## MRA Project - Milestone 1

Name: G. Umamakeshwari PGPDSBA - April' B21

## Agenda

Objective of this project is to find the underlying buying patterns of the customers of an automobile part manufacturer based on the past 3 years of the Company's transaction data and hence recommend customized marketing strategies for different segments of customers.

## Executive Summary of the data

We have received the 3 years data of automobile parts manufacturing company. It containing 2747 transactions with 20 variables regarding the orders of the product and customer information.

## Contents of the presentation

- Problem Statement.
- About Data
  - Sample data
  - Shape of data
  - Info of data
  - Data Summary
- Exploratory Analysis and Inferences
  - Univariate Analysis Numerical variable
  - Univariate Analysis Categorical Variable
  - Bivariate Analysis
  - Multivariate Analysis
- Customer Segmentation using RFM analysis.
  - Workflow image of KNIME
  - Output table head
- Inferences from RFM Analysis and identified segments
  - Who are your best customers?
  - Which customers are on the verge of churning?
  - Who are your lost customers?
  - Who are your loyal customers?
  - Summary

## Problem statement

An automobile parts manufacturing company has collected data of transactions for 3 years. They do not have any in-house data science team, thus they have hired you as their consultant. Your job is to use your magical data science skills to provide them with suitable insights about their data and their customers.

| Data Dictionary:       | Data Dictionary:                         |                   |                                                   |  |  |  |  |  |  |  |
|------------------------|------------------------------------------|-------------------|---------------------------------------------------|--|--|--|--|--|--|--|
| ORDERNUMBER :          | Order Number                             | PRODUCTCODE:      | Code of Product                                   |  |  |  |  |  |  |  |
| QUANTITYORDERED :      | Quantity ordered                         | CUSTOMERNAME :    | customer                                          |  |  |  |  |  |  |  |
| PRICEEACH:             | Price of Each item                       | PHONE:            | Phone of the customer                             |  |  |  |  |  |  |  |
| ORDERLINENUMBER :      | order line                               | ADDRESSLINE1:     | Address of customer                               |  |  |  |  |  |  |  |
| SALES:                 | Sales amount                             | CITY:             | City of customer                                  |  |  |  |  |  |  |  |
| ORDERDATE :            | Order Date                               | POSTALCODE:       | Postal Code of customer                           |  |  |  |  |  |  |  |
| DAYS_SINCE_LASTORDER : | Days_Since_Lastorder                     | COUNTRY:          | Country customer                                  |  |  |  |  |  |  |  |
| STATUS :               | Status of order like Shipped or not      | CONTACTLASTNAME : | Contact person customer                           |  |  |  |  |  |  |  |
| PRODUCTLINE :          | Product line – CATEGORY                  | CONTACTFIRSTNAME: | Contact person customer                           |  |  |  |  |  |  |  |
| MSRP:                  | Manufacturer's Suggested<br>Retail Price | DEALSIZE :        | Size of the deal based on Quantity and Item Price |  |  |  |  |  |  |  |

## • About Data (Info, Shape, Summary Stats, your assumptions about data)

## Sample data

|   | ORDERNUMBER | QUANTITYORDERED | PRICEEACH | ORDERLINENUMBER | SALES   | ORDERDATE  | DAYS_SINCE_LASTORDER | STATUS  | PRODUCTLINE | MSRP |
|---|-------------|-----------------|-----------|-----------------|---------|------------|----------------------|---------|-------------|------|
| 0 | 10107       | 30              | 95.70     | 2               | 2871.00 | 2018-02-24 | 828                  | Shipped | Motorcycles | 95   |
| 1 | 10121       | 34              | 81.35     | 5               | 2765.90 | 2018-05-07 | 757                  | Shipped | Motorcycles | 95   |
| 2 | 10134       | 41              | 94.74     | 2               | 3884.34 | 2018-07-01 | 703                  | Shipped | Motorcycles | 95   |
| 3 | 10145       | 45              | 83.26     | 6               | 3746.70 | 2018-08-25 | 649                  | Shipped | Motorcycles | 95   |
| 4 | 10168       | 36              | 96.66     | 1               | 3479.76 | 2018-10-28 | 586                  | Shipped | Motorcycles | 95   |

## Shape of data

There are 20 variables available regarding the orders of the product and customer information with 2747 records.

#### Info of data

The data has 1 datetime, 2 float, 5 int, and 12 Object data types variables. There is no missing values present in the data set.

```
RangeIndex: 2747 entries, 0 to 2746
Data columns (total 20 columns):
                          Non-Null Count Dtype
     Column
     ORDERNUMBER
                          2747 non-null
                                          int64
     OUANTITYORDERED
                          2747 non-null
                                          int64
    PRICEEACH
                          2747 non-null
                                          float64
    ORDERLINENUMBER
                          2747 non-null
                                          int64
     SALES
                          2747 non-null
                                          float64
                                          datetime64[ns]
   ORDERDATE
                          2747 non-null
    DAYS SINCE LASTORDER 2747 non-null
                                          int64
                                          object
    STATUS
                          2747 non-null
                          2747 non-null
                                          object
     PRODUCTLINE
    MSRP
                          2747 non-null
                                          int64
 10 PRODUCTCODE
                          2747 non-null
                                          object
                          2747 non-null
                                          object
 11 CUSTOMERNAME
                          2747 non-null
                                          object
 12 PHONE
 13 ADDRESSLINE1
                          2747 non-null
                                          object
 14 CITY
                          2747 non-null
                                          object
                                          object
 15 POSTALCODE
                          2747 non-null
 16 COUNTRY
                          2747 non-null
                                          object
                          2747 non-null
                                          object
 17 CONTACTLASTNAME
                                          object
 18 CONTACTFIRSTNAME
                          2747 non-null
                                          object
 19 DEALSIZE
                          2747 non-null
dtypes: datetime64[ns](1), float64(2), int64(5), object(12)
memory usage: 429.3+ KB
```

#### **Data Summary**

|       | QUANTITYORDERED | PRICEEACH   | SALES        | DAYS_SINCE_LASTORDER | MSRP        |
|-------|-----------------|-------------|--------------|----------------------|-------------|
| count | 2747.000000     | 2747.000000 | 2747.000000  | 2747.000000          | 2747.000000 |
| mean  | 35.103021       | 101.098951  | 3553.047583  | 1757.085912          | 100.691664  |
| std   | 9.762135        | 42.042548   | 1838.953901  | 819.280576           | 40.114802   |
| min   | 6.000000        | 26.880000   | 482.130000   | 42.000000            | 33.000000   |
| 25%   | 27.000000       | 68.745000   | 2204.350000  | 1077.000000          | 68.000000   |
| 50%   | 35.000000       | 95.550000   | 3184.800000  | 1761.000000          | 99.000000   |
| 75%   | 43.000000       | 127.100000  | 4503.095000  | 2436.500000          | 124.000000  |
| max   | 97.000000       | 252.870000  | 14082.800000 | 3562.000000          | 214.000000  |

- The data has 1 datetime, 2 float, 5 int, and 12 Object data types variables. There is no
  missing values present in the data set. Here 2747 records available without any missing
  values with 20 variables.
- The company is into automobile part manufacture, and they have different product line like
   Classic car, Motorcycle, plane, train, ship, Bus truck, vintage cars etc
- Here 5 numerical variables are described with count, mean, std, min, max and percentile details. Other variables are categorical or numerical but not include for describe function.
- The data maintained each transactions entry as order number and for each order number maintained all required information like customer identity details, and product details like price, quantity, product code, and sales for each customer.
- We noticed that one order number has many different entries with different product codes.

## **Exploratory Analysis and Inferences**

- Univariate, Bivariate, and multivariate analysis using data visualization
  - Weekly, Monthly, Quarterly, Yearly Trends in Sales
  - > Sales Across different Categories of different features in the given data

## **Univariate Analysis – Numerical variable**





Quantity, Price and Sales have outliers in dataset. All fields are have different data pattern waves.

## **Univariate Analysis – Categorical Variable**



## Inference:

 As per the plot 'Shipped' status have high records and related to product 'Classic cars' after that 'Vintage cars' have high.



As per the plot 'USA' country have high records and related to Deal size 'Medium' have high.

## **Bivariate Analysis**





- As per the plot all variables are
- Quantity, Price and Sales have outliers in dataset. All fields are have different data pattern waves.
- As per scatter plot all variables are in fully scatter related to each other variables

## **Multivariate Analysis**

|                      | ORDERNUMBER | QUANTITYORDERED | PRICEEACH | ORDERLINENUMBER | SALES     | DAYS_SINCE_LASTORDER | MSRP      |
|----------------------|-------------|-----------------|-----------|-----------------|-----------|----------------------|-----------|
| ORDERNUMBER          | 1.000000    | 0.067110        | -0.003369 | -0.054300       | 0.037289  | -0.251476            | -0.013910 |
| QUANTITYORDERED      | 0.067110    | 1.000000        | 0.010161  | -0.016295       | 0.553359  | -0.021923            | 0.020551  |
| PRICEEACH            | -0.003369   | 0.010161        | 1.000000  | -0.052646       | 0.808287  | -0.397092            | 0.778393  |
| ORDERLINENUMBER      | -0.054300   | -0.016295       | -0.052646 | 1.000000        | -0.057414 | 0.046615             | -0.020956 |
| SALES                | 0.037289    | 0.553359        | 0.808287  | -0.057414       | 1.000000  | -0.334274            | 0.634849  |
| DAYS_SINCE_LASTORDER | -0.251476   | -0.021923       | -0.397092 | 0.046615        | -0.334274 | 1.000000             | -0.524285 |
| MSRP                 | -0.013910   | 0.020551        | 0.778393  | -0.020956       | 0.634849  | -0.524285            | 1.000000  |

#### Inference:

As per the heat map, multi collinearity present between 3 variables in the dataset. High correlation between Price each and sales, price each and MSRP, Sales and MSRP, Quantity ordered and sales.



## Time series & Trends in Sales

Weekly, Monthly, Quarterly, Yearly Trends in Sales



#### Inference:

As per Yearly order date Vs Sales, we only have 3 years data. Here 2018 to 2019 sales has increase but 2019 to 2020 sales has decreased.



As per monthly order date Vs Sales, we can see there is a small increasing trend with 2 seasonality patterns from April to next year April.



As per quarterly order date Vs Sales, we can see there is a small increasing trend with 2 seasonality patterns from Q1 to next Q1.

 Sales Across different Categories of different features in the given data



#### Inference:

USA have more sales value compared with other countries. Related to deal size, medium size deals have high sales value with highest ordered quantity.



Shipped status order sales are high in all type of deal size. In this Shipped status in medium size deals have more sales value compared with large and small size of deals.

## **Customer Segmentation using RFM analysis**

## Which tool used?

I have used KNIME Tool for RFM analysis

## What all parameters used and assumptions made?

- I have assumed "01-06-2020" as Max(order date) to find the Recency.
   Recency days= [Max(order date) order date)] and take a minimum of Recency days for each customer as Recency.
- I have found that same customer have multiple order with multiple products. I
  have calculated the Frequency based on unique customer name with no.of
  unique order numbers for each customer.
- 3. Sales column is already available for each products based on orders. I have calculated **Monetary** by **sum of sales for each customers**.

Then created four different bin for each Recency, Frequency & Monetary using percentile range(0, 0.25, 0.50, 0.75, 100). Based on above 4 bin assumption I have considered 4 segments.

## Workflow image of KNIME



## Output table head

| File Edit Hilite Navigation View |                                                                        |                |                   |                   |            |             |           |               |  |  |
|----------------------------------|------------------------------------------------------------------------|----------------|-------------------|-------------------|------------|-------------|-----------|---------------|--|--|
| Table "defa                      | Table "default" - Rows: 89 Spec - Columns: 8 Properties Flow Variables |                |                   |                   |            |             |           |               |  |  |
| Row ID                           | S CUSTOMERNAME                                                         | ORDERFREQUENCY | L RECENTORDERDAYS | D TOTALORDERVALUE | S MONETARY | S FREQUENCY | S RECENCY | S Concatenate |  |  |
| Row0                             | AV Stores, Co.                                                         | 3              | 197               | 157,807.81        | 1          | 1           | 2         | 112           |  |  |
| Row1                             | Alpha Cognac                                                           | 3              | 65                | 70,488.44         | 1          | 1           | 3         | 113           |  |  |
| Row2                             | Amica Models & Co.                                                     | 2              | 266               | 94,117.26         | 1          | 1           | 2         | 112           |  |  |
| Row3                             | Anna's Decorations, Ltd                                                | 4              | 84                | 153,996.13        | 1          | 1           | 3         | 113           |  |  |
| Row4                             | Atelier graphique                                                      | 3              | 189               | 24,179.96         | 1          | 1           | 2         | 112           |  |  |
| Row5                             | Australian Collectables, Ltd                                           | 3              | 23                | 64,591.46         | 1          | 1           | 3         | 113           |  |  |
| Row6                             | Australian Collectors, Co.                                             | 5              | 185               | 200,995.41        | 2          | 1           | 2         | 212           |  |  |
| Row7                             | Australian Gift Network, Co                                            | 3              | 120               | 59,469.12         | 1          | 1           | 3         | 113           |  |  |
| Row8                             | Auto Assoc. & Cie.                                                     | 2              | 234               | 64,834.32         | 1          | 1           | 2         | 112           |  |  |
| Row9                             | Auto Canal Petit                                                       | 3              | 55                | 93,170.66         | 1          | 1           | 3         | 113           |  |  |
| Row 10                           | Auto-Moto Classics Inc.                                                | 3              | 181               | 26,479.26         | 1          | 1           | 2         | 112           |  |  |

# Inferences from RFM Analysis and identified segments

## Who are your best customers?

| CUTOMER NAME                 | ORDER FREQUENCY | RECENT ORDER DAYS | TOTAL ORDER VALUE | RECENCY | FREQUENCY | MONETARY | CONCATENATE |
|------------------------------|-----------------|-------------------|-------------------|---------|-----------|----------|-------------|
| Danish Wholesale Imports     | 5               | 47                | 145041.6          | 4       | 4         | 4        | 444         |
| Diecast Classics Inc.        | 4               | 2                 | 122138.14         | 4       | 4         | 4        | 444         |
| Euro Shopping Channel        | 26              | 1                 | 912294.11         | 4       | 4         | 4        | 444         |
| La Rochelle Gifts            | 4               | 1                 | 180124.9          | 4       | 4         | 4        | 444         |
| Mini Gifts Distributors Ltd. | 17              | 3                 | 654858.06         | 4       | 4         | 4        | 444         |

On basis on Recency, frequency & monetary I have grouped best customers. In according to RFM model the most importance is given to Recency. So, that I have kept it as first parameter for selecting best customers and then frequency order after that Monetary order.

For instance, Customer name - Danish Wholesale Imports, have recently made a purchase and have high frequency with a high monetary.

#### Best customers are,

- 1. Danish Wholesale Imports
- 2. Diecast Classics Inc.
- 3. Euro Shopping Channel
- 4. La Rochelle Gifts
- Mini Gifts Distributors Ltd.

## Which customers are on the verge of churning?

| CUTOMER NAME           | ORDER FREQUENCY | RECENT ORDER DAYS | TOTAL ORDER VALUE | RECENCY | FREQUENCY | MONETARY | CONCATENATE |
|------------------------|-----------------|-------------------|-------------------|---------|-----------|----------|-------------|
| Saveley & Henriot, Co. | 3               | 457               | 142874.25         | 1       | 2         | 4        | 124         |
| Herkku Gifts           | 3               | 272               | 111640.28         | 1       | 2         | 3        | 123         |
| Amica Models & Co.     | 2               | 266               | 94117.26          | 1       | 1         | 3        | 113         |
| Marta's Replicas Co.   | 2               | 232               | 103080.38         | 1       | 1         | 3        | 113         |
| Vida Sport, Ltd        | 2               | 276               | 117713.56         | 1       | 1         | 3        | 113         |

On basis on Recency, frequency & monetary I have grouped customers who are on verge of churning. In according to RFM model the most importance is given to Recency. So, that I have kept it as first parameter and then frequency order after that Monetary order.

In this case customer on verge of churning is customer's have high recency days(Low recency) but high in Frequency and Monetary. We should definitely focus on this group before we lose them and try to convert them into regular customers by giving some offers.

For instance, Customer name - Saveley & Henriot, Co., have high frequency with a high monetary but recency is low.

Customers on verge of churning are,

- 1. Saveley & Henriot, Co.
- 2. Herkku Gifts
- 3. Amica Models & Co.
- 4. Marta's Replicas Co.
- 5. Vida Sport, Ltd

## Who are your lost customers?

| CUTOMER NAME                       | ORDER FREQUENCY | RECENT ORDER DAYS | TOTAL ORDER VALUE | RECENCY | FREQUENCY | MONETARY | CONCATENATE |
|------------------------------------|-----------------|-------------------|-------------------|---------|-----------|----------|-------------|
| Auto Assoc. & Cie.                 | 2               | 234               | 64834.32          | 1       | 1         | 1        | 111         |
| Bavarian Collectables Imports, Co. | 1               | 260               | 34993.92          | 1       | 1         | 1        | 111         |
| CAF Imports                        | 2               | 440               | 49642.05          | 1       | 1         | 1        | 111         |
| Cambridge Collectables Co.         | 2               | 390               | 36163.62          | 1       | 1         | 1        | 111         |
| Clover Collections, Co.            | 2               | 259               | 57756.43          | 1       | 1         | 1        | 111         |

On basis on Recency, frequency & monetary I have grouped Lost customers. In according to RFM model the most importance is given to Recency. So, that I have kept it as first parameter and then frequency order after that Monetary order in low to high order.

In this case customer have low Recency, low Frequency and low Monetary. We can collect a reviews and comments based on recent orders and make a best possible offers to them to bring them back as our customers.

For instance, Customer name - Auto Assoc. & Cie., have low Recency, Frequency and Low Monetary.

Lost customers are,

- 1. Auto Assoc. & Cie.
- 2. Bavarian Collectables Imports, Co.
- 3. CAF Imports
- 4. Cambridge Collectables Co.
- Clover Collections, Co.

## Who are your loyal customers?

| CUTOMER NAME             | ORDER FREQUENCY | RECENT ORDER DAYS | TOTAL ORDER VALUE | RECENCY | FREQUENCY | MONETARY | CONCATENATE |
|--------------------------|-----------------|-------------------|-------------------|---------|-----------|----------|-------------|
| Danish Wholesale Imports | 5               | 47                | 145041.6          | 4       | 4         | 4        | 444         |
| Diecast Classics Inc.    | 4               | 2                 | 122138.14         | 4       | 4         | 4        | 444         |
| Euro Shopping Channel    | 26              | 1                 | 912294.11         | 4       | 4         | 4        | 444         |
| Handji Gifts& Co         | 4               | 39                | 115498.73         | 4       | 4         | 3        | 443         |
| La Rochelle Gifts        | 4               | 1                 | 180124.9          | 4       | 4         | 4        | 444         |

On basis on Recency, frequency & monetary I have grouped loyal customers. In according to RFM model the most importance is given to Frequency to find loyal customer. So, that I have kept it as first parameter and then Recency order. But, Monetary is not so much important to know the loyal customer.

In this case customer have high Frequency and then high Recency and not consider Monetary. We can give some offers to these customer to get high Monetary value.

For instance, Customer name - Danish Wholesale Imports., have high frequency with a high Recency.

Customers on verge of churning are,

- 1. Danish Wholesale Imports
- 2. Diecast Classics Inc.
- 3. Euro Shopping Channel
- 4. Handji Gifts& Co
- La Rochelle Gifts

## Summary

- Recency, Frequency and Monetary are the parameters mostly used for Marketing Retail Analysis.
- Using Recency, frequency & monetary parameters we have grouped our Best, Loyal, on the verge of churning and Lost customers. Customers with good RFM(High Recency, Frequency, Monetary) are the Best customers and customers who have low RFM are Lost customer in the list.
- Customer on verge of churning is customer's have high recency days(Low recency) but high in Frequency and Monetary. We should definitely focus on this group before we lose them and try to convert them into regular customers by giving some offers.
- For lost customer, they have low Recency, low Frequency and low Monetary. We can collect a reviews and comments based on recent orders and make a best possible offers to them to bring them back as our customers.
- Loyal customers high Frequency and then high Recency without Monetary consideration. We can give some offers to these customer to get high Monetary value.