Import modules:

```
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

- <u>pandas</u> used to perform data manipulation and analysis.
- <u>NumPy</u> used to perform a wide variety of mathematical operations on arrays.
- <u>matplotlib</u> used for data visualization and graphical plotting.
- <u>seaborn</u> built on top of matplotlib with similar functionalities.

Dataset Information

This dataset comprises of sales transactions captured at a retail store. It's a classic dataset to explore and expand your feature engineering skills and day to day understanding from multiple shopping experiences. This is a regression problem. The dataset has 550,069 rows and 12 columns.

2.characteristics of this dataset. Loading the dataset:

	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2
0	1000001	P00069042	F	0- 17	10	А	2	0	3	NaN
1	1000001	P00248942	F	0- 17	10	Α	2	0	1	6.0
2	1000001	P00087842	F	0- 17	10	А	2	0	12	NaN
3	1000001	P00085442	F	0- 17	10	А	2	0	12	14.0
4	1000002	P00285442	M	55+	16	С	4+	0	8	NaN
			***		***					
50063	1006033	P00372445	М	51- 55	13	В	1	1	20	NaN
50064	1006035	P00375436	F	26- 35	1	С	3	0	20	NaN
50065	1006036	P00375436	F	26- 35	15	В	4+	1	20	NaN
50066	1006038	P00375436	F	55+	1	С	2	0	20	NaN
50067	1006039	P00371644	F	46- 50	0	В	4+	1	20	NaN

Let us see the statistical information of the attributes.

bf.describe()											
	User_ID	Occupation	Marital_Status	Product_Category_1	Product_Category_2	Product_Category_3	Purchase				
count	5.500680e+05	550068.000000	550068.000000	550068.000000	376430.000000	166821.000000	550068.000000				
mean	1.003029e+06	8.076707	0.409653	5.404270	9.842329	12.668243	9263.968713				
std	1.727592e+03	6.522660	0.491770	3.936211	5.086590	4.125338	5023.065394				
min	1.000001e+06	0.000000	0.000000	1.000000	2.000000	3.000000	12.000000				
25%	1.001516e+06	2.000000	0.000000	1.000000	5.000000	9.000000	5823.000000				
50%	1.003077e+06	7.000000	0.000000	5.000000	9.000000	14.000000	8047.000000				
75%	1.004478e+06	14.000000	1.000000	8.000000	15.000000	16.000000	12054.000000				
max	1.006040e+06	20.000000	1.000000	20.000000	18.000000	18.000000	23961.000000				

Let us see the data type information of the attributes.

```
bf.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 550068 entries, 0 to 550067
Data columns (total 12 columns):
    Column
                                Non-Null Count
                                                 Dtype
---
                                 ------
    User ID
                                 550068 non-null
                                                 int64
 0
    Product ID
                                550068 non-null object
    Gender
                                550068 non-null object
 2
                                550068 non-null object
 3
    Age
                                550068 non-null int64
 4
    Occupation
 5
    City Category
                                550068 non-null object
    Stay_In_Current_City_Years 550068 non-null object
 6
                                550068 non-null int64
 7
    Marital_Status
    Product Category 1
                                550068 non-null int64
    Product Category 2
                                376430 non-null float64
 10 Product Category 3
                                166821 non-null float64
    Purchase
                                550068 non-null int64
dtypes: float64(2), int64(5), object(5)
memory usage: 50.4+ MB
```

- We have categorical as well as numerical attributes which we will process separately.
- Product_Category_1 data type is different from Product_Category_2 and Product_Category_3, that won't affect the process or the result.

Prepare data for EDA (Exploratory Data Analysis)

1) Change some categorical column into numerical and binary it will help us to plot the data easily.

2)Why?

Ans: <u>Improved accuracy</u>: With large amounts of data, machine learning algorithms can learn more complex relationships between inputs and outputs, leading to improved accuracy in predictions and classifications.

<u>Automation:</u> Machine learning models can automate decision-making processes and can perform repetitive tasks more efficiently and accurately than humans.

Now convert gender in numerical data:

```
bf["Gender"]=bf["Gender"].map({"F":0,"M":1})
bf["Gender"].unique()
```

Now convert age column into normal interval and distribution:

Now city category change into numerical data:

```
df.groupby('City_Category').size()

City_Category
A    147720
B   231173
C   171175
dtype: int64

df["City_Category_binary"]=df["City_Category"].map({"A":0,"B":1,"C":2})
```

No, we remove all the category inside the string from Stay In Current City Years Column:

Interpretation about your findings.

1)Now which gender having more purchasing power according to their age:

- This is the uniform distribution.
- According to this analysis Men have more purchasing power than women.
- May be the situation is married women don't pay their own money. Her's expenses fulfilled by their husbands.

2)No of married and unmarried person according to gender?

Married = 225337Unmarried = 324731

df.groupby('Marital_Status').size()

Marital_Status
0 324731
1 225337
dtype: int64

sns.countplot(x = "Marital_Status", hue = "Gender", data = df)#No of Unmarried are people are 324731

<Axes: xlabel='Marital_Status', ylabel='count'>

- With the help of this Analysis sellers can make marketing strategies according to gender.
- In this data no of married men is higher than women.

3) Which age category has highest no of buyers?

Age:

- # "0-17":1,
- "18-25":2,
- "26-35":3,
- "36-45":4,
- "46-50":5,
- "51-55":6*,*
- "55+":7

According to this analysis no of young people who lie between 26-35 year age in large no.

sns.countplot(x = "Age",data = bf)#26-35 age category people has highest no buyers
<Axes: xlabel='Age', ylabel='count'>

4 Which Age category has done highest no purchases?

sns.barplot(x = "Age",y ="Purchase",data = df,palette = "rainbow")
<Axes: xlabel='Age', ylabel='Purchase'>

- This the uniform distribution.
- According to this data 51 55 aged people has done highest no of purchases.

5)Occupation and purchase analysis.

This is a uniform distribution.

Occupation

9 10 11 12 13 14 15 16 17 18 19 20

6) City and Purchases analysis.

2 3 4 5 6 7 8

City C people purchase more than A and B

7) Marital Status and Purchases Analysis.

- This is uniform distribution.
- According to overall analysis slightly married people has Purchased more than women.

8) Product category 1 and Purchases Analysis

- Category 19,20,13,12,4 product has negligible sale.
- People mostly purchases 9,10, 7,6 category.

Product category 2 and Purchases Analysis

Category 10 has highest sale.

Product category 3 and Purchases Analysis

Category 10 has highest sale

Outliers: In purchase column

Purchase column has normal distribution.


```
IQR = df["Purchase"].quantile(0.75)-df["Purchase"].quantile(0.25)
IQR
```

6231.0

```
upperlimit = IQR + 1.5*std
upperlimit
```

13765.59809073094

```
lowerlimit = IQR - 1.5*std
lowerlimit
```

-1303.5980907309404

df.loc[df["Purchase"]>13765.59809073094,"Purchase"] = 13765.59809073094

```
sns.boxplot(x = "Purchase",data = df)
```

<Axes: xlabel='Purchase'>

Handling null values

1) Mean: we use mean to fill sales and numerical data

Advantages:

- It is a quick and computationally efficient way to handle missing values, especially in large datasets.
- Mean imputation is less sensitive to outliers compared to other imputation methods. Extreme values have less impact on the mean, making it a robust choice when dealing with data that may contain outliers.
- Mean imputation is particularly suitable for numeric data types. It is a natural choice when working with continuous variables, as it ensures that the imputed values are within the range of the observed data.

2) median: we use mean to fill sales and numerical data.

- If your data is not normally distributed, the median can be a more representative measure of central tendency than the mean. This is particularly relevant when dealing with skewed data.
- The median is a suitable choice for imputing missing values in time series data, especially when there is a need to preserve the temporal characteristics of the series.
- In the presence of extreme values, the median is less affected, providing a more stable estimate and reducing the impact of outliers on imputed values.

3) Mode: Replacing with high frequency value(categorical).

• The mode is particularly useful when dealing with categorical data, where using the mean or median may not be meaningful. For example, filling missing values in a column representing car colours with the mode colour makes more sense than using the mean or median.

<u>4) sampling:</u> we fill small no of null values with sampling and Random values from the dataset.

• Sampling helps in preserving relationships between variables. If the missing values are not completely random, using sampling can help maintain the correlations and dependencies between different features.

5) Frontward filling and Backward filling: fill null with preceding values and front value.

Frontward Fill(ffill):

- Ideal for time series data where missing values can be filled with the last known value.
- Suitable for datasets with a logical sequence, where the next value is expected to be like the previous one.

Backward Fill(bfill):

- Can be beneficial for scenarios where future values are influenced by past data, making backward fill suitable for forecasting or predictive modelling.
- Appropriate when missing values are assumed to be closer to the subsequent values rather than the previous ones.

6) Capturing null values in a new feature (numerical and categorical): we fill 0 and -1 when null values are need for particular column

7) Replacing with value which is at the end/beg of the distribution (Numerical).