War Crimes Against Euclid.

Bajtek Rogue

October 29, 2025

Contents

1	Introduction	2
2	Set Theory and Analysis Basics 2.1 Real Numbers	3
3	Lines	4
4	Circles	9

Chapter 1 Introduction

Chapter 2

Set Theory and Analysis Basics

2.1 Real Numbers

Let \mathbb{R} be a set equipped with operations $+, \cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ called addition and multiplication satisfying the following axioms:

1.
$$\forall a, b, c \in \mathbb{R}$$
 $a + (b + c) = (a + b) + c$

2.
$$\exists 0 \in \mathbb{R} \ \forall a \in \mathbb{R} \ a+0=a$$

3.
$$\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \quad a+b=0$$

4.
$$\forall a, b \in \mathbb{R}$$
 $a+b=b+a$

5.
$$\forall a, b, c \in \mathbb{R}$$
 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

6.
$$\exists 1 \in \mathbb{R} \ \forall a \in \mathbb{R} \ a \cdot 1 = a$$

7.
$$\forall a \in \mathbb{R} \ \exists b \in \mathbb{R} \quad a \cdot b = 1$$

8.
$$\forall a, b \in \mathbb{R}$$
 $a \cdot b = b \cdot a$

9.
$$\forall a, b, c \in \mathbb{R}$$
 $a \cdot (b+c) = a \cdot b + a \cdot c$

Moreover \mathbb{R} needs to satisfy the **least upper bound property**:

$$\forall S \subseteq \mathbb{R} \ \exists m \in \mathbb{R} \ \forall x \in S \quad x \leq m \implies (\exists u \in \mathbb{R} \ \forall v \in \mathbb{R} \ \forall x \in S \quad x \leq v \implies u \leq v) \ .$$

In words it simply means that every bounded set has a least upper bound. We can easily see that it has to be unique. We denoted it as $\sup(S)$. Similarly we denote the least lower bound of a set $\inf(S)$.

Chapter 3

Lines

Definition 1. Plane is the set $\mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}.$

Definition 2. *Point* is any element of the plane.

Definition 3. Origin is the point (0,0). We denote it as \mathcal{O} .

Definition 4. Let $P, Q \in \mathbb{R}^2$ be points with $P = (x_1, y_1), Q = (x_2, y_2).$ **Vector** from P to Q is $\overrightarrow{PQ} = [x_2 - x_1, y_2 - y_1].$ Without loss of generality me might take $P = \mathcal{O}$ and put vector to be $\mathbf{v} = [v_1, v_2]$ for $v_1, v_2 \in \mathbb{R}$.

Definition 5. Vector [0,0] is called the **zero vector**. We denote it as **0**.

Definition 6. Let $\mathbf{v} \in \mathbb{R}^2$ be a vector with $\mathbf{v} = [v_1, v_2]$ and $\lambda \in \mathbb{R}$ be a number. We define scalar multiplication as $\lambda \cdot \mathbf{v} = [\lambda \cdot v_1, \lambda \cdot v_2]$.

Definition 7. Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$ be vectors with $\mathbf{u} = [u_1, u_2], \mathbf{v} = [v_1, v_2]$. We define vector addition as $\mathbf{u} + \mathbf{v} = [u_1 + v_1, u_2 + v_2]$.

Definition 8. Let $\mathbf{v} \in \mathbb{R}^2$ be a vector with $\mathbf{v} = [v_1, v_2]$ and $P \in \mathbb{R}^2$ be a point with P = (x, y). We define **point translation** as $P + \mathbf{v} = (x + v_1, y + v_2)$.

Definition 9. Let $\mathbf{v} \in \mathbb{R}^2$ be a vector with $\mathbf{v} = [v_1, v_2]$. We define it's **length** as $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}$.

Definition 10. Vector $\mathbf{v} = [v_1, v_2]$ is called a **unit vector** if $\|\mathbf{v}\| = 1$.

Definition 11. Let $P, Q \in \mathbb{R}^2$ be points. Line segment between P and Q is the set $PQ = \{(1-t) \cdot P + t \cdot Q : t \in [0,1]\}.$

Definition 12. Let $P,Q \in \mathbb{R}^2$ be points with $P = (x_1, y_1), \ Q = (x_2, y_2).$ **Distance** between P and Q is $|PQ| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. Fact 1. Let $P, Q, R \in \mathbb{R}^2$ be points. If $R \in PQ$ then |PQ| = |PR| + |RQ|.

Proof. Let $P = (x_1, y_1)$, $Q = (x_2, y_2)$, $R = (x_3, y_3)$. Since $R \in PQ$ we have $R = (1 - t) \cdot P + t \cdot Q$ for some $t \in [0, 1]$ and so

$$x_3 = (1-t) \cdot x_1 + tx_2, \quad y_3 = (1-t) \cdot y_1 + ty_2.$$

Plugging in we get

$$|PR| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2} = \sqrt{t^2 \cdot ((x_2 - x_1)^2 + (y_2 - y_1)^2)} = t \cdot |PQ|.$$

$$|RQ| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2} = \sqrt{(1 - t)^2 \cdot ((x_2 - x_1)^2 + (y_2 - y_1)^2)} = (1 - t) \cdot |PQ|.$$
Hence $|PR| + |RQ| = |PQ|.$

Definition 13. Let $P \in \mathbb{R}^2$ be a point and $\mathbf{v} \in \mathbb{R}^2$ be a nonzero vector. Ray starting at P and with direction \mathbf{v} is $\{P + t \cdot \mathbf{v} : t \in [0; +\infty)\}$.

Definition 14. Let $P \in \mathbb{R}^2$ be a point and $\mathbf{v} \in \mathbb{R}^2$ be a nonzero vector. Line passing through P and with direction \mathbf{v} is $\{P + t \cdot \mathbf{v} : t \in \mathbb{R}\}$.

Theorem 1. Set $\ell \subseteq \mathbb{R}^2$ is a line if and only if there are $A, B, C \in \mathbb{R}$ with $A \neq 0$ or $B \neq 0$ so that

$$\ell = \{(x, y) \in \mathbb{R}^2 : Ax + By + C = 0\}$$
.

We write this as $\ell : Ax + By + C = 0$.

Proof. \Longrightarrow .

Let $\ell \subseteq \mathbb{R}^2$ be a line passing through point $P = (x_0, y_0)$ and with direction vector $\mathbf{v} = [v_1, v_2]$. Take $(x, y) \in \ell$. We have $(x, y) = (x_0, y_0) + t \cdot [v_1, v_2]$ for some $t \in \mathbb{R}$. Hence $x = x_0 + tv_1$, $y = y_0 + tv_2$. Also $v_2x - v_1y + v_2x_0 - v_1y_0 = v_2 \cdot (x_0 + tv_1) - v_1 \cdot (y_0 + tv_2) + v_2x_0 - v_1y_0 = 0$. Thus all points on ℓ satisfy the equation Ax + By + C = 0 with

$$A = v_2, B = -v_1, C = v_2 x_0 - v_1 y_0$$
.

Moreover since $\mathbf{v} \neq \mathbf{0}$ we know that $A \neq 0$ or $B \neq 0$.

 \Leftarrow . Let $\ell: Ax + By + C = 0$ be a set with $A \neq 0$ or $B \neq 0$. Without loss of generality assume $A \neq 0$. Now $(-\frac{C}{A}, 0) \in \ell$ so $\ell \neq \emptyset$ and thus we can fix $(x_0, y_0) \in \ell$. Now take $(x, y) \in \ell$. We have Ax + By + C = 0 and so $x = -\frac{By+C}{A}$. Take $t \in \mathbb{R}$ such that $y = y_0 - tA$, preciously $t = -\frac{y-y_0}{A}$. Then we have

$$x = -\frac{B \cdot (y_0 - tA) + C}{A} = -\frac{By_0 + C}{A} + tB = x_0 + tB$$

where $x_0 = -\frac{By_0 + C}{A}$ because $(x_0, y_0) \in \ell$. Hence we have $x = x_0 + tB$, $y = y_0 - tA$ and so $\ell = \{(x_0, y_0) + t \cdot [B, -A] : t \in \mathbb{R}\}$. Thus ℓ is a line.

Theorem 2. Let $\ell : Ax + By + C = 0$ and k : Dx + Ey + F = 0 be lines. The following are equivalent:

- 1. $\ell = k$
- 2. AE = BD and AF = CD
- 3. $\exists \lambda \in \mathbb{R} \setminus \{0\}$ $D = \lambda A, E = \lambda B, F = \lambda C$

Proof. $1 \implies 2$. Suppose $\ell = k$ and without loss of generality assume $A, D \neq 0$. If $(x,y) \in \ell$ then $x = -\frac{By+C}{A}$ and if $(x,y) \in k$ then $x = -\frac{Ey+F}{D}$. Since $\ell = k$ we get $\frac{By+C}{A} = \frac{Ey+F}{D}$. This equality holds for any $y \in \mathbb{R}$ so we must have $\frac{B}{A} = \frac{E}{D}$, $\frac{C}{A} = \frac{F}{D}$ which implies that AE = BD and AF = CD. $2 \implies 3$. Suppose that AE = BD and AF = CD and without loss of generality assume $A, D \neq 0$. We can write

$$D = \frac{D}{A} \cdot A, \ E = \frac{D}{A} \cdot B, \ F = \frac{D}{A} \cdot C \ .$$

Since $D \neq 0$ it means that $\frac{D}{A} \neq 0$.

 $3 \Longrightarrow 1$. Suppose $D = \lambda A$, $E = \lambda B$, $F = \lambda C$ for some $\lambda \in \mathbb{R}$ with $\lambda \neq 0$. Take $(x,y) \in \ell$. Then Ax + By + C = 0 but also $\lambda \cdot (Ax + By + C) = 0$ and so Dx + Ey + F = 0. Hence $(x,y) \in k$ and $\ell \subseteq k$. Take $(x,y) \in k$. Then Dx + Ey + F = 0 but that means $\lambda \cdot (Ax + By + C) = 0$. Since $\lambda \neq 0$ we have Ax + By + C = 0. Hence $(x,y) \in \ell$ and $k \subseteq \ell$. All in all we get $\ell = k$.

Theorem 3. Let $\ell: Ax + By + C = 0$ and k: Dx + Ey + F = 0 be lines. Then $|\ell \cap k| \in \{0, 1, \infty\}$ and the value of $|\ell \cap k|$ can be determined as follows: Put

$$\Delta = AE - BD, \ \Delta_x = CE - BF, \ \Delta_y = AF - CD$$
.

Now

- 1. $|\ell \cap k| = 1$ if and only if $\Delta \neq 0$
- 2. $|\ell \cap k| = 0$ if and only if $\Delta = 0$ and $\Delta_x \neq 0$ or $\Delta_y \neq 0$
- 3. $|\ell \cap k| = \infty$ if and only if $\Delta = 0$ and $\Delta_x = 0$ and $\Delta_y = 0$

Moreover if $|\ell \cap k| = 1$ then the solution is given by

$$x = -\frac{\Delta_x}{\Delta}, \ y = -\frac{\Delta_y}{\Delta}.$$

Proof. Point $(x,y) \in \ell \cap k$ solves the following system of equations:

$$\begin{cases} Ax + By + C = 0 \\ Dx + Ey + F = 0 \end{cases}$$

Without loss of generality assume $A \neq 0$. Then $x = -\frac{By+C}{A}$. Substituting it into the second equation we get $-D \cdot \frac{By+C}{A} + Ey + F = 0$ which simplifies to $\frac{AE-BD}{A}y + \frac{AF-CD}{A} = 0$ and further to $\Delta \cdot y + \Delta_y = 0$. If $\Delta \neq 0$ we have $y = -\frac{\Delta_y}{\Delta}$. Plugging back we get $x = -\frac{B \cdot \frac{CD-AF}{AE-BD} + C}{A} = -\frac{\Delta_x}{\Delta}$. However if $\Delta = 0$ we need to consider two cases:

Case 1:

Suppose $\Delta_y \neq 0$. Then the second equation is equivalent to $\Delta_y = 0$ which has no solutions.

Case 2:

Suppose $\Delta_y = 0$. By Theorem 2 we get $\ell = k$ and so $|\ell \cap k| = \infty$. All of the steps are reversible, and hence these conditions are necessary and sufficient.

Fact 2. Let $P, Q \in \mathbb{R}^2$ be points with $P \neq Q$. There is a unique line $\ell \subseteq \mathbb{R}^2$ such that $P, Q \in \ell$.

Proof. Let $P=(x_1,y_1),\ Q=(x_2,y_2).$ Put $\ell=\{P+t\cdot\vec{PQ}:t\in\mathbb{R}\}.$ We have $P\in\ell$ for t=0 and $Q\in\ell$ for t=1. Moreover suppose there is another line k such that $P,Q\in k$. But then $|\ell\cap k|\geq 2$ and by Theorem $3\ |\ell\cap k|=\infty$ and so $\ell=k$.

Definition 15. Lines $\ell, k \subseteq \mathbb{R}^2$ are said to be **parallel**, written $\ell \parallel k$, if $\ell = k$ or $\ell \cap k = \emptyset$.

Fact 3. Let $\ell: Ax + By + C = 0$ and k: Dx + Ey + F = 0 be lines. We have $\ell \parallel k$ if and only if AE - BD = 0.

Proof. By Theorem 3 if $\ell \parallel k$ then $|\ell \cap k| \in \{0, \infty\}$ and so AE - BD = 0. \square

Definition 16. Points $P, Q, R \in \mathbb{R}^2$ are said to be **colinear** if there is a line $\ell \subseteq \mathbb{R}^2$ such that $P, Q, R \in \ell$.

Theorem 4. Let $P, Q, R \in \mathbb{R}^2$ be points with $P = (x_1, y_1), \ Q = (x_2, y_2), \ R = (x_3, y_3)$. Then P, Q, R are colinear if and only if

$$\det \begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_3 \\ 1 & x_3 & y_3 \end{bmatrix} = 0$$

Proof. \Longrightarrow . Suppose $\ell:Ax+By+C=0$ is a line with $P,Q,R\in\ell$. There are $s,t\in\mathbb{R}$ so that $Q=P+t\cdot[B,-A]$ and $R=P+t\cdot[B,-A]$. Thus we get

$$x_2 = x_1 + tB$$
, $y_2 = y_1 - tA$, $x_3 = x_1 + sB$, $y_3 = y_1 - sA$.

Also note that

$$\det\begin{bmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_3 \\ 1 & x_3 & y_3 \end{bmatrix} = x_2y_3 - x_3y_2 - x_1y_3 + x_3y_1 + x_1y_2 - x_2y_1 .$$

Plugging in we get

$$(x_1 + tB) \cdot (y_1 - sA) - (x_1 + sB) \cdot (y_1 - tA) - x_1 \cdot (y_1 - sA) + (x_1 + sB) \cdot y_1 + x_1 \cdot (y_1 - tA) - (x_1 + tB) \cdot y_1 = 0.$$

 \Leftarrow . Let $\ell: Ax + By + C = 0$ and k: Dx + Ey + F = 0 be lines with $P,Q \in \ell$ and $P,R \in k$. They are unique by **Fact 2**. Also we have $Q = P + t \cdot [B, -A]$ and $R = P + s \cdot [E, -D]$ for some $s, t \in \mathbb{R}$. Thus we get

$$x_2 = x_1 + tB$$
, $y_2 = y_1 - tA$, $x_3 = x_1 + sE$, $y_3 = y_1 - sD$.

Plugging in we get

$$(x_1 + tB) \cdot (y_1 - sD) - (x_1 + sE) \cdot (y_1 - tA) - x_1 \cdot (y_1 - sD) + (x_1 + sE) \cdot y_1 + x_1 \cdot (y_1 - tA) - (x_1 + tB) \cdot y_1 = st \cdot (AE - BD).$$

By assumption this expression is zero. Since $P \neq Q$ and $P \neq R$ we know that $s, t \neq 0$. Hence we get that AE - BD. By Fact 3 we know that $\ell \parallel k$. However since $P \in \ell \cap k$ by theorem 3 we get that $\ell = k$ and so P, Q, R are colinear.

Chapter 4

Circles

Definition 17. Let r > 0 and $(p,q) \in \mathbb{R}^2$. Then **Circle** of center (p,q) and radius r is $\{(x,y) \in \mathbb{R}^2 : (x-p)^2 + (y-q)^2 = r^2\}$. We write this as $C : (x-p)^2 + (y-q)^2 = r^2$.

Definition 18. Let $C: (x-p)^2 + (y-q)^2 = r^2$ be a circle. **Diameter** of C is any line segment AB such that $A, B \in C$ and $(p,q) \in AB$.

Fact 4. Let $C: (x-p)^2 + (y-q)^2 = r^2$ be a circle and AB be it's diameter. Then |AB| = 2r.

Proof. Since $(p,q) \in AB$ by Fact 1 we have |AB| = |A(p,q)| + |(p,q)B| = r + r = 2r.