Domain Generalization for Small Self-supervised Speech Processing Models

Kuan-Po Huang, Yu-Kuan Fu, Tsu-Yuan Hsu Prof. Hung-yi Lee National Taiwan University

Outline

- Problems of speech models: 1. domain mismatch 2. huge model size
- Domain generalization
 - o MLDG, MASF, Augmentation
- Knowledge distillation DistilHuBERT
- Robustness of DistilHuBERT

Problems of Speech Models

- **Domain mismatch** problem → **Domain generalization**
 - Performance degrades when distortions are introduced.
 - Training data for downstream maybe clean, but distorted during testing.
 - Enhance generalizability of speech representations to avoid having to deal with generalizability whenever we switch to a new downstream task.
- Models are too large to deploy → Knowledge Distillation
 - HuBERT Base 1.1GB, Large 3.5GB, X-Large 10.8GB
 - However, compressed models usually have poor generalizability.

Our goal

To reduce model size while having domain generalizability.

Domain generalization

To have robustness on out-of-domain data without having knowledge of it during training.

Domain generalization methods:

- Learn strategies
 - Ensemble learning
 - Meta-learning: MLDG, MASF
- Representation learning
 - Domain-invariant representation learning
 - Feature disentanglement
- Data manipulation
 - Augmentation

MLDG & MASF

Task: Intent Classification Model: HuBERT base

IC	upstream finetune WHAM! DNS		FSD50K	
Deep all MLDG	X X	92.33% $91.86%$	$61.20\% \ 61.17\%$	91.22% $90.88%$
Deep all MLDG MASF	final proj 92.78% final proj 92.30% final proj 93.22%		62.40% $61.93%$ $61.90%$	90.75% $90.35%$ $90.17%$
Deep all MLDG MASF	last trans layer + final proj last trans layer + final proj last trans layer + final proj	99.10% 98.95% 98.44%	81.36% $79.20%$ $78.54%$	97.70% 97.50% 97.81%
Deep all	all	98.86%	88.08%	98.31%

MLDG & MASF

Task: Intent Classification Model: HuBERT base

Limited performance improvement

IC	upstream finetune	WHAM!	DNS	FSD50K
Deep all MLDG	X X	92.33% $91.86%$	$61.20\% \ 61.17\%$	91.22% $90.88%$
Deep all MLDG MASF	final proj final proj final proj	92.78% $92.30%$ $93.22%$	62.40% $61.93%$ $61.90%$	90.75% $90.35%$ $90.17%$
Deep all MLDG MASF	last trans layer + final proj last trans layer + final proj last trans layer + final proj	99.10% 98.95% 98.44%	81.36% $79.20%$ $78.54%$	97.70% 97.50% 97.81%
Deep all	all	98.86%	88.08%	98.31%

MLDG & MASF

Task: Intent Classification Model: HuBERT base

IC	upstream finetune	WHAM!	DNS	FSD50K
Deep all MLDG	X X	$92.33\% \ 91.86\%$	61.20% $61.17%$	91.22% $90.88%$
Deep all MLDG MASF	final proj final proj final proj	$92.78\% \\ 92.30\% \\ 93.22\%$	62.40% $61.93%$ $61.90%$	90.75% $90.35%$ $90.17%$
Deep all MLDG MASF	last trans layer + final proj last trans layer + final proj last trans layer + final proj	99.10% 98.95% 98.44%	81.36% $79.20%$ $78.54%$	97.70% 97.50% 97.81%
Deep all	all	98.86%	88.08%	98.31%

Large amount of memory requirement, cannot set whole upstream model trainable

Domain generalization

To have robustness on out-of-domain data without having knowledge of it during training.

Domain generalization methods:

- Learn strategies
 - Ensemble learning
 - Meta-learning: MLDG, MASF
- Representation learning
 - Domain-invariant representation learning
 - Feature disentanglement
- Data manipulation
 - Augmentation

Augmentation

- Pre-defined augmentations (distortions)
 - o additive noises: Gaussian noise, Musan noise, ...
 - reverberation
 - time-frequency masks
 - speaking rate
 - O ...
- Trainable augmenter
 - Mixup of different distortions with trainable SNR weights.

Reducing model size – Knowledge distillation

Knowledge distillation: teacher-student learning

DistilHuBERT

Robustness of DistilHuBERT

Does student model have **robustness**?

Check by adding **distortions** to testing data.

DistilHuBERT		HuBERT base		
	clean	distorted	clean	distorted
KS	0.9604	0.8984	0.9714	0.9338
IC	0.9478	0.6641	0.9947	0.9694
SID	0.7302	0.4042	0.8497	0.6551
$\mathbf{E}\mathbf{R}$	0.6387	0.5392	0.6396	0.5733
\mathbf{ASR}	13.77	37.59	6.72	10.16

huge performance drop!

Proposal: Enhance Robustness of DistilHuBERT

Training HuBERT student with **knowledge distillation**.

Problem: Models are not robust to distortions.

• Add distortions to the input of the student model.

Problem: Teacher models may not have robustness to distortions.

• **Continually train** the teacher model.

Problem: Teacher and student representations are not alike.

Representations are not domain-invariant.

• Perform **adversarial training** when distilling models.

Experiment settings

Dataset for distillation: LibriSpeech 960 hr

Distortions: Musan noise, Gaussian noise, Reverberation (Maybe more in the future)

Teacher: pre-trained HuBERT base (or continually trained with distorted data)

Student: fewer transformer layers than the teacher

Add distortions

Add distortions to the input of the student model during distilling.

Maps distorted inputs to teacher's clean representations.

15

Continually trained teacher with distorted input

Stage 1: Continually train the teacher model with distorted data.

Stage 2: Knowledge distillation

Augmented student input with DAT (Binary domain setting)

DAT with Binary domain (teacher / student) setting

$$\mathcal{L}_{dis} = \left|\left|z - \hat{z}
ight|
ight|_1 - \lambda \log \sigma(cossim(z,\hat{z}))$$

$$\sum_{i=0}^{B-1} \mathcal{L}_{dis}^i - lpha \Bigg[\sum_{i=0}^{rac{B}{2}-1} \log D(z_i) + \sum_{i=rac{B}{2}}^{B-1} \log (1-D(\hat{z}_i)) \Bigg]$$

Augmented student input with DAT (Binary domain setting)

DAT with Binary domain (teacher / student) setting

Augmented student input with DAT (Binary domain setting)

DAT with Binary domain (teacher / student) setting

Augmented student input with DAT – training method

Train the student model and the discriminator in turn in a loop as follows:

Step 1: Set the discriminator trainable

Step 2: Train the discriminator with the teacher's and student's output representations to classify the outputs of the teacher and student.

$$\left[\sum_{i=0}^{rac{B}{2}-1} \log D(z_i) + \sum_{i=rac{B}{2}}^{B-1} \log (1-D(\hat{z}_i))
ight]$$

Step 3: Set the discriminator non-trainable

Step 4: Train the student model with the distillation loss and the domain adversarial loss.

$$\mathcal{L}_{dis} = ||z - \hat{z}||_1 - \lambda \log \sigma(cossim(z,\hat{z})) \qquad ext{min} \quad \sum_{i=0}^{B-1} \mathcal{L}_{dis}^i - lpha igg[\sum_{i=0}^{rac{B}{2}-1} \log D(z_i) + \sum_{i=rac{B}{2}}^{B-1} \log (1 - D(\hat{z}_i)) igg] \quad _{20}$$

Augmented student input with DAT (Multi-domain setting)

DAT with Multi-domain (augmentations) setting

Augmented student input with DAT (Multi-domain setting)

DAT with Multi-domain (augmentations) setting

$$\mathcal{L}_{dis} + lpha \cdot \mathcal{L}_{CE}(\{\mathcal{D}(z), \mathcal{D}(\hat{z})\}, \{d_z, d_{\hat{z}}\})$$

Trainable Augmenter

• Mixup of different distortions with trainable SNR weights.

Trainable Augmenter

 $\min \ -\mathcal{L}_{dis} + \mathcal{L}_{down}$

inspired by: Yang, Fu-En, et al. "Adversarial Teacher-Student Representation Learning for Domain Generalization." Advances in Neural 24 Information Processing Systems 34 (2021).

Long-term goal

- Model agnostic
- Teacher and student models can be the same architecture or different.

Timeline

6/12 - 6/25 Finish experiments of robust DistilHuBERT.

6/26 - 7/16 Write paper and submit to SLT.

6/26 - 7/21 Train a robust HuBERT Large model for public usage.

7/17 - 8/5 Experiments for long-term goals. Preparation for closing presentation

Thanks for listening.

