מתמטיקה בדידה - תרגיל בית 20

להגשה עד יום שלישי 4.6.24 ב-23:59.

- 1. $\frac{1}{6}$ את מספר האפשרויות לרצף שביל באורך n (כלומר בגודל $n \times 1$) ע"י שימוש במרצפות אדומות באורך $n \times 1$.
 - $\frac{1}{2}$ א) כתבו נוסחת נסיגה ל- $\frac{1}{2}$ יחד עם תנאי התחלה.
 - (ב) מצאו ביטוי סגור לנוסחת הנסיגה שמצאתם.
 - a כסמן בa את מספר המחרואת באורך a מעל $\{a,b,c,d\}$ כך שכל מופעי a נמצאים לפני כל מופעי. 2.
 - התחלה. עם תנאי התחלה (א) כתבו נוסחת נסיגה ל a_n
 - (ב) מצאו ביטוי סגור לנוסחת הנסיגה שמצאתם.
 - 3. כמה סדרות טרינאריות (סדרות מעל $\{0,1,2\}$) באורך n קיימות כך שמתקיים: (מספיק למצוא נוסחת נסיגה ותנאי התחלה, אין צורך למצוא ביטוי סגור)
 - (א) לא מכילות את הרצף 00.
 - (ב) לא מכילות את הרצפים 01, 02.
 - (ג) לא מכילות את הרצף 01.
- 4. (אתגר) נתון שביל במימדים $n \times 1$. יש לנו את סוגי המרצפות הבאים: מרצפת ירוקה במימדים 1×1 , מרצפת כחולה במימדים 2×1 , ומרצפת אדומה במימדים 3×1 . מצאו נוסחת נסיגה ותנאי התחלה עבור מספר הריצופים האפשריים של השביל כך שאין מרצפות כחולות וירוקות סמוכות זו לזו.
- c_n , כחולה, את מספר הריצופים החוקיים, b_n את מספר הריצופים החוקיים בהם המשבצת הראשונה לא כחולה, את מספר הריצופים החוקיים בהם המשבצת הראשונה לא ירוקה.
 - (a_n) בתרו את נוסחאות הנסיגה הבאות (כלומר מצאו נוסחה מפורשת לאיבר הכללי. 5.
 - $a_0 = 3, a_1 = 5$ עם תנאי התחלה $a_n = 2a_{n-1} + 3a_{n-2}$ (א)
 - $a_0=0,\,a_1=6$ עם תנאי התחלה (וכל $a_n=\sum_{k=2}^n 2a_{n-k}$ (ב)
 - 6. עבור הסעיפים הבאים, מצאו ביטויים סגורים:
 - (n) n אנשים יושבים על ספסל. בכמה אופנים ניתן לשנות את סדר ישיבתם כך שאף אחד לא יזוז יותר ממקום אחד?
- אנשים יושבים סביב שולחן עגול. בכמה אופנים ניתן לשנות את סדר ישיבתם כך שאף אחד לא יזוז יותר ממקום n אחד:
 - (מצאו ביטוי סגור) או 2×1 או 2×1 או במרצפות שימוש במרצפות אי"י שימוש בגודל (מצאו ביטוי סגור) .7
- 8. כמה סדרות באורך n המורכבות מ־0,1,2 ישנן, כך שבין כל שתי הופעות של הספרה 2 מופיעה הספרה 0,1,2 (מצאו ביטוי שגור)
- 9. **(רשות)** ניזכר בהגדרה הבאה שראינו בתרגיל בית 19: פונקציה $f\in[n] o \mathcal{P}\left([k]
 ight)$ היא מונוטונית עולה חזק ביחס להכלה אם $f\in[n] o \mathcal{P}\left([k]
 ight)$ שהן מונוטוניות עולות עולות עולות עולות $a_{n,k}$. נסמן ב־ $a_{n,k}$ את מספר הפונקציות $f\in[n]$ שהן מונוטוניות עולות חזק.
 - (הערה: בשאלה זו אסור להשתמש בהכלה והדחה, ובביטוי ל־ $a_{n,k}$ שמצאתם בתרגיל בית 19.
 - (א) מהו הערך של $a_{n,k}$ כאשר k+1 נמקו בקצרה (רמז: עיקרון שובך היונים).
 - (ב) מצאו ביטוי סגור ל־ $a_{k+1,k}$. נמקו בקצרה את תשובתכם.
 - .מצאו ביטוי סגור ל־ $a_{1,k}$. נמקו בקצרה את תשובתכם.

ע"יי $f'\in[n] o\mathcal{P}\left([k-1]
ight) o\mathcal{P}\left([k-1]
ight)$ מונו' עולה חזק ביחס להכלה, נגדיר $f\in[n] o\mathcal{P}\left([k]
ight) o\mathcal{P}\left([k]
ight)$ מונו' עולה $f'=\lambda j\in[n]$. $f(j)\setminus\{k\}$

 $(n+1)\,a_{n,k-1}$ היא חזק מונו' עולה מונו' עולה הוכיחו המונוטוניות המונוטוניות $f\in[n] o\mathcal{P}\left([k]
ight)$

- $(n-1)\,a_{n-1,k-1}$ המונו' עולה מונו' עולה אינה מונו' עולה הוכיחו המונו' עולה חזק $f\in [n] o \mathcal{P}\left([k]
 ight)$ המונו' עולה הוכיחו שמספר הפונקציות
 - $a_{n,k}$ וו) היעזרו בסעיפים הקודמים ומצאו נוסחת נסיגה עבור.

. מסוימים n_0,k_0 בהינתן לחשב בעזרתה ובעזרת הסעיפים הקודמים את הערך של בהינתן לחשב בעזרתה ובעזרת הסעיפים הקודמים את הערך או