Formal Relational Query Language

Relational Algebra

Relation Algebra-Introduction

Query Language

- user requests information from the database.
- Two types: Procedural and non-procedural

Procedural language

- User instructs the system to perform a sequence of operations on the database to compute the desired result.
- Relational Algebra

Non procedural language

- User describes the desired information without giving a specific procedure for obtaining that information.
- Relational Calculus

Relational Operations

- Applied to either a single relation or a pair of relations
- Result is always a single relation
- Several operations can be combined
- Can be applied to results of queries

Relational Algebra

- Procedural query language.
- Six fundamental operations:

- Other operations:
 - Intersection
 - Natural join
 - Assignment

Relational Algebra Operations

Relational Algebra Operations

(j) Divis on (shaded area)

Example of division

Relational Algebra operations - Example

Symbol (Name)	Example of Use
σ	$\sigma_{\text{salary}>=85000}(instructor)$
(Selection)	Return rows of the input relation that satisfy the predicate.
П	$\Pi_{ID,salary}(instructor)$
(Projection)	Output specified attributes from all rows of
	the input relation. Remove duplicate tuples
	from the output.
M	$instructor \bowtie department$
(Natural join)	Output pairs of rows from the two input rela- tions that have the same value on all attributes that have the same name.
×	$instructor \times department$
(Cartesian product)	Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes)
U	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$
(Union)	Output the union of tuples from the two input relations.

Select

- Selects tuples that satisfy a given predicate.
- Lowercase Greek letter sigma (σ)
- The predicate appears as a subscript to σ .
- In relational algebra, the term *select* corresponds to where clause in SQL.

Select - Example

select those tuples of the *instructor* relation where the instructor is in the "Physics" department

• $\sigma_{dept \ name = "Physics"} (instructor)$

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Select - Exercise

- Find all instructors with salary greater than \$90,000
- Find the instructors who works in Music department
- Find the instructor whose id is 76543
- Find the instructors in Physics with a salary greater than \$90,000

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Project

- It is used to list selected attributes of a relation.
- Denoted by the uppercase Greek letter pi (π)

Project - Example

List the id, name and salary of the instructors

• $\pi_{\text{ID, name, salary}}$ (instructor)

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Project - Exercise

- List the id, name and salary of the instructors
- List the id and salary of the instructors.
- Find the name of all instructors in the Physics department.

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Project - Exercise

- To find the set of all courses taught in the Fall 2009 semester
- To find the set of all courses taught in the Spring 2010 semester

course_id	sec_id	semester	year	building	room_number	time_slot_id
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	Н
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

Rename

- Result of relational algebra operation can be given a name
- Denoted with small Greek letter **rho** ρ .
 - $-\rho_{x}(E)$
 - where the result of expression **E** is saved with name of **x**

Set operations

- Union
- Intersection
- Difference

Union

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Graduates \cup **Managers**

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38
9297	O'Malley	56

Intersection

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Graduates ∩ Managers

Number	Surname	Age
7432	O'Malley	39
9824	Darkes	38

Difference

Graduates

Number	Surname	Age
7274	Robinson	37
7432	O'Malley	39
9824	Darkes	38

Managers

Number	Surname	Age
9297	O'Malley	56
7432	O'Malley	39
9824	Darkes	38

Graduates - Managers

Number	Surname	Age
7274	Robinson	37

Cartesian product

- Combine information from any two relation.
- IF r1 and r2 are two relations, then cartesian product is given by, r1 x r2
- If same attribute appears in both relation, a naming schema to differentiate both attributes must be adopted.
- If n1 tuples in r1 and n2 tuples in r2, then the cartesian product result will have n1 * n2 tuples.

Instructor

Teaches

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

(instructor.ID, instructor.name, instructor.dept name, instructor.salary teaches.ID, teaches.course id, teaches.sec id, teaches.semester, teaches.year)

Instructor

Teaches

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

ID	course_id	sec_id	semester	year
				9000
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

(instructor.ID, name, dept name, salary, teaches.ID, course id, sec id, semester, year)

Department

Result of (Department x Classroom)

dept _na	Buildi ng	b	udget						
me	<u> </u>	0	F000	dept_	Department.	budget	Classroom.	Room	capaci
CSE	D- Block	9.	5000	name	Building		Building	_no	ty
,_			0000	CSE	D-Block	95000	D-Block	101	80
IT	D- Block	8	0000	CSE	D-Block	95000	D-Block	103	40
MCA	A-	6	50000	CSE	D-Block	95000	A-Block	201	60
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Block	J		CSE	D-Block	95000	A-Block	101	50
			IT	D-Block	80000	D-Block	101	80	
(Classro	om		IT	D-Block	80000	D-Block	103	40
Buildi	n Ro	om	capacity	IT	D-Block	80000	A-Block	201	60
g	_nc			IT	D-Block	80000	A-Block	101	50
D-Blo	ck 101	L	80	MCA	A-Block	650000	D-Block	101	80
D-Blo	ck 103	3	40	MCA	A-Block	650000	D-Block	103	40
	100			MCA	A-Block	650000	A-Block	201	60
A-Blo	ck 201	L	60	MCA	A-Block	650000	A-Block	101	50
A-Blo	101		50						

Department

dept _na me	Buildi ng	budget
CSE	D- Block	95000
IT	D- Block	80000
MCA	A- Block	650000

Result of $\sigma_{dept_name="CSE"}(Department\ x\ Classroom)$

dept_ name	Department. Building	budget	Classroom. Building	Room _no	capaci ty
CSE	D-Block	95000	D-Block	101	80
CSE	D-Block	95000	D-Block	103	40
CSE	D-Block	95000	A-Block	201	60
CSE	D-Block	95000	A-Block	101	50

Buildin g	Room _no	capacity
D-Block	101	80
D-Block	103	40
A-Block	201	60
A-Block	101	50

$\sigma_{Department.Building = Classroom.Building}(\sigma_{dept_{name}} = \texttt{CSE}(Department\ x\ Classroom.Building}))$

Department

dept _na me	Buildi ng	budget
CSE	D- Block	95000
IT	D- Block	80000
MCA	A- Block	650000

Buildin g	Room _no	capacity
D-Block	101	80
D-Block	103	40
A-Block	201	60
A-Bloc	101	50

dept_ name	Department. Building	budget	Classroom. Building	Room _no	capaci ty
CSE	D-Block	95000	D-Block	101	80
CSE	D-Block	95000	D-Block	103	40

 $\pi_{dept_name,Room_no}(\sigma_{Department.Building} = Classroom.Building}(\sigma_{dept_{name}} = CSE(Department\ x\ Classroom)))$

Department

dept _na me	Buildi ng	budget
CSE	D- Block	95000
IT	D- Block	80000
MCA	A- Block	650000

Buildin g	Room _no	capacity
D-Block	101	80
D-Block	103	40
A-Block	201	60
A-Bloc	101	50

dept_name	Room_no
CSE	101
CSE	103

Natural Join

 Allows us to combine certain selections and a Cartesian product into one operation.

Department

Result of (Department **JOIN** Classroom)

dept_n ame	Building	budget
CSE	D-Block	95000
IT	D-Block	80000
MCA	A-Block	650000

Building	Room_n o	capacity
D-Block	101	80
D-Block	103	40
A-Block	201	60
A-Block	101	50

Building	dept_na me	budget	Room _no	capaci ty
D-Block	CSE	95000	101	80
D-Block	CSE	95000	103	40
D-Block	IT	80000	101	80
D-Block	IT	80000	103	40
A-Block	MCA	650000	201	60
A-Block	MCA	650000	101	50

$\pi_{dept_name,room_no}(Department \textbf{\textit{JOIN}}\ Classroom)$

Department

dept_n ame	Building	budget
CSE	D-Block	95000
IT	D-Block	80000
MCA	A-Block	650000

Building	Room_no	capacity
D-Block	101	80
D-Block	103	40
A-Block	201	60
A-Block	101	50

dept_name	Room_no
CSE	101
CSE	103
IT	101
IT	103
MCA	201
MCA	101

Outer Join

- Left outer join
- Right outer join
- Full outer join

Left outer join

- \square Left outer join: $r \bowtie s$
 - □ If a tuple $t_r \in r$ doesn't match any tuple in s, result contains $\{t_r, null, ..., null\}$
 - If a tuple $t_s \in s$ doesn't match any tuple in r, it's excluded

Department

dept _na me	Buildi ng	budget
CSE	D- Block	95000
IT	D- Block	80000

Classroom

Buildin g	Room _no	capacity
D-Block	101	80
D-Block	103	40
A-Block	201	60
A-Block	101	50

Result of (Department Left outer join Classroom)

Building	dept_n ame	budget	Roo m_n o	capa city
D-Block	CSE	95000	101	80
D-Block	CSE	95000	103	40
D-Block	CSE	95000	null	null
D-Block	CSE	95000	null	null
D-Block	IT	80000	101	80
D-Block	IT	80000	103	40
D-Block	IT	80000	null	null
D-Block	IT	80000	null	null

Right outer join

- \square Right outer join: $r \bowtie s$
 - □ If a tuple $t_r \in r$ doesn't match any tuple in s, it's excluded
 - □ If a tuple $t_s \in s$ doesn't match any tuple in r, result contains $\{ null, ..., null, t_s \}$

Department

dept _na me	Buildi ng	budget
CSE	D- Block	95000
IT	D- Block	80000

Classroom

Buildin g	Room _no	capacity
D-Block	101	80
D-Block	103	40
A-Block	201	60
A-Block	101	50

Result of (Department right outer join Classroom)

Building	dept_na me	budge t	Roo m_n o	capa city
D-Block	CSE	95000	101	80
D-Block	CSE	95000	103	40
A-Block	null	null	201	60
A-Block	null	null	101	50
D-Block	IT	80000	101	80
D-Block	IT	80000	103	40
A-Block	null	null	201	60
A-Block	null	null	101	50

Full outer join

Full outer join: $r \supset s$

Includes tuples from r that don't match s, as well as tuples from s that don't match r

Department

dept _na me	Buildi ng	budget
CSE	D- Block	95000
IT	D- Block	80000

Classroom			
Buildin g	Room _no	capacity	
D-Block	101	80	
D-Block	103	40	
A-Block	201	60	
A-Block	101	50	

Result of (Department full outer join Classroom)

dept_ name	Department. Building	budget	Classroom. Building	Room _no	ty
CSE	D-Block	95000	D-Block	101	80
CSE	D-Block	95000	D-Block	103	40
null	null	null	A-Block	201	60
null	null	null	A-Block	101	50
IT	D-Block	80000	D-Block	101	80
IT	D-Block	80000	D-Block	103	40
null	null	null	A-Block	201	60
null	null	null	A-Block	101	50
CSE	D-Block	95000	null	null	null
CSE	D-Block	95000	null	null	null
IT	D-Block	80000	null	null	null
IT	D-Block	80000	null	null	null

Outer Joins - Summary

 $r \bowtie s$

attr1	attr2	attr3
b	r2	s2
С	r3	s3

 $r \bowtie s$

	a extraction		
attr1	attr2	attr3	
a	r1	null	
b	r2	s2	
С	r3	s3	

 $r \bowtie s$

attr1	attr2	attr3
b	r2	s2
С	r3	s3
d	null	s4

 $r \bowtie s$

attr1	attr2	attr3
а	r1	null
b	r2	s2
С	r3	s3
d	null	s4

Assignment

- temp← r1 x r2
- Relation will not be displayed; It will be assigned to a new variable.

Department

A-Block

101

50

Temp ← (Department x Classroom)

		Temp (Department & Classicom)							
dept _na me	Buildi ng	b	udget						
	Б	01	T.000	dept_	Department.	budget	Classroom.	Room	capaci
CSE	D-	9:	5000	name	Building		Building	_no	ty
	Block			CSE	D-Block	95000	D-Block	101	80
IT	D- Block	80	0000	CSE	D-Block	95000	D-Block	103	40
MCA	A-	6'	50000	CSE	D-Block	95000	A-Block	201	60
1010/1	Block	0.	30000	CSE	D-Block	95000	A-Block	101	50
				IT	D-Block	80000	D-Block	101	80
Classroom		IT	D-Block	80000	D-Block	103	40		
Buildi	n Roc	om	capacity	IT	D-Block	80000	A-Block	201	60
g	_nc)		IT	D-Block	80000	A-Block	101	50
D-Blo	ck 101	•	80	MCA	A-Block	650000	D-Block	101	80
D-Blo	ck 103		40	MCA	A-Block	650000	D-Block	103	40
				MCA	A-Block	650000	A-Block	201	60
A-Blo	ck 201	•	60	MCA	A-Block	650000	A-Block	101	50

Aggregate Functions

- Very useful to apply a function to a collection of values to generate a single result
- Most common aggregate functions:

sum sums the values in the collection

avg computes average of values in the collection

count counts number of elements in the collection

min returns minimum value in the collection

max returns maximum value in the collection

- Aggregate functions work on <u>multisets</u>, not sets
 - A value can appear in the input multiple times

Aggregate functions - Example

"Find the total amount owed to the credit company."

$$G_{sum(balance)}(credit_acct)$$

4275

cred_id	limit	balance
C-273	2500	150
C-291	750	600
C-304	15000	3500
C-313	300	25

credit_acct

"Find the maximum available credit of any account."

$$G_{\text{max}(\text{available_credit})}(\Pi_{\text{(limit-balance)}}, \text{as available_credit})$$

11500

Grouping and Aggregation

- Sometimes need to compute aggregates on a per-item basis
- Back to the puzzle database:
 puzzle_list(puzzle_name)
 completed(person_name, puzzle_name)

altekruse soma cube puzzle box puzzle list

Examples:

- How many puzzles has each person completed?
- How many people have completed each puzzle?

person_name	puzzle_name
Alex	altekruse
Alex	soma cube
Bob	puzzle box
Carl	altekruse
Bob	soma cube
Carl	puzzle box
Alex	puzzle box
Carl	soma cube

completed

Grouping and Aggregation

puzzle name altekruse puzzle box

puzzle list

"How many puzzles has each person completed?"

person_name	puzzle_name
Alex	altekruse
Alex	soma cube
Bob	puzzle box
Carl	altekruse
Bob	soma cube
Carl	puzzle box
Alex	puzzle box
Carl	soma cube

completed

 $g_{\text{count}(puzzle_name)}(\text{completed})$

- First, input relation completed is grouped by unique values of person_name
- Then, count(puzzle_name) is applied separately to each group

Grouping and Aggregation

 $g_{\text{count}(puzzle_name)}(\text{completed})$

Input relation is grouped by person_name

puzzle_name person name Alex altekruse Alex soma cube puzzle box Alex Bob puzzle box Bob soma cube Carl altekruse puzzle box Carl Carl soma cube

Aggregate function is applied to each group

person_name	
Alex	3
Bob	2
Carl	3

Distinct values

 Sometimes want to compute aggregates over sets of values, instead of multisets

Example:

- Chage puzzle database to include a completed_times relation, which records multiple solutions of a puzzle
- How many puzzles has each person completed?
 - Using completed_times
 relation this time

person_name	puzzle_name	seconds
Alex	altekruse	350
Alex	soma cube	45
Bob	puzzle box	240
Carl	altekruse	285
Bob	puzzle box	215
Alex	altekruse	290

completed_times

Distinct values

"How many puzzles has each person completed?"

Each puzzle appears multiple times now.

person_name	puzzle_name	seconds
Alex	altekruse	350
Alex	soma cube	45
Bob	puzzle box	240
Carl	altekruse	285
Bob	puzzle box	215
Alex	altekruse	290

completed_times

 Need to count <u>distinct</u> occurrences of each puzzle's name

 $g_{\text{count-distinct}(puzzle_name)}$ (completed_times)