Homework 1

Math 25b

Due February 8, 2018 at 5pm

Topics covered: Continuity, least upper bound property, continuity theorems, Dedekind cuts Instructions:

- The homework is divided into one part for each CA. You will submit each part to Canvas (please separate them when you submit).
- If you collaborate with other students, please mention this near the corresponding problems.
- Most problems from this assignment come from Pugh's book. I've indicated this next to the problems (e.g. "Pugh 1.2" means problem 2 of chapter 1 in Pugh).

1 For Beckham M.

Problem 1 (Pugh 1.13). Let $b = \sup S$, where S is a bounded nonempty subset of \mathbb{R} .

- (a) Given $\epsilon > 0$ show that there exists $s \in S$ with $b \epsilon \le s \le b$. Can $s \in S$ always be found so that $b \epsilon < s < b$?
- (b) If $x \subset \mathbb{Q}$ be a cut. Show that $x = \sup x$ in \mathbb{R} .

 \Box

Problem 2 (Pugh 1.15). In this exercise you prove that the function $f(x) = x^n$ is continuous. Fix $a \in \mathbb{R}$, $n \in \mathbb{N}$, and $\epsilon > 0$. Show that for some $\delta > 0$, if $x \in \mathbb{R}$ and $|x - a| < \delta$, then $|x^n - a^n| < \epsilon$. Hint: first do n = 1, n = 2, and then do induction on n using the identity

$$(x^n - a^n) = (x - a)(x^{n-1} + x^{n-2}a + \dots + a^{n-1})$$

 \Box

Problem 3 (Pugh 1.16). Here you'll prove the existence and uniqueness of n-th roots in \mathbb{R} , using the least upper bound property. Given x > 0 and $n \in \mathbb{N}$ prove that there exists unique y > 0 such that $y^n = x$. Hint: Consider $y = \sup\{s \in \mathbb{R} : s^n \leq x\}$. Show y^n cannot be $\langle x \text{ or } \rangle x$ using the previous exercise.

Solution. \Box

2 For Davis L.

Problem 4 (Pugh 1.18). In this exercise you prove that the real numbers correspond bijectively to decimal expansions not terminating in an infinite string of nines.¹ Given $x \in \mathbb{R}$ (with \mathbb{R} defined using cuts), define a decimal expansion $N.x_1x_2...$, where N is the largest integer $\leq x$, x_1 is the largest integer $\leq x$, x_1 is the largest integer $\leq x$, x_1 is the largest integer $\leq x$, x_2 is the largest integer $\leq x$.

- (a) Show that each x_k is a digit between 0 and 9.
- (b) Show that for each k there is $\ell \geq k$ so that $x_{\ell} \neq 9$.
- (c) Conversely, show that for any such expansion $N.x_1x_2...$ not terminating in an infinite string of nines, the set

$$\{N, N + \frac{x_1}{10}, N + \frac{x_1}{10} + \frac{x_2}{100}, \dots\}$$

is bounded and its least upper bound is a real number x with decimal expansion $N.x_1x_2...$

 \square

Problem 5 (Pugh 1.19). Formulate the definition of the greatest lower bound inf A of a set of real numbers. State a "greatest lower bound property" for \mathbb{R} and show it is equivalent to the least upper bound property of \mathbb{R} .

Solution. \Box

Problem 6 (Pugh 1.22). Let A be a set. We say $a \in A$ is a <u>fixed point</u> of a function $f : A \to A$ if f(a) = a. The graph of $f : A \to A$ is the set

$$G = \{(a, f(a)) : a \in A\} \subset A \times A.$$

The diagonal of $A \times A$ is the subset $\{(a, a) : a \in A\}$.

- (a) Show that $f: A \to A$ has a fixed point if and only if the graph of f intersects the diagonal.
- (b) Prove that every continuous function $f:[0,1] \to [0,1]$ has a fixed point. Hint: IVT.²
- (c) Is the same true for discontinuous f? What about continuous functions $f:(0,1)\to(0,1)$?

Solution. \Box

¹One can prove a similar result for binary expansions or any other base.

²This is a special case the Brouwer fixed point theorem, which has surprising consequences like "It's impossible to comb the hairs on a coconut without creating a bald spot."

3 For Joey F.

Problem 7 (Pugh 1.24). Given a cube in \mathbb{R}^n , what is the largest ball it contains? Given a ball in \mathbb{R}^n , what is the largest cube it contains? What is the largest ball and cube contained in a given box in \mathbb{R}^n ? ³

 \Box

Problem 8 (Pugh 1.41). Let v be a value of a continuous function $f:[a,b] \to \mathbb{R}$ (i.e. v is in the image of f). Use the least upper bound property to prove that there is a smallest and largest $x \in [a,b]$ so that f(x) = v. Observe that this property does not hold for the function $f:(0,1) \to \mathbb{R}$ defined by $f(x) = \sin(1/x)$.

 \Box

Problem 9. Let $f: \mathbb{R} \to \mathbb{R}$ be a function. We say that f approaches b as x approaches a from the right if for every $\epsilon > 0$, there exists $\delta > 0$ so that $|f(x) - b| < \epsilon$ whenever $0 < x - a < \delta$. In this case we write $\lim_{x\to a+} f(x) = b$. Similarly, we say that f approaches b as x approaches a from the left if for every $\epsilon > 0$, there exists $\delta > 0$ so that $|f(x) - b| < \epsilon$ whenever $0 < a - x < \delta$. Then we write $\lim_{x\to a-} f(x) = b$. Show that the following statements are equivalent.

- (i) $\lim_{x\to a} f = b$
- (ii) $\lim_{x\to a+} f = b$ and $\lim_{x\to a-} f = b$.

 \Box

³This exercise will be useful later.

4 For Laura Z.

Problem 10. Suppose f, g are continuous on [a,b] and that f(a) < g(a), but f(b) > g(b). Prove that f(c) = g(c) for some $c \in [a,b]$. Hint: if your proof is not very short, then they are not the right one.

 \Box

Problem 11. Find the following limits. Hint: it helps to start with an algebraic simplification.

- (a) $\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x}$
- (b) $\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{x^2}$

 \Box

Problem 12. In this problem, $x, y \in \mathbb{R}$.

- (a) Suppose y x > 1. Prove that there is an integer k such that x < k < y. Hint: let ℓ be the largest integer less than x and consider $\ell + 1$.
- (b) Suppose x < y. Prove that there is a rational number r such that x < r < y. Hint: Find $n \in \mathbb{N}$ so that n(y-x) > 1.
- (c) Suppose r < s are rational numbers. Prove that there is an irrational number between r and s. Hint: You may find it useful that $\sqrt{2}$ is irrational.
- (d) Suppose x < y. Prove that there is an irrational number between x and y.

A subset $A \subset \mathbb{R}$ is called <u>dense</u> if every open interval contains an element of A. The problem above shows that the rational numbers \mathbb{Q} and the irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ are both dense in \mathbb{R} .

Solution. \Box

5

⁴For this problem, at several points, you might think a certain statement is "obvious," but it's useful to remember that there are ordered fields that don't satisfy the LUB property, where the set of natural numbers is bounded(!) and where $0 \neq \inf\{\frac{1}{n} : n \in \mathbb{N}\}$ (!).