Name:SOLUTIONS GTID:	
----------------------	--

MSE 2001 A: Principles and Applications of Engineering Materials

Midterm exam 3, July 15, 2013, 10am – 11am

Please remove everything from your desk except this test itself, writing instruments, and a calculator.

All pages are numbered at the bottom center of the page. Make sure that you have all 6 pages including this cover page (p.1). Work all problems in the spaces below the problem statement. You can use the back side of the pages for scratch, but I will not grade answers written on the back side. Do not remove the staple or tear out any pages except the last page (p.6).

I will not grade your exam if you fail to sign on the line below.

I acknowledge the above terms for taking this exam. I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community. I pledge my honor that I have not violated the Honor Code during this examination.

Student's signature:	 	 _	

1. Match the correct pairs (17 pts)	
A. Liquidus	_O_ Controlled by diffusion
B. Solidus	_I_ Fe₃C
C. Hypoeutectoid Steel	_A_ Temperature above which only a liquid exists
D. Hypereutectoid Steel	_K_ Re-heating to relieve stresses
E. Martensite	_N_ Interface between different crystal structures
F. Spheroidite	_Q_ Produce solid materials from powders
G. Pearlite	$_G_$ Layered Structure of α + Fe ₃ C
H. Bainite	_L_ A short heat treatment to regain ductility
I. Cementite	_C_ Contains < 0.77 wt% C
J. Ferrite	$_H_$ Fe $_3$ C needles in an α phase
K. Tempering	_P_ Formation of a new phase
L. Anneal	_B_ Temperature below which only a solid exists
M. Semicoherent interface	_M_ Solid-slid interface with periodic dislocations
N. Incoherent interface	_F_ Forms when tempering for too long
O. Growth	_J_ α-iron
P. Nucleation	_D_ Contains > 0.77 wt% C
Q. Sintering	_E_ The strongest of all common phases in steels

2. Draw a schematic for each of the following three invariant reactions (3 pts)

There are two congruent melting reactions:

X0=33% at T=568°C: L \rightarrow Mg₂Cu; X0=66% at T=797°C: L \rightarrow MgCu₂;

3. Using the Mg-Cu phase diagram on the last page, answer the following questions (30 pts)

(a) What are the components of this phase diagram?Mg and CuList their melting pointsMg: 650°C; Cu: 1084.87°C
(b) How many solid solutions appear in this phase diagram?4 Name them: Mg, Cu, Mg2Cu, MgCu2
(c) What is the maximum solid solubility of Cu in Mg?0.013 at% Cu What is the maximum solid solubility of Mg in Cu?100-93.07 = 6.93 at% Mg
(d) Are there any line compounds?Yes If so, name them Mg ₂ Cu
(e) Are there any peritectics in this phase diagram?No How many? If yes, indicate the melting point(s) and phase names and write the equation for one of them. (Note: "equation" means something like L + Solid A → Solid B)
(f) Are there any eutectics or eutectoids in this phase diagram?Yes How many?3
If yes, indicate their eutectic temperature and compositions
X0=14.5% at T=485°C; X0=42% at T=552°C; X0=76.9% at T=725°C;
Write the equation for one of them For example, the first one is L \rightarrow Mg + Mg ₂ Cu
(g) Are there any other invariant reactions not yet mentioned?Yes_ If yes, what are they and at what temperatures and compositions do they occur?

(h) Using the Gibbs phase rule, calculate the number of degrees of freedom for points A, B, C and D on the Mg-Cu phase diagram.

Point A: x0 = 76.9 at% Cu at 725°C;

Point B: x0 = 25 at% Cu at 500° C;

Point C: x0 = 67 at% Cu at 500°C; Point D: x0 = 50 at% Cu at 1000°C.

Point A: $F_A = 2-3+1=0$ Point B: $F_B = 2-2+1=1$

Point C: _____F_C = 2-1+1=2_____

Point D: ____ F_D = 2-1+1=2_____

4. Based on the Mg-Cu phase diagram on the last page, for an alloy containing 55% Cu represented by the vertical line, answer the following questions (30 pts)

(a) Indicate the phases present, their composition and microstructure at the following temperatures (12 pts)

Phases Present Compositions

T₁ = 900°C _____L ____X_L = 55%_____

$$T_2 = 650$$
°C ___L and $MgCu_2$ ___ $X_L = 48\%; X_{MgCu2} = 65\%$

$$T_3 = 500$$
°C $_Mg_2Cu$ and \underline{MgCu}_2 $X_{Mg2Cu} = 33\%$; $X_{MgCu2} = 65\%$

(b) Given 250 g of $X_0 = 55$ at% Cu, what are the relative amounts of the phases present at 900°C? What are the relative amounts of the phases present at 650°C? Show all of your work. (12 pts)

At 900°C, all is in liquid form. 250 g of L.

At 650°C, L and MgCu₂ co-exist. Use lever rule: $X_L = 48\%$; $X_{MgCu2} = 65\%$

$$f_L = \frac{0.65 - 0.55}{0.65 - 0.48} = 0.59$$
; $f_{\rm MgCu2} = 0.41$. $m_L = 250 \times 0.59 = 147$ g; $m_{\rm MgCu2} = 103$ g.

(c) Sketch the equilibrium cooling curve for this alloy ($X_0 = 55$ at% Cu) (6pt)

5. For homogeneous nucleation, the change in free energy to create a nucleus of size r is given by the equation (10 pts),

$$\Delta G(r) = \frac{4}{3}\pi r^3 (\Delta G_v) + 4\pi r^2 \gamma_{s/l}$$

(a) Schematically plot $\Delta G(r)$ as a function of radius for a homogeneous nucleation process. On the same plot, sketch and label the two free energy terms that determine $\Delta G(r)$, the energy barrier for nucleation ΔG^* and the critical radius, r^* . (6 pts)

(b) How do the energy barrier for nucleation ΔG^* and the critical radius r^* change with increased undercooling ΔT ? (4 pts)

Both ΔG^* and r^* decrease with increased undercooling ΔT .

6. Based on the isothermal transformation diagram for a eutectoid steel, answer the following questions (10 pts),

A: Austenite

B: Bainite

M: Martensite

P: Pearlite

(a) Describe the phases present and the microstructures that would occur when a piece of eutectoid steel is held at 800°C for long, and then processed using the following quench path:

Instantaneous quench at 360°C \rightarrow hold for 100 seconds \rightarrow rapid quench to room temperature 50% bainite and 50% martensite

(b) Describe a heat treatment that would result in the following microstructure for a plain carbon eutectoid steel:

A 50-50 mixture of coarse pearlite and martensite

For example, hold at 800°C to form austenite, then instantaneously quench to 650°C and hold for 30s (now 50% austenite is transformed to coarse pearlite and 50% austenite left), then instantaneously quench to room temperature.

(Please feel free to tear out this page)

Mg-Cu phase diagram

