**Enabling Surgical** Coaching through **Artificial** Intelligence: Enhancing Mastery with Tool-**Tissue** Interaction Feedback

List of deliverables needed from Lorenz

September 24th, 2025



## **Project Overview**

<u>Problem:</u> Surgical complications are common

Current Limitation: Traditional coaching improves skills, but time and availability are limited

Research Question: Can an AI-based algorithms leverage <u>tool-tissue interaction</u> data to provide automated performance analysis and deliver tailored feedback?



### **Next Steps in Evaluating Surgical Performance**

- Go zone evaluates where is safe based on anatomical structure
- Need to know <u>where</u> surgeon interacts with tissue

#### Objective:

**Phase I-** Develop a model that can detect Tool- Tissue Interactions (TTI) **Phase II-** Showing Clinical Utility of the TTI model: External Validation on the an external dataset

<u>Definition of TTI:</u> Every time a surgical tool comes in physical contact with the tissue

Video 1. Go No Go Net in action



**Video 2.** An example of multiple tool-tissue interaction







## Phase I- TTI Model Development

- Verify the metrics reported from the TTI model (accuracy, precision and so on)
- Compute metrics for the two other tasks (interaction type and tool type)

Estimated time of completion: October 6th





# **Phase II-** Showing Clinical Utility of the TTI model: External Validation on the Safe Lap Chole+ BDI Dataset

- 1. IoU/ Dice Score Calculation
- 2. TTI & GNG Overlap Analysis
- Frame level ----> Interaction Level
- 4. Pixel Level Analysis
- 5. Q10 Extracted Frames





## **Project i- IoU/ Dice Score Calculations**

Dataset used: 11 Safe Lap Chol+ 6 annotated BDI videos

Comparison Groups: Comparing TTI model predictions (segmentations) with bounding box annotations I did

Estimated time of completion: September 28





## Project ii- TTI & GNG overlap analysis

<u>Main Research Question:</u> Can an AI model detect differences in tool–tissue interactions between go and no-go zones across safe and BDI videos?

Dataset used: 11 Safe Lap Choles +11 BDI videos

Models used: TTI Model and GNGNet (SegFormer) overlap

Step 1: Calculate the overlap between TTIs in a specific zone

Step 2: Classify TTIs as either in Go/No Go or (unclear zone) and calculate and average for each video

Deliverable 1: There is a difference between safe and BDI videos in TTI and GNG overlap Conclusion (hopefully):

|             | · · · | Average proportion of TTIs in No Go zone |
|-------------|-------|------------------------------------------|
| Safe Videos | High  | Low                                      |
| BDI         | Low   | High                                     |

Estimated time of completion: October 3rd





## Project ii- TTI & GNG overlap analysis

#### **Graphs/visualizations:**



Unclear Proportion NG Proportion of No Go zone Χ Proportion Proportion go zone go zone

X= video name

Estimated time of completion: October 3rd





#### Project iii- Shifting from frame to interaction level analysis

<u>Main Research Question:</u> What minimum proportion of frames must be detected within an interaction for it to be classified as a tool–tissue interaction?

Dataset used: 11 Safe Lap Choles

#### How was the dataset annotated:

- Beginning/ end of interactions + Beginning/ end of no interactions [Temporal Determination]
- Interaction site (bounding box)
- Tool type performing the interaction/ no interaction

#### Analysis needed:

- Use PR curve to calculate the threshold as to what % of frames need to be detected for that action to be classified as an interaction detected (reducing FNs is more important than FPs)
- Perform the analysis (regardless of interaction type/tool type) at the beginning and then add tool type and interaction type
  - Deliverable 1: Define a detected interaction as x% of frames detected within that interaction
  - Deliverable 2: Create a normal distribution curve of the interactions detected at different thresholds to justify the threshold we choose for our paper

Estimated Time of Completion= October 3rd





## **Project iv- Pixel Level Analysis**

Dataset used: 11 Safe Lap Chol+ 6 annotated BDI videos

Comparison Groups: Comparing TTI model predictions (segmentations) with bounding box annotation

#### Analysis:

- Look at a single frame where there was a Ground Truth TTI and AITTI and create the following table for me

| AI-predicted Pixel |        |    |        |
|--------------------|--------|----|--------|
|                    |        | ТП | No TTI |
| Ground Truth Pixel | πι     |    |        |
|                    | No TTI |    |        |



PR Curve

Estimated time of completion: October 3rd



#### **Project v- Q10 extracted frames**

A) ASSUMING THE GNGNet works well

<u>Main Research Question:</u> Can AI (TTI + GNGNet) predict safe and unsafe interactions in a manner comparable to human ground-truth annotations?

Run TTI + GNGNet on extracted frames from Master List and automatically assign TTIs to either Go/No-Go Zone

#### Next Steps:

- What percentage overlap between tool–tissue interaction (TTI) and the Go/No-Go zone is required for a TTI to be classified within that respective zone? (Either TTI in Go or TTI in No-Go zone, no TTI in background)

Estimated Time of Completion= October 3rd





## Once Phase I and Phase II metrics are computed

• Visualize the annotations and how many retract and grab were annotated, what tools were annotated and so on (Ziyad to send Lorenz JSON files of the ground truth annotations)





## End result: Application of TTI+ GNGNet Model to Safe Lap Chole Videos (do the same for BDI videos



**Figure x.** Average percentage of TTI occurrence in Go, No-Go, Background zones in eleven safe lap chole videos Compare them with BDI videos (hopefully there is some significance)



