
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: markspencer

Timestamp: Thu Jul 12 15:27:39 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 10522366 Version No: 2.0

Input Set:

Output Set:

Started: 2007-07-06 15:28:44.369

Finished: 2007-07-06 15:28:45.210

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 841 ms

Total Warnings: 13

Total Errors: 0

No. of SeqIDs Defined: 24

Actual SeqID Count: 24

Error code		Error Description				
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (1)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (2)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (3)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (4)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (5)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (6)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (8)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (10)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (11)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (12)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (13)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (21)
W	213	Artificial o	Unknown	found	in <213>	in SEQ ID (22)

SEQUENCE LISTING

```
<110> MACHIDA, Masayuki
      MASAKI, Haruhiko
      KUNIHIRO, Sumiko
      HAGIWARA, Hiroko
<120> MARKER FOR SELECTING TRANSFORMANT WITH THE USE OF LETHAL GENE
<130> 040894-7170-US
<140> 10522366
<141> 2007-07-06
      US 10/522,366
<150>
<151>
      2005-01-25
<150> PCT/JP03/09543
<151> 2003-07-28
<150> JP 2002-218735
<151> 2002-07-26
<160> 24
<170> PatentIn version 3.4
<210> 1
<211> 28
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 1
                                                                    28
gctgatgctg cattgagttc tgctatgg
<210> 2
<211> 57
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 2
                                                                   57
gttaaatcca atttaagtcc cataacttgg ccgctatggc ctcaaagata tttcttg
<210> 3
<211> 57
<212> DNA
<213> Artificial sequence
```

<220>

```
<223> Primer
<400> 3
caagaaatat ctttgaggcc atagcggcca agttatggga cttaaattgg atttaac
<210> 4
<211> 28
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 4
tcatccctga taatatttga tcaccaat
                                                                     28
<210> 5
<211> 43
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 5
                                                                     43
gcatggccgc ctcggccgaa aggttttaaa gattacgggc atg
<210> 6
<211> 34
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 6
                                                                     34
cgatgaattc tcaccaatca ccatcacgat aatc
<210> 7
<211> 598
<212> DNA
<213> Escherichia coli
<400> 7
gcatggccgc ctcggccgaa aggttttaaa gattacgggc atgattatca tccagctccg
                                                                   60
aaaactgaga atattaaagg gcttggtgat cttaagcctg ggataccaaa aacaccaaag
                                                                 120
cagaatggtg gtggaaaacg caagcgctgg actggagata aagggcgtaa gatttatgag
                                                                  180
                                                                   240
tgggattete ageatggtga gettgagggg tategtgeea gtgatggtea geatettgge
```

tcatttgacc ctaaaacagg caatcagttg aaaggtccag atccgaaacg aaatatcaag

300

	cttt gaggccatag (cggccaagtt	atgggactta	aattggattt	aacttggttt	360
gataaa	agta cagaagattt t	taagggtgag	gagtattcaa	aagattttgg	agatgacggt	420
tcagtt	atgg aaagtctagg t	tgtgcctttt	aaggataatg	ttaataacgg	ttgctttgat	480
gttata	gctg aatgggtacc t	tttgctacaa	ccatacttta	atcatcaaat	tgatatttcc	540
gataat	gagt attttgtttc (gtttgattat	cgtgatggtg	attggtgaga	attcatcg	598
<210>	8					
<211>	40					
<211>	DNA					
<213>	Artificial seque	ence				
<220>						
<223>	Primer					
12232	TIMET					
<400>	8					
	tagt agtagaaagg t	ttttaaagat	tacqqqcatq			40
99	9999					
<210>	9					
<211>	46					
<212>	DNA					
<213>	Escherichia col:	i				
<400>	9					
	9					
gcatgg	ecge eteggeegta (gaaaggtttt	aaagattacg	ggcatg		46
gcatgg		gaaaggtttt	aaagattacg	ggcatg		46
	ccgc ctcggccgta (gaaaggtttt	aaagattacg	ggcatg		46
<210>	cege eteggeegta (gaaaggtttt	aaagattacg	ggcatg		46
<210> <211>	ccgc ctcggccgta o	gaaaggtttt	aaagattacg	ggcatg		46
<210> <211> <212>	ccgc ctcggccgta (10 49 DNA		aaagattacg	ggcatg		46
<210> <211>	ccgc ctcggccgta o		aaagattacg	ggcatg		46
<210> <211> <212> <213>	ccgc ctcggccgta (10 49 DNA		aaagattacg	ggcatg		46
<210> <211> <212> <213> <220>	ccgc ctcggccgta o 10 49 DNA Artificial seque		aaagattacg	ggcatg		46
<210> <211> <212> <213> <220>	ccgc ctcggccgta (10 49 DNA		aaagattacg	ggcatg		46
<210> <211> <212> <213> <220>	ccgc ctcggccgta o 10 49 DNA Artificial seque		aaagattacg	ggcatg		46
<210> <211> <212> <213> <223> <400>	10 49 DNA Artificial seque	ence				46
<210> <211> <212> <213> <223> <400>	10 49 DNA Artificial seque	ence				
<210> <211> <212> <213> <223> <400> gcatgg	10 49 DNA Artificial seque Primer 10 ccgc ctcggccgta	ence				
<210> <211> <212> <213> <223> <400> gcatgg	10 49 DNA Artificial seque Primer 10 ccgc ctcggccgta o	ence				
<210> <211> <212> <213> <223> <400> gcatgg	10 49 DNA Artificial seque Primer 10 ccgc ctcggccgta o	ence				
<210> <211> <212> <213> <223> <400> gcatgg	10 49 DNA Artificial seque Primer 10 ccgc ctcggccgta o	ence gtagaaaggt				
<210> <211> <212> <213> <223> <400> gcatgg	10 49 DNA Artificial seque Primer 10 ccgc ctcggccgta o	ence gtagaaaggt				
<210> <211> <212> <213> <223> <400> gcatgg <211> <212> <213>	10 49 DNA Artificial seque Primer 10 ccgc ctcggccgta o	ence gtagaaaggt				
<210> <211> <212> <213> <223> <223> <400> gcatgg <211> <212> <213> <220>	10 49 DNA Artificial seque Primer 10 ccgc ctcggccgta o	ence gtagaaaggt				
<210> <211> <212> <213> <223> <400> gcatgg <211> <212> <213>	10 49 DNA Artificial seque Primer 10 ccgc ctcggccgta o	ence gtagaaaggt				
<210> <211> <212> <213> <223> <223> <400> gcatgg <211> <212> <213> <220>	10 49 DNA Artificial seque Primer 10 ccgc ctcggccgta o	ence gtagaaaggt				
<210> <211> <212> <213> <223> <223> <400> gcatgg <211> <212> <213> <400> <211> <212> <213>	10 49 DNA Artificial seque Primer 10 ccgc ctcggccgta o	ence gtagaaaggt ence	tttaaagatt	acgggcatg	tα	

```
<210> 12
<211> 55
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 12
gcatggccgc ctcggccgta gtagtagtag aaaggtttta aagattacgg gcatg
                                                                     55
<210> 13
<211> 58
<212> DNA
<213> Artificial sequence
<220>
<223> Primer
<400> 13
gcatggccgc ctcggccgta gtagtagtag tagaaaggtt ttaaagatta cgggcatg
                                                                     58
<210> 14
<211> 607
<212> DNA
<213> Escherichia coli
<400> 14
gcatggccgc ctcggccgta gtagtagaaa ggttttaaag attacgggca tgattatcat
                                                                     60
                                                                     120
ccagctccga aaactgagaa tattaaaggg cttggtgatc ttaagcctgg gataccaaaa
acaccaaagc agaatggtgg tggaaaacgc aagcgctgga ctggagataa agggcgtaag
                                                                    180
atttatgagt gggattctca gcatggtgag cttgaggggt atcgtgccag tgatggtcag
                                                                     240
catcttggct catttgaccc taaaacaggc aatcagttga aaggtccaga tccgaaacga
                                                                     300
                                                                     360
aatatcaaga aatatctttg aggccatagc ggccaagtta tgggacttaa attggattta
                                                                     420
acttggtttg ataaaagtac agaagatttt aagggtgagg agtattcaaa agattttgga
gatgacggtt cagttatgga aagtctaggt gtgcctttta aggataatgt taataacggt
                                                                     480
tgctttgatg ttatagctga atgggtacct ttgctacaac catactttaa tcatcaaatt
                                                                     540
gatatttccg ataatgagta ttttgtttcg tttgattatc gtgatggtga ttggtgagaa
                                                                     600
                                                                     607
ttcatcg
<210> 15
<211> 258
<212> DNA
```

<213> Escherichia coli

<400> 15 60 atgggactta aattggattt aacttggttt gataaaagta cagaagattt taagggtgag gagtattcaa aagattttgg agatgacggt tcagttatgg aaagtctagg tgtgcctttt 120 aaggataatg ttaataacgg ttgctttgat gttatagctg aatgggtacc tttgctacaa 180 ccatacttta atcatcaaat tgatatttcc gataatgagt attttgtttc gtttgattat 240 258 cgtgatggtg attggtga <210> 16 <211> 3066 <212> DNA <213> Escherichia coli <400> 16 aactcggttt taatcagacc tggcatgagt ggaagcggga cgaacagcac aggcaacaac aacgccgccc cgggcacttc cggggcatga gtatgtgata tccggggctg caccccggac 120 cccgccaaca catcacgggc cacaaaattt tttgtggccc gctctgcgtt ttctaagtgt 180 tatccctcct gatttctaaa aaattttcca cctgaacttg acagaaaaaa cgatgacgag 240 300 tactttttga tctgtacata aacccagtgg ttttatgtac agtattaatc gtgtaatcaa ttgttttaac gcttaaaaga gggaattttt atgagcggtg gcgatggacg cggccataac 360 acgggcgcgc atagcacaag tggtaacatt aatggtggcc cgaccgggct tggtgtaggt 420 480 ggtggtgctt ctgatggctc cggatggagt tcggaaaata acccgtgggg tggtggttcc ggtagcggca ttcactgggg tggtggttcc ggtcatggta atggcggggg gaatggtaat 600 tccggtggtg gttcgggaac aggcggtaat ctgtcagcag tagctgcgcc agtggcattt ggttttccgg cactttccac tccaggagct ggcggtctgg cggtcagtat ttcagcggga 660

gcattatcgg cagctattgc tgatattatg gctgccctga aaggaccgtt taaatttggt

ctttgggggg tggctttata tggtgtattg ccatcacaaa tagcgaaaga tgaccccaat

atgatgtcaa agattgtgac gtcattaccc gcagatgata ttactgaatc acctgtcagt

tcattacctc tcgataaggc aacagtaaac gtaaatgttc gtgttgttga tgatgtaaaa

gacgagcgac agaatatttc ggttgtttca ggtgttccga tgagtgttcc ggtggttgat

gcaaaaccta ccgaacgtcc gggtgttttt acggcatcaa ttccaggtgc acctgttctg

aatatttcag ttaataacag tacgccagca gtacagacat taagcccagg tgttacaaat

aatactgata aggatgttcg cccggcagga tttactcagg gtggtaatac cagggatgca

720

780

840

900

960

1020

1080

1140

gttattcgat	tcccgaagga	cagcggtcat	aatgccgtat	atgtttcagt	gagtgatgtt	1200
cttagccctg	accaggtaaa	acaacgtcaa	gatgaagaaa	atcgccgtca	gcaggaatgg	1260
gatgctacgc	atccggttga	agcggctgag	cgaaattatg	aacgcgcgcg	tgcagagctg	1320
aatcaggcaa	atgaagatgt	tgccagaaat	caggagcgac	aggctaaagc	tgttcaggtt	1380
tataattcgc	gtaaaagcga	acttgatgca	gcgaataaaa	ctcttgctga	tgcaatagct	1440
gaaataaaac	aatttaatcg	atttgcccat	gacccaatgg	ctggcggtca	cagaatgtgg	1500
caaatggccg	ggcttaaagc	ccagcgggcg	cagacggatg	taaataataa	gcaggctgca	1560
tttgatgctg	ctgcaaaaga	gaagtcagat	gctgatgctg	cattgagttc	tgctatggaa	1620
agcaggaaga	agaaagaaga	taagaaaagg	agtgctgaaa	ataatttaaa	cgatgaaaag	1680
aataagccca	gaaaaggttt	taaagattac	gggcatgatt	atcatccagc	tccgaaaact	1740
gagaatatta	aagggcttgg	tgatcttaag	cctgggatac	caaaaacacc	aaagcagaat	1800
ggtggtggaa	aacgcaagcg	ctggactgga	gataaagggc	gtaagattta	tgagtgggat	1860
tctcagcatg	gtgagcttga	ggggtatcgt	gccagtgatg	gtcagcatct	tggctcattt	1920
gaccctaaaa	caggcaatca	gttgaaaggt	ccagatccga	aacgaaatat	caagaaatat	1980
ctttgagagg	aagttatggg	acttaaattg	gatttaactt	ggtttgataa	aagtacagaa	2040
gattttaagg	gtgaggagta	ttcaaaagat	tttggagatg	acggttcagt	tatggaaagt	2100
ctaggtgtgc	cttttaagga	taatgttaat	aacggttgct	ttgatgttat	agctgaatgg	2160
gtacctttgc	tacaaccata	ctttaatcat	caaattgata	tttccgataa	tgagtatttt	2220
gtttcgtttg	attatcgtga	tggtgattgg	tgatcaaata	ttatcaggga	tgagttgata	2280
tacgggcttc	tagtgttcat	ggatgaacgc	tggagcctcc	aaatgtagaa	atgttatatt	2340
ttttattgag	ttcttggtta	taattgctcc	gcaatgattt	aaataagcat	tatttaaaac	2400
attctcagga	gaggtgaagg	tggagctaaa	aaaaagtatt	ggtgattaca	ctgaaaccga	2460
attcaaaaaa	tttattgaag	acatcatcaa	ttgtgaaggt	gatgaaaaaa	aacaggatga	2520
taacctcgag	tattttataa	atgttactga	gcatcctagt	ggttctgatc	tgatttatta	2580
cccagaaggt	aataatgatg	gtagccctga	aggtgttatt	aaagagatta	aagaatggcg	2640
agccgctaac	ggtaagtcag	gatttaaaca	gggctgaaat	atgaatgccg	gttgtttatg	2700
gatgaatggc	tggcattctt	tcacaacaag	gagtcgttat	gaaaaaaata	acagggatta	2760
ttttattgct	tcttgcagtc	attattctgt	ctgcatgtca	ggcaaactat	atccgggatg	2820
ttcagggcgg	gaccgtatct	ccgtcatcaa	cagctgaagt	gaccggatta	gcaacgcagt	2880

aacccgaaat cctctttgac aaaaacaaag cgtgtcaggc tgattctgat gcgctttttt	2940
tttgaaatgt cacaaaaatt ccatgtggga gatgggatct aaaatcctcg tgcagaactt	3000
tccatccagg gggagaaaac ttgtcgtttt gagccgttcg gtgttcagaa cgcacgaaac	3060
cgatcg	3066
<210> 17 <211> 551 <212> PRT <213> Escherichia coli	
<400> 17	
Met Ser Gly Gly Asp Gly Arg Gly His Asn Thr Gly Ala His Ser Thr 1 10 15	
Ser Gly Asn Ile Asn Gly Gly Pro Thr Gly Leu Gly Val Gly Gly 20 25 30	
Ala Ser Asp Gly Ser Gly Trp Ser Ser Glu Asn Asn Pro Trp Gly Gly 35 40 45	
Gly Ser Gly Ser Gly Ile His Trp Gly Gly Gly Ser Gly His Gly Asn 50 55 60	
Gly Gly Gly Asn Gly Asn Ser Gly Gly Gly Ser Gly Thr Gly Gly Asn 65 70 75 80	
Leu Ser Ala Val Ala Ala Pro Val Ala Phe Gly Phe Pro Ala Leu Ser 85 90 95	
Thr Pro Gly Ala Gly Gly Leu Ala Val Ser Ile Ser Ala Gly Ala Leu 100 105 110	
Ser Ala Ala Ile Ala Asp Ile Met Ala Ala Leu Lys Gly Pro Phe Lys 115 120 125	
Phe Gly Leu Trp Gly Val Ala Leu Tyr Gly Val Leu Pro Ser Gln Ile 130 135 140	
Ala Lys Asp Asp Pro Asn Met Met Ser Lys Ile Val Thr Ser Leu Pro 145 150 155 160	

Ala	Asp	Asp	Ile	Thr 165	Glu	Ser	Pro	Val	Ser 170	Ser	Leu	Pro	Leu	Asp 175	Lys
Ala	Thr	Val	Asn 180	Val	Asn	Val	Arg	Val 185	Val	Asp	Asp	Val	Lys 190	Asp	Glu
Arg	Gln	Asn 195	Ile	Ser	Val	Val	Ser 200	Gly	Val	Pro	Met	Ser 205	Val	Pro	Val
Val	Asp 210	Ala	Lys	Pro	Thr	Glu 215	Arg	Pro	Gly	Val	Phe 220	Thr	Ala	Ser	Ile
Pro 225	Gly	Ala	Pro	Val	Leu 230	Asn	Ile	Ser	Val	Asn 235	Asn	Ser	Thr	Pro	Ala 240
Val	Gln	Thr	Leu	Ser 245	Pro	Gly	Val	Thr	Asn 250	Asn	Thr	Asp	Lys	Asp 255	Val
Arg	Pro	Ala	Gly 260	Phe	Thr	Gln	Gly	Gly 265	Asn	Thr	Arg	Asp	Ala 270	Val	Ile
Arg	Phe	Pro 275	Lys	Asp	Ser	Gly	His 280	Asn	Ala	Val	Tyr	Val 285	Ser	Val	Ser
Asp	Val 290	Leu	Ser	Pro	Asp	Gln 295	Val	Lys	Gln	Arg	Gln 300	Asp	Glu	Glu	Asn
Arg 305	Arg	Gln	Gln	Glu	Trp 310	Asp	Ala	Thr	His	Pro 315	Val	Glu	Ala	Ala	Glu 320
Arg	Asn	Tyr	Glu	Arg 325	Ala	Arg	Ala	Glu	Leu 330	Asn	Gln	Ala	Asn	Glu 335	Asp
Val	Ala	Arg	Asn 340	Gln	Glu	Arg	Gln	Ala 345	Lys	Ala	Val	Gln	Val 350	Tyr	Asn
Ser	Arg	Lys 355	Ser	Glu	Leu	Asp	Ala 360	Ala	Asn	Lys	Thr	Leu 365	Ala	Asp	Ala
Ile	Ala 370	Glu	Ile	Lys	Gln	Phe 375	Asn	Arg	Phe	Ala	His 380	Asp	Pro	Met	Ala

Gly Gly His Arg Met Trp Gln Met Ala Gly Leu Lys Ala Gln Arg Ala

385 390 395 400

Gln Thr Asp Val Asn Asn Lys Gln Ala Ala Phe Asp Ala Ala Lys
405 410 415

Glu Lys Ser Asp Ala Asp Ala Ala Leu Ser Ser Ala Met Glu Ser Arg
420 425 430

Lys Lys Lys Glu Asp Lys Lys Arg Ser Ala Glu Asn Asn Leu Asn Asp 435 440 445

Glu Lys Asn Lys Pro Arg Lys Gly Phe Lys Asp Tyr Gly His Asp Tyr 450 455 460

His Pro Ala Pro Lys Thr Glu Asn Ile Lys Gly Leu Gly Asp Leu Lys 465 470 475 480

Pro Gly Ile Pro Lys Thr Pro Lys Gln Asn Gly Gly Gly Lys Arg Lys 485 490 495

Arg Trp Thr Gly Asp Lys Gly Arg Lys Ile Tyr Glu Trp Asp Ser Gln 500 505 510

His Gly Glu Leu Glu Gly Tyr Arg Ala Ser Asp Gly Gln His Leu Gly 515 520 525

Ser Phe Asp Pro Lys Thr Gly Asn Gln Leu Lys Gly Pro Asp Pro Lys 530 540

Arg Asn Ile Lys Lys Tyr Leu 545 550

<210> 18

<211> 110

<212> PRT

<213> Escherichia coli

<400> 18

Ala Glu Asn Asn Leu Asn Asp Glu Lys Asn Lys Pro Arg Lys Gly Phe 1 5 10 15

Lys Asp Tyr Gly His Asp Tyr His Pro Ala Pro Lys Thr Glu Asn Ile 20 25 30

Lys Gly Leu Gly Asp Leu Lys Pro Gly Ile Pro Lys Thr Pro Lys Gln 35 40 45

Asn Gly Gly Lys Arg Lys Arg Trp Thr Gly Asp Lys Gly Arg Lys 50 55

Ile Tyr Glu Trp Asp Ser Gln His Gly Glu Leu Glu Gly Tyr Arg Ala 65 70 75 80

Ser Asp Gly Gln His Leu Gly Ser Phe Asp Pro Lys Thr Gly Asn Gln 85 90 95

<210> 19 <211> 97

<212> PRT <213> Escherichia coli

<400> 19

Lys Gly Phe Lys Asp Tyr Gly His Asp Tyr His Pro Ala Pro Lys Thr
1 5 10 15

Glu Asn Ile Lys Gly Leu Gly Asp Leu Lys Pro Gly Ile Pro Lys Thr 20 25 30

Pro Lys Gln Asn Gly Gly Gly Lys Arg Lys Arg Trp Thr Gly Asp Lys 35 40 45

Gly Arg Lys Ile Tyr Glu Trp Asp Ser Gln His Gly Glu Leu Glu Gly 50 55 60

Tyr Arg Ala Ser Asp Gly Gln His Leu Gly Ser Phe Asp Pro Lys Thr 65 70 75 80

Gly Asn Gln Leu Lys Gly Pro Asp Pro Lys Arg Asn Ile Lys Lys Tyr 85 90 95

Leu

```
<211> 330
<212> DNA
<213> Escherichia coli
<400> 20
ggccgcctcg gccgtagtag tagaaaggtt ttaaagatta cgggcatgat tatcatccag
                                                                     60
ctccgaaaac tgagaatatt aaagggcttg gtgatcttaa gcctgggata ccaaaaacac
                                                                    120
caaagcagaa tggtggtgga aaacgcaagc gctggactgg agataaaggg cgtaagattt
                                                                    180
atgagtggga ttctcagcat ggtgagcttg aggggtatcg tgccagtgat ggtcagcatc
                                                                    240
ttggctcatt tgaccctaaa acaggcaatc agttgaaagg tccagatccg aaacgaaata
                                                                    300
tcaagaaata tctttgaggc catagcggcc
                                                                    330
<210> 21
<211> 60
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic single-stranded oligonucleotide
<400> 21
gateceeggg tacegaggee geeteggeeg agetegaatt eggeeggeea tageggeege
                                                                     60
<210> 22
<211> 60
<212> DNA
<213> Artificial sequence
<220>
<223> Synthetic single-stranded oligonucleotide
<400> 22
aattgeggee getatggeeg geegaatteg ageteggeeg aggeggeete ggtaeeeggg
                                                                     60
<210> 23
<211> 650
<212> DNA
<213> Saccharomyces cerevisiae
<400> 23
                                                                     60
ggccgcctcg gccaggatct ggtggcgaac aagcatgcga tatttgccga cttaaaaagc
tcaagtgctc caaagaaaaa ccgaagtgcg ccaagtgtct gaagaacaac tgggagtgtc
                                                                  120
gctactctcc caaaaccaaa aggtctccgc tgactagggc acatctgaca gaagtggaat
                                                                    180
                                                                    240
caaggctaga aagactggaa cagctatttc tactgatttt tcctcgagaa gaccttgaca
                                                                    300
```

tgattttgaa aatggattct ttacaggata taaaagcatt gttaacagga ttatttgtac

aagataatgt	gaataaagat	gccgtcacag	atagattggc	ttcagtggag	actgatatgc	360
ctctaacatt	gagacagcat	agaataagtg	cgacatcatc	atcggaagag	agtagtaaca	420
aaggtcaaag	acagttgact	gtatcgattg	actcggcagc	tcatcatgat	aactccacaa	480
ttccgttgga	ttttatgccc	agggatgctc	ttcatggatt	tgattggtct	gaagaggatg	540
acatgtcgga	tggcttgccc	ttcctgaaaa	cggaccccaa	caataatggg	ttctttggcg	600
acggttctct	cttatgtatt	cttcgctgac	tgactgaggc	catagcggcc		650
<210> 24						
<211> 535						
<212> DNA						
<213> Aspe	ergillus ory	yzae				
<400> 24						
ggccgcctcg	gccattacta	gtctactagt	aactctgtct	tatcgtcatc	tcccataggt	60
gagtttggtt	gttttgtttc	cactgagatc	atgacctcct	cctaccccac	catcccacta	120
tttttgttac	ggtagccatg	acccctccat	ggcaaagaga	gaggaggacg	aggacgatca	180
						0.40
ggaaactgtg	tctcgccgtc	ataccacaat	cgtgttatcc	tgattgacat	cttcttaaat	240
atcgttgtaa	ctgttcctga	ctctcggtca	actgaaattg	gatctcccca	ccactgcctc	300
taccttgtac	tccgtgactg	aaccatccga	tcattcttt	tgggtcgtcg	gtgaacacaa	360

ccccgctgc tagt