Gesture Recognition by Pattern Matching using Sensor Fusion on an Internet of Things device

By Sebastien Gios with Peter Van Roy as supervisor 2022-2023

INTRODUCTION

Context

Motivation

Main Technologies

How to achieve it?

Context

New technologies

More Internet of Things device

More Availability & Accessibility

Opportunities to help people

Motivation

- Gesture recognition algorithm based on sensor data
 - A gesture is a movement or rotation of the human arm
- Communication between devices
- Help people (especially those with reduced mobility)

Main Technologies

GRiSP device attached to a wrist

Programming Language

Hera

A **Sensor Fusion** By Sébastien Kalbush & Vincent Verpoten

How to achieve it?

How to achieve it: Sensor Data

Accelerometer
+
Magnetometer
+
Gyroscope

How to achieve it: Sensor Fusion

Previous Work

How to achieve it: Classification

Our Contribution

Future Work

How to achieve it: IoT Interaction

IoT Interaction

Gesture Recognition

CHALLENGES

No dependecies

Efficiency

Noise Handling

Failure Robustness

Challenges: No dependencies

Challenges: Efficiency

- Adapted to human environment
 - Arm movement
- Everyday use
 - Always moving
- NO heavy computation
 - Adapted for edge computing

Challenges: Noise Handling

Challenges: Failure Robustness

OUR CONTRIBUTION

Classification by pattern matching: Learning & Classification

Noise Handling

Realtime Classification

Demonstration

Classification by pattern matching: Learning step 1

- Data from Hera are translated to symbols:
 - Highly Positive, Positive, Near Zero, Negative or Highly Negative
- Saved in a list

Symbols

Classification by pattern matching: Learning step 2

- To create a pattern :
 - 1. From a list of symbols
 - 2. Combine following same symbols
 - 3. Keep only a unique symbols
 - « Keep only the list of change »

Classification by pattern matching: Learning step 3

- Name of the gesture + Pattern over the 3 axes
- Saved in a file to be reused

Noise Handling

Noise

• Bad if [o, o, -, o, o, o] when not moving

Regroup by sub-list: keep most frequent symbol

•
$$[(0, 0, -,) (0, 0, 0)]$$
 Sub-list of size 3 $[0, 0]$: No noise

Classification step

New Gesture

List of Symbols = Pattern

Comparison with every gesture

- +1 to SAME if same symbol at the same place
- elements in addition in a list are counted as different
- Accuracy = SAME/COMPARISON
- Compute Accuracy for each learned gesture

List of Learned Gesture

G1, x, ...

G1, y, ...

G1, z, ...

G2, x, ...

G2, y, ...

G2, z, ...

• • •

Return

Highest Accuracy

Name : G2 Acc : **78**%

Realtime classification

One Time

INPUT: Time for the gesture

- 1. After a countdown
- 2. Perform the Gesture
- 3. Classification
- 4. Most accurate gesture
- 5. Possibility to learn

Multiple Time

INPUT: Time to stop between gesture,
Max time of the classification

- 1. Perform the Gesture
- 2. Stop moving
- 3. Classification
- 4. Most accurate gesture

Timeout


```
N : rot x right 360
X: 0.0, Y: 0.111111111111111, Z: 0.0
N : rot x right 360
X: 0.0, Y: 0.111111111111111, Z: 0.0
Too low Accuracy, No gesture recognized
Do you want to learn this gesture? (y/n/ENTER) : n
Ni learn ok
(sensor_fusion@nav_1)8> sensor_fusion:stop_all().
sensor_fusion:stop_all().
=INFO REPORT==== 1-Jan-1988::00:03:45.961362 ===
   application: hera
   exited: stopped
   type: temporary
Connection ostablished!
ok
(sensor_fusion@nav_1)9> sensor_fusion:launch().
sensor fusion:launch().
ok
(sensor fusion@nav 1)10> sensor fusion:realtime once(20).
sensor_fusion:realtime_once(20).
```

CONCLUSION

Verdict

Future Work

Verdict

- Gesture recognition algorithm in realtime
- User-friendly, efficient
- No cloud dependency
- Data from 3-axes acceleration
 - Excellent for rotation

- Computer dependency to see the result
- Data from 3-axes acceleration
 - Not efficient for linear movement
- Must stop the movement to end a gesture

Futur Work

- Continuous gesture recognition
- Gesture recognition from the velocity
- Communication between devices
- Merging with the optimized matrix libraries

QUESTIONS & ANSWERS