C	۷(e	r	۷İ	e	W	' :	
_	_	_	_	_	_	_	_	_

Implementation of logistic regression using Iterative Reweighted Least Squares to fit a line or a second-degree polynomial to a set of training data

Language:

=======

MATLAB

Commands to run the program:

logistic_regression <training_file> <degree> <test_file>

The arguments provide to the program the following information:

- The first argument, <training_file>, is the path name of the training file, where the training data is stored.

The path name can specify any file stored on the local computer.

- The second argument, <degree> is a number equal to either 1 or 2. We will not test your code with any other values.

The degree specifies what function \ddot{l} † you should use. Suppose that you have an input vector $x = (x_1, x_2, ..., x_D)T$.

- > If the degree is 1, then $\ddot{l}^{\dagger}(x) = (1, x1, x2, ..., xD)T$.
- > If the number is 2, then $\ddot{I}^+(x) = (1, x1, (x1)2, x2, (x2)2..., xD, (xD)2)T$.
- The third argument, <test_file>, is the path name of the test file, where the test data is stored. The path name can

specify any file stored on the local computer.