Homework Set 6 Analysis

Chase Coleman

March 24, 2016

In all of the following, let X be an element of $\mathcal{M}(n \times k)$ with linearly independent columns.

Exercise 1

Question:

Show that X'X is invertible

Solution:

We want to show that X'X is invertible. We will first show that X'X is positive definite.

A matrix $\Gamma \in \mathcal{M}(n \times n)$ is positive definite if and only if $z'\Gamma z \geq 0$ for all non-zero vectors $z \in \mathbb{R}^n$.

Note for any non-zero $z \in \mathbb{R}^n$ we could write¹

$$z'(X'X)z = (Xz)'(Xz)$$

$$= \sum_{m=1}^{n} \left(\sum_{j=1}^{n} X_{m,j} z_j\right)^2$$

$$> 0$$

Thus X'X is strictly positive definite. A strictly positive definite matrix has strictly positive eigenvalues which implies the determinant is strictly positive.

All matrices with non-zero determinants are invertible thus X'X is invertible

Exercise 2

Question:

Let $P = X(X'X)^{-1}X'$. Show that if k = n, then P is the identity. (Justify your steps.) Explain the geometric intuition in terms of the orthogonal projection theorem.

Solution:

The intuition behind the result we will show is that when there are n linearly independent columns in X and each column is a vector in \mathbb{R}^n then the set of vectors spans \mathbb{R}^n . This implies any n-dimensional vector, $y \in \mathbb{R}^n$, is in the column space – i.e. the projection of the n-dimensional vector will be the vector itself.

We now can verify our intuition. Let $P = X(X'X)^{-1}X'$. When $X \in \mathcal{M}(n \times n)$ with linearly independent columns² we can rewrite this equation using the fact that for invertible matrices $A, B \in \mathcal{M}(n \times n)$ that

¹We appeal to the linear independence of the columns of X to get the strict inequality

²Having n linearly independent columns in n-dimensional space means that X is of full rank and thus is invertible

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

$$P = X(X'X)^{-1}X'$$

= $X(X)^{-1}(X')^{-1}X'$
= I

Exercise 3

Question:

Show that the projection of $y \in \mathbb{R}^n$ onto span $\{1\}$ is the mean of the elements of y.

Solution:

The only column in X is a vector of ones, $X = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$. We can then get the projection of $y \in \mathbb{R}^n$ onto X by:

 $\tilde{y} = Py = X(X'X)^{-1}X'y$ $\begin{bmatrix} 1 \end{bmatrix} / \begin{bmatrix} 1 \end{bmatrix}$

$$= \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \left(\begin{bmatrix} 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \dots \\ 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} y$$
$$= \frac{1}{N} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} y$$

$$= \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \frac{1}{N} \sum_{i=1}^{n} y_i$$
$$= \begin{bmatrix} \bar{y} \\ \vdots \\ \bar{z} \end{bmatrix}$$

Exercise 4

Question:

It's well-known that for regressions with a constant term, the vector of residuals always sums to zero. To prove this, let $y \in \mathbb{R}^n$ and let $X \in \mathcal{M}(n \times k)$ have linearly independent columns. Let $S = \operatorname{span}(X)$, $P = \operatorname{proj} S$, and M = I - P. Let $\hat{u} = My$. Show that if X has a constant column, then the elements of \hat{u} sum to 0. If possible give an argument based around orthogonal projection.

Solution:

Define $\hat{y} = Py$. We know that $\forall x \in \text{span}(X)$ that the inner-product $\langle y - \hat{y}, x \rangle = 0$ because $y - \hat{y}$ is orthogonal to span(X).

Note, since X has a constant column (a vector of ones), then $1 \equiv \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \in \operatorname{span}(X)$ Our previous observation implies

$$\langle y - \tilde{y}, 1 \rangle = 0$$

$$\Rightarrow \langle y - Py, 1 \rangle = 0$$

$$\Rightarrow \sum_{i=1}^{n} (y_i - (Py)_i) = \sum_{i=1}^{n} ((I - P)y)_i = 0$$

$$\Rightarrow \sum_{i=1}^{n} My = \sum_{i=1}^{n} \hat{u} = 0$$

Exercise 5

Question:

Show that if S is a nonempty linear subspace of \mathbb{R}^n , then $S \cap S^{\perp} = \{0\}$.

Solution:

Assume by $\Rightarrow \Leftarrow$ that $\exists x \in S \cap S^{\perp}$ such that $x \neq 0$.

Notice that $S^{\perp} \equiv \{y \in \mathcal{R}^n | < y, S >= 0\}$

Since $x \in S$ and $x \in S^{\perp}$ then $\langle x, x \rangle = 0$. However this is only true when x = 0 thus we have a contradiction. This means that if S is a nonempty linear subspace of \mathcal{R}^n then $S \cap S^{\perp} = \{0\}$