MCS Assignment 2018-19 LaTeX template

abcd12

November 24, 2018

1 Discrete Mathematics and Linear Algebra

1.1

Inductive proof, so mostly text. Text is just written as normal, if you want to include maths notation in line you use the \$ symbol we $n \ge 1$. If you use \$\$ it will go on a separate line.

$$2(\sqrt{n+1}-1) < 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} < 2\sqrt{n}$$

1.2

You might want some Greek letters eg σ and Σ or maybe to square things $a^2=b^2+c^2$

1.3

Some answer for q3

1.4

GRAPHS

Figure 1: P_3

Figure 2: C_4

Figure 3: $K_{3,5}$

The graph in figure 1 is P_3 , i.e. a path on 3 nodes. The graph in figure 2 is C_4 . i.e. a cycle on 4 nodes. The graph in figure 3 is $K_{3,5}$, i.e. the complete bipartite graph with sets of size 3 and 5.

2 Logic and Discrete Structures

2.1

$$\varphi = ((a \wedge b) \implies c) \wedge (a \vee b)$$

2.1.1

2.1.2

Since I've not used it yet: $\neg \varphi$

2.2

$$\{\wedge, \oplus\}$$
 where $p \oplus q \equiv \neg(p \iff q)$

2.3

$$p \vee (q \wedge r) \vdash p \vee q$$

1.	$p\vee (q\wedge r)$	Premise
2.	p	Assumption
3.	$p \lor q$	$\vee_i, 2$
4.	$q \wedge r$	Assumption
5.	q	$\wedge_e, 4$
6.	$p \lor q$	$\vee_i, 5$
7.	$p \lor q$	$\vee_e, 1, 23, 46$

2.4

I guess y'all need another subsection anyway