

Bjanka Bašić, Ivan Knezić i Jelena Lončar

Detekcija raka na temelju histoloških preparata

Opis problema

- Problem: detekcija prisutnosti metastatskog raka na temelju fotografija histoloških preparata tkiva
- Dijagnostička procedura dugotrajna je i naporna za patologe
 - potrebno ispitati veliko područje tkiva
 - malene se metastaze lako mogu previdjeti
- Naš zadatak: izgraditi binarni klasifikator za prepoznavanje tumornog tkiva
- Podaci: fotografije(96x96px) koje predstavljaju mikroskopske snimke tkiva limfnih čvorova, na koje je primjenjeno HE bojenje

Eksploratorna analiza

- U datasetu se nalazi: 220025 primjera za treniranje
 57458 primjera za testiranje
- Omjer negativnih i pozitivnih je 59/41

Negativni primjer

Pozitivni primjer

Metodologija ARHITEKTURA

- U svrhu izgradnje binarnog klasifikatora koristimo konvolucijske neuronske mreže (duboko učenje)
- Isprobavali razne arhitekture najbolji rezultat postigli sa VGG-19

Output shape	Param #
(None, 96, 96, 3)	0
(None, 96, 96, 64)	1792
(None, 96, 96, 64)	36928
(None, 48, 48, 64)	0
(None, 48, 48, 128)	73856
(None, 48, 48, 128)	147584
(None, 24, 24, 128)	0
(None, 24, 24, 256)	295168
(None, 24, 24, 256)	590080
(None, 24, 24, 256)	590080
(None, 24, 24, 256)	590080
(None, 12, 12, 256)	0
(None, 12, 12, 512)	1180160
(None, 12, 12, 512)	2359808
(None, 12, 12, 512)	2359808
(None, 12, 12, 512)	2359808
(None, 6, 6, 512)	0
(None, 6, 6, 512)	2359808
(None, 3, 3, 512)	0
	(None, 96, 96, 3) (None, 96, 96, 64) (None, 96, 96, 64) (None, 48, 48, 64) (None, 48, 48, 128) (None, 48, 48, 128) (None, 24, 24, 128) (None, 24, 24, 256) (None, 24, 24, 256) (None, 24, 24, 256) (None, 24, 24, 256) (None, 12, 12, 256) (None, 12, 12, 512) (None, 6, 6, 512)

Metodologija ARHITEKTURA

 Uklonili njegov zadnji klasifikacijski sloj te ubacili gusto povezanu klasifikatorsku mrežu, završna arhitektura naše KNM:

Layer (type)	Output shape	Param #
vgg19 (Model)	(None, 3, 3, 512)	20024384
flatten_3 (Flatten)	(None, 4608)	0
dense_4 (Dense)	(None, 1024)	4719616
dropout_2 (Dropout)	(None, 1024)	0
dense_5 (Dense)	(None, 1)	1025

- Prilagođavamo pretrained model za naš problem:
 - "Zamrznuli" prva četiri Conv2D sloja
 - Ostale slojeve finetuneali

Metodologija OPTIMIZACIJA I REGULARIZACIJA

 Optimizacijski algoritam za koji smo se odlučili – mini-batch varijacija gradijentnog spusta uz momentum

Batch size: 10

• Learning rate: 1×10^{-4}

Broj iteracija: 2000

Broj epoha: 30

INICIJALNE VRIJEDNOSTI

- Koristimo early stopping i, u slučaju stagnacije učenja, smanjujemo learning rate sa faktorom 0.3
- Augmentacijske transformacije na fotografije
 - rotiramo za nasumičan kut
 - mijenjamo širinu i visinu
 - smičemo ih
 - zoomiramo

- zrcalimo u odnosu na osi
- mijenjamo vrijednosti

int<mark>enzi</mark>teta kanala boja

Metodologija OPTIMIZACIJA I REGULARIZACIJA

 Grafički prikaz kretanja vrijednosti binary cross-entropy funkcije troška tijekom treniranja

Metodologija EVALUACIJA

- Tehnika probira Train & Test 20% od primjera za učenje odabrano za validacijski skup
- Evaluirat ćemo sa:
 - površinom ispod ROC krivulje (AUC) službena metrika Kaggle natjecanja
 - F_{β} mjera sa $\beta=2$ radi se o problemu iz medicinske diagnostike pa smo veći naglasak stavili na false negatives

$$F_{\beta} = \frac{5PR}{4P + R}$$

 Uspješnost našeg modela procijenjena je računanjem vrijednosti AUC na validacijskom skupu. Dobiveno je da ona iznosi 0.974

ullet F_eta za vrijednost beta 2 na validacijskom skupu je **0.92**

Matrica konfuzije na validacijskom skupu:

Feature maps:

 Predikcija modela je napravljena i na testnom skupu te predana web-stranici Kaggle na ocjenjivanje – dobiveno AUC je 0.8941

Osvrt na druge pristupe

- S obzirom na to da dani problem pripada domeni computer visiona, uglavnom je rješavan upravo pomoću konvolucijskih neuronskih mreža
- Pojedinci definirali vlastitu arhitekturu te trenirali parametre cijele
 mreže uspješnije se pokazalo korištenje pretrained mreže
 - Razne verzije DenseNeta, tipa DenseNet169 i DenseNet121
 - Često korištene Resnet i NASNetMobile, neki konkatenirali dvije pretrained mreže, primjerice Xception i NASNetMobile
- Neka od uspješnih istraživanja koriste i One Cycle Policy

