

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO Departamento de Sistemas de Computação

Simulação Robótica

Prof. Eduardo do Valle Simões Grupo de Sistemas Embarcados e Evolutivos LCR – Laboratório de Computação Reconfigurável Departamento de Sistemas de Computação Alunos: Aurimar Bezerra; Vitor Mello; Adolfo Lima

Projeto de Circuitos de Controle

- Aplicações :
 - Veículos Terrestres e Aéreos
 - Educação, Exploração,
 Resgate, Acessibilidade

Projeto de Circuitos de Controle

- Aplicações :
 - Simulação Clínica
 - Robótica na Educação (facebook.com/robosnaescola)

- Trabalho interprofissional na USP
 - Escola de Enfermagem de Ribeirão Preto
 - Faculdade de Medicina de Ribeirão Preto
 - Instituto de Ciências Matemáticas e de Computação de São Carlos

• Objetivo: interdisciplinaridade!!

• saúde, computação, robótica

• Resultados preliminares no:

• ensino, pesquisa e extensão

de Computação

Cenários Clínicos Simulados

Laboratório de Computação Reconfigurável

• Atores

#6 Aplicações

- Manequim Robótico
 - Simula a reação e os sintomas de Pacientes para diferentes doenças
- Treinar estudantes em simulação
 - Ambiente clínico e paciente são representados como objetos físicos reais

Projeto do Hardware

- Manequim
- Monitores Eletrônicos
- Interface com Instrutor

ELFSP2015

Aplicações

Projeto do Hardware

- Manequim
 - Suporta atividades clínicas e funcionalidades
 - Desenvolvidas sob demanda EERP USP

Projeto do Software

- Monitor Eletrônico
 - Apresenta informações do paciente, recebidas do computador do manequim

Projeto do Software

- Interface com Instrutor
 - Modificar parâmetros durante a aula
 - Criar situações novas de acordo com a reação dos alunos durante o senário
 - Conectar sintomas e funcionalidades
 - Coleta de dados
 - Avaliação

Projeto do Hardware

- Manequim
 - Suporta atividades clínicas e funcionalidades
 - Desenvolvidas sob demanda EERP USP

Sistema Robótico Evolutivo

→ Processo Evolutivo

IFSP2015

Laboratório de Computação Reconfigurável

UNIVERSIDADE DE SÃO PAULO

Sistema Robótico

Arquitetura do Robô

Sistema Robótico Evolutivo

IFSP2015

#16 Implementação

UNIVERSIDADE DE SÃO PAULO

Conclusão

- O trabalho interdisciplinar potencializa a aplicação das pesquisas para atender demandas de outras áreas
- Resulta em projetos consistentes que têm impacto nas atividades destinadas à população

IFSP2015

17 Conclusão

Obrigado!!

"Será a Vida Artificial possível?"

www.icmc.usp.br/~simoes/

Github: simoesusp

email: simoes@icmc.usp.br

IFSP2015
18 FIM!

UNIVERSIDADE DE SÃO PAULO