В начало Курсы ФИиВТ 09.03.04 Программная инженерия(Очная) ПС 11 Разработка программных систем 4 семестр

(09.03.04 11 4 сем о)Физика Раздел 1 "Основы квантовой механики" К-1 ТЕСТ.

Тест начат Воскресенье, 14 Апрель 2024, 20:45
Состояние Завершен Воскресенье, 14 Апрель 2024, 21:06
Прошло 20 мин. 28 сек.
времени
Баллы 10,17/13,00
Оценка 7,82 из 10,00 (78%)

Вопрос 1

Неверно

Баллов: 0,00 из 1,00

Две частицы прошли *одинаковую* ускоряющую разность потенциалов. Массы частиц *одинаковы*, а заряд первой частицы *в 2 раза больше*, чем второй.

При этом отношение длин волн де Бройля этих частиц λ_1/λ_2 равно...

Выберите один ответ:

- \bigcirc $\frac{1}{\sqrt{2}}$
- $\frac{1}{4}$
- $\frac{1}{2\sqrt{2}}$
- $\frac{1}{2}$

Ваш ответ неправильный.

Вопрос **2**

Верно

Баллов: 1,00 из 1,00

Оцените ширину одномерного потенциального ящика, в котором находится частица, имеющая импульс порядка 10⁻²⁸ кг⋅м/с.

Ответ выразите в м.

Выберите один ответ:

 \circ

6,6·10⁻²⁶

0

6,6·10⁻⁶

Ваш ответ верный.

Вопрос 3

Частично правильный

Баллов: 0,67 из 1,00

Сопоставьте формулу и вид уравнения Шредингера:

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{2m}{\hbar^2} \left(E - \frac{kx^2}{2} \right) \Psi = 0$$

Стационарное уравнение для одномерного гармонического осциллятора

Нестационарное трехмерное уравнение

 $\Delta\Psi + \frac{2m}{\hbar^2}E\Psi = 0$

Стационарное уравнение для одномерного ящика с бесконечно высокими стенками

Ваш ответ частично правильный.

Вы правильно выбрали 2.

Вопрос 4

Неверно

Баллов: 0,00 из 1,00

Частица в очень глубоком потенциальном ящике шириной \boldsymbol{L} находится на 3-м энергетическом уровне.

Укажите, вблизи каких точек ящика плотность вероятности нахождения частицы максимальна.

Выберите один или несколько ответов:

- **0**
- ✓ L/3 ×
- ✓ L×
- 5L/6
- ∠L/3

 ★

Ваш ответ неправильный.

Вопрос **5**

Верно

Баллов: 1,00 из 1,00

Частица с энергией **Е** может находиться в области **I** и **II** (см. рисунок)

Укажите вид волнового числа в соответствующей области:

Волновое число вида частицы в области...

Волновое число вида частицы в области...

$$k = \frac{p}{\hbar} = \frac{\sqrt{2m(E-U)}}{\hbar}$$

соответствует нахождению

 $k = \frac{i\sqrt{2m(U-E)}}{}$

соответствует нахождению

.2024, 22:15			K-1 TECT.
Вопрос 6			
Верно			
Баллов: 1,00 из 1,00			
Электрон в атоме находится в сос	стоянии <i>3р</i>		
Этому состоянию соответствуют о			товых чисел:
, ,			
Орбитальное квантовое число		1	✓
Магнитное орбитальное квантово	е число	0; +- 1	✓
Магнитное спиновое число		+-1/2	✓
Главное квантовое число		3	✓
Ваш ответ верный.			
Вопрос 7			
Частично правильный			
Баллов: 0,50 из 1,00			
Спин атома -	2	×	
Главное квантовое число -	6	~	
Полный момент -	3	×	
Орбитальное квантовое число -	1	✓	
Ваш ответ частично правильный.			
Вы правильно выбрали 2.			

Вопрос **8**Верно
Баллов: 1,00 из 1,00

Дана схема состояний электрона в атоме водорода.

Существуют <u>правила отбора переходов</u> электрона между состояниями, т.к. должны выполняться законы <u>сохранения энергии и момента импульса</u>.

Укажите переходы, запрещенные правилами отбора.

Выберите один или несколько ответов:

- b
- ✓ a ✓
- ✓ c ✓
- е
- ✓ d ✓

Ваш ответ верный.

Вопрос **9** Верно

Баллов: 1,00 из 1,00

Укажите верные утверждения для **протонов:**

Его спиновое квантовое число равно

Он относится к классу...

Его волновая функция...

В одном квантовом состоянии таких частиц может быть...

Вопрос 10
Верно
Баллов: 1,00 из 1,00

Волновая функция системы при перестановке двух тождественных частиц *изменила* свой знак.

Ответьте на следующие вопросы:

Принцип Паули для этой системы...

Волновая функция такой системы является...

Значение спина частиц системы является

выполняется	~
антисимметричной	~
полуцелым	~

Ваш ответ верный.

Вопрос **11** Верно

Баллов: 1,00 из 1,00

На рисунке показаны уровни энергии орбиталей в атомах, а справа - образование периодов как совокупности орбиталей.

Сформируйте верные утверждения:

Максимальное число электронов на 5f - орбитали равно...

Максимальное число электронов на 6d - орбитали равно...

Число химических элементов в 7-м периоде равно...

~	14
~	10
~	22

Вопрос 12

Верно

Баллов: 1,00 из 1,00

В многоэлектронных атомах уровни энергии определяются не только главным квантовым числом, но и **полным моментом атома**, а переходы между ними подчиняются **правилам отбора**.

Атом ртути находился в состояниях $7^{1}S_{0}$ и $6^{3}P_{1}$.

Укажите, верны ли следующие утверждения:

Переход из 1-го состояния во 2-е возможен, т.к. орбитальное число изменяется на 1.

Переход из 1-го состояния во 2-е возможен, т.к. полный момент изменяется на 1.

Переход из 1-го состояния во 2-е возможен, т.к. главное квантовое число изменяется на 1.

Да, этого достаточно

Нет, этого недостаточно

✓

Нет, этого недостаточно

✓

Ваш ответ верный.

Вопрос 13

Верно

Баллов: 1,00 из 1,00

На рисунке показан полный спектр энергетических уровней молекулы и переходы между ними.

Для переходов, обозначенных синими стрелками, *вращательное квантовое* число...

Для переходов, обозначенных синими стрелками, **колебательное квантовое** число...

Для переходов, обозначенных синими стрелками, **электронное квантовое** число...

не изменяется изменяется на 1 не изменяется изменается и изменается и изменается и изменается и изменается и