Minimális költségű feszítőfa, mkffák struktúrája, Kruskal-algoritmus helyessége, villamos hálózathoz tartozó normál fa keresése.

- Minimális költségű feszítőfa: Adott a G = (V, E) irányítatlan gráf élein a  $k : E \to \mathbb{R}^+$  költségfüggvény. Az  $F \subseteq E$  élhalmaz költsége az F-beli élek összköltsége:  $k(F) = \sum_{f \in F} k(F)$ . Az  $F \subseteq E$  élhalmaz G-ben minimális költségű feszítőfa (mkffa), ha
  - (1) (V, F) a G feszítőfája, és
  - (2)  $k(F) \le k(F')$  teljesül a G bármely (V, F') feszítőfájára. (akkor mkffa ha ennek a feszítőfának a legkisebb a költsége az összes többi feszítőfa közül)

$$F_i := \begin{cases} F_{i-1} \cup \{e_i\} & \text{ha } F_{i-1} \cup \{e_i\} \text{ k\"ormentes.} \\ F_{i-1} & \text{ha } F_{i-1} \cup \{e_i\} \text{ tartalmaz k\"ort.} \end{cases}$$

(1 eset) az élt bevesszük a ffába, ha az nem alkotna kört

(2 eset) ha az él bevételével kör keletkezne, nem vesszük be a ffa-ba

- Minimális költségű feszítőfa: olyan  $F \in E$  élhalmaz, amire (V, F) fa, és k(F) minimális.
- Mkkfák struktúrája: G=(V,E) gráf és  $k:E\to\mathbb{R}^+$  költségfüggvény esetén legyen  $G_c$  a legfeljebb c költségű élek alkotta feszítő részgráfja G-nak:  $G_c=(V,E_c)$ , ahol  $E_c:=\{e\in E:k(e)\leq c\}$ .

**Megf:** A G gráfon futtotott Kruskal-algoritmus outputja tartalmazza  $G_c$  egy feszítő erdejét minden  $c \ge 0$  esetén.

**Lemma:** Tfh  $F = \{f_1, f_2, \dots, f_l\}, k(f_1) \leq k(f_2) \leq \dots \leq k(f_l)$  és  $F \cap E_c$  a  $G_c$  egy feszítő erdeje  $\forall c \geq 0$ -ra. Tfh  $F' = \{f'_1, f'_2, \dots, f'_l\}$  a G egy feszítő erdejének élei, és  $k(f'_1) \leq k(f'_2) \leq \dots \leq k(f'_l)$ . Ekkor  $k(f_i) \leq k(f'_i)$  teljesül  $\forall 1 \leq i \leq l$  esetén, így  $k(F) \leq k(F')$ .

 $\mathbf{K\ddot{o}v}$ : (1) A Kruskal-algoritmus outputja a G gráf egy minimális költségű feszítő erdeje.

**Köv:** (2) Az F' élhalmaz pontosan akkor minimális költségű feszítő erdeje G-nek, ha  $F' \cap E_c$  a  $G_c$  egy feszítő erdeje minden c < 0-ra.

Biz: A Lemma bizonyítja az elégségességet.

## • Kruskal algoritmus:

- Input: G = (V, E) gráf, és  $k : E \to \mathbb{R}^+$  költségfüggvény.
- Output: minimális költségű feszítőfa.
- <u>Működés:</u> minden lépésben megépítjuk a legolcsóbb élt, ami nem hoz létre kört. Mohó algoritmus, mert csak azzal törődik, ami éppen a legalacsonyabb költségű. Az így keletkezett fa a G gráf egy minimális költségű (súlyú) feszítőfája.
- Helyességének bizonyítása: tegyük fel, hogy az algoritmus helytelen, ekkor létezik egy fél, amit e helyére bevéve olcsóbb feszítőfát kapunk. Ekkor azonban f költsége kisebb, mint e költsége, így f-et az algoritmussal korábban már ellenőriztük, tehát ellentmondásra jutottunk, azaz a feszítőfa minimális költségű.
- Villamos hálózatohoz tartozó normál fa keresése:



- Tegyük fel, hogy egy áramkör a fenti kétpólusú áramköri elemekből áll. Az áramkör tulajdonképpen egy gráf, aminek minden éle egy-egy áramköri elemnek felel meg. Az, hogy mi történik (mik lesznek az élek mentén az áramerősségek, és a gráfcsúcsok között a potenciálkülönbségek), a Kirchoff- ill. Ohm-törvényekkel írható le.
- Csomóponti törvény: a gráf egy ponthalmazából kilépő éleken az áramerősségek előjeles összege 0.

- Huroktörvény: a gráf tetszőleges köre mentén a potenciálkülönbségek összege 0.
- Mikor "értelmes" egy ilyen hálózat? Akkor, ha a fenti törvényekkel felírt egyenletrendszer egyértelműen megoldható. Bizonyítható, hogy ha a fenti esetek egyike sem áll fenn, akkor a megoldás egyértelmű, a hálózat "értelmes". Ennek a a bizonyítéka a normál fa: G olyan feszítőfája, ami minden feszültségforrást tartalmaz, de egyetelen árramforrást sem (és mindemellett a legtöbb kapacitást és a lehető legkevesebb induktivitás tartalmazza).
- Normál fa keresése: fesz.forrás (1), kapacitás (2), ellenállás (3), induktivitás (4), áramforrás (5) élköltségekhez keressünk mkffát! Ha ez tartalmaz áramforrást, vagy nem tartalmaz minden feszültségforrást, akkor nincs normál fa, egyébként a mkffa egy normál fa és egyértelmű a megoldás "értelmes" a hálózat.