```
!pip install PyDrive
!pip install shap
!pip install keras
!pip install sklearn
from pydrive.auth import GoogleAuth
from pydrive.drive import GoogleDrive
from google.colab import auth
from oauth2client.client import GoogleCredentials
import seaborn as sns
import numpy as np
from datetime import datetime as dt
import matplotlib.pyplot as plt
from sklearn.preprocessing import OneHotEncoder
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import train test split
from sklearn.linear model import LogisticRegression
from sklearn import metrics
from sklearn.metrics import classification report, confusion matrix
from sklearn.metrics import accuracy_score
from sklearn.model selection import GridSearchCV
from sklearn.datasets import make blobs
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
import xgboost as xgb
from xgboost import XGBClassifier
 Saved successfully!
from keras.layers import Dense
import tensorflow.keras as keras
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit learn import KerasClassifier
import geopy.distance
# 1. Authenticate and create the PyDrive client.
auth.authenticate user()
gauth = GoogleAuth()
gauth.credentials = GoogleCredentials.get application default()
drive = GoogleDrive(gauth)
```

```
#2. Get the file
downloaded = drive.CreateFile({'id':"17TlCXfs4WKyo8nshLrTGoVTLOvP6CIyr"}) # replace the id
downloaded.GetContentFile('fraudTrain.csv')

#3. Read file as panda dataframe
import pandas as pd
```

▼ Exploration of Data

data = pd.read_csv('fraudTrain.csv')

	1 to 8 of 8 entries Filter ?								r ?	
	index	Unnamed: 0	cc_nu	amt	zip	lat	long	city_pop	unix	
	count	7506.00	7506.00	7506.00	7506.00	7506.00	7506.00	7506.00	7506.0	
	mean	624949.72	400357683719606400.00		531.32	48038.71	38.66	-89.92	97276.76	13483
	std	401056.01	1276871477748873216.00 60416207185.00		390.56	27265.56	5.17	14.28	326581.47	13830
	min	2449.00			1.06	1330.00	20.03	-165.67	23.00	13254
	50.00			245.66	24927.00	35.06	-96.70	746.50	13357	
Save	Saved successfully! 75% 984921.50 46510070776231 max 1295733.00 49923463980651		×	998.00	396.50	46290.00	39.43	-86.69	2623.00	13488
			4651007077623	3147.00	900.88	71107.00	42.07	-79.94	21437.00	13600
			5154048.00	1376.04	99783.00	66.69	-68.56	2906700.00	13717	
	→									>

Show 25 ✔ per page

non_fraud.describe().apply(lambda s: s.apply('{0:.2f}'.format))

1 to 8 of 8 entries | Filter

ш	7	
- Ч		7

index	Unnamed: 0 cc_num		amt zip		lat	long	city_
count	1289169.00	1289169.00	1289169.00	1289169.00	1289169.00	1289169.00	12891
mean	648473.17	417290057695786368.00	67.67	48805.11	38.54	-90.23	88775.
std	374152.59	1308989951701786880.00	154.01	26890.99	5.08	13.76	30180
min	0.00	60416207185.00	1.00	1257.00	20.03	-165.67	23.00

```
fraud['trans_date_trans_time'] = pd.to_datetime(fraud['trans_date_trans_time'])
fraud.dtypes['trans_date_trans_time']

fraud['transaction_hour'] = fraud['trans_date_trans_time'].dt.hour

data['trans_date_trans_time'] = pd.to_datetime(data['trans_date_trans_time'])
data.dtypes['trans_date_trans_time']

data['transaction_hour'] = data['trans_date_trans_time'].dt.hour

fig, ax = plt.subplots(1,2,figsize=(20,5))
ax[0].hist(data['transaction_hour'], bins=50)
ax[1].hist(fraud['transaction_hour'], bins=50)
ax[0].set_title('Overall hours of tensaction')
ax[1].set_title('Fraud hours transaction')
ax[0].set_xlabel('transaction hours')
ax[0].set_ylabel('count')
```


ax[1].set_xlabel('transaction hours')


```
fig, ax = plt.subplots(1,2,figsize=(20,5))
ax[0].hist(data['distance'], bins=100)
ax[1].hist(fraud['distance'], bins=100)
ax[0].set title('distance distribution for overall trasaction')
ax[1].set title('distance distribution for fradulent trasaction')
ax[0].set xlabel('distance between customer and merchant')
ax[0].set_ylabel('count')
ax[1].set xlabel('distance between customer and merchant')
plt.show()
fig, ax = plt.subplots(1,3,figsize=(20,5))
ax[0].hist(data[data['amt']<=1500]['amt'], bins=50)</pre>
ax[1].hist(data[(data['is fraud']==0) & (data['amt']<=1500)]['amt'], bins=50)
ax[2].hist(data['is fraud']==1) & (data['amt']<=1500)]['amt'], bins=50)</pre>
ax[0].set title('Overall Amt Distribution')
ax[1].set title('Non Fraud Amt Distribution')
ax[2].set title('Fraud Amt Distribution')
ax[0].set_xlabel('Transaction Amount')
ax[0].set ylabel('#.of Transactions')
ax[1].set xlabel('Transaction Amount')
ax[2].set_xlabel('Transaction Amount')
plt.show()
```


Feature Engineering

```
# calculating % of fraud happened in each hour
data['trans date trans time'] = pd.to datetime(data['trans date trans time'])
data.dtypes['trans date trans time']
data['transaction hour'] = data['trans date trans time'].dt.hour
t = data.groupby('transaction_hour').count()
t = t['trans_num']
t = pd.DataFrame(t)
t = t.rename(columns={'trans num':'Actual transaction'})
fraud t = data.loc[data['is fraud']==1]
tf = fraud_t.groupby('transaction_hour').count()
tf = tf['trans num']
time = pd.concat([t, tf], axis=1)
time[['Actual_transaction','trans_num']]
time = time.rename(columns={'trans num':'Fradulent transaction'})
time['Fradulent_transaction'] = time['Fradulent_transaction'].fillna(0)
time['fraud_rate%_by_hour'] = (time['Fradulent_transaction'] / time['Actual_transaction']) *
time = time.sort values(['fraud rate% by hour'], ascending=False)
fr_time = pd.DataFrame(time['fraud_rate%_by_hour'])
act_time = data['transaction_hour']
act time = pd.DataFrame(act time)
                                × e, how='left', on='transaction_hour')
 Saved successfully!
```

transaction_hour

index

1 to 25 of 20000 en

fraud_rate%_by_hour

	illuex	transaction_nour	irauu_rate /6_by_nour					
	0	0	1.49					
	1	0	1.49					
	2	0	1.49					
	3	0	1.49					
	4	0	1.49					
	5	0	1.49					
	6	0	1.49					
	7	0	1.49					
	8	0	1.49					
	9	0	1.49					
	10	0	1.49					
	11	0	1.49					
	12	0	1.49					
	13	0	1.49					
	14	0	1.49					
	15	0	1.49					
	16	U	1 4 !					
data['transa	action_hour'] = new_time['fraud_rate%_by_ho	ur']					
	18	U	1.4					
<pre>t_categ_anal = data.groupby('category')[['trans_num']].count().reset_index() t_categ_anal.rename({'trans_num':'total_count_of_trasactions'}, axis=1) f_categ_anal = data[data['is_fraud']==1].groupby('category')[['trans_num']].count().reset_ind f_categ_anal.rename({'trans_num':'count_of_fraud_trasactions'}, axis=1) categ_anal = pd.merge(t_categ_anal, f_categ_anal, how='left', on='category') categ_anal['fraud_perc'] = (categ_anal['trans_num_y'] / categ_anal['trans_num_x']) * 100</pre>								
L_ JUU	_апат -	essfully! × trans_num']].count(- uaca.g.oupoy(joo)[[crans_num']].count(= t_job_anal.sort_values(['trans_num'], asc						
<pre>f_job_anal = data[data['is_fraud']==1].groupby('job')[['trans_num']].count().reset_index() f_job_anal = f_job_anal.sort_values(['trans_num'], ascending=False)</pre>								
job_a job_a high_ #high_ high_	nal['fi nal = j fraud : _fraud fraud_j	<pre>pd.merge(t_job_anal, f_job_anal, how='inner raud_perc'] = (job_anal['trans_num_y'] / jo job_anal.sort_values(['fraud_perc'], ascend = job_anal[job_anal['fraud_perc'] > 90] = pd.DataFrame(high_fraud['job']) job = high_fraud['job'].tolist()</pre>	b_anal['trans_num_x']) * 100					
new_job = []								

```
12/19/21, 8:54 PM
                                              Log_reg_creditcard.ipynb - Colaboratory
   for job in data['job']:
     for fraud_job in high_fraud_job:
       if fraud job == job:
         new_job.append('high risk')
         break
     else:
       new job.append('low risk')
   data['job'] = new_job
   enc = OneHotEncoder()
   enc df = pd.DataFrame(enc.fit transform(data[['job']]).toarray())
   enc_df
   data = data.join(enc df)
   data.rename({0:'low risk job', 1:'high risk job'}, axis=1, inplace=True)
   #calculating % fraud zip code wise
   z = data.groupby('zip').count()
   z = z['city']
   z = pd.DataFrame(z)
   z = z.rename(columns={'city':'Actual_transaction'})
   fraud = data.loc[data['is fraud']==1]
   zf = fraud.groupby('zip').count()
   zf = zf['city']
   zip = pd.concat([z, zf], axis=1)
   zip[['Actual_transaction','city']]
   zip = zip.rename(columns={'city':'Fradulent transaction'})
   rin['Enadulant transaction'] - rin['Fradulent transaction'].fillna(0)
     Saved successfully!
                                         transaction'] / zip['Actual transaction']) * 100
   zip = zip.sort_values(['fraud_rate%'], ascending=False)
   fr zip = pd.DataFrame(zip['fraud rate%'])
   # Replacing Zip codes with fraud rates
   act zip = data['zip']
   act_zip = pd.DataFrame(act_zip)
   new_zip = pd.merge(act_zip, fr_zip, how='left', on='zip')
   data['zip'] = new_zip['fraud_rate%']
   data['zip']
   # normalising amount column
```

```
data['amt'] = np.log(data['amt'])
data['amt'].skew()
enc = OneHotEncoder()
enc_df = pd.DataFrame(enc.fit_transform(data[['gender']]).toarray())
data = data.join(enc_df)
data.rename({0:'female', 1:'male'}, axis=1, inplace=True)
data['category'].replace({'misc_net':1, 'grocery_pos':2, 'entertainment':3, 'gas_transport':4
enc = OneHotEncoder()
enc df = pd.DataFrame(enc.fit transform(data[['category']]).toarray())
enc df
data = data.join(enc df)
data.rename({0:'misc_net', 1:'grocery_pos', 2:'entertainment', 3:'gas_transport', 4:'misc_pos
data['day of week'] = data['trans date trans time'].dt.day name()
data['day of week']
label_encoder = preprocessing.LabelEncoder()
data['day_of_week'] = label_encoder.fit_transform(data['day_of_week'])
data['day of week'].unique()
#Target encoding of transaction hour
temp = data['transaction_hour'].value_counts().to_dict()
data['Enaud by boun'] - data['transaction_hour'].map(temp)
 Saved successfully!
#target encoding of address = street + city + state
data['address'] = data['street'] + data['city'] + data['state']
temp = data['address'].value counts().to dict()
data['address fe'] = data['address'].map(temp)
data['address fe']
data.columns
Y = data['is fraud']
#data.drop(columns=['Unnamed: 0','is fraud','trans date trans time','dob','trans num','unix t
```

```
X = data.copy()
```

Train test split

Aggregate encoding done after train test split - as the encoding is done based on the statistical properties like avg, std

```
X_train['cust_det'] = X_train['first'] + X_train['last'] + X_train['cc_num'].map(str)
X test['cust det'] = X test['first'] + X test['last'] + X test['cc num'].map(str)
#AE
temp = X_train.groupby('cust_det')['distance'].agg(['std']).rename({'std':'cust_std_dist'}, a
X train = pd.merge(X train,temp,on='cust det',how='left')
#AE
temp = X_train.groupby('cust_det')['amt'].agg(['mean']).rename({'mean':'tran_mean_cust'}, axi
X_train = pd.merge(X_train,temp,on='cust_det',how='left')
X_train['tran_mean_cust']
 Saved successfully!
                                   mt'].agg(['mean']).rename({'mean':'tran_mean_cust'}, axis
              st_det',how='left')
X test['tran mean cust']
#AE
temp = X_train.groupby('cust_det')['amt'].agg(['std']).rename({'std':'tran_std_cust'}, axis=1
X_train = pd.merge(X_train,temp,on='cust_det',how='left')
X_train['tran_std_cust']
#AE
temp = X_test.groupby('cust_det')['amt'].agg(['std']).rename({'std':'tran_std_cust'}, axis=1)
X_test = pd.merge(X_test,temp,on='cust_det',how='left')
X_test['tran_std_cust']
```

X_train.drop(columns=['Unnamed: 0','cust_det','address','is_fraud','trans_date_trans_time','d

X_test.drop(columns=['Unnamed: 0','cust_det','address','is_fraud','trans_date_trans_time','do

X_train.head(5)

	amt	zip	city_pop	transaction_hour	high risk job	male	misc_net	grocery_pos	en [.]
0	4.429506	0.000000	4056	0.132542	1.0	0.0	1.0	0.0	
1	2.615204	1.353965	91	0.142278	1.0	0.0	0.0	0.0	
2	2.695978	0.591716	2036	0.123649	1.0	0.0	0.0	0.0	
3	2.900872	0.000000	207	0.120812	1.0	0.0	0.0	1.0	
4	2.284421	0.000000	3096	0.122633	1.0	1.0	0.0	0.0	

```
X_train['city_pop'] = (X_train['city_pop'] - X_train['city_pop'].min())/(X_train['city_pop'].
X_train['Fraud_by_hour'] = (X_train['Fraud_by_hour'] - X_train['Fraud_by_hour'].min())/(X_train['address_fe'] = (X_train['address_fe'] - X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min()/(X_train['address_fe'].min())/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address
```

```
X_test['city_pop'] = (X_test['city_pop'] - X_test['city_pop'].min())/(X_test['city_pop'].max(
X_test['Fraud_by_hour'] = (X_test['Fraud_by_hour'] - X_test['Fraud_by_hour'].min())/(X_test['
X_test['address_fe'] = (X_train['address_fe'] - X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min())/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_fe'].min()/(X_train['address_f
```

```
xgb_instance = xgb.XGBClassifier()
model_for_feature_selection = xgb_instance.fit(X_train, y_train)
```

```
Saved successfully! × so use SHAP values
```

teature_importance = { Feature : X_train.columns, Importance : model_for_feature_selection.feat feature_importance = pd.DataFrame(feature_importance)

feature_importance.sort_values("Importance", inplace=True,ascending=False)

feature importance

shap_values = shap.TreeExplainer(xgb_instance, feature_perturbation='interventional').shap_va

```
explainer = shap.TreeExplainer(xgb_instance)
shap_values = explainer.shap_values(X_train)
```

```
shap_values = shap.TreeExplainer(xgb_instance).shap_values(X_train)
shap.summary_plot(shap_values, X_train, plot_type='bar')
```

- MODEL

```
lr_model = LogisticRegression(solver='saga', max_iter=600)
reult = lr_model.fit(X_train, y_train)

The max_iter was reached which means the coef_ did not converge

y_pred = lr_model.predict(X_test)
y_pred

matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(matrix, annot=True, fmt="d")
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('True')
print(classification_report(y_test, y_pred))
```

Saved successfully!

✓ 4s completed at 8:53 PM

X