

0.1 B2-06 – Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle

Exercice 1 - Identification temporelle *

B2-06 Pas de corrigé pour cet exercice.

Soit la réponse à un échelon.

Question 1 Déterminer la fonction de transfert du système.

Soit la réponse à un échelon d'amplitude 2,5.

Question 2 Déterminer la fonction de transfert du système.

Corrigé voir 20.

Exercice 2 - Identification *

B2-06

Pas de corrigé pour cet exercice.

D'après Florestan Mathurin.

Soit un système dont le diagramme de Bode est donné ci-dessous.

Question 1 Tracer le diagramme de Bode asymptotique.

Question 2 *Identifier le type de la fonction de transfert et ses valeurs remarquables.*

Corrigé voir 21.

Exercice 3 - Identification *

B2-06

Pas de corrigé pour cet exercice.

D'après Florestan Mathurin.

Le diagramme temporel ci-dessous présente 3 signaux d'entrée sinusoïdaux.

Question 1 Déterminer les période et les pulsations de chacun des signaux..

Question 2 En déduire le gain et le déphasage en régime permanent pour chacune des courbes temporelles de sortie correspondant aux 3 entrées.

Corrigé voir 22.

Exercice 4 - Identification *

B2-06

Pas de corrigé pour cet exercice.

Soit la réponse fréquentielle suivante.

Question 1 Déterminer la fonction de transfert du système.

Soit la réponse fréquentielle suivante.

Question 2 Déterminer la fonction de transfert du système.

Corrigé voir 23.

0.2 B2-07 – Modéliser un système par schéma-blocs.

Exercice 5 - La Seine Musicale*

B2-07 Pas de corrigé pour cet exercice.

Soit le schéma-blocs suivant.

Question 1 En considérant que la perturbation $C_{pert}(p)$ est nulle, déterminer $H_f(p) = \frac{\Omega_m(p)}{\Omega_c(p)}$ sous forme canonique.

Question 2 Exprimer la fonction de transfert $H_r(p) = \frac{\Omega_m(p)}{C_{pert}(p)} \ en \ la \ mettant \ sous \ la \ forme : H_r(p) = \\ -\frac{\alpha \big(1+\tau p\big)}{1+\gamma p+\delta \, p^2}. \ Exprimer \ \alpha, \tau, \gamma \ et \ \delta \ en \ fonction \ des \ différents \ paramètres \ de \ l'étude.$

Question 3 Exprimer $X_{ch}(p)$ en fonction $de \Omega_m(p)$ et $C_{pert}(p)$.

Corrigé voir 24.

Exercice 6 - Machine de rééducation SysReeduc

B2-07 Pas de corrigé pour cet exercice.

On propose une modélisation par schéma-blocs dans la figure suivante.

Le moteur à courant continu est régi par les équations suivantes : $u_m(t) = e(t) + Ri(t)$, $e(t) = k_e \omega_m(t)$ et $C_{M1}(t) = k_t i(t)$.

Une étude dynamique a mené à l'équation suivante :

$$(M+m)r\rho_1\dot{\omega}_m(t) = \frac{C_{M1}(t)}{\rho_1 r} - F_p(t)$$

avec : M la masse du chariot et m la masse du support de pied, $\rho_1=\frac{1}{10}$ le rapport de réduction du réducteur, r=46,1 mm le rayon de la poulie du transmetteur pouliecourroie, $C_{M1}(t)$ le couple délivré par le moteur et $F_p(t)$ l'effort délivré par le patient sur le support 3.

Le codeur incrémental possède 500 fentes équiréparties. Deux émetteurs-récepteurs positionnés en quadrature permettent de mesurer l'information.

Question 1 À partir des équations proposées, déterminer les fonctions de transfert K_1 , K_2 , $H_3(p)$, $H_4(p)$, K_5 , K_6 , K_7 , K_8 et K_9 .

Question 2 Montrer que le schéma-blocs peut être mis sous la forme suivante. On exprimera A, B et D en fonction des paramètres du système r, ρ_1 , k_t , k_e , R, M, m et K_8 .

Corrigé voir 25.

Exercice 7 - Quille pendulaire*

B2-07

Le comportement d'un vérin est défini par le modèle continu ci-dessous.

On a :

•
$$q(t) = S \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{V}{2B} \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t}$$
 (a);

•
$$M \frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} = S\sigma(t) - kx(t) - \lambda \frac{\mathrm{d}x(t)}{\mathrm{d}t} - f_R(t)$$
 (b).

On a:

- $\mathcal{L}(q(t)) = Q(p)$: débit d'alimentation du vérin $[m^3s^{-1}]$;
- $\mathcal{L}(\sigma(t)) = \Sigma(p)$: différence de pression entre les deux chambres du vérin [Pa];
- $\mathcal{L}(x(t)) = X(p)$: position de la tige du vérin [m];
- $\mathcal{L}(f_R(t)) = F_R(p)$: composante selon l'axe de la tige du vérin de la résultante du torseur d'inter-effort de la liaison pivot entre tige et quille [N].

Les constantes sont les suivantes :

- *S* : section du vérin [m²];
- k: raideur mécanique du vérin [N m⁻¹];
- *V* : volume d'huile de référence [m³];
- B : coefficient de compressibilité de l'huile $[N m^{-2}]$;
- *M* : masse équivalente à l'ensemble des éléments mobiles ramenés sur la tige du vérin [kg];
- λ : coefficient de frottement visqueux $[N m^{-1}s]$.

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

Le schéma-blocs de la figure précédente peut se mettre sous la forme suivante.

Question 2 Donner les expressions des fonctions de transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Question 3

Pour ce vérin non perturbé $(F_R = 0)$, donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des constantes.

Corrigé voir 25.

Exercice 8 - Moteur à courant continu*

B2-07 Pas de corrigé pour cet exercice.

On donne les équations du moteur à courant continu :

- $u(t) = e(t) + Ri(t) + L\frac{\mathrm{d}i(t)}{\mathrm{d}t};$
- $e(t) = K\omega(t)$;
- c(t) = Ki(t);
- $c(t) f\omega(t) = J \frac{d\omega(t)}{dt}$.

Question 1 Réaliser le schéma-blocs.

Corrigé voir 27.

Exercice 9 - Vérin*

B2-07 Pas de corrigé pour cet exercice.

On donne le schéma de principe d'une servocommande.

Les différentes équations temporelles qui modélisent le fonctionnement d'une servocommande sont :

- un amplificateur différentiel défini par : $u_c(t) =$ $\frac{i(t)}{K_a} + u_s(t);$ • débit dans le vérin dans le cas d'une hypothèse de
- fluide incompressible $q(t) = S \cdot \frac{dx(t)}{dt}$;
 capteur de position : $u_s(t) = K_c \cdot x(t)$;
- le servo-distributeur est un composant de la chaîne de commande conçu pour fournir un débit hydraulique q(t) proportionnel au courant de commande i(t). (Attention, valable uniquement en régime permanent.) Le constructeur fournit sa fonction de transfert:

$$F(p) = \frac{Q(p)}{I(p)} = \frac{K_d}{1 + Tp}$$

où K_d est le gain du servo-distributeur et T sa constante de temps.

Question 1 Réaliser le schéma-blocs.

Corrigé voir 28.

Exercice 10 - Banc d'épreuve hydraulique * B2-07 Pas de corrigé pour cet exercice.

Analyse de la fonction technique « mettre le tube sous pression ».

Un schéma hydraulique simplifié est donné figure suivante.

Mise en place du modèle

Les équations du débit sont :

$$Q_e(t) = S_e \frac{\mathrm{d}z(t)}{\mathrm{d}t} - \frac{V_{e0}}{B_e} \frac{\mathrm{d}P_e(t)}{\mathrm{d}t}$$

et

$$Q_h(t) = S_h \frac{\mathrm{d}z(t)}{\mathrm{d}t} + \frac{V_{h0}}{B_h} \frac{\mathrm{d}P_h(t)}{\mathrm{d}t}.$$

En appliquant le théorème de la résultante dynamique selon \overrightarrow{z} sur le piston du multiplicateur, on a : $M\ddot{z}(t)$ = $S_h p_h(t) - S_e p_e(t) - Mg - f \dot{z}(t)$.

Question 1 Déduire de la relation précédente l'équation reliant Z(p), $P_e(p)$, $P_h(p)$, et Poids(p) = Mg/p, transformées de Laplace de z(t), $P_e(t)$, $P_h(t)$ et du poids perçu comme une perturbation. Les conditions initiales sont supposées nulles.

On note:

- *L*(*t*) la position de l'équipage mobile repérée par rapport à sa position initiale;
- $V_t(t)$ le volume du tube;
- $F_t(t)$ l'effort du tube sur l'équipage mobile, avec $F_t(t) = -rL(t)$.

On néglige les variations de volume du tube dues à ses déformations. L'équation du débit s'écrit alors :

$$Q_e(t) = (S_a - S_b).\frac{\mathrm{d}L(t)}{\mathrm{d}t} + \frac{V_t}{B_e}\frac{\mathrm{d}P_e(t)}{\mathrm{d}t}.$$

L'équation du mouvement de l'équipage mobile est donnée par :

$$m\ddot{L}(t) = -rL(t) + (S_a - S_b)p_e(t) - f'\dot{L}(t).$$

Question 2 En déduire, en tenant compte de l'équation du débit, deux équations liant L(p), $P_e(p)$ et $Q_e(p)$, transformées de Laplace de L(t), $P_{e}(t)$ et $Q_{e}(t)$. Les conditions initiales sont supposées nulles.

Question 3 Compléter le schéma-blocs de l'ensemble (sans le distributeur hydraulique), l'entrée étant la pression d'huile régulée $P_r(p)$ et la sortie la pression d'épreuve dans le tube $P_e(p)$.

Corrigé voir 28.

Exercice 11 – Fonctions de transfert* B2-07

Pas de corrigé pour cet exercice.

Soit le schéma-blocs suivant.

Question 1 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique

et exprimer les paramètres caractéristiques.

Question 2 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

Soit le schéma-blocs suivant.

Question 3 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

Question 4 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

Corrigé voir 30.

Exercice 12 - Calcul de FTBO*

B2-07

Pas de corrigé pour cet exercice.

Question 1 Déterminer la FTBO dans la cas suivant.

Question 2 Déterminer la FTBO dans la cas suivant.

Question 3 Déterminer la FTBO dans la cas suivant.

Question 4 Déterminer la FTBO dans la cas suivant.

Corrigé voir 32.

Exercice 13 - Calcul de FTBO*

B2-07

Pas de corrigé pour cet exercice.

Question 1 Déterminer la FTBO dans la cas suivant.

B2- Proposer un modèle de connaissance et de comportement

Question 2 Déterminer la FTBO dans la cas suivant.

Question 3 Déterminer la FTBO dans la cas suivant.

Question 4 Déterminer la FTBO dans la cas suivant.

Corrigé voir 32.

0.3 Déterminer la réponse fréquentielleExercice 14 – Ecart*

C2-02 Pas de corrigé pour cet exercice.

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_1(p) = \frac{15}{1+10p}$.

Question 2 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_2(p) = \frac{10}{(1+10p)(10+p)}$.

Question 3 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_3(p) = \frac{40}{p(1+300p)}$.

Corrigé voir 15.

Exercice 15 - Ecart*

C2-02 Pas de corrigé pour cet exercice.

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_1(p) = \frac{200}{p(1++20p+100p^2)}$.

Corrigé voir 15.

0.4 C2-03 – Déterminer les performances d'un système asservi

Exercice 16 - Valeur finale*

C2-03

Pas de corrigé pour cet exercice.

Soit le schéma-blocs suivant.

Question 1 Déterminer la valeur finale de s(t) lorsque l'entrée est un échelon d'amplitude E_0 .

Question 2 Déterminer la valeur finale de s(t) lorsque l'entrée est une rampe de pente k.

Corrigé voir 16.

Exercice 17 - Ecart*

C2-03 Pas de corrigé pour cet exercice.

Soit le schéma-blocs suivant.

Question 1 *Exprimer* $\varepsilon(p)$ *en fonction de* E(p) *et* P(p).

Question 2 Évaluer la valeur finale de $\varepsilon(t)$ lorsque E(p) est un échelon d'amplitude E_0 et P(p) est un échelon d'amplitude P_0 .

Question 3 Évaluer la valeur finale de $\varepsilon(t)$ lorsque E(p) est un échelon d'amplitude E_0 et P(p) est une rampe

de pente P_0 .

Question 4 Évaluer la valeur finale de $\varepsilon(t)$ lorsque E(p) est une rampe de pente E_0 et P(p) est un échelon d'amplitude P_0 .

Question 5 Évaluer la valeur finale de $\varepsilon(t)$ lorsque E(p) est une rampe de pente E_0 et P(p)est une rampe de pente P_0 .

Corrigé voir 17.

C2-07 – Déterminer les actions mécaniques en statique

Exercice 18 - Suspension automobile **

C2-07 Pas de corrigé pour cet exercice.

On s'intéresse à la liaison entre l'axe de la toue et le châssis du véhicule. Les notations adoptées seront les suivantes : F_C^a (respectivement F_C^r , F_C^x) désignera la composante suivant \overrightarrow{a} (respectivement \overrightarrow{r} , \overrightarrow{x}) de l'effort extérieur exercé en C. On procédera de même pour le point D.

Question 1 En isolant l'ensemble {pneumatique + jante + axe de roue}, écrire les équations issues du principe fondamental de la statique appliqué au point C, en projection sur les axes de la base $(\overrightarrow{a}, \overrightarrow{r}, \overrightarrow{x})$ en fonction des composantes F_{sol}^a et F_{sol}^r et des dimensions d_0 , d_3 et d_4 .

Question 2 Résoudre littéralement le système.

Corrigé voir 18.

Exercice 19 – Suspension automobile **

C2-07 Pas de corrigé pour cet exercice.

Objectif L'objectif est de déterminer le couple articulaire C12 à appliquer sur le bras 2 afin de garantir l'effort de perçage et l'effort presseur.

Hypothèses:

- l'étude est réalisée pour une demi couture orbitale (couture supérieure);
- le repère $\mathcal{R}_0(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ sera supposé galiléen;
- $\overrightarrow{y_0}$ est l'axe vertical ascendant et $\overrightarrow{g} = -g \overrightarrow{y_0}$ avec $g = 9.81 \,\mathrm{m \, s^{-2}}$;
- toutes les liaisons sont supposées parfaites.

*Repérage et paramétrage

Le repère associé à l'embase fixe (0) est le repère $\mathcal{R}_0(O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}), \overrightarrow{y_0}$ étant l'axe vertical ascendant.

L'embase de rotation (1), en liaison pivot d'axe $(O_1, \overrightarrow{y_1})$, par rapport au bâti (0), a pour repère associé le repère $\mathcal{R}_1(O_1; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ tel que $O_0 = O_1$, $\overrightarrow{x_0} = \overrightarrow{x_1}$, $\overrightarrow{y_0} = \overrightarrow{y_1}$, $\overrightarrow{z_0} = \overrightarrow{z_1}$.

Le bras (2), en liaison pivot d'axe $(O_2, \overrightarrow{z_2})$ par rapport à l'embase de rotation (1), a pour repère associé le repère $\mathcal{R}_2(O_2; \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ tel que $\overrightarrow{O_1O_2} = L_1 \overrightarrow{x_1} + L_2 \overrightarrow{y_1}, \overrightarrow{z_1} = \overrightarrow{z_2}$ et $(\overrightarrow{x_1}, \overrightarrow{x_2}) = (\overrightarrow{y_1}, \overrightarrow{y_2}) = \theta_{12}$.

Le bras (3), en liaison pivot d'axe $(O_3, \overrightarrow{z_3})$ par rapport au bras (2), a pour repère associé le repère $\mathcal{R}_3(O_3; \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$ tel que $\overrightarrow{O_2O_3} = L_3\overrightarrow{x_2}, \overrightarrow{z_1} = \overrightarrow{z_3}$ et $(\overrightarrow{x_1}, \overrightarrow{x_3}) = (\overrightarrow{y_1}, \overrightarrow{y_3}) = \theta_{13}$.

Le bras (4), en liaison pivot d'axe $(O_4, \overrightarrow{x_4})$ par rapport au bras (3), a pour repère associé le repère $\mathcal{R}_4(O_4; \overrightarrow{x_4}, \overrightarrow{y_4}, \overrightarrow{z_4})$ tel que $\overrightarrow{O_3O_4} = L_4\overrightarrow{x_3} + l_5\overrightarrow{y_3}, \overrightarrow{x_3} = \overrightarrow{x_4}$ et $(\overrightarrow{y_3}, \overrightarrow{y_4}) = (\overrightarrow{z_3}, \overrightarrow{z_4}) = \theta_{34}$.

L'ensemble (E1) composé du bras (5), du poignet et de l'outil, en liaison pivot d'axe $(O_5, \overrightarrow{z_5})$ par rapport au bras (4), a pour repère associé le repère $\mathcal{R}_5(O_5; \overrightarrow{x_5}, \overrightarrow{y_5}, \overrightarrow{z_5})$ tel que $\overrightarrow{O_4O_5} = L_5\overrightarrow{x_3}, \overrightarrow{z_1} = \overrightarrow{z_5}$ et $(\overrightarrow{x_1}, \overrightarrow{x_5}) = (\overrightarrow{y_1}, \overrightarrow{y_5}) = \theta_{15}$.

La masse du bras (2) est notée M_2 et la position du centre de gravité est définie par $\overrightarrow{O_2G_2} = \frac{1}{2}L_3\overrightarrow{x_2}$.

La masse du bras (3) et du bras (4) est notée M_{34} et la position du centre de gravité est définie par $\overline{O_3}G_3 = \frac{1}{3}L_4\overrightarrow{x_3} + L_5\overrightarrow{y_3}$.

La masse de l'ensemble (E1) est notée M_{E1} et la position du centre de gravité est définie par $\overrightarrow{O_5G_5} = L_7\overrightarrow{x_5}$.

L'extrémité de l'outil est définie par le point P définie par $\overrightarrow{O_5P} = L_8 \overrightarrow{x_5}$.

Le torseur d'action mécanique lié au perçage sera

noté:
$$\{\mathcal{T}(\text{Tronçon (perçage}) \to E_1)\} = \left\{ \begin{array}{ccc} -F & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right\}_{P, \mathcal{P}}.$$

Un effort presseur est de plus nécessaire pour le perçage optimal des deux tronçons. Le torseur d'action mécanique associé sera noté :{ \mathcal{T} (Tronçon (presseur) $\rightarrow E_1$)} =

$$\left\{ egin{array}{ccc} -P & 0 \ 0 & 0 \ 0 & 0 \end{array}
ight\}_{P,\mathscr{R}_5}.$$

La rotation entre les solides (0) et (1) est supposée bloquée dans la suite du sujet.

Question 1 Réaliser le graphe de structure de l'ensemble en précisant les liaisons.

Question 2 Quel est l'ensemble Σ à isoler afin de déterminer le couple C_{12} .

Question 3 Réaliser un bilan des actions mécaniques extérieures appliquées à Σ et écrire les éléments de réduction de chaque torseur d'actions mécaniques.

Question 4 *Quel théorème doit-être appliqué et sur quel axe de projection, pour déterminer le couple* C_{12} ?

La configuration correspondant à la position extrême supérieure de la couture orbitale correspond aux angles suivants : $\theta_{12} = 60^{\circ}$, $\theta_{13} = -4^{\circ}$, $\theta_{15} = -90^{\circ}$.

Dans la suite de l'étude, l'angle θ_{13} sera considéré nul. **Question 5** *Déterminer l'équation littérale du couple* C_{12} *en fonction de* g, F, P, M_2 , M_{34} , M_{E1} , L_3 , L_4 , L_5 , L_6 , L_7 , θ_{12} , θ_{15} .

Les valeurs du robot considéré sont :

- $M_2 = 264 \,\mathrm{kg}$, $M_{234} = 430 \,\mathrm{kg}$, $M_{E1} = 2150 \,\mathrm{kg}$, $P = 150 \,\mathrm{N}$
- $L_1 = 0.405 \,\mathrm{m}, \ L_2 = 0.433 \,\mathrm{m}, \ L_3 = 1.075 \,\mathrm{m}, \ L_4 = 1.762 \,\mathrm{m}, \ L_5 = 0.165 \,\mathrm{m}, \ L_6 = 0.250 \,\mathrm{m}, \ L_7 = 0.550 \,\mathrm{m}, \ L_8 = 0.750 \,\mathrm{m}.$

Question 6 Déterminer alors la valeur du couple C_{12} .

La valeur limite supérieure du couple C_{12} est fixée par le constructeur à 9000 Nm. **Question 7** *Le choix du robot permettra-t-il de garantir les conditions d'assemblage dans cette position? Justifier la réponse.*

Corrigé voir 19.

Exercice 20 - Pèse camion **

C2-07 Pas de corrigé pour cet exercice.

On considère un bâti **0** auquel est attaché le repère $\Re = (O; \overrightarrow{x_0}; \overrightarrow{y_0}; \overrightarrow{z_0})$. Le champ de pesanteur est $g = -g \overrightarrow{y_0}$. La barre **1** est liée au bâti **0** par une liaison pivot parfaite d'axe $(A, \overrightarrow{z_0})$. Le plateau porte camion **2** est lié à la barre **1** par une liaison pivot parfaite d'axe $(C, \overrightarrow{z_0})$. Le levier **3** est lié au bâti **0** par une liaison pivot parfaite d'axe $(B, \overrightarrow{z_0})$. Ce levier est également lié au plateau **2** par une liaison pivot parfaite d'axe $(D, \overrightarrow{z_0})$. Le camion **4**, de centre

de masse G et de masse M inconnue, repose sur le plateau **2**. L'action mécanique connue est caractérisée par :

$$\{\text{ext} \to 3\} = \left\{ \begin{array}{c} -F \overrightarrow{y_0} \\ \overrightarrow{0} \end{array} \right\}_E.$$

Question 1 Déterminer la relation entre F et M. Que dire de la position du camion sur la plate-forme?

Question 2 Déterminer les actions mécaniques dans toutes les liaisons.

Corrigé voir ??.

0.6 B2-06 – Établir un modèle de comportement à partir d'une réponse temporelle ou fréquentielle

Exercice 21 - Identification temporelle *

B2-06 Pas de corrigé pour cet exercice.

Question 1 Déterminer la fonction de transfert du système.

Question 2 Déterminer la fonction de transfert du système.

Exercice 22 - Identification *

B2-06

Pas de corrigé pour cet exercice.

Question 1 Tracer le diagramme de Bode asymptotique.

Question 2 *Identifier le type de la fonction de transfert et ses valeurs remarquables.*

Exercice 23 - Identification *

B2-06

Pas de corrigé pour cet exercice.

Question 1 Déterminer les période et les pulsations de chacun des signaux..

Question 2 En déduire le gain et le déphasage en régime permanent pour chacune des courbes temporelles de sortie correspondant aux 3 entrées.

Exercice 24 - Identification *

B2-06

Pas de corrigé pour cet exercice.

Question 1 Déterminer la fonction de transfert du système.

Question 2 Déterminer la fonction de transfert du système.

B2-07 – Modéliser un système par schéma-blocs.

Exercice 25 - La Seine Musicale*

B2-07 Pas de corrigé pour cet exercice.

Question 1 En considérant que la perturbation $C_{pert}(p)$ est nulle, déterminer $H_f(p) = \frac{\Omega_m(p)}{\Omega_c(p)}$ sous forme canonique.

Question 2 Exprimer la fonction de transfert $H_r(p) = \frac{\Omega_m(p)}{C_{pert}(p)}$ en la mettant sous la forme : $H_r(p) = -\frac{\alpha(1+\tau p)}{1+\gamma n+\delta n^2}$ Exprimer α , τ , γ et δ en fonction des différents paramètres de l'étude.

Question 3 Exprimer $X_{ch}(p)$ en fonction de $\Omega_m(p)$ et $C_{pert}(p)$.

Exercice 26 - Machine de rééducation SysReeduc *

B2-07 Pas de corrigé pour cet exercice.

Question 1 À partir des équations proposées, déterminer les fonctions de transfert K_1 , K_2 , $H_3(p)$, $H_4(p)$, K_5 , K_6 , K_7 , K_8 et K_9 .

On a:

•
$$u_m(t) = e(t) + Ri(t) \Rightarrow U_m(p) = E(p) + RI(p)$$
 et $C_{M1}(p) = k_t I(p)$ donc $K_2 = \frac{k_t}{R}$;

•
$$E(p) = k_0 \Omega_m(p)$$
 et donc $K_7 = k_0$:

•
$$E(p) = k_e \Omega_m(p)$$
 et donc $K_7 = k_e$;
• $(M+m)r\rho_1p\Omega_m(p) = \frac{C_{M1}(p)}{\rho_1r} - F_p(p) \Leftrightarrow (M+m)r^2\rho_1^2p\Omega_m(p) = C_{M1}(p) - \rho_1rF_p(p)$ et donc $K_9 = \rho_1r$ et $H_3(p) = \frac{1}{(M+m)r^2\rho_1^2p}$;

• $H_4(p)$ permet d'obtenir une position à partir d'une vitesse. Il s'agit donc d'un intégrateur et $H_4(p) = \frac{1}{n}$;

- un codeur incrémental avec 1 émetteur-récepteur permet de détecter les fentes et les « non fentes » donc ici 1000 informations par tour. Avec un second émetteur, on double la résolution soit 2000 informations pour un tour soit $K_8 = \frac{2000}{2\pi}$
- en utilisant le réducteur et le poulie courroie, on a directement $K_5 = \rho_1$ et $K_6 = r$ (à convertir en mètres);
- enfin, K_1 convertit des mètres en incréments. X_c est la consigne que doit respectée X. Pour avoir un asservissement précis, il faut donc $\varepsilon = 0$ et $X = X_c$ soit $\varepsilon = 0 = K_1 X_C K_8 \theta_m = K_1 X_C K_8 \frac{X}{K_5 K_6}$. Au final, $K_1 = \frac{K_8}{K_5 K_6}$.

 Question 2 Montrer que le schéma-blocs peut être mis sous la forme suivante. On exprimera A, B et D en fonction

des paramètres du système r, ρ_1 , k_t , k_e , R, M, m et K_8 .

Correction

Exercice 27 - Quille pendulaire*

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

Correction D'une part, on transforme les équations dans le domaine de Laplace : $Q(p) = SpX(p) + \frac{V}{2R}p\Sigma(p)$ et $Mp^2X(p) = S\Sigma(p) - kX(p) - \lambda pX(p) - F_R(p)$. En utilisant le schéma-blocs, on a $\Sigma(p) = A_2 \left(A_1 Q(p) - X(p) \right) = A_1 A_2 Q(p) - A_2 X(p)$. Par ailleurs $\Sigma(p) = \frac{Q(p) - SpX(p)}{\frac{V}{2B}p} = Q(p) \frac{2B}{Vp} - X(p) \frac{S2B}{V}$. On a donc $A_2 = \frac{S2B}{V}$, $A_1 A_2 = \frac{2B}{Vp}$ soit $A_1 = \frac{C}{V}$ $\frac{2B}{Vp}\frac{V}{S2B} = \frac{1}{Sp}.$

On a aussi
$$X(p) = A_4 \left(-F_R(p) + A_3 \Sigma(p) \right) = -A_4 F_R(p) + A_3 A_4 \Sigma(p)$$
. Par ailleurs, $X(p) \left(Mp^2 + \lambda p + k \right) = S\Sigma(p) - F_R(p) \Leftrightarrow X(p) = \frac{S\Sigma(p)}{Mp^2 + \lambda p + k} - \frac{F_R(p)}{Mp^2 + \lambda p + k}$. On a donc : $A_4 = \frac{1}{Mp^2 + \lambda p + k}$ et $A_3 = S$. Au final, $A_1 = \frac{1}{Sp}$, $A_2 = \frac{S2B}{V}$, $A_3 = S$ et $A_4 = \frac{1}{Mp^2 + \lambda p + k}$.

Question 2 Donner les expressions des fonctions de transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Correction Méthode 1 : Utilisation des relations précédentes On a $X(p) = (H_1Q(p) - F_R(p))H_2(p)$.

Par ailleurs, on a vu que $X(p) = A_4(-F_R(p) + A_3\Sigma(p))$ et $\Sigma(p) = A_2(A_1Q(p) - X(p))$.

On a donc $X(p) = A_4(-F_R(p) + A_3A_2(A_1Q(p) - X(p))) \Leftrightarrow X(p)(1 + A_2A_3A_4) = A_4(-F_R(p) + A_3A_2A_1Q(p))$. On a

donc $H_1(p) = A_1 A_2 A_3$ et $H_2 = \frac{A_4}{1 + A_2 A_3 A_4}$

Méthode 2 : Lecture directe du schéma-blocs Revient à utiliser la méthode précédente.

Méthode 3 : Algèbre de schéma-blocs Le schéma-blocs proposé est équivalent au schéma suivant.

On retrouve le même résultat que précédemment.
$$A_1=\frac{1}{Sp},\ A_2=\frac{S2B}{V},\ A_3=S\ {\rm et}\ A_4=\frac{1}{Mp^2+\lambda p+k}.$$

En faisant le calcul on obtient :
$$H_1(p) = \frac{2BS}{pV}$$
 et $H_2 = \frac{\frac{1}{Mp^2 + \lambda p + k}}{1 + \frac{2BS^2}{V} \frac{1}{Mp^2 + \lambda p + k}} = \frac{1}{Mp^2 + \lambda p + k + \frac{2BS^2}{V}}$.

Question 3

Pour ce vérin non perturbé $(F_R = 0)$, donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des constantes.

Correction Dans ce cas,
$$\frac{X(p)}{Q(p)} = H_1(p)H_2(p)\frac{2BS}{p(MVp^2 + \lambda pV + kV + 2BS^2)}$$
.

Exercice 28 - Moteur à courant continux

B2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le schéma-blocs.

Exercice 29 - Vérin*

B2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le schéma-blocs.

•
$$U_c(p) = \frac{1}{K_a}I(p) + U_s(p)$$

• $Q(p) = SpX(p)$

•
$$O(p) = SpX(p)$$

•
$$U_S(p) = K_C \cdot X(p)$$

•
$$U_S(p) = SpX(p)$$

• $U_S(p) = K_C \cdot X(p)$
• $F(p) = \frac{Q(p)}{I(p)} = \frac{K_d}{1 + Tp}$

Exercice 30 - Banc d'épreuve hydraulique *

B2-07 Pas de corrigé pour cet exercice.

Question 1 Déduire de la relation précédente l'équation reliant Z(p), $P_e(p)$, $P_h(p)$, et Poids(p) = Mg/p, transformées de Laplace de z(t), $P_e(t)$, $P_h(t)$ et du poids perçu comme une perturbation. Les conditions initiales sont supposées nulles.

Correction
$$Mp^2Z(p) = S_h P_h(p) - S_e P_e(pt) - \frac{Mg}{p} - fpZ(p)$$

Question 2 En déduire, en tenant compte de l'équation du débit, deux équations liant L(p), $P_e(p)$ et $Q_e(p)$, transformées de Laplace de L(t), $P_e(t)$ et $Q_e(t)$.

Correction
$$Q_e(p) = (S_a - S_b)pL(p) + \frac{V_t}{B_e}pP_e(p)$$

Les conditions initiales sont supposées nulles.

Question 3 Compléter le schéma-blocs de l'ensemble (sans le distributeur hydraulique), l'entrée étant la pression d'huile régulée $P_r(p)$ et la sortie la pression d'épreuve dans le tube $P_e(p)$.

Correction

Exercice 31 - Fonctions de transfert*

B2-07

Pas de corrigé pour cet exercice.

Question 1 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

Question 2 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramètres caractéristiques.

Question 3 Déterminer la fonction de transfert en boucle ouverte. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

Question 4 Déterminer la fonction de transfert en boucle fermée. Mettre l'expression sous forme canonique et exprimer les paramétrés caractéristiques.

Exercice 32 - Calcul de FTBO*

B2-07

Pas de corrigé pour cet exercice.

Question 1 Déterminer la FTBO dans la cas suivant.

Question 2 Déterminer la FTBO dans la cas suivant.

Question 3 Déterminer la FTBO dans la cas suivant.

Question 4 Déterminer la FTBO dans la cas suivant.

Exercice 33 - Calcul de FTBO*

B2-07

Pas de corrigé pour cet exercice.

Question 1 Déterminer la FTBO dans la cas suivant.

Question 2 Déterminer la FTBO dans la cas suivant.

Question 3 Déterminer la FTBO dans la cas suivant.

Question 4 Déterminer la FTBO dans la cas suivant.