1

CLAIMS

We claim:

- 1. A structure, comprising: 1 a plurality of cells of a cured resinous material, each cell being joined to at least one 2 3 other cell. 2. The structure according to claim 1, wherein the cells are solid. 1 3. The structure according to claim 1, wherein the cells are hollow. 1 4. The structure according to claim 1, wherein the hollow cells are filled with fluid. 1 5. The structure according to claim 1, wherein the fluid is a gas. 1 6. The structure according to claim 1, wherein the fluid is a liquid. 1 7. The structure according to claim 1, wherein the resinous material comprises an 1 2 epoxy curable with ultraviolet radiation. 8. The structure according to claim 4, wherein an interior of the cells has a fluid 1
 - 9. The structure according to claim 1, wherein the cells all have a similar size.

pressure substantially similar to an ambient pressure external to the cells.

10. The structure according to claim 1, wherein the cells are joined together to form a 1 2 wall of a tubular structure having continuous walls.

1	11. The structure according to claim 1, wherein the cells are arranged in a plurality of
2	parallel planes.

- 1 12. The structure according to claim 11, wherein cells in plurality of adjacent planes 2 are arranged in different positions orthogonal to the planes.
- 1 13. The structure according to claim 11, wherein the cells in a plurality of adjacent planes are aligned in a direction perpendicular to the planes.
- 1 14. The structure according to claim 11, wherein the number of cells in each plane 2 differs.
- 1 15. A method of forming a structure, the method comprising:
- 2 forming a plurality of individual cells each comprising a mass of uncured resin;
- 3 contacting some of the cells with others; and
- 4 curing the resin.
- 1 16. The method according to claim 15, further comprising:
- 2 injecting fluid into the masses of uncured resin to inflate the cells of resin.
- 1 17. The method according to claim 16, wherein the fluid is a liquid.
- 1 18. The method according to claim 16, wherein the fluid is a gas.
- 1 19. The method according to claim 17, further comprising:
- 2 solidifying the liquid after injecting it into the cells.

1	20. The method according to claim 15, wherein the structure is formed by sequentially
2	forming the cells in a plurality of planes and joining cells in each plane to cells in an adjacent
3	previously formed plane of cells.
1	21. The method according to claim 20, wherein the number of cells formed in each
2	plane differs.
1	22. The method according to claim 20, wherein cells in a plurality of adjacent planes
2	are arranged in different positions orthogonal to the planes.
1	23. The method according to claim 20, wherein cells in a plurality of adjacent planes
2	are aligned in a direction perpendicular to the planes.
1	24. The method according to claim 16, further comprising:
2	evacuating the fluid from the interior of the cells after curing the resin.
1	25. The method according to claim 24, further comprising:
2	injecting another fluid into the cells after evacuating the fluid utilized in inflating the
3	cells.
1	26. The method according to claim 25, wherein the fluid is a gas.
1	27. The method according to claim 25, wherein the fluid is a liquid.

28. The method according to claim 27, further comprising:

solidifying the liquid after injecting into the inflated cell.

1	29. The method according to claim 24, wherein the fluid is evacuated until an interior
2	of the cells has a gas pressure substantially similar to an ambient pressure external to the cells
1	30. The method according to claim 25, wherein the other fluid is injected into the cell-
2	until an interior of the cells has a gas pressure substantially similar to an ambient pressure
3	external to the cells.
1	31. The method according to claim 15, wherein forming the cells of uncured resin
2	comprises:
3	feeding the uncured resin through a plurality of resin flow apertures in a plate.
1	32. The method according to claim 15, wherein all of the cells are formed of a similar
2	size.
•	
1	33. The method according to claim 15, wherein curing the resin comprises exposing
2	the resin to at least one of ultraviolet radiation, heat, visible light, an electron beam, and
3	microwave radiation.
1	34. An apparatus for creating a structure comprising a plurality of cells of cured
2	resinous material, the apparatus comprising:
3	a plurality of resin flow apertures arranged to permit cells formed at one aperture to
-	
4	contact cells formed at directly adjacent apertures; and

a resin flow control member arranged in each resin flow aperture and operable to

control a flow of resin from the resin flow apertures.

1 2

1	35. The apparatus according to claim 34, further comprising:
2	a liquid injection port arranged in each resin flow aperture for injecting liquid into a
3	cell of uncured resin flowing out of the resin flow aperture to inflate the cell; and
4	a liquid flow control member operable to control a flow of liquid through the port.
1	36. The apparatus according to claim 35, wherein the liquid comprises gas.
1	37. The apparatus according to claim 35, wherein the liquid comprises a fluid.
1	38. The apparatus according to claim 34, further comprising:
2	a forming plate that the resin flow apertures are formed through.
1	39. The apparatus according to claim 34, further comprising:
2	at least one cell-retaining member for retaining the cells after curing of the resinous
3	material.
1	40. The apparatus according to claim 34, further comprising:
2	a source of energy for curing the uncured resin.
1	41. The apparatus according to claim 40, wherein the energy source comprises at least
2	one of a source of ultraviolet radiation, a heat source, a source of visible light, an electron

beam source, and a source of microwave radiation.

comprises a shutter valve.

42. The apparatus according to claim 34, wherein the resin flow control member

- 1 43. The apparatus according to claim 34, wherein a position of the resin flow 2 aperture is alterable.
- 1 44. The apparatus according to claim 34, wherein the apparatus form cells having a 2 substantially uniform size.
- 1 45. A structure comprising:
- a plurality of groups of cells of cured resinous material, each group of cells
- 3 being joined to at least one other group of cells and each cell being joined to at least one other
- 4 cell.
- 1 46. The structure according to claim 45, wherein the cells in each group are co-2 planar.
- 1 47. The structure according to claim 45, wherein the cells within each group have a 2 uniform size.
- 1 48. The structure according to claim 45, wherein the cells among the groups have a 2 uniform size.