

- dicado por el límite. (Ejemplo, si límf(x), entonces se deberá hacer una tabla de 7. Determine los siguientes límites haciendo la tabla de valores cercanos al número invalores cercanos a 2 por la izquierda y derecha, los cuales podrían ser 1.9, 1.99, 1.999 por izquierda y 2.001, 2.01, 2.1 por derecha).
- c) $\lim_{x \to 2} \frac{x^2 x 2}{x 2}$

e) $\lim_{x \to 6} \frac{\sqrt{x+3} - \sqrt{3}}{\sqrt{3}}$

- $b) \lim_{x \to 3} x^2 4 =$
- $d) \lim_{x \to 2} \frac{x-2}{x^2-4}$

Taller, Límites de funciones en

Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N. Cálculo 11°

	Fecha:	
	Curso:	
	ře:	
	Nombre	

Introducción

Materiales: Regla, escuadra, calculadora, esferos o lápices de diferentes colores.

1. Grafica cada una de las siguientes funciones definidas en el conjunto de los números Reales:

a)
$$y = f(x) = 2x + 1$$
 b) $y = y$

b)
$$y = g(x) = x^2 - 4$$
 c)

c)
$$y = h(x) = x^3 - 2x$$

2. En la siguiente recta numérica, escoge un par de unidades consecutivas y cada una divídelas en 10 partes iguales. Coloca el número correspondiente a cada división. ¿Cuáles serían los números si cada unidad es dividida en 100 partes iguales?

3. A continuación encontrarás dibujadas dos rectas. Traza perpendiculares por los puntos

4. Consideremos la función definida mediante la expresión $y=j(x)=4-x^2$. Observemos los valores del recorrido (y) cuando los del dominio (x) están cerca de 1. Para ello:

a) Elaboramos una tabla de valores donde se observen los valores de "y" cuando los de "x" se están acercando a 1:

0 07 0 08 0 00 1 1 01	0.00
	1.02
	1.03

b) Construimos su gráfica conectando mediante segmentos de rectas, los elementos del Dominio próximos a 1, con su correspondiente elemento del recorrido:

- c) Hacia que valores se aproximan los de "y", cuando los de "x" se acercan a 1?
- d) Observemos que ocurre gráficamente. Para ello haz cuatro gráficas de la función. En cada una de ellas:
- Dibuja en el eje "y", una de las siguientes vecindades del 3: $V_1(3)$, $V_{\frac{1}{2}}(3)$, $V_{\frac{1}{4}}(3)$ y $V_{\frac{1}{10}}(3)$. (Vecindad $V_{\frac{1}{2}}(3)$ significa que cerca de tres se construye una vecindad de radio $\frac{1}{2}$, es decir de radio 0.5; tenemos entonces el invervalo abierto (-2.5,3.5))
- Escoge varios puntos de la vecindad (pueden ser dos, por encima y por debajo de 3). Levanta en cada uno de ellos una perpendicular que llegue hasta la gráfica. A continuación, traza desde aquí, otra perpendicular que llegue hasta el eje "x".
- \blacksquare ¿Dentro de qué vecindad que dan los puntos de los extremos de los segmentos que llegan hasta el eje "x"?

- ¿Qué pasa cuando la vecindad es más pequeña?
- 5. De lo anterior, podemos darnos cuenta que no importa la vecindad de 3 que escojamos, que siempre tendremos una vecindad (del número 1) en el eje "x" dentro de la cual se encuentran los valores del dominio próximo a él, pero que cuanta más pequeña sea la vecindad escogida en el eje "y", más cercanos al número 1 estarán los valores de "x". Ver gráficos:

La situación anterior es descrita en matemáticas diciendo que el Límite de la función $j(x) = 4 - x^2$, cuando x esta próxima (o tiende) a 1, es igual a 3. También suele decirse que "j(x) tiende a 3, cuando x tiende a 1" y se escribe:

$$\lim_{x \to 1} j(x) = 3$$

En ocasiones se escribe $j(x) \to 3$ cuando $x \to 1$

6. A continuación te presentamos varias gráficas de funciones definidas en los números reales para que determines el valor hacia donde se acercan los de "y = f(x)" cuando "x" se aproxima al valor indicado, escribiendo el resultado con notación de límites: