CS7GV2: Mathematics of Light and Sound, M.Sc. in Computer Science.

Lecture #9: Diffraction

Fergal Shevlin, Ph.D.

School of Computer Science and Statistics, Trinity College Dublin

December 3, 2021

Notes

1/9

Amplitude away from source

Speed of light* in $m s^{-1}$ is c

Wavelength in m is λ

Wave period in s is $T = \lambda/c$

Wave frequency in Hz is $\,
u=1/T\,$

Angular freq. in rad s $^{-1}$ is $\omega=2\pi/T$

Wave number in rad m $^{-1}$ is $k=2\pi/\lambda$

A phasor encodes max. amplitude $A({\bf p})$ and phase $\phi({\bf p})$ at position ${\bf p}$,

$$U(\mathbf{p}) = A(\mathbf{p}) \exp\{j \ \phi(\mathbf{p})\}.$$

The scalar value of an EM wave vector component at time t can be found as,

$$u(\mathbf{p}, t) = \text{Re}\{U(\mathbf{p}) \exp\{-j \omega t\}\}\$$

= $A(\mathbf{p}) \cos(\omega t - \phi(\mathbf{p})).$

Let p_1 be the point source of a wave and let p_0 be somewhere else. Let t_{01} be the time it takes for the wave to travel.

$$u(\boldsymbol{p}_0,t_{01}) = \operatorname{\mathsf{Re}} \left\{ U(\boldsymbol{p}_1) \, \frac{\exp\{-\operatorname{\mathsf{j}} \omega t_{01}\}}{r_{01}} \right\}$$

where $r_{01} = || \boldsymbol{p}_0 - \boldsymbol{p}_1 || = c t_{01}$ is the Euclidean distance between the points.

 $\omega t_{01} = \frac{2\pi}{T} t_{01} = \frac{2\pi}{\lambda/c} t_{01}$ $= \frac{2\pi c}{\lambda} t_{01} = k r_{01}$

Since there is no explicit time term, this can be used to express the phasor at p_0 ,

$$U(\boldsymbol{p}_0) = U(\boldsymbol{p}_1) \frac{\exp\{-j \ k \ r_{01}\}}{r_{01}}$$

Notes			

Amplitude after an aperture

Amplitude at p_0 is the integral of the contributions from all possible points p_1 in the aperture,

$$U(\boldsymbol{\rho}_0) = \frac{1}{\mathrm{j}\,\lambda} \iint\limits_{\Sigma} U(\boldsymbol{\rho}_1) \, \frac{\exp\{\mathrm{j}\,k\,r_{01}\}}{r_{01}} \cos\theta\,\mathrm{d}s.$$

This expresses the Huygens-Fresnel principle of wave summation.

An aperture affects wave summation such that unusual constructive and destructive interference arises. Spot dia. $2.44 \lambda f/D$.

This is termed *diffraction* and it happens to all physical waves:

- ► light
- sound
- ▶ vibration (e.g. of water)
- gravitational waves

Diffuse reflection from a rough surface can also be understood as diffraction.

Intensity in x-y plane after a narrow rectangular aperture.

Intensity in x-z plane through and after a narrow rectangular aperture.

Significant computation is required for *numerical* solutions that simulate diffraction effects through summation of wave amplitudes.

Many different techniques can be used, e.g. *finite element methods*, to find wave amplitudes at discrete volumes in space at successive steps in time.

Note that intensity at distance r_{01} is distributed over a sphere whose surface area is $4\pi r_{01}^2$. So intensity scales $\propto 1/r_{01}^2$.

Since amplitude is the square root of intensity, it scales $\propto \sqrt{1/r_{01}^2} = 1/r_{01}$.

In two dimensional wave propagation (e.g. on water) the amplitude scales $\propto 1/\sqrt{r_{01}}$.

Not	es			
_				
_				
_				
_				

3/9

Fresnel Approximation

Since $\cos \theta = z/r_{01}$, wave summation can be rewritten in more explicit rectangular coordinates

$$U(x, y, z) = \frac{z}{j \lambda} \iint_{\Sigma} U(\xi, \eta) \frac{\exp\{j k r_{01}\}}{r_{01}^2} d\xi d\eta$$

with distance calculated as,

$$r_{01} = \sqrt{z^2 + (x - \xi)^2 + (y - \eta)^2}$$

To facilitate analytical solutions, an approximation for distance r_{01} uses a binomial expansion to replace the square root,

$$\sqrt{1+b} = (1+b)^{\frac{1}{2}}$$

$$= 1 + \frac{1}{2}b - \frac{1}{8}b^2 + \dots$$
when $|b| < 1$.

$$r_{01} = \sqrt{z^2} \sqrt{1 + \left(\frac{x - \xi}{z}\right)^2 + \left(\frac{y - \eta}{z}\right)^2}$$
$$\approx z \left[1 + \frac{1}{2} \left(\frac{x - \xi}{z}\right)^2 + \frac{1}{2} \left(\frac{y - \eta}{z}\right)^2\right]$$

using only the first two terms of the expansion with $b = \left(\frac{x-\xi}{z}\right)^2 + \left(\frac{y-\eta}{z}\right)^2$.

(cf. parabolic approx. of spherical wavefront.)

The same approximation for r_{01} doesn't have to be used for all occurances.

Using the first term only, the denominator $r_{01}^2 \approx$ z^2 . This can be factored out of the integral into the scaling term,

$$\frac{z}{j \lambda z^2} = \frac{1}{j \lambda z}.$$

Notes

Convolution

Using the first two terms of the approximation,

$$\exp\{j \ k \ r_{01}\} \approx \exp\left\{j \ k \ z \left[1 + \frac{1}{2} \left(\frac{x - \xi}{z}\right)^2 + \frac{1}{2} \left(\frac{y - \eta}{z}\right)^2\right]\right\} \begin{cases} U(x, y, z) \approx \frac{1}{j} \frac{\lambda z}{\lambda z} & \text{if } J = 0 \end{cases}$$

$$= \exp\{j \ k \ z\} \exp\left\{j \ k \ z \left[\frac{1}{2} \left(\frac{x - \xi}{z}\right)^2 + \frac{1}{2} \left(\frac{y - \eta}{z}\right)^2\right]\right\} \qquad \exp\left\{j \frac{k}{2z} \left[(x - \xi)^2 + (y - \eta)^2\right]\right\} \qquad \exp\left\{j \frac{k}{2z} \left[(x - \xi)^2 + (y - \eta)^2\right]\right\} \qquad \text{Accurate only for the "near field" close to the state of distance convenients in the$$

Using the first two terms of the approximation,
$$\exp\{j\ k\ r_{01}\}\approx \exp\Big\{j\ k\ z\Big[1+\frac{1}{2}\big(\frac{x-\xi}{z}\big)^2+\frac{1}{2}\big(\frac{y-\eta}{z}\big)^2\Big]\Big\} \\ =\exp\{j\ k\ z\}\ \exp\Big\{j\ k\ z\Big[\frac{1}{2}\big(\frac{x-\xi}{z}\big)^2+\frac{1}{2}\big(\frac{y-\eta}{z}\big)^2\Big]\Big\} \\ \exp\Big\{j\ \frac{k}{2z}\big[(x-\xi)^2+(y-\eta)^2\big]\Big\}\ d\xi\ d\eta.$$

Accurate only for the "near field" close to the aperture because of distance approximation.

To facilitate analysis, it can be written as a convolution of the aperture with a function h.

$$U(x, y, z) \approx \iint_{-\infty}^{+\infty} U(\xi, \eta) \times h(x - \xi, y - \eta) \, d\xi \, d\eta.$$

Convolution kernel h(v, w) =

$$\frac{\exp\{j \ k \ z\}}{j \ \lambda z} \exp\{j \ \frac{k}{2z} (v^2 + w^2)\}.$$

Convolution	Cross-correlation	Autocorrelation
f	f 🔲	f
g	9	9
f · g	g*f	f*f
g · f	f*g	9*9

5/9

Notes

Fourier transform

$$(x - \xi)^2 = x^2 - 2x\xi + \xi^2,$$

$$(y - \eta)^2 = y^2 - 2y\eta + \eta^2.$$

Hence further factorization outside the integral is possible since only those terms in ξ and η need to remain inside.

$$\exp\left\{j\frac{k}{2z}[(x-\xi)^2+(y-\eta)^2]\right\}=$$

$$\begin{split} &\exp\Bigl\{\mathrm{j}\,\frac{k}{2z}(x^2+y^2)\Bigr\}\times\\ &\exp\Bigl\{\mathrm{j}\,\frac{k}{2z}(\xi^2+\eta^2)\Bigr\}\times\\ &\exp\Bigl\{-2\,\mathrm{j}\,\frac{k}{2z}(x\xi+y\eta)\Bigr\}. \end{split}$$

Note that $k = 2\pi/\lambda$,

$$\frac{k}{2z} = \frac{2\pi}{\lambda} \frac{1}{2z} = \frac{2\pi}{\lambda 2z} = \frac{\pi}{\lambda z}.$$

$$U(x, y, z) \approx \frac{\exp\{j k z\}}{j \lambda z} \exp\{j \frac{k}{2z} (x^2 + y^2)\} \times \int_{-\infty}^{+\infty} U(\xi, \eta) \exp\{j \frac{k}{2z} (\xi^2 + \eta^2)\} \times \exp\{-j \frac{2\pi}{\lambda z} (x\xi + y\eta)\} d\xi d\eta.$$

This integral can be recognised as the (scaled) Fourier transform of the (scaled) aperture evaluated at spatial frequencies,

$$f_X = \frac{x}{\lambda z}$$
 $f_Y = \frac{y}{\lambda z}$.

Notes

Fraunhofer Approximation

When z in $\frac{k}{2z}(\xi^2 + \eta^2)$ is very big,* this expression is close to 0 so its exponent is close to 1. So it is not essential to use it a scaling factor,

$$U(x, y, z) = \frac{\exp\{j \ kz\} \exp\{j \ \frac{k}{2z}(x^2 + y^2)\}}{j \ \lambda z}$$
$$\iint U(\xi, \eta) \exp\{-j \frac{2\pi}{\lambda z}(x\xi + y\eta)\} d\xi d\eta$$

Hence wave summation can be expressed as the (scaled) Fourier transform of the (unscaled) aperture evaluated at frequencies,

$$f_X = \frac{x}{\lambda z}$$
 $f_Y = \frac{y}{\lambda z}$.

Accurate only for the "far field" distant from the aperture because of distance assumption.

For intensity $I(x, y, z) = |U(x, y, z)|^2$, the numerator and denominator of the scaling term simplify as follows.

$$|\exp\{j kz\}|^2 = \exp\{+j kz\} \times \exp\{-j kz\} = \exp\{+j kz - j kz\} = \exp\{0\} = 1.$$

 $|j \lambda z|^2 = (+j \lambda z)(-j \lambda z)$ $= +1 \lambda^2 z^2 = \lambda^2 z^2.$

For a nice alternative derivation of the material in this lecture, see https://www.youtube.com/watch?v=JKxDa5D3GnQ.

Notes

7/9

More examples

Notes				
-				
Notes				
Notes				
	·	·	· ·	

9/9