#### Examination Control Division 2076 Chaitra

| Exam.       |     | Regulars   |        |
|-------------|-----|------------|--------|
| Level       | BE  | Full Marks | 80     |
| Programme   | BCE | Pass Marks | 32     |
| Year / Part | Ш/І | Time       | 3 hrs. |

[4]

[6]

[6]

[10]

[10]

#### Subject: - Theory of Structures II (CE 601)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Explain theorems on displacement with suitable illustration.

b) Find the reaction at support 'C' using Castigliano's theorem.

W KN/m

B

Lm

C

Lm

El Constant

c) In the given beam support 'B' is settled down by ' $\Delta$ ' units without rotation. Determine reactions at the supports.

A B B

2. a) Determine reactions at hinged support using Force method when support D settles vertically downward by 200/EI. Take EI to be constant.

B 2EI C 4 m EI 2 m

b) Find the member forces of given loaded truss for given external loadings and due to rise in temperature of all diagonal members by 20°C. Take AE = 5000KN for all members and coefficient of thermal expansion as 2.06 × 10<sup>-6</sup>/°C. Additionally, vertical members are 5mm too long.

30KN B C 4m D

3. Draw BMD of the given frame using Stiffness matrix method.



4. a) Derive expressions for Slope deflection equations for continuous beams.

[4]

[12]

b) Draw BMD of the given frame using moment distribution method.

[12]



5. a) Draw ILD for reaction moment at fixed support of the propped cantilever beam of span 10m. Take ordinate interval as 2m.

[6]

b) Find the plastic moment capacity of the frame shown in figure below.

[10]



\*\*\*

# Examination Control Division 2075 Chaitra

| Exam.       | Reg   | ular / Back 🌡 |        |
|-------------|-------|---------------|--------|
| Level       | BE    | Full Marks    | 80     |
| Programme   | BCE   | Pass Marks    | 32     |
| Year / Part | III/I | Time          | 3 hrs. |

[6]

[10]

[6]

[6]

## Subject: - Theory of Structure II (CE-601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Define degree of static and kinematic indeterminacies and give suitable examples related to pin jointed, rigid jointed and hybrid structures to explain the concept.
  - b) Determine reactions at hinged support in the frame shown in figure below using force method.



- 2. a) Determine end moments in a fixed beam of span L when left fixed support rotates clockwise by  $\theta_A$  radian. Take EI as constant.
  - b) Compute the final end moments for the following loaded frame using stiffness matrix method. [10]



3. a) Explain with a neat sketch the concept of distribution and carry over factors in moment distribution method and give example.

b) Determine the support reaction at support 'C' using Castigliano's theorem. EI=constant throughout.

[10]



4. a) Find the bending moment at a given section x-x of the following loaded two hinged parabolic arch due to given loading. Take EI<sub>C</sub>=10000KNm<sup>2</sup>.

[6]



b) Determine end moments and draw bending moment diagram by using slope deflection method.

[10]



5. a) Draw ILD for the support moment at A by computing the ordinates at 3 meter intervals.

[6]



b) Determine collapse load in the portal frame shown in figure below.

[10]



\*\*\*

### TRIBHUVAN UNIVERSITY

#### INSTITUTE OF ENGINEERING

### Examination Control Division 2076 Ashwin

| Exam.       | MARKET MARK | Back -     | Edition 4 and |
|-------------|-------------|------------|---------------|
| Level       | BE          | Full Marks | 80            |
| Programme   | BCE         | Pass Marks | 32            |
| Year / Part | III/I       | Time       | 3 hrs.        |

[6]

[10]

[6]

### Subject: - Theory of Structure II (CE 601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Enunciate Betti's law and Maxwell's Reciprocal theorem and explain their uses.
  - b) Compute the bar forces in the members BG, HC, and CF of the following loaded truss structures as shown. AE = constant.



- 2. a) Determine end moments in a fixed beam of span L when one of the supports settles down by Δ units. Take EI as the cross sectional stiffness of the beam.
  - b) Generate stiffness matrix of the structural system. [10]



- 3. a) Derive slope deflection equations for a beam of span L and cross sectional stiffness EI. Assume other data, if required.
  - b) Determine moment at fixed support and rotation at roller support of a propped cantilever beam of span 10m and loaded with uniformly distributed load 30kN/m on its whole span and a point load of 50 KN at the centre using castigliano's theorem. [10]
- 4. a) Write down the compatibility equation for two hinged parabolic arch due to external loads, variation in temperature, Rib shortening and yielding of supports. [6]
  - b) Draw BMD using slope deflection method. [10]



5. a) Draw Influence Line diagram for moment at support B of a propped cantilever beam as shown. Plot ordinates at 0.50 times span length.

[6]



b) Evaluate the collapse load for the given portal frame. Assume P=2ql.

[10]



•

The Charles Later to

# Examination Control Division 2074 Chaitra

| Exam.       |         | Regular    |        |
|-------------|---------|------------|--------|
| Level       | BE      | Full Marks | 80     |
| Programme   | BCE     | Pass Marks | 32     |
| Year / Part | III / I | Time       | 3 hrs. |

[6]

[6]

[10]

#### Subject: - Theory of Structures II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Define degree of static and kinematic indeterminacies. Give examples for each.

b) Analyze the structure given below using Force method. Draw Shear force and Bending Moment diagrams. [10]

120 k

a

21

31

18'

12'

12'

- 2. a) Derive the three moment equation and use it to solve single span fixed beam with uniform distributed load throughout the span.
  - b) Generate stiffness matrix for the frame shown in below figure and determine the end moments and horizontal reactions at supports due to the load given. [10]



3. a) Determine forces in all members of the truss shown in figure below using force method. AE for all members is constant.



b) Analyze the continuous beam shown in figure below by slope deflection method. Given  $I = 4*10^7 \text{ mm}^4$ , and  $E = 200 \text{ kN/mm}^2$  Draw Bending Moment diagram.

[8]

[4]

[8]

[4]



- 4. a) Explain with example how bending moment diagram is drawn for a statically indeterminate portal frame which undergoes settlement of one support.
  - b) Analyze the truss shown in figure below by the stiffness matrix method and find the vertical and horizontal displacement at node A.



5. a) Draw the influence line for bending moment at Section 5 of a two span continuous beam as shown in figure below. Given ordinate at 2m interval. [10]



b) Determine collapse load for the following beam.



c) Calculate the reaction at the prop of a propped cantilever with uniform distributed load throughout the span using Castigliano's theorem. [4]

\*\*

# Examination Control Division 2075 Ashwin

| Exam.       | Manage Palagra | Back       | ( <b>Ka</b> rolisa) |
|-------------|----------------|------------|---------------------|
| Level .     | BE             | Full Marks | 80                  |
| Programme   | BCE            | Pass Marks | 32                  |
| Year / Part | III / I        | Time       | 3 hrs.              |

[6]

[6]

### Subject: - Theory of Structures II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) What is structural idealization? Explain the steps involve during identification and formulation of problems in theory of structure.

  [3+3]
  - b) Determine the horizontal and vertical reaction at hinged support and also draw BMD using Force method. [10]



- 2. a) "Displacement method is unique in comparison to force method". Justify the statement giving suitable example.
  - b) Determine reaction at support B of the beam shown in figure below by castigliano's method.



- c) A portal frame of span 6m and height 5m is hinged supported at both ends. The beam of the frame carries a uniformly distributed gravity load of intensity 50 kN/m. Use force method to solve the frame considering the flexural stiffness EI to be constant. Determine the reactions at both supports.
- 3. a) Determine the forces in all members of the truss shown below, using force method. Take  $EA = 10^5 kN$ . [8]



b) Determine the collapse load Wc for the rectangular portal frame shown in figure below.

[8]



4. a) Draw ILD for S.F. at point C of the propped cantilever beam shown in figure below.

[6]



b) Analysis the continuous beam loaded as shown in figure below using slope deflection method considering settlement of support C by 4mm downward. Take  $EI = 1 \times 10^9 \text{ t mm}^2$ .

[10]



5. a) Generate stiffness matrix for the frame shown and determine the end reactions at the support.

[8]



b) Analyse the truss by displacement method. Take  $E = 2 \times 10^5$  MPa, A = 8 cm<sup>2</sup>

[8]



### Examination Control Division 2073 Chaitra

| Exam.       |         | Regular    |        |
|-------------|---------|------------|--------|
| Level       | BE      | Full Marks | 80     |
| Programme   | BCE     | Pass Marks | 32     |
| Year / Part | III / I | Time       | 3 hrs. |

### Subject: - Theory of Structure II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Define static and kinetic indeterminacies of a structural system. Explain with an example for each of indeterminacy what they are used for.
  - b) Calculate the force in the members of the truss loaded shown in figure below using "Force Method". Take the cross-sectional stiffness EA of the members to be constant. [10]



- 2. a) Derive moment expressions of slope-deflection method and explain whether the method used is force or displacement. Define with an example what is fixed end moment?
  - b) Analyse the beam shown in figure below by Moment Distribution Method. Also draw BMD indicating the salient points. Supports B sinks by 15 mm. [10]



Take EI = 10000 KN-m<sup>2</sup>, and is constant throughout.

P.T.OS

[6]

[6]

3. a) Differentiate between stiffness and flexibility. Also explain their relationships.

b) Generate stiffness matrix and solve for the final end moments and reactions for the following frame loaded as shown in figure below. Also draw the bending moment diagram.

[6+4+2]



4. a) Draw influence line diagram for the moment at the fixed support a propped cantilever beam of span L. Find and plot the ordinate at 0.2L interval. Use Mueller-Breslau principle.

[6]

b) Analyse the frame loaded shown in figure below using the method of consistent deformation. Draw BMD and SFD. Consider EI to the constant throughout the frame.

[10]



5. a) Derive three moment equation and explain its physical meaning. Explain with an example how the theorem can be used for a continuous beam with a clamed support at the end.

[6]

b) The portal frame shown in figure below is subjected to the factored loads. Determine the plastic moment of resistance. Also draw the statically admissible bending moment diagram.

50 KN

[10]



### 01' TRIBHUVAN UNIVERSITY

#### INSTITUTE OF ENGINEERING

#### Examination Control Division 2074 Ashwin

| Exam.       |     | Back       | 7      |
|-------------|-----|------------|--------|
| Level       | BE  | Full Marks | 80     |
| Programme   | BCE | Pass Marks | 32     |
| Year / Part | Ш/І | Time       | 3 hrs. |

[5]

[6]

[5]

[6]

[10]

[4]

#### Subject: - Theory of Structure II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Describe the degree of static indeterminacy and the degree of kinematic indeterminacy of a structural system with suitable expressions and examples.
  - b) Determine the moment at the fixed support of the following loaded beam using Castigliano's theorem. Take EI constant.



- c) Enuciate Mueller-Breslau principle of influence line and prove it with an example of a continuous beam.
- 2. a) Explain the principle of moment distribution method with a simple example.
  - b) A portal frame of span 4 m and height 4 m is fixed at both supports. The beam of the frame carries a uniform distributed gravity load of intensity 30 KN/m. Use Force method to solve the frame considering the cross-sectional stiffness (EI) to be constant. Draw bending moment, shear force and normal thrust diagrams for the frame.
- 3. a) Analyse the continuous beam loaded as shown in figure below and draw the bending moment diagrams using slope-deflection method. Support B sinks by 19 mm. [12]



Take EI =  $10,000 \text{ KN-m}^2$ 

b) Define plastic hinge. Also compare plastic and elastic hinges of a structural system.

[4]

b) Analyse the truss shown in figure below using "Force Method". Take the cross-sectional stiffness EA of the members to be constant.

[12]



5. a) Generate stiffness matrix the frame loaded as shown in figure below. Also determine the end moments considering stiffness equations of each member.

[10]



b) Determine the collapse load, W<sub>p</sub>, for the rectangular portal frame loaded as shown in figure below.

[6]



# Examination Control Division 2072 Chaitra

| Exam.       | Call Control | Regular    |        |
|-------------|--------------|------------|--------|
| Level       | BE           | Full Marks | 80     |
| Programme   | BCE          | Pass Marks | 32     |
| Year / Part | III/I        | Time       | 3 hrs. |

### Subject: - Theory of Structure II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Draw influence diagram for vertical reaction at fixed support of a propped cantilever beam. Plot ordinates at 0.25 times span length.
  - b) Using Castigliano's theorem, find the deflection at point B of the beam shown in figure below. Take constant EI through the length. [12]



- 2. a) State and proof Maxwell's Reciprocal theorem.
  - b) Determine the bar forces and reactions that develop in the statically inderminate truss shown in figure below. [12]



-Cross sectional Area:
Member BD = 20 cm<sup>2</sup>
Other members = 15 cm<sup>2</sup>
-Young's modulus = 240×10<sup>6</sup> KN/m<sup>2</sup>

[4]

[4]

[3]

- 3. a) Define plastic moment and shape factor.
  - b) Determine the reactions at support E and A and draw bending moment diagram of the frame shown in figure below by using flexibility matrix method (force method) [13]



4. a) A propped cantilever beam of uniform Mp is loaded as shown in the figure below. Find the collapse load.

[4]



b) Analyse the frame shown in figure below by using stiffness matrix method and draw bending moment diagram.

[12]



5. a) Define plastic hinge and explain how its length is determined.

[4]

b) Analysis the beam loaded shown in the figure below by slope deflection method. Also draw bending moment diagram (BMD)

50 KN

30 KN

[12]



\*\*\*

# on tribhuvan university INSTITUTE OF ENGINEERING

#### Examination Control Division 2073 Shrawan

| Exam.       | New Back (2 | 066 & Later | Batch) |
|-------------|-------------|-------------|--------|
| Level       | BE          |             | 80     |
| Programme   | BCE         | Pass Marks  | 32     |
| Year / Part | ш/і         | Time        | 3 hrs. |

### Subject: - Theory of Structure II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Draw influence line diagram for moment at section x-x of the continuous beam shown in figure below. Find the ordinates at 2 m intervals.



b) Determine slope at A and deflections at D of the beam shown in figure below using castigliano's theorem.



2. a) Define and explain the following terms:

[5]

[12]

[10]

[5]

- i) Primary structure
- ii) Redundant force
- iii) Flexibility coefficient
- iv) Stiffness coefficient
- v) Kinematic indeterminacy
- b) Determine the forces in all members of the truss shown in figure below using force method.



AE is constant for all members

[6]

[7]



- b) Derive the expression of three moment theorem for continuous beam and explain its physical meaning.
- 4. a) Using flexibility matrix method, determine the reactions at support D of the frame loaded as shown in figure below. Also draw SFD and BMD. Take EI = constant.



b) Analyse the continuous beam shown in figure below using slope deflection method. [10]



- 5. a) Derive the slope deflection equations.
  - b) Using stiffness matrix method, draw bending moment diagram for the frame shown in figure below. Take constant EI. [10]



### **Examination Control Division** 2072 Kartik

|               |       | Back (2066 & Later | Batch) |
|---------------|-------|--------------------|--------|
| Set There are | BE    | Full Marks         | 80     |
| Level         |       | Pass Marks         | 32     |
| Programme     | m / I | Time               | 3 hrs. |
| Year / Part   | 111/1 |                    |        |

[6]

[6]

# Subject: - Theory of Structure II (CE601)

Candidates are required to give their answers in their own words as far as practicable.

Attempt All questions.

The figures in the margin indicate Full Marks.

Assume suitable data if necessary.

1. a) Draw influence line diagram for shear at the section x-x for the two-span continuous beam shown in the figure below. Draw the ordinate at 2 m interval.



b) A prismatic continuous beam ABCD is fixed at A and simply supported at B, C and D. It is subjected to factored loads as shown. Find the collapse mechanisms and draw [10] BMD.



2. a) Using Castigliano's theorem, determine the moment at the fixed support A of the propped cantilever beam loaded as shown in figure below.



b) Analyse the frame shown in figure below by using force method and draw bending [10] moment diagram. 60 KN/m



Analyse the frame shown in figure using stiffness matrix method. Consider only flexural deformations.



b) List the differences between force and displacement methods. Draw a neat sketch of a system and explain.

a) Determine the support moments and draw bending moment diagram of the continuous beam shown in figure below by using three moment equation.



c) Determine the forces in all members of the truss by using force method. AE is constant for all members.



b) Write down the boundary conditions for a single span beam fixed at both ends.

5. Analyse the frame shown in figure below by using moment distribution method.



[6]

[7]

[10]

[7]

[2]

[15]

### Examination Control Division 2071 Chaitra

| Exam.       |          | Regular    |        |
|-------------|----------|------------|--------|
| Level       | BE       | Full Marks | 80     |
| Programme   | BCE      | Pass Marks | 32     |
| Year / Part | III / II | Time       | 3 hrs. |

### Subject: - Theory of Structure II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Draw influence line diagram for moment at support 2 of the continuous beam shown in figure below by using focal point method. Find ordinates at 4 m interval, in span 1-2 and at 2m interval on span 2-3



b) Find the collapse load for portal frame shown in figure below.



2. a) Determine the moment at fixed support of the propped cantilever beam using Castigliano's method. [6]



[10]



b) Generate flexibility matrix to determine the reactions at support D for the frame loaded shown in the figure below. Also determine the reactions at support D and draw bending moment diagram. Show all the steps. [10]



3. a) Analyse the frame shown in figure below by using stiffness matrix method and draw bending moment diagram. [10]



- b) List the properties of stiffness and flexibility matrices for a given system. Draw a neat sketch of a system and explain. [6]
- 4. a) Using the consistent deformation method analyse the frame shown in figure and draw bending moment, shear force and normal thrust diagram. [15]



b) Draw a propped cantilever and write down its boundary conditions.

5. A continuous beam is shown in figure support 'B' sinks by 10mm down and 'C' rises by 20 mm up during loads. Analyse the given beam using slope deflection method and also draw bending moment diagram and show deflected shape. [15]

 $E = 200*10^6 \, KN \, / \, m^2$  and  $I = 80*10^{-6} \, m^4$ 



# Examination Control Division 2071 Shawan

| Exam.       | New Back (2 | 066 & Later | Batch) |
|-------------|-------------|-------------|--------|
| Level       | BE          | Full Marks  | 80     |
| Programme   | BCE         | Pass Marks  | 32     |
| Year / Part | III / I     | Time        | 3 hrs. |

#### Subject: - Theory of Structure II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Obtain the degree of static and kinematic indeterminacies for the given structures.







b) Determine reaction at B of the propped cantilever beam shown in figure below using Castigliano's theorem. Also draw bending moment diagram.

[10]



2. a) Explain why flexibility method is called a Force Method. using Force method determine the reactions in the continuous beam shown in figure below, if support B settles 18 mm and support C settles 12 mm. Given EI is constant.  $E = 232 \text{ KN/mm}^2$ , and  $I = 112.5 \times 10^6 \text{mm}^4$ .

[3+7]



b) Explain the physical meaning of compatibility condition and derive the equation for it. A portal frame with hinged supports is subjected to a temperature variation as shown in figure below. Determine flexibility coefficients and calculate redundant force with the help of compatibility equation. Take  $\alpha = 11 \times 10^{-6}/^{\circ}\text{C}$ ,  $E = 5000 \sqrt{f_{ck}}$ ,  $f_{ck} = 20$  MPa and constant flexural rigidity.

[15]





3 m

3. a) Generate stiffness matrix for the frame given below. Use the stiffness matrix generated to draw bending moment diagram. Take EI as constant for all members.





b) Analyse the frame shown in figure below by using moment distribution method. Draw bending moment diagram.





4. a) Explain influence line diagram as system specific diagram. Derive the expression of recurrent formula for focal point ratio considering two consecutive spans for loading on right spans.

[5]

b) For the given portal frame with same plastic moment capacity Mp for all members calculate the value of P at collapse.

[10]



#### Examination Control Division 2070 Chaitra

| Exam.       |         | Regular    |        |
|-------------|---------|------------|--------|
| Level       | BE      | Full Marks | 80     |
| Programme   | BCE     | Pass Marks | 32     |
| Year / Part | III / I | Time       | 3 hrs. |

[5]

[10]

## Subject: - Theory of Structure II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. a) Describe different types of indeterminacies of the structural system and their physical meanings.
  - b) Use castigliano's theorem to determine forces induced in each members of the square truss loaded as shown below.



2. a) Draw shear force and bending moment diagrams for the frame given below. Use force method. [15]



b) Determine the horizontal reaction in the two hinged parabolic arch shown figure below. Also determine the bending moment at C. (I = I<sub>c</sub> Secθ) [10]



Describe with example the principle of moment distribution. For the frame shown in figure below generate stiffness matrix that operates on displacements  $u_1$ ,  $v_1$ ,  $\theta_1$  and  $\theta_2$ . Both members are slender and have the same E, I, A and L. Express matrix coefficients in terms of L, a = AE/L and  $b = EI/L^3$ 





b) A jib-crane is carrying vertical load of 10KN at A as shown in figure below. Determine by matrix displacement method, the displacement of joint A and hence calculate the forces in members AB and AC. Take cross-sectional area of members AB and AC as  $10000 \text{mm}^2$  and  $20000 \text{mm}^2$  respectively and  $E = 200 \text{KN/mm}^2$ .

[10]



4. a) Draw influence line diagram for the shear at section 2-2 of the propped cantilever beam shown in figure below. Find the ordinates at 2 m interval.

[5]

[10]



b) Find the plastic moment capacity of the frame shown figure below during collapse.



# Examination Control Division 2069 Chaitra

| Exam.       |         | Regular    |        |
|-------------|---------|------------|--------|
| Level       | BE      | Full Marks | 80     |
| Programme   | BCE     | Pass Marks | 32     |
| Year / Part | III / I | Time       | 3 hrs. |

[5]

[10]

[7]

### Subject: - Theory of Structures II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- 1. a) What is structural idealization? Explain necessary and sufficient condition for stability of a truss.
  - b) Use Castigliano's theorem to find moment at point C of the propped cantilever beam loaded as shown in the figure below. Take EI to be constant.



- 2. a) Derive expressions for support moments of a single span fixed beam when one end of the beam rotates by an angle θ. Also determine the expressions for support moments of the same beam when one end of the beam settles down by Δ. Assume EI as the cross sectional stiffness and L the span.
  - b) Find out member forces in the truss shown in figure below using force method. The axial rigidity of all vertical and horizontal members in EA and that for all inclined member is 2EA.

    [18]



3. a) Derive three moment theorem for a continuous beam and explain its physical meaning.

[7]

b) Determine element stiffness matrices, deformations at joints and member forces. Also draw bending moment diagram, using stiffness matrix method.

[18]



4. Define and explain what is neutral point in an unloaded span of a continuous beam. Derive recurrent formula for its determination.

[5]

5. a) Enunciate the two basic theorems on methods of limit in plastic analysis.

[4]

b) A prismatic continuous beam ABCD is fixed at A and simply supported at B, C and D. It is subjected to factored loads as shown in figure below. Find collapse mechanism and draw BM diagram.

[6]



\*\*\*

# Examination Control Division 2070 Ashad

| in the same of | Exam.       | NOW BACK (2 | Control of the Control | Lateris e |
|----------------|-------------|-------------|------------------------|-----------|
| -              | Level       | BE          | Full Marks             | 80        |
| -              | Programme   | BCE         | Pass Marks             | 32        |
|                | Year / Part | III / I     | Time                   | 3 hrs.    |

[4]

[3+3]

[5]

[4]

[6]

[10]

### Subject: - Theory of Structures II (CE601)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- 1. a) Define degree of static and degree of kinematic indeterminacies with suitable examples.
  - b) Determine the external and internal degrees of static indeterminacy of the structure shown in figure below. Also determine the kinematic indeterminacy.



c) Determine the moment at the fixed end of a propped cantilever beam shown in figure below using Castigliane's theorem.



- 2. a) Define force method and primary structure.
  - b) Generate flexibility matrix for the coordinates shown in figure below.



c) Determine horizontal and vertical reactions at support D of the frame shown in figure below using force method.



Analyse the continuous beam shown in figure below by using three moment theorem.



Draw shear force and bending moment diagram.

d) Determine the force in member BF of the redundant truss shown in figure below. Cross section areas of each member in cm<sup>2</sup> are given in figure within brackets.



OR

Draw bending moment (BM) diagram for the two hinged parabolic arch shown  $I = I_C \operatorname{Sec}\theta$ . Calculate the BM value at an interval of 10 m.



3. a) Generate stiffness matrix for the frame shown in figure below.

[5]

[10]

[5]



b) Analyse the continuous beam and draw bending moment diagram which is loaded as shown in figure below. Use stiffness matrix method.



c) Use moment distribution method to analyse the frame loaded as shown in figure below. Also draw bending moment diagram.



4. Define focal point ratio and derive expression to determine left focal point ratio.

[7]

[10]

OR

Draw influence line diagram for reaction at support B of the propped cantilever beam shown in figure below. Determine ordinates at 3 m interval.



5. Determine the collapse load for the two span beam shown in figure below if the plastic moment capacity is MP.

[8]



\*\*\*

### **Examination Control Division** 2068 Chaitra

|   | r           |        |              |        | ď  |
|---|-------------|--------|--------------|--------|----|
|   | Exam.       |        | Recommendada |        | į. |
| • | Level       | BE     | Full Marks   | 80     | -  |
|   | Programme   | BCE    | Pass Marks   | 32     |    |
| - | Year / Part | III /I | Time         | 3 hrs. |    |
|   |             |        |              |        | 1  |

[16]

## Subject: - Theory of Structure II (CE 601)

Candidates are required to give their answers in their own words as far as practicable.

Attempt any Five questions.

The figures in the margin indicate Full Marks.

✓ : Assume suitable data if necessary.

1. a) Explain with a simple example the steps to follow in solving a frame using displacement method.

b) Use force method (flexibility matrix) to solve the truss as shown in figure below.



2. Analyse the beam shown in figure below by slope deflection method. Draw BM diagram considering given external loading and rotation of support D by (1/10) clockwise, support C settles down by 4mm.



3. a) What is Muceller Breslau principle and how it is used to determine the shape of an influence line diagram of a structural quantity in a statically indeterminate beam? Shown in a simple example.



4. a) For the beam as shown, determine the slope at support B. Use Castiglano's second theorem. Take EI = constant.

[5]



b) Determine the Static indeterminacy (eternal/internal) and kinematiz indeterminacy for the structure as shown.

[3]



c) Using Castigliano's second theorem, determine the vertical deflection at the 50 KN load in the beam shown in figure below.

[8]



5. a) Enunciate and explain with its uses the two basic theorems on methods of limit analysis in plastic analysis for bending.

81

b) Use force method (flexibility matrix) to solve the frame as shown in figure below.



6. a) Determine Stiffness matrix for the frame shown in figure below.



b) Draw ILD at 1m interval for support reaction at fixed end of propped cantilever beam of span 5m. Take EI is constant. [8]

[8]

[8]

### **Examination Control Division** 2068 Baishakh

| Exam.       | Regular / Back |   |            |         |
|-------------|----------------|---|------------|---------|
| Level       | BE             |   | Full Marks | AUGU 46 |
| Programme   | BCE            | 1 | Pass Marks | 32      |
| Year / Part | III/I ·        |   | Time       | 3 hrs   |
|             |                |   |            | 2 1110. |

## Subject: - Theory of Structures II

- Candidates are required to give their answers in their own words as far as practicable. Attempt any Four questions.
- ✓ The figures in the margin indicate <u>Full Marks</u>.
- ✓ Assume suitable data if necessary.
- Determine the external/internal static indeterminacy and kinematic indeterminacy of the structures shown in the figure below. Are they geometrically stable?



b) Find support reactions of the given loaded beam using Castigliano's theorem.

[10]



2. Compute the bar forces in all members due to: (i) Given load and (ii) temperature rise by 30°C in the upper chord. Take  $E = 2 \times 10^5$  N/mm²,  $\infty = 10.8 \times 10^{-6}$ /°C. Take area of all members to be  $30 \text{cm}^2$ . [12+8]



3. a) Draw influence line diagram for bending moment at fixed support of the beam and obtain ordinates at each 1.25m interval.



b) Using slope and deflection method, find support moments and draw bending moment diagram for the given beam.

[10]



Support A sinks by 1cm Support C sinks by 1.5cm

Take,  $E = 2 \times 10^5 \text{ MPa}$ ,  $I = 10,000 \text{ cm}^4$ .

4. Draw axial force, shear force and bending moment diagram for the given loaded frame. Use moment distribution method.





5. a) Define shape factor and write properties of plastic hinge. Find shape factor of the given T - beam section.





b) Using stiffness matrix method, find support reactions and draw bending moment diagram for the given loaded continuous beam.

[10]



\*\*\*

### Examination Control Division 2067 Ashadh

| Exam.       | Regular/Back |            |        |
|-------------|--------------|------------|--------|
| Level       | BE           | Full Marks | 80     |
| Programme   | BCE          | Pass Marks | 32     |
| Year / Part | Ш/І          | Time       | 3 hrs. |

## Subject: - Theory of Structure II

Candidates are required to give their answers in their own words as far as practicable.

Attempt any. Four questions.

The figures in the margin indicate Full Marks.

Assume suitable data if necessary.

1. a) Determine the external/internal static indeterminacy and kinematic indeterminacy of the structures shown in figure below. Are they stable or unstable?





[5]

For the frame shown calculate collapse value of 'P' assuming Mp as the plastic moment of resistance for all the member. [15]



- 2. a) Explain Cartigliano's theorem for determination of displacement in a structural
  - b) Use consistent deformation method to solve the frame and draw bending moment, [5] shear force and normal thrust diagrams. [15]



What is the consistent deformation method? Derive the formula.

[5]

b) Use slope deflection method to draw bending moment and shear force diagrams of the

[15]



4. a) Explain about cases of symmetry and anti symmetry.

[5]

b) Analyze the frame shown in figure using stiffness method (displacement method). Consider only flenural deformations and take EI as constant throughout.

[15]



5. a) Explain Muller Breslau principle for influence line diagram and show in an example

[5]

b) Analyze the frames shown in figure by moment distribution method. Also draw AFD, SFD, and BMD for the structure.

[15]



P. 45

#### TRIBHUVAN UNIVERSITY STITUTE OF ENGINEERING xamination Control Division 2066 Bhadra

|           | 7                |            |        |
|-----------|------------------|------------|--------|
| Exam.     | . Regular / Back |            |        |
| Level     | BE ·             | Full Marks | 80     |
| Programme | BCE              | Pass Marks | 32     |
| Year/Part | III / I          | Time       | 3 hrs. |

## Subject: - Theory of Structures II

Candidates are required to give their answers in their own words as far as practicable.

Attempt any Four questions.

The figures in the margin indicate Full Marks.

Assume suitable data if necessary.

Castigliano's theorem.

1. a) Compute Static Indeterminacy, Kinematic Indeterminacy and Stability of the structures shown in figure given below.



Axial deformation of the members are neglected, Compute the maximum central vertical deflection for a simply supported beam of span L loaded with a uniformly distributed load of w/unit length, El is constant. Use

Use consistent deformation method to draw bending moment diagram of the chair-, frame loaded with a couple as shown. Take  $E = 2 \times 10^4$  MPa,  $\ell = 3m$ , M = 50 kNm and I =  $4.5 \times 10^8 \text{mm}^4$ . Also draw shear force and normal thrust diagrams

corresponding to the bending moment diagram.



b) A rectangular horizontal truss of span 12m and height 9m is with two diagonals and is supported by two hinges fixed at the base. A horizontal force of magnitude 100 kN is acting toward the truss at the left top joint. The diagonal connecting the loaded joint was manufactured 2cm shorter than the assigned length. Calculate the forces induced in every member assuming Young's modulus and cross-sectional areas of the every member to be 2×105 MPa and 1000mm² respectively.

[10]

[10]

3. a) Determine the member end moments using slope deflection method and draw BMD and SFD for the beam loaded as shown in figure given below. Support B settles down by 5mm and Support C rotates clockwise by 0.02 radian and EI is 20 t/mm<sup>2</sup>. [10]



b) Draw Influence Line Diagram for Shear Force at A of the propped cantilever beam shown below. Calculate ordinates at 1.0m interval.



4. Analyze the frame loaded as shown in figure given below. Use Moment Distribution Method. Draw BMD and SFD.



5. a) A single spanned fixed beam of length 9m has two concentrated forces applied vertically downwards at 3m distance from each ends. The left and right forces are 60kN and 120kN respectively. Calculate the section modulus required to render system into collapse condition, if the yield stress and load factor for the materials used are 250 MPa and 1.15 respectively.

b) Analyze the frame given below with inextensible members using stiffness method.



201

[10]

[10]

[10]

. .