

ACM RecSys Challenge

Lightweight Model for Session-Based Recommender Systems with Seasonality Information in the Fashion Domain

Boston Team Party

Nicola **Della Volpe**

Lorenzo **Mainetti**

Alessio **Martignetti**

Andrea **Menta**

Riccardo **Pala**

Giacomo **Polvanesi**

Francesco **Sammarco**

Fernando **B. Pérez Maurera**

Cesare **Bernardis**

Maurizio Ferrari Dacrema

Paolo **Cremonesi**

Introduction

Problem formulation and Dataset description

Data Preparation

Data exploration, splitting, pre-processing, and feature engineering

Our Solution

Proposed solution and results

Conclusions

Takeaways and possible improvements

Table of Contents

Introduction

Problem formulation and Dataset description

Problem Formulation

- Top-100 recommendation
- Each recommendation list must contain the purchased item from a subset of possible candidates
- Evaluation metric: MRR

Dataset Description

Online retail sessions that resulted in at least a purchase

Available Data

Sessions

Purchases

Item features

Training - Test Split

Data Preparation

Data exploration, splitting, pre-processing, and feature engineering

Data Exploration

01

Anomaly Detection

No anomaly detected in the dataset

02

Feature Analysis

Only **0.02**% of the items have no interaction at all in the training dataset

03

Session Analysis

- Average duration of a session (viewed items): around 5, with min of 1 and max of 100
- "Cold" sessions: around 1.38%
 in the test month

04

Seasonalities

- Majority of purchases made in the evening
- Months with more purchases:
 November 2020 and May 2021

Data Splitting and Pre-processing

Split

Split	Date Interval	Num. of Sessions
Training	01/01/2020 - 31/04/2021	918382
Validation	01/05/2021 - 31/05/2021	81618
Leaderboard	01/06/2021 - 30/06/2021	50000
Final Test	01/06/2021 - 30/06/2021	50000

Interaction Weighting

Views-purchases distinction

Views are weighted with a value $\alpha \in (0, 1)$.

Cyclic decay

Give bigger weight to interactions that are in a period of the year closer to a reference timestamp

Exponential decay

Reduce weight of the interactions as the distance of these increments with respect to a reference timestamp

Feature Engineering - Item Features

Multi-Label Encoding

904 tuples (category, value)

Feature Engineering - Booster Features

Item Features Embeddings

Using a Variational Autoencoder with a latent space of size 32 with MLE vector as input

Embeddings Aggregation

Aggregating through a sum the embeddings of the items belonging to the same session

RecVae Embeddings

Sessions as input, output of the encoder used as the additional representation of the sessions

Recommenders Scores

Provided by our basic models

Seasonal Tendencies

Tendency of an item to be purchased or viewed in a specific season or subset of seasons or to be all-seasonal

Our Solution

Proposed solution and results

Candidate Selection

01

Baseline Models

Top Popular

K-Nearest Neighbors:

- ItemKNN CF CBF
- UserKNN CF

Graph Based:

RP3Beta

EaseR

02

Deep Learning Models

Autoencoders:

- RecVAE
- MultVAE

Recurrent Neural Networks:

GRU4Rec

Ranking

Training Candidate Production:

discarding duplicate recommendations but keeping all scores on separate columns

GBDT model Training:

on candidates augmented with booster features

GBDT model Prediction & Re-ranking:

on candidates augmented with booster features

Candidate Cleanup & Ground truth Insertion:

keep only sessions where the purchased item was produced

Test Candidate Production:

basic models trained on training and validation set

Model	MRR Validation	View-Purchase Weight	Uses Cycling Decay	Exponential Decay Weight
GRU4Rec	0.17953	Ŀ	-	-
RP3Beta	0.15768	0.2	No	-
EaseR	0.15518	0.5	Yes	182
UserKNN CF	0.14962	0.2	Yes	182
ItemKNN CF+CBF	0.14886	0.5	Yes	182
RecVAE	0.14748	0.5	Yes	182
MultVAE	0.13004	0.5	No	365

Model	3-Fold CV MAP (Validation)	MRR (Public Leaderboard)
LightGBM	0.49115	0.18800
XGBoost	0.46390	0.18347

Conclusions

Takeaways and possible improvements

Takeaways

- For this challenge: not insert the true label (purchase) in the booster training dataset
- Recurrent models exploit the concept of sequence
- Interaction weighting exploits the temporal information of the sessions (explicit URM)

Possible Improvements

Use multiple instances of the same models with different objectives for candidate generation

BERT4Rec

BERT4Rec could be tuned and used as another candidate selector

Segmentation

Using different models to recommend sessions depending on their length

Thanks!

Do you have any questions?

lorenzo.mainetti@mail.polimi.it +1 (928) 225-7715

Code available at https://tinyurl.com/4h52ean6

