Example for large sample credible intervals

Example 1: Prevalence of Recessive Gene

If gene frequencies are in equilibrium, the genotypes AA, Aa, and aa occur with probabilities $(1-\theta)^2$, $2\theta(1-\theta)$, and θ^2 respectively, where θ represents the overall prevalence of the recessive a gene in the population. Plato et al. (1964) published the following data on a haptoglobin type in a sample of 190 people:

Haptoglobin Type	AA	Aa	aa
Count	112	68	10

Let's regard the vector $\mathbf{x} = (x_1, x_2, x_3) = (112, 68, 10)$ as a realization of the random variable $\mathbf{X} \sim \text{Multinomial}((1-\theta)^2, 2\theta(1-\theta), \theta^2)$.

To save some time and allow us to focus on the results of interest here, I'll give you the likelihood function, its first and second derivatives with respect to θ , and the form of the posterior:

Preliminary Results

General form of Multinomial pmf

$$f(\mathbf{x}|\mathbf{p}) = \frac{n!}{x_1!x_2!\cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}$$

Likelihood function

In our example, $p_1 = (1 - \theta)^2$, $p_2 = 2\theta(1 - \theta)$, and $p_3 = \theta^2$.

$$\mathcal{L}(\theta|\mathbf{x}) = f(\mathbf{x}|\theta)$$

= $\{(1-\theta)^2\}^{x_1} \{2\theta(1-\theta)\}^{x_2} \{\theta^2\}^{x_3}$

I'm going to leave this in terms of x_1, x_2 , and x_3 for now.

Log-likelihood function

$$\ell(\theta|\mathbf{x}) = \log[\mathcal{L}(\theta|\mathbf{x})]$$

$$= \log\left[\{(1-\theta)^2\}^{x_1}\{2\theta(1-\theta)\}^{x_2}\{\theta^2\}^{x_3}\right]$$

$$= x_1 \log\{(1-\theta)^2\} + x_2 \log\{2\theta(1-\theta)\} + x_3 \log\{\theta^2\}$$

First and second derivatives of log-likelihood function

The first derivative of the log-likelihood is:

$$\frac{d}{d\theta}\ell(\theta|\mathbf{x}) = \dots = \frac{-2x_1\theta}{\theta(1-\theta)} + \frac{x_2(1-2\theta)}{\theta(1-\theta)} + \frac{2x_3(1-\theta)}{\theta(1-\theta)}$$

The second derivative of the log-likelihood is:

$$\frac{d^2}{d\theta^2}\ell(\theta|\mathbf{x}) = \dots = -\frac{2x_1 + x_2}{(1-\theta)^2} - \frac{2x_3 + x_2}{\theta^2}$$

Maximum likelihood estimator

Setting the first derivative equal to 0, we obtain a maximum likelihood estimator of $\hat{\theta}^{MLE} = \frac{X_2 + 2X_3}{2n}$.

It can be verified that this gives a global maximum of the likelihood function.

Posterior Distribution

Suppose we adopt a prior of $\Theta \sim \text{Uniform}(0,1)$

The prior distribution for Θ has density $f_{\Theta}(\theta) = \begin{cases} 1 \text{ if } \theta \in [0,1] \\ 0 \text{ otherwise} \end{cases}$.

Additionally, in part (a) we showed that $f_{\mathbf{X}|\Theta}(\mathbf{x}|\theta) = \{(1-\theta)^2\}^{x_1}\{2\theta(1-\theta)\}^{x_2}\{\theta^2\}^{x_3}$. Applying Bayes' Rule, we find that

$$f_{\Theta|\mathbf{X}}(\theta|\mathbf{x}) = \dots = \begin{cases} c\{(1-\theta)^2\}^{x_1}\{2\theta(1-\theta)\}^{x_2}\{\theta^2\}^{x_3} & \text{if } \theta \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

The integral is kind of annoying, but can be done.

Problems for you

There is just one written problem here. Do this problem before continuing to lab 11.

1. Find a large-sample normal approximation to the posterior distribution for θ .

Use the approximation based on the maximum likelihood estimate $\hat{\theta}^{MLE}$. Your answer will be in terms of x_1 , x_2 , x_3 , and n.