CYLINDRISKA YTOR

En cylindrisk yta är en yta som " uppstår" då varje punkt på en kurva (direktris) förflyttas parallellt med en given rät linje (generatris).

Om en variabel saknas i ytans ekvation då har vi en cylindrisk yta.

Om ytans ekvation i tredimensionell rummet R^3 är f(x,y)=0, dvs **saknar z-variabel**, ritar vi först skärningskurvan mellan ytan och xy-planet och därefter förflyttar kurvan z=0 dvs f(x,y)=0 **parallellt med z-axeln**.

Uppgift 1.

Skissera ytan som består av alla punkter (x, y, z) i R³ som satisfierar

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

Lösning: Ytans ekvation saknar z-variabel. Därför har alla skärningskurvor mellan ytan och plan z=k ,

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
, $z = k$ samma projektion i xy-planet: ellipsen $\frac{x^2}{9} + \frac{y^2}{4} = 1$.

Därför kan vi få ytan genom att "förflytta" elipsen

$$\frac{x^2}{9} + \frac{y^2}{4} = 1, z = 0$$

parallellt med z-axeln:

Uppgift 2.

Skissera ytan $\{\{(x, y, z) \in \mathbb{R}^3 : z = x^2\}$.

(dvs ytan består av alla punkter i det tredimensionella rummet \mathbb{R}^3 som satisfierar $z=x^2$)

Lösning: Den här gången saknas y-variabeln i ytans ekvation.

Därför ritar vi parabeln $z=x^2$ i xz-planet och därefter "drar" kurvan i 3D rummet, parallellt med yaxeln (som saknas i ekvationen).

Uppgift 3.

Skissera ytan $\{ \{(x, y, z) \in \mathbb{R}^3 : y^2 + z^2 = 4 . \}$

(Ytan består av alla punkter i \mathbb{R}^3 som satisfierar $y^2+z^2=4$)

Lösning: Eftersom x –variabeln saknas i ytans ekvation, ritar vi först cirkeln $y^2 + z^2 = 4$ i yzplanet och därefter "förflyttar" cirkeln i 3D rummet, parallellt med x-axeln (som saknas i ekvationen).

