Fast Matrix Exponentiation With Applications

Nurseiit Abdimomyn

UNIST

October 25, 2018

Outline

Introduction

- 2 Matrix exponentiation
- 3 Applications

Consider two matrices:

Consider two matrices:

• Matrix A is n * k dimensional.

Consider two matrices:

- Matrix A is n * k dimensional.
- Matrix B is k * m dimensional.

Consider two matrices:

- Matrix A is n * k dimensional.
- Matrix B is k * m dimensional.

Notice that A's columns and B's rows number are identical!

Consider two matrices:

- Matrix A is n * k dimensional.
- Matrix B is k * m dimensional.

Notice that A's columns and B's rows number are identical!

Then we define matrix C = A * B as:

$$\begin{bmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{bmatrix} * \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{bmatrix}$$

Consider two matrices:

- Matrix A is n * k dimensional.
- Matrix B is k * m dimensional.

Notice that A's columns and B's rows number are identical!

Then we define matrix C = A * B as:

$$\begin{bmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \dots & \dots & \dots & \dots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{bmatrix} * \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \dots & \dots & \dots & \dots \\ b_{k1} & b_{k2} & \dots & b_{km} \end{bmatrix}$$

Thus, C is an n * m dimensional matrix.

Which is calculated as:
$$c_{ij} = \sum_{r=1}^{k} a_{ir} * b_{rj}$$

Couple of things to notice

 Matrix C has n * m elements and each element is computed in k steps with given formula.

Couple of things to notice

 Matrix C has n * m elements and each element is computed in k steps with given formula.

Thus, we can obtain C in O(n * m * k), given A and B.

Couple of things to notice

- Matrix C has n * m elements and each element is computed in k steps with given formula.
 - Thus, we can obtain C in O(n * m * k), given A and B.
- If n = m = k (i.e. both A and B have n rows and n columns), then C has n rows and n columns, and can be computed in $O(n^3)$.

• It is not commutative: $A * B \neq B * A$ in general case.

- It is not commutative: $A * B \neq B * A$ in general case.
- It is associative:

$$A * B * C = (A * B) * C = A * (B * C)$$
 in case $A * B * C$ exists;

- It is not commutative: $A * B \neq B * A$ in general case.
- It is associative:

$$A * B * C = (A * B) * C = A * (B * C)$$
 in case $A * B * C$ exists;

- If you have a matrix with n rows and n columns, then multiplying it by In gives the same matrix.
 - i. e. $I_n * A = A * I_n = A$.

- It is not commutative: $A * B \neq B * A$ in general case.
- It is associative: A * B * C = (A * B) * C = A * (B * C) in case A * B * C exists;
- If you have a matrix with n rows and n columns, then multiplying it by l_n gives the same matrix.

i. e. $I_n * A = A * I_n = A$.

Where I_n is a matrix with n rows and n columns of such form:

$$I_n = \left[\begin{array}{ccccc} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{array} \right]$$

Outline

Introduction

Matrix exponentiation

3 Applications

Matrix exponentiation

Suppose we need to find some n * n dimensional square matrix A to the power p or A^p

Matrix exponentiation

Suppose we need to find some n*n dimensional square matrix A to the power p or A^p

We can do so via:

```
function matpow_naive(A, p):
  result = l_n
  for i = 1..p:
    result = result * A
  return result
```

Which will run in $O(n^3 * p)$

Fast Matrix exponentiation

Can we do it any faster?

Fast Matrix exponentiation

Can we do it any faster?

Yes, we can apply the BinPower algorithm here:

```
function matBinPow(A, p):
    result = I_n
    while p > 0:
        if p % 2 == 1:
            result = result * A
        A = A * A
        p = p / 2
    return result
```

Which will run in $O(n^3 * \log p)$

Outline

Introduction

- 2 Matrix exponentiation
- 3 Applications

Finding Nth Fibonacci number

Fibonacci numbers, F_n are defined as:

•
$$F_0 = F_1 = 1$$

•
$$F_i = F_{i-1} + F_{i-2}$$
 for $i > 1$.

Finding Nth Fibonacci number

Fibonacci numbers, F_n are defined as:

- $F_0 = F_1 = 1$
- $F_i = F_{i-1} + F_{i-2}$ for i > 1.

We want to calculate $F_n \mod M$, where $n < 10^{18}$ and $M = 10^9 + 7$.

Finding Nth Fibonacci number

Suppose we have a vector (matrix with one row and several columns) of (F_{i-2}, F_{i-1}) and we want to multiply it by some matrix M, so that we get (F_{i-1}, F_i) as a result.

Thank you!