TOTAL:/10)
-----------	---

ECE 651: Electronic Design II

Homework #4

Due: Wednesday, October 18th, 2023

Student Name:	

Note: Please use this as a cover page for your paper submission.

Build the following 2-stage differential amplifier on Multisim and simulate the circuit to find the overall voltage gain (A_v) . For input signal (v_{id}) , use a sinusoidal voltage source with a frequency of 1 kHz and a voltage amplitude of 1 mV. For BJTs, use the NPN silicon transistor (model: 2N2222A) for Q_1 and Q_2 , and use PNP transistor (2N3906) for Q_3 .

Figure 1. A 2-Stage Differential Amplifier.

- (a) Apply a differential input to v_1 (= + v_{id} /2) and v_2 (= v_{id} /2). Use the oscilloscope to display both input and output voltage waveforms for: (a) stage #1 only; and (b) stage #1 and #2 combined. Make sure to use different colors for the plots so that the two waveforms are distinguishable. Label each waveform accordingly. Use the waveforms to estimate the overall voltage gain ($A_{dm} = v_o/v_{id}$).
- (b) Apply a common-mode input to both v_1 and v_2 . Use the oscilloscope to display both input and output voltage waveforms for: (a) stage #1 only; and (b) stage #1 and #2 combined. Make sure to use different colors for the plots so that the two waveforms are

- distinguishable. Use the waveforms to estimate the overall common-mode voltage gain $(A_{cm} = v_o/v_{ic})$.
- (c) Inject a noise signal into the differential input using a Thermal Noise Voltage Source. First, display the noisy differential inputs (v₁ and v₂) on oscilloscope to confirm that the same noise has been added to both inputs. Then, use the oscilloscope to display both the input signal (v₁) and output (v_C) voltage waveforms for: (a) stage #1 only; and (b) stage #1 and #2 combined. Make sure to use different colors for the plots so that the two waveforms are distinguishable.
- (d) Adjust the value of the 20 k Ω resistor at Stage #2 so that the output waveform is centered at 0 V. Display the oscilloscope waveforms to support your answer.
- (e) What is the maximum amplitude of the input signal v_{id} (at 1 kHz) that can be amplified without signal distortion at the output (v_o) ? Use the oscilloscope waveforms to support your answer.

Note:

- All plots and waveforms must be properly labeled with units provided.
- For submission, convert all your worksheets (including this cover page with your name, all handwritten work, schematics, plots, etc.) into a PDF format and submit electronically on Canvas.
- Also, submit your Multisim files (file extension: .ms14) along with your PDF worksheets.

a.a.

a.b.

a.c.

 $v_{id} = 1mV$ $v_{out} = 14.114V$ $A_{dm} = 14114$

b.a.

b.b.

b.c.

 $V_{ci} = 1 mV \qquad \quad v_{out} = 14.114 V \quad A_{cm} = 14114$

c.a.

c.b.

c.c.

d.

e.

