Simone Raoux • Matthias Wuttig Editors

Phase Change Materials

Science and Applications

Editors
Simone Raoux
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120
USA

Matthias Wuttig
1. Physikalisches Institut (1A)
RWTH Aachen University
52056 Aachen
Germany

ISBN 978-0-387-84873-0 e-ISBN 978-0-387-84874-7 DOI 10.1007/978-0-387-84874-7

Library of Congress Control Number: 2008935619

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

springer.com

Contents

1.	Hist	ory of Phase Change Memories	1
	Chu	ng H. Lam	
	1.1	The Discovery of Phase Change Materials	1
	1.2	Early Electronic Computers and Memory Systems	2
	1.3	Pioneers in Phase Change Memory	4
	1.4	Early Attempts with Phase Change Memory	9
	1.5	Rebirth of Phase Change Memory	10
	Refe	erences	14
n	4 T		
Pa	rt I:	Material Science: Theory and Experiment	
2.	Den	sity Functional Theory Calculations	
		Phase Change Materials	17
		ciech Wełnic	•••
	2.1	Introduction	17
	2.2	The Theorem of Hohenberg and Kohn	
	2.3	The Kohn-Sham Equation.	
	2.4	The Local Density Approximation	
	2.5	Beyond Density Functional Theory	
	2.6	Application of DFT in the Field of Phase Change Materials	
		2.6.1 Structure Determination.	25
		2.6.2 Electronic Properties	29
	Refe	erences	36
3.		ure of Glasses	39
		t Boolchand, Matthieu Micoulaut, and Ping Chen	20
	3.1	Introduction	
	3.2	Thermodynamics of the Glass Transition	
	3.3	Glass Transition from Dynamics	
	3.4	Glass Forming Tendency	
	2.5	3.4.1 Compositional Trends of the Glass Transition Temperature	46
	3.5	Calorimetric Measurement of the Glass Transition	40
	2.6	Temperature and Related Thermal Properties	48
	3.6	Three Generic Classifications of Glasses and Glass	
		Transitions	- 51

xii Contents

	3.7	Elastic Phases in Ionic and Super-ionic Glasses	54
	3.8	Ideal Glasses and Self-organization of Networks	
	3.9	Does the View Below the Glass Transition Temperature	
		Correlate with the View above the Glass Transition Temperature?	56
	3.10	Glass Formation in Hydrogen Bonded Networks	
		Epilogue	
	Refe	erences	59
4.		acture of Amorphous Ge-Sb-Te Solids	63
	Step	hen R. Elliott	
	4.1	Introduction	
	4.2	Structural Order in Amorphous Materials	
		4.2.1 Short-range Order	
		4.2.2 Medium-range Order	
		4.2.3 Long-range Structure	
	4.3	Experimental Structural Probes	
	4.4	Structural Modeling	
	4.5	The Structure of Amorphous Phase-change Materials	
		4.5.1 Experimental Studies	
		4.5.2 Simulational Studies	
	4.6	Summary	
	Refe	erences	79
5.		erimental Methods for Material Selection	01
		hase-change Recording	81
		beth van Pieterson	0.1
	5.1	Introduction	
	5.2	Reversible Switching.	
	5.3	Phase-change Materials	
		5.3.1 Crystallization by Nucleation and Growth	
	<i>5</i> 1	5.3.2 Crystallization Dominated by Crystal Growth	
	5.4 5.5	Archival Life Stability	
	5.6	Material Optimization	
	5.7	Outlook	
		erences	
6.		ling Properties of Phase Change Materialsone Raoux	99
	6.1	Introduction	90
	6.2	Thin Films of Phase Change Materials.	
	0.2	6.2.1 Crystallization Temperature as a Function of Film Thickness.	
		, 1	105

		6.2.3	Change in Optical Constants and Electrical and	
			Thermal Parameters as a Function of Film Thickness	
		6.2.4	Limits of Storage Density in Thin Films	
	6.3		Change Nanowires	
	6.4		Change Nanoparticles	
	6.5		ng in Time – Switching Speed of Phase Change Materials	
	Refe	erences.		120
7.	Cry	stalliza	tion Kinetics	125
	Joha	innes A		
	7.1		у	
		7.1.1	Homogeneous Crystal Nucleation	
		7.1.2	Heterogeneous Crystal Nucleation	
		7.1.3	- J - · · · - · · · · · · · · · · · · ·	
	7.2		urements	138
		7.2.1	Crystallization Parameters Around the Glass	
			Transition Temperature	138
		7.2.2	Crystallization Parameters Close to the Melting	
			Temperature	
	Refe	erences		145
8.	Sho	rt and l	Long-Range Order in Phase Change Materials	140
ο.		Fons	Long-Range Order in I have Change Waterials	147
	8 1		rical Background	1/19
	0.1	8.1.1	Glass Formation Process.	
	8.2		Range Order	
	0.2	8.2.1		
			Ge-Sb-Te Alloys	
	8.3		-Range Order	
	0.5	8.3.1	X-ray Absorption	
		8.3.2	Short Range Order in Sb-Te Alloys	
	Refe		Short range Order in 50 Te 7thoys	
	KCK	renees		1 / 1
9.			d Electrical Properties of Phase Change Materials	175
	Bon		Lee and Stephen G. Bishop	
	9.1		luction	
	9.2	Optica	al Constants and Optical Bandgap	176
		9.2.1	Determination of the Optical Constants and	
			Absorption Coefficient	
		9.2.2	Optical Bandgap	179
		9.2.3	Infrared Absorption: Band Tails and Free Carrier	
			Absorption	
		9.2.4	Effects of Composition and Preparation Conditions	182

xiv Contents

	9.3	Photo-induced Effects	184
		9.3.1 Photo-induced Current and Optical Nonlinearity	184
		9.3.2 Photo-Oxidation	185
	9.4	Conductivity and Phase Transformation	186
		9.4.1 Temperature-dependence of Resistivity	186
		9.4.2 Intermediate States: Percolation and Multilevel Recording.	187
		9.4.3 Effects of Composition and Processing Conditions	188
	9.5	Electronic Transport Properties and Band Structure	189
		9.5.1 Characterization of Transport Properties	189
		9.5.2 Hexagonal Ge ₂ Sb ₂ Te ₅	191
		9.5.3 Face-centered-cubic Ge ₂ Sb ₂ Te ₅	193
		9.5.4 Amorphous Ge ₂ Sb ₂ Te ₅	194
	9.6	Perspective for the Future	194
	Refer	ences	195
10.	Deve	lopment of Materials for Third Generation Optical	
10.		ge Media	199
	Nobo	ru Yamada	
	10.1	Introduction	199
	10.2	Requirements for a Phase-change Material	200
	10.3	Why Chalcogenide Semiconductors for Optical Memory?	202
	10.4	Merits and Demerits of the Te Based Eutectic Alloys	203
	10.5	Merits and Demerits of the Te-based Single Phase Materials	206
	10.6	From Eutectic to Single Phase Compositions	
	10.7	Discovery of the GeTe-Sb ₂ Te ₃ Pseudo-binary System	209
	10.8	Importance of the Cubic Structure and Vacancies	
	10.9	Secrets of the Present Phase-change Materials I	215
	10.10		
	10.11		
	10.12	Conclusions	223
	Refer	ences	224
11.	Nove	l Deposition Methods	227
		J. Milliron, Qiang Huang and Yu Zhu	
		Chemical Vapor Phase Deposition	227
		Electrodeposition	
		Solution-phase Deposition	
		Nanomaterials	
		Conclusions	
		ences	

Part II: Applications: Optical, Solid State Memory and Reconfigurable Logic

12.	Optical Memory: From 1st to 3rd Generation and its Future	251
	Luping Shi	
	12.1 Introduction	
	12.2 Three Generations of Optical Media	
	12.2.1 The First Generation: Compact Discs (CDs)	
	12.2.2 The Second Generation: Digital Versatile Disks (DVDs)	
	12.2.3 The Third Generation: Blu-ray Discs (BDs)	
	12.3 The Basic Principle of Optical Recording	
	12.4 Phase-change Optical Recording and Related Technologies	
	12.4.1 Phase-Change Optical Storage	
	12.4.2 Techniques for Phase-Change Optical Storage	
	12.5 The Future of Optical Storage	
	References	282
13.	4th Generation Optical Memories Based on Super-resolution	
	Near-field structure (Super-RENS) and Near-field Optics	285
	Junji Tominaga	
	13.1 Introduction	
	13.2 Diffraction Limit and Near-Field Optics	
	13.3 Small Aperture and Non-propagating Photons	288
	13.4 Super-resolution Near-field Structure (Super-RENS)	
	Principle to Retrieve Non-propagating Light	290
	13.5 Origin of the Strong Scattered Signals for 4th Generation	
	Super-RENS Disks	
	13.6 Beyond Super-RENS	
	References	297
14.	Phase Change Memory Device Modeling	299
	Daniele Ielmini	
	14.1 Introduction	
	14.2 Device Operation	
	14.3 Modeling of Electrical Conduction in the Amorphous Phase	
	14.4 Threshold Switching in the Amorphous Chalcogenide	306
	14.5 Modeling the Electrical Conduction in the Crystalline	• • •
	Chalcogenide	
	14.6 Electro-thermal Modeling of the Programming Characteristics	
	14.7 Modeling the Amorphous to Crystalline Phase Transformation	
	14.8 Modeling the Structural Relaxation in the Amorphous Phase	
	14.9 Summary and Outlook	
	References	327

xvi Contents

15.	Phase Change Random Access Memory Advanced			
	Prototype Devices and Scaling			
	Yi-Chou Chen			
	15.1 Introduction	331		
	15.2 Device Scaling by Reducing the Electrode Contact Area	332		
	15.2.1 The Heater Structure			
	15.2.2 The Edge Contact Structure	337		
	15.2.3 μTrench Structure	338		
	15.2.4 The Ring Structure	338		
	15.3 Device Scaling by Reducing the Phase Change Material Volume	339		
	15.3.1 The Pillar Structure	340		
	15.3.2 The Line Structure	341		
	15.3.3 The Bridge Structure	342		
	15.4 Other Prototype Devices	343		
	15.4.1 Scaling Both the Material and the Contact	344		
	15.4.2 Multi-level Cell			
	15.4.3 Confined Structure			
	15.5 Advanced Device Testing.	347		
	15.6 Summary			
	References			
16.	Phase Change Memory Cell Concepts and Designs			
	16.1 Introduction			
	16.2 Technology Overview			
	16.3 Phase Change Memory Cell Electrical Characterization			
	16.4 Phase Change Memory Cell Reliability			
	16.4.1 Data Retention Characterization			
	16.4.2 Retention Behavior with Device Scaling			
	16.4.3 Cycling Endurance			
	16.5 Summary and Outlook			
	References	379		
17.	Phase Change Random Access Memory Integration	381		
	Matthew J. Breitwisch			
	17.1 Introduction			
	17.2 Phase Change Random Access Memory Design Basics	382		
	17.3 Review of Desired Phase Change Memory Cell Characteristics			
	17.4 The Access Device			
	17.5 Device Design Considerations	393		
	17.5.1 The Mushroom Cell without or with Bottom			
	Ring Electrode	393		
	17.5.2 The Pillar Cell	397		

	17.5.3 The μTrench Cell	399
	17.5.4 The Pore Cell	399
	17.6 Multi-Level Phase Change Random Access Memory	403
	17.7 Concluding Remarks	406
	References	406
18.	Reconfigurable Logic	409
	James Lyke	
	18.1 Introduction	409
	18.2 Digital System Basics	410
	18.3 Simple Configurable Digital Systems	414
	18.4 Considerations in Computation Architectures	419
	18.5 Multi-valued Systems	420
	18.6 Threshold Logic	422
	18.7 Artificial Neural Networks	425
	18.8 Other Analog-domain Programmable Systems	426
	18.9 Conclusions	429
	References	429
Autl	hor Bios	431
Inde	ex	437

Part I: Material Science: Theory and Experiment

7. Crystallization Kinetics

Johannes A. Kalb

Abstract The classical theory of steady state crystal nucleation is discussed, as originally developed by Gibbs, Volmer, Weber, Becker, Döring, Turnbull and Fisher. A particular focus is drawn on the implications of heterogeneous nucleation sites, which can increase the homogeneous nucleation rate by many orders of magnitude. Classical theory of crystal growth is covered as well.

In Sect. 7.2, these theories are applied to measurements of nucleation and growth parameters in amorphous and liquid phase change materials by calorimetry and microscopy. The results contribute to a better understanding of the kinetics of the phase transformation in these materials, which helps to develop next-generation phase change media and to scale them to smaller dimensions.

7.1 Theory

Two processes are involved in the crystallization of a liquid or an amorphous solid (hereafter: parent phase):

- 1. First, crystallization is initiated by crystal nucleation. In the simplest case, this occurs in the interior of the parent phase, i. e., without the involvement of a "foreign" substance. This is called *homogeneous nucleation* (Sect. 7.1.1). If the parent phase is in contact with a foreign substance that acts as a preferred nucleation site (like an impurity or a container wall), nucleation is called *heterogeneous* (Sect. 7.1.2).
- 2. Subsequently, a stable crystal cluster grows to macroscopic size (crystal growth, Sect. 7.1.3).

7.1.1 Homogeneous Crystal Nucleation

The basic concept for nucleation theory was provided by Gibbs in 1878 (Sect. 7.1.1.1, [7.1-7.3]). This early treatment is still purely thermodynamic and describes cluster formation of a new phase inside the parent phase. Using this approach, the first *kinetic* model for nucleation was proposed by Volmer and Weber in 1926 (Sect. 7.1.1.2, [7.2-7.4]) and has served as a basis for a further improve-

ment by Becker and Döring in 1935 (Sect. 7.1.1.3, [7.2, 7.3, 7.5]). Finally, in 1949, Turnbull and Fisher obtained an expression for the pre-exponential factor of the nucleation rate in a condensed phase (Sect. 7.1.1.4, [7.2, 7.3, 7.6]). Today, the theory is collectively known as the *classical nucleation theory* by Volmer, Weber, Becker, Döring, Turnbull and Fisher.

7.1.1.1 Thermodynamics of Cluster Formation (Gibbs, 1878)

In the parent phase, atoms approach each other statistically, forming crystalline clusters by thermodynamic fluctuations. For simplicity, these clusters are assumed spherical with radius r. The equilibrium cluster distribution is then given by Boltzmann statistics [7.7],

$$N^{equ}(r) = N_0 \cdot \exp\left(-\frac{\Delta G_{cluster}(r)}{k_B T}\right),\tag{7.1}$$

where $\Delta G_{cluster}$ (r) is the reversible work for crystal cluster formation, k_B the Boltzmann constant, T the absolute temperature, N_0 the total number of atoms in the liquid and $N^{equ}(r)$ the number of clusters of radius r at equilibrium (N_0 and $N^{equ}(r)$ are normalized per unit volume). $\Delta G_{cluster}$ (r) can be expressed as a sum of two contributions [7.1-7.3]:

$$\Delta G_{cluster}(r) = -\Delta G_{lc,V} \cdot \frac{4}{3} \pi r^3 + \sigma \cdot 4\pi r^2. \tag{7.2}$$

 $\Delta G_{lc,V}(T)$ is the (Gibbs) free energy difference between the parent and the crystalline phase per unit volume. It is zero at the melting temperature T_m and defined to be positive below T_m . $\Delta G_{lc,V}(T)$ increases with increasing undercooling below T_m , i. e., it increases with decreasing temperature T_m . The second term in Eq. (7.2) results from the creation of an interface between the cluster and the liquid. This term is positive and therefore energetically not favorable. The quantity $\sigma > 0$ is the interfacial free energy (hereafter: interfacial free energy). An additional elastic strain energy term due to the density change upon crystallization can be neglected in Eq. (7.2) unless the parent phase is very viscous [7.2].

Figure 7.1 qualitatively displays the evolution of $\Delta G_{cluster}$ (r). The curve passes through a maximum, which can be obtained by solving $\frac{\partial \Delta G_{cluster}(r)}{\partial r} = 0$. The

¹ Note that a complete description for alloys would employ the liquidus temperature T_l instead of the melting temperature T_m , which would go beyond the scope of this chapter [7.8].

maximum occurs because the surface-to-volume ratio is large for small clusters. The position of the maximum is (Fig. 7.1)

$$r_c = \frac{2\sigma}{\Delta G_{lc,V}},\tag{7.3}$$

and the height is

$$\Delta G_c := \Delta G_{cluster}(r_c) = \frac{16\pi}{3} \frac{\sigma^3}{\left(\Delta G_{lc,V}\right)^2}.$$
 (7.4)

Fig. 7.1. Reversible work $\Delta G_{cluster}$ (r) for the formation of crystalline clusters of radius r in the parent phase ($T < T_m$). Clusters decay for $r < r_c$ and grow for $r > r_c$.

The quantity r_c is called the *critical radius*, which is on the order of nanometers [7.2, 7.3]. A cluster of radius r_c is called a *critical cluster* and ΔG_c (T) the *critical work for cluster formation*. $\Delta G_{cluster}(r)$ increases for $r < r_c$. Hence, clusters of size $r < r_c$ are energetically not favorable and spontaneously decay. However, for $r > r_c$, clusters grow due to a gain in free energy. Therefore, ΔG_c can be considered an activation barrier against crystallization. The existence of this barrier enables undercooling of a liquid below T_m without immediate crystallization. Simply speaking, nucleation in this early Gibbs treatment is the formation of post-critical clusters of size $r > r_c$.

7.1.1.2 Model Based on Equilibrium Distribution of Clusters (Volmer and Weber, 1926)

Volmer and Weber developed the first *kinetic* model for nucleation. Their model utilizes the equilibrium cluster distribution [Eq. (7.1)]. However, since $N^{equ}(r)$

becomes unphysical for $r > r_c$ (cluster number increases with increasing radius r, dashed in Fig. 7.2), it was ignored and set to zero: $N^{equ}(r > r_c) = 0$ [7.2, 7.3].

Fig. 7.2. Statistical cluster distribution function. $N^{equ}(r)$: Volmer-Weber model [equilibrium, Eqs. (7.1) and (7.2)]. $N^{ss}(r)$: Becker-Döring model (steady state). r_c is the radius of the critical cluster. $N^{ss}(r_c)=1/2\cdot N^{equ}$ (r_c). The dashed part of the curve was ignored by Volmer and Weber: N^{equ} ($r > r_c$)

For $r = r_c$,

$$N^{equ}(r_c) = N_0 \cdot \exp\left(-\frac{\Delta G_c}{k_B T}\right). \tag{7.5}$$

Volmer and Weber assumed that nucleation occurs when a critical cluster acquires one more atom. The nucleation rate I^{equ} (dimension: $1/m^3$ s) is then given by [7.2, 7.3]

$$I^{equ} = s_c \cdot k \cdot N^{equ}(r_c) = s_c \cdot k \cdot N_0 \cdot \exp\left(-\frac{\Delta G_c}{k_B T}\right), \tag{7.6}$$

where k is the arrival rate of parent phase atoms to the critical crystalline cluster (number of arrivals per atom on the cluster surface per unit time, dimension: 1/s). s_c is the number of surface atoms in the critical cluster.

7.1.1.3 Steady State Model (Becker and Döring, 1935)

The Volmer-Weber model assumes that a critical cluster grows to macroscopic size as soon as it becomes post-critical by the addition of one more parent phase atom. Its main deficiency is that it neglects that post-critical clusters $(r > r_c)$ can still decay with a certain probability (though they are more likely to grow), and

that critical clusters $(r=r_c)$ grow or shrink with equal probability (since $\partial \Delta G_{cluster}(r)/\partial r\big|_{r=r_c}=0$). Becker and Döring have argued that the true cluster distribution $N^{ss}(r)$ in steady state (Fig. 7.2) does not abruptly fall to zero at $r=r_c$, but takes a value of $N^{ss}(r_c)=1/2$ $N^{equ}(r_c)$ and decreases gradually to zero for large cluster sizes [7.2, 7.3, 7.5]. For small cluster sizes, N^{ss} approaches N^{equ} .

After a few additional assumptions, Becker and Döring obtain the following expression for the steady state nucleation rate I^{ss} [7.2, 7.3]:

$$I^{ss} = s_c \cdot k \cdot N_0 \cdot \frac{1}{\underline{i_c}} \cdot \left(\frac{\Delta G_c}{3\pi k_B T}\right)^{\frac{1}{2}} \cdot \exp\left(-\frac{\Delta G_c}{k_B T}\right), \tag{7.7}$$

where i_c is the number of atoms in the critical cluster. Equation (7. 7) differs from the Volmer-Weber equation [Eq. (7.6)] only by the Zeldovich factor Γ_z , which only has a weak temperature dependence. Based on analytical and numerical studies, Γ_z is between 1/100 and 1/10 in most cases [7.2, 7.3, 7.9].

As the nucleation rate is far more sensitive to slight changes in ΔG_c than to the exact value of the pre-exponential factor [7.2], the Becker-Döring expression [Eq. (7.7)] is essentially identical to the Volmer-Weber expression [Eq. (7.6)] for all practical purposes. However, the importance of the Becker-Döring theory is that the kinetic problem has been treated correctly [7.2].

7.1.1.4 The Kinetic Pre-factor of the Nucleation Rate (Turnbull and Fisher, 1949)

Volmer, Weber, Becker and Döring originally developed their theories for the case of a *gaseous* parent phase (i. e., vapor condensation). For this case, the arrival rate k [Eq. (7.7)] is readily obtained by the theory of gases (not discussed here, [7.2]). However, Turnbull and Fisher were the first to evaluate the pre-exponential factor in Eq. (7.7) for crystal nucleation in an undercooled liquid or an amorphous phase [7.2, 7.3, 7.6]. They differentiated between two limiting cases: diffusion-limited and collision-limited crystallization kinetics. In both cases, the composition of the liquid and the crystalline cluster are the same. "Diffusion-limited" therefore refers to the nature of a *local* rearrangement (diffusive jump of an atom across the liquid-crystalline interface), *not* to the presence of a long-range diffusion field.

1. For diffusion-limited crystallization, changes of neighbors and/or coordination number are necessary for crystallization. This usually applies to metallic alloys, ionic materials, covalent materials and is also observed for phase change materials as discussed in more detail in Sect. 7.2. The frequency of diffusive

jumps k [Eq. (7.7)] across the interface per interface atom is according to Turnbull and Fisher

$$k = \frac{6D}{\lambda^2}$$
 (diffusion-limited) (7.8)

where D is associated with the diffusivity in the liquid or amorphous phase (not in the crystal). The parameter $\lambda = \Omega^{1/3}$ is the average interatomic distance (Ω = atomic volume).

2. For collision-limited crystallization, atomic neighbors generally do not have to change by diffusive rearrangements upon crystallization. Instead, atomic movement from the liquid to the crystalline cluster can be accomplished by thermal vibration. Hence, crystallization is governed by the collision of the atoms. This usually occurs only in pure metals and in van der Waals bonded materials but not in phase change materials as discussed in more detail in Sect. 7.2. The arrival rate constant k [Eq. (7.7)] is then equal to the collision rate at which the atoms attempt to join the crystalline cluster:

$$k = \frac{u_{\text{sound}}}{\lambda}$$
 (collision-limited). (7.9)

 u_{sound} is the sound velocity in the liquid or amorphous phase, which is characteristic for the vibrational motion of the atoms.

Substituting Eq. (7.8) into Eq. (7.7) gives the nucleation rate for diffusion-limited crystallization:

$$I^{ss} = s_c \cdot \frac{6D}{\lambda^2} \cdot N_0 \cdot \Gamma_z \cdot \exp\left(-\frac{\Delta G_c}{k_B T}\right) \qquad \text{(diffusion-limited)}. \tag{7.10}$$

Approximating the diffusivity D locally with an Arrhenius equation, $D \propto \exp\left[-E_D/\left(k_BT\right)\right]$, where $E_D = -\partial \ln D/\partial\left[1/\left(k_BT\right)\right]$ is the (local) activation energy of the diffusivity and k_B the Boltzmann constant, gives the (local) activation energy E_{FS} of the steady-state nucleation rate I^{SS} :

$$E_{Iss} = E_D + \Delta G_c$$
 (diffusion-limited). (7.11)

It is often helpful to express I^{ss} in terms of the liquid shear viscosity η , which is easier to obtain experimentally than the liquid diffusivity D. Using the Stokes-Einstein equation,

$$\eta D = \frac{k_B T}{3\pi\lambda} \,, \tag{7.12}$$

which relates D and η , gives

$$I^{ss} = s_c \cdot \frac{2k_B T}{\eta \pi \lambda^3} \cdot N_0 \cdot \Gamma_z \cdot \exp\left(-\frac{\Delta G_c}{k_B T}\right) \quad \text{(diffusion-limited)}. \quad (7.13)$$

Note that Eq. (7.12) implies that the (local) activation energies of diffusivity E_D and viscosity E_{η} are equal if the viscosity is approximated (locally) by an Arrhenius equation, $\eta \propto \exp[E_{\eta}/(k_BT)]$:

$$E_D = E_{\eta}. \tag{7.14}$$

The linear term in T on the right side of Eq. (7.12) varies slowly with T compared to the exponential terms on the left side and therefore does not contribute to Eq. (7.14). The Stokes-Einstein equation has been found to hold for a large variety of undercooled liquids. Violations of this relation have been reported only for some fragile liquids [7.10-7.13]. Substituting $N_0 = 1/\lambda^3 = 1/\Omega$ and estimating the pre-exponential factor by $N_0 \sim 10^{28}$ m⁻³, $s_c \sim 10$, $T \sim 1000$ K, and $\Gamma_z \sim 1/100$ [7.2], this gives

$$I^{ss} = \frac{10^{36}}{\eta} \exp\left(-\frac{\Delta G_c}{k_B T}\right) \frac{1}{\text{m}^3 \text{s}}$$
 (diffusion-limited), (7.15)

where η is the numerical value of the liquid shear viscosity in units of poise.²

Substituting Eq. (7.9) into Eq. (7.7) gives the nucleation rate for collision-limited crystallization,

$$I^{ss} = 10^{39} \exp\left(-\frac{\Delta G_c}{k_B T}\right) \frac{1}{\text{m}^3 \text{s}}$$
 (collision-limited), (7.16)

where $\lambda \sim 3$ Å and $u_{\text{sound}} \sim 1000 \text{ ms}^{-1}$ have been used as a typical example [7.2].

The uncertainty of the pre-exponential factors in Eqs. (7.15) and (7.16) is about two to four orders of magnitude [7.2]. However, as the exponential term varies so rapidly with ΔG_c upon undercooling, the value of ΔG_c that is required to give a fixed nucleation rate at a specific temperature is insensitive to the exact

 $^{^{2}}$ 1 Pa s = 10 poise.

value of the pre-exponential factor [7.2, 7.3]. This applies even more to the interfacial energy σ , since it is raised to the third power in the exponential.

Equations (7.15) and (7.16) coincide for practical purposes at low undercooling (i. e., at a temperature slightly below T_m), where the viscosity is roughly independent of temperature (Fig. 7.3) and usually on the order of 10^{-1} - 10^{-3} poise. Both equations have been used widely and successfully to model experimental data on crystal nucleation in undercooled liquids [7.2, 7.8, 7.14-7.18].

The nucleation rate I^{ss} for diffusion-limited crystallization [Eq. (7.15)] becomes negligibly small close to the melting point T_m , where ΔG_c (T_m) = ∞ [since $\Delta G_{lc,V}$ (T_m) = 0, Eq. (7.4)], and close to the glass transition temperature T_g , where the viscosity strongly increases upon cooling from the liquid (Fig. 7.3).

Fig. 7.3. Viscosity η in various stability regimes (T_g : glass transition temperature, which marks the boundary between a glass (amorphous phase) and an undercooled liquid; T_m : melting temperature). Stable equilibrium for $T > T_m$, metastable equilibrium (undercooled liquid) for $T_g < T < T_m$ and amorphous (frozen isoconfigurational states, non-equilibrium) for $T < T_g$. The amorphous states are unstable with respect to structural relaxation, i. e., they alter their structure towards the equilibrium structure of the undercooled liquid, which is indicated by the arrows. The slower the cooling rate, the longer the metastable equilibrium can be maintained upon cooling: (a) Fast cooling. (b) Slow cooling. (c) Hypothetically infinitively slow cooling, which maintains metastable equilibrium at all temperatures [7.19-7.21]. Therefore, T_g depends on the timescale of the experiment, but it usually occurs at a temperature at which the viscosity adopts a value on the order of 10^{12} Pa s = 10^{13} poise [7.22].

Therefore, I^{ss} exhibits a pronounced maximum at a temperature between T_g and T_m . Such a maximum is not present for collision-limited kinetics, where I^{ss} increases continuously upon cooling [Eq. (7.16)], which is not observed for phase change materials (Sect. 7.2).

7.1.2 Heterogeneous Crystal Nucleation

Homogeneous nucleation is an *intrinsic* process. In practice, however, homogeneous nucleation is difficult to identify specifically. Usually, foreign phases like container walls and impurities aid in the nucleation process and thereby increase the nucleation rate. In this case, nucleation is called *heterogeneous*. Heterogeneous nucleation is therefore an *extrinsic* process and can be influenced by the experimental conditions [7.9].

The simplest model for heterogeneous nucleation is due to Volmer [7.23, 7.24]. The model is based on the Gibbs model (Sect. 7.1.1.1) but with a flat substrate, which acts as a heterogeneous nucleation site (Fig. 7.4).

Fig. 7.4. Volmer's spherical cap model for heterogeneous cluster formation. The exposed crystal cluster has the shape of a spherical cap, whose volume is $f(\theta) \cdot 4/3\pi r^3$. The quantities σ_{cs} , σ_{ls} and σ_{lc} are the interfacial energies between the three substances volved. The dashed circle segment is a guide for the eye.

Under the assumption that the phases are isotropic, the interface between the crystalline cluster and the liquid (or amorphous) parent phase must have the same curvature everywhere. Hence, the crystalline cluster grows on the flat substrate like a spherical cap of radius r (Fig. 7.4). As a function of the wetting angle θ (Fig. 7.4), the exposed volume fraction $0 \le f(\theta) \le 1$ relative to a sphere of the same radius r is [7.24]

$$f(\theta) = \frac{(2 + \cos \theta) (1 - \cos \theta)^2}{4}.$$
 (7.17)

Based on Gibbs' approach [Eq. (7.2)], Volmer [7.23, 7.24] could show that heterogeneous nucleation is preferred over homogeneous nucleation if

$$\sigma_{cs} - \sigma_{ls} < \sigma_{lc}, \tag{7.18}$$

where σ_{cs} , σ_{ls} and σ_{lc} denote, respectively, the crystal-substrate, liquid-substrate and liquid-crystal interfacial energies (Fig. 7.4). In this case, the reversible work for cluster formation *per atom*, $\Delta G_{\text{cluster}}$ (Fig. 7.1), is lower than if the circular cluster surface π ($r \sin \theta$) were exposed to the liquid. The critical work for heterogeneous cluster formation is then reduced to

$$\Delta G_c^{\text{het}} = \underbrace{\frac{16\pi}{3} \frac{\sigma^3}{\left(\Delta G_{lc,V}\right)^2} \cdot f(\theta)}_{AG \equiv \Delta G^{\text{hom}}},$$
(7.19)

whereas the critical radius remains unchanged³: $r_c^{\text{het}} = r_c^{\text{hom}}$. If there is no wetting (homogeneous nucleation, $\theta = 180^{\circ}$, f = 1), Eq. (7.19) reduces to Eq. (7.4), i. e., the substrate does not aid in the nucleation process.

The classical theory for homogeneous nucleation (Sect. 7.1.1) can equally be applied to the case of heterogeneous nucleation [7.2, 7.9]. The only difference is the lower work for critical cluster formation [Eq. (7.19)] and the reduced number of parent phase atoms that can act as a nucleation site: While any parent phase atom can act as a nucleation site for homogeneous nucleation, only those atoms in contact with the impurity can act as a nucleation site for heterogeneous nucleation [7.2, 7.9, 7.25]. If ε is the fraction of parent phase atoms in contact with the heterogeneity (usually $\varepsilon \ll 1$), then the steady state nucleation rate for heterogeneous nucleation and diffusion-limited kinetics, $F^{s,het}$, is

$$I^{ss,\text{het}} = \varepsilon \cdot s_c \cdot \frac{6D}{\lambda^2} \cdot N_0 \cdot \Gamma_z \cdot \exp\left(-\frac{\Delta G_c^{\text{het}}}{k_B T}\right) \frac{1}{\text{m}^3 \text{s}}$$
 (7.20)

[cf. Eq. (7.10)] with a (local) activation energy of

$$E_{Iss,het} = E_D + \Delta G_c^{het}. ag{7.21}$$

Since $\Delta G_c^{\text{het}} < \Delta G_c$ for $f(\theta) < 1$ [Eq. (7.19)] it follows that $E_{I^{\text{SS,het}}} < E_{I^{\text{SS}}}$ [Eq. (7.11)]. The ratio of heterogeneous to homogeneous nucleation rate (dimensionless) at a given temperature is then

³ However, note that the *number of atoms* in the critical cluster is reduced by the factor $f(\theta)$ for heterogeneous nucleation compared to homogeneous nucleation for the same critical radius r_c (Fig. 7.4).

$$\frac{I^{ss,het}}{I^{ss,hom}} = \varepsilon \cdot \exp\left(\frac{\Delta G_c}{k_B T} \cdot \left[1 - f(\theta)\right]\right),\tag{7.22}$$

where $I^{ss,hom} \equiv I^{ss}$. Equation (7.22) applies to both diffusion-limited and collision-limited crystallization. Figure 7.5 shows a plot of Eq. (7.22) for a reasonable parameter of $\varepsilon = 10^{-6}$ [7.9] for three values of the critical work for *homogeneous* cluster formation, ΔG_c .

This illustrates the drastic influence of heterogeneities on the nucleation rate by many orders of magnitude. Usually, heterogeneous nucleation rates are observed to be far higher than homogeneous nucleation rates [7.2, 7.3], which implies that θ must be small (Fig. 7.5). In any case, since heterogeneous nucleation occurs *in addition* to homogeneous nucleation, $f^{ss,total} = f^{ss,het} + f^{ss,hom}$, the nucleation rate is always lowest for purely homogeneous nucleation ($f^{ss,het} = 0$).

7.1.3 Crystal Growth

The nucleation theory describes the formation of stable crystal clusters. Those can grow to macroscopic size. There are two possibilities: interface-controlled growth (Sect. 7.1.3.1) and growth controlled by a long-range diffusion field (Sect. 7.1.3.2).

7.1.3.1 Interface-controlled Growth

If there is no phase separation upon crystallization, the composition of parent phase and crystal cluster are the same at all times. Therefore, growth is controlled by rearrangement processes *only* at the liquid-crystalline interface and is therefore called *interface-controlled* [7.2]. Such a rearrangement process may either involve a diffusive jump in the case of diffusion-limited kinetics or an atomic collision in the case of collision-limited kinetics (Sec. 7.1.1.4). The rearrangement frequency is in both cases independent of the interface position so that the growth velocity u is time-independent. The crystal growth velocity is then [7.2]

$$u = \gamma_{s} \cdot \lambda \cdot k \cdot \left[1 - \exp\left(-\frac{\Delta G_{lc,\text{atom}}(T)}{k_{B}T}\right) \right] \quad (T \le T_{m})$$
 (7.23)

where $0 \le \gamma_s \le 1$ is the fraction of sites where a new atom can be incorporated. λ is the average interatomic distance (i. e., the distance that the interface moves by each rearrangement), and $\Delta G_{lc,\text{atom}} > 0$ is the (Gibbs) free energy difference between parent phase and crystal *per atom*. The square bracket term in Eq. (7.23) results from thermally activated atomic transfer across the liquid-crystalline interface in *both* directions. The value of the rate constant k is the same as for nucleation [Eqs. (7.8) and (7.9)]. For diffusion-limited kinetics (as observed for phase change materials), this gives [7.2]

$$u = \gamma_{s} \cdot \frac{6D}{\lambda} \left[1 - \exp\left(-\frac{\Delta G_{lc,atom}(T)}{k_{B}T}\right) \right]$$

$$= \gamma_{s} \cdot \frac{2k_{B}T}{\eta \pi \lambda^{2}} \left[1 - \exp\left(-\frac{\Delta G_{lc,atom}(T)}{k_{B}T}\right) \right] \qquad (T \le T_{m}), \quad (7.24)$$

where Eq. (7.12) has been used. At the melting temperature T_m , the growth velocity u is zero since $\Delta G_{lc,atom}$ (T_m) = 0. Close to T_g , the square bracket term in Eq. (7.24) varies slowly with temperature compared to the diffusivity D or viscosity η (Fig. 7.3) and can therefore be set as a constant. Therefore:

$$u \propto D \propto \frac{1}{\eta}$$
 $(T \approx T_g, \text{ diffusion-limited}),$ (7.25)

which implies that the (local) activation energies of the crystal growth velocity E_u and the diffusivity E_D are equal:

$$E_u = E_D$$
 (7.26)

Comparing Eq. (7.26) with Eq. (7.11) or (7.21) gives

$$E_{I^{SS}} - E_{\nu} = \Delta G_{C} \tag{7.27a}$$

$$E_{Iss,het} - E_{u} = \Delta G_{c}^{het}$$
, (7.27b)

i. e., the activation energies of nucleation rate and growth velocity differ by the critical work for cluster formation.

Since $u(T_m) = 0$ and since u becomes negligibly small close to T_g [Eq. (7.25), Fig. 7.3], it exhibits a maximum between T_g and T_m , which is usually located at higher temperature than the maximum for the nucleation rate [Eqs. (7.10) and (7.20)].

For collision-limited kinetics, u increases continuously upon cooling (not observed for phase change materials) and is limited by the velocity of sound [Eqs. (7.9) and (7.23)]:

$$u = \gamma_{s} \cdot u_{\text{sound}} \left[1 - \exp\left(-\frac{\Delta G_{lc,\text{atom}}}{k_{B}T} \right) \right]$$
 (7.28)

7.1.3.2 Growth Controlled by Long-range Diffusion

If there is a composition change upon crystallization, *long range* diffusive atomic transport controls the growth velocity because the liquid depletes in certain components close to the liquid-crystalline interface. This depletion becomes more pronounced with increasing time, so that the growth velocity *u* must decrease with time *t*. Dimensional analysis of the diffusion equation [7.19, 7.26] gives:

$$u \propto \left(\frac{D}{t}\right)^{\frac{1}{2}}. (7.29)$$

A time-dependent crystal growth velocity has not been observed in phase change materials that are commonly used for phase change recording (cf. Sect. 7.2). Therefore, this growth mode is not discussed further here.

7.2 Measurements

As discussed in Sect. 7.1, crystallization of an undercooled liquid proceeds on a relatively long timescale just below the melting temperature T_m and close to or below the glass transition temperature T_g . The fastest crystallization is therefore observed at an intermediate temperature T_{int} between T_g and T_m . In optical (or electronic) phase change media, the laser power (or the current) is usually optimized to give high data transfer rates, which implies that crystallization probably occurs somewhere around T_{int} . It is well-established that crystallization in phase change materials near $T = T_{int}$ occurs on timescales of less than 100 ns [7.27-7.31]. Such a short timescale makes it impossible to perform systematic measurements of crystal nucleation rate and crystal growth velocity as a function of temperature around T_{int} . Therefore, crystallization is usually studied either around T_g (Sect. 7.2.1, [7.30-7.42]) or slightly below T_m (Sect. 7.2.2, [7.43]), where crystallization is slow enough to be observed on a laboratory timescale. In some cases, the measured parameters can then carefully be extrapolated to the temperature regime around T_{int} .

7.2.1 Crystallization Parameters Around the Glass Transition Temperature

Frequently, crystallization of amorphous phase change films is studied experimentally around T_g either by Kissinger analysis [7.44], where the crystallization temperature is measured as a function of heating rate [7.32, 7.35, 7.37, 7.38, 7.42], or by Johnson-Mehl-Avrami analysis [7.45, 7.46], where crystallization is monitored isothermally [7.30, 7.35, 7.41]. Both methods determine an effective activation energy for crystallization, which includes contributions of both crystal nucleation and crystal growth. Unfortunately, the relative contribution of these two processes remains unknown with these methods. It is therefore more meaningful to measure crystal nucleation rate and crystal growth velocity *independently*, which can only be performed by direct observation of crystal size and number as a function of time in an isothermal experiment [7.34, 7.40, 7.41, 7.47, 7.48]. In-situ transmission electron microscopy (TEM) studies have been performed to accomplish this task [7.40], but the drawbacks of this method are imprecise temperature control [7.41] and that the electron beam can influence the crystallization due to additional localized sample heating [7.49]. The experiment described below avoids these difficulties by using ex-situ atomic force microscopy (AFM) in combination with a precise furnace of a power-compensated differential scanning calorimeter (DSC). 30 nm-thin films of composition Ge₂Sb₂Te₅, Ge₄Sb₁Te₅, Ge₁Sb₂Te₄, and Ag_{0.055}In_{0.065}Sb_{0.59}Te_{0.29} (hereafter: AgIn-Sb₂Te) were sputter-deposited on a Si wafer by direct-current magnetron sputtering and annealed isothermally in the DSC around the glass transition temperature T_g . $[T_g]$ has been determined in a separate study by DSC to be about 150-200° depending on the alloy (e. g., Fig. 7.6)].

Fig. 7.6. Heat flow as a function of temperature for $Ge_2Sb_2Te_5$ measured by differential scanning calorimetry (DSC). Lowest curve: first scan for the initially fully amorphous sample (heating). The second scan (re-scan of the crystallized sample, heating) is shown for comparison and serves as a baseline for the first scan. Top curve: cooling signal (reproduced in additional scans). The scan rate was ± 40 K/min. The onset of the glass transition temperature T_g , which is usually observed as an endothermic step [7.22], occurs at around 170°. This step cannot be entirely resolved since crystallization interferes (large exothermic peak at around 180-185°, not entirely shown to make the onset of T_g more visible). Details: [7.19, 7.51]. Reprinted from [7.51] with permission of the MRS.

Due to the mass density increase upon crystallization, which induces a reduction in film thickness on the order of 5 % [7.39, 7.50], crystals could be directly observed as depressions in the not-vet-crystallized amorphous film [7.47]. Several AFM scanning and annealing cycles were alternately performed, and the annealing temperature remained the same for the same sample in subsequent anneals (details: [7.19, 7.47, 7.48]). Comparing number density and sizes of crystals on subsequent AFM scans at the same sample location revealed the (heterogeneous) steady-state crystal nucleation rate, $I^{ss,het}$, and the crystal growth velocity, u. The experiment was repeated at different temperatures to determine their temperature dependencies [7.19, 7.47, 7.48]. Results are displayed in Figs. 7.7 and 7.8. For simplicity, the crystal nucleation rate in Fig. 7. 8 was normalized per unit area (not per unit volume) since cross-sectional TEM has shown that crystals nucleate only heterogeneously at the film surface [7.19, 7.33, 7.48]. Both $I^{ss,het}$ and u are observed to increase with increasing temperature. Hence, as usually expected in alloys, crystallization proceeds diffusion-limited (not collision-limited, Sect. 7.1.1.4 and 7.1.3.1), i. e., Eqs. (7.10), (7.11), (7.20) and (7.21) should apply. For the case of collision-limited kinetics, I^{ss,het} and u would decrease with increasing temperature [Eqs. (7.16) and (7.28)], which is not observed. As a further indication, experience indicates that the crystal growth velocities in Fig. 7.7 are too low to be the result of collision-limited kinetics [7.52].

Fig. 7.7. Crystal growth velocity u as a function of temperature T: AgIn-Sb₂Te (squares), Ge₄Sb₁Te₅ (circles), Ge₂Sb₂Te₅ (triangles) and $Ge_1Sb_2Te_4$ (crosses). The error bars on the velocity are approximately equal to the size of the symbols. The data were fitted with an Arrhenius equation (fit parameters: Table 7.1). For $T > 170^{\circ}$, a different annealing technique was used, and therefore, the data in this regime were fitted separately (details: [7.19]7.47]). Reprinted with permission from [7.47]. Copyright [2004], American Institute of Physics.

Fig. 7.8. Heterogeneous steady-state crystal nucleation rate $F^{s,het}$ as a function of temperature $T: Ge_4Sb_1Te_5$ (circles) $Ge_2Sb_2Te_5$ (triangles) $Ge_1Sb_2Te_4$ (crosses). The data were fitted with an Arrhenius equation (fit parameters: Table 7. 1). Reprinted with permission from [7.48]. Copyright (2005). American Institute of Physics.

Table 7.1. Activation energies E_u and $E_{Iss,het}$ for the crystal growth velocity u and the heterogeneous steady-state nucleation rate $I^{ss,het}$, respectively. E_u and $I^{ss,het}$ were obtained from an Arrhenius fit to the data in Figs. 7.7 and 7.8, respectively: $u \propto [-E_u / (k_B T)]$ and $I^{ss} \propto [-E_{Iss,het} / (k_B T)]$. The critical work for heterogeneous cluster formation, ΔG_c^{het} , was obtained from Eq. (7.27). The activation energy for the isoconfigurational viscosity in the amorphous phase, E_{η} , was taken from [7.53, 7.54].

A 11 a	E_u	$E_{I^{ss, { m het}}}$	$\Delta G_c^{ m het}$	E_{η}
Alloy	(eV)	(eV)	(eV)	(eV)
Ge ₄ Sb ₁ Te ₅	2.74 ± 0.03	4.09 ± 0.20	1.35 ± 0.23	1.94 ± 0.09
$Ge_2Sb_2Te_5$	2.35 ± 0.05	3.50 ± 0.17	1.15 ± 0.22	1.76 ± 0.05
$Ge_1Sb_2Te_4$	1.89 ± 0.05	2.82 ± 0.18	0.93 ± 0.23	_ a
AgIn-Sb ₂ Te	2.90 ± 0.05	n/a ^b	n/a ^b	1.33 ± 0.09

^a No data available.

A time dependence of the crystal growth velocity u could not be observed within error between subsequent anneals of the same sample at the same temperature (Fig. 7.7). This implies that crystal growth occurs interface-controlled (as opposed to growth controlled by long-range diffusion, Sect. 7.1.3), i. e., Eqs. (7.24) – (7.27) should apply [as opposed to Eq. (7.29)].

In the initial stage of crystallization (at short times, i. e., during the first annealing cycle), the crystal nucleation rate for all GeSbTe alloys increased with time due to transient effects (not shown in Fig. 7.8, details: [7.19, 7.48]). This effect occurs since the steady-state cluster distribution N^{ss} (Fig. 7.2) has not yet been developed in the initial stage of crystallization [7.2, 7.24]. After the so-called incubation time, the cluster distribution adopts a steady-state value, and therefore, the crystal nucleation rate is time-independent as shown in Fig. 7.8 [cf. Eq. (7.20)]. For AgIn-Sb₂Te, no data are shown in Fig. 7.8 since a steady state could not be observed. Apart from that, the nucleation rate for AgIn-Sb₂Te was far lower than for the GeSbTe alloys (details: [7.19, 7.47, 7.48]). AgIn-Sb₂Te is known to exhibit growth-dominated crystallization upon laser heating, i. e., an amorphous mark in a crystalline matrix re-crystallizes by the growth from the rim of the amorphous mark [7.28, 7.55]. This is in contrast to the GeSbTe alloys, which recrystallize nucleation-dominated, i. e., an amorphous mark re-crystallizes upon laser heating predominantly by nucleation inside the amorphous mark [7.27]. This suggests that the different recrystallization mechanisms observed upon laser heating can be ascribed to the significant qualitative difference in crystal nucleation behavior rather than to the smaller difference in crystal growth velocity (qualitatively similar behavior for all alloys).

The activation energy for the heterogeneous steady state nucleation rate, $E_{ISS,het}$, and for the growth velocity, E_u , is determined from the slope of each

^b Steady-state nucleation not observed for this alloy.

straight line in Figs. 7.7 and 7.8 and given in Table 7. 1. The critical work for heterogeneous cluster formation, ΔG_c^{het} [Eq. (7.19)], is obtained from Eq. (7.27b). Since nucleation is heterogeneous, ΔG_c^{het} is a lower limit for the critical work for homogeneous cluster formation ΔG_c [Eq. (7.4)].

Table 7.1 also shows the activation energy E_{η} of the shear viscosity η [Eq. (7.14)], which was obtained from stress relaxation experiments in thin films by wafer curvature measurements in a temperature range between 60 °C and 100 °C [7.53, 7.54]. According to Eq. (7.14), E_u and E_η should be equal under the assumption that the Stokes-Einstein equation [Eq. (7.12)] is valid for the phase change materials. However, since E_u is larger than E_n (Table 7. 1) and since the glass transition temperature T_g is usually accompanied by a discontinuity in activation energy (Fig. 7.3, activation energies above T_g are higher than below T_g), the data presented in Fig. 7.7 appear to be taken above T_g in the undercooled liquid. On the other hand, the viscosity was measured below T_g in the amorphous phase. T_g depends on the timescale of the experiment [7.19, 7.51] and should be significantly lower in the isothermal experiments (Figs. 7.7 and 7.8) than in a scanning experiment at constant heating rate of 40 K/min (Fig. 7.6). That the crystal growth velocity in Fig. 7.7 is time-independent points in the same direction: Only in the amorphous phase, but not in the undercooled liquid, would a time dependence of the atomic transport rates be expected due to structural relaxation (Fig. 7.3).

7.2.2 Crystallization Parameters Close to the Melting Temperature

Crystallization kinetics slightly below the melting temperature have rarely been investigated due to the high volatility of phase change materials at elevated temperatures (high vapor pressure of Sb and Te). However, in a recent study [7.19, 7.43], a lower limit for the crystal-melt interfacial free energy σ [Eq. (7.2)] and an upper limit for the *homo*geneous steady-state crystal nucleation rate F^s [Eqs. (7.10) or (7.15)] was estimated by undercooling liquid droplets of phase change materials below the liquidus temperature T_l in a differential thermal analyzer (DTA) and measuring the undercooling, $\Delta T_n := (T_l - T_n) > 0$, at a constant cooling rate. T_n is the temperature at which nucleation initiates upon cooling and was detected in the DTA by recalescence (re-heat of the droplet by the release of the heat of crystallization). Note that purely homogeneous nucleation gives the lowest possible nucleation rate, and that heterogeneities increase the nucleation rate substantially (Sect. 7.1.2). As a consequence, the undercooling ΔT_n is maximized for purely homogeneous nucleation, whereas the presence of any heterogeneity re-

⁴ Since melting in alloys occurs over a range of temperatures, the liquidus temperature T_l is used instead of the melting temperature T_m in this section. T_l is the high-temperature end of the equilibrium melting range upon heating [7.19, 7.43, 7.56].

duces the value of ΔT_n . Therefore, in order to maximize ΔT_n and to approach the limit of homogeneous nucleation as closely as possible, the phase change material was embedded in a liquid flux of B₂O₃: This helped to isolate the droplet from the DTA crucible walls, which could act as heterogeneous nucleation sites. Additionally, B₂O₃ eliminates nucleants from the surface of the droplet by dissolution and inclusion [7.19, 7.43]. Moreover, the B₂O₃ prevented evaporation of the liquid volatile phase change material. Many heating and cooling cycles were performed in order to maximize ΔT_n further by additional fluxing. The undercooling data were then analyzed by assuming that the highest measured value for ΔT_n corresponds to the limit of homogeneous crystal nucleation. This substantially simplified the data analysis since $f(\theta)$ could be set to unity [Eq. (7.19)]. However, since it is unknown if this assumption is true, the obtained value for σ is only a lower limit for homogeneous nucleation, whereas the obtained curve for I^{ss} is only an upper limit for homogeneous nucleation (details: [7.19, 7.43]). Figure 7.9 shows the result.

Fig. 7.9. Upper limit for the *homo*geneous steady crystal nucleationrate Iss [Eqs. (7.10) or (7.15)] as a function of relative undercooling $\Delta T_r :=$ (T_l) $T)/T_l$ for (dot-dashed), Ge₂Sb₂Te₅ Ge₄Sb₁Te₅ (dotted), Sb₂Te (dashed), and Ge₁₂Sb₈₈ (solid). T_l is the liquidus temperature. Reprinted with permission from [7.43]. Copyright [2005]. American Institute of Physics.

As explained in Sect. 7.1.1.4, the nucleation rate is negligibly small close to the melting (or liquidus) temperature, then increases rapidly upon cooling to a maximum, and then decreases again rapidly at the glass transition temperature T_g , which occurs (*relative* to the liquidus temperature) at $\Delta T_{rg} := 1 - T_g/T_l = 0.45 - 0.55$ depending on the alloy [7.19, 7.43, 7.51, 7.57]. The nucleation rates are

higher for the GeSbTe alloys, which exhibit nucleation-dominated crystallization [7.27], than for the Sb-rich alloys AgIn-Sb₂Te and Ge₁₂Sb₈₈, which exhibit growth-dominated crystallization [7.28, 7.29, 7.55]. This is a consequence of the fact that the Sb-rich alloys are characterized by a higher *relative* glass transition temperature, $T_{rg} = T_g/T_l$, and a higher entropy of fusion than the GeSbTe alloys (details: [7.19, 7.43, 7.51]).

The steady state nucleation rates in Fig. 7.9 are too high to allow amorphization in both optical and electronic phase change media under operating conditions. Nucleation interferes at the highest attainable cooling rates, which are on the order of 10^{10} Ks⁻¹ [7.43, 7.58]. For optical data storage, the bit volume is on the order of $V_b = 1 \mu \text{m} \times 1 \mu \text{m} \times 10 \text{ nm} = 10^{-20} \text{ m}^3$ [7.59] (limited by the wavelength of the laser light). For a cooling rate of 10¹⁰ Ks⁻¹, the temperature decreases by 100 K during a time of $t_c := 10 \text{ ns} = 10^{-8} \text{ s}$. Therefore, nucleation would interfere upon amorphization if the nucleation rate were $I^{ss} > V_b^{-1} t_c^{-1} = 10^{28} \text{ m}^{-3} \text{ s}^{-1}$ over a range of 100 K. This is certainly the case for the GeSbTe alloys, but most likely also for the Sb-rich alloys: Since the B₂O₃ flux has eliminated heterogeneous nucleation sites, the fluxing technique should have approached the limit of homogeneous nucleation (which gives the lowest possible nucleation rate) far closer than the nucleation rates in phase change media, for which heterogeneous nucleation is expected to dominate strongly due to the thin-film nature of the device. Moreover, nucleation in phase change media is frequently enhanced (i. e., heterogeneities are added) by nucleation-promoting dielectric capping layers [7.37, 7.60]. For electronic phase change media, programmable volume sizes as small as $V_h = 10^{-23} \text{ m}^3$ are reported [7.61, 7.62]. Hence, nucleation would interfere if $I^{ss} > 10^{31}$ m⁻³ s⁻¹ over a range of 100 K, which is at least the case for Ge₂Sb₂Te₅, which is often reported as a prototypic material for phase change random access test devices [7.63]. Therefore, it can be concluded that:

- 1. Melt quenching under operating conditions occurs during the incubation time for crystal nucleation, when the steady-state cluster distribution N^{ss} (Fig. 7.2) is not yet formed, so that the nucleation rate remains far smaller than its steady state value I^{ss} [Eqs (7. 10), (7. 15) or (7. 20) [7.2, 7.24]]. As the incubation time is independent of the bit volume V_b , this statement applies equally to optical and electronic media for all alloys investigated. Consistently, it was reported by Kelton and Greer [7.64] that transient effects become increasingly important with increasing quench rate: While the steady state nucleation rate is readily maintained for cooling rates on the order of 1 K s⁻¹ as used in the present experiments or in conventional metallurgical solidification, deviations from the steady state are already large at cooling rates in rapid solidification techniques, such as melt-spinning ($\sim 10^6$ K s⁻¹), and must be even larger for cooling rates on the order of 10^{10} K s⁻¹ which occur under operating conditions of phase change media.
- Amorphization would not be possible if the incubation time for crystal nucleation were absent. Hence, the existence of an incubation time makes phase change recording possible. This statement should apply for optical data stor-

age to all alloys investigated and for electronic data storage at least to $Ge_2Sb_2Te_5$. Indeed, incubation times were reported upon crystallization on the timescale of minutes around T_g [7.36, 7.40, 7.41, 7.48], as well as upon laser crystallization on the nanosecond timescale [7.27, 7.30, 7.65-7.67].

Acknowledgement. Frans Spaepen is gratefully acknowledged for critical proof-reading and valuable input to this chapter.

References

- [7.1] Gibbs, J.: The scientific papers of J. Willard Gibbs. Dover Publications, New York (1961)
- [7.2] Christian, J.: Transformation in metals and alloys, 2nd edn. Pergamon Press, Oxford (1975)
- [7.3] Kelton, K.: Crystal nucleation in liquids and glasses. Solid State Physics **45**, 75-177 (1991)
- [7.4] Volmer, M. and Weber, A.: Keimbildung in übersättigten Gebilden. Zeitschrift für Physikalische Chemie 119, 277 (1926)
- [7.5] Becker, R. and Döring, W.: Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Annalen der Physik **24**, 719 (1935)
- [7.6] Turnbull, D. and Fisher, J.: Rate of nucleation in condensed systems. J. Chem. Phys. 17, 71-73 (1949)
- [7.7] Landau, L. and Lifshitz, E.: Statistical Physics. Pergamon Press, Oxford (1969)
- [7.8] Thompson, C. and Spaepen, F.: Homogeneous crystal nucleation in binary metallic melts. Acta Metallurgica **31**, 2021-2027 (1983)
- [7.9] Herlach, D.: Non-equilibrium solidification of undercooled metallic melts. Materials Science and Engineering R 12, 177-272 (1994)
- [7.10] Angell, C., Ngai, K., McKenna, G., McMillan, P. and Martin, S.: Relaxation in glass-forming liquids and amorphous solids. J. Appl. Phys. 88, 3113-3157 (2000)
- [7.11] Debenedetti, P. and Stillinger, F.: Supercooled liquids and the glass transition. Nature 410, 259-267 (2001)
- [7.12] Götze, W.: Liquids, freezing and the glass transition. Les Houches LI. North-Holland, Amsterdam (1991), p. 287
- [7.13] Hodgdon, J. and Stillinger, F.: Stokes-Einstein violation in glass-forming liquids. Phys. Rev. E 48, 207-213 (1993)
- [7.14] Shao, Y. and Spaepen, F.: Undercooling of bulk liquid silicon in an oxide flux. J. App. Phys. 79, 2981-2985 (1996)
- [7.15] Spaepen, F.: The identification of the metallic glass state. In: Mat. Res. Soc. Symp. Proc., vol. 57, p. 161-184 (1986)
- [7.16] Thompson, C., Greer, A. L. and Spaepen, F.: Crystal nucleation in amorphous $(Au_{100-y}Cu_y)_{77}Si_9Ge_{14}$ alloys. Acta Metallurgica 31, 1883-1894 (1983)
- [7.17] Turnbull, D.: Kinetics of solidification of supercooled liquid mercury droplets. J. Chem. Phys. **20**, 411-424 (1952)

- [7.18] Turnbull, D.: Under what conditions can a glass be formed? Contemp. Phys. **10**, 473-488 (1969)
- [7.19] Kalb, J.: Crystallization kinetics in antimony and tellurium alloys used for phase change recording. Ph.D. thesis, RWTH Aachen, Germany (2006). URL www. kalb.eu/publications
- [7.20] Spaepen, F.: Physics of Defects. Les Houches XXXV. North-Holland, Amsterdam (1981), pp. 133-174
- [7.21] Spaepen, F. and Turnbull, D.: Metallic glasses. Ann. Rev. Phys. Chem. **35**, 241-263 (1984)
- [7.22] Elliott, S.: Physics of amorphous materials, 2nd edn. Longman, London (1990)
- [7.23] Volmer, M.: Über Keimbildung und Keimwirkung als Spezialfälle der heterogenen Katalyse. Zeitschrift für Elektochemie **35**, 555 (1929)
- [7.24] Wu, D.: Nucleation theory. Solid State Physics **50**, 37-187 (1997)
- [7.25] Holland-Moritz, D.: Short-range order and solid-liquid interfaces in undercooled melts. Int. Journ. Non-Equilibrium Processing 11, 169-199 (1998)
- [7.26] Crank, J.: The mathematics of diffusion, 2nd edn. Clarendon Press, Oxford (1975)
- [7.27] Coombs, J., Jongenelis, A., van Es-Spiekman, W. and Jacobs, B.: Laser-induced crystal-lization phenomena in GeTe-based alloys. II. Composition dependence of nucleation and growth. J. Appl. Phys. 78, 4918-4928 (1995)
- [7.28] van Pieterson, L., Lankhorst, M., van Schijndel, M., Kuiper, A. and Roosen, J.: Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview. J. Appl. Phys. 97, 083520 (2005)
- [7.29] van Pieterson, L., van Schijndel, M., Rijpers, J. and Kaiser, M.: Te-free, Sb-based phase-change materials for high-speed rewritable optical recording. Appl. Phys. Lett. 83, 1373-1375 (2003)
- [7.30] Weidenhof, V., Friedrich, I., Ziegler, S. and Wuttig, M.: Laser induced crystallization of amorphous Ge₂Sb₂Te₅ films. J. Appl. Phys. 89, 3168-3176 (2001)
- [7.31] Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N. and Takao, M.: Rapid phase transitions of GeTe-Sb₂Te₃ pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. Physics 69, 2849-2856 (1991)
- [7.32] Friedrich, I., Weidenhof, V., Njoroge, W., Franz, P. and Wuttig, M.: Structural transformations of Ge₂Sb₂Te₅ films studied by electrical resistance measurements. J. Appl. Phys. 87, 4130-4134 (2000)
- [7.33] Jeong, T., Kim, M., Seo, H., Kim, S. and Kim, S.: Crystallization behavior of sputter-deposited amorphous Ge₂Sb₂Te₅ thin films. J. Appl. Phys. **86**, 774-778 (1999)
- [7.34] Kooi, B. and De Hosson, J.: On the crystallization of thin films composed of Sb_{3.6}Te with Ge for rewritable data storage. J. Appl. Phys. **95**, 4714-4721 (2004)
- [7.35] Libera, M. and Chen, M.: Time-resolved reflection and transmission studies of amorphous Ge-Te thin-film crystallization. J. Appl. Phys. 73, 2272-2282 (1993)
- [7.36] Lu, Q. and Libera, M.: Microstructural measurements of amorphous GeTe crystallization by hot-stage optical microscopy. J. Appl. Phys. 77, 517-521 (1995)
- [7.37] Njoroge, W., Dieker, H. and Wuttig, M.: Influence of dielectric capping layers on the crystallization kinetics of Ag₅In₆Sb₅₉Te₃₀ films. J. Appl. Phys. **96**, 2624-2627 (2004)
- [7.38] Njoroge W. and Wuttig, M.: Crystallization kinetics of sputter-deposited amorphous AgInSbTe films. J. Appl. Phys. 90, 3816 (2001)
- [7.39] Pedersen, T.L., Kalb, J., Njoroge, W., Wamwangi, D., Wuttig, M. and Spaepen, F.: Mechanical stresses upon crystallization in phase change materials. Appl. Phys. Lett. 79, 3597-3599 (2001)
- [7.40] Privitera, S., Bongiorno, C., Rimini, E. and Zonca, R.: Crystal nucleation and growth processes in Ge₂Sb₂Te₅. Appl. Phys. Lett. **84**, 4448-4450 (2004)
- [7.41] Ruitenberg, G., Petford-Long, A. and Doole, R.: Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge₂Sb₂Te₅ films. J. Appl. Phys. **92**, 3116-3123 (2002)

- [7.42] Wamwangi, D., Njoroge, W. and Wuttig, M.: Crystallization kinetics of Ge₄Sb₁Te₅ films. Thin Solid Films **408**, 310-315 (2002)
- [7.43] Kalb, J., Spaepen, F. and Wuttig, M.: Kinetics of crystal nucleation in undercooled droplets of Sb-and Te-based alloys used for phase change recording. J. Appl. Phys. 98, 054910 (2005)
- [7.44] Kissinger, H.: Reaction kinetics in differential thermal analysis. Analyt. Chem. **29**, 1702 (1957)
- [7.45] Avrami, M.: Kinetics of phase change. I. General theory. J. Chem. Phys. 7, 1103-1112 (1939)
- [7.46] Johnson, W. and Mehl, R.: Reaction kinetics in process of nucleation and growth. Trans. Amer. Inst. of Mining, Metallurgical and Petroleum Engineers 135, 416 (1939)
- [7.47] Kalb, J., Spaepen, F. and Wuttig, M.: Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett. 84, 5240-5242 (2004)
- [7.48] Kalb, J., Wen, C., Spaepen, F., Dieker, H. and Wuttig, M.: Crystal morphology and nucleation in thin films of amorphous Te alloys used for phase change recording. J. Appl. Phys. 98, 054902 (2005)
- [7.49] Kooi, B., Groot, W. and De Hosson, J.: In situ transmission electron microscopy study of the crystallization of Ge₂Sb₂Te₅. J. Appl. Phys. **95**, 924-932 (2004)
- [7.50] Weidenhof, V., Friedrich, I., Ziegler, S. and Wuttig, M.: Atomic force microscopy study of laser induced phase transitions in Ge₂Sb₂Te₅. J. Appl. Phys. **86**, 5879-5887 (1999)
- [7.51] Kalb, J., Wuttig, M. and Spaepen, F.: Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748-754 (2007)
- [7.52] Spaepen, F.: Private communication
- [7.53] Kalb, J.: Stresses, viscous flow and crystallization kinetics in thin films of amorphous chalcogenides used for optical data storage. Diploma thesis, RWTH Aachen, Germany (2002). URL www.kalb.eu/publications
- [7.54] Kalb, J., Spaepen, F., Pedersen, T.L. and Wuttig, M.: Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 94, 4908-4912 (2003)
- [7.55] Borg, H., van Schijndel, M., Rijpers, J., Lankhorst, H., Zhou, G., Dekker, M., Ubbens, I. and Kuijper, M.: Phase-change media for high-numerical-aperture and blue-wavelength recording. Jpn. J. Appl. Phys. 40, Part 1, 1592-1597 (2001)
- [7.56] Shackelford, J.: Introduction to Materials Science for Engineers, 2nd edn. Macmillan, New York (1988)
- [7.57] Kalb, J., Spaepen, F. and Wuttig, M.: Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage. J. Appl. Phys. 93, 2389-2393 (2003)
- [7.58] Peng, C., Cheng, L. and Mansuripur, M.: Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. J. Appl. Phys. 82, 4183-4191 (1997)
- [7.59] Kaiser, M., van Pieterson, L. and Verheijen, M.: In situ transmission electron microscopy analysis of electron beam induced crystallization of amorphous marks in phase-change materials. J. Appl. Phys. 96, 3193-3198 (2004)
- [7.60] Ohshima, N.: Crystallization of germanium-antimony-tellurium amorphous thin film sandwiched between various dielectric protective films. J. Appl. Phys. 79, 8357-8363 (1996)
- [7.61] Haring-Bolivar, P., Merget, F., Kim, D.H., Hadam, B. and Kurz, H.: European Symposium on Phase Change and Ovonic Science (EPCOS), Balzers, Liechtenstein, unpublished (2004)
- [7.62] Lankhorst, M., Ketelaars, B., Wolters, R.: Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Materials 4, 347-352 (2005)

- [7.63] Hudgens, S. and Johnson, B.: Overview of phase-change chalcogenide nonvolatile memory technology. Materials Research Society Bulletin 29, 829-832 (2004)
- [7.64] Kelton, K., Greer, A.: Transient nucleation effects in glass formation. Journal of Non-Crystalline Solids 79, 295-309 (1986)
- [7.65] Friedrich, I., Weidenhof, V., Lenk, S. and Wuttig, M.: Morphology and structure of laser-modified Ge₂Sb₂Te₅ films studied by transmission electron microscopy. Thin Solid Films 389, 239-244 (2001)
- [7.66] Wöltgens, H.W., Detemple, R., Friedrich, I., Njoroge, W., Thomas, I., Weidenhof, V., Ziegler, S. and Wuttig, M.: Exploring the limits of fast phase change materials. In: Materials Research Society Symposia Proceedings, vol. 674, p. V1.3 (2001)
- [7.67] Ziegler, S.: Rekristallisationskinetik von Phasenwechselmedien. Ph.D. thesis, RWTH Aachen, Germany (2005)

Author Bios

Dr. Simone Raoux, IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA. She is Research Staff Member at the IBM Almaden Research Center. She received her MS degree in 1984 and Ph.D. degree in physics in 1988 from Humboldt University, Berlin, Germany. Before joining IBM she worked at the Institute for Electron Physics, Berlin, and Lawrence Berkeley National Laboratory, Berkeley, CA. Her current research interests include the physics and materials science of phase change materials.

Prof. Matthias Wuttig, 1. Physikalisches Institut (1A), RWTH Aachen University, 52056 Aachen, Germany. He received his diploma from Cologne (1986) and Ph.D. from Aachen University (1988). He is a Full Professor of Physics at RWTH Aachen since 1997 and is presently Dean of the Faculty of Mathematics, Computer Science and the Natural Sciences. As a visiting scientist he has worked at NIRIM Tsukuba (Japan), Bell Labs (USA), CRMC² Marseille (France), Zhejiang University (China), IBM Research Center and UC Berkeley (USA). His main interest is the development of novel materials.

Dr. Stanford R. Ovshinsky, Ovshinsky Innovation LLC, 1050 East Square Lake Road, Bloomfield Hills, MI 48304, USA. He is the cofounder of Energy Conversion Devices, Inc. (ECD) and is the primary inventor of ECD's technology including the Ovonic Universal Memory (OUM), the Ovonic optical memory and various other chalcogenide devices, Ovonic thin-film photovoltaic technology and its continuous web multi-junction roll-to-roll machine, the Ovonic NiMH battery which enabled the electric and hybrid automotive industry, as well as the Ovonic solid hydrogen storage technology. He started the field of amorphous and disordered materials in the 1950s by atomically designing devices that have unique electronic, chemical and structural mechanisms. In 2007 he formed an independent new company called *Ovshinsky Innovation LLC*.

Dr. Chung Lam, T. J. Watson Research Center, Yorktown Heights, NY 10598, USA. He received his B.Sc. in Electrical Engineering at Polytechnic University of New York in 1978, and joined IBM General Technology Division in Burlington in 1978 as a memory circuit designer. In 1984, he was awarded the IBM Resident Study Fellowship and received his M.Sc. and Ph.D., both in Electrical Engineering, at Rensselaer Polytechnic Institute in 1987 and 1988 respectively. In 2003, Dr. Lam transferred to IBM Research Division, and was named Distinguished Engineer in 2007. He has managed the Phase-change memory Research Project at the IBM Research Division in T.J. Watson Research Center since 2003.

432 Author Bios

Dr. Wojciech Welnic, Laboratoire des Solides Irradies, Ecole Polytechnique, 91128 Palaiseau, France. He received his Ph.D. in 2006 from the Technical University Aachen working on phase change materials. He spent time at the Forschungszentrum, Juelich, Germany and the Ecole Polytechnique in Paris, France to study computational methods in solid state physics. He is currently a postdoctoral fellow at the Ecole Polytechnique and the ESRF in Grenoble working on electronic and structural properties of phase change materials.

Prof. Punit Boolchand, University of Cincinnati, 820 Rhodes Hall, Cincinnati, OH 45221-0030, USA. He received his Ph.D. in Physics from Case-Western Reserve University in 1969. He is currently a Professor of Electrical and Computer Engineering, and Physics at University of Cincinnati. He has been interested in nature of glass transition and molecular structure of network glasses probed by thermal, optical, nuclear and electrical methods. He has held visiting positions at Stanford (USA), Univ. of Paris VI (France), Leuven University (Belgium). He is a Fellow of the American Physical Society.

Prof. Matthieu Micoulaut, Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600 Université Pierre et Marie Curie, Boite 121, 4 place Jussieu 75252 Paris Cedex 05, France. He received his Ph.D. in Theoretical Physics from University Paris VI (1993). He is currently Maitre de Conférences (Associate Professor) in theory of condensed matter (CNRS and UPMC-Paris VI). His interests include theoretical aspects of glass transition, glasses and amorphous solids, and topology based approaches and molecular simulations to investigate structure and dynamics of supercooled liquids.

Ping Chen, Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH 45221-0030, USA. He received his M.S. degree in Microelectronics from Nanjing University (2002). He is currently graduate student in the Department of Electrical and Computer Engineering at University of Cincinnati and working towards his Ph.D. degree. He is interested in molecular structure, reversibility window and aging in alkali-germanate and As-chalcogenide glasses.

Prof. Stephen Elliott, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. He is Professor of Chemical Physics in the Department of Chemistry, and a Fellow of Trinity College, at the University of Cambridge. His research interests centre on studies of disordered materials, particularly chalcogenide glasses, from both experimental and theoretical/computer-simulation points of view. He was the recipient, in 2001, of the first Ovshinsky Prize for research on chalcogenide materials.

Dr. Liesbeth van Pieterson, Philips Research, High Tech Campus 4 (Box WAG 12), 5656 AE Eindhoven, The Netherlands. She received her PhD degree in chemistry of condensed matter from Utrecht University in 2001. She is a senior scientist at Philips Research Laboratories in The Netherlands. Her research interest is in the area of solid-state chemistry with a current focus on the physics and chemistry of materials for optical recording.

Dr. Johannes Kalb, Intel Corporation, Robert Noyce Building, Mail Stop RNB-3-01, 2200 Mission College Blvd., Santa Clara, CA 95054, USA. He received his MS (2002) and PhD degree (2006) from the Technical University of Aachen, Germany. As a graduate student, he spent two years at the School of Engineering and Applied Sciences at Harvard University, working on stresses and crystallization kinetics in phase change materials. In 2006 he joined the Department of Materials Science and Engineering at MIT as a Postdoctoral Researcher. Since 2007 he has been with Intel Corporation, continuing research on phase change materials.

Dr. Paul Fons, Advanced Institute of Industrial Science and Technology, Tsukuba, Japan. He received a masters in physics and a Ph.D. in materials science from the University of Illinois, graduating in 1990. He was visiting research fellow at the Applied Physics Department of the University of Tsukuba in Japan. He became a permanent staff member of the Optoelectronics division of the Electrotechnical Laboratory of AIST in 1993. In 2003, he moved to the Center for Applied Near-Field Optics Research to work on materials characterization of optical disk materials where he is now head of the Nano Optics research group.

Dr. Bong-Sub Lee, University of Illinois at Urbana-Champaign, 1-110 Engineering Sciences Building, 1101 W. Springfield Ave., Urbana, IL 61801, USA. He is a post-doctoral research associate at the University of Illinois at Urbana-Champaign, where he received his Ph. D. in Materials Science and Engineering in 2006. He received his M.S. and B.S. (cum Laude) at Seoul National University, Korea. He is a winner of the E*PCOS 07 Presentation Award, European Phase Change and Ovonics Symposium (2007), as well as other awards and scholarships.

Prof. Stephen Bishop, University of Illinois at Urbana-Champaign, 153 Everitt Laboratory, 1406 West Green St, MC-702, Urbana, IL 61801, USA. He is Professor of Electrical and Computer Engineering and Physics at the University of Illinois at Urbana-Champaign (UIUC). Before joining the UIUC in 1989, he was a research physicist for 23 years at the Naval Research Laboratory (NRL) in Washington, D.C. He received his BA from Gettysburg College and a Ph.D. in physics from Brown University.

Dr. Noboru Yamada, AV Core Technology Development Center, Matsushita Electric Industrial Co., Ltd. (Panasonic), 3-1-1 Yagumo-Nakamachi, Moriguchi, Osaka, Japan. He graduated in Electronic Science and Engineering in 1974 and obtained a Ph.D. in Engineering in 2001, both from Kyoto University. He joined Matsushita Electric Ind. Co., Ltd. in 1974. Since then he has been working in the Corporate R&D division. He was the first to propose GeTe-Sb₂Te₃ phase-change materials in 1987 and he pioneered several optical disc media such as DVD-RAMs and Dual layer Blu-ray discs using this material. Currently, he is General Manager of the Storage Media Group, AV Core Technology Development Center.

Dr. Delia J. Milliron, The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA. She is the Facility Director for Inorganic Nanostructures at the Molecular Foundry, and was previously a Research Staff Member at IBM. She obtained her A.B. from Princeton University in 1999 and her Ph.D. from the University of California, Berkeley in 2004, both in Chemistry. Her research interests include chemical synthesis and materials integration of colloidal nanoparticles and solution deposition of metal chalcogenide thin films.

Dr. Qiang Huang, IBM T. J. Watson Research Center, P. O Box 218, Yorktown Heights, NY 10598, USA. He is Research Staff Member at the IBM TJ Watson Research Center. He obtained his B.E. from Zhejiang University in 1997, and his PhD from Louisiana State University in 2004, both in Chemical Engineering. His research interest includes Cu interconnects, electrodeposition of semiconductor materials, magnetic alloys, nanomaterials and nanodevices.

Dr. Yu Zhu, IBM T. J. Watson Research Center, P.O.Box 218, Yorktown Heights, NY 10598, USA. He is advisory engineer at IBM TJ Watson Research Center. He obtained his Ph.D. from College of Nanoscale Science and Engineering of University at Albany – SUNY. His research interests include atomic layer deposition and chemical vapor deposition of thin films for electronic device application.

Dr. Luping Shi, Data Storage Institute, DSI Building, 5 Engineering Drive 1, Singapore 117608. He received a master degree in solid physics from Shan Dong University, P.R. China in 1988, and doctor of science degree from Cologne University, Germany, in 1992. He joined the Data Storage Institute (DSI), Singapore, in 1996 as a Senior Engineer. Currently, he is senior Research Scientist, division manager of the Optical Materials & System division. He is in charge of optical storage, solid state random access memory (PCRAM) and artificial cognitive sensor and memory researches at DSI.

Dr. Junji Tominaga, Center for Applied Near-Field Optics Research, CAN-FOR, National Institute of Advanced Industrial Science & Technology, Tsukuba Central #4, 1-1-1 Higashi, Tsukuba, 305-8562, Japan. He received his Ph. D. from Cranfield Univ. UK in 1991. After research on rewritable optical phase-change disks at TDK corporation, he moved to the National Institute of Advanced Industrial Science & Technology (AIST) in 1997. He is currently director of the Center for Applied Near-Field Optics Research and has been the leader of the super-RENS ultrahigh density optical storage project.

Prof. Daniele Ielmini, Dipartimento di Elettronica e Informazione, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 - Milano (MI), Italy. He received the Laurea (cum laude) and the Ph. D. degrees from the Politecnico di Milano, Italy in 1995 and 1999, respectively. He has been an Assistant Professor at Dipartimento di Elettronica e Informazione, Politecnico di Milano, since 2002. His main research interest is characterization and modelling of non volatile memories, including Flash, discrete-trap, phase-change and resistive-switching memories.

Dr. Yi-Chou Chen, Emerging Central Lab, Macronix Int. Co., Ltd., 16 Li-Hsin Road, Science Park, Hsinchu, Taiwan. He received his B.S. degree and Ph.D. degree in chemical engineering in 1995 and 2000, respectively, both from National Taiwan University. In 2000, he joined Macronix and worked on technology development of lithography, moving to the Emerging Central Lab in 2001 where he started working on phase change memory. From 2005 to 2007, he was on assignment at the IBM Almaden Research Center. His current research interests include both phase change material and memory devices.

Dr. Roberto Bez, STMicroelectronics M6 s.r.l. (at the time of publication with Numonyx), Via C.Olivetti 2, 20041, Agrate Brianza, Milan, Italy. He received the doctor degree in physics from the University of Milan, Italy, in 1985. In 1987 he joined STMicroelectronics and since then has worked on the Non-Volatile Memory technology development in the R&D department. He has been director of the Phase Change Memory, in the NVM Technology Development. He has authored many papers, conference contributions and patents on topics related to NVM and been lecturer on Non-Volatile Memory Devices at many Italian universities.

Dr. Robert J. Gleixner, Intel Corp. (at the time of publication with Numonyx), 2200 Mission College Blvd., Santa Clara, California. He received his Ph.D. degree in materials science from Stanford University in 1998. He joined Intel's Corporate Quality and Reliability group in 1998 and has worked on microprocessor, microdisplay, and non-volatile memory technologies and products. Since 2004, his work has focused on developing and productizing advanced Phase Change Memory technologies.

Dr. Fabio Pellizzer, STMicroelectronics M6 s.r.l. (at the time of publication with Numonyx), Via C.Olivetti 2, 20041, Agrate Brianza, Milan, Italy. He received the doctor degree in electronic engineering in 1996 from the University of Padova, Italy, with a thesis on characterization and reliability of thin gate oxides. In 1998 he joined the Central R&D department of STMicroelectronics in Agrate Brianza (Italy). After 2002 he has been in charge of process development for phase-change memories based on chalcogenide materials. He has authored many papers, conference contributions, and patents on phase-change memories.

Dr. Agostino Pirovano, STMicroelectronics M6 s.r.l. (at the time of publication with Numonyx), Via C.Olivetti 2, 20041, Agrate Brianza (Milan), Italy. He received the Laurea degree in electrical engineering from the Politecnico di Milano, Italy, in 1997, and the Ph.D. degree at the Department of Electrical Engineering, Politecnico di Milano, Italy, in 2000. Since 2001 he has worked on the electrical characterization and modeling of phase-change memories. In 2003 he joined the Non-Volatile Memory Technology Development Group of STMicroelectronics and he has been involved in the investigation of PCM and of emerging NVM technologies.

Dr. Greg Atwood, Intel Corp. (at the time of publication with Numonyx), 2200 Mission College Blvd., Santa Clara, California. He received the master degree in physics from Purdue University in 1979 at which time he joined Intel working initially in Micro-Processor technology development and latter in Non-Volatile Memory technology development, achieving the appointment of Intel Fellow in 1996. Since 2000, his primary focus has been on Phase Change Memory Technology and its application to electrical Non-Volatile Memories.

Dr. Matthew Breitwisch, IBM T. J. Watson Research Center, P. O Box 218, Yorktown Heights, NY 10598, USA. He is Research Staff Member at the IBM T.J. Watson Research Center in Yorktown Heights, NY. He received his B.S. degree in physics, mathematics, and astrophysics from the University of Wisconsin at Madison in 1994, and a Ph.D. degree in physics from Iowa State University in 1999. He joined IBM at the Microelectronics Center in Essex Junction, VT, and since 2005 has worked in the IBM Research exploratory memory group focusing on integration schemes for phase change memory devices.

Dr. James Lyke Air Force Research Laboratory (AFRL/RVSE), 3550 Aberdeen Ave SE, KAFB, NM 87117-5776, USA. He has a BS from the University of Tennessee, Knoxville, an MS from the Air Force Institute of Technology, and a PhD through the University of New Mexico, all in electrical engineering. He serves as technical advisor to the Space Electronics Branch of the Air Force Research Laboratory's Space Vehicles Directorate (AFRL/VSSE) at Kirtland Air Force Base New Mexico. His primary pursuits are the development of novel space systems architectures, especially those exploiting reconfigurable / plug-and-play approaches. He also maintains a keen interest in 3-D packaging and molecularly-scalable computational approaches.

A Ab initio, 17, 24, 25, 26, 27, 29, 32, 36, 68, 72, 74, 78, 292, 326 Ab initio molecular dynamics, 24, 25, 26, 27, 68, 72, 74, 78 Absorption coefficient, 176 Accelerated bake testing, 369 Access device, 100, 332, 381, 382, 383, 384, 388, 390–392, 398, 401, 403, 406 Activation energies, 48, 95, 104, 113, 131, 137, 141, 142, 194, 319, 323, 324 of crystallization, 84, 90, 95, 110, 113, 114, 138, 269, 342, 371 of crystal nucleation rate and crystal growth velocity, 138 Adhesion layer, 334–335 Aging, 41, 44, 50, 52, 53, 268, 420 AgInSbTe, 94, 215, 216, 263, 264, 266, 279 ALD, see Atomic layer deposition (ALD) Alkali silicates, 54 Amorphization, 25, 34, 35, 36, 82, 93, 113, 119, 144, 156, 157, 178, 204, 207, 260, 261, 262, 266, 267, 310 Amorphous, as-deposited material, 105, 106 Amorphous materials, 63, 64, 65, 66, 68, 72, 149, 203, 320, 321 Amorphous phase stability, 86, 89, 91, 93, 96 Amorphous stability, 94, 200, 204 Antibonding, 31, 32, 324 Archival life stability, 81, 82, 89–91, 95 Arrhenius, 43, 44, 46, 56, 95, 130, 131, 140, 141, 302, 315, 317, 318, 319, 320, 324, 370, 371, 372	Atomic force microscopy, 138, 230, 231 Atomic layer deposition (ALD), 100, 230, 237 Atomic models, 68 Atomic scattering factor, 67 Atomic vacancies, 74, 76 AWSAM, 273 B Bake, 239, 321, 369, 370, 372, 373, 374, 376 Band gap, 23, 31, 33, 184, 194, 195, 202, 292, 309 BD, 81, 211, 219, 220, 252, 253, 256, 257, 258, 259, 271, 274, 279, 280, 286, 287, 290 Becker-Döring model for crystal nucleation, 128, 129 Bipolar junction transistor (BJT), 356, 357, 364, 383, 391, 392 based cell, 391 Birefringence, 54 Bit error rate, 272, 273 Blu-ray, 81, 89, 97, 108, 209, 219, 221, 252, 256, 257, 286 discs, 81, 89, 97, 209, 221, 256, 257 Bond angle(s), 27, 64, 65, 218 distribution, 73, 74, 76, 77, 78 length, 26, 47, 64, 65, 67, 68, 70, 71, 73, 76, 77, 78, 164, 165, 168, 169, 170, 217, 286 Bond-bending constraints, 46 Born-Oppenheimer approximation, 18 Bottom electrode, 231, 233, 300, 301, 308, 309, 310, 311, 312, 313, 320, 332, 338, 342, 344, 349, 350, 382, 385, 393, 394, 395, 396, 397, 399, 401
Arrhenius, 43, 44, 46, 56, 95, 130, 131, 140, 141, 302, 315, 317, 318, 319,	309, 310, 311, 312, 313, 320, 332, 338, 342, 344, 349, 350, 382, 385,
,	

C	Compact Disc – ReWritable (CD-RW), 81
Capping layers, 102, 104, 144, 265	94, 220, 252, 253, 254, 259, 285
Carbohydrates, 57, 58	Complete crystallizing time, 264
Car-Parrinello (CP), 74	Complete erasing times (CET), 105,
Carrier concentration, 184, 187, 188, 189,	106, 264
192, 193	Composition triangle, 85, 86
CD-ROM, see Compact Disc-Read Only	Compound composition, 207, 212, 266
Memory (CD-ROM)	Computational phase transitions, 40
Cell	Conduction activation energy, 194, 304
	Confined structure, 345–346, 350, 398
failure(s), 371, 372, 373, 375	Conformal deposition profile, 227
placement algorithms, 378	Contact-minimized, 397, 399
CET, see Complete erasing times (CET)	Coordination number(s), 28, 41, 46, 47, 50
Chalcogenide(s), 1, 3, 4, 5, 43, 45, 47, 51,	51, 56, 65, 67, 68, 71, 72, 73, 75,
58, 81, 149, 151, 152, 154, 182,	
183, 184, 185, 188, 194, 199, 200,	94, 129, 160, 165
201, 202, 234, 235, 238, 240, 243,	Critical radius for crystal nucleation,
265, 286, 288, 290, 291, 293, 296,	127, 134
299, 300, 302, 306, 307, 308, 309,	Cross-linking, 50, 54, 203
310, 311, 312, 313, 315, 320, 322,	Cross-spacer structure, 344
326, 343, 356, 357, 358, 364, 365,	Crystal
369, 377, 378, 379, 423, 424,	growth
425, 426	speed, 206
semiconductors, 199, 200, 201, 202-203	velocity, 96, 106, 136, 137, 138, 139,
Chalcohalide, 45, 46	140, 141, 142
Chalcopyrite, 32	nucleation rate, 138, 139, 140, 141, 142
Chemical bond-strength scaling, 48	Crystallization
Chemical disorder, 65	activation energy, 84, 90, 95, 110, 113,
Chemical Mechanical Polishing (CMP),	114, 138, 269, 342, 371
333, 339, 340, 342, 346, 396,	behavior of nanoparticles, 115, 117, 118
398, 399	mechanism, 85, 86, 87, 88, 89, 94, 106,
Chemical Orbital Hamilton Population	141, 270, 323, 334, 372, 389
	rate, 81, 87, 88, 91–93, 94, 95, 96, 100,
(COHP), 31, 32	105–107, 150, 204
Chemical threshold, 50	speed, 92, 99, 100, 104, 106, 107, 110,
Chemical vapor deposition (CVD), 227–	118, 199, 204, 205, 207, 218, 221,
233, 238, 241, 243, 244, 345, 346,	
393, 396, 399, 400, 401, 403	262, 265, 276, 277, 278, 334, 341,
pulsed, 230	342, 343, 389
CMP, see Chemical Mechanical Polishing	temperature, 82, 94, 95, 99, 100, 101,
(CMP)	102, 103, 104, 106, 110, 115, 117,
COHP, see Chemical Orbital Hamilton	118, 138, 204, 206, 208, 211, 212,
Population (COHP)	221, 230, 231, 239, 242, 261, 265,
Collar process, 396, 399, 400, 401	266, 278, 357, 384, 385, 386, 389
Collision-limited crystallization, 129, 130	times, 32, 96, 119, 153, 154, 314
Compact Disc (CD), 81, 176, 194, 252,	Cubic phase, 152, 153, 154, 209, 213, 214,
253, 257, 258, 259, 271, 285, 287,	216, 223
333, 339, 397, 398, 399, 400,	Current crowding effect, 334
401, 402	Current – voltage characteristics, 4,
Compact Disc-Read Only Memory (CD-	368, 385
ROM), 252, 253, 254, 259	CVD GST, 230, 231, 233, 400, 401
Compact Disc–Recordable (CD-R), 252,	CVD, see Chemical vapor deposition
253, 254, 285	(CVD)
,,	

Cyclability, 199, 205, 206, 213, 215, 232, 260, 265, 270 Cycle numbers, 206, 211 Cycle times, 199 Cycling, 113, 368, 374, 377–378, 390 D	Dissipated power, 363, 364, 365 Distorted rock salt structure, 215 Distribution of data retention, 370 Dopants, 94, 96, 158, 219, 230, 243 Doping, 109, 159, 188, 230, 326, 357, 389 Driving motive force, 204, 205, 207 Drude dispersion model, 182, 183
3-D, 403	Dual layer
Dangling ends, 45	phase-change rewritable optical disc, 276
Data mining, 29	recording, 270
Data retention, 101, 113, 114, 199, 232, 242, 266, 299, 314, 326, 334, 336, 341, 361, 368, 369, 370, 371, 374, 375, 376	DVD-RW (-RAM), 285 DVD, <i>see</i> Digital Versatile Disc (DVD)
Degenerate semiconductor, 181, 192, 193	
Demix, 40, 47, 53, 54	<i>E</i> _A , 302, 304, 305, 322, 323 Early fails, 372, 373, 375, 376
Density functional theory (DFT), 17–36	e-beam, 342, 343
Density of states, 24, 31, 33, 34, 35, 47, 71,	Edge contact, 332, 337, 338, 349
181	Effective medium approximation, 177
Device design, 188, 228, 243, 381, 390, 393	Elasticity power-law, 52
Dielectric function, 34	Elastic phase(s), 39, 52, 53, 54, 59
Differential scanning calorimetry, 27, 39,	Electrochemical reaction, 233, 234, 236
42, 48, 101, 139, 154, 213, 321,	Electrodeposition, 227, 233-238, 243, 244
323	Electrode(s), 6, 7, 9, 33, 104, 110, 115,
Differential thermal analysis, 142	119, 187, 227, 231, 300, 301, 308,
Diffraction limit, 257, 271, 279, 286–288, 289, 290, 291, 295	309, 310, 311, 312, 313, 320, 332,
Diffusion-limited crystallization, 129, 132	334, 337, 338, 341, 342, 343, 344,
Diffusion, long range, 129, 135, 137, 141	349, 350, 377, 382, 385, 388, 393,
Diffusivity, 130, 131, 136, 137	394, 395, 396, 397, 399, 400, 401,
Digital Versatile Disc (DVD), 40, 81, 84,	402, 403
85, 89, 97, 100, 176, 194, 211, 220,	materials, 233, 388, 395, 400 Electron
251, 252, 253–255, 256, 257, 258,	beam lithography, 113, 115, 116,
259, 271, 276, 285, 291	242, 341
Digital Versatile Disc – Random Access	diffraction, 67, 111, 157, 209
Memory (DVD-RAM), 86, 209,	Electronegativity, 31
212, 219, 220, 252, 253, 255, 259,	Electronic, 1, 2–3, 5, 17, 18, 19, 20, 21,
272, 273, 279, 290	23, 24, 29–36, 71, 138, 144, 145,
Digital Versatile Disc – Read Only	149, 175, 184, 187, 189, 192, 195,
Memory (DVD-ROM), 252, 253,	202, 219, 243, 251, 299, 306, 326,
254, 255, 259	409, 412
Digital Versatile Disc – Recordable	Electronic structure, 18, 24, 29, 33,
(DVD±R), 253, 255 Digital Versatile Disc - ReWritable	71, 326
(DVD±RW), 81, 253, 255, 259,	Electronic switching, 187
(DVD±RW), 81, 233, 233, 239, 279	Electroplating, 233
Dihedral angle(s), 65, 66	Electro-thermal, 364
Diode(s), 9, 10, 84, 91, 100, 220, 253, 260,	modeling, 309–313 Ellipsometry, 108, 175, 176, 177–178, 179
271, 280, 339, 383, 390, 391, 392,	Endurance, 113, 232, 334, 343, 355,
401, 413, 414, 415	356, 362, 363, 368, 377, 378, 381,
based cell, 391	383, 393
	,

Energy	Fragile and strong liquids, 44, 56, 57, 58,
barrier, 46, 317, 322, 323	131, 203
dissipated, 363	Free carrier absorption, 175, 181, 182
Entropy, 30, 41, 42, 55, 58, 63, 144	Free energies, 205
Erasability, 92, 93, 266	2 ,
Ergodic, 42, 48	C
Ernst Abbe, 286	G
	Ge ₂ Sb ₂ Te ₅ , 26, 27, 28, 29, 33, 40, 63, 69,
Eutectics, 46	78, 84, 85, 86, 87, 102, 106, 113,
EXAFS, see Extended x-ray absorption	119, 138, 139, 140, 141, 143, 144,
fine structure (EXAFS)	145, 154, 155, 156, 157, 158, 160,
Exchange-correlation	167, 169, 170, 175, 177, 178, 180,
energy, 21, 22, 23	181, 182, 183, 184, 185, 186, 187,
functional, 23	188, 189, 191–193, 194, 210, 211,
Extended x-ray absorption fine structure	212, 213, 214, 215, 218, 219, 220,
(EXAFS), 24, 25, 26, 27, 67, 68,	
70, 71, 72, 73, 74, 75, 76, 152, 156,	221, 228, 229, 230, 231, 232, 241,
157, 160, 163, 169, 215	266, 286, 288, 290, 299, 334, 356,
	358, 361, 387
Extinction coefficient (k) , 108, 110,	bond lengths, 26, 70, 71, 73, 76, 78,
220, 260	165, 169
	coordination numbers, 28, 65, 67, 72,
F	73, 75, 165
Feature, 3, 9, 10, 11, 42, 44, 52, 53, 78,	EXAFS, 24, 25, 26, 27, 67, 68, 69, 70,
100, 152, 176, 178, 186, 192, 194,	71, 72, 73, 74, 75, 76, 152, 156,
199, 228, 238, 280, 292, 296, 301,	
302, 308, 309, 311, 312, 331, 336,	157, 160, 163, 169, 215
	neutron diffraction, 25, 26, 68, 78, 153,
342, 355, 357, 358, 360, 363, 388,	215
390, 391, 393, 402, 416	x-ray diffraction, 69, 70, 103, 106, 115,
Femtosecond laser pulses, 118	151, 155, 156, 157, 158, 210, 214,
Fermi-Dirac statistics, 192	215, 229, 230, 235, 236, 239
Fermi level, 29, 30, 31, 32, 33, 34, 192,	General gradient approximation (GGA), 23
193, 194, 295, 302, 303	Germanates
Ferroelectric transition, 153	anomaly, 54
Field Effect Transistor (FET), 382, 383,	GeSb ₂ T ₄ , 213
384, 390, 391, 398	EXAFS, 70, 156
based cell, 391	
Film thickness, 100, 101–105, 106, 108–	neutron diffraction, 70, 154, 156, 157
109, 114, 119, 139, 186, 221, 222,	x-ray diffraction, 70, 155, 156, 157, 210
	Ge-Sb, 63–79, 104, 106, 109, 149, 151,
227, 290, 293, 332, 337	152, 154–160, 170, 180, 182, 184,
Finite-differential time-domain	191, 193, 210, 211, 212, 223, 263,
(FDTD), 295	288, 334
First sharp diffraction peak, 70	Ge-Te, 28, 29, 31, 32, 65, 70, 71, 72, 74,
Flexible, intermediate and stressed-rigid,	76, 78, 153, 164, 165, 168, 169,
39, 42, 59	208, 263
Flexible-intermediate stressed-rigid	GeTe-Bi ₂ Te ₃ , 222, 223
classification, 57	
Flexible phase, 52, 53, 54	GeTe-Sb ₂ Te ₃ , 85, 86, 118, 151, 154, 155,
	157, 199, 209–213, 214, 215, 216,
Fluctuation electron microscopy, 67, 105	217, 219, 220, 221, 222, 223, 263,
Footprint, 388, 391	266
Formation energy, 30, 235	pseudo-binary system, 209–213, 223
Fragile, 39, 44, 57, 58, 131, 203	Ge tetrahedral coordination, 73, 74, 77, 165
Fragile liquids, 57, 58, 131	Gibbs-DiMarzio, 47

Gibbs model for crystal nucleation, 133	High temperature superconductors, 40
Glass	High volume manufacturing, 356, 361
formation tendency, 45	Hohenberg-Kohn theorem, 17, 19
forming tendency, 44–48, 51	Homogeneous crystal nucleation,
transition, 39, 40, 41, 42, 43, 44, 45,	125–132, 143
46–54, 56–57, 63, 82, 94, 132,	Homogeneous electron gas, 22
138–142, 143, 144, 150, 206, 265	Homologous series, 223
nature of, 40, 42, 51	Homopolar bonds, 27, 28, 50, 65, 71, 74
temperature, 39, 46–51, 56–57, 63,	
82, 94, 132, 138–142, 143, 144,	I
150, 206, 265	Ideal glasses, 54–56
Global phase diagrams, 53	Incubation times, 100, 103, 104, 105, 106
Growth, 3, 30, 82, 86–89, 90, 94, 95, 96,	110, 113, 114, 141, 144, 145
97, 99, 102, 104, 105, 106, 107,	for crystal nucleation, 144
110, 111, 112, 125, 135–137, 138,	Index of refraction, 176
139, 140, 141, 142, 144, 179, 182,	Information storage, 1
183, 187, 188, 206, 230, 233, 241,	Infrared reflectance, 42, 54
251, 252, 263, 264, 266, 268, 269,	Initialization, 64, 277–279
270, 279, 309, 315, 316, 317, 318,	Integrated circuit, 3, 9, 10, 228, 244, 410,
334, 341, 342, 350, 355, 370, 374,	420, 427
375, 389, 416	Interfaces, 40, 87, 88, 89, 101, 102, 104,
-dominated materials, 86, 87, 88, 105,	106, 107, 109, 126, 129, 130, 133,
106, 110, 141, 144, 264, 269, 270,	135, 136–137, 141, 176, 234, 242,
279, 341, 350	277, 279, 287, 317, 318, 319, 326,
GST, 64, 65, 67, 69, 76, 77, 102, 103, 104,	334, 364, 365, 366, 367, 368, 377
105, 108, 109, 111, 112, 113, 114,	383, 394
115, 116, 118, 119, 228, 229, 230,	Intermediate phase, 39, 42, 54
231, 232, 233, 242, 299, 300, 302,	Intermediate-range order (IRO), 65
306, 308, 309, 320, 334, 335, 336,	Isoconfigurational amorphous states,
338, 340, 341, 344, 345, 356, 358,	132, 141
359, 360, 361, 362, 363, 364, 365,	Isotropic scaling, 312, 313
366, 367, 368, 369, 377, 387, 398,	Iterative write-verify scheme, 404
399, 400, 401	,
thickness, 336, 363, 366, 367	J
11	Jamming effect, 44
H	Johnson-Mehl-Avrami analysis, 138, 269
Hall measurements, 189–190, 194	Joint density of states, 35
Heater, 190, 301, 311, 332, 333–336, 337,	Joule heating, 187, 299, 300, 301, 306,
338, 339, 349, 356, 358, 359, 360,	312, 383, 384, 388
363, 364, 365, 366, 367, 377, 404	312, 303, 304, 300
thickness, 363, 365, 366	V
Heterogeneous crystal nucleation, 133–135	K
Heteropolar bonds, 65	Kauzmann temperature, 41, 44
Heterostructures, 241	Keyhole-transfer process, 402, 403
Hexagonal phase, 27, 28, 29, 102, 103,	Kinetic specific heat, 48
109, 112, 114, 115, 116, 175, 177,	Kissinger analysis, 138, 154
178, 180, 182, 183, 186, 187, 192,	Kohn-Sham equations, 17, 20–22
193, 213, 214, 223, 229	_
High aspect-ratio nanowires, 237	L
High-K gate dielectrics, 40	Land/groove recording, 270, 271–272
High-performance applications, 361	Langevin dynamics, 25

Laser	Metal Oxide Semiconductor Field Effect
ablation, 114, 116, 227	Transistor (MOSFET), 3, 40, 356,
heating time for crystallization, 208, 211	357, 361, 391
LDA, see Local density approximation (LDA)	Metastable, 27, 28, 29, 41, 44, 63, 70,
Lindemann's melting criterion, 47	71, 72, 74, 76, 79, 82, 103, 114,
Line Structure, 341–342	132, 149, 150, 151, 154–157, 160,
Liquid phase, 25, 26, 125, 205, 207, 218,	171, 175, 177, 182, 186, 208, 213,
300, 309	214, 215, 223, 229, 236, 266, 320,
Liquidus temperature, 46, 126, 142, 143	322, 323
Lithographic size variability, 396, 397, 399, 403	Metastable crystalline phase, 27, 28, 29, 154, 156, 160, 177, 215
Local density approximation (LDA), 17, 22–23, 68, 292, 294	Metastable cubic phases, 214, 223 Mobility, 48, 64, 82, 96, 150, 187, 189,
Local order, 27, 28, 33, 36, 74, 75, 157, 160, 171, 178	190, 191, 192, 193, 194, 206, 265, 269, 303, 307, 309, 317, 322
parameter, 27, 28, 74, 75 LOCOS, 331	Metal-organic chemical vapor deposition (MOCVD), 228
Lone pairs, 33, 194	Modulated-differential scanning
Long-range structure, 66	calorimetry (m-DSC), 39, 42, 49,
Lorentz oscillator model, 177	57, 58
	Molecular dynamics, 23, 24, 25, 26, 27,
M	68, 72, 78
Magnetic core memories, 3	Moore's law, 10, 99, 331
Many-body perturbation theory, 24	MOSFET, see Metal Oxide Semiconductor
Matchstick, 334	Field Effect Transistor (MOSFET)
Material optimization, 93–97	Mössbauer mean square displacements, 47
Matrix elements, 31, 35, 36	Multilevel, 187–188, 260, 270, 275, 280, 281, 326, 350
Maxwell relation, 43	Multilevel-cell, 344, 345
m-DSC, see Modulated-differential	Multilevel data storage, 275
scanning calorimetry (m-DSC) Mechanical constraints, 45	Multilevel operation, 270, 275, 280, 281,
Medium-range order (MRO), 65–66	326, 350
Melting, 9, 25, 26, 39, 42, 44, 47, 64, 82,	Multilevel PCRAM, 390, 403
84, 99, 101, 111, 112, 114, 117,	Multilevel recording, 187–188, 260, 275,
118, 119, 126, 132, 136, 138,	280, 281
142–145, 150, 153, 199, 201, 202,	Mushroom, 232, 301, 334, 381, 382,
204, 206, 239, 241, 242, 260, 261,	393–397, 398, 401
262, 263, 265, 268, 277, 289, 294,	cell, 232, 301, 381, 382, 393–397,
300, 309, 310, 311, 312, 314, 319,	398, 401
320, 331, 381, 384, 385, 386, 389	
Melting point, 9, 26, 84, 101, 111, 112,	N
132, 150, 153, 201, 206, 242, 261,	NA, 253, 256, 257, 259, 260, 270, 271,
262, 263, 265, 268, 294, 300, 309,	275, 280, 286, 287, 291
310, 314, 319, 320, 385	Nanomaterials, 227, 241–243, 244
Melting temperature, 39, 82, 99, 111, 112,	Nanoscale phase separation, 40, 47, 50, 52
114, 117, 126, 132, 136, 138, 142–	Nanowire memory devices, 113
145, 199, 202, 204, 241, 242, 262,	Near-field phase-change optical
384, 386 Melt-quenching, 1, 64, 87, 111, 113, 118,	recording, 270 Negative coefficient of resistance, 1
119, 144, 188, 206, 347, 356	Negative differential resistance, 187,
vitrification 64	306 307

Neutron	Overwriting, 212, 252, 262, 263, 277
diffraction, 25, 26, 68, 78, 153, 215	Ovonyx, 11–13
scattering, 26, 70	
-scattering lengths, 70	P
N/G, 309, 314, 315, 316, 317, 319, 320	Pair correlation function, 23, 25, 26, 69, 70
NMR, see Nuclear magnetic resonance	Partial pair distribution functions, 72, 73
(NMR)	
Non-ergodic, 42, 48	Partial-Response Maximum Likelihood,
Non-reversing enthalpies, 39, 57, 58	273
	Peierls transition, 26
Non-reversing heat flow, 49, 50	Percolation
Non-thermal melting, 118, 119	path, 370, 375
Non-volatile memory, 355, 362, 369,	Phase
378, 406	separation, 50, 52, 136, 205–207,
8- <i>N</i> rule, 72, 77, 79	264–266
Nuclear magnetic resonance (NMR), 67	transformation, 175-180, 184, 186-188,
Nucleation, 82, 86–88, 89, 94, 95, 96, 102,	244, 314–320, 325, 388
104, 105, 106, 107, 110, 125, 126,	δ - Phase, 223
127, 128, 129–132, 133–135, 136,	Phase change
137, 138, 139, 140, 141, 142, 143,	
144, 151, 179, 187, 205, 206, 207,	materials, 1, 7, 9–11, 18, 24, 25, 28, 29,
209, 230, 233, 242, 263, 264, 266,	33, 36, 40–41, 51, 69, 81, 84–87,
	89–97, 99–119, 129, 132, 136, 137,
269, 270, 279, 309, 315, 316, 317,	138, 142–143, 149–170, 175–177,
318, 320, 334, 341, 342, 370, 374,	184, 187–189, 199–207, 210,
375, 389	215–218, 221–222, 227–233, 235,
-dominated materials, 86, 87, 105, 106,	237–243, 260–269, 276, 285
141, 144, 264, 269, 270, 279, 334,	memory, see Phase Change Memory
341, 342, 389	(PCM)
probability, 87, 88, 96, 233	nanocrystals, 105, 242
	nanoparticles, 114–118
0	nanowires, 111–114
Octahedral	optical discs, 202, 214, 260–268,
-like geometry, 74	275–279
- · · · · · · · · · · · · · · · · · · ·	
local geometry, 26, 76	optical storage, 260, 264–267, 270, 279
Optical, 7, 10, 13, 24, 32–35, 52, 54, 64,	random access memory, 13, 40, 81, 99,
81–85, 92, 94, 96, 100–108, 118,	118, 228, 331–349, 381–405
144, 149, 151, 154, 162	Phase Change Memory (PCM)
Optical constants, 96–97, 108, 154,	array, 9, 383
176–185, 202, 211, 265	cell, 9, 355–378, 381, 382, 386
Optical contrast, 32, 34, 36, 84, 94, 97,	device, 326, 376, 377
178–179, 211, 219–220, 266	modeling, 326
Optical discs, 13, 83–84, 105, 109, 119,	scaling, 313
167, 202, 212, 214, 221–223, 252,	storage element, 356, 357, 363, 364
259–262, 264, 267–268, 272,	See also Scaling
274–281	Phase change random access memory
Optical elasticity, 52, 54	(PCRAM), 40, 81, 100, 102, 104,
Optical memory, 13, 100, 154, 199–200,	105, 106, 109–111, 113–114,
202, 206, 209, 251–281, 285	118–120, 186–188, 194, 228,
Optical recording, 81, 84, 92, 94, 96, 154,	230–232, 235, 238, 240, 243, 296,
257, 259, 260, 262–263, 266, 270,	331, 342, 347, 350, 381, 387–392,
274, 275, 280	403
technology, 259	Photoconductivity, 184, 185, 321

Photodarkening, 185	Refractive index, 108, 110, 200, 220, 260,
Photoemission spectroscopy, 24, 71, 193	268, 276, 286–289, 293, 295
Photo-induced current, 184–185	Relaxation activation energy, 142
Photo-oxidation, 185	RESET
Pillar	current, 112-113, 188, 191, 228, 238,
cell, 340, 393, 397–399	240, 243, 310, 335–340, 343–350,
structure, 340–341	378, 385, 389–393, 395, 397–400
Plasma enhanced chemical vapor	operation, 9, 10, 111, 119, 300, 301,
deposition (PECVD), 228, 341	309, 310, 362, 363, 373, 375, 376,
Plasmons, 287–292	384, 396
Polyalcohols, 57	pulse widths, 362, 363
Poole-Frenkel (PF), 302, 303, 306–307,	Resistance distributions, 370, 373, 403,
309, 321–323, 349	405, 386, 393
Pore cell, 393, 397, 399–400	Resistivity, 1, 5, 101, 102, 103, 104, 105,
Potential energy landscape, 44	108, 109, 149, 186–187, 188, 194,
Potential deposition, under, 235	230, 240, 300, 301, 334, 343, 356,
Power dissipated, 343, 365	357, 362, 367, 390, 395
Precursors, 227–233, 238–241	Retention
Primed phase, 105	loss, 369, 370, 372, 374
Process	specification, 390
integration, 336, 379, 406	Reverse-Monte Carlo (RMC), 68–78,
variation, 336, 339, 386	215, 218
Programming	simulation, 68, 72, 78, 215
cell, 385	Reversibility windows, 42, 54, 55
current, 300, 310, 312, 313, 320, 332,	Reversing heat flow, 49, 50, 58
357–368, 386, 390, 395	Re-writable DVDs or CDs, 40
techniques, 403	Rewritable optical recording, 81, 96
variability, 404 Protein folding, 40	Rigid but stressed phase, 52 Ring
Pseudobinary line, 27, 266	electrode, 393–397
PVD GST deposition, 400	structures, 27, 218, 332, 338–339, 349
1 VD GST deposition, 100	Ring-size
R	analysis, 74
	distribution, 74, 75
Radial distribution function, 65 Raman	Rocksalt
pressure experiments, 55	structure, 32, 72, 74, 76, 152–159,
scattering, 39, 42, 52, 54, 153	165–168, 214, 216
Random access memory, 3, 13, 40, 99,	, , ,
118, 186, 199, 209, 228, 252,	S
331–349, 381–405, 413	Sb ₂ Te, 94–95, 103, 115–116, 138, 140,
Random-phase approximation, 34	141, 144, 158, 170, 219, 242, 292
Reactive ion etching (RIE), 228, 341, 394,	Scalability, 100, 101, 111, 242, 343, 355,
396–400, 403	379, 382
of the GST, 399	Scaling
Read, 9, 84, 109, 252–259, 263–268, 274,	PCM, 326
276, 286, 308, 310–312, 325, 345,	properties, 99–119
355, 357, 361, 373, 378, 382–390	Scanning probe microscopy, 231
Read operation, 313, 373	Scattering wave vector transfer, 67
Reflection, 82, 89, 90–92, 96–97, 176–177,	Seebeck coefficient, 190, 194
185, 254, 257, 268, 275, 281,	Selecting device, 356, 357
348, 349	Self-Aligned μTrench, 358

Self-assembly based lithography, 116 Self-organized, 40	Te-Ge, 28, 73, 168, 203 Te ₈₅ Ge ₁₅ , 208, 219
SET, 118, 119, 331, 337, 343, 345, 347,	$Te_{80}Ge_5Sn_{15}$, 208, 209, 210
348, 384, 385, 386, 387, 388, 389,	$(Te_{80}Ge_5Sn_{15})_{100-x}Au_x$, 208, 209
393, 394, 395	TeGeSnAu, 215, 216
resistance, 313, 357, 363, 368, 386,	Temperature
387, 395	dependence, 129, 180, 186, 191, 193,
Set operation, 5, 9, 10, 300, 314, 363, 384	217, 302, 319, 320, 322, 325
Set pulse widths, 384	factor, 154, 216, 217
Shear viscosity, 130, 131, 142	Terminal atoms, 45
Short-range order, 64–65, 160, 164, 165, 167	Te-Sb, 168, 203, 292, 294
Simple cubic, 209, 210, 215, 216, 218	Thermal conductivity, 109, 184
structure, 209, 210, 215	Thermal stability, 101, 109, 205, 207,
Single phase, 151, 188, 199, 205, 210, 221	262, 265
Soluble precursor, 238	Thermal vibration, 130, 216–218
Solution-phase deposition, 238, 243	Thermodynamic specific heat
Spinel, 33	difference, 50
Square-like rings, 75, 76	Thermoelectric effect, 190–191
Static	Thomson effect, 191, 343
RAM, 3	Threshold switching, 10, 13, 109, 113,
tester, 92	115, 151, 301, 302, 306, 307, 383
Stochastic agglomeration theory, 46, 51	Time dependent density functional theory,
Stoichiometric compounds, 158, 207,	24, 34 Transmission 2, 22, 06, 105, 138, 152
208, 214 States Finatein agestion 120, 121, 142	Transmission, 2, 82, 96, 105, 138, 152,
Stokes-Einstein equation, 130, 131, 142	164, 176, 177, 182, 185, 230, 231, 265, 276, 360, 427, 385, 413
Stretched exponents, 53, 57 Strong-fragile classification, 57	265, 276, 360, 427, 385, 413
Strong liquids, 56, 57	Transmission Electron Microscopy (TEM),
Structural design, 382	2, 82, 105, 138, 152, 230 Transport properties, 24, 30, 33, 189, 194
Structural modeling, 68	μTrench, 332, 338, 349, 381, 393, 399
Structural relaxation, 31, 51, 132, 142,	cell, 308, 357, 359, 381, 393, 399
299, 320, 321	optimized structure, 367
of amorphous phase, 320	Trimming, 228, 340, 342, 397
Structure factor, 23, 25, 27, 67, 70, 74	Turnbull-Fisher model for crystal
Sub-lithographic features, 358	nucleation, 129
Supercell, 29, 30	
Superlattice-like structure, 109	U
Super-RENS, 285–296	Ultraviolet photoemission spectroscopy
Super resolution	(UPS), 24, 71
near-field structure, 260, 285–296	Undercooled liquid, 129, 131, 132, 138, 142
Switching speed, 100, 118–120, 149, 151,	phase change materials,
189, 286, 306, 342	droplets of, 142
	Urbach edge, 181–182, 183, 194
T	UV light, 280
Tauc relationship, 179, 180	
Te-based eutectic	V
compositions, 203, 204	Vacancies, 27, 29, 30, 31, 70, 74, 75, 76,
Te-based single phase	155, 156, 157, 164, 181, 191, 192,
materials, 206	193, 213–215, 308, 322

Valence	X
alternation pairs, 33	X-ray
-band density of states, 71	absorption near-edge structure,
Vapor-phase amorphous-film deposition, 64 Variability, 337, 371, 372, 378, 381, 386, 387, 388, 396, 397, 398, 399, 401, 402, 403, 404, 406 Via filling, 231, 235 Vibrational entropy, 58 Viscosity, 25, 43, 44, 46, 56, 57, 63, 69, 96, 130, 131, 132, 136, 141, 142, 202, 240, 265 Volmer's spherical cap model for heterogeneous crystal nucleation, 133 Volmer-Weber model for crystal nucleation, 128 Voltammetry, 233	absorption near-edge structure, see X-ray absorption near-edge structure (XANES) absorption spectroscopy, 67 diffraction, see X-ray diffraction (XRD) photoemission spectroscopy, see X-ray photoemission spectroscopy (XPS) scattering factors, 70 X-ray absorption near-edge structure (XANES), 67, 163, 164, 165, 167, 168, 169 X-ray diffraction (XRD), 69, 70, 72, 73, 74, 75, 103, 106, 115, 116, 117, 151, 155, 156, 157, 158, 210, 214, 215, 229, 230, 235, 236, 239, 275 See also Ge ₂ Sb ₂ Te ₅ ;GeSb ₂ T ₄ X-ray photoemission spectroscopy (XPS),
Volume-minimized, 397, 399	24, 71, 72, 193
W	
W	Z
Window glass, 40	Zeldovich factor, 129