SOFTWARE FOUNDATIONS

VOLUME 2: PROGRAMMING LANGUAGE FOUNDATIONS

TABLE OF CONTENTS

INDEX

ROADMAP

TYPECHECKING

A TYPECHECKER FOR STLC

The has_type relation of the STLC defines what it means for a term to belong to a type (in some context). But it doesn't, by itself, give us an algorithm for *checking* whether or not a term is well typed.

Fortunately, the rules defining has_type are *syntax directed* — that is, for every syntactic form of the language, there is just one rule that can be used to give a type to terms of that form. This makes it straightforward to translate the typing rules into clauses of a typechecking *function* that takes a term and a context and either returns the term's type or else signals that the term is not typable.

This short chapter constructs such a function and proves it correct.

```
Set Warnings "-notation-overridden,-parsing".
Require Import Coq.Bool.Bool.
Require Import Maps.
Require Import Smallstep.
Require Import Stlc.
Require MoreStlc.
Module STLCTypes.
Export STLC.
```

Comparing Types

First, we need a function to compare two types for equality...

```
Fixpoint beq_ty (T_1 T_2:ty) : bool :=

match T_1,T_2 with

| TBool, TBool \Rightarrow

true

| TArrow T_{11} T_{12}, TArrow T_{21} T_{22} \Rightarrow

andb (beq_ty T_{11} T_{21}) (beq_ty T_{12} T_{22})

| _,_ \Rightarrow
```

```
false end.
```

... and we need to establish the usual two-way connection between the boolean result returned by beq ty and the logical proposition that its inputs are equal.

```
Lemma beq_ty_refl : \forall T<sub>1</sub>,

beq_ty T<sub>1</sub> T<sub>1</sub> = true.

+

Lemma beq_ty_eq : \forall T<sub>1</sub> T<sub>2</sub>,

beq_ty T<sub>1</sub> T<sub>2</sub> = true \rightarrow T<sub>1</sub> = T<sub>2</sub>.

+

End STLCTypes.
```

The Typechecker

The typechecker works by walking over the structure of the given term, returning either Some T or None. Each time we make a recursive call to find out the types of the subterms, we need to pattern-match on the results to make sure that they are not None. Also, in the tapp case, we use pattern matching to extract the left- and right-hand sides of the function's arrow type (and fail if the type of the function is not $TArrow T_{11} T_{12}$ for some T_{11} and T_{12}).

```
Module FirstTry.
Import STLCTypes.
Fixpoint type check (Gamma:context) (t:tm) : option ty :=
  match t with
  | tvar x ⇒
       Gamma x
  | tabs x T_{11} t_{12} \Rightarrow
       match type_check (update Gamma x T11) t12 with
       Some T_{12} \Rightarrow Some (TArrow T_{11} T_{12})
       _{-} \Rightarrow None
       end
  | tapp t_1 t_2 \Rightarrow
       match type_check Gamma t1, type_check Gamma t2 with
       Some (TArrow T_{11} T_{12}), Some T_2 \Rightarrow
            if beq_ty T_{11} T_2 then Some T_{12} else None
       | _,_ ⇒ None
       end
  | ttrue ⇒
       Some TBool
    tfalse ⇒
       Some TBool
   \mid tif quard t f \Rightarrow
       match type_check Gamma guard with
       | Some TBool ⇒
            match type_check Gamma t, type_check Gamma f with
```

```
| Some T_1, Some T_2 \Rightarrow if beq_ty T_1 T_2 then Some T_1 else None | \_, \_ \Rightarrow None end | \_ \Rightarrow None end end.
```

Digression: Improving the Notation

Before we consider the properties of this algorithm, let's write it out again in a cleaner way, using "monadic" notations in the style of Haskell to streamline the plumbing of options. First, we define a notation for composing two potentially failing (i.e., option-returning) computations:

```
Notation " x <-e_1;; e_2"

:= (match e_1 with

| Some x \Rightarrow e_2
| None \Rightarrow None

end)

(right associativity, at level 60).
```

Second, we define return and fail as synonyms for Some and None:

```
Notation " 'return' e "
  := (Some e) (at level 60).

Notation " 'fail' "
  := None.

Module STLCChecker.
Import STLCTypes.
```

Now we can write the same type-checking function in a more "imperative" style using these notations.

```
Fixpoint type_check (Gamma:context) (t:tm) : option ty :=
    match t with
    | tvar x ⇒
        match Gamma x with
        | Some T ⇒ return T
        | None ⇒ fail
        end
        | tabs x T<sub>11</sub> t<sub>12</sub> ⇒
        T<sub>12</sub> <- type_check (update Gamma x T<sub>11</sub>) t<sub>12</sub> ;;
    return (TArrow T<sub>11</sub> T<sub>12</sub>)
        | tapp t<sub>1</sub> t<sub>2</sub> ⇒
        T<sub>1</sub> <- type_check Gamma t<sub>2</sub> ;;
        match T<sub>1</sub> with
```

```
TArrow T_{11} T_{12} \Rightarrow
         if beq_ty T_{11} T_2 then return T_{12} else fail
     | _ ⇒ fail
    end
ttrue ⇒
    return TBool
 tfalse ⇒
    return TBool
| tif guard t_1 t_2 \Rightarrow
    Tguard <- type_check Gamma guard ;;
    T_1 \leftarrow type\_check Gamma t_1 ;;
    T2 <- type check Gamma t2 ;;
    match Tguard with
     | TBool ⇒
         if beq_ty T_1 T_2 then return T_1 else fail
     | ⇒ fail
    end
end.
```

Properties

To verify that th typechecking algorithm is correct, we show that it is *sound* and *complete* for the original has_type relation — that is, type_check and has_type define the same partial function.

```
Theorem type_checking_sound : ∀ Gamma t T,
   type_check Gamma t = Some T → has_type Gamma t T.

*
Theorem type_checking_complete : ∀ Gamma t T,
   has_type Gamma t T → type_check Gamma t = Some T.

*
End STLCChecker.
```

Exercises

Exercise: 5 stars (typechecker extensions)

In this exercise we'll extend the typechecker to deal with the extended features discussed in chapter MoreStlc. Your job is to fill in the omitted cases in the following.

```
Module TypecheckerExtensions. 

Import MoreStlc. 

Import STLCExtended. 

Fixpoint beq_ty (T_1 T_2: ty) : bool := match T_1, T_2 with 

| TNat, TNat \Rightarrow true
```

```
| TUnit, TUnit ⇒
       true
   | TArrow T_{11} T_{12}, TArrow T_{21} T_{22} \Rightarrow
        andb (beq_ty T_{11} T_{21}) (beq_ty T_{12} T_{22})
  | TProd T_{11} T_{12}, TProd T_{21} T_{22} \Rightarrow
       andb (beq ty T_{11} T_{21}) (beq ty T_{12} T_{22})
  TSum T_{11} T_{12}, TSum T_{21} T_{22} \Rightarrow
       andb (beq ty T_{11} T_{21}) (beq ty T_{12} T_{22})
  | TList T_{11}, TList T_{21} \Rightarrow
       beq ty T_{11} T_{21}
    _,_ ⇒
       false
  end.
Lemma beq_ty_refl : \forall T_1,
  beq ty T_1 T_1 = true.
Proof.
  intros T_1.
  induction T_1; simpl;
     try reflexivity;
     try (rewrite IHT1_1; rewrite IHT1_2; reflexivity);
     try (rewrite IHT1; reflexivity). Qed.
Lemma beq ty eq : \forall T<sub>1</sub> T<sub>2</sub>,
  beg ty T_1 T_2 = true \rightarrow T_1 = T_2.
Proof.
  intros T_1.
  induction T_1; intros T_2 Hbeq; destruct T_2; inversion Hbeq;
     try reflexivity;
     try (rewrite andb true iff in Ho; inversion Ho as [Hbeq1
Hbeq2];
           apply IHT1 1 in Hbeq1; apply IHT1 2 in Hbeq2; subst;
auto);
     try (apply IHT1 in Hbeq; subst; auto).
 Qed.
Fixpoint type check (Gamma:context) (t:tm): option ty :=
  match t with
  \mid tvar x \Rightarrow
       match Gamma x with
        Some T \Rightarrow return T
        None ⇒ fail
       end
   | tabs x T_{11} t_{12} \Rightarrow
       T_{12} \leftarrow type\_check (update Gamma x T_{11}) t_{12};
       return (TArrow T<sub>11</sub> T<sub>12</sub>)
  | tapp t_1 t_2 \Rightarrow
       T_1 \leftarrow type\_check Gamma t_1 ;;
       T_2 \leftarrow type check Gamma t_2 ;;
       match T_1 with
        | TArrow T_{11} T_{12} \Rightarrow
             if beg ty T_{11} T_2 then return T_{12} else fail
```

```
| _ ⇒ fail
       end
  tnat _ ⇒
       return TNat
   | tsucc t_1 \Rightarrow
       T_1 \leftarrow type\_check Gamma t_1 ;;
       match T_1 with
        | TNat ⇒ return TNat
        \rightarrow fail
        end
  | tpred t_1 \Rightarrow
       T_1 \leftarrow type\_check Gamma t_1 ;;
       match T_1 with
        | TNat ⇒ return TNat
        \mid \_ \Rightarrow fail
  \mid tmult t_1 t_2 \Rightarrow
       T_1 \leftarrow type\_check Gamma t_1 ;;
       T2 <- type check Gamma t2 ;;
       match T_1, T_2 with
        | TNat, TNat ⇒ return TNat
        | _,_ ⇒ fail
       end
  | tif0 guard t f \Rightarrow
       Tguard <- type check Gamma guard ;;
       T<sub>1</sub> <- type check Gamma t ;;
       T2 <- type_check Gamma f ;;
       match Tquard with
        | TNat \Rightarrow if beq_ty T<sub>1</sub> T<sub>2</sub> then return T<sub>1</sub> else fail
        \mid \_ \Rightarrow fail
        end
  (* FILL IN HERE *)
  | tlcase t_0 t_1 x_{21} x_{22} t_2 \Rightarrow
        match type check Gamma to with
        | Some (TList T) \Rightarrow
             match type_check Gamma t1,
                    type_check (update (update Gamma x22 (TList T))
x_{21} T) t_2 with
             | Some T_1', Some T_2' \Rightarrow
                 if beg ty T_1' T_2' then Some T_1' else None
             | _{,_{}} \Rightarrow None
             end
        _{-} \Rightarrow None
       end
  (* FILL IN HERE *)
  \_ \Rightarrow None (* ... and delete this line *)
  end.
```

Just for fun, we'll do the soundness proof with just a bit more automation than above, using these "mega-tactics":

```
Ltac invert typecheck Gamma t T :=
  remember (type_check Gamma t) as TO;
  destruct TO as [T ];
  try solve by invert; try (inversion Ho; eauto); try (subst;
eauto).
Ltac analyze T T_1 T_2 :=
  destruct T as [T_1 \ T_2] \ | \ | \ T_1 \ T_2| \ T_1 \ T_2| \ T_1]; try
solve_by_invert.
Ltac fully invert typecheck Gamma t T T<sub>1</sub> T<sub>2</sub> :=
  let TX := fresh T in
  remember (type check Gamma t) as TO;
  destruct TO as [TX|]; try solve_by_invert;
  destruct TX as [T_1 \ T_2] \ | \ | \ T_1 \ T_2| \ T_1 \ T_2| \ T_1];
  try solve_by_invert; try (inversion Ho; eauto); try (subst;
eauto).
Ltac case equality S T :=
  destruct (beq ty S T) eqn: Heqb;
  inversion H<sub>0</sub>; apply beq_ty_eq in Heqb; subst; subst; eauto.
Theorem type checking sound : ∀ Gamma t T,
  type check Gamma t = Some T \rightarrow has type Gamma t T.
Proof with eauto.
  intros Gamma t. generalize dependent Gamma.
  induction t; intros Gamma T Htc; inversion Htc.
  - (* tvar *) rename s into x. destruct (Gamma x) eqn:H.
    rename t into T'. inversion H_0. subst. eauto.
solve by invert.
  - (* tapp *)
    invert typecheck Gamma t<sub>1</sub> T<sub>1</sub>.
    invert typecheck Gamma t2 T2.
    analyze T_1 T_{11} T_{12}.
    case equality T_{11} T_2.
  - (* tabs *)
    rename s into x. rename t into T_1.
    remember (update Gamma x T_1) as Gamma'.
    invert typecheck Gamma' to To.
  - (* tnat *) eauto.
  - (* tsucc *)
    rename t into t_1.
    fully_invert_typecheck Gamma t_1 T_1 T_{11} T_{12}.
  - (* tpred *)
    rename t into t_1.
    fully_invert_typecheck Gamma t<sub>1</sub> T<sub>1</sub> T<sub>11</sub> T<sub>12</sub>.
  - (* tmult *)
    invert typecheck Gamma t<sub>1</sub> T<sub>1</sub>.
    invert typecheck Gamma t<sub>2</sub> T<sub>2</sub>.
    analyze T_1 T_{11} T_{12}; analyze T_2 T_{21} T_{22}.
    inversion H_0. subst. eauto.
  - (* tif0 *)
```

```
invert typecheck Gamma t<sub>1</sub> T<sub>1</sub>.
       invert typecheck Gamma to To.
       invert_typecheck Gamma t3 T3.
       destruct T_1; try solve_by_invert.
       case equality T_2 T_3.
     (* FILL IN HERE *)
     - (* tlcase *)
       rename s into x_{31}. rename s_0 into x_{32}.
       fully invert typecheck Gamma t<sub>1</sub> T<sub>1</sub> T<sub>11</sub> T<sub>12</sub>.
       invert_typecheck Gamma t2 T2.
       remember (update (update Gamma x_{32} (TList T_{11})) x_{31} T_{11}) as
  Gamma'2.
       invert_typecheck Gamma'2 t3 T3.
       case equality T_2 T_3.
     (* FILL IN HERE *)
  Oed.
  Theorem type checking complete : ∀ Gamma t T,
    has_type Gamma t T → type_check Gamma t = Some T.
  Proof.
     intros Gamma t T Hty.
     induction Hty; simpl;
       try (rewrite IHHty);
       try (rewrite IHHty1);
       try (rewrite IHHty2);
       try (rewrite IHHty3);
       try (rewrite (beq ty refl T));
       try (rewrite (beq_ty_refl T<sub>1</sub>));
       try (rewrite (beq ty refl T_2));
     - destruct (Gamma x); try solve_by_invert. eauto.
    Admitted. (* ... and delete this line *)
  Qed. (* ... and uncomment this one *)
  End TypecheckerExtensions.
П
```

Exercise: 5 stars, optional (stlc step function)

Above, we showed how to write a typechecking function and prove it sound and complete for the typing relation. Do the same for the operational semantics — i.e., write a function stepf of type $tm \rightarrow option tm$ and prove that it is sound and complete with respect to step from chapter MoreStlc.

```
Module StepFunction.

Import TypecheckerExtensions.

(* FILL IN HERE *)

End StepFunction.
```

Exercise: 5 stars, optional (stlc impl)

Using the Imp parser described in the ImpParser chapter of *Logical Foundations* as a guide, build a parser for extended Stlc programs. Combine it with the typechecking and stepping functions from the above exercises to yield a complete typechecker and interpreter for this language.

```
Module StlcImpl.
Import StepFunction.

(* FILL IN HERE *)
End StlcImpl.
```