Análise Preditiva de Cogumelos Comestíveis e Venenosos

Bruno Castro Tomaz¹, Tomás Fiorelli Barbosa¹

¹Faculdade de Computação e Informática — Universidade Presbiteriana Mackenzie Rua da Consolação, 930 — Consolação — 01302 — 907 — São Paulo — SP — Brazil

10389988@mackenzista.com.br, 10395687@mackenzista.com.br

Resumo. Este artigo descreve os resultados obtidos após a realização de análise preditiva, utilizando algoritmos de aprendizagem de máquina Supervisionados, em um conjunto de dados com informações a respeito de cogumelos – formato, coloração, tamanhos e entre outros. O objetivo da análise é prever quais cogumelos são comestíveis e quais são venenosos (classes preditas).

1. Introdução

a) Contextualização

A classificação de cogumelos entre comestíveis e venenosos é um problema de grande relevância para a segurança alimentar e a saúde pública. Há mais de 10 mil espécies de cogumelos conhecidas, das quais algumas são altamente tóxicas e podem causar sérios riscos à saúde humana. O reconhecimento manual de espécies comestíveis requer conhecimentos especializados, e erros podem ser fatais. Nesse cenário, o uso de tecnologias de machine learning (ML) se mostra uma alternativa promissora, possibilitando a automatização e a aceleração desse processo de identificação. Utilizando um dataset estruturado contendo características físicas de cogumelos, como cor, formato, tamanho, entre outros, pode-se construir modelos preditivos capazes de identificar automaticamente se um cogumelo é venenoso ou seguro para consumo.

b) Justificativa

O uso de algoritmos de aprendizado supervisionado para classificação de cogumelos se justifica pela capacidade dessas técnicas de lidar com grandes volumes de dados e gerar predições com alta precisão, auxiliando na detecção de padrões não triviais. A aplicação de machine learning em áreas biológicas, como a micologia, oferece não apenas benefícios práticos imediatos, como a redução do risco de intoxicações, mas também a oportunidade de explorar novos modelos preditivos que possam ser aplicados a outras áreas da biologia. Além disso, a automação deste processo diminui a dependência de especialistas, tornando a identificação de cogumelos comestíveis acessível a um público mais amplo.

c) Objetivo

O objetivo deste trabalho é aplicar algoritmos de machine learning supervisionado em um dataset de cogumelos, com o intuito de desenvolver modelos capazes de prever, com alta precisão, se um cogumelo é comestível ou venenoso. Pretende-se comparar diferentes algoritmos supervisionados (como árvores de decisão, k-Nearest Neighbors, e Random Forest) para identificar qual deles apresenta o melhor desempenho no problema de classificação. O foco será em métricas de acurácia, precisão e recall, de modo a garantir a robustez do modelo na identificação correta das classes.

d) Opção Escolhida

A opção escolhida para nosso projeto é "Opção Framework".

2. Descrição do Problema

O problema abordado neste projeto consiste em prever se um cogumelo é comestível ou venenoso com base em suas características físicas e sensoriais. Para essa tarefa, foi utilizado o dataset "Mushroom Overload" disponível no Kaggle, que contém informações detalhadas de 21 variáveis sobre cogumelos, incluindo aspectos como formato do chapéu, superfície do chapéu, cor do chapéu e entre outras características físicas.

Os principais desafios do problema de classificação incluem:

- 1. Multidimensionalidade: o dataset possui várias características categóricas, algumas com muitos valores distintos. A escolha do método de codificação adequado para essas variáveis é essencial para a construção de modelos eficazes.
- 2. Correlação entre características: algumas variáveis podem estar fortemente correlacionadas, o que pode impactar o desempenho dos algoritmos de aprendizado de máquina, criando a necessidade de técnicas de seleção de características.
- 3. Desequilíbrio de classes: embora o dataset seja balanceado em termos de número de amostras comestíveis e venenosas, garantir a precisão do modelo tanto para cogumelos comestíveis quanto para venenosos é essencial para evitar falsos negativos, que poderiam levar a graves consequências de saúde.
- 4. Interpretação de resultados: além da precisão, é importante que o modelo seja interpretável, dado que o objetivo é fornecer uma ferramenta confiável para auxiliar na identificação de cogumelos potencialmente perigosos.

3. Descrição do Dataset

O dataset é composto por mais de 6 milhões de amostras, sendo que cada amostra representa uma observação de cogumelo, categorizada como comestível (edible) ou venenoso (poisonous). As variáveis do dataset são majoritariamente categóricas, descritas por rótulos que codificam diferentes propriedades de cada cogumelo. A classe alvo para predição é a variável que indica se o cogumelo é comestível ou venenoso, sendo representada por um rótulo binário.

A seguir, uma explicação detalhada de cada campo/coluna do dataset:

```
n = categórico \mid m = numérico
```

- 1. cap-diameter (m): número decimal em cm
- 2. **cap-shape (n)**: sino=b, cônico=c, convexo=x, plano=f, afundado=s, esférico=p, outros=o
- 3. **cap-surface (n)**: f fibroso=i, sulcos=g, escamoso=y, liso=s, seco=d, brilhante=h, coriáceo=l, sedoso=k, pegajoso=t, enrugado=w, carnoso=e
- 4. **cap-color** (**n**): marrom=n, bege=b, cinza=g, verde=r, rosa=p, roxo=u, vermelho=e, branco=w, amarelo=y, azul=l, laranja=o, preto=k
- 5. **does-bruise-bleed (n)**: machuca-ou-sangra=t, não=f
- 6. gill-attachment (n): aderida=a, anexada=x, decorrente=d, livre=e, sinuada=s,

- poros=p, nenhuma=f, desconhecido=?
- 7. **gill-spacing (n)**: próxima=c, distante=d, nenhuma=f
- 8. **gill-color (n)**: cor-do-chapéu + nenhuma=f
- 9. stem-height (m): número decimal em cm
- 10. stem-width (m): número decimal em mm
- 11. **stem-root (n)**: bulboso=b, inchado=s, em-clava=c, em-copo=u, igual=e, rizomorfos=z, enraizado=r
- 12. **stem-surface (n)**: superfície-do-chapéu + nenhuma=f
- 13. **stem-color (n)**: cor-do-chapéu + nenhuma=f
- 14. veil-type (n): parcial=p, universal=u
- 15. **veil-color (n)**: cor-do-chapéu + nenhuma=f
- 16. **has-ring (n)**: anel=t, nenhum=f
- 17. **ring-type (n)**: em-teia=c, evanescente=e, esvoaçante=r, sulcado=g, grande=l, pendente=p, envolvente=s, em-zona=z, escamoso=y, móvel=m, nenhum=f, desconhecido=?
- 18. spore-print-color (n): cor do chapeú
- 19. **habitat (n)**: gramados=g, folhas=l, campos=m, caminhos=p, charnecas=h, urbano=u, resíduos=w, bosques=d
- 20. season (n): primavera=s, verão=u, outono=a, inverno=w
- 21. class (n): e=comestível, p=venenoso

Para o desenvolvimento da primeira parte deste trabalho, foram utilizadas as seguintes bibliotecas no ambiente Jupyter Notebook:

```
2.1.1 <numpy>
2.2.2 <pandas>
1.5.2 <scikit-learn>
0.13.2 <seaborn>
0.14.3 <statsmodels>
3.9.2 <matplotlib>
```

Como descrito anteriormente, as variáveis presentes neste *dataset* são principalmente categóricas e, conforme a imagem abaixo, foi utilizado o comando *dtypes* para fazer essa identificação através do código:

mushroom_class	object
cap_diameter	float64
cap_shape	object
cap_surface	object
cap_color	object
does_bruise_or_bleed	object
gill_attachment	object
gill_spacing	object
gill_color	object
stem_height	float64
stem_width	float64
stem_root	object
stem_surface	object
stem_color	object
veil_type	object
veil_color	object
has_ring	object
ring_type	object
spore_print_color	object
habitat	object
season	object
dtype: object	

Quanto a remoção de atributos desnecessários e linhas problemáticas, incialmente, utilizou-se do comando *isnull* para verificarmos a presença de valores nulos em cada coluna, e pudemos perceber que algumas delas apresentaram um número elevado de dados omitidos (quase 75% para uma única coluna, por exemplo). Além disso, olhando a descrição dos atributos, foi identificado a repetição da coloração do cogumelo em diversas partes (*gill_color* e *stem_color* são atributos baseados em *cap_color* e, portanto, também foram removidas. Outro valor que foi interpretado pelo grupo como inconsistente foi a presença de uma única linha com *stem_width* (largura do caule) possuia tamanho negativo.

	cap_diameter	stem_height	stem_width
count	6.723116e+06	6.723116e+06	6.723116e+06
mean	6.792650e+00	6.697878e+00	1.236342e+01
std	5.279232e+00	3.300607e+00	9.967683e+00
min	2.200000e-01	0.000000e+00	-6.400000e-01
25%	3.520000e+00	4.710000e+00	5.470000e+00
50%	5.960000e+00	6.010000e+00	1.039000e+01
75%	8.600000e+00	7.790000e+00	1.672000e+01
max	6.689000e+01	3.770000e+01	1.186800e+02

mushroom_class	9
cap_diameter	0
cap_shape	9
cap_surface	1579337
cap_color	9
does_bruise_or_bleed	9
gill_attachment	1066721
gill_spacing	2800709
gill_color	0
stem_height	0
stem_width	0
stem_root	5763499
stem_surface	4263506
stem_color	0
veil_type	6367343
veil_color	5893024
has_ring	0
ring_type	276729
spore_print_color	6049365
habitat	0
season	0
dtype: int64	

Após a remoção desses dados, realizou-se a codificação das variáveis categóricas em numéricas através do método *One-Hot Enconding*, transformando os 10 atributos iniciais (incluindo o alvo) em 33 atributos. Com isso, foi obtido um mapa de calor (OBS: por possuir muitas variáveis, é recomendável abrir o arquivo de imagem salvo ao executar o código - *mushroom_onehotenconding.png*.

A partir deste ponto, obteve-se os resultados gerados a partir da criação dos modelos de predição por regressão linear e logística. Contudo, não foram obtidos valores satisfatórios para o desenvolvimento de um modelo aceitável, pois, para ambos, a métrica R^2 obteve um resultado muito baixo.

Regressão Linear | R^2 e R^2 -ajustado = 0.158

	· · · · · · · · · · · · · · · · · · ·						
1	OLS Regression Results						
2				=======			
3	Dep. Variable:	mushroom_class_p	R-squared:		0.158		
4	Model:	OLS	Adj. R-square	d:	0.158		
5	Method:	Least Squares	F-statistic:		4.071e+04		
6	Date:	Sun, 29 Sep 2024	Prob (F-stati	stic):	0.00		
7	Time:	21:14:40	Log-Likelihoo	d:	-4.2710e+06		
8	No. Observations:	6723115	AIC:		8.542e+06		
9	Df Residuals:	6723083	BIC:		8.543e+06		
10	Df Model:	31	520.		013136100		
11	Covariance Type:	nonrobust					
12							
13			ef std err	t	P> t	[0.025	0.975]
14			er stu err		PZICI	[0.023	0.5/5]
	T-4	Α	16 0 001	300.000	0.000	0 570	0.504
15	Intercept	0.58		399.066	0.000	0.579	0.584
16	cap_shape_c[T.True]	-0.18		-148.998	0.000	-0.182	-0.178
17	cap_shape_f[T.True]	-0.22		-307.424	0.000	-0.224	-0.221
18	cap_shape_o[T.True]	0.01		8.781	0.000	0.008	0.013
19	cap_shape_p[T.True]	-0.21		-198.697	0.000	-0.216	-0.211
20	cap_shape_s[T.True]	-0.23		-278.923	0.000	-0.241	-0.237
21	cap_shape_x[T.True]	-0.24		-365.493	0.000	-0.247	-0.245
22	<pre>cap_color_e[T.True]</pre>	0.54		377.636	0.000	0.539	0.545
23	<pre>cap_color_g[T.True]</pre>	0.17	78 0.001	123.658	0.000	0.175	0.181
24	<pre>cap_color_k[T.True]</pre>	0.30	45 0.002	171.714	0.000	0.301	0.308
25	<pre>cap_color_1[T.True]</pre>	0.16	03 0.002	81.900	0.000	0.156	0.164
26	<pre>cap_color_n[T.True]</pre>	0.23	32 0.001	180.220	0.000	0.231	0.236
27	<pre>cap_color_o[T.True]</pre>	0.44	0.001	301.846	0.000	0.438	0.444
28	<pre>cap_color_p[T.True]</pre>	0.48	69 0.002	295.515	0.000	0.484	0.490
29	<pre>cap_color_r[T.True]</pre>	0.60	0.002	367.837	0.000	0.597	0.603
30	<pre>cap_color_u[T.True]</pre>	0.38	86 0.002	238.194	0.000	0.385	0.392
31	cap_color_w[T.True]	0.22	01 0.001	160.803	0.000	0.217	0.223
32	<pre>cap_color_y[T.True]</pre>	0.30	61 0.001	226.843	0.000	0.303	0.309
33	does_bruise_or_bleed	t[T.True] 0.01	53 0.001	29.953	0.000	0.014	0.016
34	has_ring_t[T.True]	0.10	33 0.000	224.742	0.000	0.102	0.104
35	habitat_g[T.True]	0.10		179.200	0.000	0.101	0.103
36	habitat_h[T.True]	0.07	36 0.001	72.859	0.000	0.072	0.076
37	habitat_1[T.True]	-0.06		-83.262	0.000	-0.070	-0.067
38	habitat_m[T.True]	-0.09		-108.212	0.000	-0.096	-0.092
39	habitat_p[T.True]	0.34		143.268	0.000	0.341	0.350
40	habitat_u[T.True]	-0.37		-92.374	0.000	-0.385	-0.369
41	habitat_w[T.True]	-0.56		-238.712	0.000	-0.570	-0.561
42	season_s[T.True]	-0.20		-226.923	0.000	-0.211	-0.208
43	season_u[T.True]	-0.20		-43.036	0.000	-0.211	-0.206
43						-0.017 -0.177	
	season_w[T.True]	-0.17		-264.489	0.000		-0.175
45	stem_height		69 6.99e-05			-0.007	-0.007
46	stem_width	-0.00			0.000	-0.006	-0.006
47					0.445		
48	Omnibus:	47164025.602			0.115		
49	Prob(Omnibus):		Jarque-Bera (JB):	604923.241		
50	Skew:		Prob(JB):		0.00		
51	Kurtosis:	1.549	Cond. No.		432.		
52	============		=========				
53							
54	Notes:						
55	[1] Standard Errors	assume that the cov	ariance matrix	of the erro	ors is correctl	y specifi	.ed.
56							

Regressão Logística | Pseudo R² = 0.1285

1		Logit Reg		n Results 				
3	Dep. Variable:	ushroom class		. Observatio		672311	== !C	
4	Model:	_crass_ Logi	•	Residuals:	JIIS.	672308		
5	Method:	Logi		Model:			31	
6		un, 29 Sep 202		eudo R-squ.:		0.128		
7	Time:	20:41:4		g-Likelihoo		-4.0351e+6		
8	converged:	Fals		-Null:	••	-4.6299e+6		
9	Covariance Type:	nonrobus		R p-value:		0.00		
10	======================================						,. :=======	
11			coef	std err	z	P> z	[0.025	0.975]
12								
13	Intercept	e	.4383	0.008	56.381	0.000	0.423	0.454
14	cap_shape_c[T.True]	-0	.9334	0.006	-157.998	0.000	-0.945	-0.922
15	cap_shape_f[T.True]	-1	.1126	0.004	-293.776	0.000	-1.120	-1.105
16	cap_shape_o[T.True]	e	.0219	0.006	3.620	0.000	0.010	0.034
17	cap_shape_p[T.True]	-1	.0659	0.005	-201.849	0.000	-1.076	-1.056
18	cap_shape_s[T.True]	-1	.1999	0.004	-274.979	0.000	-1.208	-1.191
19	cap_shape_x[T.True]	-1	.2237	0.004	-342.787	0.000	-1.231	-1.217
20	cap_color_e[T.True]	2	.5821	0.008	333.552	0.000	2.567	2.597
21	cap_color_g[T.True]	e	.8613	0.008	114.034	0.000	0.846	0.876
22	cap_color_k[T.True]	1	.4423	0.009	158.178	0.000	1.424	1.460
23	cap_color_l[T.True]	e	.7960	0.010	80.774	0.000	0.777	0.815
24	cap_color_n[T.True]	1	.1194	0.007	161.432	0.000	1.106	1.133
25	cap_color_o[T.True]	2	.0711	0.008	267.799	0.000	2.056	2.086
26	<pre>cap_color_p[T.True]</pre>		.2876	0.009	263.289	0.000	2.271	2.305
27	cap_color_r[T.True]		.1605	0.010	321.860	0.000	3.141	3.180
28	cap_color_u[T.True]		.8144	0.008	216.648	0.000	1.798	1.831
29	cap_color_w[T.True]		.0440	0.007	144.165	0.000	1.030	1.058
30	<pre>cap_color_y[T.True]</pre>		.4377	0.007	201.550	0.000	1.424	1.452
31	does_bruise_or_bleed_t		.0984	0.002	40.838	0.000	0.094	0.103
32	has_ring_t[T.True]		.4962	0.002	223.373	0.000	0.492	0.501
33	habitat_g[T.True]		.4812	0.003	173.356	0.000	0.476	0.487
34	habitat_h[T.True]		.3263	0.005	67.603	0.000	0.317	0.336
35	habitat_l[T.True]		.3202	0.004	-80.715	0.000	-0.328	-0.312
36	habitat_m[T.True]		.4395	0.004	-103.631	0.000	-0.448	-0.431
37	habitat_p[T.True]		.2376	63.609	0.287	0.774	-106.434	142.909
38	habitat_u[T.True]		.5452	319.552	-0.064	0.949	-646.856	605.766
39	habitat_w[T.True]		.7921	140.689	-0.148	0.883	-296.538	254.953
40	season_s[T.True]		.0029	0.004	-223.404	0.000	-1.012	-0.994
41	season_u[T.True]		.0872	0.002	-47.413	0.000	-0.091	-0.084
42	season_w[T.True]		.8362	0.003	-255.309	0.000	-0.843	-0.830
43	stem_height		.0325	0.000	-96.864	0.000	-0.033	-0.032
44	stem_width	-6	.0308	0.000	-258.267	0.000	-0.031	-0.031
45	=======================================		=====					
46								

4. Metodologia e Resultados

A solução proposta envolve a aplicação de diferentes algoritmos de machine learning supervisionado, como Árvore de Decisão, Random Forest, e K-Nearest Neighbors (K-NN), para construir modelos preditivos baseados nas características categóricas do dataset. Serão utilizados métodos de pré-processamento, como a codificação de variáveis categóricas e a análise de correlação entre essas variáveis, para garantir que o modelo consiga aprender padrões significativos e realizar predições precisas.

A avaliação dos modelos será feita utilizando técnicas métricas de desempenho como acurácia, precisão, recall e F1-score, para garantir que o modelo tenha um desempenho robusto e confiável, minimizando tanto falsos positivos quanto falsos negativos.

5. Referências e Bibliografia

WANDO, Bwando. "Mushroom Overload". Disponível em: https://www.kaggle.com/datasets/bwandowando/mushroom-overload. Acesso em: 27 de agosto de 2024.

O link acima faz referência a origem do dataset utilizado no projeto, com os dados em sua origem.

WAGNER, Dennis, Dominik H., Georges H, Patrick H. "Secondary Data". Disponível em: https://github.com/ghattab/secondarydata/ Acesso em: 28 de agosto de 2024.

O conjunto de dados primário contém descrições de 173 espécies de cogumelos como entradas. Ele pode ser usado para simular cogumelos hipotéticos. O conjunto de dados secundário é um produto de tal simulação e contém 61.069 cogumelos hipotéticos. Ele pode ser usado para classificação binária.