HatcherNotes

ru6by

October 19, 2025

Chapter 1

Fundamental Group of Circle

1.1 Homotopy Definitions

In this section we provide all the definition , lemmas and theorems regarding homotopies. At the end we provide the definition of Fundamental Group of Topological Space and proof that it has a group structure.

Definition 1 (Homotopy of maps). Let X,Y be topological spaces. We say that maps $f,g:X\to Y$ are homotopic $(f\simeq g)$ iff there exists a continuous map $H:X\times I\to Y$ such that for any $x\in X$

$$H(x, 0) = f(x) \text{ and } H(x, 1) = g(x)$$

.

Definition 2 (Path). A path between points $x, y \in X$ is a continuous function $\gamma: I \to X$ such that

$$\gamma(0) = x$$
 and $\gamma(1) = y$

Definition 3 (Loop).

A loop is a path where x = y.

Definition 4 (Homotopy of Paths).

We say that two paths γ_1, γ_2 ($\gamma_1 \simeq_p \gamma_2$) from x to y are homotopic iff there exists homotopy map $H: I \times I \to X$ such that H is homotopy of γ_1, γ_2 and for all $t \in I$ function $H(\cdot, t)$ is a path from x to y.

Lemma 5 (All paths from x to y in \mathbb{R}^n are Homotopic).

Any two paths γ_1, γ_2 from x to y in \mathbb{R}^n are homotopic.

Theorem 6 (Homotopy is equvialence relation).

 $Relation \simeq is \ an \ equvialence \ relation.$

Theorem 7 (Homotopy of paths is equvialence relation).

Relation \simeq_p of paths is an equivalence relation.

Definition 8 (Composition of paths).

Given to paths γ_1, γ_2 we definte $\gamma_1 \cdot \gamma_2$ by the formula:

$$\gamma_1 \cdot \gamma_2(t) = \begin{cases} \gamma_1(2s), & \text{if } t \leq \frac{1}{2}, \\ \gamma_2(1-2s), & \text{if } t \geq \frac{1}{2} \end{cases}$$

Lemma 9 (Composition of paths is a path).

Composition of paths is a path (The map given by 8 is continues)

Lemma 10 (Composition of paths depend on homotopy class). If $f_0 \simeq_p f_1$ and $g_0 \simeq_p g_1$ then $f_0 \cdot g_0 \simeq_p ath f_1 \cdot g_1$

Theorem 11 (Homotopy of loops is equvialence relation). Relation \simeq_l of loops is an equvialence relation. (We use \simeq to simplify notation)

Lemma 12 (Composition of loops is a loop). *Composition of loops is a loop.*

Lemma 13 (Composition of loops depend on homotopy class). If $f_0 \simeq_p f_1$ and $g_0 \simeq_p g_1$ then $f_0 \cdot g_0 \simeq_p f_1 \cdot g_1$