







### **Evaluation of the Noah-MP Land Surface Model for**

### **Snowmelt-Driven Flood Generation:**

# **Guidelines for Selecting Parameterization Schemes**

06. 12. 2025

**Eunsaem Cho<sup>1,2</sup>**, Eunsang Cho<sup>3</sup>, Carrie Vuyovich<sup>1</sup> Bailing Li<sup>1,2</sup>, Jennifer M. Jacobs<sup>4</sup>

<sup>1</sup>NASA GSFC, Hydrological Sciences Laboratory, MD, USA <sup>2</sup>University of Maryland, College Park, MD, USA <sup>3</sup>Texas State University, San Marcos, TX, USA <sup>4</sup>University of New Hampshire, Durham, NH, USA

# **Background: Missouri River Spring Flood**

- Spring snowmelt-driven floods have significant societal and economic impacts, highlighting the need for accurate flood prediction.
- The **2019 Spring Missouri River Flood** was one of the most devastating flood events in the region's history, affecting parts of 9 U.S. states (NOAA, 2019; NYT, 2019; Pal et al., 2020; Velásquez et al., 2023).
- Over \$12 billion in total damages and more than 50 levees were breached or overtopped (NSPE, 2019).









#### **Motivation: Noah-MP Parameterization**

- Land Surface Models are widely used for flood prediction, as they provide a comprehensive information of hydrological processes (Overgaard et al., 2006; Niu et al., 2011; Li et al., 2022; He et al., 2023).
- Previous studies and operational systems, including NOAA's National Water Model, often rely on only single
   default parameterization, overlooking the benefit of various Noah-MP schemes for regional application.



Hydrological Processes of Noah-MP (He et al., 2023)



National Water Model Streamflow Output (https://water.weather.gov)

## **Research Questions**

- Q1. What is the impact of Noah-MP parameterization schemes on overall runoff in Missouri River Basin?
  - → Result 1 & Result 2
- Q2. How are **basin characteristics, such as climate classification, land-cover type, and snow classification**, related to Noah-MP runoff performance?
  - → Result 3
- Q3. How well does Noah-MP simulate **snow-water equivalent**, **snow-driven runoff**, and their ratio?
  - → Result 4



# **Study Area: Missouri River Basin**

#### **Noah-MP Simulation Results**

- Forcing Data: North American LandData Assimilation System (NLDAS-2)
- Temporal Resolution: Daily
- Spatial Resolution: 0.125° × 0.125°
- Period: 2014-01-01 to 2023-12-31

#### **USGS Streamflow Observation**

- 50 Hydro-Climatic Data Network
- Temporal Resolution: Daily
- Period: 2014-01-01 to 2023-12-31

#### **Snow Water Equivalent data**

- University of Arizona SWE
- Temporal Resolution: Daily
- Spatial Resolution: 4 km × 4 km
- Period: 2014-01-01 to 2023-12-31



Missouri River Basin with Digital Elevation Model



# **Noah-MP Experiments: Different Parameterizations**

#### **Five Noah-MP Experiments**

- 1) All **Default** setting
- 2) Alternative **Runoff and Groundwater** process (all others are default)
- 3) Alternative **Surface Exchange Coefficient for Heat** process (all others are default)
- 4) Alternative Frozen Soil Permeability process (all others are default)
- 5) Alternative **Snow/Soil Temperature Time Scheme** process (all others are default)

| Name | Process                                 | Default                                                                                                                                                                                                                                                      | Alternative                                 |  |  |  |  |
|------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|
|      | Runoff and<br>Groundwater               | TOPMODEL with groundwater storage                                                                                                                                                                                                                            | TOPMODEL with an equilibrium water table    |  |  |  |  |
| RUN  |                                         | Default: Assumes an unconfined aquifer, with groundwater storage calculated as recharge minus discharge.  Experiment: Infers water table depth from soil moisture, assuming an equilibrium profile of water head.                                            |                                             |  |  |  |  |
|      | Surface Exchange                        | Monin-Obukhov (more ET)                                                                                                                                                                                                                                      | Noah V3 (less ET)                           |  |  |  |  |
| SFC  | Coefficient for<br>Heat                 | <b>Default:</b> Dynamically adjusts the thermal roughness length and applies stability corrections, lowering aerodynamic resistance. <b>Experiment:</b> Fixes the scaling constant for thermal roughness length, effectively raising aerodynamic resistance. |                                             |  |  |  |  |
|      | Frozen Soil<br>Permeability             | NY06 (Linear effects; more permeable)                                                                                                                                                                                                                        | Koren99 (Nonlinear effects; less permeable) |  |  |  |  |
| INF  |                                         | <b>Default</b> : Assumes a linear effect of soil ice on infiltration, leading to <b>Experiment</b> : Assumes a nonlinear effect of soil ice on permeability                                                                                                  | •                                           |  |  |  |  |
|      | Snow/Soil<br>Temperature<br>Time Scheme | Semi-implicit (more dynamic)                                                                                                                                                                                                                                 | Full implicit (more stable)                 |  |  |  |  |
| STC  |                                         | <b>Default</b> : After calculating ground temperature, it re-evaluates heat <b>Experiment</b> : Directly calculates ground temperature using an impl                                                                                                         |                                             |  |  |  |  |

## 1. Water Balance Analysis

- Overall, Noah-MP parameterization choices affect water balance, especially ET, ∆GW, and Total Q.
- **RUN scheme** produced the highest groundwater recharge ( $\Delta$ GW = 2.8 mm), indicating change in groundwater dynamics and runoff generation.
- **SFC scheme** results in the lowest evapotranspiration, and this led to the highest total runoff (81 mm).
- **INF scheme** led to the highest surface runoff (28 mm) due to limited infiltration under frozen soil.

(mm/year)

| Name    | Process                                     | Precipitation | ET               | ∆GW              | ∆SM  | Surface Q       | Subsurface Q | Total Q         |
|---------|---------------------------------------------|---------------|------------------|------------------|------|-----------------|--------------|-----------------|
| Default |                                             | 535           | 480              | -0.3             | -6.1 | 21              | 44           | 65              |
| RUN     | Runoff and<br>Groundwater                   | 535           | 474              | <mark>2.8</mark> | -5.6 | 27              | 41           | 68              |
| SFC     | Surface Exchange<br>Coefficient for<br>Heat | 535           | <mark>464</mark> | 0.1              | -6.3 | 25              | 56           | <mark>81</mark> |
| INF     | Frozen Soil<br>Permeability                 | 535           | 477              | -0.1             | -6.0 | <mark>28</mark> | 39           | 68              |
| STC     | Snow/Soil<br>Temperature<br>Time Scheme     | 535           | 474              | -0.3             | -5.8 | 22              | 48           | 70              |

### 2. Runoff Performance Evaluation

β is a bias term.

- 50 watersheds are selected which are not impacted by human activities and hydraulic structures.
- For selected watersheds, Kling-Gupta Efficiency (KGE) is calculated using USGS observed streamflow.
- KGE improvement is computed as the KGE from the alternative scheme minus that from the default setting.



Not Improved Improved Significantly Improved (> 0.1 KGE)

| Class     | Watersheds      | States       | Land Cover Classification   | Climate Classification        | Snow Classification |  |
|-----------|-----------------|--------------|-----------------------------|-------------------------------|---------------------|--|
| Example 1 | Battle Creek    | South Dakota | Evergreen Needleleaf Forest | Warm-Summer Humid Continental | Montane Forest      |  |
| Example 2 | Gasconade River | Missouri     | Woodland/Scrubland          | Humid Subtropical             | Ephemeral           |  |

Date

Example 1.

Alternative RUN Scheme
Battle Creek, SD



Example 2.

Alternative SFC Scheme

Gasconade River, MO



| Class     | Watersheds States |              | Land Cover Classification | Climate Classification        | Snow Classification |  |
|-----------|-------------------|--------------|---------------------------|-------------------------------|---------------------|--|
| Example 3 | Bear Den Creek    | North Dakota | Grassland                 | Warm-Summer Humid Continental | Prairie             |  |
| Example 4 | Dinwoody Creek    | Wyoming      | Woodland/Scrubland        | Subartic                      | Tundra              |  |

Example 3.

Alternative INF Scheme
Bear Den Creek, ND



Example 4.

Alternative STC Scheme

Dinwoody Creek, WY



### 3. Basin Characteristics and Performance



- For each watershed, dominant characteristic of climate, land cover and snow classification is determined.
- In this plot, y-axis is the improvement of KGE and x-axis is the basin characteristics.

# 3. Basin Characteristics and Performance

Recommended parameterization scheme is the case which improved KGE more than 60% of 50 HCDN.

| Dataset                    | Categories                    | Recommended Parameterization Scheme                                                                                     |  |  |
|----------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
|                            | Humid Subtropical             | <ul><li>Surface Exchange Coefficient for Heat</li><li>Frozen Soil Permeability</li></ul>                                |  |  |
| Köppen-Geiger Climate      | Hot-Summer Humid Continental  | <ul><li>Runoff and Groundwater</li><li>Surface Exchange Coefficient for Heat</li><li>Frozen Soil Permeability</li></ul> |  |  |
|                            | Warm-Summer Humid Continental | - Frozen Soil Permeability                                                                                              |  |  |
|                            | Evergreen Needleleaf Forest   | - Runoff and Groundwater                                                                                                |  |  |
|                            | Woodland/Scrubland            | - Surface Exchange Coefficient for Heat                                                                                 |  |  |
| LINAD Land Cover Man       | Wooded Grassland              | - Surface Exchange Coefficient for Heat                                                                                 |  |  |
| UMD Land Cover Map         | Grassland                     | - Frozen Soil Permeability                                                                                              |  |  |
|                            | Cropland                      | <ul><li>Runoff and Groundwater</li><li>Surface Exchange Coefficient for Heat</li></ul>                                  |  |  |
| Sturm Snow Classification  | Ephemeral                     | <ul><li>Runoff and Groundwater</li><li>Surface Exchange Coefficient for Heat</li><li>Frozen Soil Permeability</li></ul> |  |  |
| Julia Silow Classification | Prairie                       | - Frozen Soil Permeability                                                                                              |  |  |
|                            | Boreal Forest                 | - Frozen Soil Permeability                                                                                              |  |  |
|                            | Tundra                        | - Surface Exchange Coefficient for Heat                                                                                 |  |  |

### 4. Snow-driven Runoff Evaluation

- SWE: Maximum SWE of each water year
- Q: Total runoff volume from April to July
- Q/SWE: Evaluate snow driven runoff and SWE together
- Scatter plot is based on Noah-MP Q & Noah-MP SWE (y-axis)
   and USGS Q & UA SWE (x-axis).
  - a) Dinwoody Creek, WY (Subartic, Woodland/Scrubland, Tundra) ê Snow/Soil Temperature Time Scheme
  - b) Battle Creek, SD (Warm-Summer Humid Continental,
     Evergreen Needleleaf Forest, Montane Forest)
     Frozen Soil Permeability

(a) Dinwoody Creek, WY

(b) Battle Creek, SD



13

# **Take-home Messages**

1. Parameterization schemes have a **significant impact on runoff simulations**. When information of climate, land cover, and snow classifications is available, parameterization schemes can be recommended **for better runoff generation**.

| Alternative Parameterization Scheme   | Improvement                        |
|---------------------------------------|------------------------------------|
| Runoff and Groundwater                | Better groundwater dynamics        |
| Surface Exchange Coefficient for Heat | Better total runoff in lower basin |
| Frozen Soil Permeability              | Better surface runoff generation   |

- Although the Snow/Soil Temperature Time Scheme did not notably enhance runoff performance, it improved SWE estimates, leading to a better representation of snow-driven runoff.
- 3. For future study, the combined impact of multiple alternative parameterization schemes need to be investigated.









# Thank you for listening

# **Question and Answer**

06. 12. 2025

**Eunsaem Cho<sup>1,2</sup>**, Eunsang Cho<sup>3</sup>, Carrie Vuyovich<sup>1</sup> Bailing Li<sup>1,2</sup>, Jennifer M. Jacobs<sup>4</sup>

<sup>1</sup>NASA GSFC, Hydrological Sciences Laboratory, MD, USA <sup>2</sup>University of Maryland, College Park, MD, USA <sup>3</sup>Texas State University, San Marcos, TX, USA <sup>4</sup>University of New Hampshire, Durham, NH, USA

#### **Discussion**

#### 1) Number of Parameterization Schemes

While Noah-MP offers a wide range of physics options, we limited the experiment to four schemes to keep the study focused.

#### 2) Interactive Impact of Parameterization Schemes

Combinations of schemes can generate compounding effects. Evaluating these coupled impacts was beyond the scope, so each scheme was evaluated separately.

#### 3) Runoff-streamflow Comparison

Routing uncertainties can obscure the relationship between simulated runoff and observed streamflow. To reduce this effect, we restricted the analysis to relatively small, minimally regulated catchments

#### 4) Validation of Recommended Parameterization Schemes

The parameterization recommendations derived from this study require validation across watersheds with diverse climate, land cover and snow classification.

### 4. Snow-driven Runoff Evaluation

- **SWE:** Maximum SWE of each water year; **Q:** Total runoff volume from April to July
- Mean Bias is calculated comparing Noah-MP Q / SWE and USGS Q / UA SWE.
- The STC scheme provided limited improvement in total runoff for entire season but noticeably improved snow-driven runoff and SWE representation.



# **Impact of Parameterization Scheme on Water Balance**

| Name | Process                                        | Precipitation | ET                 | ∆GW        | ΔSM  | Surface Q         | Subsurface Q      | Total Q           | Water<br>Balance |
|------|------------------------------------------------|---------------|--------------------|------------|------|-------------------|-------------------|-------------------|------------------|
| De   | Default                                        |               | 479.7              | -0.3       | -6.1 | 20.9              | 44.0              | 64.8              | -3.2             |
| RUN  | Runoff and<br>Groundwater                      | 535.5         | 473.7              | <b>2.8</b> | -5.6 | <mark>27.2</mark> | 41.1              | 68.3              | 1.8              |
| SFC  | Surface<br>Exchange<br>Coefficient for<br>Heat | 535.2         | <mark>463.6</mark> | 0.1        | -6.3 | <mark>25.2</mark> | <mark>56.0</mark> | <mark>81.2</mark> | -3.2             |
| INF  | Frozen Soil<br>Permeability                    | 534.9         | 476.7              | -0.1       | -6.0 | <mark>28.2</mark> | 39.4              | 67.6              | -3.4             |
| STC  | Snow/Soil<br>Temperature<br>Time Scheme        | 535.4         | 474.1              | -0.3       | -5.8 | 22.0              | <mark>48.3</mark> | 70.3              | -3.5             |

### 4. Snow-driven Runoff Evaluation

- **SWE:** Maximum SWE of each water year
- Q: Total runoff volume from April to July
- Q/SWE: Evaluate snow driven runoff and SWE together
- Scatter plot is based on Noah-MP Q & Noah-MP SWE (y-axis) and USGS Q & UA SWE (x-axis).
  - Dinwoody Creek, WY (Subartic, Woodland/Scrubland, Tundra) َ 🗒 **Snow/Soil Temperature Time Scheme**
  - Battle Creek, SD (Warm-Summer Humid Continental, **Evergreen Needleleaf Forest, Montane Forest)**

**Frozen Soil Permeability** 



