Demystifying ICP-SLAM:

NLS journulation:
$$\sum_{i=1}^{n} [y_i - f(x_i, \beta)]^2$$

NLS solution residual.

$$\begin{cases}
\beta \beta = \left[\int_{0}^{T} \int_{0}^{T} \left[y \cdot -f(x, \beta) \right], \\
(3x1) \quad (3xm)_{1}(mx3) \quad (3xm) \quad (mx1).
\end{cases}$$

ICP Solution:

$$\begin{cases} \xi_{X} &= \left[\int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \left[\chi_{ij} - \hat{R}_{io} \chi_{io} + \hat{L}_{io} \right] \right] \\ (6m+3n,1) \left[(6m+3n,3mn) - (6m+3n,3mn) \times (3mn,1) \right] \\ &\times (3mn,6m+3n) \end{cases}$$

- I is split into Localization and.

 Mapping Jacobian parts.
 - That terms of the form J_{112} , J_{1n1} , ..., J_{mn1} , J_{mnm} .
 - -) Jii is the Jarobian obtained by faking the decivative with respect to Tio of the term [XIII Tro XoI] cactually wrt Gio).
 - I Jim is the Jacobian obtained by taking decivative wit X_0 , of the term $X_{11} \hat{T}_{10}X_{01}$
 - -) J_{12L} ... decivative wat T_{10} of. (actually wat J_{12} \tilde{T}_{10} J_{02} J_{02}

-) JI2M wort X2 of above term	_
-) J_{mnL} derivative wot T_{mo} of (g_{mo}) . $X_{mn} - \widehat{T}_{mo} X_{on}$	
Jonny wrt in of the above term Sign is the local tangent vector of Tio. NLS update: obtained from Log Nap.	

 $\beta(q+1) = \beta(q) - \delta \beta$ update from q to q+1 instances during Gauss Newton's iterative solution

I CP SLAM Update:

We consider for illustration the applicate of Tio and Toj as

the docalization and mapping updates are very different for one is the regular Fudidean update and the other is over a rlamifold.

Xoj (9H) = Xoj (9) - S Xoj is the update of point Xoj

Localization Update:

 $T_{io}(9+1) = T_{io}(9). E_{ap}(8\xi_{io}).$ $L_{7}(L1)$ $\xi_{io}(9+1) = Log(T_{io}(9+1)) \longrightarrow (L2).$

Exp
$$(f\xi_{io}) = \int R(\delta\omega_{io}) R(\delta\omega_{io}) fu_{io}$$
 $L \to (L3)_{\lambda}$
 $R(\delta\omega_{io}) = \exp(\int f\omega_{io} \int_{\lambda})$
 $= \int f\omega_{io} \int_{\lambda} f\omega_{io$

(11) is the Exponential map that maps a vector in the local tangent space of T, denoted by Eq back to T.

(12) is the Logarithm Map that maps the transform matrix T to the local tangent vector 4,

$$\mathcal{G} = \begin{bmatrix} \omega_r \\ \omega_2 \\ \omega_3 \\ U_1 \\ U_2 \\ U_3 \end{bmatrix}$$

 $\omega = \left[\omega, \omega_2 \quad \omega_3\right]^7 = \ln(R).$ $\omega = \left[\upsilon, \upsilon_2 \quad \upsilon_3\right]^7 = R^{-1}t.$ $\omega = \left[\omega, \upsilon_2 \quad \upsilon_3\right]^7 = R^{-1}t.$ $\omega = \left[\omega, \upsilon_2 \quad \upsilon_3\right]^7 = R^{-1}t.$

For Tio then $\omega_{io} = \int \omega_{io_1} \ \omega_{io_2} \ \omega_{io_3} J^T = ln(R_{io}).$ $U_{io} = \int U_{io_1} \ U_{io_2} \ U_{io_3} J^T = R_{io}^{-1} t_{io}$

NOTE:

Tacobian is evaluated in the next iteration $\omega.r.t \in \mathcal{G}_{io}(q+1)$, $X_{oj}(q+1)$ i=1-n, j=1-n.

- -)No Need to Remember all These ->Solvers like Ceres, G2D, GTSAM do these for you.
 - But you need to appreciate the cost function, the Jacobian structure and the general

notion of why we resort to reanifold Optimization