MACHINE LEARNING

Introduction to Machine Learning

Muhammad Afif Hendrawan, S.Kom., M.T.

Outlines

- The relation between artificial intelligence and machine learning
- What is machine learning?
- Machine learning implementation
- Types of machine learning
- Data types on machine learning context
- Training, testing, and validation data
- Introduction to machine learning model evaluation
- Setup machine learning development environment

The Relation Between AI and ML

Al vs. ML. vs. DL

https://www.edureka.co/blog/ai-vs-machine-learning-vs-deep-learning/

What is Machine Learning

Formal Definition

- "Computational methods using experience to improve performance or to make accurate predictions" – Mohri, et al., 2012
- "Machine learning is the design and study of software artifacts that use past experience to inform future decisions; machine learning is the study of programs that learn from data" Hackeling, 2017

"A program can be said to learn from experience 'E' with respect to some class of tasks 'T' and performance measure 'P', if its performance at tasks in 'T', as measured by 'P', improves with experience 'E'."

Tom Mitchell

Tom Mitchell's ML Concept

Machine Learning Implementation

ML in Real World #1

ML in Real World #2

ML in Real World #3

Types of Machine Learning

The Concept of Supervised Learning - Classification Tasks

The Concept of Supervised Learning - Regression Tasks

The Concept of Unsupervised Learning - Clustering Tasks

The Concept of Unsupervised Learning - Dimensional Reduction Tasks

The Concept of Reinforcement Learning

observation

Data Types in Machine Learning Context

Structured vs. Unstructured vs. Semi-structured

Structured data

01010

Characteristics

Predefined data models
Easy to search
Text-based
Shows what's happening

Resides in

Relational databases Data warehouses

Stored in

Rows and columns

Examples

Dates, phone numbers, social security numbers, customer names, transaction info

Unstructured data

Characteristics

No predefined data models Difficult to search Text, pdf, images, video Shows the why

Resides in

Applications

Data warehouses and lakes

Stored in

Various forms

Examples

Documents, emails and messages, conversation transcripts, image files, open-ended survey answers

Semi-structured data

Characteristics

Loosely organized
Meta-level structure that
can contain unstructured
data
HTML, XML, ISON

Resides in

Relational databases Tagged-text format

Stored in

Abstracts & figures

Examples

Server logs, tweets organized by hashtags, emails sorting by folders (inbox; sent; draft)

LEVITY

Training Data, Testing Data, Validation Data

Training vs. Testing vs. Validation Data #1

- It is common to partition a single set of supervised observations into training, validation, and test sets.
- No requirements for the sizes of the partitions.
- Vary according to the amount of data available.
- It is common to allocate between fifty and seventy-five percent of the data to the training set.
- Ten to twenty-five percent of the data to the test set.
- The remainder to the validation set.
- The validation set is used to tune variables called hyperparameters that control how the algorithm learns from the training data.

Training vs. Testing vs. Validation Data #2

Cross-validation Approach #1

Cross-validation Approach #2

Introduction to Machine Learning Model Evaluation

How to Measure ML Model Performance? #1

 Performance metrics measure the amount of prediction error.

Bias

 An error from erroneous assumptions in the learning algorithm.

Variance

 A type of error that occurs due to a model's sensitivity to small fluctuations in the training set.

Fig. 1 Graphical illustration of bias and variance.

How to Measure ML Model Performance? #2

The fundamental goal of machine learning is to generalize, or to induce an unknown rule from examples of the rule's application.

– Hackeling, 2017

Setup Machine Learning Development Environment

The Tools - Preferred in Our Class

- Code Editor Visual Studio Code (later on, we will use Google Collab)
- Python
- Numpy
- Pandas
- Scikit-learn
- Pillow / OpenCV
- Tensorflow
- Joblib
- pyh5py
- Flask API

Let's get your hands dirty!

Setup Environment Demonstration