2024年度(令和6年度)大学院入試

数学問題A

実施日時

2023年(令和5年)8月23日(水)

9:00~12:00

- 監督者の合図があるまで問題冊子を開いてはならない.
- 問題冊子は表紙も入れて5枚、 問題は全部で4問である.
- 解答は、問題ごとに別々の答案用紙1枚に記入すること、 答案用紙の裏面に記入してもよい。
- それぞれの答案用紙に受験番号、氏名、問題番号を記入すること.
- 答案用紙,下書き用紙は終了後すべて提出し,持ち帰ってはならない.

- $\begin{bmatrix} 1 \end{bmatrix} a, b$ は a < b をみたす実数とする. 以下の問いに答えよ.
 - (1) 閉区間 [a,b] 上で定義された連続関数列 $\{f_n(x)\}$ が $n\to\infty$ のとき関数 F(x) に [a,b] 上で一様収束するならば

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b F(x) \, dx$$

となることを示せ、ただし、F(x) が [a,b] 上で連続になることは認めてよい.

(2) g(x) は閉区間 [a,b] 上で定義された実数値連続関数で, $x \in [a,b]$ に対して

をみたすならば、関数を項とする級数 $\sum_{k=0}^{\infty}g(x)^k$ は区間 [a,b] 上である関数に一様収束することを示せ.

(3) $\sum_{k=0}^{\infty} \int_{1}^{3} \frac{x^{k}}{(1+x)^{k}} dx$ を計算せよ.

- [2] F を体, V を F 上の有限次元ベクトル空間, $T: V \to V$ を線形写像とする. 正の整数 k が存在して T の k 回合成写像 $T^k = T \circ \cdots \circ T$ が零写像となるとき, T をべき零という. 以下の問いに答えよ.
 - (1) λ が T の固有値であるとき、 λ^2 は T^2 の固有値であることを示せ.
 - (2) T がべき零のとき、その固有値は全て 0 になることを示せ、
 - (3) $F = \mathbb{C}$ (複素数体) とする. T の固有値が全て 0 ならば, T はべき零になることを示せ.
 - (4) $F = \mathbb{R}$ (実数体) とする. T が 0 以外の実数を固有値としてもたないとき, T はべき零になるかどうかを理由をつけて答えよ.

- [3] 以下の (1), (2), (3) それぞれが,任意の位相空間 X, Y および任意の連続写像 $f: X \to Y$ について成立するか否か,理由をつけて答えよ.
 - (1) X の任意のコンパクト集合 K に対して,f(K) は Y のコンパクト集合である.
 - (2) X の任意の連結集合 K に対して, f(K) は Y の連結集合である.
 - (3) X の任意のコンパクト集合 K と,X の任意の閉集合 A に対して, $K \cap A$ は X のコンパクト集合である.

 $\begin{bmatrix} 4 \end{bmatrix}$ i を虚数単位とする. 以下の問いに答えよ.

- (1) $a\in\mathbb{C}$ とする. 複素関数 f(z) が z=a で正則ならば $\frac{f(z)}{(z-a)^2}$ の z=a における留数は f'(a) となることを示せ.
- (2) 複素関数 $\frac{e^{iz}}{(z^2+1)^2}$ のすべての極と、それぞれの極での留数を求めよ.
- (3) R > 0 に対して曲線 C_R を

$$C_R$$
: $z = Re^{i\theta} \ (0 \le \theta \le \pi)$

で定める.

$$\lim_{R \to \infty} \int_{C_R} \frac{e^{iz}}{(z^2 + 1)^2} dz = 0$$

となることを示せ.

(4) 広義積分 $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+1)^2} dx$ の値を計算せよ.