9. előadás

FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 1.

Ebben a fejezetben valós-valós függvények határértékével és folytonosságával foglalkozunk.

Függvények határértéke 1.

A függvényhatárérték motivációja

Egy f függvény valamely $a \in \mathbb{R}$ pontbeli határértékével a függvénynek azt a tulajdonságát fogjuk precíz módon megfogalmazni, hogy "ha $x \neq a$ tetszőlegesen közel van a-hoz, akkor az f(x) függvényértékek tetszőlegesen közel vannak valamely $A \in \mathbb{R}$ értékhez". A szóban forgó tulajdonságot többek között a

$$\lim_{x \to a} f(x) = A$$

szimbólummal fogjuk jelölni, és azt mondjuk, hogy "az f függvény határértéke a-ban A-val egyenlő". Az $x \neq a$ feltétel **rendkívül fontos!** A függvényértékeket ti. az a-hoz közeli pontokban fogjuk vizsgálni független attól, hogy a függvény értelmezve van-e az a pontban, és ha igen, akkor mennyi ott a függvény értéke.

Tekintsük például az

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) := \begin{cases} x^2 & (x \neq 0) \\ 1 & (x = 0) \end{cases}$$

függvényt. A 0-tól különböző x pontokban a függvény az x^2 értéket veszi fel, ezért az a=0 pont közelében a függvényértékek akármilyen közel lehetnek a 0-hoz. Ez azt jelenti, hogy

$$\lim_{x \to 0} f(x) = 0.$$

Azonban $f(0) \neq 0$, azaz a 0 pontban a függvény értéke nem 0.

Nézzük most egy másik példát! Legyen

$$f(x) := \frac{\sin x}{x} \qquad (x \in \mathbb{R} \setminus \{0\}).$$

A függvény az a=0 pontban ezzel a képlettel nem értelmezhető. A 0 pont közelében nem tudjuk megállapítani a függvényértékek viselkedését, mert két nagyon

kicsi szám hányadosáról van szó. Ha a függvényt valamely komputeralgebrai rendszerrel ábrázoljuk, akkor azt látjuk, hogy a szóban forgó függvényértékek 1 közelében vannak. Hamarosan igazolni fogjuk, hogy

$$\lim_{x \to 0} \frac{\sin x}{r} = 1.$$

A függvényértékek viselkedését tetszőlegesen nagy x értékekre is vizsgálhatjuk, és ekkor legyen $a:=+\infty$. Az a tulajdonság, hogy "x tetszőlegesen közel van $a=+\infty$ -hez" azt jelenti, hogy "x értéke tetszőlegesen nagy lehet". Az $a:=-\infty$ is lehet, és ekkor a függvényértékek viselkedését tetszőlegesen nagy abszolút értékű negatív x-ekre vizsgáljuk.

Hasonlóan megengedhetjük azt is, hogy A szintén akár $-\infty$ vagy $+\infty$ is legyen. Például, a

$$\lim_{x\to 2} f(x) = +\infty$$
, illetve $\lim_{x\to +\infty} g(x) = -\infty$

tulajdonság azt jelenti, hogy ha $2 \neq x \in \mathbb{R}$ tetszőlegesen közel van 2-höz, akkor az f(x)függvényértékek akármilyen nagy értékeket vesznek fel, illetve ha x értéke tetszőlegesen nagy, akkor a g(x) függvényértékek akármilyen nagy abszolút értékű negatív értékeket vesznek fel.

Lássunk néhány konkrét példát!

Legyen a = 1 és tekintsük a következő függvényeket:

$$f_1 := \begin{cases} x+1 & (1 \neq x \in \mathbb{R}) \\ 1 & (x=1) \end{cases} \qquad f_2 := \frac{1}{(x-1)^2} \quad (1 \neq x \in \mathbb{R}) \qquad f_3 := -\frac{1}{(x-1)^2} \quad (1 \neq x \in \mathbb{R})$$

$$f_2 := \frac{1}{(x-1)^2} \quad (1 \neq x \in \mathbb{R})$$

$$f_3 := -\frac{1}{(x-1)^2} \quad (1 \neq x \in \mathbb{R})$$

$$\lim_{x \to 1} f_1(x) = 2$$

$$\lim_{x \to 1} f_2(x) = +\infty$$

$$\lim_{x \to 1} f_3(x) = -\infty$$

Legyen most $a = +\infty$ és tekintsük a következő függvényeket:

$$f_4(x) = \frac{1}{x+1}$$
 $(x \ge 0)$ $f_5(x) = x$ $(x \ge 0)$

$$f_5(x) = x \quad (x \ge 0)$$

$$f_6(x) = -x \quad (x \ge 0)$$

$$\lim_{x \to +\infty} f_4(x) = 0$$

$$\lim_{x \to +\infty} f_5(x) = +\infty$$

$$\lim_{x \to +\infty} f_6(x) = -\infty$$

Végül $|a = -\infty|$ esetén tekintsük a következő függvényeket:

$$f_7(x) = \frac{1}{1-x} \quad (x \le 0)$$

$$f_8(x) = -x \quad (x \le 0)$$

$$f_9(x) = x \quad (x \le 0)$$

$$\lim_{x \to -\infty} f_7(x) = 0$$

$$\lim_{x \to -\infty} f_8(x) = +\infty$$

$$\lim_{x \to -\infty} f_9(x) = -\infty$$

Összefoglalva: függvény határértékét az alábbi $a \in \mathbb{R}$ pontokban vizsgálhatjuk:

$$a \in \mathbb{R}$$
 (végesben) vagy
$$a = +\infty$$
 $a = +\infty$ (végtelenben),

és ekkor az $A \in \overline{\mathbb{R}}$ határérték lehet:

$$A \in \mathbb{R}$$
 (véges) vagy
$$A = +\infty$$
 (végtelen).
$$A = -\infty$$

Ez összesen 9-féle lehetőséget jelent. Azonban mindegyik mögött ugyanaz az alapgondolat áll. Ezért a sorozatok határértékéhez hasonlóan, környezetek segítségével egy egységes definíciót tudunk megadni. Mivel az a pontbeli határértéknél az a-hoz tetszőlegesen közeli pontokban felvett függvényértékek viselkedését vizsgáljuk, ezért fel fogjuk tenni azt, hogy a függvény az a pont tetszőleges környezetében végtelen sok helyen van értelmezve. Ezzel kapcsolatos a torlódási pont fogalma.

Számhalmaz torlódási pontja

Emlékeztetünk arra, hogy az $a \in \mathbb{R}$ elem $\varepsilon > 0$ sugarú környezetét így értelmeztük:

$$K_{\varepsilon}(a) := \begin{cases} (a - \varepsilon, a + \varepsilon), & \text{ha } a \in \mathbb{R} \\ \left(\frac{1}{\varepsilon}, +\infty\right), & \text{ha } a = +\infty \\ \left(-\infty, -\frac{1}{\varepsilon}\right), & \text{ha } a = -\infty. \end{cases}$$

Célszerű még a

$$\dot{K}_{\varepsilon}(a) := K_{\varepsilon}(a) \setminus \{a\} \qquad (a \in \overline{\mathbb{R}})$$

ún. **pontozott környezet** fogalmát is bevezetni. Ez csak akkor különbözik a **környezet** fogalmától, ha $a \in \mathbb{R}$, és ekkor

$$\dot{K}_{\varepsilon}(a) = (a - \varepsilon, a + \varepsilon) \setminus \{a\} = (a - \varepsilon, a) \cup (a, a + \varepsilon).$$

A fogalom bevezetése azért célszerű, mert az a pontbeli függvényhatárérték értelmezéséhez nem szükséges, hogy a függvény értelmezve legyen az a pontban. Ezzel szemben nélkülözhetetlen, hogy a függvény értelmezve legyen az a minden pontozott környezetének legalább az egyik pontjában, mivel az a-hoz tetszőlegesen közeli pontokban felvett függvényértékek viselkedését vizsgáljuk. Ezzel kapcsolatos a következő fogalom.

1. definíció. Azt mondjuk, hogy a $\emptyset \neq H \subset \mathbb{R}$ halmaznak $a \in \overline{\mathbb{R}}$ torlódási pontja, ha az $a \in \overline{\mathbb{R}}$ minden környezete végtelen sok H-beli elemet tartalmaz, azaz

$$\forall \varepsilon > 0$$
 esetén $K_{\varepsilon}(a) \cap H$ végtelen halmaz.

 $A\ H\ halmaz\ torl\'od\'asi\ pontjainak\ a\ halmaz\'at\ a\ H'$ szimbólummal jelöljük.

1. tétel. Az $a \in \mathbb{R}$ elem akkor és csak akkor torlódási pontja a $\emptyset \neq H \subset \mathbb{R}$ halmaznak, ha a-nak minden környezete tartalmaz a-tól különböző H-beli elemet, azaz

$$a \in H' \iff \forall \varepsilon > 0 : \dot{K}_{\varepsilon}(a) \cap H \neq \emptyset.$$

Bizonyítás. \implies Az állítás nyilvánvaló, mert ha $a \in H'$, akkor $\forall \varepsilon > 0$ esetén

$$K_{\varepsilon}(a) \cap H$$
 végtelen halmaz \Longrightarrow $\left(K_{\varepsilon}(a) \cap H\right) \setminus \{a\}$ végtelen halmaz,

és így $\dot{K}_{\varepsilon}(a) \cap H$ nem üres.

 \sqsubseteq Indirekt módon tegyük fel, hogy $a \notin H'$. Ekkor $\exists \varepsilon > 0 \colon K_{\varepsilon}(a) \cap H$ véges halmaz. Ha $K_{\varepsilon}(a) \cap H = \emptyset$, akkor nyilván $K_{\varepsilon}(a) \cap H = \emptyset$. Ellenkező esetben

$$K_{\varepsilon}(a) \cap H =: \{a_1, a_2, \dots, a_n\} \Longrightarrow \exists r_k > 0 : a_k \notin \dot{K}_{r_k}(a) \quad (k = 1, 2, \dots, n).$$

Legyen $r := \min\{r_1, r_2, \dots, r_n\} > 0$. Ekkor $\dot{K}_r(a) \cap H = \emptyset$, ami ellentmond annak, hogy $\forall \varepsilon > 0 \colon \dot{K}_{\varepsilon}(a) \cap H \neq \emptyset$.

Példák:

- $\bullet \ \mathbb{R}' = \overline{\mathbb{R}}, \quad \mathbb{Q}' = \overline{\mathbb{R}} \quad \text{\'es} \quad \left(\mathbb{R} \setminus \mathbb{Q}\right)' = \overline{\mathbb{R}},$
- (0,1)' = [0,1] és [0,1]' = [0,1],
- $\bullet \left\{ \frac{1}{n} \mid n \in \mathbb{N}^+ \right\}' = \{0\}, \quad \mathbb{N}' = \{+\infty\},$
- ha H véges halmaz, akkor $H' = \emptyset$.

Megjegyzés. Fontos megjegyezni, hogy ha $a \in \mathbb{R}$ és $a \in H'$, akkor

lehet, hogy
$$a \in H$$
 és az is előfordulhat, hogy $a \notin H$.

Például, ha H=(-1,1) és a=0, akkor $0\in H'$ és $0\in H$, de $1\in H'$ esetén $1\notin H$.

A következő tétel azt állítja, hogy a torlódási pontokat halmazbeli sorozatok határértékével lehet jellemezni.

2. tétel. $Az \ a \in \mathbb{R}$ elem akkor és csak akkor torlódási pontja a $\emptyset \neq H \subset \mathbb{R}$ halmaznak, ha van olyan $(x_n) : \mathbb{N} \to H \setminus \{a\}$ sorozat, amelynek létezik \mathbb{R} -beli határértéke, és $\lim(x_n) = a$.

Bizonyítás. \implies Ha $a \in H'$, akkor $\forall \varepsilon > 0 : \dot{K}_{\varepsilon}(a) \cap H \neq \emptyset$, és így

$$\forall n \in \mathbb{N}^+ : \dot{K}_{\frac{1}{n}}(a) \cap H \neq \emptyset.$$

Legyen $x_0 \in H \setminus \{a\}$ tetszőleges, és jelölje x_n a fenti nem üres halmaznak egy tetszőleges elemét. Így $(x_n): \mathbb{N} \to H \setminus \{a\}$, és $x_n \in K_{\frac{1}{n}}(a)$ $(n \in \mathbb{N}^+)$. Legyen $\varepsilon > 0$ tetszőleges, és $n_0 := [1/\varepsilon]$. Ekkor $\forall n > n_0 \ge 0$ index esetén $n > 1/\varepsilon$, és így $1/n < \varepsilon$. Ezért

$$x_n \in K_{\frac{1}{n}}(a) \subset K_{\varepsilon}(a),$$

ami a sorozatok határértékének az egységes definíciója szerint azt jelenti, hogy $\lim(x_n) = a$.

 \sqsubseteq Tegyük fel, hogy valamilyen $(x_n): \mathbb{N} \to H \setminus \{a\}$ sorozatra $\lim(x_n) = a$ teljesül. Ekkor bármely $K_{\varepsilon}(a)$ környezetet véve találunk olyan x_n sorozatbeli tagot, amire $x_n \in K_{\varepsilon}(a)$. Azonban $x_n \in H \setminus \{a\}$, ezért

$$\forall \varepsilon > 0 \colon \dot{K}_{\varepsilon}(a) \cap H \neq \emptyset. \implies a \in H'.$$

A függvényhatárérték fogalma

Most környezetek segítségével adjuk meg a függvényhatárérték egységes definícióját.

2. definíció. Azt mondjuk, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f'$ pontban van határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-}hoz \ \exists \delta > 0, \ \forall x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f \colon f(x) \in K_{\varepsilon}(A).$$

Ekkor A-t a függvény a-beli **határértékének** nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{a} f = A, \qquad \lim_{x \to a} f(x) = A, \qquad f(x) \to A, \quad ha \quad x \to a.$$

Megjegyzések.

- $\mathbf{1}^o$ A lim f=A egyenlőség valóban azt fejezi ki, hogy "az a-hoz közeli x pontokban felvett függvényértékek közel vannak A-hoz".
- $\mathbf{2}^o$ Függvény határértékét csak a függvény értelmezési tartományának a torlódási pontjaiban, vagyis az $a \in \mathcal{D}_f'$ pontokban értelmezzük. Ekkor $a \in \mathcal{D}_f$ és $a \notin \mathcal{D}_f$ is lehetséges. Ezért a határérték szempontjából érdektelen, hogy a függvény értelmezve van-e az a pontban, és ha igen, akkor ott mi a függvény helyettesítési értéke.
- $\mathbf{3}^o$ Az $a \in \mathcal{D}_f'$ lehet véges (vagyis $a \in \mathbb{R}$), de lehet $\pm \infty$ is. A függvény határértéke is lehet véges (ha $A \in \mathbb{R}$), de ez is lehet $\pm \infty$ is.
 - 4º Pontozott környezetekkel a fenti definíció így is írható

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-hoz} \ \exists \delta > 0, \ \forall x \in \dot{K}_{\delta}(a) \cap \mathcal{D}_f \colon f(x) \in K_{\varepsilon}(A). \blacksquare$$

A határérték definíciójának speciális esetei

A $\lim_{x\to a} f(x) = A$ egyenlőségre a-tól, illetve A-tól függően a következő szóhasználatokat vezetjük be.

- Végesben vett véges határérték, ha $a \in \mathbb{R}$ és $A \in \mathbb{R}$.
- Végesben vett végtelen határérték, ha $a \in \mathbb{R}$ és $A = \pm \infty$.
- Végtelenben vett véges határérték, ha $a = \pm \infty$ és $A \in \mathbb{R}$.
- Végtelenben vett végtelen határérték, ha $a = \pm \infty$ és $A = \pm \infty$.

Fontos megjegyezni, hogy a $\lim_{a} f = A$ -ra a **környezetekkel** megadott egységes definíciót a speciális esetekben **egyenlőtlenségekkel** is megfogalmazhatjuk.

Megjegyzés. Ha $f: \mathbb{N} \to \mathbb{R}$ egy sorozat, és így $\mathcal{D}'_f = \mathbb{N}' = \{+\infty\}$, akkor a táblázat $a = +\infty$ sorából látható, hogy

$$\lim_{x \to a} f(x) = A \qquad \iff \qquad \lim_{n \to +\infty} f(n) = A,$$

tehát ebben a speciális esetben a függvényhatárérték megegyezik a sorozatok határértékének korábbi definíciójával. \blacksquare

A függvényhatárérték alaptételei

3. tétel (A határérték egyértelműsége). Ha az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f'$ pontban van határértéke, akkor a definícióban szereplő $A \in \overline{\mathbb{R}}$ egyértelműen létezik.

Bizonyítás. Tegyük fel, hogy két különböző $A_1, A_2 \in \mathbb{R}$ elem is eleget tesz a definíció feltételeinek. Mivel két különböző \mathbb{R} -beli elem diszjunkt környezetekkel szétválasztható, ezért

$$\exists \, \varepsilon > 0 \colon K_{\varepsilon}(A_1) \cap K_{\varepsilon}(A_2) = \emptyset.$$

A határérték definíciója szerint egy ilyen ε -hoz

$$\exists \delta_1 > 0, \ \forall x \in \dot{K}_{\delta_1}(a) \cap \mathcal{D}_f \colon f(x) \in K_{\varepsilon}(A_1),$$

$$\exists \, \delta_2 > 0, \, \, \forall \, x \in \dot{K}_{\delta_2}(a) \cap \mathcal{D}_f \colon f(x) \in K_{\varepsilon}(A_2).$$

Legyen $\delta := \min \{\delta_1, \delta_2\}$. Ekkor

$$\forall x \in \dot{K}_{\delta}(a) \cap \mathcal{D}_f \colon f(x) \in K_{\varepsilon}(A_1) \cap K_{\varepsilon}(A_2) = \emptyset, \quad \text{de } \dot{K}_{\delta}(a) \cap \mathcal{D}_f \neq \emptyset, \text{ mert } a \in \mathcal{D}_f'.$$

Ellentmondásra jutottunk, és ezzel a határérték egyértelműségét igazoltuk.

A következő tétel azt állítja, hogy a függvényhatárérték sorozatok határértékével jellemezhető.

4. tétel (Függvényhatárértékre vonatkozó átviteli elv). Legyen $f\in\mathbb{R}\to\mathbb{R}$, $a\in\mathcal{D}_f'$ és $A\in\overline{\mathbb{R}}$. Ekkor

$$\lim_{a} f = A \quad \iff \quad \forall (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \ \lim_{n \to +\infty} x_n = a \ eset\'{e}n \ \lim_{n \to +\infty} f(x_n) = A.$$

Bizonyítás.

Legyen (x_n) egy, a tételben szereplő sorozat, és $\varepsilon > 0$ egy tetszőleges rögzített érték.

$$\lim (x_n) = a \implies \delta$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon x_n \in K_{\delta}(a)$.

Mivel $x_n \in \mathcal{D}_f \setminus \{a\}$, így $x_n \in \dot{K}_{\delta}(a) \cap \mathcal{D}_f$, ezért $f(x_n) \in K_{\varepsilon}(A)$ teljesül minden $n > n_0$ indexre. Ez azt jelenti, hogy az $(f(x_n))$ sorozatnak van határértéke, és $\lim_{n \to +\infty} f(x_n) = A$.

⇐ Tegyük fel, hogy

$$\forall (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \lim_{n \to +\infty} x_n = a \text{ esetén } \lim_{n \to +\infty} f(x_n) = A.$$

Megmutatjuk, hogy $\lim_a f = A$. Az állítással ellentétben tegyük fel, hogy a $\lim_a f = A$ egyenlőség nem igaz. Ez pontosan azt jelenti, hogy

$$\exists \varepsilon > 0, \ \forall \delta > 0$$
-hoz $\exists x_{\delta} \in \dot{K}_{\delta}(a) \cap \mathcal{D}_{f} \colon f(x_{\delta}) \notin K_{\varepsilon}(A)$.

A $\delta = \frac{1}{n} \ (n \in \mathbb{N}^+)$ választással azt kapjuk, hogy

$$\exists \varepsilon > 0, \ \forall n \in \mathbb{N}^+\text{-hoz} \ \exists x_n \in \dot{K}_{1/n}(a) \cap \mathcal{D}_f \colon f(x_n) \notin K_{\varepsilon}(A).$$

Legyen $x_0 \in \mathcal{D}_f \setminus \{a\}$ tetszőleges. Az $(x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}$ sorozat nyilván a-hoz tart (hiszen $x_n \in K_{1/n}(a)$), de a függvényértékek $(f(x_n))$ sorozata nem tart A-hoz (hiszen $f(x_n) \notin K_{\varepsilon}(A)$), ami ellentmond a feltételünknek.

A függvényhatárértékre vonatkozó átviteli elv és a sorozatokra vonatkozó közrefogási elv közvetlen következménye az alábbi állítás.

5. tétel (Függvényhatárértékre vonatkozó közrefogási elv). Legyen $\emptyset \neq H \subset \mathbb{R}$, $f,g,h:H\to\mathbb{R},\ a\in H',\ és\ tegyük\ fel,\ hogy$

$$\exists K(a), \ \forall x \in \big(K(a) \setminus \{a\}\big) \cap H \colon f(x) \le h(x) \le g(x).$$

Ha

$$\exists \lim_a f, \quad \exists \lim_a g \quad \text{\'es} \quad \lim_a f = \lim_a g = A \in \overline{\mathbb{R}},$$

akkor

$$\exists \lim_{a} h \quad \acute{e}s \quad \lim_{a} h = A.$$

A sorozatoknál láttuk, hogy a három algebrai művelet és a határérték képzés sorrendje a "legtöbb esetben" felcserélhető. A következő tétel azt állítja, hogy ez igaz függvényhatárértékre is.

6. tétel (A függvényhatárérték és a műveletek kapcsolata). Tegyük fel, hogy $f,g \in \mathbb{R} \to \mathbb{R}, \ a \in \left(\mathcal{D}_f \cap \mathcal{D}_g\right)'$ és léteznek az $A := \lim_a f \in \overline{\mathbb{R}}, \ B := \lim_a g \in \overline{\mathbb{R}}$ határértékek. Ekkor

 $\mathbf{1}^o$ az f+g összegfüggvénynek is van határértéke a-ban és

$$\lim_{a} (f+g) = \lim_{a} f + \lim_{a} g = A + B,$$

feltéve, hogy az $A+B\in\overline{\mathbb{R}}$ összeg értelmezve van,

 $\mathbf{2}^o$ az $f \cdot g$ szorzatfüggvénynek is van határértéke a-ban és

$$\lim_{a} (f \cdot g) = \lim_{a} f \cdot \lim_{a} g = A \cdot B,$$

feltéve, hogy az $A \cdot B \in \overline{\mathbb{R}}$ szorzat értelmezve van,

3° az f/g hányadosfüggvénynek is van határértéke a-ban és

$$\lim_{a} \frac{f}{g} = \frac{\lim_{a} f}{\lim_{a} g} = \frac{A}{B},$$

feltéve, hogy az $\frac{A}{B} \in \overline{\mathbb{R}}$ hányados értelmezve van.

Bizonyítás. A függvényhatárértékre vonatkozó átviteli elv és a sorozatokra vonatkozó analóg állítás közvetlen következménye.

Kritikus határértékekről beszélünk akkor, ha az előbbi tétel nem alkalmazható. A sorozatokhoz hasonlóan ilyenek például a

$$(+\infty) + (-\infty) \left(\text{vagy } (+\infty) - (+\infty) \right), \qquad 0 \cdot (\pm \infty), \qquad \frac{\pm \infty}{\pm \infty}, \qquad \frac{0}{0}, \quad \frac{c}{0} \left(c \in \overline{\mathbb{R}} \right)$$

típusú kritikus határértékek.

Egyoldali határértékek

Ha $a \in \mathbb{R}$, akkor a

$$\dot{K}_{\varepsilon}(a) := (a - \varepsilon, a) \cup (a, a + \varepsilon)$$

pontozott környezetnek van egy $(a-\varepsilon,a)$ bal oldali és egy $(a,a+\varepsilon)$ jobb oldali része. Előfordulhat, hogy az f függvénynek nincs határértéke az a pontban, de ha leszűkítjük a függvényt a pont egy bal- vagy jobb oldali környezetére, akkor az így kapott függvénynek már van határértéke az a pontban.

Például, a szignumfüggvény esetében a

$$\lim_{x \to 0} \operatorname{sgn}(x)$$

határérték nem létezik. Ennek az az oka, hogy tetszőleges pozitív tagokból álló 0-hoz tartó (x_n) sorozat esetén sgn $(x_n) = 1$; ugyanakkor minden negatív tagokból álló 0-hoz tartó (x_n) sorozat esetén sgn $(x_n) = -1$. Megadható tehát két 0-hoz tartó sorozat, amelyek képsorozatainak a határértéke nem egyenlő, és így az átviteli elv

szerint a határérték nem létezik a 0 pontban. Azonban más a helyzet, ha a szignum függvény 0 pont köröli viselkedését csak a pont bal- vagy jobb oldali környezetében vizsgálnánk. Világos, hogy

$$f_1 := \operatorname{sgn}|_{(-\infty,0)} \equiv -1$$
 és $f_2 := \operatorname{sgn}|_{(0,+\infty)} \equiv 1$.

Ebből nem nehéz igazolni, hogy

$$\exists \lim_{x \to 0} f_1(x) = -1$$
 és $\exists \lim_{x \to 0} f_2(x) = 1$.

Az előző gondolatmenet alkalmazható bármilyen halmazon értelmezett f függvényre. Ha $a \in \mathcal{D}_f'$, akkor a torlódási pontja a $\mathcal{D}_f \cap (-\infty, a)$ vagy a $\mathcal{D}_f \cap (a, \infty)$ halmaznak (vagy mindkettőnek). Ekkor azt mondjuk, hogy a jobb- vagy bal oldali torlódási pontja \mathcal{D}_f -nek. Most is vizsgálhatjuk az

$$f_1 := f|_{\mathcal{D}_f \cap (-\infty, a)}$$
 vagy az $f_2 := f|_{\mathcal{D}_f \cap (a, +\infty)}$

függvények határértékeit az a pontban, de célszerűbb ehhez egy külön jelölést bevezetni.

3. definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$. Tegyük fel, hogy $a \in \mathbb{R}$ és $a \in (\mathcal{D}_f \cap (a, +\infty))'$. Azt mondjuk, hogy az f függvénynek az a helyen (vagy a-ban) van jobb oldali határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-}hoz \ \exists \delta > 0, \ \forall x \in \mathcal{D}_f, \ a < x < a + \delta \colon f(x) \in K_{\varepsilon}(A).$$

Ekkor A egyértelmű, és ezt az f függvény a-ban vett **jobb oldali határértékének** nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{a \to 0} f = A,$$
 $\lim_{x \to a \to 0} f(x) = A,$ $f(a + 0) = A.$

9

4. definíció. Legyen $f \in \mathbb{R} \to \mathbb{R}$. Tegyük fel, hogy $a \in \mathbb{R}$ és $a \in (\mathcal{D}_f \cap (-\infty, a))'$. Azt mondjuk, hogy az f függvénynek az a helyen (vagy a-ban) van bal oldali határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-}hoz \ \exists \delta > 0, \ \forall x \in \mathcal{D}_f, \ a - \delta < x < a \colon f(x) \in K_{\varepsilon}(A).$$

Ekkor A egyértelmű, és ezt az f függvény a-ban vett **bal oldali határértékének** nevezzük, és az alábbi szimbólumok valamelyikével jelöljük:

$$\lim_{a\to 0} f = A,$$
 $\lim_{x\to a\to 0} f(x) = A,$ $f(a-0) = A.$

Megjegyzés. A definíciókból könnyen látható, hogy

$$\lim_{x \to a-0} f(x) = \lim_{x \to a} f_1(x)$$
 és $\lim_{x \to a+0} f(x) = \lim_{x \to a} f_2(x)$,

ahol

$$f_1 := f|_{\mathcal{D}_f \cap (-\infty, a)}$$
 és $f_2 := f|_{\mathcal{D}_f \cap (a, +\infty)}$.

Ez azt jelenti, hogy egy függvény pontbeli bal-, ill. jobb oldali határértéke speciális függvények pontbeli határértékei. Ezért az új határértékekre is alkalmazhatók a tanult alaptételek a megfelelő módosításokkal. Például az átviteli elv alapján

$$\lim_{a\to 0} f = A \quad \iff \quad \forall (x_n) : \mathbb{N} \to \mathcal{D}_f \cap (a, +\infty), \quad \lim_{n\to +\infty} x_n = a \quad \text{eset\'en} \quad \lim_{n\to +\infty} f(x_n) = A. \blacksquare$$

Természetesen előfordulhat, hogy egy függvénynek valamely pontban egyszerre létezik a balés a jobb oldali határértéke. A definíciókból könnyen igazolható a következő állítás.

7. tétel. Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$ és az a pont egyszerre jobb- és bal oldali torlódási pontja \mathcal{D}_f -nek. Ekkor

$$\exists \lim_{a} f \iff \exists \lim_{a \to 0} f, \ \exists \lim_{a \to 0} f \quad \text{\'es} \quad \lim_{a \to 0} f = \lim_{a \to 0} f \ (= \lim_{a} f).$$

Példák:

•
$$\lim_{x \to 0-0} \frac{1}{x} = -\infty$$
 és $\lim_{x \to 0+0} \frac{1}{x} = +\infty$ \Longrightarrow $\nexists \lim_{x \to 0} \frac{1}{x}$.

$$\begin{array}{cccc}
 & \xrightarrow{x \to 0 - 0} x & \xrightarrow{x \to 0 + 0} x \\
 & & \lim_{x \to 1 - 0} f(x) = 0 & \text{és } \lim_{x \to 1 + 0} f(x) = 0 & \Longrightarrow & \exists \lim_{x \to 1} f(x) = 0, & \text{ahol} \\
\end{array}$$

$$f(x) := \begin{cases} x - 1 & (x < 1) \\ x^2 - x & (x \ge 1). \end{cases}$$

Nevezetes határértékek 1.

1. Az előjelfüggvény (vagy szignumfüggvény) határértéke a 0 pontban.

$$\operatorname{sgn}(x) := \begin{cases} 1 & \left(x \in (0, +\infty)\right) \\ 0 & \left(x = 0\right) \\ -1 & \left(x \in (-\infty, 0)\right). \end{cases}$$

y 0 x

Már igazoltuk, hogy

 $\lim_{0 \to 0} \operatorname{sgn} = -1, \ \lim_{0 \to 0} \operatorname{sgn} = 1 \quad \implies \quad \nexists \lim_{0} \operatorname{sgn}.$

szignumfüggvény

2. Hatványfüggvények határértéke.

$$f(x) := x^n \quad (x \in \mathbb{R}), \qquad n = 1, 2, 3, \dots$$

Mivel $\mathcal{D}_f = \mathbb{R} \implies \mathcal{D}_f' = \mathbb{R}' = \overline{\mathbb{R}}$, ezért a határérték minden $a \in \overline{\mathbb{R}}$ helyen vizsgálható.

A függvényhatárérték és a műveletek kapcsolatára vonatkozó tételből következnek az alábbi állítások:

11

2. (a)
$$\lim_{x \to a} x^n = a^n, \quad \forall a \in \mathbb{R} \text{ és } \forall n = 1, 2, 3, \dots$$

2. (b)
$$\lim_{x \to +\infty} x^n = +\infty, \quad \forall n = 1, 2, 3, ...$$

2. (c)
$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty & (n = 2, 4, 6, \dots) \\ -\infty & (n = 1, 3, 5, \dots) \end{cases}$$

3. Reciprokfüggvények határértéke.

$$f(x) := \frac{1}{x^n} \quad (x \in \mathbb{R} \setminus \{0\}), \qquad n = 1, 2, 3, \dots$$

n páratlan

n páros

Mivel $\mathcal{D}_f = \mathbb{R} \setminus \{0\}$ \Longrightarrow $\mathcal{D}'_f = (\mathbb{R} \setminus \{0\})' = \overline{\mathbb{R}}$, ezért a határérték minden $a \in \overline{\mathbb{R}}$ helyen vizsgálható.

A függvényhatárérték és a műveletek kapcsolatára vonatkozó tételből következnek az alábbi állítások:

3. (a)
$$\lim_{x \to a} \frac{1}{x^n} = \frac{1}{a^n}, \quad \forall a \in \mathbb{R} \setminus \{0\} \text{ és } \forall n = 1, 2, 3, \dots$$

3. (b)
$$\lim_{x \to +\infty} \frac{1}{x^n} = \lim_{x \to -\infty} \frac{1}{x^n} = 0 \quad \forall n = 1, 2, 3, \dots$$

Az átviteli elvvel igazolható, hogy

3. (c)
$$\lim_{x \to 0} \frac{1}{x^n} \begin{cases} = +\infty & (n = 2, 4, 6, \dots) \\ \not \exists & (n = 1, 3, 5, \dots) \end{cases}$$

Han páratlan, akkor

$$\lim_{x \to 0-0} \frac{1}{r^n} = -\infty \quad \text{és} \quad \lim_{x \to 0+0} \frac{1}{r^n} = +\infty.$$

4. Gyökfüggvények határértéke.

$$f(x) := \sqrt[q]{x} = x^{\frac{1}{q}} \quad (x \in [0, +\infty)), \qquad q = 2, 3, \dots$$

Mivel
$$\mathcal{D}_f = [0, +\infty)$$
, ezért $\mathcal{D}'_f = [0, +\infty) \cup \{+\infty\}$.

Az átviteli elvből következnek az alábbi állítások:

4. (a)
$$\lim_{x \to a} \sqrt[q]{x} = \sqrt[q]{a} \qquad \forall a \in [0, +\infty) \quad \text{és} \quad \forall q = 2, 3, \dots$$

4. (b)
$$\lim_{x \to +\infty} \sqrt[q]{x} = +\infty \qquad \forall q = 2, 3, \dots$$

5. Polinomfüggvények határértéke. Legyen

$$P(x) := \alpha_r x^r + \alpha_{r-1} x^{r-1} + \dots + \alpha_1 x + \alpha_0 \qquad (x \in \mathbb{R})$$
$$(\alpha_0, \alpha_1, \dots, \alpha_r \in \mathbb{R}, \ 1 \le r \in \mathbb{N})$$

egy pontosan r-edfokú polinom (azaz $\alpha_r \neq 0$). Mivel $\mathcal{D}_P = \mathbb{R} \implies \mathcal{D}'_P = \mathbb{R}' = \overline{\mathbb{R}}$, ezért a határértéket minden $a \in \overline{\mathbb{R}}$ helyen vizsgálhatjuk.

A függvényhatárérték és a műveletek kapcsolatára vonatkozó tétel, továbbá a hatványfüggvények határértékére vonatkozó állítások alapján

4. (a)
$$\lim_{x \to a} P(x) = P(a) \quad \forall a \in \mathbb{R},$$

4. (b)
$$\lim_{x \to +\infty} P(x) = \operatorname{sgn}(\alpha_r) \cdot (+\infty),$$

4. (c)
$$\lim_{x \to -\infty} P(x) = (-1)^r \cdot \operatorname{sgn}(\alpha_r) \cdot (+\infty).$$

Az utolsó két állítás igazolásához tekintsük az alábbi átalakítást:

$$P(x) = x^r \left(\alpha_r + \frac{\alpha_{r-1}}{x} + \frac{\alpha_{r-2}}{x^2} + \dots + \frac{\alpha_0}{x^r} \right).$$

6. Racionális törtfüggvények

Racionális törtfüggvénynek nevezzük az R := P/Q alakú függvényeket, ahol P, Q polinomok. Feltesszük, hogy Q legalább elsőfokú.

Az R függvény ott van értelmezve, ahol a nevező nem nulla, tehát véges sok pont kivételével mindenütt. Ezért $\mathcal{D}_R' = \overline{\mathbb{R}}$, tehát R határértékét minden $a \in \overline{\mathbb{R}}$ helyen vizsgálhatjuk.

Az alábbi eseteket fogjuk megkülönböztetni.

1. eset. $a \in \mathbb{R}$ és $Q(a) \neq 0$. Ekkor a polinomok határértékből tanultak és a műveleti tételek alapján azt kapjuk, hogy

$$\lim_{a} R = \lim_{a} \frac{P}{Q} = \frac{\lim_{a} P}{\lim_{a} Q} = \frac{P(a)}{Q(a)} = R(a).$$

2. eset. $\underline{a} \in \mathbb{R}, \ Q(a) = 0$ és $P(a) \neq 0$. Ekkor a Q polinomot felírhatjuk

$$Q(x) = (x - a)^m \cdot q(x)$$

alakban, ahol $m=1,2,3\dots$ és qolyan polinom, amelyre $q(a)\neq 0$ teljesül. Így

$$(*) \lim_{a} R = \lim_{x \to a} \frac{P(x)}{Q(x)} = \lim_{x \to a} \left(\frac{P(x)}{q(x)} \cdot \frac{1}{(x-a)^m} \right) = \lim_{x \to a} \frac{P(x)}{q(x)} \cdot \lim_{x \to a} \frac{1}{(x-a)^m} = A \cdot \lim_{x \to a} \frac{1}{(x-a)^m},$$

ahol

$$A := \lim_{x \to a} \frac{P(x)}{q(x)} = \lim_{x \to \pm a} \frac{P(x)}{q(x)} = \frac{P(a)}{q(a)} \neq 0.$$

• Ha m = 2k páros, akkor

$$\lim_{x \to a} \frac{1}{(x-a)^{2k}} = +\infty,$$

ezért (*) alapján

$$\lim_{a} R = A \cdot \lim_{x \to a} \frac{1}{(x-a)^{2k}} = \operatorname{sgn}(A) \cdot (+\infty).$$

• Ha m = 2k + 1 páratlan, akkor

$$\lim_{x \to a - 0} \frac{1}{(x - a)^{2k + 1}} = -\infty \quad \text{és} \quad \lim_{x \to a + 0} \frac{1}{(x - a)^{2k + 1}} = +\infty.$$

Ezért (*) megfelelő oldali határértéke:

$$\lim_{a\to 0} R = A \cdot \lim_{x\to a\to 0} \frac{1}{(x-a)^{2k+1}} = \operatorname{sgn}(A) \cdot (-\infty) \quad \text{és}$$

$$\lim_{a\to 0} R = A \cdot \lim_{x\to a\to 0} \frac{1}{(x+a)^{2k+1}} = \operatorname{sgn}(A) \cdot (+\infty). \quad \text{ez\'ert}$$

$$\nexists \lim_{a\to 0} R.$$

3. eset. $a \in \mathbb{R}$, Q(a) = 0 és P(a) = 0. Ekkor a P és Q polinomokat felírhatjuk

$$P(x) = (x - a)^s \cdot p(x)$$
 és $Q(x) = (x - a)^m \cdot q(x)$

alakban, ahol $s, m = 1, 2, 3 \dots$ és p, q olyan polinomok, amelyekre $p(a) \neq 0$ és $q(a) \neq 0$ teljesül. Így

$$(\#) \lim_{a} R = \lim_{x \to a} \frac{P(x)}{Q(x)} = \lim_{x \to a} \left(\frac{p(x)}{q(x)} \cdot \frac{(x-a)^{s}}{(x-a)^{m}} \right) = \lim_{x \to a} \frac{p(x)}{q(x)} \cdot \lim_{x \to a} (x-a)^{s-m} = A \cdot \lim_{x \to a} (x-a)^{s-m},$$

ahol

$$A := \lim_{x \to a} \frac{p(x)}{q(x)} = \lim_{x \to \pm a} \frac{p(x)}{q(x)} = \frac{p(a)}{q(a)} \neq 0.$$

Így (#)-ből az előző esethez hasonlóan a következő eseteket kapjuk:

- ha $\underline{s > m}$, akkor $\lim_{a} R = A \cdot 0 = 0$.
- ha $\underline{s} = \underline{m}$, akkor $\lim_{a} R = A \cdot 1 = A$.
- ha $\underline{s < m}$ és m s = 2k páros, akkor $\lim_{a} R = \operatorname{sgn}(A) \cdot (+\infty)$.
- ha $\underline{s} < m$ és m s = 2k + 1 páratlan, akkor $\lim_{a \to 0} R = \operatorname{sgn}(A) \cdot (\pm \infty)$.
- **4. eset.** $\underline{a=\pm\infty}$. Ekkor a polinomok határértéke szerint $\frac{\pm\infty}{\pm\infty}$ típusú kritikus határértékről van szó, amelyet a sorozatoknál megismert technikák segítségével vissza lehet vezetni nem kritikus határértékre. Valóban, ha

$$P(x) = \alpha_s x^s + \alpha_{s-1} x^{s-1} + \dots + \alpha_0$$
 és $Q(x) = \beta_r x^r + \beta_{r-1} x^{r-1} + \dots + \beta_0$,

ahol $\alpha_s, \beta_r \neq 0$, akkor

$$R(x) := \frac{P(x)}{Q(x)} = x^{s-r} \cdot \frac{\alpha_s + \underbrace{\alpha_{s-1} + \dots + \frac{\alpha_0}{x^s}}_{\beta_r + \underbrace{\beta_{r-1}}_{x} + \dots + \underbrace{\beta_0}_{x^r}}_{\beta_0}},$$

így ha
$$A := \frac{\alpha_s}{\beta_r} \neq 0$$
, akkor

- ha $\underline{s < r}$, akkor $\lim_{\pm \infty} R = 0 \cdot A = 0$.
- ha $\underline{s} = \underline{r}$, akkor $\lim_{\pm \infty} R = 1 \cdot A = A$.
- ha $\underline{s>r}$ és $\underline{s-r}=2k$ páros, akkor $\lim_{\pm\infty}R=\mathrm{sgn}(A)\cdot(+\infty).$
- ha $\underline{s>r}$ és $\underline{s-r}=2k+1$ páratlan, akkor $\lim_{\pm\infty}R=\mathrm{sgn}(A)\cdot(\pm\infty).$