Lecture 3

Digital circuits, power supplies and regulation

Agenda

- 1. Review
- 2. The digital abstraction: logic gates and flip-flops
- 3. Power supplies and regulation
- 4. Design project overview
- 5. Lab 3 overview

Review: Lecture 1 and Lab 1

- Voltage and current: think pressure and flow
- Ohm's Law: resistor current is linear, V = IR
- Capacitors and inductors: energy storage elements
- Capacitors block low frequencies, inductors block high frequencies

Review: Lecture 2 and Lab 2

- Filter: Response depends on the frequency of the input
- Diode: One-way device, current from anode to cathode
- BJT: Current-controlled amplifier
- MOSFET: Voltage-controlled switch
- Op-amp: Performs mathematical operations

Types of filters

6.117 Lecture 3 (IAP 2020)

5

The digital abstraction

Logic gates and flip-flops

Analog vs. digital

Analog

- Continuous
- Sensitive to noise
- Modular design difficult

Digital

- Discrete
- Noise-resistant
- Modular design easy

6.117 Lecture 3 (IAP 2020)

Binary numbers

- Binary: represents numbers as 1's and 0's
- Enables us to perform computations with digital circuits
- Conversion to decimal: nth bit worth 2ⁿ

Bit	7	6	5	4	3	2	1	0		
Value	128	64	32	16	8	4	2	1		
Example 1	1	1	1	1	1	1	1	1	=	255
	128 +	64 +	32 +	16 +	8+	4+	2+	1		(sum)
Example 2	0	1	1	1	0	1	0	1	=	117
	0+	64 +	32 +	16 +	0+	4+	0+	1		(sum)

Combinational logic

- Combinational logic circuit: Output is a function of its inputs, independent of time
- Constructed from basic elements called gates

AND gate

- AND gate: Output is 1 ("high") when all inputs are 1
- Equivalent to "multiplication": denoted by asterisk (*) or period (.)

2-input AND gate truth table

Symbol	Truth Table		
	В	А	Q
A O O	0	0	0
8 Q	0	1	0
2-input AND Gate	1	0	0
	1	1	1
Boolean Expression Q = A.B	Read as A AND B gives Q		

74LS08 Quad 2-input AND gate

OR gate

- OR gate: Output is 1 when at least 1 input is 1
- Equivalent to "addition": denoted by plus sign (+)

2-input OR gate truth table

Symbol	Truth Table		
Ao	В	А	Q
	0	0	0
B • • • • • • • • • • • • • • • • • • •	0	1	1
2-input OR Gate	1	0	1
	1	1	1
Boolean Expression Q = A+B	Read as A OR B gives Q		

74LS32 Quad 2-input OR gate

NOT gate

- NOT gate: single input, output is "inverse" of input
- Denoted by a horizontal line (not $A = \overline{A}$)
- Inverted outputs and inputs denoted by small "bubble"

NOT gate truth table

Symbol	Truth Table		
	А	Q	
A • 1 • Q	0	1	
Inverter or NOT Gate	1	0	
Boolean Expression $Q = \text{not } A \text{ or } \overline{A}$	Read as inverse of A gives Q		

74LS04 Hex NOT gate (inverter)

NAND gate

- NAND gate: Output is 0 when all inputs are 1
- Same as an AND gate followed by an inverter
- NAND gate is "universal": any function can be constructed using only NAND gates

2-input NAND gate truth table

Symbol	Truth Table		
	В	Α	Q
A	0	0	1
8 O Q	0	1	1
2-input NAND Gate	1	0	1
	1	1	0
Boolean Expression $Q = \overline{A.B}$	Read as A AND B gives NOT Q		

74LS00 Quad 2-input NAND gate

NOR gate

- NOR gate: Output is 0 when at least 1 input is 1
- Same as an OR gate followed by an inverter
- NOR gate is "universal": any function can be constructed using only NOR gates

2-input NOR gate truth table

Symbol	Truth Table		
	В	А	Q
AO	0	0	1
B 0 2 1 0 0 Q	0	1	0
2-input NOR Gate	1	0	0
	1	1	0
Boolean Expression $Q = \overline{A+B}$	Read as A OR B gives NOT Q		

74LS02 Quad 2-input NOR gate

XOR gate

- XOR gate: Output is 1 when one (but not 2) input is 1
- XOR = "exclusive OR": output is only 1 when inputs are different from each other

2-input XOR gate truth table

Symbol	Truth Table			
A	В	А	Q	
	0	0	0	
B • Q	0	1	1	
2-input Ex-OR Gate	1	0	1	
	1	1	0	
Boolean Expression Q = A \oplus B	A OR B but NOT BOTH gives Q			

74LS86 Quad 2-input XOR gate

Sequential logic

- Sequential logic: Logic circuit with memory built in
- Output is time-dependent: function of current inputs, previous inputs and previous outputs

SR Flip-flop

- SR Flip-flop: One-bit memory element with 2 inputs
- Set input (S): Active-low input, sets output (Q) to 1
- Reset input (R): Active-low input, sets output (Q) to 0

\overline{S} \overline{S} \overline{S} \overline{S} (set) \overline{S} (set) \overline{S} $\overline{$

SR Flip-flop circuit

SR Flip-flop timing diagram

D Flip-flop

- D Flip-flop: One-bit memory element with 1 input
- Output takes the value of input at the rising edge of CLK
- Output stays constant until next rising edge

Shift register

- Serial data: Bits of data presented sequentially
- Parallel data: Bits of data presented concurrently
- Shift register: Converts data from serial to parallel

Shift register circuit

Shift register timing diagram

Power supplies and regulation

Power supplies

- Goal: Convert AC line voltage (120V RMS) into a lower DC voltage usable with common components
- Process: Convert to lower voltage with transformer, rectify low voltage, apply regulation (optional) and filter
- May be either unregulated (easy) or regulated (less easy)
- May be either linear (inefficient) or switching (efficient)

Transformers

- Transformer: Converts from one AC voltage to another
- Conversion proportional to turn ratio (N_S: N_P)
- Output current calculated by power conservation

Transformers

Rectification

- Rectifiers convert AC voltages to DC
- Can be either half-wave (one diode) or full-wave (four diodes)
- Full-wave rectifiers use both half cycles of the AC input

Linear power supply

Unregulated power supply

- T1 converts AC line voltage into lower voltage AC
- Center tap of T1 placed in middle of secondary winding
- D1, D2 form a full-wave rectifier
- C1 filters output to produce DC

Voltage regulator

- LM78xx series: voltage regulator IC, available from 5V to 24V
- C1, C2, C3 are input and output filter capacitors
- Produces reliable DC voltage from unreliable transformer output

Switching power supply

- Switching power supply: Uses transistors (usually MOSFETs) to switch a transformer/inductor
- Much more efficient than linear power supplies, but extremely complicated to design
- May either step down ("buck") or up ("boost")

VIN Control Circuit to turn ON/OFF the transistor VOUT CONTO CITCUIT TO THE TOTAL TOTAL

Switching "buck" converter

Switching "boost" converter

Supply filtering

- After rectification, supply must be filtered to get DC
- When combined with load and source resistance, output capacitor forms an RC low-pass filter (LPF)
- In general, larger capacitance = low cutoff frequency = smoother output

Design project overview

Project description

- Goal: Understand how simple blocks can be combined to make a complex system
- Function: Infrared (IR) remote-controlled audio amplifier
- Main components: power supply, digital lock, audio amplifier, IR receiver, IR transmitter (separate PCB)
- IR receiver/transmitter are optional, only if time allows

Block diagram

Project schedule

- Lab 3 (1/22 1/23): Power supply and digital lock
- Lab 4 (1/27 1/28): Audio amplifier
- Lab 5 (1/29 1/30): IR receiver/transmitter (optional), finish any remaining sections

 Project not graded for completeness, only required to attend all lab sessions

Receiver PCB

Receiver PCB

Transmitter PCB

Transmitter PCB

Lab 3 overview

LM7805 Voltage regulator

- LM7805: Integrated linear voltage regulator
- Conveniently provides supply regulation in one package
- Use input/output capacitors to avoid oscillation

Power supply circuit

- Function: Generates ±6V and +5V power supplies
- Uses non-inverting op-amp with push-pull output to generate floating ground
- Uses LM7805 to generate regulated +5V supply
- Contains protection diode to prevent damage

Power supply components

Digital lock circuit

- Function: "Unlock" amplifier when passcode is sent
- Uses shift register to keep track of received data
- Four-bit passcode hardcoded in via jumper wires
- Selectable input source: buttons or IR receiver (optional)

Digital lock components

Assembly

- Fold leads under PCB so they don't fall out
- Solder from short to tall components
- Attach power transistors with screws/nuts and thermal pad before soldering
- Ask someone to check your PCB before soldering

Soldering technique

- Apply the soldering iron to the component first, then feed the solder into the joint
- Some components take longer to heat than others

Soldering technique

Do: Touch the iron to the component leg and metal ring at the same time.

Do: While continuing to hold the iron in contact with the leg and metal ring, feed solder into the joint.

Don't: Glob the solder straight onto the iron and try to apply the solder with the iron.

Do: Use a sponge to clean your iron whenever black oxidization builds up on the tip.

Soldering video

