RAW SEQUENCE LISTING

The Biotechnology Systems Branch of the Scientific and Technical Information Center (STIC) no errors detected.

Application Serial Number:	10/544,180A
Source:	TFW16
Date Processed by STIC:	11/20/2006
-	

ENTERED

IFW16

RAW SEQUENCE LISTING DATE: 11/20/2006
PATENT APPLICATION: US/10/544,180A TIME: 13:47:31

Input Set: N:\efs\10544180a_efs\14-03_US_ST25_txt-Output Set: N:\CRF4\11202006\J544180A.raw

```
3 <110> APPLICANT: Mohnen, Debra
             Hahn, Michael G.
             Kolli, Venkata S.K.
     5
             Doong, Ron L.
             Sterling, Jason D.
      9 <120> TITLE OF INVENTION: Galacturonosyltransferases, nucleic acids encoding same, and
uses
     10
             therefor
     12 <130> FILE REFERENCE: 14-03
                                                                CP9-6)
     14 <140> CERRENT APPLICATION NUMBER: US 10/544,180A
     15 <141> CURRENT FILING DATE: 2006-03-08
     17 <150> PRIOR APPLICATION NUMBER: US 60/445,539
     18 <151> PRIOR FILING DATE: 2003-02-06
     20 <150> PRIOR APPLICATION NUMBER: PCT/US04/03545
     21 <151> PRIOR FILING DATE: 2004-02-05
     23 <160> NUMBER OF SEQ ID NOS: 58
     25 <170> SOFTWARE: PatentIn version 3.3
     27 <210> SEO ID NO: 1
     28 <211> LENGTH: 2022
     29 <212> TYPE: DNA
     30 <213> ORGANISM: Arabidopsis thaliana
     32 <400> SEQUENCE: 1
     33 atggcgctaa agcgagggct atctggagtt aaccggatta gaggaagtgg tggtggatct
                                                                               60
                                                                              120
     35 cgatctgtgc ttgtgcttct catatttttc tgtgtttttg cacctctttg cttctttgtt
     37 ggccgaggag tgtatatcga ttcctcaaat gattattcaa ttgtttctgt gaagcagaat
                                                                              180
                                                                              240
     39 cttgactgga gagaacgttt agcaatgcaa tctgttagat ctcttttctc gaaagagata
     41 ctagatgtta tagcaaccag cacagctgat ttgggtcctc ttagccttga ttcttttaag
                                                                              300
                                                                              360
     43 aaaaacaatt tgtctgcatc atggcgggga accggagtag acccctcctt tagacattct
     45 gagaatccag caactcctga tgtcaaatct aataacctga atgaaaaacg tgacagcatt
                                                                              420
     47 tcaaaagata gtatccatca gaaagttgag acacctacaa agattcacag aaggcaacta
                                                                              540
     49 agaqagaaaa ggcgtgagat gcgggcaaat gagttagttc agcacaatga tgacacgatt
     51 ttgaaactcg aaaatgctgc cattgaacgc tctaagtctg ttgattctgc agtccttggt
                                                                              600
                                                                              660
     53 aaatacagta tttggagaag agaaaatgag aatgacaact ctgattcaaa tatacgcttg
     55 atgcgggatc aagtaataat ggctagagtc tatagtggga ttgcaaaatt gaaaaacaag
                                                                              720
                                                                              780
     57 aacgatttgt tacaagaact ccaggcccga cttaaggaca gccaacgggt tttgggggaa
     59 gcaacatctg atgctgatct tcctcggagt gcgcatgaga aactcagagc catgggtcaa
                                                                              840
     61 gtcttggcta aagctaagat gcagttatat gactgcaagc tggttactgg aaagctgaga
                                                                              900
                                                                              960
     63 qcaatqcttc agactgccga cgaacaagtg aggagcttaa agaagcagag tacttttctg
     65 gctcagttag cagcaaaaac cattccaaat cctatccatt gcctatcaat gcgcttgact
                                                                             1020
     67 atcgattact atcttctgtc tccggagaaa agaaaattcc ctcggagtga aaacctagaa
                                                                             1080
     69 aaccetaate tttateatta tgeeetettt teegacaatg tattagetge ateagtagtt
                                                                             1140
     71 gttaactcaa ccatcatgaa tgccaaggat ccttctaagc atgtttttca ccttgtcacg
                                                                             1200
     73 gataaactca atttcggagc aatgaacatg tggttcctcc taaacccacc cggaaaggca
                                                                             1260
```

1320

Input Set : N:\efs\10544180a_efs\14-03_US_ST25.txt
Output Set: N:\CRF4\11202006\J544180A.raw

1380 77 cttcgtcagc ttgaatctgc agcaatgaga gagtactatt ttaaagcaga ccatccaact 79 traggetett egaatetaaa atacagaaac ecaaagtate tatecatgtt gaateacttg 1440 1500 81 agattetace teeetgaggt ttateceaag etgaacaaaa teetetteet ggaegatgae 83 atcattqttc aqaaaqactt qactccactc tgggaagtta acctgaacgg caaagtcaac 1560 85 ggtgcagtcg aaacctgtgg ggaaagtttc cacagattcg acaagtatct caacttttcg 1620 87 aatcctcaca ttgcgaggaa cttcaatcca aatgcttgtg gatgggctta tggaatgaac 1680 89 atgttcgacc taaaggaatg gaagaagaga gacatcactg gtatatacca caagtggcaa 1740 91 aacatgaatg agaacaggac actatggaag ctagggacat tgccaccagg attaataaca 1800 93 ttctacggat taacacatec cttaaacaag gcgtggcatg tgctgggact tggatataac 1860 95 ccqaqtatcq acaaqaagga cattgagaat gcagcagtgg ttcactataa cgggaacatg 1920 97 aaaccatqqt tqqqqttqqc aatqtccaaa tatcqqccqt attqqaccaa gtacatcaag 1980 99 tttgatcacc catatcttcg tcgttgcaac cttcatgaat aa 2022 102 <210> SEQ ID NO: 2 103 <211> LENGTH: 673 104 <212> TYPE: PRT 105 <213> ORGANISM: Arabidopsis thaliana 107 <400> SEQUENCE: 2 109 Met Ala Leu Lys Arg Gly Leu Ser Gly Val Asn Arg Ile Arg Gly Ser 113 Gly Gly Gly Ser Arg Ser Val Leu Val Leu Leu Ile Phe Phe Cys Val 114 117 Phe Ala Pro Leu Cys Phe Phe Val Gly Arg Gly Val Tyr Ile Asp Ser 118 35 121 Ser Asn Asp Tyr Ser Ile Val Ser Val Lys Gln Asn Leu Asp Trp Arg 125 Glu Arg Leu Ala Met Gln Ser Val Arg Ser Leu Phe Ser Lys Glu Ile 129 Leu Asp Val Ile Ala Thr Ser Thr Ala Asp Leu Gly Pro Leu Ser Leu 85 133 Asp Ser Phe Lys Lys Asn Asn Leu Ser Ala Ser Trp Arg Gly Thr Gly 100 105 137 Val Asp Pro Ser Phe Arg His Ser Glu Asn Pro Ala Thr Pro Asp Val 120 141 Lys Ser Asn Asn Leu Asn Glu Lys Arg Asp Ser Ile Ser Lys Asp Ser 140 142 135 145 Ile His Gln Lys Val Glu Thr Pro Thr Lys Ile His Arg Arg Gln Leu 146 145 150 149 Arg Glu Lys Arg Arg Glu Met Arg Ala Asn Glu Leu Val Gln His Asn 165 170 153 Asp Asp Thr Ile Leu Lys Leu Glu Asn Ala Ile Glu Arg Ser Lys 185 180 157 Ser Val Asp Ser Ala Val Leu Gly Lys Tyr Ser Ile Trp Arg Arg Glu 200 205 195 161 Asn Glu Asn Asp Asn Ser Asp Ser Asn Ile Arg Leu Met Arg Asp Gln 215 210 165 Val Ile Met Ala Arg Val Tyr Ser Gly Ile Ala Lys Leu Lys Asn Lys 169 Asn Asp Leu Leu Gln Glu Leu Gln Ala Arg Leu Lys Asp Ser Gln Arg 170 250

Input Set : N:\efs\10544180a_efs\14-03_US_ST25.txt
Output Set: N:\CRF4\11202006\J544180A.raw

173 1.74	Val	Leu	Gly	Glu 260	Ala	Thr	Ser	Asp	Ala 265	Asp	Leu	Pro	Arg	Ser 270	Ala	His
	~1	T	T 0		77.	Mat	~1	C1 5		T 011	717	T 110	777		Met	Cln
	GIU	пÀ2		Arg	AIA	Met	Gry		vai	пец	AIA	цур	285	цуъ	Mec	GIII
178	•	m	275	G	T	T	77-7	280	a 1	7	T	7		Mat	T 011	~1 m
	ьеи	_	Asp	Cys	ьуѕ	ьeu		Thr	GIY	ьys			Ата	мес	Leu	GIII
182		290	_				295	_	_	_		300	_		51 -	
		Ala	Asp	Glu	GIn		Arg	Ser	Leu	гуѕ	ьұs	Gin,	ser.	:I'nr	Phe	
186			•			310							• •			320
189	Ala	Gln	Leu	Ala	Ala	Lys	Thr	Ile	Pro	Asn	Pro	Ile	His	Cys	Leu	Ser
190					325					330					335	
193	Met	Arg	Leu	Thr	Ile	Asp	Tyr	Tyr	Leu	Leu	Ser	Pro	Glu	Lys	Arg	Lys
194				340					345					350		
197	Phe	Pro	Arg	Ser	Glu	Asn	Leu	Glu	Asn	Pro	Asn	Leu	Tyr	His	Tyr	Ala
198			355				•	360					365			
201	Leu	Phe	Ser	Asp	Asn	Val	Leu	Ala	Ala	Ser	Val	Val	Val	Asn	Ser	Thr
202		370					375					380				
205	Ile	Met	Asn	Ala	Lys	Asp	Pró	Ser	Lys	His	Val	Phe	His	Leu	Val	Thr
206						390					395					400
-209	Asp	Lys	Leu	Asn.	Phe.	Gly	Ala	Met	Asn	Met	Trp	Phe	Leu	Leu	Asn	Pro
210		. •			405	_				410			: "			
213	Pro	Gly	Lys	Ala	Thr	Ile	His	Val	Glu	Asn	Val	Asp	Glu	Phe	Lys	Trp
214		•	-	420					425					430		
217	Leu	Asn	Ser	Ser	Tyr	Cys	Pro	Val	Leu	Arg	Gln	Leu	Glu	Ser	Ala	Ala
218			435		-	_		440		_			445			
221	Met	Arq	Glu	Tyr	Tyr	Phe	Lys	Ala	Asp	His	Pro	Thr	Ser	Gly	Ser	Ser
222		450		•	-		455		-			460		_		
225	Asn	Leu	Lys	Tyr	Arq	Asn	Pro	Lys	Tyr	Leu	Ser	Met	Leu	Asn	His	Leu
	465		•	-	-	470		•	•		475					480
229	Arq	Phe	Tyr	Leu	Pro	Glu	Val	Tyr	Pro	Lys	Leu	Asn	Lys	Ile	Leu	Phe
230	-	•	•		485			•		490			_		495	
233	Leu	Asp	Asp	Asp	Ile	Ile	Val	Gln	Lys	Asp	Leu	Thr	Pro	Leu	Trp	Glu
234		-	-	500					505	-				510	-	
	Val	Asn	Leu	Asn	Glv	Lvs	Val	Asn	Glv	Ala	Val	Glu	Thr	Cys	Gly	Glu
238			515		2	-2		520	- 4				525	•	•	
	Ser	Phe		Ara	Phe	Asp	Lvs		Leu	Asn	Phe	Ser	Asn	Pro	His	Ile
242		530		5		F	535	-1-				540				_
	Ala		Asn	Phe	Asn	Pro	Asn	Ala	Cvs	Glv	Tro		Tvr	Glv	Met	Asn
	545	5				550			-1-	1	555		-2-	2		560
		Phe	Δsn	T.e.11	Lvs			Lvs	Lvs	Ara		Tle	Thr	Glv	Ile	
250		1110	1101	LCu	565	014		_,_	_,_	570				U -1	575	-1-
	uic	Lare	Trn	Gln		Mot	Δen	Glu	λen		Thr	T.211	Trn	Lvc		Gly
254	1113	цуз	пр	580	non	NCC	non.	Olu	585	9	1111	псα		590	200	017
	Thr	T 011	Dro		C134	T 011	Tlo	Thr		Тиг	Clu	T 011	Thr		Dro	Leu
	TILL	ъсц		LIO	GIA	ц с ц	TTG	600	LIIG	TAT	GTÅ	псп	605	1113	110	LGU
258	7. ~~	T	595	П	u: ~	77-7	T 01-		T 011	C1. -	Пт	7. ~~		C0~	T1.	7 02
	ASII	_	ATG	ırp	nis	val		GIÀ	пеп	GTÀ	ıyr		PIO	ser	Ile	нар
262	T	610	7	#7 -	01	7	615	77 -	17. 7	17 T	TT	620	7 ~~	~1	7 ~~	Mot
	_	ьуѕ	Asp	тте	GIU		ATA	ATG	vaı	vaı		Tyr	ASI	GIÀ	Asn	
	625	_	_		~ 3	630			_	.	635		Derr	m	m	640
269	Lys	Pro	Trp	Leu	Glu	Leu	Ala	Met	Ser	Lys	Tyr	Arg	Pro	Tyr	Trp	Thr

Input Set : N:\efs\10544180a_efs\14-03_US_ST25.txt
Output Set: N:\CRF4\11202006\J544180A.raw

```
.270
                    645
 273 Lys Tyr Ile Lys Phe Asp His Pro Tyr Leu Arg Arg Cys Asn Leu His
                                    665
 277 Glu
 281 <210> SEQ ID NO: 3
 282 <211> LENGTH: 1860
 284 <213> ORGANISM: Arabidopsis thaliana
 286 <400> SEQUENCE: 3
 287 atgaaaggcg gaggcggtgg tggaggaggt ggtggcggag gaaaacgccg gtggaaagtt
                                                                          60
 289 ctggtgattg gagttttggt tcttgttatt ctttctatgc ttgttcctct tgctttctta
 291 ctcggtcttc acaatggctt tcactctcct ggatttgtca ctgttcaacc ggcttcttca
                                                                         180
                                                                         240
 293 tttgagaget ttaccagaat caatgetact aagcatacac agagagatgt atccgaacgg
 295 gtcgatgagg ttcttcaaaa aatcaatcca gttcttccca`agaaaagcga cataaacgtg
                                                                         300
 297 ggttccagag atgtgaatgc aacaagcggc actgattcta aaaaaagagg attaccagtg
                                                                         360
                                                                         420
 299 tocccaactg ttgttgccaa tocaagooot gcaaataaaa caaaatogga agootcatat
                                                                         480
 301 acaggtgttc agaggaaaat agtaagtggt gatgaaactt ggagaacttg tgaagtgaaa
 303 tatgggaget actgeetetg gagggaggaa aataaggaac caatgaaaga tgeeaaggtg
305, aagcaaatga aggaccaget gtttgtgget agagcataet ateccagtat tgetaaaatg
                                                                       - 600
 307 ccttctcaaa gcaagttgac tcgggatatg aaacagaata tccaagagtt tgagcgtatt
                                                                         660
 309 cttaqtqaaa gttctcaaga tgctgacctt ccaccacagg ttgataaaaa gttgcagaag
                                                                         720
                                                                         780
 311 atggaagetg taattgcaaa ggcaaagtet tttccagteg actgtaacaa tgttgacaag
 313 aaattgagac agatccttga tttgactgag gatgaagcta gtttccacat gaaacagagt
                                                                         840
                                                                         900
 315 gtgttcctct accagcttgc agtacagaca atgcctaaga gtcttcattg cttgtcaatg
 317 cgactaactg tggaacattt caagtcagat tcacttgagg atcccattag tgagaaattt
                                                                         960
 319 tcagatccct cattacttca ctttgttatc atctccgata atatactagc atcgtccgtt
                                                                        1020
                                                                        1080
 321 gtgatcaact caacggttgt acatgcaagg gacagtaaaa actttgtttt ccatgtactg
 323 acaqacqaqc aqaattactt tgcaatgaaa caatggttta ttaggaatcc ttgcaaacaa
                                                                        1140
 325 tcaactgttc aagtattgaa cattgaaaaa ctcgagctgg acgattctga tatgaaactg
                                                                        1200
 327 tetttgtetg eggagtteeg tgttteette eccagtggtg acettttgge gteteaacag
                                                                        1260
                                                                        1320
 329 aataqaacac actacttatc ccttttctct caatctcact atcttcttcc caaattattt
 331 gacaaattgg agaaggttgt gattctggat gatgacgttg tagtccagcg agacttatct
                                                                        1380
 333 cccctttggg accttgatat ggaagggaaa gtgaatggcg ctgttaagtc gtgcactgtg
                                                                        1440
 335 agattgggtc agctaaggag tctcaagaga ggaaattttg ataccaatgc ttgtctctgg
                                                                        1560
 337 atgtctggtt tgaatgtcgt tgatcttgct agatggaggg cattgggtgt ttcagaaacc
 339 tatcaaaaat attataaaga gatgagtagt ggagatgagt cgagcgaagc aattgcattg
                                                                        1620
                                                                        1680
 341 caggcaaget tgeteacatt teaagaecaa gtatatgete ttgaegaeaa atgggeteta
                                                                        1740
 343 tcagggcttg gttatgacta ctacatcaat gcacaagcca taaaaaacgc agccatattg
                                                                        1800
 345 cactataacg ggaacatgaa gccgtggctt gagctgggaa tcccaaatta caaaaactat
 347 tggagaaggc atctgagtcg ggaagatcgg ttcttgagtg actgtaacgt gaatccttga
                                                                        1860
 350 <210> SEQ ID NO: 4
 351 <211> LENGTH: 619
 352 <212> TYPE: PRT
 353 <213> ORGANISM: Arabidopsis thaliana
 355 <400> SEQUENCE: 4
 10
 361 Arg Trp Lys Val Leu Val Ile Gly Val Leu Val Leu Val Ile Leu Ser
```

Input Set : N:\efs\10544180a_efs\14-03_US_ST25.txt
Output Set: N:\CRF4\11202006\J544180A.raw

365 366	Met	Leu	Val 35	Pro	Leu	Ala	Phe	Leu 40	Leu	Gly	Leu	His	Asn 45	Gly	Phe	His
	Ser	Pro	Glv	Phe	Val	Thr	Val	Gln	Pro	Ala	Ser	Ser	Phe	Glu	Ser	Phe
370		50	- - <i>1</i>				55					60				
	Thr		τlο	Aen	Δla	Thr		His	Thr	Gln	Δra		Val	Ser	Glu	Δra
374		AT 9	116	NSII	AIG	70	цуз	1113	1111	01	75	nop	Val	DCI	Olu	80
		7 00	C1.,	37-1	T 011		Tara	τle	Λan	Dro		Lou	Dro	Larg	Lare	
	vaı	Asp	GIU	vai				ric					FIO	цуъ	95	Del
378	7	T1.	7 ~~	77-7	85								C0~	C111		7 an
	Asp	TTE	ASII		GLY	Ser	Arg	Asp		ASII	Ala	TIII	ser		1111	ΑSD
382	_	_	_	100	~ 1			** - 7	105	D	m l	77-7	**- 7	110	7	D
	ser	ьуs	_	Arg	GLY	ьeu	Pro	Val	Ser	Pro	Thr	vaı		Ala	Asn	Pro
386	_	_	115	_	_	_,	_	120	~7		_	_	125	~ 1	**. 7	a 1
	Ser		Ala	Asn	Lys	Thr		Ser	GIU	Ala	ser		Thr	GIY	vaı	GIn
390		130	_	_			135					140	_			_
	_	Lys	Ile	Val	Ser		Asp	Glu	Thr	Trp		Thr	Cys	GIu	Val	
	145					150			_	_	155					160
397	Tyr	Gly	Ser	Tyr	Cys	Leu	Trp	Arg	Glu	Glu	Asn	Lys	Glu	Pro		Lys
398					165					.170					175	
401	Asp.	Ala	Lys	Val	Lys	Gln	Met	Lys	-``sp	Gln	Гéл	-Phe	Val	Mla	Arg	Ala
402				180										190		
405	Tyr	Tyr	Pro	Ser	Ile	Ala	Lys	Met	Pro	Ser	Gln	Ser	Lys	Leu	Thr	Arg
406			195					200				•	205			
409	Asp	Met	Lys	Gln	Asn	Ile	Gln	Glu	Phe	Glu	Arg	Ile	Leu	Ser	Glu	Ser
410		210					215					220				
413	Ser	Gln	Asp	Ala	Asp	Leu	Pro	Pro	Gln	Val	Asp	Lys	Lys	Leu	Gln	Lys
414	225			,		230					235					240
417	Met	Glu	Ala	Val	Ile	Ala	Lys	Ala	Lys	Ser	Phe	Pro	Val	Asp	Cys	Asn
418					245					250					255	
421	Asn	Val	Asp	Lys	Lys	Leu	Arg	Gln	Ile	Leu	Asp	Leu	Thr	Glu	Asp	Glu
422				260					265					270		
425	Ala	Ser	Phe	His	Met	Lys	Gln	Ser	Val	Phe	Leu	Tyr	Gln	Leu	Ala	Val
426			275					280					285			
429	Gln	Thr	Met	Pro	Lys	Ser	Leu	His	Cys	Leu	Ser	Met	Arg	Leu	Thr	·Val
430		290					295					300				
433	Glu	His	Phe	Lys	Ser	Asp	Ser	Leu	Glu	Asp	Pro	Ile	Ser	Glu	Lys	Phe
	305			_		310					315					320
437	Ser	Asp	Pro	Ser	Leu	Leu	His	Phe	Val	Ile	Ile	Ser	Asp	Asn	Ile	Leu
438		•			325					330			_		335	
	Ala	Ser	Ser	Val	Val	Ile	Asn	Ser	Thr	Val	Val	His	Ala	Arq	Asp	Ser
442				340					345					350	•	
	Lvs	Asn	Phe		Phe	His	Val	Len		Asp	Glu	Gln	Asn		Phe	Ala
446	-1-		355					360				•	365	-		
	Met	Lvs		Trp	Phe	Tle	Ara		Pro	Cvs	īvs	Gln		Thr	Val	Gln
450		370	U				375			-10	-,,	380				
	ובע		Agn	Tle	Glu	Lvc		Glu	Len	Asn	Agn		Asp	Met	Lvs	Leu
	385	Leu			JIU	390	 .	CIU	u		395				_,,	400
		Len	Ser	Δlo	G1.,		Δνα	Va 1	Ser	Dhe		Ser	G1 17	Asn	Len	Leu
	SEL	пеи	Set	лта	405	FIIG	AT 9	Val	SET	410	FIO	Jet	GIY	op	415	2Cu
458	71 ~	C~~	ر م ای	<u>سات</u>		7\~~	Th~	u: ~	Ф.		C0~	Lou	Dhe	Ser		Ser
40T	HIG	Set	GIII	GIII	ASII	ьтA	TIIT	urs	тут	ъeц	261	пси	FITE	DET	GIII	DGI

Input Set : N:\efs\10544180a_efs\14-03_US_ST25.txt

Output Set: N:\CRF4\11202006\J544180A.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

```
Seq#:52; Xaa Pos. 2,3,4,5,6,8,9,10,11,12,13,15,17,18,19,21,23,24,25,27,28
Seq#:52; Xaa Pos. 29,30,31,32,33
Seq#:53; Xaa Pos. 2,3,4,5,6,7,8,9,10,11,12,13,14
Seq#:54; Xaa Pos. 2,3,4,5,6,9,10,12,15,16,18,19,20,21,22,23,24,25,26,27,28
Seq#:55; Xaa Pos. 30,32,33
Seq#:55; Xaa Pos. 2,4,5,7,9,10,13,15,16,17,18,19,20,21,22,23,25,26,28,29
Seq#:56; Xaa Pos. 3,4,5,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26
Seq#:56; Xaa Pos. 27,29,30
Seq#:57; Xaa Pos. 2,4,5,6,7,8,10,11,12
Seq#:58; Xaa Pos. 2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,20,21,22,26,27
Seq#:58; Xaa Pos. 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47
Seq#:58; Xaa Pos. 49,50
```

Invalid <213> Response:

Use of "Artificial" only as "<213> Organism" response is incomplete, per 1.823(b) of New Sequence Rules. Valid response is Artificial Sequence.

Seq#:51,52,53,54,55,56,57,58

Seg#:51; Xaa Pos. 2,3,4,5,8,9,10

VERIFICATION SUMMARY

DATE: 11/20/2006 TIME: 13:47:32 PATENT APPLICATION: US/10/544,180A

and the state of t

Input Set: N:\efs\10544180a efs\14-03 US ST25.txt

Output Set: N:\CRF4\11202006\J544180A.raw

```
L:4754 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:51 after pos.:0
L:4774 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:52 after pos.:0
L:4778 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:52 after pos.:16
L:4782 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:52 after pos.:32
L:4802 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:53 after pos.:0
L:4822 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:54 after pos.:0
L:4826 M:341 W: (46) "n" or "Yaa" used, for SEQ ID#:54 after pos.:16
L:4830 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:54 after pos.:32
L:4850 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:55 after pos.:0
L:4854 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:55 after pos.:16
L:4893 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:56 after pos.:0
L:4897 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:56 after pos.:16
L:4921 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:57 after pos.:0
L:4941 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:58 after pos.:0
L:4945 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:58 after pos.:16
L:4949 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:58 after pos.:32
L:4953 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:58 after pos.:48
```