Labradoodle or Fried Chicken?

BY GROUP 6

TEAMMEMBERS:

An, Huilong Gacitua, Jaime Kim, Hayoung Zhuang, Sen Huang, Chenxi

Change on Feature Space

- * What we did on original SIFT feature?
 - ADD RGB (1000 features)
- Why we add RGB

Change on Feature Space

Where is chicken most probably placed? Maybe plates. Less likely sofa or grass.

How about the dog? Maybe grass, or lying on some body. Less likely plates.

Backgrounds might be helpful to separate a dog and a chicken!

Change on Feature Space

Result:

GBM with Depth:4, Bagging: 0.5, # of tree: 1000 and Learning rate: 0.001

SIFT Only

SIFT + RGB

33%

22.7%

Next: Quick Review on Methodology

Select a Classifier

Linear boundary and non-linear boundary

Should be careful!

Dimensionality problem (P >> N)

What we did?

PCA -> to project our data into PCs space

Comparison with same SVM parameters

SIFT Only

SIFT + RGB

26.01%

26.9%

Select a Classifier

? Is the information contained in the 2nd moment of data ENOUGH?

Maybe not.

Select a Classifier

Bayes Method

e.g. Naïve Bayes.

Don't need to care much about high-dimension

BUT: Independence assumption between the features? Not really meet. SIFT features are proportions!

Error rate: 41%

Boosting Method

e.g. Random Forest (bagging, boosting), GBM

No specific boundary shape. No strong assumption. Overfitting can be remedied by bagging and shrinkage.

Error rate: 8.9%

Models Comparison

Features	Algorithms	PCA	Parameters	Error Rate
SIFT	GBM	No	TreeDepth:3	32.2%
			ntree = 2000	
SIFT +	GBM	No	TreeDepth:3	21.4%
RGB			ntree = 2000	
SIFT +	GBM	Yes	TreeDepth:3	31.7%
RGB			ntree = 2500	
SIFT	SVM	No	Cost = 1	42%
			Gamma = 0.5	
SIFT	SVM	Yes	Cost = 1	26%
			Gamma = 0.5	
SIFT +	SVM	Yes	Cost = 1	20.75%
RGB			Gamma = 0.5	
SIFT	RF	No	ntree = 200	30%
SIFT	NB	No	Gaussian	41%
RGB	RF	No	ntree = 500	20.55%
RGB	SVM	No	Cost = 1	21.56%
			gamma = 0.5	
SIFT +	GBM	No	TreeDepth:11	8.9%
RGBPlus			ntree = 100	

Laptops: I need a rest

Final Result

Time to train: 401 s. To extract features: 164s.

<our's>Test Labels</our's>			<base/> Test Labels		
<true></true>	chicken	dog	chicken	dog	
chicken	179	15	133	77	
dog	21	185	67	123	

Potential Problem:

? How much can we trust cross-validation result?

Not precise!

e.g. 5-fold CV, the five folds are not independent!