Cálculo del calor de vaporización del agua

Andoni Latorre Galarraga alatorre 73@alumno.uned.es

Resumen

Se calienta agua utilizando una corriente electrica de la cual se miide el voltaje y la intensidad. También se mide la cantidad de agua evaporada. A partir de los datos experimentales se calcula el calor de vaporizaciñon del agua. El experimento de realiza de acuerdo con el proceso descrito en [2].

Fundamento Teórico

Una corente electrica de intensidad I que circula a traves del agua mediante una diferencia de potencial V proporciona una potencia W=IV al agua. En condiciones ideales, tras un tiempo τ ,

$$W\tau = Mq$$

Donde M son los gramos de agua vaporizados y q el calor de vaporización del agua. En la práctica, se tiene que

$$(W-P)\tau = (M+m)q$$

Donde P representa las pérdidas por unidad de de tiempo y m el agua que no entra en el condensador. Esto se puede solucionar con el método de las diferencias, donde se mide con dos potencias diferentes y se tiene

$$(W_1 - W_2)\tau = (M_1 - M_2)q$$

Procedimiento y Resultados

Primero se ha pesado el vaso donde se va a recoger el agua, el resultado es de $(84,33 \pm 0,01)$ g. Durante un tiempo $\tau = 360,1 \pm 0,1$ s. Se mantiene una potencia constante y al final del tiempo se calcula la masa evaporada por diferencia, utilizando la cantidad de agua condensada. La potencia se mide indirectamente a partir de la intensidad y el voltaje. Los datos obteidos se resumen en la siguiente tabla.

Tabla 1:

I(A)	V(V)	M(g)
1,6	143,3	111,31
1,45	133,0	106,15
1,28	125,4	100,78
1,21	117,6	97,89
1,12	109,4	94,85
1,0	98,8	90,97
0,95	94,8	89,59
1,66	163,4	120,59
1,73	173,9	123,34
1,63	167,6	119,26

Se calcula W=IV y $\delta M=M-m$. Luego, se calcula la energia E=Wm.

$\Delta M(g)$	W(W)	E(cal)
26,98	229,28	19335,18
21,82	192,85	16263,04
16,45	160,51	13535,98
13,56	142,30	11999,82
10,52	122,53	10332,79
6,64	98,80	8331,80
5,26	90,06	7594,76
36,26	271,24	22874,01
39,01	300,85	25370,43
34,93	273,19	23037,94

Representando ΔM frente a E junto con la recta de regresión y=ax+b, se tiene la siguiente figura:

Figura 1: ΔM frente a E.

La pendiente de la recta es igual a $\frac{1}{q},$ de donde se deduce:

$$q = \frac{1}{a} \quad \epsilon_q = \frac{\epsilon_a}{a^2}$$

Como nuesto valor de a es (0,00194 \pm 0,00003)g/cal.

$$q = (516 \pm 9) \text{cal/g}$$

Conclusiones

El valor de q obtenido es muy cercano al valor real $\approx 530 {\rm cal/g}$. El valor obtenido experimentalmente tiene un error de menos del 2 %. En resumen, un resultado preciso aunque algo inexacto. Es un resultado aceptable que difiere con el valor real en menos del 3 %.

Referencias

- [1] Manual de la asignatura. Versión 3.7
- [2] https://uned-labo.netlify. app/practicas/te/8_practica_ vaporizacion_agua/prak8.html 17/6/2022