Seminar 5 - Completări inele și corpuri

Lema chineză a resturilor

- (1) Fie R un inel comutativ și I, J ideale ale lui R.
- (a) Aplicația $R/(I \cap J) \to R/I \times R/J$ dată de $\varphi(r) = (r + I, r + J), \forall r \in R$ este injectivă.
- (b) Idealele I și J se numesc *coprime* (sau *comaximale*) dacă I + J = R. Dacă I și J sînt coprime, atunci morfismul de mai sus este și surjectiv. (Indicație: 1 = a + b, $a \in I$, $b \in J$. Atunci pentru orice $r, s \in R$, $(d + I, d + J) = (r + I, s + J) \in R/I \times R/J$, unde d = ra + sb.)
- (2) Generalizare: Fie R un inel comutativ și I_1, I_2, \ldots, I_n ideale în R. Considerăm morfismul de inele $\phi: R \to R/I_1 \times R/I_2 \times \cdots \times R/I_n$ definit ca proiecția canonică:

$$\varphi(x) = (x + I_1, x + I_2, \dots, x + I_n).$$

Atunci:

- (a) $\operatorname{Ker} \varphi = I_1 \cap I_2 \cap \cdots \cap I_n$;
- (b) ϕ este surjectiv dacă și numai dacă idealele I_1, \dots, I_n sînt oricare două comaximale, i.e. $I_j + I_k = R, \forall j \neq k$;
- (c) Dacă oricare două ideale sînt comaximale, atunci φ induce un izomorfism de inele $R/(I_1 \cap I_2 \cap \cdots \cap I_n) \xrightarrow{\sim} R/I_1 \times R/I_2 \times \cdots \times R/I_n$.
 - (3) Suplimentar: Dacă I și J sînt ideale coprime, atunci $I \cap J = IJ$.
- (4) Arătați că, dacă P este un ideal prim al inelului R, atunci nu există două ideale I, J ale lui R, cu $P \subsetneq I, J$ și $P = I \cap J$.

Definiție 1: Fie R un inel. Un ideal M se numește *maximal* dacă oricînd există un alt ideal I al lui R astfel încît $M \subseteq I \subseteq R$, rezultă fie M = I, fie I = R.

Teoremă 1: *Idealul M al inelului R este maximal dacă și numai dacă R/M este corp.*

- (5) Determinați idealele maximale ale inelelor \mathbb{Z} și $\mathbb{k}[X]$.
- (6) Determinați idealele prime și idealele maximale ale inelului \mathbb{Z}_n .
- (7) Arătați că idealul $M = \{a + bi \in \mathbb{Z}[i] \mid a = 3k, b = 3q, k, q \in \mathbb{Z}\}$ este maximal.
- (8) Fie R, S două inele. Definim *inelul produs direct* R \times S avînd ca mulțime subiacentă produsul cartezian R \times S, iar operațiile, definite pe componente:

$$(r,s) + (r',s') = (r+r',s+s'), \qquad (r,s) \cdot (r',s') = (rr',ss'), \forall r,r' \in R, s,s' \in S.$$

Arătați că inelul comutativ R se poate scrie ca produs direct de două inele dacă și numai dacă conține un element idempotent e diferit de 0 și 1. (Indicație: $R \simeq Re \times R(1-e)$).

- (9) Orice ideal maximal este prim. Reciproc, fals: Fie $R = \mathbb{Z} + \mathbb{Z}$. Atunci $I = \mathbb{Z} = 0 + \mathbb{Z}$ este prim, dar nu este maximal.
- (10) Arătați că $\mathbb{Q}[X]/(X^2-1)\simeq \mathbb{Q}\times \mathbb{Q}$, dar că $\mathbb{Z}[X]/(X^2-1)\not\simeq \mathbb{Z}\times \mathbb{Z}$ (Indicație: $\mathbb{Z}\times \mathbb{Z}$ conține elemente idempotente nenule, nu și $\mathbb{Z}[X]/(X^2-1)$).