Amazon Sales Analysis

Introduction:

This project analyzes Amazon sales data to uncover trends, customer preferences, and sales performance. Using data visualization and analysis, it provides actionable insights for better decision-making in the e-commerce space.

import python libraries

import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns

import csv file

df = pd.read csv('/content/Amazon Sale Report.csv', encoding= 'unicode escape')

df.shape

df.head()

df.tail()

df.info()

drop unrelated/blank columns

df.drop(['New','PendingS'], axis=1, inplace=True)

after dropping unrelated/blank columns df.info()

```
→ <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 128976 entries, 0 to 128975
       Data columns (total 19 columns):
                             Non-Null Count
        # Column
           index 128976 non-null int64
Order ID 128976 non-null object
Date 128976 non-null object
Status 128976 non-null object
Fulfilment 128976 non-null object
Sales Channel 128976 non-null object
        0
        2 Date
        3 Status
        4 Fulfilment
             ship-service-level 128976 non-null object
        6
              Category 128976 non-null object
       8 Size 128976 non-null object
9 Courier Status 128976 non-null object
10 Qty 128976 non-null int64
11 currency 121176 non-null object
12 Amount 121176 non-null float64
13 ship-city 128941 non-null object
14 ship-state 128941 non-null object
15 ship-postal-code 128941 non-null float64
        16 ship-country 128941 non-null object
                                          128976 non-null bool
        17 B2B
        18 fulfilled-by
                                             39263 non-null
                                                                        object
       dtypes: bool(1), float64(2), int64(2), object(14)
       memory usage: 17.8+ MB
```

checking null value

pd.isnull(df)

sum will give total values of null values

pd.isnull(df).sum()

df.shape

drop null values

df.dropna(inplace=True)

df.columns

change data type

df['ship-postal-code']=df['ship-postal-code'].astype('int')

#checking whether the data type change or not

df['ship-postal-code'].dtype

#rename Columns

df.rename(columns={'Qty':'Quantity'})

#describe() method return description of the data in the DataFrame(i.e count,mean,std,min..etc)

df.describe()

1		index	Date	Qty	Amount	ship-postal-code
	count	37514.000000	37514	37514.000000	37514.000000	37514.000000
	mean	60953.809858	2022-05-11 07:56:47.303939840	0.867383	646.553960	463291.552754
	min	0.000000	2022-03-31 00:00:00	0.000000	0.000000	110001.000000
	25%	27235.250000	2022-04-20 00:00:00	1.000000	458.000000	370465.000000
	50%	63470.500000	2022-05-09 00:00:00	1.000000	629.000000	500019.000000
	75%	91790.750000	2022-06-01 00:00:00	1.000000	771.000000	600042.000000
	max	128891.000000	2022-06-29 00:00:00	5.000000	5495.000000	989898.000000
	std	36844.853039	NaN	0.354160	279.952414	194550.425637

summary of categorical data

df.describe(include='object')

₹		Order ID	Status	Fulfilment	Sales Channel	ship-service- level	Category	Size	Courier Status	currency	ship-city	ship-state	ship- country	fulfilled- by
	count	37514	37514	37514	37514	37514	37514	37514	37514	37514	37514	37514	37514	37514
	unique	34664									4698	58		1
	top	171-5057375- 2831560	Shipped - Delivered to Buyer	Merchant	Amazon.in	Standard	T-shirt	М	Shipped	INR	BENGALURU	MAHARASHTRA		Easy Ship
	freq		28741	37514	37514	37514	14062	6806	31859	37514	2839	6236	37514	37514

#use describe() for specific columns

df[['Qty','Amount']].describe()

Exploratory Data Analysis

Setting Seaborn style for better visuals

sns.set(style="whitegrid")

Size Distribution

ax = sns.countplot(x='Size', data=df, hue='Size', palette="Set2") for bars in ax.containers:

ax.bar label(bars)

Note: From above Graph you can see that most of the people buys M-Size

Group By

The groupby() function in pandas is used to group data based on one or more columns in a DataFrame.

df.groupby(['Size'], as_index=False)['Qty'].sum().sort_values(by='Qty',ascending=False)

Quantity Distribution by Size

S_Qty = df.groupby(['Size'], as_index=False)['Qty'].sum().sort_values(by='Qty', ascending=False)
sns.barplot(x='Size', y='Qty', data=S_Qty, hue='Size', palette="coolwarm")
plt.show()

Note: From above Graph you can see that most of the Qty buys M-Size in the sales

Courier Status Distribution with Count Annotations

```
plt.figure(figsize=(10, 5))

ax = sns.countplot(data=df, x='Courier Status', hue='Status', palette="viridis")

for p in ax.patches:

height = p.get_height()

ax.annotate(f'{height}',

(p.get_x() + p.get_width() / 2., height),

ha='center', va='bottom',

fontsize=12, color='black',

xytext=(0, 5), textcoords='offset points',

rotation=90)
```

plt.show()

Note: From above Graph the majority of the orders are shipped through the courier.

Histogram df['Size'].hist(color="skyblue", edgecolor="black")

Category Distribution with Histogram

```
df['Category'] = df['Category'].astype(str)
column_data = df['Category']
plt.figure(figsize=(10, 5))
plt.hist(column_data, bins=30, edgecolor='Black', color="lightgreen")
plt.xticks(rotation=90)
plt.show()
```


Note: From above Graph you can see that most of the buyers are T-shirt

Checking B2B Data by using a pie chart

B2B Check = df['B2B'].value counts()

Create labels that include both the category names and their count values

labels = [f'{index} ({value})' for index, value in zip(B2B_Check.index, B2B_Check.values)] plt.pie(B2B_Check, labels=labels, autopct='%1.1f%%',) plt.show()

Note: From above chart we can see that maximum i.e. 99.2% of buyers are retailers and 0.8% are B2B buyers

Fulfilment Distribution with Pie Chart

```
a1 = df['Fulfilment'].value_counts()
fig, ax = plt.subplots()
ax.pie(a1, labels=a1.index, autopct='%1.1f%%', radius=0.7, wedgeprops=dict(width=0.6),
colors=["#c2c2f0", "#ffb3e6"])
ax.set(aspect="equal")
plt.show()
```


Note: From above chart you can see that most of the Fulfilment are amazon

Prepare data for scatter plot

x_data = df['Category']
y_data = df['Size']
Plot the scatter plot
plt.scatter(x_data, y_data,)
plt.xlabel('Category ')
plt.ylabel('Size')
plt.title('Scatter Plot')

plt.show()

Ship State Distribution with Count Plot

```
plt.figure(figsize=(12, 6))
sns.countplot(data=df, x='ship-state', hue='ship-state', palette="viridis", dodge=False)
plt.xlabel('Ship State')
plt.ylabel('Count')
plt.title('Distribution of State')
plt.xticks(rotation=90)
plt.legend([],[], frameon=False)
plt.show()
```


Distribution of Top 10 States by Shipment Count

```
top 10 state = df['ship-state'].value counts().head(10)
```

Plot count of cities by state

```
plt.figure(figsize=(12, 6))
sns.countplot(data=df[df['ship-state'].isin(top_10_state.index)], x='ship-state',
palette="viridis", hue='ship-state')
plt.xlabel('Ship State')
plt.ylabel('Count')
plt.title('Distribution of Top 10 States')
plt.xticks(rotation=45)
plt.show()
```


Note: From above Graph you can see that most of the buyers are Maharashtra state

Conclusion:

The data analysis reveals that the business has a significant customer base in Maharashtra state, mainly serves retailers, fulfills orders through Amazon, experiences high demand for T-shirts, and sees M-Size as the preferred choice among buyers.