Design de Bases de Dados Relacionais

Tópicos:

- * Objetivos com o Desenho de Bases de Dados
- * Dependências funcionais
- * 1^a Forma Normal
- * Decomposição
- * Forma Normal de Boyce-Codd
- * 3ª Forma Normal
- * Dependências multivalor
- * 4ª Forma Normal
- * Visão geral sobre o processo de design

Bibliografia:

- * Capítulo 7 do livro recomendado (7ª edição Cap. 8 na 6ª edição)
- * Capítulos 4, 5, 6 e 7 do livro *The theory of relational databases*
 - Neste último, a matéria está muito mais detalhada, e o livro está disponível online, gratuitamente, na página do autor.

Objetivos com o Desenho de BDs Relacionais

- Pretende-se encontrar "bons" conjuntos de esquemas de relações para armazenar os dados.
- Um "mau" design pode levar a:
 - Repetição de dados.
 - * Impossibilidade de representar certos tipos de informação.
 - * Dificuldade na verificação da integridade
- Objetivos do Design:
 - * Evitar dados redundantes
 - Garantir que as relações relevantes sobre dados podem ser representadas
 - Facilitar a verificação de restrições de integridade.

BDs Relacionais e o Modelo ER

- Vimos como é que se pode chegar a um desenho de uma BD relacional a partir de um modelo ER
 - * Essa BD reflete na totalidade o que se especificou no modelo ER
 - * Se o modelo ER estiver correto (e de acordo com o que se pretende dos dados em causa) então a BD relacional está bem desenhada
- E se o modelo ER não estiver correto?
 - * A BD relacional não terá um bom design...
- E como é que se sabe se está correto ou não?
 - * Desde logo, o que é que significa "está correto"?
- Vamos começar por ver em que termos se pode definir uma noção de correção, e depois ver como é que se pode garantir que a base de dados relacional obedece a essa noção de correção

Exemplo de mau design

Este esquema dá origem à tabela:

Amigos = (nome, telefone, cPostal, localidade)

cPostal localidade
telefone
Amigos

Está correta? É um bom design?

nome	telef	cPostal	localidade	
Maria	1111	2815	Caparica	
João	2222	1000	Lisboa	Popotidal
Pedro	1112	1100	Lisboa	Repetido!
Ana	3333	2815	Caparica	
	•			Redundante

- Redundância:
 - Os valores de (cPostal, localidade) são repetidos para cada amigo com um mesmo código postal
 - * Desperdiça-se espaço de armazenamento
 - * Dá azo a inconsistências
 - Complica bastante a verificação da integridade dos dados
- Dificuldade de representar certa informação
 - Não se pode armazenar informação do código postal de uma localidade sem que existam amigos dessa localidade.
 - ❖ Por vezes podem usar-se valores nulos, mas estes são difíceis de gerir.

Design alternativo

E como seria correto?

Assim a BD relacional teria:

Amigos = (nome, telefone, cPostal) e CPs(cPostal, localidade)

Já não há redundância!

nome	telef	cPostal
Maria	1111	2815
João	2222	1000
Pedro	1112	1100
Ana	3333	2815

cPostal	localidade
2815	Caparica
1000	Lisboa
1100	Lisboa

- Mas porquê? Como é que se sabe?
 - * E como formalizar esta remoção para o modelo relacional?

Decomposição

Decompor o esquema Amigos em:

Todos os atributos do esquema original (R) devem aparecer na decomposição em (R_1 , R_2):

$$R = R_1 \cup R_2$$

- Decomposição sem perdas
 - * Para todas as (instâncias de) relações r que "façam sentido" sobre o esquema R:

$$r = \prod_{R_1}(r) \bowtie \prod_{R_2}(r)$$

* Note-se que o "façam sentido" depende do problema concreto.

Exemplo de decomposição sem perdas

Decomposição de Amigos em Amigos 1 e CPs:

r

nome	telef	cPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

$$\prod_{\text{Amigos 1}}(r) \bowtie \prod_{\text{CPs}}(r) = r$$

 $\prod_{Amigos1}(r)$

nome	telef	cPostal
Maria	1111	2815
João	2222	1000
Pedro	1112	1100
Ana	3333	2815

 $\prod_{CPs}(r)$

cPostal	localidade	
2815	Caparica	
1000	Lisboa	
1100	Lisboa	

Exemplo de decomposição com perdas

Decomposição de CPs em:

\prod_{CP1}	<i>(r)</i>	M	\prod_{Locs}	<i>(r)</i>
----------------------	------------	---	----------------	------------

cPostal	localidade
2815	Caparica
1000	Lisboa
1100	Lisboa

$\prod_{CP1}(r)$	$\prod_{Locs}(r)$
cPostal	localidade
2815	Caparica
1000	Lisboa
1100	2.5554

cPostal	localidade
2815	Caparica
2815	Lisboa
1000	Caparica
1000	Lisboa
1100	Caparica
1100	Lisboa

- Perdeu-se a informação de quais os CPs das localidades!!!
- Decompor parecia bom para evitar redundâncias.
- Mas decompor demais pode levar à perda de informação.

Outro exemplo com perdas

Decomposição de Amigos em:

* Amigos2 = (nome,telefone,localidade) e Loc = (código_postal,localidade).

r

 $\prod_{Amigos2}(r)\bowtie\prod_{Loc}(r)$

nome	telef	cPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

≠

nome	telef	cPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
João	2222	1100	Lisboa
Pedro	1112	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

 $\prod_{Amigos2}(r)$

nome	telef	localidade	
Maria	1111 Caparica		
João	2222	Lisboa	
Pedro	1112	Lisboa	
Ana	3333	Caparica	

 $\prod_{Loc}(r)$

cPostal	localidade
2815	Caparica
1000	Lisboa
1100	Lisboa

- Perdeu-se a informação de qual é o CP do João (e do Pedro)!!!
- O que torna esta decomposição diferente da primeira?
 - Depende do problema aqui varia o atributo partilhado...

Objectivo: Desenvolver uma teoria para...

- Decidir se o esquema R já está num "bom" formato.
- Se não estiver, decompor R num conjunto de esquemas $\{R_1, R_2, ..., R_n\}$ tal que:
 - * cada um deles esteja num "bom" formato
 - * a decomposição seja sem perdas de informação
- A teoria é baseada em
 - * Dependências funcionais
 - * Dependências multivalor

Dependências funcionais

- Restrições sobre o conjunto de relações possíveis.
- **Dependência funcional** $\alpha \rightarrow \beta$ significa que β é univocamente determinado por α .
 - * Exige que os valores num conjunto de atributos determinem univocamente os valores noutro conjunto de atributos.
- São uma generalização da noção de chave.

Dependências Funcionais (Cont.)

Seja R o esquema duma relação, $\alpha \subseteq R$ e $\beta \subseteq R$. A dependência funcional:

$$\alpha \rightarrow \beta$$

é verdadeira em R sse, para toda a relação possível (i.e. "que faça sentido") r(R), sempre que dois tuplos t_1 e t_2 de r têm os mesmos valores em α , também têm os mesmos valores em β :

$$\forall t_1, t_2 \in r, t_1[\alpha] = t_2[\alpha] \Rightarrow t_1[\beta] = t_2[\beta]$$

De forma equivalente:

$$\forall a \in dom(\alpha), \Pi_{\beta}(\sigma_{\alpha=a}(r)) \text{ tem no máximo 1 tuplo}$$

Exemplo: Seja R=(nome, telef, cPostal, localidade).

localidade → *cPostal* não é verdadeira c*Postal* → *localidade* é verdadeira

nome	telef	cPostal	localidade
Maria	1111	2815	Caparica
João	2222	1000	Lisboa
Pedro	1112	1100	Lisboa
Ana	3333	2815	Caparica

Dependências Funcionais (Cont.)

- Casos extremos:
 - * $\{\} \rightarrow \beta$: Só se verifica se em qualquer relação r possível, todos os tuplos tiverem o mesmo valor em β (nunca deve ser permitido!)
 - * $\alpha \rightarrow \{\}$: Verifica-se para toda a relação r e conjunto de atributos α
- Diz-se que uma dependência é trivial se é satisfeita por todas as relações (quer façam sentido ou não) sobre um esquema
 - ***** *E.g.*
 - customer-name, loan-number → customer-name
 - * Em geral, $\alpha \to \beta$ é trivial se *e somente* $\beta \subseteq \alpha$

Dependências Funcionais e Chaves

- \blacksquare K é uma superchave no esquema R sse $K \rightarrow R$
- Ké uma chave candidata em R sse
 - $*K \rightarrow R$, e
 - * para nenhum $\alpha \subset K$, $\alpha \to R$
- As dependências funcionais permitem expressar restrições que não se expressam apenas com os conceitos de chave. E.g:

(customer-name, loan-number, branch-name, amount).

Espera-se que as seguintes dependências sejam verdadeiras:

loan-number → *amount loan-number* → *branch-name*

mas não se espera que a dependência abaixo seja verdadeira:

loan-number → *customer-name*

Uso de Dependências Funcionais

- Usam-se dependências funcionais para:
 - * Especificar restrições sobre as relações
 - ❖ Diz-se que F é verdadeiro em R se todas as relações (possíveis) sobre R satisfazem as dependências em F.
 - * Testar (instâncias de) relações, para verificar se "fazem sentido" de acordo com as dependências funcionais.
 - Se uma relação r torna verdadeiras todas as dependências de um conjunto F, então diz-se que r satisfaz F.

Nota: Uma instância particular duma relação pode satisfazer uma dependência funcional mesmo que a dependência não seja verdadeira no esquema. Por exemplo, uma instância particular (em que, por acaso, nenhum empréstimo tenha mais que um cliente) satisfaz:

loan-number \rightarrow customer-name.

Fecho de um Conjunto de Dependências Funcionais

- Dado um conjunto F de dependências, há outras dependências que são logicamente implicadas por F.
 - ★ Se nome → cPostal e cPostal → localidade, então, obrigatoriamente, nome → localidade
 - * Em geral, se A \rightarrow B e B \rightarrow C, então, obrigatoriamente, A \rightarrow C
- O conjunto de todas as dependências funcionais implicadas por F chama-se fecho de F (denotado por F⁺).
- Podem encontrar-se todas as dependências em F⁺ por aplicação dos Axiomas de Armstrong:

```
* Se \beta \subseteq \alpha, então \alpha \to \beta (reflexividade)
```

- * Se $\alpha \to \beta$, então $\gamma \alpha \to \gamma \beta$ (aumento)
- * Se $\alpha \to \beta$, e $\beta \to \gamma$, então $\alpha \to \gamma$ (transitividade)
- Estas regras são
 - * fidedignas (só geram dependências que pertencem a F+) e
 - * completas (geram todas as dependências pertencentes a F⁺).

Exemplo

- R = (A, B, C, G, H, I) $F = \{ A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H \}$
- alguns elementos de F+:
 - $*A \rightarrow H$
 - * transitividade a partir de $A \rightarrow B$ e $B \rightarrow H$
 - $*AG \rightarrow I$
 - aumento de A → C com G, obtendo-se AG → CG
 e depois transitividade com CG → I
 - * CG \rightarrow HI
 - Aumento de CG → I (com CG) inferindo CG → CGI, aumento de CG → H (com I) inferindo CGI → HI, e depois transitividade

Construção de F+

Para calcular o fecho de um conjunto de dependências F:

```
Repetir

Para cada dependência funcional f \in F^+

aplicar reflexividade e aumento em f

adicionar os resultados a F^+

Para cada par de dependências f_1e f_2 \in F^+

Se f_1 e f_2 podem combinar-se para usar transitividade

Então adicionar a dependência resultado a F^+

Até F^+ não mudar mais
```

NOTA: Veremos, mais tarde, outro procedimento para este problema

Fecho de Dependências (Cont.)

- Podemos facilitar a construção (manual) de F⁺ usando mais regras fidedignas:
 - * Se $\alpha \to \beta$ e $\alpha \to \gamma$, então $\alpha \to \beta \gamma$ (união)
 - * Se $\alpha \to \beta \gamma$, então $\alpha \to \beta$ e $\alpha \to \gamma$ (decomposição)
 - * Se $\alpha \to \beta$ e $\gamma\beta \to \delta$, então $\alpha \gamma \to \delta$ (pseudotransitividade)
- Todas estas regras podem ser derivadas a partir dos Axiomas de Armstrong:
 - *** União:** se $\alpha \to \beta$, por aumento $\alpha \to \alpha\beta$; se $\alpha \to \gamma$, por aumento $\alpha\beta \to \gamma\beta$; se $\alpha \to \alpha\beta$ e $\alpha\beta \to \gamma\beta$, por transitividade $\alpha \to \gamma\beta$
 - **Decomposição:** Por reflexividade, $\beta \gamma \rightarrow \beta$; se $\alpha \rightarrow \beta \gamma$ e $\beta \gamma \rightarrow \beta$, por transitividade $\alpha \rightarrow \beta$ -- semelhante para $\alpha \rightarrow \gamma$
 - *** Pseudotransitividade:** Se $\alpha \to \beta$, por aumento $\alpha \gamma \to \gamma \beta$; se $\alpha \gamma \to \gamma \beta$ e $\gamma \beta \to \delta$, por transitividade $\alpha \gamma \to \delta$

Fecho de um Conjunto de Atributos

Dado um conjunto de atributos α , define-se o *fecho* de α sobre F (denotado por α^+) como sendo o conjunto de atributos que dependem funcionalmente de α dado F. I.e.:

$$\alpha \to \beta \in F^+ \iff \beta \subseteq \alpha^+$$

```
Algoritmo para calcular \alpha^+ result := \alpha; Enquanto \text{ (mudança em } result\text{)} Para \text{ cada } \beta \to \gamma \text{ em } F \text{begin} \text{Se } \beta \subseteq result \text{ Então } result := result \cup \gamma \text{end}
```

Exemplo de fecho de atributos

- \blacksquare R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B \\ A \rightarrow C \\ CG \rightarrow H \\ CG \rightarrow I \\ B \rightarrow H\}$
- **■** (*AG*)+
 - 1. result = AG
 - 2. result = ABCG $(A \rightarrow C e A \rightarrow B)$
 - 3. result = ABCGHI $(CG \rightarrow H e CG \rightarrow I e CG \subseteq ABCG)$
- Será que *AG* é chave candidata? Sim
 - 1. Será AG superchave? Sim
 - 1. $AG \rightarrow R$? Sim
 - 2. E algum subconjunto próprio de AG é superchave? Não
 - 1. $A^+ \rightarrow R$? Não: $A^+ = ABCH$
 - 2. $G^+ \rightarrow R$? Não: $G^+ = G$

end

Algoritmo:

Enquanto (mudança em *result*)
Para cada $\beta \rightarrow \gamma$ em Fbegin

Se $\beta \subseteq result$ Então $result := result \cup \gamma$

Uso de fecho de atributos

O algoritmo pode ser usado para vários fins:

- Testar superchaves:
 - * Para testar se α é superchave, calcular $\alpha^{+,}$ e verificar se α^{+} contém todos os atributos de R.
- Testar dependências funcionais
 - * Para ver se a dependência $\alpha \to \beta$ é verdadeira (i.e. pertence a F^+), basta verificar se $\beta \subseteq \alpha^+$.
 - * Ou seja, basta calcular α^+ , e verificar se contém β .
 - * É um teste simples e muito útil
- Cálculo do fecho de F
 - * Para cada $\gamma \subseteq R$, calcular γ^+ . Para cada $S \subseteq \gamma^+$, devolver como resultado a dependência $\gamma \to S$.

Teste de unicidade de chave candidata

Existe uma condição necessária e suficiente para determinar a existência de chave candidata única:

Dados R e F = $\{\alpha_1 \to \beta_1, \ldots, \alpha_p \to \beta_p\}$, o esquema de relação R tem chave candidata única sse R – $(\gamma_1 \ldots \gamma_p)$ é super-chave, onde * $\gamma_i = \beta_i - \alpha_i$ para $1 \le i \le p$.

Exemplo:

Considere-se o esquema de relação R(ABCDE) e o conjunto de dependências funcionais $F = \{AB \rightarrow C, AC \rightarrow B, D \rightarrow E\}$.

Para AB \rightarrow C tem-se $\gamma_1 = \{C\}$

Para AC \rightarrow B tem-se $\gamma_2 = \{B\}$

Para D \rightarrow E tem-se $\gamma_3 = \{E\}$

Logo $\gamma_1 \gamma_2 \gamma_3 = \{B, C, E\}$, e portanto $R - \gamma_1 \gamma_2 \gamma_3 = \{A, D\}$.

Como, AD+ = ADE ≠ R temos que AD não é super-chave e consequentemente existe mais de uma chave-candidata.

Coberturas de Conjuntos de DFs

- Um conjunto de dependências, pode conter algumas que são redundantes (por se poderem inferir das outras)
 - * E.g.: $A \rightarrow C$ é redundante em: $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 - * Partes de dependências também podem ser redundantes
 - ***** E.g. : $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ pode ser simplificado para $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
 - ***** E.g. : $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ pode ser simplificado para $\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$
- Um conjunto de dependências funcionais F é uma cobertura de (outro) conjunto de dependências funcionais G sse F+ = G+
- Intuitivamente, F é uma cobertura canónica de G se é uma cobertura de G e, além disso, F é "minimal" e nenhuma das dependências em F tem partes redundantes

Atributos dispensáveis

Considere o conjunto de dependências F e a dependência

$$\alpha \rightarrow \beta \in F$$

- * O atributo A é dispensável (à esquerda) em α se $A \in \alpha$ e F implica $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$.
- * O atributo A é dispensável (à direita) em β se $A \in \beta$ e o conjunto $(F \{\alpha \to \beta\}) \cup \{\alpha \to (\beta A)\}$ implica F.
- Nota: a implicação na direção oposta é trivial em ambos os casos (uma dependência mais forte, implica sempre uma mais fraca)
- **Exemplo:** Dado $F = \{A \rightarrow C, AB \rightarrow C\}$
 - * B é dispensável em $AB \rightarrow C$ porque $A \rightarrow C$ implica $AB \rightarrow C$.
- **Exemplo:** Dado $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - * C é dispensável em $AB \rightarrow CD$ pois a partir de $A \rightarrow C$, $AB \rightarrow D$ podemos inferir $AB \rightarrow CD$

Teste para atributos dispensáveis

Considere o conjunto F de dependências, e a dependência

$$\alpha \rightarrow \beta \in F$$
.

- * Para testar se A $\in \alpha$ é dispensável (à esquerda) em α
 - 1. calcular $(\alpha \{A\})^+$ usando as dependências em F
 - 2. verificar se $(\alpha \{A\})^+$ contém todos os atributos de β ; se contém, então A é dispensável
- \star Para testar se $A \in \beta$ é dispensável (à direita) em β
 - 1. calcular α^+ usando as dependências em $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\},$
 - 2. verificar se α^+ contém A; se contém, então A é dispensável

Cobertura Canónica

- Uma cobertura canónica de F é um conjunto de dependências F_c tal que
 - * F implica todas as dependências em F_{c} , e
 - * F_c implica todas as dependências em F_c e
 - * Nenhuma dependência em F_c contém atributos dispensáveis, e
 - * O lado esquerdo de cada dependência em F_c é único.

Algoritmo para calcular uma cobertura canónica de *F*:

Repetir

Usar a regra da união para substituir as dependências em F

$$\alpha_1 \rightarrow \beta_1 \ e \ \alpha_1 \rightarrow \beta_2 \ por \ \alpha_1 \rightarrow \beta_1 \ \beta_2$$

Encontrar dependência $\alpha \rightarrow \beta$ com atributo dispensável (em α ou β)

Quando se encontra atributo dispensável, apaga-se de $\alpha \rightarrow \beta$

Até F não mudar

Nota: A regra da união pode tornar-se aplicável depois de retirados alguns atributos dispensáveis. Por isso temos que a reaplicar.

Exemplo de cálculo de cobertura canónica

■
$$R = (A, B, C)$$

 $F = \{A \rightarrow BC$
 $B \rightarrow C$
 $A \rightarrow B$
 $AB \rightarrow C\}$

- Combinar $A \rightarrow BC$ e $A \rightarrow B$ para $A \rightarrow BC$
 - * Agora o conjunto é $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- A é dispensável em $AB \rightarrow C$ porque $B \rightarrow C$ implica $AB \rightarrow C$.
 - * Agora o conjunto é $\{A \rightarrow BC, B \rightarrow C\}$
- C é dispensável em $A \rightarrow BC$ pois $A \rightarrow BC$ é implicado por $A \rightarrow B$ e $B \rightarrow C$.
- Uma cobertura canónica é:

$$A \rightarrow B$$

 $B \rightarrow C$