

Cálculo Diferencial e Integral (2025.1)

Exercícios — Aplicações da Integral

Resumo sobre Aplicações da Integral

Trabalho

Consideremos uma partícula de massa m que se desloca ao longo de uma reta sob a influência de uma força F. Da segunda lei de Newton, sabemos que F é dada pelo produto da massa pela sua aceleração a: $F=m\cdot a$. Se a aceleração é constante, então a força também é constante. O trabalho T realizado pela partícula para deslocar-se ao longo de uma reta, percorrendo uma distância d é dado pelo produto da força pela distância: $T=F\cdot d$, com T medido em J (Joule). Se uma força variável g=f(x) (g=f(x)) (g=f(x))

$$T = \int_a^b f(x) \ dx$$

Volume de Sólidos de revolução

Considere o sólido de revolução S obtido girando a região delimitada por uma função f ao redor do eixo dos x. Então o volume V(S) do sólido S é:

$$V(S) = \pi \int_{a}^{b} f(x)^{2} dx$$

Comprimento de arco ao longo de uma curva

Considere o arco obtido ao longo de uma curva γ defina por uma função f(x). Então o comprimento L desse arco é:

$$L = \int_a^b \sqrt{1 + (f'(x))^2} \ dx$$

onde $(f'(x))^2$ é o quadrado da derivada de f(x).

- 1 Use substituição para calcular $\int_0^{\frac{3}{4}} \frac{1}{1-x} dx$
- Uma partícula é localizada a uma distância de x cm da origem. Uma força de $(x^4+2x^3+3x^2)$ N age sobre a partícula quando a mesma se move de x=1 até x=2. Qual é o trabalho realizado pela partícula para deslocar-se?
- 3 Qual é o trabalho realizado ao se esticar uma mola em 8 cm sabendo que a força de 1 N a estica em 1 cm (N=Newton)? (Dica: use a lei de Hooke conhecida da Física básica para modelar a função de comportamento da mola.)
- Qual é o volume gerado quando a área abaixo de $y = x^2$ de x = 0 até x = 5 é rodada em relação ao eixo x?
- Encontre o volume de revolução da área sob $y = 3\sqrt{x}$ de x = 2 até x = 4 em relação ao eixo x.
- 6 Encontre o volume do sólido obtido quando

a região sob a curva $y = \sqrt{x}$ a região sob a curva $y = \sqrt{x}$ acima do intervalo [1, 4] é girada em torno do eixo x conforme a figura ao lado.

- Qual é o volume de revolução quando a área sob $f(x) = \sqrt{x^2 + 3x}$ de x = 2 eté x = 6 é girada no eixo x.
- 8 Encontre o comprimento de arco da curva dada por $y = x^{\frac{3}{2}}$ de (1,1) até $(2,2\sqrt{2})$. (Dica: você precisará usar a regra da substituição para resolver a integral)