Computational Analysis of Sound and Music

Music Information Retrieval – Music Transcription 1/2

Dr.-Ing. Jakob Abeßer

Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Outline

Pitch Tracking

Introduction

- Pitch
- Perceptual sound attribute
- Allows ordering from low to high in a frequency-related scale

FMP Notebooks

1) Pitch detection

2) Voicing detection

Own

Introduction

- Application Scenarios
 - Music Instrument Tuning
 - Music Education
 - Music Transcription
 - Bioacoustics (e.g., bird call recognition)

Fig-M3-2

Fig-M3-3

Fig-M3-4

Complexity Levels

Pitch detection of isolated monophonic instruments

Aud-M3-1

Predominant melody extraction in polyphonic music

Aud-M3-2

Polyphonic melody extraction

Aud-M3-3

Traditional Method

- MELODIA [Salamon & Gomez, 2012]
 - Melody extraction from polyphonic music
- Steps
- Sinusoid Extraction
 - Equal loudness filter
 - STFT
 - Detection of predominant peaks
 - Frequency refinement via instantaneous frequency (IF)

Traditional Method

- Steps
- Harmonic summation
 - Sum over possible harmonic frequencies
 - Frequencies → pitch candidates

Traditional Method

- Steps
- Pitch contour creation & melody selection
 - Auditory streaming cues → group peaks to continuous paths (pitch contours)
 - Select melody contours using features (e.g. average pitch / salience, vibrato)
 - Note formation (one pitch value)

Traditional Method

Melodia plugin available for Sonic Visualiser

Fig-M3-6

DL-based Method

- CREPE (Convolutional Representation for Pitch Estimation) [Kim et al., 2018]
 - Monophonic pitch tracker
 - End-to-end modeling
 - Audio samples → pitch likelihoods
 - 20 cent resolution (5 pitch bins per semitones)

DL-based Method

- Auto-encoder structure (U-Net) [Hsieh et al., 2019]
 - Time-frequency representations (2D) \rightarrow pitch saliency map (2D)
 - (Bottleneck) embedding encodes pitch voicing (melody activity)

Fig-M3-8

Programming session

Fig-A2-13

References

Images

- Fig-M3-1: [Müller, 2015], p. 449, Fig. 8.15(b)
- Fig-M3-2: https://unsplash.com/de/fotos/person-die-braune-e-gitarre-spielt-bAHwQEJqAb8
- Fig-M3-3: https://cdn2.whatoplay.com/screenshots/2631slide-4.jpg
- Fig-M3-4: https://unsplash.com/de/fotos/tierfotografie-flamingoschwarm-ub1sSvJ Tbs
- Fig-M3-5: [Müller, 2015], p. 449, Fig. 8.15(a)
- Fig-M3-6: https://www.upf.edu/documents/8071534/8190069/melodia vamp screenshot.png
- Fig-M3-7: [Kim et al., 2018], p. 2, Fig. 1
- Fig-M3-8: [Hsieh et al., 2019], p. 2, Fig. 2

References

Audio

AUD-1: Aislinn – Capclear (2013), https://freemusicarchive.org/music/Aislinn/Aislinn/10 - Aislinn - Capclear

AUD-2: Aislinn – Fourteen Days (2013), https://freemusicarchive.org/music/Aislinn/Aislinn/11 - Aislinn - Fourteen days

AUD-3: Anonymous Choir – Amicus Meus (2009),

https://freemusicarchive.org/music/Anonymous Choir/Toms Luis de Victorias Amicus Meus/Amicus Meus

References

References

Müller, M. (2021). Fundamentals of Music Processing - Using Python and Jupyter Notebooks (2nd ed.). Springer.

Kim, J. W., Salamon, J., Li, P., & Bello, J. P. (2018). Crepe: A Convolutional Representation for Pitch Estimation. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 161–165. New Orleans, USA.

Salamon, J., & Gomez, E. (2012). Melody extraction from polyphonic music signals using pitch contour characteristics. IEEE Transactions on Audio, Speech and Language Processing, 20(6), 1759–1770.

Hsieh, T. H., Su, L., & Yang, Y. H. (2019). A Streamlined Encoder/Decoder Architecture for Melody Extraction. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 156–160. Brighton, UK.

