Сказка о настройке волшебного королевства сетей

В далеком цифровом королевстве жили-были разные устройства - гордые серверы, трудолюбивые маршрутизаторы и скромные рабочие станции. И вот однажды мудрый системный администратор решил объединить их всех в единую сеть, чтобы они могли общаться между собой и служить на благо королевства.

Глава 1: Наречение имен

Прежде всего, администратор решил дать каждому устройству свое особенное имя, чтобы можно было легко отличать их друг от друга. Он подошел к каждому устройству и произнес волшебные слова:\

hostnamectl set-hostname «имя машины»; exec bash

Так каждое устройство получило свое полное доменное имя, став полноправным гражданином сетевого королевства. Серверы гордо носили имена HQ-SRV и BR-SRV, маршрутизаторы - HQ-RTR и BR-RTR, а рабочие станции скромно назывались HQ-CLI и BR-DC.

Глава 2: Раздача волшебных адресов

Теперь нужно было обеспечить каждому устройству свой уникальный адрес в королевстве. Для устройств с графическим интерфейсом это было просто - достаточно было щелкнуть правой кнопкой по значку сети, выбрать настройки IPv4 и аккуратно вписать нужные цифры, не забыв сохранить изменения.

А вот для устройств без графического интерфейса пришлось использовать волшебный инструмент nmtui:

Администратор тщательно распределил адреса между всеми жителями королевства, записав их в священный свиток:

```
isp
             ens35 (c9)
ens34 (bf)
172.16.4.1/28 172.16.5.1/28
172.16.4.2/28 172.16.5.2/28
ens34 (ba)
             ens34 (54)
hq-rtr
          br-rtr
ens35 (c4)
             ens35 (5e)
172.16.0.1/26 172.16.6.1/27
             ens34 (af)
                          ens33 (b2)
ens33 (d6)
                                        (Он винда)
172.16.0.2/26 172.16.0.3/28 172.16.6.2/27 172.16.6.3/27
hq-srv
           hq-cli
                       br-srv
                                   br-DC
```

Глава 3: Создание верных слуг

Чтобы управлять королевством, администратору нужны были верные помощники. Он создал специального пользователя sshuser, который мог бы выполнять любые команды без лишних вопросов:

useradd -m -u 1010 sshuser

passwd sshuser

Затем он открыл священный свиток sudoers и добавил туда магическую строку, дающую sshuser неограниченные права:

nano /etc/sudoers

Добавил:

sshuser ALL=(ALL:ALL)NOPASSWD:ALL

Сохранил изменения священной комбинацией клавиш: Ctrl+X, Y, Enter. Теперь у него был верный слуга, готовый выполнять любые поручения.

Глава 4: Защитные заклинания

Королевству нужна была защита от злых духов и хакеров. Администратор создал специальное предупреждение для всех, кто попытается войти без разрешения:

nano /etc/mybanner

Написал строгое предупреждение:

Authorized access only

Затем настроил защитные механизмы SSH, изменив конфигурационный файл:

nano /etc/openssh/sshd_config

Установил:

#port 22, раскоменчиваем и пишем port 2024

Banner /etc/mybanner

MaxAuthTries 2

ДОБАВИТЬ строчку - AllowUsers sshuser

После этого перезапустил службу SSH, чтобы изменения вступили в силу:

systemctl restart sshd.service

Теперь королевство было под надежной защитой.

Глава 5: Автоматическая раздача адресов

Чтобы жителям королевства не приходилось вручную запоминать свои адреса, администратор настроил DHCP-сервер на HQ-RTR. Сначала он указал, какой интерфейс будет раздавать адреса:

```
nano /etc/sysconfig/dhcpd
Добавил строку:
DHCPARGS=ens35
Затем создал конфигурационный файл, взяв за основу пример:
cp /etc/dhcp/dhcpd.conf{.example,}
nano /etc/dhcp/dhcpd.conf
Прописал основные параметры:
Доменное имя королевства "au-team.irpo"
Адреса DNS-серверов
option domain-name-servers 172.16.0.2;
Время аренды адресов
default-lease-time 6000;
max-lease-time 72000;
Диапазон раздаваемых адресов
authoritative;
      subnet 172.16.0.0 netmask 255.255.255.192 {
      range 172.16.0.3 172.16.0.8;
      option routers 172.16.0.1;
}
```

После этого включил и запустил службу DHCP:

systemctl enable --now dhcpd

Теперь все новые жители королевства автоматически получали свои адреса.

Сказка о настройке волшебного королевства сетей (Продолжение)

Глава 6: Тайный тоннель между замками

Когда основные дороги королевства были проложены, администратор задумался о создании секретного прохода между главным замком HQ и удалённой крепостью BR. Но для этого сначала нужно было получить разрешение от Хранителя Врат — сервера ISP.

Администратор подошёл к ISP и произнёс священные слова:

nano /etc/net/sysctl.conf

Найдя строку net.ipv4.ip_forward, он изменил её значение на 1, словно поворачивая ключ в скрипучем замке:

```
net.ipv4.ip\_forward = 1
```

Теперь пакеты могли свободно проходить через ISP. Вдохновлённый, администратор взял волшебный инструмент nmtui и начал настраивать GRE-тоннель между HQ-RTR и BR-

RTR. Это было подобно прокладыванию подземного хода — невидимого для посторонних глаз, но надёжно соединяющего два удалённых замка.

Глава 7: Живые дороги OSPF

Обычные дороги королевства были статичны — если где-то случался обвал, посланники могли заблудиться. Администратор решил оживить дороги с помощью магии динамической маршрутизации OSPF.

На HQ-RTR он открыл древний свиток:

nano /etc/frr/daemons

И сменил строку ospfd=no на ospfd=yes, пробуждая древний дух маршрутизации. Затем произнёс заклинание активации:

systemctl enable --now frr

Войдя в священный интерфейс vtysh, администратор начал настраивать маршруты:

conf t

router ospf

passive-interface default

network 192.168.0.0/24 area 0

network 172.16.0.0/26 area 0

exit

interface tun1

no ip ospf network broadcast

no ip ospf passive

exit

do write memory

exit

Не забыл он и про настройку TTL для тоннеля:

bash

nmcli connection edit tun1

set ip-tunnel.ttl 64

save

quit

После перезапуска FRR дороги ожили и стали сами находить обходные пути в случае преград. То же самое он проделал и на BR-RTR, и с тех пор посланники между замками никогда не терялись.

Глава 8: Великая книга имён

В королевстве было много жителей, и запомнить все имена становилось трудно. Администратор решил создать Великую Книгу Имён (DNS) на HQ-SRV.

Он начал с изменения основных настроек:

nano /etc/bind/options.conf

Затем создал зоны, скопировав священные образцы:

cd /etc/bind/zone

cp localdomain au.db

cp 127.in-addr.arpa 0.db

Изменив владельцев файлов, чтобы только избранные могли вносить изменения:

chown root:named {au,0}.db

После настройки зонных файлов он перезапустил службу:

systemctl restart bind

Теперь, произнеся заклинание:

host hq-rtr.au-team.irpo

можно было мгновенно узнать адрес любого жителя королевства. "Благослови тебя Омниссия!" — прошептал администратор, любуясь своей работой.

Глава 9: Создание центрального управления

Пришло время объединить всех жителей под единым управлением. Администратор начал настройку Samba AD-DC на HQ-SRV, но сначала временно отключил все интерфейсы через nmtui, чтобы никто не помешал священному ритуалу.

Он очистил старые конфигурации:

rm -f /etc/samba/smb.conf

rm -rf /var/lib/samba

rm -rf /var/cache/samba

Создал новые каталоги и начал процесс провижининга:

mkdir -p /var/lib/samba/sysvol

samba-tool domain provision

После настройки включил службы:

systemctl enable --now samba

systemctl enable --now bind

Когда bind отказался запускаться, администратор не растерялся. Он заглянул в конфигурационный файл, внёс необходимые изменения и перезапустил службу:

nano /etc/bind/named.conf

systemctl restart bind

Проверив статус службы, он убедился, что всё работает как надо. Затем настроил аутентификацию Kerberos:

nano /etc/krb5.conf

samba-tool domain info 127.0.0.1

kinit administrator@au-team.irpo

Глава 10: Первые подданные королевства

Пришло время создать первых пользователей. Администратор открыл волшебный инструмент admc и создал пять верных подданных:

user1.hq

user2.hq

user3.hq

user4.hq

user5.hq

Каждый получил свой уникальный пароль и права в королевстве.

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ И НАУКИ ГОРОДА МОСКВЫ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ Г. МОСКВЫ «КОЛЛЕДЖ ПРЕДПРИНИМАТЕЛЬСТВА №11» ЦЕНТР ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ

Отчёт по выполнению задания демонстрационного экзамена специальности 09.02.06 «Сетевое и системное администрирование» КОД 09.02.06-3-2025

Выполнил студент гр. C-41 Печенкин Тимофей Владимирович

Задания:

- 1. Расчет ІР-адресации
- 2. Выбор и создание туннеля
- 3. Выбор технологии динамической маршрутизации и её настройка
- 4. Настройка динамической адресации
- 5. Создание и настройка файлового хранилища
- 6. Настройка moodle
- 7. Установка браузера
- 8. Настройка туннеля до уровня обеспечивающего шифрование трафика
 - 9. Выбор системы мониторинга и настройка этой системы

1. Расчет ІР-адресации

В таблице показано, какие адреса закреплены за конкретными устройствами.

Имя устройства	ІР-адрес	Шлюз по
		умолчанию
ISP	172.16.4.1/28	
	172.16.5.1/28	
HQ-RTR	172.16.4.2/28	172.16.4.1
	172.16.0.1/26	
BR-RTR	172.16.5.2/28	172.16.5.1
	172.16.6.1/27	
HQ-SRV	172.16.0.2/26	172.16.0.1

HQ-CLI	172.16.0.3/28	
BR-SRV	172.16.6.2/27	
BR-DC	172.16.6.3/27	

2. Выбор и создание туннеля

Для организации соединения между BR-RTR и HQ-RTR предпочтение отдали протоколу GRE вместо IP-in-IP благодаря его расширенному функционалу. Основные причины выбора GRE включают:

- 1. Поддержка широковещательного трафика GRE позволяет инкапсулировать широковещательные и multicast-пакеты, что критично для работы некоторых сетевых протоколов.
- 2. Универсальная совместимость оборудование и ОС, не поддерживающие обработку IP-in-IP, как правило, корректно взаимодействуют с GRE-туннелями.
- 3. Механизмы защиты GRE предоставляет опцию аутентификации заголовков туннеля, снижая риски несанкционированного доступа.

Эти особенности делают GRE более гибким и безопасным решением для построения защищенных туннелей в гетерогенных сетевых средах.

Настройка GRE на HQ-RTR

3. Выбор технологии динамической маршрутизации и её настройка

Протокол OSPF выбран в качестве основного решения, исходя из ключевых требований:

Высокая скорость конвергенции — быстрое формирование маршрутных таблиц при старте или изменении топологии.

Нативная совместимость с Alt Linux — полная поддержка на уровне OC, включая инструменты управления и мониторинга.

Адаптивность к изменениям — автоматическая корректировка маршрутов при расширении сети или обновлении оборудования.

Настройка протокола OSPF на BR-RTR

```
GNU pano 7.2. /etc/frr/frr.conf
frr defaults traditional
hostname BR-R
log file zowrlog/frr/frr.log
no ip forwarding
no ipof orwarding
!
interface tunl
no ip ospf passive
exit
!
frouter ospf
passive-interface default
network 172.16.8.0.26 area 8
network 172.16.8.0.28 area 8
network 172.16.8.0.28 area 8
network 172.16.8.0.28 area 8
exit
!

G Help
Urite Dut
Where Is
Cut
T Execute
C Location
Undo
Exit

Read 22 lines

G Help
O Urite Dut
Read 22 lines

G Help
O Urite But
Read File
Replace
U Paste
O Justify
Go To Line
Redo
```

Настройка протокола OSPF на HQ-RTR

```
GNU nano 7.2

frr version 8.5.1

frr defaults traditional hostname HQ-R log file vuarylog/frr/frr.log no ip forwarding no ipv6 forwarding interface tun1 no ip ospf passive exit !

router ospf passive-interface default network 172.16.8.0/24 area 8 network 172.16.8.0/28 area 8 network 172.16.8.0/24 area 8 network 172.16.8.0/24 area 8 exit !

Read 19 lines | K Cut | K Execute | C Location | T-U Undo | C Cut | C Cu
```

4. Настройка динамической адресации

Настройка протокола DHCP на HQ-RTR

```
# Sample configuration file for ISC dhopd

# Sample configuration file for ISC dhopd

# option definitions common to all supported networks...
option domain-name "au-team.ipro";
option domain-name "au-team.ipro";
option domain-name-servers 172.16.0.2;

default-lease-time 6000;
max-lease-time 72000;
authoritative;

# Use this to emble / disable dynamic dns updates globally.
## ddns-update-style none;

# If this DHCP server is the official DHCP server for the local
## network, the authoritative directive should be uncommented.
## authoritative;

# Use this to send dhop log messages to a different log file (you also
## have to hack syslog.comf to complete the redirection).
log-facility local?;

# No service will be given on this subnet, but declaring it helps the
## DHCP server to understand the network topology.

subnet 10.152.167.0 netmask 255.255.255.8 {
}

# This is a very basic subnet declaration.

subnet 172.16.0.0 netmask 255.255.255.254 {
    range 172.16.0.1 netmask 255.255.255.255.224 {
    range 172.16.0.3 172.16.0.1;
}

## This is a very basic subnet declaration.

## This is
```

5. Создание и настройка файлового хранилища

На сервере HQ-SRV реализован массив RAID 5 уровня, объединяющий три накопителя емкостью по 1 ГБ каждый. Выбор данной конфигурации обусловлен оптимальным сочетанием производительности и

отказоустойчивости — технология RAID 5 обеспечивает защиту данных за счет распределенной чётности, сохраняя высокую скорость операций чтения. Для упрощения работы с массивом выполнена настройка автоматического подключения в системную директорию /raid5, что гарантирует бесперебойный доступ к хранилищу при перезагрузках.

6. Настройка moodle

На сервере HQ-SRV развернута платформа Moodle для управления образовательным процессом, интегрированная с СУБД MariaDB. Конфигурация включает:

- о База данных: moodledb
- Учетные записи: Пользователи: moodle (для работы системы), admin (административный доступ)

Аутентификация: пароль P@ssw0rd

Такая связка обеспечивает стабильную работу Moodle с поддержкой транзакций, резервного копирования и управления правами доступа через MariaDB.

7. Установка браузера

Для установки браузеры был выбран Yandex браузер так как он соответствует требованиям задания

8. Настройка туннеля до уровня обеспечивающего шифрование трафика

Для повышения защищенности соединения между серверами HQ-SRV и BR-SRV базовый IP-туннель был усовершенствован. Внедрение протокола IP-sec обеспечило сквозное шифрование трафика с использованием алгоритма AES-256, обеспечивающего криптостойкость за счет 256-битных ключей. Аутентификация реализована через Pre-Shared Key (PSK) — метод, упрощающий развертывание, но менее надежный по сравнению с сертификатной аутентификацией.

Ключевые изменения:

Переход от незащищенного туннеля к шифрованному каналу передачи данных;

Оптимальный баланс между безопасностью (AES-256) и простотой конфигурации (PSK);

Совместимость с существующей инфраструктурой без необходимости внедрения РКІ.

Данный подход минимизирует риски перехвата данных, сохраняя при этом умеренные требования к ресурсам настройки.

9. Выбор системы мониторинга и настройка этой системы

В качестве решения для мониторинга выбран Zabbix, что обусловлено следующими факторами:

- 1. Адаптивность и масштабируемость гибкая настройка под задачи инфраструктуры и возможность расширения функционала по мере роста сети.
- 2. Готовые инструменты для мониторинга предустановленные шаблоны для отслеживания Windows, Linux, сетевого оборудования и IoT-устройств.
- 3. Многообразие оповещений поддержка email, SMS, мессенджеров (Telegram, Slack) и интеграция с системами инцидентменеджмента.
- 4. Открытая лицензия доступ к исходному коду позволяет кастомизировать систему, проводить аудит безопасности и снижать зависимость от вендоров.

Данные преимущества делают Zabbix универсальным выбором для комплексного мониторинга гетерогенных сред с требованиями к гибкости и прозрачности решений.