1.1	Introduction
	Representations:
	R or (-0, 0)
	- the set of real numbers
	Ø
	- the empty set
	ae A
	- a is an element of A
	ACB
	- set A is a subset of set B
	* Proper subset
	Relation on X×Y
	- any subset of X x Y
	- Function f and g are equal iff they have the same domain, and same values
	$==f,g:X \rightarrow Y$, and $f(x)=g(x)$ for all $x \in X$
	Real Functions !
	- functions whose domains and ranges are subsets of R
	· · · · · · · · · · · · · · · · · · ·
1.2	Ordered Field Axjoms
	Postulate 1 : Field Axioms
	- There are functions t and \cdot , defined on $R^2 := R \times R$, which satisfy the following properties
	for every $a,b,c \in R$:
	Closure Properties. $a+b$ and $a \cdot b$ belong to R . Associative Properties. $a+(b+c)=(a+b)+c$ and $a \cdot (b \cdot c)=(a \cdot b) \cdot c$.
	Associative Properties. $a + (b + c) = (a + b) + c$ and $a \cdot b = b \cdot a$. Distributive Law. $a \cdot (b + c) = a \cdot b + a \cdot c$.
	Existence of the Additive Identity. There is a unique element $0 \in \mathbf{R}$ such that $0 + a = a$ for all $a \in \mathbf{R}$. Existence of the Multiplicative Identity. There is a unique element $1 \in \mathbf{R}$ such
	that $1 \neq 0$ and $1 \cdot a = a$ for all $a \in \mathbb{R}$. Existence of Additive Inverses. For every $x \in \mathbb{R}$ there is a unique element $-x \in \mathbb{R}$ such that
	x + (-x) = 0. Existence of Multiplicative Inverses. For every $x \in \mathbb{R} \setminus \{0\}$ there is a unique
	element $x^{-1} \in \mathbf{R}$ such that $x \cdot (x^{-1}) = 1$.

Postulate L: Order Axioms
- There is a relation < on RXR that has the following properties:
Trichotomy Property . Given $a, b \in \mathbf{R}$, one and only one of the following statements holds:
a < b, b < a, or $a = b.Transitive Property. For a, b, c \in \mathbb{R},$
$a < b$ and $b < c$ imply $a < c$. The Additive Property. For $a, b, c \in \mathbb{R}$,
$a < b$ and $c \in \mathbf{R}$ imply $a + c < b + c$. The Multiplicative Properties. For $a, b, c \in \mathbf{R}$, Notice of the Multiplicative Properties.
$a < b$ and $c > 0$ imply $ac < bc$ $ = \left\{ -1, 0, 2, \ldots \right\} $
and $a < b$ and $c < 0$ imply $bc < ac$. Rationals $-Q := \left\{ \frac{m}{n} : m, n \in \mathbb{Z} \text{ and } n \neq 0 \right\}$
* NCZCQCR
- We will assume that the sets N and Z satisfy the following properties
i) If $n,m \in \mathbb{Z}$, then $n+m$, $n-m$, and mn belong to \mathbb{Z}
ii) If $n \in \mathbb{Z}$, then $n \in \mathbb{N}$ iff $n \ge 1$
iii) There is no $n \in \mathbb{Z}$ that satisfies $0 < n < 1$
late 1. N satisfies all but three of the properties in Postulate 1: N has no additive
identity (since $0 \notin \mathbf{N}$), \mathbf{N} has no additive inverses (e.g., $-1 \notin \mathbf{N}$), and only one of the nonzero elements of \mathbf{N} (namely, 1) has a multiplicative inverse. \mathbf{Z} satisfies all but one of the properties in Postulate 1: Only two nonzero elements
of Z have multiplicative inverses (namely, 1 and -1). \mathbf{Q}^c satisfies all but four of the properties in Postulate 1: \mathbf{Q}^c does not have an additive identity (since
$0 \notin \mathbb{R} \setminus \mathbb{Q}$), does not have a multiplicative identity (since $1 \notin \mathbb{R} \setminus \mathbb{Q}$), and does not satisfy either closure property. Indeed, since $\sqrt{2}$ is irrational, the sum of
3 ways of proof:
1) mathematical induction
2) direct deduction
3) Contradiction
2 - we assume the hypotheses to be true and proceed step by step to the conclusion.
Each step is justified by a hypothesis, a definition, a postulate, or a mathematical
result that has already been proved.
1084/1 //WI NOWS WITCHUY DEET PROVESS.
3 - 120 Accume the hypothesis to be true the analysis to be 1 - and 11 - for by of a delicitative
3 - We assume the hypothesis to be true, the conclusion to be true, and work step by step deductively
until a contradiction occurs

- Much of analysis deals with estimation in which inequalities and the concept of absolute values play a central role
Definition:
- The absolute value of a number $a \in R$ is the number $ a := \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$
- The following result is useful when solving inequalities involving absolute value signs
Theorem: Fundamental Theorem of Absolute values
- Let $a \in \mathbb{R}$ and $M \ge 0$. Then $ a \le M$ iff $-M \le a \le M$
Theorem:
- The absolute value satisfies the following 3 properties
i) [Positive Definite] For all $\alpha \in \mathbb{R}$, $ \alpha \ge 0$ with $ \alpha = 0$ iff $\alpha = 0$
ii) [Symmetric] For all $a, b \in \mathbb{R}$, $ a-b = b-a $
iii) [Triangle Inequalifies] For all $a,b \in \mathbb{R}$, $ a+b \le a + b $ and $ a - b \le a-b $
- A correct way to estimate using absolute value signs usually involves one of the triangle inequalities
1.8 EXAMPLE. Prove that if $-2 < x < 1$, then $ x^2 - x < 6$.
Proof. By hypothesis, $ x < 2$. Hence by the triangle inequality and Remark 1.5, $ x^2 - x \le x ^2 + x < 4 + 2 = 6.$
Theorem:
- let x,y,a e R
i) $X < y + \varepsilon$ for all $\varepsilon > 0$ iff $x \le y$
ii) X>y-E for all E>0 iff ×≥y
iii) a < & for all &>0 iff a=0
- An interval I is said to be bounded iff it has the form [a,b], (a,b), [a,b), or (a,b] for some
$-\infty < \alpha \le b < \infty$, in which case the numbers a,b will be called the endpoints of l . All
other intervals will be called unbounded. An interval with endpoints a, b is called degenerate
if $a = b$ and nondegenerate if $a < b$, Thus a degenerate open interval is the empty set,
and a degenerate closed interval is a point,