Quiz 2

Name _____

Problem 1. Suppose that X_1, X_2, X_3 are independent and identically distributed. The common probability mass function is

$$p(k;\theta) = \theta(1-\theta)^{k-1}, \quad k = 1, 2, \dots$$

If $X_1 = 4$, $X_2 = 2$, $X_3 = 6$, find the MLE of θ .

Solution. We have

$$\begin{split} L(\theta; 4, 2, 3) &= \theta (1 - \theta)^{4 - 1} \theta (1 - \theta)^{2 - 1} \theta (1 - \theta)^{6 - 1} = \theta^{3} (1 - \theta)^{9} \\ \ell(\theta; 4, 2, 3) &= \log L(\theta; 4, 2, 3) = 3 \log \theta + 9 \log (1 - \theta) \\ \frac{\ell(\theta)}{\partial \theta} &= \frac{3}{\theta} - \frac{9}{1 - \theta} \\ &= \frac{3(1 - \theta) - 9\theta}{\theta (1 - \theta)} \\ &= \frac{3 - 12\theta}{\theta (1 - \theta)} \end{split}$$

Thus, $\ell'(\theta) = 0$ if and only if

$$0 = 3 - 12\theta$$
$$\theta = \frac{3}{12} = \frac{1}{4}.$$

Note that $\ell'(\theta) > 0$ for $\theta < 1/4$ and $\ell'(\theta) < 0$ for $\theta > 1/4$, whence 1/4 is a global maximum. Thus $\hat{\theta} = 1/4$