

Preet Kanwal

Department of Computer Science & Engineering

Unit 3 - Pushdown Automata

Preet Kanwal

Department of Computer Science & Engineering

Unit 3 - Pushdown Automata

Outline:

- Model of a PDA
- Definition of a PDA
- Transition in a PDA (Push and Pop operations)
- Instantaneous Description of a PDA
- Acceptance in a PDA (by Final State or Empty Stack)

Unit 3 - Pushdown Automata

Model of a Pushdown Automata

Unit 3 - Pushdown Automata

Definition of a Pushdown Automata

A PDA P := $(Q, \sum, \Gamma, \delta, q_0, Z_0, F)$:

Q: states of the ε-NFA

■ ∑: input alphabet

Γ: stack symbols

δ: transition function

q₀: start state

Z₀: Initial stack top symbol

F: Final/accepting states

DPDA - Deterministic PDA

8: QX(EUX)XY -> QXY*

NPDA - Non-Deterministic PDA

8: QX(EUA)XY -> 2 QXY*

PDA = 1-NFA + Stack

Unit 3 - Pushdown Automata

Transition in a Pushdown Automata

Note: More than one symbol can be pushed on to the stack at a time.

Unit 3 - Pushdown Automata

Transition in a Pushdown Automata

Note: Only one symbol can be popped from the stack at a time.

Unit 3 - Pushdown Automata

Instantaneous Description (ID) of a PDA(M)

Current State of PDA

Unit 3 - Pushdown Automata

Acceptance in Pushdown Automata

THANK YOU

Preet Kanwal

Department of Computer Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724