

REGRESJA LINIOWA

REGRESJA LINIOWA I LOGISTYCZNA

ZADANIA

Korzystając z biblioteki **sklearn** (http://scikit-learn.org), wykonaj następujące zadania:

- Załaduj dane "diabetes" i wyłuskaj z nich tylko trzecią cechę (x3) from sklearn import datasets diabetes = datasets.load_diabetes()
- 2. Zwizualizuj dane z wykorzystaniem wykresu punktowego f(x): $x3 \rightarrow y \in \Re$
- 3. Podziel dane na zbiór uczący i testowy
- 4. Wytrenuj model regresji liniowej $h_{\theta}(x)$ na danych uczących from sklearn import linear_model

regr = linear_model.LinearRegression()
regr.fit(diabetes_X_train, diabetes_y_train)
diabetes_y_pred = regr.predict(diabetes_X_test)

5. Zwizualizuj wytrenowaną hipotezę na zbiorze uczącym i testowym

6. Wytrenuj wieloraką regresją liniową (wiele zmiennych objaśniających) na pełnych danych uczących.

REGRESJA LINIOWA I LOGISTYCZNA

- 7. Jak można ocenić "jakość" wytrenowanej hipotezy na danych wielowymiarowych?
 - a. błąd średniokwadratowy na zbiorze testującym
 - b. współczynnik determinacji¹ R²:

$$R^{2} = \frac{\sum_{i=1}^{test_{size}} (\hat{y}_{i} - \overline{y})}{\sum_{i=1}^{test_{size}} (y_{i} - \overline{y})} \quad \overline{y} = \frac{\sum_{i=1}^{test_{size}} y_{i}}{test_{size}} \quad \hat{y}_{i} = h_{\theta}(x_{i})$$

from sklearn.metrics import mean_squared_error, r2_score

mean_squared_error(real_values, predicts)
r2_score(diabetes_all_features_target_test, predicts)

- 8. Wytrenuj binarny² klasyfikator zbudowany na modelu regresji logistycznej $h_{\theta}(x)$
 - a. załaduj dane opisujące kliniczne przypadki rozpoznania raka łagodny/złośliwy load_breast_cancer()
 - b. w razie potrzeby ustandaryzuj dane StandardScaler()
 - c. podziel dane na zbiór uczący i testujący
 - d. przetestuj działanie klasyfikatora na danych testowych classifier = linear_model.SGDClassifier(loss='log')

classifier.fit(data_train, target_train)
predict probabilites=classifier.predict proba(data test)

- 9. Jak można ocenić jakoś klasyfikacji binarnej?
 - a. Macierz konfuzji (ang. confusion matrix)
 from sklearn.metrics import confusion_matrix
 confusion_matrix(target_test,
 classifier.predict(data_test))
 - b. Dokładność
 from sklearn.metrics import accuracy_score
 accuracy score(target test, classifier.predict(data test))
 - c. Współczynnik f1
 from sklearn.metrics import f1_score
 f1_score(target_test, classifier.predict(data_test))

² klasyfikacja pomiędzy dwoma klasami, $y \in \{0,1\}$

https://pl.wikipedia.org/wiki/Wsp%C3%B3%C5%82czynnik_determinacji