2. 受動素子

受動素子と能動素子

• 受動素子

- 電気エネルギーを増幅せず、消費・蓄積・放出する素子。 2端子が多い。
- 抵抗(resistor:R), コンデンサ(capacitor:C), コイル(inductor:L)など。
- コンデンサとコイルは、交流に対して抵抗のように働く。この強さをリアクタンス(reactance)という。
- Rの直流抵抗分と、C,Lのリアクタンス分をひとまとめにして、 インピーダンス(impedance)という。インピーダンスがわかれば受動回路の動作は全てわかる!

• 能動素子

- 入力の電気エネルギーより高出力が取り出せる(増幅)素子。
- 3端子や4端子が多い。
- 入力と出力に加えて、素子自身を駆動する電源も必要。
- 主な素子は、真空管・ダイオード・MOSトランジスタなど。(こちらは来週に詳しく講義)

抵抗(resistor)

- 電気抵抗を示す1端子対の素子。単位は[Ω](オーム)
 - 固定抵抗

- 半固定抵抗
 - 1回だけ調整
 - 使用時は固定

- 可変抵抗
 - 使用時に調整

理解のポイント:

- 固定抵抗の抵抗値って、何通りあるか?
- 定格電力1/4Wの意味は?

抵抗値の種類と定格

- ・ 抵抗値の種類(=有限)
 - どんな設計値でも近い値の抵抗があるように選ぶ。
 - =隣り合う抵抗の誤差が一定
 - =対数軸上で等間隔
 - 誤差によってE6, E12, E24などの系列がある 例: E6系(誤差50%)は抵抗値10倍分の範囲を6等分

10	Ω 0		1k	Ω		10	0 k Ω
	150	330	680	1.5	3.3	6.8	
	22	20 4	70	2	.2 4	l.7	

E3	E6	E12
1.0	1.0	1.0
		1.2
	1.5	1.5
		1.8
2.2	3.3	2.2
		2.7
		3.3
		3.9
4.7	6.8	4.7
		5.6
		6.8
		8.2

• 定格電力

- 抵抗が破壊せずに消費できる最大電力
- 電力を熱に変換して消費するので、抵抗の材料とサイズによって決まる。 1/4Wなどという。

(おまけ)抵抗値の読み方

$$10 \times 10^2 = 1000 [Ω]$$

= 1 [KΩ]

ポイント

- •上2桁はそのまま読む
- •3桁めは10のべき数
- •4桁めは誤差
- 単位はオーム[Ω]

カラーコード

色名	値	誤差
くろ	0	
ちゃ	1	±1%
あか	2	±2%
だいだい	3	
き	4	
みどり	5	±0.5 %
あお	6	
むらさき	7	
はい	8	
しろ	9	
金	-1	±5%
銀	-2	±10%

E12系なら有効数字は2桁で十分だという割り切りが根底にある。

抵抗の直列接続と並列接続

$$R = R_1 + R_2$$

$$R = R_1 // R_2 = \frac{R_1 R_2}{R_1 + R_2}$$

抵抗の役割

分圧

分流

$$I_1 = \frac{E}{R_1}$$
, $I_2 = \frac{E}{R_2}$, $E = \frac{R_1 R_2}{R_1 + R_2}I$

$$V_1 = \frac{R_1}{R_1 + R_2} E$$

$$V_2 = \frac{R_2}{R_1 + R_2} E$$

$$I_1 = \frac{R_2}{R_1 + R_2}$$

$$I_2 = \frac{R_1}{R_1 + R_2} I$$

電流制限

 $I = \frac{E - V_F}{R}$

電圧降下は一定(V_F)

コンデンサ(capacitor)

- 誘電体を板状電極で挟んだ構造で、電荷(charge)を蓄積。
- ・ 電圧V、電荷Q、容量Cの関係は、 $C = \frac{Q}{V}$ 。Cの単位は[F](ファラッド)
- f[Hz]の正弦波交流を加えたときのリアクタンスは、 $\frac{1}{2\pi fC}[\Omega]$ コンデンサは、fが高いと低抵抗を示す。 \Leftrightarrow 直流抵抗は $\infty\Omega$

種類	セラミック	フィルム	電解	タンタル	
主な用 途	高周波(>1MHz)のノ イズ除去や周波数選 択	オーディオ〜 1MHz位のノイ ズ除去、発振	電圧の平滑化 一極の記号	電圧の平滑化、 特に温度変化を 避けたい回路	
外形例	1047	CESTA ON	TEV 3 3 IN 1	十極の記号	
容量	1pF~1000pF	1000p~0.1mF	1mF~1000mF	1mF~100mF	
回路図 記号	極性なし -	<u> </u>	極性あり <u>-+</u> 		
備考	大抵は50V以上の耐電	圧	耐電圧に注意(小型は10V未満)		

コイル(inductor)

- 導線を何重にも巻いた構造
- ・ 電流の変化を妨げる向きに起電力(逆起電力)が生じる。
- ・ 電流Iが変化したときの逆起電力Eは、 $L\frac{dI}{dt}=E$ で得られる。
- 比例定数Lはインダクタンス(inductance)。単位は[H](ヘンリー)。
- f[Hz]の正弦波交流を加えたときのリアクタンスは $2\pi f L$ [Ω] コイルは、fが高いと高抵抗を示す。 \Leftrightarrow 直流抵抗は 0Ω

種類	空芯コイル	コアコイル、マイクロインダクタ	トロイダルコア
主な用途	高周波用 (>100MHz)	一般信号用 スマホ・タブレットの小型化にも一役	磁束漏れ小 →大電流用
外形例		コイル部 実装端子部 メタルコンボジット材	

コンデンサとコイルの直列・並列接続

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

$$C = C_1 + C_2 + C_3$$

極板の面積が増えるのでCも増える

$$L = L_1 + L_2 + L_3$$

巻数がが増えるのでLも増える

$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$

まとめ

- 受動素子は、電気エネルギーを〔 〕せず、消費・蓄積・放出する素子。
- ・ 受動素子の典型は、抵抗〔 〕, コンデンサ〔 〕, コイル〔 〕
- コンデンサとコイルは、交流に対して抵抗のように働く。この強さをリアクタンス〔]と呼び、周波数fの正弦波交流に対して、コンデンサの場合〔][Ω]、コイルの場合〔][Ω]
- 抵抗の直流抵抗分と、コンデンサ・コイルのリアクタンス分を総合して、インピーダンス〔
 全て表している。
- 抵抗はインピーダンスが〔 〕の素子。
- 抵抗の直列・並列接続の公式を組み合わせると、複雑な負荷回路でも合成抵抗を求めることができる。

2. 演習問題

1. 下図の合成抵抗値を求めよ。

- 2. 1kHzの正弦波を0.1μFのコンデンサに加えたときのリアクタンス を求めよ。
- 3. 1kHzの正弦波を1mHのコイルに加えたときのリアクタンスを求め よ。
- 4. 6Vの電圧源を用いて、あるLED(発光ダイオード)に20mAの電流 を流したい。LEDに直列に挿入する電流制限抵抗の値を求めよ。 ただし、LEDの順方向電圧降下V_F=2.3Vとする。 ヒント: 抵抗の役割プリントの図を参照。