

Contents

주제 선정

Crawling

```
7 for current in current_page: # 조건문이 참인 "동안" 실행
      print('#n{}월 경기부터 크롤링을 시작합니다.'.format(current))
      url="https://www.basketball-reference.com/leagues/NBA_2019_games-" + current + ".html"
      web=requests.get(url).content
      source = BeautifulSoup(web, 'html.parser')
      score = source.find_all('td', {'class' : 'right'})
      nbateamname=source.find_all('td', {'class' : 'left'})
       for urls in score:
          if urls["data-stat"].startswith("visitor_pts"):
              visitor_team_points.append(urls.get_text())
       for urls in score:
           if urls["data-stat"].startswith("home_pts"):
              home_team_points.append(urls.get_text())
       for urls in nbateamname:
          if urls["data-stat"].startswith("visitor_team_name"):
              visitor_teamname.append(urls.get_text())
       for urls in nbateamname:
           if urls["data-stat"].startswith("home_team_name"):
              home_teamname.append(urls.get_text())
```


The end

Kaggle – NBA Team Game Stat from 2014 to 2018

데이터 전처리

Opp.FieldGoals

Assists

Opp.3PointShotsAttempted

Turnovers

총 41개 Columns

Opp.FreeThrows
Opp.OffRebounds

TotalFouls

Opp.Turnovers

6개 Columns

데이터 전처리 code

```
# extract certain date that i need
data['new dates'] = pd.to datetime(data['Date'])
start date = '10/01/2017'
end date = '04/30/2018'
mask = (data['new dates'] > start date) & (data['new dates'] <= end date)
data = data.loc[mask]
#change the name of team (str type) to int type
da = [data]
team titles = {"ATL": 1, "BOS": 2, "BRK": 3, "CHO": 4, "CHI": 5,
              "CLE": 6, "DAL": 7, "DEN": 8, "DET": 9, "GSW": 10,
              "HOU": 11, "IND": 12, "LAC": 13, "LAL": 14, "MEM": 15,
              "MIA": 16, "MIL": 17, "MIN": 18, "NOP": 19, "NYK" :20,
              "OKC": 21, "ORL": 22, "PHI": 23, "PHO": 24, "POR": 25,
              "SAC": 26, "SAS": 27, "TOR": 28, "UTA": 29, "WAS": 30}
for data in da:
    data['Team'] = data['Team'].map(team titles)
    data['Opponent'] = data['Opponent'].map(team titles)
```

데이터 전처리 code

```
#if the game was on the home ground -> '1', away -> '0'
#win -> '1' | loss -> '0'
data['int home'] = data['Home'].apply(lambda x : '1' if x == 'Home' else '0')
data['int win loss'] = data['WINorLOSS'].apply(lambda x : '1' if x == 'W' else '0')
# delete some rows that seems useless
data.drop(['Date', 'Game', 'new dates', 'Home', 'WINorLOSS', 'Unnamed: 0'], axis = 1, inplace = True)
# separate the data, featrues and target
x data = new raw.copy()
y data = new raw[['int win loss']].copy()
del x data['int win loss']
x data['int home'] = x data['int home'].apply(pd.to numeric, errors='coerce')
y data['int win loss'] = y data['int win loss'].apply(pd.to numeric, errors='coerce')
data.head()
```


전처리 한 data

	Team	Opponent	FieldGoals.	FreeThrowsAttempted	FreeThrows.	TotalRebounds	Turnovers	Opp.FieldGoals.	int_home		
0	1	26	0.507	31	0.774	37	16	0.475	0		
1	1	28	0.520	29	0.655	45	21	0.402	1		
2	1	15	0.500	26	0.769	46	18	0.378	0		
3	1	4	0.519	18	0.778	50	16	0.330	1		
4	1	12	0.417	19	0.789	37	18	0.476	0		
1915	30	27	0.541	18	0.778	50	16	0.448	1		
1916	30	9	0.416	15	0.800	43	15	0.488	0		
1917	30	4	0.455	12	0.750	44	12	0.455	1		
1918	30	5	0.457	12	1.000	37	16	0.524	0		
1919	30	11	0.528	23	0.696	36	17	0.512	0		
1920 r	ows ×	9 columns									


```
Epoch 17/20
8.2585 - val categorical accuracy: 0.4876
Epoch 18/20
8.2585 - val categorical accuracy: 0.4876
Epoch 19/20
8.2585 - val categorical accuracy: 0.4876
Epoch 20/20
8.2585 - val categorical accuracy: 0.4876
result = model.evaluate(test data, test label, batch size=100)
print('loss (cross-entropy) :', result[0])
print('test accuracy :', result[1])
loss (cross-entropy): 7.779220008187824
test accuracy : 0.5173611
```


training with 1 team

	Team	Game	Date	Home	Opponent	WINorLOSS	TeamPoints	OpponentPoints	FieldGoals	FieldGoalsAttempted		
5460	ATL	54	10/02/2017	Away	SAC	L	107	108	36	71		
6560	ATL	65	10/03/2017	Home	TOR	W	105	99	39	75		
6660	ATL	66	11/03/2017	Away	MEM	W	107	90	36	72		
8161	ATL	81	11/04/2017	Home	СНО	W	103	76	41	79		
8260	ATL	82	12/04/2017	Away	IND	L	86	104	30	72	acy:	0.444
7590	ATL	75	28/03/2018	Away	MIN	t .	114	126	AT	77		
7690	ATL	76	30/03/2018	Home	PHI	t .	91	101	36	101		
7790	ATL	77	01/04/2018	Home	ORL	W	94	88	41	85		
7890	ATL	78	03/04/2018	Away	MIA	<u></u>	98	101	37	88		
7990	ATL	79	04/04/2018	Home	MIA	L	86	115	33	90		
Epoci 36/3	s × 41 (h 15/15 6 [====== y: 0,444			:===] - 0:	s 970us/sample	e – loss: 0,6916	i – categorical_	accuracy: 0,5000 - v	/al_loss: 0,97	86 - val_categorical_acc		(

데이터 전처리

```
del data['new_dates']
del data['Unnamed: 0']
del data['Date']
del data['Game']
                               Data columns (total 36 columns)
del data['TeamPoints']
del data['OpponentPoints']
data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1920 entries, 4973 to 9835
Data columns (total 36 columns):
```

데이터 전처리

```
target_col=['FieldGoals', 'FieldGoalsAttempted', 'FieldGoals.'
                 , 'X3PointShots', 'X3PointShotsAttempted', 'X3PointShots.', 'FreeThrows',
                 'FreeThrowsAttempted', 'FreeThrows.', 'OffRebounds',
                 'TotalRebounds', 'Assists', 'Steals', 'Blocks', 'Turnovers', 'TotalFouls',
                'Opp.FieldGoals', 'Opp.FieldGoalsAttempted', 'Opp.FieldGoals.', 'Opp.3PointShots',
                 'Opp.3PointShotsAttempted', 'Opp.3PointShots.', 'Opp.FreeThrows',
                 'Opp.FreeThrowsAttempted',
                'Opp.OffRebounds', 'Opp.TotalRebounds', 'Opp.Assists', 'Opp.Steals', 'Opp.Blocks',
                'Opp.Turnovers', 'Opp.TotalFouls']
weight col = data[target col].max()
weight col
                             58.000
FieldGoals
FieldGoalsAttempted
                            113.000
FieldGoals.
                              0.667
X3PointShots
                             24.000
X3PointShotsAttempted
                             57.000
                              0.714
X3PointShots.
FreeThrows
                             41.000
FreeThrowsAttempted
                             64.000
                             1.000
FreeThrows.
OffRebounds
                             23.000
                             68.000
TotalRebounds
Assists
                             40.000
Steals
                             17.000
```

Heatmap


```
from sklearn import model_selection

train_data, test_data, train_label, test_label = model_selection.train_test_split(x_data, y_data, test_size=0.3, random

print(train_data.shape)

print(test_data.shape)

print(train_label.shape)

print(test_label.shape)
```



```
model = models.Sequential()
model.add(layers.Dense(input dim=31, units=128, activation=None, kernel initializer=initializers.he uniform()))
model.add(layers.BatchNormalization()) # Use this line as if needed
model.add(layers.Activation('elu')) # layers.ELU or layers.LeakyReLU
model.add(layers.Dense(units=256, activation=None, kernel initializer=initializers.he uniform()))
model.add(layers.BatchNormalization())
model.add(layers.Activation('elu'))
model.add(layers.Dense(units=256, activation=None, kernel initializer=initializers.he uniform()))
model.add(layers.BatchNormalization())
model.add(layers.Activation('elu'))
model.add(layers.Dropout(rate=0.3))
model.add(layers.Dense(units=128, activation=None, kernel initializer=initializers.he uniform()))
model.add(layers.BatchNormalization())
model.add(layers.Activation('elu'))
model.add(layers.Dense(units=2, activation='softmax')) # One-hot vector for 0 & 1
```



```
model.compile(optimizer=optimizers.Adam(),
       loss=losses.categorical crossentropy,
       metrics=[metrics.categorical accuracy])
history = model.fit(train data, train label, batch size=100, epochs=20, validation split=0.3)
Train on 940 samples, validate on 404 samples
Epoch 1/20
6024 - val categorical accuracy: 0.6262
Epoch 2/20
940/940 [============= ] - 0s 136us/sample - loss: 0.1535 - categorical accuracy: 0.9404 - val loss:
0.2604 - val categorical accuracy: 0.9183
Epoch 3/20
0.4208 - val categorical accuracy: 0.7921
Epoch 17/20
0.1610 - val categorical accuracy: 0.9381
Epoch 18/20
0.3097 - val categorical accuracy: 0.8713
Epoch 19/20
0.2219 - val categorical accuracy: 0.9233
Epoch 20/20
0.1117 - val categorical accuracy: 0.9530
```


test accuracy: 0.9496528

test accuracy: 0.9496528

Result

배운점 및 느낀점

데이터 전처리의 중요성

데이터 정규화가 결과에 미치는 영향 에 대해 다시 한 번 생각해 볼 수 있었음

데이터의 규모

무의미해 보이는 feature도 학습에 영향을 줌

