tion, with 1+ layer with sufficient width. $\hat{w} = \operatorname{argmax}_{||w||_2 = 1} w^{\top} \Sigma w$ **Population Risk** $R(f) = \mathbb{E}_{x,y \sim p}[\ell(y, f(x))]$ **Linear Classifiers** Forward Propagation It holds that $\mathbb{E}_D[\hat{R}_D(\hat{f})] \leq R(\hat{f})$. We call $R(\hat{f})$ Where $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$ is the empirical covari $f(x) = w^{\top}x$, the decision boundary f(x) = 0. Input: $v^{(0)} = [x; 1]$ Output: $f = W^{(L)}v^{(L-1)}$ the generalization error. ance. Closed form solution given by the princi-If data is lin. sep., grad. desc. converges to Hidden: $z^{(l)} = W^{(l)}v^{(l-1)}, v^{(l)} = [\boldsymbol{\varphi}(z^{(l)}); 1]$ Bias Variance Tradeoff: pal eigenvector of Σ , i.e. $w = v_1$ for $\lambda_1 \ge \cdots \ge$ **Maximum-Margin Solution:** Pred. error = $\frac{\text{Bias}^2}{\text{Pred}}$ + $\frac{\text{Variance}}{\text{Variance}}$ + $\frac{\text{Noise}}{\text{Variance}}$ Backpropagation $\lambda_d \geq 0$: $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^{\top}$ $w_{\text{MM}} = \operatorname{argmax} \operatorname{margin}(w) \text{ with } ||w||_2 = 1$ $\mathbb{E}_D[R(\hat{f})] = \mathbb{E}_x[f^*(x) - \mathbb{E}_D[\hat{f}_D(x)]]^2$ Non-convex optimization problem: For k > 1 we have to change the normalization Where margin(w) = min_i $y_i w^{\top} x_i$. + $\mathbb{E}_x[\mathbb{E}_D[(\hat{f}_D(x) - \mathbb{E}_D[\hat{f}_D(x)])^2]] + \sigma$ $\left(\nabla_{W^{(L)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial W^{(L)}}$ to $W^{\top}W = I$ then we just take the first k prin-**Support Vector Machines Bias**: how close \hat{f} can get to f^* cipal eigenvectors so that $W = [v_1, \dots, v_k]$. **Hard SVM** $\left(\nabla_{W^{(L-1)}}\ell\right)^T = \frac{\partial \ell}{\partial W^{(L-1)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial W^{(L-1)}}$ **Variance**: how much \hat{f} changes with D $\hat{w} = \min_{w} ||w||_2$ s.t. $\forall i \ y_i w^{\top} x_i \ge 1$ PCA through SVD Regression **Soft SVM** allow "slack" in the constraints $\left(\nabla_{W^{(L-2)}}\ell\right)^{T} = \frac{\partial \ell}{\partial W^{(L-2)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-2)}} \frac{\partial z^{(L-2)}}{\partial W^{(L-2)}}$ • The first k col of V where $X = USV^{\top}$. • linear dimension reduction method **Squared loss** (convex) $\hat{w} = \min \frac{1}{2} ||w||_2^2 + \lambda \sum \max(0, 1 - y_i w^{\top} x_i)$ • first principal component eigenvector $\frac{1}{n}\sum (y_i - f(x_i))^2 = \frac{1}{n}||y - Xw||_2^2$ Only compute the gradient. Rand. init. of data covariance matrix with largest $\nabla_w L(w) = 2X^{\top}(Xw - y)$ Choose +1 as the more important class. weights by distr. assumption for φ . (2/ n_{in}) eigenvalue Solution: $\hat{w} = (X^{\top}X)^{-1}X^{\top}y$ for ReLu and $1/n_{in}$ or $1/(n_{in}+n_{out})$ for Tanh) • covariance matrix is symmetric \rightarrow all $error_1/FPR : \frac{rr}{TN + FP}$ True Class Overfitting Regularization principal components are mutually or $error_2/FNR : \frac{1}{TP + FN}$ Regularization; Early Stopping; Dropout: **Lasso Regression** (sparse) thogonal ignore hidden units with prob. p, after train- $\operatorname{argmin}||y - \Phi w||_2^2 + \lambda ||w||_1$ **Kernel PCA** Precision ing use all units and scale weights by p; $\Sigma = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top} = X^{\top} X \Rightarrow \text{ kernel trick:}$ TPR / Recall : TPF AUROC: Plot TPR vs. FPR and compare dif-**Batch Normalization**: normalize the input Ridge Regression $\hat{\alpha} = \operatorname{argmax}_{\alpha} \frac{\alpha^{\top} K^{\top} K \alpha}{\alpha^{\top} K \alpha}$ data (mean 0, variance 1) in each layer $\operatorname{argmin} ||y - \Phi w||_2^2 + \lambda ||w||_2^2$ ferent ROC's with area under the curve. **F1-Score**: $\frac{2TP}{2TP + FP + FN}$, Accuracy : $\frac{TP + TN}{P + N}$ Closed form solution: **CNN** $\varphi(W * v^{(l)})$ $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i \quad K = \sum_{i=1}^n \lambda_i v_i v_i^\top, \lambda_1 \ge \dots \ge 0$ For each channel there is a separate filter. $\nabla_w L(w) = 2X^{\top}(Xw - y) + 2\lambda w$ Goal: large recall and small FPR. Convolution Solution: $\hat{w} = (X^{\top}X + \lambda I)^{-1}X^{\top}y$ A point *x* is projected as: $z_i = \sum_{i=1}^n \alpha_i^{(i)} k(x_i, x)$ C = channel F = filterSize inputSize = Ilarge $\lambda \Rightarrow$ larger bias but smaller variance Parameterize: $w = \Phi^{\top} \alpha$, $K = \Phi \Phi^{\top}$ padding = P stride = S**Autoencoders** Cross-Validation A kernel is **valid** if *K* is sym.: k(x,z) = k(z,x)We want to minimize $\frac{1}{n}\sum_{i=1}^{n}||x_i-\hat{x}_i||_2^2$. Output size $1 = \frac{I + 2P - K}{S} + 1$ • For all folds i = 1, ..., k: and psd: $z^{\top}Kz > 0$ $\hat{x} = f_{dec}(f_{enc}(x, \theta_{enc}); \theta_{dec})$ - Train \hat{f}_i on $D' - D'_i$ Lin.activation func. & square loss => PCA **lin.**: $k(x,z) = x^{T}z$, **poly.**: $k(x,z) = (x^{T}z + 1)^{m}$ Output dimension = $l \times l \times m$ - Val. error $R_i = \frac{1}{|D|} \sum \ell(\hat{f}_i(x), y)$ Statistical Perspective **rbf**: $k(x,z) = \exp(-\frac{||x-z||_{\alpha}}{\tau})$ Inputs = W * H * D * C * NAssume that data is generated iid. by some • Compute CV error $\frac{1}{k} \sum_{i=1}^{k} R_i$ $\alpha = 1 \Rightarrow \text{laplacian kernel}$ Trainable parameters = F * F * C * # filtersp(x,y). We want to find $f:X\mapsto Y$ that min-• Pick model with lowest CV error $\alpha = 2 \Rightarrow$ gaussian kernel Unsupervised Learning imizes the **population risk**. **Gradient Descent** Kernel composition rules k-Means Clustering Converges only for convex case. Opt. Predictor for the Squared Loss $k = k_1 + k_2$, $k = k_1 \cdot k_2$ $\forall c > 0$. $k = c \cdot k_1$, Optimization Goal (non-convex): $w^{t+1} = w^t - \eta_t \cdot \nabla \ell(w^t)$ f minimizing the population risk: $\forall f \text{ convex. } k = f(k_1), \text{ holds for polynoms with}$ $\hat{R}(\mu) = \sum_{i=1}^{n} \min_{j \in \{1, \dots, k\}} ||x_i - \mu_j||_2^2$ $f^*(x) = \mathbb{E}[y \mid X = x] = \int y \cdot p(y \mid x) dy$ For linear regression: pos. coefficients or exp function. Lloyd's heuristics: Init.cluster centers $\mu^{(0)}$: Estimate $\hat{p}(y \mid x)$ with MLE: $||w^t - w^*||_2 \le ||I - \eta X^\top X||_{op}^t ||w^0 - w^*||_2$ $\forall f. \ k(x,y) = f(x)k_1(x,y)f(y)$ Assign points to closest center $\theta^* = \operatorname{argmax} \, \hat{p}(y_1, ..., y_n \mid x_1, ..., x_n, \theta)$ Mercers Theorem: Valid kernels can be de $ho = ||I - \eta X^{ op} X||_{op}^t$ conv. speed for const. η . • Update μ_i as mean of assigned points composed into a lin. comb. of inner products. Opt. fixed $\eta = \frac{2}{\lambda_{\min} + \lambda_{\max}}$ and max. $\eta \leq \frac{2}{\lambda_{\max}}$. Converges in exponential time. $= \operatorname{argmin} - \sum \log p(y_i \mid x, \theta)$ **Kern. Ridge Reg.** $\frac{1}{n}||y-K\alpha||_2^2 + \lambda \alpha^{\top} K\alpha$ Initialize with **k-Means++**: **Momentum**: $w^{t+1} = w^t + \gamma \Delta w^{t-1} - \eta_t \nabla \ell(w^t)$ The MLE for linear $\stackrel{i=1}{\text{regression}}$ is unbiased and **KNN Classification** • Random data point $\mu_1 = x_i$ • Pick k and distance metric d Learning rate η_t guarantees convergence if has minimum variance among all unbiased es-• Add seq μ_2, \dots, μ_k rand., with prob: • For given x, find among $x_1, ..., x_n \in D$ the timators. However, it can overfit. $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$ given $\mu_{1:i}$ pick $\mu_{i+1} = x_i$ where p(i) =k closest to $x \to x_{i_1}, ..., x_{i_k}$ Ex. Conditional Linear Gaussian Classification $\frac{1}{7}\min_{l\in\{1,...,j\}}||x_i-\mu_l||_2^2$ • Output the majority vote of labels Assume Gaussian noise $y = f(x) + \varepsilon$ with $\varepsilon \sim$ **Zero-One loss** not convex or continuous **Neural Networks** Converges expectation $\mathcal{O}(\log k) * \text{opt.solution.}$ $\ell_{0-1}(\hat{f}(x), y) = \mathbb{I}_{y \neq \operatorname{sgn}\hat{f}(x)}$ $\mathcal{N}(0, \sigma^2)$ and $f(x) = w^{\top}x$: *w* are the weights and $\varphi : \mathbb{R} \to \mathbb{R}$ is a nonlinear Find *k* by negligible loss decrease or reg. $\hat{p}(y \mid x, \theta) = \mathcal{N}(y; w \mid x, \sigma^2)$ **Logistic loss** $\log(1 + e^{-y\hat{f}(x)})$ activation function: $\phi(x, w) = \phi(w^{\top}x)$ Principal Component Analysis The optimal \hat{w} can be found using MLE: $\nabla \ell(\hat{f}(x), y) = \frac{-y_i x_i}{1 + e^{y_i \hat{f}(x)}}$ Optimization goal: argmin $\sum_{i=1}^{n} ||x_i - z_i w||_2^2$ **ReLU:** max(0,z), **Tanh:** $\frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$ $\hat{w} = \operatorname{argmax} p(y|x, \theta) = \operatorname{argmin} \sum (y_i - w^{\top} x_i)^2$ $||w||_2 = 1,z$ Sigmoid: $\frac{1}{1+\exp(-z)}$ **Hinge loss** $\max(0, 1 - y\hat{f}(x))$

Universal Approximation Theorem: We can

approximate any arbitrary smooth target func-

The optimal solution is given by $z_i = w^{\top} x_i$.

Substituting gives us:

Softmax $p(1|x) = \frac{1}{1+e^{-\hat{f}(x)}}, p(-1|x) = \frac{1}{1+e^{\hat{f}(x)}}$

Multi-Class $\hat{p}_k = e^{\hat{f}_k(x)} / \sum_{i=1}^K e^{\hat{f}_j(x)}$

Model Error

Empirical Risk $\hat{R}_D(f) = \frac{1}{n} \sum \ell(y, f(x))$

Maximum a Posteriori Estimate

Introduce bias to reduce variance. The small weight assumption is a Gaussian prior $w_i \sim$ $\mathcal{N}(0,\beta^2)$. The posterior distribution of w is given by: $p(w | x, y) = \frac{p(w) \cdot p(y | x, w)}{p(y | x)}$

Now we want to find the MAP for w:
$$\hat{w} = \operatorname{argmax}_{w} p(w \mid \bar{x}, \bar{y})$$

$$\begin{split} \hat{w} &= \operatorname{argmax}_{w} \underbrace{p(w \mid \bar{x}, \bar{y})}_{p(w) \mid x,w)} \\ &= \operatorname{argmin}_{w} \underbrace{-\frac{\sigma^{2}}{\sigma^{2}} ||\mathbf{w}||_{2}^{2} + \sum_{i=1}^{p(x)} (y_{i} - w^{\top} x_{i})^{2}}_{\mathbf{z} = \mathbf{w}} \end{split}$$

=
$$\underset{w}{\operatorname{argmin}_{w}} \frac{\sigma^{2}}{\beta^{2}} ||w||_{2}^{2} + \sum_{i=1}^{p(v+v)} (y_{i} - w^{\top}x_{i})^{2}$$

Regularization can be understood as MAP in-

ference, with different priors (= regularizers) and likelihoods (= loss functions).

 $f^*(x) = \operatorname{argmax}_{\hat{v}} p(\hat{y} \mid x)$

Statistical Models for Classification f minimizing the population risk:

 $p(y \mid x, w) \sim \text{Ber}(y; \sigma(w^{\top}x))$

Where $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the sigmoid function. Using MLE we get:

$$\hat{w} = \underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \log(1 + \exp(-y_i w^{\top} x_i))$$

Which is the logistic loss. Instead of MLE we can estimate MAP, e.g. with a Gaussian prior: $\hat{w} = \operatorname{argmin} \lambda ||w||_2^2 + \sum_{i=1}^n \log(1 + e^{-y_i w^{\top} x_i})$

Bayesian Decision Theory
Given
$$p(y | x)$$
, a set of actions A and a cost

$C: Y \times A \mapsto \mathbb{R}$, pick the action with the maxi-

mum expected utility. $a^* = \operatorname{argmin}_{a \in A} \mathbb{E}_{y}[C(y, a) \mid x]$

$$a^* = \operatorname{argmin}_{a \in A} \mathbb{E}_y[C(y, a) \mid x]$$

Can be used for asymetric costs or abstention. Generative Modeling

Aim to estimate p(x,y) for complex situations using Bayes' rule: $p(x, y) = p(x|y) \cdot p(y)$

Naive Bayes Model

GM for classification tasks. Assuming for a class label, each feature is independent. This

$$(i)$$
.

helps estimating $p(x \mid y) = \prod_{i=1}^{d} p(x_i \mid y_i)$. Gaussian Naive Bayes Classifier

Naive Bayes Model with Gaussian's features. Estimate the parameters via MLE:

MLE for class prior: $p(y) = \hat{p}_y = \frac{\text{Count}(Y=y)}{...}$

MLE for feature distribution:

$$P(x_i|y) = \frac{Count(Y = y)}{Count(Y = y)}$$
in s are made by:
$$\frac{d}{dx_i}$$

Predictions are made by: $y = \operatorname{argmax} p(\hat{y} \mid x) = \operatorname{argmax} p(\hat{y}) \cdot \prod p(x_i \mid \hat{y})$

Equivalent to decision rule for bin. class.:

 $y = \operatorname{sgn}\left(\log \frac{p(Y=+1|x)}{p(Y=-1|x)}\right)$

Where f(x) is called the discriminant function. If the conditional independence assumption is violated, the classifier can be overconfident. Gaussian Bayes Classifier

No independence assumption, model the features with a multivariant Gaussian $\mathcal{N}(x; \mu_y, \Sigma_y)$:

$$\mu_y = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_j = y} x_j$$

$$\sum_y = \frac{1}{\text{Count}(Y=y)} \sum_{j \mid y_j = y} (x_j - \hat{\mu}_y) (x_j - \hat{\mu}_y)^\top$$
This is also called the **quadratic discriminant**

analysis (QDA). LDA: $\Sigma_{+} = \Sigma_{-}$, Fisher LDA: $p(y) = \frac{1}{2}$, Outlier detection: $p(x) \le \tau$. **Avoiding Overfitting**

stricting model class (fewer parameters, e.g.

GNB) or using priors (restrict param. values). Generative vs. Discriminative **Discriminative models:**

MLE is prone to overfitting. Avoid this by re-

p(y|x), can't detect outliers, more robust **Generative models:**

p(x,y), can be more powerful (dectect outliers, missing values) if assumptions are met, are typically less robust against outliers **Gaussian Mixture Model**

Assume that data is generated from a convexcombination of Gaussian distributions: $p(x|\theta) = p(x|\mu, \Sigma, w) = \sum_{j=1}^{k} w_j \mathcal{N}(x; \mu_j, \Sigma_j)$

We don't have labels and want to cluster this data. The problem is to estimate the param. for the Gaussian distributions. $\operatorname{argmin}_{\theta} - \sum_{i=1}^{n} \log \sum_{i=1}^{k} w_{i} \cdot \mathcal{N}(x_{i} \mid \mu_{i}, \Sigma_{i})$

This is a non-convex objective. Similar to training a GBC without labels. Start with guess for our parameters, predict the unknown labels and then impute the missing data. Now we can get a closed form update.

Hard-EM Algorithm

E-Step: predict the most likely class for each

$$z_i^{(t)} = \underset{z}{\operatorname{argmax}} p(z \mid x_i, \theta^{(t-1)})$$

$$= \underset{z}{\operatorname{argmax}} p(z \mid \theta^{(t-1)}) \cdot p(x_i \mid z, \theta^{(t-1)})$$

M-Step: compute MLE of $\theta^{(t)}$ as for GBC.

Problems: labels if the model is uncertain, tries to extract too much inf. Works poorly if clusters are overlapping. With uniform weights and spherical covariances is equivalent to k-Means with Lloyd's heuristics.

Soft-EM Algorithm

E-Step: calculate the cluster membership weights for each point $(w_i = \pi_i = p(Z = j))$:

 $\gamma_j^{(t)}(x_i) = p(Z = j \mid D) = \frac{w_j \cdot p(x_i; \theta_j^{(t-1)})}{\sum_k w_k \cdot p(x_i; \theta_k^{(t-1)})}$ **M-Step**: compute MLE with closed form:

 $w_j^{(t)} = \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i) \qquad \mu_j^{(t)} = \frac{\sum_{i=1}^n x_i \cdot \gamma_j^{(t)}(x_i)}{\sum_{i=1}^n \gamma_j^{(t)}(x_i)}$

$$\Sigma_{j}^{(t)} = \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i}) \sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})}{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})}$$
Init. the weights as uniformly distributed,

rand. or with k-Means++ and for variances use spherical init. or empirical covariance of the data. Select *k* using cross-validation. **Degeneracy of GMMs**

GMMs can overfit with limited data. Avoid this by add v^2I to variance, so it does not collapse (equiv. to a Wishart prior on the covariance matrix). Choose v by cross-validation.

Gaussian-Mixture Bayes Classifiers Assume that p(x | y) for each class can be modelled by a GMM.

$$p(x \mid y) = \sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma_j^{(y)})$$

Giving highly complex decision boundaries:

 $p(y|x) = \frac{1}{z}p(y)\sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_i^{(y)}, \sum_{j=1}^{(y)} v_j^{(y)})$ **GMMs for Density Estimation**

Can be used for anomaly detection or data imputation. Detect outliers, by comparing the es- $\operatorname{Cov}[X] = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top}] =$ timated density against τ . Allows to control the FP rate. Use ROC curve as evaluation cri-

terion and optimize using CV to find τ . General EM Algorithm **E-Step**: Take the expected value over latent

variables z to generate likelihood function Q: $Q(\theta; \theta^{(t-1)}) = \mathbb{E}_{Z}[\log p(X, Z \mid \theta) \mid X, \theta^{(t-1)}]$ $=\sum_{i=1}^{n}\sum_{z_{i}=1}^{k}\gamma_{z_{i}}(x_{i})\log p(x_{i},z_{i}\mid\theta)$

with $\gamma_z(x) = p(z \mid x, \theta^{(t-1)})$

M-Step: Compute MLE / Maximize:
$$\theta^{(t)} = \operatorname{argmax} Q(\theta; \theta^{(t-1)})$$

We have monotonic convergence, each EMiteration increases the data likelihood. GANs

Learn f: "simple" distr. \mapsto non linear distr. Computing likelihood of the data becomes hard, therefore we need a different loss.

 $\min_{w_G} \max_{w_D} \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x, w_D)]$ $+\mathbb{E}_{z\sim p_{\tau}}[\log(1-D(G(z,w_G),w_D))]$

Training requires finding a saddle point, always converges to saddle point with if G, D have enough capacity. For a fixed G, the optimal discriminator is:

$$D_G(x) = \frac{P_{\text{data}}(x)}{p_{\text{data}}(x) + p_G(x)}$$
The prob. of being fake is $1 - D_G$. Too pow-

erful discriminator could lead to memorization of finite data. Other issues are oscilla-tions/divergence or mode collapse.

One possible performance metric: $DG = \max M(w_G, w_D') - \min M(w_G', w_D)$

Where
$$M(w_G, w_D)$$
 is the training objective. **Various**

Derivatives: $\nabla_x x^{\top} A = A \quad \nabla_x a^{\top} x = \nabla_x x^{\top} a = a$ $\nabla_x b^{\top} A x = A^{\top} b \quad \nabla_x x^{\top} x = 2x \quad \nabla_x x^{\top} A x = 2Ax$

 $|\nabla_{w}||y - Xw||_{2}^{2} = 2X^{\top}(Xw - y)$

Bayes Theorem:
$$p(y \mid x) = \frac{1}{p(x)} \underbrace{p(y) \cdot p(x \mid y)}_{\text{Normal Distribution:}} \underbrace{p(y) \cdot p(x \mid y)}_{\text{Normal Distribution:}} \underbrace{p(y) \cdot p(x \mid y)}_{\text{Normal Distribution:}} \underbrace{p(x,y) \cdot p(x \mid y)}_{\text{Normal Distribu$$

Other Facts $\operatorname{Tr}(AB) = \operatorname{Tr}(BA), \operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2,$

 $X \in \mathbb{R}^{n \times d}: X^{-1} \to \mathcal{O}(d^3) X^{\top} X \to \mathcal{O}(nd^2),$ $\binom{n}{k} = \frac{n!}{(n-k)!k!}, ||w^{\top}w||_2 = \sqrt{w^{\top}w}$

 $E[XX^{\top}] - E[X]E[X]^{\top}$ $p(z|x,\theta) = \frac{p(x,z|\theta)}{p(x|\theta)}$ $E[s \cdot s^{\top}] = \mu \cdot \mu^{\top} + \Sigma = \Sigma$ where s follows a multivariate normal distribution with mean μ and covariance matrix Σ

Convexity 0: $L(\lambda w + (1 - \lambda)v) \le \lambda L(w) + (1 - \lambda)L(v)$ 1: $L(w) + \nabla L(w)^{\top} (v - w) < L(v)$

2: Hessian $\nabla^2 L(w) \geq 0$ (psd) • $\alpha f + \beta g$, $\alpha, \beta > 0$, convex if f, g convex • $f \circ g$, convex if f convex and g affine or f non-decresing and g convex

• $\max(f,g)$, convex if f,g convex