

Kubernetes: Container Orchestration

Teerit Ploensin < teeritploensin@gmail.com > Chulalongkorn University

Outline

- **Motivation**
- **Kubernetes Cluster**
- **Kubernetes Object**
- **Demo via Minikube**

Container Orchestration

Tools of Container Orchestration

DOCKER OPENSOURCE TOOLS

Azure Container Services FROM MICROSOFT

Google Container Engine FROM GOOGLE CLOUD PLATFORM

Kubernetes DOCKER OPENSOURCE TOOLS

FROM CLOUD FOUNDRY

Provisioning and deployments of containers

- Health monitoring of containers
- Allocation of resources between containers

Kubernetes

- Manages container clusters
- Supports multiple cloud and bare-metal environments
- Supports multiple container runtimes
- 100% Open source

Manage <u>applications</u>, not machines !!

Kubernetes features

- **Horizontal scaling**: Scale your application up and down with a simple command, with a UI, or automatically based on CPU usage.
- **Self-healing**: Restarts containers that fail, replaces and reschedules containers when nodes die, kills containers that don't respond to your user-defined health check, and doesn't advertise them to clients until they are ready to serve.
- **Service discovery** and **load balancing**: No need to modify your application to use an unfamiliar service discovery mechanism. Kubernetes gives containers their own IP addresses and a single DNS name for a set of containers, and can load-balance across them.
- **Storage Orchestration**: Automatically mount the storage system of your choice, whether from local storage, a public cloud provider

Kubernetes: Overview

Kubernetes: Overview

Container clusters (Admin)

1. Setting up the cluster

- Choose a cloud: GCE, AWS, Azure, on-premises, ...
- Choose a node OS: Debian, CentOS, Ubuntu, ...
- Provision machines: install and run Kubernetes components, ...
- Configure networking: IP for machines, Pods, Services, ...
- Start cluster services: DNS, logging, ...
- Manage node: kernel upgrades, OS updates, ...

Cluster

Datacenter or Cloud

Gone are the days where writing and deploying new applications means managing individual machines and static partitions.

With Kubernetes

Pool your datacenter and cloud resources, so all your apps run together on the same machines —reducing complexity and waste.

what is kubernetes to datacenter

(source : Mesosphere)

Cluster

Master node

Worker node

Master

- Controls Kubernetes nodes
- Maintains the desired state for your cluster
- Interacts with Master via kubectl command

Worker

- VM or physical machine
- Contain services to run pods

Container clusters (Developer)

2. Using the cluster

- Run Pods & Contains
- ReplicaSets & Deployments & DaemonSets & StatefulSets
- Services & Volumes & Secrets & Autoscalers

This is the fun part!

Don't make developers deal with cluster administration!

Accelerate development by focusing on the applications, not the cluster

Kubernetes Object

- Pod
- Service
- Volume
- Namespace

- Deployment
- ReplicationSet

Pod

- Basic execution unit of Kubernetes
- Small group of container
- Contains container (or multiple containers), storage resources and a unique network IP

Service

Use to allow network access to a set of pods

Volume

Kubernetes supports several types of Volumes:

- azureDisk
- azureFile
- persistentVolumeClaim

Namespace

- A scop of name
- A way to divide cluster resources between multiple users
- Help different projects, teams, or customers to share a Kubernetes cluster

Deployment

- easiest and most used resource for deploying your application
- used for stateless applications

Deployment "I want three of my Node.js app Pods running" Node.js Node.js Node.js app

ReplicationSet

Notes on Kubernetes

- Use kubectl command for (almost) everything
 - kubectl get pods
 - kubectl get nodes
 - O ...