Rachunek prawdopodobieństwa i statystyka

Lista zadań nr 3. 13 i 16 marca 2017

Oznaczenie: $X \sim U[a, b]$ oznacza, że zmienna losowa X podlega rozkładowi jednostajnemu na przedziale [a, b]. Innymi słowy: $f_X(x) = \frac{1}{b-a}$, dla $x \in [a, b]$.

- 1. Dla funkcji $f(x,y) = C(x+y) \exp\{-(x+y)\}$, gdzie x>0, y>0
 - (a) Wyznaczyć stałą C taką, aby podana wyżej funkcja była gęstością zmiennej (X, Y).
 - (b) Sprawdzić, czy zmienne losowe X, Y sa niezależne.
 - (c) Obliczyć momenty m_{10}, m_{01} .

W zadaniach 2–10 zakładamy, że zmienne losowe są ciągłe, stosujemy też oznaczenia: gęstość i dystrybuanta zmiennej losowej X to – odpowiednio – $f_X(x)$ oraz $F_X(x)$.

2. Czy można tak dobrać stałą C, aby funkcja $f_{XY}(x,y)=Cxy+x+y$, dla $0 \le x \le 3$, $1 \le y \le 2$, była gęstością dwuwymiarowej zmiennej losowej?

Do zadań 3–4. Dana jest funkcja $f_{XY}(x,y) = -xy + x$ dla $0 \le x \le 2$, $0 \le y \le 1$.

- 3. Sprawdzić, czy zmienne X i Y są niezależne.
- 4. Obliczyć ppb $P(1 \le X \le 3, 0 \le Y \le 0.5)$.
- 5. Załóżmy, że $X \sim U[0,1]$ i niech $Y = X^n$. Udowodnić, że $f_Y(y) = \frac{y^{1/n-1}}{n}$, dla $0 \le y \le 1$.
- 6. Niech $Y=X^2$ (Xokreślona na $\mathbb R).$ Wykazać, że

$$f_Y(y) = \frac{f_X(\sqrt{y}) + f_X(-\sqrt{y})}{2\sqrt{y}}, \text{ dla } y \geqslant 0.$$

- 7. Zmienna losowa X ma gęstość $f_X(x)=xe^{-x}$, dla $x\geqslant 0$. Znaleźć gęstość zmiennej losowej $Y=X^2$.
- 8. Zmienna losowa $X \sim U[-1;1]$. Znaleźć gęstość zmiennej losowej Y = |X|.
- 9. Niech X będzie zmienną losową i niech $Y = F_X(X)$. Udowodnić, że $Y \sim U[0;1]$.
- 10. Niech X ma standardowy rozkład Cauchy'ego, $f_X(x)=\frac{1}{\pi(1+x^2)}$, dla $x\in\mathbb{R}$. Udowodnić, że $Y=\frac{1}{X}$ ma również standardowy rozkład Cauchy'ego.

Witold Karczewski