Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №6

Асинхронных обмен данными с ВУ по прерыванию

Вариант 16602

Выполнил:

Шмунк Андрей Александрович

Группа Р3108

Преподаватели:

Ткешелашвили Нино Мерабиевна

Клименков Сергей Викторович

Содержание

Текст задания	
Описание программы	3
Назначение программы	3
Код программы	3
Область допустимых значений	5
Вывод	5
Методика проверки программы	5

Текст задания

По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных BY (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на BY модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания.

- 1. Основная программа должна увеличивать на 3 содержимое X (ячейки памяти с адресом 04A₁₆) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=5X-6 на данное ВУ, а по нажатию кнопки готовности ВУ-2 выполнить операцию побитового 'Исключающее ИЛИ-НЕ' содержимого РД данного ВУ и X, результат записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

Описание программы

Назначение программы

Программа циклично прибавляет 3 к переменной X, по нажатию кнопки «Готов» на ВУ-2 выполняется операция «исключающее или-не» между переменной и регистром данных внешнего устройства. При нажатии на кнопку «Готов» на ВУ-3 вычисляется функция F(X)=5X-6 и ее значение выводится на ВУ-3. Программа осуществляет проверку соответствия данных формату и при выходе за его пределы переменная применяет минимальное значение.

Код программы

ORG 0x0

V0: WORD \$default, 0x180; задаются вектора прерываний

V1: WORD \$default, 0x180 V2: WORD \$int2, 0x180

V3: WORD \$int3, 0x180 V4: WORD \$default, 0x180

V4: WORD \$default, 0x180

V5: WORD \$default, 0x180 V6: WORD \$default, 0x180

V7: WORD \$default, 0x180

default: IRET; обработака прерывания по умолчанию

ORG 0x4A

X: WORD?; переменная х

min: WORD 0xFFE8; -24, минимальное значение X max: WORD 0x19; 25, максимальное значение X

START: DI

CLA

OUT 0x1; запрет прерываний для неиспользуемых устройств

OUT 0xB OUT 0xD

```
OUT 0x11
OUT 0x15
OUT 0x19
OUT 0x1D
LD #0хA; загрузка в аккумулятор MR (1000|0010=1010)
OUT 5; разрешение прерываний для ВУ-2
LD #0xB; загрузка в аккумулятор MR (1000|0011=1011)
OUT 7; разрешение прерываний для ВУ-3
main: DI; основная программа
LD X
ADD #3
CALL $check
ST X
ΕI
JUMP main
check: ; проврека принадлежности Х ОДЗ
check min: CMP min; проверка нижней границы
BLT ld min
check_max: CMP max; проверка верхней границы
BLT return
ld min: LD min; запись минимального значения в переменную
return: RET; метка возврата из проверки
int2: ; обработка прерывания на ВУ-2
IN 4
PUSH
NOT
PUSH
NOP
LD X
OR &1
PUSH
LD X
NOT
OR &1
AND &0
NOT
CALL $check
ST X
POP
POP
POP
NOP
IRET
int3: ; обработка прерывания на ВУ-3
LD #0xE7
ASL
ASL
ADD X
```

SUB #6 CALL check OUT 6 NOP IRET

Область допустимых значений

```
-128 \le 5X - 6 \le 127

-122 \le 5X \le 133

-24 \le X \le 26

25 = 0000.0000.0001.1001 = 0x0019

24 = 0000.0000.0001.1001

-24 = 0000.0000.1110.1000 = 0xFFE8
```

Вывод

В ходе выполнения лабораторной работы я изучил обмен данными с ВУ-1 и ВУ-2 в режиме прерываний, также изучил цикл прерывания и циклы исполнения новых команд. Также закрепил знания в написании программ на ассемблере БЭВМ.

Методика проверки программы

Проверка обработки прерываний:

- 1. Загрузить текст программы в БЭВМ.
- 2. Заменить все NOP на HLT.
- 3. Запустить программу в режиме РАБОТА.
- 4. Установить «Готовность ВУ-3».
- 5. Дождаться останова.
- 6. Записать текущее значение X из памяти БЭВМ:
 - 1. Запомнить текущее состояние счетчика команд.
 - 2. Ввести в клавишный регистр значение 0х4А
 - 3. Нажать «Ввод адреса».
 - 4. Нажать «Чтение».
 - 5. Записать значение регистра данных.
 - 6. Вернуть счетчик команд в исходное состояние.
- 7. Записать результат обработки прерывания содержимое DR контроллера ВУ-3
- 8. Рассчитать ожидаемое значение обработки прерывания по формуле(F(x)=5x-6)
- 9. Сравнить значения, полученные в пунктах 7, 8. Если они равные программа работает верно
- 10. Нажать «Продолжение».
- 11. Ввести в ВУ-2 произвольное число, записать его
- 12. Установить «Готовность ВУ-2».
- 13. Дождаться останова.
- 14. Записать текущее значение X из памяти БЭВМ, также, как и в пункте 6.
- 15. Нажать «Продолжение».
- 16. Записать текущее значение X из памяти БЭВМ, также, как и в пункте 6.
- 17. Рассчитать ожидаемое значение переменной X после обработки прерывания (провести XNOR между X из пункта 14 и значением с B Y-2 введенным на пункте 11)
- 18. Сравнить значения, полученные в пунктах 16, 17. Если они равные программа работает верно

Проверка основной программы:

- 1. Загрузить текст программы в БЭВМ.
- 2. Записать в переменную X значение $15_{16}(21_{10})$

- 3. Запустить программу в режиме останова.
- 4. Нажимать на «Продолжить» до появления отрицательных значений в аккумуляторе, убедиться, что при увеличении X на 3, после момента, когда он равен $18_{16}(24_{10})$, происходит сброс значения в минимальное по ОДЗ (-24).

Прерывание ВУ-1			Прерывание ВУ-2			
AC	Ожидание	DR	AC (07)	DR	Ожидание	Результат
(07)	5*X-6			КВУ-2	BУ-2 XNOR X	AC (07)
9 ₁₆ (9)	27 ₁₆ (39)	27 ₁₆ (39)	6 ₁₆ (6)	6 ₁₆ (6)	FF ₁₆ (-1)	FF ₁₆ (-1)
E7 ₁₆ (-25)	E8 ₁₆ (-24)	E8 ₁₆ (-24)	6 ₁₆ (6)	$FF_{16}(-1)$	6 ₁₆ (6)	6 ₁₆ (6)
1A ₁₆ (26)	E8 ₁₆ (-24)	E8 ₁₆ (-24)	17 ₁₆ (23)	E1(-31)	9 ₁₆ (9)	9 ₁₆ (9)

Основная программа					
AC	Ожидание	AC			
16 ₁₆ (22)	19 ₁₆ (25)	19 ₁₆ (25)			
17 ₁₆ (23)	E8 ₁₆ (-24)	E8 ₁₆ (-24)			
18 ₁₆ (24)	E8 ₁₆ (-24)	E8 ₁₆ (-24)			