Homework 1

Due dates:

MWF section: negotiable, hopefully Friday, October 6, 11:59 a.m. (i.e. noon) TR section: negotiable, hopefully Saturday, October 7, 11:59 a.m. (i.e. noon)

Instructions:

You must put your answers on a separate sheet of paper, written legibly and with adequate spacing so that I can easily determine what your answer is.

Problem 1 Consider the following relations:

R:		
Α	В	С
\overline{b}	c	3
c	c	3
c	a	3
b	b	1
c	a	4
b	a	2

T:

S:		
Α	В	С
c	c	2
c	a	3
b	b	1
a	b	3
b	c	3
a	a	1
c	c	3

В	D	Е	F
a	a	1	2
c	d	2	4
b	b	3	2
d	b	3	2
a	a	2	3
b	c	4	1
d	a	1	4

For each of the following queries: (1) compute the answer, (2) draw the query tree.

- a. $R \cap S$
- b. S R
- c. R-S
- d. $\pi_{A,B}(S)$

e.
$$\pi_{B,C}(R) \cup \pi_{B,C}(S)$$

f.
$$\pi_{A,B}(R) - \pi_{A,B}(S)$$

g.
$$\pi_C(W) \times \pi_A(S) \times \pi_B(T)$$

h.
$$\sigma_{E>F}(T)$$

i.
$$\sigma_{A\neq B}(R)$$

j.
$$\pi_{B,F}(\sigma_{F>E}(T))$$

k.
$$\sigma_{A=D\vee B=D}(\pi_{A,B}(R)\times W)$$

1.
$$\sigma_{A=b\wedge C>1}(R)\cup\sigma_{B=b\vee C\neq 3}(S)$$

m.
$$\sigma_{\neg (B=d)}(T)$$

n.
$$\pi_{A,B,R.C,D}(\sigma_{R.C=W.C}(R \times W))$$

o.
$$W \bowtie R$$

p.
$$W \bowtie_{R.C=W.C} R$$

q.
$$T \bowtie_{F>C} W$$

r.
$$R \bowtie S$$

s.
$$R \bowtie_{R.B=S.A} S$$

t.
$$(R \bowtie T) \bowtie \pi_{A,C,D}(S \bowtie W)$$

u.
$$\pi_{T1.D,T2.B}(\rho_{T1}(T) \bowtie_{T1.D=T2.B} \rho_{T2}(T))$$

v.
$$\pi_{B,D,E}(\sigma_{F < C}(T \bowtie W))$$

w.
$$\pi_{A,B}(R \bowtie_{R.C \neq S.C} S) \bowtie \sigma_{D=a}(T)$$

x.
$$\pi_A(\pi_B(\pi_C(R \cup S)))$$

y.
$$\sigma_{A\neq a}(S)\bowtie \sigma_{D\neq c}(W)$$

z.
$$\sigma_{C=1}(R) \bowtie \sigma_{C=2}(S)$$