Formulas of PL

Formulas: We define them recursively by the 3 clauses

- a) Each propositional variable A_i is a formula.
- b) $(\neg \phi)$, $(\phi \land \psi)$, $(\phi \lor \psi)$, and $(\phi \to \psi)$ are also formulas if ϕ and ψ are.
- c) No string that is not built by a) or b) is a formula.

Definition: A set of strings is propositionally closed if it contains all the propositional variables and is closed under sentential connectives. A string is a formula if it belongs to every propositionally closed set S. Induction on formulas:

- 1) Check that each propositional variable has property P.
- 2) If ϕ has property P then so does $(\neg \phi)$
- 3) If ϕ ans ψ have property P then so does $(\phi \bullet \psi)$ for any binary connective $\vee, \wedge, \rightarrow$.

Unique readability:

For every formula exactly one of the following is true:

- 1) ϕ is a prop. variable
- 2) There is a unique formula ψ s.t $\phi = (\neg \psi)$.
- 3) There are unique formulas ψ, χ s.t $\phi = (\psi \vee \chi), (\psi \wedge \chi), \text{ or } (\psi \to \chi)$

Semantics of PL

We assign a function $v: \{A_i | i \in \mathbb{N}\} \to \{T, F\}$ to each propositional variable and extend to all formulas by induction on formulas.

Theorem: For any truth assignment $v: \{A_i | i \in \mathbb{N}\} \to \{T, F\}$, there is a unique extension $v: PL \to \{T, F\}$.

Definition: A formula $\varphi \in PL$ is satisfiable if there is an assignment $v: \{A_i | i \in \mathbb{N}\} \to \{T, F\}$ s.t $v(\varphi) = T$

Tarski conditions:

- $v \models A_i \leftrightarrow v(A_i) = T$
- $v \models \neg \varphi \leftrightarrow v \not\models \varphi$
- $v \models (\varphi \land \psi) \leftrightarrow v \models \varphi \text{ and } v \models \psi$
- $v \models (\varphi \lor \psi) \leftrightarrow v \models \varphi \text{ or } v \models \psi$
- $v \models (\varphi \rightarrow \psi) \leftrightarrow v \not\models \varphi \text{ or } v \models \psi$

Tautologies:

- $\models \varphi \rightarrow (\psi \rightarrow \phi)$
- $\models (\varphi \to \psi) \to ((\varphi \to (\psi \to \chi)) \to (\varphi \to \chi))$
- $\models (\varphi \to \psi) \to ((\varphi \to (\neg \psi)) \to (\neg \varphi))$
- $\models (\neg(\neg\varphi)) \to \varphi$
- $\models \varphi \to (\psi \to (\varphi \land \psi))$
- $\models \varphi \to (\varphi \lor \psi)$
- $\models (\varphi \to \chi) \to ((\psi \to \chi) \to ((\varphi \lor \psi) \to \chi))$

Logical Consequence and Soundness

 $T \models \varphi$ means "for every assignment that satisfies all formulas in T then v also satisfies φ "

Modus Ponens: For any two formulas $\varphi, \psi \varphi, (\varphi \to \psi) \models \psi$.

Definition: A deduction or proof from a set of formulas T is a finite sequence of formulas $\chi_0, \chi_1, \ldots, \chi_k$ such that for each $n \leq k$ one of the following holds:

- (D1) $\chi_n \in T$ (assumption)
- (D2) $\chi_n \equiv \chi_i$ for some i < n (repetition)
- (D3) χ_n is an axiom
- (D4) χ_n can be inferred with MP for some χ_i, χ_j with i, j < n

 $T \vdash \chi$ iff there is a proof $\chi_0, \chi_1, \ldots, \chi_k$ from T s.t $\chi \equiv \chi_k$. Then χ is a theorem of T.

Definition: A set of formulas is deductively closed if it contains all the axioms and it is closed under MP.

Lemma: For every T and φ $T \vdash \varphi$ iff $\varphi \in S$ for every deductively closed $S \supseteq T$. Theorem: (Soundness) For any set of formulas Γ and formula φ if $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$.

Consistency and Completeness

Definition: A set of formulas Γ is consistent if there is no formula φ s.t $\Gamma \vdash \varphi$ and $\Gamma \vdash \neg \varphi$.

Definition: A set of formulas is strongly complete if $\forall \varphi \in PL$ either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$.

Step 1: A set of formulas S is consistent and strongly complete iff there is an assignment v to the propositional variables s.t for every formula φ $v \models \varphi \leftrightarrow \varphi \in S$.

The Deduction Theorem: For any set of formulas T and all φ, ψ if $\Gamma, \varphi \vdash \psi$ then $\Gamma \vdash (\varphi \rightarrow \psi)$

Step 2: If Γ is consistent then for every formula φ either $\Gamma \cup \varphi$ or $\Gamma \cup \varphi$ is consistent.

Step 3: (The Completeness Theorem for PL)

- (1) Every consistent set of formulas is satisfiable
- (2) If $\Gamma \models \chi$ then $\Gamma \vdash \chi$

Structures

Language: is a set of constants, function symbols, and relation symbols. $\mathcal{L} = \{c_j\}_{j \in J} \cup \{R_i\}_{i \in I} \cup \{R_k\}_{k \in K}$

Terms and formulas:

Let \mathcal{L} be a language we consider $S \supseteq \mathcal{L}$ of symbols where we add:

- (1) The logical symbols $\neg, \lor, \land, \rightarrow, \forall, \exists, =$
- (2) Parentheses ()
- (3) The individual variables v_0, v_1, \ldots

Definition: An \mathcal{L} -term is defined by recursion where:

- a) Each variable v_i is a term
- b) Each constant symbol is a term
- c) If τ_1, \ldots, τ_n are terms and f is an n-ary function symbol then $f(\tau_1, \ldots, \tau_n)$ is a term

Definition: An \mathcal{L} -formula is defined by recursion where:

- a) If s, t are terms then s = t is a formula
- b) If τ_1, \ldots, τ_n are terms and R is an n-ary relation symbol then $R(\tau_1, \ldots, \tau_n)$ is a formula
- c) If φ, ψ are formulas and v is a variable $(\neg \varphi), (\varphi \bullet \psi), \exists v \varphi, \forall v \varphi$ are formulas.

Let φ be an \mathcal{L} -formula then

- (1) φ is quantifier free if \exists and \forall do not occur in φ
- (2) The variable x_i if free in φ if it is not quantified

Semantics

A structure in the language $\mathcal{L} = \{c_j\}_{j \in J} \cup \{R_i\}_{i \in I} \cup \{R_k\}_{k \in K}$ is a pair A = (A, I) where:

- \bullet A is a non-empty set (we call A) to be the universe
- \bullet I is an interpretation that assigns:
 - $-I(c)=c^A$ an element of A.
 - $-I(R)=R^A$ is an n-ary relation $R^A\subset A^n$ to each n-ary relation R.
 - $-I(f)=f^A:A^n\to A$ an n-ary function for each function symbol.

Definition: An isomorphism $\sigma: A \to B$ where both are \mathcal{L} -structures is a bijection such that:

- (1) For each constant symbol $c_A \sigma(c_A) = c_B$
- (2) For each n-ary relation symbol R and $a_1, a_2, \ldots, a_n \in A$, $(a_1, a_2, \ldots, a_n) \in R^A \leftrightarrow (\sigma(a_1), \sigma(a_2), \ldots, \sigma(a_n)) \in R^B$
- (3) For each n-ary function symbol f and $a_1, a_2, \ldots, a_n \in A$, $= \sigma(f^A(a_1, a_2, \ldots, a_n)) = f^B(\sigma(a_1), \sigma(a_2), \ldots, \sigma(a_n))$

If A and B are isomorphic then we denote this by $A \cong B$

Theorem: Let M and N be \mathcal{L} -structures and $f: M \to N$ an isomorphism. If v is an assignment $v: Var \to M$ then $f \circ v: Var \to N$ is an assignment on N and for any formula φ and tuple $\overline{m} \in M$ $(M, v) \models \varphi(\overline{m})$ iff $(M, f \circ v) \models \varphi(f(\overline{m}))$. Definition: An automorphism σ of M is an isomorphism of M onto M. Definition: (Substructure) Let A = (A, I) B = (B, J) be \mathcal{L} -structures. A is a substructure of B if

- $A \subseteq B$
- For every constant symbol $c^B = c^A \in A$
- For any n-ary function and $a_1, a_2, \ldots, a_n \in A$, $f^A(a_1, a_2, \ldots, a_n) = f^B(a_1, a_2, \ldots, a_n)$
- For any n ary relation and $a_1, a_2, \ldots, a_n \in A$ $R^B(a_1, a_2, \ldots, a_n) \leftrightarrow R^A(a_1, a_2, \ldots, a_n)$

Definition: An assignment into a structure A is any association of objects in A with variables $\pi: Variables \to A$.

The value of an assignment is proven by induction on formulas.

Satisfaction: Let A be and \mathcal{L} -structure and π an assignment in A and φ an \mathcal{L} -formula

We say $A, \pi \models \phi \leftrightarrow value(\varphi, \pi) = 1 \leftrightarrow$ the assignment π satisfies the formula in the structure A.

Tarski conditions:

- $A, \pi \models s = t \leftrightarrow value^A(s, \pi) = value^A(t, \pi)$
- $A, \pi \models \neg \varphi \leftrightarrow A, \pi \not\models \varphi$
- $A, \pi \models \varphi \land \psi \leftrightarrow A, \pi \models \varphi \text{ and } A, \pi \models \psi$
- $A, \pi \models \varphi \lor \psi \leftrightarrow A, \pi \models \varphi \text{ or } A, \pi \models \psi$
- $A, \pi \models \varphi \rightarrow \psi \leftrightarrow A, \pi \not\models \varphi \text{ or } A, \pi \models \psi$
- $A, \pi \models \exists v \varphi \leftrightarrow \text{there is } a \in A \text{ such that } (A, \pi(v := a)) \models \varphi$
- $A, \pi \models \forall v \varphi \leftrightarrow \text{for all } a \in A \ (A, \pi(v := a)) \models \varphi$

Definition: A proposition Φ in ordinary English about an \mathcal{L} -structure A is expressed or formalized by a sentence if Φ and φ mean the same thing (ϕ is a statement) $\rightarrow \varphi$ is a sentence if all variables are quantified.

Definable Sets

Let $R \subseteq A^n$ where A is an \mathcal{L} -structure and R is a relation in the universe of A^n . We say that R is definable if there is (1) an \mathcal{L} -formula $\varphi(\overline{x}, \overline{y})$ (2) a tuple $\overline{a}_0 \in A^{|\overline{y}|}$ such that $A \models \varphi(\overline{b}, \overline{a}_0)$ iff $\overline{b} \in A$ and we say that it is definable over a_0

If R is definable over a_0 then there is an \mathcal{L} -formula $\varphi(\overline{x}, \overline{y})$ such that: $(m_1, m_2, \dots, m_n) \in R$ iff $(M, v) \models \varphi(\overline{m}, a_0) \leftrightarrow (M, \sigma \circ v) \models \varphi(\sigma(\overline{m}), a_0)$

Theories

Definition: Let \mathcal{L} be a fixed language on \mathcal{L} -theory T is any (possibly infinite) set of sentences T. The members of T are called axioms.

Definition 2: An \mathcal{L} -structure M is a model of an \mathcal{L} -theory T if for any sentence $\varphi \in T$ $M \models \phi$ i.e $M \models T$.

Definition 3: The models of a theory T T is the class of \mathcal{L} -structures $Mod(T) = \{M|M \text{ is an } \mathcal{L}\text{-structure and } M \models T\}$

Definition: Let \mathcal{L} be a fixed language and let Φ be a property of \mathcal{L} -structures we say that it is elementary if there is an \mathcal{L} -theory T such that:

For M and \mathcal{L} -structure M has property $\Phi \leftrightarrow M \models T$ Definition: Let M and N be \mathcal{L} -structures then they are elementary equivalent if $\forall \varphi \ \mathcal{L}$ -sentence $M \models \varphi$ iff $N \models \varphi$ we denote this by $M \equiv N$,

Logical Consequence and Proofs

Definition: Let T be an \mathcal{L} -Theory and φ an \mathcal{L} -sentence we say that φ is a logical consequence $T \models \varphi$ iff every \mathcal{L} -structure $M \models T$ then $M \models \varphi$. Hilbert's axiom schemes

- (a) Propositional Axiom Schemes: The set of logical tautologies
- (b) Predicate Axiom Schemes
 - $\forall v \varphi(v, \vec{u}) \to \varphi(\tau, \vec{u}) \tau$ free for v in $\varphi(v, \vec{u})$
 - $\forall v(\varphi \to \psi) \to (\varphi \to \forall v\psi) \ v$ not free in φ
 - $\varphi(\tau, \vec{u}) \to \exists v \varphi(v, \vec{u}) \ \tau$ free for v in $\varphi(v, \vec{u})$
- (c) Rules of Inference
 - From φ and $\varphi \to \psi$ infer ψ MP
 - From φ infer $\forall v\varphi$ (Generalization)
 - From $\varphi \to \psi$ infer $\exists v \varphi \to \psi$ provided v is not free in ψ (Exists Elimination)
- (d) Identity Axioms
 - $v = v \ v = v' \rightarrow v' = v \ v = v' \rightarrow ((v' \rightarrow v'') \rightarrow (v \rightarrow v''))$
 - $(v_1 = w_1 \land \ldots \land v_n = w_n) \rightarrow (R(v_1, \ldots, v_n) \rightarrow R(w_1, \ldots, w_n))$ any n ary relation symbol
 - $(v_1 = w_1 \wedge \ldots \wedge v_n = w_n) \rightarrow (f(v_1, \ldots, v_n) = f(w_1, \ldots, w_n))$ any n ary function symbol

Definition: A deduction from a theory T is any sequence of formulas $\varphi_0, \ldots \varphi_n$ where each φ_i is either:

- an axiom $\varphi_i \in \text{Hilbert's Axioms}$
- a hypothesis $\varphi_i \in T$
- repetition $\varphi_i = \varphi_j$ for j < i
- or follows from MP, Generalization, or Exists Elimination

Definition: (Soundness for first order logic) Let T be a theory and χ a sentence if $T \vdash \chi$ then $T \models \chi$

Lemma: Let M be an \mathcal{L} -structure and χ an axiom in the Hilbert's list (not inference) then $M \models \chi$

Completeness Theorem

Definition 1: Γ a theory and φ a sentence if $\Gamma \models \varphi$ then $\Gamma \vdash \varphi$

Definition 2: If Γ is consistent then it is satisfiable

Consistency: A theory T is consistent if there is no sentence φ such that $T \vdash \varphi$ and $T \vdash \neg \varphi$

An \mathcal{L} -theory is satisfiable if there is an \mathcal{L} -structure M such that $M \models T$

An \mathcal{L} -theory is complete if for every sentence φ either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$

Definition: A theory T has the Henkin property if:

- (a) it is consistent
- (b) it is complete
- (c) if $\exists v\varphi \in H$ then there is a constant c such that $\varphi(c) \in H$

Idea: add a bunch of constants to witness the existentials Definition: Fix a Henkin set we say that it is deductively closed if for every sentence χ if $H \vdash \chi$ then $\chi \in H$ For all sentences $\varphi, \psi, \exists v \varphi(v), \forall v \varphi(v)$

- (a) $\neg \varphi \leftrightarrow \varphi \notin H$
- (b) $\varphi \wedge \psi \in H \leftrightarrow \varphi \in H$ and $\psi \in H$
- (c) $\varphi \lor \psi \in H \leftrightarrow \varphi \in H \text{ or } \psi \in H$
- (d) $\varphi \to \psi \in H \leftrightarrow \varphi \notin H$ or $\psi \in H$
- (e) $\exists v \varphi(v) \in H \leftrightarrow \text{there is some constant } c \text{ such that } \varphi(c) \in H$
- (f) $\forall v \varphi(v) \in H \leftrightarrow \text{for all constants } c \varphi(c) \in H$

Every Theory can be extended to a Henkin Set Every Henkin set is satisfiable

Compactness Theorem*

(PL Logic) Suppose T is an infinite set of formulas. Prove that if every finite subset $T_0 \subset T$ is satisfiable, then T is satisfiable.

(First Order) If every finite subset of a theory T in a finite vocabulary has a model, then T has a model.