Simpler Complete Equational Theories for Quantum Circuits with Ancillae or Partial Trace

Alexandre Clément, Noé Delorme, Simon Perdrix, Renaud Vilmart

Mocqua / Loria

QPL23

arXiv:2303.03117

Quantum Circuits

Quantum Circuits

Ubiquitous intermediate language for:

- Resource optimisation (#gates, #T, #CNot...)
- Hardware-constraint satisfaction (primitives, topological constraints, ...)
- Fault-tolerant Quantum Computing
- Verification, circuit equivalence testing.

=> Circuit Transformation

Ubiquitous intermediate language for:

- Resource optimisation (#gates, #T, #CNot...)
- Hardware-constraint satisfaction (primitives, topological constraints, ...)
- Fault-tolerant Quantum Computing
- Verification, circuit equivalence testing.

=> Circuit Transformation

Equational theory, e.g.:

Ubiquitous intermediate language for:

- Resource optimisation (#gates, #T, #CNot...)
- Hardware-constraint satisfaction (primitives, topological constraints, ...)
- Fault-tolerant Quantum Computing
- Verification, circuit equivalence testing.

=> Circuit Transformation

Equational theory, e.g.:

$$= P(\theta)$$

Completeness¹?

1. if two circuits represent the same unitary, one can be transformed into the other using the equational theory, i.e, all true equations can be derived.

Definition. The prop of quantum circuits is generated by $\neg H : 1 \to 1, \neg P(\varphi) = 1 \to 1,$ $\Rightarrow 1, \neg P(\frac{\pi}{2}) \Rightarrow 1, \neg P(\frac$

Definition. The prop of quantum circuits is generated by $\neg H : 1 \to 1, \neg P(\varphi) : 1 \to 1, \neg P(\varphi) : 1 \to 1, \neg P(\frac{\pi}{2}) \rightarrow P$

For any quantum circuit C, $\llbracket C \rrbracket$ is the corresponding matrix.

$$\begin{bmatrix}
-P(\frac{\pi}{2}) \\
-P(\frac{\pi}{2})
\end{bmatrix} - P(-\frac{\pi}{2})
\end{bmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$$

Definition. The prop of quantum circuits is generated by $\neg H : 1 \to 1, \neg P(\varphi) = 1 \to 1,$ $\Rightarrow 1, \neg P(\varphi) = 1,$ $\Rightarrow 1, \neg P(\varphi) = 1,$ $\Rightarrow 1, \neg P(\varphi) = 1,$ $\Rightarrow 1,$

For any quantum circuit C, $\llbracket C \rrbracket$ is the corresponding matrix.

$$\begin{bmatrix}
-P(\frac{\pi}{2}) & & & \\
-P(\frac{\pi}{2}) & & & \\
P(-\frac{\pi}{2}) & & & \\
\end{bmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$$

Equational theory, e.g.:

$$E_0 = \frac{P(\theta)}{P(\theta)} = \frac{P(\theta)}{P(\theta)}$$

Definition. The prop of quantum circuits is generated by $\neg H : 1 \to 1, \neg P(\varphi) = 1 \to 1,$ $\Rightarrow 1, \neg P(\varphi) = 1,$ $\Rightarrow 1, \neg P(\varphi) = 1,$ $\Rightarrow 1, \neg P(\varphi) = 1,$ $\Rightarrow 1,$ \Rightarrow

For any quantum circuit C, $\llbracket C \rrbracket$ is the corresponding matrix.

$$\begin{bmatrix}
-P(\frac{\pi}{2}) & & & \\
-P(\frac{\pi}{2}) & & & \\
P(-\frac{\pi}{2}) & & & \\
\end{bmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$$

Equational theory, e.g.:

Soundness. If $E \vdash C_0 = C_1$ then $\llbracket C_0 \rrbracket = \llbracket C_1 \rrbracket$. Completeness. If $\llbracket C_0 \rrbracket = \llbracket C_1 \rrbracket$ then $E \vdash C_0 = C_1$.

Definition. The prop of quantum circuits is generated by $\neg H : 1 \to 1, \neg P(\varphi) - : 1 \to 1,$ $\Rightarrow 1, \neg P(\varphi) - : 1 \to 1,$ \Rightarrow

For any quantum circuit C, $\llbracket C \rrbracket$ is the corresponding matrix.

$$\begin{bmatrix}
-P(\frac{\pi}{2}) & & & & \\
-P(\frac{\pi}{2}) & & & & \\
-P(\frac{\pi}{2}) & & & & \\
\end{bmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$$

Equational theory, e.g.:

$$(E_0)$$
 = $P(\theta)$ = $P(\theta)$

Soundness. If $E \vdash C_0 = C_1$ then $\llbracket C_0 \rrbracket = \llbracket C_1 \rrbracket$. Completeness. If $\llbracket C_0 \rrbracket = \llbracket C_1 \rrbracket$ then $E \vdash C_0 = C_1$.

Example. (E_0) is sound but not complete:

$$-P(arphi_1)$$
 $-P(arphi_2)$ $-$

Complete equational theories for non-universal and classically simulatable fragments:

• 2-qubit circuits (Clifford+T) [Bian, Selinger'22]

- 2-qubit circuits (Clifford+T) [Bian, Selinger'22],
- 3-qubit circuits (Clifford+CS) [Bian, Selinger'23],

- 2-qubit circuits (Clifford+T) [Bian, Selinger'22],
- 3-qubit circuits (Clifford+CS) [Bian, Selinger'23],
- Stabilizer [Ranchin, Coecke'18],

- 2-qubit circuits (Clifford+T) [Bian, Selinger'22],
- 3-qubit circuits (Clifford+CS) [Bian, Selinger'23],
- Stabilizer [Ranchin, Coecke'18],
- Toffoli [Cockett, Comfort'19],

- 2-qubit circuits (Clifford+T) [Bian, Selinger'22],
- 3-qubit circuits (Clifford+CS) [Bian, Selinger'23],
- Stabilizer [Ranchin, Coecke'18],
- Toffoli [Cockett, Comfort'19],
- CNot-dihedral (CNot+X+T) [Amy, Chen, Ross'21].

Complete equational theories for non-universal and classically simulatable fragments:

- 2-qubit circuits (Clifford+T) [Bian, Selinger'22],
- 3-qubit circuits (Clifford+CS) [Bian, Selinger'23],
- Stabilizer [Ranchin, Coecke'18],
- Toffoli [Cockett, Comfort'19],
- CNot-dihedral (CNot+X+T) [Amy,Chen,Ross'21].

Complete equational theory for universal quantum circuits

• Quantum Circuits [Clément, Heurtel, Mansfield, Perdrix, Valiron LICS'23]

Complete equational theories for non-universal and classically simulatable fragments:

- 2-qubit circuits (Clifford+T) [Bian, Selinger'22],
- 3-qubit circuits (Clifford+CS) [Bian, Selinger'23],
- Stabilizer [Ranchin, Coecke'18],
- Toffoli [Cockett, Comfort'19],
- CNot-dihedral (CNot+X+T) [Amy,Chen,Ross'21].

Complete equational theory for universal quantum circuits

• Quantum Circuits [Clément, Heurtel, Mansfield, Perdrix, Valiron LICS'23]

Our contributions:

- Simplifying equational theory for vanilla QC
- Extension to quantum circuits with ancilla and/or discarding

Property [CDPV QPL23]

(n) and (o) can be derived from the other equations, and (r) (slightly) simplified

Property [CDPV QPL23]

(n) and (o) can be derived from the other equations, and (r) (slightly) simplified

Equational Theory

QC

• Useful properties, e.g.:

• Useful properties, e.g.:

QC
$$\vdash$$
 $P(\varphi)$ $=$ $P(\varphi)$ $=$ $P(\varphi)$ $=$ $P(\varphi)$

• Useful properties, e.g.: Phase gadget

$$\mathsf{QC} \vdash \begin{array}{c} & & & \\ & & \\ \hline \end{array} = \begin{array}{c} & & \\ \end{array} = \begin{array}{c$$

• Useful properties, e.g.: Phase gadget

$$QC \vdash = P(\varphi) = P(\varphi)$$

where
$$-R_X(\theta)$$
 := $(-\theta/2)$ $-H$ $-P(\theta)$ $-H$

• Useful properties, e.g.: Phase gadget

$$QC \vdash P(\varphi) = P(\varphi)$$

where
$$-R_X(\theta)$$
 \coloneqq H $P(\theta)$ H

$$P(\varphi) = P(\varphi) - R_X(\theta) = P(\varphi) - R_X(\theta) - P(\varphi) - P(\varphi)$$

• Useful properties, e.g.: Phase gadget, Euler decomposition

- Useful properties
- Simplification principal

Definition For any quantum circuit C, let C^{\dagger} be the *adjoint* of C inductively defined as $(C_2 \circ C_1)^{\dagger} := C_1^{\dagger} \circ C_2^{\dagger}$; $(C_1 \otimes C_2)^{\dagger} := C_1^{\dagger} \otimes C_2^{\dagger}$; and for any $\varphi \in \mathbb{R}$, $(\varphi)^{\dagger} := \varphi$, $(-P(\varphi))^{\dagger} := P(-\varphi)$, and $g^{\dagger} := g$ for any other generator g.

Proposition. For any circuit
$$C$$
, $QC \vdash C^{\dagger} =$

Corollary. For any circuits C, C_0, C_1 ,

$$QC \vdash \boxed{C_0} \boxed{C} = \boxed{C_1} \qquad \Leftrightarrow \qquad QC \vdash \boxed{C_0} = \boxed{C_1} \boxed{C^{\dagger}}$$

- Useful properties
- Simplification principal

- Useful properties
- Simplification principal

- Useful properties
- Simplification principal
- 1-CNot completeness

Lemma. QC is complete for circuits containing at most one $\overline{\ \ }$, i.e. for any quantum circuits $C_1, C_2 \in \mathbf{QC}$ with at most one $\overline{\ \ \ }$, if $[\![C_1]\!] = [\![C_2]\!]$ then $\mathbf{QC} \vdash C_1 = C_2$.

$$\begin{array}{c|c}
\hline
A & \bullet & C \\
\hline
B & \bullet & D
\end{array}$$

Derivations in QC

- Useful properties
- Simplification principal
- 1-CNot completeness

QC completeness

Theorem. QC is complete.

Universal for Isometries

$$C_f$$
 H X H C_f H X H O

Universal for Isometries

Universal for CPTP maps

Lemma. QCiso is complete for quantum circuits with qubit initialisation¹

Lemma. QC_{iso} is complete for quantum circuits with qubit initialisation¹ **Lemma.** $QC_{ancilla}$ is complete for quantum circuits with ancilla

Lemma. QC_{iso} is complete for quantum circuits with qubit initialisation¹

Lemma. QCancilla is complete for quantum circuits with ancilla

Lemma. QC_{discard} is complete for quantum circuits with discard²

or Carette, Jeandel, Perdrix Vilmart, discard construction ICALP19

Theorem. In QC_{ancilla} and QC_{discard}, the family of equations

can be replaced by its 2-qubit case:

$\forall \gamma_i, \exists \delta_i \text{ such that }$

$$δ_1 = f_1(γ_1, ..., γ_4)$$
 $δ_2 = f_2(γ_1, ..., γ_4)$
 $⋮$
 $δ_9 = f_9(γ_1, ..., γ_4)$

$\forall \gamma_i, \exists \delta_i \text{ such that }$

$$\delta_{1} = f_{1}(\gamma_{1}, ..., \gamma_{4})$$

$$\delta_{2} = f_{2}(\gamma_{1}, ..., \gamma_{4})$$

$$\vdots$$

$$\delta_{9} = f_{9}(\gamma_{1}, ..., \gamma_{4})$$

$$\left[\begin{array}{c} \\ \\ \\ \\ \end{array}\right] = \left[\begin{array}{c} \\ \\ \\ \\ \end{array}\right]$$

$\forall \gamma_i, \exists \delta_j \text{ such that }$

$$δ_1 = f_1(γ_1, ..., γ_4)$$
 $δ_2 = f_2(γ_1, ..., γ_4)$
 $⋮$
 $δ_9 = f_9(γ_1, ..., γ_4)$

$$\begin{bmatrix} - \\ - \\ P(\varphi) \end{bmatrix} = \begin{bmatrix} - \\ P(\varphi) \end{bmatrix}$$

Concluding remarks

Simplifying two out of the three most complicated rules

Complete equational theories for:

- Quantum circuits with qubit-initialisation
- Quantum circuits with ancilla
- Quantum circuits with initialisation and discard

Complete equational theories acting on at most 3 qubits for QC_{ancilla} and QC_{discard}.

Quantum circuit reasoning in action.