The Evolution of Phenotypically Invariant Gene Networks

Joshua S. Schiffman and Peter L. Ralph
University of Southern California and University of
Oregon, Eugene
June 24, 2017

Developmental systems drift: many molecular pathways can produce the same phenotype

- Drosophila hybrid bristle patterning (True and Haag 2001)
- yeast gal regulon
- cell cycle control (Kearsey and Cotterill, 2003)
- circadian clock (Sancar, 2008)
- the *Drosophila* gap gene network.

(A) parents and (B) hybrid

D. melanogaster and simulans vs. hybrid bristle patterns.

True and Haag, Evolution & Development, 2001.

Outline and motivating questions

- 1. How to model the genotype-phenotype map as gene regulatory networks?
- 2. How many different gene networks can produce identical phenotypes?
- 3. At what rate does evolution explore phenotypically identical network organizations?
- 4. Can evolution along the phenotypically invariant landscape lead to speciation via reproductive incompatibility?
- 5. If so, at what rate?

How to model the genotype-phenotype map?

- A phenotype is defined as the time dynamics of molecules directly relevant to survival.
- Basically, the phenotype is the *what*, *when*, *where*, and *amount* of important molecules.
- These dynamics are the result of the interconnections of a gene regulatory network (e.g. transcription factors binding promoters), as well as environmental input.

Gene regulatory networks can be modelled as linear dynamical systems

$$\Sigma = \begin{cases} \dot{\kappa}(t) &= A\kappa(t) + Bu(t) \\ \phi(t) &= C\kappa(t) \end{cases}$$

A is the gene network and each row is a promoter; B determines how the input is processed, and C filters only the dynamics relevant to survival – or what selection *observes*.

A is an $n \times n$ matrix, B is an $n \times l$ matrix, and C an $l \times n$ matrix. This approach is common electrical and control engineering.

Example: consider an oscillating two-gene network

$$\Sigma = \left\{ \begin{array}{ll} \dot{\kappa}(t) &= \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \kappa(t) + \left[\begin{array}{cc} 1 \\ 1 \end{array} \right] u(t) \\ \phi(t) &= \left[\begin{array}{cc} 1 & 0 \end{array} \right] \kappa(t) \end{array} \right.$$

$$\phi(t) = \sin(t) + \cos(t)$$

Note: n = 2 and l = 1.

Two **different** oscillator mechanisms with **identical** inputoutput dynamics and are indistinguishable under the same selection and environmental conditions.

$$\Sigma = \left\{ egin{array}{ll} \dot{\kappa}(t) &= \left[egin{array}{ccc} 0 & 1 \ -1 & 0 \end{array}
ight] \kappa(t) + \left[egin{array}{ccc} 1 \ 1 \end{array}
ight] u(t) & \left[egin{array}{ccc} \dot{\phi} & \dot{\phi$$

$$\widehat{\Sigma} = \left\{ \begin{array}{ll} \dot{\widehat{\kappa}}(t) &= \left[\begin{array}{cc} 2 & -1 \\ 5 & -2 \end{array} \right] \widehat{\kappa}(t) + \left[\begin{array}{cc} 1 \\ 1 \end{array} \right] u(t) \\ \widehat{\phi}(t) &= \left[\begin{array}{cc} 1 & 0 \end{array} \right] \widehat{\kappa}(t) \end{array} \right.$$

$$\phi(t) = \widehat{\phi}(t) = \sin(t) + \cos(t)$$

How many black boxes are input-output equivalent, yet have different internal mechanisms?

Typically the mechanism is **not unique**. An **infinite number of mechanisms** with an infinite number of components could theoretically be inside the box.

The set of all phenotypically equivalent gene networks

Example: all two gene oscillators are given by:

$$P(au) := egin{bmatrix} 1 & 0 \\ au & 1- au \end{bmatrix} \qquad au
eq 1$$

$$A(\tau) := P(\tau)AP^{-1}(\tau)$$

- In a static environment and under stabilizing selection, evolution will explore the set of equivalent networks.
- Phenotype is conserved whereas mechanism is not.

Can evolution through the set of phenotypically invariant gene networks lead to Dobzhansky-Muller Incompatibilities?

- Diploid F_1 hybrids are formed by averaging the two parental gene networks A and A'.
- F_2 hybrids are formed by first recombining genes (swapping rows between A and A'), then next, two gametes are chosen and averaged.
- Fitness can be scored as a function of phenotypic distance.

Oscillators A(0) and A(2) F_1 s Parents (blue), hybrids (orange). Hybrid $\phi_{F_1}(t) = e^t$

$$\mathcal{F}\left(\widehat{\phi}(t)\right) = \exp\left\{-\frac{1}{\sigma} \int_{0}^{\infty} \left\|\phi(t) - \widehat{\phi}(t)\right\|^{2} dt\right\}$$

 F_1 (left) and F_2 (right) Hybrids between A(2) and A(2.01) (top) , A(2.1) (middle), and A(2.5) (bottom).

Phenotypes diverge at a quartic rate in F_1 s (top) and at a quadratic rate in F_2 s (bottom) as a function of τ .

Note: this is general and not specific to oscillator network

How fast does reproductive incompatibility occur in allopatry under environmental and selective stasis?

- Gene regulatory interaction strengths are treated as quantitative traits thus we use a quantitative genetics model.
- F_1 and F_2 phenotypes diverge quartically and quadratically, respectively.
- The phenotypic divergence will be,

$$\Delta\phi_{F_1}(t) \approx c_1 \frac{T}{N}$$
 in F_1 s (orange) and,

$$\Delta\phi_{F_2}(t) \approx c_2 \sqrt{\frac{T}{N}} \text{ in } F_2 \text{s (blue)}$$

formed by mating allopatric populations of size N isolated for T generations, where c_1 and c_2 are constants.

Fitness is a Gaussian of phenotypic distance,

$$\mathcal{F} = \exp\left\{-\left(\Delta\phi(t)\right)^2/\sigma\right\}$$

Ongoing work: a gene getwork ratchet – are gene networks molecular Rube Goldberg Machines?

- Up until this point networks above have been minimal or parsimonious – use the fewest components possible to achieve requisite phenotype dynamics.
- How often will a gene network grow or diminish in size?
- If network growth is far more likely than reduction, will we observe a "ratchet?"
- Maybe like bureaucracy
- Is there an equilibrium network size?
- Why are some networks observed to be like Rube Goldberg machines and others not? (e.g. circadian clock in cyanobacteria vs. mammals [Sancar, 2008]).

Thank You!

- Peter Ralph
- Sergey Nuzhdin
- Erik Lundgren
- Hossein Asgharian