Operating Systems

Bankers Algorithm

Banker's Algorithm (Deadlock Avoidance Algorithm)

- Multiple instances of each resource type.
- Each process must a priori claim maximum use.
- When a process requests a resource it may have to wait.
- When a process gets all its resources it must return them in a finite amount of time.

Data Structures for the Banker's Algorithm

Need the following data structures, where \mathbf{n} is the number of processes in the system and \mathbf{m} is the number of resource types.

- ☐ Available: Array of length m, indicates the number of available resources of each type.
- ☐ Max: n by m matrix, defines maximum demand of each process for each type.
- □ **Allocation**: **n** by **m** matrix, defines number of assigned resources to each process for each type.
- □ **Need: n** by **m** matrix, defines number of remaining resources of each type needed by each process.

```
Need [i,j] = Max[i,j] - Allocation [i,j]
```

Banker's Safety Algorithm

Algorithm for finding out whether or not a system is in a safe state

Let Work and Finish be vectors of length m and n, respectively. Initialize Work = Available and Finish[i] = false for i = 0, 1, ..., n − 1.

- 2. Find an index i such that both of the following meets,
 Finish[i] == false
 Needi ≤ Work
 if no such i exists, go to step 4.
- 3. Work =Work + Allocation_i
 Finish[i] = true
 Go to step 2.
- 4. If Finish[i] == true for all *i*, then the system is in a safe state.

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Need
	ABC	ABC	ABC		ABC
P_0	010	753	332	P_0	743
P_1	200	322		P_1	122
P_2	302	902		P_2	600
P_3	211	222		P_3	0 1 1
P_4	002	433		P_4	431

$$i = 0$$

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Need]
	ABC	ABC	ABC		ARC	
P_0	010	753	332	P_0	743	
P_1	200	322		P_1	122	
P_2	302	902		P_2	600	
P_3	211	222		P_3	011	
P_4	002	433		P_4	431	

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Nee
	ABC	ABC	ABC		AB
P_0	010	753	332	P_0	74
P_1	200	322		P_1	12
P_2	302	902		P_2	60
P_3	211	222		P_3	01
P_4	002	433		P_4	43


```
Step 2. iterate through i with i = 0 initially
if finish[i] == false & Need; ≤ Work then
             Work = Work + Allocation<sub>i</sub> Step 3
             Finish[i] = true
Step 4. if finish[i] == true for all i, then the system
is in a safe state.
```


- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Nee
	ABC	ABC	ABC		AB
P_0	010	753	332	P_0	74
P_1	200	322		P_1	12
P_2	302	902		P_2	60
P_3	211	222		P_3	01
P_4	002	433		P_4	43

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Need
	ABC	ABC	ABC		ABC
P_0	010	753	332	P_0	743
P_1	200	322		P_1	122
P_2	302	902		P_2	600
P_3	211	222		P_3	011
P_4	002	433		P_4	431

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Need
	ABC	ABC	ABC		ABC
P_0	010	753	332	P_0	743
P_1	200	322		P_1	122
P_2	302	902		P_2	600
P_3	211	222		P_3	011
P_4	002	433		P_4	431

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Need
	ABC	ABC	ABC		ABC
P_0	010	753	332	P_0	743
P_1	200	322		P_1	122
P_2	302	902		P_2	600
P_3	211	222		P_3	011
P_4	002	433		P_4	431

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Need
	ABC	ABC	ABC		ABC
P_0	010	753	332	P_0	743
P_1	200	322		P_1	122
P_2	302	902		P_2	600
P_3	211	222		P_3	011
P_4	002	433		P_4	431

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Need
	ABC	ABC	ABC		ABC
P_0	010	753	332	P_0	743
P_1	200	322		P_1	122
P_2	302	902		P_2	600
P_3	211	222		P_3	011
P_4	002	433		P_4	431

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available	
	ABC	ABC	ABC	
P_0	010	753	332	Po
P_1	200	322		P
P_2	302	902		P
P_3	211	222		P_{3}
P_4	002	433		P.

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Need
	ABC	ABC	ABC		ARC
P_0	010	753	332	P_0	743
P_1	200	322		P_1	122
P_2	302	902		P_2	600
P_3	211	222		P_3	011
P_4	002	433		P_4	431

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Need
	ABC	ABC	ABC		ABC
P_0	010	753	332	P_0	743
P_1	200	322		P_1	122
P_2	302	902		P_2	600
P_3	211	222		P_3	011
P_4	002	433		P_4	431

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available
	ABC	ABC	ABC
P_0	010	753	332
P_1	200	322	
P_2	302	902	
P_3	211	222	
P_4	002	433	

	Need
	ABC
P_0	743
P_1	122
P_2	600
P_3	011
P_4	431

- 5 processes P0 through P4;
- 3 resource types A (10 instances), B (5 instances), and C (7 instances)
- at time T0, the following snapshot of the system:

	Allocation	Max	Available		Need
	ABC	ABC	ABC		ABC
P_0	010	753	332	I	0 743
P_1	200	322		I	2 1 2 2
P_2	302	902		I	02 600
P_3	211	222		I	5
P_4	002	433		I	24 431

The system is in a safe state since the sequence $\langle P_1, P_3, P_4, P_0, P_2 \rangle$ satisfies safety criteria

Resource-Request Algorithm for Process P_i

Request = request vector for process P_i If Request[i][j] = k then process P_i wants k instances of resource type R_j

- 1. If $Request_i \leftarrow Need_i$ go to step 2. Otherwise, raise error condition, since process has exceeded its maximum claim.
- 2. If $Request_i \leftarrow Available$, go to step 3. Otherwise P_i must wait, since resources are not available.
- 3. Pretend to allocate requested resources to P_i by modifying the state as follows:

```
Available = Available - Request;
Allocation; = Allocation; + Request;
Need; = Need; - Request;
```

- 4. Check Bankers Safety Algorithm, if this new state is safe.
 - \rightarrow If safe the resources are allocated to P_i .
 - \rightarrow If unsafe P_i must wait, and the old resource-allocation state is restored

What if P_1 Request (1,0,2) more?

	Allocation	Max	Available
	ABC	ABC	ABC
P_0	010	753	332
P_1	200	322	
P_2	302	902	
P_3	211	222	
P_4	002	433	

- To decide whether this request can be immediately granted,
 - we first check that Request₁ \leq Need₁ that is, $(1,0,2) \leq (1,2,2)$? => TRUE
 - Then we check that Request₁ \leq Available that is, $(1,0,2) \leq (3,3,2)$? => TRUE
 - If both is true,

Available =
$$(3,3,2) - (1,0,2) = (2,3,0)$$

Allocation₁ = $(2,0,0) + (1,0,2) = (3,0,2)$
Need₁ = $(1,2,2) - (1,0,2) = (0,2,0)$

• So, we arrive at the following new state

Is the system in safe state? Yes. Because we find a safe sequence: $\langle P_1, P_3, P_4, P_0, P_2 \rangle$. Grant the request of P_1 .

What about request of (3 3 0) resources for P4? What about request of (0 2 0) resources for P0?

	Allocation	Need	Available
	ABC	ABC	ABC
P_0	010	743	230
P_1	302	020	
P_2	302	600	
P_3	211	011	
P_4	002	431	