

ปูเป็นอาหารมีรสชาติอร่อยมาก และหลายประเทศทั่วโลก นำเข้าปูเพื่อการบริโภคเป็นจำนวนมากในทุกๆปี ประโยชน์หลักของการเลี้ยงปู คือ ค่าแรงต่ำมาก ต้นทุน การผลิตค่อนข้างต่ำและเติบโตเร็วมาก ธุรกิจการเลี้ยงปูเชิงพาณิชย์ เป็นการพัฒนาวิถีชีวิตของ ชาวพื้นที่ชายฝั่งทะเลด้วยการดูแลและการจัดการที่เหมาะสม เราสามารถสร้างรายได้จากธุรกิจการเลี้ยงปูได้มากกว่าการ เลี้ยงกุ้งอีกด้วย

ที่มาของข้อมูล Kaggle

https://www.kaggle.com/datasets/sidhus/crab-age-prediction

Crab Age Prediction

Physical attributes of Crabs found in Boston area - to predict age of Crab

Data Card Code (102) Discussion (2)

ข้อมูลที่นำมาใช้ทำโครงงาน

Attribute หรือ Feature

e⊋ id <u></u>	▲ Sex =	# Length =	# Diameter =	# Height =	# Weight =	# Shucked =	# Viscera W =	# Shell Weight =
74051	I	1.05	0.7625	0.275	8.618248	3.6570855	1.7293195	2.721552
74052	I	1.1625	0.8875	0.275	15.5071765	7.030676	3.24601775	3.96893
74053	F	1.2875	0.9875	0.325	14.571643	5.556502	3.8838815	4.819415
74054	F	1.55	0.9875	0.3875	28.3778495	13.380964	6.5487345	7.030676
74055	I	1.1125	0.85	0.2625	11.7650425	5.5281525	2.4664065	3.33106625
74056	М	1.425	1.1125	0.35	24.834162	8.731646	5.71242425	8.0796075
74057	М	1.7125	1.325	0.45	46.67745175	21.2337755	11.963489	11.3681495

id - ไอดีของปูแต่ละตัว
Sex - เพศของปู
Length - ความยาวของปู
Diameter - เส้นผ่านศูนย์กลางของปู
Height - ความสูงของปู

Weight - น้ำหนักของปู
Shucked Weight - น้ำหนักที่ชั่งได้ (ไม่รวมเปลือกของปู)
Viscera Weight - น้ำหนักอวัยวะภายใน (ช่องท้องส่วนลึกภายใน)
Shell Weight - น้ำหนักของเปลือก

ข้อมูลที่นำมาใช้ทำโครงงาน

Output หรือ Label

e⊋ id	=	# Age	=
74051		10	
74052		10	
74053		10	
74054		10	
74055		10	
74056		10	
74057		10	

id – ไอดีของปูแต่ละตัว

Age – เอาท์พุตเป็นตัวเลขซึ่งแสดงถึงอายุของปู

Platform ที่ใช้ทำโครงงาน

Kaggle

ศึกษาข้อมูลโจทย์และ Dataset

การวัดผล

Evaluation

Submissions will be evaluated using Mean Absolute Error (MAE),

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |x_i - y_i|$$

ศึกษาข้อมูลโจทย์และ Dataset

Train Data จะเป็นไฟล์ CSV ซึ่งมีทั้งหมด ประมาณ 74,000 แถว และมีจำนวน 10 คอลัมน์ ที่ประกอบไปด้วย

- 1. ID
- 2. Sex
- 3. Length
- 4. Diameter
- 5. Height

- 6. Weight
- 7. Shucked Weight
- 8. Viscera Weight
- 9. Shell Weight
- 10. Age

train.csv (5.21 MB)

ศึกษาข้อมูลโจทย์และ Dataset

การ Submission ต้องการผลลัพธ์เป็นไฟล์ CSV ที่ประกอบไปด้วยคอลัมน์ ID และ Age ซึ่งมีจำนวนทั้งหมดประมาณ 49,000 แถว

sample_submission.csv (467.74 kB)

ดูผลสรุปของข้อมูล

dftrain.describe()

	id	Length	Diameter	Height	Weight	Shucked Weight	Viscera Weight	Shell Weight	Age
count	74051.000000	74051.000000	74051.000000	74051.000000	74051.000000	74051.000000	74051.000000	74051.000000	74051.000000
mean	37025.000000	1.317460	1.024496	0.348089	23.385217	10.104270	5.058386	6.723870	9.967806
std	21376.826729	0.287757	0.237396	0.092034	12.648153	5.618025	2.792729	3.584372	3.175189
min	0.000000	0.187500	0.137500	0.000000	0.056699	0.028349	0.042524	0.042524	1.000000
25%	18512.500000	1.150000	0.887500	0.300000	13.437663	5.712424	2.863300	3.968930	8.000000
50%	37025.000000	1.375000	1.075000	0.362500	23.799405	9.908150	4.989512	6.931453	10.000000
75%	55537.500000	1.537500	1.200000	0.412500	32.162508	14.033003	6.988152	9.071840	11.000000
max	74050.000000	2.012815	1.612500	2.825000	80.101512	42.184056	21.545620	28.491248	29.000000

dftrain['Height'] = dftrain['Height'].replace({0:0.348089})

แปลงเพศเป็นตัวเลข

	id	Sex	Length	Diameter	Height	Weight	Shucked Weight	Viscera Weight	Shell Weight	Age
0	0	- 1	1.5250	1.1750	0.3750	28.973189	12.728926	6.647958	8.348928	9
1	1	- 1	1.1000	0.8250	0.2750	10.418441	4.521745	2.324659	3.401940	8
2	2	М	1.3875	1.1125	0.3750	24.777463	11.339800	5.556502	6.662133	9
3	3	F	1.7000	1.4125	0.5000	50.660556	20.354941	10.991839	14.996885	11
4	4	1	1.2500	1.0125	0.3375	23.289114	11.977664	4.507570	5.953395	8

74046	74046	F	1.6625	1.2625	0.4375	50.660556	20.680960	10.361742	12.332033	10
74047	74047	- 1	1.0750	0.8625	0.2750	10.446791	4.323299	2.296310	3.543687	6
74048	74048	F	1.4875	1.2000	0.4125	29.483480	12.303683	7.540967	8.079607	10
74049	74049	1	1.2125	0.9625	0.3125	16.768729	8.972617	2.919999	4.280774	8
74050	74050	- 1	0.9125	0.6750	0.2000	5.386405	2.055339	1.034757	1.700970	6

```
le = LabelEncoder()
dftrain['Sex'] = le.fit_transform(dftrain['Sex'])
```

Heat Map

X_Train = dftrain[['Shell Weight', 'Height', 'Diameter', 'Length']]
Y_Train = dftrain[['Age']]

Scale ค่าให้อยู่ระหว่าง O-1

```
scaler = MinMaxScaler()
```

X_Train=pd.DataFrame(scaler.fit_transform(X_Train), index=X_Train.index, columns=X_Train.columns)

Test=pd.DataFrame(scaler.fit_transform(Test), index=Test.index, columns=Test.columns)

	Shell Weight	Height	Diameter	Length
0	0.291978	0.128889	0.703390	0.732750
1	0.118087	0.093333	0.466102	0.499914
2	0.232686	0.128889	0.661017	0.657421
3	0.525660	0.173333	0.864407	0.828624
4	0.207773	0.115556	0.593220	0.582091
			_	•••
74046	0.431988	0.151111	0.762712	0.808080
74047	0.123069	0.093333	0.491525	0.486218
74048	0.282511	0.142222	0.720339	0.712206
74049	0.148979	0.106667	0.559322	0.561547
74050	0.058296	0.066667	0.364407	0.397192

Train Model & ปรับพารามิเตอร์

ใช้ KFold ในการแบ่งข้อมูล

```
cv = KFold(n_splits = 10)
i=0
for train_idx , test_idx in cv.split(X_Train1,Y_Train1):
    xxTrain , xxTest = X_Train.iloc[train_idx] , X_Train.iloc[test_idx]
    yyTrain , yyTest = Y_Train.iloc[train_idx] , Y_Train.iloc[test_idx]
```


Train Model & ปรับพารามิเตอร์


```
XGB_parameters = {
    'n_estimators': [100,500,1000],
    'learning_rate': [0.01,0.001]
}
```

```
xgb_grid_search = GridSearchCV(XGBRegressor(objective="reg:pseudohubererror"), XGB_parameters, scoring='neg_mean_absolute_error')
xgb_grid_search.fit(xxTrain1, yyTrain1)

xgb_best_params = xgb_grid_search.best_params_
```

Train Model & ปรับพารามิเตอร์

การ Train Model

```
lr = LinearRegression(**best_params)
lgb = LGBMRegressor(**lgb_best_params,early_stopping_rounds=500)
xgb = XGBRegressor(**xgb_best_params,early_stopping_rounds=500)
rf = RandomForestRegressor(**rf_best_params)
mlp.compile(optimizer=Adam(learning_rate=0.001), loss='mean_squared_error')
```

ประเมิน Model

สร้าง Array มาเก็บผล MAE แต่ละรอบ

```
maeLRarr = []
maeLGBarr = []
maeXGBarr = []
maeRFarr = []
maeMLParr = []
```

```
predXGB = xgb.predict(xxTest1)
maeXGB = np.sqrt(mean_absolute_error(yyTest1, np.round(predXGB)))
maeXGBarr.append(maeXGB)
```


