Math 435 09/15/2025 Notes

September 15, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Review

Lemma 1. Let (X, \mathcal{U}) be a topological space. If a collection $\mathscr{C} \subseteq \mathcal{U}$ satisfies the following,

$$\forall U \in \mathscr{U} \text{ and } x \in U, \text{ there exists } C \in \mathscr{C} \text{ st. } x \in C \subseteq U,$$
 (1)

then \mathscr{C} is a basis that generates \mathscr{U} .

Today

• Subspace Topology

Definition 1. Given topological spaces X and Y, the product topology on $X \times Y$ is generated by the basis

$$\{U \times V \mid U \stackrel{\circ}{\subset} X, V \stackrel{\circ}{\subset} Y\}. \tag{2}$$

Theorem 1. If \mathscr{B} is a basis for a topology on X and \mathscr{D} is a basis for a topology on Y, then

$$\mathscr{C} = \{\mathscr{B} \times D \mid B \in \mathscr{B}, D \in \mathscr{D}\}$$
(3)

is a basis for the product topology on $X \times Y$.

Proof: (Use Lemma 1). Let W be an open set in $X \times Y$ and let $x \times y \in X \times Y$. Punt to exercise.

Definition 2. Let (X, \mathcal{U}) be a topological space and let $Y \subseteq X$, (not necessarily open). The collection

$$\mathscr{U}_Y = \{ Y \cap U \mid U \in \mathscr{U} \} \tag{4}$$

is a topology on Y. (This is called the subspace topology).

Proof (\mathscr{U}_Y is a Topology on Y): For part 1, since \mathscr{U} is a topology, $\emptyset \in \mathscr{U}$ implies $Y \cap \emptyset = \emptyset \in \mathscr{U}_Y$. Similarly, since $X \in \mathscr{U}$ then $Y = Y \cap X \in \mathscr{U}_Y$. Part 2 is satisfied by DeMorgan's laws: given an arbitrary collection of sets, $\{Y \cap U\}_{\alpha}$, we have $Y \cap U_{\alpha} = (Y \cap U)_{\alpha}$ where each $U_{\alpha} \stackrel{\circ}{\subset} X$. Then

$$\bigcup_{\alpha} (Y \cap U)\alpha = \bigcup_{\alpha} (Y \cap U_{\alpha}) = Y \cap (\bigcup_{\alpha} U_{\alpha}\alpha).$$
 (5)

Finally, for part 3, it works out similarly. Punt to exercise.

Lemma 2. If \mathcal{B} is a basis for the topology on X, then

$$\{Y \cap B \mid B \in \mathscr{B}\}\tag{6}$$

is a basis for the subspace topology.

Proof: Given $U \stackrel{\circ}{\subset} X$ and $y \in Y \cap U$, we can choose $B \in \mathcal{B}$ such that $y \in B \subseteq U$, since \mathcal{B} is a basis. Thus, $y \in Y \cap \mathcal{B} \subseteq Y \cap U$ and the claim follows by Lemma 1.

What about closed sets?

Definition 3. Given a topological space, (X, \mathcal{U}) , a set $V \subseteq X$ is closed if $V = X \setminus U$ for some $U \in \mathcal{U}$.

Example 1. Consider $Y = [0,1] \cup (2,3)$ with the subspace topology coming from the standard topology on the **ambient space**, \mathbb{R} . [0,1] is open in Y (but not in the standard topology on \mathbb{R}) since

$$[0,1] = Y \cap (-1,\frac{3}{2}) \stackrel{\circ}{\subset} \mathbb{R}. \tag{7}$$

Similarly, (2,3) is open in both Y and \mathbb{R} since

$$(2,3) = Y \cap (2,3) \stackrel{\circ}{\subset} \mathbb{R} \tag{8}$$

is also open.

Notably, [0,1] and (2,3) are also both closed, since they are complements of each other in Y.