Sorting: complexity & algorithm design strategies

Petr Kurapov

MIPT

Fall 2024

Agenda

- Incremental strategy: Insertion sort
- Recursive strategy: merge-sort, quicksort
- Heap sort
- Quick select

Why sorting?

- Many problems become *much* easier when the input is sorted, ie:
 - Searching, min/max, k-th statistics
- Applications:
 - Uniqueness and duplicate removal
 - Prioritization & scheduling
 - Set operations (intersection/union)
 - Efficient searching
 - •

- Start with one element in target sorted array
- Pick next element and insert it into its proper sorted order
- Repeat for others left

```
def insertionSort(A):
for j in range(1, len(A)):
    k = A[j]
    i = j - 1
    while i >= 0 and A[i] > k:
    A[i+1] = A[i]
    i = i - 1
    A[i+1] = k
```

```
def insertionSort(A):
for j in range(1, len(A)):
    k = A[j]
    i = j - 1
    while i >= 0 and A[i] > k:
    A[i+1] = A[i]
    i = i - 1
    A[i+1] = k
```

```
def insertionSort(A):
for j in range(1, len(A)):
    k = A[j]
    i = j - 1
    while i >= 0 and A[i] > k:
          A[i+1] = A[i]
          i = i - 1
          A[i+1] = k
```

Total:

$$T(n) = C + C_1 n + C_2 \sum_{j=1}^{n} t_j$$

Best case: $t_i = 1$

Worst case: $t_i = j$

```
def insertionSort(A):
for j in range(1, len(A)):
    k = A[j]
    i = j - 1
    while i >= 0 and A[i] > k:
          A[i+1] = A[i]
          i = i - 1
          A[i+1] = k
```

Total:

$$T(n) = C + C_1 n + C_2 \sum t_j$$

Best case: $t_j = 1 \rightarrow \Theta(n)$

Worst case: $t_j = j \rightarrow \Theta(n^2)$

- Divide
 - N-element base is split into two n/2 subsequences
- Conquer
 - Sort these two subsequences recursively
- Combine
 - Merge sorted sequences to get the result

Source: https://en.wikipedia.org/wiki/Merge sort#/media/File:Merge sort algorithm diagram.svg

- Divide
 - ?
- Conquer
 - ?
- Combine
 - ?

Source: https://en.wikipedia.org/wiki/Merge_sort#/media/File:Merge_sort_algorithm_diagram.svg

- Divide
 - $\Theta(1)$
- Conquer
 - 2T(n/2)
- Combine
 - $\Theta(n)$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

•
$$T(1) = \Theta(1)$$

Source: https://en.wikipedia.org/wiki/Merge_sort#/media/File:Merge_sort_algorithm_diagram.svg

•
$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

•
$$T(1) = \Theta(1)$$

- $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$
- $T(1) = \Theta(1)$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

•
$$T(1) = \Theta(1)$$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$$

•
$$T(1) = \Theta(1)$$

- Choose pivot item and do partition split into two parts greater than pivot and less than pivot
- Recursively sort the two parts
- Combining not required as sorting is done in-place

```
def qsort(A, p, r):
if p < r:
    q = partition(A, p, r)
    qsort(A, p, q-1)
    qsort(A, p, q+1)</pre>
```


Source: https://www.techiedelight.com/quicksort/

```
def partition(A, p, r):
x = A[r]
i = p - 1
for j in range(p, r):
    if A[j] <= x:
          i = i + 1
          swap(A[i], A[j])
swap(A[i+1], A[r])</pre>
```


Source: https://www.techiedelight.com/quicksort/

Worst case

- Partition splits into n-1 and 0 elements, works in $\Theta(n)$
- $T(n) = T(n-1) + T(0) + \Theta(n)$
- Arithmetic progression, so $\Theta(n^2)$ in total

Best case

- Partition splits into n/2 parts
- $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$
- $\Theta(n \log n)$

Worst case

- Partition splits into n-1 and 0 elements, works in $\Theta(n)$
- $T(n) = T(n-1) + T(0) + \Theta(n)$
- Arithmetic progression, so $\Theta(n^2)$ in total

Notice for $T(n) = T\left(\frac{9n}{10}\right) + T\left(\frac{n}{10}\right) + cn$ recursion tree: $\log_{9/10} n$

Best case

- Partition splits into n/2 parts
- $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$
- $\Theta(n \log n)$

- Complexity is highly susceptible to the input and can be manipulated
- i.e. DoS attack on a service

- Best case: $\Theta(n \log n)$
- Worst case: $\Theta(n^2)$

Solution: change pivot & partition choosing technique: Hoare's, rand(), median-of-three

Heap

• Max-Heap:

- Completeness
- Heap property

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

Heap

• Max-Heap:

- Get parent:
- Get left:
- Get right:

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

Heap

• Max-Heap:

Get parent: floor(i/2)

• Get left: 2i

• Get right: 2i+1

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

• Max-Heap:

New node

1	2	3	4	5	6	7	8	9	10
16	14	10	8	7	9	3	2	4	1

• Max-Heap:

• Push back

1	2	3	4	5	6	7	8	9	10	11
16	14	10	8	7	9	3	2	4	1	17

- Push back
- Bubble it up, comparing to parent

- Push back
- Bubble it up, comparing to parent
- Until in place
- Complexity?

- Push back
- Bubble it up, comparing to parent
- Until in place
- Complexity: $\Theta(\log n)$

• Max-Heap:

• Let's pop largest (min) element

1	2	3	4	5	6	7	8	9	10	11
17	16	10	8	14	9	3	2	4	1	7

• Max-Heap:

- Let's pop largest (min) element
- Swap last with root

1	2	3	4	5	6	7	8	9	10	11
7	16	10	8	14	9	3	2	4	1	17

- Let's pop largest (min) element
- Swap last with root
- Push down swapping with largest child

1	2	3	4	5	6	7	8	9	10	11
7	16	10	8	14	9	3	2	4	1	17

- Let's pop largest (min) element
- Swap last with root
- Push down swapping with largest child

1	2	3	4	5	6	7	8	9	10	11
16	7	10	8	14	9	3	2	4	1	17

- Let's pop largest (min) element
- Swap last with root
- Push down swapping with largest child
- Complexity?

1	2	3	4	5	6	7	8	9	10	11
16	14	10	8	7	9	3	2	4	1	17

- Let's pop largest (min) element
- Swap last with root
- Push down swapping with largest child
- Complexity: $\Theta(\log n)$

1	2	3	4	5	6	7	8	9	10	11
16	14	10	8	7	9	3	2	4	1	17

Heapsort

- Building a heap + popping elements yields sorted sequence
- Complexity?

```
def heapsort(A):
heapsize = len(A)
buildMaxHeap(A)
for i in reversed(range(1, len(A))):
    swap(A[0], A[i])
    heapsize = heapsize - 1
    maxHeapify(A, 1)
```

Heapsort

- Building a heap + popping elements yields sorted sequence
- Complexity: $\Theta(n \log n)$

```
def heapsort(A):
heapsize = len(A)
buildMaxHeap(A)
for i in reversed(range(1, len(A))):
    swap(A[0], A[i])
    heapsize = heapsize - 1
    maxHeapify(A, 1)
```

Lower bound for comparison-base sorting

- Decision tree model for comparison-based sorting of 3 elements
- $\Omega(n \log n)$

K-th statistic

 K-th smallest (greatest) element in an unordered collection

Quickselect

- K-th smallest (greatest) element in an unordered collection
- Same idea as in quicksort divide the collection in two with pivot element

Quickselect

- K-th smallest (greatest) element in an unordered collection
- Same idea as in quicksort divide the collection in two with pivot element
- Complexity?

```
def qselect(A, l, r, k):
if 1 == r:
    return A[1]
pivot = choosePivot(l, r)
pivot = partition(A, l, r, pivot)
if k == pivot:
    return A[k]
if k < pivot:</pre>
    select(A, l, pivot-1, k)
else:
    select(A, pivot+1, r, k)
```

Quickselect

- K-th smallest (greatest) element in an unordered collection
- Same idea as in quicksort divide the collection in two with pivot element
- Complexity:
 - Best case: O(n)
 - Worst case: $O(n^2)$
 - Average case: ?

```
def qselect(A, l, r, k):
if 1 == r:
    return A[1]
pivot = choosePivot(l, r)
pivot = partition(A, l, r, pivot)
if k == pivot:
    return A[k]
if k < pivot:</pre>
    select(A, l, pivot-1, k)
else:
    select(A, pivot+1, r, k)
```

Quickselect: average case analysis

Complexity:

- Best case: O(n)
- Worst case: $O(n^2)$
- Average case: ?

```
def qselect(A, l, r, k):
if 1 == r:
    return A[1]
pivot = choosePivot(l, r)
pivot = partition(A, l, r, pivot)
if k == pivot:
    return A[k]
if k < pivot:</pre>
    select(A, l, pivot-1, k)
else:
    select(A, pivot+1, r, k)
```

Floyd-Rivest algorithm

- K-th smallest (greatest) element in an unordered collection
- s(n) sample size
- g(n) rank gap
- The algorithm picks a random sample S from X and two pivots $u, v: u \le x_k^* \le v$ with high prob.
- Partition X into less than u, between u,v and greater than v
- Either detect $x_k^* = v$ or u or determine a subset of X and do selection recursively

- If n = 1 return x_1 . Choose sample size s and gap g > 0
- Pick random sample $S = \{y_1 \dots y_s\}$
- Pivots: $i_u = \max(\left\lceil \frac{ks}{n} g \right\rceil, 1) \& i_v = \min(\left\lceil \frac{ks}{n} + g \right\rceil, s)$
- Partitions: $L = \{x < u\}, M = \{u < x < v\}, R = \{v < x\}$
- If k = |L| + 1 return u, if k = n |R| return v
- If $k \le |L|$ set X = L etc.
- Recursion

Floyd-Rivest algorithm

- On average at most $n + \min\{k, n k\} + o(n)$ comparisons
- Pivot selections takes $c_s + c_{s-i_u}$ steps
- Partition takes at most 2(n-s)

- If n = 1 return x_1 . Choose sample size s and gap g > 0
- Pick random sample $S = \{y_1 \dots y_s\}$
- Pivots: $i_u = \max(\left\lceil \frac{ks}{n} g \right\rceil, 1) \& i_v = \min(\left\lceil \frac{ks}{n} + g \right\rceil, s)$
- Partitions: $L = \{x < u\}, M = \{u < x < v\}, R = \{v < x\}$
- If k = |L| + 1 return u, if k = n |R| return v
- If $k \le |L|$ set X = L etc.
- Recursion

Median-of-three killer sequence & Introselect algorithm

- How do you choose a good pivoting element in Quicksort?
- A good pivoting element is the one that makes the search set decrease exponentially.
- Find an approximate median in linear time \rightarrow worst-case complexity of Quicksort can be reduced to $\Theta(n \log n)$

- Quick select + median of medians (or heap select – std::nth_element cpp standard*)
- Good average + optimal worstcase performance
- Optimistically start with a quick select and fall back to median of medians if the recursion progress is slow

Afterword

- Memory usage:
 - In-place, constant space
- Comparison-based vs non-comparison based
 - Lower bound for comparison-based sorting
- Stable vs non-stable

Resources

- Introduction to Algorithms, Thomas H. Cormen, chapters 2, 6.
- https://visualgo.net/en/sorting
- The input/output complexity of sorting and related problems (https://dl.acm.org/doi/10.1145/48529.48535)

Backup