Day 20 - Median Ages

Problem Statement:

For each country, we are given multiple ages. We have to find the median ages.

Logic:

Median = Middlemost value in the ordered dataset For **Even** No. of values, Median = $N/2^{th}$ and $N/2+1^{th}$ terms are median values For **Odd** No. of values, Median = $N/2^{th}$ term is median

For Example:

If we take USA, Number of observations = 5 = ODDN/2 = $5/2 = 2.5 \sim 3 = 3^{rd}$ value will be our median

If we take Poland, Number of observations = 6 = EVEN N/2 = 6/2 = 3^{rd} value will be considered for median calculation N/2+1 = 3+1 = 4th value as well

Usually, For EVEN values our median would have been $(N/2^{th} + N/2 + 1^{th} term)/2$. But here, we are only interested in the terms that would be considered for median calculation.

Table1

INPUT					
ID	COUNTRY	AGE			
1	Poland	10			
2	Poland	5			
3	Poland	34			
4	Poland	56			
5	Poland	45			
6	Poland	60			
7	India	18			
8	India	15			
9	India	33			
10	India	38			
11	India	40			
12	India	50			
13	USA	20			
14	USA	23			
15	USA	32			
16	USA	54			
17	USA	55			
18	Japan	65			
19	Japan	6			
20	Japan	58			
21	Germany	54			
22	Germany	6			
23	Malaysia	44			

ExpectedOutput:

OUTPUT				
COUNTRY	AGE			
Germany	6			
Germany	54			
India	33			
India	38			
Japan	58			
Malaysia	44			
Poland	34			
Poland	45			
USA	32			

SOLUTION

```
With median_cte as
(
select country, age, ROW_NUMBER() over(partition by country order by
age) as rn,
cast(count(id) over(partition by country order by age range between
unbounded preceding and unbounded following) as float)as cnt
from people
)
select country, age
from median_cte
where rn >= cnt/2 and rn<=cnt/2+1</pre>
```

	country	age	lower_limit	upper_limit
8	India	50	3	4
9	Japan	65	1.5	2.5
10	Japan	6	1.5	2.5
11	Japan	58	1.5	2.5
12	Malaysia	44	0.5	1.5
13	Poland	10	3	4
14	Poland	5	3	4
15	Poland	34	3	4
16	Poland	56	3	4
17	Poland	45	3	4
18	Poland	60	3	4
19	USA	20	2.5	3.5
20	USA	23	2.5	3.5
21	USA	32	2.5	3.5
22	USA	54	2.5	3.5
23	USA	55	2.5	3.5

Lower_limit = cnt/2

Upper_limit = cnt/2+1

FINAL SOLUTION!!!

	country	age
1	Germany	6
2	Germany	54
3	India	33
4	India	38
5	Japan	58
6	Malaysia	44
7	Poland	34
8	Poland	45
9	USA	32