PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE.

Prof. Benito Olivares Aguilera

Distribuição de Probabilidade	Função de Probabilidade $P(X = x)$	Média	Variância	F. Geradora de Momentos	F. Característica
Uniforme Discreta ({1,2,,n})	$\frac{1}{n}, x \in \{1, 2, \dots, n\}$	$\frac{n+1}{2}$	$\frac{(n-1)(n+1)}{12}$	$\frac{e^t(1-e^{nt})}{n(1-e^t)}$	$\frac{e^{it}(1-e^{nit})}{n(1-e^{it})}$
Bernoulli (p)	$p^{x}(1-p)^{1-x}, x = 0,1; 0$	p	p(1-p)	$(1-p) + pe^t$	$(1-p) + pe^{it}$
Binomial (n,p)	$\binom{n}{x} p^{x} (1-p)^{n-x},$ $x = 0,1,, n; 0$	np	np(1-p)	$[(1-p)+pe^t]^n$	$\left[(1-p) + pe^{it} \right]^n$
Hipergeométrica (m,n,r)	$\frac{\binom{m}{x}\binom{n-m}{r-x}}{\binom{n}{r}};$ $\max\{0, r-(n-m)\} \le x \min\{r, m\}$	$\frac{rm}{n}$	$\frac{rm}{n}\frac{(n-m)(n-r)}{n(n-1)}$	Não útil	Não útil
Poisson (λ)	$\frac{e^{-\lambda}\lambda^{x}}{x!}, x = 0,1,2; \lambda > 0$ $n(1-n)^{x}, x = 0,1,$	λ	λ	$\exp \left[\lambda(e^t-1)\right]$	$\exp \left[\lambda(e^{it}-1)\right]$
Geométrica (p) [nº ensaios antes do primeiro sucesso]	F(= F) , 3,=,	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$ $\frac{1-p}{p^2}$	$\frac{p}{1 - (1 - p)e^t}$	$\frac{p}{1-(1-p)e^{it}}$
Geométrica (p) [nº ensaios até o primeiro sucesso]	$p(1-p)^{x-1}, x = 1,2,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1 - (1 - p)e^t}$	$\frac{pe^{it}}{1-(1-p)e^{it}}$
Binomial Negativa (r,p) [nº ensaios antes do r-ésimo sucesso]	$ \binom{x+r+1}{r-1} p^r (1-p)^x, \ x = 0,1, \dots $ $ \binom{x-1}{r-1} p^r (1-p)^x, \ x = r, r+1, \dots $	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{p}{1-(1-p)e^t}\right]^r$	$\left[\frac{p}{1-(1-p)e^{it}}\right]^r$
Binomial Negativa (r,p) [nº ensaios até o r-ésimo sucesso]	$\binom{x-1}{r-1} p^r (1-p)^x, \ x = r, r+1, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]^r$	$\left[\frac{pe^{it}}{1-(1-p)e^{it}}\right]^r$

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADE.

Prof. Benito Olivares Aguilera

Distribuição de Probabilidade	Função Densidade de Probabilidade	Média	Variância	F. Geradora de Momentos	F. Característica
Uniforme (a,b)	$\frac{1}{b-a}, x \in (a,b), a < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt} - e^{at})}{t(b-a)}$	$\frac{e^{ibt} - e^{iat}}{it(b-a)}$
Exponencial (λ)	$\lambda e^{-\lambda x}, \ x \ge 0; \ \lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - t}$	$\frac{\lambda}{\lambda - it}$
Normal (μ , σ^2)	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$ $x \in \mathbb{R}; \ \mu \in \mathbb{R}; \ \sigma > 0$	μ	σ^2	$e^{t\mu+rac{\sigma^2t^2}{2}}$	$e^{it\mu-rac{\sigma^2t^2}{2}}$
$Gama(\alpha, \pmb{\beta})$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, \ x > 0;$ $\alpha > 0, \beta > 0$	$\frac{\alpha}{\beta}$	$\frac{lpha}{eta^2}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}$, $t<\beta$	$\left(\frac{\beta}{\beta - it}\right)^{\alpha}, t < \beta$
Qui-quadrado(k)	$\frac{\left(\frac{1}{2}\right)^{\frac{k}{2}}x^{\frac{k}{2}-1}exp\left(\frac{-x}{2}\right)}{\Gamma\left(\frac{k}{2}\right)},$	k	2 <i>k</i>	$\left(\frac{1}{1-2t}\right)^{\frac{k}{2}}, t < \frac{1}{2}$	$\left(\frac{1}{1-2it}\right)^{\frac{k}{2}}, t < \frac{1}{2}$
	x > 0; $k = 1,2,$				