

Gradient Boosting

Noa Lubin & Lior Sidi Influenced by Josh Starmer

Agenda

- Motivation
- Gradient Boosting Trees Regression Example
- Gradient Boosting Trees Algorithm
- Gradient Boosting Trees Classification
- Improvements
- Code
- Summary

Motivation

History from Adaboost to Gradient Boost

Adaboost invented, the first successful boosting algorithm

[Freund et al., 1996, Freund and Schapire, 1997]

Adaboost formulated as gradient descent with a special loss function

[Breiman et al., 1998, Breiman, 1999]

 Adaboost generalized to Gradient Boosting in order to handle a variety of loss functions

[Friedman et al., 2000, Friedman, 2001]

How do we improve Adaboost?

- In Adaboost, "shortcomings" are identified by high-weight data points
- In Gradient Boosting, "shortcomings" are identified by gradients
- We want to build a new model on our residuals (errors)
- It's easier to think first of a regression problem:

Given (x_1, y_1) , (x_2, y_2) , ... we want to learn F(x) that minimizes square loss

We build a first weak model, and then try to learn has the mapping

$$X_1 \rightarrow y_1 - F_1(X_1)$$

$$X_2 \rightarrow y_2 - F_1(X_2)$$

. . .

This process can be repeated!

Gradient Boosting Trees Regression Example

Recalling AdaBoost

Gender	Age	Source	Pay
Male	23	FB	56
Female	49	Search	32
Male	55	Search	45
Female	19	FB	23

Recalling AdaBoost

Gender Age Source Pay 23 FB 56 Male Female 49 Search 32 Male 55 Search 45 FB 23 **Female** 19

AdaBoost

Train **Stump trees** based on the **error** of the previous tree, scale each tree **differently**.

Recalling AdaBoost

Gender	Age	Source	Pay
Male	23	FB	56
Female	49	Search	32
Male	55	Search	45
Female	19	FB	23

AdaBoost

Train **Stump trees** based on the **error** of the previous tree, scale each tree **differently**.

Gradient Boosting Trees

Train **trees** based on the **Pseudo Residual** of the previous tree, scale each tree **evenly**.

Start with an Average

Gender	Age	Source	Pay
Male	23	FB	56
Female	49	FB	24
Male	55	Search	45
Male	19	FB	60
Male	43	FB	40
Female	20	FB	62
Female	41	Search	19
Female	36	FB	22

Average Pay

Compute Residual

Gender	Age	Source	Pay	Residual (0)
Male	23	FB	56	15
Female	49	FB	24	
Male	55	Search	45	
Male	19	FB	60	
Male	43	FB	40	
Female	20	FB	62	
Female	41	Search	19	
Female	36	FB	22	

Average Pay

Compute Residual

Gender	Age	Source	Pay	Residual (0)
Male	23	FB	56	15
Female	49	FB	24	-17
Male	55	Search	45	4
Male	19	FB	60	19
Male	43	FB	40	-1
Female	20	FB	62	21
Female	41	Search	19	-22
Female	36	FB	22	-19

Average Pay

Fit to predict residuals

Gender	Age	Source	Pay	Residual (0)
Male	23	FB	56	15
Female	49	FB	24	-17
Male	55	Search	45	4
Male	19	FB	60	19
Male	43	FB	40	-1
Female	20	FB	62	21
Female	41	Search	19	-22
Female	36	FB	22	-19

Average Pay

Fit to predict residuals

Gender	Age	Source	Pay	Residual (0)
Male	23	FB	56	15
Female	49	FB	24	-17
Male	55	Search	45	4
Male	19	FB	60	19
Male	43	FB	40	-1
Female	20	FB	62	21
Female	41	Search	19	-22
Female	36	FB	22	-19

Average Pay

Predict with LR=1

Gender	Age	Source	Pay	Predicted
Female	41	Search	19	?

Predict

Gender	Age	Source	Pay	Predicted
Female	41	Search	19	?

Predict

Gender	Age	Source	Pay	Predicted
Female	41	Search	19	41 - 22 = 19

The model overfits the train data

Compute the residual of the first tree

Gender	Age	Source	Pay	Predicted	Residual (1)
Male	23	FB	56	42.7	13.3
Female	49	FB	24		
Male	55	Search	45		
Male	19	FB	60		
Male	43	FB	40		
Female	20	FB	62		
Female	41	Search	19		
Female	36	FB	22		

Compute the residual of the first tree

Gender	Age	Source	Pay	Predicted	Residual (1)
Male	23	FB	56	42.7	13.3
Female	49	FB	24	38.57	-14.57
Male	55	Search	45	41.15	3.85
Male	19	FB	60	42.7	17.3
Male	43	FB	40	41.15	-1.15
Female	20	FB	62	38.57	23.43
Female	41	Search	19	38.8	-19.8
Female	36	FB	22	38.57	-16.57

Residuals got improved from last time!

Fit model 2 to predict residuals

Gender	Age	Source	Pay	Residual	
Male	23	FB	56	13.3	
Female	49	FB	24	-14.57	
Male	55	Search	45	3.85	
Male	19	FB	60	17.3	
Male	43	FB	40	-1.15	
Female	20	FB	62	23.43	
Female	41	Search	19	-19.8	
Female	36	FB	22	-16.57	

Fit model 2 to predict residuals

Gender	Age	Source	Pay	Residual	
Male	23	FB	56	13.3	
Female	49	FB	24	-14.57	
Male	55	Search	45	3.85	
Male	19	FB	60	17.3	
Male	43	FB	40	-1.15	
Female	20	FB	62	23.43	
Female	41	Search	19	-19.8	
Female	36	FB	22	-16.57	

Predict with the new model

Gender	Age	Source	Pay	Predict (2)
Male	23	FB	56	41 +0.1*17+0 .1*18
Female	49	FB		
Male	55	Search		
Male	19	FB		
Male	43	FB		
Female	20	FB		
Female	41	Search		
Female	36	FB		

Predict with the new model

Gender	Age	Source	Pay	Predict (2)
Male	23	FB	56	44.5
Female	49	FB		
Male	55	Search		
Male	19	FB		
Male	43	FB		
Female	20	FB		
Female	41	Search		
Female	36	FB		

Predict with the new model

Gender	Age	Source	Pay	Predict (2)
Male	23	FB	56	44.5
Female	49	FB	24	38.1
Male	55	Search	45	40.36
Male	19	FB	60	44.5
Male	43	FB	40	41.178
Female	20	FB	62	40.37
Female	41	Search	19	38.01
Female	36	FB	22	38.598

Compute residuals...

Gender	Age	Source	Pay	Predict (2)	Residual (2)
Male	23	FB	56	44.5	11.5
Female	49	FB	24	38.1	-14.1
Male	55	Search	45	40.36	4.64
Male	19	FB	60	44.5	15.5
Male	43	FB	40	41.178	-1.178
Female	20	FB	62	40.37	21.63
Female	41	Search	19	38.01	-19.01
Female	36	FB	22	38.598	-16.598

Using the model for prediction

43.5

Gender	Age	Source	Pay
Male	23	FB	?

Gradient Boosting Trees Algorithm

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial r_{im}}{\partial r_{im}}
ight]$$

MSE Loss = 1/2(observed - predicted)^2 d(Loss)/d(predicted) = -(observed - predicted) r = observed - predicted (Pseudo residual)

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{im}, j = 1, 2, \ldots, J_m.$
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

(d) Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$
.

3. Output $\hat{f}(x) = f_M(x)$.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:

(a) For
$$i = 1, 2, \ldots, N$$
 compute

$$r_{im} = -\left[rac{\partial r_{im}}{\partial r_{im}}
ight]$$

Loss = 1/2(observed - predicted)^2 d(Loss)/d(predicted) = -(observed - predicted) r = observed - predicted (Pseudo residual)

minal regions

	Gender	Age	Source	Pay	jm
(d	Male	23	FB	56	$\sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm}).$
3. Ou	Female	49	FB	24	
0. 00	Male	55	Search	45	

- Loss = 1/2(observed predicted)^2 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^N L(y_i, \gamma)$ d(Loss)/d(predicted) = -(observed - predicted)
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i,f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}^{ ext{Just the Residual}}$$
 Just the Residual This is where the Gradient appears

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{im}, j = 1, 2, \ldots, J_m.$
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{i=1}^{J_m} \gamma_{im} I(x \in R_{im})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^N L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{im}, j = 1, 2, \ldots, J_m.$
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = rg \min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma
ight).$$

- (d) Update $f_m(x)$ = For leaves with multiple samples \rightarrow Average 3. Output $\hat{f}(x) = f_M(x)$.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = rg \min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma\right).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Gradient Boosting Trees Classification

Reminder: Odds

$$\text{Odds =} \quad \frac{p(X)}{1 - p(X)}$$

$$\frac{p(X)}{1 - p(X)} = e^{\beta^T X} = e^{\beta_1 X_1 + \dots + \beta_p X_p}$$

$$\log\left(\frac{p(X)}{1 - p(X)}\right) = \beta^T X$$

$$p(X) = \frac{\exp(\beta^T X)}{1 + \exp(\beta^T X)}$$

Gender	Age	Source	Pay
Male	23	FB	Yes
Female	49	FB	Yes
Male	55	Search	Yes
Male	19	FB	Yes
Male	43	FB	No
Female	20	FB	Yes
Female	41	Search	No
Female	36	FB	No

Odds = #True/#False

$$Log(5/3) = 0.73 \sim 0.7$$

Gender	Age	Source	Pay
Male	23	FB	Yes
Female	49	FB	Yes
Male	55	Search	Yes
Male	19	FB	Yes
Male	43	FB	No
Female	20	FB	Yes
Female	41	Search	No
Female	36	FB	No

$$Log(5/3) = 0.73 \sim 0.7$$

Classify by Probability to Pay: Logistic function

Prob = $e^{\log(odds)}/(1+e^{\log(odds)}) = 0.7$

Gender	Age	Source	Pay	Residual (0)
Male	23	FB	Yes	0.3
Female	49	FB	Yes	
Male	55	Search	Yes	
Male	19	FB	Yes	
Male	43	FB	No	
Female	20	FB	Yes	
Female	41	Search	No	
Female	36	FB	No	

$$Log(5/3) = 0.73 \sim 0.7$$

Classify by Probability to Pay: Logistic function

Prob = $e^{\log(odds)}/(1+e^{\log(odds)}) = 0.7$

If the threshold is 0.5

Predict all as "Yes"

Residual = (Observed - prob(pay))
=
$$(1-0.7) = 0.3$$

Gender	Age	Source	Pay	Residual (0)
Male	23	FB	Yes	0.3
Female	49	FB	Yes	0.3
Male	55	Search	Yes	0.3
Male	19	FB	Yes	0.3
Male	43	FB	No	-0.7
Female	20	FB	Yes	0.3
Female	41	Search	No	-0.7
Female	36	FB	No	-0.7

 $Log(5/3) = 0.73 \sim 0.7$

Classify by Probability to Pay: Logistic function

Prob = $e^{\log(odds)}/(1+e^{\log(odds)}) = 0.7$

Predict all as "Yes"

Residual = (Observed - prob(pay))
=
$$(1-0.7) = 0.3$$

Gender	Age	Source	Pay	Residual (0)
Male	23	FB	Yes	0.3
Female	49	FB	Yes	0.3
Male	55	Search	Yes	0.3
Male	19	FB	Yes	0.3
Male	43	FB	No	-0.7
Female	20	FB	Yes	0.3
Female	41	Search	No	-0.7
Female	36	FB	No	-0.7

We can't simply average!

Gender	Age	Source	Pay	Residual (0)
Male	23	FB	Yes	0.3
Female	49	FB	Yes	0.3
Male	55	Search	Yes	0.3
Male	19	FB	Yes	0.3
Male	43	FB	No	-0.7
Female	20	FB	Yes	0.3
Female	41	Search	No	-0.7
Female	36	FB	No	-0.7

Gender	Age	Source	Pay	Residual (0)
Male	23	FB	Yes	0.3
Female	49	FB	Yes	0.3
Male	55	Search	Yes	0.3
Male	19	FB	Yes	0.3
Male	43	FB	No	-0.7
Female	20	FB	Yes	0.3
Female	41	Search	No	-0.7
Female	36	FB	No	-0.7

Gender	Age	Source	Pay	Residual (0)
Male	23	FB	Yes	0.3
Female	49	FB	Yes	0.3
Male	55	Search	Yes	0.3
Male	19	FB	Yes	0.3
Male	43	FB	No	-0.7
Female	20	FB	Yes	0.3
Female	41	Search	No	-0.7
Female	36	FB	No	-0.7

Compute the new log(odds)

Gender	Age	Source	Pay	Log(odds)	Predicted
Female	41	Search	No	?	?

LR * 0.8

Compute the log(odds)

Gender	Age	Source	Pay	Log(odds)	Predicted
Female	41	Search	No	0.7 +0.8*(-3.3)= -1.96	?

Compute the log(odds)

Gender	Age	Source	Pay	Log(odds)	Predicted
Female	41	Search	No	0.7 +0.8*(-3.3)= -1.96	e^- 1.96 /(1+e^- 1.96) =0.12

Compute the residual of the first tree

Gender	Age	Source	Pay	Predicted	Residual (1)
Male	23	FB	Yes	0.87	0.13
Female	49	FB	Yes	0.64	0.36
Male	55	Search	Yes	0.49	0.51
Male	19	FB	Yes	0.87	0.13
Male	43	FB	No	0.48	-0.48
Female	20	FB	Yes	0.64	0.36
Female	41	Search	No	0.12	-0.12
Female	36	FB	No	0.63	-0.63

Residuals got improved from last time!

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = rg \min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma\right).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:

(a) For
$$i = 1, 2, \ldots, N$$
 compute

$$r_{im} = -\left[\frac{\partial \cdot}{\partial \cdot}\right]$$

 $r_{im} = -\begin{bmatrix} \frac{\partial}{\partial t} \end{bmatrix}$ Log likelihood: $\sum_{i=1}^{N} y_i \times \log(p) + (1 - y_i) \times \log(1 - p)$

- (b) Fit a regression tree to the ta - | **Observed** × log(**p**) + (1 - **Observed**) × log(1 - **p**) | $R_{jm}, \ j=1,2,\ldots,J_m.$
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{m=1}^{J_m} \gamma_{im} I(x \in R_{im})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

5) -Observed × $log(odds) + log(1 + e^{log(odds)})$

Loss Function Derivative

$$\frac{d}{d \log(odds)}$$
 -Observed × log(odds) + log(1 + $e^{\log(odds)}$) =

$$= -\mathbf{Observed} + \frac{e^{\log(\text{odds})}}{1 + e^{\log(\text{odds})}}$$

$$=$$
 -Observed + p

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:

(a) For
$$i=1,2,\ldots,N$$
 compute
$$r_{im}=-\left[\frac{\partial L(y_i,f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}^{\text{F_0}=\log(\text{odds})}$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i,f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}$$
 = observed - predicted again! (Pseudo residual)

 $= -\mathbf{Observed} + \frac{e^{\log(\text{odds})}}{1 + e^{\log(\text{odds})}}$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L$$

(d) Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} = -\text{Observed} + p$$

3. Output
$$\hat{f}(x) = f_M(x)$$
.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}.$$

(b) Fit a regression
$$R_{jm}, j = 1, 2, ...$$

(b) Fit a regression
$$R_{jm}, j = 1, 2, ...$$
(c) For $j = 1, 2, ...$, $\sum [Previous Probability_i \times (1 - Previous Probability_i)]$

$$\gamma_{jm} = rg \min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma
ight).$$

(d) Update
$$f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$$
.

3. Output
$$\hat{f}(x) = f_M(x)$$
.

For simplicity let's look at 1 sample

$$\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma) \qquad \qquad \gamma = \frac{\text{Residual}}{\boldsymbol{p} \times (1 - \boldsymbol{p})}$$

$$L(y_1, F_{m-1}(x_1) + \gamma) = -y_1 \times [F_{m-1}(x_1) + \gamma] + \log(1 + e^{F_{m-1}(x_1) + \gamma})$$

$$\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma) \qquad \qquad \gamma = \frac{\text{Residual}}{\boldsymbol{p} \times (1 - \boldsymbol{p})}$$

$$\gamma = \frac{\mathbf{Residual}}{\boldsymbol{p} \times (1 - \boldsymbol{p})}$$

$$L(y_1, F_{m-1}(x_1) + \gamma) = -y_1 \times [F_{m-1}(x_1) + \gamma] + \log(1 + e^{F_{m-1}(x_1) + \gamma})$$

Approx the Loss function using second order Taylor polynomial

$$L(y_1, F_{m-1}(x_1) + \gamma) \approx L(y_1, F_{m-i}(x_1)) + \frac{d}{dF()}(y_1, F_{m-1}(x_1))\gamma + \frac{1}{2}\frac{d^2}{dF()^2}(y_1, F_{m-1}(x_1))\gamma^2$$

$$\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma) \qquad \qquad \gamma = \frac{\text{Residual}}{\boldsymbol{p} \times (1 - \boldsymbol{p})}$$

$$\gamma = \frac{\mathbf{Residual}}{\boldsymbol{p} \times (1 - \boldsymbol{p})}$$

$$L(y_1, F_{m-1}(x_1) + \gamma) = -y_1 \times [F_{m-1}(x_1) + \gamma] + \log(1 + e^{F_{m-1}(x_1) + \gamma})$$

Approx the Loss function using second order Taylor polynomial

$$L(y_1, F_{m-1}(x_1) + \gamma) \approx L(y_1, F_{m-i}(x_1)) + \frac{d}{dF()}(y_1, F_{m-1}(x_1))\gamma + \frac{1}{2}\frac{d^2}{dF()^2}(y_1, F_{m-1}(x_1))\gamma^2$$

$$\frac{d}{d\gamma}L(y_1,F_{m-1}(x_1)+\gamma)\approx \frac{d}{dF()}(y_1,F_{m-1}(x_1))+\frac{d^2}{dF()^2}(y_1,F_{m-1}(x_1))\gamma=0$$

$$\gamma_{jm} = \underset{\gamma}{\operatorname{argmin}} \sum_{x_i \in R_{ij}} L(y_i, F_{m-1}(x_i) + \gamma) \qquad \qquad \gamma = \frac{\text{Residual}}{\boldsymbol{p} \times (1 - \boldsymbol{p})}$$

$$\gamma = \frac{\mathbf{Residual}}{\boldsymbol{p} \times (1 - \boldsymbol{p})}$$

$$L(y_1, F_{m-1}(x_1) + \gamma) = -y_1 \times [F_{m-1}(x_1) + \gamma] + \log(1 + e^{F_{m-1}(x_1) + \gamma})$$

Approx the Loss function using second order Taylor polynomial

$$L(y_1, F_{m-1}(x_1) + \gamma) \approx L(y_1, F_{m-i}(x_1)) + \frac{d}{dF()}(y_1, F_{m-1}(x_1))\gamma + \frac{1}{2}\frac{d^2}{dF()^2}(y_1, F_{m-1}(x_1))\gamma^2$$

$$\frac{d}{d\gamma}L(y_1, F_{m-1}(x_1) + \gamma) \approx \frac{d}{dF()}(y_1, F_{m-1}(x_1)) + \frac{d^2}{dF()^2}(y_1, F_{m-1}(x_1))\gamma = 0$$

$$\gamma = \frac{-\frac{d}{dF()}(y_1, F_{m-1}(x_1))}{\frac{d^2}{dF()^2}(y_1, F_{m-1}(x_1))}$$

$$\gamma = \frac{-\frac{d}{dF()}(y_1, F_{m-1}(x_1))}{\frac{d^2}{dF()^2}(y_1, F_{m-1}(x_1))} = \frac{\frac{e^{\log(\operatorname{odds})}}{1 + e^{\log(\operatorname{odds})}}}{\frac{d^2}{dF()^2}(y_1, F_{m-1}(x_1))} = \frac{\operatorname{Residual}}{\frac{d^2}{dF()^2}(y_1, F_{m-1}(x_1))} = \frac{\operatorname{Residual}}{\operatorname{p} \times (1 - \operatorname{p})}$$
Remember me?

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[rac{\partial L(y_i, f(x_i))}{\partial f(x_i)}
ight]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = rg \min_{\gamma} \sum_{x_i \in R_{jm}} L\left(y_i, f_{m-1}(x_i) + \gamma\right).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \nu \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Improvements

Implementations

XGBoost initially started as research project by Tianqi Chen but it actually became famous in 2016

Implementations

Implementations

XGBoost - Extreme Gradient Boosting

Award winning algorithm - in 2015, 17 out of 29 Kaggle competitions.

Advancement

- Computing second-order gradients, i.e. second partial derivatives of the loss function (similar to Newton's method), which provides more information about the direction of gradients and how to get to the minimum of our loss function.
- Advanced regularization (L1 & L2), which improves model generalization.
- XGBoost has additional advantages: training is very fast and can be parallelized / distributed across clusters.

LightGBM

Improvements:

- Gradient-based One-Side Sampling (GOSS)
 - Keeps all the instances with large gradients and performs random sampling on the instances with small gradients - AdaBoost?
- Exclusive Feature Bundling (EFB)
 - bundle mutually exclusive features, an NP problem but computed once before training.

CatBoost

Improvements

- Handels Categorical values better
 - Instead of one hot encoding, compute the average of a categorical value for each label (using laplace smoothing)
- Handels Overfitting better
 - You never calculate the residuals on the data you trained on
- Faster
 - Symmetric trees as base predictors. In such trees the same splitting criterion is used across an entire level of the tree. Such trees are balanced and less prone to overfitting.
 - Allow them to use GPU to compute the best splits

A	Function	XGBoost	CatBoost	Light GBM
SCHOOL OF DATA	Important parameters which control overfitting	 learning_rate or eta optimal values lie between 0.01-0.2 max_depth min_child_weight: similar to min_child leaf; default is 1 	 Learning_rate Depth - value can be any integer up to 16. Recommended - [1 to 10] No such feature like min_child_weight I2-leaf-reg: L2 regularization coefficient. Used for leaf value calculation (any positive integer allowed) 	 learning_rate max_depth: default is 20. Important to note that tree still grows leaf-wise. Hence it is important to tune num_leaves (number of leaves in a tree) which should be smaller than 2^(max_depth). It is a very important parameter for LGBM min_data_in_leaf: default=20, alias= min_data, min_child_samples
	Parameters for categorical values	Not Available	 cat_features: It denotes the index of categorical features one_hot_max_size: Use one-hot encoding for all features with number of different values less than or equal to the given parameter value (max – 255) 	categorical_feature: specify the categorical features we want to use for training our model

	Function	XGBoost	CatBoost	Light GBM	
SCHOOL OF DATA	Important parameters which control overfitting	 learning_rate or eta optimal values lie between 0.01-0.2 max_depth min_child_weight: similar to min_child leaf; default is 1 	 Learning_rate Depth - value can be any integer up to 16. Recommended - [1 to 10] No such feature like min_child_weight I2-leaf-reg: L2 regularization coefficient. Used for leaf value calculation (any positive integer allowed) 	 learning_rate max_depth: default is 20. Important to note that tree still grows leaf-wise. Hence it is important to tune num_leaves (number of leaves in a tree) which should be smaller than 2^(max_depth). It is a very important parameter for LGBM min_data_in_leaf: default=20, alias= min_data, min_child_samples 	
	Parameters for categorical values	Not Available	 cat_features: It denotes the index of categorical features one_hot_max_size: Use one-hot encoding for all features with number of different values less than or equal to the given parameter value (max – 255) 	categorical_feature: specify the categorical features we want to use for training our model	
	Parameters for controlling speed	 colsample_bytree: subsample ratio of columns subsample: subsample ratio of the training instance n_estimators: maximum number of decision trees; high value can lead to overfitting 	 rsm: Random subspace method. The percentage of features to use at each split selection No such parameter to subset data iterations: maximum number of trees that can be built; high value can lead to overfitting 	 feature_fraction: fraction of features to be taken for each iteration bagging_fraction: data to be used for each iteration and is generally used to speed up the training and avoid overfitting num_iterations: number of boosting iterations to be performed; default=100 	

Flight Delays

5M samples from 2015:

- MONTH, DAY, DAY_OF_WEEK: data type int
- AIRLINE and FLIGHT_NUMBER: data type int
- ORIGIN_AIRPORT and DESTINATION_AIRPORT: data type string
- DEPARTURE_TIME: data type float
- DISTANCE and AIR_TIME: data type float
- ARRIVAL_DELAY: this will be the target and is transformed into boolean variable indicating delay of more than 10 minutes

A A WY-	DΔTΔ XGBoost	Light BGM	CatBoost
Parameters Used	max_depth: 50 learning_rate: 0.16 min_child_weight: 1 n_estimators: 200	max_depth: 50 learning_rate: 0.1 num_leaves: 900 n_estimators: 300	depth: 10 learning_rate: 0.15 l2_leaf_reg= 9 iterations: 500 one_hot_max_size = 50

Δ ● ■Υ-ΝΔΤΔ						
XGBoost		Light	BGM	CatBoost		
Parameters Used	max_depth: 50 learning_rate: 0.16 min_child_weight: 1 n_estimators: 200	learning_ num_lea	epth: 50 rate: 0.1 ives: 900 tors: 300	learning_i l2_leaf iteratio	h: 10 rate: 0.15 _reg= 9 ns: 500 ax_size = 50	
Training AUC Score	0.999	Without passing indices of categorical features	Passing indices of categorical features	Without passing indices of categorical features	Passing indices of categorical features	
		0.992	0.999	0.842	0.887	
Test AUC Score	0.789	0.785	0.772	0.752	0.816	

Δ ■ Y-DΔTΔ					
XGBoost		Light BGM		CatBoost	
Parameters Used	max_depth: 50 learning_rate: 0.16 min_child_weight: 1 n_estimators: 200	learning_ num_lea	epth: 50 _rate: 0.1 eves: 900 etors: 300	learning_r l2_leaf_	ns: 500
Training AUC Score	0.999	Without passing indices of categorical features	Passing indices of categorical features	Without passing indices of categorical features	Passing indices of categorical features
		0.992	0.999	0.842	0.887
Test AUC Score	0.789	0.785	0.772	0.752	0.816
Training Time	970 secs	153 secs	326 secs	180 secs	390 secs

XGBoostLight BGMCatBoostParameters Usedmax_depth: 50 learning_rate: 0.16 min_child_weight: 1 n_estimators: 200max_depth: 50 learning_rate: 0.1 learning_rate: 0.15 l2_leaf_reg= 9 iterations: 500 one_hot_max_size = 50Training AUC ScoreWithout passing indices of categorical featuresPassing indices of categorical featuresTest AUC Score0.7890.7850.7720.7520.816	▲ ■ Y-DATA					
Parameters Used learning_rate: 0.16 learning_rate: 0.16 learning_rate: 0.1 learning_rate: 0.15 learning_rate: 0.15 learning_rate: 0.15 learning_rate: 0.15 learning_rate: 0.15 l2_leaf_reg= 9 iterations: 500 one_hot_max_size = 50 Training AUC Score			Light	BGM	CatB	oost
Training AUC Score 0.999 indices of categorical features 0.992 0.999 0.999 0.842 0.887 Test AUC Score 0.789 0.789 0.785 0.772 0.752 0.816		learning_rate: 0.16 min_child_weight: 1	learning_rate: 0.1 num_leaves: 900 n_estimators: 300		learning_rate: 0.15 l2_leaf_reg= 9 iterations: 500 one_hot_max_size = 50	
Test AUC Score 0.789 0.785 0.772 0.752 0.816		0.999	indices of		indices of	
Score 0.789 0.785 0.772 0.752 0.816			0.992	0.999	0.842	0.887
Training Time 970 secs 153 secs 326 secs 180 secs 390 secs		0.789	0.785	0.772	0.752	0.816
11411111g 1111c 570 3cc3 133 3cc3 130 3cc3 130 3cc3	Training Time	970 secs	153 secs	326 secs	180 secs	390 secs
Prediction Time 184 secs 40 secs 156 secs 2 secs 14 secs		184 secs	40 secs	156 secs	2 secs	14 secs
Parameter Tuning Time (for 81 fits, 200 iteration) 500 minutes 120 minutes	Tuning Time (for 81 fits,	500 minutes	200 minutes		120	minutes

Code

Let's Think About This Together

- 1. What are the main hyper-parameters?
- Can it work for multi-class data?
- 3. How does it handle categorical data?
- 4. How does it handle missing data?
- 5. Is it sensitive to outliers?
- 6. What if some features are correlated?
- 7. Is it prone to overfitting?
- 8. Is it Interpretable?
- 9. Can it be parallelized?
- 10. Speed of training
- 11. Speed of prediction

Let's Think About This Together

- 1. What are the main hyper-parameters? Iterations (trees), LR, all trees hyper params
- 2. Can it work for multi-class data? yes
- 3. How does it handle categorical data? yes
- 4. How does it handle missing data? yes (same as trees)
- 5. Is it sensitive to outliers? no
- 6. What if some features are correlated? Handles well
- 7. Is it prone to overfitting? yes
- 8. Is it Interpretable? not off shelf, but there are explainability methods
- 9. Can it be parallelized? no
- 10. Speed of training slow
- 11. Speed of prediction medium

Summary

Gradient Boosting Pros & Cons

Pros	Cons
 Works very well "out of the box" Doesn't overfit (good results) Non linear 	 Not interpretable Relatively slow to train (but much faster than NN) Many hyper-params

Keep In Touch

NOA_LUBIN

NOA_LUBIN