LaPIS Diagnostic Test Workbook - Mathematics

Name : Bharanika M

Class: 7

Section : B

School : AKV Public School

Login ID : AKV154

Bharanika M's Performance Report

Score: 22/40 Percentage: 55.0%

Bharanika M's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
_					
	Class Teacher S	Signature	Princi	ipal Signature	

Data handling

Topics to be Improved		
Range	Finding the range	
Chance of probability	Sample space in probability	

Hi,	here	in	this	video	you	will	learn	Range
,					./			

Question:	1
& account.	_

Answer:

The difference between highest value and lowest value is _____

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}, Lowest value = \underline{\hspace{1cm}}.$

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$

Question: 2

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20 + 51$$

$$\frac{-38-51}{2}$$
 51 + 38

$$51 + 38$$

......

......

.....

......

$$\frac{51+20}{2}$$

Answer:

 $Range = \bot$

Arranging the data in ascending order, _____

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Question: 3

Find the range of first 10 multiple of 5.

Answer:

First 10 multiple of $5 = \underline{\hspace{1cm}}$

Therefore,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Basics of probability

Question: 4

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

Impossible events

4				
Δ	ns	2711	P	r.

Write the possible outcomes while spinning the given wheel.

Answer:			
Outcomes are (possil	ble/impossible) results of an	experiment.	
The possible outcomes while spinning	g wheel are ₹0, ₹10,		
<i>Question:</i> 6			
A bag contains three balss of colour lare taken out.	blue, green and red. Write t	he possible outcomes i	f two balls
Answer:			
A bag contains,	and	balls.	
If one of the ball is blue in colour, th	en other ball can be	or	
If one of the ball is green in colour, the	hen other ball can be	or	
If one of the ball is red in colour, the	n other ball can be	or	
Therefore, if two balls are taken out	then possible outcomes are	blue +	- ,
+	+		

. . .

Geometry

Topics to be Improved		
Angle sum property of triangle	Angle sum property of triangle	
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	

.....

Hi, here in this video you will learn Angle sum property

Question: 7

Sum of the angles of triangle is ______.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 8

Which of the following triangle satisfy the angle sum property.

_	Answer

Angle sum property of triangle: sum of the angles of a triangle is ______

In $\triangle ABC$, Sum of the angles $= \angle A + \angle B + \angle C = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

In $\triangle PQR$, Sum of the angles = _____ = ____ = ____

In $\triangle KLM$, Sum of the angles = _____ = ___ = ____

In $\triangle XYZ$, Sum of the angles = _____ = ____ = ____

......

Therefore, the triangles that satisfy the angle sum property are = _____

Question: 9

Find the angles of triangle, if their angles are in the ratio 8:6:4.

$\underline{Answer:}$

Ratio of angles in the triangle is _____

Let's consider the angles of triangle be 8x, ____ and ____

We know sum of the angles of a triangle is ____

Therefore, $8x + \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = 180^{\circ}$. The value of $x = \underline{\hspace{1cm}}$

The angles of the triangle are _____

Hi, here in this video you will learn Pythagoras property

Question: 10

In a right angled triangle, square of the _____ = sum of the squares of the legs.

.....

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____

Question: 11

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(\underline{\hspace{1cm}})^2 = (\underline{\hspace{1cm}})^2 + (\underline{\hspace{1cm}})^2$$

= $+$

.....

Therefore, hypotenuse of the triangle is _____.

Question: 12

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 13

Find the greatest distance to reach C from A in the given diagram.

......

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are ______ and AB then to ______ Side AC = _____ Side AB + BC = ____ + ___ = ____ Therefore, the greatest distance to reach C from A in the given diagram is _____.

Question: 14 _____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

Answer:

There are _____ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is _____ than the other side of the triangle.

Question: 15

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

Example: In triangle XYZ,

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = ____ + ___ = ____ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be ______(less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ ___ = ____

 Therefore, the length of the third side is greater than ______

Therefore, length of the third side is greater than ______ but less than _____

Number system

Topics to be Improved			
Operations on rational numbers	Subtraction of rational numbers		
Positive and negative rational numbers	Identification of positive rational numbers		
Fractions	Division of fraction		
Exponents	Solving exponents		
Decimals	Multiplication and division of decimals		

Hi, here in this video you will learn **Operation on rational numbers**

Question: 16

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{1}{3}$$

Question: 17

Find the addition of shaded part of box A and shaded part of box B.

......

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$. Shaded part of box A in fraction $= \underline{\hspace{1cm}}$. Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $__$ + $__$ = $_$

Question: 18

Find the missing values in the given figure.

$$= \begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

......

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} +$ ____ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} =$ _____

Therefore, result is _

Hi, here in this video you will learn Positive and Negative rational numbers

Question: 19

Segregate positive and negative rational number.

Answer:

• If both the numerator and the denominator of a rational number are (positive/negative), then it is positive rational number.
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
Question: 20
Answer:
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \Box$ and this rational number.
Division of _4 and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 21
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Division on fractions
Question: 22
Find the shape which contains the improper fraction of $5\frac{2}{7}$.
$\begin{array}{ c c c c c }\hline\hline 10\\\hline 35\\\hline \end{array}$
Answer:
$5\frac{2}{7}$ is a (proper/mixed) fraction. Here, 5 is , 2 is and 7 is
To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

Question:	23
Question.	\sim 0

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by _____ (same / reciprocal) of the divisor. Here, dividend = _____ and divisor = ____.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \square = \square$$

......

Question: 24

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by ____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is ___

Hi, here in this video you will learn Exponents and power

Question: 25

Find the exponential form of 1000.

Answer:

____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

1000 can be written as = $10 \times$ 10 is raised to the power of $\underline{\hspace{1cm}} = (10)^{\underline{\hspace{1cm}}}$

Question: 26

Find the value of $(-2)^3$.
Answer:
(Exponents/Base) tells us how many times a number should be multiplied by itsel to get the desired result.
In this exponential form $(-2)^3$, base =, power = $(-2)^3 = \underline{\qquad} \times \underline{\qquad} = \underline{\qquad}$.
Question: 27
(i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$.
(ii) k is raised to the power of 5 is $\underline{\hspace{1cm}}((k)^5 \text{ or } (5)^k).$
Answer: Exponential form = $(Base)$ —
(i) Tenth power of 100 : Base =, Power/Exponents =, exponential form =
(ii) k is raised to the power of 5 : Base =, Power/Exponent =, exponential form =
Hi, here in this video you will learn Basics of decimals
Question: 28
Shade 0.4 part of the given shape.
Answer:
There are boxes. 0.4 can be expressed as in fraction This fraction represents parts out ofequal parts. So, we need to shade boxes out ofboxes.
Question: 29
Solve the following.
(i) 0.4×1.2

(ii) 0.48×1.2

Answer:

(1)	0.4×1.2 :
	Multiplication of 0.4×1.2 assuming there is no decimal point is
	The number of digits after decimal point in 0.4 is and 1.2 is
	Total digits after decimal point in the product of two numbers is
	Count that digits from the right towards left and place the decimal point, the result is

(ii) 0.48×1.2 :

Multiplication of 0.48×1.2 assuming there is no decimal point is
The number of digits after decimal point in 0.48 is and 1.2 is
Total digits after decimal point in the product of two numbers is
Count that digits from the right towards left and place the decimal point, the result is
count that digital from the right towards left and place the decimal point, the result is

..... Question: 30

One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?

Answer:

One box contains _____ chocolates. The cost of one box is ____ Then cost of one chocolate = = = = =

- (i) Total digits after decimal point in decimal number = _____
- (ii) Divide the two numbers assuming there is no decimal point.

$$\frac{2010}{15} =$$

(iii) Place the decimal point after _____ digits counting from the right in the quotient after division.

Then the cost of one chocolate is _____.

The cost of 15 chocolates = cost of one chocolate \times ____ = __ x ___ = ___

Comparing Quantities

Topics to be Improved		
Simple interest	Calculation of simple interest	
Percentage	Basic of percentage	

 Hi , here in this video you will learn $\operatorname{\mathbf{Simple}}$ $\operatorname{\mathbf{Interest}}$

Question: 31

Match the following.

Column A		
i	Principle(P)	
ii	Amount (A)	
iii	Rate (R)	
iv	Time period (T)	

Column B		
a	Interest calculated based on this	
b	Total sum you borrow	
С	Number of years	
d	Total sum with interest	

Answer:
Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is
Question: 32
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.
Answer:
Given:
$Amount = \underline{\hspace{1cm}}, Principle = \underline{\hspace{1cm}}, Time period = \underline{\hspace{1cm}}.$
If Amount and principle is given, then formula for calculating interest is
Interest = =
<i>Question:</i> 33
The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.
Answer:
$\label{eq:continuous_principal} \text{Interest} = \underline{\hspace{1cm}} \text{, Principal} = \underline{\hspace{1cm}} \text{.}$

Rate of interest $= \frac{x \cdot 100}{x \cdot 100}$	
Principal x Substituting values in the formula,	
Rate of interest $= \frac{\underline{\qquad} x \ 100}{\text{Principal x} \underline{\qquad}}$	
Rate of interest =	
Therefore, the rate of interest is $___$	
Hi, here in this video you will learn Basics of percentage	
Question: 34	
2% can be written as	
Answer:	
Percentages are numerators of fractions with denominator $2\% = { }$	
Question: 35	
Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark Arun?	k scored by
Answer:	
Arun attended LaPIS test for marks. He got mark	ζS.
75 % can be written in fraction form	
Then the mark scored by Arun = Total mark \times 75% = \times	=
Question: 36	
There are 25 apples in a basket in which 10 of them are rotten. Find the percentage apples.	ge of rotten
Answer:	
There are apples in a basket. Number of rotten apples are	

Fraction form of rotten apples	s in a basket $=$ \square
Convert it into a percent=	x% =

Algebra

Topics to be Improved		
Basics of simple equation Solving of simple equation, Formating of simple equation		
subtraction of algebraic expressions	subtraction of algebraic expressions	
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	
Terms of an expression	Identification of terms in an expression	
Addition and subtraction of algebraic expressions	Like terms and Unlike terms	

Hi, here in this video you will learn Solving an equation

Question: 37

If $\odot = 5$, then $5 \odot +5 =$

Answer:

The value of the given smiley \odot is _____. Substituting the value in the expression = $5(___) + 5 = ____ + ___ = ___$.

Question: 38

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

......

 $7 \cap + 3 = -4$

Answer:

The given equation is $7 \pm 3 = -4$ Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} +3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

 $\underline{Question:~39}$

Arrange the terms in the descending order when the value of x is 2. $2x 5x \times 1 x + 3 2x - 4 \frac{1}{2}x$

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

......

......

$$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$$

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, ____.

Hi, here in this video you will learn Subtraction on expression

Question: 40

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given two expressions are _____ and ____. The two terms will get added only if they are _____ (Like/ Unlike) terms. The sum of two expressions = ____ + ____. The answer is _____

Question: 41

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

(i)	Number of boys in school $A = \underline{\hspace{1cm}}$,		
	Number of boys in school $B = \underline{\hspace{1cm}}$.		
	Total number of boys in school A and school B is	 +	=

(ii) Number of boys in school Number of girls in school Total number of students	,	
(iii) Number of teachers more school $A = \underline{\hspace{1cm}}$.	in school B than school A = Teachers in	school B — Teachers in
Question: 42		
Solve the following:		
$ \begin{array}{c c} 13x + \underline{\hspace{1cm}} \\ (+) & 12x + 10y \\ \underline{\hspace{1cm}} + 25y \end{array} $	$ \begin{array}{r} 3a - 5b \\ \underline{ (-) 5a - 7b} \\ -2a - \\ \end{array} $	
$\underline{Answer:}$		
The two terms will get added or	only if they are (like/unlike) terms	s.
$ \begin{array}{c c} 13x + \underline{\hspace{1cm}} \\ (+) & 12x + 10y \\ \underline{\hspace{1cm}} + 25y \end{array} $	$ \begin{array}{r} 3a - 5b \\ (-) 5a - 7b \\ \hline -2a - \underline{\hspace{1cm}} \end{array} $	
Question: 43	will learn Types of expression	
There are terms in the	expression $7x + 3y + m + 5$.	
Answer:		
In algebraic expression, of addition.	(variables/ terms) are connected	together with operations
	rms in the expression.	
Question: 44		
Classify the following expression	n into monomial, binomial and polynomia	al.
1. $7m + n + 2$		
2. $8x^2 + 0$		
3. 7xy + 4m		
$\underline{Answer:}$		
1. The terms in expression 8 Here, expression has		

	n expression $7xy + 4$ sion has ten			
3. The terms in	n expression $7m + n$ ssion has term a	+ 2 are		
Question: 45				
$5m^2 + m + 0$ is a	exp	ression. (Monomial	/ Binomial/ Trinom	ial)
Answer:				
	ression $5m^2 + m + 0$ on has		 called a	expression.
Hi, here in thi	is video you will	learn Terms of	an expression	
Question: 46				
Separate the varia	ables and constants f	for all the terms give	ven in the box	
				\
	$\begin{pmatrix} 18 & & & \\ & 4x & & \end{pmatrix}$	$ \begin{array}{ccc} 16r & & 54c^4 \\ & & & & \\ 12 & & & x \end{array} $	$-4mn$ z^2 ab	
				,
Answer:				
	ssion, variables are i	represented by	and Cor	nstant is a
———·	ssion, variables are i	represented by		
	Terms	Constants	Variables	
Question: 47				
-	on that contains two			
3x + 5 12a	a 4xy 12a + b + 1	7m+0		
Answer:				
	expression $3x + 5$ is, expression $12a$ is/ar			

The terms in the expression 4xy is/are _____.

The terms in the expression $12a + b + 1$ is/are The terms in the expression $7m + 0$ is/are
Question: 48
Shade the outline of circle that contains the term of the given expression.
$6m^2-7mn+nl$
(m^2) $(7mn)$ $(6m^2)$ $(-7mn)$ (mn) (mn)
Answer:
In algebraic expression, (variables/ terms) are connected together with operations of addition.
Here,, are the terms of the given expression.
Hi, here in this video you will learn Solving an equation using application
<i>Question:</i> 49
Box A Box B
Box B contains times the number of chocolates in Box A
Answer:
Box A contains chocolates. Box B contains chocolates. No. of chocolates in Box B = × (No. of chocolates in Box A)
Question: 50
Write the equation for the following statement. Subtracting four times of m from 4 is n
Answer:
Four times of $m = \underline{\hspace{1cm}}$
Subtracting four times of m from $4 = \underline{\hspace{1cm}}$
The equation is

Question: 51
Compare the given two statements $(<,>,=)$ Sum of $2a$ and 9 Add 9 to the product of a and 2
Answer:
Sum of $2a$ and $9 = \underline{\hspace{1cm}}$
Product of a and $2 = \underline{\hspace{1cm}}$
Add 9 to the product of a and $2 = \underline{\hspace{1cm}}$
Therefore, sum of $2a$ and 9 \square Add 9 to the product of a and 2
Hi, here in this video you will learn Addition on expression
Question: 52
Shade the like terms.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Answer:
Given terms are Two or more term have (same/ different) variables is called like terms. Here, like terms are
Question: 53
Complete the expression $7r^2 + r \Box - 2 \Box = \underline{r^2}$
Answer:
(Like / Unlike) terms can be added or subtracted.
$_{7r^2+ \ r} \square_{-2} \square = (7 + - 2)_{r^2} = $
Question: 54 Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.
(i) Total chocolates Ram and Sam have:

(ii)	How many	icecreams ?	Sam h	nave more	than	Ram	:		
------	----------	-------------	-------	-----------	------	-----	---	--	--

Answer:

	Chocolates	Icecream
Sam		
Ram		

(i)	Total chocolates Ram and Sam have:	
	Ram's chocolate + Sam's chocolates -	 _