Diagonalisation

Table des matières

1. Déterminants.	1
1.1. forme n-linéaires alternée.	1
1.2. Déterminant d'une famille de E^n .	3
1.3. Déterminant d'un endomorphisme.	4
1.4. Déterminant d'une matrice carrée.	6
1.5. Déterminant d'une matrice triangulaire par blocs.	7
1.6. Développements d'un déterminant par rapport à une colonne.	8
1.7. Formule de Cramer.	9
2. Equations linéaires.	10

1. Déterminants.

1.1. forme n-linéaires alternée.

Définition 1.1.1 (forme n-linéaire): Soit E un espace vectoriel, et $\varphi: E^n \to \mathbb{R}$ une application. On dit que φ est une **forme n-linéaire** si φ est linéaire par rapport à chaque variable i.e, $\forall x_1, -, x_i, -, x_n, y_i \in E, \forall \alpha, \beta \in \mathbb{R},$

$$\varphi(x_1, -, x_{i-1}, \alpha x_i + \beta y_i, -, x_n) = \alpha \varphi(x_1, -, x_{i-1}, x_i, -, x_n) + \beta \varphi(x_1, -, x_{i-1}, y_i, -, x_n)$$

Exemples:

1. Montrons que $\varphi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}; (x_1, x_2) \mapsto x_1 x_2$ est 2-linéaire. Soit $\alpha, \beta \in \mathbb{R}$. On a

$$(\alpha x_1 + \beta y_1)x_2 = \alpha(x_1x_2) + \beta(y_1y_2)$$
 et $x_1(\alpha x_2 + \beta y_2) = \alpha(x_1x_2) + \beta(x_1y_2)$.

- 2. $\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}; (u^{\rightarrow}, v^{\rightarrow}) \mapsto u^{\rightarrow} \times v^{\rightarrow} \text{ est 2-linéaire (et symétrique)}.$
- 3. Le déterminant 2-2 est 2-linéaire.

Remarque: $\varphi(x_1, -, 0, -, x_n) = 0$.

Définition 1.1.2 (alternée): Soit φ une application n-linéaire. On dit que φ est **alternée** si

$$\forall i, j \in \{1, -, n\} \text{ avec } i \neq j, x_i = x_j \Rightarrow \varphi(x_1, -, x_n) = 0.$$

Proposition 1.1.1: Soit $f_1,-,f_n:E\to F$ n applications linéaires. Soit $\varphi:F^n\to\mathbb{R}$ n-linéaire. Alors

$$\varphi\circ (f_1,-,f_n):E^n\to \mathbb{R}; x_1,-,x_n\mapsto \varphi(f_1(x_1),-,f_n(x_n))$$

est n-linéaire.

Démonstration: Puisque les $f_1,-,f_n$ sont linéaires, et que φ est n-linéaire, il est évident que $\varphi\circ (f_1,-,f_n)$ est n-linéaire. \square

Définition 1.1.3 (antisymétrie): Soit φ une application n-linéaire. On dit que φ est **antisymétrique** si

$$\forall i, j \in [1, n] \text{ avec } i \neq j, \varphi(x_1, -, x_i, -, x_j, -, x_n) = -\varphi(x_1, -, x_j, -, x_i, -, x_n)$$

Proposition 1.1.2: Soit φ une application n-linéaire et alternée. On ne change pas la valeur de $\varphi(x_1,-,x_n)$ en ajoutant à un des vecteurs de la famille une combinaison linéaire des autres. i.e, $\forall i \in \{1,-,n\}, \forall a_1,-,a_{i-1},a_{i+1},-,a_n \in \mathbb{R},$

$$\varphi\Bigg(x_1,-,x_i+\sum_{j=1,j\neq i}^n\alpha_jx_j,-,x_n\Bigg)=\varphi(x_1,-,x_n)$$

Démonstration: Sans perte de généralité, on montre le cas où i=1.

$$\begin{split} \varphi\Bigg(x_1 + \sum_{j=2}^n \alpha_j x_j, -, x_n\Bigg) &= \varphi(x_1, -, x_n) + \sum_{j=2}^n \alpha_j \varphi\big(x_j, -, x_j, -, x_n\big) \\ &= \varphi(x_1, -, x_n) \end{split}$$

Car φ est alternée.

Proposition 1.1.3: Soit φ une application n-linéaire. φ est alternée si et seulement si φ est antisymétrique.

Démonstration:

 \Rightarrow Supposons que φ soit alternée. On pose $x_i=x_j$ Alors on a $\varphi\big(x_1,-,x_i,-,x_j,-,x_n\big)=0$

$$\begin{split} \varphi\big(x_1,-,x_i,-,x_j,-,x_n\big) &= \varphi\big(x_1,-,x_i+x_j,-,x_j+x_i,-,x_n\big) \\ &= \varphi\big(x_1,-,x_i,-,x_j+x_i,-,x_n\big) + \varphi\big(x_1,-,x_j,-,x_j+x_i,-,x_n\big) \\ &= \varphi\big(x_1,-,x_i,-,x_j,-,x_n\big) + \underline{\varphi(x_1,-,x_i,-,x_i,-,x_n)} \\ &\underline{+\varphi\big(x_1,-,x_j,-,x_j,-,x_n\big)} + \varphi\big(x_1,-,x_j,-,x_i,-,x_n\big) \quad \text{car } \varphi \text{ est altern\'ee.} \\ &= \varphi\big(x_1,-,x_i,-,x_i,-,x_n\big) + \varphi\big(x_1,-,x_j,-,x_i,-,x_n\big) \end{split}$$

D'où

$$0 = \varphi\big(x_1, -, x_i, -, x_j, -, x_n\big) + \varphi\big(x_1, -, x_j, -, x_i, -, x_n\big)$$

$$\Leftrightarrow \varphi\big(x_1, -, x_i, -, x_i, -, x_n\big) = -\varphi\big(x_1, -, x_i, -, x_i, -, x_n\big)$$

Donc φ est antisymetrique.

 \Leftarrow Supposons que φ soit antisymétrique. Alors on a :

$$\varphi\big(x_1,-,x_i,-,x_j,-,x_n\big) = -\varphi\big(x_1,-,x_j,-,x_i,-,x_n\big)$$

En particulier, en posant $x_i = x_i$ on a :

$$\begin{split} \varphi(x_1,-,x_i,-,x_i,-,x_n) &= -\varphi(x_1,-,x_i,-,x_i,-,x_n) \\ &\Leftrightarrow 2\varphi(x_1,-,x_i,-,x_i,-,x_n) = 0 \\ &\Leftrightarrow \varphi(x_1,-,x_i,-,x_i,-,x_n) = 0 \end{split}$$

Proposition 1.1.4: Soit φ une application n-linéaire et alternée. Si $(x_1,-,x_n)$ est une famille liée alors $\varphi(x_1,-,x_n)=0$

Démonstration: $(x_1,-,x_n)$ est liée donc il existe $\alpha_1,-,\alpha_n\in\mathbb{R}$ tel que $\alpha_1x_1+\ldots+\alpha_nx_n=0$ avec $\alpha_i\neq 0$ cas $\alpha_1\neq 0, x_1=-\frac{\alpha_2}{\alpha_1}x_2-\ldots-\frac{\alpha_n}{\alpha_1}x_n$, alors

$$\begin{split} \varphi(x_1,-,x_n) &= \varphi\bigg(-\frac{\alpha_2}{\alpha_1}x_2 - \ldots - \frac{\alpha_n}{\alpha_1}x_n, x_2, -, x_n\bigg) \\ &= \text{TODO} = 0 \end{split}$$

Corollaire 1.1.1: Si $\dim(E) < n$ toutes les formes n-linéaires alternées sur E sont nulles.

Démonstration: Soit E un espace vectoriel, $x_1,-,x_n\in E$. Alors $(x_1,-,x_n)$ est liée donc $\varphi(x_1,-,x_n)=0$.

Théorème 1.1.1: Si $\dim(E \geq n)$ alors il existe des formes n-linéaires alternées sur E non nulles

De plus, si $\dim(E)=n$ deux formes n-linéaires alternées sur E φ_1 et φ_2 non nulles sont proportionnelles i.e, $\exists \lambda \in \mathbb{R}$ tel que $\forall x_1, -, x_n \in E, \varphi_2(x_1, -, x_n) = \lambda \varphi_1(x_1, -, x_n)$.

1.2. Déterminant d'une famille de E^n .

Lemme 1.2.1: Soit $m:E^2 \to \mathbb{R}$. Alors $a_m:E^2 \to \mathbb{R}$ définie par

$$a_m(x_1,x_2) = m(x_1,x_2) - m(x_2,x_1) \\$$

est bilinéaire antisymétrique.

Démonstration: Soit $x_1, x_2 \in E$. On montre l'antisymétrie.

$$\begin{split} a_m(x_1,x_2) &= m(x_1,x_2) - m(x_2,x_1) = -(m(x_2,x_1) - m(x_1,x_2)) \\ &= -a_m(x_2,x_1) \end{split}$$

La linéarité est évidente.

Théorème 1.2.1: Soit E un espace vectoriel de dimension n, et $B=(e_1,-,e_n)$ une base de E. Alors il existe une unique forme n-linéaire alternée: $\det_B:E^n\to\mathbb{R}$ telle que $\det_B(e_1,-,e_n)=1$.

Démonstration cas n=2: TODO VOIR MAXIME

Définition 1.2.1 (Déterminant): Soit E un espace vectoriel de dimension n, et $B=(e_1,-,e_n)$ une base de E. On appelle **déterminant** dans la base B la forme n-linéaire du Théorème précédent

Théorème 1.2.2: Soit E un espace vectoriel de dimension n, et B une base de E. Une famille $F=\{f_1,-,f_n\}$ de E est libre si et seulement si $\det_B(f_1,-,f_n)\neq 0$. Dans ce cas on a :

$$\forall x_1, -, x_n \in E, \det_B(x_1, -, x_n) = \det_B(F) \det_F(x_1, -, x_n).$$

Démonstration: Soit $F = (f_1, -, f_n)$ une famille, $B = (e_1, -, e_n)$.

Si F est liée on a \det_B est n-linéaire alternée. Alors $\det_B(f_1,-,f_n)=0$.

Si F est libre alors F est une base donc $\exists \lambda \in \mathbb{R}, \det_B = \lambda \det_F$ voir (Théorème). En particulier,

$$\begin{split} \det_B(f_1,-,f_n) &= \lambda \det_F(f_1,-,f_n) \underset{\text{par d\'efinition}}{=} \lambda \cdot 1 \\ \text{Or} \qquad 1 &= \det_B(e_1,-,e_n) = \lambda \det_F(e_1,-,e_n) \text{ d'où } \lambda \neq 0 \end{split}$$

D'où $\det_B(f_1, -, f_n) \neq 0$.

1.3. Déterminant d'un endomorphisme.

Théorème 1.3.1: Soit E un espace vectoriel de dimension n et $f:E\to E$ un endomorphisme. Alors il existe un unique réel $\det(f)$ tel que pour toute application φ n-linéaire alternée, et pour tout $(x_1,-,x_n)\in E$,

$$\varphi(f(x_1), f(x_n)) = \det(f)\varphi(x_1, -, x_n).$$

Remarque: En prenant $x_1, -, x_n = e_1, -, e_n$,

$$\det_B(f(B)) = \det F.$$

Démonstration: Existence: Soit φ une forme n-linéaire alternée non-nulle et

 $\psi: E^n \to \mathbb{R}; x_1, -, x_n \mapsto (f(x_1), -, f(x_n))$ qui est une forme n-linéaire alternée. Alors φ et ψ sont proportionnelles, i.e il existe $\lambda \in \mathbb{R}$ tel que $\psi = \lambda \varphi$ (Théorème).

Soit Φ une forme n-linéaire alternée quel conque, alors il existe $\alpha\in\mathbb{R}$ tel que $\Phi=\alpha\varphi$, et $\forall x_1,-,x_n\in E,$

$$\Phi(f(x_1), -, f(x_n)) = \alpha \varphi(f(x_1), -, f(x_n)) = \alpha \varphi(\psi(x_1, -, x_n))) = \lambda \Phi(x_1, -, x_n)$$

MYSTIQUE

Définition 1.3.1: Soit E un espace vectoriel de dimension n et $f: E \to E$ un endomorphisme. On appelle **déterminant de** f le réel $\det(f)$ du Théorème précédent.

Proposition 1.3.1: Soit $f:E \to E$ et $g:E \to E$ deux endomorphismes. Alors, $\det(f \circ g) = \det(f)\det(g).$

 $\textit{D\'{e}monstration}\colon \text{Soit } \varphi: E^n \to \mathbb{R}$ une application n-lin'eaire altern\'ee, $x_1, -, x_n \in E.$ On a:

$$\begin{split} \varphi(f\circ g(x_1),-,f\circ g(x_n)) &= \det(f)\varphi(g(x_1),-,g(x_n)) \text{ par definition de} \det(f). \\ &= \det(f)\det(g)\varphi(x_1,-,x_n) \text{ par definition de } \det(g) \end{split}$$

Par unicité de $\det(f \circ g)$, $\det(f \circ g) = \det f \det(g)$.

Proposition 1.3.2: Soit F une famille de vecteurs de E, $f:E\to E$ un isomorphisme d'espace vectoriel, et B une base de E. Alors f(B) est une base de F et

$$\det_{f(B)} f(F) = \det_B F.$$

 $\label{eq:det_f} \textit{D\'emonstration} \colon \det_{f(B)} f \ \text{et } \det_{B} \text{ sont deux formes n-lin\'eaires altern\'ees sur } E \ \text{qui valent 1 sur } B \ \text{donc elles sont \'egales}.$

Théorème 1.3.2: Soit $f: E \to E$ un endomorphisme. Alors, f est bijectif si et seulement si $det(f) \neq 0$ et on a :

$$\det(f^{-1}) = \frac{1}{\det(f)}.$$

Démonstration: Soit B une base de E un espace vectoriel.

On rappelle f est bijectif $\Leftrightarrow f(B)$ est une base. $\Leftrightarrow \det_B f(B) \neq 0$. Si f est bijectif, $f \circ f^{-1} = \mathrm{id}_E$ donc $\det(f \circ f^{-1}) = \det(\mathrm{id}_E) = \det f \det f^{-1}$ or $\det(\mathrm{id}_E) = 1$ D'où $\det(f^{-1}) = \frac{1}{\det(f)}$.

1.4. Déterminant d'une matrice carrée.

Définition 1.4.1: Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice. On appelle **déterminant de** A

$$\det(A) = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots \\ a_{n1} & \cdots & a_{n,n} \end{vmatrix} \coloneqq \det_{(e_1,-,e_n)}((a_{11},-,a_{n1}),-,(a_{1n},-,a_{nn}))$$

le déterminant dans la base canonique de \mathbb{R}^n des n vecteurs colonnes de A .

Théorème 1.4.1: Soit E un espace vectoriel de dimension finie, $f:E\to E$ un endomorphisme. Alors

$$\det f = \det M_{B,B}(f).$$

Où ${\cal M}_{B,B}(f)$ est la matrice associée à f dans la base B.

Proposition 1.4.1: Soit $A, B \in M_{n \times n}(\mathbb{R}), \lambda \in \mathbb{R}$

- 1. det(AB) = det(A) det(B).
- 2. A inversible $\Leftrightarrow \det A \neq 0$. Si A est inversible alors $\det(A^{-1}) = \frac{1}{\det(A)}$.
- 3. $det(\lambda A) = \lambda^n det(A)$.

Démonstration:

1. Soit $f:E\to E,\,g:E\to E,\,A,B$ les matrices associées respectivement à f et g. Alors la matrice associée a $f\circ g$ est $M_{B,B}(f\circ g)=AB$. Ainsi,

$$\det(AB) = \det M(f \circ g) = \det(f \circ g) = \det f \det g = \det A \det B.$$

- 2. De même en considérant les endomorphismes associés.
- 3. Par n-linéarité.

Remarque (ATTENTION): $det(A + B) \neq det(A) + det(B)$

Théorème 1.4.2: Soit $A \in M_{n \times n}(\mathbb{R})$, E un espace vectoriel de dimension n, B une base de E, et $x_1, -, x_n$ tels que $x_i := a_{1i}e_1 + \ldots + a_{ni}e_n$. Alors

$$\det A = \det_R(x_1, -, x_n).$$

 $\label{eq:definition} \begin{array}{l} \textit{D\'{e}monstration} \colon \text{Soit } f : \mathbb{R}^n \to E; \text{base canonique} \mapsto \text{base B} = y_1, -, y_n \mapsto y_1 e_1 + \ldots + y_n e_n. \ f \text{ est bien un isomorphisme. On a} : f(a_{1i}, -, a_{ni}) = x_i. \ \text{D'après la proposition,} \end{array}$

$$\det_{f(C)} f(a_{1i}, -, a_{ni}) = \det_{C} (a_{1i}, -, a_{ni}) = \det A = \det_{B} (x_{1}, -, x_{n}).$$

Remarque: Le déterminant est indépendant de la base B choisie.

Définition 1.4.2 (transposée): Soit $A \in M_{p,q}(\mathbb{K})$ avec

$$A = \begin{pmatrix} a_{1,1}, -, a_{1,q} \\ |, -, | \\ a_{p,1}, -, a_{p,q} \end{pmatrix}$$

Alors la transposée est notée ${}^tA\in M_{p,q}(\mathbb{K})$ est la matrice

$${}^t A = \begin{pmatrix} a_{1,1}, -, a_{p,1} \\ |, -, | \\ a_{1,q}, -, a_{p,q} \end{pmatrix}.$$

Théorème 1.4.3 (Admis): Soit $A \in M_{n \times n}(\mathbb{R})$ une matrice carrée. Alors :

$$\det {}^t A = \det A.$$

Remarque: Conséquence directe: Toutes les propriétés des déterminants qui ont éténdues sur les colonnes sont aussi valables en opérant sur les lignes.

Proposition 1.4.2: Le déterminant est une forme n-linéaire alternée. Ainsi :

- 1. Il y a n-linéarité du déterminant par rapport aux vecteurs colonnes (ou lignes).
- 2. Soit $\alpha \in \mathbb{R}$.

$$\alpha \det(\cdot) = \det(\alpha C_i).$$

- 3. Si on échange deux colonnes, le déterminant est multiplié par −1.
- 4. $\det A \neq 0 \Leftrightarrow \operatorname{les} n$ vecteurs colonnes forment une famille libre

1.5. Déterminant d'une matrice triangulaire par blocs.

Théorème 1.5.1: Soit $A,B\in \mathrm{Mat}(\mathbb{R})$ des matrices carrées, M une matrice carrée de la forme $M={A \ C \choose 0 \ B}$. Alors :

$$\det M = \det A \det B.$$

Démonstration: Soit B, C des matrices de dimension n,

 $\varphi_{B,C}:\mathbb{R}^n o \mathbb{R}; (c_1,-,c_n)_{\text{vecteurs colonnes}} \mapsto \left[egin{smallmatrix} A & C \\ 0 & B \end{matrix} \right]. \; \Phi_{B,C} \; \text{est n-linéaire alternée donc}$

$$\forall A \in \operatorname{Mat}(\mathbb{R}), \begin{vmatrix} A & C \\ 0 & B \end{vmatrix} = \varphi_{B,C}(c_1, -, c_n) = \lambda_{B,C} \det A.$$

En prenant $A=I_n,$ det $A=1c_1$... incompréhensible... En faisant des opérations sur les colonnes, $\lambda_B, C=\left|\begin{smallmatrix}I_n&0\\0&B\end{smallmatrix}\right|$

Théorème 1.5.2 (même généralisé): Soit M une matrice carrée de la forme

$$M = \begin{pmatrix} A_1 & * & \cdots & * \\ 0 & A_2 & * & \vdots \\ 0 & \cdots & 0 & A_k \end{pmatrix} \text{ avec } (A_i)_{i \in \{1, -, k\}} \in \operatorname{Mat}_{n \times n}(\mathbb{R}). \text{ Alors}$$

$$\det M = \det A_1 \cdot \dots \cdot \det A_k$$

Remarque (Cas particulier): Déterminant d'une matrice triangulaire (ou diagonale):

$$\begin{vmatrix} a_{11} & 0 & \cdots & \cdots \\ 0 & a_{22} & 0 & \cdots \\ 0 & \cdots & 0 & a_{nn} \end{vmatrix} = a_{11}a_{22} \cdot \ldots \cdot a_{nn}$$

1.6. Développements d'un déterminant par rapport à une colonne.

Définition 1.6.1 (Déterminant mineur): Soit $A=\left(a_{ij}\right)_{i,j\in\{1,-,n\}}\in\operatorname{Mat}_{n\times n}(\mathbb{R})$. On appelle **déterminant mineur** de A, relatif à a_{ij} , le determinant d'ordre n-1 obtenu en rayant dans A la i-ème ligne et la i-ème colonne. On le note Δ_{ij} .

Définition 1.6.2 (Cofacteur): Soit $A = \left(a_{ij}\right)_{i,j\in\{1,-,n\}} \in \operatorname{Mat}_{n\times n}(\mathbb{R})$. On appelle **cofacteur** de A relatif à a_{ij} ,

$$c(ij) = (-1)^{i+j} \Delta_{ij}.$$

Définition 1.6.3 (Comatrice): Soit $A=\left(a_{ij}\right)_{i,j\in\{1,-,n\}}\in \operatorname{Mat}_{n\times n}(\mathbb{R})$. On appelle **comatrice** de A la matrice des cofacteurs $\left(c_{ij}\right)_{i,j\in\{1,-,n\}}$. On la note com A.

Théorème 1.6.1: Développement par rapport à la j-ième colonne.

Soit
$$A = \left(a_{ij}\right)_{i,j \in \{1,-,n\}} \in \operatorname{Mat}_{n \times n}(\mathbb{R}).$$

$$\det A = a_{1i}c_{1i} + \dots + a_{ni}c_{ni}$$

Remarque: On a toujours intéret à développer suivant la ligne ou la colonne avec le plus de 0.

Exemple: Développement d'un déterminant par rapport à la deuxième colonne.

$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 2 & 4 & -2 & 1 \\ -3 & -3 & 3 & 2 \\ 1 & 0 & 5 & -3 \end{vmatrix} = -0 * \begin{vmatrix} 2 & -2 & 1 \\ -3 & 3 & 2 \\ 1 & 5 & -3 \end{vmatrix} + 4 * \begin{vmatrix} 1 & 1 & 0 \\ -3 & 3 & 2 \\ 1 & 5 & -3 \end{vmatrix} - (-3) * \begin{vmatrix} 1 & 1 & 0 \\ 2 & -2 & 1 \\ 1 & 5 & -3 \end{vmatrix} + 0 * \begin{vmatrix} 1 & 1 & 0 \\ 2 & -2 & 1 \\ -3 & 3 & 2 \end{vmatrix}.$$

Cette méthode reste très longue, on privilégira donc de faire d'abord en amont un pivot de Gauss sur la matrice afin d'intégrer le plus de 0 à la matrice: $\begin{vmatrix} 1 & 0 & 1 & 0 \\ 2 & 4 & -2 & 1 \\ -3 & -3 & 3 & 2 \\ 1 & 0 & 5 & -3 \end{vmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 4 & -4 & 1 \\ -3 & -3 & 6 & 2 \\ 1 & 0 & 4 & 9 \end{bmatrix} D'où$

$$\begin{vmatrix} 1 & 0 & 1 & 0 \\ 2 & 4 & -2 & 1 \\ -3 & -3 & 3 & 2 \\ 1 & 0 & 5 & -3 \end{vmatrix} = 1 * \begin{vmatrix} 4 & -4 & 1 \\ -3 & 6 & 2 \\ 0 & 4 & -3 \end{vmatrix} \stackrel{=}{C_2 + c_1} \begin{vmatrix} 4 & 0 & 1 \\ -3 & 3 & 2 \\ 0 & 4 & -3 \end{vmatrix} \stackrel{=}{C_1 - 4C_3} \begin{vmatrix} 0 & 0 & 1 \\ -11 & 3 & 2 \\ 12 & 4 & -3 \end{vmatrix} \stackrel{=}{\text{par dvlp}} 1 \begin{vmatrix} -11 & 3 \\ 12 & 4 \end{vmatrix} = -11 * 4 - 3 * 12 = -44 - 36 = -80.$$

Corollaire 1.6.1: Soit $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$. On a :

$$A^t(\text{com}A) = \det(A)I_n = {}^t(\text{com }A)A$$

En particulier, si A est inversible,

$$A^{-1} = \frac{{}^{t}(\text{com}A)}{\det A}$$

Démonstration: $com(A)_{ij}=C_{ij}$ donc ${}^tcom(A)_{ij}=C_{ji}$. Les coefficients du produit matriciel $A^tcom(A)$ sont égaux à

$$\left(A({}^t\mathrm{com}\ A)\right)_{ij} = \sum_{k=1}^n a_{ik}({}^t\mathrm{com}\ A)_{kj} = \sum_{k=1}^n a_{ik}c_{jk} = \begin{cases} \det A \text{ si } i=j\\ 0 & \text{si } i\neq j \end{cases}$$

Car le déterminant comporte deux fois les lignes $a_{11}, a_{1k}, a_{in}...$ On obtient l'autre formule en développant par rapport à une colonne. \Box

$$\begin{split} &\textit{Exemple} \colon A = \begin{pmatrix} a & b \\ a' & b' \end{pmatrix} \, \text{Alors com } A = \begin{pmatrix} b' & -a' \\ -b & a \end{pmatrix}. \\ &\det(A) = ab' - ba'. \, A^{-1} = \frac{1}{ab' - ba'} \begin{pmatrix} b & -b' \\ -a' & a \end{pmatrix} \, \text{En d\'eduire si } ab' - ba' \neq 0. \\ & \begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases} \, \text{admet comme unique solution} \end{split}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = A^{-1} \begin{pmatrix} c \\ c' \end{pmatrix} = \frac{1}{ab' - ba'} \begin{pmatrix} b'c - c'b \\ -a'c + ac' \end{pmatrix} => x = \frac{\begin{vmatrix} c & b \\ c' & b' \end{vmatrix}}{\begin{vmatrix} a & b \\ a' & b' \end{vmatrix}} \text{ et } y = \frac{\begin{vmatrix} a & c \\ a' & c' \end{vmatrix}}{\begin{vmatrix} a & b \\ a' & b' \end{vmatrix}}$$

1.7. Formule de Cramer.

 $\textbf{Th\'eor\`eme 1.7.1} \colon \text{Soit } (S) \text{ le syst\`eme de } n \text{ \'equations \`a } n \text{ inconnues: } \begin{cases} a_{11}x_1 + \ldots + a_{1n}x_n = y_1 \\ \ldots & = \ldots \\ a_{n1}x_1 + \ldots + a_{nn}x_n = y_n \end{cases}$

Soit $A = (a_{ij})_{i,j \in \{1,-,n\}}$ (S) admet une unique solution si et seuleument si det $A \neq 0$. Dans ce cas, la solution est donnée par

$$x_k = \frac{1}{\det(A)} \begin{vmatrix} a_{11} & \cdots & a_{1,k-1} & y_1 & a_{1,k+1} & \cdots & a_{1n} \\ & \cdot & & \cdot & & \cdot \\ a_{n1} & \cdots & a_{n,k-1} & y_n & a_{n,k+1} & \cdots & a_{nn} \end{vmatrix}$$

La *k*-ième colonne est remplacée par le vecteur de second membre.

2. Equations linéaires.

Proposition 2.1: Soit E, F deux sous espaces vectoriels, $y \in F$ l'ensemble des solutions $x \in E$ de l'équation linéaire de second membre f(x) = y est vide si $y \notin \Im(f)$, est de la forme $x_0 + \ker(f)$, x_0 solution particulière si $y \in \Im(f)$.

Démonstration: Si l'ensemble des solutions $x \in E$ de f(x) = y n'est pas vide, il existe $x_0 \in E$ telle que $f(x_0) = y$. Soit $x \in E$. Alors x est solution de

$$f(x) = y \Leftrightarrow f(x) = f(x_0) \Leftrightarrow f(x - x_0) = 0 \Leftrightarrow x - x_0 \in \ker(f).$$

Définition 2.1: Soit E un espace vectoriel, $F_1, -, F_p$ des sous espaces vectoriels de E. On appelle **somme de Minkowski** l'ensemble des vecteurs de la forme $x_1 + \ldots + x_p$ avec $x_i \in F_i$ est un sous-espace vectoriel de E noté $F_1 + \ldots + F_p$.

Proposition 2.2: La somme de Minkowski est associative, commutative et 0 est l'unique élément neutre.

Définition 2.2: On dit que la somme $F_1+\ldots+F_p$ est **directe** si pour tout vecteur $x_1\in F_1,-,x_n\in F_n$ on a l'implication $x_1+\ldots+x_p=0\Rightarrow x_1=\ldots=x_p$. Dans ce cas on la note $F_1\oplus\ldots\oplus F_p$.