WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)					
(51) International Patent Classification ⁶ :	A1	(11) International Publication Number: WO 95/11922			
C07K 16/00, C12P 21/08		(43) International Publication Date: 4 May 1995 (04.05.95)			
(21) International Application Number: PCT/USS (22) International Filing Date: 25 October 1994 (20)		Khourie and Crew, 20th floor, One Market Plaza, Steuart			
(30) Priority Data: 08/144,775 29 October 1993 (29.10.93) 08/300,262 2 September 1994 (02.09.94) (60) Parent Application or Grant (63) Related by Continuation US 08/300,2 Filed on 2 September 1994 (0 (71) Applicant (for all designated States except US): AF TECHNOLOGIES N.V. [NL/NL]; De Ruyderkade Curacao (NL). (72) Inventors; and (75) Inventors/Applicants (for US only): MATTHEAKIS, [US/US]; 20612 Sunrise Drive, Cupertino, CA 940	62 (CI 02.09.9 FYMA 62, Al Larry, 087 (U:	Published With international search report.			
DOWER, William, J. [US/US]; 2307 Branner Driv Park, CA 94025 (US).	- ATAO				

(54) Title: IN VITRO PEPTIDE AND ANTIBODY DISPLAY LIBRARIES

(57) Abstract

Improved methods and novel compositions for identifying peptides and single-chain antibodies that bind to predetermined receptors or epitopes. Such peptides and antibodies are indentified by improved and novel methods for affinity screening of polysomes displaying nascent peptides.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	П	Italy	PL.	Poland
BR	Brazil	JP	Japan ·	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	Lī	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechosłovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
D€	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	Prance	MN	Mongolia	VN	Viet Nam
GA	Gabon	2,22,1			

10

15

20

25

30

35

40

IN VITRO PEPTIDE AND ANTIBODY DISPLAY LIBRARIES

FIELD OF THE INVENTION

The invention relates to methods and compositions for generating and screening combinatorial libraries of (1) displayed peptides and/or (2) displayed recombinant single-chain antibodies comprising variable region sequences encoded by natural or artificial variable region encoding sequences which are expressed on polysomes in an <u>in vitro</u> coupled transcription/translation system to facilitate screening.

BACKGROUND

Antibody Display and Screening Methods

Various molecular genetic approaches have been devised to capture the vast immunological repertoire represented by the extremely large number of distinct variable regions which can be present in immunoglobulin chains. naturally-occurring germline immunoglobulin heavy chain locus is composed of separate tandem arrays of variable (V) segment genes located upstream of a tandem array of diversity (D) segment genes, which are themselves located upstream of a tandem array of joining (J) region genes, which are located upstream of the constant (C_H) region genes. During B lymphocyte development, V-D-J rearrangement occurs wherein a heavy chain variable region gene (V_H) is formed by rearrangement to form a fused D-J segment followed by rearrangement with a V segment to form a V-D-J joined product gene which, if productively rearranged, encodes a functional variable region (V_H) of a heavy chain. Similarly, light chain loci rearrange one of several V segments with one of several J segments to form a gene encoding the variable region (V_{τ_i}) of a light chain.

The vast repertoire of variable regions possible in immunoglobulins derives in part from the numerous combinatorial possibilities of joining V and J segments (and, in the case of heavy chain loci, D segments) during rearrangement in B cell

10.

15

20

25

30

35

development. Additional sequence diversity in the heavy chain variable regions arises from non-uniform rearrangements of the D segments during V-D-J joining and from N region addition. Further, antigen-selection of specific B cell clones selects for higher affinity variants having nongermline mutations in one or both of the heavy and light chain variable regions; a phenomenon referred to as "affinity maturation" or "affinity sharpening". Typically, these "affinity sharpening" mutations cluster in specific areas of the variable region, most commonly in the complementarity-determining regions (CDRs).

In order to overcome many of the limitations in producing and identifying high-affinity immunoglobulins through antigen-stimulated B cell development (i.e., immunization), various prokaryotic expression systems have been developed that can be manipulated to produce combinatorial antibody libraries which may be screened for high-affinity antibodies to specific antigens. Recent advances in the expression of antibodies in Escherichia coli and bacteriophage systems (see, "Alternative Peptide Display Methods", infra) have raised the possibility that virtually any specificity can be obtained by either cloning antibody genes from characterized hybridomas or by de novo selection using antibody gene libraries (e.g., from Ig cDNA).

combinatorial libraries of antibodies have been generated in bacteriophage lambda expression systems which may be screened as bacteriophage plaques or as colonies of lysogens (Huse et al. (1989) Science 246: 1275; Caton and Koprowski (1990) Proc. Natl. Acad. Sci. (U.S.A.) 87: 6450; Mullinax et al (1990) Proc. Natl. Acad. Sci. (U.S.A.) 87: 8095; Persson et al. (1991) Proc. Natl. Acad. Sci. (U.S.A.) 88: 2432). Unfortunately, lambda-based combinatorial antibody expression libraries are not suited for screening of large numbers of library members (i.e., greater than 108-109 members) nor are lambda-based combinatorial libraries suitable for selective enrichment by antigen affinity chromatography.

Recently, systems in which diverse peptide sequences are displayed on the surface of filamentous bacteriophage (Scott and Smith (1990) Science 249: 386) have proven

```
attractive for forming various chain variable regions and light chain variable regions and light
                          attractive for forming various combinations of heavy chain various combinations regions (and light chain variable regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them) for in vitro selective regions and light chain them is a selective region of the region of 
                                   Variable regions and light chain them) for in yitro polynucleotide encoding them) antiqen.

Variable regions and light chain them) for in polynucleotide polynucleotide sequences to specific antiqen.

Polynucleotide by binding to specific antiqen.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Polynucleotide
                                                                and enrichment by hinding and light chain variable treat them sequences encoding heavy that encode signals that direct linked to dene fragments
                                                                              polynucleotide sequences encoding them tor in y and enrichment by hinding to specific antigen.
WO 95/11922
                                                                                             linked to gene fragments that encode signals that direct that encode signals that resultant and the resultant to the periplasmic space on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the surface of bacterior to the periplasmic displayed on the periplasmic displayed displayed on the periplasmic displayed displayed displayed displayed displayed displayed displayed displayed displayed displaye
                                                                                                           to the periplasmic space of E. coli and the resultant pacteriophage, to the periplasmic are displayed on the surface coat proteins (e.g., and the periplasmic space of E. coli and the resultant pacteriophage coat.
                                                                                                                       "antibodies" are displayed on the surface of bacteriophage (e.g., pIII)

"antibodies" are displayed on the surface coat proteins (e.g., pinnunoglobulins

to bacteriophage coat proteins

to bacteriophage region fragments

of immunoglobulins

typically as variable region fragments

or pylli.
                                                                                                                                                    or pVIII). Variable region fragments of immunoglobuling capside hinding of immunoglobuling capside of 
                                                                                                                                                                  (either for path can be displayed externally on phage capside hinding hinding recombinant phage are selected for by hinding (phagebodies) and recombinant phage are selected for by hinding to immobilized antique.
                                                                                                                                                                                                                                                                                                                           lized antigen.

Various embodiments of bacteriophage antibody display
                                                                                                                                                                                                        Various embodiments of bacteriophage antibody die

Various embodiments of bacteriophage have been

Various embodiments of bacteriophage antibody die

Various e
                                                                                                                                                                                                                      libraries and lambda phage expression libraries nave been (U.S.A.)

Ribraries and lambda phage expression Nature 352: 624; McCafferty (1991) Nature 352: 624
                                                                                                                                                                                                                                  described (kang et al. (1991) Proc. Natl. Acad. Sci. (U.S.A.) Proc. Natl. Acad. Sci. (U.S.A.) et al. (1991) Nature 352: 624; proc. Natl. (1991) Pr
                                                                                                                                                                                                                                                   88: 4363; Clackson et al. (1991) Nature 352: 624; Proc. Natl. (1991) Nucle al. (1991) Nucle al. (1991) Nucle al. (1990) Nucle al. (1990) Nucle al. (1990) Nature 348: 10134; Hoodenboom et al. (1991) Nucle al. (1990) Nature 348: 10134; Hoodenboom et al. (1991) Nucle al. (1990) Nature 348: 10134; Hoodenboom et al. (1991) Nucle al. (1990) Nature 348: 10134; Hoodenboom et al. (1991) Nucle al. (1990) Nature 352; Nature 348: 10134; Hoodenboom et al. (1991) Nucle al. (
                                                                                                                                                                                                                                                               al. (1990) Nature 348: 552; Burton et al. (1991) Proc. Natl. (1991) Nucleic (1991) 1. Immunol, 147: 3610:

Acad. Sci. (U.S.A.) 88: chang et al. (1991) J. Immunol, 147: 4133; Chang et al.
                                                                                                                                                 or PAILI).
                                                                                                                                                                                                                                                                             Acids Res. 19: 4133; chang et al. (1991) Mucleic (1991) Mucleic (1991) J. Immunol. (1991) J. Acids Res. 19: 4133; chang et al. (1991) Gene 104: 147; Marks et al. (1991) Gene Breitling et al. (1991) Gene 104: 147; Marks et al. 
                                                                                                                                                                                     to immobilized antigen.
                                                                                                                                                                                                                                                                                              Acids Res. 19: 4133; Chang et al. (1991) J. Immunol. (1991) J. Acad.

Acids Res. 19: 4133; Chang et al. (1992) Proc. Natl. Acad.

Breitling et al. (1991) Barbas et al.

Mol. Biol. 222:
                                                                                                                                                                                                                                                                                                        Breitling et al. (1991) Gene 10A: 147; Marks et al. (1991) J. Immuno.

Breitling et al. (1991) Barbas et al. (1992) J. Immuno.

MOL. Biol. 222: 4457; Hawkins and Winter (1992) J. Sci. (U.S.A.)
                                                                                                                                                                                                                                                                                                                        Mol. Biol. 222: 581; Barbas et al. (1992) Proc. Natl. Acad. (1992) J. Immunol. (1992) Morks et al. (1992) Biotechnology 10: 779; Marks et al. (1992) Biotechnology 10: 78; Marks et al. (1992) Biotechnology 10: 78; Marks et al. (1992) Biotechnology 10: 79; Marks et al. (1992) Biotech
                                                                                                                                                                                                                                                                                                                                       al. (1992) J. Biol. Chem. 267: 16007; Lowman et al (1991) science 258: 1313;

Biochemistry 30: 10832; reference).

Biochemistry and nerein by reference.
                                                                                                                                                                                                                                                                                                                                                   22: 867; Warks et al. (1992) Biotechnology 10: 179; Marks (1991)

22: 867; Warks et al. Chem. 267; Lerner et al. (1992) Science 258:

Biochemistry 30: 10832; Lerner et al.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ted herein by reference).

ted herein by reference).

ted herein by reference).

ted particularly advantageous approach has been the
                                                                                                                                                                                                                                                                                                                                                                                                                   use of so-called single-chain fragment variable (scrv) winter G (1991)

libraries (Marks et al. (1991) Nature 349: 293; Clackson et al. (1991)

and Milstein C (1991)
                                                                                                                                                                                                                                                                                                                                                                                                          one particularly advantageous approach has be
one particularly advantageous approach has be
variable (scrv)
no particularly advantageous approach particularly advantag
                                                                                                                                                                                                                                                                                                                                                                                                                                      libraries (Marks et al. (1992) Biotechnology 10: 779; Winter G. (1991) Nature 349: 293; Clackson et al. (naudhari and Milstein C. (1991) (1991) J. Mol. Biol. 222: 581: chaudhari and Milstein C. (1991) (1991) J. Mol. Biol. 200. Cit.; Marks et al.
                                                                                                                                                                                                                                                                                                                                                                                                                                                and Milstein C (1991) Nature 349: 293; Clackson et al. (1991) J. Mol. Biol. 222: 581; Chiewell and Milstein C (1991) Acad. Sci. (1981) B7: 1066; Chiewell op. Cit.: (1990) Proc. Natl. Acad. Sci. (1981) B7: 1066; Chiewell al. (1990) Proc. Natl. Acad. Sci. (1981) B7: 1066; Chiewell and Milstein C (1990) Proc. Natl. Acad. Sci. (1981) B7: 1066; Chiewell and Milstein C (1990) Proc. Natl. Acad. Sci. (1981) B7: 1066; Chiewell and Milstein C (1991) Proc. Natl. Acad. Sci. (1981) B7: 1066; Chiewell and Milstein C (1991) Proc. Natl. Acad. Sci. (1981) B7: 1066; Chiewell and Milstein C (1991) Proc. Natl. Acad. Sci. (1981) B7: 1066; Chiewell and Milstein C (1991) Proc. Natl. Acad. Sci. (1981) B7: 1066; Chiewell and Milstein C (1991) Proc. Natl. Acad. Sci. (1991) Proc. Natl. (1991) Proc. (1991) Proc. Natl. (1991) Proc. (1991) P
                                                                                                                                                                                                                                                                                                                                                                                  ELUCATE THE TOTAL 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   OB. Cit.: Marks et al. (1991) J. Mol. Bjol. 222: 581; Chaudhary 1066; Chiswell Sci. (1990) op. cit. (1990) op. cit. (1990) proc. Natl. Acad. Sci. (1990) op. cit. (1990) et al. (1992) TIMTECH 10: 80; McCafferty et al. (1992) et al.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               et al. (1990) Proc. Natl. Acad. Sci. (USA) 85:

et al. (1992) TIFFECH 10: Proc. Natl. Acad. Sci. (USA) 85:

et al. (1992) al. (1988) Proc. Natl. Acad. Sci. (USA) 85:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             et al. (1992) TIBTECH 10: 80; McCafferty et al. (1990) 85; of scrv libraries displayed of and Huston et al. (1988) embodiments of scrv libraries displayed of scrv libraries displayed of and Huston et al. (1988) various embodiments of scrv libraries displayed of scrv libraries displayed of and Huston et al. (1988) various embodiments of scrv libraries displayed of scrow 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ton et al. (1988) Proc. Natl. Acad. Sci. (USA) 95:

Various embodiments of scrv libraries displayed on

Various embodiments have been decreasined
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Dacteriophage coat proteins have been described.
                                                                                                                                                                                                                                                                                                                                                                                                                                                  35
```

```
Beginning in 1988, proteine have hear reliant.
                          Beginning in 1988, single-chain analogues of the single-chain have been reliably noteins have been reliably their fusion proteins methods.

Tragments and their engineering methods.
                                         fragments and their fusion proteins nave been reliably step make their fusion proteins nave been reliably right first and very sending methods.

The first range proteins nave been reliably right first and very sending methods.

The first range proteins nave been reliably step range first and very sending methods.

The first range proteins nave been reliably step range first and very sending methods.
                                                      generated by antibody engineering methods. These V denes may generally involves binding properties; these venerally desired binding properties.
                                                                 generally involves obtaining the genes encoding v<sub>H</sub> and v<sub>L</sub> be these obtaining the genes these selected from a generally involves obtaining properties; line, selected from a domains with desired binding properties; line, selected from a soecific hybridoma cell line, selected from a soecific hybridoma cell line.
                                                                                   domains with desired binding properties; these v genes may be a real line; selected from a real line; with desired binding properties; these v genes from a real line; with desired binding properties; and a specific hybridoma by v gene synthesis.

domains with desired binding properties; these v genes may be a combinatorial line; and a specific hybridoma cell line; and a specific hybridom
                                                                                                   isolated from a specific hybridoma cell line, selected from v gene synthesis.

isolated from a specific hybridoma cell line, selected from v gene synthesis.

or made by v gene component v gene library, connecting the component v connecting the component v is formed by connecting the component single-chain rv is formed by connecting the component v general component v general control v general 
                                                                                                                   combinatorial V-gene library, or made by V gene synthesis.

The component V genes or made by V gene synthesis.

Connecting the component V designer connecting the component V designer connecting the component V designer connecting the component V designer.

Combinatorial V-gene library, or made by V gene synthesis.

Component V genes component V designer connecting the component V designer.

Combinatorial V-gene library, or made by V gene synthesis.

Component V genes component V designer.

Connecting the component V des
WO 95/11922
                                                                                                                             with an oligonucleotide that encodes an appropriately designed the c-terminus of the linker peotide(s).
                                                                                                                                                                          linker peptide(s). N-terminus of the scrv binding In principle, the scr v region and V-linker-V.
                                                                                                                                                                                                         In Principle, the scry binding

In Principle, the scry binding

In Principle, the scry and specificity

and specificity

or Vi-linker-VH. both the affinity and specificity

vi-linker-VH. or Vi-linker-VH. both the affinity and specificity

of its parent antibody combining site.
                                                                                                                                                                                                                                                                                                                                                                                              tent antibody compining site. comprised of VH and VL

Thus, into a circula naturantida chain hy a circula naturantida chain ch
                                                                                                                                                                                                                                                        domains peotide.

Thus peotide are scry denes are assembled. They are linked after the scry denes are assembled.
                                                                                                                                                                                                                                                                     domains linked into a single polypeptide chain by a flexible they are assembled, the M13

linker peptide. After and expressed at the tip of the M13

linker peptide. The a chademid and expressed at the tip of the M13
                                                                                                                                                                       linker peptide(s).
                                                                                                                                                                                                    VR linker-VL or VL linker-VH.
                                                                                                                                                                                                                              of its parent antibody
                                                                                                                                                                                                                                                                                     linker peptide. After the scrv genes at the tip of the M13 and expressed at the tip of the m2 as fusion protection into a phagemid and expressed at the tip of the m2 as fusion protection into a phagemid and expressed at the tip of the m2 as fusion protection and expressed at the tip of the m2 as fusion protection and the m2 as fusion protection and the m2 as fusion phage the m2 as fusion
                                                                                                                                                                                                                                                                                                cloned into a phagemid and expressed at the tip of the MI3 fusion protein.

Cloned into a phagemid and expressed at the tip of the MI3 fusion protein.

Enriching coat protein.

Cloned into a phagemid and expressed at the tip of the MI3 fusion protein.

Enriching the bacteriophage prize (gene 3) coat protein.
                                                                                                                                                                                                                                                                                                                  phage (or similar filamentous bacteriophage) as fusion proteins Enriching to a coat protein.

Phage (or similar filamentous pacteriophage) interest is accomplished to bacteriophage protein.

The phage of interest is accomplished to an antibody of interest is accomplished to accomplishe
                                                                                                                                                                                                                                                                                                                                  with the bacteriophage print phage displaying a population scry for phage expressing an antibody of phage the recombinant phage the recombination parming the recombination pa
                                                                                                                                                                                                                                                                                                                                               for phage expressing an antibody of interest is accomplished by target antigen.

for phage expressing an antibody of interest is accomplished by for a population scry for target antigen.

target antigen.

target antigen.
                                                                                                                                                                                                                                                                                                                                                              panning the recombinant phage displaying a population sorver target antigen, target antigen, phage displaying a target antigen, target antigen, to a predetermined epitope (e.g., predetermined epitope).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Various methods have been reported for increasing the
                                                                                                                                                                                                                                                                                                                                                                                                             Various methods have been reported for increasing the the library to broaden the library to broaden the library spectrum.

Various methods have been reported for increasing the library to broaden the librar
                                                                                                                                                                                                                                                                                                                                                                                                                                        repertoire of binding species (idiotype spectrum). The use control of binding species (idiotype spectrum) in a species (idiotype spectrum) in a species (idiotype spectrum). The use control of binding species (idiotype spectrum) in a species (idiotype spectrum) in a species (idiotype spectrum). The use control of the spectrum is species (idiotype spectrum) in a 
                                                                                                                                                                                                                                                                                                                                                                                                                           combinatorial diversity of a scry library to broader to to broad
                                                                                                                                                                                                                                                                                                                                                                                                                                                             PCR has permitted the variable regions to be rapidly library as a gene library as a gene library as a gene library as permitted the hybridoma combinatorial divergity affording combinatorial divergity either from non-immunized cells.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          either from a specific hybridoma source or as a gene library in a specific hybridoma combinatorial diversity in affording combinatorial can be combined.

either from non-immunized cells, affording which can be combined to the assortment of V. and V. cassettes which can be combined the assortment of V. and V. cassettes which can be combined to the assortment of V. and V. cassettes which can be combined to the assortment of V. and V. cassettes which can be combined to the assortment of V. and V. cassettes which can be combined to the combined to the combined to the combined to the can be can be combined to the can be combined to the can 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         from non-immunized cells, affording combinatorial diversity i affording combinatorial diversity i affording combinatorial diversity i affording combinatorial diversity i cassettes which can be combined.

The non-immunized cells, affording combinatorial diversity i cassettes which can be combined.

The non-immunized cells, affording combinatorial diversity i cassettes which can be combined.

The non-immunized cells, affording combinatorial diversity i combinatorial diversity i cassettes which can be combined.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         the assortment of VH and VL cassettes can themselves be the assortment the VH and VL cassettes can themselves directly the the VH and VL cassettes can themselves the VH and VL cassettes can themselves directly cassettes can themselves be can themselves can themselves be can themselves can themselves be can themselves ca
                                                                                                                                                                                                                                                                                                                                                                                           receptor).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Furthernore, such as by randow, Vu and V. cassettes are diversified, Typically, Vu and V. cassettes are diversified.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  such as by random, pseudorandom, are diversified in often as by random, pseudorandom, are diversified in often (CDRs), often and VL cassettes (CDRs), often regions (CDRs), often as by VH and VL cassettes regions (CDRs), often complementarity determining regions
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      mutagenesis.

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often

Typically, VH and VL cassettes are diversified in often are diversified in ofte
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     or near the complementarity-determining regions (cDRs); has inverse pck mutagenesis has enable method for construction the third CDR; he a simple and reliable method for construction the third construction he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple and reliable method for construction to he a simple method for constructi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  the third CDR, CDR3. simple and reliable method for constructing been shown to be a simple and reliable method for constructing
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                mutagenesis.
```

10

15

20

25

30

35

relatively large libraries of scFv site-directed mutants (Stemmer et al. (1993) <u>Biotechniques 14</u>: 256), as has errorprone PCR and chemical mutagenesis (Deng et al. (1994) <u>J. Biol. Chem. 269</u>: 9533). Riechmann et al. (1993) <u>Biochemistry 32</u>: 8848 showed semirational design of an antibody scFv fragment using site-directed randomization by degenerate oligonucleotide PCR and subsequent phage display of the resultant scFv mutants. Barbas et al. (1992) <u>op.cit.</u> attempted to circumvent the problem of limited repertoire sizes resulting from using biased variable region sequences by randomizing the sequence in a synthetic CDR region of a human tetanus toxoid-binding Fab.

CDR randomization has the potential to create approximately 1 x 10^{20} CDRs for the heavy chain CDR3 alone, and a roughly similar number of variants of the heavy chain CDR1 and CDR2, and light chain CDR1-3 variants. Taken individually or together, the combinatorics of CDR randomization of heavy and/or light chains requires generating a prohibitive number of bacteriophage clones to produce a clone library representing all possible combinations, the vast majority of which will be non-binding. Generation of such large numbers of primary transformants is not feasible with current transformation technology and bacteriophage display systems. For example, Barbas et al. (1992) op.cit. only generated 5 x 10^7 transformants, which represents only a tiny fraction of the potential diversity of a library of thoroughly randomized CDRs.

A further limitation of present bacteriophage scFv display systems is produced by the constraints of the prokaryotic systems used to generate the bacteriophage libraries. For example, prokaryotic in vivo display systems often suffer from defective secretion, rapid proteolysis, and/or formation of insoluble inclusion bodies containing the "displayed" scFv due to various factors, including high level expression (Mallender WD and Voss EW (1994) J. Biol. Chem. 269: 199).

Despite these substantial limitations, bacteriophage display of scFv have already yielded a variety of useful antibodies and antibody fusion proteins. A bispecific single chain antibody has been shown to mediate efficient tumor cell

WO 95/11922 PCT/US94/12206

6

lysis (Gruber et al. (1994) J. Immunol. 152: 5368).

Intracellular expression of an anti-Rev scFv has been shown to inhibit HIV-1 virus replication in vitro (Duan et al. (1994) Proc. Natl. Acad. Sci. (USA) 91: 5075), and intracellular expression of an anti-p21^{ras} scFv has been shown to inhibit meiotic maturation of Xenopus oocytes (Biocca et al. (1993) Biochem. Biophys. Res. Commun. 197: 422. Recombinant scFv which can be used to diagnose HIV infection have also been reported, demonstrating the diagnostic utility of scFv (Lilley et al. (1994) J. Immunol. Meth. 171: 211). Fusion proteins wherein an scFv is linked to a second polypeptide, such as a toxin or fibrinolytic activator protein, have also been reported (Holvost et al. (1992) Eur. J. Biochem. 210: 945; Nicholls et al. (1993) J. Biol. Chem. 268: 5302).

If it were possible to generate scFv libraries having broader antibody diversity and overcoming many of the limitations of a prokaryotic <u>in vivo</u> display system, the number and quality of scFv antibodies suitable for therapeutic and diagnostic use could be vastly improved.

Based on the foregoing, it is evident that there is a need in the art for methods to generate scFv antibody libraries which comprise a broader diversity and which are not limited by the fundamental constraints of <u>in vivo</u> display systems. The present invention fulfills this need and others.

25

30

35

10

15

20

Alternative Peptide Display Methods

An increasingly important aspect of biopharmaceutical drug development and molecular biology is the identification of peptide structures, including the primary amino acid sequences, of peptides or peptidomimetics that interact with biological macromolecules. One method of identifying peptides that possess a desired structure or functional property, such as binding to a predetermined biological macromolecule (e.g., a receptor), involves the screening of a large library or peptides for individual library members which possess the desired structure or functional property conferred by the amino acid sequence of the peptide.

```
Several approaches to generating and screening large enitania
                           Several approaches to generating and screening large to generating and screening large suitable sequences to generating and sequences suitable of desired approaches to generating and desired several approaches to generating and desired several approaches to generating of desired libraries of random or pseudorandom identification of desired libraries of random selection, and identification of desired libraries of random selection, and identification of desired libraries of random selection, and identification of desired libraries of random selection.
                                          libraries of random or pseudorandom pertide sequences sui

libraries of random or pseudorandom pertide sequences sui

and identification of desired

individual library nembers have been proposed in the art

for screening, selection, nembers have been proposed in the art

individual library nembers have been proposed in the art
                                                      for screening, selection, and identification of desired in the art.

and identification of the art.

and identification of desired in the art.

chemical proposed in the art.

chemical proposed hy direct chemical hy direct chemical individual library is produced by direct chemical individual library of particle library of par
                                                                   individual library members have been proposed in the art. (

individual library members is produced by direct chemical

individual library members. One parly method involve

category of peptide library members.
                                                                              category of peptide library members. One pins or rods. such as synthesis of pentides on a set of pins or rods.
                                                                                       synthesis of the library members. on a set of pins or rods, and 84/03564 and 84/03564 the synthesis of patent publication Nos. 84/03564 and 68/03564 and 68/03564
                                                                                                       the synthesis of peptides on a set of pins or rods, and 84/03564.

the synthesis of patent publication Nos. synthesis on heads. which described in per patent publication a synthesis on heads.

A similar method involving people in the synthesis of the synthesis 
WO 95/11922
                                                                                                                     described in pcr patent publication Nos. 84/03564 and 84/03564 which involving peptide synthesis on beads; an individual a similar method library in which each bead is an individual forms a peptide
                                                                                                                                     A similar method involving pertide synthesis on beads, which in which each bead is an individual and a forms a pertide library in which u.s. patent 4.631.211. and forms a pertide library member.
                                                                                                                                              forms a pertide library in which each bead is an individual and a forms a pertide library in per patent nublication no.

1 ibrary member, is described in per patent nublication is described in per patent nublication no.
                                                                                                                                                                      related method is described in pcr patent publication No.

significant improvement of the bead-based method is described with a unique identifier tag.

significant with a unique identifier tag.

significant bead with a unique identifier tag.

significant bead with a unique identifier tag.
                                                                                                                                                           library member, is described in PCT patent publication we head in PCT patent of the bead-based method is described in pcrovement of the bead-based method in pcrovement of the bead-based method is described in pcrovement of the bead-based method in pcrovement of the bead-based method is described in pcrovement of the bead-based method in pcrovement of the bead-based method is described in pcrovement of the bead-based method in pcro
                                                                                                                                                                                      92|00091. A significant improvement of the bead-based methods involves tagging each bead with a so as to facilitate identification of involves an oliconucleotide.
                                                                                                                                                                                                    involves tagging each bead with a unique identifier tag, such to facilitate identification of as to facilitate identification of mhere improve tagging each so as to library member.

The amino acid sequence of each library member the amino acid sequence of each library member.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         These improved
                                                                                                                                                                                                                          the amino acid sequence of each library member. No.

the amino acid sequence described in PCT publication No.

bead-based methods are
                                                                                                                                                                                                               as an oligonucleotide, so as to racilitate laenti
                                                                                                                                                                                                                                                                                                                                                                                      Another chemical synthesis method involves the
                                                                                                                                                                                                                                                                     Another chemical synthesis method involves the a method involves the another chemical synthesis method involves the another chemical synthesis (or peptidomimetics) on a mem synthesis of arrays of peptides each distinct library mem synthesis of amanner that places each distinct library mem synthesis of amanner that places each distinct library mem synthesis of amanner that places each distinct library mem synthesis of amanner that places each distinct library mem synthesis of amanner that places each distinct library mem synthesis of amanner that places each distinct library mem synthesis of amanner that places each distinct library mem synthesis of amanner that places each distinct library mem synthesis of peptidom synthesis each distinct library mem synthesis each distinct
                                                                                                                                                                                                                                                                                   synthesis of arrays of peptides (or peptidomimetics) on a manner that places each discrete predefined at a discrete in a manner served secure of manner that places at a discrete predefined at a di
                                                                                                                                                                                                                                                                                                         (e.g., unique pertide sequence) at a discrete, predefined is nember is a discrete, predefined at locations of each library member in the array. The location in the array.

[e.g., unique pertide sequence) at a discrete, predefined location in the array.

The location in the array.

[location in the array is spatial location in the array is spatial location in the array.
                                                                                                                                                                                                                                                                                                surface in a manner that places each distinct library membe that places each distinct library membe are at a discrete library membe are identity of each library membe that whe identity of each library membe that whe identity of each library membe are in a manner that places each distinct library membe are at a discrete library membe are identity of each library membe identity of each library membe are identity of each library membe identity of each library membe are in a manner that places each distinct library membe are in a manner that places each distinct library membe identity of each library membe identity identity each library membe identity identity each library membe identity each lidrary membe identity each library membe identity each library mem
                                                                                                                                                                                                                                                                                                                       location in the array. The location in the array where binding in the array
                                                                                                                                                                                                                                                                                                                                  determined by its spatial location in the array members occur in the array members occur and reactive library members in the array where binding and reactive library members in the array molecule (e.g., a receptor) are array molecule (e.g., a receptor)
                                                                                                                                                                                                                                                                                                                                                in the array where binding interactions between a predetermined library members occur and reactive library members of the molecule (e.g., thereby identifying the sequences of the sequences of the molecule areas is determined.
                                                                                                                                                                                                                                                   93|06121.
                                                                                                                                                                                                                                                                                                                                                               molecule (e.g., a receptor) and reactive sequences of the identifying the sequences of the pasis of spatial location is determined, members on the basis of spatial location is determined.
                                                                                                                                                                                                                                                                                                                                                                           is determined, thereby identifying the sequences of the location.

thereby identifying the sequences of the partial location.

Thereby identifying the sequences of the sequences of the sequences of the location.

Thereby identifying the sequences of the sequenc
                                                                                                                                                                                                                                                                                                                                                                                        reactive library members on the basis of spatial location.

The passis of spatial location in U.S. Patent 5, 143, 854; et al in U.S. Patent 5, 143, 864; et al in U.S. Patent 6, 143, 164; et al in U.S. Patent 7, 143, 164; et al in U.S. Patent 8, 143, 164; et al in U.S. Patent 1, 164; et al i
                                                                                                                                                                                                                                                                                                                                                                                                    These methods are described in U.S. Patent 5,143,854; et al.

These methods are described in U.S. Patent 5,143,854; et al.

Patent publication Nos. and Dower and Fodor (1991) Ann. Repatent Publication 767; and Dower and Fodor (1991) Science 251:
                                                                                                                                                                                                                                                                                                                                                                                                                      patent publication Nos. 90 | 15070 and 92 | 10092; Fodor et al.

Patent publication Nos. 767; and Dower and Fodor (1991) Ann. Rep.

(1991) Science 251:

Med. Chem. 26: 271.
                                                                                                                                                                                                                          20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             26: 271. to the direct chemical synthesis methods
In addition to the direct chemical resemblished the source of th
                                                                                                                                                                                                                                                                                                                                                                                                                                                            In addition to the direct chemical synthesis methods also have been reported.

In addition to the direct chemical synthesis methods also have been reported.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           one type involves the display
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       methods also have been reported. on other protein on the or other protein on antibody. or other protein of a peptide sequence, antibody particle or cell.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     or a peptide sequence; antibody; or other protein on the in generally; in generally; or other protein on the in generally; in generally; or other protein on the in generally; in generally; or other protein on the in generally; in 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Surface of a bacteriophage particle or cell serves as an these methods each
                                                                                                                                                                                                                                                                                                                                                                                                                                     Med. Chem. 26: 211.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                            methods also have been reported.
```

15

20

25

30

35

individual library member displaying a single species of displayed peptide in addition to the natural bacteriophage or cell protein sequences. Each bacteriophage or cell contains the nucleotide sequence information encoding the particular displayed peptide sequence; thus, the displayed peptide sequence can be ascertained by nucleotide sequence determination of an isolated library member.

A well-known peptide display method involves the presentation of a peptide sequence on the surface of a filamentous bacteriophage, typically as a fusion with a bacteriophage coat protein. The bacteriophage library can be incubated with an immobilized, predetermined macromolecule or small molecule (e.g., a receptor) so that bacteriophage particles which present a peptide sequence that binds to the immobilized macromolecule can be differentially partitioned from those that do not present peptide sequences that bind to the predetermined macromolecule. The bacteriophage particles (i.e., library members) which are bound to the immobilized macromolecule are then recovered and replicated to amplify the selected bacteriophage subpopulation for a subsequent round of affinity enrichment and phage replication. After several rounds of affinity enrichment and phage replication, the bacteriophage library members that are thus selected are isolated and the nucleotide sequence encoding the displayed peptide sequence is determined, thereby identifying the sequence(s) of peptides that bind to the predetermined macromolecule (e.g., receptor). Such methods are further described in PCT patent publication Nos. 91/17271, 91/18980, and 91/19818 and 93/08278.

The latter PCT publication describes a recombinant DNA method for the display of peptide ligands that involves the production of a library of fusion proteins with each fusion protein composed of a first polypeptide portion, typically comprising a variable sequence, that is available for potential binding to a predetermined macromolecule, and a second polypeptide portion that binds to DNA, such as the DNA vector encoding the individual fusion protein. When transformed host cells are cultured under conditions that allow for expression

WO 95/11922

≥0

25

30

among others.

35

```
of the fusion protein, the fusion protein binds to the DNA the fusion
                                                                                      of the fusion protein, the fusion protein binds to the fusion be screened against a
                                                                                   Protein/vector DNA Upon lysis of the host cell, the in minch the same wave as inst a
                                                                                 protein/vector DNA complexes can be screened against in the same way as
                                                                               predetermined

svstem. with the replication and sequencing of the phage-based display
                                                                            bacteriophage particles system, with the particles are screened in the selected fusion brotein/vector DNA comblexes serving as a vectors
                                                                         in the selected replication and sequencing of the basis for identification of the selected library bentide
                                                                                                                                                                                                                      PCT/US94/12206
                                                                        the basis for identification of the selected library peptide
                                                                      sequence(s).
                                                          10
                                                                and like Other systems for generating libraries of peptides of these hybrid methods.
                                                             and like polymers have aspects of both the recombinant and cell-free enzymatic machinerv is employed to accomblish the
                                                           vitro synthesis methods.

of the library members (i.e., peptides or the in
                                                         cell-free enzymatic machinery is employed to accomplish to one type of method, RNA molecules with
                                                      Polynucleotides; of the library members (i.e., peptides or bind a bredetermined brotein or a bredetermined brotein or a bredetermined brotein or a bredetermine.
                                              15
                                                    the ability to bind a predetermined protein or a predetermined of selection and
                                                 the ability to bind a predetermined protein or a molecule were selected by alternate rounds of selection and Gold (1990) Science 249: 505;
                                               PCR amplification (Tuerk and Gold (1990) Mature 346: 818). A similar
                                             PCR amplification (There and Gold (1990) Science 249: 505; which bind a
                                           technique was used to identify DNA sequences which bind a himan transcribtion factor (Thiesen and Rach)
                                        Predetermined used to identify DNA sequences which bind a local Res. 18: 3203: Beaudry and Joyce (1992)
                                       Predetermined human transcription factor (Thiesen and Bach Dublication Nos. 92/05258 and
                                    (1990)
Science 251; 635; PCT patent publication Nos. 92/05258 and 101 vitro
                                 Science 257; 635; PCT Patent Publication Nos. 92/05258 and been used to synthesize proteins of interest
                               translation has been used to synthesize proteins of in vitro for generating large
                            and has been used to synthesize proteins or in marking which raiv unron ir
                          ibraries of proposed translation. Generally comprising stabilized polysome
                        translation, generally These methods which rely upon and accretions further in permanent polysome
                     translation, generally comprising stabilized polysome of the property of the p
                  R8/08453, are described further in PCT patent publication Nos.

Mobilicants have described methods in which library members
                Applicants have described methods in which library members hortion
              Applicants have described methods in which library members activity and a second polypeptide portion
            Comprise a fusion protein having a first polypeptide portion having the library member unique peptide portion sequence: such meti
         With DNA binding activity and a second polypeptide for use in cell-free in vitro selection formats.
       are suitable for use in cell-free in vitro selection formats,
generating and screening peptide libraries have been reported,
```

WO 95/11922

10

15

20

25

30

35

there exists a need for additional methods for making peptide libraries, selecting desired library members, and identifying the peptide sequence(s) of said desired library members. Alternative methods which (1) increase the primary peptide library size, (2) facilitate rapid, efficient, and inexpensive library construction and screening, or (3) possess other advantageous features would meet a need in the art for improved peptide library methods. For instance, some of the in vitro translation-based methods suffer from the instability of the polysome complexes, which leads to poor recovery of the nucleic acids that encode the peptide sequence of interest. Additionally, polysomes are relatively large and the resultant slower diffusion in solvent leads to relatively inefficient capture of polysomes by immobilized ligand/receptor during screening. The recombinant methods described above can only be used to produce libraries of compounds composed of subunits and library members capable of being produced by the host cell, and thus for example are not suited for producing library members comprising non-naturally occurring amino acids and peptide sequences which adversely affect the host cell, among other The present invention meets the need for advanced methods for generating and screening such desirable peptide libraries, and in one aspect provides libraries of single-chain antibodies displayed on nascent polysomes.

All publications and patent applications herein are incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

SUMMARY OF THE INVENTION

The present invention provides an improved method for generating libraries of polysomes displaying nascent peptides suitable for affinity interaction screening. The improvement comprises using an <u>E. coli</u> S30 translation system for high efficiency translation of mRNA. The displayed peptide sequences can be of varying lengths, typically from 3-5000 amino acids long or longer, frequently from 5-100 amino acids long, and often from about 8-15 amino acids long. A library

10

15

20

25

30

35

can comprise library members having varying lengths of displayed peptide sequence, or may comprise library members having a fixed length of displayed peptide sequence. Portions or all of the displayed peptide sequence(s) can be random, pseudorandom, defined set kernal, fixed, or the like. The present display methods include methods for in vitro display of single-chain antibodies, such as nascent scFv, which enable large-scale screening of scFv libraries having broad diversity of variable region sequences and binding specificities.

The present invention also provides a method for affinity screening a library of polysomes displaying nascent peptides (including single-chain antibodies) for library members which bind to a predetermined receptor (e.g., a mammalian proteinaceous receptor such as, for example, a peptidergic hormone receptor, a cell surface receptor, an intracellular protein which binds to other protein(s) to form intracellular protein complexes such as heterodimers and the like) or epitope (e.g., an immobilized protein, glycoprotein, oligosaccharide, and the like). An improvement of this method comprises contacting a preblocking agent with the receptor or epitope (or immobilized epitope surface or immobilized receptor surface) prior to and/or concomitant with contacting the polysome library with the epitope or receptor (or immobilized epitope surface or receptor surface). Suitable preblocking agents include casein, nonfat milk, bovine serum albumin, gelatin, tRNA, and the like. Optionally, a non-ionic detergent (e.g. Tween, NP-40) is included to reduce nonspecific binding.

The present invention also provides a method for generating libraries of polysomes displaying nascent single-chain antibodies. In an embodiment, the method comprises using a coupled in vitro transcription/translation system to generate the polysomes from a library of DNA templates. Each DNA template library member comprises a gene cassette encoding a V_H domain in polypeptide linkage to a V_L domain, typically linked via a flexible spacer, such as for example (Gly-Gly-Gly-Gly-Gly-Ser) $_3$ or the like, and may comprise additional terminal peptide sequences, such as epitope tags, fusion partner polypeptides, and the like.

WO 95/11922 PCT/US94/12206

12

The present invention also provides an improved method for generating libraries of polysomes displaying nascent peptides. The improvement comprises using a coupled <u>in vitro</u> transcription/translation system to generate polysomes from a library of DNA templates; the resultant library of polysomes represents a range of displayed peptide sequences.

10

15

20

25

30

35

The present invention further provides a method of screening a library of polysomes displaying (1) nascent peptides or (2) single-chain antibodies for species having high binding affinity for a predetermined receptor or epitope (antigen). An improvement of this method comprises the additional step of placing sequences encoding positively selected nascent peptides or single-chain antibodies obtained by screening a polysome library into a bacteriophage display system for further affinity screening, such as under screening conditions incompatible with retention of intact polysome Stated generally, an improvement of the method structure. comprises a sequential affinity screen process utilizing a plurality of expression systems, wherein (1) a first expression system (e.g.; a library of in vitro translated polysomes displaying nascent peptides) is screened for library members which bind to a predetermined receptor(s) or epitope(s), thereby selecting library members having substantial binding affinity for the predetermined receptor(s) or epitope(s); (2) the displayed peptide sequence(s) in the selected library members are identified and/or isolated thereby constituting first-round selected peptide sequences; (3) a second expression system (e.g., bacteriophage coat protein peptide display or a second in vitro expression system) comprising a population of library members which is substantially enriched for the firstround selected peptide sequences is screened for library members which bind to the predetermined receptor(s) or epitope(s), thereby selecting library members having substantial binding affinity for the predetermined receptor(s) or epitope(s); (4) the displayed peptide sequence(s) in the selected library members are identified and/or isolated thereby constituting subsequent-round selected peptide sequences.

.

WO 95/11922

10

15

20

25

30

35

The present invention provides novel methods for generating and screening single-chain antibody (e.g., scFv) libraries by in vitro synthetic methods. The single-chain antibody libraries can be screened to select and identify individual library members having the ability to bind or otherwise interact (e.g., such as catalytic antibodies) with a predetermined macromolecule, such as for example a proteinaceous receptor, peptide, oligosaccharide, virion, or other predetermined compound or structure. The individual library members typically comprise peptides or single-chain antibodies composed of naturally-occurring amino acids, but in some embodiments may comprise alternative amino acids, imino acids, or other building blocks compatible with in vitro translation systems employing unnatural aminoacyl tRNA species (see, PCT publication No. W090/05785). The displayed peptides, antibodies, peptidomimetic antibodies, and variable region sequences that are identified from such libraries can be used for therapeutic, diagnostic, research, and related purposes (e.g., catalysts, solutes for increasing osmolarity of an aqueous solution, and the like).

In a method of the invention, a single-chain antibody library is generated by in vitro synthesis in a cell-free system, wherein individual library members comprise a nascent polypeptide comprising a V_H domain in polypeptide linkage to a V_L domain, and wherein the nascent polypeptide is linked to a polynucleotide encoding said nascent polypeptide (or a polynucleotide complementary to the encoding polynucleotide sequence), such linkage typically being accomplished by a ribosome bound on a stalled polysome.

In a method of the invention, a peptide library is generated by in vitro synthesis in a cell-free system, wherein individual library members comprise a nascent polypeptide comprising a first polypeptide portion consisting of a random, pseudorandom, defined kernal, or predetermined sequence (or combination(s) thereof), and wherein the nascent polypeptide is linked to a polynucleotide encoding said nascent polypeptide (or a polynucleotide complementary to the encoding

10

15

20

25

30

polynucleotide sequence), such linkage typically being accomplished by a ribosome bound on a stalled polysome.

Alternatively, the nascent polypeptide may comprise a first polypeptide portion consisting of a random, pseudorandom, defined kernal, or predetermined sequence (or combination(s) thereof) or scFv in polypeptide linkage to a second polypeptide portion ("tether") linked to a polynucleotide encoding said nascent polypeptide (or to a polynucleotide complementary to the encoding polynucleotide sequence). The nascent peptide or antibody is synthesized as a fusion protein comprising: (1) a polynucleotide-binding portion, termed the "tether segment", comprising a polypeptide sequence which binds to the encoding mRNA molecule serving as the translation template for the synthesis of the nascent antibody, or to a bound DNA primer or cDNA copy of such encoding mRNA, either directly or through binding an intermediate molecule (biotin, digoxigenin, or the like) that is linked directly to the encoding mRNA or cDNA copy thereof, and (2) a second polypeptide portion, termed (1) the "displayed peptide", comprising a random, pseudorandom, defined kernal, or predetermined sequence (or combination(s) thereof), or (2) "single-chain antibody", comprising a $V_{\rm H}$ and $V_{\rm L}$ each having one of a variety of possible amino acid sequence combinations represented in the library. The tether segment serves to link the displayed peptide or single-chain antibody of an individual library member to the polynucleotide comprising the sequence information encoding the amino acid sequence of the individual library member's displayed peptide or $\mathbf{V}_{\mathbf{H}}$ and $\mathbf{V}_{\mathbf{L}}$ domains. The linked polynucleotide of a library member provides the basis for replication of the library member after a screening or selection procedure, and also provides the basis for the determination, by nucleotide sequencing, of the identity of the displayed peptide sequence or \mathbf{V}_{H} and \mathbf{V}_{L} amino acid sequence. The displayed peptide(s) or single-chain antibody (e.g., scFv) and/or its \boldsymbol{V}_{H} and \boldsymbol{V}_{L} domains or their 35 CDRs can be cloned and expressed in a suitable expression system. Often polynucleotides encoding the isolated $V_{\scriptscriptstyle H}$ and $V_{\scriptscriptstyle L}$ domains will be ligated to polynucleotides encoding constant regions (C_{H} and C_{L}) to form polynucleotides encoding complete

WO 95/11922

10

15

20

25

30

15

antibodies (e.g., chimeric or fully-human), antibody fragments, and the like. Often polynucleotides encoding the isolated CDRs will be grafted into polynucleotides encoding a suitable variable region framework (and optionally constant regions) to form polynucleotides encoding complete antibodies (e.g., humanized or fully-human), antibody fragments, and the like.

In one embodiment, the tether segment comprises a RNA-binding polypeptide sequence that binds to the mRNA serving as the translation template for the nascent polypeptide. Typically, the tether segment comprising an RNA-binding polypeptide sequence has a conserved RNA-binding domain structure noted in RNA-binding proteins, such as an RNP motif, an arginine-rich motif (ARM), an RGG box, a KH (hnRNP K homology) motif, a dsRNA-binding motif, a zinc finger/knuckle, a cold-shock domain, or combination(s) thereof (see, Burd CG and Dreyfuss G (1994) Science 265: 615). For example and not limitation, an RNA-binding tether segment can comprise: (1) an RNP1 and/or RNP 2 consensus sequence (e.g., substantially. identical to KGFGFVXF, RGYAFVXY, LFVGNL, or IYIKGM), (2) an arginine-rich domain (e.g., TRQARRNRRRRWRERQ, ALGISYGRKKRRORRRP, MDAQTRRRERRAEKQAQW, GTAKSRYKARRAELIAER, or GNAKTRRHERRRKLAIER), (3) an RGG box (e.g., typically at least 2, 3, 4, or 5 RGG sequences), (4) a KH motif, or (5) combination(s) thereof can be present in the tether. RNA-binding sequence motifs known in the art can be employed, and novel RNA-binding peptide motifs (such as obtained by directed evolution, screening libraries for RNA-binding species, and the like) can also be used.

In an alternative embodiment, the tether segment comprises an epitope bound by an immunoglobulin which is covalently linked either to the mRNA serving as the translation template for the nascent polypeptide or to a cDNA copy thereof.

In another embodiment, the tether segment comprises a biotinylation substrate sequence which can be post
translationally biotinylated forming a biotinylated nascent peptide; the biotinylated nascent antibody binds through a streptavidin molecule linked either to the mRNA serving as the translation template for the nascent single-chain antibody or

10

15

20

25

30

35

to a cDNA copy thereof; the streptavidin is linked to the mRNA or cDNA by direct covalent linkage or through noncovalent binding to biotin moieties incorporated into the mRNA or cDNA. Various additional embodiments are described.

In one embodiment, no tether segment is used; the nascent single-chain antibody is coupled to the polynucleotide (e.g., mRNA) by the translating ribosome which links the nascent single-chain antibody to the polysome complex. In such embodiments, translation stalling sequences are often incorporated into the mRNA to produce slowing/stalling of translation to enhance the stability of polysomes.

In one variation, the invention also provides a method of generating nascent peptide or single-chain antibody libraries comprising the steps of: (1) translating in vitro an mRNA population wherein individual mRNA molecules individually encode a nascent polypeptide comprising a tether segment and a variable peptide segment or single-chain antibody (e.g., scFv) segment, under translation conditions wherein said tether segment binds to the encoding template mRNA or a polynucleotide primer annealed thereto prior to dissociation of the nascent peptide from the translation complex, thus producing a library of nascent peptide or single-chain antibody library members, (2) synthesizing a first-strand cDNA copy of the encoding mRNA species by reverse transcription primed from an extendable polynucleotide primer annealed to the template mRNA 3' to the portion of the mRNA encoding the nascent peptide or singlechain antibody sequence, optionally hydrolyzing the mRNA templates, thus producing a library of cDNA-containing nascent peptide or single-chain antibody library members, (3) screening the library of nascent peptide or single-chain antibody library members by contacting the library to an immobilized macromolecular species under binding conditions and separating library members bound to the macromolecular species from unbound library members and selecting either bound or unbound members as the selected library members, (4) synthesizing second-strand DNA complementary to the first-strand cDNA of the nascent library members, (5) ligating a suitable promoter and translation start site, if necessary (e.g., may be contained in

15

20

25

30

35

the extendable polynucleotide primer), to the cDNA in the appropriate orientation to drive transcription of an mRNA complementary to the first-strand cDNA forming a transcription template (i.e., DNA template library member), (6) transcribing mRNA complementary to the first-strand cDNA from the transcription template, (7) repeating steps (1) through (6) until the desired level of affinity enrichment for selected bound (or unbound) nascent peptide or single-chain antibody library members is attained, and (8) isolating individual cDNA from the selected library members and determining the nucleotide sequence(s) of the variable peptide segment(s) and/or single-chain antibody segment(s) and/or determining the variable peptide segment, VH, VL, and/or CDR nucleotide sequence distribution(s) in the selected population by collectively sequencing the collection of cDNAs represented in the population of selected library members. In some variations, steps 4, 5, 6, and/or 7 may be omitted. Generally, the mRNA population of step (1) is generated by in vitro transcription of a DNA template library, wherein each DNA template library member encodes a polypeptide comprising a tether sequence and a variable peptide sequence or a singlechain antibody sequence. Each DNA template library member also comprises an operably linked promoter, especially a promoter suitable for in vitro transcription and sequences required for in vitro translation of the transcription product (mRNA), such as a ribosome binding site.

The method may also comprise the variation wherein the transcription template(s) formed in step (5) (or portion thereof encoding the variable segment) or selected library members obtained by affinity screening is/are cloned into a phagemid expression vector (e.g., pAFF6) so that the encoded variable peptide sequence or single-chain antibody polypeptide sequence is expressed as a fusion with a bacteriophage coat protein and displayed on bacteriophage virions. The phage particles displaying the selected variable region sequence or single-chain antibody polypeptide sequences may be used for one or more subsequent rounds of affinity selection.

```
In an alternative variation, selected by additional
                        In an alternative variation, followed by additional the cloned or otherwise amplified, and selection.
                                       can be cloned or otherwise amplified, followed by additional followed by additional followed by additional the followed by additional fol
                                                   rounds of in vitro translation and members encode polypeptide translation and members encode coat protest translation and members encode polypeptide translation and members encode polypeptide vitranslation and members encode polypeptide translation and members encode polypeptide vitranslation and selection, avoiding the rounds of in vitro translation and members encode polypeptide vitranslation and selection, avoiding the vitranslation and selection and selection vitranslation vitranslation and selection vitranslation vitran
                                                               requirement that selected library members encode polypeptide

requirement that selected library members encode polypeptide

with bacteriophage coat protein

functional expression

sequences which are compatible with functional

sequences and for which are compatible with functional expression.
                                                                              sequences which are compatible with bacteriophage coat protein

In one embodiment.

sequences which are compatible embodiment.

function and/or which cell.

function are prokaryotic host cell.
                                                                                               function and or which are compatible with functional expression and or which are compatible embodiment, selected in one embodiment, to rector to nost cell. In a proxaryotic vector in a proxaryotic are cloned in a proxaryotic vector in a proxaryotic members are cloned in a library members are cloned in a proxaryotic vector.
WO 95/11922
                                                                                                            in a prokaryotic host cell. In one embodiment, selected

in a prokaryotic host cloned in a prokaryotic vector (e.g.,

in a prokaryotic host cloned in a prokaryotic vector (e.g.,

wherein a collection

library members are cloned erionhade) wherein a collection

library nhademid. or bacterionhade)
                                                                                                                        library members are cloned in a prokaryotic vector (e.g., of a prokaryotic vector library members are cloned in a prokaryotic vector library members are cloned in a prokaryotic vector library wherein a discrete library nembers are cloned in a prokaryotic vector library wherein a discrete library pagemid, or plaques, representing discrete library plasmid, plasmid, plasmid, colonies (or plaques) representing library individual colonies (or plaques) representing library members are cloned in a prokaryotic vector vector library wherein a collection of plasmid, plasmid
                                                                                                                                       Plasmid, phagemid, or bacteriophage) wherein a discrete library nembers can library nembers can library nembers are produced.
                                                                                                                                                   individual colonies (or plaques) representing discrete library members can representing discrete library members can representing discrete members can members are produced.

Individual colonies (or plaques) representing discrete library members can mutagenesis.
                                                                                                                                                                    members are produced. Individual selected nutagenesis. PCR mutagenesis then be mutagenesis, cassette mutagenesis.
                                                                                                                                                                                   then be manipulated (e.g., by site-directed mutagenesis, pcR mutagenesis, chemical mutagenesis, library members a collection of library members cassette mutagenesis, and the like)
                                                                                                                                                                                                 cassette mutagenesis, chemical mutagenesis, library members chemical mutagenesis, library members of collection of library mased on the to generate a collection of hased on the and the like) kernal of sequence diversity hased on the representing a kernal of sequence diversity hased on the representing a kernal of sequence diversity hased on the representing a kernal of sequence diversity has and the like has a kernal of sequence diversity has a kernal of sequence div
                                                                                                                                                                                                              and the like) to generate a collection of library members to generate a collection of library member of the sequence diversity based on the sequence of the selected library member. The sequence of the selected library member.
                                                                                                                                                                                                                            representing a kernal of sequence diversity based on the sequence of an individual selected library member can be manipulated to sequence of the selected library member can be manipulated to sequence of sequence of sequence of sequence individual
                                                                                                                                                                                                                                         sequence of the selected library member can be manipulated define the selected library member can mutation. The sequence of the selected library member can mutation. The sequence of the selected library member can mutation. The sequence of the selected library member can mutation. The sequence of the selected library member can mutation. The sequence of the sequen
                                                                                                                                                                                                                                                       individual selected library member can be manipulated to defined invariant residual selected nutation, pseudorandom variant and invariant residual random nutation, incorporate random (i.e., comprising variant and invariant incorporate random (i.e., comprising variant and invariant and invariant incorporate random (i.e., comprising variant and invariant and invariant incorporate random (i.e., comprising variant and invariant residual selected nutation, pseudorandom variant and invariant residual selected nutation, pseudorandom variant and invariant residual selected nutation, pseudorandom variant and invariant and invariant residual selected nutation, pseudorandom variant and invariant and invariant residual selected nutation, pseudorandom variant and invariant residual selected nutation, pseudorandom variant and invariant residual selected nutation, pseudorandom variant residual selected nutation, pseudorandom variant residual selected nutation, pseudorandom variant residual selected nutation (i.e., comprise nutation).
                                                                                                                                                                                                                                                                    incorporate random mutation, pseudorandom mutation, which can comprising variant and invariant which can comprising variant residue positions which can kernal mutation comprising variant residue positions and/or comprising positions and/or comprising variant residue positions and/or comprising positions and/o
                                                                                                                                                                                                                                                                                Kernal mutation (i.e., comprising variant residue positions amino acid from a defined subset of amino acid positions and or comprising from a defined subset of amino acid from a defined subset of acid from a defined 
                                                                                                                                                                                                                                                                                                 positions and or comprising variant residue positions amino acid the entire positions and the like, either segmentally or over the entire comprise a residue selected ther segmentally or over the entire residues).
                                                                                                                                                                                                                                                                                                           comprise a residue selected from a defined subset of the entire sequence.

comprise a residue selected from a defined subset of the entire sequence.

comprise a residue selected library member sequence.

residues), the individual selected library member sequence.
                                                                                                                                                                                                                                                                                                                            residues), and the like either segmentally or over the ent.

and the like either segmentally or over the ent.

selected library member sequence.

the individual selected library nember variation that.

the individual also comprise the variation that individual also comprise the variati
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    the individual selected library nember sequence. the variation that the method may also comprise the variation are may no directly economic that the method may have may no directly economic that the method may have may no directly economic that the individual selected library nember sequence.
                                                                                                                                                                                                                                                                                                                                                                        individual library members may be directly sequenced the pool of library members may be directly by diluting 1 library members such that about 1 library members such that about
                                                                                                                                                                                                                                                                                                                                                            individual library members may be directly sequenced not contain the individual library members may be directly sequenced.
                                                                                                                                                                                                                                                                                                                                                                                     individually (i.e., not collectively) by diluting the pool of that about 1 library members such that about 1 reaction vessel affinity-selected library members separate reaction vessel affinity-selected in each separate reaction vessel affinity-selected in the reaction vessel affinity-selected in each separate reaction vessel affinity-selected in each selected in each separate reaction vessel affinity-selected in each selected i
                                                                                                                                                                                                                                                                                                                                                                                                   affinity-selected library members such that about 1 library nembers such that about 1 library nembers such that reaction vessel nember cona is represented frach cona is then amount in each separate reaction have proposed in each cona is then amount in each cona is the each cona 
                                                                                                                                                                                                                                                                                                                                                                                                                     member cDNA is represented in each cDNA is then amplified by PCR Each cDNA is then amplified by PCR (e.g., microtitre well).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       nced. invention also provides compositions comprising
                                                                                                                                                                                                                                                                                                                                                                                                                                                         The invention also provides compositions comprising a nascent polypeptide individual library members that portion linked to a first polypeptide portion
                                                                                                                                                                                                                                 20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Individual library members that comprise a nascent I comprising a first polypeptide portion linked to a comprising a first polypeptide portion nature and nascent nature and nascent nature and nascent nature.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       comprising a first polypeptide portion linked to a (or a comprising a first polypeptide portion polypeptide encoding said mascent polypeptide encoding said to the ancoding polymucleotide complementary to the compl
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   polynucleotide encoding said nascent polypeptide (or a tide encoding polynucleotide encoding said nascent polypeptide (or a tide encoding polynucleotide complementary to the portion comprising (1) a polynucleotide complementary polynucleotide polynucleotide and a second polypeptide portion comprising (1) a second polynucleotide complementary polynucleotide complementary polynucleotide complementary polynucleotide polynucleotide polynucleotide complementary polynucleotide polynucleotide polynucleotide polynucleotide polynucleotide polynucleotide polynucleotide polynucleotide complementary polynucleotide polynucleot
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    polynucleotide complementary to the encoding polynucleotide antibody.

Polynucleotide complementary to the encoding polynucleotide antibody.

Sequence) and a second polypeptide portion c-chain antibody.

Sequence) and a second polypeptide portion a single-chain antibody.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              sequence) and a second polypeptide portion comprising (1) a in one variable linkage to eath first nolyneotide nortion.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Variable amino acid segment or (2) a single-chain antibody. In one to said first polypeptide portion.
                                                                                                                                                                                                                                                                                                                                                                                                                                        and sequenced.
                                                                                                                                                                                                                                                                                                                                                                                30
```

15

20

25

30

35

aspect of the invention, the individual library members lack bound ribosomes, for example lacking ribosomes bound to a mRNA in a translation complex (e.g., polysome).

The invention also provides compositions comprising a nascent single-chain antibody polysome library which consists of a population of library members wherein essentially each library member comprises a single-chain antibody bound as a nascent polypeptide in a polysome. Typically, such libraries substantially lack library members encoding nascent polypeptides that do not comprise at least 15 contiguous amino acids of a naturally-occurring immunoglobulin sequence, preferably a human immunoglobulin (e.g., human $\rm V_H$ or $\rm V_L)$ sequence. Such library members may comprise a tether segment, a translation stall segment, both, or neither of these.

The invention also provides peptide libraries comprising a plurality of individual library members of the invention, wherein (1) each individual library member of said plurality comprises a tether segment sequence which is substantially identical to the tether segment sequences of the remainder of individual library members in said plurality, and (2) each individual library member comprises a variable peptide segment sequence or single-chain antibody segment sequence which is distinct from the variable peptide segment sequences or single-chain antibody sequences of other individual library members in said plurality (although some library members may be present in more than one copy per library due to uneven amplification, stochastic probability, or the like).

The invention also provides novel compositions comprising at least one library member, said library member comprising a mRNA molecule, or cDNA copy thereof, linked with the nascent variable peptide segment or nascent single-chain antibody encoded by said mRNA, wherein the linkage of the mRNA or cDNA to the nascent peptide is by noncovalent binding to the tether segment of said nascent variable peptide segment or said nascent single-chain antibody. Typically, such library members substantially lack bound ribosomes.

The invention also provides a product-by-process, wherein antibodies having a predetermined binding specificity

15

20

25

30

35

are formed by the process of: (1) screening a nascent singlechain antibody polysome library against a predetermined epitope
(e.g., antigen macromolecule) and identifying and/or enriching
library members which bind to the predetermined epitope, and
(2) expressing in a cell a single-chain antibody encoded by a
library member (or copy thereof) which binds the predetermined
epitope and has been thereby isolated and/or enriched from the
library.

BRIEF DESCRIPTION OF THE DRAWINGS

This figure shows information relating to Figure 1. construction of a synthetic gene for expressing the D32.39 epitope or control, non-binding, peptides in vitro. Partial restriction map of the bacteriophage T7 promoter expression plasmid, pT7-7. The figure shows the nucleotide sequence and predicted amino acid sequence of the D32.39 epitope fusion protein after linearizing plasmid pLM138 with HindIII. Nucleotides are numbered on the right; amino acids are numbered on the left. The gene was constructed by annealing synthetic oligonucleotides to their complementary strands to generate double stranded cassettes flanked by the indicated restriction Individual cassettes were cleaved by the appropriate restriction enzymes and subcloned sequentially to pT7-7 starting with the Sall/HindIII cassette, and followed by the BamHI/SalI and EcoRI/BamHI cassettes. The NdeI/EcoRI cassettes were subcloned last and contained either the D32.39 epitope sequence shown or the control sequence, 5' CATATGGCTGTTTTCAAACGTACCGTTCAGGAATC 3' (NdeI and EcoRI sites are underlined).

Figure 2. Specific binding of polysomes to mAb D32.39. Radiolabelled polysomes were isolated from reactions programmed with 1.5 μ g of HindIII-linearized plasmid pLM138 or pLM142 and bound to microtiter wells containing the immobilized mAb. The recovered mRNA was quantitated by TCA precipitation. (Panel A) Binding of polysomes containing the D32.39 epitope (closed boxes) or control (open boxes) sequences. (Panel B) Competition binding assay. Microtiter wells were preincubated with polysome buffer in the absence or presence of 10 μ M

```
PCT/US94/12206
                       dynorphin B peptide for 1 hr at 4° C prior to adding 131,000 or the D32.39 enitone (ROPKYNTM) or th
                                              dynorphin B peptide for 1 hr at 4° C prior to adding (ROFKWYT) or control (VFKRTVO) sequences.
                                                                                                                                                                                                                                                                               JEKRIVO) sequences.

Construction of a DNA library containing a panel (a). mane panel (a).
                                                                                                    random population of the decemerate region is shown on the microsoft decamence of the decamerate region.
                                                                                                                        random population of decacodon sequences. Panel (a): The the nucleotide nogition of the degenerate region is shown on the nucleotide nogition of the degenerate nucleotide nogition of the degenerate region nucleotide nogition of the degenerate region is shown on the nucleotide nogition of the decacodon sequences.
                                                                                                                                         nucleotide sequence of the degenerate region is shown on the annealing 100 nmoles of the degenerate nucleotide 100 nmoles of indicating the annealing 100 nmoles of indicating the numbers constructed by annealing 100 nmoles of the degenerate region was constructed by annealing 100 nmoles of the degenerate region was constructed by annealing 100 nmoles of the degenerate region was constructed by annealing 100 nmoles of the degenerate region was constructed by annealing 100 nmoles of the degenerate region is shown on the nucleotide positions.
                                                                                                                                                          left with the numbers constructed by annealing and own 147

degenerate region was constructed (positions 1-90) and own 1543

degenerate region of olioonucleotides
WO 95/11922
                                                                      control (VEXRAVQ) sequences.
                                                                                                                                                                                                      of oligonuclectides ON1543 (Positions and extending in a MYTP 10 mM of oligonuclectides on Positions 74-146) and extending in a MYTP 10 mM of oligonuclectides on Positions 74-146) and extending in a MYTP 10 mM of oligonuclectides on Positions (US Biochemical) 11 mM of oligonucleotides on Positions (US Biochemical) 11 mM of oligonucleotides of oligonucleotides on Positions (US Biochemical) 11 mM of oligonucleotides oligonucleotides of oligonucleotides oligonucl
                                                                                                                                                                                 degenerate region was constructed by annealing 100 pmole 1-90) and 0M1747 and extending in a of oligonucleotides onesitions 74-146 and extending in a complementary to positions (complementary to positions)
                                                                                                                                                                                                                   (complementary to positions 74-146) and extending in a reaction and extending in a modular with was cleaved with to positions 74-146) and extended product was cleaved with modular was cleaved with the complementary to positions (US Biochemical) and extended product was cleaved with the complementary to positions (US Biochemical) and extended product was cleaved with containing 104 units of the containing 104 units of t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          renase (us alvented product was cleaved with
                                                                                                                                                                                                                                                           DTT for 30 min at 37° C. The extended product was cleave in water.

BetxI, coding region of plasmid plM142 was modified by Glv-Ser coding region of plasmid plM142 was modified by coding region of plasmid pl
                                                                                                                                                                                                                                                                                   BstXI, ethanol precipitated, and resuspended in water. by was modified by the linkers between the gly-ser coding region of plasmid plw142 linkers between the gly-ser coding noncomplementary BstXI site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plasmid plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw142 site linkers between the gly-ser coding region of plw
                                                                                                                                                                                                                                                                                                       Gly-Ser coding region of plasmid pLM142 was modified by the linkers between rises and Nder | RCORT sites resulting in sites and Nder | RCORT sites resulting inserting noncomplementary Bt. RCORT sites resulting noncomplementary RCORT sites resulting non
                                                                                                                                                                                                                                                                                                                    inserting noncomplementary BstXI sites linkers between the 277 by BstXI sites resulting in plasmid the 277 by BstXI sites resulting and the 277 by BstXI and
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Clai sites and Ndel EcoRI sites resulting in plasmid the 271 bp the sites and the 271 bp cleaved with shown on the plasmid plasmid plasmid plasmid plasmid plasmid plasmid plasmid the clurcer and in region and the characteristic plasmid pl
                                                                                                                                                                                                                                                                                                                                                             Plasmid plw144 was cleaved with BstXI and the 11 cated plw144. Plasmid plw144 was cleaved with BstXI shown on the gly-ser coding region were licated and 4 uc were licated and 4 uc were licated and 4 uc were licated fragment containing the cuantitated.
                                                                                                                                                                                                                                              Dry for 30 min at 370 C.
                                                                                                                                                                                                                                                                                                                                                                             fragment containing the gly-ser coding region shown on the to ligated to guantitated, and 4 µg were ligated in a reaction in a reaction in a reaction the decemerate region in a reaction in a reaction an equivalent amount of the decemerate region in a reaction.
                                                                                                                                                                                                                                                                                                                                                                                                     right was gel purified, quantitated, and 4 µg were ligated to and 4 µg were ligated to the degenerate region in a reaction the degenerate region of the degenerate region of the degenerate ration of the degenerate ration of the degenerate ration of the degenerate region r
                                                                                                                                                                                                                                                                                                                                                                                                                      an equivalent amount of the degenerate region in a reaction of the degenerate region ph 8/10 mm Tris-cl ph 8/10 mm Tris-cl ph 8/10 mm Tris-cl ph 8/10 mm Arp/25 ug/ml BSA for 16 hrs at 150 containing 400 units TA ligase/50 mm For 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml BSA for 16 hrs at 150 mm Arp/25 ug/ml B
                                                                                                                                                                                                                                                                                                                                                                                                                                      containing 400 units TA ligase 50 mM Tris-Cl pH 8 10 mM c.

MgCl<sub>2</sub>|10 mM DTT 1 mM ATP 25 qel purified and quantitated.

MgCl<sub>2</sub>|10 mM DTT 1 mM ATP 25 qel purified and guantitated.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 MgCl<sub>2</sub>/10 mM DTT/1 mM ATTP/25 µg/ml BSA for 16 hrs at 150 C.

MgCl<sub>2</sub>/10 mM DTT/1 mM ATTP/25 µg/ml BSA for 16 hrs at 150 C.

Was gel purified and quantitated in riverse and purified and quantitated.

The promoter are the Top promoter are t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               The The Tribosome and quantitated. The panel purified and quantitated. The panel purified and quantitated. Panel panel promoter, gene 10 ribosome (ATG). Panel promoter, gene 10 ribosome (ATG). Panel overlined sequences indicate the Tribosomine (ATG). Panel promoter, gene 10 ribosome (ATG). Panel promoter (ATG). Panel promo
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               overlined sequences indicate the TT promoter, gene 10 ribosome the TT promoter, gene 10 ribosome to panel the initiator methionine (ATG).

overlined sequences and the initiator methionine used to produce the procedure used to procedure used
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          binding site (SD) and the initiator methionine (ATG). Panel the binding site (SD) and the procedure used to produce the (b): A schematic overview of the procedure used to library members.
                                                                                                                                                                                                                                                                                                                                                         PIML44.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Subcloning of the DNA pool to the phagemid
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Figure 4. Subcloning of the DNA pool to the Phagemid

Subcloning of the DNA Approximately 25 ng

Rigure 4. Subcloning and ELISA. and after each round

Vector, pares, for sequencing with Nhellkonl before and after each round

of DNA was cleaved with Nhellkonl before
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    vector, pAFF6, for sequencing and ELISA. and after each naFF6

of DNA was cleaved with Nhellarted to the same sites of naFF6

of affinity selection and ligated to the same sites of naFF6.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        of DNA was cleaved with NheI | KpnI before and after each round to the same sites of partial to the same of nential to the same of library nentials to the same of library nentials to the same of library nentials to the same sites of partials to the s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         of affinity selection and ligated to the same sites to the library peptides to the same sites to the s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             resulting in translational fusions of library peptions of library peptions of library peptions of Miscons were jeniated at Miscons were jeniated a
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     library members.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      transforming E. coli strain ARI 293 (Hfrc prlA8914 the presence as transforming E. kar' thi reca::cat) and grown in the presence as transforming E. kar' thi reca::cat) and grown in ane as to isolate recombinant nhage as the combinant nhage as the combi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      communication). Individual clones were isolated affine transforming E. coli strain ARI 293 (Hfrc prima in the transforming E. kanti the rank. nati and proun in the transforming transformi
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              znc::m10(tet*, kan*) tnl recA::cat) and grown in the pr
tnl recA::cat) and grown in th
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               communication).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         previously described ().
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  35
```

10

15

20

25

30

35

Figure 5. The effect of DNA library concentration on protein synthesis in vitro. The incorporation of $[^{35}S]$ methionine into protein was measured as described in the Materials and Methods.

Figure 6. Amino acid alignment of selected peptide sequences with dynorphin B. The six-residue D32.39 epitope sequence of dynorphin B and the peptide regions similar to it are shown in the box. A total of 6, 13, 19, and 9 independent clones were sequenced from rounds 2, 3, 4 and 5, respectively. The frequency indicates the number of times each sequence occurred among the clones isolated from each round, and the asterisks indicate identical sequences found in different rounds. Binding affinities for D32.39 were determined by chemically synthesizing the indicated peptide sequences and measuring the IC₅₀ as described in the Experimental Examples.

Figure 7. Schematic maps of plasmids pLM169, pLM 166, and pLM 153.

Figure 8. Determination of soluble antibody binding by ELISA.

Figure 9. Polysome isolation and binding of antibodies displayed on polysomes.

rigure 10. Schematic overview of a representative nascent peptide display method of the invention. The defined sequence kernal (NNK)_n represents the variable peptide portion of the nascent polypeptide. Step 7 represents the recovery and/or identification of the variable peptide portion(s) of selected library members, and may be performed after any number of cycles of the basic scheme (steps 1-6).

Figure 11. Schematic overview of construction of a scFv display library by PCR overlap. Sequences of the oligonucleotides ON3149, ON3150, ON3147, ON3148, ON3193, and ON2970 are shown hereinbelow.

DEFINITIONS

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Any methods and materials similar or

15

20

25

30

35

equivalent to those described herein can be used in the practice or testing of the present invention, but the currently preferred methods and materials are described herein. For purposes of the present invention, the following terms are defined below.

The term "naturally-occurring" as used herein as applied to an object refers to the fact that an object can be found in nature. For example, a polypeptide or polynucleotide sequence that is present in an organism (including viruses) that can be isolated from a source in nature and which has not been intentionally modified by man in the laboratory is naturally-occurring.

As used herein, the twenty conventional amino acids and their abbreviations follow conventional usage (Biochemistry, Third Edition (1988), Lubert Stryer, ed., W.H. Freeman and Company, NY, which is incorporated herein by reference). Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as α,α disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids and analogs may also be suitable components for polypeptides of the present invention. Examples of unconventional amino acids include: 4hydroxyproline, γ -carboxyglutamate, ϵ -N,N,N-trimethyllysine, ϵ -N-acetyllysine, O-phosphoserine, N-acetylserine, Nformylmethionine, 3-methylhistidine, 5-hydroxylysine, ω -Nmethylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). Unconventional and unnatural amino acids may be incorporated in vitro translation products if incorporated into an aminoacyl-tRNA that can participate in ribosome-mediated peptide elongation.

As used herein, the term "nascent peptide" refers to a polypeptide produced by ribosome-mediated translation of a template mRNA, and wherein the polypeptide is associated with the encoding template mRNA or a cDNA copy of the template mRNA. Nascent peptides may correspond to full-length translation products encoded by the entire open reading frame of the template mRNA but can also include partially translated or prematurely terminated products. A "nascent single-chain

10

15

20

25

30

35

antibody" is a nascent polypeptide which comprises a singlechain antibody.

As used herein, the term "single-chain antibody" refers to a polypeptide comprising a $V_{\rm H}$ domain and a $V_{\rm L}$ domain in polypeptide linkage, generally linked via a spacer peptide (e.g., $[Gly-Gly-Gly-Gly-Ser]_x$), and which may comprise additional amino acid sequences at the amino- and/or carboxytermini. For example, a single-chain antibody may comprise a tether segment for linking to the encoding polynucleotide. As an example, a scFv is a single-chain antibody. Single-chain antibodies are generally proteins consisting of one or more polypeptide segments of at least 10 contiguous amino acids substantially encoded by genes of the immunoglobulin superfamily (e.g., see The Immunoglobulin Gene Superfamily, A.F. Williams and A.N. Barclay, in Immunoglobulin Genes, T. Honjo, F.W. Alt, and T.H. Rabbitts, eds., (1989) Academic Press: San Diego, CA, pp.361-387, which is incorporated herein by reference), most frequently encoded by a rodent, non-human primate, avian, porcine, bovine, ovine, goat, or human heavy chain or light chain gene sequence. A functional single-chain antibody generally contains a sufficient portion of an immunoglobulin superfamily gene product so as to retain the property of binding to a specific target molecule, typically a receptor or antigen (epitope).

As used herein, the term "complementarity-determining region" and "CDR" refer to the art-recognized term as exemplified by the Kabat and Chothia CDR definitions also generally known as hypervariable regions or hypervariable loops (Chothia and Lesk (1987) J. Mol. Biol. 196: 901; Chothia et al. (1989) Nature 342: 877; E.A. Kabat et al., Sequences of Proteins of Immunological Interest (National Institutes of Health, Bethesda, MD) (1987); and Tramontano et al. (1990) J. Mol. Biol. 215: 175). Variable region domains typically comprise the amino-terminal approximately 105-115 amino acids of a naturally-occurring immunoglobulin chain (e.g., amino acids 1-110), although variable domains somewhat shorter or longer are also suitable for forming single-chain antibodies.

15

20

25

30

35

An immunoglobulin light or heavy chain variable region consists of a "framework" region interrupted by three hypervariable regions, also called CDR's. The extent of the framework region and CDR's have been precisely defined (see, "Sequences of Proteins of Immunological Interest," E. Kabat et al., 4th Ed., U.S. Department of Health and Human Services, Bethesda, MD (1987)). The sequences of the framework regions of different light or heavy chains are relatively conserved within a species. As used herein, a "human framework region" is a framework region that is substantially identical (about 85% or more, usually 90-95% or more) to the framework region of a naturally occurring human immunoglobulin. The framework region of an antibody, that is the combined framework regions of the constituent light and heavy chains, serves to position and align the CDR's. The CDR's are primarily responsible for binding to an epitope of an antigen.

As used herein, the term "tether segment" refers to a portion of a nascent peptide or nascent antibody which binds to the encoding mRNA molecule serving as the translation template for the synthesis of the nascent polypeptide, or to a cDNA copy of such encoding mRNA, either directly or through binding an intermediate molecule that is linked directly to the encoding mRNA or cDNA copy thereof.

As used herein, the term "variable segment" refers to a portion of a nascent peptide which comprises a random, pseudorandom, or defined kernal sequence. A variable segment can comprise both variant and invariant residue positions, and the degree of residue variation at a variant residue position may be limited; both options are selected at the discretion of the practitioner. Typically, variable segments are about 5 to 20 amino acid residues in length (e.g., 8 to 10), although variable segments may be longer and may comprise antibody portions or receptor proteins, such as an antibody fragment, a nucleic acid binding protein, a receptor protein, and the like.

As used herein, "random peptide sequence" refers to an amino acid sequence composed of two or more amino acid monomers and constructed by a stochastic or random process. A

15

20

25

30

35

random peptide can include framework or scaffolding motifs, which may comprise invariant sequences.

As used herein "random peptide library" refers to a set of polynucleotide sequences that encodes a set of random peptides, and to the set of random peptides encoded by those polynucleotide sequences, as well as the fusion proteins containing those random peptides.

As used herein, the term "pseudorandom" refers to a set of sequences that have limited variability, so that for example the degree of residue variability at one position is different than the degree of residue variability at another position, but any pseudorandom position is allowed some degree of residue variation, however circumscribed.

As used herein, the term "defined sequence framework" refers to a set of defined sequences that are selected on a nonrandom basis, generally on the basis of experimental data or structural data; for example, a defined sequence framework may comprise a set of amino acid sequences that are predicted to form a β -sheet structure or may comprise a leucine zipper heptad repeat motif, a zinc-finger domain, among other variations. A "defined sequence kernal" is a set of sequences which encompass a limited scope of variability. Whereas (1) a completely random 10-mer sequence of the 20 conventional amino acids can be any of (20) 10 sequences, and (2) a pseudorandom 10-mer sequence of the 20 conventional amino acids can be any of (20) 10 sequences but will exhibit a bias for certain residues at certain positions and/or overall, (3) a defined sequence kernal is a subset of sequences which is less that the maximum number of potential sequences if each residue position was allowed to be any of the allowable 20 conventional amino acids (and/or allowable unconventional amino/imino acids). A defined sequence kernal generally comprises variant and invariant residue positions and/or comprises variant residue positions which can comprise a residue selected from a defined subset of amino acid residues), and the like, either segmentally or over the entire length of the individual selected library member sequence. Defined sequence kernals can refer to either amino acid sequences or polynucleotide

10

15

20

25

30

35

sequences. For illustration and not limitation, the sequences $(NNK)_{10}$ and $(NNM)_{10}$, where N represents A, T, G, or C; K represents G or T; and M represents A or C, are defined sequence kernals.

As used herein "RNA binding protein" refers to a protein that specifically interacts with a polyribonucleotide strand or strands. Those of skill in the art will recognize that, for purposes of the present invention, the RNA binding protein must bind specifically to the template mRNA, for example the RNA binding protein may bind to a specific sequence of the mRNA which will suppress reinitiation of new translation from the template mRNA. In embodiments of the invention in which DNA binding polypeptides are used, DNA binding proteins are typically those proteins which bind to DNA, in a sequence-specific or sequence-insensitive manner (e.g., helix-loop-helix, zinc finger, homeodomain, histone, etc.).

In some embodiments, DNA-binding proteins can bind to DNA in a sequence-specific manner (e.g., bind to specific predetermined nucleotide sequences); in such embodiments, the nascent polypeptide library members comprise an encoding polynucleotide (or DNA primer bound thereto) which comprises a sequence bound by the sequence specific DNA-binding protein. As used herein, the term "polynucleotide-binding protein" encompasses RNA-binding proteins and DNA-binding proteins, whether sequence-specific or sequence-insensitive.

As used herein "epitope" refers to that portion of an antigen or other macromolecule capable of forming a binding interaction that interacts with the variable region binding pocket of an antibody. Typically, such binding interaction is manifested as an intermolecular contact with one or more amino acid residues of a CDR.

As used herein, "receptor" refers to a molecule that has an affinity for a given ligand. Receptors can be naturally occurring or synthetic molecules. Receptors can be employed in an unaltered state or as aggregates with other species. Receptors can be attached, covalently or noncovalently, to a binding member, either directly or via a specific binding substance. Examples of receptors include, but are not limited

10

15

20

25

30

35

to, antibodies, including monoclonal antibodies and antisera reactive with specific antigenic determinants (such as on viruses, cells, or other materials), cell membrane receptors, complex carbohydrates and glycoproteins, enzymes, and hormone receptors.

As used herein "ligand" refers to a molecule, such as a random peptide or variable segment sequence, that is recognized by a particular receptor. As one of skill in the art will recognize, a molecule (or macromolecular complex) can be both a receptor and a ligand. In general, the binding partner having a smaller molecular weight is referred to as the ligand and the binding partner having a greater molecular weight is referred to as a receptor.

As used herein, "linker" or "spacer" refers to a molecule or group of molecules that connects two molecules, such as a DNA binding protein and a random peptide, and serves to place the two molecules in a preferred configuration, e.g., so that the random peptide can bind to a receptor with minimal steric hindrance from the DNA binding protein.

As used herein, the term "operably linked" refers to a linkage of polynucleotide elements in a functional relationship. A nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the coding sequence. Operably linked means that the DNA sequences being linked are typically contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame.

As used herein, "glycosylating cell" is a cell capable of glycosylating proteins, particularly eukaryotic cells capable of adding an N-linked "core oligosaccharide" containing at least one mannose residue and/or capable of adding an O-linked sugar, to at least one glycosylation site sequence in at least one polypeptide expressed in said cell, particularly a secreted protein. Thus, a glycosylating cell contains at least one enzymatic activity that catalyzes the attachment of a sugar residue to a glycosylating site sequence

```
in a protein or polypeptide, and the cell actually glycosylates for example but not for at least one expressed polypeptide.
                           in a protein or polypeptide, and the cell actually glycosylate for example but not college for example of polypeptide. For example of college for example are two cally divensed at least one mammalian cells are two cally divensed for each cells are two cally divensed for two cally divensed for college for two cally divensed for college for two cally divensed for college for cells are two cally divensed for cells are two cally divensed for cells are two cally divensed for cells are two cells
                                     at least one expressed polypertide. For example but not cells. may be least one expressed polypertide. Insect cells and vesst. may be limitation, mammalian cells, such as insect cells and vesst. at limitation, other eukaryotic cells.
                                                    limitation, mammalian cells are typically glycosylating cells, may be other eukaryotic cells.

Other eukaryotic cells, such as insect cells and yeast, may be glycosylating cells.
                                                                                                                                                                                                                                                          DESCRIPTION the nomenclature used hereafter and many generally, the nomenclature and many management in coll multure maleuriar management in coll multure management in coll multure management in coll multure management in coll management in coll management in coll multure management in coll management in coll multure multure management in coll multure multu
WO 95/11922
                                                                                                                           Generally, the nomenclature used hereafter and molecular in cell culture, molecular in cell culture, and hybridization of the laboratory procedures chemistry and hybridization of the laboratory procedures acid chemistry and hybridization and nucleic acid chemistry and hybridization of the laboratory procedures acid chemistry and hybridization and nucleic acid chemistry and hybridization of the laboratory procedures acid chemistry and hybridization acid chemistry and hybridization acid chemistry and hereafter and hybridization acid chemistry acid 
                                                                                                                                                         genetics, and nucleic acid chemistry and hybridization and commonly employed in an action of the common and common 
                                                                                                                                          of the laboratory procedures in cell culture, molecular and hybridization of the laboratory procedures acid chemistry and commonly and 
                                                                                                                                                                   described below are those well known and commonly employed in and commonly employed in and commonly employed in the art. Standard techniques are used for recombinant nolvoentide the art. Dolvoucleotide synthesis. in vitro nolvoentide the art.
                                                                            glycosylating cells.
                                                                                                                                                                                    the art. grandard the like and microbial culture and synthesis. and the like and microbial culture and synthesis.
                                                                                                     DETAILED DESCRIPTION
                                                                                                                                                                                                                               transformation (e.g., steps are performed according to the transformation purifications. The techniques and procedures reactions and purifications.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Generally enzymatic
                                                                                                                                                                                                      acid methods, polynucleotide synthesis, in Witto Polynucleotide synthesis, in Witto Polynucleotide synthesis, in Common and microphatical culture and microphatical culture and synthesis, and the like alectronometrical culture and the like alectronometrical culture and the like alectronometrical culture and the like and microphatical culture and the like and microphatical culture 
                                                                                                                                                                                                                                                            manufacturer's specifications. The techniques and procedures in techniques and methods in to conventional methods in to conventional methods in the art. and various deneral references (see. deneral references)
                                                                                                                                                                                                                     transformation (e.g., electroporation).
                                                                                                                                                                                                                                                                                        the art and various general references A Laboratory Manual, Harbor, cold Spring Harbor Laboratory Press, cold Spring Harbo
                                                                                                                                                                                                                                                                           are generally performed according to conventional methods

are generally performed according to conventional methods

A Laboratory Manual

the art and Various general references

the art are molecular cloning:
                                                                                                                                                                                                                                                                                                       Sambrook et al. Molecular Cloning: A Laboratory Manual, Harbor and Laboratory Manual, Lab
                                                                                                                                                                                                                                                                                                                (1989) cold Spring Harbor Laboratory Manual, (1988) E. Harlow My.

N.Y.; and Antibodies: Harbor Laboratory, cold Spring Harbor, NY.

D. Lane, Cold Spring Harbor Laboratory, cold Spring Harbor, NY.
                                                                                                                                                                                                                                                                                                                               N.V.; and Antibodies: A Laboratory Manual, cold spring which are cold spring Harbor Laboratory, reference, which is incorporated herein by reference, which is incorporated herein by reference.
                                                                                                                                                                                                                                                  manufacturer's specifications.
                                                                                                                                                                                                                                                                                                                                                   D. Lane, which is incorporated herein the procedures therein are ach of which is incorporated horowided throughout this document.
                                                                                                                                                                                                                                                                                                                                                           Provided throughout this document. The procedures therein are and are provided for the information contained throughout known in the information contained to be well reader. All the information contained to be information contained to be the reader.
                                                                                                                                                                                                                                                                                                                                                                                             believed to be well known in the art and are provided for to be well known in the information contained.

believed to be well known all the information contained to be well known all the information contained to be well known in the art and are provided for the information contained therein by reference.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      incorporated herein by reference.

incorporated herein by synthesized on an Applied Bio
synthesized on an Applied Bio
an incorporated herein be synthesized on an applied Bio
an incorporated herein by reference.

an incorporated herein by reference.

an an Applied Bio
an an Applied 
                                                                                                                                                                                                                                                                                                                                                                                                                                  Oligonucleotides can be synthesized on an Applied Bio

Oligonucleotide synthesizer according to specifications

oligonucleotide synthesizer according to specifications

oligonucleotide synthesizer according to specifications

oligonucleotide synthesizer according to specifications
                                                                                                                                                                                                                                                                                                                                                                                                               convenience of the reader. All the intormation therein is convenience are an incorporated herein is convenience.
                                                                                                                                                                                                                                           20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              by the manufacturer. amplification are described in the Methods for PCR amplification are described in the Methods for PCR amplification and armited for pcr. ar
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Methods for PCR amplification are described in to Methods for Principles and Applications New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. New York. No. 18 Amplification ed. HA Erlich. Stockton Press. No. 18 Amplification ed. HA Erlich. No. 18 A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                art (PCR rechnology: Principles and Applications for DNA NY

Amplification ed. HA Erlich, to Methods and Applications

(1989): PCR Protocols: A Guide to Methods and Application (1989): PCR Protocols: A Guide to Methods and Application to Methods and Application to Methods and Application to Methods and Applications.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Amplification ed. HA Erlich, Stockton Press, New York, NY

ed. HA Erlich, Stockton Press, New York, NY

stockton Press, New York, NY

eds. HA Erlich, Stockton Press, New York, NY

stockton Press, New York, NY

eds. New York, NY

eds. New York, NY

stockton Press, New York, NY

eds. New York, NY

stockton Press, New York, NY

eds. New York, NY

stockton Press, New York, NY

eds. HA Erlich, Stockton Press, New York, NY

eds. Innis, Gelfland, Stockton Press, NY
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Protocols: A Guide to Methods and Applications, san Gelfland, Mattila of all (1991) Michair Aride Dec.
                                                                                                                                                                                                                                                                                                                                                                                                                                                           provided by the manufacturer.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        eds. This (1990); Mattila et al. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods and Note of Reserve Acids Res. T.A. (1991) PCR Methods Acids Res. T.A. (1991) PCR Methods Res. T.A. (1991) P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Diego, CA (1990); Mattila et al. (1991) Nucleic Acids Res. 1

Ag67; Eckert, K.A. and Kunkel, T.A. (1991) Eck Methods and
                                                                                                                                                                                                                                                                                                                                                                                                                                                           35
```

10-

15

20

25

30

35

Applications 1: 17; and U.S. Patent Nos. 4,683,202 and 4,965,188, each of which are incorporated herein by reference) and exemplified hereinbelow.

Overview

The present invention provides novel compositions and methods for screening in vitro polysome libraries displaying nascent peptides comprising a random, pseudorandom, or defined sequence polypeptide framework. In an aspect of the invention, polysome libraries display single-chain antibodies comprising a $V_{\rm H}$ domain, $V_{\rm L}$ domain, and spacer peptide.

Generally, a single-chain expression polynucleotide is generated. This expression polynucleotide contains: (1) a single-chain antibody cassette consisting of a V_H domain, spacer peptide, and V_L domain operably linked to encode a single-chain antibody, (2) a promoter suitable for in vitro transcription (e.g., T7 promoter, SP6 promoter, and the like) operably linked to ensure in vitro transcription of the single-chain antibody cassette forming a mRNA encoding a single-chain antibody, and (3) a transcription termination sequence suitable for functioning in an in vitro transcription reaction. Optionally, the expression polynucleotide may also comprise an origin of replication and/or a selectable marker. An example of a suitable expression polynucleotide is pLM166 (see, EXAMPLE 2).

The V_H and V_L sequences can be conveniently obtained from a library of V_H and V_L sequences produced by PCR amplification using V gene family-specific primers or V genespecific primers (Nicholls et al. (1993) J. Immunol. Meth. 165: 81; W093/12227) or are designed according to standard art-known methods based on available sequence information. Typically, mouse or human V_H and V_L sequences are isolated. The V_H and V_L sequences are then ligated, usually with an intervening spacer sequence (e.g., encoding an in-frame flexible peptide spacer), forming a cassette encoding a single-chain antibody. Often, a library comprising a plurality of V_H and V_L sequences are used (sometimes also with a plurality of spacer peptide species represented). Frequently, a library is constructed wherein one

20

25

30

35

or more of the $\mathbf{V}_{\mathbf{H}}$ and $\mathbf{V}_{\mathbf{L}}$ sequences are mutated to increase sequence diversity, particularly at CDR residues, sometimes at framework residues. V region sequences can be conveniently cloned as cDNAs or PCR amplification products for immunoglobulin-expressing cells. For example, cells from human hybridoma, or lymphoma, or other cell line that synthesizes either cell surface or secreted immunoglobulin are used for the isolation of polyA+ RNA. The RNA is then used for the synthesis of oligo dT primed cDNA using the enzyme reverse transcriptase (for general methods see, Goodspeed et al. (1989) Gene 76: 1; Dunn et al. (1989) J. Biol. Chem. 264: 13057). Once the V-region cDNA or PCR product is isolated, it is cloned into a vector to form a single-chain antibody cassette. example and not limitation, the CANTAB vector system (sold commercially by Pharmacia Biotech, Alameda, CA) and its 15 variants are suitable for cloning V_{H} and V_{L} sequences by PCR amplification. The phagemid pSEx (Dubel et al. (1993) Gene 128: 97) and similar vectors are suitable for surface display of scFv on bacteriophage.

In one aspect, the present invention provides an improved method, using an in vitro translation system for translating mRNA to form polysomes displaying nascent peptides, including nascent single-chain antibodies, which in one variation are scFv. This aspect of the invention comprises using an E. coli S30 translation system (Promega, Madison, Wisconsin) for efficient in vitro translation. The E. coli S30 translation system provides advantageous high efficiency translation of a variety of mRNA templates, as compared to other in vitro translation systems (e.g., wheat germ extract, rabbit reticulocyte lysate). Furthermore, the E. coli S30 system can provide a coupled transcription/translation system which is generally more convenient to use and efficient than an uncoupled system. In addition, the S30 system for in vitro translation is well characterized and quite amenable to the preparation of very large reaction mixtures, thus facilitating the construction of very large libraries by the methods of the invention. Thus, while the invention is typically practiced with reaction volumes of 50 microlitres to 5 mL, one can also

15

20

25

30

35

prepare libraries in reaction volumes of 5 mL to 50 mL (or even larger) by the present methods. The S30 system is also amenable to the incorporation of unnatural amino acids using tRNA molecules charged with unnatural amino acids. See PCT patent publication No. 90/05785, incorporated herein by reference.

In another aspect, the present invention provides improved binding and/or washing conditions for screening polysome peptide-display libraries and single-chain antibody display libraries. In general, this improvement comprises: (1) isolating polysomes from an in vitro translation reaction by ultracentrifugation prior to screening the recovered polysomes for high-affinity binding to a receptor or epitope, and optionally the pellet containing the centrifugation-. purified polysomes is resolubilized in a suitable buffer (i.e., does not disrupt intact polysomes) and centrifuged a second time to further purify the polysome population prior to affinity screening with receptor or epitope, and/or (2) reducing non-specific binding of nascent peptide-displaying polysomes or nascent single-chain antibody-displaying polysomes by contacting a preblocking agent (e.g., nonfat milk, casein, bovine serum albumin, gelatin, tRNA) to the immobilized receptor or epitope prior to affinity screening. detergent may optionally also be added.

In another aspect, the invention provides a method for generating nascent peptide-polysome libraries or nascent single-chain antibody-polysome libraries by coupled in vitro transcription/translation using an <u>E. coli</u> S30 system. This improvement avoids the bacteriophage-display method which requires replication and/or transcription of the DNA templates in a cell, which may reduce the diversity of the library and/or skew the distribution of the relative abundances of individual library members. Moreover, the coupled <u>E. coli</u> system is highly efficient and the library size is not limited by the transformation frequency of host cells or structural constraints of bacteriophage coat proteins.

In another aspect, the invention provides an improvement to the general method of screening nascent peptide-

15

20

25

30

35

polysome libraries. This improvement can be used in conjunction with single-chain antibody polysome libraries. improvement comprises the step of taking DNA sequences produced from positive nascent peptide-polysomes (or single-chain antibody polysomes) obtained after one or more rounds of affinity screening and performing one or more additional rounds of affinity screening by a different screening method, such as by expression of the selected DNA sequence(s) in a bacteriophage coat protein display system, by expression as a soluble antibody in a prokaryotic or eukaryotic expression system, or by various methods for in vitro expression. example, expression of scFv in eukaryotic expression systems, particularly in glycosylating cells, has the benefit of avoiding potential aggregation and misfolding of the scFv which may occur in some prokaryotic-based expression systems, as well as producing a glycosylated scFv, if said scFv contains suitable glycosylating site sequence(s).

33

For example, bacteriophage antibody display libraries can be created from selected sequences by subcloning the positive (i.e., selected) DNA sequence(s) into a phagemid vector (e.g., pAFF6) wherein the subcloned DNA is expressed as a fusion with a bacteriophage coat protein (e.g., pIII or pVIII) in the same reading frame as the nascent peptides (or single-chain antibodies) of the positive polysomes. The phagemid is propagated to produce bacteriophage particles displaying the nascent peptide sequence (or single-chain antibody) as a fusion with a phage coat protein. This improvement also relates to subcloning the nucleic acids encoding positive peptide-polysomes into other selection systems, such as the peptides on plasmids (using, e.g., lac as the DNA binding protein) or the maltose binding protein systems discussed above.

The peptide-displaying phage (or other, depending on the selection system chosen) particles are used for affinity screening by any suitable method, including panning, chromatography, and the like using an immobilized receptor or epitope (PCT Publication Nos. 91/17271, 91/18980, and 93/08278). Thus, in some embodiments, the phage (or phagemid)

15

20

25

30

35

particle is used in an ELISA to determine the specificity of peptide binding. The availability of such assays and selection methods for the phage (or other) selection systems allows other advantages to be realized from the improved polysome display method of the present invention. In one embodiment, the variable region of nucleic acid that is expressed by the polysome and tested for receptor binding is a concatemer of short (i.e., 6 to 20 amino acids in length) peptide coding sequences optionally linked through nucleotides that are a restriction enzyme recognition site. After selection, the concatemer is cleaved with the restriction enzyme and the fragments (encoding the individual peptides) are cloned into the secondary selection system (i.e., the peptides on phage system), where a single panning cycle (binding of peptide to receptor and washing away unbound peptides) will serve to enrich the library with the peptide sequences from the concatemer that encode the ligands of interest. One could also use the process of concatemerization to combine and sequence together a number of individual peptide encoding sequences from a pool of positive peptide-polysomes.

In one embodiment, the single-chain antibody-encoding portion of the polynucleotide that is expressed by the polysome and tested for epitope binding encodes a V_H and V_L which are flanked by convenient restriction sites to facilitate the excision of the V_H sequence, V_L sequence, or both. After selection, the site(s) is/are cleaved with the restriction enzyme(s) and the fragments (encoding the individual domains or entire scFv) are cloned into a secondary selection system (e.g., antibody bacteriophage display system), where a single panning cycle (binding of single-chain antibody to epitope and washing away unbound single-chain antibodies) will serve to enrich the library for members that encode the single-chain antibodies of interest.

With regard to methods of generating peptidepolysomes and single-chain antibody-polysomes, it is desirable
in some embodiments to employ a coupled <u>in vitro</u>
transcription/translation system (e.g., <u>E. coli</u> S30) to produce
a very large library of nascent peptide-polysomes (single-chain

10

15

20

25

30

35

antibody-polysomes) which is initially screened for ligandbinding species, epitope-binding species, or receptor-binding species. In a coupled system, DNA encoding the library is added to the extract for performing transcription and Of course, one can also use an uncoupled system, producing the RNA in one reaction and then adding that RNA to an in vitro translation system. After production, screening and selection, the positive isolates (e.g., enriched pools of positive isolates) are then transferred into a bacteriophage display system that may be screened further for receptor or epitope binding species using a variety of assays (such as the ELISA noted above) and screening conditions, including assays and selection steps that might not be compatible with intact polysomes. Moreover, once positive sequences have been inserted into a bacteriophage peptide-display vector (e.g., pAFF6), they may be conveniently mutagenized (e.g., with mutagenic PCR and/or site-directed oligonucleotide mutagenesis (e.g., in M13) and/or chemical mutagenesis for producing advantageous sequence variants. Thus, single-chain antibodies which are isolated after an initial round (or multiple rounds, which may include display on phage, expression as a soluble scFV in a prokaryotic or eukaryotic cell, or in vitro expression, in any order) of screening can be cloned into a bacteriophage antibody-display vector and can be mutagenized further, typically by limited sequence diversification in or near one or more of the CDRs, to effectively mirror the in vivo process known as "affinity sharpening". The diversified antibody library can then be screened according to conventional bacteriophage antibody-display methods. Alternatively, singlechain antibodies which are isolated after an initial round (or multiple rounds) of screening can be retained in a polysomedisplay vector and can be mutagenized further; the diversified single-chain antibody-polysome library can be screened according to the methods described herein and variations thereof.

The present invention also provides random, pseudorandom, and defined sequence framework peptide libraries and methods for generating and screening those libraries to

15

20

25

30

35

identify useful compounds (e.g., peptides, including single-chain antibodies) that bind to receptor molecules or epitopes of interest or gene products that modify peptides or RNA in a desired fashion. The random, pseudorandom, and defined sequence framework peptides are produced from libraries of nascent peptide library members that comprise nascent peptides or nascent single-chain antibodies attached to an mRNA template from which the nascent peptide was synthesized by in vitro translation, or attached to a DNA primer hybridized to the mRNA or to a cDNA copy of the mRNA template. The mode of attachment may vary according to the specific embodiment of the invention selected.

library of peptides and single-chain antibodies to be screened and the polynucleotide sequence encoding the desired peptide(s) or single-chain antibodies to be selected. The polynucleotide can then be isolated and sequenced to deduce the amino acid sequence of the selected peptide(s) or single-chain antibodies (or just $V_{\rm H}, V_{\rm L}$, or CDR portions thereof). Using these methods, one can identify a peptide or single-chain antibody as having a desired binding affinity for a molecule. The peptide or antibody can then be synthesized in bulk by conventional means.

A significant advantage of the present invention is that no prior information regarding an expected ligand structure is required to isolate peptide ligands or antibodies of interest. The peptide identified can have biological activity, which is meant to include at least specific binding affinity for a selected receptor molecule and, in some instances, will further include the ability to block the binding of other compounds, to stimulate or inhibit metabolic pathways, to act as a signal or messenger, to stimulate or inhibit cellular activity, and the like.

Improved Methods for Screening Nascent Peptide Libraries

A polysome library displaying nascent peptides can be generated by a variety of methods. Generally, an <u>in vitro</u> translation system is employed to generate polysomes from a

15

20

25

30

35

population of added mRNA species. Often, the in vitro translation system used is a conventional eukaryotic translation system (e.g., rabbit reticulocyte lysate, wheat germ extract). However, an E. coli S30 system (Promega, Madison, Wisconsin) can be used to generate the polysome library from a population of added mRNA species or by coupled transcription/translation (infra). Suitable E. coli S30 systems may be produced by conventional methods or may be obtained from commercial sources (Promega, Madison, Wisconsin). The E. coli S30 translation system is generally more efficient at producing polysomes suitable for affinity screening of displayed nascent peptides, and the like. Moreover, a prokaryotic translation system, such as the E. coli S30 system, has the further advantage that a variety of drugs which block prokaryotic translation (e.g., inhibitors of ribosome function), such as rifampicin or chloramphenicol, can be added at a suitable concentration and/or timepoint to stall translation and produce a population of stalled polysomes, suitable for affinity screening against a predetermined receptor or epitope (e.g., a G protein-linked receptor protein).

In general, the improved method comprises the steps of: (1) introducing a population of mRNA species into a prokaryotic <u>in vitro</u> translation system (e.g., <u>E. coli</u> S30) under conditions suitable for translation to form a pool of polysomes displaying nascent peptides or nascent single-chain antibodies (e.g., stalled polysomes), so-called polysomeforming conditions; (2) contacting the polysomes with a predetermined receptor or epitope under suitable binding conditions (i.e., for specific binding to the receptor/epitope and for preserving intact polysome structure); (3) selecting polysomes which are specifically bound to the receptor or epitope (e.g., by removing unbound polysomes by washing with a solution); and (4) determining the polynucleotide sequence(s) of the selected polysomes (e.g., by synthesizing cDNA or reverse transcriptase PCR amplification product, and sequencing said cDNA or amplification product). Often, the receptor or

15

20

25

30

35

epitope used for screening is immobilized, such as by being bound to a solid support.

In a variation of the improved method, the population of mRNA molecules is introduced into the <u>in vitro</u> translation system by <u>de novo</u> synthesis of the mRNA from a DNA template. In this improvement, a population of DNA templates capable of being transcribed <u>in vitro</u> (e.g., having an operably linked T7 or SP6 or other suitable promoter) are introduced into a coupled <u>in vitro</u> transcription/translation system (e.g., an <u>E. coli</u> S30 system) under conditions suitable for <u>in vitro</u> transcription and translation of the transcribed product. Generally, using a coupled <u>in vitro</u> transcription/translation system is highly efficient for producing polysomes displaying nascent peptides and single-chain antibodies suitable for affinity screening. Of course, and as noted above, uncoupled systems may also be used, i.e., by adding mRNA to an <u>in vitro</u> translation extract.

A further improvement to the general methods of screening nascent peptide-displaying polysomes and single-chain antibody-displaying polysomes comprises the additional step of adding a preblocking agent (e.g., nonfat milk, serum albumin, tRNA, and/or gelatin) prior to or concomitant with the step of contacting the nascent peptide-displaying polysomes with an immobilized receptor or the nascent single-chain antibodydisplaying polysomes with an immobilized epitope. additional step of adding a preblocking agent reduces the amount of polysomes which bind nonspecifically to the receptor or epitope and/or to the immobilization surface (e.g., microtitre well), thereby enhancing the specificity of selection for polysomes displaying peptides that specifically bind to the receptors(s) or antibodies which specifically bind the predetermined epitope(s). Although the preblocking agent can be selected from a broad group of suitable compositions, the group of preblocking agents comprising: nonfat milk/nonfat milk solids, casein, bovine serum albumin, transfer RNA, and gelatin are preferred, with nonfat milk being especially preferable. Other suitable preblocking agents can be used.

Preblocking agents that do not substantially interfere with specific binding (i.e., non-interfering) are suitable.

5

10

15

20

25

30

35

A further improvement to the general methods of screening nascent peptide-displaying polysomes comprises the additional step of isolating polysomes from an in vitro translation reaction (or a coupled in vitro transcription/translation reaction) prior to the step of contacting the nascent peptide-displaying polysomes with immobilized receptor. Generally, the polysomes are isolated from a translation reaction by high speed centrifugation to pellet the polysomes, so that the polysome pellet is recovered and the supernatant containing contaminants is discarded. polysome pellet is resolubilized in a suitable solution to retain intact polysomes. The resolubilized polysomes may be recentrifuged at lower speed (i.e., which does not pellet polysomes) so that the insoluble contaminants pellet and are discarded and the supernatant containing soluble polysomes is recovered, and the supernatant used for affinity screening. Alternatively, the resolubilized polysomes may be used for affinity screening directly (i.e., without low speed centrifugation). Furthermore, the order of centrifugation may be reversed, so that low speed centrifugation is performed prior to high speed centrifugation; the low speed centrifugation supernatant is then centrifuged at high speed and the pelleted polysomes are resolubilized and used for affinity screening. Multiple rounds of high speed and/or low speed centrifugation may be used to increasingly purify the polysomes prior to contacting the polysomes with the immobilized selection receptor(s) or epitope(s).

Another improvement to the general methods of affinity screening of nascent peptide-displaying polysomes comprises adding a non-ionic detergent to the binding and/or wash buffers. Non-ionic detergent (e.g., Triton X-100, NP-40, Tween, etc.) is added in the binding buffer (i.e., the aqueous solution present during the step of contacting the polysomes with the immobilized receptor) and/or the wash buffer (i.e., the aqueous solution used to wash the bound polysomes (i.e., bound to the immobilized receptor). Generally, the non-ionic

15

detergent is added to a final concentration of about between 0.01 to 0.5% (v/v), with 0.1% being typical.

Another improvement to the general methods of affinity screening of nascent peptide libraries is generating the DNA template library (from which the mRNA population is transcribed) in vitro without cloning the library in host cells. Cloning libraries in host cells frequently diminishes the diversity of the library and may skew the distribution of the relative abundance of library members. <u>In vitro</u> library 10 construction generally comprises ligating each member of a population of polynucleotides encoding library members to a polynucleotide sequence comprising a promoter suitable for in vitro transcription (e.g., T7 promoter and leader). resultant population of DNA templates may optionally be purified by gel electrophoresis. The population of DNA templates is then transcribed and translated in vitro, such as by a coupled transcription/translation system (e.g., E. coli S30).

A further improvement to the general methods of affinity screening comprises the added step of combining 20 affinity screening of a nascent peptide-displaying polysome library with screening of a bacteriophage peptide display library (or other, i.e., peptides on plasmids, expression as secreted soluble antibody in host cells, in vitro expression). In this improvement, polysomes are isolated by affinity 25 screening of a mascent peptide-display library. The isolated polysomes are dissociated, and cDNA is made from the mRNA sequences that encoded nascent peptides that specifically bound to the receptor(s). The cDNA sequences encoding the nascent peptide binding regions (i.e., the portions which formed 30 binding contacts to the receptor(s); variable segment sequences) are cloned into a suitable bacteriophage peptide display vector (e.g., pAFF6 or other suitable vector). resultant bacteriophage vectors are introduced into a host cell to produce a library of bacteriophage particles. Each of the 35 phage clones express on their virion surface the polysomederived peptide sequences as fusions to a coat protein (e.g., as an N-terminal fusion to the pIII coat protein). By

```
incorporating the in yitro enriched peptide sequences from it is incorporating the into a pacteriophage display system, it is polysome screening into a
                        incorporating the into a bacteriophage for additional rounds polysome soreening affinity selection for additional polysome to continue affinity selection for additional possible to continue affinity selection for additional possibl
                                    Polysome screening into a bacteriophage display system, rounds.

Polysome screening into a bacteriophage for additional bacterionhade

The is also advantageous, because the resultant bacterionhade

The is also advantageous, because the resultant bacterionhade
                                                     Possible to continue affinity selection for additional rounds.

because the resultant bacteriorhage the resultant bacteriorhage the resultant bacteriorhage the resultant bacteriorhage.

To continue affinity selection for additional rounds.

The resultant bacteriorhage the resultant bacteriorhage the resultant bacteriorhage.

The resultant bacteriorhage the resultant bacteriorhage the resultant bacteriorhage.

The resultant bacteriorhage the resultant bacteriorhage the resultant bacteriorhage.
                                                                    It is also advantageous, because the resultant bacteriophage

To advantageous, because the resultant bacteriophage

The resultant ba
                                                                             display libraries can be screened and tested under conditions the intact polysomes.

display libraries can be appropriate for the intact can be appropriate display that can be monovalent display that can be the monovalent display that rot have been monovalent display that rot arthough the monovalent display that can be screened and tested under conditions.
                                                                                              that might not have been appropriate for the intact polyson the intact can be monovalent display that in icols for the intact can be that might not have been appropriate for the intact can be that might not have been appropriate for the intact polyson in icols for the intact polyson in icols for the intact polyson is an icols for the intact polyson icols for the intact polyson is an icols for the intact polyson icols for the icols for the
WO 95/11922
                                                                                                             For example, although the monovalent display that can be in isolating and though the monovalent has advantages a multivalent to polysome system has conditions. a multivalent achieved with ligands (depending on conditions) high affinity ligands
                                                                                                                       achieved with the polysome system has advantages in isolating on conditions, a multivalent ligand can depend on conditions, a finity ligand can high affinity ligand of several cooles of a low affinity ligand of several cooles of a low affinity ligand of several cooles of a low affinity ligand composed of several cooles of a low affinity ligand composed of several cooles of a low affinity ligand composed of several cooles of a low affinity ligand composed of several cooles of a low affinity ligand composed of several cooles of a low affinity ligand composed of several cooles of a low affinity ligand composed of several cooles of a low affinity ligand composed of several cooles of a low affinity ligand contains the ligand composed of several cooles of a low affinity ligand contains the ligand cont
                                                                                                                                     high affinity ligands (depending on conditions, a multivalent ligand can of a low affinity ligands (depending of a low affinity circumstances ligand composed of several there may be other circumstances ligand composed of affinity).
                                                                                                                                                    ligand composed of several copies of a low affinity ligand car there may be other circumstances there may be achieved with the name have a with display (which can be achieved with the name have a multivalent display (which
                                                                                                                                                                have a very high affinity) there may be other circumstances there can be achieved with under the receptor(s) under the receptor(s) under where multivalent for binding to the system) is desirable for binding to the system)
                                                                                                                                                                                 where multivalent display (which can be achieved with the I under to the receptor(s) under to the receptor(s) to the receptor intact binding to incompatible with intact system) is desirable that may be incompatible with intact binding conditions
                                                                                                                                                                                                                                                                                                                                                                             ditions that may be incompatible with intact

That may be incompatible with intact

That may be incompatible with intact

The same combined polysome/bacteriophage screening

The same combined polysome/bacteriophage

The read for eirelecchain antination
                                                                                                                                                                                             system) is desirable for binding to the receptor(s) under intact and be incompatible with intact and binding conditions combined noivenment and transfer and the same combined noivenment and transfer and trans
                                                                                                                                                                                                                                       sequence can be used for a bacterial host vector. Which vector a spect of the invention a bacterial host infected with a bacterionhade expression vector.
                                  5
                                                                                                                                                                                                                                                        aspect of the invention a bacterial host cell is transformed or which vector, which rectain a bacterial host cell is transformed or which vector, which encodes a fusion nearly member which encodes a fusion nearly infected with a bacteriaphage which encodes a fusion nearly member which encodes a fusion near
                                                                                                                                                                                                                             polysomes. The same combined polysome | bacteriophace.

The same c
                                                                                                                                                                                                                                                                      infected with a bacteriophage expression vector, which vector a fusion protein encodes a fusion aminominate which linkage to the aminominate comprises a DNA library nember which linkage to the aminominate composed of a V. and a V. in peotide linkage to the aminominate composed of a V. and a V. in peotide linkage to the aminominate composed of a V. and a V. in peotide linkage to the aminominate composed of a V. and a V. in peotide linkage to the aminominate composed of a V. and a V. an
                                                                                                                                                                                                                                                                                     comprises a DNA library member which encodes a fusion protein semme which encodes a the amino-
in pertide linkage to the amino-
in p
                                                                                                                                                                                                                                                                                                 composed of a V<sub>K</sub> and a V<sub>L</sub> in peptide linkage to the amino-
terminus of a filamentous bacteriophage coat protein sequence.

terminus of a piti or nyitt sequence.
                                                                                                                                                                                                                                                                                                                                        Another improvement to the methods of affinity the average valency (i.e., or ner nhage or ner nhage) another control of display valency nolveome or ner nhage is the control of display per nolveome or ner nhage are display and ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nolveome or ner nhage of the control of display ner nhage of the control of the control of display ner nhage of the control of display ner n
                                                                                                                                                                                                                   polysomes.
                                                                                                                                                                                                                                                                                                                                                       screening is the control of display valency (i.e., per phage in marticle) and the canacity to vary display valency in
                                                                                                                                                                                                                                                                                                                  typically a pill or pylli sequence.
                                                                                                                                                                                                                                                                                                                                                                     number of functional scr displayed per polysome or per valency in rvoically a to vary display rvoically a particle; rounds of affinity screening.
                                                                                                                                                                                                                                                                                                                                                                                                            display valency permits many binding contacts between the stable thus affording scry which encode scry which encode scry which encode scry particle) and epitope; which encode scry polysome (or phage particles) which encode scry polysome for polysomes (or phage particles) which encode scry polysome particles) which encode scry polysome particles which encode scry polysome particles which encode scry polysome particles which encode scry polysome polysome polysome polysome polysome for polysome p
                                                                                                                                                                                                                                                                                                                                                                                                  different rounds of affinity screening. Typically, a high the screening.

different rounds of affinity binding contacts between ing. thus affording and enitone. thus affording and enitone. thus affording and enitone.
                                                                                                                                                                                                                                                                                                                                                                                                                           polysome (or phage particle) and epitope, which encode scry

polysome for polysomes (or phage particles) Hence. a high

binding which have relatively weak binding.
                                                                                                                                                                                                                                                                                                                                                                                      particle); and the capacity screening.

different rounds of affinity size.
                                                                                                                                                                                                                                                                                                                                                                                                                                            binding for polysomes (or phage particles) which encode high Hence, a broad binding to identify a broad species which have relatively weak binding to identify a broad species which have relatively screening to identify a broad species which have relatively screening to identify a broad species which have relatively screening to identify a broad species which have relatively weak binding to identify a broad species which have relatively weak plant to identify a broad species which encode a high hence.
                                                                                                                                                                                                                               20
                                                                                                                                                                                                                                                                                                                                                                                                                                                          species which have relatively weak binding. identify affinity act allows screening to lower affinity affinity affinity and system allows since even lower affinity and display range of scry species.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    display valency system allows screening to identify a broader to identify affinity scry lower affinity scry alency system allows since even low-to-medium affinity scry such low-to-medium affinity scry diversity range of requently, such low-to-medium affinity scry alency system allows since even low-to-medium affinity scry alency system allows since even low-to-medium affinity scry affinity scry affinity scry affinity scry allows since even low-to-medium affinity scry affini
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   diversity range of scrv species, such low-to-medium affinity scrv such low-to-medium affinity scrv affinity such low-to-medium affinity scrv affinity affinity affinity affinity affinity affinity affinity affinity scrv affinity affin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    can be selected. Frequently, such low-to-medium affinity scription of generating a pool of generating a pool of can be superior can be superior high affinity scription high affinity scription high affinity scription as a pool of scription high affinity scription as a pool of can be superior can be superior high affinity scription.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  can be superior candidates for generating very high a many scry from a pool of many by selecting high affinity scry alones scry by selecting high affinity scry alones scry by selecting high affinity scry alones
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                mutagenized low-to-medium affinity scry clones. of affinity subsequent rounds of affinity subsequent rounds of affinity
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               scrv by selecting night affinity scrv clones.

mutagenized low-to-medium affinity scrv clones.
                                                                                                                                                                                                                                                                                                                                                                                                                                                   35
```

15

20

25

30

35

selection can be used in conjunction with a broader pool of initially selected scFv sequences if a high display valency method is used. Alternate rounds of high display valency screening and low display valency screening can be performed, in any order, starting from either a high or low valency system, for as many affinity screening rounds as desired, with intervening mutagenesis (directed, random, pseudorandom, CDRclustered, etc.) and scFv sequence diversity broadening, if desired. Alternate rounds of affinity screening, wherein a first round consists of screening a scFv library expressed in a high valency display system, selecting scFv clones which bind the predetermined epitope, optionally conducting a mutagenesis step to expand the sequence kernal of the selected scFv sequence(s), expressing the selected scFv clones in a lower valency display system, and selecting scFv clones which bind the predetermined epitope, can be performed, including various permutations and combinations of multiple screening cycles, wherein each cycle can be of a similar or different display This improvement affords an overall screening program that employs systems which are compatible with switchable valency (i.e., one screening cycle can have a different display valency than the other(s), and can alternate in order).

Display valency can be controlled by a variety of methods, including but not limited to: controlling the average number of nascent peptides per polysome in a polysome-display system, and controlling the average number of coat protein molecules which comprise a displayed scFv sequence per phage particle. The former can be controlled by any suitable method, including: (1) altering the length of the encoding mRNA sequence to reduce or increase the frequency of translation termination (a longer mRNA will typically display more nascent peptides per polysome than a shorter mRNA encoding sequence), (2) incorporating stalling (i.e., infrequently used) codons in the encoding mRNA, typically distal (downstream, 3' of) of the scFv-encoding portion(s), (3) incorporating RNA secondary structure-forming sequences (e.g., hairpin, cruciform, etc.) distal to the scFv-encoding portion and proximal to (upstream, 5' to) the translation termination site, if any, and/or (4)

```
including an antisense polynucleotide (e.g., the man distal to (and possibly an antisense polynucleotide) to (and possibly that hybridizes to (and possibly and polyamide nucleic acid) and proximal to (and possibly the scry-encoding portion and proximal to (and possibly the scry-encoding portion)
           including an antisense polynucleotide (e.g., the many di
                                polyamide nucleic acid) that hybridizes to the mRNA disting to (and possibly not and proximal to (and possibly not to the mRNA disting to (and possibly not to the if any not the screen the translation termination termination the translation the translation termination the translation the translation termination the translation termination the translation termination the translation termination termination the translation termination termination terminati
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            The Jength
                                                 spanning) the translation termination site, if any valency, of the mRNA may be increased frame sequences downstream of the mRNA may be increased to frame sequences downstream of the adding additional reading frame.
                                        the scry-encoding portion and proximal to (and possible if any.

the scry-encoding portion termination site if any value translation termination increase display value translation termination increase display value.
                                                           of the mRNA may be increased to frame sequences reading frame additional reading such additional reading the scrv-encoding sequence(s);
                                                                       as by adding additional reading frame sequences downstream of frame sequences downstream of frame sequences downstream of frame sequences downstream of frame sequences to additional reading frame sequence (-AAVP-)

the scrv-encoding sequence (s);

the scrv-encoding for example, encode the sequences can, for example, encode the sequences can.
WO 95111922
                                                                               the scrv-encoding for example, encode frequently at least 5 to sequences can, is typically at least 1, frequently at least 1, where n is typically at least 1, sequence 1, sequence 1, sequence 2, sequence 3, sequence 3, sequence 3, sequence 4, sequence 5, sequence 6, sequence 6, sequence 6, sequence 6, sequence 7, sequence 7, sequence 7, sequence 8, sequence 8, sequence 9, seq
                                                                                          sequences can, for example, encode the sequence (-AAVP-)n' 10, up to frequently at least 50-100, up to sequences can, for example, encode the sequence frequently at least 50-100, up to sequences can, for example, encode the sequence frequently at least 50-100, up to sequences can, for example, encode the sequence frequently at least 1, and may be at least 50-100.
                                                                                                  where n is typically at least 1, frequently at least 5 to 10 where n is typically at least 1, frequently at least 50-100, the standard infrequently a least 15 to 500 or more. although infrequently often at least 150 to 500 or more.
                                                                                                              often at least 15 to 25, and may be at least 50-100, up to at least 15 to 25, and may be at least 10 for more, at least 150 to 500 or more, stalling codons (i.e. approximately sequence can be used.
                                                                                                                     approximately 150 to 500 or more, although infrequently a stalling codons codons approximately 150 to 500 or more, although infrequently a stalling codons to other codons approximately 150 to 500 or more, although infrequently a stalling codons to other codons approximately 150 to 500 or more, although infrequently a stalling codons to other codons approximately 150 to 500 or more, although infrequently a stalling codons to other codons although infrequently a stalling codons to other codons although infrequently a stalling codons (i.e., although infrequently a stalling codons to other codons although infrequently a stalling codons to other codons although infrequently a stalling codons to other codons are stalling to other codons 
                                                                                                                               longer stall sequence can be used. stalling codons (i.e., in the s
                                                                                                                                           codons which are slowly translated relative to other codons in translation system, such as by measuring translation agiven translation system, such as by measuring translation any translation system.
                                                                                                                                                    a given translation system; such as by measuring translation of many translation which differ only in the analytically any translation of many templates which differ only in the analytically system; such as by measuring the note of which differ only in the analytically system; such as by measuring the note of many templates which differ only in the analytically system; such as by measuring the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many templates which differ only in the note of many temp
                                                                                                                                                            any translation system, such as by measuring translation the presence a set which differ only in the example.

any translation system, such as by measuring translation example.

For example example of particular codons.
                                                                                                                                                                      efficiency of mRNA templates which differ only in the presence relative abundance of particular the chosen translation of relative abundance can be evaluated in the chosen translation of scry clones can be evaluated.
                            5
                                                                                                                                                                                         of scrv clones can be evaluated in the chosen translation polypeptide

of scrv clones can be evaluated in the set has a stalling polypentide

of scrv clones scrv species or but each stalling polypentide

system; each scrv species or but each stalling polypentide
                                                                                                                                                                                 or relative abundance of particular the chosen translation of scrv clones can be evaluated in the set has a stalling nolve of scrv species or the set has a stalling nolve of scrv species or the system:
                                                                                                                                                                                                             sequence of 25 amino acids, but each stalling polypeptide that when such that a repeating series of the set.
                                                                                                                                                                                                     system; each scry species or the set has a stalling polypertide of 25 amino acids, but each stalling one codon. such sequence of 25 amino a repeating series of one codon.
                                                                                                                                                                                                                                all translatable codons are represented the set. which the set. When the set. which the set. whi
                                                                                                                                                                                                                         sequence consists of a repeating series of one codon;

translated under equivalent conditions

translated under equivalent conditions
                                                                                                                                                                                                                                          translated under equivalent conditions; the scrv species (e.g., as highest valency electron buoyancy electron produce polysomes having the huoyancy electron rate.
                                                                                                                                                                                                                                                             determined by sedimentation and other diagnostic methods) in the stalling diagnostic methods in the stalling determined by sedimentation, and the codon(s) in the stalling microscopic examination codons as the codon(s) in the stalling determined by sedimentation, and the codon(s) in the stalling codons as the codon(s) in the stalling microscopic examination codons as the codon(s) in the stalling microscopic examination codons as the codon(s) in the stalling microscopic examination codons as the codon(s) in the stalling microscopic examination codons as the codon(s) in the stalling microscopic examination codons as the codon(s) in the stalling microscopic examination codons as the codon(s) in the stalling microscopic examination codons as the codon(s) in the stalling microscopic examination codons as the codon(s) in the stalling microscopic examination codons as the codon(s) in the stalling microscopic examination codons as the codon codon codons as the codon codon codons are the codon cod
                                                                                                                                                                                                                                                      microscopic examination, and other diagnostic methods) the stalling codons as the codon(s) in the stalling identify stalling sequence.
                                                                                                                                                                                                                                                                                                                                                                                             The servenced into servence and commonises and commonises and commonises.
                                                                                                                                                                                                                                                                                                    In one embodiment, a stalling polypeptide sequence is a stalling polypeptide sequence, and comprises (Gly-

in one embodiment, a stalling polypeptide sequence, and comprises for repeats thereof.

distal (3, to) the scrv-encoding repeats thereof.

distal (3, to) the scrv-encoding repeats thereof.
                                                                                                                                                                                                                                                                                                                                   Alternatively of the target epitope may be varied of the target of selected scry library of the valency of affinity of selected scry library the valency binding affinity of selected control the average binding affinity of selected scry library li
                                                                                                                                                                                                                                                                                                                                                                                                                          or repeats thereof. the noted or repeats thereof.

If serial A-A-V-P-1 in combination with the mair has the tarnet enitane mair has the valency of the tarnet enitane mair has the valency of the tarnet enitane.
                                                                                                                                                                                                                                                                                                                discal (3, to) the scrvencoding sequence, and control thereof.

The scrvencoding sequence, and control thereof.

The scrvencoding sequence, and control thereof.
                                                                                                                                                                                                                                                                                                                                               variations, the valency of the target epitope may be varied to the target of selected scrv library of selected scrv library bound to a surface or bound to a surface or control the average epitope can be bound to a surface or bound to a surface or bound to a surface or control the average epitope can be bound to a surface or control the average epitope can be bound to a surface or control the average epitope may be varied to
                                                                                                                                                                                                                                                                                       polypeptide sequence.
                                                                                                                                                                                                                                                                                                                                                                             members. The target epitope can be bound to a surface of as by including a such as by including a recommendation or hy other method and attended to the commentation of hy other method as ubstrate at varying hy dilution or hy other method as ubstrate at varying hy dilution or hy other method as ubstrate at varying hy dilution or hy other method as ubstrate at varying hy dilution.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         py arrange (valency) of predetermined
                                                                                                                                                                                                                                                                                                                                                              members.
                                                                                                                                                                                                                                                                                                                                                                                             those in the art.
```

WO 95/11922

44

epitope can be used to enrich for scFv library members which have relatively low affinity, whereas a low density (valency) can preferentially enrich for higher affinity scFv library members.

5

10

15

20

25

30

35

Each of the improvements to the methods of affinity screening may be combined with other compatible improvements. For example, an in vitro transcription/translation system can be used in conjunction with a library of DNA templates synthesized in vitro (i.e. without cloning in a host cell). The resultant polysomes can be purified by one or more rounds of high-speed and/or low-speed centrifugation. The purified polysomes can be contacted with an immobilized receptor that is preblocked (e.g., with nonfat milk), and a non-ionic detergent may also be present to further reduce nonspecific binding. selected polysomes may then be used as templates for synthesizing cDNA which is then cloned into a bacteriophage display vector, such that the variable segments of the nascent peptides are now displayed on bacteriophage. The improved methods can also be used in conjunction with the tethered nascent peptide methods (infra).

Methods for Tethered Nascent Peptide Polysomes

In one aspect, the present invention relates to an improved method for using in vitro translation to produce peptide and single-chain antibody libraries; the improvement relates to the elimination of the polysome from the screening (receptor binding step or epitope binding step).

A basis of the present invention is the physical linkage of a nascent peptide to a polynucleotide sequence complementary to or corresponding to the mRNA that served as the template for the nascent peptide's or single-chain antibody's synthesis. In this improved aspect of the invention, this physical linkage is accomplished without reliance on isolation and stability of polyribosomes (polysomes), which are problematic for a variety of reasons, including stability issues. The improved methods of the present invention avoid the need to isolate polysomes for screening nascent peptides and nascent antibodies, and thereby

```
provide several advantages, such as affording the use of stable than polysomes which are more stable than polysomes
                              provide several advantages, such as affording the use of and nor stable than polysomes are more stable than polysomes are more stable than polysomes are more at a source of sterior himself than polysomes are more stable than polysomes are source of sterior himself than polysomes are source of sterior than polysomes are source of sterior than the polysomes are source of sterior than polysomes.
                                        structural complexes which are more stable than polysomes and non-
structural complexes which a source of steric hindrance and non-
structural the ribosomes as a subsequent screening steps.
                                                            removing the ribosomes as a source of steric hindran.

Temoving the ribosomes as subsequent screening hinding during subsequent are removed hinding hi
                                                                                                                                                                                                                                       omaing auring subsequent screening steps.

The Peptide library is generated by in vitro
                                                                                          The peptide library is generated by in yitro individual library wherein individual library wherein the nascent individual library is generated by in a cell-free system. The nascent individual library is generated by in yitro individual library is generated by individual library is generated by individual library is generated by individual library individual library is generated by individual library is generated by individual library individual library is generated by individual library indiv
                                                                                                                     members comprise a nascent polypeptide. The nascent is synthesized as nascent polypeptide. The nascent portion.

members comprise a nascent polypeptide polypeptide portion.

polypeptide (including sing (1) a first polypeptide portion comprising (1) a first polypeptide (including comprising (1) a first polypeptide (1) a first
WO 95/11922
                                                                                                                                        polypeptide (including single-chain antibody) is synthesized;

polypeptide (including single-chain afirst polypeptide sequent

polypeptide (including single-chain a polypeptide sequent

comprising a polypeptide sequent

comprising a polypeptide sequent

comprising a polypeptide sequent

termed the
                                                                                                                                                   a fusion protein comprising (1) a first polypeptide sequence comprising a polypeptide serving as the segment, comprising a polypeptide serving as the termed the to the encoding mRNA molecule serving as the termed that hinds to the
                                                                                                          nembers comprise a nascent polypeptide.
                                                                                                                                                                      termed the "tether segment", comprising a polypeptide sector of the encoding many molecule of the paceent that binds to the encoding th
                                                                                                                                                                                      translation template for the synthesis of the nascent such the synthesis of the nascent or cDNA copy of the synthesis or cDNA copy of the synthesis or cDNA copy of the synthesis or cDNA copy of the nascent such that the synthesis of the nascent such that copy of the synthesis of the nascent such that the synthesis of the nascent
                                                                                                                                                                                                                                     encoding mRNA, either directly or through binding an the encoding the encoding linked directly a second and (2) a second intermediate molecule conv thereof, and (2) a second intermediate or conv thereof.
                                                                                                                                                                                                                       polypeptide; or to a bound DNA primer or cDNA copy an either that is linear aircrivito an encoding mnNA; encoding the molecula that is
                                      5
                                                                                                                                                                                                                                                  intermediate molecule that is linked directly to a second is linked directly to a second or converge the "variable seament" or six "warlable seament
                                                                                                                                                                                                                                                                   mRNA, DNA primer, or conversion one of a variety of name of portion.

polypeptide portion.

polypeptide portion.
                                                                                                                                                                                                                                                                                polypertide portion, termed the "variable segment" or single library.

polypertide portion, comprising one of a variety library.

chain antibody portion, combinations represented in the library chain acid segmence
                                                                                                                                                                                                                                                                                                    chain antibody portion, comprising one of a variety of possib.

chain antibody portion, combinations represented in the library.

chain acid sequence combinations various lengths as wall as mino acid sequence may be of various lengths acid sequent may be of various lengths acid sequent may be of various lengths acid sequent.
                                                                                                                                                                                                                                                                                                                 amino acid sequence combinations represented in the library as well as may be of various lengths as well as represented in the library as well as as well as represented in the library as well as well as represented in the library as well as well as the common acid sequence combinations represented in the library as well as well as well as well as the common acid sequence combinations represented in the library as well as well as well as well as well as well as the common acid sequence combinations represented in the library as well as w
                                                                                                                                                                                                                                                                                                                                  The Variable segment may be of various lengths as well as variable segments and typically about 5 to 20. amino acid seguences, seguences, about 50.
                                                                                                  10
                                                                                                                                                                                                                                                                                                                                                             from 2 to about 50, typically about 5 to 20, amino acid

typically about 50, patent
from up to 50-500 patent
they may range from up to 50-50. Patent
segments.

residues, polypeptide variable segments.
                                                                                                                                                                                                                                                                                                                                                  sequences, and typically pertide variable segments comprise and typically about 5 to 20, amino acid to 50, typically about from up to 50, so they may range from up to 50, although they may range from the from 2 to although they may range from the from 2 to although they may range from the from 2 to 30, although the from 3 to 30, although the 3 to 30, although the from 3 to 30, although the 3 to 30, 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               The translation
                                                                                                                                                                                                                                                                                                                                                                                                                 5,223,409, incorporated herein by reference.) the tether to the encoding selected are suitable to bind to its encoding conditions the nascent polypeotide to bind to germent of the nascent polypeotide to bind to its encoding segment of the nascent polypeotide to bind to its encoding to bind to bind to its encoding to bind to bind to its encoding to bind to 
                                                                                                                                                                                                                                                                                                                                                                                                                              conditions selected are polypeptide to bind to its encoding polypeptide to bind and airfraction and airfraction and the nascent significant dissensiation and airfraction and polynucleotide before polynucleotide before
                                                                                                                                                                                                                                                                                                                                                                                                                                         segment of the nascent polypeptide to bind to its encoding and diffusion of the nascent significant translation complex occurs and polynucleotide from the translation the polynucleon polynucleon the nascent neptide from the translation complex occurs and the nascent neptide from the translation complex occurs.
                                                                                                                                                                                                                                                                                                                                                                                   nore for polypeptide variable segments.
                                                                                                                                                                                                                                                                                                                                                                                                   more ror polypeptide variable segments.

100 polypeptide variable segments.

101 polypeptide variable segments.

1023,409, and an anitable for an anitable for
                                                                                                                                                                                                                                                                                                                                                                                                                                                            polynucleotide before significant dissociation and diffusion of the translation complex occurs, it may the nascent peptide from the translation complexes.

The polynucleotide before from the translation complexes translation complexes.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             the nascent peptide from the translation complex of ribosom;

the nascent peptide from between translation cvcle of ribosom;

the nascent peptide from between translation cvcle of ribosom;

the nascent peptide from between translation cvcle of ribosom;

the nascent peptide from the elongation cvcle of ribosom;

also to reduce to stall or slow the elongation cvcle of ribosom;

be desirable to stall or slow the elongation cvcle of ribosom;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        also to reduce binding or slow the elongation of forming the between translation of forming the binding or slow the elongation of forming the bedsirable to increase the brobability of the translocation to increase the bedsirable to be bedsirable to increase the bedsirable to be 
                                                                                                                                                                                                                                                             20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           be desirable to stall or slow the probability of forming the probability of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           translocation to increase the probability of forming the geveral the polynucleotide conding sequence.

Translocation to the tether segment and the polynucleotide several and the polynucleotide sequence.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Inkage perween the terner peptide cooling sequence.

containing the nascent peptide containin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          translocation, including but not limited to: engineering lation to stall translation the mRNA species to the tether serment translocation, including the mRNA species to the tether serment to the stall to the tether serment at a predetermined site carboxy-terminal to the secondary secondary species at a predetermined site carboxy-terminal to the secondary secondary secondary site carboxy-terminal to the secondary secondary secondary site carboxy-terminal to the secondary s
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            strategies are available to slow or stall ribosome engineering but not limited to: engineering but not limited to: etail transless to stall transless transless to stall transless to st
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               concalning the nascent peptide coding sequence.

containing the nascent peptide to slow or stall ribosome

containing are available to slow or stall ribosome

strategies are available to slow or stall ribosome

containing the nascent peptide coding sequence.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          secondary structure into the mRNA species to the tether segment to the tether segment at a predetermined site carboxy-terminal
                                                                                                                                                                                                                                                                                                                                                                                                                         30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        35
```

10

15

20

25

30

35

(and preferably carboxy-terminal to the variable segment), annealing a polynucleotide (e.g., DNA) primer to the 3' portion of the mRNA to inhibit complete translation, using rare codons at the 3' end of the coding sequence (and/or altering ratios of selected amino-acyl tRNA species in the translation reaction), and including a low concentration of translational inhibitor(s), including a translation stall sequence (e.g., may be selected from a library by selecting for stalled polysomes), among others.

Various strategies may be used to link the tether segment to the polynucleotide containing the encoding information of the nascent peptide or single-chain antibody.

Various strategies may be used to link the tether segment to the polynucleotide containing the encoding information of the nascent peptide. In a basic method of the invention, a population of messenger RNA molecules which individually encode a fusion protein comprising a common tether segment sequence and one of a variety of variable segment sequences represented in the random, pseudorandom, or defined sequence framework peptide sequence library is generated. mRNA population can be generated by any of various methods known in the art, but in vitro transcription of synthetic DNA templates is a convenient method. For example, a plasmid containing an promoter (e.g., a T7 promoter) capable of driving in vitro transcription of an operably linked polynucleotide sequence encoding a tether segment and possessing a restriction site for insertion of a variable segment sequence(s) or singlechain antibody encoding cassette may be prepared in large The plasmid can be digested with the appropriate restriction enzyme to open the site for insertion of the variable segment sequence(s) or single-chain antibody For generating diverse variable segments, a cassette(s). collection of synthetic oligonucleotides encoding random, pseudorandom, or a defined sequence kernal set of peptide sequences can be inserted by ligation into the opened site. Similarly, the sequence diversity of one or more CDRs of the single-chain antibody cassette(s) can be expanded by mutating the CDR(s) with site-directed mutagenesis, CDR-replacement, and WO 95/11922

10

15

20

25

30

35

47

PCT/US94/12206

the like. The resultant DNA molecules can be propagated in a host for cloning and amplification or can be used directly (i.e., may avoid loss of diversity which may occur upon propagation in a host cell); in either case, purified DNA is transcribed in vitro with the appropriate RNA polymerase (e.g., T7 polymerase) to form the population of mRNA molecules encoding the nascent peptide library or nascent single-chain antibody library.

The population of mRNA molecules are translated, typically in an in vitro translation system, such as a reticulocyte lysate system, wheat germ extract system, or other suitable in vitro transcription system. The cell-free continuous-flow (CFCF) translation system of Spirin et al. (1988) Science 242: 1162 may be used to increase total yield of library members, or for convenience of use, if desired. A static in vitro protein synthesis system can be used. In this system, protein synthesis generally ceases after 1 h and thus limits the time interval for creation of the library. advantage of CFCF technology is that high level and long-term synthesis of protein should result in a much larger and more diverse library of protein-RNA complexes. The CFCF technology has been described by Spirin and co-workers as a method for the high-level synthesis of protein over an extended period of time, 24 h or longer. In addition, CFCF technology results in fractionation of the newly-synthesized protein from the translational apparatus, and thus makes it feasible to quickly sequester the protein-nucleic acid complexes from polysomeassociated nucleases and proteases. Other applications of CFCF technology include an efficient method for synthesizing peptides. For example, following the identification of a peptide-fusion which binds to a target with high-affinity, the free peptide can be synthesized directly using CFCF technology and used in a binding assay.

Nascent peptide/polynucleotide complexes (library members) which encode a variable segment peptide sequence of interest or a single-chain antibody of interest are selected from the library by an affinity enrichment technique. This is accomplished by means of a immobilized macromolecule or epitope

15

20

25

30

35

specific for the peptide sequence of interest, such as a receptor, other macromolecule, or other epitope species. Repeating the affinity selection procedure provides an enrichment of library members encoding the desired sequences, which may then be isolated for sequencing, further propagation and affinity enrichment.

The library members without the desired specificity are removed by washing. The degree and stringency of washing required will be determined for each peptide sequence or single-chain antibody of interest and the immobilized predetermined macromolecule or epitope. A certain degree of control can be exerted over the binding characteristics of the nascent peptide/DNA complexes recovered by adjusting the conditions of the binding incubation and the subsequent washing. The temperature, pH, ionic strength, divalent cations concentration, and the volume and duration of the washing will select for nascent peptide/DNA complexes within particular ranges of affinity for the immobilized macromolecule. Selection based on slow dissociation rate, which is usually predictive of high affinity, is often the most practical route. This may be done either by continued incubation in the presence of a saturating amount of free predetermined macromolecule, or by increasing the volume, number, and length of the washes. each case, the rebinding of dissociated nascent peptide/DNA or peptide/RNA complex is prevented, and with increasing time, nascent peptide/DNA or peptide/RNA complexes of higher and higher affinity are recovered.

Additional modifications of the binding and washing procedures may be applied to find peptides with special characteristics. The affinities of some peptides are dependent on ionic strength or cation concentration. This is a useful characteristic for peptides that will be used in affinity purification of various proteins when gentle conditions for removing the protein from the peptides are required.

One variation involves the use of multiple binding targets (multiple epitope species, multiple receptor species), such that a polysome scFv library can be simultaneously screened for a multiplicity of scFv which have different

10

15

20

25

30

35

binding specificities. Given that the size of a scFv library often limits the diversity of potential scFv sequences, it is typically desirable to us scFv libraries of as large a size as The time and economic considerations of generating a possible. number of very large polysome scFv-display libraries can become To avoid this substantial problem, multiple prohibitive. predetermined epitope species (receptor species) can be concomitantly screened in a single library, or sequential screening against a number of epitope species can be used. one variation, multiple target epitope species, each encoded on a separate bead (or subset of beads), can be mixed and incubated with a polysome-display scFv library under suitable binding conditions. The collection of beads, comprising multiple epitope species, can then be used to isolate, by affinity selection, scFv library members. Generally, subsequent affinity screening rounds can include the same mixture of beads, subsets thereof, or beads containing only one or two individual epitope species. This approach affords efficient screening, and is compatible with laboratory automation, batch processing, and high throughput screening methods.

A variety of techniques can be used in the present invention to diversify a peptide library or single-chain antibody library, or to diversify around variable segment peptides or $V_{\rm H}$, $V_{\rm L}$, or CDRs found in early rounds of panning to have sufficient binding activity to the predetermined macromolecule or epitope. In one approach, the positive nascent peptide/polynucleotide complexes (those identified in an early round of affinity enrichment) are sequenced to determine the identity of the active peptides. Oligonucleotides are then synthesized based on these active peptide sequences, employing a low level of all bases incorporated at each step to produce slight variations of the primary oligonucleotide sequences. This mixture of (slightly) degenerate oligonucleotides is then cloned into the variable segment sequences at the appropriate locations. This method produces systematic, controlled variations of the starting peptide sequences. It requires, however, that individual

15

20

25

30

35

positive nascent peptide/polynucleotide complexes be sequenced before mutagenesis, and thus is useful for expanding the diversity of small numbers of recovered complexes and selecting variants having higher binding affinity and/or higher binding specificity. In a variation, mutagenic PCR amplification of positive nascent peptide/polynucleotide complexes (especially of the variable region sequences, the amplification products of which may be ligated to tether sequences and operably linked to an in vitro promoter) is performed and one or more additional rounds of screening is done prior to sequencing. The same general approach can be employed with single-chain antibodies in order to expand the diversity and enhance the binding affinity/specificity, typically by diversifying CDRs or adjacent framework regions.

In a method of the invention, a peptide library is generated by in vitro synthesis in a cell-free system, wherein individual library members comprise a nascent polypeptide comprising a first polypeptide portion linked to a polynucleotide encoding said nascent polypeptide (or a polynucleotide complementary to the encoding polynucleotide sequence) and a second polypeptide portion having a variable amino acid sequence, at least in part, in peptide linkage to said first polypeptide portion. The nascent polypeptide is synthesized as a fusion protein comprising (1) a first polypeptide portion, termed the "tether segment", comprising a polypeptide sequence which binds to the encoding mRNA molecule serving as the translation template for the synthesis of the nascent polypeptide, or to a cDNA copy of such encoding mRNA, either directly or through binding an intermediate molecule that is linked directly to the encoding mRNA or cDNA copy thereof, and (2) a second polypeptide portion, termed the "variable segment", comprising one of a variety of possible amino acid sequence combinations represented in the library. The tether segment serves to link the variable segment of an individual library peptide to the polynucleotide comprising the sequence information encoding the amino acid sequence of the individual library peptide's variable segment. polynucleotide of a library member provides the basis for

replication of the library member after a screening or selection procedure, and also provides the basis for the determination, by nucleotide sequencing, of the identity of the variable segment amino acid sequence.

5

10

15

20

25

30

35

Tether-Binding Antibody Linked to Polynucleotide

An antibody known to bind with high affinity to a particular peptide sequence is attached to the 5' or 3'-end of the RNA molecules or to the 5' end of a DNA primer annealed to the mRNA molecules. This can be done through an avidin-biotin bridge or via homo-or heterobifunctional cross-linkers of amine, carboxyl, or thiol on the antibody to amine or thiol on the RNA or DNA primer. The sequence encoding the peptide epitope for this antibody is encoded by all the RNA molecules in the library as the tether segment; this tether segment sequence is placed either to the 5' or the 3' side of the variable segment sequence. During in vitro translation, the nascent epitope (tether segment) can bind to the attached. antibody with an affinity high enough to allow dissociation of the polysome (by EDTA treatment, for example) and isolation of the intact mRNA-antibody-epitope-variable peptide complex ready for screening.

A modification of this strategy comprises the attachment by any of the means described above of the antibody to a segment of DNA that can hybridize to the 3' end of the RNA. The attractive features of this scheme are: first, the hybrid may serve to block the dissociation of the ribosome, allowing more time for the more stable complex to form; second, the DNA segment is a generic reagent that can be prepared in large amount (with or without the attached antibody) independent of the construction of a particular library; third, the DNA can be extended after translation to provide a more stable form of the sequence information (DNA is generally less vulnerable to degradation than is RNA).

The general steps are as follows:

(1) A complementary DNA fragment of 10 to several hundred bases is hybridized to the RNA library (e.g., a primer comprising a specific sequence complementary to the known 3'

10

15

30

35

end of the mRNA species or oligo(dT) if the RNA comprises a poly(A) tail. In some embodiments, the RNA may comprise a polyadenylated tail, which may stabilize the RNA template in some in vitro translation reactions (e.g., reticulocyte lysate). The complementary DNA primer may be attached to the antibody prior to hybridization, or it may simply be modified so as to bind the antibody after translation of the RNA has In either case, the mode of attachment may be been performed. one of those proposed above. By way of example, a 5'-biotin is attached to the DNA; an excess of streptavidin is added to occupy all the biotins, and the unbound streptavidin is removed; a biotinylated antibody is added to bind to the DNAstreptavidin complexes, and the excess antibody is removed. Note that a monovalent form of the complex can be formed using Fab', a bivalent complex can be formed with IgG, or a multivalent complex formed by adding a string of biotins to the DNA to bind several streptavidin molecules and consequently several antibodies;

- (2) The epitope sequence (tether segment) encoded by the mRNA is expressed and binds to the antibody. A variable segment peptide can be displayed with a free C-terminus if fused to the C-terminus of the attachment epitope (tether segment) or with a free N-terminus if fused to the N terminus of the tether segment (note that in the latter case, the Nterminal F-met is preferably removed by aminopeptidase or by treatment with a specific protease);
 - (3) The ribosome is dissociated with EDTA;
 - (4) The DNA primer is extended with reverse transcription (AMV reverse transcriptase under standard conditions) of the RNA template;
 - (5) At this point the RNA may be removed with RNAse treatment, but this is not necessary. The library member consists of the displayed peptide-antibody-cDNA (and hybridized RNA) complex.
 - It is generally preferable to include an inhibitor of RNase activity (e.g., vanadyl ribonucleoside complexes, RNAsin) in the <u>in vitro</u> translation reaction and all steps prior to the synthesis of the first-strand cDNA.

15

20

25

30

35

53

Biotinylated Tether Segment

A variation on the theme that avoids the use of an antibody substitutes a "biotinylation substrate" (BS) for the epitope as the tether segment, and streptavidin for the The biotinylation substrate is a sequence that is recognized by a prokaryotic enzyme, biotin holoenzyme synthetase (BirA) which attaches a biotin to a lysine in the recognition sequence. Inclusion of the enzyme in the translation mix, or treatment of the polysomes with the enzyme following translation biotinylates the nascent peptide, which can then bind to a streptavidin molecule attached to either end of the mRNA or to the small DNA primer hybridized to the RNA. Streptavidin may be attached to the mRNA or DNA primer by direct covalent linkage or via biotin moieties incorporated into the polynucleotides or covalently attached to the 5' end of the polynucleotide; however, the biotinylation of the mRNA (or DNA primer) preferably does not adversely affect translational efficiency of the mRNA template for translation of the tether segment or variable segment.

Streptavidin is a bacterial protein which binds the water soluble vitamin, biotin, with high affinity. It is possible to attach biotin to RNA (or DNA), and thus convert streptavidin to an RNA-binding protein through a biotin linkage. It is also possible to fuse heterologous proteins to the C-terminus of streptavidin without affecting functional binding to biotin. Thus, for the purpose of peptide libraries, it will be possible to fuse a variable segment to a tether segment comprising the C-terminus of streptavidin. Biotin can be attached to the 5' end of mRNA using chemical modification, or incorporated into the mRNA by in vitro transcription using biotinylated nucleotide analogs.

RNA-Binding Protein Sequence as Tether Segment

Another variation of the invention involves the use of an RNA-binding protein such as Tat fused to the variable segment peptide sequence to provide a linkage between the peptide and the encoding polynucleotide or at least increase the residence time of the peptide on the mRNA and thereby

WO 95/1/922

```
improve the efficiency with antibody or biotin-streptavidin complex can form. Tat or sma
                                                                                                                    antibody or biotin-streptavidin complex can form.
                                                                                                                peptide derivatives of Tat can be used to produce nascent
                                                                                                             peptide polynucleotide complexes.
                                                                                                  5
                                                                                                      a strong activator of viral gene transcription.
                                                                                                                                          The human immunodeficiency virus (HIV) protein rat is
                                                                                                  protein activator of viral gene stimulates transcription. The Tat many of the 
                                                                                                                                                                                                                                                                                                 PCT/US94/12206
                                                                                                 Protein

Sequence (Tar) located at the 5' end of the Tat mRNA.
                                                                                            are several located at the 5' and of the method described. For example, Tat binds Tar with
                                                                                          the method described. For example, Tat binds Tar with the disconnistion connectant.
                                                                               10
                                                                                      the method described. For example, Tat binds Tar with complex is 5 nM. but the inclusion of a non-ionic
                                                                                                                                                                                                                                                                                        Tat or small
                                                                                   the Tat/Tar complex is 5 The dissociation constant (Kd) for anon-ionic
                                                                                the Tat/Tar complex is 5 nM, but the inclusion or hat hims to may with himser approximately 100 pm.
                                                                             detergent
that bind reduces the Kd to approximately 100 pm.
anning phage display bentide libraries against immobilize
                                                                        Panning phage display higher affinity may be selected by against immobilized RNA
                                                              15
                                                                       panning phage display Peptide libraries against immobilized RNA required for binding are small and defined
                                                                  Protein and Tar sequence.

Tat is a 86 residue protein, but only the last 24 residues of
                                                                Protein and Tar RNA required for binding are small and defined for high-affinity binding.
                                                              Tat is a 86 residue protein, but only the last 24 residues on structure includes only 57 nucleotides but
                                                          the carboxy terminus are required for high-affinity binding.

an be shortened to 27 nucleotides without affecting binding.
                                                20
                                                       The Tar stem-loop structure includes only 57 nucleotides but the Tar RNA has been solved by NMAR
                                                    Can be shortened to 27 nucleotides without affecting binding.

Moreover. Tat binds to Tar as a fusion broteir.
                                                  spectroscopy.
                                             There are at least two examples of functional fusion protes

The first is a fusion to the viral
                                            carboxy-terminus of Tat.
                                                                                                  Moteover, Tat binds to Tat as a fusion protein.

ormaliation of the sun of the solved by NMK

ormaliation of the sun of the solved by NMK

ormaliation of the sun of the solved by NMK

ormaliation of the sun of the solved by NMK

ormaliation of the sun of the solved by NMK

ormaliation of the sun of the solved by NMK

ormaliation of the sun of the solved by NMK

ormaliation of the sun of the solved by NMK

ormaliation of the sun of the solved by NMK

ormaliation of the sun of the sun of the solved by NMK

ormaliation of the sun of the
                                      Rev protein, and the second is a fusion to the viral a random peptide library based on
                                      bacteriophage MS2.
                               Peptides fused MS2.

as such fusions do not significantly adversely affect RNA
                             peptides fused to the crterminus of Tat will function property of Tat binds to Tar as a monomer. This fer
                         binding. fusions do not significantly adversely useful in controlling the valency of pebtide display
                      binding.

May Prove Useful in Controlling the Valency of Peptide display

by Varving the number of Tar binding sites. Thus. libraries
                    by Varying the number of Par binding sites.

by Varying the number of par binding sites.
                that are either number of Tar binging sites.

Thus, as an example of these variations of the
          invention, as an example of these (Weeks KM and Crothers DM (1991) Cell 66:577.
      sequence (Weeks KM and Crothers DM (1991) Dase to 27 base inclinded in the can be inclinded in the
   incorporated herein by reference), can be included in the many start site. to allow
sequence, preferably near the translation start site, to allow
```

25

30

35

attachment of a Tat tether segment of the nascent peptide to The RNA-binding tether (e.g., Tat segment) will inhibit further translational starts on the RNA template.

Another suitable RNA-binding protein for use as a tether in fusions is the iron response element binding protein (IREBP), which interacts specifically with the iron response element (IRE) located at the 5' of the ferritin mRNA and 3' untranslated region of the transferrin receptor mRNA. protein binds as a monomer with a dissociation constant of 20-50 pM (Swenson et al. (1991) Biol. Met. 4:48). The IREBP (98.4 kDal) is active in binding to the IRE after being translated in vitro (Hirling et al (1992) Nucleic Acids Res. 20: 33). a RNA-binding tether can comprise a IREBP and the mRNA can comprise an IRE; the RNA-binding IREBP tether segment bind to an IRE sequence in each mRNA and inhibits further translational activity of the bound mRNA.

10

15

20

25

30

35

Amplification, Affinity Enrichment, and Screening

A basic method is described for synthesizing a nascent peptide-polysome library and nascent single-chain antibody-polysome library in vitro, screening and enrichment of the library for species having desired specific receptorbinding or epitope-binding properties, and recovery of the nucleotide sequences that encode those peptides or antibodies of sufficient binding affinity for receptor or epitope (e.g., immobilized receptor or epitope) sufficient for selection by affinity selection (e.g., panning, affinity chromatography). Although the method is described with reference to nascent peptide libraries, the method is also applicable to synthesizing and screening nascent single-chain antibody libraries.

The library consists of a population of nascent peptide library members comprising nascent peptides, with the peptides comprising a variable sequence segment (such as a random peptide sequence), fused to a specific tether segment to permit binding of the variable sequence to its own encoding mRNA or a cDNA copy thereof. These RNA-protein complexes (or DNA-protein complexes) are screened for high affinity binding

WO 95/11922 PCT/US94/12206

56

to a particular receptor (e.g., a peptide hormone receptor). After selecting those nascent peptide library members that bind to the ligand with high affinity, the selected complexes are disrupted and the mRNA (or DNA) is recovered and amplified to create DNA copies of the message, typically each copy comprises an operably linked in vitro transcription promoter (e.g., T7 or SP6 promoter). The DNA copies are transcribed in vitro to produce mRNA, and the process is repeated to enrich for peptides that bind with sufficient affinity. Unlike the other in vitro methods that rely on intact polysomes for screening, the present method's screening of desired peptides in vitro is accomplished without the necessity of maintaining intact polysomes. Thus, many of the problems inherent to immunopurification of polysomes are avoided, and conditions which disrupt intact polysomes may be used for screening conditions, if desired.

10

15

20

25

30

35

The following general steps are frequently followed in the method: (1) generate a DNA template which is suitable for in vitro synthesis of mRNA, (2) synthesize mRNA in vitro by transcription of the DNA template(s) and add to an in vitro translation system, (3) bind the nascent peptide tether to its own mRNA or a DNA primer which will hybridize to the encoding mRNA (and preferably prime cDNA synthesis of it), (4) screen the resultant nascent peptide library members for receptorbinding, (5) recover and amplify nascent peptide library members which bind the receptor and produce DNA templates from the selected library members competent for in vitro transcription.

Each generated DNA template preferably contains a promoter (e.g., T7 or SP6) which is active in an in vitro transcription system. A DNA template generally comprises (1) a promoter which is functional for in vitro transcription and operably linked to (2) a polynucleotide sequence encoding an mRNA period. Said encoded mRNA comprises a polynucleotide sequence which: (1) encodes a polypeptide comprising a tether segment and a variable segment (in either spatial order from amino- to carboxy-terminal), (2) a polynucleotide sequence to which the tether can bind and/or to which a DNA primer suitable

10

15

20

25

30

35

for priming first-strand cDNA synthesis of the mRNA can bind, and (3) a ribosome-binding site and other elements necessary for <u>in vitro</u> translatability of the mRNA, and optionally, for mRNA stability and translatable secondary structure, if any.

In embodiments where the tether is a peptide which binds to a particular RNA sequence (e.g., Tar or a biotinylation sequence), the polynucleotide sequence to which the tether binds is referred to as a "target site".

The target site for the tether segment is frequently near the 5' end of the mRNA non-coding sequence, but may be located anywhere on the mRNA to facilitate binding to the nascent peptide tether segment. If the target site is located near the ribosome binding site, binding of the tether segment will preferably prevent reinitiation of translation and thus enhance the probability that only one protein per unit mRNA is synthesized in the system. The DNA templates of the library are transcribed, typically in vitro, to produce a population of translatable mRNA molecules encoding distinct variable segment sequences (i.e., a library). Frequently, the DNA templates comprise a T7 or SP6 promoter operably linked to the sequence encoding the tether and variable segments. The mRNA library members produced as transcription products of the DNA templates are then translated in vitro using an efficient in vitro translation system (e.g., using an E. coli S30 coupled transcription-translation system). The translation products are fusion proteins and may be non-terminated translation products (i.e., nascent peptides) attached to the encoding mRNA via the translating ribosome.

The encoded fusion protein (nascent peptide) generally comprises of a tether segment fused to a variable segment that is frequently one member of a random library of peptide sequences from about 5 to 20 amino acids in length, but may be longer or shorter as discussed (supra). The fusion junction between the tether and variable region may be at the N-terminus or C-terminus of the tether segment, depending on the conditions necessary for optimal binding to the mRNA or DNA. The tether segment and the variable segment may be separated by a polypeptide spacer if desired; generally, such a

10

15

20

25

30

35

spacer is less than 500 amino acids. A single fusion protein (nascent peptide) may comprise multiple tether segments and/or variable segments, and/or spacer segments.

For tethered nascent peptides that bind the encoding mRNA, it is generally important that the nascent peptide fold properly and bind to its own mRNA before release from the ribosome, or shortly thereafter in dilute conditions. This may be accomplished by slowing or arresting the elongation cycle of translation by including at the 3' end of the mRNA a series of rare codons or a hybridization sequence for an antisense primer (e.g., DNA, RNA, PNA) and secondary structure sequences.

Following translation, polysomes are isolated and ribosomes released by the addition of EDTA sufficient to chelate the Mg⁺² present in the buffer. Ribosomes are removed by high-speed centrifugation, and the RNA/protein complexes are screened for high-affinity receptor-binding using standard procedures and as described herein.

After selecting those nascent peptide/polynucleotide complexes that bind with sufficient affinity, the RNA component is released by phenol extraction, or by changing the ionic strength, temperature or pH of the binding buffer so as to denature the nascent peptide. A cDNA copy of the mRNA is made using reverse transcriptase, and the cDNA copy is amplified by the polymerase chain reaction (PCR). The amplified cDNA is added to the <u>in vitro</u> transcription system and the process is repeated to enrich for those peptides that bind with high affinity.

Alternatively, where the nascent peptide is linked to a DNA primer, the primer is extended by reverse transcription to form nascent peptide/DNA complexes prior to affinity screening. The residual mRNA sequences, if any, may be removed (e.g., by RNAse H or base hydrolysis), if desired, prior to or after affinity screening.

Single-Chain Antibodies

The single-chain antibodies produced and isolated by the method of the invention are selected to bind a predetermined epitope. Typically, the predetermined epitope

10

15

will be selected in view of its applicability as a diagnostic and/or therapeutic target. Several reports of the diagnostic and therapeutic utility of scFv have been published (Gruber et al. (1994) op.cit.; Lilley et al. (1994) op.cit.; Huston et al. (1993) Int. Rev. Immunol. 10: 195; Sandhu JS (1992) Crit. Rev. Biotechnol. 12: 437).

Such single-chain antibodies generally bind to a predetermined antigen (e.g., the immunogen) with an affinity of about at least 1 x 10⁷ M⁻¹, preferably with an affinity of about at least 5 x 10⁷ M⁻¹, more preferably with an affinity of at least 1 x 10⁸ M⁻¹ to 1 x 10⁹ M⁻¹ or more, sometimes up tp 1 x 10¹⁰M⁻¹ or more. Frequently, the predetermined antigen is a human protein, such as for example a human cell surface antigen (e.g., CD4, CD8, IL-2 receptor, EGF receptor, PDGF receptor), other human biological macromolecule (e.g., thrombomodulin, protein C, carbohydrate antigen, sialyl Lewis antigen, L-selectin), or nonhuman disease associated macromolecule (e.g., bacterial LPS, virion capsid protein or envelope glycoprotein) and the like.

High affinity single-chain antibodies of the desired 20 specificity can be engineered and expressed in a variety of systems. For example, scFv have been produced in plants (Firek.... et al. (1993) Plant Mol. Biol. 23: 861) and can be readily made in prokaryotic systems (Owens RJ and Young RJ (1994) J. Immunol. Meth. 168: 149; Johnson S and Bird RE (1991) Methods 25 Enzymol. 203: 88). Furthermore, the single-chain antibodies can be used as a basis for constructing whole antibodies or various fragments thereof (Kettleborough et al. (1994) Eur. J. Immunol. 24: 952). The variable region encoding sequence may be isolated (e.g., by PCR amplification or subcloning) and 30 spliced to a sequence encoding a desired human constant region to encode a human sequence antibody more suitable for human therapeutic uses where immunogenicity is preferably minimized. The polynucleotide(s) having the resultant fully human encoding sequence(s) can be expressed in a host cell (e.g., from an 35 expression vector in a mammalian cell) and purified for pharmaceutical formulation.

15

20

25

30

35

The DNA expression constructs will typically include an expression control DNA sequence operably linked to the coding sequences, including naturally-associated or heterologous promoter regions. Preferably, the expression control sequences will be eukaryotic promoter systems in vectors capable of transforming or transfecting eukaryotic host cells. Once the vector has been incorporated into the appropriate host, the host is maintained under conditions suitable for high level expression of the nucleotide sequences, and the collection and purification of the mutant "engineered" antibodies.

As stated previously, the DNA sequences will be expressed in hosts after the sequences have been operably linked to an expression control sequence (i.e., positioned to ensure the transcription and translation of the structural gene). These expression vectors are typically replicable in the host organisms either as episomes or as an integral part of the host chromosomal DNA. Commonly, expression vectors will contain selection markers, e.g., tetracycline or neomycin, to permit detection of those cells transformed with the desired DNA sequences (see, e.g., U.S. Patent 4,704,362, which is incorporated herein by reference).

In addition to eukaryotic microorganisms such as yeast, mammalian tissue cell culture may also be used to produce the polypeptides of the present invention (see, Winnacker, "From Genes to Clones," VCH Publishers, N.Y., N.Y. (1987), which is incorporated herein by reference). Eukaryotic cells are actually preferred, because a number of suitable host cell lines capable of secreting intact immunoglobulins have been developed in the art, and include the CHO cell lines, various COS cell lines, HeLa cells, myeloma cell lines, etc, but preferably transformed B-cells or hybridomas. Expression vectors for these cells can include expression control sequences, such as an origin of replication, a promoter, an enhancer (Queen et al. (1986) Immunol. Rev. 89: 49), and necessary processing information sites, such as ribosome binding sites, RNA splice sites, polyadenylation sites, and transcriptional terminator sequences. Preferred expression

10

15

20

25

30

35

control sequences are promoters derived from immunoglobulin genes, cytomegalovirus, SV40, Adenovirus, Bovine Papilloma Virus, and the like.

Eukaryotic DNA transcription can be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting sequences of between 10 to 300bp that increase transcription by a promoter. Enhancers can effectively increase transcription when either 5' or 3' to the transcription unit. They are also effective if located within an intron or within the coding sequence itself. Typically, viral enhancers are used, including SV40 enhancers, cytomegalovirus enhancers, polyoma enhancers, and adenovirus enhancers. Enhancer sequences from mammalian systems are also commonly used, such as the mouse immunoglobulin heavy chain enhancer.

Mammalian expression vector systems will also typically include a selectable marker gene. Examples of suitable markers include, the dihydrofolate reductase gene (DHFR), the thymidine kinase gene (TK), or prokaryotic genes conferring drug resistance. The first two marker genes prefer the use of mutant cell lines that lack the ability to grow without the addition of thymidine to the growth medium. Transformed cells can then be identified by their ability to grow on non-supplemented media. Examples of prokaryotic drug resistance genes useful as markers include genes conferring resistance to G418, mycophenolic acid and hygromycin.

The vectors containing the DNA segments of interest can be transferred into the host cell by well-known methods, depending on the type of cellular host. For example, calcium chloride transfection is commonly utilized for prokaryotic cells, whereas calcium phosphate treatment. lipofection, or electroporation may be used for other cellular hosts. Other methods used to transform mammalian cells include the use of Polybrene, protoplast fusion, liposomes, electroporation, and microinjection (see, generally, Sambrook et al., supra).

Once expressed, the antibodies, individual mutated immunoglobulin chains, mutated antibody fragments, and other immunoglobulin polypeptides of the invention can be purified

according to standard procedures of the art, including ammonium sulfate precipitation, fraction column chromatography, gel electrophoresis and the like (see, generally, Scopes, R., Protein Purification, Springer-Verlag, N.Y. (1982)). Once purified, partially or to homogeneity as desired, the polypeptides may then be used therapeutically or in developing and performing assay procedures, immunofluorescent stainings, and the like (see, generally, Immunological Methods, Vols. I and II, Eds. Lefkovits and Pernis, Academic Press, New York, N.Y. (1979 and 1981)).

10

15

20

25

30

35

The antibodies of the present invention can be used for diagnosis and therapy. By way of illustration and not limitation, they can be used to treat cancer, autoimmune diseases, or viral infections. For treatment of cancer, the antibodies will typically bind to an antigen expressed preferentially on cancer cells, such as erbB-2, CEA, CD33, and many other antigens well known to those skilled in the art. For treatment of autoimmune disease, the antibodies will typically bind to an antigen expressed on T-cells, such as CD4, the IL-2 receptor, the various T-cell antigen receptors and many other antigens well known to those skilled in the art (e.g., see Fundamental Immunology, 2nd ed., W.E. Paul, ed., Raven Press: New York, NY, which is incorporated herein by reference). For treatment of viral infections, the antibodies will typically bind to an antigen expressed on cells infected by a particular virus such as the various glycoproteins (e.g., gB, gD, gH) of herpes simplex virus and cytomegalovirus, and many other antigens well known to those skilled in the art (e.g., see Virology, 2nd ed., B.N. Fields et al., eds., (1990), Raven Press: New York, NY).

Pharmaceutical compositions comprising antibodies of the present invention are useful for parenteral administration, i.e., subcutaneously, intramuscularly or intravenously. The compositions for parenteral administration will commonly comprise a solution of the antibody or a cocktail thereof dissolved in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.q., water, buffered water, 0.4% saline, 0.3% glycine and the like.

15

20

25

30

35

These solutions are sterile and generally free of particulate matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, for example sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate, etc. The concentration of the mutant antibodies in these formulations can vary widely, i.e., from less than about 0.01%, usually at least about 0.1% to as much as 5% by weight and will be selected primarily based on fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.

Thus, a typical pharmaceutical composition for intramuscular injection could be made up to contain 1 ml sterile buffered water, and about 1 mg of mutant antibody. A typical composition for intravenous infusion can be made up to contain 250 ml of sterile Ringer's solution, and 10 mg of mutant antibody. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art and are described in more detail in, for example, Remington's Pharmaceutical Science, 15th Ed., Mack Publishing Company, Easton, Pennsylvania (1980), which is incorporated herein by reference.

CDR Diversification

The present invention enables the generation of a vast library of CDR-variant single-chain antibodies. One way to generate such antibodies is to insert synthetic CDRs into the single-chain antibody and/or CDR randomization. The sequences of the synthetic CDR cassettes are selected by referring to known sequence data of human CDR and are selected in the discretion of the practitioner according to the following guidelines: synthetic CDRs will have at least 40 percent positional sequence identity to known CDR sequences, and preferably will have at least 50 to 70 percent positional sequence identity to known CDR sequences. For example, a

15

20

25

30

35

collection of synthetic CDR sequences can be generated by synthesizing a collection of oligonucleotide sequences on the basis of naturally-occurring human CDR sequences listed in Kabat et al. (1991) op.cit.; the pool(s) of synthetic CDR sequences are calculated to encode CDR peptide sequences having at least 40 percent sequence identity to at least one known naturally-occurring human CDR sequence. Alternatively, a collection of naturally-occurring CDR sequences may be compared to generate consensus sequences so that amino acids used at a residue position frequently (i.e., in at least 5 percent of known CDR sequences) are incorporated into the synthetic CDRs at the corresponding position(s). Typically, several (e.g., 3 to about 50) known CDR sequences are compared and observed natural sequence variations between the known CDRs are tabulated, and a collection of oligonucleotides encoding CDR peptide sequences encompassing all or most permutations of the observed natural sequence variations is synthesized. For example but not for limitation, if a collection of human V_H CDR sequences have carboxy-terminal amino acids which are either Tyr, Val, Phe, or Asp, then the pool(s) of synthetic CDR oligonucleotide sequences are designed to allow the carboxyterminal CDR residue to be any of these amino acids. embodiments, residues other than those which naturally-occur at a residue position in the collection of CDR sequences are incorporated: conservative amino acid substitutions are frequently incorporated and up to 5 residue positions may be varied to incorporate non-conservative amino acid substitutions as compared to known naturally-occurring CDR sequences. general, the number of unique oligonucleotide sequences included should not exceed the number of primary transformants expected in the bacteriophage-display or polysome-display library by more than about ten-fold. Construction of such pools of defined and/or degenerate sequences will be readily accomplished by those of ordinary skill in the art.

The collection of synthetic CDR sequences comprises at least one member that is not known to be a naturally-occurring CDR sequence. It is within the discretion of the practitioner to include or not include a portion of random or

15

20

pseudorandom sequence corresponding to N region addition in the heavy chain CDR; the N region sequence ranges from 1 nucleotide to about 4 nucleotides occurring at V-D and D-J junctions. A collection of synthetic heavy chain CDR sequences comprises at least about 100 unique CDR sequences, typically at least about 1,000 unique CDR sequences, preferably at least about 10,000 unique CDR sequences, frequently more than 50,000 unique CDR sequences; however, usually not more than about 1 x 106 unique CDR sequences are included in the collection, although occasionally 1 x 10^7 to 1 x 10^8 unique CDR sequences are present, especially if conservative amino acid substitutions are permitted at positions where the conservative amino acid substituent is not present or is rare (i.e., less than 0.1 percent) in that position in naturally-occurring human CDRs. In general, the number of unique CDR sequences included in a library should not exceed the expected number of primary transformants in the library by more than a factor of 10.

The broad scope of this invention is best understood with reference to the following examples, which are not intended to limit the invention in any manner. The following examples are offered by way of illustration, not by way of limitation.

EXPERIMENTAL EXAMPLES

Oligonucleotide Sequences

M represents A or C; K represents G or T; and N represents A, C, T, or G)

5

ON1747:

5 d(AAATTTCCAACGCCCTGGGTACC(MNN)₁₀GCTAGCCATATGTATATCTCCTTCTT) 3 or in alternative notation:

ON3150: 5'd(ACCTGGGCCATGGCCGGCTGGGCCGCAT)3'

ON3149: 5'd (TCTCCGGGAGCTGCATGTGTC) 3'

15

10

ON3147: 5'd (ATGCGGCCCAGCCGGCCATGGCCCAGGT) 3'

ON3148: 5'd(CAGTTTCTGCGGCCGCACGTTTGAT)3'

20 <u>ON3193</u>: 5'd(ATCAAACGTGCGGCCGCAGAAACTGTTGAATTC)3'

ON2970: 5'd (AATTGGAGGATCGTGCATGTGAC) 3'

ON1543: 5'd (ACTTCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTC

TAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACAT) 3'

EXAMPLE 1

<u>Overview</u>

A DNA library encoding approximately 10¹² different
decapeptide sequences was synthesized and incubated in an
Escherichia coli S30 coupled transcription/translation system.
Polysomes were isolated by centrifugation and added to
microtiter wells containing an immobilized monoclonal antibody
specific for the peptide dynorphin B as a model receptor.
Following affinity selection of nascent peptides, the enriched
pool of polysomal mRNA was recovered, reverse transcribed to
cDNA and amplified by the polymerase chain reaction (PCR) to
produce template for the next round of in vitro synthesis and

15

20

25

30

35

selection. A portion of the amplified template pool following each round was cloned and the random region sequenced. After four rounds of affinity selection, the majority of clones contained a consensus sequence that was similar to the known high-affinity epitope for the antibody. Peptides corresponding to several of these sequences were synthesized and found to have binding affinities ranging from 7 to 140 nM. The <u>in vitro</u> polysome system described here is capable of screening peptide libraries that are three to six orders of magnitude larger than current biological peptide expression systems.

The primary determinant of the library size and diversity is the transformation frequency of the bacterial host which for <u>E. coli</u> is between 10⁷ to 10⁹ total transformants. Depending on the length of the peptide, this may result in a small fraction of the total combinatorial possibilities that can be screened. For example, the number of possible peptide sequences for a ten residue peptide is (20)¹⁰ or 1.0 X 10¹³, and the number of possible decacodon sequences (i.e., encoding nucleotide sequences) is 8.2 x 10¹⁴. Thus, for a library of 10⁹ independent transformants, only a small fraction (0.01%) of the possible sequences typically can be screened for binding. In addition, other factors such as proteolysis and defective secretion could potentially affect the diversity of peptide sequences that are expressed in vivo.

To create a recombinant peptide library that was not limited by the transformation frequency of cells, an <u>in vitro</u> polysome system was developed (described infra). A monoclonal antibody (mAb) (D32.39) which binds dynorphin B, a 13-residue opioid peptide was selected as a model receptor. Previous studies had shown that a six amino acid fragment of dynorphin B, Arg-Gln-Phe-Lys-Val-Val (RQFKVV) defines the linear epitope for the D32.39 mAb. A polysome library was generated containing 10¹² random decapeptide (decacodon) sequences and screened for binding to D32.39. Following affinity selection, the enriched pool of polysomal mRNA was recovered, reverse transcribed to cDNA and amplified for a subsequent round of <u>in vitro</u> synthesis and selection. After just four rounds of selection, the majority of peptides contained within the pool

WO 95/11922

15

25

30

35

PCT/US94/12206

shared a consensus sequence which was similar to the epitope sequence. All of these peptides bound specifically and with high-affinity to the antibody.

68

5 Construction of a Synthetic Gene for Expression of Nascent Peptides in vitro.

A gene for expressing nascent peptides in vitro was constructed. The E. coli S30 system was used for in vitro expression of the construct genes; it translates mRNA with 10 high-efficiency, is well-characterized, and is a coupled system that supports both transcription and translation.

A synthetic gene for expressing N-terminal peptides under the transcriptional control of the bacteriophage T7 promoter was constructed. Oligonucleotide cassettes were synthesized and ligated to unique restriction sites of the T7 expression plasmid, pT7-7 (Fig. 1). Cassettes encoding the D32.39 epitope sequence (MAROFKVVT, epitope sequence underlined) or a scrambled, non-binding control sequence (MAVFKRTVQ), were ligated in-frame to a repeating Gly-Ser 20 coding region (Fig. 1). When these plasmids are linearized with HindIII prior to in vitro synthesis, the predicted gene product is a protein of 93 residues with either the epitope or control sequences beginning at amino acid position 3 (Fig. 1). There are no stop codons in any of the three possible reading frames. Fig. 3, panels (a) and (b), shows construction of a DNA library containing a random population of decacodon sequences. The degenerate region was constructed by annealing 100 pmoles of oligonucleotides ON1543 (containing the T7 promoter (P_{T7}) and ON 1747 and extending in a reaction containing 104 units Sequenase (United States Biochemical), 1mM dNTP, and 10 mM DTT for 30 minutes at 37°C. The extended product was cleaved with BstXI, ethanol precipitated, and resuspended in water. The BstXI fragment containing the Gly-Ser coding region shown on the right (Fig. 3) was prepared by digesting pLM145 with BstXI and gel-purifying the 277 bp fragment. Plasmid pLM145 was constructed by inserting BstXI site linkers between the HindIII/ClaI sites and the NdeI/EcoRI sites of pLM142. Approximately 4 μ g of the Gly-Ser fragment

15

20

25

30

35

was ligated to an equivalent amount of the degenerate region in a reaction containing 400 units T4 ligase, 50 mM Tris, pH 8.0, 10 mM DTT, 1 mM ATP, and 25 μ g/ml BSA for 16 hours at 15°C. The 4111 bp ligated product (Mr, 267 kDa or 2.5 x 10^{12} molecules/mg) was gel purified and ligated.

Alternatively, the 89 bp region flanked by BamHI and SalI restriction sites (Fig. 1) was replaced with a 155 bp segment from the gene pIII sequence and the resulting spacer sequence was shown to be a superior template for PCR amplification. Plasmid pLM182 appears to contain a superior Gly-Ser region for PCR amplification than pLM145 which is shown in Fig. 3. Plasmid pLM182 is identical to pLM145 except that the BamHI/Sal fragment shown in Fig. 1 is replaced with the 155 bp sequence from pIII. The BstXI sites of both plasmids are encoded by linkers that were cloned between the NdeI/EcoRI sites and HindIII/ClaI sites (see Fig. 1). The sequence of the NdeI/EcoRI linker is: CATATGGGTACCCAGGGCGTTGGTGAATTC (NdeI, BstXI, and EcoRI sites are underlined). The 155bp polynucleotide sequence is shown below with the Bam HI and SalI sites underlined:

GGATCCCAGTCGGTTGAATGTCGCCCTTATGTCTTTGGCGCTGGTAAACCATATGAATT
TTCTATTGATTGTGACAAAATAAACTTATTCCGTGGTGTCTTTGCGTTCTTTTATATGT
TGCCACCTTTATGTATGTATTTTCGACGTTTCGACGTTTGCTAACATACTGTCGAC
To generate this fragment by PCR, we used ON2453 (5'TATGGGTACCCAGGGCGTTGGTG-3') as the 5' primer which overlaps the
BstXI site and ON1230 (5'-GGCGCCTGCTGCGTGTCGCCTGTCGT-3') as
the 3' primer which hybridizes to a region between the SalI ans
HindIII sites as shown in Fig. 1.

Efficient spacer sequences are provided by various means. For example, the Gly-Ser segment can be mutagenized (e.g., randomly or pseudorandomly) to generate mutagenized sequence between the EcoRI and BamHI sites. In one aspect, a population of library members having a displayed peptide (or displayed antibody) having low-to-medium affinity (K_D approximately 1 μ M) for a target macromolecule (receptor or epitope) and a mutagenized spacer sequence are screened by binding to the target macromolecule and library members bound to the target are isolated. The population of isolated library

WO 95/11922

5

10

35

members are enriched for those library members having enhanced binding affinity for the target, and are enriched for spacer sequences which are compatible with the higher binding affinity and/or which are efficiently amplified by Tag polymerase (or other PCR-compatible polymerase) and/or because a sequence in the mutagenized portion was efficient in stalling ribosomes (perhaps resulting in multivalent display) and causing an increase in recovery of the polysomal mRNA. Generally, after one or more rounds of such affinity selection, the sequence(s) of the selected spacer sequence(s) is/are determined.

In Vitro Synthesis and Isolation of Polysomes.

The E. coli S30 extract (Promega) was prepared from the B strain SL119 as described (Zubay G (1973) Ann. Rev. Genet. 7: 267). Synthesis reactions were contained in a final 15 volume of 50 μ l and included 20 μ l of complete premix or premix lacking methionine for radiolabeling protein (Lesley et al. (1991) <u>J. Biol. Chem.</u> <u>266</u>: 2632), 15 μ l of extract, 1 μ l of rifampycin (1 mg/ml), 100 units of T7 RNA polymerase (Ambion). 20 20 units of RNasin (Promega) and DNA as indicated. Reactions were incubated for 30 min at 37°C and synthesis was stopped by placing on ice and diluting four-fold with polysome buffer (20 mM Hepes-OH pH 7.5/10 mM MgCl₂/1.5 μ g/ml chloramphenicol/100 μg/ml acetylated bovine serum albumin (BSA)/1 mM dithiothreitol 25 (DTT)/20 units/ml RNasin/0.1% Triton X-100). An alternative polysome buffer comprises 10 mM sodium phosphate, pH 7.4, 5 mM MgCl₂, 1 mM DTT, 0.85% Tween, 1.5 μ g/ml chloramphenicol, 0.1% BSA, and 20 units/ml RNasin. To radiolabel mRNA or protein, 5 μ Ci of $\alpha - [^{32}P]$ UTP (Amersham, 3000 Ci/mmole) or $[^{35}S]$ methionine 30 (Amersham, 617 Ci/mmole) was included in the reaction and the incorporation of label was quantitated by precipitating duplicate samples with trichloroacetic acid (TCA), counting in a liquid scintillation counter and averaging the values. isolate polysomes, the diluted reactions were centrifuged at 288,000 x g for 36 min at 4°C and the pellets were resuspended in polysome buffer and centrifuged a second time at 10,000 x q for 5 min to remove any insoluble material. To measure the incorporation of mRNA into polysomes, equal amounts of 32p-

labelled mRNA from a reaction were diluted in polysome buffer or elution buffer (polysome buffer plus 20 mM EDTA) and centrifuged as described above. The fraction of total mRNA which was specifically released from polysomes by EDTA was determined by TCA precipitation. Fig. 5 shows the effect of DNA library concentration on protein synthesis in vitro.

Affinity selection of polysomes.

Dynal beads were prepared according to the 10 manufacturer. Microtiter wells were prepared for polysome binding by incubating each well with mAb D32.39 (5 μ g per well) in PBS (10 mM sodium phosphate pH 7.4/120 mM NaCl/2.7 mM KCl) for 1 hr at 37 °C, washing with PBS, blocking with PBS/1% nonfat milk for 1 hr at 37 °C and washing again with polysome buffer. Polysomes, as indicated, were incubated with the antibody for 2 hr at 4 °C. Each well was washed five times with 100 µl of polysome buffer and the mRNA was recovered in 100 μ l of elution buffer after incubating for 30 min at 4°C.

Specific Binding of Polysomes to mAb D32.39. The fraction of 20 polysomes capable of binding specifically to mAb D32.39 via the nascent peptide was determined. Plasmids encoding the epitope (pLM138) or control sequences (pLM142) were linearized with HindIII, and incubated in separate S30 reactions containing α -[32P]UTP to label the newly-synthesized mRNA. Translation 25 elongation was stopped by adding chloramphenical and the reactions were centrifuged at high-speed to pellet polysomes and free ribosomal subunits. Radiolabelled polysomes containing the epitope or control coding sequences were added to separate microtiter wells containing the immobilized D32.39 30 mAb. Following binding and washing to remove unbound polysomes, EDTA was added to dissociate the complexes and the labelled mRNA was recovered. The amount of mRNA recovered from the wells was linear with increasing polysome input (Fig. 2A). Polysomes containing mRNA encoding the epitope bound at 35 approximately 10-fold higher levels than control polysomes and binding was blocked by the prior addition of free dynorphin B

WO 95/11922 PCT/US94/12206

72

peptide to the wells (Fig. 2B). Binding of polysomes to mAb D32.39 is peptide-specific.

The binding study demonstrates that 1-2% of polysomal mRNA encoding the epitope is recovered from the antibody. low recovery is not caused by inefficient release of mRNA from the antibody since equal amounts of mRNA were recovered with phenol extraction or EDTA addition. The possibility that poor binding is caused by inefficient capture of polysomes by D32.39 immobilized in the microtiter well was evaluated. Unbound polysomes were removed from the microtiter well following the binding step and added to a fresh well containing immobilized D32.39. This was repeated with identical conditions for a third well. From all three wells, approximately the same percentage of input polysomal mRNA (1%) was recovered. at least 3%, and probably a much greater percentage, of polysomes containing the epitope are capable of binding the maximum percentage of binding was not determined. Alternative immobilization matrices such as beads or mini columns for improving the efficiency of polysome capture can be used.

20

25

30

35

15

10

Screening of a polysome library.

Polysomes were isolated from a reaction programmed with 440 ng of DNA library and equal portions were added to six microtiter wells containing the immobilized mAb D32.39. Following affinity selection, the recovered mRNA samples were combined and treated with 6 units of DNase I (Ambion) for 15 min at 37 °C after raising the MgCl₂ concentration to 40 mM. The mRNA was phenol extracted, ethanol precipitated in the presence of glycogen and the pellet was resuspended in 20 µl of RNase-free water. A portion of the mRNA (8.5 μ l) was heated for 3 min at 80 °C, chilled on ice and 50 pmoles of primer ON1914 (5' GATTGTGGAAGCTTGGCGCCTGCT 3') were added to synthesize cDNA using the AMV reverse transcription system (Promega). The cDNA was amplified by PCR in a reaction consisting of 50 mM KCl, 10 mM Tris-Cl pH 9, 0.1% Triton X-100, 2.5 mM MqCl2, 0.5 mM of dNTP (dATP, dCTP, dGTP, dTTP), 5 units of Taq polymerase (Promega), and 0.5 μ M each of primer ON1415 containing the T7 promoter (5'

ACTTCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCT 3') and primer ON1230 (5' GGCGCCTGCTGCCTGCGTGTCGCCTGTCGT 3'). Amplification consisted of 30 cycles of denaturation at 95° C for 45 sec, and annealing/extension at 72° C for 1 min. The amplified product was gel purified and quantitated by measuring the A_{260} .

DNA sequencing.

Subcloning of the DNA pool to the phagemid vector, pAFF6, for sequencing and ELISA is shown schematically in Fig. 4. Single stranded phagemid DNA was isolated by Prep-A-Gene (Biorad) and the random region was sequenced using the Sequenase system (United States Biochemical).

15 ELISA.

10.

20

25

30

To measure phage binding by ELISA, the microtiter wells were prepared as described above except that 1 μ g of mAB D32.39 per well was used and the blocking buffer consisted of PBS/1% BSA. Duplicate portions of phage supernatant (50 μ 1) were added to wells and incubated for 2 hr at 4°C. Wells were washed with 50 volumes of PBS, and 100 μ l of horseradish peroxidase conjugated to sheep anti-M13 IgG (1:2000 dilution, Pharmacia) was added and incubated for 1 hr at 4°C. Wells were washed with PBS and binding was detected by adding substrate (0.2 mg/ml 2',2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) diammonium/50 mM citric acid pH 4/0.05% hydrogen peroxide) and measuring the A_{405} . The positive and negative controls were phage expressing the D32.39 epitope and control peptides, respectively. Phage clones were scored as positive if the average A_{405} value was at least two-fold greater than that obtained for binding to wells not coated with the mAb or to wells preincubated with 10 μM dynorphin B peptide prior to adding phage.

35 Determination of peptide binding affinities.

Peptides were synthesized with an Applied Biosystems model 431A peptide synthesizer using Fmoc-protected amino acids. The peptides were purified to greater than 90% purity

WO 95/11922 PCT/US94/12206

74

by HPLC and confirmed by mass spectroscopy. The competition binding assay was performed and included a low concentration (50 pM) of the tracer peptide containing the D32.39 epitope sequence.

5

10

15

20

25

30

35

RESULTS

Screening of a Polysome Library.

Polysomes expressing a library of peptides were screened for binding to the D32.39 mAb. An <u>in vitro</u> system was programmed with DNA containing 10¹² different decacodons, incubated, and polysomes were isolated and added to microtiter wells containing the immobilized mAb D32.39. Following affinity selection, the bound mRNA was recovered and copied to cDNA using reverse transcriptase and amplified by PCR using primers that included the sequences for the promoter and leader regions of T7 RNA polymerase. A portion of the amplified DNA product was then added to the S30 system for a subsequent round of <u>in vitro</u> synthesis and affinity selection.

After each round of selection, a portion of the amplified DNA template was subcloned to pAFF6 and the random region was sequenced. The sequences of selected clones isolated from rounds 2, 3, 4, and 5 all bear similarity to the known six-residue epitope and related sequences identified in previous studies (Fig. 6). The most highly-conserved residues are an invariant arginine at position one and phenylalanine at position three. The majority of the clones (52%) contain the positively charged residues lysine, arginine or histidine at position 4. The aliphatic residues valine, isoleucine, leucine and alanine are the most frequent group of amino acids found at positions 5 (76%) and 6 (71%) with valine the preferred residue. No strong bias was evident for residues in the second, position.

The binding specificity of these peptides for the target mAb D32.39 was determined by ELISA. Each of the phage clones express on their surface the polysome-derived peptides as N-terminal fusions to the capsid protein pIII. The N-terminal sequence of the processed recombinant pIII is identical to the polysome-derived sequence for the first 14

15

20

25

30

35

residues. Each of the 21 unique peptide clones was tested for binding to D32.39 using a phage ELISA. All of the clones were positive in the ELISA test except for sequences HNEGIRMFRVV, GMYETRLFHVG and FSERRFSVCW (epitope-like sequence underlined) These three contain 29 nucleotides in the random nucleotide region instead of 30 resulting in a frameshift mutation of the pIII fusion; the frameshifts are an artifact of subsequent cloning manipulations.

Binding Affinities of Enriched Peptides for mAb D32.39.

Peptides corresponding to some of the enriched sequences were chemically synthesized, purified and their identity confirmed by mass spectrometry. A competition binding assay was used to estimate their affinity for the mAb D32.39 and under the conditions of the assay, the IC_{50} value should approximate the K_d . Six peptides were assayed and the binding affinities range from 7.2 to 140 nM (Fig. 6). For comparison, the authentic dynorphin B peptide had an IC_{50} of 0.29 nM in this assay.

The immense size of the polysome library reported here, 1012 members, is a direct result of the complete in vitro synthesis of DNA template, mRNA, and nascent peptide. By avoiding bacterial transformation, the typical size of a conventional, recombinant library (107-109 members) is exceeded by several orders of magnitude. For certain random peptides such as octapeptides or nonapeptides comprising 2.6 X 1010 and 5.1 \times 10¹¹ possible sequences, respectively, screening by polysomes may be the only currently available system for sampling the complete repertoire of combinatorial possibilities, or at least a substantial portion thereof. With appropriate modifications, it is possible to further increase the size of the library by increasing the translational capacity of the cell-free system. Such modifications include increasing the reaction volume 100-fold, or supplementing the system with a S30 component which may be limiting the formation of polysomes, such as free ribosomes or initiation factors.

In addition to larger libraries, the potential diversity of peptides expressed <u>in vitro</u> is also greater than

15

20

25

30

35

conventional systems. Many cellular processes which limit in vivo expression such as defective secretion and proteolysis are absent or diminished in a cell-free system. Further diversity is possible by including additional building blocks and incorporating non-naturally occuring amino acids into peptides using methods already established for the E. coli S30 system. Finally, diversity is not affected by the translational reading frame of the N-terminal nascent peptide. Three of the enriched sequences (HNEGIRMFRVV, GMYETRLFHVG, FSERRFSVCW) contain 29 nucleotides in the random region instead of 30 resulting in a frameshift of the downstream coding region. We confirmed that one of these peptides (FSERRFSVCW) is capable of binding to the mAb D32.39 with high affinity (110 nM). Thus, it is possible to enrich for peptide sequences of varying lengths despite changes in the reading frame of the synthetic gene which were constructed.

bound to the D32.39 mAb with high affinity (7-140 nM), despite the existence of low affinity peptides for this mAb. One possible explanation for this is that polysome display is monovalent and only one initiation event occurs per mRNA molecule. This may explain why certain peptides such as clone 505 (PIMRSFKVVL) which had the highest affinity of the peptides tested (7 nM) was overrepresented in clones sequenced from the later rounds of enrichment. Selective enrichment of high affinity peptides synthesized in vitro has important consequences. It is possible to include mutagenesis with each round of template amplification and achieve directed evolution of peptide ligands in a manner similar to that applied to ribozymes.

The <u>in vitro</u> polysome system can also be used for studying the role of mRNA sequence on translational pausing. The antibiotic chloramphenical was used to arrest translation elongation and stabilize the polysome complex. By omitting the antibiotic, it is possible to screen a random coding region fused to the D32.39 epitope sequence and enrich for polysomes containing efficient pausing sequences.

15

20

25

30

35

77

EXAMPLE 2

In this example, nascent single-chain antibodies on polysomes are constructed and expressed in a polysome system. The displayed scFv fragments exhibit binding specificity and affinity for antigen. Compared to bacteriophage antibody-display systems, the present polysome scFv display technology enables the construction and screening of libraries that are about 3 to 6 orders of magnitude larger than current antibody display techniques in the art. Furthermore, many problems associated with in vivo prokaryotic display systems (e.g., proteolysis, insoluble inclusion bodies, defective secretion) are avoided.

Construction of Plasmids Encoding scFv for DT or Antibody 179 Two single-chain antibody genes (scFv) specific for diphtheria toxin (DT) and antibody 179 were isolated from human spleen and mouse hybridoma, respectively, using the Pharmacia Recombinant Phage Antibody System (Pharmacia Biotech, Alameda, CA). The antibody genes are carried by the plasmid vector pCANTAB5E (Pharmacia) and are flanked by unique SfiI/NotI restriction sites. Each antibody coding sequence is also fused at the carboxy terminus to a 13-amino acid E-tag epitope sequence. To measure the specificity of antibody binding by ELISA, a 2 kb Sfil/EcoRI fragment from the CANTAB5E clone carrying the DT antibody gene was ligated to the same sites of a derivative of pLM139 resulting in plasmid pLM169. This plasmid contains the DT antibody gene under the transcriptional control of the bacteriophage T7 promoter. Plasmid pLM169 was linearized with EcoRI prior to adding to the in vitro transcription/translation system. To measure binding of antibodies displayed on polysomes, the 750 bp SfiI/NotI fragments from the pCANTAB5E clones carrying the DT antibody and Antibody 179 genes were ligated to the same site of a derivative of pLM138, resulting in plasmids pLM166 and pLM153, respectively. Both plasmids were linearized with HindIII prior to adding to the in vitro system. Fig. 7 schematically portrays the plasmid constructs.

20

25

30

35

In vitro expression of antibodies

The E. coli S30 extract (Promega) was prepared from the B strain SL119. Synthesis reactions were contained in a final volume of 50 μ l and included 20 μ l of complete premix, 15 μ l of extract, 1 μ l of rifampicin (1 mg/ml), 100 units of T7 RNA polymerase (Ambion), and 1.5 μ l of template DNA as indicated. Reactions were incubated at 37°C for either 30 min to isolate polysomes or 60 min to synthesize soluble antibody. To radiolabel mRNA, 10 μ Ci of α -[³³P]UTP (Amersham, 3000 Ci/mmole) was included in the reaction and the incorporation of radioisotope was quantitated by precipitating duplicate samples with 10% trichloroacetic acid (TCA), counting in a liquid scintillation counter and averaging the values.

15 Determination of soluble antibody binding by ELISA

The binding specificity of a soluble antibody synthesized in vitro was determined by ELISA. In vitro reactions were incubated in the presence or absence of pLM169 for 60 min, and then diluted ten-fold with cold PBS (10 mM sodium phosphate pH 7.4, 140 mM NaCl, 2.7 mM KCl)/0.05% Tween-20 and placed on ice. Microtiter wells (Corning) were prepared by incubating each well with a 1 μ g of diphtheria toxin (Calbiochem) or bovine serum albumin (BSA) in PBS for 1 hr at 37°C, washing with PBS, blocking with PBS/1% BSA for 1 hr at 37°C and washing again with PBS. Duplicate portions of the diluted in vitro reactions (100 μ l) were added to the wells and incubated for 1 hr at 4°C. Wells were washed 5 times with 250 μ l of PBS, and the primary antibody (anti E-tag (Pharmacia)), 100 μ l at 1 μ g/ml in PBS/0.1% BSA/0.1 % Tween) was added and incubated for 1 hr at 4°C and washed as before. The plate was developed by adding 100 μ l of alkaline phosphatase-conjugated goat anti-mouse antibody (Gibco, 1:1000 dilution in PBS/0.1% BSA), incubating for 1 hr at 4°C, washed as before, and treated with p-nitrophenol phosphate (5 mg/ml) in 1M diethanolamine hydrochloride, pH 9.8/0.24 mM MgCl₂ (100 μ l per well). The A₄₀₅ was measured on a plate reader and the duplicate values were averaged. Fig. 8 graphically depicts the results.

15

20

25

30

35

Polysome isolation and binding of antibodies displayed on polysomes (Fig. 3). To isolate polysomes, the in vitro reactions were incubated with either pLM166 or pLM153 and the reactions were stopped by placing on ice and diluting fourfold with polysome buffer (20 mM Hepes-OH pH 7.5, 10 mM MgCl2, 1.5 µg/ml chloramphenicol, 100 µg/ml acetylated bovine serum albumin (BSA), 0.1% Tween-20). The diluted reactions were centrifuged at 288,00 x q for 36 min at 4°C and the pellets were resuspended in polysome buffer and centrifuged a second time at 10,000 x g for 5 min to remove any insoluble material. The labeled polysomes were quantitated by TCA precipitation and 46,000 cpm of each polysome preparation was added to 150 μg of magnetic beads (tosyl activated, Dynal) that had been coated with either 0.75 μ g of diphtheria toxin (Calbiochem) or Ab179 (kindly provided by Bruce Mortensen) as the negative control. After binding for 1 hr at 4°C with end over end turning, the beads were washed five times with polysome buffer and the mRNA was eluted in 100 μ l of elution buffer (Polysome buffer containing 20 mM EDTA). The recovered mRNA was TCA precipitated and the radioactive counts determined, as shown in Fig. 9.

To facilitate correct folding of single-chain antibodies on polysomes, it is frequently desirable to incubate the polysomes in the presence of chaperones (e.g., GroEL or DnaK) prior to the binding (panning) step. To facilitate formation of disulfide bonds which are required for proper folding of a single-chain antibody, it is often desirable to incubate the polysome preparation in the presence of 0.2 mM glutathione (GSSG), 2 mM reduced glutathione (GSH), and 1 μ M protein disulfide isomerase (PDI) for 15 minutes at 25-30°C prior to adding the target macromolecule (or small molecule epitope), and conducting the binding step at approximately 4°C.

Fig. 11 shows construction of a single-chain antibody display polysome library made with PCR overlap (see Marks et al. (1991) J. Mol. Biol. 222: 581). DNA fragments encoding the T7 promoter, a naive antibody library, and the Gly-Ser region were amplified separately by PCR using the indicated primer sets. Equimolar portions were mixed and joined by PCR overlap

WO 95/11922 PCT/US94/12206

80

in the absence of primers. The full length segment was then amplified using primers ON3149 and ON2970.

The foregoing description of the preferred embodiments of the present invention has been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise form disclosed, and many modifications and variations are possible in light of the above teaching.

Such modifications and variations which may be
apparent to a person skilled in the art are intended to be
within the scope of this invention.

5

CLAIMS:

- 1. A method for identifying single chain antibodies that bind to a predetermined antigen, said method comprising:
- (1) translating in vitro a population of mRNA molecules encoding a single-chain antibody segment with a prokaryotic in vitro translation system forming a population of polysomes displaying nascent single-chain antibodies;
- (2) contacting said population of polysomes with a predetermined antigen under aqueous binding conditions compatible with intact polysomes and suitable for specific antigen-antibody binding, thereby forming bound polysomes comprising polysomes displaying single-chain antibody bound to antigen;
- (3) separating intact polysomes bound to the antigen from unbound polysomes by washing the bound polysomes with a wash solution and removing unbound polysomes;
- (4) dissociating the bound polysomes and synthesizing cDNAs from the mRNA of the dissociated polysomes; and
- (5) thereby identifying the cDNAs as encoding single chain antibodies that bind to the predetermined antigen.
- 2. A method of claim 1, wherein the prokaryotic in vitro translation system is a coupled transcription/translation system.
- 3. A method of claim 1 or 2, wherein the prokaryotic in vitro translation system is an E. coli S30 system.
- 4. A method of claim 1, wherein the single chain antibody is a scrv comprising a $V_{\rm H}$, spacer peptide, and $V_{\rm L}$.
- 5. A method of claim 1, wherein the method further comprises determining sequences of the cDNAs of the selected polysomes.

2

3

1	 A method of claim 1, comprising the further step 								
2	of cloning the cDNAs into a bacteriophage display vector.								
1	 A method of claim 6, wherein the bacteriophage 								
2	display vector is a filamentous bacteriophage vector and the								
3	single chain antibody sequence isolated by polysome screening								
4	is expressed as a fusion with a coat protein selected from pIII								
5	or pVIII.								
1	 An improved method for identifying single chain 								
2	antibodies sequences that bind to a predetermined antigen,								
3	comprising:								
4	(1) constructing in vitro a library of DNA								
5	templates encoding a $V_{ m H}$ linked through a spacer peptide segment								
6	to a $ extsf{V}_{ extsf{L}}$ suitable for in vitro transcription;								
7	(2) introducing said library of DNA templates								
8	directly into an in vitro transcription/translation system;								
9	(3) transcribing said library of DNA templates								
10	in vitro forming a population of mRNA molecules;								
11	(4) translating in vitro said population of								
12	mRNA molecules forming polysomes displaying nascent peptides								
13	comprising single chain antibodies;								
14	(5) contacting said polysomes with the								
15	predetermined under conditions suitable for specific binding								
16	and compatible with intact polysomes;								
17	(6) selecting polysomes which are bound to the								
18	predetermined antigen and removing unbound polysomes by washing								
19	with a suitable wash buffer and recovering polysomes bound to								
20	the predetermined antigen;								
21	(7) dissociating the bound polysomes and making								
22	cDNAs from the mRNAs of the bound polysomes; and								
23	(8) isolating the cDNAs.								

- 9. A method of claim 8, wherein the isolated cDNAs are transcribed and translated in vitro in at least one
- subsequent round of screening for binding to the predetermined antigen.

2

3

4

5

1

2

3

4

5

6

7

1

2

3.

4

1

- 1 10. A method of claim 9, wherein the in vitro 2 transcription and translation is performed with an E. coli S30 3 system.
 - of cloning the cDNAs into a bacteriophage display vector and performing affinity screening on a resultant library of bacteriophage particles displaying single chain antibodies encoded by the cDNAs and fused to a bacteriophage coat protein.
 - 12. A method of claim 9, wherein at least one subsequent round of screening comprises polysomes displaying an average display valency that is higher than average display valency of polysomes in a first screening round.
 - 13. The method of claim 8, comprising the further step of cloning the cDNAs into pAFF6 and forming bacteriophage particles displaying the single chain antibody sequences encoded by the cDNAs, affinity screening the bacteriophage particles, and sequencing polynucleotides isolated from bacteriophage particles bound to an immobilized antigen used for said affinity screening.
 - 14. A composition comprising a population of polysomes displaying nascent single chain antibodies, wherein each nascent single chain antibody comprises a tether segment and a scFv segment.
 - 15. A composition of claim 14, wherein the scFv segment comprises a $V_{\rm H},$ spacer peptide, and $V_{\rm L}.$
 - 16. A composition consisting essentially of polysomes displaying nascent peptides comprising a single chain antibody segment, a predetermined antigen, in aqueous solution.
 - 17. A method for identifying multiple binding specificities of single chain antibodies, said method comprising:

contacting under suitable binding conditions a multiplicity of antigen species with a polysome library displaying nascent peptides having a single chain antibody segment; and

separating polysomes bound to the antigen species from polysomes not bound to the antigen species;

synthesizing cDNA from the separated bound polysomes, thereby identifying single chain antibodies which bind to at least one of the antigen species present in the multiplicity of antigens.

- 18. A method of claim 17, wherein the multiplicity of antigen species comprises a library of beads or pins, each bead or pin having a single species of predetermined antigen.
- 19. A method of claim 18, wherein the antigen species comprise polypeptides synthesized on the beads or pins.
- 20. A method of claim 19, wherein the beads or pins individually comprise a discrete tag capable of reporting a sequence identity of the single species of polypeptide present on the bead or pin.
- 21. An improved method for identifying peptide sequences that bind to a predetermined receptor, said improved method comprising:
- (1) translating a population of mRNA molecules in vitro with a prokaryotic in vitro translation system forming a population of polysomes displaying nascent peptides;
- (2) contacting said population of polysomes with a predetermined immobilized receptor under aqueous binding conditions compatible with intact polysomes and suitable for specific binding;
- (3) separating intact polysomes bound to the immobilized receptor from unbound polysomes by washing the bound polysomes with a wash solution;

WO 95/11922

1 2

1

2

3

5

1 2

3 4

5

6

- (4) dissociating the bound polysomes and synthesizing cDNAs from the mRNA of the dissociated polysomes; and
 - (5) determining sequences of the cDNAs.
- 22. A method of claim 21, wherein the prokaryotic in vitro translation system is a coupled transcription/translation system.
- 23. A method of claim 22, wherein the prokaryotic in vitro translation system is an E. coli S30 system.
- 24. A method of claim 21 wherein the aqueous binding conditions and/or the wash solution comprise a non-ionic detergent.
- 25. A method of claim 21, wherein the aqueous binding conditions comprise a preblocking agent selected from the group consisting of nonfat milk, bovine serum albumin, trna, and gelatin.
 - 26. A method of claim 21, comprising the further step of cloning the cDNAs into a bacteriophage display vector.
 - 27. A method of claim 26, wherein the bacteriophage display vector is a filamentous bacteriophage vector and the nascent peptide sequence isolated by polysome screening is expressed as a fusion with a coat protein selected from pIII or pVIII.
 - 28. An improved method for identifying peptide sequences that bind to a predetermined receptor, said improved method comprising:
 - (1) translating a population of mRNA molecules in vitro with a in vitro translation system forming a population of polysomes displaying nascent peptides;
 - (2) contacting said population of polysomes with a predetermined immobilized preblocked receptor under

9	aqueous binding conditions compatible with intact polysomes and
10	suitable for specific binding;
11	(3) separating intact polysomes bound to the
12	immobilized receptor from unbound polysomes by washing the
13	bound polysomes with a wash solution;
14	(4) dissociating the bound polysomes and
L 5	synthesizing cDNAs from the mRNA of the dissociated polysomes;
16	and
17	(5) determining sequences of the cDNAs.
1	29. A method of claim 28, wherein the predetermined
2	immobilized preblocked receptor has been preblocked with a
3	preblocking agent selected from the group consisting of: nonfat
4	milk, bovine serum albumin, tRNA, and gelatin.
-	
1	30. An improved method for identifying peptide
2	sequences that bind to a predetermined receptor, comprising:
3	(1) constructing in vitro a library of DNA
4	templates suitable for in vitro transcription;
5	(2) introducing said library of DNA templates
6	directly into an in vitro transcription/translation system
7.	without cloning said library in host cells;
8	(3) transcribing said library of DNA templates
9	in vitro forming a population of mRNA molecules;
10	(4) translating in vitro said population of
11	mRNA molecules forming polysomes displaying nascent peptides;
12	(5) contacting said polysomes with an
13	immobilized receptor under conditions suitable for specific
14	binding and compatible with intact polysomes;
15	(6) selecting polysomes which are bound to the
16	immobilized receptor and removing unbound polysomes by washing
17	with a suitable wash buffer and recovering polysomes bound to
18	the immobilized receptor;
19	(7) dissociating the bound polysomes and making
20	cDNAs from the mRNAs of the bound polysomes; and
21	(8) segmenting the cDNAs.

PCT/US94/12206

1

2

3

4

	87
1	31. A method of claim 30, further comprising the
2	step of purifying the polysomes by centrifugation prior to
3	contacting the polysomes with the receptor.
1	32. A method of claim 30, wherein the in vitro
2	transcription/translation system is an E. coli S30 system.
1	33. A method of claim 30, comprising the further
2	step of cloning the cDNAs into a bacteriophage display vector
3	and performing affinity screening on a resultant library of
4	bacteriophage particles displaying peptides encoded by the
5	CDNAs.
1	34. An improved method for identifying peptide
2	sequences that bind to a predetermined receptor, comprising:
3	(1) translating in vitro a population of mRNA
4	molecules forming polysomes displaying nascent peptides;
5	(2) centrifuging said polysomes and discarding
6	the supernatant by high speed centrifugation pelleting the
7	polysomes and discarding the supernatant, and recovering and
8	resolubilizing the polysome pellet containing the polysomes;
9	(3) contacting said polysomes with an
10	immobilized receptor under conditions suitable for specific
11	binding and compatible with intact polysomes;
12	(4) selecting polysomes which are bound to the
13	immobilized receptor and removing unbound polysomes by washing
14	with a suitable wash buffer and recovering polysomes bound to
15	the immobilized receptor;
16	(5) dissociating the bound polysomes and making
17	cDNAs from the mRNAs of the bound polysomes; and
18	(6) sequencing the cDNAs.

The method of claim 34, comprising the further 35. step of low speed centrifugation whereby insoluble contaminants are pelleted and discarded and polysomes remain in the supernatant which is recovered.

PCT/US94/12206

- 36. The method of claim 34, wherein the immobilized receptor is preblocked with a blocking agent and a non-ionic detergent is present in the binding and wash solutions.
 - 37. The method of claim 36, comprising the further step of cloning the cDNAs into pAFF6 and forming bacteriophage particles displaying the peptide sequences encoded by the cDNAs, affinity screening the bacteriophage particles, and sequencing polynucleotides isolated from bacteriophage particles bound to an immobilized receptor used for said affinity screening.
- 38. A composition comprising a population of
 polysomes displaying nascent peptides, wherein each nascent
 peptide comprises a tether segment and a variable segment.
 - 39. A composition of claim 38, wherein the tether segment is a polypeptide segment which binds to RNA.
 - 40. A composition of claim 39, wherein the polypeptide segment binds to the Tar RNA sequence.
- 3 41. A composition of claim 38, wherein the tether 4 segment is biotinylated.

1/8

DNA POOL

MAS XID G T Q G V G

GGAGGATATACATATGGCTAGC (NNK) O GGTACCCAGGGCGTTGGA...

PILL PROCESSING SITE

S H S M A S

TCTCACTCCATGGCTAGCTAATAGTGGCCAGGATAGGTACCGGCGGTGGCGGCAGT

NheI

MAEI

MSCI

MAPI

PAFF6

COIEI OTI

11(-) ORIGIN

Ampr

FIG

SUBSTITUTE SHEET (RULE 26)

FIG. 5.

pLM169

pLM166/pLM153

FIG. 7.

SUBSTITUTE SHEET (RULE 26)

																	١	c ₅₀	(Ma)
DYNO	RPHIN B	Y	G	G	F	L	R	R	Q	F	K	U	U	T			0.29	±	0.05
201110	CDCAUCHAV												į				•		
ROUND 2	FREQUENCY 1			K	S	Ļ	W	R R	P R	F	AS	Q	U	s					
	1				W	Q	T		_	_					Y	M	400		39
3	1 3a		H	N	E	G	Ļ	R	EM	F	R	Ç	V	M	V	PF.	100	ı	J 3
	1				N	H	W	R R	P	F	R K	Y	V	F	٧		,		
4	3 b				P	l	M	R R	Ş	F	K	Y	V	LQ	Þ	T	7.2 19	_	0.75 1.2
	1 2c						DS		Ò	F	K	Ç	Ç	TVO	PDCP	H S	140		41
			6	u	٧	DEL	V	RRRRRRRR	P	Y	S R H		CYVGTTUU	Ö	P				
	1		ь	M	Y	L	K	R	LPa	YFFFF	M		Ť	R	L				
						DRSSP	T	RR	QQL	F	MSSAR	Ü		R U A	NK				
	į			D S N	SYE	Š	Ċ	R R R	H	F	0		Ü						
	ja		H	N	E	Ġ	İ	R	M	F	Ř	U	U						
5	5 b 1				P	I R S	M	R R	S	F	K	U	U	LU			7.2 8.0	±	0.75 0.22
	i c				F	_	E	RR	R	F	K S A	IJ	UCC	T	Ď	H	110 140	± ±	40 41
	1					E	F	R	M	ŀ	A	U	A	C	Y				

FIG. 6.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 11.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US94/12206

A. CLASSIFICATION OF SUBJECT MATTER										
IPC(6) : C07K 16/00; C12P 21/08 US CL : 435/5, 6, 69.3; 436/518										
According to International Patent Classification (IPC) or to both national classification and IPC										
	DS SEARCHED									
Minimum d	ocumentation searched (classification system follower	ed by classification symbols)								
U.S. :	435/5, 6, 69.3; 436/518	·								
Documentat	ion searched other than minimum documentation to th	ne extent that such documents are included	in the fields searched							
			•							
Electronic d	ata base consulted during the international search (n	ame of data base and, where practicable	, search terms used)							
APS, DIALOG, DERWENT, MEDLINE, BIOSIS, CAS Search Terms: polysom?, library, random?, ligand?, au=dower, w?, au=mattheakis, I?										
C. DOC	UMENTS CONSIDERED TO BE RELEVANT									
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.							
Y	WO 91/05058 (KAWASAKI) 18 APRIL 1991, SEE ENTIRE 1-41 DOCUMENT									
Y	WO 92/02536 (GOLD ET AL) 20 FEBRUARY 1992, SEE 1-41 ENTIRE DOCUMENT.									
l	•									
			·							
		·								
Furthe	er documents are listed in the continuation of Box C	See patent family annex.	·							
<u> </u>	cial categories of cited documents:	T later document published after the inte	mational filing date or priority							
"A" docs	smoothdefining the general state of the art which is not considered a of particular relevance	date and not in conflict with the application of the conflict with the conflict w	tion but cited to understand the							
	ier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be consider	chimed invention cannot be							
	ament which may throw doubts on priority claim(s) or which is I to establish the publication date of another citation or other	when the document is taken alone "Y" document of particular relevance: the								
spec	step when the document is									
means being obvious to a person skilled in the art										
"P" document published prior to the international filing date but later than "&" document member of the same patent family the priority date claimed										
Date of the actual completion of the international search Date of mailing of the international search report										
22 DECEM	MBER 1994	10 FEB 1994								
	ailing address of the ISA/US er of Patents and Trademarks	Authorized officer T. NISBET A. May 5-2 flat								
Box PCT	D.C. 20231	T. NISBET 9. 11/3- 400								
	(703) 305-3230	Telephone No. (703) 308-0196								