Experiment 1: Measurement of AC and DC voltage using Multimeter and CRO

Aim: (i) To measure AC and DC voltage using Multi-meter & Cathode Ray Oscilloscope (CRO)

(ii) To measure frequency of the AC signal using CRO

Apparatus required: Signal Generator, Variable DC supply, Multi-meter and CRO.

Procedure:

(i) To measure DC/AC voltage Using Digital Multi-meter (DMM)

- 1. Connect the black test lead to COM terminal and RED terminal to V/Ω terminal.
- 2. Switch on the Variable Dc supply set to 1V
- 3. Set the range selector switch to DC range and connect the test leads across the variable DC supply.
- 4. Vary the supply voltage and observe the variation in Multi-meter.
- 5. Set the range selector switch to AC range and connect the test leads across the Signal generator.
- 6. Switch on the signal generator and initially set the voltage knob of signal generator to minimum.
- 7. Vary the voltage and measure the voltage on the Multi-meter.
- 8. Multimeter reads the RMs voltage of the signal generator = $Vp-p/2\sqrt{2}$.
- 9. Tabulate both DC and AC Voltages.

(ii) To measure DC/AC voltage Using Cathode Ray Oscilloscope:

- 1. Switch on the CRO obtain a defined Trace of a horizontal line on the screen by adjusting INTENS and FOCUS knob
- 2. Adjust the Y position knob to make the trace to coincide with the centre line on the screen by keeping the AC/DC switch in GND Position.
- 3. Release the switch from GND position and observe a horizontal trace on CRO.
- 4. To measure DC voltage, Keep the Switch in DC position and Connect the Variable DC supply to either of the Channel using a probe..
- 5. Measure the shift in trace from the original position.
- 6. Multiply this by the scale indicated by the vol/div knob this gives the DC voltage.
- 7. To measure the Ac voltage, connect the Signal generator to either of the channel using the probe and by keeping the Switch in AC position.
- 10. Observe the signal in the CRO, measure the number of divisions from peak to peak. Multiply this by the volt/div knob. RMs voltage of the signal generator = $Vp-p/2\sqrt{2}$.

(iii) To measure the frequency of signal.

- 1. To measure the frequency, Keep the Switch in AC position and connect the Signal generator to either of the channel using the probe.
- 2. Adjust Time/Div knob so as to see two three cycles on the CRO
- **3.** Count the number of divisions in one cycle of the waveform. Multiply this by the time/div knob this gives the time period of the signal.
- **4.** Reciprocal of the time period will give the frequency of signal.
- **5.** Match the frequency on the signal generator with the measured value.

Tabulation:

(i) DC voltage using DMM and CRO:

Sl.No	CRO			Measured voltage	
	Shift in division	Volts/div	Measure DC voltage Vdc = Shift in division X volts/div	by DMM	
1					
2					
3					
4					
5					

(ii) AC voltage using DMM and CRO:

Sl.No			DMC	Measured	
	Peak to peak in Division Vp-p	Volts/div	AC voltage Vac= = Vp-p X volts/div	RMS voltage = Vp-p/2√2	voltage by DMM
1					
2					
3					
4					
5					

(iii) Frequency using CRO:

Sl.No	No of divisions/cycle (X-axis)	Time/div	Time period (T) T= No of divisions X Time/div	Frequency f=1/T (hertz)	Frequency on function generator
1					
2					
3					
4					
5					

Experiment 2: To Determine Efficiency of Half wave rectifier Using Pspice Simulation.

Aim: To find ripple factor and efficiency of Half wave rectifier.

Tool used: Pspice

Apparatus required: Signal Generator, Transformer, Multi-meter and CRO.

Components required: Diode and Resistor.

Procedure:

- i. Select the required apparatus and components from the library and place on the work bench.
- ii. Connect the circuit half wave Rectifier as shown in the figure using probes.
- iii. Set the input voltage Vac=220V
- iv. Keep the Load Resistance R_L =100 Ω and note down the output ac voltage Vac and dc voltages V_{dc} i.e V_{OUT} .
- v. Multiply ac voltage Vac by $\sqrt{2}$ to get peak value and calculate theoretical value $V_{dc} = V_{max}/\pi$. Compare the value with the practical dc value V_{dc}
- vi. Calculate the ripple factor and rectification Efficiency.
- vii. Repeat the above steps for R_L = 500 Ω and 1K Ω .
- viii. Observe the input and output waveforms on the scope.

Tabulation:

Input Voltage V_{ac}= _____ V

Sl. No	Load	Output Voltage		Ripple	Efficiency	
	$R_{L}\left(k\Omega\right)$	V _{ac} (Volt)	$V_{dc} = V_{max} / \pi$		Factor	\eta (%)
			(Volt)	(Volt)	r	
1						
2						
3						

$$V_{dc} = \frac{V_{\text{max}}}{\pi} = 0.318 V_{\text{max}}$$
 $I_{dc} = \frac{V_{dc}}{R}$ $P = I_{dc}^2 R$.

$$r = \frac{V_{ac}(output)}{V_{dc}(output)}$$

Rectification Efficiency $\eta = P_{dc}/P_{ac}$

Circuit Diagram:

Experiment 3: Verification of Logic Gates and Half Adder

Aim: To study and verify the truth table of logic gates and verify the Half adder

Apparatus required: Trainer Kit

Components: IC 7408, IC 7400.IC 7432, IC 7406, IC 7402, IC7404 and IC 7486

Procedure:

i. Check the Components

ii. Insert the Appropriate IC in trainer kit

- iii. Make the connections as per the pin diagram.
- iv. Provide the input through switches and observe the output on the LED's
- v. Verify the Truth table for all the IC
- vi. Rig up the circuit for Half adder as shown in the figure
- vii. Verify the truth table for Half adder

(i)Verification of basic gates

S.NO GATE		SYMBOL	INPUTS		OUTPUT
			A	В	С
1.	NAND IC	A	0	0	1
	7400	$A = C = \overline{A}\overline{B}$	0	1	1
		В	1	0	1
		(A bosonia Patrice)	1	1	0
2.	NOR IC		0	0	1
7402	$A \longrightarrow C = \overline{A} + \overline{B}$	0	1	0	
		В	1	0	0
	10		1	1	0
3.	AND IC 7408		0	0	0
	/408	AC=AB	0	1	0
		В	1	0	0
			1	1	1

4.	OR IC 7422		0	0	0
	IC 7432	A C=A+B	0	1	1
		в———	1	0	1
			1	1	1
5.	NOT	AC= \(\overline{A} \)	1	-	0
IC 7404		0	•	1	
6.	EX-OR IC	F:-	0	0	0
	7486	A—————————————————————————————————————	0	1	1
		11	1	0	1
		B C=AB+BA	1	1	0

(ii) HALF ADDER

TRUTH TABLE

INPU	UTS	OUTPUTS		
A	В	S	C	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

BOOLEAN EXPRESSIONS:

 $\begin{array}{c} \textbf{S=A} \ \oplus \ \textbf{B} \\ \textbf{C=A} \ \textbf{B} \end{array}$

i) Basic Gates

Experiment 4: Simulation of Modulation Techniques: AM and FM

Aim: To modulate the message using AM and FM Techniques

Simulation Tool: Matlab

Procedure:

- (i) Open the MATLAB
- (ii) Create a new .m file
- (iii) Type AM program and run the program .observe the output in the figure window
- (iv) Type FM Program, provide the required input and run the program. Observe the output in the figure window.

Program:

<u>AM:</u>

clc;

clear all;

close all;

Ac=2; %carrier amplitude

fc=0.5; %carrier frequency

Am=.5; %message signal amplitude

fm=.05; %message signal frequency

Fs=100; %sampling rate/frequency

ka=1;%Amplitude Sensitivity

t=[0:0.1:50];%defining the time range & disseminating it into samples

ct=Ac*cos(2*pi*fc*t); %defining the carrier signal wave

mt=Am*cos(2*pi*fm*t); %defining the message signal

AM=ct.*(1+ka*mt); %Amplitude Modulated wave, according to the standard definition

subplot(3,1,1);%plotting the message signal wave

plot(mt);

ylabel('Message signal');

subplot(3,1,2); %plotting the carrier signal wave

plot(ct);

ylabel('carrier');

subplot(3,1,3); %plotting the amplitude modulated wave

plot(AM);

ylabel('AM signal');

<u>FM:</u>

```
clc
clear all
close all
t = 0:0.001:1; %upto 1000 samples
vm = input('Enter Amplitude (Message) = ');
vc = input('Enter Amplitude (Carrier) = ');
fM = input('Enter Message frequency = ');
fc = input('Enter Carrier frequency = ');
m = input('Enter Modulation Index = ');
msg = vm*sin(2*pi*fM*t);
subplot(3,1,1); %plotting message signal
plot(t,msg);
xlabel('Time');
ylabel('Amplitude');
title('Message ');
carrier = vc*sin(2*pi*fc*t);
subplot(3,1,2); %plotting carrier signal
plot(t,carrier);
xlabel('Time');
ylabel('Amplitude');
title('Carrier Signal');
y = vc*sin(2*pi*fc*t+m.*cos(2*pi*fM*t));
subplot(3,1,3);%plotting FM (Frequency Modulated) signal
plot(t,y);
xlabel('Time');
vlabel('Amplitude');
title('FM Signal');
```

MATLAB Input:

Enter Amplitude (Message) = 5 Enter Amplitude (Carrier) = 5 Enter Message frequency = 8 Enter Carrier frequency = 100 Enter Modulation Index = 10

