Analysing simulated place cell data through SVD data reduction

By Aaishah, Gundeep, and Eryn

- Large-scale in vivo electrophysiology
- Recordings targeted to the hippocampus

Spatial Memory in Hippocampal Circuit

- Large-scale in vivo electrophysiology
- Recordings targeted to the hippocampus
- Simultaneous recording from hundreds of place cells

Spatial Memory in Hippocampal Circuit

- Large-scale in vivo electrophysiology
- Recordings targeted to the hippocampus
- Simultaneous recording from hundreds of place cells

Two types of internally generated sequences: replay and theta sequences

Mechanism of theta sequences: phase precession

Mechanism of theta sequences: phase

precession

Theta cycles

Individual place cell

Zugaro et al., Nature Neurosci. 2005

Place cell ensemble

Theta cycles

Skaggs et al., J. Neurosci. 1996

Theta sequences should facilitate plasticity in the 'forward' direction

Summary of Data Reduction

- 1. Generate assembly cell data
- 2. Build coordinates
- 3. Time Series
- 4. Dimension Reduction
- 5. Analysis

Displacement Phase Graph

Assembly cells and noise cells

- 10 assembly cells
- 40 noisy cells
- 80% noise

Time-delay coordinates and SVD

Position vs first eigen timeseries

We can see a strong correlation with the position and the 1st eigen time series

Singular value matrix confirms decay for 10 cells for 10 delays

Averaging over several trials resembles Gaussian spike distribution.

Original spike data theta precession

Each vertical bar resembles 1/7th of a second (1 theta period)

After a few periods, it moves from the right to the left.

Eigen series theta precession is present.

Fourier transform is used to find theta oscillations

Parameters we decided on after experimentation

```
% precession parameters
% *network* set up
nAsC = 10; % number of representative place cells
nBaC = 40; % number of background noisy cells % 80%
% timing set up
T = 1000; % Final time in seconds T=1000 gives ~ 24 or 25 runs
% hyper-parameters
bin width = 0.01/14; % in seconds // 0.001 sec = 1 ms // made it correlate with 1/7 sec
period
num delays = 10; % increasing is better
tau = 1; % Don't increase tau (size of delay)
```

50% noise (10 assembly and 10 noisy background cells), 5 runs

80% noise (10 assembly and 40 noisy background cells), 25 runs

SVD can be a useful mechanism for analyzing place cell data

Next steps:

- 1. Use real data
- 2. Smooth curves
- 3. Try different techniques

Thank You

CRAIG SWANSON @ WWW. PERSPICUITY. COM