

Chapter 17 Aqueous Equilibrium

The Common Ion Effect

- Consider a solution of acetic acid.
- If we add acetate ion as a second solute (i.e., sodium acetate), the pH of the solution will increase:

The *common ion effect* is the suppression of the ionization of a weak acid or a weak base by the presence of a common ion from a strong electrolyte.

Buffer Solutions

- A buffer solution is a solution that changes pH only slightly when small amounts of a strong acid or a strong base are added.
- A buffer contains significant concentrations of both
 - a weak acid and its conjugate base, or
 - a weak base and its conjugate acid.

Table 15.1 Relative Strengths of Some Brønsted-Lowry Acids and Their Conjugate Bases

	Acid	Conjugate Base		
	HI (hydroiodic acid)	I (iodide ion)		
	HBr (hydrobromic acid)	Br (bromide ion)		
	HCl (hydrochloric acid)	Cl ⁻ (chloride ion)		
	H ₂ SO ₄ (sulfuric acid)	HSO ₄ (hydrogen sulfate ion)		
4	HNO ₃ (nitric acid)	NO ₃ (nitrate ion)	gth	
engt	H ₃ O ⁺ (hydronium ion)	H ₂ O (water)	reng	
Increasing acid strength	HSO ₄ (hydrogen sulfate ion)	SO ₄ ²⁻ (sulfate ion)	Increasing base strength	
acic	HNO ₂ (nitrous acid)	NO ₂ (nitrite ion)	bas pas	
ing	HF (hydrofluoric acid)	F (fluoride ion)	Sing	
reas	CH ₃ COOH (acetic acid)	CH ₃ COO ⁻ (acetate ion)	crea	
Inc	H ₂ CO ₃ (carbonic acid)	HCO ₃ (hydrogen carbonate ion)	F. P.	
	NH ₄ ⁺ (ammonium ion)	NH ₃ (ammonia)	,	
	HCO ₃ ⁻ (hydrogen carbonate ion)	CO ₃ ²⁻ (carbonate ion)		
	H ₂ O (water)	OH (hydroxide ion)		
	CH ₃ OH (methanol)	CH ₃ O ⁻ (methoxide ion)		
-				

Copyright © 2005 Pearson Prentice Hall, Inc.

©Houghton Mifflin Company. All rights reserved.

Pure water *increases* in pH by about 5 pH units when the OH- is added, and decreases by about 5 pH units when the H_3O^+ is added.

Water

 $1.00 L water + 0.010 mol OH^-$

1.00 L water

 $1.00 \text{ L water} + 0.010 \text{ mol H}_3\text{O}^+$

Buffer solution

1.00 L buffer + 0.010 mol OH-

1.00 L buffer

 $1.00 \text{ L buffer} + 0.010 \text{ mol H}_3\text{O}^+$

In contrast, the same amounts of OH- and H₃O+ added to a buffer solution barely change the pH.

Buffer Solutions

 The acid component of the buffer neutralizes small added amounts of OH⁻, forming the weaker conjugate base which does not affect pH much:

$$HA + OH^- \rightarrow H_2O + A^-$$

 The base component neutralizes small added amounts of H₃O⁺, forming the weaker conjugate acid which does not affect pH much.

$$A^- + H_3O^+ \rightarrow H_2O + HA$$

©Houghton Mifflin Company. All rights reserved.

An Equation for Buffer Solutions

$$K_{a} = \frac{\left[H^{+}\right]\left[A^{-}\right]}{\left[HA\right]} \Rightarrow \left[H^{+}\right] = K_{a} \frac{\left[HA\right]}{\left[A^{-}\right]}$$

The Henderson–Hasselbalch equation:

pH = p
$$K_a$$
 + log $\frac{\text{[conjugate base]}}{\text{[weak acid]}}$

• To use this equation without considering any change in the initial concentrations (the 5% rule), both concentrations should exceed K_a by a factor of 100 or more.

The pH value of a Buffer

For a buffered solution made from weak acid and its salt.

$$HA + H_2O <==> A^- + H_3O^+$$
 $K_a = [A^-][H_3O^+] / [HA]$
 $[H_3O^+] = K_a \times ([HA]/[A^-])$ (The [HA] and [A^-] are known.)
 $pH = -log(K_a) - log([HA]/[A^-])$
 $= pK_a + log([A^-]/[HA])$

==> for the same conjugate acid-base pair, the pH of its buffer solution is dependent on the ratio of ([A-]/[HA]).

HC ₂ H ₃ O ₂	NaC ₂ H ₃ O ₂	[A ⁻]/[HA]	рН
5.0 M	3.0 M	0.6	4.52
0.05 M	0.03 M	0.6	4.52

Calculating Buffer pH

What is the pH of a 1.0 L buffer containing 0.50 M acetic acid and 0.50 M sodium acetate, and what is the pH of the solution after adding 0.01 Mole of NaOH(s)?

$$K_a = 1.8 \times 10^{-5}$$

$$K_a = [C_2H_3O_2^{-1}][H_3O^{+1}]/[HC_2H_3O_2]$$

= $(0.5 + x)(x)/(0.5 - x)$
 $\approx x$
= $1.8 \times 10^{-5} M$

$$[H_3O^+] = 1.8 \times 10^{-5} M$$

=> pH = 4.74

Calculating Buffer pH

What is the pH of a 1.0 L buffer containing 0.50 M acetic acid and 0.50 M sodium acetate, and what is the pH of the solution after adding 0.01 Mole of NaOH(s)?

$$K_a = 1.8 \times 10^{-5}$$

$$[C_2H_3O_2^-] = [(0.5 \times 1.0) + 0.01]/1.0 = 0.51$$

 $[HC_2H_3O_2] = [(0.5 \times 1.0) - 0.01]/1.0 = 0.49$

$$K_a = [C_2H_3O_2^-][H_3O^+]/[HC_2H_3O_2]$$

= $(0.51 + x)(x)/(0.49 - x)$
 $\approx [0.51(x)] / 0.49$
= $1.8 \times 10^{-5} M$

$$[H_3O^+] = 1.7 \times 10^{-5} M$$

=> pH = 4.76

$$[H_3O^+] = K_w / [OH^-] = 1.0 \times 10^{-12}$$

$$pH = 12$$

Buffer Capacity and Buffer Range

- There is a limit to the ability of a buffer solution to neutralize added acid or base.
- Buffer capacity is defined as the moles of an acid or base necessary to change the pH of a solution by 1 divided by the volume of buffer in liters.
- This buffer capacity is reached before either buffer component has been consumed.
- In general, the more concentrated the buffer components in a solution, the more added acid or base the solution can neutralize.

Buffer Capacity and Buffer Range

- As a rule, a buffer is most effective if the concentrations of the buffer acid and its conjugate base are *equal* or nearly so.
- Therefore, a buffer is most effective when the desired pH of the buffer is very near pK_a of the weak acid of the buffer.

The *Henderson–Hasselbalch equation*:

pH = p
$$K_a$$
 + log $\frac{\text{[conjugate base]}}{\text{[weak acid]}}$

$$pH \leftarrow pK_a \pm 1$$

For a good buffer, the ratio should have a value between 0.1 and 10.

Buffer Capacity and Buffer Range

Acetate Acetic acid

TABLE 8.1 Change in [C₂H₃O₂⁻]/[HC₂H₃O₂] for Two Solutions When 0.01 mol of H⁺ Is Added to 1.0 L of Each Solution

Solution	$\left(\frac{\left[C_2H_3O_2^{}\right]}{\left[HC_2H_3O_2\right]}\right)_{orig}$	$\left(\frac{\left[C_2H_3O_2^{-1}\right]}{\left[HC_2H_3O_2\right]}\right)_{new}$	Change	Percent Change
A	$\frac{1.00\ M}{1.00\ M} = 1.00$	$\frac{0.99\ M}{1.01\ M} = 0.98$	1.00 → 0.98	2.00%
В	$\frac{1.00\ M}{0.01\ M} = 100$	$\frac{0.99 \text{ M}}{0.02 \text{ M}} = 49.5$	$100 \rightarrow 49.5$	50.5%
С	$\frac{0.02 \ M}{0.01 \ M} = 2$	$\frac{0.01 \ M}{0.02 \ M} = 0.5$	2 → 0.5	75%

Both the amount of the acidic and basic components of the buffer system should be considerably more than that of the added H⁺ or OH⁻.

For a good buffer, the ratio should have a value between 0.1 and 10.

Learning Check

A buffer solution is 0.240 M NH₃ and 0.200 M NH₄Cl. (a) What is the pH of this buffer? (b) If 0.0050 mol NaOH is added to 0.500 L of this solution, what will be the pH? $[K_h = 1.8 \times 10^{-5}]$

a)

$$NH_{3} + H_{2}O \rightleftharpoons NH_{4}^{+} + OH^{-}$$
 $pK_{b} = 4.74$
 $NH_{4}^{+} + H_{2}O \rightleftharpoons NH_{3} + H_{3}O^{+}$ $pK_{a} = 9.26$
 $pH = pK_{a}^{-} + log \frac{[NH_{3}]}{[NH_{4}^{+}]}$

$$pH = 9.26 + \log \frac{0.240}{0.200} = 9.34$$

Learning Check

A buffer solution is 0.240 M NH₃ and 0.200 M NH₄Cl. (a) What is the pH of this buffer? (b) If 0.0050 mol NaOH is added to 0.500 L of this solution, what will be the pH? $[K_h = 1.8 \times 10^{-5}]$

(b)
$$NH_{4}^{+} + OH^{-} \rightleftharpoons NH_{3} + H_{2}O$$

$$[NH_{4}^{+}] = (0.200 \times 0.500 - 0.0050) / 0.500 = 0.19 \text{ M}$$

$$[NH_{3}] = (0.240 \times 0.500 + 0.0050) / 0.500 = 0.250 \text{ M}$$

$$pH = 9.26 + \log \frac{0.250}{0.19} = 9.38$$

Buffers in Vivo

Human blood, pH of 7.35 to 7.45

Buffer system used to control blood pH

Kidney

Our buffering system has a high capacity to neutralize additional acid - large amount of CO₂ are produced by metabolism, which increases [H⁺]

Buffers in Vitro

Tris.HCl buffer is extensively used in biochemistry and molecular biology. (p $K_a = 8.07$)

For a solution of 10 mL of 0.1 M Tris, how much HCl (1.0 M) are needed to prepare a buffer at pH 7.70?

$$7.70 = 8.07 + \log \frac{(0.10 \times 10.0 - x \times 1.0) / (10.0 + x)}{x \times 1.0 / (10.0 + x)}$$

$$pH = pK_a + \log \frac{[A^-]}{[HA]}$$

$$x = 0.70 \text{ mL}$$

Buffers in Vitro

Good's buffers are twenty buffering agents for biochemical and biological research selected and described by Norman Good and colleagues during 1966–1980s

Buffer	<u>pK</u> _a at 20°C	Solubility in water at 0°C
TES	7.5	2.6 M
<u>HEPES</u>	7.55	2.25 M
DIPSO	7.6	0.24 M
<u>Acetamidoglycine</u>	7.7	Very large
TAPSO	7.7	1.0 M
POPSO POPSO	7.85	-
<u>HEPPSO</u>	7.9	2.2 M
<u>HEPPS</u>	8.1	Large
Tricine	8.15	0.8 M
Glycinamide	8.2	6.4 M (As HCI)
<u>Bicine</u>	8.35	1.1 M
TAPS	8.55	Large

http://www.reachdevices.com/Protein/BiologicalBuffers.html

Learning Check

- 1. Write down the reaction relevant to the buffering capacity of HEPES.
- 2. HEPES is commercially available as a sodium salt. After solubilizing some sodium HEPES in water, should you add acid or base to prepare a buffer at 7.40?

$$^{+}$$
HEPES $^{-}$ + $H_2O \Longrightarrow HEPES^{-}$ + H_3O^{+} $pK_a = 7.55$

$$pH = pK_a + \log \frac{\left[A^{-}\right]}{\left[HA\right]}$$

Titration Curve

Strong acid with strong base

Neutralization Reactions

Neutralization is the reaction of

An acid such as HCl and a base such as NaOH.

$$HCI + H_2O ----> H_3O^+ + CI^-$$

 $NaOH ----> Na^+ + OH^-$

 The H₃O⁺ from the acid and the OH⁻ from the base to form water.

$$H_3O^+ + OH^- ---> 2H_2O$$

Neutralization Equations

 In the equation for neutralization, an acid and a base produce a salt and water.

Acid-Base Titration

Titration

- Is a laboratory procedure used to determine the molarity of an acid.
- Uses a base such as NaOH to neutralize a measured volume of an acid.

Indicator

An indicator

- Is added to the acid in the flask.
- Causes the acid solution to change color when the acid is neutralized.

For strong acid-base

Titration of 50.0 mL of 0.200 M HNO₃ with 0.100 M NaOH.

A. 0 mL of NaOH: $[H^+] = 0.200 \text{ M} = \text{pH} = 0.699$

$$[H^+] = [(50.0 \times 0.200) - (10.0 \times 0.100)] / (50.0 + 10.0)$$

= 0.15 M => pH = 0.82

$$[H^+] = [(50.0 \times 0.200) - (20.0 \times 0.100)] / (50.0 + 20.0)$$

= 0.11 M => pH = 0.94

$$[H^+] = [(50.0 \times 0.200) - (50.0 \times 0.100)] / (50.0 + 50.0)$$

= 0.050 M => pH = 1.30

Titration of 50.0 mL of 0.200 M HNO₃ with 0.100 M NaOH.


```
E. 100 mL : 50.0 \times 0.200 = 100.0 \times 0.100 mole of acid = mole of base (equivalence point) [H^+] = 1.0 \times 10^{-7} = pH = 7.00
```

F. 150 mL :
$$[OH^{-}] = [(150.0 \times 0.100) - (50.0 \times 0.200)] / (150.0 + 50.0)$$

$$= 0.025 \text{ M}$$

$$[H^{+}] = 1.0 \times 10^{-14} / 0.025 = 4.0 \times 10^{-13} \text{ M}$$

G. 200 mL :
$$[OH^{-}] = [(200.0 \times 0.100) - (50.0 \times 0.200)] / (200.0 + 50.0)$$

$$= 0.04 \text{ M}$$

$$[H^{+}] = 1.0 \times 10^{-14} / 0.04 = 2.5 \times 10^{-13} \text{M}$$

$$=> pH = 12.60$$

=> pH = 12.40

Titration Curve

Strong base with weak acids

The change in pH is less drastic as the acid becomes weaker.

©Houghton Mifflin Company. All rights reserved.

For weak acid with strong base

- Must deal with the weak acid dissociation equilibrium.
- The acid reacts essentially to completion with OH⁻.

- (1) Stoichiometry calculation:
 use the amount of OH- to
 calculate the amount of
 conjugate base of the weak
 acid.
- (2) Equilibrium calculation: use the amount of acid left, amount of conjugate base, and K_a to determine the [H⁺] and pH.

For weak acid

CH₃COOH, acetic acid

• Titration of 50.0 mL of 0.100 M $HC_2H_3O_2$ ($K_a = 1.8 \times 10^{-5}$) with 0.100 M NaOH.

```
0 mL of NaOH:
K_a = 1.8 \times 10^{-5} = x^2 / 0.100 x = 1.3 \times 10^{-3}
[H^+] = 1.3 \times 10^{-3} \text{ M} = \text{pH} = 2.89
10.0 mL:
[HC_2H_3O_2] = [(50.0 \times 0.100) - (10.0 \times 0.100)] / (50.0 + 10.0) = (4.00/60.0)
[C_2H_3O_2^{-1}] = (10.0 \times 0.100) / (50.0 + 10.0) = (1.00/60.0)
[H^+] = K_3 \times [HC_2H_3O_2] / [C_2H_3O_2] = 7.2 \times 10^{-5} = pH = 4.14
25.0 mL:
[HC_2H_3O_2] = [(50.0 \times 0.100) - (25.0 \times 0.100)] / (50.0 + 25.0) = (2.5/75)
[C_2H_3O_2^-] = (25.0 \times 0.100) / (50.0 + 25.0) = (2.5/75)
[H^+] = K_3 \times [HC_2H_3O_2] / [C_2H_3O_2] = 1.8 \times 10^{-5} => pH = 4.74
```

For weak acid

• Titration of 50.0 mL of 0.100 M $HC_2H_3O_2$ ($K_a = 1.8 \times 10^{-5}$) with 0.100 M NaOH.

50.0 mL: equivalence point amount of acid = amount of base Major components in solution are Na⁺, H_2O , and $C_2H_3O_2^-$

$$C_2H_3O_2^- + H_2O \iff HC_2H_3O_2^- + OH^ K_b = [HC_2H_3O_2][OH^-] / [C_2H_3O_2^-] = K_w / K_a = 5.6 \times 10^{-10}$$
 $5.6 \times 10^{-10} = x^2 / [(50.0 \times 0.100) / (50.0 + 50.0)]$
 $x = [OH^-] = 5.3 \times 10^{-6}$
 $[H^+] = K_w / [OH^-] = 1.9 \times 10^{-9} \text{ M} \implies pH = 8.72$

The pH at the equivalence point of a titration of a weak acid with a strong base is always greater than 7.

For weak acid

• Titration of 50.0 mL of 0.100 M $HC_2H_3O_2$ ($K_a = 1.8 \times 10^{-5}$) with 0.100 M NaOH.

60.0 mL:

Major components in solution are Na⁺, H₂O, C₂H₃O₂⁻, and OH⁻

OH⁻ is a much stronger base than C₂H₃O₂⁻

[OH⁻]
= [(60.0 × 0.100) - (50.0 × 0.100)] / (60.0 + 50.0)
= 9.1 x
$$10^{-3}$$

$$[H^+] = K_w / [OH^-] = 1.1 \times 10^{-12} M$$

=> pH = 11.96

The pH value at equivalence point

The pH at equivalence point of

Titration of 50.0 mL of 0.100 M HCN (K_a = 6.2 x 10⁻¹⁰) with 0.100 M NaOH.

```
50 mL: equivalence point amount of acid = amount of base Major component is solution is Na<sup>+</sup>, H<sub>2</sub>O, and CN<sup>-</sup>
```

```
CN^- + H_2O <==> HCN + OH^-

K_b = [HCN][OH^-]/[CN^-] = K_w / K_a = 1.6 \times 10^{-5}

1.6 \times 10^{-5} = x^2 / [(50.0 \times 0.100)/(50 + 50)]

x = [OH^-] = 8.9 \times 10^{-4}

[H^+] = K_w / [OH^-] = 1.1 \times 10^{-11} M => pH = 10.96
```

The HCN is a weaker acid than $HC_2H_3O_2$, therefore the pH at the equivalence point of a titration is greater.

Titration of acid with strong base

The equivalence point is determined by the amount of acid.

The pH value at the equivalence point is affected by the

acid strength.

Buffering Region

36

Strong Acid-Strong Base

Learning Check

This titration curve involves 1.0 M solutions of an acid and a base. Identify the type of titration it represents.

- 1. Strong acid added to weak base because the equivalent point is smaller than 7
- 2. Buffering region occurs at around pH 9

Neutralization Reactions

- At the equivalence point in an acid—base titration, the acid and base have been brought together in precise stoichiometric proportions.
- The endpoint is the point in the titration at which the indicator changes color.
- Ideally, the indicator is selected so that the endpoint and the equivalence point are very close together.

Acid-Base Indicators

- An acid—base indicator is a weak acid or base.
- The acid form (HA) of the indicator has one color, the conjugate base (A⁻) has a different color. One of the "colors" may be colorless.
- In an acidic solution, [H₃O+] is high. Because H₃O+ is a common ion, it suppresses the ionization of the indicator acid, and we see the color of HA.
- In a basic solution, [OH-] is high, and it reacts with HA, forming the color of A-.

End Point of Titration

At the end point,

- The indicator has a permanent color.
- The useful pH range of an indicator is given by pK_a ± 1
- Phenolphthalein (酚酞)
 K_a = 1.0 x 10⁻⁸
 pK_a = -logK_a = 8
 useful pH range 7 ~ 9

Colorless acid form, HIn

Pink base form, In-

Indicator

An acid-base indicator

Marks the end point by changing color. (one tenth of initial form)

- The end point is not necessarily equals to the equivalence point.
- Choose your indicator carefully.

$$H-ln <==> H^+ + ln^-$$

$$K_a = \frac{[H^+][\ln^-]}{[H-\ln]}$$
 $[H^+] = K_a \times \frac{[H-\ln]}{[\ln^-]}$

$$[H^+] = K_a x \frac{[H-In]}{[In^-]}$$

$$pH = pK_a + log \frac{[ln^-]}{[H-ln]}$$

Low pH to high pH (mostly H-In)

$$pH = pK_a + log \frac{[ln^-]}{[H-ln]}$$

 $pH = pK_a + log (1/10)$
 $= pK_a - 1$

High pH to low pH (mostly In⁻)

$$pH = pK_a + log \frac{[ln^-]}{[H-ln]}$$

 $pH = pK_a + log (10/1)$
 $= pK_a + 1$

Different indicators have different values of K_a , so they exhibit color changes at different values of pH ...

Strong Acid-Strong Base

Bromphenol blue, bromthymol blue, and phenolphthalein all change color at very nearly 20.0 mL

Weak Acid-Strong Base

Bromphenol blue was ok for the strong acid/strong base titration, but it changes color far too early to be useful here.

$$H_3A (aq) \longrightarrow H^+(aq) + H_2A^-(aq)$$
 $H_2A^- (aq) \longrightarrow H^+(aq) + HA^{2-}(aq)$
 $HA^{2-} (aq) \longrightarrow H^+(aq) + A^{3-}(aq)$

What are the pH values at the equivalence points?

The appropriate equilibrium expression must be first chosen by knowing what major species are present!

Before the first equivalence point:

Before the first equivalence point:

$$H_3A \text{ (aq)} + H_2O \text{ (l)} \Leftrightarrow H_3^+O \text{ (aq)} + H_2A^-\text{ (aq)}$$

$$K_{a1} = \frac{\begin{bmatrix} H^+ \end{bmatrix} \begin{bmatrix} H_2A^- \end{bmatrix}}{\begin{bmatrix} H_3A \end{bmatrix}}$$

At the first equivalence point, which of the following equation best describes the reaction of H_2A^- ?

$$H_2A^-$$
 (aq) $\Leftrightarrow H^+$ (aq) + HA^{2-} (aq) $K_{a2} = 6.2 \times 10^{-8}$
 H_2A^- (aq) + H_3^+O (aq) $\Leftrightarrow H_3A$ (aq) + H_2O (1) $K_1 = 133$
 H_2A^- (aq) + H_2O (aq) $\Leftrightarrow H_3A$ (aq) + OH^- (aq) $K_2 = 1.3 \times 10^{-12}$

$H_2A^-(aq) + H_2A^-(aq)$	\Leftrightarrow	$H_2A (aq) + HA^{2-}(aq)$	$K_3 = 8.2 \times 10^{-6}$
11211 (aq) 11211 (aq)		11311 (aq) + 1111 (aq)	3 0.2

Name	Formula	K_{a_1}	K_{a_2}	K_{a_3}
Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	6.2×10^{-8}	4.8×10^{-13}

At the first equivalence point:

$$H_2A^-(aq) + H_2A^-(aq) \longrightarrow H_3A(aq) + HA^{2-}(aq)$$

$$K_{eq} = \frac{\left[\mathbf{H}_{3}\mathbf{A}\right]\left[\mathbf{H}\mathbf{A}^{2-}\right]}{\left[\mathbf{H}_{2}\mathbf{A}^{-}\right]^{2}} = \frac{\left[\mathbf{H}_{3}\mathbf{A}\right]}{\left[\mathbf{H}_{2}\mathbf{A}^{-}\right]\left[\mathbf{H}^{+}\right]} \times \frac{\left[\mathbf{H}^{+}\right]\left[\mathbf{H}\mathbf{A}^{2-}\right]}{\left[\mathbf{H}_{2}\mathbf{A}^{-}\right]}$$
$$= \frac{1}{K_{a1}} \times K_{a2}$$

Since we also have
$$[H_3A] = [HA^{2-}]$$

$$\frac{\left[\mathbf{H}_{3}\mathbf{A}\right]^{2}}{\left[\mathbf{H}_{2}\mathbf{A}^{-}\right]^{2}} = \frac{K_{a2}}{K_{a1}} \qquad \frac{\left[\mathbf{H}_{3}\mathbf{A}\right]}{\left[\mathbf{H}_{2}\mathbf{A}^{-}\right]} = \sqrt{\frac{K_{a2}}{K_{a1}}}$$

$$\frac{\left[\mathbf{H}_{3}\mathbf{A}\right]}{\left[\mathbf{H}_{2}\mathbf{A}^{-}\right]} = \sqrt{\frac{K_{a2}}{K_{a1}}}$$

Rewrite the left hand side by

$$K_{a1} = \frac{\left[\mathbf{H}_{2}\mathbf{A}^{-}\right]\left[\mathbf{H}^{+}\right]}{\left[\mathbf{H}_{3}\mathbf{A}\right]}$$

$$\left[H^{+} \right] = \sqrt{K_{a1}K_{a2}}$$

$$pH = \frac{pK_{a1} + pK_{a2}}{2}$$

pH at the first equivalence point!

- Applicable to solution containing H₂A⁻ and H₂O mainly
- Independent of the concentration of H₂A⁻

Titration of H₃A Acid

@Houghton Mifflin Company. All rights reserved.

Titration of Alanine

Isoelectric Point

pI: Isoelectric point

$$pK_{a1} = -\log[H^{+}] - \log \frac{[\mathbf{Z}]}{[\mathbf{P}]} \qquad pK_{a2} = -\log[H^{+}] - \log \frac{[\mathbf{N}]}{[\mathbf{Z}]}$$
$$pK_{a1} + pK_{a2} = 2pH - \log \frac{[\mathbf{N}]}{[\mathbf{P}]}$$

Isoelectric Point

$$pK_{a1} + pK_{a2} = 2pH - log \frac{[N]}{[P]}$$

$$pH = (pK_{a1} + pK_{a2})/2 \equiv pI$$

$$[N] = [P]$$

The zwitterionic form (dipolar ion) has the highest concentration

Relative Solubilities

Salt
$$\Longrightarrow$$
 cation + anion [Cation] = x (mol/L)
$$K_{\rm sp} = [{\rm cation}][{\rm anion}] \qquad [{\rm Anion}] = x$$

$$K_{\rm sp} = [{\rm cation}][{\rm anion}] = x^2$$

$$x = \sqrt{K_{\rm sp}} = {\rm solubility}$$

AgI(s)
$$K_{\rm sp} = 1.5 \times 10^{-16}$$

$$CuI(s)$$
 $K_{sp} = 5.0 \times 10^{-12}$

CaSO₄(s)
$$K_{\rm sp} = 6.1 \times 10^{-5}$$

Solubility:

$$CaSO_4 > CuI > AgI$$

Largest
$$K_{\rm sp}$$

Smallest $K_{\rm sp}$

Solubilities of Cus, Ag₂S, and Bi₂S₃

Salt	$K_{ m sp}$
CuS Ag ₂ S Bi ₂ S ₃	8.5×10^{-45} 1.6×10^{-49} 1.1×10^{-73}

Bi₂S₃(s)
$$\leftrightarrows$$
 2Bi³⁺(aq) + 3S²⁻(aq)
1.1 × 10⁻⁷³ = [Bi³⁺]² [S²⁻]³
= $(2x)^2 (3x)^3$
 $\Rightarrow x = 1.0 \times 10^{-15}$
Solubility:
Bi₂S₃ > Ag₂S > CuS

Solubility products sometimes cannot directly tell you the relative solubility of two compounds

Common Ion Effect

The solubility of silver chromate in 0.100 M silver nitrate solution:

$$Ag_{2}CrO_{4}(s) \Longrightarrow 2Ag^{+}(aq) + CrO_{4}^{2-}(aq)$$

$$K_{sp} = [Ag^{+}]^{2}[CrO_{4}^{2-}] = 9.0 \times 10^{-12}$$

$$x \text{ mol/L } Ag_{2}CrO_{4}(s) \longrightarrow 2x \text{ mol/L } Ag^{+}(aq) + x \text{ mol/L } CrO_{4}^{2-}(aq)$$

$$[Ag^{+}] = [Ag^{+}]_{0} + \text{change} = 0.100 + 2x$$

$$[CrO_{4}^{2-}] = [CrO_{4}^{2-}]_{0} + \text{change} = 0 + x = x$$

$$9.0 \times 10^{-12} = [Ag^{+}]^{2}[CrO_{4}^{2-}] = (0.100 + 2x)^{2}(x)$$

$$9.0 \times 10^{-12} = (0.100 + 2x)^2(x) \approx (0.100)^2(x)$$

$$x \approx \frac{9.0 \times 10^{-12}}{(0.100)^2} = 9.0 \times 10^{-10} \text{ mol/L}$$

Solubility of Ag₂CrO₄ in 0.100 M AgNO₃ = $x = 9.0 \times 10^{-10}$ mol/L

$$[Ag^+] = 0.100 + 2x = 0.100 + 2(9.0 \times 10^{-10}) = 0.100 M$$

 $[CrO_4^{2-}] = x = 9.0 \times 10^{-10} M$

$$(2x)^2(x) = K_{\rm sp}$$

Solubility of Ag₂CrO₄ in pure water = 1.3×10^{-4} mol/L Solubility of Ag₂CrO₄ in 0.100 M AgNO₃ = 9.0×10^{-10} mol/L

$$CaCO_3(s) \rightleftharpoons Ca^{2+} + CO_3^{2-}$$
 $K_{sp} = 4.47 \times 10^{-9}$

$$K_{\rm sp} = 4.47 \times 10^{-9}$$

$$[Ca^{2+}] = 6.69 \times 10^{-5} \,\mathrm{M}$$

 $[Ca^{2+}] = 6.69 \times 10^{-5} \text{ M}$ $x(CaCO_3) = 6.69 \text{ mg/L}$

Under ambient conditions:

$$P_{\rm CO_2} = 35 \, {\rm Pa}$$

Henry's law

$$P_{\text{CO}_2} = k_{\text{H}} \left[\text{CO}_2 \right]$$

$$[CO_2] = 12 \mu M$$

$$CO_2(aq) + H_2O(l) \Leftrightarrow H_2CO_3(aq)$$
 $K_{eq} = 1.7 \times 10^{-3}$

$$K_{\rm eq} = 1.7 \times 10^{-3}$$

$$[H_2CO_3] = 2.0 \times 10^1 \text{ nM}$$

Solubility of CaCO₃ at pH 8.27 under ambient conditions:

$$[H_2CO_3] = 2.0 \times 10^1 \text{ nM}$$

$$CaCO_3(s) \rightleftharpoons Ca^{2+} + CO_3^{2-}$$

$$CO_3^{2-} + H_2O \Leftrightarrow HCO_3^- + OH^-$$

$$HCO_3^- + H_2O \Leftrightarrow H_2CO_3 + OH^-$$

$$H_2O \rightleftharpoons H^+ + OH^-$$

$$[H^+] + 2[Ca^{2+}] = [HCO_3^-] + 2[CO_3^{2-}] + [OH^-]$$

$$[Ca^{2+}] = 4.7 \times 10^{-4} \text{ M}; x(CaCO_3) = 47 \text{ mg/L}$$

$$x(CaCO_3) = 6.69 \text{ mg/L}$$

$$K_{\rm sp} = 4.47 \times 10^{-9}$$

$$K_{\rm b2} = 2.1 \times 10^{-4}$$

$$K_{\rm h1} = 2.3 \times 10^{-8}$$

Equilibria Involving Complex Ions

$$Ag^+ + 2 NH_3 \Leftrightarrow [Ag(NH_3)_2]^+$$

$$K_{\rm f} = 1.7 \times 10^7$$

$$AgCI \Leftrightarrow Ag^+ + CI^-$$

$$K_{\rm sp} = 1.6 \times 10^{-10}$$

$$AgCI + 2 NH_3 \Leftrightarrow [Ag(NH_3)_2]^+ + CI^- \qquad K = 2.8 \times 10^{-3}$$

$$K = 2.8 \times 10^{-3}$$

Copyright © 2005 Pearson Prentice Hall, Inc.

Equilibria Involving Complex Ions

The solubility of AgCl in 10.0 M NH₃ solution:

$$AgCl(s) + 2NH_3(aq) \Longrightarrow Ag(NH_3)_2^+(aq) + Cl^-(aq)$$

$$K = 2.8 \times 10^{-3} = \frac{[Ag(NH_3)_2^+][Cl^-]}{[NH_3]^2} = \frac{x^2}{(10.0 - 2x)^2}$$

$$\sqrt{2.8 \times 10^{-3}} = \frac{x}{10.0 - 2x}$$

 $x = 0.48 \text{ mol/L} = \text{solubility of AgCl}(s) \text{ in } 10.0 \text{ M NH}_3$

The solubility of AgCl in 10.0 M NH $_3$ solution is much greater than in pure water, which is $\sqrt{K_{\rm sp}} = 1.3 \times 10^{-5} \, {\rm mol/L}$

Activity (a)

Concentration

- probability of finding the species

Such "probability" would reduce when there are

- solute-solute interactions
- interactions with other ions (Columbic interactions)

Activity (effective concentration)

Figure 1: Mean ionic activity coefficient in HCl as a function of concentration

Concentration Dependence of $K_{\rm C}$

$$A + B \Leftrightarrow C + D$$

At equilibrium

$$Rate_{forward} = Rate_{reverse}$$

$$k_f a_A a_B = k_r a_C a_D$$

$$\frac{k_f}{k_r} = \frac{a_C a_D}{a_A a_B} = \frac{\gamma_C [C] \gamma_D [D]}{\gamma_A [A] \gamma_B [B]}$$

Concentration Dependence of $K_{\rm C}$

$$A + B \Leftrightarrow C + D$$

At equilibrium

$$Rate_{forward} = Rate_{reverse}$$

$$k_{\rm f} a_{\rm A} a_{\rm B} = k_{\rm r} a_{\rm C} a_{\rm D}$$

$$\frac{k_{\rm f} \gamma_{\rm A} \gamma_{\rm B}}{k_{\rm r} \gamma_{\rm C} \gamma_{\rm D}} = \frac{[\rm C][\rm D]}{[\rm A][\rm B]} = K_{\rm C}$$

Concentration dependent

Concentration Dependence of K_a

$$CH_3COOH + H_2O \rightarrow CH_3COO^- + H_3O^+$$

Concentration	p <i>K</i> _a
\rightarrow 0 mM	4.756
1 mM	4.75
5 mM	4.73
10 mM	4.72
30 mM	4.70
100 mM	4.67

http://www.reachdevices.com/Protein/BiologicalBuffers.html

Ionization and Activities

$$H_2CO_3 \Leftrightarrow H^+ + HCO_3^-$$

$$K_{\rm a} = 4.3 \times 10^{-7} \, (\text{in water})$$

$$K_{\rm a} = 7.9 \times 10^{-7} \text{ (in blood)}$$

Increased acidity of carbonic acid in blood occurs because of interionic attractions.

H⁺ and HCO₃⁻ ions are surrounded by other ions of opposite charge in blood, which impede the collisions of H⁺ and HCO₃⁻ ions.

Qualitative Analysis of Cations

- I. Separating cations into five groups based on their solubilities in the presence of various precipitating reagents.
- II. Selective and sequential dissolution of cations in the same group.
- III. Verifying individual cations.

Qualitative Analysis of Cations

- I. Separating cations into five groups based on their solubilities in the presence of various precipitating reagents.
- II. Selective and sequential dissolution of cations in the same group.
- III. Verifying individual cations.

