Warsaw University of Technology The Faculty of Electronics and Information Technology

Data Mining (EDAMI) Project Documentation

CLUSTERING BASED ON DENSITY

Authors:

Aleksandra Kurdo Adam Stelmaszczyk

Contents

1	Project task	2
2	Data set 2.1 Data set attributes information	2 2
3	Descriptions of used algorithms 3.1 DBSCAN algorithm	
4	Implementation details	3
5	User guide	4
6	Experimentation results and analysis	7
7	Conclusions	10

1 Project task

Implementation and experimental evaluation of DBSCAN [2] and DEN-CLUE [3] clustering algorithms.

2 Data set

For the experiments a data set with geometrical properties of wheat kernels was chosen, from the *UCI Irvine Machine Learning Repository* [1]. Kernels belong to 3 different varieties of wheat: Kama, Rosa and Canadian. Data set consists of 210 elements, 70 per variety.

2.1 Data set attributes information

Each element consists of 7 real-valued attributes, which are geometric parameters of wheat kernels, that were measured using the X-rays:

- 1. area A,
- 2. perimeter P,
- 3. compactness $C = \frac{4\pi A}{P^2}$,
- 4. length of kernel,
- 5. width of kernel,
- 6. asymmetry coefficient
- 7. length of kernel groove.

3 Descriptions of used algorithms

Two popular clustering algorithms were used, DBSCAN [2] and DENCLUE [3]. In this section brief descriptions of both methods are presented.

3.1 DBSCAN algorithm

DBSCAN algorithm is relatively simple algorithm controlled with 2 parameters, namely EPS and MIN_PTS. [2] Basically, we are iterating over a set of unvisited points. If we found a core point (a point which has at least MIN_PTS in its Eps-neighbourhood), we are starting a new cluster. Looking

at the neighbours of found core point we are trying to expand this new cluster as much as possible (in respect to the Eps-neighbourhood).

3.2 DENCLUE algorithm

DENCLUE algorithm is based on the idea that the influence of each data point can be modeled using a mathematical function (influence function). The overall density of the data space can be calculated as the sum of the influence function of all data points. Clusters can be determined mathematically by identifying density-attractors, which are the local maxima of the overall density function. The DENCLUE algorithm works in two steps:

- 1. Preclustering step, in which a map of the relevant portion of the data space is constructed. The map is used to speed up the calculation of the density function which requires to efficiently access neighboring portions of the data space.
- 2. Actual clustering step, in which the algorithm identifies the density-attractors and the corresponding density-attracted points.

4 Implementation details

As implementation language for the project Java was chosen. Data set is read from a seeds_dataset.txt text file and passed to a standard input of our bechmarking program. In the benchmark, set of objects that represent points is created. DBSCAN and DENCLUE algorithms are using that set. Other arguments that algorithms need are hard-coded. Whole program consists of five packages:

- algorithms In this package abstract class ClusteringAlgorithm and inherited from it classes DBSCAN and DENCLUE are located.
- structures Here are located basic structure classes like Cluster, Point and Points. Diagram class is shown on the picture 2.
- scorer This package consists of a Scorer class, which used to calculate clustering quality measure. Diagram class is shown on the picture 3.
- visualizer Used for the clusters visualization. Diagram class is shown on the picture 4.
- main Used for reading the data set from the file and bechmarking algorithms. Diagram class is shown on the picture 5.

Figure 1: Class diagram for algorithms package

5 User guide

To run benchmark program please follow this 3 steps:

- 1. Add execution rights to 2 scripts with a command chmod +x build.sh; chmod +x run.sh.
- 2. Compile Java source code running ./build.sh. bin catalog should appear.
- 3. Run benchmark program with ./run.sh.

Figure 2: Class diagram for structures package

Figure 3: Class diagram for scorer package

Figure 4: Class diagram for visualizer package

Figure 5: Class diagram for main package

6 Experimentation results and analysis

As a result of execution DBSCAN and DENCLUE algorithms two sets of clusters are generated. This clusters are represented in 2D view as a set of points, drawn as numbers (fig. 6, 7, 8). Each number is representing cluster ID. *Area* and *asymmetry coefficient* are on axes, because this attributes have the greatest standard deviations (fig. 9).

Figure 6: Perfect clustering

Figure 7: Clustering made by DBSCAN algorithm

Figure 8: Clustering made by DENCLUE algorithm

Also some statistics for the running algorithms are shown, such as number of true positives, true negatives and Rand index (picture 9).

Standard deviations of parameters: 2.9027633077572266 1.3028455904876302 0.02357308893142152 0.4420073058363384 0.37681405162378667 1.4999729609305972 0.49030891102578644 3 cluster(s) of size: 134 50 5 True positives: 5402 True negatives: 7150 Rand index: 0.5719753930280246 3 cluster(s) of size: 52 69 60 True positives: 4576 True negatives: 10038 Rand index: 0.665937571200729

Figure 9: The output of the program

Parameters for the algorithms were chosen experimentally. The best results were achieved using for DENCLUE algorithm values near:

$$SIGMA = 0.7, EPS = 2$$

and for DBSCAN algorithm:

$$EPS = 0.9, MIN_{-}PT = 5$$

The comparison based on time of DENCLUE and DBSCAN algorithms is presented on figure 10. It's hard to compare algorithms based on the memory they used, because of the Java automatic garbage collection, which programmer cannot control. The attempts to calculate free memory before and after the algorithm execution was not successful: sometimes there were zero difference in the amount of free memory.

What can be seen from achieved by DBSCAN and DENCLUE algorithms results that they are quit different. Rand index for DENCLUE algorithm always was higher, what means that its results for this dataset are better. But on the other hand DENCLUE algorithm was needed more time than DBSCAN to do the same work. Should be noticed, that chosen dataset wasn't very big and this difference in time could be changed when algorithms would try to deal with really huge datasets. It can be assumed at the first sight, that for bigger dataset DENCLUE algorithm will be much more slower then DBSCAN, but it's not completely true. Time for DBSCAN algorithm in such situation will rise very quickly and on the other hand such elements in DENCLUE algorithm as dividing data points to cubes, take for big calculations only highly populated cubes ant other elements that were provided to faster the algorithm, will optimize it. And on the tested dataset DENCLUE

Figure 10: Comparison of DENCLUE and DBSCAN

algorithm dividing cubes for populated and highly populated wasn't a cause of some big decrease of considered cubes.

7 Conclusions

References

- [1] UC Irvine Machine Learning Repository. http://archive.ics.uci.edu/ml/datasets/seeds.
- [2] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xianowei Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. *Proceedings of the Second International Conference on Knowledge Discovery and Data Mining*, (KDD-96), 1996.
- [3] Alexander Hinneburg and Daniel A. Keimm. An efficient approach to clustering in large multimedia databases with noise. 1998.