Sala de Deteção de Covid-19 Covid-19 Room Detection

António Silva, Pedro de Matos, Tiago Ferreira Departamento de Informática., IPV, ESTGV Viseu, Portugal

Resumo — A sala de deteção de Covid-19 permite verificar se as mãos da pessoa estão desinfetadas utilizando um sensor para o efeito, caso não estejam desinfetadas é indicada uma mensagem com essa informação e é efetuado o derrame de álcool para as mãos da pessoa, é também efetuada a medição dos batimentos cardíacos da mesma.

Palavras Chave - Covid-19, sensor, álcool.

Abstract — Este projeto consiste numa sala que permite ao utilizador verificar se as suas mãos estão desinfetadas e também verificar quais os seus batimentos cardíacos recorrendo a utilização de um Sistema Embebido desenvolvido para o efeito.

Palavras Chave - batimentos cardiacos, desinfeção, Sistema Embebido.

This project is about a room that allows the user to check if his/her hands are disinfected and if the heart rate of the user it's normal using a embebed system developed for the purpose above.

Keywords - heart rate, desinfected, Arduino

I. INTRODUÇÃO

"Covid-19 é uma doença infeciosa causada pelo coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). A doença transmite-se através de gotículas produzidas nas vias respiratórias das pessoas infetadas. Ao espirrar ou tossir, estas gotículas podem ser inaladas ou atingir diretamente a boca, nariz ou olhos de pessoas em contacto próximo." (Wikipédia, 2020). Na Figura 1 estão apresentadas algumas estatísticas em relação à evolução da pandemia Covid-19 em Portugal. Podemos observar que o número de mortes foi maior nos meses iniciais devido à falta de conhecimento da doença. Igualmente se denota um aumento na média diária de casos por mês nos meses finais de 2020. A Figura 2 é a apresentação dos dados numa tabela para uma análise mais aprofundada.

Figura 1 - Gráfico que mostra a evolução da pandemia em Portugal no ano de 2020

	Média diária de casos por mês	Novos Óbitos por mês
Março	266	187
Abril	558	820
Maio	249	417
Junho	327	155
Julho	284	158
Agosto	224	87
Setembro	605	153
Outubro	2192	567
Novembro	6035	76
Dezembro	4062	89

Figura 2 - Tabela de Dados de Covid-19 em Portugal

"Como todos nós sabemos, a Covid-19 afeta cada pessoa de formas diferentes.

A maioria das pessoas infetadas desenvolve a doença com sintomas ligeiros a moderados e recupera sem necessidade de hospitalização. E tendo como alguns dos sintomas mais comuns:

- febre
- tosse seca
- cansaço", (DGS, 2020)

E este projeto provém dessa necessidade, porque assim cada pessoa pode verificar se as suas mãos estão desinfetadas, e verificar também os batimentos cardíacos e caso se verifique que os batimentos são muitos dispares dos valores ditos normais, podemos chegar à conclusão de que alguma coisa de mal se passa.

Um dos vários projetos mais semelhantes encontrados na internet era chamado "Really Homemade Oximeter Sensor © CC BY-NC", pertencente a um utilizador do fórum create. Arduino chamado Giulio Pons.

O projeto acima referido consistia na leitura dos batimentos cardíacos e respetivo oxigénio no sangue e a mostragem desses valores num Lcd, contudo uma das grandes diferenças para o projeto aqui demonstrado, passa pela utilização de um modulo de *Wifi* para efetuar a abertura de uma porta utilizando a aplicação *blynk*, e também a verificação se a pessoa possui as mãos desinfetadas ou não utilizando o sensor MQ-3.

Este trabalho encontra-se dividido em quatro capítulos, o primeiro referente à introdução, onde se encontra explicado o âmbito do desenvolvimento do projeto, isto é, quais as razões que levaram ao desenvolvimento do projeto, onde são exemplificados alguns dos projetos semelhantes a este e quais as principais diferenças entre eles.

No capítulo do sistema é onde se encontra toda a descrição do projeto e respetivo esquema, bem como quais os materiais utilizados para a realização do mesmo, com uma pequena descrição dos mesmos, quais as ocorrências para cada etapa e uma descrição das mesmas, e também os resultados obtidos na realização do projeto, e por fim existe um diagrama de blocos onde é descrito por blocos elementares de funções, onde as entradas e saídas são conectadas no bloco por linhas de conexão o funcionamento do projeto.

E por fim no último capítulo tem-se as conclusões, onde está exemplificado o que o projeto consegue fazer e bem como algumas das várias melhorias que poderiam ser feitas num projeto futuro.

II. OBJETIVOS

Um dos principais objetivos para o desenvolvimento deste projeto passava por desenvolver um Sistema Embebido que permitisse face à época que todos nós estamos a testemunhar o desenvolvimento de uma ferramenta que se enquadrasse nesta fase.

Daí o desenvolvimento de um Sistema Embebido que permitisse a deteção dos batimentos cardíacos e bem como a verificação se a pessoa possui as mãos desinfetadas ou não.

III. SISTEMA

A. Descrição

Num processo inicial a Sala de Deteção de Covid-19 vai permitir que através da api *blynk* seja possível efetuar a simulação da abertura de uma porta, a partir de um servomotor, utilizando o módulo de *wifi* ESP8266. Se for verificada a abertura da porta, a pessoa passa para a mesa 1 onde existe um sensor de ultrassons que verifica a distância da pessoa ao mesmo, e se essa distância for inferior a "x", pode verificar se as mãos estão desinfetadas, através do sensor de álcool, e se caso for verificado que as mãos não estejam desinfetadas, é efetuada uma simulação do derrame de álcool nas mãos, através de um servomotor, caso contrário, a pessoa pode avançar para a próxima mesa, mesa 2, onde é feita a deteção dos respetivos batimentos cardíacos.

B. Esquema

Figura 3 - Esquema do Sistema

C. Materiais Utilizados

Alguns dos vários materiais utilizados passavam por:

- 1 ESP8266
 - O modulo ESP8266 é um microcontrolador que inclui capacidade de comunicação por Wi-Fi.
- 1 KY-039
 - É um sensor que permite obter os batimentos cardíacos da pessoa, em que a mesma só necessita de colocar o dedo no mesmo.
- 2 Servo Motores
- 1 Lcd's 16x2
- 1 Módulo I2C para Display LCD
 - Permite controlar um display LCD, utilizando apenas dois pinos do Arduino: o pino analógico 4 (SDA) e o pino analógico 5 (SCL).
- 2 Mini Fontes de Alimentação
- 1 Chip 74HC4051
 - É um chip que funciona como sendo um Multiplexer ou Desmultiplexer
- 1 Sensor Ultrassónico, HC-SR04
 - É um sensor que permite determinar a distância para um objeto.

- 1 Sensor Álcool, MQ-3
 - É um sensor que permite ler os valores de álcool e etanol.

D. ESP8266

A placa de *WiFi* ESP8266 foi utilizada com o propósito de ser possível a abertura de uma porta utilizando a aplicação *blynk* para o efeito.

Após efetuada a conexão com a aplicação *blynk*, o utilizador só necessita de clicar no botão que a aplicação fornece de modo a ser possível efetuar a abertura da porta, neste caso utilizando o servo motor para simulação.

E. Mesa 1

A mesa 1, Figura 3, é onde existe um sensor de ultrassons que verifica a distância da pessoa ao mesmo, e se essa distância for inferior a "x", pode verificar se as suas mãos estão desinfetadas, através do sensor de álcool MQ-3, e se caso for verificado que as mãos não estejam desinfetadas, é efetuada uma simulação do derrame de álcool nas mãos, através de um servomotor, caso contrário, a pessoa pode avançar para a próxima mesa, mesa 2.

F. Mesa 2

Na mesa 2, Figura 3, é onde é efetuada a deteção dos respetivos batimentos cardíacos, utilizando o sensor KY-039, em que a pessoa só precisa de colocar o dedo no sensor.

A leitura dos batimentos cardíacos usando o sensor KY-039 funciona da seguinte forma: A luz emitida pelo led infravermelho é parcialmente absorvida pela unha, pele e por todas as outras partes do dedo, contudo não é constante porque muda com as mudanças do sangue que corre nas veias. Quando o coração bate, o sangue é empurrado para as veias e a absorção da luz muda, e assim pode-se medir a corrente gerada pelo fotodíodo iluminado pela luz infravermelha que o atinge.

G. Resultados Obtidos

Através dos sensores acima referidos foram obtidos alguns resultados entre estes, pode-se destacar a leitura do sensor MQ-3, visto que num processo inicial, foi efetuada a leitura do mesmo utilizando a sua biblioteca, mas chegou-se à conclusão de que os valores lidos, não eram suficientemente altos para serem comparados, e de modo a resolver, foi efetuada a leitura do mesmo utilizando o *analogRead*.

Foi realizada a leitura do sensor de distância de modo a poder verificar se a distância entre o mesmo e um objeto estava dentro dos parâmetros definidos.

Um dos resultados mais complicados de obter era a leitura dos batimentos cardíacos da pessoa, porque existem vários fatores que alterem esses mesmos valores tais como, a luminosidade da sala, o que faz com que a leitura não seja a mais correta conforme o esperado.

H. Diagrama de Blocos

Na Figura 4 temos a exemplificação do diagrama de blocos.

Figura 4 - Diagrama de Blocos

Como podemos ver na Figura 4 temos que, grande parte dos sensores utilizados para a realização deste projeto, recorrem à comunicação com Modulo de *Wifi* ESP8266. E que também em alguns casos é mostrado no display alguma informação lida a partir dos sensores.

IV. CONCLUSÕES

Em suma a Sala de Deteção de Covid-19 vai permitir verificar se as mãos da pessoa estão desinfetadas ou não, indicando a respetiva mensagem, para cada situação, no processo seguinte vai ser possível também a deteção dos respetivos batimentos cardíacos de modo a verificar a existência de algum problema existente com a pessoa.

Apesar deste projeto estar mais focado na área da saúde, existe uma grande margem de manobra em relação a melhorias tais como:

- A possibilidade de verificar a temperatura da pessoa, enquanto a mesma está a medir os seus batimentos cardíacos.
- Verificar quando a pessoa entrava na sala, se a mesma tinha a máscara colocada.
- Limitar o número de pessoas por sala, reforçando o cumprimento das medidas de segurança.

De referir de que a utilização desta Sala, não exclui o facto de a pessoa se manter segura, prevenido a mesma assim como o próximo.

Seguindo as normas de segurança impostas pela DGS tais como:

- O uso de Máscara
- Lavar as mãos
- E manter a distância de segurança.

REFERÊNCIAS BIBLIOGRÁFICA

- [1] Carregueiro, N., & Curvelo, P. (30 de setembro de 2020). Setembro foi o mês com mais casos de covid-19 mas o segundo com menos óbitos. (Cofina Media S.A.) Obtido em 29 de dezembro de 2020, de jornaldenegocios.pt:

 https://www.jornaldenegocios.pt/economia/coronavirus/detalhe/setembr
 - https://www.jornaldenegocios.pt/economia/coronavirus/detalhe/setembr o-foi-o-mes-com-mais-casos-de-covid-19-mas-o-segundo-com-menos-obitos
- [2] DGS. (13 de março de 2020). Perguntas Frequentes. Obtido em 29 de dezembro de 2020, de covid19.min-saude.pt: https://covid19.min-saude.pt/category/perguntas-frequentes/
- [3] Gauchard, D. (17 de agosto de 2020). esp8266/Arduino. Obtido de github: https://github.com/esp8266/Arduino/blob/master/doc/reference.rst#timin g-and-delays
- [4] Pons, G. (3 de dezembro de 2020). https://create.arduino.cc/projecthub.

 Obtido de "Really Homemade Oximeter Sensor © CC BY-NC":

 https://create.arduino.cc/projecthub/giulio-pons/really-homemadeoximeter-sensor-7cf6a1
- [5] Thomsen, A. (s.d.). "Como fazer um Bafômetro com Arduino". (A. Thomsen, Editor) Obtido em 3 de Dezembro de 2020, de FilipeFlop: https://www.filipeflop.com/blog/bafometro-com-arduino/
- [6] Wikipédia. (28 de dezembro de 2020). COVID-19. Obtido de pt.wikipedia.org: https://pt.wikipedia.org/wiki/COVID-19