SCclust T10 Tutorial

Alex Krasnitz, Jude Kendall, Junyan Song, Lubomir Chorbadjiev 2018-06-06

Contents

1	Introduction	
2	Data	
	2.1 Data for the T10 case	
	2.2 Collect the Neccessary Data	
	2.3 Explore the Dowloaded Data	
3	Auto Generated	
	3.1 Vignette Info	
	3.2 Styles	
	3.3 Figures	
	3.4 More Examples	

1 Introduction

The *SCclust* package implements feature selection based on breakpoints, permutations for FDRs for Fisher test p-values and identification of the clone structure in single cell copy number profiles.

In this tutorial we show how to use *SCclust* package using data, prepared by *sgains* pipeline as described in Example usage of sGAINS pipeline. *SCclust* package is called as the last step in processing data from *sgains* pipeline. In this tutoral we show how *SCclust* package could be used independently from *sgains* pipeline.

We assume that you have an R environment and have installed *SCclust* package as described in the README.md.

2 Data

2.1 Data for the T10 case

This tutorial is based on data published in: Navin N, Kendall J, Troge J, et al. Tumor Evolution Inferred by Single Cell Sequencing. Nature. 2011;472(7341):90-94. doi:10.1038/nature09807. In particular we will use the data for polygenomic breast tumor T10 case available from SRA. Description of samples for T10 could be found in Supplementary Table 1 | Summary of 100 Single Cells in the Polygenomic Tumor T10

We are going to run *SCclust* package on prepared by *sgains* pipeline **varbin** step. You can go through all the step in *sgains* T10 tutorial and prepare this data.

For the purposes of this tutorial we recomend you to download already prepared varbin data from example data. Apart from varbin T10 data you will need the binning scheme used in the analysis, that could be found here. And also we will need cytoBand.txt for HG19 that you can download it from UCSC Genome Browser.

2.2 Collect the Neccessary Data

Let us create a directory, where to store all the data used in this tutorial:

```
mkdir T10data
cd T10data
```

and let us download and extract T10 varbin data:

```
wget -c \
   https://github.com/KrasnitzLab/SCclust/releases/download/v1.0.0RC3/navin_t10_varbin_data.tar.gz
tar zxvf navin_t10_varbin_data.tar.gz
rm navin_t10_varbin_data.tar.gz
```

Let us also download and extract the binning scheme used in preparation of varbin data:

```
wget -c \
   https://github.com/KrasnitzLab/SCclust/releases/download/v1.0.0RC3/hg19_R50_B20k_bins_boundaries.txt.
gunzip hg19_R50_B20k_bins_boundaries.txt.gz
```

And finally let us download the cytoBand.txt for Human reference genome hg19:

```
wget -c \
  http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz
gunzip cytoBand.txt.gz
```

Our data directory should have following structure:

2.3 Explore the Dowloaded Data

We are going to use *SCclust* package so let us load it:

```
library("SCclust")
```

2.3.1 Binning schema

gc_df <- read.csv("T10data/hg19_R50_B20k_bins_boundaries.txt", header = T, sep='\t')
knitr::kable(head(gc_df))</pre>

Describe the data.

bin.chrom	bin.start	bin.start.abspos	bin.end	bin.length	mappable.positions	gc.content
chr1	0	0	859077	859077	131390	0.4357746
chr1	859077	859077	999002	139925	131390	0.6280936
chr1	999002	999002	1141973	142971	131391	0.6026537
chr1	1141973	1141973	1280121	138148	131390	0.6284347
chr1	1280121	1280121	1435418	155297	131390	0.5757548

bin.chrom	bin.start	bin.start.abspos	bin.end	bin.length	mappable.positions	gc.content
chr1	1435418	1435418	1603686	168268	131391	0.5690862

2.3.2 Cytobands and Centromeres for HG19

cytobands <- read.csv("T10data/cytoBand.txt", header = F, sep='\t')
knitr::kable(head(cytobands))</pre>

Describe the data.

V1	V2	V3	V4	V5
chr1	0	2300000	p36.33	gneg
chr1	2300000	5400000	p36.32	gpos25
chr1	5400000	7200000	p36.31	gneg
chr1	7200000	9200000	p36.23	gpos25
chr1	9200000	12700000	p36.22	gneg
chr1	12700000	16200000	p36.21	gpos50

The main reason we need cytoBand.txt is to get the location of centromeres. Since centromere areas contain a lot of repetitive sequencies they are excluded from analysis when segmenting and clustering samples.

To find regions where centromeres are located we are using calc_centroareas function:

centroareas <- calc_centroareas(cytobands)
knitr::kable(head(centroareas, 5))</pre>

	chrom	from	to
33	1	120600000	128900000
393	2	83300000	102700000
508	3	87200000	98300000
556	4	48200000	52700000
604	5	46100000	58900000

So, in centroareas for each chromosome we have the region where the centromere is located.

2.3.3 Varbin Samples Data

For each varbin sample

Describe the data.

sample_df <- read.csv("T10data/varbin/SRR052047.varbin.20k.txt", header=T, sep='\t')
knitr::kable(head(sample_df))</pre>

ratio	bincount	abspos	chrompos	chrom
0.3327000	51	0	0	chr1
0.3718412	57	859077	859077	chr1
0.5805941	89	999002	999002	chr1
0.3457471	53	1141973	1141973	chr1

chrom	chrompos	abspos	bincount	ratio
chr1	1280121	1280121		0.6458294
chr1	1435418	1435418	63	0.4109824

sample_df <- read.csv("T10data/varbin/SRR052148.varbin.20k.txt", header=T, sep='\t')
knitr::kable(head(sample_df))</pre>

chrom	chrompos	abspos	bincount	ratio
chr1	0	0	125	0.5530061
chr1	859077	859077	69	0.3052594
chr1	999002	999002	90	0.3981644
chr1	1141973	1141973	57	0.2521708
chr1	1280121	1280121	98	0.4335568
chr1	1435418	1435418	84	0.3716201

3 Auto Generated

Vignettes are long form documentation commonly included in packages. Because they are part of the distribution of the package, they need to be as compact as possible. The html_vignette output type provides a custom style sheet (and tweaks some options) to ensure that the resulting html is as small as possible. The html_vignette format:

- Never uses retina figures
- Has a smaller default figure size
- Uses a custom CSS stylesheet instead of the default Twitter Bootstrap style

3.1 Vignette Info

Note the various macros within the vignette section of the metadata block above. These are required in order to instruct R how to build the vignette. Note that you should change the title field and the \VignetteIndexEntry to match the title of your vignette.

3.2 Styles

The html_vignette template includes a basic CSS theme. To override this theme you can specify your own CSS in the document metadata as follows:

output:

```
rmarkdown::html_vignette:
   css: mystyles.css
```

3.3 Figures

The figure sizes have been customised so that you can easily put two images side-by-side.

```
plot(1:10)
plot(10:1)
```


You can enable figure captions by fig_caption: yes in YAML:

output:

rmarkdown::html_vignette:

fig_caption: yes

Then you can use the chunk option fig.cap = "Your figure caption." in knitr.

3.4 More Examples

You can write math expressions, e.g. $Y = X\beta + \epsilon$, footnotes¹, and tables, e.g. using knitr::kable().

¹A footnote here.

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4

Also a quote using >:

[&]quot;He who gives up [code] safety for [code] speed deserves neither." (\mbox{via})