National Cheng Kung University

Department of Engineering Science
Instructor: Chi-Hua Yu

Name:	 		
Student ID:_	 		

Mock Exam

注意事項

- 1. 期中考試時間為 09:10~12:00。
- 2. 本次考試可以 open book,使用電子書者可以攜帶 ipad。
- 3. 考試時皆不可使用網路查找答案,發現有使用網路者一律視為作弊,以零分計算。
- 4. 程式題部分,請繳交 ipynb 的檔案形式,並輸入正確的檔名。
- 5. 請用學號_Midterm 為檔名做一個資料夾(e.g., N96091350_Midterm),並將程式題 之.ipynb 檔案放入資料夾中,壓縮後上傳至課程網站(e.g., N96091350_Midterm.zip)。
- 6. 如未依照上述規則繳交作業、繳交錯誤檔案,則以零分計算,不允許要分。
- 7. 手寫題可跳題作答,但必須標示清楚題號,若題號標示錯,該題也會視為零分,不允許 要分。如字跡潦草至助教難以辨別,則會以助教辨視為主。
- 8. 程式題請依照題目規定作答,若無依照題目則將該題視為零分,不允許要分。
- 9. 請注意作答時不要抄襲網路或是同學的答案,助教會將程式碼放入自動比對程式,只要 超過 70%相似度,以抄襲處置,抄襲者與被抄襲者都以零分計算。
- 10. 本次閱卷將採用自動批改,命名錯誤或是無法執行將被自動判定為失敗,失去該題的分數。成功通過自動閱卷的程式碼,助教會再進行人工判讀,確定程式邏輯是否恰當,因此添加最低限度的註解可以保障作答時候的分數。

請勿抄襲,抄襲者與被抄襲者本次考試皆0分計算

National Cheng Kung University

Department of Engineering Science

Instructor: Chi-Hua Yu

Total (120%)

Part I (40%) Concept and Derivation.

1. (40%) Consider the simple network example with a single input x = 2 and a single output y = 1 shown in Figure 1 below.

Figure 1

The weight matrices are:

$$\mathbf{W}^{(1)} = \begin{bmatrix} 0.3 & 0.6 \\ 0.2 & 0.1 \end{bmatrix}; \ \mathbf{W}^{(2)} = \begin{bmatrix} 0.2 & 0.1 \\ 0.4 & 0.3 \\ -0.8 & -0.5 \end{bmatrix}; \ \mathbf{W}^{(3)} = \begin{bmatrix} 0.5 \\ 1.8 \\ 0.8 \end{bmatrix}$$

and the summation of weighted nodes for layer 1 can be expressed as $\mathbf{u}^{(1)} = (\mathbf{W}^{(1)})^T \mathbf{x}^{(0)}$; you can perform similar operation for other layers.

- (a) (10%) Derive and compute $\mathbf{u}^{(1)}$, $\mathbf{z}^{(1)}$, $\mathbf{u}^{(2)}$, $\mathbf{z}^{(2)}$, and $\mathbf{y}^{(3)}$.
- (b) (10%) Using the half of the sum square as our error function, derive and compute $\delta^{(3)}$, $\delta^{(2)}$, $\delta^{(1)}$.
- (c) (10%) Compute $\frac{\partial E_n}{\partial \mathbf{W}^{(1)}}$, $\frac{\partial E_n}{\partial \mathbf{W}^{(2)}}$, $\frac{\partial E_n}{\partial \mathbf{W}^{(3)}}$.
- (d) (10%) Update the weight matrices using learning rate $\eta=0.5$, repeat the forward propagation and compute ${\bf u}^{(1)},\,{\bf z}^{(1)},\,{\bf u}^{(2)},\,{\bf z}^{(2)},$ and ${\bf y}^{(3)}.$

National Cheng Kung University

Department of Engineering Science

Instructor: Chi-Hua Yu

Part II (80%) Programming Problems.

1. (30%) Name your file cat.ipynb. Write a program to complete the cat class. The following functions need to be completed including __str__(), __repr__(), lose_weight(), and feed(). You can write functions according to the following example. Please refer to the example below to conduct user testing of Cat class.

Below is the sample output:

```
class Cat():
   def __init__(self, name, color, weight):
   ...
```

```
[2]: cat_1 = Cat('ChiChi', 'white', 10)
    cat_2 = Cat('BaBa', 'black', 16)

[3]: print(cat_1)
    The cat's name is ChiChi, its color is white and its weight is 10kg.

[4]: cat_1
[4]: [ChiChi, white, 10]

[5]: cat_1.lose_weight(3)
    cat_1
[5]: [ChiChi, white, 7]

[6]: cat_2
[6]: [BaBa, black, 16]

[7]: cat_1.feed(cat_2, 4)
    cat_2
    ChiChi fed 4kg of food to BaBa

[7]: [BaBa, black, 20]
```

2. (50%) Name your Jupyter notebook YourID_MNIST.ipynb (n96081494_MNIST). Please create an ANN model to classify images of handwritten digits. Please use from torchvision.datasets import MNIST to read the training dataset.

National Cheng Kung University

Department of Engineering Science

Instructor: Chi-Hua Yu

(a) (10%) Write the following class to create the neural network. Please pass the model's parameters such as input size and layer characteristics as arguments into the model.

(b) (10%) Write the following function to complete the training loop. Please pass what the training loop needs as arguments to the trainer.

(c) (10%) Please build a model and set training parameters to make the model accuracy higher than 96% on the test set.

```
Accuracy of the network on the test images: 96.33%
```

(d) (10%) Please plot training history.

Instructor: Chi-Hua Yu

(e) (10%) Please plot confusion matrix on the test set.

