

Sub-optimal Join Order Classification by L1-error

Yesdaulet Izenov, Asoke Datta, Brian Tsan and Florin Rusu University of California, Merced yizenov, adatta2, btsan, frusu@ucmerced.edu

Q-error Limitations

Goal: classification of sub-optimal join orders

Q-error is a poor indicator of sub-optimal join orders:

- too loose as a bound
- does not consider enumeration algorithms
- cardinality estimation errors matter equally

Q-error Bound (JOB queries)

Query Plans (query 2c)

2-way joins (COST + CARDINALITY)							
index $ ho$	1	2	3	4	5		
sub-plan	$cn\bowtie mc$	$k\bowtie mk$	$mc\bowtie t$	$mk\bowtie t$	$mc\bowtie mk$		
true Y	388	41.8K	2.6M	4.5M	34.9M		
est. \hat{Y}	973	20	1.5M	2.7M	13.8M		
Q-error q	2.51	2,092	1.70	1.70	2.53		

3-way joins (COST + CARDINALITY)						
۹	index $ ho$	1	2	3	4	5
SI		$cn\bowtie mc$	$cn\bowtie mc$	$k\bowtie mk$	$k\bowtie mk$	$mc\bowtie t$
	sub-plan	$\bowtie t$	$\bowtie mk$	$\bowtie t$	$\bowtie mc$	$\bowtie mk$
	true Y	388+388	388+1,588	41.8K+41.8K	41.8K+148.6K	2.6M+34.9M
	est. \hat{Y}	973+973	973+8,739	20+20	20+104	1.5M+2.7M
	Q-error q	2.51	5.50	2,092	1,428.38	12.69

4-way joii	ns (COST + (CA	RDINALITY)	
index $ ho$	1		2	3
sub-plan	$cn\bowtie mc$ $\bowtie mk\bowtie k$	- 11	$cn\bowtie mc$ $\bowtie t\bowtie mk$	$k\bowtie mk$
true Y	1,976+4			$\bowtie t\bowtie mc$ 83.7K+148.6K
est. \hat{Y}	124+1	1	1,946+8,739	40+104
Q-error q	4		5.50	1,428.38

5-way joins (CO	ST + CARDINALIT	ΓΥ)
index $ ho$	1	
sub-plan	$mk\bowtie mc\bowtie t$	
true Y	1,980+4	
est. \hat{Y}	125+1	
Q-error q	4	

Plan	Join Order	$\mathcal{P} ext{-}Cost(\mathcal{P},Y)$	$\mathcal{P} ext{-}Cost(\mathcal{P},\hat{Y})$
\mathcal{P}_{opt}	$egin{array}{c} cn owtie mc owtie \\ mk owtie k owtie t \end{array}$	1,980	9,713
\mathcal{P}_{pg}	$k\bowtie mk\bowtie mc\bowtie t$	190.4K	125

L1-error

Sub-query Relative Order: estimation errors do not matter while sub-query relative order is preserved based on cardinality estimates

Sub-query Weights: the larger the weight, the greater the difference between two sub-queries

Small Cardinalities: sub-query with smaller cardinality is likely to be selected by the plan search algorithm (e.g. greedy algorithm)

Join Size Importance: early-stage multi-way joins are more critical and tend to be more accurate than joins at later stages

Dataset and Workload

IMDB Benchmark Dataset: real-world dataset containing correlations and non-uniform data distributions

Join Order Benchmark: challenging realistic workload — 113 queries

- 45 Simple queries with 4-9 join predicates
- 53 Moderate queries with 10-19 join predicates
- 15 Complex queries with 20-28 join predicates

Classification Results (JOB queries)

		ted		
		Sub-optimal (Positive)	Optimal (Negative)	
la	Sub-optimal (Positive)	94 (TP)	1 (FN)	95
ct	Optimal (Negative)	7 (FP)	11 (TN)	18
4		101	12	

PostgreSQL estimates. Exhaustive Plan Search.

Simple Cost Function (query 2c)

Cardinality Accuracy (JOB queries)

Join Size Importance (JOB queries)

