.x = \lambda \cdot x$ What is λ ? What x?
 - \triangleright Let's try: x = (1, 1, ..., 1)
 - ightharpoonup Then: $A \cdot x = (d, d, ..., d) = \lambda \cdot x$. So: $\lambda = d$
 - \triangleright We found eigenpair of $G: x = (1, 1, ..., 1), \lambda = d$

Remember the meaning of y = A.x:

$$y_j = \sum_{i=1}^n A_{ij} x_i = \sum_{(j,i) \in E} x_i$$
 54

Example: Graph on 2 components

☐ What if *G* is not connected?

ightharpoonup G has **2** components, each d-regular

■ What are some eigenvectors?

- $\rightarrow x = \text{Put all } 1 \text{s on } A \text{ and } 0 \text{s on } B \text{ or vice versa}$
 - x' = (1, ..., 1, 0, ..., 0) then $A \cdot x' = (d, ..., d, 0, ..., 0)$
 - x'' = (0, ..., 0, 1, ..., 1) then $A \cdot x'' = (0, ..., 0, d, ..., d)$
 - And so in both cases the corresponding $\lambda = d$

☐ A bit of intuition:

Matrix Representations

\square Adjacency matrix (A):

- $\triangleright n \times n$ matrix
- $\rightarrow A=[a_{ij}], a_{ij}=1$ if edge between node i and j

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

- ☐ Important properties:
 - > Symmetric matrix
 - because it's an undirected graph
 - Eigenvectors are real and orthogonal
 - orthogonal meansdot_product(Eigenvectors_i, Eigenvectors_j) = 0

Matrix Representations

□ Degree matrix (D):

- $> n \times n$ diagonal matrix
- $\triangleright D = [d_{ii}], d_{ii} = \text{degree of node } i$

	1	2	3	4	5	6
1	3	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrix Representations

☐ Laplacian matrix (L):

 $\rightarrow n \times n$ symmetric matrix

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

☐ What is trivial eigenpair?

$$L = D - A$$

x = (1, ..., 1) then $L \cdot x = 0$ and so $\lambda = \lambda_1 = 0$ (smallest eigenvalue)

☐ Important properties of symmetric matrices:

- > Eigenvalues are non-negative real numbers
- > Eigenvectors are real and orthogonal

$$\mathbf{x}^{\mathrm{T}}\mathbf{1} = \sum_{i=1}^{n} x_i = 0$$

Partitioning Graphs Using Eigenvalues and Eigenvectors of Laplacian Matrix

- ☐ Smallest eigenvalue for every Laplacian matrix is 0
- ☐ Its corresponding eigenvector is [1,1,1,...1]
- ☐ To find **second-smallest eigenvalue** for symmetric matrix (such as Lapalcian): (READ THE PAPER! [Shi-Malik, '97]
 - > Second smallest eigenvalue is the minimum of x^TLx where $x = [x_1, x_2, ..., x_n]$ is a column vector (Rayleigh quotient)
 - \rightarrow Sum of $x_i^2 = 1$
 - > x is orthogonal to the eigenvector associated with smallest eigenvalue
- ☐ Value of x that achieves this minimum is the **second eigenvector**
- ☐ This second smallest eigenvector x will have some positive and some negative components (why?)
- □ Partition the graph by taking one set to be the nodes I whose corresponding vector component xi is positive.

Example 10.19

$$\begin{bmatrix} 3 & -1 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & 0 & 0 & -1 \\ -1 & 0 & 0 & 3 & -1 & -1 \\ 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

☐ Graph and its Laplacian matrix

Example (cont.)

Eigenvalue	0	1	3	3	4	5	
Eigenvector	1	1	-5	-1	-1	-1	
	1	2	4	-2	1	0	
	1	1	1	3	-1	1	
	1	-1	-5	-1	1	1	
	1	-2	4	-2	-1	0	
	1	-1	1	3	1	-1	

- Use standard math package to find all eigenvalues and eigenvectors
 - (Have not scaled eigenvectors to length 1, but could)
- Second eigenvector has three positive and three negative components
- □ Suggest obvious partitioning of {1,2,3} and {4,5,6}

λ_2 as optimization problem

 \square Fact: For symmetric matrix M:

$$\lambda_2 = \min_{x} \frac{x^T M x}{x^T x}$$

 \square What is the meaning of min x^TLx on G?

$$\geq x^{T}L x = \sum_{i,j=1}^{n} L_{ij} x_{i} x_{j} = \sum_{i,j=1}^{n} (D_{ij} - A_{ij}) x_{i} x_{j}$$

$$= \sum_{i} D_{ii} x_i^2 - \sum_{(i,j) \in E} 2x_i x_j$$

$$= \sum_{(i,j)\in E} (x_i^2 + x_j^2 - 2x_i x_j) = \sum_{(i,j)\in E} (x_i - x_j)^2$$

Node i has degree d_i . So, value x_i^2 needs to be summed up d_i times. But each edge (i,j) has two endpoints so we need $x_i^2 + x_i^2$

λ_2 as optimization problem (cont'd)

\square What else do we know about x?

- $\triangleright x$ is unit vector: $\sum_i x_i^2 = 1$
- $\succ x$ is orthogonal to $\mathbf{1}^{st}$ eigenvector $(\mathbf{1}, ..., \mathbf{1})$ thus: $\sum_{i} x_{i} \cdot \mathbf{1} = \sum_{i} x_{i} = \mathbf{0}$

☐ Remember:

$$\lambda_{2} = \min_{\substack{\text{All labelings} \\ \text{of nodes } i \text{ so} \\ \text{that } \Sigma x_{i} = 0}} \frac{\sum_{(i,j) \in E} (x_{i} - x_{j})^{2}}{\sum_{i} x_{i}^{2} = 1}$$

We want to assign values x_i to nodes i such that few edges cross 0. (we want x_i and x_j to subtract each other)

Recall: Example

Eigenvalue	0	1	3	3	4	5
Eigenvector	1	1	-5	-1	-1	-1
	1	2	4	-2	1	0
	1	1	1	3	-1	1
	1	-1	-5	-1	1	1
	1	-2	4	-2	-1	0
	1	-1	1	3	1	-1

- Use standard math package to find all eigenvalues and eigenvectors
 - (Have not scaled eigenvectors to length 1, but could)
- Second eigenvector has three positive and three negative components
- □ Suggest obvious partitioning of {1,2,3} and {4,5,6}

So far...

- ☐ How to define a "good" partition of a graph?
 - Minimize a given graph cut criterion
 - ☐ How to efficiently identify such a partition?
 - Approximate using information provided by the eigenvalues and eigenvectors of a graph
 - **☐** Spectral Clustering
 - ➤ Naïve approache:
 - Split at **0**

Spectral Clustering Algorithms

☐ Three basic stages:

- **▶ 1) Pre-processing**
 - Construct a matrix representation of the graph
- **2)** Decomposition
 - Compute eigenvalues and eigenvectors of the matrix
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
- **> 3) Grouping**
 - Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

□ 1) Pre-processing:

Build Laplacian matrix L of the graph

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

2) Decomposition:

ightharpoonup Find eigenvalues λ and eigenvectors x of the matrix L

3.0

0.0

5.0

0.4	0.3	-0.5	-0.2	-0.4	-0.5
0.4	0.6	0.4	-0.4	0.4	0.0
0.4	0.3	0.1	0.6	-0.4	0.5
0.4	-0.3	0.1	0.6	0.4	-0.5
0.4	-0.3	-0.5	-0.2	0.4	0.5
0.4	0.6	0.4	-0.4	-0.4	0.0

Map vertices to
corresponding
components of λ_2

1	0.3
2	0.6
3	0.3
4	-0.3
5	-0.3
6	-0.6

How do we now find the clusters?

Spectral Partitioning

□ 3) Grouping:

- Sort components of reduced 1-dimensional vector
- Identify clusters by splitting the sorted vector in two

■ How to choose a splitting point?

- ➤ Naïve approaches:
 - Split at **0** or median value
- More expensive approaches:
 - Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)

Split at 0:

Cluster A: Positive points

Cluster B: Negative points

1	0.3
2	0.6
3	0.3

4	-0.3
5	-0.3
6	-0.6

Example: Spectral Partitioning

Example: Spectral Partitioning

Example: Spectral partitioning

k-Way Spectral Clustering

- \square How do we partition a graph into k clusters?
- ☐ Two basic approaches:
 - > Recursive bi-partitioning [Hagen et al., '92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable
 - Cluster multiple eigenvectors [Shi-Malik, '00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers
 - Multiple eigenvectors prevent instability due to information loss
 - A preferable approach...

DIRECT DISCOVERY OF COMMUNITIES: TRAWLING

With slide contributions from P. Desikan; http://www-users.cs.umn.edu/~desikan/

Web community

☐ Groups of individuals who share common interests, together with the web pages most popular among them

■ Web page collections with a shared topic.

Types of Communities

- ☐ Explicitly- defined
 - ➤ Communities that manifest themselves as newsgroups or as resource collections on directories such as Yahoo!
- ☐ Implicitly- defined
 - > Communities that result from nature of contentcreation of the web.

Terms and Definitions (1)

□ Directed Bipartite Graph: A graph whose nodes set can be partitioned into two sets F and C, and every directed edge in the graph is from a node u in F to a node v in C

Terms and Definitions (2)

- ☐ Completed Bipartite Graph: A bipartite graph that contains all possible edges between a vertex of F and a vertex of C
- ☐ Core: A complete bipartite sub-graph with at least i nodes from F and at least j nodes from C
 - In the web world, the *i* pages the contains the links are referred to as 'fans' and the *j* pages that are referenced as 'centers'

Trawling the Web for Emerging Web Communities

- ☐ *Trawling*: Systematic Enumeration of emerging communities from web crawl
- ☐ Scan through a web crawl and identify all instances of graph structures that are indicative signatures of communities.

Trawling

- ☐ Searching for small communities in the Web graph
- What is the signature of a community / discussion in a Web graph?

Use this to define "topics": What the same people on the left talk about on the right

Dense 2-layer

Intuition: Many people all talking about the same things ⁷⁹

Searching for Small Communities

☐ A more well-defined problem:

Enumerate complete bipartite subgraphs $K_{s,t}$

Where $K_{s,t}$: s nodes on the "left" where each links to the same t other nodes on the "right"

$$|X| = s = 3$$

 $|Y| = t = 4$

Frequent Itemset Enumeration

- Market basket analysis. Setting:
 - \triangleright Market: Universe U of n items
 - **Baskets:** m subsets of U: S_1 , S_2 , ..., S_m ⊆ U (S_i is a set of items one person bought)
 - > **Support:** Frequency threshold *f*
- ☐ Goal:
 - Find all subsets T s.t. $T \in S_i$ of at least f sets S_i (items in T were bought together at least f times)
- What's the connection between the itemsets and complete bipartite graphs?

From Itemsets to Bipartite K_{s,t}

Frequent itemsets = complete bipartite graphs!

☐ How?

- ightharpoonup View each node i as a set S_i of nodes i points to
- $\succ K_{s,t}$ = a set Y of size t (all items) that occurs in s (a basket) sets S_i
- Looking for $K_{s,t} \rightarrow$ set of frequency threshold to s and look at layer t all frequent sets of size t

s ... minimum support (|X|=s)t ... itemset size (|Y|=t) 82

From Itemsets to Bipartite K_{s,t}

View each node i as a set S_i of nodes i points to

Find frequent itemsets:

s ... minimum support

t ... itemset size

Say we find a **frequent itemset** *Y*={*a*,*b*,*c*} of supp *s*So, there are *s* nodes that
link to all of {a,b,c}:

We found $K_{s,t}$!

 $K_{s,t}$ = a set Y of size t that occurs in s sets S_i

Example

□ Support threshold s=2

≻ {b,d}: support 3

≻ {**e**,**f**}: support 2

☐ And we just found 2 bipartite subgraphs:

Itemsets:

$$a = \{b,c,d\}$$

$$b = \{d\}$$

$$c = \{b,d,e,f\}$$

$$d = \{e,f\}$$

$$e = \{b,d\}$$

$$f = \{\}$$

