Project Design Phase-II Solution Requirements (Functional & Non-functional)

Date	03 October 2022		
Team ID	PNT2022TMID19938		
Project Name	Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation.		
Maximum Marks			

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through gmail
		Registration through mobile number.
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP.

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional	Description
No.	Requirement	
NFR-	Usability	Our main target are heart specialists(cardiologist), medical labs. Our
1		software is used by our customers in an easy manner.
NFR-	Security	The ECG images are encrypted. Our Application is secured using various
2		layers of firewall. Only the Authorized person can able to access the images.
NFR-	Reliability	We achieved a state-of-the-art average classification accuracy of 99.11%,
3		which is better than those of recently reported results in classifying similar
		types of arrhythmias.
NFR-	Performance	The performance is significant in other indices as well, including sensitivity
4		and specificity, which indicates the success of the proposed method.
NFR-	Availability	Our Software is available 24*7 for registered authentic users. The images
5		are only available to the authorized Medical Specialists.
NFR-	Scalability	We proposed a 2-D CNN-based classification model for automatic
6		classification of cardiac arrhythmias using ECG signals. An accurate taxonomy
		of ECG signals is extremely helpful in the prevention and diagnosis of CVDs.
		Deep CNN has proven useful in enhancing the accuracy of diagnosis
		algorithms in the fusion of medicine and modern machine learning
		technologies. Using 2-D images, can classify eight kinds of arrhythmia,

namely, NOR, VFW, PVC, VEB, RBB, LBB, PAB, and APC, and it achieved 97.91% average sensitivity, 99.61% specificity, 99.11% average accuracy, and 98.59% positive predictive value (precision). These results indicate that the prediction and classification of arrhythmia with 2-D ECG representation as spectrograms and the CNN model is a reliable operative technique in the diagnosis of CVDs. The proposed scheme can help experts diagnose CVDs by referring to the automated classification of ECG signals. The present research uses only a single-lead ECG signal. The effect of multiple lead ECG data to further improve experimental cases will be studied in future work.