Матанализ 1 семестр ПИ, Лекция, 10/27/21

Собрано 27 октября 2021 г. в 19:30

Содержание	
1. Замечательные пределы	1

3

Def. 1.0.1. Первый замечательный предел:

$$\lim_{x \to \infty} \frac{\sin x}{x} = 1$$

 \mathcal{A} оказательство. $\sin x < x < \operatorname{tg} x$ на $\left(0, \frac{\pi}{2}\right)$, $\cos x < \frac{\sin x}{x} < 1$ $\cos x, \frac{\sin x}{x}, 1$ — четные функции, значит верно и для $x \in \left(-\frac{\pi}{2}, 0\right)$. Перейдем к пределу при $x \to 0$

$$1 \leqslant \lim_{x \to 0} \frac{\sin x}{x} \leqslant 1 \Rightarrow \exists \lim_{x \to 0} \frac{\sin x}{x} = 1$$

Cледствие 1.0.2. $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$

Доказательство. $\cos 2\alpha = 1 - 2\sin^2 \alpha \Leftrightarrow \sin^2 \alpha = \frac{1-\cos 2\alpha}{2}$

$$\frac{1 - \cos x}{2} = \frac{2\sin^2\frac{x}{2}}{x^2} = \frac{1}{2} \cdot \frac{\sin^2\frac{x}{2}}{\left(\frac{x}{2}\right)^2} = \frac{1}{2} \left(\frac{\sin\frac{x}{2}}{\frac{x}{2}}\right) \to \frac{1}{2}$$

Cледствие 1.0.3. $\lim_{x\to 0} \frac{\operatorname{tg} x}{x} = 1$

Доказательство.

$$\frac{\operatorname{tg} x}{x} = \frac{\sin x}{x} \cdot \frac{1}{\cos x} \xrightarrow[x \to 0]{} 1$$

Cледствие 1.0.4. $\lim_{x\to 0} \frac{\arcsin x}{x} = 1$

Доказательство. $\frac{\sin x}{x} = \frac{y}{\arcsin y}$, $y = \sin x$ в окрестности $x \in (-\varepsilon, \varepsilon) \Rightarrow \arcsin y = x$. $\arcsin x$ непрерывна в нуле, в 0 равен 0. $\frac{\sin x}{x}$ непрерывна в $(-\varepsilon, \varepsilon) \setminus \{0\}$

$$g(x) = \begin{cases} \frac{\sin x}{x}, x \neq 0 \\ 1, x = 0 \end{cases}$$
 — непрерывна на \mathbb{R}

 \Rightarrow по теореме о непрерывности композиции $\frac{y}{\arcsin y} \xrightarrow[y \to 0]{} 1$

Cледствие 1.0.5. $\lim_{x\to 0} \frac{\arctan x}{x} = 1$

Доказательство. Аналогично предыдущему следствию.

Def. 1.0.6. Второй замечательный предел

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e$$

$$\lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e$$

Доказательство. $f(x) = (1 + \frac{1}{x})^x$ задана на $\mathbb{R} \setminus [-1, 0]$. Пусть $x_n \to +\infty$. Нужно доказать, что $f(x_n) \to e$.

- 1. Рассмотрим $\{x_n\}$ из \mathbb{N} . $f(x_n) \to e$ как подпоследовательность.
- 2. $\{x_n\}$ из \mathbb{R} . Начиная с некоторого номера $x_n \geqslant 1$.

$$\left(1 + \frac{1}{[x_n] + 1}\right)^{[x_n]} \le \left(1 + \frac{1}{x_n}\right)^{x_n} \le \left(1 + \frac{1}{[x_n]}\right)^{[x_n] + 1}$$

Очевидно, $[x_n] \le x_n \le [x_n] + 1$. Тогда

$$\frac{1}{1+\frac{1}{[x_n]+1}}\cdot f([x_n]+1) \leqslant f(x_n) \leqslant f([x_n])\cdot \left(1+\frac{1}{[x_n]}\right)$$

 $\{[x_n]\}_{n=1}^{\infty}$ — последовательность из \mathbb{N} . Выполним предельный переход в неравенстве.

$$e \le \lim_{n \to \infty} f(x_n) \le e \Rightarrow \exists \lim_{n \to \infty} f(x_n) = e$$

Def. 1.0.7. Третий замечательный предел (обычно не нумеруется).

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}, a > 0, a \neq 1$$

Доказательство. $\log_a(1+x) = \frac{\ln(1+x)}{\ln a}$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln e = 1$$

Def. 1.0.8. Четвертый замечательный предел (обычно не нумеруется)

$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha, \alpha \in \mathbb{R}$$

Доказательство. $\alpha = 0$ тривиально. $\alpha \neq 0$. $x_n \to 0, x_n \neq 0, |x_n| < 1 \ \forall n$. Обозначим

$$y_n = (1 + x_n)^{\alpha} - 1 \xrightarrow[n \to \infty]{} 0, y_n \neq 0 \Rightarrow \alpha \ln(1 + x_n) = \ln(1 + y_n)$$

Тогда

$$\frac{(1+x_n)^{\alpha}-1}{x_n} = \frac{y_n}{x_n} = \frac{y_n}{\ln(1+y_n)} \cdot \frac{\alpha \ln(1+x_n)}{x_n} \to \alpha$$

Def. 1.0.9. Пятый замечательный предел (обычно не нумеруется) $\lim_{x\to 0} \frac{a^x-1}{x} = \ln a, a > 0$

 $Доказательство. \ a = 1$ тривиально.

$$a \neq 1$$
. $x_n \rightarrow 0, x_n \neq 0$

$$y_n = a^{x_n} - 1 \to 0, y_n \neq 0, \ln(1 + y_n) = x_n \cdot \ln a$$

$$\frac{a^{x_n} - 1}{x_n} = \frac{y_n}{x_n} = \frac{y_n}{\ln(1 + y_n)} \cdot \frac{x_n \ln a}{x_n} \xrightarrow[n \to \infty]{} \ln a$$

1.1. Сравнение функций

Def. 1.1.1. $f,g:D\to\mathbb{R},D\subset\mathbb{R},x_0$ — предельная точка D u $\exists \varphi:D\to\mathbb{R}:f(x)=\varphi(x)\cdot g(x)$ ε $\dot{V}(x_0)\cap D$.

1. Если $\varphi(x)$ ограничена на $\dot{V}(x_0) \cap D$, то говорят, что f ограничена по сравнению c g при $x \to x_0$

$$f(x) = O(g(x)), x \rightarrow x_0$$

2. Если $\varphi(x) \xrightarrow[x \to x_0]{} 0$, то говорят, что f бесконечно малая по сравнению c g npu $x \to x_0$

$$f(x) = o(g(x)), x \to x_0$$

3. Если $\varphi(x) \xrightarrow[x \to x_0]{} 1$, то говорят, что f и g асимптотически равны.

$$f(x) \sim g(x), x \rightarrow x_0$$

3амечание 1.1.2. 1. $\frac{f(x)}{g(x)}$ ограничена в $\dot{V} \cap D$

- 2. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$