

Denoising Diffusion Implicit Models 추성재, DGIST

What is DDIM?

Figure 1: Graphical models for diffusion (left) and non-Markovian (right) inference models.

$$q(x_t|x_{t-1}) \qquad \qquad q(x_t|x_{t-1},x_0)$$

$$\text{marginal distribution} \qquad \qquad \text{joint distribution}$$

Non-Markovian Forward Process

Let us consider a family Q of inference distributions, indexed by a real vector $\sigma \in \mathbb{R}_{>0}^T$:

$$q_{\sigma}(\boldsymbol{x}_{1:T}|\boldsymbol{x}_0) := q_{\sigma}(\boldsymbol{x}_T|\boldsymbol{x}_0) \prod_{t=2}^{T} q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, \boldsymbol{x}_0)$$
(6)

where $q_{\sigma}(\boldsymbol{x}_T|\boldsymbol{x}_0) = \mathcal{N}(\sqrt{\alpha_T}\boldsymbol{x}_0, (1-\alpha_T)\boldsymbol{I})$ and for all t > 1,

from DDPM diffusion kernel

$$q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0}) = \mathcal{N}\left(\sqrt{\alpha_{t-1}}\boldsymbol{x}_{0} + \sqrt{1 - \alpha_{t-1} - \sigma_{t}^{2}} \cdot \frac{\boldsymbol{x}_{t} - \sqrt{\alpha_{t}}\boldsymbol{x}_{0}}{\sqrt{1 - \alpha_{t}}}, \sigma_{t}^{2}\boldsymbol{I}\right).$$
(7)

The mean function is chosen to order to ensure that $q_{\sigma}(x_t|x_0) = \mathcal{N}(\sqrt{\alpha_t}x_0, (1-\alpha_t)I)$ for all t (see Lemma 1 of Appendix B), so that it defines a joint inference distribution that matches the "marginals" as desired. The forward process³ can be derived from Bayes' rule:

$$q_{\sigma}(\boldsymbol{x}_{t}|\boldsymbol{x}_{t-1},\boldsymbol{x}_{0}) = \frac{q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t},\boldsymbol{x}_{0})q_{\sigma}(\boldsymbol{x}_{t}|\boldsymbol{x}_{0})}{q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{0})},$$
(8)

Non-Markovian Forward Process

Meaning of "deterministic"

$$f_{ heta}^{(t)}(m{x}_t):=(m{x}_t-\sqrt{1-lpha_t}\cdot\epsilon_{ heta}^{(t)}(m{x}_t))/\sqrt{lpha_t}.$$
 x_t 에서 x_0 를 추정 x_t 에서 ϵ_0 (total noise)를 추정

$$p_{\theta}^{(t)}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) = egin{cases} \mathcal{N}(f_{\theta}^{(1)}(\boldsymbol{x}_1), \sigma_1^2 \boldsymbol{I}) & \text{if } t = 1 \ q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t, f_{\theta}^{(t)}(\boldsymbol{x}_t)) & \text{otherwise,} \end{cases}$$

Optimizing Process

$$J_{\sigma}(\epsilon_{\theta}) := \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q_{\sigma}(\boldsymbol{x}_{0:T})} [\log q_{\sigma}(\boldsymbol{x}_{1:T}|\boldsymbol{x}_{0}) - \log p_{\theta}(\boldsymbol{x}_{0:T})]$$

$$= \mathbb{E}_{\boldsymbol{x}_{0:T} \sim q_{\sigma}(\boldsymbol{x}_{0:T})} \left[\log q_{\sigma}(\boldsymbol{x}_{T}|\boldsymbol{x}_{0}) + \sum_{t=2}^{T} \log q_{\sigma}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}, \boldsymbol{x}_{0}) - \sum_{t=1}^{T} \log p_{\theta}^{(t)}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_{t}) - \log p_{\theta}(\boldsymbol{x}_{T}) \right]$$

$$(11)$$

Theorem 1. For all $\sigma > 0$, there exists $\gamma \in \mathbb{R}^T_{>0}$ and $C \in \mathbb{R}$, such that $J_{\sigma} = L_{\gamma} + C$.

$$L_{\gamma}(\epsilon_{\theta}) := \sum_{t=1}^{T} \gamma_{t} \mathbb{E}_{\boldsymbol{x}_{0} \sim q(\boldsymbol{x}_{0}), \epsilon_{t} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})} \left[\left\| \epsilon_{\theta}^{(t)} (\sqrt{\alpha_{t}} \boldsymbol{x}_{0} + \sqrt{1 - \alpha_{t}} \epsilon_{t}) - \epsilon_{t} \right\|_{2}^{2} \right]$$

- As a result of the Theorem 1, if $\gamma=1$, J_σ is same as DDPM's variational lower bound, L_γ
- This means we can use DDPM's objective function as DDIM's objective function
- This also means we can use denoising network from DDPM in DDIM

Sampling Generative Process

From $p_{\theta}(x_{1:T})$ in Eq. (10), one can generate a sample x_{t-1} from a sample x_t via:

$$\boldsymbol{x}_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{\boldsymbol{x}_t - \sqrt{1 - \alpha_t} \epsilon_{\theta}^{(t)}(\boldsymbol{x}_t)}{\sqrt{\alpha_t}} \right) + \underbrace{\sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \epsilon_{\theta}^{(t)}(\boldsymbol{x}_t)}_{\text{"direction pointing to } \boldsymbol{x}_t"} + \underbrace{\sigma_t \epsilon_t}_{\text{random noise}}$$
(12)

DDIM case

$$\sigma_t = \sqrt{(1-lpha_{t-1})/(1-lpha_t)}\sqrt{1-lpha_t/lpha_{t-1}}$$
 , DDPM's sampling process

Accelerated Generative Process

- denoising objective is bounded at $q_{\sigma}(x_t|x_0)$, we can consider forward process smaller than T
- set τ as a subsequence of [1,...,T]
- define sequential forward process $\{x_{ au_1},...,x_{ au_S}\}$ that matches

$$q(x_{\tau_i}|x_0) = \mathcal{N}(\sqrt{\alpha_{\tau_i}}x_0, (1 - \alpha \tau_i \mathbf{I}))$$

• generative process follows reverse of au

• we can train model follows T, but we can use some of T to sample

	CIFAR10 (32 × 32)						CelebA (64 × 64)				
S		10	20	50	100	1000	10	20	50	100	1000
	0.0	13.36	6.84	4.67	4.16	4.04	17.33	13.73	9.17	6.53	3.51
η	0.2	14.04	7.11	4.77	4.25	4.09	17.66	14.11	9.51	6.79	3.64
	0.5	16.66	8.35	5.25	4.46	4.29	19.86	16.06	11.01	8.09	4.28
	1.0	41.07	18.36	8.01	5.78	4.73	33.12	26.03	18.48	13.93	5.98
	$\hat{\sigma}$	367.43	133.37	32.72	9.99	3.17	299.71	183.83	71.71	45.20	3.26

Figure 3: CIFAR10 and CelebA samples with $\dim(\tau) = 10$ and $\dim(\tau) = 100$.

Experiments

Figure 5: Samples from DDIM with the same random x_T and different number of steps.