Gestion des données

Cours 7 – Calcul distribué avec Spark

Olivier Schwander <olivier.schwander@sorbonne-universite.fr>

2021-2022

Clusters de calcul classiques

Simulation numérique

- Par exemple: météo, climat
- Des équations différentielles
- Des conditions aux limites
- Décomposition en éléments finis

Calcul distribué

- Beaucoup de calculs
- Relativement peu de transferts

Architecture physique

► Tout le monde peut parler à tout le monde

Architecture logique

Cas général

► Tout le monde parle à tout le monde

Souvent

- ► Nœuds de stockage: pas de communication
- ▶ Nœuds de calcul: communication seulement avec les voisins

Avantage

Modèle de calcul générique

Difficile à programmer

Sûreté du calcul

- Éviter deux écritures simultanées au même endroit
- Garantir qu'une donnée a été écrite complètement avant d'essayer de la lire

Données

- Minimiser les transferts
- Données loin du calcul

Problème fondamental

La taille des données augmente plus vite que la vitesse des transfert

Simplification

Limiter la puissance du modèle

Seulement certains types de programmes parallèles

Rapprocher les données

- Données stockées sur les nœuds de calcul
- Chaque nœud travaille sur ses données

MapReduce

Map

Fonction appelée à toutes les entrées du jeu de donnée

Reduce

Calcul d'une valeur globale

Plus simple

- ► Seulement deux opérations à écrire
- Pas besoin de connaissances en parallélisme

Map

Reduce

MapReduce complet

Avantages

Robustesse: réplication des données

- ▶ Même information sur plusieurs nœuds
- ► Pas de perte en cas de panne
- ► Tolérance à un certain nombre de défaillances

Transfert: localité

- ► Traitement des données locales
- Copies pendant la réduction

MapReduce

Facile

► Programmation parallèle plus facile et plus sûre

Mais...

- Besoin d'une version MapReduce des méthodes
- ► Traitement par lots (batch processing)

Souvent

- ► Besoin d'un enchaînement de MapReduce
- Écriture sur le disque des résultats intermédiaires

Retour vers le passé

Chacun fait son système de parallélisme dans son coin.

Retour vers le futur

Généraliser MapReduce

- ▶ Plus de programmes
- Plus de styles de programmation

Travailler en mémoire

- ► Éviter les écritures sur le disque
- Stocker tous les résultats intermédiaires dans la mémoire

Spark

Traitements

- ► Par lots
- Interactifs
- Temps réel
- Stockage distribué

Haut niveau

- ► Moins besoin de se forcer à passer en MapReduce
- Plus de constructions

Principes

Description d'un calcul

- ► Enchaînement de *transformations*
- ► Résultats intermédiaires en mémoire

À la fin

- Évaluation de tout le bloc de calcul
- En parallèle
- Stockage permanent du résultat

Resilient Distributed Datasets (RDDs)

Collection d'éléments

- Stockée de façon distribuée
- ► Calculée et recalculée à la demande, en fonction des besoins

Sources

- Données chargées depuis le HDFS
- Résultat intermédiaire d'un calcul

Propriété

- ► En mémoire
- Cache sur le disque possible
- ► Immutable
- Parallélisé

Transformations et actions

Transformation

- ightharpoonup RRD
 ightharpoonup RRD
- ► Pas calculé immédiatement

Action

- ► RRD → résultat concret
- ► Déclenche le calcul

Description d'un calcul

Séquence d'opérations

- ► Optmisation à la volée
- ► Recalcul si nécessaire

Exemples de tranformations

map(fonction)	Applique une fonction sur un RRD
filter(fonction)	Filtre un RRD
flatMap(fonction)	Applique une fonction et aplatit le résultat
<pre>sample(entier)</pre>	Échantillonage aléatoire
union(rrd)	Fusion de deux RRD
<pre>groupByKey()</pre>	Regroupe les valeurs associées à la même clé
reduceByKey(fonction)	Réduction clé par clé
sortByKey()	Tri
join(rrd)	$((k,v), (k,w)) \rightarrow (k,(v,w))$
cartesian(rrd)	Produit cartésien

Exemples d'actions

reduce(fonction) Réduction globale

collect() Récupère une valeur concrète

count(entier) Comptage

first() Premier élément

take(entier) n premiers éléments

saveAsTextFile(fichier) Écriture

foreach(fonction) Application d'une fonction

Autres opérations

Cache

- ► En mémoire, sur disque
- ► Pour réutiliser des RRD

Bases de données

- Pseudo-relationnel
- Pseudo-SQL

WordCount

Pas encore de calcul

```
>>> wc
PythonRDD[36] at RDD at PythonRDD.scala:43
```

Calcul abstrait

- ▶ wc est un RRD
- La description d'un calcul
- Des données qu'on peut transformer

Calcul effectif

```
>>> result = wc.collect()
16/02/17 14:32:31 INFO SparkContext: Starting job: collect at <stdin>:1
16/02/17 14:32:31 INFO DAGScheduler: Registering RDD 33 (reduceByKey at
16/02/17 14:32:31 INFO DAGScheduler: Got job 8 (collect at <stdin>:1) w
16/02/17 14:32:31 INFO DAGScheduler: Final stage: ResultStage 13 (collect collect co
```

Résultat

```
>>> result [(u'', 67), (u'when', 1) ...]
```

Apprentissage avec MLLib

Tâches

- ► Classification (SVM, régression logistique, forêts aléatoires,...)
- Régréssion
- ▶ Non-supervisé (k-means)
- ► Recommandation
- Réduction de dimension (PCA, SVD)

Parallèlisme

Seulement les méthodes adaptatées pour un cluster.

Quelques import

from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.classification import NaiveBayes

Chargement des données et découpage

Mise en forme: train

Entraînement et évaluation