

Parkimaniacos.

Cierre de Iteración – 20/11/2020 Gestión de Proyectos de Software agosto – diciembre 2020

Control de documento

Nombre del proyecto	Parkimaniacos
Cierre de iteración	20/11/2020
Generador por	José Ángel García Arce
Aprobado por	Lamia Hamdan M.
Alcance de la distribución del documento	Control interno para todo el proyecto.

Índice

Sobre este documento	
Resumen de la Iteración:	3
Identificación	3
Artefactos y evaluación	3
Riesgos y problemas	4
Notas y observaciones	4
ANEXOS	5
ANX 1	5
ANX 2-	5
ANX-3	6
Glosario de términos	6

Sobre este documento

La calidad se logra por medio de la revisión constante de las actividades que conducen desde la idea al producto. Al momento del cierre de una iteración es buen momento para hacer un alto, y evaluar lo logrado, los problemas encontrados y los retos a enfrentar.

El presente documento marca el final de la iteración 7 , y contiene una evaluación de los artefactos y actividades realizadas durante la misma.

Se recogen también las impresiones y observaciones hechas durante el desarrollo de la iteración, así como el esfuerzo invertido en cada una de las disciplinas involucradas.

Resumen de la Iteración:

Identificación

Código de iteración: I2, E1, C1, T2...

Se suele usar la siguiente convención: I, E, C, T por la inicial de la fase a la que pertenece la iteración: Inicio, Elaboración, Construcción o Transición. Se sigue con un número o correlativo que cuenta desde uno.

Fecha de inicio y cierre es auto explicativo. Lo mismo con los comentarios, de haberlos.]

Código de la iteración	Fase a la que pertenece	Fecha de inicio	Fecha de cierre	Comentarios
C1	Diseño	7/11/2020	13/11/2020	Ninguno

Hitos especiales

En esta iteración se terminará de desarrollar el hardware y se realizará el checklist de aseguramiento de la calidad de la fase de análisis.

Artefactos y evaluación

Artefacto	Meta (%)	Comentarios	
ANX-1	100%	se siguió con el desarrollo de el reconocimiento de placas	
ANX-2	100%	Se desarrolló el checklist correctamente	
ANX-3	100%	Se desarrolló en sistema de forma local	

Artefacto	Aspecto a evaluar	Evaluación	Comentarios
ANX-1		sujeto a cambios mejoras y agregar complementos	Ninguno.
ANX-2	Checklist para la calidad de la fase de análisis	Bien	Ninguno.
ANX-3	Se está continuando con el desarrollo de forma remota	•	Ninguno

Riesgos y problemas

En este caso el único inconveniente que hubo fue el que se mencionó anteriormente sobre la falta del material que necesitamos, en este caso fue el módulo de ethernet para finalizar con el trabajo.

Notas y observaciones

En este caso no existirían aun notas ni observaciones.

Rol	Horas-Hombre	Desempeñado por	Observaciones
Scrum Master	10 horas	Jose Angel Garcia Arce	
Gerente de Diseño	10 horas	Enrique Belmarez Meraz	

ANEXOS

ANX 1-

Código Del Reconocimiento de Placas

```
import cv2
import pytesseract
pytesseract.pytesseract.tesseract cmd = r'C:\Program Files\Tesseract-OCR\tesseract'
placa = []
image = cv2.imread('auto001.jpg')
gray = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
gray = cv2.blur(gray,(3,3))
canny = cv2.Canny(gray, 150, 200)
canny = cv2.dilate(canny,None,iterations=1)
# ,cnts, = cv2.findContours(canny,cv2.RETR LIST,cv2.CHAIN APPROX SIMPLE)
cnts, = cv2.findContours(canny,cv2.RETR LIST,cv2.CHAIN APPROX SIMPLE)
#cv2.drawContours(image,cnts,-1,(0,255,0),2)
for c in cnts:
 area = cv2.contourArea(c)
 x,y,w,h = cv2.boundingRect(c)
 epsilon = 0.09*cv2.arcLength(c,True)
 approx = cv2.approxPolyDP(c,epsilon,True)
 if len(approx)==4 and area>9000:
  print('area=',area)
  #cv2.drawContours(image,[approx],0,(0,255,0),3)
  aspect ratio = float(w)/h
  if aspect ratio>2.4:
   placa = gray[y:y+h,x:x+w]
   text = pytesseract.image to string(placa,config='--psm 11')
   print('PLACA: ',text)
   cv2.imshow('PLACA',placa)
   cv2.moveWindow('PLACA',780,10)
   cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),3)
   cv2.putText(image,text,(x-20,y-10),1,2.2,(0,255,0),3)
```


cv2.imshow('Image',image) cv2.moveWindow('Image',45,10) cv2.waitKey(0)

Línea 33: Visualizamos la placa detectada.

Línea 34: Con cv2.moveWindow, indicamos que la ventana PLACA se visualice en la posición (780,10) de la pantalla.

Línea 35: Dibujamos un rectángulo que rodeará a la placa, para ello usamos la información obtenida en la línea 19.

Línea 36: Visualizamos la información obtenida de la línea 30.

Línea 38 a 40: Visualizamos la imagen contenida en

imagen, luego hacemos que la ventana correspondiente a esta imagen se ubique en la posición (45,10) de la pantalla, y finalmente usamos cv2.waitKey(0) para visualizar hasta qué cualquier tecla sea presionada.

ANX-2

Checklist de aseguramiento de la calidad de la fase de análisis

Principio:	Si / No / NA :	Comentario:
Análisis del problema El desarrollo de la fase de análisis toma en cuenta los requerimientos impuestos por el usuario a la hora de llenar la plantilla de requerimientos.	Si	En este caso consideramos que los requisitos generales al momento de finalizar la fase de análisis. Contando con la documentación necesaria para la implementación del proyecto.
1.1 Análisis de las Tecnologías a implementar Las tecnologías propuestas en el documento de requerimientos son las mejores al momento de llevar a cabo el proyecto.	Si	Las tecnologías expuestas en el documento de requerimientos son las que se tomarán en cuenta en la fase de desarrollo del proyecto.
1.1.1 Versiones del software La implementación de las tecnologías necesarias para el desarrollo del proyecto no presenta incompatibilidades entre ellas		No se tiene registro alguno de la existencia incompatibilidades que existan en dichas tecnologías.
2. Clasificación de Requisitos Les requisitos expuestos por el cliente tuvieron el grado de importancia adecuado	Si	El grado de importancia al momento de desarrollar la fase del análisis fue un factor muy contundente a la hora de asignar recursos en cada sprint.
3. Determinación de los Casos de uso del proyecto Los casos de uso del proyecto están bien definidos en el análisis del proyecto	Si	Los usos de la aplicación están muy bien especificados en los requerimientos funcionales.
4. Diseño de la aplicación móvil La aplicación móvil se ajusta a los estándares actuales de las aplicaciones para dispositivos inteligentes.	Si	El análisis de la aplicación obedece a los estándares actuales.
4.1 Diseño general de la app La aplicación es intuitiva y fácil de utilizar	No	La aplicación será fácil de utilizar si se tiene conocimiento previo de la misma
4.2 Estructura de la aplicación móvil La estructura general de la app, así como la realización de la misma esta hecha con las herramientas necesarias para su construcción.	Si	La programación de la aplicación esta hecha en java, en vez de kotlin para comodidad de los desarrolladores
5. Diseño de la Base de datos La base de datos no presenta redundancias	Si	No presenta redundancias
 Diseño de la página web La pagina web no presenta errores en el diseño. 	Si	No presenta errores

ANX-3 Funcionamiento del hardware

En este apartado se muestra como funciona el hardware cuando un auto se estaciona y el sistema manda ocupado a la base de datos igualmente con un led indicador muestra físicamente con un led rojo

Parkimaniacos. Cierre de Iteración – 30/10/2020

Gestión de Proyectos de Software agosto – diciembre 2020

En este apartado se muestra como funciona el hardware cuando un auto no esta ocupando el cajón de estacionamiento y el sistema manda disponible a la base de datos igualmente con un led indicador muestra físicamente con un led amarillo

Glosario de términos