Chapter 3 - Regression Models

Segment 3 - Logistic regression

```
import numpy as np
import pandas as pd
import seaborn as sb
import matplotlib.pyplot as plt
import sklearn
from pandas import Series, DataFrame
from pylab import rcParams
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_predict
from sklearn import metrics
from sklearn.metrics import classification report
from sklearn.metrics import confusion matrix
from sklearn.metrics import precision_score, recall score
%matplotlib inline
rcParams['figure.figsize'] = 5, 4
sb.set_style('whitegrid')
```

Logistic regression on the titanic dataset

```
address = 'C:/Users/Lillian/Desktop/ExerciseFiles/Data/titanic-training-data.csv'
titanic_training = pd.read_csv(address)
titanic_training.columns = ['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'E
print(titanic_training.head())
```

```
PassengerId Survived
                                Pclass \
     0
                  1
                             0
                                     3
                                     1
     1
                  2
                             1
     2
                  3
                             1
                                     3
     3
                  4
                             1
                                     1
     4
                  5
                             0
                                     3
                                                       Name
                                                                Sex
                                                                      Age SibSp \
     0
                                                               male 22.0
                                   Braund, Mr. Owen Harris
                                                                                1
        Cumings, Mrs. John Bradley (Florence Briggs Th...
     1
                                                             female 38.0
                                                                                1
     2
                                    Heikkinen, Miss. Laina
                                                             female 26.0
                                                                                0
     3
             Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                             female 35.0
                                                                                1
     4
                                  Allen, Mr. William Henry
                                                                                0
                                                               male 35.0
        Parch
                         Ticket
                                     Fare Cabin Embarked
                      A/5 21171
     0
            0
                                   7.2500
                                            NaN
                                                        S
     1
                       PC 17599
                                 71.2833
                                                        C
            0
                                            C85
     2
               STON/02. 3101282
                                   7.9250
                                                        S
                                            NaN
     3
                         113803
                                  53.1000
                                                        S
                                           C123
     4
                                                        S
            0
                          373450
                                   8.0500
                                            NaN
print(titanic_training.info())
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 891 entries, 0 to 890
     Data columns (total 12 columns):
     PassengerId
                    891 non-null int64
     Survived
                    891 non-null int64
                    891 non-null int64
     Pclass
                    891 non-null object
     Name
                    891 non-null object
     Sex
                    714 non-null float64
     Age
                    891 non-null int64
     SibSp
                    891 non-null int64
     Parch
     Ticket
                    891 non-null object
     Fare
                    891 non-null float64
                    204 non-null object
     Cabin
                    889 non-null object
     Embarked
     dtypes: float64(2), int64(5), object(5)
     memory usage: 83.6+ KB
     None
```

Survived - Survival (0 = No; 1 = Yes)

Pclass - Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

Name - Name

Sex - Sex

Age - Age

SibSp - Number of Siblings/Spouses Aboard

Parch - Number of Parents/Children Aboard

Ticket - Ticket Number

Fare - Passenger Fare (British pound)

Cabin - Cabin

Embarked - Port of Embarkation (C = Cherbourg, France; Q = Queenstown, UK; S = Southampton - Cobh, Ireland)

Checking that your target variable is binary

sb.countplot(x='Survived', data=titanic_training, palette='hls')

<matplotlib.axes._subplots.AxesSubplot at 0x1c2bf493080>

▼ Checking for missing values

titanic_training.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtyno: int61	

dtype: int64

titanic_training.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

▼ Taking care of missing values

Dropping missing values

So let's just go ahead and drop all the variables that aren't relevant for predicting survival. We should at least keep the following:

- Survived This variable is obviously relevant.
- Pclass Does a passenger's class on the boat affect their survivability?

- Sex Could a passenger's gender impact their survival rate?
- Age Does a person's age impact their survival rate?
- SibSp Does the number of relatives on the boat (that are siblings or a spouse) affect a person survivability? Probability
- Parch Does the number of relatives on the boat (that are children or parents) affect a person survivability? Probability
- Fare Does the fare a person paid effect his survivability? Maybe let's keep it.
- Embarked Does a person's point of embarkation matter? It depends on how the boat was filled... Let's keep it.

What about a person's name, ticket number, and passenger ID number? They're irrelavant for predicting survivability. And as you recall, the cabin variable is almost all missing values, so we can just drop all of these.

titanic_data = titanic_training.drop(['Name', 'Ticket', 'Cabin'], axis=1)
titanic_data.head()

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.0	1	0	7.2500	S
1	2	1	1	female	38.0	1	0	71.2833	С
2	3	1	3	female	26.0	0	0	7.9250	S
3	4	1	1	female	35.0	1	0	53.1000	S
4	5	0	3	male	35.0	0	0	8.0500	S

Imputing missing values

```
sb.boxplot(x='Parch', y='Age', data=titanic_data, palette='hls')
```

<matplotlib.axes._subplots.AxesSubplot at 0x1c2c021ad30>

Parch_groups = titanic_data.groupby(titanic_data['Parch'])
Parch_groups.mean()

	PassengerId	Survived	Pclass	Age	SibSp	Fare
Parch						
0	445.255162	0.343658	2.321534	32.178503	0.237463	25.586774
1	465.110169	0.550847	2.203390	24.422000	1.084746	46.778180
2	416.662500	0.500000	2.275000	17.216912	2.062500	64.337604
3	579.200000	0.600000	2.600000	33.200000	1.000000	25.951660
4	384.000000	0.000000	2.500000	44.500000	0.750000	84.968750
5	435.200000	0.200000	3.000000	39.200000	0.600000	32.550000
6	679.000000	0.000000	3.000000	43.000000	1.000000	46.900000

```
def age_approx(cols):
   Age = cols[0]
   Parch = cols[1]
   if pd.isnull(Age):
       if Parch == 0:
            return 32
       elif Parch == 1:
            return 24
       elif Parch == 2:
            return 17
       elif Parch == 3:
            return 33
       elif Parch == 4:
            return 45
        else:
            return 30
```

```
else:
        return Age
titanic_data['Age'] = titanic_data[['Age', 'Parch']].apply(age_approx, axis=1)
titanic_data.isnull().sum()
     PassengerId
                    0
     Survived
                    0
     Pclass
                    0
     Sex
     Age
                    0
     SibSp
     Parch
                    0
                    0
     Fare
     Embarked
     dtype: int64
titanic_data.dropna(inplace=True)
titanic_data.reset_index(inplace=True, drop=True)
print(titanic_data.info())
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 889 entries, 0 to 888
     Data columns (total 9 columns):
     PassengerId
                  889 non-null int64
     Survived
                    889 non-null int64
     Pclass 889 non-null int64
                889 non-null object
889 non-null float64
     Sex
     Age
                    889 non-null int64
     SibSp
                    889 non-null int64
     Parch
     Fare
                    889 non-null float64
                    889 non-null object
     Embarked
     dtypes: float64(2), int64(5), object(2)
     memory usage: 62.6+ KB
     None
```

Converting categorical variables to a dummy indicators

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
gender_cat = titanic_data['Sex']
gender_encoded = label_encoder.fit_transform(gender_cat)
gender_encoded[0:5]
array([1, 0, 0, 0, 1])
```

titanic_data.head()

	PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.0	1	0	7.2500	S
1	2	1	1	female	38.0	1	0	71.2833	С
2	3	1	3	female	26.0	0	0	7.9250	S
3	4	1	1	female	35.0	1	0	53.1000	S
4	5	0	3	male	35.0	0	0	8.0500	S

```
# 1 = male / 0 = female
gender_DF = pd.DataFrame(gender_encoded, columns=['male_gender'])
gender_DF.head()
```

3	n	nale_gender
	0	1
	1	0
	2	0
	3	0
	4	1

```
embarked_cat = titanic_data['Embarked']
embarked_encoded = label_encoder.fit_transform(embarked_cat)
embarked_encoded[0:100]

array([2, 0, 2, 2, 2, 1, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 1, 2, 2, 0, 2, 2,
```

from sklearn.preprocessing import OneHotEncoder
binary_encoder = OneHotEncoder(categories='auto')
embarked_1hot = binary_encoder.fit_transform(embarked_encoded.reshape(-1,1))
embarked_1hot_mat = embarked_1hot.toarray()
embarked_DF = pd.DataFrame(embarked_1hot_mat, columns = ['C', 'Q', 'S'])
embarked_DF.head()

	C	Q	S
0	0.0	0.0	1.0
1	1.0	0.0	0.0
2	0.0	0.0	1.0
3	0.0	0.0	1.0
4	0.0	0.0	1.0

titanic_data.drop(['Sex', 'Embarked'], axis=1, inplace=True)
titanic_data.head()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
0	1	0	3	22.0	1	0	7.2500
1	2	1	1	38.0	1	0	71.2833
2	3	1	3	26.0	0	0	7.9250
3	4	1	1	35.0	1	0	53.1000
4	5	0	3	35.0	0	0	8.0500

titanic_dmy = pd.concat([titanic_data, gender_DF, embarked_DF], axis=1, verify_integrity=True).astype(float)
titanic_dmy[0:5]

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	male_gender	C	Q	S
0	1.0	0.0	3.0	22.0	1.0	0.0	7.2500	1.0	0.0	0.0	1.0
1	2.0	1.0	1.0	38.0	1.0	0.0	71.2833	0.0	1.0	0.0	0.0
2	3.0	1.0	3.0	26.0	0.0	0.0	7.9250	0.0	0.0	0.0	1.0
3	4.0	1.0	1.0	35.0	1.0	0.0	53.1000	0.0	0.0	0.0	1.0
4	5.0	0.0	3.0	35.0	0.0	0.0	8.0500	1.0	0.0	0.0	1.0

▼ Checking for independence between features

sb.heatmap(titanic_dmy.corr())

titanic_dmy.drop(['Fare','Pclass'], axis=1, inplace=True)
titanic_dmy.head()

	PassengerId	Survived	Age	SibSp	Parch	male_gender	С	Q	S
0	1.0	0.0	22.0	1.0	0.0	1.0	0.0	0.0	1.0
1	2.0	1.0	38.0	1.0	0.0	0.0	1.0	0.0	0.0

```
    Checking that your dataset size is sufficient

  titanic_dmy.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 889 entries, 0 to 888
       Data columns (total 9 columns):
       PassengerId
                      889 non-null float64
       Survived
                      889 non-null float64
                      889 non-null float64
       Age
       SibSp
                      889 non-null float64
                      889 non-null float64
       Parch
       male_gender
                      889 non-null float64
                      889 non-null float64
       C
       Q
                      889 non-null float64
                      889 non-null float64
       dtypes: float64(9)
       memory usage: 62.6 KB
  X_train, X_test, y_train, y_test = train_test_split(titanic_dmy.drop('Survived', axis=1),
                                                     titanic_dmy['Survived'], test_size=0.2,
                                                     random_state=200)
  print(X_train.shape)
  print(y_train.shape)
       (711, 8)
       (711,)
```

X_train[0:5]

	PassengerId	Age	SibSp	Parch	male_gender	C	Q	S
719	721.0	6.0	0.0	1.0	0.0	0.0	0.0	1.0
165	167.0	24.0	0.0	1.0	0.0	0.0	0.0	1.0
879	882.0	33.0	0.0	0.0	1.0	0.0	0.0	1.0

Deploying and evaluating the model

▼ Model Evaluation

Classification report without cross-validation

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0.0 1.0	0.83 0.79	0.88 0.71	0.85 0.75	109 69
	0.75	0.71		
accuracy macro avg	0.81	0.80	0.81 0.80	178 178
weighted avg	0.81	0.81	0.81	178

▼ K-fold cross-validation & confusion matrices

▼ Make a test prediction

titanic_dmy[863:864]

	PassengerId	Survived	Age	SibSp	Parch	male_gender	C	Q	S	
863	866.0	1.0	42.0	0.0	0.0	0.0	0.0	0.0	1.0	

```
test_passenger = np.array([866, 40, 0, 0, 0, 0, 0, 1]).reshape(1,-1)
print(LogReg.predict(test_passenger))
print(LogReg.predict_proba(test_passenger))

[1.]
    [[0.26351831 0.73648169]]
```

