클린업 1주차 패키지

- 분석 툴은 R/Python 둘 다 가능합니다. 클린업 1-3주차 패키지 문제의 조건 및 힌트는 R을 기준으로 하지만, Python을 사용해도 무방합니다.
- 제출형식은 HTML, PDF 모두 가능합니다. .ipynb 이나 .R 등의 소스코드 파일은 불가능합니다. 파일은 psat2009@naver.com으로 보내주세요.
- 패키지 과제 발표는 세미나 쉬는 시간 후에 하게 되며, 랜덤으로 16시 00분에 발표됩니다.
- 제출기한은 목요일 자정까지 이고, 지각 시 벌금 5000원, 미제출시 10000원입니다. 패키지 무단 미제출 2회 시 퇴출이니 유의해주세요. 또한 불성실한 제출로 인한 경고를 2회 받으실시도 퇴출이니 유의해주세요.

Chapter 1: Data Preprocessing

이번 클린업 1주차에서는 주어진 데이터를 바탕으로 tidyverse 패키지를 이용해서 데이터를 전처리하고 시각화를 해보겠습니다. Tidyverse를 파이프(%>%) 연산자를 이용해서 함수를 직관적으로 표현할 수 있는 것이 특징이며,

Tidyverse 안에는 dplyr, magrittr, ggplot2 등 다양한 패키지가 포함되어 있습니다. 데이터 전처리부터 시각화까지 이번 주에는 Tidyverse를 이용해 봅시다!

문제1. Train, test 데이터를 불러온 뒤 데이터의 구조를 파악하세요.

(HINT) str, head, describe(rms package) 등을 활용하면 결측치와 데이터의 타입들을 쉽게 확인할 수 있습니다.

문제2. Train과 Test 데이터에서 Id, V1 변수는 필요하지 않으니 해당 열을 삭제해주세요.

(HINT) dplyr의 select와 magrittr의 %<>%를 사용하면 쉽게 열을 제가할 수 있습니다.

문제 3. 현재 변수 이름이 X.(변수이름). 구조로 읽기 어렵게 되어있으므로 (변수이름) 형태로 변환해주세요.

(Example) X.checking_status. -> checking_status

(HINT) strsplit 함수를 이용하면 원하는 split 단위를 선택할 수 있습니다.

문제4. personal_status는 (성별) (결혼상태) 구조로 되어있습니다. 이를 sex와 marital_status로 파생변수를 만들고 personal_status는 제거해주세요.

(HINT) 위에서 사용한 strsplit 함수와 dplyr의 mutate 함수를 이용하면 쉽게 새로운 파생변수를 만들 수 있습니다.

문제5. checking_status 열에서 no_checking, savings_status 열에서 no known savings을 결측값으로 바꿔주세요

문제6. credit_history에서 no credits/all paid을 no credits으로 marital_status에서 div/dep/mar, div/sep, mar/wid를 div/dep/mar로 만들어주세요.

문제7. 구간에 따라 나눠져 있는 변수들을 순서에 맞게 1, 2, 3, … 으로 바꿔주세요.

- 구간에 따라 나눠져 있는 변수는 checking_status, savings_status, empolyment입니다.

(+ 보너스 문제 1) 주어진 변수를 순서형 변수로 바꾸지 않고, as.factor를 이용해서 명목형 변수로 바꾸었을 때 문제점에 대해서 간단히 서술해주세요.

(+ 보너스 문제 2) employment에서 unemployed 변수는 결측치 처리를 하지 않았는데, 그 이유를 설명해 주세요

문제8. 문자형 변수는 factor로, 정수형 변수는 numeric으로 바뀌주세요.

문제9. 앞선 했던 작업들을 test 데이터에서도 진행해주세요.

문제10. 아래와 같이 결측치의 패턴을 확인할 수 있는 plot을 그려보고 결측치 발생 여부에 대해 패턴이 존재하는지 확인해주세요. 변수 순서는 class, checking_status, savings_status, property_. 순입니다.

(HINT) mice 라이브러리의 md.pattern을 이용하면 아래의 plot을 손쉽게 그릴 수 있습니다.

문제11. 아래와 같이 결측치 여부에 따라 변수 간의 간략한 분포를 얻을 수 있는 plot을 그리고 이를 해석해 주세요.

(HINT) mice 라이브러리의 missing_paris을 이용하면 아래의 plot을 손쉽게 그릴 수 있습니다.

Missing data matrix class checking_status savings_status property_magnitude class checking_status savings_status property_magnitude logo status (miss) king_status (miss) king_status

문제9. 결측치 보간을 위한 다양한 방법이 있지만 여기서는 checking_status와 savings_status의 조합 중 최빈값으로 결측값 대체를 해주세요. Property_magenitude는 변수 그 자체의 최빈값을 대체해주세요.

(HINT) table 함수를 이용하면 각 변수가 같이 발생한 빈도를 구할 수 있습니다.

Chapter 2: EDA

좋은 모델링을 하기 위해서는 변수의 특성을 파악하는 것이 중요합니다. 이번 EDA 파트에서는 변수 분포의 시각화를 중심으로 다루어 보겠습니다.

문제1. 각 변수의 특징을 알기 위해서 아래와 같이 변수의 분포를 시각화해주세요.

- 범주형 자료는 barplot을 이용해서, 연속형 자료는 히스토그램과 밀도함수 둘 다 이용해서 그려주세요.
- 범주가 3개 이하인 변수에서는 "#00AFBB", "#E7B800", "#999999" 색을 이용해주세요.
- 범주가 4개 이상인 변수에서는 palette "Set 3"를 이용해주세요.
- 연속형 변수에서는 #00AFBB 색을 이용해주세요.
- 테두리가 있는 경우에 테두리 color는 모두 'black' 입니다.
- 연속형 변수에서 히스토그램의 alpha = 0.5, 밀도 함수의 alpha = 0.2입니다.

(HINT1) 색은 scale_fill_manual, scale_color_manual, scale_fill_discrete_qualitative 혹은 ggplot에 직접 색을 입력하는 할 수 있습니다.

(HINT2) grid extra 패키지의 grid.arrange를 이용하면 쉽게 그린 plot을 합칠 수 있습니다.

	P-SAT 2023-2 클린업 1주차 패키지
(+ 보너스 문제 3) 위의 시각화는 P(X)를 나타낸 것입니다. 클래스에 따른 변 자유롭게 시각화해주세요.	변수의 분포를 보기 위해 P(X Y)를

Chapter3 모델링

이번에 사용할 모델은 랜덤포레스트와 로지스틱 회귀입니다. 랜덤포레스트는 여러 개의 트리모델을 앙상블한 모델 중의 하나입니다. 로지스틱은 일반화 선형 모델의 일종으로 분류 문제에 주로 사용되는 모델입니다. 두 모델에 대해 간략하게 알아보고 test를 예측해 보겠습니다.

문제1. 랜덤포레스트 패키지를 불러와주세요.

문제2. 랜덤포레스트 모델에는 여러가지 하이퍼 파라미터가 존재합니다. 각 하이퍼 파라미터에 대해서 설명해 주세요.

문제3. Ntree를 100으로 설정한 다음에 train 데이터로 학습을 한 후 변수별 중요도를 Importance plot으로 시각화하고 어떤 변수가 대출 승인에 영향을 미치는 지 설명해주세요.

(HINT) VarImpPlot을 이용하면 쉽게 random forest의 variable importance를 구할 수 있습니다.

문제4. 로지스틱 함수로 모든 변수를 다 넣고 돌린 다음에 summary 함수를 이용해서 중요하지 않은 변수를 선택해주세요.

문제5. CORElearn 패키지를 불러오고 릴리프(Relief) 알고리즘을 이용해 변수 별 중요도를 시각화해주세요. (+ 보너스 문제 4) 릴리프 알고리즘에 대해 간단하게 설명해주세요.

문제6. Random forest의 variable importance와 로지스틱 함수의 summary 결과, 릴리프 알고리즘의 변수 별 중요도를 이용해 자유롭게 변수를 선택하고 Test Data를 예측해주세요.

문제7. 예측한 Test Data와 실제 Test Data 값의 RMSE(Root Mean Square Error)를 구해주세요.