Hypothesis Testing – Means and Proportions

8.1, 8.3

Today's topics

Hypothesis Testing

- Definitions
- Testing for one mean
- p-value
- Testing for one proportion

Statistics overview

One goal in Statistics is to make *inferences* about populations based on samples taken from the population.

Previously, we estimated population parameters:

- Point estimates (MLE, MOM)
- Interval estimates (Confidence Intervals)

Testing

Another way to do inference, is to **make a decision** about a parameter.

Examples:

ctest claim

my Mazda 3 manual claims that it gets 35 highway mpg

Dustin's pudding packs actually contain 3.25 oz

Terms

- Null hypothesis, H₀
- Alternative hypothesis, H_A or H_1
- Type I error:
- Type II error
- Simple hypothesis
- Compound hypothesis

$$H_A: \mu < 35$$

Null and Alternative Hypotheses

Say an experimenter wants to test the plausibility of the statement $\mu = \mu_0$.

We can formally describe this as a null hypothesis.

- \blacksquare $H_0: \mu = \mu_0$ + mean from nul
- The word "hypothesis" indicates that we will be testing this statement (with data).

We will associate the null hypothesis with a different one that we are testing 'for', called the "alternative hypothesis".

$$\blacksquare \quad \mathbf{H}_{\mathsf{A}} \colon \ \mu \neq \mu_0 \quad \quad \mathsf{O}$$

$$\mathbf{H_A}$$
: $\mu > \mu_0$ or $\mathbf{H_A}$: $\mu < \mu_0$

Type 1 and Type 2 Error

Hypothesis Test Example – "Compound" H_A

Perdont university claims that students at their school are above average intelligence. A random sample of thirty students IQ scores have a mean score of 102.5.

Suppose the mean population IQ score is 100 with a standard deviation of 15. Is there sufficient evidence to support this claim?

Hypothesis Test Example – "Simple" H_A

Example 8.1-1

Let X equal the breaking strength of a steel bar. If the bar is manufactured by process I, X is N(50,36), i.e., X is normally distributed with $\mu = 50$ and $\sigma^2 = 36$. It is hoped that if process II (a new process) is used, X will be N(55,36). Given a large number of steel bars manufactured by process II, how could we test whether the five-unit increase in the mean breaking strength was realized?

$$H_0: \mu = 50$$
 $H_0: \mu \le 50$

$$H_1: \mu = 55$$
 $H_2: \mu = 55$

We want to set up a "rule" to determine whether to stick with H_0 or not. This rule will lead to a decision about what to do with H_0 .

Partition sample space into 2 parts: C and C'.

If
$$(x_1, x_2,...x_n) \in C$$
, reject H_0
If $(x_1, x_2,...x_n) \in C'$, do not reject H_0

e.g.
$$\mathbf{x} = \{64.4, 54.7, 57.2, 61.6, 51.3\}$$
 or $\mathbf{x} = \{51.2, 54.7, 47.2, 51.6, 46.3\}$

We often partition the sample space in terms of values of a statistic called a **test statistic**.

Often, we partition the sample space based on the value of a statistic called the **test statistic**.

One common example is \overline{X} (for testing the mean).

We might want to reject the null hypothesis if the sample average is larger or smaller than a certain number. E.g. $\overline{X} > 53$.

C is referred to as the rejection region, or the critical region.

i.e. C = {(x, x2, ... Xx): x > 53}

p value

The plausibility of a null hypothesis can be measured with a **p-value**, which is a number between 0 and 1.

- A p-value is sometimes referred to as the <u>observed level of</u> significance
- The smaller the p-value, the less plausible H_0 is.

Definition of a p-value:

"Probability of observing data at least as extreme as the observed sample given that H_o is true."

p-value illustration

$$\rightarrow$$
 H₀: $\mu = 60$ vs

$$\rightarrow \mathbf{H_0}: \mu = 60$$

$$\rightarrow \mathbf{H_A}: \mu > 60$$

Suppose
$$\bar{x} \neq 62.75$$

Hypothesis Testing (Steps)

- \rightarrow 1. Formulate H₀ and H_A (based on the scenario)
- \rightarrow 2. Identify a test statistic to use and its distribution under H_0
- 3. Evaluate the test statistic
- \rightarrow 4. Calculate a p-value, compare to α .
 - 5. Make a decision
 - if $p < \alpha$, reject H_0 . Otherwise, (if $p > \alpha$), do not reject H_0 .
 - 6. State conclusion in the context of the original question.
 - "There is/isn't enough evidence to show that..."

Two ways to perform a hypothesis test

given

1. Calculate a p-value and compare to significance level

is P > a, DNR H.

2. Define a rejection region (RR) and see if sample falls in

RR. (also known a critical region)

l-sided

Table 8.1-1 Tests of hypotheses about one mean, variance known

$$H_0$$
 H_1 $\mu = \mu_0$ $\mu > \mu_0$ $\mu > \mu_0$ $\mu = \mu_0$ $\mu < \mu_0$ $\mu < \mu_0$ $\mu = \mu_0$ $\mu < \mu_0$ $\mu < \mu_0$ $\mu = \mu_0$ $\mu < \mu_0$ $\mu = \mu_0$ $\mu < \mu_0$ $\mu = \mu_0$ $\mu \neq \mu_0$ μ

$$Z = \frac{\overline{X} - \mu_0}{\sqrt{\sigma^2/n}} = \frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$$

Table 8.1-2 Tests of hypotheses for one mean, variance unknown

H_0	H_1	Critical Region
$\mu = \mu_0$	$\mu > \mu_0$	$t \ge t_{\alpha}(n-1)$ or $\overline{x} \ge \mu_0 + t_{\alpha}(n-1)s/\sqrt{n}$
$\mu = \mu_0$	$\mu < \mu_0$	$t \le -t_{\alpha}(n-1)$ or $\overline{x} \le \mu_0 - t_{\alpha}(n-1)s/\sqrt{n}$
$\mu = \mu_0$	$\mu \neq \mu_0$	$ t \ge t_{\alpha/2}(n-1)$ or $ \overline{x} - \mu_0 \ge t_{\alpha/2}(n-1)s/\sqrt{n}$

$$T = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} = \frac{\overline{X} - \mu}{S/\sqrt{n}}.$$

Example

A machine that pours beer is supposed to fill buckets with a mean of 3.0 gallons. A sample of 13 buckets gives a sample mean of 2.879 gallons and s = 0.325. Perform a hypothesis test at α = 0.05 to see if this machine is

accurately doing its job.

$$H_0: \mu = 3.0$$
 $H_A: \mu \neq 3.0$

2-sided test

p-value = 204

Decision: > <

>2 DNR H

-1.342 0 1.342

Conclusion: There is not enough evidence to suggest that the machine is not accurately doing its job

Example

A HAL-8000 machine that pours beer is supposed to fill buckets with a mean of 3.0 gallons. Dave takes a sample of 13 buckets and finds a sample mean of 2.879. Suppose the true standard deviation of these machines is 0.2 gallons. Perform a hypothesis test at α = 0.05 to see if this machine is

underfilling.

H₀:
$$M = 3.0$$

H_A: $M = 3.0$
 $Z = 1$
 $Z = 2.879 = 3.0$
 $Z = 2.879 = -2.18$

p-value = 0.015 < 0.05

Decision: $P < \alpha$ $Z = 3.0$

Decision: $P < \alpha$ $Z = 3.0$
 $Z = 3$

Conclusion: There is enough evidence to suggest that this machine is underfilling. (H. Ind.)

$$T = \frac{\overline{X} - \mu}{\sqrt{S^2/n}} = \frac{\overline{X} - \mu}{S/\sqrt{n}}.$$

Example

normally distributed

Nick Fury claims that the (true) mean number of push-ups his superheroes can do is at least 40.0. A random sample of 30 superheroes gives $\bar{x} =$ 38.518 pushups, s = 2.299. Perform a hypothesis test at $\alpha = 0.01$ to determine if this is true (or if they can't really make it to 40 pushups).

$$H_A$$
: $M < 40$

$$t = \frac{38.518 - 40^{\circ} t_{29}}{2.233 / \sqrt{30}}$$

t = -3.53t = 39.518 - 40 ~ t₂₉ 2219/130 (4) p-value: 0.0007 < 0.01 -3.53

Conclusion: There is significant evidence to suggest that they can NOT do 40

Table 8.3-1 Tests of hypotheses for one proportion				
H_0	H_1	Critical Region		
$p = p_0$	$p > p_0$	$z = \frac{y/n - p_0}{\sqrt{p_0(1 - p_0)/n}} \ge z_{\alpha}$		
$p = p_0$	$p < p_0$	$z = \frac{y/n - p_0}{\sqrt{p_0(1 - p_0)/n}} \le -z_{\alpha}$		
$p = p_0$	$p \neq p_0$	$ z = \frac{ y/n - p_0 }{\sqrt{p_0(1 - p_0)/n}} \ge z_{\alpha/2}$		

$$Z = \frac{Y/n - p_0}{\sqrt{p_0(1 - p_0)/n}}$$

Hypothesis test for proportions

Aladdin is a frequent flyer. He thinks he gets security-screened more than normal at the magic-carpet-port. Assume security randomly screens 10% of all people (so he should be screened 10% of the time). In the past few years, he has been (randomly?) selected 16 out of 100 times.

Perform a hypothesis test at 0.05 significance to see if the screening process is random, or biased towards screening him more.

Hypothesis test for proportions

Assume security randomly screens 10% of all people (so he should be screened 10% of the time). Aladdin has been selected 16 out of 100 times. Is process biased towards screening him

more? Test at α =0.05.

Conclusion:

Test statistic: $Z = \frac{1}{\sqrt{P \cdot UP \cdot}} = \frac{16 - 1}{\sqrt{100}}$ p-value: $0.0217 = \sqrt{P \cdot UP \cdot} = \sqrt{100}$ Decision: $P < A = \sqrt{25} cut H_{\bullet}$ Conclusion:

There is significant evidence to suggest that the

Screening process is biased towards screening Aladdin more

0

27

