Game Theory: Week 2

Emir Kamenica

University of Chicago Booth School of Business

Last week

- Solution concepts
 - dominant strategies
 - iterated elimination of dominated strategies
- Games
 - prisoner's dilemma
 - attack game
 - beauty contest
 - location game
- Take aways
 - if there is a dominant strategy: play it
 - if there is a dominated strategy: avoid it
 - put yourself in others' shoes
 - predict rationality of others
 - predict others' views of rationality of others
- Implications of strategic interaction
 - rational play does not imply efficient outcomes
 - catering to centrist tastes and excessive homogeneity

Consider this game

- No dominant strategies
- No dominated strategies
- How to proceed?

$$\begin{array}{ccccc} & D & E & F \\ A & 15,20 & 9,5 & 2,8 \\ B & \textbf{20},5 & 3,10 & 5,6 \\ C & 18,1 & 7,2 & 12,10 \end{array}$$

	D	Ε	F
Α	15, 20	9 , 5	2,8
В	20 , 5	3, 10	5,6
C	18, 1	7, 2	12 , 10

Nash equilibrium definition

Definition

A strategy profile \mathbf{s}^* is a *Nash Equilibrium* if for each player i, $u_i\left(\mathbf{s}_i^*, \mathbf{s}_{-i}^*\right) \geq u_i\left(\mathbf{s}_i', \mathbf{s}_{-i}^*\right)$ for all $\mathbf{s}_i' \in S_i$.

- Each player
 - correctly anticipates what others will do
 - responds optimally

Interpretation of Nash equilibrium

- Internally consistent common prediction
- Only Nash equilibria are "stable"

Nash equilibrium

Relationship between concepts

- If in some game, each player has a dominant strategy
 - this strategy profile is IEDS
 - this strategy profile is a Nash equilibrium
- If some game has IEDS
 - this strategy profile is a Nash equilibrium
- Dominant strategies ⇒ IEDS ⇒ Nash equilibrium
- Nash equilibrium \Rightarrow IEDS \Rightarrow Dominant strategies

Stag hunt

	stag	hare
stag	5, 5	0, 2
hare	2,0	2, 2

Stag hunt

A B A 5,5 0,2 B 2,0 2,2

Stag hunt

- Multiple Nash equilibria
 - "trusting," efficient equilibrium
 - "safe" equilibrium
- Feature of many real-world interactions
 - e.g., complaining about a manager to his boss
 - recognizing you are in a stag-hunt game crucial
 - distinct from Prisoners' Dilemma
- Pre-play communication
 - Stag Hunt vs. Prisoners' Dilemma

Extreme stag hunt

- Everyone in class plays together
- $s_i \in \{0, 1, ..., 9\}$
- If everyone chooses the same s_i
 - everyone gets $\overline{s} = s_i$
- If there is not complete agreement
 - player i gets $-100 \times s_i$
- Efficient outcome is an equilibrium but "strategically risky"
 - not about risk aversion

Simple coordination game

Simple coordination game

- Focal points
- Pick-a-time game

Battle of the sexes

	football	opera
football	3, 1	0,0
opera	0,0	1,3

Battle of the sexes

- last digit even: row player
- last digit odd: column player

Battle of the sexes

- Both parties wish to coordinate (as before)
- Have conflicting preferences on what equilibrium to coordinate on

Hawk-dove

$$\begin{array}{ccc} & \textit{hawk} & \textit{dove} \\ \textit{hawk} & -1, -1 & 2, 0 \\ \textit{dove} & 0, 2 & 1, 1 \end{array}$$

Hawk-dove

$$\begin{array}{ccc} & A & B \\ A & -1, -1 & 2, 0 \\ B & 0, 2 & 1, 1 \end{array}$$

Hawk-dove

$$\begin{array}{ccc} & \textit{hawk} & \textit{dove} \\ \textit{hawk} & -1, -1 & \textbf{2}, \textbf{0} \\ \textit{dove} & \textbf{0}, \textbf{2} & 1, 1 \end{array}$$

- Closely related to the Battles of the Sexes
- Aggression desirable but only if the other is not aggressive

Lessons about coordination

- Efficient outcomes can be difficult to attain because they are strategically risky
 - Stag hunt
- Focal points can aid coordination
 - Simple coordination games
- Asymmetries in payoffs make coordination more difficult
 - Battle of the sexes
- Benefits to being perceived as aggressive
 - Hawk-dove

Partnership game

- Two partners choose effort $s_i \in \{0, 1, ..., 9\}$
- Each player's share of joint profits $\Pi\left(m{s}\right)=s_1+s_2+\frac{s_1s_2}{2}$
- Effort cost $c(s_i) = \frac{s_i^2}{2}$
- Player *i*'s payoff: $u_i(s) = \Pi(s) c(s_i)$

• Player i solves

$$max_{s_i}s_i + s_j + \frac{s_is_j}{2} - \frac{s_i^2}{2}$$

• f.o.c:

$$1 + \frac{s_j}{2} - s_i = 0$$
$$s_i = 1 + \frac{s_j}{2}$$

Intersecting best response functions

$$s_i = 1 + \frac{s_j}{2}$$

$$s_j = 1 + \frac{s_i}{2}$$

$$s_{i} = 1 + \frac{1}{2} \left(1 + \frac{s_{i}}{2} \right)$$

$$s_{i} = 1 + \frac{1}{2} + \frac{s_{i}}{4}$$

$$4s_{i} = 4 + 2 + s_{i}$$

$$3s_{i} = 6$$

$$s_{i} = 2$$

• Unique Nash equilibrium: $s_1 = s_2 = 2$

Comparison with efficient outcome

• Efficient outcome:

$$max_ss + s + \frac{s^2}{2} - \frac{s^2}{2}$$

Comparison with efficient outcome

• Efficient outcome:

$$max_s2s$$

- Overall payoff always increasing in effort
- Maximum payoffs attained with $s_1 = s_2 = 9$

Public good games / tragedy of the commons

- Public good games
 - social benefit > private benefit
 - undersupply of costly inputs
 - e.g., teamwork
- Tragedy of the commons
 - social cost > private cost
 - overuse of common resources
 - e.g., overfishing, global warming, socializing during a pandemic
- More generally: (social benefit social cost) ≠ (private benefit private cost)
 - If (social benefit social cost) > (private benefit private cost)
 - we do not do it enough
 - $\bullet \ \ \mathsf{lf} \ (\mathsf{social} \ \mathsf{benefit} \ \mathsf{-} \ \mathsf{social} \ \mathsf{cost}) < (\mathsf{private} \ \mathsf{benefit} \ \mathsf{-} \ \mathsf{private} \ \mathsf{cost}) \\$
 - we overdo it

Advertising

- If advertising is business stealing
 - firms advertise too much in equilibrium
- If advertising is industry expanding
 - firms advertise too little in equilibrium
- American Tobacco Company
 - dissolved under the Sherman Act in 1911
 - became four competing companies
 - total advertising expenditure more than doubled
- US Pharmaceutical industry today

A competitive industry

- Two firms simultaneously choose prices
- ullet Each consumer buys from cheaper firm if lower price \leq WTP
 - WTP distributed uniformly on [0, 1]
- ullet Hence, industry demand is 1-p where p is the lower price

Competition and cost curves

- Examine two scenarios
 - each firm has zero costs
 - it costs each firm $2q^2$ to produce q units
- What are the firms' profits in each case?

The easy case

- Each firm has zero costs
- What is the Nash equilibrium?
 - $p_1 = p_2 = 0$
 - $\Pi_1 = \Pi_2 = 0$
- Are there other equilibria?
 - no

More difficult case

- It costs each firm $2q^2$ to produce q units
- What is the Nash equilibrium?
- Suppose firm 2 charges some p₂
- Firm 1 chooses p to maximize

$$\Pi_{i}(p, p_{2}) = \begin{cases} p(1-p) - 2(1-p)^{2} & \text{if } p < p_{2} \\ p(\frac{1-p}{2}) - 2(\frac{1-p}{2})^{2} & \text{if } p = p_{2} \\ 0 & \text{if } p > p_{2} \end{cases}$$

• How do we proceed?

Solving for equilibrium

- Suppose firm maximizes $p\left(\frac{1-p}{2}\right) 2\left(\frac{1-p}{2}\right)^2$
 - optimal price is $p=\frac{3}{4}$, yields $\Pi=\frac{1}{16}$
- Now, suppose the other firm charges $p_2 = \frac{3}{4}$
 - what is my optimal price?
 - charge less: $p(1-p)-2(1-p)^2<\frac{1}{16}$ for all $p<\frac{3}{4}$
 - charge the same: my profit is $\frac{1}{16}$
 - charge more: my profit is zero
- Hence, $p_1 = p_2 = \frac{3}{4}$ is an equilibrium
- Profits are $\Pi_1 = \Pi_2 = \frac{1}{16}$

Competition and cost curves

- If each firm has zero costs:
 - $\Pi_1 = \Pi_2 = 0$
- If each firm has positive, increasing, convex costs:
 - $\Pi_1 = \Pi_2 > 0$
 - in fact, profits same as under collusion!
- An increase in firms' costs can increase profits!
- Suppose you could *choose* the cost curve for your industry?
- What type of a cost curve would give you highest profits?

Tobacco settlement

- Cigarettes cause cancer
- State governments incur medical expenses due to smoking
- Major lawsuit to reclaim damages
- November 23, 1998 WSJ Headline: Forty-Six States Agree to Accept \$206B Tobacco Settlement

Tobacco settlement

- How does the settlement change the cost curves?
- Suppose that the four companies must collectively write a check to the government
 - change in cost curve $c^{new}\left(q\right)=c^{old}\left(q\right)+\frac{\$206B}{4}$
 - change in profits $\Pi^{new} = \Pi^{old} \frac{\$206B}{4}$
- This is not how the settlement changed the cost curve
 - \$206B collected from "a tax on sales exceeding a set level"

•
$$c^{new}\left(x\right) = \begin{cases} c^{old}\left(q\right) & \text{if } q \leq q^* \\ c^{old}\left(q\right) + t\left(q - q^*\right) & \text{if } q > q^* \end{cases}$$

- This happens to be a cost curve that maximizes profits
 - in fact, $\Pi^{new} > \Pi^{old}$
 - net of the \$206B payment!

Take aways

- ullet Absence of dominant strategies o need to predict what others will do
- ullet Absence of dominated strategies o hard to predict what others will do
- Nash equilibrium: an internally consistent outcome
- Multiplicity of Nash equilibria and the need for coordination
 - focal points (simple coordination game)
 - efficiency vs. risk (stag hunt)
 - conflict in coordination (battle of the sexes)
 - benefits and costs of aggression (hawk-dove)
- Public good games / tragedy of the commons
- Cost curves are a competitive firm's best friend
 - convex cost curves yield higher profits than constant marginal costs
 - self-designed cost curves mandated by the government are best of all

Thank you