Variational Autoencoders

We understand AE. What is Variational AE?

- Basically a AE, but a generative model
 - The encoder parameterizes a **distribution** and not just a point estimate
 - Hence, probabilistic non-linear dimensionality reduction
 - Decoder takes a latent variable, then generates an output
- Main hypothesis
 - There is a latent variable z which can be used to ge
 - This variable explains the main sources of variation in our data
 - We can incorporate a prior for this z as a regularization objective
- What is variational? we will cover this soon.

Hidden representation = Latent variable?

Hidden representation = Latent variable.

- Latent variables
- Hidden representation a representation that captures the lower dimensional signals that explain the data best
 - Data can be explained by a couple of factors of variation
 - E.g. in images cats/dogs vs book/pen → what if we had a hidden neuron that encoded "has a leg"
 - Or in MNIST → a hidden neuron that encodes "has a loop"
 - Main idea in PCA project it to a space where only a couple of dimensions explain most of the data

Bayes

Recap of Bayes theorem

Prior P(z): How likely is a certain value of the latent variable z?

Likelihood P(X | z): Given a certain value of z, how likely is a data point? (e.g. image)

Posterior P(z|X): Given a datapoint, what is the probability of a latent variable?

Bayes theorem:
$$P(z|X) = \frac{P(X|z)P(z)}{P(X)}$$

Bayes

Recap of Bayes theorem

Prior P(z): Let's choose this to be a simple distribution - standard Gaussian.

Likelihood P(X|z): Let's call this the decoder part of our network. We can easily parameterize this.

Posterior P(z|X): We **try** to do this in the encoder part of our network.

Bayes

Bayes theorem:

$$P(z|X) = \frac{P(X|z)P(z)}{P(X)}$$

$$P(z|X) = \frac{P(X|z)P(z)}{\int_{z} P(X|z)P(z)dz} \qquad P(z|X) = \frac{P(X|z)P(z)}{\sum_{z} P(X|z)P(z)}$$

All values of $z \rightarrow All$ real values!

How is it even possible to compute this integral/sum? It's not, its intractable

Variational Bayes

We want another distribution to approximate the posterior - which is hard to compute. Q(Z) to approximate P(Z|X)

How can we know this distribution is a good approximation?

What is KL divergence

A way to measure dissimilarity between two probability distributions, based on information theory.

Consider entropy:
$$H(x) = -\sum_x P(x) \log P(x)$$

KL divergence - many, many interpretations

- Number of bits of information lost if we use distribution q to represent p
- Negative log likelihood that samples generated by distribution p has been generated by q

Interesting reading <u>here</u>.

Note: KL divergence is always positive!

KL-divergence of variational distribution Q

$$KL(Q_\phi(Z)||P(Z|X)) = \sum_{z \in Z} q_\phi(z|x) \log rac{q_\phi(z|x)}{p(z|x)}$$
 Forward KL

This decomposes through a lot of math (which you can look up here) to

$$\log P(X) - \left(\mathbb{E}_Q \left[\log P(x|z)\right] - KL(Q(Z|X)||P(Z))\right)$$

- Log Likelihood of data (we want to maximize this!)
 - o maximizing $P(x) \Rightarrow$ having some parameterization of the probability distribution our data that best **explains our data**
- This is called the Variational Lower Bound

Maximizing the Variational Lower Bound?

Simple rearranging from before, we get

$$P(x) = \mathcal{L} + KL(Q||P)$$

KL-divergence is always > 0 - its like an error term.

Hence \mathcal{L} is the **lower bound.** So... the more you increase \mathcal{L} , the better you describe your data, because P(x) increases.

Also, when is this bound **tight?** When Q(z) = P(z|x) and the KL-divergence term is 0 (or close to 0). Thus, the better your Q, the better you are able to train your model.

Decomposing the variational lower bound

$$\mathbb{E}_{Q}[\log P(x|z)] - KL(Q(Z|X)||P(Z))$$

(negative) Reconstruction Error Regularization

- Reconstruction Error:
 - In traditional autoencoders we use L2 loss
 - With binary data, here, it turns out to Binary Cross Entropy loss
 - \circ What about real valued data? We can say P(x | z) is a Gaussian distribution.
- Regularization term:
 - You don't want the latent variable values to be all over the place
 - o Basically, without this term, this is as good as a normal AE.
 - Centered around 0 is a good place to start
 - However, this does not always work well. What if the latent structure of the data was actually a circle (or hypersphere in higher dimensions)?
 - We need to consider other priors

EM ... looks familiar?

EM ... looks familiar?

EM ... looks familiar?

How do we actually train it?

We want to maximize the variational lower bound.

$$\mathbb{E}_{Q}[\log P(x|z)] - KL(Q(Z)||P(Z))$$

Which means the negative of this is our loss function.

KL(Q(Z)||P(Z)) is just a deterministic function (Gaussian Q, Gaussian prior for P)

 $\mathbb{E}_Q \big[\log P(x|z) \big]$ can be computed *empirically*. That is, sample a bunch of z values, calculate log P(x|z) using those sampled z, and take an average. In the paper, the authors just take 1 sample.

But how is sampling differentiable?

Reparameterization trick

Sampling from a distribution $\mathcal{N}(\mu, \sigma^2)$ itself is not a differentiable operation.

But, due to the nice properties of Gaussian distributions, we can first sample $\epsilon \sim \mathcal{N}(0,1)$

Then we can *transform* it to the *z* that we need using this $z=g(\epsilon)=\mu+\epsilon\circ\sigma$

Then, this $\mathbb{E}_{z \sim \mathcal{N}(\mu, \sigma^2)}[f(z)]$ and $\mathbb{E}_{\epsilon \sim \mathcal{N}(0, 1)}[f(g(\epsilon))]$ are equivalent.

Addition, element-wise multiplication are all differentiable operations - and epsilon can be sampled agnostic of the actual mean and variance. Then epsilons are just 'inputs' to a network.

The reparameterization trick is helpful in many other places too.

VAE, the full picture

Effect of prior

The KL Divergence term is a strong prior for latent variable values which says the latent values lie in a hypersphere.

What if this is not true? For example, what if we generated samples using latent variables that are distributed like a disc?

https://arxiv.org/pdf/1804.00891.pdf

How do we force latent representations to be more meaningful?

An interesting approach is to disentangle latent variables.

Disentagling - each latent variable should capture different information from another.

Think of PCA - each projection is orthogonal to others.

β-VAE

- Main idea is to give an even stronger prior
 - \circ This forces the posterior Q(z|x) to be highly factorized (diagonal covariance)
 - Diagonal covariance → latent dimensions are uncorrelated

Main concepts to remember

- VAEs consist of two tractable distributions (should be easy to compute)
 - P(z) prior of latent variable
 - P(x|z) likelihood given latent variable
- We can train VAEs using back-prop because of reparameterization trick
- VAEs are very very similar to EM.
- We can make VAEs better by obtaining tighter definitions of the lower bound
 - Importance Weighted Autoencoders are an improvement.
- Choosing a good prior matters
 - Also, weighting prior differently gives different disentaglement results.