Propositions and inference

Chapter 5

David Poole and Alan Mackworth

Electrical Environment

Representing the Electrical Environment

$\mathit{light}_{-\mathit{l}_{1}}.$
$light_{-}l_{2}.$
$down_{-}s_{1}$.
ups_2 .
<i>up_s</i> ₃ .
okl_1 .
okl_2 .
$okcb_1$.
$okcb_2$.
live_outside.

$$\begin{aligned} & \textit{lit_I}_1 \leftarrow \textit{live_w}_0 \land \textit{ok_I}_1 \\ & \textit{live_w}_0 \leftarrow \textit{live_w}_1 \land \textit{up_s}_2. \\ & \textit{live_w}_0 \leftarrow \textit{live_w}_2 \land \textit{down_s}_2. \\ & \textit{live_w}_1 \leftarrow \textit{live_w}_3 \land \textit{up_s}_1. \\ & \textit{live_w}_2 \leftarrow \textit{live_w}_3 \land \textit{down_s}_1. \\ & \textit{lit_I}_2 \leftarrow \textit{live_w}_4 \land \textit{ok_I}_2. \\ & \textit{live_w}_4 \leftarrow \textit{live_w}_3 \land \textit{up_s}_3. \\ & \textit{live_p}_1 \leftarrow \textit{live_w}_3. \\ & \textit{live_p}_1 \leftarrow \textit{live_w}_3. \\ & \textit{live_w}_3 \leftarrow \textit{live_w}_5 \land \textit{ok_cb}_1. \\ & \textit{live_p}_2 \leftarrow \textit{live_w}_6. \\ & \textit{live_w}_6 \leftarrow \textit{live_w}_5 \land \textit{ok_cb}_2. \\ & \textit{live_w}_5 \leftarrow \textit{live_outside}. \end{aligned}$$

Role of semantics

In computer:

```
light1\_broken \leftarrow sw\_up
\land power \land unlit\_light1.
sw\_up.
power \leftarrow lit\_light2.
unlit\_light1.
lit\_light2.
```

In user's mind:

- *light1_broken*: light #1 is broken
- sw_up: switch is up
- power: there is power in the building
- unlit_light1: light #1 isn't lit
- lit_light2: light #2 is lit

Conclusion: *light1_broken*

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbol using their meaning

Simple language: propositional definite clauses

- An atom is a symbol starting with a lower case letter
- A body is an atom or is of the form $b_1 \wedge b_2$ where b_1 and b_2 are bodies.
- A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body.
- A knowledge base is a set of definite clauses

Semantics

- An interpretation *I* assigns a truth value to each atom.
- A body $b_1 \wedge b_2$ is true in I if b_1 is true in I and b_2 is true in I.
- A rule h ← b is false in I if b is true in I and h is false in I.
 The rule is true otherwise.
- A knowledge base KB is true in I if and only if every clause in KB is true in I.

Models and Logical Consequence

- A model of a set of clauses is an interpretation in which all the clauses are true.
- If KB is a set of clauses and g is a conjunction of atoms, g is a logical consequence of KB, written $KB \models g$, if g is true in every model of KB.
- That is, $KB \models g$ if there is no interpretation in which KB is true and g is false.

Simple Example

$$KB = \left\{ egin{array}{l} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{array} \right.$$

How many interpretations?

	p	q	r	S	m
I_1	true	true	true	true	
I_2	false	false	false	false	
I_3	true	true	false	false	
I_4	true	true	true	false	
I_5	true false true true true	true	false	true	

model of KB?

Which of p, q, r, s logically follow from KB?

Simple Example

$$KB = \left\{ egin{array}{l} p \leftarrow q. \\ q. \\ r \leftarrow s. \end{array} \right.$$

How many interpretations?

	p	q	r	S	model of <i>KB</i> ?
I_1	true	true	true	true	yes
I_2	false	false	false	false	no
I_3	true	true	false	false	yes
I_4	true	true	true	false	yes
<i>I</i> ₅	true	true	false	true	yes no yes yes no

Which of p, q, r, s logically follow from KB? $KB \models p$, $KB \models q$, $KB \not\models r$, $KB \not\models s$

8 / 22

Proof procedures

- A proof procedure is a possibly non-deterministic algorithm for deriving consequences of a knowledge base.
- Given a proof procedure, $KB \vdash g$ means g can be derived from knowledge base KB.
- Recall $KB \models g$ means g is true in all models of KB.
- A proof procedure is sound if $KB \vdash g$ implies $KB \models g$.
- A proof procedure is complete if $KB \models g$ implies $KB \vdash g$.

Bottom-up proof procedure

```
Rule of derivation (a generalized form of modus ponens): If "h \leftarrow b_1 \wedge ... \wedge b_m" is a clause in the knowledge base, and each b_i has been derived, then h can be derived.
```

This is forward chaining on this clause. (This rule also covers the case when m = 0.)

Bottom-up proof procedure

```
KB \vdash g if g \in C at the end of this procedure: C := \{\}; repeat select clause "h \leftarrow b_1 \land \ldots \land b_m" in KB such that b_i \in C for all i, and h \notin C; C := C \cup \{h\} until no more clauses can be selected.
```

Example

- $a \leftarrow b \land c$.
- $a \leftarrow e \wedge f$.
- $b \leftarrow f \wedge k$.
- $c \leftarrow e$.
- $d \leftarrow k$.
- e.
- $f \leftarrow j \wedge e$.
- $f \leftarrow c$.
- $j \leftarrow c$.

Soundness of bottom-up proof procedure

If $KB \vdash g$ then $KB \models g$.

- Suppose there is a g such that $KB \vdash g$ and $KB \not\models g$.
- Then there must be a first atom added to C that isn't true in every model of KB. Call it h. Suppose h isn't true in model I of KB.
- There must be a clause in KB of form

$$h \leftarrow b_1 \wedge \ldots \wedge b_m$$

Each b_i is true in I. h is false in I. So this clause is false in I. Therefore I isn't a model of KB.

Contradiction.

Fixed Point

- The *C* generated at the end of the bottom-up algorithm is called a fixed point.
- Let *I* be the interpretation in which every element of the fixed point is true and every other atom is false.
- I is a model of KB. Proof: suppose $h \leftarrow b_1 \land \ldots \land b_m$ in KB is false in I. Then h is false and each b_i is true in I. Thus h can be added to C. Contradiction to C being the fixed point.
- *I* is called a Minimal Model.

Completeness of bottom-up proof procedure

If $KB \models g$ then $KB \vdash g$.

- Suppose $KB \models g$. Then g is true in all models of KB.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $KB \vdash g$.

Top-down proof procedure

Idea: search backward from a query to determine if it is a logical consequence of *KB*.

An answer clause is of the form:

$$yes \leftarrow a_1 \wedge a_2 \wedge \ldots \wedge a_m$$

The *SLD Resolution* of this answer clause on atom a_i with the clause:

$$a_i \leftarrow b_1 \wedge \ldots \wedge b_p$$

is the answer clause

$$yes \leftarrow a_1 \wedge \ldots \wedge a_{i-1} \wedge b_1 \wedge \cdots \wedge b_p \wedge a_{i+1} \wedge \cdots \wedge a_m.$$

An answer is an answer clause with m=0. That is, it is the answer clause $yes \leftarrow$.

Derivations

A derivation of query " $?q_1 \wedge ... \wedge q_k$ " from KB is a sequence of answer clauses $\gamma_0, \gamma_1, ..., \gamma_n$ such that

- γ_0 is the answer clause $yes \leftarrow q_1 \wedge \ldots \wedge q_k$,
- γ_i is obtained by resolving γ_{i-1} with a clause in KB, and
- γ_n is an answer.

Top-down proof procedure

To solve the query $?q_1 \wedge \ldots \wedge q_k$: $ac := "yes \leftarrow q_1 \wedge \ldots \wedge q_k"$ repeat $\textbf{select} \text{ atom } a_i \text{ from the body of } ac$ $\textbf{choose} \text{ clause } C \text{ from } KB \text{ with } a_i \text{ as head}$ $\text{replace } a_i \text{ in the body of } ac \text{ by the body of } C$ until ac is an answer.

Nondeterministic Choice

- Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives.
- Don't-know nondeterminism If one choice doesn't lead to a solution, other choices may. choose

Example: successful derivation

```
a \leftarrow b \land c. a \leftarrow e \land f. b \leftarrow f \land k.

c \leftarrow e. d \leftarrow k. e.

f \leftarrow j \land e. f \leftarrow c. j \leftarrow c.
```

Query: ?a

```
\gamma_0: yes \leftarrow a \gamma_4: yes \leftarrow e \gamma_1: yes \leftarrow e \land f \gamma_5: yes \leftarrow f \gamma_3: yes \leftarrow c
```

Example: failing derivation

$$a \leftarrow b \wedge c.$$
 $a \leftarrow e \wedge f.$ $b \leftarrow f \wedge k.$
 $c \leftarrow e.$ $d \leftarrow k.$ $e.$
 $f \leftarrow j \wedge e.$ $f \leftarrow c.$ $j \leftarrow c.$

Query: ?a

```
\begin{array}{lll} \gamma_0: & \textit{yes} \leftarrow \textit{a} & \gamma_4: & \textit{yes} \leftarrow \textit{e} \land \textit{k} \land \textit{c} \\ \gamma_1: & \textit{yes} \leftarrow \textit{b} \land \textit{c} & \gamma_5: & \textit{yes} \leftarrow \textit{k} \land \textit{c} \\ \gamma_2: & \textit{yes} \leftarrow \textit{f} \land \textit{k} \land \textit{c} \\ \gamma_3: & \textit{yes} \leftarrow \textit{c} \land \textit{k} \land \textit{c} \end{array}
```

Search Graph for SLD Resolution

