derivations

July 8, 2022

1 Derivations for calculating the sample-to-detector distance from a calibration sample diffraction image

1.1 Definitions

Define q_n as

$$q_n = \frac{4\pi \sin \theta_n}{\lambda},\tag{1}$$

where θ_n refers to the n^{th} -order Bragg peak, q_n is the wavelength-agnostic peak location, and the units of q_n and λ are inverse of each other.

We also have a triangle from our sample to the nth order peak on the detector, giving the relation

$$\tan 2\tilde{\theta}_n = \frac{\tilde{r}_n}{L},\tag{2}$$

where \tilde{r}_n is the location of the nth order peak and L is the sample-to-detector distance. The units of \tilde{r}_n and L must match. We use inverse Angstroms for q_n units.

1.2 Derivations

The goal is to obtain an expression for L, the sample-to-detector distance.

Solve for θ in the expression for q_n above:

$$\theta_n = \sin^{-1} \frac{q_n \lambda}{4\pi} \tag{3}$$

Now make the assumption that our calibration sample is good and set $\tilde{\theta}_n = \theta_n$, in the second equation above, yielding

$$\frac{\tilde{r}_n}{L} = \tan 2\theta_n = \tan \left[2\sin^{-1} \left[\frac{q_n \lambda}{4\pi} \right] \right] \tag{4}$$

1.3 Linear regression

Given $\tilde{r_n}$, we need L to be able to calculate \tilde{q}_n . Since we have N measurements, \tilde{r}_n for n=1,...,N, we can have y=mx, where $y=\tan 2\theta_n$, and $x=\tilde{r}_n$, and m=1/L.