Harvard University Computer Science 20

In-Class Problems 15

Wednesday, March 02, 2016

Author: Crystal Chang

Executive Summary

- 1. **Definition of Recursive Data Types:** common way of defining mathematical objects, which says how to construct new data elements from previous ones.
 - Base Case(s): specify that some known mathematical elements are in the data type
 - Constructor Rule(s): specify how to construct new data elements from previously constructed elements or from base elements.
 - Nothing else (generally implicit): the only way you can get whatever is you defining is by starting from the base case(s) and applying the constructor rule(s) one or more times.
- 2. The Principle of Structural Induction: to prove P(x) holds for all x in a recursively defined set S, prove
 - Basis Step: P(b) is true for each base case element $b \in S$, and
 - Recursive Step: $P(c(x_1,...,x_k))$ for each constructor c, assuming as the induction hypothesis that $P(x_1),...$, and $P(x_k)$ all hold.

PROBLEM 1

Recursive Definition:

- (A) There's an error in the following definition of the set of even integers (EI). Find the error and fix it.
 - Base Case: $0 \in EI$
 - Constructor Rule: For any element x in EI, x+2 is in EI.
 - Nothing else (generally implicit): Nothing is in NE unless it is obtained from the base case and constructor rule.
- (B) Give a recursive definition of the natural numbers \mathbb{N} .
- (C) Give a recursive definition of the sequence b_n , $b_n = 2n + 5$, $n \in \mathbb{N}$

PROBLEM 2

Let S be the set defined as follows:

- Base Case: $(1,2) \in S$
- Constructor Rules: If $(x,y) \in S$, then C1: $(x+2,y) \in S$, C2: $(y,x) \in S$
- (A) Is $(4,3) \in S$? If it is, how can you derive it from (1,2)?
- (B) Use induction to prove that $(2n+2,2n+1) \in S$ for all $n \in \mathbb{N}$.

PROBLEM 3

Let S be the set defined as follows:

- Base Case: $(0,0) \in S$
- Constructor Rules: If $(a,b) \in S$, then C1: $(a,b+1) \in S$, C2: $(a+1,b+1) \in S$ and C3: $(a+2,b+1) \in S$
- (A) List 5 elements in set S.
- (B) Use structural induction to prove that for every $(a, b) \in S, a \leq 2b$.

PROBLEM 4

(Bonus) Construct a recursive definition for the set of strings S over the alphabet a,b excepting empty string, i.e. set of string consisting of a's and b's such as abbab, bbabaa, etc.