Σπυρος Φρονιμός - Μαθηματικός

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΟΡΙΣΜΟΙ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ${\bf 26~A\pi \rho \iota \lambda iov~2016}$

ΓΕΩΜΕΤΡΙΑ Β΄ ΛΥΚΕΙΟΥ

Μετρικές Σχέσεις

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΟΝ ΚΥΚΛΟ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΔΥΝΑΜΗ ΣΗΜΕΙΟΥ ΩΣ ΠΡΟΣ ΚΥΚΛΟ

Δύναμη ενός σημείου M ως προς ένα κύκλο (O,R) ονομάζεται η διαφορά

$$\Delta_{\scriptscriptstyle (O,R)}^{\scriptscriptstyle M}=\delta^2-R^2$$

όπου δ είναι η απόσταση του σημείου M από το κέντρο του κύκλου : $OM = \delta$. Συμβολίζεται με $\Delta_{(O,R)}^M$.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΤΕΜΝΟΥΣΕΣ ΚΥΚΛΟΥ

Έστω AB και $\Gamma\Delta$ δύο χορδές ενός κύκλου (O, ρ) . Αν M είναι το σημείο τομής αυτών ή των προεκτάσεών τους τότε τα γινόμενα των τμημάτων που ορίζει το σημείο τομής με τα άκρα κάθε χορδής είναι μεταξύ τους ίσα.

$$MA \cdot MB = M\Gamma \cdot M\Delta$$

ΘΕΩΡΗΜΑ 2: ΑΚΡΑ ΕΓΓΡΑΨΙΜΟΥ ΤΕΤΡΑΠΛΕΥΡΟΥ

Έστω δύο ευθύγραμμα τμήματα AB και $\Gamma\Delta$ και M το σημείο τομής αυτών ή των προεκτάσεων τους. Αν τα γινόμενα των τμημάτων που ορίζει το σημείο τομής με τα άκρα κάθε τμήματος να είναι ίσα τότε το τετράπλευρο $AB\Gamma\Delta$ είναι εγγράψιμο.

$$MA \cdot MB = M\Gamma \cdot M\Delta \Rightarrow AB\Gamma\Delta$$
 εγγράψιμο

ΘΕΩΡΗΜΑ 3: ΤΕΜΝΟΥΣΑ ΚΑΙ ΕΦΑΠΤΟΜΕΝΗ

Έστω AB μια χορδή ενός κύκλου (O,ρ) και Γ ένα σημείο του κύκλου. Αν M είναι ένα εξωτερικό σημείο του κύκλου τότε το γινόμενο των τμημάτων που ορίζει το σημείο τομής με τα άκρα της χορδής είναι ίσο με το τετράγωνο του εφαπτόμενου τμήματος.

$$M\Gamma^2 = MA \cdot MB$$

ΘΕΩΡΗΜΑ 4: ΔΥΝΑΜΗ ΣΗΜΕΙΟΥ ΩΣ ΠΡΟΣ ΚΥΚΛΟ

Έστω ένας κύκλος (O, R) και M ένα σημείο του επιπέδου του κύκλου.

i. Η δύναμη $\Delta^M_{(O,R)}$ του σημείου M ως προς τον κύκλο είναι θετική αν και μόνο αν το σημείο είναι εξωτερικό του κύκλου.

$$\Delta_{(O,R)}^{M} > 0 \Leftrightarrow \delta > R$$

ii. Η δύναμη $\Delta^M_{(O,R)}$ του σημείου M ως προς τον κύκλο είναι μηδενική αν και μόνο αν το σημείο είναι πάνω στον κύκλο.

$$\Delta^{M}_{\scriptscriptstyle (O,R)}=0 \Leftrightarrow \delta=R$$

iii. Η δύναμη $\Delta^M_{(O,R)}$ του σημείου M ως προς τον κύκλο είναι αρνητική αν και μόνο αν το σημείο είναι εσωτερικό του κύκλου.

$$\Delta_{(O,R)}^{M} < 0 \Leftrightarrow \delta < R$$