L2 Mathématiques Suites et Séries

Université de Brest

Feuille 4 Suites de fonctions

Questions de cours.

- 1. Donner la définition d'une suite de fonctions qui converge simplement.
- 2. Donner la définition d'une suite de fonctions qui converge uniformément.
- 3. Énoncer le théorème de continuité.
- 4. Énoncer le théorème de dérivabilité.
- 5. Énoncer le théorème d'intégration.

Exercice 1. On définit la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ définies sur \mathbb{R} par $f_n(x)=1+\frac{x}{n}$.

- 1. Étudier la convergence simple et uniforme de la suite $(f_n)_{n\in\mathbb{N}^*}$ sur \mathbb{R} .
- 2. Y a-t-il convergence uniforme sur tout intervalle [-A, A]?

Exercice 2. On définit la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur $[0,+\infty[$ par

$$f_n(x) = \frac{ne^{-x} + x^2}{n+x}.$$

- 1. Étudier la convergence simple et uniforme de la suite $(f_n)_{n\in\mathbb{N}}$ sur [0,1].
- 2. Même question avec $g_n(x) = \frac{n}{1+nx}$.

Exercice 3. On définit la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur \mathbb{R} par

$$f_n(x) = \frac{x\sqrt{n}}{1 + nx^2}.$$

- 1. Étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$ sur \mathbb{R} .
- 2. Calculer $f_n\left(\frac{1}{\sqrt{n}}\right)$.
- 3. En déduire que la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur \mathbb{R} .

Exercice 4. On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ définie sur $[0,\pi]$ par

$$f_n(x) = \cos(x + \frac{1}{n}) + \frac{\sin n^2 x}{1 + n^2 x}.$$

- 1. Étudier la convergence simple sur $[0,\pi]$ de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$.
- 2. Calculer $f_n(\frac{1}{n^2})$. Que peut-on en déduire de la convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}^*}$ sur $[0,\pi]$.

Exercice 5. On définit la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur $[0,+\infty[$ par

$$f_n(x) = e^{-nx} \sin x.$$

- 1. Étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}}$ sur \mathbb{R}^+ .
- 2. Montrer que $|f_n(x)| \le xe^{-nx}$ sur \mathbb{R}^+ .
- 3. En déduire que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur \mathbb{R}^+ .

Exercice 6. Convergence simple vers une fonction discontinue

Étudier la convergence, éventuellement uniforme, des suites de fonctions définies par :

- 1. $f_n(x) = x^n \text{ sur } [0, 1].$
- 2. $g_n(x) = \frac{nx}{1+nx}$ sur [0, 1].
- 3. $h_n(x) = \frac{1}{(1+x^2)^n} \text{ sur } \mathbb{R}.$

Exercice 7. Convergence uniforme et dérivation

- 1. Soit la suite de fonctions $f_n(x) = \frac{\sin(nx)}{\sqrt{n}}$ sur $[0, \frac{\pi}{2}]$. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction f sur $[0, \frac{\pi}{2}]$ et constater que la suite $(f'_n)_{n\in\mathbb{N}}$ ne converge pas.
- 2. Soit $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$. Montrer que chaque f_n est de classe \mathcal{C}^1 et que la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur \mathbb{R} vers une fonction qui n'est pas \mathcal{C}^1 .

Exercice 8. Convergence simple et intégration

Pour tout $n \in \mathbb{N}^*$ on définit la fonction f_n par :

$$\begin{cases} f_n(x) = 0 & \text{si } x \le 0 \\ f_n(x) = n^2 x & \text{si } 0 \le x \le \frac{1}{n} \\ f_n(x) = n - n^2 (x - \frac{1}{n}) & \text{si } \frac{1}{n} \le x \le \frac{2}{n} \\ f_n(x) = 0 & \text{si } x \ge \frac{2}{n} \end{cases}$$

- 1. Dessiner le graphe de la fonction f_n .
- 2. Étudier la convergence simple de la suite $(f_n)_{n\in\mathbb{N}^*}$.
- 3. Calculer $\int_{-1}^{1} f_n(x) dx$. On déduire que la suite $(f_n)_{n \in \mathbb{N}^*}$ ne converge pas uniformément sur [-1,1]. Retrouver ce résultat en calculant $f_n(\frac{1}{n})$.

Exercice 9. Convergence uniforme sur un ouvert

On pose $f_n(x) = e^{-nx} \sin(nx)$.

- 1. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R}^+ .
- 2. Y a-t-il convergence uniforme sur \mathbb{R}^+ ?
- 3. Soit a > 0. Y a-t-il convergence uniforme sur $]a, +\infty[$?

Exercice 10. Vrai/Faux

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions qui converge simplement vers une fonction f sur un intervalle I. Dire si les assertions suivantes sont vraies ou fausses :

- 1. Si les f_n sont croissantes, alors f aussi.
- 2. Si les f_n sont strictement croissantes, alors f aussi.
- 3. Si les f_n sont périodiques, alors f aussi.
- 4. Si les f_n sont continues en a, alors f aussi.

Exercice 11. Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définie sur [0,1] par :

$$f_n(x) = \begin{cases} n^2 x (1 - nx) & \text{si } x \in [0, \frac{1}{n}] \\ 0 & \text{sinon} \end{cases}$$

- 1. Étudier la limite simple de la suite $(f_n)_{n\in\mathbb{N}}$.
- 2. Calculer $\int_0^1 f_n(t)dt$. Y-a-t-il convergence uniforme sur [0,1].
- 3. Étudier la convergence uniforme sur [a, 1] pour $a \in]0, 1[$.

Exercice 12. Étudier la convergence simple et la convergence uniforme des suites de fonctions $(f_n)_{n\in\mathbb{N}}$ suivantes :

- 1. $f_n(x) = \frac{\sin(nx)}{n\sqrt{x}} \text{ sur } \mathbb{R}^+.$
- 2. $f_n(x) = e^{\frac{(n-1)x}{n}} \text{ sur } \mathbb{R} \text{ puis sur }]-\infty, b], \text{ avec } b \in \mathbb{R}.$

Exercice 13. Convergence dominée 1

On souhaite étudier la limite $\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} \sin^n(t) dt$.

- 1. La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définie par $f_n(t)=\sin^n(t)$ converge-t-elle simplement sur $[0,\frac{\pi}{2}]$?
- 2. Converge-t-elle uniformément sur $[0, \frac{\pi}{2}]$?
- 3. À l'aide du théorème de convergence dominée, calculer la limite demandée.

3

4. Vérifier que :

$$\lim_{n \longrightarrow +\infty} \lim_{x \longrightarrow \frac{\pi}{2}} f_n(x) \neq \lim_{x \longrightarrow \frac{\pi}{2}} \lim_{n \longrightarrow +\infty} f_n(x).$$

5. Que peut-on en déduire sur la convergence uniforme de la suite $(f_n)_{n\in\mathbb{N}}$ sur $[0,\frac{\pi}{2}[$.

Indication. Utiliser le théorème de la double limite.

Exercice 14. Convergence dominée 2

On considère la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définie par $f_n(t)=e^{-(t^n)}$.

- 1. La suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge-t-elle simplement sur \mathbb{R}^+ ?
- 2. Converge-t-elle uniformément sur \mathbb{R}^+ ?
- 3. Vérifier que $-t^n \le \begin{cases} 0 & \text{si } t \in [0,1] \\ -t & \text{si } t > 1 \end{cases}$
- 4. En déduire, à l'aide du théorème de convergence dominée, que

$$\lim_{n \to +\infty} \int_0^{+\infty} e^{-(t^n)} dt = 1.$$