

PROVA DE FÍSICA MATEMÁTICA II – EDO E EDP

Sandro Dias Pinto Vitenti

Departamento de Física – CCE – UEL

1. Considere a equação do oscilador harmônico:

$$y'' + \omega^2 y = 0,$$

onde ω é uma constante real positiva. Mostre usando séries de potência que a solução geral da equação acima é dada por:

$$y(x) = A\cos(\omega x) + B\sin(\omega x),$$

onde A e B são constantes reais.

- 2. Para aplicar o método de Frobenius é necessário fazer primeiro a classificação dos pontos singulares da equação diferencial. Supondo que o dominio das equações diferenciais seja \mathbb{R} , classifique os pontos singulares, quando presentes, das equações diferenciais abaixo:
 - (a) $x^2y'' + xy' + y = 0$.
 - (b) $x^2y'' + x^{3/2}y = 0$.
 - (c) $y'' + xy' + \frac{y}{e^x 1 x} = 0$.
- 3. Considere a equação de Bessel:

$$x^2y'' + xy' + (x^2 - v^2)y = 0.$$

- (a) Classifique o ponto $x_0 = 0$ e encontre a primeira solução na forma de Frobenius.
- (b) Explique como encontrar a segunda solução linearmente independente, não é necessário resolver a equação.
 - i. v é um número inteiro.
 - ii. ν é semi-inteiro.
 - iii. $2\nu \notin \mathbb{Z}$.
- 4. Considere a equação de Legendre:

$$(1-x^2)y''-2xy'+\lambda(\lambda+1)y=0,$$

onde y(x) está definida em $x \in [-1, 1]$. Para resolver a equação em $x_0 = 1$ usando o método de Frobenius siga os passos abaixo:

- (a) Classifique o ponto $x_0 = 1$.
- (b) Usando a série de Frobenius, encontre o polinômio indicial e suas raízes.
- (c) Encontre a relação de recorrência para os coeficientes da série de Frobenius.
- (d) Resolva a relação de recorrência para encontrar a primeira solução.
- (e) Descreva como encontrar a segunda solução linearmente independente.