

Instance segmentation

Robert Haase

With material from

to Scientific Computing Facility MDL CR

Benoit Lombardot, Scientific Computing Facility, MPI CBG

Connected component labelling

- In order to allow the computer differentiating objects, connected component analysis (CCA) is used to mark pixels belonging to different objects with different numbers
- Background pixels are marked with 0.
- The maximum intensity of a labelled map corresponds to the number of objects.

1	0	0	0	0	0	0
1	1	0	0	0	0	0
1	1	1	0	0	0	0
1	1	0	0	0	3	0
0	0	0	0	3	3	3
0	0	0	3	3	3	3
2	2	0	3	3	3	3

Connected component labelling

In napari: Tools > Segmentation / labeling menu

Short-cuts: Gauss-Otsu-Labeling

In napari: Tools > Segmentation / labeling menu

 Gaussian-blur + Threshold Otsu + Connected component labeling napari

Voronoi-Tesselation

In napari-menu: Tools > Segmentation post-processing

Short-cuts: Voronoi-Otsu-Labeling

In napari: Tools > Segmentation / labeling menu

Voronoi-Otsu-Labeling

• Combination of Gaussian blur, Otsu's Threshold and Voronoi-labeling

Short-cuts: Voronoi-Otsu-Labeling

- Gaussian-Blur
- Otsu-Thresholding
- Spot-detection
- Watershed on the binary image

... in a single line of code:

```
segmented = nsbatwm.voronoi_otsu_labeling(input_image,
                                           spot_sigma=5,
                                          outline_sigma=1
segmented
```


nsbatwm made image

shape	(395, 695)
dtype	int32
size	1.0 MB
min	0
max	25

• The watershed algorithm for binary images allows cutting one object into tow where it's reasonable.

Binary segmentation

Distance map

• The watershed algorithm for binary images allows cutting one object into tow where it's reasonable.

Binary segmentation

Distance map

- The watershed algorithm for binary images allows cutting one object into tow where it's reasonable.
- The watersheds are made from binary images. The algorithm does not take the original image into account!

@haesleinhuepf

Binary watershed

Labeled watershed

In Napari

Similar to ImageJ's Watershed: Tools > Segmentation post-processing > Split touching objects

enter paint or fill mode to edit labels

https://www.napari-hub.org/plugins/napari-segment-blobs-and-things-with-membranes#seeded-watershed

• ... in Napari practice: Tools > Segmentation / Labeling menu

Label post-processing / morphological operations

... similar to morphological operations on binary images

Label post-processing / morphological operations

In Napari menu Tools > Segmentation post-processing > Smooth labels (clEsperanto)

