Programiranje 2 — drugi kolokvij 22. maj 2018

Skupina 1

Obe nalogi sta enakovredni.

Rešitev prve naloge oddajte v datoteki naloga1.c, rešitev druge pa v datoteki naloga2.c.

(1) Podana je sledeča deklaracija:

```
typedef struct _Vozlisce {
    struct _Vozlisce* naslednje;
} Vozlisce;
```

V datoteki naloga1.c dopolnite funkcijo

```
int steviloElementov(Vozlisce* p)
```

ki vrne število elementov nepraznega cikličnega povezanega seznama, če kazalec p kaže na eno od vozlišč tega seznama. V primeru na spodnji sliki bi klic steviloElementov(p) vrnil rezultat 3.

Naloga 2 se nahaja na drugi strani.

 $\widehat{\ \ }$ Napišite program, ki za podano zaporedje n pozitivnih celih števil izpiše, na koliko načinov lahko izberemo k indeksov, tako da bo vsota elementov zaporedja na teh indeksih enaka natanko v.

Vhod:

V prvi vrstici so podana cela števila $n \in [1, 25]$, $k \in [1, n]$ in $v \in [1, 10^6]$, v drugi pa n celih števil z intervala $[1, 10^6]$. Števila v isti vrstici so med seboj ločena s presledkom.

V testnih primerih J1–J5 in S1–S25 velja $k \leq 3$.

Izhod:

Izpišite iskano število načinov (množic indeksov).

Testni primer J3 (vhod/izhod):

8 3 10 3 7 2 4 5 1 5 9

5

V tem primeru lahko indekse izberemo na 5 načinov:

- $\{0, 2, 4\}$ (3 + 2 + 5 = 10)
- $\{0, 2, 6\}$ (3 + 2 + 5 = 10)
- $\{1, 2, 5\}$ (7 + 2 + 1 = 10)
- $\{3,4,5\}$ (4+5+1=10)
- $\{3,5,6\}$ (4+1+5=10)

Programiranje 2 — drugi kolokvij 22. maj 2018

Skupina 2

Obe nalogi sta enakovredni.

Rešitev prve naloge oddajte v datoteki naloga1.c, rešitev druge pa v datoteki naloga2.c.

(1) Podana je sledeča deklaracija:

```
typedef struct _Vozlisce {
    struct _Vozlisce* naslednje;
} Vozlisce;
```

V datoteki naloga1.c dopolnite funkcijo

```
int razdalja(Vozlisce* p, Vozlisce* q)
```

ki vrne število korakov na poti od vozlišča, na katero kaže kazalec p, do vozlišča, na katero kaže kazalec q. Lahko predpostavite, da p in q kažeta na vozlišči istega povezanega seznama, da se vozlišče, na katero kaže p, ne nahaja za vozliščem, na katero kaže q, in da ima komponenta naslednje v zadnjem vozlišču seznama vrednost NULL. V primeru na spodnji sliki bi klic razdalja(u, v) vrnil rezultat 3.

Naloga 2 se nahaja na drugi strani.

(2) Napišite program, ki prebere števili n in k in izpiše, na koliko načinov lahko k ljudi razporedimo na n sedežev v ravni vrsti, tako da bo med vsakim parom ljudi vsaj en prost sedež.

Vhod:

Na vhodu sta zapisani celi števili $n \in [1, 30]$ in $k \in [1, n]$, ločeni s presledkom.

V testnih primerih J1–J5 in S1–S25 velja $k\leqslant 3.$

Izhod:

Izpišite iskano število načinov.

Testni primer J3 (vhod/izhod):

6 3

4

V tem primeru imamo 4 možne razporeditve (x predstavlja zaseden, _ pa prazen sedež):

- $(1) x_x_x_$
- $(2) x_x_x$
- $(3) x_{x_x}$
- (4) _x_x_x