Chapter 9 8086/8088 Hardware Specifications Barry B. Brey bbrey@ee.net

The 8086/8088

- Although these microprocessors are fairly old, they still are a good way to introduce the Intel family of microprocessors.
- Both machines are 16-bit microprocessors. The 8088 has an 8-bit data bus and the 8086 has a 16-bit data hus
- Still used in embedded systems (cost is less than \$1.

Pin Characteristics

- Input pins are TTL compatible and require only ±10µA of current.
- Output pins are also TTL compatible, but have a reduced logic zero drive current of 2.0 µA and a reduced logic 1 voltage level yielding a noise immunity of 350 mV.

Buses

- Data bus signals are D0-D7 for the 8088 and D0-D15 for the 8086.
- Address bus signals are A0-A19 for 1M byte of addressable memory space.
- The address and data pins are multiplexed as AD0-AD7 (8088) or AD0-AD15 (8086).
- The ALE signal is used to demultiplex the address/data bus and also the address/status bus.

Main Control Signals

- The read signal (RD) causes a read operation and the write (WR) signal causes a write.
- The address bus contains wither a memory address or an I/O address. The IO/#M signal indicates the type of address on the address bus. If IO/#M = 0 the address is a memory address.
- The RESET input resets the microprocessor and causes the program to start executing at address FFFF0H. (16 bytes from the top of memory).

System Clock

- Time base for synchronization of internal and external operations is provided by clock (CLK) input signal.
- 8088 operates at 5MHz and 8MHz.
- 8086 at 5MHz, 8MHz, and 10MHz.
- 8284 clock generator and driver IC generates CLK.

Relationship Between CLK and PCLK **CLK Example: If a 10MHZ 8086 MPU is to be driven by a 9MHz signal, want frequency crystal must be attached to the 8284?

Demultiplex

- The address/data and address/status buses are multiplexed to reduce the pin count. These buses must be demultiplexed to obtain all the signals for the system.
- The ALE signal from the microprocessor is used as a clock to a latch that demultiplexes the buses.

Buffering

- Since the microprocessor provides minimum drive current buffering is often needed.
- Address and control signal buffering is often accomplished with the 74ALS244.
- Data bus buffering of often accomplished with the 74ALS245 bidirectional bus buffer.

READY and Wait State

- If the memory or I/O device is too slow to connect directly to the microprocessor wait states are inserted into the timing with the READY signal.
- Wait states are additional clock pulses that length the access time allowed the memory or I/O.
- The READY signal is sampled by the microprocessor at the end of T2 and again in the middle of each wait state.

Access Time

- The amount of access time allowed the memory is 3 clocking periods minus the address setup time minus the data setup time
- Tacc = 3 Clks Tclav Tdvcl

Minimum-Mode and Maximum-Mode Systems

- 8088/8086 can be configured in either of two modes: *minimum mode* and *maximum mode*.
- Minimum mode is selected by setting MN/MX input lead to logic 1.
- Minimum mode systems are typically smaller and contain a single microprocessor.
- Maximum mode systems are larger systems and with multiple processors.

Minimum-Mode and Maximum-Mode Systems

	Common signals		
Name	Function	Туре	
AD7-AD	O Address/data bus	Bidirectional 3-state	
A15-A8	Address bus	Output, 3-state	
A19/S6- A16/S3	Address/status	Output, 3-state	
MN/MX	Minimum/maximum Mode control	Input	
RD	Read control	Output, 3-state	
TEST	Wait on test control	Input	
READY	Wait state control	Input	
RESET	System reset	Input	
NMI	Nonmaskable Interrupt request	Input	
INTR	Interrupt request	Input	
CLK	System clock	Input	
V _{cc}	+5 V	Input	
GNO	Ground		

Minimum mode signals (MN/MX = V _{cc})			
Name	Function	Туре	
HOLD	Hold request	Input	
HLDA	Hold ack nowledge	Output	
WR	Write control	Output, 3-state	
10/M	IO/memory control	Output, 3-state	
DT/R	Deta transmit/receive	Output, 3-state	
DEN	Data enable	Output, 3-state	
SSO	Status line	Output, 3-state	
ALE	Address latch enable	Output	
ATAI	Interrupt acknowledge	Output	

Maximum mode signals (MN/MX = GND)				
Name	Function	Тура		
RO/GT1, 0	Request/grant bus access control	Bidirectional		
LOCK	Bus priority lock control	Output, 3-state		
52 - SO	Bus cycle status	Output, 3-state		
OS1, OSO	Instruction queue	Output		

Minimum-Mode Interface Signals

Minimum-Mode Interface Signals

• Minimum-mode signals can be divided into the following basic groups: address/data bus, status, control, interrupt, and DMA.

Address/Data Bus

- Address bus: A0 A19 for memory and A0 A15 for I/O ports. A0 for LSB.
- Data bus: D0 D7 for data. D0 for LSB.
- 8086: D0 D15 for data.
- When acting as data bus, they carry read/write data for memory, input/output data for I/O devices, and interrupt-type codes from an interrupt controller.

Status Signals

- Status signals S6 S3 are multiplexed with A19 A16.
- S4 and S3 identify which of the internal segment registers was used to generate the physical address.
- S5 logic of the internal interrupt enable flag.
- S6 always at 0

S ₄	S ₃	Address Status
0	0	Alternate (relative to the ES segment)
0	1	Stack (relative to the SS segment)
1	0	Code/None (relative to the CS seg- ment or a default of zero)
1	1	Data (relative to the DS segment)

Control Signals

- Control signals are to support memory and I/O interfaces.
- They control which type of bus cycle is in progress and in which direction data are to be transferred over the bus.

Interrupt Signals

- Interrupt request
- Interrupt acknowledge
- Test input synchronize the operation of MPU to an event in external hardware.
- Nonmaskable interrupt (NMI) and reset (RESET).

DMA Interface Signals

 Direct memory access (DMA) interface of 8088/8086 minimum-mode microcomputer system consists of the HOLD and HLDA signals.

Maximum-Mode Interface Signals

- When in maximum mode, 8088/8086 produce signals for implementing a multiprocessor/coprocessor system environment.
- Common resources for all processors are called *global resources*.
- Local or private resources are assigned to specific processors.

#