Instrumentation for Medical Imaging

IV - Magnetic Resonance Imaging (MRI)
Ressonância magnética, ressonância magnética funcional e
neurofeedback

Bruno Direito - <u>migueldireito@gmail.com</u>
(IBILI piso1 gab.77)

João Pereira
<u>ioaoandrefpereira@gmail.com</u>

- Background
- NMR signal (overview/reminder)
 - Relaxation (longitudinal and transverse)
 - Contrast
- functional image
 - BOLD
- project BrainTrain
 - Neurofeedback (*rt-fMRI-NF*)
 - ROI
 - connectivity (presented by Joao Pereira)

Short Bio

(2013-today) Post-doc with the Visual Neuroscience Lab at IBILI | Faculty of Medicine of the University of Coimbra Project: "*BrainTrain*"

(2008-2013) PhD degree in Information Science and Technology | Faculty of Science and Technology of the University of Coimbra Thesis: "Development of classification methods for real-time seizure prediction"

(2007-2008) M.Sc. degree in Biomedical engineering | Faculty of Science and Technology of the University of Coimbra

(2002-2007) Licentiate degree in Biomedical engineering | Faculty of Science and Technology of the University of Coimbra

Overview

A 46-year-old male with hepatocellular carcinoma of the left lobe of liver. Contrast enhanced MR image shows a periphery enhanced mass invading the stomach and mimicking a gastric subepithelial mass (http://qims.amegroups.com/article/viewFile/1317/1773/4537)

Contrast resolution

Spatial resolution

Overview

 We can change the nature of the image, changing specific parameters of MRI to improve the contrast resolution and spatial resolution of the image

Un-enhanced T1-weighted

Remember

Vector amplitude and direction
Vector decomposition into components (longitudinal and transverse)

Magnetic susceptibility is a natural property of all tissues

- Measure of how magnetised the tissue becomes when it is placed in a strong magnetic field (depends on the arrangement of electrons in the tissue)
- Diamagnetic materials have a very weak susceptibility
- Produces an internal field in the opposite direction to the applied field. Most body tissues are diamagnetic
- Paramagnetic materials have a stronger susceptibility and produce a field in the same direction as the main field
- examples include gadolinium (used as an MR contrast agent), deoxy-haemoglobin and met-haemoglobin.
- Superparamagnetic
- Ferromagnetic

- What would happen if an external magnetic B₀ field was applied to this particle?
 - We would probably expect an alignment with B₀
 - Reality, because of the spin angular momentum, it will rotate around B₀
 - Precession

- We have a NMV, antiparallel to B₀
 - we cannot detect it along the same direction of B₀ because of B₀ strength
- What we want to do is to change the orientation of the NMV
 - perpendicular to the B₀
- Is it static (e.g. always pointing to the y-axis)?

- Longitudinal
 - 'canceled', i.e. sum of all individuals is ~0
- Transverse
 - static?
 - If we have some coherent phase, the NMV is rotating / precessing! around z-axis/B₀
 - Larmor freq.
 - Now the NMV can be detected!

- Transverse
 - NMV is rotating around z-axis/B₀
 - Larmor freq.
 - The electrical induction (voltage generation) is proportional to the NMV
 - Signal Intensity (as a measure of transverse magnetization)
 - Different location with different NMV (transverse)

- How do we do this?
 - We need an additional 'system'
 - to get enough energy to provoke a change in NMV orientation

- Explore a feature named Resonance
 - Let us consider tuning forks (C or Dó and E or Mi)
 - If we hit the first C (on the left) it will start to oscillate/vibrate and the second C (on the right) will start to oscillate and the E will not!
 - due to the natural frequency at which the tuning fork oscillates
 - there is an efficient transfer of energy between both C's
 - with the E tuning fork we don't have the same freq. and do not observe resonance

- Resonance in NMR
 - Precession, with frequency \mathbf{W}_0 , computed using the Larmor equation
 - If we apply energy in the system at this specific frequency
 - we should have an efficient transfer of energy to the system

- Larmor equation
 - Frequency of rotation is around 64MHz ($B_0=1.5T$)
- B₁ is applied at this freq.
 - Also known as RF pulse
 - range of MHz
 - pulse (on-off)

Relaxation

- Let us assume that B₁ is removed
 - Evolves to the lowest possible energy state
 - end up in the resting state
 - release of energy
 - where does it goes?
 - Let's look at each part separately longitudinal and transversal

Longitudinal relaxation

- Longitudinal magnetisation
- a.k.a. spin-lattice relaxation
 - lattice unrelated system elements
 - T1 increases with
 - 63% of baseline longitudinal magnetisation

Transverse relaxation

- Transverse magnetisation
 - exponencial decay, max when flip angle is 90°
 - how can we measure it?
 - the exponencial is described by a time constant called T2
 - amount of time that it takes to loose
 37%
 - varies from tissue to tissue

Transverse relaxation

- Energy transfer
 - from spins (in higher energy state) to other spins
 - a.k.a. Spin-Spin relaxation
 - process depends of energy exchange between spins
- Example
 - (pink) e.g. CSF longer T2
 - probability of energy exchange occurring is lower - spins are "far apart"

Contrast

- contrast -
 - Let us look closer at the transverse/longitudinal magnetisation

Contrast

- contrast transverse/longitudinal magnetisation
- Add a RF pulse TR after the first and look at the NMV components
- image with T1 contribution to the SI,
- image with the T2 contibution

Magnetic susceptibility

unfortunately, B0 is not exactly the same throughout the entire body

freq determined by the B0

interaction of tissues with the applied magnetic field B0 causes point-to point variability - local amount of magnetic field (X)

$$\omega = \gamma(B_0 + X)$$

Magnetic susceptibility

- Interaction of tissues in the magnetic field B0 causes point-to-point variability
 - local amount of magnetic field (X)
 - two neighbour spins experience two different magnetic field,
 - precess at different rates _____
 - de-phase faster
- Real-life relaxation T2*

$$\omega = \gamma (B_0 + T_2)$$

Spin Echo

 de-phasing faster due to magnetic susceptibility

analysing the components, one can see that they might induce a $\Delta\omega$

- can we correct it?
- Spin-echo
 - loss and recovery of signal

Spin Echo

- Loss and recovery of signal intensity
 - Allows to recover the T2 curve based on the 90 and 180° pulses

functional MRI

 How can we use this to study the brain function?

Brainvoyager Tutor

functional MRI - background

- Pre-operative tool (e.g. Epilepsy studies)
- The brain is *functionally* sub-specialized
 - brain regions related to/engaged specific tasks
 - increase in neuronal activity in these regions
 - the neurons require additional amount of metabolic substrates - vascular response
 - oxygen is delivered to cells bonded to haemoglobin

Brainvoyager Tutor

functional MRI - background

- Oxygenated haemoglobin is diamagnetic
 - elements that have a very weak susceptibility
- Deoxygenated haemoglobin is paramagnetic
 - have a stronger susceptibility

Paramagnetic

Diamagnetic

functional - BOLD

Significant concentrations of deoxygenated hemoglobin shorten the *T*2* relaxation time of the tissue

- decrease in SI compared to tissue with oxygenated haemoglobin.

functional blood-oxygenation-level-dependent effect or BOLD effect

Let us assume that stimulated tissue - e.g. brain cortex engaged in a task -undergoes an increase in blood flow with an increased delivery of oxygenated haemoglobin

Haemodynamic response function

functional MRI

 How can we get an image based on this information?

- If enough resolution (contrast), we could determine which voxels change during task performance
 - delay after the beginning
 - very small signal change (2 to 3 % variation)

fMRI data

difference between two fMRI images

functional MRI

- The typical approach is to perform a large series of measurements in the presence and absence of the stimulus and subtract the images
 - increasing statistical significance

General Linear Model

- Statistical framework
 - Simplest case: baseline and condition
 - but we can go further and use different conditions

fMRI statistical map

difference between two fMRI images

fMRI statistical map

2D and 3D statistical map based on GLM contrast condition>baseline

Questions?

Project Braintrain

Background

- Developments in neuroimaging
 - Information about areas previously unavailable to other imaging techniques
 - Direct access to brain function
 - Identification of neural correlates/functional networks

Magnetic Resonance Imaging (MRI) Scanner and Electroencephalography (EEG)

Background

- Unique view to understanding brain dysfunctions
 - Comparison between control and clinical groups
 - Access to the mechanisms involved
 - Creation/development of interventional tools/applications
 - Direct/personalised intervention on the dysfunctional mechanisms

Neurofeedback and Brain-Computer Interfaces

- Uses information from neuroimaging in (pseudo) real-time
- Allows to present this information to the participant
- The participant can regulate his own brain activity

rt-fMRI Neurofeedback

Training and self-regulation of brain activity

- Modulation of the activity of specific brain regions and/or neural networks
 - Restore function
 - Improve clinical symptoms
 - Induce changes on impaired underlying mechanisms
 - Optimisation / functional reorganisation
 - Neuroplasticity

Technical implementation

- Acquisition equipment (A)
 - MRI scanner (3T Siemens Magnetom TimTrio) t
 - Collecting and saving data in a network shared folder
- Accessed by Turbo Brain-Voyager
 3.2 software (B)
 - Data preprocessing (3D motion correction) and real-time statistical analysis (online GLM -General Linear Model)
- Subsystem (C) is responsible for the computation of neuroimaging-based feedback

BrainTrain example

Let us take a look at the setup using an example...

BrainTrain Taking imaging into the therapeutic domain: Self-regulation of brain systems for mental disorders

Research Objectives

From Basic Science to Applied Science

Development of new therapeutic/interventional techniques for the improvement of ASD clinical symptoms

Autism Spectrum Disorder (ASD)

Autism Spectrum Disorder (ASD)

- Neuroimage and ASD
 - What have we found thus far?

NF-ASD

A neurofeedback strategy for the improvement of facial expression recognition/perception in ASD

NF-ASD A *neurofeedback* strategy for the improvement of facial expression recognition/perception in ASD

- Identification, perception and mental imagery of facial expressions
 - Brain activity in areas related to social cognition and facial expression interpretation
 - posterior portion of the superior temporal sulcus (pSTS)

Task, clinical trial organisation and main objectives

Structural run

- rapid acquisition gradient echo (MPRAGE) sequence for co-registration of functional data
 - 176 slices
 - TE: 3.42 ms
 - TR: 2530 ms
 - voxel size 1.0×1.0×1.0 mm³
- 3 axes representation

Functional runs

- Functional images of the localizer, neurofeedback and control runs
 - 33 slices,
 - in-plane resolution: 4×4 mm2,
 - field of view (FOV): 384×384 mm,
 - slice thickness: 3 mm,
 - flip angle (FA): 90°) covered occipital and posterior temporal lobe.
 - Repetition time (TR) was 2000 ms (Echo Time (TE): 30 ms).

Localizer run

'RANDOM DOTS MOVEMENT', 'ALTERNATE', 'NEUTRAL'

Localizer run

- Preliminary results
 - Ability to correctly identify the correct region of interest or neurofeedback target

Neurofeedback runs

Neurofeedback runs

- Preliminary results
 - Ability to correctly identify the correct region of interest or neurofeedback target

Challenges

- Physiological
 - Hemodynamic delay (pseudo real-time)
 - Rest conditions
- Turbo BrainVoyager Software
 - Region of interest (ROI) selection and movement compensation
 - Real-time GLM performance
- Network communication
- Feedback calculation
 - Direct BOLD? BOLD Signal Variation? Based on what baseline values?
- Feedback presentation
 - Facial expressions realism

pre-intervention evaluation

neurofeedback intervention

post-intervention evaluation

The network and connectivity analysis work in progress.

Effective connectivity as measured by Granger causality

- Granger Causality (Granger, 1969)
- Vector Auto-regression model to calculate causality based on Time Series data
 - BOLD activity derived from different ROIs

•
$$X_1(t) = \sum_{i=1}^p A_{11i} X_1(t-i) + \sum_{j=1}^p A_{12j} X_2(t-j) + \epsilon_1(t)$$

$$X_2(t) = \sum_{j=1}^p A_{21j} X_1(t-j) + \sum_{i=1}^p A_{22i} X_2(t-i) + \epsilon_2(t)$$

 "It past values of X1 and X2 can predict tuture value of X2 better than past values of X2 alone, then X1 granger cause X2"

Effective connectivity - as measured by MVGC

Localizer

1-back + 2.back > basel.

NF runs

imagination > basel.

New approaches to rt—fMRI connectivity feedback

MSc student João Pereira

"Real-time fMRI neurofeedback based on Interhemispheric functional connectivity: a motor imagery paradigm"

Motor imagery

"Dynamic state in which the subject simulates a particular action in a mental way so that he can feel himself performing the action for him imagined" (Decety, 1996)

Sequence: 4-1-2-1-3-4-3

ROI Selection: Localizer

Motor imagery Motor

.rpmc

Neurofeedback calculation

$$\rho = \frac{\sum_{i=1}^{n} (xi - \bar{x})(yi - \bar{y})}{\sqrt{\sum_{i=1}^{n} (xi - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{n} (yi - \bar{y})^2}}$$

$$=\frac{cov(X,Y)}{\sqrt{var(X).var(Y)}}$$

The feedback value ranges in values from -1 to 1 and it is transformed and presented to the subject in the form of a thermometer that is divided in 20 levels (+10 to -10)

Training, NF and Transfer Runs

Fig. Motor Imagery (MI) tasks proposed for the training, neurofeedback and transfer runs

NeuroFeedback Runs: Then and Now

.lpmc

.rpmc

Unimanual imagined movements
Bimanual imagined movements

.lpmc

.rpmc

NeuroFeedback Runs

Correlation
distributions were
statistically different in
two neurofeedback
runs.

Expectations

- Assess PMC as a suitable neurofeedback target for MI rt-fMRI-NF.
- Study real time Pearson Correlation between two regions as a neurofeedback approach.
- Study interhemispheric PMC effective connectivity offline using Granger Causality in order to evaluate networks involved and how NF could affect them.
- Relevance of the project: possible usage of these strategies in diseases that are related with interhemispheric connectivity impairment (Alzheimer's, Parkinson, ALS and in particular in stroke patients).