Recitation 10

Definition (Gradient and Hessian of a function)

Let $f:\mathbb{R}^n \to \mathbb{R}$ be a function. If it exists, its gradient at a point $x \in \mathbb{R}^n$ is defined as

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{bmatrix}$$

If it exists, its Hessian at a point $x \in \mathbb{R}^n$ is defined as

$$Hf(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \end{bmatrix}$$

Convex sets and convex functions

Definition (Convex set)

A set $C \subseteq \mathbb{R}^n$ if for all $x,y \in C$, and all $\alpha \in [0,1]$,

$$\alpha x + (1 - \alpha)y \in C$$
.

Definition (Convex function (and strictly convex function))

A function $f:\mathbb{R}^n\to\mathbb{R}$ is convex if and only if for all $x,y\in\mathbb{R}^n$ and all $\alpha\in[0,1]$ it holds that

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y). \tag{1}$$

It is strictly convex if moreover $\forall \alpha \in (0,1)$,

$$f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y). \tag{2}$$

- 1. Which of the following sets are convex?
 - 1. $\{x \in \mathbb{R}^2 : ||x|| = 1\}$
 - 2. $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$
 - 3. $\{x \in \mathbb{R}^2 : ||x|| \ge 1\}$
 - 4. $\{x \in \mathbb{R}^2 : ||x|| < 1\}$
 - 5. $\{x \in \mathbb{R}^2 : v^\top x \ge a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 6. $\{x \in \mathbb{R}^2 : v^{\top}x = a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 7. $\{x \in \mathbb{R}^2 : x_2 \ge x_1^2\}$
 - 8. $\{x \in \mathbb{R}^2 : x_2 \le x_1^2\}$

- 1. Which of the following sets are convex?
 - 1. $\{x \in \mathbb{R}^2 : ||x|| = 1\}$
 - 2. $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$
 - 3. $\{x \in \mathbb{R}^2 : ||x|| \ge 1\}$
 - 4. $\{x \in \mathbb{R}^2 : ||x|| < 1\}$
 - 5. $\{x \in \mathbb{R}^2 : v^\top x \ge a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 6. $\{x \in \mathbb{R}^2 : v^{\top}x = a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 7. $\{x \in \mathbb{R}^2 : x_2 \ge x_1^2\}$
 - 8. $\{x \in \mathbb{R}^2 : x_2 \le x_1^2\}$

- 1. Which of the following sets are convex?
 - 1. $\{x \in \mathbb{R}^2 : ||x|| = 1\}$
 - 2. $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$
 - 3. $\{x \in \mathbb{R}^2 : ||x|| \ge 1\}$
 - 4. $\{x \in \mathbb{R}^2 : ||x|| < 1\}$
 - 5. $\{x \in \mathbb{R}^2 : v^{\top}x \geq a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 6. $\{x \in \mathbb{R}^2 : v^{\top}x = a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 7. $\{x \in \mathbb{R}^2 : x_2 \ge x_1^2\}$
 - 8. $\{x \in \mathbb{R}^2 : x_2 \le x_1^2\}$

- 1. Which of the following sets are convex?
 - 1. $\{x \in \mathbb{R}^2 : ||x|| = 1\}$
 - 2. $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$
 - 3. $\{x \in \mathbb{R}^2 : ||x|| \ge 1\}$
 - 4. $\{x \in \mathbb{R}^2 : ||x|| < 1\}$
 - 5. $\{x \in \mathbb{R}^2 : v^{\top}x \geq a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 6. $\{x \in \mathbb{R}^2 : v^{\top}x = a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 7. $\{x \in \mathbb{R}^2 : x_2 \ge x_1^2\}$
 - 8. $\{x \in \mathbb{R}^2 : x_2 \le x_1^2\}$

- 1. Which of the following sets are convex?
 - 1. $\{x \in \mathbb{R}^2 : ||x|| = 1\}$
 - 2. $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$
 - 3. $\{x \in \mathbb{R}^2 : ||x|| \ge 1\}$
 - 4. $\{x \in \mathbb{R}^2 : ||x|| < 1\}$
 - 5. $\{x \in \mathbb{R}^2 : v^{\top}x \geq a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 6. $\{x \in \mathbb{R}^2 : v^{\top}x = a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 7. $\{x \in \mathbb{R}^2 : x_2 \ge x_{21}\}$
 - 8. $\{x \in \mathbb{R}^2 : x_2 \le x_{21}\}$

- 1. Which of the following sets are convex?
 - 1. $\{x \in \mathbb{R}^2 : ||x|| = 1\}$
 - 2. $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$
 - 3. $\{x \in \mathbb{R}^2 : ||x|| \ge 1\}$
 - 4. $\{x \in \mathbb{R}^2 : ||x|| < 1\}$
 - 5. $\{x \in \mathbb{R}^2 : v^{\top}x \geq a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 6. $\{x \in \mathbb{R}^2 : v^{\top}x = a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 7. $\{x \in \mathbb{R}^2 : x_2 \ge x_{21}\}$
 - 8. $\{x \in \mathbb{R}^2 : x_2 \le x_{21}\}$

- 1. Which of the following sets are convex?
 - 1. $\{x \in \mathbb{R}^2 : ||x|| = 1\}$
 - 2. $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$
 - 3. $\{x \in \mathbb{R}^2 : ||x|| \ge 1\}$
 - 4. $\{x \in \mathbb{R}^2 : ||x|| < 1\}$
 - 5. $\{x \in \mathbb{R}^2 : v^{\top}x \geq a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 6. $\{x \in \mathbb{R}^2 : v^{\top}x = a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 7. $\{x \in \mathbb{R}^2 : x_2 \ge x_{21}\}$
 - 8. $\{x \in \mathbb{R}^2 : x_2 \le x_{21}\}$

- 1. Which of the following sets are convex?
 - 1. $\{x \in \mathbb{R}^2 : ||x|| = 1\}$
 - 2. $\{x \in \mathbb{R}^2 : ||x|| \le 1\}$
 - 3. $\{x \in \mathbb{R}^2 : ||x|| \ge 1\}$
 - 4. $\{x \in \mathbb{R}^2 : ||x|| < 1\}$
 - 5. $\{x \in \mathbb{R}^2 : v^{\top}x \geq a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 6. $\{x \in \mathbb{R}^2 : v^{\top}x = a\}$ for fixed $v \in \mathbb{R}^2$ and $a \in \mathbb{R}$.
 - 7. $\{x \in \mathbb{R}^2 : x_2 \ge x_{21}\}$
 - 8. $\{x \in \mathbb{R}^2 : x_2 \le x_{21}\}$

$$epi(f) := \{(x, t) \in \mathbb{R}^{n+1} \mid t \ge f(x)\}.$$

- 1. Prove that f is convex if and only if epi(f) is convex.
- 2. Prove that if f, g are convex functions, then $h(x) = \max(f(x), g(x))$ is convex.

$$epi(f) := \{(x, t) \in \mathbb{R}^{n+1} \mid t \ge f(x)\}.$$

- 1. Prove that f is convex if and only if epi(f) is convex.
- 2. Prove that if f, g are convex functions, then $h(x) = \max(f(x), g(x))$ is convex.

$$epi(f) := \{(x, t) \in \mathbb{R}^{n+1} \mid t \ge f(x)\}.$$

- 1. Prove that f is convex if and only if epi(f) is convex.
- 2. Prove that if f, g are convex functions, then $h(x) = \max(f(x), g(x))$ is convex.

$$epi(f) := \{(x, t) \in \mathbb{R}^{n+1} \mid t \ge f(x)\}.$$

- 1. Prove that f is convex if and only if epi(f) is convex.
- 2. Prove that if f, g are convex functions, then $h(x) = \max(f(x), g(x))$ is convex.

Convex functions and Hessians

Reminder: If f is a twice-differentiable function from \mathbb{R}^n to \mathbb{R} , f is convex if and only if its Hessian matrix $H_f(x)$ is positive semidefinite at all points $x \in \mathbb{R}^n$.

Reminder: If for all $x\in\mathbb{R}^n$, the Hessian matrix $H_f(x)$ is positive definite, then f is strictly convex. Show that the reverse is not true, i.e. find a strictly convex twice-differentiable function such that the Hessian matrix $H_f(x)$ is not positive definite everywhere.

Convex functions and Hessians

Reminder: If f is a twice-differentiable function from \mathbb{R}^n to \mathbb{R} , f is convex if and only if its Hessian matrix $H_f(x)$ is positive semidefinite at all points $x \in \mathbb{R}^n$.

Reminder: If for all $x\in\mathbb{R}^n$, the Hessian matrix $H_f(x)$ is positive definite, then f is strictly convex. Show that the reverse is not true, i.e. find a strictly convex twice-differentiable function such that the Hessian matrix $H_f(x)$ is not positive definite everywhere.

Convex functions and Hessians

Reminder: If f is a twice-differentiable function from \mathbb{R}^n to \mathbb{R} , f is convex if and only if its Hessian matrix $H_f(x)$ is positive semidefinite at all points $x \in \mathbb{R}^n$.

Reminder: If for all $x\in\mathbb{R}^n$, the Hessian matrix $H_f(x)$ is positive definite, then f is strictly convex. Show that the reverse is not true, i.e. find a strictly convex twice-differentiable function such that the Hessian matrix $H_f(x)$ is not positive definite everywhere.

Convex functions and minima

Let $f:\mathbb{R}^n \to \mathbb{R}$ be a convex function. Show that if for a certain $x \in \mathbb{R}^n$, there exists $\epsilon > 0$ such that $f(x) = \min\{f(y) \mid \|x - y\| < \epsilon\}$, then $f(x) = \min_{y \in \mathbb{R}^n} f(y)$.

Convex functions and minima

Let $f:\mathbb{R}^n \to \mathbb{R}$ be a convex function. Show that if for a certain $x \in \mathbb{R}^n$, there exists $\epsilon > 0$ such that $f(x) = \min\{f(y) \mid \|x - y\| < \epsilon\}$, then $f(x) = \min_{y \in \mathbb{R}^n} f(y)$.

Strictly convex functions & minima

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. Show that there exists a unique x^* such that $f(x^*) = \min_{y \in \mathbb{R}^n} f(y)$.

Strictly convex functions & minima

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. Show that there exists a unique x^* such that $f(x^*) = \min_{y \in \mathbb{R}^n} f(y)$.

Calculate the gradients and the Hessians of the following functions $f: \mathbb{R}^n \to \mathbb{R}$:

- 1. $f(x) = ||x||^2$.
- 2. $f(x) = ||Ax||^2$.
- 3. $f(x) = x^{\top} A x$.

Calculate the gradients and the Hessians of the following functions $f: \mathbb{R}^n \to \mathbb{R}$:

- 1. $f(x) = ||x||^2$.
- 2. $f(x) = ||Ax||^2$.
- 3. $f(x) = x^{\top} A x$.

Calculate the gradients and the Hessians of the following functions $f: \mathbb{R}^n \to \mathbb{R}$:

- 1. $f(x) = ||x||^2$.
- 2. $f(x) = ||Ax||^2$.
- 3. $f(x) = x^{T} A x$.

Calculate the gradients and the Hessians of the following functions $f: \mathbb{R}^n \to \mathbb{R}$:

- 1. $f(x) = ||x||^2$.
- 2. $f(x) = ||Ax||^2$.
- 3. $f(x) = x^{T} A x$.