Лекция 25 от 21.03.2016

Жорданова нормальная форма

Пусть V — векторное пространство, φ — линейный оператор.

Теорема (Жорданова нормальная форма линейного оператора). Пусть $\chi_{\varphi}(t)$ разлагается на линейные множители. Тогда существует базис е в V такой, что

$$A(\varphi, e) = \begin{pmatrix} J_{\mu_1}^{n_1} & 0 & \dots & 0 \\ 0 & J_{\mu_2}^{n_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{\mu_p}^{n_p} \end{pmatrix} \quad (*)$$

Кроме того, матрица (*) определена однозначно с точностью до перестановок жордановых клеток.

Определение. *Матрица* (*) называется жордановой нормальной формой линейного оператора.

Следствие. В векторном пространстве над полем комплексных чисел для любого линейного оператора существует жорданова нормальная форма.

Схема построения:

Шаг 1: Разложим характеристический многочлен: $\chi_{\varphi}(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_s)^{k_s}$, где $\lambda_i \neq \lambda_j$ при $i \neq j$. Тогда, по доказанной на прошлой лекции теореме, $V = \bigoplus_{i=1}^s V^{\lambda_i}(\varphi)$, причем $\dim V^{\lambda_i}(\varphi) = k_i$.

Введем отображение $\psi_i = \varphi|_{V^{\lambda_i}(\varphi)} \in L(V^{\lambda_i}(\varphi))$. Тогда $\chi_{\psi_i}(t) = (t - \lambda_i)^{k_i}$. Также введем e_i — базис $V^{\lambda_i}(\varphi)$. Пусть $e = e_1 \cup \ldots \cup e_s$.

Тогда:

$$A(\varphi, e) = \begin{pmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_s \end{pmatrix}, \quad \text{где } A_i = A(\psi_i, e_i) \in M_{k_i}.$$

Шаг 2: Для любого i можно выбрать базис e_i так, чтобы

$$A_{i} = \begin{pmatrix} J_{\lambda_{i}}^{m_{i1}} & 0 & \dots & 0 \\ 0 & J_{\lambda_{i}}^{m_{i2}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{\lambda_{i}}^{m_{iq}} \end{pmatrix}, \quad m_{i1} + \dots + m_{iq} = k_{i}$$

Обратите внимание, что здесь все жордановы клетки отвечают одному значению λ_i , но при этом матрица A_i целиком жорданову клетку не образует, так как линия единиц над

диагональю из λ разрывна там, где состыковываются две клетки:

Тогда жорданова нормальная форма матрицы $A(\varphi, e)$ составляется из таких матриц A_i :

Шаг 3: Осталось только заметить, что для любого $i=1,\ldots,s$ число и порядок жордановых клеток однозначно определены из последовательности чисел:

$$\dim \ker(\psi_i - \lambda_i \mathrm{id})$$
$$\dim \ker(\psi_i - \lambda_i \mathrm{id})^2$$
$$\dots$$
$$\dim \ker(\psi_i - \lambda_i \mathrm{id})^{k_i}$$

Откуда и следует однозначность представления в виде жордановой нормальной формы (с точностью до перестановки жордановых клеток).

Линейные функции на векторном пространстве

Начнем с примера. Рассмотрим функцию $f: \mathbb{R}^n \to \mathbb{R}$.

Пусть $x_0 \in \mathbb{R}^n$ и $y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$ — приращение, то есть $x = x_0 + y$. Если функция достаточно

хорошая, то есть дважды дифференцируема в точке x, то

$$f(x) = f(x_0) + a_1 y_1 + \ldots + a_n y_n + b_{11} y_1^2 + \ldots + b_{ij} y_i y_j + \ldots + b_{nn} y_n^2 + \overline{o}(|y|^2).$$

Сумма $a_1y_1+\ldots+a_ny_n$ называется линейной формой, а сумма $b_{11}y_1^2+\ldots+b_{ij}y_iy_j+\ldots+b_{nn}y_n^2$ квадратичной формой.

Теперь дадим строгое определение:

Определение. Линейной функцией (формой, функционалом) на векторном пространстве V называется всякое линейное отображение $\sigma \colon V \to F$.

Обозначение: $V^* = \text{Hom}(V, F)$.

В этом определении F фактически рассматривается как одномерное векторного пространство.

Замечание. Функционалом принято называть, когда векторное пространство состоит из функций.

Пример.

1. $\alpha \colon \mathbb{R}^n \to \mathbb{R}; \ \varphi(v) = \langle v, e \rangle - c$ калярное произведение с некоторым фиксированным e.

2.
$$\alpha \colon \mathcal{F}(X,F) \to F; \ \alpha(f) = f(x_0). \ 3 \partial e c \circ \mathcal{F}(X,F) = \{f \colon X \to F\}.$$

3.
$$\alpha : C[a,b] \to \mathbb{R}; \ \alpha(f) = \int_a^b f(x) dx.$$

4.
$$\alpha: M_n(F) \to F; \ \alpha(X) = \operatorname{tr} A.$$

Определение. Пространство V^* называется сопряженным (двойственным) к V.

Пусть $e = (e_1, \dots, e_n)$ — базис V. Тогда он определяет изоморфизм $\varphi \colon V^* \to \operatorname{Mat}_{1 \times n},$ $\alpha \mapsto (\alpha_1, \dots, \alpha_n)$, где $\alpha_i = \varphi(e_i)$ и α — линейная функция. При этом, если $x = x_1e_1 + \dots + x_ne_n,$ то $\alpha(x) = (\alpha_1, \dots, \alpha_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Следствие. $\dim V^* = n$.

Пусть $e = (e_1, \dots, e_n)$ — базис V. Рассмотрим линейные функции $\varepsilon_1, \dots, \varepsilon_n$ такие, что $\varepsilon_i(e_j) = \delta_{ij}$, где $\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$ — символ Кронекера. То есть $\varepsilon_i = (\delta_{i1}, \dots, \delta_{ii}, \dots, \delta_{in}) = (0, \dots, 1, \dots, 0)$.

Предложение. $(\varepsilon_1, \ldots, \varepsilon_n) - \delta a s u c \ e \ V^*$.

Доказательство. Возьмем любое $\alpha \in V^*$. Положим $a_i = \alpha(e_i)$. Тогда $\alpha = a_1\varepsilon_1 + \ldots + a_n\varepsilon_n$. То есть мы получили, что через $(\varepsilon_1, \ldots, \varepsilon_n)$ действительно можно выразить любое α .

Теперь покажем, что $\varepsilon_1, \ldots, \varepsilon_n$ — линейно независимы. Пусть $a_1\varepsilon_1 + \ldots + a_n\varepsilon_n = 0$, $a_i \in F$. Применив эту функцию к e_i , получим, что $a_1\varepsilon_1(e_1) + \ldots + a_n\varepsilon_n(e_i) = 0$. Отсюда следует, что $a_i = 0$, а все остальные a_j , при $j \neq i$, равны нулю в силу определения ε_j . Итого, $a_1 = \ldots = a_n = 0$, что и доказывает линейную независимость.

Определение. $\textit{Basuc} (\varepsilon_1, \dots, \varepsilon_n)$ называется сопряженным κ \otimes базисом.

Упражнение. Всякий базис V^* сопряжен некоторому базису V.

Билинейные функции на векторном пространстве

Определение. Билинейной функцией (формой) на векторном пространстве V называется всякое билинейное отображение $\beta \colon V \times V \to F$. То есть это отображение, линейное по каждому аргументу:

1.
$$\beta(x_1 + x_2, y) = \beta(x_1, y) + \beta(x_2, y);$$

2.
$$\beta(\lambda x, y) = \lambda \beta(x, y);$$

3.
$$\beta(x, y_1 + y_2) = \beta(x, y_1) + \beta(x, y_2);$$

4.
$$\beta(x, \lambda y) = \lambda \beta(x, y)$$
.

Пример.

1.
$$V = \mathbb{R}^n, \ \beta(x,y) = \langle x,y \rangle$$
 — скалярное произведение.

2.
$$V = \mathbb{R}^2, \ \beta(x,y) = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}$$
.

3.
$$V = C[a, b], \ \beta(f, g) = \int_a^b f(x)g(x)dx.$$