CMSC 141 AUTOMATA AND LANGUAGE THEORY TURING MACHINES

Mark Froilan B. Tandoc

November 19, 2014

Equinumerous Sets

QUESTION

How can we say that a set is larger than another set?

Answer

Count the elements of the sets and the one with more elements is larger. (e.g. $\{a,b\}$, $\{1,0\}$)

Problem

What if the sets are infinite? How can we count them? Can we count infinite sets?

- Proposed by Georg Cantor, a mathematician, in 1873.
- Two sets are equinumerous if there is a one-to-one pairing for all elements.
- We call the pairing as the *correspondence* of the sets.

Diagonalization Method

Example: Let \mathbb{N} be the set of natural numbers $\{1,2,3,\ldots\}$ and let \mathbb{E} be the set of even natural numbers $\{2,4,6,\ldots\}$. The correspondence function can be f(n)=2n.

n	f(n)
1	2
2	4
3	6
:	:

DEFINITION

A set is *countable* if it is either finite or has the same size as $\mathbb N$

How about the set of positive rational numbers (m)

$$\mathbb{Q} = \{ \frac{m}{n} | m, n, \in \mathbb{N} \}$$

-					
$\frac{1}{1}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	<u>1</u>	
$\frac{2}{1}$	$\frac{2}{2}$	$\frac{2}{3}$	<u>2</u>	$\frac{2}{5}$	
<u>3</u>	$\frac{3}{2}$	<u>3</u>	<u>3</u>	<u>3</u>	
$\begin{bmatrix} \frac{1}{1} \\ \frac{2}{1} \\ \frac{3}{1} \\ \frac{4}{1} \\ \frac{5}{1} \end{bmatrix}$	1 2 2 2 3 2 4 2 5 2	13 23 33 43 53	1 4 2 4 3 4 4 4 5 4	1 5 2 5 3 5 4 5 5 5	
<u>5</u>	<u>5</u> 2	<u>5</u>	<u>5</u>	<u>5</u> 5	
		:			

- It appears that every infinite set can be shown to have the same size.
- Are there some set that is *uncountable*?
- lacktriangle An example is the set of real numbers $\mathbb R$

Proof is by contradiction, assume we have a correspondence,

then we find a real number x that is not paired with an element of $\mathbb N$

- Let x be a number between 0 and 1.
- The objective is to ensure that $x \neq f(n)$ for any n.
 - To ensure that $x \neq f(1)$, we let the first digit after the decimal point different from the first fractional digit 1 of f(1) = 3.14159...
 - To ensure that $x \neq f(2)$, we let the second digit after the decimal point different from the first fractional digit 3 of f(1) = 1.23456...
 - and so on

From the table:

```
n \mid f(n)
1 3.14159...
2 1.23456...
3 0.50000...
4 0.54321...
\vdots \mid \vdots
We can find x = 0.2413...
```

We are sure that x can never appear on the table because it will always differ on the n^{th} fractional digit.

HALTING PROBLEM

$$A_{TM} = \{ \langle M, w \rangle | M \text{ is a TM and M halts on w} \}$$

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if M halts on w} \\ reject & \text{if M does not halt on w} \end{cases}$$

Now we construct a new TM D with H as a subroutine with input < M, < M >> and reverse the output

$$D(< M >) = \begin{cases} accept & \text{if H does not accept } > \\ reject & \text{if H accepts } > \end{cases}$$

HALTING PROBLEM

$$D(< M >) = \begin{cases} accept & \text{if H does not accept } > \\ reject & \text{if H accepts } > \end{cases}$$

In other words

$$D(< M >) = \begin{cases} accept & \text{if M does not halt on } \\ reject & \text{if M halts on } \end{cases}$$

However, if we run D with < D > as input, we encounter a contradiction

$$D(< D >) = \begin{cases} accept & \text{if D does not halt on } \\ reject & \text{if D halts on } \end{cases}$$

DIAGONALIZATION ON HALTING PROBLEM

Consider the table of results of running H

Since D is a TM, it should appear in our table.

DIAGONALIZATION ON HALTING PROBLEM

Since D is a TM, it should appear in our table.

	$ < M_1 > $	$< M_2 >$	$< M_3 >$	$< M_4 >$		< D >	
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	reject	reject		accept	
:		÷			٠		
D	reject	reject	accept	accept		?	
:		:					٠.
		•					•

REFERENCES

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org
- Various online LATEX and Beamer tutorials