

Artificial Intelligence and Machine Learning

Neural Networks

Lecture Outline

أكاديمية كاوست KAUST ACADEMY

- Basics Steps in Machine Learning
- Neural Networks
 - Why Neural Networks?
 - Forward pass
 - Backward pass

Basics Steps in Machine Learning

Data

Model/Algorithm

Loss Function

Optimization Algorithm

Introduction to Deep Learning

What is a Neural Network?

Why Neural Networks (Motivation) KAUSTACADEMY

Linear decision boundary

Why Neural Networks (Motivation) KAUSTACADEMY

Feature Engineering > Non-linear decision boundary

X1 | X2

Why Neural Networks (Motivation) KAUST ACADEMY

We need to find the effective ______non-linear combinations

Neural Networks

Introduction to Deep Learning

Supervised Learning with Neural Networks

Input(x)	Output (y)	Application
Home features	Price	Real Estate
Ad, user info	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging
Audio	Text transcript	Speech recognition
English	Chinese	Machine translation
Image, Radar info	Position of other cars	Autonomous driving

Neural Network examples

Standard NN

Convolutional NN

Recurrent NN

deeplearning.ai

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

deeplearning.ai

One hidden layer Neural Network

Neural Networks

Neural Networks: Data

Neural Networks: Model

Neural Networks: Loss

Neural Networks: Optimization

deeplearning.ai

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$
$$a = \sigma(z)$$

$$z_{1}^{[1]} = w_{1}^{[1]T} x + b_{1}^{[1]}, \ a_{1}^{[1]} = \sigma(z_{1}^{[1]})$$

$$z_{2}^{[1]} = w_{2}^{[1]T} x + b_{2}^{[1]}, \ a_{2}^{[1]} = \sigma(z_{2}^{[1]})$$

$$z_{3}^{[1]} = w_{3}^{[1]T} x + b_{3}^{[1]}, \ a_{3}^{[1]} = \sigma(z_{3}^{[1]})$$

 $z_4^{[1]} = w_4^{[1]T} x + b_4^{[1]}, \ a_4^{[1]} = \sigma(z_4^{[1]})$

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

deeplearning.ai

One hidden layer Neural Network

Backpropagation intuition

Computing gradients

Logistic regression

Neural network gradients $W^{[2]}$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]}) dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dZ^{[2]} = A^{[2]} - Y$$

$$dW^{[2]} = \frac{1}{m} dZ^{[2]} A^{[1]^T}$$

$$db^{[2]} = \frac{1}{m} np. sum(dZ^{[2]}, axis = 1, keepdims = True)$$

$$dZ^{[1]} = W^{[2]T}dZ^{[2]} * g^{[1]'}(Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} X^T$$

$$db^{[1]} = \frac{1}{m} np. sum(dZ^{[1]}, axis = 1, keepdims = True)$$

Introduction to Neural Networks

Why is Deep Learning taking off?

Scale drives deep learning progress

Scale drives deep learning progress

• Data

Computation

• Algorithms

deeplearning.ai

Deep Neural Networks

Why deep representations?

Intuition about deep representation

deeplearning.ai

Deep Neural Networks

Building blocks of deep neural networks

Forward and backward functions

Activation functions

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Pros and cons of activation functions

sigmoid:
$$a = \frac{1}{1 + e^{-z}}$$

