CS & IT ENGINEERING

Operating Systems

Memory Management

Lecture No. 4

By- Dr. Khaleel Khan Sir

TOPICS TO BE COVERED **Fixed Partitions**

Variable Partitions

Address Space

Performance g Fixed Partition

1. Int. Fragmentation:
(IF)

2. Ent. Fragmentation: X (E.F)

3. Degree of M.Pr: Limited

4. Man-Procens rize: Ltd

5. Part. Alloc. Policy: B.F. (len I.F)

Enternal Fragmentation (i) Compaction relocate -> Time Consu SOK P2 80k 150K Nemory Mas N-CE Alloc

Variable Partitions. PCB, PCB2 PCBs RQ

E-F:3MB

P8

		Memor)	
		os		os
Partition	1 (2MB)	Process-1		Process-1
Partition	2 (6MB)	Process-2	P2 and P4	Hole 6MB
Partition	3 (3MB)	Process-3	Completed	Process-3
Partition	4 (4MB)	Process-4		Hole 4MB
Partition	5 (6MB)	Process-5		Process-5
	N	Iain Memor	y	High

P6 and P7 Arrive

OS OS Process-1 Process-1 P6 4MB P6 4MB P8 (3MB) Hole 2MB Hole 2MB Process-3 Process-3 Arrive P7 3MB P7 3MB Hole 1MB Hole 1MB Process-5 Process-5 Can't Load

Consider a Memory System having 6 Partitions of sizes 200K; 400K; 600K; 500K; 300K; 250K. There are 4 Processes of sizes: 357K; 210K; 468K; 49K. Using Best Fit Allocation Policy, what Partitions are not allocated/remains Unallocated?

Q. 2

Consider the following Memory Map in which blank regions are not in use and hatched regions are in use. Using Variable Partitions with no Compaction:

The sequence of requests for blocks of sizes 300K, 25K, 125K, 50K can be satisfied if we use:

Increasing Addresses

- A. Either first fit or best fit policy (any one)
- B. First fit but not best fit policy
- C. Best fit but not first fit policy
- D. None of the above.

Q. 3

Consider a System with Memory of size 1000KBytes. It uses Wariable Partitions with no Compaction. Presently there are 2 partitions of sizes 200K & 260K respectively.

(i) What is the allocation request of the Process which would always be denied?

A. 131 K

C. 181 K

B. 151 K

D. 541 K

(ii) The smallest Allocation Request which could be denied is:

A. 131 K

C. 181 K

B. 151 K

D. 541 K

541 K

Q. 4

500 X 7B B

Partitioning. It is divided into fixed size Partitions each of size 2²⁴ Bytes. The OS maintains a Process Table with one entry per Process. Each entry has, two fields: First, is a pointer pointing to Partition in which the Process is loaded and Second, Field is Process ID(PID). The Size of PID is 4Bytes.

Calculate

- (a) The Size of Pointer to the nearest Byte. 3B
- (b) Size of Process Table in Bytes if the System has 500 Processes.

	Ptr (3B)	Pid (4B)
١		
2		TO A CONT
3		
		:
0	-	

No. of Partitions:	2 = 22
(H)	224

Partition Addr (Ptr)	•	22 hits	 22
(Pty)			ر.ر

Consider a System Using Variable Partition with no Compaction

Free holes	4K; 8K; 20K; 2K	
Program size	2K; 14K; 3K; 6K; 10K; 20K; 2K	
Time for Execution	4; 10; 2; 1; 4; 1; 8	

Using Best Fit Allocation Policy and FCFS CPU Scheduling Technique, Find the Time of Loading & Time of Completion of each program. The Burst Times are in Seconds.

- Consider allocation of memory to a new process. Assume that none of the existing holes in the memory will exactly fit the process's memory requirement. Hence, a new hole of smaller size will be created if allocation is made in any of the existing holes. Which one of the following statements is TRUE?
- The hole created by next fit is never larger than the hole created by best fit
- B. The hole created by worst fit is always larger than the hole created by first fit
- The hole created by first fit is always larger than the hole created by next fit
- The hole created by best fit is never larger than the hole created by first fit

