

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:SSSPTA1612RXD

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

* * * * * * * * * Welcome to STN International * * * * * * * * *

NEWS 1 Web Page for STN Seminar Schedule - N. America
NEWS 2 APR 02 CAS Registry Number Crossover Limits Increased to
500,000 in Key STN Databases
NEWS 3 APR 02 PATDPAFULL: Application and priority number formats
enhanced
NEWS 4 APR 02 DWPI: New display format ALLSTR available
NEWS 5 APR 02 New Thesaurus Added to Derwent Databases for Smooth
Sailing through U.S. Patent Codes
NEWS 6 APR 02 EMBASE Adds Unique Records from MEDLINE, Expanding
Coverage back to 1948
NEWS 7 APR 07 50,000 World Traditional Medicine (WTM) Patents Now
Available in CAplus
NEWS 8 APR 07 MEDLINE Coverage Is Extended Back to 1947
NEWS 9 JUN 16 WPI First View (File WPIFV) will no longer be
available after July 30, 2010
NEWS 10 JUN 18 DWPI: New coverage - French Granted Patents
NEWS 11 JUN 18 CAS and FIZ Karlsruhe announce plans for a new
STN platform
NEWS 12 JUN 18 IPC codes have been added to the INSPEC backfile
(1969-2009)
NEWS 13 JUN 21 Removal of Pre-IPC 8 data fields streamline displays
in CA/CAplus, CASREACT, and MARPAT
NEWS 14 JUN 21 Access an additional 1.8 million records exclusively
enhanced with 1.9 million CAS Registry Numbers --
EMBASE Classic on STN
NEWS 15 JUN 28 Introducing "CAS Chemistry Research Report": 40 Years
of Biofuel Research Reveal China Now Atop U.S. in
Patenting and Commercialization of Bioethanol
NEWS 16 JUN 29 Enhanced Batch Search Options in DGENE, USGENE,
and PCTGEN
NEWS 17 JUL 19 Enhancement of citation information in INPADOC
databases provides new, more efficient competitor
analyses
NEWS 18 JUL 26 CAS coverage of global patent authorities has
expanded to 61 with the addition of Costa Rica
NEWS 19 SEP 15 MEDLINE Cited References provide additional
revelant records with no additional searching.
NEWS 20 OCT 04 Removal of Pre-IPC 8 data fields streamlines
displays in USPATFULL, USPAT2, and USPATOLD.
NEWS 21 OCT 04 Precision of EMBASE searching enhanced with new
chemical name field
NEWS 22 OCT 06 Increase your retrieval consistency with new formats or
for Taiwanese application numbers in CA/CAplus.

NEWS	23	OCT 21	CA/CAPLUS kind code changes for Chinese patents increase consistency, save time
NEWS	24	OCT 22	New version of STN Viewer preserves custom highlighting of terms when patent documents are saved in .rtf format
NEWS	25	OCT 28	INPADOCDB/INPAFAMDB: Enhancements to the US national patent classification.
NEWS	26	NOV 03	New format for Korean patent application numbers in CA/CAPLUS increases consistency, saves time.

NEWS EXPRESS FEBRUARY 15 10 CURRENT WINDOWS VERSION IS V8.4.2,
AND CURRENT DISCOVER FILE IS DATED 07 JULY 2010.

NEWS HOURS STN Operating Hours Plus Help Desk Availability
NEWS LOGIN Welcome Banner and News Items

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN customer agreement. This agreement limits use to scientific research. Use for software development or design, implementation of commercial gateways, or use of CAS and STN data in the building of commercial products is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 15:38:31 ON 03 NOV 2010

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	0.22	0.22

FILE 'REGISTRY' ENTERED AT 15:38:58 ON 03 NOV 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 1 NOV 2010 HIGHEST RN 1250478-22-8
DICTIONARY FILE UPDATES: 1 NOV 2010 HIGHEST RN 1250478-22-8

New GAS Information Use Policies. enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 26, 2010.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stnagen/stndoc/properties.html>

=>

Uploading C:\Program Files\Stnexp\Queries\10583442.str

chain nodes :

7 8 9 10 11 12 13 14 21 22 24 25 26 27

ring nodes :

1 2 3 4 5 6 15 16 17 18 19 20

chain bonds :

1-21 7-8 7-9 9-10 10-11 10-14 11-12 11-13 14-15 21-22 24-25 24-26 24-27

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 15-16 15-20 16-17 17-18 18-19 19-20

exact/norm bonds :

1-2 1-6 1-21 2-3 3-4 4-5 5-6 7-8 7-9 9-10 11-12 11-13 21-22

exact bonds :

10-11 10-14 14-15

normalized bonds :

15-16 15-20 16-17 17-18 18-19 19-20 24-25 24-26 24-27

isolated ring systems :

containing 1 :

Match level :

1:CLASS 2:CLASS 3:CLASS 4:CLASS 5:CLASS 6:CLASS 7:CLASS 8:CLASS 9:CLASS

10:CLASS 11:CLASS 12:CLASS 13:CLASS 14:CLASS 15:CLASS 16:CLASS 17:CLASS

18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS 23:CLASS 24:CLASS 25:CLASS

26:CLASS 27:CLASS

L1 STRUCTURE UPLOADED

=> d 11

L1 HAS NO ANSWERS

L1 STR

Structure attributes must be viewed using STN Express query preparation.

```
=> s 11
SAMPLE SEARCH INITIATED 15:39:24 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 298 TO ITERATE

100.0% PROCESSED 298 ITERATIONS 2 ANSWERS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 4925 TO 6995
PROJECTED ANSWERS: 2 TO 124

L2 2 SEA SSS SAM L1

=> s 11 ful
FULL SEARCH INITIATED 15:39:29 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 5877 TO ITERATE

100.0% PROCESSED 5877 ITERATIONS 121 ANSWERS
SEARCH TIME: 00.00.01

L3 121 SEA SSS FUL L1

=> s 13
L4 1 L3

=> d abs fbib hitstr

L4 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2010 ACS on STN
GI
```


I

AB The invention relates to phosphonic acid derivs. R1-X1-P(O)(X2-R2)-Y-Z-W1(A1-R3)(A2-R4)-W2(A3-R5)(A4-R6)-W3(A5-R7)(A6-R8)-A7-Q(T)-V(U)-A8-CR9R10-A9-R11 [R1, R2 are independently H or phospho-protecting groups; X1, X2 are independently O, S or NR12; Z is O, S, NR13 or CR4R5; A1-A9 are independently null, O, S, NR16, SO, SO2, CO, C(S), NR17CO, NR18C(S), NR19CONR20, NR21C(S)NR22, NR23S(O), NR24SO2 or NR25CO2; Y is O or CR26R27; Q, V are independently CR28 or N; W1, W2, W3 are independently C or N; R3-R28, T, U are independently null, H, halo, (un)substituted alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, etc.; or T and U may be connected by a single or double bond] and to pharmaceutical compns. containing the compds. for the treatment of diseases involving abnormal or undesired cell proliferation or mitosis. Thus, peptide phosphonic acid derivative I, prepared via peptide coupling in the solid phase, was a potent rotamase inhibitor (IC50 < 1 µM).

AN 2005:612099 CAPLUS Full-text

DN 143:133696

TI Preparation of peptide phosphonic acid derivatives for the inhibition of undesired cell proliferation

IN Knolle, Jochen; Schutkowski, Mike; Hummel, Gerd; Tradler, Thomas; Jobron, Laurence; Christner, Claudia; Gibson, Christoph; Zischinsky, Gunther

PA Jerini A.-G., Germany

SO PCT Int. Appl., 110 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2005063259	A1	20050714	WO 2004-EP14460	20041218
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
AU	2004308619	A1	20050714	EP 2003-29450	A 20031219
				AU 2004-308619	20041218
				EP 2003-29450	A 20031219
				WO 2004-EP14460	W 20041218
CA	2550352	A1	20050714	CA 2004-2550352	20041218
				EP 2003-29450	A 20031219

EP 1703912	A1	20060927	WO 2004-EP14460	W 20041218
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK, IS				
			EP 2004-804060	20041218
			EP 2003-29450	A 20031219
			WO 2004-EP14460	W 20041218
JP 2007514700	T	20070607	JP 2006-544371	20041218
			EP 2003-29450	A 20031219
			WO 2004-EP14460	W 20041218
SG 148218	A1	20081231	SG 2008-9082	20041218
			EP 2003-29450	A 20031219
ZA 2006004561	A	20070228	ZA 2006-4561	20060605
			EP 2003-29450	A 20031219
US 20080194524	A1	20080814	US 2007-583442	20070328
			EP 2003-29450	A 20031219
			WO 2004-EP14460	W 20041218

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

OS CASREACT 143:133696; MARPAT 143:133696

IT	858352-55-3P	858352-56-4P	858352-57-5P
	858352-58-6P	858352-59-7P	858352-60-0P
	858352-61-1P	858352-62-2P	858352-63-3P
	858352-64-4P	858352-65-5P	858352-66-6P
	858352-67-7P	858352-68-8P	858352-69-9P
	858352-70-2P	858352-71-3P	858352-72-4P
	858352-73-5P	858352-74-6P	858352-75-7P
	858352-76-8P	858352-77-9P	858352-78-0P
	858352-82-6P	858352-83-7P	858352-84-8P
	858352-85-9P	858352-86-0P	858352-87-1P
	858352-88-2P	858352-89-3P	858352-90-6P
	858352-91-7P	858352-92-8P	858352-93-9P
	858352-94-0P	858352-95-1P	858352-96-2P
	858352-97-3P	858352-98-4P	858352-99-5P
	858353-00-1P	858353-01-2P	858353-02-3P
	858353-03-4P	858353-04-5P	858353-05-6P
	858353-06-7P	858353-07-8P	858353-08-9P
	858353-10-3P	858353-11-4P	858353-12-5P
	858353-15-8P	858353-16-9P	858353-19-2P
	858353-23-8P	858353-24-9P	858353-52-3P
	858353-53-4P	858353-54-5P	858353-55-6P
	858353-56-7P	858353-57-8P	858353-58-9P
	858353-59-0P	858353-60-3P	858353-61-4P
	858353-62-5P	858353-63-6P	858353-64-7P
	858353-65-8P	858353-69-2P	858353-70-5P
	858353-71-6P	858353-72-7P	858353-73-8P
	858353-74-9P	858353-75-0P	858353-76-1P
	858353-77-2P	858353-78-3P	858353-79-4P
	858353-80-7P	858353-81-8P	858353-82-9P
	858353-83-0P	858353-84-1P	858353-85-2P
	858353-86-3P	858353-87-4P	858353-88-5P
	858353-89-6P	858353-90-9P	858353-91-0P
	858353-92-1P	858353-93-2P	858353-94-3P
	858353-96-5P	858353-97-6P	858353-98-7P
	858354-02-6P	858354-03-7P	858354-06-0P
	858354-10-6P	858354-11-7P	858648-21-2P
	858648-22-3P	858648-23-4P	858648-24-5P
	858648-25-6P	858648-26-7P	858648-27-8P
	858648-28-9P	858648-29-0P	858648-30-3P

RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of peptide phosphonic acid derivs. for inhibition of undesired cell proliferation)

RN 858352-55-3 CAPLUS

CN L-Alaninamide, N-acetyl-3-benzo[b]thien-3-yl-L-alanyl-O-(phosphonomethyl)-L-seryl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-56-4 CAPLUS

CN L-Alaninamide, N-acetyl-3-benzo[b]thien-3-yl-L-alanyl-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-57-5 CAPLUS

CN L-Alaninamide, N-acetyl-3-benzo[b]thien-3-yl-L-alanyl-S-(phosphonomethyl)-D-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-58-6 CAPLUS

CN L-Alaninamide, N-[(9H-fluoren-9-ylmethoxy)carbonyl]-O-(phosphonomethyl)-L-

seryl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-59-7 CAPLUS

CN L-Alaninamide, N-[3-[(4-chlorophenyl)methyl]thio]-1-oxopropyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-60-0 CAPLUS

CN L-Alaninamide, N-[3-[(3,4-dichlorophenyl)methyl]thio]-1-oxopropyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-61-1 CAPLUS

CN L-Alaninamide, N-[5-(4-chlorophenyl)-1,5-dioxopentyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-62-2 CAPLUS

CN L-Alaninamide, N-(1-oxo-5-phenylpentyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-63-3 CAPLUS

CN L-Alaninamide, 3-benzo[b]thien-3-yl-N-[6-[[[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-5-yl)amino]thioxomethyl]amino]-1-oxohexyl]-L-alanyl-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

RN 858352-64-4 CAPLUS

CN L-Alaninamide, N-[(2,5-dioxo-4-imidazolidinyl)acetyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-65-5 CAPLUS

CN L-Alaninamide, N-(cyclohexylacetyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-66-6 CAPLUS

CN L-Alaninamide, 2-oxo-4-thiazolidinecarbonyl-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-67-7 CAPLUS

CN L-Alaninamide, 2-oxo-4-thiazolidinecarbonyl-2-oxo-4-thiazolidinecarbonyl-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-68-8 CAPLUS

CN L-Alaninamide, N-(3-phenoxybenzoyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-69-9 CAPLUS

CN L-Alaninamide, S-(phosphonomethyl)-N-[(1,2,3,4-tetrahydro-2-naphthalenyl)carbonyl]-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-70-2 CAPLUS

CN L-Alaninamide, N-[1-oxo-3-(2-thienyl)propyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-71-3 CAPLUS

CN L-Alaninamide, N-[(9H-fluoren-9-ylmethoxy)carbonyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-72-4 CAPLUS

CN L-Alaninamide, 3-benzo[b]thien-3-yl-N-(4-piperidinylcarbonyl)-L-alanyl-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-73-5 CAPLUS

CN L-Alaninamide, 3-benzo[b]thien-3-yl-N-(1-piperazinylacetyl)-L-alanyl-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-74-6 CAPLUS

CN L-Alaninamide, N-benzoyl-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-75-7 CAPLUS

CN L-Alaninamide, N-(phenylacetyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-76-8 CAPLUS

CN L-Alaninamide, N-(1-oxo-3-phenylpropyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-77-9 CAPLUS

CN L-Alaninamide, N-(1-oxo-4-phenylbutyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-78-0 CAPLUS

CN L-Alaninamide, N-((1,1'-biphenyl)-4-ylacetyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidincarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-82-6 CAPLUS

CN Phosphonic acid, [[[(2-[(2S)-2-[[[(1S)-2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-2-oxoethyl]thio)methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-83-7 CAPLUS

CN Phosphonic acid, [[[(3-[(2S)-2-[[[(1S)-2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-3-oxopropyl]thio)methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-84-8 CAPLUS

CN L-Alaninamide, N-acetyl-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-85-9 CAPLUS

CN L-Alaninamide, N-[(phenylmethoxy) carbonyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-86-0 CAPLUS

CN L-Alaninamide, N-[(phenylmethyl)sulfonyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-87-1 CAPLUS

CN L-Alaninamide, N-[(1-phenylcyclopentyl) carbonyl] -S- (phosphonomethyl) -L-cysteinyl - (2S) -2-piperidinecarbonyl -3-(2-naphthalenyl) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-88-2 CAPLUS

CN L-Alaninamide, N-[(2-chlorophenyl) acetyl] -S- (phosphonomethyl) -L-cysteinyl - (2S) -2-piperidinecarbonyl -3-(2-naphthalenyl) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-89-3 CAPLUS

CN L-Alaninamide, N-[(4-chlorophenyl) acetyl] -S- (phosphonomethyl) -L-cysteinyl - (2S) -2-piperidinecarbonyl -3-(2-naphthalenyl) - (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-90-6 CAPLUS

CN L-Alaninamide, N-[4-(4-methoxyphenyl)acetyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-91-7 CAPLUS

CN L-Alaninamide, N-[4-(4-chlorophenyl)-1,4-dioxobutyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-92-8 CAPLUS

CN L-Alaninamide, N-[4-(4-methoxyphenyl)-1-oxobutyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-93-9 CAPLUS

CN L-Alaninamide, 5-oxo-L-prolyl-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-94-0 CAPLUS

CN L-Alaninamide, N-(3-benzofuranylcarbonyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-95-1 CAPLUS

CN L-Alaninamide, S-(phosphonomethyl)-N-(1-piperazinylacetyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-96-2 CAPLUS

CN L-Alaninamide, (4R)-3-acetyl-2-oxo-4-thiazolidinecarbonyl-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-97-3 CAPLUS

CN L-Alaninamide, N-[(2-methylpropoxy)carbonyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-98-4 CAPLUS

CN L-Alaninamide, N-(butoxycarbonyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858352-99-5 CAPLUS

CN L-Alaninamide, N-(methoxycarbonyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-00-1 CAPLUS

CN L-Alaninamide, N-(phenoxy carbonyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-01-2 CAPLUS

CN L-Alaninamide, N-[(2-phenylethoxy) carbonyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-02-3 CAPLUS

CN L-Alaninamide, N-(phenylsulfonyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-03-4 CAPLUS

CN L-Alaninamide, N-[(2-phenylethyl)sulfonyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-04-5 CAPLUS

CN L-Alaninamide, N-[(3-phenylpropyl)sulfonyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-05-6 CAPLUS

CN L-Alaninamide, N-(methylsulfonyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-06-7 CAPLUS

CN L-Alaninamide, S-(phosphonomethyl)-N-[(2,4,6-trimethylphenyl)sulfonyl]-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-07-8 CAPLUS

CN L-Alaninamide, S-(phosphonomethyl)-N-(2-thienylsulfonyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-08-9 CAPLUS

CN L-Alaninamide, N-[1-oxo-3-(1-piperidinyl)propyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-10-3 CAPLUS

CN L-Alaninamide, N-(1,3-benzodioxol-5-ylacetyl)-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-11-4 CAPLUS

CN L-Alaninamide, N-[(3,5-dimethoxyphenyl)acetyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-12-5 CAPLUS

CN L-Alaninamide, N-[1-(2-methoxyphenyl)acetyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-15-8 CAPLUS

CN L-Alaninamide, N-[1-(3-methoxyphenyl)acetyl]-S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-16-9 CAPLUS

CN L-Alaninamide, S-(phosphonomethyl)-N-[4-(1-piperazinyl)phenyl]acetyl]-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-19-2 CAPLUS

CN Phosphonic acid, [[[(2S)-2-[[[(1S)-2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-1-methyl-2-oxoethyl]thio]methyl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-23-8 CAPLUS

CN Phosphonic acid, [[[(2S)-2-[[[(1S)-2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]carbonyl]-3-(methylamino)-3-oxopropyl]thio]methyl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-24-9 CAPLUS

CN Phosphonic acid, [[[(2S)-2-[[[(1S)-2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]carbonyl]-3-[(4-methoxyphenyl)amino]-3-oxopropyl]thio]methyl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-52-3 CAPLUS

CN Alaninamide, N-[3-[(9H-fluoren-9-ylmethoxy)carbonyl]-O-(phosphonomethyl)-L-seryl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-53-4 CAPLUS

CN Alaninamide, N-[3-[(4-chlorophenyl)methyl]thio]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-54-5 CAPLUS

CN Alaninamide, N-[3-[(3,4-dichlorophenyl)methyl]thio]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-55-6 CAPLUS

CN Alaninamide, N-[5-(4-chlorophenyl)-1,5-dioxopentyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-56-7 CAPLUS

CN Alaninamide, N-(1-oxo-5-phenylpentyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-57-8 CAPLUS

CN Alaninamide, N-(cyclohexylacetyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-58-9 CAPLUS

CN Alaninamide, N-(3-phenoxybenzoyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-59-0 CAPLUS

CN Alaninamide, N-[1-oxo-3-(2-thienyl)propyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-60-3 CAPLUS

CN Alaninamide, N-[(9H-fluoren-9-ylmethoxy)carbonyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-61-4 CAPLUS

CN Alaninamide, N-benzoyl-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-62-5 CAPLUS

CN Alaninamide, N-(phenylacetyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-63-6 CAPLUS

CN Alaninamide, N-(1-oxo-3-phenylpropyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-64-7 CAPLUS

CN Alaninamide, N-(1-oxo-4-phenylbutyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-65-8 CAPLUS

CN Alaninamide, N-([1,1'-biphenyl]-4-ylacetyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-69-2 CAPLUS

CN Phosphonic acid, [[2-[2-[[[2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-2-oxoethyl]thio]methyl- (9CI) (CA INDEX NAME)

RN 858353-70-5 CAPLUS

CN Phosphonic acid, [[[3-[2-[[[2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-3-oxopropyl]thio]methyl]- (9CI)
(CA INDEX NAME)

RN 858353-71-6 CAPLUS

CN Alaninamide, N-acetyl-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-72-7 CAPLUS

CN Alaninamide, N-[(phenylmethoxy)carbonyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-73-8 CAPLUS

CN Alaninamide, N-[(phenylmethyl)sulfonyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-74-9 CAPLUS

CN Alaninamide, N-[(1-phenylcyclopentyl)carbonyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-75-0 CAPLUS

CN Alaninamide, N-[(2-chlorophenyl)acetyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-76-1 CAPLUS

CN Alaninamide, N-[4-chlorophenyl]acetyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-77-2 CAPLUS

CN Alaninamide, N-[4-methoxyphenyl]acetyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-78-3 CAPLUS

CN Alaninamide, N-[4-(4-chlorophenyl)-1,4-dioxobutyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-79-4 CAPLUS

CN Alaninamide, N-[4-(4-methoxyphenyl)-1-oxobutyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-80-7 CAPLUS

CN Alaninamide, 5-oxo-L-prolyl-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-81-8 CAPLUS

CN Alaninamide, N-(3-benzofuranylcarbonyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-82-9 CAPLUS

CN Alaninamide, S-(phosphonomethyl)-N-(1-piperazinylacetyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-83-0 CAPLUS

CN Alaninamide, N-[(2-methylpropoxy)carbonyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-84-1 CAPLUS

CN Alaninamide, N-(butoxycarbonyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-85-2 CAPLUS

CN Alaninamide, N-(methoxycarbonyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-86-3 CAPLUS

CN Alaninamide, N-(phenoxy carbonyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-87-4 CAPLUS

CN Alaninamide, N-[(2-phenylethoxy)carbonyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-88-5 CAPLUS

CN Alaninamide, N-(phenylsulfonyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-89-6 CAPLUS

CN Alaninamide, N-[(2-phenylethyl)sulfonyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-90-9 CAPLUS

CN Alaninamide, N-[(3-phenylpropyl)sulfonyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-91-0 CAPLUS

CN Alaninamide, N-(methylsulfonyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-92-1 CAPLUS

CN Alaninamide, S-(phosphonomethyl)-N-[(2,4,6-trimethylphenyl)sulfonyl]-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-93-2 CAPLUS

CN Alaninamide, S-(phosphonomethyl)-N-(2-thienylsulfonyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-94-3 CAPLUS

CN Alaninamide, N-[1-oxo-3-(1-piperidinyl)propyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-96-5 CAPLUS

CN Alaninamide, N-(1,3-benzodioxol-5-ylacetyl)-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-97-6 CAPLUS

CN Alaninamide, N-[(3,5-dimethoxyphenyl)acetyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858353-98-7 CAPLUS

CN Alaninamide, N-[2-methoxyphenyl]acetyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858354-02-6 CAPLUS

CN Alaninamide, N-[3-methoxyphenyl]acetyl]-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858354-03-7 CAPLUS

CN Alaninamide, S-(phosphonomethyl)-N-[4-(1-piperazinyl)phenyl]acetyl]-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858354-06-0 CAPLUS

CN Phosphonic acid, [[[2-[2-[[[2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-1-methyl-2-oxoethyl]thio]methyl]-(9CI) (CA INDEX NAME)

RN 858354-10-6 CAPLUS

CN Phosphonic acid, [[[1-[[2-[[2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]carbonyl]-3-(methylamino)-3-oxopropyl]thio]methyl]- (9CI) (CA INDEX NAME)

RN 858354-11-7 CAPLUS

CN Phosphonic acid, [[[1-[[2-[[2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]carbonyl]-3-[(4-methoxyphenyl)amino]-3-oxopropyl]thio]methyl]- (9CI) (CA INDEX NAME)

RN 858648-21-2 CAPLUS

CN Alaninamide, N-acetyl-3-benzo[b]thien-3-ylalanyl-O-(phosphonomethyl)-L-seryl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858648-22-3 CAPLUS

CN Alaninamide, N-acetyl-3-benzo[b]thien-3-ylalanyl-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858648-23-4 CAPLUS

CN Alaninamide, 3-benzo[b]thien-3-yl-N-[6-[[[[(3',6'-dihydroxy-3-oxospiro[isobenzofuran-1(3H),9'-[9H]xanthen]-5-yl)amino]thioxomethyl]amino]-1-oxohexyl]alanyl-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858648-24-5 CAPLUS

CN Phosphonic acid, [([(2R)-3-[2-[[2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-2-[(2,5-dioxo-4-imidazolidinyl)acetyl]amino]-3-oxopropyl]thio)methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858648-25-6 CAPLUS

CN Phosphonic acid, [([(2R)-3-[2-[[2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-3-oxo-2-[(2-oxo-4-thiazolidinyl)carbonyl]amino]propyl]thio)methyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858648-26-7 CAPLUS

CN Phosphonic acid, [([(2R)-3-[2-[[[2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-3-oxo-2-[[2-oxo-3-[(2-oxo-4-thiazolidinyl)carbonyl]-4-thiazolidinyl]carbonyl]amino]propyl]thio)methyl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858648-27-8 CAPLUS

CN Phosphonic acid, [([(2R)-3-[2-[[[2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-3-oxo-2-[(1,2,3,4-tetrahydro-2-naphthalenyl)carbonyl]amino]propyl]thio)methyl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858648-28-9 CAPLUS

CN Alaninamide, 3-benzo[b]thien-3-yl-N-(4-piperidinylcarbonyl)alanyl-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858648-29-0 CAPLUS

CN Alaninamide, 3-benzo[b]thien-3-yl-N-(1-piperazinylacetyl)alanyl-S-(phosphonomethyl)-L-cysteinyl-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 858648-30-3 CAPLUS

CN Phosphonic acid, [[[(2R)-2-[(3-acetyl-2-oxo-4-thiazolidinyl)carbonyl]amino]-3-[2-[[2-amino-1-(2-naphthalenylmethyl)-2-oxoethyl]amino]carbonyl]-1-piperidinyl]-3-oxopropyl]thio]methyl]-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 858353-37-4DP, resin-bound

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation of peptide phosphonic acid derivs. for inhibition of undesired

cell proliferation)
RN 858353-37-4 CAPLUS
CN L-Alaninamide, S-(phosphonomethyl)-L-cysteinyl-(2S)-2-piperidinecarbonyl-3-(2-naphthalenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

RE.CNT 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

<-----User Break----->

<-----User Break----->

=> file registry	SINCE FILE	TOTAL
COST IN U.S. DOLLARS	ENTRY	SESSION
FULL ESTIMATED COST	15.81	207.57
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE	TOTAL
CA SUBSCRIBER PRICE	ENTRY	SESSION
	-0.85	-0.85

FILE 'REGISTRY' ENTERED AT 15:51:42 ON 03 NOV 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 1 NOV 2010 HIGHEST RN 1250478-22-8
DICTIONARY FILE UPDATES: 1 NOV 2010 HIGHEST RN 1250478-22-8

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 26, 2010.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

=>

Uploading C:\Program Files\Stnexp\Queries\10583442.str

chain nodes :

7 8 9 10 11 19 20 21 22

ring nodes :

1 2 3 4 5 6 12 13 14 15 16 17

chain bonds :

7-8 7-9 9-10 10-11 11-12 19-20 19-21 19-22

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 12-13 12-17 13-14 14-15 15-16 16-17

exact/norm bonds :

1-2 1-6 2-3 3-4 4-5 5-6 7-8 7-9 9-10

exact bonds :

10-11 11-12

normalized bonds :

12-13 12-17 13-14 14-15 15-16 16-17 19-20 19-21 19-22

isolated ring systems :

containing 1 :

Match level :

1:CLASS 2:CLASS 3:CLASS 4:CLASS 5:CLASS 6:CLASS 7:CLASS 8:CLASS 9:CLASS

10:CLASS 11:CLASS 12:CLASS 13:CLASS 14:CLASS 15:CLASS 16:CLASS 17:CLASS

18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS

L5 STRUCTURE UPLOADED

=> d 15

L5 HAS NO ANSWERS

L5 STR

Structure attributes must be viewed using STN Express query preparation.

```
=> s 15
SAMPLE SEARCH INITIATED 15:52:18 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 189 TO ITERATE

100.0% PROCESSED 189 ITERATIONS 7 ANSWERS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 2956 TO 4604
PROJECTED ANSWERS: 7 TO 298
```

L6 7 SEA SSS SAM L5

```
=> s 15
SAMPLE SEARCH INITIATED 15:52:22 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 189 TO ITERATE

100.0% PROCESSED 189 ITERATIONS 7 ANSWERS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 2956 TO 4604
PROJECTED ANSWERS: 7 TO 298
```

L7 7 SEA SSS SAM L5

```
=> ful
FUL IS NOT A RECOGNIZED COMMAND
The previous command name entered was not recognized by the system.
For a list of commands available to you in the current file, enter
"HELP COMMANDS" at an arrow prompt (>).
```

```
=> s 15 ful
FULL SEARCH INITIATED 15:52:31 FILE 'REGISTRY'
```

FULL SCREEN SEARCH COMPLETED - 3948 TO ITERATE

100.0% PROCESSED 3948 ITERATIONS 211 ANSWERS
SEARCH TIME: 00.00.01

L8 211 SEA SSS FUL L5

=> d his

(FILE 'HOME' ENTERED AT 15:38:31 ON 03 NOV 2010)

FILE 'REGISTRY' ENTERED AT 15:38:58 ON 03 NOV 2010
L1 STRUCTURE uploaded
L2 2 S L1
L3 121 S L1 FUL

FILE 'CPLUS' ENTERED AT 15:39:37 ON 03 NOV 2010
L4 1 S L3

FILE 'REGISTRY' ENTERED AT 15:51:42 ON 03 NOV 2010
L5 STRUCTURE uploaded
L6 7 S L5
L7 7 S L5
L8 211 S L5 FUL

=> s l8 not l3
L9 90 L8 NOT L3

=> file caplus

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	192.03	399.60
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	0.00	-0.85

FILE 'CPLUS' ENTERED AT 15:53:03 ON 03 NOV 2010
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2010 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 3 Nov 2010 VOL 153 ISS 19
FILE LAST UPDATED: 2 Nov 2010 (20101102/ED)
REVISED CLASS FIELDS (/NCL) LAST RELOADED: Aug 2010
USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Aug 2010

CAplus now includes complete International Patent Classification (IPC) reclassification data for the third quarter of 2010.

CAS Information Use Policies apply and are available at:

<http://www.cas.org/legal/infopolicy.html>

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 19
L10 33 L9

=> d abs bib fhitstr 25-33

L10 ANSWER 25 OF 33 CAPLUS COPYRIGHT 2010 ACS on STN

AB The author used photolytic liberation of either caged isocitrate or caged NADP and Laue X-ray data collection to visualize the isocitrate dehydrogenase complex. The experiment was conducted with three different photoreactive compds., each possessing a unique mechanism leading to the formation of the ES complex. Photoreaction efficiency and subsequent substrate affinities and binding rates in the crystal are critical parameters in these expts.

AN 1999:142636 CAPLUS [Full-text](#)

DN 130:348950

TI Visualization enzyme intermediates using fast diffraction and reaction trapping methods isocitrate dehydrogenase

AU Stoddard, B. L.

CS Div. Basic Sciences, Fred Hutchinson Cancer Res. Center, Seattle, WA, 98109, USA

SO Biochemical Society Transactions (1999), 27(2), 42-48
CODEN: BCSTB5; ISSN: 0300-5127

PB Portland Press Ltd.

DT Journal

LA English

IT 193008-54-7

RL: BPR (Biological process); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study); PROC (Process)
(photoreactive substrates; visualizing isocitrate dehydrogenase intermediates using fast X-ray diffraction and reaction trapping methods)

RN 193008-54-7 CAPLUS

CN Adenosine 5'-(trihydrogen diphosphate), 2'-(dihydrogen phosphate), P'→5'-ester with 3-[[[carboxy(2-nitrophenyl)methyl]amino]carbonyl]-1-β-D-ribofuranosylpyridinium, inner salt (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

OSC.G 4 THERE ARE 4 CAPLUS RECORDS THAT CITE THIS RECORD (4 CITINGS)
 RE.CNT 33 THERE ARE 33 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 26 OF 33 CAPLUS COPYRIGHT 2010 ACS on STN

AB The structure of a rate-limited product complex formed during a single initial round of turnover by isocitrate dehydrogenase has been determined. Photolytic liberation of either caged substrate or caged cofactor and Laue X-ray data collection were used to visualize the complex, which has a min. half-life of approx. 10 ms. The experiment was conducted with three different photoreactive compds., each possessing a unique mechanism leading to the formation of the enzyme-substrate (ES) complex. Photoreaction efficiency and subsequent substrate affinities and binding rates in the crystal are critical parameters for these expts. The structure suggests that CO₂ dissociation is a rapid event that may help drive product formation, and that small conformational changes may contribute to slow product release.

AN 1998:699517 CAPLUS Full-text

DN 130:49120

TI Millisecond Laue structures of an enzyme-product complex using photocaged substrate analogs

AU Stoddard, Barry L.; Cohen, Bruce E.; Brubaker, Michael; Mesecar, Andrew D.; Koshland, Daniel E., Jr.

CS Division of Basic Sciences, Program in Structural Biology, Fred Hutchinson Cancer Research Center A3-023, Seattle, WA, 98109, USA

SO Nature Structural Biology (1998), 5(10), 891-897
 CODEN: NSBIEW; ISSN: 1072-8368

PB Nature America

DT Journal

LA English

IT 193008-54-7

RL: NUU (Other use, unclassified); RCT (Reactant); RACT (Reactant or reagent); USES (Uses)

(caged substrate analog; millisecond Laue structures of an enzyme-product complex using photocaged substrate analogs)

RN 193008-54-7 CAPLUS

CN Adenosine 5'-(trihydrogen diphosphate), 2'-(dihydrogen phosphate), P'→5'-ester with 3-[[[carboxy(2-nitrophenyl)methyl]amino]carbonyl]-1-β-D-ribofuranosylpyridinium, inner salt (9CI) (CA INDEX NAME)

Absolute stereochemistry.

OSC.G 25 THERE ARE 25 CAPLUS RECORDS THAT CITE THIS RECORD (25 CITINGS)
 RE.CNT 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 27 OF 33 CAPLUS COPYRIGHT 2010 ACS on STN

AB Two caged NADP compds. have been synthesized and characterized for use in the crystallog. study of isocitrate dehydrogenase (IDH), as well as for general use in cell biol., metabolism, and enzymol. One caged NADP compound has been designed to be "catalytically caged" so that it can bind to IDH prior to photolysis but is not catalytically active. A second NADP compound is "affinity caged" so that addition of the caging group inhibits binding of the compound to IDH prior to photolysis. The catalytically caged compound was synthesized in a two-step process, starting with the NADase-catalyzed exchange of a synthetic nicotinamide derivative onto NADP. X-ray structures of the NADP compds. with IDH show the catalytically caged NADP bound to the enzyme with its nicotinamide group improperly positioned to allow turnover, while the affinity caged NADP does not bind to the enzyme at concns. up to 50 mM. Two analogous caged NAD compds. have also been synthesized. The NADP and NAD compds. were characterized in terms of kinetics, quantum yield, and product formation. The affinity caged NADP compound P2'-[1-(4,5-dimethoxy-2-nitrophenyl)ethyl] NADP is photolyzed at a rate of 1.8+10⁴ s⁻¹ with a quantum yield of 0.19 at pH 7; the NAD analog P-[1-(4,5-dimethoxy-2-nitrophenyl)ethyl] NAD is photolyzed at a rate of 1.7+10⁴ s⁻¹ with a quantum yield of 0.17.

AN 1997:425310 CAPLUS Full-text

DN 127:132644

OREF 127:25517a, 25520a

TI Caged NADP and NAD. Synthesis and Characterization of Functionally Distinct Caged Compounds

AU Cohen, Bruce E.; Stoddard, Barry L.; Koshland, Daniel E., Jr.

CS Departments of Chemistry and Molecular and Cell Biology, University of California, Berkeley, CA, 94720-3206, USA

SO Biochemistry (1997), 36(29), 9035-9044

CODEN: BICHAW; ISSN: 0006-2960

PB American Chemical Society

DT Journal

LA English

OS CASREACT 127:132644

IT 193008-54-7P

RL: BPR (Biological process); BSU (Biological study, unclassified); PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); PROC (Process); RACT (Reactant or reagent)

(synthesis and photochem. characterization of caged NADP and NAD compds. for use in Laue crystallog. study of isocitrate dehydrogenase)

RN 193008-54-7 CAPLUS

CN Adenosine 5'-(trihydrogen diphosphate), 2'-(dihydrogen phosphate), P'→5'-ester with 3-[[carboxy(2-nitrophenyl)methyl]amino]carbonyl]-1-β-D-ribofuranosylpyridinium, inner salt (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

OSC.G 28 THERE ARE 28 CAPLUS RECORDS THAT CITE THIS RECORD (28 CITINGS)

L10 ANSWER 28 OF 33 CAPLUS COPYRIGHT 2010 ACS on STN

AB Peptides X-PTI-(AA)n-Y (AA = natural or unnatural amino acid residue, n = 0-15, PTI = tyrosine or preferably phosphotyrosine or phosphotyrosine mimic, X = arylcarbonyl, cycloalkylcarbonyl, tricycloalkylcarbonyl, arylsulfonyl, etc., Y = OH, C-terminal protecting group, amino group) or their salts were prepared for the treatment of diseases that respond to inhibition of the interaction of a protein comprising an SH2 domain and a protein tyrosine. Thus, 3-aminobenzylloxycarbonyl-Tyr(PO3H2)-Ile-Asn-Gln-NH2 trifluoroacetate salt was prepared by the solid phase method and had an IC50 value of 0.1 in a test system using the phosphorylated "tail" EGFR-MBP fusion protein as ligand. Formulations containing acylated oligopeptides are described.

AN 1997:283758 CAPLUS Full-text

DN 126:264364

OREF 126:51209a,51212a

TI Acylated oligopeptide derivatives having cell signal inhibiting activity

IN Garcia-Echeverria, Carlos; Gay, Brigitte; Furet, Pascal; Rahuel, Joseph; Caravatti, Giorgio; Fretz, Heinz; Schoepfer, Joseph

PA Ciba-Geigy A.-G., Switz.

SO PCT Int. Appl., 257 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI WO 9708193	A1	19970306	WO 1996-EP3473	19960806
W: AL, AU, BB, BG, BR, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KP, KR, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
CA 2227516	A1	19970306	CA 1996-2227516	19960806
AU 9667425	A	19970319	AU 1996-67425	19960806
EP 846127	A1	19980610	EP 1996-927694	19960806
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI				
ZA 9606967	A	19970217	ZA 1996-6967	19960816
PRAI GB 1995-17060	A	19950817		
WO 1996-EP3473	W	19960806		
OS MARPAT 126:264364				
IT 188749-84-0P				
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)				
(preparation of acylated oligopeptide derivs. having cell signal inhibiting activity)				
RN 188749-84-0 CAPLUS				
CN L-Glutamamide, O-phosphono-N-(4-pyridinylcarbonyl)-L-tyrosyl-L-isoleucyl-L-asparaginyl- (9CI) (CA INDEX NAME)				

Absolute stereochemistry.

PAGE 1-A

PAGE 2-A

OSC.G 6 THERE ARE 6 CAPLUS RECORDS THAT CITE THIS RECORD (6 CITINGS)
RE.CNT 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 29 OF 33 CAPLUS COPYRIGHT 2010 ACS on STN

AB The synthesis of caged NAD⁺ and caged NADP⁺ coenzymes was achieved by using pig brain NADase to exchange nicotinamide with N-2-nitrobenzylnicotinamide. The synthesis of N-2 nitrobenzylnicotinamide is achieved by the coupling of o-nitrobenzyl amine with nicotinoyl chloride. The photorelease of NADP⁺ is characterized and the quantum efficiency of NADP⁺ release measured. The biol. inactivity of caged NADP⁺ is established for several dehydrogenases and the biol. activity of released NADP⁺ demonstrated.

AN 1997:196181 CAPLUS [Full-text](#)

DN 126:289866

OREF 126:56033a,56036a

TI Synthesis of Caged NAD(P)⁺ Coenzymes: Photorelease of NADP⁺

AU Salerno, Charles P.; Resat, Marianne; Magde, Douglas; Kraut, Joseph

CS Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0506, USA

SO Journal of the American Chemical Society (1997), 119(14), 3403-3404
CODEN: JACSAT; ISSN: 0002-7863

PB American Chemical Society

DT Journal

LA English

IT 189169-98-0

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); MFM (Metabolic formation); PRP (Properties); BIOL (Biological study); FORM (Formation, nonpreparative)
(synthesis of caged NAD(P)⁺ coenzymes)

RN 189169-98-0 CAPLUS

CN Adenosine 5'-(trihydrogen diphosphate), 2'-(dihydrogen phosphate), P'→5'-ester with 3-[[[(2-nitrophenyl)methyl]amino]carbonyl]-1-β-D-ribofuranosylpyridinium, inner salt (9CI) (CA INDEX NAME)

Absolute stereochemistry.

PAGE 1-A

PAGE 1-B

OSC.G 8 THERE ARE 8 CAPLUS RECORDS THAT CITE THIS RECORD (8 CITINGS)
RE.CNT 25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

AB Title compds., conjugates comprising a 1st residue and a 2nd residue connected by a cleavable bond, wherein the 1st residue is an inhibitor of the biosynthesis of an adrenergic neurotransmitter and the 2nd residue is cleaved by an enzyme located predominantly in the kidney, are prepared 5-[(5-Butyl-2-pyridinyl)carbonyl]-L-glutamic acid hydrazide (preparation given) in MeCN/H₂O was treated with 2 equiv of 1M K₂CO₃ followed by Ac₂O and K₂CO₃ to give the L-glutamic hydrazide I. In spontaneously hypertensive rats, I at 8 mg/h lowered blood pressure from 146 to 122 mm Hg on day 1 and to 115 mm Hg on day 5. Addnl. compds. were prepared and tested. A large number of compds. are claimed.

AN 1991:583950 CAPLUS Full-text

DN 115:183950

OREF 115:31445a,31448a

TI Preparation of amino acid conjugates as renal-selective prodrugs for the treatment of hypertension

IN Reitz, David B.; Koepke, John P.; Blaine, Edward H.; Schuh, Joseph R.; Manning, Robert E.; Smits, Glenn J.

PA G.D. Seearle and Co., USA

SO PCT Int. Appl., 459 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9101724	A1	19910221	WO 1990-US4168	19900725
	W: CA, JP, KR, US				
	RW: AT, BE, CH, DE, DK, ES, FR, GB, IT, LU, NL, SE				
	EP 484437	A1	19920513	EP 1990-912307	19900725
	R: AT, BE, CH, DE, DK, ES, FR, GB, IT, LI, LU, NL, SE				
	JP 04506967	T	19921203	JP 1990-511397	19900725
	WO 9201667	A1	19920206	WO 1991-US611	19910128
	W: CA, JP, KR, US				
	RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, NL, SE				
	US 20030220521	A1	20031127	US 2002-151211	20020520
	US 20040101523	A1	20040527	US 2003-689919	20031020
PRAI	US 1989-386527	A2	19890727		
	WO 1990-US4168	W	19900725		
	US 1994-280170	B1	19940725		
	US 1996-639493	B1	19960429		
	US 1999-444888	B1	19991122		
	US 2000-678015	A1	20001002		
	US 2002-151211	B1	20020520		
OS	MARPAT 115:183950				
IT	136486-36-7DP, kidney enzyme-cleavable conjugate				
	RL: SPN (Synthetic preparation); PREP (Preparation)				
	(preparation of, as prodrug antihypertensive)				
RN	136486-36-7 CAPLUS				
CN	L-Tyrosine, 3-hydroxy-N-[5-(hydroxymethyl)-2-methyl-3-(phosphonoxy)-4-				

pyridinyl]carbonyl]- (CA INDEX NAME)

Absolute stereochemistry.

OSC.G 8 THERE ARE 8 CAPLUS RECORDS THAT CITE THIS RECORD (10 CITINGS)
RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L10 ANSWER 31 OF 33 CAPLUS COPYRIGHT 2010 ACS on STN

AB The coenzyme-amino acid adducts, N-(5'-phosphopyridoxyl)-L-3,4-dihydroxyphenylalanine and N-(5'-phosphopyridoxyl)-L-m-aminotyrosine (I), inhibit hog kidney aromatic L-amino acid decarboxylase (DOPA decarboxylase, II). Kinetic studies on the nature of the inhibition caused by these adducts appeared to distinguish 2 distinct decarboxylase activities in purified enzyme preps. The appearance of 2 activities in purified enzyme preps. is an artifact of the system resulting from the following properties of II: (1) the enzyme has a high affinity for pyridoxal phosphate; (2) II can follow a decarboxylation-dependent transamination pathway forming apoenzyme as one of the products of this pathway; and (3) the phosphorylated adducts investigated readily bind to apo-II, but do not readily displace pyridoxal phosphate from holoenzyme. Incubation of holo-II with N-(5'-deoxypyridoxyl)-DL-DOPA, in the absence of added coenzyme, causes a rapid inactivation of enzyme ($t_{1/2} = 5$ min) which is associated with a decrease in the coenzyme content of the enzyme. However, incubation of holoenzyme with the phosphorylated adduct, I, causes a much slower inactivation of enzyme ($t_{1/2} = 30$ min), whereas a short incubation (≤ 10 min) with either of the phosphorylated adducts increases the activity of holoenzyme. Calcns. indicate that the extent of reactivation of apoenzyme, formed via the decarboxylation-dependent transamination pathway, by excess exogenous coenzyme cannot be accounted for solely by reconstitution of holoenzyme. It is proposed that II has either a 2nd active site which has a low affinity for pyridoxal phosphate or a site(s) which, when occupied by pyridoxal phosphate, leads to an increase in the activity of the enzyme.

AN 1982:2806 CAPLUS Full-text

DN 96:2806

OREF 96:507a,510a

TI Inhibition of aromatic L-amino acid decarboxylase by coenzyme-amino acid adducts

AU Rudd, Edwin A.; Thanassi, John W.

CS Coll. Med., Univ. Vermont, Burlington, VT, 05405, USA

SO Biochemistry (1981), 20(26), 7469-75

CODEN: BICHAW; ISSN: 0006-2960

DT Journal

LA English

IT 79950-80-4

RL: BIOL (Biological study)

(aromatic amino acid decarboxylase inhibition by, kinetics of)

RN 79950-80-4 CAPLUS

CN L-Tyrosine, 3-hydroxy-N-[[3-hydroxy-2-methyl-5-[(phosphonoxy)methyl]-4-

pyridinyl]carbonyl- (CA INDEX NAME)

Absolute stereochemistry.

OSC.G 2 THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

L10 ANSWER 32 OF 33 CAPLUS COPYRIGHT 2010 ACS on STN

AB The interaction between pyridoxyl amino acids and pig kidney decarboxylase was studied. Reactivation of the apoenzyme i.e. recombination of apo- and coenzymes in the presence of pyridoxal phosphate was very rapid but not immediate and the determination of inhibition consts. for the various pyridoxyl derivs. was difficult. The percent inhibition for 2 + 10⁻⁵M concns. of the following phosphopyridoxyl amino acids were: tyrosine 77, phenylalanine 66, methylamine 0, tyramine 40, and tyrosinol (0.7 + 10⁻⁵M) <5. The results show that for dopa-decarboxylases the phosphopyridyl derivs. are effective inhibitors of coenzyme-apoenzyme recombination and thus possess an affinity for the enzyme active site. Absence of the CO₂H group as in tyramine or of the amino acid moiety as with methylamine reduces or annuls the inhibitory action. The results agree with those obtained with bacterial decarboxylase except in the case of the tyrosinol compound which is inhibited by the bacterial enzyme but not by the mammalian enzyme.

AN 1972:137410 CAPLUS Full-text

DN 76:137410

OREF 76:22279a,22282a

TI Inhibition of the apoenzyme of Dopa decarboxylase by phosphopyridoxyl-amino acids

AU Borri-Voltattorni, C.; Minelli, A.; Turano, C.

CS Fac. Farm., Univ. Perugia, Perugia, Italy

SO Bollettino - Societa Italiana di Biologia Sperimentale (1971), 47(21), 700-2

CODEN: BSIBAC; ISSN: 0037-8771

DT Journal

LA Italian

IT 36093-69-3

RL: BIOL (Biological study)

(dopa decarboxylase apoenzyme inhibition by)

RN 36093-69-3 CAPLUS

CN L-Tyrosine, N-[3-hydroxy-2-methyl-5-[(phosphonooxy)methyl]-4-pyridinyl]carbonyl- (CA INDEX NAME)

Absolute stereochemistry.

L10 ANSWER 33 OF 33 CAPLUS COPYRIGHT 2010 ACS on STN

AB Thermodynamic parameters ΔF° 37,

ΔH° , ΔS° , and $\Delta^\circ p$ for

5'-phosphopyridoxyl-and pyridoxyl amino acid (aspartate, tyrosine)-apoenzyme complex formations are tabulated. Compensation phenomena may be of primary importance for catalytic mechanism of enzymes and may also play a role in the maintenance of a nearly constant level of enzymic activity under relatively large variations of pH values.

AN 1972:96331 CAPLUS Full-text

DN 76:96331

OREF 76:15505a,15508a

TI Thermodynamic parameters for substrate-coenzyme-protein complex formation in B6-dependent enzymes

AU Turano, C.; Borri Voltattorni, C.; Orlacchio, A.; Giartosio, A.

CS Inst. Biol. Chem., Univ. Perugia, Perugia, Italy

SO Eur. Biophys. Congr., Proc., 1st (1971), Volume 1, 45-8. Editor(s): Broda, E. Publisher: Verlag Wiener Med. Akad., Vienna, Austria.

CODEN: 24KMAA

DT Conference

LA English

IT 35930-97-3

RL: RCT (Reactant); RACT (Reactant or reagent)

(reaction of, with pyridoxal phosphate-dependent enzymes)

RN 35930-97-3 CAPLUS

CN L-Phenylalanine, N-[4-(hydroxymethyl)-6-methyl-5-(phosphonooxy)-3-pyridinyl]carbonyl- (CA INDEX NAME)

Absolute stereochemistry.

=> file registry

COST IN U.S. DOLLARS

SINCE FILE

TOTAL

ENTRY

SESSION

FULL ESTIMATED COST

59.29

458.89

DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)

SINCE FILE

TOTAL

ENTRY

SESSION

CA SUBSCRIBER PRICE

-7.65

-8.50

FILE 'REGISTRY' ENTERED AT 16:01:15 ON 03 NOV 2010

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2010 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 1 NOV 2010 HIGHEST RN 1250478-22-8
DICTIONARY FILE UPDATES: 1 NOV 2010 HIGHEST RN 1250478-22-8

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 26, 2010.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

<http://www.cas.org/support/stngen/stndoc/properties.html>

=>

Uploading C:\Program Files\Stnexp\Queries\10583442.str

chain nodes :

7 8 9 10 11 19 20 21 22 26 27

ring nodes :

1 2 3 4 5 6 12 13 14 15 16 17

chain bonds :

7-8 7-9 9-10 10-11 11-12 19-20 19-21 19-22 19-26 26-27

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 12-13 12-17 13-14 14-15 15-16 16-17

exact/norm bonds :

1-2 1-6 2-3 3-4 4-5 5-6 7-8 7-9 9-10 26-27

exact bonds :

10-11 11-12 19-26

normalized bonds :

12-13 12-17 13-14 14-15 15-16 16-17 19-20 19-21 19-22

isolated ring systems :

containing 1 :

Match level :

1:CLASS 2:CLASS 3:CLASS 4:CLASS 5:CLASS 6:CLASS 7:CLASS 8:CLASS 9:CLASS
10:CLASS 11:CLASS 12:CLASS 13:CLASS 14:CLASS 15:CLASS 16:CLASS 17:CLASS

18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS 26:CLASS 27:CLASS

L11 STRUCTURE UPLOADED

=> d 111
L11 HAS NO ANSWERS
L11 STR

Structure attributes must be viewed using STN Express query preparation.

=> s 111
SAMPLE SEARCH INITIATED 16:01:42 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 4 TO ITERATE

100.0% PROCESSED 4 ITERATIONS 4 ANSWERS
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 4 TO 200
PROJECTED ANSWERS: 4 TO 200

L12 4 SEA SSS SAM L11

=> s 111 ful
FULL SEARCH INITIATED 16:01:48 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 152 TO ITERATE

100.0% PROCESSED 152 ITERATIONS 145 ANSWERS
SEARCH TIME: 00.00.01

L13 145 SEA SSS FUL L11

=> d his

(FILE 'HOME' ENTERED AT 15:38:31 ON 03 NOV 2010)

FILE 'REGISTRY' ENTERED AT 15:38:58 ON 03 NOV 2010

L1 STRUCTURE UPLOADED
L2 2 S L1
L3 121 S L1 FUL

FILE 'CAPLUS' ENTERED AT 15:39:37 ON 03 NOV 2010

L4 1 S L3

FILE 'REGISTRY' ENTERED AT 15:51:42 ON 03 NOV 2010

L5 STRUCTURE UPLOADED
L6 7 S L5
L7 7 S L5
L8 211 S L5 FUL
L9 90 S L8 NOT L3

FILE 'CAPLUS' ENTERED AT 15:53:03 ON 03 NOV 2010

L10 33 S L9

FILE 'REGISTRY' ENTERED AT 16:01:15 ON 03 NOV 2010

L11 STRUCTURE UPLOADED
L12 4 S L11
L13 145 S L11 FUL

=> s l13 not l3

L14 28 L13 NOT L3

CAplus now includes complete International Patent Classification (IPC) reclassification data for the third quarter of 2010.

CAS Information Use Policies apply and are available at:

<http://www.cas.org/legal/infopolicy.html>

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s l14
L15 1 L14

=> d abs bib

L15 ANSWER 1 OF 1 CAPLUS COPYRIGHT 2010 ACS on STN
GI

AB The invention relates to phosphonic acid derivs. R1-X1-P(O)(X2-R2)-Y-Z-W1(A1-R3)(A2-R4)-W2(A3-R5)(A4-R6)-W3(A5-R7)(A6-R8)- A7-Q(T)-V(U)-A8-CR9R10-A9-R11 [R1, R2 are independently H or phospho-protecting groups; X1, X2 are independently O, S or NR12; Z is O, S, NR13 or CR4R5; A1-A9 are independently null, O, S, NR16, SO, SO2, CO, C(S), NR17CO, NR18C(S), NR19CONR20, NR21C(S)NR22, NR23S(O), NR24SO2 or NR25CO2; Y is O or CR26R27; Q, V are independently CR28 or N; W1, W2, W3 are independently C or N; R3-R28, T, U are independently null, H, halo, (un)substituted alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, etc.; or T and U may be connected by a single or double bond] and to pharmaceutical compns. containing the compds. for the treatment of diseases involving abnormal or undesired cell proliferation or mitosis. Thus, peptide phosphonic acid derivative I, prepared via peptide coupling in the solid phase, was a potent rotamase inhibitor (IC50 < 1 µM).

AN 2005:612099 CAPLUS Full-text

DN 143:133696

TI Preparation of peptide phosphonic acid derivatives for the inhibition of undesired cell proliferation

IN Knolle, Jochen; Schutkowski, Mike; Hummel, Gerd; Tradler, Thomas; Jobron, Laurence; Christner, Claudia; Gibson, Christoph; Zischinsky, Gunther

PA Jerini A.-G., Germany

SO PCT Int. Appl., 110 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2005063259	A1	20050714	WO 2004-EP14460	20041218
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW				
	RW: BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	AU 2004308619	A1	20050714	AU 2004-308619	20041218
	CA 2550352	A1	20050714	CA 2004-2550352	20041218
	EP 1703912	A1	20060927	EP 2004-804060	20041218
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, CY, TR, BG, CZ, EE, HU, PL, SK, IS				
	JP 2007514700	T	20070607	JP 2006-544371	20041218
	SG 148218	A1	20081231	SG 2008-9082	20041218
	ZA 2006004561	A	20070228	ZA 2006-4561	20060605
	US 20080194524	A1	20080814	US 2007-583442	20070328
PRAI	EP 2003-29450	A	20031219		
	WO 2004-EP14460	W	20041218		

ASSIGNMENT HISTORY FOR US PATENT AVAILABLE IN LSUS DISPLAY FORMAT

OS CASREACT 143:133696; MARPAT 143:133696

RE.CNT 2 THERE ARE 2 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

=> log off y

STN INTERNATIONAL LOGOFF AT 16:03:31 ON 03 NOV 2010