ALGEBRAIC GEOMETRY

白永乐

SID: 202011150087

202011150087@mail.bnu.edu.cn

2023年10月8日

ROBEM I Let R be a Abel ring, \mathfrak{a} is an ideal of R, and $\sqrt{\mathfrak{a}} := \{x \in R : \exists n \in \mathbb{N}, x^n \in \mathfrak{a}\}$. Prove that:

- 1. $\sqrt{\mathfrak{a}}$ is ideal.
- 2. $\sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$.
- 3. $\sqrt{\mathfrak{a}}$ is the smallest radical ideal contain \mathfrak{a} .
- 4. If p is prime ideal, then p is radical.
- 5. $\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{p} \in \mathcal{P}} \mathfrak{p}$, where \mathcal{P} is the set of all prime ideal contains \mathfrak{a} .

ROBEM II An algebraically field is not finite field. ROBEM III Let $A=K[x_1,x_2,\cdots x_n]$, and $m_p=(x_1-a_1,\cdots x_n-a_n), p=(a_1,a_2,\cdots a_n)\in \mathbb{A}^n_K$. Then m is max ideal.

Lemma 1. If
$$f(x_1, x_2, \dots x_n) \in K[x_1, x_2, \dots x_n], f(a_1, a_2, \dots a_n) = 0$$
, then $f = \sum_{k=1}^n (x_k - a_k) f_k(x_1, x_2, \dots x_n)$.

证明. Use MI to n. When n=1 it's obvious. If for some certain n it's right, when goes to n+1: Let $g(x_1,x_2,\cdots x_n):=f(x_1,x_2,\cdots x_n,a_{n+1})\in K[x_1,x_2,\cdots x_n]$. Then $g(a_1,a_2,\cdots a_n)=0$, so $g(x_1,x_2,\cdots x_n)=\sum_{k=1}^n(x_k-a_k)g_i(x_1,x_2,\cdots x_n)$. Let $h(x_{n+1}):=f(x_1,x_2,\cdots x_{n+1})-g(x_1,x_2,\cdots x_n)\in K[x_1,x_2,\cdots x_n][x_{n+1}]$, then $h(a_{n+1})=0$. So $h(x_{n+1})=(x_{n+1}-a_{n+1})h_1(x_{n+1})$ for some $h_1(x_{n+1})\in K[x_1,x_2,\cdots x_n][x_{n+1}]$. Then $f(x_1,x_2,\cdots x_{n+1})=\sum_{k=1}^{n+1}(x_i-a_i)f_i(x_1,x_2,\cdots x_{n+1})$, where $f_k(x_1,x_2,\cdots x_{n+1})=g_k(x_1,x_2,\cdots x_n), k=1,2,\cdots n$, and $f_{n+1}(x_1,x_2,\cdots x_{n+1})=h_1(x_{n+1})$.

ROBEM IV $A \subset B \subset C$ are Abel rings. If B is f.g. A-module and C is f.g. B-module, then C is f.g. A-module, too.

BOBEM V If x is integral over A then A[x] is f.g. A-module.

ROBEM VI Let R be an integral domain, finitely generated over a field k. If R has transcendence degree n over k, then there exist elements $x_1, \ldots, x_n \in R$, algebraically independent over k, such that R is integrally dependent on the subring $k[x_1, \ldots, x_n]$ generated by the x's.