Chapter 4: Basic Constraint Reasoning (SEND+MORE=MONEY)

Helmut Simonis

Cork Constraint Computation Centre Computer Science Department University College Cork Ireland

ECLiPSe ELearning Overview

Helmut Simonis

Basic Constraint Reasoning

Problem Program Constraint Setup Search Lessons Learned

Licence

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Outline

- Problem
- Program
- Constraint Setup
- 4 Search
- Lessons Learned

Helmut Simonis

Basic Constraint Reasoning

0

Problem
Program
Constraint Setup
Search
Lessons Learned

What we want to introduce

- Finite Domain Solver in ECLiPSe
- Models and Programs
- Constraint Propagation and Search
- Basic constraints: linear arithmetic, all different, disequality
- Built-in search: Labeling
- Visualizers for variables, constraints and search

Problem Definition

A Crypt-Arithmetic Puzzle

We begin with the definition of the SEND+MORE=MONEY puzzle. It is often shown in the form of a hand-written addition:

Helmut Simonis

Basic Constraint Reasoning

_

Problem Program Constraint Setup Search Lessons Learned

Rules

- Each character stands for a digit from 0 to 9.
- Numbers are built from digits in the usual, positional notation.
- Repeated occurrence of the same character denote the same digit.
- Different characters denote different digits.
- Numbers do not start with a zero.

The equation must hold.

Model

- Each character is a variable, which ranges over the values 0 to 9.
- An alldifferent constraint between all variables, which states that two different variables must have different values. This is a very common constraint, which we will encounter in many other problems later on.
- Two disequality constraints (variable X must be different from value V) stating that the variables at the beginning of a number can not take the value 0.
- An arithmetic equality constraint linking all variables with the proper coefficients and stating that the equation must hold.

Helmut Simonis

Basic Constraint Reasoning

7

Problem
Program
Constraint Setup
Search
Lessons Learned

General Program Structure

Choice of Model

- This is one model, not the model of the problem
- Many possible alternatives
- Choice often depends on your constraint system
 - Constraints available
 - Reasoning attached to constraints
- Not always clear which is the best model
- Often: Not clear what is the problem

Helmut Simonis

Basic Constraint Reasoning

Problem Program Constraint Setup Search Lessons Learned

Running the program

- To run the program, we have to enter the query
 - sendmory:sendmory(L).
- Result
 - \bullet L = [9, 5, 6, 7, 1, 0, 8, 2]
 - yes (0.00s cpu, solution 1, maybe more)

Question

• But how did the program come up with this solution?

Helmut Simonis

Basic Constraint Reasoning

4.

Problem
Program
Constraint Setup
Search

Domain Definition
Alldifferent Constraint
Disequality Constraints

Domain Definition

L = [S,E,N,D,M,O,R,Y],
L :: 0..9,
$$[S,E,N,D,M,O,R,Y] \in \{0..9\}$$

Domain Visualization

Columns = Values

 O
 1
 2
 3
 4
 5
 6
 7
 8
 9

 S
 Image: Control of the co

Rows = Variables

Helmut Simonis

Basic Constraint Reasoning

10

Problem
Program
Constraint Setup
Search

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Alldifferent Constraint

alldifferent(L),

- Built-in of ic library
- No initial propagation possible
- Suspends, waits until variables are changed
- When variable is fixed, remove value from domain of other variables
- Forward checking

Alldifferent Visualization

Uses the same representation as the domain visualizer

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N										
D										
М										
0										
R										
Υ										

Helmut Simonis

Basic Constraint Reasoning

15

Problem
Program
Constraint Setup
Search

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Disequality Constraints

$$S \# = 0, M# = 0,$$

Remove value from domain

$$S \in \{1..9\}, M \in \{1..9\}$$

Constraints solved, can be removed

Domains after Disequality

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N										
D										
М										
0										
R										
Υ										

Helmut Simonis

Basic Constraint Reasoning

4-

Problem
Program
Constraint Setup
Search
Lessons Learned

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Equality Constraint

- Normalization of linear terms
 - Single occurence of variable
 - Positive coefficients
- Propagation

Normalization

	1000*S	+ 100	*E+	10*N+	D
	+1000*M	l+ 100'	O +	10*R+	Ε
10000*M+	1000*O	+ 100	*N+	10*E+	Υ
is transforme					
	1000*S+	91*E+		D	
		+	10*	R	
9000*M+	900*O+	90*N+		Υ	

Helmut Simonis

Basic Constraint Reasoning

19

Problem
Program
Constraint Setup
Search

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Simplified Equation

$$1000*S+91*E+10*R+D=9000*M+900*O+90*N+Y$$

Propagation

$$\underbrace{\frac{1000 * S^{1..9} + 91 * E^{0..9} + 10 * R^{0..9} + D^{0..9}}{1000..9918}}_{1000..9918} = \underbrace{\frac{9000 * M^{1..9} + 900 * O^{0..9} + 90 * N^{0..9} + Y^{0..9}}{9000..89919}}$$

Deduction:

$$M = 1, S = 9, O \in \{0..1\}$$

Why? ▶ Skip

Helmut Simonis

Basic Constraint Reasoning

21

Problem Program Constraint Setup Search Lessons Learned

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Consider lower bound for S

$$\underbrace{1000 * S^{1..9} + 91 * E^{0..9} + 10 * R^{0..9} + D^{0..9}}_{9000..9918} = \underbrace{9000 * M^{1..9} + 900 * O^{0..9} + 90 * N^{0..9} + Y^{0..9}}_{9000..9918}$$

- Lower bound of equation is 9000
- Rest of lhs (left hand side) $(91 * E^{0..9} + 10 * R^{0..9} + D^{0..9})$ is atmost 918
- *S* must be greater or equal to $\frac{9000-918}{1000} = 8.082$
 - otherwise lower bound of equation not reached by lhs
- *S* is integer, therefore $S \ge \lceil \frac{9000-918}{1000} \rceil = 9$
- S has upper bound of 9, so S = 9

Consider upper bound of M

$$\underbrace{1000*S^{1..9} + 91*E^{0..9} + 10*R^{0..9} + D^{0..9}}_{9000..9918} = \underbrace{9000*M^{1..9} + 900*O^{0..9} + 90*N^{0..9} + Y^{0..9}}_{9000..9918}$$

- Upper bound of equation is 9918
- Rest of rhs (right hand side) $900 * O^{0..9} + 90 * N^{0..9} + Y^{0..9}$ is at least 0
- M must be smaller or equal to $\frac{9918-0}{9000} = 1.102$
- *M* must be integer, therefore $M \leq \lfloor \frac{9918-0}{9000} \rfloor = 1$
- M has lower bound of 1, so M = 1

Helmut Simonis

Basic Constraint Reasoning

23

Problem Program Constraint Setup Search Lessons Learned

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Consider upper bound of O

$$\underbrace{1000*S^{1..9} + 91*E^{0..9} + 10*R^{0..9} + D^{0..9}}_{9000..9918} = \underbrace{9000*M^{1..9} + 900*O^{0..9} + 90*N^{0..9} + Y^{0..9}}_{9000..9918}$$

- Upper bound of equation is 9918
- Rest of rhs (right hand side) $9000 * 1 + 90 * N^{0..9} + Y^{0..9}$ is at least 9000
- *O* must be smaller or equal to $\frac{9918-9000}{900} = 1.02$
- *O* must be integer, therefore $O \leq \lfloor \frac{9918-9000}{900} \rfloor = 1$
- *O* has lower bound of 0, so $O \in \{0..1\}$

Propagation of equality: Result

	0	1	2	3	4	5	6	7	8	9
S		-	-	-	-	-	-	-	-	*
Е										
N										
D										
М		*	-	-	-	-	-	-	-	-
0			*	*	*	*	×	*	*	×
R										
Υ										

Helmut Simonis

Basic Constraint Reasoning

25

Problem
Program
Constraint Setup
Search

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Propagation of alldifferent

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N										
D										
М										
0										
R										
Υ										

 $O = 0, [E, R, D, N, Y] \in \{2..8\}$

Waking the equality constraint

- Triggered by assignment of variables
- or update of lower or upper bound

Helmut Simonis

Basic Constraint Reasoning

27

Problem Program Constraint Setup Search Lessons Learned

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Removal of constants

$$1000 * 9 + 91 * E^{2..8} + 10 * R^{2..8} + D^{2..8} =$$

$$9000 * 1 + 900 * 0 + 90 * N^{2..8} + Y^{2..8}$$

$$1000 * 9 + 91 * E^{2..8} + 10 * R^{2..8} + D^{2..8} =$$

$$9000 * 1 + 900 * 0 + 90 * N^{2..8} + Y^{2..8}$$

$$91 * E^{2..8} + 10 * R^{2..8} + D^{2..8} = 90 * N^{2..8} + Y^{2..8}$$

Propagation of equality (Iteration 1)

$$\underbrace{91*E^{2..8}+10*R^{2..8}+D^{2..8}}_{204..816}=\underbrace{90*N^{2..8}+Y^{2..8}}_{182..728}$$

$$\underbrace{91*E^{2..8}+10*R^{2..8}+D^{2..8}=90*N^{2..8}+Y^{2..8}}_{204..728}$$

$$N \geq 3 = \lceil rac{204-8}{90}
ceil, E \leq 7 = \lfloor rac{728-22}{91}
floor$$

Helmut Simonis

Basic Constraint Reasoning

29

Problem Program Constraint Setup Search Lessons Learned

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Propagation of equality (Iteration 2)

$$91*E^{2..7}+10*R^{2..8}+D^{2..8}=90*N^{3..8}+Y^{2..8}$$

$$\underbrace{91*E^{2..7}+10*R^{2..8}+D^{2..8}}_{204..725}=\underbrace{90*N^{3..8}+Y^{2..8}}_{272..728}$$

$$\underbrace{91*E^{2..7}+10*R^{2..8}+D^{2..8}=90*N^{3..8}+Y^{2..8}}_{272..725}$$

$$E \geq 3 = \lceil \frac{272 - 88}{91} \rceil$$

Propagation of equality (Iteration 3)

$$91 * E^{3..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{3..8} + Y^{2..8}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = \underbrace{90 * N^{3..8} + Y^{2..8}}_{272..728}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = 90 * N^{3..8} + Y^{2..8}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = 90 * N^{3..8} + Y^{2..8}$$

Helmut Simonis

Basic Constraint Reasoning

21

Problem
Program
Constraint Setup
Search
Lessons Learned

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Propagation of equality (Iteration 4)

$$91 * E^{3..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = \underbrace{90 * N^{4..8} + Y^{2..8}}_{362..728}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{362..725} = 90 * N^{4..8} + Y^{2..8}$$

$$E \ge 4 = \lceil \frac{362 - 88}{91} \rceil$$

Propagation of equality (Iteration 5)

$$91 * E^{4..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{386..725} = \underbrace{90 * N^{4..8} + Y^{2..8}}_{362..728}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{386..725} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{10 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{386..725} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{10 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{386..725} = 90 * N^{4..8} + Y^{2..8}$$

Helmut Simonis

Basic Constraint Reasoning

33

Problem
Program
Constraint Setup
Search
Lessons Learned

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Propagation of equality (Iteration 6)

$$91 * E^{4..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{386..725} = \underbrace{90 * N^{5..8} + Y^{2..8}}_{452..728}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{452..725} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{452..725}_{452..725}$$

$$N \ge 5 = \lceil \frac{452 - 8}{90} \rceil, E \ge 4 = \lceil \frac{452 - 88}{91} \rceil$$

No further propagation at this point

Domains after setup

	0	1	2	3	4	5	6	7	8	9
S										
E										
N										
D										
М										
0										
R										
Υ										

Helmut Simonis

Basic Constraint Reasoning

35

Problem Program Constraint Setup Search Lessons Learned

Step 1 Step 2 Further Steps Solution

labeling built-in

labeling([S,E,N,D,M,O,R,Y])

- Try variable is order given
- Try values starting from smallest value in domain
- When failing, backtrack to last open choice
- Chronological Backtracking
- Depth First search

Search Tree Step 1

Variable S already fixed

Helmut Simonis

Basic Constraint Reasoning

37

Problem
Program
Constraint Setup
Search

Step 1
Step 2
Further Steps
Solution

Step 2, Alternative E = 4

Variable $E \in \{4..7\}$, first value tested is 4

Assignment E=4

	0	1	2	3	4	5	6	7	8	9
S										
Е					*	-	-	-		
N										
D										
М										
0										
R										
Υ										

Helmut Simonis

Basic Constraint Reasoning

39

Problem
Program
Constraint Setup
Search
Lessons Learned

Step 1 Step 2 Further Steps Solution

Propagation of E = 4, equality constraint

$$91*4+10*R^{2..8}+D^{2..8}=90*N^{5..8}+Y^{2..8}$$

$$\underbrace{91*4+10*R^{2..8}+D^{2..8}}_{386..452}=\underbrace{90*N^{5..8}+Y^{2..8}}_{452..728}$$

$$\underbrace{91*4+10*R^{2..8}+D^{2..8}=90*N^{5..8}+Y^{2..8}}_{452}$$

$$N = 5, Y = 2, R = 8, D = 8$$

Result of equality propagation

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N						*	-	-	-	
D			-	-	-	-	-	-	*	
М										
0										
R			-	-	-	-	-	-	*	
Υ			*	-	-	-	-	-	-	

Helmut Simonis

Basic Constraint Reasoning

41

Problem
Program
Constraint Setup
Search
Lessons Learned

Step 1
Step 2
Further Steps
Solution

Propagation of alldifferent

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N						*	-	-		
D			ı	-	-	-	1	-	*	
М										
0										
R			-	-	-	-	-	-	*	
Υ			*	-	-	-	-	-		

Alldifferent fails!

Step 2, Alternative E = 5

Return to last open choice, E, and test next value

Helmut Simonis

Basic Constraint Reasoning

43

Problem
Program
Constraint Setup
Search
Lessons Learned

Step 1
Step 2
Further Steps
Solution

Assignment E = 5

	0	1	2	3	4	5	6	7	8	9
S										
E					-	*	-	-		
N										
D										
М										
0										
R										
Υ										

Propagation of alldifferent

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N										
D										
М										
0										
R										
Υ										

 $N \neq 5, N \geq 6$

Helmut Simonis

Basic Constraint Reasoning

45

Problem
Program
Constraint Setup
Search
Lessons Learned

Step 1
Step 2
Further Steps
Solution

Propagation of equality

$$91*5+10*{R^{2..8}}+{D^{2..8}}=90*{N^{6..8}}+{Y^{2..8}}$$

$$\underbrace{91*5+10*R^{2..8}+D^{2..8}}_{477..543}=\underbrace{90*N^{6..8}+Y^{2..8}}_{542..728}$$

$$\underbrace{91*5+10*R^{2..8}+D^{2..8}=90*N^{6..8}+Y^{2..8}}_{542..543}$$

$$N=6,\,Y\in\{2,3\},\,R=8,D\in\{7..8\}$$

Result of equality propagation

	0	1	2	3	4	5	6	7	8	9
S										
E										
N							*	-	-	
D			×	*	×		*			
М										
0										
R			-	-	-		-	-	*	
Υ					×		×	*	×	

Helmut Simonis

Basic Constraint Reasoning

47

Problem
Program
Constraint Setup
Search

Step 1
Step 2
Further Steps
Solution

Propagation of alldifferent

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N										
D										
М										
0										
R										
Υ										

$$D = 7$$

Propagation of equality

$$91*5+10*8+7=90*6+Y^{2..3}$$

$$\underbrace{91*5+10*8+7}_{542} = \underbrace{90*6+Y^{2..3}}_{542..543}$$

$$\underbrace{91*5+10*8+7=90*6+\textit{Y}^{2..3}}_{542}$$

Helmut Simonis

Basic Constraint Reasoning

49

Problem Program Constraint Setup Search Lessons Learned

Step 1
Step 2
Further Steps
Solution

Last propagation step

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N										
D										
М										
0										
R										
Υ			*	-						

Complete Search Tree

Helmut Simonis

Basic Constraint Reasoning

51

Problem
Program
Constraint Setup
Search
Lessons Learned

Step 1 Step 2 Further Steps Solution

Solution

Topics introduced

- Finite Domain Solver in ECLiPSe, ic library
- Models and Programs
- Constraint Propagation and Search
- Basic constraints: linear arithmetic, alldifferent, disequality
- Built-in search: labeling
- Visualizers for variables, constraints and search

Helmut Simonis

Basic Constraint Reasoning

53

Problem Program Constraint Setup Search Lessons Learned

Lessons Learned

- Constraint models are expressed by variables and constraints.
- Problems can have many different models, which can behave quite differently. Choosing the best model is an art.
- Constraints can take many different forms.
- Propagation deals with the interaction of variables and constraints.
- It removes some values that are inconsistent with a constraint from the domain of a variable.
- Constraints only communicate via shared variables.

Lessons Learned

- Propagation usually is not sufficient, search may be required to find a solution.
- Propagation is data driven, and can be quite complex even for small examples.
- The default search uses chronological depth-first backtracking, systematically exploring the complete search space.
- The search choices and propagation are interleaved, after every choice some more propagation may further reduce the problem.

Helmut Simonis

Basic Constraint Reasoning

EE

onstraint omputation entre

Alternative Models
Exercises

Model without Disequality
Multiple Equations

Alternative 1

- Do we need the constraint "Numbers do not begin with a zero"?
- This is not given explicitely in the problem statement
- Remove disequality constraints from program
- Previous solution is still a solution
- Does it change propagation?
- Does it have more solutions?

Program without Disequality

```
Listing 1: Alternative 1
:-module(alternative1).
:-export(sendmory/1).
:-lib(ic).

sendmory(L):-
    L = [S,E,N,D,M,O,R,Y],
    L :: 0..9,
    alldifferent(L),
    1000*S + 100*E + 10*N + D +
    1000*M + 100*O + 10*R + E #=
    10000*M + 1000*O + 100*N + 10*E + Y,
    labeling(L).
```


Helmut Simonis

Basic Constraint Reasoning

57

Alternative Models Exercises Model without Disequality
Multiple Equations

After Setup without Disequality

	0	1	2	3	4	5	6	7	8	9
S										
Е										
N										
D										
М										
0										
R										
Υ										

S

Ε

Ν

D M

0

R

Υ

Setup Comparison

Υ

alternative 1

Helmut Simonis

Basic Constraint Reasoning

59

Centre

Alternative Models Exercises Model without Disequality
Multiple Equations

Search Tree: Many Solutions

Note:

- Not just a different model, solving a different problem!
- Often we can choose which problem we want to solve
 - Which constraints to include
 - What to ignore
- In this case not acceptable

Helmut Simonis

Basic Constraint Reasoning

61

Alternative Models
Exercises

Model without Disequality Multiple Equations

Alternative 2

- Large equality difficult to understand by humans
- Replace with multiple, simpler equations
- Linked by carry variables (0/1)
- Should produce same solutions
- Does it give same propagation?

Carry Variables with Multiple Equations

```
:-module(alternative2), export(sendmory/1), lib(ic).
sendmory(L):-□ same as before
    L=[S,E,N,D,M,O,R,Y],L :: 0...9,
    [C2,C3,C4,C5] :: 0..1, \Rightarrow new
    alldifferent(L),
    S \# = 0, M \# = 0,
    M #= C5,
                                         Ε
                                             N D
    S+M+C4 \#= 10*C5+O
                                     M
                                         Ο
    E+O+C3 \#= 10*C4+N,
                                     C4
    N+R+C2 #= 10*C3+E,
                                  M
        #= 10 * C2 + Y
                                                   onstraint
    labeling(L).
                                                   omputation
```

Helmut Simonis

Basic Constraint Reasoning

63

entre

Alternative Models
Exercises

Model without Disequality Multiple Equations

With Carry Variables: After Setup

	0	1	2	3	4	5	6	7	8	9
S										
E										
N										
D										
М										
0										
R										
Υ										

Setup Comparison

alternative2

Helmut Simonis

Basic Constraint Reasoning

65

Alternative Models Exercises

Model without Disequality Multiple Equations

Search Tree: First Solution

Comparison

Single Equation

Multiple Equations

Helmut Simonis

Basic Constraint Reasoning

67

Alternative Models Exercises

Model without Disequality Multiple Equations

Observations

- This is solving the original problem
- Search tree slightly bigger
- Caused here by missing interaction of equations
- And repeated variables
- But: Introducing auxiliary variables not always bad!

Choice of Model

More Information

Henry Dudeney.
Send+More=Money.
Strand Magazine, Volume 68:pages 97 and 214, July 1924.

Henry Dudeney.

Amusements in Mathematics.

Project Gutenberg, 1917.

http://www.gutenberg.org/etext/16713.

Helmut Simonis

Basic Constraint Reasoning

60

Alternative Models Exercises

Exercises

- Does the reasoning for the equality constraints that we have presented remove all inconsistent values? Consider the constraint Y=2*X.
- Why is it important to remove multiple occurences of the same variable from an equality constraint? Give an example!
- Solve the puzzle DONALD+GERALD=ROBERT. What is the state of the variables before the search, after the initial constraint propagation?
- Solve the puzzle Y*WORRY = DOOOOD. What is different?
- (extra credit) How would you design a program that finds constraint new crypt-arithmetic puzzles? What makes a good puzzle?