Coffee Sales Analysis & Prediction

Team members:

Mudhawi Alshiha: Data Cleaning, Exploratory Data Analysis (EDA),

PlotlyVisualizations, Business Insights.

Musab Alabdulatif: Data Cleaning, Exploratory Data Analysis (EDA),

PlotlyVisualizations, Business Insights.

Mousa Hamoud: Machine Learning Modeling (OLS, Linear Regression,

XGBoost), Model Evaluation, Streamlit Dashboard

Agenda

Problem Statement	01
Objective	02
Datasets Overview	03
Methodology	04
EDA Highlights (Visuals)	05
Modeling Results	06
Dashboard	07
Key Insights & Business Recommendations	08

Problem Statement

Coffee shops generate large amounts of sales transaction data, but patterns in timing, product preference, and payment behavior are not always clear.

Key Questions:

Why it matters?

- Which days, times, and months generate the most sales?
- What coffee types are most popular?
- How do payment methods affect sales?
- Can machine learning predict future sales?

- Optimize staffing & inventory
- Plan promotions around peak demand
- Improve sales forecasting

Objectives

- Analyze customer spending by weekday, time of day, and season
- Identify the most popular and most profitable coffee types
- Compare weekday vs weekend, and card vs cash payments
- Build regression & ML models to predict sales
- Deploy an interactive Streamlit dashboard for results

Dataset Overview

COLUMN	TYPE	DESCRIPTION
Money	Numeric	Amount of money spent per transaction (SAR)
coffee_name	Categorical	Coffee type ordered (Latte, Americano, etc.)
cash_type	Categorical	Payment method (card or cash)
hour_of_day	Numeric	Hour of the transaction (0–23)
Time_of_Day	Categorical	Period (Morning, Afternoon, Evening, Night)
Weekday	Categorical	Day name (Mon–Sun)
WeekdaySort	Numeric	Numeric order of day (1=Mon 7=Sun)

Dataset Overview

COLUMN	TYPE	DESCRIPTION
Month_name	Categorical	Month name (Jan–Dec)
MonthSort	Numeric	Numeric order of month (1=Jan 12=Dec)
Date	Date	Transaction date (YYYY-MM-DD)
Time	Time	Transaction time (HH\:MM\:SS)

Source: Kaggle

Size: around 3,500 transactions (2025 data)

Quality Notes:

- Some categorical values standardized (spaces/case)
- Minimal missing values

Methodology

EDA - Modeling - Dashboard

Steps:

- 1. Data Cleaning (NumPy, pandas)
- 2. EDA (NumPy calculations + Plotly interactive visuals)
- 3. Modeling (statsmodels, scikit-learn, XGBoost)
- 4. Evaluation (R², MAE comparison)
- 5. Dashboard deployment (Streamlit app.py)
- 6. Upload the work into GitHub

Questions?

Q1. Sales by Weekday

Which day of the week generates the most sales?

Q2. Popular Coffee Types

Which coffee is ordered most often?

Q3. Weekday vs Weekend

Compare average spending

Q4. Monthly/Seasonal Trends

Which month has the highest sales?

Q5. Best Coffee Type in Each Season

Which coffee type is the best-seller in Season?

Q6. Hourly Trends

Which hour of the day has the most sales?

Q1. Sales by Weekday

Which day of the week generates the most sales?

Finding: Tuesday — total sales 18,168.38

Q2. Popular Coffee Types

Which coffee is ordered most often?

Finding: Americano with Milk — 809 orders

Q3. Weekday vs Weekend

Compare average spending

Finding: Weekdays (31.71) slightly higher than Weekends (31.47)

Q4. Monthly/Seasonal Trends

Which month has the highest sales?

Finding: March — total 15,891.64

Q5. Best Coffee Type in Each Season

Which coffee type is the best-seller in Season?

Autumn: Latte → 9837.36

Spring: Latte → 6312.94

Summer: Americano with Milk → 6040.16

Winter: Americano with Milk → 5986.84

Q6. Hourly Trends

Which hour of the day has the most sales?

Finding: 10:00 AM — total 10,198.52

Modeling Results

- Models tested: OLS, Linear Regression, XGBoost
- Features: time, weekday, month, coffee type, payment type
- Target: money (sales amount)
- Metrics: R², MAE
- Best Model: XGBoost

Model Comparison

Dashboard

Built with Streamlit (app.py)

Features:

- Upload CSV datasets
- Explore interactive EDA visuals
- Run predictive models
- Display insights by coffee type, payment method, weekday, etc.

> Key Insight

- Tuesday is the top sales day → allocate staff accordingly
- Americano with Milk is most popular → bundle offers
- Night spending highest → target late customers with promos
- Card payments dominate → partner with banks for loyalty deals
- March peak sales → plan seasonal promotions
- 10:00 AM sales peak → promote morning rush bundles

References

- Kaggle. (2024). Coffee Sales Dataset. Kaggle. https://www.kaggle.com/
- Hugging Face. (2024). Coffee Sales Dataset. Hugging Face. https://huggingface.co/
- MUSAB10000. (2024). Project-Coffee-Sales (GitHub repository). GitHub. https://github.com/MUSAB10000/Project-Coffee-Sales
 Sales
- Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., ... Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2
- McKinney, W. (2010). Data structures for statistical computing in Python. In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 51–56). SciPy. https://doi.org/10.25080/Majora-92bf1922-00a
- Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95.
 https://doi.org/10.1109/MCSE.2007.55
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830. http://jmlr.org/papers/v12/pedregosa11a.html
- Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with Python. In Proceedings of the 9th Python in Science Conference (pp. 92–96). SciPy.
- Streamlit Inc. (2024). Streamlit documentation. Streamlit. https://docs.streamlit.io/

