

SciFi Alignment summary

Sophie Hollitt for the SciFi alignment group 27th Feb 2023, SciFi General, 107th LHCb week

Topic overview

https://gitlab.cern.ch/lhcb/Alignment/-/issues/37

- Larger SciFi alignment + calib team this year:
 - Dortmund: Sophie Hollitt, Nils Breer, Biljana Mitreska
 - Heidelberg: Giulia Tuci, Miguel Ruiz Diaz
 - + Maria Vieites Diaz, Fred Blanc, Izaac Sanderswood
 - with further assistance from SciFi simulation & reconstruction group
- Allows us to pursue many more topics in parallel

Reminder: what is the cluster bias?

- Effect seen in alignment:
 - Track residuals have a consistent pattern
 - Residuals cannot go to zero even after many iterations of alignment
 - Causes x displacements between top and bottom half and/or rotations of long modules
- This is the MEAN residual across all cluster types
 - Some individual cluster types have more
 - The largest bias was seen from (2,2) symmetric clusters
- ▶ Generate new MC with desired fix to check that this fixes the alignment issue

FPGA assigns a centroid position to each cluster, which is then converted to a channel position for the cluster (left or right half of channel)

Null tests for the simulated detector

- 1. Generate simulated events in a perfectly-aligned detector
- 2. Run the alignment on these events and look for movements away from 0

Results from "tight" alignment:

Rz distribution on standard biased MC (global frame)

Cluster bias effect on rotation IS SOLVED by these changes!

LongModule TxRz (tight) alignment

Extra visualisations of tight alignment

Distribution much more Gaussian

Distribution much more Gaussian, centred on 0

Understanding 2022 alignments

- Summary of 2022 alignments in commissioning:
 - Uses TxRz degrees of freedom on either long or short module units
 - Alignment starting from VELO halves alignment, uses GoodLongTracks
 - Current best alignment (v2) uses short modules, calculated on a run with best SciFi timing (256145)
 - Still some known issues:
 - survey input is not quite right for cavern conditions:
 - known that T2X1 and T2U have some extra sun heating on the modules.
 - known that the frames might be a bit less constrained during photogrammetry than they are in the assembly hall
 - A side alignment quality improved a lot from v1 to v2, C side performance still lags, especially in Q0.

in Monet

Quick summary: Alignment v2 conditions

Uses Run 256145 (first run with updated/best SciFi timing)

The widest track residual distributions are from quarters in Station 2

When averaged across the whole SciFi, Alignv2 has the best tracking performance so far

Understanding 2022 alignments: SciFi C side

- > SciFi has a nice, fairly even distribution of clusters in all quarters in all layers
 - Something is going wrong when clusters are combined into tracks
- ▶ Suspicion: one or more parts of the C side are quite far out of alignment using survey information
 - Limits the number hits in this region
 - May be blocking changes to other parts of C side by "requiring" alignment tracks to go through a small area.

Understanding 2022 alignments: SciFi C side

- > SciFi has a nice, fairly even distribution of clusters and seed tracks
 - Something is going wrong with the long tracks for alignment
- ▶ Suspicion: one or more parts of the C side are quite far out of alignment using survey information
 - Limits the number of GoodLongTracks/hits in this region
 - May be blocking changes to other parts of C side by "requiring" alignment tracks to go through a small area.

Shown: worst performing layer, T2X2 (back of station 2)

Can we find a reason for this difference in Q0 the alignment coefficients for this layer or a neighbouring layer?

-> In progress

Understanding 2022 alignments: SciFi C side

Differences in Tx between v2 and survey.

Large movements in Q0 in most layers still with poor tracking efficiency: alignment configuration might be "stuck" in a local best configuration

T2X2 highlighted from previous slide

Average position of this layer fixed in alignment

Improving 2022 alignments: continuing plans

Planned tests:

- Use information from first alignment to subtract/adjust "large offsets" from 2022 survey quarter-by-quarter
- Vary starting position elements in T2X2 C-side manually to "scan" alignments?
- Test performance with different sources of alignment tracks:
 - loose tracking setup (more VELO+seed tracks matched to long tracks)
 - alignment with high momentum SciFi seed tracks for first few iterations of alignment
- Return to using Tz degree of freedom in studies/release restrictions on SciFi back layer
 - Benefit: survey Tz is not perfect, moving T3 may allow us to find better tracks in T2
 - Risk: curvature bias if aligning without particle constraints
- Rerun with newest photogrammetry+survey when possible

Goal: 2022 Alignment v3 with better C side performance for end of March/ early April

VELO motion effects on SciFi

Drift of VELO C side

- Two VELO halves could act as separated detector
- PV position reconstructed independently by each half should be at the same position
 - □ Difference of PV position is a relative misalignment between the two halves
- Some drift of PV is expected due to LHC beam movement (e.g. luminosity levelling)
- PVx position versus time shows a large and unexpected drift of the C-side
- Effect is (almost) reproducible for several fills with the VELO fully close and opened by 1 mm (e.g. during VdM scans)

- SciFi
 alignment
 uses long
 tracks and
 PVs
- How much could this affect us?

05/12/2022

Silvia Borghi and Florian Reiss

VELO motion effects on SciFi

- Quick data study: how does SciFi alignment with long tracks change by turning VELO motion read-in on/off?
 - Much larger change in position than expected from VELO drift over time
 - Same starting conditions
 - 4 iterations, 200k events
- Very nice consistent pattern across SciFi from change: SciFi top half moves left (+x) and bottom half moves right (-x)
 - Modules not matching pattern: insufficient hits to align on one alignment or the other
- At first glance: VELO motion is included properly/global shifts on SciFi translation from VELO translation are relatively small

Difference in alignment conditions with VELO motion on vs off

VELO motion effects on SciFi: MC studies

- Ongoing MC studies to also look an effect in the SciFi alignment based on VELO C side drift
- Realistic parameters from VELO experts:
 - 180um drift in Velo Tx on C side
 - 220urad drift in Velo Ry on C side
- Study being repeated on MC without cluster bias effect to double-check size of rotation effects.

Some signs of rotations of SciFi modules based on VELO half rotations in small first-look study

(2-3x larger than rotation from cluster bias)

Default conditions

Modified Velo conditions

Extra topics not mentioned in detail:

- Mechanical test of D0 with HLT1 data
 - Goal: confirm D0 particles can be reconstructed from 2022 HLT1 sample. Debug alignment reconstruction if needed
 - Current status: reconstructing D0 candidates, cuts on ETA need to be debugged to improve candidate quality
- Preparations for alignment with DD4HEP/online
 - DD4HEP configuration for alignment software was just merged last week
 - Can now add SciFi updates/test compatibility of alignment in DetDesc and DD4HEP
- SciFi coldbox calibration
 - Placeholder SciFi coldbox parameters merged to conditions
 - Can now work on generating MC to predict the amount of bending at different temperatures
- SciFi y-alignment checks with magnet off MC/data
 - Current task: talk to reconstruction experts about best method for projecting straight tracks/ finding missing hits
 - Temporarily on hold, photogrammetry/survey is priority

Summary

- Lots of people on the SciFi alignment team this year, especially from RTA/software side
- Current dual focus:
 - Understanding alignments from 2022 and preparing the best starting conditions for 2023
 - Improving software and preparing for online alignments with dd4hep
- I believe we are on track to have everything ready for data taking
 - At worst, we will have older survey information for the first few weeks
 - But we are working on making sure we have the best alignment starting conditions and can also get the most out of the existing survey information for this early period

BACKUP

Settings for null tests

- Alignment on 14k MinBias events
 - Use MDF and VELO Retina clusters to speed up testing
 - UT in MC but not used in track reconstruction sequence
- Tested with 2 different configs for alignment constraints: one tight, one loose
 - Loose: LongModules aligned in TxRz, sum(change in Module Tx or Rz in CFrame)=0
 - Tight: LongModules aligned in TxRz, sum(change in Module Tx or Rz in whole SciFi)=0, Sxz=0, sum(change in Module Tx in T3X2)=0
- Alignment converges at 1 iteration or less