Heart Patients Analysis

```
import numpy as np # linear algebra
In [1]:
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         import scipy.stats as st
         %matplotlib inline
         sns.set(style="whitegrid")
         import warnings
         warnings.filterwarnings('ignore')
        df=pd.read_csv(r'C:\Users\Affan\OneDrive\Desktop\FSDS Course NIT\Prakash Sir Sen
In [4]:
         df
Out[4]:
                             trestbps
                                       chol fbs restecg thalach exang
                                                                            oldpeak slope
               age
                    sex
                         ср
                                                                                             ca
            0
                63
                      1
                           3
                                  145
                                        233
                                                        0
                                                               150
                                                                         0
                                                                                 2.3
                                                                                          0
                                                                                              0
                37
                      1
                           2
                                  130
                                        250
                                                               187
                                                                         0
                                                                                 3.5
                                                                                          0
                                                                                              0
            2
                41
                      0
                           1
                                  130
                                        204
                                                        0
                                                               172
                                                                         0
                                                                                 1.4
                                                                                          2
                                                                                              0
            3
                                  120
                                        236
                                                               178
                                                                         0
                                                                                 8.0
                                                                                          2
                                                                                              0
                56
                      1
                                                                                          2
            4
                57
                      0
                           0
                                  120
                                        354
                                               0
                                                        1
                                                               163
                                                                         1
                                                                                 0.6
                                                                                              0
         298
                           0
                                  140
                                        241
                                               0
                                                        1
                                                               123
                                                                         1
                                                                                 0.2
                                                                                              0
                57
                      0
                                                                                          1
                                        264
         299
                45
                      1
                           3
                                  110
                                                               132
                                                                         0
                                                                                 1.2
                                                                                              0
         300
                           0
                                  144
                                        193
                                               1
                                                        1
                                                               141
                                                                         0
                                                                                              2
                68
                      1
                                                                                 3.4
         301
                57
                           0
                                  130
                                        131
                                               0
                                                               115
                                                                         1
                                                                                 1.2
                                                                                              1
         302
                           1
                                  130
                                        236
                                               0
                                                        0
                                                               174
                                                                         0
                                                                                 0.0
                                                                                          1
                57
                      0
                                                                                              1
         303 rows × 14 columns
In [5]: df.head()
```

Out[5]:		age	sex	ср	tı	estbps	chol	fbs	re	estecg	thala	ach	exang	ol	dpeak	slo	pe	ca	th	ıal
	0	63	1	3		145	233	1		0	,	150	0		2.3		0	0		1
	1	37	1	2		130	250	0		1		187	0		3.5		0	0		2
	2	41	0	1		130	204	0		0		172	0		1.4		2	0		2
	3	56	1	1		120	236	0		1		178	0		0.8		2	0		2
	4	57	0	0		120	354	0		1	,	163	1		0.6		2	0		2
	4						-				-	-	-							
In [6]:	<pre>df.tail()</pre>																			
Out[6]:		age	e so	ex	ср	trestbp	s cho	ol fl	os	restec	g th	alach	exan	ıg	oldpea	k	slop	e d	a	tl
	298	5	7	0	0	14	0 24	1	0		1	123		1	0.	.2		1	0	_
	299	4!	5	1	3	11	0 26	4	0		1	132		0	1.	.2		1	0	
	300	68	3	1	0	14	4 19	3	1		1	141		0	3.	.4		1	2	
	301	5	7	1	0	13	0 13	1	0		1	115		1	1.	.2		1	1	
	302	5	7	0	1	13	0 23	6	0		0	174		0	0.	.0		1	1	
	4 (
In [7]:	<pre>df.isna().count()</pre>																			
Out[7]:	age sex			303 303																
	ср		303																	
	trestbps chol			303 303																
	fbs			303	}															
	restecg thalach exang oldpeak slope ca thal																			
				303 303																
			ope 303 303																	
				303																
	target				3															
	dty	pe:	int6	4																

In [8]: df.isna()

[8]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	
	0	False	False	False	False	False	False	False	False	False	False	False	
	1	False	False	False	False	False	False	False	False	False	False	False	
	2	False	False	False	False	False	False	False	False	False	False	False	
	3	False	False	False	False	False	False	False	False	False	False	False	
	4	False	False	False	False	False	False	False	False	False	False	False	
	•••												
	298	False	False	False	False	False	False	False	False	False	False	False	
	299	False	False	False	False	False	False	False	False	False	False	False	
	300	False	False	False	False	False	False	False	False	False	False	False	
	301	False	False	False	False	False	False	False	False	False	False	False	
	302	False	False	False	False	False	False	False	False	False	False	False	
	303 rc	ows × 1	14 colu	mns									
	1												
	df.co	olumns											
	<pre>Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',</pre>												
	(303, 14)												
	df.de	escrib	e()										
	age			•	sex		ср	trestbps	cl	hol	fbs	reste	
	coun	t 303	.000000	303.	000000	303.0000	000 3	03.000000	303.0000	000 303	3.000000	303.0000	
	mear	1 54	.366337	0.0	683168	0.9669	97 1	31.623762	246.2640)26 ().148515	0.5280	
	std		.082101	0.4	466011	1.0320)52	17.538143	51.8307	751 ().356198	0.5258	
	mir	1 29	.000000	0.0	000000	0.0000	000	94.000000	126.0000	000	0.000000	0.0000	
	25%	6 47	.500000	0.0	000000	0.0000	000 1	20.000000	211.0000	000	0.000000	0.0000	
	50%	6 55.	.000000	1.0	000000	1.0000	000 1	30.000000	240.0000	000	0.000000	1.0000	
	75%	61.	.000000	1.0	000000	2.0000	000 1	40.000000	274.5000	000	0.000000	1.0000	
	max	c 77.	.000000	1.0	000000	3.0000	000 2	00.000000	564.0000	000	1.000000	2.0000	
	4											•	

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
   Column Non-Null Count Dtype
0
    age
            303 non-null
                          int64
1 sex
           303 non-null int64
2 cp
           303 non-null int64
3 trestbps 303 non-null int64
   chol 303 non-null int64
5 fbs
          303 non-null int64
6 restecg 303 non-null int64
7 thalach 303 non-null int64
8 exang 303 non-null int64
9 oldpeak 303 non-null float64
10 slope 303 non-null int64
11 ca
            303 non-null
                          int64
12 thal
           303 non-null
                          int64
13 target 303 non-null
                          int64
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
```

----Description---- - from the above info we get to know that are 14 total columns out of which 1 col is of float dtype and rest are int dtype

Univariate Analysis

----the above graph shows patience with and without heart disease---- 165 with heart 138 without heart---freq distr of target var with sex---

Comment

- sex variable contains two integer values 1 and 0 : (1 = male; 0 = female).
- target variable also contains two integer values 1 and 0 : (1 = Presence of heart disease; 0 = Absence of heart disease)
- So, out of 96 females 72 have heart disease and 24 do not have heart disease.
- Similarly, out of 207 males 93 have heart disease and 114 do not have heart disease.
- We can visualize this information below.

```
In [31]: f,ax=plt.subplots(figsize=(8,6))
    sns.countplot(data=df,x='sex',hue='target',palette='muted')
    plt.show()
```


- Out of 96 females - 72 have heart disease and 24 do not have heart disease. - Similarly, out of 207 males - 93 have heart disease and 114 do not have heart disease.

---the above graphs shows the target var for both sex in diff col graph---

```
In [39]: #the above graph but in horizontal
    f,ax=plt.subplots(figsize=(8,6))
    ax=sns.countplot(y='target',data=df,hue='sex')
    plt.show()
```



```
In [41]:
    f, ax = plt.subplots(figsize=(8, 6))
    ax = sns.countplot(x="target", data=df, facecolor=(0,0,0,0),linewidth=5,edgecolo
    plt.show()
```



```
In [43]: f, ax = plt.subplots(figsize=(8, 6))
    ax = sns.countplot(x="target", hue="fbs", data=df) #fbs ia col which is(fasting
    plt.show()
```


In [44]: f, ax = plt.subplots(figsize=(8, 6))
 ax = sns.countplot(x="target", hue="exang", data=df)
 plt.show()

In [45]: correlation=df.corr()

```
In [47]: #checking how each col correlates with target var
         correlation['target'].sort_values(ascending=False)
Out[47]: target
                    1.000000
                    0.433798
         ср
         thalach 0.421741
slope 0.345877
restecg 0.137230
                 -0.028046
         fbs
                   -0.085239
         chol
         trestbps -0.144931
         age
                    -0.225439
                   -0.280937
         sex
                   -0.344029
         thal
                   -0.391724
         ca
         oldpeak -0.430696
         exang -0.436757
         Name: target, dtype: float64
```

Interpretation of correlation coefficient

- The correlation coefficient ranges from -1 to +1.
- When it is close to +1, this signifies that there is a strong positive correlation. So, we can see that there is no variable which has strong positive correlation with target variable.
- When it is clsoe to -1, it means that there is a strong negative correlation. So, we can see that there is no variable which has strong negative correlation with target variable.
- When it is close to 0, it means that there is no correlation. So, there is no correlation between target and fbs.
- We can see that the cp and thalach variables are mildly positively correlated
 with target variable. So, I will analyze the interaction between these features and
 target variable.

Analysis of target and cp variable

'cp' is a col or var stands for 'chest pain type'

it can be seen that cp is categorical and contaains 4 types of values 0,1,2,3

```
In [52]: f,ax=plt.subplots(figsize=(8,6))
    sns.countplot(x='cp',data=df,palette='deep')
    plt.show()
```



```
In [54]: f,ax=plt.subplots(figsize=(8,6))
sns.countplot(x='cp',hue='sex',data=df,palette='bright')
plt.show()
```



```
In [55]:
         df.groupby('cp')['target'].value_counts()
Out[55]:
         cp target
              0
                        104
              1
                         39
              1
                         41
                          9
              0
                         69
          2
              1
                         18
          3
              1
                         16
                          7
          Name: count, dtype: int64
In [56]:
         ###comment
         #the above we have grouped target var based on each cp
In [57]: f,ax=plt.subplots(figsize=(8,6))
         sns.countplot(x='cp',hue='target',data=df,palette='bright')
         plt.show()
```


analysis of taget and thalach var --thalach stands for min heart disease rate achieve --belwo we check no. of unquiue val in thalach

---slightly -ve skewed is thalach var---

```
f,ax=plt.subplots(figsize=(8,6))
In [63]:
          x=pd.Series(x,name='thalach var')
          sns.distplot(x=df['thalach'],bins=10)
          plt.show()
            0.0200
            0.0175
            0.0150
            0.0125
         Density
0.0100
            0.0075
            0.0050
            0.0025
            0.0000
                      50
                                75
                                          100
                                                    125
                                                                         175
                                                                                   200
                                                                                              225
                                                               150
```

```
In [64]: f, ax = plt.subplots(figsize=(10,6))
x = df['thalach']
ax = sns.distplot(x, bins=10, vertical=True)
plt.show()
```


kde plot

```
In [72]:
          f, ax = plt.subplots(figsize=(10,6))
           x = df['thalach']
           x=pd.Series(x,name='thalach var')
           ax = sns.kdeplot(x)
           plt.show()
           0.0175
           0.0150
           0.0125
         Density
0.0100
           0.0075
           0.0050
            0.0025
           0.0000
                      50
                                 75
                                            100
                                                                             175
                                                                                        200
                                                                                                   225
                                                       125
                                                                  150
                                                         thalach var
```

```
In [69]: f, ax = plt.subplots(figsize=(10,6))
x = df['thalach']
x=pd.Series(x,name='thalach var')
ax = sns.kdeplot(x,shade=True,color='r')
plt.show()
```


Histogram

----visulize freq distr of thalach with target----

```
In [79]: f,ax=plt.subplots(figsize=(8,6))
    sns.stripplot(x='target',y='thalach',data=df,palette='Set2')
    plt.show()
```


In [81]: f, ax = plt.subplots(figsize=(8, 6))
 sns.stripplot(x="target", y="thalach", data=df, jitter = 0.01,palette='dark')
 plt.show()


```
In [82]: f, ax = plt.subplots(figsize=(8, 6))
sns.stripplot(x="target", y="thalach", data=df,palette='dark')
```


The above boxplot confirms our finding that people suffering from heart disease (target = 1) have relatively higher heart rate (thalach) as compared to people who are not suffering from heart disease (target = 0).

Multivariate Analysis

```
In [86]:
               plt.figure(figsize=(16,12))
               plt.title('Correlation Heatmap of Heart Disease Dataset')
               a=sns.heatmap(correlation,square=True,annot=True,fmt='.2f',linecolor='white')
               a.set_xticklabels(a.get_xticklabels(),rotation=90)
               a.set_yticklabels(a.get_yticklabels(),rotation=30)
               plt.show()
                                                     Correlation Heatmap of Heart Disease Dataset
                      1.00
                              -0.10
                                     -0.07
                                                                    -0.12
                                                                           -0.40
                                                                                   0.10
                                                                                                  -0.17
                                                                                                          0.28
                                                                                                                         -0.23
                              1.00
                                     -0.05
                      -0.10
                                             -0.06
                                                    -0.20
                                                            0.05
                                                                    -0.06
                                                                           -0.04
                                                                                   0.14
                                                                                           0.10
                                                                                                  -0.03
                                                                                                          0.12
                                                                                                                 0.21
                                                                                                                         -0.28
                                                                                                                                            - 0.8
                                                                                   -0.39
                                                                                           -0.15
                      -0.07
                              -0.05
                                     1.00
                                                    -0.08
                                                            0.09
                                                                    0.04
                                                                                                  0.12
                                                                                                          -0.18
                                                                                                                 -0.16
                 cΩ
            465tbps
                              -0.06
                                             1.00
                                                            0.18
                                                                    -0.11
                                                                           -0.05
                                                                                   0.07
                                                                                           0.19
                                                                                                  -0.12
                                                                                                                 0.06
                                                                                                                         -0.14
                                                                                                          0.10
                                                                                                                                           - 0.6
               quol
                              -0.20
                                     -0.08
                                                     1.00
                                                                           -0.01
                                                                                                                         -0.09
                                                                                                                                           - 0.4
                                                            1.00
                                                                                           0.01
                                                                                                  -0.06
                                                                                                          0.14
                                                                                                                 -0.03
                                                                                                                         -0.03
                      -0.12
                              -0.06
                                     0.04
                                                                                                                                           - 0.2
                                                                           1.00
                      -0.40
                             -0.04
                                                                                   -0.38
                                                                                           -0.34
                                                                                                                 -0.10
                                                            -0.01
                                     -0.39
                                                                           -0.38
                                                                                   1.00
                                                                                                                         -0.44
                                                                                                                                           - 0.0
             oldbeak
                                     -0.15
                                                            0.01
                                                                           -0.34
                                                                                           1.00
                                                                                                  -0.58
                                                                                                                         -0.43
               dobe
                                                                    0.09
                                                                                   -0.26
                                                                                           -0.58
                                                                                                  1.00
                                                                                                                                           - -0.2
                      0.28
                              0.12
                                             0.10
                                                            0.14
                                                                    -0.07
                                                                                                  -0.08
                                                                                                          1.00
                                                                                                                 0.15
                                                                                                                         -0.39
                              0.21
                                     -0.16
                                             0.06
                                                            -0.03
                                                                    -0.01
                                                                                                                 1.00
                                                                                                                         -0.34
                                                                    0.14
                                                                                                                         1.00
                      -0.23
                              -0.28
                                             -0.14
                                                    -0.09
                                                            -0.03
                                                                                   -0.44
                                                                                           -0.43
                                                                                                          -0.39
                                                                                                                 -0.34
                                                                                                                          target
                                                     chol
                                                                                                                  thal
```

Pair Plot

```
In [88]: num_var=['age','trestbps','chol','thalach','oldpeak','target']
    sns.pairplot(df[num_var],kind='scatter',diag_kind='hist',palette='dark')
    plt.show()
```



```
In [ ]:
          df['age'].nunique()
In [89]:
Out[89]:
In [90]:
          df['age'].describe()
Out[90]:
                   303.000000
          count
                    54.366337
          mean
                     9.082101
          std
                    29.000000
          min
          25%
                    47.500000
          50%
                    55.000000
          75%
                    61.000000
                    77.000000
          max
          Name: age, dtype: float64
```

- The mean value of the 'age' variable is 54.37 years. - The minimum and maximum values of 'age' are 29 and 77 years.--plotting of age varibale---

```
In [96]: f, ax = plt.subplots(figsize=(10,6))
x = df['age']
```

```
ax = sns.distplot(x, bins=10,color='red')
           plt.show()
            0.04
            0.03
         Density
0.02
            0.01
            0.00
                              30
                                                                                        80
                   20
                                          40
                                                      50
                                                                 60
                                                                             70
                                                         age
In [101...
          f, ax = plt.subplots(figsize=(8, 6))
           sns.stripplot(x="target", y="age", data=df,palette='Set1')
           plt.show()
```



```
In [102... f, ax = plt.subplots(figsize=(8, 6))
    sns.boxplot(x="target", y="age", data=df,palette='Set1')
    plt.show()
```



```
f, ax = plt.subplots(figsize=(8, 6))
ax = sns.regplot(x="age", y="trestbps", data=df)
plt.show()
```



```
In [111...
f, ax = plt.subplots(figsize=(8, 6))
ax = sns.scatterplot(x="age", y="chol", data=df)
plt.show()
```


Dealing with missing values

In [113... df.isnull() Out[113... trestbps chol restecg thalach exang oldpeak slope age sex fbs **0** False False False False False **False False False False False** False False False False False False **False** False **False** False **False** False **False** False False 298 False False False False False False False **False** False False False 299 False 300 False 301 False False False False False **False** False False False False False 302 False 303 rows × 14 columns In [114... df.isnull().sum() Out[114... 0 age 0 sex 0 ср trestbps 0 chol 0 fbs 0 restecg 0 thalach 0 exang 0 oldpeak 0 slope 0 0 ca thal target dtype: int64 In [115... df.isnull().count()

```
Out[115...
                        303
           age
                        303
           sex
                        303
           ср
           trestbps
                        303
           chol
                        303
                        303
           fbs
           restecg
                        303
                        303
           thalach
                        303
           exang
                        303
           oldpeak
           slope
                        303
                        303
           ca
           thal
                        303
                        303
           target
           dtype: int64
In [116...
           df.isnull().sum().sum()
Out[116...
           df.isnull().mean()
In [117...
                        0.0
Out[117...
           age
                        0.0
           sex
           ср
                        0.0
           trestbps
                        0.0
                        0.0
           chol
           fbs
                        0.0
           restecg
                        0.0
           thalach
                        0.0
           exang
                        0.0
                        0.0
           oldpeak
           slope
                        0.0
                        0.0
           ca
           thal
                        0.0
           target
                        0.0
           dtype: float64
In [118...
           df.isnull().any()
Out[118...
                        False
           age
           sex
                        False
                        False
           ср
           trestbps
                        False
           chol
                        False
           fbs
                        False
           restecg
                        False
                        False
           thalach
                        False
           exang
                        False
           oldpeak
                        False
           slope
                        False
           ca
           thal
                        False
                        False
           target
           dtype: bool
In [119...
           df.isnull().any().any()
Out[119...
           False
```

```
In [120... df.isnull().values.any()
Out[120... False
In [121... df.isnull().values.sum()
Out[121... 0
```

Check with Assery statement

- We must confirm that our dataset has no missing values.
- We can write an **assert statement** to verify this.
- We can use an assert statement to programmatically check that no missing, unexpected 0 or negative values are present.
- This gives us confidence that our code is running properly.
- **Assert statement** will return nothing if the value being tested is true and will throw an AssertionError if the value is false.
- Asserts
 - assert 1 == 1 (return Nothing if the value is True)
 - assert 1 == 2 (return AssertionError if the value is False)

```
In [122... assert pd.notnull(df).all()
In [123... assert (df>=0).all().all()
```

the above two commands do not throw any error hence there is no missing values or -ve in the dataset

Outlier Detection

I will make boxplots to visualise outliers in the continuous numerical variables : -

```
age, trestbps, chol, thalach and oldpeak variables.
```

```
In [125...
          df['age'].describe()
Out[125...
           count
                    303,000000
                     54.366337
           mean
           std
                      9.082101
                     29.000000
           min
           25%
                     47.500000
           50%
                     55.000000
           75%
                     61.000000
                     77.000000
           max
           Name: age, dtype: float64
```

```
f,ax=plt.subplots(figsize=(8,6))
sns.boxplot(x=df['age'],color='red')
plt.show()
```



```
In [128...
          df['trestbps'].describe()
Out[128...
           count
                    303.000000
                    131.623762
           mean
           std
                     17.538143
                     94.000000
           min
           25%
                    120.000000
           50%
                    130.000000
           75%
                    140.000000
           max
                    200.000000
           Name: trestbps, dtype: float64
In [129...
          f,ax=plt.subplots(figsize=(8,6))
           sns.boxplot(x=df['trestbps'],color='blue')
           plt.show()
```



```
df['chol'].describe()
In [130...
Out[130...
                    303.000000
           count
           mean
                    246.264026
           std
                    51.830751
           min
                    126.000000
           25%
                    211.000000
           50%
                    240.000000
           75%
                    274.500000
                    564.000000
           max
           Name: chol, dtype: float64
In [131...
          f,ax=plt.subplots(figsize=(8,6))
          sns.boxplot(x=df['chol'],color='yellow')
          plt.show()
```



```
df['thalach'].describe()
In [132...
Out[132...
                    303.000000
           count
                    149.646865
           mean
           std
                    22.905161
           min
                    71.000000
           25%
                    133.500000
           50%
                    153.000000
           75%
                    166.000000
                    202.000000
           max
           Name: thalach, dtype: float64
In [133...
          f,ax=plt.subplots(figsize=(8,6))
          sns.boxplot(x=df['thalach'],color='green')
          plt.show()
```



```
df['oldpeak'].describe()
In [134...
Out[134...
                    303.000000
           count
                      1.039604
           mean
           std
                      1.161075
           min
                      0.000000
           25%
                      0.000000
           50%
                      0.800000
           75%
                      1.600000
                      6.200000
           max
           Name: oldpeak, dtype: float64
In [135...
          f,ax=plt.subplots(figsize=(8,6))
          sns.boxplot(x=df['oldpeak'],color='purple')
          plt.show()
```


Findings

- The age variable does not contain any outlier.
- trestbps variable contains outliers to the right side.
- chol variable also contains outliers to the right side.
- thalach variable contains a single outlier to the left side.
- oldpeak variable contains outliers to the right side.
- Those variables containing outliers needs further investigation.

we have finally completed our analysis on Heart Patients Analysis