Please submit your homework with codes (hard copy) in class and upload the corresponding codes to the Blackboard. Problems marked with * will be graded in detail and they are worth 50% of the total score. Remaining problems, worth the remaining 50% of the total score, will be given full mark if reasonable amount of work is shown.

For this homework, use R for programming parts unless otherwise specified.

1. * The Cauchy(θ , 1) has density

$$p(x - \theta) = \frac{1}{\pi \{1 + (x - \theta)^2\}}.$$

(a) If x_1, \ldots, x_n form an i.i.d. sample, show that

$$l(\theta) = -n \log \pi - \sum_{i=1}^{n} \log \{1 + (\theta - x_i)^2\},$$

$$l'(\theta) = -2 \sum_{i=1}^{n} \frac{\theta - x_i}{1 + (\theta - x_i)^2},$$

$$l''(\theta) = -2 \sum_{i=1}^{n} \frac{1 - (\theta - x_i)^2}{\{1 + (\theta - x_i)^2\}^2}.$$

- (b) Show that the Fisher information is $I(\theta) = \frac{n}{2}$.
- (c) Use the following data, graph the log likelihood function: -13.87, -2.53, -2.44, -2.40, -1.75, -1.34, -1.05, -0.23, -0.07, 0.27, 1.77, 2.76, 3.29, 3.47, 3.71, 3.80, 4.24, 4.53, 43.21, 56.75.
- (d) Find the MLE for θ using the Newton-Raphson method (use the same data set as above). Try the following starting points: -11, -1, 0, 1.4, 4.1, 4.8, 7, 8, and 38. Compare your results.
- (e) First use Fisher scoring to find the MLE for θ , then refine your estimate using Newton-Raphson. Try the same starting points as above. Compare your results with the previous ones.
- 2. Consider the following probability density function:

$$p(x) = \frac{1 - \cos(x - \theta)}{2\pi}, \quad 0 \le x \le 2\pi,$$

where θ is a parameter between $-\pi$ and π . Use this i.i.d. sample to answer the following questions: 0.52, 1.96, 2.22, 2.28, 2.28, 2.46, 2.50, 2.53, 2.54, 2.99, 3.47, 3.53, 3.70, 3.88, 3.91, 4.04, 4.06, 4.82, 4.85, 5.46.

- (a) Graph the log likelihood function.
- (b) Find the method-of-moments estimator for θ . Denote it as $\hat{\theta}_{\text{moment}}$.
- (c) Find the MLE for θ using Newton-Raphson with $\theta_0 = \hat{\theta}_{\text{moment}}$.
- (d) What solutions do you find when you start at $\theta_0 = -2.7$ and $\theta_0 = 2.7$?
- (e) Repeat the above using 200 equally-spaced starting values between $-\pi$ and π . Partition the values into sets of attraction; i.e., divide the set of starting values into separate groups, with each group corresponds to a unique computed MLE.
- 3. * In chemical kinetics the Michaelis-Menten model is used for modeling the relation between the initial velocity y of an enzymatic reaction and the substrate concentration x. The model is

$$y = \frac{\theta_1 x}{x + \theta_2} + \epsilon,\tag{1}$$

where θ_1 and θ_2 are model parameters and ϵ are iid zero mean normal errors. The following data set is given:

substrate concentration x	velocity y					
(ppm)	[(counts/min)/min]					
0.02	47	76				
0.06	97	107				
0.11	123	139				
0.22	152	159				
0.56	191	201				
1.10	200	207				

We wish to estimate θ_1 and θ_2 by nonlinear least squares; i.e., $\hat{\theta}_1$ and $\hat{\theta}_2$ are defined as the joint minimizer of

$$\sum_{i=1}^{n} \left(y_i - \frac{\theta_1 x_i}{x_i + \theta_2} \right)^2. \tag{2}$$

(a) A quick way for finding rough estimates for θ_1 and θ_2 is to invert the relationship in (1) and obtain a simple linear regression setting. That is, ignoring ϵ ,

$$\frac{1}{y} = \frac{x + \theta_2}{\theta_1 x} = \frac{1}{\theta_1} + \frac{\theta_2}{\theta_1} \frac{1}{x} \Rightarrow y^* = \beta_0 + \beta_1 u,$$

where $y^* = 1/y$, $\beta_0 = 1/\theta_1$, $\beta_1 = \theta_2/\theta_1$ and u = 1/x. Estimate θ_1 and θ_2 via estimating β_0 and β_1 with least squares.

- (b) Implement a Newton-Raphson algorithm for estimating θ_1 and θ_2 via the minimization of (2). Use your answers from (a) as initial estimates.
- (c) Repeat (b) with the steepest descent algorithm.
- (d) Repeat (b) with the Gauss-Newton algorithm.
- 4. In this question we want to solve the traveling salesman problem discussed in class using simulated annealing. The matrix below summarizes the distances between any two of 15 cities; e.g., City B and City E are 7 units apart, while City C and City O are 4 units apart.

	A	В	\mathbf{C}	D	E	F	G	Н	Ι	J	K	L	Μ	N	О
A	0	1	2	4	9	8	3	2	1	5	7	1	2	9	3
В	1	0	5	3	7	2	5	1	3	4	6	6	6	1	9
\mathbf{C}	2	5	0	6	1	4	7	7	1	6	5	9	1	3	4
D	4	3	6	0	5	2	1	6	5	4	2	1	2	1	3
\mathbf{E}	9	7	1	5	0	9	1	1	2	1	3	6	8	2	5
\mathbf{F}	8	2	4	2	9	0	3	5	4	7	8	3	1	2	5
G	3	5	7	1	1	3	0	2	6	1	7	9	5	1	4
\mathbf{H}	2	1	7	6	1	5	2	0	9	4	2	1	1	7	8
I	1	3	1	5	2	4	6	9	0	3	3	5	1	6	4
J	5	4	6	4	1	7	1	4	3	0	9	1	8	5	2
\mathbf{K}	7	6	5	2	3	8	7	2	3	9	0	2	1	8	1
\mathbf{L}	1	6	9	1	6	3	9	1	5	1	2	0	5	4	3
\mathbf{M}	2	6	1	2	8	1	5	1	1	8	1	5	0	9	6
N	9	1	3	1	2	2	1	7	6	5	8	4	9	0	7
Ο	3	9	4	3	5	5	4	8	4	2	1	3	6	7	0

Implement a simulated annealing algorithm to find the optimal traveling path. To begin with, set $\alpha(\tau) = p\tau$ with p = 0.999, $\beta(m) = 100$ (i.e., $m_j = 100$ for all j), and use a uniform distribution for the proposal density $g_t(|_t)$. Also, set the initial temperature $\tau_1 = 400$. Once your algorithm is working, play around with different values of τ_1 , p etc to see how the algorithm behaves. (The shortest path is of length 17.)