PARCOURS: LAGE-All2

SEMESTRE: 3

AU: 2020-2021

Abdelbacet Mhamdi

Docteur-Ingénieur en Génie Électrique

Technologue en GE à l'ISET de Bizerte

ÉLECTRONIQUE ANALOGIQUE

FASCICULE DE TRAVAUX PRATIQUES

Institut Supérieur des Études Technologiques de Bizerte

Disponible à l'adresse : https ://github.com/a-mhamdi/isetbz/

 CODE D'HONNEUR	

THE UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
Department of Physics and Astronomy

http://physics.unc.edu/undergraduate-program/labs/general-info/

"During this course, you will be working with one or more partners with whom you may discuss any points concerning laboratory work. However, you must write your lab report, in your own words.

Lab reports that contain identical language are not acceptable, so do not copy your lab partner's writing.

If there is a problem with your data, include an explanation in your report. Recognition of a mistake and a well-reasoned explanation is more important than having high-quality data, and will be rewarded accordingly by your instructor. A lab report containing data that is inconsistent with the original data sheet will be considered a violation of the Honor Code.

Falsification of data or plagiarism of a report will result in prosecution of the offender(s) under the University Honor Code.

On your first lab report you must write out the entire honor pledge:

The work presented in this report is my own, and the data was obtained by my lab partner and me during the lab period.

On future reports, you may simply write <u>"Laboratory Honor Pledge"</u> and sign your name."

Table des matières

4	Filtre actif	27
3	Générateur de fonctions	23
2	ALI en régime de saturation	17
1	ALI en regime lineaire	1

1 ALI en régime linéaire

	1	2	3
Étudiant :			
Note:	/20	/20	/20

Objectifs

- ★ Identifier les montages de base d'un ALI;
- ★ Déterminer les limites d'application de chaque montage;
- ★ Savoir les précautions d'utilisation.

Matériel utilisé (À remplir à la fin de la manipulation.)

Appareil/Composant	Référence	Quantité
Alimentation stabilisée		
GBF		
Oscilloscope		
Multimètre		
ALI		
Résistance		
Condensateur		

- Les deux alimentations symétriques $\pm V_{cc}$ sont omises sur les schémas, mais elles sont présentes toujours;
- Il faut allumer en premier et éteindre en dernier ces deux sources d'alimentation.

Montage № 1:

$$\begin{array}{ccc} v_{\ell}(t) &=& 2\sin{(100\pi t)} \\ \hline R &=& 1\,k\Omega \\ \hline \pm V_{\rm cc} &=& \pm 15\,V \end{array}$$

1. ALI en régime linéaire	2
Donner l'expression du potentiel v^- .	
Donner l'expression du potentiel v^+ .	
Donner rexpression du potentier v :	
Déterminer l'expression de la sortie ν_s .	
Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessou	s. Visualiser, en corres
pondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.	

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités sec/div et volts/div pour chaque canal.

Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Varier d'abord l'amplitude puis la fréquence de la tension v_e et commenter les résultats trouvés. En déduire la

fonction réalisée par ce montage.	
Montage № 2 :	
$\begin{array}{ccc} \hline \\ \nu_e(t) &=& 2\sin\left(100\pi t\right) \\ \hline \pm V_{\rm CC} &=& \pm 15 V \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} R_1 \ = \ 2.2k\Omega \end{bmatrix} \& \begin{bmatrix} R_2 \ = \ 2.2k\Omega \end{bmatrix}$	$v_e(t) \circ - v_s(t)$
Quelle valeur doit prendre la résistance R _p . Justifier la 1	réponse.
Déterminer l'expression de la sortie v_s .	

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités sec/div et volts/div.

Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Varier d'abord la tension v_e , puis changer sa forme d'onde. Comparer et commenter les résultats trouvés et en

déduire la fonction réalisée par ce montage.	
Montage N° 3 :	
	$v_e(t) \circ \qquad \qquad$
$\begin{array}{ccc} v_{e}(t) & = & 2\sin\left(100\pi t\right) \\ \pm V_{cc} & = & \pm 15 V \end{array}$	$R_p > v_+$
Déterminer l'expression de la sortie ν_s en fon	$ = \frac{1}{2} $ ction de v_e , R_1 et R_2 .
Choisir un jeu de résistances qui permet d'av	

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en corres-

pondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités sec/div et volts/div.

Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Varier d'abord la tension v_e , puis changer sa forme d'onde. Comparer et commenter les résultats trouvés et en

déduire la fonction réalisée par ce montage.
Montage № 4 :
$v_{e_1}(t) \circ - \bigvee_{i_1}^{R_1} \stackrel{i_1}{\longleftarrow} \bigvee_{i_1}^{R}$
$v_{e_1}(t) = 0.5 V$ $v_{e_1}(t) = 2 \sin(100\pi t)$
$\begin{array}{ccc} v_{e_2}(t) &=& 2\sin{(100\pi t)} \\ \pm V_{cc} &=& \pm 15 V \end{array}$
$r_2 \geqslant v_+$

En appliquant le théorème de Millman, donner l'expression du potentiel v^- .
En appliquant la formule du diviseur de tension, donner l'expression du potentiel ${\it v}^+$.
Déterminer l'expression de la sortie v_s en fonction de v_{e_1} , de v_{e_2} et des éléments du montage.

Choisir des valeurs des résistances du montage qui permettent d'avoir la sortie :

$$v_s(t) = v_{e_2}(t) - v_{e_1}(t).$$
 (1.1)

.....

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_{e_2} et v_s sur deux périodes.

L'entrée v_{e_2} et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités sec/div et volts/div.

Commenter les résultats trouvés et en déduire la fonction réalisée par ce montage.

.....

Déterminer l'expression de la sortie $\nu_{\rm S}$.

......

I. ALI en ré	gime li	néaire	2												
racer théor	riauem	ent le	s form	es d'o	ndes d	le l'ent	rée va	et de	la sort	ie va F	-n indi	iauer (lairer	nent to	ous les re
eignement															, 43 163 161
						• • • • •									
	<u> </u>					· · · · · · · · · · · · · · · · · · ·									
	<u> </u>	· · · ·						:			: : :	:	· · · · · · · · · · · · · ·		
	<u>-</u>		: :	: : :	: : :	: : :		: : : :			: : :	: : :	· · ·	:	
			•	•											
				: : : :		: 	: 								
	<u>:</u>	· · ·				:	· · · ·	:			:	:	· · ·		
	<u>.</u>					:									
	<u>-</u> :	· · · ·	:	: :	:	· · · ·	:	· · · ·			: :		: : :		
	<u>.</u>	:		:		:	· · ·	:			:	:	:		

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

Temps (msec)

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités sec/div et volts/div.

Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Changer la tension v_e , en un signal sinusoïdal de même période. Augmenter par la suite progressivement la fré-

	rage.
Montage i	1º 6 :
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$v_e(t)$ est un signal carré $\begin{cases} T = 20 \text{ msec} \\ \delta = 50 \% \end{cases}$
	$R = 2.2 k\Omega \& C = 10 \mu F$
	Le signal d'entrée est centré p/r à zéro.
Sii	A FRÉQUENCE DE v_e EST TRÈS INFÉRIEURE À $\frac{1}{2\pi RC}$, ON INSÈRE UNE RÉSISTANCE R' PARALLÈLE À C .
~	l'expression de la sortie ν_s .
	riquement les formes d'ondes de l'entrée v_e et de la sortie v_s . En indiquer clairement tous les ren-

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités sec/div et volts/div.

Changer la tension v_e , en un signal sinusoïdal de même période. Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Augmenter par la suite progressivement la

1	ΑΠ	en	régim	ne lir	néair
	\neg	CII	ICEIII	10 111	ıcanı

- 1	

fréque lisée p		phasa	age. Co	ompa	rer et	com	ment	er le:	s résu	ıltats	trou	vés e	ten	dédu	ire la	a fon	ctio	n réa	L-

2 ALI en régime de saturation

	1)	2	3
Étudiant :			
Note:	/20	/20	/20

Objectifs

- ★ Identifier rapidement les montages en mode non linéaire d'un AO;
- ★ Analyser un comparateur simple et à hystérisis;
- ★ Tracer la caractéristique de transfert.

Matériel utilisé (À remplir à la fin de la manipulation.)

Appareil/Composant	Référence	Quantité
Alimentation stabilisée		
GBF		
Oscilloscope		
Multimètre		
ALI		
Résistance		
Condensateur		

- Les deux alimentations symétriques ±V_{cc} sont omises sur les schémas, mais elles sont présentes toujours;
- Il faut allumer en premier et éteindre en dernier ces deux sources d'alimentation.

Montage №7:

$$\begin{array}{ccc} v_e(t) &=& 2\sin\left(100\pi t\right) \\ \hline v_r(t) &=& 0.5 \, V \\ \pm V_{\rm CC} &=& \pm 15 \, V \\ \hline R &=& 10 \, k\Omega \end{array}$$

5

6

7

8

- +ν_{cc} μΑ741

OUT

ON₂

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités sec/div et volts/div.

5

6

8

Passer en mode **XY** de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Modifier la valeur de la tension v_r et commenter les résultats trouvés. En déduire la fonction réalisée par ce montage.

.....

.....

.....

Montage № 8:

$$\begin{array}{ccc} v_e(t) &=& 7 \sin{(100\pi t)} \\ \hline v_r(t) &=& 1 V \\ \pm V_{\text{CC}} &=& \pm 15 V \\ \hline R_1 &=& 10 \, k\Omega \end{array} & & & & & \\ \hline R_2 &=& 22 \, k\Omega \\ \hline \end{array}$$

Donner l'expression de la tension v^- .

.....

Donner l'expression de la tension v^+ .

.....

2. ALI en	regime d	le satu	ration												20
Détermin	er la sort	ie v_s .													
Tracer thé	éoriquem	ent la	caract	éristic	que v _s	= f(v)	v _e) en	précis	ant les	deux	seuils	de ba	sculen	nent.	
	<u>.</u>														
	<u>.</u>				:	:	:		:						
	<u>.</u>														
	<u>.</u>														
	<u>.</u>														
	<u>.</u>						:		:				: : :		
	<u>.</u>								:						
	<u>.</u>					<u>:</u>									
	<u>.</u>														
	-			: : :		1									
Dáta					·		::			· :				'	
Détermin	ier theori	queme	entia	vaieur	au ra	pport	cycliqu	ie de i	a tensi	ion ae	sortie	•			
			• • • • •					••••		• • • • •		••••			
Câbler le s pondance										r l'ima	ge ci-c	dessou	ıs. Visı	ualiser, e	en corres-
					·	3		•							

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités sec/div et volts/div.

Passer en mode \mathbf{XY} de l'oscilloscope et visualiser la tension de sortie v_s en fonction la tension d'entrée v_e . Varier

2. A	Llen	régime	de	saturation
------	------	--------	----	------------

la t	er	ns	ic	n	ν	r	et	С	OI	m	n	ne	er	nt	e	r	le	!S	r	é	Sι	اد	ta	ai	ts	t	r	0	u	V	é	S.	Е	Ēr	1	d	é	d	u	ii	e	!	a	f	01	n	ct	ic	or	ו ו	ré	à	lli	S	é	9	p	aı	۲(æ	1 9	n	0	n	ta	ą	ge	<u>)</u> .					
														•					•																																																				 	 •	
																			•																																																				 	 •	
																			•																													•																							 		
				•				•									•		•										•																			•										•									•						

3 Générateur de fonctions

Objectifs

- ★ Savoir le principe de synthèse d'un circuit oscillant;
- * Vérifier expérimentalement les résultats théoriques.

Matériel utilisé (À remplir à la fin de la manipulation.)

Appareil/Composant	Référence	Quantité
Alimentation stabilisée		
GBF		
Oscilloscope		
Multimètre		
ALI		
Résistance		
Condensateur		

- Les deux alimentations symétriques ±V_{cc} sont omises sur les schémas, mais elles sont présentes toujours;
- Il faut allumer en premier et éteindre en dernier ces deux sources d'alimentation.

3. Générateur de fonctions 24

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_{s_1} et v_{s_2} sur deux périodes.

3. Générateur de fonctions 25

Montrer que la période de chaque signal est :

$$T = 4\frac{r_2}{r_1}RC \tag{3.1}$$

3. Générateur de fonctions	26
	• • • • • • • • • • • • • • • • • • • •

Objectifs

- ★ Faire l'analyse d'un filtre actif;
- ★ Tracer les diagrammes de Bode.

Matériel utilisé (À remplir à la fin de la manipulation.)

Appareil/Composant	Référence	Quantité
Alimentation stabilisée		
GBF		
Oscilloscope		
Multimètre		
ALI		
Résistance		
Condensateur		

- Les deux alimentations symétriques ±V_{cc} sont omises sur les schémas, mais elles sont présentes toujours;
- Il faut allumer en premier et éteindre en dernier ces deux sources d'alimentation.

Démontrer que la transmittance harmonique s'écrit comme suit

$$\mathcal{H}(j\omega) = \frac{\underline{\mathcal{V}}_{s}(j\omega)}{\underline{\mathcal{V}}_{e}(j\omega)}$$

$$= \frac{R_{2}}{R_{1} + R_{2}} \frac{R + R'}{R} \frac{1 + j \frac{RR'C}{R + R'}\omega}{1 + jR'C\omega}$$
(4.1)

Mettre l'expression de ${\mathcal H}$ sous la forme suivante

Identifier K et τ .

$$\mathcal{H}(j\omega) = K \frac{1 + \frac{1}{11} j\tau\omega}{1 + j\tau\omega}. \tag{4.2}$$

Câbler le schéma sur la plaque d'essai et reproduire votre travail sur l'image ci-dessous. Visualiser, en correspondance sur l'oscilloscope, les deux tensions v_e et v_s sur deux périodes.

L'entrée v_e et la sortie v_s sont appliquées respectivement aux canaux 1 & 2. Tracer leurs allures sur l'écran de l'oscilloscope suivant et indiquer les sensibilités sec/div et volts/div.

nent la fréquence	de l'entrée et co	ommenter les v	variations que	subit la sortie	v_s .
AC SWEEP du gé	nérateur pour v	arier la fréque			
nction de la tensic	on d'entrée v _e . Co	ommenter les	résultats trouv	és.	
	AC SWEEP du gé arithmique, et ce p ode AC SWEEP du nction de la tensio	AC SWEEP du générateur pour varithmique, et ce pour une durée contraine du générateur, et procession de la tension d'entrée ve. Co	AC SWEEP du générateur pour varier la fréque arithmique, et ce pour une durée de 10 sec. ode AC SWEEP du générateur, et passer en mod nction de la tension d'entrée v _e . Commenter les	AC SWEEP du générateur pour varier la fréquence de l'entré trithmique, et ce pour une durée de 10 sec. ode AC SWEEP du générateur, et passer en mode XY de l'oscill nction de la tension d'entrée v _e . Commenter les résultats trouv	AC SWEEP du générateur pour varier la fréquence de l'entrée de 1 mHz à arithmique, et ce pour une durée de 10 sec. ode AC SWEEP du générateur, et passer en mode XY de l'oscilloscope et visu anction de la tension d'entrée v _e . Commenter les résultats trouvés.

Remplir la table suivante et tracer les diagrammes de Bode.

Fréquence en Hz	Pulsation en rad/sec	Gain en tension	Gain en dB	Déphasage en deg
F	$\omega = 2\pi F$	$\left \mathcal{H}(j\omega)\right = \frac{v_{s \max}}{v_{e \max}}$	$\mathcal{H}_{ dB} = 20 \log_{10} (\mathcal{H}(j\omega))$	$\underline{/\mathcal{H}} = \varphi_s - \varphi_e$
10 ⁻³		VIIIAA		
10-2				
0.1				
0.5				
0.8				
1				
2				
5				
8				
10				
12				
15				
100				
1000				

 ω (rad/sec)

Le présent fascicule s'adresse aux étudiants de la spécialité Génie Électrique, parcours Automatisme & Informatique Industrielle.

Nous traitons essentiellement les parties suivantes :

- ① Régime linéaire d'un ALI; suiveur, non inverseur, inverseur, soustracteur, dérivateur & intégrateur.
- 2 Régime de saturation d'un ALI; comparateur simple & trigger de Schmitt.
- 3 Générateur de fonctions; carrée, triangulaire & sinusoïdale
- 4 Filtre actif.

ampli-op en régime linéaire; ampli-op en régime de saturation; générateur de fonctions; filtrage actif