Определение 1. Окрестностью точки называется произвольный содержащий её интервал (всюду в этом листке под интервалами понимаются в том числе и бесконечные: открытые лучи и вся прямая). Точка называется внутренней точкой множества M, если она содержится в M вместе с некоторой своей окрестностью.

Задача 1. Найдётся ли множество, у которого а) нет внутренних точек; б) ровно одна внутренняя точка?

Определение 2. Множество называется открытым, если каждая его точка внутренняя.

Задача 2. а) Докажите, что интервал — открытое множество. б) Бывают ли счётные открытые множества?

Определение 3. Точка называется npedenbhoù moчкоù множества <math>M, если в любой её окрестности содержится бесконечное количество точек из M. Точка называется usonuposahhoù moчкоù множества <math>M, если она принадлежит M и не является для него предельной.

Задача 3. Найдите все предельные точки **a)** \mathbb{Z} ; **б)** (0,1); **в)** $\{\frac{1}{n} \mid n \in \mathbb{N}\}$; **r)** $\{(-1)^n + \frac{1}{n} \mid n \in \mathbb{N}\}$; **д)** $\mathbb{R} \setminus \mathbb{Q}$; **e)** \mathbb{Q} ; **ж)** $\{\frac{m}{2^n} \mid n, m \in \mathbb{Z}\}$; **3)** бесконечных десятичных дробей, в записи которых только 0 и 1; **и)** $\{\sin n \mid n \in \mathbb{N}\}$.

Задача 4. Может ли **a)** \mathbb{N} ; **б)** $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ быть множеством предельных точек какого-нибудь множества?

Задача 5. Верно ли, что точная верхняя грань ограниченного множества является его предельной точкой?

Задача 6. Верно ли, что точка x предельная для множества M тогда и только тогда, когда в любой окрестности x содержится **a)** хотя бы одна точка множества M? **б)** хотя бы две точки множества M?

Определение 4. a называется $npedeльной точкой последовательности <math>(x_n)$, если $\forall \varepsilon > 0 \ \forall n \ \exists m > n \ |x_m - a| < \varepsilon$.

Задача 7. а) Верно ли, что a является предельной точкой (x_n) , если a является предельной точкой множества $\{x_n \mid n \in \mathbb{N}\}$? Верно ли обратное? б) Докажите, что ограниченная последовательность имеет предел тогда и только тогда, когда у неё существует и единственна предельная точка.

Задача 8. а) Выкинем из множества все изолированные точки. Может ли так оказаться, что мы ничего не выкинули? Выкинули всё? б) С полученным множеством повторим ту же самую операцию. И так далее: из получающегося после каждого шага множества будем выкидывать все изолированные точки. Допустим, каждый раз из множества действительно что-то выкидывают. Может ли это продолжаться бесконечно долго?

Определение 5. Множество называется замкнутым, если оно содержит все свои предельные точки.

Задача 9. а) Существуют ли множества, не являющиеся ни замкнутыми, ни открытыми?

б) Всегда ли дополнение замкнутого множества открыто? Всегда ли дополнение открытого множества замкнуто? (Дополнением множества A называется разность $\mathbb{R} \setminus A$. Обозначения: \overline{A} .)

Задача 10. а) Докажите, что конечное пересечение (то есть пересечение конечного числа) и произвольное объединение (то есть объединение произвольного количества) открытых множеств открыто.

б) Докажите, что конечное объединение и произвольное пересечение замкнутых множеств замкнуто.

Задача 11. Найдите все множества, являющиеся одновременно открытыми и замкнутыми.

Задача 12. а) Докажите, что всякое открытое множество можно представить в виде объединения не более чем счётного числа попарно непересекающихся интервалов. **б**) Единственно ли такое представление?

Задача 13. а) Можно ли представить интервал в виде объединения двух непересекающихся непустых открытых множеств? б) А отрезок в виде объединения двух непересекающихся непустых замкнутых множеств? в) Можно ли представить прямую в виде объединения попарно непересекающихся отрезков?

Задача 14. Докажите, что **a)** у любого бесконечного ограниченного множества есть хотя бы одна предельная точка; **б)** из любой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Задача 15. (*Компактность отрезка*) Отрезок покрыт произвольной системой открытых множеств. Докажите, что в этой системе можно выбрать конечную подсистему, также покрывающую отрезок.

Задача 16. Останутся ли верными утверждения предыдущей задачи, если заменить отрезок на интервал?

Определение 6. Непустое множество M называется κ омпактом, если из произвольного покрытия M открытыми множествами можно выделить конечное подпокрытие.

Задача 17. Докажите, что **a)** компакты на прямой — это в точности непустые замкнутые ограниченные множества; **б)** у любой последовательности вложенных компактов $K_1 \supset K_2 \supset K_3 \supset \dots$ пересечение непусто.

Задача 18. Пусть $D \subset \mathbb{R}$. Математики Банах и Мазур играют в бесконечную игру. Они по очереди выбирают отрезки на прямой, так чтобы каждый следующий содержался внутри предыдущего. Если в пересечении полученной последовательности вложенных отрезков будет точка из множества D, то выиграл Банах, иначе Мазур. Кто выиграет при правильной игре, если D а) конечно; б) счётно; в) открыто; г) замкнуто?

1 a	1 6	2 a	2 6	3 a	3	3 B	3 г	3 д	3 e	3 ж	3	3 и	4 a	4 6	5	6 a	6 6	7 a	7 б	8 a	8 6	9 a	9 б	10 a	10 б	11	12 a	12 б	13 a	13 б	13 B	14 a	14 б	15	16	17 a	17 б	18 a	18 б	18 B	18 Г