Math 100b Winter 2025 Homework 8

Due 3/14/2025 at 5pm on Gradescope

Reading

Reading: Artin Chapter 4

Assigned Problems

1. Let V be a vector space over the field F and let X be a set of vectors in V which is linearly independent over F. Show that X can be extended to a basis of V, that is, there is a basis of V which contains X.

(Hint: use Zorn's Lemma in a similar way as we did in class to prove that every vector space has a basis. How do you need to change the poset that you apply Zorn's Lemma to?)

- 2. (a). Suppose that A and B are $n \times n$ matrices over a field F and that at least one of them is invertible. Prove that AB and BA are similar matrices; that is, there is an invertible matrix P such that $P^{-1}(AB)P = BA$.
 - (b). Show that AB and BA are not necessarily similar if A and B are both singular.

In the next few problems we will use the following definition:

Definition 0.1 For any vector space V over F, if V_1 and V_2 are subspaces of V then we write $V = V_1 \oplus V_2$, and say that V is the internal direct sum of the subpraces V_1 and V_2 , if every $v \in V$ can be written as $v = v_1 + v_2$ for unique vectors $v_1 \in V_1$ and $v_2 \in V_2$.

- 3. Let $\phi: V \to V$ be a linear transformation of a vector space V of finite dimension n. Suppose that ϕ is idempotent; that is, $\phi^2 = \phi$ (where $\phi^2 = \phi \circ \phi: V \to V$).
 - (a). Show that $V = (\ker \phi) \oplus (\operatorname{im} \phi)$.
- (b). Show that there is a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ of V and a number $0 \leq k \leq n$ such that $\phi(v_i) = v_i$ for $i \leq k$ and $\phi(v_i) = 0$ for i > k. In other words, ϕ is just a projection of V onto the

subspace spanned by the first k vectors in the basis. Calculate $M_{\mathcal{B}}(\phi)$, the matrix of ϕ with respect to this basis.

- 4. Let $\phi: V \to V$ be a linear transformation of a vector space of finite dimension n over a field F in which 2 = 1 + 1 is a unit. Suppose that $\phi^2 = \phi \circ \phi$ is the identity map.
- (a). Prove that for any vector $v \in V$, either $v \phi(v)$ is an eigenvector with eigenvalue -1, or else it is 0.
- (b). Show that $V = V_1 \oplus V_{-1}$, where $V_a = \{v \in V | \phi(v) = av\}$ means the eigenspace of V associated to the value $a \in F$.
 - (c). Show that ϕ is diagonalizable: that is, there is a basis \mathcal{B} of V such that $M_{\mathcal{B}}(\phi)$ is diagonal.
- 5. Show that there is a linear transformation $\phi: V \to V$, where V is a vector space of dimension 2 over $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$, such that ϕ^2 is the identity map but ϕ is not diagonalizable. That is, there is no basis \mathcal{B} of V such that $M_{\mathcal{B}}(\phi)$ is diagonal.