9/1//24

Chranya · Nishetty

Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.14

«BS(PHY)»

CONTINUOUS INTERNAL EVALUATION - 2

Dept: BS(PHY)	Sem / Div: I/CS- A&B	Duo. Tippiiod i iijoio	S Code: BPHYS102
0 9 /01/2024	Time:2:30- 4:00PM	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

Q	N	Questions	Marks	RBT	CO's			
7	PART A							
1		Mention any four differences between classical and quantum computing and explain the concept of <i>Qubit</i> and its representation using Bloch Sphere.	10	L2	CO2			
	1	State the Pauli matrices and apply Pauli matrices on the states $ 0\rangle$ and $ 1\rangle$.	10	L2	CO2			
	c	Calculate the probability of occupation of an energy level 0.2eV above Fermi level at temperature 27°C.	5	L3	CO3			
	=1% =>0.01 OR							
2	! a	Define Fermi Energy & Fermi Factor and discuss the dependence of Fermi factor with temperature and energy.	10	L1& L2	c CO3			
	b	Discuss the CNOT gate and its operation on four different input states. Mention its truth table and circuit representation.	10	L2	CO2			
	С	A Linear Operator 'X' operates such that $X 0\rangle = 1\rangle$ and $X 1\rangle = 0\rangle$. Find the matrix representation of 'X'.	5	L3	CO2			
	PART B							
73	3 a	Discuss timing in linear motion, uniform motion, slow in and slow out.	v 10		2 CO			

Page: 1 / 2

b Elucidate the importance of size and scale & weight and strength in animations.	10	L2	CO4			
c The number of particles emitted per second by a random radioactive source has a Poisson's distribution with $\lambda = 4$. Calculate the probability of $P(X = 0)$ and $P(X = 1)$.	5	L3	CO4			
$((X=0) \circ 0) \circ 0$ $((X=0) \circ 0) \circ 0$ OR						
4 a Illustrate the odd rule and odd rule multipliers with a suitable example.	10	L2	CO4			
b Write any four differences between descriptive and inferential statistics. Discuss the salient features of Normal distribution using bell curves.	10	L2	CO4			
c A slowing-in object in an animation has a first frame distance 0.5m and the first slow in frame 0.35m. Calculate the base distance and the number of frames in sequence.	5	L3	CO4			

Prepared by: Dr. Raveesha P M

HOD: Prof. M Ramananda Kamath