Федеральное государственное бюджетное образовательное учреждение высшего образования
«Сибирский государственный университет телекоммуникаций и информатики»
(СибГУТИ)

Кафедра вычислительных систем

ОТЧЕТ по курсовой работе

по дисциплине «Вычислительная математика»

Выполнил: студент гр. ИВ-221 «» мая 2024 г.	 Павленко. П. В.
Проверил: преподаватель «» мая 2024 г.	 Агалаков А.А.
Оценка « »	

ОГЛАВЛЕНИЕ

Введение	3
Ход работы	
Итог	
Приложение	
Список литературы	

Введение

В декабре 2019 года в Ухане возникла пневмония, в результате которой впервые был обнаружен штамм COVID-19 у пациента с пневмонией при анализе нуклеиновой кислоты. К концу июня 2020 года пандемия распространилась на 188 стран, где было зафиксировано более 10 миллионов случаев заражения и 505 500 смертей. На 9 июня 2020 года Российская Федерация занимала третье место по числу заражений после США и Бразилии, с 484 630 случаями заражения. Несмотря на уходящий пик выявления заболевших, количество случаев заражения продолжает оставаться высоким на протяжении длительного периода. Исследование распространения COVID-19 в Китае с учетом инкубационного периода, потоков пассажиров и мер здравоохранения было проведено с использованием математических моделей, таких как SEIR. Различные стратегии карантинных мер в Китае были прогнозированы с использованием QSEIR модели. Модели SEIR-D и SIR-D использовались для оценки параметров и прогнозирования эпидемии в Китае и других странах. Математическая модель SEIR-HD с мерами контроля была предложена. Обобщенная модель SEIR была применена к распространению SARS-CoV-2 в Италии, а также для прогнозирования в Испании и Южной Корее. Модифицированные SEIR модели использовались для сценариев развития эпидемии в Италии и Бразилии. SEIR-D модель с параметрами, зависящими от времени, была применена для анализа ситуации в различных регионах, таких как округа Индии, Ломбардия (Италия) и Москва (Россия). Основная цель данной работы - решение системы уравнений модели SEIR-D для Новосибирской области с использованием метода Эйлера.

$$\left\{ \begin{array}{l} \frac{dS}{dt} = -c(t-\tau) \left(\frac{\alpha_I S(t) I(t)}{N} + \frac{\alpha_E S(t) E(t)}{N} \right) + \gamma R(t), \\ \frac{dE}{dt} = c(t-\tau) \left(\frac{\alpha_I S(t) I(t)}{N} + \frac{\alpha_E S(t) E(t)}{N} \right) - (\kappa + \rho) E(t), \\ \frac{dI}{dt} = \kappa E(t) - \beta I(t) - \mu I(t), \\ \frac{dR}{dt} = \beta I(t) + \rho E(t) - \gamma R(t), \\ \frac{dD}{dt} = \mu I(t). \end{array} \right.$$

Значение коэффициентов:

Таблица 11. Восстановленные параметры для периода измерений 23.03.2020—31.05.2020, Новосибирская область

[Модель	α_E	α_I	κ	ρ	β	ν	ε_{CH}	μ	$c^{\rm isol}$	E_0	R_0
	SEIR-HCD	0.001	0.224		_	0.013	0.006	0.055	0.072	_	1001	-
-	SEIR-D	0.999	0.999	0.042	0.952	0.999	_	_	0.0188	0	99	24

Ход работы

Для решения системы из пяти дифференциальных уравнений использовался метод Эйлера.

$$y_i = y_{i-1} + hf(x_{i-1}, y_{i-1}).$$

На языке си это выглядит следующим образом:

```
void Comp(double *S, double *E, double *I, double *R, double *D, double alphaI, double alphaE, double B, double u, double k, double p, double N, double dS = (-1 * ((alphaI * *S * *I) / N + (alphaE * *S * *E) / N) + gamma * *R);
    double dE = (1 * ((alphaI * *S * *I) / N + (alphaE * *S * *E) / N) - (k + p) * *E);
    double dI = (k * *E - B * *I - u * *I);
    double dR = (B * *I + p * *E - gamma * *R);
    double dD = (u * *I);

    double delta = fabs(dS) + fabs(dE) + fabs(dI) + fabs(dR) + fabs(dD);
    if (delta < 0.01)
    {
        return;
    }
    *S += dS * dt;
    *E += dE * dt;
    *I += dI * dt;
    *R += dR * dt;
    *P += dD * dt;
}</pre>
```

В начале в каждой итерации цикла высчитывается значения системы дифференциальных уравнений. Затем с помощью метода Эйлера вычисляются следующие значения переменных S, E, I, R, D. Таким образом, можно определить количество инфицированных, восприимчивых к инфекции, вылеченных, зараженных, умерших людей в Новосибирской Области с 23.03.2020 по 31.05.2020.

Итог

Результат выполнения программы:

5	Е	I	R	D
2798047.00	99.00	0.00	24.00	0.00
2797948.13	99.49	4.16	118.22	0.00
2797844.71	104.13	4.10	216.97	0.08
2797736.81	108.74	4.30	319.99	0.16
2797624.22	113.56	4.49	427.49	0.24
2797506.73	118.60	4.69	539.66	0.32
2797384.14	123.84	4.90	656.71	0.41
2797256.21	129.32	5.11	778.85	0.50
2797122.74	135.03	5.34	906.29	0.60
2796983.46	140.99	5.58	1039.27	0.70
2796838.15	147.20	5.82	1178.03	0.80
2796686.52	153.68	6.08	1322.80	0.91
2796528.33	160.44	6.35	1473.86	1.03
2796363.28	167.48	6.63	1631.46	1.15
2796191.09	174.83	6.92	1795.90	1.27
2796011.45	182.48	7.22	1967.45	1.40
2795824.05	190.46	7.54	2146.42	1.54
2795628.56	198.78	7.87	2333.12	1.68
2795424.64	207.44	8.21	2527.88	1.83
2795211.95	216.47	8.57	2731.04	1.98
2794990.11	225.87	8.94	2942.94	2.14
2794758.74	235.66	9.33	3163.96	2.31
2794517.46	245.86	9.73	3394.46	2.48
2794265.85	256.48	10.15	3634.85	2.67
2794003.49	267.53	10.59	3885.53	2.86
2793729.95	279.04	11.05	4146.91	3.06
2793444.76	291.01	11.52	4419.44	3.26
2793147.46	303.47	12.02	4703.58	3.48
2792837.56	316.42	12.53	4999.78	3.71
2792514.56	329.90	13.07	5308.53	3.94
2792177.94	343.91	13.62	5630.34	4.19
2791827.16	358.47	14.20	5965.72	4.44
2791461.67	373.61	14.80	6315.21	4.71
2791080.89	389.33	15.43	6679.36	4.99
2790684.24	405.67	16.08	7058.73	5.28
2790271.10 2789840.85	422.63	16.75	7453.93 7865.56	5.58
	440.24	17.45	8294.24	5.90
2789392.84	458.52	18.18		6.23
2788926.41 2788440.87	477.48 497.14	18.93 19.72	8740.61 9205.35	6.57 6.92
2787935.53	517.53	20.53	9689.11	7.29
2787409.67	538.66	21.37	10192.62	
2786862.55	560.55	22.24	10716.58	7.68 8.08
2786293.41	583.22	23.15	11261.73	8.50
2785701.48	606.69	24.08	11828.82	8.93

Графики по результатам программы:

Приложение

```
1
        #include <stdio.h>
2
        #include <math.h>
3
4
        void Comp(double *E, double *E, double *I, double *R, double *D, double alphaI, double alphaE, double B, double u, double b, double p, double gamma, double N, do
5
          6
          double dE = (1 * ((alphaI * *S * *I) / N + (alphaE * *S * *E) / N) - (k + p) * *E);
          double dI = (k * *E - B * *I - u * *I);
8
          double dR = (B * *I + p * *E - gamma * *R);
9
          double dD = (u * *I);
10
11
12
          double delta = fabs(dS) + fabs(dE) + fabs(dI) + fabs(dR) + fabs(dD);
13
          if (delta < 0.01)
14
15
             return;
16
           *S += dS * dt;
17
          *E += dE * dt;
18
          *I += dI * dt;
19
          *R += dR * dt;
20
21
          *D += dD * dt;
22
23
24
        int main()
25
          double B = 0.999, gamma = 0.001, u = 0.0188, alphaE = 0.999, alphaI = 0.999;
26
27
          double S = 2798170.0 - 99.0 - 24.0, E = 99.0, I = 0.0, R = 24.0, D = 0.0;
28
29
          int N = 2798170;
          double k = 0.042;
30
31
          double p = 0.952;
          int dt = 1;
32
33
          int T = 68;
34
35
36
          printf("%10s%10s%10s%10s%10s\n", "S", "E", "I", "R", "D");
37
38
39
          for (int i = 0; i < T / dt; ++i)
40
             printf("%10.2f%10.2f%10.2f%10.2f%10.2f\n", S, E, I, R, D);
41
42
             Comp(&S, &E, &I, &R, &D, alphaI, alphaE, B, u, k, p, gamma, N, dt);
43
44
45
          return 0;
46
```

Список литературы

- 1. Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. March 21, 2020. https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
- 2. Тамм М.В. Коронавирусная инфекция в Москве: прогнозы и сценарии // ФАРМАКОЭКОНОМИКА. Современная Фармакоэкономика и Фармакоэпидемиология. 2020. Т. 13, №-- 1. С. 43–51. DOI: 10.17749/2070-4909.2020.13.1.43-51.
- 3. Koltsova E.M., Kurkina E.S., Vasetsky A.M. Mathematical modeling of the spread of COVID-19 in Moscow and Russian regions. 2020. arXiv:2004.10118 [q-bio.PE].
- 4. Zlojutro A., Rey D., Gardner L. Optimizing border control policies for global out-break mitigation // Scientific Reports. 2019. Vol. 9. P. 2216. https://rdcu.be/bniOs
- 5. Chen Y., Cheng J., Jiang Y., and Liu K. A time delay dynamical model for outbreak of 2019-nCoV and the parameter identification // J. of Inverse and Ill-posed Problems. 2020. Vol. 28, iss. 2. P. 243–250.
- 6. Tang B., Wang X., Li Q., Bragazzi N.L., Tang S., Xiao Y., Wu J. Estimation of the transmission risk of 2019-nCoV and its implication for public health interventions // SSRN: https://ssrn.com/abstract=3525558