

COMPUTAÇÃO GRÁFICA

Prática 5 – Transformações Geométricas (3D) e Modelagem de Sólidos

Ivan Nunes da Silva

TSP

Transformações 3D e Modelagem de Sólidos

• Objetivos da Aula:

- Entender os conceitos de transformações geométricas em três dimensões.
- Implementar as rotinas básicas de transformações geométricas 3D usando coordenadas homogêneas.
- Criar sólidos utilizando o Matlab.
- Criar figuras tridimensionais a partir da revolução de sólidos.

2

- •Função "patch":
 - Permite criar figuras bidimensionais e tridimensionais.
 - Desenha superfícies bidimensionais e sólidos a partir da especificação de vértices e faces.
 - Sintaxe:

patch('Vertices',vetor_vertices,'Faces',vetor_faces,'FaceColor', 'cor')

3

- Exercício 1: Construir Um Cubo
 - Traçar um cubo usando o comando patch com informações da tabela abaixo.
 - Utilize a cor ciano (cyan).
 - Mostre o grid na tela, delimite os eixos em $x_{min} = y_{min} = z_{min} = 0$ e $x_{max} = y_{max} = z_{max} = 3$ e rotule os eixos.

Nº do	Coordenadas	Nº da	Vértices
Vértice	(x y z)	Face	da Face
1	202	1	1234
2	200	2	5678
3	000	3	1265
4	002	4	3487
5	222	5	1485
6	220	6	2673
7	020		
8	022		

5

0 1

TSP

Transformações 3D e Modelagem de Sólidos

• Exercício 2: Implemente a função Rot3d que receba a matriz M, o ângulo θ e o rótulo do 'eixo' em que todos os pontos de M serão rotacionados.

 \triangleright function [M1] = rot3d(M, θ , eixo)

$$M = \begin{bmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & z_n & 1 \end{bmatrix} \begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} Matriz \ 3D \ de \\ Transformação \\ Homogênea \\ (R_x, R_y \ ou \ R_z) \end{bmatrix} \cdot M^T \begin{cases} R_x = \begin{bmatrix} 0 & \cos(\theta) & \sin(\theta) & 0 \\ 0 & -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & \sin(\theta) & 0 \\ -\sin(\theta) & 0 & \cos(\theta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ R_z = \begin{bmatrix} \cos\theta & -\sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

• Exercício 3: Construir e rotacionar um cubo

- Traçar o cubo do exercício anterior mudando a sintaxe de cores de (...'FaceColor','cor') para (...'FaceVertexCData',hsv(6),'FaceColor','flat').
- Rotacione o cubo em 30º no eixo Z, aplicando transformações 3-D no vetor de vértices. Mostre o cubo original e o rotacionado em janelas diferentes.
- Mostre o grid na tela, delimite os eixos em $x_{min} = y_{min} = z_{min} = -1$ e $x_{max} = y_{max} = z_{max} = 3$ e rotule os eixos.

Transformações 3D e Modelagem de Sólidos

• Exercício 4: Construir um sólido com vários vértices e faces

- 1) Carregue os arquivos vertices.txt, faces1.txt e faces2.txt; load('arquivo.txt').
- 2) Utilize o comando "patch" para os arquivos vertices.txt e faces1.txt e, em seguida, na mesma janela utilize novamente o comando "patch" para vertices.txt e faces2.txt.
- 3) Mostre o grid na tela, delimitando os eixos com axis ([-3 2 -2 8 -3 3]) e rotulando os mesmo.
- 4) Utilize a cor ciano (cyan).

8

- Exercício 5: Rotacionar em loop o sólido do Exercício 4
 - *Este exercício permitirá criar uma "animação" do sólido do Exercício 4.
 - Repita o exercício anterior, sendo que os itens de 2 à 4 devem estar dentro de um loop de 50 ciclos.
 - *Em cada ciclo, rotacione o sólido de 360/50 graus no eixo Y.
 - Utilize sempre a mesma janela. Use o comando clf para limpar a janela atual antes de traçar cada sólido.
 - *Utilize o comando pause(0.1) para esperar 0.1 segundos antes de traçar cada sólido na tela.

a

TSP

Transformações 3D e Modelagem de Sólidos

- Exercício 6: Criar um sólido de revolução
 - Repita o Exercício 5 sem limpar a tela a cada ciclo e sem tempo de pausa. Será criado um sólido, o qual é resultado da revolução sucessiva do sólido do Exercício 4.
 - Faça loops com 10, 25 e 100 ciclos, apresentado-os em janelas diferentes.

