REVIEWING CONCEPTS

- 1. Explain each of the following in terms of Dalton's atomic theory:
 - a. the law of conservation of mass
 - b. the law of definite proportions
 - c. the law of multiple proportions (3-1)
- 2. According to the law of conservation of mass, if element A has an atomic mass of 2 mass units and element B has an atomic mass of 3 mass units, what mass would be expected for compound AB? for compound A₂B₃? (3-1)
- 3. a. What is an atom?
 - b. What two regions make up all atoms? (3-2)
- 4. Describe at least four properties of electrons that were determined based on the experiments of Thomson and Millikan (3-2)
- 5. Summarize Rutherford's model of an atom, and explain how he developed this model based on the results of his famous gold-foil experiment. (3-2)
- **6.** What one number identifies an element? (3-2)
- **7.** a. What are isotopes?
 - b. How are the isotopes of a particular element alike?
 - c. How are they different? (3-3)
- 8. Copy and complete the following table concerning the three isotopes of silicon, Si. (Hint: See Sample Problem 3-1.) (3-3)

Isotope	Number of protons	Number of electrons	Number of neutrons
Si-28			
Si-29			
Si-30			1. () (12.2)

- 9. a. What is the atomic number of an element?
 - b. What is the mass number of an isotope?
 - c. In the nuclear symbol for deuterium, ${}_{1}^{2}H$, identify the atomic number and the mass number. (3-3)
- 10. What is a nuclide? (3-3)
- 11. Use the periodic table and the information that follows to write the hyphen notation for each isotope described.

- a. atomic number = 2, mass number = 4
- b. atomic number = 8, mass number = 16
- c. atomic number = 19, mass number = 39 (3-3)
- 12. a. What nuclide is used as the standard in the relative scale for atomic masses?
 - b. What is its assigned atomic mass? (3-3)
- 13. What is the atomic mass of an atom if its mass is approximately equal to the following?
 - a. $\frac{1}{3}$ that of carbon-12
 - b. 4.5 times as much as carbon-12 (3-3)
- **14.** a. What is the definition of a mole?
 - b. What is the abbreviation for mole?
 - c. How many particles are in one mole?
 - d. What name is given to the number of particles in a mole? (3-3)
- 15. a. What is the molar mass of an element?
 - b. To two decimal places, write the molar masses of carbon, neon, iron, and uranium. (3-3)
- **16.** Suppose you have a sample of an element.
 - a. How is the mass in grams of the element converted to amount in moles?
 - b. How is the mass in grams of the element converted to number of atoms? (3-3)

PROBLEMS

The Mole and Molar Mass

- 17. What is the mass in grams of each of the following? (Hint: See Sample Problems 3-2 and 3-5.)
 - a. 1.00 mol Li
- d. 1.00 molar mass Fe
- b. 1.00 mol Al
- e. 6.022×10^{23} atoms C
- c. 1.00 molar mass Ca f. 6.022×10^{23} atoms Ag
- **18.** How many moles of atoms are there in each of the following? (Hint: See Sample Problems 3-3 and 3-4.)
 - a. 6.022×10^{23} atoms Ne
- c. 3.25×10^5 g Pb
- b. 3.011×10^{23} atoms Mg
- d. 4.50×10^{-12} g O

Relative Atomic Mass

19. Three isotopes of argon occur in nature $-\frac{36}{18}$ Ar, $^{38}_{18}\mathrm{Ar},$ and $^{40}_{18}\mathrm{Ar}.$ Calculate the average atomic mass of argon to two decimal places, given the following relative atomic masses and abundances of each of the isotopes: argon-36 (35.97 amu; 0.337%), argon-38 (37.96 amu; 0.063%), and argon-40 (39.96 amu; 99.600%).