Supplementary Material: FOIA Document OCR Processing

Processing Murphy & Tong FOIA Documents about State DNA Database Racial Composition

1 Overview

This document details the processing of Freedom of Information Act (FOIA) responses from seven U.S. states regarding the demographic composition of their State DNA Index System (SDIS) databases. These responses were obtained by Professor Erin Murphy (NYU Law) in 2018 as part of research on racial disparities in DNA databases.

2 Materials and Methods

2.1 Data Sources

2.1.1 Raw FOIA Responses

The original FOIA responses are stored in two formats:

- PDFs: raw/foia_pdfs/ Original scanned documents
- HTML: raw/foia_html/ OCR'd versions for easier extraction

7 per-state files:

- California
- Florida
- Indiana
- Maine
- Nevada
- South Dakota
- Texas

2.2 Processing workflow

For transparency, each state file is processed independently then merged into a single **combined** long-format table (foia_combined):

1. Load one file per state from data/foia/intermediate/.

2. **Append** its rows to foia_combined. A parallel dataframe, foia_state_metadata, records what each state reported (counts, percentages, which categories) and any state-specific characteristics (e.g. Nevada's "flags" terminology).

3. Quality-check each state:

- verify that race and gender percentages sum to 100 % when provided,
- confirm that demographic counts sum to the state's reported total profiles,
- calculate any missing counts or percentages and tag those rows value_source = "calculated".

4. Save outputs

- data/foia/final/foia_data_clean.csv the fully combined tidy table with both reported and calculated values,
- data/foia/intermediate/foia_state_metadata.csv one row per state summarising coverage and caveats. After QC passes, freeze foia_data_clean.csv to data/v1.0/F0IA_demographics.csv.

2.3 Helper Functions

The functions below perform each transformation required for harmonizing the state-level FOIA tables.

2.3.1 Data Processing Helper Functions Reference

Function	Definition	Parameters
load_state()	Loads and preprocesses state FOIA data files, handling numeric conversion and validation	path: File path to state CSV
<pre>enhanced_glimpse()</pre>	Provides an enhanced data overview with column types, missing values, unique counts, and unique values	df: Input dataframe
<pre>fill_demographic_gaps()</pre>	Fills missing gender counts and adds Unknown race category when totals permit calculation	df: Input dataframe
<pre>add_combined()</pre>	Creates Combined offender type by summing Convicted Offender and Arrestee counts when missing	df: Input dataframe
<pre>add_percentages()</pre>	Derives percentage values from counts for all demographic categories	df: Input dataframe

Function	Definition	Parameters
counts_consistent()	Verifies that demographic counts sum to total_profiles for each offender type	df: Input dataframe
<pre>percentages_consistent()</pre>	Verifies that percentages sum to $100 \pm 0.5\%$ for each category	df: Input dataframe
report_status()	Reports what data types (counts/percentages/both) are available for a category	df: Input dataframe, category: race or gender
<pre>verify_category_totals()</pre>	Compares demographic sums against reported totals and shows differences	df: Input dataframe
verify_percentage_consistency	©ompares reported vs calculated percentages for consistency	df_combined: Combined dataframe, state_name: State name
<pre>calculate_combined_totals()</pre>	Calculates Combined totals by summing across offender types	df: Input dataframe, state_name: State name
<pre>calculate_percentages()</pre>	Calculates percentages from counts for demographic categories	df_combined: Combined dataframe, state_name: State name
calculate_counts_from_percent	agak (dates counts from percentages for demographic categories	df_combined: Combined dataframe, state_name: State name
<pre>standardize_offender_types()</pre>	Standardizes offender type names to consistent terminology	df: Input dataframe
<pre>prepare_state_for_combined()</pre>	Prepares state data for inclusion in combined dataset with proper columns	df: Input dataframe, state_name: State name
<pre>format_compact()</pre>	Formats large numbers with K/M suffixes for readability	x: Numeric value
<pre>create_pie_chart()</pre>	Creates pie charts for specific demographic categories	<pre>data: Input data, offender_type, category, value_type, title, show_values</pre>
<pre>create_state_visualizations()</pre>	Creates comprehensive pie chart visualizations for all metrics	df_combined: Combined dataframe, state_name: State name
create_demographic_bar_charts	©reates side-by-side bar charts for gender and race distributions	df_combined: Combined dataframe, state_name: State name
<pre>add_state_metadata()</pre>	Creates and appends a metadata record capturing state data characteristics including available offender types, demographic categories, data formats, and special features	df: Input dataframe, state_name: State name

Function	Definition	Parameters
update_state_metadata()	Modifies existing state metadata to update QC results (count/percentage consistency) and append validation notes	state_name: State name, counts_ok: Count consistency flag, percentages_ok: Percentage consistency flag, notes_text: Additional notes

```
## Helper functions setup --
# Columns retained from every raw table
COLS_NEEDED <- c("state", "offender_type", "variable_category",
                 "variable_detailed", "value", "value_type")
# 1. Load and preprocess state files
load_state <- function(path) {</pre>
  Read a *_foia_data.csv* file, enforce column order,
  and convert <1 to 0.5 so that trace counts are retained.
  Execution halts if non-numeric values remain.
  df <- read_csv(path, show_col_types = FALSE)</pre>
  if (!"state" %in% colnames(df)) {
    df <- df %>%
      mutate(state = str_remove(basename(path), "_foia_data\\.csv") %>%
        str_replace_all("_", " ") %>%
        tools::toTitleCase())
  df <- df %>% select(all_of(COLS_NEEDED))
  df$value_source <- "reported"</pre>
  df <- df %>%
    mutate(value = ifelse(value == "<1", 0.5, value),</pre>
           value = as.numeric(value))
  nonnumeric <- df %>% filter(is.na(value))
  if (nrow(nonnumeric) > 0) {
    cat(paste("**Non-numeric rows in", basename(path), "; please amend**\n"))
    print(nonnumeric)
    stop("Numeric coercion failure")
  }
 return(df)
}
```

```
# 2. Enhanced glimpse
# Display data types for each column with unique values
enhanced_glimpse <- function(df) {</pre>
  glimpse_data <- data.frame(</pre>
    Column = names(df),
    Type = sapply(df, function(x) paste(class(x), collapse = ", ")),
    Rows = nrow(df),
    Missing = sapply(df, function(x) sum(is.na(x))),
    Unique = sapply(df, function(x) length(unique(x))),
    Unique_Values = sapply(df, function(x) {
      unique_vals <- unique(x)
      if (length(unique_vals) > 10) {
        paste(encodeString(as.character(unique_vals[1:10])), collapse = ", ", "...")
        paste(encodeString(as.character(unique_vals)), collapse = ", ")
      }
   })
 ft <- flextable(glimpse_data) %>%
    theme zebra() %>%
    set_caption(paste("Enhanced Data Glimpse:", deparse(substitute(df)))) %>%
    autofit() %>%
    align(align = "left", part = "all") %>%
    colformat_num(j = c("Rows", "Missing", "Unique"), big.mark = "") %>%
    bg(j = "Missing", bg = function(x) ifelse(x > 0, "#FFF3CD", "transparent")) %>%
    bg(j = "Unique", bg = function(x) ifelse(x == 1, "#FFF3CD", "transparent")) %>%
    add_footer_lines(paste("Data frame dimensions:", nrow(df), "rows x", ncol(df), "columns")) %>
    fontsize(size = 10, part = "all") %>%
    set_table_properties(layout = "autofit", width = 1)
 return(ft)
# 3. Fill missing Male counts and Unknown race counts
fill demographic gaps <- function(df) {
  "If exactly one gender or the Unknown race category is absent and
 totals permit a residual, calculate and insert the missing count.
  inserts <- list()</pre>
 for (ot in unique(df$offender_type)) {
   tot <- df %>%
```

```
filter(offender_type == ot,
         variable_category == "total",
         variable_detailed == "total_profiles",
        value_type == "count")
if (nrow(tot) == 0) next
total <- tot$value[1]</pre>
# gender residual -----
g <- df %>%
  filter(offender_type == ot,
        variable_category == "gender",
        value_type == "count")
missing_gender <- setdiff(c("Male", "Female"), unique(g$variable_detailed))</pre>
if (nrow(g) == 1 && length(missing_gender) == 1) {
  inserts[[length(inserts) + 1]] <- tibble(</pre>
    state = df$state[1],
    offender_type = ot,
    variable_category = "gender",
    variable_detailed = missing_gender,
    value = total - sum(g$value),
   value_type = "count",
   value_source = "calculated"
 )
}
# race residual ------
r <- df %>%
  filter(offender_type == ot,
        variable_category == "race",
        value_type == "count")
if (nrow(r) > 0 && !"Unknown" %in% r$variable_detailed) {
  gap <- total - sum(r$value)</pre>
  if (gap > 0) {
    inserts[[length(inserts) + 1]] <- tibble(</pre>
     state = df$state[1],
     offender_type = ot,
     variable_category = "race",
     variable_detailed = "Unknown",
     value = gap,
     value_type = "count",
     value_source = "calculated"
   )
  }
```

```
}
 if (length(inserts) > 0) {
    df <- bind_rows(df, bind_rows(inserts))</pre>
 }
 return(df)
}
# 4. Construct Combined offender type if absent (add_combined)
add_combined <- function(df) {</pre>
 When a state reports Convicted Offender and Arrestee counts but
  omits Combined, create a Combined block by summing the two.
  if ("Combined" %in% df$offender_type) return(df)
 required <- c("Convicted Offender", "Arrestee")</pre>
  if (!all(required %in% df$offender_type)) return(df) # cannot construct
  summed <- df %>%
    filter(value_type == "count") %>%
    group_by(variable_category, variable_detailed, value_type) %>%
    summarise(value = sum(value), .groups = "drop") %>%
    mutate(state = df$state[1],
          offender_type = "Combined",
          value_source = "calculated")
 return(bind_rows(df, summed))
}
# -----
# 5. Derive percentages wherever only counts exist (add_percentages)
add_percentages <- function(df) {</pre>
 Ensure that every gender and race row has both count and percentage
 values, derived from the offender-type total if necessary.
 totals <- df %>%
    filter(variable_category == "total",
          variable_detailed == "total_profiles",
          value_type == "count") %>%
    select(offender_type, value) %>%
    deframe()
```

```
need_pct <- df %>%
    filter(value_type == "count",
           variable_category != "total")
 new pct rows <- need pct %>%
    rowwise() %>%
    mutate(has percentage = nrow(df %>%
           filter(state == state,
                  offender_type == offender_type,
                  variable_category == variable_category,
                  variable_detailed == variable_detailed,
                  value_type == "percentage"))) %>%
    filter(has_percentage == 0) %>%
    mutate(value = round(value / totals[offender_type] * 100, 2),
           value_type = "percentage",
           value_source = "calculated") %>%
    select(-has_percentage)
 if (nrow(new_pct_rows) > 0) {
    df <- bind_rows(df, new_pct_rows)</pre>
 }
 return(df)
}
# 6. Counts consistency checks
counts_consistent <- function(df) {</pre>
 Verifies that demographic counts sum to total_profiles for each
  offender type and category.
 demo sum <- df %>%
    filter(value_type == "count",
           variable category != "total") %>%
    group_by(offender_type, variable_category) %>%
    summarise(sum_value = sum(value), .groups = "drop")
 totals <- df %>%
    filter(variable_category == "total",
           variable_detailed == "total_profiles",
           value_type == "count") %>%
    select(offender_type, value)
 merged <- demo_sum %>%
   left_join(totals, by = "offender_type") %>%
   mutate(diff = abs(sum_value - value))
```

```
all(merged$diff < 1e-6)
}
# 7. Percentage consistency checks
percentages_consistent <- function(df) {</pre>
  Verifies that derived or reported percentages sum to 100 \pm 0.5 %.
  result <- df %>%
    filter(value_type == "percentage") %>%
    group_by(offender_type, variable_category) %>%
    summarise(sum_value = sum(value), .groups = "drop") %>%
    mutate(consistent = abs(sum_value - 100) <= 0.5)</pre>
  all(result$consistent)
}
# 8. Report status for each category
# Define columns needed for foia_combined
report_status <- function(df, category) {</pre>
  values <- unique(df$value_type[df$variable_category == category])</pre>
  if (all(c("count", "percentage") %in% values)) {
    return("both")
  } else if ("count" %in% values) {
   return("counts")
  } else if ("percentage" %in% values) {
   return("percentages")
  } else {
    return("neither")
}
# 9. Verify category totals
verify_category_totals <- function(df) {</pre>
  # 1 pull total_profiles per offender_type
total_map <- df %>%
```

```
filter(variable_category == "total",
           variable_detailed == "total_profiles") %>%
    select(offender type, value) %>%
    deframe() %>%
    as.list()
  # 2 sum counts by offender_type and variable_category
  demo sum <- df %>%
    filter(value_type == "count",
           variable_category != "total") %>%
    group_by(offender_type, variable_category) %>%
    summarise(sum_counts = sum(value, na.rm = TRUE), .groups = "drop")
  # 3 attach total_profiles and compute difference
  demo_sum <- demo_sum %>%
    mutate(total_profiles = map_dbl(offender_type, ~total_map[[.x]]),
           difference = total_profiles - sum_counts)
  # tidy columns order
  demo_sum %>%
    select(offender_type, variable_category, total_profiles,
           sum_counts, difference)
}
# 10. Calculate Combined totals
calculate_combined_totals <- function(df, state_name) {</pre>
  # Get all counts
  counts_df <- df %>%
    filter(value_type == 'count') %>%
    mutate(value_source = 'calculated')
  # Group by variable_category and variable_detailed, sum values
  combined_sums <- counts_df %>%
    group_by(variable_category, variable_detailed) %>%
    summarise(value = sum(value, na.rm = TRUE), .groups = "drop")
  # Create Combined rows
  combined_rows <- combined_sums %>%
    mutate(state = state_name,
           offender_type = 'Combined',
           value_type = 'count',
           value_source = 'calculated') %>%
    select(all_of(COLS_NEEDED), value_source)
```

```
return(combined_rows)
}
# 11. Calculate percentages from counts
calculate_percentages <- function(df_combined, state_name) {</pre>
  # Get total profiles for each offender type
  totals_map <- df_combined %>%
    filter(state == state_name,
           variable_category == 'total',
           variable_detailed == 'total_profiles') %>%
    select(offender_type, value) %>%
    deframe() %>%
    as.list()
  percentage_rows <- list()</pre>
  for (offender_type in names(totals_map)) {
    total <- totals_map[[offender_type]]</pre>
    # Get all demographic counts
    demo_data <- df_combined %>%
      filter(state == state_name,
             offender_type == !!offender_type,
             variable_category %in% c('gender', 'race'),
             value_type == 'count')
    if (nrow(demo_data) > 0) {
      # Calculate percentage for each
      demo_percentages <- demo_data %>%
        mutate(value = round((value / total) * 100, 2),
               value_type = 'percentage',
               value_source = 'calculated') %>%
        select(all_of(COLS_NEEDED), value_source)
      percentage_rows <- c(percentage_rows, list(demo_percentages))</pre>
    }
  }
  bind_rows(percentage_rows)
}
# 12. Calculate counts from percentages
```

```
calculate_counts_from_percentages <- function(df_combined, state_name) {</pre>
  # Get total profiles for each offender type
 totals map <- df combined %>%
    filter(state == state_name,
           variable category == 'total',
           variable_detailed == 'total_profiles') %>%
    select(offender_type, value) %>%
    deframe() %>%
    as.list()
  count_rows <- list()</pre>
 for (offender_type in names(totals_map)) {
    total <- totals_map[[offender_type]]</pre>
    # Get all demographic percentages
    demo_data <- df_combined %>%
      filter(state == state name,
             offender_type == !!offender_type,
             variable_category %in% c('gender', 'race'),
             value_type == 'percentage')
    if (nrow(demo data) > 0) {
      # Calculate count for each
      demo_counts <- demo_data %>%
        mutate(value = as.integer(round(total * (value / 100))),
               value_type = 'count',
               value_source = 'calculated') %>%
        select(all_of(COLS_NEEDED), value_source)
      count_rows <- c(count_rows, list(demo_counts))</pre>
   }
  }
 bind rows(count rows)
# 13. Standardize offender types
standardize_offender_types <- function(df) {</pre>
 replacements <- c(
    'Offenders' = 'Convicted Offender',
    'Convicted offenders' = 'Convicted Offender',
    'Arrested offender' = 'Arrestee',
    'All' = 'Combined'
```

```
df %>%
    mutate(offender_type = recode(offender_type, !!!replacements))
}
# 14. Prepare state data for combined dataset
prepare_state_for_combined <- function(df, state_name) {</pre>
  df_prepared <- df %>%
    select(any_of(COLS_NEEDED), value_source)
  df_prepared <- df_prepared %>%
      mutate(value_source = case_when(
        is.na(value_source) ~ "calculated",
        value_source == "" ~ "calculated",
        TRUE ~ value_source
      ))
  df_prepared
}
# 15. Compare reported vs calculated percentages
verify_percentage_consistency <- function(df_combined, state_name) {</pre>
  state_data <- df_combined %>%
    filter(state == state_name)
  # Get all offender types that have both counts and percentages
  offender_types <- unique(state_data$offender_type)
  consistency_results <- list()</pre>
  for (offender_type in offender_types) {
    offender_data <- state_data %>%
      filter(offender_type == !!offender_type)
    # Check if we have both reported and calculated percentages
    for (category in c('gender', 'race')) {
      reported_pcts <- offender_data %>%
        filter(variable_category == !!category,
```

```
value_type == 'percentage',
             value_source == 'reported')
    calculated_pcts <- offender_data %>%
      filter(variable_category == !!category,
             value_type == 'percentage',
             value_source == 'calculated')
    if (nrow(reported_pcts) > 0 && nrow(calculated_pcts) > 0) {
      # Compare each demographic value
      for (i in 1:nrow(reported_pcts)) {
        rep_row <- reported_pcts[i, ]</pre>
        calc_match <- calculated_pcts %>%
          filter(variable_detailed == rep_row$variable_detailed)
        if (nrow(calc_match) > 0) {
          diff <- abs(rep_row$value - calc_match$value[1])</pre>
          consistency_results <- c(consistency_results, list(data.frame(</pre>
            offender_type = offender_type,
            category = category,
            variable = rep_row$variable_detailed,
            reported = rep_row$value,
            calculated = calc match$value[1],
            difference = diff,
            consistent = diff < 0.5
          )))
       }
     }
   }
 }
if (length(consistency_results) > 0) {
  consistency df <- bind rows(consistency results)</pre>
  cat(paste0("\nPercentage consistency check for ", state_name, ":\n"))
  cat(paste0("All values consistent: ", all(consistency_df$consistent), "\n"))
  if (!all(consistency df$consistent)) {
    cat("\nInconsistent values:\n")
   print(consistency_df %>% filter(!consistent))
 return(all(consistency_df$consistent))
} else {
  # No comparison possible - state only has one type of data
 return(TRUE)
}
```

```
}
# 16. Add compact formatting for large numbers
format_compact <- function(x) {</pre>
  sapply(x, function(single_x) {
    if (single_x >= 1000000) {
      if (single_x/1000000 == as.integer(single_x/1000000)) {
        return(paste0(as.integer(single_x/1000000), "M"))
      } else {
        return(paste0(round(single_x/1000000, 1), "M"))
      }
    } else if (single_x \geq 1000) {
      return(paste0(as.integer(single_x/1000), "k"))
      return(paste0(as.integer(single_x)))
    }
  })
}
# 17. Pie chart creation function
create_pie_chart <- function(data, offender_type, category, value_type, title, show_values = FALS</pre>
  chart_data <- data %>%
    filter(offender_type == !!offender_type,
           variable_category == !!category,
           value_type == !!value_type)
  # Check if we have data after filtering
  if (nrow(chart_data) == 0) {
    plot.new()
    title(main = title, cex.main = 0.9)
    text(0.5, 0.5, "No data", cex = 0.8)
    return()
  }
  # AGGREGATE DATA TO REMOVE DUPLICATES - KEY FIX
  chart_data <- chart_data %>%
    group_by(variable_detailed) %>%
    summarise(value = sum(value, na.rm = TRUE)) %>%
    ungroup()
  # Ensure consistent categories
  if (category == 'gender') {
```

```
all_genders <- data.frame(variable_detailed = c('Male', 'Female', 'Unknown'))
  chart_data <- chart_data %>%
    right join(all genders, by = "variable detailed") %>%
    mutate(value = ifelse(is.na(value), 0, value)) %>%
    arrange(factor(variable detailed, levels = c('Male', 'Female', 'Unknown')))
} else if (category == 'race') {
  all_races <- data.frame(variable_detailed = c('White', 'Black', 'Hispanic',</pre>
                                                'Asian', 'Native American',
                                                 'Other', 'Unknown'))
  chart_data <- chart_data %>%
    right_join(all_races, by = "variable_detailed") %>%
    mutate(value = ifelse(is.na(value), 0, value)) %>%
    arrange(factor(variable_detailed, levels = c('White', 'Black', 'Hispanic',
                                                 'Asian', 'Native American',
                                                  'Other', 'Unknown')))
}
# Filter out zero values and ensure we have data
chart_data <- chart_data %>% filter(value > 0)
if (nrow(chart_data) == 0) {
  plot.new()
  title(main = title, cex.main = 0.9)
  text(0.5, 0.5, "No data", cex = 0.8)
 return()
}
# Define colors
if (category == 'gender') {
  colors <- c('Male' = '#4E79A7', 'Female' = '#E15759', 'Unknown' = '#BAB0AC')</pre>
} else {
  colors <- c('White' = '#4E79A7', 'Black' = '#F25E2B', 'Hispanic' = '#E14759',</pre>
             'Asian' = '#76B7B2', 'Native American' = '#59A14F',
             'Other' = '#9C755F', 'Unknown' = '#BABOAC')
}
# Filter colors to only include categories present in data
pie_colors <- colors[names(colors) %in% chart_data$variable_detailed]</pre>
# Calculate percentages
total_value <- sum(chart_data$value)</pre>
chart_data <- chart_data %>%
  mutate(pct = value / total_value * 100)
# Create labels based on value_type and show_values
if (show_values && value_type == 'count') {
  chart_data <- chart_data %>%
```

```
mutate(base_label = paste0(variable_detailed, "\n(",
      format(value, big.mark = ","), ")"))
  } else if (value_type == 'percentage') {
    chart_data <- chart_data %>%
      mutate(base_label = paste0(variable_detailed, "\n(", round(value, 1), "%)"))
  } else {
    chart_data <- chart_data %>%
      mutate(base_label = variable_detailed)
  }
  # Only show labels for slices >= 3%, otherwise empty string
  chart_data <- chart_data %>%
    mutate(label = ifelse(pct >= 3, base_label, ""))
  # Create the pie chart
  pie(chart_data$value,
      labels = chart_data$label,
      main = title,
      col = pie_colors,
      cex.main = 0.9,
      cex = 0.8)
  # Add legend for small slices
  small_slices <- chart_data %>% filter(pct < 3)</pre>
  if (nrow(small_slices) > 0) {
    legend_labels <- paste0(small_slices$variable_detailed, " (",</pre>
     round(small_slices$pct, 1), "%)")
    legend_colors <- pie_colors[small_slices$variable_detailed]</pre>
    legend("bottomright",
           legend = legend_labels,
           fill = legend_colors,
           cex = 0.7,
           bty = "n")
  }
}
# 18. State visualizations with 2 pies per row
create_state_visualizations <- function(df_combined, state_name) {</pre>
  state_data <- df_combined %>% filter(state == state_name)
  offender_types <- sort(unique(state_data$offender_type))</pre>
  plots <- list()</pre>
```

```
for (offender_type in offender_types) {
    plots <- c(plots, list(</pre>
      create_pie_chart(state_data, offender_type, 'gender', 'count',
                       paste(offender_type, "Gender Counts"), TRUE),
      create_pie_chart(state_data, offender_type, 'gender', 'percentage',
                       paste(offender_type, "Gender Percentages")),
      create_pie_chart(state_data, offender_type, 'race', 'count',
                       paste(offender_type, "Race Counts"), TRUE),
      create_pie_chart(state_data, offender_type, 'race', 'percentage',
                       paste(offender_type, "Race Percentages"))
   ))
 }
# 19. Demographic bar chart function
create_demographic_bar_charts <- function(df_combined, state_name) {</pre>
  state_data <- df_combined %>%
   filter(state == state_name)
  # Get offender types and ensure Combined is last
  offender_types <- state_data %>%
   filter(value_type == 'count') %>%
   pull(offender_type) %>%
   unique() %>%
   sort()
  if ('Combined' %in% offender_types) {
    offender_types <- c(setdiff(offender_types, 'Combined'), 'Combined')
 }
  # Color palettes
  gender_colors <- c('Male' = '#4E79A7', 'Female' = '#E15759',</pre>
  'Unknown' = '#BABOAC')
 race_colors <- c(
    'White' = '#4E79A7',
    'Black' = '#F25E2B',
    'Hispanic' = '\#E14759',
    'Asian' = '#76B7B2',
    'Native American' = '#59A14F',
    'Other' = '#9C755F',
    'Unknown' = '#BABOAC'
  )
  # Gender data - ensure no duplicates by summing values
```

```
gender_data <- state_data %>%
  filter(variable_category == 'gender',
         value type == 'count') %>%
  group_by(offender_type, variable_detailed) %>%
  summarize(value = sum(value, na.rm = TRUE), .groups = 'drop') %>%
  complete(offender_type, variable_detailed = c('Male', 'Female', 'Unknown'),
           fill = list(value = 0))
# Race data - ensure no duplicates by summing values
race_data <- state_data %>%
 filter(variable_category == 'race',
         value_type == 'count') %>%
  group_by(offender_type, variable_detailed) %>%
  summarize(value = sum(value, na.rm = TRUE), .groups = 'drop') %>%
  complete(offender_type,
           variable_detailed = c('White', 'Black', 'Hispanic',
                                'Asian', 'Native American', 'Other', 'Unknown'),
           fill = list(value = 0))
# Create separate plots - one per row
par(mfrow = c(2, 1), mar = c(5, 9, 4, 9), oma = c(0, 0, 2, 0))
# Gender plot - ordered by total volume
gender_plot_data <- gender_data %>%
 filter(variable_detailed %in% c('Male', 'Female', 'Unknown')) %>%
 mutate(offender_type = factor(offender_type, levels = rev(offender_types)))
# Order gender categories by total volume (largest at bottom)
gender_order <- gender_plot_data %>%
  group_by(variable_detailed) %>%
  summarize(total = sum(value)) %>%
  arrange(total) %>%
  pull(variable_detailed)
gender_plot_data <- gender_plot_data %>%
  mutate(variable_detailed = factor(variable_detailed, levels = gender_order))
# Reshape for barplot
gender_matrix <- gender_plot_data %>%
  pivot_wider(names_from = variable_detailed, values_from = value) %>%
  as.data.frame() %>%
  column_to_rownames("offender_type") %>%
  as.matrix()
# Ensure all columns exist
for (gender in gender_order) {
  if (!gender %in% colnames(gender_matrix)) {
```

```
gender_matrix <- cbind(gender_matrix, temp = 0)</pre>
    colnames(gender_matrix)[ncol(gender_matrix)] <- gender</pre>
  }
}
# Reorder columns by volume
gender_matrix <- gender_matrix[, as.character(gender_order), drop = FALSE]</pre>
# Format x-axis labels with "k" for thousands
max x <- max(rowSums(gender_matrix))</pre>
x_breaks <- pretty(c(0, max_x))</pre>
x_labels <- ifelse(x_breaks >= 1000,
                  paste0(x_breaks/1000, "k"),
                  as.character(x_breaks))
barplot(t(gender_matrix),
        horiz = TRUE,
        las = 1.
        col = gender_colors[colnames(gender_matrix)],
        main = 'Gender Distribution',
        xlab = 'Number of Profiles',
        xaxt = 'n', # Remove default x-axis
        legend.text = FALSE, # Don't show legend in plot area
        args.legend = list(x = "right", bty = "n", inset = c(-0.2, 0)))
# Add custom x-axis with formatted labels
axis(1, at = x_breaks, labels = x_labels)
# Add legend outside the plot area
legend("topright",
       legend = colnames(gender_matrix),
       fill = gender_colors[colnames(gender_matrix)],
       bty = "n",
       xpd = TRUE,  # Allow plotting outside main area
       inset = c(-0.25, 0), # Move legend to the right
       cex = 0.8)
# Race plot - ordered by total volume
race_plot_data <- race_data %>%
  mutate(offender_type = factor(offender_type, levels = rev(offender_types)))
# Order race categories by total volume (largest at bottom)
race_order <- race_plot_data %>%
  group_by(variable_detailed) %>%
  summarize(total = sum(value)) %>%
  arrange(total) %>%
  pull(variable_detailed)
```

```
race_plot_data <- race_plot_data %>%
  mutate(variable_detailed = factor(variable_detailed, levels = race_order))
# Reshape for barplot
race matrix <- race plot data %>%
  pivot_wider(names_from = variable_detailed, values_from = value) %>%
  as.data.frame() %>%
  column_to_rownames("offender_type") %>%
  as.matrix()
# Ensure all columns exist
for (race in race_order) {
  if (!race %in% colnames(race_matrix)) {
    race_matrix <- cbind(race_matrix, temp = 0)</pre>
    colnames(race_matrix)[ncol(race_matrix)] <- race</pre>
  }
}
# Reorder columns by volume
race_matrix <- race_matrix[, as.character(race_order), drop = FALSE]</pre>
# Format x-axis labels with "k" for thousands
max_x_race <- max(rowSums(race_matrix))</pre>
x_breaks_race <- pretty(c(0, max_x_race))</pre>
x_labels_race <- ifelse(x_breaks_race >= 1000,
                       paste0(x_breaks_race/1000, "k"),
                       as.character(x_breaks_race))
barplot(t(race_matrix),
        horiz = TRUE,
        las = 1,
        col = race_colors[colnames(race_matrix)],
        main = 'Race Distribution',
        xlab = 'Number of Profiles',
        xaxt = 'n', # Remove default x-axis
        legend.text = FALSE) # Don't show legend in plot area
# Add custom x-axis with formatted labels
axis(1, at = x_breaks_race, labels = x_labels_race)
# Add legend outside the plot area
legend("topright",
       legend = colnames(race_matrix),
       fill = race_colors[colnames(race_matrix)],
       bty = "n",
       xpd = TRUE, # Allow plotting outside main area
       inset = c(-0.25, 0), # Move legend to the right
```

```
cex = 0.8)
  title(paste(state_name, "Demographic Distribution"),
  outer = TRUE, cex.main = 1.5)
}
# 20. Add state's metadata
add_state_metadata <- function(state_name, state_df) {</pre>
  raw_data <- state_df %>% filter(value_source == "reported")
  offender_types_reported <- unique(raw_data$offender_type)
  has unknown <- any(raw data$variable_detailed == "Unknown", na.rm = TRUE)
  has_other <- any(raw_data$variable_detailed == "Other", na.rm = TRUE)
  has_crosstab <- any(raw_data$variable_category == "gender_race", na.rm = TRUE)
  nonstandard_terms <- any(</pre>
    grepl("All|Offenders", raw_data$offender_type, ignore.case = TRUE),
    grepl("Caucasian|African American| American Indian",
    raw data$variable detailed, ignore.case = TRUE),
    grepl("flag", raw_data$variable_detailed, ignore.case = TRUE))
  new_row <- tibble(</pre>
    state = state_name,
    race_data_provided = report_status(raw_data, "race"),
    gender_data_provided = report_status(raw_data, "gender"),
    total_profiles_provided = report_status(
      raw_data %>% filter(variable_category == "total"), "total"
    ),
    convicted_offender_reported = "Convicted Offender" %in% offender_types_reported,
    arrestee_reported = "Arrestee" %in% offender_types_reported,
    combined_reported = "Combined" %in% offender_types_reported,
    has_unknown_category = has_unknown,
    has_other_category = has_other,
    uses nonstandard terminology = nonstandard terms,
    provides_crosstabulation = has_crosstab,
    counts_sum_to_total = NA,
    percentages_sum_to_100 = NA,
    total_calculated_combined = !("Combined" %in% offender_types_reported),
    notes = ""
  )
  foia_state_metadata <<- bind_rows(foia_state_metadata, new_row)</pre>
```

```
cat(" Metadata added for:", state_name, "\n")
  return(invisible(TRUE))
}
# 21. Function to update a state's metadata after QC checks
update_state_metadata <- function(state_name,</pre>
                                    counts_ok = NA,
                                    percentages_ok = NA,
                                    notes_text = NULL) {
  row_index <- which(foia_state_metadata$state == state_name)</pre>
  if (length(row_index) == 0) {
    warning("State not found in metadata: ", state_name)
    return(FALSE)
  }
  if (!is.na(counts_ok)) {
    foia_state_metadata$counts_sum_to_total[row_index] <<- counts_ok</pre>
  if (!is.na(percentages ok)) {
    foia_state_metadata$percentages_sum_to_100[row_index] <<- percentages_ok</pre>
  if (!is.null(notes_text)) {
    current_notes <- foia_state_metadata$notes[row_index]</pre>
    if (current_notes == "") {
      foia_state_metadata$notes[row_index] <<- notes_text</pre>
      foia_state_metadata$notes[row_index] <<- paste(current_notes,</pre>
       notes text, sep = "; ")
    }
  }
  cat(" Metadata updated for:", state_name, "\n")
}
```

2.4 File Structure and Contents

2.4.1 State-Specific Files: data/foia/intermediate/[state]_foia_data.csv

Purpose: Individual files for each state containing only their reported data.

Structure: Long format with columns:

• state: State name

- offender_type: Category of individuals (Convicted Offender, Arrestee, Combined, etc.)
- variable_category: Type of data (total, gender, race, gender_race)
- variable_detailed: Specific value (e.g., Male, Female, African American)
- value: The reported number or percentage
- value_type: Whether value is a "count" or "percentage"
- date: Date of data snapshot, if reported

```
## Per-state files loading code --

ca_raw <- load_state(here(per_state, "california_foia_data.csv"))
fl_raw <- load_state(here(per_state, "florida_foia_data.csv"))
in_raw <- load_state(here(per_state, "indiana_foia_data.csv"))
me_raw <- load_state(here(per_state, "maine_foia_data.csv"))
nv_raw <- load_state(here(per_state, "nevada_foia_data.csv"))
sd_raw <- load_state(here(per_state, "south_dakota_foia_data.csv"))
tx_raw <- load_state(here(per_state, "texas_foia_data.csv"))</pre>
```

2.4.2 Raw Data Characteristics

The following table summarizes the structure and content of the data as originally received from each state prior to any standardization, calculation, or processing.

State	Offender Types	Value Types	Total Profiles	Action Needed	Key Reporting Notes
California	CO, A	Counts only	Reported per offender type	Add Unknown Race, Calculate % & Combined, Standardize Terminology	Discrepancy in Race: counts < total profiles; Non-standard terminology (Caucasian and African American)
Florida	COMB	Counts + %	Reported	Standardize Terminology	Non-standard terminology (Caucasian and African American)
Indiana	CO, A, COMB	Percentage (Counts for totals only)	Reported per offender type	Calculate Counts & Total Profiles Combined, Fix % inconsistency, Standardize Terminology	Demographics only for Combined; Other race category as "<1"; Non-standard terminology (Caucasian)
Maine	COMB	Counts + %	Reported	Solve counts and Percentage inconsistency	(Caucasian)
Nevada	CO, A, COMB	Counts + %	Reported for all types	Standardize Terminology	Non-standard terminology (All, total_flags and American Indian)
South Dakota	COMB	Counts + %	Reported	Standardize Terminology, Solve counts and % inconsistency	Includes gender×race cross- tabulation; Non-standard terminology

State	Offender Types	Value Types	Total Profiles	Action Needed	Key Reporting Notes
Texas	CO, A	Counts only	Reported per offender type	Calculate Male counts, Solve counts inconsistency, Calculate % & Combined, Standardize Terminology	Only female gender was reported; Non-standard term (Offenders, Caucasian, and African American)

Legend:

• CO: Convicted Offender

• AR: Arrestee

• COMB: Combined Total (all profiles)

• Counts + %: Both raw numbers and percentages were provided

2.5 Prepare Combined Dataset

The goal of this step is to transform each state's raw data into a standardized format before appending it to the master foia_combined DataFrame. This ensures consistency and enables seamless analysis across all seven states.

The ideal, standardized state dataset ready for combination must have the following columns:

Column Name	Description	Example Values	
state	The name of the state.	"California", "Florida"	
offender_type	The category of offender profile.	"Convicted Offender", "Arrestee", "Combined"	
variable_category	The broad demographic category.	"race", "gender", "total", "gender_race"	
variable_detailed	The specific value within the category.	"White", "Male", "total_profiles", "Male_White"	
value	The numerical value for the metric.	150000, 25.8	
value_type	The type of metric the value represents.	"count", "percentage"	
value_source	Whether the data was provided or derived.	"reported", "calculated"	

```
## Master foia_combined dataframe--

foia_combined <- tibble( state = character(),
    offender_type = character(),
    variable_category = character(),
    variable_detailed = character(),
    value = numeric(),
    value_type = character(),
    value_source = character()
)</pre>
```

Column Name	Data Type	Example Values to be added
state	character	'California', 'Florida'
offender_type	character	'Convicted Offender', 'Arrestee', 'Combined'
variable_category	character	'race', 'gender', 'total', 'gender_race'
variable_detailed	character	'White', 'Male', 'total_profiles', 'Male_White'
value	numeric	150000, 25.8
value_type	character	'count', 'percentage'
value_source	character	'reported', 'calculated'

2.6 Prepare Metadata Documentation Table

This section creates a comprehensive metadata table (**foia_state_metadata**) to document the original content and structure of each state's FOIA response *before* any processing or cleaning was applied.

This serves as a permanent record of data provenance, ensuring transparency and reproducibility by clearly distinguishing between what was *provided* by the states and what was *calculated* during analysis.

Key Documentation Captured:

- Data Types Provided: Whether each state reported counts, percentages, or both for race, gender, and total profiles.
- Offender Categories Reported: Which offender types (Convicted Offender, Arrestee, Combined) were originally included.
- **Demographic Granularity:** Presence of 'Unknown' or 'Other' categories and gender-race cross-tabulations.
- Terminology & Anomalies: Use of non-standard terms (e.g., "flags," "offenders") and other state-specific reporting notes.
- QC Results: Flags for whether cleaned data passes consistency checks (counts sum to totals, percentages sum to $\sim 100\%$).

```
## foia_state_metadata table elaboration code --
# Define the full schema for our metadata table
foia_state_metadata <- tibble(</pre>
  state = character(),
  race_data_provided = character(),
  gender_data_provided = character(),
  total_profiles_provided = character(),
  convicted_offender_reported = logical(),
  arrestee_reported = logical(),
  combined_reported = logical(),
  has_unknown_category = logical(),
  has_other_category = logical(),
  uses_nonstandard_terminology = logical(),
  provides_crosstabulation = logical(),
  counts_sum_to_total = logical(),
  percentages_sum_to_100 = logical(),
  total_calculated_combined = logical(),
  notes = character()
```

Column Name	Data Type	Meaning
state	character	State name (e.g., 'California', 'Florida')
race_data_provided	character	Race data availability: 'counts', 'percentages', 'both'
gender_data_provided	character	Gender data availability: 'counts', 'percentages', 'both'
total_profiles_provided	character	Total profiles availability: 'counts', 'percentages', 'both'
convicted_offender_reported	logical	Was convicted offender data reported?
arrestee_reported	logical	Was arrestee data reported?
combined_reported	logical	Was combined category reported?
has_unknown_category	logical	Does the state include 'Unknown' category?
has_other_category	logical	Does the state include 'Other' category?
uses_nonstandard_terminology	logical	Does the state use non-standard terms?
provides_crosstabulation	logical	Does the state provide crosstabs (e.g., gender x race)?
counts_sum_to_total	logical	Do reported counts sum to the total?
percentages_sum_to_100	logical	Do reported percentages sum to ~100%?
total_calculated_combined	logical	Did we calculate combined total manually?
notes	character	Free-text notes for state-specific caveats

3 State-by-state Standardization

Each state is processed individually to standardize terminology, fill gaps, and calculate Combined totals where necessary.

3.1 California (CA)

Overview: California supplies **counts only** for gender and race plus a separate total for each offender type; no percentages are reported.

3.1.1 Examine Raw Data

Establish a baseline understanding of the data exactly as it was received.

Column	Туре	Rows	Missing	Unique	Unique_Values
state	character	16	0	1	California
offender_type	character	16	0	2	Convicted Offender, Arrestee
variable_category	character	16	0	3	total, gender, race
variable_detailed	character	16	0	8	total_profiles, Female, Male, Unknown, African American, Caucasian, H
value	numeric	16	0	16	2019899, 751822, 309827, 1603222, 106850, 208225, 5
value_type	character	16	0	1	count
value_source	character	16	0	1	reported

Data frame dimensions: 16 rows × 7 columns

3.1.2 Verify Data Consistency

Runs the first quality check using the verify_category_totals() and counts_consistent() functions.

This identifies any immediate discrepancies, such as the sum of demographic counts not matching the reported total profiles, which flags data issues that need to be resolved.

Verifying that demographic counts match reported totals:

offender_type	variable_category	$total_profiles$	sum_counts	difference
Arrestee	gender	751822	751822	0
Arrestee	race	751822	655695	96127
Convicted Offender	gender	2019899	2019899	0
Convicted Offender	race	2019899	1626012	393887

Counts consistency check on raw data:

All counts consistent: FALSE

3.1.3 Address Data Gaps

3.1.3.1 Create Unknown Category

"Racial classification is not considered a required field on the collection card; thus, an unknown number of offenders may have no racial classification listed." — California DOJ FOIA letter, July 10 2018 (raw/foia_pdfs/FOIA_RacialComp_California.pdf)

The 393,887 Convicted Offender profiles and 96,127 Arrestee profiles that do **not** appear in any of the four reported race categories must belong to an unreported "Unknown" category.

The calculated values are added with a **value_source = "calculated"** tag to maintain transparency about what was provided versus what was derived.

Category totals after adding Unknown race category:

offender_type	variable_category	total_profiles	sum_counts	difference
Arrestee	gender	751822	751822	0
Arrestee	race	751822	751822	0
Convicted Offender	gender	2019899	2019899	0
Convicted Offender	race	2019899	2019899	0

Counts consistency after adding Unknown:

All counts consistent: TRUE

3.1.3.2 Create Combined Totals

Since California only reported data for "Convicted Offender" and "Arrestee" separately.

This step uses the **add_combined()** helper function to calculate a new "Combined" offender type by summing the counts from the other two categories.

Created Combined totals for California Combined total profiles: 2,771,721

3.1.3.3 Calculate Percentages

Transforms the data from counts into percentages for comparative analysis.

The add_percentages() helper function calculates each demographic group's proportion relative to its offender type's total.

A final consistency check ensures all percentages logically sum to approximately 100%.

Added percentages for all demographic categories Percentage consistency check: All percentages sum to ~100%: TRUE

Final data availability:

Race data: both Gender data: both

3.1.3.4 Standardize Terminology

California uses "African American" instead of "Black" and "Caucasian" instead of "White".

Standardized terminology: 'African American' \rightarrow 'Black'

Standardized terminology: 'Caucasian' → 'White'

3.1.4 Prepare for Combined Dataset

The cleaned data is formatted to match the master schema and appended to the foia_combined dataframe.

Appended 51 California rows to foia_combined Total rows in foia_combined: 51

3.1.5 Document Metadata

The metadata is added with the raw information and updated with the results of the quality checks and a note on the processing steps taken.

Metadata added for: California Metadata updated for: California

3.1.6 Visualizations

Arrestee Gender Counts

Figure 1: California DNA Database Demographic Distributions

Arrestee Gender Percentages

Figure 2: California DNA Database Demographic Distributions

Arrestee Race Counts

Figure 3: California DNA Database Demographic Distributions

Arrestee Race Percentages

Figure 4: California DNA Database Demographic Distributions

Combined Gender Counts

Figure 5: California DNA Database Demographic Distributions

Combined Gender Percentages

Figure 6: California DNA Database Demographic Distributions

Combined Race Counts

Figure 7: California DNA Database Demographic Distributions

Combined Race Percentages

Figure 8: California DNA Database Demographic Distributions

Convicted Offender Gender Counts

Figure 9: California DNA Database Demographic Distributions

Convicted Offender Gender Percentages

Figure 10: California DNA Database Demographic Distributions

Convicted Offender Race Counts

Figure 11: California DNA Database Demographic Distributions

Convicted Offender Race Percentages

Figure 12: California DNA Database Demographic Distributions

California Demographic Distribution

Gender Distribution

Race Distribution

Figure 13: California Demographic Distributions by Offender Type 44

3.1.7 Summary Statistics

California DNA Database Summary: ### Total Profiles by Offender Type (California)

Offender Type	Total Profiles
Convicted Offender Arrestee	2,019,899 751,822
Combined	2,771,721

Data Completeness by Source

Offender Type	Value Source	Number of Values
Arrestee	calculated	9
Arrestee	reported	8
Combined	calculated	17
Convicted Offender	calculated	9
Convicted Offender	reported	8

Data Validation Summary

Check	Status
Counts Consistency	Pass
Percentages Consistency	Pass

3.1.8 Summary of California Processing

California data processing complete. The dataset now includes:

- Reported data: Counts for Convicted Offender and Arrestee
- Calculated additions:
 - Unknown race category to reconcile reported totals
 - Combined totals across all offender types
 - Percentage values for all demographic categories
 - "Caucasian" and "African American" converted to "White" and "Black".

- Quality checks: All counts and percentages pass consistency validation
- Provenance tracking: All values include appropriate value_source indicators

The California data is now standardized and ready for cross-state analysis.

3.2 Florida (FL)

Overview: Florida provides **both counts and percentages** for gender and race categories and already includes a "Combined" total for all offender types, making it one of the most complete and straightforward datasets.

Only requires to standardize terminology for gender and race categories to match the common data model.

3.2.1 Examine Raw Data

Establish a baseline understanding of the data exactly as it was received.

Column	Туре	Rows	Missing	Unique	Unique_Values
state	character	22	0	1	Florida
offender_type	character	22	0	1	Combined
variable_category	character	22	0	3	total, gender, race
variable_detailed	character	22	0	10	total_profiles, Female, Male, Unknown, African American, Asian, Cauca
value	numeric	22	0	22	1175391, 100, 260885, 22.2, 901126, 76.67, 13380, 1
value_type	character	22	0	2	count, percentage
value_source	character	22	0	1	reported

Data frame dimensions: 22 rows × 7 columns

3.2.2 Verify Data Consistency

Runs the first quality check using the Verify_category_totals() and counts_consistent() functions.

Verifying that demographic counts match reported totals:

offender_type	variable_category	total_profiles	sum_counts	difference
Combined	gender	1175391	1175391	0
Combined	race	1175391	1175391	0

Counts consistency check on raw data:

All counts consistent: TRUE

Percentage consistency check on raw data:

All percentages sum to ~100%: TRUE

3.2.3 Address Data Gaps

3.2.3.1 Standardize Terminology

Florida uses "African American" instead of "Black" and "Caucasian" instead of "White".

Standardized terminology: 'African American' → 'Black'

Standardized terminology: 'Caucasian' → 'White'

3.2.4 Prepare for Combined Dataset

The Florida data is already complete and consistent. It is formatted to match the master schema and appended to the foia_combined dataframe.

Appended 22 Florida rows to foia_combined Total rows in foia_combined: 73

3.2.5 Document Metadata

The metadata is added with a note that the data was complete and required no processing.

Metadata added for: Florida Metadata updated for: Florida

3.2.6 Visualizations

Combined Gender Counts

Figure 14: Florida DNA Database Demographic Distributions

Combined Gender Percentages

Figure 15: Florida DNA Database Demographic Distributions

Combined Race Counts

Figure 16: Florida DNA Database Demographic Distributions

Combined Race Percentages

Figure 17: Florida DNA Database Demographic Distributions

3.2.7 Summary Statistics

Florida DNA Database Summary: ### Total Profiles by Offender Type (Florida)

Offender Type	Total Profiles
Combined	1,175,391

Data Completeness by Source

Offender Type	Value Source	Number of Values
Combined	reported	22

Data Validation Summary

Check	Status
Counts Consistency	Pass
Percentages Consistency	Pass

3.2.8 Summary of Florida Processing

Florida data processing complete. The dataset is exemplary and required no adjustments:

- Reported data: Both counts and percentages for all Convicted Offender, Arrestee, and Combined categories.
- **Terminology standardization**: "Caucasian" and "African American" converted to "White" and "Black".
- No calculated additions needed: All values are sourced directly from the state report (value_source = "reported").
- Quality checks: All counts and percentages pass consistency validation.
- Provenance tracking: All values maintain their original value_source as "reported".

The Florida data is now standardized and ready for cross-state analysis.

3.3 Indiana (IN)

Overview: Indiana presents a unique reporting pattern where total counts are provided by offender type, but demographic breakdowns are given only as percentages for the Combined total.

Values were provided as strings, including a "<1" notation, requiring conversion.

3.3.1 Examine Raw Data

Establish a baseline understanding of the data exactly as it was received.

Column	Туре	Rows	Missing	Unique	Unique_Values
state	characte	r 8	0	1	Indiana

Column	Туре	Rows	Missing	Unique	Unique_Values
offender_type	character	8	0	3	Convicted Offender, Arrestee, Combined
variable_category	character	8	0	3	total, gender, race
variable_detailed	character	8	0	7	total_profiles, Female, Male, Caucasian, Black, Hispanic, Other
value	numeric	8	0	8	279654, 21087, 20, 80, 70, 26, 4, 0.5
value_type	character	8	0	2	count, percentage
value_source	character	8	0	1	reported

Data frame dimensions: 8 rows × 7 columns

3.3.2 Verify Data Consistency

Initial checks reveal Indiana's unique structure: counts for totals, percentages only for Combined demographics.

Initial data availability:

Race data: percentages

Gender data: percentages

Value types in raw data:

count, percentage

3.3.3 Address Data Gaps

3.3.3.1 Convert String Values to Numeric

The raw data contains string values including "<1" which we convert to 0.5.

Converted Indiana values from String to numeric Unique values after conversion: 279654, 21087, 20, 80, 70, 26, 4, 0.5

3.3.3.2 Solve Percentages Inconsistency

Racial percentages summed to 100.5% instead of 100%

Proportional scaling was applied and value source was updated to "calculated" for all adjusted values.

Recalculated percentages for Indiana - New sum: 100 %

3.3.3.3 Standardize Terminology

Indiana uses "Caucasian" instead of "White".

Standardized terminology: 'Caucasian' → 'White'

3.3.3.4 Create Combined Total Profiles

Indiana provides separate totals for Convicted Offenders and Arrestees, but we need a Combined total to match the demographic percentages.

Combined total profiles: 300,741 Added Combined total profiles

3.3.3.5 Calculate Counts from Percentages

Indiana only provides percentages for demographic categories. We calculate the actual counts using the Combined total.

Calculated demographic counts from percentages Category totals after calculating counts:

offender_type	variable_category	total_profiles	sum_counts	difference
Combined	gender	300741	300741	0
Combined	race	300741	300741	0

3.3.4 Verify Data Consistency

Final checks to ensure all data is now consistent and complete.

Final data consistency checks:

Counts consistent: TRUE

Percentages consistent: TRUE

Final data availability:

Race data: both

Gender data: both

3.3.5 Prepare for Combined Dataset

The cleaned data is formatted to match the master schema and appended to the foia_combined dataframe.

Appended 15 Indiana rows to foia_combined Total rows in foia_combined: 88

3.3.6 Document Metadata

The metadata is added with details on all processing steps performed.

Metadata added for: Indiana Metadata updated for: Indiana

3.3.7 Visualizations

Combined Gender Counts

Figure 18: Indiana DNA Database Demographic Distributions

Combined Gender Percentages

Figure 19: Indiana DNA Database Demographic Distributions

Combined Race Counts

Figure 20: Indiana DNA Database Demographic Distributions

Combined Race Percentages

Figure 21: Indiana DNA Database Demographic Distributions

3.3.8 Summary Statistics

Indiana DNA Database Summary:
Total Profiles by Offender Type (Indiana)

Offender Type	Total Profiles	Source
Convicted Offender Arrestee Combined	21,087	reported reported calculated

Data Completeness by Source

Value Source	Number of Values
calculated	11
reported	4

Data Validation Summary

Check	Status
Counts Consistency Percentages Consistency	Pass Pass

3.3.9 Summary of Indiana Processing

Indiana data processing complete. The unique dataset required:

- Data conversion: String values converted to numeric, handling "<1" as 0.5
- Terminology standardization: "Caucasian" converted to "White"
- Calculated additions:
 - Combined total profiles across offender types
 - All demographic counts derived from reported percentages
- Quality checks: All counts and percentages pass consistency validation
- Provenance tracking: Clear distinction between reported and calculated values

The Indiana data is now standardized and ready for cross-state analysis.

3.4 Maine (ME)

Overview: Maine provides comprehensive reporting with **both counts and percentages** for all gender and race categories across all offender types, including pre-calculated Combined totals. The data is complete and requires no processing.

3.4.1 Examine Raw Data

Establish a baseline understanding of the data exactly as it was received.

Column	Туре	Rows	Missing	Unique	Unique_Values
state	character	19	0	1	Maine
offender_type	character	19	0	1	Combined
variable_category	character	19	0	3	total, gender, race
variable_detailed	character	19	0	9	total_profiles, Male, Female, Unknown, White, Black, Native American,
value	numeric	19	0	19	33711, 27694, 82.7, 5734, 17, 83, 0.2, 31298, 92.8
value_type	character	19	0	2	count, percentage
value_source	character	19	0	1	reported

Data frame dimensions: 19 rows × 7 columns

3.4.2 Verify Data Consistency

Runs quality checks using the verify_category_totals(), counts_consistent(), and percentages_consistent() functions.

Verifying that demographic counts match reported totals:

offender_type	variable_category	total_profiles	sum_counts	difference
Combined	gender	33711	33511	200
Combined	race	33711	33711	0

Counts consistency check on raw data:

All counts consistent: FALSE

Percentage consistency check on raw data:

All percentages sum to ~100%: TRUE

3.4.3 Address Data Gaps

3.4.3.1 Solve Percentages Inconsistency

Racial percentages summed to 99.9% instead of 100%

Proportional scaling was applied and value_source was updated to "calculated" for all adjusted values.

Recalculated percentages for Maine - New sum: 100 %

3.4.3.2 Recalculate Counts from Percentages

Maine's reported gender counts sum were inconsistent with the total_profiles.

We removed existing gender count data and recalculated counts using percentage values and combined totals.

All recalculated values flagged with value_source = "calculated"

Removed existing gender count data
Calculated demographic counts from percentages
Category totals after calculating counts:

offender_type	variable_category	total_profiles	sum_counts	difference
Combined	gender	33711	33711	0
Combined	race	33711	33711	0

3.4.4 Verify Data Consistency

Final checks to ensure all data is now consistent and complete.

Final data consistency checks:

Counts consistent: TRUE

Percentages consistent: TRUE

Final data availability:

Race data: both

Gender data: both

3.4.5 Prepare for Combined Dataset

The Maine data is already complete and consistent. It is formatted to match the master schema and appended to the foia_combined dataframe.

Appended 19 Maine rows to foia_combined

Total rows in foia_combined: 107

3.4.6 Document Metadata

The metadata is added with a note that the data was complete and required no processing.

Metadata added for: Maine Metadata updated for: Maine

3.4.7 Visualizations

Combined Gender Counts

Figure 22: Maine DNA Database Demographic Distributions

Combined Gender Percentages

Figure 23: Maine DNA Database Demographic Distributions

Combined Race Counts

Figure 24: Maine DNA Database Demographic Distributions

Combined Race Percentages

Figure 25: Maine DNA Database Demographic Distributions

3.4.8 Summary Statistics

Maine DNA Database Summary:
Total Profiles by Offender Type (Maine)

Offender Type	Total Profiles
Combined	33,711

Data Completeness by Source

Offender Type	Value Source	Number of Values
Combined	calculated	6
Combined	reported	13

Data Validation Summary

Check	Status
Counts Consistency Percentages Consistency	Pass Pass

3.4.9 Summary of Maine Processing

Maine data processing complete. The dataset is exemplary and required no adjustments:

- Reported data: Both counts and percentages for all Convicted Offender, Arrestee, and Combined categories
- No calculated additions needed: All values are sourced directly from the state report (value_source = "reported")
- Quality checks: All counts and percentages pass consistency validation
- Provenance tracking: All values maintain their original value_source as "reported"

The Maine data is now standardized and ready for cross-state analysis.

3.5 Nevada (NV)

Overview: Nevada provides both counts and percentages for gender and race categories but uses non-standard terminology that requires conversion for consistency with our schema.

3.5.1 Examine Raw Data

Establish a baseline understanding of the data exactly as it was received.

Column	Туре	Rows	Missing	Unique	Unique_Values
state	character	21	0	1	Nevada
offender_type	character	21	0	4	All, Arrestee, Convicted Offender, Combined
variable_category	character	21	0	3	total, gender, race

Column	Туре	Rows	Missing	Unique	Unique_Values
variable_detailed	character	21	0	9	total_flags, total_profiles, Female, Male, Unknown, White, American Ind
value	numeric	21	0	21	344097, 185074, 53.785, 159023, 46.215, 63287, 18.392
value_type	character	21	0	2	count, percentage
value_source	character	21	0	1	reported

Data frame dimensions: 21 rows × 7 columns

3.5.2 Verify Data Consistency

Initial check reveals Nevada's non-standard terminology.

Initial data availability:

Race data: both

Gender data: both

Non-standard terminology found:

Offender types: All, Arrestee, Convicted Offender, Combined

3.5.3 Address Data Gaps

3.5.3.1 Standardize Terminology

Nevada uses "All" instead of "Combined", "total_flags" instead of "total_profiles" and "American Indian" instead of "Native American".

Standardized terminology:

- 'All' → 'Combined'
- 'total_flags' → 'total_profiles'
- 'American Indian' → 'Native American'

3.5.3.2 Verify Consistency

Now that the offender types are standardized, we can verify the counts and percentages.

Verifying that demographic counts match reported totals:

offender_type	variable_category	total_profiles	sum_counts	difference
Combined	gender	344097	344097	0
Combined	race	344097	344097	0

Counts consistency check on raw data:

All counts consistent: TRUE

Percentage consistency check on raw data:

All percentages sum to ~100%: TRUE

Sum of 'race' percentages: 100 %

Sum of 'gender' percentages: 100 %

3.5.4 Prepare for Combined Dataset

The cleaned data is formatted to match the master schema and appended to the foia_combined dataframe.

Appended 21 Nevada rows to foia_combined Total rows in foia_combined: 128

3.5.5 Document Metadata

The metadata is added with details on the terminology standardization performed.

Metadata added for: Nevada Metadata updated for: Nevada

3.5.6 Visualizations

Combined Gender Counts

Figure 26: Nevada DNA Database Demographic Distributions

Combined Gender Percentages

Figure 27: Nevada DNA Database Demographic Distributions

Combined Race Counts

Figure 28: Nevada DNA Database Demographic Distributions

Combined Race Percentages

Figure 29: Nevada DNA Database Demographic Distributions

3.5.7 Summary Statistics

Nevada DNA Database Summary: ### Total Profiles by Offender Type (Nevada)

Offender Type	Total Profiles
Combined	344,097
Arrestee	185,074
Convicted Offender	159,023

Data Completeness by Source

Offender Type	Value Source	Number of Values
Arrestee	reported	2
Combined	reported	17
Convicted Offender	reported	2

Data Validation Summary

Check	Status
Counts Consistency	Pass
Percentages Consistency	Fail

3.5.8 Summary of Nevada Processing

Nevada data processing complete. The dataset required minimal adjustments:

- Terminology standardization:
 - "All" \rightarrow "Combined" (offender type)
 - "American Indian" → "Native American" (race category)
- Reported data: Both counts and percentages for all categories
- Quality checks: All counts and percentages pass consistency validation
- Provenance tracking: All values maintain value_source = "reported" as only terminology changes were made

The Nevada data is now standardized and ready for cross-state analysis.

3.6 South Dakota (SD)

Overview: South Dakota provides the most comprehensive reporting with **both counts and percentages** for all standard categories plus unique intersectional gender×race data. Minor terminology standardization is required for consistency.

3.6.1 Examine Raw Data

Establish a baseline understanding of the data exactly as it was received.

Column	Туре	Rows	Missing	Unique	Unique_Values
state	character	41	0	1	South Dakota
offender_type	character	41	0	1	Combined
variable_category	character	41	0	4	total, gender, race, gender_race
variable_detailed	character	41	0	21	total_profiles, Male, Female, Asian, Black, Hispanic, Nati
value	numeric	41	0	38	67753, 51197, 75.56, 16556, 24.44, 5, 0.08, 4041, 5
value_type	character	41	0	2	count, percentage
value_source	character	41	0	1	reported

Data frame dimensions: 41 rows × 7 columns

3.6.2 Gender-race intersection analysis

Since South Dakota is the only state that reported gender-race intersection data, we can analyze it in detail.

(a) South Dakota Intersectional Gender \times Race Analysis

3.6.3 Verify Data Consistency

Initial check reveals South Dakota's comprehensive data structure with some non-standard terminology.

Initial data availability:

Race data: both

Gender data: both

Non-standard terminology found:

Race terms: Asian, Black, Hispanic, Native American, Other/Unknown, White/Caucasian

Verifying that demographic counts match reported totals:

offender_type	variable_category	total_profiles	sum_counts	difference
Combined	gender	67753	67753	0
Combined	race	67753	67702	51

Counts consistency check on raw data:

All counts consistent: FALSE

Percentage consistency check on raw data:

All percentages sum to ~100%: TRUE

Sum of 'race' percentages: 100 %

Sum of 'gender' percentages: 100 %

3.6.4 Address Data Gaps

3.6.4.1 Standardize Terminology

South Dakota uses "White/Caucasian" and "Other/Unknown" which need standardization.

Standardized terminology:

- 'White/Caucasian' → 'White'
- 'Other/Unknown' → 'Unknown'

Race categories after standardization:

Asian, Black, Hispanic, Native American, Unknown, White

3.6.4.2 Recalculate Counts from Percentages

South Dakota's reported race counts sum were inconsistent with the total_profiles.

We removed existing gender count data and recalculated counts using percentage values and combined totals.

All recalculated values flagged with value_source = "calculated"

Removed existing race count data
Calculated demographic counts from percentages
Category totals after calculating counts:

offender_type	variable_category	total_profiles	sum_counts	difference
Combined	gender	67753	67753	0
Combined	race	67753	67752	1

We handled this differe of 1 by adding it to the most representative race (White).

3.6.5 Verify Data Consistency

Final checks to ensure standardization didn't affect data integrity.

Final data consistency checks after standardization:

Verifying that demographic counts match reported totals:

offender_type	variable_category	total_profiles	sum_counts	difference
	gender	67753	67753	0
Combined	race	67753	67753	0

Counts consistency check:

All counts consistent: TRUE

Percentage consistency check:

All percentages sum to ~100%: TRUE

3.6.6 Prepare for Combined Dataset

The cleaned data is formatted to match the master schema and appended to the foia_combined dataframe.

Appended 17 South Dakota rows to foia_combined Total rows in foia_combined: 145

South Dakota's comprehensive data structure:

variable_category	n_rows
gender	4
race	12
total	1

3.6.7 Document Metadata

The metadata is added with details on South Dakota's comprehensive reporting and the terminology standardization performed.

Metadata added for: South Dakota Metadata updated for: South Dakota

3.6.8 Visualizations

Combined Gender Counts

Figure 31: South Dakota DNA Database Demographic Distributions

Combined Gender Percentages

Figure 32: South Dakota DNA Database Demographic Distributions

Combined Race Counts

Figure 33: South Dakota DNA Database Demographic Distributions

Combined Race Percentages

Figure 34: South Dakota DNA Database Demographic Distributions

3.6.9 Summary Statistics

12

Final verification:

2 race

3 total

Counts consistent: TRUE

Percentages consistent: TRUE

3.6.10 Summary of South Dakota Processing

South Dakota data processing complete. The state provided exemplary data with minimal adjustments needed:

• Terminology standardization:

- "White/Caucasian" \rightarrow "White"
- "Other/Unknown" \rightarrow "Unknown"
- Comprehensive reporting: Standard demographics plus unique gender×race intersectional data
- Reported data: Both counts and percentages for all categories
- Quality checks: All counts and percentages pass consistency validation
- Provenance tracking: All values maintain value_source = "reported" as only terminology changes were made

South Dakota's data is now standardized and ready for cross-state analysis.

3.7 Texas (TX)

Overview: Texas provides **counts only** for gender and race categories. The Male gender is missing in the dataset. The state uses non-standard terminology that requires conversion and needs Combined totals and percentages calculated.

3.7.1 Examine Raw Data

Establish a baseline understanding of the data exactly as it was received.

Column	Туре	Rows	Missing	Unique	Unique_Values
state	character	16	0	1	Texas
offender_type	character	16	0	2	Offenders, Arrestee
variable_category	character	16	0	3	total, gender, race
variable_detailed	character	16	0	8	total_profiles, Female, Asian, African American, Caucasian, Hispanic, N
value	numeric	16	0	16	845322, 73631, 121434, 18721, 3361, 254366, 309010 .
value_type	character	16	0	1	count
value_source	character	16	0	1	reported

Column Type Rows Missing Unique Unique_Values

Data frame dimensions: 16 rows × 7 columns

3.7.2 Verify Data Consistency

Initial checks reveal Texas's reporting structure and terminology differences.

Initial data availability:

Race data: counts

Gender data: counts

Non-standard terminology found:

Offender types: Offenders, Arrestee

Race terms: Asian, African American, Caucasian, Hispanic, Native American, Other

3.7.3 Address Data Gaps

3.7.3.1 Add Missing Male category

Texas data reports only Female counts explicitly. We calculated Male counts by subtracting Female counts from total profiles, assuming binary gender classification in the dataset.

Current gender structure:

[1] "Female"

After adding Male entries - gender categories:

[1] "Female" "Male"

3.7.3.2 Standardize Terminology

Texas uses "Offenders" instead of "Convicted Offender" and "Caucasian" instead of "White".

Standardized terminology:

- 'Offenders' → 'Convicted Offender'
- 'Caucasian' → 'White'
- 'African American' → 'Black'

Offender types after standardization: Arrestee, Convicted Offender

3.7.3.3 Create Unknown Category

Texas race count is inconsistent, with a significant number of profiles not reported in any racial category.

Unknown category was created to account for these missing profiles.

The calculated values are added with a **value_source = "calculated"** tag to maintain transparency about what was provided versus what was derived.

Category totals after adding Unknown race category:

offender_type	variable_category	total_profiles	sum_counts	difference
Arrestee	gender	73631	73631	0
Arrestee	race	73631	73631	0
Convicted Offender	gender	845322	845322	0
Convicted Offender	race	845322	845322	0

Counts consistency after adding Unknown:

All counts consistent: TRUE

3.7.3.4 Create Combined Totals

Texas only reported data for "Convicted Offender" and "Arrestee" separately. We calculate Combined totals.

Created Combined totals for Texas Combined total profiles: 918,953

3.7.3.5 Calculate Percentages

Transforms the data from counts into percentages for comparative analysis.

Added percentages for all demographic categories

Percentage consistency check:

All percentages sum to ~100%: TRUE

Final data availability:

Race data: both Gender data: both

3.7.4 Verify Data Consistency

Final checks to ensure all processing maintained data integrity.

Final data consistency checks:

Verifying that demographic counts match reported totals:

offender_type	variable_category	total_profiles	sum_counts	difference
Arrestee	gender	73631	73631	0
Arrestee	race	73631	73631	0
Combined	gender	918953	918953	0
Combined	race	918953	918953	0
Convicted Offender	gender	845322	845322	0
Convicted Offender	race	845322	845322	0

Counts consistency check:

All counts consistent: TRUE

Percentage consistency check:

All percentages sum to ~100%: TRUE

3.7.5 Prepare for Combined Dataset

The cleaned data is formatted to match the master schema and appended to the foia_combined dataframe.

Appended 57 Texas rows to foia_combined Total rows in foia_combined: 202

3.7.6 Document Metadata

The metadata is added with details on all processing steps performed.

Metadata added for: Texas Metadata updated for: Texas

3.7.7 Visualizations

Arrestee Gender Counts

Figure 35: Texas DNA Database Demographic Distributions

Arrestee Gender Percentages

Figure 36: Texas DNA Database Demographic Distributions

Arrestee Race Counts

Figure 37: Texas DNA Database Demographic Distributions

Arrestee Race Percentages

Figure 38: Texas DNA Database Demographic Distributions

Combined Gender Counts

Figure 39: Texas DNA Database Demographic Distributions

Combined Gender Percentages

Figure 40: Texas DNA Database Demographic Distributions

Combined Race Counts

Figure 41: Texas DNA Database Demographic Distributions

Combined Race Percentages

Figure 42: Texas DNA Database Demographic Distributions

Convicted Offender Gender Counts

Figure 43: Texas DNA Database Demographic Distributions

Convicted Offender Gender Percentages

Figure 44: Texas DNA Database Demographic Distributions

Convicted Offender Race Counts

Figure 45: Texas DNA Database Demographic Distributions

Convicted Offender Race Percentages

Figure 46: Texas DNA Database Demographic Distributions

Texas Demographic Distribution

Gender Distribution

Race Distribution

Figure 47: Texas Demographic Distributions by Offender Type $_{98}^{\rm CO}$

3.7.8 Summary Statistics

Texas DNA Database Summary: ### Total Profiles by Offender Type (Texas)

Offender Type	Total Profiles	Source
Convicted Offender Arrestee Combined	73,631	reported reported calculated

Data Completeness by Source

Value Source	Number of Values
calculated	41
reported	16

Data Validation Summary

Check	Status
Counts Consistency	Pass
Percentages Consistency	Pass

3.7.9 Summary of Texas Processing

Texas data processing complete. The dataset required several adjustments:

- Male Category Addition:
 - "Male" added to variable_detailed
- Terminology standardization:
 - "Offenders" \rightarrow "Convicted Offender"
 - "Caucasian" \rightarrow "White"
 - "African American" \rightarrow "Black"
- Calculated additions:

- Combined totals across all offender types
- Percentage values for all demographic categories
- Quality checks: All counts and percentages pass consistency validation
- Provenance tracking: Clear distinction between reported and calculated values

The Texas data is now standardized and ready for cross-state analysis.

3.8 Combined Dataset

state	$offender_type$	$variable_category$	$variable_detailed$	value	$value_type$	value_source
California	Convicted Offender	total	total_profiles	2.019899e+06	count	reported
California	Arrestee	total	$total_profiles$	7.518220e + 05	count	reported
California	Convicted Offender	gender	Female	3.098270e + 05	count	reported
California	Convicted Offender	gender	Male	1.603222e+06	count	reported
California	Convicted Offender	gender	Unknown	1.068500e + 05	count	reported
California	Arrestee	gender	Female	2.082250e + 05	count	reported
California	Arrestee	gender	Male	5.242310e + 05	count	reported
California	Arrestee	gender	Unknown	1.936600e + 04	count	reported
California	Convicted Offender	race	Black	3.689520e + 05	count	reported
California	Convicted Offender	race	White	5.885550e + 05	count	reported
California	Convicted Offender	race	Hispanic	6.521210e + 05	count	reported
California	Convicted Offender	race	Asian	1.638400e + 04	count	reported
California	Arrestee	race	Black	1.047410e + 05	count	reported
California	Arrestee	race	White	2.313130e + 05	count	reported
California	Arrestee	race	Hispanic	$3.084500e{+05}$	count	reported
California	Arrestee	race	Asian	1.119100e+04	count	reported
California	Convicted Offender	race	Unknown	3.938870e + 05	count	calculated
California	Arrestee	race	Unknown	9.612700e + 04	count	calculated
California	Combined	gender	Female	5.180520e + 05	count	calculated
California	Combined	gender	Male	$2.127453e{+06}$	count	calculated
California	Combined	gender	Unknown	1.262160e + 05	count	calculated
California	Combined	race	Black	4.736930e + 05	count	calculated
California	Combined	race	Asian	2.757500e + 04	count	calculated
California	Combined	race	White	8.198680e + 05	count	calculated
California	Combined	race	Hispanic	$9.605710e{+05}$	count	calculated
California	Combined	race	Unknown	4.900140e + 05	count	calculated
California	Combined	total	total_profiles	2.771721e + 06	count	calculated
California	Convicted Offender	gender	Female	1.534000e+01	percentage	calculated
California	Convicted Offender	gender	Male	7.937000e+01	percentage	calculated
California	Convicted Offender	gender	Unknown	5.290000e+00	percentage	calculated
California	Arrestee	gender	Female	2.770000e+01	percentage	calculated
California	Arrestee	gender	Male	6.973000e+01	percentage	calculated
California	Arrestee	gender	Unknown	2.580000e+00	percentage	calculated
California	Convicted Offender	race	Black	1.827000e+01	percentage	calculated
California	Convicted Offender	race	White	2.914000e+01	percentage	calculated
California	Convicted Offender	race	Hispanic	3.228000e+01	percentage	calculated
California	Convicted Offender	race	Asian	8.100000e-01	percentage	calculated
California	Arrestee	race	Black	1.393000e+01	percentage	calculated
California	Arrestee	race	White	3.077000e+01	percentage	calculated

(continued)

state	offender_type	variable_category	variable_detailed	value	value_type	value_source
California	Arrestee	race	Hispanic	4.103000e+01	percentage	calculated
California	Arrestee	race	Asian	1.490000e+00	percentage	calculated
California	Convicted Offender	race	Unknown	1.950000e+01	percentage	calculated
California	Arrestee	race	Unknown	1.279000e+01	percentage	calculated
California	Combined	gender	Female	1.869000e+01	percentage	calculated
California	Combined	gender	Male	7.676000e+01	percentage	calculated
California	Combined	gender	Unknown	4.550000e+00	percentage	calculated
California	Combined	race	Black	1.709000e+01	percentage	calculated
California	Combined	race	Asian	9.900000e-01	percentage	calculated
California	Combined	race	White	2.958000e+01	percentage	calculated
California	Combined	race	Hispanic	$3.466000e{+01}$	percentage	calculated
California	Combined	race	Unknown	1.768000e+01	percentage	calculated
Florida	Combined	total	total_profiles	1.175391e + 06	count	reported
Florida	Combined	total	total_profiles	1.000000e+02	percentage	reported
Florida	Combined	gender	Female	2.608850e + 05	count	reported
Florida	Combined	gender	Female	2.220000e+01	percentage	reported
Florida	Combined	_	Male			_
Florida	Combined	gender gender	Male	9.011260e+05 7.667000e+01	count percentage	reported
Florida	Combined	gender	Unknown	1.338000e+04	count	reported reported
Florida	Combined	gender	Unknown	1.140000e+00		reported
Florida	Combined	race	Black	4.137330e+05	percentage count	reported
						_
Florida	Combined	race	Black	3.520000e+01	percentage	reported
Florida	Combined	race	Asian	2.659000e+03	count	reported
Florida	Combined	race	Asian	2.300000e-01	percentage	reported
Florida	Combined	race	White	7.214850e+05	count	reported
Florida	Combined	race	White	6.138000e+01	percentage	reported
Florida	Combined	race	Hispanic	2.845200e+04	count	reported
Florida	Combined	race	Hispanic	2.420000e+00	percentage	reported
Florida	Combined	race	Native American	6.670000e+02	count	reported
Florida	Combined	race	Native American	6.000000e-02	percentage	reported
Florida	Combined	race	Other	1.176000e+03	count	reported
Florida	Combined	race	Other	1.000000e-01	percentage	reported
Florida	Combined	race	Unknown	7.219000e + 03	count	reported
Florida	Combined	race	Unknown	6.100000e-01	percentage	reported
Indiana	Convicted Offender	total	$total_profiles$	2.796540e + 05	count	reported
Indiana	Arrestee	total	$total_profiles$	2.108700e + 04	count	reported
Indiana	Combined	gender	Female	2.0000000e+01	percentage	reported
Indiana	Combined	gender	Male	8.000000e+01	percentage	reported
Indiana	Combined	race	White	6.965174e + 01	percentage	calculated
Indiana	Combined	race	Black	2.587065e+01	percentage	calculated
Indiana	Combined	race	Hispanic	$3.980100e{+00}$	percentage	calculated
Indiana	Combined	race	Other	4.975124e-01	percentage	calculated
Indiana	Combined	total	total_profiles	3.007410e + 05	count	calculated
Indiana	Combined	gender	Female	6.014800e+04	count	calculated
Indiana	Combined	gender	Male	2.405930e + 05	count	calculated
Indiana	Combined	race	White	2.094710e + 05	count	calculated
Indiana	Combined	race	Black	7.780400e+04	count	calculated
Indiana	Combined	race	Hispanic	1.197000e+04	count	calculated
			Other	1.496000e+03	count	calculated
Indiana	Compined	race				
Indiana Maine	Combined Combined	race total	total_profiles	3.371100e+04	count	reported

state	offender_type	variable_category	variable_detailed	value	value_type	value_source
Maine	Combined	gender	Female	1.701702e+01	percentage	calculated
Maine	Combined	gender	Unknown	2.002002 e-01	percentage	calculated
Maine	Combined	race	White	3.129800e+04	count	reported
Maine	Combined	race	White	9.280000e+01	percentage	reported
Maine	Combined	race	Black	1.299000e+03	count	reported
Maine	Combined	race	Black	3.900000e+00	percentage	reported
Maine	Combined	race	Unknown	4.700000e+02	count	reported
Maine	Combined	race	Unknown	1.400000e+00	percentage	reported
Maine	Combined	race	Native American	3.450000e+02	count	reported
Maine	Combined	race	Native American	1.000000e+00	percentage	reported
Maine	Combined	race	Hispanic	1.710000e + 02	count	reported
Maine	Combined	race	Hispanic	5.000000e-01	percentage	reported
Maine	Combined	race	Asian	1.280000e+02	count	reported
Maine	Combined	race	Asian	4.000000e-01	percentage	reported
Maine	Combined	gender	Male	2.790700e+04	count	calculated
Maine	Combined	gender	Female	5.737000e+03	count	calculated
Maine	Combined	gender	Unknown	6.700000e+01	count	calculated
Nevada	Combined	total	$total_profiles$	3.440970e + 05	count	reported
Nevada	Arrestee	total	$total_profiles$	1.850740e + 05	count	reported
Nevada	Arrestee	total	$total_profiles$	$5.378500e{+01}$	percentage	reported
Nevada	Convicted Offender	total	total_profiles	1.590230e + 05	count	reported
Nevada	Convicted Offender	total	$total_profiles$	4.621500e+01	percentage	reported
Nevada	Combined	gender	Female	6.328700e + 04	count	reported
Nevada	Combined	gender	Female	1.839200e+01	percentage	reported
Nevada	Combined	gender	Male	$2.807380e{+05}$	count	reported
Nevada	Combined	gender	Male	8.158700e+01	percentage	reported
Nevada	Combined	gender	Unknown	7.200000e+01	count	reported
Nevada	Combined	gender	Unknown	2.090000e-02	percentage	reported
Nevada	Combined	race	White	2.387230e + 05	count	reported
Nevada	Combined	race	White	$6.937700e{+01}$	percentage	reported
Nevada	Combined	race	Unknown	3.491000e+03	count	reported
Nevada	Combined	race	Unknown	1.015000e+00	percentage	reported
Nevada	Combined	race	Native American	5.710000e+03	count	reported
Nevada	Combined	race	Native American	1.659000e+00	percentage	reported
Nevada	Combined	race	Black	8.817400e + 04	count	reported
Nevada	Combined	race	Black	$2.562500e{+01}$	percentage	reported
Nevada	Combined	race	Asian	7.999000e+03	count	reported
Nevada	Combined	race	Asian	2.346000e+00	percentage	reported
South Dakota	Combined	total	$total_profiles$	6.775300e + 04	count	reported
South Dakota	Combined	gender	Male	5.119700e+04	count	reported
South Dakota	Combined	gender	Male	7.556000e+01	percentage	reported
South Dakota	Combined	gender	Female	$1.655600 \mathrm{e}{+04}$	count	reported
South Dakota	Combined	gender	Female	2.444000e+01	percentage	reported
South Dakota	Combined	race	Asian	8.000000e-02	percentage	reported
South Dakota	Combined	race	Black	5.960000e+00	percentage	reported
South Dakota	Combined	race	Hispanic	4.350000e+00	percentage	reported
South Dakota	Combined	race	Native American	2.154000e+01	percentage	reported
South Dakota	Combined	race	Unknown	1.320000e+00	percentage	reported
South Dakota	Combined	race	White	6.675000e+01	percentage	reported
South Dakota	Combined	race	Asian	$5.400000e{+01}$	count	calculated
South Dakota	Combined	race	Black	4.038000e+03	count	calculated

state	offender_type	variable_category	variable_detailed	value	value_type	value_sourc
South Dakota	Combined	race	Hispanic	2.947000e+03	count	calculated
South Dakota	Combined	race	Native American	1.459400e + 04	count	calculated
South Dakota	Combined	race	Unknown	8.940000e+02	count	calculated
South Dakota	Combined	race	White	4.522600e+04	count	calculated
Texas	Convicted Offender	total	$total_profiles$	$8.453220\mathrm{e}{+05}$	count	reported
Texas	Arrestee	total	total_profiles	7.363100e+04	count	reported
Texas	Convicted Offender	gender	Female	1.214340e + 05	count	reported
Texas	Arrestee	gender	Female	1.872100e + 04	count	reported
Texas	Convicted Offender	race	Asian	$3.361000e{+03}$	count	reported
Texas	Convicted Offender	race	Black	2.543660e + 05	count	reported
Texas	Convicted Offender	race	White	3.090100e+05	count	reported
Texas	Convicted Offender	race	Hispanic	2.762450e + 05	count	reported
Texas	Convicted Offender	race	Native American	1.380000e+02	count	reported
Texas	Convicted Offender	race	Other	2.173000e+03	count	reported
Texas	Arrestee	race	Asian	4.970000e+02	count	reported
Texas	Arrestee	race	Black	1.290300e + 04	count	reported
Texas	Arrestee	race	White	3.348600e + 04	count	reported
Texas	Arrestee	race	Hispanic	2.420200e+04	count	reported
Texas	Arrestee	race	Native American	$2.400000\mathrm{e}{+01}$	count	reported
Texas	Arrestee	race	Other	3.580000e+02	count	reported
Texas	Convicted Offender	gender	Male	7.238880e + 05	count	calculated
Texas	Arrestee	gender	Male	5.491000e+04	count	calculated
Texas	Convicted Offender	race	Unknown	2.900000e+01	count	calculated
Texas	Arrestee	race	Unknown	2.161000e+03	count	calculated
Texas	Combined	gender	Female	1.401550e + 05	count	calculated
Texas	Combined	gender	Male	7.787980e + 05	count	calculated
Texas	Combined	race	Asian	3.858000e+03	count	calculated
Texas	Combined	race	Black	2.672690e + 05	count	calculated
Texas	Combined	race	Hispanic	3.004470e + 05	count	calculated
Texas	Combined	race	Native American	1.620000e+02	count	calculated
Texas	Combined	race	Other	2.531000e+03	count	calculated
Texas	Combined	race	Unknown	2.190000e+03	count	calculated
Texas	Combined	race	White	3.424960e + 05	count	calculated
Texas	Combined	total	total_profiles	9.189530e + 05	count	calculated
Texas	Convicted Offender	gender	Female	1.437000e+01	percentage	calculated
Texas	Arrestee	gender	Female	2.543000e+01	percentage	calculated
Texas	Convicted Offender	race	Asian	4.000000e-01	percentage	calculated
Texas	Convicted Offender	race	Black	3.009000e+01	percentage	calculated
Texas	Convicted Offender	race	White	3.656000e+01	percentage	calculated
Texas	Convicted Offender	race	Hispanic	3.268000e+01	percentage	calculated
Texas	Convicted Offender	race	Native American	2.000000e-02	percentage	calculated
Texas	Convicted Offender	race	Other	2.600000e-01	percentage	calculated
Texas	Arrestee	race	Asian	6.700000e-01	percentage	calculated
Texas	Arrestee	race	Black	1.752000e+01	percentage	calculated
Texas	Arrestee	race	White	4.548000e+01	percentage	calculated
Texas	Arrestee	race	Hispanic	3.287000e+01	percentage	calculated
	Arrestee	race	Native American	3.000000e-02	percentage	calculated
		race	Other	4.900000e-01	percentage	calculated
Texas	Arrestee				POLOUITOUS	- Caro Graduct
Texas Texas Texas	Arrestee Convicted Offender	gender	Male	8.563000e+01	percentage	calculated
Texas Texas						calculated calculated

(continued)

state	$offender_type$	$variable_category$	$variable_detailed$	value	value_type	value_source
Texas	Arrestee	race	Unknown	2.930000e+00	percentage	calculated
Texas	Combined	gender	Female	$1.525000e{+01}$	percentage	calculated
Texas	Combined	gender	Male	$8.475000e{+01}$	percentage	calculated
Texas	Combined	race	Asian	4.200000e-01	percentage	calculated
Texas	Combined	race	Black	2.908000e+01	percentage	calculated
Texas	Combined	race	Hispanic	3.269000e+01	percentage	calculated
Texas	Combined	race	Native American	2.000000e-02	percentage	calculated
Texas	Combined	race	Other	2.800000e-01	percentage	calculated
Texas	Combined	race	Unknown	2.400000e-01	percentage	calculated
Texas	Combined	race	White	$3.727000e{+01}$	percentage	calculated

Gender Distribution in State DNA Databases

4 Conclusions

- 1. Data Acquisition and Harmonization: We ingested seven unique state datasets (california_foia_data.cs through texas_foia_data.csv), each with distinct reporting formats, terminology, and levels of completeness. Through a systematic processing workflow, we harmonized these into a single, tidy long-format dataset (foia_combined), ensuring consistency across all variables.
- 2. **Standardization of Terminology**: A significant challenge was the non-standard terminology used across states. We implemented a rigorous process to map all state-specific terms to a common data model:
 - Offender Types: Standardized to "Convicted Offender", "Arrestee", and "Combined".
 - Race Categories: Mapped terms like "Caucasian", "African American", and "American Indian" to standardized categories ("White", "Black", "Native American").
 - Total Profiles: Consolidated terms like "total_flags" to "total_profiles".
- 3. Imputation and Calculation of Missing Data: To ensure comparability, we calculated values that were not directly provided by the states:

- **Derived Percentages**: For states providing only counts (CA, TX), we calculated percentage compositions.
- **Derived Counts**: For states providing only percentages (IN), we calculated absolute numbers using reported totals.
- Calculated Totals: We created "Combined" offender type totals for states that only reported separate "Convicted Offender" and "Arrestee" figures.
- Inferred Categories: We added "Unknown" race and "Male" gender categories where they were logically missing but necessary to reconcile reported totals (CA, TX).
- 4. Quality Assurance and Transparency: A core principle of this project was maintaining transparency and data provenance. This allows future researchers to understand exactly what was provided by the state versus what was derived during processing.
 - Validation checks: counts_consistent(), percentages_consistent()
 - Value tagging: "reported" or "calculated".
 - Metadata table: foia_state_metadata provides a clear audit trail of each state's original characteristics and the processing steps applied.