Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims

A method for determining computer hardware 1. (Previously Presented) 1 requirements for a yet-to-be built database management system server using user defined 2 workload requirements, the method comprising the steps of: 3 obtaining at least one user defined workload requirement, the user defined workload 4 requirement includes a plurality of inputs from a user including a maximum desired processor 5 utilization, and a transactions per second requirement; 6 determining the database management system server hardware requirements for the yet-7 to-be built database management system server as a function of said user defined workload 8 9 requirement; and outputting said yet-to-be built database management system server requirements. 10 1 2. (Canceled). 3. A method for determining computer hardware 1 (Previously Presented) requirements for a yet-to-be built database management system server using user defined 2 workload requirements, the method comprising the steps of: 3 obtaining at least one user defined workload requirement; 4 determining the database management system server hardware requirements for the yet-5

FROM-CROMPTON SEAGER TUFTE LLC

6	to-be built database management system server as a function of said user defined workload						
7	requirement; and						
8	outputting said yet-to-be built database management system server requirements, wherein						
9	said database management system server requirements include a number of processors						
10	requirement, a memory size requirement, and a mass storage requirement for the yet-to-be built						
11	database management system server.						
l	4. (Previously Presented) A method for determining computer hardware						
2	requirements for a yet-to-be built database management system server using user defined						
3	workload requirements, the method comprising the steps of:						
4	obtaining at least one user defined workload requirement;						
5	determining the database management system server hardware requirements for the yet-						
6	to-be built database management system server as a function of said user defined workload						
7	requirement; and						
8	outputting said yet-to-be built database management system server requirements, wherein						
9	said database management system server requirements include an expected effective CPU						
10	utilization for the yet-to-be built database management system server based on the user defined						
11	workload requirements.						
1	5. (Previously Presented) A method for determining computer hardware						
2	requirements for a yet-to-be built database management system server using user defined						
3	workload requirements, the method comprising the steps of:						

4	obtaining at least one user defined workload requirement;						
5	determining the database management system server hardware requirements for the yet						
6	to-be built database management system server as a function of said user defined workload						
7	requirement; and						
8	outputting said yet-to-be built database management system server requirements, wherein						
9	said database management system server requirements include an expected number of users that						
10	can be supported by the yet-to-be built database management system server based on the user						
11	defined workload requirements.						
1	6. (Previously Presented) A method according to claim 5, wherein said						

- 1 6. (Previously Presented) A method according to claim 5, wherein said
 2 database management system server requirements includes an expected effective CPU utilization
 3 of the yet-to-be built database management system server based on the user defined workload
 4 requirements
- 7. (Currently Amended) A method for determining computer hardware requirements
 for a yet-to-be built database management system server using user defined workload
 requirements, the method comprising the steps of:
- obtaining at least one user defined workload requirement;

 determining the database management system server hardware requirements for the yetto-be built database management system server as a function of said user defined workload
- 7 requirement; and

8	outputting said yet-to-be built database management system server requirements, waorein						
9	said database management system server requirements;						
0	wherein said user defined workload requirement includes a baseline system transactions						
1	per second, and said output includes a calculated transactions per second value, and a ratio of						
2	said calculated transactions per second to said baseline transactions per second, and wherein said						
13	determining step determines values for said calculated transactions per second and said						
14	transactions per second ratio.						
1	8. (Previously Presented) A method for determining computer hardware						
2	requirements for a yet-to-be-built database management system server using a user-defined						
3	workload, the method comprising the steps of:						
4	obtaining from a user a plurality of transaction definitions, wherein each of said						
5	transactions definitions have a transaction workload contribution and an expected execution rate						
6	per second;						
7	calculating a total expected workload as a function of said transaction definitions; and						
8	outputting said total workload to said human user.						
1	9. (Previously Presented) A method according to claim 16, further comprising						
2	the step of obtaining a server type from said user.						
1	10. (Previously Presented) A method according to claim 16, further comprising						
2	the step of obtaining a maximum desired processor utilization.						
	3						

A method according to claim 16, further comprising

(Previously Presented)

11.

1

1

2

3

15.

(Original)

- the step of obtaining a maximum desired network interface card utilization. 2 A method according to claim 16, further comprising 12. (Previously Presented) 1 the step of obtaining a server type, a LAN speed, a maximum desired processor utilization, and a 2 maximum desired network interface card utilization. 3 (Previously Presented) A method according to claim 16, wherein at least 13. 1 some of said transaction definitions include at least one SQL statement wherein each of said 2 transaction workloads is calculated by calculating a workload contribution of each of said SQL 3 4 statements. A method according to claim 13, wherein said SQL (Previously Presented) 1 14. statements include insert, delete, update, and/or select SQL statement types. 2
- parameters,

 said delete SQL types have parameters including a number identical delete statements,

 and wherein said delete statement SQL workload contribution is a function of said statement

 parameters,

and wherein said insert statement SQL workload contribution is a function of said statement

A method according to claim 14, wherein

said insert SQL types have parameters including a number of identical insert statements,

8	said update SQL types have parameters including a number of records to be operated on							
9	by said update statement, and wherein said update statement SQL workload contribution is a							
10	function of said statement parameters, and							
11	said select SQL types have parameters including selectivity criteria, and wherein said							
12	select statement SQL workload contribution is a function of said statement parameters.							
1	16. (Previously Presented) A method for determining computer hardware							
2	requirements for a yet-to-be-built database management system server using a user-defined							
3	workload, the method comprising the steps of:							
4	obtaining from a user a plurality of transaction definitions, wherein each of said							
5	transaction definitions have a transaction workload contribution and an expected execution rate							
6	per second;							
7	determining a total expected workload as a function of said transaction definitions; and							
8	determining the database management system server hardware requirements for the yet-							
9	to-be built database management system server as a function of said total expected workload.							
1	17. (Previously Presented) A method according to claim 16 wherein the							
2	database management system server hardware requirements includes a processor type for the yet-							
3	to-be built database management system server.							
1	18. (Previously Presented) A method according to claim 16 wherein the							
2	detablica management system samer hardware requirements includes a number of processors for							

7

9

10

Application No. 09/515,158 Amendment dated April 22, 2004 Reply to Final Office Action dated January 23, 2004

3 the	vet-to-be	built	database	management	system	server.
-------	-----------	-------	----------	------------	--------	---------

A method according to claim 16 wherein the (Previously Presented) 1 19. database management system server hardware requirements includes I/O requirements for the 2 vet-to-be built database management system server. 3 A method according to claim 16 wherein the 20. (Previously Presented) 1 database management system server hardware requirements includes memory requirements for 2 the yet-to-be built database management system server. 3 Computer executable code stored on machine 1 21. (Previously Presented) readable media for determining computer hardware requirements for a yet-to-be-built database 2 management system server using a user-defined workload, the computer executable code 3 performing the steps of: 4 obtaining from a user a plurality of transaction definitions, wherein each of said 5 transaction definitions have a transaction workload contribution and an expected execution rate 6 7 per second; determining a total expected workload as a function of said transaction definitions; and 8

to-be built database management system server as a function of said total expected workload.

determining the database management system server hardware requirements for the yet-