REALTEK Interview Presentation

• Interviewee: 陳文遠

• Position: Audio系統設計工程師 (預聘_110年度應屆畢業)

• **Date**: October 19, 2020

INTRODUCTION

ABOUT

EDUCATION

	National Tsing Hua University (GPA 4.08)	Hsinchu, Taiwan
	Institute of Communications Engineering (MS)	Sep. 2019 – Present

Feng Chia University
Department of Communications Engineering (BS)

Taichung, Taiwan
Sep. 2014 – Jan. 2019

ACADEMIC EXPERIENCE

1. 2018	National University Competition of Python	Certified
2. 2017	IMP 2017 Conference	Publish
3. 2017	Independent Study Competition	Honorable Mention Award

SKILLS

WHAT I HAVE DONE		
Skills	Tools	
Website and Server Develop	Node.js(Server), HTML, Javascript, CSS	
Computer Vision	C++(or Python) with OpenCV	
Network Programming	C language	
Embedded System Development	C(or Python) with Raspberry PI	
Communication Simulation	Matlab	
Blockchain Technology	Go lang with Hyperledger	
Linux (UNIX) Operation	Basic operation	

PROJECT

PURPOSE

☐ Provide VoIP phone call monitoring and management service to user.

ARCHITECTURE

METHOD

■ ARP Spoofing

FLOWCHART

RESULTS

網路電話監控平台 ■資料庫 ▲使用者D0349119 C+登出 ◎掃描網域 192.168.43.1/24 PORT 5060 網域掃描結果 **■192.168.43.1:5060 ■192.168.43.236:5060** 土下載音訊 語音辨識結果 哈囉你好我正在做專題測試聽到請回答 (3)▲下載辨識文本 選擇語言 中文(台灣)

Fig 1. Login page

Fig 2. Monitoring page

RESULTS

Fig 3. Management page

2) Blockchain Traceability System with HyperQL

What's Blockchain?

- Blockchain is a kind of decentralized database.
- **□** Advantage of blockchain technology:

Blockchain has immutable property that keep data secure.

☐ Disadvantage of blockchain technology :

Query data from the blockchain ledger is complex and slow.

PURPOSE

☐ Create a blockchain-based IoT system and propose an architecture, named "HyperQL", to speed up the query speed.

ARCHITECTURE

METHOD

METHOD

ISSUES

□ Advantage :

Query data from the database is nearly 50 times faster than query from blockchain.

□ Disadvantage:

The data in the database is not immutable.

□ Future work:

Design an algorithm to efficiently synchronize the data in blockchain and database. With this, we can keep the data secure while having faster query speed.

(3) Convex Hull Algorithm

(3) Convex Hull Algorithm

PURPOSE

□ Can be applied to some fields such as image processing.

METHOD

My way of thinking:

- 1. Find the bottom-left point first.
- 2. Iterate the others from left to right to find the point that can form the smallest slope.
- 3. If the same slope occurs, take the longer one.
- 4. Do step 1 2 3 until reaching the far right
- 5. Then do the same thing from right to left.

(3) Convex Hull Algorithm (Cont.)

ANALYZE

□ Time Complexity:

Since we need to use double loop to iterate all the points, the time complexity is $O(n^2)$.

□ Space Complexity:

We don't need any additional space to store all the points, so the space complexity is O(1)

□ Discuss:

Although the time complexity is $O(n^2)$, but we don't have to sort all the points first.

(3) Convex Hull Algorithm (Cont.)

RESULTS


```
yuan@yuan-VirtualBox: ~/Algorithm
        at java.awt.EventQueue$3.run(EventQueue.java:709)
        at java.awt.EventQueue$3.run(EventQueue.java:703)
        at java.security.AccessController.doPrivileged(Nat
        at java.security.ProtectionDomain$JavaSecurityAcce
rivilege(ProtectionDomain.java:80)
        at java.security.ProtectionDomain$JavaSecurityAcce
rivilege(ProtectionDomain.java:90)
        at java.awt.EventQueue$4.run(EventQueue.java:731)
        at java.awt.EventQueue$4.run(EventQueue.java:729)
        at java.security.AccessController.doPrivileged(Nat
        at java.security.ProtectionDomain$JavaSecurityAcce
rivilege(ProtectionDomain.java:80)
        at java.awt.EventQueue.dispatchEvent(EventQueue.ja
        at java.awt.EventDispatchThread.pumpOneEventForFil
ad.java:201)
        at java.awt.EventDispatchThread.pumpEventsForFilte
java:116)
        at java.awt.EventDispatchThread.pumpEventsForHiera
ad.java:105)
        at java.awt.EventDispatchThread.pumpEvents(EventDi
        at java.awt.EventDispatchThread.pumpEvents(EventDi
        at java.awt.EventDispatchThread.run(EventDispatchT
處理了500個點,耗費了 0.005000 秒
```

(4) Simple TCP Communication (IPv4)

(4) Simple TCP Communication (IPv4)

PURPOSE

□ Implement TCP message communication using select() in C language.

ISSUES

24

(4) Simple TCP Communication (IPv4) (Cont.)

METHOD

□ Server uses select() function (Non-blocking):

select() function privileges you to monitor multiple file descriptors at the same time.

☐ Client uses multi-thread (Non-blocking)

The thread is in charge of reading data which created by pthread_create(). The main process is in charge of writing data.

□ Handle SIGPIPE signal

If a Client is disconnected, but the Server keeps sending data to the client, it will cause **SIGPIPE** signal produced.

(4) Simple TCP Communication (IPv4) (Cont.)

ARCHITECTURE

(4) Simple TCP Communication (IPv4) (Cont.)

RESULTS

□ Server :

```
chris@chris-X553MA: ~/G...etworkProgramming/hw
File Edit Tabs Help
chris@chris-X553MA:~/Github/NetworkProgramming/hw4$ ./server
New connection from 127.0.0.1 on socket 4
New connection from 127.0.0.1 on socket 5
Hello, I'm Server
Hello, I'm Server
I'm client1, nice to meet you
nice to meet you, too. I'm client2
Time Out...
```

☐ Client 1 :

```
chris@chris-X553MA: ~...orkProgramming/hw4 -
File Edit Tabs Help

chris@chris-X553MA: ~/Github/NetworkProgramming/hw4$ ./client
Hello, I'm Server
I'm client1, nice to meet you
nice to meet you, too. I'm client2
```

☐ Client 2 :

```
chris@chris-X553MA: ~...orkProgramming/hw4 —
File Edit Tabs Help
chris@chris-X553MA: ~/Github/NetworkProgramming/hw4$ ./client
Hello, I'm Server
I'm client1, nice to meet you
nice to meet you, too. I'm client2
```

(5) Simple LED Driver on RPI

(5) Simple LED Driver on RPI

PURPOSE

☐ Create a simple device driver on RPI.

DRIVER

☐ In first step, we have to initial the kernel module.

```
static int hello_init(void) {
    misc_register(&misc);
    printk(DEVICE_NAME" initialized\n");
    return SUCCESS;
}
```

```
static struct miscdevice misc = {
   .minor = MISC_DYNAMIC_MINOR,
   .name = DEVICE_NAME,
   .fops = &fops,
};
```

```
static struct file_operations fops = {
    .owner = THIS_MODULE,
    .read = device_read,
    .write = device_write,
    .open = device_open,
    .release = device_release,
};
```

(5) Simple LED Driver on RPI (Cont.)

ARCHITECTURE

(5) Simple LED Driver on RPI (Cont.)

RESULTS

Thank you for your time!