

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

GRISWOLD'S

POCKET COMPANION

For the Field.

COMPRISING

RULES FOR CALCULATING DEFLEXION DISTANCES AND ANGLES,

TANGENTIAL DISTANCES AND ANGLES, AND ALL

NECESSARY TABLES FOR ENGINEERS;

ALSO.

THE ART OF LEVELING FROM PRELIMINARY SURVEY TO THE CONSTRUCTION OF RAILROADS, INTENDED EXPRESSLY FOR THE YOUNG ENGINEER

TOGETHER

WITH NUMEROUS VALUABLE RULES AND EXAMPLES.

BY W. GRISWOLD.

PHILADELPHIA:
HENRY CAREY BAIRD,

INDUSTRIAL PUBLISHER, No. 406 WALNUT ST. 1866. Entered according to Act of Congress, in the year 1854, By W. GRISWOLD,

In the Clerk's Office of the District Court of the United States for the Northern District of New York.

PREFACE.

In offering this book to the patronage of the Assistant Engineer, I would wish to remark, that the book is composed of notes that I have long been collecting.

Every Engineer has his private book of Rules, that should he want for memory in the field, he has only to refer to his book.

This book I have intended for the same object.

For the benefit of the young Engineer, I have inserted the art of leveling, running levels (as it is termed) in plain language, from preliminary surveys to the construction of a railroad; the manner of taking cross sections of the road bed, and setting slope stakes, with its rules. Every feature of the book has a tendency to attract the attention of both the Assistant and the young Engineer.

Tables that would be more used by the Assistant Engineer, are inserted, which can be relied upon as correct, as I have taken them from reliable authors.

In the art of leveling, I have made no allowance for the Earth's curvature, as in practice upon railroads no allowance is ever made.

CONTENTS.

Explanation of Letters and Terms, PAG	₽E. 5
CURVATURE.	
To find the Radius of Curves from the Deflexion Angles, " " Distance, " a Curve from the Deflexion Angle, " a Segment of a Civile."	5 6
When the Angle at Vertex is given, and Radius, to find	6
the T. P., When the Distance from Vertex to T. P. and Angle given, to find Radius,	6
Having given the Internal Angle to find the T. P. of a given Radius,	7
Having given the Radius or Deflexion, and Internal Angle, to find the number of Chords that constitute the Curve,	7
Having the Angle at Vertex and Deflexion Angle given, to find the number of Chords that constitute the Curve,	7
With the distance from Vertex to P. C. or T. P. and Radius given to find the distance from Vertex to Curve, With the distance from Vertex to P. C. or T. P. and dis-	7
tance from Vertex to Curve given, to find Radius, To find the Radius corresponding to any given Angle of	8
Deflexion and to equal Chords of any given length, To find the Circumference of a Circle when the Diameter	9
is given, or the Diameter when the Circumference is given,	9
To find the length of an Arc of a Circle containing any number of Degrees,	9

To find the Length of an Arc of a Circle,	GE. 10 10
When the Chord, the Arc, and Chord of half the Arc are given, to find the length of an Arc.	10
To find the Circumference of an Ellipsis,	1)
Deflexion, and to equal Chords of any given length, With the Chord and Versed Sine given, to find the Ra-	12
dius	12
unite them with a Curve of a given Radius,	12
to find how many feet constitute the Curve,	14
Curve, to find how many Degrees and Minutes to turn off,	14
turn off in 100 feet, to find the number of feet necessary	14
to measure,	15
Example for Compounding a Curve,	16
dius,	17
ORDINATES.	
To find Ordinates or Chords of 100 feet,	19
proximately, To find the middle Ordinate to any given Radius and to	19
any given Chord,	19
Tabular Cosines,	22 22
To find the middle Ordinate approximately, Chords 100 feet,	23
To find the Ordinate for Railroad Bars,	23
of a Sub-chord, when the middle Ordinate is given,	24

CONTENTS.	vi
Mode of putting Ordinates for Track, When the Chord and Radius given, to find the middle Ordinate,	
DEFLEXION DISTANCE.	
To find the course of a Line that will connect two points on a given Straight Line, with the difference of Variation	25 25 26 27 27 27 28 28 28 28 30 31
given,	31
DEFLEXION ANGLES.	
To find the Deflexion Angle corresponding to any given Radius,	32 32
TANGENTIAL DISTANCE.	
To find the Tangential Distance for any number of feet less than 100 feet	33 33 33

CONTENTS.

TANGENTIAL ANGLES.
To find the Tangential Angle for a Chord of 100 feet, with any given Radius, 35 To find the Tangential Angle for any number of feet less
To find the Tangential Angle for any number of feet less than 100 feet. 35
To find the Tangential Angle for Chords of more than
100 feet
TRIGONOMETRY.
The smallest Angle and Hypothenuse given, to find the Length of the shortest Leg, (by natural sines,)
SURVEYING.
To Measure the Distances to any inaccessible object by Triangulation,
THE ART OF LEVELING.
To adjust a Level, 46 Manner of keeping Field Book, 55 Manner of keeping Grade Book, 58

CONTENTS.

Manner of preserving Notes in the Field,	64 n
Slope,	66
CROSS SECTIONS.	
Example how to take Cross Sections in leaving a Cut	
and entering an Embankment, or vice versa,	68
BORROWING PITS.	
The Manner of Measuring Borrowing Pits to ascertain the	
Quantities taken out,	69
Quantities taken out, Example of the Cross Section of Borrowing Pit,	71
Manner of keeping Notes of Original and Final Cross	
Sections,	74
MENSURATION OF SURFACES.	
To find the Area of a Right Angled Triangle,	75
" " Triangle,	75
" " by its sides,	75
" Rectangle or Square,	75
" " Rhombus or Rhomboid,	76
" "Trapezoid,	76
" " Trapezium,	
" Keguar Polygon,	76
inegular i orygon,	76
" " Figure, bounded on one side by a Straight Line.	77
To find the Area of a Circle when the Diameter and Cir-	••
cumference are both known,	77
To find the Area of a Sector of a Circle,	77
" " Segment of a Circle,	77
" an Ellipsis,	77
a Circular King of Space included be-	~ ^
	78 78
MENSURATION OF SOLIDS.	
To find the solid contents of a Cylinder.	78

m a 1				~			AGE
To find t	the solid co	ntents	s of a	Cone or	Pyrami	id,	. 78
"	"	"		Frustum	of a Cor	ne,	. 79
		•••		••	· Py	ramia,	. 73
To find t	he solidity	of a	Wedg	e,			79
	solid co	ontents					
"	"	"	"			,	
"		"				Sphere, $.$.	
"	solidity	r of a	Sphe	roid,			. 80
"	"	"	Segn	ent of a	Spheroid	i,	. 80
"	solid co	ntents	of a	Cylindri	c Ring,.		. 80
""	superfic	cial co	ntents	of a Boa	ard or P	lank,	. 81
"	solidity	of Ti	mber	,			. 81
Applicati	on to the T						
"	"	**	the i	solidity o	of Timb	er,	82
		MISC	ELL	ANIES.			
The differ	rent dimen	gions	of B	oves to	corregn	and with	
the Un	ited States	Stand	lard F	Inchele (Fallons	ete	84
	nine the am						
the sha	ne of an Ir	verte	l Con	permi or	errone in	u ressei	85
To detern	pe of an Ir nine the cor	tente	of Im	nerial G	allong in	a Kattle	00
forming	the Seam	ent of	a Circ	ele	ALLONIO III	a accide	85
Manner	g the Segme f calculatin	or the 1	Vatur	al Sines a	nd Cosir	es in the	00
Table		5 mc 1	·	a Sinos a	na cosn	105 111 0110	87
Table, .							01
		-	TABL	ES.			
m 11 e	D 1"						
Table of	Radii,						11
"	Ordinates,	20				20,	21
"	Deflexion						
"	Tangentia						
"	Long Cho						
"	Timber, F						
"	the Solidi						
-	English D						
"	" It	mperia	1 Wir	ie Measu	re,		86
"	the Dimen	sions	ot Dr	awing P	aper,	· · · · · · ·	86
"	Natural Si	nes. C	osine	s etc			90

RAILROAD ENGINEER'S

POCKET COMPANION

FOR THE FIELD.

EXPLANATION OF LETTERS AND TERMS.

P. C. Point of curve. E. C. End of curve.

T. P. Tangent point.

1 Station is equal to 100 feet.

A Plus Station is any number of feet less than 100.

B. S. Back sight. F. S. Fore sight.

Int. S. Intermediate sight. H. Ins. Height of instrument.

CURVATURE.

To find the radius of curves, from the deflexion angles, from chord to chord. (Chord 100 ft.)

RULE 1.

As angle of deflexion Is to the length of the chord, So is 57.3 to radius.

To find radius of curves, from the deflexion distance, from chord to chord. (Chord 100 ft.)

RULE 2.

The square of the chord, divided by the deflexion distance.

Example.—Deflexion distance = $3, \frac{40}{100}$ ft.; Square of chord 10,000; 3.49)10,000(2865, radius.

To find the radius of a curve, from the deflexion angle, on chord of 100 ft.

RULE 8.

Divide the radius of a one degree curve (5,730) by the degrees of deflexion of 100 ft.

To find radius of a segment of a circle.

RULE 4.

Square of half the chord, added to the square of versed sine, = square of chord of half the arc; and square of chord of half the arc, divided by versed sine, = diameter, $\frac{1}{2}$ = radius.

When the angle at vertex is given, and radius, to find the tangent point.

RULE 5

Multiply nat. tangent of half the whole angle in the curve, by radius of curve; will equal distance from vertex to tangent point.

When the distance from vertex to tangent point, and angle given, to find radius.

RULE 6.

Subtract the angle a b c, (Fig. 1) which is half the angle a b d, from 90°; the remainder will be the angle b c a.

Then say: As nat. sine of b c a is to nat. sine of a b c, so is a b or b d to the radius.

Having given the angle a b d, (Fig. 1) it is required to find the point a or d, at which to commence a curve, of a given radius.

RULE 7.

Subtract half the angle a b d from 90°, the remainder will be the angle b c a or b c d; then take the natural tangent of b c a or b c d, and multiply it by the given radius; the product will be b a or b d.

Having the given radius (Fig. 1) a c, or deflexion angle for 100 ft., of a curve, and the angle a b d, it is required to find the number of chords of 100 ft. that will constitute the curve.

RULE 8.

Subtract the angle a b d from 180° , and divide the remainder by the angle of deflexion in 100 ft.

Having the angle at vertex (Fig. 1) e b d, (which is the number of degrees in the curve,) and deflexion angle for 100 ft., to find the number of chords in that curve.

RULE 9.

Divide the number of degrees at vertex by deflexion angle.

With the distance $a \ b$ or $b \ d$, and radius $a \ c$ given, to find the distance from f to b, (Fig. 1.)

RULE 10.

The square of the distance from vertex to P. C. divided by twice the radius.

Example.—Suppose the distance from α to b = 511 ft., and radius = 1,910 ft.,

Then $511^2 = 261,121 \div 2 \times 1,910 = 68.2$, Answer.

NOTE.—The square of any distance, divided by twice radius, will equal the distance from tangent to curve, very nearly.

When the distance a b or b d is given, and distance f b, (Fig. 1) to find radius.

RULE 11.

Divide the square of the distance a b or b d by the distance f b, equals twice the length of radius, $\frac{1}{2}$ = radius.

Example.—Suppose the distance f b equals 68.2, and a b or b d equal 511.

STATEMENT. $-511^2 = 261,121 \div 68.2 = 3,820 \div 2 = 1,910$, radius.

To find the radius corresponding to any given angle of deflexion, and to equal chords of any given length.

RULE 12.

Subtract the angle of deflexion from 180°; then say: as nat. sine of angle of deflexion, is to nat. sine of half the remainder, so is the given chord to the radius required.

Example.— Let the angle of deflexion be 2°, and the chord 100 ft., required the radius.

Then $2^{\circ} - 180^{\circ} = 178^{\circ} \div 2 = 89^{\circ}$.

N. S. 2°. N. Sine 89°. Chord.

Statement. - 0.0349:.999848::100:2865, radius.

To find the circumference of a circle, when the diameter is given, or the diameter, when the circumference is given.

RULE 18.

Multiply the diameter by 3.1416, equals circumference; or, divide the circumference by 3.1416, equals diameter.

2d. As 7 is to 22,

So is the diameter to the circumference.

Or, as 22 is to 7,

So is the circumference to the diameter.

To find the length of an arc or circle, containing any number of degrees.

RULE 14.

Multiply the number of degrees in the given arc,

by 0.0087266, and the product by the diameter of the circle.

NOTE.—The circumference of a circle, whose diameter is 1, is 3.1416; it follows, that if 3.1416 be divided by 360°, the quotient will be the length of an arc of 1 degree, = 0.0087266.

REMARK.--When the arc contains degrees and minutes, reduce the minutes to a decimal of a degree.

To find the length of any arc of a circle.

RULE 15.

Subtract the chord of the whole arc from 8 times the chord of half the arc, and $\frac{2}{3}$ of the remainder is the length of the arc, nearly.

When the chord of the arc, and the chord of half the arc, are given.

From the square of the chord of half the arc, subtract the square of half the chord of the entire arc; will equal the square of the versed sine; extract the square root; will equal versed sine—the versed sine and the chord given—the square of $\frac{1}{2}$ the length of the chord, added to the square of the versed sine, and square root of the remainder, will equal chord of $\frac{1}{2}$ the arc; multiply the remainder by 8, subtract the chord of the whole arc, and divide by 3, equals length of arc.

To find the circumference of an ellipses.

RULE 17.

Half the sum of the two diameters, multiplied **b**• 3.1416; the product will equal circumference.

CURVATURE.

TABLE OF RADII - CHORDS 100 FT.

		1	1	1	1	1	1
Angle of Deflexion.	i.i.	Angle of Deflexion.	ä	Angle of Deflexion.	Radius in Feet.	Angle of Deflexion.	Ę.
N. Se	نب يع	xio	8 +3	xi e	5 to	ğ.e	34.
Angle of Jettexion,	Fee	He He	Radius i Feet.	He He	Ferin	ffe	F. g.
A Q	Radius Feet.	₹ă.	24	ΑĞ	Ag.	ΑĞ	Radius i Feet.
01	1	0 1	1	01		01	
0 15	22920	8 15	695.1	16 15	353.8	24 15	238.0
30	11460	30	674.6	30	348.4	30	235 6
45	7640	45	655.5	45	343.3	45	233.3
1	5730	9	637.3	17	338.3	25	231.0
15	4584	15	620.2	15	333.7	15	228.7
30	3820	30	603.8	30	328.7	30	226.5
45	3274	45	588.4	45	324.8	45	224.3
2	2865	10	573.7	18	3196	26	222.3
15	2547	15	559.7	15	315.2	15	220.6
30	2292	30	546.4	30	311.0	30	218.0
45	2084.0	45	533.8	45	306.9	45	216.0
3	1910	11	521.7	19	3029	27	214.2
15	1763	15	510.1	15	299.4	15	212.2
30	1637	30	499.1	30	2953	30	2103
45	1528	45	488.5	45	291.5	45	208.5
4	1433	12	478.3	20	287.9	28	206.7
15	1348	15	468.7	15	284.4	29	199.7
30	1274	30	4593	30	280.9	30	193.2
45	1207	45	450.3	45	277.6	31	187.1
5	1146	13	441.7	21	274.4	32	181.4
15	1092	15	433.4	15	271.1	33	176.0
30	1942	30	425.5	30	268.0	34	171.0
45	996.8	45	417.7	45	265.0	35	166.3
6	955.4	14	410.3	22	262.0	36	161.8
15	917.0	15	403.1	15	260.0	37	157.6
30	882.0	30	396.2	30	257.4	38	153.6
45	849.3	45	389.6	45	254.6	39	149.8
7	819.0	15	383.1	23	250.8	40	146.2
15	790.8	15	376.9	15	248.1	45	136.5
30	764.5	30	370.8	30	245.5		
45	7399	45	365.0	45	242.9	1	1
8	716.8	16	359.3		240.5		l
		· !					

2

To find the radius corresponding to any given angle of deflexion, and to equal chords of any given length.

RULE 18.

Subtract the angle of deflexion from 180°; then say: as nat sine of angle of deflexion is to nat sine of half the remainder, so is the given chord to the radius required.

With the chord and versed sine given, to find the radius.

RULE 19.

The square of half the chord divided by versed sine; to which add the versed sine, and divide by 2.

Example.—Suppose we have an arc (Fig. 2) with a chord a d of five feet, and versed sine e b two feet, what is the radius a c?

Statement.— $5 \div 2 = 2 \cdot 5^2 = 6 \cdot 25 \div 2 = 3 \cdot 125 + 2 = 5 \cdot 125 \div 2 = 2 \cdot 5625$, radius a c.

We have two tangents with their courses given. We wish to unite those tangents, with a curve of a given radius. Suppose we have a tangent whose course is $N.30^{\circ}$ E., (Fig. 3) which we wish to unite with a 3° curve to a tangent whose course is $S.50^{\circ}$ E. We here find we have the difference of courses to be 100°. According to Rule 8, page 7, and Rule 20, page 14, we have 3.333_{100}^{33} ft. to run. We start on the first given tangent, and run 3.33_{100}^{33} ft. If our curve does not form a tangent of the line ge, but touches the point c, we measure in a line the same course of the first tangent, $N.30^{\circ}$ E, to its intersection, which distance you measure backward or forward for P. C.

Fig. 3.

Example.—We have the tangent a b, N. 30° E., and tangent e g, S. 50° E.; we wish to join those two tangents with a 3° curve.

STATEMENT.— T. N. 30° E. and T. S. 50° E. = 100°, angle of deflexion, which makes 100° in the curve; consequently, the number of feet in the curve

(chords 100 ft.) = $100^{\circ} \div 3 = 33$ stations and $33\frac{3}{100}$ ft. = $3,333\frac{3}{100}$ ft. We start from the tangent a b, at the point l, and run $3,333\frac{3}{100}$ ft., turning off for a 3° curve, and find, when arriving at our tangent, we are 250 ft. from the line, as d c; we then return and measure the same distance on the tangent a b from l. to P. C.

With the angle at vertex given, and degree of curvature, to find how many feet constitutes the curve.

RULE 20.

Divide the number of degrees at vertex, by degree of curvature.

Example.—We have the angle at vertex = 100° , and degree of curvature = 3° .

Statement.— $100^{\circ} \div 3^{\circ} = 33$ stations and $33\frac{33}{100}$ ft. = $3.333\frac{33}{100}$ ft.

If there is any number of feet less than 100 ft., in your curve, to find how many degrees and minutes to turn off.

RULE 21.

Say: as 100 ft. is to the number of feet you wish to run, so is the number of degrees and minutes to the number of degrees and minutes you wish to find.

Example.—Suppose you turn off in every 100 ft., 1° 30′, how much will it be necessary to turn off in 33 ft.?

STATEMENT.—100:33::1° 30':30', Answer.

Suppose you have a less number of degrees and minutes, than you turn off in 100 ft., to find the number of feet necessary to measure.

RULE 22.

As the whole number of degrees and minutes is to the number of degrees and minutes you wish to turn off, so is the chord, 100 ft., to the number of feet required.

Example —We turn off in 100 ft. 1° 30′, we wish to find the number of feet to measure for 30′.

Statement.—1° 30':30'::100:33, Answer.

With the angle a b d, (Fig. 4) and distance a b given, to find radius a c.

RULE 28.

Half the angle a b d taken from 90° = angle a c b. Then say: as nat. sine of a c b is to nat. sine of a b c, so is the given side a b or b d to the radius a c.

NOTE.—This rule is often used in compounding curves, where the curve you have run does not fit the tangent, by measuring from a given point, on a tangent, to curve already run, to the tangent you wish to connect, as $b \, l$ (Fig. 5) and measuring the angle $c \, d \, l$, and proceed according to rule 23.

Thus in Fig. 5, we run our curve to n, and find that it does not come in tangentially to the tangent b l, therefore to save loss of time, in long curves, we retrace our steps to the point c, and measure tangentially to curve a c, as c d to the tangent b l, and measure the angle c d l, and form a new radius, as c g or e g.

We oftentimes have two different angles in a line, and in such close proximity that it is required to put in reversed curves (Fig. 6) that will connect with the greatest possible radius; we then wish to find the greatest radius a h and e g that will connect the tangents with a reversed curve.

RULE 24.

Half the angle a b e taken from 90° leaves the angle b h e or a h b, and half the angle b n d taken from 90° leaves the angle e g n. From the table of nat. tangent take the nat. tangent of b h e or a h b and nat. tangent of the angle e g n and add them together.

Then say: as the sum of these two nat. tangents is to the nat. tangent of b h e, so is the distance b n to b e.

Again, in the triangle b h e, as the nat. sine of the angle b h e, opposite the given side b e just found, is to the nat. sine of the angle h b e, opposite the required side h e, so is b e to h e, the radius required.

Example.—Let the angle a b n be 71° 40′, the angle b n d 129° 15′, and the distance b n be 950 ft., what is the length of the radius b e or e g?

Statement 1st.— $71^{\circ} 40' \div 2 = 35^{\circ} 50' - 90 = 54^{\circ} 10'$.

 $129^{\circ} \ 15' \div 2 = 64^{\circ} \ 37\frac{1}{2}' - 90 = 25^{\circ} \ 22\frac{1}{2}'.$

Nat. tangent of $54^{\circ} 10' = 1.3848$.

Nat. tangent of 25° $22\frac{1}{2}' = 0.4743 + 1.3848 = 1.8591$.

Sum. N. tang. 54° 10^{\prime} b n b c Then as 1.8591:1.3848::950 ft.: 707.63 ft.

Again, 950 - 707.63 = 242.37 ft. = e n.

Sine b h e. N. sine h be.

STATEMENT 2d.—0.8107:.5854::707.63:510.97, radius required.

Hence, we have the distance h e and e g = 510.97 ft., and distance b e 707.63 ft., and distance e n 342.37 ft., and degree of curvature equal to 11° 16′ for chords of 100 f

The radius of a curve is always at right angles with its tangent.

When running curves with a compass, or transit instrument, always turn off on the vernia, one-half the number of degrees as contains degrees of curvature; because when running with an instrument, you are running tangential angles instead of deflexion angles, and the tangential angle equals one-half the deflexion angle.

ORDINATES.

To find ordinates on chords of 100 ft.

RULE 1.

The product of the segment, divided by twice the radius.

EXAMPLE.—Suppose the radius = 2.865 ft.; what would be the ordinate for 25 ft.? (Chords 100 ft.) $25 \times 75 \div 5.730 = 0.327$.

Rule for getting the ordinate for 50 ft. and 25 ft. approximately.

For an ordinate of 50 ft., divide the deflexion distance for 100 ft. by 8. For 25 ft. three-fourths of the ordinate for 50 ft.

Example. — Suppose the deflexion = 3° , which deflexion distance = $5 \cdot 235 \div 8 = 0 \cdot 654$, ordinate for 50 ft., and three-fourths of $0 \cdot 654 = 0 \cdot 491$, ordinate for 25 ft.

To find the middle ordinate to any given radius, and to any given chord.

RULE 8.

From the square of the radius, subtract the square of half the chord, and take the square root of the remainder from the radius = middle ordinate.

EXAMPLE.—What is the length of the middle ordinate d e, (Fig. 1) the radius a c being 2.5625, and chord a b 5 ft.

Statement.— 2.5625^2 — $2.5^2 = \sqrt{.316406} = .5625$ —2.5625 = 2 ft., middle ordinate.

TABLE OF ORDINATES - CHORDS 100 FT.

Angle of Deflexion.	Length of Ordinates in Feet.									
Ang	50	45	40	35	30	25	20	15	10	5
0 5 10 15 20 25 30 35 40 45 50 55 10 25 10 25 55 10 25 10	018 036 054 073 091 109 127 145 163 182 236 254 273 327 345 382 400 408 434 436 454 473	018 036 054 072 090 108 126 144 161 180 198 216 234 252 270 288 306 324 342 360 378 398 444 4432 456	017 -035 -052 -070 -087 -105 -123 -140 -157 -175 -192 -209 -226 -244 -261 -279 -296 -331 -349 -366 -384 -401 -419 -436 -454	016 033 049 066 082 099 116 133 149 166 182 198 215 231 248 248 2264 287 314 330 397 413 430	015 031 046 061 076 092 108 123 137 168 183 198 214 229 244 259 290 305 331 366 382 387	014 027 041 055 068 082 096 110 123 138 151 164 178 191 225 2246 2259 273 304 327 341 327 341 355	012 023 035 047 058 070 082 093 105 117 128 140 152 163 175 187 198 221 223 225 256 268 280 291 303	009 019 028 037 046 055 074 092 102 1120 139 148 157 176 185 204 213 222 232 241	-006 -013 -019 -026 -032 -039 -045 -052 -058 -071 -078 -085 -098 -085 -091 -098 -104 -117 -124 -137 -144 -130 -157 -163 -170	-003 -007 -010 -014 -017 -021 -021 -031 -034 -041 -048 -051 -058 -065 -065 -065 -072 -076 -079 -076 -079 -083 -088 -089
15 20 25 30 35 40 45	·491 ·509 ·527 ·545 ·564 ·582 ·600	·486 ·504 ·522 ·540 ·558 ·576 [·594	•471 •489 •506 •524 •541 •559 •576	·446 ·463 ·480 ·496 ·513 ·529 ·546	·412 ·428 ·443 ·458 ·474 ·489 ·504	·368 ·382 ·396 ·409 ·423 ·436 ·450	·315 ·326 ·338 ·350 ·361 ·373 ·384	·250 ·260 ·269 ·278 ·288 ·297 ·306	·176 ·183 ·190 ·196 ·203 ·209 ·216	·093 ·096 ·100 ·103 ·107 ·110 ·114
50 55 3 5 10 15	·618 ·636 ·654 ·673 ·691	612 630 648 666 684	·594 ·611 ·629 ·646 ·664	·562 ·579 ·595 ·612 ·629 ·645	·519 ·535 ·550 ·565 ·581	·464 ·477 ·491 ·504 ·518 ·532	·396 ·408 ·419 ·431 ·443 ·454	·315 ·325 ·334 ·343 ·353	·222 ·229 ·235 ·242 ·249	·117 121 ·124 ·128 ·131
20 25 30 35 40 45 50	709 727 745 764 782 800 818 836	702 720 738 756 774 792 810 828	·681 ·699 ·716 ·734 ·751 ·769 ·786 ·804	·662 ·678 ·695 ·711 ·728 ·744 ·761	596 611 627 642 657 673 688 703	·545 ·559 ·573 ·586 ·600 ·613 ·627	466 •478 489 •501 •512 •524 •536	362 371 380 390 399 408 418 427	255 262 268 275 281 288 294 301	134 138 141 145 148 152 155 159
4 55	854 873	846 864	·821 ·839	778 -794	·718 ·734	·641 ·654	·547 ·559	436 445	·308 ·314	·162 ·166

ORDINATES.

TABLE OF ORDINATES - CHORDS 100 FT.

Angle of Deflexion.		Length of Ordinates in Feet.								
Ang Defie	50	45	40	35	30	25	20	15	10	5
7 30 8 30 9 30 10 30 11 30 112 113 114 115 116 117 118 119 220 222 232 24	927 981 1-036 1-091 1-146 1-250 1-255 1-252 1-473 1-528 1-637 1-746 1-855 2-074 2-183 2-292 2-401 2-511 2-523 3-406 3-395 4-40	918 972 1-026 1-030 1-134 1-246 1-246 1-246 1-246 1-256 1-32	-891 -944 1-1048 1-100 1-1048 1-100 1-1258 1-362 1-362 1-362 1-415	-844 -893 -943 -993 -1092 -1141 -1290 -1389 -1488 -1587 -158	780 825 871 963 825 871 963 825 1917 963 825 1917 1909 11955 11284 11376 11559 2918 1284 12926 82110 2203 3365 2941 423 3368 4423 4423	25 -695 -736 -777 -818 -859 -941 -982 -1064 -11064 -	594 629 629 734 699 909 909 909 1048 1328 1458 1458 1538 1538 1538 1538 1538 1538 1538 15	473 501 529 557 585 5613 640 5613 6613 6613 6613 6613 6613 6613 6614 6615 6615 6615 6615 6615 6615 6615	334 354 353 333 333 433 432 452 452 551 5551 559 669 946 946 946 1264 11264 11583 11784 11583 11784 11884 11884 11884	176 176 176 176 179 179 179 179 179 179 179 179 179 179
25 26 27 28 29 30 31 32 33 34 35 36 37 38	5 476 5 697 5 918 6 139 6 361 6 582 6 804 7 027 7 249 7 472 7 694 7 918 8 143 8 367	5·422 5·642 5·860 6·079 6·298 6·517 6·737 6·957 7·178 7·398 7·619 7·841 8·03 8·286	5·260 5·473 5·685 5·898 6·110 6·323 6·537 6·751 6·965 7·179 7·393 7·609 8·041	4·989 5·192 5·393 5·596 5·796 6·202 6·406 6·609 6·813 7·017 7·222 7·427 7·633	4·609 4·798 4·984 5·171 5·357 5·544 5·733 5·922 6·111 6·300 6·489 6·679 6·870 7·060	4 119 4 286 4 454 4 622 4 790 4 958 5 127 5 297 5 467 5 807 5 978 6 149 6 320	3·522 3·665 3·808 3·952 4·095 4·239 4·384 4·530 4·676 4·822 4·968 5·115 5·262 5·410	2:809 2:924 3:039 3:154 3:269 3:385 3:502 3:619 3:737 3:854 3:972 4:099 4:327	1 986 2 068 2 150 2 232 2 314 2 396 2 481 2 565 2 649 2 733 2 817 2 901 3 069	1 051 1 1094 1 137 1 181 1 1224 1 1258 1 312 1 356 1 401 1 1445 1 1581 1 1581 1 1626

RULE 4.

Subtract the tabular cosine of the tangential angles from 1, and multiply the remainder by the radius. (Chords 100 ft.)

Example.—Radius 819 ft., angle of deflexion would be 7° to chord of 100 ft; what will be the length of the middle ordinate?

STATEMENT.—Here tabular cosine of the tangential angle $3\frac{1}{2}^{\circ} = .998135$, which, subtracted from 1 = .001865, which, multiplied by radius, 819 ft., = ordinate, 1.528.

Having the middle ordinate d e, (Fig. 1) it is required to find any other ordinate, as i n.

RULE 5.

Subtract the middle ordinate d e, from the radius a c, the remainder will be e c; from the square of the radius a c, subtract the square of the distance o i

or e n, and extract the square root of the remainder; this square root will be o c; subtract e c from o c; the remainder will be o e, which is equal to i n, the required ordinate.

EXAMPLE.—The middle ordinate d e (Fig. 1) of a 100 ft. chord a b, to a radius of 819 ft. = 1.52; it is required to find the length of the ordinate i n 20 ft. from the middle one d e.

Statement.
$$-819 - 1.528 = 817.472$$
.

Again, $819^2 = 670761 - 20^2 = \sqrt{670361} = 818.756$ = 0 c - 817.472 = 1.284, will equal 0 e or i n, the required ordinate.

To find middle ordinate approximately. Chord 100 ft.

RULE 6.

Multiply the ordinate of a 1° curve by the deflexion angle of 100 ft. This rule is sufficiently close for curves of not less than 500 ft. radius.

2d. Multiply the chords together, and divide by twice the radius.

To find the ordinate for a railroad bar a c b (Fig. 2) 24 ft. long.

Multiply one-half the length of the rail by onefourth its length, and divide by the radius. Example.—Rail 24 ft. long, radius 5730.

STATEMENT. $-24 \div \frac{1}{2} = 12 = \frac{1}{2}$ the length of rail. $24 \div \frac{1}{4} = 6 = \frac{1}{4}$ the length of rail. Then $6 \times 12 = 72 \div 5730 = 0.01$, ordinate required.

2d. Take one-fourth of the square of the length of

the rail, and divide it by twice the radius.

An approximate rule for calculating the middle ordinate of a sub-chord, when the middle ordinate is given. (Chord 100 ft.)

RULE 8.

As the square of the length of the whole chord is to the square of the length of the sub-chord, so is the middle ordinate of the chord to the middle ordinate of the sub-chord.

EXAMPLE.—Chord 100 ft., middle ordinate ·218, what will be the middle ordinate of the sub-chord 50 ft.?

STATEMENT. -- 1002: 502:: 218: 0545.

Fig. 3.

In running a curve for track, after the grading is done, it is necessary to put in intermediate ordinates, if the curve exceeds 1°; (Fig. 3) these intermediates are from 10 to 20 ft. apart, and instead of running these intermediates with an instrument, the best

method is, after your points are put in with an instrument 100 ft. apart, to draw a small cord or twine, as a b, and measure off your ordinates with a graduated rod, or with the leveling rod.

Note.—Refer to Rule 1, page 19 for intermediates or to table.

When the chord and radius are given, to find middle ordinate. (Chord 100 ft.)

RULE 9.

Divide the square of the chord by eight times the radius.

DEFLEXION DISTANCE,

To find the deflexion distance for 100 ft., with any given radius.

RULE 1.

The square of the chord divided by the radius.

RULE 2.

Divide the constant number 10,000 (chords 100 ft.) by the radius in feet, equals deflexion distance.

To find the deflexion distance for any given radius for chords of 100 ft.

RULE 8.

Divide the given chord by radius, will give the natsine of the deflexion angle, which, multiplied by the chord, will equal the required distance.

NOTE.—The tangential distance for 100 ft. is equal to one-half the deflexion distance, and the tangential angle is always equal to one-half the deflexion angle.

In putting in curves by deflexion distances it is quite necessary, for accuracy, to measure both on the line of deflexion and chord of the arc, as a b and a c, (Fig. 1) by first finding your point b, and swinging your chain to c, and measuring your deflexion distance on the line b c.

In commencing your curve on the tangent e d you

measure your distance f d, and lay off a d equal to one-half b c, or one-half the deflexion distance, as a d is the tangential distance, and the tangential distance is equal to one-half the deflexion distance.

If you wish to put in intermediates, as it frequently occurs, at the end of a curve.

RULE 4.

Find your deflexion distance for 100 ft., string a line, and put in the required ordinate.

To find the deflexion distance for any number of feet less than 100.

RULE 5.

Take the deflexion distance for 100 ft. and multiply it by the required chord, and divide the product by the length of the whole chord, 100 ft., and subtract the ordinate corresponding in feet and degree.

Example.—We wish to get the deflexion distance for 25 ft., for a 15° curve.

STATEMENT.—Deflexion distance equals 26:11 ft, therefore:

 $26.11 \times 25 = 652.75 \div 100 = 6.5275$.

Now the ordinate of a 15° curve for 25 ft. = 2.462, and 6.5275 - 2.462 = 4.0655, deflexion distance for 25 ft.

Note.—The above Rule is sufficiently close for all practical work.

Where it is required to find the deflexion or tangential distance for more than 50 ft., subtract the distance to be found from 100, and find the ordinate corresponding to the remainder in feet.

To find the deflexion point for any number of feet, at commencement of curves and ending, where the distance is less than 100 ft.

RILE 6.

In commencing a curve, multiply the tangential distance in feet by the number of feet in the chord you wish to find, and divide the product by the length of the whole chord, 100 ft., and measure the distance on the end of a 100 ft. chord; then a line drawn from this point to the *P. C.*, the length of the chord measured you desire to find, on this line, is the point of deflexion.

RULE 7.

To end your curve: Take half the deflexion distance for 100 ft., then multiply the remaining distance (which is the tangential distance,) by the number of feet you wish to find, and divide the product by the length of the whole chord, 100 ft., and measure on the tangential distance, the distance just found; then string a line from this point to the last station given, and measure, on this last given line, the distance required, will give the T. P. or E. C.

To form a tangent to the curve: Measure as many feet more on the tangential distance, and a line drawn from the last given point to T. P. or E. C. will be the course of the tangent.

Example to Rule 6.—Suppose in commencing a curve we wish to find the deflexion distance of 25 ft. as at r, (Fig. 2) for a 15° curve. We take the tangential distance c f and multiply it by 25 ft., and divide by 100 ft., (the length of the whole chord,) will equal the distance c s; now if we measure in the

line b s 25 ft. from b to r, at r will be the required point. We then measure 100 ft. from r to d, in line with b r, and measure the deflexion distance d e, equal to twice c f, for our next full station. We then measure 100 ft. on the line r e from e to the point h, and measure the distance h i for our next station, so on to the last station.

Example to Rule 7.—Suppose in ending our curve we wish to find the deflexion distance for 25 ft., to conclude the curve; (Fig. 2) suppose i to be the last station in the curve. and the point t 25 ft., to be the E. C.; we produce the line e i to k 100 ft. from i, and measure one-half the deflexion distance, $k \ o = l$, then multiply the distance k l by 25 ft., and divide by the length of the whole chord i k, 100 ft., will equal the distance lm, and on the line drawn from m to i, 25 ft. measured from i to t, on this line i m, will be the required point. To form a tangent to the point t, measure m y equal to l'm, will form the tangent t n to the curve.

TABLE OF DEFLEXION DISTANCES.

Deflexion ;Angle.		Length o" Chords in Feet.					
Defic	100	75	50	25			
0 30	.872	0.572	0.247	0.136			
45 1	1·308 1·745	0·899 1·144	0·491 0·654	0·204 0·272			
30	2.618	1.717	0.982	0.408			
45	3.054	2.003	1.145	0.476			
2	3490	2.290	1.309	0.545			
30	4.363	2.863	1.636	0.681			
45	4.799	3.419	1·799 1.963	0.749			
3	5·235 6·108	3·435 4·008	2290	$0.818 \\ 0.954$			
$\frac{30}{45}$	6.544	4.295	2.454	1.023			
4	6.980	4.581	2:617	1.091			
30	7.853	5.153	2.945	1.227			
45	8.289	5.440	3.108	1.295			
5	8.722	5.723	3.270	1.362			
6	10.470	6.870	3.926	1.635			
7	12.210	8.011	4·577 5·229	1·906 2·177			
8 9	13.950 15.680	9·152 10·286	5.875	2.446			
10	17:430	11:435	6.532	2.720			
11	19.170	12.575	7.184	2.990			
12	20.940	13.738	7.850	3.268			
13	22.640	14.848	8:481	3.528			
14	24.370	15.980	9.127	3.795			
15	26.110	17.120	9.778	4.065			

If two lines vary any number of degrees, to find the distance approximately at their extremities.

RULE 8.

Say; If they vary 1.745 in 1° for 100 ft, it will vary thirty times as much in an angle of 30° for

100 ft.; if it is more than 100 ft., make a second statement.

EXAMPLE.—Suppose we have an angle of 30° and 400 ft. long, what is the distance apart at their extremities?

STATEMENT.—As 1°:30°::1.745:52.35; 52.35 is the difference for 100 ft.

Then as 100 ft.: 400 ft.::52·35:209·4, the difference for 400 ft.

Suppose we run a line, on a given course, with the intention of striking a certain point, and find that we deviate from that point, to find the course of the second line that will unite these two points on a straight line.

RULE 9.

Multiply the difference of variation in feet by 57.3,* and divide the product by the length of the line, the quotient either added or subtracted, as necessity requires, will be the course of the line that will unite the two points together.

Example.—Suppose the difference of variation = 209.4 ft., and length of line 400 ft., and course N. $29^{\circ} 59\frac{3}{4}$ E, what would be the course of the second line, if the point desired is N. W. of the line run?

Statement.— $209.4 \times 57.3 \div 400 = 29.9965 = 29^{\circ} 59\frac{3}{4}'$.

Then course $N. 29^{\circ} 59\frac{3}{4}{}'E - 29^{\circ} 59\frac{3}{4}' = \text{course}$ $N. 0^{\circ} E$.

^{*57.3} is the radius of a circle (nearly) in such parts as the circumference contains 360.

DEFLEXION ANGLE.

To find the deflexion angle corresponding to any given radius. (Chords 100 ft.)

RULE 1.

Divide the chord by the radius; the quotient will be the natural sine of the deflexion angle; therefore, the number of degrees corresponding to this sine, in the table of nat. sines, equals the deflexion angle.

BIILE 2.

The deflexion angle may be found by dividing the radius of a 1° curve, 5730, by the radius in feet, (approximately.)

To find the deflexion angle for any plus distance, or less than 100 ft.

RULE 3.

Multiply one-half the deflexion angle by the plus distance, and divide the product by 100 ft., (length of whole chord,) and add it to one-half the deflexion angle.

Example.—Suppose we are running a 15° curve by deflexion distances; we wish to find the deflexion angle for 25 ft.

Statement.— $15^{\circ} \div 2 = 7^{\circ} 30'$, one-half the deflexion angle.

Then, 7° $30' \times 25 = 187^{\circ}$ $30' \div 100 = 1^{\circ}$ $52\frac{1}{2}'$. Then, 1° $52\frac{1}{2}' + 7^{\circ}$ $30' = 9^{\circ}$ $22\frac{1}{2}'$, deflexion angle for 25 ft.

For deflexion angles corresponding to any given radius, refer to table of radii, page 11.

TANGENTIAL DISTANCE.

To find the tangential distance for any radius, on chords of 100 ft.

RULE 1.

Divide the square of half the chord (50 ft.) by the radius, and multiply the quotient by two.

RULE 2.

Divide the square of the whole chord by twice the radius.

To find the tangential distance for any number of feet less than 100.

RULE 8.

Multiply the tangential distance for 100 ft. by the number of feet required, less than 100 ft., and divide the product by 100 ft., and from the quotient take the ordinate corresponding to the degree of curvature and feet; will equal the tangential distance for the required number of feet, less than 100 ft.

To find the tangential distance for any number of feet.

RULE 4.

Divide the square of the chord given by twice the radius.

In running curves, with equal chords on more than 100 ft., the tangential distances increase as the squares of the number of chords: thus, for 2, 3, 4, 5, 6 chords, 4, 9, 16, 25, 36, multiplied into the tangential distance of 1 chord, will equal each tangential distance respectively.

Or: the square of the length of the chord divided by twice the radius, will equal the tangential distance for any number of feet.

TABLE OF TANGENTIAL DISTANCES.

Deflexion Angle.	Length of Chords in Feet.							
Defle Ang	100	75	50	25				
0 30	0.436	0.245	0.109	0.027				
45	0 654	0.367	0.164	0.040				
1	0.873	0.490	0218	0.054				
30	1.309	0.736	0.327	0.081				
$\frac{30}{45}$	1.527	0.858	0.381	0.095				
2^{43}	1.745	0.981	0.436	0.109				
~ 30	2.182	1.227	0 546	0.136				
45	2.399	1:349	0.599	0.150				
3	2.618	1.472	0.655	0.163				
30	3.054	1.717	0.763	0.190				
45	3.272	1.841	0.818	0.205				
4	3.490	1.963	0.872	0.218				
30	3.927	2.209	0.982	0.246				
45	4.145	2:331	1.036	0.259				
5	4:361	1.452	1:089	0.272				
30	4.798	2.698	1.199	0.299				
45	5 015	2.820	1.252	0.312				
6	5.235	2:944	1.308	0.326				
7	6.105	3.432	1.524	0.380				
8	6.975	3.924	1.741	0.433				
9	7.840	4.406	1.955	0.486				
10	8.715	4 899	2.174	0.541				
11	9.585	5:387	2:391	0.594				
12	10.470	5.885	2.615	0.650				
13	11:340	6.373	2 831	0.703				
14	12 210	6.860	3.047	0.755				
15	13.080	7.348	3.263	0.808				

TANGENTIAL ANGLES.

To find the tangential angle for a chord of 100 ft., with any given radius.

RULE 1.

Divide half the chord by the radius; the quotient will be the natural sine of the tangential angle; and the angle corresponding to this sine, in the table of nat sines, is the angle required.

To find the tangential angle for any number of feet less than 100 ft.

RULE 2.

Multiply the tangential angle by the number of feet given, and divide the product by the length of the whole chord, (100 ft.)

Example.—Suppose we have the tangential angle = 7° 30', and wish to find the angle for 25 ft.

Statement.— 7° 30' × 25 ft. ÷ 100 ft. = 1° 52½', tangential angle for 25 ft.

Sometimes in running curves it is not necessary to set points in every chord, or 100 ft., and is more expedient, as running curves on a preliminary survey. They can be put in every 2, 3, or 400 ft., as you choose. We wish to find the tangential angle for any number of chords.

RULE 8.

Multiply the tangential angle for 100 ft. by the number of chords you wish to subtend, will equal the tangential angle required.

REMARK.—In running curves, the correct way of measuring with a chain for each station, is to measure around the curve. Instead of this the chain is stretched across, forming a chord; the difference of distance is so comparatively small to a radii of 500 ft., that it is not necessary we should measure around, or make an allowance on the chain; but in running curves with long chords of 3, 4, or 500 ft., it is necessary, for accuracy, to make sufficient allowance, for which I will put in a table of long chords the lengths necessary to subtend from 1 to 4 stations.

Length of Chords in Feet required to Subtend. 1 Station. 2 Stations. 3 Stations. 4 Stations. 0123456 200 100 300 400 100 200 299.9399.7299.7 100 200 399.3100 199.9299.6 398.9 100 199.9299.2398.0100 199.7 397.3 298.87 100 199.6 298.4396.28 100 199.6298.0395.19 100 199.4297.5394.110 100 199.2297.0392.4

TABLE OF LONG CHORDS.

To find the length of long chords.

RULE 4.

Multiply the natural sine of the tangential angle of the given chord by twice the radius.

EXAMPLE.—The tangential angle for one station = 5°, and radius = 573.7 ft; what would be the length of the chord of four stations?

Statement.—The tangential angle for four stations would equal $4 \times 5^{\circ} = 20^{\circ}$, and nat. sine of $20^{\circ} = 3420201$; twice the radius = $1147.4 \times .3420201 = 392.4$, length of chord necessary to subtend an arc of four stations.

TRIGONOMETRY.

The angle a given, (Fig. 1) and hypothenuse given, to find the leg c b.

RULE 1.

By natural sines.—As unity, or one, is to the length of the hypothenuse, so is the natural sine of the smallest angle to the length of the shortest leg.

Example. — Given the angle b a c 35° 30', and hypothenuse 25 rods; to find c b.

STATEMENT.-1:25::0.580703:14.5175.

To find the length of the leg a b.

RULE 2.

The difference of the sums of the squares of the legs a c and c b, and extract the square root; will equal the leg a b.

EXAMPLE.—Given the leg a c 25 rods, and leg c b 14.5175; to find the leg a b.

STATEMENT.
$$\sqrt{25^2 - 14.5175^2} = 20.35$$
.

To find the leg a b, (Fig. 1.)

RULE 8.

By nat. sines.—As unity, or one, is to the nat. sine of the angle a c b, so is the hypothenuse to the leg a b.

Example.—Given the hypothenuse 25 rods, and angle $a \in b$ 54° 30′; to find the leg a b.

STATEMENT.-1:0.8141155::25:20.35.

The angles and $\log a b$ given, (Fig. 1) to find the hypothenuse a c, and $\log b c$.

RULE 4.

By nat. sines.—As the nat. sine of the angle opposite the given leg a b is to the length of given leg, so is unity, or one, to the length of the hypothenuse.

EXAMPLE.—Given the angles $a c b 54^{\circ} 30'$, and $b a c 35^{\circ} 30'$, and leg $a b 20\frac{35}{100}$ rods; to find the leg a c.

STATEMENT.—0.8141155:20.35::1:25.

Refer to Rule 2, page 38.

To find $\log c b$ by nat. sines.

RULE 5.

As the nat. sine of the angle a c b, opposite the given leg, is to the given leg, so is the nat. sine of the angle b a c, opposite the required leg; to the leg c b.

EXAMPLE.—Given the angle a c b (Fig. 1) 54° 30', and angle b a c 35° 30', and leg a b $20\frac{3}{100}$ rods; to find the leg b c.

Statement.—0.8141155:20.35::0.580703:14.52, leg b c.

The hypothenuse and one leg given; to find the angles and the other leg.

RULE 6

By nat. sines.—The angle opposite the given leg may be found by the following proportion: As the hypothenuse is to unity, or one, so is the given leg to the nat. sine of its opposite angle.

Example.—Given the hypothenuse a c 25 rods, and leg a b 20:35 rods; to find the angles.

STATEMENT.—25:1::20·35:8141155, nat. sine of the angle $a\ c\ b$; the nearest corresponding number of degrees and minutes in the table of nat. sines gives the angle $a\ c\ b\ 54^\circ\ 30'$, and the angle $a\ b\ c$ being 90°, the angle $b\ a\ c$ would be 35° 30', because in a right-angle triangle there is always 180°.

The leg a c given, (Fig. 1) and angle b a c, to find the other leg, a b, by cosine.

RULE 7.

Multiply the cosine of the angle b a c by the hypothenuse a c.

EXAMPLE. — Given the hypothenuse $a \ c \ 25$ rods, and angle $b \ a \ c \ 35^{\circ} \ 30'$; to find the leg $a \ b$.

Statement.—0.8141155 \times 25 = 20.35, length of the leg a b.

The leg a b found, (Fig. 1) to find the leg b c by nat. tangent.

RULE 8.

Multiply the base by the nat. tangent of the angle opposite the required leg.

Example — Given the leg a b 20.35, and angle b a c 35° 30′; to find the leg b c.

Statement.—0.713293 \times 20.35 = 14.5, the required leg *b c*.

The angle a c b, and leg b c, given, (Fig. 1) to find the leg a b, by nat. tangents.

RULE 9.

Multiply the nat. tangent of the angle $a \ c \ b$ by the leg $b \ c$.

Example. — Given the leg b c 14.5, and angle a c b 54° 30′; to find the leg a b.

STATEMENT.—1:401948 \times 14:5 = 20:35, length of leg required, a b.

Solution of a Right-angled Triangle.

The sine of the angle c equals the cosine of the angle a, and the sine of the angle a equals the cosine of the angle c.

The tangent of the angle a equals the cotangent

of the angle c, and the tangent of the angle c equals the cotangent of the angle a.

The $\log a \ b$ divided by the $\log a \ c$ equals the natsine of the angle $a \ c \ b$, or the nat. cosine of the angle $b \ a \ c$; the $\log b \ c$ divided by the $\log a \ b$ equals the nat. tangent of the angle $b \ a \ c$, or the nat. cotangent of the angle $a \ c \ b$; the $\log b \ c$ divided by the $\log a \ c$ equals the nat sine of the angle $b \ a \ c$, or the nat. cosine of the angle $a \ c \ b$.

SURVEYING.

In running lines, obstructions, viz: rivers, ponds, &c., occur, by which other means have to be resorted to, besides measuring with a chain.

The point c occurs on our line b c, and we wish to know the distance b c.

RULE 10.

From b at right angles to the line b c measure any convenient distance, as a, and secure the point a; measure the angle b a c; then multiply the nat tangent of the angle b a c by the distance a b; will equal the distance b c.

In case you should not have a book of tables of nat. tangents, the above method could be resorted to, with nearly as much accuracy as the method given in Fig. 2.

The point c occurring in the line, (Fig. 3) we wish to know the distance b c.

RULE 11.

At right angles from b c measure on the line b d to a, and secure the point a, any convenient point, and measure any convenient distance, as d, and at

right angles describe the line d e, with your instrument at a, on the line a c, produce it to e, intersecting the line d e.

Then with the distance b a, a d, and d e, given, the distance b c can be found proportionately to the triangle a d e.

Say: As the distance a d is to a b, so is d e to b c.

Example.— Given the distance b a 20 ft., distance a d 15 ft., and distance d e 11 $\frac{1}{2}$ ft.; to find the distance b c.

Statement.—As $15:20::11\frac{1}{2}:15\frac{33}{100}$ ft.

The above (Fig. 4) could be resorted to in preference to Fig. 3.

Given b, the inaccessible object, and d b part of the line of survey; we wish to find the distance from a to b.

RULE 12.

Measure on the line a c (at right angles with a b,) any convenient distance, as at c; then at right angles

to b c run the line c d to its intersection with the line d b at d, measure the distance a d, and the distance a c.

Then say: The square of a c divided by a d equals a b, the distance required.

Example.— Given a c 26 ft., and a d $13\frac{1}{2}$ ft.; required the distance a b.

Statement.— $26^2 \div 13\frac{1}{2} = 50$ ft., distance a b.

We wish to find the height of a tower, or building, as d c.

Set your instrument any convenient distance, e, neither too great nor too small, in comparison to the altitude d c, and measure the angle b a c, and measure the distance a b or e d; you then have, in the right-angle triangle, one side given, and the angle b a c.

RULE 18.

Multiply the nat. tangent of the angle b α c by the distance α b; will equal b c.

Note.—The point at b can be observed, and afterwards the distance b d can be measured, which, added to b c, will determine the distance c d.

In finding the height of an object, let the observed angle be as near 45° as possible; for then a small error committed in taking it, makes the least error in the computed height of the object; because, if the observed angle, as at a, equals 45° , the distance a b will equal b c.

It very seldom occurs, in the construction of a railroad, to measure verticle heights with an instrument.

In running levels, if the top of a hill is found inaccessible to find the elevation with a leveling instrument, we have to resort to the examples given by triangulation.

Fig. 6

When it is necessary to determine the elevation of a hill as in Fig. 6, the elevation at d, is found with the leveling instrument, as will be explained in the Art of Leveling.

Example. — Set your instrument over d, and measure the angle b a c, and distance a b; you then have for the triangle b a c, the angle and one leg given,

to find the other leg, b c, as in Fig. 5; which, added to the height of your instrument, a from d, will equal e c; and added to your elevation d, will equal the elevation c.

THE ART OF LEVELING.

The first thing necessary in leveling, is to have the requisite instruments in adjustment.

To Adjust a Level.

In the common Y level there are three adjustments.

1st Adjustment.—Place the instrument in a firm position, and unclamp the Y's; place the horizontal hairs on some distant object, and revolve the telescope half around; if the hair intersects the point first observed, the instrument is in adjustment, thus far; if not, move the hairs half way distant, between the two points of intersection, by means of the screws on the telescope, generally marked "Hairs," and by revolving the telescope, the hairs will intersect our given point. The vertical hairs can be adjusted the same way.

2d Adjustment.—With the instrument firm, as before.—Fasten the telescope over the leveling screws, and level it exact; then take the telescope out of the Y's and reverse it; if the bubble is level, this adjustment is correct; if not, divide the difference of the

bubble (one-half,) by means of the screws under the bubble, and level the remainder by means of the leveling screws. This process for the second adjustment hardly ever proves correct the first time; therefore, repeat the above, until the telescope, when revolved in the Y's, on every screw, the bubble will be level.

3d Adjustment.—After the above adjustments, fasten the telescope on the Y's, by means of pins generally used; place your telescope over the leveling screws, and bring the bubble to a level, and repeat it on all the screws, so as to get the telescope as level as possible before commencing the adjustment; then placing the telescope over any two of the leveling screws, and level the bubble; reverse the telescope half way on the pivot, or, as near as possible over the same screws; if the bubble is level, the adjustment is correct, if not, move the bubble half way, by means of the screws under the leg of the Y, and level the remainder by means of the leveling screws. By continuing this process on all the screws, the adjustment can be perfected.

NOTE.—The last adjustment is immaterial, only in saving time and trouble when using. The difference (if there is any,) is so comparatively small, that it is not observable.

The third adjustment never will remain in adjustment on most of levels, so that no trouble need be borrowed when it is found that your level will not reverse correctly. The adjustment of the level now being complete, we will proceed to its use.

In preliminary surveys, or location of railroads,

levels have to be run (as it is termed) to ascertain the exact surface of the ground, in order to establish grades. In commencing levels, an elevation is established upon a given point. This point is generally made by cutting on the root of a tree and is termed a "Bench." These benches are established on the entire length of the line, perhaps one-half to threequarters of a mile apart, for reference points.

This elevation is generally estimated above, so as to reach the lowest point of the surface of the ground that should occur in your levels. For instance: The lowest point of ground we guess to be 50 ft. below the first established bench, and for safety would call the bench elevation 60. We set up our level firm in the ground, not to exceed 400 ft. from the bench, and near the line we wish to run the levels over, and take what is termed a back sight (marked B. S.) on the bench, by holding the staff, or leveling rod, on the bench, and moving the target of the rod to its intersection with the horizontal hairs in the telescope; what the rod would read at this intersection, would show that our instrument would be that number of feet and parts above the bench. For instance: Suppose the rod read $3\frac{416}{1000}$ ft., therefore, the elevation of the instrument would be 63.416.

When we have the height of the instrument given, it shows very plainly that if you take a sight at any given point, the elevation would be as much less as the rod would read. For instance: Suppose the rod at any point, or station, (as stations of 100 ft. are used in the location of railroad lines,) should read $10\frac{1000}{1000}$, which are termed fore, or intermediate sight,

(marked F. S.) the elevation of that point taken would be 53·218; or, 63·416 — 10·198 = 53·218; consequently, these fore sights should be subtracted from the height of the instrument, or elevation of the instrument, to give the elevation of stations.* In order to keep up the same corresponding elevations, on the entire length of the line, we change our instrument on some substantial point, as a peg or stone, by holding the rod upon the peg; being a fore sight, we subtract it from the height of the instrument, which gives the elevation of the peg, and is the same as a bench. Suppose the rod reads on the peg 8·747, and instrument is 63·416; 63·416 — 8·747 = 54·669, elevation of peg. †

We have the elevation of the peg, and can move our instrument further on, and set up our instrument firm in the ground, as before, and take a "back sight" on the peg, by holding the rod upon the peg, and notice the reading as before. Suppose the rod to read 1.201; it shows that our instrument is 1 foot and $\frac{201}{1.000}$ above the peg; consequently, if we add it to the elevation of the instrument, thus: peg = 54.669, rod reads 1.201 + 54.669 = 55.870, height of instrument, and proceed as before, taking intermediate sights, subtracting every intermediate from the

^{*} These fore sights are more properly termed intermediate sights (marked I. S.) which we will hereafter term them, and fore sights will be termed as at changes of the instrument, after running the level of intermediates, not to exceed 400 it. on either side of your instrument.

[†] In practice, whether you change your instrument upon a peg, stone, stump, or anything suitable, it is termed a peg.

height of the instrument. It is not necessary to carry out the reading of the rod of the decimals, (when taking intermediates,) farther than hundredths, as 2·27, 4·15, 8·11, &c., and in most cases tenths is far enough, as 2·2, 4·1, 8·1, &c., &c.

Intermediates, or plus stations, should be taken when the ground varies to any amount; discretion on your own part must govern that. It is evident that if you were running levels over an uneven ground, as Fig. 1, and should take the elevation at station 1 and station 2, that you lose, or there would be a loss in the estimate of the quantities, or if for the purpose of establishing grades, a correct line could not be drawn, as a man's discretion is governed by the correctness of the profile, or levels taken, therefore, a level should be taken at a, also at b c d, and the plus station noted in the book of levels, then you have the correct shape of the ground.

To explain the foregoing more intelligibly, we will refer to Figs. 2, 3, and 4.

Our established bench elevation 60, is at A, on the root of a stump; our line to run is in the direction of d, consequently, we would set our level at c, not to exceed 400 ft. from the bench A; in directing our level at the target f, we find it reads 3.416; then

our level would be that number of feet and parts above the point a; bench elevation is 60, elevation of instrument would be 60 + 3.416 = 63.416; we will take the elevation of the ground at the stations 1, 2, 3,

We will change our instrument at station 9, for convenience. We drive in a peg, firm into the ground, at or near the station; the rod reads 8.747,

then 63.416 - 8.747 = 54.669, elevation of the peg at b. This being a secured point, we move our instrument, as in Fig. 3, to f. After firmly setting our instrument, we take a back sight on the peg b. Sup-

pose it to read 1.201, the instru-Fig. 3. ment would be that number of feet and parts above the peg. Elevation of the peg we found to be 54.669; the elevation of the instrument would be 54.669 + 1.201 = 55.870.We now have the elevation of the instrument again. For intermediates, Station 10 reads 2.2, then 55.8 -2.2 = 53.6. Station 11 reads $2.3 \cdot 1$, then $55 \cdot 8 - 3 \cdot 1 = 52 \cdot 7$. Here we should take an eleva-₹ tion at a. Suppose it to be 50 ft. from station 11, as found by ∞ measurement; then the plus station would be noted 11 + 50. '[™] Station 11 + 50 reads 3·4, then 55.8 - 3.4 = 52.4. Station 12 = reads 3.1, then 55.8 - 3.1 =52.7. Station 13 reads 2.6, then $2.55 \cdot 8 - 2 \cdot 6 = 53 \cdot 2$. Station 14 reads 2.1, then 55.8 - 2.1 =53.7. Station 15 reads 1.8, then 55.8 - 1.8 = 54.0. Station 16 reads 2.8, then 55.8 - 2.8 = 53.0. Station 17 reads 3.2. then 55.8 - 3.2 = 52.6.

We will change our instrument by driving a peg

at or near station 17, and finding its elevation.* Suppose the F. S. on the peg reads 3.775, then height instrument 55.870 - 3.775 = 52.095 = elevation of peg; we then move our instrument to f, (Fig. 4) and take a B. S. on the peg. Suppose it to read 2.000; elevation peg 52.095 + 2.000 = 54.095 = height of instrument. Then proceed as before.

Station 18 reads 3.0, then 54.1 - 3.0 = 51.1. Station 19 reads 2.9, then 54.1 - 2.9 = 51.2. Station 20 reads 2.7, then 54.1 - 2.7 = 51.4. Station 21 reads 2.5, then 54.1 - 2.5 = 51.6. Station 22 reads 3.6, then 54.1 - 3.6 = 50.5. Station 23 reads 4.4, then 54.1 - 4.4 = 49.7.

Here at station 23 we have come to a stream, and it is quite necessary to get its shape, width, and character. We have got the elevation of the top of the slope of the river at station 23; we take an elevation at c, at the bottom of the slope of the creek, and notice its plus distance from station 23. Suppose it to be 25 ft.; then 23 + 25 would be the bottom

^{*} When changing, the elevations should be exact.

slope of the stream. We also get the elevation of the bottom of the slope on the opposite side d, and notice the plus station. Suppose it to be 85 ft. from station 23, then it would be 23 + 85, bottom slope of stream; and station 24 would also be taken, as we very seldom miss stations, wherever they may occur We have the top slope 23, and two bottom slopes 23 + 25, and 23 + 85, and to complete the levels of the creek we want the top slope of opposite side. Say it is 75 ft. from station 24; then elevation at 24 + 75 gives the shape of the river's banks and bottom. Also to govern the masonry, or bridging, over this stream, the elevation of high water mark is taken. This will be readily found by inquiry, if no signs on the banks are visible.

Other very important things have to be observed and placed under remarks, which your own discretion must lead you.

We will establish a bench before proceeding farther. Say, for instance, we cut a notch on the root of the stump g. Suppose our rod, or F. S., reads 4.005; height of instrument 54.095—4.005=50.090, elevation of the bench. The elevation of the benches are generally marked on the stump with either red chalk or paint. We secure this elevation at g, and along the line at intervals, to avoid the trouble of going back to the first established bench, A, Fig. 2, on the line. For instance: Suppose it is required to find the elevation of station 25, or wished to stake out a bridge, or stone culvert, in the stream at some future day. We, instead of running from the first established bench, take the established bench g, by

setting our instrument say at f, the most convenient point, and do the work required.

We proceed with our levels as before, and establish benches, or elevations, not to exceed three-quarters of a mile apart.

It might be necessary to state, for accuracy in running levels, that the rod should be plumb, or point to the centre of the earth; also the bubble of the level should always be level. Accuracy depends both upon the leveler and rodman.

I will here give the manner of keeping a field-book for running levels.

NOTE.—In running levels, always add the back sights, which will give the elevation of the instrument, and subtract the fore or intermediate sights, will give the elevation of the peg or bench.

MANNER OF KEEPING FIELD-BOOK.

NOTES FROM FORMER EXAMPLES.

Sta'n.	B. S.	F. S.	1.s.	H. Inst.	Elev'n.	Remarks.
B'ch	3.416		_	63:416	60.000	On root of stump near stat'n 1.
1			3.5		59-9	
$\frac{2}{3}$			3.3		60.1	
3			36		59 8	
4 5			3.7		59.7	
			3.6		59.8	
6			3.9		59.5	
7	- 1		4.8		58.6	
8			5.8		57.6	
_ 9			8.4		55.0	
Peg.		8.747			54.669	Elevat'n of peg at B. (Fig. 2.)
10	1.201			55.870		
11			3.1		52.7	
+50			3.4		52.4	

						
Stat'n.	в. s.	F. S.	I. S.	H. Inst.	Elevat'n.	Remarks.
12			$\overline{3\cdot 1}$	63.416	$\overline{52.7}$	
13			2.6	l	53.2	
14			21		53.7	
15			1.8	l	54.0	
16			2.8		53.0	
17			3 2		52.6	
Peg.		3.775		ì	52.095	
18	2.000		3 0	54.095		
19			2.9	0200	51.2	
20			2.7	i	51.4	
21			25	1	51.6	
22			3.6		50.5	
23			4.4		49.7	Top of bank of stream.
+25			52		18.9	Bottom of stream.
+85			5.3		18.8	Bot. of stream, opposite side.
24			5.0		49.1	bon or sucam, opposite side.
+75			44		49.7	Top slope of opposite side.
' '			4.6		49.5	High water mark.
B'ch		4.005	~			On stump by station 26.

In leaving the work at night, benches should be made, so that when you choose at any time to go to work, you have a convenient place to commence, and accurate.

After the levels are run the work is plotted and grades are established.

Grades vary in their ascent according to circumstances, and are governed by the discretion of the engineer in charge. They intend however to equalize the excavation and embankment as near as possible. Grades sometimes can be improved, and are governed by the contracts taken to grade the road.

Grades have elevations as well as the surface of the ground. We will assume the grade at Station 1 to be 58.000 and descent is $0.22 \frac{2}{100}$ per 100 feet, that it equalizes the excavation and embankment. We then have elevation at

Station $1 = 58.000$	Station $13 = 55.360$
" $2 = 57.780$	" $14 = 55.140$
" $3 = 57.560$	" $15 = 54.920$
" $4 = 57.340$	" $16 = 54.700$
" $5 = 57.120$	" $17 = 54.480$
" $6 = 56.900$	" $18 = 54.260$
" $7 = 56.680$	" $19 = 54.040$
" $8 = 56.460$	" $20 = 53.820$
" $9 = 56.240$	" $21 = 53.600$
" $10 = 56.020$	" $22 = 53.380$
" $11 = 55.800$	" 23 = 53·160
" $12 = 55.580$	" $24 = 52.940$

With the elevation of the surface of ground, and the elevation of grade, their difference would be the cut or fill. For instance

Elevation of the surface Station
$$1 = 59.9$$

grade " $1 = 58.0$
Difference = 1.9

The difference shows the cutting 1.9 as the surface elevation is the greatest, and at Station 11 Surface elevation = 52.7, Grade elevation 55.8, difference 3.1, fill, as the surface elevation is the least. When the estimates in cubic yards have to be made, (as they are generally made approximately from the profile) the cutting and filling is easily ascertained by calculating the grade for every 100 feet, and taking the difference of elevation as just shown.

When a line is located, the grades are then es-

tablished, and construction commences. We then have different field books, termed Grade Book, Cross Section Book and Monthly Estimate Book.

MANNER OF KEEPING GRADE BOOK.

Sta'n.	Grade.	Cut.	Fill.	Elv'n	Remarks.
1	58.000	1.9		599	
2	57.780	2.3	ł	60.1	
3	57.560	$\frac{2.3}{2.2}$		59.8	
4	57.340	$\tilde{2}\cdot\tilde{4}$	1	59.7	
5	57.120	$\tilde{2}\cdot\tilde{7}$		59.8	
6	56.900	$\tilde{2}\cdot 6$		59.5	
7	56.680	1.9		58.6	
8	56.460	1.2		57.6	
9	56.240	. ~	1.2	55.0	
10	56.020		2.4	53.6	
11	55.800		3.1	52.7	
+50	55.690		3.3	52.4	
12	55 580		2.8	52.7	
13	55.360		2.1	53.2	
14	55.140		1.4	53.7	
15	54920		0.9	54.0	
16	54 700		1.7	530	
17	54.480		1.8	52.6	
18	54.260		3.1	51.1	
19	54.040		28	51.2	
20	53.820		24	51.4	
21	53.600		2.0	51.6	
22	53.380		2.9	50.5	
23	53.160		3.4	49.7	Tcp of bank of stream.
+25	53.105		4.2	48.9	Bottom of stream.
十35	52·97 3		4.1	48.8	Bottom of stream opposite side.
24	52.940		3.8	49.1	**
+75	52.775		3.0	49.7	Top of slope opposite side.

The benches are all entered in the back part of the grade book for reference when necessary. In the grade book we have the cuts and fills worked out, but in the staking out of the work, these cuts and fills are merely used for tests. Engineers generally have in all their work test points for reference, which all should have, to avoid the many mistakes that will occur.

In staking out work the grade point or where the excavation and embankment commences, is always found with its distance from the station joining, and a stake put in to guide the contractors in commencing their work.

The grade points are generally marked in the cross section book.*

Cross sections are cuts and fills taken at right angles to the line of the road, any distance from the center line that should seem necessary by the engineer.

Cross sections are taken with the level, but more plus stations are taken, than in running levels, as the discretion of the engineer may direct him. Cross sections are taken to get as near as possible the amount of cubic yards excavation and embankment, as contracts are taken of the work, to complete at a given price per cubic yard. On very level ground, cross sections are taken at every station. On very uneven ground cross sections are taken as often as your judgment dictates.

Before proceeding further, we will explain the manner of getting the cuts and fills with a level in the field.

^{*}This cross section book is more properly termed Original Cross Section Book, as there also is the Final Cross Section Book.

With the grade book we have the elevation of grade. We go into the field, say at station 21, and set up our level, and take a B. S. on the bench q, (Fig. 4,) and find the elevation of our instrument. Suppose the elevation of the bench to be 50.090, and rod reads 5.112, then 50.090 + 5.112 = 55.202, elevation of instrument. Suppose we wish to commence at station 19, with our cross sections. would refer to the grade book at station 19 and find the elevation of grade at that point = 54.040. We now have the elevation of our instrument and the elevation of the grade at station 19. Now if we subtract the elevation of the grade from the elevation of the instrument, the difference shows that our instrument is that number of feet and parts above the grade line at station 19. For instance:

> Elevation of instrument = $55 \cdot 202$ grade = $54 \cdot 040$ Difference of elevation = $1 \cdot 162$

Then our instrument at station 19 is 1.162 feet above the grade line. We will get the cut or fill at station 19. Suppose our rod to read, at station 19, 4·0, (the nearest tenth of a foot,) it would show our instrument to be four feet above the surface of the ground, and if our instrument is 1·162, (or nearest tenth,) 1·2 above the grade line, and 4·0 above the surface, we see that if we take their differences, it will give the fill or cut at station 19. Then—

Elevation of instrument above surface of ground = 4.0 grade = 1.2

Difference = 2.8

2.8 is then the fill at station 19. We then take our cross section at station 19, subtracting the height of instrument above the grade line, 1.2, from the height of the instrument above the surface, will equal the cut or fill at station 19, any distance at right angles from the station or center line.

We see that our instrument at station 20 (by reference to a profile) would not be $1\cdot162$ above the grade line, but would be more as the grade descends. We have found that the grade descends $0\cdot_{1}^{2}\cdot_{0}^{2}$ per 100 feet. Then if we add $0\cdot22$ to the instrument above the grade line at station 19, will equal its height above the grade line at station 20. Then elevation of instrument at station $19 = 1\cdot162$; descends $0\cdot22$ per 100 feet, or station, then $0\cdot22 + 1\cdot162 = 1\cdot382$; height above station $20 = 1\cdot382$.

We will suppose the rod reads at station 20, 4.0, the same as station 19, then 4.0 - 1.4 (nearest tenth of 1.38) = 2.6 fill, or 2 feet and 6 tenth is the difference between the grade line and the surface of the ground at station 20.

We can continue this process to all the stations, until it becomes necessary to change the instrument. When we change, the elevation of the instrument we have preserved = 55.202, and change on a peg, as in running levels, subtracting the sight on the peg for its elevation, and after the instrument is set up again, add the sight to the elevation of the peg, and you have the height of your instrument again, and proceed as you commenced.

Sometimes we find our instrument below the grade line. We will suppose that the rod reads on the bench g, (Fig. 4,) 2.950; this added to the bench would give the elevation of the instrument; bench = 50.090 + 2.950 = 53.040, height of instrument. Grade at station 19 = 54.040. Now we have the elevation of the instrument, less than the elevation of the grade—

Thus, elevation of instrument = 53.040" grade at stat. 19 = 54.040Difference of elevation = 1.000

Shows that our instrument is 1 foot below the grade line. Now if our instrument is below grade, the sights on the surface must be added to the elevation of the instrument, to give the difference or distances of the grade line to the surface. Suppose the rod, or sight, at station 19, reads 1.8. We would see that the surface of ground was 1 foot and 8 tenths below the instrument, and the instrument is 1 foot below the grade line, therefore the distance from the grade line to the surface of the ground, would be their sum. Thus,

Elevation of instrument below grade = 1.00" above surface = 1.8

Difference of surface and grade line = 2.8 would be the fill at station 19.

When you come to grade, the elevation of the instrument above the grade line, and its elevation above the surface of the ground, will be equal.

For example, suppose the instrument be 1.2 above the grade line, and surface of the ground 1.2, the difference is 00, and is the point of grade.

If the elevation of the surface and elevation of grade are equal at any point, that part of the surface of the ground is grade, or the point where the excavation and embankment commences. Thus,

Elevation of grade = 54.040

Elevation of surface of ground = 54.040

Difference = 0.00

In taking cross sections, the elevation of the instrument should be preserved for changing — and to be correct, you should keep a table of both your elevation of peg and instrument and height of instrument above the grade line at each and every station. To show more plainly, we will make a sketch of the work already done:

Bench = 50.090B. S. = 5.112H. Inst. = 55.202Change Inst., F. S. = 2.211Peg = 52.991B. S. = 0.049

B. S. = 0.049H. Inst. = 53.040

Also,— Grade at stat. 19 = 54.040

H. Inst. = 55.202

H. Inst. at stat. 19, above grade line = 1·162+ Grade descends 0·22 per 100 feet = 0·22

H. Inst. at stat. 20, above grade line = 1.382 + 0.22

H. Inst. at stat. 21, above grade line = 1.602 + 0.22

H. Inst. at sta. 22, above grade line = 1.822 + &c., &c. Change instrument.

We have the height of instrument again, 53.040, and will commence at station 19 again to show the manner of keeping notes with the instrument below grade:

Grade at stat.
$$19 = 54.040$$
H. Inst. = 53.040
H. Inst. at sta. $19 = 1.000$
" 20 = 0.780
" 21 = 0.560
" " 22 = 0.340

The sign of plus and minus can be annexed to the above, to show that the instrument is above or below grade line. Thus, + = above, -- below.

In running from station 19 down the grade, we notice that we add the descent, per 100 feet, to the height of the instrument when plus, and when minus we subtract, because when the instrument is above, the further we run on the descent the greater the height of the instrument from the grade line, as much greater as the descent per 100 feet; and when the instrument is minus, we subtract the descent, because we near the grade line every 100 feet, as the descent of the grade per 100 feet.

Sometimes, in staking out work, it is not necessary

to cross section further than where the slope stakes would occur, as in Fig. 5.

The above shows a cross section, a b c, with the slopes a e f c, determined, and slope stakes a c put in.

The slope of a railroad is governed by the material

of which it is composed.

The excavations are governed the same as the slopes of embankments; the width at the top is governed by the width of track or material. We will assume it to be 14 feet.

In making a cross section of the above, we will assume slopes of 1½ feet horizontal to one foot vertical, as the required slopes. Suppose we take a level at b, (surface of the ground and center of the road,) and find the fill to be four feet. We mark the stake b with red chalk, "4 feet fill," (this is to guide the contractor,) and measure out from b, on either side towards a, one-half the width of the road bed, 7 feet, and take the cutting or filling. From this filling, we can judge of the point for a slope stake a, if the ground does not vary too much; if it should, we keep trying until the exact point for the slope stake is found. For example, we take the level at a, and find that there is $3 \cdot \frac{3}{10}$ feet filling, and, by calculation, slopes $1\frac{1}{2}$ to 1, we measure from the center 7 feet, and base of slope $5\frac{7}{10}$, making in all to measure from the center line, (as one end of the tape or chain should always be kept at the center stake to avoid confusion in changing from one side to the other,) would equal $12 \cdot \frac{7}{10}$. We take another sight if it varies much from the point in which we took our sight, and make the same calculations again. It may vary

2 or 3 tenths in the distance from the point last found, but if the ground is level, or nearly so, the required distance can be measured for the slope stake. You go through the same process on the opposite side for the slope stake c. We now see that if the contractor fills in 4 feet at b to d, and 7 feet from d to e, and 7 feet from d to f, and carries the dirt out to the slope stakes a and c, that the slope of the cross sections would have $1\frac{1}{2}$ feet horizontal to 1 foot vertical. Slopes more general in use are $1\frac{1}{2}$ feet horizontal to 1 vertical; 2 feet horizontal to 1 vertical; 2 feet horizontal to 1 vertical. Calculations for slopes will be found in the following rules:

Slopes $1\frac{1}{2}$ to 1.—With the filling or cutting given, to find the length of the base of the slope.

RULE 1.

One half the cut or fill added to the cut or fill where it is taken.

EXAMPLE.—Given the filling 3.8, to find the base of the slope.

Statement. $-\frac{1}{2}$ of 3.8 = 1.9 + 3.8 = 5.7.

Slope 2 to 1.—With the filling or cutting given as before, to find the base of the slopes.

RULE 2.

Multiply the cutting or filling by 2.

Example.—Given the filling 3.8 to find the base of the slope $= 3.8 \times 2 = 7.6$.

Slope 1 to 1—

RULE 8.

The base is equal to the filling or cutting.

Example.—Given the filling or cutting 3.8; then the base would equal 3.8.

CROSS SECTIONS.

The number of cross sections to be taken will be as the engineer's judgment governs him, but we will give a few examples necessary to correctness in side hill ground entering from a cut to a fill. The following figures 6, 7 and 8 will represent the cross sections.

In leaving the cut (Fig. 6) a cross section should be taken where the grade point occurs at the bottom slope as at a, also a cross section should be taken (Fig. 7) where the grade point occurs at the center B; also where the grade point occurs on the opposite side c. (Fig. 8.)

Cross sections taken in this manner, give the shape of the ground as near as can be got at. We also have them in plane figures. The area of Fig. 6 to correspond with the area $B \ c \ d$ (Fig. 7) and Pyd $a \ B \ e$, also the Pyd $B \ c \ d$, the area $a \ B \ e$ to correspond with the area $a \ b \ c$ (Fig. 8). The quantities in this manner are got as correct as is possible. Cross sections around curves should not exceed 50 ft. apart when the average form is used for calculating quantities.

Henck gives a formula for estimating the quantities in curves, but it has been adopted only by a very few engineers, if any. My mode is most in practice by eminent engineers at present, but there is no doubt that the manner in which Henck and also Trautwine do their work will come into general practice, as the immense quantities of earth that is estimated by the average form would be very materially diminished.

BORROWING PITS

Consist of borrowed earth from a hill or side of a mountain, when the earth in the cut is not sufficient for the embankments.

It very often occurs where earth has to be borrowed to finish up embankments; sometimes it is taken from ditches; sometimes knolls are cut off, and sometimes it is taken out of the side of hills and mountains. This amount taken out has to be ascertained in cubic yards.

The Manner of Measuring Borrowing Pits, to ascertain the Quantities taken out.

The object in the first place, is to make original surveys or cross sections; and secondly to make cross sections, (after the earth is taken out) to correspond with the original cross sections. In order to do this, points must be established in the original survey, that can be referred to when you wish to make the second survey. Sometimes it has to be measured monthly, to make monthly estimates.

In order to get correct measurements we will establish a line, (called a Base Line) along the base of the hill* between two points, that will cover the length of the area. For security, the points we will establish upon the roots of some stumps, and in a direct line between these two points, put in stations and plus stations as often as is considered necessary. From these stations, at right angles to the established

^{*} This is governed altogether by the engineer's judgment.

line, measure with the tape or chain, and where it is necessary take sights with the level, and ascertain the elevation, or cut or fill above a certain given point. Continue on this measurement and elevations back as far as will cover the area to be excavated in that direction; continue the same process at every station and plus station. The notes will be entered in the original cross section book.

If it is necessary to make a monthly estimate, the base line is found, and stations and plus stations are put in as before, and measurements are commenced as before. This is entered into the monthly cross

section book.

When the work is completed, a final measurement has to be made, by finding the base line, and proceed

as in making the original survey.

These elevations are taken with the level. A base line of levels is established for the pit, and when sights are taken, the notes show the elevation of the ground, either above or below the established base line of levels. When the last survey is made, where the earth has been taken out, the difference of elevation at their corresponding points would show the depth of earth taken at these points.

When those measurements are made, they are plotted upon paper, which will show the area of the

cross section.

For example, suppose a b (Fig. 9) to be the base line of levels.

The original levels commence at the base line of stations, 1 foot 5 tenths above the base line a b, and at the top of the hill, or the extent of excavation, the

elevation is 13 feet 4 tenths above the base line. When the second measurement is made, we find at the station to be the same as the original, 1 foot 5

tenths, and find the last point to be 4 feet above the base line. The excavation we find at the top to be

110 feet from the point at c, and at the bottom, e, or second survey, 100; this will make the slope d e, and complete the area c d e.

The depth of excavation can be ascertained by the difference of the elevations.

For instance, the depth of cutting 80 feet from the station c equals the difference of the elevations $4\cdot1$ and $10\cdot5 = 6\cdot4$; the cutting then at 80 feet distance is 6 feet 4 tenths. The remainder of the area is ascertained in the same manner. In the notes the sign of + is annexed to the sights when above the base line of levels, and - when below.

If in two corresponding sights or elevations, one should be below the base line of levels and the other above, the depth of excavations would equal their sum.

If in two corresponding sights or elevations, both should be below the base line of levels, their difference would equal the depth of excavation; if both should be above, their difference would equal the depth of excavations.

Note.—All horizontal measurements, with a tape or chain, either in measuring for cross sections or land, should be measured perpendicular to the center of the earth.

The area of the cross sections (Fig. 9) is easily determined, as the original elevations and final elevations correspond in their distance from the station c. It is not always that cross sections can be taken with equal distances (10, 20, 30 feet, &c.) from the station, as the ground may be very irregular both in the original and final measurement. The area of the section is ascertained by calculating the area of the

original measurement to the base line of levels, and the area of the final measurement to the base line of levels; the difference of these areas would be the area of the section.

For example, to ascertain the area of section $a\ b$ c, (Fig. 10.)

Instead of the distances 10, 20, 30, &c., from the station at c, we have been obliged (on account of the unevenness of ground) to measure the distances 10, 25, 42, 65, 81, 100 and 120 from the station c, and in the final the distances 15, 50, 60, 77, 100 and 110. In this case the depth of excavation cannot be ascertained, but the area is easily found.

We wish to get the area of the section $a \ b \ c$. By computing the area $b \ c \ d \ e$, and area $b \ e \ d \ c \ a$, the difference of their areas would equal the area $a \ b \ c$.

The manner of keeping original cross section book and final cross section book, is similar. For example, we will arrange Fig. 9 and Fig. 10, supposing that Fig. 9 = stations 1, and Fig. 10 = stations 1 + 20.

ORIGINAL CROSS SECTIONS.

Stations 1.

```
1.5+ 3.0+ 5.0+6.0+7.2+8.3+9.2+9.8+10.5+11.4+12.2+13.4+
10 20 30 40 50 60 70 80 90 100 110

Station 1 + 20.

2.2+ 2.6+3.4+2.9+6.8+7.7+11.8+12.3+
10 25 42 65 81 100 120

FINAL CROSS SECTIONS.

Station 1.

1.5+1.8+1.8+2.1+2.2+2.5+3.8+3.7+4.1+4.2+4.0+
10 20 30 40 50 60 70 80 90 100

Station 1 + 20.

2.2+1.3+2.0+1.0+1.3+2.6+2.6+
15 50 60 77 100 110
```

When the above is plotted, it forms the figures 9 and 10.

The number of cubic yards contained between

these two figures (according to the present mode of calculation) is equal to one-half the sum of their areas, multiplied by the distance they are apart, (20 feet,) and the quotient divided by 27.

MENSURATION OF SURFACES.

To find the area of a right-angled triangle.

RULE 1.

Multiply one-half the base by the perpendicular height, equal the area.

To find the area of a triangle.

RULE 2.

Multiply the base by the perpendicular let fall on to it from the opposite angle, and one-half the product equals the area.

To find the area of a triangle by its sides.

RITLE 8.

From half the sum of the three sides subtract each side separately; then multiply the half sum and the three remainders continually together, and the square root of the product will equal the area.

To find the area of a rectangle or a square.

6

BULE 4.

Multiply the perpendicular height by the length, equal the area.

To find the area of a rhombus or a rhomboid.

BULE 5.

Multiply the length by the perpendicular distance let fall from its sides, equals the area.

To find the area of a trapezoid.

RULE 6.

Multiply one-half the sum of the parallel sides by the perpendicular, equals area.

To find the area of a trapezium.

RULE 7.

Multiply the diagonal by the sum of the two perpendiculars falling upon it from the opposite angles, and half the product equals area.

To find the area of a regular polygon.

RULE 8.

Multiply one of its sides into half its perpendicular distance from the center, and this product into the number of sides, equals its area.

To find the area of an irregular polygon.

RULE 9.

Draw diagonals to divide the figure into trapeziums and triangles; find the area of each separately, and the sum of the whole equals area. To find the area of a long irregular figure, bounded on one side by a straight line, (Figs. 9 and 10 on borrowing pits.)

RULE 10.

Multiply one-half the sum of each succeeding height by their distance apart, the product will be the area between the two heights, the sum of all the areas will equal the area of the figure.

To find the area of a circle when the diameter and circumference are both known.

RULE 11.

Multiply the square of the diameter by '7854, or the square of the circumference by '07958; or multiply the circumference by the diameter, and divide the product by 4, will equal area; or one-half the circumference by one-half the diameter.

To find the area of a sector of a circle.

RULE 12.

Multiply the length of the arch by the radius of the circle, and half the product will equal the area, (nearly.)

To find the area of a segment of a circle.

RULE 18.

Multiply the versed sine by the decimal 626; to the square of the product add the square of half the chord; multiply twice the square root of the sum by two-thirds of the versed sine, will equal area.

To find the area of an ellipsis.

RULE 14.

Multiply the transverse or longer diameter by the conjugate or shorter diameter, and by '7854,* will equal area.

To find the area of a circular ring or space included between two concentric circles.

RULE 15.

Add the inside and outside diameters together, multiply the sum by their differences, and by '7854, will equal area.

To find the area of a parabola or its segment.

RULE 16.

Multiply the base by the perpendicular height, and two-thirds of the product equals area.

MENSURATION OF SOLIDS.

To find the solid contents of a cylinder.

RULE 1.

Multiply the area of the base by the height of the cylinder, and the product is the solid contents.

To find the solid contents of a cone or pyramid.

^{*} The area of a circle whose diameter is 1 = 0.7854.

RULE 2.

Multiply the area of the base by the perpendicular height, and one-third of the product will equal the solid contents.

To find the solid contents of a frustum of a cone.

RULE 8.

To the product of the diameters of the two ends add the sum of their squares; multiply this sum by the perpendicular height, and by 2618;* the product equals contents.

To find the solid contents of a frustum of a pyramid.

RULE 4.

To the sum of the areas of the two ends add the square root of their product; multiply this sum by the perpendicular height, and one-third of the product equals the contents.

To find the solidity of a wedge.

RULE 5.

To the length of the wedge add twice the length of the base; multiply that sum by the height, and by the breadth of the base, and one-sixth of the product equals contents.

To find the solid contents of a prism.

RULE 6.

Multiply the area of the base by the length, equals contents.

^{*}The solidity of a cone 1 foot diameter and 1 foot high equals 2618.

To find the solid contents of a sphere or globe.

RULE 7.

Multiply the cube of the diameter by 5236; the product equals contents.

To find the solid contents of the segment of a sphere.

RULE 8.

Add the square root of the height to three times the square of the radius of the base; multiply that sum by the height, and by 5236; the product is the contents.

To find the solidity of a spheroid.

RULE 9.

Multiply the square of the least diameter by the length of the greatest diameter, or a line drawn perpendicular to the least diameter, and by 5236; the product will be the solidity.

To find the solidity of a segment of a spheroid, when the base is circular or parallel to the revolving axis or least diameter.

RULE 10.

From triple the fixed axis take double the height of the segment; multiply the difference by the square of the height, and by 5236. Then say, as the square of the fixed axis is to the square of the revolving axis, so is the former product to the solidity.

To find the solid contents of a cylindric ring.

RULE 11.

To the thickness of the ring add the inner diameter; multiply that sum by the square of the thickness, and by 2.4674; the product will be the solid contents.

To find the superficial contents of a board or plank.

RULE 12.

Multiply the length by the width.

If the plank or board are of an unequal breadth at the ends.

RULE 13.

Multiply the average width of the ends by the length.

To find the solidity of timber.

RULE 14.

Multiply the length in feet by the square of onefourth the girth in inches, gives the solidity in cubic feet.

Note.—The above rules No. 12 and 13 only apply when all the dimensions are in feet. When either the length or breadth are given in inches, divide by 12, when all the dimensions are given in inches, divide by 144.

Application to the table of flat or board measure.

Multiply the length by the number in the table corresponding to any given width.

Example. —Given a board $16\frac{1}{2}$ feet in length and $9\frac{3}{4}$ inches in breadth.

The number in the table opposite $9\frac{3}{4}$ inches = $8125 \times 16\frac{1}{2} = 13.4$ square feet.

TABLE TO FACILITATE THE MENSURATION OF TIMBER, FLAT OR BROAD MEASURE.

Breadth in inches.	Area of a Lineal foot,	Breadth in inches.	Area of a Lineal foot.	Breadth in inches.	Area of a Lineal foot.
14 100014	·0208 ·0417	41 42 43	·3750 ·3958	83 9	·7292 ·7500
1	·0625 ·0834 ·1042	5 5 1	·4167 ·4375 ·4583	9 <u>1</u> 9 <u>1</u> 9 <u>1</u> 9 <u>1</u>	·7708 ·7917 ·8125
1 <u>4</u> 1 <u>4</u> 1 <u>3</u>	·1250 ·1459	$\frac{5\frac{1}{4}}{4}$	·4792 ·5000	$\frac{10}{10\frac{1}{4}}$	·8334 ·8542
$\frac{2}{2\frac{1}{4}}$	·1667 ·1875 ·2084	6 <u>1</u> 6 <u>1</u> 6 <u>2</u>	·5208 ·5416 ·5625	101 101 11	·8750 ·8959 ·9167
21 23 3	·2292 ·2500	7 71	·5833 ·6042	11½ 11½ 11½	•9375 •9583
3½ 3½ 3¾	·2708 ·2916	72 734	·6250 ·6458 ·6667	114	·9792
3 4 4 4 1	·3125 ·3334 ·3542	8 84 84	6875 7084		

Application of the table of the solidity of timber. Multiply the area corresponding to the quarter girth in inches by the length in feet.

Example.—Given a piece of timber 20 feet long and 12 inches square.

The number opposite 12 inches = $1.000 \times 20 = 20$ cubic feet.

TABLE TO FACILITATE THE MENSURATION OF THE SOLIDITY OF TIMBER.

l qr girth in inches.	Area in feet.	l qr. girth m inches.	Area in feel.	I qr. girth in inches.	Area in feet.
6	•250	121	1.042	19	2.506
$6\frac{1}{4}$	$\cdot 272$	121	1.085	191	2.640
64	•294	$12\frac{3}{4}$	1.129	20	2.777
61 62 63	•317	13	1.174	20년	2.917
7	$\cdot 340$	$13\frac{1}{4}$	1.219	21	3.062
74	•364	131	1265	211	3.209
71	•390	$13\frac{3}{4}$	1.313	22	3.362
71 71 71 72 74	.417	14	1.361	223	3.516
1 8 1	.444	141	1.410	23	3 673
81	.472	141	1.460	231	3.835
81	.501	$14\frac{3}{4}$	1.511	24	4.000
81 83 84	.531	15	1.562	241	4.168
9	.563	15≵	1.615	25	4.340
91	•594	153	1.668	251	4.516
93	.626	153	1.722	26	4.694
91 92 10	•659	16	1.777	263	4.876
10	•694	164	1.833	27	5.062
104	·730	$16\frac{1}{2}$	1.890	271	5.252
$10\frac{1}{2}$.766	$16\frac{3}{4}$	1.948	28	5.444
103	.803	17	2.006	281	5.640
11	.840	174	2.066	29	5.840
111	.878	171	2.126	291	6.044
113	•918	17\$	2.187	30	6.250
113	.959	18	2.250		
12	1.000	181	2.376		

Scantling is measured the same as timber, by multiplying the end area by the length.

MISCELLANIES.

The dimensions of the United States standard bushel are $18\frac{1}{2}$ inches inside diameter, and 8 in. deep.

A box 24 inches by 16 inches square, and 28 inches deep, will contain a barrel, 5 bushels.

A box 14 inches by 17 inches square, and 14 inches deep, will contain a half barrel.

A box 26 inches by 15.2 inches square, and 8 inches deep, will contain 1 bushel.

A box 12 inches by 11.2 inches square, and 8 inches deep, will contain one-half bushel.

A box 8 inches by 8.4 inches square, and 8 inches deep, will contain 1 peck.

A box 8 inches by 8 inches square, and 4.2 inches deep, will contain 1 gallon.

A box 7 inches by 8 inches square, and 4.8 inches deep, will contain one-half gallon.

A box 4 inches by 4 inches square, and 4·1 inches deep, will contain 1 quart.

To get the number of bushels in any square crib.

RULE 1.

Find the number of cubic feet in the same, and multiply it by 8 and divide it by 10.

Any area in feet multiplied by 6.232, the product is the number of imperial gallons at one foot in depth; or any area in inches multiplied by 0.4328 = gallons.

Any area multiplied by 03704 =the number of cubic yards at one foot in depth.

To determine the amount of imperial gallons in a vessel, the shape of an inverted cone.

RULE 2.

The square of the sum of the diameter at the top and bottom, of which subtract the quotient of the top and bottom; multiply the remainder by .7854, and by one-third the depth = cubic feet; and by 6.232 = imperial gallons.

Note.—This rule applies where the dimensions are all given in feet.

2d. To the product of the inner diameters add the squares of the inner diameters; multiply the remainder by the depth, and by 2618; divide that by 277.274 = gallons, (nearly.)

Note.—This rule applies where the dimensions are given in inches.

To determine the contents of imperial gallons in a kettle forming the segment of a circle.

RULE 8.

Three times the square of half the diameter in inches at the mouth, added to the square of the depth, and multiplied by the depth, and by .5236; divide their product by 277.274, equals imperial gallons.

The area of a circle in inches, multiplied by the length or thickness in inches, and by 263, equals the weight of cast iron in pounds.

The old English ale gallon contains 282 cubic inches, and the United States gallon contains 231.

English Dry Measure.

```
8.665 cubic inches = 1 gill,

34.659 " " = 1 pint.

69.318 " " = 1 quart.

277.274 " " = 1 gallon.

554.548 " " = 1 peck.

1.2837 " feet = 1 bushel.
```

English Imperial Wine Measure.

```
1.604 cubic feet = 1 anker.

2.888 " = 1 runlet.

6.739 " = 1 tierce.

10.109 " = 1 hogshead.

3.478 " = 1 puncheon.

20.218 " = 1 tierce.
```

Dimensions of Drawing Paper.

```
Wove Antiquarian, 4 feet 4 inches by 2 feet 7 inches.
Double Elephant, . 3
                              "
                                   2
                                      "
                                         2
                        4
Atlas, _ _ _ 2
                        9
                              "
                       9\frac{3}{4}
Columbier, ..... 2
                                      " 11
                                    " 10½
Elephant, ____ 2
                       3\frac{3}{4}
                                   1 " 9\frac{1}{4}
Imperial, 2
                        5
Super Royal, .... 2
                        3
                                   1 "
                     " 0
                              66
                                   1 " 7
Royal, ..... 2
Medium, ..... 1
                     " 10
                              "
                                   1 "
                       7+
                                   1
Demy,..... 1
```

Manner of Calculating the Natural Sines and Cosines in the Table.

The radius of a circle being 1, it is known the semi-circumference will equal 3.1415926535898, &c. Therefore if we divide it by the number of minutes in a semi-circumference (10800) it will equal the sine of 1 minute = 0002909 the first seven places in the table.

The natural cosine equals $\sqrt{(1-\sin e')} = .9999999$ 9577.

The natural sine and cosine given, the statement would be as follows:

```
2 cosine 1' \times \sin 2' - 0' = \sin 2' minute.
```

$$2$$
 " $1' \times$ " $2' - 1' =$ " $3'$ "

$$2 \quad 1 \quad \times \quad 3 - 2 - 4$$
 $2 \quad 1' \quad \times \quad 4' - 3' = \quad 5' \quad \cdots$

This process can be run to any extent.

With the sine of one minute, and cosine of one minute given, statement second would be as follows:

```
1' : sine 2' - sine 1' : : sine 2' + sine 1' : sine 3'
2': " 3' — " 1':: " 3' + " 1': " 4'
```

3': " 4' — " 1':: " 4' + " 1': " 4': " 5' — " 1':: " 5' + " 1': "

The same statement can be applied for degrees: Thus:

 $\sin e^{1^\circ}$: $\sin e^{2^\circ}$ — $\sin e^{1^\circ}$: $\sin e^{2^\circ}$ + $\sin e^{1^\circ}$: $\sin e^{3^\circ}$, dec., dec.

The natural sine of any number of degrees of deflexion with chords of 100 ft. may be found by dividing the chord by the radius corresponding to the angle of deflexion in the table of radii.

EXAMPLE.—Given the deflexion angle 3°, radius corresponding in the table of radii would equal 1910 feet and chord 100 feet.

Statement.—100 \div 1910 = 0.052356, natural sine of 3°.

NATURAL SINES AND TANGENTS

TO A RADIUS 1.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	8	8	23	8	8	3	R	87	2	ន	61	æ 	17	9	12	7	13	12	=	2	6	∞	-	9	5	4	en	67	_	• —	1	
	COSINE.	-9999593	-9999567	-9999539	-9099511	-9999482	-9999452	9999421	-999938g	-9999357	-9999323	-9999289	-9999254	-9999218	1816666	-9999143	-9990105	-996666	-9090025	•999898 4	-9998942	0068666	9998826	-9998812	-9998766	-9998720	-9908673	-9998625	-9998577	-9998527	-9998477	DAME	OLIVE.
	COTANG.	110-8920	107-4264	104.1709	101-1069	98-21794	95.48947	92:90848	90-46333	88-14357	86-93979	88.8350	81.94704	79-94343	78.12634	76:39000	74.72916	73 13899	71-61507	70.15334	68-75008	67:40185	66.10547	64:85800	63-65674	62-49915	61:38290	60.30582	59-26587	58:26117	57-28996	DANG	Taring.
	TANG.	710600	-00308	-009299	068600-	-010181	-010472	-010763	-011054	-011345	-011636	-011927	-012217	-012508	-012799	-013090	-013381	013672	-013963	014254	-014545	-014836	-015127	015418	-015709	-016000	016291	-016582	-016873	+91710+	-017455	CONTANCO	corara.
£G.	SINE.	-0090174	-0 093083	-0095992	0068600	-0101809	-0104718	-0107627	-0110535	0113444	-0116353	-0119261	-0122170	-0125079	-0127987	-0130896	-0133805	-0136713	-0139622	0142530	0145430	-0148348	-0151256	-0154165	-0157073	-0159982	-0162890	-0165799	-0168707	0121616	·0174524	MALAND	COSTSTA
0 DEG.	_	31	32	ĸ	*	33	8	37	æ	33	9	41	42	43	4	45	46	47	84	49	S.	21	22	23	2	22	99	22	22	20	3	-	-
	-	8	29	38	22	જ	33	2	33	27	51	33	63	84	4	\$	45	4	£	27	7	9	ŝ	æ	34	æ	ß	*	g	8	33	३ -	
	COSINE.	1.000000	1-000000	8666666	9666666	-9999993	6866666	-996666	6266666	-0999973	9966666	-9999928	9999949	6866666	-9999928	-9999917	-9999905	-9900892	8286666	9999863	-9999847	-999983I	-9909813	-902606-	922666-	-9636256	-966664	-9999714	-9999692	8996666	-9999644	STATE	Division .
	COTANG.	Infinite	3437.746	1718-873	1145-915	859-4303	687-5488	572-9572	491-1060	429-7175	381-9709	343-7737	312:5213	286-4777	264-4408	245.5519	229-1816	214.8576	202-2187	190-9841	180-9322	171-8854	163:7001	156-2590	149:4650	143-2371	137-5075	132-2185	127-3213	122-7739	118-5401	114.0000	Tana.
	TANG.	(100000	-000291	-000582	000872	001163	-001454	-001745	-002036	002327	-002618	-002008	-003199	003490	-008781	-004072	004373	004654	-004945	.005236	-005526	-005817	•006108	668900	069900-	186900-	-007372	-007563	-007854	008145	008436	07/900	COTAING.
EG.	SINE.	000000	0002000	0005818	-0008727	9891100	-0014544	0017453	4020362	-0023271	0020180	0020089	0031998	.0034907	0037815	-0040724	0043633	-0046542	.0049451	.0052360	-0055268	.0058177	0001086	-0063995	£069900	.0069813	.0072721	-0075630	0078539	0081448	-0084357	007/900	COSTINE
• Dec	-	6	-	67	673	4	1C	9	7	.00	6	9	11	2	13	14	12	91	11	- 81	19	_ ম	22	83	ន	7	3	8	73	8	ន	8 -	-

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	8	8	27	8	ŝ	24	ន	g	2	ล	19	18	17	16	15	77	13	12	=	9	6	œ	-	9	10	4	ന	ণ	-	0		-	8
	COSINE.	768-966-	-966419	-9996341	-9996262	-9996182	-996101	9990020	-9995937	9995854	9995770	-99956S	9995599	-9995512	9995424	-9995336	9995247	-9995157	9002666	-9094974	9994881	-9994788	-994693	-9994598	9994502	-9994405	-9904308	-9004209	-9994110	-9994009	-9993908		SINE.	Dag
<u>.</u>	COTANG.	37.76861	37-35789	36-95600	36-56265	36-17759	35.80055	35-43123	35-06954	3471511	34.36777	34.02730	33.69350	33-36619	33 04517	32-73026	32.42129	32-11809	31.82051	31.52839	31-24157	30 95992	30.68330	30.41158	30-14461	29-88229	29.62449	29:37110	29.12200	28:87708	28.63625		TANG.	
KADIUR	TANG.	-026477	020768	-027059	-027350	.027641	-027932	-028223	028514	028805	-020097	029388	029679	020020	030261	-030552	030843	-031135	-031426	-081717	032008	-032209	-032591	-032882	-033173	033464	-033755	.034047	-034338	-034629	·034 6 20		COTANG.	
PENTS TO A	SINE.	-0264677	0267585	-0270493	-0273401	-0276309	-0279216	-0282124	0285032	-0287940	1290847	-0293755	-0206662	-0299570	-0302478	-0305385	-0308293	-0311200	.0314108	-0317015	-0319922	-0322830	-0325737	0328644	-0331552	-0334459	-0337366	·0340274	-0343181	-0346088	-0348995		COSINE.	
100		185	33	æ	*	8	æ	37	æ	66	9	4	42	43	4	4	9	¥	8	67	23	15	22	33	2	22	99	22	86	29	9		<u> </u>	
Y .	_	99	29	28	22	26	33	75	53	22	51	33	49	8	47	46	45	4	43	42	41	4	g	æ	37	æ	8	*	æ	32	31	30	-	a
NATUKAH SINES AND TANGENTS TO A KADIUS L 1 Dee.	COSINE.	-9998477	-9998426	-9998374	-9998321	-9698267	-9998213	2988157	1018666	£108666	9862666	-9997927	-9997867	208266	-9997745	-9997683	-9997620	-9997556	-9997492	-9997426	-9997360	-9997292	-9997224	-9921156	-9804086	-9997015	-9696943	1.29666	8629666	-9996724	-9996649	-9996573	SINE.	Dad
TENOTE	COTANG.	57-28996	56:35059	55.44151	54.56130	53-71)858	52:5311	52:08067	51:30315	50-54850	49-81572	49-10388	48-41208	47-73950	47.08534	46.44886	45-82935	45-22614	44-63859	44.06611	43-50812	45-96407	42-43346	41-91579	41-41058	40-91741	40-43583	39-96546	39-20589	39-02677	38-61773	\$8.18845	TANG.	
Š	TANG.	-017455	-017746	018037	-018828	619810	018810	019201	26#610	019783	-020074	020365	-020656	-020947	-021238	-021529	-021820	-022111	-022402	-022693	-022384	-023275	-023566	-023857	-024148	-024439	024730	-025021	-025312	-025603	025894	-026185	COLANG.	
Deg.	SINE.	-0174524	-0177432	-0180341	0183249	0186158	0183066	-0191974	0194883	-0197791	0200699	0203008	-0206516	0209424	.0212332	-0215241	-0218149	-0221057	0223965	-0226873	-0229781	-0232690	-0235598	-0238506	-0241414	0244322	-0247230	0250138	0253046	-0255954	0258862	0261769	COSINE.	
U.	-	0	_	240		4	0	<u>د</u> ا	_	200	٠.	2	=	27	2	71	2	91	-14	<u>∞</u>	61	ଛ	27	83	23	74	ន	8	54	88	81	8	`	

DEG SE

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	53	8	13	å	:3	2	83	22	2	ន	19	81	17	91	12	14	13	12	=	10	6	00	_	9	10	4	က	67	~	0	1-	.87.
	COSINE,	-9990355	-9990227	8600666	8966866	-9989837	9026866	-0080573	-9989440	9086306	1216866-	-9989035	6688866	192SS66-	9988623	9988484	-9988344	-9988203	1908866	6162866	6222866	-9987631	-9987486	-9987340	-9987194	-9987046	8689866	-9986748	-9986598	-9986447	-9986295	SINE.	DEG. 87.
	COTANG.	22-75189	22:60201	22-45409	22:30809	22.16398	22.02171	21.88125	21.74256	21-60563	21.47040	21:33685	21.20494	21-07466	20.94596	20.81882	20.69322	20-56911	20.44648	20:32530	20-20555	20.08719	19-97021	19-85459	19.74029	19-62729	19-51558	19-40513	19-29592	19-18793	19-08113	TANG.	
	TANG.	.043952	.044243	-044535	-044826	-045118	-045409	-045701	045992	-046284	-046575	.046867	.047158	.047450	-047741	-048033	-048325	.048616	.048908	-049199	-049491	.049782	-02004	.020366	-020657	-020349	-051241	-051532	-051824	052116	-052407	COTANG.	
EG.	SINE.	-0439100	•0442006	-0444912	.0447818	-0450724	0453630	-0456536	.0459442	.0462347	0465253	-0468159	.0471065	-0473970	-0476876	.0479781	-0482687	0485592	.0488498	-0491403	.0494308	-0497214	-0200119	0503024	0505929	-0508835	-0511740	.0514645	-0517550	0520455	.0523360	COSINE.	
2 DEG.	-	31	33	æ	*	8	98	37	88	ŝ	9	41	42	43	4	45	46	47	87	67	જ	21	25	33	72	32	26	24	28	20	9	-	
	-	9	59	28	27	26	55	54	53	25	51	B	49	48	47	46	45	44	43	42	41	9	33	88	37	æ	8	34	83	32	331	3 -	. 87.
	COSINE.	-9993908	903806	9993704	-993800	9993495	-9993390	9993284	9993177	-993069	9992960	-9992851	-9992740	-9992629	9992517	-9992404	9992290	-9992176	-9992060	-999194 4	-9991827	-9991709	-9991590	-9991470	.9991350	-9991228	-9991106	•9090983	6680666	-9990734	9990609	SINE.	DEG.
	COTANG.	28-63625	28-39939	28-16642	27 93723	27.71174	27-48985	27-27148	27.05655	26.84498	26.63669	26.43160	26.22963	26-03073	25.83482	25.64183	25.45170	25.26436	25.07975	24.89782	24.71851	24.54175	24:36750	24.19571	24.02632	23:85927	23.69453	23-53205	23:37177	23-21366	23-05767	TANG.	
	TANG.	-034920	-035212	035503	-035794	036085	-036377	036668	036959	-037250	-037542	-037833	-038124	-038416	038707	-038998	-039200	-039581	-039872	.040164	040455	-040746	-041038	.041329	-041621	041912	-042203	-042495	-042786	-043078	043369	COTANG.	
DEG.	SINE.	-0348995	0351902	0354809	0357716	0360623	-0363530	0366437	0369344	.0372251	-0375158	0378065	0380971	-0383878	-0386785	-0389692	-0392598	-0395505	-0398411	-0401318	-0404224	-0407131	-0410037	-0412944	0415850	-0418757	.0421663	-0424569	-0427475	0430382	0433288	COSINE.	
2 D	-	0	_	61	ຕ	4	10	9	_	00	6	2	Ξ	17	13	77	12	99	11	8	13	ล	2	8	ន	25	ន	8	27	8	88	1-	

Hosted by Google

NATURAL SINES AND TANGENTS TO A RADIUS 1.

		6	00	5	9	10	-	65	63	=	0	6	00	<u></u>	9	5	4:	<u> </u>	.7.	75	-	200	٦.	. 9	20	4	ಣ	67	_	0	L	يو ا
	-	2	~	64	21				<u>ښ</u>	-		_	_	_	_	_		_			_			_		_					-	DEG. 86.
	COSINE.	9981170	1660866	-9980811	•9980631	-9980450	-9980267	-99S0084	0066266	9126266	9979530	-9979343	9919196	-9978968	6228266	6828266	9978399	-9978207	508266	17871/66	1201162	72677700	-9977040	-9976843	-9976645	-9976445	-9976245	-9976045	-9975843	9975641	SINE.	Di
	COTANG.	16-27217	16-19522	16-11899	16.04348	15-96866	15-89454	15-82110	15-74833	15-67623	15-60478	15-53398	15.46381	15-39427	15-32535	15-25705	15-18934	15-12224	15.05572	14.98978	14.92441	14.70527	14.73167	14.66852	14.60591	14-54383	14-48227	14-42123	14-36069	14:30066	TANG.	
	TANG.	-064154	-061746	-062038	-062330	.062622	-062914	-063206	-063498	-063790	-064082	-064375	-064667	-064959	.065251	065543	-065835	.066127	-066419	71/000	-00/004 -067906	067580	067880	-068173	068465	767890	-069049	.069342	-069634	.069926	COTANG.	
DEG.	SINE.	-0613389	.0616292	9616190-	-0622099	-0625002	-0627905	8080890	0633711	-0636614	-0639517	-0642420	-0645323	-0648226	-0651129	-0654031	-0656934	-0659836	-0602/39	Tegcoon.	00000344	0674340	-0677251	-0680153	-0683055	-0685957	-0688859	-0691761	-0694663	-0697565	COSINE.	
3 Di	-	31	32	83	34	33	98	32	33	33	40	¥	42	£3	44	45	46	47	\$	9.5	35	7.52	3 25	75	22	99	22	86	56	3	Ŀ	
	BORGE !	ezami	226	T STATE	(Carrie	esx.	200	U-25	1000	2523	No.	200	E SE	-			****	T.L.	400		ELL Z	SM12		-	2/12	-	22,00		341		1	1
		99	55	22	Įċ.	18	55	54	53	55	51	8	49	48	4	46	45	#	33	3:	4.5	36	8	60	8	8	8	88	20	20 02	-	86.
	COSINE. /			-9985989 SS			_	_	_	_	_	_	-9984570 49	_	_		_	9983751 44	9983555	0366000						·9982225 35	-9982052 34	9981877 33	.998I/0I 32	.9981525 31 .9981348 30	SINE,	DEG. 86.
	COTANG. COSINE. /		-9986143	6862866		089286	-9985524	2982367	-9985209	-6082020	- 9984891	-9984731	_	-9984408	-9984245	-9984081	.99839I7		71.45156 99883989 43	0366000	002000	900000	9982742	.9982570	-9982398	_		<u>.</u>		16.34985 9981348 30	TANG. SINE.	DEG. 86.
	-	19-08113 -9986295	18-97552 -9986143	18-87106 -9985989	18-76775 -9985835	18-66556 9985680	18-56447 -9985524	18-46447 -9985367	18:36553 -9985209	18-26765 -9985050	18-17080 9984891	18.07497 -9984731	21086-7I	17-88631 -9984408	17-79344 9984245	17-70152 -9984081	116886. ccniq./1		2010571	0366000	17-16039 .0023089	77-08372	16-99895 9982742	16.91502 9982570	16:83191 -9982398	16-74961	16.66811	16:58739	6570c.91		TANG.	DEG. 86.
3 Dec.	COTANG.	0 -052407 19-08113 -9986295	052699 18-97552 -9986143	052991 18:87106 9985989	053282 18-76775 9985835	-053574 18-66556 9985680	053866 18-56447 9985524	054158 18-46447 9985367	9 054449 18:36553 985209	054741 18-26765 -9985050	055033 18-17080 9984891	9984731	055616 17-98015	055908 17-88631 9984408	056200 17-79344 9984245	056492 17.70152 9984081	7198899 ce010-71 487000	160Ze./I 6/0/e0.	2010#./I /00/00.	17.95550	-0659949 17-16032 0002009	-058535 17-08379 -0089019	-058827 16-99895 -9982742	059119 16-91502 9982570	. 059410 16.83191 9982398	7 -059702 16-74961	-059994 16-66811	16:58739	. 060578 16-90745	16-34985	COTANG. TANG.	DEG. 86.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	83	88	53	8	ä	2	23	22	15	18	20	×	1	16	25	2.5	10	35	7:	Ξ;	9	6	∞	~	9	۰,	4	ന	63	-	0		-	8
	COSINE.	-9968945	-9968715	-9908485	9968254	9968022	6822966	9967555	9967321	-0067685	0066840	9966612	-9966374	-9966135	9965895	0065655	00065414	0005179	000,000	8264066	0304000	-9964440	9064195	-9963948	-9963701	-9963453	-9963204	-9962954	-9962704	-9962452	-9962200	-9961947		SINE.	DEG.
	COTANG.	12-65912	12-61239	12-56599	12:51994	12:47422	12.42883	12:38376	12:33902	19-99460	19:25050	12:20671	12.16323	12:12006	12:07719	19.03469	11.00934	11.05037	00000	20008.77	82/28	11.82616	11.78533	11.74477	11.70450	11-66449	11.62476	11.58529	11.54609	11.50715	11-46847	11-43005		TANG.	
	TANG.	-078994	-079287	-019579	-079872	080165	080458	080750	-081043	081336	08180	-081922	-082215	082507	-082800	-083003	983380	063670	00000	77600	084200	-084558	-084851	-085144	-085437	-082230	-086023	.086316	609980-	-086902	-087195	.087488		COTANG.	
3 G.	SINE.	-0787491	.0790391	-043230	0619620	0606620	0801989	0804889	0807788	0810687	-0813587	-0816486	-0819385	0822284	0825183	0808080	0850061	0000000	000000	0//000	7,9880	.08472576	-0845474	-0848373	1.721280	-0854169	-0857067	-0829966	•0862864	-0865762	089890	.0871557	-	COSINE.	
4 Deg.	-	31	33	æ	*	33	%	£.	×	8	34	4.4	6	18	4	14	9 9	1 9	H Q	Ç.	41	8	51	22	33	54	38	96	24	28	26	3		-	
	-	9	59	28	22	92	53	7	53	20	2.5	25	67	8	47	7	4	3 2	ļę	33	3:	4	9	33	8	37	జ	8	\$	æ	32	31	30	-	æ.
	COSINE.	-9975641	9975437	-9975233	-9975028	9974822	9974615	9974408	9974199	00023000	0878780	0073769	-9973357	-9973145	9972931	7176700	6076700	906400	0000000	33/2003	1081/66	-9971633	-9971413	-9971193	-9970972	-9970750	-9970528	-9970304	·9970080	-9969854	-9969658	.9969401	-9969173	SINE.	DEG.
	COTANG.	14:30066	14:24113	14.18209	14.12353	14-06545	14.00785	13-05071	13.89404	19.02799	13-78906	13-79673	13.671.85	13.61740	13-56339	13.50070	19.45669	19.40906	0000000	Torocci	13.2995/	13:24803	13-19688	13.14612	13.09575	13.04576	12:99616	12:94692	12.89805	12.84955	12:80141	12-75363	12:70620	TANG.	
	TANG.	069925	-070219	-070511	-070803	960120-	-071388	089120	071073	070965	079558	079850	073143	073495	073797	024050	070710	074505	200	0/409/	075190	.075482	-075775	990940	-02990	076653	-076945	-077238	-077531	-077823	078116	6048400	-078701	COTANG.	
DEG.	SINE.	0697565	-0700467	0703368	0706270	1216020	0712073	0714074	9787170	2750077	0709670	079650	1250481	0729289	0735983	079010	010010	0.41000	006610	0/4088/	.0749787	-0752688	.0755589	-0758489	-0761390	0764290	021290	1600220	-0772991	-0775891	0778791	0781691	-0784591	COSINE.	
4 D	`	6	,_	2	00	4	1 10	9	۰,	-0	00	2	3=	10	3 2	3.5	# 2	2;	91	7	8	19	ຊ	22	22	ន	57	33	8	2	88	8	8	-	

Hosted by Google

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	COTANG. COSINE.	-9953683	-9953403	-9953122	-9952840	-9952557	_	-9951990	_	9051419	-9951132	47:06:65.	952056	-9920506			_	_	_	_	_	_	· -	_	<u>.</u>	_	_	_	-		514364 9945219		TANG. SINE.	DEG. 84.
-	TANG. COTA	_	_	_	_	_		_	_	_		_	-		_		_			_	_	_	_			_			- -	<u> </u>	-105104 - 9-514		COTANG. TA	
Date.	SINE.		-0964248	_	_		_	-0978724	6191860	0983514	0987408	-0500303	-0903197	0996092	9868660-	1001881	.1004775	-1007669	-1010563	1013457	1016351	1019245	1022138	Z\$00Z01.	0767701	618091.	1033712	1036605	1039499	1042392	1045285		COSINE. C	
	-	60 31	26 37	33	57 34	36	55	54 37	53	52 39	51 40	_		48 43	47 44	46 45	45 46	_	_	45	8		223	8:	, 5 7 7 7	99	දි	34 57	8	32 26	9	≅	· •	34.
	COSINE.	_	_	_	_	_	_	_		_		_	_	-9958S44	_	_		_	_	_	_	_	_	2000000	200000	0200086	.9900340	07066.6	16/4066	.9994517	9954240	298286	SINE.	DEG. 84.
	COTANG.	11-43005	11.39158	11.55397	11.31630	11:27888	11:24171	11.20478	11-16808	11-13163	11.09541	11.05943	11-02367	10.98815	10.95285	10-91777	10-88292	10.84828	10.81387	10.77.00	90C+7.01	10.71191	10.07.834	10.01	10.01104	600/0.01	10.04010	09210.01	10.45120	10-44911	10.41/15	10.58539	TANG.	
	TANG.	-087488	18//80	4/0000	022202	100000	-088954 -	-089247	-089240	£8680.	-090127	030420	-090713	200160-	.091300	260160.	/88160	082180	0924/3	092/0/	00000	#00000	750600	01-601-00-	#C7#60.	770460	094021	099114	035C0	10/050	666660	090289	COTANG.	
		1557	08/4455	08/7503	0880251	0883148	0886046	0888943	0891840	-0894738	897635	0900532	0903429	0906326	0909223	0912119	9102160	001/913	0920809	00229700	200020	000000	0952595	1020000	0929197	0.0041000	6765560	19468/0	0949//1	000250	7900060	0399500	COSINE.	
	SINE.	-087155	ŝ	\$8	\$	ş	õ	Ģ	۶	ç	۰	•	•	Ų,	·	•	•	•	•	•		•	•				-	•	-	•	•	-1	~1	

 $\mathsf{Hosted}\,\mathsf{by}\,Google$

9933389
9934738
9934738
9934738
9934738
9933738
9933738
993374
9931106
9931106
993186
993186
9931876
9931876
9931876
9931876
9932865
9932861
9932861
9932861

COSINE.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

6 DEG.

6 DEG.

		_			_							_	_										_				_		_		
COTANG.	8-754246	8-731719	8-709307	8.087.008	8.664822	8-642747	8-620783	8.598929	8.577183	8-555546	8.534017	8-512594	8-491277	8-470065	8-448957	8-427953	8-407051	8-386251	8-365553	8-344955	8-324457	8-304058	8-283757	8-263554	8-243448	8-223438	8-203523	8.183704	8.163978	8.144346	
TANG.	.114230	114525	-114819	115114	.115409	.115703	115998	-116293	116588	.116883	117178	117473	117767	.118062	118357	118652	·118947	·119242	119537	.119832	120127	-120423	120718	.121013	.121308	.121603	.121898	122194	.122489	122784	
SINE.	1134922	1137812	1140702	1143592	-1146482	.1149372	$\cdot 1152261$	1155151	.1158040	1160929	1163818	1166707	1169596	1172485	1175374	1178263	1181151	1184040	1186928	1189816	1192704	1195593	1198481	1201368	1204256	1207144	$\cdot 1210031$.1212919	.1215806	.1218693	
-	31	33	83	*	33	98	8	80	8	9	4	42	4	4	45	46	4	8	6	33	21	52	53	72	22	99	22	25	53	3	
-	99	59	28	22	92	32	7	53	52	51	20	49	48	47	46	5	4	43	42	4	9	36	88	37	36	33	34	88	32	33	စ္က
COSINE.	-9945219	-9944914	-9944609	•9944303	-9943996	-9943688	9943379	-9943070	9942760	-9942448	-9942136	9941823	-9941510	-9941195	9940880	-9940563	-9940246	-9939928	-9939610	-9939290	-9938969	8798866	-993S326	·9938003	-9937679	-9937355	-9937029	-9936703	-9936375	-9936047	-9935719
COTANG.	9-514364	9.487814	9-461411	9-435153	9-409038	9-383066	9-357235	9-331545	9-305993	9-280580	9-255303	9-230162	9-205156	9.180283	9.155543	9.130934	9-106456	9-082107	9.057886	9-033793	9-009826	8.982984	8-962266	8-938672	8-915200	8-891850	8-868620	8-845510	8.822518	8-799644	8:776887
TANG.	105104	105398	105692	.105986	106280	106675	698901	.107163	107457	107751	108046	108340	108634	108929	.109223	109517	.109812	-110106	110401	110695	086011	-111284	8751115	.111873	.112168	.112462	112757	113051	·113346	113641	113935
SINE.	1045285	1048178	·1051070	1053963	1056856	-1059748	1062641	1065533	1068425	.1071318	•1074210	-1077102	1079994	1082885	1085777	·1088669	.1091560	1094452	1097343	1100234	-1103126	1106017	1108908	1111779	1114689	.1117580	1120471	1123361	1126252	1129142	1132032

83 DEG.

SINE.

TANG

COTANG.

COSINE.

SINE.

TANG

COTANG.

COSINE.

8 DEG.

888888888888888888888888888888888

NATURAL SINES AND TANGENTS TO A BADIUS 1.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	g	28	13	8	ន	77	ध	2	22	8	61	20	17	9	15	14	13	12	=	9	6	20	-	9	20	4	က	61	_	0		-	SI.
	COSINE.	-9889728	9889297	-9888895	-9888432	8662886	-9887564	-9887128	-9886692	9886255	-9885817	9885378	-9884939	9584498	9884057	-9883615	9883172	9882728	-9882284	9881836	·9881392	9880945	-9880497	9880048	6626286	-9879148	7698786	9878245	9877792	-9877338	9876883		SINE.	DEG.
i	COTANG.	298229-9	6.664630	6.651444	6.638310	6.625225	6-612191	6.599208	6-586273	6.573389	6.560553	6.547767	6.535029	6.522339	6.509698	6.497104	6.484558	6.472059	6.459607	6.447201	6.434842	6.422530	6.410263	6.338042	6.385866	6-373735	6.361650	6.349609	6.337612	6.325660	6-313751		TANG.	
	TANG.	.149748	150045	150343	150640	150938	.151235	.151533	.151830	152128	152426	.152723	153021	.153319	153617	153914	154212	.154510	154808	155106	155404	155701	.155999	156297	156595	.156893	161/21	.157490	.157788	158086	158384		COTANG.	
	SINE.	.1480971	·1483848	1486724	.1489601	.1492477	$\cdot 1405353$.1498230	-1501106	1503981	1506857	1509733	1512608	1515484	1518359	1521234	1524109	1526984	1529858	1532733	1535607	1538482	1541356	1544230	1547104	1549978	1552851	1555725	1558598	1561472	1564345		COSINE.	
8 DEG.	_	31	32	ĸ	34	8	8	34	88	33	9	41	3	3	44	4	97	47	&	49	36	51	25	23	72	32	98	24	%	26	39		_	
	-	99	29	28	22	26	22	54	33	52	51	20	49	48	47	46	45	4	43	42	41	40	33	88	37	æ	33	32	g	32	31	30	_	81.
	COSINE.	-9902681	-9902275	6981066	-9901-162	-9901055	9900646	-9900237	980085	-9899415	-9899003	0698686	·9898177	-9897762	-9897347	9896031	-9896514	9609686-	2895677	-9895258	-9894838	-9894416	-9893994	9893572	-9893148	-9892723	-9892298	-9891872	-9891445	-9891017	-9890588	-9890159	SINE.	DEG. 81.
	COTANG.	7.115369	7.100382	7.085457	7.070593	7-055790	7:041048	7.026366	7-011744	6-997180	6-982678	6-968233	6-953847	6-939519	6-925248	6-911035	6.896879	6.882780	6-868737	6.854750	6 840819	6.826943	6813122	6.79356	6.785644	986162-9	6.758382	6.744831	6.731334	6.717889	6.704496	6.691156	TANG.	
	TANG.	.140540	140837	-141134	.141430	141727	142024	142321	142617	142914	.143211	143508	-143805	.144102	.144399	144696	144993	.145290	145587	145884	146181	146478	.146775	.147072	.147369	147667	147964	148261	148559	148856	149153	149451	COTANG.	
DEG.	SINE.	1391731	1394612	1397492	.1400372	-1403252	1406132	.1409012	.1411892	.1414772	1417651	·1420531	1423410	1426289	.1429168	·1432047	1434926	.1437805	1440684	.1443562	-1446440	1449319	1452197	.1422075	.1457953	·1460S30	1463708	.1466585	.1469463	.1472340	.1475217	1478094	COSINE.	
8 D	-	0	_	21	ec	4	2	9	_	∞	6	2	=	27	13	14	15.	91	12	<u>8</u> 2	61	ล	21	81	ន	75	23	8	23	8	হা	2	`	

Hosted by Google

NATURAL SINES AND TANGENTS TO A RADIUS 1.

			_	_			_		_	_		_		_	_		_		_		_	_		_			_	_					•	
-		8	8	27	28	3	7	8	8	15	18	61	8	11	16	15	14	13	13	Ξ	2	6	œ	_	9	S	4	ಣ	cı	-	0		-	8
COSINE		-9862375	-9861894	9861412	9860929	-9860445	-0850060	-0850475	0850088	-0856501	0858013	-9857524	9857035	9856544	9856053	-9855561	-9825068	-9854574	-9854079	-9853583	-9853087	-9852590	-9852002	-9851593	-9851093	-9850593	-9850091	-9849589	-9849086	-9848582	9848078		SINE.	Dag
COTANG	-	5-965104	5.954481	5-943895	5-033345	5.92522	5-01-9355	5.001012	6.501508	5.601190	5-870804	5-860505	5-850241	5-840011	5.829817	5-819657	5-809531	5.799440	5.789382	5-779358	5.769368	5.759412	5.749488	5.739598	5.729741	2.719917	5.710125	5.700366	5.690639	5.680944	5.671281		TANG.	
DNAT	- Turner	167641	.167940	168239	168539	168838	160137	160436	160735	170035	170334	170633	170933	.171232	.171532	.171831	.172130	.172430	.172730	173029	173329	173628	173928	·174228	.174527	174827	172127	175427	175727	176027	176327		COTANG.	
STATE	STEP IN	1653345	1656214	1659082	1661951	1864819	1667697	1670556	1672492	1676901	16701791	1682026	1684894	192/291	1690628	1693495	1696362	1699228	1702095	1704961	1707828	1710694	.1713560	1716425	1719291	-1722156	-1725022	1727887	1730752	-1733617	$\cdot 1736482$		COSINE.	
	-	33	33	83	2	S	3 %	3.5	58	38	34	4	4	5	4	45	46	47	8	49	ಜ	21	22	83	72	18	92	22	88	26	8		`	
-	-	8	23	28	22	92	25	54	32	2	3 5	23	49	48	47	46	3	44	£	3	41	40	33	æ	37	88	8	34	8	32	31	8	`	8
COSTNE		-9876883	-9876428	-9875972	9875514	9875057	.0874508	0874138	8736780	9823916	-9872754	-9872291	7281185	9871363	2680286	-9870431	₹966986	-9869496	-9869027	688857	·9868087	-9867615	9867143	0.299986	-9866196	9865722	.9865246	9864770	-9864293	9863815	9863336	982396	SINE.	d
COTANG		6.313751	6:301886	6.290065	6.278286	6-266551	6.954858	6.942900	6.921600	6.990024	6.908510	6.197027	6.185586	6-174186	6.162827	6.151508	6.140230	6.128992	6-117794	6-106636	6-095517	6.084438	6.073397	6.062396	6.051434	6.040510	6.029624	6.018777	296200-9	2-997195	5.986461	5-975764	TANG.	
TANG.		158384	158682	.158980	159279	159577	150875	1,60174	160479	022091	161069	161367	161666	161964	162263	162561	162860	163159	163457	163756	164055	.164353	164652	164951	165250	165548	165847	-166146	166445	-165744	167043	16/342	COTANG.	
SINE.		1564345	1567218	-1570091	.1572963	1575836	1578708	1581581	1584453	1587295	1590197	1593069	1595940	1598812	.1601683	1604555	.1607426	-1610297	.1613167	.1616038	1618909	1621779	1624650	1627520	1630390	.1633260	.1636129	1638999	.1641868	1644738	1647607	1650476	COSINE.	
l ox	- 1												_	_		_	_	_	_			_				_		_						

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-		_								_													_			_							
	-	83	8	53	8	23	25	ន	ន	2	8	19	18	17	91	15	14	13	12	11	10	6	00	2	9	2	7	က	2	-	0		-	62
	COSINE.	-9832019	-9831487	-9830929	-9830422	-9859888	-9829353	9828818	-9828282	-9827744	9827206	9826668	9826128	9825587	9825046	9824504	9823961	9823417	9822873	-9822327	9821781	-9821234	-9850686	-9820137	-9819587	-9819037	-9818489	-9817933	9817380	.9816826	-9816272		SINE.	DEG
į	COTANG.	5-386771	5-378053	5-369363	5.360699	5-352062	5.343452	5.334869	5.326313	5.317783	5.309279	5.300801	5 - 292350	5.283925	5.275525	5.267151	5.258803	5.250480	5.242183	5-233911	5.225664	5-217442	5-209245	5-201073	5.192926	5.184803	5.176705	5-168631	5-160581	5.152555	5.144554		TANG.	
	TANG.	185639	185940	186241	186542	186843	187144	187446	187747	188048	188349	188650	188952	.189253	189554	189855	190157	190458	190760	190161	191363	191664	996161-	192268	192569	192871	.193173	193474	.193776	194078	194380		COTANG.	
EG.	SINE.	1825215	1828075	1830935	1833796	1886654	-1839514	1842373	1845232	1848091	1850949	1853808	1856666	1859524	1862382	1865240	.1868098	1870956	1873813	1876670	1879528	1882385	1885241	1888098	1890954	1893811	189667	1899523	1902379	1906234	0608061		COSINE.	
10 DEG.	_	31	33	g	2 5	38	జ	34	8	ŝ	40	41	42	43	44	45	\$	47	\$	49	33	21	22	33	75	22	28	22	88	26	3		-	
	-	99	20	œ	24	26	22	54	53	52	21	20	49	48	47	46	45	4	43	42	41	40	33	တ္တ	37	38	8	34	83	33	33	8	_	.62
	COSINE.	-9848078	-9847572	-9842066	-9846558	9846050	9845542	-9845032	9844521	-9844010	9843498	9842985	9842471	9841956	9841441	-9840924	9840407	-9839889	9839370	-9838850	9838330	-9837808	-9837286	-9836763	9836239	-9835715	9835189	-9834663	-9834136	-9833608	-9833079	9832549	SINE.	DEG.
	COTANG.	5-671281	2.661650	5.652051	5.642483	5.632947	5.623442	5.613968	5.604524	5.595112	5.585730	5.576378	5-567057	5.557766	5-5-48505	5.539274	5-530072	5.520900	5-511757	5.502644	5-493560	5.484505	5-475478	5.466481	5-457512	5.448571	2.439659	5-430775	5.421918	5-413090	5.404290	5-395517	TANG.	
ł	TANG.	176327	176626	176926	.177226	177527	177827	.178127	178427	178727	179027	179327	179628	179928	.180228	180529	180829	181129	181430	.181730	182031	182331	182632	182933	183233	183534	183835	184135	184436	184737	185038	185339	COTANG.	
Deg.	SINE.	.1736482	1739346	1742211	1745075	·1747939	1750803	1753667	1756531	1759395	1762258	1765121	1767984	1770847	01777710	.1776578	1779435	1782298	.1785160	1788022	1790884	1793746	1796607	1799469	.1802330	1805191	1808052	1810913	1813774	1816635	1819495	1822355	COSINE.	
10 D	-	0	-	67	က	4	20	9	7	.00	6	10	=	2	2	14	12	9	11	18	19	ล	21	23	ន	75	33	92	27	8	8	8	-	

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	INE.	9798667	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	3674 - 12	3079	7 4 83	988	2588	6899	0600	26	6888	3287	7898	2080	1476	1
	COSINE.	_	_	_	_	979					_	-9792818	_	9791638	_	-9790455	-978	-9789268	-9788674	6408846	9787	-9786886	_	_	_		-9783889	_	-9782684	-978	-978.	SINE
	COTANG.	4-907849	4.900562	4.893295	4.886049	4.878824	4.871620	4.864435	4.857271	4.850128	4.843004	4.835901	4:828817	4.821753	4.814709	4:907685	4·S00680	4-793695	4.786730	4-77-9783	4-772856	4.765949	4.759060	4.752190	4.745340	4-738508	4.731695	4.724901	4.718125	4.711368	4.704630	TANG.
	TANG.	-203755	.204058	•204361	204664	.204967	205270	.205573	-205876	206180	206483	.206786	.207090	.207393	-507696	.208000	-208303	208607	.208910	.209214	.209518	.209821	-210125	-210429	-210733	.211036	211340	211644	-211948	.212252	-212556	COTANG.
EG.	SINE.	.1996530	1999380	.2002230	.2005080	2007930	.2010779	.2013629	-2016478	2019327	2022176	-2025024	2027873	.2030721	2033569	-2036418	-2039265	-2042113	2044961	·2047808	2020655	-2053502	2056349	2059195	2062042	-2064888	-2067734	2070580	-2073426	-2076272	-2079117	COSINE.
11 DEG.	-	31	왏	88	*	S	8	33	88	8	9	4	42	43	4	45	46	47	8	49	20	51	25	53	2	33	92	22	200	26	8	-
		99	20	200	22	26	33	54	23	52	51	20	49	8	47	46	4	4	£	2	#	4	68	æ	34	98	8	34	83	33	22	1
	COSINE.	-9816272	9815716	.9815160	.9814603	-9814045	-9813486	-9812927	-9812366	-981186	-9811243	9810680	9810116	-9809552	980866	-9808420	-9807853	-9807285	9806716	-9806147	-9805576	-9805005	-9804433	-9803860	-9803286	-9802712	-9802136	-9801560	-9800983	-9800405	9799827	SINE.
	COTANG.	5-144554	5.136576	5-128622	5.120692	5.112785	5-104902	5-097042	5.089206	5.081392	5.073602	5.065835	2.058090	5.050369	5.042670	5.034993	5.027339	201610-9	5.012098	5.004511	4-996945	4.989402	4.981881	4.974381	4.966903	4-969447	4.952012	4.944599	4-937206	4-929835	4-922485	TANG.
	TANG.	.194380	194682	194984	-195286	.195588	195890	-196192	196494	962961	€0261	.197400	.197703	198005	.198307	•198610	.198912	199214	199517	.199819	200122	-200424	.200727	201030	-201332	201635	-201938	.202240	202543	.202846	203149	COTANG.
DEG.	SINE.	1908090	1910945	1913801	-1916656	$\cdot 1919510$	1922365	1925220	1928074	1930928	$\cdot 1933782$	-1936636	.1939490	1942344	1945197	-1948050	1950903	-1953756	009961	-1959461	1962314	$\cdot 1965166$	1968018	•1970870	1973722	.1976573	1979425	1982276	1985127	1987978	·1990829	COSINE.
11 1	-	0	_	01	•	4	20	9	7	.00	6	10	=	2	13	14	15	91	17	81	13	ล	22	83	ន	75	প্ত	8	53	8	ននេ	1-

NATURAL SINES AND TANGENTS TO A RADIUS 1.

DEG. 77.

DEG. 77

NATURAL SINES AND TANGENTS TO A RADIUS 1.

13 DB6.					_	-	_	_	_			_			_		_		_	_				_			_				
STATES COLUMN C		-	ន	38	18	ន	22	ន	83	22	3	52	45	9	12	4	e :	7:	19	6	00	۲	9	٠	4.0	00	ν-	۰.	•	-	. 76.
SINE. TANG. COTANG. COSINE. I DBG. COSINE. I COSINE. COSINE. I COSINE. COSINE. I COSINE. I COSINE. I COSINE. I COSINE. COSINE. I COSINE. COS		COSINE.	-9723020	-9722339	9720976	-9720294	-9719610	-9718926	9718240	9717554	.9716867	9716180	9714802	-9714112	-9713421	-9712729	-9712036	9/11343	9700953	9709258	9708561	-9707863	-9707165	9706466	99/00/6	conco/6	9/04303	9709957		SINE.	DEG
SAME	i	COTANG.	4.159968	4.154650	4.144051	4.138771	4.133504	4.128249	4.123007	4.117778	4.112061	4.10/350	4.096985	4.091817	4.086662	4.081519	4.076389	4.066164	4-061070	4-055987	4-050917	4-045859	4.040812	4-035777	4.030/00	4.020/44	4.020/44	4.010780	3	TANG.	
SINE. TANG. COTANG. COSINE. 1 1 1 1 1 1 1 1 1		TANG.	-240386	240694	-241309	-241617	-241925	-242233	242541	-242849	724315/	.943773	244081	-244390	.244698	-545006	-245315	245023	246240	-246549	.246857	-247166	-247475	247783	748087	104547	01/04/2	-249328		COTANG.	
Control Cont	EG.	SINE.	-2337282	2340110	2345766	2348594	2351421	2354248	-2357075	2359902	67/7057	2368381	2371207	2374033	2376859	2379684	2382510	9388150	2390984	2393808	2396633	2899457	.2402280	2405104	126/047	10/0147	-9014170	-2419219		COSINE.	
SAN COTANG COSINE	13 D	-	31	38	*	33	æ	34	æ.	စ္တ (₹:	45	4	4	3	\$	4	\$ Q	18	52	22	ĸ	\$	8	18	60	85	38	3	Ŀ	
SINE. COCANG. COCING. COCING		-	8	200	27	26	33	\$	53	22	2	34	8	47	46	£:	4:	9	14	4	33	æ	34	8	83	78	32	66	8	-	. 76.
AND		<u>si</u>		~~	4	E	 61	092	3	8	0 9	38	8	77	82	56	3	28	119	644	7777	105	432	200	# S	100	85	200	66	E.	DEG
81NB. 22245170 22245170 2225245170 2225245170 2225245170 2225245170 222750170 222750170 222750170 222750170 2227700 22		COSIN	974370	97439	974173	-97410	.9740	973	9735	9738	1016	0736	97357	97351	9734	9733	56.5	473	9731	973	.972¢	972	572	9/2/	77.5	97.50	07950	-97243	.97236	SIN	
Ä -			-	-	_	<u>.</u>	<u>.</u>	-	_	_	_	_	_	÷	<u>.</u>	_	_		_	÷	<u>.</u>	<u>.</u>	<u>. </u>	_	_		_	_			
		COTANG.	4-331475	4.320007	4.314295	4.308597	4.302913	4-297244	4.291588	4-285947	4.250319	4.969107	4.263521	4-257950	4.252392	4.246848	4-241317	4-220207	4.224808	4-219331	4-213869	4.208419	4.202983	4.19/560	1012614	1.00104	4.176001	4170644	4.165299	TANG.	
	BG.	TANG. COTANG.	230868 4:331475	231481 4:320/34	231787 4:314295	. -232094 4-308597 -	- 232400 4:302913 .	232707 4-297244	-233014 4-291588	-233320 4-285947	95057 4-280319	-934941 4-969107	.234547 4.263521	1 -234854 4-257950	235161 4-252392	235468 4-246848	235775 4-241317	-936300 4-930907	236697 4-224808	237004 4-219331	.237311 4.213869	237618 4-208419	-237926 4-202983	238233 4-197560	161261-4 140062	120101.1	0.0301.4 0.01002.	239771 4-170644	.240078 4.165299	COLANG. TANG.	

NATURAL SINES AND TANGENTS TO A RADIUS 1.

					-	_	_		_	-	-			-	-		_	-	-	_	_		_	-	-	-	-	-	-	-	-	_	_		İ
		23	æ	23	28	25	9.6	18	38	3	5	ន	19	38	14	16	15	14	13	12	Ξ	2	6	œ 	7	9	2	4	e0 	61	_	<u> </u>		`	
	COSINE.	-9680748	8100896	-9679288	9678557	-0677825	06777009	001000	2000/06	-9675624	-9674888	-9674152	-9673415	9672678	-9671939	9671200	-9670459	-9669718	2268996	-9668234	9667490	-9666746	1009996	9665255	9664508	-9663761	-9663012	9662263	•9661513	-9660762	9660011	-9659258		SINE.	
	COTANG.	3.862078	3.857453	3-852839	3.848235	3.843642	2.830050	2007	3.834400	3.829923	3-825370	3.820828	3.816295	3.811773	3.807260	3.802758	3.798266	3-793783	3.789310	3.784548	3.7803:15	3.775951	3-771518	3.7670.94	3.7626:0	3.7582.6	3.7535.81	3.749406	3-745120	3.740,54	3.736.98	3-732050		TANG.	
	TANG.	-258928	-259238	.259548	259859	980169	087096	00000	16/007.	.261101	-261412	-261723	-262034	262345	-262656	262967	-263278	-263589	.263900	-264211	-264522	264833	265145	-265456	-265768	-266079	266390	-566702	-267014	-267325	-267637	267949		COTANG.	
EG.	SINE.	2506616	-2509432	-2512248	·2515063	-2517879	-9590604	2000000	20222008	.7526323	-2529137	2531952	.2534766	.2537579	-2540393	-2543206	2546019	.2548832	-2551645	2554458	2557270	.2560082	2562894	2565705	.2568517	.2571328	-2574139	.2576950	.2579760	2582570	$\cdot 2585381$	-2588190		COSINE.	
14 DEG.	-	31	33	83	2	8	8	3 8	š	88	ణ	9	41	4	43	4	45	9	47	8	6	33	2	25	23	54	22	38	24	200	26	3		Ē	
	-	09	59	32	12	3	K	3 :	\$	33	22	2	2	49	48	47	46	45	44	43	42	41	9	33	88	37	98	8	34	83	32	31	ස	-	
	COSINE.	-9702957	-9702253	-9701548	-9700842	9700135	9670090	000000	30307.70	-9698011	9697301	1629696	9695879	9695167	9694453	-9693740	9693025	-9692309	9691593	-9690875	-9690157	-9689438	-9688719	-9687998	2121896-	.9686555	-9685832	-9685108	9684383	·9683658	-9682931	-9682204	-9681476	SINE.	
	COTANG.	4.010780	4.005816	4.000863	3-005022	3-000002	2.086078	9.0000	2.321100	3.976271	3.971386	3-966513	3.961651	3-956801	3-951961	3.947133	3.942315	3-937509	3-932714	3-927929	3-923156	3-918393	3.913642	3.908901	3-904171	3-899451	3.894742	3.S30044	3-885357	3.880680	3.876014	3-871358	3.866713	TANG.	
	TANG.	-249328	-249637	-249946	-950955	-250564	.950872	901110	201102	- 251491	251801	.252110	.252420	.252729	-253038	-253348	253658	-253967	.254277	-254587	254896	255206	255516	-255826	-256136	-256446	-256756	-522066	-257376	257686	257997	258307	-258617	COTANG.	
EG.	SINE.	•2419219	-2422041	·2424863	.9497685	-9430507	0666676	0.00000	2436150	.2438971	-2441792	2444613	-2447433	-2450254	2453074	-2455894	-2458713	-2461533	2464352	2467171	.2469990	-2472809	2475627	-2478445	-2481263	.2484081	2486899	2489716	-2492533	-2495350	-2498167	2500984	.2503800	COSINE.	
14 DEG.		0	_	2	or.	- T	1 10	٠.	9	_	00	6	<u> </u>	=	2	· ·	14	2	9	1	œ	6	ล	21	ន	x	75	13	8	12	8	8	<u>ജ</u>	-	

NATURAL SINES AND TANGENTS TO A RADIUS 1.

•		

	-	ន	88	73	23	8	2	83	8	2	8	19	82	11	16	15	77	23	12	Ξ	2	6	∞	_	9	2	4	က	87	_	•	1	,	74.
	COSINE.	9635527	-9634748	-9633969	-9633189	-9632408	9631626	-9630843	9630060	-9629275	-9628490	-9627704	-9626917	-9626130	-9625342	-9624552	-9623762	-9622972	-9622180	-9621387	-9620294	-9619800	-9619005	-9618210	-9617413	9616616	9615818	-9615019	-9614219	-9613418	-9612617		SINE.	DEG. 74.
	COTANG.	3.601814	3.597754	3.593702	3.589659	3.585624	3.581597	3.577579	3.573569	3.569568	3-565574	3.561590	3-557613	3.553644	3.549684	3.545732	3.541788	3-537852	3.533925	3.530005	3.526093	3.522190	3.518294	3:514407	3.510527	3.506655	3.502791	3.498935	3.495087	3.491247	3.487414		TANG.	
	TANG.	-277637	.277951	-278264	278578	.278891	-279205	.279518	-279832	-280145	-280459	-280773	-281087	281401	-281715	-282029	-282343	-282657	-282971	-283285	-283599	-283914	-284228	-284543	-284857	-285172	.285486	.285801	-586115	-586430	-286745		COTANG.	
EG	SINE.	-2675187	.2677989	-2680792	2683594	2686396	-2689198	2692000	2694801	-2697602	-2700403	·2703204	-2706004	-2708805	2711605	2714404	-2717204	.2720003	-2722802	-2725601	.2728400	-2731198	2733997	2736794	-2739592	-2742390	.2745187	-2747984	182022	-2753577	-2756374		COSINE.	
15 Deg	-	31	33	83	35	8	99	33	8	66	9	41	27	43	4	3	9	47	2	6	200	21	25	33	54	22	26	21	86	23	8		`	
	-	. 99	29	28	22	99	22	75	53	22	21	55	49	48	47	46	45	4	54	3	4	9	68	æ	37	8	8	*	3	83	88	ਜ਼	-	DEG. 74.
																						_	~								_	-		Dig
	COSINE.	-9659258	-9658505	-9657751	-9626996	9656240	-9655484	-9654726	9653968	-9653209	-9652449	-9651689	-9650927	-9650165	-9649402	-9648638	-9647873	-9647108	9646341	9645574	964480	-964403	-9643268	-9642497	-9641726	-9640954	-9640181	-9639407	9638633	9637858	-9637081	checes	SINE.	
	COTANG. COSINE.	_	3.727713 9658505	_		_	-	3.706164 9654726	<u>.</u>	_	_	_	_	_	_	_	_	_	· -	_	· -	<u>.</u>	<u>.</u>	-	_	_	_	_	_	_	3.609960 - 9637081	1	TANG. SINE.	
	-!	3.732050	3.727713	3.723384	3.719065	3.714756	3.710455	3.706164	3.701883	3-697610	3-693346	3.689092	3-684847	3.680611	3.676384	3.672166	3-667957	3-663757	3.659566	3.655384	3.651211	3-647046	3.642891	3.638744	3-634606	3-630-477	3-626356	3-622244	3.618141	_	3.609960	3.000003	-	
DEG.	COTANG.	-267949 3-732050	. 268261 3.727713	. 268572 3.723384	. 268884 3.719065	3 -269196 3-714756	269508 3.710455	.269820 3.706164	. 270132 3-701883 .	270444 3-697610	9 -270757 3-693346 -	271069 3-689092	271381 3.684847	-271694 3-680611	3.676384	3.672318 3.672166	. 272631 3-667957	.7272943 3-663757	773256 3-659566		. 273881 3-651211	. -274194 3-647046 -	.274507 3-642891	. -274820 3-638744 -	7 - 275133 3-634606 -	.275445 3-630477	3 -275758 3-626356	276071 3-622244	276385 3.618141	276698 3-614046	277011 3.609960	72/1324 3.000003	TANG.	

NATURAL SINES AND TANGENTS TO A RADIUS 1.

DEG. 73.

DEG.

2 DEG.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

2 DEG.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	23	88	38	3 53	2	ន	81	21	ล	19	18	11	91	15	77	13	27	=	2	5	00	_	9	20	4	က	61	_	0		-	11.
	COSINE.	-9482313	9481389	0470538	9478612	9477684	9476756	-9475827	9474897	-9473966	-9473035	-9472103	-9471170	-9470236	9469301	9468366	-9467430	-9466493	9465555	9464616	2463677	-9462736	-9461795	-9460854	-9459911	-9458968	·9458023	-9457078	-9456132	-9455186		SINE.	DEG. 71.
ı	COTANG.	2:985798	2.982916	9.077168	2-974301	2.971439	2.968583	2-965731	2:962884	2.960042	2.957205	2.954372	2.951545	2.948722	2.945905	2.943092	2.940284	2.937480	2.934682	2.931888	2:929099	2-926315	2.923535	2.920761	2-917990	2-915225	2.912464	2:909708	2:906957	2 904210		TANG.	
	TANG.	-334918	335242	335880	336213	-336537	-336861	:337185	-337509	-337833	-338157	338481	.338805	-339129	-339454	-339778	-340103	340427	340752	341077	341401	341726	-342051	.342376	-34270I	-343026	-343351	-343677	344002	-344327		COTANG.	
EG.	SINE.	-3175805	3178563	3184079	3186836	-3189593	.3192350	3195106	3197863	.3200619	-3203374	3206130	3208885	.3211640	.3214395	.3217149	.3219903	3222657	3225411	.3225164	3230917	.3233670	3236422	3239174	.3241926	3244678	.3247429	.3520180	.3252931	3255682		COSINE.	
18 DEG.	-	31	232	32	8	8	37	88	33	40	4	3	3	44	45	9	47	æ.	31	35	70	25	3	5	22	8	22	8	20	8		-	
	-	9	000	812	. 92	33	54	53	25	51	25	49	48	47	46	45	4	3	3	4:	9	Si Si	æ	34	æ	33	*	83	33	E 2	9	_	71.
		_																				_						_	_		1	1	٠.:
	COSINE.	-9510565	9996026	_	_	9506061	-9505157	-9504253	-9503348	-9502443	-9501536	-9500629	-9499721	-9498812	-9497902	-9496991	.9496080	-9495168	9494235	9493341	3432426	9491511	9490595	.9489678	.9488760	9487842	9486922	.9486002	.9485081	-9484159	.9483237	SINE.	DEG. 71.
	COTANG. COSINE.		-	9507865	-9506963	_	_	_	_	-	-	_	_	_	-	-	_	-	-	3.020/72 3493341	_	_	_	_	-	-	_	<u>.</u>	·_		Z:988680 -9483Z37	TANG. SINE.	DEG.
	<u> </u> ;	3-077683	9203080	3:068569 -9507865	3-065542 -9506963	3.062520	3.059503	3.056492	3.053487	_	3.047491	3 044501	3.041517	3-038538	3.035564	3.032595	3.029632	3.020673	3.023/20	3.020772	3.01/830	3.014892	3:011960	3.000033	3.006110	3.003193	3.000282	2:997375	2:994473	2:991576	-	-	DEG.
18 DEG.	COTANG.	-324919 3-077683	3.074640 .9509666	395884 3-068569 -0507865	-326206 3-065542 -9506963	326528 3-062520	-326850 3-059503	-327172 3-056492	327494 3.053487	327816 3.050486	-328138 3.047491	328461 3 044501	328783 3.041517	-329105 3-038538	-329428 3-035564	-329750 3-032595	.330073 3.029632	-330395 3-026673	330/18 3.023/20	331041 3.020/2	331363 3.01/830	331686 3.014892	-332009 3-011960	.332332 3-009033	.332655 3.006110	. 332978 3-003193	333302 3.000282	333625 2:997375	338948 2:994473	-334271 2-991576	2.988680	TANG.	Deg.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

-	8	36	38	ić	3 %	3	7	ន	8	16	18	35	20	10	7	2 1	3,2	12	2	12	12	90	o	-10	٠.	N.	4	1 01	30	٦	40	>	-	
COSINE.	-0495444	1722.040	0422408	2626670	0491550	0001750	9750575	-9419298	9418621	-0417644	-0416665	0415686	0414705	0012110	-0419743	04711760	2220170	-0400703	-0408508	-0407899	9406835	0405848	-0404860	9403871	9402881	-0401801	0400800	-0300007	P105060-	-0307091	-0206096	0750000	SINE.	-
COTANG.	2.821304	2818700	2.816100	9.818504	9.810013	0100000	2.005250	2.805743	2.803164	002002.6	2.708010	9.705459	100001	9.70/292	051234-6	0.482-6	2.759655	2780144	2-777608	2.775073	2.772544	2.770019	2.767.499	2-764982	2.762469	2.759960	2-757456	2.754055	9.759.158	9.740066	9747477		TANG.	
TANG.	.85.444G	354773	355101	255499	25.57.75.6	2000	Shoce.	.356411	-356739	357067	357305	.857793	255051	.258380	958708	350036	350365	350603	360052	360350	360679	361008	361337	361666	361994	362324	362653	369989	363311	363640	363070	2000	COTANG.	
SINE.	-3340810	-3343552	-3346293	2340034	-8851775	00000	0105000	.3357256	3359996	3302735	3365475	-3368914	-2370053	-4273601	3376490	3379167	3381005	.3384642	-3387379	3390116	3302852	3395.89	3398325	.3401060	.3403796	3406531	3409265	3412000	3414734	:3417.468	3420201		COSINE.	
`	31	33	8	25	8	38	81	2	88	8	\$	4	15	4	4	1.4	46	4	8	46	જ	21	25	53	3	33	29	1/2	œ.	25	8	3	Ŀ	
-	99	26	28	22	26	2 2	3 2	8	g	25	51	90	64	3	47	46	45	4	43	42	41	40	36	88	37	8	S	25	8	32	67	8	-	
COSINE.	9455186	-9454238	-9453290	9452341	9451391	0450441	0070770	9449489	9448537	-9447584	-9446630	-9445675	9444720	-9443764	9.142807	9441849	-9440890	-9439931	-9438971	-9438010	-9437048	-9436085	-9435122	-9434157	-9433192	-9432227	-9431260	-9430293	-9429324	9428355	.9427386	-9426415	SINE.	
COTANG.	2.904210	2.901468	2:898731	2.895998	2.893270	9.500546	9.000030	1201007	2.885113	2.882403	2.879697	2.876997	2:874300	2.871608	2.868921	2.866238	2.863560	2.860886	2.858216	2.855551	2.852891	2.850234	2-847583	2:844935	2.842292	2.839653	2:837019	2.834389	2.831763	2.829142	2.826525	2.823912	TANG.	
TANG.	.344327	-344653	.344978	.342304	.345629	-3.15055	246901	107070	900015	.346932	.347258	-347584	.347910	.348236	.348563	.348889	349215	340542	.349868	320195	.350521	.350848	321122	.321201	351828	352105	.352482	352309	353136	.353464	.353791	:354118	COTANG.	
SINE.	-3255682	-3258432	·3261182	-3263932	·326681	0810968	0210266	6177170	\$274925	.3277676	-32×0424	-3253172	3285919	3283686	3201413	.3234100	-5206906	-3200653	3302308	.3305144	-3307859	-3310634	.3313379	2316123	.3318867	3321611	.3324355	3327098	-3329841	-3332584	3335326	3338069	COSINE.	
					_	_	_	_	_	_	_	-							_		_			-	_			-	_	-	_		-	١

NATURAL SINES AND TANGENTS TO A RADIUS 1.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	8	38	3.5	ič	3 6	3 2	\$ 8	3	77.7	22	8	6	2	14	2	1	7	100	22	=	12	0	000	7	. 9	10	4	က	67	_	0	_	-	88
	COSINE.	-0303100	9302049	-9300074	4000000	0208835	200020	0000000	#800876.	7790678	9294549	-9293475	-9292401	-9291326	-9290250	-0280173	9008866	7102866	-9285938	9284858	9283778	9282696	9281614	9280531	9279447	9278363	-9277277	-9276191	-9275104	-9274016	-9272928	-9271839		SINE.	DEG. 68.
	COTANG.	2:536483	2:534323	2:532165	2.530011	2.527850	9.595711	0.000000	000000	4717CZ	2.519286	2:517150	2.515018	2.512889	2.510762	2.508639	2.506519	2:504402	2:502289	2:500178	2-498070	2.495966	2.493864	2.491766	2.489670	2.487578	2.485488	2.483402	2.481319	2.479238	2-477161	2.475086		TANG.	
	TANG.	-394246	394582	394918	305955	-395591	.305029	90000	#0708C	100065	396937	-397274	397611	-397948	398285	-398622	308050	-399296	399634	-399971	-400308	.400646	400984	·401321	.401659	.401997	.402335	.402673	.403011	.403349	.403687	.404026		COTANG.	
EG.	SINE.	8667719	3670425	3673130	3675836	3678541	3691946	0206000	0000000	500000 0	3689328	-3692061	3694765	-3697468	3700170	3702872	-3705574	3708276	3710977	3713678	.3716379	.3719079	.3721780	3724479	.3727179	3729878	.3732577	3735275	:3737973	3740671	3743369	.3746066		COSINE.	
21 DEG.	,	55	32	83	25	8	8	38	36	8	e e	4	41	27	43	4	5	9	47	84	49	යි	21	25	23	72	22	29	22	28	26	8		-	
	-	09	56	28	22	90	19	2	5 2	33	25	51	33	49	48	47	46	45	44	43	42	41	9	39	æ	37	36	33	2 4	83	32	31	30	_	DEG. 68.
	COSINE.	9335804	-9334761	-9333718	-9332673	9331628	0330582	2020000	0070000	9929499	-9327439	-9326390	-9325340	-9324290	9323238	9322186	9321133	-9320079	-9319024	-9317969	-9316912	-9315855	-9314797	-9313739	-9312679	9311619	-9310558	-9309496	-9308434	-9307370	-9306306	-9305241	-9304176	SINE.	DEG
	COMANG.	2.605089	2.602825	2.600565	2.598309	2.596056	9.593806	9.501500	000100	110600.7	2:587078	2.584842	2.582609	2.580380	2.578153	2.575931	2.573711	2.571495	2.569283	2:567073	2:564867	2:562664	2:560464	2:558268	2.556075	2.553885	2.551699	2.549516	2:547335	2:545159	2.542985	2:540815	2.538647	TANG.	
	TANG.	383864	-384197	-384531	384865	385199	-385533	2905067	00000	202020	386536	.386870	.387205	387539	-387874	.388209	.388543	.388878	389213	389548	.389883	.390218	.390554	688068.	.391224	.391260	.391895	-392231	.392567	.392902	-393238	.393574	.393910	COLANG.	
Deg.	SINE.	.3583679	3586395	3589110	3591825	-3594540	-3507954	2500000	0000000	2007000	3605395	3608102	-3610821	3613534	-3616246	.3618958	3621699	3624380	.3627091	.3629802	.3632512	.3635222	.3637932	3640641	3643351	.3646059	3648768	-3651476	.3654184	.3656391	3629299	3662306	3865012	COSINE.	
21 I	`	6	,_	8	or	4	140	9	> t	_	∞	6.	2	Ξ	27	23	14	15	91	17	18	19	ଛ	21	83	ន	75	8	8	72	88	৪	8	`	

NATURAL SINES AND TANGENTS TO A RADIUS 1.

		1	~				_	~			_	_	~	_			_	~	_	_	_	_	~				_	~	~	_	_		Ī	ĺ.
	1-	18	ا د	167	2	121	2	2	161	٥	2 1	_	22	=	2	15	14	133	12	Ξ	=		_		_		-2	-13			_		_	Dag 64
	COSINE.	-9237689	-9236567	-9235452	-9234336	9233220	9232102	9930984	9229965	0998745	4697669	9226503	.9225381	9224258	9223134	.9222010	9220884	9219758	9218632	-9217504	-9216375	-9215246	.9214116	9212986	-9211854	-9210722	-9209589	.9208455	.9207320	-9206185	-9205049		SINE.	7.00
	COTANG.	2-412228	2.410246	2.408267	2.406290	2:404316	2.402345	2.400377	2.398411	2.306449	2.204488	2.392531	2.390576	2.388625	2.386675	2.384729	2:382785	2:380844	2:378906	2:376970	2:375037	2:373106	2.371179	2:369254	2:367331	2:365411	2:363494	2:361580	2:359668	2:357759	2.355852		TANG.	
	TANG.	414554	414895	·415236	-415577	·415918	416259	.416601	416942	-417284	-417625	-417967	-418309	.418650	·418992	419334	.419676	·420019	·420361	·420703	.421046	-421388	.421731	-422073	.422416	-422759	-423102	.423445	-423788	.424131	.424474		COTANG.	
EG.	SINE.	3829522	3832209	-3834895	3837582	-3840268	-3842953	3845639	-3848324	9851008	3853693	.3856377	3859060	-3861744	3864427	3867110	-3869792	3872474	.3875156	3877837	3880518	.3883199	3885880	.3888260	.3891240	-3893919	.3836598	.3866577	-3901955	.3904633	-3907311		COSINE.	
22 Deg.	-	33	33	83	*	33	8	37	88	6	9	41	3	43	4	45	9	47	æ	49	33	25	25	22	72	22	92	27	28	66	8	Ī	`	
	-	99	26	28	2/2	26	33	54	53	25	16	20	49	848	47	46	45	44	43	45	4	40	33	88	32	36	3	34	g	32	8	8	-	Dec 67
	COSINE.	9271839	-9270748	-9269658	-9268566	-9267474	-9266380	-9265286	-9264192	-9263096	-9262000	-9260902	9259805	-9258706	-9257606	-9226506	-9255405	-9254303	-9253201	-9252097	-9250993	-9249888	-9248782	-9247676	-9246568	.9245460	9244351	-9243242	-9242131	.9241020	-9239908	9238/30	SINE.	Dad
	COTANG.	2:475086	2.473015	2:470947	2.468881	2.466819	2-464759	2:462703	2.460649	2.458598	2.456551	2.454506	2.452464	2:450425	2.448389	2:446355	2:444325	2.442298	2:440:273	2:438251	2.436233	2.434217	2.432204	2.430193	2.428186	2.426181	2.424180	2.422181	2.420185	2.418191	2.416201	C17414.7	TANG.	
	TANG.	·404026	404364	404703	405041	405380	405719	-406057	406396	-406735	-407074	-407413	-407753	-408092	408431	-408771	-409110	.409420	-409790	.410129	•410469	·410809	411149	411489	411830	412170	412510	.412851	413191	413532	413872	C12414	COTANG.	
			_	_	-	3	_	က္	90	23	L.	=	4	<u>~</u>	=	94	8	200	200	202	553	4	<u>25</u>	77	77	<u></u>	g;	33	2	6	<u> </u>	# 1	si i	
DEG.	SINE.	-3746066	-374876	375145	3754156	3756853	3759547	3762243	-3764938	.3767632	3770327	377302	-3775714	3778408	.37811	3783794	37864	3789178	37918	3794562	3797	·3799944	·3S02034	-3805324	3808014	-3810704	-3813393	·3816082	3818770	:3821459	3824147	3520333	COSINE.	

SINE.

છુ DEG.

99 DEG.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	8	8	23	8	ß	2	গ্ৰ	3	21	2	19	28	17	91	12	14	13	12	Ξ	2	6	œ	1	9	2	4	က	61	-	0		_	DEG. 65.
	COSINE.	-9098406	-9097199	-9092990	-9094781	-9093572	9092361	9091150	908938	9088725	9087511	-9086297	9086082	9083866	-9082649	-9081432	-9080214	-9078995	-9077775	-9076554	-9075333	-9074111	-9072888	-9071665	-9070440	-9069215	€861906	-9066762	9065535	-9064307	-9063078		SINE.	DEG
	COTANG.	2.192609	2:190921	2:189234	2.187551	2.185869	2:184189	2.182511	2:180836	2.179163	2.177492	2.175822	2.174155	2.172491	2.170828	2.169167	2-167509	2.165852	2.164198	2.162546	2.160895	2.159247	2:157601	2.155957	2.154315	2.152675	2:151037	2.149402	2.147768	2.146136	2.144506		TANG.	
	TANG.	-456077	456429	426780	457132	457483	457835	458187	.458539	.458891	-459243	-459596	459948	-460301	-460653	-461006	-461359	-461711	-462064	462417	.462771	463124	-463477	.463831	-464184	-464538	-464891	-465245	-465599	.465953	·466307		COTANG.	
EG.	SINE.	4149579	4152226	4154872	4157517	·4160163	·4162808	.4165453	.4168097	-4170741	4173385	-4176028	4178671	·4181313	4183956	.4186597	.4189239	981614	.4194521	.4197161	·4199801	.4202441	4205080	-4207719	-4210358	-4212966	4215634	.4218272	4220909	.4223546	·4226183		COSINE.	
24 DEG.	-	33	얾	ĸ	34	8	8	33	8	30	9	41	2	3	4	45	46	47	8	49	3	2	22	53	7	S	26	22	8	26	3		_	
	-	09	26	28	22	26	55	75	55	52	20	2	64	8	47	46	45	4	43	42	41	9	8	88	37	æ	33	쫎	æ	32	33	33	_	DEG. 65.
	COSINE.	-9135455	-9134271	-9133087	-9131902	-9130716	-9129529	-9128342	-9127154	-9125965	-9124775	9123584	-9122393	-9121201	-9120008	9118815	9117620	9116425	9115229	-9114033	9112835	-9111637	-9110438	-9109238	-9108038	-9106837	9105635	-9104432	-9103228	-9102024	6180016	-9099613	SINE.	DEG
	COTANG.	2.246036	2:244279	2:242524	2:240772	2.239021	2:237273	2.235528	2.233784	2-232043	2.230304	2.228567	2.226833	2.225100	2.223370	2.221643	2:219917	2.218194	2:216473	2:214754	2:213037	2:211323	2:209611	2:207901	2-206193	2:204487	2:202784	2:201083	2.199384	2:197687	2:195992	2.194299	TANG.	
	TANG.	445228	-445577	-445926	·446274	.446623	446972	-447321	.447670	448020	448369	448718	-449068	-449417	-449767	450117	450467	450817	-451167	.451517	•451867	.452217	452568	452918	·453269	·453620	-453970	-454321	.454672	455023	-455375	-455726	COTANG.	
DEG.	SINE.	-4067366	-4070024	.4072681	.*(7.5337	4077993	-4080649	.4083305	4085960	4088615	4001939	.4003023	4096577	4000230	.4101883	-4104536	-4107189	-4109841	-4112492	4115144	-4117795	.4120445	·4123096	.4125745	4128395	4131044	4133593	4136342	·4138990	.4141638	4144285	4146932	COSINE.	
24 D	_	6	_	67	m	4	140	٠	-10	· α	00	2	25	15	2	1 4	12	29	14	. 82	19	20	21	83	গ্ৰ	72	23	8	27	83	8	8	-	

NATURAL SINES AND TANGENTS TO A RADIUS 1.

22	Deg.					25]	25 DEG.				
-	SINE.	TANG.	COTANG.	COSINE.	-	-	SINE.	TANG.	COTANG.	COSINE.	_
_	.4226183	-466307	2.144506	9705900	8	5	2677064.	066777	9704075	0007600	8
-	.4228819	.466661	9.149870	9061848	202	8	1960167	777000	9,002,100	2776600	200
, 0	4921455	467016	9.141020	010000	3 2	38	10000	20001	0010000	1500000	Ş
40	00000000	070707	0000017	0100000	31	83	4512350	4/804/	2.091845	260ZZ06-	17
n .	0601-075	0/6/04	7.139630	9009386	/c	*	-4315610	478404	2:090280	-9020838	x
4	67,007	46/725	2.138008	-9058154	96	33	4318234	-478762	2.088720	-9019582	22
S	.4239360	-468079	2.136389	-9056922	55	8	4320857	611624	2:087161	-9018325	76
9	-4241994	-468434	2:134771	-9055688	2	2	4892481	77077	9.085602	9007100	12
1	-4944698	082897	9.122166	0054454	200	6	COLUMN TO	11000	000000	001100	38
- 0	0001101	001001	Colect 7	101100	35	S.	4520105	050674	2.024048	0186106-	7
×0	797/474	469143	2.131542	9053219	25	ŝ	.4328726	480193	2-082495	9014551	5
5.	-4249895	-469498	2:129930	9051983	51	40	-4331348	.480551	2:080943	-9013292	8
20	.4252528	-469853	2.128321	9020746	20	4	4333070	480909	2.070304	-9019031	20
=	.4255161	-470209	2.126713	9040509	40	45	.4226501	796184	972206	0770100	90
61	4957703	195074	971961.6	.0046971	9	19	0100001	100000	010000	001000	9
19	2010201	20001	0100100	170500	ģ	ç:	Z1Z600F.	CZ0104	2.070300	SOCKOOK.	=
6	C7+0074	6160/4	2.123004	304/032	47	4	-4341832	-481984	2:074756	-9008246	91
4	4.203056	£7.17£	2.121903	-9045792	46	45	-4344453	-482342	2:073214	-9006982	2
2	.4265687	•471630	2.120303	9044551	45	46	-4347072	-482701	2.071674	9005718	7
91	.4268318	-471986	2.118705	-9043310	44	47	-4349692	483060	2.070135	9001453	65
14	4270949	472342	2:117110	-9042068	43	8	.4352311	483418	2.068599	-9003188	26
92	.4273579	-472697	2.115516	9040825	42	49	.4354030	.483777	2067064	00000	1,5
19	4276208	.473053	2.113924	9039582	41	2	.4357548	484136	2.065531	-0000654	12
ಜ	.4278838	•473409	2:112334	-9038338	9	50	.4360166	484405	0.064000	9800080	90
21	.4281467	473765	2:110747	-9037093	30	26	7369784	484855	5-069471	2008117	0
22	.4284095	.474122	2.109161	9035847	8	e e	.4365401	485914	2-060044	800848	10
ĸ	.4286723	-474478	2:107577	9034600	5	27	4368018	485572	9-050418	8005572	- 4
7	4980351	474834	9.105005	-0033353	8	1 12	4970c94	405099	100000	0000000	- 1
120	0701025	475101	9.104415	9016300	3 %	3 2	1200701	600007	0001000	1004000	٠.
38	000000	10101	000001	0000000	3	31	1070104	C6700#	c/coop.7	cenesse.	4
81	0004624	240074	2.102830	302020	45	20	4375866	-486652	2:054853	8931763	cc
7	429/233	475904	2:101260	9056506	33	200	4378482	-487012	2.053334	8990489	2
28	-4299859	-476261	2:099686	-9028356	32	56	-4381097	-487372	2.051318	8989215	-
දි	-4302485	476618	2:098114	9027105	31	8	4383711	.487732	2.050303	8087940	-
8	·4305111	-476975	2.096543	-9025853	8						>
_	COSINE.	COTANG.	TANG.	SINE.	-	-	COSINE.	COTANG.	TANG.	SINE.	-
				DEG	DEG. 64.					Deg 64	13
					5					540	;

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	8	ä	12	8	33	24	23	83	77	20	19	18	17	91	15	14	2	12	Π	2	6	œ	7	9	20	4	က	67	-	ت		_	DEG. 63.
	COSINE.	-8948045	8946746	8945446	.8944146	45C768	-8941542	.8940240	9863863.	5937632	9739838	8555021	·S933714	.893:7406	8601268	6816753.	0853763	8927169	8639763.	959768	8923234	.8921920	.8920006	1626168.	2262168.	.8916659	.8915342	8914024	.8912705	S61168.	.8910065		SINE.	DEG
	COTANG.	2.004229	2.002771	2.001314	1 999859	1.998405	1-996953	1.995503	1.994055	1.992608	1-991163	1-989720	1.988278	1.986838	1.985400	1-983963	1-982528	1.981095	1-979663	1.978233	1-976805	1.975378	1-973953	1-972529	1-971107	1.969687	1-968268	1.966851	1.965436	1.964022	1.962610		TANG.	
	TANG.	-498944	490308	-499671	500035	-200398	-500762	501126	-501490	501854	502218	502583	502947	-503312	-503676	504041	204406	-504771	-505136	-505501	202866	-506232	26999	-206963	-507329	-507694	-208060	-508426	-508792	-509159	509525		COTANG.	
EG.	SINE.	4464581	4467184	.4469786	-4472388	.4474990	•4477591	·4480192	.4482792	4485392	4487992	.4490591	4493190	4495789	4498387	4200984	-4503582	-4506179	4508775	.4511372	·4513967	4516563	.4519158	.4521753	·4524347	-4526941	-4529535	·4532128	-4534721	-4537313	-4539905		COSINE.	
26 Deg.	-	33	8	8	7	8	8	37	8	66	9	41	42	43	4	45	46	47	48	63	33	27	22	53	72	33	99	24	88	26	3		`	
	1,	9	200	8	22	20	55	7	53	52	21	23	49	48	47	46	45	4	43	42	4	40	33	38	37	36	ĸ	34	ĸ	33	31	8	`	DEG. 63.
	COSINE.	8987940	998665	8985389	8984112	-8982834	8981555	·89S0276	9668268	-8977715	-8976433	-8975151	-8973868	8972584	-8971299	8970014	.8968727	.8967440	.8966153	8964864	.8963575	8962286	\$ 800004	-8929703	.895S411	8111268.	8955824	8954529	.8953234	-8921938	.8950641	8949344	SINE.	DEC
	COTANG.	2.050303	2.048791	2:047280	2.045770	2.044263	2-042757	2.041254	2.039751	2-038251	2.036753	2-035256	2-033761	2-032268	2.030776	2.029287	2:027799	2.026313	2.024828	2.023346	2.021865	2-020386	2.018908	2-017433	2.015959	2-014486	2.013016	2:011547	2:010080	2:00:8615	2.007151	5.005089	TANG.	
	TANG.	.487732	488092	.488453	488813	-489173	489534	489894	490255	•490616	-490977	-491338	•491699	·492061	-492422	·492783	493145	-493507	-493868	494230	·494592	494954	-495317	-492679	-496041	•496404	-496766	·497129	497492	-497855	.498218	498581	COTANG.	
DEG.	SINE.	.4383711	4386326	.4388940	-4391553	-4394166	4396779	-4399392	4402004	-4404615	-4407227	·4409838	-4412448	-4415059	-4417668	.4420278	.4422887	4425496	-4428104	.4430712	4433319	.4435927	4138534	4441140	-4443746	.4446352	-4448957	4451562	·4454167	.4456771	-4459575	-4461978	COSINE.	
26 D	-	=	-	100	1 07	4	· ·c	9 00	1	00	0.	2	=	2	<u>~</u>	14	20	92	1	20	61	8	21	22	গ্ৰ	27	23	8	27	8	81	8		

DEG. 62.

DEG. 62.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

84 I	DEG.					28 DEG.	EG.				
-	SINE.	TANG.	COTANG.	COSINE.	-	,	SINE.	TANG.	COTANG.	COSINE.	-
0	•4694716	•531709	1-880726	8829476	99	33	-4774144	-543332	1-840494	.8786783	8
_	4697284	.532082	1.879407	.8828110	29	33	•4776700	-543709	1.839218	8785394	8
~	·4699852	-532455	1.878089	·8826743	28	R	4779255	-544086	1.837944	-8784004	K
es	4702419	.532829	1.876773	-8825376	22	35	·4781810	544463	1.836671	.8782613	ន
4	4704986	-533202	1.875458	.8824007	26	왏	4784364	-544840	1-835399	8781222	ន
2	·4707553	-533576	1-874145	8822638	22	8	-4786919	-545217	1.834129	.8779830	77
9	-4710119	-533950	1.872833	8821269	54	37	-4789472	-545595	1.832861	-8778437	83
_	-4712685	-534324	1.871523	8686188	53	88	-4792026	-545972	1.831593	8777043	2
∞	-4715250	-534698	1.870214	8818527	52	33	4794579	-546350	1-830327	8777649	2
6	-4717815	-535072	1.868906	8817155	51	9	-4797131	546728	1.829062	-8774254	જ
2	4720380	-535446	1.867600	-8815782	33	41	4799683	-547106	1.827799	8772858	19
Ξ	-4722944	-535820	1.866295	·8814409	49	42	·4802235	-547484	1.826537	8771462	28
12	4725508	-536195	1.864992	-8813035	8	43	4804786	-547862	1.825276	-8770064	17
13	-4728071	-536569	1.863690	.8811660	47	4	4807337	.548240	1.824017	8768666	16
7	-4730634	-536944	1.862389	-8810284	99	45	4809888	548618	1.822759	8767268	2
12	-4733197	.537319	1.861090	2068088	45	46	4812438	-548997	1.821502	8765868	14
16	-4735759	-537694	1-859792	8807530	44	47	4814987	.549375	1.820247	8764468	13
14	·4738321	.538069	1.858496	8806152	43	84	.4817537	-549754	1.818993	8763067	13
28	-4740882	-538444	1.857201	·8804774	42	46	4820086	•550133	1.817740	8761665	Ξ
61	-4743443	.538819	1.855908	-8803394	41	20	·4822634	550512	1.816489	.8760263	9
ຊ	-4746004	-539195	1-854615	·8802014	40	51	4825182	.550891	1.815239	8758859	6
2	4748564	-539570	1.853325	·8800633	33	25	·4827730	.551270	1.813990	8757455	00
ន	-4751124	-539946	1-852035	8799251	æ	53	4830277	-551650	1.812743	8756051	<u>-</u>
83	4753683	.540322	1.850747	.8797869	37	25	4832824	-552029	1.811496	.8754645	ဖ
22	4756242	-540698	1-849461	.8796486	88	22	·4835370	.552409	1.810252	-8753239	2
23	4758801	•541074	1.848176	.8795102	8	26	·4837916	552789	1.809008	8751832	4
8	4761359	.541450	1-846892	-8793717	34	22	-4840462	.553168	1.807766	8750425	m
23	-4763917	.541826	1.845609	-8792332	88	28	·4843007	-553548	1.806525	8749016	67
83	4766474	-542202	1-844328	·8790946	32	23	4845552	-553928	1.805286	8747607	_
ଝ	-4769031	-542579	1-843049	8789559	31	8	-4848096	554309	1.804047	.8746197	0
8	-4771588	-542955	1.841770	-8788171	30						
`	COSINE.	COTANG.	TANG.	SINE.	'	`	COSINE.	COTANG.	TANG.	SINE.	-
				DEG	DEG. 61.					DEG	DEG. 61.

NATURAL SINES AND TANGENTS TO A RADIUS 1. 29 DEG.

8

NATURAL SINES AND TANGENTS TO A RADIUS 1.

077780 77864 07878 17878 077780 177200 177200 177200 177200 077780 177200 177200 177200 177200 077810 177200 177200 177200 177200 077801 177200 177200 177200 177200 077801 177200 177200 177200 177200 077802 177200 177200 177200 177200 177200 077802 177200 <											
6777380 1,723020 8,601554 60 31 1,607780 677139 1,723020 8,607544 65 32 1,607780 677812 1,723040 8,60587 57 8,618184 677812 1,722440 8,61537 56 8,618140 677812 1,722440 8,61537 56 8,618140 677812 1,72240 8,615217 56 8,618140 677813 1,72240 8,615217 56 8,618141 677817 1,72240 8,615217 56 8,618141 677817 1,72240 8,61713 51 6,61741 681124 1,72240 8,6471 40 5,01724 681124 1,71817 8,6471 40 5,01742 681124 1,71817 8,6471 40 5,01784 681124 1,71817 8,6472 41 5,01784 681124 1,71817 8,6473 41 6,01124 682312 1,71817	SINE.	TANG.	COTANG.	COSINE.	-	-	SINE.	TANG.	COLANG.	COSINE.	-
6777.88 7.038.87 8.6577.99 59 50.048.84 678.91 7.729.76 8.6575.94 5 36.048.84 678.91 7.729.76 8.6575.94 5 36 50.049.14 678.92 7.724.06 8.655.73 5 5 50.049.14 678.92 7.724.06 8.655.73 5 5 50.049.14 678.92 7.724.06 8.655.73 5 5 60.021.1 68.04.86 7.722.79 8.655.73 5 7 60.021.1 68.12.87 7.722.79 8.655.73 6 10.002.2 86.002.1 68.12.87 7.722.79 8.657.73 6 10.002.2 86.002.1 68.12.87 7.722.77 8.658.73 6 40.007.22 86.002.1 68.12.84 7.722.77 8.658.73 7 4 60.002.2 68.12.84 7.724.73 8.658.73 4 60.002.2 60.002.2 68.12.84 7.718.72 8.658.83 4 60.0	_	-577350	1.732050	-8560254	39	31	-5077890	.589436	1.696534	-8614815	R
07/8129 17/21759 86/2753 46 96/2419 66	_	577738	1.730887	-8058799	26	33	-5080396	589828	1.695406	-8613337	8
678914 1725/66 865887 57 94 56490 67893 1727/66 865489 57 865490 8 604914 67893 172249 865164 8 604914 602018	-5005037	-578126	1.729726	8657344	38	83	5082901	590221	1.694280	·8611859	13
678902 1772140 865243 65 9600011 679979 1772040 865214 65 96 960011 679979 1772040 86514 65 37 660011 670979 1772040 865045 83 6600213 670979 1772040 865045 83 6600521 670979 177207 864864 64 600041 68124 172162 86487 64 610042 68124 177102 86487 64 610422 68124 177102 86487 64 610422 68124 177102 86487 64 61043 6827 177102 86484 64 61043 683 177479 86886 64 61123 683 177478 86886 64 61123 683 177478 86836 64 61123 683 177478 86836 64 61123 <	2007556	-578514	1.728565	8025887	27	34	2082406	-590613	1-693155	.8610380	8
676201 172002 865267 56 600014 67607 172000 865164 6 7 60021 67607 172270 865164 7 60021 60021 68484 172277 86773 6 4 600702 68124 172277 86773 6 4 600702 68124 172277 86421 4 600702 6 68124 171872 86421 4 600702 6 68124 171872 86421 4 600702 6 68216 171872 86421 4 600702 6 68216 171872 86428 4 600702 6 68216 171872 86488 4 600702 6 68218 171124 86888 4 600702 6 68312 177102 86888 4 600702 6 6841 177001 86890 4 </td <td>5010073</td> <td>-578902</td> <td>1.727406</td> <td>.8654430</td> <td>99</td> <td>33</td> <td>.5087910</td> <td>-591005</td> <td>1.692030</td> <td>8608901</td> <td>23</td>	5010073	-578902	1.727406	.8654430	99	33	.5087910	-591005	1.692030	8608901	23
670979 1722809 863514 64 6006521 670979 1722809 863514 64 6006521 680437 1722779 864875 63 89 600722 681234 1721629 864773 64 6106222 60022 681234 1771622 864274 64 610622 60022 681234 171022 864274 64 610632 60022 681234 171022 864274 64 610632 60022 68124 171022 865274 64 611631 60022 6827 171022 865274 64 611632 60022 683 171124 868346 66 611631 60022 683 171124 868346 66 611730 60224 685 171124 868346 61 61224 60022 685 171124 868346 61 61224 60022 685 170012	.5012591	-579291	1.726247	-8652973	22	38	5090414	-591398	1-690907	-8607420	77
689.95 722779 556.85% 55.85% 6007024	-5015107	629629	1.725090	8651514	25	33	-5092918	162169	1.689785	-8605939	ĸ
080845 722779 618785 52 99 6107924 620824 721625 61673	•5017624	890039	1.723934	8650055	33	88	•5095421	-592183	1.688664	8604457	22
68(8)44 (72)625 8-67134 61 40 50,042,042,042,042,042,042,042,042,042,04	5020140	580457	1.722779	8648595	25	33	5097924	-592576	1.687544	-8602975	22
650124 1771032 845473 60 41 610232 650124 1771032 845421 48 45 610452 650135 177103 845421 48 45 610452 650135 177103 845424 48 6101031 650136 177103 840429 46 6101031 650136 177103 84039 44 6101031 650136 177103 840389 44 6101031 650137 1771034 860389 44 6101031 650137 1771034 860349 40 6102303 650134 17700771 860349 40 6102303 650134 17700771 860349 80 63 610340 650137 1770039 860340 80 63 610340 650137 177003 860340 80 63 610340 670137 177003 860340 80 80 80 80 80 80 80 80 80 80 80 80 80	-5022655	-58084e	1.721626	8657134	ī	\$	5100426	-292369	1.686426	-8601491	8
Second 1718/22 Second Second Second 1718/22 Second Second 1718/22 Second Second 1718/22 Second Second 1718/22 Seco	.5025170	.581235	1.720473	8645673	20	4	.5102928	-593363	1.685308	8000007	19
652413 171517 84574 45 45 45 501790 652403 171702 84574 45 45 5017031 653129 171702 84574 44 44 6011631 653129 171702 865329 44 45 611231 653129 171702 865339 44 7611531 653129 171702 865339 44 7611531 653129 171702 865339 44 7611531 65313 171012 865349 45 612042 65313 171012 863103 40 612042 65313 171012 863103 40 612042 65313 171012 863103 40 612042 65314 170073 863249 86 65 614044 65747 170032 862369 87 65 613740 65757 170032 862369 87 65 614044 65747 170032 862369 87 65 614259 65757 170012 863117 33 65 614259 65757 170012 863117 33 65 614259 65757 170012 863117 33 616233 65757 170012 863117 33 616233	-5027685	581624	1-719322	8644211	67	3	.5105429	-593756	1.684191	8598523	81
88240 171672 854124 47 44 5110413 88272 858285 45 46 611281 88572 171528 865889 44 7 6111790 88572 171248 865828 44 7 6111790 885832 177124 865828 44 7 611790 885832 177124 865828 41 6 611281 88513 1771012 865848 41 6 112292 88513 1770012 865848 41 61 612292 88513 1770012 865848 41 61 612292 88513 1770012 865848 41 61 612292 88510 1770028 865878 86 614044 68707 1770028 862978 87 65 614044 68707 1770165 862177 85 65 614044 68707 1770165 862177 85 65 614044 687478 1770165 862177 85 65 614044 687478 1770165 862177 85 65 614044 687478 1770165 862177 85 65 614044 688231 689822 867778 81 67 61289	-5030199	582013	1.718172	8642748	88	3	•5107930	.594150	1.683076	-8597037	11
0.857.89 7.1.4729 8.0838.85 45 611.5281 6.581.282	-5032713	582403	1-717023	8641284	47	4	·5110431	-594543	1.681962	8595551	91
088572 1717528 865885 45 46 6116181 088572 171248 865883 44 47 611790 088572 171248 865843 45 46 612227 084572 177124 865848 41 67 612227 084573 1771012 865846 41 61 612227 085139 1770012 865846 41 61 6122792 085014 1770072 862846 85 65 614044 085014 1770072 862847 85 65 614044 085017 170052 862877 85 65 614044 087577 1701045 862017 85 65 614044	-5035227	-582793	1.715875	8639820	46	45	5112931	-594937	1.680848	-8594064	12
085877 1/71852 865889 44 47 5117919 085982 1/71129 865828 43 48 512942 085432 1/77129 865826 42 49 512542 085433 1/70012 887019 40 512552 085438 1/70012 887019 40 512552 085438 1/70072 862807 88 55 512542 085304 1/70572 862807 88 55 513708 085006 1/70572 862807 87 54 512542 085006 1/70572 862807 87 54 512542 085007 1/70572 862807 87 54 512542 085007 1/70522 862777 88 55 514044 085770 1/70105 8822191 84 57 514259 085750 1/70105 8822191 84 57 514259 085750 1/70105 8822191 84 57 514259 085750 1/70105 8822191 84 57 514259 085851 1/60105 8822191 84 57 514258 085851 1/60105 8822191 84 57 514258 085851 1/60105 8822191 84 514258 085851 1/60105 84 514258 085851 1/60105 84 514258 085851 1/60105	.5037740	583182	1-714728	8638355	45	46	-5115431	-595331	1.679736	8592576	14
0.8589.2 17124.8 86534.8 45 61242.9 65432.7 17124.8 86534.8 45 612227 65432.7 171124.8 86534.8 41 61 612227 65432.7 17104.2 86234.8 41 61 612222.7 68513.8 170101.2 86234.8 41 61 612222.7 68513.1 170101.2 86234.8 41 61 61222.2 86231.1 17010.2 86234.9 8 63 61231.0 86231.1 17010.2 86231.8 63 61231.0 86231.1 17010.2 86231.8 63 61231.0 6541.8 17010.2 86231.1 18 67 61231.0 6541.8 17010.2 86231.1 18 67 61231.0 6541.8 17010.2 86231.1 18 67 61231.0 6541.8 17010.2 86231.1 18 67 61231.0 6541.8 17010.2 86231.1 18 67 61231.0 6541.8 17010.2 86231.1 18 67 61231.0 6541.8 17010.2 86231.1 18 67 61231.0 6541.8 17010.2 86231.1 18 67 61231.0 6541.8 17010.2 86231.1 18 67 61231.0 6541.8 17010.2 86231.1 18 67 61231.0 6561.8 17010.2 86231.1 18 67 61231.0 6561.8 17010.2 86231.1 18 67 61231.0 6561.8 17010.2 86231.1 18 67 61231.0 6561.0	-5040252	583572	1-713582	8636889	4	47	5117930	-595725	1.678625	·8591088	22
0.84432 1/710129 8632846 42 49 6122927 0.84430 1/710129 8632469 41 60 1225422 65624 1/710129 863019 40 51 5125422 65624 1/71071 8631019 40 51 5125422 65624 1/710722 8628479 88 62 5139422 6563944 1/70450 8623147 88 65 5139422 656750 1/70450 8623147 88 65 513942 656366 1/70446 8623147 89 65 61454249 656247 1/70232 862364 85 66 5144644 656750 1/701465 8622191 8622191 8622191 8622191 8622191 696922 867770 87 62 62 62 62 62 62 62 62 62 62 62 62 62	5042765	-583962	1.712438	8635423	43	84	5120429	.596119	1-677535	8589599	12
	-5045276	·584352	1.711294	8633956	3	69	-5122927	∙596514	1-676406	8588109	Ξ
085624 1707671 862049 40 51 65292 085624 1707671 862049 86 653942 685914 1707672 862049 86 653942 685914 1707628 862049 86 653916 686306 170446 862048 86 653412 686106 170446 862317 86 6134942 68717 170828 862317 86 614644 68717 170218 862219 87 64 62504 68826 170218 862217 37 67 62504 68826 170218 862219 47 64 62508 68826 160902 810248 66 61469 61768 68944 167668 86528 86758 66 61468	•5047788	-584743	1.710152	8632488	4	33	-5125425	296908	1.6752:18	6199898	2
78524 170751 802849 86 52 613942 785914 170072 802949 87 64 6132916 685914 1700759 802949 87 64 6132916 68508 170440 802917 85 65 614444 687087 1702182 802364 85 65 614444 687087 1702189 802391 84 67 614289 685261 1702189 8022191 84 67 64289 685261 169902 802771 83 69 614587 685261 169902 807778 81 69 615088	-5050298	585133	1.709011	8631019	9	2	5127923	597303	1-6741:2	-8585127	6
585914 17/0552 8828/19 88 63 5135415 585906 17/0455 8823137 35 54 5135413 585069 17/0445 8823137 35 55 513703 58747 17/0232 8823464 34 57 514704 587477 17/0105 8822191 34 56 514704 588551 1691822 8817243 29 69 514787 588551 1691822 8817243 29 515282	-5052809	585524	1.707871	8629549	33	27	5130420	269269	1-6730>3	8583635	œ
- 586696 1700456 882508 87 54 6 55413 - 586696 1700452 882518 5 56 054444 - 58778 170045 882219 4 57 04289 - 587477 170045 882219 1 4 57 04289 - 588251 168922 86777 33 68 544589 - 588251 168922 86777 33 69 54589 - 588251 168922 86777 33 69 54589 - 588251 168922 86778 31 60 54589	-5055319	-585914	1-706732	8628079	æ	33	5132916	260869	1-61/9-1	-8582143	<u>-</u>
- 866696 1704455 8823137 36 55 557008 - 687087 1770832 8823964 55 56 6440444 - 687478 1770182 882391 34 57 544044 - 687478 1770182 882391 34 57 544290 - 688261 640842 8872717 33 69 544787 - 688261 640842 8817283 20 69 544787 - 689445 1457643 8816282 90 544787	.5057828	-586305	1.705595	8626608	37	75	5135413	598487	1.670878	8580649	9
657087 1708323 802964 35 66 604044 657487 1702189 8022191 45 77 604289 657470 1701045 8022191 34 57 604289 658251 1691923 32 59 614587 658253 16919423 32 69 614587 6580445 1457643 8619248 31 60 6150881	-5090338	969989	1.704458	8625137	98	32	-5137908	598882	1.6697.5	-8579155	20
455/470 1701158 98231191 94 57 54,4330 455/470 1701058 8820171 38 64,4330 4568261 1409023 8619245 32 59 61,4330 4568363 14874782 8617758 31 60 51,00881 4567464 14976783 8816292 30 60 51,00881	-2062846	-282087	1-703323	8623664	33	8	-5140404	.599278	1.9899.1	8577660	4
687570 1-701055 8820717 33 58 5145333 588251 1-69992 8619243 32 59 5147887 588653 1-698792 861708 31 60 5150881 589445 1-19763 8615292 30	-5065355	587478	1.702189	8622191	34	22	·5142899	599673	1.6675: 4	-8576164	က
-588251 1-69922 8617768 31 60 -5147887 -58852 1-698768 811758 31 60 -5150381 -58863 815292 30	-5067863	028289	1.701055	8620717	g	8	-5145393	600009	1.66647.4	-8574668	67
-588653 1-698792 8617768 31 60 -	-5070370	.588261	1-699923	8619243	32	20	-5147887	600464	1.665376	-8573171	-
	5072877	-588653 -589045	1-698792 1-697663	8617768	22	3	-5150381	098009	1.664279	-8571673	0
COSINE, COTANG, TANG. SINE, I COSINE, COTANG	Ť	COTANG.	TANG.	SINE.	-	-	COSINE.	COTANG.	TANG.	SINE.	-

DEG. 59.

DEG. 58

DEG. 58.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

NATURAL SINES AND TANGENTS TO A RADIUS

32 DEG.

TANG. SINE. 32 DEG. COSINE. COTANG.

2 DEG.

SINE.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

33 Dec.	SINE. T	_	<u>.</u>	<u>.</u>	.5453707 -65	-	5458683 65	÷	_	_	.5468328 65	_	_	-	-	_	-5482932 -65	_	_	-5490228 -65	_	_	_	_	_	_	-	_	_	_	.5516944 -66 .5519370 -66	Ť.
	TANG.	-649407	649821	650235	650649	651053	651477	-651891	652306	652721	23136	653551	653966	654381	654797	655212	22628	656044	26460	- 656877	27293	01226	228127	658544	658961	9378	962699	660213	660631	661049	-661467	COTANG.
	COTANG.	1.539865	1.538884	1.537905	1-536927	1.535949	1.534972	1.533996	1.533021	1.532047	1.531074	1.530102	1.529130	1.528160	1.527190	1.526221	1.525253	1.524286	1.523320	1.522354	1.521389	1.520426	1.519463	1.518501	1:517540	1.516579	1.515620	1.514661	1.513703	1.512746	1.511790	TANG.
	COSINE.	8386706	8385121	•8383536	8381950	5380363	8378775	.8377187	-8375598	8374009	-8372418	.8370827	-8369236	8367643	8366050	.8364456	8362862	-8361266	.8329670	8358074	.8326476	8354878	8353279	.8351680	.8320080	.8348479	.8346877	.8345275	8343672	8342068	8340463 8338858	SINE.
	-	9	29	28	22	29	55	24	53	25	21	20	69	84	47	4	45	44	43	42	41	4	33	88	34	8	쏬	34	g	32	20	-
33 DEG.	_	33	32	8	25	35	36	37	88	33	40	41	42	43	44	45	46	47	48	49	32	2	25	ĸ	72	33	26	22	28	26	8	-
33 Deg.	SINE.	5521795	5624220	5526645	•5529069	5531492	-5533915	-5536338	5538760	.5541182	.5543603	.5546024	.5548444	.5550864	·5553283	-5555702	.5558121	.5560539	5562956	·5565373	.5567790	-5570206	.5572621	5575036	5577451	-5579865	.5582279	5584692	.5587105	.5589517	.5591929	COSINE.
	TANG.	-669304	•662722	-663141	.663560	663979	-664398	-664817	665237	29999	920999	-666496	216999	667337	921128	82129	668299	-669020	-669441	669863	-670284	90/0/9	671128	.671550	-671972	-672394	-672816	673239	.673662	-674085	-674508	COTANG.
:	COTANG.	1.509880	1.508927	1.507974	1.507022	1.506071	1.505121	1.504171	1.503222	1.502275	1.501328	1.500382	1.499436	1.498492	1.497548	1.496605	1.495663	1.494722	1.493782	1.492842	1.491903	1.490965	1.490028	1.489092	1.488157	1.487222	1.486288	1.485355	1.484423	1.483491	1.482561	TANG.
	COSINE.	6887989	8335646	-8334038	-8332430	.8330899	8320212	-8327602	8325001	8324380	8322768	8321155	8319541	8317927	8316312	8314696	8313080	-8311463	-8309845	-8308226	-8306607	-8304987	-8303366	8301745	8300123	8298500	-8296877	8295252	-8293628	-8292002	-8290376	SINE.
	-	8	8	38	8	Š	32	38	8	12	8	65	2	4	16	2	14	13	12	=	9	6	00	_	. 6	20	4	•	67	-	•	1-

NATURAL SINES AND TANGENTS TO A RADIUS 1. 34 DEG.

	-	क्ष	88	13	8	:3	77	83	S	2	8	19	-81	14	16	15	14	<u> </u>	2	=	2	6	- ∞	7	9	2	4	က	61	_	0		,	33
	COSINE.	-8239614	-8237965	-8236316	.8234666	8233015	-8231364	.8229712	8228059	-8226405	8224751	-8223096	.8221440	-8219784	8218127	8216469	.8214811	8213152	8211492	8500835	-8208170	8206509	8204846	-8203183	-8201519	-8199854	·8198189	·8196523	·8194856	518318	-8191520		SINE.	DEG.
	COTANG.	1-454102	1-453197	1.452292	1.451388	1.450485	1-449582	1.448680	1-447779	1-446879	1.445980	1.445081	1-444183	1.443286	1.442389	1-441494	1-44(599	1-439704	1.438811	1.437918	1-437026	1-436135	1.435245	1-434355	1.433466	1-432578	1-431690	1-430803	1-429917	1-429032	1-428148		TANG.	
	TANG.	602289	-688137	995889.	266889	-689424	-689853	690283	-690712	-691142	-691572	-692002	-692432	.692863	-693293	-693724	-694155	-694586	-695018	.695449	-695881	.696313	.696745	-697177	609269-	.698042	698474	200869	-696340	F2.2669-	700207		CCTANG.	
EG.	SINE.	-5666459	2668856	-5671252	-5673648	-5676043	-5678437	5680832	-5683225	.5685619	.5688011	-5690403	-5692795	-5695187	5697577	-569968	.5702357	.5704747	.5707136	5709524	.5711912	.5714299	.2716686	-5719073	-5721459	-5723244	-5726229	-5728014	-5730998	.5733381	-5735764		COSINE.	
34 DEG.	-	31	22	83	24	8	æ	32	88	8	9	4	3	3	#	3	46	47	\$	£ 5	3	2	22	55	25	8	26	27	8	55	3		_	
	_	9	9	28	2	56	55	25	53	25	27	8	49	48	47	46	45	4	53	3	41	40	33	88	34	98	33	ž	83	33	31	R	_	:3
	,		4.5	-	~•							-																						
	COSINE.		_	_	_	.8283864		8280603	8278972	_		-8274074	8272440	9080238	8269170	-8267534	-8265897	.8264260	-8262622	8260983	-8259343	-8257703	-8256062	8254420	-8252778	8251135	-8249491	-8247847	·8216202	-8214556	6067758	-8241262	MNE.	DEG.
	COTANG. COSINE.	9280329	8288749	8287121	_	_	8282234	1-476993 -8280603	~	_	8275708	-8274074		_	_	1.469615 8267534		_	_	_	_	-	<u>.</u>	-	_	-	-	-	<u>.</u>	_	_	1.455009 .8241262	TANG. SINE.	Deg.
		9280329	1.481631 .8283749	1.480702 -8287121	1.479773 .8285493	1.478846	1.477919 -8282234	1.476993	1.476068	1-475144 -8277340	1.474221 -8275708	1.473298 -8274074	1.472376	1-471455	1-470535	1.469615		1-467778	1.466861	1.465945	1-465029	1.464114	1-463200	1-462287	1-461374	1.460463	1-459552	1-458642	1.457732	1.456824	_	1.455009	_	DEG.
Dec.	COTANG.	-674508 1-482561 -8290376	674931 1-481631 -8288749	675355 1.480702 8287121	-675779 1-479773 -8285493		676626 1-477919 -8282234	. .677050 1.476993 .4	677475 1476068	677899 1-475144 -8277340	-678324 1-474221 -8275708	678749 1-473298 8274074	3 -679174 1-472376	679599 1.471455	680024 1.470535	. 680450 1.469615	. 680875 1.468696	.681301 I-467778	1.466861	·682153 1-465945	· 682580 1·465029	. -683006 1-464114 -	. .683433 1-463200 .	683860 1.462287	684287 1.461374	684714 1-460463	685141 1-459552	-685569 1·458642 ·	685996 1-457732	. 686424 1.456824 .	1.422916	1.455009	TANG.	Deg.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	62	8	2	8	22	2	8	3	12	8	19	18	17	91	15	14	13	17	Ξ	10	6	œ	7	9	5	4	က	63	_	0		-	54.
	COSINE.	-8139466	8137775	·8136084	-8134393	-8132701	-8131008	-8129314	.8127620	-8125925	-8124229	-8122532	-8120835	8119137	-8117439	.8115740	-8114040	-8112339	8110638	-8108936	-8107234	8105530	-8103826	-8102122	-8100416	•8098710	\$00200s	-8095296	-8093588	8091879	·8090170		SINE.	DEG.
	COTANG.	1.401086	1.400224	1-399363	1.398503	1:397644	1.396785	1-395927	1-395069	1-394213	1-393357	1.392501	1-391647	1.390793	1.389940	1-389087	1.388235	1.387384	1.386534	1.385684	1.384835	1-383986	1-383139	1.382292	1.381445	1.380600	1.379755	1:378910	1.378067	1:377224	1.376381		TANG.	
	TANG.	-713732	714171	.714610	.715050	-715489	-715929	-716369	.716810	717250	717691	718131	718572	-719014	719455	719897	-720338	7.20780	721222	.721665	-722107	.722550	.722993	723436	-723879	-724322	724766	.725210	725654	.726098	726542		COTANG.	
EG.	SINE.	5809397	-5811765	5814132	-5816498	-5818864	-5821230	5823595	5825959	.5828323	-5830687	5833050	5835412	-5837774	5840136	-5842497	-5844857	-5847217	5849577	-5851936	-5854294	5856652	-5859010	5861367	-5863724	0809989	5868435	.5870790	-5873145	.5875499	-5877853		COSINE.	
35 Deg.	,	31	엻	딿	*	ž	98	3	80	65	8	41	27	\$	44	45	46	47	84	46	යි	21	22	53	72	35	26	22	88	59	3		_	
	,	8	26	28	22	99	33	54	53	25	51	33	49	48	47	46	45	4	53	23	41	40	33	æ	37	98	33	34	88	32	31	30	,	DEG. 54.
	COSINE.	.8191520	·8189852	.8188182	8186512	.8184841	.8183169	8181497	8179824	1818181	8176476	-8174801	8173125	-8171449	8169772	8168094	.8166416	.8164736	-8163056	.8161376	-8159695	.8158013	.8156330	.8154647	.8152963	-8151278	• 8149593	.8147906	.8146220	.8144532	8142844	-8141155	SINE.	DEG
	COTANG.	1.428148	1.427264	1.426381	1.425498	1.424617	1.423736	1.422856	1.421976	1.421097	1.420220	1.419342	1.418466	1.417590	1.416715	1.415840	1.414967	1.414094	1.413222	1.412350	1.411479	1.410609	1.409740	1.408871	1.408003	1.407136	1.406270	1.405404	1.404539	1.403674	1.402811	1.401948	TANG.	
	TANG.	700207	.700641	-70107-	-701508	-701943	·702377*	.702811	·703246	-703681	-704116	704551	-704986	-705422	-705858	-706294	-706730	-707166	-707602	-708039	.708476	-708913	-709350	787607	710225	-710563	·711100	-711539	711977	-712415	-712854	-713233	COTANG.	
Deg.	SINE.	-5735764	-5738147	-5740529	.5742911	.5745292	.5747672	-5750053	.5752432	-5754811	.5757190	-5759568	-5761946	5764323	-5766700	9206929	-5771452	-5773827	.5776202	.5778576	.5780950	5783323	-5785696	5788069	.5790440	-5792812	.5795183	.5797553	-5799923	.5802292	.5804661	-5807030	COSINE.	
38	-	0	-	67	ന	4	10	9	7	00	6	10	11	12	13	14	15	16	17	18	19	8	77	23	ន	77	ধ	88	73	88	କ	ຂ	`	

NATURAL SINES AND TANGENTS TO A RADIUS 1. $36~\mathrm{DEG}$.

	-	83	38	ន	23	77	ន	23	77	ล	19	80	11	16	12	4.5	32	=	2	6	00	~	9	20	4	0	27,	-	>	-	53.
	COSINE.	-8036838	-8035107 -8033375	-8631642	8029909	-8028175	-8026440	-8024705	-8022369	8021232	-8019495	-8017756	8010018	-8014278	-8012538	200000	00000000	5005571	-8003827	-8002083	-8000338	.7998593	-74896847	7995100	-7993352	₹091664	-7989855	7988105	-7986355	SINE.	DEG.
•	COTANG.	1.350600	1.349779	1.348139	1.347319	1.346501	1.345683	1:344865	1:344049	1:343233	1-342417	1:341602	1:340788	1.339975	1-339162	1.557550	1.226797	1.335917	1.335107	1.334298	1.333490	1.332682	1:331875	1:331068	1.330262	1.329457	1.328653	327848	1.327044	TANG.	
	TANG.	.740411	740861	-741763	-742214	.742665	-743117	-743568	-744020	-744472	-744924	7.45377	-745829	746282	746735	01747	74097	-748549	-749003	-749457	749911	750366	750821	-751276	751731	-752186	752642	860292	753554	COTANG.	
EG.	SINE.	-5950566	5952904	722266	5959913	-5962249	-5964584	-5966918	.5969252	.5971586	-5973919	-5976251	-5978583	5980915	-5983246	7,00000	.5000936	-5992565	-5994893	5997221	5999549	.6001876	-6004202	.6006528	£688009	6211109	.6013503	/280109	0218109	COSINE.	
36 DEG.		31	R	24	왏	8	34	œ,	ŝ	9:	4	31	3	7	34	91	78	49	20	51	22	z	24	8	9	25	88	66	3	E	
		_	~~	· ~	.0	,0		~	~	_	$\overline{}$	_	m	_	~	_	# 2	-	. ~	_	0	m	_		_		~ (_	Г	eri.
ı		9	65 55 50	'n	ī,	īć.	'n	ro.	22	io	ď	4	₹	4	₩:	4	# 2	3	4	4	8	ಪ	က	ಹ	35	m)	n	ò		-	33
	COSINE.	_	8088460	_	_	_	8079899	_	_	_	_	_	_	_	8066166	2626900	_	8059283		_		_	_	~	_		8043756	50,020	.8038569 30	SINE.	DEG. 53
	COTANG. COSINE.	0210608		8085037	8083325	8081612	-8079899	.8078185	8076470	-8074754	8023038	-8071321	8069603	8067885	_	_	8061005	-8059283		-8055837	8054113	-8052389	-8050664	-8048938	117/408	-8045484		_	1.351422 .8038569 30	TANG. SINE. /	DEG. 5
	-	0210608 182921	8085460	1.373859 8085037	1.373019 8083325	1.372180 8081612	-8079899	1:370504 .8078185	1-369667 -8076470	1:368831 -8074754	1:367995 -8073038	1.367 161 -807 1321	1.366326 .8069603	1-305493 -8067885	1.364660	0444000	1.36230 0002020	1.361335 8059283	1-360505 -8057560	1.359676 -8055837	1.358848 .8054113	1.358020 -8052389	1.357193 -8050664	1-356367 -8048938	1127±08- 15cccc.1	1.3547 16 -8045484	1.353891	200000		<u> </u>	DEG. 5
36 Dec.	, COTANG.	726542 1-376381 -8090170	1.374699 8085460	727876 1-373859 8085037	· 728321 1.373019 8083325	728767 1.372180 8081612	729212 1-371342 -8079899	729658 1.370504 .8078185	1-369667 -8076470	730550 1:368831 8074754	730996 1:367995 8073038	731442 1.367161 8071321	731889 1.366326 8069603	·732336 1.365493 ·8067885	732783 1.364660	0###000 1200001 002001	1.36230 0002020	734573 1.361335 8059283	·735021 1-360505 -8057560	735469 1-359676 -8055837	735917 1-358848 -8054113	736366 1.358020 8052389	736814 1-357193 -8050664	737263 1-356367 -8048938	1127408 1466681 217787	738162 1-354716 -8045484	738611 1.353891	. 199661 199697	1-351422	TANG.	DEG. 5

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	_	_		_	_	_	_	-	_	_	_	_	_	_		-	-	-		_			_	_	_		_	-	_	_		_	•
	-	83	88	2	56	3	24	33	3	16	ន	10	2	17	91	2	14	13	12	Ξ	10	6	∞	7	9	2	4	က	67	_	0		-	. 52.
	COSINE.	-7931762	.7929990	7928218	-7926445	.7924671	.7922896	-7921121	-7919345	692162	-7915792	-7914014	-7912235	-7910456	929862	-7906896	7905115	-7903333	.7901550	792687	7897983	-7896198	7894413	7892627	.7890841	7889054	.7887266	7885477	-7883688	.7881898	.7880108		SINE.	DEG. 52.
	COTANG.	1.302440	1.301656	1.300873	1.300090	1.299308	1.298526	1-297745	1.296964	1.296185	1-295405	1-294627	1.293848	1.293071	1.292293	1.291517	1-290742	1.289966	1.289192	1.288418	1.287644	1.286871	1.286099	1.285327	1.284556	1.283786	1.283016	1.282246	1.281477	1-280709	1.279941		TANG.	
	TANG.	-767789	.768251	768714	~1691	-769640	-770103	795077	771030	-771494	.771958	.772423	772887	-773352	-773817	-774282	774748	-775213	775679	776145	119977	8.10777	-7777544	778011	-778478	-778946	-779413	.779881	-780349	-780817	781285		COTANG.	
Deg.	SINE.	-6089922	6092229	-6094535	.6096841	6099147	-6101452	-6103756	-6106060	6108363	-6110666	-6112969	-6115270	-6117572	.6119873	-6122173	6124473	-6126772	-6129071	.6131369	.6133666	-6135964	-6138260	-6140556	-6142852	6145147	6147442	-6149736	-6152029	-6154322	-6156615		COSINE.	
37 D	-	33	33	88	2 5	38	98	32	88	65	4	4	42	5	44	45	46	47	48	67	20	21	22	23	Z	55	26	22	82	26	9		`	
	-	8	26	28	22	26	55	54	53	25	19	20	49	48	47	46	45	4	£	42	Ŧ	40	33	æ	37	36	33	34	æ	32	55	30	`	DEG. 52.
	COSINE.	.7985355	·7984604	.7982853	.7981100	·7979347	-7977594	-7975839	7974084	7972329	-7970572	·7968815	-7967058	-7965299	.7963540	.7961780	.7960020	.7958259	7956497	·7954735	·7952972	-7951208	7949444	-7947678	7945913	794146	.7942379	.7940611	·7938843	-7937074	7935304	7.933533	SINE.	DEG
	COTANG.	1-327044	1-326242	1.325439	1.324638	1.323837	1.323036	1.322237	1.321437	1.320639	1.319841	1.319044	1.318247	1.317451	1.316655	1.315861	1.315066	1.314273	1.313480	1.312687	1.311895	1.311104	1.310314	1.309523	1.308734	1:307945	1-307157	1-306369	1 305582	1.304796	1:304010	1.303225	TANG.	
	TANG.	753554	754010	-754466	-754923	755379	·755836	-756294	756751	-757209	-757666	758124	758582	-759041	-759499	-759958	760417	•760876	-761336	-761795	.762255	-762715	-763175	763636	-764097	-764557	.765018	.765480	765941	-766403	766864	767327	COTANG.	
Deg.	SINE.	-6018150	6020473	-6022795	-6025117	-6027439	-6029760	·6032080	•6034400	6036719	-6039038	•6041356	•6043674	-6045991	-6048308	.6050624	•6052940	.6055255	.6057570	F886209.	-6062198	.6064511	£000824	-6069136	.6071447	-6073758	6909209	-6078379	6890809	·6082998	•6085306	-6087614	COSINE.	
37 I		0	_	67	m	4	2	9	7	00	6	9	=	12	13	14	27	91	11	18	61	8	22	23	ន	22	8	8	23	83	នុះ	8	_	

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	_	8	_	_	_	_	_	_	_	_	_	8	17	16	29	7	23	12	=	2	6.	00	7	. 9	2	4	က	67	_	•		-	-
	COSINE.	.7824270	7822459	-7820646	7818833	7817019	-7815205	-7813300	-7811574	7800757	7807940	-7806123	7804304	7802485	.7800665	-7798845	-7797024	-7795202	7793380	7551557	-7789733	6062877	-7786084	.7784258	-7782431	-7780604	7778777	-7776949	.7775	-7773290	-7771460		SINE.	
	COTANG.	1.256421	1.255672	1.254922	1.254174	1.253426	1.252678	1.251931	1.251184	1.250438	1.249693	1.248948	1.248204	1.247460	1.246716	1-245974	1.245232	1.244490	1.243749	1.243008	1.242268	1.241529	1.240790	1.240051	1.239313	1.238576	1.237839	1.237103	1.236367	1.235631	1.234897		TANG.	-
	TANG.	.795911	796386	198961	-797337	797813	-798289	798765	799242	-799719	901008	800673	.801151	.801628	-802106	-802584	803063	803541	-804020	-804499	804979	-805458	-805938	806418	868908	-807378	-807859	-808340	-808821	-809302	-809784		COTANG.	-
EG.	SINE.	6227423	-6229698	6231974	.6234248	6236522	.6238796	-6241069	6243342	-6245614	-6247885	-6250156	-6252427	.6254696	-6256966	6259235	6261503	.6263771	-6266038	6268305	-6270571	.6272837	-6275102	.6277366	•6279631	·6281894	-6284157	-6286420	.6288682	-6290943	-629320 4		COSINE.	-
38 Deg.	-	31	32	ĸ	34	32	98	34	80	33	\$	4	3	43	44	45	46	47	8	46	33	21	22	23	25	22	96	22	88	52	8		_	
	-	09	59	200	22	26	35	54	53	25	51	20	49	48	47	46	45	44	43	45	41	#	33	8	34	98	8	%	ee ee	33	55	86	`	
	COSINE.	·7880108	-7878316	·7876524	7874732	-7872939	7871145	7869350	7867555	7865759	-7863963	.7862165	·7860367	7858569	7856770	7854970	.7853169	7851368	.7849566	-7847764	-7845961	-7844157	7842352	7840547	7838741	.7836935	7835127	.7833320	-7831511	-7829702	7827892	7826082	SINE.	
	COTANG.	1-279941	1.279174	1.278407	1-277641	1.276876	1.276111	1-275347	1.274583	1.273820	1-273057	1.272295	1.271534	1.270773	1.270013	1-269253	1.268494	1-267735	1.266977	1.266219	1.265462	1.264706	1.263950	1.263195	1-262440	1.261686	1-260932	1-260179	1-259426	1.258674	1.257923	1.29/1/2	TANG.	
	TANG.	.781285	·781754	782222	-782691	-783161	-783630	-784100	784570	785040	.785510	-785980	786451	-786922	-787393	-787864	.788336	-788808	·7892S0	-789752	790224	79067	791170	-791643	792116	-792590	·793064	-793537	-794012	-794486	794961	./95435	COTANG.	
Deg.	SINE.	-6156615	-6158907	-6161198	-6163489	.6165780	6168069	6170359	6172648	6174936	.6177224	-6179511	-6181798	·6184084	-6186370	-6188655	•6190939	-6193224	-6195507	.6197790	6200073	.6202355	•6204636	6206917	-6209198	6211478	-6213757	-6216036	-6218314	-6220592	-6222870	.0220146	COSINE.	
38 D	-	0	_	61	en	4	10	9	7	. 00	6	10	=	12	13	14	15	91	11	81	13	ล	22	52	ន	75	23	20	73	8	នន	8	`	

DEG. 51.

NATURAL SINES AND TANGENTS TO A RADIUS 1.

-	Ī	Γ,	 	œ	_		01	0	7	-	20	-	_	_		20				9	*	ಣ	2	_	_	. 6	œ	· -	٠. د	10					٠.		Ī.	ے اُ
1	-	1			- 22	_	_	-	- C	-	10	-	-	2	-	-	-	-			_	_	_	_	_	_	_	_	_		_	_					Ļ	DEG. 50
	COSINE.	2000	0.653177	7712544	27710692	7700040	0800011	92690//	£7705132	9709077	0070011	2510//	.7699567	-7697710	7605853	7602006	7609137	1000000	0770607	7688418	.7686558	.7684697	7682835	7680973	.7679110	7677246	7675382	7673517	7671652	7669785	7667918	7666051	7664182	7669314	7660444		SINE.	ءَ
	COTANG.	010010	875212.1	1.211660	1.210942	1.01005	0770171	800607.1	1.208792	3.000076	000000	100/07.1	1.206646	1.205932	1.905910	1.904505	1.902709	1.00000	100007.1	1.202369	1.201658	1.200947	1.200237	1-199527	1-198818	1-198109	1-197401	1-196693	1-195986	1.195279	1-104573	1.102867	1.102169	1.109457	1,101752	1011011	TANG.	
	TANG.	200100	070470	-825514	-825803	606368	202000	20,020	52727	692268	636063	707070	.828742	-829233	-890794	830916	502058	9	100,000	169182	887188	-832675	-833168	833661	-834154	834648	835141	835635	836129	836694	837118	.837613	838108	40888	830000		COTANG.	
	SINE.	Junajaj.	0200000	.02007/0	6367513	6200756	00011000	0661700	6374240	6876481	1010103	17/0/00	95089	6353201	6385440	6387678	9100889	62000	00017000	0554530	9294659	-6398862	.6401097	6403332	-6405566	-6407799	6410032	.6412264	.6414496	-6416728	6418958	.6491180	.6493418	-6425647	6427876		COSINE.	
	-	5	50	200	22	7.	5 8	3	8	4	000	88	36	40	4	45	6,	2	1 4	G :	9	4	8	49	20	21	22	53	25	55	26	24	00	56	9	;	-	
	,	9	35	ĉ	ģ	22	ž	3;	S	Ž.	C.	3 5	70	5	33	49	48	47	7	Ç,	6	4	43	42	41,	9	33	88	37	99	8	ζ.	33	32	55	င္တ	-	S.
	COSINE.	0371777	COLUMN	67069//	767797	27765965	2764199	7011077	-7762298	-7760464	0690944	20001	#6/9e//.	-7754957	7753121	-7751283	-7749445	27747606	77.457.67	707CF11.	. (43920	-7742086	-7740244	-7738402	-7736559	-7734716	-7732872	7731027	-7729182	7727336	7725489	7723642	7721794	7719945	7718096	77716246	SINE.	DEG.
	COTANG.	700166-1	1001001	1.234162	1.233429	1-932696	0000000	006107.1	1:231231	1-930499	092066.	001077	1.229038	1.228308	1.227578	1.226849	161966-1	1.995.202	1.55466	000000	7.73938	1.223212	1.222486	1-221761	1.221036	1.220312	1-219588	1.218865	1.218142	1.217419	1.216698	1-215976	1.215256	1.214535	1.213816	1-213097	TANG.	
	TANG.	100000.	100000	007018	·S10747	811230	617110	21/170	661718.	-812678	131212	101010	#Fucis.	-814128	-814611	-815095	-815580	-816064	016540	2000	\$1/02	817519	-818004	067818	818976	-819462	·819948	-820435	820922	821409	-821896	855384	.822871	823359	823847	-824336	COTANG.	
	SINE.	F065069	1070070	#05057Q	-6297724	5866629·	6509940	7577000	0004000	6306758	6300015	0000000	2/21150.	-6313528	-6315784	·6318039	6320203	-6399547	629,4900	0025700	.652/005	6329306	-6331557	·6333809	-6336059	-6338310	-6340559	-6342808	-6345057	-6347305	-6349553	6351800	.6354046	6356292	6358537	6360782	COSINE.	
3	,	-	٥,	_	01	٠٠.		# 1	c	9	1	- 0	×	6	9	=	15	ľ	37	# 1	9	9	14	18	61	ล	77	ន	ន	24	8	36	27	28	8	ಜ	-	

NATURAL SINES AND TANGENTS TO A RADIUS 1.

40 DEG.	EG.					40 Deg.	EG.				
-	SINE.	TANG.	COTANG.	COSINE.	-	-	SINE.	TANG.	COTANG.	COSINE.	-
0	.6427876	839099	1-191753	-7660444	99	31	-6496692	-854583	1-170160	.7609170	8
_	6430104	839595	1.191049	7658574	26	32	6498903	-855087	1.160471	7600980	3 3
61	6432332	840091	1.190346	7656704	38	83	6501114	855591	1.168789	.7598380	38
ന	.6434559	840587	1.189643	-7654832	22	34	.6503324	856095	1-168094	7506408	18
4	6436785	841084	1.188941	.7652960	29	8	6505533	856599	1 167407	7504606	3 %
20	-6439011	841581	1.188239	7651087	55	S.	.6507742	-857103	1.166790	7509719	36
٠	.6441236	842078	1-187538	-7649214	7	3	6509051	827608	1.166032	7500590	รร
_	-6443461	842575	1.186837	.7647340	23	8	.6512158	.858113	1-165347	200001	38
00	6445685	843073	1.186136	7645465	52	36	6514366	858618	1.164661	.7587091	15
6	-6447909	843570	1.185437	-7643590	2	40	-6516572	859124	1.163076	7585196	18
01	.6450132	844068	1.184737	7641714	23	4	6518778	629638	1.163901	.7583940	22
Ξ	.6452355	844567	1.184038	.7639838	49	42	6520984	-860135	1.169607	7581343	200
2	6454577	845065	1.183340	7637960	8	£	-6593180	-860641	1.161092	7570446	19
<u> </u>	-6456798	845564	1.182642	-7636082	47	4	.6595304	861148	1.161940	7577548	7.5
7	-6459019	846063	1-181944	7634204	46	45	6597508	-861655	1.160857	7575650	2 4
12	-6461940	846569	1-181947	.7639395	\$	3 4	6590801	691698	1.150007	757979	3.2
2 2	•6463460	847069	1.180551	7630445	4	25	6525004	000000	1.150109	10/0/27	# <u>c</u>
12	0.00000	047561	1-170055	7290524	19	4 9	1007000	000700	7616011	1001/0/	9
1	0400013	100740	1.170150	100000	3 5	ģ.	002100	0/1500	1000	106690).	2
2	SES/040	242001	6016/1.1	102000	31:	4	.05364US	\$20202	1.157830	.7568050	=
2	9110/49	848561	1.178404	7084297	41	96	.6238609	-864192	1.157149	-7566148	2
ន	6472334	849062	1.177769	7622919	9	51	.6540810	-864700	1.156469	7564246	6
7	6474551	849563	1.177075	.7621036	33	25	-6543010	-865209	1.155789	7562343	00
ន	-6476767	820064	1.176382	7619152	300	53	.6545209	-865718	1.155110	-7560439	1
ន	75652F9	850565	1.175688	.7617268	37	25	•6547408	.866227	1-154431	7.558535	ي.
75	-6481199	-821066	1.174996	.7615383	38	33	6549607	.866736	1-153753	.7556630	14
ន	-6483414	821268	1.174303	7613497	엻	29	·6551804	-867246	1-153075	-7554724	4
56	6485628	-852070	1.173612	.7611611	75	22	-6554002	867755	1.159307	7559818	07
13	.6487842	852572	1.17.2920	7609724	ĸ	28	6556198	.868265	1.151791	7550911	000
88	-6490056	853075	1.172229	7607837	Ŗ	26	-6558395	922898	1.151044	-7549004	-
81	6492268	853577	1-171539	.7605949	31	8	.6560590	9866586	1.150368	7547096	•
ස	6494480	-824080	1.170849	7604060	S,	_					,
`	COSINE.	COTANG.	TANG.	SINE.	-	-	COSINE.	COTANG.	TANG.	SINE.	-
				1							

NATURAL SINES AND TANGENTS TO A RADIUS 1.

	-	ន	20	ķ	8	33	8	ន	22	2	8	19	18	17	91	15	14	13	2	=	9	6	œ	_	9	2	4	က	63	_	0		-	8
	COSINE.	.7487629	7485701	7483772	.7481842	7479912	7477981	7476049	7474117	7472184	7470251	7468317	7466382	7464446	7462510	7460574	7458636	.7456699	7454760	7452821	7450881	.7448941	.7446999	-7445058	-7443115	7441173	-7439229	-7437285	•7435340	7433394	7431448		SINE.	DEG. 48.
	COTANG.	1.129632	1.128970	1.128308	1-127647	1.126987	1.126327	1.125667	1-125008	1-124349	1.123690	1.123032	1.122375	1.121718	1.121061	1.120405	1.119749	1-119094	1.118439	1.117784	1.117130	1.116476	1.115823	1.115170	1.114518	1.113866	1.113214	1.112563	1-111912	1.111262	1.110612		TANG.	
	TANG.	-885244	-885763	-886282	-886801	-887321	-887841	-88381	.88882	-889403	-889924	-890445	296068	-891489	-892011	892534	-893056	-893579	-894103	-894626	-895150	-895674	661968-	-896723	897248	-897773	-898299	-898825	-899351	228688	-900404		COTANG.	
EG.	SINE.	-6628379	.6630557	6632734	-6634910	-9637087	-6639262	-6641437	.6643612	-6645785	.6647959	.6650131	.6652304	.6654475	.6656646	.6658817	2860999	-6663156	.6665325	-6667493	.6669661	.6671828	. 6673994	0919299.	.6678326	-6680490	-6682655	.6684818	1869899.	.6689144	9081699.		COSINE.	
41 DEG.	-	33	33	8	*	33	8	37	88	33	40	41	42	2	4	45	46	4	&	49	ය	21	27	23	54	32	8	24	8	26	8		`	
		_	_	~						_	_	_	_						~			_	_	~	_		0	<u>.</u>		_		<u> </u>	_	
		8	20	33	2	š		ž	23	22	2	2S	48	2	4	9	4	4	£.	4	4	4	<u>ښ</u>	88	ŝõ	8	65 ·	30	33	'n.	m 6	8	_	÷ 84
	COSINE, /	_	_	_	_	_	_	-7535634 54	_	_		_	_	.7524149 48	-	7520316 46	7518398 45	_	_	_	_	7508800 4	_	_	_	_			7495337	7493411 32		7489557 30	SINE.	DEG. 48
	COTANG. COSINE. /	.7547096	.7545187	.7543278	.1541368	7239457	7537546	-7535634	.7533721	-7531808	-7529894	. 7527980	-7526065	7524149	7522233	÷	-	7516480	.7514561	.7512641	7210721	_	7506879	.7504957	7503034	7501111	7499187	7497262		_	7491484	_	TANG, SINE. /	
		1.150368 7547096	.7545187	1.149017 7543278	1.148342 7.541368	1.147668 7.539457	1.146994 7537546	-7535634	1.145648 7533721	1.144976 7531808	1.144304 7529894	1.143632 7527980	1.142961 77526065	7524149	1.141620 7522233	1:140950	1.140281	1.139612 7516480	1.138944 7.514561	7512641	1.137608 .7510721	1.136941	1.136274 7506879	1.135608 7504957	1.134942 .7503034	1.134277 7.501111	1.133612 7499187	1-132947 -7497262	1.132283	1.131620	1.130957 7.491484	7489557		
Drg.	COTANG.	·869286 1·150368 ·7547096	869797 1.149692 7545187	870308 1:149017 7543278	820820 1.148342 7541368	871331 1.147668 7539457	-871843 1·146994 7537546	872355 1.146321 7535634	-872868 1-145648 -7533721	873380 1.144976 7531808	. 873893 1-144304 -7529894	. 874406 1.143632 7527980	874920 1.142961 7526065	. -875433 1-142290 -7524149	875947 1-141620 7522233	·876462 1·140950	876976 1.140281	5 -877491 1-139612 7516480	878006 1-138944 7514561	878521 1-138276 7512641	1.137608 7.1510721	5 879552 1.136941	88:068 1:136274 7506879	880585 1.135608 7504957	881101 1:134942 7503034	881618 1-134277 7501111	882135 1.133612 7499187	-882553 1-132947 -7497262	. Sec. 1.132283	. 883688 1.131620	-884206 1-130957 -7491484	1-130294 7489557	TANG	