## Optimization and Computational Linear Algebra for Data Science Final review problems

For review exercises on linear algebra, look at last year's final review exercises (available the course's website).

**Problem 0.1.** Let  $A \in \mathbb{R}^{n \times m}$ . Let  $\sigma_1(A)$  be the largest singular value of A. Show that

$$\sigma_1(A) = \max_{\|x\|=1} \|Ax\|.$$

**Problem 0.2.** Let  $A \in \mathbb{R}^{n \times m}$ . Show that  $A^{\mathsf{T}}A$  and  $AA^{\mathsf{T}}$  have the same non-zero eigenvalues.

**Problem 0.3** (True or false?). For each of the following statement, say if they are true or false and justify your answer.

- For all  $A \in \mathbb{R}^{n \times n}$ , if  $\lambda$  is an eigenvalue of A then  $\lambda^2$  is an eigenvalue of  $A^2$ .
- For all  $A \in \mathbb{R}^{n \times n}$ , if  $\sigma$  is a singular value of A then  $\sigma^2$  is a singular value of  $A^2$ .
- For all symmetric matrix  $A \in \mathbb{R}^{n \times n}$  the eigenvalues of A are singular values of A.

**Problem 0.4.** Let  $A \in \mathbb{R}^{n \times m}$ . Show that for all  $u \in \text{Im}(A)$  and for all  $v \in \text{Ker}(A^{\mathsf{T}})$  we have

$$\langle u, v \rangle = 0.$$

**Problem 0.5.** Let  $A \in \mathbb{R}^{n \times m}$ . Show that if A has linearly independent columns, then  $A^{\dagger} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}$ .

**Problem 0.6.** Which of the following functions  $f: \mathbb{R}^n \to \mathbb{R}^n$  are convex? Justify your answer

- $f(x) = ||x||^2$ .
- f(x) = Ax, for some  $A \in \mathbb{R}^{n \times n}$ .
- $f(x) = \sum_{i=1}^{n} x_i^3$ .

**Problem 0.7.** Which of the following subset S of  $\mathbb{R}^n$  are convex? Justify your answer

- $S = \{x \in \mathbb{R}^n \mid ||x||_{\infty} \le 1\}.$
- $S = \{x \in \mathbb{R}^n \mid ||x||_1 > 1\}.$
- $S = \{x \in \mathbb{R}^n \mid ||Ax|| < 1\}$ , for some  $A \in \mathbb{R}^{n \times n}$ .

**Problem 0.8.** Show that we are performing PCA on n data points  $a_1, \ldots, a_n \in \mathbb{R}^d$  and keep only the first k < d principal components of each point. We store the dimensionally reduced dataset in a  $n \times k$  matrix B, where  $B_{i,j}$  is the j<sup>th</sup> principal component of the point  $a_i$ . Show that the columns of B are orthogonal.

**Problem 0.9** (True of false?). For each of the following statement, say if they are true or false and justify your answer.

- If a continuous function  $f: \mathbb{R} \to \mathbb{R}$  has a unique minimizer then f is convex.
- If a continuous function  $f : \mathbb{R} \to \mathbb{R}$  is such that there exists  $x_0$  such that f is decreasing on  $(-\infty, x_0]$  and increasing on  $[x_0, +\infty)$  then f is convex.
- A twice differentiable function  $f: \mathbb{R} \to \mathbb{R}$  whose derivative f' is non-decreasing is convex.

**Problem 0.10.** Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a convex, differentiable function. Assume that there exist  $x, y \in \mathbb{R}^n$  such that  $\nabla f(x) = \nabla f(y) = 0$ . Show that  $\nabla f(\frac{1}{2}(x+y)) = 0$ .

Problem 0.11. Assume that we are doing linear regression with the least-squares cost

$$f(x) = ||Ax - y||^2$$

where  $A \in \mathbb{R}^{n \times d}$  and  $y \in \mathbb{R}^n$ . Should you normalize the dataset A (that is, should we divide each column of A by its norm) to get better results (smaller training error or smaller test error on new data points)?

Suppose that we now want to use the lasso and minimize

$$f(x) = ||Ax - y||^2 + \lambda ||x||_1$$

for some  $\lambda > 0$ . Is there any reason why you might want to normalize the dataset in that case?

**Problem 0.12.** Compute the critical points of the following function and say if they are local minimizers, local maximizers or saddle points.

$$f(x, y, z) = x^2 + y^2 - z^2$$
 and  $g(x, y) = 3x^2 + y^2 - 6x - 4y - 10$ .

**Problem 0.13.** Solve the following constrained minimization problem (find all the solutions to these problems).

- 1. Minimize x + y + z subject to  $e^{-x} + e^{-y} + e^{-z} = 1$ .
- 2. Minimize  $x^2 + y^2 + z^2$  subject to xyz = 1.

**Problem 0.14.** Assume that we are doing standard gradient descent to minimize the least-square cost

$$f(x) = ||Ax - y||^2.$$

Assume that the columns of A are linearly dependent, meaning that  $Ker(A) \neq \{0\}$ . At which speed should gradient descent converge to the minimum? If now  $Ker(A) = \{0\}$ , at which speed should gradient descent converge? By speed, we only ask about the dependence in t, the number of iterations, of the gap  $f(x_t) - \min f$ , where  $x_t$  is the position of gradient descent after t iterations.

**Problem 0.15.** Let  $A \in \mathbb{R}^{n \times d}$ . Assume that the columns of A are linearly independent. How many steps of Newton's method do you need to minimize

$$||Ax - y||^2 ?$$

 $(y \in \mathbb{R}^n \text{ is a fixed vector}).$  Justify your answer.

**Problem 0.16.** When running stochastic gradient descent, what are upsides and downsides of having a rapidly decaying learning rate?

## Hints. Please only look at the hints if you have spent a reasonable time thinking about the problems!

- 1. Use the fact that  $||Ax||^2 = x^{\mathsf{T}} A^{\mathsf{T}} A x$  and then use the SVD decomposition of A to rewrite  $A^{\mathsf{T}} A$ .
- 2. Use the SVD of A.
- 3. (a) True (b) False (c) False (eigenvalues can be negative but singular values can not. The singular values of a symmetric matrix are the absolute value of its eigenvalues).
- 4. Use the definitions of kernel and image.
- 5. Convex, convex, not convex.
- 6. Convex, not convex, convex.
- 7. Express the columns of B using the left-singular vectors of the matrix A whose rows are the  $a_i$ .
- 8. False. False. True.
- 9. Show that (x+y)/2 is a global minimizer of f.
- 10. Normalizing the dataset is useless for ordinary least-squares, but can be useful for Lasso.
- 11. Compute gradient and Hessian.
- 12. Use Lagrange multipliers.
- 13. If the columns of A are linearly dependent, then f will be L-smooth but not strongly convex, hence the speed of gradient descent will be O(1/t). If the columns of A are linearly independent then you can show that f(x) is  $\mu$ -strongly convex and L-smooth, for some  $\mu, L > 0$ . Hence the error of gradient descent will be  $O(e^{-\rho t})$  after t steps, for some constant  $\rho > 0$ .
- 14. 1 step.
- 15. See lecture notes.

