Unitary Operators

Definition: Unitary

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$. To say that T is a *unitary* operator means:

$$T^*T = TT^* = I$$

Theorem

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$:

T is unitary $\iff T$ is invertible and $T^{-1} = T^*$.

Proof

T is unitary $\iff T^*T = TT^* = I \iff T$ is invertible and $T^{-1} = T^*$.

Properties

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ such that T is unitary:

- 1). $\mathcal{R}(T) = H$
- 2). T is isometric.
- 3). T is a Hilbert space isomorphism on H.

In fact, T unitary $\implies T$ isometric; however, T isometric and onto $\implies T$ unitary.

Theorem

Let H be a Hilbert space and let $T \in \mathcal{B}(H)$ such that T is unitary:

$$T^{-1}$$
 and T^{\ast} are unitary.

Proof

Since $T^{-1} = T^*$, it is sufficient to show that T^* is unitary.

$$(T^*)^*T^* = TT^* = I \text{ and } T^*(T^*)^* = T^*T = I$$

Therefore T^* , and hence T^{-1} , are unitary.

Examples

1). $H = \ell^2(\mathbb{Z})$ (bi-infinite)

$$\ell^2(Z) = \left\{ (z_n)_{n \in \mathbb{Z}} \left| \sum_{-\infty}^{\infty} |z_n| < \infty \right. \right\}$$

$$\langle x, y \rangle = \sum_{-\infty}^{\infty} x_n \overline{y_n}$$

Let S be shift right by one position: $S(x_n)=(x_{n-1})$

$$\langle Sx, y \rangle = \sum_{-\infty}^{\infty} x_{n-1} \overline{y_n} = \sum_{-\infty}^{\infty} x_n \overline{y_{n+1}} = \langle x, S^*y \rangle$$

So $S^*(y_n) = (y_{n+1})$, or a left shift by one position.

 $SS^* = S^*S = I$ and therefore S is unitary.

2).
$$H = L^2[0,1]$$
 and $(Tf)(t) = f(1-t)$

$$||Tf||^{2} = \int_{0}^{1} |(Tf)(t)|^{2} dt$$

$$= \int_{0}^{1} |f(1-t)|^{2} dt$$

$$= \int_{1}^{0} |f(s)|^{2} (-ds)$$

$$= \int_{0}^{1} |f(s)| ds$$

$$= ||f||$$

Therefore T is isometric.

Now, assume $g \in H$.

Let
$$f \in H$$
 such that $f(t) = g(1-t)$.
$$(Tf)(t) = (Tg)(1-t) = g(1-(1-t)) = g(t)$$

Therefore T is onto.

Therefore T is unitary.