EUF

Exame Unificado das Pós-graduações em Física

Para o primeiro semestre de 2017 04 de outubro de 2016

Parte 1

Instruções

- Não escreva seu nome na prova. Ela deverá ser identificada apenas através do código.
- Esta prova contém problemas de: mecânica clássica, mecânica quântica, física moderna e termodinâmica. Todas as questões têm o mesmo peso.
- O tempo de duração desta prova é de 4 horas.
 O tempo mínimo de permanência na sala é de 90 minutos.
- Não é permitido o uso de calculadoras ou outros instrumentos eletrônicos.
- Resolva cada questão na folha correspondente do caderno de respostas.

As folhas serão reorganizadas para a correção. Se precisar de mais espaço, utilize as folhas extras do caderno de respostas. Não esqueça de escrever nas folhas extras o número da questão (Qx) e o seu código de identificação. Folhas extras sem essas informações não serão corrigidas. Use uma folha extra diferente para cada questão. Não destaque a folha extra.

- Se precisar de rascunho, use as folhas identificadas como **rascunho**, que se encontram no fim do caderno de respostas. Não as destaque. As folhas de rascunho serão descartadas e questões nelas resolvidas não serão consideradas.
- Não escreva nada no formulário.

Devolva tanto o caderno de questões quanto o formulário ao fim da prova. O formulário será utilizado novamente na prova de amanhã.

- Q1. Um corpo de massa m cai em linha reta a partir do repouso em um fluido. A aceleração da gravidade \vec{g} pode considerada constante. O corpo é sujeito também a uma força de resistência proporcional à velocidade: $\vec{F_r} = -km\vec{v}$, onde k é uma constante. A força de empuxo do fluido é desprezível.
 - (a) Obtenha o módulo da velocidade do corpo como função do tempo.
 - (b) Qual é a velocidade terminal do corpo (módulo da velocidade no limite $t \to \infty$)?
 - (c) Encontre z(t), a posição do corpo como função do tempo (considere z(0) = 0).
 - (d) Encontre z(v), a posição do corpo como função do módulo da velocidade. t
- Q2. O pêndulo duplo plano consiste de duas partículas de massas m_1 e m_2 e duas hastes rígidas de massas desprezíveis e comprimentos l_1 e l_2 , que oscilam, sob a ação da gravidade \vec{g} , em um mesmo plano vertical fixo, como representado na figura abaixo. Considerando \vec{g} constante e adotando como coordenadas generalizadas os ângulos θ_1 e θ_2 da figura, obtenha:

- (a) A energia cinética do sistema.
- (b) A energia potencial do sistema.
- (c) A Lagrangiana do sistema.
- (d) As equações de movimento relativas a θ_1 e θ_2 .
- Q3. Considere a dinâmica quântica não relativística de uma partícula de massa m num potencial harmônico tridimensional isotrópico de frequência angular ω dado por

$$V(x,y,z) = \frac{m\omega^2}{2}(x^2 + y^2 + z^2).$$

- (a) Escreva os auto-estados $|n_1,n_2,n_3\rangle$ da Hamiltoniana total \hat{H} em termos dos auto-estados de osciladores harmônicos unidimensionais $|n_i\rangle$ (i=1,2,3) e também as auto-energias de \hat{H} .
- (b) Uma das auto-energias do sistema é $\frac{7}{2}\hbar\omega$. Qual é a sua degenerescência?
- (c) O observável \hat{H} é medido quando o sistema se encontra no seguinte estado (considere os auto-estados $|n_1, n_2, n_3\rangle$ normalizados)

$$|\psi\rangle = \frac{1}{\sqrt{2}}|0,0,1\rangle + \frac{1}{2}|0,1,0\rangle + \frac{1}{2}|0,1,1\rangle.$$

Que resultados podem ser obtidos e com que probabilidades?

(d) Suponha que a medida do item (c) resultou no valor $\frac{5}{2}\hbar\omega$. Considere t=0 o instante imediatamente posterior a essa medida. Determine o estado do sistema $|\psi(t)\rangle$ para t>0.

Q4. A densidade de energia u(T) da radiação eletromagnética em equilíbrio térmico à temperatura T pode ser expressa (a partir de argumentos termodinâmicos) como

$$u(T) = \int_0^\infty \nu^3 f\left(\frac{\nu}{T}\right) d\nu,\tag{1}$$

onde ν é a frequência da radiação.

- (a) **Apenas usando a Eq.** (1), encontre u(T) a menos de um fator (independente de T). Qual é a dimensão deste fator?
- (b) Em 1900, Planck descobriu que

$$\nu^3 f\left(\frac{\nu}{T}\right) = \frac{8\pi\nu^2}{c^3} \frac{h\nu}{\mathrm{e}^{(h\nu/k_BT)} - 1},$$

onde h é a constante de Planck (que relaciona o quantum de energia e a frequência), c é a velocidade da luz no vácuo e k_B é a constante de Boltzmann.

- (i) Discuta, sem demonstar, o significado físico do fator $\frac{8\pi\nu^2}{c^3}d\nu$.
- (ii) Determine o comportamento da distribuição de energia no limite em que a energia do fóton é muito menor do que a energia térmica k_BT .
- (iii) Qual é o significado do resultado do item (ii) no contexto da física clássica?
- (c) As constantes c, $\hbar = h/(2\pi)$ e a constante gravitacional G podem ser usadas para definir unidades absolutas de tempo (t_P) , distância (l_P) e massa (m_P) . Determine essas grandezas em termos de produtos de potências de \hbar , c e G. Determine também a temperatura de Planck T_P . Estime a ordem de grandeza de t_P , t_P , t_P , t_P , t_P no sistema internacional de unidades.
- Q5. Um estudante quer determinar o calor específico c_x de uma substância x desconhecida. Para isso, dispõe de um calorímetro, que é um dispositivo que idealmente não troca calor com o ambiente. A capacidade térmica K do calorímetro é conhecida. O calorímetro encontra-se inicialmente à temperatura ambiente T_{amb} . O procedimento experimental adotado consiste em colocar uma massa conhecida de água m_{H_2O} à temperatura ambiente T_{amb} no calorímetro, adicionar uma massa conhecida da substância x, m_x , inicialmente a uma temperatura $T_x > T_{amb}$ e medir a temperatura final de equilíbrio T_{eq} . Se necessário, use $\sqrt{2} \cong 1,4$ e $\sqrt{26} \cong 5,1$.
 - (a) Escreva a equação necessária para obter c_x a partir das grandezas fornecidas.
 - (b) Considerando K=30.0 cal/°C, o calor específico da água $c_{H_2O}=1.0$ cal/(g °C) e utilizando $m_{H_2O}=50.0$ g, $m_x=200$ g, $T_x=37.8$ °C, $T_{amb}=25.0\pm0.1$ °C, o estudante determinou que a temperatura final de equilíbrio do sistema foi de $T_{eq}=27.8\pm0.1$ °C. Calcule c_x . Expresse seu resultado com o erro associado ao valor de c_x .

EUF

Exame Unificado das Pós-graduações em Física

Para o primeiro semestre de 2017 05 de outubro 2016 Parte 2

Instruções

- Não escreva seu nome na prova.
 Ela deverá ser identificada apenas através do código.
- Esta prova contém problemas de: eletromagnetismo, mecânica quântica, física moderna e mecânica estatística. Todas as questões têm o mesmo peso.
- O tempo de duração desta prova é de 4 horas.
 O tempo mínimo de permanência na sala é de 90 minutos.
- Não é permitido o uso de calculadoras ou outros instrumentos eletrônicos.
- Resolva cada questão na folha correspondente do caderno de respostas.

 As folhas serão reorganizadas para a correção. Se precisar de mais espaço, utilize as folhas extras do caderno de respostas. Não esqueça de escrever nas folhas extras o número da questão (Qx) e o seu código de identificação. Folhas extras sem essas informações não serão corrigidas. Use uma folha extra diferente para cada questão. Não destaque a folha extra.
- Se precisar de rascunho, use as folhas identificadas como **rascunho**, que se encontram no fim do caderno de respostas. Não as destaque. As folhas de rascunho serão descartadas e questões nelas resolvidas não serão consideradas.
- Não escreva nada no formulário.
 Devolva tanto o caderno de questões quanto o formulário ao fim da prova.

Q6. Um anel fino de raio R e carga total Q > 0 uniformemente distribuída ao longo de sua circunferência está fixo no plano xy de um sistema de coordenadas e tem seu centro na origem O. Seja P um ponto com coordenadas (0,0,z) (ver figura abaixo).

- (a) Somando as contribuições de todos os elementos de carga do anel, encontre módulo, direção e sentido do campo elétrico $\vec{E}(z)$ no ponto P.
- (b) Proceda analogamente ao item (a) e calcule o potencial elétrico V(z) no ponto P.
- (c) Uma partícula pontual de carga -q < 0 e massa m parte do repouso de um ponto com coordenadas $(0,0,z_0)$, muito distante da origem (ou seja, $z_0 \gg R$) e viaja ao longo do eixo z. Qual é a sua velocidade quando ela passa pelo centro do anel? Considere desprezíveis os efeitos da radiação eletromagnética emitida pela partícula no seu trajeto em direção ao centro do anel.
- Q7. Um aro quadrado rígido de arame com lado L tem resistência elétrica total R. O aro está no plano xy de um sistema de coordenadas e move-se com velocidade \vec{v} para fora da região onde há um campo magnético uniforme \vec{B} (area sombreada na figura abaixo) apontando para fora da página (sentido de z positivo). Considere o instante em que o vértice da esquerda do aro está a uma distância s dentro da area sombreada ($0 < s < \sqrt{2}L/2$).

- (a) Calcule o fluxo do campo magnético através do aro como função de s.
- (b) Determine o valor e o sentido de circulação da corrente elétrica induzida no aro.
- (c) Calcule a força magnética total (módulo, direção e sentido) sobre o aro quando a corrente induzida circula nele. Que força adicional à força magnética deve ser aplicada no aro para que ele se mova com velocidade constante sob a ação exclusiva dessas duas forças?

- Q8. Considere a dinâmica quântica não relativística de um elétron (massa m e carga -e) movendose ao longo do eixo x num potencial de oscilador harmônico unidimensional com frequência angular ω . O elétron também está sujeito a um campo elétrico $\vec{E} = E\hat{x}$ ao longo do mesmo eixo.
 - (a) Escreva a Hamiltoniana total do sistema.
 - (b) Sejam $|n\rangle$ (n=0,1,2,...) os auto-estados do oscilador harmônico. Vamos considerar agora o efeito do campo elétrico como uma pequena perturbação que modifica muito pouco as auto-energias e os auto-estados do oscilador harmônico. Seja \hat{V}_E o termo da Hamiltoniana devido ao campo elétrico. Nesse caso, a correção da energia do primeiro estado excitado em ordem linear em E é dada pelo valor médio de \hat{V}_E em $|1\rangle$. Calcule essa correção.
 - (c) A correção do primeiro auto-estado excitado em ordem linear em E é dada por

$$|\delta\psi_1^{(1)}\rangle = \sqrt{\frac{\hbar}{2m\omega}} \frac{eE}{\hbar\omega} \left(|0\rangle - \sqrt{2} |2\rangle \right).$$
 (2)

A correção da energia do primeiro estado excitado em ordem quadrática em E é dada pelo elemento de matriz de \hat{V}_E entre $|1\rangle$ o estado da Eq. (2). Calcule essa correção.

- (d) Calcule as auto-energias exatas do sistema (oscilador harmônico mais campo elétrico) através de uma transformação de coordenadas. Compare o resultado exato com o cálculo perturbativo dos itens (b) e (c). Eles concordam? Por quê?
- Q9. Suponha que um planeta extra-solar esteja a uma distância de cT anos-luz da Terra (c é a velocidade da luz e T é o tempo em anos que esta leva para viajar da Terra até lá). Uma expedição é planejada para enviar astronautas ao planeta de tal forma que eles envelheçam 3T/4 anos durante a viagem de ida. A viagem é quase toda feita a uma velocidade constante. Por isso, desconsidere os pequenos trechos com movimento acelerado.
 - (a) Qual deverá ser o módulo da velocidade constante dos astronautas, em relação à Terra, na ida?
 - (b) De acordo com os astronautas, qual será a distância a ser percorrida na ida?
 - (c) A cada ano (de acordo com o relógio da nave) os astronautas enviam um pulso de luz para a Terra. Qual é a periodicidade dos pulsos recebidos na Terra?
 - (d) Na metade da jornada de ida um casal de astronautas decide retornar à Terra em um módulo espacial. De acordo com os astronautas que permanecem na nave, o módulo retorna em direção à Terra com velocidade 5c/6. Calcule o $tempo\ total$ (medido na Terra) que o casal de astronautas terá ficado fora do nosso planeta.
- Q10. Um sistema de N osciladores quânticos unidimensionais, localizados e independentes está em equilíbrio com um reservatório térmico à temperatura T. As energias de cada oscilador são dadas por

$$E_n = \hbar\omega_0 \left(n + \frac{1}{2} \right) \qquad n = 1, 3, 5, 7, \dots$$

Note que os valores assumidos por n são apenas os naturais ímpares.

- (a) Obtenha uma expressão para a energia interna por oscilador \boldsymbol{u} como função da temperatura
- T. Qual é a expressão para u no limite clássico ($\hbar\omega_0 \ll k_B T$)? Esboce um gráfico de u por T.
- (b) Obtenha uma expressão para a entropia por oscilador s como função da temperatura T. Qual é a expressão para s no limite clássico? Esboce um gráfico de s por T.