

### 2017 全国研究生入学考试考研数学三解析

本试卷满分 150, 考试时间 180 分钟

一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目 要求的,请将所选项前的字母填在答题纸指定位置上.

(1) 若函数 
$$f(x) = \begin{cases} \frac{1 - \cos \sqrt{x}}{ax}, & x > 0, \text{ 在 } x = 0, \text{ 处连续, 则 ( )} \\ b, & x \le 0, \end{cases}$$

(A) 
$$ab = \frac{1}{2}$$

(B) 
$$ab = -\frac{1}{2}$$

(C) 
$$ab = 0$$

(D) 
$$ab = 2$$

【答案】(A)

【解析】由 f(x) 在 x = 0连续可得  $\lim_{x \to 0} f(x) = f(0)$ 

$$\lim_{x \to 0} \frac{1 - \cos \sqrt{x}}{ax} = \lim_{x \to 0} \frac{\frac{1}{2}x}{ax} = \frac{1}{2a}, \quad f(0) = b \Rightarrow ab = \frac{1}{2}$$

(2) 二元函数 z = xy(3-x-y) 的极值点是 ( )

- (A) (0.0)

- (D) (1,1)

【答案】

【解析】 
$$z'_x = y(3-x-y) - xy = y(3-2x-y)$$

$$z'_{y} = x(3-x-y) - xy = x(3-x-2y)$$

$$z''_{xx} = -2y$$
,  $z''_{xy} = 3 - 2x - 2y$ ,  $z''_{yy} = -2x$ 

验证可得 (A)、(B)、(C)、(D) 四个选项均满足  $\begin{cases} z'_x = 0 \\ z' = 0 \end{cases}$ 

其中 (D) 选项对应

$$A=z''_{xx}(1,1)=-2$$
,  $B=z''_{xy}(1,1)=-1$ ,  $C=z''_{yy}(1,1)=-2$ 

满足 $AC-B^2=3>0$ ,所以该点为极值点.。

(3) 设函数 f(x) 可导,且 f(x)f'(x) > 0,则( )

(A) 
$$f(1) > f(-1)$$

(B) 
$$f(1) < f(-1)$$

(A) 
$$f(1) > f(-1)$$
 (B)  $f(1) < f(-1)$  (C)  $|f(1)| > |f(-1)|$  (D)  $|f(1)| < |f(-1)|$ 

(D) 
$$|f(1)| < |f(-1)|$$

## 驴沪江网校·考研



### 【答案】(C)

【解析】令 $F(x) = f^2(x)$ ,则有F'(x) = 2f(x)f'(x),故F(x)单调递增,则F(1) = F(-1),即 $[f(1)]^2 > [f(-1)]^2, \quad \mathbb{D}[f(1)] > [f(-1)], \quad \text{故选 C}.$ 

(4) 设级数 
$$\sum_{n=2}^{\infty} \left[ \sin \frac{1}{n} - k \ln \left( 1 - \frac{1}{n} \right) \right]$$
 收敛,则  $k = ($  )

(A) 1

(B) 2

(C) -1

(**D**) -2

### 【答案】(C)

【解析】由 
$$\sin \frac{1}{n} - k \ln(1 - \frac{1}{n}) = \frac{1}{n} - \frac{1}{6} \frac{1}{n^3} + o(\frac{1}{n^3}) + k \frac{1}{n} + \frac{k}{2n^2} + o(\frac{1}{n^2})$$
  
$$= (1 + k) \frac{1}{n} + \frac{k}{2n^2} - \frac{1}{6n^3} + o(\frac{1}{n^2}),$$

又  $\sum_{n=2}^{\infty} [\sin \frac{1}{n} - k \ln(1 - \frac{1}{n})]$  收敛,故有 k+1=0,即 k=-1,故选 C。

- (5) 设 $\alpha$  是n维单位列向量,E 为n阶单位矩阵,则
- (A)  $E-\alpha\alpha^T$ 不可逆

(B)  $E + \alpha \alpha^T$  不可逆

(C)  $E + 2\alpha\alpha^T$  不可逆

(D)  $E-2\alpha\alpha^T$ 不可逆

【解析】选项 A: 由  $(E - \alpha \alpha^T)\alpha = \alpha - \alpha = 0$  可知, $(E - \alpha \alpha^T)X = 0$  有非零解,故  $|E - \alpha \alpha^T| = 0$ ,

即  $E - \alpha \alpha^T$ 不可逆。选项 B:由  $r(\alpha \alpha^T) = 1$ 知,  $\alpha \alpha^T$  的特征值为  $\underbrace{0,0,\cdots 0,1}_{(n-1)^{\uparrow}}$ 

故  $E+\alpha\alpha^T$  的特征值为  $\underbrace{1,1,\cdots 1,2}_{(n-1)^{\uparrow}}$  ,因此  $\left|E+\alpha\alpha^T\right|=2\neq 0$  ,可逆。选项 C : 同理可得  $E+2\alpha\alpha^T$  的特

征值为 $\underbrace{1,1,\cdots 1,3}$ ,故 $\left|E\mathfrak{Q}\right|$   $\alpha\alpha^{T}$  3 0 ,可逆。选项D:同理可得 $E-2\alpha\alpha^{T}$ 的特征值为 $\underbrace{1,1,\cdots 1,-1}_{(n-1)^{\uparrow}}$ 

故 $|E-2\alpha\alpha^T|=-1\neq 0$ ,可逆。

(6) 设矩阵 
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
,  $B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ ,  $C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ , 则

(A) A 与 C 相似, B 与 C 相似

(B) A 与 C 相似,B 与 C 不相似

(C) A与C不相似,B与C相似

(D) A与C不相似,B与C不相似





### 【答案】(B)

【解析】由 $(\lambda E - A) = 0$  可知 A 的特征值为 2, 2, 1。

$$\therefore 3 - r(2E - A) = 1$$
。  $\therefore A$  可相似对角化,且 $A \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 

由 $|\lambda E - B| = 0$  可知 **B**的特征值为 2, 2, 1。

 $\therefore 3 - r(2E - B) = 2$ 。  $\therefore B$ 不可相似对角化,显然 C可相似对角化,

 $\therefore A \sim C$ 。且**B**不相似于**C**。

(7)设 A,B,C 为三个随机事件,且 A 与 C 相互独立, B 与 C 相互独立,则  $A \cup B$  与 C 相互独立的充要条件是

(A) A与B相互独立

(B) A与B 互不相容

(C) AB与C相互独立

(D) *AB* 与 *C* 互不相容

### 【答案】(C)

【解析】由 $A \cup B$ 与C,独立得

$$P((A+B)C) = P(A+B)P(C)$$

$$P(AC+BC) = (P(A)+P(B)-P(AB))P(C)$$

P(AC) + P(BC) - P(ABC) = (P(A) + P(B) - P(AB))P(C),

又由A 与 C, B 与 C独立得P(ABC) = P(A)P(B)P(C)。

由此验证(A)(B)(C)(D)四项,

又(C)选项可得P(ABC) = P(A)P(B)P(C)。

(8) 设  $X_1, X_2 \cdots X_n (n \ge 2)$  为来自总体  $N(\mu, 1)$  的简单随机样本,记  $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$  ,则下列结论中

不正确的是

(A) 
$$\sum_{i=1}^{n} (X_i - \mu)^2$$
 服从  $\chi^2$  分布

(B) 
$$2(X_n - X_1)^2$$
 服从  $\chi^2$  分布

(C) 
$$\sum_{i=1}^{n} (X_i - \overline{X})^2$$
 服从  $\chi^2$  分布

(D) 
$$n(\overline{X} - \mu)^2$$
 服从  $\chi^2$  分布

#### 【答案】(B)

【解析】(A) 
$$X_i - \mu \sim N(0,1)$$
 故  $\sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$ ;

## 罗沪江网校·考研



(B) 
$$X_n - X_1 \sim N(0, 2) \Rightarrow \frac{X_n - X_1}{\sqrt{2}} \sim N(0, 1)$$

$$\Rightarrow \left(\frac{x_n - x_1}{\sqrt{2}}\right)^2 \sim \chi^2(1)$$

$$\mathbb{I} \frac{(x_n - x_1)^2}{2} \sim \chi^2(1) \ .$$

(D) 
$$(\overline{X} - \mu) \sim N\left(0, \frac{1}{n}\right)$$
, 则  $\sqrt{n}(\overline{X} - \mu) \sim N(0, 1)$ ,所以  $n(\overline{X} - \mu)^2 \sim \chi^2(1)$ 。

二、填空题: 9-14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上.

(9) 
$$\int_{-\pi}^{\pi} (\sin^3 x + \sqrt{\pi^2 - x^2}) dx = \underline{\hspace{1cm}}$$

【答案】
$$\frac{\pi^3}{2}$$
。

【解析】由对称区间上积分的性质可知,

$$\int_{-\pi}^{\pi} (\sin^3 x + \sqrt{\pi^2 - x^2}) dx = \int_{-\pi}^{\pi} \sqrt{\pi^2 - x^2} dx = \frac{\pi^3}{2}$$

(10) 差分方程  $y_{t+1} - 2y_t = 2^t$  的通解为  $y_t = _____.$ 

【答案】 
$$y_t = C2^t + \frac{1}{2}t \cdot 2^t, C \in R$$
。

【解析】由  $y_{t+1}-2y_t=2^t$  可得齐次特征方程为 r-2=0, 得 r=2, 故其齐次方程的通解为

$$y = C \cdot 2^t$$
 , 设  $y^* = at2^t$  , 代入得  $a = \frac{1}{2}$  , 故通解为  $y_t = C2^t + \frac{1}{2}t \cdot 2^t$  ,  $C \in R$  。

(11)设生产某产品的平均成本 $\overline{C}(Q)$ = $1+e^{-Q}$ ,其中Q为产量,则边际成本为\_\_\_\_。

【答案】
$$C'(Q) = 1 + e^{-Q}(1 - Q)$$
。

【解析】 
$$\frac{C(Q)}{Q} = 1 + e^{-Q}$$
 得  $C(Q) = Q(1 + e^{-Q})$ ,

## ☞ 沪江网校·考研



则边际成本为:  $C'(Q) = 1 + e^{-Q}(1-Q)$ 。

(12) 设函数 f(x,y) 具有一阶连续偏导数,且  $df(x,y) = ye^y dx + x(1+y)e^y dy$ , f(0,0) = 0,则  $f(x,y) = ______$ 。

【答案】 xye<sup>y</sup>。

【解析】由题可知, $f_x' = ye^y$ , $f_y' = x(1+y)e^y$ , $f(x,y) = \int ye^y dx = xye^y + c(y)$ ,  $f_y' = xe^y + xye^y + c'(y) = xe^y + xye^y$ ,即 $c'(y) \oplus$ ,即c(y) = c,f(0,0) = 0,故c = 0,即f(y),

(13) 设矩阵  $\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$ ,  $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$  为线性无关的 3 维列向量组,则向量组  $\mathbf{A}\boldsymbol{\alpha}_1, \mathbf{A}\boldsymbol{\alpha}_2, \mathbf{A}\boldsymbol{\alpha}_3$  的

秩为。

### 【答案】2

### 【解析】

由于 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,可知矩阵 $(\alpha_1, \alpha_2, \alpha_3)$ 可逆,故 $r(A\alpha_1, A\alpha_2, A\alpha_3) = r(A(\alpha_1, \alpha_2, \alpha_3)) = r(A)$ ,不难计算的r(A) = 2,故 $r(A\alpha_1, A\alpha_2, A\alpha_3) = 2$ 。

(14) 设随机变量 X 的概率分布为  $P\{x=-2\}=\frac{1}{2}$ ,  $P\{x=1\}=a$ ,  $P\{x=3\}=b$ , 若 EX=0,则  $DX=\_\_\_$ 。

# 【答案】 $\frac{9}{2}$

### 【解析】

由分布律的归一性可知  $\frac{1}{2}+a+b=1$ ,又由于 EX=0,可知  $-2\times\frac{1}{2}+1+a+3b=0$ ,解得  $a=\frac{1}{4},b=\frac{1}{4}$ ,从而  $EX^2=(-2)^2+\frac{1}{2}+1^2\times\frac{1}{4}+3^2\times\frac{1}{4}=\frac{9}{2}$ , $DX=EX^2-(EX)^2=\frac{9}{2}$ 。

三、解答题: 15—23 小题, 共 94 分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.

(15) (本题满分 10 分) 求  $\lim_{x\to 0^+} \frac{\int_0^x \sqrt{x-t}e^t dt}{\sqrt{x^3}}$  。

【解析】先对变上限积分  $\int_0^x \sqrt{x-t}e^t dt$  作变量代换 u=x-t ,得

## 罗 沪江网校·考研



$$\int_{0}^{x} \sqrt{x - t} e^{t} dt = \int_{x}^{0} \sqrt{u} e^{x - u} (-du) = e^{x} \int_{0}^{x} \sqrt{u} e^{-u} du$$

则由洛必达法则可知:

原式= 
$$\lim_{x\to 0^+} \frac{e^x \int_0^x \sqrt{u} e^{-u} du + \sqrt{x}}{\frac{3}{2}\sqrt{x}}$$

$$= \frac{2}{3} \lim_{x \to 0^{+}} \frac{\int_{0}^{x} \sqrt{u} e^{-u} du}{\sqrt{x} e^{-x}} + \frac{2}{3}$$

$$= \frac{2}{3} \lim_{x \to 0^{+}} \frac{\sqrt{x}e^{-x}}{-\sqrt{x}e^{-x} + \frac{1}{2\sqrt{x}}e^{-x}} + \frac{2}{3}$$

$$= \frac{2}{3} \lim_{x \to 0^{+}} \frac{xe^{-x}}{-xe^{-x} + \frac{1}{2}e^{-x}} + \frac{2}{3}$$

 $\frac{2}{3}$ 



为边界的无界区域。

### 【解析】

积分区域如图所示,选用直接坐标计算该积分,先对y积分,后对x积分得

## ₽沪江网校·考研





(17) (本题满分 10 分)求 $\lim_{n\to\infty} \sum_{k=1}^{n} \frac{k}{n^2} \ln(1+\frac{k}{n})$ 。

【解析】由定积分的定义式可知

原 式 = 
$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{n} \ln \left(1 + \frac{k}{n}\right) = \int_{0}^{1} x \ln(1+x) dx$$
 , 再 由 分 部 积 分 法 可 知 :

$$\int_{0}^{1} x \ln(1+x) dx = \frac{1}{2} \int_{0}^{1} \ln(1+x) d(x^{2}-1) = \frac{x^{2}-1}{2} \ln(1+x) \Big|_{0}^{1} - \int_{0}^{1} \frac{x^{2}-1}{2} d \ln(1+x) \Big|_{0}^{1}$$

$$= -\frac{1}{2} \int_{0}^{1} (x-1) dx = -\frac{1}{4} (x-1)^{2} \Big|_{0}^{1} = \frac{1}{4}$$

(18) (本题满分 10 分)已知方程  $\frac{1}{\ln(1+x)} - \frac{1}{x} = k$  在区间 (0,1) 内有实根, 试确定常数 k 的取值范围。

### 【解析】

$$\Leftrightarrow f(x) = \frac{1}{\ln(1+x)} - \frac{1}{x},$$

$$f'(x) = -\frac{1}{\ln^2(1+x)} \cdot \frac{1}{1+x} + \frac{1}{x^2}$$
$$= \frac{(1+x)\ln^2(1+x) - x^2}{x^2(1+x)\ln^2(1+x)}$$

## 》沪江网校·考研



$$g'(x) = \ln^2(1+x) + 2\ln(1+x) - 2x$$

$$g''(x) = 2\frac{\ln(1+x) - x}{1+x} < 0, x \in (0,1)$$

故 g'(x) 在 [0,1] 上单调递减,从而  $x \in (0,1)$  时 g'(x) < g'(0) = 0

故 g(x) 在[0,1] 上单调递减,从而  $x \in (0,1)$  时 g(x) < g(0) = 0

因此有 f'(x) , 可知 f(x) 在 (0,1] 上单调递减,从而  $f(1) = \frac{1}{\ln 2} - 1$  ,

$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \left(\frac{1}{\ln(1+x)} - \frac{1}{x}\right) = \frac{1}{2}, \text{ yill } \text{ where } f(x) = k \text{ and } (0,1) \text{ holy } \text{ holy } \text{ holy } 1 = k \text{ and } 1 = 1 < k < \frac{1}{2}.$$

(19) (本题满分 10 分) 设  $a_0=1$ ,  $a_1=0$ ,  $a_{n+1}=\frac{1}{n+1}(na_n+a_{n-1})(n=1,2,\cdots)$ , S(x) 为幂级数

$$\sum_{n=0}^{\infty} a_n x^n$$
 的和函数,

(I) 证明幂级数  $\sum_{n=0}^{\infty} a_n x^n$  的收敛半径不小于1;

(II) 证明 (1-x)S'(x)-xS(x)=0 ( $x \in (-1,1)$ ), 并求 S(x) 的表达式。

【解析】(I) 由  $a_{n+1} = \frac{1}{n+1} (na_n + a_{n-1})$ , 两边同时减去  $a_n$  可知

$$a_{n+1} - a_n = \frac{-1}{n+1} (a_n - a_{n-1})$$

进而有 
$$a_{n+1} - a_n = \frac{-1}{n+1} \cdot \frac{-1}{n} (a_{n-1} - a_{n-2}) = \dots = \frac{(-1)^n}{(n+1)!} (a_1 - a_0) = \frac{(-1)^n}{(n+1)!}$$

从而有 
$$a_n = a_{n-1} + \frac{(-1)^{n-1}}{n!} = a_{n-2} + \frac{(-1)^{n-2}}{(n-1)!} + \frac{(-1)^{n-1}}{n!} = \dots = \sum_{k=1}^n \frac{(-1)^{k-1}}{k!}$$

则 
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} \le \lim_{n\to\infty} \sqrt[n]{1+\frac{1}{2!}+\cdots+\frac{1}{n!}} \le \lim_{n\to\infty} \sqrt[n]{n} = 1$$
, 故收敛半径  $R \ge 1$ ;

(II) 由逐项求导定理可知  $S'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}$ 

故 
$$(1-x)S'(x) = (1-x)\sum_{n=1}^{\infty} na_n x^{n-1} = \sum_{n=1}^{\infty} na_n x^{n-1} - \sum_{n=1}^{\infty} na_n x^n$$





$$= \sum_{n=0}^{\infty} (n+1)a_{n+1}x^{n} - \sum_{n=1}^{\infty} na_{n}x^{n} = \sum_{n=1}^{\infty} [(n+1)a_{n+1} - na_{n}]x^{n} + a_{1}x$$

$$xS(x) = \sum_{n=0}^{\infty} a_n x^{n+1} = \sum_{n=1}^{\infty} a_{n-1} x^n$$

则 
$$(1-x)S'(x) - xS(x) = \sum_{n=1}^{\infty} [(n+1)a_{n+1} - na_n - a_{n-1}]x^n + a_1x$$

又由于
$$a_1 = 0$$
,故 $(1-x)S'(x) - xS(x) = 0$ 

解此微分方程可得 
$$S(x) = \frac{ce^{-x}}{1-x}$$

又由于  $S(0) = a_0 = 1$ , 可知 c = 1, 从而  $S(x) = \frac{e^{-x}}{1-x}$ 。

- (20)(本题满分 10 分)设三阶矩阵  $A=(\alpha_1,\alpha_2,\alpha_3)$  有3 个不同的特征值,且  $\alpha_3=\alpha_1+2\alpha_2$ ,
- (I) 证明 r(A) = 2;
- (II) 若 $\beta = \alpha_1 + \alpha_2 + \alpha_3$ ,求方程组 $Ax = \beta$ 的通解。

【解析】(I) 由  $\alpha_3 = \alpha_1 + 2\alpha_2$  可知  $\alpha_1, \alpha_2, \alpha_3$  线性相关,从而  $r(A) \le 2$  ,可知 0 为 A 的一个特征值,

设A的另外两个特征值为 $\lambda_1,\lambda_2$ ,由于A有三个互不相同特征值,可知A可以相似对角化,从而A

相似于对角矩阵 
$$\Lambda=\begin{pmatrix}\lambda_1&&&\\&\lambda_2&&\\&&0\end{pmatrix}$$
,由于  $\lambda_1,\lambda_2\neq 0$ ,可知  $r(\Lambda)=2$ ,从而  $r(A)=r(\Lambda)=2$ 。

(II) 先求 Ax = 0 的通解:由于 r(A) = 2,可知 Ax = 0 的基础解系中仅含有一个向量,从而 Ax = 0

的任何一个非零解均为 
$$Ax=0$$
 的基础解系。由于  $\alpha_3=\alpha_1+2\alpha_2$ ,可知  $A\begin{pmatrix}1\\2\\-1\end{pmatrix}=\alpha_1+2\alpha_2-\alpha_3=0$ ,

因此
$$\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$$
即为  $Ax=0$ 的基础解系,  $Ax=0$ 的通解为  $k\begin{pmatrix} 1\\2\\-1 \end{pmatrix}$ ,  $k\in R$ 。 再求  $Ax=\beta$  的特解:显然

## ₽沪江网校·考研



$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \beta$$
,因此 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 即为 $Ax = \beta$ 的特解,综上所述, $Ax = \beta$ 的通解为 $k \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ , $k \in R$ 

(21) (本题满分 10 分) 设二次型  $f(x_1,x_2,x_3)=2x_1^2-x_2^2+ax_3^2+2x_1x_2-8x_1x_3+2x_2x_3$ 在正交变换 x=Qy 下标准形为  $\lambda_1y_1^2+\lambda_2y_2^2$ ,求 a 的值及一个正交矩阵 Q。

**【解析】**二次型的矩阵为
$$A = \begin{pmatrix} 2 & 1 & -4 \\ 1 & -1 & 1 \\ -4 & 1 & a \end{pmatrix}$$
,由于二次型在正交变换下的标准形为 $\lambda_1 y_1^2 + \lambda_2 y_2^2$ ,

可知0为A的一个特征值,从而|A|=-3a+6=0,可得a=2。要计算正交矩阵Q,先求A的特

征值,则由
$$\left|\lambda E - A\right| = \begin{vmatrix} \lambda - 2 & -1 & 4 \\ -1 & \lambda + 1 & -1 \\ 4 & -1 & \lambda - 2 \end{vmatrix} = \lambda(\lambda - 6)(\lambda + 3) = 0$$
,得 $A$ 的特征值为 $0, 6, -3$ 。

再求 6 的特征向量: 
$$(A-6E)x=0$$
 的基础解系为  $\alpha_2=\begin{pmatrix} -1\\0\\1 \end{pmatrix}$ ,单位化得  $\beta_2=\frac{1}{\sqrt{2}}\begin{pmatrix} -1\\0\\1 \end{pmatrix}$ ,

再求 
$$-3$$
 的特征向量:  $(A+3E)x=0$  的基础解系为  $\alpha_3=\begin{pmatrix}1\\-1\\1\end{pmatrix}$ ,单位化得  $\beta_3=\frac{1}{\sqrt{3}}\begin{pmatrix}1\\-1\\1\end{pmatrix}$ ,故

$$Q = (\beta_2, \beta_3, \beta_1) = \begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \\ 0 & -\frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{3} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} & \frac{\sqrt{6}}{6} \end{pmatrix}$$

(22)(本题满分 11 分)设随机变量 X,Y 相互独立,且 X 的概率分布为  $P\{X=0\}=P\{X=2\}=\frac{1}{2}$ ,

## 罗沪江网校·考研



Y的概率密度为  $f(y) = \begin{cases} 2y, & 0 < y < 1, \\ 0, & 其他, \end{cases}$ 

- (I) 求 $P{Y \le EY}$ ;
- (II) 求Z = X + Y的概率密度。

**【解析】**(I) 由数字特征的计算公式可知:  $EY = \int_{-\infty}^{+\infty} yf(y)dy = \int_{0}^{1} 2y^{2}dy = \frac{2}{3}$ .

则 
$$P{Y \le EY} = P\left\{Y \le \frac{2}{3}\right\} = \int_{-\infty}^{\frac{2}{3}} f(y)dy = \int_{0}^{\frac{2}{3}} 2ydy = \frac{4}{9}$$
.

( II ) 先求 Z 的分布函数,由分布函数的定义可知:  $F_Z(z) = P\{Z \le z\} = P\{X + Y \le z\}$ 。

由于X为离散型随机变量,则由全概率公式可知

$$= P\{X = 0\}P\{X + Y \le z \mid X = 0\} + P\{X = 1\}P\{X + Y \le z \mid X = 1\}$$

$$F_{Z}(z) = P\{X + Y \le z\} = \frac{1}{2}P\{Y \le z\} + \frac{1}{2}P\{Y \le z - 1\}$$
$$= \frac{1}{2}F_{Y}(z) + \frac{1}{2}F_{Y}(z - 1)$$

(其中 $F_Y(z)$ 为Y的分布函数:  $F_Y(z) = P\{Y \le z\}$ 

- (23)(本题满分 10 分)某工程师为了解一台天平的精度,用该天平对一物体的质量做 n 次测量,该物体的质量  $\mu$  是已知的。设 n 次测量结果为  $X_1, X_2, \cdots X_n$  相互独立且服从正态分布  $N(\mu, \sigma^2)$  ,该工程师记录的是 n 次测量的绝对误差  $Z_i = |X_i \mu| (i = 1, 2, \cdots n)$  ,利用  $Z_1, Z_2, \cdots Z_n$  估计  $\sigma$
- (I) 求 $Z_1$ 的概率密度;
- (II) 利用一阶矩求 $\sigma$ 的矩估计量;
- (IIII) 求 $\sigma$ 的最大似然估计量;

【解析】(I) 因为  $X_i \sim N$  ( $\mu \sigma^2$  , 所以  $Y_i = X_i - \mu \sim N$  ( $0\sigma^2$  , 对应的概率密度为

$$f_{Y}(y) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{y^{2}}{2\sigma^{2}}}$$
,设 $Z_{i}$ 的分布函数为 $F(z)$ ,对应的概率密度为 $f(z)$ ;

当z<0时,F(z)=0;

当 
$$z \ge 0$$
 时,  $F(z) = P\{Z_i \le z\} = P\{|Y_i| \le z\} = P\{-z \le Y_i \le z\} = \int_{-z}^{z} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{y^2}{2\sigma^2}} dy$ ;

## ☞ 沪江网校·考研



则 
$$Z_i$$
 的概率密度为  $f(z) = F'(z) =$  
$$\begin{cases} \frac{2}{\sqrt{2\pi}\sigma} e^{-\frac{z^2}{2\sigma^2}}, & \text{z>0} \\ 0, & \text{z} \le 0 \end{cases}$$
;

(II) 因为 
$$EZ_i = \int_0^{+\infty} z \frac{2}{\sqrt{2\pi\sigma}} e^{-\frac{z^2}{2\sigma^2}} dz = \frac{2\sigma}{\sqrt{2\pi}}$$
, 所以  $\sigma = \sqrt{\frac{\pi}{2}} EZ_i$ , 从而  $\sigma$  的矩估计量为

$$\sigma = \sqrt{\frac{\pi}{2}} \frac{1}{n} \sum_{i=1}^{n} Z_i = \sqrt{\frac{\pi}{2}} \overline{Z};$$

(II) 由题知对应的似然函数为
$$L(z_1, z_2, ..., z_n, \sigma) = \prod_{i=1}^n \sqrt{\frac{2}{\pi}} \frac{1}{\sigma} e^{-\frac{z_i^2}{2\sigma^2}}$$
, 取对数得:

$$\ln L = \sum_{i=1}^{n} \left( \ln \sqrt{\frac{2}{\pi}} - \ln \sigma - \frac{z_i^2}{2\sigma^2} \right), \quad \text{Min} \quad \frac{d \ln L(\sigma)}{d\sigma} = \sum_{i=1}^{n} \left( -\frac{1}{\sigma} + \frac{z_i^2}{\sigma^3} \right), \quad \text{Respectively} \quad \frac{d \ln L(\sigma)}{d\sigma} = 0,$$

得
$$\sigma = \sqrt{\frac{1}{n}\sum_{i=1}^{n}{z_{i}^{2}}}$$
,所以 $\sigma$ 的最大似然估计量为 $\sigma = \sqrt{\frac{1}{n}\sum_{i=1}^{n}{Z_{i}^{2}}}$ 。