BIOS 660/BIOS 672 (3 Credits): Probability and Statistical Inference I

Jianwen Cai

https://sakai.unc.edu/portal/site/bios660-bios672-3-credits
Notes 10

Common Discrete Distributions		2
Why parametric models?		3
Discrete uniform		
Binomial Distribution		_
	•	_
Bernoulli distribution		
Binomial Distribution		
Example: Coin Tossing		
Binomial distribution		
Binomial cont		
Binomial example		l
Poisson Distribution	1:)
Poisson Distribution		
Binomial vs Poisson		
Binomial to Poisson via cfs		
Poisson example		
Uses of the Poisson		
Uses of the Foissoff		,
Hypergeometric Distribution	18	_
Example: Capture-Recapture Method		9
Hypergeometric Distribution		
Hypergeometric Moments		1
Random sampling		2
cont		
Hypergeometric vs. Binomial		
cont		
cont		
Summary		

Why parametric models?

- Parametric models or distribution families have a specific form but can change according to a fixed number of parameters.
- The objective is to model a population. Parametric models are often appropriate in common situations with similar mechanisms.
- Parametric models have many known and useful properties and are easy to work with. When fitting a population, only a few parameters need to be estimated: *parametric inference*.
- Sometimes one does not want to make parametric assumptions and would rather work with non-parametric models. But non-parametric models can be infinite dimensional. E.g. $f_X(x), \ x=0,1,2,\ldots$ or $F_X(x), \ x\in\mathbb{R}$.
- In this course we emphasize parametric models.

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 3 / 27

Discrete uniform

X has the discrete uniform(1, N) distribution if X is equally likely to be one of $\{1, 2, \dots, N\}$. $\textit{sample space: } \{1, 2, \dots, N\}$

pmf:

 $f_X(x) = \frac{1}{N}, \qquad x = 1, 2, \dots, N$

cdf:

 $F_X(x) = P(X \le x) = \frac{x}{N}, \qquad x = 1, 2, \dots, N$

moments:

$$\mathsf{E}X = \frac{N+1}{2}$$

This definition can be extended to the range N_0, \ldots, N_1 (consecutive intergers starting at any integer N_0 and ending with N_1) with $f_X(x) = 1/(N_1 - N_0 + 1)$.

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 4 / 27

Bernoulli distribution

Consider an experiment where outcomes are binary (say, Success or Failure) and the probability of success is p.

Define the following random variable

$$Y = \begin{cases} 1 & \text{outcome is success} \\ 0 & \text{outcome is failure} \end{cases}$$

Then, Y has a Bernoulli Distribution.

sample space: $\{0,1\}$

pmf: P(Y = 1) = p and P(Y = 0) = 1 - p. We can write this as:

$$f(y) = P(Y = y) = \begin{cases} p^y (1-p)^{(1-y)} & y = 0, 1 \\ 0 & \text{otherwise} \end{cases}$$

What are the cdf, mean and variance?

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 6 / 27

Binomial Distribution

Now consider a series of n Bernoulli trials where

- 1. trials are independent
- 2. Prob of success or failure is the same for each trial, i.e.

$$P(S_i) = p$$
 and $P(F_i) = q = 1 - p$ for the i^{th} trial.

More concisely, consider n iid (independent, identically distributed) Bernoulli rvs Y_i .

A *binomial*(n,p) random variable X is defined as the number of successes in n iid Bernoulli trials, each with probability p of success:

$$X = \sum_{i=1}^{n} Y_i$$

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 7 / 27

Example: Coin Tossing

Toss 3 coins
$$(n = 3)$$
 $P(H) = p$, $P(T) = q$

$$\begin{array}{lcl} P(HHH) & = & p^3 & P(TTT) = q^3 \\ P(THH) & = & p^2q & P(HTT) = pq^2 \\ P(HTH) & = & p^2q & P(THT) = pq^2 \end{array}$$

$$P(HIH) = p^2q P(IHI) = pq^2$$

 $P(HHT) = p^2q P(TTH) = pq^2$

The binomial distribution is concerned with the distribution of the **number** of successes (heads):

$$P(0H) = P(3T) = q^3$$

 $P(1H) = P(2T) = 3pq^2$
 $P(2H) = P(1T) = 3p^2q$
 $P(3H) = P(0T) = p^3$

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 8 / 27

Binomial distribution

For any particular sequence of s successes and n-s failures

$$P(SFS \dots F) = p^s q^{n-s}$$

However there are $\binom{n}{s}$ ways to get s successes from n trials. Formally, the *binomial distribution* has:

sample space: $\{0, 1, ... n\}$

pmf:

$$f_Y(s) = \begin{cases} \binom{n}{s} p^s q^{n-s} & s = 0, 1, ...n \\ 0 & \text{otherwise} \end{cases}$$

Is it easy to check that the pmf sums to 1?

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 9 / 27

Binomial cont.

cdf:

$$F_Y(y) = \sum_{s=0}^{y} \binom{n}{s} p^s q^{n-s}$$

i.e.

$$\begin{array}{rcl} F(y) & = & 0 & \text{for} & y < 0 \\ F(0) & = & q^n \\ F(1) & = & q^n + npq^{n-1} \\ F(2) & = & q^n + npq^{n-1} + \frac{n(n-1)}{2}p^2q^{n-2} \\ & \vdots \\ F(y) & = & 1 & \forall y \geq n \end{array}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 10 / 27

Binomial example

A physician treats n=10 people having a particular disease where P(success)=1/4. What are probabilities of outcomes?

$$f(s) = \binom{10}{s} p^s q^{10-s}, \ \ p = 1/4$$

s	f(s)	F(s)	s	f(s)	F(s)
0	.056		6	.016	
1	.188		7	.003	
2	.282		8	.0004	
3	.250		9	.00003	
4	.146		10	.00000009	
5	059				

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 11 / 27

Poisson Distribution

The Poisson distribution was derived by the French mathematician Poisson in 1837 as a limiting version of the binomial distribution.

Suppose Y has a binomial (n, p) distribution, but consider what happens when n becomes large, but p is small enough so that np stays constant, and equal to a fixed value λ .

$$\lim_{n\to\infty}\binom{n}{y}p^yq^{n-y}=\frac{e^{-\lambda}\lambda^y}{y!}$$

Proof:

$$f_Y(y) = \frac{n!}{y!(n-y)!} p^y (1-p)^{n-y}$$

$$= \frac{n!}{y!(n-y)!} \left(\frac{\lambda}{n}\right)^y \left(1-\frac{\lambda}{n}\right)^{n-y}$$

$$= \frac{\lambda^y}{y!} \left(1-\frac{\lambda}{n}\right)^n \left(1-\frac{\lambda}{n}\right)^{-y} \frac{(n-y+1)\dots n}{n^y}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 13 / 27

Binomial vs Poisson

Comparison of binomial and Poisson pmf's

$$n = 5, p = 1/5 (\lambda = 1)$$

y	binomial	poisson	
0	.328	.368	
1	.410	.368	
2	.205	.184	
3	.051	.061	
4	.006	.015	
5	.000	.003	
6+	0	.001	

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 14 / 27

Binomial to Poisson via cfs

Another way to see the convergence of a binomial to a Poisson is via convergence of the cf.

The cf of $X \sim Binomial(n, p)$ is

$$\phi_X(t) = (pe^{it} + 1 - p)^n$$

Let $p = \lambda/n$:

$$\phi_X(t) = \left(\frac{\lambda}{n}e^{it} + 1 - \frac{\lambda}{n}\right)^n = \left(1 + \frac{\lambda(e^{it} - 1)}{n}\right)^n$$

As $n \to \infty$,

$$\phi_X(t) \to \exp[\lambda(e^{it} - 1)]$$

which is the cf of a Poisson. Since cfs characterize distributions, the distribution fo the rv X converges to a Poisson.

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 15 / 27

Poisson example

The death rate among females (Age 15-44) from pulmonary embolism is 4 per million. In a city of one million females (Age 15-44), what is the probability distribution of number of cases; i.e. $\lambda = 4$.

Note that $\lambda = np$ when $p = \frac{4}{1.000.000}$ is probability for a woman $\lambda = np = 10^6 \cdot 4/10^6 = 4$.

s	$e^{-4}4^s/s!$	s	$e^{-4}4^s/s!$	s	$e^{-4}4^s/s!$
0	040	4	00	0	00
Ü	.018	4	.20	8	.03
1	.07	5	.16	9	.01
2	.15	6	.10		
3	.20	7	.06		

BIOS 660/BIOS 672 (3 Credits)

Notes 10 – 16 / 27

Uses of the Poisson

The Poisson distribution is often used to describe:

- incidence of rare events in time or space
- failure of equipment
- incidence of rare diseases
- mortality
- pixel intensity in CT and PET imaging
- readings of molecular binding experiments (e.g. gene transcription)

Also arises in queueing theory (cashiers and internet), survival analysis, etc.

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 17 / 27

Hypergeometric Distribution

18 / 27

Example: Capture-Recapture Method

Suppose we wish to estimate how many fish there are in a lake.

Consider the following technique:

Capture a certain number of fish, 100 say, mark them, and return them to the lake.

Wait a sufficient amount of time for them to intermix again with the other fish.

Capture a new batch, 120 say, and see how many of these were previously marked.

Suppose there are 10 marked. Then the argument goes: the proportion marked that were recaptured should be in the same proportion as those amongst the non-captured. And so we can estimate the total number of fish in the lake to be the solution N to:

$$\frac{100-10}{N-120} = \frac{10}{120} \qquad \Rightarrow \qquad N =$$

This is a situation where we might apply a hypergeometric distribution.

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 19 / 27

Hypergeometric Distribution

Suppose a population of N entities is made up of two types, and there are M of the first type; and so N-M of the second type.

Suppose we take a sample of size K, and we wish to know X, the number in the sample of the first type.

The probability mass function of *X* is given by:

$$f_X(x) = \frac{\binom{M}{x} \binom{N-M}{K-x}}{\binom{N}{K}}$$

for $x = \max(0, M - N + K), \dots, \min(M, K)$.

The sample space is defined so that all binomial coefficients are valid.

We must have:

$$0 \le x \le K$$
, $0 \le x \le M$, $0 \le K - x \le N - M$

Often K < M and K < N - M so the range becomes $0 \le x \le K$.

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 20 / 27

Hypergeometric Moments

Mean:

$$EX = \sum_{x=0}^{K} x \frac{\binom{M}{x} \binom{N-M}{K-x}}{\binom{N}{K}} = \sum_{x=1}^{K} \text{ditto}$$

We need the identity

$$x \binom{M}{x} = x \frac{M!}{x!(M-x)!} = M \frac{(M-1)!}{(x-1)!(M-x)!} = M \binom{M-1}{x-1}$$

or

$$\binom{M}{x} = \frac{M}{x} \binom{M-1}{x-1}$$

assuming everything is legit, i.e. all the numbers are positive integers, etc.. So

$$EX = \sum_{x=1}^{K} \frac{M}{\frac{N}{K}} \frac{\binom{M-1}{x-1} \binom{N-M}{K-1-(x-1)}}{\binom{N-1}{K-1}} = \frac{MK}{N}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 21 / 27

Random sampling

Example: Vaccines are manufactured in batches of size N. Suppose n vials are sampled.

Decision Rule: If no vials are defective, batch is accepted.

What is the probability that batch with M defective vials is accepted?

Example: Experience suggests that a treatment for liver cancer should be considered effective if 20% of treated patients respond. A hospital plans to run a trial of a new treatment in 12 patients, and will consider the drug ineffective (no better than standard) if less than 2 patients respond. What is the probability that a drug with a true efficacy rate of 30% is classified as ineffective?

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 22 / 27

cont.

If we think of N being very large compared with n, then it makes sense to approximate this probability by thinking of sampling **with** replacement, in which case, we have

$$P(Accept batch) = (1 - M/N)^n$$

Table of P(A) (approximate)

		M/N			
		.001	.01	.1	
	5	.995	.951	.59	
n	10	.990	.904	.349	
	50	.95	.605	.005	

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 23 / 27

Hypergeometric vs. Binomial

We can show that the limiting form of the hypergeometric pmf is the binomial pmf

$$P(s) = \frac{\binom{M}{s} \binom{N-M}{n-s}}{\binom{N}{n}}$$

$$= \frac{\frac{M!}{s!(M-s)!} \frac{(N-M)!}{(n-s)!(N-M-n+s)!}}{\frac{N!}{n!(N-n)!}}$$

$$= \frac{\frac{n!}{s!(n-s)!} \frac{M!}{(M-s)!} \frac{(N-M)!}{(N-M-n+s)!}}{\frac{N!}{(N-n)!}}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 24 / 27

cont.

Note

$$\frac{M!}{(M-s)!} = \frac{M(M-1)(M-2)\dots(M-s)!}{(M-s)!}$$

$$= M^s \left[1(1-\frac{1}{M})\dots(1-\frac{s-1}{M}) \right]$$

$$\frac{N!}{(N-n)!} = N^n \left[1(1-\frac{1}{N})\dots(1-\frac{n-1}{N}) \right]$$

$$\frac{(N-M)!}{[(N-M)-(n-s)]!} = (N-M)^{n-s}$$

$$\left[1 \cdot (1-\frac{1}{N-M})\dots(1-\frac{n-s-1}{N-M}) \right]$$

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 25 / 27

cont.

Letting $N \to \infty$, $M \to \infty$, $\frac{M}{N} \to p$,

$$P(s) = \frac{\binom{M}{s} \binom{N-M}{n-s}}{\binom{N}{n}}$$

$$\sim \binom{n}{s} \frac{M^s (N-M)^{n-s}}{N^n}$$

$$= \binom{n}{s} \left(\frac{M}{N}\right)^s \left(1 - \frac{M}{N}\right)^{n-s}$$

$$\rightarrow \binom{n}{s} p^s (1-p)^{n-s} \qquad \text{Binomial Distribution}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 26 / 27

Summary

 $N \to \infty,$ $n \to \infty$ $\lambda = np$

 $M \to \infty$ $p \to 0$

 $\frac{M}{N} \to p$ $np \to \lambda$

BIOS 660/BIOS 672 (3 Credits)

Notes 10 - 27 / 27