LinTUNet A Hybrid CNN-Transformer

Architecture for Medical Image Segmentation

PACISE Conference 2025

Created by: Lawrence Menegus

Overview

- Deep Learning Basics: Overview of CNNs, Autoencoders, and U-Net for medical images.
- Transformers & Attention Layers: How Transformers and attention layers work, plus an intro to Linformer and Sparse attention layer.
- LinTUNet Model: Combining Linformer with U-Net for better image segmentation.
 - Performance & Metrics: Evaluating results using IoU and other measures.
 - Future Impact: How LinTUNet can improve medical imaging.

Introduction to CNNS (Convolutional Neural Networks)

- Convolutional Neural Networks (CNN) uses filters to detect patterns like edges, textures, and shapes in images, making it effective for visual tasks.
 - Basically it analyzes an image by processing it pixel by pixel using filters to detect patterns
- Lower layers capture simple features (edges, colors), while deeper layers learn complex patterns (faces, objects).
- CNNs are essential for image classification, object detection, facial recognition, and medical image analysis.

Introduction to Autoencoders (Encoder)

- An autoencoder is a neural network that is broken in two parts
 - Encoder- compresses input data into a lower-dimensional representation
 - Decoder reconstructs it back to the original form

Encoder -

- Compresses the input data into a smaller representation by capturing its most important features while removing unnecessary details.
- Reduces the input size to a compact latent space, making it easier for the decoder to reconstruct the original data while preserving key patterns.

Introduction to Autoencoders (Decoder)

DECODER -

- It takes the compressed representation from the encoder and transforms it back into the original input format, aiming to recreate the data as accurately as possible.
- It uses techniques like upsampling and transposed convolutions to gradually rebuild the data, refining details as it reconstructs the input from the lower-dimensional representation

Understanding U-Net

- U-Net is an CNN-based architecture which mimics as autoencoder, where the encoder extracts features, and the decoder reconstructs a segmented output, making it effective for pixel-wise predictions.
- Introduced by Ronneberger et al. in 2015, in the publication "U-Net: Convolutional Networks for Biomedical Image Segmentation"
- Named after its U-shaped architecture, U-Net features skip connections that directly link encoder and decoder layers at corresponding levels, preserving spatial information and improving segmentation accuracy.

Image Segmentation

- Image segmentation is the process of breaking an image into meaningful parts or regions to make it easier to analyze.
- It helps in identifying and separating objects (Object Detection) within an image, commonly used in medical imaging, self-driving cars, and facial recognition.

What is a Transformer in Deep Learning?

- Transformers are deep learning models that handles entire sequences of data at once, making it faster than traditional models like RNNs.
- It focuses on the most important parts of the input, improving tasks like translation, text generation, and image processing.
- Transformers are the foundation of advanced Al models like ChatGPT, BERT, etc.

The Role of the Attention Layer in Transformers

- Attention layers helps the model highlight relevant parts of the input instead of treating everything equally.
- It uses these vectors to calculate attention scores, determining how much focus each input should get.
 - Higher scores give more influence to important inputs, improving the model's understanding of context.
- This enables the model to understand connections between distant elements, improving performance in NLP and vision tasks.

Introducing Linformer: A Efficient Transformer

- Linformer was introduced by researchers at Facebook AI, including Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma in 2020.
- Linformer reduces memory and computation by projecting Key and Value matrices into a lower-dimensional space before computing attention.
- Traditional Transformers with O(n²)
 complexity, Linformer achieves O(n)
 complexity, making it more efficient for long sequences.

Sparse Attention Mechanism

- The Sparse Attention Mechanism was introduced by researchers at Google Research, including Rewon Child, Scott Gray, and others in 2019
- Sparse attention attends to only a subset of key-value pairs, reducing memory and computation costs.
 - Uses predefined attention patterns like local windows or strided attention to capture important dependencies efficiently.
 - Reduces operations needed for attention, making it more scalable for long sequences and large datasets.

Sparse Attention Scheme

Integrating into U-Net: The Architecture

- LinTUNet retains U-Net's encoder-decoder structure but enhances it with Linformer and Sparse Attention in the bottleneck for efficient computations and better feature representation.
- Sparse Attention reduces connections, improving efficiency, while Linformer enables scalable attention, enhancing long-range dependency handling for tasks like medical image segmentation.

Integrating into U-Net: The Architecture (cont)

Research Findings and Performance Evaluation: Loss

• The following results are from one of several trial runs in my study, comparing the performance between the traditional U-Net CNN and my proposed model, **LinTUNet**, a hybrid CNN-Transformer for image segmentation.

LinTUNet

Research Findings and Performance Evaluation (cont): Accuracy

LinTUNet

Research Findings and Performance Evaluation (cont) Metrics

Metric	U-Net (CNN)	LinTUNet (ours)
F1 Score	0.6013	0.8675
IoU	0.4321	0.7668
Precision	0.7871	0.7871

Processing Images: Timing

- LinTUNet is 7× faster than traditional U-Net
- Processing time:
 - LinTUNet: 0.0002 sec (0.2 ms)
 - U-Net: 0.0014 sec (1.4 ms)
- Speed boost due to the attention layer, which improves information extraction efficiency.

Intersection over Union (IoU) and Its Significance

• Intersection over Union (IoU) is a metric used to evaluate the performance of image segmentation models. It measures the overlap between two sets: the predicted segmentation and the ground truth.

LinTUNet **U-Net** Output Image (Predicted) Output Image (Predicted) Input Image

Intersection over Union (IoU) and Its Significance (cont)

LinTUNet

U-Net

Future Implications of LinTUNet

- LinTUNet enhances accuracy in complex medical images by combining CNNs and Transformers.
- Works well with high-resolution images for applications like healthcare, satellite imaging, and autonomous driving.
- 3. It is suitable for real-time diagnostics, crop analysis, and road scene segmentation, with strong performance across different data types

Any Questions?