Série de révision

Exercice 1:

1) Calculer l'ensemble de PREMIER pour chaque exemple

G1:
$$P \rightarrow da$$
 G2: $B \rightarrow cx \mid bx$ $P \rightarrow Bd$

PREMIER (): renvoie tous les terminaux qu'un non terminal peut commencer

PREMIER (α): terminaux pouvant commencer une chaine dérivée de α

- a ∈ PREMIER (α) si et seulement si : α → aβ ou β peut être composé de terminaux ou/et non terminaux.
- $\varepsilon \in PREMIER$ (α) si et seulement si : $\alpha \to \varepsilon$
- Si X n non terminal et X→Y₁, Y₂, Y₃...Y_n. Avec Y_i symbole terminal ou non terminal alors: ajouter à l'ensemble de PREMIER (X) tous les éléments de PREMIER (Y₁) sauf E.

G1 : PREMIER(P) = {d}
G2 : PREMIER(B) = {c,b}
PREMIER(P) = {c,b}

2) Calculer l'ensemble de SUIVANT pour chaque exemple

G1: $S \rightarrow Ba \mid Sc$ G2: $S \rightarrow Ba \mid Sc$ $B \rightarrow P \mid \epsilon$ $P \rightarrow dS$

SUIVANT(A) : l'ensemble de terminaux pouvant apparaître immédiatement à droite de A dans une dérivation.

L'ensemble de SUIVANT(A) contient :

- Un marqueur de fin de chaine \$ est ajouté à l'axiome.
- Si la règle $X \to AaB$: si a est un terminal alors ajouter l'élément a à SUIVANT (A).
- Si la règle $A \rightarrow \alpha B$: alors ajouter l'ensemble SUIVANT(A) à SUIVANT(B).
- Si la règle $A \rightarrow \alpha B\beta$: alors ajouter le contenu de PREMIER(β) à SUIVANT (B)

(Si l'ensemble de PREMIER (β) contient ϵ alors les éléments de SUIVANTS(A) sont ajoutés aussi à SUIVANT(B))

G1 : SUIVANT(S) = $\{\$, c\}$ G2 : SUIVANT(S) = $\{\$, a,c\}$ SUIVANT(B) = $\{a\}$

```
SUIVANT(P) = SUIVANT(S) = \{\$, a,c\}
```

Exercice 2:

Calculer les ensembles PREMIER et SUIVANT de non terminaux et construire la table d'analyse

```
G: TYPE→*TYPE | ARRAY
          ARRAY→SIMPLE INDICES
          INDICES→INDEX INDICES | €
          INDEX→ [ OPT_DIM ]
          OPT_DIM→ digit | E
          SIMPLE → int | char | (TYPE)
L'ensemble de PREMIER () :
PREMIER (TYPE) = { *}
PREMIER (ARRAY) = { int,char,( }
PREMIER (INDICES) = \{[, \epsilon\}
PREMIER (INDEX) = { [ }
PREMIER (OPT_DIM) ={digit, & }
PREMIER (SIMPLE) = {int,char, ( }
L'ensemble de SUIVANT () :
SUIVANT (TYPE) = \{ \}, \}
SUIVANT (ARRAY) = {$, }}
SUIVANT (INDICES) = {[, ),$}
SUIVANT (INDEX) = {[ ) $}
SUIVANT (OPT_DIM) = { ] }
SUIVANT (SIMPLE) = { $ ) [ }
```

	*	[]	digit	()	int	char	\$
TYPE	TYPE→*T YPE TYPE→AR RAY								
ARRAY					ARRAY→S IMPLE INDICES		ARRAY→S IMPLE INDICES	ARRAY→S IMPLE INDICES	
INDICE S		INDICES→ INDEX INDICES	INDICE S→ E			INDIC ES→ E			$\begin{array}{c} \text{INDICE} \\ s \rightarrow \epsilon \end{array}$
INDEX		INDEX→ [OPT_DIM]							
OPT_DI	М		OPT_DI M→ ε	OPT_DI M→ digit					OPT_DI M→ ε
SIMPLE	3				SIMPLE → (TYPE)		SIMPLE → int	SIMPLE → char	

Exercice 3:

Appliquer l'analyse ascendante par décalage- réduction pour cet exemple : w = id1 * id2

$$\begin{split} G: E &\rightarrow E + T | T \\ T &\rightarrow T^*F | F \\ F &\rightarrow (E) \mid id \end{split}$$

Arbre syntaxique

Pile	Entrée	Action
\$	id1*id2\$	Décalage
\$id1	*id2\$	Réduction par $F \rightarrow id$
\$F	*id2\$	Réduction par $T \rightarrow F$
\$T	*id2\$	Décalage
\$T*	id2\$	Décalage
\$T*id2	\$	Réduction par $F \rightarrow id$
\$T*F	\$	Réduction par T \rightarrow T*F
\$T	\$	Réduction par $E \rightarrow T$
\$E	\$	Accepter

Exercice 4:

Générer le code à trois adresses pour le code suivant

```
if (a + b < c) {
    d = e - f;
} else {
    d = g + h;
}

t1 = a + b

if t1 < c goto label1

t2 = g + h

d = t2

goto label2
label1: t3 = e - f

d = t3
label2:</pre>
```

Exercice 5:

Optimiser ce code après avoir effectué une analyse de vivacité

```
\{w,y,z\}
```

$$x = y + z$$
;

 $\{x,w,y\}$

$$z = y + x;$$

 $\{z,x,w\}$

$$y = x * w;$$

 $\{x,z\}$

{x,w}

$$z = x - w;$$

{**Z**}

2)

 ${y,z}$

$$x = y + z;$$

 $\{x,y\}$

$$z = y + x;$$

 $\{x,z\}$

$$w = z * 2;$$

 $\{x,w\}$

$$z = x - w;$$

{z}