MLDS 422 - Intro to Python Lab 2

Sungsoo Lim October 4, 2023

Today's Lab Materials

- Search and sort algorithms
 - Backgrounds
 - Implementation Details
 - ► Time Complexities

- ► Homework 2
 - ▶ Timeit

Search Algorithms

Sequential

▶ Binary

Sequential Search Algorithm

Check one element at a time

Figure: Linear Search Algorithm

https://www.javatpoint.com/linear-search-in-python

Binary Search Algorithm

Successively divide into sublists

Figure: Binary Search Algorithm

https://en.wikipedia.org/wiki/Binary_search_algorithm

Time Complexities of Search Algorithms

	Best Case	Worst Case	Average Case
Item present (Sequential)	1	n	<u>n</u> 2
Item not present (Sequential)	n	n	n
Binary	1	log2(n)	log2(n)

Table: Time Complexities of Search Algorithms

Time Complexities of Search Algorithms

Figure: Time Complexities of Search Algorithms

Sort Algorithms

► Bubblesort

Mergesort

Bubble Sort Algorithm

Figure: Bubble Sort Algorithm https://www.computersciencebytes.com/sorting-algorithms/bubble-sort/

Merge Sort Algorithm

Figure: Merge Sort Algorithm https://en.wikipedia.org/wiki/Merge_sort

Time Complexities of Sort Algorithms

	Best Case	Worst Case	Average Case
Bubble	n	n ²	n ²
Merge	nlog2(n)	nlog2(n)	nlog2(n)

Table: Time Complexities of Sort Algorithms

Time Complexities of Sort Algorithms

Figure: Time Complexities of Sort Algorithms