ARGOS 동계 세미나_0204

201502086 이성복

contents

- RSA
- Elliptic Curved Cryptography(ECC)

공개키 암호화

공개키 암호화

= 비대칭키 암호화

RSA Easy algorithm

Prime number * Prime number \top Number

Encrypt

Number

Decrypt

RSA

Easy algorithm

- Two prime number: 7, 13 → Max value is 91
- My public key: 5
- Use Extended Euclidean Algorithm → return 29

SEMINAR

Α	В	C	D	Е	F	G	Н	-1	J	K	L	М
65	66	67	68	69	70	71	72	73	74	75	76	77
Ν	0	Р	Q	R	S	Т	U	٧	W	Χ	Υ	Z

SEMINAR 83, 69, 77, 73, 78, 65, 82

RSA

Easy algorithm

SEMINAR 83, 69, 77, 73, 78, 65, 82

- 83 * 83 = 6889 is bigger than 91
- 6889 % 91 = 64
- 64 * 83 = 5312 % 91 = 34

• 5 times then result is 64

- 64 * 29 = 1856 is bigger than 91
- 1856 % 91 = 36
- 36 * 29 = 1044 % 91 = 43

29 times then result is 83

RSA

한겨

- Quadratic Sieve, General Number Field Sieve Algorithm
- This algorithm works well in large number

Elliptic Curve

$$y^2 = x^3 + ax + b$$
 (Normal)

$$4a^3 + 27b^2 = 0$$
 (Singularity)

Real number field

We know P, Q

$$y^2 = x^3 + ax + b$$

$$y = y_p + m(x - x_p)$$

- Operation(+)
- Closed
- Associative
- Identity, Inverse element

Finite field F_p, Extended Euclidean

$$y^2 = x^3 - x + 1 \pmod{p}$$

p = 97

- Operation(+,*)
- Closed
- Associative and Commutative, Distributive
- Identity, Inverse element
- p is prime number

Finite field, Extended Euclidean

$$y^2 = x^3 - x + 1$$
 (mod 97)

Question