MIDTERM EXAMINATION

Fall 2009

MTH101- Calculus And Analytical Geometry (Session - 2)

Time: 60 min

Calculus & Analytical Geometry-I

Midterm Solved Paper by:Gulshan Ali (Hafizabad) gulshanvu@yahoo.com Updated Version

Question No: 1 (Marks: 1) - Please choose one	
If f is a twice differentiable function at a stationary point $x_0 = f''(x_0) > 0$ the	n f
has relative At	
MinimaMaxima	
► None of these	
Question No: 2 (Marks: 1) - Please choose one	
If f is a twice differentiable function at a stationary point x_0 and $f''(x_0) < 0$ the	n f
has relative At x_0	
➤ Minima ➤ Maxima	
► None of these	
Question No: 3 (Marks: 1) - Please choose one	
$x = x_0$ A line is called for the graph of a function if	
$f(x) \to +\infty$ or $f(x) \to -\infty$ as x approaches x_0 from the right or from the left	
► Horizontal asymptotes	

None of theseVertical asymptotes

Question No: 4 (Marks: 1) - Please choose one

A line
$$y = y_0$$
 is called a for the graph f if
$$\lim_{x \to +\infty} f(x) = y_0 \quad or \quad \lim_{x \to -\infty} f(x) = y_0$$

- ► Vertical asymptotes
- ► Horizontal asymptotes
- ▶ None of these

Question No: 5 (Marks: 1) - Please choose one

According to Power-Rule of differentiation, if $f(x) = x^n$ where n is a real number, then $\frac{d}{dx}[x^n] =$

 $n x^{n-}$

 $n x^{n+}$

 $(n-1)x^{n+1}$

Question No: 6 (Marks: 1) - Please choose one

If $f(x) = 3x^8 + 2x + 1$ then f'(x) =_____

$$\rightarrow 3x^7 + 2$$

 $\ge 24x^7 + 2$

 $\rightarrow 3x^9 + 2x^2$

 $24x^9 + 2x^2$

Question No: 7 (Marks: 1) - Please choose one

$$\frac{d(\tan x)}{dx} =$$

► sec 3

ightharpoonup \sec^2 .

ightharpoonup cosec x

 $\sim co \sec^2 x$

Question No: 8 (Marks: 1) - Please choose one

$$y = \frac{1}{1 - x} \qquad \frac{dy}{dx} = \frac{1}{1 - x}$$
If then

Question No: 9 (Marks: 1) - Please choose one

Question No: 10 (Marks: 1) - Please choose one

$$\frac{dy}{dx} = \frac{dy}{dx}$$
If then

$$\sum_{y}^{\frac{x}{y}}$$

$$\frac{-x}{y}$$

$$\frac{-y}{x}$$

Question No: 11 (Marks: 1) - Please choose one

Consider a function h(x) and a constant c then

$$\frac{d}{dx}(c)\{h(x)\} = \underline{\hspace{1cm}}$$

$$\frac{d}{dx}(h(cx))$$

$$\frac{d}{dx}(h(cx))$$

$$c \frac{d}{dx}(h(x))$$

Question No: 12 (Marks: 1) - Please choose one

Suppose that f and g are differentiable functions of x then

$$\frac{d}{dx}[f][g] =$$

$$[f'][g] - [f][g']$$

Question No: 13 (Marks: 1) - Please choose one

$$\frac{d}{dx}[\csc x] = \underline{\hspace{1cm}}$$

$$\frac{-\cos x}{1-\cos^2 x}$$

$$\frac{-\cos x}{1-\cos^2 x}$$

$$\frac{-\cos x}{1-\cos^2 x}$$

$$\frac{1}{1-\cos^2 x}$$

Question No: 14 (Marks: 1) - Please choose one

If a function g is differentiable at a point x and a function f is differentiable at a point g(x), then the _____ is differentiable at point x.

- ► Composition (f o g)
- ightharpoonup Quotient (f/g)
- ightharpoonup Product (f . g)
- ightharpoonup Sum (f + g)

Question No: 15 (Marks: 1) - Please choose one

$$y = f(g(h(x)))$$

If

$$u = g\left(h(x)\right)$$

$$v = h(x) \qquad \frac{dy}{dx} = \underline{\hspace{1cm}}$$

$$\frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$$

$$\frac{dy}{du}\frac{du}{dv}\frac{dv}{dx}$$

$$\frac{dv}{du}\cdot\frac{du}{dv}\cdot\frac{dy}{dx}$$

Question No: 16 (Marks: 1) - Please choose one

Chain rule is a rule for differentiating of functions.

- ► Product
- ► Sum
- **▶** Difference
- **▶** Composition

Question No: 17 (Marks: 1) - Please choose one

Let a function f be defined on an interval, and let x_1 and x_2 denote points in that interval. If $f(x_1) > f(x_2)$ whenever $x_1 < x_2$ then which of the following statement is correct?

- ightharpoonup f is an increasing function.
- ightharpoonup f is a decreasing function.
- ightharpoonup f is a constant function.

Question No: 18 (Marks: 1) - Please choose one

Let a function f be defined on an interval, and let x_1 and x_2 denotes two distinct points in that interval. If $f(x_1) = f(x_2)$ for all points x_1 and x_2 then which of the following statement is correct?

- ightharpoonup f is a decreasing function
- ightharpoonup f is an increasing function
- ightharpoonup f is a constant function

Question No: 19 (Marks: 1) - Please choose one

If f''(x) > 0 on an open interval (a,b), then which of the following statement is correct?

- ightharpoonup f is concave up on (a, b).
- ightharpoonup f is concave down on (a, b).
- ightharpoonup f is linear on (a, b).

Question No: 20 (Marks: 1) - Please choose one

If x > 0 then $\frac{d}{dx}[\ln x] = \underline{\hspace{1cm}}$

- ► 1
- $\frac{1}{x}$
- $\int \ln \frac{1}{x}$

Question No: 21 (Marks: 1) - Please choose one

Let $y = (x^3 + 2x)^{37}$ Let . Which of the following is correct?

$$\frac{dy}{dx} = (37)(x^3 + 2x)^{36}$$

- $\frac{dy}{dx} = (37)(x^3 + 2x)^{36}$
- $\frac{dy}{dx} = 111x^2(x^3 + 2x)^{36}$
- $\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{36}$
 - $\frac{dy}{dx} = (111x^2 + 74)(x^3 + 2x)^{38}$

Question No: 22 (Marks: 1) - Please choose one

What is the base of natural logarithm?

- **►** 2.71
- ▶ 10

- **>** 5
- ► Any real number

Question No: 23 (Marks: 1) - Please choose one

Let be critical points of the function f . Those critical points for which $f'(x_0) = 0$ are called _____ of

- ► Local points
- ► End points
- ► Stationary points

Question No: 24 (Marks: 1) - Please choose one

 $\log_b a^r = \underline{\hspace{1cm}}$

 $a\log_b r$

 $r \log_b a$

 $\frac{\log_b a}{\log_b r}$

>

Question No: 25 (Marks: 3)

$$f(t) = (2-t)(t-3)+3$$

Discuss the concavity of the function second derivative test?

on any interval using

For all constant numbers, derivative is zero.

So,

F'(t)=0

F''(t)=0....derivative doesn't exist.

Question No: 26 (Marks: 5)

Find the derivative of the function $y = \ln(1+x^3)$

$$\frac{d}{dx}[\ln(1+x^3)] = \frac{1}{(1+x^3)} \cdot \frac{dy}{dx} [1+x^3]$$

$$= \frac{1}{(1+x^3)} \cdot 3x$$

$$= \frac{3x}{(1+x^3)} \cdot ... Ans$$

Question No: 27 (Marks: 10)

Sin(x)

Compute derivative of trigonometric function

by definition.

We want to know the derivative of $f(x) = \sin x$

so,

$$\frac{d}{dx}(\sin x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) - \sin(x) + \cos(x)\sin(h)}{h}$$

$$= \lim_{h \to 0} [\sin(x) \left(\frac{\sin(h)}{h}\right) - \sin(x) \left(\frac{1 - \cos(h)}{h}\right)]$$

As $\sin x$ and $\cos x$ donot involve h so they will remain $\cos x$ tan t here

$$\lim_{\lim_{x \to 0}} \sin(x) = \sin(x)$$

 $\lim_{\lim} \cos(x) = \cos(x)$

Now.

$$\frac{d}{dx}(\sin x) = \cos(x) \lim_{h \to 0} \left(\frac{\sin(h)}{h}\right) - \sin(x) \lim_{h \to 0} \left(\frac{1 - \cos(h)}{h}\right)$$
$$= \cos(x)(1) - \sin(x)(0) = \cos x$$
$$\frac{d}{dx}\sin(x) = \cos(x).....proved$$