华东师范大学期中试卷

2022-2023 学年第 2 学期

课程名称:数据科学与工程算法 课程	呈性质:专业必修
-------------------	----------

专业:	_ 年级:		
姓名:	学号 :		

/	_	 三	四	五.	总分
得分					

- 一. 填空题 (本大题共有 8 题,满分 48 分,每题 6 分.)
- 1. 采用圆形等距抽样算法从总体 1-21 中抽取样本. 抽样间距为 4,第一个被抽样的元素编号为 15,请问接下去被抽样的四个元素编号依次是 _______.
- 2. 假设抛一枚正面向上概率为 $\frac{3}{4}$ 的硬币 1000 次,随机变量 X 定义为硬币正面朝上的次数,使用 Chebyshev 不等式估算 X>900 的概率上界为 _______.
- 3. 假设抛一枚正面向上概率为 $\frac{1}{5}$ 的硬币 800 次,随机变量 X 定义为硬币正面朝上的次数,使用 Chernoff 不等式估算 X < 40 的概率上界为 _______.
- 4. 当哈希函数 h(x) = (3x+1) mod 5 被用于行排列变换时,集合 $A = \{0,1,4\}$ 和 $B = \{2,3,4\}$ 的最小哈希值分别为 ______ .
- 5. 设 k=3, 使用 Misra Gries 算法求得输入数据流 < a,b,b,c,c,a,a,d> 中的频繁元素为
- 6. 对于输入数据流 < 0,1,1,2,3,3 >,假设给定哈希函数 $h_1(x)=(2x+1)mod3$ 和 $h_2(x)=(x+1)mod3$,用 CM Sketch 估计元素 0 的频度为 _____ .
- 7. 对于数据流 <0,0,1,2,2,3,3,3>,假设给定哈希函数 h(x)=(7x+2)mod3 和 $g(x)=\begin{cases} +1 & \text{if x mod } 2=0 \\ -1 & \text{if x mod } 2=1 \end{cases}$,用 Count Sketch 估计元素 1 的频度为 _____ .
- 8. 对于转移概率矩阵为 ${f P}=\left(egin{array}{ccc} rac{1}{2} & rac{1}{4} & rac{1}{4} \\ 0 & rac{1}{4} & rac{3}{4} \\ p & 1-p & 0 \end{array}
 ight)$ 的马尔可夫链,已知其平稳分布为

 $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$,则参数 p 的取值是 ______.

- 二. (本题满分 20 分, 其中每题 10 分.)
- 9. 设一组独立随机变量 $x_{ij}(i=1,.....,k;j=1,.....,n)$ 服从参数为 p 的伯努利分布. 定义 随机变量 $X_i = \frac{1}{n} \sum_{i=1}^n x_{ij}, i=1,.....,k$.
 - (1) 设随机变量 $Y = min_{1 \le i \le k} X_i$, 计算事件 $Y > (1+\epsilon)p$ 的概率上界;
 - (2) 设随机变量 $Z = median_{1 \le i \le k} X_i$, 计算事件 $|Z p| > \epsilon p$ 的概率上界.
- 三. (本题满分 12 分.)
- 10. 给定两个集合 A,B 各包含 50 亿个元素,每个元素占用 64B。当内存使用被限制在 $4 \times 10^9 B$ 时,设计恰当的方案计算集合 A 和 B 的交集,并分析方案的误差.
- 四. (本题满分 10 分.)
- 11. 若存在四个网站 $A \times B \times C \times D$,其链接关系如图所示. 使用随机跳转参数 p=0.2 的改进版 PageRank 算法计算每个网站的 PageRank 值.

- 五. (本题满分 10 分.)
- 12. 使用 Flajolet-Martin 算法估算数据流 < 3, 1, 4, 1, 8, 2, 9 > 中不同元素的个数,使用哈希函数 $h_1(x) = (2x+1) mod 16$ 和 $h_2(x) = (4x) mod 16$. 请给出算法运行结果.