CSC355 PS3

Alex Zhang

April 15, 2024

Problem 1

(a)

The gradient of f(x, y) will be

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\frac{\partial f}{\partial x} = -c(4x(y-x^2)) - 2(1-x), \ \frac{\partial f}{\partial y} = 2c(y-x^2) + 0$$

$$\nabla f = \begin{bmatrix} -4c(x(y-x^2)) - 2(1-x) \\ 2c(y-x^2) \end{bmatrix}$$

The Hessian of f will be

$$\nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x \partial x} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y \partial y} \end{bmatrix}$$

where
$$\frac{\partial^2 f}{\partial x \partial x} = -c(4y - 12x^2) + 2$$
, $\frac{\partial^2 f}{\partial y \partial x} = -4cx$, and $\frac{\partial^2 f}{\partial y \partial y} = 2c$

$$\nabla^2 f = \begin{bmatrix} -c(4y - 12x^2) + 2 & -4cx \\ -4cx & 2c \end{bmatrix}$$

(b)

Problem 2

(b)

When c = 1, the output is,

>> [X,FVAL,EXITFLAG,OUTPUT,GRAD] = fminunc(@(x) myfun(x,1),[.1;.1],options);

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	1	0.8181		1.84
1	3	0.255493	0.272171	0.617
2	4	0.172388	1	0.491
3	5	0.0215888	1	0.208
4	6	0.0111538	1	0.449
5	7	0.000208418	1	0.0618

6	8	1.69733e-06	1	0.00284
7	9	5.79977e-09	1	0.000145
8	10	6.11888e-12	1	9.22e-06
9	11	1.81422e-16	1	5.51e-08

Local minimum found.

Optimization completed because the size of the gradient is less than the value of the optimality tolerance.

When c = 1000, the output is,

>> [X,FVAL,EXITFLAG,OUTPUT,GRAD] = fminunc(@(x) myfun(x,1000),[.1;.1],options);

				First-order
Iteration	Func-count	f(x)	Step-size	optimality
0	1	8.91		180
1	3	0.987	0.00055556	29.3
2	4	0.777219	1	1.75
3	6	0.764588	10	2.68
4	7	0.735046	1	15.4
5	8	0.702228	1	7.45
6	9	0.650868	1	2.95
7	11	0.578572	0.618962	10.8
8	12	0.53324	1	10.8
9	13	0.448368	1	5.3
10	15	0.385863	0.367553	10
11	16	0.364507	1	4.81
12	17	0.305381	1	10.3
13	18	0.263112	1	3.55
14	20	0.235968	0.480082	8.98
15	21	0.199458	1	6.02
16	22	0.162378	1	2.85
17	24	0.152655	0.32329	8.84
18	25	0.113748	1	8.99
19	26	0.104463	1	9.91
				First-order
Iteration	Func-count	f(x)	Step-size	optimality
20	27	0.0723461	1	8.18
21	28	0.0666479	1	1.4
22	29	0.0526213	1	2.72
23	31	0.0447515	0.435248	7.91
24	32	0.0343863	1	4.77
25	33	0.0245107	1	5.56
26	34	0.0180499	1	6.58
27	36	0.00815378	0.416144	3.51
28	37	0.00702843	1	2.8
29	39	0.00484113	0.645221	4.64
30	40	0.00213087	1	3.66
31	42	0.000347732	0.486442	0.821
32	43	0.000253146	1	1.12
33	44	4.19498e-05	1	0.431
34	45	5.90551e-06	1	0.103

35	46	4.22069e-07	1	0.0797
36	47	1.24377e-07	1	0.0436
37	48	1.60385e-12	1	3.36e-05

Local minimum found.

Optimization completed because the size of the gradient is less than the value of the optimality tolerance.

(c)

- i. fminunc uses 'quasi-newton' method to find local minimum
- ii. When switching from 1 to 1000, fminunc seems to do one extra run because it fails to find a local minimum at first.
- iii. It stops when the maximum absolute value in gradient is smaller than the tolerance (1e-06).