CADMIUM CELL-DEVS MODEL OF CO_2 AS A PROXY FOR COVID INFECTION WITHIN A DYNAMIC SETTING

SUMMARY

Term Project SYSC 5104

Author: Sebastien Cook

101022643

Date Submitted: December 20th, 2020

Table of Contents

1.0 Introduction	3
2.0 Background	3
3.0 Base Model Background	4
3.1 CO ₂ Model with Moving Occupants	5
3.2 Model of CO ₂ as a Proxy for Infection	6
4.0 Model Description	8
4.1 Dynamic Susceptible Model	8
4.2 Dynamic Infected Model	10
4.3 Dynamic Infected Complex Model	11
5.0 Experimental Framework and Results	15
5.1 Dynamic Susceptible Model Simulation	16
5.2 Dynamic Infected Model Simulation	17
5.3 Dynamic Infected Complex Model Simulation	19
6.0 Future Work	22
7.0 Conclusion	23
References	24

1.0 Introduction

COVID-19 has become an ever-present worry in people's daily lives. Many guidelines have been put in place to reduce the risk of transmission and protect the population. For example, people are required to sanitise their hands before entering public locations to reduce contact transmission; wearing a mask has been enforced as a law in public locations since masks block the transmission of most airborne contagion droplets produced by talking, coughing, sneezing. Furthermore, the two-meter distancing rule has been put in place to limit airborne transmission since COVID-19 is largely transmitted via large droplets which are too heavy to float, dropping to the ground within two meters unless coughing or sneezing, in which case the large droplets can reach distances of up to six meters [1]. However, despite the multiple countermeasures that have been set in place, there is still a significant threat of transmission via the lesser produced small droplets that are light enough to float in the air for 15 minutes up to three hours [2]. Although the quantity of small droplets exhaled is very small, over time they accumulate in badly vented locations and can pose a serious threat to any occupant's health. This threat is especially prevalent in indoor settings since simply circulating the air with a fan will not remove the contagion; it requires ventilation to replace the air [2].

By combining and modifying "CO₂ Model with Moving Occupants" with "Model of CO₂ as a Proxy for Infection", this paper seeks to simulate the risk of COVID-19 transmission via aerosolized contagion in a dynamic indoor setting by simulating and analysing the concentration of CO₂ throughout.

2.0 Background

This project uses Cell-DEVS formalism to design and build the models. Cell-DEVS is a simulation using cellular automata, where each cell is a DEVS model that is connected to its neighbours.

DEVS offers a formalized modeling technique that functions in a modular, hierarchical manner. At its base, DEVS provides the framework for atomic models which can be as simple as a random number generator. This can then be coupled with other atomic models, creating coupled models. These coupled models can further be coupled, hence the modular hierarchical nature of the formalism. This leads to a very reusable and expandable modeling method since atomic models can be added, remover or modified individually. Furthermore, DEVS is easily validated since each aspect can be tested and validated individually or combined.

The atomic model is defined as an input, output, states, internal transition, external transition, output function and time advance (see Figure 1). Notably, an atomic model does not necessarily require any inputs. For example, it could be a variable generator for another atomic model. The state variable(s) are associated with the time advance function which determines the amount of time a model spends in a given state. When the time of the given state ends, the internal transition and output function are triggered. The internal transition function will change or remain in the state depending on its state variables. The output function will propagate the result of the model's current state on the output ports. Finally, when an input arrives at the input port(s) X, an external transition δ_{ext} is triggered. It is the implementation of δ_{ext} that determines what to do with the received information. The flow of a DEVS atomic model can be seen in Figure 2 below.

Figure 1. DEVS formal definition [3]. X is the input port(s) and Y is the output port(s) of the model. S is the state variable(s) of the model which is associated with the time advance function ta. δ_{int} and λ represent the internal transition and output function, respectively. The external transition is represented by δ_{ext} .

Figure 2. DEVS atomic model transition flow

Cellular automata is a simulation technique comprised of a grid of cells that each have their own state and implementation. Each cell communicates with its assigned neighbours. When a cell's transport delay (dt) is expended, it broadcasts its state information to its neighbours. The neighbours, upon receiving the input, will trigger their input computing function (τ) . There is also an internal delay (di) which is pre-emptive and meant to maintain the models timing despite interruptions such as receiving an input.

Cell-DEVS is the combination of cellular automata with DEVS formalism. Each cell is an atomic model that are coupled, creating a grid of atomic models which, together, comprise the Cell-DEVS model. For this paper, the Cadmium Cell-DEVS environment was used. Cadmium offers many different DEVS and Cell-DEVS features. Most importantly, it offers the use of multiple state variables within each cell atomic model. Cadmium is implemented in C++ and is built in a hierarchical manner of classes that each implement the functions of the model.

3.0 Base Model Background

Before discussing the model that was designed and implemented in this paper, understanding the base models upon which the model of interest was built is paramount. "CO₂ Model with Moving Occupants" and "Model of CO₂ as a Proxy for Infection", two models implemented in Cadmium Cell-DEVS, were combined and further expanded. They are both based on the original "Cell-Devs Models for CO₂ Sensors Locations in Closed Spaces" (CO₂CS), implemented in CD++ [4], which modeled the dissipation of CO₂ in a closed environment to find the optimal location for CO₂ sensors to detect occupation. The two base models used for the expanded implementation, used the core principles of CO₂ dissipation rules and ventilation

established in CO₂CS, implemented them in Cadmium Cell-DEVS and further added their own layers of complexity. This was possible due to the modular nature of Cell-DEVS. Both base models are part of the Simulation Everywhere – Cell DEVS CO₂ spread indoors GitHub [5].

3.1 CO₂ Model with Moving Occupants

As mentioned above, this model is based on the original CO₂CS. However, this model adds an extra layer of complexity by adding a dynamic CO₂ generator. In the original CO₂CS model, the CO₂ generator was static, spawning at its assigned location at the beginning of the simulation, and remaining there, producing CO₂, until the simulation ended. However, in "CO₂ Model with Moving Occupants", the CO₂ generators spawn at a predetermined location like a door, and travel around the setting.

"CO₂ Model with Moving Occupants" has 3 state variables: concentration, type, and count. The type state variable is associated with transport delay, defined as: 5 seconds if type is a CO₂ producer, and one otherwise; and concentration. A Vonnumen neighbourhood is used, meaning that the neighbourhood is comprised of itself and the 4 surrounding pols (ie. North, South, East, and West). Furthermore, the model has 3 lists: actionList, studentList, workstationList. These lists save the next cell to be traveled to, all of the CO₂ generator information and locations, and the CO₂ generator assigned workstation and its location, respectively. The behaviour of each individual cell depends on their state variables. Below in table one is pseudo code describing a cells behaviour when it receives and input depending on its "type".

Table 1: CO₂ Model with Moving Occupants τ pseudocode

T(N) concentration	N = type
Concentration = average neighbourhood CO ₂ concentration	Air: -100
If any action list position = this cell position \rightarrow type = CO ₂	
source	
If spawn point and maximum students isn't reached →	
<u> </u>	
spawn a new student at the entrance every two seconds	200
Concentration = average neighbourhood concentration +	CO ₂ _source: -200
12.16ppm	
Determine next action	
If do nothing → do nothing	
If move \rightarrow type = Air and add action to action list	
Concentration = 0	Wall: -300
Concentration = 500	Door: -400
Concentration = 400	Window: -500
Concentration = 300	Vent: -600
Concentration = average neighbourhood CO ₂ concentration	Workstation: -700

This model was tested in a setting representing a computer lab that contained ventilation along the walls, multiple rows of desks, and a big door. The simulation had multiple students (i.e. CO₂ sources) spawn at the door, travel to their assigned

workstation, wait a random amount of time, and then exit by the entrance. As the students traveled to their assigned workstations, a trail of CO₂ lingered behind. This trail was the minimal concentration. However, with many students entering the setting, the CO₂ concentration quickly climbed to very high levels.

The dynamic feature of the CO₂ sources means that the CO₂ spread through the room much faster than it would have if the CO₂ generators were static. Furthermore, since CO₂ is slow to dissipate, it quickly increased in concentration, reaching alarmingly high levels.

3.2 Model of CO₂ as a Proxy for Infection

"Model of CO₂ as a Proxy for Infection" is also built upon the CO₂CS model. However, it retains little of the original model. Although maintaining static CO₂ sources, it adds an extra layer of complexity to the dissipation of CO₂ and further introduces a new "type" state variable: susceptible CO₂ source. These changes serve to simulate the CO₂ sources that become at risk should CO₂ carry the COVID-19 contagion inside a room with an air current.

Table 2: Model of CO₂ as a Proxy for Infection τ pseudocode

Table 2: Model of CO ₂ as a Proxy for in	<u> </u>
T(N) concentration	N = type
If X_wind == neighbor relative position[X] and Y_wind == neighbor relative position[Y] → flow concentration = (neighbors' concentration*wind)	Air: -100
Else → concentration += neighbors' concentration	
If flow concentration != 0 → Concentration = (1-wind)*concentration/(num_neighbors-1) + flow concentration	
Else → Concentration = average neighbourhood concentration	
If flow concentration != 0 → concentration = (1 -1 flow weight)*average concentration of all but upwind neighbour + flow concentration	
Else → concentration = average neighbourhood concentration	
If X_wind == neighbor relative position[X] and Y_wind == neighbor relative position[Y] → flow concentration = (neighbors' concentration*wind)	CO ₂ source: -200
Else → concentration += neighbors' concentration	

If flow concentration != 0 -> Concentration = (1-wind)*concentration/(num_neighbors-1) + flow concentration + 12.16ppm Else → Concentration = average neighbourhood concentration + 12.16ppm	
If in threshold quantity of $CO_2 \rightarrow count++$ If exposure time = risky time \rightarrow type = susceptible CO_2 source and add next action to susceptible action list	
If count = time active -> type = workstation Concentration = 0	Wall: -300
Concentration = 500	Door: -400
Concentration = 400	Window: -500
Concentration = 300	Vent: -600
If X_wind == neighbor relative position[X] and Y_wind == neighbor relative position[Y] → flow concentration = (neighbors' concentration*wind)	Workstation: -700
Else → concentration += neighbors' concentration	
If flow concentration != 0 -> Concentration = (1-wind)*concentration/(num_neighbors-1) + flow concentration	
Else → Concentration = average neighbourhood concentration	
If start time \rightarrow type = CO ₂ source	
If X_wind == neighbor relative position[X] and Y_wind == neighbor relative position[Y] → flow concentration = (neighbors' concentration*wind)	Susceptible CO ₂ source: -800
Else → concentration += neighbors' concentration	
If flow concentration != 0 → Concentration = (1-wind)*concentration/(num_neighbors-1) + flow concentration	
Else → Concentration = average neighbourhood concentration	
If concentration $<$ risky concentration \rightarrow type = CO ₂ source and exposure time = 0	

The first major change to the model is the addition of an air current. The air current is implemented by adding two new configuration values, X and Y, which denote the direction of the air current. For example, if the air current values are X=1 and Y=0, then there is a very strong wind in the north direction only. This is translated in CO_2 dissipation by increasing the average concentration in the same direction as the wind.

A subsequent addition to the model which can be seen in table two is the new "type" state variable: susceptible CO₂ source, which has a type value of -800. A regular CO₂ source can become susceptible if they remain in a threshold concentration of CO₂ for a predetermined amount of time. Once susceptible, the susceptible CO₂ source then stops producing CO₂. However, they can return to being a regular CO₂ source if the CO₂ concentration drops below the susceptible threshold. After a time active, both regular and susceptible CO₂ sources will de-spawn at which point, the simulation ends.

This model was tested using the same computer lab setting as " CO_2 Model with Moving Occupants" used. It further configured an air current value of X=1 and Y=0. The simulation demonstrated that the CO_2 sources downwind became susceptible the fastest since the CO_2 from all other sources accumulated downwind. Eventually, all CO_2 sources became susceptible. However, all the CO_2 sources upwind became susceptible from their own CO_2 dissipation.

4.0 Model Description

The model designed in this paper was built by combining and modifying the two models described above. This process was completed in three steps, such that the models could each be tested and validated before the addition of a new feature. The first step was combining both models in their simplest forms to create a dynamic susceptible model. This model used the susceptible type presented by "Model of CO₂ as a Proxy for Infection" along with the dynamic CO₂ sources implemented in "CO₂ Model with Moving Occupants". After successfully validating the dynamic susceptible model, a dynamic infected model was implemented. This model further introduced a new "type" state variable: infected CO₂ source, seeking to simulate the risk of becoming susceptible in a setting with a confirmed COVID-19 infected person. Finally, a dynamic infected complex model was produced. This model reintroduced the air current from the "CO₂ as a Proxy for Infection" model along with a susceptible risk based on distance of the source. This is the final form of the model presented in this paper; it seeks to simulate the risk of becoming susceptible if a COVID-19 infected person is introduced to the closed setting in a more realistic way than its predecessor models.

4.1 Dynamic Susceptible Model

The dynamic susceptible model is the first iteration. It was built by combining both base models in their simplest forms, using the dynamic implementation of the CO₂ sources along with the extra "type" state variable: susceptible CO₂ source. However, in this model, when a CO₂ source becomes susceptible, they continue producing CO₂ and can never return to the regular CO₂ source type.

Table 3: Dynamic Susceptible Model τ pseudocode

Table 5. Dynamic Susceptible Woder	·
T(N) concentration	N = type
Concentration = average neighbourhood CO ₂ concentration	Air: -100
If any action list position = this cell position \rightarrow type = CO ₂	
source	
If any susceptible action list position = this cell position >	
type = susceptible CO ₂ source	
If spawn point and maximum students isn't reached →	
spawn a new student at the entrance every two seconds	
Concentration = average neighbourhood concentration +	CO ₂ source: -200
12.16ppm	
Determine next action	
If do nothing → do nothing	
If move \rightarrow type = Air and add action to action list	
If in threshold quantity of $CO_2 \rightarrow count++$	
If count = risky time \rightarrow type = susceptible CO ₂ source	
and add next action to susceptible action list	
Concentration = 0	Wall: -300
Concentration = 500	Door: -400
Concentration = 400	Window: -500
Concentration = 300	Vent: -600
Concentration = average neighbourhood CO ₂ concentration	Workstation: -700
Concentration = average neighbourhood CO ₂ concentration	Susceptible CO ₂ source:
+ 12.16ppm	-800
Determine next action	
If do nothing → do nothing	
If move \rightarrow type = Air and add action to susceptible	
action list	

As it can be in table three that the air current seen in the "CO₂ as a Proxy for Infection" model is not implemented in this iteration. This is because it was an extra layer of complexity that would have complicated the validation of the combined base model. Another interesting change that can be observed in the pseudo code above is the addition of a susceptible action list. This allows air cells to know whether to become a CO₂ source or a susceptible CO₂ source since the asynchronous nature of Cell-DEVSE means that the CO₂ source may have de-spawned before the air cell could check the surrounding types.

As mentioned above, the dynamic susceptible model is the combination of both base models in their simplest forms. Pulling aspects from both models, the dynamic susceptible model models the worst-case scenario of COVID-19 infection by assuming

that every CO₂ generator may transmit COVID-19 through their CO₂ emissions. However, as seen in "CO₂ as a Proxy for Infection", it is possible for a regular CO₂ source remaining at their workstation for an extended period to make themselves into a susceptible CO₂ source. This is a shortcoming of the current model. That being said, it still serves as a good baseline model of the worst-case scenario in an enclosed space.

4.2 Dynamic Infected Model

The dynamic infected model is the second iteration, built off of the model described in Section 4.1. In this iteration, a new type state variable along with modified CO₂ dissipation rules were added. The infected CO₂ source is a third CO₂ source type added to the model, representing a confirmed COVID-19 infected person. The purpose of this model is to simulate the risk of becoming infected should a confirmed COVID-19 infected person be introduced in a closed space. This provides a more realistic risk analysis compared to the worst-case analysis of the dynamic susceptible model.

Table 4: Dynamic Infected Model τ pseudocode

Table 4: Dynamic Infected Model τ pseudocode	
T(N) concentration	N = type
Concentration = average neighbourhood CO ₂ concentration	Air: -100
If any action list position = this cell position \rightarrow type = CO ₂ source	
If any susceptible action list position = this cell position \rightarrow type = susceptible CO ₂ source	
If any susceptible action list position = this cell position \rightarrow type = infected CO ₂ source	
If spawn point and maximum students isn't reached → If infected maximum isn't reached → spawn a new	
infected student at the entrance every two seconds Else → spawn a new student at the entrance every two	
seconds	
Concentration = average neighbourhood CO ₂ concentration	CO ₂ source: -200
Determine next action	
If do nothing → do nothing	
If move \rightarrow type = Air and add action to action list	
If in threshold quantity of $CO_2 \rightarrow count++$	
If count = risky time \rightarrow type = susceptible CO ₂ source	
and add next action to susceptible action list	
Concentration = 0	Wall: -300
Concentration = 500	Door: -400
Concentration = 400	Window: -500
Concentration = 300	Vent: -600
Concentration = average neighbourhood CO ₂ concentration	Workstation: -700

Concentration = average neighbourhood CO ₂ concentration	Susceptible CO ₂ source: -800
Determine next action	
If do nothing → do nothing	
If move \rightarrow type = Air and add action to susceptible	
action list	
Concentration = average neighbourhood CO ₂ concentration	Infected CO ₂ source:
+ 12.16ppm	-900
Determine next action	
If do nothing → do nothing	
If move \rightarrow type = Air and add action to infected	
action list	

Apart from the addition of a new state variable type, the dissipation of CO₂ rules was also changed. This is reflected in table 4, where the infected CO₂ source produces CO₂. All other CO₂ sources simply calculate their concentration like the air type cell does. This allows for the exclusive modelling of CO₂ that can carry COVID-19 as an airborne contagion following the same rules of infection as in the previous iteration. Furthermore, a third action list for the infected CO₂ source was added to allow the air cells to know which type of CO₂ source it should become.

The changes between this iteration and the previous one are minimal. However, the quantity of new information is large. The dynamic susceptible model modeled a worst-case scenario where every source could infect another or even themselves. The dynamic infected model simulates the specific risk of being infected by airborne COVID-19 contagion in a closed space. The dynamic infected model can be used to analyze ventilation and workstation placement to find the optimal solution for minimal infection. However, the model still lacks the complexity of the real world, despite providing a useful simple setting analysis.

4.3 Dynamic Infected Complex Model

The dynamic infected complex model is the final iteration of the model presented in this paper. It is built upon the dynamic infected model, adding two new features to create more realistic model. The previous model only simulated the infection of COVID-19 through small droplet airborne contagion. Small droplets have a lower viral load, meaning a person requires longer exposure to be bombarded with enough contagion. However, at a two-meter proximity to the source, large droplets are possibly present, containing a higher viral load. This means that a person can be exposed for a shorter amount of time before becoming at risk.

In the new iteration, the two-meter rule is implemented. If a regular CO_2 source is within two meters of the infected CO_2 source, the time to become susceptible is reduced significantly. However, since the CO_2 sources are dynamic, a trail of the higher infection cells are left in the infected CO_2 sources wake for thirty seconds, simulating the time frame in which large droplets can remain airborne. The second new feature is the readdition of airflow within the model. Even in closed spaces, there is often an air current. This is a step towards producing a more realistic and usable model.

Table 5: Dynamic Infected Complex Model τ pseudocode

T(N) concentration	N = type
	* 1
If $X_{\text{wind}} == \text{neighbor relative position}[X]$ and Y_{wind}	Air: -100
$==$ neighbor relative position[Y] \rightarrow flow concentration	
= (neighbors' concentration*wind)	
Else → concentration += neighbors' concentration	
Lise 7 concentration neighbors concentration	
If flow concentration $!= 0 \rightarrow \text{Concentration} = (1-$	
wind)*concentration/(num_neighbors-1) + flow	
concentration	
Else \rightarrow Concentration = average neighbourhood CO ₂	
concentration	
concentration	
If any action list position = this cell position \rightarrow type =	
CO ₂ source	
If any susceptible action list position = this cell position	
→ type = susceptible CO ₂ source	
7 type – susceptible CO ₂ source	
If any susceptible action list position = this cell position	
\rightarrow type = infected CO ₂ source	
If spawn point and maximum students isn't reached →	
If infected maximum isn't reached → maybe spawn	
¥ .	
a new infected student at the entrance every two seconds	
Else \rightarrow spawn a new student at the entrance every	
two seconds	
If neighbours' risky distance larger than risky distance	
→ risky distance = neighbours' risky distance - 1	
7 Hony distance heighbours Hony distance - 1	
10:1 1:4 20 1:1 1:4 1	
If risky distance counter == 30 and risky distance larger	
than $0 \rightarrow \text{risky distance} - 1$ and counter = 0	
Else if risky distance larger than $0 \rightarrow$ counter +1	
If X wind == neighbor relative position[X] and Y wind	CO ₂ source: -200
== neighbor relative position[Y] → flow concentration	
= (neighbors' concentration*wind)	
Else → concentration += neighbors' concentration	
If flow concentration $!= 0 \rightarrow \text{Concentration} = (1-$	
wind)*concentration/(num neighbors-1) + flow	
concentration	
	<u> </u>

Else → Concentration = average neighbourhood CO ₂ concentration	
Determine next action If do nothing → do nothing If move → type = Air and add action to action list	
If in threshold quantity of CO ₂ → If risky distance between 3 and 4 → count += 4 Else if between 1 and 2 → count += 2 Else → count += 1 If count = risky time → type = susceptible CO ₂	
source and add next action to susceptible action list If neighbours' risky distance larger than risky distance → risky distance = neighbours' risky distance - 1	
If risky distance counter == 30 and risky distance larger than $0 \rightarrow$ risky distance – 1 and counter = 0 Else if risky distance larger than $0 \rightarrow$ counter +1	
Concentration = 0	Wall: -300
Concentration = 500	Door: -400
Concentration = 400	Window: -500
Concentration = 300	Vent: -600
If X_wind == neighbor relative position[X] and Y_wind == neighbor relative position[Y] → flow concentration = (neighbors' concentration*wind)	Workstation: -700
Else → concentration += neighbors' concentration	
If flow concentration != 0 → Concentration = (1-wind)*concentration/(num_neighbors-1) + flow concentration	
Else → Concentration = average neighbourhood concentration	
If neighbours' risky distance larger than risky distance → risky distance = neighbours' risky distance - 1	
If risky distance counter == 30 and risky distance larger than $0 \rightarrow$ risky distance – 1 and counter = 0 Else if risky distance larger than $0 \rightarrow$ counter +1	
If X_wind == neighbor relative position[X] and Y_wind == neighbor relative position[Y] → flow concentration = (neighbors' concentration*wind)	Susceptible CO ₂ source: -800

Else → concentration += neighbors' concentration If flow concentration $!= 0 \rightarrow \text{Concentration} = (1$ wind)*concentration/(num neighbors-1) + flow concentration Else → concentration = average neighbourhood CO₂ concentration Determine next action If do nothing → do nothing If move \rightarrow type = Air and add action to susceptible action list If neighbours' risky distance larger than risky distance → risky distance = neighbours' risky distance - 1 If risky distance counter == 30 and risky distance larger than $0 \rightarrow \text{risky distance} - 1$ and counter = 0 Else if risky distance larger than $0 \rightarrow$ counter +1 If X wind == neighbor relative position[X] and Y wind Infected CO₂ source: -900 == neighbor relative position[Y] \rightarrow flow concentration = (neighbors' concentration*wind) Else → concentration += neighbors' concentration If flow concentration $!= 0 \rightarrow \text{Concentration} = (1$ wind)*concentration/(num neighbors-1) + flow concentration + 12.16ppm Else → Concentration = average neighbourhood concentration + 12.16ppm Determine next action If do nothing \rightarrow do nothing If move \rightarrow type = Air and add action to susceptible action list If neighbours' risky distance larger than risky distance → risky distance = neighbours' risky distance - 1 If risky distance counter == 30 and risky distance larger than $0 \rightarrow risky distance - 1$ and counter = 0

Else if risky distance larger than $0 \rightarrow \text{counter} + 1$

The two new features, namely the two-meter rule (risky distance) and the air current, have been added to the cell types: Air, Workstation, CO₂ source, Susceptible CO₂ source and Infected CO₂ source. The wind strength is determined in the configuration json file as a percentage. Although unconventional, it is a simple way of determining the weight each cell will carry and contribute to the average concentration. Since the model uses a Vonnumen neighbourhood, the air current can only come from the North, South, East and West exclusively – to model a crosswind, the model would require a Moors neighbourhood. The neighbouring upwind cell of a cell calculating its CO₂ concentration will be multiplied by the wind modifier, while the all the other neighbouring cells are multiplied by one minus the wind modifier, meaning the upwind cell experiences a larger effect from the cell down wind from its position.

The two-meter rule is the second feature added. If a neighbouring cell has a risk level above zero, the current cell's risk level will be the neighbours risk level minus one since its one farther from the source. After thirty seconds, the risk level is reduced by one until it returns to zero. The maximum risk level is four since the two meters are represented by 4 cells. The Cell an infected CO₂ source passes through becomes a level 4 risk. All bordering cells become a level 3, and so on until the threat level reaches 0. If a CO₂ source is within one meter of an infected source or its path within 30 seconds of their passing, risk level 3 or 4 cell, the CO₂ source will become susceptible four times faster. Within a two-meter distance, meaning a risk level between one and two, the time to infection is doubled comparatively to the common time and half as long as the highest risk level. This serves to simulate the increase in risk proportional to the distance of the infected CO₂ source.

The air current and the two-meter rule are two features that serve to complicate the model's model of infection, allowing it to serve as a more realistic model of infection than the dynamic infection model. However, it is still far from the real system. The iterative method of development allows to test each feature individually and ensure that it will serve as a sturdy base model for future work.

5.0 Experimental Framework and Results

Three subsequent interactions were produced and tested, each before producing the next. This allowed for the testing and validation of each new feature to ensure a strong base for the next iteration to build upon. In this section the tests and results of each model simulation will be discussed in chronological order.

To allow cross analysis, each model was simulated over the same period of 1,000 time units. Each setting was tested using the same settings and configurations when possible. Furthermore, Figure 3 shows the colour legend of the CO₂ concentrations used in every simulation. By ensuring that the models are tested in the most similar fashion possible, previous iterations can be used to validate the behaviour of the next one.

Figure 3. Color legend of CO₂ concentration in ppm [4]

5.1 Dynamic Susceptible Model Simulation

The dynamic susceptible model is the culmination of combining "Model of CO₂ as a Proxy for Infection" and "CO₂ Model with Moving Occupants" in their simplest forms. The purpose was to both create a solid base for the next iteration, but also model the worst-case possibility of becoming infected with COVID-19 from airborne contagion, assuming everyone could transmit it.

Figure 4 illustrated the visualization of the simulation using the computer lab scenario presented in the base models. The computer lab has a large door on the East side, ventilation along the North, West, and South walls, and a series of workstations in the center of the room. CO₂ sources spawn at the door and travel to their randomly assigned workstations, remain for a random amount of time, and then return to the door and de-spawn. A regular CO₂ source is red and becomes purple if it becomes a susceptible CO₂ source type.

Figure 4. Dynamic susceptible model computer lab simulation. The simulation has 3 visualization windows. The window on the left demonstrates the path taken by CO₂ sources. The window in the middle is the levels of CO₂ in ppm, and the window on the right is the position of the CO₂ sources.

Looking at the visualization it can be determined that the dynamic nature of the CO₂ sources spreads CO₂ quickly along the path of travel as the concentration of CO₂ reaches very high levels. One of the CO₂ sources in the bottom right corner has become susceptible in image B. In image C, all CO₂ sources have spawned, and many are headed back to the exit. From this, it is clear that the ventilation in the computer lab, although numerous, has little effect on the levels of concentration of the CO₂. Despite the lack of presence in the bottom left corner of the workstations, the CO₂ levels remain high. At the end of the simulation, most CO₂ sources have exited the lab, and the ventilation is finally starting to dissipate the CO₂ concentration. Although not demonstrated in the

visualization, every CO₂ source in the simulation became susceptible before leaving their workstations.

The first purpose of this simulation visualization is to validate the model. Looking at the visualization, the CO₂ sources reliably spawn at the door until the maximum number of sources is reached. Each CO₂ source travels to their designated workstation and becomes susceptible when exposed to high concentrations. The second point of interest for validation are the susceptible CO₂ source rules. When a regular CO₂ source is exposed to the risky concentration (600 ppm in this simulation) for the risky duration (40 seconds in this simulation), they become susceptible. Once susceptible, they maintain the behaviour of a regular CO₂ source and return to the exit. The behaviour demonstrated in the visualization above is as expected and validates it based on the expected outcome.

The second purpose of the simulation is to conduct a risk analysis of the worst-case scenario. Considering that every CO₂ source in the simulation became susceptible, the risk of becoming susceptible is 100% with this model. This brings to light two important problems. The first is the ventilation in the setting. Since the ventilation is only on three of the four walls, it allows CO₂ to accumulate in concerningly high concentration on the side without ventilation. Ventilation should be placed in the center of the room to further improve its efficiency by dissipating the CO₂ on all four sides of the unit rather than only the side facing the CO₂. The second important problem of the model is the fact that CO₂ sources can infect themselves. Every CO₂ source only became susceptible when at their workstation. This means they likely submitted themselves to a high concentration and the surrounding CO₂ sources only expedited the process (i.e. they did not definitively cause the transition to being susceptible).

The simulation of the dynamic susceptible model demonstrated that the model was successfully combined and produces an acceptable worst-case scenario for airborne infection.

5.2 Dynamic Infected Model Simulation

The dynamic infected model is the second iteration, built upon the dynamic susceptible model after it was validated. The dynamic infected model seeks to model the risk of being infected by COVID-19 if an infected person is introduced to a closed setting. It models the aerosolized contagion, specifically the small droplets contagion traveling with the CO₂ emissions.

Once again, this model was simulated in the computer lab setting. The same amount of CO₂ sources spawned, however two of them were infected CO₂ sources. As described in the model description, only the infected CO₂ source produce CO₂ in the simulation. The other CO₂ sources simply act as air cells, tracking the concentrations they are exposed to and becoming susceptible cells if exposed to too much for too long.

Figure 5. Dynamic infected model computer lab simulation. Infected CO₂ sources are denoted by a light green. When an air cell becomes susceptible, it is denoted in purple.

As in the previous iteration, all CO₂ sources regardless of being regular, susceptible, or infected, have the same behaviour. They spawn at the door, travel to a workstation, return to the door, and de-spawn. Maintaining the configurations across the iteration tests is important for both validation and cross analysis. It can be seen in image B that both infected CO₂ sources have spawned and reached their randomly assigned desks. It is noticeable that the ventilation is keeping the concentration of CO₂ very isolated to the individual in question. In image C, both infected CO₂ sources leave their workstation and are headed for the door. The CO₂ has expanded, but the workstations are spread too far apart for any regular CO₂ source to be exposed to high concentration.

During the simulation, no CO₂ source became susceptible. This is likely because the workstations were too far apart, and the ventilation within the room was adequate to keep emissions from both infected CO₂ sources under control. For this reason, a new setting was introduced to further test the model.

The new setting is a representation of a bus (see Figure 6). The only sources of ventilation present in the bus are a window and the door at the front. CO₂ sources spawn at the door until every seat is filled. They travel to their seat, sit for a random amount of time the return to the door and de-spawn. This simulation is meant to represent a tighter closed environment were distancing is limited. Again, two infected CO₂ sources are introduced to the system.

Figure 6. Dynammic infected model bus simulation. Two sources of ventilation are present on the bus, namely a window (yellow) and a door (green). The infected CO₂ sources are depicted in green and the regular CO₂ sources are depicted in red. Once a regular CO₂ source becomes susceptible, it is shown in purple.

The lack of ventilation is noticeable since the CO₂ concentration quickly rises. Both infected sources are sitting on the same side of the bus, however by image C, the entire occupied space is enveloped in their emissions. By the end of the simulation, five regular CO₂ sources – all CO₂ sources in the infected column along with two others in the same row as the infected sources – became susceptible. This demonstrates that proximity plays a large role in COVID-19 transmission since almost all sources in the opposing column remained unsusceptible. The second simulation setting served to validate the functioning of the dynamic infected model, and further highlights the importance of ventilation in closed spaces to circulate the air containing the airborne pathogen.

5.3 Dynamic Infected Complex Model Simulation

The dynamic infected complex model is the final iteration of the model presented in this paper. It seeks to model the risk of being infected by COVID-19 if an infected person is introduced to a closed setting using a more complex set of rules. It models both the small and large droplets exhaled in the CO₂ of the infected CO₂ sources.

This model was tested and simulated in two parts. First, the computer lab configuration with winds of 25% from the North and West was used. Next, the bus configuration with winds of 25% from the North and West and winds of 75% from the North was tested. The increased north wind within the bus configuration simulates the bus driving with an open window at the front, allowing a strong draft wind into the bus. The remaining parameters set in the configuration file are the same as the dynamic infected model simulations. However, a new block on the bottom left of each image was added to track the risk level of each cell. Black is the basic a risk level of zero, yellow is a risk level of one to two, and orange is a risk level of three to four. Finally, for ease of analysis, the infected CO₂ sources were always assigned the same workstations throughout each simulation.

Figure 7. Dynamic infected complex model lab simulation with a West wind of 25%.

Figure 8. Dynamic infected complex model lab simulation with a North wind of 25%.

Above is the visualisation of the dynamic infected complex model with both a West and North wind, respectively. As mentioned above, the infected CO₂ sources were assigned to the same workstation in both simulations. This leads to a very similar pathing, which explains the near identical cell risk level path.

As in the second iteration test in the lab, no regular CO₂ source becomes susceptible. This is because the air current introduced into the system improved the efficiency of the ventilation by quickly dissipating the CO₂. In the simulation of the dynamic infected model, the concentration of CO₂ in the middle right of the lab is a lighter blue comparatively to the simulation of the dynamic infected complex model. This indicates that the air current allows the ventilation to cycle air in much less ventilated locations of the closed space. Although simply circulating the air using a fan doesn't remove the infection contagion, it allows the clean air from the ventilation to better dissipate the CO₂ and therefor the contagion. This demonstrates the importance of air circulation.

The higher risk cells did not change the outcome of this simulation since the room is likely too large, meaning that CO₂ sources do not come on close enough contact for any significant change. Therefore, the analysis of a more confined space like the bus configuration is important.

Figure 9. Dynamic infected complex model bus simulation with a West wind of 25%.

Figure 10. Dynamic infected complex model bus simulation with a North wind of 25%.

Figure 11. Dynamic infected complex model bus simulation with a North wind of 75%.

The visualization of the dynamic infected bus simulation and the complex bus with a West wind of 25% are very similar. However, the difference is that the wind allowed the CO₂ to spread in the bus much more efficiently. The concentration of CO₂ in previously low concentration areas such as the left side of the bus are much higher when a wind is present, despite blowing in the opposite direction. This demonstrates that with a lack of ventilation, an air current improved rather than inhibited the spread of infected CO₂.

However, this observation was short lived and likely a special circumstance since, in the bus simulation with a North wind of 25%, the concentration of CO_2 remains very controlled. The concentration of CO_2 , despite all the other configurations being the same, is much lower than both the dynamic infected model lab simulation and the West wind simulation. This is likely because the wind is pushing the clean lower concentration air from the window and door, down into the bus where it maintains a relatively low infected CO_2 level.

The final simulation completed in this model is with a North wind of 75%. This was intended to simulate a bus traveling with an open window. In this simulation, the wind is so strong that the CO₂ can only expand directly behind the CO₂ source. Furthermore, the lower infected concentration air dispersed through the bus much faster, eventually overpowering all CO₂ emissions which can be seen in the third window of Figure 11.

Finally, the risk cell level is relatively similar across all three simulation with only slight variations due to the pathing. The number of susceptible CO₂ did not increase from the dynamic infected model. This is likely because the wind feature helped dissipate the CO₂ more efficiently. The inclusion of wind in the simulations helped reduce the number of susceptible CO₂ sources at the end of the model. This further suggests that air flow in enclosed spaces is essential to ensure proper ventilation and reduce the possibility for COVID-19 infection.

6.0 Future Work

Despite the iterative fashion of implementation, there are still many shortcomings of the model that require further improvement. Two aspects in particular affect the realism of the model: the pathing of the CO₂ sources and the rules for infection. Currently, the CO₂ source pathing functions by having a priority direction based on the position of its objective. This works great in the lab simulation yet has problems with the bus configuration. The bus configuration has workstations, represented by seats, spanning along both walls. This causes problems since the priority direction pathing sometimes sends CO₂ sources along the right wall, under a chair, before traveling up to the door, where they remain stuck because the pathing algorithm either wants to travel up or to the right, but the only option is to move to the left away from its objective. This could be fixed in future iterations by designating certain cells as path cells, where the CO₂ sources will attempt to follow the path until it needs to defer to attain its objective. This would also reduce the sporadic nature of the CO₂ sources, rendering a more realistic flow of movement.

The second improvement is to establish more concrete and realistic rules of infection. Currently, a CO₂ source must be within a threshold concentration for a set exposure time. This models the need to attain a high enough viral load to overwhelm the antibodies and render a person sick. However, the time and rate at which a person must be exposed is different for each individual, and the configuration used in the simulation doesn't represent a realistic average exposure concentration and time. This would require further analysis of the average concentration of contagion exhaled while breathing, followed by the average exposure time and concentration needed. This data is out of the scope of the project but remains a shortcoming of the model.

Finally, the model's validity is based on the expected behaviour of implementation, rather that its realism. This model requires further testing against known systems and behaviour, to validate its authenticity to a real system. The model is representative of the preliminary research and expected outcomes but is not tested against a known system. This, however, can only be undertaken once the pathing and realistic rules for infection are implemented.

7.0 Conclusion

The iterative implementation of the model allowed for the establishment of a strong foundation by individually testing each new feature to confirm proper functioning. The first iteration, dynamic susceptible model, is comprised of "CO2 Model with Moving Occupants" and "Model of CO₂ as a Proxy for Infection", both of which are built upon the original CO₂CS model from [4]. The dynamic susceptible model models the worst-case scenario for COVID-19 infection, assuming that all CO₂ emissions carry contagion. It functioned as expected but demonstrated a serious shortcoming where CO₂ models could infect themselves. The second iteration addressed the previous iteration's shortcoming by adding two new features. The introduction of the infected CO₂ source allowed for the modelling of only the CO₂ that could contain contagion. However, using the lab configuration, the CO₂ sources were too spread out and the ventilation was too efficient for anyone to become susceptible. For this reason, a new setting of a bus was introduced. This much more confined setting with a lack of ventilation proved to be dangerous for its occupants since many CO₂ sources became susceptible. The final iteration and model, the dynamic infected complex model, added a layer of complexity and realism to the model. The third iteration now modeled both large and small droplet contagion by establishing a risk level to air cells based on their distance from the infected sources. Within a meter, a CO₂ source became 4 time more likely to become infected, and within two meters, they were twice as likely, modeling the higher quantity of contagion within large droplets and its higher risk. The second addition was wind. The introduction of an air current inhibited CO₂ containing the contagion to spread reliably in an enclosed setting, and further improved the efficiency of ventilation. This established a large emphasis on the importance of air flow within closed spaces to ensure that all of the air in a room is properly ventilated, instead of just the local air around the ventilation unit.

The final model of the dynamic infected complex model models the risk of COVID-19 infection via aerosolized contagion in an indoor dynamic setting by combining and modifying "CO₂ Model with Moving Occupants" along with "Model of CO₂ as a Proxy for Infection". The model is, however, still far from being realistic and requires the changes described in the Future Work section to produce a more applicable model and simulation.

References

- [1] Ontario, P. "Updated iPAC recommendations for use of personal protective equipment for care of individuals with suspect or confirmed COVID-19. 2020."
- [2] D. J. Fluxman, "'This is a no-brainer' airborne spread of Covid-19 and the need to change official guidance," Docjon.org, 21-Jul-2020. [Online]. Available: https://www.docjon.org/post/the-evidence-for-airborne-transmission-of-covid-19-and-why-who-cdc-and-phe-advice-should-change. [Accessed: 18-Dec-2020].
- [3] R, Goldstein, G. A. Wainer, A. Khan, "The DEVS Formalism", IGI Global, 2014
- [4] K. Khalil, G. A. Wainer, Z. Dunnigan, "Cell-Devs Models For Co2 Sensors Locations In Closed Space", *Proceedings of the 2020 Winter Simulation Conference*, 2020 [5]
- [5] https://github.com/SimulationEverywhere-Models/Cell-DEVS-CO2 spread indoor/tree/f5847a80f04e7d7b663d16a49824fb63dd2562be