Generative embedding for model-based classification

Kay H. Brodersen^{1,2}, Thomas M. Schofield³, Alexander P. Leff³, Cheng Soon Ong¹, Ekaterina I. Lomakina^{1,2}, Joachim M. Buhmann¹, Klaas E. Stephan^{2,3}

- ¹ Machine Learning Laboratory, Department of Computer Science, ETH Zurich, Switzerland
- ² Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Switzerland

³ Wellcome Trust Centre for Neuroimaging, University College London, UK

Model-based inference on individual pathophysiology

Classification approaches by data representation

Model-based classification

How do patterns of hidden quantities (e.g., connectivity among brain regions) differ between groups?

Structure-based classification

Which anatomical structures allow us to separate patients and healthy controls?

Activation-based classification

Which functional differences allow us to separate groups?

Colleagues & collaborators

Thomas Schofield University College London

Cheng Soon Ong ETH Zurich

Joachim M Buhmann ETH Zurich

Klaas Enno Stephan University of Zurich · University College London

Kate Lomakina University of Zurich · ETH Zurich

Alexander Leff University College London

Model-based classification through generative embedding

Brodersen et al. (2011) NeuroImage; Brodersen et al. (2011) PLoS Comp Biol

Choosing a generative model: DCM for fMRI

hemodynamic forward model

$$x = g(z, \theta_h)$$

neural state equation

Friston, Harrison & Penny (2003) NeuroImage Stephan & Friston (2007) Handbook of Brain Connectivity

Example: diagnosing stroke patients

To illustrate our approach, we aimed to distinguish between stroke patients and healthy controls, based on non-lesioned regions involved in speech processing.

Example: diagnosing stroke patients

anatomical regions of interest

R

Example: diagnosing stroke patients

Univariate analysis: parameter densities

Multivariate analysis: connectional fingerprints

Full Bayesian approach to performance evaluation

Model

We model the likelihood functions for k^+ positive and k^- negative correct predictions as:

$$p(k^+|\pi^+, n^+) = \text{Bin}(k^+|\pi^+, n^+)$$
$$p(k^-|\pi^-, n^-) = \text{Bin}(k^-|\pi^-, n^-)$$

The class-specific accuracies π^+ and π^- can be modelled as latent random variables with conjugate Beta priors:

$$p(\pi^{+}|\alpha^{+},\beta^{+}) = \text{Beta}(\pi^{+}|\alpha^{+},\beta^{+})$$
$$p(\pi^{-}|\alpha^{-},\beta^{-}) = \text{Beta}(\pi^{-}|\alpha^{-},\beta^{-})$$

This prior is uninformative when using the hyperparameters $\alpha^+ = \beta^+ = \alpha^- = \beta^- = 1$. The balanced accuracy is given by $\phi \coloneqq \frac{1}{2}(\pi^+ + \pi^-)$.

Inverting the model yields the posterior balanced classification accuracy,

$$\begin{split} & p(\phi|k^+, k^-, n^+, n^-, \alpha^+, \beta^+, \alpha^-, \beta^-) \\ &= \int_0^1 \text{Beta}(2(\phi - z)|\alpha_n^+, \beta_n^+) \; \text{Beta}(2z|\alpha_n^-, \beta_n^-) \; dz \, . \end{split}$$

Brodersen, Chumbley, Mathys, Daunizeau, Ong, Buhmann & Stephan (in preparation)

Classification performance

Activation-based analyses

- a anatomical feature selection
- **c** mass-univariate contrast feature selection
- **s** locally univariate searchlight feature selection
- PCA-based dimensionality reduction

Correlation-based analyses

- **m** correlations of regional means
- e correlations of regional eigenvariates
- z Fisher-transformed eigenvariates correlations

Model-based analyses

- o gen.embed., original full model
- f gen.embed., less plausible feedforward model
- I gen.embed., left hemisphere only
- r gen.embed., right hemisphere only

Biologically less plausible models perform poorly

The generative projection

Discriminative features in model space

Discriminative features in model space

Summary: generative embedding for fMRI

- **Strong classification performance.** Generative embedding exploits the rich discriminative information encoded in 'hidden' quantities, such as coupling parameters.
- Creation of an interpretable feature space. Highdimensional fMRI data are replaced by low-dimensional subject-specific fingerprints with biologically interpretable axes.
- **Future applications.** Generative embedding could help dissect spectrum disorders into physiologically defined subgroups.