- 2.25 Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$, with $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma^2$, and ε uncorrelated.
 - a. Show that $Cov(\hat{\beta}_0, \hat{\beta}_1) = -\overline{x}\sigma^2/S_{xx}$.
 - **b.** Show that $Cov(\overline{y}, \beta_1) = 0$.
- 2.26 Consider the simple linear regression model $y = \beta_0 + \beta_1 x + \varepsilon$, with $E(\varepsilon) = 0$, $Var(\varepsilon) = \sigma^2$, and ε uncorrelated.
 - a. Show that $E(MS_R) = \sigma^2 + \beta_1^2 S_{xx}$.
 - **b.** Show that $E(MS_{Res}) = \sigma^2$.
- 2.27 Suppose that we have fit the straight-line regression model ŷ = β̂₀ + β̂₁x₁ but the response is affected by a second variable x₂ such that the true regression function is

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- a. Is the least-squares estimator of the slope in the original simple linear regression model unbiased?
- **b.** Show the bias in $\hat{\beta}_1$.
- 2.28 Consider the maximum-likelihood estimator σ

 ² of σ

 ² in the simple linear regression model. We know that σ

 ² is a biased estimator for σ

 ².
 - a. Show the amount of bias in $\tilde{\sigma}^2$.
 - b. What happens to the bias as the sample size n becomes large?
 - 3.27 Show that $Var(\hat{y}) = \sigma^2 H$.
 - 3.28 Prove that the matrices H and I-H are idempotent, that is, HH=H and (I-H)(I-H)=I-H.
 - 3.29 For the simple linear regression model, show that the elements of the hat matrix are

$$h_{ij} = \frac{1}{n} + \frac{(x_i - \overline{x})(x_j - \overline{x})}{S_{xx}}$$
 and $h_{ii} = \frac{1}{n} + \frac{(x_i - \overline{x})^2}{S_{xx}}$

Discuss the behavior of these quantities as x_i moves farther from \overline{x} ,

3.30 Consider the multiple linear regression model $y = X\beta + \varepsilon$. Show that the least-squares estimator can be written as

$$\hat{\beta} = \beta + R\varepsilon$$
 where $R = (X'X)^{-1}X'$

- 3.31 Show that the residuals from a linear regression model can be expressed as $e = (I H)\epsilon$. [Hint: Refer to Eq. (3.15b).]
- 3.32 For the multiple linear regression model, show that $SS_R(\beta) = y'Hy$.
- 3.33 Prove that R^2 is the square of the correlation between y and \hat{y} .

3.35 Let x_j be the jth row of X, and X_{-j} be the X matrix with the jth row removed. Show that

$$\operatorname{Var}\left[\hat{\boldsymbol{\beta}}_{j}\right] = \sigma^{2}\left[\mathbf{x}_{j}^{\prime}\mathbf{x}_{j} - \mathbf{x}_{j}^{\prime}\mathbf{X}_{-j}(\mathbf{X}_{-j}^{\prime}\mathbf{X}_{-j})^{-1}\mathbf{X}_{-j}^{\prime}\mathbf{x}_{j}\right]$$

3.36 Consider the following two models where $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2 I$:

Model A: $y = X_1\beta_1 + \varepsilon$

Model B: $\mathbf{y} = \mathbf{X}_1' \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$

Show that $R_A^2 \le R_B^2$

- 3.37 Suppose we fit the model $y = X_1\beta_2 + \varepsilon$ when the true model is actually given by $y = X_1\beta_2 + X_2\beta_2 + \varepsilon$. For both models, assume $E(\varepsilon) = 0$ and $Var(\varepsilon) = \sigma^2 I$. Find the expected value and variance of the ordinary least-squares estimate, $\hat{\beta}_1$. Under what conditions is this estimate unbiased?
- 3.38 Consider a correctly specified regression model with p terms, including the intercept. Make the usual assumptions about ε. Prove that

$$\sum_{i=1}^{n} \operatorname{Var}(\hat{y}_{i}) = p\sigma^{2}$$

- **N.** Show that the square of the multiple correlation coefficient R^2 is equal to the square of the correlation between **Y** and $\hat{\mathbf{Y}}$
- O. Consider the formal regression of the residuals e_i onto a quadratic function $\alpha_0 + \alpha_1 \hat{Y}_i + \alpha_2 \hat{Y}_i^2$ of the fitted values \hat{Y}_i , by least squares. Show that all three estimated coefficients depend on $T_{12} = \Sigma e_i \hat{Y}_i^2$. What does this imply?
- **P.** We fit a straight line model to a set of data using the formulas $\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$, $\hat{\mathbf{Y}} = \mathbf{X}\mathbf{b}$ with the usual definitions. We define $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$. Show that

SS(due to regression) =
$$\mathbf{Y}'\mathbf{H}\mathbf{Y}$$

= $\mathbf{\hat{Y}}'\mathbf{\hat{Y}}$
= $\mathbf{\hat{Y}}'\mathbf{H}^{3}\mathbf{Y}$.

- Q. Show that X'e = 0.
- **T.** Suppose $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ is a regression model containing a β_0 term in the first position, and $\mathbf{1} = (1, 1, \dots, 1)'$ is an $n \times 1$ vector of ones. Show that $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{1} = (1, 0, \dots, 0)'$ and hence that $\mathbf{1}'\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{1} = n$. (*Hint:* $\mathbf{X}'\mathbf{1}$ is the first column of $\mathbf{X}'\mathbf{X}$.) These results can be useful in regression matrix manipulations. For connected reading, see letters in The *American Statistician*, April 1972, 47–48.
- **U.** By noting that $\mathbf{X}_0 = (1, \overline{X}_1, \overline{X}_2, \dots)'$ can be written as $\mathbf{X}'\mathbf{1}/n$, and applying the result in Exercise T above, show that $V(\hat{Y})$ at the point $(\overline{X}_1, \overline{X}_2, \dots, \overline{X}_n)$ is σ^2/n .