Tópicos de Álgebra Linear e Geometria Analítica

Gaspar J. Machado, Irene Brito, Sofia Lopes

Departamento de Matemática, Universidade do Minho

setembro de 2020 — v5.0

0 - Algumas notações e revisões

- O Algumas notações e revisões
- 1 Matrizes
- 2 Determinantes
- 3 Sistemas de Equações Lineares
- 4 Espaços Vetoriais
- 5 Transformações Lineares de \mathbb{R}^n em \mathbb{R}^m
- 6 Valores e Vetores Próprios
- 7 Geometria Analítica

Índice

- O Algumas notações e revisões
- 1 Matrizes
- 2 Determinantes
- 3 Sistemas de Equações Lineares
- 4 Espaços Vetoriais
- 5 Transformações Lineares de \mathbb{R}^n em \mathbb{R}^m
- 6 Valores e Vetores Próprios
- 7 Geometria Analítica

0 – Algumas notações e revisões

17.

setembro de 2020 — v5.0

Def 0...

- (a) [proposição] Uma proposição é uma frase à qual está associado um valor lógico bem definido.
- (b) [valor lógico, verdade, falsidade] Há dois valores lógicos: verdade, que se representa por V (ou 1), e falsidade, que se representa por F (ou 0).
- (c) [proposição verdadeira] Uma proposição cujo valor lógico é verdade diz-se verdadeira.
- (d) [proposição falsa] Uma proposição cujo valor lógico é falsidade diz-se falsa.

Def 0.2

[proposição atómica, proposição composta, conetivo] Diz-se que uma proposição é atómica se nenhuma componente da proposição é ela própria uma proposição. Caso contrário, a proposição diz-se composta, chamando-se conetivos às partículas de ligação das diferentes componentes.

GJM, IB, SL (DMat, UM)

TALGA setembro de 2020 — v5.0 1

GJM, IB, SL (DMat, UM)

TALGA

Obs 0.3

Resumo dos conetivos:

(a) conetivos

conetivo	Português	simbologia
negação	não <i>P</i>	$\neg P$
conjunção	<i>P</i> e <i>Q</i>	$P \wedge Q$
disjunção	P ou Q	$P \vee Q$
disjunção exclusiva	ou P ou Q	$P \oplus Q$
implicação material	se P então Q	$P \rightarrow Q$
equivalência material	P se e só se Q	$P \leftrightarrow Q$

(b) tabelas de verdade

							$P \rightarrow Q$	
							V	
V	F	V	F	F	V	V	F	F
F	V	F	V	F	V	V	V	F
		F	F	F	F	F	V	V

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

0 – Algumas notações e revisões

Lógica

Det 0.5

[quantificador universal] O quantificador universal é representado pelo símbolo \forall . A expressão " $\forall x$ " é interpretada como "para todo o x" ou "qualquer que seja o x".

Obs 0.6

Sejam o predicado P e o conjunto U.

- (a) $\forall x \in U[P(x)]$ é uma proposição e lê-se, "para todo o $x \in U$, x tem o predicado P". A proposição é verdadeira se P(x) é uma proposição verdadeira para todos os elementos $x \in U$.
- (b) Se $U = \{a_1, ..., a_n\}$, tem-se:

$$\forall x \in U[P(x)] \equiv P(a_1) \wedge \ldots \wedge P(a_n).$$

Def 0 4

[equivalência lógica] Sejam P e Q proposições. Dizemos que P e Q são logicamente equivalentes, o que se representa por $P \equiv Q$, se as duas proposições têm o mesmo valor lógico independentemente do valor lógico das proposições atómicas que as compõem.

GJM, IB, SL (DMat, UM)

TALGA

tembro de 2020 — v5.0

0 – Algumas notações e revisões

Lógi

Def 0.7

[quantificador existencial] O quantificador existencial é representado pelo símbolo \exists . A expressão " $\exists x$ " é interpretada como "existe pelo menos um x" ou "para algum x".

Obs 0.8

Sejam o predicado P e o conjunto U.

- (a) $\exists x \in U[P(x)]$ é uma proposição e lê-se, "existe pelo menos um $x \in U$, x tem o predicado P". A proposição é verdadeira se P(x) é uma proposição verdadeira para pelo menos um elemento $x \in U$.
- (b) Se $U = \{a_1, ..., a_n\}$, tem-se:

$$\exists x \in U [P(x)] \equiv P(a_1) \vee \ldots \vee P(a_n).$$

Obs 0.9

No caso de funções proposicionais com duas variáveis, isto é, que relacionam o predicado em questão com dois objetos ou indivíduos (com universos de discurso diferentes ou iguais), tem-se:

- (a) caso universal/universal: $\forall x \in U, \forall y \in V [P(x,y)]$ é uma proposição verdadeira se P(x,y) é uma proposição verdadeira para todo o $x \in U$ e todo o $y \in V$.
- (b) caso universal/existencial: $\forall x \in U, \exists y \in V[P(x,y)]$ é uma proposição verdadeira se para todo o $x \in U$, existe $y \in V$ tal que P(x,y) é uma proposição verdadeira.
- (c) caso existencial/existencial: $\exists x \in U, \exists y \in V \ [P(x,y)]$ é uma proposição verdadeira se existe $x \in U$ e existe $y \in V$ tal que P(x,y) é uma proposição verdadeira.
- (d) caso existencial/universal: $\exists x \in U, \forall y \in V[P(x,y)]$ é uma proposição verdadeira se existe $x \in U$ tal que para todo o $y \in V$, P(x,y) é uma proposição verdadeira.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5

ILUA

0 – Algumas notações e revisões

Somatórios e produtório

Obs 0.11

(a) Notação de somatório: sendo $n_{\rm inicial}, n_{\rm final} \in \mathbb{Z}$, tal que $n_{\rm inicial} \leqslant n_{\rm final}$, tem-se que

$$\sum_{i=n_{\mathsf{inicial}}}^{n_{\mathsf{final}}} f(i) = f(n_{\mathsf{inicial}}) + f(n_{\mathsf{inicial}} + 1) + \dots + f(n_{\mathsf{final}} - 1) + f(n_{\mathsf{final}})$$

(b)

$$\sum_{i=-1}^{2} 2i = \underbrace{2 \times (-1)}_{i=-1} + \underbrace{2 \times 0}_{i=0} + \underbrace{2 \times 1}_{i=1} + \underbrace{2 \times 2}_{i=2} = 4.$$

Teo 0.10

As seguintes equivalências são verdadeiras em Lógica de Predicados:

- (a) $\neg (\forall x \in U[P(x)]) \equiv \exists x \in U[\neg P(x)].$
- (b) $\neg(\exists x \in U[P(x)]) \equiv \forall x \in U[\neg P(x)].$
- (c) $\neg (\forall x \in U, \forall y \in V [P(x, y)]) \equiv \exists x \in U, \exists y \in V [\neg P(x, y)].$
- (d) $\neg(\exists x \in U, \exists y \in V [P(x, y)]) \equiv \forall x \in U, \forall y \in V [\neg P(x, y)].$
- (e) $\neg (\exists x \in U, \forall y \in V [P(x, y)]) \equiv \forall x \in U, \exists y \in V [\neg P(x, y)].$
- (f) $\neg (\forall x \in U, \exists y \in V [P(x, y)]) \equiv \exists x \in U, \forall y \in V [\neg P(x, y)].$

0 – Algumas notações e revisõ

Somatórios e produtórios

Obs 0.12

(a) Notação de produtório: sendo $n_{\text{inicial}}, n_{\text{final}} \in \mathbb{Z}$, tal que $n_{\text{inicial}} \leqslant n_{\text{final}}$, tem-se que

$$\prod_{i=n_{\mathsf{inicial}}}^{n_{\mathsf{final}}} f(i) = f(n_{\mathsf{inicial}}) \times f(n_{\mathsf{inicial}} + 1) \times \dots \times f(n_{\mathsf{final}} - 1) \times f(n_{\mathsf{final}})$$

(b)

$$\prod_{i=2}^{4} \frac{1}{i} = \underbrace{\frac{1}{2}}_{i=2} \times \underbrace{\frac{1}{3}}_{i=3} \times \underbrace{\frac{1}{4}}_{i=4} = \frac{1}{24}.$$

[objeto pertencer a um conjunto] Se um objeto x é membro de um conjunto A, dizemos que x pertence a A, e escrevemos $x \in A$. Caso contrário, dizemos que x não pertence a A e escrevemos $x \notin A$.

[conjunto dado em extensão] Se os elementos do conjunto A são os objetos x_1, \ldots, x_n , então A pode ser denotado por $\{x_1, \ldots, x_n\}$ (note-se que a ordem dos membros é irrelevante). Neste caso, diz-se que A é dado em extensão. Diz-se, ainda, que A tem n elementos e escreve-se #A = n.

[conjunto finito] Seja A um conjunto. A diz-se um conjunto finito se existe $n \in \mathbb{N}_0$ tal que #A = n.

GJM, IB, SL (DMat, UM)

 $\llbracket \text{subconjunto} \rrbracket$ Sejam A e B conjuntos. Diz-se que A é um subconjunto de B ou que A está contido em B, e escreve-se $A \subseteq B$, se para todo $x \in A$, $x \in B$. Caso contrário (existe $x \in A$ tal que $x \in A$ e $x \notin B$) se escreve-se $A \subseteq B$.

[subconjunto próprio] Sejam A e B conjuntos. Diz-se que A é um subconjunto próprio de B ou que A está estritamente contido em B, e escreve-se $A \subseteq B$, se $A \subseteq B$ e $A \ne B$. Caso contrário, escreve-se $A \not\subseteq B$.

GJM, IB, SL (DMat, UM)

Algumas notações e revisões

Teoria de Conjunt

Obs 0.18

Recorde:

IN: números naturais (números inteiros positivos).

 IN_0 : números inteiros não-negativos.

7: números inteiros.

O: números racionais.

II: números irracionais.

 $IR = \mathbb{Q} \cup II$: números reais.

C: números complexos.

Algumas notações e revisões

Teoria de Conju

Def 0.19

[conjunto vazio]

- (a) $\{x : x \neq x\}$ é um conjunto, que se diz o conjunto vazio (porque não tem elementos), e se denota por \emptyset ou $\{\}$.
- (b) O conjunto vazio tem zero elementos, escrevendo-se $\#\emptyset = 0$.

 $\llbracket uni\~ao de dois conjuntos
bracket$ Sejam A e B conjuntos. Chama-se uni $\~ao de A$ e B, e designa-se por $A \cup B$, ao conjunto

$$A \cup B \stackrel{\mathsf{def}}{=} \{x : x \in A \lor x \in B\}.$$

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

Def 0.21

(a) [[interseção de dois conjuntos]] Sejam $A \in B$ conjuntos. Chama-se interseção de $A \in B$, e designa-se por $A \cap B$, ao conjunto formado pelos elementos que pertencem a $A \in B$, ou seja,

$$A \cap B \stackrel{\mathsf{def}}{=} \{x : x \in A \land x \in B\}.$$

(b) [conjuntos disjuntos] Dois conjuntos dizem-se disjuntos ou mutuamente exclusivos se a sua interseção é o conjunto vazio.

Def 0.22

[diferença de dois conjuntos] Sejam A e B conjuntos. Chama-se diferença entre A e B ou complemento relativo de A em B, que se representa por A-B e que também se pode ler "A menos B", ao conjunto formado pelos elementos que pertencem a A e não pertencem a B, ou seja,

$$A - B \stackrel{\mathsf{def}}{=} \{ x : x \in A \land x \notin B \} .$$

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v

15

T : 1 C :

[produto cartesiano de dois conjuntos] Sejam A e B conjuntos. Chama-se produto cartesiano de A e B, que se representa por $A \times B$, ao conjunto formado pelos pares ordenados tais que a primeira componente é um elemento de A e a segunda componente é um elemento de B, ou seja,

$$A \times B \stackrel{\text{def}}{=} \{(a, b) : a \in A \land b \in B\}.$$

Def 0.27

[produto cartesiano de n conjuntos] Sejam $n \in \mathbb{N}$ e A_1, \ldots, A_n conjuntos. Chama-se produto cartesiano de A_1, \ldots, A_n , que se representa por $A_1 \times \cdots \times A_n$, ao conjunto formado pelos n-úplos tais que a i-ésima componente é um elemento de A_i , ou seja,

$$A_1 \times \cdots \times A_n \stackrel{\mathsf{def}}{=} \{(a_1, \ldots, a_n) : \forall i \in \{1, \ldots, n\} [a_i \in A_i]\}.$$

Obs 0.23

Os elementos de um conjunto não têm ordem $(e.g., \{a,b\} = \{b,a\})$, mas muitas vezes é importante ter uma estrutura que seja uma coleção ordenada de objetos. Quando se tem dois objetos, surge a noção de "par ordenado".

Def 0.24

[par ordenado] Um par ordenado é um par de objetos cuja ordem de ocorrência desses objetos é relevante. Representa-se por (a,b) o par ordenado cuja primeira componente é o objeto a e cuja segunda componente é o objeto b.

Def 0.25

[n-úplo] Seja $n \in \mathbb{N}$ tal que $n \ge 2$. Chama-se n-úplo a uma sequência ordenada de n objetos que se representa por

$$(a_1,\ldots,a_i,\ldots,a_n),$$

dizendo-se que a_i é a sua *i*-ésima componente, i = 1, ..., n.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

0 – Algumas notações e revisões

Def 0.28

[potência cartesiana de um conjunto] Sejam A um conjunto e $n \in \mathbb{N}$. Chama-se potência cartesiana de ordem n de A, que se representa por A^n , ao conjunto formado pelos n-úplos tais que todas as componentes são elementos de A, ou seja,

$$A^n \stackrel{\text{def}}{=} \{(a_1, \dots, a_n) : \forall i \in \{1, \dots, n\} [a_i \in A]\},\$$

identificando-se A^1 com A.

Obs 0.29

$$\mathbb{R}^2 = \{(x_1, x_2) : x_1, x_2 \in \mathbb{R}\}.$$

$$\mathbb{R}^3 = \{(a, b, c) : a, b, c \in \mathbb{R}\}.$$

$$\mathbb{R}^4 = \{(\alpha, \beta, \gamma, \delta) : \alpha, \beta, \gamma, \delta \in \mathbb{R}\}.$$

. .

Def 0.30

[função] Uma função de A em B é uma correspondência de A para B que a cada elemento de A faz corresponder um único elemento de B.

Def 0.31

[imagem de um objeto através de uma função] Sejam f uma função de A em B e $x \in A$. A imagem de x por f ou o valor de f em x é o único elemento $y \in B$ tal que $(x,y) \in f$, que se denota por y = f(x).

Obs 0.32

Usa-se a seguinte notação para representar uma função f de A em B:

$$f: A \longrightarrow B$$

 $a \longmapsto f(a)$

0

GJM, IB, SL (DMat, UM)

ómicron

GJM, IB, SL (DMat, UM)

0 – Algumas notações e revisões

Obs 0.34

TALGA

setembro de 2020 — v5.0

setembro de 2020 — v5.0

Alfabeto Grego

OD3 0.3-1			
minúscula	maiúscula	nome	equivalente latino
α	Α	alfa	a
β	В	beta	b
γ	Γ	gama	g
δ	Δ	delta	d
arepsilon	Ε	épsilon	е
ζ	Z	zeta	Z
η	Н	eta	e,h
heta	Θ	teta	t
ι	1	iota	i
κ	K	сара	k
λ	Λ	lambda	I
μ	Μ	miu	m
ν	Ν	niu	n
ξ	Ξ	csi	CS

TALGA

Obs 0.33

0 – Algumas notações e revisões

Usa-se o símbolo :=: para representar notações alternativas para a mesma definição.

GJM, IB, SL (DMat, UM)

TALGA setembro de 2020 — v5.0 20

Obs 0.34 (cont.)						
minúscula	maiúscula	nome	equivalente latino			
π	П	pi	р			
ho	Р	ró	r			
σ	Σ	sigma	S			
au	T	tau	t			
v	Υ	ípsilon	u,y			
$arphi,\phi$	Ф	fi	f			
χ	X	qui	C,X			
ψ	Ψ	psi	ps			
ω	Ω	ómega	W			

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM) TALGA

- O Algumas notações e revisões
- 1 Matrizes
- 2 Determinantes
- 3 Sistemas de Equações Lineares
- 4 Espaços Vetoriais
- 5 Transformações Lineares de \mathbb{R}^n em \mathbb{R}^m
- 6 Valores e Vetores Próprios
- 7 Geometria Analítica

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.

23

N. C. 1. 7. . . 1. 1. 1. 1. 1.

Obs 1.3

- (a) Uma definição alternativa de matriz (mais formal): Sejam $m,n\in\mathbb{N}$. Chama-se matriz do tipo $m\times n$ a uma função real com domínio $\{1,\ldots,m\}\times\{1,\ldots,n\}$.
- (b) É possível considerar matrizes cujos elementos do conjunto de chegada não são números reais (por exemplo números complexos e polinómios). Neste curso, porém, considera-se apenas matrizes cujos elementos do conjunto de chegada são números reais.

Def 1.1

- (a) [matriz, tipo de uma matriz] Sejam $m, n \in \mathbb{N}$. Chama-se matriz do tipo $m \times n$ (lê-se "m por n") a uma tabela composta por m linhas e n colunas cujos elementos são números reais (neste curso utilizam-se parêntesis retos para delimitar a tabela).
- (b) $[\![\mathcal{M}_{m\times n}(\mathbb{R})]\!]$ Representa-se por $\mathcal{M}_{m\times n}(\mathbb{R})$ o conjunto das matrizes do tipo $m\times n$.

Exe 1.2

- (a) Dê um exemplo de uma matriz do tipo 1×4 .
- (b) Indique um elemento do conjunto $\mathcal{M}_{2\times 3}(\mathbb{R})$.

Res

- (a) A = [1 -1 0 0].
- (b) $B = \begin{bmatrix} 1 & \frac{1}{3} & -4 \\ \sqrt{2} & 0 & \pi \end{bmatrix}$.

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

l – Matrizes Definições inicia

Def 1.4

[elemento de uma matriz] Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R})$, $i \in \{1, \ldots, m\}$ e $j \in \{1, \ldots, n\}$. Chama-se elemento ij da matriz A, que se representa por $(A)_{ij}$ (ou por $(A)_{i,j}$ se houver ambiguidade relativamente aos índices), ao elemento que está na linha i e na coluna j da matriz.

Exe 1.5

Indique o elemento 23 da matriz $B = \begin{bmatrix} 1 & -8 & -4 & 1 \\ 5 & 0 & -3 & 2 \\ 6 & 0 & -2 & 3 \end{bmatrix}$.

Res

 $(B)_{23}=-3.$

Obs 1.6

No exercício anterior onde está "elemento 23" deve-se ler "elemento dois três" e não "elemento vinte e três".

(a) Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R})$, $i \in \{1, ..., m\}$ e $j \in \{1, ..., n\}$. Se se quiser representar por ξ_{ij} o elemento ij da matriz A, usa-se a notação

$$A = [\xi_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R}).$$

(b) É habitual representar matrizes por letras maiúsculas. Neste caso, para representar o elemento *ij* duma matriz é também habitual usar a respetiva letra minúscula afetada do índice *ij*, ou seja,

$$A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R}).$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

27

TALG

setembro de 2020 — v5.0

. – Matrizes Definições inicia

Exe 1.8

Explicite as seguintes matrizes:

- (a) $A \in \mathcal{M}_{2\times 3}(\mathbb{R})$, $(A)_{ij} = j i$.
- (b) $X = [\xi_{ii}] \in \mathcal{M}_{2 \times 2}(\mathbb{R}), \ \xi_{ii} = ij + 1.$

Res

(a)

$$A = \begin{bmatrix} (A)_{11} & (A)_{12} & (A)_{13} \\ (A)_{21} & (A)_{22} & (A)_{23} \end{bmatrix} = \begin{bmatrix} 1-1 & 2-1 & 3-1 \\ 1-2 & 2-2 & 3-2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \end{bmatrix}.$$

(b)

$$X = \begin{bmatrix} \xi_{11} & \xi_{12} \\ \xi_{21} & \xi_{22} \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 1 & 1 \times 2 + 1 \\ 2 \times 1 + 1 & 2 \times 2 + 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}.$$

Obs 1.7 (cont.)

(c) Seja $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R})$. A representação habitual de A é

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

em que $a_{ii} \in \mathbb{R}, i = 1, ..., m, j = 1, ..., n$.

- (d) Neste curso, as letras "i" e "j" nunca estão associadas à unidade imaginária dos números complexos.
- (e) Quando se está perante matrizes do conjunto $\mathcal{M}_{1\times 1}(\mathbb{R})$, o contexto será suficiente para distinguir se se está a fazer referência à matriz ou ao único elemento que a constitui.

1 – Matrizes

Definições iniciais

Def 1 0

Seja $A = [a_{ii}] \in \mathcal{M}_{m \times n}(\mathbb{R}).$

(a) [linha de uma matriz] Chama-se linha i da matriz A, que se representa por $\ell_{i,A}$ (ou por ℓ_i se não houver ambiguidade relativamente à matriz), ao n-úplo

$$\ell_{i,A} \stackrel{\mathsf{def}}{=} (a_{i1}, a_{i2}, \dots, a_{in}) \in \mathbb{R}^n.$$

(b) [coluna de uma matriz] Chama-se coluna j da matriz A, que se representa por $c_{j,A}$ (ou por c_j se não houver ambiguidade relativamente à matriz), ao m-úplo

$$c_{j,A} \stackrel{\text{def}}{=} (a_{1j}, a_{2j}, \dots, a_{mj}) \in \mathbb{R}^m.$$

Seja a matriz $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$.

- (a) Indique o elemento que está na segunda linha e na terceira coluna da matriz A.
- (b) Indique o elemento 12 da matriz A.
- (c) Indique a segunda linha da matriz A.
- (d) Indique a terceira coluna da matriz A.

Res

- (a) $(A)_{23} = 7$.
- (b) $(A)_{12} = 2$.
- (c) $\ell_2 = (5, 6, 7, 8)$.
- (d) $c_3 = (3,7)$.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

31

GJM, IB, SL (DMat, U

TALG

setembro de 2020 V3.0

32

1 – Matrizes Definições inicia

Exe 1.13

Dê um exemplo de uma matriz linha com 3 elementos.

Res

$$q = [0 4 -1].$$

Exe 1.14

Indique, justificando, o valor lógico da proposição "Há matrizes que são simultaneamente matrizes linha e matrizes coluna."

Res

A proposição é verdadeira pois, por exemplo, a matriz A = [3] é simultaneamente uma matriz linha e uma matriz coluna.

Def 1.1

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$.

- (a) [matriz coluna] Diz-se que A é uma matriz coluna se n = 1.
- (b) [matriz linha] Diz-se que A é uma matriz linha se m = 1.

Obs 1.12

É habitual representar matrizes linha e matrizes coluna por letras minúsculas e os seus elementos apenas com um índice. Assim, e usando esta notação, a representação da matriz coluna x com m linhas é

$$x = \begin{bmatrix} x_1 \\ \vdots \end{bmatrix} \text{ e da matriz linha } y \text{ com } n \text{ columns } \text{\'e} y = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}.$$

1 – Matrizes Definições iniciais

Def 1 15

[matriz retangular, matriz quadrada] Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Diz-se que A é uma matriz retangular se $m \neq n$. Caso contrário, diz-se uma matriz quadrada.

Exe 1.16

Indique se a seguinte proposição é verdadeira ou falsa: " $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ é uma matriz retangular."

Res

A proposição é verdadeira pois o número de linhas da matriz A, que é 2, é diferente do número de colunas, que é 3.

TALGA

Exe 1.17

Dê um exemplo de uma matriz quadrada.

Res

$$G = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$
.

GJM, IB, SL (DMat, UM

Def 1.18

[ordem de uma matriz quadrada] Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. A diz-se uma matriz de ordem n.

Obs 1.19

Uma matriz de ordem n tem n linhas e n colunas.

Exe 1.20

Dê um exemplo de uma matriz de ordem 4.

Res

$$X = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & -1 & 3 & 1 \\ 0 & 1 & 0 & 4 \end{bmatrix}$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

5

GJM, IB, SL (DMat, UM)

TALG

etembro de 2020 — v5.0

36

1 – Matrizes Definições inicia

Exe 1.23

Seja
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & -1 & 2 \end{bmatrix}$$
.

- (a) Indique a diagonal de D.
- (b) Indique a diagonal secundária de D.

Res

- (a) (1,0,2).
- (b) (0,0,2).

Def 1 21

Seja $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R}).$

- (a) [diagonal ou diagonal principal de uma matriz] Chama-se diagonal ou diagonal principal de A ao n-úplo $(a_{11}, a_{22}, \ldots, a_{nn})$.
- (b) [diagonal secundária de uma matriz] Chama-se diagonal secundária de A ao n-úplo $(a_{1n}, a_{2,n-1}, \ldots, a_{n1})$.

Obs 1.22

As definições anteriores só se aplicam a matrizes quadradas.

1 – Matrizes Definições iniciais

Def 1.24

[matriz diagonal] Seja $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$. A diz-se uma matriz diagonal se

$$\forall i,j \in \{1,\ldots,n\} \ [i \neq j \rightarrow a_{ij} = 0].$$

Obs 1.25

- (a) A definição anterior só se aplica a matrizes quadradas.
- (b) A é uma matriz diagonal se todos os elementos que não pertencem à diagonal são zeros, não sendo, por isso, relevante para esta classificação se os elementos da diagonal são zeros ou não.
- (c) Seja $A = [a_{ii}] \in \mathcal{M}_{n \times n}(\mathbb{R})$. A não é uma matriz diagonal se

$$\exists i,j \in \{1,\ldots,n\} [i \neq j \land a_{ij} \neq 0].$$

Exe 1.26

- (a) Dê um exemplo de uma matriz diagonal de ordem 4.
- (b) Dê um exemplo de uma matriz de ordem 3 que não seja diagonal.

Res

- (b) $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.

39

TALG

setembro de 2020 — vs.o

40

1 – Matrizes Definições inicia

Exe 1.29

- (a) Dê um exemplo de uma matriz escalar de ordem 3.
- (b) Dê um exemplo de uma matriz diagonal de ordem 2 que não seja escalar.

Res

- (a) $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.
- (b) $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.

Def 1 27

[matriz escalar] Seja $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$. A diz-se uma matriz escalar se

$$\forall i,j \in \{1,\ldots,n\} [i \neq j \rightarrow a_{ij} = 0] \land \forall i,j \in \{1,\ldots,n\} [a_{ii} = a_{ji}].$$

Obs 1.28

- (a) A definição anterior só se aplica a matrizes quadradas.
- (b) A é uma matriz escalar se todos os elementos que não pertencem à diagonal são zeros e todos os elementos da diagonal são iguais.
- (c) Seja $A = [a_{ii}] \in \mathcal{M}_{n \times n}(\mathbb{R})$. A não é uma matriz escalar se

$$\exists i,j \in \{1,\ldots,n\} \left[i \neq j \land a_{ij} \neq 0\right] \lor \exists i,j \in \{1,\ldots,n\} \left[a_{ii} \neq a_{jj}\right].$$

1 – Matrizes

Def 1 30

[matriz triangular superior]] Seja $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$. A diz-se uma matriz triangular superior se

$$\forall i,j \in \{1,\ldots,n\} \ [i>j \rightarrow a_{ij}=0].$$

Obs 1.31

- (a) A definição anterior só se aplica a matrizes quadradas.
- (b) A é uma matriz triangular superior se todos os elementos "abaixo" da diagonal são zeros, não sendo, por isso, relevante para esta classificação se os elementos da diagonal e "acima" da diagonal são zeros ou não.
- (c) Seja $A=[a_{ij}]\in\mathcal{M}_{n\times n}(\mathbb{R}).$ A não é uma matriz triangular superior se

$$\exists i, j \in \{1, \ldots, n\} [i > j \land a_{ii} \neq 0].$$

Definições iniciais

Exe 1.32

- (a) Dê um exemplo de uma matriz triangular superior de ordem 4.
- (b) Dê um exemplo de uma matriz de ordem 3 que não seja triangular superior.

Res

- (b) $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v

43

1 – Matrizes

efinições iniciais

Exe 1.35

- (a) Dê um exemplo de uma matriz triangular inferior de ordem 2.
- (b) Dê um exemplo de uma matriz de ordem 3 que não seja triangular inferior.

Res

- (a) $A = \begin{bmatrix} 1 & 0 \\ 2 & -\frac{1}{2} \end{bmatrix}$
- (b) $B = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$.

Def 1 33

[matriz triangular inferior] Seja $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$. A diz-se uma matriz triangular inferior se

$$\forall i, j \in \{1, \dots, n\} \left[i < j \rightarrow a_{ij} = 0 \right].$$

Obs 1.34

- (a) A definição anterior só se aplica a matrizes quadradas.
- (b) A é uma matriz triangular inferior se todos os elementos "acima" da diagonal são zeros, não sendo, por isso, relevante para esta classificação se os elementos diagonal e "abaixo" da diagonal são zeros ou não.
- (c) Seja $A=[a_{ij}]\in\mathcal{M}_{n\times n}(\mathbb{R}).$ A não é uma matriz triangular inferior se

$$\exists i, j \in \{1, \ldots, n\} [i < j \land a_{ij} \neq 0].$$

GJM, IB, SL (DMat, UN

TALGA

setembro de 2020 — v5.0

11

1 – Matrizes Definições inic

Exe 1.36

Indique, justificando, o valor lógico das seguintes proposições:

 P_1 : "A matriz A = [2] é uma matriz diagonal."

 P_2 : "A matriz B = [3] é uma matriz escalar."

 P_3 : "A matriz C = [4] é uma matriz triangular superior."

 P_4 : "A matriz D = [5] é uma matriz triangular inferior."

Res

Como em todas as matrizes não existem elementos que não pertencem à diagonal, que é sempre constituída por um único elemento, todas as proposições são verdadeiras.

Def 1.37

[[traço de uma matriz]] Seja $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$. Chama-se traço da matriz A, que se representa por $\operatorname{tr}(A)$, à soma dos elementos da diagonal de A, ou seja,

$$\operatorname{tr}(A) \stackrel{\mathsf{def}}{=} \sum_{i=1}^n a_{ii}.$$

Exe 1.38

Determine os traços das matrizes $A = \begin{bmatrix} 3 & 2 \\ 7 & 9 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 3 & 5 \\ 7 & 9 & 0 \\ 2 & 4 & 6 \end{bmatrix}$.

Res

$$tr(A) = 3 + 9 = 12 e tr(B) = 1 + 9 + 6 = 16.$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.

4

GJM, IB, SL (DMat, UM)

TALG

setembro de 2020 — v5.0

1 – Matrizes Definições iniciais

Def 1.41

[matriz identidade, I_n , I] Chama-se matriz identidade à matriz escalar cujos elementos da diagonal são todos iguais a 1. Representa-se a matriz identidade de ordem n por I_n ou por I se não houver ambiguidade relativamente à ordem.

Exe 1.42

Indique a matriz identidade de ordem 3.

Res

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Def 1.3

[matriz nula, $0_{m \times n}$, $\underline{0}$] Chama-se matriz nula a uma matriz cujos elementos são todos iguais a 0. Representa-se a matriz nula do tipo $m \times n$ por $0_{m \times n}$ ou por $\underline{0}$ se não houver ambiguidade relativamente ao tipo.

Exe 1.40

Indique a matriz nula do tipo 2×4 .

Res

$$0_{2\times4} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix}$$

1 – Matrizes Definições iniciais

Def 1.43

[matrizes iguais] Sejam $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R})$ e $B = [b_{ij}] \in \mathcal{M}_{p \times q}(\mathbb{R})$. Diz-se que A e B são matrizes iguais, escrevendo-se A = B, se:

- (i) $A \in B$ são do mesmo tipo (ou seja, $m = p \in n = q$).
- (ii) $\forall i \in \{1, ..., m\}, j \in \{1, ..., n\} [a_{ij} = b_{ij}].$

Obs 1.44

A definição anterior usa-se em algumas demonstrações relativas a matrizes.

Exe 1.45

GJM, IB, SL (DMat, UM)

Indique, justificando, o valor lógico da proposição "As matrizes $A = [a_{ij}] \in \mathcal{M}_{3\times 2}(\mathbb{R}), \ a_{ij} = i+j, \ e \ B = [b_{ij}] \in \mathcal{M}_{2\times 3}(\mathbb{R}), \ b_{ij} = j+i, \ são$ iguais."

Res

A proposição é falsa pois as matrizes A e B não são do mesmo tipo.

 $\llbracket soma de matrizes \rrbracket Sejam A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$. Chama-se soma das matrizes A e B, que se representa por A + B, ao elemento de $\mathcal{M}_{m \times n}(\mathbb{R})$ tal que

$$(A + B)_{ii} \stackrel{\text{def}}{=} (A)_{ii} + (B)_{ii}, i = 1, \dots, m, j = 1, \dots, n.$$

Obs 1.47

Só se podem somar matrizes do mesmo tipo.

GJM, IB, SL (DMat, UM)

Exe 1.48

Considere as matrizes $A = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & -4 \end{bmatrix}$ e $B = \begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}$. Calcule A + B.

Res

$$A + B = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & -4 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} -1 + 3 & 2 + 0 & 1 + 2 \\ 0 + 1 & 1 + (-1) & -4 + 2 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & 2 & 3 \\ 1 & 0 & -2 \end{bmatrix}.$$

[escalar] Chama-se escalar a um elemento de IR.

[multiplicação (ou produto) de uma matriz por um escalar] Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ e $\alpha \in \mathbb{R}$. Chama-se multiplicação (ou produto) da matriz A pelo escalar α , que se representa por αA , ao elemento de $\mathcal{M}_{m \times n}(\mathbb{R})$ tal que

$$(\alpha A)_{ij} \stackrel{\text{def}}{=} \alpha(A)_{ij}, i = 1, \dots, m, j = 1, \dots, n.$$

Obs 1.51

- (a) É sempre possível multiplicar uma matriz por um escalar.
- (b) Seja a matriz A. Então, (-1)A também se pode escrever como -A.

Exe 1.52

Considere as matrizes $A = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & -4 \end{bmatrix}$ e $B = \begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}$. Calcule:

- (a) 2A.
- (b) -B.

Res

(a)

$$2A = 2\begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & -4 \end{bmatrix} = \begin{bmatrix} 2 \times (-1) & 2 \times 2 & 2 \times 1 \\ 2 \times 0 & 2 \times 1 & 2 \times (-4) \end{bmatrix} = \begin{bmatrix} -2 & 4 & 2 \\ 0 & 2 & -8 \end{bmatrix}.$$

TALGA

(b)

GJM, IB, SL (DMat, UM)

$$-B = -\begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -3 & 0 & -2 \\ -1 & 1 & -2 \end{bmatrix}.$$

Obs 1.53

Seiam A e B matrizes do mesmo tipo. Então, A+(-B) também se pode escrever como A - B.

Exe 1.54

Considere as matrizes $A = \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & -4 \end{bmatrix}$ e $B = \begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}$. Calcule $\frac{1}{2}A - 3B$.

Res

$$\frac{1}{2}A - 3B = \frac{1}{2} \begin{bmatrix} -1 & 2 & 1 \\ 0 & 1 & -4 \end{bmatrix} - 3 \begin{bmatrix} 3 & 0 & 2 \\ 1 & -1 & 2 \end{bmatrix}
= \begin{bmatrix} \frac{1}{2} \times (-1) - 3 \times 3 & \frac{1}{2} \times 2 - 3 \times 0 & \frac{1}{2} \times 1 - 3 \times 2 \\ \frac{1}{2} \times 0 - 3 \times 1 & \frac{1}{2} \times 1 - 3 \times (-1) & \frac{1}{2} \times (-4) - 3 \times 2 \end{bmatrix}
= \begin{bmatrix} -\frac{19}{2} & 1 & -\frac{11}{2} \\ -3 & \frac{7}{2} & -8 \end{bmatrix}.$$

Operações com matrize

[multiplicação (ou produto) de matrizes] Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ e $B \in \mathcal{M}_{n \times p}(\mathbb{R})$. Chama-se multiplicação (ou produto) da matriz A pela matriz B, que se representa por AB, ao elemento de $\mathcal{M}_{m\times p}(\mathbb{R})$ tal que

$$(AB)_{ij} \stackrel{\text{def}}{=} \sum_{k=1}^{n} (A)_{ik}(B)_{kj}, i = 1, \ldots, m, j = 1, \ldots, p.$$

Obs 1.58

- (a) Só se pode efetuar a multiplicação da matriz A pela matriz B se o número de colunas da matriz A for igual ao número de linhas da matriz B. Neste caso, o número de linhas da matriz resultante é igual ao número de linhas da matriz A e o número de colunas da matriz resultante é igual ao número de colunas da matriz B.
- (b) Sendo possível multiplicar as matrizes A e B, o elemento ii da matriz AB é igual ao produto escalar usual de $\ell_{i,A}$ com $c_{i,B}$, ou seja, $(AB)_{ii} =$ $\ell_{i,A} \cdot c_{i,B}$.

Teo 1.55

(a) $\forall A, B \in \mathcal{M}_{m \times n}(\mathbb{R}) [A + B = B + A]$

- (b) $\forall A, B, C \in \mathcal{M}_{m \times n}(\mathbb{R}) [(A + B) + C = A + (B + C)].$
- (c) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{R}) [A + 0_{m \times n} = A].$
- (d) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{R}) [A + (-A) = 0_{m \times n}]$
- (e) $\forall \alpha, \beta \in \mathbb{R}, \forall A \in \mathcal{M}_{m \times n}(\mathbb{R}) \left[(\alpha \beta) A = \alpha(\beta A) \right]$
- (f) $\forall \alpha, \beta \in \mathbb{R}, \forall A \in \mathcal{M}_{m \times n}(\mathbb{R}) [(\alpha + \beta)A = \alpha A + \beta A].$
- (g) $\forall \alpha \in \mathbb{R}, \forall A, B \in \mathcal{M}_{m \times n}(\mathbb{R}) \left[\alpha(A + B) = \alpha A + \alpha B \right]$
- (h) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{R}) [1A = A].$

Obs 1.56

- (a) A matriz nula é o elemento neutro da soma de matrizes.
- (b) Sejam A, B e C matrizes do mesmo tipo. Então, tem-se que a expressão A + B + C não resulta ambígua devido à propriedade associativa da soma de matrizes.

Obs 1.58 (cont.)

(c) Sejam $A = [a_{ii}] \in \mathcal{M}_{3\times 2}(\mathbb{R})$ e $B = [b_{ii}] \in \mathcal{M}_{2\times 4}(\mathbb{R})$. Como o número de colunas da matriz A é igual ao número de linhas da matriz B, é possível efetuar a operação AB. Por exemplo o elemento $(AB)_{23}$ obtém-se considerando o produto escalar usual de $\ell_{2,A}$ e $c_{3,B}$:

$$\begin{bmatrix} * & * \\ 2 & 1 \\ * & * \end{bmatrix} \quad \begin{bmatrix} * & * & 4 \\ * & * & -5 \end{bmatrix} \quad * \end{bmatrix} = \begin{bmatrix} * & * & * & * \\ * & * & 3 & * \\ * & * & * & * \end{bmatrix}$$

$$A \in \mathcal{M}_{3 \times 2}(\mathbb{R}) \qquad B \in \mathcal{M}_{2 \times 4}(\mathbb{R}) \qquad AB \in \mathcal{M}_{3 \times 4}(\mathbb{R})$$

$$(AB)_{23} = \ell_{2,A} \cdot c_{3,B} = (2,1) \cdot (4,-5) = 2 \times 4 + 1 \times (-5) = 3$$
$$= \sum_{k=1}^{2} a_{2k} b_{k3} = a_{21} b_{13} + a_{22} b_{23} = 2 \times 4 + 1 \times (-5) = 3.$$

Exe 1.59

Considere as matrizes $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ e $B = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 0 \end{bmatrix}$. Indique se estão bem definidas as seguintes expressões, efetuando nesses casos as respetivas operações:

- (a) *AB*.
- (b) *BA*.
- (c) Indique, justificando, o valor lógico da proposição "A multiplicação de matrizes goza da propriedade comutativa."

GJM, IB, SL (DMat, UM

Teo 1.60

- (a) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{R}), \forall B \in \mathcal{M}_{n \times n}(\mathbb{R}), \forall C \in \mathcal{M}_{n \times n}(\mathbb{R}) [(AB)C = A(BC)].$
- (b) $\forall A, B \in \mathcal{M}_{m \times n}(\mathbb{R}), \forall C \in \mathcal{M}_{n \times p}(\mathbb{R}) [(A + B)C = AC + BC].$
- (c) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{R}), \forall B, C \in \mathcal{M}_{n \times n}(\mathbb{R}) [A(B+C) = AB + AC]$
- (d) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{R}) [I_m A = AI_n = A].$
- (e) $\forall \alpha \in \mathbb{R}, \forall A \in \mathcal{M}_{m \times n}(\mathbb{R}), \forall B \in \mathcal{M}_{n \times n}(\mathbb{R}) [\alpha(AB) = (\alpha A)B = A(\alpha B)].$

Obs 1.61

- (a) A matriz identidade é o elemento neutro da multiplicação de matrizes.
- (b) Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R}), B \in \mathcal{M}_{n \times p}(\mathbb{R})$ e $C \in \mathcal{M}_{p \times q}(\mathbb{R})$. Então, temse que a expressão ABC não resulta ambígua devido à propriedade associativa da multiplicação de matrizes, fazendo sentido a seguinte definição.

Res

(a) Como o número de colunas da matriz A é igual ao número de linhas da matriz B, é possível efetuar a operação AB, tendo-se

$$AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 \times 5 + 2 \times 8 & 1 \times 6 + 2 \times 9 & 1 \times 7 + 2 \times 0 \\ 3 \times 5 + 4 \times 8 & 3 \times 6 + 4 \times 9 & 3 \times 7 + 4 \times 0 \end{bmatrix}$$

$$= \begin{bmatrix} 21 & 24 & 7 \\ 47 & 54 & 21 \end{bmatrix}.$$

- (b) Como o número de colunas da matriz B, que é 3, é diferente do número de linhas da matriz A, que é 2, não é possível efetuar a operação BA.
- (c) A proposição é falsa, formando as duas alíneas anteriores um contraexemplo.

[potência de ordem p de uma matriz quadrada] Sejam $p \in \mathbb{N}$ e A uma matriz quadrada. Chama-se potência de ordem p da matriz A, que se representa por A^p , a

$$A^p \stackrel{\mathsf{def}}{=} \prod_{k=1}^p A.$$

Res

Como A é uma matriz quadrada, é possível determinar A^3 , tendo-se:

$$A^3 = \left(\begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \right) \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 0 \\ 7 & 1 \end{bmatrix}.$$

Nota: como a multiplicação de matrizes é associativa, também se tem $A^3 = A(AA)$.

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 —

63

– Matrizes

Operações com matrizes

Teo 1.68

Sejam A e B matrizes comutáveis. Então:

- (a) $(A + B)^2 = A^2 + 2AB + B^2$.
- (b) $(A B)^2 = A^2 2AB + B^2$.
- (c) $(A + B)(A B) = A^2 B^2$.

Dem

- (a) $(A + B)^2 = (A + B)(A + B) = A^2 + AB + BA + B^2 = A^2 + AB + AB + B^2 = A^2 + 2AB + B^2$.
- (b) $(A B)^2 = (A B)(A B) = A^2 AB BA + B^2 = A^2 AB AB + B^2 = A^2 2AB + B^2$.
- (c) $(A + B)(A B) = A^2 AB + BA B^2 = A^2 AB + AB B^2 = A^2 + 0 B^2 = A^2 B^2$.

Obs 1.69

Atente nas parecenças e diferenças do teorema anterior com os casos notáveis da multiplicação de números reais.

Obs 1.64

A multiplicação de matrizes não goza da propriedade comutativa. Faz, pois, sentido a seguinte definição.

Def 1.6!

[matrizes comutáveis] Sejam A e B matrizes. Diz-se que as matrizes A e B são comutáveis se AB = BA.

Obs 1.66

Uma condição necessária para duas matrizes serem comutáveis é que sejam matrizes quadradas da mesma ordem.

Exe 1.67

Verifique se as matrizes $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ são comutáveis.

Res

Como $AB = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$ e $BA = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$, tem-se que AB = BA, pelo que $A \in B$ são matrizes comutáveis.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

64

1 – Matrize

Operações com matrizes

Exe 1.70

Sejam A e B matrizes quadradas da mesma ordem. Mostre que $(A+B)^2-(A-B)(A+B)-2B^2=2BA$.

Res

$$(A+B)^{2} - (A-B)(A+B) - 2B^{2}$$

$$= (A+B)(A+B) - (A-B)(A+B) - 2B^{2}$$

$$= A^{2} + AB + BA + B^{2} - (A^{2} + AB - BA - B^{2}) - 2B^{2}$$

$$= A^{2} + AB + BA + B^{2} - A^{2} - AB + BA + B^{2} - 2B^{2}$$

$$= (A^{2} - A^{2}) + (AB - AB) + (B^{2} + B^{2} - 2B^{2}) + BA + BA$$

$$= 0 + 0 + 0 + 2BA$$

$$= 2BA.$$

Obs 1.71

Não se define a operação "divisão de matrizes". No entanto, define-se um conceito semelhante ao de "número inverso".

Def 1.72

[matriz invertível ou não-singular, matriz não-invertível ou singular] Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Diz-se que A é uma matriz invertível ou não-singular se existir uma matriz $Z \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $AZ = ZA = I_n$. Caso contrário, diz-se que A é uma matriz não-invertível ou singular.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.

67

trizes invertíveis

Teo 1.74

Seja A uma matriz invertível de ordem n. Então, existe uma e uma só matriz $Z \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $AZ = ZA = I_n$.

Dem

Seja A uma matriz invertível de ordem n. Admita-se, por absurdo, que existem duas matrizes $X, Y \in \mathcal{M}_{n \times n}(\mathbb{R})$ tais que (1) $AX = XA = I_n$ e (2) $AY = YA = I_n$. Então:

$$X \stackrel{(3)}{=} XI_n \stackrel{(2)}{=} X(AY) \stackrel{(4)}{=} (XA)Y \stackrel{(2)}{=} I_nY \stackrel{(3)}{=} Y,$$

em que (3) "I é o elemento neutro da multiplicação de matrizes" e (4) "a multiplicação de matrizes é associativa". Assim, conclui-se que existe uma e uma só matriz $Z \in \mathcal{M}_{n \times n}(\mathbb{R})$ tal que $AZ = ZA = I_n$.

Exe 1.73

Considere as matrizes $A = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}$.

- (a) Calcule AB.
- (b) Calcule BA.
- (c) A matriz A é invertível?
- (d) A matriz B é invertível?
- (e) As matrizes A e B são comutáveis?

Res

- (a) $AB = \left(\frac{1}{3} \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}\right) \left(\begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \right) = \frac{1}{3} \left(\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \right) = \frac{1}{3} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$
- (b) $BA = (\begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix}) (\frac{1}{3} \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}) = \frac{1}{3} (\begin{bmatrix} 2 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}) = \frac{1}{3} \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$
- (c) Sim, pois existe uma matriz, B, tal que $AB = BA = I_2$.
- (d) Sim, pois existe uma matriz, A, tal que $BA = AB = I_2$.
- (e) Sim, pois $AB = BA (= I_2)$.

GJM, IB, SL (DMat, UI

TALG

setembro de 2020 — v5.0

68

1 – Matrizes Matrizes invertíve

Def 1 75

[matriz inversa] Seja A uma matriz invertível de ordem n. Chama-se matriz inversa da matriz A, que se representa por A^{-1} , à única matriz Z que satisfaz $AZ = ZA = I_n$.

Teo 1.76

Sejam A e B matrizes quadradas da mesma ordem tais que AB = I. Então, $A^{-1} = B$.

Obs 1.77

GJM, IB, SL (DMat, UM)

- (a) Se A é a matriz inversa da matriz B, então B é a matriz inversa da matriz A.
- (b) Sejam A e B matrizes quadradas da mesma ordem. Então, AB = I se e só se BA = I. Assim, basta verificar se AB = I ou BA = I para se concluir que as matrizes A e B são invertíveis com $A^{-1} = B$ e $B^{-1} = A$
- (c) Uma resolução possível para os exercícios em que se pede para mostrar que $A^{-1} = X$ é mostrar que AX = I.

Exe 1.78

Se a matriz B é a inversa da matriz A^2 , mostre que $A^{-1} = AB$.

Res

Se
$$(A^2)^{-1} = B$$
, então $B^{-1} = A^2$, pelo que

$$A(AB) = (AA)B = A^2B = B^{-1}B = I.$$

Assim, conclui-se que $A^{-1} = AB$.

GJM, IB, SL (DMat, UN

TALGA

etembro de 2020 — v5.(

71

Natrizes invertíveis

Res (cont.)

Da segunda equação tem-se que b=-d. Substituindo na quarta, obtém-se $2b+d=1\Leftrightarrow 2(-d)+d=1\Leftrightarrow -d=1\Leftrightarrow d=-1$, pelo que b=1. Assim, tem-se que a inversa da matriz A é a matriz $A^{-1}=\left[\begin{array}{cc} -\frac{1}{2} & 1 \\ 1 & -1 \end{array}\right]$.

Mostre-se, apenas para efeito de verificação, que $AA^{-1} = I_2$:

$$AA^{-1} = \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \times (-\frac{1}{2}) + 2 \times 1 & 2 \times 1 + 2 \times (-1) \\ 2 \times (-\frac{1}{2}) + 1 \times 1 & 2 \times 1 + 1 \times (-1) \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Exe 1.79

Sabendo que a matriz $A = \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix}$ é invertível, calcule a sua inversa através da definição (e do teorema Teo 1.76).

Res

Seja $Z = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ a matriz inversa de A. Então,

$$AZ = I_2 \Leftrightarrow \begin{bmatrix} 2 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2a + 2c & 2b + 2d \\ 2a + c & 2b + d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Leftrightarrow \begin{cases} 2a & +2c & = 1 \\ 2b & +2d = 0 \\ 2a & +c & = 0 \\ 2b & +d = 1. \end{cases}$$

Da terceira equação tem-se que c=-2a. Substituindo na primeira, obtém-se $2a+2c=1 \Leftrightarrow 2a+2(-2a)=1 \Leftrightarrow -2a=1 \Leftrightarrow a=-\frac{1}{2}$, pelo que c=1.

GJM, IB, SL (DMat, UM

TALG/

setembro de 2020 — v5.0

72

1 – Matrizes Matrizes invertív

Obs 1.80

- (a) Há matrizes quadradas que não são invertíveis.
- (b) Apresenta-se no teorema Teo 1.128 uma primeira condição para caracterizar matrizes invertíveis e na observação Obs 1.129 um método mais prático para calcular inversas.

Teo 1.81

Seja A uma matriz invertível. Então, A^{-1} também é uma matriz invertível e $(A^{-1})^{-1}=A$.

Dem

Como A é uma matriz invertível, tem-se que $AA^{-1}=A^{-1}A=I$. Logo, A^{-1} é invertível e $\left(A^{-1}\right)^{-1}=A$.

Teo 1.82

Sejam A e B matrizes quadradas invertíveis da mesma ordem. Então, AB também é uma matriz invertível e $(AB)^{-1}=B^{-1}A^{-1}$.

Dem

Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ matrizes invertíveis. Então:

$$(AB)(B^{-1}A^{-1}) \stackrel{(2)}{=} A(BB^{-1})A^{-1} \stackrel{(1)}{=} A(I_n)A^{-1} \stackrel{(2)}{=} (AI_n)A^{-1}$$

$$\stackrel{(3)}{=} AA^{-1} \stackrel{(1)}{=} I_n,$$

em que (1) "definição de matriz inversa", (2) "a multiplicação de matrizes é associativa" e (3) "a matriz identidade I é o elemento neutro da multiplicação de matrizes". Conclui-se, então, que AB é uma matriz invertível com $(AB)^{-1} = B^{-1}A^{-1}$.

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

75

GJM, IB, SL (DMat, UN

TALGA

setembro de 2020 — v5.0

l – Matrizes Matriz transpost

Def 1.84

[matriz transposta] Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Chama-se transposta da matriz A, que se representa por A^{T} , ao elemento de $\mathcal{M}_{n \times m}(\mathbb{R})$ tal que

$$(A^{\mathsf{T}})_{ii} \stackrel{\mathsf{def}}{=} (A)_{ii}, \ i = 1, \dots, m, j = 1, \dots, n.$$

Obs 1.85

- (a) É sempre possível calcular a matriz transposta de uma matriz.
- (b) Calcular a transposta de uma matriz corresponde a trocar linhas com colunas.

Exe 1.83

Sejam A e B matrizes comutáveis e invertíveis. Mostre, por dois processos distintos, que $(AB)^{-1} = A^{-1}B^{-1}$.

Res

• Processo 1

$$(AB)^{-1} = (BA)^{-1} = A^{-1}B^{-1}.$$

• Processo 2

$$(AB)(A^{-1}B^{-1}) = (BA)(A^{-1}B^{-1}) = B(AA^{-1})B^{-1}$$

= $B(I)B^{-1} = (BI)B^{-1} = BB^{-1} = I$.

1 – Matrizes Matriz transposi

Exe 1.86

Considere as matrizes $A = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$ e $u = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Calcule:

- (a) A^{T} .
- (b) $\frac{AA^{\mathsf{T}}}{u^{\mathsf{T}}u}$.

Res

(a)

$$A^{\mathsf{T}} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 2 & 1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 \\ -2 & 2 \\ 0 & 1 \end{bmatrix}.$$

Res (cont.)

(b)

$$\frac{AA^{\mathsf{T}}}{u^{\mathsf{T}}u} = \frac{\begin{bmatrix} 1 & -2 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 2 \\ 0 & 1 \end{bmatrix}}{\begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}} = \frac{1}{2} \begin{bmatrix} 5 & -4 \\ -4 & 5 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} & -2 \\ -2 & \frac{5}{2} \end{bmatrix}.$$

Nota: em rigor, o denominador da expressão dada devia-se escrever como $(u^{\mathsf{T}}u)_{11}$, justificando-se o abuso de linguagem pela observação Obs 1.7 (e).

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

70

GJM, IB, SL (DMat, U

TALG

etembro de 2020 — v5.0

80

. – Matrizes Matriz transposta

Exe 1.88

Sejam A, B e C matrizes quadradas da mesma ordem. Sabendo que as matrizes B e C são invertíveis, resolva em ordem a X a equação matricial $C^{-1}(A+X)^{\mathsf{T}}B^{-1}=I$.

Res

$$C^{-1}(A+X)^{\mathsf{T}}B^{-1} = I \Leftrightarrow C(C^{-1}(A+X)^{\mathsf{T}}B^{-1})B = CIB$$

$$\Leftrightarrow (CC^{-1})(A+X)^{\mathsf{T}}(B^{-1}B) = CIB \Leftrightarrow I(A+X)^{\mathsf{T}}I = CIB$$

$$\Leftrightarrow (A+X)^{\mathsf{T}} = CB \Leftrightarrow ((A+X)^{\mathsf{T}})^{\mathsf{T}} = (CB)^{\mathsf{T}}$$

$$\Leftrightarrow A+X = (CB)^{\mathsf{T}} \Leftrightarrow X = (CB)^{\mathsf{T}} - A.$$

Teo 1.87

- (a) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{R}) [(A^{\mathsf{T}})^{\mathsf{T}} = A].$
- (b) $\forall A, B \in \mathcal{M}_{m \times n}(\mathbb{R}) [(A + B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}}].$
- (c) $\forall \alpha \in \mathbb{R}, \forall A \in \mathcal{M}_{m \times n}(\mathbb{R}) \left[(\alpha A)^{\mathsf{T}} = \alpha A^{\mathsf{T}} \right]$
- (d) $\forall A \in \mathcal{M}_{m \times n}(\mathbb{R}), \forall B \in \mathcal{M}_{n \times p}(\mathbb{R}) [(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}}].$
- (e) $\forall A \in \mathcal{M}_{n \times n}(\mathbb{R}) [A \text{ \'e uma matriz invertivel} \rightarrow (A^{\mathsf{T}})^{-1} = (A^{-1})^{\mathsf{T}}].$

1 – Matrizes Matrizes simétrica

7 of 1 80

[matriz simétrica] Seja A uma matriz quadrada. Diz-se que A é uma matriz simétrica se $A = A^{\mathsf{T}}$.

Obs 1.90

Seja A uma matriz quadrada de ordem n. Então, A é uma matriz simétrica se $\ell_i = c_i$, i = 1, ..., n.

Exe 1.91

Dê um exemplo de uma matriz simétrica de ordem 3.

Res

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 10 & -3 \\ 2 & -3 & 1 \end{bmatrix}$$

Exe 1.92

Indique para que valores $a, b, c \in \mathbb{R}$ a matriz $S = \begin{bmatrix} 1 & a & b \\ 1 & 2 & 3 \\ 2 & c & 3 \end{bmatrix}$ é simétrica.

Res

$$a = 1$$
, $b = 2$, $c = 3$.

1 – Matrizes

Exe 1.93

Mostre que o produto de uma matriz pela sua transposta é uma matriz simétrica.

Res

Seja A uma matriz. Pretende-se mostrar que AA^{T} é uma matriz simétrica, ou seja, que $\left(AA^{\mathsf{T}}\right)^{\mathsf{T}}=AA^{\mathsf{T}}$:

$$(AA^{\mathsf{T}})^{\mathsf{T}} = (A^{\mathsf{T}})^{\mathsf{T}} A^{\mathsf{T}} = AA^{\mathsf{T}}.$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v

83

Obs 1.95

ortogonal se $AA^{\mathsf{T}} = A^{\mathsf{T}}A = I_n$.

Se A é uma matriz ortogonal, então A é uma matriz invertível e $A^{-1} = A^{\mathsf{T}}$.

[matriz ortogonal] Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Diz-se que A é uma matriz

Exe 1.96

Verifique que a matriz $A = \begin{bmatrix} \cos \alpha - \sin \alpha \\ \sin \alpha \end{bmatrix}$, $\alpha \in \mathbb{R}$, é ortogonal.

Res

Como

$$AA^{\mathsf{T}} = \begin{bmatrix} \cos \alpha & - \sec \alpha \\ \sec \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & \sec \alpha \\ - \sec \alpha & \cos \alpha \end{bmatrix}$$
$$= \begin{bmatrix} \cos^2 \alpha + \sec^2 \alpha & \cos \alpha \sec \alpha - \sec \alpha \cos \alpha \\ \sec \alpha \cos \alpha - \cos \alpha \sec \alpha & \sec^2 \alpha + \cos^2 \alpha \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

ou seja, $AA^{\mathsf{T}} = I_2$, tem-se que A é uma matriz ortogonal.

TALG

etembro de 2020 — v5.0

0.1

1 – Matrizes

Matrizes em escada e escada reduzio

Def 1.97

Seja $A = [a_{ii}] \in \mathcal{M}_{m \times n}(\mathbb{R}).$

(a) [linha nula de uma matriz] Diz-se que ℓ_i é uma linha nula da matriz A se

$$a_{i1}=a_{i2}=\cdots=a_{in}=0.$$

(b) [coluna nula de uma matriz] Diz-se que c_j é uma coluna nula da matriz A se

$$a_{1i} = a_{2i} = \cdots = a_{mi} = 0.$$

- (c) [pivô de uma linha não-nula] Chama-se pivô de uma linha não-nula ao seu elemento não-nulo mais à esquerda.
- (d) [coluna pivô] Chama-se coluna pivô a uma coluna da matriz se existe um elemento pivô nessa coluna.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

85

GIM IR SI (DMat III)

TALGA

setembro de 2020 — v5.0

Matrizes em escada e escada reduzi

Exe 1.98

Seja $A = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 4 & 0 \end{bmatrix}$.

- (a) Identifique os pivôs das linhas não-nulas da matriz A.
- (b) Identifique as colunas pivô da matriz A.

Res

- (a) Pivôs: $(A)_{15}$, $(A)_{22}$ e $(A)_{32}$.
- (b) Colunas pivô: c_2 e c_5 .

Def 1.99

[matriz em escada] Diz-se que uma matriz é uma matriz em escada se é uma matriz nula ou, no caso de não o ser, se o número de zeros à esquerda do pivô aumenta de linha para linha até que, havendo, sobrem apenas linhas nulas.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.

87

1 – Matrizes

Matrizes em escada e escada reduzio

Exe 1.101

Indique, justificando, o valor lógico das seguintes proposições:

- (a) "Seja A uma matriz triangular superior. Então, $A \in fe(A)$.
- (b) "Seja A uma matriz quadrada tal que $A \in fe(A)$. Então, A uma matriz triangular superior."

Res

- (a) Proposição falsa, pois, por exemplo, a matriz $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ é uma matriz triangular superior e não é uma matriz em escada.
- (b) Proposição verdadeira, pois uma matriz quadrada em escada é sempre, devido à definição de matriz em escada, uma matriz triangular superior.

Exe 1.100

Indique quais das seguintes matrizes são matrizes em escada:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, H = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

Res

A, B, C, F, G, H, u.

GJM, IB, SL (DMat, UM)

TALG

setembro de 2020 — v5.0

1 – Matrizes

Matrizes em escada e escada reduzida

Def 1.10

[matriz em escada reduzida] Diz-se que uma matriz é uma matriz em escada reduzida se é uma matriz nula ou, no caso de não o ser, se é uma matriz em escada, se todos os pivôs são iguais a um e se estes são os únicos elementos não-nulos nas colunas pivô.

Exe 1.103

Indique quais das matrizes do exercício Exe 1.100 são matrizes em escada reduzida.

TALGA

Res

A, C, F, H, u.

G.IM. IB. SL (DMat. UM

¶operação elementar do tipo I nas linhas de uma matriz Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ e $i, i' \in \{1, \dots, m\}$. Chama-se operação elementar do tipo I nas linhas da matriz A à troca de duas linhas. A troca de ℓ_i com $\ell_{i'}$ representa-se por $\ell_i \leftrightarrow \ell_{i'}$.

Exe 1.105

Indique a matriz que se obtém depois de aplicada a operação do tipo I $\ell_1 \leftrightarrow \ell_3$ à matriz $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 2 & 2 & 1 & 0 \end{bmatrix}$.

Res

$$\begin{bmatrix} 2 & 2 & 1 & 0 \\ 0 & -1 & 1 & 1 \\ 1 & 2 & 0 & 1 \end{bmatrix}.$$

GJM, IB, SL (DMat, UM)

¶operação elementar do tipo III nas linhas de uma matriz Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R}), i, i' \in \{1, \dots, m\}$ e $\beta \in \mathbb{R}$. Chama-se operação elementar do tipo III nas linhas da matriz A à substituição de uma linha pela sua soma com um múltiplo de outra linha. A substituição de ℓ_i pela linha que se obtém somando os elementos de ℓ_i aos elementos que se obtêm multiplicando por β os elementos de $\ell_{i'}$ representa-se por $\ell_i \leftarrow \ell_i + \beta \ell_{i'}$, que se lê " ℓ_i toma valor de $\ell_i + \beta \ell_{i'}$ ".

Exe 1.109

Indique a matriz que se obtém depois de aplicada a operação do tipo III $\ell_1 \leftarrow \ell_1 - \frac{1}{2}\ell_2$ à matriz $A = \begin{bmatrix} 0 & -1 & 1 & 1 \\ 2 & 2 & 1 & 0 \end{bmatrix}$

Res

$$\begin{bmatrix} -1 & -2 & \frac{1}{2} & 1 \\ 2 & 2 & 1 & 0 \end{bmatrix}.$$

¶operação elementar do tipo II nas linhas de uma matriz Sejam $A \in \mathcal{M}_{m \times n}(\mathbb{R}), i \in \{1, \dots, m\}$ e $\alpha \in \mathbb{R} - \{0\}$. Chama-se operação elementar do tipo II nas linhas da matriz A à substituição de uma linha por um seu múltiplo não-nulo. A substituição de ℓ_i pela linha que se obtém multiplicando por α os elementos de ℓ_i representa-se por $\ell_i \leftarrow \alpha \ell_i$, que se lê " ℓ_i toma valor de $\alpha \ell_i$ ".

Exe 1.107

Indique a matriz que se obtém depois de aplicada a operação do tipo II $\ell_3 \leftarrow \frac{1}{2}\ell_3$ à matriz $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 2 & 2 & 1 & 0 \end{bmatrix}$

Res

$$\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 1 & 1 \\ 1 & 1 & \frac{1}{2} & 0 \end{bmatrix}.$$

Obs 1.110

Nas três últimas definições apenas se consideram operações sobre linhas, apesar de também ser possível definir operações sobre colunas. Fazendo este curso apenas referência a operações elementares sobre linhas, estas passarão a ser referenciadas apenas por "operações elementares".

[matrizes equivalentes] Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$. Diz-se que A e B são matrizes equivalentes, escrevendo-se $A \longleftrightarrow B$, se se pode obter uma a partir da outra através duma sequência (finita) de operações elementares (com linhas).

Exe 1.112

Seja a matriz $A = \begin{bmatrix} 0 & 2 & 4 & 0 \\ 1 & 1 & 0 & 2 \\ 2 & 2 & 0 & 5 \end{bmatrix}$. Efetue a seguinte sequência de operações na matriz A: $\ell_1 \leftrightarrow \ell_2$, $\ell_3 \leftarrow \ell_3 - 2\ell_1$, $\ell_1 \leftarrow \ell_1 - 2\ell_3$, $\ell_2 \leftarrow \frac{1}{2}\ell_2$ e $\ell_1 \leftarrow \ell_1 - \ell_2$.

Res

$$\begin{bmatrix} 0 & 2 & 4 & 0 \\ 1 & 1 & 0 & 2 \\ 2 & 2 & 0 & 5 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 1 & 0 & 2 \\ \ell_1 \leftrightarrow \ell_2 & \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 2 & 4 & 0 \\ 2 & 2 & 0 & 5 \end{bmatrix} \longleftrightarrow \begin{bmatrix} \ell_3 \leftarrow \ell_3 - 2\ell_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \ell_1 \leftarrow \ell_1 - 2\ell_3 \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \leftarrow \ell_2 \leftarrow \frac{1}{2}\ell_2$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \stackrel{\ell_1}{\longleftarrow} \stackrel{\ell_1}{\longleftarrow} \stackrel{\ell_2}{\longleftarrow} \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

GJM, IB, SL (DMat, UM)

setembro de 2020 - v5.0

Obs 1.116

Seja A uma matriz.

- (a) Note-se que fe(A) é um conjunto de matrizes e que fer(A) é uma matriz.
- (b) No algoritmo Alg 1.117 apresenta-se um procedimento para determinar um elemento de fe(A) e no algoritmo Alg 1.119 apresenta-se um procedimento para determinar fer(A).

Teo 1.113

Seja A uma matriz. Então, existe uma única matriz em escada reduzida que é equivalente à matriz A.

Obs 1.114

Seja A uma matriz não-nula. Então, existe uma infinidade de matrizes em escada que são equivalentes à matriz A.

Seja A uma matriz.

- (a) [fe(A)] Representa-se por fe(A) o conjunto das matrizes em escada que são equivalentes à matriz A.
- (b) [fer(A)] Representa-se por fer(A) a única matriz em escada reduzida que é equivalente à matriz A.

GJM, IB, SL (DMat, UM)

1 - Matrizes

Matrizes em escada e escada redi

Alg 1.117

```
"Algoritmo Transformação em Escada" (ATEsc)
```

```
input matriz A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R})
output um elemento de fe(A)
```

Passo 1 [inicializar o algoritmo]

 $i \leftarrow$ índice da coluna não-nula mais à esquerda da matriz A

Passo 2 [selecionar o elemento pivô]

se $a_{ij} = 0$ então

 $\ell_i \leftrightarrow \ell_k$, em que ℓ_k é a primeira linha abaixo da linha ℓ_i com um elemento diferente de zero na coluna ci

Passo 3 [anular os elementos abaixo do pivô]

para $p \leftarrow i + 1$ até m fazer

 $\ell_p \leftarrow \ell_p - \frac{a_{pj}}{\ell_i} \ell_i$

Passo 4 [terminar?]

se já se obteve uma matriz em escada então terminar senão

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz A as linhas $\ell_1, \ldots, \ell_{i-1}$

ir para o Passo 2

GJM, IB, SL (DMat, UM)

setembro de 2020 — v5.0

Exe 1.118

Aplique o ATEsc à matriz $A = \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 1 \end{bmatrix}$ e indique quantas operações elementares dos tipos I e III efetuou.

Res

$$\underbrace{\begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 1 \end{bmatrix}}_{A} \underbrace{\ell_1 \leftrightarrow \ell_2}_{\ell_1 \leftrightarrow \ell_2} \underbrace{\begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 2 & 2 & 1 \end{bmatrix}}_{\ell_3 \leftarrow \ell_3 - 2\ell_1}$$

$$\underbrace{\begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & -3 \end{bmatrix}}_{\ell_3 \leftarrow \ell_3 + \ell_2} \underbrace{\begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}}_{\in \mathsf{fe}(A)}.$$

número de operações elementares do tipo I/III: 1/2.

GJM, IB, SL (DMat, UM)

TALCA

setembro de 2020 — v5.0

l – Matrizes

Matrizes em escada e escada reduzid

Exe 1.120

Aplique o ATEscRed à matriz $A = \begin{bmatrix} 0 & 0 & 0 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 2 & 1 \end{bmatrix}$ e indique quantas operações elementares dos tipos I, II e III efetuou.

Res

Atendendo ao exercício Exe 1.118, tem-se:

$$\begin{bmatrix}
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{\ell_2 \leftarrow \frac{1}{3}\ell_2}
\begin{bmatrix}
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{\ell_1 \leftarrow \ell_1 - 2\ell_2}$$

$$\begin{bmatrix}
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}$$

número de operações elementares do tipo I/II/III: 1/1/3.

Alg 1.119

1 – Matrizes

```
"Algoritmo Transformação em Escada Reduzida" (ATEscRed) input matriz A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R}) output \text{fer}(A)
```

```
Passo 1 [inicializar o algoritmo]
    aplicar o ATEsc à matriz A por forma a determinar B = [b_{ii}] \in fe(A) (no que se segue,
          \ell refere-se às linhas da matriz B)
    i \leftarrow índice da última linha não-nula da matriz B
    j \leftarrow índice da coluna pivô da linha \ell_i
Passo 2 [colocar o elemento pivô a 1]
    se b_{ij} \neq 1 então
Passo 3 [anular os elementos acima do pivô]
    para p \leftarrow 1 até i - 1 fazer
      \ell_p \leftarrow \ell_p - b_{pi}\ell_i
Passo 4 [terminar?]
    se já se obteve uma matriz em escada reduzida então terminar
    senão
       i \leftarrow i - 1
      i \leftarrow índice da coluna pivô da linha \ell_i
       ir para o Passo 2
```

1 – Matrizes Cálculo de inversa

Def 1.12

GJM, IB, SL (DMat, UM)

[matriz elementar] Seja $E \in \mathcal{M}_{n \times n}(\mathbb{R})$. Diz-se que E é uma matriz elementar se se pode obter através de uma operação elementar sobre a matriz I_n .

Exe 1.122

A partir de l_4 , determine as matrizes elementares obtidas através das seguintes operações elementares:

- (a) $\ell_2 \leftrightarrow \ell_4$.
- (b) $\ell_3 \leftarrow 2\ell_3$.
- (c) $\ell_3 \leftarrow \ell_3 2\ell_1$.

GJM, IB, SL (DMat, UM)

fer(A)

TALGA

setembr

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

102

Res

- (a) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \stackrel{\longleftarrow}{\ell_2 \leftrightarrow \ell_4} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = E_1.$
- (b) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \leftarrow \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = E_2.$
- (c) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \ell_3 \leftarrow \ell_3 2\ell_1 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = E_3.$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

103

GJM. IB. SL (DMat. UN

TALG

setembro de 2020 — v5.0

I – Matrizes Cálculo de inversas

Res

(a) • Processo 1: aplicar a operação $\ell_2 \leftrightarrow \ell_4$

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ 1 & 1 & 3 & 2 \\ 2 & 1 & 1 & -2 \end{bmatrix} \longleftrightarrow \ell_2 \leftrightarrow \ell_4 \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 1 & 1 & -2 \\ 1 & 1 & 3 & 2 \\ 2 & 2 & -1 & -1 \end{bmatrix}.$$

• Processo 2: calcular E_1A

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ 1 & 1 & 3 & 2 \\ 2 & 1 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 1 & 1 & -2 \\ 1 & 1 & 3 & 2 \\ 2 & 2 & -1 & -1 \end{bmatrix}.$$

As matrizes que se obtiveram são iguais.

Teo 1.123

Aplicar uma operação elementar a uma matriz corresponde a pré-multiplicar essa matriz pela matriz elementar correspondente à operação elementar.

Exe 1.124

Illustre o teorema anterior considerando a matriz $A = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ 1 & 1 & 3 & 2 \\ 2 & 1 & 1 & -2 \end{bmatrix}$ e as operações elementares do exercício Exe 1.122.

Calculo de Inversas

Res (cont.)

(b) • Processo 1: aplicar a operação $\ell_3 \leftarrow 2\ell_3$

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ 1 & 1 & 3 & 2 \\ 2 & 1 & 1 & -2 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ 2 & 2 & 6 & 4 \\ 2 & 1 & 1 & -2 \end{bmatrix}$$

• Processo 2: calcular E_2A

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ 1 & 1 & 3 & 2 \\ 2 & 1 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ 2 & 2 & 6 & 4 \\ 2 & 1 & 1 & -2 \end{bmatrix}$$

As matrizes que se obtiveram são iguais.

Res (cont.)

• Processo 1: aplicar a operação $\ell_3 \leftarrow \ell_3 - 2\ell_1$.

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ 1 & 1 & 3 & 2 \\ 2 & 1 & 1 & -2 \end{bmatrix} \longleftrightarrow \underbrace{\ell_3 \leftarrow \ell_3 - 2\ell_1} \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ -1 & -3 & 3 & 4 \\ 2 & 1 & 1 & -2 \end{bmatrix}.$$

• Processo 2: calcular E_3A

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ 1 & 1 & 3 & 2 \\ 2 & 1 & 1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 & -1 \\ 2 & 2 & -1 & -1 \\ -1 & -3 & 3 & 4 \\ 2 & 1 & 1 & -2 \end{bmatrix}.$$

As matrizes que se obtiveram são iguais.

GJM, IB, SL (DMat, UM)

Cálculo de inversas

Obs 1.129

Sejam $k \in \mathbb{N}$ e $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ uma matriz invertível. Então, existem matrizes elementares E_1, E_2, \ldots, E_k tais que

$$I_n = E_k \cdots E_2 E_1 A$$
.

Pós-multiplicando ambos os termos pela inversa de A, tem-se

$$I_nA^{-1} = E_k \cdots E_2 E_1 A A^{-1} \Leftrightarrow A^{-1} = E_k \cdots E_2 E_1 I_n,$$

ou seja, A^{-1} obtém-se a partir de I_n através das mesmas operações elementares que transformam A em I_n .

Exe 1.130

Verifique se as seguintes matrizes são invertíveis, calculando, nesses casos, a sua inversa:

(a)
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 2 & 2 & 5 \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

Teo 1.125

As matrizes elementares são invertíveis e as suas inversas são matrizes elementares.

Teo 1.126

Sejam $A, B \in \mathcal{M}_{m \times n}(\mathbb{R})$ tais que $A \longleftrightarrow B$. Então, existe um número finito de matrizes elementares E_1, E_2, \dots, E_k , tais que $B = E_1 E_2 \dots E_k A$.

Teo 1.127

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Então, existe um número finito de matrizes elementares E_1, E_2, \dots, E_k , tais que fer $(A) = E_1 E_2 \cdots E_k A$.

Teo 1.128

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. As seguintes condições são equivalentes:

- (i) A é invertível.
- (ii) $fer(A) = I_n$.
- (iii) A é o produto de matrizes elementares.

GJM, IB, SL (DMat, UM)

Res

(a)

Res (cont.)

Assim, A é uma matriz invertível pois $fer(A) = I_3$ com $A^{-1} = \begin{bmatrix} 5 & -1 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$

Mostre-se, apenas para efeito de verificação, que $AA^{-1} = I_3$:

$$AA^{-1} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 2 & 2 & 5 \end{bmatrix} \begin{bmatrix} 5 & -1 & -2 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(b)

$$\underbrace{\left[\begin{array}{cc|c}1&2&1&0\\2&4&0&1\end{array}\right]}_{B|l_2} \underbrace{\ell_2 \leftarrow \ell_2 - 2\ell_1}_{\ell_2} \left[\begin{array}{cc|c}1&2&1&0\\0&0&-2&1\end{array}\right].$$

Assim, como fer $(B) \neq I_2$, conclui-se que a matriz B não é invertível.

GJM, IB, SL (DMat, UM)

Obs 1.131 (cont.)

- produto (ou multiplicação) de uma matriz por um escalar/multiplication of a matrix by a scalar
- multiplicação de matrizes/matrix multiplication
- potência de uma matriz/power of a matrix
- matrizes comutáveis/permutable matrices
- matriz invertível/invertible matrix
- matriz não-singular/non-singular matrix
- matriz não-invertível/non-invertible matrix
- matriz singular/singular matrix
- matriz inversa/inverse matrix
- matriz transposta/transpose matrix
- matriz simétrica/symmetric matrix

Obs 1.131

Some english vocabulary regarding Matrices

- matriz/matrix
- linha de uma matriz/row of a matrix
- coluna de uma matriz/column of a matrix
- matriz retangular/rectangular matrix
- matriz quadrada/square matrix
- matriz diagonal/diagonal matrix
- matriz escalar/scalar matrix
- matriz triangular superior/upper triangular matrix
- matriz triangular inferior/lower triangular matrix
- matriz nula/zero matrix
- matriz identidade/identity matrix
- soma de matrizes/matrix addition

GJM, IB, SL (DMat, UM)

English vocabula

Obs 1.131 (cont.)

- matriz ortogonal/orthogonal matrix
- matriz em escada/row echelon form of a matrix
- matriz em escada reduzida/row reduced echelon form of a matrix

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

[matriz complementar de um elemento de uma matriz] Sejam n um natural maior ou igual a 2, $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ e $i, j \in \{1, ..., n\}$. Chama-se matriz complementar do elemento ij, que se representa por \tilde{A}_{ii} , à matriz de ordem n-1 que se obtém a partir da matriz A eliminando ℓ_i e c_i .

(a) Determine a matriz complementar do elemento 12 da matriz A.

- 2 Determinantes

- 5 Transformações Lineares de \mathbb{R}^n em \mathbb{R}^m

GJM, IB, SL (DMat, UM)

Def 2.1

Exe 2.2

Res

Considere a matriz $A = \overline{\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}}$.

(b) Determine \tilde{A}_{33} .

(a) $\widetilde{A}_{12} = \begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix}$. (b) $\widetilde{A}_{33} = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$.

(a) A definição que se acaba de dar é um exemplo de uma definição recursiva.

- (b) Só se definem determinantes de matrizes quadradas, sendo o seu valor um número real.
- (c) Seja $A = [a_{ii}] \in \mathcal{M}_{1\times 1}(\mathbb{R})$. Note-se que quando se escreve |A| = $|a_{11}| = a_{11}$, $|\cdot|$ não representa o valor absoluto mas sim o determinante. O contexto será sempre suficiente para interpretar o significado correto de | · |.

Exe 2.5

Obs 2.4

Seja X uma matriz de ordem 2.

- (a) Determine \widetilde{X}_{11} e \widetilde{X}_{12} .
- (b) Determine uma expressão para |X|.

[determinante de uma matriz] Seja $A = [a_{ii}] \in \mathcal{M}_{n \times n}(\mathbb{R})$. Chama-se determinante da matriz A, que se representa por det(A), |A| ou

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix}$$
, ao escalar

$$\det(A) :=: |A| :=: \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{vmatrix} \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} a_{11} & \text{se} & n=1, \\ \sum\limits_{j=1}^{n} (-1)^{1+j} a_{1j} |\widetilde{A}_{1j}| & \text{se} & n \geqslant 2. \end{array} \right.$$

GJM, IB, SL (DMat, UM)

Res

Seja
$$X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R}).$$

(a)
$$\widetilde{X}_{11} = [d] e \widetilde{X}_{12} = [c].$$

(b)

$$|X| = \sum_{j=1}^{2} (-1)^{1+j} (X)_{1j} |\widetilde{X}_{1j}|$$

$$= \underbrace{(-1)^{1+1} (X)_{11} |\widetilde{X}_{11}|}_{j=1} + \underbrace{(-1)^{1+2} (X)_{12} |\widetilde{X}_{12}|}_{j=2}$$

$$= 1 \times \mathbf{a} \times d + (-1) \times \mathbf{b} \times c$$

$$= \mathbf{a}d - \mathbf{b}c.$$

Obs 2.6

Seja $X = \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Então, |X| pode-se calcular atendendo a

$$+$$
 c
 b
 d

vindo

$$|X| = ad - bc$$
.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

19

GJM, IB, SL (DMat, U

TALC

setembro de 2020 — v5.0

2 – Determinantes

Definições

Exe 2.7

Calcule $\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$.

Res

$$\left| \frac{1}{3} \frac{2}{4} \right| = 1 \times 4 - 2 \times 3 = -2.$$

Exe 2.8

Calcule o determinante da matriz $A = \begin{bmatrix} -1 & -5 \\ 3 & 2 \end{bmatrix}$.

Res

$$|A| = -1 \times 2 - (-5) \times 3 = 13.$$

Exe 2.9

Determine uma expressão para o determinante de uma matriz de ordem 3.

2 – Determinantes Definiçõe

Re

Seja
$$Y = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$$
. Então:

$$|Y| = \sum_{j=1}^{3} (-1)^{1+j} (Y)_{1j} |\widetilde{Y}_{1j}|$$

$$= \underbrace{(-1)^{1+1} (Y)_{11} |\widetilde{Y}_{11}|}_{j=1} + \underbrace{(-1)^{1+2} (Y)_{12} |\widetilde{Y}_{12}|}_{j=2} + \underbrace{(-1)^{1+3} (Y)_{13} |\widetilde{Y}_{13}|}_{j=3}$$

$$= 1 \times (Y)_{11} \times \begin{vmatrix} e & f \\ h & i \end{vmatrix} + (-1) \times (Y)_{12} \times \begin{vmatrix} d & f \\ g & i \end{vmatrix}$$

$$+ 1 \times (Y)_{13} \times \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$= a(ei - fh) - b(di - fg) + c(dh - eg)$$

$$= aei + bfg + cdh - afh - bdi - ceg.$$

Obs 2.10

- (a) A expressão que se obteve no exercício anterior para o cálculo de determinates de matrizes de ordem 3 é conhecida por "Fórmula de Leibniz".
- (b) Outra regra para o cálculo de determinates de matrizes de ordem 3, conhecida por "Regra de Sarrus": Seja $Y = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R}).$ Então, |Y| pode-se calcular atendendo a

vindo

$$|Y| = aei + dhc + gbf - ceg - fha - ibd$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 202

2 – Determinantes

Definições

Exe 2.11

Calcule o determinante da matriz $A = \begin{bmatrix} 9 & 1 & 2 \\ 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix}$

Res

 $|A| = 9 \times (4 \times 8 - 5 \times 7) - 1 \times (3 \times 8 - 5 \times 6) + 2 \times (3 \times 7 - 4 \times 6) = -27$, ou, atendendo a

tem-se que

$$|A| = 9 \times 4 \times 8 + 3 \times 7 \times 2 + 6 \times 1 \times 5$$

 $-2 \times 4 \times 6 - 5 \times 7 \times 9 - 8 \times 1 \times 3$
 $= -27,$

Determinantes De

Obs 2.10 (cont.)

ou, atendendo a

vindo

$$|Y| = aei + bfg + cdh - ceg - afh - bdi$$
.

(c) Repita-se: a regra de Sarrus só se pode aplicar a matrizes de ordem 3.

GJM, IB, SL (DMat, UM)

TALGA

104

2 – Determinante

Definições

Res (cont.)

ou, atendendo a

$$9 \\ 3 \\ 4 \\ 5 \\ 3 \\ 6$$

tem-se que

$$|A| = 9 \times 4 \times 8 + 1 \times 5 \times 6 + 2 \times 3 \times 7$$

 $-2 \times 4 \times 6 - 9 \times 5 \times 7 - 1 \times 3 \times 8$
 $= -27.$

opriedades

- Determinantes

Teo 2.12

(Teorema de Laplace) Sejam n um natural maior ou igual a 2, A uma matriz de ordem $n \in \xi, \eta \in \{1, ..., n\}$. Então:

$$|A| = \underbrace{\sum_{j=1}^{n} (-1)^{\xi+j} (A)_{\xi j} |\widetilde{A}_{\xi j}|}_{\text{desenvolvimento da linha } \xi} = \underbrace{\sum_{i=1}^{n} (-1)^{i+\eta} (A)_{i\eta} |\widetilde{A}_{i\eta}|}_{\text{desenvolvimento da coluna } \eta}.$$

Obs 2.13

- (a) Note-se que a definição Def 2.3 para $n \ge 2$ consiste no cálculo do determinante através do desenvolvimento da linha 1.
- (b) Como regra prática para calcular determinantes através do teorema de Laplace, deve-se fazer o desenvolvimento da linha ou coluna que tiver mais zeros.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 —

127

GJM, IB, SL (DMat, UM

TALGA

(a) Calcule o determinante da matriz E por aplicação do teorema de

processo para calcular determinantes de matrizes de ordem 3).

(b) Calcule o determinante da matriz E por aplicação do teorema de Laplace através do desenvolvimento da coluna 1 (podendo usar qualquer processo para calcular determinantes de matrizes de ordem 3).

Laplace através do desenvolvimento da linha 4 (podendo usar qualquer

setembro de 2020 — v5.0

2 - Determinantes Propriedades

Res

(a)
$$E = \begin{bmatrix} \frac{1}{2} & \frac{1}{1} & \frac{1}{3} & \frac{1}{2} \\ 0 & 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{4} \end{bmatrix}.$$

$$|E| = \sum_{j=1} (-1)^{4+j} (E)_{4j} |\widetilde{E}_{4j}|$$

$$= (-1)^{4+1} (E)_{41} |\widetilde{E}_{41}| + (-1)^{4+2} (E)_{42} |\widetilde{E}_{42}|$$

$$+ (-1)^{4+3} (E)_{43} |\widetilde{E}_{43}| + (-1)^{4+4} (E)_{44} |\widetilde{E}_{44}|$$

$$= \frac{0}{4} + \frac{1}{4} + \frac$$

Cálculos auxiliares usando a Fórmula de Leibniz:

$$\begin{vmatrix} \frac{1}{2} & \frac{1}{1} & \frac{1}{2} \\ 0 & 1 & 1 \end{vmatrix} = 1 \times (1 \times 1 - 2 \times 1) - 1 \times (2 \times 1 - 2 \times 0) + 1 \times (2 \times 1 - 1 \times 0) = -1.$$

$$\begin{vmatrix} \frac{1}{2} & \frac{1}{1} & \frac{1}{2} \\ 0 & 1 & 2 \end{vmatrix} = 1 \times (1 \times 2 - 3 \times 1) - 1 \times (2 \times 2 - 3 \times 0) + 1 \times (2 \times 1 - 1 \times 0) = -3.$$

Exe 2.14

Seja a matriz $E = \begin{bmatrix} \frac{1}{2} & \frac{1}{3} & \frac{3}{2} \\ 0 & 1 & 2 & 1 \end{bmatrix}$

. . . .

Res

(b)
$$E = \begin{bmatrix} \frac{1}{2} & \frac{1}{1} & \frac{1}{3} & \frac{1}{2} \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 3 \end{bmatrix}.$$

$$|E| = \sum_{i=1} (-1)^{i+1} (E)_{i1} |\widetilde{E}_{i1}|$$

$$= (-1)^{1+1} (E)_{11} |\widetilde{E}_{11}| + (-1)^{2+1} (E)_{21} |\widetilde{E}_{21}|$$

$$+ (-1)^{3+1} (E)_{31} |\widetilde{E}_{31}| + (-1)^{4+1} (E)_{41} |\widetilde{E}_{41}|$$

$$= 1 \times 1 \times \begin{vmatrix} 1 & 3 & 2 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{vmatrix} + (-1) \times 2 \times \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{vmatrix} + 0 + 0$$

$$= 1 \times 1 \times (-2) + (-1) \times 2 \times 3 + 0 + 0$$

$$= -8.$$

Cálculos auxiliares usando a Fórmula de Leibniz:

$$\begin{vmatrix} 1 & 3 & 2 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{vmatrix} = 1 \times (2 \times 3 - 1 \times 1) - 3 \times (1 \times 3 - 1 \times 0) + 2 \times (1 \times 1 - 2 \times 0) = -2.$$
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{vmatrix} = 1 \times (2 \times 3 - 1 \times 1) - 1 \times (1 \times 3 - 1 \times 0) + 1 \times (1 \times 1 - 2 \times 0) = 3.$$

GIM IR SI (DMat IIM)

TALGA

setembro de 2020 — v5.0

120

GIM IR SI (DMat IIM)

TALGA

setembro de 2020 — v5.0

Teo 2.15

Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ e $\alpha \in \mathbb{R}$.

- (a) Se A for uma matriz diagonal ou triangular (inferior ou superior) então $|A| = (A)_{11} \times \cdots \times (A)_{nn}$.
- (b) Se todos os elementos de uma linha ou coluna da matriz A são nulos então |A|=0.
- (c) Se A tem duas linhas ou colunas iguais, então |A| = 0.
- (d) $|\alpha A| = \alpha^n |A|$.
- (e) $|A^{\mathsf{T}}| = |A|$.
- (f) |AB| = |A||B|.
- (g) A é invertível se e só se $|A| \neq 0$.
- (h) Se A é uma matriz invertível, então $|A^{-1}| = \frac{1}{|A|}$.

Propriedade

Res

- (a) Sendo A uma matriz triangular (superior), $|A| = 1 \times 2 \times 3 = 6$.
- (b) Sendo $c_{1,B} = c_{2,B}$, |B| = 0.
- (c) Sendo $\ell_{2,C}$ uma linha nula, |C| = 0.
- (d) Sendo D uma matriz diagonal, $|D| = 1 \times 2 = 2$.
- (e) $|-2A| = (-2)^3 |A| = -8 \times 6 = -48$.
- (f) $-2|A| = -2 \times 6 = -12$.
- (g) $|A^3| = |A|^3 = 6^3 = 216$.
- (h) $|2A^TA| = |2A^T||A| = 2^3|A^T||A| = 2^3|A||A| = 2^3 \times 6 \times 6 = 288.$
- (i) $|A^{\mathsf{T}}A^{-1}B^{\mathsf{T}}| = |A^{\mathsf{T}}||A^{-1}||B^{\mathsf{T}}| = |A|\frac{1}{|A|}|B| = |B| = 0.$
- (j) $|A^{-1}DA| = |A^{-1}||D||A| = \frac{1}{|A|}|D||A| = |D| = 2.$
- (k) $|ABCD| = |A||B||C||D| = 6 \times 0 \times 0 \times 2 = 0$.
- (I) $|P^{-1}AP| = |P^{-1}||A||P| = \frac{1}{|P|}|A||P| = |A| = 6.$

Obs 2.16

- (a) |I| = 1.
- (b) Sejam $k \in \mathbb{N}$ e $A_1, \ldots, A_k \in \mathcal{M}_{n \times n}(\mathbb{R})$. Então, $|A_1 \cdots A_k| = |A_1| \times n$ $\cdots \times |A_k|$.
- (c) Sejam $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ e $k \in \mathbb{N}$. Então, $|A^k| = |A|^k$.

Exe 2.17

Considere as matrizes $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ 2 & 1 & 2 \end{bmatrix}$,

 $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ e $P \in \mathcal{M}_{3\times3}(\mathbb{R})$, tal que P é uma matriz invertível. Usando as propriedades dos determinantes, calcule:

(a) |A|.

- (e) |-2A|.
- (i) $|A^{T}A^{-1}B^{T}|$.

(b) |B|.

- (f) -2|A|.
- (j) $|A^{-1}DA|$.

(c) |C|.

- (g) $|A^3|$.
- (k) | *ABCD*|.

(d) |D|.

- (h) $|2A^{T}A|$.
- (I) $|P^{-1}AP|$.

Exe 2.18

Considere as matrizes A, B, C e D do exercício anterior. Indique, justificando, as que são invertíveis.

Res

Apenas as matrizes A e D são invertíveis pois são as únicas cujos determinantes são diferentes de zero.

Teo 2.19

Seja A uma matriz quadrada.

- (a) Se B resulta de A por troca de duas linhas (operação elementar do tipo I), então |B| = -|A|.
- (b) Seja, ainda, $\alpha \in \mathbb{R} \{0\}$. Se B resulta de A por multiplicação dos elementos de uma linha de A por α (operação elementar do tipo II), então $|B| = \alpha |A|$.
- (c) Se B resulta de A adicionando a uma linha um múltiplo de outra linha (operação elementar do tipo III), então |B| = |A|.

Obs 2.20

Sejam A uma matriz de ordem n e B é o resultado de aplicar o ATEsc à matriz A. Então, $|A|=(-1)^s\times(B)_{11}\times\cdots\times(B)_{nn}$, em que s é o número de operações elementares do tipo I realizadas (ou seja, o número de trocas de linhas), pois operações elementares do tipo I trocam o sinal do determinante, operações elementares do tipo III não alteram o valor do determinante e a matriz B é triangular superior.

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

135

GJM, IB, SL (DMat, UM

(b) $A = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 3 \\ 2 & 1 & 0 & 1 \end{bmatrix}$

TALGA

setembro de 2020 — v5.0

126

2 - Determinantes Propriedades

Res

(a)
$$A = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 1 & 0 & 3 \\ 2 & 1 & 0 & 1 \\ 2 & 1 & 0 & 1 \end{bmatrix}$$
.

$$|A| = \sum_{j=1} (-1)^{1+j} (A)_{1j} |\widetilde{A}_{1j}|$$

$$= (-1)^{1+1} (A)_{11} |\widetilde{A}_{11}| + (-1)^{1+2} (A)_{12} |\widetilde{A}_{12}|$$

$$+ (-1)^{1+3} (A)_{13} |\widetilde{A}_{13}| + (-1)^{1+4} (A)_{14} |\widetilde{A}_{14}|$$

$$= 0 + (-1) \times 1 \times \begin{vmatrix} 1 & 2 & 0 \\ 1 & 0 & 3 \\ 2 & 0 & 1 \end{vmatrix} + 0 + (-1) \times 2 \times \begin{vmatrix} 1 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{vmatrix}$$

$$= 0 + (-1) \times 1 \times 10 + 0 + (-1) \times 2 \times 2$$

$$= -14.$$

Cálculos auxiliares usando a Fórmula de Leibniz:

$$\begin{vmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 & 1 \\ 2 & 0 & 1 \end{vmatrix} = 1 \times (0 \times 1 - 3 \times 0) - 2 \times (1 \times 1 - 3 \times 2) + 0 \times (1 \times 0 - 0 \times 2) = 10.$$
$$\begin{vmatrix} 1 & 1 & 2 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{vmatrix} = 1 \times (0 \times 0 - 0 \times 1) - 1 \times (1 \times 0 - 0 \times 2) + 2 \times (1 \times 1 - 0 \times 2) = 2.$$

Exe 2.21

Considere a matriz $A = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 3 \\ 2 & 1 & 0 & 1 \end{bmatrix}$

- (a) Calcule o determinante da matriz A através da definição (podendo usar qualquer processo para calcular determinantes de matrizes de ordem 3).
- (b) Calcule o determinante da matriz A por aplicação do teorema de Laplace através do desenvolvimento da coluna 3 (podendo usar qualquer processo para calcular determinantes de matrizes de ordem 3).
- (c) Calcule o determinante da matriz A através da observação Obs 2.20.

2 - Determinantes Propriedado

Res (cont.)

$$|A| = \sum_{i=1}^{4} (-1)^{i+3} (A)_{i3} |\widetilde{A}_{i3}|$$

$$= (-1)^{1+3} (A)_{13} |\widetilde{A}_{13}| + (-1)^{2+3} (A)_{23} |\widetilde{A}_{23}|$$

$$+ (-1)^{3+3} (A)_{33} |\widetilde{A}_{33}| + (-1)^{4+3} (A)_{43} |\widetilde{A}_{43}|$$

$$|0 \quad 1 \quad 2|$$

$$= \frac{0 + (-1) \times 2 \times \begin{vmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 2 & 1 & 1 \end{vmatrix} + \frac{0 + 0}{0}$$

$$= 2 \times (-1) \times 7$$

= -14.

Cálculos auxiliares usando a Fórmula de Leibniz:

$$\left|\begin{smallmatrix}0&1&2\\1&0&3\\2&1&1\end{smallmatrix}\right|=0\times\left(0\times1-3\times1\right)-1\times\left(1\times1-3\times2\right)+2\times\left(1\times1-0\times2\right)=7.$$

TALGA

IM IR SL (DMat IIM) TALGA setembro de 2020 — v5.0 137

GIM IR SI (DMat IIM)

setembro de 2020 — v5.0

Res (cont.)

(c)

$$\begin{bmatrix} 0 & 1 & 0 & 2 \\ 1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 3 \\ 2 & 1 & 0 & 1 \end{bmatrix} \longleftrightarrow \ell_{1} \leftrightarrow \ell_{2} \longleftrightarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 3 \\ 2 & 1 & 0 & 1 \end{bmatrix} \ell_{3} \leftarrow \ell_{3} - \ell_{1}$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & -1 & -2 & 3 \\ 0 & -1 & -4 & 1 \end{bmatrix} \ell_{3} \leftarrow \ell_{3} + \ell_{2} \longleftrightarrow \begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & -2 & 5 \\ 0 & 0 & -4 & 3 \end{bmatrix} \ell_{4} \leftarrow \ell_{4} - 2\ell_{1}$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & -2 & 5 \\ 0 & 0 & -4 & 3 \end{bmatrix} \ell_{4} \leftarrow \ell_{4} - 2\ell_{3}$$

$$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & -2 & 5 \\ 0 & 0 & 0 & -7 \end{bmatrix}$$

$$|A| = (-1)^{1} \times (1 \times 1 \times (-2) \times (-7)) = -14.$$

GJM, IB, SL (DMat, UM)

Obs 2.22

Pedindo-se para calcular o determinante de uma matriz, se não for explicitado no enunciado o processo de cálculo, este pode ser feito por um método qualquer, nomeadamente aquele que se achar mais simples.

[matriz adjunta] Sejam n um natural maior ou igual a 2 e A uma matriz de ordem n. Chama-se matriz adjunta de A, que se representa por adj(A), ao elemento de $\mathcal{M}_{n\times n}(\mathbb{R})$ tal que

$$(\operatorname{\mathsf{adj}}(A))_{ij} \stackrel{\mathsf{def}}{=} (-1)^{j+i} |\widetilde{A}_{ii}|, \ i,j=1,\ldots,n.$$

Exe 2.24

- (a) Determine a matriz adjunta de uma matriz de ordem 2.
- (b) Determine a matriz adjunta da matriz $A = \begin{bmatrix} -7 & -1 \\ 3 & -4 \end{bmatrix}$.

Res

(a) Seja $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Atendendo a

$$\begin{aligned} (\mathsf{adj}(X))_{11} &= (-1)^{1+1} |\widetilde{X}_{11}| = 1 \times |d| = d, \\ (\mathsf{adj}(X))_{12} &= (-1)^{2+1} |\widetilde{X}_{21}| = -1 \times |b| = -b, \\ (\mathsf{adj}(X))_{21} &= (-1)^{1+2} |\widetilde{X}_{12}| = -1 \times |c| = -c, \\ (\mathsf{adj}(X))_{22} &= (-1)^{2+2} |\widetilde{X}_{22}| = 1 \times |a| = a, \end{aligned}$$

tem-se que

$$adj(X) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

(b) Atendendo à alínea anterior, tem-se que

$$\mathsf{adj}(A) = \begin{bmatrix} -4 & 1 \\ -3 & -7 \end{bmatrix}.$$

Teo 2.25

Seja A uma matriz de ordem maior ou igual a 2. Então:

- (a) $A \operatorname{adj}(A) = \operatorname{adj}(A)A = |A|I$.
- (b) Se A é uma matriz invertível, então $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A)$.

Exe 2.26

Considere a matriz $A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$.

- (a) Verifique que a matriz A é invertível.
- (b) Determine a inversa da matriz A através do método da adjunta.

Res

- (a) Como $|A| = 3 \times 0 (-2) \times 1 = 2 \neq 0$, A é uma matriz invertível.
- (b) $A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) = \frac{1}{2} \begin{bmatrix} 0 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix}$.

Mostre-se, apenas para efeito de verificação, que $AA^{-1} = I_2$:

$$AA^{-1} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -\frac{1}{2} & \frac{3}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

3

3 - Sistemas de Equações Lineares

- O Algumas notações e revisões
- 1 Matrizes
- 2 Determinantes
- 3 Sistemas de Equações Lineares
- 4 Espaços Vetoriais
- 5 Transformações Lineares de IRⁿ em IR^m
- 6 Valores e Vetores Próprios
- 7 Geometria Analítica

Obs 2.27

Some english vocabulary regarding Determinants

- determinante de uma matriz/determinant of a matrix
- matriz adjunta/adjoint matrix

GJM, IB, SL (DMat, UN

TALG

etembro de 2020 — v5.0

144

3 – Sistemas de Equações Lineare

Definições inicia

Def 3.1

[[equação linear, incógnitas ou variáveis, termo independente ou segundo membro]] Uma equação linear nas incógnitas ou variáveis $x_1, x_2, \ldots, x_n \in \mathbb{R}$ é uma equação do tipo

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b,$$

onde $a_1, a_2, \ldots, a_n, b \in \mathbb{R}$. A b chama-se termo independente ou segundo membro da equação linear.

Exe 3.2

Indique o valor lógico das seguintes proposições:

- (a) "2x 3y = 4 é uma equação linear nas incógnitas x e y."
- (b) " $2a^2 + b = 1$ é uma equação linear nas variáveis a e b."

Res

(a) é uma proposição verdadeira e (b) é uma proposição falsa.

Obs 3.3

A equação linear

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

nas incógnitas x_1, x_2, \dots, x_n pode ser escrita na forma matricial

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b \end{bmatrix}.$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5

147

Def

[sistema de equações lineares] A um conjunto finito de equações lineares chama-se sistema de equações lineares (ou simplesmente sistema, caso não resulte ambíguo).

Exe 3.5

Dê um exemplo de um sistema com duas equações lineares e com três incógnitas.

Res

$$\begin{cases} x + 2y + z = 1 \\ 3x - y + z = 0 \end{cases}$$

Definicões iniciai

Def 3.6

[matriz dos coeficientes, vetor dos termos independentes, vetor das incógnitas, matriz aumentada ou matriz ampliada, conjunto solução]] Seja (S) o sistema de m equações lineares nas n incógnitas x_1, x_2, \ldots, x_n dado por

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m. \end{cases}$$

Então:

- (a) à matriz $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R})$ chama-se matriz dos coeficientes de (S).
- (b) à matriz coluna $b = [b_i] \in \mathcal{M}_{m \times 1}(\mathbb{R})$ chama-se vetor dos termos independentes de (S).

Definições iniciai

Def 3.6 (cont.

- (c) à matriz coluna $x = [x_i] \in \mathcal{M}_{m \times 1}(\mathbb{R})$ chama-se vetor das incógnitas de (S).
- (d) à matriz

$$A|b \stackrel{\text{def}}{=} \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} & b_m \end{bmatrix}.$$

chama-se matriz aumentada ou matriz ampliada de (S).

(e) Chama-se conjunto solução do sistema (S), que se representa por $\mathsf{CS}_{(S)}$, a

$$\mathsf{CS}_{(S)} \stackrel{\mathsf{def}}{=} \{ (x_1, \dots, x_n) \in \mathbb{R}^n : A \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right] = b \}.$$

GJM, IB, SL (DMat, UM)

TALGA

SA .

setembro de 2020 — v5.0

149

GJM, IB, SL (DMat, UM)

TALC

setembro de 2020 — v5.0

Obs 3.7

Note-se que o sistema (S) da definição anterior pode ser escrito na forma matricial

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix},$$

ou, em notação matricial, como Ax = b.

 \llbracket sistema homogéneo, sistema completo \rrbracket Seja (S) o sistema de equações lineares Ax = b. Diz-se que (S) é um sistema homogéneo se b = 0 e completo se $b \neq 0$.

Exe 3.9

- (a) Dê um exemplo de um sistema homogéneo.
- (b) Dê um exemplo de um sistema completo.

Res

(a)

$$\begin{cases} x + 2y + z = 0 \\ 3x - y + z = 0. \end{cases}$$

(b)

$$\begin{cases} x + 2y + z = 1 \\ 3x - y + z = 0. \end{cases}$$

TALGA

[sistema homogéneo associado] Seja (S) o sistema completo Ax = b. Chama-se sistema homogéneo associado ao sistema (S), que se representa por (S_h) , ao sistema Ax = 0.

Exe 3.11

Identifique o sistema homogéneo associado ao sistema de equações lineares

$$\begin{cases} x + 2y = 1 \\ 3x - y = 0. \end{cases}$$

Res

$$\begin{cases} x + 2y = 0 \\ 3x - y = 0 \end{cases}$$

3 – Sistemas de Equações Lineares

Definições inicia

[característica de uma matriz] Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Chama-se característica da matriz A, que se representa por car(A), ao número de linhas não nulas de uma matriz em escada que seja equivalente à matriz A.

Exe 3.13

Determine a característica da matriz $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 0 & 1 \\ -3 & -3 & 1 & -3 \end{bmatrix}$.

Res

 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 0 & 2 \\ -3 & -3 & 1 & -3 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 4 & 0 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + 2\ell_2}$

uações Lineares

Def 3 14

Seja (S) um sistema de equações lineares.

- (a) [sistema possível ou sistema compatível ou sistema consistente] Dizse que (S) é um sistema possível (que se abrevia por "Pos") ou sistema compatível ou sistema consistente se $\# \operatorname{CS}_{(S)} > 0$.
- (b) [sistema possível e determinado] Diz-se que (S) é um sistema possível e determinado (que se abrevia por "PD") se $\# CS_{(S)} = 1$.
- (c) [sistema possível e indeterminado] Diz-se que (S) é um sistema possível e indeterminado (que se abrevia por "PI") se $\# CS_{(S)} = +\infty$.
- (d) [sistema impossível ou sistema incompatível ou sistema inconsistente] Diz-se que (S) é um sistema impossível (que se abrevia por "Imp") ou sistema incompatível ou sistema inconsistente se $\# \operatorname{CS}_{(S)} = 0$.

Teo 3.15

Um sistema de equações lineares ou é PD ou PI ou Imp.

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

155

Sistemas de Equações Lineares

Método de Gauss e método de Gauss-Jorda

Def 3.18

[incógnita ou variável pivô, incógnita ou variável livre] Seja (S) um sistema de equações lineares cuja matriz dos coeficientes é A. Seja, ainda, $A' \in \text{fe}(A)$. Se $c_{j,A'}$ é uma coluna pivô de A', diz-se que x_j é uma incógnita ou variável pivô de (S). Caso contrário, diz-se que x_j é uma incógnita ou variável livre de (S).

Exe 3.19

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 2 & -2 & 1 \\ 1 & 2 & 0 & 1 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

- (a) Aplique o ATEsc à matriz A|b.
- (b) Identifique as colunas pivô do sistema (S).
- (c) Identifique as incógnitas piv \hat{o} e as incógnitas livres do sistema (S).

Teo 3.16

Seja Ax = b um sistema de equações lineares com n incógnitas. Então:

$$\begin{cases} \operatorname{car}(A) = \operatorname{car}(A|b) & : \operatorname{Pos} \\ \operatorname{car}(A) = \operatorname{car}(A|b) = n & : \operatorname{PD} \\ \operatorname{car}(A) = \operatorname{car}(A|b) < n & : \operatorname{PI} \\ \operatorname{car}(A) < \operatorname{car}(A|b) & : \operatorname{Imp.} \end{cases}$$

Obs 3.17

- (a) Seja um sistema de m equações lineares com n incógnitas. Então, se n > m o sistema nunca é PD.
- (b) Seja Ax = b um sistema de n equações lineares com n incógnitas, tal que A é uma matriz invertível. Então, $x = A^{-1}b$.
- (c) Os sistemas homogéneos são sempre possíveis.
- (d) Se um sistema homogéneo é PD, então a única solução é o vetor nulo (que se diz "solução trivial").

GJM, IB, SL (DMat, UN

TALGA

setembro de 2020 — v5.0

156

3 – Sistemas de Equações Lineares

Método de Gauss e método de Gauss-Jord

Res

(a)

$$\begin{bmatrix} 1 & 2 & -2 & 1 & | & 3 \\ 1 & 2 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1} \underbrace{\begin{bmatrix} 1 & 2 & -2 & 1 & | & 3 \\ 0 & 0 & 2 & 0 & | & -2 \end{bmatrix}}_{\in fe(A|b)}.$$

- (b) Colunas pivô de (S): c_1 e c_3 .
- (c) Seja $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ o vetor das incógnitas do sistema (S). Então, x_1 e x_3 são as incógnitas pivô de (S)e x_2 e x_4 são as incógnitas livres de (S).

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, l

TALGA

setembro de 2020 — v5.0

158

Obs 3.20

Seja (S) um sistema de equações lineares cuja matriz dos coeficientes é A. Se $A \in fe(A)$, determinar o seu conjunto solução é simples. Depois de classificar o tipo do sistema (S) atendendo às características da matriz dos coeficientes e da matriz aumentada, tem-se:

- (a) se (S) é PD, então começa-se por determinar o valor da última incógnita através da última equação; depois, determina-se o valor da penúltima incógnita substituindo-se na penúltima equação o valor da última incógnita, repetindo-se o processo até se determinar o valor da primeira incógnita (a este algoritmo chama-se "Método de Substituição de Trás para a Frente — MeSTaF").
- (b) se (S) é PI, então começa-se por identificar as incógnitas livres e depois determina-se o valor das incógnitas pivô através do MeSTaF.
- (c) se (S) é Imp, então $CS_{(S)} = \emptyset$.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 - v5.0

159

GJM, IB, SL (DMat, UN

TALG

setembro de 2020 — v5.0

8 – Sistemas de Equações Lineares

Método de Gauss e método de Gauss-Jordar

Res

Como $A \in fe(A)$, tem-se, sem necessidade de fazer cálculos, que car(A) = car(A|b) = n = 3 (n é o número de incógnitas), pelo que (S) é um sistema PD.

Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} x_1 - 2x_2 + 3x_3 = -1 \\ 3x_2 - 4x_3 = 4 \\ \frac{7}{3}x_3 = -\frac{10}{3}. \end{cases}$$

Assim, tem-se (MeSTaF):

•
$$\frac{7}{3}x_3 = -\frac{10}{3} \Leftrightarrow x_3 = -\frac{10}{7}$$
;

•
$$3x_2 - 4x_3 = 4 \Leftrightarrow 3x_2 - 4 \times \left(-\frac{10}{7}\right) = 4 \Leftrightarrow x_2 = -\frac{4}{7}$$
;

•
$$x_1 - 2x_2 + 3x_3 = -1 \Leftrightarrow x_1 - 2 \times \left(-\frac{4}{7}\right) + 3 \times \left(-\frac{10}{7}\right) = -1 \Leftrightarrow x_1 = \frac{15}{7}$$
, pelo que $CS_{(S)} = \left\{\left(\frac{15}{7}, -\frac{4}{7}, -\frac{10}{7}\right)\right\}$.

Exe 3.21

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 3 & -4 \\ 0 & 0 & \frac{7}{3} \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} -1 \\ 4 \\ -\frac{10}{3} \end{bmatrix}$. Determine $\mathsf{CS}_{(S)}$.

3 - Sistemas de Equações Lineares

Método de Gauss e método de Gauss-Jordan

Def 3.22

[sistemas de equações lineares equivalentes] Dois sistemas de equações lineares dizem-se equivalentes se tiverem o mesmo conjunto solução.

Teo 3.23

Sejam (S) um sistema de equações lineares e (S') um sistema de equações lineares cuja matriz aumentada foi obtida a partir da matriz aumentada de (S) através de um cojunto finito de operações do tipo, I, II e III. Então, (S) e (S') são equivalentes.

Obs 3.24

O teorema anterior justifica os dois métodos para resolver sistemas de equações lineares que se vão apresentar de seguida: o Método de Gauss (algoritmo Alg. 3.25), que considera o algoritmo ATEsc, e o Método de Gauss-Jordan (algoritmo Alg. 3.29), que considera o algoritmo ATEscRed. Obviamente que o resultado final tem que ser igual.

Alg 3.25

"Algoritmo do Método de Gauss"

input matriz dos coeficientes A e vetor dos termos independentes b de um sistema de equações lineares (S) com n incógnitas

output $CS_{(S)}$

Passo 1 [ATEsc]

aplicar o ATEsc à matriz aumentada A b

Passo 2 [determinar o tipo do sistema (S)]

PD se car(A) = car(A|b) = n, PI se car(A) = car(A|b) < n e Imp se car(A) < car(A|b)

Passo 3 [determinar $CS_{(S)}$]

caso(S) seja

PD então

determinar o valor das incógnitas através da aplicação do MeSTaf à matriz resultante do ${f Passo}~{f 1}$

Pl então

identificar as incógnitas livres

determinar o valor das incógnitas pivô através da aplicação do MeSTaf à matriz resultante do Passo ${\bf 1}$

Imp então

 $CS_{(S)} = \emptyset$

GJM, IB, SL (DMat, UM)

- Sistemas de Equações Lineares

TALGA

setembro de 2020 — v5.

163

Res (cont.)

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} x_1 - 2x_2 + 3x_3 = -1 \\ 3x_2 - 4x_3 = 4 \\ \frac{7}{3}x_3 = -\frac{10}{3}. \end{cases}$$

Assim, tem-se (MeSTaF):

•
$$\frac{7}{3}x_3 = -\frac{10}{3} \Leftrightarrow x_3 = -\frac{10}{7}$$
;

•
$$3x_2 - 4x_3 = 4 \Leftrightarrow 3x_2 - 4 \times \left(-\frac{10}{7}\right) = 4 \Leftrightarrow x_2 = -\frac{4}{7}$$
;

•
$$x_1 - 2x_2 + 3x_3 = -1 \Leftrightarrow x_1 - 2 \times \left(-\frac{4}{7}\right) + 3 \times \left(-\frac{10}{7}\right) = -1 \Leftrightarrow x_1 = \frac{15}{7}$$
, pelo que $CS_{(5)} = \left\{\left(\frac{15}{7}, -\frac{4}{7}, -\frac{10}{2}\right)\right\}$.

Exe 3.26

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -1 & 2 \\ 3 & 1 & 2 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$. Determine $\mathsf{CS}_{(S)}$ através do método de Gauss.

Res

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & -2 & 3 & | & -1 \\ 2 & -1 & 2 & | & 2 \\ 3 & 1 & 2 & | & 3 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & -2 & 3 & | & -1 \\ 0 & 3 & -4 & | & 4 \\ 0 & 7 & -7 & | & 6 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{7}{3}\ell_2} \begin{bmatrix} 1 & -2 & 3 & | & -1 \\ 0 & 3 & -4 & | & 4 \\ 0 & 0 & \frac{7}{3} & | & -\frac{10}{3} \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas),(S) é um sistema PD.

GJM, IB, SL (DMat, UN

TALGA

setembro de 2020 --- v5

164

Sistemas de Equações Lineares

Método de Gauss e método de Gauss-Jorda

Exe 3.27

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é

$$A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{0} & \frac{1}{2} \\ -3 & -3 & 1 & -3 \\ 2 & 2 & -1 & 2 \end{bmatrix} \text{ e cujo vetor dos termos independentes } \acute{b} = \begin{bmatrix} 0 \\ 1 \\ -2 \\ \frac{3}{2} \end{bmatrix}.$$

Determine $CS_{(S)}$ através do método de Gauss.

Res

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 2 & 2 & 0 & 2 & 1 \\ -3 & -3 & 1 & -3 & -2 \\ 2 & 2 & -1 & 2 & \frac{3}{2} \end{bmatrix} \stackrel{\longleftarrow}{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & -2 & 0 & 1 \\ 0 & 0 & 4 & 0 & -2 \\ 0 & 0 & -3 & 0 & \frac{3}{2} \end{bmatrix}$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 4 (n é o número de incógnitas),(S) é um sistema PI.

Passo 3 Sejam x_1, x_2, x_3, x_4 as incógnitas do sistema (S). Então, x_2 e x_4 são incógnitas livrese (S) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ -2x_3 = 1. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-2x_3 = 1 \Leftrightarrow x_3 = -\frac{1}{2}$;
- $x_1 + x_2 + x_3 + x_4 = 0 \Leftrightarrow x_1 + x_2 + \left(-\frac{1}{2}\right) + x_4 = 0 \Leftrightarrow x_1 = \frac{1}{2} x_2 x_4$ pelo que $CS_{(S)} = \{(\frac{1}{2} - x_2 - x_4, x_2, -\frac{1}{2}, x_4) : x_2, x_4 \in \mathbb{R}\}.$

GJM, IB, SL (DMat, UM)

TALGA

Sistemas de Equações Lineares

Alg 3.29

"Algoritmo do Método de Gauss-Jordan"

input matriz dos coeficientes A e vetor dos termos independentes b de um sistema de equações lineares (S) com n incógnitas

output $CS_{(S)}$

Passo 1 [ATEsc]

aplicar o ATEsc à matriz aumentada A|b

Passo 2 [determinar o tipo do sistema (S)]

PD se car(A) = car(A|b) = n, PI se car(A) = car(A|b) < n e Imp se car(A) < car(A|b)

Passo 3 [determinar $CS_{(S)}$]

caso (S) seja

PD então

determinar fer(A|b) através da aplicação do ATEscRed à matriz resultante do Passo 1 determinar o valor das incógnitas através da aplicação do MeSTaf à matriz fer(A|b)

PI então

determinar fer(A|b) através da aplicação do ATEscRed à matriz resultante do Passo 1 identificar as incógnitas livres

determinar o valor das incógnitas pivô através da aplicação do MeSTaf à matriz fer(A|b)Imp então

 $CS_{(S)} = \emptyset$

GJM, IB, SL (DMat, UM)

setembro de 2020 — v5.0

Exe 3.28

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 3 & 2 & -5 \\ 1 & 1 & -2 \\ 5 & 3 & -8 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 4 \\ 1 \\ 6 \end{bmatrix}$ Determine $CS_{(S)}$ através do método de Gauss.

Res

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 3 & 2 & -5 & | & 4 \\ 1 & 1 & -2 & | & 1 \\ 5 & 3 & -8 & | & 6 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \frac{1}{3}\ell_1} \begin{bmatrix} 3 & 2 & -5 & | & 4 \\ 0 & \frac{1}{3} & -\frac{1}{3} & | & -\frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{1}{3} & | & -\frac{2}{3} \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + \ell_2}$$

$$\begin{bmatrix} 3 & 2 & -5 & | & 4 \\ 0 & \frac{1}{3} & -\frac{1}{3} & | & -\frac{1}{3} \\ 0 & 0 & 0 & | & -1 \end{bmatrix} .$$

Passo 2 Como car(A) = 2 < car(A|b) = 3,(S) é um sistema Imp.

Passo 3 $CS_{(S)} = \emptyset$.

- Sistemas de Equações Lineares

GJM, IB, SL (DMat, UM)

Exe 3.30

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} -1 & 1 & -1 \\ 3 & 1 & -1 \\ 2 & -1 & -2 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 3 \\ -1 \\ -1 \end{bmatrix}$. Determine $CS_{(S)}$ através do método de Gauss-Jordan.

Res

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} -1 & 1 & -1 & 3 \\ 3 & 1 & -1 & -1 \\ 2 & -1 & -2 & -1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + 3\ell_1} \begin{bmatrix} -1 & 1 & -1 & 3 \\ 0 & 4 & -4 & 8 \\ 0 & 1 & -4 & 5 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{1}{4}\ell_2} \begin{bmatrix} -1 & 1 & -1 & 3 \\ 0 & 4 & -4 & 5 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{1}{4}\ell_2} \begin{bmatrix} -1 & 1 & -1 & 3 \\ 0 & 4 & -4 & 8 \\ 0 & 0 & -3 & 3 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 3 ($n \in o$ número de incógnitas),(S) é um sistema PD.

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1:

$$\begin{bmatrix} -1 & 1 & -1 & 3 \\ 0 & 4 & -4 & 8 \\ 0 & 0 & -3 & 3 \end{bmatrix} \longleftrightarrow \begin{bmatrix} -1 & 1 & -1 & 3 \\ 0 & 4 & -4 & 8 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \ell_1 \leftarrow \ell_1 + \ell_2 \\ \ell_2 \leftarrow \ell_2 + 4\ell_2 \end{bmatrix}$$

$$\begin{bmatrix} -1 & 1 & 0 & 2 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} \ell_1 \leftarrow \ell_1 - \ell_2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} -1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} .$$

$$\begin{bmatrix} -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} .$$

Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} x_1 &= -1 \\ x_2 &= 1 \\ x_3 &= -1 \end{cases}$$

pelo que $CS_{(S)} = \{(-1, 1, -1)\}.$

GJM, IB, SL (DMat, UM)

- Sistemas de Equações Lineares

Res (cont.)

Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, x_3 é uma incógnita livre e (S) é equivalente ao sistema

$$\begin{cases} x_1 - \frac{8}{3}x_3 = \frac{2}{3} \\ x_2 + \frac{2}{3}x_3 = \frac{1}{3} \end{cases}$$

Assim, tem-se (MeSTaF):

•
$$x_2 + \frac{2}{3}x_3 = \frac{1}{3} \Leftrightarrow x_2 = \frac{1}{3} - \frac{2}{3}x_3$$
;

•
$$x_1 - \frac{8}{3}x_3 = \frac{2}{3} \Leftrightarrow x_1 = \frac{2}{3} + \frac{8}{3}x_3$$

pelo que
$$CS_{(S)} = \{(\frac{2}{3} + \frac{8}{3}x_3, \frac{1}{3} - \frac{2}{3}x_3, x_3) : x_3 \in \mathbb{R}\}.$$

Exe 3.31

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} \frac{1}{2} & 2 & 0 \\ 1 & 1 & -2 \\ 1 & 1 & 2 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$. Determine $C\bar{S}_{(S)}$ através do método de Gauss-Jordan.

Res

Passo 1 Aplicação do ATEsc à matriz aumentada *A*|*b*:

$$\begin{bmatrix} \frac{1}{2} & 2 & 0 & 1 \\ 1 & 1 & -2 & 1 \\ 1 & 7 & 2 & 3 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} \frac{1}{2} & 2 & 0 & 1 \\ 0 & -3 & -2 & -1 \\ 0 & 3 & 2 & 1 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - 2\ell_1} \begin{bmatrix} \frac{1}{2} & 2 & 0 & 1 \\ 0 & -3 & -2 & 1 \\ 0 & -3 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas),(S) é um sistema PI.

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1:

Exe 3.32

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & -3 \\ 4 & -6 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Determine $CS_{(S)}$ através do método de Gauss-Jordan.

Res

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 2 & -3 & 1 \\ 4 & -6 & 1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 2 & -3 & 1 \\ 0 & 0 & -1 \end{bmatrix}.$$

Passo 2 Como car(A) = 1 < car(A|b) = 2, (S) é um sistema Imp.

TALGA

Passo 3 $CS_{(S)} = \emptyset$.

Obs 3.33

Um sistema de 2 equações lineares com 2 incógnitas tem uma interpretação geométrica que se apresenta nos três exercícios seguintes.

Exe 3.34

Seja (S) o sistema de equações lineares

$$\begin{cases} x + y = 1 \\ x - y = 0 \end{cases}$$

- (a) Identifique a matriz dos coeficientes e o vetor dos termos independentes de (S).
- (b) Determine $CS_{(S)}$ através do método de Gauss.
- (c) Interprete geometricamente o resultado da alínea anterior.

Res

(a) Matriz dos coeficientes: $A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. Vetor dos termos independentes: $b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

GJM, IB, SL (DMat, UM)

Res (cont.)

(c) CS_(S) pode ser geometricamente interpretado como sendo os pontos de intersecção das retas x + y = 1 e x - y = 0, que neste caso é um só, conforme se ilustra na seguinte figura:

Res

(b) **Passo 1** Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \stackrel{\longleftarrow}{\ell_2 \leftarrow \ell_2 - \ell_1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & -1 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 2 ($n \neq 0$ número de incógnitas), (S) é um sistema PD.

Passo 3 Sejam x, y as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} x + y = 1 \\ -2y = -1 \end{cases}$$

Assim, tem-se (MeSTaF):

Exe 3.35

Seja (S) o sistema de equações lineares

$$\begin{cases} x + y = 1 \\ -2x - 2y = -2 \end{cases}$$

- (a) Identifique a matriz dos coeficientes e o vetor dos termos independentes de (S).
- (b) Determine $CS_{(S)}$ através do método de Gauss.
- (c) Interprete geometricamente o resultado da alínea anterior.

(a) Matriz dos coeficientes: $A = \begin{bmatrix} 1 & 1 \\ -2 & -2 \end{bmatrix}$. Vetor dos termos independentes: $b = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

(b) **Passo 1** Aplicação do ATEsc à matriz aumentada *A*|*b*:

$$\begin{bmatrix} 1 & 1 & 1 \\ -2 & -2 & -2 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + 2\ell_1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = 1 < n = 2 (n é o número de incógnitas), (S) é um sistema PI.

Passo 3 Sejam x, y as incógnitas do sistema (S). Então, y é uma incógnita livre e (S) é equivalente ao sistema

$$\{x+y=1.$$

Assim, tem-se (MeSTaF):

•
$$x + y = 1 \Leftrightarrow x = 1 - y$$
,

pelo que $CS_{(S)} = \{(1 - y, y) : y \in \mathbb{R}\}.$

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.

170

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 - v5.0

- Sistemas de Equações Lineares

Método de Gauss e método de Gauss-Jordan

Exe 3.36

Seja (S) o sistema de equações lineares

$$\begin{cases} x + y = 1 \\ x + y = 2 \end{cases}$$

- (a) Identifique a matriz dos coeficientes e o vetor dos termos independentes de (S).
- (b) Determine $CS_{(S)}$ através do método de Gauss.
- (c) Interprete geometricamente o resultado da alínea anterior.

Res

(a) Matriz dos coeficientes: $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. Vetor dos termos independentes: $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Res (cont.)

(c) $CS_{(S)}$ pode ser geometricamente interpretado como sendo os pontos de intersecção das retas x + y = 1 e -2x - 2y = -2, que neste caso são uma infinidade, conforme se ilustra na seguinte figura:

Método de Gauss e método de Gauss-Jorda

Res (cont.)

(b) **Passo 1** Aplicação do ATEsc à matriz aumentada A|b:

$$\left[\begin{array}{cc|c} 1 & 1 & 1 \\ 1 & 1 & 2 \end{array}\right] \xleftarrow{\longleftarrow} \left[\begin{array}{cc|c} 1 & 1 & 1 \\ \ell_2 \leftarrow \ell_2 - \ell_1 \end{array}\right] \cdot$$

Passo 2 Como car(A) = 1 < car(A|b) = 2, (S) é um sistema Imp.

Passo 3
$$CS_{(S)} = \emptyset$$
.

(c) $CS_{(S)}$ pode ser geometricamente interpretado como sendo os pontos de intersecção das retas x + y = 1 e x + y = 2, que neste caso não existem, conforme se ilustra na seguinte figura:

GJM, IB, SL (DMat, UM)

ΓALGA

setembro de 2020 — v5.0

183

Exe 3.37

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$.

- (a) Determine $CS_{(S)}$ através do método de Gauss.
- (b) Determine $CS_{(S)}$ através do método de Gauss-Jordan.
- (c) Comente os resultados obtidos nas duas alíneas anteriores.

Res

(a) **Passo 1** Aplicação do ATEsc à matriz aumentada *A*|*b*:

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ -1 & 1 & -1 & -1 \\ 0 & 1 & 2 & 3 \end{bmatrix} \stackrel{\longleftarrow}{\ell_2 \leftarrow \ell_2 + \ell_1} \begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} \stackrel{\longleftarrow}{\ell_3 \leftarrow \ell_3 - \frac{1}{2}\ell_2}$$

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 3 & 3 \end{bmatrix}.$$

GJM, IB, SL (DMat, UN

TALGA

etembro de 2020 — v5

. . . .

3 – Sistemas de Equações Lineares

Método de Gauss e método de Gauss-Jorda

Res (cont.)

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas), (S) é um sistema PD.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 - x_3 = 1 \\ 2x_2 - 2x_3 = 0 \\ 3x_3 = 3. \end{cases}$$

Assim, tem-se (MeSTaF):

- $3x_3 = 3 \Leftrightarrow x_3 = 1$;
- $2x_2 2x_3 = 0 \Leftrightarrow 2x_2 2 \times (1) = 0 \Leftrightarrow x_2 = 1$;
- $x_1 + x_2 x_3 = 1 \Leftrightarrow x_1 + (1) (1) = 1 \Leftrightarrow x_1 = 1$,

pelo que $CS_{(S)} = \{(1, 1, 1)\}.$

3 – Sistemas de Equações Lineares

Método de Gauss e método de Gauss-Jorda

Res (cont.)

- (b) Tendo em consideração a alínea anterior, onde já se determinou uma matriz em escada equivalente à matriz ampliada do sistema e se concluiu que o sistema é PD, avança-se diretamente para o Passo 3:
 - Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1 da alínea anterior:

$$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 3 & 3 \end{bmatrix} \xrightarrow{\ell_3} \leftarrow \begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{\ell_1} \leftarrow \xrightarrow{\ell_1 + \ell_3} \begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 2 & -2 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{\ell_2} \leftarrow \xrightarrow{\frac{1}{2}\ell_2} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{\ell_1} \leftarrow \xrightarrow{\ell_1 + \ell_3} \leftarrow \xrightarrow{\ell_2 + 2\ell_3} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{\ell_1} \leftarrow \xrightarrow{\ell_1 - \ell_2} \leftarrow \xrightarrow{\ell_2 + 2\ell_3} \leftarrow \xrightarrow{\ell_3} \leftarrow \xrightarrow{\ell_3} \leftarrow \xrightarrow{\ell_1} \xrightarrow{\ell_2} \leftarrow \xrightarrow{\ell_2 + 2\ell_3} \leftarrow \xrightarrow{\ell_3} \leftarrow \xrightarrow{\ell_1} \xrightarrow{\ell_2} \leftarrow \xrightarrow{\ell_2} \leftarrow \xrightarrow{\ell_2 + 2\ell_2} \leftarrow \xrightarrow{\ell_3} \leftarrow \xrightarrow{\ell_1} \xrightarrow{\ell_3} \leftarrow \xrightarrow{\ell_1} \leftarrow \xrightarrow{\ell_1} \leftarrow \xrightarrow{\ell_1 + \ell_3} \leftarrow \xrightarrow{\ell_2} \leftarrow \xrightarrow{\ell_2 + 2\ell_3} \leftarrow \xrightarrow{\ell_3} \leftarrow \xrightarrow{\ell_1} \leftarrow \xrightarrow{\ell_1} \leftarrow \xrightarrow{\ell_1 + \ell_2} \leftarrow \xrightarrow{\ell_2 + 2\ell_2} \leftarrow \xrightarrow{\ell_2} \leftarrow \xrightarrow{\ell_2} \leftarrow \xrightarrow{\ell_2} \leftarrow \xrightarrow{\ell_2} \leftarrow \xrightarrow{\ell_2} \leftarrow \xrightarrow{\ell_1} \leftarrow \xrightarrow{$$

Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} x_1 &= 1 \\ x_2 &= 1 \\ x_3 &= 1, \end{cases}$$

pelo que $CS_{(S)} = \{(1, 1, 1)\}.$

(c) O conjunto solução que se obteve através da aplicação do método de Gauss é igual ao que se obteve através da aplicação do método de Gauss-Jordan, como tem que ser. Substituindo os valores encontrados para as incógnitas no sistema dado, tem-se 1+1-1=1, -1+1-1=-1, $1+2\times 1=3$, o que permite concluir que o conjunto solução encontrado está correto.

Res (cont.)

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, x_3 é uma incógnita livre e (S) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ -x_2 = 1. \end{cases}$$

Assim, tem-se (MeSTaF):

- \bullet $-x_2=1 \Leftrightarrow x_2=-1$:
- $x_1 + x_2 + x_3 = 1 \Leftrightarrow x_1 + (-1) + x_3 = 1 \Leftrightarrow x_1 = 2 x_3$ pelo que $CS_{(S)} = \{(2 - x_3, -1, x_3) : x_3 \in \mathbb{R}\}.$

Exe 3.38

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

- (a) Determine $CS_{(S)}$ através do método de Gauss.
- (b) Determine $CS_{(S)}$ através do método de Gauss-Jordan.
- (c) Comente os resultados obtidos nas duas alíneas anteriores.

Res

(a) **Passo 1** Aplicação do ATEsc à matriz aumentada A|b:

$$\left[\begin{array}{cc|cccc} 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 2 \end{array}\right] \stackrel{\longleftarrow}{\ell_2 \leftarrow \ell_2 - \ell_1} \left[\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 1 \end{array}\right].$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), (S) é um sistema PI.

Res (cont.)

(b) Tendo em consideração a alínea anterior, onde já se determinou uma matriz em escada equivalente à matriz ampliada do sistema e se concluiu que o sistema é PI, avança-se diretamente para o Passo 3:

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1 da alínea anterior:

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{\ell_2} \leftarrow \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \xrightarrow{\ell_1} \leftarrow \xrightarrow{\ell_1 - \ell_2} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{\ell_1} \leftarrow \xrightarrow{\ell_1 - \ell_2} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & -1 \end{bmatrix}.$$

Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, x_3 é uma incógnita livre e (S) é equivalente ao sistema

$$\begin{cases} x_1 + x_3 = 2 \\ x_2 = -1. \end{cases}$$

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

Método de Gauss e método de Gauss-Jord

Res (cont.)

Assim, tem-se (MeSTaF):

- $x_2 = -1$:
- $x_1 + x_3 = 2 \Leftrightarrow x_1 = 2 x_3$

pelo que $CS_{(S)} = \{(2 - x_3, -1, x_3) : x_3 \in \mathbb{R}\}.$

(c) O conjunto solução que se obteve através da aplicação do método de Gauss é igual ao que se obteve através da aplicação do método de Gauss-Jordan, como tem que ser. Substituindo os valores encontrados para as incógnitas no sistema dado, tem-se $(2-x_3)+(-1)+x_3=1$ e $(2 - x_3) + x_3 = 2$, o que permite concluir que o conjunto solução encontrado está correto.

GJM, IB, SL (DMat, UM)

Teo 3.40

Seja (S) um sistema completo e $x_0 \in CS_{(S)}$. Então:

$$CS_{(S)} = \{x_0 + y : y \in CS_{(S_h)}\}.$$

Exe 3.41

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$.

- (a) Determine $CS_{(S)}$ através da aplicação do teorema Teo 3.40.
- (b) Determine $CS_{(S)}$ através do método de Gauss.
- (c) Comente os resultados obtidos nas duas alíneas anteriores.

Exe 3.39

Dê exemplos de sistemas de *m* equações lineares a *n* incógnitas possíveis e determinados, possíveis e indeterminados e impossíveis para m > n, m = n e m < n, sempre que tal seja possível.

Res

	m > n	m = n	m < n
PD	m = 2, n = 1	m=1, n=1	
	$\begin{cases} x = 1 \\ 2x = 2 \end{cases}$	x = 1	_
PI	m = 3, n = 2	m = 2, n = 2	m = 1, n = 2
	$\begin{cases} x + y = 1 \\ 2x + 2y = 2 \\ 3x + 3y = 3 \end{cases}$	$\begin{cases} x + y = 1 \\ 2x + 2y = 2 \end{cases}$	$\left\{x+y=1\right.$
lmp	m=2, n=1	m = 2, n = 2	m = 2, n = 3
	$\begin{cases} x = 1 \\ x = 2 \end{cases}$	$\int x + y = 1$	$\int x + y + z = 1$
	$\int x = 2$	x + y = 2	$\begin{cases} x + y + z = 2 \end{cases}$

Sistemas de Equações Lineares

Res

- Identificar uma solução particular de (S): por exemplo, e por (a) inspeção, $x_0 = (2, 0, 0)$.
 - Determinar CS_(Sh)

Passo 1 Aplicação do ATEsc à matriz aumentada $A|0_{2\times 1}$:

$$\begin{bmatrix}
1 & 1 & 1 & 0 \\
1 & 1 & -1 & 0
\end{bmatrix}
\xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1}
\begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & -2 & 0
\end{bmatrix}$$

Passo 2 Como car(A) = car(A|0_{2×1}) = 2 < n = 3 (n é o número de incógnitas), (S_h) é um sistema PI (este resultado já é pré-sabido).

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S_h) . Então, x_2 é uma incógnita livre e (S_h) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ -2x_3 = 0 \end{cases}$$

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

3 – Sistemas de Equações Lineare

Res (cont.)

Assim, tem-se (MeSTaF):

- \bullet $-2x_3=0 \Leftrightarrow x_3=0$;
- $\bullet \ x_1+x_2+x_3=0 \Leftrightarrow x_1+x_2+\left(0\right)=0 \Leftrightarrow x_1=-x_2,$

pelo que $CS_{(S_h)} = \{(-x_2, x_2, 0) : x_2 \in \mathbb{R}\}.$

• Tem-se, então:

$$\begin{split} \mathsf{CS}_{(S)} &= \{x_0 + y : y \in \mathsf{CS}_{(S_h)}\} \\ &= \{(2,0,0) + (-x_2,x_2,0) : x_2 \in \mathsf{IR}\} \\ &= \{(2-x_2,x_2,0) : x_2 \in \mathsf{IR}\}. \end{split}$$

(b) **Passo 1** Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & -1 & 2 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 0 & -2 & 0 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), (S) é um sistema PI.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5

105

Res (cont.)

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, x_2 é uma incógnita livre e (S) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 = 2 \\ -2x_3 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-2x_3 = 0 \Leftrightarrow x_3 = 0$;
- $x_1 + x_2 + x_3 = 2 \Leftrightarrow x_1 + x_2 + (0) = 2 \Leftrightarrow x_1 = 2 x_2$, pelo que $\mathsf{CS}_{(S)} = \{(2 x_2, x_2, 0) : x_2 \in \mathsf{IR}\}.$
- (c) Obteve-se o mesmo resultado nas duas alíneas anteriores, como tinha que ser.

8 – Sistemas de Equações Lineares

Discussão de sistemas de equações linear

Obs 3.42

Um exercício clássico de Álgebra Linear é, dado um sistema de equações lineares cuja matriz dos coeficientes e/ou o vetor dos termos independentes dependem de um ou mais parâmetros, indicar o tipo do sistema em função desses parâmetros. Uma regra prática para os resolver é evitar, sempre que possível, que os pivôs dependam dos parâmetros, nem que para isso seja necessário trocar linhas.

Exe 3.43

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} a & 0 & 1 \\ 1 & -2 & 0 \\ 2 & -2 & -1 \end{bmatrix}$, $a \in \mathbb{R}$, e cujo vetor dos termos independentes é $b = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$. Discuta-o em função do parâmetro a.

Res

$$\begin{bmatrix} a & 0 & 1 & 1 \\ 1 & -2 & 0 & 0 \\ 2 & -2 & -1 & 2 \end{bmatrix} \xrightarrow{\ell_1 \leftrightarrow \ell_2} \begin{bmatrix} 1 & -2 & 0 & 0 \\ a & 0 & 1 & 1 \\ 2 & -2 & -1 & 2 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - a\ell_1}$$

Discussão de sistemas de equações lineares

Res (cont.)

$$\begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & 2a & 1 & 1 \\ 0 & 2 & -1 & 2 \end{bmatrix} \stackrel{\longleftarrow}{\ell_2 \leftrightarrow \ell_3} \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & 2 & -1 & 2 \\ 0 & 2a & 1 & 1 \end{bmatrix} \stackrel{\longleftarrow}{\ell_3 \leftarrow \ell_3 - a\ell_2}$$

$$\begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 1 + a & 1 - 2a \end{bmatrix}$$

- $a \neq -1$: car(A) = car(A|b) = n = 3 (n é o número de incógnitas) PD.
- a = -1: car(A) = 2 < car(A|b) = 3 Imp.

 $\alpha = -1$:

Exe 3.44

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 2 & 0 & 2 & 0 \\ 2 & \alpha + 2 & 2 & -1 \\ 2 & 0 & -1 \end{bmatrix}$], $\alpha \in \mathbb{R}$, e cujo vetor dos termos independentes é $b = \begin{bmatrix} 0 \\ \beta \\ 0 \\ 0 \end{bmatrix}$, $\beta \in \mathbb{R}$. Discuta-o em função dos parâmetros α e β .

Res

$$\begin{bmatrix} 1 & 1 & 1 & -1 & 0 \\ 2 & 0 & 2 & 0 & \beta \\ 2 & \alpha + 2 & 2 & -1 & 0 \\ \alpha + 1 & 2 & 0 & -1 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \xrightarrow{\ell_3 \leftarrow \ell_3 - 2\ell_1} \xrightarrow{\ell_4 \leftarrow \ell_4 - (\alpha + 1)\ell_1}$$

$$\begin{bmatrix} 1 & 1 & 1 & -1 & 0 \\ 0 & -2 & 0 & 2 & \beta \\ 0 & \alpha & 0 & 1 & 0 \\ 0 & 1 - \alpha & -1 - \alpha & \alpha & 0 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + \frac{\alpha}{2}\ell_2} \xrightarrow{\ell_4 \leftarrow \ell_4 + \frac{1-\alpha}{2}\ell_2}$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.

100

GJM, IB, SL (DMat, UM)

TALGA

 $\frac{\alpha\beta}{2}$ $(1-\alpha)\beta$

 $\frac{(1-\alpha)\beta}{\frac{\alpha\beta}{2}}$

 $\ell_3 \leftrightarrow \ell_4$

setembro de 2020 - v5.0

Sistemas de Equações Lineares

Discussão de sistemas de equações lineare

Res (cont.)

- $\alpha \neq -1$: car(A) = car(A|b) = n = 4 (n é o número de incógnitas) PD
- $\alpha = -1$ e $\beta = 0$: car(A) = car(A|b) = 3 < n = 4 (n é o número de incógnitas) PI.
- $\alpha = -1$ e $\beta \neq 0$: car(A) = 3 < car(A|b) = 4 Imp.

Regra de Crame

Teo 3.45

(Regra de Cramer) Seja Ax = b um sistema de n equações lineares com n incógnitas possível e determinado. Então, $x_i = \frac{\Delta_i}{|A|}, i = 1, \dots, n$, em que Δ_i é o determinante da matriz que se obtém a partir da matriz A, na qual se substitui a i-ésima coluna pelo vetor dos termos independentes, b.

Obs 3.46

- (a) Seja (S) um sistema de n equações lineares com n incógnitas cuja matriz dos coeficientes é A. Então, (S) é PD se e só se $|A| \neq 0$, tendo-se, neste caso $x = A^{-1}b$.
- (b) Seja (S) um sistema de m equações lineares com n incógnitas cuja matriz dos coeficientes é A. Então, pode-se obter o seu conjunto solução através da Regra de Cramer se m=n e (S) é PD, ou seja, se A é uma matriz quadrada e $|A| \neq 0$.

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

Exe 3.47

Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 2 \\ -3 & 6 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

- (a) Mostre, sem o resolver, que (S) é um sistema possível e determinado.
- (b) Determine o conjunto solução de (S) através da Regra de Cramer.

Res

- (a) Como $|A| = 1 \times 6 2 \times (-3) = 12 \neq 0$, (S) é um sistema PD.
- (b) Seja $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ o vetor das incógnitas de (S). Então:

$$x_1 = \frac{\begin{vmatrix} 1 & 2 \\ 2 & 6 \end{vmatrix}}{|A|} = \frac{2}{12} = \frac{1}{6}, \ x_2 = \frac{\begin{vmatrix} 1 & 1 \\ -3 & 2 \end{vmatrix}}{|A|} = \frac{5}{12}, \ \mathsf{CS}_{(S)} = \{(\frac{1}{6}, \frac{5}{12})\}.$$

GJM, IB, SL (DMat, UM)

Obs 3.50

Some english vocabulary regarding Linear Systems of Equations

- sistema de equações lineares/linear system of equations
- matriz dos coeficientes/coefficient matrix
- vetor dos termos independentes/right hand side vector
- vetor das incógnitas/unknown vector
- matriz aumentada ou matriz ampliada/augmented matrix
- conjunto solução/solution set
- sistema homogéneo/homogeneous system
- sistema possível/consistent linear system
- sistema possível e determinado/independent linear system
- sistema possível e indeterminado/dependent linear system
- sistema impossível/inconsistent linear system
- característica de uma matriz/rank of a matrix

Teo 3.48

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Então, A é uma matriz invertível se e só se car(A) = n.

Exe 3.49

Determine, por dois processos distintos, para que valores de α a matriz $A = \begin{bmatrix} \alpha & 1 \\ 1 & \alpha \end{bmatrix}$ é invertível.

Res

- Processo 1 determinar α tal que $|A| \neq 0$: $|A| \neq 0 \Leftrightarrow \alpha^2 1 \neq 0$ $0 \Leftrightarrow \alpha \neq \pm 1$.
- Processo 2 determinar α tal que car(A) = 2:

$$\begin{bmatrix} \alpha & 1 \\ 1 & \alpha \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & \alpha \\ \alpha & 1 \end{bmatrix} \xleftarrow{\ell_1 \leftarrow \ell_2} \begin{bmatrix} 1 & \alpha \\ \alpha & 1 \end{bmatrix} \ell_2 \leftarrow \ell_2 - \alpha \ell_1 \begin{bmatrix} 1 & \alpha \\ 0 & 1 - \alpha^2 \end{bmatrix}$$

Assim, $car(A) = 2 \Leftrightarrow 1 - \alpha^2 \neq 0 \Leftrightarrow \alpha \neq +1$.

- 4 Espacos Vetoriais
- $\overline{5}$ Transformações Lineares de \mathbb{R}^n em \mathbb{R}^m
- 7 Geometria Analítica

GJM, IB, SL (DMat, UM)

Espaços Vetoriais

Def 4.2

 $\llbracket espaço\ vetorial
rbracket$ Sejam V um conjunto não vazio e as operações

Diz-se que o sêxtúplo $(V, \oplus, \odot, \mathbb{R}, +, \cdot)$ é um espaço vetorial se:

- (a) $\forall x, y \in V [x \oplus y = y \oplus x].$
- (b) $\forall x, y, z \in V [(x \oplus y) \oplus z = x \oplus (y \oplus z)].$
- (c) \exists^1 elemento de V (representado por 0_V), $\forall x \in V [x \oplus 0_V = x]$.
- (d) $\forall x \in V, \exists^1$ elemento de V (representado por -x) $[x \oplus (-x) = 0_V]$.
- (e) $\forall \alpha \in \mathbb{R}, \forall x, y \in V \ [\alpha \odot (x \oplus y) = \alpha \odot x \oplus \alpha \odot y].$
- (f) $\forall \alpha, \beta \in \mathbb{R}, \forall x \in V [(\alpha + \beta) \odot x = \alpha \odot x \oplus \beta \odot x].$
- (g) $\forall \alpha, \beta \in \mathbb{R}, \forall x \in V [(\alpha \cdot \beta) \odot x = \alpha \odot (\beta \odot x)].$
- (h) $\forall x \in V [1 \odot x = x]$.

Obs 4.1

Apresenta-se na definição que se segue a generalização da noção de "vetor" entendido como uma entidade com um tamanho, um sentido e uma direcção. O estudo genérico de um espaço vetorial permite-nos estabelecer propriedades válidas para um conjunto alargado de entidades matemáticas.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 - v5.0

207

GJM, IB, SL (DMat, UI

TALG

setembro de 2020 — v5.

208

4 – Espaços Vetoriais

efinicões iniciais

Def 4.3

Seja o espaço vetorial definido por $(V, \oplus, \odot, \mathbb{R}, +, \cdot)$.

- (a) [escalar] Chama-se escalares aos elementos de IR.
- (b) $\llbracket \text{vetor} \rrbracket$ Chama-se vetores aos elementos de V.
- (c) ¶soma de vetores Phama-se soma de vetores à operação ⊕.
- (d) [multiplicação de um escalar por um vetor] Chama-se multiplicação de um escalar por um vetor à operação ⊙.

Obs 4.4

- (a) Para simplificar a linguagem, em vez de "seja o espaço vetorial definido por $(V, \oplus, \odot, \mathbb{R}, +, \cdot)$ " diz-se " seja V um espaço vetorial" quando as operações de soma de vetores e de multiplicação de um escalar por um vetor estiverem subentendidas.
- (b) Se não causar confusão, em vez de $x \oplus y$ escreve-se x + y, em vez de $x \oplus (-y)$ escreve-se x y e em vez de $\alpha \odot x$ escreve-se αx .

– Espaços Vetoriais

Definições iniciai

Def 4

 $[\![R^n]\!]$ Seja $n \in IN$. Representa-se por IR^n o conjunto dos n-úplos com elementos em IR, ou seja,

$$\mathbb{R}^n \stackrel{\mathsf{def}}{=} \{(x_1, \dots, x_n) : x_1, \dots, x_n \in \mathbb{R}\}.$$

As operações usuais neste conjunto de soma e multiplicação por um escalar, são dadas, respetivamente, por:

- (i) $(x_1, \ldots, x_n) + (y_1, \ldots, y_n) \stackrel{\text{def}}{=} (x_1 + y_1, \ldots, x_n + y_n)$
- (ii) $\alpha(x_1,\ldots,x_n) \stackrel{\text{def}}{=} (\alpha x_1,\ldots,\alpha x_n).$

Exe 4.6

Sejam $x = (1, 2, -3, 0), y = (-1, 0, 1, 2) \in \mathbb{R}^4$. Determine:

- (a) x + y.
- (b) -2y.
- (c) -3x + 2y.

GJM, IB, SL (DMat, UM)

Res

- (a) x + y = (1, 2, -3, 0) + (-1, 0, 1, 2) = (0, 2, -2, 2).
- (b) -2y = -2(-1, 0, 1, 2) = (2, 0, -2, -4).
- (c) -3x + 2y = -3(1, 2, -3, 0) + 2(-1, 0, 1, 2) = (-5, -6, 11, 4).

Teo 4.7

 \mathbb{R}^n com as operações usuais é um espaço vetorial.

Obs 4.8

- (a) Por vezes identifica-se \mathbb{R}^n com $\mathcal{M}_{n\times 1}(\mathbb{R})$ ou $\mathcal{M}_{1\times n}(\mathbb{R})$, sendo o contexto suficiente para distinguir as duas interpretações.
- (b) Considera-se neste curso apenas espacos vetoriais que são subconjuntos de \mathbb{R}^n .

Exe 4.12

Seia $F = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = 0\}.$

- (a) O que caracteriza os elementos de F?
- (b) Mostre que F é um subespaço de \mathbb{R}^2 .

Res

- (a) Os elementos de F são pares ordenados em que a segunda componente é zero.
- (b) F é um subconjunto de IR² tal que:
 - (i) $0_{\mathbb{R}^2} = (0,0) \in F$.
 - (ii) Sejam $x = (x_1, 0), y = (y_1, 0) \in F$. Então, $x + y = (x_1, 0) + y = (x_1$ $(y_1,0)=(x_1+y_1,0)\in F.$
 - (iii) Sejam $\alpha \in \mathbb{R}$ e $x = (x_1, 0) \in F$. Então, $\alpha x = \alpha(x_1, 0) =$ $(\alpha x_1, 0) \in F$.

Assim, conclui-se que F é um subespaço de \mathbb{R}^2 .

[subespaço] Sejam o espaço vetorial $(V, \oplus, \odot, \mathbb{R}, +, \cdot)$ e F um subconjunto de V. Diz-se que F é um subespaço de V se $(F, \oplus, \odot, \mathbb{R}, +, \cdot)$ é um espaço vetorial.

Teo 4.10

Sejam V um espaço vetorial e F um subconjunto de V. Então, F é um subespaco de V sse:

- (i) $0_V \in F$.
- (ii) $\forall x, y \in F [x + y \in F]$.
- (iii) $\forall \alpha \in \mathbb{R}, \forall x \in F [\alpha x \in F].$

Obs 4.11

Note-se que o teorema Teo 4.10 é um processo mais prático de verificar se um subconjunto de um espaco vetorial é um subespaco do que a definição Def 4.9.

GJM, IB, SL (DMat, UM)

Obs 4.13

Sejam V um espaço vetorial e F um subconjunto não-vazio de V. Então, F não é um subespaço de V sse:

- (i) 0_V ∉ F ou
- (ii) $\exists x, y \in F [x + y \notin F]$ ou
- (iii) $\exists \alpha \in \mathbb{R}, \exists x \in F [\alpha x \notin F].$

Exe 4.14

Seja $G = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 = 1\}.$

- (a) O que caracteriza os elementos de G?
- (b) Mostre que G não é um subespaço de \mathbb{R}^2 .

Res

- (a) Os elementos de G são pares ordenados em que a segunda componente é um.
- (h) Como $\Omega_{D2} = (0.0) \notin G$ tem-se que G não é um subespaço de \mathbb{R}^2

4 – Espaços Vetoriais

Obs 4.15

Para resolver o exercício anterior basta identificar uma das três condições do teorema Teo 4.10 que não é satisfeita, tendo a resolução que se apresentou usado a primeira condição. Neste exercício seria possível também usar a segunda (Sejam, por exemplo, $x=(2,1),y=(3,1)\in G$. Então, $x+y=(2,1)+(3,1)=(5,2)\notin G$, pelo que a propriedade (ii) não é válida.) ou a terceira (Sejam, por exemplo, $\alpha=2$ e $x=(3,1)\in G$. Então, $\alpha x=2(3,1)=(6,2)\notin G$, pelo que a propriedade (iii) não é válida.).

Teo 4.16

Seja V um espaço vetorial. Então:

- (a) $\{0_V\}$ é um subespaço de V.
- (b) V é um subespaço de V.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.

215

C 1' " "

Def / 18

[combinação linear] Sejam V um espaço vetorial, $x \in V$, $r \in \mathbb{N}$ e $X = \{x_1, \ldots, x_r\} \subseteq V$. Diz-se que x é uma combinação linear dos elementos de X se

$$\exists \alpha_1, \ldots, \alpha_r \in \mathbb{R} [x = \alpha_1 x_1 + \cdots + \alpha_r x_r].$$

Obs 4.19

Sejam V um espaço vetorial, $x \in V$, $r \in \mathbb{N}$ e $X = \{x_1, \dots, x_r\} \subseteq V$. Diz-se que x é uma combinação linear dos elementos de X se o sistema linear

$$\alpha_1 x_1 + \cdots + \alpha_r x_r = x$$

é possível.

4 – Espaços Vetoriais Subespaç

Teo 4.17

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Então, $\mathsf{CS}_{(A \times = 0)}$ é um subespaço de \mathbb{R}^n .

Dem

 $CS_{(Ax=0)}$ é um subconjunto de \mathbb{R}^n tal que:

- (i) Como $A0_{n\times 1}=\underline{0}$, tem-se que $0_{\mathbb{R}^n}=0_{n\times 1}\in \mathsf{CS}_{(Ax=0)}$.
- (ii) Sejam $x_1, x_2 \in CS_{(Ax=\underline{0})}$. Então, como $A(x_1 + x_2) = Ax_1 + Ax_2 = \underline{0} + \underline{0} = \underline{0}$, tem-se que $x_1 + x_2 \in CS_{(Ax=0)}$.
- (iii) Sejam $\alpha \in \mathbb{R}$ e $x \in \mathsf{CS}_{(Ax = \underline{0})}$. Então, como $A(\alpha x) = \alpha(Ax) = \alpha\underline{0} = \underline{0}$, tem-se que $\alpha x \in \mathsf{CS}_{(Ax = \underline{0})}$.

Assim, conclui-se que $CS_{(Ax=0)}$ é um subespaço de \mathbb{R}^n .

GJM, IB, SL (DMat, UM

TALG

setembro de 2020 — v5.0

setembro de 2020 — v5.0

210

Combinação linea

Exe 4.20

Sejam $\xi = (1,4), x_1 = (1,2), x_2 = (1,1)$ e $x_3 = (2,2)$.

- (a) Mostre que ξ é uma combinação linear de x_1 e x_2 e escreva ξ como combinação linear de x_1 e x_2 .
- (b) Mostre que ξ é uma combinação linear de x_1 , x_2 e x_3 e escreva ξ como combinação linear de x_1 , x_2 e x_3 de duas maneiras.

TALGA

(c) Mostre que ξ não é uma combinação linear de x_2 e x_3 .

GJM, IB, SL (DMat, UM)

TALGA setembro de 2020 — v5.0 217

Res

(a) Mostrar que $\xi=(1,4)$ é uma combinação linear de $x_1=(1,2)$ e $x_2=(1,1)$ é, por definição, mostrar que

$$\exists \alpha_1, \alpha_2 \in \mathbb{R} \left[\xi = \alpha_1 x_1 + \alpha_2 x_2 \right],$$

i.e., que é possível o sistema de equações lineares (S_a) dado por

$$(1,4) = \alpha_1(1,2) + \alpha_2(1,1) \Leftrightarrow \begin{cases} \alpha_1 + \alpha_2 = 1 \\ 2\alpha_1 + \alpha_2 = 4, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ e $b = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$. Aplicando-se o método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\left[\begin{array}{cc|c}1&1&1\\2&1&4\end{array}\right] \longleftrightarrow \left[\begin{array}{cc|c}1&1&1&1\\0&-1&2\end{array}\right].$$

GJM, IB, SL (DMat, UM)

TALGA

setembro

210

Res (cont.)

Passo 2 Como car(A) = car(A|b) = n = 2 (n é o número de incógnitas), (S_a) é um sistema PD.

Passo 3 Sendo α_1, α_2 as incógnitas do sistema (S_a) , este é equivalente ao sistema

$$\begin{cases} \alpha_1 + \alpha_2 = 1 \\ -\alpha_2 = 2. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-\alpha_2 = 2 \Leftrightarrow \alpha_2 = -2$;
- $\alpha_1 + \alpha_2 = 1 \Leftrightarrow \alpha_1 + (-2) = 1 \Leftrightarrow \alpha_1 = 3$

vindo

$$\xi = 3x_1 - 2x_2$$
.

4 – Espaços Vetoriais

C 1: " "

Res (cont.)

(b) Mostrar que $\xi=(1,4)$ é uma combinação linear de $x_1=(1,2)$, $x_2=(1,1)$ e $x_3=(2,2)$ é, por definição, mostrar que

$$\exists \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} \left[\xi = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3 x_3 \right],$$

i.e., que é possível o sistema de equações lineares (S_b) dado por

$$(1,4) = \alpha_1(1,2) + \alpha_2(1,1) + \alpha_3(2,2) \Leftrightarrow \begin{cases} \alpha_1 + \alpha_2 + 2\alpha_3 = 1\\ 2\alpha_1 + \alpha_2 + 2\alpha_3 = 4, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{2}{1} & \frac{2}{2} \end{bmatrix}$, $x = \begin{bmatrix} \frac{\alpha_1}{\alpha_2} \\ \frac{\alpha_3}{\alpha_3} \end{bmatrix}$ e $b = \begin{bmatrix} \frac{1}{4} \end{bmatrix}$. Aplicando-se o método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 2 & 1 & 2 & 4 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 1 & 2 & 1 \\ \ell_2 & \ell_2 - 2\ell_1 & 0 & -1 & -2 & 2 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), (S_b) é um sistema PI.

4 – Espaços Vetoriais Combinação line

Res (cont.)

Passo 3 Sendo $\alpha_1, \alpha_2, \alpha_3$ as incógnitas do sistema (S_b) , α_3 é uma incógnita livre e (S_b) é equivalente ao sistema

$$\begin{cases} \alpha_1 + \alpha_2 + 2\alpha_3 = 1 \\ -\alpha_2 - 2\alpha_3 = 2 \end{cases}$$

Assim, tem-se (MeSTaF):

- $-\alpha_2 2\alpha_3 = 2 \Leftrightarrow \alpha_2 = -2 2\alpha_3$;
- $\alpha_1 + \alpha_2 + 2\alpha_3 = 1 \Leftrightarrow \alpha_1 + (-2 2\alpha_3) + 2\alpha_3 = 1 \Leftrightarrow \alpha_1 = 3$,

vindo

$$\xi = 3x_1 + (-2 - 2\alpha_3)x_2 + \alpha_3x_3, \alpha_3 \in \mathbb{R}.$$

Assim, considerando, por exemplo:

- $\alpha_3 = 0$, tem-se: $\xi = 3x_1 2x_2$.
- $\alpha_3 = 1$, tem-se: $\xi = 3x_1 4x_2 + x_3$

(c) Mostrar que $\xi=(1,4)$ não é uma combinação linear de $x_2=(1,1)$ e $x_3=(2,2)$ é equivalente a mostrar que é impossível o sistema de equações lineares (S_c) dado por

$$(1,4) = \alpha_2(1,1) + \alpha_3(2,2) \Leftrightarrow \begin{cases} \alpha_2 + 2\alpha_3 = 1 \\ \alpha_2 + 2\alpha_3 = 4, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_2 \\ \alpha_3 \end{bmatrix}$ e $b = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S_c) , tem-se:

$$\left[\begin{array}{cc|c}1&2&1\\1&2&4\end{array}\right] \longleftrightarrow \left[\begin{array}{cc|c}1&2&1\\0&0&3\end{array}\right].$$

Como car(A) = 1 < car(A|b) = 2, (S_c) é um sistema Imp, pelo que ξ não é uma combinação linear de x_2 e x_3 .

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

3

GJM, IB, SL (DMat, UI

TALG

setembro de 2020 — v5.0

001

4 – Espaços Vetoriais Espaço gerado

Exe 4.22

Sejam a = (-1, 2, -3), b = (3, 4, 2) e c = (1, 8, -4). Mostre que $c \in \langle a, b \rangle$.

Res

Para se mostrar que $c \in \langle a, b \rangle$, tem que se mostrar que c é uma combinação linear de a e b, ou seja,

$$\exists \alpha, \beta \in \mathbb{R} [c = \alpha a + \beta b],$$

i.e., que é possível o sistema de equações lineares (S) dado por

$$(1,8,-4) = \alpha(-1,2,-3) + \beta(3,4,2) \Leftrightarrow \begin{cases} -\alpha + 3\beta = 1\\ 2\alpha + 4\beta = 8\\ -3\alpha + 2\beta = -4 \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} -1 & 3 \\ 2 & 4 \\ -3 & 2 \end{bmatrix}$, $x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ e $b = \begin{bmatrix} 1 \\ 8 \\ -4 \end{bmatrix}$. Aplicando-se o ATEsc à matriz ampliada do sistema (S), tem-se:

Def 4.2

[espaço gerado] Sejam V um espaço vetorial e $X=\{x_1,\ldots,x_r\}\subseteq V$. Chama-se espaço gerado pelo conjunto X, que se representa por L(X) ou por $\langle x_1,\ldots,x_r\rangle$, ao conjunto de todas as combinações lineares dos elementos de X, ou seja,

$$L(X) :=: \langle x_1, \ldots, x_r \rangle \stackrel{\text{def}}{=} \{ \alpha_1 x_1 + \cdots + \alpha_r x_r : \alpha_1, \ldots, \alpha_r \in \mathbb{R} \}.$$

4 – Espacos Vetoriais

Res (cont.)

$$\begin{bmatrix} -1 & 3 & 1 \\ 2 & 4 & 8 \\ -3 & 2 & -4 \end{bmatrix} \stackrel{\longleftarrow}{\ell_2 \leftarrow \ell_2 + 2\ell_1} \begin{bmatrix} -1 & 3 & 1 \\ 0 & 10 & 10 \\ 0 & -7 & -7 \end{bmatrix} \stackrel{\longleftarrow}{\ell_3 \leftarrow \ell_3 + \frac{7}{10}\ell_2} \begin{bmatrix} -1 & 3 & 1 \\ 0 & 10 & 10 \\ 0 & 0 & 0 \end{bmatrix}, \text{pelo que car}(A) = \text{car}(A|b) = 2. \text{ Assim, } (S) \text{ \'e um}$$

sistema Pos, pelo que c é uma combinação linear de a e b, ou seja, $c \in \langle a, b \rangle$.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

225

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

22

Teo 4.23

Sejam V um espaço vetorial e $X = \{x_1, \dots, x_r\} \subseteq U \subseteq V$. Então:

- (a) L(X) é um subespaço de V.
- (b) se U é um subespaço de V, então $L(X) \subseteq U$.

Obs 4.24

Sejam V um espaço vetorial e $X = \{x_1, \dots, x_r\} \subseteq V$. Então:

- (a) a designação "espaço gerado" justifica-se devido à alínea (a) do teorema anterior que garante que o espaço gerado é um espaço vetorial.
- (b) L(X) é o "menor" subespaço de V que contém X no sentido da alínea (b) do teorema anterior.

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

227

GJM, IB, SL (DMat, UN

TALG

setembro de 2020 — v5.0

4 – Espaços Vetoriais Conjunto gerad

Exe 4.27

- (a) Indique, justificando, se $X_1 = \{(2,0)\}\$ é um conjunto gerador de \mathbb{R}^2 .
- (b) Indique, justificando, se $X_2 = \{(2,0),(3,4)\}$ é um conjunto gerador de \mathbb{R}^2 .
- (c) Indique, justificando, se $X_3 = \{(2, -1), (-4, 2)\}$ é um conjunto gerador de \mathbb{R}^2 .
- (d) Indique, justificando, se $X_4 = \{(2,0), (3,4), (0,1)\}$ é um conjunto gerador de \mathbb{R}^2 .

Def 4.2

[conjunto gerador] Sejam V um espaço vetorial e $X = \{x_1, \dots, x_r\} \subseteq V$. Diz-se que X é um conjunto gerador de V se V = L(X).

Obs 4.26

Sejam V um espaço vetorial e $X=\{x_1,\ldots,x_r\}\subseteq V$. Então, X é um conjunto gerador de V se

$$\forall x \in V, \exists \alpha_1, \dots, \alpha_r \in \mathbb{R} \left[x = \alpha_1 x_1 + \dots + \alpha_r x_r \right],$$

i.e., se o sistema de equações lineares

$$\alpha_1 x_1 + \cdots + \alpha_r x_r = x$$

é possível qualquer que seja $x \in V$.

4 – Espaços Vetoriai

Conjunto gerado

Res

(a) Verificar se $X_1=\{(2,0)\}$ é um conjunto gerador de \mathbb{R}^2 é verificar se, qualquer que seja $(\xi_1,\xi_2)\in\mathbb{R}^2$, é Pos o sistema de equações lineares (S_1) dado por

$$(\xi_1, \xi_2) = \alpha(2, 0) \Leftrightarrow \begin{cases} 2\alpha = \xi_1 \\ 0\alpha = \xi_2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $x = \begin{bmatrix} \alpha \end{bmatrix}$ e $b = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$. Então, como a representação matricial do sistema (S_1) é

$$\begin{bmatrix}
2 & \xi_1 \\
0 & \xi_2
\end{bmatrix}$$

que já está em escada, $\operatorname{car}(A) = 1$ e $\operatorname{car}(A|b) = 1$ se $\xi_2 = 0$ e $\operatorname{car}(A|b) = 2$ se $\xi_2 \neq 0$, pelo que $\operatorname{car}(A) < \operatorname{car}(A|b)$ se $\xi_2 \neq 0$. Assim, o sistema (S_1) nem sempre é possível, concluindo-se que X_1 não é um conjunto gerador de \mathbb{R}^2 .

(b) Verificar se $X_2 = \{(2,0),(3,4)\}$ é um conjunto gerador de \mathbb{R}^2 é verificar se, qualquer que seja $(\xi_1, \xi_2) \in \mathbb{R}^2$, é Pos o sistema de equações lineares (S_2) dado por

$$(\xi_1, \xi_2) = \alpha(2, 0) + \beta(3, 4) \Leftrightarrow \begin{cases} 2\alpha + 3\beta = \xi_1 \\ 4\beta = \xi_2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}$, $X = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ e $b = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$. Então, como a representação matricial do sistema (S_2) é

$$\left[\begin{array}{cc|c} 2 & 3 & \xi_1 \\ 0 & 4 & \xi_2 \end{array}\right]$$

que já está em escada, car(A) = car(A|b) = 2 qualquer que seja $(\xi_1, \xi_2) \in \mathbb{R}^2$, pelo que o sistema (S_2) é sempre possível, concluindose que X_2 é um conjunto gerador de \mathbb{R}^2 .

Res (cont.)

(d) Verificar se $X_4 = \{(2,0), (3,4), (0,1)\}$ é um conjunto gerador de \mathbb{R}^2 é verificar se, qualquer que seja $(\xi_1, \xi_2) \in \mathbb{R}^2$, é Pos o sistema de equações lineares (S_4) dado por

$$(\xi_1, \xi_2) = \alpha(2, 0) + \beta(3, 4) + \gamma(0, 1) \Leftrightarrow \begin{cases} 2\alpha + 3\beta &= \xi_1 \\ 4\beta + \gamma &= \xi_2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix}$, $x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ e $b = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$. Então, como a representação matricial do sistema (S_4) é

$$\left[\begin{array}{ccc|c}
2 & 3 & 0 & \xi_1 \\
0 & 4 & 1 & \xi_2
\end{array} \right]$$

que já está em escada, car(A) = car(A|b) = 2 qualquer que seja $(\xi_1, \xi_2) \in \mathbb{R}^2$, pelo que o sistema (S_4) é sempre possível, concluindose que X_4 é um conjunto gerador de \mathbb{R}^2 .

Res (cont.)

(c) Verificar se $X_3 = \{(2, -1), (-4, 2)\}$ é um conjunto gerador de \mathbb{R}^2 é verificar se, qualquer que seja $(\xi_1,\xi_2)\in \mathbb{R}^2$, é Pos o sistema de equações lineares (S_3) dado por

$$(\xi_1, \xi_2) = \alpha(2, -1) + \beta(-4, 2) \Leftrightarrow \begin{cases} 2\alpha - 4\beta = \xi_1 \\ -\alpha + 2\beta = \xi_2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 & -4 \\ -1 & 2 \end{bmatrix}$, $x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ e $b = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S_3)

$$\begin{bmatrix} 2 & -4 & | & \xi_1 \\ -1 & 2 & | & \xi_2 \end{bmatrix} \xleftarrow{\ell_2 \leftarrow \ell_2 + \frac{1}{2}\ell_1} \begin{bmatrix} 2 & -4 & | & \xi_1 \\ 0 & 0 & | & \xi_2 + \frac{1}{2}\xi_1 \end{bmatrix},$$

conclui-se que $\operatorname{car}(A)=1$ e $\operatorname{car}(A|b)=1$ se $\xi_2+\frac{1}{2}\xi_1=0$ e $\operatorname{car}(A|b)=2$ se $\xi_2+\frac{1}{2}\xi_1\neq 0$, pelo que $\operatorname{car}(A)<\operatorname{car}(A|b)$ se $\xi_2+\frac{1}{2}\xi_1\neq 0$. Assim, o sistema (S_3) nem sempre é possível, concluindo-se que X_3 não é um conjunto gerador de \mathbb{R}^2 .

Obs 4.28

(a) Conjuntos geradores distintos podem gerar o mesmo espaço vetorial.

(b) Se $F = \langle x_1, \dots, x_r \rangle$, então $X = \{x_1, \dots, x_r\}$ é um conjunto gerador de F.

(c) O teorema que se segue indica um algoritmo para "simplificar" conjuntos geradores de subespaços de IRⁿ através da eliminação de elementos redundantes.

Teo 4.29

Sejam V um subespaço de \mathbb{R}^n e $X = \{x_1, \dots, x_r\}$ um conjunto gerador de V. Seja, ainda, $A = [a_{ii}] \in \mathcal{M}_{n \times r}(\mathbb{R})$, com a_{ii} a i-ésima componente de x_i . Então, $X' = \{x_{k_1}, \dots, x_{k_n}\}$, em que c_{k_1}, \dots, c_{k_n} são os colunas pivô de $B \in fe(A)$, também é um conjunto gerador de V.

Exe 4.30

Indique um conjunto gerador de $V = \langle (0,0), (1,-2), (-2,4) \rangle$ com o número mínimo de elementos.

Res

Seja $A = \begin{bmatrix} 0 & 1 & -2 \\ 0 & -2 & 4 \end{bmatrix}$. Então, como

$$\begin{bmatrix} 0 & 1 & -2 \\ 0 & -2 & 4 \end{bmatrix} \xleftarrow{\ell_2 \leftarrow \ell_2 + 2\ell_1} \begin{bmatrix} 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} = B \in fe(A),$$

 c_2 é a única coluna de pivô de B, pelo que $X' = \{(1, -2)\}$ é um conjunto gerador de V com o número mínimo de elementos.

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

235

Independência e dependência lineare

Obs 4.32

Sejam V um espaço vetorial e $X=\{x_1,\ldots,x_r\}\subseteq V$. Seja, ainda, (S) o sistema de equações lineares $\alpha_1x_1+\cdots+\alpha_rx_r=0_V$.

- (a) (S) é sempre Pos, pois pelo menos admite a solução trivial.
- (b) X é um conjunto li sse (S) é PD, i.e., o conjunto solução é constituído apenas pela solução trivial.
- (c) X é um conjunto ld sse (S) é PI, ou seja, existe pelo menos um $\alpha_i \neq 0$, i = 1, ..., r, tal que

$$\alpha_1 x_1 + \cdots + \alpha_r x_r = 0_V.$$

(d) Se V é um subespaço de \mathbb{R}^n e r>n, então (S) é um sistema de equações lineares possível e indeterminado pelo que X é um conjunto ld.

Def 4 3

Sejam V um espaço vetorial e $X = \{x_1, \dots, x_r\} \subseteq V$.

(a) [conjunto linearmente independente] Diz-se que X é um conjunto linearmente independente (que se abrevia por "conjunto li") se

$$\forall \alpha_1, \dots, \alpha_r \in \mathbb{R} [\alpha_1 x_1 + \dots + \alpha_r x_r = 0_V \to \alpha_1 = \dots = \alpha_r = 0].$$

- (b) [vetores linearmente independentes] Se X é um conjunto linearmente independente, os elementos de X dizem-se vetores linearmente independentes.
- (c) [conjunto linearmente dependente] Se X não é um conjunto linearmente independente, diz-se que X é um conjunto linearmente dependente (que se abrevia por "conjunto li").
- (d) [vetores linearmente dependentes] Se X é um conjunto linearmente dependente, os elementos de X dizem-se vetores linearmente dependentes.

GJM, IB, SL (DMat, UM)

TALG

setembro de 2020 — v5.0

0 226

4 – Espaços Vetoria

Independência e dependência lineares

Teo 4.33

Seja V um espaço vetorial. Então:

- (a) $X = \{x\} \subseteq V$ é um conjunto li sse $x \neq 0_V$, (pelo que X é um conjunto ld sse $x = 0_V$).
- (b) Seja X um subconjunto finito de V tal que $0_V \in X$. Então, X é um conjunto Id.

Exe 4.34

- (a) Indique, justificando, se $X_1 = \{(2,0)\}$ é um conjunto li ou ld.
- (b) Indique, justificando, se $X_2 = \{(2,0), (3,4)\}$ é um conjunto li ou ld.
- (c) Indique, justificando, se $X_3 = \{(2,-1),(-4,2)\}$ é um conjunto li ou ld.
- (d) Indique, justificando, se $X_4 = \{(2,0),(3,4),(0,1)\}$ é um conjunto li ou ld.

Res

- (a) Como $(2,0) \neq (0,0)$, X_1 é um conjunto li.
- (b) Verificar se $X_2=\{(2,0),(3,4)\}$ é um conjunto li ou ld é verificar se é PD ou PI, respetivamente, o sistema de equações lineares (S_2) dado por

$$(0,0) = \alpha(2,0) + \beta(3,4) \Leftrightarrow \begin{cases} 2\alpha + 3\beta = 0 \\ 4\beta = 0, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix}$, $x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ e $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Então, como a representação matricial do sistema (S_2) é

$$\left[\begin{array}{cc|c}2&3&0\\0&4&0\end{array}\right],$$

que já está em escada, car(A) = car(A|b) = n = 2 (n é o número de incógnitas), pelo que o sistema (S_2) é PD,concluindo-se que X_2 é um conjunto li.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

239

4 – Espaços Vetoriais

Independência e dependência lineare

Obs 4.35

O seguinte teorema justifica a designação "vetores linearmente independentes".

Teo 4.36

Sejam V um espaço vetorial e $X = \{x_1, \dots, x_r\} \subseteq V$ com $r \ge 2$. Então, X é um conjunto li sse nenhum dos elementos de X for uma combinação linear dos restantes elementos de X.

Exe 4.37

Sejam $x_1 = (1, -1, 1)$, $x_2 = (2, -1, 1)$ e $x_3 = (2, 1, 3)$.

- (a) Indique, justificando, se x_1 é uma combinação linear de x_2 e x_3 .
- (b) Indique, justificando, se x_2 é uma combinação linear de x_1 e x_3 .
- (c) Indique, justificando, se x_3 é uma combinação linear de x_1 e x_2 .
- (d) Indique, justificando, se $X = \{x_1, x_2, x_3\}$ é um conjunto li ou ld.

Res (cont.)

(c) Verificar se $X_3 = \{(2,-1),(-4,2)\}$ é um conjunto li ou ld é verificar se é PD ou PI, respetivamente, o sistema de equações lineares (S_3) dado por

$$(0,0) = \alpha(2,-1) + \beta(-4,2) \Leftrightarrow \begin{cases} 2\alpha - 4\beta = 0 \\ -\alpha + 2\beta = 0, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 & -4 \\ -1 & 2 \end{bmatrix}$, $x = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ e $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S_3) , tem-se:

$$\begin{bmatrix} 2 & -4 & 0 \\ -1 & 2 & 0 \end{bmatrix} \xleftarrow[\ell_2 \leftarrow \ell_2 + \frac{1}{2}\ell_1] \begin{bmatrix} 2 & -4 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Como car(A) = car(A|b) = 1 < n = 2 (n é o número de incógnitas), (S_3) é um sistema PI, concluindo-se que X_3 é um conjunto Id.

(d) Como $X_4 \subseteq \mathbb{R}^2$ e $\#X_4 = 3 > 2$, X_4 é um conjunto ld.

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

4 – Espaços Vetoria

Independência e dependência lineare

Res

(a) Verificar se $x_1=(1,-1,1)$ é uma combinação linear de $x_2=(2,-1,1)$ e $x_3=(2,1,3)$ é, por definição, verificar se

$$\exists \alpha_2, \alpha_3 \in \mathbb{R} \left[x_1 = \alpha_2 x_2 + \alpha_3 x_3 \right],$$

i.e., se é possível o sistema de equações lineares (S_a) dado por

$$(1,-1,1) = \alpha_2(2,-1,1) + \alpha_3(2,1,3) \Leftrightarrow \begin{cases} 2\alpha_2 + 2\alpha_3 = 1 \\ -\alpha_2 + \alpha_3 = -1 \\ \alpha_2 + 3\alpha_3 = 1, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \\ 1 & 3 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_2 \\ \alpha_3 \end{bmatrix}$ e $b = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S_a)

$$\begin{bmatrix} 2 & 2 & 1 \\ -1 & 1 & -1 \\ 1 & 3 & 1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + \frac{1}{2}\ell_1} \begin{bmatrix} 2 & 2 & 1 \\ 0 & 2 & -\frac{1}{2} \\ 0 & 2 & \frac{1}{2} \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \ell_2}$$

$$\begin{bmatrix} 2 & 2 & 1 \\ 0 & 2 & -\frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}, \text{conclui-se que car}(A) = 2 < \text{car}(A|b) = 3. \text{ Assim, o}$$

sistema (S_a) é um sistema Imp, pelo que x_1 não é uma combinação linear de x_2 e x_3 .

TALGA

Res (cont.)

(b) Verificar se $x_2 = (2, -1, 1)$ é uma combinação linear de $x_1 =$ (1,-1,1) e $x_3=(2,1,3)$ é, por definição, verificar se

$$\exists \alpha_1, \alpha_3 \in \mathbb{R} \left[x_2 = \alpha_1 x_1 + \alpha_3 x_3 \right],$$

i.e., se é possível o sistema de equações lineares (S_h) dado por

$$(2, -1, 1) = \alpha_1(1, -1, 1) + \alpha_3(2, 1, 3) \Leftrightarrow \begin{cases} \alpha_1 + 2\alpha_3 = 2\\ -\alpha_1 + \alpha_3 = -1\\ \alpha_1 + 3\alpha_3 = 1, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \\ 3 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_1 \\ \alpha_3 \end{bmatrix}$ e $b = \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S_h)

Res (cont.)

$$\begin{bmatrix} 1 & 2 & 2 \\ -1 & 1 & -1 \\ 1 & 3 & 1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + \ell_1} \begin{bmatrix} 1 & 2 & 2 \\ 0 & 3 & 1 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{1}{3}\ell_2} \begin{bmatrix} 1 & 2 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & -\frac{4}{3} \end{bmatrix},$$

conclui-se que car(A) = 2 < car(A|b) = 3. Assim, o sistema (S_b) é um sistema Imp, pelo que x_2 não é uma combinação linear de x_1 e x_3 .

Res (cont.)

(c) Verificar se $x_3 = (2,1,3)$ é uma combinação linear de $x_1 = (1,-1,1)$ e $x_2 = (2, -1, 1)$ é, por definição, verificar se

$$\exists \alpha_1, \alpha_2 \in \mathbb{R} \left[x_3 = \alpha_1 x_1 + \alpha_2 x_2 \right],$$

i.e., se é possível o sistema de equações lineares (S_c) dado por

$$(2,1,3) = \alpha_1(1,-1,1) + \alpha_2(2,-1,1) \Leftrightarrow \begin{cases} \alpha_1 + 2\alpha_2 = 2\\ -\alpha_1 - \alpha_2 = 1\\ \alpha_1 + \alpha_2 = 3, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ e $b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S_c)

$$\begin{bmatrix} 1 & 2 & 2 \\ -1 & -1 & 1 \\ 1 & 1 & 3 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + \ell_1} \begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 3 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + \ell_2} \begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 3 \\ 0 & 1 & 3 \\ 0 & 0 & 4 \end{bmatrix},$$

conclui-se que car(A) = 2 < car(A|b) = 3. Assim, o sistema (S_c) é um sistema Imp, pelo que x_3 não é uma combinação linear de x_1 e x_2 .

(d) Como nenhum dos elementos do conjunto X é uma combinação linear dos restantes elementos de X, conclui-se que X é um conjunto li (esta conclusão também poderia ser obtida através da definição de conjunto linearmente independente, mas atendendo às três alíneas anteriores a conclusão obtém-se diretamente).

GJM, IB, SL (DMat, UM

Res

(a) Verificar se x_1 é uma combinação linear de x_2 e x_3 é, por definição, verificar se

$$\exists \alpha_2, \alpha_3 \in \mathbb{R} \left[x_1 = \alpha_2 x_2 + \alpha_3 x_3 \right],$$

i.e., se é possível o sistema de equações lineares (S_a) dado por

$$(1,0) = \alpha_2(2,0) + \alpha_3(1,1) \Leftrightarrow \begin{cases} 2\alpha_2 + \alpha_3 = 1 \\ \alpha_3 = 0, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_2 \\ \alpha_3 \end{bmatrix}$ e $b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Então, como a representação matricial do sistema (S_1) é

$$\left[\begin{array}{cc|c}2&1&1\\0&1&0\end{array}\right]$$

Obs 4.38

O seguinte teorema justifica a designação "vetores linearmente dependentes".

Teo 4.39

Sejam V um espaço vetorial e $X = \{x_1, \dots, x_r\} \subseteq V$ com $r \ge 2$. Então, X é um conjunto ld sse existe pelo menos um elemento de X que é uma combinação linear dos restantes elementos de X.

Exe 4.40

Sejam $x_1 = (1,0), x_2 = (2,0)$ e $x_3 = (1,1)$.

- (a) Indique, justificando, se x_1 é uma combinação linear de x_2 e x_3 .
- (b) Indique, justificando, se $\{x_1, x_2, x_3\}$ é um conjunto li ou ld.

Res (cont.)

que já está em escada, car(A) = car(A|b) = n = 2 (n é o número de incógnitas), pelo que o sistema (S_a) é Pos, concluindo-se que x_1 é uma combinação linear de x2 e x3.

(b) Como x_1 é uma combinação linear de x_2 e x_3 , $\{x_1, x_2, x_3\}$ é um conjunto ld.

4 − Espaços \

Teo 4.41

Sejam V um espaço vetorial e X e X^* subconjuntos de V. Se X é um conjunto ld e $X \subseteq X^*$, então X^* também é um conjunto ld.

Exe 4.42

- (a) Indique, justificando, se $X_1 = \{(2,2,3,-4), (1,2,0,-1), (0,-2,3,-2)\}$ é um conjunto li ou ld.
- (b) Indique, justificando, se $X_2 = \{(2,2,3,-4), (1,2,0,-1), (0,-2,3,-2), (2,1,1,1)\}$ é um conjunto li ou ld.

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

251

GJM, IB, SL (DMat, UN

TALGA

setembro de 2020 — v5.0

Espaços Vetoriais

Independência e dependência lineare

Res (cont.)

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 2 & 2 & -2 & 0 \\ 3 & 0 & 3 & 0 \\ -4 & -1 & -2 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1} \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ \ell_3 \leftarrow \ell_3 - \frac{3}{2}\ell_1 & 0 & -\frac{3}{2} & 3 & 0 \\ \ell_4 \leftarrow \ell_4 + 2\ell_1 & 0 & 1 & -2 & 0 \end{bmatrix}$$

Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), (S) é um sistema PI, concluindo-se que X_1 é um conjunto Id.

(b) Como $X_1 \subseteq X_2$ e X_1 é um conjunto ld, então X_2 também é um conjunto ld.

Res

(a) Verificar se $X_1 = \{(2,2,3,-4),(1,2,0,-1),(0,-2,3,-2)\}$ é um conjunto li ou ld é verificar se é PD ou PI, respetivamente, o sistema de equações lineares (S) dado por

$$(0,0,0,0) = \alpha(2,2,3,-4) + \beta(1,2,0,-1) + \gamma(0,-2,3,-2) \Leftrightarrow$$

$$\begin{cases}
2\alpha + \beta &= 0 \\
2\alpha + 2\beta - 2\gamma &= 0 \\
3\alpha &+ 3\gamma &= 0 \\
-4\alpha - \beta - 2\gamma &= 0,
\end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 & 1 & 0 \\ 2 & 2 & -2 \\ 3 & 0 & 3 \\ -4 & -1 & -2 \end{bmatrix}$, $x = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$ e $b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S), tem-se:

4 – Espacos Vetoria

Independência e dependência lineare

Teo 4.43

Sejam V um espaço vetorial e X e X^* subconjuntos de V. Se X é um conjunto li e $X^* \subseteq X$, então X^* também é um conjunto li.

Exe 4.44

- (a) Indique, justificando, se $X_1 = \{(2,2,3,4), (1,2,0,0), (1,-2,3,4)\}$ é um conjunto li ou ld.
- (b) Indique, justificando, se $X_2 = \{(2,2,3,4),(1,2,0,0)\}$ é um conjunto li ou ld.

Res

(a) Verificar se $X_1 = \{(2,2,3,4), (1,2,0,0), (1,-2,3,4)\}$ é um conjunto li ou ld é verificar se é PD ou PI, respetivamente, o sistema de equações lineares (S) dado por

$$(0,0,0,0) = \alpha(2,2,3,4) + \beta(1,2,0,0) + \gamma(1,-2,3,4) \Leftrightarrow$$

$$\begin{cases} 2\alpha + \beta + \gamma = 0 \\ 2\alpha + 2\beta - 2\gamma = 0 \\ 3\alpha + 3\gamma = 0 \\ 4\alpha + 4\gamma = 0, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 2 & -2 \\ 3 & 4 & 0 & 4 \end{bmatrix}$, $x = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$ e $b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S), tem-se:

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2

255

GJM, IB, SL (DMat, UN

TALG

setembro de 2020 — v5.

4 – Espaços Vetoriais Base

Def 4.45

[base] Sejam V um espaço vetorial e B um conjunto finito constituído por elementos de V. Diz-se que B é uma base de V se B é um conjunto gerador de V li.

Obs 4.46

Sejam V um espaço vetorial e $B = \{b_1, \ldots, b_r\} \subset V$. Diz-se que B é uma base de V se o sistema de equações lineares

$$\alpha_1 b_1 + \dots + \alpha_r b_r = x$$

é possível e determinado qualquer que seja $x \in V$.

Res (cont.)

$$\begin{bmatrix} 2 & 1 & 1 & 0 \\ 2 & 2 & -2 & 0 \\ 3 & 0 & 3 & 0 \\ 4 & 0 & 4 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & -\frac{3}{2} & \frac{3}{2} & 0 \\ 0 & -2 & 2 & 0 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + \frac{3}{2}\ell_2} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & -2 & 2 & 0 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + \frac{3}{2}\ell_2} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \xrightarrow{\ell_3 \leftarrow \ell_3 + \frac{3}{2}\ell_2} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 1 & -3 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot$$

Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas), (S) é um sistema PD, concluindo-se que X_1 é um conjunto li.

(b) Como $X_2\subseteq X_1$ e X_1 é um conjunto li, então X_2 também é um conjunto li.

4 – Espaços Vetoriais Base e base ordenad

Exe 4.47

- (a) Indique, justificando, se $X_1 = \{(2,0)\}$ é uma base de \mathbb{R}^2 .
- (b) Indique, justificando, se $X_2 = \{(2,0), (3,4)\}$ é uma base de \mathbb{R}^2 .
- (c) Indique, justificando, se $X_3 = \{(2, -1), (-4, 2)\}$ é uma base de \mathbb{R}^2 .
- (d) Indique, justificando, se $X_4 = \{(2,0), (3,4), (0,1)\}$ é uma base de \mathbb{R}^2 .

Res

Atendendo às resoluções dos exercícios Exe 4.27 e Exe 4.34, tem-se:

	gerador?	li?	base?
X_1	não	sim	não
X_2	sim	sim	sim
X_3	não	não	não
X_4	sim	não	não

[base ordenada] Sejam V um espaço vetorial e $\mathcal{B}=(b_1,\ldots,b_r)\in V^r$. Diz-se que \mathcal{B} é uma base ordenada de V se $B = \{b_1, \dots, b_r\}$ é uma base de V.

Exe 4.49

Indique o valor lógico da proposição "Seja $B = \{(1, 2), (2, 3)\}$ uma base de \mathbb{R}^2 . Então, $\mathcal{B}_1 = ((1,2),(2,3))$ e $\mathcal{B}_2 = ((2,3),(1,2))$ são duas bases ordenadas distintas de IR²."

Res

Proposição verdadeira.

Obs 4.50

O objetivo da definição Def 4.48 é permitir distinguir entre ordenações diferentes dos seus elementos, situação que não acontece em conjuntos. Faz sentido, agora, a seguinte definição:

GJM, IB, SL (DMat, UM)

Exe 4.53

- (a) Determine $[(0,2,3)]_{\mathcal{B}_a}$, $\mathcal{B}_a = ((1,0,0),(0,1,0),(0,0,1))$.
- (b) Determine $[(0,2,3)]_{\mathcal{B}_b}$, $\mathcal{B}_b = ((0,1,0),(1,0,0),(0,0,1))$.
- (c) Determine $[(0,2,3)]_{\mathcal{B}_c}$, $\mathcal{B}_c = ((1,1,1),(0,1,1),(1,0,1))$.

Res (cont.)

(a) Para responder à questão, tem que se resolver o sistema (S_a) dado por

$$\alpha_1(1,0,0) + \alpha_2(0,1,0) + \alpha_3(0,0,1) = (0,2,3) \Leftrightarrow \begin{cases} \alpha_1 &= 0 \\ \alpha_2 &= 2 \\ \alpha_3 &= 3, \end{cases}$$

vindo imediatamente que (0,2,3) = 0(1,0,0) + 2(0,1,0) + 3(0,0,1), ou seja, $[x]_{B_2} = (0, 2, 3)$.

[coordenadas de um vetor numa base ordenada] Sejam V um espaço vetorial, $\mathcal{B} = (b_1, \dots, b_r)$ uma base ordenada de $V, x \in V$ e $\alpha_1, \ldots, \alpha_r \in \mathbb{R}$ tais que

$$x = \alpha_1 b_1 + \dots + \alpha_r b_r.$$

Chama-se coordenadas do vetor x relativamente à base ordenada \mathcal{B} , que se representa por $[x]_{\mathcal{B}}$, a

$$[x]_{\mathcal{B}} \stackrel{\mathsf{def}}{=} (\alpha_1, \dots, \alpha_r) \in \mathbb{R}^r.$$

Obs 4.52

Como uma base é um conjunto li, o sistema linear que é necessário resolver para determinar as coordenadas de um vetor numa base ordenada é sempre possível e determinado, pelo que as coordenadas de um vetor numa base ordenada são únicas.

GJM, IB, SL (DMat, UM)

Res (cont.)

(b) Para responder à questão, tem que se resolver o sistema (S_b) dado por

$$\alpha_1(0,1,0) + \alpha_2(1,0,0) + \alpha_3(0,0,1) = (0,2,3) \Leftrightarrow \begin{cases} \alpha_2 = 0 \\ \alpha_1 = 2 \\ \alpha_3 = 3, \end{cases}$$

vindo imediatamente que (0,2,3) = 2(0,1,0) + 0(1,0,0) + 3(0,0,1), ou seja, $[x]_{\mathcal{B}_b} = (2,0,3)$.

(c) Para responder à questão, tem que se resolver o sistema (S_c) dado por

$$\alpha_1(1,1,1) + \alpha_2(0,1,1) + \alpha_3(1,0,1) = (0,2,3) \Leftrightarrow \begin{cases} \alpha_1 + \alpha_3 = 0 \\ \alpha_1 + \alpha_2 = 2 \\ \alpha_1 + \alpha_2 + \alpha_3 = 3, \end{cases}$$

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0 262

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$ e $b = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$. Então, aplicando-se o Método de Gauss para resolver este sistema, vem:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 3 \end{bmatrix} \stackrel{\longleftarrow}{\ell_2} \stackrel{\longleftarrow}{\ell_2 - \ell_1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ 0 & 1 & 0 & 3 \end{bmatrix} \stackrel{\longleftarrow}{\ell_3 \leftarrow \ell_3 - \ell_2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas), (S_c) é um sistema PD (como tem que ser).

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

263

GJM, IB, SL (DMat, U

TALG

setembro de 2020 — v5.0

4 – Espaços Vetoriais

Dimensão de um espaço vetoria

Teo 4.54

Sejam V um espaço vetorial e o conjunto $\{x_1, \ldots, x_r\}$ uma base de V. Então, todas as bases de V têm r vetores.

Def 4 55

[dimensão de um espaço vetorial de dimensão finita, $\dim(V)$] Seja V um espaço vetorial tal que $V = \{0_V\}$ ou $\{x_1, \dots, x_r\}$ é uma base de V.

- (a) Se $V=\{0_V\}$, diz-se que a dimensão de V é zero, escrevendo-se $\dim(V)=0$.
- (b) Se $\{x_1, \ldots, x_r\}$ é uma base de V, diz-se que a dimensão de V é r, escrevendo-se dim(V) = r.
- (c) Diz-se ainda que V é um espaço vetorial de dimensão finita.

Res (cont.)

Passo 3 Sendo $\alpha_1, \alpha_2, \alpha_3$ as incógnitas do sistema (S_c) , este é equivalente ao sistema

$$\begin{cases} \alpha_1 + \alpha_3 = 0 \\ \alpha_2 - \alpha_3 = 2 \\ \alpha_3 = 1 \end{cases}$$

Assim, tem-se (MeSTaF):

- $\alpha_3 = 1$;
- $\alpha_2 \alpha_3 = 2 \Leftrightarrow \alpha_2 (1) = 2 \Leftrightarrow \alpha_2 = 3$;
- $\alpha_1 + \alpha_3 = 0 \Leftrightarrow \alpha_1 + (1) = 0 \Leftrightarrow \alpha_1 = -1$,

pelo que (0,2,3)=-(1,1,1)+3(0,1,1)+(1,0,1), ou seja, $[x]_{\mathcal{B}_c}=(-1,3,1)$.

4 – Espaços Vetoriai

Dimensão de um espaço vetorial

Obs 4.56

- (a) Note-se que a alínea (b) da definição anterior faz sentido pois o teorema que a precede garante que se $\{x_1, \ldots, x_r\}$ é uma base de V, todas as bases de V têm r elementos.
- (b) Intuitivamente a dimensão de um espaço vetorial é igual ao número de escalares necessários para caracterizar um elemento do espaço vetorial.

Teo 4.57

 $\dim(\mathbb{R}^n) = n.$

GJM, IB, SL (DMat, UM)

Exe 4.58

- (a) Indique, justificando, se $X_1 = \{(2,0)\}$ é uma base de \mathbb{R}^2 .
- (b) Indique, justificando, se $X_4 = \{(2,0), (3,4), (0,1)\}$ é uma base de \mathbb{R}^2 .

Res

- (a) Como $\#X_1 = 1 \neq \dim(\mathbb{R}^2) = 2$, X_1 não é uma base de \mathbb{R}^2 .
- (b) Como $\#X_4 = 3 \neq \dim(\mathbb{R}^2) = 2$, X_4 não é uma base de \mathbb{R}^2 .

GJM, IB, SL (DMat, UM)

TALGA

Se⁻

setembro de 2020 — v5.0

TALGA

setembro de 2020 — v5.0

Teo 4.59

 $(e_1,\ldots,e_i,\ldots,e_n)$, em que $e_i,\ i=1,\ldots,n$, é o n-úplo cuja j-ésima componente, $j=1,\ldots,n$, é 0 se $i\neq j$ e 1 se i=j, é uma base ordenada de \mathbb{R}^n .

Def 4.60

[base canónica] Chama-se base canónica de \mathbb{R}^n à base ordenada do teorema anterior.

Exe 4.61

Indique a base canónica de IR³.

Res

$$(e_1, e_2, e_3)$$
, $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ e $e_3 = (0, 0, 1)$.

Obs 4.62

Seja \mathcal{B} a base canónica de IRⁿ. Então $[x]_{\mathcal{B}} = x$ (reveja o exercício Exe 4.53 (a)).

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

267

– Espaços Vetoriais

Dimensão de um espaço vetoria

Def 4.64

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$.

(a) [espaço das linhas de uma matriz] Chama-se espaço das linhas da matriz A, que se representa por Lin(A), ao espaço gerado pelas linhas da matriz A, ou seja,

$$\mathsf{Lin}(A) \stackrel{\mathsf{def}}{=} \langle \ell_{1,A}; \dots; \ell_{m,A} \rangle (\subseteq \mathbb{R}^n).$$

(b) [[espaço das colunas de uma matriz]] Chama-se espaço das colunas da matriz A, que se representa por Col(A), ao espaço gerado pelas colunas da matriz A, ou seja,

$$Col(A) \stackrel{\text{def}}{=} \langle c_{1,A}; \ldots; c_{n,A} \rangle (\subseteq \mathbb{R}^m).$$

Teo 4.63

Sejam V um espaço vetorial tal que $\dim(V) = n$ e B um subconjunto de V com n elementos.

- (a) Se B é um conjunto li, então B é uma base de V.
- (b) Se B é um conjunto gerador de V, então B é uma base de V.

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

26

4 – Espaços Vetoriais

Dimensão de um espaço vetoria

Exe 4.65

Determine o espaço das colunas e espaço das linhas das seguintes matrizes:

- (a) $A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$.
- (b) $B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 0 & 2 \end{bmatrix}$.

Res

- (a) espaço das linhas: $Lin(A) = \langle (1,0), (2,2) \rangle$.
 - espaço das colunas: $Col(A) = \langle (1,2), (0,2) \rangle$.
- (b) espaço das linhas: $Lin(B) = \langle (1, 1, 1, 1), (2, 2, 0, 2) \rangle$.
 - espaço das colunas: $\operatorname{Col}(B) = \langle (1,2), (1,2), (1,0), (1,2) \rangle$.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

/5.0 269

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

Def 4 66

[núcleo de uma matriz ou espaço nulo de uma matriz] Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Chama-se núcleo da matriz A ou espaço nulo da matriz A, que se representa por $\mathrm{Nuc}(A)$, ao conjunto solução do sistema homogéneo cuja matriz dos coeficientes é a matriz A, ou seja,

$$Nuc(A) \stackrel{\mathsf{def}}{=} \mathsf{CS}_{(Ax=0)} (\subseteq \mathbb{R}^n).$$

Exe 4.67

Determine o núcleo das seguintes matrizes:

- (a) $A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$.
- (b) $B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 0 & 2 \end{bmatrix}$.

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

271

Dimensão de um espaço vetoria

Res (cont.)

- $2x_2 = 0 \Leftrightarrow x_2 = 0$;
- $x_1 = 0$,

pelo que $Nuc(A) = \{(0,0)\}.$

(b) Seja (S) o sistema de equações lineares homogéneo cuja matriz dos coeficientes é B (o vetor dos termos independentes é o vetor nulo $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$). Então, o núcleo da matriz B é o conjunto solução do sistema (S). Aplique-se o método de Gauss para o determinar:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 2 & 2 & 0 & 2 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & -2 & 0 & 0 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 4 (n é o número de incógnitas), (S) é um sistema PI.

Res

(a) Seja (S) o sistema de equações lineares homogéneo cuja matriz dos coeficientes é A (o vetor dos termos independentes é o vetor nulo $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$). Então, o núcleo da matriz A é o conjunto solução do sistema (S). Aplique-se o método de Gauss para o determinar:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\left[\begin{array}{cc|c} 1 & 0 & 0 \\ 2 & 2 & 0 \end{array}\right] \xleftarrow[\ell_2 \leftarrow \ell_2 - 2\ell_1] \left[\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 2 & 0 \end{array}\right].$$

Passo 2 Como car(A) = car(A|b) = n = 2 (n é o número de incógnitas), (S) é um sistema PD.

Passo 3 Sejam x_1, x_2 as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} x_1 = 0 \\ 2x_2 = 0 \end{cases}$$

Assim, tem-se (MeSTaF):

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

272

4 – Espaços Vetoriai

Dimensão de um espaço vetoria

Res (cont.)

Passo 3 Sejam x_1, x_2, x_3, x_4 as incógnitas do sistema (S). Então, x_2 e x_4 são incógnitas livres e (S) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ -2x_3 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-2x_3 = 0 \Leftrightarrow x_3 = 0$;
- $x_1 + x_2 + x_3 + x_4 = 0 \Leftrightarrow x_1 + x_2 + (0) + x_4 = 0 \Leftrightarrow x_1 = -x_2 x_4$, pelo que $Nuc(B) = \{(-x_2 x_4, x_2, 0, x_4) : x_2, x_4 \in \mathbb{R}\}.$

Res

Teo 4.68

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{R})$. Então:

- (a) dim(Lin(A)) = car(A).
- (b) dim(Col(A)) = car(A).
- (c) $\dim(\operatorname{Nuc}(A)) = n \operatorname{car}(A)$ (número de variáveis livres do sistema Ax = 0).

Exe 4.69

Determine as dimensões do espaço das linhas, do espaço das colunas e do núcleo das seguintes matrizes:

- (a) $A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$.
- (b) $B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 0 & 2 \end{bmatrix}$.

GJM, IB, SL (DMat, UM)

(a) Atendendo ao exercício Exe 4.67 (a), tem-se dim(Lin(A)) = 2,

(b) Atendendo ao exercício Exe 4.67 (b), tem-se dim(Lin(B)) = 2,

 $\dim(\text{Col}(A)) = 2$, $\dim(\text{Nuc}(A)) = 2 - 2 = 0$.

 $\dim(Col(B)) = 2$, $\dim(Nuc(B)) = 4 - 2 = 2$.

Teo 4.70

Sejam V um espaço vetorial com dimensão finita e X um subespaço de V. Então:

- (a) $\dim(X) \leq \dim(V)$.
- (b) dim(X) = dim(V) sse X = V.

Exe 4.71

Indique o valor lógico da proposição "Seja a matriz $B = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 0 & 2 \end{bmatrix}$. Então, $Col(B) = \mathbb{R}^2$."

Res

Como o espaço das colunas da matriz B, Col(B), é um subespaço de \mathbb{R}^2 e dim(Col(B)) = dim(\mathbb{R}^2) = 2 (conforme o exercício Exe 4.69 (b)), conclui-se que a proposição dada é verdadeira.

Obs 4.72

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Então:

- (a) $\{\ell_{1,A}, \dots, \ell_{n,A}\}$ é um conjunto ld sse $\det(A) = 0$.
- (b) $\{\ell_{1,A},\ldots,\ell_{n,A}\}$ é um conjunto li sse $\det(A) \neq 0$.
- (c) $\{c_{1,A},\ldots,c_{n,A}\}$ é um conjunto ld sse det(A)=0.
- (d) $\{c_{1,A}, \ldots, c_{n,A}\}$ é um conjunto li sse $\det(A) \neq 0$.

Exe 4.73

Conclua, por dois processos distintos e atendendo à observação anterior, que $X = \{(1,2), (3,4)\}$ é um conjunto li.

Res

- Processo 1 (por linhas): Seja A a matriz cujas linhas são os vetores do conjunto X. Então, como $|A| = \left|\frac{1}{3}\frac{2}{4}\right| = 1 \times 4 2 \times 3 = -2 \neq 0$, conclui-se que X é um conjunto li.
- Processo 2 (por colunas): Seja B a matriz cujas colunas são os vetores do conjunto X. Então, como $|B| = \left| \frac{1}{2} \frac{3}{4} \right| = 1 \times 4 2 \times 3 = -2 \neq 0$, conclui-se que X é um conjunto li (note-se que $B = A^T$, pelo que os determinantes das matrizes A e B são iguais).

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 - v5.0

279

ΤΔΙ (

setembro de 2020 — v5.0

4 – Espaços Vetoriais

nglish vocabular

Obs 4.75

Some english vocabulary regarding Vector Spaces

- espaço vetorial/vector space
- subespaço/subspace
- combinação linear/linear combination
- espaço gerado/span
- conjunto linearmente independente/linearly independent set
- conjunto linearmente dependente/linearly dependent set
- base/basis
- base ordenada/ordered basis
- dimensão de um espaço vetorial/dimension of a vector space

Obs 4.74

Seja V um espaço vetorial tal que $\dim(V) = n$. Então:

- (a) quaisquer m > n vetores de V são linearmente dependentes.
- (b) se C é um conjunto gerador de V, então $\#C \ge n$.
- (c) se C é um conjunto li de V com n vetores, então C é um conjunto gerador de V.
- (d) se C é um conjunto gerador de V com n vetores, então C é um conjunto li.
- (e) se C é um conjunto gerador de V e li, então #C = n.

5 - Transformações Lineares de IRⁿ em IR

- O Algumas notações e revisões
- 1 Matrize
- 2 Determinantes
- 3 Sistemas de Equações Lineares
- 4 Espaços Vetoriais
- 5 Transformações Lineares de \mathbb{R}^n em \mathbb{R}^m
- 6 Valores e Vetores Próprios
- 7 Geometria Analítica

Obs 5.1

Começa-se este capítulo por rever algumas definições sobre funções, pois o seu objeto de estudo é um caso particular de funções — as transformações lineares de \mathbb{R}^n em \mathbb{R}^m .

Ifunção, imagem de um elemento através de uma função, domínio de uma função, conjunto de chegada de uma função Sejam A e B conjuntos e $x \in A$. Diz-se que f é uma função de A em B se associa a cada elemento de A um e só um elemento de B, representando-se por f(x) a imagem de x por f. Chama-se domínio de f a A e conjunto de chegada de f a B.

Obs 5.3

Sejam f uma função cujo domínio é \mathbb{R}^n e $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$. Então, a imagem de x por f, além de se representar por f(x), também é habitual representar-se por $f(x_1, \ldots, x_n)$.

GJM, IB, SL (DMat, UM)

Transformações Lineares de IRⁿ em IR^r

– Transformações Lineares de IRⁿ em IR^m

Exe 5.5

Considere a função $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, T(x,y) = (x-y,0,x). Calcule:

(a) T(2,1).

(c) T(y,x).

(b) T(y, 1).

(d) T(x + 2y, 2y - x).

Res

- (a) T(2,1) = (1,0,2).
- (b) T(v, 1) = (v 1, 0, v).
- (c) T(y,x) = (y-x,0,y).
- (d) T(x+2y,2y-x) = ((x+2y)-(2y-x),0,x+2y) = (2x,0,x+2y).

Exe 5.4

- (a) Considere a função $F: \{a, b, c\} \rightarrow \{a, z\}, a \mapsto a, b \mapsto z, c \mapsto z$. Indique a imagem de b por F.
- (b) Considere a função $\varphi: \mathbb{R} \to \mathbb{R}, \ \varphi(x) = x^2$. Indique a imagem de -2por φ .

Res

- (a) F(b) = z.
- (b) $\varphi(-2) = 4$.

 $\llbracket \text{composição de funções} \rrbracket$ Sejam A, B e C conjuntos, f uma função de A em B e g uma função de B em C. Chama-se composição de f com g, que se representa por $g \circ f$ e que se lê "g após f", à função

$$g \circ f: A \longrightarrow C$$

 $x \longmapsto g(f(x)).$

Exe 5.7

Considere as seguintes funções:

 $f: \{a, b, c\} \rightarrow \{\alpha, \beta, \gamma, \delta\}, a \mapsto \beta, b \mapsto \alpha, c \mapsto \delta.$

 $g: \{\alpha, \beta, \gamma, \delta\} \rightarrow \{1, 2\}, \alpha \mapsto 1, \beta \mapsto 1, \gamma \mapsto 2, \delta \mapsto 1.$

TALGA

Determine $g \circ f$.

Res

Atendendo a

tem-se que $g \circ f = \{a, b, c\} \rightarrow \{1, 2\}, a \mapsto 1, b \mapsto 1, c \mapsto 1.$

GJM, IB, SL (DMat, UM)

Exe 5.8

Considere as seguintes funções:

$$f_1: \mathbb{R} \to \mathbb{R}, f_1(x) = x^2.$$

$$f_2: \mathbb{R} \to \mathbb{R}, f_2(x) = 2x.$$

$$f_3: \mathbb{R} \to \mathbb{R}, f_3(x) = x + 1.$$

Determine:

- (a) $f_1 \circ f_2$.
- (b) $f_2 \circ f_1$.
- (c) $f_3 \circ (f_2 \circ f_1)$.
- (d) $(f_3 \circ f_2) \circ f_1$.

Obs 5.11

A composição de funções é associativa mas não é comutativa.

Obs 5.12

No caso do domínio e do conjunto de chegada de duas funções serem \mathbb{R}^n e IR^m, respetivamente, pode-se definir a soma dessas duas funções através da seguinte definição (que se podia generalizar a domínios e conjuntos de chegada mais gerais, mas que aqui não se vai fazer):

Def 5.13

 $\llbracket soma de funções \rrbracket Sejam f e g funções de <math>\Bbb R^n$ em $\Bbb R^m$. Chama-se soma de f e g, que se representa por f + g, à função

$$f + g: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$

 $x \longmapsto f(x) + g(x).$

Res

(a) $f_1 \circ f_2 : \mathbb{R} \to \mathbb{R}$, $(f_1 \circ f_2)(x) = f_1(f_2(x)) = f_1(2x) = (2x)^2 = 4x^2$.

(b) $f_2 \circ f_1 : \mathbb{R} \to \mathbb{R}$, $(f_2 \circ f_1)(x) = f_2(f_1(x)) = f_2(x^2) = 2x^2$.

(c) $f_3 \circ (f_2 \circ f_1) : \mathbb{R} \to \mathbb{R}, (f_3 \circ (f_2 \circ f_1))(x) = f_3(f_2 \circ f_1)(x)) = f_3(2x^2) =$ $2x^2 + 1$

(d) $(f_3 \circ f_2) \circ f_1 : \mathbb{R} \to \mathbb{R}, ((f_3 \circ f_2) \circ f_1)(x) = (f_3 \circ f_2)(f_1(x)) = (f_3 \circ f_2)(x^2) = (f_$ $f_3(f_2(x^2)) = f_3(2x^2) = 2x^2 + 1.$

Obs 5.9

No exercício anterior, terá sido coincidência $f_3 \circ (f_2 \circ f_1) = (f_3 \circ f_2) \circ f_1$? O teorema que se segue diz que não.

Teo 5.10

Sejam A, B, C e D conjuntos, f uma função de A em B, g uma função de B em C e h uma função de C em D. Então, $h \circ (g \circ f) = (h \circ g) \circ f$.

GJM, IB, SL (DMat, UM)

TALGA

GJM, IB, SL (DMat, UM)

TALGA

Exe 5.14

Considere as seguintes funções:

$$F: \mathbb{R} \to \mathbb{R}, F(x) = x^2 - x.$$

$$G: \mathbb{R} \to \mathbb{R}, G(x) = 2x.$$

Determine F + G.

Res

$$F + G : \mathbb{R} \to \mathbb{R}, (F + G)(x) = F(x) + G(x) = (x^2 - x) + (2x) = x^2 + x.$$

Obs 5.15

No caso do domínio e do conjunto de chegada de uma função serem \mathbb{R}^n e IR^m, respetivamente, pode definir-se o produto (ou multiplicação) dessa função por um escalar através da seguinte definição (que se podia generalizar a domínios e conjuntos de chegada mais gerais, mas que aqui não se vai fazer):

GJM, IB, SL (DMat, UM)

- (a) [transformação linear ou homomorfismo] Seja <math>T uma função de \mathbb{R}^n em \mathbb{R}^m . Diz-se que T é uma transformação linear ou um homomorfismo de \mathbb{R}^n em \mathbb{R}^m se
 - (i) $\forall x, y \in \mathbb{R}^n [T(x+y) = T(x) + T(y)] e$
 - (ii) $\forall x \in \mathbb{R}^n, \forall \alpha \in \mathbb{R} [T(\alpha x) = \alpha T(x)].$
- (b) $[\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)]$ Representa-se por $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ o conjunto de todas as transformações lineares de \mathbb{R}^n em \mathbb{R}^m .

Obs 5.19

A definição anterior pode generalizar-se ao caso de funções em que o domínio e o conjunto de chegada são espaços vetoriais guaisquer. No entanto, e como indica o nome do capítulo, aqui apenas se abordará transformações lineares de \mathbb{R}^n em \mathbb{R}^m .

¶produto (ou multiplicação) de uma função por um escalar
¶ Sejam f uma função de \mathbb{R}^n em \mathbb{R}^m e $\alpha \in \mathbb{R}$. Chama-se produto (ou multiplicação) de α por f, que se representa por αf , à função

$$\alpha f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 $x \longmapsto \alpha f(x).$

Exe 5.17

Considere a função

$$F: \mathbb{R}^2 \to \mathbb{R}^3, F(x, y) = (x^2, 0, |y|).$$

Determine 3F.

Res

$$3F: \mathbb{R}^2 \to \mathbb{R}^3, (3F)(x, y) = 3F(x, y) = 3(x^2, 0, |y|) = (3x^2, 0, 3|y|).$$

GJM, IB, SL (DMat, UM)

<u>5 – Transformações Lineares de IR</u>ⁿ em IR

Exe 5.20

Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $T(x_1, x_2) = (x_2, 0, x_1 + x_2)$. Mostre que T é uma transformação linear de IR² em IR³.

Res

• Condição (i): $\forall x, y \in \mathbb{R}^2 [T(x+y) = T(x) + T(y)].$ Sejam $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$. Então:

$$T(x + y) = T((x_1, x_2) + (y_1, y_2)) = T(x_1 + y_1, x_2 + y_2)$$

$$= (x_2 + y_2, 0, x_1 + y_1 + x_2 + y_2).$$

$$T(x) + T(y) = T(x_1, x_2) + T(y_1, y_2)$$

$$= (x_2, 0, x_1 + x_2) + (y_2, 0, y_1 + y_2)$$

$$= (x_2 + y_2, 0, x_1 + x_2 + y_1 + y_2)$$

$$= (x_2 + y_2, 0, x_1 + y_1 + x_2 + y_2).$$

Assim, como T(x+y) = T(x) + T(y), conclui-se que a condição (i) é válida.

• Condição (ii): $\forall x \in \mathbb{R}^2, \forall \alpha \in \mathbb{R} [T(\alpha x) = \alpha T(x)].$ Sejam $x = (x_1, x_2) \in \mathbb{R}^2$ e $\alpha \in \mathbb{R}$. Então:

$$T(\alpha x) = T(\alpha(x_1, x_2)) = T(\alpha x_1, \alpha x_2) = (\alpha x_2, 0, \alpha x_1 + \alpha x_2).$$

 $\alpha T(x) = \alpha T(x_1, x_2) = \alpha(x_2, 0, x_1 + x_2) = (\alpha x_2, 0, \alpha x_1 + \alpha x_2).$

Assim, como $T(\alpha x) = \alpha T(x)$, conclui-se que a condição (ii) é válida. Como as condições (i) e (ii) são válidas, conclui-se que T é uma transformação linear de IR² em IR³.

GJM, IB, SL (DMat, UM

Obs 5.23

A função do exemplo anterior é um dos casos em que ambas as condições (i) e (ii) da definição Def 5.18 (a) são falsas. Assim, outra possível resolução do exercício anterior é mostrar que a condição (ii) é falsa através de um contraexemplo, ou seja, considerando, por exemplo, $\alpha = 0$ e x = (1, 0). Então:

$$f(\alpha x) = f(0(1,0)) = f(0,0) = (0,1,0)$$

$$\alpha f(x) = 0 f(1,0) = 0(0,1,1) = (0,0,0)$$

Assim, como $f(\alpha x) \neq \alpha f(x)$, conclui-se que f não é uma transformação linear IR² em IR³.

Obs 5.21

Seja f uma função de \mathbb{R}^n em \mathbb{R}^m . Então, f não é uma transformação linear de \mathbb{R}^n em \mathbb{R}^m se

- (i) $\exists x, y \in \mathbb{R}^n [f(x+y) \neq f(x) + f(y)]$ ou
- (ii) $\exists x \in \mathbb{R}^n, \exists \alpha \in \mathbb{R} [f(\alpha x) \neq \alpha f(x)].$

Exe 5.22

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $f(x_1, x_2) = (x_2, 1, x_1 + x_2)$. Mostre que f não é uma transformação linear IR² em IR³.

Res

Sejam, por exemplo, x = (0,0) e y = (1,0). Então:

$$f(x + y) = f((0,0) + (1,0)) = f(1,0) = (0,1,1),$$

 $f(x) + f(y) = f(0,0) + f(1,0) = (0,1,0) + (0,1,1) = (0,2,1).$

Assim, como $f(x + y) \neq f(x) + f(y)$, conclui-se que f não é uma transformação linear IR² em IR³.

GJM, IB, SL (DMat, UM)

Transformações Lineares de IRⁿ em IR^r

Teo 5.24

 $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ se e só se

$$\forall x, y \in \mathbb{R}^n, \forall \alpha \in \mathbb{R} \left[T(\alpha x + y) = \alpha T(x) + T(y) \right].$$

Obs 5.25

O teorema anterior indica um processo alternativo à definição Def 5.18 de verificar se uma função é uma transformação linear.

Exe 5.26

Seja $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $T(x_1, x_2) = (x_2, 0, x_1 + x_2)$. Mostre novamente que T é uma transformação linear de \mathbb{R}^2 em \mathbb{R}^3 recorrendo agora ao teorema Teo 5.24.

Res

Sejam $x=(x_1,x_2), y=(y_1,y_2)\in \mathbb{R}^2$ e $\alpha\in\mathbb{R}$. Então:

$$T(\alpha x + y) = T(\alpha(x_1, x_2) + (y_1, y_2)) = T(\alpha x_1 + y_1, \alpha x_2 + y_2)$$

$$= (\alpha x_2 + y_2, 0, \alpha x_1 + y_1 + \alpha x_2 + y_2).$$

$$\alpha T(x) + T(y) = \alpha T(x_1, x_2) + T(y_1, y_2)$$

$$= \alpha(x_2, 0, x_1 + x_2) + (y_2, 0, y_1 + y_2)$$

$$= (\alpha x_2, 0, \alpha x_1 + \alpha x_2) + (y_2, 0, y_1 + y_2)$$

$$= (\alpha x_2 + y_2, 0, \alpha x_1 + \alpha x_2 + y_1 + y_2)$$

 $= (\alpha x_2 + v_2, 0, \alpha x_1 + v_1 + \alpha x_2 + v_2).$

Assim, como $T(\alpha x + y) = \alpha T(x) + T(y)$, conclui-se que T é uma transformação linear de IR² em IR³.

- (a) [endomorfismo] Chama-se endomorfismo em \mathbb{R}^n a uma transformação linear de \mathbb{R}^n em \mathbb{R}^n .
- (b) $\mathbb{I}\mathcal{L}(\mathbb{R}^n)$ Representa-se por $\mathcal{L}(\mathbb{R}^n)$ o conjunto de todos os endomorfismos em \mathbb{R}^n .

Exe 5.28

Indique, justificando, o valor lógico da proposição " $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $T(x_1, x_2) = (0, 0, x_1 + x_2)$ é um endomorfismo em IR²."

Res

A proposição é falsa pois apesar do domínio de T ser \mathbb{R}^2 , o conjunto de chegada não é \mathbb{R}^2 (note-se que T é uma transformação linear).

Transformações Lineares de IRⁿ em IR

Teo 5.29

Seja $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Então:

- (a) $T(0_{\mathbb{R}^n}) = 0_{\mathbb{R}^m}$.
- (b) $\forall x \in \mathbb{R}^n \left[T(-x) = -T(x) \right].$
- (c) $\forall x, y \in \mathbb{R}^n [T(x y) = T(x) T(y)].$

Obs 5.30

Seja f uma função de \mathbb{R}^n em \mathbb{R}^m . Então, o teorema anterior permite concluir que se

- (i) $f(0_{\mathbb{R}^n}) \neq 0_{\mathbb{R}^m}$ ou
- (ii) $\exists x \in \mathbb{R}^n [f(-x) \neq -f(x)]$ ou
- (iii) $\exists x, y \in \mathbb{R}^n \left[f(x y) \neq f(x) f(y) \right]$

f não é uma transformação linear.

GJM, IB, SL (DMat, UM)

Exe 5.31

Justifique que as seguintes funções não são transformações lineares recorrendo à observação Obs 5.30:

- (a) $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, g(a, b) = (a, 1, a + 2b).
- (b) $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, h(x, y) = (0, 0, |x y|).
- (c) $i: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $i(x_1, x_2) = (x_1^2, 0, 0)$.

Res

- (a) Como, por exemplo, $g(0_{\mathbb{R}^2}) = g(0,0) = (0,1,0) \neq (0,0,0) = 0_{\mathbb{R}^3}$, conclui-se que g não é uma transformação linear.
- (b) Como, por exemplo, $h(-(1,0)) = h(-1,0) = (0,0,1) \neq -h(1,0) =$ -(0,0,1) = (0,0,-1), conclui-se que h não é uma transformação linear.
- (c) Como, por exemplo, $i((2,0)-(1,0))=i(1,0)=(1,0,0)\neq i(2,0)-(1,0)=(1,0,0)\neq i(2,0)=(1,0)$ i(1,0) = (4,0,0) - (1,0,0) = (3,0,0), conclui-se que i não é uma transformação linear.

Teo 5.32

Sejam T uma transformação linear de \mathbb{R}^n em \mathbb{R}^m , $\mathcal{B}=(v_1,\ldots,v_n)$ uma base ordenada de \mathbb{R}^n e $\mathcal{B}'=(v_1',\ldots,v_m')$ uma base ordenada de \mathbb{R}^m . Seja ainda $A_{T,\mathcal{B},\mathcal{B}'}$ a matriz do tipo $m\times n$ tal que $c_{j,A_{T,\mathcal{B},\mathcal{B}'}}=[T(v_j)]_{\mathcal{B}'}$, $j=1,\ldots,n$. Então, se $v\in\mathbb{R}^n$,

$$[T(v)]_{\mathcal{B}'} = A_{T,\mathcal{B},\mathcal{B}'}[v]_{\mathcal{B}}.$$

Dem

Sejam $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, $\mathcal{B} = (v_1, \dots, v_n)$ uma base ordenada de \mathbb{R}^n , $\mathcal{B}' = (v_1', \dots, v_m')$ uma base ordenada de \mathbb{R}^m e $v \in \mathbb{R}^n$. Então,

$$\exists^{1}\alpha_{1},\ldots,\alpha_{n} \in \mathbb{R} \left[v = \alpha_{1}v_{1} + \cdots + \alpha_{n}v_{n} \right],$$

$$\exists^{1}a_{11},\ldots,a_{m1} \in \mathbb{R} \left[T(v_{1}) = a_{11}v'_{1} + \cdots + a_{m1}v'_{m} \right],$$

$$\vdots$$

$$\exists^{1}a_{1n},\ldots,a_{mn} \in \mathbb{R} \left[T(v_{n}) = a_{1n}v'_{1} + \cdots + a_{mn}v'_{m} \right].$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

303

5 – Transformações Lineares de IRⁿ em IR^m

Matriz de uma transformação linear de IRⁿ em IF

Def 5 33

[matriz de uma transformação linear de \mathbb{R}^n em \mathbb{R}^m , $A_{T,\mathcal{B},\mathcal{B}'}$, A_T] Sejam T uma transformação linear de \mathbb{R}^n em \mathbb{R}^m , $\mathcal{B}=(v_1,\ldots,v_n)$ uma base ordenada de \mathbb{R}^n e $\mathcal{B}'=(v_1',\ldots,v_m')$ uma base ordenada de \mathbb{R}^m . À matriz do teorema anterior chama-se matriz da transformação linear T relativamente às bases \mathcal{B} e \mathcal{B}' , que se representa, como se disse, por $A_{T,\mathcal{B},\mathcal{B}'}$ ou simplesmente por A_T se \mathcal{B} e \mathcal{B}' são as bases canónicas de \mathbb{R}^n e \mathbb{R}^m , respetivamente.

Obs 5.34

- (a) As colunas da matriz de uma transformação linear relativamente às bases canónicas do domínio e do conjunto de chegada são simplesmente as imagens dos elementos da base canónica do domínio da transformação linear (ver observação Obs 4.62).
- (b) Quando nada se disser, considera-se que a matriz da transformação linear é relativamente às bases canónicas.

Dem (cont.)

Tem-se, então, que:

$$T(v) = T(\alpha_{1}v_{1} + \dots + \alpha_{n}v_{n})$$

$$= \alpha_{1}T(v_{1}) + \dots + \alpha_{n}T(v_{n})$$

$$= \alpha_{1}(a_{11}v'_{1} + \dots + a_{m1}v'_{m}) + \dots + \alpha_{n}(a_{1n}v'_{1} + \dots + a_{mn}v'_{m})$$

$$= (\alpha_{1}a_{11} + \dots + \alpha_{n}a_{1n})v'_{1} + \dots + (\alpha_{1}a_{m1} + \dots + \alpha_{n}a_{mn})v'_{m}$$

$$= \beta_{1}v'_{1} + \dots + \beta_{m}v'_{m},$$

em que

$$\begin{bmatrix}
\beta_1 \\
\vdots \\
\beta_m
\end{bmatrix} = \begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{bmatrix} \begin{bmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{bmatrix}.$$

$$[V]_{\mathcal{B}}$$

GJM, IB, SL (DMat, UN

TALGA

setembro de 2020 — v5.0

5 - Transformações Lineares de IRⁿ em IR

Matriz de uma transformação linear de IRⁿ em IRⁿ

Exe 5.35

Seja a transformação linear $\mathcal{T} \in \mathcal{L}(IR^3,IR^2)$,

T(x, y, z) = (x + 2z, 3x - y). Determine a matriz da transformação linear T relativamente às bases canónicas de \mathbb{R}^3 e \mathbb{R}^2 .

Res

Como $T(1,0,0)=(1,3),\ T(0,1,0)=(0,-1)$ e T(0,0,1)=(2,0), tem-se que

$$A_{\mathcal{T}} = \begin{bmatrix} 1 & 0 & 2 \\ 3 & -1 & 0 \end{bmatrix}.$$

Exe 5.36

Seja a transformação linear $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$, T(x, y, z) = (x + 2z, 3x - y). Determine a matriz da transformação linear T relativamente às bases ordenadas $\mathcal{B} = ((1,2,1),(1,1,1),(2,-1,1))$ de \mathbb{R}^3 e $\mathcal{B}' = ((1,2),(3,1))$ de \mathbb{R}^2 .

Res

Sejam $v_1 = (1, 2, 1), v_2 = (1, 1, 1), v_3 = (2, -1, 1), v_1' = (1, 2)$ e $v_2' = (3, 1).$

Para resolver este exercício, tem que se calcular as imagens dos elementos de \mathcal{B} para depois se determinar as coordenadas destes vetores em \mathcal{B}' .

• Para v_1 : $T(v_1) = T(1,2,1) = (3,1)$. Para determinar $[T(v_1)]_{\mathcal{B}'} =$ $[(3,1)]_{B'}$, tem que se resolver o sistema (S) dado por

$$x_1(1,2) + x_2(3,1) = (3,1) \Leftrightarrow \begin{cases} x_1 + 3x_2 = 3\\ 2x_1 + x_2 = 1, \end{cases}$$

Matriz de uma transformação linear de IRⁿ

Res (cont.)

- \bullet $-5x_2 = -5 \Leftrightarrow x_2 = 1$:
- $x_1 + 3x_2 = 3 \Leftrightarrow x_1 + 3 \times (1) = 3 \Leftrightarrow x_1 = 0$. pelo que $[T(v_1)]_{B'} = [(3,1)]_{B'} = (0,1).$
- Para v_2 : $T(v_2) = T(1,1,1) = (3,2)$. Para determinar $[T(v_2)]_{B'} =$ $[(3,2)]_{\mathcal{B}'}$, tem que se resolver o sistema (S) dado por

$$x_1(1,2) + x_2(3,1) = (3,2) \Leftrightarrow \begin{cases} x_1 + 3x_2 = 3\\ 2x_1 + x_2 = 2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ e $b = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$. Então, aplicando-se o Método de Gauss para resolver este sistema, vem:

Res (cont.)

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ e $b = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. Então, aplicando-se o Método de Gauss para resolver este sistema, vem:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\left[\begin{array}{cc|c}1&3&3\\2&1&1\end{array}\right] \longleftrightarrow \left[\begin{array}{cc|c}1&3&3\\0&-5&-5\end{array}\right].$$

Passo 2 Como car(A) = car(A|b) = n = 2 ($n \neq 0$ número de incógnitas), (S) é um sistema PD (este resultado já é pré-sabido).

Passo 3 Sejam x_1, x_2 as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} x_1 + 3x_2 = 3 \\ -5x_2 = -5 \end{cases}$$

Assim, tem-se (MeSTaF):

Res (cont.)

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 3 & 3 \\ 2 & 1 & 2 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & 3 & 3 \\ 0 & -5 & -4 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 2 (n é o número de incógnitas), (S) é um sistema PD (este resultado já é pré-sabido).

Passo 3 Sejam x_1, x_2 as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} x_1 + 3x_2 = 3 \\ -5x_2 = -4 \end{cases}$$

Assim, tem-se (MeSTaF):

•
$$-5x_2 = -4 \Leftrightarrow x_2 = \frac{4}{5}$$
;

•
$$x_1 + 3x_2 = 3 \Leftrightarrow x_1 + 3 \times \left(\frac{4}{5}\right) = 3 \Leftrightarrow x_1 = \frac{3}{5}$$

TALGA

pelo que $[T(v_2)]_{B'} = [(3,2)]_{B'} = (\frac{3}{5}, \frac{4}{5}).$

• Para v_3 : $T(v_3) = T(2, -1, 1) = (4, 7)$. Para determinar $[T(v_3)]_{\mathcal{B}'} = [(4, 7))]_{\mathcal{B}'}$, tem que se resolver o sistema (S) dado por

$$x_1(1,2) + x_2(3,1) = (4,7) \Leftrightarrow \begin{cases} x_1 + 3x_2 = 4 \\ 2x_1 + x_2 = 7, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ e $b = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$. Então, aplicando-se o Método de Gauss para resolver este sistema, vem:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\left[\begin{array}{cc|c}1&3&4\\2&1&7\end{array}\right] \xleftarrow{\longleftarrow} \left[\begin{array}{cc|c}1&3&4\\0&-5&-1\end{array}\right].$$

Passo 2 Como car(A) = car(A|b) = n = 2 (n é o número de incógnitas), (S) é um sistema PD (este resultado já é pré-sabido).

GJM, IB, SL (DMat, UM

TALGA

setembro de 202

311

Res (cont.)

Passo 3 Sejam x_1, x_2 as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} x_1 + 3x_2 = 4 \\ -5x_2 = -1. \end{cases}$$

Assim, tem-se (MeSTaF):

- $\bullet \ -5x_2 = -1 \Leftrightarrow x_2 = \frac{1}{5};$
- $x_1 + 3x_2 = 4 \Leftrightarrow x_1 + 3 \times (\frac{1}{5}) = 4 \Leftrightarrow x_1 = \frac{17}{5}$, pelo que $[T(y_3)]_{B'} = [(4,7)]_{B'} = (\frac{17}{5}, \frac{1}{5})$.

Assim, tem-se que

$$A_{T,\mathcal{B},\mathcal{B}'} = \begin{bmatrix} 0 & \frac{3}{5} & \frac{17}{5} \\ 1 & \frac{4}{5} & \frac{1}{5} \end{bmatrix}.$$

Operações com transformações lineares de IRⁿ em IR

Teo 5.37

Sejam $T,S\in\mathcal{L}(\mathbb{R}^n,\mathbb{R}^m)$, \mathcal{B} uma base ordenada de \mathbb{R}^n , \mathcal{B}' uma base ordenada de \mathbb{R}^m e $A_{T,\mathcal{B},\mathcal{B}'}$ e $A_{S,\mathcal{B},\mathcal{B}'}$ as matrizes de T e S, respetivamente. Então:

- (a) $T + S \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.
- (b) $A_{T+S,\mathcal{B},\mathcal{B}'} = A_{T,\mathcal{B},\mathcal{B}'} + A_{S,\mathcal{B},\mathcal{B}'}$.

Exe 5.38

Sejam S e T as transformações lineares definidas por

Determine, por dois processos distintos, a matriz da transformação linear T+S.

Res

• Processo 1

T + S é a transformação linear definida por $T + S : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$,

$$(T+S)(x,y) = T(x,y)+S(x,y) = (x,0)+(2x+y,y) = (3x+y,y).$$

Como (T+S)(1,0)=(3,0) e (T+S)(0,1)=(1,1), tem-se que $A_{T+S}=\left[\begin{smallmatrix} 3 & 1 \\ 0 & 1 \end{smallmatrix} \right]$.

• Processo 2

Como T(1,0)=(1,0) e T(0,1)=(0,0), tem-se que $A_T=\left[\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right]$. Como S(1,0)=(2,0) e S(0,1)=(1,1), tem-se que $A_S=\left[\begin{smallmatrix} 2 & 1 \\ 0 & 1 \end{smallmatrix}\right]$. Assim,

$$A_{T+S} = A_T + A_S = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}.$$

Teo 5.39

Sejam $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, \mathcal{B} uma base ordenada de \mathbb{R}^n , \mathcal{B}' uma base ordenada de \mathbb{R}^m , $\alpha \in \mathbb{R}$ e $A_{T,\mathcal{B},\mathcal{B}'}$ a matriz de T. Então:

- (a) $\alpha T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.
- (b) $A_{\alpha T, \mathcal{B}, \mathcal{B}'} = \alpha A_{T, \mathcal{B}, \mathcal{B}'}$.

Teo 5.40

Sejam $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$, $S \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^p)$, \mathcal{B} uma base ordenada de \mathbb{R}^n , \mathcal{B}' uma base ordenada de \mathbb{R}^p e $A_{T,\mathcal{B},\mathcal{B}'}$ e $A_{S,\mathcal{B}',\mathcal{B}''}$ as matrizes de T e S, respetivamente. Então:

- (a) $S \circ T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^p)$.
- (b) $A_{S \circ T, \mathcal{B}, \mathcal{B}''} = A_{S, \mathcal{B}', \mathcal{B}''} A_{T, \mathcal{B}, \mathcal{B}'}$.

Obs 5.41

Este último teorema é que justifica a "estranha" definição de multiplicação de matrizes.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 - v5.0

315

rransformações Lineares de ik em ik

Imagem e núcleo de uma transformação linear de \mathbb{R}^n em \mathbb{R}'

Res (cont.)

Atendendo a $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \end{bmatrix} \underset{\ell_2 \leftarrow \ell_2 - \ell_1}{\longleftarrow} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -2 \end{bmatrix},$

tem-se que $\dim(\operatorname{Im}(T)) = \dim(\operatorname{Col}(A)) = \operatorname{car}(A) = 2$. Como a imagem de T é um subespaço de \mathbb{R}^2 e $\dim(\operatorname{Im}(T)) = \dim(\mathbb{R}^2) = 2$, conclui-se que $\operatorname{Im}(T) = \mathbb{R}^2$, pelo que a proposição dada é verdadeira.

Def 5 44

[núcleo de uma transformação linear de \mathbb{R}^n em \mathbb{R}^m , $\mathrm{Nuc}(T)$] Seja $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Chama-se núcleo de T, que se representa por $\mathrm{Nuc}(T)$, ao conjunto

$$Nuc(T) \stackrel{\mathsf{def}}{=} \{ x \in \mathbb{R}^n : T(x) = 0_{\mathbb{R}^m} \}.$$

Def 5.42

[imagem de uma transformação linear de \mathbb{R}^n em \mathbb{R}^m , $\mathrm{Im}(T)$] Seja $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Chama-se imagem de T, que se representa por $\mathrm{Im}(T)$, a

$$\operatorname{Im}(T) \stackrel{\text{def}}{=} \{ T(x) \in \mathbb{R}^m : x \in \mathbb{R}^n \}.$$

Exe 5.43

Indique o valor lógico da proposição "Seja a transformação linear $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$, $T(x_1, x_2, x_3) = (x_1 + x_3, x_1 + 2x_2 - x_3)$. Então, $\operatorname{Im}(T) = \mathbb{R}^2$."

Res

$$\begin{split} \mathsf{Im}(T) &= \{ T(x_1, x_2, x_3) : x_1, x_2, x_3 \in \mathbb{R} \} \\ &= \{ (x_1 + x_3, x_1 + 2x_2 - x_3) : x_1, x_2, x_3 \in \mathbb{R} \} \\ &= \{ x_1(1, 1) + x_2(0, 2) + x_3(1, -1) : x_1, x_2, x_3 \in \mathbb{R} \} \\ &= \langle (1, 1), (0, 2), (1, -1) \rangle. \end{split}$$

GJM, IB, SL (DMat, UN

TALG/

setembro de 2020 — v5.0

5 - Transformações Lineares de IRⁿ em IR

Imagem e núcleo de uma transformação linear de \mathbb{R}^n em \mathbb{R}^n

Exe 5.45

Determine o núcleo da transformação linear $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$, $T(x_1, x_2, x_3) = (x_1 + x_3, x_1 + 2x_2 - x_3)$.

Res

$$\begin{aligned} \mathsf{Nuc}(T) &= \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : T(x_1, x_2, x_3) = \mathbf{0}_{\mathbb{R}^2} \} \\ &= \{ (x_1, x_2, x_3) \in \mathbb{R}^3 : (x_1 + x_3, x_1 + 2x_2 - x_3) = (0, 0) \} \\ &= \mathsf{CS}_{(S)}, \end{aligned}$$

TALGA

em que (S) é o sistema de equações lineares homogéneo

$$\begin{cases} x_1 + x_3 = 0 \\ x_1 + 2x_2 - x_3 = 0. \end{cases}$$

Tem-se, então, que resolver o sistema Ax = b, $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ e $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Considerando o método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\left[\begin{array}{cc|cccc} 1 & 0 & 1 & 0 \\ 1 & 2 & -1 & 0 \end{array}\right] \xleftarrow[\ell_2 \leftarrow \ell_2 - \ell_1] \left[\begin{array}{cccccc} 1 & 0 & 1 & 0 \\ 0 & 2 & -2 & 0 \end{array}\right].$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), (S) é um sistema PI.

Passo 3 Sendo x_1, x_2, x_3 as incógnitas do sistema (S), então x_3 é uma incógnita livre e (S) é equivalente ao sistema

$$\begin{cases} x_1 + x_3 = 0 \\ 2x_2 - 2x_3 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

Res (cont.)

- $2x_2 2x_3 = 0 \Leftrightarrow x_2 = x_3$;
- $x_1 + x_3 = 0 \Leftrightarrow x_1 = -x_3$.

pelo que

$$\begin{aligned} \mathsf{Nuc}(T) &= \mathsf{CS}_{(S)} \\ &= \{ (-x_3, x_3, x_3) : x_3 \in \mathbb{R} \} \\ &= \{ x_3 (-1, 1, 1) : x_3 \in \mathbb{R} \} \\ &= \langle (-1, 1, 1) \rangle. \end{aligned}$$

Teo 5.46

Seja $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Então:

- (a) Im(T) é um subespaço de IR^m .
- (b) Nuc(T) é um subespaço de \mathbb{R}^n .

Teo 5.47

Sejam $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ e $\{u_1, \dots, u_k\}$ um conjunto gerador de \mathbb{R}^n (em particular, uma base). Então:

- (a) T fica definida desde que se conheçam os vetores $T(u_1), \ldots, T(u_k)$.
- (b) $\operatorname{Im}(T) = \langle T(u_1), \ldots, T(u_k) \rangle$.

Exe 5.48

Resolva de novo o exercício Exe 5.43 atendendo ao teorema anterior.

Res

Seja (e_1, e_2, e_3) a base canónica de \mathbb{R}^3 , ou seja, $e_1 = (1, 0, 0)$. $e_2 = (0, 1, 0)$ e $e_3 = (0, 0, 1)$. Então,

$$\begin{split} Im(T) &= \left < T(e_1), \, T(e_2), \, T(e_3) \right > \\ &= \left < T(1,0,0), \, T(0,1,0), \, T(0,0,1) \right > \\ &= \left < (1,1), (0,2), (1,-1) \right >. \end{split}$$

Atendendo a

tem-se que dim(Im(T)) = dim(Col(A)) = car(A) = 2. Como a imagem de T é um subespaco de \mathbb{R}^2 e dim(Im(T)) = dim (\mathbb{R}^2) = 2, conclui-se que $Im(T) = IR^2$, pelo que a proposição dada é verdadeira.

Exe 5.49

Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$, tal que T(2,2) = (0,1,1) e $\mathsf{Nuc}(T) = \langle (1,3) \rangle$. Determine a imagem através de T de um elemento genérico de \mathbb{R}^2 .

Res

Sejam o conjunto $S=\{(2,2),(1,3)\}$ e A a matriz cujas colunas são os vetores do conjunto S. Então, como $|A|=|\frac{2}{2}\frac{1}{3}|=2\times 3-1\times 2=4\neq 0$, conclui-se que S é um conjunto li. Como $\#S=\dim(\mathbb{R}^2)=2$, S é uma base de \mathbb{R}^2 . Assim, qualquer elemento de \mathbb{R}^2 é uma combinação linear única dos elementos de S, vindo

$$(x, y) = \alpha(2, 2) + \beta(1, 3).$$

Tem-se, então, que resolver o sistema (S) dado por

$$\begin{cases} 2\alpha + \beta = x \\ 2\alpha + 3\beta = y, \end{cases}$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

323

Imagem e núcleo de uma transformação linear de \mathbb{R}^n em \mathbb{R}

Res (cont.)

- $\beta = \frac{y-x}{2}$;
- $2\alpha + \beta = x \Leftrightarrow 2\alpha + \left(\frac{y-x}{2}\right) = x \Leftrightarrow \alpha = \frac{3x-y}{4}$.

Assim,

$$(x,y) = \frac{3x - y}{4}(2,2) + \frac{y - x}{2}(1,3),$$

pelo que

$$T(x,y) = T\left(\frac{3x - y}{4}(2,2) + \frac{y - x}{2}(1,3)\right)$$
$$= \frac{3x - y}{4}T(2,2) + \frac{y - x}{2}T(1,3),$$

por T ser uma transformação linear. Como Nuc $(T)=\langle (1,3) \rangle$, tem-se que T(1,3)=(0,0,0), vindo

Res (cont.)

ou seja, $A\xi = b$, com $A = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$, $\xi = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ e $b = \begin{bmatrix} x \\ y \end{bmatrix}$. Aplicando-se o Método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 2 & 1 & x \\ 2 & 3 & y \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1} \begin{bmatrix} 2 & 1 & x \\ 0 & 2 & y - x \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 2 (n é o número de incógnitas) quaisquer que sejam x e y, (S) é sempre um sistema PD (este resultado já se sabia pois S é uma base de \mathbb{R}^2).

Passo 3 (S) é equivalente ao sistema

$$\begin{cases} 2\alpha + \beta = x \\ 2\beta = y - x \end{cases}$$

Assim, tem-se (MeSTaF):

GJM, IB, SL (DMat, UN

TALG

setembro de 2020 — v

5 - Transformações Lineares de IRⁿ em IR

Imagem e núcleo de uma transformação linear de \mathbb{R}^n em \mathbb{R}^n

Res (cont.)

$$T(x,y) = \frac{3x - y}{4} \underbrace{(0,1,1)}_{T(2,2)} + \frac{y - x}{2} \underbrace{(0,0,0)}_{T(0,0)}$$
$$= \left(0, \frac{3x - y}{4}, \frac{3x - y}{4}\right).$$

Seja $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$.

(a) $\llbracket \text{característica de uma transformação linear de } \mathbb{R}^n \text{ em } \mathbb{R}^m, c_T \rrbracket \text{ Chama-}$ se característica de T, que se denota por c_T , à dimensão do subespaço Im(T), ou seja,

$$c_T \stackrel{\mathsf{def}}{=} \mathsf{dim}(\mathsf{Im}(T)).$$

(b) $[nulidade de uma transformação linear de <math>\mathbb{R}^n$ em \mathbb{R}^m , $n_T[]$ Chamase nulidade de T, que se denota por n_T , à dimensão do subespaço Nuc(T), ou seja,

$$n_T \stackrel{\mathsf{def}}{=} \mathsf{dim}(\mathsf{Nuc}(T)).$$

Teo 5.51

Seja $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Então:

- (a) $c_T = car(A_T)$.
- (b) $n = c_T + n_T$.

GJM, IB, SL (DMat, UM

Res (cont.)

Então, como

$$A_{T} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \end{bmatrix} \xleftarrow[\ell_{2} \leftarrow \ell_{2} - \ell_{1}] \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & -2 \end{bmatrix},$$

tem-se que car $(A_T) = 2$, pelo que, aplicando o teorema Teo 5.51 (a), vem $c_T = \dim(\operatorname{Im}(T)) = 2$.

- (b) Como $c_T = \dim(\operatorname{Im}(T)) = 2$, conclui-se que $\operatorname{Im}(T) = \mathbb{R}^2$, pelo que, por exemplo, $\{(1,0),(0,1)\}$ é uma base de Im(T).
- (c) Aplicando o teorema Teo 5.51 (b), tem-se que $dim(IR^3) = c_T + n_T$, ou seja, $3 = 2 + n_T$, pelo que $n_T = 1$ (este valor é confirmado pelo número de variáveis livres em Nuc(T)).
- (d) Como Nuc $(T) = \langle (-1,1,1) \rangle$ e n_T = 1, tem-se que, por exemplo, $\{(-1,1,1)\}$ é uma base de Nuc(T).

Exe 5.52

Seja $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$, $T(x_1, x_2, x_3) = (x_1 + x_3, x_1 + 2x_2 - x_3)$. Determine:

- (a) c_T.
- (b) uma base de Im(T).
- (c) n_T .
- (d) uma base de Nuc(T).

Res

(a) Como $T(1,0,0) = (1,1), T(0,1,0) = (0,2) \in T(0,0,1) =$ (1,-1), tem-se que

$$A_T = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \end{bmatrix}.$$

Obs 5.53

Some english vocabulary regarding Linear Maps from \mathbb{R}^n to \mathbb{R}^m

- transformação linear/linear map
- imagem de uma transformação linear de \mathbb{R}^n em \mathbb{R}^m /range space of a linear map from \mathbb{R}^n to \mathbb{R}^m
- núcleo de uma transformação linear de \mathbb{R}^n em \mathbb{R}^m /null space or kernel of a linear map from \mathbb{R}^n to \mathbb{R}^m
- \bullet característica de uma transformação linear de \mathbb{R}^n em \mathbb{R}^m /rank of a linear map from \mathbb{R}^n to \mathbb{R}^m
- nulidade de uma transformação linear de \mathbb{R}^n em \mathbb{R}^m /nullity of a linear map from \mathbb{R}^n to \mathbb{R}^m

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

- 5 Transformações Lineares de \mathbb{R}^n em \mathbb{R}^m
- 6 Valores e Vetores Próprios

GJM, IB, SL (DMat, UM)

[espaço próprio] Sejam $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ e $\lambda \in \lambda(A)$. Chama-se espaço próprio associado ao valor próprio λ , que se representa por $E_{\lambda,A}$ (ou por E_{λ} se não houver ambiguidade relativamente à matriz), ao conjunto

$$E_{\lambda,A} \stackrel{\text{def}}{=} \{ x \in \mathbb{C}^n : Ax = \lambda x \}.$$

Teo 6.4

Sejam $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ e $\lambda \in \lambda(A)$. Então, $E_{\lambda} = \text{Nuc}(A - \lambda I_n)$.

Obs 6.5

Sejam $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ e $\lambda \in \lambda(A)$. Então, E_{λ} é um subespaço de \mathbb{C}^n .

[vetor próprio de uma matriz associado a um valor próprio] Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Diz-se que $x \in \mathbb{C}^n - \{0_{\mathbb{C}^n}\}$ é um vetor próprio da matriz Aassociado ao valor próprio $\lambda \in \mathbb{C}$ se $Ax = \lambda x$.

[espetro de uma matriz] Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Chama-se espetro de A, que se representa por $\lambda(A)$, ao conjunto de todos os valores próprios de A, ou seia.

 $\lambda(A) \stackrel{\mathsf{def}}{=} \{ \lambda \in \mathbb{C} : \lambda \text{ \'e um valor pr\'oprio de } A \}.$

6 – Valores e Vetores Próprios

Obs 6.6

- (a) Note-se que existem matrizes reais cujos valores próprios são números complexos.
- (b) Cada vetor próprio está associado apenas a um valor próprio.
- (c) Se x é um vetor próprio associado ao valor próprio λ , então, αx , $\alpha \neq 0$, também é um vetor próprio associado ao valor próprio λ .
- (d) Sejam $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ e $\lambda \in \lambda(A)$. Então,

 $E_{\lambda} = \{x \in \mathbb{C}^n : x \text{ \'e um vetor pr\'oprio associado} \}$ ao valor próprio λ } \cup {0 \mathbb{C}^n }.

- (e) Chama-se "espaço próprio" ao conjunto E_{λ} devido ao teorema anterior.
- (f) O seguinte teorema indica-nos um processo de calcular $\lambda(A)$.

Teo 6.7

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Então, $\lambda \in \lambda(A)$ se e só se $\det(A - \lambda I_n) = 0$.

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

Def 6.8

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$.

(a) [polinómio característico de uma matriz] Chama-se polinómio característico da matriz A, que se representa por $\Pi_A(\lambda)$, ao polinómio

$$\Pi_A(\lambda) \stackrel{\mathsf{def}}{=} \det(A - \lambda I_n).$$

- (b) [[equação característica de uma matriz]] Chama-se equação característica da matriz A à equação $\Pi_A(\lambda)=0$.
- (c) [multiplicidade algébrica de um valor próprio] Seja λ um valor próprio de A. Chama-se multiplicidade algébrica de λ à multiplicidade do escalar λ enquanto raiz da equação característica.
- (d) [valor próprio simples] Seja λ um valor próprio de A. Diz-se que λ é um valor próprio simples se tem multiplicidade algébrica um.
- (e) [multiplicidade geométrica de um valor próprio] Seja λ um valor próprio de A. Chama-se multiplicidade geométrica de λ à dimensão do espaço próprio E_{λ} .

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

335

TALGA

setembro de 2020 — v5.0

— v5.0 33

6 – Valores e Vetores Próprios

Definições iniciais

Obs 6.10 (cont.)

(d) Do Teorema Fundamental da Álgebra resulta que $\Pi_A(\lambda)$ tem exatamente n raízes, podendo alguns deles ser iguais. Assim, sejam n_1, n_2, \ldots, n_m as multiplicidades das $m (\leqslant n)$ raízes distintos $\lambda_1, \lambda_2, \ldots, \lambda_m$ de $\Pi_A(\lambda)$. Então,

$$\Pi_{\mathcal{A}}(\lambda) = (-1)^n (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_m)^{n_m},$$

em que $n_1+n_2+\cdots+n_m=n$. Aos números n_1,n_2,\ldots,n_m chama-se multiplicidade algébrica dos valores próprios $\lambda_1,\lambda_2,\ldots,\lambda_m$, respetivamente.

Teo 6.9

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Então, o coeficiente do termo de grau n do polinómio característico da matriz $A \in (-1)^n$ e o seu termo independente de $\lambda \in \det(A)$.

Obs 6.10

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Então:

- (a) $\Pi_A(\lambda) = (-1)^n \lambda^n + \cdots + \det(A)$
- (b) Os valores próprios da matriz A são as raízes do seu polinómio característico.
- (c) Se λ é um valor próprio da matriz A, então os vetores próprios associados a λ são as soluções não-nulas do sistema homogéneo $(A \lambda I_n)x = \underline{0}$ (este sistema é sempre PI).

6 - Valores e Vetores Próprio

Definições iniciais

Exe 6.11

Considere a matriz $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix}$

- (a) Determine o espetro da matriz A.
- (b) Determine o espaço próprio associado ao valor próprio de menor módulo da matriz A.

Res

(a) Seja

$$A - \lambda I_3 = \begin{bmatrix} 2 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & -1 \\ 0 & 2 & 4 - \lambda \end{bmatrix}.$$

Então,

$$\det(A - \lambda I_3) = (2 - \lambda)((1 - \lambda)(4 - \lambda) + 2) = (2 - \lambda)(\lambda^2 - 5\lambda + 6).$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

Aplicando a fórmula resolvente, tem-se

$$\lambda^2 - 5\lambda + 6 = 0 \Leftrightarrow \lambda = \frac{5 \pm \sqrt{25 - 24}}{2} \Leftrightarrow \lambda = 2 \vee \lambda = 3,$$

pelo que

$$\det(A - \lambda I_3) = (2 - \lambda)(\lambda - 2)(\lambda - 3) = -(\lambda - 2)^2(\lambda - 3).$$

Assim, $\lambda(A) = \{2,3\}$, sendo que $\lambda_1 = 2$ é um valor próprio de multiplicidade algébrica dois e $\lambda_2 = 3$ é um valor próprio simples.

GJM. IB. SL (DMat. UM

TALGA

setembro de 2020 — v5.

339

CIM ID CL (DM : III)

TALGA

setembro de 2020 — v5.0

340

6 – Valores e Vetores Próprios

Definições iniciais

Res (cont.)

Passo 2 Como $car(A_1) = car(A_1|b_1) = 2 < n = 3$ (n é o número de incógnitas), (S) é um sistema PI (este resultado já é pré-sabido).

Passo 3 Sendo x_{11}, x_{12}, x_{13} as incógnitas do sistema (S), então, x_{11} é uma incógnita livre e (S) é equivalente ao sistema

$$\begin{cases} x_{12} &= 0 \\ -x_{13} &= 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-x_{13} = 0 \Leftrightarrow x_{13} = 0$;
- $x_{12} = 0 \Leftrightarrow x_{12} = 0$,

pelo que

$$E_2 = \{(x_{11}, 0, 0) : x_{11} \in \mathbb{C}\}.$$

Res (cont.)

(b) Para determinar o espaço próprio associado ao valor próprio de menor módulo $\lambda_1 = 2$, tem que se resolver o sistema (S) dado por

$$(A-2I_3)x_1=0,$$

ou seja, $A_1x_1 = b_1$, com $A_1 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & -1 \\ 0 & 2 & 2 \end{bmatrix}$, $x_1 = \begin{bmatrix} x_{11} \\ x_{12} \\ x_{13} \end{bmatrix}$ e $b_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Aplicando-se o método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 2 & 2 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + \ell_1} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - 2\ell_1} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + 2\ell_2} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} .$$

Propriedades

Teo 6.12

Seja $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$. Então:

- (a) A é uma matriz invertível se e só se $0 \notin \lambda(A)$.
- (b) se A é uma matriz invertível e $\lambda \in \lambda(A)$, então, $\frac{1}{\lambda} \in \lambda(A^{-1})$ e $E_{\lambda,A} = E_{\frac{1}{\lambda},A^{-1}}$.
- (c) se $k \in \mathbb{N}$ e $\lambda \in \lambda(A)$, então, $\lambda^k \in \lambda(A^k)$ e $E_{\lambda,A} = E_{\lambda^k,A^k}$.
- (d) $\lambda(A) = \lambda(A^{\mathsf{T}}).$
- (e) se a matriz A é diagonal ou triangular, então, $\lambda(A) = \{a_{ii} : i = 1, \ldots, n\}$.
- (f) os vetores próprios associados a valores próprios distintos são linearmente independentes.
- (g) se A é uma matriz (real e) simétrica, os seus valores próprios são números reais.

Exe 6.13

Considere a matriz $A = \begin{bmatrix} 2 & 0 & 3 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

- $A \lambda(A) = \{-1, 2, 3\}.$
- B 2 é um valor próprio simples da matriz A.
- $D \lambda(A^2) = \{1, 4\}.$

Res

Atendendo ao teorema Teo 6.12 (e), $\lambda(A)=\{-1,2\}$, onde $\lambda_1=-1$ é um valor próprio simples e $\lambda_2=2$ é um valor próprio de multiplicidade algébrica 2.Atendendo, ainda, ao teorema Teo 6.12 (b), $\lambda(A^{-1})=\{\frac{1}{-1},\frac{1}{2}\}=\{-1,\frac{1}{2}\}$, e ao teorema Teo 6.12 (c), $\lambda(A^2)=\{(-1)^2,2^2\}=\{1,4\}$. Assim, a única proposição verdadeira é a hipótese D.

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

343

6 – Valores e Vetores Próprios

Diagonalizaçã

Teo 6.17

A multiplicidade geométrica de um valor próprio nunca é superior às multiplicidade algébrica.

Obs 6.18

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Então, A é diagonalizável se e só se a soma das multiplicidades geométricas dos valores próprios de A é n.

Exe 6.19

Seja $A = \begin{bmatrix} 2 & -3 \\ 2 & -5 \end{bmatrix}$.

- (a) Mostre que A é diagonalizável.
- (b) Determine uma matriz P que diagonaliza A.
- (c) Verifique que $P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, em que λ_1 é o valor próprio de A associado ao vetor próprio de A que forma a primeira coluna de P e λ_2 é o valor próprio de A associado ao vetor próprio de A que forma a segunda coluna de P.

Def 6 14

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Diz-se que A é uma matriz diagonalizável se existir uma matriz invertível P tal que $P^{-1}AP$ é uma matriz diagonal.

Teo 6.15

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. As seguintes condições são equivalentes:

- (i) A é diagonalizável.
- (ii) A tem n vetores próprios linearmente independentes.
- (iii) A multiplicidade geométrica de cada valor próprio é igual à sua multiplicidade álgebrica.

Teo 6.16

Sejam $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ diagonalizável e $\{p_1, \dots, p_n\}$ um conjunto de vetores próprios de A linearmente independentes. Então, $P^{-1}AP = D$ em que $c_{i,P} = p_i$, $i = 1, \dots, n$, e D é a matriz diagonal tal que $(D)_{ii} = \lambda_i$, $i = 1, \dots, n$, sendo λ_i o valor próprio de A associado ao vetor próprio p_i .

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

6 – Valores e Vetores Próprio

Diagonalização

Res

(a) Seja $A - \lambda I_2 = \begin{bmatrix} 2-\lambda & -3 \\ 2 & -5-\lambda \end{bmatrix}$. Então,

$$\det(A - \lambda I_2) = (2 - \lambda)(-5 - \lambda) - (-3) \times 2 = \lambda^2 + 3\lambda - 4.$$

Aplicando a fórmula resolvente, tem-se

$$\lambda^2 + 3\lambda - 4 = 0 \Leftrightarrow \lambda = \frac{-3 \pm \sqrt{9 + 16}}{2} \Leftrightarrow \lambda = 1 \lor \lambda = -4,$$

pelo que, $\lambda(A) = \{-4, 1\}$. Assim, como os valores próprios de A são distintos e os vetores próprios associados a valores próprios distintos são li, tem-se que A é diagonalizável.

- (b) Para se determinar uma matriz P que diagonaliza a matriz A, tem que se calcular os subespaços próprios dos valores próprios da matriz A.
 - $\lambda_1 = -4$: para se determinar $E_{-4} (= \text{Nuc}(A (-4)I_2))$, tem que se resolver o sistema (S_1) dado por

$$(A+4I_2)p_1=\underline{0},$$

ou seja, $A_1p_1 = b_1$, com $A_1 = \begin{bmatrix} 6 & -3 \\ 2 & -1 \end{bmatrix}$, $p_1 = \begin{bmatrix} p_{11} \\ p_{12} \end{bmatrix}$ e $b_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Aplicando-se o método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\left[\begin{array}{cc|c} 6 & -3 & 0 \\ 2 & -1 & 0 \end{array}\right] \xleftarrow[\ell_2 \leftarrow \ell_2 - \frac{1}{3}\ell_1] \left[\begin{array}{cc|c} 6 & -3 & 0 \\ 0 & 0 & 0 \end{array}\right].$$

Passo 2 Como $car(A_1) = car(A_1|b_1) = 1 < n = 2$ (n é o número de incógnitas), (S_1) é um sistema PI (este resultado já é pré-sabido).

GJM. IB. SL (DMat. UM

TALGA

setembro de 2020 — v5

3/17

GJM, IB, SL (DMat, UN

TALGA

setembro de 2020 — v5.0

6 – Valores e Vetores Próprios

Diagonalização

Res (cont.)

• $\lambda_2=1$: para se determinar $E_1(=\operatorname{Nuc}(A-1I_2))$, tem que se resolver o sistema (S_2) dado por

$$(A-I_2)p_2=\underline{0},$$

ou seja, $A_2p_2 = b_2$, com $A_2 = \begin{bmatrix} 1 & -3 \\ 2 & -6 \end{bmatrix}$, $p_2 = \begin{bmatrix} p_{21} \\ p_{22} \end{bmatrix}$ e $b_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Aplicando-se o método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & -3 & 0 \\ 2 & -6 & 0 \end{bmatrix} \xleftarrow[\ell_2 \leftarrow \ell_2 - 2\ell_1] \begin{bmatrix} 1 & -3 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Passo 2 Como $car(A_2) = car(A_2|b_2) = 1 < n = 2$ ($n \in o$ número de incógnitas), (S_2) é um sistema PI (este resultado já é pré-sabido).

Res (cont.)

Passo 3 Sendo p_{11} , p_{12} as incógnitas do sistema (S_1) , então, p_{12} é uma incógnita livre e (S_1) é equivalente ao sistema

$$\{6p_{11}-3p_{12}=0.$$

Assim, tem-se (MeSTaF):

• $6p_{11} - 3p_{12} = 0 \Leftrightarrow p_{11} = \frac{1}{2}p_{12}$, pelo que

$$E_{-4} = \left\{ \left(\frac{1}{2} p_{12}, p_{12} \right) : p_{12} \in \mathbb{C} \right\}.$$

Considerando, por exemplo, $p_{12}=2$, tem-se que $p_1=(1,2)$ é um vetor próprio associado ao valor próprio $\lambda_1=-4$.

6 - Valores e Vetores Próprio

Diagonalização

Res (cont.)

Passo 3 Sendo p_{21}, p_{22} as incógnitas do sistema (S_2) , então p_{22} é uma incógnita livre e (S_2) é equivalente ao sistema

$$\{p_{21}-3p_{22}=0.$$

Assim, tem-se (MeSTaF):

• $p_{21} - 3p_{22} = 0 \Leftrightarrow p_{21} = 3p_{22}$, pelo que

$$E_1 = \{(3p_{22}, p_{22}) : p_{22} \in \mathbb{C}\}.$$

Considerando, por exemplo, $p_{22}=1$, tem-se que $p_2=(3,1)$ é um vetor próprio associado ao valor próprio $\lambda_2=1$.

Seja, então, $P = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$. Como $|P| = 1 \times 1 - 2 \times 3 = -5 \neq 0$, então conclui-se que os vetores p_1 e p_2 são li (o que já era esperado, dado que A tem dois valores próprios distintos e p_1 e p_2 são vetores próprios associados a esses valores próprios distintos).

Assim, $P = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$ é uma matriz que diagonaliza A.

(c) Como $P^{-1}=\frac{1}{|P|}\operatorname{adj}(P)=\frac{1}{-5}\left[egin{array}{cc} 1 & -3 \\ -2 & 1 \end{array}
ight]=rac{1}{5}\left[egin{array}{cc} -1 & 3 \\ 2 & -1 \end{array}
ight]$, tem-se:

$$P^{-1}AP = \frac{1}{5} \begin{bmatrix} -1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} -1 & 3 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -4 & 3 \\ -8 & 1 \end{bmatrix}$$
$$= \frac{1}{5} \begin{bmatrix} -20 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} -4 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}.$$

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

251

GJM, IB, SL (DMat, U

TALG

setembro de 2020 - v5.0

6 – Valores e Vetores Próprios

Diagonalização

Res

(a) Seja $A - \lambda I_3 = \begin{bmatrix} -\lambda & 0 & -2 \\ 1 & 2-\lambda & 1 \\ 1 & 0 & 3-\lambda \end{bmatrix}$. Então (aplicação do Teorema de Laplace através do desenvolvimeto da coluna 2),

$$\det(A - \lambda I_3) = (2 - \lambda)(-\lambda(3 - \lambda) - (-)2 \times 1) = (2 - \lambda)(\lambda^2 - 3\lambda + 2).$$

Aplicando a fórmula resolvente, tem-se

$$\lambda^2 - 3\lambda + 2 = 0 \Leftrightarrow \lambda = \frac{3 \pm \sqrt{9 - 8}}{2} \Leftrightarrow \lambda = 2 \lor \lambda = 1,$$

vindo

$$\det(A - \lambda I_3) = (2 - \lambda)(\lambda - 2)(\lambda - 1) = -(\lambda - 2)^2(\lambda - 1).$$

pelo que $\lambda(A) = \{1, 2\}$, onde $\lambda_1 = 1$ é um valor próprio simples e $\lambda_2 = 2$ é um valor próprio de multiplicidade algébrica 2.

Exe 6.20

Seja $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.

- (a) Mostre que A é diagonalizável.
- (b) Determine uma matriz P que diagonaliza A.
- (c) Verifique que $P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$, em que λ_1 é o valor próprio de A associado ao vetor próprio de A que forma a primeira coluna de P, λ_2 é o valor próprio de A associado ao vetor próprio de A que forma a segunda coluna de P e λ_3 é o valor próprio de A associado ao vetor próprio de A que forma a terceira coluna de P.

6 - Valores e Vetores Próprio

Diagonalizaçã

Res (cont.)

Uma maneira de mostrar que A é diagonalizável é mostrar que as multiplicidades algébrica e geométrica de cada valor próprio da matriz A são iguais.

• Determinação da multiplicidade geométrica do valor prórpio $\lambda_1 = 1$, ou seja, a dimensão do espaço próprio $E_1 (= \text{Nuc}(A - 1I_3))$. Aplicando-se o ATEsc à matriz $A - 1I_3$, tem-se:

$$\begin{bmatrix} -1 & 0 & -2 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + \ell_1} \begin{bmatrix} -1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$

pelo que $\dim(E_1) = \dim(\operatorname{Nuc}(A - I_3)) = n - \operatorname{car}(A - I_3) = 3 - 2 = 1$ (n é a ordem da matriz A).

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5

353

GJM, IB, SL (DMat, UM

TALGA

• Determinação da multiplicidade geométrica do valor prórpio $\lambda_2=2$, ou seja, a dimensão do espaço $E_2(=\operatorname{Nuc}(A-2I_3))$. Aplicandose o ATEsc à matriz $A-2I_3$, tem-se:

$$\begin{bmatrix} -2 & 0 & -2 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \xleftarrow{\ell_2 \leftarrow \ell_2 + \frac{1}{2}\ell_1} \begin{bmatrix} -2 & 0 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$
 pelo que $\dim(E_2) = \dim(\operatorname{Nuc}(A-2I_3)) = n - \operatorname{car}(A-2I_3) = 3 - 1 = 2 \ (n \text{ \'e} \text{ a ordem da matriz } A).$

• Assim, como a multiplicidade algébrica de cada valor próprio coincide com a sua multiplicidades geométrica, conclui-se que A é diagonalizável. Ou, de modo equivalente, como $\dim(E_1) + \dim(E_2) = n = 3$ (n é a ordem da matriz A), conclui-se que A é diagonalizável.

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

355

6 – Valores e Vetores Próprios

. VI V. D.

Diagonalização

Res (cont.)

Assim, tem-se (MeSTaF):

- $p_{12} p_{13} = 0 \Leftrightarrow p_{12} = p_{13}$;
- $-p_{11}-2p_{13}=0 \Leftrightarrow p_{11}=-2p_{13}$,

pelo que

$$E_1 = \{(-2p_{13}, p_{13}, p_{13}) : p_{13} \in \mathbb{C}\}.$$

Considerando, por exemplo, $p_{13}=1$, tem-se que $p_1=(-2,1,1)$ é um vetor próprio associado ao valor próprio $\lambda_1=1$.

• $\lambda_2 = 2$: para se determinar $E_2(= \text{Nuc}(A - 2I_3))$, tem que se resolver o sistema (S_2) dado por

$$(A-2I_3)p_2=\underline{0}.$$

Atendendo à alínea anterior, pode-se passar diretamente para o Passo 3 do Método de Gauss:

Res (cont.)

- (b) Para se determinar uma matriz P que diagonaliza a matriz A, tem que se calcular os subespaços próprios dos valores próprios da matriz A.
 - $\lambda_1 = 1$: para se determinar $E_1 (= \text{Nuc}(A 1I_3))$, tem que se resolver o sistema (S_1) dado por

$$(A-I_3)p_1=\underline{0}.$$

Atendendo à alínea anterior, pode-se passar diretamente para o Passo 3 do Método de Gauss: **Passo 3** Sejam p_{11} , p_{12} , p_{13} as incógnitas do sistema (S_1) . Então, p_{13} é uma incógnita livre e (S_1) é equivalente ao sistema

$$\begin{cases} -p_{11} & -2p_{13} = 0 \\ p_{12} - p_{13} = 0. \end{cases}$$

GJM. IB. SL (DMat. UI

ALGA

setembro de 2020 — v5.0

Res (cont.)

Passo 3 Sejam p_{21} , p_{22} , p_{23} as incógnitas do sistema (S_2) . Então, p_{22} e p_{23} são incógnitas livres e (S_2) é equivalente ao sistema

$$\{-2p_{21}-2p_{23}=0.$$

Assim, tem-se (MeSTaF):

• $-2p_{21} - 2p_{23} = 0 \Leftrightarrow p_{21} = -p_{23}$, pelo que

$$E_2 = \{(-p_{23}, p_{22}, p_{23}) : p_{22}, p_{23} \in \mathbb{C}\}.$$

Considerando, por exemplo, $p_{22}=0$ e $p_{23}=1$ e $p_{22}=1$ e $p_{23}=0$ tem-se que $p_2=(-1,0,1)$ e $p_3=(0,1,0)$ são vetores próprios associados ao valor próprio $\lambda_2=2$.

• Seja, então, $P = \begin{bmatrix} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$. Como $|P| = (-1)^{2+3} \times 1 \times ((-2) \times 1 - (-1) \times 1) = 1 \neq 0$, conclui-se que $\{p_1, p_2, p_3\}$ é um conjunto li, pelo que a matriz P diagonaliza a matriz A.

6 – Valores e Vetores Próp

Diagonalização

Res (cont.)

(c) Comece-se por determinar a inversa da matriz P:

$$\underbrace{\begin{bmatrix}
-2 & -1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{bmatrix}}_{P|I_3} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 + \frac{1}{2}\ell_1}_{\ell_1} \begin{bmatrix}
-2 & -1 & 0 & 1 & 0 & 0 \\
0 & -\frac{1}{2} & 1 & \frac{1}{2} & 1 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 1
\end{bmatrix}}_{P|I_3}$$

$$\longleftrightarrow \begin{bmatrix}
-2 & -1 & 0 & 1 & 0 & 0 \\
0 & -\frac{1}{2} & 1 & \frac{1}{2} & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}}_{\ell_2 \leftarrow \ell_2 - \ell_3}$$

$$\begin{bmatrix}
-2 & -1 & 0 & 1 & 0 & 0 \\
0 & -\frac{1}{2} & 0 & -\frac{1}{2} & 0 & -1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}}_{\ell_2 \leftarrow -2\ell_2}$$

$$\begin{bmatrix}
-2 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\ell_1 \leftarrow \ell_1 + \ell_2$$

$$\begin{bmatrix}
-2 & 0 & 0 & 2 & 0 & 2 \\
0 & 1 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\longleftarrow \underbrace{\ell_1 \leftarrow \ell_1 + \ell_2}_{\ell_1 \leftarrow \ell_1 + \ell_2}$$

$$\leftarrow \longrightarrow \underbrace{\begin{bmatrix}
-2 & 0 & 0 & 2 & 0 & 2 \\
0 & 1 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}}_{\ell_1 \leftarrow -\frac{1}{2}\ell_1}$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

359

Res (cont.)

 $\left[\begin{array}{ccc|ccc|c} 1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{array}\right]$

 $I_3|P^{-1}$

Tem-se, então:

$$P^{-1}AP = \begin{bmatrix} -1 & 0 & -1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} -2 & -1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}.$$

GJM, IB, SL (DMat, UM

TALGA

stembro de 2020 — v5.0

6 - Valores e Vetores Próprio

Diagonalização

Exe 6.21

Seja $A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$. Mostre que A não é diagonalizável.

Res

Seja
$$A - \lambda I_2 = \begin{bmatrix} 1-\lambda & 1 \\ -1 & 3-\lambda \end{bmatrix}$$
. Então,

$$\det(A - \lambda I_2) = (1 - \lambda)(3 - \lambda) - (-1) \times 1 = \lambda^2 - 4\lambda + 4.$$

Aplicando a fórmula resolvente, tem-se

$$\lambda^2 - 4\lambda + 4 = 0 \Leftrightarrow \lambda = \frac{4 \pm \sqrt{16 - 16}}{2} \Leftrightarrow \lambda = 2,$$

pelo que, $\lambda(A)=\{2\}$, sendo $\lambda=2$ um valor próprio de multiplicidade algébrica 2.

6 – Valores e Vetores Próprios

Diagonalização

Res (cont.)

Calcule-se agora a multiplicidade geométrica do valor próprio $\lambda=2$, aplicando-se o ATEsc à matriz $A-2I_2$:

$$\left[\begin{array}{cc} -1 & 1 \\ -1 & 1 \end{array}\right] \xleftarrow{\longleftarrow} \left[\begin{array}{cc} -1 & 1 \\ 0 & 0 \end{array}\right].$$

Tem-se, então, que $\dim(E_2)=\dim(\operatorname{Nuc}(A-2I_2))=n-\operatorname{car}(A-2I_2)=2-1=1$ (n é a ordem da matriz A). Como a multiplicidade algébrica, 2, é diferente da multiplicidade geométrica, 1, conclui-se que a matriz A não é diagonalizável.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

6 - Valores e Vetores Próprios

Obs 6.22

Some english vocabulary regarding Eigenvalues and Eigenvectors

- vetor próprio de uma matriz associado a um valor próprio/eigenvector of a matrix associated with a eigenvalue
- polinómio característico de uma matriz/characteristic polynomial of a matrix
- equação característica de uma matriz/characteristic equation of a matrix

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.

363

- O Algumas notações e revisões
- 1 Matrize
- 2 Determinantes
- 3 Sistemas de Equações Lineares
- 4 Espaços Vetoriais
- 5 Transformações Lineares de \mathbb{R}^n em \mathbb{R}^m
- 6 Valores e Vetores Próprios
- 7 Geometria Analítica

GJM, IB, SL (DMat, UM)

- Geometria Analítica Produto interno

Def 7.1

 $\llbracket \mathsf{produto} \ \mathsf{interno} \rrbracket \ \mathsf{Sejam} \ V \ \mathsf{um} \ \mathsf{espaço} \ \mathsf{vetorial} \ \mathsf{e} \ \mathsf{a} \ \mathsf{aplicação}$

$$\begin{array}{cccc} \cdot : & V \times V & \longrightarrow & \mathbb{R} \\ & (x,y) & \longmapsto & x \cdot y. \end{array}$$

Diz-se que esta aplicação é um produto interno se:

- (a) $\forall x, y \in V[x \cdot y = y \cdot x].$
- (b) $\forall x, y, z \in V[x \cdot (y + z) = x \cdot y + x \cdot z].$
- (c) $\forall x, y \in V, \forall \alpha \in \mathbb{R}[(\alpha x) \cdot y = \alpha(x \cdot y)].$
- (d) $\forall x \in V \{0_V\}[x \cdot x > 0].$
- (e) $0_V \cdot 0_V = 0$.

setembro de 2020 — v5.0

Obs 7.2

- Geometria Analítica

- (a) A definição de produto interno generaliza a definição de produto escalar de dois vetores.
- (b) Também se usam as notações x|y, (x,y), $\langle x,y \rangle$ e (x|y) para representar o produto interno dos vetores x e y.

Def 7.3

[espaço euclidiano] Chama-se espaço euclidiano a um par (V,\cdot) onde V é um espaço vetorial de dimensão finita e a aplicação $\cdot: V \times V \longrightarrow \mathbb{R}$ é um produto interno.

TALGA

Obs 7.4

GJM, IB, SL (DMat, UM)

Recorde-se que na definição de espaço vetorial dada no capítulo 4, quando se diz "espaço vetorial" tem-se sempre que o conjunto dos escalares é IR.

Teo 7.5

Seja a aplicação

$$\begin{array}{cccc} \cdot : & \mathbb{R}^n \times \mathbb{R}^n & \longrightarrow & \mathbb{R} \\ & ((x_1, \dots, x_n), (y_1, \dots, y_n)) & \longmapsto & (x_1, \dots, x_n) \cdot (y_1, \dots, y_n) = \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ \end{array}$$

Então, (\mathbb{R}^n, \cdot) é um espaco euclidiano.

Obs 7.6

O produto interno por defeito de \mathbb{R}^n é o produto interno do teorema anterior.

Exe 7.7

Determine o produto interno dos vetores x = (1, -2, 1) e y = (3, 4, 5).

Res

$$x \cdot y = (1, -2, 1) \cdot (3, 4, 5) = 1 \times 3 + (-2) \times 4 + 1 \times 5 = 0.$$

GJM, IB, SL (DMat, UM)

[espaço normado] Chama-se espaço normado a um par $(V, \|\cdot\|)$ onde Vé um espaço vetorial e a aplicação $\|\cdot\|:V\longrightarrow \mathbb{R}$ é uma norma.

Teo 7.11

Sejam V um espaço euclidiano e a aplicação

$$\|\cdot\|: V \longrightarrow \mathbb{R}$$

$$x \longmapsto \sqrt{x \cdot x}.$$

Então, $(V, \|\cdot\|)$ é um espaço normado.

¶norma induzida pelo produto interno À norma definida no teorema anterior chama-se norma induzida pelo produto interno.

Obs 7.13

A norma por defeito num espaço euclidiano é a norma induzida pelo produto interno.

 $\llbracket norma \rrbracket$ Sejam V um espaço vetorial e a aplicação

$$\|\cdot\|: V \longrightarrow \mathbb{R}$$

$$x \longmapsto \|x\|.$$

Diz-se que esta aplicação é uma norma se:

- (a) $\forall x, y \in V[||x + y|| \le ||x|| + ||y||].$
- (b) $\forall x \in V, \forall \alpha \in \mathbb{R}[\|\alpha x\| = |\alpha| \|x\|]$.
- (c) $\forall x \in V \{0_V\}[\|x\| > 0].$
- (d) $||0_V|| = 0$.

Obs 7.9

- (a) A definição de norma generaliza o conceito de comprimento de um
- (b) Não confundir a notação "·" para referir "produto interno" e para referir um elemento genérico do domínio na expressão | | · |

GJM, IB, SL (DMat, UM)

Teo 7.14

Seja a aplicação

$$\|\cdot\|: \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $(x_1, \dots, x_n) \longmapsto \|(x_1, \dots, x_n)\| = \sqrt{x_1^2 + \dots + x_n^2}.$

Então, $(\mathbb{R}^n, \|\cdot\|)$ é um espaço normado.

Obs 7.15

A norma por defeito de \mathbb{R}^n é a norma do teorema anterior.

Exe 7.16

Determine as normas dos vetores x = (1,0,2) e $y = (\frac{\sqrt{2}}{2},0,-\frac{\sqrt{2}}{2})$.

Res

$$||x|| = \sqrt{1^2 + 0^2 + 2^2} = \sqrt{5}.$$

 $||y|| = \sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + 0^2 + \left(-\frac{\sqrt{2}}{2}\right)^2} = \sqrt{\frac{1}{2} + 0 + \frac{1}{2}} = 1.$

GJM, IB, SL (DMat, UM) TALGA

Def 7.17

[vetor unitário] Sejam (V, \cdot) um espaço euclidiano e $x \in V$. x diz-se um vetor unitário se ||x|| = 1.

Exe 7.18

Indique se os vetores do exercício Exe 7.16 são unitários.

Res

Atendendo à resolução do exercício Exe 7.16, tem-se que $\|x\| = \sqrt{5} \neq 1$, pelo que x não é um vetor unitário, e $\|y\| = 1$, pelo que y é um vetor unitário.

Teo 7.19

(Desigualdade de Cauchy-Schwarz) Seja (V,\cdot) um espaço euclidiano. Então:

$$\forall x, y \in V \Big[|x \cdot y| \leqslant ||x|| ||y|| \Big].$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

Norma

7 – Geometria Analítica

Def 7 22

[angulo entre dois vetores] Sejam (V, \cdot) um espaço euclidiano, $\|\cdot\|$ a norma induzida pelo produto interno e $x, y \in V$. Chama-se angulo entre os vetores $x \in y$, que se representa por $\angle(x, y) \in [0, \pi]$), onde

$$\angle(x,y) \stackrel{\mathsf{def}}{=} \begin{cases} 0 & \mathsf{se}\ x = 0_V\ \mathsf{ou}\ y = 0_V, \\ \mathsf{arccos}\left(\frac{x\cdot y}{\|x\|\|y\|}\right) & \mathsf{se}\ x \neq 0_V\ \mathsf{e}\ y \neq 0_V. \end{cases}$$

Obs 7.23

Sejam (V, \cdot) um espaço euclidiano, $\|\cdot\|$ a norma induzida pelo produto interno e $x, y \in V$. Então:

- (a) Atendendo à desigualdade de Cauchy-Schwarz tem-se que $-1 \leqslant \frac{x \cdot y}{\|x\| \|y\|} \leqslant 1$, pelo que a definição de ângulo entre dois vetores faz sentido.
- (b) $x \cdot y = ||x|| ||y|| \cos \theta$, em que $\theta = \angle(x, y)$.

Def 7 20

[distância entre dois vetores] Sejam (V, \cdot) um espaço euclidiano, $\|\cdot\|$ a norma induzida pelo produto interno e $x, y \in V$. Chama-se distância entre os vetores x e y, que se representa por d(x, y), a

$$d(x, y) \stackrel{\mathsf{def}}{=} ||x - y||.$$

Exe 7.21

Determine a distância entre os vetores x = (1, 0, 2) e y = (3, 1, 0).

Res

$$d(x,y) = ||x - y|| = ||(1,0,2) - (3,1,0)|| = ||(-2,-1,2)|| = \sqrt{4+1+4} = 3.$$

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

. 0 27

7 – Geometria Analític

Exe 7.24

Determine o ângulo entre os vetores x = (1,0,2) e y = (3,1,0).

Res

$$\angle(x,y) = \arccos\left(\frac{x \cdot y}{\|x\| \|y\|}\right) = \arccos\left(\frac{(1,0,2) \cdot (3,1,0)}{\|(1,0,2)\| \|(3,1,0)\|}\right) = \arccos\left(\frac{3+0+0}{\sqrt{5}\sqrt{10}}\right) = \arccos\left(\frac{3}{\sqrt{50}}\right).$$

Def 7.25

[vetores ortogonais] Sejam (V,\cdot) um espaço euclidiano, $\|\cdot\|$ a norma induzida pelo produto interno e $x,y\in V$. Os vetores x e y dizem-se ortogonais, que se representa por $x\perp y$, se $\angle(x,y)=\frac{\pi}{2}$.

Obs 7.26

Se $x \neq 0_V$ e $y \neq 0_V$, então, $x \perp y$ sse $x \cdot y = 0$.

Exe 7.27

Indique o valor lógico das seguintes proposições:

 P_1 : "Os vetores x=(1,1,2) e y=(0,0,0) são ortogonais."

 P_2 : "Os vetores z = (1, 0, 2) e w = (2, 3, -1) são ortogonais."

Res

- P_1 Como $\angle(x,y)=0$, pois $y=0_{\mathbb{R}^3}$, os vetores x e y não são ortogonais. Assim, P_1 é uma proposição falsa.
- P_2 Como $z \cdot w = (1,0,2) \cdot (2,3,-1) = 2+0-2=0$, os vetores $z \in w$ são ortogonais. Assim, P_2 é uma proposição verdadeira.

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

375

7 – Geometria Analític

Produto extern

Exe 7.30

Sejam os vetores x = (1, 0, 2) e y = (3, 1, 0).

- (a) Determine $x \times y$ e $y \times x$.
- (b) Mostre que $(x \times y) \perp x$ e $(x \times y) \perp y$.

Res

(a)
$$x \times y = \begin{vmatrix} e_1 & e_2 & e_3 \\ 1 & 0 & 2 \\ 3 & 1 & 0 \end{vmatrix} = -2e_1 + 6e_2 + e_3 = (-2, 6, 1).$$

 $y \times x = \begin{vmatrix} e_1 & e_2 & e_3 \\ e_1 & e_2 & e_3 \\ 1 & 0 & 2 \end{vmatrix} = 2e_1 - 6e_2 - e_3 = (2, -6, -1).$

(b) Como $(x \times y) \cdot x = (-2, 6, 1) \cdot (1, 0, 2) = -2 \times 1 + 6 \times 0 + 1 \times 2 = 0,$ tem-se que $(x \times y) \perp x$. Como $(x \times y) \cdot y = (-2, 6, 1) \cdot (3, 1, 0) = -2 \times 3 + 6 \times 1 + 1 \times 0 = 0,$ tem-se que $(x \times y) \perp y$.

Obs 7.31

Terá sido coincidência que $(x \times y) \perp x$ e $(x \times y) \perp y$ no exercício anterior? O Teorema Teo 7.33 diz que não.

Def 7.28

[produto externo de dois vetores ou produto vetorial de dois vetores de \mathbb{R}^3] Sejam o espaço vetorial \mathbb{R}^3 e $x=(x_1,x_2,x_3),y=(y_1,y_2,y_3)\in\mathbb{R}^3$. Chama-se produto externo de x e y, que se representa por $x\times y$, ao elemento de \mathbb{R}^3 definido por

$$x \times y \stackrel{\text{def}}{=} (x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1).$$

Obs 7.29

- (a) Não confundir a notação de produto externo "×"nem com a letra "x" nem com o símbolo da multiplicação.
- (b) Sejam $\{e_1, e_2, e_3\}$ a base canónica de \mathbb{R}^3 e $x=(x_1, x_2, x_3), y=(y_1, y_2, y_3) \in \mathbb{R}^3$. Então, o produto externo de x e y pode ser calculado através do "determinante simbólico"

$$x \times y = \begin{vmatrix} e_1 & e_2 & e_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}.$$

GJM, IB, SL (DMat, UM)

TALGA

[triedro direto] Sejam $a,b,c \in \mathbb{R}^3$ vetores linearmente independentes. Diz-se que (a,b,c) formam um triedro direto se um observador com os pés no ponto (0,0,0) e com a cabeça na parte positiva de c, vê a à direita de b.

Teo 7.33

- (a) $\forall x \in \mathbb{R}^3 [x \times 0_{\mathbb{R}^3} = 0_{\mathbb{R}^3}].$
- (b) $\forall x, y \in \mathbb{R}^3 [x \times y = -y \times x].$
- (c) $\forall x, y \in \mathbb{R}^3, \forall \alpha \in \mathbb{R} [x \times (\alpha y) = \alpha(x \times y)].$
- (d) $\forall x, y, z \in \mathbb{R}^3 [(x+y) \times z = x \times z + y \times z].$
- (e) $\forall x, y, z \in \mathbb{R}^3 [x \times (y + z) = x \times y + x \times z].$
- (f) $\forall x, y \in \mathbb{R}^3 [(x \times y) \perp x \in (x \times y) \perp y].$
- (g) $\forall x, y \in \mathbb{R}^3 [x \times y = (\|x\| \|y\| \operatorname{sen} \theta) n]$, onde $\angle(x, y) = \theta$ e $n \in \mathbb{R}^3$ em que $\|n\| = 1$ tal que $n \perp x$, $n \perp y$ e (x, y, n) formam um triedro direto.
- (h) $||x \times y||$ é igual à área do paralelogramo que tem como lados x e y.

7 – Geometria Analítica

etas e planos

Geometria Analítica

Obs 7.34

(a) Um dos conceitos principais em Álgebra Linear é o de "espaço vetorial", no qual intervêm "vetores" e "escalares" sujeitos a certas leis operatórias. Na Geometria Analítica do "espaço ordinário", um dos conceitos fundamentais é o de "ponto".

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

379

TALGA

setembro de 2020 — v5.0

7 – Geometria Analítica Retas e plano

Obs 7.34 (cont.)

(c) Sejam, agora, $A=(a_1,a_2,a_3)$ e $B=(b_1,b_2,b_3)$ pontos do espaço ordinário. Então, denotam-se os segmentos orientados no espaço ordinário com ponto inicial A e com ponto final B por \overrightarrow{AB} que corresponderá ao vetor $v=(b_1-a_1)e_1+(b_2-a_2)e_2+(b_3-a_3)e_3$, ou seja, o seu segmento equipolente (mesma direcção, comprimento e sentido) aplicado na origem.

Obs 7.34 (cont.)

(b) Considere-se no "espaço ordinário" um ponto fixo, a que se chama origem e que se denota por O, e três eixos ortogonais concorrentes no ponto O que formam um triedro direto e que se denotam por OX, OY e OZ. Um ponto P do espaço ordinário fica identificado por três coordenadas, escrevendo-se $P=(p_1,p_2,p_3)$, em que p_1 é a distância do ponto ao plano YOZ, p_2 é a distância do ponto ao plano XOZ e p_3 é a distância do ponto ao plano XOY. Às coordenadas p_1 , p_2 e p_3 chama-se abcissa, ordenada e cota, respetivamente. Note-se, então, que se pode estabelecer uma relação entre o ponto $P=(p_1,p_2,p_3)$ do espaço ordinário e o vetor $v=p_1e_1+p_2e_2+p_3e_3$ do espaço vetorial \mathbb{R}^3 , em que $\{e_1,e_2,e_3\}$ representa a sua base canónica: o vetor v é representado geometricamente por um vetor cuja origem coincide com a origem do sistema de eixos coordenados e cujo extremo é o ponto P de coordenadas (p_1,p_2,p_3) . Assim, passa-se a denotar indistintamente por \mathbb{R}^3 o espaço ordinário e o espaço vetorial.

Def 7.3

[equação cartesiana de um plano] Equação do plano α que contém o ponto $A=(a_1,a_2,a_3)$ e que é perpendicular ao vetor não-nulo $u=(u_1,u_2,u_3)$:

Seja o ponto P=(x,y,z). Então, $P \in \alpha$ sse

$$(P - A) \cdot u = 0 \Leftrightarrow (x - a_1)u_1 + (y - a_2)u_2 + (z - a_3)u_3 = 0$$

 $\Leftrightarrow ax + by + cz = d,$

em que $a=u_1$, $b=u_2$, $c=u_3$ e $d=u_1a_1+u_2a_2+u_3a_3$. Chama-se equação cartesiana do plano α à equação ax+by+cz=d.

Obs 7.36

Seja o plano α dado pela equação cartesiana ax + by + cz = d. Então, o vetor v = (a, b, c) é perpendicular a α .

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

Res

Como v = (1,2,3) é perpendicular a π , então x + 2y + 3z = d, e como $(2,-1,3) \in \pi$, então $d = 2 + 2 \times (-1) + 3 \times 3 = 9$. Logo, a equação cartesiana do plano π é

$$x + 2y + 3z = 9.$$

GJM, IB, SL (DMat, UM

Exe 7.39

Determine a equação vetorial, as equações paramétricas e as equações cartesianas das seguintes retas:

- (a) reta que passa no ponto A=(-1,0,2) e é paralela ao vetor $\vec{v}=$ (1, 2, 3).
- (b) reta que passa pelos pontos A = (1,2,3) e B = (3,1,3).

Res

- (a) equação vetorial: $(x, y, z) = (-1, 0, 2) + \alpha(1, 2, 3), \alpha \in \mathbb{R}$. equações paramétricas: $x = -1 + \alpha$, $y = 2\alpha$, $z = 2 + 3\alpha$, $\alpha \in \mathbb{R}$. equações cartesianas: $x+1=\frac{y}{2}=\frac{z-2}{3} \Leftrightarrow (2x-y=-2 \land 3y-2z=$ -4).
- (b) equação vetorial: $(x, y, z) = (1, 2, 3) + \alpha(2, -1, 0), \alpha \in \mathbb{R}$. equações paramétricas: $x = 1 + 2\alpha$, $y = 2 - \alpha$, z = 3, $\alpha \in \mathbb{R}$. equações cartesianas: $\left(\frac{x-1}{2} = \frac{y-2}{-1} \land z = 3\right) \Leftrightarrow (x+2y = 5 \land z = 3).$

leguação vetorial de uma reta, equações paramétricas de uma reta, equações cartesianas de uma reta, vetor diretor de uma reta Equação da reta r que passa pelo ponto $A = (a_1, a_2, a_3)$ e que é paralela ao vetor não-nulo $u = (u_1, u_2, u_3)$:

Seja o ponto P = (x, y, z). Então, $P \in r$ sse $\overrightarrow{AP} \parallel u$, ou seia.

$$P - A = \alpha u, \alpha \in \mathbb{R}$$
: equação vetorial,

ou

$$\begin{cases} x - a_1 = \alpha u_1 \\ y - a_2 = \alpha u_2 \\ z - a_3 = \alpha u_3 \end{cases}$$
: equações paramétricas.

Se se eliminar o parâmetro α das equações paramétricas, obtêm-se as equações cartesianas.

Chama-se vetor diretor da reta r ao vetor u.

GJM, IB, SL (DMat, UM)

[distância entre dois pontos] Sejam $P = (p_1, p_2, p_3)$ e $Q = (q_1, q_2, q_3)$ dois pontos de \mathbb{R}^3 . Chama-se distância entre os pontos P e Q, que se representa por d(P, Q), a

$$d(P,Q) \stackrel{\mathsf{def}}{=} ||\overrightarrow{PQ}|| = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2}.$$

Exe 7.41

Determine a distância entre os pontos P = (1, 2, -3) e Q = (0, 5, 1).

Res

$$d(P,Q) = ||\overrightarrow{PQ}|| = ||(-1,3,4)|| = \sqrt{(-1)^2 + 3^2 + 4^2} = \sqrt{26}.$$

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM

TALGA

Def 7.42

[distância de um ponto a um plano] Sejam P um ponto de \mathbb{R}^3 e π um plano. Então, chama-se distância de P a π , que se representa por $d(P,\pi)$, a $d(P,\pi)=d(P,Q)$, em que

- (a) r é a reta perpendicular a π que passa em P.
- (b) $Q = \pi \cap r$.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.

387

tas e planos

Dof 7.44

[distância de um ponto a uma reta] Sejam P um ponto de \mathbb{R}^3 e r uma reta. Então, chama-se distância de P a r, que se representa por d(P,r), a d(P,r)=d(P,Q), em que

- (a) π é o plano perpendicular a r que passa em P.
- (b) $Q = \pi \cap r$.

Exe 7.45

Determine a distância entre o ponto P=(4,3,0) e a reta $r:(x,y,z)=(2,1,-1)+\lambda(1,1,0),\ \lambda\in\mathbb{R}.$

Res

O plano π , perpendicular a r que passa em P, é dado pela equação x+y=d. Como $P\in\pi$, então d=4+3=7, logo

$$\pi$$
 : $x + y = 7$.

Exe 7.43

Determine a distância entre o ponto P=(-2,-4,-3) e o plano $\pi: x+2y+3z=9$.

Re

A reta r perpendicular a π que passa em P é dada por

$$r: (x, y, z) = (-2, -4, -3) + \lambda(1, 2, 3).$$

Para se determinar $Q = \pi \cap r$, substitua-se

 $(x,y,z)=(-2+\lambda,-4+2\lambda,-3+3\lambda)$ na equação cartesiana de π , vindo

$$-2 + \lambda + 2(-4 + 2\lambda) + 3(-3 + 3\lambda) = 9 \Leftrightarrow 14\lambda = 28 \Leftrightarrow \lambda = 2.$$

Assim, $Q = (-2, -4, -3) + 2 \times (1, 2, 3) = (0, 0, 3)$, pelo que

$$d(P,\pi) = d(P,Q) = ||\overrightarrow{PQ}|| = ||(2,4,6)|| = \sqrt{2^2 + 4^2 + 6^2} = 2\sqrt{14}.$$

GJM, IB, SL (DMat, UN

TALGA

setembro de 2020 — v5.0

7 – Geometria Analític

Retas e planos

Res (cont.)

Para se determinar $Q=\pi\cap r$, substitua-se $(x,y,z)=(2+\lambda,1+\lambda,-1)$ na equação cartesiana de π , vindo

$$2 + \lambda + 1 + \lambda = 7 \Leftrightarrow 2\lambda = 4 \Leftrightarrow \lambda = 2.$$

Assim,

$$Q = (2,1,-1) + 2 \times (1,1,0) = (4,3,-1)$$

pelo que

$$d(P,r) = d(P,Q) = ||\overrightarrow{PQ}|| = ||(0,0,-1)|| = \sqrt{(-1)^2} = 1.$$

TALGA

 $\llbracket \hat{a}$ ngulo entre dois planos \rrbracket Sejam π e ψ dois planos tais que $u=(a_1,b_1,c_1)\perp\pi$ e $v=(a_2,b_2,c_2)\perp\psi$. Então, chama-se ângulo entre π e ψ , que se representa por $\angle(\pi,\psi)$, a

GJM, IB, SL (DMat, UM)

e $v = (v_1, v_2, v_3)$ são os seus vetores diretores, respetivamente. Então, chama-se ângulo entre $r \in s$, que se representa por $\angle(r, s)$, a

$$\angle(r,s) = \arccos\left(\frac{|u \cdot v|}{\|u\|\|v\|}\right)$$

$$= \arccos\left(\frac{|u_1v_1 + u_2v_2 + u_3v_3|}{\sqrt{u_1^2 + u_2^2 + u_3^2}\sqrt{v_1^2 + v_2^2 + v_3^2}}\right).$$

Exe 7.47

Determine o ângulo entre o plano α : -3x + 2y - z = 4 e o plano β : x - 3y + 4z = 5.

Res

Sendo $(-3,2,-1) \perp \alpha$ e $(1,-3,4) \perp \beta$, então

$$\begin{split} \angle(\alpha,\beta) &= \arccos\left(\frac{|(-3,2,-1)\cdot(1,-3,4)|}{\|(-3,2,-1)\|\|(1,-3,4)\|}\right) \\ &= \arccos\left(\frac{|-3-6-4|}{\sqrt{9+4+1}\sqrt{1+9+16}}\right) \\ &= \arccos\left(\frac{13}{\sqrt{14}\sqrt{26}}\right) = \arccos\left(\frac{\sqrt{91}}{14}\right). \end{split}$$

Exe 7.49

Determine o ângulo entre a reta $r: (x, y, z) = (3, 17, 3) + \lambda(4, 6, 2)$, $\lambda \in \mathbb{R}$, e a reta s definida pelas equações cartesianas

$$\frac{x}{3} = \frac{y+10}{3} = \frac{z+9}{6}$$
.

Res

O vetor (4,6,2) é um vetor diretor da reta r.

A reta s pode ser definida pelas equações paramétricas

$$\begin{cases} x = 3\mu \\ y + 10 = 3\mu \\ z + 9 = 6\mu, \end{cases}$$

 $\mu \in \mathbb{R}$, pelo que (3,3,6) é um vetor diretor da reta s.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM)

TALGA

Então, o ângulo entre r e s é dado por

$$\begin{split} \angle(r,s) &= \arccos\left(\frac{|(4,6,2)\cdot(3,3,6)|}{\|(4,6,2)\|\|(3,3,6)\|}\right) \\ &= \arccos\left(\frac{|12+18+12|}{\sqrt{16+36+4}\sqrt{9+9+36}}\right) \\ &= \arccos\left(\frac{42}{\sqrt{56}\sqrt{54}}\right) \\ &= \arccos\left(\frac{\sqrt{21}}{6}\right). \end{split}$$

 $[\hat{a}]$ ngulo entre uma reta e um plano $[\hat{a}]$ Sejam r uma reta em que $u = (u_1, u_2, u_3)$ é o seu vetor diretor e π um plano tal que $v=(a,b,c)\perp\pi$. Então, chama-se ângulo entre $r\in\pi$, que se representa por $\angle(r,\pi)$, a

$$\angle(r,\pi) = \arcsin\left(\frac{|u\cdot v|}{\|u\|\|v\|}\right)$$

$$= \arcsin\left(\frac{|au_1 + bu_2 + cu_3|}{\sqrt{a^2 + b^2 + c^2}\sqrt{u_1^2 + u_2^2 + u_3^2}}\right).$$

Exe 7.51

Determine o ângulo entre a reta $r: (x, y, z) = (-1, 0, 1) + \lambda(0, 4, 3)$. $\lambda \in \mathbb{R}$, e o plano $\pi : 4x - 3y = 1$.

Res

Sendo (0,4,3) um vetor diretor de $r \in (4,-3,0) \perp \pi$, então

$$\begin{split} \angle(r,\pi) &= \operatorname{arcsen} \left(\frac{|(0,4,3) \cdot (4,-3,0)|}{\|(0,4,3)\| \|(4,-3,0)\|} \right) \\ &= \operatorname{arcsen} \left(\frac{|-12|}{\sqrt{16+9}\sqrt{16+9}} \right) \\ &= \operatorname{arcsen} \left(\frac{12}{25} \right). \end{split}$$

(a) [superfície de segunda ordem, superfície quádrica, quádrica] Chamase superfície de segunda ordem ou superfície quádrica ou quádrica ao conjunto de pontos $(x, y, z) \in \mathbb{R}^3$ cujas coordenadas cartesianas satisfazem uma equação algébrica inteira do segundo grau, ou seja, que satisfaz a equação

$$a_{11}x^{2} + 2a_{12}xy + 2a_{13}xz + 2a_{14}x + a_{22}y^{2} + 2a_{23}yz + 2a_{24}y + a_{33}z^{2} + 2a_{34}z + a_{44} = 0.$$

(b) superfície de revolução, geratriz de uma superfície de revolução, eixol Chama-se superfície de revolução a uma quádrica gerada pela rotação de uma curva plana, a que se chama geratriz, em torno de uma reta, a que se chama eixo, que está no plano da geratriz.

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

TALGA

- (c) [superfície cilíndrica, geratriz de uma superfície cilíndrica, diretriz] Chama-se superfície cilíndrica a uma quádrica gerada por uma reta, a que se chama geratriz, que se move paralelamente a uma reta fixa apoiando-se numa curva, a que se chama diretriz. Se a diretriz for uma curva plana e a geratriz for perpendicular a um plano que contenha a curva, a superfície cilíndrica diz-se reta.
- (d) [traço de uma quádrica] Chama-se traço à intersecção de uma quádrica com um plano.

GJM, IB, SL (DMat, UM)

GJM, IB, SL (DMat, UM)

Teo 7.54

Através de mudanças de coordenadas (rotação e/ou translação), é sempre possível transformar uma quádrica numa das seguintes formas canónicas:

(a)
$$\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 + d = 0$$
, $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} - \{0\}$, $d \in \mathbb{R}$.

(b)
$$\lambda_1 x^2 + \lambda_2 y^2 + d = 0$$
, $\lambda_1, \lambda_2 \in \mathbb{R} - \{0\}$, $d \in \mathbb{R}$.

(c)
$$\lambda_1 x^2 + d = 0$$
, $\lambda_1 \in \mathbb{R} - \{0\}$, $d \in \mathbb{R}$.

(d)
$$\lambda_1 x^2 + \lambda_2 y^2 = 2az$$
, $\lambda_1, \lambda_2 \in \mathbb{R} - \{0\}$, $a \in \mathbb{R}$.

(e)
$$\lambda_1 x^2 = 2ay$$
, $\lambda_1 \in \mathbb{R} - \{0\}$, $a \in \mathbb{R}$.

Obs 7.55

O objetivo do que resta deste capítulo é identificar e esboçar o gráfico de uma quádrica conhecida a sua forma canónica.

- (a) [simetria de uma quádrica relativamente a um plano coordenado] Uma quádrica diz-se simétrica relativamente a um plano coordenado se a sua equação não se alterar quando a variável medida a partir desse plano mudar de sinal.
- (b) [simetria de uma quádrica relativamente a um eixo coordenado] Uma quádrica diz-se simétrica relativamente a um eixo coordenado se a sua equação não se alterar quando as variáveis que não são medidas sobre esse eixo mudam de sinal.
- (c) [simetria de uma quádrica relativamente à origem] Uma quádrica dizse simétrica relativamente à origem se a sua equação não se alterar quando as três variáveis mudam de sinal.

[elipsóide, esfera] Sejam $a, b, c, \rho \in \mathbb{R}^+$. Então, chama-se elipsóide à quádrica cuja equação canónica é

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
, a, b e c não todos iguais,

e esfera à quádrica cuja equação canónica é

$$x^2 + y^2 + z^2 = \rho^2.$$

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

GJM, IB, SL (DMat, UM

TALGA

Exe 7.57

Considere a quádrica de equação $x^2 + 5y^2 + 3z^2 = 1$. Identifique a quádrica e faça o seu esboço.

Res

A quádrica pode ser escrita na seguinte forma canónica $\frac{x^2}{1^2} + \frac{y^2}{\left(\frac{1}{\sqrt{5}}\right)^2} + \frac{z^2}{\left(\frac{1}{\sqrt{3}}\right)^2} = 1 \; (\text{com } a = 1, \; b = \frac{\sqrt{5}}{5}, \; c = \frac{\sqrt{3}}{3}), \; \text{que \'e a}$ equação canónica de um elipsóide. A sua representação \'e

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

Dof 7 50

[hiperbolóide de uma folha] Sejam $a, b, c \in \mathbb{R}^+$. Então, chama-se hiperbolóide de uma folha à quádrica cuja equação canónica é

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad \text{ou} \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad \text{ou} \quad -\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Obs 7.58

Sejam $a, b, c \in \mathbb{R}^+$ não todos iguais e o elipsóide $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Então.

- (a) traços:
 - no plano XOY a elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, z = 0.
 - No plano XOZ a elipse $\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1$, y = 0.
 - No plano YOZ a elipse $\frac{y^2}{h^2} + \frac{z^2}{c^2} = 1$, x = 0.
- (b) Simetrias: quádrica simétrica relativamente aos planos coordenados, aos eixos coordenados e à origem.
- (c) Superfície de revolução se a=b, em que a geratriz é a elipse $\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$ e o eixo é o eixo coordenado OZ, ou se a=c, em que a geratriz é a elipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ e o eixo é o eixo coordenado OY, ou se b=c, em que a geratriz é a elipse $\frac{x^2}{a^2}+\frac{z^2}{c^2}=1$ e o eixo é o eixo coordenado OX.

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

404

7 – Geometria Analític

Quádricas

Exe 7.60

Considere a quádrica de equação $x^2 + y^2 - z^2 = 1$. Identifique a quádrica e faça o seu esboço.

Res

A quádrica pode ser escrita na seguinte forma canónica $\frac{x^2}{1^2}+\frac{y^2}{1^2}-\frac{z^2}{1^2}=1$ (com $a=1,\ b=1,\ c=1$), que é a equação canónica de um hiperbolóide de uma folha. A sua representação é

Obs 7.61

Sejam $a, b, c \in \mathbb{R}^+$ e o hiperbolóide de uma folha $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$. Então.

- (a) traços:
 - no plano XOY a elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, z = 0.
 - No plano XOZ a hipérbole $\frac{x^2}{a^2} \frac{z^2}{c^2} = 1$, y = 0.
 - No plano YOZ a hipérbole $\frac{y^2}{b^2} \frac{z^2}{c^2} = 1$, x = 0.
- (b) Simetrias: quádrica simétrica relativamente aos planos coordenados, aos eixos coordenados e à origem.
- (c) Superfície de revolução se a=b, em que a geratriz é a hipérbole $\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$ e o eixo é o eixo coordenado OZ.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

407

GJM, IB, SL (DMat, U

TALG

setembro de 2020 — v5.0

7 - Geometria Analítica Quádricas Quádricas

Exe 7.63

Considere a quádrica de equação $\frac{x^2}{3} - 2y^2 - 2z^2 = 1$. Identifique a quádrica e faça o seu esboço.

Res

A quádrica pode ser escrita na seguinte forma canónica

$$\frac{x^2}{\left(\sqrt{3}\right)^2} - \frac{y^2}{\left(\frac{1}{\sqrt{2}}\right)^2} - \frac{z^2}{\left(\frac{1}{\sqrt{2}}\right)^2} = 1 \ (a = \sqrt{3}, \ b = \frac{\sqrt{2}}{2}, \ c = \frac{\sqrt{2}}{2}), \ \mathsf{que} \ \mathsf{\acute{e}} \ \mathsf{a}$$

equação canónica de um hiperbolóide de duas folhas. A sua representação é

Def 7.6

[hiperbolóide de duas folhas] Sejam $a, b, c \in \mathbb{R}^+$. Então, chama-se hiperbolóide de duas folhas à quádrica cuja equação canónica é

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad \text{ou} \quad -\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad \text{ou} \quad -\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

7 – Geometria Analític

Quádricas

Obs 7.64

Sejam $a,b,c\in\mathbb{R}^+$ e o hiperbolóide de duas folhas $\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$. Então,

- (a) traços:
 - no plano XOY a hipérbole $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, z = 0.
 - No plano XOZ a hipérbole $\frac{x^2}{a^2} \frac{z^2}{c^2} = 1$, y = 0.
 - No plano YOZ não existe.
- (b) Simetrias: quádrica simétrica relativamente aos planos coordenados, aos eixos coordenados e à origem.
- (c) Superfície de revolução se b=c, em que a geratriz é a hipérbole $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ e o eixo é o eixo coordenado OX.

Def 7.65

[cone] Sejam $a, b, c \in \mathbb{R}^+$. Então, chama-se cone à quádrica cuja equação canónica é

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0 \quad \text{ou} \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0 \quad \text{ou} \quad -\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0.$$

GJM, IB, SL (DMat, UM)

TALGA

etembro de 2020 — v5.0

411

Exe 7.66

Considere a quádrica de equação $x^2 + y^2 - z^2 = 0$. Identifique a quádrica e faca o seu esboco.

Res

A quádrica pode ser escrita na seguinte forma canónica $\frac{x^2}{1^2} + \frac{y^2}{1^2} - \frac{z^2}{1^2} = 0$ (com a=1, b=1, c=1), que é a equação canónica de um cone. A sua representação é

GA setembro de

GJM, IB, SL (DMat, UN

TALGA

setembro de 2020 — v5.0

110

7 – Geometria Analítica

Obs 7.67

Sejam $a, b, c \in \mathbb{R}^+$ e o cone $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$. Então,

- (a) traços:
 - \blacksquare no plano XOY o ponto (0,0,0).
 - No plano XOZ o par de retas $\frac{z}{c} = \pm \frac{x}{a}$, y = 0.
 - No plano YOZ o par de retas $\frac{z}{c} = \pm \frac{y}{b}$, x = 0.
- (b) Simetrias: quádrica simétrica relativamente aos planos coordenados, aos eixos coordenados e à origem.
- (c) Superfície de revolução se a=b, em que a geratriz é a reta $\frac{y}{b}=\frac{z}{c}, x=0$ e o eixo é o eixo coordenado OZ.

- Geometria Analítica

Def 7 68

[cilindro elítico, cilindro circular] Sejam $a,b,c,\rho\in\mathbb{R}^+$. Então, chama-se cilindro elítico à quádrica cuja equação canónica é

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a \neq b, \text{ ou } \frac{x^2}{a^2} + \frac{z^2}{c^2} = 1, a \neq c,$$

ou
$$\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, b \neq c,$$

e cilindro circular à quádrica cuja equação canónica é

$$x^2 + y^2 = \rho^2$$
 ou $x^2 + z^2 = \rho^2$ ou $y^2 + z^2 = \rho^2$.

Exe 7.69

Considere a quádrica de equação $x^2 + 2y^2 = 1$. Identifique a quádrica e faça o seu esboço.

Res

A quádrica pode ser escrita na seguinte forma canónica $\frac{x^2}{1^2} + \frac{y^2}{\left(\frac{1}{\sqrt{2}}\right)^2} = 0$

(com $a=1,\ b=\frac{\sqrt{2}}{2}$), que é a equação canónica de um cilindro elítico. A sua representação é

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5

Obs 7.70

Sejam $a, b \in \mathbb{R}^+$, $a \neq b$, e o cilindro elítico $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Então,

- (a) traços:
 - no plano XOY a elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, z = 0.
 - No plano XOZ o par de retas $x = \pm a$, y = 0.
 - No plano YOZ o par de retas $y = \pm b$, x = 0.
- (b) Simetrias: quádrica simétrica relativamente aos planos coordenados, aos eixos coordenados e à origem.
- (c) Superfície cilíndrica reta, em que a diretriz é a elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ e a geratriz é paralela ao eixo coordenado OZ.

[cilindro hiperbólico] Sejam $a, b, c \in \mathbb{R}^+$. Então, chama-se cilindro hiperbólico à quádrica cuja equação canónica é

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 ou $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ou $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$ ou

$$-\frac{x^2}{a^2} + \frac{z^2}{c^2} = 1 \quad \text{ou} \quad \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad \text{ou} \quad -\frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Exe 7.72

Considere a quádrica de equação $x^2 - 4y^2 = 1$. Identifique a quádrica e faça o seu esboço.

Re

A quádrica pode ser escrita na seguinte forma canónica $\frac{x^2}{1^2} - \frac{y^2}{\left(\frac{1}{2}\right)^2} = 1$

(com $a=1,\ b=\frac{1}{2}$), que é a equação canónica de um cilindro hiperbólico. A sua representação é

Obs 7.73

Sejam $a, b \in \mathbb{R}^+$ e o cilindro hiperbólico $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Então,

- (a) traços:
 - no plano XOY a hipérbole $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, z = 0.
 - No plano XOZ o par de retas $x = \pm a$, y = 0.
 - No plano YOZ não existe.
- (b) Simetrias: quádrica simétrica relativamente aos planos coordenados, aos eixos coordenados e à origem.
- (c) Superfície cilíndrica, em que a diretriz é a hipérbole $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ e a geratriz é paralela ao eixo coordenado OZ.

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5

419

GJM. IB. SL (DMat. UN

TALG

setembro de 2020 — v5.0

420

7 - Geometria Analítica Quádrica Quádrica

Exe 7.75

Considere a quádrica de equação $x^2 + y^2 = z$. Identifique a quádrica e faça o seu esboço.

Res

A quádrica pode ser escrita na seguinte forma canónica $x^2+y^2=2\frac{1}{2}z$ (com $\rho=1,\ p=\frac{1}{2}$), que é a equação canónica de um parabolóide circular. A sua representação é

Def 7 74

[[parabolóide elítico, parabolóide circular]] Sejam $a,b,c,\rho\in\mathbb{R}^+$ e $p,q,r\in\mathbb{R}-\{0\}$. Então, chama-se parabolóide elítico à quádrica cuja equação canónica é

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2pz, a \neq b, \text{ ou } \frac{x^2}{a^2} + \frac{z^2}{c^2} = 2qy, a \neq c,$$

ou
$$\frac{y^2}{b^2} + \frac{z^2}{c^2} = 2rx, b \neq c,$$

e parabolóide circular à quádrica cuja equação canónica é

$$x^2 + y^2 = 2p\rho^2 z$$
 ou $x^2 + z^2 = 2q\rho^2 y$ ou $y^2 + z^2 = 2r\rho^2 x$.

7 – Geometria Analític

Quádricas

Obs 7.76

Sejam $a,b\in\mathbb{R}^+$, $a\neq b,\ p\in\mathbb{R}-\{0\}$ e o parabolóide elítico $\frac{x^2}{a^2}+\frac{y^2}{b^2}=2pz$. Então,

- (a) traços:
 - \blacksquare no plano XOY o ponto (0,0,0).
 - No plano XOZ a parábola $\frac{x^2}{a^2} = 2pz$, y = 0.
 - No plano YOZ a parábola $\frac{y^2}{h^2} = 2pz$, x = 0.
- (b) Simetrias: quádrica simétrica relativamente aos planos coordenados XOZ e YOZ e ao eixo coordenado OZ.
- (c) Superfície de revolução se a = b, em que a geratriz é a parábola $\frac{y^2}{b^2} = 2pz$ e o eixo é o eixo coordenado OZ.

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

421

GIM IR SI (DMat III)

TALGA

[parabolóide hiperbólico] Sejam $a, b, c \in \mathbb{R}^+$ e $p, q, r \in \mathbb{R}^-\{0\}$. Então, chama-se parabolóide hiperbólico à quádrica cuja equação canónica é

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$$
 ou $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 2qy$ ou $\frac{y^2}{b^2} - \frac{z^2}{c^2} = 2rx$.

GJM, IB, SL (DMat, UM)

Obs 7.79

Sejam $a, b \in \mathbb{R}^+$, $p \in \mathbb{R} - \{0\}$ e o parabolóide hiperbólico $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2pz$. Então.

- (a) traços:
 - no plano XOY o par de retas $\frac{x}{a} = \pm \frac{y}{b}$, z = 0.
 - No plano XOZ a parábola $\frac{x^2}{x^2} = 2pz$, y = 0.
 - No plano YOZ a parábola $-\frac{y^2}{h^2} = 2pz$, x = 0.
- (b) Simetrias: quádrica simétrica relativamente aos planos coordenados XOZ e YOZ e ao eixo coordenado OZ.
- (c) Nunca é uma superfície de revolução.

Exe 7.78

Considere a quádrica de equação $x^2 - y^2 = z$. Identifique a quádrica e faca o seu esboco.

Res

A quádrica pode ser escrita na seguinte forma canónica $\frac{x^2}{12} - \frac{y^2}{12} = 2\frac{1}{2}z$ (com a=1, b=1, $p=\frac{1}{2}$), que é a equação canónica de um parabolóide hiperbólico. A sua representação é

[cilindro parabólico] Sejam $p, q, r, s, m, n \in \mathbb{R} - \{0\}$. Então, chama-se cilindro parabólico à quádrica cuja equação canónica é

$$x^2 = 2py$$
 ou $y^2 = 2qx$ ou $x^2 = 2rz$ ou

$$z^2 = 2sx$$
 ou $y^2 = 2mz$ ou $z^2 = 2ny$.

Exe 7.81

Considere a quádrica de equação $4x^2=y$. Identifique a quádrica e faça o seu esboço.

Res

A quádrica pode ser escrita na seguinte forma canónica $x^2=2\frac{1}{8}y$ (com $p=\frac{1}{8}$), que é a equação canónica de um cilindro parabólico. A sua representação é

GJM, IB, SL (DMat, UM)

TALGA

setembro de 2020 — v5.0

427

GJM, IB, SL (DMat, UM

TALGA

setembro de 2020 — v5.0

7 – Geometria Analítica

Def 7.83

[quádrica degenerada] Uma quádrica diz-se degenerada se não há pontos de \mathbb{R}^3 que satisfaçam a sua equação, ou se, existindo, eles definem um plano, uma reta ou apenas um ponto de \mathbb{R}^3 .

Obs 7.82

Sejam $p \in \mathbb{R} - \{0\}$ e o cilindro parabólico $x^2 = 2py$. Então,

- (a) traços:
 - no plano XOY a parábola $x^2 = 2py$, z = 0.
 - No plano XOZ a reta x = 0, y = 0.
 - No plano YOZ a reta y = 0, x = 0.
- (b) Simetrias: quádrica simétrica relativamente aos planos coordenados XOY e YOZ e ao eixo coordenado OY.
- (c) Superfície cilíndrica, em que a diretriz é a parábola $x^2 = 2py$ e a geratriz é paralela ao eixo coordenado OZ.

7 – Geometria Analítica

Obs 7.84

Sejam $a, b, c \in \mathbb{R}^+$. Então, as seguintes equações definem quádricas degeneradas:

(a)
$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$
.

(b)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0.$$

(c)
$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, $-\frac{x^2}{a^2} - \frac{z^2}{c^2} = 1$, $-\frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$.

(d)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$
, $\frac{x^2}{a^2} + \frac{z^2}{c^2} = 0$, $\frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$.

(e)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$
, $\frac{x^2}{a^2} - \frac{z^2}{c^2} = 0$, $\frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$.

(f)
$$x^2 = a^2$$
, $y^2 = b^2$, $z^2 = c^2$.

(g)
$$x^2 = -a^2$$
, $y^2 = -b^2$, $z^2 = -c^2$.

(h)
$$x^2 = 0$$
, $y^2 = 0$, $z^2 = 0$.

Obs 7.85

Na observação que se segue, apresenta-se um resumo das quádricas relevantes.

Seja a quádrica

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

com $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}, \alpha_1, \alpha_2, \alpha_3 \in \{1, 2\} \land (\alpha_1 = 2 \lor \alpha_2 = 2 \lor \alpha_3 = 2)$ e $d \in \{0, 1\}.$

GJM, IB, SL (DMat, UM)

Obs 7.86

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

(a)
$$d = 1$$

(a.i) $\alpha_i = 2, \alpha_i = 2, \alpha_k = 2, i, j, k \in \{1, 2, 3\}, i \neq j \neq k \neq i$ (a.i.1) $\lambda_i > 0, \lambda_i > 0, \lambda_k > 0$: elipsóide ou esfera.

$$x^2 + 5y^2 + 3z^2 = 1$$

- Geometria Analítica

Obs 7.86 (cont.)

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

(a)
$$d = 1$$

(a.i)
$$\alpha_i = 2, \alpha_j = 2, \alpha_k = 2, i, j, k \in \{1, 2, 3\}, i \neq j \neq k \neq i,$$

(a.i.2) $\lambda_i > 0, \lambda_j > 0, \lambda_k < 0$: hiperbolóide de uma folha.

$$-x^2 + y^2 + z^2 = 1$$
 $x^2 - y^2 + z^2 = 1$ $x^2 + y^2 - z^2 = 1$

$$x^2 + y^2 - z^2 =$$

- Geometria Analítica

Obs 7.86 (cont.)

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

(a)
$$d = 1$$

(a.i)
$$\alpha_i = 2, \alpha_j = 2, \alpha_k = 2, i, j, k \in \{1, 2, 3\}, i \neq j \neq k \neq i,$$

(a.i.3) $\lambda_i > 0, \lambda_j < 0, \lambda_k < 0$: hiperbolóide de duas folhas.

$$\frac{x^2}{3} - 2y^2 - 2z^2 = 1$$
 $-2x^2 + \frac{y^2}{3} - 2z^2 = 1$ $-2x^2 - 2y^2 + \frac{z^2}{3} = 1$

Obs 7.86 (cont.)

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

(a) d = 1

(a.ii)
$$\alpha_i = 2, \alpha_i = 2, i, j, k \in \{1, 2, 3\}, i \neq j \neq k \neq i$$

(a.ii.1) $\lambda_i > 0, \lambda_i > 0, \lambda_k = 0$: cilindro elítico ou circular.

$$y^2 + 2z^2 = 1$$

 $x^2 + 2z^2 = 1$

$$x^2 + 2v^2 =$$

Obs 7.86 (cont.)

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

(a) d = 1

(a.ii) $\alpha_i = 2, \alpha_i = 2, i, j, k \in \{1, 2, 3\}, i \neq j \neq k \neq i$

(a.ii.2) $\lambda_i > 0, \lambda_j < 0, \lambda_k = 0$: cilindro hiperbólico.

$$x^2 - 4z^2 = 1$$

$$1 x^2 - 4y^2 = 1$$

$$y^2 - 4z^2 = 1$$

 $y^2 - 4x^2 = 1$

 $z^2 - 4x^2 = 1$

Obs 7.86 (cont.)

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

(b) d = 0

(b.i) $\alpha_i = 2, \alpha_i = 2, \alpha_k = 2, \lambda_i > 0, \lambda_i > 0, \lambda_k < 0, i, j, k \in \{1, 2, 3\},$ $i \neq j \neq k \neq i$: cone.

$$x^2 - y^2 - 2z^2 = 0$$

$$-x^2 + y^2 - z^2 =$$

$$x^{2} - y^{2} - 2z^{2} = 0$$
 $-x^{2} + y^{2} - z^{2} = 0$ $-x^{2} - y^{2} + 2z^{2} = 0$

- Geometria Analítica

Obs 7.86 (cont.)

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

(b) d = 0

(b.ii) $\alpha_i = 2, \alpha_i = 2, \alpha_k = 1, i, j, k \in \{1, 2, 3\}, i \neq j \neq k \neq i$

(b.ii.1) $\lambda_i > 0, \lambda_i > 0, \lambda_k \neq 0$: parabolóide elítico ou circular.

$$y^2 + z^2 - x = 0$$
 $y^2 + z^2 + x = 0$

$$y^2 + z^2 + x =$$

$$x^2 + z^2 - y = 0$$

$$x^2 + z^2 + y = 0$$

$$x^2 + y^2 - z = 0$$

$$x^2 + y^2 + z = 0$$

Obs 7.86 (cont.)

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

(b) d = 0

(b.ii) $\alpha_i = 2, \alpha_i = 2, \alpha_k = 1, i, j, k \in \{1, 2, 3\}, i \neq j \neq k \neq i$ (b.ii.2) $\lambda_i > 0, \lambda_i < 0, \lambda_k \neq 0$: parabolóide hiperbólico.

$$x^2 - y^2 - z = 0$$

$$x^2 - y^2 + z = 0$$

$$y^2 - z^2 - x = 0$$

$$y^2 - z^2 + x = 0$$

 $z^2 - x^2 - y = 0$

– Geometria Analítica

Obs 7.86 (cont.)

GJM, IB, SL (DMat, UM)

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

(b) d = 0

 $\alpha_i = 2, \alpha_i = 1, \alpha_k = 0, i, j, k \in$ (b.iii) (cont.) $\{1,2,3\}$, $i \neq j \neq k \neq i$: cilindro parabólico.

$$4z^2+x=0$$

$$4z^2-x=0$$

$$4z^2+y=0$$

$$4z^2 - y = 0$$
GJM, IB, SL (DMat, UM)

$$4y^2 + z = 0$$
TALGA

Obs 7.86 (cont.)

$$\lambda_1 x^{\alpha_1} + \lambda_2 y^{\alpha_2} + \lambda_3 z^{\alpha_3} = d$$

(b) d = 0

(b.iii) $\alpha_i = 2, \alpha_i = 1, \lambda_k = 0, i, j, k \in \{1, 2, 3\}, i \neq j \neq k \neq i$: cilindro parabólico.

$$4y^2 - x = 0$$

$$4y^2 + x = 0$$

$$4x^2 - y = 0$$

$$4x^2 = -y$$
GJM, IB, SL (DMat, UM)

 $4x^2=z$

 $4x^2 = -z$

Algoritmo Transformação em Escada — **ATEsc**

Gaspar J. Machado

Departamento de Matemática, Universidade do Minho

setembro de 2020

Exercício: Determine, através da aplicação do algoritmo ATEsc, uma matriz em escada equivalente à matriz

$$A = \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 4 & 2 & 6 & -4 \\ 0 & 2 & 1 & 3 & 0 \end{bmatrix}.$$

Exercício

O objetivo deste exercício é transformar a matriz dada A numa matriz em escada que lhe seja equivalente. Para tal, vai-se recorrer ao algoritmo ATEsc. Recorde-se que este algoritmo só considera operações sobre linhas e nunca sobre colunas e apenas faz troca de linhas quando é estritamente necessário. Neste caso, a troca é com a primeira linha possível.

GJM (DMat, UM) setembro de 2020 **ATEsc**

Alg ATEsc

"Algoritmo Transforma em Escadação" (ATEsc)

input matriz $A = [a_{ii}] \in \mathcal{M}_{m \times n}(\mathbb{R})$

output um elemento de fe(A)Passo 1 [inicializar o algoritmo]

 $i \leftarrow 1$

 $i \leftarrow$ índice da coluna não-nula mais à esquerda da matriz A

Passo 2 [selecionar o elemento pivô]

se $a_{ii} = 0$ então

 $\ell_i \leftrightarrow \ell_k$, em que ℓ_k é a primeira linha abaixo da linha ℓ_i com um elemento diferente de zero na coluna c;

Passo 3 [anular os elementos abaixo do pivô]

para $p \leftarrow i + 1$ até m fazer

$$\ell_p \leftarrow \ell_p - \frac{a_{pj}}{a_{ij}} \ell_i$$

Passo 4 [terminar?]

se já se obteve uma matriz em escada então terminar

senão

 $i \leftarrow i + 1$

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz A as linhas ℓ_1,\ldots,ℓ_{i-1}

ir para o Passo 2

GJM (DMat, UM) ATEsc setembro de 2020

Alg ATEsc

Passo 1 [inicializar o algoritmo]

 $i \leftarrow$ índice da coluna não-nula mais à esquerda da matriz A

$$\begin{bmatrix} |j|2 \\ 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 4 & 2 & 6 & -4 \\ 0 & 2 & 1 & 3 & 0 \end{bmatrix}$$

Passo 1 [inicializar o algoritmo]

A variável i é inicializada com o valor 1 e a variável j é inicializada com o índice da coluna não-nula mais à esquerda da matriz A, ou seja, com o valor 2. O Passo 1 está terminado

GJM (DMat, UM) ATEsc setembro de 2020

Alg ATEsc

Passo 2 [selecionar o elemento pivô]

se
$$a_{ii} = 0$$
 então

 $\ell_i \leftrightarrow \ell_k \text{, em que } \ell_k \text{ \'e a primeira linha abaixo da linha } \ell_i \text{ com um elemento diferente de zero na coluna } c_j$

Passo 2 [selecionar o elemento pivô]

Como o elemento 12 é diferente de zero, então esse é o elemento pivô, não havendo, pois, necessidade de trocar linhas.

GJM (DMat, UM) ATEsc setembro de 2020 5 /

Alg ATEsc

Passo 4 [terminar?]

se já se obteve uma matriz em escada então terminar

senão

 $i \leftarrow i + 1$

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz A as linhas ℓ_1,\dots,ℓ_{i-1}

ir para o Passo 2

Passo 4 [terminar?]

Como a matriz que se obteve ainda não é uma matriz em escada, o algoritmo não termina, incrementando-se o valor da variável i de uma unidade, ou seja, i passa a valer 2, e a variável j passa a ser o índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz todas as linhas desde ℓ_1 até ℓ_{i-1} , ou seja, neste caso, eliminando apenas ℓ_1 . j passa então a valer 4. O algoritmo continua no Passo 2.

GJM (DMat, UM) ATEsc setembro de 2020 8/1

Alg ATEsc

Passo 3 [anular os elementos abaixo do pivô]

para
$$p \leftarrow i + 1$$
 até m fazer $\ell_p \leftarrow \ell_p - \frac{a_{pj}}{a_{ij}}\ell_i$

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 4 & 2 & 6 & -4 \\ 0 & 2 & 1 & 3 & 0 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ \ell_3 \leftarrow \ell_3 - 2\ell_1 & 0 & 0 & 0 & 2 & 0 \\ \ell_4 \leftarrow \ell_4 - \ell_1 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

Passo 3 [anular os elementos abaixo do pivô]

Como as linhas do pivô e as que lhe estão acima ficam inalteradas, tem-se que ℓ_1 já não sofre alterações. Como o elemento 22 já é 0, ℓ_2 também não sofre alterações. Como o elemento 32 é diferente de 0, então ℓ_3 vai passar a ser o que era menos o elemento que se quer anular, ou seja, o 4, a dividir pelo elemento pivô, ou seja, o 2, vezes a linha do pivô, ou seja, ℓ_1 . Tem-se então que fazer $\ell_3 - 2\ell_1$, vindo $0 - 2 \times 0$, que dá 0, $4 - 2 \times 2$, que dá 0, $2 - 2 \times 1$, que dá 0, $6 - 2 \times 2$, que dá 2, 2×2 , que dá 2×2 , que dá

GJM (DMat, UM) ATEsc setembro de 2020 7/1

Alg ATEsc

Passo 2 [selecionar o elemento pivô]

se $a_{ii} = 0$ então

 $\ell_i \leftrightarrow \ell_k$, em que ℓ_k é a primeira linha abaixo da linha ℓ_i com um elemento diferente de zero na coluna c_i

Passo 2 [selecionar o elemento pivô]

GJM (DMat, UM)

Como elemento 24, é igual a 0, é necessário trocar ℓ_i , ou seja, ℓ_2 , com a primeira linha abaixo desta cujo elemento em c_j , ou seja, em c_4 , seja diferente de 0. Neste caso, é ℓ_3 . Assim, ℓ_1 e ℓ_4 não sofrem alterações, ℓ_2 passa a ser a antiga ℓ_3 e ℓ_3 passa a ser a antiga ℓ_2 .

ATEsc

setembro de 2020

Alg ATEsc

Passo 3 [anular os elementos abaixo do pivô]

para
$$p \leftarrow i+1$$
 até m fazer $\ell_p \leftarrow \ell_p - rac{a_{pj}}{a_{ij}}\ell_i$

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Passo 3 [anular os elementos abaixo do pivô]

Como as linhas do pivô e as que lhe estão acima ficam inalteradas, tem-se que ℓ_1 e ℓ_2 já não sofrem alterações. Como o elemento 34 já é 0, ℓ_3 também não sofre alterações. Como o elemento 44 é diferente de 0, então ℓ_4 vai passar a ser o que era menos o elemento que se quer anular, ou seja, o 1, a dividir pelo elemento pivô, ou seja, o 2, vezes a linha do pivô, ou seja, ℓ_2 . Tem-se então que fazer $\ell_4-\frac{1}{2}\ell_2$, vindo $0-\frac{1}{2}\times 0$, que dá 0, $0-\frac{1}{2}\times 0$, que dá 0, $1-\frac{1}{2}\times 2$, que dá 0, e $2-\frac{1}{2}\times 0$, que dá 2. A nova ℓ_4 está calculada.

GJM (DMat, UM) ATEsc setembro de 2020 10 / 1

Alg ATEsc

Passo 2 [selecionar o elemento pivô]

se $a_{ii} = 0$ então

 $\ell_i \leftrightarrow \ell_k$, em que ℓ_k é a primeira linha abaixo da linha ℓ_i com um elemento diferente de zero na coluna c_i

$$[i|3] \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Passo 2 [selecionar o elemento pivô]

Como o elemento 35 é diferente de 0, então esse é o elemento pivô, não havendo, pois, necessidade de trocar linhas.

GJM (DMat, UM) ATEsc setembro de 2020 12 / 1

Alg ATEsc

Passo 4 [terminar?]

se já se obteve uma matriz em escada então terminar senão

 $i \leftarrow i + 1$

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz A as linhas ℓ_1,\dots,ℓ_{i-1} ir para o Passo 2

Passo 4 [terminar?]

Como a matriz que se obteve ainda não é uma matriz em escada, o algoritmo não termina, incrementando-se o valor da variável i de uma unidade, ou seja, i passa a valer 3, e a variável j passa a ser o índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz todas as linhas desde ℓ_1 até ℓ_{i-1} , ou seja, neste caso, eliminando ℓ_1 e ℓ_2 . j passa então a valer 5. O algoritmo continua no Passo 2.

GJM (DMat, UM) ATEsc setembro de 2020 11/1

Alg ATEsc

Passo 3 [anular os elementos abaixo do pivô]

para
$$p \leftarrow i + 1$$
 até m fazer $\ell_p \leftarrow \ell_p - \frac{a_{pj}}{a_{ij}}\ell_i$

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 3 [anular os elementos abaixo do pivô]

GJM (DMat, UM)

Como as linhas do pivô e as que lhe estão acima ficam inalteradas, tem-se que ℓ_1 , ℓ_2 e ℓ_3 já não sofrem alterações. Como o elemento 45 é diferente de zero, então ℓ_4 vai passar a ser o que era menos o elemento que se quer anular, ou seja, o 2, a dividir pelo elemento pivô, ou seja, o 1, vezes a linha do pivô, ou seja, ℓ_3 . Tem-se então que fazer $\ell_4 - 2\ell_3$, vindo $0 - 2 \times 0$, que dá $0 - 2 \times 0$, que dá $0, 0 - 2 \times 0$

ATEsc

setembro de 2020

Alg ATEsc

Passo 4 [terminar?]
se já se obteve uma matriz em escada então terminar
senão

 $i \leftarrow i + 1$

 $j \leftarrow$ índice da coluna não-nula mais à esquerda da matriz que se obtém eliminando na matriz A as linhas ℓ_1,\dots,ℓ_{i-1}

ir para o Passo 2

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 4 [terminar?]

Como a matriz que se obteve já é uma matriz em escada, o algoritmo ATEsc termina.

GJM (DMat, UM) ATEsc setembro de 2020 15/1

Algoritmo Transformação em Escada Reduzida — ATEscRed

Gaspar J. Machado

Departamento de Matemática, Universidade do Minho

setembro de 2020

Exercício: Determine, através da aplicação do algoritmo ATEscRed, a matriz em escada reduzida equivalente à matriz

$$A = \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 4 & 2 & 6 & -4 \\ 0 & 2 & 1 & 3 & 0 \end{bmatrix}.$$

Exercício

O objectivo deste exercício é transformar a matriz dada A na matriz em escada reduzida que lhe é equivalente. Para tal, vai-se recorrer ao algoritmo ATescRed.

GJM (DMat, UM) ATEscRed setembro de 2020 3/15

Alg ATEscRed

```
"Algoritmo Transformação em Escada Reduzida" (ATEscRed)
input matriz A = [a_{ii}] \in \mathcal{M}_{m \times n}(\mathbb{R})
output fer(A)
Passo 1 [inicializar o algoritmo]
     aplicar o ATEsc à matriz A por forma a determinar B = [b_{ii}] \in fe(A) (no que se segue,
          \ell refere-se às linhas da matriz B)
    i \leftarrow índice da última linha não-nula da matriz B
    i \leftarrow índice da coluna pivô da linha \ell_i
Passo 2 [colocar o elemento pivô a 1]
    se b_{ii} \neq 1 então
       \ell_i \leftarrow \frac{1}{b_{ii}}\ell_i
Passo 3 [anular os elementos acima do pivô]
    para p \leftarrow 1 até i-1 fazer
       \ell_p \leftarrow \ell_p - b_{pi}\ell_i
Passo 4 [terminar?]
     se já se obteve uma matriz em escada reduzida então terminar
    senão
       i \leftarrow i - 1
       j \leftarrow índice da coluna pivô da linha \ell_i
       ir para o Passo 2
```

GJM (DMat, UM) ATEscRed setembro de 2020 2/1

Alg ATEscRed

Passo 1 [inicializar o algoritmo] aplicar o ATEsc à matriz A por forma a determinar $B = [b_{ij}] \in \text{fe}(A)$ (no que se segue, ℓ refere-se às linhas da matriz B) $i \leftarrow \text{indice da última linha não-nula da matriz } B$ $j \leftarrow \text{indice da coluna pivô da linha } \ell_i$

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 4 & 2 & 6 & -4 \\ 0 & 2 & 1 & 3 & 0 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 1 [inicializar o algoritmo]

Para se obter uma matriz em escada reduzida equivalente à matriz A, começa-se por aplicar o ATEsc à matriz A por forma a obter uma matriz em escada que lhe seja equivalente (e que se identifica por B). Esta tarefa já foi feita num outro exercício. A variável i é inicializada com o índice da última linha não-nula da matriz B, ou seja, com o valor 3, e a variável j é inicializada com o índice da coluna pivô de ℓ_i , ou seja, com o valor 5.

GJM (DMat, UM) ATEscRed setembro de 2020 4 / 15

Alg ATEscRed

 $\begin{array}{c} \textbf{Passo 2} \quad \textbf{[colocar o elemento piv\^o a 1]} \\ \textbf{se} \quad b_{ij} \neq \textbf{1} \quad \textbf{ent\~ao} \\ \ell_i \leftarrow \frac{1}{b_{ii}} \ell_i \\ \end{array}$

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 2 [colocar o elemento pivô a 1]

ir para o Passo 2

Como o elemento 35 já é 1, não há necessidade de efectuar operações neste passo.

GJM (DMat, UM) ATEscRed setembro de 2020 5/1

Alg ATEscRed

Passo 4 [terminar?] se já se obteve uma matriz em escada reduzida então terminar senão $i \leftarrow i-1 \\ j \leftarrow \text{indice da coluna pivô da linha } \ell_i$

Passo 4 [terminar?]

Como a matriz que se obteve ainda não é uma matriz em escada reduzida, o algoritmo não termina, decrementando-se o valor da variável i de uma unidade, ou seja, i passa a valer 2, e a variável j, que é o índice da coluna pivô de ℓ_i , ou seja, ℓ_2 , passa a valer 4. O algoritmo continua no Passo 2.

Alg ATEscRed

Passo 3 [anular os elementos acima do pivô] para $p \leftarrow 1$ até i-1 fazer $\ell_p \leftarrow \ell_p - b_{pi}\ell_i$

$$\begin{bmatrix} 0 & 2 & 1 & 2 & -2 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \ell_1 \leftarrow \ell_1 + 2\ell_3 \begin{bmatrix} 0 & 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 3 [anular os elementos acima do pivô]

Como as linhas do pivô e as que lhe estão abaixo ficam inalteradas, tem-se que ℓ_3 e ℓ_4 já não sofrem alterações. Como o elemento 25 já é 0, ℓ_2 também não sofre alterações. Como o elemento 15 é diferente de 0, então ℓ_1 vai passar a ser o que era menos o elemento que se quer anular, ou seja, o -2, vezes a linha do pivô, ou seja, ℓ_3 . Tem-se então que fazer $\ell_1+2\ell_3$, vindo $0+2\times 0$, que dá 0, $2+2\times 0$, que dá 2, $1+2\times 0$, que dá 1, $1+2\times 0$, que dá 1, 1+2

GJM (DMat, UM) ATEscRed setembro de 2020 6/15

Alg ATEscRed

Passo 2 [colocar o elemento pivô a 1] se $b_{ij} \neq 1$ então $\ell_i \leftarrow \frac{1}{h} \ell_i$

Passo 2 [colocar o elemento pivô a 1]

Como elemento 24, é diferente de 1, é necessário dividir todos os elementos da linha ℓ_i , ou seja ℓ_2 , pelo elemento pivô, ou seja, 2, ou seja, efectuar a operação $\ell_2 \leftarrow \frac{1}{2}\ell_2$. Assim, ℓ_1 , ℓ_3 e ℓ_4 não sofrem alterações. A nova linha ℓ_2 passa a ser $0 \div 2$, que dá 0, $0 \div 2$, qu

GJM (DMat, UM) ATEscRed setembro de 2020 7/15 GJM (DMat, UM) ATEscRed setembro de 2020 8/15

Alg ATEscRed

Passo 3 [anular os elementos acima do pivô] para $p \leftarrow 1$ até i-1 fazer $\ell_p \leftarrow \ell_p - b_{\rm pi}\ell_i$

$$\begin{bmatrix} 0 & 2 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{\ell_1}{\leftarrow} \stackrel{\ell_1}{\leftarrow} \stackrel{\ell_1}{\leftarrow} \stackrel{2\ell_2}{\leftarrow} \begin{bmatrix} 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 3 [anular os elementos acima do pivô]

Como as linhas do pivô e as que lhe estão abaixo ficam inalteradas, tem-se que ℓ_2 , ℓ_3 e ℓ_4 já não sofrem alterações. Como o elemento 14 é diferente de 0, então ℓ_1 vai passar a ser o que era menos o elemento que se quer anular, ou seja, o 2, vezes a linha do pivô, ou seja, ℓ_2 . Tem-se então que fazer $\ell_1-2\ell_2$, vindo $0-2\times 0$, que dá 0, $2-2\times 0$, que dá 2, $1-2\times 0$, que dá 1, $2-2\times 1$, que dá 0, e $0-2\times 0$, que dá 0. A nova linha ℓ_1 está calculada.

GJM (DMat, UM) ATEscRed setembro de 2020 9/1

Alg ATEscRed

 $\begin{array}{c} \textbf{Passo 2} \quad \text{[colocar o elemento piv\^o a 1]} \\ \textbf{se} \quad b_{ij} \neq 1 \quad \textbf{ent\~ao} \\ \ell_i \leftarrow \frac{1}{b_{ii}} \ell_i \\ \end{array}$

$$\begin{bmatrix} \overline{i}|1 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \begin{matrix} \ell_1 \leftarrow \frac{1}{2}\ell_1 \\ & & \\ & & \\ & & \end{matrix} \quad \begin{bmatrix} 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 2 [colocar o elemento pivô a 1]

Como elemento 12, é diferente de 1, é necessário dividir todos os elementos da linha ℓ_i , ou seja ℓ_1 , pelo elemento pivô, ou seja, 2, ou seja, efectuar a operação $\ell_1 \leftarrow \frac{1}{2}\ell_1$. Assim, ℓ_2 , ℓ_3 e ℓ_4 não sofrem alterações. A nova linha ℓ_1 passa a ser $0 \div 2$, que dá 0, $2 \div 2$, que dá 1/2, $1 \div 2$, que dá 1/2, que dá

Alg ATEscRed

Passo 4 [terminar?] se já se obteve uma matriz em escada reduzida então terminar senão $i \leftarrow i-1 \\ j \leftarrow \text{indice da coluna pivô da linha } \ell_i$ ir para o Passo 2

Passo 4 [terminar?]

Como a matriz que se obteve ainda não é uma matriz em escada reduzida, o algoritmo não termina, decrementando-se o valor da variável i de uma unidade, ou seja, i passa a valer 1, e a variável j, que é o índice da coluna pivô de ℓ_i , ou seja, ℓ_1 , passa a valer 2. O algoritmo continua no Passo 2.

GJM (DMat, UM) ATEscRed setembro de 2020 10/15

Alg ATEscRed

Passo 3 [anular os elementos acima do pivô] para $p \leftarrow 1$ até i-1 fazer $\ell_p \leftarrow \ell_p - b_{pi}\ell_i$

$$\begin{bmatrix} i|1 \\ 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 3 [anular os elementos acima do pivô]

Como já não há linhas acima do pivô, não há operações a fazer neste passo.

GJM (DMat, UM) ATEscRed setembro de 2020 11/15 GJM (DMat, UM) ATEscRed setembro de 2020 12/1

Alg ATEscRed

```
Passo 4 [terminar?] se já se obteve uma matriz em escada reduzida então terminar senão i \leftarrow i-1 \\ j \leftarrow \text{indice da coluna pivô da linha } \ell_i ir para o Passo 2
```

$$\begin{bmatrix} 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Passo 4 [terminar?]

Como a matriz que se obteve já é uma matriz em escada reduzida, o algoritmo ATEscRed termina.

GJM (DMat, UM) ATEscRed setembro de 2020 13 / 15

Enunciados dos exercícios do capítulo 1 — Matrizes

- 1. Considere as matrizes $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & -1 & 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, $c = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 0 & 0 \end{bmatrix}$, $e = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ $[1\ 1\ 0\ 0], F = \begin{bmatrix} 1\ 2\ 3 \end{bmatrix}, g = [1], H = \begin{bmatrix} 1\ 0\ 1 \end{bmatrix}, J = \begin{bmatrix} 0\ 0\ 0\ 0 \end{bmatrix}, i = [0].$
 - (a) Indique as matrizes retangulares e o seu tipo.
 - (b) Indique as matrizes quadradas e a sua ordem.
 - (c) Indique as matrizes linha.
 - (d) Indique as matrizes coluna.
 - (e) Indique as matrizes diagonais.
 - (f) Indique as matrizes escalares.
 - (g) Indique as matrizes triangulares superiores.
 - (h) Indique as matrizes triangulares inferiores.
- 2. Considere as matrizes $A = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = [b_{ij}] \in \mathcal{M}_{2\times 2}(\mathbb{R})$, $b_{ij} = 3i j$ e $C = [\gamma_{ij}] \in \mathcal{M}_{2\times 2}(\mathbb{R})$ $\mathcal{M}_{3\times 2}(\mathbb{R}), \gamma_{ii}=i^2$. Indique se estão bem definidas as seguintes expressões, efetuando nesses casos as respetivas operações:
 - (a) A + B.
- (c) A-C.
- (e) (A B) + 3A.

- (b) B + A.
- (d) -C

- (f) 4A B
- 3. Sejam A uma matriz do tipo 2×3 , B uma matriz de ordem 2 e C uma matriz do tipo 3 x 2. Indique qual das sequintes hipóteses é uma proposição verdadeira:
 - |A| a expressão A + B está bem definida.
 - \Box a expressão $2A 3B^2$ está bem definida.
 - C a expressão *CBA* está bem definida.
 - D a expressão *ABC* está bem definida.
- 4. Considere as matrizes $A = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 1 & 1 & 0 & -2 \\ 1 & 2 & -1 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix}$. Determine AB.
- 5. Considere as matrizes $A = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = [b_{ij}] \in \mathcal{M}_{2\times 2}(\mathbb{R})$, $b_{ij} = j$ e $C = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$. Indique se estão bem definidas as seguintes expressões, efetuando nesses casos as respetivas operações:
 - (a) (AB)C.
- (b) A(BC). (c) CI_3 .
- (d) I_2C .
- 6. Mostre que a multiplicação de matrizes é associativa.

- 7. Seja $B = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix}$. Calcule:
 - (a) B^2 .
 - (b) B^3 .
- 8. Sejam A e B matrizes de ordem 2. Mostre que tr(AB BA) = 0
- 9. Seja $X = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R})$. Mostre que $X^2 = (a+d)X (ad-bc)I_2$.
- 10. Mostre que as matrizes $X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$ e $Y = \begin{bmatrix} 2 & 4 & 0 \\ 3 & 1 & 0 \\ -1 & -4 & 1 \end{bmatrix}$ são comutáveis.
- 11. Mostre que a multiplicação de matrizes não é comutativa.
- 12. Considere as matrizes $A = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}$. Mostre que:
 - (a) $(A+B)^2 \neq A^2 + 2AB + B^2$
 - (b) $(A B)^2 \neq A^2 2AB + B^2$
 - (c) $(A+B)(A-B) \neq A^2 B^2$.
- 13. Sejam A e B matrizes comutáveis. Indique qual das sequintes hipóteses é uma proposição verdadeira:

$$A (A - B)^3 = A^3 + A^2B - AB^2 - B^3$$

$$[B] (A-B)^3 = A^3 - A^2B + AB^2 - B^3.$$

$$C (A - B)^3 = A^3 + 3A^2B - 3AB^2 - B^3$$

14. Considere as seguintes proposições:

$$P_1$$
: " $\forall A \in \mathcal{M}_{2\times 2}(\mathbb{R}) - \{0_{2\times 2}\} [A^2 \neq 0_{2\times 2}]$."

$$P_2$$
: " $\forall A \in \mathcal{M}_{2\times 2}(\mathbb{R}) - \{-I_2, I_2\} [A^2 \neq I_2]$."

Indique qual das seguintes hipóteses é uma proposição verdadeira:

- A As duas proposições são verdadeiras.
- B As duas proposições são falsas.
- C A primeira proposição é verdadeira e a segunda é falsa.
- D A primeira proposição é falsa e a segunda é verdadeira.
- 15. Sejam A e B matrizes comutáveis e B é uma matriz invertível. Mostre que A e B^{-1} são matrizes comutáveis.

16. Seja A uma matriz quadrada tal que $A^p = 0$ para algum $p \in \mathbb{N}$. Mostre que

$$(I-A)^{-1} = I + \sum_{k=1}^{p-1} A^k.$$

- 17. Sejam A e B matrizes quadradas da mesma ordem. Supondo que todas as inversas existem, mostre que $(A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B$
- 18. Sejam $X, Y \in \mathcal{M}_{n \times m}(\mathbb{R})$ tais que $A = I_n + XY^T$ é uma matriz invertível. Mostre que $A^{-1} = I_n - X(I_m + Y^TX)^{-1}Y^T$.
- 19. Considere as matrizes $A = \begin{bmatrix} -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}$, $B = [b_{ij}] \in \mathcal{M}_{2\times 3}(\mathbb{R})$, $b_{ij} = i j$, $C = [c_{ij}] \in \mathcal{M}_{2\times 3}(\mathbb{R})$ $\mathcal{M}_{2\times 2}(\mathbb{R}), c_{ij} = \begin{cases} 0 & \text{se } i < j, \\ (-1)^{i+1} & \text{se } i = j, \text{ e } u = \begin{bmatrix} 1\\2\\0 \end{bmatrix}. \text{ Calcule:}$
 - (a) $\frac{AB^{\mathsf{T}} + BA^{\mathsf{T}}}{2}$. (c) $(CBA^{\mathsf{T}}C)^2$. (e) $u^{\mathsf{T}}u$. (g) $(Au)^{\mathsf{T}}$. (b) C^{T} . (d) uu^{T} . (f) $u^{\mathsf{T}}A^{\mathsf{T}}Bu$. (h) $u^{\mathsf{T}}A^{\mathsf{T}}$.

- 20. Sejam A e B matrizes quadradas da mesma ordem não-singulares. Resolva em ordem a X a equação matricial $((A^T)^{-1}X)^T + (AB)^{-1} = A$
- 21. Sejam A e B matrizes invertíveis de ordem n tais que $\left(\left(A^{-1}\right)^{\mathsf{T}}B\right)^{-1}=I_n$. Então:
 - $A B = A^{\mathsf{T}}.$

 $C B = A^{-1}$.

B B = A.

- 22. Seja $A = [a_{ij}] \in \mathcal{M}_{2 \times 2}(\mathbb{R})$, $a_{ij} = \begin{cases} i & \text{se } i \leqslant j, \\ 0 & \text{se } i > j. \end{cases}$ Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $A^2 + A^T = \begin{bmatrix} 2 & 3 \\ 1 & 6 \end{bmatrix}$.

 $\begin{bmatrix} C \end{bmatrix} A^2 + A^T = \begin{bmatrix} 2 & 2 \\ 6 & 6 \end{bmatrix}$

B $A^2 + A^T = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$.

- $D A^2 + A^T = \begin{bmatrix} 1 & 0 \\ 6 & 2 \end{bmatrix}$
- 23. Uma matriz quadrada A diz-se antissimétrica se $A^{T} = -A$. Mostre que, dada qualquer matriz quadrada B, a matriz $B - B^{T}$ é antissimétrica.
- 24. Sejam A e B matrizes simétricas da mesma ordem. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $(AB)^{\mathsf{T}} = AB.$

 $B \mid A^{\mathsf{T}} = B.$

 $|D|(AB)^T = BA$

- 25. Considere as seguintes proposições:
 - P_1 : "O produto de duas matrizes simétricas da mesma ordem é uma matriz simétrica."
 - P_2 : "A soma de duas matrizes simétricas da mesma ordem é uma matriz simétrica." Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A As duas proposições são verdadeiras.
 - B As duas proposições são falsas.
 - C A primeira proposição é verdadeira e a segunda é falsa.
 - D A primeira proposição é falsa e a segunda é verdadeira.
- 26. Indique quais das seguintes matrizes são ortogonais:

 - (a) $A = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}$. (b) $B = \frac{1}{5} \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}$.
- (c) $C = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$.
- 27. Mostre que o produto de duas matrizes ortogonais da mesma ordem é uma matriz ortogonal.
- 28. Seja $x \in \mathcal{M}_{n \times 1}(\mathbb{R})$ tal que $x^T x = I_1$. Mostre que $I_n 2xx^T$ é uma matriz simétrica e ortogonal.
- 29. Seja $A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verda-

- 30. Seja $A = [a_{ij}] \in \mathcal{M}_{3\times 3}(\mathbb{R}), \ a_{ij} = \begin{cases} (-1)^{i+j+1}2^{j-1} & \text{se } i < j, \\ (-1)^{i+1} & \text{se } i = j. \end{cases}$ Indique qual das seguintes se i > j. hipóteses é uma proposição verdadeira:
 - A é uma matriz escalar.
- C A é uma matriz ortogonal.
- B A é uma matriz simétrica.
- $D A^2 = I_3$.
- 31. Aplique, para cada uma das seguintes matrizes, o "Algoritmo ATEsc" e o "Algoritmo ATEscRed" e indique quantas operações elementares dos tipos I, II e III efetuou:

(a)
$$A = \begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 & 2 \end{bmatrix}$$
.

(f)
$$F = \begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 2 & 4 & 1 & -2 & 3 \\ 3 & 6 & 2 & -6 & 5 \end{bmatrix}$$
.

(b)
$$B = \begin{bmatrix} 6 & 3 & -4 \\ -4 & 1 & -6 \\ 1 & 2 & -5 \end{bmatrix}$$

(g)
$$G = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

(c)
$$C = \begin{bmatrix} 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix}$$
.

(h)
$$h = \begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix}$$
.

(d)
$$D = \begin{bmatrix} 1 & -2 & 3 & -1 \\ 2 & -1 & 2 & 2 \\ 3 & 1 & 2 & 3 \end{bmatrix}$$
.

(i)
$$I = \begin{bmatrix} -1 & 1 & -1 & 3 \\ 3 & 1 & -1 & -1 \\ 2 & -1 & -2 & -1 \end{bmatrix}$$
.

(e)
$$E = \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix}$$
.

$$(j) J = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix}.$$

32. Seja $X = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

B fer(
$$X$$
) = $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

$$\boxed{\mathsf{D}} \ \mathsf{fer}(X) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}.$$

33. Indique se as seguintes matrizes são invertíveis e calcule nesses casos a sua inversa:

(a)
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix}$$
. (c) $C = \begin{bmatrix} -5 & 4 & -3 \\ 10 & -7 & 6 \\ 8 & -6 & 5 \end{bmatrix}$. (e) $E = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$.

(e)
$$E = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$$
.

(b)
$$B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
.

(d)
$$D = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
.

(b)
$$B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
. (d) $D = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. (f) $F = \begin{bmatrix} -2 & 3 & 5 \\ -1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$.

34. Considere as matrizes $A = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $c = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $d = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ e $E = \begin{bmatrix} -1 & 0 \\ 2 & -1 \\ 1 \end{bmatrix}$. Indique se estão bem definidas as seguintes expressões, efetuando nesses casos as respetivas operações:

- (a) $b^{\mathsf{T}}A$. (c) $(c^{\mathsf{T}}+d^{\mathsf{T}})A$. (e) $b^{\mathsf{T}}(c+d)$. (g) $E^{\mathsf{T}}A^{\mathsf{T}}$. (i) $(AA^{\mathsf{T}})^2$. (b) Ab^{T} . (d) $A^{\mathsf{T}}b$. (f) $(AE)^{\mathsf{T}}$. (h) A^2 . (j) $(AE)^{-1}$.

35. Seja $A = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

- $\begin{bmatrix} A \\ A^{\mathsf{T}}A^{-1} = \begin{bmatrix} 1 & -2 & -1 \\ 2 & 5 & 3 \\ -1 & 2 & 2 \end{bmatrix}. \qquad \begin{bmatrix} C \\ A^{\mathsf{T}}A^{-1} = \begin{bmatrix} -4 & -2 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$
- $\begin{bmatrix}
 B \end{bmatrix} A^{\mathsf{T}} A^{-1} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 2 \\ 2 & 5 & 2 \end{bmatrix}.
 \begin{bmatrix}
 D \end{bmatrix} A^{\mathsf{T}} A^{-1} = \begin{bmatrix} 1 & -2 & -1 \\ 2 & -3 & -2 \\ 2 & -3 & -2 \\ 2 & -3 & -2 \end{bmatrix}.$

36. Considere as matrizes $A = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

- A A e B são matrizes comutáveis.
- C A e B são matrizes ortogonais.
- B A e B são matrizes escalares.
- D A e B são matrizes invertíveis.

37. Sejam as matrizes $B = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$ e $C = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$. Resolva a equação matricial em X dada por $((XA^{-1})^{-1} + ACB)^{T} = A^{T}$, sabendo que A é uma matriz invertível de ordem 2.

38. Indique, justificando, o valor lógico da proposição "Sejam A e B matrizes invertíveis da mesma ordem. Então, $(A + B)^{-1} = A^{-1} + B^{-1}$."

39. Indique qual das seguintes hipóteses é uma proposição verdadeira:

- A Seja A uma matriz diagonal. Então, A é uma matriz escalar.
- B Seja A uma matriz simétrica. Então, A é uma matriz ortogonal.
- C Seja A uma matriz invertível. Então, A é uma matriz ortogonal.
- D Seja A uma matriz escalar. Então, A é uma matriz diagonal.

40. Neste exercício vai-se apresentar uma aplicação de Redes e Grafos envolvendo os conceitos introduzidos neste capítulo.

Definição: Um grafo simples é um par ordenado G = (V, A), no qual V é um conjunto finito e não-vazio e A é um conjunto finito de subconjuntos de V com exatamente dois elementos. A V chama-se conjunto dos vértices e a A chama-se conjunto das arestas.

Habitualmente um grafo simples é representado por um diagrama no qual cada vértice é representado por um ponto e cada aresta por uma linha unindo os dois vértices que a definem.

Exemplo: O grafo simples $G_1 = (V_1, E_1)$ com $V_1 = \{V_1, V_2, V_3, V_4\}$ e $A_1 = \{V_1, V_2, V_3, V_4\}$ $\{\{V_1, V_2\}, \{V_2, V_3\}, \{V_3, V_4\}, \{V_2, V_4\}\}$ pode ser representado por

Pode-se imaginar que os vértices correspondem a nós numa rede de comunicação e que as arestas que ligam os vértices representam elos de comunicação entre dois nós da rede. Na realidade, uma rede de comunicação envolve um número elevado de vértices e arestas o que complica a representação gráfica da rede. Esta dificuldade é ultrapassada recorrendo a uma representação matricial para a rede.

Definição: Considere um grafo com *n* vértices. A matriz $M = [m_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$ definida por

$$m_{ij} = \begin{cases} 1 & \text{se } \{V_i, V_j\} \text{ \'e uma aresta do grafo} \\ 0 & \text{se n\~ao existe uma aresta que liga } V_i \text{ e } V_j \end{cases}$$

é a matriz de adjacência do grafo.

Exemplo: A matriz de adjacência do grafo G_1

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$$

Nota: A matriz de adjacência M é sempre simétrica.

Definição: Um caminho num grafo é uma sequência de arestas que ligam um vértice a outro. O comprimento do caminho é o número de arestas que o formam.

Exemplo: No grafo simples G_1 , a sequência de arestas $(\{V_1, V_2\}, \{V_2, V_4\})$ representa um caminho de comprimento 2 que liga V_1 a V_4 e a sequência de arestas $(\{V_2, V_3\}, \{V_3, V_2\}, \{V_2, V_3\})$ representa um caminho de comprimento 3 que liga V_2 a

Teorema: Sejam $M = [m_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R})$ uma matriz de adjacência de um grafo e $m_{ii}^{(k)}$ um elemento de M^k . Então, $m_{ii}^{(k)}$ é igual ao número de caminhos de comprimento k de V_i a V_i .

Exemplo: Para determinar o número de caminhos de comprimento 3 que ligam V_2 e V_3 no grafo simples G_1 , calcula-se M^3 :

$$M^3 = \begin{bmatrix} 0 & 3 & 1 & 1 \\ 3 & 2 & 4 & 4 \\ 1 & 4 & 2 & 3 \\ 1 & 4 & 3 & 2 \end{bmatrix}.$$

Conclui-se, então, que o número de caminhos de comprimento 3 que ligam V_2 e V_3 é $m_{23}^{(3)} = 4.$

Exercício 1: Considere o grafo com a representação

- (a) Determine a matriz de adjacência M do grafo.
- (b) Indique os caminhos de comprimento 2 que começam em V_1 .
- (c) Indique quantos caminhos de comprimento 3 existem de V_2 a V_4 .

(d) Indique quantos caminhos de comprimento menor ou igual a 3 existem de V_2 a

Exercício 2: Seja
$$M = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$
.

- (a) Desenhe um grafo que tenha M como matriz de adjacência e indique os vértices.
- (b) Analisando o grafo e a matriz M^2 , indique o número de caminhos de comprimento 2 de V_1 a V_3 .

Enunciados dos exercícios do capítulo 2 — Determinantes

- 1. Calcule o determinante das matrizes $B = \begin{bmatrix} 3 & -6 \\ 2 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 & -1 & 3 \\ -1 & 2 & -2 \\ 1 & 4 & 0 \end{bmatrix}$ e $D = \begin{bmatrix} 3 & -6 \\ 2 & 4 \end{bmatrix}$
- 2. Calcule o determinante da matriz $A = \begin{bmatrix} 1 & 2 & -1 & 1 \\ -1 & -1 & 2 & -1 \\ 0 & -1 & 0 & 3 \\ 1 & 2 & 2 & 1 \end{bmatrix}$ por dois processos distintos.
- 3. Considere a matriz $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

$$\bigcap$$
 $\det(A) = 0$

4. Considere as matrizes $A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

$$|A| |A| + |B| = -6.$$

$$|A| + |B| = -1$$

$$|A| + |B| = -3.$$

- 5. Seja $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & \alpha & -\beta \\ 0 & 0 & \alpha \beta \end{bmatrix}$, $\alpha, \beta \in \mathbb{R}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

- 6. Considere a matriz $A = \begin{bmatrix} 1 & 1 & x \\ 1 & 1 & y \\ x & y & 1 \end{bmatrix}$, $x, y \in \mathbb{R}$. Indique para que valores de x e y a matriz A é invertível.

- 7. Considere a matriz $Z = \begin{bmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{bmatrix}$, $x \in \mathbb{R}$. Indique para que valores de x a matriz Z é invertível.
- 8. Considere a matriz $A = \begin{bmatrix} 2 & -1 & 3 & 5 \\ 0 & 1 & 2 & 3 \\ 4 & -1 & -2 & 1 \\ -2 & 3 & 1 & 4 \end{bmatrix}$ e seja B uma matriz de ordem 4 tal que |B| = 12. Calcule o determinante da matriz $(AB^{-1})^{\mathsf{T}}$.
- 9. Sejam A uma matriz quadrada tal que det(A) = 2 e $B = 2A^{T}$. Mostre que a matriz B é invertível.
- 10. Considere a matriz $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R}), \ a_{ij} = \begin{cases} i & \text{se } i \geqslant j, \\ 0 & \text{se } i < j. \end{cases}$ Indique qual das sequintes hipóteses é uma proposição verdadeira:
 - $A \mid \det(A) = 0.$

C $\det(A) = n$.

- $B \det(A) = 1.$
- $\boxed{\mathsf{D}} \det(A) = n!$
- 11. Considere a matriz $A = [a_{ij}] \in \mathcal{M}_{n \times n}(\mathbb{R}), \ a_{ij} = \begin{cases} 2 & \text{se } i \leq j, \\ 0 & \text{se } i > j. \end{cases}$ Indique qual das sequintes hipóteses é uma proposição verdadeira:
 - $\boxed{\mathsf{A}} \det(\mathsf{A}^\mathsf{T} \mathsf{A}) = 2^n.$

C $\det(A^TA) = 1$.

 \Box det $(A^{\mathsf{T}}A) = 4^n$.

- \bigcap det $(A^{\mathsf{T}}A) = 0$.
- 12. Sejam $A, B \in \mathcal{M}_{2\times 2}(\mathbb{R})$ tais que $\det(A) = 2$ e $\det(B) = -2$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $| A | \det(A+B) = 0.$

C $\det(-A) = \det(A)$.

- $\boxed{\mathsf{D}} \det(AB) = 0.$
- 13. Considere a matriz $A = \begin{bmatrix} 2 & 3 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
- $\boxed{\mathsf{C}} \det(AA^{\mathsf{T}}) \det(A^{-1}) = 4.$

- 14. Considere a matriz $A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 2 & 3 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

 $C \mid \det(A) = 0.$

- 15. Considere a matriz $E = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
 - (a) Verifique que a matriz E é invertível.
 - (b) Determine a inversa da matriz E pelo método da adjunta.
- 16. Calcule o determinante das matrizes $A = \begin{bmatrix} 4 & -1 \\ -1 & 4 \end{bmatrix}$, $B_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, $\alpha \in \mathbb{R}$, $C = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix}, D = \begin{bmatrix} 0 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & -3 & -2 \end{bmatrix}, E = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} e F = \begin{bmatrix} 2 & 3 & 3 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 3 \\ 2 & 1 & 2 & 3 \end{bmatrix}.$
- 17. Calcule o determinante, a adjunta e a inversa das matrizes $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$ e $D = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & 1 \\ -2 & 2 & -1 \end{bmatrix}$.
- 18. Sejam $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$. Mostre que $\det(AB) = \det(BA)$.
- 19. Considere as matrizes $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ e $F = \begin{bmatrix} 2 & 3 \end{bmatrix}$ e a equação matricial em Xdada por $((AX)^{T} + DF)^{-1} = I_{2}$.
 - (a) Resolva a equação dada.
 - (b) Diga, sem efetuar quaisquer cálculos, qual o determinante de $(AX)^T + DF$.
- 20. Sejam $p \in \mathbb{N}$ e A uma matriz quadrada tal que $A^p = 0$. Mostre que A é uma matriz singular.
- 21. Seja A uma matriz ortogonal. Mostre que $det(A) = \pm 1$.
- 22. Sejam $\gamma, \delta \in \mathbb{R}$. Sejam, ainda, as matrizes $A = \begin{bmatrix} 1 & 2 & \gamma \\ \delta & 1 & 1 \\ 1 & \delta + \gamma & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 2 & \gamma \\ \delta \gamma & \delta \gamma + \delta^2 & 2\delta \\ \delta \gamma & \gamma & \gamma & 2\delta \end{bmatrix}$. Sabendo que |A| = 1, determine |B|.
- 23. Neste exercício vai-se apresentar uma aplicação de Criptografia envolvendo os conceitos introduzidos neste capítulo.

Pode-se codificar uma mensagem associando a cada letra do alfabeto um número inteiro e enviar a lista de números que substitui a mensagem. A teoria dos determinantes é usada neste contexto para o cálculo de inversas com propriedades especiais.

Exemplo: A mensagem "BOA SORTE!" pode ser codificada por

onde a letra "B" é representado pelo algarismo "3", a letra "O" pelo algarismo "1", etc. (neste exemplo não se codifica o espaço).

Para complicar ainda mais a codificação da mensagem e para impedir que o código seja quebrado pode-se usar a seguinte técnica: o código que representa a mensagem é colocado nas colunas de uma matriz *B*.

No exemplo considerado tem-se $B=\begin{bmatrix} 3 & 10 & 2 \\ 1 & 1 & 8 \\ 5 & 6 & 0 \end{bmatrix}$. A matriz B vai ser pré-multiplicada por uma outra matriz A. A matriz A deve verificar as seguintes propriedades: os elementos de A são números inteiros e $\det(A)=\pm 1$. Daí resulta que $A^{-1}=\pm \operatorname{adj}(A)$ e os elementos de A^{-1} também vão ser todos números inteiros.

Seja a matriz A dada por $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & 1 \end{bmatrix}$. Então

$$AB = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 10 & 2 \\ 1 & 1 & 8 \\ 5 & 6 & 0 \end{bmatrix} = \begin{bmatrix} 13 & 22 & 2 \\ 1 & 1 & 8 \\ 6 & 7 & 8 \end{bmatrix},$$

contém a mensagem codificada que deve ser enviada:

O recetor da mensagem consegue descodificá-la multiplicando-a por A^{-1} da seguinte forma:

$$A^{-1}AB = \begin{bmatrix} 1 & 2 & -2 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 13 & 22 & 2 \\ 1 & 1 & 8 \\ 6 & 7 & 8 \end{bmatrix} = \begin{bmatrix} 3 & 10 & 2 \\ 1 & 1 & 8 \\ 5 & 6 & 0 \end{bmatrix}.$$

A matriz de codificação A pode ser construída a partir da matriz identidade I, aplicando, sucessivamente, operações elementares do tipo I e do tipo III. A matriz assim obtida vai ter elementos inteiros, verifica $\det(A) = \pm \det(I) = \pm 1$ e A^{-1} também vai ter elementos inteiros.

Na codificação de uma mensagem, a i-ésima letra do alfabeto é representada pelo natural i, $i=1,\ldots,26$ (neste exercício, o espaço também não é considerado). A mensagem foi transformada usando a matriz

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ -2 & -2 & -1 \end{bmatrix}$$

e enviada como

Qual é a mensagem?

Enunciados dos exercícios do capítulo 3 — Sistemas de Equações Lineares

1. Considere os seguintes sistemas de equações lineares:

$$(S_1) \begin{cases} x_1 + x_2 + x_3 = 3 \\ x_1 - x_2 = 0 \\ -x_1 + x_3 = 0. \end{cases}$$

$$(S_3) \begin{cases} x_1 + x_2 + x_3 = 3 \\ x_1 + x_2 = 2 \\ 2x_1 + 2x_2 + x_3 = 1. \end{cases}$$

$$(S_4) \begin{cases} x_1 + x_2 + x_3 = 3 \\ x_1 + x_2 = 2 \\ 2x_1 + 2x_2 + x_3 = 1. \end{cases}$$

$$(S_4) \begin{cases} x_1 + x_2 + x_3 = 3 \\ x_1 + x_2 = 2 \\ 2x_1 + 2x_2 + x_3 = 1. \end{cases}$$

$$(S_4) \begin{cases} x_1 + x_2 + x_3 = 3 \\ 2x_1 + x_2 + x_3 = 1. \end{cases}$$

$$(S_4) \begin{cases} x_1 + x_2 + x_3 = 3 \\ 2x_1 + 2x_2 + x_3 = 1. \end{cases}$$

Responda às seguintes questões para cada um dos sistemas dados:

- (a) Identifique a matriz dos coeficientes A, o vetor dos termos independentes b, o vetor das incógnitas x e a matriz ampliada A|b.
- (b) Determine o conjunto solução através do método de Gauss.
- (c) Determine o conjunto solução do sistema homogéneo associado através do método de Gauss.
- 2. Resolva os seguintes sistemas de equações lineares através do método de Gauss e de Gauss-Jordan:

$$(S_{1}) \begin{cases} x_{1} + 2x_{2} = 5 \\ 3x_{2} = 6. \end{cases}$$

$$(S_{6}) \begin{cases} x_{1} + 2x_{2} + x_{3} + x_{4} = 0 \\ 2x_{1} + x_{2} - x_{3} + 3x_{4} = 0 \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + 2x_{2} = 1 \\ 0x_{2} = 2. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + 2x_{2} + 3x_{3} = 14 \\ 4x_{2} + 5x_{3} = 23. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} = 0. \end{cases}$$

$$(S_{7}) \begin{cases} x_{1} + x_{2} + x_{3} + x_{4} =$$

3. Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 2 \ -3 & -6 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 4 \ -12 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

- 4. Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A $CS_{(S)} = \{(2, -4, 0)\}.$ C $CS_{(S)} = \emptyset.$

 $\boxed{\mathsf{B}}\ \mathsf{CS}_{(S)} = \{(2-\alpha, -4, \alpha) : \alpha \in \mathsf{IR}\}. \qquad \boxed{\mathsf{D}}\ \mathsf{CS}_{(S)} = \{(2, -4, \alpha) : \alpha \in \mathsf{IR}\}.$

- 5. Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 & -1 \\ -1 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$ e o vetor dos termos independentes é $b = \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A A resolução de (S) através do método de Gauss-Jordan envolve 0 operações elementares do tipo I, 2 do tipo II e 5 do tipo III.
 - B A resolução de (S) através do método de Gauss-Jordan envolve 1 operação elementares do tipo I, 2 do tipo II e 6 do tipo III.
 - |C| A resolução de (S) através do método de Gauss-Jordan envolve 0 operações elementares do tipo I. 0 do tipo II e 7 do tipo III.
 - D A resolução de (S) através do método de Gauss-Jordan envolve 0 operações elementares do tipo I, 1 do tipo II e 6 do tipo III.
- 6. Seja (S) o sistema linear Ax = b de n equações a n incógnitas tal que car(A) = n. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A $\# CS_{(S)} = 0.$

 $C \# CS_{(S)} = 2.$

B $\# CS_{(S)} = 1$.

- $D \# CS_{(S)} = \infty.$
- 7. Considere as seguintes proposições:

 P_1 : "Um sistema homogéneo é sempre possível."

P₂: "Um sistema com 5 equações e 10 incógnitas pode ser possível e determinado." Indique qual das seguintes hipóteses é uma proposição verdadeira:

- As duas proposições são verdadeiras.
- B As duas proposições são falsas.
- A primeira proposição é verdadeira e a segunda é falsa.
- A primeira proposição é falsa e a segunda é verdadeira.
- 8. Discuta os seguintes sistemas de equações lineares Ax = b em função dos respetivos parâmetros reais:

- (a) $A = \begin{bmatrix} 1 & 1 & \alpha \\ 3 & 4 & 2 \\ 2 & 3 & -1 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ \alpha \\ 1 \end{bmatrix}$.
- (d) $A = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 0 & 2 & 1 & 1 \\ 1 & 0 & 1 & 3 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 2 \\ t \end{bmatrix}$.
- (b) $A = \begin{bmatrix} 1 & 0 & -3 \\ 2 & k & -1 \\ 1 & 2 & k \end{bmatrix}$, $b = \begin{bmatrix} -3 \\ -2 \\ 1 \end{bmatrix}$.
 - (e) $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 4 & 3 \\ 2 & -2 & 6 \end{bmatrix}$, $b = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
- (c) $A = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 3 & 5 & 2 & -3 \\ 3 & 3 & -2 & -3 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 3 \\ t \end{bmatrix}$. (f) $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 3 \\ -1 & 1 & 2 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.
- 9. Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é A= $\begin{bmatrix} \frac{2}{3} & \frac{1}{8} & \frac{0}{5} \\ \frac{3}{3} & \frac{1}{0} & \frac{5}{3} \end{bmatrix}, \ k_1 \in \mathbb{R}, \ \text{e cujo vetor dos termos independentes \'e} \ b = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{k_0} \end{bmatrix}, \ k_2 \in \mathbb{R}.$ Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A se $k_1 \in [0, 1]$ e $k_2 \in [0, 1]$ o sistema (S) é impossível.
 - B se $k_1 \in [1,3]$ e $k_2 \in [1,2]$ o sistema (S) é possível e indeterminado.
 - C se $k_1 \in [1, 2]$ e $k_2 \in [2, 3]$ o sistema (S) é possível e determinado.
 - \square se $k_1 \in [0, 1]$ e $k_2 \in [0, 1]$ o sistema (S) é possível e indeterminado.
- 10. Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} \frac{3}{2} & 1 & 0 & 1 \\ \frac{3}{2} & 1 & s & 1 \\ \frac{3}{2} & 0 & -4 & 0 \end{bmatrix}$, $s \in \mathbb{R}$, e cujo vetor dos termos independentes é $b = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$, $t \in \mathbb{R}$. Indique qual das
 - A se $s \in [1, 2]$ e $t \in [2, 4]$ o sistema (S) possível e determinado.
 - B se s = 4 e t = -2 o sistema (S) é impossível.

seguintes hipóteses é uma proposição verdadeira:

- |C| se $s \in [1, 2]$ e t = -2 o sistema (S) é possível e determinado.
- D se $s \in [1, 2]$ e $t \in [1, 2]$ o sistema (S) é possível e indeterminado.
- 11. Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$ $\alpha \in \mathbb{R}$, e cujo vetor dos termos independentes é $b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - (S) é um sistema possível e determinado sse $\alpha \in \mathbb{R} \{\sqrt{2}\}$.
 - B (S) é um sistema possível e determinado sse $\alpha = \sqrt{2}$.
 - |C|(S) é um sistema possível e determinado sse $\alpha \in \mathbb{R} \{-\sqrt{2}, \sqrt{2}\}$.
 - (S) é um sistema possível e determinado sse $\alpha = \sqrt{2} \vee \alpha = -\sqrt{2}$.
- 12. Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 1 \\ 2 \\ 2k_2+k_1 \end{bmatrix}$, $k_1, k_2 \in \mathbb{R}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

- A se $k_1 = 1$, o sistema (S) é possível e determinado.
- B se $2k_2 + k_1 = 0$, o sistema (S) é possível e indeterminado.
- C se $k_1 \in [3,4]$ e $k_2 = 1$, o sistema (S) é impossível.
- D se $k_1 = 1$ e $k_2 \in [3, 4]$, o sistema (S) é impossível.
- 13. Considere o sistema de equações lineares (S) cuja matriz dos coeficientes é A = $\begin{bmatrix} 2 & 3 \\ -5 & 7 \end{bmatrix}$ e o vetor dos termos independentes é $b = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
 - (a) Mostre, sem o resolver, que o sistema de equações lineares dado é possível e determinado.
 - (b) Resolva o sistema de equações lineares dado através da Regra de Cramer.
- 14. Considere o sistema de equações lineares (S) cuja matriz dos coeficientes é A = $\begin{bmatrix} \frac{1}{2} & \frac{1}{4} & -\frac{2}{3} \\ \frac{3}{6} & \frac{6}{-5} \end{bmatrix}$ e o vetor dos termos independentes é $b = \begin{bmatrix} 9 \\ 1 \\ 0 \end{bmatrix}$.
 - (a) Mostre, sem o resolver, que o sistema de equações lineares dado é possível e determinado.
 - (b) Resolva o sistema de equações lineares dado através da Regra de Cramer.
- 15. Indique quais das seguintes matrizes são invertíveis:
 - (a) $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix}$. (c) $C = \begin{bmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{bmatrix}$. (e) $E = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}$.

- (b) $B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. (d) $D = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. (f) $F = \begin{bmatrix} -2 & 3 & 5 \\ -1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$.
- 16. Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2a & 2a \\ 1 & 1 & a \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 1 \\ 1 \\ b \end{bmatrix}$, $a, b \in \mathbb{R}$.
 - (a) Discuta (S) em função dos parâmetros a e b.
 - (b) Resolva (S) através da Regra de Cramer para a = 2 e b = 1.
- 17. Seja (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -\beta \\ 1 & 0 & -1 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 1 \\ 2\alpha \end{bmatrix}$, $\alpha, \beta \in \mathbb{R}$.
 - (a) Discuta (S) em função dos parâmetros α e β .
 - (b) Seja (S') o sistema homogéneo associado a (S) para $\alpha = \frac{1}{2}$ e $\beta = 1$. Resolva-o.
- 18. Determine a equação da parábola que passa nos pontos (1,2), (-1,6) e (2,3).

19. Seja (S) o sistema não linear com incógnitas reais α , β e γ dado por

$$\begin{cases} 2 \sin \alpha - \cos \beta + 3 \tan \gamma = 3 \\ 4 \sin \alpha + 2 \cos \beta - 2 \tan \gamma = 10 \\ 6 \sin \alpha - 3 \cos \beta + \tan \gamma = 9. \end{cases}$$

Mostre que, neste caso, é possível concluir que (S) é impossível recorrendo ao método de Gauss.

- 20. Considere a matriz $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$.
 - (a) Calcule A^{-1} .
 - (b) Mostre que o sistema Ax = b é possível e determinado, qualquer que seja o vetor dos termos independentes $b \in \mathcal{M}_{3\times 1}(\mathbb{R})$.
 - (c) Usando a alínea (a), resolva o sistema Ax = b, em que $b = [b_i] \in \mathcal{M}_{3\times 1}(\mathbb{R})$,
- 21. Determine, por dois processos distintos, para que valores de $\alpha \in \mathbb{R}$ a matriz A = $\left[\begin{smallmatrix}\alpha&1&1\\1&\alpha&1\\1&1&\alpha\end{smallmatrix}\right] \text{ \'e invert\'ivel}.$
- 22. Neste exercício vai-se apresentar uma aplicação de Circuitos elétricos envolvendo os conceitos introduzidos neste capítulo por forma a determinar a corrente em cada trecho de um circuito elétrico através das leis de Kirchhoff.

Considere o seguinte circuito elétrico:

A bateria, medida em volt (V), gera uma carga que produz uma corrente. A corrente sai da bateria do lado que contém a reta vertical mais longa. As resistências são medidas em ohm (Ω) . As letras maiúsculas representam os nós do circuito elétrico. A letra i representa a corrente entre os nós e as setas indicam o sentido de fluxo, mas se i for negativa, então a corrente flui no sentido oposto ao indicado. As correntes são medidas em ampere.

Para determinar as correntes, recorre-se às leis de Kirchhoff:

- (a) Em cada nó, a soma das correntes que entram é igual à soma das correntes que saem.
- (b) Em cada ciclo fechado, a diferença de potencial é zero.

A diferença de potencial elétrico U em cada resistor é dada pela lei de Ohm:

$$U = iR$$
.

onde i representa a corrente em ampere e R a resistência em ohm.

Determine-se, agora, as correntes do circuito elétrico considerado. Da primeira *lei de Kirchhoff* obtém-se

$$i_1 - i_2 + i_3 = 0$$
 (nó A)
 $-i_1 + i_2 - i_3 = 0$ (nó B)

Da segunda lei de Kirchhoff resulta que

$$4i_1 + 2i_2 = 8$$
 (ciclo superior)
 $2i_2 + 5i_3 = 9$ (ciclo inferior)

Pode-se representar o circuito elétrico usando a seguinte matriz ampliada:

$$\begin{bmatrix}
1 & -1 & 1 & 0 \\
-1 & 1 & -1 & 0 \\
4 & 2 & 0 & 8 \\
0 & 2 & 5 & 9
\end{bmatrix}$$

Esta matriz pode ser reduzida à forma escada da seguinte forma:

$$\begin{bmatrix} 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & -\frac{2}{3} & \frac{4}{3} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Resolvendo por substituição de trás para a frente, obtém-se $i_1 = 1$, $i_2 = 2$ e $i_3 = 1$.

Exercício Determine a corrente em cada um dos trechos do seguinte circuito elétrico:

Enunciados dos exercícios do capítulo 4 — Espaços Vetoriais

- 1. Seja $F_1 = \{(x, y, z) \in \mathbb{R}^3 : x = y\}$. é um subespaço de \mathbb{R}^3 .
 - (a) O que caracteriza os elementos de F_1 ?
 - (b) Mostre que F_1 é um subespaço de \mathbb{R}^3 .
- 2. Seja $F_2 = \{(0, x, 2x, 3x) : x \in \mathbb{R}\}.$
 - (a) O que caracteriza os elementos de F_2 ?
 - (b) Mostre que F_2 é um subespaço de \mathbb{R}^4 .
- 3. Mostre que:
 - (a) $A = \{(x, x + 1) : x \in \mathbb{R}\}$ não é um subespaço de \mathbb{R}^2 .
 - (b) $C = \{(x, y) \in \mathbb{R}^2 : y \ge 0\}$ não é um subespaço de \mathbb{R}^2 .
 - (c) $B = \{(x, y^2) : x, y \in \mathbb{R}\}$ não é um subespaço de \mathbb{R}^2 .
 - (d) $D = \{(x, |x|) : x \in \mathbb{R}\}$ não é um subespaço de \mathbb{R}^2 .
- 4. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $\boxed{\mathsf{A}}\ \{(\mathsf{0},\mathsf{0},a^2):a\in\mathsf{IR}\}\ \mathsf{\acute{e}}\ \mathsf{um}\ \mathsf{subespaço}\ \mathsf{de}\ \mathsf{IR}^3.$
 - [B] $\{(1,1,1)\}$ é um subespaço de $[R^3]$.
 - $C \mid \{(a, 0, a) : a \in \mathbb{R}\} \text{ é um subespaço de } \mathbb{R}^3.$
 - \square { $(a, 1, a) : a \in \mathbb{R}$ } é um subespaço de \mathbb{R}^3 .
- 5. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $A \mid \{(x, y, z) \in \mathbb{R}^3 : x = 1 y\}$ é um subespaço de \mathbb{R}^3 .

 - $\lceil C \rceil$ { $(x, y, 0) \in \mathbb{R}^3 : x = y^2$ } é um subespaço de \mathbb{R}^3 .
 - $\boxed{ \mathsf{D} } \{ (x, y, 1) \in \mathsf{IR}^3 : x = y \}$ é um subespaço de $\boxed{\mathsf{R}^3 }$.
- 6. Escreva, se possível, o vetor $v = (-1, 2) \in \mathbb{R}^2$ como combinação linear dos seguintes vetores de \mathbb{R}^2 :
 - (a) $v_1 = (2, -4)$.
 - (b) $v_1 = (1, 2)$.
 - (c) $v_1 = (1, 2), v_2 = (0, 1).$
 - (d) $v_1 = (1, -2), v_2 = (-2, 4)$

- (e) $v_1 = (1, -1), v_2 = (-1, 1).$
- (f) $v_1 = (1, -1), v_2 = (0, 1), v_3 = (2, -1).$
- 7. Sejam $u = (1, 2, -4), v = (2, 5, -6), w = (1, -1, -10), r = (1, 0, \alpha), \alpha \in \mathbb{R}$.
 - (a) Escreva o vetor w como combinação linear de u e v.
 - (b) Indique para que valores de α o vetor r é uma combinação linear de u e v.
- 8. Sejam a = (-1, 2, -3), b = (3, 4, 2) e d = (-9, -2, 5). Mostre que $d \notin \langle a, b \rangle$.
- 9. Indique qual das seguintes hipóteses é uma proposição verdadeira:

 - A $(1,0,0) \in \langle (1,0),(0,0) \rangle$. C $(1,0,0) \in \langle (1,2,3),(2,4,6) \rangle$.
 - [B] $(1,0,0) \in \langle (2,1,0), (0,1,0) \rangle$. [D] $(1,0,0) \in \langle (0,0,0), (0,1,1) \rangle$.
- 10. Indique quais dos seguintes conjuntos de vetores são conjuntos geradores de IR²:
 - (a) $A = \{(1,0), (0,1)\}.$

(d) $D = \{(1,2)\}.$

- (b) $B = \{(1, 2), (-1, 0)\}.$
- (e) $E = \{(1,2), (2,4), (-1,-2)\}.$
- (c) $C = \{(1,0), (0,1), (1,3)\}.$
- (f) $F = \{(1, -1), (-2, 2)\}.$
- 11. Seja $X = \{(1,0,\alpha), (\alpha,\beta,\beta), (1,0,0), (0,0,1)\}, \alpha,\beta \in \mathbb{R}$. Indique para que valores de α e β o conjunto X é um conjunto gerador de \mathbb{R}^3 .
- 12. Indique um conjunto gerador de $V = \langle (1,3,2), (1,0,2), (0,1,0), (2,2,4) \rangle$ com o número mínimo de elementos.
- 13. Indique um conjunto gerador de V = ((1, -3, 1, -1, 3), (1, -1, 1, -1, 1),(-1, -3, -1, 1, 3), (1, 1, 1, -1, -1) com o número mínimo de elementos.
- 14. Indique quais dos seguintes conjuntos de vetores são conjuntos linearmente independentes:
 - (a) $A = \{(3, 1), (4, 2)\}$ em \mathbb{R}^2 .
 - (b) $B = \{(3, 1), (4, -2), (7, 2)\}$ em \mathbb{R}^2 .
 - (c) $C = \{(0, -3, 1), (2, 4, 1), (-2, 8, 5)\}$ em \mathbb{R}^3 .
 - (d) $D = \{(-1, 2, 0, 2), (5, 0, 1, 1), (8, -6, 1, -5)\}$ em \mathbb{R}^4 .
- 15. Indique para que valores do parâmetro real α , os vetores a=(1,-2) e $b=(\alpha,-1)$ são linearmente independentes.
- 16. Sejam $v_1=(\alpha_1,\beta_1,1)$ e $v_2=(\alpha_2,\beta_2,0), \alpha_1,\alpha_2,\beta_1,\beta_2 \in \mathbb{R}$. Indique para que valores de α_1 , α_2 , β_1 e β_2 os vetores v_1 e v_2 são linearmente independentes.

- 17. Considere o espaço vetorial \mathbb{R}^3 e um seu subespaço $X = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = x_2\}$.
 - (a) Determine dois vetores linearmente independentes $u \in V$ de X.
 - (b) Mostre que qualquer vetor $w \in X$ é uma combinação linear de u e v.
- 18. Sejam V um espaço vetorial e $\{v_1, v_2, v_3\}$ um conjunto de vetores de V linearmente independente. Mostre que os sequintes conjuntos também são linearmente independentes:
 - (a) $\{v_1 + v_2\}$.

(c) $\{2v_1, v_1 + v_2, -v_1 + v_3\}.$

(b) $\{v_1, v_1 + v_2\}.$

- (d) $\{v_1 + v_2, v_1 + v_3, v_2 + v_3\}.$
- 19. Averigue quais dos seguintes conjuntos de vetores são bases de R²:
 - (a) $A = \{(1, 1), (3, 0)\}.$

- (c) $C = \{(1, 1), (0, 8)\}.$
- (b) $B = \{(1,1), (0,2), (2,3)\}.$ (d) $D = \{(1,-2), (-2,4)\}.$
- 20. Indique para que valores de α o conjunto $\{(\alpha, 6), (1, \alpha)\}$ é uma base de \mathbb{R}^2 .
- 21. Considere o subespaço $F = \{(x, y, z, w) \in \mathbb{R}^4 : x = z = w\}$ de \mathbb{R}^4 . Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $|A| \{(1,0,1,1), (0,1,0,0)\}$ é uma base de F.
 - $|B| \{(1,1,1,1), (0,1,1,0)\}$ é uma base de F.
 - $C \{(1,0,1,1),(0,0,1,0)\}$ é uma base de F.
 - $D \mid \{(1,0,1,1), (0,1,0,1)\}$ é uma base de F.
- 22. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $A \mid \{(1, 1, 0), (0, 0, 0)\} \text{ é uma base de } \mathbb{R}^2.$
 - $|B| \{(1,1,0),(0,0,1)\}$ é uma base de \mathbb{R}^2 .
 - |C| {(1, 1), (0, 0)} é uma base de \mathbb{R}^2 .
 - $D \mid \{(1,1), (2,3)\}$ é uma base de \mathbb{R}^2 .
- 23. Seja $\mathcal{B} = ((1,1,1),(0,1,1),(1,0,1)).$
 - (a) Mostre que \mathcal{B} é uma base ordenada de \mathbb{R}^3 .
 - (b) Determine as coordenadas de z = (0, 1, 0) na base ordenada \mathcal{B} .
- 24. Sejam z = (1, 1, 0) e $\mathcal{B} = ((1, 0, 1), (0, 1, 1), (1, 0, 0))$ uma base ordenada de \mathbb{R}^3 . Indique qual das seguintes hipóteses é uma proposição verdadeira:

$$A [z]_{\mathcal{B}} = (1, 1, 2).$$

$$C$$
 $[z]_{\mathcal{B}} = (1, -1, -2).$

B
$$[z]_{\mathcal{B}} = (-1, -1, 2).$$

$$D$$
 $[z]_{\mathcal{B}} = (-1, 1, 2).$

25. Seja $X = \{(a, 0, a) : a \in \mathbb{R}\}$ um subespaço de \mathbb{R}^3 . Indique qual das seguintes hipóteses é uma proposição verdadeira:

$$\boxed{\mathsf{A}} \ \mathsf{dim}(X) = 0.$$

$$\mathsf{B} \ \mathsf{dim}(X) = 1.$$

$$\boxed{\mathsf{D}} \ \mathsf{dim}(X) = 3.$$

26. Indique qual das seguintes hipóteses é uma proposição verdadeira:

$$\boxed{\mathsf{A}} \ \mathsf{dim}(\mathsf{IR}^2) + \mathsf{dim}(\mathsf{IR}^5) = 2.$$

$$\boxed{\mathsf{C}} \ \mathsf{dim}(\mathsf{IR}^2) + \mathsf{dim}(\mathsf{IR}^5) = 7.$$

$$\boxed{\mathsf{B}} \ \dim(\mathsf{IR}^2) + \dim(\mathsf{IR}^5) = 5.$$

$$\boxed{\mathsf{D}} \ \mathsf{dim}(\mathsf{IR}^2) + \mathsf{dim}(\mathsf{IR}^5) = 14.$$

- 27. Determine uma base e a dimensão do subespaço \mathbb{R}^4 dado por $F = \{(x, y, z, w) \in \mathbb{R}^4 \}$ \mathbb{R}^4 : $x - v + 3z = 0 \land z - 2w = 0$.
- 28. Sejam $F = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}, u_1 = (0, 2, 0), u_2 = (1, 0, 0) \in u_3 = (-1, 6, 0).$
 - (a) Mostre que F é um subespaco de \mathbb{R}^3 .
 - (b) Verifique que $F = \langle u_1, u_2, u_3 \rangle$.
 - (c) O conjunto $\{u_1, u_2, u_3\}$ é uma base de F?
 - (d) Indique a dimensão de F.
- $\{v_1, v_2\}$ uma base de V.
 - (a) A é um conjunto gerador de V?
 - (b) A é constituído por vetores linearmente independentes?
 - (c) B é um conjunto gerador de V?
 - (d) B é constituído por vetores linearmente independentes?
 - (e) Seja C um subconjunto de V que gera V. Que pode dizer sobre o número de vetores de C?
 - (f) Seja D um subconjunto de V constituído por vetores linearmente independentes. Que pode dizer sobre o número de vetores de D?
 - (g) Em que condições é que $E = \{v_1, v_4\}$ é um conjunto gerador de V?
- 30. Sejam V um espaço vetorial e $u_1, u_2, u_3, u_4 \in V$ tais que $V = \langle u_1, u_2, u_3 \rangle, \{u_1, u_2\}$ é um conjunto linearmente independente, $u_3 = 2u_1$ e $u_4 = u_1 + u_2$. Indique, justificando, o valor lógico das seguintes as proposições:

 P_1 : { u_1, u_2, u_3 } é um conjunto linearmente independente.

 P_2 : { u_3 } é um conjunto linearmente independente.

 $P_3: V = \langle u_2, u_3, u_4 \rangle.$

 P_4 : dim(V) = 3.

 P_5 : { u_2 , u_4 } é uma base de V.

- 31. Sejam $\{v_1, v_2\}$ uma base do espaço vetorial V e F um subespaço de V. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A $\{v_1, v_2\}$ é uma base de F. C se $v \in V$, então $v \in F$.

 \square dim(V) = dim(F).

- \square se $v \in F$, então $v \in V$.
- 32. Seja X um espaço vetorial tal que $X = \langle x_1, x_2 \rangle$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A $\dim(X) = 2$.

 - $D \{x_1, x_2\}$ é uma base de X.
- 29. Sejam V um espaço vetorial, $v_1, v_2, v_3, v_4 \in V$, $A = \{v_1, v_2, v_3, v_4\}$, $B = \{v_1\}$ e 33. Considere os seguintes vetores de \mathbb{R}^3 : u = (1, 2, 0), v = (2, 0, 1), w = (1, 1, 1). x = (0,0,0) e y = (2,4,0). Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A v, w e x são vetores linearmente independentes.
 - B $\mathbb{R}^3 = \langle w, x, y \rangle$.
 - $C \{u, w, y\}$ é uma base de \mathbb{R}^3 .
 - $D \mid u$ é uma combinação linear de x e y.
 - 34. Seja V um espaço vetorial tal que $V = \langle v_1, v_2 \rangle$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $|A| \dim(V) \leq 2.$

 $|C| \dim(V) \geqslant 2$

 $|\mathsf{B}| \dim(V) < 2.$

 $|D| \dim(V) > 2$.

Enunciados dos exercícios do capítulo 5 — Transformações Lineares

- 1. Indique quais das seguintes funções são transformações lineares de IR² em IR³:
 - $T_1: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, T_1(x, y) = (0, -x, 0).$
 - $T_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, T_2(x, y) = (0, 0, |x y|)$
 - $T_3: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, T_3(x_1, x_2) = (x_2, 0, x_1).$
 - $T_4: \mathbb{R}^2 \longrightarrow \mathbb{R}^3, T_4(x_1, x_2) = (x_1^2, 0, 0).$
- 2. Indique, justificando, o valor lógico das seguintes proposições:
 - (a) $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $f(x_1, x_2) = (|x_2|, 0)$ é um endomorfismo em \mathbb{R}^2 .
 - (b) $g: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, $g(x_1, x_2) = (x_2, 0, x_1 + x_2)$ é um endomorfismo em \mathbb{R}^3 .
 - (c) $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $h(x_1, x_2) = (0, 0)$ é um endomorfismo em \mathbb{R}^2 .
- 3. Seiam $\alpha, \beta \in \mathbb{R}$. Determine a relação entre α e β de modo que a função T definida por $T: \mathbb{R} \longrightarrow \mathbb{R}^2$, $T(x) = (x + \alpha - 2\beta, -x)$, seja uma transformação linear de \mathbb{R} em
- 4. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $|A| f : \mathbb{R}^2 \longrightarrow \mathbb{R}, f(x,y) = |x|$ é uma transformação linear.
 - $B g : \mathbb{R}^2 \longrightarrow \mathbb{R}, \ g(x,y) = (x+y)^2 \text{ \'e uma transformação linear.}$
 - $C h : \mathbb{R}^2 \longrightarrow \mathbb{R}, \ h(x, y) = 1 \text{ \'e uma transformação linear.}$
 - $D \mid i : \mathbb{R}^2 \longrightarrow \mathbb{R}, i(x, y) = x + y$ é uma transformação linear.
- 5. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A $f: \mathbb{R} \longrightarrow \mathbb{R}^2$, f(x) = (x, 0) é uma transformação linear.
 - B $g: \mathbb{R} \longrightarrow \mathbb{R}^2$, g(x) = (x, 1) é uma transformação linear.
 - $C h : \mathbb{R} \longrightarrow \mathbb{R}^2, \ h(x) = (x, 2) \text{ \'e uma transformação linear.}$
 - D $i: \mathbb{R} \longrightarrow \mathbb{R}^2$, i(x) = (x, 3) é uma transformação linear.
- 6. Seia T uma transformação linear de \mathbb{R}^3 em \mathbb{R}^3 definida por
 - $T(x_1, x_2, x_3) = (2x_1 x_2 x_3, 2x_2 x_1 x_3, 2x_3 x_1 x_2).$
 - (a) Determine A_{T} .
 - (b) Use a matriz A_T para determinar a imagem dos vetores u = (1, 1, 1), v = (2, 1, 1)e w = (-5, 3, 2).
- 7. Seja $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}), T(x_1, x_2, x_3) = x_1 + x_3$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

 $C A_T = [1 0 1].$

B $A_T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- $D A_T = [1 0 0].$
- 8. Seja T a transformação linear cuja matriz é dada por $A_T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A T(x, y, z) = (x, x + z, y, z).
- - B T(x, y, z) = (x + y, y, x + z, z). D T(x, y, z) = (x, y + z, x + y, z).
- 9. Seja a transformação linear $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$, T(x, y) = (x + y, x y).
 - (a) Determine a matriz da transformação linear T relativamente às bases canónicas de \mathbb{R}^2 e \mathbb{R}^2 .
 - (b) Determine a matriz da transformação linear T relativamente às bases ordenadas $\mathcal{B} = ((1,2),(3,4))$ de \mathbb{R}^2 e $\mathcal{B}' = ((1,4),(2,3))$ de \mathbb{R}^2 .
- 10. Sejam S e T as transformações lineares definidas por

$$S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \quad T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
$$(x,y) \longmapsto (2x+y,y), \quad (x,y) \longmapsto (x,0)$$

Determine, por dois processos distintos, a matriz da transformação linear S + T.

11. Seja T a transformação linear definida por

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
$$(x,y) \longmapsto (2x+y,0,y).$$

Determine, por dois processos distintos, a matriz da transformação linear -2T.

12. Sejam S e T as transformações lineares definidas por

$$S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \quad T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x,y) \longmapsto (2x+y,y), \quad (x,y) \longmapsto (x,0).$$

- (a) Determine, por dois processos distintos, a matriz da transformação linear $S \circ T$.
- (b) Determine, por dois processos distintos, a matriz da transformação linear $T \circ S$.
- 13. Considere as seguintes transformações lineares:

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
, $T(x, y, z) = (x + y + z, y - 2z)$,

$$S: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
, $S(x, y) = (x, x + y, x - y)$,

$$U: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, U(x, y) = (2x + y, -y)$$

- (a) Determine as matrizes associadas às transformações lineares dadas.
- (b) Para as seguintes operações, indique as que estão bem definidas, e determine. para esses casos, a respetiva matriz da transformação linear:
 - i. $T + \alpha S$. $\alpha \in \mathbb{R}$.
 - ii. $U \circ U$.
 - iii. $S \circ T$.
 - iv. $T \circ S$.
 - v. $U \circ U + \alpha(T \circ S)$, $\alpha \in \mathbb{R}$.
- 14. Sejam S e T duas transformações lineares definidas por

Indique qual das seguintes hipóteses é uma proposição verdadeira:

 $A_{T \circ S} = \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix}.$

 $C A_{T \circ S} = \begin{bmatrix} 2 & -1 \\ 2 & 0 \end{bmatrix}$.

- B $A_{T_0S} = \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix}$.
- $D A_{T_0S} = \begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$
- 15. Sejam $S, T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2), S(x, y) = (-y, x) \in T(x, y) = (y, 0).$ Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $A \mid A_{S \circ T} = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$.

 $\begin{bmatrix} C \end{bmatrix} A_{S \circ T} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}.$

B $A_{S_0T} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

- 16. Determine a imagem e o núcleo das seguintes transformações lineares de IR³ em IR³:
 - (a) $T_1: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$. $T_1(x_1, x_2, x_3) = (x_3, x_2, x_1)$.
 - (b) $T_2: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $T_2(x_1, x_2, x_3) = (x_1, x_2, 0)$.
 - (c) $T_3: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $T_3(x_1, x_2, x_3) = (x_1, x_1, x_1)$.
- 17. Para cada uma das alíneas sequintes, determine a função T sabendo que é uma transformação linear definida por:
 - (a) T(1,0) = (-1,1,2) e T(0,1) = (3,0,1).
 - (b) T(1,2) = (3,-1,5) e T(0,1) = (2,1,-1).
 - (c) T(1,1,1) = 3, T(0,1,-2) = 1 e T(0,0,1) = -2.
- 18. Seja $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$ tal que T(0,0,1) = (0,0,1) e $Nuc(T) = \langle (1,1,1), (0,1,1) \rangle$. Determine T.

- 19. Determine a imagem, a característica, o núcleo, a nulidade e a matriz das seguintes transformações lineares:
 - (a) $T_1: \mathbb{R}^2 \longrightarrow \mathbb{R}, T_1(x, y) = x + y$.
 - (b) $T_2: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, $T_2(x, y, z) = (x + y + z, 2x + 2y + 2z)$.
 - (c) $T_3: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $T_3(x, y, z) = (x z, 0, y 2z)$.
 - (d) $T_4: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$, $T_4(x, y, z, w) = (x y, z w, x 3w)$
- 20. Seja a transformação linear T de \mathbb{R}^3 em \mathbb{R}^3 definida por $T(x_1, x_2, x_3) = (x_1 x_2, 2x_2 x_3)$ $x_1 - x_3, x_3 - x_2$).
 - (a) Determine uma base do núcleo de T.
 - (b) Determine a dimensão do núcleo de T.
- 21. Sejam $T \in \mathcal{L}(\mathbb{R}^n)$ e $S = \{u_1, \dots, u_k\} \subset \mathbb{R}^n$ um conjunto linearmente dependente. Mostre que $\{T(u_1), \ldots, T(u_k)\}$ também é um conjunto linearmente dependente.
- 22. Seja $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$, T(x, y, z) = (x 2y 2z, x 2z, -2x + 4z). Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $A \operatorname{Im}(T) = \mathbb{R}^3$.

- $C \mid Im(T) = \langle (1, 1, -2), (-2, -2, 4) \rangle$
- $D | Im(T) = \langle (1, 1, -2), (-2, 0, 0) \rangle.$
- 23. Seja $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^3)$, T(x, y, z) = (x 2y 2z, x 2z, -2x + 4z). Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - |A| Nuc(T) = $\langle (1, 1, -2), (-2, 0, 0), (-2, -2, 4) \rangle$.
 - |B| Nuc(T) = {(0, 0, 0)}.
 - |C| Nuc(T) = $\langle (2, 0, 1) \rangle$.
 - \square Nuc(T) = \mathbb{R}^3 .
- 24. Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$, T(a, b) = (a + b, 0, a + b). Indique qual das seguintes hipóteses é uma proposição verdadeira:

 - $A \mid \text{Nuc}(T) \subseteq \mathbb{R}^3 \text{ e } c_T = 1.$ $C \mid \text{Nuc}(T) = \langle (1,0) \rangle \text{ e } c_T = 1.$
 - $\boxed{\mathsf{B}}\ \mathsf{Im}(\mathcal{T}) = \langle (1,0,1) \rangle \ \mathsf{e}\ \mathsf{n}_{\mathcal{T}} = 1. \qquad \boxed{\mathsf{D}}\ \mathsf{c}_{\mathcal{T}} + \mathsf{n}_{\mathcal{T}} = 3.$
- 25. Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$, T(x, y) = (-x y, -2x 2y, -3x 3y). Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $|A| \operatorname{Im}(T) = \langle (1, 2, 3) \rangle$.

 $B \mid Im(T) = \langle (-1, -1, -1), (-2, -2, -2), (-3, -3, -3) \rangle.$

 $C \mid Im(T) = \langle -1, -2, -3 \rangle$.

 $D \operatorname{Im}(T) = \mathbb{R}^3$.

26. Seja $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$, T(x, y, z) = (x + z, 0). Indique qual das sequintes hipóteses é uma proposição verdadeira:

A Nuc(T) = $\langle (-1, 0, 1), (0, 1, 0) \rangle$.

C Nuc(T) = $\langle (0, 1, 0) \rangle$.

 $\boxed{\mathsf{B}} \; \mathsf{Nuc}(T) = \langle (-1, 0, 1) \rangle. \qquad \boxed{\mathsf{D}} \; \mathsf{Nuc}(T) = \mathbb{R}^3.$

27. Seja $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$, T(x, y, z) = (0, x - z). Indique qual das seguintes hipóteses é uma proposição verdadeira:

 $A \mid \text{Nuc}(T) = \langle (1, 0, 0), (0, 0, 1) \rangle.$

 \bigcap Nuc(T) = $\langle (1, 0, 1) \rangle$.

B Nuc(T) = $\langle (1, 0, 1), (0, 1, 0) \rangle$.

D Nuc(T) = \mathbb{R}^3 .

28. Seja $A_T = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 0 & 4 \end{bmatrix}$ a matriz de uma transformação linear T. Indique qual das seguintes hipóteses é uma proposição verdadeira:

A T(x, y, z) = (x + 2y + 2z, 2x + 4z). C $c_T = 1$.

29. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x, 0, z). Indique qual das sequintes hipóteses é uma proposição verdadeira:

 $A \mid Im(T) = \langle (1, 0, 0), (0, 1, 0), (0, 0, 1) \rangle \text{ e } n_T = 1.$

 $|B| |Im(T) = \langle (1, 0, 0), (0, 0, 1) \rangle e n_{\tau} = 2.$

C Nuc(T) = $\langle (0, 1, 0) \rangle$ e c $_T$ = 2.

D Nuc(T) = $\langle (0, 1, 0), (0, 0, 1) \rangle$ e c $_T$ = 2.

30. Seja a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$, T(x,y) = (x+y,y-x,2x). Indique qual das seguintes hipóteses é uma proposição verdadeira:

 $A \mid \dim(\operatorname{Im}(T)) = 0.$

 $|C| \dim(\operatorname{Im}(T)) = 2.$

B $\dim(\operatorname{Im}(T)) = 1$.

 $D \dim(Im(T)) = 3$

31. Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ tal que T(1,0) = (2,1) e T(0,1) = (0,1). Indique qual das seguintes hipóteses é uma proposição verdadeira:

 $\boxed{\mathsf{A}} \ T(x,y) = (2x, x+y).$

|C| T(x, y) = (2x, y).

B T(x, y) = (x + 2, y + 1). D T(x, y) = (x, 2y).

32. Seja $T \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ tal que T(1,0) = (0,1,1) e $Nuc(T) = \langle (0,1) \rangle$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

A T(x, y) = (0, x, x).

C T(x,y) = (x,y,y)

B T(x, y) = (0, y, y).

33. Seja $T \in \mathcal{L}(\mathbb{R}^4, \mathbb{R}^3)$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

 $A n_T + c_T = 3.$

 $\boxed{\mathsf{B}} \mathsf{n}_{\mathcal{T}} + \mathsf{c}_{\mathcal{T}} = 4.$

 $\boxed{\mathsf{D}} \mathsf{n}_{\mathsf{T}} + \mathsf{c}_{\mathsf{T}} = 1.$

Enunciados dos exercícios do capítulo 6 — Valores e Vetores Próprios

1. Determine o espetro das seguintes matrizes, bem como os espaços próprios associados aos seus valores próprios:

(a) $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$. (c) $C = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$. (e) $E = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 0 & -2 \\ -1 & 2 & 3 \end{bmatrix}$.

(b) $B = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$. (d) $D = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{bmatrix}$. (f) $F = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$

- 2. Considere a matriz $A = \begin{bmatrix} \alpha & 0 & 0 \\ 1 & \alpha & 0 \\ 1 & 1 & \alpha \end{bmatrix}$, $\alpha \in \mathbb{R}$. Calcule os valores próprios de A e os respetivos espacos próprios.
- 3. Considere a matriz $A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

|A| 0 é um valor próprio de multiplicidade dois da matriz A.

|B| 0 é um valor próprio simples da matriz A.

C 3 é um valor próprio de multiplicidade dois da matriz A.

D 3 é um valor próprio simples da matriz A.

4. Considere a matriz $A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 5 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:

- B $\lambda(A) = \{1, 3, 5\}.$
- $\boxed{\mathsf{D}}$ $\frac{3+\sqrt{13}}{2}$ é um valor próprio simples da matriz A.
- 5. Considere a matriz $A = \begin{bmatrix} 1 & 3 \\ a & b \end{bmatrix}$, $a, b \in \mathbb{R}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A Se a + b = 1, (3, 1) seja um vetor próprio de A.
 - B Se 3a + b = 6, (3, 1) seja um vetor próprio de A.
 - C Se a + b = 6, (3, 1) seja um vetor próprio de A.
 - \square Se 3a + b = 2, (3, 1) seja um vetor próprio de A.
- 6. Considere a matriz $A = \begin{bmatrix} 0 & 2 \\ -1 & 3 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A $\lambda(A) = \{0, 3\}.$

 $\boxed{\mathsf{C}} \ \lambda(A) = \{1\}.$

B $\lambda(A) = \{1, 2\}.$

- 7. Considere a matriz $A = \begin{bmatrix} 1 & 5 & -1 \\ 0 & -2 & 1 \\ -4 & 0 & 3 \end{bmatrix}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A $E_{-3} = \{(3\alpha/2, -\alpha, \alpha) : \alpha \in \mathbb{C}\}.$

 - C $E_{-3} = \{(-\alpha, 0, \alpha) : \alpha \in \mathbb{C}\}.$
- 8. Considere a matriz $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$. Determine:
 - (a) os valores próprios de A e os respetivos espaços próprios.
 - (b) os valores próprios de A^2 e os respetivos espaços próprios.
 - (c) os valores próprios de A^{-1} e os respetivos espaços próprios.
- 9. Seja A uma matriz de ordem três tal que $\lambda(A) = \{-1, 0, 1\}$. Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - A é invertível e $\lambda(A^{-1}) = \{0, 1\}.$
 - B A não é invertível e $\lambda(A^2) = \{-1, 0\}$.

- \square A não é invertível e $\lambda(A^2) = \{0, 1\}$.
- 10. Seja $A = [a_{ij}] \in \mathcal{M}_{3\times 3}(\mathbb{R}), \ a_{ij} = \begin{cases} j^2 & \text{se } i > j \\ i & \text{se } i = j \\ 0 & \text{se } i < j. \end{cases}$ Indique qual das seguintes hipóteses é uma proposição verdadeira:
 - $A 0 \in \lambda(A)$.

 $C \lambda(A^2) = \{-1, 1, 4\}.$

B $\lambda(A^{-1}) = \{1, \frac{1}{2}\}.$

- $D \lambda(A) = \{1, 2, 3\}.$
- 11. Considere as seguintes proposições:
 - P₁: "Os valores próprios de uma matriz quadrada são iguais aos valores próprios da sua transposta."
 - P₂: "Uma matriz quadrada é invertível sse não admite o valor próprio zero."

Indique qual das seguintes hipóteses é uma proposição verdadeira:

- A As duas proposições são verdadeiras.
- B As duas proposições são falsas.
- C A primeira proposição é verdadeira e a segunda é falsa.
- D A primeira proposição é falsa e a segunda é verdadeira.
- 12. Seja $A = \begin{bmatrix} -14 & 12 \\ -20 & 17 \end{bmatrix}$.
 - (a) Mostre que A é diagonalizável.
 - (b) Determine uma matriz P que diagonaliza A.
 - (c) Verifique que $P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, em que λ_1 é o valor próprio de A associado ao vetor próprio de A que forma a primeira coluna de P e λ_2 é o valor próprio de A associado ao vetor próprio de A que forma a segunda coluna de P.
- 13. Seja $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.
 - (a) Mostre que A é diagonalizável.
 - (b) Determine uma matriz P que diagonaliza A.
 - (c) Verifique que $P^{-1}AP = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$, em que λ_1 é o valor próprio de A associado ao vetor próprio de A que forma a primeira coluna de P, λ_2 é o valor próprio de A associado ao vetor próprio de A que forma a segunda coluna de P e λ_3 é o valor próprio de A associado ao vetor próprio de A que forma a terceira coluna de P.
- 14. Indique quais das seguintes matrizes são diagonalizáveis:

(a)
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
. (b) $B = \begin{bmatrix} 0 & -6 & -4 \\ 5 & -11 & -6 \\ -6 & 9 & -4 \end{bmatrix}$. (c) $C = \begin{bmatrix} 2 & -2 & 1 \\ -1 & 3 & -1 \\ 2 & -4 & 3 \end{bmatrix}$.

- 15. Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Mostre que $\lambda(A) = \lambda(A^{\mathsf{T}})$.
- 16. Seja $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$.
 - (a) Mostre que $\Pi_A(\lambda) = \lambda^2 \operatorname{tr}(A)\lambda + \det(A)$.
 - (b) Determine o espetro de A sabendo que tr(A) = 8 e det(A) = 12.
- 17. Seja $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$. Indique o valor lógico das seguintes proposições:
 - (a) a matriz A_T é invertível sse $CS_{(A_T \times = 0)} = \{\underline{0}\}.$
 - (b) a matriz A_T é invertível sse $\forall b \in \mathbb{R}^n \ [\# CS_{(A_T \times = b)} = 1].$
 - (c) a matriz A_T é invertível sse $det(A_T) \neq 0$.
 - (d) a matriz A_T é invertível sse $Im(T) = IR^n$.
 - (e) a matriz A_T é invertível sse as colunas da matriz A_T são linearmente independentes.
 - (f) a matriz A_T é invertível sse as linhas da matriz A_T são linearmente independentes.
 - (g) a matriz A_T é invertível sse as colunas da matriz A_T geram \mathbb{R}^n .
 - (h) a matriz A_T é invertível sse as linhas da matriz A_T geram \mathbb{R}^n .
 - (i) a matriz A_T é invertível sse as colunas da matriz A_T formam uma base de \mathbb{R}^n .
 - (j) a matriz A_T é invertível sse as linhas da matriz A_T formam uma base de \mathbb{R}^n .
 - (k) a matriz A_T é invertível sse $n_T = 0$.
 - (I) a matriz A_T é invertível sse $c_T = n$.
 - (m) a matriz A_T é invertível sse $0 \notin \lambda(A_T)$.
- 18. Determine a e b de modo que (1,1) e (1,0) sejam vetores próprios da matriz $A = \begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix}$.
- 19. $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ diz-se idempotente se $A^2 = A$. Mostre que, se λ é um valor próprio de uma matriz idempotente, então λ tem que ser igual a 0 ou 1.
- 20. Sejam $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ e $B = A \alpha I_n$, $\alpha \in \mathbb{R}$. Explicite a relação entre os valores próprios de A e B.
- 21. Neste exercício vai-se apresentar uma aplicação a problemas de misturas envolvendo os conceitos introduzidos neste capítulo.

Os valores e vetores próprios podem ser usados para determinar as soluções de alguns sistemas de equações diferenciais.

Considere o seguinte sistema de equações diferenciais lineares de primeira ordem com coeficientes constantes:

$$\begin{cases} y_1' :=: \frac{dy_1}{dt} = a_{11}y_1 + a_{12}y_2 \\ y_2' :=: \frac{dy_2}{dt} = a_{21}y_1 + a_{22}y_2. \end{cases}$$

Sejam $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$, $y' = \begin{bmatrix} y_1' \\ y_2' \end{bmatrix}$ e $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$. Então, o sistema pode ser escrito na forma y' = Ay:

$$\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}.$$

Se A tem dois valores próprios reais distintos λ_1 e λ_2 com vetores próprios v_1 e v_2 associados a λ_1 e λ_2 respetivamente, então a solução geral do sistema de equações diferenciais considerado é

$$y(t) = c_1 \exp(\lambda_1 t) v_1 + c_2 \exp(\lambda_2 t) v_2, c_1, c_2 \in \mathbb{R}.$$

Se além disso impusermos que y(t) assume um determinado valor y_0 quando t=0, então o problema vai ter uma única solução. Um problema da forma

$$y' = Ay, y(0) = y_0$$

é designado por problema com condições iniciais.

Problema de misturas

Dois tanques estão ligados como ilustrado na figura seguinte:

Inicialmente, o tanque A contém 200 litros de água, onde foram dissolvidos 60 gramas de sal. O tanque B contém 200 litros de água pura. Bombeia-se líquido para dentro

e para fora dos dois tanques a taxas indicadas na figura. Pretende-se determinar a quantidade de sal no instante t.

Sejam $y_1(t)$ e $y_2(t)$ a quantidade de sal em gramas nos tanques A e B, respetivamente, no instante de tempo t. Inicialmente, tem-se

$$y(0) = \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} 60 \\ 0 \end{bmatrix}.$$

A quantidade total de líquido em cada tanque é sempre 200 litros, porque a quantidade de líquido bombeada para dentro é igual à quantidade bombeada para fora em cada tanque. A taxa de variação da quantidade de sal em cada tanque é igual à taxa em que está sendo adicionado sal menos a taxa em que está sendo bombeado para fora. Para o tanque A, a taxa em que o sal está a ser adicionado é dada por

(5 L/min)
$$\left(\frac{y_2(t)}{200} \, g/L\right) = \frac{y_2(t)}{40} \, g/min$$

e a taxa de sal que está sendo bombeada para fora é

(20 L/min)
$$\left(\frac{y_1(t)}{200} \text{ g/L}\right) = \frac{y_1(t)}{10} \text{ g/min}.$$

Então, a taxa de variação para o tanque A é dada por

$$y_1'(t) = \frac{y_2(t)}{40} - \frac{y_1(t)}{10}.$$

Analogamente, a taxa de variação para o tanque B é dada por

$$y_2'(t) = \frac{20y_1(t)}{200} - \frac{20y_2(t)}{200} = \frac{y_1(t)}{10} - \frac{y_2(t)}{10}.$$

Para determinar $y_1(t)$ e $y_2(t)$, precisamos de resolver o problema com condições iniciais

$$y' = Ay, y(0) = y_0,$$

onde $A = \begin{bmatrix} -\frac{1}{10} & \frac{1}{40} \\ \frac{1}{10} & -\frac{1}{10} \end{bmatrix}$ e $y_0 = \begin{bmatrix} 60 \\ 0 \end{bmatrix}$. Calculando os valores próprios de A, obtém-se $\lambda_1 = -\frac{3}{20}$ e $\lambda_2 = -\frac{1}{20}$ com vetores próprios associados $v_1 = (1, -2)$ e $v_2 = (1, 2)$. A solução deste problema é da forma

$$y = c_1 \exp\left(-\frac{3}{20}t\right)v_1 + c_2 \exp\left(-\frac{t}{20}\right)v_2.$$

No instante t = 0, $y = y_0$, logo

$$c_1 v_1 + c_2 v_2 = y_0$$

ou, escrito de outra forma

$$\begin{bmatrix} 1 & 1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 60 \\ 0 \end{bmatrix}.$$

Podemos calcular o valor das constantes c_1 e c_2 resolvendo o sistema associado à última equação. A solução é $c_1=c_2=30$. Conclui-se que a solução do problema de valor inicial é

$$y = 30 \exp\left(-\frac{3}{20}t\right) \begin{bmatrix} 1\\ -2 \end{bmatrix} + 30 \exp\left(-\frac{t}{20}\right) \begin{bmatrix} 1\\ 2 \end{bmatrix},$$

que pode ser reescrita da forma

$$y(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 30 \exp(-\frac{3}{20}t) + 30 \exp(-\frac{t}{20}) \\ -60 \exp(-\frac{3}{20}t) + 60 \exp(-\frac{t}{20}) \end{bmatrix}.$$

Dois tanques contêm, cada um, 100 litros de uma mistura. A mistura no tanque A contém 40 gramas de sal e a mistura no tanque B contém 20 gramas de sal. Bombeia-se líquido para dentro e para fora dos tanques de acordo com a seguinte figura:

Determine a quantidade de sal em t = 1min.

Enunciados dos exercícios do capítulo 7 — Geometria Analítica

- 1. Sejam os vetores $x = (0, -1, 1), y = (2, 0, 3) \in \mathbb{R}^3$.
 - (a) Determine $x \times y$ e $y \times x$.

- (b) Mostre que $(x \times y) \perp x$ e $(x \times y) \perp y$.
- 2. Determine a equação cartesiana do plano α tal que:
 - (a) passa na origem e é perpendicular ao vetor v = (1, 2, 3).
 - (b) Passa na origem e é paralelo aos vetores u = (1, 1, 1) e v = (1, 0, 0).
 - (c) Passa nos pontos A = (1, 0, 0), B = (0, 1, 0) e C = (0, 0, 1).
- 3. Determine a equação vetorial, as equações paramétricas e as equações cartesianas da reta r que passa no ponto A = (-1, 0, 2) e é paralela ao vetor v = (1, 2, 3).
- 4. Determine a equação vetorial, as equações paramétricas e as equações cartesianas das seguintes retas:
 - (a) reta que passa pelo ponto A = (1,2,3) e em que v = (-2,1,-1) é um vetor diretor:
 - (b) reta que passa pelos pontos A = (1, 2, 3) e B = (3, 1, 5);
 - (c) reta que passa pelos pontos A = (1, 2, 3) e B = (3, 1, 3):
 - (d) reta que passa pelos pontos A = (1, 2, 3) e B = (3, 2, 3).
- 5. Determine as equações cartesianas dos seguintes planos:
 - (a) plano que passa pelo ponto A = (1, 0, 1) e que é perpendicular ao vetor u =(1, 2, 3):
 - (b) plano que passa pelo ponto A = (1, 0, 1) e em que u = (1, 2, 3) e v = (3, 2, 3)são vetores diretores:
 - (c) plano que passa pelos pontos A = (1, 2, 3) e B = (3, 1, 3) e em que v = (2, -1, 3)é um vetor diretor:
 - (d) plano que passa pelos pontos A = (1, 1, 1), B = (0, 1, 0) e C = (0, 0, 1).
- 6. Considere, no espaço \mathbb{R}^3 , os pontos A = (1, 2, 3), B = (1, 0, 1), C = (0, 2, 0) e D = (1, 2, 1). Determine:
 - (a) a reta r definida pelos pontos $A \in B$;
 - (b) a reta s que contém o ponto C e que é paralela à reta r;
 - (c) o plano α definido pelas retas r e s:
 - (d) o plano β definido pela reta r e pelo ponto D:
 - (e) o ponto de intersecção da reta r com o plano α .
- 7. Determine a distância entre o ponto P = (0, 1, -2) e o plano α cuja equação cartesiana é x + v + z = 1.

- 8. Determine o ângulo entre os planos α e β , cujas equações cartesianas são x+y+z=1e 2x - y + z = 2, respetivamente.
- 9. Considere, no espaco \mathbb{R}^3 , o plano $\alpha: x+2v=3$, o plano $\beta: x+v-z=0$, a reta r definida pelos pontos A = (1, 2, 3) e B = (1, 0, 1) e a reta s definida pelas equações x + y - z = 4 e x + 2y - 3z = 4. Determine:
 - (a) $\angle(r,s)$.
 - (b) $\angle(\alpha, r)$.
 - (c) $\angle(\alpha,\beta)$.
 - (d) A reta t que contém o ponto A e que é perpendicular ao plano α .
 - (e) $d(A, \alpha)$.
 - (f) d(B,s).
 - (g) O plano que contém a reta r e que é perpendicular ao plano α .
- 10. Identifique as quádricas dadas pelas seguintes equações:
 - (a) $x^2 + 2v^2 + z^2 = 2$:

- (i) $x^2 + 2y^2 = z$:
- (b) $2x^2 + 2y^2 + 2z^2 1 = 0$: (i) $x^2 + 2y^2 = 1$:

- (c) $x^2 3v^2 + 2z^2 = 7$:
- (k) $2v^2 = z$:
- (d) $-4x^2 4y^2 + z^2 = 4$:
- (I) $x^2 2v^2 = 1$:
- (e) $x^2 + 2z^2 4v = 0$:
- (m) $v^2 + 2z^2 4x = 0$:
- (f) $2x^2 + 2z^2 + 3y = 0$: (a) $3x^2 - 2v^2 = z$:
- (n) $v^2 + 2z^2 = 4x^2$:

(h) $x^2 + 2v^2 = z^2$:

(o) $x^2 + 2v^2 - z^2 = 1$:

(p) $2x^2 + 2y^2 = 1$.

Soluções dos exercícios do capítulo 1 — Matrizes

- 1. (a) A tipo 2×4 , c tipo 3×1 , D tipo 3×2 , E tipo 1×4 .
 - (b) B ordem 3, F ordem 2, g ordem 1, H ordem 2. J ordem 3. i ordem 1.
 - (c) e, g, i.
 - (d) c, g, i.
 - (e) B, g, H, J, i.
 - (f) g, H, J, i.
 - (q) B, F, q, H, J, i.
 - (h) B. a. H. J. i.

- 2. (a) $A + B = \begin{bmatrix} 1 & 2 \\ 5 & 5 \end{bmatrix}$.
 - (b) $B + A = \begin{bmatrix} 1 & 2 \\ 5 & 5 \end{bmatrix}$.
 - (c) A expressão A-C não está bem definida (pois as matrizes A e C não são do mesmo tipo).
 - (d) $-C = \begin{bmatrix} -1 & -1 \\ -4 & -4 \\ -9 & -9 \end{bmatrix}$.
 - (e) $(A B) + 3A = \begin{bmatrix} -6 & 3 \\ -5 & 0 \end{bmatrix}$.
 - (f) $4A B = \begin{bmatrix} -6 & 3 \\ -5 & 0 \end{bmatrix}$.
- 3. C.
- 4. $AB = \begin{bmatrix} -1 & 1 \\ -3 & 1 \\ 1 & 4 \end{bmatrix}$.
- 5. (a) $(AB)C = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 5 & 2 \end{bmatrix}$.

(c) $CI_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$.

(b) $A(BC) = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 5 & 2 \end{bmatrix}$.

(d) $I_2C = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$.

- 6. —
- 7. (a) $B^2 = \begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix}$.
 - (b) $B^3 = \begin{bmatrix} -3 & 6 \\ -6 & 3 \end{bmatrix}$.
- 8. —
- 9. —
- 10. —
- 11. —
- 12. (a) $(A+B)^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \neq A^2 + 2AB + B^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
 - (b) $(A B)^2 = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \neq A^2 2AB + B^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$.
 - (c) $(A+B)(A-B) = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} \neq A^2 B^2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.
- 13. D.
- 14. B.
- 15. —
- 16. —
- 17. —
- 18. —

- 19. (a) $\frac{AB^{\mathsf{T}} + BA^{\mathsf{T}}}{2} = \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}$.
 - (b) $C^{\mathsf{T}} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$.
 - (c) $(CBA^{T}C)^{2} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.
 - (d) $uu^{\mathsf{T}} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.
 - (e) $u^{\mathsf{T}}u = [5].$
 - (f) $u^{T}A^{T}Bu = [-2].$
 - (g) $(Au)^T = [1 0].$
 - (h) $u^{T}A^{T} = [10].$
- 20. $X = (A^2 B^{-1})^T$.
- 21. A.
- 22. A.
- 23. —
- 24. D.
- 25. D.
- 26. B e C.
- 27. —
- 28. —
- 29. A.
- 30. D.
- 31. (a) $\begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix} \in fe(A), \text{ I: 0, III: 2, } fer(A) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \text{ I: 0, II: 2, III: 4.}$
 - (b) $\begin{bmatrix} 6 & 3 & -4 \\ 0 & 3 & -\frac{26}{3} \\ 0 & 0 & 0 \end{bmatrix}$ \in fe(B), I: 0, III: 3, fer(B) = $\begin{bmatrix} 1 & 0 & \frac{7}{9} \\ 0 & 1 & -\frac{26}{9} \\ 0 & 0 & 0 \end{bmatrix}$, I: 0, II: 2, III: 4.
 - (c) $\begin{bmatrix} 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \in fe(C), \text{ I: 2, III: 1, } fer(C) = \begin{bmatrix} 1 & 1 & 0 & 0 & -10 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \text{ I: 2, III: 1, IIII: 2.}$
 - (d) $\begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -4 & 4 \\ 0 & 0 & \frac{7}{3} \frac{10}{3} \end{bmatrix} \in \text{fe}(D), \text{ I: 0, III: 3, fer}(D) = \begin{bmatrix} 1 & 0 & 0 & \frac{15}{7} \\ 0 & 1 & 0 & -\frac{4}{7} \\ 0 & 0 & 1 & -\frac{10}{2} \end{bmatrix}, \text{ I: 0, II: 2, III: 6.}$
 - (e) $\begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \in \text{fe}(E), \text{ I: 0, III: 4, fer}(E) = \begin{bmatrix} 1 & 0 & \frac{4}{11} & \frac{13}{11} \\ 0 & 1 & -\frac{5}{11} & \frac{3}{11} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ I: 0, II: 1, III: 5.}$

(f)
$$\begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 0 & 0 & 3 & -6 & 1 \\ 0 & 0 & 0 & -2 & \frac{1}{3} \end{bmatrix} \in \text{fe}(F), \text{ I: 0, III: 3, fer}(F) = \begin{bmatrix} 1 & 2 & 0 & 0 & \frac{4}{3} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{6} \end{bmatrix}, \text{ I: 0, II: 2, III: 6.}$$

(g)
$$G \in fe(G)$$
, I: 0, III: 0, $fer(G) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, I: 0, II: 1, III: 1.

(h)
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix} \in fe(h)$$
, I: 0, III: 2, $fer(h) = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, I: 0, II: 0, III: 2.

(i)
$$\begin{bmatrix} -1 & 1 & -1 & 3 \\ 0 & 4 & -4 & 8 \\ 0 & 0 & -3 & 3 \end{bmatrix} \in \text{fe}(I)$$
, I: 0, III: 3, $\text{fer}(I) = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$, I: 0, II: 3, III: 6.

(j)
$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \in fe(J), \text{ I: 0, III: 3, } fer(J) = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ I: 0, III: 0, III: 5.}$$

32. D.

33. (a)
$$A \in \text{invertível com } A^{-1} = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 1 \\ -1 & \frac{1}{2} & 0 \end{bmatrix}$$
.

- (b) B não é invertível.
- (c) C é invertível com $C^{-1} = \begin{bmatrix} -5 & 4 & -3 \\ 10 & -7 & 6 \\ 8 & -6 & 5 \end{bmatrix}$.
- (d) D é invertível com $D^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$.
- (e) E é invertível com $E^{-1} = \begin{bmatrix} \frac{1}{18} \frac{5}{18} & \frac{7}{18} \\ \frac{7}{18} & \frac{1}{18} \frac{5}{18} \\ -\frac{5}{18} & \frac{7}{18} & \frac{1}{18} \\ -\frac{5}{18} & \frac{7}{18} & \frac{1}{18} \end{bmatrix}$
- (f) F não é invertível.
- 34. (a) $b^{\mathsf{T}}A = [32 1].$
 - (b) A expressão Ab^{T} não está bem definida pois o número de colunas da matriz A que é 3, é diferente do número de linhas da matriz b^{T} , que é 1.
 - (c) $c^{\mathsf{T}}A + d^{\mathsf{T}}A = [0\ 2\ 2].$
 - (d) $A^{\mathsf{T}}b = \begin{bmatrix} 3\\2\\-1 \end{bmatrix}$.
 - (e) $b^{\mathsf{T}}(c+d) = [8].$
 - (f) $(AE)^{T} = \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}$.
 - (g) $E^{T}A^{T} = \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}$.
 - (h) A expressão $A^2(=AA)$ não está bem definida pois o número de colunas da matriz A, que é 2, é diferente do seu número de linhas, que é 3.
 - (i) $(AA^{\mathsf{T}})^2 = \begin{bmatrix} 13 & -24 \\ -24 & 45 \end{bmatrix}$.
 - (j) $(AE)^{-1} = \frac{1}{2} \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$.
- 35. D.
- 36. A.

37.
$$X = \frac{1}{5} \begin{bmatrix} 1 & -3 \\ -2 & 1 \end{bmatrix}$$
.

- 38. Proposição falsa.
- 39. D.
- 40. Exercício 1

(a)
$$M = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
.

- (b) Existem 6 caminhos de comprimento 2 que começam em V_1 : $V_1V_2V_1$, $V_1V_4V_1$, $V_1V_4V_2$, $V_1V_2V_3$, $V_1V_2V_4$, $V_1V_4V_5$.
- (c) 5.
- (d) 7.

Exercício 2

(a)

(b) 2.

Soluções dos exercícios do capítulo 2 — Determinantes

- 1. |B| = 24, |C| = 0, |D| = 8.
- 2. |A| = -3.
- 3. D.
- 4. B.
- 5. B.
- 6. $x \neq y$.
- 7. $x \in \mathbb{R} \{-2, 1\}$.
- 8. $\det((AB^{-1})^{\mathsf{T}}) = -5$.
- 9. —
- 10. D.

- 11. B.
- 12. C.
- 13. B.
- 14. A.
- 15. (b) $E^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$.
- 16. |A| = 15, $|B_{\alpha}| = 1$, |C| = 0, |D| = 0, |E| = 1, |F| = 2.
- 17. det(A) = 1, $adj(A) = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$, $A^{-1} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$.

$$\det(B) = -7$$
, $\operatorname{adj}(B) = \begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix}$, $B^{-1} = \begin{bmatrix} \frac{1}{7} & \frac{27}{7} \\ \frac{3}{7} & -\frac{1}{7} \end{bmatrix}$.

$$\det(C) = 10$$
, $\operatorname{adj}(C) = \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix}$, $C^{-1} = \begin{bmatrix} \frac{2}{5} & -\frac{1}{10} \\ -\frac{1}{5} & \frac{3}{10} \end{bmatrix}$.

$$\det(D) = 3, \ \operatorname{adj}(D) = \begin{bmatrix} -3 & 5 & 2 \\ 0 & 1 & 1 \\ 6 & -8 & -5 \end{bmatrix}, \ D^{-1} = \begin{bmatrix} -1 & \frac{5}{3} & \frac{2}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} \\ 2 - \frac{8}{3} & -\frac{5}{3} \end{bmatrix}.$$

- 18. —
- 19. (a) $X = \begin{bmatrix} 5 & 2 \\ -3 & -2 \end{bmatrix}$.
 - (b) $\det(AX^{T} + DF) = 1$.
- 20. —

21. —

- 22. $|B| = -\gamma \delta$.
- 23. "BOM ESTUDO".

Soluções dos exercícios do capítulo 3 — Sistemas de Equações Lineares

- 1.(S_1) (a) $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A|b = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & -1 & 0 & 1 & 0 \end{bmatrix}$.
 - (b) $CS_{(S_1)} = \{(1, 1, 1)\}.$
 - (c) $CS_{(S_{1,h})} = \{(0,0,0)\}.$
 - (S₂) (a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A|b = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 1 & 4 \end{bmatrix}$.
 - (b) $CS_{(S_2)} = \{(2 t, t, t) : t \in \mathbb{R}\}.$!!!!!!!!!!
 - (c) $CS_{(S_{2h})} = \{(-t, t, t) : t \in \mathbb{R}\}.$!!!!!!!!!!!!

- (S₃) (a) $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 2 \\ 2 \\ 3 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A|b = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 1 & 0 & 2 \\ 2 & 2 & 1 & 1 \end{bmatrix}$.
 - (b) $CS_{(S_3)} = \emptyset$.
 - (c) $CS_{(S_{3h})} = \{(-s, s, 0) : s \in \mathbb{R}\}.$
- $(S_4) (a) A = \begin{bmatrix} 1 & -1 & 1 \\ -2 & 2 & -2 \\ -1 & 1 & -1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, A|b = \begin{bmatrix} 1 & -1 & 1 & 1 \\ -2 & 2 & -2 & -2 \\ 1 & 1 & -1 & -1 \end{bmatrix}.$
 - (b) $CS_{(S_4)} = \{(1+s-t, s, t) : s, t \in \mathbb{R}\}.$
 - (c) $CS_{(S_{a,b})} = \{(s-t, s, t) : s, t \in \mathbb{R}\}.$
- $2.(S_1)$ sistema PD, $CS_{(S_1)} = \{(1,2)\}.$
- (S_2) sistema Imp, $CS_{(S_2)} = \emptyset$.
- (S_3) sistema PI, $CS_{(S_3)} = \{(\frac{5-\alpha}{2}, \frac{23-5\alpha}{4}, \alpha) : \alpha \in \mathbb{R}\}.$
- (S_4) sistema PI, $CS_{(S_4)} = \{(-s, 1-t, s, t) : t, s \in \mathbb{R}\}.$
- (S_5) sistema PI, $CS_{(S_5)} = \{(0, -\alpha, \alpha) : \alpha \in \mathbb{R}\}.$
- (S_6) sistema PI, $CS_{(S_6)} = \{(-\frac{4}{3}\alpha, 0, \frac{1}{3}\alpha, \alpha) : \alpha \in \mathbb{R}\}.$
- (S_7) sistema PD, $CS_{(S_7)} = \{(1, -1, 1, -1)\}.$
- (S_8) sistema PD, $CS_{(S_8)} = \{(0, 1, 0, 0)\}.$
- 3. A.
- 4. B.
- 5. A.
- 6. B.
- 7. C.
- 8. (a) PD: $\alpha \neq 3$. PI: $\alpha = 3$. Imp: nunca.
 - (b) PD: $k \neq 2 \land k \neq -5$. PI: k = 2. Imp: k = -5.
 - (c) PD: nunca. PI: $c \neq 3 \lor t = 3$. Imp: $c = 3 \land t \neq 3$.
 - (d) PD: nunca. PI: $a \neq -1 \lor t = -1$. Imp: $a = -1 \land t \neq -1$.
 - (e) PD: $\beta \neq -2$. PI: nunca. Imp: $\beta = -2$.
 - (f) PD: $\gamma \neq 2$. PI: $\gamma = 2$. Imp: nunca.
- 9. D.
- 10. D.
- 11. C.
- 12. D.

- 13. (b) $CS_{(S)} = \{(-\frac{13}{20}, -\frac{1}{20})\}.$
- 14. (b) $CS_{(S)} = \{(1, 2, 3)\}.$
- 15. A. C. D e E.
- 16. (a) PD: $a \neq 1$ e $a \neq \frac{1}{2}$ e $b \in \mathbb{R}$. PI: (a = 1 e b = 1) ou $(a = \frac{1}{2} \text{ e } b \in \mathbb{R})$. Imp: 10. A, B e C.
 - (b) $CS_{(S)} = \{(1, 0, 0)\}.$
- 17. (a) Para $\alpha = \frac{1}{2}$ o sistema é Imp. Para $\alpha \neq \frac{1}{2}$ o sistema é PD.
 - (b) $CS_{(S')} = \{(2\alpha, \alpha, \alpha) : \alpha \in \mathbb{R}\}.$
- 18. $x^2 2x + 3$.
- 19. —
- 20. (a) $A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix}$.
 - (c) $CS_{Ax=b} = \{(0, 1, 2)\}.$
- 21. $\alpha \in \mathbb{R} \{-2, 1\}.$
- 22. $i_1 = 5A$. $i_2 = 3A$ e $i_3 = -2A$.

Soluções dos exercícios do capítulo 4 — Espaços Vetoriais

- 1. —
- 2 —
- 3. —
- 4. C.
- 5. B.
- 6. (a) $v = -\frac{1}{2}v_1$.
 - (b) v não é uma combinação linear de v_1 .
 - (c) $v = -v_1 + 4v_2$.
 - (d) $v = (-1 + 2\alpha)v_1 + \alpha v_2, \ \alpha \in \mathbb{R}$.
 - (e) v não é uma combinação linear de v_1 e v_2 .
 - (f) $v = (-1 2\alpha)v_1 + (1 \alpha)v_2 + \alpha v_3, \ \alpha \in \mathbb{R}$.
- 7. (a) w = 7u 3v.

- (b) $\alpha = -8$.
- 8. —
- 9. B.
- 11. $\alpha \in \mathbb{R}$, $\beta \in \mathbb{R} \{0\}$.
- 12. $X = \{(1,3,2), (1,0,2)\}.$
- 13. $X = \{(1, -3, 1, -1, 3), (1, -1, 1, -1, 1)\}$
- 14. A e C.
- 15. $\alpha \in \mathbb{R} \{\frac{1}{2}\}.$
- 16. $\alpha_1 \in \mathbb{R} \land \beta_1 \in \mathbb{R} \land (\alpha_2 \in \mathbb{R} \{0\} \lor \beta_2 \in \mathbb{R} \{0\}).$
- 17. (a) Por exemplo u = (1, 1, 0) e v = (0, 0, 1).
- 18. —
- 19. A e C.
- 20. $\alpha \in \mathbb{R} \{-\sqrt{6}, \sqrt{6}\}.$
- 21. A.
- 22. D.
- 23. (b) $[z]_{\mathcal{B}} = (1, 0, -1)$.
- 24. D.
- 25. B.
- 26. C.
- 27. Por exemplo, o conjunto $\{(1,1,0,0), (-6,0,2,1)\}$ é uma base de F e dim(F) = 2.
- 28. (c) Não.
 - (d) $\dim(F) = 2$.
- 29. (a) Sim.
 - (b) Não.
 - (c) Não.
 - (d) Sim.

- (e) $\#C \ge 2$.
- (f) $\#D \le 2$.
- (g) E é um conjunto gerador de V sse v_1 e v_4 forem vetores linearmente independentes.
- 30. P_2 , P_3 e P_4 .
- 31. D.
- 32. C.
- 33. D.
- 34. A.

Soluções dos exercícios do capítulo 5 — Transformações Lineares de \mathbb{R}^n em \mathbb{R}^m

- 1. T_1 e T_3 .
- 2. (a) Proposição falsa.
 - (b) Proposição falsa.
 - (c) Proposição verdadeira.
- 3. $\alpha = 2\beta$.
- 4. D.
- 5. A.
- 6. (a) $A_T = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$.
 - (b) T(u) = (0,0,0), T(v) = (2,-1,-1), T(w) = (-15,9,6).
- 7. C.
- 8. D.
- 9. (a) $A_T = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.
 - (b) $A_{T,\mathcal{B},\mathcal{B}'} = \frac{1}{5} \begin{bmatrix} -11 & -23 \\ 13 & -29 \end{bmatrix}$
- 10. $A_{S+T} = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$.
- 11. $A_T = \begin{bmatrix} -4 & -2 \\ 0 & 0 \\ 0 & -2 \end{bmatrix}$.
- 12. (a) $A_{S \circ T} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$.

- (b) $A_{T \circ S} = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$.
- 13. (a) $A_T = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -2 \end{bmatrix}$, $A_S = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 1 & -1 \end{bmatrix}$, $A_U = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$.
 - (b) i. A operação não está bem definida.
 - ii. $A_{U \circ U} = \begin{bmatrix} 4 & 1 \\ 0 & 1 \end{bmatrix}$.
 - iii. $A_{S \circ T} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.
 - iv. $A_{T \circ S} = \begin{bmatrix} 3 & 0 \\ -1 & 3 \end{bmatrix}$.
 - v. $A_{U \circ U + \alpha(T \circ S)} = \begin{bmatrix} 4+3\alpha & 1 \\ -\alpha & 1+3\alpha \end{bmatrix}$.
- 14. D.
- 15. B.
- 16. (a) $Im(T_1) = IR^3$, $Nuc(T_1) = \{(0, 0, 0)\}$.
 - (b) $Im(T_2) = \langle (1, 0, 0), (0, 1, 0) \rangle$, $Nuc(T_2) = \langle (0, 0, 1) \rangle$.
 - (c) $Im(T_3) = \langle (1, 1, 1) \rangle$, $Nuc(T_3) = \langle (0, 1, 0), (0, 0, 1) \rangle$.
- 17. (a) T(x, y) = (-x + 3y, x, 2x + y).
 - (b) T(x, y) = (-x + 2y, -3x + y, 7x y).
 - (c) T(x, y, z) = 8x 3y 2z.
- 18. T(x, y, z) = (0, 0, z y).
- 19. (a) $\operatorname{Im}(T_1) = \operatorname{IR}, c_{T_1} = 1,$ $\operatorname{Nuc}(T_1) = \{(x, -x) : x \in \operatorname{IR}\} = \langle (1, -1) \rangle, n_{T_1} = 1,$ $A_{T_1} = [1\ 1].$
 - (b) $Im(T_2) = \{(x, 2x) : x \in \mathbb{R}\} = \langle (1, 2) \rangle, c_{T_2} = 1,$ $Nuc(T_2) = \{(-y - z, y, z) : y, z \in \mathbb{R}\} = \langle (-1, 1, 0), (-1, 0, 1) \rangle, n_{T_2} = 2,$ $A_{T_2} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \end{bmatrix}.$
 - (c) $\operatorname{Im}(T_3) = \{(x, 0, z) : x, z \in \mathbb{R}\} = \langle (1, 0, 0), (0, 0, 1) \rangle, c_{T_3} = 2, \operatorname{Nuc}(T_3) = \{(z, 2z, z) : z \in \mathbb{R}\} = \langle (1, 2, 1) \rangle, n_{T_3} = 1, A_{T_3} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 & -2 \\ 0 & 1 & -2 \end{bmatrix}.$
 - (d) $\operatorname{Im}(T_4) = \mathbb{R}^3$, $c_{T_4} = 3$, $\operatorname{Nuc}(T_4) = \{(3w, 3w, w, w) : w \in \mathbb{R}\} = \langle (3, 3, 1, 1) \rangle$, $n_{T_4} = 1$, $A_{T_4} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & -3 \end{bmatrix}$.
- 20. (a) Por exemplo $\{(1,1,1)\}$.
 - (b) $\dim(\operatorname{Nuc}(T)) = 1$.
- 21. —

- 22. D.
- 23. C.
- 24. B.
- 25. A.
- 26. A.
- 27. B.
- 28. A.
- 29. C.
- 30. C.
- 31. A.
- 32. A.
- 33. B.

Soluções dos exercícios do capítulo 6 — Valores e Vetores Próprios

- 1. (a) $\lambda(A) = \{-1, 5\}$. $E_{-1} = \{(-2\alpha, \alpha) : \alpha \in \mathbb{C}\}$. $E_5 = \{(\alpha, \alpha) : \alpha \in \mathbb{C}\}$.
 - (b) $\lambda(B) = \{-i, i\}$. $E_{-i} = \{(\frac{\alpha}{1+i}, \alpha) : \alpha \in \mathbb{C}\}$. $E_i = \{(\frac{\alpha}{1-i}, \alpha) : \alpha \in \mathbb{C}\}$.
 - (c) $\lambda(C) = \{-2, 4\}$, em que o valor próprio $\lambda_1 = -2$ tem multiplicidade algébrica dois. $E_{-2} = \{(\beta \alpha, \beta, \alpha) : \alpha, \beta \in \mathbb{C}\}$. $E_4 = \{(\frac{\alpha}{2}, \frac{\alpha}{2}, \alpha) : \alpha \in \mathbb{C}\}$.
 - (d) $\lambda(D) = \{2, 4\}$, em que o valor próprio $\lambda_1 = 2$ tem multiplicidade algébrica dois. $E_2 = \{(\alpha, \beta, \alpha) : \alpha, \beta \in \mathbb{C}\}$. $E_4 = \{(-\alpha, 0, \alpha) : \alpha \in \mathbb{C}\}$.
 - (e) $\lambda(E) = \{0, 2\}$, em que o valor próprio $\lambda_2 = 2$ tem multiplicidade algébrica dois. $E_0 = \{(\alpha, -\alpha, \alpha) : \alpha \in \mathbb{C}\}$. $E_2 = \{(\alpha, 0, \alpha) : \alpha \in \mathbb{C}\}$.
 - (f) $\lambda(F) = \{1, 2, 3\}$. $E_1 = \{(0, \alpha, 0) : \alpha \in \mathbb{C}\}$. $E_2 = \{(-\frac{\alpha}{2}, \alpha, \alpha) : \alpha \in \mathbb{C}\}$. $E_3 = \{(-\alpha, \alpha, \alpha) : \alpha \in \mathbb{C}\}$.
- 2. $\lambda(A) = {\alpha}, E_{\alpha} = {(0, 0, x) : x \in \mathbb{C}}.$
- 3. D.
- 4. D.
- 5. D.

- 6. B.
- 7. A.
- 8. (a) $\lambda(A) = \{1, 3\}, E_1 = \{(\alpha, \alpha) : \alpha \in \mathbb{C}\}, E_3 = \{(-\alpha, \alpha) : \alpha \in \mathbb{C}\}.$
 - (b) $\lambda(A^2) = \{1, 9\}, E_1 = \{(\alpha, \alpha) : \alpha \in \mathbb{C}\}, E_9 = \{(-\alpha, \alpha) : \alpha \in \mathbb{C}\}.$
 - (c) $\lambda(A^{-1}) = \{1, \frac{1}{3}\}, E_1 = \{(\alpha, \alpha) : \alpha \in \mathbb{C}\}, E_{\frac{1}{2}} = \{(-\alpha, \alpha) : \alpha \in \mathbb{C}\}.$
- 9. D.
- 10. D.
- 11. A.
- 12. (b) Por exemplo, $P = \begin{bmatrix} \frac{4}{5} & \frac{3}{4} \\ 1 & 1 \end{bmatrix}$.
- 13. (b) Por exemplo, $P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$.
- 14. C.
- 15. —
- 16. (b) $\lambda(A) = \{2, 6\}.$
- 17. Todas as proposições são verdadeiras.
- 18. a = 0, b = 2.
- 19. —
- 20. Se $\lambda \in \lambda(A)$, então $\lambda \alpha \in \lambda(B)$.
- 21. $y_1(1) = 25 \exp(-\frac{2}{25}) + 15 \exp(-\frac{6}{25}) \approx 34.8773g$ $y_2(1) = 50 \exp(-\frac{2}{25}) - 30 \exp(-\frac{6}{25}) \approx 22.5570g$.

Soluções dos exercícios do capítulo 7 — Geometria Analítica

- 1. (a) $x \times y = (-3, 2, 2), y \times x = (3, -2, -2).$
- 2. (a) x + 2y + 3z = 0.
 - (b) y z = 0.
 - (c) x + y + z = 1.
- 3. i. equação vetorial: $(x, y, z) = (-1, 0, 2) + \alpha(1, 2, 3), \alpha \in \mathbb{R}$.

- ii. equações paramétricas: $\left\{ \begin{array}{ll} x=-1+\alpha\\ y=2\alpha & \text{, }\alpha\in \mathrm{IR}.\\ z=2+3\alpha \end{array} \right.$
- iii. equações cartesianas: $x + 1 = \frac{y}{2} = \frac{z-2}{3}$
- i. equação vetorial: $(x, y, z) = (1, 2, 3) + \alpha(-2, 1, -1), \alpha \in \mathbb{R}$.
 - ii. equações paramétricas: $\left\{ \begin{array}{l} x=1-2\alpha\\ y=2+\alpha\\ z=3-\alpha \end{array} \right. , \alpha\in {\rm IR}.$
 - iii. equações cartesianas: $\frac{x-1}{-2} = \frac{y-2}{1} = \frac{z-3}{-1}$
 - i. equação vetorial: $(x, y, z) = (1, 2, 3) + \alpha(2, -1, 2), \alpha \in \mathbb{R}$.
 - ii. equações paramétricas: $\left\{ \begin{array}{l} x=1+2\alpha\\ y=2-\alpha\\ z=3+2\alpha \end{array} \right. , \alpha\in {\rm I\!R}.$
 - iii. equações cartesianas: $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2}$
 - i. equação vetorial: $(x, y, z) = (1, 2, 3) + \alpha(2, -1, 0), \alpha \in \mathbb{R}$.
 - ii. equações paramétricas: $\left\{ \begin{array}{l} x=1+2\alpha\\ y=2-\alpha\\ z=3 \end{array} \right. , \alpha\in {\rm I\!R}.$
 - iii. equações cartesianas: $\frac{x-1}{2} = \frac{y-2}{-1}$, z = 3.
 - i. equação vetorial: $(x, y, z) = (1, 2, 3) + \alpha(2, 0, 0), \alpha \in \mathbb{R}$.
 - ii. equações paramétricas: $\left\{ \begin{array}{l} x=1+2\alpha\\ y=2\\ z=3 \end{array} \right. , \alpha \in {\rm I\!R}.$
 - iii. equações cartesianas: y = 2, z = 3
- 5. (a) x + 2y + 3z = 4. (c) x + 2y = 5. (b) 3y 2z = -2. (d) x y z = -1.

- 6. (a) x = 1, y z = -1.
 - (b) x = 0, y z = 2.
 - (c) 3x + y z = 2.
 - (d) x = 1.
 - (e) A reta r pertence ao plano α .
- 7. $d(P, \alpha) = \frac{2\sqrt{3}}{3}$
- 8. $\angle(\alpha, \beta) = \arccos\left(\frac{\sqrt{2}}{3}\right)$.

- 9. (a) $\angle(r,s) = \frac{\pi}{6}$.
 - (b) $\angle(\alpha, r) = \arcsin\left(\frac{\sqrt{10}}{5}\right)$
 - (c) $\angle(\alpha, \beta) = \arccos\left(\frac{\sqrt{15}}{5}\right)$
 - (d) 2x y = 0, z = 3.
 - (e) $d(A, \alpha) = \frac{2\sqrt{5}}{5}$.
 - (f) $d(B, s) = \frac{\sqrt{66}}{3}$.
 - (q) 2x y + z = 3
- 10. (a) Elipsóide.
 - (b) Esfera.
 - (c) Hiperbolóide de uma folha.
 - (d) Hiperbolóide de duas folhas.
 - (e) Parabolóide elítico.
 - (f) Parabolóide circular.
 - (g) Parabolóide hiperbólico.
 - (h) Cone.
 - (i) Parabolóide elítico.
 - (i) Cilindro elítico.
 - (k) Cilindro parabólico.
 - (I) Cilindro hiperbólico.
 - (m) Parabolóide elítico.
 - (n) Cone.
 - (o) Hiperbolóide de uma folha.
 - (p) Cilindro circular.

Resoluções dos exercícios do capítulo 1 — Matrizes

- 1. (a) A tipo 2×4 , c tipo 3×1 , D tipo 3×2 , E tipo 1×4 .
 - (b) B ordem 3, F ordem 2, g ordem 1, H ordem 2, J ordem 3, i ordem 1.. item e, g, i.
 - (c) c, g, i.
 - (d) B, g, H, J, i.
 - (e) g, H, J, i.
 - (f) B, F, g, H, J, i.
 - (g) B, g, H, J, i.
- 2. Atendendo ao enunciado do execício, tem-se que $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} 3 \times 1 1 & 3 \times 1 2 \\ 3 \times 2 1 & 3 \times 2 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 5 & 4 \end{bmatrix}$ e $C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 2 \end{bmatrix}$, pelo que:
 - (a) $A + B = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 5 \end{bmatrix}$.
 - (b) $B + A = \begin{bmatrix} 2 & 1 \\ 5 & 4 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 5 \end{bmatrix}$.
 - (c) A expressão A-C não está bem definida, pois as matrizes A e C não são do mesmo tipo.
 - (d) $-C = -\begin{bmatrix} 1 & 1 \\ 4 & 4 \\ 9 & 9 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -4 & -4 \\ -9 & -9 \end{bmatrix}$.
 - (e) $(A B) + 3A = (\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 4 \end{bmatrix}) + 3 \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ -5 & -3 \end{bmatrix} + 3 \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -6 & 3 \\ -5 & 0 \end{bmatrix}$
 - (f) $4A B = 4 \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 5 & 4 \end{bmatrix} = \begin{bmatrix} -6 & 3 \\ -5 & 0 \end{bmatrix}$.
- 3. A Como as matrizes A e B não são do mesmo tipo, a expressão A + B não está bem definida. Assim, a proposição é falsa.
 - B Como a matriz B é uma matriz quadrada, a expressão B^2 está bem definida, sendo $3B^2$ uma matriz quadrada de ordem 2. A matriz 2A uma matriz do tipo 2×3 . Como as matrizes 2A e $3B^2$ não são do mesmo tipo, a expressão $2A 3B^2$ não está bem definida. Assim, a proposição é falsa.
 - Como o número de colunas da matriz C, que é 2, é igual ao número de linhas da matriz B, a expressão CB está bem definida, sendo CB uma matriz do tipo 3 por 2. Como o número de colunas da matriz CB, que é 2, é igual ao número de linhas da matriz A, a expressão CBA está bem definida. Assim, a proposição é verdadeira.
 - D Como o número de colunas da matriz A, que é 3, é diferente do número de linhas da matriz B, que é 2, a expressão AB não está bem definida, pelo que a expressão ABC também não está bem definida. Assim, a proposição é falsa.
- 4.

$$AB = \begin{bmatrix} 1 & 0 & -2 & 1 \\ 1 & 1 & 0 & -2 \\ 1 & 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 0 \times 0 - 2 \times 2 + 1 \times 2 & 1 \times 2 + 0 \times 1 - 2 \times 1 + 1 \times 1 \\ 1 \times 1 + 1 \times 0 + 0 \times 2 - 2 \times 2 & 1 \times 2 + 1 \times 1 + 0 \times 1 - 2 \times 1 \\ 1 \times 1 + 1 \times 0 + 0 \times 2 - 2 \times 2 & 1 \times 2 + 1 \times 1 + 0 \times 1 - 2 \times 1 \\ 1 \times 1 + 2 \times 0 - 1 \times 2 + 1 \times 2 & 1 \times 2 + 2 \times 1 - 1 \times 1 + 1 \times 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -3 & 1 \\ 1 & 4 \end{bmatrix}.$$

5. (a) Como $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$ e $B \in \mathcal{M}_{2\times 2}(\mathbb{R})$, então, $AB \in \mathcal{M}_{2\times 2}(\mathbb{R})$. Como $C \in \mathcal{M}_{2\times 3}(\mathbb{R})$, então $(AB)C \in \mathcal{M}_{2\times 3}(\mathbb{R})$, pelo que a operação está bem definida, vindo

$$(AB)C = \begin{pmatrix} \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 5 & 2 \end{bmatrix}.$$

(b) Como $B \in \mathcal{M}_{2\times 2}(\mathbb{R})$ e $C \in \mathcal{M}_{2\times 3}(\mathbb{R})$, então, $BC \in \mathcal{M}_{2\times 3}(\mathbb{R})$. Como $A \in \mathcal{M}_{2\times 2}(\mathbb{R})$, então $A(BC) \in \mathcal{M}_{2\times 3}(\mathbb{R})$, pelo que a operação está bem definida, vindo

$$A(BC) = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 5 & 2 \\ 3 & 5 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 5 & 2 \end{bmatrix}.$$

Note-se que, uma vez que a multiplicação de matrizes é associativa, os resultados das alíneas (a) e (b) tinham que ser iguais.

(c) Como $C \in \mathcal{M}_{2\times 3}(\mathbb{R})$ e $I_3 \in \mathcal{M}_{3\times 3}(\mathbb{R})$, então, $CI_3 \in \mathcal{M}_{2\times 3}(\mathbb{R})$, pelo que a operação está bem definida, vindo

$$CI_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}.$$

Note-se que, uma vez que a matriz identidade é o elemento neutro da multiplicação de matrizes, tinha-se que obter $CI_3 = C$.

(d) Como $I_2 \in \mathcal{M}_{2\times 2}(\mathbb{R})$ e $C \in \mathcal{M}_{2\times 3}(\mathbb{R})$, então, $I_2C \in \mathcal{M}_{2\times 3}(\mathbb{R})$, pelo que a operação está bem definida, vindo

$$I_2C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}.$$

Note-se que, uma vez que a matriz identidade é o elemento neutro da multiplicação de matrizes, tinha-se que obter $I_2C=C$.

- 6. Sejam $A = [a_{ij}] \in \mathcal{M}_{m \times n}(\mathbb{R}), B = [b_{ij}] \in \mathcal{M}_{n \times p}(\mathbb{R}) \text{ e } C = [c_{ij}] \in \mathcal{M}_{p \times q}(\mathbb{R})$
 - (i) Notando que:
 - Como A é do tipo $m \times n$ e B é do tipo $n \times p$, então pode-se calcular AB, que é uma matriz do tipo $m \times p$. Como C é do tipo $p \times q$, então pode-se calcular (AB)C, que é uma matriz do tipo $m \times q$.
 - Como B é do tipo $n \times p$ e C é do tipo $p \times q$, então pode-se calcular BC, que é uma matriz do tipo $n \times q$. Como A é do tipo $m \times n$, então pode-se calcular A(BC), que é uma matriz do tipo $m \times q$.

Assim, tem-se que (AB)C e A(BC) são matrizes do mesmo tipo.

(ii) Sejam $i \in \{1, ..., m\}$ e $j \in \{1, ..., q\}$. Então: (ii.1)

$$((AB)C)_{ij} = \sum_{s=1}^{p} (AB)_{is} c_{sj} = \sum_{s=1}^{p} \left(\sum_{k=1}^{n} a_{ik} b_{ks}\right) c_{sj} = \sum_{s=1}^{p} \left(\underbrace{a_{i1} b_{1s}}_{k=1} + \underbrace{a_{i2} b_{2s}}_{k=2} + \dots + \underbrace{a_{in} b_{ns}}_{k=n}\right) c_{sj}$$

$$= \underbrace{\left((a_{i1} b_{11} + a_{i2} b_{21} + \dots + a_{in} b_{n1}) c_{1j}\right)}_{s=1} + \underbrace{\left((a_{i1} b_{12} + a_{i2} b_{22} + \dots + a_{in} b_{n2}) c_{2j}\right)}_{s=2} + \dots + \underbrace{\left((a_{i1} b_{1p} + a_{i2} b_{2p} + \dots + a_{in} b_{np}) c_{pj}\right)}_{s=p}$$

$$= \underbrace{\left(a_{i1} b_{11} c_{1j} + a_{i2} b_{21} c_{1j} + \dots + a_{in} b_{n1} c_{1j}\right)}_{s=1} + \underbrace{\left(a_{i1} b_{12} c_{2j} + a_{i2} b_{22} c_{2j} + \dots + a_{in} b_{n2} c_{2j}\right)}_{s=2} + \dots + \underbrace{\left(a_{i1} b_{1p} c_{pj} + a_{i2} b_{2p} c_{pj} + \dots + a_{in} b_{np} c_{pj}\right)}_{s=p}$$

$$= \sum_{s=1}^{p} \left(\underbrace{a_{i1} b_{1s} c_{sj}}_{k=1} + \underbrace{a_{i2} b_{2s} c_{sj}}_{k=2} + \dots + \underbrace{a_{in} b_{ns} c_{sj}}_{k=n}\right) = \sum_{s=1}^{p} \sum_{k=1}^{n} a_{ik} b_{ks} c_{sj}.$$

(ii.2)

$$(A(BC))_{ij} = \sum_{k=1}^{n} a_{ik} (BC)_{kj} = \sum_{k=1}^{n} a_{ik} \left(\sum_{s=1}^{p} b_{ks} c_{sj} \right) = \sum_{k=1}^{n} a_{ik} \left(\underbrace{b_{k1} c_{1j} + b_{k2} c_{2j} + \dots + b_{kp} c_{pj}}_{s=p} \right)$$

$$= \underbrace{a_{i1} \left(b_{11} c_{1j} + b_{12} c_{2j} + \dots + b_{1p} c_{pj} \right)}_{k=1} + \underbrace{a_{i2} \left(b_{21} c_{1j} + b_{22} c_{2j} + \dots + b_{2p} c_{pj} \right)}_{k=2} + \dots + \underbrace{a_{in} \left(b_{n1} c_{1j} + b_{n2} c_{2j} + \dots + b_{np} c_{pj} \right)}_{k=n}$$

$$= \left(a_{i1} b_{11} c_{1j} + a_{i1} b_{12} c_{2j} + \dots + a_{in} b_{np} c_{pj} \right) + \left(a_{i2} b_{21} c_{1j} + a_{i2} b_{22} c_{2j} + \dots + a_{ip} b_{np} c_{pj} \right) + \dots + \left(a_{in} b_{n1} c_{1j} + a_{in} b_{n2} c_{2j} + \dots + a_{in} b_{np} c_{pj} \right)$$

$$= \underbrace{\left(a_{i1} b_{11} c_{1j} + a_{i2} b_{21} c_{1j} + \dots + a_{in} b_{n1} c_{1j} \right)}_{s=1} + \underbrace{\left(a_{i1} b_{12} c_{2j} + a_{i2} b_{22} c_{2j} + \dots + a_{in} b_{n2} c_{2j} \right)}_{s=2} + \dots + \underbrace{\left(a_{i1} b_{1p} c_{pj} + a_{i2} b_{2p} c_{pj} + \dots + a_{in} b_{np} c_{pj} \right)}_{s=p}$$

$$= \sum_{s=1}^{p} \left(\underbrace{a_{i1} b_{1s} c_{sj} + a_{i2} b_{2s} c_{sj} + \dots + a_{in} b_{ns} c_{sj}}_{k=n} \right) = \sum_{s=1}^{p} \sum_{k=1}^{n} a_{ik} b_{ks} c_{sj}.$$

Assim, de (ii.1) e (ii.1) conclui-se que $((AB)C)_{ij} = (A(BC))_{ij}$, $i, \ldots, m, j = 1, \ldots, q$.

Versão mais compacta:

$$((AB)C)_{ij} = \sum_{s=1}^{p} (AB)_{is} c_{sj} = \sum_{s=1}^{p} \sum_{k=1}^{n} (a_{ik}b_{ks}) c_{sj} = \sum_{s=1}^{p} \sum_{k=1}^{n} a_{ik} (b_{ks}c_{sj}) = \sum_{k=1}^{n} a_{ik} \sum_{s=1}^{p} b_{ks}c_{sj} = \sum_{k=1}^{n} a_{ik} (BC)_{kj} = (A(BC))_{ij}.$$

Atendendo a (i) e (ii), conclui-se que (AB)C = A(BC), ou seja, que a multiplicação de matrizes é associativa.

7. **(a)**

$$B^{2} = BB = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 \times 1 - 2 \times 2 & 1 \times (-2) - 2 \times (-1) \\ 2 \times 1 - 1 \times 2 & 2 \times (-2) - 1 \times (-1) \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix}.$$

(b)

$$B^{3} = BBB = B^{2}B = \begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} -3 \times 1 + 0 \times 2 & -3 \times (-2) + 0 \times (-1) \\ 0 \times 1 - 3 \times 2 & 0 \times (-2) - 3 \times (-1) \end{bmatrix} = \begin{bmatrix} -3 & 6 \\ -6 & 3 \end{bmatrix}.$$

8. Sejam $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{R})$. Então:

$$\operatorname{tr}(AB - BA) = \operatorname{tr} \left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} - \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \right) = \operatorname{tr} \left(\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix} - \begin{bmatrix} b_{11}a_{11} + b_{12}a_{21} & b_{11}a_{12} + b_{12}a_{22} \\ b_{21}a_{11} + b_{22}a_{21} & b_{21}a_{12} + b_{22}a_{22} \end{bmatrix} \right)$$

$$= \operatorname{tr} \left(\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} - b_{11}a_{11} - b_{12}a_{21} & a_{11}b_{12} + a_{12}b_{22} - b_{11}a_{12} - b_{12}a_{22} \\ a_{21}b_{11} + a_{22}b_{21} - b_{21}a_{11} - b_{22}a_{21} & a_{21}b_{12} + a_{22}b_{22} - b_{21}a_{12} - b_{22}a_{22} \end{bmatrix} \right) = \operatorname{tr} \left(\begin{bmatrix} a_{12}b_{21} - b_{12}a_{21} & a_{11}b_{12} + a_{12}b_{22} - b_{11}a_{12} - b_{12}a_{22} \\ a_{21}b_{11} + a_{22}b_{21} - b_{21}a_{11} - b_{22}a_{21} & a_{21}b_{12} - b_{21}a_{12} \end{bmatrix} \right)$$

$$= \left(a_{12}b_{21} - b_{12}a_{21} \right) + \left(a_{21}b_{12} - b_{21}a_{12} \right) = \left(a_{12}b_{21} - b_{21}a_{12} \right) + \left(a_{21}b_{12} - b_{21}a_{22} \right) + \left(a_{21}b_{22} - b_{22}a_{22} \right) + \left(a_{21}b_{22} - b_{2$$

9. Atendendo a

$$X^{2} = XX = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a^{2} + bc & ab + bd \\ ca + dc & cb + d^{2} \end{bmatrix} e$$

$$(a+d)X - (ad-bc)I_{2} = (a+d) \begin{bmatrix} a & b \\ c & d \end{bmatrix} - (ad-bc) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} (a+d)a & (a+d)b \\ (a+d)c & (a+d)d \end{bmatrix} - \begin{bmatrix} (ad-bc) & 0 \\ 0 & (ad-bc) \end{bmatrix} = \begin{bmatrix} (a+d)a - (ad-bc) & (a+d)b \\ (a+d)c & (a+d)d - (ad-bc) \end{bmatrix}$$

$$= \begin{bmatrix} a^{2} + da - ad + bc & ab + db \\ ac + dc & ad + d^{2} - ad + bc \end{bmatrix} = \begin{bmatrix} a^{2} + bc & ab + bd \\ ca + dc & cb + d^{2} \end{bmatrix} .$$

tem-se que $X^2 = (a + d)X - (ad - bc)I_2$.

10. Atendendo a

$$XY = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 0 \\ 3 & 1 & 0 \\ -1 & -4 & 1 \end{bmatrix} = \begin{bmatrix} 1 \times 2 + 0 \times 3 + 0 \times (-1) & 1 \times 4 + 0 \times 1 + 0 \times (-4) & 1 \times 0 + 0 \times 0 + 0 \times 1 \\ 0 \times 2 + 1 \times 3 + 0 \times (-1) & 0 \times 4 + 1 \times 1 + 0 \times (-4) & 0 \times 0 + 1 \times 0 + 0 \times 1 \\ 1 \times 2 + 0 \times 3 + 2 \times (-1) & 1 \times 4 + 0 \times 1 + 2 \times (-4) & 1 \times 0 + 0 \times 0 + 2 \times 1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 0 \\ 3 & 1 & 0 \\ 0 & -4 & 2 \end{bmatrix} e$$

$$YX = \begin{bmatrix} 2 & 4 & 0 \\ 3 & 1 & 0 \\ -1 & -4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 \times 1 + 4 \times 0 + 0 \times 1 & 2 \times 0 + 4 \times 1 + 0 \times 0 & 2 \times 0 + 4 \times 0 + 0 \times 2 \\ 3 \times 1 + 1 \times 0 + 0 \times 1 & 3 \times 0 + 1 \times 1 + 0 \times 0 & 3 \times 0 + 1 \times 0 + 0 \times 2 \\ -1 \times 1 - 4 \times 0 + 1 \times 1 & -1 \times 0 - 4 \times 1 + 1 \times 0 & -1 \times 0 - 4 \times 0 + 1 \times 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 0 \\ 3 & 1 & 0 \\ 0 & -4 & 2 \end{bmatrix},$$

tem-se que XY = YX, pelo que as matrizes X e Y são comutáveis.

- 11. Sejam, por exemplo, $A \in \mathcal{M}_{3\times 2}(\mathbb{R})$ e $B \in \mathcal{M}_{2\times 3}(\mathbb{R})$. Então, $AB \in \mathcal{M}_{3\times 3}(\mathbb{R})$ e $BA \in \mathcal{M}_{2\times 2}(\mathbb{R})$, pelo que $AB \neq BA$. Assim, conclui-se que a multiplicação de matrizes não é comutativa.
- 12. (a) Atendendo a

$$(A+B)^2 = \left(\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \right)^2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} e$$

$$A^2 + 2AB + B^2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}^2 + 2\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + 2\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix},$$

tem-se que $(A + B)^2 \neq A^2 + 2AB + B^2$.

(b) Atendendo a

$$(A - B)^2 = \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \end{pmatrix}^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} e$$

$$A^2 - 2AB + B^2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}^2 - 2\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} - 2\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix},$$

tem-se que $(A + B)^2 \neq A^2 + 2AB + B^2$.

(c) Atendendo a

$$(A+B)(A-B) = \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 0 & 1 \end{bmatrix} e$$

$$A^2 - B^2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}^2 - \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix},$$

tem-se que $(A+B)(A-B) \neq A^2 - B^2$.

13. Atendendo a

$$(A - B)^3 = ((A - B)(A - B))(A - B) = (A^2 - AB - BA + B^2)(A - B) = (A^2 - AB - AB + B^2)(A - B) = (A^2 - 2AB + B^2)(A - B)$$
$$= A^3 - A^2B - 2ABA + 2AB^2 + B^2A - B^3 = A^3 - A^2B - 2AAB + 2AB^2 + B^2A - B^3 = A^3 - A^2B - 2A^2B + 2AB^2 + B^2A - B^3 = A^3 - 3A^2B + 3AB^2 - B^3,$$

tem-se que a única hipótese verdadeira é a D.

14. P_1 : Seja, por exemplo, $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Então:

$$A^2 = AA = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0_{2 \times 2}.$$

Como $A \neq 0_{2\times 2}$, P_1 é uma proposição falsa.

 P_2 : Seja, por exemplo, $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Então:

$$A^2 = AA = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2.$$

Como $A \neq I_2$ e $A \neq -I_2$, P_2 é uma proposição falsa.

Assim, a única hipótese verdadeira é a B.

- 15. Sabendo-se que AB = BA (hipótese), pretende-se mostrar que $AB^{-1} = B^{-1}A$ (tese)
 - Processo 1 (partir da hipótese e chegar à tese):

$$AB = BA \Leftrightarrow B^{-1}(AB) = B^{-1}(BA) \Leftrightarrow B^{-1}AB = (B^{-1}B)A \Leftrightarrow B^{-1}AB = IA \Leftrightarrow B^{-1}AB = A \Leftrightarrow (B^{-1}AB)B^{-1} = AB^{-1}$$
$$\Leftrightarrow B^{-1}A(BB^{-1}) = AB^{-1} \Leftrightarrow B^{-1}AI = AB^{-1} \Leftrightarrow B^{-1}A = AB^{-1}.$$

• Processo 2 (partir da tese e chegar a uma trivialidade, usando para tal a hipótese):

$$AB^{-1} = B^{-1}A \Leftrightarrow (AB^{-1})B = (B^{-1}A)B \Leftrightarrow A(B^{-1}B) = B^{-1}(AB) \Leftrightarrow AI = B^{-1}(AB) \Leftrightarrow A = B^{-1}(AB) \Leftrightarrow A = B^{-1}(BA) \Leftrightarrow A = (B^{-1}B)A \Leftrightarrow A = IA \Leftrightarrow A = A.$$

• Processo 3 (partir do lado esquerdo da tese e chegar ao seu lado direito, usando para tal a hipótese):

$$AB^{-1} = IAB^{-1} = (B^{-1}B)(AB^{-1}) = B^{-1}(BA)B^{-1} = B^{-1}(AB)B^{-1} = (B^{-1}A)(BB^{-1}) = (B^{-1}A)I = B^{-1}A.$$

16. Aplicando-se a observação Obs 1.76 (c), tem-se:

$$(I - A) \left(I + \sum_{k=1}^{p-1} A^k \right) = (I - A)(I + A + A^2 + \dots + A^{p-1})$$

$$= II + IA + IA^2 + \dots + IA^{p-1} - AI - AA - AA^2 - \dots - AA^{p-1}$$

$$= I + A + A^2 + \dots + A^{p-1} - A - A^2 - A^3 - \dots - A^p$$

$$= I + A + A^2 + A^3 + \dots + A^{p-1} - A - A^2 - A^3 - \dots - A^{p-1} - A^p$$

$$= I - A^p$$

$$= I - 0$$

$$= I.$$

Nota: na demonstração considera-se que p > 2 meramente a título de exemplo.

Versão mais compacta:

$$(I-A)\left(I+\sum_{k=1}^{p-1}A^k\right) = I^2 + I\sum_{k=1}^{p-1}A^k - AI - A\sum_{k=1}^{p-1}A^k = I + \sum_{k=1}^{p-1}A^k - A - \sum_{k=2}^pA^k = I + \sum_{k=1}^{p-1}A^k - \sum_{k=1}^pA^k = I + \sum_{k=1}^{p-1}A^k - A^p = I - A^p = I - \underline{0} = I.$$

17. • Processo 1 (aplicar a observação Obs 1.76 (c)):

$$(A^{-1} + B^{-1})(A(A + B)^{-1}B) = A^{-1}(A(A + B)^{-1}B) + B^{-1}(A(A + B)^{-1}B) = (A^{-1}A)(A + B)^{-1}B + B^{-1}(A(A + B)^{-1}B)$$

$$= I(A + B)^{-1}B + B^{-1}(A(A + B)^{-1}B) = (I + B^{-1}A)((A + B)^{-1}B) = (B^{-1}B + B^{-1}A)((A + B)^{-1}B) = B^{-1}(B + A)((A + B)^{-1}B)$$

$$= B^{-1}((A + B)(A + B)^{-1})B = B^{-1}IB = B^{-1}B = I.$$

Processo 2 (partir do que se pretende mostrar e chegar a uma trivialidade):

$$(A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B \Leftrightarrow ((A^{-1} + B^{-1})^{-1})^{-1} = (A(A + B)^{-1}B)^{-1} \Leftrightarrow A^{-1} + B^{-1} = B^{-1}((A + B)^{-1})^{-1}A^{-1} \Leftrightarrow A^{-1} + B^{-1} = B^{-1}(A + B)A^{-1} \Leftrightarrow A^{-1} + B^{-1} = B^{-1}AA^{-1} + B^{-1}BA^{-1} \Leftrightarrow A^{-1} + B^{-1} = B^{-1}I + IA^{-1} \Leftrightarrow A^{-1} + B^{-1} = B^{-1}I + IA^{-1} \Leftrightarrow A^{-1} + B^{-1} = A^{-1} + B^{-1}.$$

• Processo 3 (partir do que se pretende mostrar e chegar a uma trivialidade):

$$(A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B \Leftrightarrow (A^{-1} + B^{-1})^{-1}(A^{-1} + B^{-1}) = A(A + B)^{-1}B(A^{-1} + B^{-1}) \Leftrightarrow I = A(A + B)^{-1}B(A^{-1} + B^{-1})$$

$$\Leftrightarrow I = A(A + B)^{-1}(BA^{-1} + BB^{-1}) \Leftrightarrow I = A(A + B)^{-1}(BA^{-1} + I) \Leftrightarrow IA = A(A + B)^{-1}(BA^{-1} + I)A \Leftrightarrow A = A(A + B)^{-1}(BA^{-1} + I)A$$

$$\Leftrightarrow A = A(A + B)^{-1}(BI + A) \Leftrightarrow A = A(A + B)^{-1}(B + A) \Leftrightarrow A = A(A + B)^{-1}(A + B) \Leftrightarrow A = AI \Leftrightarrow A = A.$$

18.

$$AA^{-1} = (I_{n} + XY^{T}) (I_{n} - X(I_{m} + Y^{T}X)^{-1}Y^{T})$$

$$= I_{n}^{2} - I_{n}X(I_{m} + Y^{T}X)^{-1}Y^{T} + XY^{T}I_{n} - XY^{T}X(I_{m} + Y^{T}X)^{-1}Y^{T}$$

$$= I_{n} - X(I_{m} + Y^{T}X)^{-1}Y^{T} + XY^{T} - XY^{T}X(I_{m} + Y^{T}X)^{-1}Y^{T}$$

$$= I_{n} - X ((I_{m} + Y^{T}X)^{-1}Y^{T} - Y^{T} + Y^{T}X(I_{m} + Y^{T}X)^{-1}Y^{T})$$

$$= I_{n} - X ((I_{m} + Y^{T}X)^{-1} - I_{m} + Y^{T}X(I_{m} + Y^{T}X)^{-1}) Y^{T}$$

$$= I_{n} - X ((I_{m} + Y^{T}X)^{-1} + Y^{T}X(I_{m} + Y^{T}X)^{-1} - I_{m}) Y^{T}$$

$$= I_{n} - X (I_{m} - I_{m}) Y^{T}$$

$$= I_{n} - X (0_{m \times m}) Y^{T}$$

$$= I_{n} - 0_{n \times n}$$

$$= I_{n}.$$

19. **(a)**

$$\frac{AB^{\mathsf{T}} + BA^{\mathsf{T}}}{2} = \frac{\begin{bmatrix} -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{bmatrix}^{\mathsf{T}} + \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}^{\mathsf{T}}}{2} = \frac{\begin{bmatrix} -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \\ -2 & -1 \end{bmatrix}}{2} + \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}}{2} = \frac{\begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} -1 & -1 \\ -1 & 1 \end{bmatrix}}{2} = \frac{\begin{bmatrix} -1 & -1 \\$$

(b)

$$C^{\mathsf{T}} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}.$$

(c)

$$(CBA^{\mathsf{T}}C)^2 = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \rangle^2 = \begin{pmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{bmatrix} \end{pmatrix} \begin{pmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \end{pmatrix}^2 = \begin{pmatrix} \begin{bmatrix} 0 & -1 & -2 \\ -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \end{pmatrix}^2 = \begin{bmatrix} -2 & 1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}.$$

(d)

$$uu^{\mathsf{T}} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(e)

$$u^{\mathsf{T}}u = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 5 \end{bmatrix}.$$

(f)

$$u^{\mathsf{T}}A^{\mathsf{T}}Bu = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \left(\begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \right) \left(\begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \end{bmatrix}.$$

(g)

$$(Au)^{\mathsf{T}} = \left(\begin{bmatrix} -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \right)^{\mathsf{T}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

(h)

$$u^{\mathsf{T}} A^{\mathsf{T}} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Nota: Como $(Au)^T = u^T A^T$, os resultados da alínea anterior e desta alínea teriam que ser iguais.

20.

$$\left((A^{\mathsf{T}})^{-1}X \right)^{\mathsf{T}} + (AB)^{-1} = A \Leftrightarrow \left((A^{\mathsf{T}})^{-1}X \right)^{\mathsf{T}} = A - (AB)^{-1} \Leftrightarrow \left(\left((A^{\mathsf{T}})^{-1}X \right)^{\mathsf{T}} \right)^{\mathsf{T}} = \left(A - (AB)^{-1} \right)^{\mathsf{T}} \Leftrightarrow (A^{\mathsf{T}})^{-1}X = \left(A - (AB)^{-1} \right)^{\mathsf{T}}$$

$$\Leftrightarrow A^{\mathsf{T}}(A^{\mathsf{T}})^{-1}X = A^{\mathsf{T}} \left(A - (AB)^{-1} \right)^{\mathsf{T}} \Leftrightarrow IX = A^{\mathsf{T}} \left(A - (AB)^{-1} \right)^{\mathsf{T}} \Leftrightarrow X = A^{\mathsf{T}} \left(A - (AB)^{-1} \right)^{\mathsf{T}} .$$

A expressão que se obteve pode ser simplificada:

$$X = A^{\mathsf{T}} \left(A - (AB)^{-1} \right)^{\mathsf{T}} = \left((A - (AB)^{-1})A \right)^{\mathsf{T}} = \left((A - B^{-1}A^{-1})A \right)^{\mathsf{T}} = \left(AA - B^{-1}A^{-1}A \right)^{\mathsf{T}} = \left(A^2 - B^{-1}I \right)^{\mathsf{T}} = \left(A^2 - B^{-1}I \right)^{\mathsf{T}}$$

21. Atendendo a

$$\left(\left(A^{-1}\right)^{\mathsf{T}}B\right)^{-1} = I_n \Leftrightarrow B^{-1}\left(\left(A^{-1}\right)^{\mathsf{T}}\right)^{-1} = I_n \Leftrightarrow B^{-1}\left(\left(A^{-1}\right)^{-1}\right)^{\mathsf{T}} = I_n \Leftrightarrow B^{-1}A^{\mathsf{T}} = I_n \Leftrightarrow BB^{-1}A^{\mathsf{T}} = BI_n \Leftrightarrow I_nA^{\mathsf{T}} = B \Leftrightarrow B = A^{\mathsf{T}},$$

tem-se que a única hipótese verdadeira é a A.

22. Atendendo a que $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, tem-se que

$$A^{2} + A^{\mathsf{T}} = AA + A^{\mathsf{T}} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 3 \\ 0 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 6 \end{bmatrix}.$$

Assim, a única hipótese verdadeira é a A.

23. A matriz $B - B^{\mathsf{T}}$ é antissimétrica se $(B - B^{\mathsf{T}})^{\mathsf{T}} = -(B - B^{\mathsf{T}})$. Mostre-se, então, este igualdade:

$$(B - B^{\mathsf{T}})^{\mathsf{T}} = B^{\mathsf{T}} - (B^{\mathsf{T}})^{\mathsf{T}} = B^{\mathsf{T}} - B = -(B - B^{\mathsf{T}}).$$

- 24. Como $A \in B$ são matrizes simétricas, então $A = A^{\mathsf{T}} \in B = B^{\mathsf{T}}$, tem-se que $(AB)^{\mathsf{T}} = B^{\mathsf{T}}A^{\mathsf{T}} = BA$. Assim, a única hipótese verdadeira é a D.
- 25. P_1 : Sejam, por exemplo, as matrizes simétricas $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ e $B = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$. Então,

$$(AB)^{\mathsf{T}} = \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix} \end{pmatrix}^{\mathsf{T}} = \begin{bmatrix} 2 & 4 \\ 3 & 7 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 2 & 3 \\ 4 & 7 \end{bmatrix} \neq AB,$$

pelo que a matriz AB não é simétrica. Assim, a proposição P_1 é falsa.

 P_2 : Sejam A e B matrizes simétricas da mesma ordem. Então,

$$(A + B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}} = A + B,$$

pelo que A + B é uma matriz simétrica. Assim, a proposição P_2 é verdadeira.

Assim, a única hipótese verdadeira é a D

- 26. Um processo de verificar se uma matriz é ortogonal, é verificr se o seu produto com a transposta dá a matriz identidade. Tem-se, então:
 - (a) Como

$$AA^{\mathsf{T}} = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} \neq I_2,$$

tem-se que a matriz A não é ortogonal.

(b) Como

$$BB^{\mathsf{T}} = \frac{1}{5} \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \left(\frac{1}{5} \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \right)^{\mathsf{T}} = \frac{1}{5} \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \frac{1}{5} \begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 25 & 0 \\ 0 & 25 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2,$$

tem-se que a matriz B é ortogonal.

(c) Como

$$CC^{\mathsf{T}} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix} \begin{pmatrix} \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix} \end{pmatrix}^{\mathsf{T}} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3,$$

tem-se que a matriz C é ortogonal.

27. Pretende-se mostrar que o produto de duas matrizes ortogonais da mesma ordem é uma matriz ortogonal, ou seja, sendo A e B matrizes ortogonais da mesma ordem, pretende-se mostrar que AB é uma matriz ortogonal, ou ainda, sendo A e B matrizes da mesma ordem tais que $AA^{\mathsf{T}} = A^{\mathsf{T}}A = I$ e $BB^{\mathsf{T}} = B^{\mathsf{T}}B = I$, pretende-se mostrar que $(AB)(AB)^{\mathsf{T}} = I$. Mostre-se, então, este igualdade:

$$(AB)(AB)^{\mathsf{T}} = (AB)(B^{\mathsf{T}}A^{\mathsf{T}}) = A(BB^{\mathsf{T}})A^{\mathsf{T}} = AIA^{\mathsf{T}} = AA^{\mathsf{T}} = I.$$

- 28. Seja $x \in \mathcal{M}_{n \times 1}(\mathbb{R})$ tal que $x^T x = I_1$. Mostre que $I_n 2xx^T$ é uma matriz:
 - (i) simétrica, ou seja, que $I_n 2xx^T = (I_n 2xx^T)^T$

$$(I_n - 2xx^{\mathsf{T}})^{\mathsf{T}} = I_n^{\mathsf{T}} - (2xx^{\mathsf{T}})^{\mathsf{T}} = I_n - 2(xx^{\mathsf{T}})^{\mathsf{T}} = I_n - 2((x^{\mathsf{T}})^{\mathsf{T}}x^{\mathsf{T}}) = I_n - 2xx^{\mathsf{T}}$$

(ii) ortogonal, ou seja, que $(I_n - 2xx^T)(I_n - 2xx^T)^T = I_n$

$$(I_n - 2xx^{\mathsf{T}})(I_n - 2xx^{\mathsf{T}})^{\mathsf{T}} = (I_n - 2xx^{\mathsf{T}})(I_n - 2xx^{\mathsf{T}}) = I_nI_n - I_n(2xx^{\mathsf{T}}) - (2xx^{\mathsf{T}})I_n + (2xx^{\mathsf{T}})(2xx^{\mathsf{T}}) = I_n - 2xx^{\mathsf{T}} - 2xx^{\mathsf{T}} + 4(x(x^{\mathsf{T}}x)x^{\mathsf{T}}) = I_n - 2xx^{\mathsf{T}} - 2xx^{\mathsf{T}} + 4(x(x^{\mathsf{T}}x)x^{\mathsf{T}}) = I_n - 2xx^{\mathsf{T}} - 2xx^{\mathsf{T}} + 4xx^{\mathsf{T}} = I_n.$$

- 29. A Como A é uma matriz quadrada de ordem 3, A também é uma matriz quadrada de ordem 3. Assim, a expressão $(A 2A^T)$ está bem definida, sendo também uma matriz quadrada de ordem 3, pelo que a expressão $(A 2A^T)$ está bem definida. Assim, a hipótese é verdadeira.
 - B Como

$$A^{2} = AA = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} = \begin{bmatrix} -5 & -6 & 3 \\ -6 & -10 & -2 \\ 3 & -2 & -13 \end{bmatrix} \neq I_{3},$$

a hipótese é falsa.

- Como $(A)_{31} + (A)_{13} = -2 + 2 = 0 \neq (A)_{23} = 3$, a hipótese é falsa.
- D Como

$$A^{2} = AA^{\mathsf{T}} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 6 & -3 \\ 6 & 10 & 2 \\ -3 & 2 & 13 \end{bmatrix} \neq I_{3},$$

A não é uma matriz ortogonal. Assim, a hipótese é falsa.

30. Atendendo a

$$a_{11} = (-1)^{i+1} = (-1)^{1+1} = 1$$

$$a_{12} = (-1)^{i+j+1} 2^{j-1} = (-1)^{1+2+1} 2^{2-1} = 2$$

$$a_{13} = (-1)^{i+j+1} 2^{j-1} = (-1)^{1+3+1} 2^{3-1} = -4$$

$$a_{21} = 0$$

$$a_{22} = (-1)^{i+1} = (-1)^{2+1} = -1$$

$$a_{23} = (-1)^{i+j+1} 2^{j-1} = (-1)^{2+3+1} 2^{3-1} = 4$$

$$a_{31} = 0$$

$$a_{32} = 0$$

$$a_{33} = (-1)^{i+1} = (-1)^{3+1} = 1$$

tem-se que $A = \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$. Assim:

- A \mid A não é uma matriz escalar pois, por exemplo, $a_{12} \neq 0$, pelo que a hipótese é falsa.
- B A não é uma matriz simétrica pois, por exemplo, $a_{12} \neq a_{21}$, pelo que a hipótese é falsa.

C Como

$$AA^{\mathsf{T}} = \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ -4 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 21 & -18 & -4 \\ -18 & 17 & 4 \\ -4 & 4 & 1 \end{bmatrix} \neq I_2,$$

tem-se que a matriz A não é ortogonal, pelo que a hipótese é falsa.

D Como

$$A^{2} = AA = \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -4 \\ 0 & -1 & 4 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_{3},$$

a hipótese é verdadeira.

31. (a) ATEsc

$$\begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 & 2 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_3 \leftarrow \boldsymbol{\ell}_3 - \boldsymbol{\ell}_1} \begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 2 & 0 & 2 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_4 \leftarrow \boldsymbol{\ell}_4 - 2\boldsymbol{\ell}_2} \begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}.$$

número de operações elementares do tipo I/III: 0/2

número de operações elementares do tipo I/II/III: 0/2/4

(b) ATEsc

$$\begin{bmatrix} 6 & 3 & -4 \\ -4 & 1 & -6 \\ 1 & 2 & -5 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + \frac{2}{3}\ell_1} \begin{bmatrix} 6 & 3 & -4 \\ 0 & 3 & -\frac{26}{3} \\ 0 & \frac{3}{2} & -\frac{13}{3} \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{1}{2}\ell_2} \begin{bmatrix} 6 & 3 & -4 \\ 0 & 3 & -\frac{26}{3} \\ 0 & 0 & 0 \end{bmatrix}.$$

número de operações elementares do tipo I/III: 0/3

ATEscRed (partindo do resultado do ATEsc)

$$\begin{bmatrix} 6 & 3 & -4 \\ 0 & 3 & -\frac{26}{3} \\ 0 & 0 & 0 \end{bmatrix} \stackrel{\ell_2 \leftarrow \frac{1}{3}\ell_2}{\longleftarrow} \begin{bmatrix} 6 & 3 & -4 \\ 0 & 1 & -\frac{26}{9} \\ 0 & 0 & 0 \end{bmatrix} \stackrel{\ell_1 \leftarrow \ell_1 - 3\ell_2}{\longleftarrow} \begin{bmatrix} 6 & 0 & \frac{14}{3} \\ 0 & 1 & -\frac{26}{9} \\ 0 & 0 & 0 \end{bmatrix} \stackrel{\ell_1 \leftarrow \frac{1}{6}\ell_1}{\longleftarrow} \begin{bmatrix} 1 & 0 & \frac{7}{9} \\ 0 & 1 & -\frac{26}{9} \\ 0 & 0 & 0 \end{bmatrix}.$$

número de operações elementares do tipo I/II/III: 0/2/4

(c) ATEsc

$$\begin{bmatrix} 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 5 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

número de operações elementares do tipo I/III: 2/0

ATEscRed (partindo do resultado do ATEsc)

$$\begin{bmatrix} 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\ell_1 \leftarrow \ell_1 - 2\ell_3} \begin{bmatrix} 1 & 1 & 0 & 0 & -10 \\ 0 & 0 & 2 & 0 & 4 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \frac{1}{2}\ell_2} \begin{bmatrix} 1 & 1 & 0 & 0 & -10 \\ 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

número de operações elementares do tipo I/II/III: 2/1/1

(d) ATEsc

$$\begin{bmatrix} 1 & -2 & 3 & -1 \\ 2 & -1 & 2 & 2 \\ 3 & 1 & 2 & 3 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -4 & 4 \\ 0 & 7 & -7 & 6 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{7}{3}\ell_2} \begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -4 & 4 \\ 0 & 0 & \frac{7}{3} & -\frac{10}{3} \end{bmatrix}.$$

número de operações elementares do tipo I/III: 0/3

$$\begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -4 & 4 \\ 0 & 0 & \frac{7}{3} & -\frac{10}{3} \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & -2 & 3 & -1 \\ 0 & 3 & -4 & 4 \\ 0 & 0 & 1 & -\frac{10}{7} \end{bmatrix} \xleftarrow{\ell_1 \leftarrow \ell_1 - 3\ell_3} \begin{bmatrix} 1 & -2 & 0 & \frac{23}{7} \\ \ell_2 \leftarrow \ell_2 + 4\ell_3 \\ \ell_3 \leftarrow \rightarrow \end{bmatrix} \xleftarrow{\ell_1 \leftarrow \ell_1 + 2\ell_2} \begin{bmatrix} 1 & 0 & 0 & \frac{15}{7} \\ 0 & 1 & 0 & -\frac{4}{7} \\ 0 & 0 & 1 & -\frac{10}{7} \end{bmatrix} \xleftarrow{\ell_1 \leftarrow \ell_1 + 2\ell_2} \begin{bmatrix} 1 & 0 & 0 & \frac{15}{7} \\ 0 & 1 & 0 & -\frac{4}{7} \\ 0 & 0 & 1 & -\frac{10}{7} \end{bmatrix} .$$

número de operações elementares do tipo I/II/III: 0/2/6

(e) ATEsc

$$\begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - 2\ell_1} \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 0 & -11 & 5 & -3 \\ 0 & -11 & 5 & -3 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + \ell_2} \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

número de operações elementares do tipo I/III: 0/4

ATEscRed (partindo do resultado do ATEsc)

$$\begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \ell_2 \leftarrow \frac{1}{11} \ell_2 \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 1 & -\frac{5}{11} & \frac{3}{11} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \ell_1 \leftarrow \ell_1 - 3\ell_2 \begin{bmatrix} 1 & 0 & \frac{4}{11} & \frac{13}{11} \\ 0 & 1 & -\frac{5}{11} & \frac{3}{11} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

número de operações elementares do tipo I/II/III: 0/1/5

(f) ATEsc

$$\begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 2 & 4 & 1 & -2 & 3 \\ 3 & 6 & 2 & -6 & 5 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 0 & 0 & 3 & -6 & 1 \\ 0 & 0 & 5 & -12 & 2 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{5}{3}\ell_2} \begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 0 & 0 & 3 & -6 & 1 \\ 0 & 0 & 0 & -2 & \frac{1}{3} \end{bmatrix}.$$

número de operações elementares do tipo I/III: 0/3

ATEscRed (partindo do resultado do ATEsc)

$$\begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 0 & 0 & 3 & -6 & 1 \\ 0 & 0 & 0 & -2 & \frac{1}{3} \end{bmatrix} \underbrace{\longleftarrow}_{\ell_3} \leftarrow \begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 0 & 0 & 3 & -6 & 1 \\ 0 & 0 & 0 & 1 & -\frac{1}{6} \end{bmatrix} \underbrace{\ell_1 \leftarrow \ell_1 - 2\ell_3}_{\ell_2 \leftarrow \ell_2 + 6\ell_3} \begin{bmatrix} 1 & 2 & -1 & 0 & \frac{4}{3} \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{6} \end{bmatrix} \underbrace{\ell_2 \leftarrow \frac{1}{3}\ell_2}_{\ell_2 \leftarrow \ell_2 + 6\ell_3} \begin{bmatrix} 1 & 2 & -1 & 0 & \frac{4}{3} \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{6} \end{bmatrix} \underbrace{\ell_1 \leftarrow \ell_1 + \ell_2}_{\ell_2 \leftarrow \ell_2 + 6\ell_3} \begin{bmatrix} 1 & 2 & -1 & 0 & \frac{4}{3} \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & -\frac{1}{6} \end{bmatrix} \underbrace{\ell_1 \leftarrow \ell_1 + \ell_2}_{\ell_2 \leftarrow \ell_2 \leftarrow \ell$$

número de operações elementares do tipo I/II/III: 0/2/6

(g) ATEsc

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

número de operações elementares do tipo I/III: 0/0

$$\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \ell_2 \leftarrow \frac{1}{3}\ell_2 \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot .$$

número de operações elementares do tipo I/II/III: 0/1/1

(h) ATEsc

$$\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftarrow \boldsymbol{\ell}_2 + \boldsymbol{\ell}_1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} .$$

número de operações elementares do tipo I/III: 0/2

ATEscRed (partindo do resultado do ATEsc)

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} .$$

número de operações elementares do tipo I/II/III: 0/0/2

(i) ATEsc

$$\begin{bmatrix} -1 & 1 & -1 & 3 \\ 3 & 1 & -1 & -1 \\ 2 & -1 & -2 & -1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + 3\ell_1} \begin{bmatrix} -1 & 1 & -1 & 3 \\ 0 & 4 & -4 & 8 \\ 0 & 1 & -4 & 5 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{1}{4}\ell_2} \begin{bmatrix} -1 & 1 & -1 & 3 \\ 0 & 4 & -4 & 8 \\ 0 & 0 & -3 & 3 \end{bmatrix}.$$

número de operações elementares do tipo I/III: 0/3

ATEscRed (partindo do resultado do ATEsc)

$$\begin{bmatrix} -1 & 1 & -1 & 3 \\ 0 & 4 & -4 & 8 \\ 0 & 0 & -3 & 3 \end{bmatrix} \underbrace{\longleftarrow}_{\ell_3 \leftarrow -\frac{1}{3}\ell_3} \begin{bmatrix} -1 & 1 & -1 & 3 \\ 0 & 4 & -4 & 8 \\ 0 & 0 & 1 & -1 \end{bmatrix} \underbrace{\ell_1 \leftarrow \ell_1 + \ell_3}_{\ell_2 \leftarrow \ell_2 + 4\ell_3} \begin{bmatrix} -1 & 1 & 0 & 2 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix} \underbrace{\ell_1 \leftarrow \ell_1 - \ell_2}_{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2 \leftarrow \ell_3} \begin{bmatrix} -1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \underbrace{\ell_1 \leftarrow \ell_1 - \ell_2}_{\ell_2 \leftarrow \ell_3 \leftarrow \ell_3} \underbrace{\ell_1 \leftarrow \ell_1 - \ell_2}_{\ell_3 \leftarrow \ell_2 \leftarrow \ell_3 \leftarrow$$

número de operações elementares do tipo I/II/III: 0/3/6

(j) ATEsc

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

número de operações elementares do tipo I/III: 0/3

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \ell_2 \leftarrow \ell_2 + \ell_3 \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow \leftarrow \leftarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \leftarrow \leftarrow \leftarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

número de operações elementares do tipo I/II/III: 0/0/5

32. Atendendo a

$$\underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}}_{X} \xleftarrow{\ell_{2} \leftarrow \ell_{2} - \ell_{1}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xleftarrow{\ell_{2} \leftarrow -\ell_{2}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{bmatrix} \xleftarrow{\ell_{1} \leftarrow \ell_{1} - \ell_{2}} \underbrace{\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}}_{\text{fer}(X)},$$

tem-se que fer $(X) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$. Assim, a única hipótese verdadeira é a D.

33. (a) Atendendo a

tem-se que matriz A é invertível pois fer $(A) = I_3$, sendo a sua inversa $A^{-1} = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 1 \\ -1 & \frac{1}{2} & 0 \end{bmatrix}$.

(b) Atendendo a

$$\underbrace{\begin{bmatrix}
1 & 2 & 1 & 0 \\
2 & 4 & 0 & 1
\end{bmatrix}}_{Bl_2} \underbrace{\longleftarrow_{\ell_2 \leftarrow \ell_2 - 2\ell_1}}_{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix}
1 & 2 & 1 & 0 \\
0 & 0 & -2 & 1
\end{bmatrix},$$

tem-se que matriz B é singular pois fer $(B) \neq I_2$.

(c) Atendendo a

$$\underbrace{ \begin{bmatrix} -5 & 4 & -3 & 1 & 0 & 0 \\ 10 & -7 & 6 & 0 & 1 & 0 \\ 8 & -6 & 5 & 0 & 0 & 1 \end{bmatrix}}_{C|I_3} \underbrace{ \begin{pmatrix} -5 & 4 & -3 & 1 & 0 & 0 \\ \ell_2 \leftarrow \ell_2 + 2\ell_1 \\ \ell_3 \leftarrow \ell_3 + \frac{8}{5}\ell_1 \end{bmatrix}}_{\ell_1 \leftarrow \ell_1 - 4\ell_2} \underbrace{ \begin{bmatrix} -5 & 0 & 0 & 5 & -10 & 15 \\ 0 & 1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 4 & -2 & 5 \end{bmatrix}}_{\ell_1 \leftarrow \ell_1 - \frac{1}{5}\ell_1} \underbrace{ \begin{bmatrix} -5 & 0 & 0 & 5 & -10 & 15 \\ 0 & 1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 4 & -2 & 5 \end{bmatrix}}_{\ell_1 \leftarrow \ell_2 \leftarrow \ell_3 \leftarrow \ell_3$$

tem-se que matriz C é invertível pois fer $(C) = I_3$, sendo a sua inversa $C^{-1} = \begin{bmatrix} -1 & 2 & -3 \\ 2 & 1 & 5 \\ 4 & -2 & 5 \end{bmatrix}$.

(d) Atendendo a

tem-se que matriz D é invertível pois fer $(D) = I_2$, sendo a sua inversa $D^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$.

(e) Atendendo a

$$\underbrace{ \begin{bmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 3 & 1 & 2 & 0 & 0 & 1 \end{bmatrix} }_{E|l_3} \underbrace{ \{ -\ell_2 - \frac{1}{2}\ell_1 \\ \ell_3 \leftarrow \ell_3 - \frac{3}{2}\ell_1 \end{bmatrix} }_{E|l_3} \underbrace{ \begin{bmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{5}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{7}{2} & \frac{1}{2} & -\frac{3}{2} & 0 & 1 \end{bmatrix} }_{\ell_3 \leftarrow \ell_3 - \frac{3}{2}\ell_1} \underbrace{ \begin{bmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{5}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 18 & -5 & 7 & 1 \end{bmatrix} }_{\ell_3 \leftarrow \ell_3 + 7\ell_2} \underbrace{ \begin{bmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{5}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 18 & -5 & 7 & 1 \end{bmatrix} }_{\ell_3 \leftarrow \frac{1}{18}\ell_3} \underbrace{ \{ -\frac{1}{18}\ell_3 \end{bmatrix} }_{\ell_3 \leftarrow \frac{1}{18}\ell_3} \underbrace{ \begin{bmatrix} 2 & 3 & 0 & \frac{23}{18} & -\frac{7}{18} & \frac{1}{18} \\ 0 & \frac{1}{2} & 0 & \frac{7}{2} & \frac{1}{2} & \frac{7}{18} & \frac{1}{18} \end{bmatrix} }_{\ell_1 \leftarrow \ell_1 - 2\ell_2} \underbrace{ \begin{bmatrix} 2 & 3 & 0 & \frac{1}{2} & \frac{7}{18} & \frac{1}{18} \\ 0 & 1 & 0 & \frac{7}{18} & \frac{1}{18} & -\frac{5}{18} \\ 0 & 0 & 1 & -\frac{5}{18} & \frac{7}{18} & \frac{1}{18} \end{bmatrix} }_{\ell_1 \leftarrow \ell_1 - 2\ell_2} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & \frac{1}{2} & -\frac{5}{2} & \frac{7}{2} & \frac{1}{2}\ell_1 \\ 0 & 1 & 0 & \frac{7}{18} & \frac{1}{18} & -\frac{5}{18} \\ 0 & 1 & 0 & \frac{7}{18} & \frac{1}{18} & -\frac{5}{18} \\ 0 & 0 & 1 & -\frac{5}{18} & \frac{7}{18} & \frac{1}{18} \end{bmatrix} }_{\ell_1 \leftarrow \ell_1 - 2\ell_2} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & \frac{1}{2} & -\frac{5}{2} & \frac{7}{2}\ell_1 \\ 0 & 1 & 0 & \frac{7}{18} & \frac{1}{18} & -\frac{5}{18} \\ 0 & 0 & 1 & -\frac{5}{18} & \frac{7}{18} & \frac{1}{18} \end{bmatrix} }_{\ell_1 \leftarrow \ell_1 - 2\ell_2} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & \frac{1}{2} & -\frac{5}{2} & \frac{7}{2}\ell_1 \\ 0 & 1 & 0 & \frac{7}{18} & \frac{1}{18} & -\frac{5}{18} \\ 0 & 0 & 1 & -\frac{5}{18} & \frac{7}{18} & \frac{1}{18} \end{bmatrix} }_{\ell_1 \leftarrow \ell_1 - 2\ell_2} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & \frac{1}{2} & \frac{7}{2}\ell_1 \\ 0 & 0 & 1 & -\frac{5}{18} & \frac{7}{18} & \frac{1}{18} \end{bmatrix} }_{\ell_1 \leftarrow \ell_1 - 2\ell_2} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & \frac{1}{2} & \frac{7}{2}\ell_1 \\ 0 & 1 & 0 & \frac{7}{18} & \frac{1}{18} \\ 0 & 0 & 1 & -\frac{5}{18} & \frac{7}{18} & \frac{1}{18} \end{bmatrix} }_{\ell_1 \leftarrow \ell_1 - 2\ell_2} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & \frac{1}{2} & \frac{7}{2}\ell_1 \\ 0 & 1 & 0 & \frac{7}{18} & \frac{1}{18} \\ 0 & 0 & 1 & -\frac{5}{18} & \frac{7}{18} & \frac{1}{18} \end{bmatrix} }_{\ell_1 \leftarrow \ell_1 - 2\ell_2} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & \frac{1}{2} & \frac{7}{2}\ell_1 \\ 0 & 1 & 0 & \frac{7}{18} & \frac{1}{18} \\ 0 & 0 & 1 & -\frac{5}{18} & \frac{7}{18} \\ 0 & 0 & 1 & -\frac{5}{18} & \frac{7}{18} \end{bmatrix} }_{\ell_1 \leftarrow \ell_1 - 2\ell_2} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & \frac{1}{2} & \frac{7}{2}\ell_1 \\ 0 & 0 & 1 & -\frac{5}{18} & \frac{7}{18} \\$$

tem-se que matriz E é invertível pois fer $(E) = I_3$, sendo a sua inversa $E^{-1} = \begin{bmatrix} \frac{1}{18} - \frac{5}{18} & \frac{7}{18} \\ \frac{7}{18} & \frac{1}{18} - \frac{5}{18} \\ -\frac{5}{18} & \frac{7}{18} & \frac{1}{18} \end{bmatrix}$.

(f) Atendendo a

$$\underbrace{\begin{bmatrix} -2 & 3 & 5 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 2 & 0 & 0 & 1 \end{bmatrix}}_{F_{1/3}} \underbrace{\leftarrow \leftarrow \leftarrow \leftarrow}_{\ell_{2} - \frac{1}{2}\ell_{1}} \begin{bmatrix} -2 & 3 & 5 & 1 & 0 & 0 \\ 0 & -\frac{3}{2} & -\frac{3}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & 2 & 2 & 0 & 0 & 1 \end{bmatrix}}_{\ell_{3} \leftarrow \ell_{3} + \frac{4}{3}\ell_{2}} \begin{bmatrix} -2 & 3 & 5 & 1 & 0 & 0 \\ 0 & -\frac{3}{2} & -\frac{3}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 0 & -\frac{2}{3} & \frac{4}{3} & 1 \end{bmatrix},$$

F não é invertível pois fer $(F) \neq I_3$ (note-se que ainda não se calculou fer(F), mas a partir do momento em que no ATEsc surge uma linha nula nas colunas associadas à matriz F pode-se logo garantir que fer $(F) \neq I_3$).

34. **(a)**

$$b^{\mathsf{T}} A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 2 & -1 \end{bmatrix}.$$

(b) A expressão Ab^{T} não está bem definida pois o número de colunas da matriz A, que é 3, é diferente do número de linhas da matriz b^{T} , que é 1.

(c)
$$(c^{\mathsf{T}} + d^{\mathsf{T}})A = \begin{pmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}^{\mathsf{T}} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{\mathsf{T}} \end{pmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} = (\begin{bmatrix} 3 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \end{bmatrix}) \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 2 \end{bmatrix}.$$

(d)
$$A^{\mathsf{T}}b = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}.$$

(e)
$$b^{\mathsf{T}}(c+d) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}^{\mathsf{T}} \left(\begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \end{bmatrix}.$$

(f)
$$(AE)^{\mathsf{T}} = \left(\begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 2 & -1 \\ 0 & 1 \end{bmatrix} \right)^{\mathsf{T}} = \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}.$$

(g)
$$E^{\mathsf{T}} A^{\mathsf{T}} = \begin{bmatrix} -1 & 0 \\ 2 & -1 \\ 0 & 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} -1 & 2 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}.$$

(h) A expressão $A^2(=AA)$ não está bem definida pois o número de colunas da matriz A, que é 2, é diferente do seu número de linhas, que é 3.

(i)
$$(AA^{\mathsf{T}})^2 = \left(\begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix}^{\mathsf{T}} \right)^2 = \left(\begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 0 & 1 \\ 1 & -1 \end{bmatrix} \right)^2 = \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix}^2 = \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -3 & 6 \end{bmatrix} = \begin{bmatrix} 13 & -24 \\ -24 & 45 \end{bmatrix}.$$

(j) Comece-se por calcular AE:

$$AE = \begin{bmatrix} -1 & 0 & 1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 2 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix}.$$

Verifique-se agora se a matriz AE é invertível, calculando-se nesse caso a sua inversa:

$$\underbrace{\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & 0 & 1 \end{bmatrix}}_{AE|_{2}} \underbrace{\ell_{2} \leftarrow -\frac{1}{2}\ell_{2}} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & -\frac{1}{2} \end{bmatrix} \underbrace{\ell_{1} \leftarrow \ell_{1} - \ell_{2}}_{l_{2}|(AE)^{-1}} \underbrace{\begin{bmatrix} 1 & 0 & 1 & \frac{1}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \end{bmatrix}}_{l_{2}|(AE)^{-1}}.$$

Tem-se, então, que a matriz AE é invertível pois fer $(AE) = I_2$, sendo a sua inversa

$$(AE)^{-1} = \frac{1}{2} \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}.$$

35. Comece-se por verificar se a matriz A é invertível, calculando-se nesse caso a sua inversa:

$$\underbrace{\left[\begin{array}{ccc|c} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array}\right]}_{A|I_3} \stackrel{\ell_1 \leftarrow \ell_1 - \ell_3}{\longleftarrow} \left[\begin{array}{ccc|c} 1 & 2 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array}\right]}_{0} \stackrel{\ell_1 \leftarrow \ell_1 - 2\ell_2}{\longleftarrow} \underbrace{\left[\begin{array}{ccc|c} 1 & 0 & 0 & 1 & -2 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array}\right]}_{I_2|A^{-1}}.$$

Tem-se, então, que a matriz A é invertível pois fer $(A) = I_3$, vindo

$$A^{\mathsf{T}}A^{-1} = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & -1 \\ 2 & -3 & -2 \\ 1 & -2 & 0 \end{bmatrix}.$$

Assim, a única hipótese verdadeira é a D

- 36. A Como $AB = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} = BA = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix}$, tem-se que AB = BA, pelo que as matrizes $A \in B$ são comutáveis. Assim, a hipótese é verdadeira.
 - B Como $(A)_{11} \neq (A)_{22}$, A não é uma matriz escalar. Assim, a hipótese é falsa.
 - Como, por exemplo, $AA^{\mathsf{T}} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 0 \end{bmatrix} \neq I_2$, A não é uma matriz ortogonal. Assim, a hipótese é falsa.
 - D Como fer $(A) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq I_2$, A não é uma matriz invertível. Assim, a hipótese é falsa.
- 37. Atendendo a

$$((XA^{-1})^{-1} + ACB)^{\mathsf{T}} = A^{\mathsf{T}} \Leftrightarrow (((XA^{-1})^{-1} + ACB)^{\mathsf{T}})^{\mathsf{T}} = (A^{\mathsf{T}})^{\mathsf{T}} \Leftrightarrow (XA^{-1})^{-1} + ACB = A \Leftrightarrow (XA^{-1})^{-1} = A - ACB \Leftrightarrow ((XA^{-1})^{-1})^{-1} = (A(I - CB))^{-1} \Leftrightarrow XA^{-1} = (A(I - CB))^{-1} \Leftrightarrow XA^{-1}A = (A(I - CB))^{-1}A \Leftrightarrow XI = (I - CB)^{-1}(A^{-1}A) \Leftrightarrow XI = (I - CB)^{-1}I \Leftrightarrow X = (I -$$

е

$$I - CB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} -1 & -3 \\ -2 & -1 \end{bmatrix},$$

tem-se que

$$\underbrace{\begin{bmatrix} -1 & -3 & 1 & 0 \\ -2 & -1 & 0 & 1 \end{bmatrix}}_{I-CB|I_2} \underbrace{\longleftarrow}_{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} -1 & -3 & 1 & 0 \\ 0 & 5 & -2 & 1 \end{bmatrix} \underbrace{\longleftarrow}_{\ell_2 \leftarrow \frac{1}{5}\ell_2} \begin{bmatrix} -1 & -3 & 1 & 0 \\ 0 & 1 & -\frac{2}{5} & \frac{1}{5} \end{bmatrix} \underbrace{\longleftarrow}_{\ell_1 \leftarrow \ell_1 + 3\ell_2} \begin{bmatrix} -1 & 0 & -\frac{1}{5} & \frac{3}{5} \\ 0 & 1 & -\frac{2}{5} & \frac{1}{5} \end{bmatrix}}_{\ell_2 \leftarrow \ell_2 - 2\ell_1} \underbrace{\longleftarrow}_{\ell_2 \leftarrow \ell_2 - 2\ell_1} \underbrace{\begin{bmatrix} -1 & 0 & -\frac{1}{5} & -\frac{3}{5} \\ 0 & 1 & -\frac{2}{5} & \frac{1}{5} \end{bmatrix}}_{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2 - 2\ell_1} \underbrace{\longleftarrow}_{\ell_2 \leftarrow \ell_2 - 2\ell_1} \underbrace{\longleftarrow}_{\ell_2 \leftarrow \ell_2 - 2\ell_1} \underbrace{\longleftarrow}_{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2 - 2\ell_1} \underbrace{\longleftarrow}_{\ell_2 \leftarrow \ell_2 \leftarrow \ell$$

pelo que

$$X = \frac{1}{5} \begin{bmatrix} 1 & -3 \\ -2 & 1 \end{bmatrix}.$$

- 38. Sejam, por exemplo, $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. Então:
 - Como $A = \text{fer}(A) = I_2$, a matriz A é invertível.
 - Atendendo a

$$\underbrace{\begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}}_{Bll_2} \underbrace{\ell_2 \leftarrow -\ell_2} \leftarrow \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \underbrace{\ell_1 \leftarrow -\ell_1}_{b_1 B^{-1}} \underbrace{\begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}}_{b_2 B^{-1}},$$

 $fer(B) = I_2$, pelo que a matriz B é invertível.

• Como $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, atendendo a

$$\underbrace{\left[\begin{array}{c|c}0&0&1&0\\0&0&0&1\end{array}\right]}_{A+B|I_2},$$

 $fer(A+B) \neq I_2$, pelo que a matriz A+B é singular.

Assim, a proposição dada é falsa.

- 39. A Seja, por exemplo, $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Então, A é uma matriz diagonal mas não é uma matriz escalar. Assim, a hipótese é falsa.
 - B Seja, por exemplo, $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$. Então, A é uma matriz simétrica mas co o $AA^{\mathsf{T}} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \neq I_2$, não é uma matriz ortogonal. Assim, a hipótese é falsa.

$$\underbrace{\left[\begin{array}{cc|c} 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 \end{array}\right]}_{B|I_2} \underbrace{\ell_2 \leftarrow \frac{1}{2}\ell_2} \underbrace{\left[\begin{array}{cc|c} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & \frac{1}{2} \end{array}\right]}_{I_2|A^{-1}},$$

 $fer(A) = I_2$, pelo que a matriz A é invertível, mas como $AA^T = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}^T = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \neq I_2$, não é uma matriz ortogonal. Assim, a hipótese é falsa

- D Seja A uma matriz escalar. Então, por definição, A é uma matriz diagonal. Assim, a hipótese é verdadeira
- 40. Exercício 1
 - (a) Como $\{V_1, V_2\}$, $\{V_1, V_4\}$, $\{V_2, V_3\}$, $\{V_2, V_4\}$ e $\{V_4, V_5\}$ são arestas do grafo, então $m_{12} = m_{21} = 1$, $m_{14} = m_{41} = 1$, $m_{23} = m_{32} = 1$, $m_{24} = m_{42} = 1$ e $m_{45} = m_{54} = 1$, sendo os restantes elementos da matriz M nulos, logo $M = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\$
 - (b) Como $M^2 = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 3 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}, \text{ então } \sum_{j=1}^5 m_{1j} = 2 + 1 + 1 + 1 + 1 = 6. \text{ Logo, existem 6 caminhos de comprimento 2 que começam em } V_1: V_1V_2V_1, V_1V_4V_2, V_1V_2V_3, V_1V_2V_4, V_1V_4V_5.$

(d) Visto que $m_{24} + (M^2)_{24} + (M^3)_{24} = 1 + 1 + 5 = 7$, então conclui-se que existem 7 caminhos de comprimento menor ou igual a 3 que ligam V_2 a V_4 .

Exercício 2

(a) Dado que $m_{12} = m_{21} = 1$, $m_{13} = m_{31} = 1$, $m_{14} = m_{41} = 1$, $m_{23} = m_{32} = 1$, $m_{34} = m_{43} = 1$, sendo os restantes elementos da matriz M nulos, então o grafo tem arestas $\{V_1, V_2\}$, $\{V_1, V_3\}$, $\{V_1, V_4\}$, $\{V_2, V_3\}$, $\{V_3, V_4\}$, que ligam os respetivos vértices. Logo, um grafo correspondente à matriz de adjacência M pode ser representado da forma

(b) Por um lado, analisando o grafo, conclui-se que existem 2 caminhos de comprimento 2 que ligam V_1 a V_3 : $V_1 \rightarrow V_2 \rightarrow V_3$ e $V_1 \rightarrow V_4 \rightarrow V_3$. Por outro lado, calculando $M^2 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 \\ 2 & 1 & 3 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$, observa-se que $(M^2)_{13} = 2$, o que confirma que existem dois caminhos de comprimento 2 que ligam V_1 a V_3 .

Resoluções dos exercícios do capítulo 2 — Determinantes

- 1. $|B| = 3 \times 4 (-6) \times 2 = 24$.
 - $|C| = 2 \times (2 \times 0 (-2) \times 4) (-1) \times ((-1) \times 0 (-2) \times 1) + 3 \times ((-1) \times 4 2 \times 1) = 0.$
 - Por exemplo, recorrendo ao Teorema de Laplace através do desenvolvimento da coluna 1:

$$|D| = \sum_{i=1}^{4} (-1)^{i+1} (D)_{i1} |\widetilde{D}_{i1}|$$

$$= (-1)^{1+1} (D)_{11} |\widetilde{D}_{11}| + (-1)^{2+1} (D)_{21} |\widetilde{D}_{21}| + (-1)^{3+1} (D)_{31} |\widetilde{D}_{31}| + (-1)^{4+1} (D)_{41} |\widetilde{D}_{41}|$$

$$= 1 \times 2 \times \begin{vmatrix} -1 & 3 & 2 \\ 1 & 2 & 1 \\ 0 & 20 & 3 \end{vmatrix} + (-1) \times 2 \times \begin{vmatrix} 3 & -1 & 4 \\ 1 & 2 & 1 \\ 0 & 20 & 3 \end{vmatrix} + 0 + 0$$

$$= 1 \times 2 \times 45 + (-1) \times 2 \times 41 + 0 + 0$$

$$= 8.$$

Cálculos auxiliares usando a Fórmula de Leibniz:

$$\begin{vmatrix} -1 & 3 & 2 \\ 1 & 2 & 1 \\ 0 & 20 & 3 \end{vmatrix} = (-1) \times (2 \times 3 - 1 \times 20) - 3 \times (1 \times 3 - 1 \times 0) + 2 \times (1 \times 20 - 2 \times 0) = 45.$$

$$\begin{vmatrix} 3 & -1 & 4 \\ 1 & 2 & 1 \\ 0 & 20 & 3 \end{vmatrix} = 3 \times (2 \times 3 - 1 \times 20) - (-1) \times (1 \times 3 - 1 \times 0) + 4 \times (1 \times 20 - 2 \times 0) = 41.$$

2. • Processo 1 — por exemplo, recorrendo ao Teorema de Laplace através do desenvolvimento da linha 3:

$$|A| = \sum_{j=1}^{4} (-1)^{3+j} (A)_{3j} |\widetilde{A}_{3j}|$$

$$= (-1)^{3+1} (A)_{31} |\widetilde{A}_{31}| + (-1)^{3+2} (A)_{32} |\widetilde{A}_{32}| + (-1)^{3+3} (A)_{33} |\widetilde{A}_{33}| + (-1)^{3+4} (A)_{34} |\widetilde{A}_{34}|$$

$$= 0 + (-1) \times (-1) \times \begin{vmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{vmatrix} + 0 + (-1) \times 3 \times \begin{vmatrix} 1 & 2 & -1 \\ -1 & -1 & 2 \\ -1 & -2 & 2 \end{vmatrix}$$

$$= 0 + (-1) \times (-1) \times 0 + 0 + (-1) \times 3 \times 1$$

$$= -3.$$

Cálculos auxiliares (usando a Fórmula de Leibniz no cálculo do segundo determinante):

 $\begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & 2 & -1 \end{bmatrix} = 0$, porque existem duas linhas iguais.

$$\begin{vmatrix} 1 & 2 & -1 \\ -1 & -1 & 2 \\ -1 & -2 & 2 \end{vmatrix} = 1 \times ((-1) \times 2 - 2 \times (-2)) - 2 \times ((-1) \times 2 - 2 \times (-1)) + (-1) \times ((-1) \times (-2) - (-1) \times (-1)) = 1.$$

• Processo 2 — por exemplo, recorrendo à observação Obs 2.20:

$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ -1 & -1 & 2 & -1 \\ 0 & -1 & 0 & 3 \\ -1 & -2 & 2 & -1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + \ell_1} \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + \ell_2} \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{\ell_4 \leftarrow \ell_4 - \ell_3} \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -3 \end{bmatrix}.$$

Assim, tem-se que $|A| = (-1)^0 \times (1 \times 1 \times 1 \times (-3)) = -3$.

3. Recorrendo, por exemplo, à regra de Sarrus

tem-se que |A| = (0+0+0) - (1+0+0) = -1, pelo que a única hipótese verdadeira é a D.

- 4. $|A| = 1 \times 1 1 \times 2 = -1$.
 - Para calcular o determinante da matriz B, recorra-se, por exemplo, à regra de Sarrus:

Tem-se, então, que |B| = (0+0+0) - (2+0+0) = -2.

- Tem-se, finalmente, que |A| + |B| = -1 2 = -3, pelo que a única hipótese verdadeira é a B.
- 5. Como a matriz A é triangular superior, $\det(A) = 1 \times \alpha \times (\alpha \beta)$. Como uma matriz é invertível sse o seu determinante é diferente de 0, A é invertível sse $\alpha \neq 0$ e $\beta \neq \alpha$. Assim, a única hipótese verdadeira é a B.
- 6. Uma matriz é invertível sse o seu determinante é diferente de zero. Calcule-se, então, o determinante da matriz A, recorrendo-se, por exemplo, à regra de Sarrus:

Tem-se, então, que $|A| = (1 + yx + xy) - (x^2 + y^2 + 1) = -x^2 - y^2 + 2xy = -(x^2 - 2xy + y^2) = -(x - y)^2$, pelo que $|A| \neq 0 \Leftrightarrow x - y \neq 0 \Leftrightarrow x \neq y$.

7. Uma matriz é invertível sse o seu determinante é diferente de zero. Calcule-se, então, o determinante da matriz Z, recorrendo-se, por exemplo, à regra de Sarrus:

Tem-se, então, que $|A| = (x^3 + 1 + 1) - (x + x + x) = x^3 - 3x + 2$. Por inspeção, x = 1 anula o determinante da matriz A. Para determinar os outros valores que anulam o determinante da matriz A, aplique-se a regra de Ruffini:

Então, $|A| = (x - 1)(x^2 + x - 2)$. Aplicando-se, agora, a fórmula resolvente, tem-se

$$x^2 + x - 2 = 0 \Leftrightarrow x = \frac{-1 \pm \sqrt{1+8}}{2} \Leftrightarrow x = 1 \lor x = -2,$$

pelo que |A| = (x-1)(x-1)(x+2). Assim, $|A| = 0 \Leftrightarrow x = 1 \lor x = -2$, pelo que A é uma matriz invertível sse $x \in \mathbb{R} - \{-2, 1\}$.

8. Para calcular o determinante da matriz A, recorra-se, por exemplo, à observação Obs 2.20;

$$\begin{bmatrix} 2 & -1 & 3 & 5 \\ 0 & 1 & 2 & 3 \\ 4 & -1 & -2 & 1 \\ -2 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - 2\ell_1} \begin{bmatrix} 2 & -1 & 3 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & -8 & -9 \\ 0 & 2 & 4 & 9 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \ell_2} \begin{bmatrix} 2 & -1 & 3 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & -10 & -12 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Assim, tem-se que $|A| = (-1)^0 \times (2 \times 1 \times (-10) \times 3) = -60$, pelo que $|(AB^{-1})^{\mathsf{T}}| = |AB^{-1}| = |A||B^{-1}| = |A| \times \frac{1}{|B|} = (-60) \times \frac{1}{12} = -5$.

9. Seja $n \in \mathbb{N}$ a ordem da matriz A. Então, como $|B| = |2A^T| = 2^n|A^T| = 2^n|A| = 2^n \times 2 = 2^{n+1} \neq 0$, tem-se que B é uma matriz invertível.

10. Atendendo a

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 2 & 2 & 0 & 0 & \cdots & 0 \\ 3 & 3 & 3 & 0 & \cdots & 0 \\ 4 & 4 & 4 & 4 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n & n & n & \cdots & n \end{bmatrix},$$

A é uma matriz triangular inferior, pelo que $\det(A) = 1 \times 2 \times 3 \times 4 \times \cdots \times n = n!$. Assim, a única hipótese verdadeira é a D.

11. Atendendo a

$$A = \begin{bmatrix} 2 & 2 & 2 & 2 & \cdots & 2 \\ 0 & 2 & 2 & 2 & \cdots & 2 \\ 0 & 0 & 2 & 2 & \cdots & 2 \\ 0 & 0 & 0 & 2 & \cdots & 2 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 \end{bmatrix},$$

A é uma matriz triangular superior, pelo que

$$\det(A) = \underbrace{2 \times 2 \times 2 \times 2 \times \cdots \times 2}_{n \text{ vezes}} = 2^n.$$

Como $\det(A^{\mathsf{T}}A) = \det(A^{\mathsf{T}}) \det(A) = \det(A) \det(A) = 2^n 2^n = 4^n$, a única hipótese verdadeira é a D.

- 12. A Como a partir de det(A) e det(B) não se pode calcular det(A+B), a hipótese é falsa.
 - B Como $\det(-A) = (-1)^2 \det(A) = 1 \times 2 = 2 \neq -\det(A) = -2$, a hipótese é falsa.
 - Como $det(-A) = (-1)^2 det(A) = 1 \times 2 = 2 = det(A)$, a hipótese é verdadeira.
 - D Como $det(AB) = det(A) det(B) = 2 \times (-2) = 4$, a hipótese é falsa.
- 13. Como A é uma matriz triangular superior, tem-se que $|A| = 2 \times 1 \times 1 = 2$, pelo que $\det(AA^T) \det(A^T) = \det(A) \det(A^T) \frac{1}{\det(A)} = \det(A) \det(A) \frac{1}{\det(A)} = \det(A) \det(A) = 2$. Assim, a única hipótese verdadeira é a B.
- 14. Recorrendo, por exemplo, ao Teorema de Laplace através do desenvolvimento da linha 2:

$$|A| = \sum_{j=1}^{4} (-1)^{2+j} (A)_{2j} |\widetilde{A}_{2j}|$$

$$= (-1)^{2+1} (A)_{21} |\widetilde{A}_{21}| + (-1)^{2+2} (A)_{22} |\widetilde{A}_{22}| + (-1)^{2+3} (A)_{23} |\widetilde{A}_{23}| + (-1)^{2+4} (A)_{24} |\widetilde{A}_{24}|$$

$$= 0 + 1 \times 1 \times \begin{vmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 3 \end{vmatrix} + 0 + 0$$

$$= 0 + 1 \times 1 \times (-6) + 0 + 0$$

$$= -6.$$

Cálculos auxiliares usando a Fórmula de Leibniz:

$$\begin{vmatrix} 1 & 2 & 0 \\ 1 & 0 & 0 \\ 1 & 2 & 3 \end{vmatrix} = 1 \times (0 \times 3 - 0 \times 2) - 2 \times (1 \times 3 - 0 \times 1) + 0 = -6.$$

Assim, a única hipótese verdadeira é a A.

- 15. (a) Como E é uma matriz triagular superior, $\det(E) = 1 \times 1 \times 1 = 1$. Assim, sendo $\det(E) \neq 0$, conclui-se que E é uma a matriz invertível.
 - (b) Atendendo a

$$(\mathrm{adj}(A))_{11} = (-1)^{1+1} |\widetilde{A}_{11}| = |\frac{1}{0}\frac{1}{1}| = 1$$

$$(\mathrm{adj}(A))_{12} = (-1)^{2+1} |\widetilde{A}_{21}| = -|\frac{1}{0}\frac{1}{1}| = -1$$

$$(\mathrm{adj}(A))_{13} = (-1)^{3+1} |\widetilde{A}_{31}| = |\frac{1}{1}\frac{1}{1}| = 0$$

$$(\mathrm{adj}(A))_{21} = (-1)^{1+2} |\widetilde{A}_{12}| = -|\frac{0}{0}\frac{1}{1}| = 0$$

$$(\mathrm{adj}(A))_{22} = (-1)^{2+2} |\widetilde{A}_{22}| = |\frac{1}{0}\frac{1}{1}| = 1$$

$$(\mathrm{adj}(A))_{23} = (-1)^{3+2} |\widetilde{A}_{32}| = -|\frac{1}{0}\frac{1}{1}| = -1$$

$$(\mathrm{adj}(A))_{31} = (-1)^{1+3} |\widetilde{A}_{13}| = |\frac{0}{0}\frac{1}{0}| = 0$$

$$(\mathrm{adj}(A))_{32} = (-1)^{2+3} |\widetilde{A}_{23}| = -|\frac{1}{0}\frac{1}{0}| = 0$$

$$(\mathrm{adj}(A))_{33} = (-1)^{3+3} |\widetilde{A}_{33}| = |\frac{1}{0}\frac{1}{1}| = 1,$$

tem-se que

$$E^{-1} = \frac{1}{|A|} \operatorname{adj}(E) = \frac{1}{1} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$$

- 16. $|A| = 4 \times 4 (-1) \times (-1) = 15$.
 - $|B| = \cos \alpha \times \cos \alpha (-\sin \alpha) \times \sin \alpha = \cos^2 \alpha + \sin^2 \alpha = 1$.
 - Como a matriz C tem duas colunas iguais, tem-se que |C| = 0.
 - Recorrendo-se, por exemplo, à regra de Sarrus

tem-se que |D| = (0+6+0) - (8+0+(-2)) = 0.

• Recorrendo-se, por exemplo, ao Teorema de Laplace através do desenvolvimento da coluna 1, tem-se que

$$|E| = \sum_{i=1}^{4} (-1)^{i+1} (E)_{i1} |\widetilde{E}_{i1}|$$

$$= (-1)^{1+1} (E)_{11} |\widetilde{E}_{11}| + (-1)^{2+1} (E)_{21} |\widetilde{E}_{21}| + (-1)^{3+1} (E)_{31} |\widetilde{E}_{31}| + (-1)^{4+1} (E)_{41} |\widetilde{E}_{41}|$$

$$= 0 + (-1) \times 1 \times \begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} + 0 + 0$$

$$= 0 + (-1) \times 1 \times (-1) + 0 + 0$$

$$= 1.$$

Cálculos auxiliares usando a Fórmula de Leibniz:

$$\begin{vmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{vmatrix} = 1 \times (0 \times 1 - 1 \times 1) - 0 \times (1 \times 1 - 1 \times 0) + 0 \times (1 \times 1 - 0 \times 0) = -1.$$

• Recorrendo-se, por exemplo, à observação Obs 2.20, tem-se que

$$\begin{bmatrix} 2 & 3 & 3 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 3 \\ 2 & 1 & 2 & 1 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftarrow \boldsymbol{\ell}_2 - \frac{1}{2}\boldsymbol{\ell}_1} \begin{bmatrix} 2 & 3 & 3 & 2 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 2 \\ 0 & -2 & -1 & -1 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_3 \leftarrow \boldsymbol{\ell}_3 - \boldsymbol{\ell}_2} \begin{bmatrix} 2 & 3 & 3 & 2 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_3 \leftarrow \boldsymbol{\ell}_4} \begin{bmatrix} 2 & 3 & 3 & 2 \\ 0 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

$$Assim, |F| = (-1)^1 \times (2 \times (-\frac{1}{2}) \times 1 \times 2) = 2.$$

17. • $|A| = 3 \times 1 - 2 \times 1 = 1$.

$$adj(A) = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} \operatorname{adj}(A) = \frac{1}{1} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}.$$

• $|B| = 1 \times (-1) - 2 \times 3 = -7$.

$$\operatorname{adj}(B) = \begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix}$$

$$B^{-1} = \frac{1}{|B|} \operatorname{adj}(B) = \frac{1}{-7} \begin{bmatrix} -1 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{7} & \frac{2}{7} \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}.$$

• $|C| = 3 \times 4 - 1 \times 2 = 10$.

$$\operatorname{adj}(C) = \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix}$$

$$C^{-1} = \frac{1}{|C|} \operatorname{adj}(C) = \frac{1}{10} \begin{bmatrix} 4 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} \frac{2}{5} & -\frac{1}{10} \\ -\frac{1}{5} & \frac{3}{10} \end{bmatrix}.$$

• $|D| = 1 \times (1 \times (-1) - 1 \times 2) - 3 \times (2 \times (-1) - 1 \times (-2)) + 1 \times (2 \times 2 - 1 \times (-2)) = 3.$

$$(adj(D))_{11} = (-1)^{1+1}|\widetilde{D}_{11}| = 1 \times \left|\frac{1}{2}\frac{1}{-1}\right| = 1 \times (-1) - 1 \times 2 = -3$$

$$(\mathrm{adj}(D))_{12} = (-1)^{2+1} |\widetilde{D}_{21}| = (-1) \times \left| \frac{3}{2} \frac{1}{-1} \right| = (-1) \times (3 \times (-1) - 1 \times 2) = 5$$

$$(\mathrm{adj}(D))_{13} = (-1)^{3+1} |\widetilde{D}_{31}| = 1 \times \left| \frac{3}{1} \frac{1}{1} \right| = 3 \times 1 - 1 \times 1 = 2$$

$$(\mathrm{adj}(D))_{21} = (-1)^{1+2} |\widetilde{D}_{12}| = (-1) \times \left| \frac{2}{-2} \frac{1}{-1} \right| = (-1) \times (2 \times (-1) - 1 \times (-2)) = 0$$

$$(\mathrm{adj}(D))_{22} = (-1)^{2+2} |\widetilde{D}_{22}| = 1 \times \left| \frac{1}{-2} \frac{1}{-1} \right| = 1 \times (-1) - (-2) \times 1 = 1$$

$$(\mathrm{adj}(D))_{23} = (-1)^{3+2} |\widetilde{D}_{32}| = (-1) \times \left| \frac{1}{2} \frac{1}{1} \right| = (-1) \times (1 \times 1 - 1 \times 2) = 1$$

$$(\mathrm{adj}(D))_{31} = (-1)^{1+3} |\widetilde{D}_{13}| = 1 \times \left| \frac{2}{-2} \frac{1}{2} \right| = 2 \times 2 - 1 \times (-2) = 6$$

$$(\mathrm{adj}(D))_{32} = (-1)^{2+3} |\widetilde{D}_{23}| = (-1) \times \left| \frac{1}{-2} \frac{3}{2} \right| = (-1) \times (1 \times 2 - 3 \times (-2)) = -8$$

$$(\mathrm{adj}(D))_{33} = (-1)^{3+3} |\widetilde{D}_{33}| = 1 \times \left| \frac{1}{2} \frac{3}{1} \right| = 1 \times 1 - 3 \times 2 = -5$$

$$\mathrm{adj}(D) = \begin{bmatrix} -3 & 5 & 2 \\ 0 & 1 & 1 \\ 6 & -8 & -5 \end{bmatrix}$$

$$D^{-1} = \frac{1}{|D|} \operatorname{adj}(D) = \frac{1}{3} \begin{bmatrix} -3 & 5 & 2 \\ 0 & 1 & 1 \\ 6 & -8 & -5 \end{bmatrix} = \begin{bmatrix} -1 & \frac{5}{3} & \frac{2}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} \\ 2 & -8 & -\frac{5}{3} & \frac{2}{3} \end{bmatrix} .$$

- 18. $\det(AB) = \det(A) \det(B) = \det(B) \det(A) = \det(BA)$
- 19. (a) Resolução da equação matricial:

$$((AX)^{\mathsf{T}} + DF)^{-1} = I_2 \Leftrightarrow (((AX)^{\mathsf{T}} + DF)^{-1})^{-1} = (I_2)^{-1} \Leftrightarrow (AX)^{\mathsf{T}} + DF = I_2 \Leftrightarrow (AX)^{\mathsf{T}} = I_2 - DF \Leftrightarrow ((AX)^{\mathsf{T}})^{\mathsf{T}} = (I_2 - DF)^{\mathsf{T}} \Leftrightarrow AX = A^{-1}(I_2 - DF)^{\mathsf{T}} \Leftrightarrow AX = A^{-1}(I_2 - DF)^{\mathsf{T}}.$$

- (*) Como $det(A) = 1 \times 1 2 \times 0 = 1 \neq 0$, tem-se que a matriz A é invertível.
- Determinação da matriz X:

$$X = A^{-1} \left(I_2 - DF \right)^{\mathsf{T}} = \left[\begin{smallmatrix} 1 & 2 \\ 0 & 1 \end{smallmatrix} \right]^{-1} \left(\left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right] - \left[\begin{smallmatrix} 1 \\ 1 \end{smallmatrix} \right] \left[\begin{smallmatrix} 2 & 3 \end{smallmatrix} \right] \right)^{\mathsf{T}} = \frac{1}{|A|} \operatorname{adj} \left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right] \left(\left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right] - \left[\begin{smallmatrix} 2 & 3 \\ 0 & 1 \end{smallmatrix} \right] \right)^{\mathsf{T}} = \frac{1}{1} \left[\begin{smallmatrix} 1 & -2 \\ 0 & 1 \end{smallmatrix} \right] \left[\begin{smallmatrix} -1 & -3 \\ -2 & -2 \end{smallmatrix} \right]^{\mathsf{T}} = \left[\begin{smallmatrix} 1 & -2 \\ 0 & 1 \end{smallmatrix} \right] \left[\begin{smallmatrix} -1 & -2 \\ -3 & -2 \end{smallmatrix} \right] = \left[\begin{smallmatrix} 5 & 2 \\ -3 & -2 \end{smallmatrix} \right].$$

(b)
$$((AX)^T + DF)^{-1} = I_2 \Leftrightarrow (((AX)^T + DF)^{-1})^{-1} = (I_2)^{-1} \Leftrightarrow (AX)^T + DF = I_2$$
, pelo que $\det((AX)^T + DF) = \det(I_2) = 1$.

- 20. Como $A^p = \underline{0}$, então $|A^p| = |\underline{0}| \Leftrightarrow |A|^p = 0 \Leftrightarrow |A| = 0$, pelo que A é uma matriz singular.
- 21. Seja A uma matriz ortogonal. Então, $AA^T = I$, pelo que $|AA^T| = |I| \Leftrightarrow |A||A^T| = 1 \Leftrightarrow |A||A| = 1 \Leftrightarrow |A|^2 = 1 \Leftrightarrow |A| = \pm 1$.
- 22. Atendendo a

$$A = \begin{bmatrix} 1 & 2 & \gamma \\ \delta & 1 & 1 \\ 1 & \delta + \gamma & 2 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & 2 & \gamma \\ \delta \gamma & \gamma & \gamma \\ 1 & \delta + \gamma & 2 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & 2 & \gamma \\ \delta \gamma & \gamma & \gamma \\ 1 & \delta + \gamma & 2 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & 2 & \gamma \\ \delta \gamma & \gamma & \gamma \\ \delta & \delta^2 + \gamma \delta & 2 \delta \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & 2 & \gamma \\ \delta & \delta^2 + \gamma \delta & 2 \delta \\ \delta \gamma & \gamma & \gamma \end{bmatrix} = B,$$

tem-se que $|B| = -\gamma \delta |A| = -\gamma \delta \times 1 = -\gamma \delta$.

23. Sabe-se que $AB = \begin{bmatrix} 45 & 63 & 44 \\ 60 & 82 & 48 \\ -47 & -68 & -65 \end{bmatrix}$. Atendendo a

$$\underbrace{\begin{bmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 1 & 3 & 1 & 0 & 1 & 0 \\ -2 & -2 & -1 & 0 & 0 & 1 \end{bmatrix}}_{\ell_{3} \leftarrow \ell_{3} + 2\ell_{1}} \underbrace{\begin{bmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 2 & 1 & 2 & 0 & 1 \end{bmatrix}}_{\ell_{3} \leftarrow \ell_{3} - 2\ell_{2}} \underbrace{\begin{bmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 4 & -2 & 1 \end{bmatrix}}_{\ell_{3} \leftarrow \ell_{1} - \ell_{2}} \underbrace{\begin{bmatrix} 1 & 2 & 0 & -3 & 2 & -1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 4 & -2 & 1 \end{bmatrix}}_{\ell_{1} \leftarrow \ell_{1} - \ell_{3}} \underbrace{\begin{bmatrix} 1 & 2 & 0 & -3 & 2 & -1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 4 & -2 & 1 \end{bmatrix}}_{\ell_{1} \leftarrow \ell_{1} - \ell_{3}}$$

$$\underbrace{\ell_1 \leftarrow \ell_1 - 2\ell_2}_{\longleftarrow} \underbrace{\left[\begin{array}{cccc} 1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & -1 & 1 & 0 \\ 0 & 0 & 1 & 4 & -2 & 1 \end{array}\right]}_{I_3|A^{-1}},$$

tem-se que $A^{-1} = \begin{bmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 4 & -2 & 1 \end{bmatrix}$. Pré-multiplicando a matriz AB por A^{-1} , vem

$$A^{-1}AB = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 4 & -2 & 1 \end{bmatrix} \begin{bmatrix} 45 & 63 & 44 \\ 60 & 82 & 48 \\ -47 & -68 & -65 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 21 \\ 15 & 19 & 4 \\ 13 & 20 & 15 \end{bmatrix}.$$

Considerando a seguinte correspondência entre as letras do alfabeto e os números que representam a ordem de cada letra

a matriz $\begin{bmatrix} 2 & 5 & 21 \\ 15 & 19 & 4 \\ 13 & 20 & 15 \end{bmatrix}$ pode ser escrita identificando as letras correspondentes a cada número, que resulta em $\begin{bmatrix} B & E & U \\ O & S & D \\ M & T & O \end{bmatrix}$. Conclui-se assim que a mensagem é "BOM ESTUDO".

Resoluções dos exercícios do capítulo 3 — Sistemas de Equações Lineares

1.
$$(S_1)$$
 (a) $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A|b = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & -1 & 0 & 1 & 0 \end{bmatrix}$.

(b) Método de Gauss

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1} \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -2 & -1 & -3 \\ 0 & 1 & 2 & 3 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + \frac{1}{2}\ell_2} \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -2 & -1 & -3 \\ 0 & 0 & \frac{3}{2} & \frac{3}{2} \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas), (S_1) é um sistema PD.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S_1) . Então, (S_1) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 = 3 \\ -2x_2 - x_3 = -3 \\ \frac{3}{2}x_3 = \frac{3}{2}. \end{cases}$$

Assim, tem-se (MeSTaF):

- $\frac{3}{2}x_3 = \frac{3}{2} \Leftrightarrow x_3 = 1$;
- $-2x_2 x_3 = -3 \Leftrightarrow -2x_2 (1) = -3 \Leftrightarrow x_2 = 1$;
- $x_1 + x_2 + x_3 = 3 \Leftrightarrow x_1 + (1) + (1) = 3 \Leftrightarrow x_1 = 1$,

pelo que $CS_{(S_1)} = \{(1, 1, 1)\}.$

(c) Método de Gauss (tendo em consideração a alínea anterior, o Passo 1 é imediato)

Passo 1 (Resultado da) Aplicação do ATEsc à matriz aumentada $A|0_{3\times 1}$:

$$\left[\begin{array}{ccc|c} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 0 \\ 0 & 0 & \frac{3}{2} & 0 \end{array}\right].$$

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas), (S_{1,h}) é um sistema PD.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema $(S_{1,h})$. Então, $(S_{1,h})$ é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ -2x_2 - x_3 = 0 \\ \frac{3}{2}x_3 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $\frac{3}{2}x_3 = 0 \Leftrightarrow x_3 = 0$;
- $-2x_2 x_3 = 0 \Leftrightarrow -2x_2 (0) = 0 \Leftrightarrow x_2 = 0$;
- $x_1 + x_2 + x_3 = 0 \Leftrightarrow x_1 + (0) + (0) = 0 \Leftrightarrow x_1 = 0$,

pelo que $CS_{(S_{1,h})} = \{(0,0,0)\}.$

- (S_2) (a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 1 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A|b = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & 2 \\ 1 & 1 & 1 & 4 \end{bmatrix}$.
 - (b) Método de Gauss

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 1 & 4 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \ell_2} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), (S_2) é um sistema PI.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S_2) . Então, x_3 é uma incógnita livre e (S_2) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 &= 2 \\ -x_2 + x_3 &= 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-x_2 + x_3 = 0 \Leftrightarrow x_2 = x_3$;
- $x_1 + x_2 = 2 \Leftrightarrow x_1 + (x_3) = 2 \Leftrightarrow x_1 = 2 x_3$

pelo que $CS_{(S_2)} = \{(2 - x_3, x_3, x_3) : x_3 \in \mathbb{R}\}.$

(c) Método de Gauss (tendo em consideração a alínea anterior, o Passo 1 é imediato)

Passo 1 (Resultado da) Aplicação do ATEsc à matriz aumentada $A|_{0_{3\times1}}$:

$$\left[\begin{array}{cc|ccc} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), $(S_{2,h})$ é um sistema PI.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema $(S_{2,h})$. Então, x_3 é uma incógnita livre e $(S_{2,h})$ é equivalente ao sistema

$$\begin{cases} x_1 + x_2 &= 0 \\ -x_2 + x_3 &= 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-x_2 + x_3 = 0 \Leftrightarrow x_2 = x_3$;
- $x_1 + x_2 = 0 \Leftrightarrow x_1 + (x_3) = 0 \Leftrightarrow x_1 = -x_3$

pelo que $CS_{(S_{2,h})} = \{(-x_3, x_3, x_3) : x_3 \in \mathbb{R}\}.$

- (S₃) (a) $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$, $b = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, $A|b = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 1 & 0 & 2 \\ 2 & 2 & 1 & 1 \end{bmatrix}$.
 - (b) Método de Gauss

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & 1 & 0 & 2 \\ 2 & 2 & 1 & 1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1} \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & -1 & -5 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \ell_2} \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -4 \end{bmatrix}.$$

Passo 2 Como car(A) = 2 < car(A|b) = 3, (S_3) é um sistema Imp.

Passo 3 $CS_{(S_3)} = \emptyset$.

(c) Método de Gauss (tendo em consideração a alínea anterior, o Passo 1 é imediato)

Passo 1 (Resultado da) Aplicação do ATEsc à matriz aumentada $A|_{0_{3\times1}}$:

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), ($S_{3,h}$) é um sistema PI.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema $(S_{3,h})$. Então, x_2 é uma incógnita livre e $(S_{3,h})$ é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ -x_3 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-x_3 = 0 \Leftrightarrow x_3 = 0$;
- $x_1 + x_2 + x_3 = 0 \Leftrightarrow x_1 + x_2 + (0) = 0 \Leftrightarrow x_1 = -x_2$,

pelo que $CS_{(S_{3,b})} = \{(-x_2, x_2, 0) : x_2 \in \mathbb{R}\}$

- $(S_4) (a) A = \begin{bmatrix} 1 & -1 & 1 \\ -2 & 2 & -2 \\ -1 & 1 & -1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, A|b = \begin{bmatrix} 1 & -1 & 1 & 1 \\ -2 & 2 & -2 & -2 \\ -1 & 1 & -1 & -1 \end{bmatrix}.$
 - (b) Método de Gauss

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & -1 & 1 & 1 \\ -2 & 2 & -2 & -2 \\ -1 & 1 & -1 & -1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + 2\ell_1} \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ \ell_3 \leftarrow \ell_3 + \ell_1 \end{bmatrix} .$$

Passo 2 Como car(A) = car(A|b) = 1 < n = 3 (n é o número de incógnitas), (S_4) é um sistema PI.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S_4) . Então, x_2 e x_3 são incógnitas livres e (S_4) é equivalente ao sistema

$$\{x_1 - x_2 + x_3 = 1.$$

Assim, tem-se (MeSTaF):

- $x_1 x_2 + x_3 = 1 \Leftrightarrow x_1 = 1 + x_2 x_3$,
- pelo que $CS_{(S_4)} = \{(1 + x_2 x_3, x_2, x_3) : x_2, x_3 \in \mathbb{R}\}.$
- (c) Método de Gauss (tendo em consideração a alínea anterior, o Passo 1 é imediato)

Passo 1 (Resultado da) Aplicação do ATEsc à matriz aumentada $A|0_{3\times 1}$:

$$\left[\begin{array}{ccc|c} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

Passo 2 Como car(A) = car(A|b) = 1 < n = 3 (n é o número de incógnitas), ($S_{4,h}$) é um sistema PI.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema $(S_{4,h})$. Então, x_2 e x_3 são incógnitas livres e $(S_{4,h})$ é equivalente ao sistema

$$\{x_1 - x_2 + x_3 = 0.$$

Assim, tem-se (MeSTaF):

- $x_1 x_2 + x_3 = 0 \Leftrightarrow x_1 = x_2 x_3$,
- pelo que $CS_{(S_{4,h})} = \{(x_2 x_3, x_2, x_3) : x_2, x_3 \in \mathbb{R}\}.$
- 2. (a) Método de Gauss o sistema de equações lineares (S_1) tem por matriz dos coeficientes $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ e por vetor dos termos independentes $b = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. Tem-se, então:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b: a matriz aumentada $A|b = \begin{bmatrix} 1 & 2 & |5| \\ 0 & 3 & |6| \end{bmatrix}$ já está na forma em escada.

Passo 2 Como car(A) = car(A|b) = n = 2 (n é o número de incógnitas), (S_1) é um sistema PD.

Sendo x_1, x_2 as incógnitas do sistema (S_1) , então (S_1) é equivalente ao sistema

$$\begin{cases} x_1 + 2x_2 = 5 \\ 3x_2 = 6 \end{cases}$$

Assim, tem-se (MeSTaF):

- $3x_2 = 6 \Leftrightarrow x_2 = 2$;
- $x_1 + 2x_2 = 5 \Leftrightarrow x_1 + 2 \times (2) = 5 \Leftrightarrow x_1 = 1$,

pelo que $CS_{(S_1)} = \{(1,2)\}.$

Método de Gauss-Jordan — tendo em consideração a aplicação do Método de Gauss, onde já se determinou uma matriz em escada equivalente à matriz ampliada do sistema e se concluiu que o sistema é PD, avança-se diretamente para o Passo 3:

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1 do Método de Gauss

$$\begin{bmatrix} 1 & 2 & 5 \\ 0 & 3 & 6 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 2 & 5 \\ \ell_2 \leftarrow \frac{1}{3}\ell_2 \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \end{bmatrix} \longleftrightarrow \begin{bmatrix} \ell_1 \leftarrow \ell_1 - 2\ell_2 \\ \leftarrow \leftarrow \rightarrow \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}.$$

Sejam x_1, x_2 as incógnitas do sistema (S_1) . Então, (S_1) é equivalente ao sistema

$$\begin{cases} x_1 = 1 \\ x_2 = 2, \end{cases}$$

pelo que $CS_{(S_1)} = \{(1,2)\}.$

- (b) Método de Gauss o sistema de equações lineares (S_2) tem por matriz dos coeficientes $A = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ e por vetor dos termos independentes $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Tem-se, então:
 - **Passo 1** Aplicação do ATEsc à matriz aumentada A|b: a matriz aumentada $A|b = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$ já está na forma em escada.
 - **Passo 2** Como car(A) = 1 < car(A|b) = 2, (S_2) é um sistema Imp.

Passo 3 $CS_{(S_2)} = \emptyset$.

Método de Gauss-Jordan — tendo em consideração a aplicação do Método de Gauss, onde se concluiu que o sistema é Imp, tem-se, de maneira imediata, que $CS_{(S_2)} = \emptyset$

- (c) Método de Gauss o sistema de equações lineares (S_3) tem por matriz dos coeficientes $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix}$ e por vetor dos termos independentes $b = \begin{bmatrix} 14 \\ 23 \end{bmatrix}$. Tem-se, então:
 - **Passo 1** Aplicação do ATEsc à matriz aumentada A|b: a matriz aumentada $A|b = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \end{bmatrix} \begin{bmatrix} 14 & 2 \\ 23 \end{bmatrix}$ já está na forma em escada.
 - **Passo 2** Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), (S_3) é um sistema PI.
 - **Passo 3** Sendo x_1, x_2, x_3 as incógnitas do sistema (S_3) , então x_3 é uma incógnita livre e (S_3) é equivalente ao sistema

$$\begin{cases} x_1 + 2x_2 + 3x_3 = 14 \\ 4x_2 + 5x_3 = 23. \end{cases}$$

Assim, tem-se (MeSTaF):

- $4x_2 + 5x_3 = 23 \Leftrightarrow x_2 = \frac{23}{4} \frac{5}{4}x_3$;
- $x_1 + 2x_2 + 3x_3 = 14 \Leftrightarrow x_1 + 2 \times \left(\frac{23}{4} \frac{5}{4}x_3\right) + 3x_3 = 14 \Leftrightarrow x_1 = \frac{5}{2} \frac{1}{2}x_3$

pelo que $CS_{(S_3)} = \{(\frac{5}{2} - \frac{1}{2}x_3, \frac{23}{4} - \frac{5}{4}x_3, x_3) : x_3 \in \mathbb{R}\}.$

Método de Gauss-Jordan — tendo em consideração a aplicação do Método de Gauss, onde já se determinou uma matriz em escada equivalente à matriz ampliada do sistema e se concluiu que o sistema é PI, avança-se diretamente para o Passo 3:

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1 do Método de Gauss

$$\begin{bmatrix} 1 & 2 & 3 & | & 14 \\ 0 & 4 & 5 & | & 23 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \frac{1}{4}\ell_2} \begin{bmatrix} 1 & 2 & 3 & | & 14 \\ 0 & 1 & \frac{5}{4} & | & \frac{23}{4} \end{bmatrix} \xrightarrow{\ell_1 \leftarrow \ell_1 - 2\ell_2} \begin{bmatrix} 1 & 0 & \frac{1}{2} & | & \frac{5}{2} \\ 0 & 1 & \frac{5}{4} & | & \frac{23}{4} \end{bmatrix}.$$

Sejam x_1, x_2, x_3 as incógnitas do sistema (S_3) . Então, x_3 é uma incógnita livre e (S_3) é equivalente ao sistema

$$\begin{cases} x_1 + \frac{1}{2}x_3 = \frac{5}{2} \\ x_2 + \frac{5}{4}x_3 = \frac{23}{4}. \end{cases}$$

Assim, tem-se (MeSTaF):

- $x_2 + \frac{5}{4}x_3 = \frac{23}{4} \Leftrightarrow x_2 = \frac{23}{4} \frac{5}{4}x_3$;
- $x_1 + \frac{1}{2}x_3 = \frac{5}{2} \Leftrightarrow x_1 = \frac{5}{2} \frac{1}{2}x_3$,

pelo que $CS_{(S_3)} = \{(\frac{5}{2} - \frac{1}{2}x_3, \frac{23}{4} - \frac{5}{4}x_3, x_3) : x_3 \in \mathbb{R}\}.$

- (d) Método de Gauss o sistema de equações lineares (S_4) tem por matriz dos coeficientes $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ e por vetor dos termos independentes $b = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Tem-se, então:
 - **Passo 1** Aplicação do ATEsc à matriz aumentada A|b: a matriz aumentada $A|b = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ já está na forma em escada.
 - **Passo 2** Como car(A) = car(A|b) = 2 < n = 4 (n é o número de incógnitas), (S_4) é um sistema PI.
 - **Passo 3** Sendo x_1, x_2, x_3, x_4 as incógnitas do sistema (S_4) , então x_3 e x_4 são incógnitas livres e (S_4) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_2 + x_4 = 1. \end{cases}$$

Assim, tem-se (MeSTaF):

- $x_2 + x_4 = 1 \Leftrightarrow x_2 = 1 x_4$;
- $x_1 + x_2 + x_3 + x_4 = 1 \Leftrightarrow x_1 + (1 x_4) + x_3 + x_4 = 1 \Leftrightarrow x_1 = -x_3$

pelo que $CS_{(S_4)} = \{(-x_3, 1 - x_4, x_3, x_4) : x_3, x_4 \in \mathbb{R}\}.$

Método de Gauss-Jordan — tendo em consideração a aplicação do Método de Gauss, onde já se determinou uma matriz em escada equivalente à matriz ampliada do sistema e se concluiu que o sistema é PI, avança-se diretamente para o Passo 3:

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1 do Método de Gauss

Sejam x_1, x_2, x_3, x_4 as incógnitas do sistema (S_4) . Então, x_3 e x_4 são incógnitas livres e (S_4) é equivalente ao sistema

$$\begin{cases} x_1 + x_3 = 0 \\ x_2 + x_4 = 1. \end{cases}$$

Assim, tem-se (MeSTaF):

- $x_2 + x_4 = 1 \Leftrightarrow x_2 = 1 x_4$:
- $x_1 + x_3 = 0 \Leftrightarrow x_1 = -x_3$.

pelo que $CS_{(S_4)} = \{(-x_3, 1 - x_4, x_3, x_4) : x_3, x_4 \in \mathbb{R}\}.$

(e) Método de Gauss — o sistema de equações lineares (S_5) tem por matriz dos coeficientes $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$ e por vetor dos termos independentes $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Tem-se, então:

Passo 1 Aplicação do ATEsc à matriz aumentada *A*|*b*:

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & -1 & 0 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & -2 & 0 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), (S₅) é um sistema PI.

Passo 3 Sendo x_1, x_2, x_3 as incógnitas do sistema (S_5) , então x_3 é uma incógnita livre e (S_5) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ -2x_2 - 2x_3 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-2x_2 2x_3 = 0 \Leftrightarrow x_2 = -x_3$;
- $x_1 + x_2 + x_3 = 0 \Leftrightarrow x_1 + (-x_3) + x_3 = 0 \Leftrightarrow x_1 = 0$,

pelo que $CS_{(S_5)} = \{(0, -x_3, x_3) : x_3 \in \mathbb{R}\}.$

Método de Gauss-Jordan — tendo em consideração a aplicação do Método de Gauss, onde já se determinou uma matriz em escada equivalente à matriz ampliada do sistema e se concluiu que o sistema é PI, avança-se diretamente para o Passo 3:

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1 do Método de Gauss

$$\left[\begin{array}{cc|cccc} 1 & 1 & 1 & 0 \\ 0 & -2 & -2 & 0 \end{array}\right] \xleftarrow{\longleftarrow} \left[\begin{array}{cccccc} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{array}\right] \xleftarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \left[\begin{array}{cccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{array}\right].$$

Sejam x_1, x_2, x_3 as incógnitas do sistema (S_5) . Então, x_3 é uma incógnita livre e (S_5) é equivalente ao sistema

$$\begin{cases} x_1 = 0 \\ x_2 + x_3 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $x_2 + x_3 = 0 \Leftrightarrow x_2 = -x_3$;
- $x_1 = 0 \Leftrightarrow x_2 = -x_3$,

pelo que $CS_{(S_5)} = \{(0, -x_3, x_3) : x_3 \in \mathbb{R}\}.$

(f) Método de Gauss — o sistema de equações lineares (S_6) tem por matriz dos coeficientes $A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & -1 & 3 \\ 1 & -2 & 1 & 1 \end{bmatrix}$ e por vetor dos termos independentes $b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Tem-se, então:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 2 & 1 & -1 & 3 & 0 \\ 1 & -2 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & -1 & -3 & 1 & 0 \\ 0 & -3 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - 3\ell_2} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & -1 & -3 & 1 & 0 \\ 0 & 0 & 9 & -3 & 0 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = 3 < n = 4 (n é o número de incógnitas), (S₆) é um sistema PI.

Passo 3 Sendo x_1, x_2, x_3, x_4 as incógnitas do sistema (S_6) , então x_4 é uma incógnita livre e (S_6) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ -x_2 - 3x_3 + x_4 = 0 \end{cases}$$
$$9x_3 - 3x_4 = 0.$$

Assim, tem-se (MeSTaF):

- $9x_3 3x_4 = 0 \Leftrightarrow x_3 = \frac{1}{3}x_4$;
- $-x_2 3x_3 + x_4 = 0 \Leftrightarrow -x_2 3 \times (\frac{1}{3}x_4) + x_4 = 0 \Leftrightarrow x_2 = 0$;
- $x_1 + x_2 + x_3 + x_4 = 0 \Leftrightarrow x_1 + (0) + (\frac{1}{3}x_4) + x_4 = 0 \Leftrightarrow x_1 = -\frac{4}{3}x_4$

pelo que $CS_{(S_6)} = \{(-\frac{4}{3}x_4, 0, \frac{1}{3}x_4, x_4) : x_4 \in \mathbb{R}\}.$

Método de Gauss-Jordan — tendo em consideração a aplicação do Método de Gauss, onde já se determinou uma matriz em escada equivalente à matriz ampliada do sistema e se concluiu que o sistema é PI, avança-se diretamente para o Passo 3:

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1 do Método de Gauss

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & -1 & -3 & 1 & 0 \\ 0 & 0 & 9 & -3 & 0 \end{bmatrix} \xrightarrow{\longleftarrow} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & -1 & -3 & 1 & 0 \\ 0 & 0 & 1 & -\frac{1}{3} & 0 \end{bmatrix} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_3} \begin{bmatrix} 1 & 1 & 0 & \frac{4}{3} & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{3} & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow -\ell_2} \begin{bmatrix} 1 & 1 & 0 & \frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{3} & 0 \end{bmatrix} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \begin{bmatrix} 1 & 0 & 0 & \frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{3} & 0 \end{bmatrix} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \begin{bmatrix} 1 & 0 & 0 & \frac{4}{3} & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{3} & 0 \end{bmatrix} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \xrightarrow{\ell_1 \leftarrow \ell_2 \leftarrow \ell_2} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \xrightarrow{\ell_2 \leftarrow \ell_2} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \xrightarrow{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2} \xrightarrow{\ell_2 \leftarrow \ell_2} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \xrightarrow{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \xrightarrow{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \xrightarrow{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2} \xrightarrow{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \xrightarrow{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2} \xrightarrow{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2} \xrightarrow{\ell_2 \leftarrow \ell_2} \xrightarrow{\ell_2$$

Sejam x_1, x_2, x_3, x_4 as incógnitas do sistema (S_6) . Então, x_4 é uma incógnita livre e (S_6) é equivalente ao sistema

$$\begin{cases} x_1 + \frac{4}{3}x_4 = 0 \\ x_2 = 0 \\ x_3 - \frac{1}{3}x_4 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $x_3 \frac{1}{3}x_4 = 0 \Leftrightarrow x_3 = \frac{1}{3}x_4$;
- $x_2 = 0 \Leftrightarrow x_3 = \frac{1}{3}x_4$;
- $x_1 + \frac{4}{3}x_4 = 0 \Leftrightarrow x_1 = -\frac{4}{3}x_4$,

pelo que $CS_{(S_6)} = \{(-\frac{4}{3}x_4, 0, \frac{1}{3}x_4, x_4) : x_4 \in \mathbb{R}\}.$

(g) Método de Gauss — o sistema de equações lineares (S_7) tem por matriz dos coeficientes $A = \begin{bmatrix} \frac{1}{1} & \frac{1}{2} & \frac{1}{1} & \frac{1}{$

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ -1 & 2 & -1 & 1 & 5 \\ -1 & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + \ell_1} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 3 & 0 & 2 & 5 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 2 & 1 & 1 & 2 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{1}{3}\ell_2} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 3 & 0 & 2 & 5 \\ 0 & 0 & 2 & \frac{1}{3} & -\frac{5}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & -\frac{4}{3} \end{bmatrix} \xrightarrow{\ell_4 \leftarrow \ell_4 - \frac{1}{2}\ell_3} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 3 & 0 & 2 & 5 \\ 0 & 0 & 2 & \frac{1}{3} & -\frac{5}{3} \\ 0 & 0 & 1 & -\frac{1}{3} & -\frac{4}{3} \end{bmatrix} \xrightarrow{\ell_4 \leftarrow \ell_4 - \frac{1}{2}\ell_3} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 3 & 0 & 2 & 5 \\ 0 & 0 & 2 & \frac{1}{3} & -\frac{5}{3} \\ 0 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2} \end{bmatrix} .$$

Passo 2 Como car(A) = car(A|b) = n = 4 (n é o número de incógnitas), (S₇) é um sistema PD.

Passo 3 Sendo x_1, x_2, x_3, x_4 as incógnitas do sistema (S_7) , então (S_7) é equivalente ao sistema

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ 3x_2 + 2x_4 = 5 \\ 2x_3 + \frac{1}{3}x_4 = -\frac{5}{3} \\ -\frac{1}{2}x_4 = -\frac{1}{2}. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-\frac{1}{2}x_4 = -\frac{1}{2} \Leftrightarrow x_4 = 1$;
- $2x_3 + \frac{1}{3}x_4 = -\frac{5}{3} \Leftrightarrow 2x_3 + \frac{1}{3} \times (1) = -\frac{5}{3} \Leftrightarrow x_3 = -1;$
- $3x_2 + 2x_4 = 5 \Leftrightarrow 3x_2 + 2(1) = 5 \Leftrightarrow x_2 = 1$;
- $x_1 + x_2 + x_3 + x_4 = 0 \Leftrightarrow x_1 + (1) + (-1) + (1) = 0 \Leftrightarrow x_1 = -1$,

pelo que $CS_{(S_7)} = \{(-1, 1, -1, 1)\}.$

Método de Gauss-Jordan — tendo em consideração a aplicação do Método de Gauss, onde já se determinou uma matriz em escada equivalente à matriz ampliada do sistema e se concluiu que o sistema é PD, avança-se diretamente para o Passo 3:

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1 do Método de Gauss

$$\begin{bmatrix} 1 & 1 & 1 & 1 & | & 0 \\ 0 & 3 & 0 & 2 & | & 5 \\ 0 & 0 & 2 & | & \frac{1}{3} & | & -\frac{5}{3} \\ 0 & 0 & 2 & | & \frac{1}{3} & | & -\frac{1}{2} \\ 0 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 0 & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 & | & 0 & | & -1 \\ 0 & 3 & 0 & 2 & | & 5 \\ 0 & 0 & 2 & | & \frac{1}{3} & | & -\frac{5}{3} \\ 0 & 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 & | & 0 & | & -1 \\ 0 & 3 & 0 & 0 & | & 3 \\ 0 & 0 & 2 & 0 & | & -2 \\ 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 1 & 0 & | & -1 \\ 0 & 3 & 0 & 0 & | & 3 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 3 & 0 & 0 & | & 3 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 1 & | & 1 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & -1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & -1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & -1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & -1 \\ \end{bmatrix} \underbrace{\begin{pmatrix} 1 & 1 & 0$$

Sejam x_1, x_2, x_3, x_4 as incógnitas do sistema (S_7) . Então, (S_7) é equivalente ao sistema

$$\begin{cases} x_1 & = -1 \\ x_2 & = 1 \\ x_3 & = -1 \\ x_4 & = 1, \end{cases}$$

pelo que $CS_{(S_7)} = \{(-1, 1, -1, 1)\}.$

(h) Método de Gauss — o sistema de equações lineares (S_8) tem por matriz dos coeficientes $A = \begin{bmatrix} 2 & 1 & 1 & 1 \\ -1 & 2 & -1 & 1 \\ 3 & 0 & 1 & 0 \\ -1 & 2 & -2 & 2 \end{bmatrix}$ e por vetor dos termos independentes $b = \begin{bmatrix} 1 \\ -1 \\ 1 \\ -2 \end{bmatrix}$. Tem-se, então:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ -1 & 2 & -1 & 1 & -1 \\ 3 & 0 & 1 & 0 & 1 \\ -1 & 2 & -2 & 2 & -2 \end{bmatrix} \xrightarrow{\ell_2} \xrightarrow{\ell_2} \xrightarrow{\ell_2} \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 0 & \frac{5}{2} & -\frac{1}{2} & \frac{3}{2} & -\frac{1}{2} \\ 0 & -\frac{3}{2} & -\frac{1}{2} & -\frac{3}{2} & -\frac{1}{2} \\ 0 & \frac{5}{2} & -\frac{3}{2} & -\frac{5}{2} \end{bmatrix} \xrightarrow{\ell_2} \xrightarrow{\ell_2} \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 0 & \frac{5}{2} & -\frac{1}{2} & \frac{3}{2} & -\frac{1}{2} \\ 0 & 0 & -\frac{4}{5} & -\frac{3}{5} & -\frac{4}{5} \\ 0 & 0 & -1 & 1 & -1 \end{bmatrix} \xrightarrow{\ell_2} \xrightarrow{\ell_2}$$

Passo 2 Como car(A) = car(A|b) = n = 4 ($n \in O$ número de incógnitas), (S_8) é um sistema PD

Passo 3 Sendo x_1, x_2, x_3, x_4 as incógnitas do sistema (S_8) , então (S_8) é equivalente ao sistema

$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 = 1\\ \frac{5}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 = -\frac{1}{2}\\ -\frac{4}{5}x_3 - \frac{3}{5}x_4 = -\frac{4}{5}\\ \frac{7}{4}x_4 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $\frac{7}{4}x_4 = 0 \Leftrightarrow x_4 = 0$:
- $-\frac{4}{5}x_3 \frac{3}{5}x_4 = -\frac{4}{5} \Leftrightarrow -\frac{4}{5}x_3 \frac{3}{5} \times (0) = -\frac{4}{5} \Leftrightarrow x_3 = 1;$
- $\frac{5}{2}x_2 \frac{1}{2}x_3 + \frac{3}{2}x_4 = -\frac{1}{2} \Leftrightarrow \frac{5}{2}x_2 \frac{1}{2} \times (1) + \frac{3}{2} \times (0) = -\frac{1}{2} \Leftrightarrow x_2 = 0;$
- $2x_1 + x_2 + x_3 + x_4 = 1 \Leftrightarrow 2x_1 + (0) + (1) + (0) = 1 \Leftrightarrow x_1 = 0$

pelo que $CS_{(S_8)} = \{(0, 0, 1, 0)\}.$

Método de Gauss-Jordan — tendo em consideração a aplicação do Método de Gauss, onde já se determinou uma matriz em escada equivalente à matriz ampliada do sistema e se concluiu que o sistema é PD, avanca-se diretamente para o Passo 3:

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1 do Método de Gauss

Sejam x_1, x_2, x_3, x_4 as incógnitas do sistema (S_8) . Então, (S_8) é equivalente ao sistema

$$\begin{cases} x_1 &= 0 \\ x_2 &= 0 \\ x_3 &= 1 \\ x_4 &= 0, \end{cases}$$

pelo que $CS_{(S_8)} = \{(0, 0, 1, 0)\}.$

3. Método de Gauss

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 2 & 4 \\ -3 & -6 & -12 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftarrow \boldsymbol{\ell}_2 + 3\boldsymbol{\ell}_1} \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = 1 < n = 2 (n é o número de incógnitas), (S) é um sistema PI.

Passo 3 Sejam x_1 , x_2 as incógnitas do sistema (S). Então, x_2 é uma incógnita livre e (S) é equivalente ao sistema

$${x_1 + 2x_2 = 4.}$$

Assim, tem-se (MeSTaF):

•
$$x_1 + 2x_2 = 4 \Leftrightarrow x_1 = 4 - 2x_2$$
,

pelo que
$$CS_{(S)} = \{(4 - 2x_2, x_2) : x_2 \in \mathbb{R}\}.$$

Assim, a única hipótese verdadeira é a A.

4. Método de Gauss

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 2 & 1 & 2 & 0 \\ 1 & 0 & 1 & 2 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \frac{1}{2} \ell_1} \begin{bmatrix} 2 & 1 & 2 & 0 \\ 0 & -\frac{1}{2} & 0 & 2 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 ($n \neq 0$ número de incógnitas), (S) é um sistema PI.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, x_3 é uma incógnita livre e (S) é equivalente ao sistema

$$\begin{cases} 2x_1 + x_2 + 2x_3 = 0 \\ -\frac{1}{2}x_2 = 2. \end{cases}$$

Assim, tem-se (MeSTaF):

•
$$-\frac{1}{2}x_2 = 2 \Leftrightarrow x_2 = -4$$
;

•
$$2x_1 + x_2 + 2x_3 = 0 \Leftrightarrow 2x_1 + (-4) + 2x_3 = 0 \Leftrightarrow x_1 = 2 - x_3$$
,

pelo que
$$CS_{(S)} = \{(2 - x_3, -4, x_3) : x_3 \in \mathbb{R}\}.$$

Assim, a única hipótese verdadeira é a B.

5. Método de Gauss-Jordan

Passo 1 Aplicação do ATEsc à matriz aumentada *A*|*b*:

$$\begin{bmatrix} 1 & 1 & -1 & | & 1 \\ -1 & 1 & -1 & | & -1 \\ 0 & 1 & 2 & | & 3 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + \ell_1} \begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 2 & -2 & | & 0 \\ 0 & 1 & 2 & | & 3 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{1}{2}\ell_2} \begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 2 & -2 & | & 0 \\ 0 & 0 & 3 & | & 3 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas), (S) é um sistema PD.

Passo 3 Aplicação do ATEscRed à matriz resultante do Passo 1:

$$\begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 2 & -2 & | & 0 \\ 0 & 0 & 3 & | & 3 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \frac{1}{3} \ell_3} \begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 0 & 2 & -2 & | & 0 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\ell_1 \leftarrow \ell_1 + \ell_3} \begin{bmatrix} 1 & 1 & 0 & | & 2 \\ 0 & 2 & 0 & | & 2 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \frac{1}{2} \ell_2} \begin{bmatrix} 1 & 1 & 0 & | & 2 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \xrightarrow{\ell_1 \leftarrow \ell_1 - \ell_2} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}.$$

Assim, a resolução de (S) através do método de Gauss-Jordan envolve 0 operações elementares do tipo I, 2 do tipo II e 5 do tipo III, pelo que a única hipótese verdadeira é a A.

- 6. Como A é uma matriz quadrada de ordem n tal que car(A) = n, tem-se que car(A|b) = n. Assim, car(A) = car(A|b) = n, pelo que (S) é um sistema PD. Conclui-se, então, que a única hipótese verdadeira é a B.
- 7. A primeira proposição é verdadeira pois um sistema homogéneo admite sempre (e pelo menos) a solução trivial. A segunda proposição é falsa pois um sistema em que o número de equações é menor do que o número de incógnitas nunca pode ser PD. Assim, a única hipótese verdadeira é a C.
- 8. (a) $\begin{bmatrix} 1 & 1 & \alpha & 2 \\ 3 & 4 & 2 & \alpha \\ 2 & 3 & -1 & 1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 3\ell_1} \begin{bmatrix} 1 & 1 & \alpha & 2 \\ 0 & 1 & 2 3\alpha & \alpha 6 \\ 0 & 1 & -1 2\alpha & -3 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 \ell_2} \begin{bmatrix} 1 & 1 & \alpha & 2 \\ 0 & 1 & 2 3\alpha & \alpha 6 \\ 0 & 0 & -3 + \alpha & 3 \alpha \end{bmatrix}$
 - $\alpha \neq 3$: car(A) = car(A|b) = n = 3 (n \neq 0 n\neq 0 n\neq
 - $\alpha = 3$: car(A) = car(A|b) = 2 < n = 3 (n \'equiv o n\'umero de inc\'ognitas) PI.

Resumindo: PD: $\alpha \neq 3$. PI: $\alpha = 3$. Imp: nunca.

$$\begin{bmatrix} 1 & 0 & -3 & | & -3 \\ 2 & k & -1 & | & -2 \\ 1 & 2 & k & | & 1 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & 0 & -3 & | & -3 \\ 0 & k & 5 & | & 4 \\ 0 & 2 & k + 3 & | & 4 \end{bmatrix} \xrightarrow{\ell_2 \leftrightarrow \ell_3} \begin{bmatrix} 1 & 0 & -3 & | & -3 \\ 0 & 2 & k + 3 & | & 4 \\ 0 & k & 5 & | & 4 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \frac{k}{2}\ell_2} \begin{bmatrix} 1 & 0 & -3 & | & -3 \\ 0 & 2 & k + 3 & | & 4 \\ 0 & 0 & \frac{-k^2 - 3k + 10}{2} & | & 4 - 2k \end{bmatrix}$$

Atendendo a

$$-k^2 - 3k + 10 = 0 \Leftrightarrow k = \frac{3 \pm \sqrt{9 + 40}}{-2} \Leftrightarrow k = -5 \lor k = 2,$$

tem-se que:

- $k \neq -5 \land k \neq 2$: car(A) = car(A|b) = n = 3 (n \neq 0 n\neq n \neq 0 n\neq n \neq 0 n\neq 0
- k = -5: car(A) = 2 < car(A|b) = 3 Imp.
- k = 2: car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas) PI.

Resumindo: PD: $k \neq 2 \land k \neq -5$. PI: k = 2. Imp: k = -5.

$$\begin{bmatrix} 1 & 2 & 1 & 0 & 2 \\ 3 & 3 & 5 & c & 3 \\ 0 & 3 & -2 & -3 & t \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftarrow \boldsymbol{\ell}_2 - 3\boldsymbol{\ell}_1} \begin{bmatrix} 1 & 2 & 1 & 0 & 2 \\ 0 & -3 & 2 & c & -3 \\ 0 & 3 & -2 & -3 & t \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_3 \leftarrow \boldsymbol{\ell}_3 + \boldsymbol{\ell}_2} \begin{bmatrix} 1 & 2 & 1 & 0 & 2 \\ 0 & -3 & 2 & c & -3 \\ 0 & 0 & 0 & c - 3 & t - 3 \end{bmatrix}$$

- $c \neq 3$: car(A) = car(A|b) = 3 < n = 4 ($n \neq 0$ número de incógnitas) PI.
- c = 3 e $t \neq 3$: car(A) = 2 < car(A|b) = 3 Imp.
- c = 3 e t = 3: car(A) = car(A|b) = 2 < n = 4 (n é o número de incógnitas) PI.

Resumindo: PD: nunca. PI: $c \neq 3 \lor t = 3$. Imp: $c = 3 \land t \neq 3$.

$$\begin{pmatrix}
(d) & \begin{bmatrix} 1 & 2 & 2 & 0 & | & 1 \\ 0 & 2 & 1 & 1 & | & 2 \\ 1 & 0 & 1 & a & | & t
\end{pmatrix}
\begin{pmatrix}
\longleftarrow & \longleftarrow & \begin{bmatrix} 1 & 2 & 2 & 0 & | & 1 \\ 0 & 2 & 1 & 1 & | & 2 \\ 0 & -2 & -1 & a & | & t - 1
\end{bmatrix}
\begin{pmatrix}
\longleftarrow & \longleftarrow & \longleftarrow & \begin{bmatrix} 1 & 2 & 2 & 0 & | & 1 \\ 0 & 2 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & a + 1 & | & t + 1
\end{bmatrix}$$

- $a \neq -1$: car(A) = car(A|b) = 3 < n = 4 (n \neq 0 n\neq n \neq 0 n\neq n \neq 0 n\neq 0 n\n
- a = -1 e $t \neq -1$: car(A) = 2 < car(A|b) = 3 Imp.
- a = -1 e t = -1: car(A) = car(A|b) = 2 < n = 4 (n é o número de incógnitas) PI.

Resumindo: PD: nunca. PI: $a \neq -1 \lor t = -1$. Imp: $a = -1 \land t \neq -1$.

$$\begin{pmatrix} e \\ -1 & 2 & 1 & 1 \\ -1 & 4 & 3 & 2 \\ 2 & -2 & \beta & 3 \end{pmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftarrow \boldsymbol{\ell}_2 + \boldsymbol{\ell}_1} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 6 & 4 & 3 \\ 0 & -6 & \beta - 2 & 1 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_3 \leftarrow \boldsymbol{\ell}_3 + \boldsymbol{\ell}_2} \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 6 & 4 & 3 \\ 0 & 0 & \beta + 2 & 4 \end{bmatrix}$$

- $\beta \neq -2$: car(A) = car(A|b) = n = 3 (n \neq 0 n\neq 0 n\neq
- $\beta = -2$: car(A) = 2 < car(A|b) = 3 Imp.

Resumindo: PD: $\beta \neq -2$. PI: nunca. Imp: $\beta = -2$.

$$\begin{pmatrix} (f) & \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 2 & 5 & 3 & | & 0 \\ -1 & 1 & \gamma & | & 0 \end{pmatrix} & \longleftarrow & \longleftarrow & \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ \ell_2 \leftarrow \ell_2 - 2\ell_1 & \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 3 & \gamma + 1 & | & 0 \end{bmatrix} & \longleftarrow & \longleftarrow & \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & \gamma - 2 & | & 0 \end{bmatrix}$$

- $\gamma \neq 2$: car(A) = car(A|b) = n = 3 (n \(\text{é o n\(\text{u}\) mero de inc\(\text{ognitas} \)) PD.
- $\gamma = 2$: car(A) car(A|b) = 2 < n = 3 (n \ \'eq \'o \'n \'mmr mero de inc\'ognitas) PI.

Resumindo: PD: $\gamma \neq 2$. PI: $\gamma = 2$. Imp: nunca.

9. Atendendo a

$$\begin{bmatrix} 2 & 1 & 0 & 1 & 2 \\ 3 & 3 & k_1 & 5 & 3 \\ 3 & 0 & -3 & -2 & k_2 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \frac{3}{2}\ell_1} \begin{bmatrix} 2 & 1 & 0 & 1 & 2 \\ 0 & \frac{3}{2} & k_1 & \frac{7}{2} & 0 \\ 0 & -\frac{3}{2} & -3 & -\frac{7}{2} & k_2 - 3 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + \ell_2} \begin{bmatrix} 2 & 1 & 0 & 1 & 2 \\ 0 & \frac{3}{2} & k_1 & \frac{7}{2} & 0 \\ 0 & 0 & k_1 - 3 & 0 & k_2 - 3 \end{bmatrix},$$

tem-se que:

- $k_1 \neq 3$: car(A) = car(A|b) = 3 < n = 4 (n é o número de incógnitas) PI.
- $k_1 = 3$ e $k_2 \neq 3$: car(A) = 2 < car(A|b) = 3 Imp.
- $k_1 = 3$ e $k_2 = 3$: car(A) = car(A|b) = 2 < n = 4 (n \neq 0 n\neq n\neq 0 n\neq n\neq 0 n\neq 0

Assim, a única hipótese verdadeira é a D.

10. Atendendo a

$$\begin{bmatrix} 3 & 1 & 0 & 1 & 1 \\ \frac{3}{2} & 1 & s & 1 & \frac{1}{2} \\ \frac{3}{2} & 0 & -4 & 0 & t + \frac{5}{2} \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \frac{1}{2}\ell_1} \begin{bmatrix} 3 & 1 & 0 & 1 & 1 \\ 0 & \frac{1}{2} & s & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & -4 & -\frac{1}{2} & t + 2 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + \ell_2} \begin{bmatrix} 3 & 1 & 0 & 1 & 1 \\ 0 & \frac{1}{2} & s & \frac{1}{2} & 0 \\ 0 & 0 & s - 4 & 0 & t + 2 \end{bmatrix},$$

tem-se que:

- $s \neq 4$: car(A) = car(A|b) = 3 < n = 4 (n \neq 0 n\neq 0 n\
- s = 4 e $t \neq -2$: car(A) = 2 < car(A|b) = 3 Imp.
- s = 4 e t = -2: car(A) = car(A|b) = 2 < n = 4 (n é o número de incógnitas) PI.

Assim, a única hipótese verdadeira é a D.

- 11. (S) é um sistema possível e determinado sse $|A| \neq 0$. Então, como $|A| \neq 0 \Leftrightarrow \alpha^2 2 \neq 0 \Leftrightarrow \alpha \neq \pm \sqrt{2}$, conclui-se que a única hipótese verdadeira é a C.
- 12. Atendendo a

$$\begin{bmatrix} 1 & 2 & 4 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & k_1 - 1 & 2k_2 + k_1 \end{bmatrix},$$

tem-se que:

- $k_1 \neq 1$: car(A) = car(A|b) = n = 3 (n \neq 0 n\neq 0 n\ne
- $k_1 = 1$ e $k_2 \neq -\frac{1}{2}$: car(A) = 2 < car(A|b) = 3 Imp.
- $k_1 = 1$ e $k_2 = -\frac{1}{2}$: car(A) = car(A|b) = 2 < n = 3 (n \u00e9 o n\u00e4mero de inc\u00e3gnitas) PI.

Assim, a única hipótese verdadeira é a D.

- 13. (a) Como $|A| = 2 \times 7 3 \times (-5) = 29 \neq 0$, (S) é um sistema PD.
 - (b) Seja $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ o vetor das incógnitas de (S). Então:

$$x_1 = \frac{\begin{vmatrix} -1 & 3 \\ 2 & 7 \end{vmatrix}}{|A|} = \frac{-1 \times 7 - 3 \times 2}{29} = -\frac{13}{29}, \ x_2 = \frac{\begin{vmatrix} 2 & -1 \\ -5 & 2 \end{vmatrix}}{|A|} = \frac{2 \times 2 - (-1) \times (-5)}{29} = -\frac{1}{29},$$

pelo que $CS_{(S)} = \{(-\frac{13}{29}, -\frac{1}{29})\}.$

14. (a) Como
$$|A| = 1 \times (4 \times (-5) - (-3) \times 6) - 1 \times (2 \times (-5) - (-3) \times 3) + 2 \times (2 \times 6 - 4 \times 3) = -2 + 1 + 0 = -1 \neq 0$$
, (S) é um sistema PD.

(b) Seja $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ o vetor das incógnitas de (S). Então:

$$x_{1} = \frac{\begin{vmatrix} 9 & 1 & 2 \\ 1 & 4 & -3 \\ 0 & 6 & -5 \end{vmatrix}}{|A|} = \frac{9 \times (4 \times (-5) - (-3) \times 6) - 1 \times (1 \times (-5) - (-3) \times 0) + 2 \times (1 \times 6 - 4 \times 0)}{-1} = \frac{-18 + 5 + 12}{-1} = 1,$$

$$x_{2} = \frac{\begin{vmatrix} 1 & 9 & 2 \\ 2 & 1 & -3 \\ 3 & 0 & -5 \end{vmatrix}}{|A|} = \frac{1 \times (1 \times (-5) - (-3) \times 0) - 9 \times (2 \times (-5) - (-3) \times 3) + 2 \times (2 \times 0 - 1 \times 3)}{-1} = \frac{-5 + 9 - 6}{-1} = 2,$$

$$x_{3} = \frac{\begin{vmatrix} 1 & 1 & 9 \\ 2 & 4 & 1 \\ 3 & 6 & 0 \end{vmatrix}}{|A|} = \frac{1 \times (4 \times 0 - 1 \times 6) - 1 \times (2 \times 0 - 1 \times 3) + 9 \times (2 \times 6 - 4 \times 3)}{-1} = \frac{-6 + 3 + 0}{-1} = 3,$$

pelo que $CS_{(S)} = \{(1, 2, 3)\}.$

- 15. Resolução através da aplicação do teorema "Seja $A \in \mathcal{M}_{n \times n}(\mathbb{R})$. Então, A é uma matriz invertível sse car(A) = n."
 - Aplicando o ATEsc à matriz A, tem-se

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & 0 \\ -1 & 1 & 0 \end{bmatrix} \xleftarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix} \xleftarrow{\ell_2 \leftrightarrow \ell_3} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix},$$

pelo que car(A) = 3. Como a característica de A é igual à sua ordem, conclui-se que a matriz A é invertível.

• Aplicando o ATEsc à matriz B. tem-se

$$\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & 2 \\ \ell_2 \leftarrow \ell_2 - 2\ell_1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$$

pelo que car(B) = 1. Como a característica de B é diferente da sua ordem, conclui-se que a matriz B não é invertível.

• Aplicando o ATEsc à matriz C, tem-se

$$\begin{bmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftarrow \boldsymbol{\ell}_2 + 2\boldsymbol{\ell}_1} \begin{bmatrix} -1 & 2 & -3 \\ 0 & 5 & -6 \\ 0 & 6 & -7 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_3 \leftarrow \boldsymbol{\ell}_3 - \frac{6}{5}\boldsymbol{\ell}_2} \begin{bmatrix} -1 & 2 & -3 \\ 0 & 5 & -6 \\ 0 & 0 & \frac{1}{5} \end{bmatrix},$$

pelo que car(C) = 3. Como a característica de C é igual à sua ordem, conclui-se que a matriz C é invertível.

• Aplicando o ATEsc à matriz D, tem-se

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & 1 \\ \ell_2 \leftarrow \ell_2 - \ell_1 \end{bmatrix} \begin{bmatrix} 0 & -1 \end{bmatrix},$$

pelo que car(D) = 2. Como a característica de D é igual à sua ordem, conclui-se que a matriz D é invertível

• Aplicando o ATEsc à matriz *E*, tem-se

$$\begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \frac{1}{2}\ell_1} \begin{bmatrix} 2 & 3 & 1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & -\frac{7}{2} & \frac{1}{2} \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 + 7\ell_2} \begin{bmatrix} 2 & 3 & 1 \\ 0 & \frac{1}{2} & \frac{5}{2} \\ 0 & 0 & 18 \end{bmatrix},$$

pelo que car(E) = 3. Como a característica de E é igual à sua ordem, conclui-se que a matriz E é invertível.

• Aplicando o ATEsc à matriz F, tem-se

$$\begin{bmatrix} -2 & 3 & 5 \\ -1 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftarrow \boldsymbol{\ell}_2 - \frac{1}{2}\boldsymbol{\ell}_1} \begin{bmatrix} -2 & 3 & 5 \\ 0 & -\frac{3}{2} & -\frac{3}{2} \\ 0 & 2 & 2 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_3 \leftarrow \boldsymbol{\ell}_3 + \frac{4}{3}\boldsymbol{\ell}_2} \begin{bmatrix} -2 & 3 & 5 \\ 0 & -\frac{3}{2} & -\frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix},$$

pelo que car(F) = 2. Como a característica de F é diferente da sua ordem, conclui-se que a matriz F não é invertível.

16. (a)
$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 2a & 2a & 1 \\
1 & 1 & a & b
\end{bmatrix}
\xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1}
\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & 2a - 1 & 2a - 1 & 0 \\
0 & 0 & a - 1 & b - 1
\end{bmatrix}$$

$$a = \frac{1}{2}$$
:

$$\begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & -\frac{1}{2} & | & b-1 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftrightarrow \boldsymbol{\ell}_3} \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 0 & -\frac{1}{2} & | & b-1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

a = 1:

$$\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & b-1
\end{array}\right]$$

- $a = \frac{1}{2}$: car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas) PI.
- a = 1 e $b \neq 1$: car(A) = 2 < car(A|b) = 3 Imp.
- a = 1 e b = 1: car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas) PI.
- $a \neq \frac{1}{2} \land a \neq 1$: car(A) = car(A|b) = n = 3 (n \neq 0 n\neq 0

Resumindo: PD: $a \neq 1$ e $a \neq \frac{1}{2}$ e $b \in \mathbb{R}$. PI: $(a = \frac{1}{2} \text{ e } b \in \mathbb{R})$ ou (a = 1 e b = 1). Imp: $a = 1 \text{ e } b \neq 1$.

(b) Seja $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ o vetor das incógnitas de (S). Então:

$$|A_{2,1}| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 4 & 4 \\ 1 & 1 & 2 \end{vmatrix} = 1 \times (4 \times 2 - 4 \times 1) - 1 \times (1 \times 2 - 4 \times 1) + 1 \times (1 \times 1 - 4 \times 1) = 3,$$

$$x_1 = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 1 & 4 & 4 \\ 1 & 1 & 2 \end{vmatrix}}{|A_{2,1}|} = \frac{1 \times (4 \times 2 - 4 \times 1) - 1 \times (1 \times 2 - 4 \times 1) + 1 \times (1 \times 1 - 4 \times 1)}{3} = 1,$$

$$x_2 = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 4 \\ 1 & 1 & 2 \end{vmatrix}}{|A_{2,1}|} = 0 \text{ (como a matriz do denominador tem duas colunas iguais, o seu determinante \'e 0),}$$

$$x_3 = \frac{\begin{vmatrix} 1 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 1 \end{vmatrix}}{|A_{2,1}|} = 0 \text{ (como a matriz do denominador tem duas colunas iguais, o seu determinante \'e 0),}$$

pelo que $CS_{(S)} = \{(1, 0, 0)\}.$

17. (a)
$$\begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -\beta & 1 \\ \alpha & 0 & -1 & 2\alpha \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -\beta & 1 \\ 0 & 0 & -1 + 2\alpha & \alpha \end{bmatrix}$$
$$\alpha = \frac{1}{2}:$$

$$\begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & -\beta & 1 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

- $\alpha = \frac{1}{2}$: car(A) = 2 < car(A|b) = 3 Imp.
- $\alpha \neq \frac{1}{2}$: car(A) = car(A|b) = n = 3 (n \neq 0 n\neq n\neq 0 n\neq n\neq 0 n\ne

Resumindo: PD: $\alpha \neq \frac{1}{2}$ e $\beta \in \mathbb{R}$. PI: nunca. Imp: $\alpha = \frac{1}{2}$ e $\beta \in \mathbb{R}$.

(b) Sendo (S') o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ \frac{1}{2} & 0 & -1 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, aplique-se o método de Gauss para o resolver:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\left[\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ \frac{1}{2} & 0 & -1 & 0 \end{array}\right] \xleftarrow[\ell_3 \leftarrow \ell_3 - \frac{1}{2}\ell_1] \left[\begin{array}{ccc|c} 1 & 0 & -2 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), (S') é um sistema PI.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S'). Então, x_3 é uma incógnita livre e (S') é equivalente ao sistema

$$\begin{cases} x_1 & -2x_3 = 0 \\ x_2 - x_3 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $\bullet \ x_2 x_3 = 0 \Leftrightarrow x_2 = x_3;$
- $x_1 2x_3 = 0 \Leftrightarrow x_1 = 2x_3$,

pelo que $CS_{(S')} = \{(2x_3, x_3, x_3) : x_3 \in \mathbb{R}\}.$

- 18. Seja $p_2(x) = ax^2 + bx + c$ a equação da parábola a determinar. Então:
 - $p_2(1) = 2 \Leftrightarrow a \times (1)^2 + b \times 1 + c = 2 \Leftrightarrow a + b + c = 2$.
 - $p_2(-1) = 6 \Leftrightarrow a \times (-1)^2 + b \times (-1) + c = 6 \Leftrightarrow a b + c = 6$
 - $p_2(2) = 3 \Leftrightarrow a \times (2)^2 + b \times 2 + c = 3 \Leftrightarrow 4a + 2b + c = 3$.

Seja, então, (S) o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 4 & 2 & 1 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix}$, e aplique-se o método de Gauss para o resolver:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & -1 & 1 & 6 \\ 4 & 2 & 1 & 3 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -2 & 0 & 4 \\ 0 & -2 & -3 & -5 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \ell_2} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -2 & 0 & 4 \\ 0 & 0 & -3 & -9 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas), (S) é um sistema PD.

Passo 3 Sendo a, b, c as incógnitas do sistema (S), (S) é equivalente ao sistema

$$\begin{cases} a + b + c = 2 \\ -2b = 4 \\ -3c = -9. \end{cases}$$

Assim, tem-se (MeSTaF):

- $-3c = -9 \Leftrightarrow c = 3$;
- $-2b = 4 \Leftrightarrow b = -2$;
- $a + b + c = 2 \Leftrightarrow a + (-2) + (3) = 2 \Leftrightarrow a = 1$,

pelo que $p_2(x) = x^2 - 2x + 3$ é a equação da parábola que passa nos pontos (1, 2), (-1, 6) e (2, 3).

19. Sejam $x_1 = \operatorname{sen} \alpha$, $x_2 = \operatorname{cos} \beta$ e $x_3 = \operatorname{tan} \gamma$. Então, o sistema dado pode ser reescrito como

$$\begin{cases} 2x_1 - x_2 + 3x_3 = 3\\ 4x_1 + 2x_2 - 2x_3 = 10\\ 6x_1 - 3x_2 + x_3 = 9. \end{cases}$$

Seja (S') este novo sistema. Então, (S') é o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 2 & -1 & 3 \\ 4 & 2 & -2 \\ 6 & -3 & 1 \end{bmatrix}$ e cujo vetor dos termos independentes é $b = \begin{bmatrix} 1 & 3 \\ 1 & 9 \end{bmatrix}$. Aplique-se o método de Gauss para o resolver:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b:

$$\begin{bmatrix} 2 & -1 & 3 & 3 \\ 4 & 2 & -2 & 10 \\ 6 & -3 & 1 & 9 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftarrow \boldsymbol{\ell}_2 - 2\boldsymbol{\ell}_1} \begin{bmatrix} 2 & -1 & 3 & 3 \\ 0 & 4 & -8 & 4 \\ 0 & 0 & -8 & 0 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas), (S') é um sistema PD.

Passo 3 Sejam x_1, x_2, x_3 as incógnitas do sistema (S). Então, (S') é equivalente ao sistema

$$\begin{cases} 2x_1 - x_2 + 3x_3 = 3 \\ 4x_2 - 8x_3 = 4 \\ -8x_3 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $\bullet -8x_3 = 0 \Leftrightarrow x_3 = 0;$
- $4x_2 8x_3 = 4 \Leftrightarrow 4x_2 8 \times (0) = 4 \Leftrightarrow x_2 = 1$;
- $2x_1 x_2 + 3x_3 = 3 \Leftrightarrow 2x_1 (1) + 3 \times (0) = 3 \Leftrightarrow x_1 = 2$

pelo que sen $\alpha=2$, $\cos\beta=1$ e tan $\gamma=0$. Como sen $\alpha=2$ é impossível, conclui-se que (S) é um sistema não linear impossível.

20. **(a)**

$$\underbrace{\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}}_{A|I_3} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 - \ell_1}_{0} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}}_{0} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 - \ell_1}_{0} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}}_{0} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 - \ell_1}_{0} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}}_{0} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 - \ell_1}_{0} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix}}_{0} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2}_{0} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}}_{0} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2}_{0} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}}_{0} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2}_{0} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}}_{0} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2}_{0} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}}_{0} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2}_{0} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}}_{0} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2 \leftarrow \ell_2 \leftarrow \ell_2 \leftarrow \ell_2}_{0} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}}_{0} \longleftrightarrow \underbrace{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2 \leftarrow \ell_2 \leftarrow \ell_2 \leftarrow \ell_2}_{0} \underbrace{\ell_2 \leftarrow \ell_2 \leftarrow \ell_2$$

Assim,
$$A^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} - \frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix}.$$

- (b) Como A é uma matriz (quadrada) invertível, o sistema Ax = b é possível e determinado, qualquer que seja o vetor dos termos independentes $b \in \mathcal{M}_{3\times 1}(\mathbb{R})$.
- (c) Como A é uma matriz invertível, tem-se que $Ax = b \Leftrightarrow A^{-1}Ax = A^{-1}b \Leftrightarrow x = A^{-1}b$. Como $b = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$, vem

$$x = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix},$$

pelo que $CS = \{(0, 1, 2)\}.$

- 21. Sem resolução.
- 22. Sem resolução.

Resoluções dos exercícios do capítulo 4 — Espaços Vetoriais

- 1. (a) Elementos do conjunto $F_1 = \{(x, y, z) \in \mathbb{R}^3 : x = y\}$: triplos ordenados reais em que as duas primeiras componentes são iguais.
 - (b) F_1 é um subconjunto de \mathbb{R}^3 tal que:
 - (i) Sendo $0_{\mathbb{R}^3} = (0, 0, 0)$, tem-se que $0_{\mathbb{R}^3} \in F_1$.
 - (ii) Sejam $x = (x_1, x_1, x_3)$ e $y = (y_1, y_1, y_3)$ dois elementos genéricos de F_1 . Então, $x + y = (x_1, x_1, x_3) + (y_1, y_1, y_3) = (x_1 + y_1, x_1 + y_1, x_3 + y_3)$, pelo que $x + y \in F_1$.
 - (iii) Sejam α um número real e $x=(x_1,x_1,x_3)$ um elemento genérico de F_1 . Então, $\alpha x=\alpha(x_1,x_1,x_3)=(\alpha x_1,\alpha x_1,\alpha x_3)$, pelo que $\alpha x\in F_1$.

Assim, conclui-se que F_1 é um subespaço de \mathbb{R}^3 .

- 2. (a) Elementos do conjunto $F_2 = \{(0, x, 2x, 3x) : x \in \mathbb{R}\}$: quádruplos ordenados reais em que a primeira componente é zero, a terceira é o dobro da segunda e a quarta é o triplo da segunda.
 - (b) F_2 é um subconjunto de \mathbb{R}^4 tal que:
 - (i) Sendo $0_{\mathbb{R}^4} = (0, 0, 0, 0)$, tem-se que $0_{\mathbb{R}^4} \in F_2$.
 - (ii) Sejam x = (0, x', 2x', 3x') e y = (0, y', 2y', 3y') dois elementos genéricos de F_2 . Então, x + y = (0, x', 2x', 3x') + (0, y', 2y', 3y') = (0, x' + y', 2x' + 2y', 3x' + 3y') = (0, x' + y', 2(x' + y'), 3(x' + y')), pelo que $x + y \in F_2$.
 - (iii) Sejam α um número real e x=(0,x',2x',3x') um elemento genérico de F_2 . Então, $\alpha x=\alpha(0,x',2x',3x')=(\alpha\times 0,\alpha\times x',\alpha\times 2x',\alpha\times 3x')=(0,\alpha x',2(\alpha x'),3(\alpha x'))$ pelo que $\alpha x\in F_2$.

Assim, conclui-se que F_2 é um subespaço de \mathbb{R}^4 .

- 3. (a) Elementos do conjunto $A = \{(x, x + 1) : x \in \mathbb{R}\}$: pares ordenados reais em que a segunda componente é igual à primeira mais um $(A \text{ é um subconjunto de } \mathbb{R}^2)$. Sendo $0_{\mathbb{R}^2} = (0, 0)$, tem-se que $0_{\mathbb{R}^2} \notin A$, pelo que A não é um subespaço de \mathbb{R}^2 .
 - (b) Elementos do conjunto $B = \{(x, y^2) : x, y \in \mathbb{R}\}$: pares ordenados reais em que a segunda componente é um número não-negativo (B é um subconjunto de \mathbb{R}^2). Sejam, por exemplo, $\alpha = -2$ e x = (0,3). Então, $\alpha x = -2(0,3) = (0,-6)$. Assim, $\alpha \in \mathbb{R}$, $x \in B$ e $\alpha x \notin B$, pelo que B não é um subespaço de \mathbb{R}^2 .
 - (c) Elementos do conjunto $C = \{(x, y) \in \mathbb{R}^2 : y \ge 0\}$: o conjunto C é igual ao conjunto B da alínea anterior.
 - (d) Elementos do conjunto $D = \{(x, |x|) : x \in \mathbb{R}\}$: pares ordenados reais em que a segunda componente é igual ao valor absoluto da primeira (D é um subconjunto de \mathbb{R}^2). Sejam, por exemplo, x = (-1, 1) e y = (1, 1). Então, x + y = (-1, 1) + (1, 1) = (0, 2). Assim, $x \in D$, $y \in D$ e $x + y \notin D$, pelo que D não é um subespaço de \mathbb{R}^2 .

- (e) Elementos do conjunto $E = \{(1,0,0,0)\}$: E só tem um elemento o quádruplo (1,0,0,0) (E é um subconjunto de \mathbb{R}^4). Sendo $0_{\mathbb{R}^4} = (0,0,0,0)$, tem-se que $0_{\mathbb{R}^4} \notin E$, pelo que E não é um subespaço de \mathbb{R}^4 .
- (f) Elementos do conjunto $F = \{(0,0,0,0), (1,0,0,0)\}$: F só tem dois elementos os quádruplos (0,0,0,0) e (1,0,0,0) (F é um subconjunto de \mathbb{R}^4). Sejam, por exemplo, x = (1,0,0,0) e y = (1,0,0,0). Então, x + y = (1,0,0,0) + (1,0,0,0) = (2,0,0,0). Assim, $x \in F$, $y \in F$ e $x + y \notin F$, pelo que F não é um subespaço de \mathbb{R}^4 .
- 4. Processo 1: Seja $C = \{(a, 0, a) : a \in \mathbb{R}\}$. C é um subconjunto de \mathbb{R}^3 tal que:
 - (i) Sendo $0_{\mathbb{R}^3} = (0, 0, 0)$, tem-se que $0_{\mathbb{R}^3} \in C$, porque a pode tomar o valor 0.
 - (ii) Sejam $x = (a_1, 0, a_1)$ e $y = (a_2, 0, a_2)$ dois elementos genéricos de C. Então, $x + y = (a_1, 0, a_1) + (a_2, 0, a_2) = (a_1 + a_2, 0, a_1 + a_2)$, pelo que $x + y \in C$.
 - (iii) Sejam α um número real e $x=(a_1,0,a_1)$ um elemento genérico de C. Então, $\alpha x=\alpha(a_1,0,a_1)=(\alpha\times a_1,\alpha\times 0,\alpha\times a_1)=(\alpha\times a_1,0,\alpha\times a_1)=(\alpha\times a_1,0,\alpha\times$

Assim, conclui-se que C é um subespaço de \mathbb{R}^3 . Logo a única proposição verdadeira é a \mathbb{C} .

- Processo 2: Vamos provar que:
 - (i) $\{(0,0,a^2): a \in \mathbb{R}\}$ não é um subespaço de \mathbb{R}^3 . Sejam, por exemplo, $\alpha = -1$ e x = (0,0,1). Então, $\alpha x = -1(0,0,1) = (0,0-1)$. Assim, $\alpha \in \mathbb{R}$, $x \in \{(0,0,a^2): a \in \mathbb{R}\}$ e $\alpha x \notin \{(0,0,a^2): a \in \mathbb{R}\}$ não é um subespaço de \mathbb{R}^3 .
 - (ii) $\{(1,1,1)\}$ não é um subespaço de IR³. Sendo $0_{\mathbb{R}^3}=(0,0,0)$, tem-se que $0_{\mathbb{R}^3}\notin\{(1,1,1)\}$, pelo que $\{(1,1,1)\}$ não é um subespaço de IR³.
 - (iii) $\{(a,1,a):a\in\mathbb{R}\}$ não é um subespaço de \mathbb{R}^3 . Sendo $0_{\mathbb{R}^3}=(0,0,0)$, tem-se que $0_{\mathbb{R}^3}\notin\{(a,1,a):a\in\mathbb{R}\}$, pelo que $\{(a,1,a):a\in\mathbb{R}\}$ não é um subespaço de \mathbb{R}^3 .

Logo a única proposição verdadeira é a C.

- 5. Processo 1: Seja $B = \{(x, y, z) \in \mathbb{R}^3 : z = x + y\} = \{(x, y, x + y) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}$. B é um subconjunto de \mathbb{R}^3 tal que:
 - (i) Sendo $0_{\mathbb{R}^3} = (0, 0, 0)$, tem-se que $0_{\mathbb{R}^3} \in B$, porque x e y podem tomar o valor 0.
 - (ii) Sejam $x = (x_1, y_1, x_1 + y_1)$ e $y = (x_2, y_2, x_2 + y_2)$ dois elementos genéricos de B. Então, $x + y = (x_1, y_1, x_1 + y_1) + (x_2, y_2, x_2 + y_2) = (x_1 + x_2, y_1 + y_2, x_1 + y_1 + x_2 + y_2) = (x_1 + x_2, y_1 + y_2, (x_1 + x_2) + (y_1 + y_2))$, pelo que $x + y \in B$.
 - (iii) Sejam α um número real e $x=(x_1,y_1,x_1+y_1)$ um elemento genérico de B. Então, $\alpha x=\alpha((x_1,y_1,x_1+y_1))=(\alpha\times x_1,\alpha\times y_1,\alpha\times (x_1+y_1))=(\alpha\times x_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1)=(\alpha\times x_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1)=(\alpha\times x_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1)=(\alpha\times x_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1,\alpha\times y_1)=(\alpha\times x_1,\alpha\times y_1)=(\alpha\times x_1)=(\alpha\times x_1)=(\alpha$

Assim, conclui-se que B é um subespaço de \mathbb{R}^3 . Logo a única proposição verdadeira é a \mathbb{R}^3 .

- Processo 2: Vamos provar que:
 - (i) $\{(0,0,a^2): a \in \mathbb{R}\}$ não é um subespaço de \mathbb{R}^3 . Sejam, por exemplo, $\alpha = -1$ e x = (0,0,1). Então, $\alpha x = -1(0,0,1) = (0,0-1)$. Assim, $\alpha \in \mathbb{R}$, $x \in \{(0,0,a^2): a \in \mathbb{R}\}$ e $\alpha x \notin \{(0,0,a^2): a \in \mathbb{R}\}$ não é um subespaço de \mathbb{R}^3 .
 - (ii) $\{(1,1,1)\}$ não é um subespaço de \mathbb{R}^3 . Sendo $0_{\mathbb{R}^3} = (0,0,0)$, tem-se que $0_{\mathbb{R}^3} \notin \{(1,1,1)\}$, pelo que $\{(1,1,1)\}$ não é um subespaço de \mathbb{R}^3 .
- (iii) $\{(a,1,a):a\in\mathbb{R}\}$ não é um subespaço de \mathbb{R}^3 . Sendo $0_{\mathbb{R}^3}=(0,0,0)$, tem-se que $0_{\mathbb{R}^3}\notin\{(a,1,a):a\in\mathbb{R}\}$, pelo que $\{(a,1,a):a\in\mathbb{R}\}$ não é um subespaço de \mathbb{R}^3 .

Logo a única proposição verdadeira é a C.

- 6. (a) (i) Dados: $v = (-1, 2), v_1 = (2, -4)$
 - (ii) Verificar se v é uma combinação linear de v_1 é, por definição, verificar se

$$\exists \alpha_1 \in \mathbb{R} [v = \alpha_1 v_1],$$

i.e., se é Pos o sistema de equações lineares (S_a) dado por

$$(-1,2) = \alpha_1(2,-4) \Leftrightarrow \begin{cases} 2\alpha_1 = -1 \\ -4\alpha_1 = 2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_1 \end{bmatrix}$ e $b = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Aplicando-se o ATEsc à matriz aumentada A|b, tem-se: $\begin{bmatrix} 2 & | & -1 \\ -4 & | & 2 \end{bmatrix} \xleftarrow{\ell_2 \leftarrow \ell_2 + 2\ell_1} \begin{bmatrix} 2 & | & -1 \\ 0 & | & 0 \end{bmatrix}.$

$$\begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftarrow \boldsymbol{\ell}_2 + 2\boldsymbol{\ell}_1} \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}$$

Como car(A) = car(A|b) = 1, (S_a) é um sistema Pos, pelo que v é uma combinação linear de v_1 .

(iii) Para escrever v como uma combinação linear de v_1 é necessário resolver o sistema (S_a) . Como car(A) = car(A|b) = n = 1 (n é o número de incógnitas), (S_a) é um sistema PD. Aplique-se, então, o último passo do algoritmo de Gauss:

Passo 3 Sendo α_1 a incógnita do sistema (S_a) , este é equivalente ao sistema

$$\{2\alpha_1=-1.$$

Assim, tem-se (MeSTaF):

•
$$2\alpha_1 = -1 \Leftrightarrow \alpha_1 = -\frac{1}{2}$$
,

vindo

$$v=-\frac{1}{2}v_1.$$

- (b) (i) Dados: $v = (-1, 2), v_1 = (1, 2)$
 - (ii) Verificar se v é uma combinação linear de v_1 é, por definição, verificar se

$$\exists \alpha_1 \in \mathbb{R} [v = \alpha_1 v_1],$$

i.e., se é Pos o sistema de equações lineares (S_b) dado por

$$(-1,2) = \alpha_1(1,2) \Leftrightarrow \begin{cases} \alpha_1 = -1 \\ 2\alpha_1 = 2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_1 \end{bmatrix}$ e $b = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Aplicando-se o ATEsc à matriz aumentada A|b, tem-se: $\begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix} \xleftarrow{\ell_2 \leftarrow \ell_2 - 2\ell_1} \begin{bmatrix} 1 & -1 \\ 0 & 4 \end{bmatrix}.$

$$\left[\begin{array}{c|c}1 & -1\\2 & 2\end{array}\right] \xleftarrow{\longleftarrow} \left[\begin{array}{c|c}1 & -1\\\ell_2 \leftarrow \ell_2 - 2\ell_1\end{array}\right]$$

Como car(A) = 1 < car(A|b) = 2, (S_b) é um sistema Imp, pelo que v não é uma combinação linear de v_1 .

- (iii) Atendendo a (ii), não se pode escrever v como uma combinação linear de v_1 .
- (c) (i) Dados: $v = (-1, 2), v_1 = (1, 2), v_2 = (0, 1)$

(ii) Verificar se v é uma combinação linear de v_1 e v_2 é, por definição, verificar se

$$\exists \alpha_1, \alpha_2 \in \mathbb{R} [v = \alpha_1 v_1 + \alpha_2 v_2],$$

i.e., se é Pos o sistema de equações lineares (S_c) dado por

$$(-1,2) = \alpha_1(1,2) + \alpha_2(0,1) \Leftrightarrow \begin{cases} \alpha_1 &= -1 \\ 2\alpha_1 + \alpha_2 &= 2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$, $X = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ e $b = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Aplicando-se o ATEsc à matriz aumentada A|b, tem-se:

$$\left[\begin{array}{c|c|c} 1 & 0 & -1 \\ 2 & 1 & 2 \end{array}\right] \xleftarrow[\ell_2 \leftarrow \ell_2 - 2\ell_1] \left[\begin{array}{c|c} 1 & 0 & -1 \\ 0 & 1 & 4 \end{array}\right].$$

Como car(A) = car(A|b) = 2, (S_c) é um sistema Pos, pelo que v é uma combinação linear de v_1 e v_2 .

(iii) Para escrever v como uma combinação linear de v_1 e v_2 é necessário resolver o sistema (S_c) . Como car(A) = car(A|b) = n = 2 (n é o número de incógnitas), (S_c) é um sistema PD. Aplique-se, então, o último passo do algoritmo de Gauss:

Passo 3 Sendo α_1 e α_2 as incógnitas do sistema (S_c) , este é equivalente ao sistema

$$\begin{cases} \alpha_1 &= -1 \\ \alpha_2 &= 4, \end{cases}$$

vindo

$$v = -v_1 + 4v_2$$
.

- (d) (i) Dados: $v = (-1, 2), v_1 = (1, -2), v_2 = (-2, 4)$
 - (ii) Verificar se v é uma combinação linear de v_1 e v_2 é, por definição, verificar se

$$\exists \alpha_1, \alpha_2 \in \mathbb{R} [v = \alpha_1 v_1 + \alpha_2 v_2].$$

i.e., se é Pos o sistema de equações lineares (S_d) dado por

$$(-1,2) = \alpha_1(1,-2) + \alpha_2(-2,4) \Leftrightarrow \begin{cases} \alpha_1 - 2\alpha_1 = -1 \\ 2\alpha_1 + 4\alpha_2 = 2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ e $b = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Aplicando-se o ATEsc à matriz aumentada A|b, tem-se:

$$\begin{bmatrix} 1 & -2 & -1 \\ -2 & 4 & 2 \end{bmatrix} \xleftarrow[\ell_2 \leftarrow \ell_2 + 2\ell_1] \begin{bmatrix} 1 & -2 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Como car(A) = car(A|b) = 1, (S_d) é um sistema Pos, pelo que v é uma combinação linear de v_1 e v_2 .

(iii) Para escrever v como uma combinação linear de v_1 e v_2 é necessário resolver o sistema (S_d) . Como car(A) = car(A|b) = 1 < n = 2 (n é o número de incógnitas), (S_d) é um sistema PI. Aplique-se, então, o último passo do algoritmo de Gauss:

Passo 3 Sendo α_1 e α_2 as incógnitas do sistema (S_d) , α_2 é uma incógnita livre e (S_d) é equivalente ao sistema

$$\{\alpha_1 - 2\alpha_2 = -1.$$

Assim, tem-se (MeSTaF):

•
$$\alpha_1 - 2\alpha_2 = -1 \Leftrightarrow \alpha_1 = -1 + 2\alpha_2$$
;

vindo

$$v = (-1 + 2\alpha_2)v_1 + \alpha_2v_2, \alpha_2 \in \mathbb{R}.$$

- (e) (i) Dados: $v = (-1, 2), v_1 = (1, -1), v_2 = (-1, 1)$
 - (ii) Verificar se v é uma combinação linear de v_1 e v_2 é, por definição, verificar se

$$\exists \alpha_1, \alpha_2 \in \mathbb{R} \ [v = \alpha_1 v_1 + \alpha_2 v_2],$$

i.e., se é Pos o sistema de equações lineares (S_e) dado por

$$(-1,2)=lpha_1(1,-1)+lpha_2(-1,1)\Leftrightarrow egin{cases} lpha_1-lpha_2=-1\ -lpha_1+lpha_2=2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ e $b = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Aplicando-se o ATEsc à matriz aumentada A|b, tem-se:

$$\begin{bmatrix} 1 & -1 & | & -1 \\ -1 & 1 & | & 2 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & 1 & | & -1 \\ \ell_2 \leftarrow \ell_2 + \ell_1 & | & 0 & 0 & | & 1 \end{bmatrix}.$$

Como car(A) = 1 < car(A|b) = 2, (S_e) é um sistema Imp, pelo que v não é uma combinação linear de v_1 e v_2 .

- (iii) Atendendo a (ii), não se pode escrever v como uma combinação linear de v_1 e v_2 .
- (f) (i) Dados: $v = (-1, 2), v_1 = (1, -1), v_2 = (0, 1), v_3 = (2, -1)$
 - (ii) Verificar se v é uma combinação linear de v_1 , v_2 e v_3 é, por definição, verificar se

$$\exists \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} \left[v = \alpha_1 v_1 + \alpha_1 v_1 + \alpha_2 v_3 \right]$$

i.e., se é Pos o sistema de equações lineares (S_f) dado por

$$(-1,2) = \alpha_1(1,-1) + \alpha_2(0,1) + \alpha_3(2,-1) \Leftrightarrow \begin{cases} \alpha_1 + 2\alpha_3 = -1 \\ -\alpha_1 + \alpha_2 - \alpha_3 = 2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & -1 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$ e $b = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. Aplicando-se o ATEsc à matriz aumentada A|b, tem-se:

$$\begin{bmatrix} 1 & 0 & 2 & | & -1 \\ -1 & 1 & -1 & | & 2 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 + \ell_1} \begin{bmatrix} 1 & 0 & 2 & | & -1 \\ 0 & 1 & 1 & | & 1 \end{bmatrix}.$$

Como car(A) = car(A|b) = 2, (S_f) é um sistema Pos, pelo que v é uma combinação linear de v_1 , v_2 e v_3 .

(iii) Para escrever v como uma combinação linear de v_1 , v_2 e v_3 é necessário resolver o sistema (S_e) . Como car(A) = car(A|b) = car(A|b

Passo 3 Sendo α_1 , α_2 e α_3 as incógnitas do sistema (S_f) , α_3 é uma incógnita livre e (S_f) é equivalente ao sistema

$$\begin{cases} \alpha_1 + 2\alpha_3 = -1 \\ \alpha_2 + \alpha_3 = 1. \end{cases}$$

Assim, tem-se (MeSTaF):

- $\alpha_2 + \alpha_3 = 1 \Leftrightarrow \alpha_2 = 1 \alpha_3$;
- $\alpha_1 + 2\alpha_3 = -1 \Leftrightarrow \alpha_1 = -1 2\alpha_3$,

vindo

$$v = (-1 - 2\alpha_3)v_1 + (1 - \alpha_3)v_2$$
.

- 7. Sem resolução.
- 8. Mostrar que $d \notin \langle a, b \rangle$ é mostrar que d não é uma combinação linear de a e b, ou seja, é verificar que

$$\nexists \alpha_1, \alpha_2 \in \mathbb{R} \left[d = \alpha_1 v_1 + \alpha_2 v_2 \right],$$

i.e., que é Imp o sistema de equações lineares (S) dado por

$$(-9, -2, 5) = \alpha_1(-1, 2, -3) + \alpha_2(3, 4, 2) \Leftrightarrow \begin{cases} \alpha_1 + 3\alpha_2 = -9\\ 2\alpha_1 + 4\alpha_2 = -2\\ 3\alpha_1 + 2\alpha_2 = 5, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} -1 & 3 \\ 2 & 4 \\ 3 & 2 \end{bmatrix}$, $x = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ e $b = \begin{bmatrix} -9 \\ -2 \\ 2 \end{bmatrix}$. Aplicando-se o ATEsc à matriz aumentada A|b, tem-se:

$$\begin{bmatrix} -1 & 3 & -9 \\ 2 & 4 & -2 \\ -3 & 2 & 5 \end{bmatrix} \xleftarrow{\longleftarrow} \underbrace{\ell_2 \leftarrow \ell_2 + 2\ell_1}_{\ell_3 \leftarrow \ell_3 - 3\ell_1} \begin{bmatrix} -1 & 3 & -9 \\ 0 & 10 & -20 \\ 0 & -7 & 32 \end{bmatrix} \xleftarrow{\longleftarrow} \underbrace{\begin{bmatrix} -1 & 3 & -9 \\ 0 & 10 & -20 \\ 0 & 0 & 18 \end{bmatrix}}_{\ell_3 \leftarrow \ell_3 + \frac{7}{10}\ell_2} \begin{bmatrix} 0 & 10 & -20 \\ 0 & 0 & 18 \end{bmatrix}.$$

Como car(A) = 2 < car(A|b) = 3, (S) é um sistema Imp, pelo que d não é uma combinação linear de a e b, ou seja, $d \notin \langle a, b \rangle$.

- 9. Sem resolução.
- 10. Sem resolução.
- 11. Indicar para que valores de α e β o conjunto $X = \{(1,0,\alpha), (\alpha,\beta,\beta), (1,0,0), (0,0,1)\}$ é um conjunto gerador de \mathbb{R}^3 é verificar para que valores de α e β , qualquer que seja $\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3$, é Pos o sistema de equações lineares (S) dado por

$$(\xi_1, \xi_2, \xi_3) = a_1(1, 0, \alpha) + a_2(\alpha, \beta, \beta) + a_3(1, 0, 0) + a_4(0, 0, 1) \Leftrightarrow \begin{cases} a_1 + \alpha a_2 + a_3 + &= \xi_1 \\ + \beta a_2 + &+ &= \xi_2 \\ \alpha a_1 + \beta a_2 + &+ a_4 = \xi_3, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & \alpha & 1 & 0 \\ 0 & \beta & 0 & 0 \\ \alpha & \beta & 0 & 1 \end{bmatrix}$, $x = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$ e $b = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S_3)

$$\begin{bmatrix} 1 & \alpha & 1 & 0 & \xi_1 \\ 0 & \beta & 0 & 0 & \xi_2 \\ \alpha & \beta & 0 & 1 & \xi_3 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & \alpha & 1 & 0 & \xi_1 \\ 0 & \beta & 0 & 0 & \xi_2 \\ 0 & \beta - \alpha^2 & -\alpha & 1 & \xi_3 - \alpha \xi_1 \end{bmatrix}.$$

Analise-se, agora, os dois seguintes casos:

• caso 1: $\beta = 0$

$$\begin{bmatrix} 1 & \alpha & 1 & 0 & \xi_1 \\ 0 & 0 & 0 & 0 & \xi_2 \\ 0 & -\alpha^2 & -\alpha & 1 & \xi_3 - \alpha \xi_1 \end{bmatrix} \xleftarrow{\ell_2 \leftrightarrow \ell_3} \begin{bmatrix} 1 & \alpha & 1 & 0 & \xi_1 \\ 0 & -\alpha^2 & -\alpha & 1 & \xi_3 - \alpha \xi_1 \\ 0 & 0 & 0 & 0 & \xi_2 \end{bmatrix}.$$

Assim, car(A) = 2 < car(A|b) = 3 se $\xi_2 \neq 0$, pelo que o sistema (S) nem sempre é Pos. Tem-se, então, que X não é um conjunto gerador de \mathbb{R}^3 .

• caso 2: $\beta \neq 0$

$$\begin{bmatrix} 1 & \alpha & 1 & 0 & \xi_1 \\ 0 & \beta & 0 & 0 & \xi_2 \\ 0 & \beta - \alpha^2 & -\alpha & 1 & \xi_3 - \alpha \xi_1 \end{bmatrix} \xrightarrow{\xi_1} \xrightarrow{\xi_3 - \alpha \xi_1} \begin{bmatrix} 1 & \alpha & 1 & 0 & \xi_1 \\ 0 & -\alpha^2 & -\alpha & 1 & \xi_3 - \alpha \xi_1 \\ 0 & 0 & -\alpha & 1 & \xi_2 - \frac{\beta - \alpha^2}{\beta}(\xi_3 - \alpha \xi_1) \end{bmatrix}.$$

Assim, car(A) = car(A|b) = 3 qualquer que seja $\xi \in \mathbb{R}^3$, pelo que o sistema (S) é sempre Pos. Tem-se, então, que X é um conjunto gerador de \mathbb{R}^3 .

Atendendo aos dois casos, X é um conjunto gerador de \mathbb{R}^3 sse $\alpha \in \mathbb{R}$ e $\beta \in \mathbb{R} - \{0\}$.

12. Atendendo a

$$A = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 3 & 0 & 1 & 2 \\ 2 & 2 & 0 & -4 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - 3\ell_1} \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & -3 & 1 & -4 \\ 0 & 0 & 0 & -8 \end{bmatrix},$$

conclui-se que c_1 e c_2 são as únicas colunas pivô de A, pelo que $X' = \{(1,3,2), (1,0,2)\}$ é um conjunto gerador de V com o número mínimo de elementos.

13. Atendendo a

conclui-se que c_1 e c_2 são as únicas colunas pivô de A, pelo que $X' = \{(1, -3, 1, -1, 3), (1, -1, 1, -1, 1)\}$ é um conjunto gerador de V com o número mínimo de elementos.

- 14. Sem resolução.
- 15. $a \in b$ são li sse $\begin{vmatrix} 1 & -2 \\ \alpha & -1 \end{vmatrix} \neq 0 \Leftrightarrow -1 + 2\alpha \neq 0 \Leftrightarrow \alpha \neq \frac{1}{2} \Leftrightarrow \alpha \in \mathbb{R} \{\frac{1}{2}\}$
- 16. Verificar para que valores reais de α_1 , α_2 , β_1 e β_2 os vetores $v_1 = (\alpha_1, \beta_1, 1)$ e $v_2 = (\alpha_2, \beta_2, 0)$ são linearmente independentes, é verificar para que valores de α_1 , α_2 , β_1 e β_2 é PD o sistema de equações lineares (S) dado por

$$(0,0,0) = a_1(\alpha_1,\beta_1,1) + a_2(\alpha_2,\beta_2,0) \Leftrightarrow \begin{cases} \alpha_1 a_1 + \alpha_2 a_2 = 0 \\ \beta_1 a_1 + \beta_2 a_2 = 0 \\ a_1 = 0, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \\ 1 & 0 \end{bmatrix}$, $x = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$ e $b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S), tem-se:

$$\begin{bmatrix} \alpha_1 & \alpha_2 & 0 \\ \beta_1 & \beta_2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & 0 & 0 \\ \beta_1 & \beta_2 & 0 \\ \ell_1 \leftrightarrow \ell_3 & \alpha_1 & \alpha_2 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \beta_1 \ell_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \beta_2 & 0 \\ \ell_3 \leftarrow \ell_3 - \alpha_1 \ell_1 \end{bmatrix}.$$

Analise-se, agora, os dois seguintes casos:

• caso 1: $\beta_2 = 0$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \alpha_2 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftrightarrow \ell_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Assim, car(A) = car(A|b) = n = 1 se $\alpha_2 = 0$ e car(A) = car(A|b) = n = 2 se $\alpha_2 \in \mathbb{R} - \{0\}$ (n é o número de incógnitas), pelo que o sistema (S) é PI se $\alpha_2 = 0$ e PD se $\alpha_2 \in \mathbb{R} - \{0\}$. Tem-se, então, que se $\alpha_2 \in \mathbb{R} - \{0\}$ e $\beta_2 = 0$, X é um conjunto li.

• caso 2: $\beta_2 \in \mathbb{R} - \{0\}$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \beta_2 & 0 \\ 0 & \alpha_2 & 0 \end{bmatrix} \xleftarrow{\longleftarrow} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \beta_2 & 0 \\ \ell_3 \leftarrow \ell_3 - \frac{\alpha_2}{\beta_2} \ell_2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \beta_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Assim, car(A) = car(A|b) = n = 2 ($n \in O$ número de incógnitas), pelo que o sistema (S) é sempre PD. Tem-se, então, que se $\beta_2 \in \mathbb{R} - \{0\}$, X é um conjunto li.

Atendendo aos dois casos, X é um conjunto li de \mathbb{R}^3 sse $\alpha_1 \in \mathbb{R} \land \beta_1 \in \mathbb{R} \land ((\alpha_2 \in \mathbb{R} - \{0\} \land \beta_2 = 0) \lor \beta_2 \in \mathbb{R} - \{0\})$, que é logicamente equivalente a $\alpha_1 \in \mathbb{R} \land \beta_1 \in \mathbb{R} \land (\alpha_2 \in \mathbb{R} - \{0\} \lor \beta_2 \in \mathbb{R} - \{0\})$.

- 17. Sem resolução.
- 18. (b) Pretende-se mostrar que v_1 e $v_1 + v_2$ são li, ou seja, que

$$av_1 + b(v_1 + v_2) = 0_V \Rightarrow a = b = 0,$$
 (tese.)

sabendo-se que v_1 e v_2 são li, ou seja, que

$$cv_1 + dv_2 = 0_V \Rightarrow c = d = 0.$$
 (hip.)

Tem-se, então:

$$av_1 + b(v_1 + v_2) = 0_V \Leftrightarrow (a+b)v_1 + bv_2 = 0_V \stackrel{\text{hip.}}{\Rightarrow} \begin{cases} a+b=0 \\ b=0 \end{cases} \Leftrightarrow a=b=0, \text{ c.q.m.}$$

- 19. Sem resolução.
- 20. Seja o conjunto $B = \{(\alpha, 6), (1, \alpha)\}$. Como $\#B = \dim(\mathbb{R}^2) = 2$, basta verificar para que valores de α o conjunto B é li, ou seja, quando $\begin{vmatrix} \alpha & 6 \\ 1 & \alpha \end{vmatrix} \neq 0 \Leftrightarrow \alpha^2 6 \neq 0 \Leftrightarrow \alpha \neq \pm \sqrt{6} \Leftrightarrow \alpha \in \mathbb{R} \{-\sqrt{6}, \sqrt{6}\}$.
- 21. Sem resolução.
- 22. Sem resolução.

- 23. (a) Seja o cojunto $B = \{(1,1,1),(0,1,1),(1,0,1)\}$. Como $\begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 1 \times (1 \times 1 0 \times 1) 1 \times (0 \times 1 1 \times 1) + 1 \times (0 \times 0 1 \times 1) = 1 \neq 0$, B é um conjunto li. Como $\#B = \dim(\mathbb{R}^3)(=3)$ e B é um conjunto li, tem-se que B é uma base de \mathbb{R}^3 , pelo que B é uma base ordenada de \mathbb{R}^3 .
 - (b) Para responder à questão, tem que se resolver o sistema (S) dado por

$$\alpha_1(1,1,1) + \alpha_2(0,1,1) + \alpha_3(1,0,1) = (0,1,0) \Leftrightarrow \begin{cases} \alpha_1 & +\alpha_3 = 0 \\ \alpha_1 + \alpha_2 & = 1 \\ \alpha_1 + \alpha_2 + \alpha_3 = 1, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$, $X = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$ e $b = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Então, aplicando-se o do método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada *Alb*:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{\ell_2 \leftarrow \ell_2 - \ell_1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \ell_2} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas), (S) é um sistema PD (como tem que ser).

Passo 3 Sendo α_1 , α_2 e α_3 as incógnitas do sistema (S). Então, (S) é equivalente ao sistema

$$\begin{cases} \alpha_1 + \alpha_3 = 0 \\ \alpha_2 - \alpha_3 = 1 \\ \alpha_3 = -1 \end{cases}$$

Assim, tem-se (MeSTaF):

- $\alpha_3 = -1$;
- $\alpha_2 \alpha_3 = 1 \Leftrightarrow \alpha_2 (-1) = 1 \Leftrightarrow \alpha_2 = 0$;
- $\alpha_1 + \alpha_3 = 0 \Leftrightarrow \alpha_1 + (-1) = 0 \Leftrightarrow \alpha_1 = 1$,

pelo que $[z]_{\mathcal{B}} = \{(1, 0, -1)\}.$

- 24. Sem resolução.
- 25. Atendendo a

$$X = \{(a, 0, a) : a \in \mathbb{R}\} = \{a(1, 0, 1) : a \in \mathbb{R}\} = \langle (1, 0, 1) \rangle$$

e como $(1,0,1) \neq 0_{\mathbb{R}^3}$, tem-se que $\{(1,0,1)\}$ é um conjunto gerador de X li, pelo que dim(X)=1.

- 26. Sem resolução.
- 27. Sendo (S) o sistema de equações lineares

$$\begin{cases} x - y + 3z = 0 \\ z - 2w = 0, \end{cases}$$

ou seja, $A\xi = \underline{0}$, $A = \begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix}$ e $\xi = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, e notando que $F = \text{Nuc}(A) = \text{CS}_{(S)}$, determine-se $\text{CS}_{(S)}$ para determinar uma base de F e a sua dimensão através do método de Gauss:

- **Passo 1** Aplicação do ATEsc à matriz aumentada A|b: a matriz aumentada $A|b = \begin{bmatrix} 1 & -1 & 3 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ já está na forma em escada.
- **Passo 2** Como car(A) = car(A|b) = 2 < n = 4 (n é o número de incógnitas), (S) é um sistema PI.

Passo 3 Sendo x, y, z e w as incógnitas do sistema (S), então, y e w são incógnitas livres. Assim, tem-se (MeSTaF):

- $z 2w = 0 \Leftrightarrow z = 2w$;
- $x y + 3z = 0 \Leftrightarrow x y + 3 \times (2w) = 0 \Leftrightarrow x = y 6w$

pelo que $CS_{(S)} = \{(y - 6w, y, 2w, w) : y, w \in \mathbb{R}\}, \text{ vindo}$

- dimensão de F: dim(F) = 2 (número de incógnitas livres de (S)).
- base de F: atendendo a

$$F = CS_{(S)} = \{(y - 6w, y, 2w, w) : y, w \in \mathbb{R}\} = \{y(1, 1, 0, 0) + w(-6, 0, 2, 1) : y, w \in \mathbb{R}\} = \langle (1, 1, 0, 0), (-6, 0, 2, 1) \rangle$$

 $B = \{(1, 1, 0, 0), (-6, 0, 2, 1)\}$ é um conjunto gerador de F. Como $\#B = \dim(F)$, B é uma base de F.

28. (a) • Resolução considerando o teorema Teo 4.10

Elementos do conjunto $F = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$: triplos ordenados reais em que a terceira componente é 0 (F é um subconjunto de \mathbb{R}^3)

- (i) Sendo $0_{\mathbb{R}^3} = (0, 0, 0)$, tem-se que $0_{\mathbb{R}^3} \in F$.
- (ii) Sejam $x = (x_1, x_2, 0)$ e $y = (y_1, y_2, 0)$ dois elementos genéricos de F. Então, $x + y = (x_1, x_2, 0) + (y_1, y_2, 0) = (x_1 + y_1, x_2 + y_2, 0)$, pelo que $x + y \in F$.
- (iii) Sejam α um número real e $x=(x_1,x_2,0)$ um elemento genérico de F. Então, $\alpha x=\alpha(x_1,x_2,0)=(\alpha x_1,\alpha x_2,0)$, pelo que $\alpha x\in F$.

Assim, conclui-se que F é um subespaço de \mathbb{R}^3 .

• Resolução considerando o teorema Teo 4.23 (a)

Atendendo a

$$F = \{(x, y, z) \in \mathbb{R}^3 : z = 0\} = \{(x, y, 0) : x, y \in \mathbb{R}\} = \{x(1, 0, 0) + y(0, 1, 0) : x, y \in \mathbb{R}\} = \langle (1, 0, 0), (0, 1, 0) \rangle,$$

tem-se que F é um subespaço de \mathbb{R}^3 .

(b) Verificar que $F = \langle u_1, u_2, u_3 \rangle$ é verificar que $X = \{u_1, u_2, u_3\}$ é um conjunto gerador de F, ou seja, que qualquer que seja $\xi = (\xi_1, \xi_2, 0) \in F$, é Pos o sistema de equações lineares (S) dado por

$$\xi = a_1 u_1 + a_2 u_2 + a_3 u_3 \Leftrightarrow (\xi_1, \xi_2, 0) = a_1(0, 2, 0) + a_2(1, 0, 0) + a_3(-1, 6, 0) \Leftrightarrow \begin{cases} a_2 - a_3 = \xi_1 \\ 2a_1 + 6a_3 = \xi_2, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 0 & 1 & -1 \\ 2 & 0 & 6 \end{bmatrix}$, $X = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ e $b = \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix}$. Então, aplicando o ATEsc à matriz ampliada do sistema (S), tem-se

$$\begin{bmatrix} 0 & 1 & -1 & \xi_1 \\ 2 & 0 & 6 & \xi_1 \end{bmatrix} \xleftarrow[\ell_1 \leftrightarrow \ell_2] \begin{bmatrix} 2 & 0 & 6 & \xi_2 \\ 0 & 1 & -1 & \xi_1 \end{bmatrix}.$$

Assim, car(A) = car(A|b) = 2 qualquer que seja $\xi \in F$, pelo que o sistema (S) é sempre Pos. Tem-se, então, que X é um conjunto gerador de F, pelo que $F = \langle u_1, u_2, u_3 \rangle$.

(c) Verificar se $X = \{u_1, u_2, u_3\}$ é uma base de F, é verificar se, que qualquer que seja $\xi = (\xi_1, \xi_2, 0) \in F$, é PD o sistema de equações lineares (S) dado por

$$\xi = a_1 u_1 + a_2 u_2 + a_3 u_3$$
.

Atendendo à alínea anterior, este sistema é PI, pois car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas) qualquer que seja $\xi \in F$, pelo que X não é uma base de F.

- (d) Seja a matriz $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Notando que F = Lin(A), tem-se que dim(F) = car(A) = 2 (note-se que A é uma mariz em escada).
- 29. (a) Como $\{v_1, v_2\}$ é uma base de V, $\{v_1, v_2\}$ é um cojunto gerador de V, pelo que A também é, pois $\{v_1, v_2\} \subseteq A$.
 - (b) Como $\#A > \dim(V) = 2$, A é um conjunto ld. Assim, A não é constituído por vetores li.
 - (c) Como $\#B < \dim(V) = 2$, B não é um conjunto gerador de V.
 - (d) Como $B \subseteq \{v_1, v_2\}$ e $\{v_1, v_2\}$ é um co junto li, B também é um conjunto li.
 - (e) $\#C \ge \dim(V) = 2$.
 - (f) $\#D \le \dim(V) = 2$.
 - (g) E é um conjunto gerador de V sse v_1 e v_4 forem vetores li.
- 30. P_1 : Como $u_3 = 2u_1$, $\{u_1, u_2, u_3\}$ é um conjunto linearmente dependente. A proposição dada é, pois, falsa.
 - P_2 : Como $\{u_1, u_2\}$ é um conjunto li, $u_1 \neq 0_V$, pelo que também $u_3 (= 2u_1) \neq 0_V$. Assim, $\{u_3\}$ é um conjunto li. A proposição dada é, pois, verdadeira.
 - P_3 : Como $V = \langle u_1, u_2, u_3 \rangle$ e $u_3 = 2u_1, V = \langle u_2, u_3 \rangle$, pelo que também se tem $V = \langle u_2, u_3, u_4 \rangle$. A proposição dada é, pois, verdadeira.
 - P_4 : Como $V = \langle u_1, u_2, u_3 \rangle = \langle u_1, u_2, 2u_1 \rangle = \langle u_1, u_2 \rangle$ e como $\{u_1, u_2\}$ é um conjunto li, tem-se que dim(V) = 2. A proposição dada é, pois, falsa.
 - P_5 : (i) Como $V = \langle u_1, u_2, u_3 \rangle = \langle u_1, u_2, 2u_1 \rangle = \langle u_1, u_2 \rangle$ e como $\{u_1, u_2\}$ é um conjunto li, tem-se que dim(V) = 2.
 - (ii) Como $V = \langle u_1, u_2, u_3 \rangle = \langle u_1, u_2, 2u_1 \rangle = \langle u_1, u_2 \rangle = \langle u_4 u_2, u_2 \rangle$, $\{u_2, u_4 u_2\}$ é um conjunto gerador de V, ou seja,

$$\forall x \in V, \exists \alpha_1, \alpha_2 \in \mathbb{R} \left[\alpha_1 u_2 + \alpha_2 (u_4 - u_2) = x \right].$$

Assim, tem-se que:

$$\alpha_1 u_2 + \alpha_2 (u_4 - u_2) = x \Leftrightarrow (\alpha_1 - \alpha_2) u_2 + \alpha_2 u_4 = x \Leftrightarrow \beta_1 u_2 + \beta_2 u_4 = x$$

em que $\beta_1 = \alpha_1 - \alpha_2$ e $\beta_2 = \alpha_2$. Assim, $\{u_2, u_4\}$ também é um conjunto gerador de V.

- (iii) Como $\#\{u_2, u_4\} = \dim(V)(=2), \{u_2, u_4\}$ é uma base de V. A proposição dada é, pois, verdadeira.
- 31. Sem resolução.
- 32. A $\dim(X) = 2$.

Se $X = \langle x_1, x_2 \rangle$, então dim(X) < 2, pelo que a proposição é falsa.

A proposição seria verdadeira se X fosse um subconjunto de \mathbb{R}^2 li. Como nada se sabe destas duas condições, a proposição é falsa.

- $C \mid \forall x \in X, \exists \alpha_1, \alpha_2 \in \mathbb{R} \ [x = \alpha_1 x_1 + \alpha_2 x_2].$
 - $X = \langle x_1, x_2 \rangle$ significa $\forall x \in X$, $\exists \alpha_1, \alpha_2 \in \mathbb{R} [x = \alpha_1 x_1 + \alpha_2 x_2]$, pelo que a proposição é verdadeira.

 $D \{x_1, x_2\}$ é uma base de X.

Como não se sabe se X é um conjunto li, a proposição é falsa.

33. A v, w e x são vetores linearmente independentes.

Como $x = 0_{\mathbb{R}^3}$, os vetores são ld, pelo que a proposição é falsa.

 $|\mathsf{B}| |\mathsf{IR}^3 = \langle w, x, y \rangle.$

Como $x = 0_{\mathbb{R}^3}$, dim $(\langle w, x, y \rangle)$ < 3, pelo que a proposição é falsa.

Como y = 2u, $\{u, w, y\}$ é um conjunto ld, pelo que a proposição é falsa.

D u é uma combinação linear de x e y.

Como $u = 0x + \frac{1}{2}v$, a proposição é verdadeira.

34. Sem resolução.

Resoluções dos exercícios do capítulo 5 — Transformações Lineares de \mathbb{R}^n em \mathbb{R}^m

- 1. (a) Processo 1 Mostre-se, através da definição, que T_1 é uma transformação linear
 - Condição (i): $\forall x, y \in \mathbb{R}^2 [T_1(x+y) = T_1(x) + T_1(y)].$

Sejam $x = (x_1, x_2)$ e $y = (y_1, y_2)$ dois elementos genéricos de \mathbb{R}^2 , o domínio de \mathcal{T}_1 . Então:

$$T_1(x+y) = T_1((x_1,x_2) + (y_1,y_2)) = T_1(x_1+y_1,x_2+y_2) = (0,-(x_1+y_1),0) = (0,-x_1-y_1,0).$$

$$T_1(x) + T_1(y) = T_1(x_1, x_2) + T_1(y_1, y_2) = (0, -x_1, 0) + (0, -y_1, 0) = (0, -x_1 - y_1, 0).$$

Assim, como $T_1(x+y) = T_1(x) + T_1(y)$, conclui-se que a condição (i) é válida.

• Condição (ii): $\forall x \in \mathbb{R}^2$, $\forall \alpha \in \mathbb{R} [T_1(\alpha x) = \alpha T_1(x)]$.

Sejam $x=(x_1,x_2)$ um elemento genérico de \mathbb{R}^2 , o domínio de \mathcal{T}_1 , e α um número real. Então:

$$T_1(\alpha x) = T_1(\alpha(x_1, x_2)) = T_1(\alpha x_1, \alpha x_2) = (0, -\alpha x_1, 0).$$

$$\alpha T_1(x) = \alpha T_1(x_1, x_2) = \alpha(0, -x_1, 0) = (0, -\alpha x_1, 0).$$

Assim, como $T_1(\alpha x) = \alpha T_1(x)$, conclui-se que a condição (ii) é válida.

Como as condições (i) e (ii) são válidas, conclui-se que T_1 é uma transformação linear de \mathbb{R}^2 em \mathbb{R}^3 .

Processo 2 Mostre-se, através do teorema Teo 5.24, que T_1 é uma transformação linear

• Condição única: $\forall x, y \in \mathbb{R}^2, \forall \alpha \in \mathbb{R} [T_1(\alpha x + y) = \alpha T_1(x) + T_1(y)].$

Sejam $x=(x_1,x_2)$ e $y=(y_1,y_2)$ dois elementos genéricos de \mathbb{R}^2 , o domínio de \mathcal{T}_1 , e α um número real. Então:

$$T_1(\alpha x + y) = T_1(\alpha(x_1, x_2) + (y_1, y_2)) = T_1(\alpha x_1 + y_1, \alpha x_2 + y_2) = (0, -(\alpha x_1 + y_1), 0) = (0, -\alpha x_1 - y_1, 0).$$

$$\alpha T_1(x) + T_1(y) = \alpha T_1(x_1, x_2) + T_1(y_1, y_2) = \alpha(0, -x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -y_1, 0) = (0, -\alpha x_1, 0) + (0, -x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_1, 0) + (0, -\alpha x_1, 0) = (0, -\alpha x_$$

Assim, como $T_1(\alpha x + y) = \alpha T_1(x) + T_1(y)$, conclui-se que T_1 é uma transformação linear de \mathbb{R}^2 em \mathbb{R}^3 .

(b) Mostre-se através de um contraexemplo que T_2 não é uma transformação linear

Sejam, por exemplo, $\alpha = -2$ e x = (0,3). Então:

$$T_2(\alpha x) = T_2(-2(0,3)) = T_2(0,-6) = (0,0,|0-(-6)|) = (0,0,6).$$

 $\alpha T_2(x) = -2T_2(0,3) = -2(0,0,|0-3|) = -2(0,0,3) = (0,0,-6).$

Assim, como $T_2(\alpha x) \neq \alpha T_2(x)$, conclui-se que T_2 não é uma transformação linear.

- (c) Processo 1 Mostre-se, através da definição, que T_3 é uma transformação linear
 - Condição (i): $\forall x, y \in \mathbb{R}^2 [T_3(x+y) = T_3(x) + T_3(y)]$. Sejam $x = (x_1, x_2)$ e $y = (y_1, y_2)$ dois elementos genéricos de \mathbb{R}^2 , o domínio de T_3 . Então:

$$T_3(x+y) = T_3((x_1, x_2) + (y_1, y_2)) = T_3(x_1 + y_1, x_2 + y_2) = (x_2 + y_2, 0, x_1 + y_1).$$

$$T_3(x) + T_3(y) = T_1(x_1, x_2) + T_1(y_1, y_2) = (x_2, 0, x_1) + (y_2, 0, y_1) = (x_2 + y_2, 0, x_1 + y_1).$$

Assim, como $T_3(x + y) = T_3(x) + T_3(y)$, conclui-se que a condição (i) é válida.

• Condição (ii): $\forall x \in \mathbb{R}^2$, $\forall \alpha \in \mathbb{R}$ [$T_3(\alpha x) = \alpha T_3(x)$]. Sejam $x = (x_1, x_2)$ um elemento genérico de \mathbb{R}^2 , o domínio de T_3 , e α um número real. Então:

$$T_3(\alpha x) = T_3(\alpha(x_1, x_2)) = T_3(\alpha x_1, \alpha x_2) = (\alpha x_2, 0, \alpha x_1)$$

 $\alpha T_3(x) = \alpha T_3(x_1, x_2) = \alpha(x_2, 0, x_1) = (\alpha x_2, 0, \alpha x_1).$

Assim, como $T_3(\alpha x) = \alpha T_3(x)$, conclui-se que a condição (ii) é válida.

Como as condições (i) e (ii) são válidas, conclui-se que T_3 é uma transformação linear de \mathbb{R}^2 em \mathbb{R}^3 .

Processo 2 Mostre-se, através do teorema Teo 5.24, que T_3 é uma transformação linear

• Condição única: $\forall x, y \in \mathbb{R}^2$, $\forall \alpha \in \mathbb{R}$ [$T_3(\alpha x + y) = \alpha T_3(x) + T_3(y)$]. Sejam $x = (x_1, x_2)$ e $y = (y_1, y_2)$ dois elementos genéricos de \mathbb{R}^2 , o domínio de T_3 , e α um número real. Então:

$$T_3(\alpha x + y) = T_3(\alpha(x_1, x_2) + (y_1, y_2)) = T_3(\alpha x_1 + y_1, \alpha x_2 + y_2) = (\alpha x_2 + y_2, 0, \alpha x_1 + y_1).$$

$$\alpha T_3(x) + T_3(y) = \alpha T_3(x_1, x_2) + T_3(y_1, y_2) = \alpha(x_2, 0, x_1) + (y_2, 0, y_1) = (\alpha x_2, 0, \alpha x_1) + (y_2, 0, y_1) = (\alpha x_2 + y_2, 0, \alpha x_1 + \alpha x_2).$$

Assim, como $T_3(\alpha x + y) = \alpha T_3(x) + T_3(y)$, conclui-se que T_3 é uma transformação linear de \mathbb{R}^2 em \mathbb{R}^3 .

(d) Mostre-se através de um contraexemplo que T_4 não é uma transformação linear

Sejam, por exemplo, x = (1,0) e y = (2,0). Então:

$$T_4(x+y) = T_4((1,0) + (2,0)) = T_4(3,0) = (3^2,0,0) = (9,0,0).$$

 $T_4(x) + T_4(y) = T_4(1,0) + T_4(2,0)) = (1^2,0,0) + (2^2,0,0) = (1,0,0) + (4,0,0) = (5,0,0).$

Assim, como $T_4(x+y) \neq T_4(x) + T_4(y)$, conclui-se que T_4 não é uma transformação linear.

2. Sem resolução.

- 3. Resolução considerando o teorema Teo 5.24
 - Condição única: $\forall x, y \in \mathbb{R}, \forall a \in \mathbb{R} [T(ax + y) = aT(x) + T(y)]$

Sejam, então, x e y dois elementos genéricos de IR, o domínio de T, e a um número real. Atendendo a

$$T(ax + y) = (ax + y + \alpha - 2\beta, -(ax + y)) = (ax + y + \alpha - 2\beta, -ax - y)$$
 e
$$aT(x) + T(y) = a(x + \alpha - 2\beta, -x) + (y + \alpha - 2\beta, -y) = (ax + a\alpha - 2a\beta, -ax) + (y + \alpha - 2\beta, -y) = (ax + a\alpha - 2a\beta + y + \alpha - 2\beta, -ax - y),$$

tem-se que T é uma transformação linear de \mathbb{R}^2 em \mathbb{R}^3 sse

$$(ax + y + \alpha - 2\beta, -ax - y) = (ax + a\alpha - 2a\beta + y + \alpha - 2\beta, -ax - y)$$

$$\Leftrightarrow ax + y + \alpha - 2\beta = ax + a\alpha - 2a\beta + y + \alpha - 2\beta \land -ax - y = -ax - y$$

$$\Leftrightarrow 0 = a\alpha - 2a\beta$$

$$\Leftrightarrow a(\alpha - 2\beta) = 0$$

$$\Leftrightarrow \alpha - 2\beta = 0.$$

pois a é um número real qualquer. Assim, T é uma transformação linear de \mathbb{R} em \mathbb{R}^2 sse $\alpha=2\beta$.

- 4. Sem resolução.
- 5. A $f: \mathbb{R} \longrightarrow \mathbb{R}^2$, f(x) = (x, 0) é uma transformação linear.

Mostre-se, através do teorema Teo 5.24, que f é uma transformação linear

• Condição única: $\forall x, y \in \mathbb{R}, \forall \alpha \in \mathbb{R} [f(\alpha x + y) = \alpha f(x) + f(y)].$ Sejam $x \in y$ dois elementos genéricos de \mathbb{R} , o domínio de f, e α um número real. Então:

$$f(\alpha x + y) = (\alpha x + y, 0).$$

$$\alpha f(x) + f(y) = \alpha(x, 0) + (y, 0) = (\alpha x + y, 0).$$

Assim, como $f(\alpha x + y) = \alpha f(x) + f(y)$, conclui-se que f é uma transformação linear de IR em IR². Assim, a proposição dada é verdadeira.

B $g: \mathbb{R} \longrightarrow \mathbb{R}^2$, g(x) = (x, 1) é uma transformação linear.

Como $g(0_{\mathbb{R}}) = g(0) = (0, 1) \neq (0, 0) = 0_{\mathbb{R}^2}$, conclui-se que g não é uma transformação linear. Assim, a proposição dada é falsa.

C $h: \mathbb{R} \longrightarrow \mathbb{R}^2$, h(x) = (x, 2) é uma transformação linear.

Como $h(0_{\mathbb{R}}) = h(0) = (0, 2) \neq (0, 0) = 0_{\mathbb{R}^2}$, conclui-se que h não é uma transformação linear. Assim, a proposição dada é falsa

D $i: \mathbb{R} \longrightarrow \mathbb{R}^2$, i(x) = (x,3) é uma transformação linear.

Como $i(0_{\mathbb{R}}) = i(0) = (0,3) \neq (0,0) = 0_{\mathbb{R}^2}$, conclui-se que i não é uma transformação linear. Assim, a proposição dada é falsa.

Assim, a única proposição verdadeira é a A.

6. (a) Para se determinar a matriz associada à transformação linear \mathcal{T} tem-se que determinar as imagens da base canónicade \mathbb{R}^3 , o domínio de \mathcal{T} (quando nada se diz no enunciado, devem-se considerar as bases canónicas). Assim, como $\mathcal{T}(1,0,0)=(2,-1,-1)$, $\mathcal{T}(0,1,0)=(-1,2,-1)$ e $\mathcal{T}(0,0,1)=(-1,-1,2)$, tem-se que $\mathcal{A}_{\mathcal{T}}=\begin{bmatrix} 2&-1&-1\\-1&2&-1\\2&-1&2&-1 \end{bmatrix}$.

- (b) T(u): como $A_T\begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -1\\-1 & 2 & -1\\2 & -1 \end{bmatrix} \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$, tem-se que T(u) = (0,0,0).
 - T(v): como $A_T\begin{bmatrix} 2\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -1\\-1&2&-1\\1&1&2 \end{bmatrix} \begin{bmatrix} 2\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2\\-1\\-1 \end{bmatrix}$, tem-se que T(v) = (2, -1, -1).
 - T(w): como $A_T \begin{bmatrix} -5 \\ 3 \\ 1 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} -5 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} -15 \\ 9 \\ 0 \end{bmatrix}$, tem-se que T(w) = (-15, 9, 6).
- 7. Sem resolução.
- 8. Seja $(x, y, z) \in \mathbb{R}^3$. Então, $T(x, y, z) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y+z \\ x+y \\ z \end{bmatrix}$. Assim, a única proposição verdadeira é a D.
- 9. (a) Para se determinar a matriz associada à transformação linear T tem-se que determinar as imagens da base canónicade \mathbb{R}^2 , o domínio de T (quando nada se diz no enunciado, devem-se considerar as bases canónicas). Assim, como T(1,0)=(1+0,1-0)=(1,1) e T(0,1)=(0+1,0-1)=(1,-1), tem-se que $A_T=\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$.
 - (b) Para resolver este exercício, tem que se calcular as coordenadas das imagens dos elementos de \mathcal{B} . Sejam, então, $v_1=(1,2), v_2=(3,4), v_1'=(1,4)$ e $v_2'=(2,3)$.
 - Para v_1 : $T(v_1) = T(1,2) = (1+2,1-2) = (3,-1)$. Para determinar $[T(v_1)]_{\mathcal{B}'} = [(3,-1)]_{\mathcal{B}'}$, tem que se resolver o sistema (S_1) dado por

$$x_1v_1' + x_2v_2' = T(v_1) \Leftrightarrow x_1(1,4) + x_2(2,3) = (3,-1) \Leftrightarrow \begin{cases} x_1 + 2x_2 = 3 \\ 4x_1 + 3x_2 = -1, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ e $b = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$. Então, aplicando-se a Regra de Cramer, tem-se (note-se que se pode aplicar a Regra de Cramer a (S_1) pois é um sistema PD, por \mathcal{B}' ser uma base ordenada, e a sua matriz dos coeficientes é quadrada):

$$x_1 = \frac{\begin{vmatrix} 3 & 2 \\ -1 & 3 \end{vmatrix}}{|A|} = \frac{11}{-5} = -\frac{11}{5}, \ x_2 = \frac{\begin{vmatrix} 1 & 3 \\ 4 & -1 \end{vmatrix}}{|A|} = \frac{-13}{-5} = \frac{13}{5}, \ [T(v_1)]_{B'} = [(3, -1)]_{B'} = \{(-\frac{11}{5}, \frac{13}{15})\}.$$

• Para v_2 : $T(v_2) = T(3,4) = (3+4,3-4) = (7,-1)$. Para determinar $[T(v_2)]_{\mathcal{B}'} = [(7,-1)]_{\mathcal{B}'}$, tem que se resolver o sistema (S_2) dado por

$$x_1v_1' + x_2v_2' = T(v_2) \Leftrightarrow x_1(1,4) + x_2(2,3) = (7,-1) \Leftrightarrow \begin{cases} x_1 + 2x_2 = 7 \\ 4x_1 + 3x_2 = -1, \end{cases}$$

ou seja, Ax = b, com $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$, $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ e $b = \begin{bmatrix} 7 \\ -1 \end{bmatrix}$. Então, aplicando-se a Regra de Cramer, tem-se (note-se que se pode aplicar a Regra de Cramer a (S_1) pois é um sistema PD, por \mathcal{B}' ser uma base ordenada, e a sua matriz dos coeficientes é quadrada):

$$x_1 = \frac{\begin{vmatrix} 7 & 2 \\ -1 & 3 \end{vmatrix}}{|A|} = \frac{23}{-5} = -\frac{23}{5}, \ x_2 = \frac{\begin{vmatrix} 1 & 7 \\ 4 & -1 \end{vmatrix}}{|A|} = \frac{-29}{-5} = \frac{29}{5}, \ [T(v_2)]_{\mathcal{B}'} = [(3, -1)]_{\mathcal{B}'} = \{(-\frac{23}{5}, \frac{29}{5})\}.$$

- Tem-se, então, que $A_{T,\mathcal{B},\mathcal{B}'} = \frac{1}{5} \begin{bmatrix} -11 & -23 \\ 13 & -29 \end{bmatrix}$.
- Processo 1: S + T é a transformação linear definida por S + T : \mathbb{R}^2 → \mathbb{R}^2 , (S + T)(x, y) = S(x, y) + T(x, y) = (2x + y, y) + (x, 0) = (3x + y, y). Como (S + T)(1, 0) = (3, 0) e (S + T)(0, 1) = (1, 1), tem-se que $A_{S+T} = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$.
 - Processo 2: Como S(1,0) = (2,0) e S(0,1) = (1,1), tem-se que $A_S = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Como T(1,0) = (1,0) e T(0,1) = (0,0), tem-se que $A_T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Assim, $A_{S+T} = A_S + A_T = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$.

- 11. Processo 1: $\forall (x,y) \in \mathbb{R}^2$, $T(x,y) = \begin{bmatrix} -4 & -2 \\ 0 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -4x 2y \\ 0 & 0 \\ -2y \end{bmatrix}$. -2T é a transformação linear definida por -2T : $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$, -2T(x,y) = -2(-4x 2y, 0, -2y) = (8x + 4y, 0, 4y). Como (-2T)(1,0) = (8,0,0) e (-2T)(0,1) = (4,0,4), tem-se que $A_{-2T} = \begin{bmatrix} 8 & 4 \\ 0 & 0 \\ 0 & 4 \end{bmatrix}$.
 - Processo 2: $A_{-2T} = -2A_T = -2\begin{bmatrix} -4 & -2 \\ 0 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 4 \\ 0 & 0 \\ 0 & 2 \end{bmatrix}$
- 12. (a) Processo 1: $S \circ T$ é a transformação linear definida por $S \circ T$: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $(S \circ T)(x,y) = S(T(x,y)) = S(x,0) = (2x,0)$. Como $(S \circ T)(1,0) = (2,0)$ e $(S \circ T)(0,1) = (0,0)$, tem-se que $A_{S \circ T} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$.
 - Processo 2: Como S(1,0) = (2,0) e S(0,1) = (1,1), tem-se que $A_S = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Como T(1,0) = (1,0) e T(0,1) = (0,0), tem-se que $A_T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Assim, $A_{S \circ T} = A_S A_T = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$.
 - (b) Processo 1: $T \circ S$ é a transformação linear definida por $T \circ S$: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $(T \circ S)(x,y) = T(S(x,y)) = T(2x+y,y) = (2x+y,0)$. Como $(T \circ S)(1,0) = (2,0)$ e $(T \circ S)(0,1) = (1,0)$, tem-se que $A_{T \circ S} = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$.
 - Processo 2: Como S(1,0) = (2,0) e S(0,1) = (1,1), tem-se que $A_S = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Como T(1,0) = (1,0) e T(0,1) = (0,0), tem-se que $A_T = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Assim, $A_{T \circ S} = A_T A_S = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$.
- 13. Sem resolução.
- 14. $T \circ S$ é a transformação linear definida por $T \circ S : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $(T \circ S)(x, y) = T(S(x, y)) = T(2x+y, -y) = (2x+y, (2x+y)+(-y)) = (2x+y, 2x)$. Como $(T \circ S)(1, 0) = (2, 2)$ e $(T \circ S)(0, 1) = (1, 0)$, tem-se que $A_{T \circ S} = \begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$. Assim, a única proposição verdadeira é a D.
- 15. Sem resolução.
- 16. (b) Imagem de T_2

Seja (e_1, e_2, e_3) a base canónica de \mathbb{R}^3 , o domínio de \mathcal{T}_2 , ou seja, $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ e $e_3 = (0, 0, 1)$. Então,

$$\begin{aligned} \mathsf{Im}(T_2) &= \langle T_2(e_1), T_2(e_2), T_2(e_3) \rangle \\ &= \langle T_2(1, 0, 0), T_2(0, 1, 0), T_2(0, 0, 1) \rangle \\ &= \langle (1, 0, 0), (0, 1, 0), (0, 0, 0) \rangle \\ &= \langle (1, 0, 0), (0, 1, 0) \rangle. \end{aligned}$$

• Núcleo de T_2

Nuc(
$$T_2$$
) = { $(x_1, x_2, x_3) \in \mathbb{R}^3 : T_2(x_1, x_2, x_3) = 0_{\mathbb{R}^3}$ }
= { $(x_1, x_2, x_3) \in \mathbb{R}^3 : (x_1, x_2, 0) = (0, 0, 0)$ }
= $CS_{(S)}$,

em que (S) é o sistema o sistema Ax = b, $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ e $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Considerando o método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b: a matriz aumentada $A|b = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ já está na forma em escada.

Passo 2 Como car(A) = car(A|b) = 2 < n = 3 (n é o número de incógnitas), (S) é um sistema PI.

Passo 3 Sendo x_1 x_2 e x_3 as incógnitas do sistema (S), então, x_3 é uma incógnita livre e (S) é equivalente ao sistema

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

Assim, tem-se

Nuc(
$$T_2$$
) = {(0, 0, x_3) : $x_3 \in \mathbb{R}$ }
= { x_3 (0, 0, 1) : $x_3 \in \mathbb{R}$ }
= \langle (0, 0, 1) \rangle .

17. (c) Sejam o conjunto $S = \{(1,1,1), (0,1,-2), (0,0,1)\}$ e A a matriz cujas colunas são os vetores do conjunto S. Então, como $|A| = \begin{vmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -2 & 1 \end{vmatrix} = 1 \times (1 \times 1 - 0 \times (-2)) + 0 + 0 = 1 \times (1 \times 1 - 0 \times (-2)) + 0 + 0 = 1 \times (1 \times 1 - 0 \times (-2)) + 0 =$

$$(x_1, x_2, x_3) = \alpha_1(1, 1, 1) + \alpha_2(0, 1, -2) + \alpha_3(0, 0, 1).$$

Tem-se, então, que resolver o sistema (S) dado por

$$\begin{cases} \alpha_1 &= x_1 \\ \alpha_1 + \alpha_2 &= x_2 \\ \alpha_1 - 2\alpha_2 + \alpha_3 &= x_3, \end{cases}$$

ou seja, $A\xi=b$, com $A=\begin{bmatrix}1&0&0\\1&1&-2&1\\1&-2&1\end{bmatrix}$, $\xi=\begin{bmatrix}\alpha_1\\\alpha_2\\x_2\\x_3\end{bmatrix}$ e $b=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}$. Aplicando-se o Método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada Albs

$$\begin{bmatrix} 1 & 0 & 0 & | & x_1 \\ 1 & 1 & 0 & | & x_2 \\ 1 & -2 & 1 & | & x_3 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_2 \leftarrow \boldsymbol{\ell}_2 - \boldsymbol{\ell}_1} \begin{bmatrix} 1 & 0 & 0 & | & x_1 \\ 0 & 1 & 0 & | & x_2 - x_1 \\ 0 & -2 & 1 & | & x_3 - x_1 \end{bmatrix} \xrightarrow{\boldsymbol{\ell}_3 \leftarrow \boldsymbol{\ell}_3 + 2\boldsymbol{\ell}_2} \begin{bmatrix} 1 & 0 & 0 & | & x_1 \\ 0 & 1 & 0 & | & x_2 - x_1 \\ 0 & 0 & 1 & | & x_3 + 2x_2 - 3x_1 \end{bmatrix}.$$

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas) quaisquer que sejam x_1 , x_2 e x_3 , (S) é sempre um sistema PD (este resultado já se sabia pois S é uma base de \mathbb{R}^3).

Passo 3 (S) é equivalente ao sistema

$$\begin{cases} \alpha_1 &= x_1 \\ \alpha_2 &= x_2 - x_1 \\ \alpha_3 &= x_3 + 2x_2 - 3x_1, \end{cases}$$

pelo que

$$(x_1, x_2, x_3) = x_1(1, 1, 1) + (x_2 - x_1)(0, 1, -2) + (x_3 + 2x_2 - 3x_1)(0, 0, 1),$$

pelo que

$$T(x_1, x_2, x_3) = T(x_1(1, 1, 1) + (x_2 - x_1)(0, 1, -2) + (x_3 + 2x_2 - 3x_1)(0, 0, 1))$$

= $x_1T(1, 1, 1) + (x_2 - x_1)T(0, 1, -2) + (x_3 + 2x_2 - 3x_1)T(0, 0, 1),$

por T ser uma transformação linear. Assim, tem-se que

$$T(x_1, x_2, x_3) = x_1 \times 3 + (x_2 - x_1) \times 1 + (x_3 + 2x_2 - 3x_1) \times (-2)$$

= $3x_1 + (x_2 - x_1) - 2x_3 - 4x_2 + 6x_1$
= $8x_1 - 3x_2 - 26x_3$.

18. Sejam o conjunto $S = \{(0,0,1),(1,1,1),(0,1,1)\}$ e A a matriz cujas colunas são os vetores do conjunto S. Então, como $|A| = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0 - 1 \times (0 \times 1 - 1 \times 1) + 0 = 1 \neq 0$, conclui-se que S é um conjunto li. Como $\#S = \dim(\mathbb{R}^3) = 3$, S é uma base de \mathbb{R}^3 . Assim, qualquer elemento de \mathbb{R}^3 é uma combinação linear única dos elementos de S, vindo

$$(x_1, x_2, x_3) = \alpha_1(0, 0, 1) + \alpha_2(1, 1, 1) + \alpha_3(0, 1, 1).$$

Tem-se, então, que resolver o sistema (S) dado por

$$\begin{cases} \alpha_2 = x_1 \\ \alpha_2 + \alpha_3 = x_2 \\ \alpha_1 + \alpha_2 + \alpha_3 = x_3, \end{cases}$$

ou seja, $A\xi = b$, com $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, $\xi = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$ e $b = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Aplicando-se o Método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada Alb:

$$\begin{bmatrix} 0 & 1 & 0 & | & x_1 \\ 0 & 1 & 1 & | & x_2 \\ 1 & 1 & 1 & | & x_3 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 1 & 1 & | & x_3 \\ 0 & 1 & 1 & | & x_2 \\ 0 & 1 & 0 & | & x_1 \end{bmatrix} \longleftrightarrow \begin{bmatrix} 1 & 1 & 1 & | & x_3 \\ 0 & 1 & 1 & | & x_2 \\ 0 & 0 & 1 & | & x_1 \end{bmatrix} .$$

Passo 2 Como car(A) = car(A|b) = n = 3 (n é o número de incógnitas) quaisquer que sejam x_1 , x_2 e x_3 , (S) é sempre um sistema PD (este resultado já se sabia pois S é uma base de \mathbb{R}^3).

Passo 3 (S) é equivalente ao sistema

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = x_3 \\ \alpha_2 + \alpha_3 = x_2 \\ -\alpha_3 = x_1 - x_2. \end{cases}$$

Assim, tem-se (MeSTaF):

- $\bullet \ -\alpha_3 = x_1 x_2 \Leftrightarrow \alpha_3 = x_2 x_1;$
- $\alpha_2 + \alpha_3 = x_2 \Leftrightarrow \alpha_2 + (x_2 x_1) = x_2 \Leftrightarrow \alpha_2 = x_1$;
- $\alpha_1 + \alpha_2 + \alpha_3 = x_3 \Leftrightarrow \alpha_1 + (x_2 x_1) + (x_1) = x_3 \Leftrightarrow \alpha_1 = x_3 x_2$

Assim,

$$(x_1, x_2, x_3) = (x_3 - x_2)(0, 0, 1) + x_2(1, 1, 1) + (x_2 - x_1)(0, 1, 1),$$

pelo que

$$T(x_1, x_2, x_3) = T((x_3 - x_2)(0, 0, 1) + x_2(1, 1, 1) + (x_2 - x_1)(0, 1, 1))$$

= $(x_3 - x_2)T(0, 0, 1) + x_2T(1, 1, 1) + (x_2 - x_1)T(0, 1, 1),$

por T ser uma transformação linear. Como Nuc $(T) = \langle (1,1,1), (0,1,1) \rangle$, tem-se que T(1,1,1) = (0,0,0) e T(0,1,1) = (0,0,0), vindo

$$T(x_1, x_2, x_3) = (x_3 - x_2) \times (0, 0, 1) + x_2 \times (0, 0, 0) + (x_2 - x_1) \times (0, 0, 0)$$

= (0, 0, x₃ - x₂).

19. (a) • imagem de T_1

Seja (e_1, e_2) a base canónica de \mathbb{R}^2 , o domínio de \mathcal{T}_1 , ou seja, $e_1 = (1, 0)$ e $e_2 = (0, 1)$. Então,

$$\begin{split} \operatorname{Im}(T_1) &= \langle T_1(e_1), T_1(e_2) \rangle \\ &= \langle T_1(1,0), T_1(0,1) \rangle \\ &= \langle 1,1 \rangle \\ &= \langle 1 \rangle \\ &= \operatorname{IR}. \end{split}$$

• característica de T_1

$$c_{\mathcal{T}_1} = \dim(\operatorname{Im}(\mathcal{T}_1)) = \dim(\mathbb{R}) = 1.$$

• núcleo de T_1

$$\begin{aligned} \mathsf{Nuc}(\mathcal{T}_1) &= \{ (x_1, x_2) \in \mathbb{R}^2 : \mathcal{T}_1(x_1, x_2) = 0_{\mathbb{R}} \} \\ &= \{ (x_1, x_2) \in \mathbb{R}^2 : x_1 + x_2 = 0 \} \\ &= \{ (-x_2, x_2) : x_2 \in \mathbb{R} \} \\ &= \{ x_2(-1, 1) : x_3 \in \mathbb{R} \} \\ &= \langle (-1, 1) \rangle. \end{aligned}$$

• nulidade de T_1

$$\mathsf{n}_{\mathcal{T}_1} = \mathsf{dim}(\mathsf{Nuc}(\mathcal{T}_1)) = \mathsf{dim}(\langle (-1,1) \rangle) = 1.$$

• matriz de T_1

Como
$$T_1(1,0) = 1$$
 e $T_1(0,1) = 1$, tem-se que $A_{T_1} = [1 \ 1]$.

(d) • imagem de T_4

Seja (e_1, e_2, e_3, e_4) a base canónica de \mathbb{R}^4 , o domínio de \mathcal{T}_4 , ou seja, $e_1 = (1, 0, 0, 0), e_2 = (0, 1, 0, 0), e_3 = (0, 0, 1, 0)$ e $e_4 = (0, 0, 0, 1)$. Então,

$$Im(T_4) = \langle T_4(e_1), T_4(e_2), T_4(e_3), T_4(e_4) \rangle$$

$$= \langle T_4(1, 0, 0, 0), T_4(0, 1, 0, 0), T_4(0, 0, 1, 0), T_4(0, 0, 0, 1) \rangle$$

$$= \langle (1, 0, 1), (-1, 0, 0), (0, 1, 0), (0, -1, -3) \rangle.$$

Atendendo a

$$A_{T_4} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & -3 \end{bmatrix} \xrightarrow{\ell_3 \leftarrow \ell_3 - \ell_1} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -3 \end{bmatrix} \xrightarrow{\ell_2 \leftrightarrow \ell_3} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -1 \end{bmatrix},$$

 $\dim(\operatorname{Im}(T)) = \operatorname{car}(A_{T_4}) = 3$. Como a imagem de T é um subespaço de \mathbb{R}^3 e $\dim(\operatorname{Im}(T)) = \dim(\mathbb{R}^3) (=3)$, conclui-se que $\operatorname{Im}(T) = \mathbb{R}^3$.

- característica de T_4
 - $c_{T_4} = 3$.
- núcleo de T₄

Nuc(
$$T_4$$
) = { $(x_1, x_2, x_3, x_4) \in \mathbb{R}^3 : T_4(x_1, x_2, x_3, x_4) = 0_{\mathbb{R}^3}$ }
= { $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : (x - y, z - w, x - 3w) = (0, 0, 0)$ }
= $CS_{(S)}$,

em que (S) é o sistema o sistema Ax = b, $A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & -3 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ e $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$. Considerando o método de Gauss, tem-se:

- **Passo 1** Aplicação do ATEsc à matriz aumentada A|b: a matriz aumentada $A|b = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{bmatrix}$ já está na forma em escada.
- **Passo 2** Como car(A) = car(A|b) = 3 < n = 4 ($n \in o$ número de incógnitas), (S) é um sistema PI.
- **Passo 3** Sejam x_1, x_2, x_3, x_4 as incógnitas do sistema (S). Então, x_4 é uma incógnita livre e (S) é equivalente ao sistema

$$\begin{cases} x_1 - x_2 &= 0 \\ x_2 - 3x_4 = 0 \\ x_3 - x_4 = 0. \end{cases}$$

Assim, tem-se (MeSTaF):

- $x_3 x_4 = 0 \Leftrightarrow x_3 = x_4$;
- $x_2 3x_4 = 0 \Leftrightarrow x_2 = 3x_4$;
- $x_1 x_2 = 0 \Leftrightarrow x_1 = 3x_4$

pelo que

Nuc(
$$T_4$$
) = {(3 x_4 , 3 x_4 , x_4 , x_4) : $x_4 \in \mathbb{R}$ }
= { x_4 (3, 3, 1, 1) : $x_4 \in \mathbb{R}$ }
= \langle (3, 3, 1, 1) \rangle .

- nulidade de T_4 $n_{T_4} = \dim(\operatorname{Nuc}(T_4)) = \dim(\langle (3, 3, 1, 1) \rangle) = 1.$
- matriz de T_4

Como $T_4(1,0,0,0) = (1,0,1), T_4(0,1,0,0) = (-1,0,0), T_4(0,0,1,0) = (0,1,0), T_4(0,0,0,1) = (0,-1,-3), \text{ tem-se que } A_{T_4} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & 1 & -1 \\ 0 & 0 & -3 \end{bmatrix}.$

21. Como S é um conjunto ld, tem-se que

$$\exists \alpha_1, \ldots, \alpha_k \in \mathbb{R} \left[\alpha_1 u_1 + \cdots + \alpha_k u_k = 0_{\mathbb{R}^n} \land \neg (\alpha_1 = \cdots = \alpha_k = 0) \right],$$

ou seja, pelo menos um dos escalares $\alpha_1, \ldots, \alpha_k$ é diferente de 0. Seja α_i $(i \in \{1, \ldots, k\})$ o ou um desses escalares. Então,

$$T(\alpha_1 u_1 + \dots + \alpha_i u_i + \dots + \alpha_k u_k) = T(0_{\mathbb{R}^n}) \overset{T \text{ \'et l}}{\Leftrightarrow} \alpha_1 T(u_1) + \dots + \alpha_i T(u_i) + \dots + \alpha_k T(u_k) = T(0_{\mathbb{R}^n}) \overset{T \text{ \'et l}}{\Leftrightarrow} \alpha_1 T(u_1) + \dots + \alpha_i T(u_i) + \dots + \alpha_k T(u_k) = 0_{\mathbb{R}^n}.$$

Assim, como $\alpha_i \neq 0$, tem-se que $\{T(u_1), \ldots, T(u_k)\}$ também é um conjunto ld.

22.

$$\begin{aligned} \operatorname{Im}(T) &= \{ T(x,y,z) : (x,y,z) \in \mathbb{R}^3 \} \\ &= \{ (x-2y-2z,x-2z,-2x+4z) : (x,y,z) \in \mathbb{R}^3 \} \\ &= \{ (x,x,-2x) + (-2y,0,0) + (-2z,-2z,4z) : (x,y,z) \in \mathbb{R}^3 \} \\ &= \{ x(1,1,-2) + y(-2,0,0) + z(-2,-2,4) : (x,y,z) \in \mathbb{R}^3 \} \\ &= \langle (1,1,-2), (-2,0,0), (-2,-2,4) \rangle. \end{aligned}$$

Como (-2, -2, 4) = -2(1, 1, -2), então $Im(\mathcal{T}) = \langle (1, 1, -2), (-2, 0, 0) \rangle$. Assim, a única proposição verdadeira é a D.

- 23. Sem resolução.
- 24. Sem resolução.
- 25. Sem resolução.

26.

Nuc(
$$T$$
) = { $(x, y, z) \in \mathbb{R}^3 : T(x, y, z) = 0_{\mathbb{R}^2}$ }
= { $(x, y, z) \in \mathbb{R}^3 : (x + z, 0) = (0, 0)$ }
= $CS_{(S)}$,

em que (S) é o sistema de equações lineares homogéneo

$$\{x+z=0.$$

Tem-se, então, que resolver o sistema Aw = b, $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, $w = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ e $b = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Considerando o método de Gauss, tem-se:

Passo 1 Aplicação do ATEsc à matriz aumentada A|b: a matriz aumentada $A|b = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ já está na forma em escada.

Passo 2 Como car(A) = car(A|b) = 1 < n = 3 ($n \in O$ número de incógnitas), (S) é um sistema PI.

Passo 3 Sendo x, y, z as incógnitas do sistema (S), então, y e z são incógnitas livres e (S) é equivalente ao sistema

$$\{x+z=0.$$

Assim, tem-se (MeSTaF):

• $x + z = 0 \Leftrightarrow x = -z$.

pelo que

$$\begin{aligned} \mathsf{Nuc}(T) &= \mathsf{CS}_{(S)} \\ &= \{ (-z, y, z) : y, z \in \mathbb{R} \} \\ &= \{ (0, y, 0) + (-z, 0, z) : y, z \in \mathbb{R} \} \\ &= \{ y(0, 1, 0) + z(-1, 0, 1) : y, z \in \mathbb{R} \} \\ &= \langle (-1, 0, 1), (0, 1, 0) \rangle. \end{aligned}$$

Assim, a única proposição verdadeira é a A.

- 27. Sem resolução.
- 28. Como $A_T \in \mathcal{M}_{2\times 3}(\mathbb{R})$, então $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$. Logo $T(x, y, z) = A_T w$ com $w = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, pelo que $T(x, y, z) = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 0 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + 2y + 2z \\ 2x + 4z \end{bmatrix}$. Assim, a única proposição verdadeira é a A.
- 29. Sem resolução.
- 30. Sem resolução.
- 31. Sendo T uma transformação linear, tem-se que

$$T(x,y) = T(x(1,0) + y(0,1)) = xT(1,0) + yT(0,1) = x(2,1) + y(0,1) = (2x, x + y)$$

Assim, a única proposição verdadeira é a A.

32. Como $(0,1) \in Nuc(T)$, então T(0,1) = (0,0,0). Sendo T é uma transformação linear, tem-se que

$$T(x, y) = T(x(1, 0) + y(0, 1)) = xT(1, 0) + yT(0, 1) = x(0, 1, 1) + y(0, 0, 0) = (0, x, x).$$

Assim, a única proposição verdadeira é a A.

33. Como $n_T + c_T = \dim(Nuc(T)) + \dim(Im(T)) = \dim(IR^4) = 4$, tem-se que a única proposição verdadeira é a B.

Resoluções dos exercícios do capítulo 6 — Valores e Vetores Próprios

- 1. Sem resolução.
- 2. Sem resolução.
- 3. Seja $A \lambda I_2 = \begin{bmatrix} -\lambda & 3 \\ 3 & -\lambda \end{bmatrix}$. Então, $\det(A \lambda I_2) = 0 \Leftrightarrow \lambda^2 9 = 0 \Leftrightarrow \lambda = \pm 3$. Assim, $\lambda(A) = \{-3, 3\}$, sendo que $\lambda_1 = -3$ e $\lambda_2 = 3$ são valores próprios simples. Logo, a única proposição verdadeira é a D.

4. Seja $A - \lambda I_3 = \begin{bmatrix} 3-\lambda & 0 & 1 \\ 0 & 5-\lambda & 0 \\ 1 & 0 & -\lambda \end{bmatrix}$. Aplicando o Teorema de Laplace ao longo da segunda linha, tem se:

$$\begin{split} \det(A-\lambda I_3) &= 0 \Leftrightarrow (-1)^{2+2} \times (5-\lambda) \times \left| \begin{smallmatrix} 3-\lambda & 1 \\ 1 & -\lambda \end{smallmatrix} \right| = 0 \Leftrightarrow (5-\lambda)((3-\lambda)(-\lambda)-1) = 0 \Leftrightarrow (5-\lambda)(\lambda^2-3\lambda-1) = 0 \Leftrightarrow \lambda = 5 \vee \lambda^2 - 3\lambda - 1 = 0 \\ \Leftrightarrow \lambda = 5 \vee \lambda = \frac{3 \pm \sqrt{9+4}}{2} \Leftrightarrow \lambda = 5 \vee \lambda = \frac{3 \pm \sqrt{13}}{2}. \end{split}$$

Assim, $\lambda(A) = \{\frac{3-\sqrt{13}}{2}, \frac{3+\sqrt{13}}{2}, 5\}$, pelo que a única proposição verdadeira é a D.

- 5. Como (3,1) é um vetor próprio de A, então existe um escalar λ tal que $\begin{bmatrix} 1 & 3 \\ a & b \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 3 \\ 1 \end{bmatrix} \Leftrightarrow \begin{cases} 6 = 3\lambda \\ 3a + b = \lambda \end{cases} \Rightarrow \lambda = 2 \wedge 3a + b = 2$. Assim, a única proposição verdadeira é a D.
- 6. Sem resolução.
- 7. Sem resolução.
- 8. Sem resolução.
- 9. Atendendo a que 0 é um valor próprio de A, então a matriz A não é invertível. Como se $\lambda \in \lambda(A)$, então $\lambda^2 \in \lambda(A^2)$, logo $\lambda(A^2) = \{0, 1\}$. Assim, a única proposição verdadeira é a D.
- 10. Atendendo que a matriz A é uma matriz triangular (superior), os valores próprios são os elementos que se encontram na diagonal principal. Ou seja, $\lambda(A) = \{1, 2, 3\}$. Logo, a única proposição verdadeira é a D.
- 11. Sem resolução.
- 12. Sem resolução.
- 13. Sem resolução.
- 14. Sem resolução.
- 15. Como

$$\Pi_{A^{\mathsf{T}}}(\lambda) \stackrel{\mathsf{def}}{=} \det(A^{\mathsf{T}} - \lambda I_n) = \det((A - \lambda I_n)^{\mathsf{T}}) = \det(A - \lambda I_n) \stackrel{\mathsf{def}}{=} \Pi_A(\lambda),$$

tem-se que os polinómios característicos de A e A^T são iguais, pelo que $\lambda(A) = \lambda(A^T)$.

16. (a) Seja $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in \mathcal{M}_{2 \times 2}(\mathbb{R})$. Então,

$$\Pi_{A}(\lambda) = \det(A - \lambda I_{2})
= \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix}
= (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21}
= a_{11}a_{22} - a_{11}\lambda - a_{22}\lambda + \lambda^{2} - a_{12}a_{21}
= \lambda^{2} - (a_{11} + a_{22})\lambda + (a_{11}a_{22} - a_{12}a_{21})
= \lambda^{2} - \operatorname{tr}(A)\lambda + \det(A).$$

(b) Atendendo à alínea anterior, $\Pi_A(\lambda) = \lambda^2 - 8\lambda + 12$. Aplicando a fórmula resolvente, tem-se

$$\lambda^2 - 8\lambda + 12 = 0 \Leftrightarrow \lambda = \frac{8 \pm \sqrt{64 - 48}}{2} = \frac{8 \pm 4}{2} \Leftrightarrow \lambda = 6 \lor \lambda = 2,$$

pelo que $\lambda(A) = \{2, 6\}.$

- 17. Sem resolução.
- 18. (i) Como (1,1) é um vetor próprio de A, então existe um escalar λ_1 tal que $\begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Leftrightarrow \begin{cases} 2 = \lambda_1 \\ a + b = \lambda_1 \end{cases} \Rightarrow a + b = 2.$
 - (ii) Como (1,0) é um vetor próprio de A, então existe um escalar λ_2 tal que $\begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \Leftrightarrow \begin{cases} 1 = \lambda_2 \\ a = 0. \end{cases}$
 - (iii) Assim, de (i) e (ii) tem-se que a = 0 e b = 2.
- 19. Seja $\lambda \in \lambda(A)$. Então, $\lambda^2 \in \lambda(A^2)$. Como $A^2 = A$, tem-se que $\lambda^2 = \lambda \Leftrightarrow \lambda^2 \lambda = 0 \Leftrightarrow \lambda(\lambda 1) = 0 \Leftrightarrow \lambda = 0 \lor \lambda = 1$.
- 20. (i) Seja $\lambda \in \lambda(A)$. Então, $\det(A \lambda I_n) = 0$.
 - (ii) Seja $\mu \in \lambda(B)$. Então, $\det(B \mu I_n) = 0 \Leftrightarrow \det(A \alpha I_n \mu I_n) = 0 \Leftrightarrow \det(A (\alpha + \mu) I_n) = 0$.
 - (iii) Assim, de (i) e (ii) conclui-se que $\alpha + \mu = \lambda$, ou seja, que $\mu = \lambda \alpha$.
- 21. Sem resolução.

Resoluções dos exercícios do capítulo 7 — Geometria Analítica

- 1. (a) $x \times y = \begin{vmatrix} e_1 & e_2 & e_3 \\ 0 & -1 & 1 \\ 2 & 0 & 3 \end{vmatrix} = -3e_1 + 2e_2 + 2e_3 = (-3, 2, 2).$ $y \times x = \begin{vmatrix} e_1 & e_2 & e_3 \\ 2 & 0 & 3 \\ 0 & -1 & 1 \end{vmatrix} = -\begin{vmatrix} e_1 & e_2 & e_3 \\ 0 & -1 & 1 \\ 2 & 0 & 3 \end{vmatrix} = -(-3e_1 + 2e_2 + 2e_3) = (3, -2, -2).$
 - (b) Como $(x \times y) \cdot x = (-3, 2, 2) \cdot (0, -1, 1) = -2 + 2 = 0, (x \times y) \perp x.$ Como $(x \times y) \cdot y = (-3, 2, 2) \cdot (2, 0, 3) = -6 + 6 = 0, (x \times y) \perp y$
- 2. (a) Como $v \in \alpha$, então x + 2y + 3z = d; dado que α passa na origem, então d = 0; logo x + 2y + 3z = 0.
 - (b) Sabe-se que $u \times v \perp \alpha$. Como $u \times v = \begin{vmatrix} e_1 & e_2 & e_3 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix} = e_2 e_3 = (0, 1, -1)$, então y z = d. Como $(0, 0, 0) \in \alpha$, então obtém-se y z = 0.
 - (c) Sejam $\overrightarrow{AB} = (-1, 1, 0)$ e $\overrightarrow{AC} = (-1, 0, 1)$. Sabe-se que $\overrightarrow{AB} \times \overrightarrow{AC} \perp \alpha$. Como $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} e_1 & e_2 & e_3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = e_1 + e_3 + e_2 = (1, 1, 1)$, então x + y + z = d. Como $A \in \alpha$, então x + y + z = 1.
- 3. i. Seja P=(x,y,z). Como $P\in r$ sse $\overrightarrow{AP}\parallel v$, ou seja, $P-A=\alpha v$, $\alpha\in \mathbb{R}$, então $(x,y,z)=A+\alpha v=(-1,0,2)+\alpha(1,2,3)$, $\alpha\in \mathbb{R}$.
 - ii. Como $P=A+\alpha v, \alpha\in {\rm IR},$ então $\left\{ \begin{array}{l} x=-1+\alpha \\ y=2\alpha \\ z=2+3\alpha \end{array} \right., \alpha\in {\rm IR}.$

- iii. A partir das equações paramétricas obtém-se $\begin{cases} x+1=\alpha\\ \frac{y}{2}=\alpha\\ \frac{z-2}{2}=\alpha \end{cases}, \alpha \in \mathbb{R}, \text{ e eliminando o parâmetro } \alpha, \text{ vem: } x+1=\frac{y}{2}=\frac{z-2}{3}.$
- 4. (a) i. Seja P=(x,y,z). Como $P\in r$ sse $\overrightarrow{AP}\parallel v$, ou seja, $P-A=\alpha v$, $\alpha\in \mathbb{R}$, então $(x,y,z)=A+\alpha v=(1,2,3)+\alpha(-2,1,-1)$, $\alpha\in \mathbb{R}$.
 - ii. Como $P=A+\alpha v, \alpha\in \mathbb{R}$, então $\begin{cases} x=1-2\alpha\\ y=2+\alpha\\ z=3-\alpha \end{cases}, \alpha\in \mathbb{R}.$
 - $(z = 3 \alpha)$ iii. A partir das equações paramétricas obtém-se $\begin{cases} \frac{x-1}{-2} = \alpha \\ y-2 = \alpha \\ -(z-3) = \alpha \end{cases}, \alpha \in \mathbb{R}, \text{ e eliminando o parâmetro } \alpha, \text{ vem: } \frac{x-1}{-2} = y-2 = -z+3.$
 - (b) i. Seja P=(x,y,z). Como $P\in r$ sse $\overrightarrow{AP}\parallel\overrightarrow{AB}$, ou seja, $P-A=\alpha(B-A)$, $\alpha\in\mathbb{R}$, então $(x,y,z)=A+\alpha\overrightarrow{AB}=(1,2,3)+\alpha(2,-1,2)$, $\alpha\in\mathbb{R}$.
 - ii. Como $P=A+\alpha\overrightarrow{AB}, \alpha\in\mathbb{R}$, então $\left\{ \begin{array}{l} x=1+2\alpha\\ y=2-\alpha\\ z=3+2\alpha \end{array} \right., \alpha\in\mathbb{R}.$
 - iii. A partir das equações paramétricas obtém-se $\begin{cases} \frac{x-1}{2} = \alpha \\ \frac{y-2}{-1} = \alpha \\ \frac{z-3}{2} = \alpha \end{cases}, \alpha \in \mathbb{R}, \text{ e eliminando o parâmetro } \alpha, \text{ vem: } \frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2}.$
 - (c) i. Seja P = (x, y, z). Como $P \in r$ sse $\overrightarrow{AP} \parallel \overrightarrow{AB}$, ou seja, $P A = \alpha(B A)$, $\alpha \in \mathbb{R}$, então $(x, y, z) = A + \alpha \overrightarrow{AB} = (1, 2, 3) + \alpha(2, -1, 0)$, $\alpha \in \mathbb{R}$. ii. Como $P = A + \alpha \overrightarrow{AB}$, $\alpha \in \mathbb{R}$, então $\begin{cases} x = 1 + 2\alpha \\ y = 2 \alpha \\ z = 3 \end{cases}$, $\alpha \in \mathbb{R}$.
 - iii. A partir das equações paramétricas obtém-se $\begin{cases} \frac{x-1}{2} = \alpha \\ \frac{y-2}{-1} = \alpha \\ z = 3 \end{cases}, \alpha \in \mathbb{R}. \text{ e eliminando o parâmetro } \alpha, \text{ vem: } \frac{x-1}{2} = \frac{y-2}{-1}, z = 3.$ (d) i. Seja P = (x, y, z). Como $P \in r$ sse $\overrightarrow{AP} \parallel \overrightarrow{AB}$, ou seja, $P A = \alpha(B A)$, $\alpha \in \mathbb{R}$, então $(x, y, z) = A + \alpha \overrightarrow{AB} = (1, 2, 3) + \alpha(2, 0, 0), \alpha \in \mathbb{R}$.

 ii. Como $P = A + \alpha \overrightarrow{AB}, \alpha \in \mathbb{R}$, então $\begin{cases} x = 1 + 2\alpha \\ y = 2 \\ z = 3 \end{cases}, \alpha \in \mathbb{R}.$
 - - iii. A partir das equações paramétricas obtém-se $\begin{cases} \frac{x-1}{2} = \alpha \\ y=2 \\ z=3 \end{cases}$, $\alpha \in \mathbb{R}$, assim, as equações cartesianas são dadas por: y=2, z=3.
- 5. Considere o plano α e seja $P = (x, y, z) \in \alpha$.
 - (a) Como $A \in \alpha$ e $u \perp \alpha$, então $P \in \alpha \Leftrightarrow (P-A) \cdot u = 0$. Assim, tem-se $(P-A) \cdot u = 0 \Leftrightarrow (x-1,y,z-1) \cdot (1,2,3) = 0 \Leftrightarrow x+2y+3z=4$.
 - (b) Como $A \in \alpha$ e $n = u \times v \perp \alpha$, então $P \in \alpha \Leftrightarrow (P A) \cdot n = 0$. Assim, $n = u \times v = \begin{vmatrix} e_1 & e_2 & e_3 \\ 1 & 2 & 3 \\ 3 & 2 & 3 \end{vmatrix} = 6e_1 + 9e_2 + 2e_3 6e_3 6e_1 3e_2 = (0, 6, -4)$ e $(P - A) \cdot n = 0 \Leftrightarrow (x - 1, v, z - 1) \cdot (0, 6, -4) = 0 \Leftrightarrow 6v - 4z = -4$

- (c) Considere $\overrightarrow{AB} = B A = (2, -1, 0)$, então $n = \overrightarrow{AB} \times v = \begin{vmatrix} e_1 & e_2 & e_3 \\ 2 & -1 & 0 \\ 2 & -1 & 3 \end{vmatrix} = -3e_1 2e_3 + 2e_3 6e_2 = (-3, -6, 0)$ e $n \perp \alpha$. Então $(P A) \cdot n = 0 \Leftrightarrow (x 1, y 2, z 3) \cdot (-3, -6, 0) = 0 \Leftrightarrow x + 2y = 5$.
- (d) Considere $\overrightarrow{AB} = B A = (-1, 0, -1)$ e $\overrightarrow{AC} = C A = (-1, -1, 0)$. Então $n = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} e_1 & e_2 & e_3 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{vmatrix} = e_2 + e_3 e_1 = (-1, 1, 1)$ e $n \perp \alpha$, assim, $(P A) \cdot n = 0 \Leftrightarrow (x 1, y 1, z 1) \cdot (-1, 1, 1) = 0 \Leftrightarrow x y z = -1$.
- 6. (a) Seja P = (x, y, z). Como $P \in r$ sse $\overrightarrow{AP} \parallel \overrightarrow{AB}$, onde $\overrightarrow{AB} = (0, -2, -2)$, ou seja, $P A = \alpha \overrightarrow{AB}$, $\alpha \in \mathbb{R}$, então $(x, y, z) = A + \alpha \overrightarrow{AB} = (1, 2, 3) + \alpha(0, -2, -2)$, $\alpha \in \mathbb{R}$. As equações cartesianas correspondentes são obtidas a partir de $\begin{cases} x = 1 \\ \frac{y-2}{-2} = \alpha \\ \frac{z-3}{-2} = \alpha \end{cases}$, $\alpha \in \mathbb{R}$, de onde se conclui, após eliminar α , que: x = 1, y z = -1.
 - (b) Seja P = (x, y, z). Como $C \in s$ e $\overrightarrow{AB} \parallel s$, então $P \in s \Leftrightarrow (P C) = \alpha \overrightarrow{AB}$, $\alpha \in \mathbb{R}$, de onde se obtém $P = C + \alpha \overrightarrow{AB} \Leftrightarrow (x, y, z) = (0, 2, 0) + \alpha(0, -2, -2)$. As equações cartesianas correspondentes são obtidas de $\begin{cases} x = 0 \\ \frac{y-2}{-2} = \alpha \\ \frac{z}{-2} = \alpha \end{cases}$, $\alpha \in \mathbb{R}$, de onde se conclui, após eliminar α , que: x = 0, y z = 2.
 - (c) Como $s \subset \alpha$ e $r \subset \alpha$, então $\overrightarrow{AB} \parallel \alpha$ e $\overrightarrow{AC} \parallel \alpha$. Logo $n = \overrightarrow{AB} \times \overrightarrow{AC} \perp \alpha$, sendo $n = \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} e_1 & e_2 & e_3 \\ 0 & -2 & -2 \\ -1 & 0 & -3 \end{vmatrix} = 6e_1 + 2e_2 2e_3 = (6, 2, -2)$. Seja $P = (x, y, z) \in \alpha$, então $(P A) \cdot n = 0 \Leftrightarrow (x 1, y 2, z 3) \cdot (6, 2, -2) = 0 \Leftrightarrow 3x + y z = 2$.
 - (d) Como $r \subset \beta$ e $D \in \beta$, então $\overrightarrow{AB} \parallel \alpha$ e $\overrightarrow{AD} \parallel \alpha$. Logo $n = \overrightarrow{AB} \times \overrightarrow{AD} \perp \alpha$, sendo $n = \overrightarrow{AB} \times \overrightarrow{AD} = \begin{vmatrix} e_1 & e_2 & e_3 \\ 0 & -2 & -2 \\ 0 & 0 & -2 \end{vmatrix} = 4e_1 = (4,0,0)$. Seja $P = (x,y,z) \in \alpha$, então $(P A) \cdot n = 0 \Leftrightarrow (x 1, y 2, z 3) \cdot (4,0,0) = 0 \Leftrightarrow x = 1$.
 - (e) Como $r \subset \alpha$ (ver alínea c)), então todos os pontos da reta r são pontos de interseção com o plano α , ou seja $r \cap \alpha = r$.
- 7. A reta r, perpendicular a α que passa em P, é dada por r: $(x,y,z)=(0,1,-2)+\lambda(1,1,1),\ \lambda\in\mathbb{R}$. O ponto de interseção $Q=\pi\cap r$ é obtido substituindo primeiro $(x,y,z)=(\lambda,1+\lambda,-2+\lambda)$ na equação cartesiana de α : $\lambda+1+\lambda-2+\lambda=1\Leftrightarrow 3\lambda=2\Leftrightarrow \lambda=\frac{2}{3}$; e o valor $\lambda=\frac{2}{3}$ na equação de r: $Q=(0,1,-2)+\frac{2}{3}\times(1,1,1)=\left(\frac{2}{3},\frac{5}{3},-\frac{4}{3}\right)$. Então, $d(P,\pi)=d(P,Q)=||\overrightarrow{PQ}||=||Q-P||=||\frac{2}{3}(1,1,1)||=\frac{2\sqrt{3}}{3}$.
- 8. Sendo $(1, 1, 1) \perp \alpha$ e $(2, -1, 1) \perp \beta$, tem-se:

$$\angle(\alpha,\beta) = \arccos\left(\frac{|(1,1,1)\cdot(2,-1,1)|}{\|(1,1,1)\|\|(2,-1,1)\|}\right) = \arccos\left(\frac{|2-1+1|}{\sqrt{1+1+1}\sqrt{4+1+1}}\right) = \arccos\left(\frac{2}{\sqrt{3}\sqrt{6}}\right) = \arccos\left(\frac{\sqrt{2}}{3}\right).$$

9. (a) O vetor $\overrightarrow{AB} = B - A = (0, -2, -2)$ é um vetor diretor da reta r. Para determinar um vetor diretor da reta s, tendo em conta que r é dada por um sistema de duas equações lineares, determina-se o seu conjunto solução:

$$\begin{bmatrix} 1 & 1 & -1 & | & 4 \\ 1 & 2 & -3 & | & 4 \end{bmatrix} \xleftarrow[\ell_2 \leftarrow \ell_2 - \ell_1] \begin{bmatrix} 1 & 1 & -1 & | & 4 \\ 0 & 1 & -2 & | & 0 \end{bmatrix}$$

Assi, z é a incógnita livre, vindo: $y_-2z = 0 \Leftrightarrow y = 2z$ e $x + y - z = 4 \Leftrightarrow x = 4 - z$, pelo que $CS = \{(4 - z, 2z, z) : z \in \mathbb{R}\}$. Assim, conclui-se que a equação vetorial de s é $(x, y, z) = (4, 0, 0) + \lambda(-1, 2, 1)$, $\lambda \in \mathbb{R}$, e (-1, 2, 1) é um vetor diretor de s. Então, o ângulo entre r e s é dado por

$$\angle(r,s) = \arccos\left(\frac{|(0,-2,-2)\cdot((-1,2,1))|}{\|(0,-2,-2)\|\|((-1,2,1))\|}\right) = \arccos\left(\frac{|-4-2|}{\sqrt{4+4}\sqrt{1+4+1}}\right) = \arccos\left(\frac{6}{\sqrt{8}\sqrt{6}}\right) = \arccos\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}.$$

(b) Como $\overrightarrow{AB} = B - A = (0, -2, -2)$ é um vetor diretor de r e $(1, 2, 0) \perp \alpha$, então

$$\angle(r,\alpha) = \arcsin\left(\frac{|(0,-2,-2)\cdot(1,2,0)|}{\|(0,-2,-2)\|\|(1,2,0)\|}\right) = \arcsin\left(\frac{|-4|}{\sqrt{4+4}\sqrt{1+4}}\right) = \arcsin\left(\frac{\sqrt{10}}{5}\right).$$

(c) Sendo $(1,2,0) \perp \alpha$ e $(1,1,-1) \perp \beta$, então

$$\angle(\alpha,\beta) = \arccos\left(\frac{|(1,2,0)\cdot(1,1,-1)|}{\|(1,2,0)\|\|(1,1,-1)\|}\right) = \arccos\left(\frac{|1+2|}{\sqrt{1+4}\sqrt{1+1+1}}\right) = \arccos\left(\frac{3}{\sqrt{5}\sqrt{3}}\right) = \arccos\left(\frac{\sqrt{15}}{5}\right).$$

- (d) Como $A \in t$ e $t \perp \alpha$, então n = (1, 2, 0) é um vetor diretor de t e a equação vetorial de t é dada por: $(x, y, z) = (1, 2, 3) + \lambda(1, 2, 0), \lambda \in \mathbb{R}$. Das equações paramétricas $\begin{cases} x = 1 + \lambda \\ y = 2 + 2\lambda \\ z = 3 \end{cases}, \lambda \in \mathbb{R}, \text{ obtém-se} \begin{cases} \frac{x-1}{2} = \lambda \\ \frac{y-2}{2} = \lambda \\ z = 3 \end{cases}, \lambda \in \mathbb{R}, \text{ e eliminando o parâmetro } \lambda, \text{ vem: } 2x y = 0, z = 3.$
- (e) Seja h a reta perpendicular a α que passa em A, então a equação vetorial de h é: $(x,y,z)=(1,2,3)+\lambda(1,2,0),\ \lambda\in\mathbb{R}$. Seja $Q=\alpha\cap h$. Substituindo $(x,y,z)=(1+\lambda,2+2\lambda,3)$ na equação cartesiana de α , obtém-se $1+\lambda+2(2+2\lambda)=3\Leftrightarrow 5\lambda=-2\Leftrightarrow \lambda=-\frac{2}{5}$, logo, $Q=(1,2,3)-\frac{2}{5}\times(1,2,0)$. Então, $d(A,\alpha)=d(A,Q)=|AQ|=|AQ|=-\frac{2}{5}\times(1,2,0)=|AQ|=-\frac{2}{$
- (f) Seja π o plano perpendicular a s que passa em B. Como (-1,2,1) é um vetor diretor de s (ver alínea a)), então o plano π é dado pela equação -x+2y+z=d. Como $B\in\pi$, então d=-1+0+1=0, logo $\pi: -x+2y+z=0$. Seja $Q=\pi\cap s$. Substituindo $(x,y,z)=(4-\lambda,2\lambda,\lambda)$ obtido a partir da equação vetorial de s da alínea a) na equação cartesiana de π , obtém-se $-4+\lambda+4\lambda+\lambda=0\Leftrightarrow 6\lambda=4\Leftrightarrow \lambda=\frac{2}{3}$. Então, $Q=(4,0,0)+\frac{2}{3}\times(-1,2,1)=\frac{1}{3}(10,4,2)$ e $d(B,s)=d(B,Q)=||\overrightarrow{BQ}||=\|(\frac{7}{3},\frac{4}{3},-\frac{1}{3})\|=\frac{\sqrt{66}}{3}$.
- (g) Seja π o plano tal que $r \subset \pi$ e $\alpha \perp \pi$. Como $(1,2,0) \perp \alpha$ e (0,-2,-2) é um vetor diretor da reta r (ver alínea a)), então $n=(1,2,0)\times(0,-2,-2) \perp \pi$. Calculando o produto vetorial, obtém-se $n=(1,2,0)\times(0,-2,-2) = \begin{vmatrix} e_1 & e_2 & e_3 \\ 1 & 2 & 0 \\ 0 & -2 & -2 \end{vmatrix} = -4e_1 2e_3 + 2e_2 = (-4,2,-2)$. Assim, o plano π é dado pela equação -4x + 2y 2z = d e como $(1,2,3) \in \pi$, porque $A \in r \Rightarrow A \in \pi$, então d=-4+4-6=-6, logo $\pi: -4x+2y-2z=-6 \Leftrightarrow 2x-y+z=3$.
- 10. Sem resolução.