MULTIMODAL DEEP LEARNING MODELS FOR EARLY DETECTION OF ALZHEIMER'S DISEASE STAGE

Summary

Problem Diagnosis **AD** disease (Classification problem)

Objective Distinguish between 3-stages of **AD**

- normal (CN)
- Mild cognitive impairment (MCI)
- AD

Datasets from ADNI (ADNI1, ADNI2, ADNI GO) databases (adni.loni.usc.edu) contains

- MRI (ADNI)
- Clinical (EHR) data (ADNI1, ADNI2, ADNI GO)
- Genetic (SNP) data (ADNI1, ADNI2, ADNI GO)

	CN	MCI	AD
Clinical Data	598	699	707
Imaging	132	104	266
Genetic	245	338	226

Figure 1. Number of samples for each data modality per class of **AD**.

Methodology

Make Classification Model for all combinations of each data modality, Model for

- EHR Data to classify (CN | MRI | AD)
- MRI Data to classify (CN | AD)
- SNP Data to classify (CN | MRI & AD as one class)
- EHR + SNP + MRI Data to classify (CN | MRI | AD)
- EHR + SNP Data to classify (CN | MRI | AD)
- EHR + MRI Data to classify (CN | MRI | AD)
- SNP + MRI Data to classify (CN | MRI & AD as one class)

And use **shallow** &**Traditional** algorithms | **DL** algorithm as classifiers (comparing between two types). *Figure 2 for performance*

Algorithms

K-mean for clustering **SNP & EHR**, to show difference between associations in *intermediate* features and associations in *raw features*.

For Extracting Features

3D-convolutional neural networks (CNNs) from MRI

Stacked denoising auto-encoders from SNP & EHR

As Classifiers

- Shallow Models (SM)
 - simple ANN with 1-2 hidden layers.
 - Traditional (support vector machines SVM, decision trees DT, random forests RF, and k-nearest neighbors KNN)
- DL complex ANN with serval hidden layers.

In Case one of three data modalities is missing, mask it as zeros when using DL.

Results

DL Models outperform **shallow models** except in **SNP** + **MRI** data modality, and in **EHR** only **DT** and **RF** are somewhat similar to **DL**.

DL methods become better in multi-modalities data than single data-modality.

DL methods are capable of extracting top performing features.

To evaluate Models performance, using **Accuracy**, **Precision**, **Recall** and **meanF1** matrices, and separate Dataset is into

- 90% internal (training) and make tenfold cross-validation
- 10% external (testing)

Internal Cross-Validation test

External test DL			
Accuracy Precision		Recall	F1 Score
0.76%	0.76%	0.77%	0.76%

a. EHR Model

Internal Cross-Validation test

External test DL			
Accuracy	Precision	Recall	F1 Score
0.84%	0.83%	0.83%	0.83%

Internal Cross-Validation test

External test DL			
Accuracy	Precision	Recall	F1 Score
0.66%	0.66%	0.57%	0.53%

c. SNPs Model

Internal Cross-Validation test

External test DL			
Accuracy Precision Recall F1 Score			
0.78% 0.77%		0.78%	0.78%

d. HER + MRI + SNPs Model

Internal Cross-Validation test

External test DL			
Accuracy	Precision	Recall	F1 Score
0.78%	0.78%	0.79%	0.78%

e. HER + SNPs Model

Internal Cross-Validation test

External test DL			
Accuracy Precision Recall F1 Score			F1 Score
0.77%	0.76%	0.77%	0.77%

f. HER + MRI Model

Internal Cross-Validation test

External test SM			
Accuracy	Precision	Recall	F1 Score
0.63%	0.62%	0.57%	0.56%

g. SNPs + MRI Model

Figure 2. Performance measures

Limitations DL Models can't perform well in **small** Dataset such as **SNPs** + **MRI** combination 220 *samples*.

Summary

J.V., contributed to the study design, the pre-processing, data analysis for the EHR data, the combination of the three data modalities, and the writing of the manuscript.

L.T., contributed to the pre-processing and analysis of the SNP data, the writing of the manuscript.

H.H., contributed to the image processing pipeline and writing of the results pertaining to image processing.

Prof. M.D.W., contributed to the study design, result evaluation, and extensive relevant and the revision of the manuscript.

Preprocessing

Figure 3. Preprocessing for multi-modality data,

a. MRI data, b. HER data and c. SNPs

Feature Extraction

Input EHR and SNP with noise

Figure 4. extract features from EHR and SNP using stacked denoising auto-encoder network

Figure 5. extract features from **Images** using **3D- Convolutional Neural Network Architecture (CNN).**

Integration with training.

References

Reference	Data	Methods	Dataset	Objective
	Modeling			
Multimodal deep learning models for	MRI-	3D CNN – SDAE – SM	ADNI	Distinguish between
early detection of Alzheimer's	SNPs-	– DT – RF - KNN		3-stages of AD (CN,
disease stage Scientific Reports	HER			MRI, AD)
(nature.com)				, , , , ,