Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 19. Monte Carlo Valuation

Chapter 19. Monte Carlo Valuation

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- § 19.8 Simulating jumps with the Poisson distribution
- § 19.9 Simulating correlated stock prices
- § 19.10 Problems

Chapter 19. Monte Carlo Valuation

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- § 19.8 Simulating jumps with the Poisson distribution
- § 19.9 Simulating correlated stock prices
- § 19.10 Problems

For European call, if one use risk-neutral probability², then

$$C = e^{-rT} \sum_{i=0}^{n} \max(Su^{n-i}d^{i} - K, 0) \binom{n}{i} (p^{*})^{n-i} (1 - p^{*})^{i}$$

4

²One cannot have this simple expression if one uses the true probability.

FIGURE 19.1

Binomial tree (the same as in Figure 10.5) showing stock price paths, along with risk-neutral probabilities of reaching the various terminal prices. Assumes S = \$41.00, K = \$40.00, $\sigma = 0.30$, r = 0.08, t = 1.00 years, $\delta = 0.00$, and h = 0.333. The risk-neutral probability of going up is $p^* = 0.4568$. At the final node the stock price and terminal option payoff (beneath the price) are given.

5

Instead of using	the formula	to compute	the option	price,	one can	${\rm simulate}$

Example 19.1-1 Write a piece of code to simulate the binomial tree and compute the corresponding average payoff.

Solution. Check

codes/Section_19-1.py