Corrigé de la feuille d'exercices 19

Espaces vectoriels - Généralités 1

a. E est un \mathbb{R} -espace vectoriel. Exercice 1.

Montrons que E est un sous-espace vectoriel du \mathbb{R} -espace vectoriel \mathbb{R}^3 .

- $(0,0,0) \in E$ donc E est non vide.
- Soient $(x, y, z), (x', y', z') \in E$, soient $\lambda, \mu \in \mathbb{R}$. On a : $\lambda(x, y, z) + \mu(x', y', z') = (\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z')$. Ainsi, $3(\lambda x + \mu x') - (\lambda y + \mu y') + 2(\lambda z + \mu z') = \lambda(3x - y + 2z) + \mu(3x' - y' + 2z') = \lambda \times 0 + \mu \times 0 = 0.$ Ainsi, $\lambda(x, y, z) + \mu(x', y', z') \in E$.

Donc E est un sous-espace vectoriel de \mathbb{R}^3 .

b. F n'est pas un espace vectoriel.

En effet, $(1,1,1,1) \in F$ et $(1,1,-1,-1) \in F$.

En revanche, $(1, 1, 1, 1) + (1, 1, -1, -1) = (2, 2, 0, 0) \notin F$.

c. G est un \mathbb{R} -espace vectoriel.

Montrons que G est un sous-espace vectoriel du \mathbb{R} -espace vectoriel \mathbb{R}^3 .

- $(0,0,0) \in G \text{ donc } G \neq \emptyset.$
- Soient $x, y, z, x', y', z' \in \mathbb{R}$, soient $\lambda, \mu \in \mathbb{R}$. On a:

$$\lambda(x, x + y, x + y + z) + \mu(x', x' + y', x' + y' + z')$$

$$= (\lambda x + \mu x', \lambda x + \mu x' + \lambda y + \mu y', \lambda x + \mu x' + \lambda y + \mu y' + \lambda z + \mu z')$$

$$= (X, X + Y, X + Y + Z)$$

avec
$$X = \lambda x + \mu x', Y = \lambda y + \mu y', Z = \lambda z + \mu z' \in \mathbb{R}$$
.
Ainsi, $\lambda(x, x+y, x+y+z) + \mu(x', x'+y', x'+y'+z') \in G$.

Donc G est un sous-espace vectoriel de \mathbb{R}^3 .

d. H est un \mathbb{R} -espace vectoriel.

Montrons que H est un sous-espace vectoriel du \mathbb{R} -espace vectoriel $\mathcal{F}(\mathbb{R},\mathbb{R})$.

- la fonction nulle appartient à H donc H est non vide.
- Soient $f, g \in H$, soient $\lambda, \mu \in \mathbb{R}$. On a: $(\lambda f + \mu g)(1) = \lambda f(1) + \mu g(1) = 0$. Donc $\lambda f + \mu g \in H$.

Donc H est un sous-espace vectoriel de \mathbb{R}, \mathbb{R} .

1. Montrons que E_1 est un sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.

- $0_2 \in E_1$ (il suffit de prendre a = b = 0) donc $\mathcal{M}_2(\mathbb{R})$ est non vide.
- Soit $a, b, a', b' \in \mathbb{R}$, soient $\lambda, \mu \in \mathbb{R}$, on a :

$$\lambda \left(\begin{array}{cc} a & b \\ b & a \end{array} \right) + \mu \left(\begin{array}{cc} a' & b' \\ b' & a' \end{array} \right) = \left(\begin{array}{cc} \lambda a + \mu a' & \lambda b + \mu b' \\ \lambda b + \mu b' & \lambda a + \mu a' \end{array} \right) = \left(\begin{array}{cc} c & d \\ d & c \end{array} \right),$$

avec
$$c = \lambda a + \mu a'$$
 et $d = \lambda b + \mu b'$.
Ainsi, $\lambda \begin{pmatrix} a & b \\ b & a \end{pmatrix} + \mu \begin{pmatrix} a' & b' \\ b' & a' \end{pmatrix} \in E_1$.

Donc E_1 est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ donc est un \mathbb{R} -espace vectoriel.

- 2. Montrons que E_2 est un sous espace vectoriel de $\mathcal{M}_2(\mathbb{R})$.
 - $0_2 \in E_2$ (il suffit de prendre a = b = c = d = 0 qui vérifient bien a + b + c + d = 0) donc E_2 est non vide.
 - Soit $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in E_2$ et soient $(\lambda, \mu) \in \mathbb{R}^2$. On a :

$$\lambda \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) + \mu \left(\begin{array}{cc} a' & b' \\ c' & d' \end{array} \right) = \left(\begin{array}{cc} \lambda a + \mu a' & \lambda b + \mu b' \\ \lambda c + \mu c' & \lambda d + \mu d' \end{array} \right).$$

De plus,
$$(\lambda a + \mu a') + (\lambda b + \mu b') + (\lambda c + \mu c') + (\lambda d + \mu d') = \lambda(a + b + c + d) + \mu(a' + b' + c' + d') = 0$$
.
Ainsi, $\lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \mu \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in E_2$.

Ainsi, E_2 est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$ donc est un \mathbb{R} -espace vectoriel.

- 3. Montrons que E_3 est un sous espace vectoriel de $\mathbb{R}[X]$.
 - \bullet Le polynôme nul appartient à E_3 donc E_3 est non vide.
 - Soient $P, Q \in E_3$ et soient $\lambda, \mu \in \mathbb{R}$. On a : $(\lambda P + \mu Q)(0) = \lambda P(0) + \mu Q(0) = \lambda P(1) + \mu Q(1) = (\lambda P + \mu Q)(1)$. Donc $\lambda P + \mu Q \in E_3$.

Ainsi, E_3 est un sous-espace vectoriel du \mathbb{R} -espace vectoriel $\mathbb{R}[X]$ donc est lui même un \mathbb{R} -espace vectoriel.

- 4. Montrons que E_4 est un sous-espace vectoriel de $\mathcal{F}([0,1],\mathbb{R})$.
 - La fonction nulle appartient bien à E_4 donc E_4 est non vide.
 - Soient $f, g \in E_4$ et soient $\lambda, \mu \in \mathbb{R}$. On a : $\lambda f + \mu g \in \mathcal{C}([0, 1], \mathbb{R})$ et on a :

$$\int_{0}^{1} (\lambda f + \mu g)(t)dt = \lambda \int_{0}^{1} f(t)dt + \mu \int_{0}^{1} g(t)dt = 0,$$

par linéarité de l'intégrale.

Ainsi, $\lambda f + \mu g \in E_4$.

Donc E_4 est un sous espace vectoriel de $\mathcal{F}([0,1],\mathbb{R})$ donc est un \mathbb{R} -espace vectoriel.

- 5. Montrons que E_5 est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
 - la suite nulle appartient bien à E_5 car $0 = 3 \times 0 + 2 \times 0$.
 - Soient $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}} \in E_5$. Soient $\lambda, \mu \in \mathbb{R}$. Soit $n \in \mathbb{N}$. $\lambda u_{n+2} + \mu v_{n+2} = \lambda (3u_{n+1} + 2u_n) + \mu (3v_{n+1} + 2v_n) = 3(\lambda u_{n+1} + \mu v_{n+1}) + 2(\lambda u_n + \mu v_n)$. Donc: $\forall n \in \mathbb{N}$, $\lambda u_{n+2} + \mu v_{n+2} = 3(\lambda u_{n+1} + \mu v_{n+1}) + 2(\lambda u_n + \mu v_n)$. D'où, $(\lambda u_n + \mu v_n)_{n \in \mathbb{N}} \in E_5$

Donc E_5 est un sous espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ donc est un \mathbb{R} -espace vectoriel.

Exercice 3. 1. Montrons que E_1 est un sous-espace vectoriel du \mathbb{R} -espace vectoriel \mathbb{R}^3 .

- $(0,0,0) \in E_1$ donc E_1 est non vide.
- Soient $(x, y, z), (x', y', z') \in E_1$, soient $\lambda, \mu \in \mathbb{R}$. On a :

$$(\lambda x + \mu x') + (\lambda y + \mu y') + (\lambda z + \mu z') = \lambda (x + y + z) + \mu (x' + y' + z') = 0.$$

De plus:

$$(\lambda x + \mu x') - 3(\lambda y + \mu y') = \lambda(x - 3y) + \mu(x' - 3y') = 0.$$

Ainsi, $\lambda(x, y, z) + \mu(x', y', z') \in E_1$.

Donc E_1 est un sous-espace vectoriel de \mathbb{R}^3 .

- 2. E_2 n'est pas un espace vectoriel. En effet, $e_1 = (1,0,0) \in E_2$ et $e_2 = (0,1,0) \in E_2$. En revanche, $-2e_1 + e_2 = (-2,1,0) \notin E$. Ainsi, E_2 n'est pas stable par combinaison linéaire, il n'est donc pas un \mathbb{R} -espace vectoriel.
- 3. E_3 n'est pas une espace vectoriel.

En effet, $f: x \mapsto x^2$ est croissante donc $f \in E_3$ et $g: x \mapsto -x$ est décroissante. Ainsi, $g \in E_3$.

En revanche, $f + g : x \mapsto x^2 - x$ n'est pas monotone. Donc $f + g \notin E_3$.

Ainsi, E_3 n'est pas stable par somme donc n'est pas un \mathbb{R} -espace vectoriel.

- 4. Montrons que E_4 est un sous-espace vectoriel du \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{N}}$.
 - la suite nulle appartient à E_4 donc E_4 est non vide.
 - Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}\in E_4$, soient $\lambda,\mu\in\mathbb{R}$. Comme $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont bornées, il existe $M,M'\in\mathbb{R}$ tels que : $\forall n\in\mathbb{N},\ |u_n|\leq M$ et $|v_n|\leq M'$.

Soit $n \in \mathbb{N}$, d'après l'inégalité triangulaire, on a :

$$|\lambda u_n + \mu v_n| \le |\lambda u_n| + |\mu v_n|$$

$$\le |\lambda||u_n| + |\mu||v_n|$$

$$< |\lambda|M + |\mu|M'$$

Donc: $\forall n \in \mathbb{N}, |\lambda u_n + \mu v_n| \leq |\lambda| M + |\mu| M'$.

Ainsi, $\lambda(u_n)_{n\in\mathbb{N}} + \mu(v_n)_{n\in\mathbb{N}}$ est bornée. Donc $\lambda(u_n)_{n\in\mathbb{N}} + \mu(v_n)_{n\in\mathbb{N}} \in E_4$.

Donc E_4 est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

- 5. Montrons que E_5 est un sous-espace vectoriel du \mathbb{R} -espace vectoriel $\mathcal{F}(\mathbb{R},\mathbb{R})$.
 - la fonction nulle appartient à E_5 donc E_5 est non vide.

• Soient $f, g \in E_6$, soient $\lambda, \mu \in \mathbb{R}$. On a: $(\lambda f + \mu g)(2) = \lambda f(2) + \mu g(2) = 3\lambda f(4) + 3\mu g(4) = 3(\lambda f + \mu g)(4)$. Ainsi, $\lambda f + \mu g \in E_5$.

Donc E_5 est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

- 6. Montrons que E_6 est un sous-espace vectoriel du \mathbb{R} -espace vectoriel \mathbb{C}^2 .
 - $(0,0) \in E_6$ donc E_6 est non vide.
 - Soient $(x, y), (x', y') \in E_6$, soient $\lambda, \mu \in \mathbb{R}$. On a :

$$2(\lambda x + \mu x') - i\overline{(\lambda y + \mu y')} = 2(\lambda x + \mu x') - i(\lambda \overline{y} + \mu \overline{y'}) = \lambda(2x - i\overline{y}) + \mu(2x' - i\overline{y'}) = 0.$$

Ainsi, $\lambda(x, y) + \mu(x', y') \in E_6$.

Donc E_6 est un sous-espace vectoriel de \mathbb{C}^2 vu comme un \mathbb{R} espace vectoriel.

En revanche, E_6 n'est pas un \mathbb{C} -espace vectoriel.

En effet, $(1,2i) \in E_6$. En revanche, $i(1,2i) = (i,-2) \notin E_6$.

Donc E_6 n'est pas un \mathbb{C} -espace vectoriel.

Exercice 4. Raisonnons par double implication.

- Supposons que $F \subset G$ ou $G \subset F$.
 - Si $F \subset G$ alors $F \cup G = G$ donc $F \cup G$ est un sous-espace vectoriel de E.
 - De même, si $G \subset F$ alors $F \cup G = F$ donc $F \cup G$ est un sous-espace vectoriel de E.

Ainsi, si $F \subset G$ ou $G \subset F$ alors $F \cup G$ est un sous-espace vectoriel de E.

• Réciproquement, supposons que $F \cup G$ est un sous-espace vectoriel de E.

Montrons que $F \subset G$ ou $G \subset F$ par l'absurde.

Supposons que $F \not\subset G$ et $G \not\subset F$.

Alors, il existe $x \in F \setminus G$ et $y \in G \setminus F$. On a $x, y \in F \cup G$ donc $x + y \in F \cup G$ car $F \cup G$ est un sous-espace vectoriel de E. Donc $x + y \in F$ ou $x + y \in G$.

- Si $x + y \in F$, alors $y = (x + y) x \in F$ car F est un sous-espace vectoriel de E. Absurde.
- Si $x+y\in G$, alors $x=(x+y)-y\in G$ car G est un sous-espace vectoriel de E. Absurde

Ainsi, on a : $F \subset G$ ou $G \subset F$.

On a donc prouvé que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subset G$ ou $G \subset F$.

Exercice 5. 1.

$$F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y - t = 0\}$$

$$= \{(x, y, z, x + y) \mid x, y, z \in \mathbb{R}\}$$

$$= \{x(1, 0, 0, 1) + y(0, 1, 0, 1) + z(0, 0, 1, 0) \mid x, y, z \in \mathbb{R}\}$$

$$= \text{Vect}(e_1, e_2, e_3)$$

où $e_1 = (1, 0, 0, 1), e_2 = (0, 1, 0, 1)$ et $e_3 = (0, 0, 1, 0)$.

2. Soient $x, y, z, t \in \mathbb{R}$

$$\begin{cases} x+y+z+t=0 \\ x-y+z-t=0 \end{cases} \iff \begin{cases} x+y+z+t=0 \\ -2y-2t=0 \end{cases}$$
$$\iff \begin{cases} x=-z \\ y=-t \end{cases}$$

Ainsi,

$$\begin{split} F &= \{(x,y,z,t) \in \mathbb{R}^4 \mid x+y+z+t=0 \text{ et } x-y+z-t=0\} \\ &= \{(x,y,z,t) \in \mathbb{R}^4 \mid x=-z \text{ et } y=-t\} \\ &= \{(-z,-t,z,t) \mid z,t \in \mathbb{R}\} \\ &= \{z(-1,0,1,0) + t(0,-1,0,1) \mid z,t \in \mathbb{R}\} \\ &= \text{Vect } (e_1,e_2) \end{split}$$

où
$$e_1 = (-1, 0, 1, 0)$$
 et $e_2 = (0, -1, 0, 1)$.

Exercice 6. On souhaite prouver que $Vect(u_1, u_2) = Vect(u_3, u_4, u_5)$. Raisonnons par double inclusion.

- Montrons que Vect $(u_1, u_2) \subset \text{Vect}(u_3, u_4, u_5)$. On remarque que $u_1 = \frac{1}{4}(u_3 + u_4)$ et $u_2 = \frac{1}{4}(u_4 - 3u_5)$. Ainsi, $u_1, u_2 \in \text{Vect}(u_3, u_4, u_5)$. D'où Vect $(u_1, u_2) \subset \text{Vect}(u_3, u_4, u_5)$ car Vect (v_1, v_2, v_3) est un espace vectoriel qui contient u_1 et u_2 donc contient le plus petit sous espace vectoriel les contenant.
- De même, on a : $u_3 = u_1 + 2u_2$, $u_4 = 3u_1 2u_2$ et $u_5 = u_1 2u_2$. Ainsi, $u_3, u_4, u_5 \in \text{Vect}(u_1, u_2)$. Donc $\text{Vect}(u_3, u_4, u_5) \subset \text{Vect}(u_1, u_2)$.

On a donc prouvé par double inclusion que F = G.

Exercice 7. a. On a:

$$E_{1} = \{(x, y, z, t) \in \mathbb{R}^{4} \mid x = 3y = 2x + 2t\}$$

$$= \left\{(x, y, z, t) \in \mathbb{R}^{4} \mid x = 3y \text{ et } t = -\frac{3}{2}y\right\}$$

$$= \left\{\left(3y, y, z, -\frac{3}{2}y\right) \mid y, z \in \mathbb{R}\right\}$$

$$= \left\{y\left(3, 1, 0, -\frac{3}{2}\right) + z(0, 0, 1, 0) \mid y, z \in \mathbb{R}\right\}$$

$$= \text{Vect } (e_{1}, e_{2})$$

où
$$e_1 = \left(3, 1, 0, -\frac{3}{2}\right)$$
 et $e_2 = (0, 0, 1, 0)$.

b. On a:

$$E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y = 2x + z\}$$

$$= \{(x, y, z) \in \mathbb{R}^3 \mid x = 2y - z\}$$

$$= \{(2y - z, y, z) \mid y, z \in \mathbb{R}\}$$

$$= \{y (2, 1, 0) + z(-1, 0, 1) \mid y, z \in \mathbb{R}\}$$

$$= \text{Vect } (e_1, e_2)$$

où $e_1 = (2, 1, 0)$ et $e_2 = (-1, 0, 1)$.

c. On a:

$$\begin{split} E_3 &= \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} , \ (u_n)_{n \in \mathbb{N}} \text{ est géométrique de raison 2} \} \\ &= \{(u_n)_{n \in \mathbb{N}} , \ \exists \lambda \in \mathbb{R}, \forall n \in \mathbb{N}, u_n = \lambda 2^n \} \\ &= \{(u_n)_{n \in \mathbb{N}} , \ \exists \lambda \in \mathbb{R}, (u_n)_{n \in \mathbb{N}} = \lambda (2^n)_{n \in \mathbb{N}} \} \\ &= \{\lambda (2^n)_{n \in \mathbb{N}} \mid \lambda \in \mathbb{R} \} \\ &= \text{Vect } ((2^n)_{n \in \mathbb{N}}) \end{split}$$

d. On a:

$$E_4 = \{ f : \mathbb{R} \to \mathbb{R} \mid \exists (P,Q) \in \mathbb{R}_1[X]^2, \ \forall x \in \mathbb{R}, \ f(x) = P(x)\cos(x) + Q(x)\sin(x) \}$$

$$= \{ f : \mathbb{R} \to \mathbb{R} \mid \exists a,b,c,d \in \mathbb{R} \ \forall x \in \mathbb{R}, \ f(x) = (ax+b)\cos(x) + (cx+d)\sin(x) \}$$

$$= \{ f : \mathbb{R} \to \mathbb{R} \mid \exists a,b,c,d \in \mathbb{R} \ \forall x \in \mathbb{R}, \ f(x) = ax\cos(x) + b\cos(x) + cx\sin(x) + d\sin(x) \}$$

$$= \text{Vect} (f_1, f_2, f_3, f_4)$$

où $f_1: x \mapsto x \cos(x), f_2: x \mapsto \cos(x), f_3: x \mapsto x \sin(x)$ et $f_4: x \mapsto \sin(x)$.

e. Version 1:

On a:

$$E_{5} = \{ P \in \mathbb{R}_{3}[X] \mid P'(3) = P''(3) = 0 \}$$

$$= \{ P \in \mathbb{R}_{3}[X] \mid 3 \text{ est racine au moins double de } P' \}$$

$$= \{ P \in \mathbb{R}_{3}[X] \mid (X - 3)^{2} \mid P' \}$$

$$= \{ P \in \mathbb{R}_{3}[X] \mid \exists \lambda \in \mathbb{R}, \ P' = \lambda(X - 3)^{2} \} \quad \text{car deg}(P') \leq 2$$

$$= \{ P \in \mathbb{R}_{3}[X] \mid \exists \lambda \in \mathbb{R}, \ P' = \lambda(X^{2} - 6X + 9) \}$$

$$= \{ P \in \mathbb{R}_{3}[X] \mid \exists \lambda, d \in \mathbb{R}, \ P = \lambda \left(\frac{1}{3}X^{3} - 3X^{2} + 9X \right) + d \}$$

$$= \{ \lambda \left(\frac{1}{3}X^{3} - 3X^{2} + 9X \right) + d, \lambda, d \in \mathbb{R} \}$$

$$= \text{Vect} \left(\frac{1}{3}X^{3} - 3X^{2} + 9X, 1 \right)$$

Version 2:

$$E_5 = \{ P \in \mathbb{R}_3[X] \mid P'(3) = P''(3) = 0 \}$$

$$= \{ aX^3 + bX^2 + cX + d \mid a, b, c, d \in \mathbb{R} \text{ et } 3a \times 3^2 + 2b \times 3 + c = 0, \ 6a \times 3 + 2b = 0 \}$$

$$= \{ aX^3 + bX^2 + cX + d \mid a, b, c, d \in \mathbb{R} \text{ et } 27a + 6b + c = 0, \ 18a + 2b = 0 \}$$

Soient $a, b, c \in \mathbb{R}$, on a :

$$\begin{cases} 27a + 6b + c = 0 \\ 18a + 2b = 0 \end{cases} \iff \begin{cases} 27a + 6b + c = 0 \\ b = -9a \end{cases}$$
$$\iff \begin{cases} c = 27a \\ b = -9a \end{cases}$$

Ainsi:

$$E_5 = \{aX^3 + bX^2 + cX + d \mid a, b, c, d \in \mathbb{R} \text{ et } b = -9a, \ c = 27a\}$$
$$= \{a(X^3 - 9X^2 + 27) + d \mid a, d \in \mathbb{R}\}$$
$$= \text{Vect } (X^3 - 9X^2 + 27X, 1)$$

Exercice 8. 1. E est un sous-espace vectoriel de \mathbb{R}^3 . En effet :

- $(0,0,0) \in E$ donc E est non vide.
- Soient $(x, y, z), (x', y', z') \in E$, soient $\lambda, \mu \in \mathbb{R}$. On a: $2(\lambda x + \mu x') + (\lambda y + \mu y') - (\lambda z + \mu z') = \lambda(2x + y - z) + \mu(2x' + y' - z') = 0$. Ainsi, $\lambda(x, y, z) + \mu(x', y', z') \in E$.

Finalement, E est un bien sous-espace vectoriel de \mathbb{R}^3 .

$$F = \{(x, x, -x) \mid x \in \mathbb{R}\} = \{x(1, 1, -1) \mid x \in \mathbb{R}\} = \text{Vect}((1, 1, -1)). \text{ Donc } F \text{ est un sous-espace vectoriel de } \mathbb{R}^3.$$

Soit $u \in E \cap F$. Comme $u \in F$, il existe $x \in \mathbb{R}$, tel que u = (x, x, -x). De plus, $u \in E$ donc 2x + x - x = 0. Ainsi, x = 0. D'où u = 0.

On a donc prouvé que $E \cap F \subset \{0\}$.

De plus, E et F sont des sous-espaces vectoriels donc $E \cap F$ également d'où $\{0\} \subset E \cap F$. Ainsi, on a : $E \cap F = \{0\}$.

2. Il suffit de prouver que $u \in E$ et $v \in E$.

Or, $u \in \mathbb{R}^3$ et 2 - 1 - 1 = 0 donc $u = (1, -1, 1) \in E$.

De même, $v \in \mathbb{R}^3$ et 6+1-7=0 donc $v=(3,1,7) \in E$.

Ainsi, comme E est un espace vectoriel, on a alors $Vect(u, v) \subset E$.

Soit $(x, y, z) \in E$. On a 2x + y - z = 0. Soient $\lambda, \mu \in \mathbb{R}$.

$$(x,y,z) = \lambda u + \mu v \iff \begin{cases} \lambda + 3\mu = x \\ -\lambda + \mu = y \\ \lambda + 7\mu = z \end{cases}$$

$$\iff \begin{cases} \lambda + 3\mu = x \\ 4\mu = y + x \\ 4\mu = z - x \end{cases}$$

$$\iff \begin{cases} \lambda = \frac{1}{4}x - \frac{3}{4}y \\ \mu = \frac{1}{4}(y + x) \\ y + x = z - x \end{cases}$$

$$\iff \begin{cases} \lambda = \frac{1}{4}x - \frac{3}{4}y \\ \mu = \frac{1}{4}(y + x) \\ 2x + y - z = 0 \end{cases}$$

$$\iff \begin{cases} \lambda = \frac{1}{4}x - \frac{3}{4}y \\ \mu = \frac{1}{4}(y + x) \end{cases}$$

Ainsi, $(x, y, z) \in \text{Vect}(u, v)$. Donc $E \subset \text{Vect}(u, v)$. On avait déjà prouvé l'autre inclusion. On a : E = Vect(u, v).

Exercice 9. Raisonnons par double inclusion.

- 1. G est un sous-espace vectoriel de \mathbb{R}^4 . En effet :
 - $(0,0,0,0) \in G$ donc G est non vide.
 - Soient $(x, y, z, t), (x', y', z', t') \in G$. Soient $\lambda, \mu \in \mathbb{R}$. On a $(\lambda x + \mu x') - (\lambda y + \mu y') = \lambda(x - y) + \mu(x' - y') = \lambda(t - z) + \mu(t' - z') = (\lambda t + \mu t') - (\lambda z + \mu z')$. De plus, $(\lambda x + \mu x') - (\lambda z + \mu z') + 2(\lambda t + \mu t') = \lambda(x - z + 2t) + \mu(x' - z' + 2t') = 0$. Ainsi, $\lambda(x, y, z, t) + \mu(x', y', z', t') \in G$.

Donc G est un sous-espace vectoriel de \mathbb{R}^4 .

De plus, $u \in \mathbb{R}^4$ et 1-2=-1=0-1 donc $u \in G$.

De même, $v \in \mathbb{R}^4$ et 0-1=-1=1-2 donc $v \in G$. Donc, Vect $(u,v) \subset G$.

• Soit $(x, y, z, t) \in G$. On a : x - y = t - z et x - z + 2t = 0. Soient $\lambda, \mu \in \mathbb{R}$. On a :

$$(x, y, z, t) = \lambda u + \mu v \iff \begin{cases} \lambda = x \\ 2\lambda + \mu = y \\ \lambda + 2\mu = z \\ \mu = t \end{cases}$$

$$\iff \begin{cases} \lambda = x \\ \mu = t \\ 2x + t = y \\ x + 2t = z \end{cases}$$

Or, $(x, y, z, t) \in G$ donc x - z + 2t = 0 et x - y = t - z. Ainsi, x + 2t = z. De plus, x - y = t - (x + 2t). Donc 2x + t = y.

Ainsi, on a:

$$(x, y, z, t) = \lambda u + \mu v \iff \begin{cases} \lambda = x \\ \mu = t \end{cases}$$

Donc $(x, y, z, t) \in \text{Vect } (u, v)$. Ainsi, $G \subset F$.

On a donc prouvé par double inclusion que F = G

Exercice 10. 1. • Montrons que $(F \cap G) + (F \cap H) \subset F \cap (G + H)$:

Soit $x \in (F \cap G) + (F \cap H)$. Il existe $x_1 \in F \cap G$ et $x_2 \in F \cap H$ tels que $x = x_1 + x_2$.

Alors, $x_1, x_2 \in F$ donc $x_1 + x_2 \in F$ car F est un \mathbb{K} -espace vectoriel .

De plus, $x_1 \in G$ et $x_2 \in H$ donc $x_1 + x_2 \in G + H$ donc $x \in F \cap (G + H)$.

Ainsi, $(F \cap G) + (F \cap H) \subset F \cap (G + H)$.

- L'autre inclusion n'est pas toujours vraie. En effet, posons $G = \{(x,y) \in \mathbb{R}^2, y = 0\}$, $H = \{(x,y) \in \mathbb{R}^2, x = 0\}$ et $F = \{(x,y) \in \mathbb{R}^2, x = y\}$. On a alors $G + H = \mathbb{R}^2$ donc $F \cap (G + H) = F$. Or, $F \cap H = \{0\}$ et $F \cap G = \{0\}$ donc $(F \cap G) + (F \cap H) = \{0\}$. Ainsi, dans ce cas, $F \cap (G + H) \not\subset (F \cap G) + (F \cap H)$.
- Montrons que $F \cap (G + (F \cap H)) \subset (F \cap G) + (F \cap H)$. Soit $x \in F \cap (G + (F \cap H))$ alors $x \in F$ et $x \in G + (F \cap H)$. Il donc existe $x_1 \in G$ et $x_2 \in F \cap H$ tels que $x = x_1 + x_2$. Or, $x_2 \in F$ et $x_2 \in H$. Ainsi, $x_1 = x - x_2 \in F$ car F est un \mathbb{K} -espace vectoriel donc $x_1 \in F \cap G$ et $x_2 \in F \cap H$. D'où $x \in (F \cap G) + (F \cap H)$. Ainsi, $F \cap (G + (F \cap H)) \subset (F \cap G) + (F \cap H)$.
 - Montrons que $(F \cap G) + (F \cap H) \subset F \cap (G + (F \cap H))$ Soit $x \in (F \cap G) + (F \cap H)$ alors il existe $x_1 \in F \cap G$ et $x_2 \in F \cap H$ tels que $x = x_1 + x_2$. On a alors $x_1, x_2 \in F$ donc $x \in F$ car F est un \mathbb{K} -espace vectoriel. De plus, $x_1 \in G$ et $x_2 \in F \cap H$ donc $x = x_1 + x_2 \in G + (F \cap H)$. Ainsi, $x \in F \cap (G + (F \cap H))$. Donc $(F \cap G) + (F \cap H) \subset F \cap (G + (F \cap H))$.

Finalement, on a bien prouvé par double inclusion que $(F \cap G) + (F \cap H) = F \cap (G + (F \cap H))$.

Exercice 11. 1. Méthode 1:

On a:

$$F = \{(x_1, x_2, x_3) \in \mathbb{R}^3, x_1 + x_2 + x_3 = 0\}$$

$$= \{(x_1, x_2, -x_1 - x_2), x_1, x_2 \in \mathbb{R}\}$$

$$= \{x_1(1, 0, -1) + x_2(0, 1, -1), x_1, x_2 \in \mathbb{R}\}$$

$$= \text{Vect}(e_1, e_2)$$

où $e_1 = (1, 0, -1), e_2 = (0, 1, -1).$

Ainsi, F et G sont des sous-espaces vectoriels de \mathbb{R}^3 .

On note $e_3 = (1, 1, 1)$.

On sait déjà que $F + G \subset \mathbb{R}^3$.

De plus, soit $(x, y, z) \in \mathbb{R}^3$, soient $\lambda, \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$. On a :

$$(x,y,z) = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 \iff \begin{cases} \lambda_1 + \lambda_3 = x \\ \lambda_2 + \lambda_3 = y \\ -\lambda_1 - \lambda_2 + \lambda_3 = z \end{cases}$$

$$\iff \begin{cases} \lambda_1 + \lambda_3 = x \\ \lambda_2 + \lambda_3 = y \\ -\lambda_2 + 2\lambda_3 = x + z \end{cases}$$

$$\iff \begin{cases} \lambda_1 + \lambda_3 = x \\ \lambda_2 + \lambda_3 = y \\ 3\lambda_3 = x + y + z \end{cases}$$

$$\iff \begin{cases} \lambda_1 = \frac{2x - y - z}{3} \\ \lambda_2 = \frac{-x + 2y - z}{3} \\ \lambda_3 = \frac{x + y + z}{3} \end{cases}$$

Ainsi, pour tout $(x, y, z) \in \mathbb{R}^3$, il existe $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$ tel que $(x, y, z) = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3$. Donc $\mathbb{R}^3 \subset F + G$.

Méthode 2:

On sait déjà que $F + G \subset \mathbb{R}^3$.

Démontrons l'autre inclusion en raisonnant par analyse-synthèse.

Soit $(x_1, x_2, x_3) \in \mathbb{R}^3$

Analyse:

Supposons qu'il existe $(u,v) \in F \times G$ tel que x = u + v. Comme $v \in G$, il existe $a \in \mathbb{R}$ tel que v = a(1,1,1). De plus, $u = (x_1, x_2, x_3) - a(1,1,1) = (x_1 - a, x_2 - a, x_3 - a) \in F$. Donc $x_1 - a + x_2 - a + x_3 - a = 0$. Ainsi, $a = \frac{1}{3}(x_1 + x_2 + x_3)$.

Synthèse: Posons $a = \frac{1}{3}(x_1 + x_2 + x_3), v = a(1, 1, 1)$ et $u = (x_1, x_2, x_3) - u$.

- On a bien $(x_1, x_2, x_3) = u + v$
- $\bullet \ v \in G$

• Et $u = (x_1, x_2, x_3) - a(1, 1, 1) = (x_1 - a, x_2 - a, x_3 - a)$. Et $x_1 - a + x_2 - a + x_3 - a = (x_1 + x_2 + x_3) - 3a = 0$. Ainsi, $u \in F$;

Pour tout $(x_1, x_2, x_3) \in \mathbb{R}^3$, il existe $(u, v) \in F \times G$ tel que $(x_1, x_2, x_3) = u + v$.

Ainsi, $\mathbb{R}^3 \subset F + G$ et donc $\mathbb{R}^3 = F + G$.

2. Méthode 1:

Dans le système précédent, il y a unicité donc la somme est directe.

Méthode 2 :

Soit $x \in F \cap G$. Comme $x \in G$, il existe $a \in \mathbb{R}$ tel que x = a(1, 1, 1). Or, $x \in F$, donc on a 3a = 0. Ainsi, a = 0 et donc x = 0. Ainsi, la somme F + G est directe.

3. D'après les deux questions précédentes, $F+G=\mathbb{R}^3$ et la somme F+G est directe.

Ainsi, F et G sont supplémentaires.

Remarque : Dans la question 1, on prouve par résolution d'un système ou par analyse-synthèse que tout élément de \mathbb{R}^3 se décompose de manière unique comme la somme d'un élément de F et d'un élément de G (existence et unicité de u et de v). On pourrait donc conclure directement que F et G sont supplémentaires.

Exercice 12. On remarque tout d'abord que :

$$F = \{(x, 2x, 3x), x \in \mathbb{R}\}$$

= \{x(1, 2, 3), x \in \mathbb{R}\}
= \text{Vect}((1, 2, 3))

et

$$G = \{(x+y, x+y, y) \mid x, y \in \mathbb{R}\}$$

= \{x(1, 1, 0) + y(1, 1, 1) \| x, y \in \mathbb{R}\}
= \text{Vect} \(((1, 1, 0), (1, 1, 1))\)

Ainsi, F et G sont des sous-espaces vectoriels de \mathbb{R}^3 . Soit $x = (x_1, x_2, x_2) \in \mathbb{R}^3$. Soit $a, b, c \in \mathbb{R}$.

$$x = (a, 2a, 3a) + (b + c, b + c, c)$$

$$\iff \begin{cases} a + b + c = x_1 \\ 2a + b + c = x_2 \\ 3a + c = x_3 \end{cases}$$

$$\iff \begin{cases} a + b + c = x_1 \\ -b - c = x_2 - 2x_1 \\ -3b - 2c = x_3 - 3x_1 \end{cases}$$

$$\iff \begin{cases} a + b + c = x_1 \\ b + c = 2x_1 - x_2 \\ c = 3x_1 - 3x_2 + x_3 \end{cases}$$

$$\iff \begin{cases} a = -x_1 + x_2 \\ b = -x_1 + 2x_2 - x_3 \\ c = 3x_1 - 3x_2 + x_3 \end{cases}$$

On a donc prouvé que pour tout $x \in \mathbb{R}^3$, il existe un unique $(f,g) \in F \times G$ tel que x = f + g. Donc $F \oplus G = \mathbb{R}^3$.

Exercice 13. • Soit $Q \in F \cap \mathbb{K}_{n-1}[X]$. Comme $Q \in F$, il existe $R \in \mathbb{K}[X]$ tel que Q = PR.

Supposons que $Q \neq 0$. Alors, $R \neq 0$.

On a alors $\deg(R) \ge 0$ donc $\deg(Q) = \deg(P) + \deg(R) \ge \deg(P) = n$. Or, $Q \in \mathbb{K}_{n-1}[X]$ donc $\deg(Q) \le n-1$. Absurde.

Ainsi, Q = 0 donc la somme $F + \mathbb{K}_{n-1}[X]$ est directe.

- Montrons que $\mathbb{K}[X] = F + \mathbb{K}_{n-1}[X]$.
 - On sait déjà que $F + \mathbb{K}_{n-1}[X] \subset \mathbb{K}[X]$.
 - Montrons que $\mathbb{K}[X] \subset F + \mathbb{K}_{n-1}[X]$. Soit $S \in \mathbb{K}[X]$, Par le théorème de division euclidienne $(P \neq 0)$, il existe $Q \in \mathbb{K}[X]$ et $R \in \mathbb{K}[X]$ tels que S = PQ + R et $\deg(R) < \deg(P) = n$. Ainsi, $PQ \in F$ et $R \in \mathbb{K}_{n-1}[X]$. Ainsi, $S \in F + \mathbb{K}_{n-1}[X]$. D'où $\mathbb{K}[X] \subset F + \mathbb{K}_{n-1}[X]$.

Ainsi, $F \oplus \mathbb{K}_{n-1}[X] = \mathbb{K}[X]$.

Remarque : L'existence et l'unicité de la division euclidienne justifie également l'existence et l'unicité de la décomposition et donc le fait que F et $\mathbb{K}_{n-1}[X]$ dont supplémentaires.

Exercice 14. 1. Méthode 1:

- Montrons que $F = \{(x, y, z, t) \in \mathbb{R}^4, z = t = 0\}$. Raisonnons par double inclusion. Notons $F' = \{(x, y, z, t) \in \mathbb{R}^4, z = t = 0\}$.
 - F' est un sous-espace vectoriel de \mathbb{R}^4 . En effet :
 - $(0,0,0,0) \in F'$ donc F' est non vide.
 - Soient $(x, y, z, t), (x', y', z', t') \in F'$. On a: $\lambda z + \mu z' = 0$ et $\lambda t + \mu t' = 0$ car z = z' = t = t' = 0 donc $\lambda(x, y, z, t) + \mu(x', y', z', t') \in F'$.

Ainsi, F' est un sous-espace vectoriel.

De plus, $u_1, u_2 \in F'$.

Donc Vect $(u_1, u_2) \subset F'$.

• Soient $(x, y, z, t) \in F'$. On a z = 0 et t = 0. Soient $\lambda, \mu \in \mathbb{R}$.

$$(x, y, z, t) = \lambda u_1 + \mu u_2 \iff \begin{cases} \lambda + \mu = x \\ \mu = y \\ 0 = z \\ 0 = t \end{cases}$$

$$\iff \begin{cases} \lambda = x - y \\ \mu = y \end{cases} \quad \operatorname{car}(x, y, z, t) \in F'$$

Ainsi, il existe $\lambda, \mu \in \mathbb{R}$ tel que $(x, y, z, t) = \lambda u_1 + \mu u_2$. Donc, $(x, y, z, t) \in \text{Vect}(u_1, u_2)$. D'où $F' \subset \text{Vect}(u_1, u_2)$.

On a donc montré par double inclusion que $F = \{(x, y, z, t) \in \mathbb{R}^4, z = t = 0\}.$

- Montrons que $G = \{(x, y, z, t) \in \mathbb{R}^4, x y = 0 \text{ et } x + y 2z = 0\}$. Raisonnons par double inclusion. Notons $G' = \{(x, y, z, t) \in \mathbb{R}^4, x - y = 0 \text{ et } x + y - 2z = 0\}$.
 - G' est un sous-espace vectoriel de \mathbb{R}^4 . En effet :
 - $(0,0,0,0) \in G'$ donc G' est non vide.
 - Soient $(x, y, z, t), (x', y', z', t') \in F'$. Soient $\lambda, \mu \in \mathbb{R}$.

On a: $(\lambda x + \mu x') - (\lambda y + \mu y') = \lambda(x - y) + \mu(x' - y') = 0$. Et $(\lambda x + \mu x') + (\lambda y + \mu y') = 2(\lambda x + \mu x') = \lambda(x + y - 2x) + \mu(x' + y') = 0$

Et $(\lambda x + \mu x') + (\lambda y + \mu y') - 2(\lambda z + \mu z') = \lambda(x + y - 2z) + \mu(x' + y' - 2z') = 0$. Donc $\lambda(x, y, z, t) + \mu(x', y', z', t') \in G'$.

Ainsi, G' est un sous-espace vectoriel.

On remarque 1 - 1 = 0 et 1 + 1 - 2 = 0 donc $u_3 \in G'$.

De même, $u_4 \in G'$.

Donc Vect $(u_3, u_4) \subset G'$.

• Soient $(x, y, z, t) \in G'$. On a x - y = 0 et x + y - 2z = 0. Soient $\lambda, \mu \in \mathbb{R}$.

$$(x, y, z, t) = \lambda u_3 + \mu u_4 \iff \begin{cases} \lambda + \mu = x \\ \lambda + \mu = y \\ \lambda + \mu = z \\ \mu = t \end{cases}$$

$$\iff \begin{cases} \lambda = x - t \\ \mu = t \\ 0 = y - x \\ 0 = z - x \end{cases}$$

Or, x-y=0 et x+y-2z=0 donc 2(x-z)=0 d'où x-z=0. Ainsi,

$$(x, y, z, t) = \lambda u_3 + \mu u_4 \iff \begin{cases} \lambda = x - t \\ \mu = t \end{cases}$$

Ainsi, il existe $\lambda, \mu \in \mathbb{R}$ tel que $(x, y, z, t) = \lambda u_3 + \mu u_4$. Donc, $(x, y, z, t) \in \text{Vect}(u_3, u_4)$. D'où $G' \subset \text{Vect}(u_3, u_4)$.

On a donc montré par double inclusion que $G = \{(x, y, z, t) \in \mathbb{R}^4, x - y = 0 \text{ et } x + y - 2z = 0\}.$

Méthode 2:

On a:

$$\{(x, y, z, t) \in \mathbb{R}^4, z = t = 0\} = \{(x, y, 0, 0), x, y \in \mathbb{R}\}$$
$$= \{x(1, 0, 0, 0) + y(0, 1, 0, 0), x, y \in \mathbb{R}\}$$
$$= \text{Vect } (e_1, e_2)$$

Montrons que Vect $(e_1, e_2) = \text{Vect}(u_1, u_2) = F$.

On a $e_1 = u_1$ et $e_2 = u_2 - u_1$ donc $e_1, e_2 \in \text{Vect}(u_1, u_2)$ et $\text{Vect}(u_1, u_2)$ est un espace vectoriel donc $\text{Vect}(e_1, e_2) \subset \text{Vect}(u_1, u_2)$.

De même, $u_1 = e_1$ et $u_2 = e_1 + e_2$ donc $u_1, u_2 \in \text{Vect}(e_1, e_2)$ et $\text{Vect}(e_1, e_2)$ est un espace vectoriel donc $\text{Vect}(u_1, u_2) \in \text{Vect}(e_1, e_2)$.

Ainsi: $\{(x, y, z, t) \in \mathbb{R}^4, z = t = 0\} = \text{Vect}(e_1, e_2)\text{Vect}(u_1, u_2) = F.$

De même :

$$\{(x, y, z, t) \in \mathbb{R}^4, \ x - y = 0 \text{ et } x + y - 2z = 0\} = \{(x, y, z, t) \in \mathbb{R}^4, x = y \text{ et } z = x\}$$

$$= \{(x, x, x, t), x, t \in \mathbb{R}\}$$

$$= \{x(1, 1, 1, 0) + t(0, 0, 0, 1), x, t \in \mathbb{R}\} \qquad = \text{Vect } (e_3, e_4)$$

où $e_3 = (1, 1, 1, 0)$ et $e_4 = (0, 0, 0, 1)$.

Montrons que Vect (e_3, e_4) = Vect (u_3, u_4) .

 $e_3 = u_3$ et $e_4 = u_4 - u_3$. Ainsi, $e_3, e_4 \in \text{Vect}(u_3, u_4)$ et $\text{Vect}(u_3, u_4)$ est un espace vectoriel donc $\text{Vect}(e_3, e_4) \subset \text{Vect}(u_3, u_4)$.

De même, $u_3 = e_3$ et $u_4e_3 + e_4$ donc $u_3, u_4 \in \text{Vect}(e_3, e_4)$ et $\text{Vect}(e_3, e_4)$ est un espace vectoriel donc $\text{Vect}(u_3, u_4) \subset \text{Vect}(e_3, e_4)$.

Ainsi: $\{(x, y, z, t) \in \mathbb{R}^4, x - y = 0 \text{ et } x + y - 2z = 0\} = \text{Vect}(e_3, e_4) = \text{Vect}(u_3, u_4) = G.$

2. Soit $(x, y, z, t) \in E$. Soient $a, b, c, d \in \mathbb{R}$

$$(x, y, z, t) = au_1 + bu_2 + cu_3 + du_4$$

$$\iff \begin{cases} a + b + c + d = x \\ b + c + d = y \\ c + d = z \\ d = t \end{cases}$$

$$\iff \begin{cases} a = x - y \\ b = y - z \\ c = z - t \\ d = t \end{cases}$$

Il y a donc existence et unicité de la décomposition. On a donc $F\oplus G=E.$ Ainsi, F et G sont donc supplémentaires dans E.

Exercice 15. Vérifions tout d'abord que F et G sont deux sous espaces vectoriels de E.

- La fonction nulle sur [0,1] appartient à F donc F est non vide.
- Soient $f, g \in F$. Soit $\lambda, \mu \in \mathbb{R}^2$. On a $\int_0^1 (\lambda f + \mu g)(t) dt = \lambda \int_0^1 f(t) dt + \mu \int_0^1 g(t) dt = 0$. De plus, $(\lambda f + \mu g)(0) = \lambda f(0) + \mu g(0) = 0$ et $(\lambda f + \mu g)'(1) = \lambda f'(1) + \mu g'(1) = 0$. Ainsi, $\lambda f + \mu g \in F$

Donc F est un sous espace vectoriel de E.

$$G = \text{Vect}(e_0, e_1, e_2) \text{ où pour tout } k \in \llbracket 0, 2 \rrbracket, \quad \begin{array}{c} e_k : & \llbracket 0, 1 \rrbracket & \to & \mathbb{R} \\ x & \mapsto & x^k \end{array}.$$

Montrons que ces sous-espaces sont supplémentaires.

Soit $h \in E$. Montrons par analyse-synthèse qu'il existe un unique $(f,g) \in F \times G$ tel que = f + g.

Analyse : supposons qu'il existe $(f,g) \in F \times G$ tel que h = f + g.

Comme $g \in G$, il existe a_0, a_1, a_2 tels que $g : x \mapsto a_0 + a_1x + a_2x^2$.

On a alors :

$$\begin{cases} \int_0^1 h(t)dt = \int_0^1 f(t)dt + \int_0^1 (a_0 + a_1t + a_2t^2)dt = a_0 + \frac{a_1}{2} + \frac{a_2}{3} & \text{car } f \in F \\ h(0) = f(0) + g(0) = a_0 & \text{car } f \in F \\ h'(1) = f'(1) + g'(1) = a_1 + 2a_2 \text{ car } f \in F \end{cases}$$

Or,

$$\begin{cases} a_0 = h(0) \\ a_1 + 2a_2 = h'(1) \\ a_0 + \frac{a_1}{2} + \frac{a_2}{3} = \int_0^1 h(t)dt \end{cases}$$

$$\iff \begin{cases} a_0 = h(0) \\ a_1 + 2a_2 = h'(1) \\ \frac{a_1}{2} + \frac{a_2}{3} = I - h(0) \end{cases}$$

$$\iff \begin{cases} a_0 = h(0) \\ a_1 + 2a_2 = h'(1) \\ -\frac{2}{3}a_2 = \int_0^1 h(t)dt - h(0) - \frac{1}{2}h'(1) \end{cases}$$

$$\iff \begin{cases} a_0 = h(0) \\ a_1 = -3h(0) - \frac{1}{2}h'(1) + 3\int_0^1 h(t)dt \\ a_2 = \frac{3}{2}h(0) + \frac{3}{4}h'(1) - \frac{3}{2}\int_0^1 h(t)dt \end{cases}$$

Ainsi, si la décomposition de h comme la somme d'un élément de F et d'un élément de G existe, elle est unique.

Synthèse: Posons $a_0 = h(0)$, $a_1 = -3h(0) - \frac{1}{2}h'(1) + 3\int_0^1 h(t)dt$ et $a_2 = \frac{3}{2}h(0) + \frac{3}{4}h'(1) - \frac{3}{2}\int_0^1 h(t)dt$.

Posons $g: x \mapsto a_0 + a_1x + a_2x^2$ et f = h - g. On a:

- h = f + g
- Par définition même de $g, g \in G$.
- D'après les équivalences de la phase d'analyse, on a :

$$\begin{cases} a_0 = h(0) \\ a_1 + 2a_2 = h'(1) \\ a_0 + \frac{a_1}{2} + \frac{a_2}{3} = \int_0^1 h(t)dt \end{cases}$$

Ainsi,

$$\int_0^1 f(t)dt = \int_0^1 h(t) - g(t)dt$$

$$= \int_0^1 h(t)dt - \int_0^1 (a_0 + a_1t + a_2t^2)dt$$

$$= \int_0^1 h(t)dt - \left(a_0 + \frac{a_1}{2} + \frac{a_2}{3}\right)$$

$$= 0$$

De plus, $f(0) = h(0) - a_0 = 0$ et $f'(1) = h'(1) - (a_1 + 2a_2) = 0$. Ainsi, $f \in F$.

Ainsi, tout élément de E se décompose de façon unique sous la forme h = f + g avec $f \in F$ et $g \in G$ donc F et Gsont deux sous-espaces vectoriels supplémentaires de ${\cal E}.$

• la fonction nulle appartient à F donc F est non vide. Exercice 16.

> • Soient $f, g \in F$. Soit $\lambda, \mu \in \mathbb{R}$. Pour tout $i \in [1, p]$, $(\lambda f + \mu g)(a_i) = \lambda f(a_i) + \mu g(a_i) = 0$. Ainsi, $\lambda f + \mu g \in F$.

F est donc un sous-espace vectoriel de

P est donc un sous-espace vectories as Σ .

2. Pour tout $i \in [\![1,p]\!]$, on pose $g_i : \left\{ \begin{array}{ccc} [0,1] & \to & \mathbb{R} \\ x & \mapsto & \prod_{j \in [\![1,p]\!] \setminus \{i\}} (x-a_j) \end{array} \right.$.

Posons $G = \text{Vect } ((g_i)_{i \in [1,p]}).$

Montrons que G est un supplémentaire de F dans E.

Soit $h \in E$. Montrons par analyse-synthèse qu'il existe un unique $(f,g) \in F \times G$ tel que h = f + g.

Analyse : Supposons qu'il existe $(f,g) \in F \times G$ tel que h = f + g.

Comme $g \in G = \text{Vect } ((g_i)_{i \in [\![1,p]\!]})$, il existe $\lambda_0, ..., \lambda_p \in \mathbb{R}$ tel que $g = \sum_{i=1}^p \lambda_i g_i$. Soit $k \in [\![1,p]\!]$, on a alors :

$$h(a_k) = f(a_k) + \sum_{i=1}^n \lambda_i g_i(a_k) = \sum_{i=1}^n \lambda_i \prod_{j \in [1,p] \setminus \{i\}} (a_k - a_j) = \lambda_k \prod_{j \in [1,p] \setminus \{k\}} (a_k - a_j)$$

Ainsi,
$$\lambda_k = \frac{h(a_k)}{\prod_{j \in [1,p] \setminus \{k\}} (a_k - a_j)}.$$

On a alors : $f = h - \sum_{i=1}^{n} \frac{h(a_i)}{\prod_{i \in [1, p] \setminus \{i\}}} g_i$. Ainsi, si une telle décomposition existe, celle-ci est unique.

Synthèse: Pour tout $i \in [1, p]$, posons $\lambda_i = \frac{h(a_i)}{\prod_{j \in [1, p] \setminus \{i\}} (a_i - a_j)}$, $g = \sum_{i=1}^n \lambda_i g_i$ et f = h - g.

- On a bien h = f + g.
- On a $g \in G$
- Soit $k \in [1, p]$,

$$f(a_k) = h(a_k) - g(a_k)$$

$$= h(a_k) - \sum_{i=1}^n \frac{h(a_i)}{\prod\limits_{j \in [\![1,p]\!] \setminus \{i\}}} g_i(a_k)$$

$$= h(a_k) - \sum_{i=1}^n \frac{h(a_i)}{\prod\limits_{j \in [\![1,p]\!] \setminus \{i\}}} \prod\limits_{j \in [\![1,p]\!] \setminus \{i\}} (a_k - a_j)$$

$$= h(a_k) - h(a_k)$$

$$= 0$$

Ainsi, $f \in F$.

On a donc montré que pour tout élément h de E, il existe un unique $(f,g) \in F \times G$ tel que h = f + g. Ainsi, F et G sont supplémentaires dans E.

Exercice 17. 1. E est un \mathbb{R} -espace vectoriel. On peut prouver qu'il s'agit d'un sous-espace vectoriel du \mathbb{R} -espace vectoriel $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

- \bullet Commençons par prouver que F et G sont des sous espaces vectoriels de E.
 - Comme ch
 et sh sont dérivables sur \mathbb{R} , toute combinaison linéaire de ch
 et sh est dérivable. Ainsi, $F \subset E$.

De plus, F est bien un sous-espace vectoriel donc F est un sous espace vectoriel de E.

- On a $G \subset E$.
 - ullet La fonction nulle appartient à G donc G est non vide.
 - Soient $f, g \in G$. Soient $\lambda, \mu \in \mathbb{R}$. On a $(\lambda f + \mu g)(0) = \lambda f(0) + \mu g(0) = 0$ car $f, g \in G$. De même, $(\lambda f + \mu g)'(0) = \lambda f'(0) + \mu g'(0) = 0$ car $f, g \in G$. Ainsi, $\lambda f + \mu g \in G$.

Donc G est un sous-espace vectoriel de E.

• Soit $h \in E$.

Montrons par analyse-synthèse qu'il existe un unique $(f, g) \in F \times G$ tel que h = f + g.

Analyse : supposons qu'il existe $(f,g) \in F \times G$ tel que h = f + g. Comme $f \in \text{Vect (ch, sh)}$, il existe $a, b \in \mathbb{R}$ tel que f = ach + bsh.

On a alors : $h(0) = f(0) + g(0) = a \operatorname{car} g(0) = 0$.

De plus, $h'(0) = f'(0) + g'(0) = a \operatorname{sh}(0) + b \operatorname{ch}(0) = b \operatorname{car} g'(0) = 0$. Par suite g = h - f. Ainsi, si une telle décomposition existe, on a l'unicité.

Synthèse : Posons a = h(0), b = h'(0), f = ach + bsh et g = h - f.

On a: h = f + g, $f \in F$. De plus, g(0) = h(0) - f(0) = h(0) - a = 0 et g'(0) = h'(0) - f'(0) = h'(0) - b = 0

donc $h \in G$.

Ainsi, g et h conviennent.

Ainsi, pour tout $h \in E$, il existe un unique $(f, g) \in F \times G$ tel que h = f + g.

Donc $F \oplus G = E$.

2. \bullet Commençons par justifier que F et G sont des sous-espaces vectoriels de E.

On a clairement F sous-espace vectoriel de E.

On a $G \subset E$.

De plus, la fonction nulle appartient à G donc G est non vide.

Soient $f, g \in G$, soient $\lambda, \mu \in \mathbb{R}$.

on a $(\lambda f + \mu g)(-1) = \lambda f(-1) + \mu g(-1) = 0$ car $f, g \in G$.

Ainsi, $\lambda f + \mu g \in G$ donc G est un sous-espace vectoriel de E.

• Soit $h \in E$.

Montrons par analyse-synthèse qu'il existe un unique $(f,g) \in F \times G$ tel que h = f + g.

Analyse : supposons qu'il existe $(f,g) \in F \times G$ tel que h = f + g. Comme $f \in \text{Vect}(\exp)$, il existe $a \in \mathbb{R}$ tel que $f = a \exp$.

On a alors : $h(-1) = f(-1) + g(-1) = ae^{-1}$ car $g \in G$. D'où a = eh(-1).

Synthèse : posons a = eh(-1), $f = a \exp \operatorname{et} g = h - f$.

On a alors h = f + g et $f \in F$.

De plus, $g(-1) = h(-1) - f(-1) = h(-1) - ae^{-1} = h(-1) - h(-1) = 0$. Donc $g \in G$. Ainsi, g et h conviennent.

Ainsi, pour tout $h \in E$, il existe un unique $(f,g) \in F \times G$ tel que h = f + g. Donc : $E = F \oplus G$.

Exercice 18. • Soit $x \in A \cap C$, alors on a $x \in C \subset B$, donc $x \in (A \cap B) \cap C$. Or, $A \cap B$ et C sont supplémentaires dans B donc $(A \cap B) \cap C = \{0\}$. Ainsi, x = 0.

Donc $A \cap C \subset \{0\}$. D'où $A \cap C = \{0\}$.

• On sait déjà que $A \subset A + B$ et $C \subset B \subset A + B$. Ainsi, $A + C \subset A + B$.

Soit $x \in A + B$. Il existe $(a,b) \in A \times B$ tel que x = a + b. De plus, $B = (A \cap B) \oplus C$. Ainsi, il existe $(a_1,c) \in (A \cap B) \times C$ tel que $b = a_1 + c$.

Ainsi, $x=(a+a_1)+c$. Or, $a+a_1\in A$ car A est un sous-espace vectoriel de E. Donc $x\in A+C$. D'où $A+C\subset A+B$.

Donc A + C = A + B.

On a donc prouvé que $A + B = A \oplus C$.

2 Familles finies de vecteurs

Exercice 19. 1. x_1 et x_2 ne sont pas colinéaires donc (x_1, x_2) est libre.

2. Soit $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$ tel que $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$. On a:

$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 = 0$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 - \lambda_3 = 0 \\ \lambda_1 + 2\lambda_2 + \lambda_3 = 0 \\ \lambda_1 - \lambda_2 + \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 - \lambda_3 = 0 \\ \lambda_2 + 2\lambda_3 = 0 \\ 6\lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ 6\lambda_3 = 0 \end{cases}$$

La famille (x_1, x_2, x_3) est donc libre.

3. Soit $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{R}^3$ tel que $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda_4 x_4 = 0$. On a:

$$\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda_4 x_4 = 0$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 - \lambda_3 + \lambda_4 = 0 \\ \lambda_1 - \lambda_2 + \lambda_3 + \lambda_4 = 0 \\ -\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 0 \end{cases}$$

On a un système linéaire homogène à 3 équations et 4 inconnues donc il admet une infinité de solutions donc au moins une non nulle.

Ainsi, il existe $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{R}^4 \setminus \{(0,0,0,0)\}$ tel que $\lambda_1 x_1 + \lambda_2 x_2 + \lambda_3 x_3 + \lambda_4 x_4 = 0$.

Ainsi, la famille (x_1, x_2, x_3, x_4) est liée. **Remarque :** En utilisant le chapitre suivant, on pourrait dire : (x_1, x_2, x_3, x_4) est une famille de 4 vecteurs de \mathbb{R}^3 . Or, dim $(\mathbb{R}^3) = 3$. Ainsi, cette famille est nécessairement liée.

Exercice 20. Soit $\lambda, \mu \in \mathbb{R}$ tels que $\lambda \cos + \mu \sin = 0$. Ceci se réécrit :

$$\forall x \in \mathbb{R}, \ \lambda \cos(x) + \mu \sin(x) = 0$$

En évaluant en $x=\underline{0},$ on obtient : $\lambda=0.$

En évaluant en $x = \frac{\pi}{2}$, on obtient : $\mu = 0$.

Ainsi, la famille (sin, cos) est donc libre.

Exercice 21.

Soit $(\lambda_1, \lambda_2, \lambda_3)$ tel que $\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3 = 0$.

On a donc : $\forall x \in \mathbb{R}$, $\lambda_1 |x| + \lambda_2 |x - 1| + \lambda_3 |x + 1| = 0$.

En évaluant cette relation en 0,1,et -1, on obtient :

$$\begin{cases} \lambda_2 + \lambda_3 = 0 \\ \lambda_1 + 2\lambda_3 = 0 \\ \lambda_1 + 2\lambda_2 = 0 \end{cases}$$

Or,

$$\begin{cases} \lambda_1 + 2\lambda_2 = 0 \\ \lambda_1 + 2\lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 + 2\lambda_2 = 0 \\ -\lambda_2 + \lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$$

Ainsi, la famille (f_1, f_2, f_3) est libre.

Exercice 22. 1. Soient $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que $\lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3 = 0$.

Alors: $\forall x \in \mathbb{R}, \ \lambda_1 f_1(x) + \lambda_2 f_2(x) + \lambda_3 f_3(x) = 0.$ En évaluant en $0, \frac{\pi}{2}$ et $\frac{\pi}{4}$, on obtient:

$$\begin{cases} \lambda_1 + \lambda_3 = 0\\ \lambda_2 + \lambda_3 = 0\\ \lambda_1 \frac{\sqrt{2}}{2} + \lambda_2 \frac{\sqrt{2}}{2} + \lambda_3 = 0 \end{cases}$$

Or,

$$\begin{cases} \lambda_1 + \lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \\ \lambda_1 \frac{\sqrt{2}}{2} + \lambda_2 \frac{\sqrt{2}}{2} + \lambda_3 = 0 \end{cases} \iff \begin{cases} \lambda_1 + \lambda_3 = 0 \\ \lambda_2 + \lambda_3 = 0 \\ \lambda_2 \frac{\sqrt{2}}{2} + \lambda_3 \left(1 - \frac{\sqrt{2}}{2}\right) = 0 \end{cases}$$
$$\iff \begin{cases} \lambda_1 + \lambda_3 = 0 \\ \lambda_2 \frac{\sqrt{2}}{2} + \lambda_3 \left(1 - \frac{\sqrt{2}}{2}\right) = 0 \\ \lambda_3 \left(1 - \sqrt{2}\right) = 0 \end{cases}$$
$$\iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$$

Ainsi, la famille (f_1, f_2, f_3) est libre.

2. On a: $\forall x \in \mathbb{R}$, $\cos(2x) = 2\cos^2(x) - 1$.

Ainsi : $2f_1 - f_2 - f_3 = 0$.

Donc cette famille est liée.

3. Soit
$$\lambda_1, \dots, \lambda_n \in \mathbb{R}$$
 tels que $\sum_{k \in [\![1,n]\!]} \lambda_k \sin(2^k x) = 0$.

On a alors :
$$\forall x \in \mathbb{R}$$
, $\sum_{k=1}^{n} \lambda_k \sin(2^k x) = 0$.

En évaluant en
$$\frac{\pi}{4}$$
, on obtient $\lambda_1 = 0$.

On a alors :
$$\forall x \in \mathbb{R}$$
, $\sum_{k=2}^{n} \lambda_k \sin(2^k x) = 0$ (*).
En évaluant (*) en $\frac{\pi}{8}$, on obtient alors $\lambda_2 = 0$.

En évaluant (*) en
$$\frac{\pi}{8}$$
, on obtient alors $\lambda_2 = 0$.

Par suite, par récurrence descendante, on obtient :
$$\lambda_1 = \cdots = \lambda_n = 0$$
 (en prenant successivement les valeurs en $\frac{\pi}{8}, \dots, \frac{\pi}{2^{n+1}}$.
La famille (f_1, \dots, f_n) est donc libre.

La famille
$$(f_1, ..., f_n)$$
 est donc libre.

4. Soit
$$\alpha_1, ..., \alpha_n \in \mathbb{K}$$
 tel que $\sum_{i=1}^n \alpha_i f_i = 0$.

Ainsi, on a :
$$\forall x \in \mathbb{R}, \sum_{i=1}^{n} \alpha_i e^{\lambda_i x} = 0$$
 (1).

On remarque tout d'abord que pour tout
$$\alpha < 0$$
, $\lim_{x \to +\infty} e^{\alpha x} = 0$.

Multiplions (1) par
$$e^{-\lambda_n x}$$
.

$$\forall x \in \mathbb{R}, \ \sum_{i=1}^{n-1} \alpha_i e^{(\lambda_i - \lambda_n)x} + \alpha_n = 0 \quad (2)$$

Or, pour tout
$$i \in [1, n-1]$$
, $\lambda_i - \lambda_n < 0$. Ainsi, pour tout $i \in [1, n-1]$, $\lim_{x \to +\infty} e^{(\lambda_i - \lambda_n)x} = 0$.

En passant à la limite dans (2), on obtient donc
$$\alpha_n = 0$$
.

On a alors:
$$\forall x \in \mathbb{R}, \sum_{i=1}^{n-1} \alpha_i e^{\lambda_i x} = 0$$
 (3).

Par récurrence descendante, on obtient :
$$\alpha_n = \dots = \alpha_1 = 0$$
. Ainsi, la famille $(f_i)_{i \in [1,n]}$ est libre.

Exercice 23. Raisonnons par double implication.

• Supposons (a, b, c) libre. Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tel que $\lambda_1 u + \lambda_2 v + \lambda_3 w = 0$. Or, on a:

$$\lambda_1 u + \lambda_2 v + \lambda_3 w = 0$$

$$\iff \lambda_1 (b+c) + \lambda_2 (c+a) + \lambda_3 (a+b) = 0$$

$$\iff (\lambda_2 + \lambda_3) a + (\lambda_1 + \lambda_3) b + (\lambda_1 + \lambda_2) c = 0$$

$$\iff \begin{cases} \lambda_2 + \lambda_3 = 0 \\ \lambda_1 + \lambda_3 = 0 \\ \lambda_1 + \lambda_2 = 0 \end{cases} \quad \text{car } (a,b,c) \text{ est libre}$$

$$\iff \begin{cases} \lambda_1 + \lambda_2 = 0 \\ -\lambda_2 + \lambda_3 = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$$

Ainsi, (u, v, w) est libre.

- Réciproquement, supposons (u, v, w) libre.
 - Exprimons (a, b, c) en fonction de (u, v, w).

$$\begin{cases} b+c=u\\ a+c=v\\ a+b=w \end{cases}$$

$$\iff \begin{cases} a+b=w\\ -b+c=v-w\\ b+c=u \end{cases}$$

$$\iff \begin{cases} a+b=w\\ b-c=-v+w\\ c=\frac{1}{2}(u+v-w) \end{cases}$$

$$\iff \begin{cases} a=\frac{1}{2}(-u+v+w)\\ c=\frac{1}{2}(u-v+w)\\ c=\frac{1}{2}(u+v-w) \end{cases}$$

• Soit $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que $\lambda_1 a + \lambda_2 b + \lambda_3 c = 0$. Or, on a:

$$\lambda_{1}a + \lambda_{2}b + \lambda_{3}c = 0$$

$$\iff \lambda_{1}(-u + v + w) + \lambda_{2}(u - v + w) + \lambda_{3}(u + v - w) = 0$$

$$\iff (-\lambda_{1} + \lambda_{2} + \lambda_{3})u + (\lambda_{1} - \lambda_{2} + \lambda_{3})v + (\lambda_{1} + \lambda_{2} - \lambda_{3})w = 0 \text{ car } (u, v, w) \text{ est libre}$$

$$\iff \begin{cases} -\lambda_{1} + \lambda_{2} + \lambda_{3} = 0 \\ \lambda_{1} - \lambda_{2} + \lambda_{3} = 0 \\ \lambda_{1} + \lambda_{2} - \lambda_{3} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} - \lambda_{2} - \lambda_{3} = 0 \\ \lambda_{3} = 0 \\ \lambda_{2} = 0 \end{cases}$$

$$\iff \begin{cases} \lambda_{1} = 0 \\ \lambda_{3} = 0 \\ \lambda_{2} = 0 \end{cases}$$

Ainsi, (a, b, c) est libre.

On a donc montré l'équivalence voulue.

Exercice 24. Résultat préliminaire : Soit $(\alpha_j)_{j \in [\![1,n]\!]}$. On a :

$$\sum_{j=1}^{n} \alpha_{j} v_{j} = 0$$

$$\iff \sum_{j=1}^{n} \alpha_{j} (u + e_{j}) = 0$$

$$\iff \sum_{j=1}^{n} \alpha_{j} \left(\sum_{i=1}^{n} \lambda_{i} e_{i} \right) + \sum_{j=1}^{n} \alpha_{j} e_{j} = 0$$

$$\iff \sum_{i=1}^{n} \left(\lambda_{i} \sum_{j=1}^{n} \alpha_{j} \right) e_{i} + \sum_{j=1}^{n} \alpha_{j} e_{j} = 0$$

$$\iff \sum_{j=1}^{n} \left(\lambda_{j} \sum_{i=1}^{n} \alpha_{i} \right) e_{j} + \sum_{j=1}^{n} \alpha_{j} e_{j} = 0$$

$$\iff \sum_{j=1}^{n} \left(\lambda_{j} \left(\sum_{i=1}^{n} \alpha_{i} \right) + \alpha_{j} \right) e_{j} = 0$$

$$\iff \forall j \in [1, n], \ \lambda_{j} \left(\sum_{i=1}^{n} \alpha_{i} \right) + \alpha_{j} = 0 \quad (*)$$

Raisonnons par double implication.

• Montrons que si
$$(v_j)_{j \in [\![1,n]\!]}$$
 est liée alors $\sum_{j=1}^n \lambda_j = -1$.

On raisonne par contraposée.

Supposons que
$$\sum_{j=1}^n \lambda_j \neq -1$$
.
Montrons que $(v_j)_{j \in [\![1,n]\!]}$ est libre.

Soit
$$(\alpha_j)_{j \in [1,n]}$$
 telle que $\sum_{j=1}^n \alpha_j v_j = 0$.

D'après l'équivalence montrée en préliminaire, on a :
$$\forall j \in [1, n], \ \lambda_j \left(\sum_{i=1}^n \alpha_i\right) + \alpha_j = 0.$$

Ainsi, en sommant pour
$$j$$
 allant de 1 à n , on obtient :
$$\sum_{i=1}^{n} \left(\lambda_j \left(\sum_{i=1}^{n} \alpha_i \right) + \alpha_j \right) = 0.$$

$$\operatorname{Donc}\left(\sum_{i=1}^{n}\alpha_{i}\right)\left(1+\sum_{j=1}^{n}\lambda_{j}\right)=0. \text{ Or, par hypothèse, } \sum_{j=1}^{n}\lambda_{j}\neq-1 \text{ donc } \sum_{i=1}^{n}\alpha_{i}=0.$$

En réinjectant dans (*), on obtient que : $\forall j \in [1, n], \ \alpha$

Donc $(v_j)_{j \in [\![1,n]\!]}$ est libre.

Ainsi, par contraposée, si
$$(v_j)_{j\in \llbracket 1,n\rrbracket}$$
 est liée alors $\sum_{j=1}^n \lambda_i = -1$.

• Supposons désormais que
$$\sum_{j=1}^{n} \lambda_j = -1$$
.

Réflexion:

On souhaite construire une famille $(\alpha_j)_{j\in \llbracket 1,n\rrbracket}$ de scalaires non tous nuls telle que $\sum \alpha_j v_j = 0$.

Pour ce faire, il suffit de construire une famille $(\alpha_j)_{j\in \llbracket 1,n\rrbracket}$ de scalaires non tous nuls telle que :

$$\forall j \in [1, n], \ \lambda_j \left(\sum_{i=1}^n \alpha_i \right) + \alpha_j = 0 \quad (**).$$

Pour satisfaire (**), il faut qu'il existe $C \in \mathbb{R}$ telle que : $\forall j \in [1, n]$, $\alpha_j = C\lambda_j$. Cherchons les constantes C qui

On cherche $C \neq 0$ car on souhaite obtenir une famille $(\alpha_j)_{j \in [1,n]}$ de scalaires non tous nuls. De plus,

$$\begin{aligned} \forall j \in [\![1,n]\!], \ \lambda_j \left(\sum_{i=1}^n \alpha_i\right) + \alpha_j &= 0 \\ \iff \forall j \in [\![1,n]\!], \ \lambda_j \left(\sum_{i=1}^n C\lambda_i\right) + C\lambda_j &= 0 \\ \iff \forall j \in [\![1,n]\!], \ C\lambda_j \left(\sum_{i=1}^n \lambda_i\right) + C\lambda_j &= 0 \\ \iff \forall j \in [\![1,n]\!], \ -C\lambda_j + C\lambda_j &= 0 \\ \iff 0 &= 0 \end{aligned}$$

Ainsi, toutes les constantes conviennent.

On peut par exemple prendre C=1.

Rédaction:

Pour tout $j \in [1, n]$, on pose $\alpha_i = \lambda_i$.

Soit
$$j \in [1, n]$$
, on a: $\lambda_j \left(\sum_{i=1}^n \lambda_i \right) + \lambda_j = -\lambda_j + \lambda_j = 0$ par hypothèse sur $\sum_{j=1}^n \lambda_j$.

Ainsi:

$$\forall j \in [1, n], \ \lambda_j \left(\sum_{i=1}^n \alpha_i\right) + \alpha_j = 0.$$

Donc d'après l'équivalence du préliminaire, on a :

$$\sum_{j=1}^{n} \alpha_j v_j = 0.$$

De plus, la famille $(\alpha_j)_{j \in [\![1,n]\!]}$ est une famille de scalaire non tous nuls car $\sum_{j=1}^n \alpha_j = -1$.

Ainsi, la famille $(v_j)_{j\in \llbracket 1,n\rrbracket}$ est liée.

Par double implication, on a donc prouvé que $(v_j)_{j \in [\![1,n]\!]}$ est liée si et seulement si $\sum_{j=1}^n \lambda_j = -1$.

Exercice 25. 1. Soit $(x, y, z) \in \mathbb{R}^3$, soient $a, b, c, d \in \mathbb{R}$. On a :

$$(x,y,z) = a(1,2,3) + b(1,1,0) + c(0,1,1) + d(3,2,1)$$

$$\iff \begin{cases} a+b+3d = x \\ 2a+b+c+2d = y \\ 3a+c+d = z \end{cases}$$

$$\iff \begin{cases} a+b+3d = x \\ -b+c-4d = y-2x \\ -3b+c-8d = z-3x \end{cases}$$

$$\iff \begin{cases} a+b+3d = x \\ -b+c-4d = y-2x \\ -2c+4d = z-3y+3x \end{cases}$$

$$\iff \begin{cases} a = \frac{1}{2}x - \frac{1}{2}y + \frac{1}{2}z - d \\ b = \frac{1}{2}x + \frac{1}{2}y - \frac{1}{2}z - 2d \\ c = -\frac{3}{2}x + \frac{3}{2}y - \frac{1}{2}z + 2d \end{cases}$$

Ainsi, pour tout $(x, y, z) \in \mathbb{R}^3$, il existe $a, b, c \in \mathbb{R}$ tel que $(x, y, z) \in \mathbb{R}^3 = a(1, 2, 3) + b(1, 1, 0) + c(0, 1, 1) + d(3, 2, 1)$. Ainsi, cette famille est génératrice de \mathbb{R}^3 .

2. Soient $a,b,c,d\in\mathbb{R}$ tels que a(1,2,3)+b(1,1,0)+c(0,1,1)+d(3,2,1)=(0,0,0). En reprenant les équivalences précédentes avec x=y=z=0, on obtient :

$$a(1,2,3) + b(1,1,0) + c(0,1,1) + d(3,2,1) = (0,0,0) \iff \begin{cases} a = -d \\ b = -2d \\ c = 2d \end{cases}$$

Ainsi, en prenant d = 1, on a : -(1,2,3) - 2(1,1,0) + 2(0,1,1) + (3,2,1) = (0,0,0). Ainsi, cette famille est liée.

Exercice 26. •

$$E = \{(x, y, z) \in \mathbb{R}^3, 2x - y + z = 0\}$$

$$= \{(x, y, y - 2x), x, y \in \mathbb{R}\}$$

$$= \{x(1, 0, -2) + y(0, 1, 1), x, y \in \mathbb{R}\}$$

$$= \text{Vect } (e_1, e_2)$$

où $e_1 = (1, 0, -2)$ et $e_2 = (0, 1, 1)$.

Ainsi, E est un sous espace vectoriel de \mathbb{R}^3 .

- De plus, la famille (e_1, e_2) est une famille génératrice de E.
- Enfin, e_1 et e_2 ne sont pas colinéaires donc (e_1, e_2) est libre.
- La famille (e_1, e_2) constitue donc une base de E.

Exercice 27.

$$E = \{P \in \mathbb{C}_4[X], \ P(a) = 0, P(b) = 0\}$$

$$= \{P \in \mathbb{C}_4[X], \ (X - a)(X - b) \mid P\}$$

$$= \{P \in \mathbb{C}_4[X], \ \exists Q \in \mathbb{C}_2[X], P = (X - a)(X - b)Q\} \quad \deg(Q) \le 2 \text{ car } \deg(P) \le 4$$

$$= \{P \in \mathbb{C}_4[X], \ \exists (a_0, a_1, a_2) \in \mathbb{C}^3, \ P = (X - a)(X - b)(a_2X^2 + a_1X + a_0)\}$$

$$= \{P \in \mathbb{C}_4[X], \ \exists (a_0, a_1, a_2) \in \mathbb{C}^3, \ P = a_0(X - a)(X - b) + a_1(X - a)(X - b)X + a_2(X - a)(X - b)X^2\}$$

$$= \{a_0(X - a)(X - b) + a_1(X - a)(X - b)X + a_2(X - a)(X - b)X^2, \ a_0, a_1, a_2 \in \mathbb{C}\}$$

$$= \text{Vect} ((X - a)(X - b), (X - a)(X - b)X, (X - a)(X - b)X^2)$$

Ainsi, la famille $((X-a)(X-b), (X-a)(X-b)X, (X-a)(X-b)X^2)$ est génératrice de E. De plus, cette famille est une famille de polynômes non nuls de degrés échelonnés. Elle est donc libre. Ainsi, $((X-a)(X-b), (X-a)(X-b)X, (X-a)(X-b)X^2)$ constitue une base de E.

Exercice 28. 1. Soit $(x, y, z, t) \in \mathbb{R}^4$. Soient $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{R}$. On a :

$$\lambda_{1}e_{1} + \lambda_{2}e_{2} + \lambda_{3}e_{3} + \lambda_{4}e_{4} = (x, y, z, t)$$

$$\Leftrightarrow \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} = x \\ \lambda_{1} + \lambda_{2} + 2\lambda_{3} - \lambda_{4} = y \\ 2\lambda_{1} + \lambda_{2} + 3\lambda_{3} + \lambda_{4} = z \\ 2\lambda_{1} + \lambda_{2} + 4\lambda_{3} + \lambda_{4} = t \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} = x \\ \lambda_{3} - 2\lambda_{4} = y - x \\ -\lambda_{2} + \lambda_{3} - \lambda_{4} = z - 2x \\ -\lambda_{2} + 2\lambda_{3} - \lambda_{4} = t - 2x \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} = x \\ \lambda_{2} - \lambda_{3} + \lambda_{4} = 2x - z \\ \lambda_{3} = t - z \end{cases}$$

$$\lambda_{3} = t - z$$

$$\lambda_{3} = t - z$$

$$\lambda_{4} = \frac{-1}{2}(y - x - t + z)$$

Ainsi, pour tout $(x, y, z, t) \in \mathbb{R}^4$, il existe un unique $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{R}^4$ tel que $(x, y, z, t) = \lambda_1 e_1 + \lambda_2 e_2 + \lambda_3 e_3 + \lambda_4 e_4$.

Ainsi, (e_1, e_2, e_3, e_4) est une base de \mathbb{R}^4 .

Remarque:

En utilisant le chapitre suivant, il suffit en fait de montrer que (e_1, e_2, e_3, e_4) est une famille libre. En effet, on a alors une famille libre de 4 vecteurs de \mathbb{R}^4 de dimension 4. Il s'agit donc d'une base de \mathbb{R}^4 .

2. En reprenant l'équivalence précédente avec x=4, y=3, z=2, t=1, on obtient : $\lambda_4=0, \lambda_3=-1, \lambda_2=5$ et $\lambda_1=0$. Ainsi, $(4,3,2,1)=5e_2-e_3$.

Ainsi les coordonnées de (4,3,2,1) dans la base (e_1,e_2,e_3,e_4) sont (0,5,-1,0).

Exercice 29. Pour tout $i \in [1, p]$, on note : $\mathcal{P}(i) : \ll e_i \in \text{Vect}(f_1, \dots, f_i) \gg \text{Montrons par récurrence forte que pour tout } i \in [1, p], \mathcal{P}(i) \text{ est vraie.}$

• Pour i = 1. Par hypothèse, $f_1 \in \text{Vect}(e_1)$. Donc, il existe $\lambda \in \mathbb{R}$ tel que $f_1 = \lambda e_1$. Si $\lambda = 0$ alors $f_1 = 0$. Absurde car la famille (f_1) est libre. Ainsi, $\lambda \neq 0$. Donc $e_1 = \frac{1}{\lambda} f_1 \in \text{Vect}(f_1)$. Ainsi, $\mathcal{P}(1)$ est vraie.

• Soit $i \in [\![1,p-1]\!]$. Supposons que pour tout $k \in [\![1,i]\!]$, $\mathcal{P}(k)$ est vraie. D'après l'hypothèse de récurrence, on sait déjà que pour tout $k \in [\![1,i]\!]$, $e_i \in \mathrm{Vect}\,(f_1,\ldots,f_i)$. Ainsi, pour tout $k \in [\![1,i]\!]$, il existe $(\alpha_1^k,\ldots,\alpha_i^k) \in \mathbb{R}^k$ tel que :

 $\sum_{k=1}^{k} k c$

$$e_k = \sum_{j=1}^k \alpha_j^k f_j$$

De plus, par hypothèse, $f_{i+1} \in \text{Vect}(e_1, \dots, e_{i+1})$. Ainsi, il existe $(\lambda_1, \dots, \lambda_{i+1}) \in \mathbb{R}^{i+1}$ tel que

$$f_{i+1} = \sum_{n=1}^{i+1} \lambda_n e_n$$

D'où
$$\lambda_{i+1}e_{i+1} = f_{i+1} - \sum_{n=1}^{i} \lambda_n \sum_{j=1}^{n} \alpha_j^n f_j$$
.

Supposons $\lambda_{i+1} = 0$. Alors, $f_{i+1} = \sum_{n=1}^{i} \lambda_n \sum_{j=1}^{n} \alpha_j^n f_j$. Absurde. En effet, on a $f_{i+1} \in \text{Vect}(f_1, ..., f_i)$ ce qui contredit le caractère libre de la famille $(f_j)_{j \in [\![1,i+1]\!]}$ (en tant que sous famille de la famille libre $(f_j)_{j \in [\![1,p]\!]}$).

Donc
$$\lambda_{i+1} \neq 0$$
, alors, $e_{i+1} = \frac{1}{\lambda_{i+1}} \left(f_{i+1} - \sum_{n=1}^{i} \lambda_n \sum_{j=1}^{n} \alpha_j^n f_j \right) \in \text{Vect}(f_1, ..., f_{i+1}).$

Donc $\mathcal{P}(i+1)$ est vraie.

• On a donc bien prouvé que : $\forall i \in [1, p], e_i \in \text{Vect}(f_1, \dots, f_i)$.