بسم الله الرّحمن الرّحيم

دانشگاه صنعتی اصفهان ـ دانشکدهٔ مهندسی برق و کامپیوتر (نیمسال تحصیلی ۴۰۱۲)

كامپايلر

حسين فلسفين

مثالهای دیگری از تجزیهٔ پیشبین بهصورت بازگشتی (کتاب اپل)

 $S \rightarrow E$ \$

 $T \rightarrow T * F$

 $F \rightarrow id$

 $E \rightarrow E + T$

 $T \rightarrow T / F$

 $F \rightarrow \text{num}$

 $E \rightarrow E - T$

 $T\to F$

 $F \rightarrow (E)$

 $E \rightarrow T$

GRAMMAR 3.10.

 $S \rightarrow \text{if } E \text{ then } S \text{ else } S$

 $S \to \text{begin } S L$

 $S \rightarrow \text{print } E$

 $L \rightarrow \text{end}$

 $L \rightarrow : SL$

 $E \rightarrow \text{num} = \text{num}$

GRAMMAR 3.11.

Grammar 3.11

```
final int IF=1, THEN=2, ELSE=3, BEGIN=4, END=5, PRINT=6,
         SEMI=7, NUM=8, EO=9;
int tok = getToken();
void advance() {tok=getToken();}
void eat(int t) {if (tok==t) advance(); else error();}
void S() {switch(tok) {
        case IF: eat(IF); E(); eat(THEN); S();
                   eat(ELSE); S(); break;
        case BEGIN: eat(BEGIN); S(); L(); break;
        case PRINT: eat(PRINT); E(); break;
       default: error();
void L() {switch(tok) {
        case END: eat(END); break;
       case SEMI: eat(SEMI); S(); L(); break;
       default: error();
void E() { eat(NUM); eat(EQ); eat(NUM); }
```

Grammar 3.10

```
void S() { E(); eat(EOF); }
void E() {switch (tok) {
          case ?: E(); eat(PLUS); T(); break;
          case ?: E(); eat(MINUS); T(); break;
          case ?: T(); break;
          default: error();
void T() {switch (tok) {
          case ?: T(); eat(TIMES); F(); break;
          case ?: T(); eat(DIV); F(); break;
          case ?: F(); break;
          default: error():
          تابع نظیر متغیر F را خود شما باید بنویسید.
```

There is a conflict here (i.e., in the recursive descent parser for Grammar 3.10): The E function has no way to know which clause to use. Consider the strings (1*2-3)+4 and (1*2-3). In the former case, the initial call to E should use the $E \to E + T$ production, but the latter case should use $E \to T$.

FIRST and FOLLOW

From the FIRST and FOLLOW sets for a grammar, we shall construct "predictive parsing tables," which make explicit the choice of production during top-down parsing.

The construction of both top-down and bottom-up parsers is aided by two functions, FIRST and FOLLOW, associated with a grammar G. During top-down parsing, FIRST and FOLLOW allow us to choose which production to apply, based on the next input symbol.

$FIRST(\alpha)$

Define $FIRST(\alpha)$, where α is any string of grammar symbols, to be the set of terminals that begin strings derived from α . If $\alpha \Rightarrow^* \varepsilon$, then ε is also in $FIRST(\alpha)$.

For a preview of how FIRST can be used during predictive parsing, consider two A-productions $A \to \alpha | \beta$, where $\mathrm{FIRST}(\alpha)$ and $\mathrm{FIRST}(\beta)$ are disjoint sets. We can then choose between these A-productions by looking at the next input symbol a, since a can be in at most one of $\mathrm{FIRST}(\alpha)$ and $\mathrm{FIRST}(\beta)$, not both. For instance, if a is in $\mathrm{FIRST}(\beta)$ choose the production $A \to \beta$.

نكتهٔ مهم

If two different productions $X \to \gamma_1$ and $X \to \gamma_2$ have the same left-hand-side symbol (X) and their right-hand sides have overlapping FIRST sets, then the grammar cannot be parsed using predictive parsing. If some terminal symbol I is in $\mathrm{FIRST}(\gamma_1)$ and also in $\mathrm{FIRST}(\gamma_2)$, then the X function in a recursive-descent parser will not know what to do if the input token is I.

FOLLOW(A)

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can appear immediately to the right of A in some sentential form; that is, the set of terminals a such that there exists a derivation of the form $S \to \alpha Aa\beta$, for some α and β . Note that there may have been symbols between A and a, at some time during the derivation, but if so, they derived ε and disappeared. In addition, if A can be the rightmost symbol in some sentential form, then \$ is in FOLLOW(A); recall that \$is a special "endmarker" symbol that is assumed not to be a symbol of any grammar.

Example

Figure 4.15: Terminal c is in FIRST(A) and a is in FOLLOW(A)

محاسبهٔ FIRST برای سمبلهای گرامر

To compute $\mathrm{FIRST}(X)$ for all grammar symbols X, apply the following rules until no more terminals or ε can be added to any FIRST set.

- 1. If X is a terminal, then $FIRST(X) = \{X\}.$
- 2. If X is a nonterminal and $X \to Y_1Y_2 \cdots Y_k$ is a production for some $k \ge 1$, then place a in FIRST(X) if for some i, a is in $\text{FIRST}(Y_i)$, and ϵ is in all of $\text{FIRST}(Y_1), \ldots, \text{FIRST}(Y_{i-1})$; that is, $Y_1 \cdots Y_{i-1} \stackrel{*}{\Rightarrow} \epsilon$. If ϵ is in $\text{FIRST}(Y_j)$ for all $j = 1, 2, \ldots, k$, then add ϵ to FIRST(X). For example, everything in $\text{FIRST}(Y_1)$ is surely in FIRST(X). If Y_1 does not derive ϵ , then we add nothing more to FIRST(X), but if $Y_1 \stackrel{*}{\Rightarrow} \epsilon$, then we add $\text{FIRST}(Y_2)$, and so on.
- 3. If $X \to \epsilon$ is a production, then add ϵ to FIRST(X).

 $(V \cup \Sigma)^*$ محاسبهٔ FIRST برای یک رشتهٔ دلخواه در

Now, we can compute FIRST for any string $X_1X_2\cdots X_n$ as follows. Add to FIRST $(X_1X_2\cdots X_n)$ all non- ε symbols of FIRST (X_1) . Also add the non- ε symbols of FIRST (X_2) , if ε is in FIRST (X_1) ; the non- ε symbols of FIRST (X_3) , if ε is in FIRST (X_1) and FIRST (X_2) ; and so on. Finally, add ε to FIRST $(X_1X_2\cdots X_n)$ if, for all i, ε is in FIRST (X_i) .

محاسبهٔ FOLLOW برای یک متغیر (غیرترمینال)

To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added to any FOLLOW set.

- 1. Place \$ in FOLLOW(S), where S is the start symbol, and \$ is the input right endmarker.
- 2. If there is a production $A \to \alpha B\beta$, then everything in FIRST(β) except ϵ is in FOLLOW(B).
- 3. If there is a production $A \to \alpha B$, or a production $A \to \alpha B\beta$, where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

Example:

- 1. FIRST(F) = FIRST(T) = FIRST(T) = {(, id}. To see why, note that the two productions for T have bodies that start with these two terminal symbols, id and the left parenthesis. T has only one production, and its body starts with T. Since T does not derive T0, FIRST(T1) must be the same as FIRST(T2). The same argument covers FIRST(T2).
- 2. FIRST $(E') = \{+, \epsilon\}$. The reason is that one of the two productions for E' has a body that begins with terminal +, and the other's body is ϵ . Whenever a nonterminal derives ϵ , we place ϵ in FIRST for that nonterminal.
- 3. FIRST $(T') = \{*, \epsilon\}$. The reasoning is analogous to that for FIRST(E').

- 4. FOLLOW(E) = FOLLOW(E') = {), \$}. Since E is the start symbol, FOLLOW(E) must contain \$. The production body (E) explains why the right parenthesis is in FOLLOW(E). For E', note that this nonterminal appears only at the ends of bodies of E-productions. Thus, FOLLOW(E') must be the same as FOLLOW(E).
- 5. FOLLOW(T) = FOLLOW(T') = {+,), \$}. Notice that T appears in bodies only followed by E'. Thus, everything except ϵ that is in FIRST(E') must be in FOLLOW(T); that explains the symbol +. However, since FIRST(E') contains ϵ (i.e., $E' \stackrel{*}{\Rightarrow} \epsilon$), and E' is the entire string following T in the bodies of the E-productions, everything in FOLLOW(E) must also be in FOLLOW(T). That explains the symbols \$ and the right parenthesis. As for T', since it appears only at the ends of the T-productions, it must be that FOLLOW(T') = FOLLOW(T).
- 6. FOLLOW(F) = {+,*,),\$}. The reasoning is analogous to that for T in point (5).

Iterative computation of FIRST, FOLLOW, and nullable

Algorithm to compute FIRST, FOLLOW, and nullable. Initialize FIRST and FOLLOW to all empty sets, and nullable to all false. **for** each terminal symbol Z $FIRST[Z] \leftarrow \{Z\}$ repeat **for** each production $X \to Y_1 Y_2 \cdots Y_k$ if $Y_1 \dots Y_k$ are all nullable (or if k=0) **then** nullable $[X] \leftarrow \text{true}$ **for** each i from 1 to k, each j from i + 1 to k**if** $Y_1 \cdots Y_{i-1}$ are all nullable (or if i = 1) then $FIRST[X] \leftarrow FIRST[X] \cup FIRST[Y_i]$ **if** $Y_{i+1} \cdots Y_k$ are all nullable (or if i = k) then $FOLLOW[Y_i] \leftarrow FOLLOW[Y_i] \cup FOLLOW[X]$ if $Y_{i+1} \cdots Y_{i-1}$ are all nullable (or if i+1=j) then $FOLLOW[Y_i] \leftarrow FOLLOW[Y_i] \cup FIRST[Y_i]$ until FIRST, FOLLOW, and nullable did not change in this iteration.