

Conditional independence in max-linear Bayesian neworks: impact graphs, source graphs, and *-dependence

Claudia Klüppelberg

with Steffen Lauritzen and Ngoc Tran

Technical University of Munich

Applied Probability Days, 9 July, 2021

Max-linear Bayesian networks (MLBN) [Gissibl & K. (2018)]

Let $\mathcal{D} = (V, E)$ be a DAG and each node *i* represent a random variable X_i . Define the MLBN over \mathcal{D} by the recursive ML structural equation system¹

$$X_i := \bigvee_{k \in pa(i)} c_{ki} X_k \vee c_{ii} Z_i \quad i = 1, \ldots, d$$

for independent innovations $Z_1, \ldots, Z_d > 0$, continuous, and structural coefficients $c_{ki} > 0$ (I set $c_{ii} = 1$). In matrix form (max-times semiring): $X = C \odot X \lor Z$, with solution²

$$X = C^* \odot Z$$
and
$$C^* = \bigvee_{k=0}^{d-1} C^{\odot k} = (I_d \vee C)^{\odot (d-1)}$$

C* is the Kleene star matrix.

¹Pearl (2009)

²Butkovic (2010)

Separation criteria for conditional independence³

CI statements in (linear) Bayesian networks relate to d-separation: If $I, J, K \subseteq V$ and all paths from I to J are blocked by K, we say that K d-separates I from J, and we write $I \perp_d J \mid K$.

$$1 \rightarrow 2 \rightarrow 4$$
 is blocked by 2
 $1 \rightarrow 3 \rightarrow 4$ is not blocked by 2

Hence, $1 \not\perp_d 4 \mid 2$ and $X_1 \not\perp L X_4 \mid X_2$

This is **not** the correct separation criterion for a MLBN!

³Lauritzen (1996)

Interpretation of C^* by a path analysis⁴

Reachability DAG \mathcal{D}^*

- An element c_{ij}^* of C^* is the maximal weight of all paths (weight = product of the coefficients) from j to i. Hence, C^* is a weighted reachability matrix, i.e., supported by the reachability DAG \mathcal{D}^* .
- A path in \mathcal{D} , which realizes c_{ij}^* is called a critical path. Then

$$X_i = \bigvee_{j \in \operatorname{an}(i) \cup \{i\}} c_{ij}^* Z_j \quad i = 1, \dots, d,$$

 We can remove any edge from D, which is not part of a critical path, without changing the distribution of X.

⁴Wang and Stoev (2011), "hitting scenarios" (no graphs)

Diamond DAG

- This does not follow from the *d*-separation criterion.
- Here, the fact that $1 \to 2 \to 4$ is critical renders the path $1 \to 3 \to 4$ unimportant for the CI statement $X_1 \perp \!\!\! \perp X_4 \mid X_2$, even if $1 \to 3 \to 4$ were also critical (that is, even if $c_{42}c_{21} = c_{43}c_{31}$).
- d-separation does not give all CI statements for a MLBN.
- There are more CI relations in a MLBN than in a (linear) Bayesian network.

Cassiopeia DAG

For the sake of the argument, I set all $c_{ij} = 1$.

$$X_1 = Z_1$$
 $X_2 = Z_2$ $X_3 = Z_3$
 $X_4 = Z_1 \lor Z_2 \lor Z_4$
 $X_5 = Z_2 \lor Z_3 \lor Z_5$

Q:
$$X_1 \perp \!\!\! \perp X_3 \mid \{X_4 = x_4, X_5 = x_5\}$$

 $x_4 > x_5$: then the causal ancestor of 4 is 1, and of 5 they are 2,3

 $x_4 < x_5$, then the situation is reversed

 $x_4 = x_5$, then $X_2 = x_4 = x_5$ is a fixed node

Note: CI does not follow from the *d*-separation criterion, since the path from 1 to 3 is *d*-connecting relative to {4, 5}.

... continued

The three possible causal graphs:

Then in all three situations,

$$X_1 \perp \!\!\! \perp X_3 \mid \{X_4 = x_4, X_5 = x_5\}$$

So the key is to identify causes.

Representation of $X_{\overline{K}} | X_K = X_K$

Proposition. Let $K \subset V$ and $\overline{K} = V \setminus K$. Write $X = (X_K, X_{\overline{K}})^{\top}$ as

$$\begin{pmatrix} X_K \\ X_{\overline{K}} \end{pmatrix} = \begin{pmatrix} C_{KK}^* & C_{K\overline{K}}^* \\ C_{KK}^* & C_{K\overline{K}}^* \end{pmatrix} \odot \begin{pmatrix} X_K \\ X_{\overline{K}} \end{pmatrix} \vee \begin{pmatrix} Z_K \\ Z_{\overline{K}} \end{pmatrix}$$

The model $X = C^* \odot Z$ with C^* Kleene star of C gives the representation

$$X_{\overline{K}} = C_{\overline{K}K}^* \odot x_K \vee C_{\overline{KK}}^* \odot Z_{\overline{K}}$$

where $(Z_i, i \in \overline{K})$ are independent random variables with conditional distribution given $X_K = x_K$ determined by the restriction:

$$x_K \geq C_{K\overline{K}}^* \odot Z_{\overline{K}}.$$

Taking care of fixed nodes and redundant nodes and edges yields a reduced representation of the conditional distribution of $X_{\overline{K}} \mid X_K = x_K$.

Closer look into the structure of a MLBN: extreme impact

Definition. Let $\mathcal{D} = (V, E)$ be a DAG with coefficient matrix C with support \mathcal{D} and Kleene star C^* with support \mathcal{D}^* . The impact graph is a random graph G = G(Z) on V consisting of the following edges:

$$j \rightarrow i \iff X_i = c_{ij}^* Z_j.$$

- Note that with probability one, each node has at most one parent, hence, G(Z) is a forest of stars.
- We say that $j \to i$ belongs to g means that X_i is realised by Z_j . Denote R(g) the root set of the forest g and define

$$(C_g^*)_{ij} = \begin{cases} 1 & \text{if } i = j \in R(g) \\ c_{ij}^* & \text{if } j \to i \in g \\ 0 & \text{otherwise.} \end{cases}$$

Then
$$X = C^* \odot Z \stackrel{\text{a.s.}}{=} C_G^* \odot Z = C_G^* Z$$
.

Impact graphs of the Cassiopeia DAG

The four impact graphs with two edges. If all coefficients are equal to 1, then only g_3 is compatible with $\{X_4 = X_5\}$,

whereas only g_2 and g_4 are compatible with the context $\{X_4 > X_5\}$.

Closer look into the structure of a MLBN: extreme impact continued ...

For a full characterization of all impact graphs of a MLBN we need:

Definition. Let $\mathcal{D} = (V, E)$ be a DAG with coefficient matrix C with support \mathcal{D} and Kleene star C^* . Let g be a forest on V with root set R = R(g). The impact exchange matrix $M = M(g) = M(g, C^*)$ of g with respect to C^* is an $R \times R$ matrix with entries

$$m_{rr} = 0$$
 and $m_{rr'} := \max_{i \in ch_g(r)} \frac{c_{ir'}^*}{c_{ir}^*}$ for $i \neq i'$.

Here, $ch_q(r)$ denotes the children of root r in g.

- Intuitively, $m_{rr'}$ is the worst possible relative cost for a node i to be reassigned from root r to r' in g.
- Let $\lambda(M(g))$ be the principal tropical eigenvalue of M(g).

Structure of impact graphs

Denote $\mathfrak{G} = \mathfrak{G}(C)$ all impact graphs of the MLBN.

Theorem. Consider a MLBN with coefficient matrix C and Kleene star C^* . Then $g \in \mathfrak{G}$ if and only if the following four conditions hold:

- (a) g is a subgraph of \mathcal{D}^* .
- (b) *g* is a galaxy, i.e. a forest of stars (trees of height at most one).
- (c) If $j \to i$ in g and $c_{ii}^* = c_{ik}^* c_{ki}^*$ then $k \not\to i$ and $j \to k$ in g.
- (d) $\lambda(M(g)) < 1$ (tropical eigenvalue condition).
 - This theorem gives complete control of how extreme events from roots in *g* spread deterministally to other parts of the network.

Ilustration of the eigenvalue condition (d)

The subgraph *g* on the right cannot be an impact graph for the MLBN to the left, because

$$M(g) = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

and $\lambda(M(g)) = 2 > 1$.

Indeed, $1 \rightarrow 3$ would imply $X_3 = \frac{1}{2}Z_1 > Z_2$,

but since 2 \rightarrow 4 implies $X_4 = \frac{1}{2}Z_2 > Z_1$, this is inconsistent.

Closer look into the structure of a MLBN: extreme sources

Whereas impact graphs describe how extreme events spread in the network, the source graph $C(X_K = x_k)$ tracks possible sources (causal ancestors) for a given event $\{X_k = x_k\}$.

The construction of the source graph $C(X_K = x_k)$

• start from the total impact graph compatible with $\{X_k = x_k\}$:

$$I(X_K = x_K) = \bigcup_{g \in \mathfrak{G}(X_K = x_K)} g,$$

where $\mathfrak{G}(X_K = x_K) = \{\text{impact graphs compatile with } \{X_k = x_k\}\},\$

• identify redundant nodes and edges, remove them from $I(X_K = x_K)$.

Eventually, the source graph $C(X_K = x_k)$ leads to a reduced representation of the conditional distribution of $X_{\overline{K}} \mid X_K = x_K$ of our Lemma above.

 $C(X_K = x_k)$ yields context-dependent CI relations.

Conditional independence by *-separation

An undirected path π between j and i in a DAG is *-connecting relative to $K \subset V$ (shaded nodes), if and only if it is one of following:

A path that is not *-connecting relative to K is said to be *-blocked by K. We also say that I and J are *-separated by K if all paths between I and J are *-blocked; then we write $I \perp_* J \mid K$.

Three conditional independence Theorems

For three different context situations we apply the same *-separation criterion, however, on three different DAGs.

Theorem. [Context-dependent, given $\{X_K = x_K\}$]

Let X be a MLBN over a DAG $\mathcal{D} = (V, E)$ with fixed coefficient matrix C. Let $K \subseteq V$ and $C(X_K = x_K)$ be the source DAG of the possible context $\{X_K = x_K\}$. For all subsets $I, J \subseteq V$,

$$I \perp_* J \mid K \text{ in } C(X_K = X_K) \iff X_I \perp \!\!\!\perp X_J \mid X_K = X_K.$$

Theorem. [Context-free, fixed C]

Let X be a MLBN over a DAG $\mathcal{D} = (V, E)$ with fixed coefficient matrix C. For all $I, J, K \subseteq V$, it then holds that

$$I \perp_* J \mid K \text{ in } \mathcal{D}_K^*(C) \iff X_I \perp \!\!\!\perp X_J \mid X_K.$$

Three conditional independence Theorems

Theorem. [Context-free, independent of *C*]

Let *X* be a MLBN over a DAG $\mathcal{D} = (V, E)$. Then for all $I, J, K \subseteq V$,

 $I \perp_* J \mid K$ in $\mathcal{D}_K^* \iff X_I \perp \!\!\! \perp X_J \mid X_K$ for all C with support included in \mathcal{D}

Corollary. Recall that \perp_d denote *d*-separation, then all following implications are strict:

$$I \perp_d J \mid K \implies I \perp_* J \mid K \text{ in } \mathcal{D}_K^* \implies I \perp_* J \mid K \text{ in } \mathcal{D}_K^*(C)$$

 $\implies I \perp_* J \mid K \text{ in } C(X_K = X_K).$

Summary and conclusion

- A representation of X_K | X_K = x_k guides us to find a reduced representation of X_K taking deterministic features of a MLBN into account.
- Impact graphs describe how extreme events spread in the MLBN.
- The union of all impact graphs compatible with $\{X_K = x_K\}$ is the starting point for tracking possible sources of $\{X_K = x_K\}$.
- Cleaning up this union of graphs for fixed and redundant nodes and redundant edges yields the source graph $C(X_K = x_K)$ giving a compact representation of the condional distribution given $X_K = x_K$.
- Our new *-separation criterion is equivalent to CI statements in context-free and context-dependent settings, which we formulate as *-separation in different derived DAGs.

References

- Améndola, C., Klüppelberg, C., Lauritzen, S. and Tran, N.M. (2020)
 Conditional independence in max-linear Bayesian networks.
 Annals of Applied Probability, accepted. arXiv:2002.09233.
- Améndola, C., Hollering, B., Sullivant, S. and Tran, N.M. (2021)
 Markov equivalence of max-linear Bayesian network. arXiv:2106.08305.
- Buck, J., Klüppelberg, C. and Tran, N.M. (2020)
 Learning max-linear Bayesian trees under measurement errors. In preparation.
 https://media.ed.ac.uk/media/NgocTranEVATalkPreview/1_lfdxj4bb
- Engelke, S. and Hitz, A.S. (2020) Graphical models for extremes. JRSS B 92, 981-932
- Gissibl, N. and Klüppelberg, C. (2018) Max-linear models on directed acyclic graphs. Bernoulli 24(4A), 2693-2720.
- Gissibl, N., Klüppelberg, C. and Lauritzen, S. (2020) Estimation, identifiability, and structure learning of recursive max-linear models. Scand. J. Statistics 47.
- Hollering, B. and Sullivant, S. (2021)
 Discrete max-linear Bayesian networks. arXiv:2102.03426
- Lauritzen, S.L. (1996). Graphical Models. Oxford University Press.
- Pearl, J. (2009) Causality: Models, Reasoning, and Inference (2nd Ed.)
 Cambridge University Press.