Dado el circuito lógico CMOS de la figura:

A.(1 pto.) Indique la expresión lógica de F en función de las variables de entrada, y el tipo de salida. **Justifique la respuesta**.

Tipo de salida (Estándar, Drenador abierto o Tri-estado):

- B. (1 pto.) Compruebe el funcionamiento del circuito para la combinación de entradas: A = B = "1", y C = D = "0".
 - B.1. Sustituya los transistores Mosfet por **interruptores (abiertos y/o cerrados)**. Dibuje el circuito con interruptores.
 - B.2. Justifique el valor lógico de la salida F.

C.(1 pto.) Realice una estimación aproximada de la potencia consumida por el circuito.

Potencia estática	Potencia dinámica
V _{DD} = 5V (tensión de alimentación)	V _{DD} = 5V (tensión de alimentación)
Suponga las corrientes de fuga de los	f = 1GHz (frecuencia de reloj)
transistores= 1pA /transistor (1pA = 10 ⁻¹² A)	α = 0.5 (factor de actividad medio del circuito)
	$C_L = 20 \text{fF/transistor}$ (capacidad media por transistor;1 fF = 10^{-15}F)
P (m\\\) -	D (m\/\) -
P _{estática} (mW) =	P _{dinámica} (mW) =

D. **(1 pto.)** Suponga que se modifica el circuito del apartado A) de la forma siguiente (ver la figura). Indique el nuevo **tipo de salida**, y rellene la **tabla de verdad** del circuito. (Nota: /EN = señal EN invertida)

Tipo de salida (Estándar, Drenador abierto o Tri-estado):

EN	Α	В	С	D	F
0	0	0	0	0	
0	0	0	0	1	
0	1	1	1	1	
1	0	0	0	0	
1	0	0	0	1	
1	1	1	1	1	

A. (1 pto.) Se pretende diseñar la función $F = AB + \overline{AC}$ en lógica CMOS complementaria. Dibuje un esquema con transistores. Justifique el diseño.

Nota: utilice el símbolo simplificado de los transistores

B. (1 pto.) Suponga que el circuito pertenece a un chip con una tensión de alimentación $V_{DD} = 2.5V$ y frecuencia de reloj fclock = 1GHz. Además el factor de actividad medio de las entradas es $\alpha = 0.4$ y la capacidad media por transistor es $C_L = 10$ fF (1fF = 10^{-15} F). Calcule la **potencia dinámica** aproximada del circuito, en mW. Incluya en el cómputo los transistores de los inversores necesarios para generar las variables negadas.

C.	(1 pto.	.) Modifique el esquema de la figura para dotar al circuito de salida triestado. Añada los transistores
	` •	señales de control necesarias.
	•	Dibuje el esquema
	•	Explique el funcionamiento

- D. (1 pto.) Efectúe un diseño alternativo del circuito, basado en puertas de transmisión CMOS. Nota orientativa: utilice la estructura del multiplexor inversor.
 - Explique brevemente el diseño
 - Dibuje el esquema con transistores