H11T1A3

a) Es sei $P(z):=\sum_{k=0}^n a_k z^k$ ein Polynom vom genauen Grad $n\geq 1$ und $m\in\{1,\dots,n\}.$ Für ein r>0 gelte

$$\sum_{k=0}^{n} |a_k| \cdot r^k < 2|a_m| \cdot r^m.$$

Zeige, dass P genau m Nullstellen in $U_r(0)$ und genau n-m Nullstellen in $\mathbb{C}\backslash \overline{U_r(0)}$ hat (jeweils mit Vielfachheiten gezählt). Belege durch ein Beispiel, dass dies im Allgemeinen falsch ist, wenn man nur $\sum_{k=0}^{n} |a_k| \cdot r^k \leq 2|a_m| \cdot r^m$ voraussetzt.

b) Zeige, dass

$$\int_{|z|=2} \frac{1}{z^5 + 12z^2 + i} dz = \int_{|z|=1} \frac{1}{z^5 + 12z^2 + i}$$

gilt. (Hinweis: Wende a) an.)

Zu a):

Man setzt $f(z) := 2a_m z^m$ und g(z) := P(z) - f(z). Um den Satz von Rouché anwenden zu können zeigt man nun die Ungleichung $|g(z)| < |f(z)| \, \forall z \in \partial U_r(0)$. Es gilt dann für alle $z \in \partial U_r(0)$:

$$|g(z)| = |P(z) - f(z)| = \left| -a_m z^m + \sum_{k=0, k \neq m}^n a_k z^k \right| \le$$

$$\le \sum_{k=0}^n |a_k| |z|^k < 2|a_m| r^m = |f(z)|$$

Mit dem Satz von Rouché folgt nun, dass f(z) und f(z) + g(z) = P(z) die selbe Anzahl an Nullstellen mit Vielfachheiten gezählt in $U_r(0)$ und keine Nullstellen auf $\partial U_r(0)$ haben. f(z) hat offensichtlich m Nullstellen mit Vielfachheiten gezählt in $U_r(0)$, also auch P(z). Nach dem Fundamentalsatz der Algebra hat P(z) in \mathbb{C} gradP = n Nullstellen mit Vielfachheit gezählt. Insgesamt folgt also die Aussage, dass P(z) in $\mathbb{C}\setminus \overline{U_r(0)}$ genau m-n Nullstellen mit Vielfachheiten gezählt hat. Ein Gegenbeispiel liefert $P(z) = z^2 + z$. Wähle m = 1 und r = 1, dann gilt $1^2 + 1 = 2 = 2 \cdot |1| \cdot 1$, aber P(z) hat Nullstelle -1 auf dem Rand von $U_1(0)$, ein Widerspruch.

Zu b):

Definiere $f(z) := z^5 + 12z^2 + i$ und betrachte die folgenden Fälle:

 $\underline{m=2}$ und $\underline{r=2}$: Es gilt dann die Ungleichung $2^5+12\cdot 2^2+|i|=81<96=2\cdot 12\cdot 2^2$. Mit a) hat f(z) in $U_2(0)$ genau 2 Nullstellen mit Vielfachheiten gezählt.

 $\underline{m=2 \text{ und } r=1}$: Es gilt dann die Ungleichung $1^5+12\cdot 1^2+|i|=14<24=2\cdot 12\cdot 1^2$. Wieder mit a) gilt dann, dass f(z) in $U_1(0)$ genau 2 Nullstellen mit Vielfachheiten gezählt hat.

Insgesamt hat f(z) in $U_2(0)\setminus U_1(0)$ keine Nullstellen. Nach dem allgemeinen Cauchyschen Integralsatz oder dem allgemeineren Residuensatz folgt dann die Gleichheit der gegebenen Integrale.