0.1 SpiegeInde Reflexion

L' ist der an N gespiegelte Vektor, die der "idealen Spiegelung"

$$\alpha = \measuredangle(A, L')$$

Modell von Bui-Tong Phong: Intensität ist proportional zu $\cos^n \alpha$

Formel für spiegelnde Reflexion:

$$I^{X} = I_{L}^{X} \cdot \frac{1}{C_{0} + C_{1}r + C_{2}r^{2}} \cdot K_{S} \cdot \cos^{n} \alpha, \qquad X = R, G, \text{ oder } B$$

 $I_L...$ Intensität der Lichtquelle (I_L^R,I_L^G,I_L^B)

 $\frac{1}{C_0 + C_1 r + C_2 r^2} ...$ Abhängigkeit von der Entfernung der Lichtquelle

 K_S ... spiegelnde Reflexionskoeffizient unabhängig von der Farbe!

n... Exponent: gibt an wie glatt die Spiegelung ist

 $\frac{1}{C_0+C_1r+C_2r^2}$... Abhängigkeit von der Entfernung der Lichtquelle I^R,I^G,I^B ... Ergebnis-Intensität aus Sicht des Auges

$$L_0... \text{ Prokjektion von } L \text{ auf } N$$

$$= \langle L, N \rangle \cdot N$$

$$L' = -(L - L_0) + L_0 = 2L_0 - L, ||L'|| = 1$$

$$\cos \alpha = \langle A, L' \rangle = \langle A, 2L_0 \rangle - \langle A, L \rangle$$

$$= 2\langle L, N \rangle \langle N, A \rangle - \langle A, L \rangle$$

$$= \cos \alpha$$

Näherungsmodell (einfacher zu rechnen)

H der Vektor, der symmetrisch zwischen A und L liegt.

$$H_0 = A + L \qquad \qquad H = \frac{H_0}{\|H_0\|}$$

Statt $\cos \alpha$ nimmt man $\cos \beta, \beta = \measuredangle(H, N)$

$$\cos \beta = \langle H, B \rangle$$
 $\beta = 0 \Leftrightarrow \alpha = 0$

 $\beta = \frac{\alpha}{2}$, wenn L, N, A in einer Ebene liegen. Im Raum ist das nicht immer der Fall.

0.2 Gesamtbeleuchtung

- ullet mehrere Lichtquellen an bestimmten Orten (bzw. aus bestimmten Richtungen) mit Intensität I_L^R, I_L^G, I_L^B
- \bullet eine diffuse Lichtquelle mit Intensität I^R_D, I^G_D, I^B_D

Für jede Fläche:

• diffuse Reflexionskoeffizienten K_D^R, K_D^G, K_D^B

- spiegelnde Reflexionskoeffizienten K_S , Exponent n
- ullet möglicherweise eine Eigenleuchtintensität I_E^R, I_E^G, I_E^B (z. B. Leuchtschirm, glühendes Ofenrohr, flächig leuchtende Lichtquelle)

Für jedes Flächenstück addiert man alle Beleuchtungskomponennten zusammen (falls die Fäche sichtbar vom Auge ist).

$$I^R = \sum \text{diffuse Reflexionen von allen Lichtquellen, die das Flächenstück beleuchten.} \\ + I_D^R \cdot K^R \\ + \text{spiegelnde Reflexionen von allen Lichtquellen, die das Flächenstück beleuchten.} \\ + I_E^R$$

analog für ${\cal I}^G, {\cal I}^B$

eigentlich liefert die Rechnung in jedem Punkt der Fläche ein anderes Ergebnis.

Problem Die Intensität kan in einzelnen Punkten des Bildes > 1 werden. 2 Möglichkeiten

1. herunterskalieren aller Werte

z. B.
$$(r; g; b) = (3; 1; 0, 5) \rightarrow (1, \frac{1}{3}, \frac{1}{6})$$

2. zu große Werte werden auf 1 gesetzt (dadurch können auch Farben verfälscht werden)

z. B.
$$(r; g; b) = (3; 1; 0,5) \rightarrow (1, 1, 0,5)$$
 (sehr rotes orange) (helles gelb)

0.3 Schattierung (Shading)

Definition Unter *Shading* versteht man die Anwendung der Beleuchtungsregeln auf jeden Punkt einer Fläche, sodass sich eine abgestufte Farbverteilung ergibt, die realistisch aussieht.

- Gekrümmte Flächen können durch ein genügend feines *Dreiecks*netz (oder Vierecksnetz) approximiert werden.
- Große flache Flächen können in kleinere Dreicke zerlegt werden.

Gouraud-Schattierung für ein Dreiecksnetz:

- Berechne die Beleuchtung für jede Ecke eines Dreiecks, mit einem Normalvektor, der für jede Ecke fest ist (unabhängig von dem Dreieck zu dem es gehört). z. B. der Normalvektor der glatten Fläche, die durch das Dreiecksnetz approximiert wird.
- Interpoliere die Beleuchtung linear auf jedem Dreieck

Die Gouraud-Schattierung, versagt z. B. bei Glanzlichtern (können verschwinden oder unnatürlich vergrößert werden) und sehr großen Flächen:

PHONG-Schattierung:

• Es wird nich die Intensität interpoliert, sondern der Normalvektor. Für jeden Punkt wird die Beleuchtungsrichtung neu ausgeführt.