主管 领导 审核 签字

哈尔滨工业大学(深圳)2020/2021 学年秋季学期

高等数学 A(期中)试题

题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得分											
阅卷人											

注意行为规范

遵守考场纪律

一、填空题(每小题1分,共5小题,满分5分)

1. 若
$$\lim_{n\to\infty} \left(1 + \frac{5}{n}\right)^{-kn} = e^{-10}$$
,则常数 $k =$ _____.

2. 设
$$n$$
 为正整数,则 $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right) = \underline{\hspace{1cm}}$

- 3. 曲线 $\cos(xy) + \ln y x = 1$ 在 x = 0 所对应点处的切线方程为
- 4. 已知函数 $f(x) = \ln(3x 2x^2)$,则 $f^{(n)}(x) =$ _____
- 5. 有一个底半径为R cm、高为h cm 的圆锥容器(如下图所示), 今以 25 cm³/s 的速度自顶部向容器内注水,则当容器内的水位等于锥高的一半 时水面上升的速度为_____.

二、选择题(每小题1分,共5小题,满分5分,每小题中给出的四个选 项中只有一个是符合题目要求的,把所选项的字母填在题后的括号内)

- 1. "对任给的 $\varepsilon \in (0,1)$ 总存在正数 δ ,当 $0 < |x-x_0| \le \delta$ 时,恒有 $|f(x)-A| \le 2\varepsilon$ 成立"是 $\lim_{x \to x_0} f(x) = A$ 的()
- (A) 充分条件,但非必要条件; (B) 必要条件,但非充分条件;
- (C) 充分必要条件; (D) 既非充分条件,又非必要条件。

- 2. 函数 $f(x) = \frac{x x^3}{\sin(\pi x)}$ 的可去间断点的个数为 ()
 - (A) 1; (B) 2; (C) 3; (D) 无穷多个。
- 3. 设函数 $f(x) = (e^x 1)(e^{2x} 2)\cdots(e^{nx} n)$, 其中 n 为正整数,则 f'(0) = ()
 - (A) $(-1)^{n-1}(n-1)!$; (B) $(-1)^n(n-1)!$; (C) $(-1)^{n-1}n!$; (D) $(-1)^n n!$
- 4. 当 $x \to 0^+$ 时,若 $\left(\ln(1+2x)\right)^{\alpha}$, $\left(1-\cos x\right)^{\frac{1}{\alpha}}$ 均是比x高阶的无穷小,则 α 的取值范围是()
 - (A) $(2,+\infty)$; (B) (1,2); (C) $(\frac{1}{2},1)$; (D) $(0,\frac{1}{2})$.
- 5. 设函数 y = f(x) 在区间 $(-\infty, +\infty)$ 内有定义,当自变量 x 有增量 Δx 时相应的函数增量 $\Delta y = (x^2 + 2e^x \Delta x) \Delta x + y \Delta x + \alpha , 其 中 \alpha 是 当 \Delta x \to 0 时 关于 \Delta x 的 高 阶 无 穷 小 ,则 当 <math>x = -1, y = 1, \Delta x = 0.1$ 时微分 dy = ()
 - (A) 0.1; (B) 0.2; (C) $0.1+0.02e^{-1}$; (D) $0.2+0.02e^{-1}$.
- 三、 (4 分) 确定常数 a,b 的值,使函数 $f(x) = \begin{cases} b\cos x + (a+1)x, x \le 0, \\ e^{-ax} + x^2 \cos \frac{1}{x}, x > 0 \end{cases}$ 处处可导,并求 f'(x)。

六、 $(4 \, \mathcal{H})$ (1) 证明: 对于任意的正整数n, 都有 $\frac{1}{n+1} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$;

(2) 设 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n \ (n = 1, 2, \dots)$, 证明数列 $\{a_n\}$ 收敛。

