Plots

Teresa von Linde, Dorothe Mersch, Amelie Vogt, Johanna Bauer

Broad Analysis

In order to get an overview a boxplot of the treated data was computed. There was a visible difference between the 15 batches.

Gene Expression Treated

Through scaling the data the different batches disappeared.

Gene Expression Treated Scaled

In order to analyze the gene expression change from untreated to treated, log2 fold change values were computed. The distribution was checked through a density plot.

For a dimensional reduction, a principal component analysis was performed.

Color chemotherapy agents (firebrick) against targeted therapy agents (forestgreen) in those two plots.

Color every drug in a different color.

Color tyrosine kinase inhibitors red (others: green) in those two plots.

Specific Analysis

Part I:
Identification of genes as biomarkers for cisplatin through extreme log2 FC-values.
Visualizing the most extreme FC-values for cisplatin.

Part I (b): T-Test to check significance of the previously found biomarker. But before: Checking normality of the example gene "POLR3B" through a QQplot.

QQplot to check normality of the POLR3B gene

Part II: Influence of cisplatin on the biomarkers gene expression (up or down regulation). Checking for the optimal number of clusters for the following heatmap.

Elbow plot for kmeans clustering of celllines

Influence of cisplatin on the biomarkers gene expression FSBP///RAD54B PLK1 POLR3B MAPKAP1 SUPT3H ANKRA2 KDM4C CEP112 MBD5 SCAPER **NBEA** CAMKMT BBS9 GNB1L

Checking the influence of cisplatin on the biomarkers gene expression using the amount of clusters determined with the elbow plot.

blue= upregulation

red= downregulation

celllines

Influence of cisplatin on the biomarkers gene expression Cancertype FSBP///RAD54B PLK1 POLR3B MAPKAP1 SUPT3H ANKRA2 KDM4C CEP112 MBD5 SCAPER NBEA CAMKMT BBS9 GNB1L

Cancertype

CNS Colon

Breast

Leukemia Melanoma

Ovarian

Prostate Renal

Non-Small Cell Lung

blue= upregulation

red= downregulation

celllines

Part III: Further analysis of the biomarker for cisplatin. Checking for the optimal number of clusters for the following heatmap.

Elbowplot kmeans clustering - biomarker gene alterations

Part III: Further analysis of biomarker – amplification, deletion or neutral gene copy number?

Genes were identified as amplified, if their gene copynumber is higher than the **75%-quantile** and as deleted if the value is lower than the **25%-quantile**.

Part III: Further analysis of biomarker – amplification, deletion or neutral gene copy number?

Genes were identified as amplified, if their gene copynumber is higher than the **80%-quantile** and as deleted if the value is lower than the **20%-quantile**.

