CS 335: Introduction to Large Language Models HuggingFace Week 6

Dr Abdul Samad Dr Faisal Alvi

Lecture Outline

- Tokenizer
- Word based tokenization
- Char based tokenization
- Sub-word based tokenization
- Model
- Post-Processing
- Softmax

"The course is amazing"

The tokenizer's objective is to find a meaningful representation

Word based

Character based

Subword based

Word-based tokenization

Splitting a raw text into words

Let's do tokenization

Let's		do	to	tokenization		
Split on punctuation						
Let	's	do	tokenization	!		

the	\rightarrow	1
of	\rightarrow	2
and	\rightarrow	3
to	\rightarrow	4
in	\rightarrow	5
was	\rightarrow	6
the	\rightarrow	7
is	\rightarrow	8
for	\rightarrow	9
as	\rightarrow	10
on	\rightarrow	11
with	\rightarrow	12
that	\rightarrow	13
dog	\rightarrow	14
dogs	\rightarrow	15

Very similar words have entirely different meanings

The vocabulary can end up very large

Large vocabularies result in heavy models

We can limit the amount of words we add to the vocabulary

Out of vocabulary words result in a loss of information

Out of vocabulary words result in a loss of information

Character-based tokenization

Splitting a raw text into characters

Split on characters

Let's dotokeniztion!

Character-based vocabulary

Word-based vocabulary

Vocabularies are slimmer

UNKNOWN

Character-based vocabulary

Subword-based tokenization

Splitting a raw text into subwords

Word-based vocabulary

Very large vocabularies

Large quantity of out of vocabulary tokens

Loss of meaning across very similar words

Char-based vocabulary

Very long sequences

Less meaningful individual tokens

Finding a middle ground between word and character-based algorithms

Frequently used words should not be split into smaller subwords

Frequently used words should not be split into smaller subwords

WordPiece

BERT, DistilBERT

Unigram

XLNet, ALBERT

Byte-Pair **Encoding**

GPT2, RoBERTa

Most models obtaining state-of-the-art results in English today use some kind of subword-tokenization algorithm

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
inputs = tokenizer("Let's try to tokenize!")
print(inputs["input_ids"])
```

[101, 2292, 1005, 1055, 3046, 2000, 19204, 4697, 999, 102]

A tokenizer takes texts as inputs and outputs numbers the associated model can make sense of

The tokenization pipeline: from input text to a list of numbers

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokens = tokenizer.tokenize("Let's try to tokenize!")
print(tokens)
```

```
['let', "'", 's', 'try', 'to', 'token', '##ize', '!']
```

The first step of the pipeline is to split the text into tokens

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokens = tokenizer.tokenize("Let's try to tokenize!")
print(tokens)
```

```
['let', "'", 's', 'try', 'to', 'token', '##ize', '!']
```

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("albert-base-v1")
tokens = tokenizer.tokenize("Let's try to tokenize!")
print(tokens)
```

```
['_let', "'", 's', '_try', '_to', '_to', 'ken', 'ize', '!']
```

The first step of the pipeline is to split the text into tokens

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokens = tokenizer.tokenize("Let's try to tokenize!")
input_ids = tokenizer.convert_tokens_to_ids(tokens)
print(input_ids)
```

[2292, 1005, 1055, 3046, 2000, 19204, 4697, 999]

Lastly, the tokenizer adds special tokens the model expects

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokens = tokenizer.tokenize("Let's try to tokenize!")
input_ids = tokenizer.convert_tokens_to_ids(tokens)
print(input_ids)
```

```
[2292, 1005, 1055, 3046, 2000, 19204, 4697, 999]
```

Lastly, the tokenizer adds special tokens the model expects

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokens = tokenizer.tokenize("Let's try to tokenize!")
input_ids = tokenizer.convert_tokens_to_ids(tokens)
print(input_ids)
```

```
[2292, 1005, 1055, 3046, 2000, 19204, 4697, 999]
```

```
final_inputs = tokenizer.prepare_for_model(input_ids)
print(final_inputs["input_ids"])
```

```
[101, 2292, 1005, 1055, 3046, 2000, 19204, 4697, 999, 102]
```

A tokenizer takes texts as inputs and outputs numbers the associated model can make sense of

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
inputs = tokenizer("Let's try to tokenize!")

print(tokenizer.decode(inputs["input_ids"]))
```

[CLS] let's try to tokenize! [SEP]

The decode method allows us to check how the final output of the tokenizer translates back into text

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
inputs = tokenizer("Let's try to tokenize!")

print(tokenizer.decode(inputs["input_ids"]))
```

```
[CLS] let's try to tokenize! [SEP]
```

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("roberta-base")
inputs = tokenizer("Let's try to tokenize!")

print(tokenizer.decode(inputs["input_ids"]))
```

```
<s>Let's try to tokenize!</s>
```

The decode method allows us to check how the final output of the tokenizer translates back into text

```
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
inputs = tokenizer("Let's try to tokenize!")
print(inputs)
```

```
'input_ids': [101, 2292, 1005, 1055, 3046, 2000, 19204, 4697, 999, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1]
}
```

A tokenizer takes texts as inputs and outputs numbers the associated model can make sense of

What happens inside the pipeline function?

The pipeline consists of three stages

The tokenization pipeline: from input text to a list of numbers

```
from transformers import AutoTokenizer
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from pretrained(checkpoint)
raw inputs = [
    "I've been waiting for a HuggingFace course my whole life.",
    "I hate this so much!",
inputs = tokenizer(raw inputs, padding=True, truncation=True, return tensors="pt")
print(inputs)
   'input ids': tensor([
       [ 101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026, 2878, 2166, 1012, 102],
       [ 101, 1045, 5223, 2023, 2061, 2172, 999, 102, 0, 0, 0, 0, 0, 0, 0]
   1),
```

A tokenizer takes texts as inputs and outputs numbers the associated model can make sense of

'attention mask': tensor([

])

Stage 2: Model

```
from transformers import AutoModel

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = AutoModel.from_pretrained(checkpoint)
outputs = model(**inputs)
print(outputs.last_hidden_state.shape)
```


The AutoModel class loads a model without its pretraining head

```
from transformers import AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model =
AutoModelForSequenceClassification.from_pretrained(checkpoint)
outputs = model(**inputs)
print(outputs.logits)
```

```
tensor([[-1.5607, 1.6123], [ 4.1692, -3.3464]], grad_fn=<AddmmBackward>)
```

Each AutoModelFor X class loads a model suitable for a specific task

Example - Softmax

Figure Source: **Dog Image**

Example - Softmax

Figure Source: Dog Image

Stage 3: Postprocessing

model.config.id2label

{0: 'NEGATIVE',1: 'POSITIVE'}

First sentence: NEGATIVE 4.02%

POSITIVE 95.98%

- Second sentence: NEGATIVE 99.46%

POSITIVE 0.54%

Additional Content Instantiate a Transformer model

```
from transformers import AutoModel

bert_model = AutoModel.from_pretrained("bert-base-cased")
print(type(bert_model))

gpt_model = AutoModel.from_pretrained("gpt2")
print(type(gpt_model))

bart_model = AutoModel.from_pretrained("facebook/bart-base")
print(type(bart_model))
```

```
<class 'transformers.models.bert.modeling_bert.BertModel'>
<class 'transformers.models.gpt2.modeling_gpt2.GPT2Model'>
<class 'transformers.models.bart.modeling_bart.BartModel'>
```

The AutoModel API allows you to instantiate a pretrained model from any checkpoint


```
from transformers import BertConfig

bert_config = BertConfig.from_pretrained("bert-base-cased")
print(type(bert_config))

<class 'transformers.models.bert.configuration_bert.BertConfig'>
```

```
from transformers import GPT2Config

gpt_config = GPT2Config.from_pretrained("gpt2")
print(type(gpt_config))
```

```
<class 'transformers.models.gpt2.configuration_gpt2.GPT2Config'>
```

```
from transformers import BartConfig

bart_config = BartConfig.from_pretrained("facebook/bart-base")
print(type(bart_config))
```

```
<class 'transformers.models.bart.configuration_bart.BartConfig'>
```

But you can also use the specific class if you know it

```
from transformers import BertConfig

bert_config = BertConfig.from_pretrained("bert-base-cased")
print(bert_config)
```

```
BertConfig {
    "architectures": [
          "BertForMaskedLM"
     "attention probs dropout prob": 0.1,
     "gradient checkpointing": false,
     "hidden act": "gelu",
     "hidden dropout prob": 0.1,
     "hidden size": 768,
     "initializer range": 0.02,
     "intermediate size": 3072,
     "layer norm eps": 1e-12,
     "max position embeddings": 512,
     "model type": "bert",
     "num attention heads": 12,
     "num hidden layers": 12,
     "pad token id": 0,
     "position embedding type": "absolute",
     "transformers version": "4.7.0.dev0",
     "type vocab size": 2,
     "use cache": true,
     "vocab size": 28996
```

The configuration contains all the information needed to load the model

Same architecture as bert-base-cased

```
from transformers import BertConfig, BertModel

bert_config = BertConfig.from_pretrained("bert-base-cased")
bert_model = BertModel(bert_config)
```

Using only 10 layers instead of 12

```
from transformers import BertConfig, BertModel

bert_config = BertConfig.from_pretrained("bert-base-cased", num_hidden_layers=10)
bert_model = BertModel(bert_config)
```

Then you can instantiate a give model with random weights from this config

Saving a model

```
from transformers import BertConfig, BertModel

bert_config = BertConfig.from_pretrained("bert-base-cased")
bert_model = BertModel(bert_config)

# Training code

bert_model.save_pretrained("my_bert_model")
```

Reloading a saved model

```
from transfromers import BertModel
bert_model = BertModel.from_pretrained("my-bert-model")
```

To save a model we just have to use the save_pretrained method