Inference in parametric models with many L-moments

Luis A. F. Alvarez

Advisors: Pedro A. Morettin and Chang Chiann

IME-USP

November 11, 2020

What are L-moments?

- L-moments are linear combinations of order statistics.
- For a random variable Y with quantile function Q_Y , Hosking (1990) defines the r-th L-moment as:

$$\lambda_r := \int_0^1 Q_Y(u) P_{r-1}^*(u) du$$

- $P_r^*(u) = \sum_{k=0}^r (-1)^{r-k} {r \choose k} {r+k \choose k} u^k$ are shifted Legendre polynomials.
- L-moments provide "robust" alternatives to standard moments.
 - For r = 2, $\lambda_2 = \mathbb{E}|Y_1 Y_2|$, where Y_1 and Y_2 are independent copies of Y.
 - In contrast, $\mathbb{V}[Y] = \mathbb{E}[(Y_1 Y_2)^2]$.

Estimation of parametric models with L-moments

- Estimation of parametric models by matching L-moments has been shown to outperform MLE in finite samples from several distributions (Hosking et al., 1985; Hosking and Wallis, 1987; Hosking, 1990; Broniatowski and Decurninge, 2016).
- Let $Y_1, Y_2 ... Y_T$ be a sample from F, where $F = F_{\theta_0}$ for some $F_{\theta_0} \in \{F_\theta : \theta \in \Theta\}$ and $\Theta \subseteq \mathbb{R}^d$.
 - $I_r(\theta)$: r-th L-moment of F_{θ} .
 - \hat{I}_r : sample estimator of the *r*-th L-moment.
- Conventional approach is to estimate θ_0 by solving:

$$\begin{bmatrix} I_1(\theta) \\ \vdots \\ I_{\boldsymbol{\sigma}}(\theta) \end{bmatrix} = \begin{bmatrix} \hat{I}_1 \\ \vdots \\ \hat{I}_{\boldsymbol{\sigma}} \end{bmatrix}$$

Improving upon the conventional approach

- Why not increase the number of L-moments used in estimation?
 - By increasing the number of L-moments, and weighting these properly, may achieve efficiency gains over standard approach.
 - Could construct GMM-style estimator that uses the first L L-moments in estimation and weighting matrix W^L :

$$\hat{\theta} \in \operatorname{argmin}_{\theta \in \Theta} \left[I_{1}(\theta) - \hat{I}_{1} \quad \cdots \quad I_{L}(\theta) - \hat{I}_{L} \right] \times W^{L} \times \begin{bmatrix} I_{1}(\theta) - I_{1}(\theta) \\ \vdots \\ I_{L}(\theta) - \hat{I}_{L}(\theta) \end{bmatrix}$$

- From GMM literature, we know that increasing L "too much" with fixed T may lead to biases (Newey and Smith, 2004) $\implies L$ must be chosen "properly".
- By appropriately choosing weights and varying L with T, may be possible that there is no asymptotic efficiency loss over MLE as $T \to \infty$.
 - L-moments characterise distributions with finite first moments (Hosking, 1990).

This thesis

- In this thesis, we propose to study the GMM-style L-moment estimator in a setting where $T, L \to \infty$.
 - Sufficient rates for inferential procedures to work.
 - Optimal weighting scheme of L-moments.
 - Study asymptotic (in)efficiency of L-moment estimator.
- We also propose to derive automatic rules for selecting the number of L-moments *L*.
 - Minimise higher-order expansions of MSE of L-moment estimator.
 - Similar to existing approaches in GMM literature (Donald and Newey, 2001).
- We also suggest an extension of the methodology to conditional models.
 - Application: estimation of conditional Value-at-Risk models.

Outline

Introduction

Asymptotic theory of the "many" L-moments estimator

Monte Carlo Exercise

Next steps

Setup

- Let $Y_1, Y_2 ... Y_T$ be a sample from F, where $F = F_{\theta_0}$ for some $F_{\theta_0} \in \{F_\theta : \theta \in \Theta\}$ and $\Theta \subseteq \mathbb{R}^d$.
- We consider the estimator:

$$\hat{\theta} \in \arg\inf_{\theta \in \Theta} \left[\int_{\underline{\rho}}^{\bar{\rho}} \left(\hat{Q}_{Y}(u) - Q_{Y}(u|\theta) \right) \mathbf{P}^{L}(u)' du \right] \mathbf{W}^{L} \left[\int_{\underline{\rho}}^{\bar{\rho}} \left(\hat{Q}_{Y}(u) - Q_{Y}(u|\theta) \right) \mathbf{P}^{L}(u) du \right]$$

- \hat{Q}_{Y} is the empirical quantile function.
- $Q_{V}(\cdot|\theta)$ is the quantile function of F_{θ} .
- $\mathbf{P}^{L}(u) := [P_1(u), P_2(u) \dots P_L(u)]'$ is a vector of L quantile weighting functions.
- W^L is a (possibly estimated) $L \times L$ weighting matrix.
- $0 \le p < \bar{p} \le 1$ are fixed trimming constants.
- L-moment-based estimator with "plug-in" sample estimator of L-moments can be obtained by setting $\mathbf{P}^L(u) = [P_0^*(u), \dots P_{I-1}^*(u)]', p = 0$ and $\bar{p} = 1$.

Consistency: assumptions

Assumption 1. $\sup_{u \in (p,\bar{p})} |\hat{Q}_Y(u) - Q_Y(u)| \stackrel{P}{\to} 0.$

Assumption 2. The functions $\{P_l : l \in \mathbb{N}\}$ constitute an orthonormal sequence on $L^2[0, 1]$.

Assumption 3. There exists a sequence of nonstochastic symmetric positive semidefinite matrices Ω^L such that, as $T, L \to \infty$, $\|W^L - \Omega^L\|_2 = o_P(1)$; $\|\Omega^L\|_2 = O(1)$.

Assumption 4. For each $\epsilon > 0$:

$$\liminf_{L\to\infty}\inf_{\theta\in\Theta:\|\theta-\theta_0\|_2\geq\varepsilon}\left[\int_{\underline{\rho}}^{\overline{\rho}}\left(Q_Y(u|\theta)-Q_Y(u|\theta_0)\right)\mathbf{P}^L(u)'du\right]\Omega^L\left[\int_{\underline{\rho}}^{\overline{\rho}}\left(Q_Y(u|\theta)-Q_Y(u|\theta_0)\right)\mathbf{P}^L(u)du\right]>0.$$

Moreover, we require that $\sup_{\theta \in \Theta} \|Q_Y(\cdot|\theta)\mathbb{1}_{[p,\bar{p}]}\|_{L^2[0,1]} < \infty$.

Consistency: discussion of assumptions

- Assumption 1 requires uniform consistency of the quantile process. This is known to be satisfied in a variety of settings, ranging from iid to weakly dependent data.
 - In our proofs, it would be sufficient to consider convergence in L^2 (Kaji, 2019).
- Assumption 2 is satisfied by shifted Legendre polynomials and orthonormal bases.
- Assumption 3 restricts the range of admissible weights. Trivially satisfied by $W^L = \mathbb{I}_L$.
- Part 1 of Assumption 4 is an identifiability condition.
 - If Θ is compact, $\theta \mapsto \|Q(\cdot|\theta)\|_{L^2[0,1]}$ is continuous, $\underline{p} = 0$, $\bar{p} = 1$, the $\{P_I\}_I$ constitute an orthonormal basis in $L^2[0,1]$ and $W^L = \mathbb{I}_L$, then part 1 is equivalent to identifiability of the parametric family $\{F_\theta\}_{\theta}$.
- Part 2 of Assumption 4 can be obtained by assuming compactness of Θ and continuity of $(u, \theta) \mapsto Q_Y(u|\theta)$.

Consistency: statement of result

Proposition 1

Suppose Assumptions 1-4 hold. Then, as $T, L \to \infty, \hat{\theta} \stackrel{P}{\to} \theta_0$.

Asymptotic linear representation: outline of proof

- In deriving an asymptotic linear representation of the estimator, we follow the usual argument in the standard proof for M-estimators (Newey and McFadden, 1994), but with additional steps to account for a growing number of moments ($L \to \infty$).
- Define $h^L(\theta) \coloneqq \int_p^{\bar{p}} \left(\hat{Q}_Y(u) Q_Y(u|\theta)\right) \mathbf{P}^L(u) du$.
 - If h is differentiable on $int(\Theta)$ and $\theta_0 \in int(\Theta)$, then, using that $\hat{\theta} \stackrel{P}{\to} \theta_0$, we get, with probability approaching 1:

$$\nabla_{\theta'} h^L(\hat{\theta})' W^L h^L(\hat{\theta}) = 0.$$

- Idea is then to perform a line-by-line mean-value expansion of $h^L(\hat{\theta})$ around $h^L(\theta_0)$, and "solve for" $\sqrt{T}(\hat{\theta} \theta_0)$.
 - Since L grows, we require additional assumptions to bound the estimation error in $\nabla_{\theta'} h^L(\hat{\theta})$.
 - We will also need to bound the eigenvalues of $\nabla_{\theta'} h^L(\theta_0)' \Omega^L \nabla_{\theta'} h^L(\theta_0)$ uniformly from below to invert $\nabla_{\theta'} h^L(\hat{\theta})' W^L \nabla_{\theta'} h^L(\hat{\theta})$ with high probability.

Asymptotic linear representation: assumptions

Assumption 5. $\theta_0 \in \operatorname{int}(\Theta_0)$. $Q_Y(u|\theta)$ is continuously differentiable on $\operatorname{int}(\Theta)$, uniformly in $u \in [\underline{p}, \bar{p}]$. Moreover, for each $\theta \in \Theta$, $\nabla_{\theta'}Q_Y(\cdot|\theta)$ is square integrable on $[\underline{p}, \bar{p}]$.

Assumption 6. $\sqrt{T}(\hat{Q}_Y(\cdot) - Q_Y(\cdot))$ converges weakly in $L^{\infty}(p, \overline{p})$.

Assumption 7. $Q_Y(u|\theta)$ is **twice** continuously differentiable on $\operatorname{int}(\Theta)$, uniformly in $u \in [\underline{p}, \bar{p}]$. For each $\theta \in \Theta$, the Hessian $\nabla_{\theta\theta'}Q_Y(u|\cdot)$ is bounded in a neighbourhood of θ , uniformly in $u \in [p, \bar{p}]$.

Assumption 8. The smallest eigenvalue of $\nabla_{\theta'}h^L(\theta_0)'\Omega^L\nabla_{\theta'}h^L(\theta_0)$ is bounded away from 0, uniformly in L.

Assumption 9. $T, L \to \infty$ with $\frac{L}{T} \to 0$.

Asymptotic linear representation: discussion of assumptions

- Assumptions 5 and 7 are needed for the mean-value expansions used in the proof.
- Assumption 6 is weak convergence (in $L^{\infty}(p,\bar{p})$) of the empirical quantile process.
 - It would be sufficient to assume $\|\sqrt{T}(Q_Y(\cdot) \hat{Q}_Y(\cdot))\mathbb{1}_{[\underline{p},\bar{p}]}\|_{L^2[0,1]}^2 = O_P(1)$, which is implied by weak convergence in L^2 .
- Assumption 8 is required to invert $\nabla_{\theta'} h^L(\hat{\theta})' W^L \nabla_{\theta'} h^L(\hat{\theta})$ with high probability.
 - It is related to the rank condition used in the proof of asymptotic normality of M-estimators, which is known to be equivalent to a local identification condition under rank-regularity assumptions (Rothenberg, 1971).
- Assumption 9 is a rate requirement on the growth of *L*.
 - It is used to control the estimation error in $\nabla_{\theta'} h^L(\hat{\theta})$.
 - The rate condition is sufficient, but by no means necessary.
 - It may be possible to weaken this assumption, possibly at the cost of more stringent assumptions.

Asymptotic linear representation: statement of result

Proposition 2

Suppose Assumptions 1-9 hold. Then the estimator admits the asymptotic linear representation:

$$\sqrt{T}(\hat{\theta} - \theta_0) = -(\nabla_{\theta'} h^L(\theta_0)' \Omega^L \nabla_{\theta'} h^L(\theta_0))^{-1} \nabla_{\theta'}' h^L(\theta_0)' \Omega^L(\sqrt{T} h^L(\theta_0)) + o_P(1)$$

Asymptotic approximation to the distribution

- We would like to provide an approximation to the distribution of the leading term in the asymptotic linear representation.
- Problem: growing dimensionality ($L \to \infty$) makes it difficult to establish weak convergence of this term.
 - We cannot work directly with $\sqrt{T}h^{L}(\theta_{0})$, as we would do in the fixed-L case.
 - Could try to apply a CLT of linear order statistics to $\nabla_{\theta_0} h^L(\theta_0)' \Omega^L(\sqrt{T} h^L(\theta_0))$.
 - Not trivial to analyse and (appears) restricted to the iid case.
 - Not easy to extend to conditional models (later on).
- Our approach: work with a strong approximation concept.
 - Idea is to define, in the same probability space, a sequence of rvs X_T , $T \in \mathbb{N}$, with known distribution (possibly up to an estimable term) that "approximates" $\sqrt{T}h^L(\theta_0)$.
 - This approach to inference has been successfully applied in other areas (e.g. Belloni et al. (2019) in sieve estimation of conditional quantile models).

Asymptotic approximation: Gaussian approximation

- One possibility is to work with strong approximations of the empirical quantile process $\sqrt{T}(\hat{Q}_{Y}(\cdot) Q_{Y}(\cdot))$ to a Gaussian process.
- Under some conditions, it is possible to define a sequence of Brownian bridges B_T , $T \in \mathbb{N}$; with known (up to an estimable term) covariance kernel Γ , such that:

$$\sup_{p < u < \bar{p}} |\sqrt{T} (\hat{Q}_{Y}(u) - Q_{Y}(u)) - f(Q_{Y}(u))^{-1} B_{T}(u)| = o_{P}(1)$$

- f is the Lebesgue density of Y.
- in the project, we reproduce results in the literature for the iid (Csorgo and Revesz, 1978) and strictly stationary strongly mixing case (Fotopoulos and Ahn, 1994; Yoshihara, 1995).
- Using this strong approximation, we are able to show that:

$$\sqrt{T}(\hat{\theta} - \theta_0) = -(\nabla_{\theta'}h^L(\theta_0)'\Omega^L\nabla_{\theta'}h^L(\theta_0))^{-1}\nabla_{\theta'}h^L(\theta_0)'\Omega^L\left[\int_{\underline{\rho}}^{\bar{\rho}}\frac{B_T(u)}{f_{\theta_0}(Q_Y(u))}\mathbf{P}^L(u)du\right] + o_P(1)$$

Asymptotic approximation: Bahadur-Kiefer representation

- Yet another possibility is to work with Bahadur-Kiefer representations of the empirical quantile process.
- Under some assumptions, it is possible to show that:

$$\sup_{p \le u \le \bar{p}} |\sqrt{T} (\hat{Q}_Y(u) - Q_Y(u)) - f(Q_Y(u))^{-1} \sqrt{T} (\hat{F}_Y(Q_Y(u)) - F(Q_Y(u)))| = o_P(1)$$

- $\hat{F}_Y(u) = \frac{1}{T} \sum_{t=1}^{T} \mathbb{1}\{Y_t \leq u\}$ is the empirical cdf.
- If F is continuous and strictly increasing, then $\hat{F}_Y(Q_Y(u)) = \frac{1}{T} \sum_{t=1}^T \mathbb{1}\{U_t \leq u\}$, where $U_t \coloneqq F(Y_t)$ is a Uniform[0,1] rv.
- Both points could be combined to form the basis for an inferential procedure, at least in the iid case.
 - Though there are Bahadur-Kiefer representations in the weakly dependent case, difficult to see how to use it for inference in this context.

Outline

Introduction

Asymptotic theory of the "many" L-moments estimator

Monte Carlo Exercise

Next steps

Monte Carlo Exercise: setup

- We consider random samples $Y_1, Y_2, \ldots, Y_T \sim F_{\theta_0}, F_{\theta_0} \in \{F_\theta : \theta \in \Theta\}$ and $\Theta \subseteq \mathbb{R}^d$.
- Our goal is to estimate θ_0 and use it in predicting "extreme" quantiles $Q_Y(u)$ via the "plug-in" estimator $Q(u|\tilde{\theta})$.
- We consider three estimators for θ_0 :
 - (i) MLE
 - (ii) The L-moment estimator with identity weights.
 - (iii) A two-step estimator where we first estimate θ_0 by (ii), and then plug it into the optimal L-moment weighting matrix formula derived under the Gaussian strong approximation.
- Estimator (ii) with L = d is the conventional approach (Hosking, 1990).
- In the project, we also consider using a linearly interpolated estimator for $Q_Y(\cdot)$; and the unbiased (for the iid case) sample L-moment estimator of Hosking (1990).

Monte Carlo Exercise: Generalised Extreme Value Distribution

- In this exercise, the family $\{F_{\theta}: \theta \in \theta_0\}$ corresponds to the Generalised Extreme Value Distribution, and $\theta_0 := (loc, scale, shape)' = (0, 1, 0.2)'$.

	Re	escaled R	oot Mean	Squared Er	ror RM	$SE(\hat{Q}(u))$	/ <i>Q</i> (<i>u</i>):	T = 70.	
	Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)		Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)
MLE	0.1779	0.3299	0.6181	1.1479	MLE	0.1779	0.3299	0.6181	1.1479
- 1	Method of	L-moments	s: identity w	eights		Method of	L-moment	s: optimal w	eights
L= 3	0.1727	0.2848	0.4791	0.7902			-		
L= 4	0.1730	0.2894	0.5011	0.8658	L= 4	0.1729	0.2820	0.4623	0.7391

0.1730 0.2894 0.5011 L= 4 0.8658 I = 50.1737 0.2898 0.5057 0.8905

0.1744 0.2902 0.5090

0.2884

0.2877

0.2846

0.2838

L=6

L = 10

L = 11

L = 15

I = 16

0.1769

0.1775

0.1798

0.1803

0.9098

0.4977

0.4920

0.4665

0.4607

0.8781

0.8566

0.7627

0.7415

I = 5L=6

L = 10

L = 11

L = 15

I = 16

0.1751 0.1760

0.1752

0.1745

0.1736

0.1739

0.2805 0.2834

0.2788

0.2761

0.2749

0.2807

0.4430

0.4377

0.4333

0.6750

0.6638

20/28

Monte Carlo Exercise: Generalised Extreme Value Distribution (cont.)

- In this exercise, the family $\{F_{\theta}: \theta \in \theta_0\}$ corresponds to the Generalised Extreme Value Distribution, and $\theta_0 := (loc, scale, shape)' = (0, 1, 0.2)'$.

	Res	scaled Ro	oot Mean :	Squared En	or RMS	=(Q(u))/	Q(u):	= 500.	
	Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)		Q(0.9)	Q(0.99)	Q(0.999)	Q(0.999
MLE	0.0625	0.1008	0.1561	0.2221	MLE	0.0625	0.1008	0.1561	0.2221
1	Method of	L-moments	s: identity w	eights		Method of	L-moment	s: optimal w	eights
L= 3	0.0627	0.1076	0.1735	0.2536			-		
L= 4	0.0624	0.1120	0.1871	0.2803	L= 4	0.0621	0.0999	0.1541	0.2174

0.2954

0.3082

0.3354

0.3393

0.3494

0.3508

L=5

L=6

L = 10

L = 11

L = 15

L= 16

0.0623

0.0622

0.0624

0.0625

0.0628

0.0628

0.1140

0.1157

0.1185

0.1188

0.1195

0.1196

0.1942

0.2001

0.2117

0.2132

0.2169

0.2174

	Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)		Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)
MLE	0.0625	0.1008	0.1561	0.2221	MLE	0.0625	0.1008	0.1561	0.2221	Ī
	Method of	L-moments	s: identity w	eights		Method of	L-moment	s: optimal w	eights	Ī
L= 3	0.0627	0.1076	0.1735	0.2536			-			Ī
I = A	0.0624	0.1120	0 1871	0.2803	I = A	0.0621	0.0999	0 1541	0.2174	

I = 5

L=6

L = 10

L = 11

L = 15

I = 16

0.0624

0.0628

0.0632

0.0634

0.0633

0.0632

0.0997

0.1007

0.1013

0.1014

0.1008

0.1005

0.1524

0.1540

0.1542

0.1542

0.1531

0.1525

0.2132

0.2158

0.2154

0.2149

0.2134

0.2124

21/28

	Re	scaled Ro	ot Mean S	Squared Err	or RMS	E(Q(u))	Q(u):	r = 500.	
	Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)		Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)
MLE	0.0625	0.1008	0.1561	0.2221	MLE	0.0625	0.1008	0.1561	0.2221
	Method of	L-moments	: identity w	eights		Method of	L-moments	s: optimal w	eights

Monte Carlo Exercise: Generalised Pareto Distribution

L = 10

L = 11

L = 15

L= 16

0.1680

0.1689

0.1718

0.1724

0.2902

0.2897

0.2877

0.2873

0.5234

0.5165

0.4881

0.4814

- In this exercise, the family $\{F_{\theta}: \theta \in \theta_0\}$ corresponds to the Generalised Pareto Distribution, and $\theta_0 := (loc, scale, shape)' = (0, 1, 0.2)'$.

	Re	escaled R	oot Mean	Squared Er	ror RMS	$E(\mathbf{Q}(\mathbf{u}))$	/Q(u):	T = 70.	
	Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)		Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)
MLE	0.1957	0.3770	0.8737	2.3422	MLE	0.1957	0.3770	0.8737	2.3422
	Method of	L-moments	s: identity w	eights		Method of	L-moments	s: optimal w	eights
L= 3	0.1587	0.2918	0.5393	0.9827			-		
L= 4	0.1606	0.2921	0.5444	1.0153	L= 4	0.1572	0.2948	0.5374	0.9651
L= 5	0.1623	0.2920	0.5444	1.0264	L= 5	0.1592	0.2975	0.5224	0.9082
L= 6	0.1638	0.2918	0.5430	1.0282	L= 6	0.1598	0.2977	0.5199	0.8995

L = 10

L = 11

L = 15

I = 16

0.1603

0.1594

0.1738

0.1533

0.2951

0.2928

0.2918

0.2649

0.4990

0.4915

0.4613

0.3927

0.8276

0.8070

0.7024

0.5484

22/28

0.9535

0.9241

0.8062

0.7797

Monte Carlo Exercise: Generalised Pareto Distribution (cont.)

	Res	scaled Ro	ot Mean	Squared Err	or RM	SE(Ô(u))	/O(u)· 7	T — 500	
	T.C.	ocalca ixe	ot Mean	oquarea Err	OI IXIVI	3L(Q (U))/	$\mathbf{Q}(\mathbf{u})$.	— 000.	
	Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)		Q(0.9)	Q(0.99)	Q(0.999)	Q(0.999
MLE	0.0652	0.1156	0.1961	0.2974	MLE	0.0652	0.1156	0.1961	0.2974
	Method of	L-moment	s:identity w	eights		Method of	L-moment	s: optimal w	eights
I = 3	0.0573	0.1123	0.2000	0.3118					

	Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)		Q(0.9)	Q(0.99)	Q(0.999)	
MLE	0.0652	0.1156	0.1961	0.2974	MLE	0.0652	0.1156	0.1961	
	Method of	L-moment	s:identity w	eights		Method of	L-moments	s: optimal w	ï
1 2	0.0570	0.4400	0.0000	0.0110					î

0.4047

0.4051

L= 15

L= 16

0.0601

0.0602

0.1188

0.1187

0.2362

0.2362

	Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)		Q(0.9)	Q(0.99)	Q(0.999)	Q(0.9999)	
1LE	0.0652	0.1156	0.1961	0.2974	MLE	0.0652	0.1156	0.1961	0.2974	
	Method of	L-moment	s:identity we	eights		Method of	L-moments	s: optimal w	eights	
= 3	0.0573	0.1123	0.2000	0.3118			-			
= 4	0.0575	0.1146	0.2105	0.3359	L= 4	0.0569	0.1076	0.1845	0.2774	

MLE	0.0652	0.1156	0.1961	0.2974	MLE	0.0652	0.1156	0.1961	0.2974
	Method of	L-moment	s:identity w	eights	1	Method of	L-moments	s: optimal v	veights
L= 3	0.0573	0.1123	0.2000	0.3118			-		
L= 4	0.0575	0.1146	0.2105	0.3359	L= 4	0.0569	0.1076	0.1845	0.2774
L= 5	0.0578	0.1160	0.2176	0.3531	L= 5	0.0569	0.1076	0.1826	0.2717
L= 6	0.0581	0.1168	0.2224	0.3653	L= 6	0.0570	0.1087	0.1842	0.2733

L= :	3 0.0573	0.1123	0.2000	0.3118			-			
L= 4	4 0.0575	0.1146	0.2105	0.3359	L= 4	0.0569	0.1076	0.1845	0.2774	
L= :	5 0.0578	0.1160	0.2176	0.3531	L= 5	0.0569	0.1076	0.1826	0.2717	
L= 6	6 0.0581	0.1168	0.2224	0.3653	L= 6	0.0570	0.1087	0.1842	0.2733	
		:					:			
L= :	10 0.0592	0.1183	0.2323	0.3923	L= 10	0.0569	0.1091	0.1837	0.2700	
L= :	11 0.0594	0.1185	0.2336	0.3961	L= 11	0.0569	0.1092	0.1838	0.2697	

L= 15

L= 16

0.0569

0.0511

0.1062

0.0901

0.1751

0.1396

0.2536

0.1938

23/28

	Method of	L-moment	s:identity w	veights		1	Method of	L-moment	s: optimal v	veights
.= 3	0.0573	0.1123	0.2000	0.3118	_			-		
= 4	0.0575	0.1146	0.2105	0.3359		L= 4	0.0569	0.1076	0.1845	0.27
.= 5	0.0578	0.1160	0.2176	0.3531		L= 5	0.0569	0.1076	0.1826	0.27
= 6	0.0581	0.1168	0.2224	0.3653		L= 6	0.0570	0.1087	0.1842	0.27

-	In this exercise, the family $\{F_{\theta}: \theta \in \theta_0\}$ corresponds to the Generalised Pareto
	Distribution, and $\theta_0 := (loc, scale, shape)' = (0, 1, 0.2)'$.

Outline

Introduction

Asymptotic theory of the "many" L-moments estimator

Monte Carlo Exercise

Next steps

Next steps: selecting the number of L-moments

- In light of the theory and Monte Carlo evidence, we propose to construct a semiautomatic method for selecting the number of L-moments.
 - Idea is to minimise higher-order expansions of the MSE of the object of interest.
 - We'll build on Donald and Newey (2001) and Newey and Smith (2004), who provide higher-order expansions of the MSE of GMM estimators.
 - More recent applications of the methodology (in the GMM context): Okui (2009), Cheng et al. (2019) and Abadie et al. (2019).

Next steps: optimality in the "many L-moment" environment

- Under a Gaussian approximation, the optimal choice of weighting matrix is:

$$\Omega^{L} = \mathbb{E}\left[\left(\int_{\underline{\rho}}^{\bar{\rho}} \frac{B_{T}(u)}{f_{\theta_{0}}(Q_{y}(u))} \mathbf{P}^{L}(u) du\right) \left(\int_{\underline{\rho}}^{\bar{\rho}} \frac{B_{T}(u)}{f_{\theta_{0}}(Q_{y}(U))} \mathbf{P}^{L}(u) du\right)'\right]^{-1}$$

- Under such choice, the variance of the leading term is:

$$(\nabla_{\theta'}h^L(\theta_0)'\Omega^L\nabla_{\theta'}h^L(\theta_0))^{-1}$$

- Does the method of L-moments achieve efficiency? Under which choise of quantile weighting function?
 - Perhaps work with Bahadur-Kiefer representation?

Next steps: extension to conditional models

- Gourieroux and Jasiak (2008) defined a conditional version of the r-th L-moment by replacing $Q_Y(\cdot)$ in the definition with $Q_{Y|X}(\cdot|x)$, the quantile function of the conditional distribution $F_{Y|X}(y|X=x)$, where X is a vector of covariates.
- Estimation is conducted by considering parametric restrictions on the first L conditional L-moments.
- We propose to revisit their approach in the framework of our project, where *L* varies with sample size.
 - Strong approximations of Belloni et al. (2019), which hold conditionally on *X*, will be useful in this context.
- Application: estimation of dynamic quantile models under flexible parametrisations, with an emphasis on conditional Value-at-Risk models.

Obrigado!

References I

- Abadie, A., J. Gu, and S. Shen (2019). Instrumental variable estimation with first stage heterogeneity. Technical report, MIT Economics Department.
- Belloni, A., V. Chernozhukov, D. Chetverikov, and I. Fernández-Val (2019). Conditional quantile processes based on series or many regressors. *Journal of Econometrics* 213(1), 4 29. Annals: In Honor of Roger Koenker.
- Broniatowski, M. and A. Decurninge (2016). Estimation for models defined by conditions on their L-moments. *IEEE Transactions on Information Theory 62*(9), 5181–5198.
- Cheng, X., Z. Liao, and R. Shi (2019). On uniform asymptotic risk of averaging gmm estimators. *Quantitative Economics* 10(3), 931–979.
- Csorgo, M. and P. Revesz (1978, 07). Strong approximations of the quantile process. *Ann. Statist. 6*(4), 882–894.
- Donald, S. G. and W. K. Newey (2001). Choosing the number of instruments. *Econometrica* 69(5), 1161–1191.

References II

- Fotopoulos, S. and S. Ahn (1994). Strong approximation of the quantile processes and its applications under strong mixing properties. *Journal of Multivariate Analysis* 51(1), 17–45.
- Gourieroux, C. and J. Jasiak (2008). Dynamic quantile models. *Journal of Econometrics* 147(1), 198–205.
- Hosking, J. R. M. (1990, sep). L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. *Journal of the Royal Statistical Society: Series B* (Methodological) 52(1), 105–124.
- Hosking, J. R. M. and J. R. Wallis (1987). Parameter and quantile estimation for the generalized pareto distribution. *Technometrics* 29(3), 339–349.
- Hosking, J. R. M., J. R. Wallis, and E. F. Wood (1985). Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. *Technometrics* 27(3), 251–261.
- Kaji, T. (2019). Asymptotic theory of *I*-statistics and integrable empirical processes.

References III

- Newey, W. K. and D. McFadden (1994). Chapter 36 large sample estimation and hypothesis testing. In *Handbook of Econometrics*, Volume 4, pp. 2111 2245. Elsevier.
- Newey, W. K. and R. J. Smith (2004). Higher order properties of gmm and generalized empirical likelihood estimators. *Econometrica* 72(1), 219–255.
- Okui, R. (2009). The optimal choice of moments in dynamic panel data models. *Journal of Econometrics* 151(1), 1–16.
- Rothenberg, T. J. (1971). Identification in parametric models. *Econometrica* 39(3), 577–91.
- Yoshihara, K. (1995). The bahadur representation of sample quantiles for sequences of strongly mixing random variables. *Statistics & Probability Letters* 24(4), 299 304.