БЫСТРАЯ ПРОВЕРКА МНОГОЧЛЕНОВ НАД КОНЕЧНЫМИ ПОЛЯМИ НА НЕПРИВОДИМОСТЬ И ПРИМИТИВНОСТЬ

СТУДЕНТ

ПИВЕНЬ ВАДИМ НИКОЛАЕВИЧ

КМБО-01-16

РУКОВОДИТЕЛЬ ПАРФЕНОВ ДЕНИС ВАСИЛЬЕВИЧ

К.Т.Н., ДОЦЕНТ

АЛГОРИТМ БЕРЛЕКЭМПА

ВХОД: poly - многочлен над полем Галуа GF[P]РЕЗУЛЬТАТ: true если многочлен неприводим, иначе false

```
1: if poly = 0 then
                                                                16: if deg(gcd(poly, poly')) = 0 then
 2: return false
                                                                17: return false
 3: end if
                                                                18: end if
                                                               19: B = \begin{pmatrix} x^0 & mod & poly \\ x^P & mod & poly \\ \dots & \dots & \dots \\ x^{P \times (P-1)} & mod & poly \end{pmatrix}
 4: n = deg(poly)
 5: if n = 0 or (poly[0] = 0 and n > 1) then
     return false
 7: end if
 8: if n=1 then
                                                                20: B = B - E
    return true
                                                                21: r = rank(B)
10: end if
                                                                22: if r = deg(poly) - 1 then
11:
                                                                23:
                                                                     return true
12: poly' = \frac{\partial poly}{\partial x}
                                                                24: else
13: if poly' = 0 then
                                                                    return false
                                                                25:
14: return false
                                                                26: end if
15: end if
```

АЛГОРИТМ РАБИНА

```
ВХОД: poly - многочлен над полем Галуа GF[P] степени n,
   p_1,...,p_k – простые делители n
   РЕЗУЛЬТАТ: true если многочлен неприводим, иначе false
                                                        18: g = gcd (poly, x^{P^n} - x (mod poly))
 1: if poly = 0 then
                                                         19: if g = 0 then
    return false
 3: end if
                                                               return true
                                                         20:
 4: if n = 0 or (poly[0] = 0 and n > 1) then
                                                         21: else
      return false
                                                                return false
                                                         22:
 6: end if
                                                         23: end if
 7: if n = 1 then
   return true
 9: end if
10:
11: for i = 1..k do
    n_i = \frac{n}{p_i}
12:
    g = \gcd(poly, x^{P^{n_i}} - x \pmod{poly})
    if g = 0 or deg(g) > 0 then
     return false
15:
      end if
16:
17: end for
```

A

АЛГОРИТМ БЕН-ОРА

```
ВХОД: poly - многочлен над полем Галуа GF[P]
   РЕЗУЛЬТАТ: true если многочлен неприводим, иначе false
1: if poly = 0 then
                                        11:
2: return false
                                        12: n = deg(poly)
                                        13: for i = 1.. \lceil \frac{m}{2} \rceil do
3: end if
4: n = deg(poly)
                                               g = \gcd\left(poly, x^{P^i} - x \pmod{poly}\right)
5: if n = 0 or (poly[0] = 0 and n > 1) then
                                               if g = 0 or deg(g) > 0 then
     return false
                                        16: return false
7: end if
                                             end if
                                        17:
8: if n=1 then
                                        18: end for
9: return true
10: end if
                                        19: return true
```

АЛГОРИТМ ПРОВЕРКИ НА ПРИМИТИВНОСТЬ

```
ВХОД: poly - многочлен над полем Галуа GF[P],
   p_1,...,p_k – простые дилители P-1 за исключением 1 и самого P-1
   РЕЗУЛЬТАТ: true если многочлен неприводим, иначе false
 1: if poly = 0 then
                                     17: if P > 2 then
    return false
                                            for i = 1..k do
                                     18:
3: end if
                                               l = (-1)^n \ (mod \ P)
                                     19:
                                               el = l^{\frac{P-1}{p_i}}
 4: n = deg(poly)
5: if n = 0 or (poly[0] = 0 and n > 1) then
                                               if el = 1 then
      return false
                                                   return false
7: end if
                                                end if
                                     23:
                                                             32:
8:
                                            end for
                                     24:
                                                             33: for i = 1..k do
9: poly = noramlize(poly)
                                                             34: tmp = x^{\frac{r}{q_i}} \ (mod \ poly)
                                     25: end if
10: if poly = x then
                                     26:
      return true
                                                                    if deg(tmp) = 0 then
11:
                                                              35:
                                     27: l = (-1)^n \pmod{P}
12: end if
                                                                    return false
                                                             36:
                                     28: r = \frac{p^n - 1}{p - 1}
13: if P = 2 and poly = 1 + x then
                                                                   end if
                                                              37:
                                     29: if x^r \neq l then
      return false
14:
                                                             38: end for
                                            return false
15: end if
                                     30:
                                                             39: return true
                                     31: end if
16:
```

СУЩЕСТВУЮЩИЕ РЕШЕНИЯ

Название	Неприводимость	Примитивность	Бесплатное решение
Wolfram Mathematica	Irreducible Polynomial Q	PrimitivePolynomialQ *	_
MATLAB	gfprimck	gfprimck	_
PARI/GP	polisirreducible	_	+
FLINT	nmod_poly_is_irreducible nmod_poly_is_irreducible_ddf nmod_poly_is_irreducible_rabir	ι	+
Результат данной работы**	is_irreducible_berlekamp is_irreducible_rabin is_irreducible_benor	is_primitive_definition	<mark>+</mark>

^{*}Данная функция возвращает некорректный результат для неприведённых многочленов **Исходный код и документацию можно найти на GitHub:

https://github.com/irreducible-polynoms/irrpoly

РЕАЛИЗОВАННЫЕ КЛАССЫ

Класс, представляющий поле Галуа, содержит:

- Основание поля Галуа
- Вектора всех обратных по умножению элементов поля

Класс, представляющий число в поле Галуа, содержит:

- Указатель, на экземпляр класса, представляющего поле Галуа
- Значение числа

Класс, представляющий многочлен над полем Галуа, содержит:

- Указатель, на экземпляр класса, представляющего поле Галуа
- Вектор коэффициентов, являющихся числами в поле Галуа

РЕАЛИЗАЦИЯ МЕТОДОВ ПРОВЕРКИ

Потребовалось реализовать следующие вспомогательные функции:

- gcd вычисление наибольшего общего делителя двух многочленов
- derivative вычисление производной многочлена
- *integer_power* быстрое возведение в степень целого числа
- x_pow_mod вычисляет остаток от деления x в заданной степени на заданный многочлен

Также был реализован **многопоточный конвейер**, рассчитанный на проверку последовательностей многочленов

ТЕСТИРОВАНИЕ И БЕНЧМАРКИНГ

Тестируемый	Tec	Тест 1		Тест 2		Тест 3		Тест 4		Тест 5	
алгоритм	<i>GF</i> [2]	200	<i>GF</i> [3]	300	<i>GF</i> [5]	400	<i>GF</i> [7]	500	<i>GF</i> [11]	600	
Берлекэмпа	38,1		53,6		56,8		71,5		73,0		
Рабина	161,2		360,0		583,0		549,0		1153,3		
Бэн-Ора	52	,6	<mark>51,</mark> 7		56,0		57,3		<mark>47,6</mark>		
Проверка на примитивность	548	3,8	1207,4		1426,1		1978,7		2765,0		

Для каждого теста указано поле и количество многочленов заданной характеристики, которые требовалось найти; время указано в миллисекундах

Приведённое время получено путём усреднения результатов 100 последовательных замеров

10

ПОВТОРНЫЙ БЕНЧМАРКИНГ

Тартический а промуть	Тест 1		Тест 2		Тест 3		Тест 4		Тест 5	
Тестируемый алгоритм	<i>GF</i> [2]	200	<i>GF</i> [3]	300	<i>GF</i> [5]	400	<i>GF</i> [7]	500	<i>GF</i> [11]	600
Берлекэмпа	38,9 56,8		,8	59,6		75,7		78,1		
Рабина	165,2		388,6		612,9		587,4		1280,6	
Бэн-Ора	55,9		54,8		49,3		61,1		54,0	
Проверка на примитивность	579,1		1288,5		1494,2		2102,6		3109,7	
D	38,8 54			48,9		<mark>72,1</mark>		54,1		
Рекомендуемая проверка на неприводимость	38,8	3	54,	. <mark>4</mark>	48	9	<mark>72</mark> ,	,1	54	,1
	38,8 255,		54, 728		973		72, 127		237	
на неприводимость Рекомендуемая проверка		8	•	3 <mark>,7</mark>		I,3	•	0,4		0,8

2232,484

ЗАВИСИМОСТЬ ВРЕМЕНИ ВЫПОЛНЕНИЯ ПРОВЕРКИ ОТ СТЕПЕНИ ПРОВЕРЯЕМОГО МНОГОЧЛЕНА

Время проверки всех многочленов над полем GF[3] степеней с 4 по 14 на неприводимость, в секундах

СРАВНЕНИЕ С АНАЛОГАМИ

Название проверяемой системы/библиотеки	Время выполнения проверок на неприводимость	Время выполнения проверок на примитивность
Wolfram Mathematica	25: 24.080	25: 27.077
MATLAB	39: 41.027	39: 41.027
PARI/GP	00: 02.187	_
FLINT*	00: 01.648	_
Реализованная в данной работе библиотека**	00: 06.776	02: 24.079

Время выполнения проверок тестовыми программами приведено в формате mm:ss.ms, где mm – минуты, ss – секунды, ms – миллисекунды

*Приведено время для метода Берлекэмпа-Цассенхауса, поскольку два других метода показали худшие результаты

**Приведено время работы рекомендованных методов проверки

БЫСТРАЯ ПРОВЕРКА МНОГОЧЛЕНОВ НАД КОНЕЧНЫМИ ПОЛЯМИ НА НЕПРИВОДИМОСТЬ И ПРИМИТИВНОСТЬ

СТУДЕНТ

ПИВЕНЬ ВАДИМ НИКОЛАЕВИЧ

КМБО-01-16

РУКОВОДИТЕЛЬ ПАРФЕНОВ ДЕНИС ВАСИЛЬЕВИЧ

К.Т.Н., ДОЦЕНТ