Energy valley optimization

Васильченко О.В.

гр. 9301

1. Введение

Данная работа посвящена исследованию и программной реализации метаэвристрического алгоритма оптимизации "Energy valley optimizer", представленного Mahdi Azizi в соответствующей статье для журнала Nature.

Текущая секция работы является введением и содержит краткую информацию о содержании и стуктуре проведенной работы.

Вторая секция работы посвящена описанию исследуемого алгоритма и тестовым функциям, на которых исследуемый алгоритм будет испытан для оценки точности и корректности его работы. Для исследуемых функций приведены формулы, информация о минимумах и их координатах соответственно. Для исследуемого алгоритма приведен и описан псевдокод его работы.

Третья секция работы "Результаты" содержит построенные графики поиска исследуемым алгоритмом на пространстве выбранных функций. Код программы для Python приведен в приложении к данной работе.

Четвертая секция "Выводы" включает таблицу с информацией о работе алгоритма для каждой из рассмотренных функций. Полученные результаты описаны и разобраны.

2. Алгоритм и тестовые функции

2.1. Описание алгоритма

В первую очередь во время работы алгоритма оптимизации EVO выполняется процесс инициализации. В рамках этого процесса кандидатами решений (x_i) считаются частицы с различным уровнем устойчивости внутри пространства поиска, которое считается некоторой частью большей области. n - количество таких частиц, а d - размерность рассматриваемой функции.

На следующем этапе алгоритма определяется граница обогащения ($Enrichment\ boundary,\ EB$) для частиц, которая используется для рассмотрения различий между нейтронно-богатыми и нейтронно-бедными частицами. С этой целью оценка целевой функции для каждой из частиц определяется как уровень нейтронного обогащения ($Neutron\ Enrichment\ Level,\ NEL$) частиц.

$$EB = \frac{\sum_{i=1}^{1} \text{NEL}_i}{n}, \quad i = 1, 2, \dots n.$$

Далее определяются уровни стабильности частиц на основании целевой функции.

$$\mathrm{SL}_i = \frac{\mathrm{NEL}_i - \mathrm{BS}}{\mathrm{WS} - \mathrm{BS}}, \quad i = 1, 2, \dots n.$$

В основном цикле поиска EVO, если уровень нейтронного обогащения частицы выше, чем обогащение $(NEL_i>EB)$, предполагается, что частица имеет большее соотношение N/Z, поэтому выполняется процесс распада с использованием альфа, бета или гамма-схемы. В связи с этим генерируется случайное число в диапазоне $[0,\ 1]$, которое имитирует границу стабильности (SB). Если уровень устойчивости частицы выше границы устойчивости (SLi>SB), альфа- и гамма-распады считаются имеющими место, поскольку эти два распада вероятны для более тяжелых частицы с более высоким уровнем стабильности.

Испускаемые лучи являются переменными решения в кандидате решения, которые удаляются и заменяются лучами в частице или кандидате с наилучшим уровнем устойчивости (X_{BS}). Математически эти аспекты формулируются следующим образом:

$$X_i^{\text{New1}} = X_i \left(X_{\text{BS}} \left(x_i^j \right) \right), \quad \begin{cases} i = 1, 2, \dots, n. \\ j = \text{AlphaIndex II.} \end{cases},$$

где $X_i^{
m New1}$ новая сгенерированная частица в пространстве, X_i - текущая позиция вектора і-ой частицы (кандидата решения) в пространстве (области решения), X_{BS} - вектор положения частицы с наилучшим уровнем стабильности, x_i^j - ј-ая переменная решения (или излучаемый луч).

Фотоны в частицах являются переменными решения (кандидатами на решение), которые удаляются и заменяются соседней частицей или кандидатом (X_{Ng}) , который имитирует взаимодействие возбужденных частиц с другими частицами или даже магнитными полями.

$$D_i^k = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}, \quad \begin{cases} i = 1, 2, \dots, n. \\ k = 1, 2, \dots, n - 1. \end{cases}$$

Где D_i^k - общее расстояние между i-й частицей и k-й соседней частицей, а выражения в скобках под корнем обозначают координаты частиц в пространстве поиска. После этого, процесс обновления позиции для генерации второго кандидата решения на текущем этапе осуществляется следующим образом:

$$X_i^{ ext{New2}} = X_i \left(X_{ ext{Ng}} \left(x_i^j
ight)
ight), \quad egin{cases} i = 1, 2, \dots, n. \\ j = ext{GammaIndex II}. \end{cases}$$

Где X_i^{New2} новая сгенерированная частица в пространстве, X_i - текущая позиция вектора і-ой частицы (кандидата решения) в пространстве (области решения), X_{Ng} позиция вектора соседней цастицы вокруг і-ой частицы, x_i^j - j-я переменная решения или испущенный фотон.

Если уровень стабильности частицы ниже границы стабильности $(SL_i \le SB)$, считается, что произошел бета-распад. В связи с этим для частиц проводится процесс обновления позиции, в ходе которого осуществляется контролируемое движение к частице или кандидату с наилучшим уровнем стабильности (X_{BS}) и центру частиц (X_{CP}) . Эти аспекты алгоритма имитируют тенденцию частиц к достижению полосы стабильности, в которой большинство известных частиц располагаются вблизи этой полосы, и большинство из них имеют более высокие уровни стабильности и вычисляются следующим образом:

$$X_{cp} = rac{\sum_{i=1}^1 X_i}{n}, \quad i = 1, 2, \dots n.$$

$$X_i^{ ext{New1}} = X_i + rac{(r_1 imes X_{ ext{BS}} - r_2 imes X_{ ext{CP}})}{ ext{SL}_i}, \quad i = 1, 2, \dots n.$$

Где X_i^{New1} и X_i это векторы предстоящего и текущего положения і-й частицы (кандидата на решение) в пространстве поиска, X_{BS} - вектор положения частицы с наилучшей стабильностью, X_{CP} - вектор расположения центра частиц, SL_i - уровень стабильность і-ой частицы, r1 и r2 два случайных числа в промежутке $[0,\ 1]$ определяющие движение частицы.

Для того чтобы улучшить качество исследования алгоритма, для частиц, использующих бета-распад, проводится другой процесс обновления позиции, в котором контролируемое движение к частице или кандидату с наилучшим уровнем стабильности (X_{BS}) и соседней частице или кандидату (X_{Ng}) выполняется, при этом уровень стабильности частицы не влияет на процесс движения. Математически этот процесс формулируются следующим образом:

$$X_i^{\text{New2}} = X_i + (r_3 \times X_{\text{BS}} - r_4 \times X_{\text{No}}), \quad i = 1, 2, \dots n.$$

Если уровень нейтронного обогащения частицы ниже границы обогащения ($NEL_i \le EB$), предполагается, что частица имеет меньшее отношение N/Z, поэтому частица стремится к захвату электронов или испусканию позитронов, чтобы переместиться в полосу стабильности. В связи с этим случайное движение в пространстве поиска определяется для учета этих видов движений следующим образом:

$$X_i^{\text{New1}} = X_i + r_1, \quad i = 1, 2, \dots n.$$

В конце основного цикла EVO для каждой из частиц генерируется только два новых вектора положения X_i^{New1} и X_i^{New2} , если уровень обогащения частицы выше границы обогащения, а для частицы с более низким уровнем обогащения в качестве нового вектора положения генерируется только X_i^{New} . В каждом состоянии вновь сгенерированные векторы объединяются с текущей популяцией, и лучшие частицы участвуют в следующем цикле поиска алгоритма. Для переменных решения, выходящих за пределы заданных верхних и нижних границ, определяется маркер нарушение границы, а в качестве критерия завершения может использоваться максимальное количество оценок целевой функции или максимальное количество итераций.

Algorithm 1: Energy Valley Optimizer (EVopt)

```
Входные данные:
                                                                                                                                                                         /* Целевая функция
d;
                                                                                                                                                                    Размерность проблемы */
n; T;
                                                                                                                                                                                /* Число частиц */
                                                                                                                                                            /* Максимальная итерация */
 [l, u];
                                                                                                                    /* Границы начального распределения частиц */
Результат:
                                                                                                                                                                           /* Точка минимума */
x_{min};
                                                                                                                                                         /* Значение функции в x_{	exttt{min}}
f_{min},
 neval;
                                                                                                                                    /* Число вычислений целевой функции */
Initialization:
\begin{array}{l} \text{VarMin} \leftarrow l \cdot \mathbf{1}_d, \text{VarMax} \leftarrow u \cdot \mathbf{1}_d; \\ \text{Particles} \leftarrow \text{rand}(n,d) \cdot (\text{VarMax} - \text{VarMin}) + \text{VarMin}; \end{array}
NELs \leftarrow \{f(\text{Particles}_i) \mid i = 1, \dots, n\};
bestNEL, bestIdx \leftarrow min(NELs);
worstNEL \leftarrow max(NELs);
x_{\min} \leftarrow \text{Particles[bestIdx]};
Main Loop:
for Iter \leftarrow 1 to T do
         Xnew \leftarrow [], Xnew1 \leftarrow [], Xnew2 \leftarrow [];
        for i \leftarrow 1 to n do
                 enrichmentBound \leftarrow mean(NELs);
                NEL_i \leftarrow NELs[i];

if NEL_i > enrichmentBound then
                        stabilityBound \leftarrow rand();
                         stabilityLevel \leftarrow (NEL<sub>i</sub> - bestNEL)/(worstNEL - bestNEL);
                         if stabilityLevel > stabilityBound then
                                 \begin{array}{l} \text{alphaIndex1} \leftarrow \text{randint}(1,d); \\ \text{alphaIndex2} \leftarrow \text{randint}(1,\text{alphaIndex1}); \end{array} 
                                \begin{aligned} &\text{Xnew1.} append(\text{Particles}[i]);\\ &\text{Xnew1}[\text{end, alphaIndex2}] \leftarrow x_{\min}[\text{alphaIndex2}];\\ &\text{gammaIndex1} \leftarrow \text{randint}(1,d);\\ &\text{gammaIndex2} \leftarrow \text{randint}(1,\text{gammaIndex1}); \end{aligned}
                                 \mathsf{Dist} \leftarrow \mathsf{distance}(\mathsf{Particles}[i], \mathsf{Particles});
                                 \begin{array}{l} nearestIdx \leftarrow argmin(Dist[Dist > 0]); \\ Xng \leftarrow Particles[nearestIdx]; \end{array}
                                 if Xng \neq \emptyset then
                                         Xnew2.append(Particles[i]);
                                         Xnew2[end, gammaIndex2] ← Xng[gammaIndex2];
                                 end
                        end
                        else
                                 Xcp \leftarrow mean(Particles);
                                 Xnew1.append(Particles[i] + rand \cdot x_{\min} - rand \cdot Xcp);
                                 \mathsf{Dist} \leftarrow \mathsf{distance}(\mathsf{Particles}[i], \mathsf{Particles});
                                 nearestIdx \leftarrow argmin(Dist[Dist > 0]);
                                 Xng ← Particles[nearestIdx]:
                                Xnew2. append(Particles[i] + rand \cdot x_{min} - rand \cdot Xng);
                        end
                        \begin{array}{l} Xnew1[end] \leftarrow clip(Xnew1[end], VarMin, VarMax); \\ Xnew2[end] \leftarrow clip(Xnew2[end], VarMin, VarMax); \end{array}
                 end
                 else
                         Xnew.append(Particles[i] + rand);
                         Xnew[end] \leftarrow clip(Xnew[end], VarMin, VarMax);
                end
        end
         Particles ← [Particles; Xnew; Xnew1; Xnew2];
        NELs \leftarrow [f(Particles_i) | i = 1, ..., size(Particles, 1)];
         order \leftarrow argsort(NELs);
        \mathsf{NELs} \leftarrow \mathsf{NELs}[\mathsf{order}[:n]]
        \texttt{Particles} \leftarrow \texttt{Particles}[\texttt{order}[:n],:];
        bestNEL \leftarrow min(NELs), worstNEL \leftarrow max(NELs);
        x_{\min} \leftarrow \text{Particles}[\text{argmin}(\text{NELs})];
        f_{\min} \leftarrow \text{bestNEL};
end
return x_{min}, f_{min}, neval
```

2.2. Тестовые проблемы

2.2.1. Проблеммы с множественным локальным минимумом

Функции этой категории характеризуются наличием множества локальных минимумов, что делает оптимизацию сложной для алгоритмов, основанных на градиентных методах, которые могут легко застрять в локальных минимумах. Эвристические и метаэвристические подходы, такие как генетические алгоритмы, оптимизация роя частиц и моделируемый отжиг, обычно лучше подходят для таких функций, поскольку они исследуют пространство решений более глобально.

Ackley Function Функция Ackley широко используется для тестирования алгоритмов оптимизации благодаря множеству локальных минимумов и единственному глобальному минимуму. Высокая

частота колебаний мешает градиентным методам, в то время как метаэвристические алгоритмы превосходят их благодаря способности исследовать различные области пространства решений.

$$f(x) = -20 \exp\left(-0.2\sqrt{\frac{1}{d}\sum_{i=1}^{d} x_i^2}\right) - \exp\left(\frac{1}{d}\sum_{i=1}^{d} \cos(2\pi x_i)\right) + 20 + e,\tag{1}$$

$$-5 \le x_i \le 5$$
, $x_{\min} = (0, \dots, 0)$, $f_{\min} = 0$.

Eggholder Function Функция Eggholder известна своим сложным ландшафтом с многочисленными крутыми долинами и хребтами. Резкие переходы градиента делают ее сложной для квазиградиентных методов. Такие алгоритмы, как дифференциальная эволюция и роевые методы, часто оказываются более эффективными.

$$f(x_1, x_2) = -(x_2 + 47)\sin\left(\sqrt{|x_2 + x_1/2 + 47|}\right) - x_1\sin\left(\sqrt{|x_1 - (x_2 + 47)|}\right),\tag{2}$$

$$-512 \le x_1, x_2 \le 512, \quad x_{\min} \approx (512, 404.2319), \quad f_{\min} \approx -959.6407.$$

2.2.2. Проблемы "чаши"

Эти функции гладкие и унимодальные, с одним глобальным минимумом, который лежит в параболической области. Они хорошо подходят для градиентных и квазиньютоновских методов благодаря своей выпуклой природе.

Sphere Function Sphere это простой квадратичный тест, используемый для оценки алгоритмов оптимизации. Его гладкая поверхность делает его идеальным для алгоритмов, использующих информацию о градиенте.

$$f(x) = \sum_{i=1}^{d} x_i^2,$$
 (3)

$$-5.12 \le x_i \le 5.12$$
, $x_{\min} = (0, \dots, 0)$, $f_{\min} = 0$.

Trid Function Функция Trid создана для того, чтобы бросить вызов алгоритмам оптимизации с неквадратичной формой чаши. Хотя она остается унимодальной, нелинейность требует квазиньютоновских методов или продвинутых градиентных оптимизаторов для эффективного сближения.

$$f(x) = \sum_{i=1}^{d} (x_i - 1)^2 - \sum_{i=2}^{d} x_i x_{i-1},$$
(4)

$$-d^2 \le x_i \le d^2$$
, $x_{\min_i} = (i(d+1-i))$ for all $i = 1, 2 \dots d$, $f_{\min} = -d(d+4)(d-1)/6$.

2.2.3. Функции "плато"

Эти функции имеют плоские области или плато, что может замедлить работу алгоритмов оптимизации. Линейные методы и простой градиентный спуск часто оказываются здесь неэффективными, в то время как эвристические подходы, использующие случайную выборку или имитацию отжига, могут быть более эффективными.

McCormick Function Функция McCormick - это двумерная функция с относительно простой поверхностью, но невыпуклыми свойствами. Плато может ввести в заблуждение градиентные алгоритмы, но эвристические методы справляются неплохо.

$$f(x_1, x_2) = \sin(x_1 + x_2) + (x_1 - x_2)^2 - 1.5x_1 + 2.5x_2 + 1,$$
(5)

$$-1.5 \le x_1 \le 4, -3 \le x_2 \le 4, \quad x_{\min} \approx (-0.54719, -1.54719), \quad f_{\min} \approx -1.9133.$$

Booth Function Функция Booth широко используется в оптимизации для тестирования алгоритмов с двумя переменными. Хотя функция имеет простую структуру, области плато могут замедлить сходимость для линейных или простых градиентных методо

$$f(x_1, x_2) = (x_1 + 2x_2 - 7)^2 + (2x_1 + x_2 - 5)^2,$$

$$-10 \le x_1, x_2 \le 10, \quad x_{\min} = (1, 3), \quad f_{\min} = 0.$$
(6)

2.2.4. Проблемы "долины"

Эти функции имеют узкие долины, в которых трудно найти глобальный минимум. Градиентные алгоритмы могут колебаться в пределах долины, прежде чем сходятся. Алгоритмы с адаптивным размером шага или гибридные метаэвристические методы могут работать лучше.

Rosenbrock Function The Rosenbrock, также известная как функция Банана, является классическим эталоном с изогнутой долиной, ведущей к глобальному минимуму. Градиентные методы часто оказываются неэффективными из-за плоскости вдоль оси долины, что требует применения продвинутых импульсных методов.

$$f(x) = \sum_{i=1}^{d-1} \left[100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right], \tag{7}$$

$$-5 \le x_i \le 10$$
, $x_{\min} = (1, \dots, 1)$, $f_{\min} = 0$.

Six-Hump Camel Function Функция Six-Hump Camel представляет собой сложный двумерный тестовый пример с несколькими локальными минимумами. Для успешного решения проблемы на такой функции, вероятно, потребуются алгоритмы с возможностями глобального поиска, такие как имитация отжига или генетические алгоритмы, чтобы не застревать в локальных минимумах.

$$f(x_1, x_2) = 4x_1^2 - 2.1x_1^4 + \frac{x_1^6}{3} + x_1x_2 - 4x_2^2 + 4x_2^4,$$
(8)

$$-3 \leq x_1 \leq 3, -2 \leq x_2 \leq 2, \quad x_{\min} \approx (\pm 0.0898, \mp 0.7126), \quad f_{\min} \approx -1.0316.$$

2.2.5. Проблемы "хребтов и падений"

Функции этой категории характеризуются резкими изменениями градиента, что делает их труднопроходимыми для алгоритмов оптимизации. Метаэвристические методы, выполняющие широкую выборку, подходят лучше, чем традиционные градиентные подходы.

Easom Function Функция Easom имеет один резкий глобальный минимум, окруженный крутыми гребнями. Эта функция бросает вызов как градиентным, так и квазиградиентным алгоритмам, требуя стратегий глобального поиска для эффективного нахождения минимума.

$$f(x_1, x_2) = -\cos(x_1)\cos(x_2)\exp\left(-(x_1 - \pi)^2 - (x_2 - \pi)^2\right),$$

$$-100 \le x_1, x_2 \le 100, \quad x_{\min} = (\pi, \pi), \quad f_{\min} = -1.$$
(9)

Michalewicz Function Функция Michalewicz - это мультимодальная проблема, зависящая от параметров d (размерность) и m (резкость минимумов). Крутые спады и узкие минимумы затрудняют работу большинства детерминированных методов, делая метаэвристические алгоритмы, такие как оптимизация муравьиной колонии или моделированный отжиг, более эффективными.ментальные методы.

$$f(x) = -\sum_{i=1}^{d} \sin(x_i) \left[\sin\left(\frac{ix_i^2}{\pi}\right) \right]^{2m}, \tag{10}$$

 $0 \le x_i \le \pi$, x_{\min} varies with d, m.

3. Результаты

Алгоритм показал себя достаточно хорошо при решении различных задач оптимизации, погрешности в большинстве случаев минималь, однако количество обращений к целевой функции значительное (по сравнение с прочими, более простыми методами оптимизации). Наименее эффективно алгоритм показал себя при решении задач на функциях с множественными локальными минимумами. Так, наибольшую ошибку алгоритм продемонстрировал при решении задачи оптимизации для функции Eggholder.

Puc. 1: Траектория поиска для проблем с множественным локальным минимумом. a - Ackley, b - Eggholder

Рис. 2: Траектория поиска для проблем a - Sphere, b - Trid

Рис. 3: Траектория поиска для проблем а - McCormick, b - Booth

Рис. 4: Траектория поиска для проблем.... a - Rosenbrock, b - Six-Hump Camel

Рис. 5: Траектория поиска для проблем.... а - Easom, b - Michalwicz

Рис. 6: Траектория поиска для проблемы Himmelblau

,

4. Выводы

Таблица 1: Результаты работы алгоритма на различных тестовых функциях

Тестовая функция	Количество вызовов целевой функции	x_{min}	f_{min}
Ackley	7588	$[8.52 \cdot 10^{-15}; -7.1 \cdot 10^{-15}]$	$3.19 \cdot 10^{-14}$
Eggholder	6704	[439; 454]	-935
Sphere	7446	$\left[-2.68 \cdot 10^{-13}; 2.09 \cdot 10^{-14} \right]$	$7.23 \cdot 10^{-26}$
Trid	6668	[1.9(9); 1.9(9)]	-1.9(9)
McCormick	6426	[-0.52; -1.5]	-1.91
Booth	6807	[0.99; 3]	$1.33 \cdot 10^{-5}$
Rosenbrock	7577	[0.94; 0.90]	0.002
Six-Hump Camel	6541	[0.09; -0.71]	-1.031
Easom	6541	[3.14; 3.14]	-0.9(9)
Michalewicz	6541	[2.2; 1.57]	-1.801
Himmelblau	6787	[2.99; 2.04]	0.033

Приложение А. Исходный код

```
import numpy as np
import matplotlib.pyplot as plt
def EVopt(f, dim, n_particles, max_iter, bounds):
    Evolutionary Optimization Function.
         f (function): Objective function to minimize.
         dim (int): Dimension of the search space.
         n_particles (int): Number of particles.
         max_iter (int): Maximum number of iterations.
bounds (tuple): Tuple containing the lower and upper bounds of the search space.
         tuple: xmin (best position), fmin (minimum value), neval (function evaluations), coords
         \hookrightarrow (trajectory).
    var min = np.full(dim, bounds[0])
    var_max = np.full(dim, bounds[1])
    particles = np.random.uniform(var_min, var_max, (n_particles, dim))
    nels = np.array([f(p) for p in particles])
neval = n_particles # Function evaluations
    best_idx = np.argmin(nels)
    best_nel = nels[best_idx]
worst_nel = nels.max()
    xmin = particles[best_idx].copy()
    coords = np.zeros((max iter, dim))
    coords[0] = xmin
     # Main Loop
    for iteration in range(max_iter):
         xnew, xnew1, xnew2 = [], [], []
         for i in range(n_particles):
              enrichment bound = nels.mean()
              neli = nels[i]
             if neli > enrichment_bound:
    stability_bound = np.random.rand()
    stability_level = (neli - best_nel) / (worst_nel - best_nel)
                  if stability_level > stability_bound:
                       alpha_index1 = np.random.randint(dim)
alpha_index2 = np.random.choice(dim, alpha_index1, replace=False)
                       xnew1.append(particles[i].copy())
                       xnew1[-1][alpha_index2] = xmin[alpha_index2]
                       gamma_index1 = np.random.randint(dim)
gamma_index2 = np.random.choice(dim, gamma_index1, replace=False)
dist = np.linalg.norm(particles - particles[i], axis=1)
                       nearest_idx = np.argsort(dist)[1] if len(dist) > 1 else None
                       if nearest_idx is not None:
                            xng = particles[nearest_idx].copy()
                            xnew2.append(particles[i].copy())
                            xnew2[-1][gamma_index2] = xng[gamma_index2]
                  else:
                       xcp = particles.mean(axis=0)
                       xnew1.append(
                        particles[i] + (np.random.rand() * xmin - np.random.rand() * xcp) / stability_level
                       dist = np.linalg.norm(particles - particles[i], axis=1)
                       nearest idx = np.argsort(dist)[1] if len(dist) > 1 else None
                       if nearest_idx is not None:
                            xng = particles[nearest_idx].copy()
                            else:
                  xnew.append(particles[i] + np.random.rand())
         # Clip to bounds and concatenate
         xnew = np.clip(np.array(xnew), var_min, var_max) if xnew else np.empty((0, dim))
         xnew1 = np.clip(np.array(xnew1), var_min, var_max) if xnew1 else np.empty((0, dim))
xnew2 = np.clip(np.array(xnew2), var_min, var_max) if xnew2 else np.empty((0, dim))
         particles = np.vstack([particles, xnew, xnew1, xnew2])
         nels = np.array([f(p) for p in particles])
         neval += len(particles)
```

```
# Select the best particles
        order = np.argsort(nels)
        particles = particles[order][:n_particles]
        nels = nels[order][:n_particles]
        best nel = nels.min()
        worst nel = nels.max()
        xmin = particles[np.argmin(nels)].copy()
        coords[iteration] = xmin
    fmin = best_nel
    return xmin, fmin, neval, coords
def testSuit(function name):
    functions = {
        # Manv local minima
         2, [-5, 5], [0, 0], 0),
       "Eggholder": (lambda x: -(x[1] + 47) * np.sin(np.sqrt(abs(x[1] + x[0] / 2 + 47))) - x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47)))),
                       2, [-512, 512], [512, 404.2319], -959.6407),
         # Bowl-shaped
        "Sphere": (lambda x: sum(xi ** 2 for xi in x), 2, [-5.12, 5.12], [0, 0], 0),
"Trid": (lambda x: sum((xi - 1) ** 2 for xi in x) - sum(x[i] * x[i - 1] for i in range(1,
        \hookrightarrow len(x))),
                  2, [-4, 4], [2, 2], -2),
         # Plate-shaped
         "McCormick": (lambda x: np.sin(x[0] + x[1]) + (x[0] - x[1]) ** 2 - 1.5 * x[0] + 2.5 * x[1] + 1,
        2, [-1.5, 4], [-0.54719, -1.54719], -1.9133),

"Booth": (lambda x: (x[0] + 2 * x[1] - 7) ** 2 + (2 * x[0] + x[1] - 5) ** 2,
                   2, [-10, 10], [1, 3], 0),
         # Valley-shaped
         "Rosenbrock": (lambda x: sum(100 * (x[i + 1] - x[i] ** 2) ** 2 + (x[i] - 1) ** 2 for i in
        \hookrightarrow range(len(x) - 1)),
                        2, [-2.048, 2.048], [1, 1], 0),
        lambda x: (4 - 2.1 * x[0] ** 2 + (x[0] ** 4) / 3) * x[0] ** 2 + x[0] * x[1] + (-4 + 4 * x[1] ** <math>\leftrightarrow 2) * x[1] ** 2,
        "Six-Hump Camel": (
        2, [-3, 3], [0.0898, -0.7126], -1.0316),
         # Steep ridges/drops
        "Michalewicz": (
       2, [0, np.pi], [2.20, 1.57], -1.8013),
"Easom": (lambda x: -np.cos(x[0]) * np.cos(x[1]) * np.exp(-((x[0] - np.pi) ** 2 + (x[1] - np.pi)
        2, [-100, 100], [np.pi, np.pi], -1),
"Himmelblau": (lambda x: (x[0] ** 2 + x[1] - 11) ** 2 + (x[0] + x[1] ** 2 - 7) ** 2, 2, [-4, 4],
        return functions[function name]
def plot trajectory(f, bounds, coords):
    x = np.linspace(bounds[0], bounds[1], 500)
    y = np.linspace(bounds[0], bounds[1], 500)
    X, Y = np.meshgrid(x, y)
    Z = np.array([[f([xi, yi]) for xi, yi in zip(x_row, y_row)] for x_row, y_row in zip(X, Y)])
    plt.figure()
    plt.contour(X, Y, Z, levels=50, cmap='viridis')
    plt.colorbar()
    plt.xlabel('x_1')
plt.ylabel('x_2')
    plt.title('Optimization Trajectory')
    plt.plot(coords[:, 0], coords[:, 1], 'r-o', label='Trajectory')
plt.plot(coords[-1, 0], coords[-1, 1], 'g*', label='Final Point', markersize=10)
    plt.legend()
    plt.show()
def main():
    function_name = "Himmelblau" # Change to desired function
    f, dim, bounds, xmin_true, fmin_true = testSuit(function_name)
    n particles = 30
    _____iter = 100
    xmin, fmin, neval, coords = EVopt(f, dim, n particles, max iter, bounds)
    plot trajectory(f, bounds, coords)
    print(f"Test function: {function_name}")
    print(f"True minimum: x = {xmin_true}, f(x) = {fmin_true}")
print(f"Obtained minimum: x = {xmin, f(x) = {fmin}")
    print(f"Error in x: {np.linalg.norm(np.array(xmin) - np.array(xmin true))}")
    print(f"Error in f(x): {abs(fmin - fmin_true)}")
```

```
print(f"Number of Func Evaluations: {neval}")

if __name__ == "__main__":
    main()
```

Приложение Б. Блок-схема алгоритма

Рис. 7: Блок схема работы алгоритма

,