

<u>Inbox</u>

 \leftarrow

Home

Modules

Grades

Discussions Ø

QClass 24/25 QKD Homework 2: Quantum Characteristics leading to BB84

Last Attempt Details:

Time:

Current

Kept Score:

your scores)

2 More Attempts available

Take the Quiz Again
(Will keep the highest of all

Score:

25

10

10

minutes

8 out of

8 out of

Due Dec 23 at 3:59am Points 10 Questions 10

Available until Dec 23 at 3:59am Time Limit 60 Minutes

Allowed Attempts 3

Take the Quiz Again

Attempt History

	Attempt	Time	Score	
LATEST	Attempt 1	25 minutes	8 out of 10	

(!) Answers will be shown after your last attempt

Score for this attempt: **8** out of 10 Submitted Dec 22 at 9:13pm This attempt took 25 minutes.

Asja and Balvis pair up their bits by agreed random permutation. BB84 is secure only if this random permutation is kept secret. True False

Question 2 $\begin{array}{c} 1/1 \, \mathrm{pts} \\ \\ \text{If a state } |\psi\rangle = \frac{1}{\sqrt{3}} |0\rangle + \sqrt{\frac{2}{3}} |1 \rangle \text{ measured in Z-basis} \\ \{|0\rangle, |1\rangle, \text{ then measurement results in} \\ \\ \hline \\ \text{state } |0\rangle \text{ with probability 1/3 and state } |1\rangle \text{ with probability} \\ \\ \text{State } |+\rangle = 1/\sqrt{2}(|0\rangle + |1\rangle) \\ \\ \text{State } |1\rangle \text{ always} \\ \\ \text{State } |0\rangle \text{ always} \\ \\ \end{array}$

Question 3 1 / 1 pts

Question 4 In BB84 protocol, Alice can save the resources and send the basis information, together with the corresponding qubit through quantum channel. The protocol will become insecure remain secure

Complete the following code to apply X-gates if bit is equal to 1. qreg = QuantumRegister(8) creg = ClassicalRegister(8) asja = QuantumCircuit(qreg, creg, name='Asja') for i, n in enumerate(send): if n==1: #YOUR CODE HERE# Make sure to enter the answer as per the correct syntax.

Knowing how to clone a state $|0\rangle$ we can clone

 $|1\rangle$

$$\odot \frac{1}{\sqrt{2}}(\ket{0}+\ket{1})$$

$$\bigcirc \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

$$\bigcirc a |0\rangle + b |1\rangle$$

Incorrect

Question 8

0 / 1 pts

Following is the code to generate a random string of 8 bits.

```
send=[]
for i in range(8):
   bit = #YOUR CODE HERE#
   send.append(bit)
```

Complete the code and make sure to enter the answer as per the correct syntax.

random.randint(0, 1)

Question 9

1 / 1 pts

Complete the code below to perform a measurement.

```
balvis = QuantumCircuit(qreg, creg, name='Balvis')
SendState(asja, balvis, 'Asja')
#YOUR CODE HERE#
```

Make sure to enter the answer as per the correct syntax.

balvis.measure(qreg, creg)

Question 10

1 / 1 pts

ZX gate applied on state $|+\rangle$ results in

 $|-\rangle$

$$\bigcirc \frac{1}{\sqrt{2}}(\ket{+}-\ket{-})$$

$$0 \frac{1}{\sqrt{2}}(\ket{+} + \ket{-})$$

○ |+⟩

117

Quiz Score: 8 out of 10

◆ Previous
Next ▶