



# HEATHKIT

for the

# LOGIC PROBE

Model IT-7410

595-2066-04



### YOUR HEATHKIT 90-DAY LIMITED WARRANTY

### Consumer Protection Plan for Heathkit Consumer Products

Welcome to the Heath family. We believe you will enjoy assembling your kit and will be pleased with its performance. Please read this consumer Protection Plan catefully, it is a "LIMITED WARRANTY" as defined on the U.S. Cosumer Product Warranty and Federal Trade Commission Improvement Act. This warranty gives you specific legal rights, and you may also have other rights which way from state to safe.

### Heath's Responsibility

PARTS — Replacements for factory defective parts will be supplied free for 90 days from date of purchase. Replacement parts are warranted for the remaining portion of the original warrantly period. You can obtain warrantly parts direct from Heath Company by writing or telephoning us at (616) 982-3571. And we will pay shipping charges to get those parts to you . . . anywhere in the world

SERVICE LABOR — For a period of 90 days from the date of purchase, any malfunction caused by defective parts or error in design will be corrected at no charge to you. You must deliver the until at your expense to the Health factory, any Healthwit Electronic Center (units of Veritechnology Electronics Corporation), or any of our authorized oversease distributions.

TECHNICAL CONSULTATION — You will receive free consultation on any problem you might encounter in the assembly or use of your Heathkit product. Just drop us a line or give us a call. Sorry, we cannot accept collect calls.

NOT COVERED — The correction of assembly errors, adjustments, calibration, and damage due to misuse, abuse, or negligence are not covered by the warranty. Use of corrosive solder and/or the unauthorized modification of the product or of lary furnished component will void this warranty in its entirety. This warranty does not include reimbursement for inconvenience, loss of use, customer assembly, set oul time, or unauthorized service.

This warranty covers only Heath products and is not extended to other equipment or component that a customer uses in conjunction with our products.

SUCH REPAIR AND REPLACEMENT SHALL BE THE SOLE REMEDY OF THE CUSTOMER AND THERE SHALL BE NO LIABILITY ON THE PART OF HEATH FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED

TO ANY LOSS OF BUSINESS OR PROFITS, WHETHER OR NOT FORSEEABLE.

Some states do not allow the exclusion or limitation of fundental or consequential damages, so the above limitation or exclusion may not apoly to you.

### Owner's Responsibility

EFFECTIVE WARRANTY DATE — Warranty begins on the date of first consumer purchase. You must supply a copy of your proof of purchase when you request warranty service or parts.

ASSEMBLY — Before seeking warranty service, you should complete the assembly by carefully following the manual instructions. Healthitt service agencies cannot complete assembly and adulationals that are customer's responsibility.

ACCESSORY EQUIPMENT — Performance malfunctions involving other non-Heath accessory equipment. (antennas, audio components, computer peripherals and software, etc.) are not covered by this warranty and are the owner's responsibility.

SHIPPING UNITS — Follow the packing instructions published in the assembly manuals. Damage due to inadequate packing cannot be repaired under warranty.

If you are not satisfied with our service (warranty or otherwise) or our products, write directly to out, Director of Customer Service, Heath Company, Benrich Harbor MI 49022. He will hake certain your problems receive immediate, personal attention.

### HEATH COMPANY PHONE DIRECTORY

### The following telephone numbers are direct lines to the departments listed:

| Cit orders and delivery information | (616) 982-3411 |
|-------------------------------------|----------------|
| Credit                              | (616) 982-3561 |
| Replacement Parts                   | (616) 982-3571 |

### Technical Assistance Dhone Numbers 8:00 A M to 12 P M, and 1:00 P.M. to 4:30 P.M., EST, Weekdays Only Aurio (616) 982-3310 (616) 982-3296 Tast Equipment, Weather Instruments and Home Clocks (616) 982-3315 Television . (616) 982-3307 Aircraft, Marine, Security, Scanners, Automotive Appliances and General Products (616) 982-3496 Computers (616) 982-3309 Software-Operating Systems, Languages and Literature (616) 982-3309 Application Software (616) 982-3884



Prices and specifications subject to change without notice.

# Heathkit® Manual

for the

# LOGIC PROBE

Model IT-7410

595-2066-04



HEATH COMPANY
BENTON HARBOR, MICHIGAN 49022

Copyright © 1978
Heath Company
All Rights Reserved
Printed in the United States of America



### TABLE OF CONTENTS

| Introduction 3              | Operation                             |
|-----------------------------|---------------------------------------|
| Parts List                  | Performance Limits                    |
| Assembly Notes              | In Case of Difficulty                 |
| Construction Hints 10       | Troubleshooting chart 40              |
| Circuit Board Assembly      | Specifications                        |
|                             | Circuit Description                   |
| Wiring                      | Theory of Operation                   |
| Cable Preparation           |                                       |
| Initial Tests               | Semiconductor Identification Charts54 |
| Initial Test Problems Chart | Circuit Board X-Ray View              |
| IC Installation             | Schematic Fold-in                     |
| Operational Tests           | Warranty Inside front cover           |
| Final Assembly              | Customer Service Inside rear cover    |
|                             |                                       |



# **INTRODUCTION**

The Heathkit Model IT-7410 Logic Probe will detect and indicate High and Low logic levels. The indicators, red for High and white for Low, turn on as the input voltage crosses the appropriate logic threshold level. The probe will also indicate intermediate or "bad" logic levels. The presence and polarity of single pulses as short as 10 nsec duration will also be indicated. A memory indicator turns on whenever either threshold level is crossed. The memory indicator remains on until the Reset button is depressed.

Power to the Logic Probe is supplied via two spring-loaded clips that are connected to the circuit under test. An additional ground lead is provided for high frequency operation.

These features, along with the attractive compact styling, will make this Logic Probe a welcome asset to the laboratory, service shop, or in field service.



### **PARTS LIST**

Unpack the kit and check each part against the following list. The key numbers correspond to the numbers in the Parts Pictorial (Illustration Booklet, Pages 1 and 2). Any part that is packed in an individual envelope should be returned to the envelope after it has been identified. Keep these parts in the envelopes until they are called for in an assembly step. Do NOT throw away any packing material until you account for all the parts.

To order a replacement part, always include the Part Number. Use the Parts Order Form furnished with this kit. If a Parts Order Form is not available, refer to "Replacement Parts" inside the rear cover of this Manual. For prices, refer to the separate "Heath Parts Price List."

Each circuit part in this kit has its own component number (R2, C4, etc.). Use these numbers when you want to identify the same part in the various sections of the Manual. These numbers, which are especially useful if a part has to be replaced, appear:

- In the Parts List.
- At the beginning of each step where a component is installed,
- In some illustrations,
- In the Schematic,
- In the sections at the rear of the Manual.

KEY HEATH QTY. DESCRIPTION No. Part No.

CIRCUIT Comp. No.

### **RESISTORS**

NOTE: Resistors may be packed in more than one envelope. Open all of the resistor envelopes in this pack before you check them against the following list.

### 1/4-Watt, 1% tolerance

| A1 | 6-1001-12 | 2 1000 Ω (brown-black-black-brown-brown)      | R5, R6  |
|----|-----------|-----------------------------------------------|---------|
| A1 | 6-1751-12 | 2 1750 Ω (brown-violet-green-<br>brown-brown) | R9, R11 |
| A1 | 6-2001-12 | 1 √2000 Ω (red-black-black-<br>brown-brown)   | R8      |
| A1 | 6-5761-12 | 1 5760 Ω (green-violet-blue-                  | R7      |

KEY HEATH QTY. DESCRIPTION No. Part No.

CIRCUIT Comp. No.

R27, R29, R34, R35

### 1/4-Watt

NOTE: The following resistors have a 5% tolerance unless otherwise noted. 5% is indicated by a fourth color band of gold. 10% is indicated by a silver fourth band.

| A2 | 6-330-12 | $3$ $^{\circ}$ $33$ $\Omega$ (orange-orange-black) | R25, R26,<br>R37 |
|----|----------|----------------------------------------------------|------------------|
| A2 | 6-560-12 | 1 56 Ω (green-blue-black)                          | R39              |
| A2 | 6-121-12 | 1 120 Ω (brown-red-brown)                          | R2               |
| A2 | 6-151-12 | 1 150 Ω (brown-green-brown)                        | R38              |
| A2 | 6-102-12 | 6 V 1000 Ω (brown-black-red)                       | R12, R14,        |
|    |          |                                                    | R28, R31,        |
|    |          |                                                    | R32, R33         |
| A2 | 6-472-12 | 2 V4700 Ω (yellow-violet-red)                      | R18, R19         |
| A2 | 6-103-12 | 12 10 kΩ (brown-black-orange)                      | R13, R15,        |
|    |          |                                                    | R16, R17,        |
|    |          |                                                    | R21, R22,        |
|    |          |                                                    | R23, R24,        |
|    |          |                                                    |                  |



| KEY<br>No. |               | QTY. DESCRIPTION                        | CIRCUIT<br>Comp. No. |
|------------|---------------|-----------------------------------------|----------------------|
| Res        | istors, 1/4-v | vatt (Cont'd.)                          |                      |
| A2         | 6-223-12      | 2 22 kΩ (red-red-orange)                | R1, R*               |
| A2         | 6-334-12      | 2 330 kΩ (orange-orange-                | R3, R4               |
| A3         | 1-127-12      | 1 3.3 MΩ, 10% (orange-<br>orange-green) | R36                  |
|            |               |                                         |                      |
| CAF        | PACITORS      |                                         |                      |
|            |               |                                         |                      |
| B1         | 20-704        | 1 √ 150 pF mica                         | C1                   |
| B2         | 21-715        | 2 / 150 pF (151) ceramic                | C6, C7               |
| B2         | 21-711        | 4 √ 470 pF (471) ceramic                | C2, C3,              |
|            |               |                                         | C4, C5               |
| B2         | 21-182        | 1 \$ .047 μF (473) ceramic              | C8                   |
| В3         | 25-195        | 11 2.2 μF tantalum                      | C9                   |
|            |               |                                         |                      |

 $<sup>\</sup>ensuremath{\mathsf{R}}^*$  - Only the leads of this resistor will be used when you install slide switch SW1.

|      | HEATH<br>Part No. | QTY. DESCRIPTION | CIRCUIT<br>Comp. No. |
|------|-------------------|------------------|----------------------|
| 140. | T dit 140.        |                  | Comp. No.            |

### DIODES - SCR

| C1 | 56-56   | 6 1N4149 diode        | D1, D3, |
|----|---------|-----------------------|---------|
|    |         | -                     | D6, D7, |
| C1 | 56-87   | 2 HP5 diode           | D2, D5  |
| C1 | 56-612  | 1 1N5229 zener diode  | ZD1     |
| C1 | 56-620  | 1 1N4744A zener diode | ZD2     |
| C2 | 57-624  | 1 2N5061 SCR          | SCR1    |
| C3 | 412-616 | 1 ₹ FLV117 LED        | LED1    |

### TRANSISTORS — INTEGRATED CIRCUITS (IC's)

NOTE: Transistors and integrated circuits may be marked for identification in any of the following four ways:

- 1. Part number.
- Type number. (On integrated circuits, use only those numbers and letters in BOLD print. Disregard any others numbers or letters).
- 3. Part number and type number.
- 4. Part number with a type number other than the one listed.

| KEY | HEATH    | QTY. DESCRIPTION | CIRCUIT   |
|-----|----------|------------------|-----------|
| No. | Part No. |                  | Comp. No. |

KEY HEATH QTY. DESCRIPTION CIRCUIT
No. Part No. Comp. No.

# Transistors — Integrated Circuits (Cont'd.)

| D1 | 417-235 🧈 | 1 < 2N4121 transistor  | Q14         |
|----|-----------|------------------------|-------------|
| D1 | 417-241   | 1 EL131 transistor     | Q9          |
| D1 | 417-801   | 8 MPSA20 transistor    | Q1, Q2, Q3, |
|    |           |                        | Q4, Q5, Q6, |
|    |           |                        | Q7, Q13     |
| D1 | 417-884   | 1 € SF55048 transistor | Q12         |
| D1 | 417-913   | 2 MPS404A transistor   | Q8, Q11     |

CAUTION: The CD4027 IC (#443-606) can be damaged by static electricity. Do **not** remove this IC from its conductive carrier until you are instructed to do **so in a step**.

| 443-606 | 1 → CD4027 integrated                  | IC4                                                                    |
|---------|----------------------------------------|------------------------------------------------------------------------|
|         |                                        | 100                                                                    |
| 443-854 |                                        | IC3                                                                    |
|         |                                        | 104 100                                                                |
| 442-75  | •                                      | IC1, IC2                                                               |
| 440.50  |                                        | IC5                                                                    |
| 442-53  | •                                      | 103                                                                    |
|         | 443-606<br>443-854<br>442-75<br>442-53 | 443-854 1 74LS279 integrated circuit 442-75 2 LM311 integrated circuit |

### OTHER ELECTRONIC PARTS

| F1 | 60-604 | 1 r' Slide switch   | SW1    |
|----|--------|---------------------|--------|
| F2 | 64-786 | 1 Pushbutton switch | SW2    |
| F3 | 412-83 | 2 Lamp              | L1, L2 |

### **HARDWARE**

| G1 | 250-34  | 12 | 4-40 × 1/2" screw   |
|----|---------|----|---------------------|
| G2 | 250-323 | 1- | 4-40 × 5/8" screw   |
| G3 | 252-15  | 3  | 4-40 nut            |
| G4 | 253-135 | 1  | "O" ring            |
| G5 | 254-9   | 2  | #4 lockwasher       |
| G6 | 254-41  | 1  | #4 split lockwasher |

G7 260-98 1 PCB connector

G8 262-45 1 № PCB pin

# CABLES - WIRES - SLEEVING

343-12 2-1/2' Shielded cable 344-125 2' Black wire 344-127 1' Red wire

346-2? 1" Sleeving (heat shrinkable)



KEY HEATH QTY. DESCRIPTION CIRCUIT
No. Part No. Comp. No.

KEY HEATH QTY. DESCRIPTION No. Part No.

CIRCUIT Comp. No.

### PROBE HOUSING PARTS

| H1         | 204-2394 | 2 4 | PCB bracket without tab |
|------------|----------|-----|-------------------------|
| H2         | 204-2329 | 2 4 | PCB bracket with tab    |
|            | 305-95   | 1   | Extruded parts set      |
|            |          |     | consists of:            |
|            |          |     |                         |
| НЗ         | 476-42   | 1   | Top extrusion           |
| H4         | 476-43   | 1   | Bottom extrusion        |
|            | 305-66   | 1   | Probe parts set         |
|            |          |     | consists of:            |
|            |          |     |                         |
| <b>H</b> 5 | 75-765   | 2   | Splice cover            |
| H6         | 476-32   | 1   | Reducer                 |
| H7         | 476-33   | 1   | Red lens                |
| H8         | 476-34   | 1   | White lens              |
| H9         | 476-35   | 1   | Rear cover              |
| H10        | 476-36   | 1   | Strain relief           |
| H11        | 476-38   | 1   | Probe point assembly    |
|            |          |     | with protective cap     |
| H12        | 476-40   | 1   | Front cover             |
|            |          |     |                         |

### **MISCELLANEOUS**

| J1 | /3-159    | 1 H    | ubber insulator          |
|----|-----------|--------|--------------------------|
|    | 85-2400-2 | 1 Ci   | rcuit board              |
| J2 | 260-16    | 1 Al   | ligator clip             |
| J3 | 260-96    | 1 P    | ower supply clip (red)   |
| J3 | 260-97    | 1 P    | ower supply clip (black) |
| J4 | 406-664   | 1 ₹ M  | agnifier                 |
| J5 | 434-299   | 3 € 16 | S-pin IC socket          |
| J6 | 434-317   | 1 ₹ 8- | pin IC socket            |
| J7 | 476-37    | 1 C    | able boot                |
| J8 | 476-39    | 1 Li   | ght shield               |
|    |           |        |                          |

Solder

### PRINTED MATERIAL

| K1 | 390-1510 | 1 | Label                        |
|----|----------|---|------------------------------|
| K2 |          | 1 | Blue and white label         |
|    | 490-185  | 1 | Package of desoldering braid |
|    | 597-260  | 1 | Parts Order Form             |
|    |          | 1 | Assembly Manual (See         |
|    |          |   | Page 1 for part number.)     |



### **ASSEMBLY NOTES**

### **ASSEMBLY**

- Follow the instructions carefully and read the entire step before you
  perform the operation.
- 2. The illustrations in the Manual are called Pictorials and Details. Pictorials show the overall operation for a group of assembly steps; Details generally illustrate a single step. When you are directed to refer to a certain Pictorial "for the following steps," continue using that Pictorial until you are referred to another Pictorial for another group of steps.
- Most kits use a separate "Illustration Booklet" that contains illustrations (Pictorials, Details, etc.) that are too large for the Assembly Manual. Keep the "Illustration Booklet" with the Assembly Manual. The illustrations in it are arranged in Pictorial number sequence.
- 4. Position all parts as shown in the Pictorials.

### SOLDERING

Due to the small foil area around the circuit board holes and the small
area between foils, it will be necessary to use the utmost care to
prevent solder bridges between adjacent foil areas. Use only a
minimum amount of solder and do not heat components excessively

with the soldering iron. Use no larger than a 25-watt soldering iron with a 1/8" chisel-shaped tip. Allow it to reach operating temperature, and then apply it only long enough to make a good solder connection. If you think a solder bridge may exist, but you are no sure, compare the foil on the circuit board to Pictorial 2-1 (Illustration booklet, Page 7) and compare the solder connection to the illustration of the foil pattern.

- To eliminate a solder bridge, hold the circuit board above the soldering iron and reheat the solder. As the solder melts, it will flow down the iron.
- Keep the soldering iron tip clean. Wipe it often on a wet sponge or cloth; then apply solder to the tip to give the entire tip a wet look.
- 4. The circuit board has foil on both sides. Note that the "component" (or screened) side of the circuit board has the outline of each component screened on it. With one exception, all components will be mounted on this side of the circuit board and soldered to the other side of the circuit board. Do NOT solder on the component side of the circuit board except when you are directed to do so.
- 5. The assembly of the circuit board is divided into three sections. Refer to Pictorial 1-1 (Illustration Booklet, Page 3). Except for the integrated circuits and the shielded cable, all components will be installed in one section before you proceed to another section.



- 6. Due to the nature of the board, solder may be drawn through a circuit board hole to the lettered side. This is normal, as many of the holes are "plated through" to connect the foils on both sides of the board together. However, do not allow solder to flow into unused holes when you solder components to the foil.
- If your work surface is smooth, place the circuit board on a cloth to
  prevent the board from sliding around when you solder component
  leads to the foil

### **PARTS**

1. Because of the limited space inside the Logic Probe, it is important

that you mount all the parts (except the slide switch) as tight against the circuit board as possible. Carefully install all vertically oriented parts so they are perpendicular to the circuit board. This will make it easier to install parts in "crowded" areas. Cut off the excess leads as close to the foil as possible after they are soldered.

- 2. Resistors will be called out by their resistance value (in  $\Omega$ ,  $k\Omega$ , or  $M\Omega$ ) and color code.
- 3. Capacitors will be called out by their capacitance value (in pF or  $\mu$ F) and type (mica, ceramic, or tantalum).

### **CONSTRUCTION HINTS**

The following valuable hints will help you do a good job when you assemble the circuit board for your Logic Probe.

- A. Take your time when you assemble the circuit board. Work at a slow pace. Remember that accuracy is far more important than speed.
- B. When you perform the steps in the circuit board Pictorials, identify each component and the location before you install the component. (It may be very difficult to locate an incorrectly installed component after the probe has been assembled.) Then position each component over its outline on the circuit board.
- C. IMPORTANT: Keep the side edges of the circuit board free of solder and bent leads, as shown in Part A of Figure 1 (Illustration Booklet.)

Page 3). Bend any component leads towards the center of the circuit board slightly to hold them in place and do not allow the solder to flow near the edges. Part B of Figure 1 shows how the circuit board should **not** look. If the edges of the circuit board are clogged, it will not fit into the case properly later on.

D. There are no specific steps given for soldering component leads to the circuit board foil. Solder the leads to the foil only when you have used all the holes in a foil pad. Then cut off the excess lead lengths. This will eliminate the possibility of excessive solder buildup and of covering up unused holes. If an empty hole should get filled with solder, refer to the "Instructions for use" of the desoldering braid supplied with this kit to remove the solder.

# CIRCUIT BOARD ASSEMBLY

# START -

Position the circuit board as shown in Pictorial 1-2 with the printed side up.

NOTE: On the following Pictorials, you will install components in section A of the circuit board. See Pictorial 1-1 (Illustration Booklet, Page 3).

- ( Locate a 22 kΩ (red-red-orange) resistor. Straighten each resistor lead, if necessary. Then cut each lead off close to the resistor body. Save the leads, and discard the resis-
- (M. SW1: Slide switch, Position the two cutoff resistor leads about 3/4" apart on your work surface. Then place the circuit board on top of the leads as shown in Detail 1-2A. Insert the switch pins into their respective holes. Push the switch down until it is properly seated. The bottom of the switch body should now be about 1/32" above the circuit board. Make sure the switch is parallel to the circuit board. Then turn the board over and solder the pins to the foil. Discard the cutoff resistor leads.



Detail 1-2A



# CONTINUE

IMPORTANT: The following steps give detailed instructions on how to install and solder the first resistor on the circuit board. The remaining parts will be installed in a similar manner.

Hold a 120 Ω (brown-redbrown) resistor and bend one lead sharply over as shown.



(4) R2: Mount the 120  $\Omega$  resistor vertically on the circuit board as shown. Bend both leads outward to hold the resistor in place. Be sure to use the correct holes. Make sure the indicated height never exceeds 11/32" for this part or any of the following resistors or diodes.





# START -

- ( ) Turn the circuit board over and solder the resistor leads to the circuit board as follows:
- Push the soldering iron tip against both the lead and the circuit board foil. Heat both for 2 or 3 seconds.



Then apply solder to the other side of the connection. IMPOR-TANT: Let the heated lead and the circuit board foil melt the solder.





### PICTORIAL 1-3

# CONTINUE 🗢

 As the solder begins to melt, allow it to flow around the connection. Then remove the solder and iron and let the connection cool.



- ( ) Hold each lead with one hand while you cut off the excess lead length close to the connection. This will keep you from being hit in the eye by a flying lead.
- ( ) Check each connection. Compare it to the illustrations on the next two pages. After you have checked the solder connections, proceed with the assembly on Page 15. Use the same soldering procedure for each connection.

### A GOOD SOLDER CONNECTION



When you heat the lead and the circuit board foil at the same time, the solder will flow evenly onto the lead and the foil. The solder will make a good electrical connection between the lead and the foil.

### POOR SOLDER CONNECTIONS



When the lead is not heated sufficiently, the solder will not flow onto the lead as shown above. To correct, reheat the connection and, if necessary, apply a small amount of additional solder to obtain a good connection



When the foil is not heated sufficiently, the solder will blob on the circuit board as shown above. To correct, reheat the connection and, if necessary, apply a small amount of addional solder to obtain a good connection.

### SOLDER BRIDGES

A solder bridge between two adjacent foils is shown in photograph A. Photograph B shows how the connection should appear. A solder bridge may occur if you accidentally touch an adjacent previously soldered connection, if you use too much solder, or if you "drag" the soldering iron across other foils as you remove it from the connection. A good rule to follow is: always take a good look at the foil area around each lead before you solder it. Then, when you solder the connection, make sure the solder remains in this area and does not bridge to another foil. This is especially important when the foils are small and close together. NOTE: It is alright for solder to bridge two connections on the same foil.

Use only enough solder to make a good connection, and lift the soldering iron straight up from the circuit board. If a solder bridge should develop, turn the circuit board foil-side-down and heat the solder between connections. The excess solder will run onto the tip of the soldering iron, and this will remove the solder bridge. NOTE: The foil side of most circuit boards has a coating on it called "solder resist." This is a protective insulation to help prevent solder bridges.



IMPORTANT: Make sure you have installed the parts in Pictorial 1-2.

1 L2: Lamp (#412-83). First bend the leads of one lamp out as shown below. Then bend each lead down to space the leads 1/4" apart. Insert the lamp leads into their holes and position the lamp over the cutout in the circuit board as shown in Detail 1-4A. Solder the leads to the foil and cut off the excess lead lengths.



- ( ) L1: Lamp (#412-83).
- ( $^{\prime}$ ) R1: 22 k $\Omega$  (red-red-orange).
- ( $\checkmark$ ) R4: 330 k $\Omega$  (orange-orange-yellow).
- ( $\sqrt{\ }$ ) R6: 1000  $\Omega$ , 1% (brown-black-black-brown-brown).
- (V) R8: 2000 Ω, 1% (red-black-black-brown-brown).
- ( $\checkmark$ ) R11: 1750  $\Omega$ , 1% (brown-violet-green-brown-brown)



### Detail 1-4A



# CONTINUE

- C1: 150 pF mica. Do NOT install a 150 pF ceramic capacitor.
- ( $\checkmark$ ) R3: 330 k $\Omega$  (orange-orange-yellow).
- R5: 1000 Ω, 1% (brown-black-black-brown-brown).
- ( R7: 5760 Ω, 1% (green-violetblue-brown-brown).
- ( ) R9: 1750 Ω, 1% (brown-violetgreen-brown-brown).
- (\*)\* PCB pin (#262-45). Turn the circuit board over and push the pin through the circuit board from the foil side. Make sure the flange of the pin is down against the foil. Solder the pin to the foil on the component side.



PICTORIAL 1-4

NOTE: The socket you install in the following step will be used for two 8-pin IC's as indicated by the index marks on the circuit board screen.

( ) 16-pin integrated circuit socket.

Refer to Detail 1-5A (Illustration

Booklet, Page 4) to identify the

pin 1 end of the socket. Line up

this end of the socket with the

index mark on the circuit board.

Then insert the socket pins into

the circuit board holes. Make sure

you push the socket firmly down

against the circuit board before

you solder the pins to the foil.



CONTINUE

MPORTANT: THE BANDED END OF DIODES CAN BE MARKED IN A NUMBER OF WAYS



### BANDED FND

NOTE: Install the next four diodes with the banded end down, over the solid circle outline on the circuit board.

RANDED



- ( ) D1: 1N4149 diode (#56-56).
- (m) D2: HP5 diode (#56-87).
- (₹) D5: HP5 diode (#56-87).
- ( 1) D6: 1N4149 diode (#56-56).

( 8) R17: 10 kΩ (brown-black-orange).

NOTE: Install the following two transistors as shown. Solder the leads of each transistor to the foil as you install it. Then cut off the excess lead lengths.



- (\sqrt{)} Q4: MPSA 20 transistor (#417-801).
- ( $\checkmark$ ) R16: 10 k $\Omega$  (brown-black-orange).
- (1) Q1: MPSA20 transistor (#417-801).



# CONTINUE

( Mount two PCB brackets, one with the other without a tab, as shown. Use a 4-40 × 1/2" screw, a #4 lockwasher, a #4 split lockwasher, and a 4-40 nut. Tighten the hardware. Make sure both brackets are completely seated and the screw is parallel to the circuit board. Then solder both brackets to the circuit board on both the component and the foil sides. NOTE: Keep the screw parallel with the circuit board.



- ( R14: 1000 Ω (brown-black-red).
- ( ) R15: 10 k $\Omega$  (brown-black-orange).
- ( ) R12: 1000 Ω (brown-black-red).
- R13: 10 kΩ (brown-blackorange).

NOTE: On the following Pictorials, you will install components in section B of the circuit board. See Pictorial 1-1 (Illustration Booklet, Page 3).

( ( ) 16-pin integrated circuit socket.

Refer to Detail 1-5A (Illustration

Booklet, Page 4) to identify the
pin 1 end of the socket. Line up
this end of the socket with the
index mark on the circuit board.

Then insert the socket pins into
the circuit board holes. Make sure
you push the socket firmly down
against the circuit board before
you solder the pins to the foil.

( N) 16-pin integrated circuit socket.

( SW2: Pushbutton switch and "O"-ring. The tab can be positioned either way.



# CONTINUE

NOTE: Install the next two transistors as shown. Solder only the two unmarked leads of each transistor at this time. You will later install a wire in each of the marked holes. Then cut off the excess lead lengths of the soldered leads only.



(417-801).

Q3: MPSA20 transistor (#417-801).

NOTE: Install the next two transistors as shown above and solder all three leads of each transistor.

( $\downarrow$ ) Q5: MPSA20 transistor (#417-801).

(4) Q2: MPSA20 transistor (#417-801).

PICTORIAL 1-7

DO NOT SOLDER

MARKED LEADS

( R25: 33 Ω (orange-orange-black).

 $\Re$  R18: 4700 Ω (yellow-violet-red).

NOTE: When you install a ceramic capacitor, as in the following step, mount the capacitor with the body 1/8'' above the circuit board as shown in the inset drawing. Then solder the leads to the foil.

(S) C2: 470 pF (471) ceramic.

( R21: 10 kΩ (brown-black-orange).

(\$\infty\$) C3: 470 pF (471) ceramic.

( R22: 10 kΩ (brown-black-orange).

NOTE: Install the following two diodes with the banded end down, over the solid circle outline on the circuit board.

( D4: 1N4149 diode (#56-56).

( ) D3: 1N4149 diode (#56-56).



# CONTINUE -

( $\checkmark$ ) R26: 33  $\Omega$  (orange-orange-black).

( ) R19: 4700 Ω (yellow-violet-red).

(x) C4: 470 pF (471) ceramic.

 $\sqrt{R23: 10 kΩ}$  (brown-black-orange).

( ) C5: 470 pF (471) ceramic.

( $\checkmark$ ) R24: 10 kΩ (brown-black-orange).

NOTE: Install the following two diodes with the banded end down, over the solid circle outline on the circuit board.

( b) D8: 1N4149 diode (#56-56).

(\*) D7: 1N4149 diode (#56-56).

PICTORIAL 1-8



NOTE: On the following Pictorials, you will install components in section C of the circuit board. See Pictorial 1-1 (Illustration Booklet. Page 3).

( R28: 1000 Ω (brown-black-red).

R29: 10 kΩ (brown-black-orange).

- LED 1: Position the flat of the LED over the outline of the flat on the circuit board. Then insert the leads into the proper circuit board holes. Use a ruler to verify the 5/16" spacing as shown in Detail 1-9A. Solder the leads to the foil and cut off the excess lead lengths.
- 8-pin integrated circuit socket. Refer to Detail 1-5A (Illustration Booklet, Page 4) to identify the pin 1 end of the socket. Line up this end of the socket with the index mark on the circuit board. Then insert the socket pins into the circuit board holes. Make sure you push the socket firmly down against the circuit board before you solder the pins to the foil.

R39: 56 Ω (green-blue-black).



# CONTINUE -

( M) R27: 10 kΩ (brown-black-orange).

( R31: 1000 Ω (brown-black-red).

( R32: 1000 Ω (brown-black-red).

(V) R34: 10 kΩ (brown-black-orange).

(3) R33: 1000 Ω (brown-black-red).

(3) R35: 10 kΩ (brown-black-orange).

(x) R36: 3.3 MΩ (orange-orangegreen).

(\*) R37: 33 Ω (orange-orange-black)

( (/) R38: 150 Ω (brown-green-brown).

NOTE: Install the next two diodes with the banded end down, over the solid circle outline on the circuit board.

- (<) ZD1: 1N5229 zener diode (#56-612).
- ( ZD2: 1N4744A zener diode (#56-620).

- (\*) SCR1: 2N5061 (#57-624). Install the SCR as shown in Detail 1-10A. Solder the leads to the foil and cut off the excess lead lengths.
- ( 1) C6: 150 pF (151) ceramic.
- ( ) C7: 150 pF (151) ceramic.
- ( C8: .047 µF (473) ceramic.
- Mount the two remaining PCB brackets as shown. Use a 4-40 × 5/8" screw, a #4 lockwasher, and a 4-40 nut. Tighten the hardware. Then solder both brackets securely to the circuit board on both the component and the foil sides. NOTE: Make sure the screw is perfectly parallel with the circuit board.





# 

NOTE: Install each of the following transistors as shown. Solder the leads of each transistor to the foil as you install it. Then cut off the excess lead lengths.



- (v) Q7: MPSA20 transistor (#417-801).
  - ( Q13: MPSA20 transistor (#417-801).
  - (1) Q14: 2N4121 transistor (#417-235).
  - ( ) Q12: SF55048 transistor (#417-884).
  - 1) Q9: EL131 transistor (#417-241).
  - (\*) Q8: MPS404A transistor (#417-913).
  - ( V) O11: MPS404A transistor (#417-913).
  - C9: 2.2 μF tantalum. Match the positive (+) mark on the capacitor with the (+) mark on the circuit board.



### WIRING

Refer to Pictorial 1-11 (Illustration Booklet, Page 5) for the following steps.

NOTE: To prepare a wire, cut it to the indicated length and remove 1/8" of insulation from each end. Then twist each wire end tightly and apply a small amount of solder to hold the strands together.

( Prepare the following black wires:

One 3/4"

Two 2"

One 4-3/4"

One 4"

NOTE: In the following steps, insert the prepared wires into the holes from the foil side of the circuit board. This is the side that does **not** have component outlines on it. Solder the ends of each wire to the foil side of the circuit board as you install it.

( .) Position the circuit board with the foil side up, as shown in the Pictorial.

Connect the prepared black wires as follows:

- (%) 3/4" from hole A to hole A.
- (  $\cdot$  ) 2" from hole  $\Delta$  to hole  $\Delta$ . NOTE: There is already a transistor lead in one of these holes. Solder both leads to the foil.

- ( ) 2" from hole □ to hole □. NOTE: There is already a transistor lead in one of these holes. Solder both leads to the foil.
- ) 4-3/4" from hole B to hole B.
- ) Cut off the excess lead lengths from transistors Q3 and Q6.

### CIRCUIT BOARD CHECKOUT

Carefully inspect the circuit board for the following conditions.

- Unsoldered connections.
- ( ) Poor solder connections.
- ( ) Solder bridges between foil patterns.
- ) Protruding leads which could touch together. No leads should extend more than 1/8" from the foil side of the circuit board.
- ) Diodes for the correct position of the banded end. NOTE: Each diode on this circuit board MUST be installed so its banded end is down.
- ( ) Transistors for the proper type and installation.
- ( ) Tantalum capacitor for correct position of the positive (+) lead.
- LED1 for the correct position of the "flat side."





- ( KT Remove an additional 1/8" (total 1/4") of insulation from each end of the 4" black wire.
- ( ) Refer to Detail 1-11A and install an alligator clip on one end of the 4" black wire.
- (\*) Slide the rubber insulator over the free end of the 4" black wire.

  Position the insulator as shown in the Pictorial.
- ( ) Cut a 3/4" length of sleeving. Then slide this length of sleeving over the free end of the 4" black wire.
- ( ) Again refer to Detail 1-11B and install the prepared PCB connector on the free end of the 4" black wire.
- ( ) After the solder has cooled, push the sleeving down over the PCB connector as shown.



( ) Use a match, lighter, or candle to shrink the sleeving around the wire connection as shown in Detail 1-11B. Do not let the flame come in contact with the sleeving.

Lay the completed ground clip aside.

### CABLE PREPARATION

Refer to Pictorial 1-12 (Illustration Booklet, Page 6) for the following steps.

- ( \( \) Position the circuit board with the component side up, as shown in the Pictorial.
- (f) Refer to Detail 1-12A and prepare the full length of the shielded cable as shown
- ( 1) At one end of the shielded cable, connect the inner lead to hole C and the shield lead to hole D. Solder both connections.
- ( $\checkmark$ ) Position the rear cover with the off-center hole to the left, as shown in the Pictorial. Then slide the cover over the free end of the shielded cable. Use the off-center hole in the cover. Then place the cover on the  $4\text{-}40 \times 5/8$ " screw on the back of the circuit board.
- (i) Position the strain relief with the off-center hole to the lower left as shown in the Pictorial. Then slide the strain relief over the free end of the shielded cable. Line up the guide pins in the rear cover with the corresponding holes in the strain relief. Then press the two parts together.
- (  $\sqrt[6]{}$  Start a 4-40 nut on the 4-40  $\times$  5/8" screw to keep the rear cover and the strain relief in place. Do NOT tighten the nut yet. See the inset drawing.
- ( \cdot) Slide the cable boot over the free end of the shielded cable as shown in the Pictorial. Do NOT slide the boot over the rear cover yet.



Prepare the following wires, removing 1/4" of insulation from each end.

6" red

6" black

- Connect one end of the 6" red wire to the inner lead at the free end of the shielded cable. Solder the connection.
- Connect one end of the 6" black wire to the shield lead at the free end of the shielded cable. Solder the connection.
- Place the junction of the cable/wire assembly in one of the splice covers as shown in the Pictorial. Make sure the wires are positioned between the bosses; then place the other splice cover over the first cover. Press the two covers together until they snap in place.
- Separate the two sections that make up the black power supply clip by pulling the rear cap straight out.
- Refer to Detail 1-12B and insert the free end of the black wire, attached to the shielded cable, through the hole in the side of the cap that you just removed. Then melt a small amount of solder in the "V"-shaped groove of the metal portion of the clip. Place the free end of the black wire in the groove and reheat the solder to make a connection. Be careful so you do not overheat and melt the plastic.



Detail 1-12B

- Slide the black cap towards the clip; then line up the keyway on the outside of the cap with the key in the clip body. Make sure the metal clip ends enter the grooves inside the cap; then push the cap in as far as it will go.
- In a similar manner, prepare the red power supply clip and connect the free end of the red wire to the clip.

This completes the assembly of the Logic Probe circuit board. Proceed to "Initial Tests."





### INITIAL TESTS

You will now use an ohmmeter to make resistance checks on the circuit board. This test will tell if a short or open circuit exists which might cause problems when you apply power to the circuit board. Do NOT install the IC's in their sockets on the circuit board or apply power to it until the difficulty has been corrected.

To perform the following steps, you will need an ohmmeter that has a 1.5 volts test voltage. Most analog ohmmeters (VOM, VTVM) have this test voltage. In addition, it should have a center-scale deflection factor (number at the center of the scale) greater than 5, but less than 50. If such an ohmmeter is not available, make the resistance checks using the ohmmeter you have. Remember, however, that the readings you obtain may differ from the ones given in this section of your Manual.

NOTE: In the first set of the following tests, if you do not obtain the proper reading, reverse the ohnmeter test leads. (Some meters are wired differently than others.) If you still do not get the proper readings, refer to "Initial Test Problems Chart" on Page 27.

CAUTION: In the following steps, use only the R  $\times$  10 or the R  $\times$  100 ranges of your ohmmeter. Other ranges may produce excessive current or may produce erroneously low readings.

(^ ) Position the lever of TTL/CMOS switch SW1 toward logic level indicators L1 and L2 (TTL position).

Refer to Pictorial 2-1 (Illustration Booklet, Page 7) and connect the common (-) ohmmeter lead to the ground foil of the circuit board. Touch the input (+) ohmmeter lead to the following points. The readings should be greater than those shown. NOTE: Leave the test leads connected long enough to allow the test meter to stabilize.

| TEST POINT | READING: GREATER THAN |
|------------|-----------------------|
| / () C     | 100 Ω<br>100 Ω        |

Reverse the ohmmeter leads and touch each test point again.

| TEST POINT | READING: GREATER THAN |
|------------|-----------------------|
| ( ) C      | 100 Ω                 |
| ( ) D      | 100 Ω                 |

Disconnect the ohmmeter leads and proceed to "IC Installation" on Page 28.



# **Initial Test Problems Chart**

If you cannot locate the problem on the circuit board by referring to the following chart, proceed to "In Case of Difficulty" on Page 38.

| PROBLEM                      | POSSIBLE CAUSE OF LOW READINGS                                                        |
|------------------------------|---------------------------------------------------------------------------------------|
| Improper reading at point C. | <ol> <li>ZD1.</li> <li>Q8, Q9.</li> <li>Solder bridge on +5 V source line.</li> </ol> |
| Improper reading at point D. | 1. ZD2.<br>2. C9.<br>3. Q11, Q12.<br>4. Solder bridge on +15 V source line.           |



### IC INSTALLATION



### PICTORIAL 3-1

Refer to Pictorial 3-1 for the following steps.

(<) Position the circuit board with the component side up, as shown in the Pictorial

NOTE: In the following steps, when you install an integrated circuit, refer to Detail 3-1A, remove the IC from its packaging material (if necessary), and install the IC as shown.

CAUTION: The CD4027 IC (#443-606) is packed in conductive foam. This IC is a rugged and reliable component. However, normal static electricity discharged from your body through an IC pin to an object can damage the IC. Install this IC without interruption as follows:

- 1. Remove the IC from its package with both hands.
- Hold the IC with one hand and straighten any bent pins with the other hand.

- 3. Pick up the circuit board.
- 4. Refer to Detail 3-1A. Then position the pin 1 end of the IC over the index mark on the circuit board.
- 5. Be sure each IC pin is properly started into the socket. Then push the IC down.

NOTE: Once the IC is installed, it is protected by the circuit resistances.

(4) IC4: Install a CD4027 IC (#443-606) at IC4.

( √ ) IC2: Install an LM311 IC (#442-75) at IC2.

(( IC1: Install an LM311 IC (#442-75) at IC1.

( ) IC5: Install an NE555V IC (#442-53) at IC5.

) IC3: Install a 74LS279 IC (#443-854) at IC3.

Save the conductive foam to hold IC4 in case it must be removed later. Do not use this conductive foam for any other purpose.



AS YOU INSTALL EACH IC IN THE FOLLOWING STEPS, BE SURE THE LEADS ARE STRAIGHT. THEN POSITION THE PIN I END OF THE IC AT THE END OF THE SOCKET WHERE THE INDEX MARK IS SCREENED ON THE CIRCUIT BOARD. THEN INSERT THE IC LEADS INTO THE SOCKET AND PUSH THE IC DOWN INTO PLACE. BE SURE YOU DO NOT BEND OVER ANY IC LEADS; THIS IS VERY EASY TO DO.



Detail 3-1A



### **OPERATIONAL TESTS**

The purpose of this section of the Manual is to make sure your Logic Probe operates properly and will not be damaged as a result of a wiring error.

### NOTES:

- If you have any difficulty in the following steps, disconnect the power supply clips from the DC power source you are using. Then refer to the "In Case of Difficulty" section on Page 38.
- 2. In the following steps, you can use a separate 5 to 15 volt DC power supply (of at least 80 mA capacity) or a suitable battery.

Refer to Pictorial 3-2 to identify the indicator lamps and points on the circuit board called out in the following steps.

- Make sure TTL/CMOS switch SW1 is toward logic level indicators L1 and L2 (TTL position).
- ) Place the circuit board, foil side down, on a non-metallic surface.
- Connect the black power supply clip to the negative (-) terminal of your DC power source.
- ( ) Connect the red power supply clip to the positive (+) terminal of your DC power source. The memory indicator, LED1 should light and one or both of the logic level indicator lamps may light momentarily.

( ) Press the pushbutton on reset switch SW2. Memory indicator LED1 should be off. Also, both indicators L1 and L2 should be off.

( ) 1. Hold the circuit board by the side edges and touch the probe tip, to the negative (--) terminal of your power source. "LO" indicator lamp L2 and memory indicator lamp LED1 should be lit. "HI" indicator lamp L1 should be off.

) 2. Touch the probe tip to the positive (+) terminal of your power source "HI" indicator lamp L1 and memory indicator lamp LED1 should be lit. "LO" indicator lamp L2 should be off.

3. Locate the prepared ground clip. Then connect the alligator clip to the probe tip and touch the other end to pin 7 of IC1. NOTE: Do not allow the connector end of the ground clip to also touch any adjacent IC pin. Indicator lamps L1 and L2 should flash alternately or simultaneously while memory indicator lamp LED1 should be lit.

Position the lever of TTL/CMOS switch SW1 toward IC2 (CMOS position). Then repeat steps 1, 2, and 3 above.

) Disconnect both power supply clips from your DC power source.

( ) Disconnect the ground clip.

Proceed to "Final Assembly."



PICTORIAL 3-2

# FINAL ASSEMBLY

Refer to Pictorial 4-1 (Illustration Booklet, Page 7) for the following steps.

- ( ) Insert the circuit board into the grooves in the bottom extrusion to make sure it does not bind. Then remove the circuit board.
- ( ) Refer to Detail 4-1A and apply a liberal amount of dry soap along the top edges of the bottom extrusion.
- Slide the top extrusion along the entire length of the bottom extrusion several times to assure a smooth fit. Then remove the top extrusion.
- ( ) Position the top extrusion so the groove side is pointing down and the end with the two closely spaced holes is toward the left.
- ) Peel the backing from the label. Then carefully line up the holes in the label with the holes in the top extrusion and press the label in place.



mounting screws to align them.

| ( | )                                                                            | Position the circuit board as shown and place the top extrusion over the two switches and LED.                                                                                                                    |  |  |  |  |
|---|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Н | old                                                                          | the assembly together and slide it into the bottom extrusion as follows:                                                                                                                                          |  |  |  |  |
| ( | )                                                                            | First start the circuit board into the grooves in the bottom extrusion.                                                                                                                                           |  |  |  |  |
| ( | )                                                                            | Start the end of the bottom extrusion into the grooves of the top extrusion. NOTE: Make sure the circuit board is still in the grooves in the bottom extrusion.                                                   |  |  |  |  |
| ( | )                                                                            | Slide the assemblies together until the bottom extrusion fits over the lip on the rear cover. NOTE: If any part of the two extrusions comes apart, you can snap them together by applying pressure at that point. |  |  |  |  |
| { | )                                                                            | Position the bottom extrusion as shown with the hole underneath toward the right.                                                                                                                                 |  |  |  |  |
| ( | )                                                                            | Carefully tighten the nut that fastens the rear cover and strain relief to the circuit board. Then slide the cable boot over the strain relief.                                                                   |  |  |  |  |
|   | NOTE: If the edges of the rear cover and the bottom extrusion do not line up |                                                                                                                                                                                                                   |  |  |  |  |

Before you assemble the front part of the probe in the following steps, fit the pieces together and make sure there are no burrs or irregular surfaces to

prevent an even fit between the parts, as shown in inset drawing #1. Use an emery board or a small fingernail file to smooth any irregular surfaces.

Assemble the front part of the probe as follows. Note the position of the lip side of the parts (called out in the Pictorial) as you place them together.

- ( ) Place the front cover against the bottom extrusion. Then make sure lamp L1, nearest the slide switch, is still positioned as you installed it on Page 15. Also make sure the lamp leads are not touching each other.
- ( ) Place the red lens against the front cover.
- ( ) Place the light shield over the circuit board and into the recess in the lens. To do this, bend the flaps forward as shown in inset drawing #2, and then fold them back in place under the circuit board.
- Make sure lamp L2, nearest the probe tip, is still positioned as you installed it on Page 15. Also make sure the lamp leads are not touching each other.
- ( ) Place the white lens against the red lens.
- ( ) Place the reducer against the white lens.
- ( ) Screw the probe point assembly firmly onto the circuit board screw.
- ( ) Carefully peel away the paper backing from the blue and white label. Then press the label onto the cover of this Manual. Make sure you refer to the numbers on this label in any communications you might have with the Heath Company about this kit.

This completes the probe assembly.



# **OPERATION**

Refer to Pictorial 5-1 for the locations of the indicators and switches referred to in the following paragraphs.

#### LOGIC LEVEL INDICATORS

The two logic level indicators, located near the probe tip, will give an immediate indication of the logic states, either static or dynamic, existing in the circuit under test. The indicator lamps can give any of the following indications: 1) Both indicators off: 2) One of the indicators on: 3) One or both indicators flashing. Both indicators are normally off and must be driven to one of the other indications by voltage levels applied to the probe tip. The red indicator is lit for inputs above the logic 1 threshold. The white indicator is lit for inputs below the logic 0 threshold. Both indicators are off for voltages between the logic 1 and the logic 0 thresholds and for open circuits. Pulsating inputs will cause both indicators to flash at about a 5 Hz rate. The indicators may flash simultaneously or alternately.

## MEMORY INDICATOR

A light-emitting diode (LED) is used as a memory indicator lamp. This indicator lamp turns on when a change takes place in the state of either logic level indicator.

#### **RESET SWITCH**

The memory indicator lamp remains on until the RESET switch is depressed. If logic pulses are present, the memory indicator lamp will relight immediately.

## TTL-CMOS SWITCH

Place this switch in the proper position for TTL or CMOS operation. Pictorials 5-2 and 5-3 (Illustration Booklet, Pages 8 and 9) show how the logic level indicator lamps respond to voltage levels and pulses for TTL and CMOS operation, respectively.

#### USING THE LOGIC PROBE

You can power the Logic Probe from the supply of the circuit under test. However, for circuits which may be excessively loaded by the current drain of the Probe, you may use a regulated DC power supply. If you use a separate power supply, you should connect the power supply ground to the ground of the circuit under test. Then set the power supply voltage to the same value as the supply voltage of the IC's under test. The power supply voltage range for TTL operation is 4.75 to 5.5 VDC, and for CMOS the range is 4.75 to 15 VDC.

You may connect the previously assembled ground clip to the circuit board pin just behind and below the TTL-CMOS switch. It improves pulse width sensitivity and noise immunity. However, the use of the ground clip is required where short time duration pulses (less than about 100 ns) or high frequencies (greater than about 10 MHz) may be present. When you are in doubt, use the ground clip.





# **PERFORMANCE LIMITS**

| INPUT     | LOGIC LEVEL INDICATORS |                | RESPONSE LIMITS                         |                                     |                                                              |
|-----------|------------------------|----------------|-----------------------------------------|-------------------------------------|--------------------------------------------------------------|
| CONDITION | HIGH<br>(RED)          | LOW<br>(WHITE) | TTL @ 5.0 VDC $V_H = 2.4$ ; $V_L = 0.4$ | CMOS @ 5.0 VDC $V_H = 4.5; V_L 0.5$ | CMOS @ 15 VDC<br>V <sub>H</sub> = 13.5; V <sub>L</sub> = 1.5 |
| VH        | OFF                    | OFF ,          | -                                       | -                                   | -                                                            |
|           | ON                     | OFF            |                                         | -                                   | -                                                            |
|           | OFF                    | ON             | -                                       | -                                   | -                                                            |
|           | FLASH                  | FLASH          | 100 MHz*<br>maximum                     | 100 MHz*<br>maximum                 | 80 MHz*<br>maximum                                           |
|           | FLASH                  | FLASH          | 10 ns*<br>minimum                       | 10 ns*<br>minimum                   | 10 ns*<br>minimum                                            |



| INPUT                                        | LOGIC LEVEL INDICATORS |                | RESPONSE LIMITS                      |                                        |                                       |
|----------------------------------------------|------------------------|----------------|--------------------------------------|----------------------------------------|---------------------------------------|
| CONDITION                                    | HIGH<br>(RED)          | LOW<br>(WHITE) | TTL @ 5.0 VDC $V_H = 2.4; V_L = 0.4$ | CMOS @ 5.0 VDC $V_H = 4.5; V_L = 0.5$  | CMOS @ 15 VDC $V_H = 13.5; V_L = 1.5$ |
|                                              | FLASH                  | OFF            | 10 ns*<br>minimum                    | 10 ns* ·<br>minimum<br>(PRF ≤ 600 kHz) | 10 ns*<br>minimum<br>(PRF ≤ 600 kHz)  |
|                                              | OFF                    | FLASH          | (PRF ≤ 1.0 MHz)                      |                                        |                                       |
|                                              | FLASH                  | OFF            | 600 kHz                              | 250 kHz<br>maximum                     | 250 kHz<br>maximum                    |
|                                              | OFF                    | FLASH          | maximum                              |                                        |                                       |
|                                              | FLASH                  | OFF            | 1.0 μs<br>minimum                    | 2.0 μs<br>minimum                      | 2.0 μs<br>minimum                     |
|                                              | OFF                    | FLASH          | (PRF ≤ 600 kHz)                      | (PRF ≤ 250 kHz)                        | (PRF ≤ 250 kHz)                       |
| *USE OF HIGH FREQUENCY GROUND CLIP REQUIRED. |                        |                |                                      |                                        |                                       |



# IN CASE OF DIFFICULTY

NOTE: It is important that you read the entire "General Troubleshooting Information" sections, which follow, before you attempt to service your Logic Probe.

This section of the Manual is divided into three parts. The first part, titled "General Troubleshooting Information," describes what to do about the difficulties that may occur right after your Logic Probe is assembled.

The second section, titled "Troubleshooting Precautions," points out the care that is required when you service the Logic Probe to prevent damage to the components.

The third part, titled "Troubleshooting Chart" is provided to assist you in servicing the Logic Probe if the "General Troubleshooting Information" fails to clear up the problem, or if difficulties occur after your Logic Probe has been in use for some time. The "Troubleshooting Chart" lists a number of possible difficulties that could arise along with several possible solutions to those difficulties. The "Circuit Board X-Ray View" on Page 58 may also provide help in locating the difficulty.

#### GENERAL TROUBLESHOOTING INFORMATION

CAUTION: Always be sure the foil side of the circuit board is positioned on an insulated surface; otherwise the Logic Probe can be damaged.

- Recheck the wiring. It is often helpful to have a friend check your work. Someone who is not familiar with the unit may notice an error that was consistently overlooked by the builder.
- About 90% of the kits that are returned for repair do not function
  properly due to poor connections and soldering. Therefore, many
  troubles can be eliminated by checking all connections to make sure
  that they are soldered correctly. Reheat the connections, if necessary,
  but be careful so you do not create any solder bridges.
- Check the values of all the parts. Be sure that the proper part has been
  installed at each location on the circuit board. Refer to the "Circuit
  Board X-Ray View" for the physical location of parts on the circuit
  board.
- Check for bits of solder, wire ends, or other foreign matter which may be lodged in the components on the circuit board.
- 5. Check very carefully to be sure there are no solder bridges between different circuit board foils. If you are not sure a solder bridge exists, compare the circuit board foil with the "Circuit Board X-Ray View" on Page 58 in this Manual. Remove any solder bridges by holding a clean, hot soldering iron tip between the two points that are bridged until the excess solder flows down onto the tip.



If you still cannot locate and correct the trouble after you have completed the checks listed above, and if a voltmeter is available, check the voltages in the Logic Probe against the Schematic. A review of the "Circuit Description" and Schematic may also help you to locate any difficulties in the kit.

In an extreme case where you are unable to resolve a difficulty, refer to the "Customer Service" information inside the rear cover of the Manual. Your Warranty is located inside the front cover.

# **Troubleshooting Precautions**

Integrated circuit IC4 is a MOS (metal-oxide semiconductor) device and it can be damaged by static electricity. Therefore, make sure you remove this IC in the same manner that you installed it.
 Refer to Page 28 for the correct technique.

- Be sure you do not short any adjacent terminals or foils when you
  make tests or voltage measurements. If a probe or test lead slips for
  example, and shorts together two adjacent connections, it is very
  likely to cause damage to one or more IC's, transistors, or diodes.
- Be especially careful when you test any circuit that contains an IC
  or a transistor. Although these components have almost unlimited
  life when used properly, they are much more vulnerable to damage from excessive voltage or current than many other parts.
- In several areas of the circuit board, the foil patterns are quite narrow. When you unsolder a part to check or replace it, avoid excessive heat while you remove the part. A suction-type desoldering tool will make removal considerably easier. You may also use the desoldering braid supplied with this kit to remove the solder.



# **Troubleshooting Chart**

This chart lists the condition and possible causes of several malfunctions. If a particular part or parts are mentioned (IC3 for example) as a possible

cause, check that part to see that it was installed correctly. It is also possible, on rare occasions, for a part to be faulty and require replacement.

| PROBLEM                                   | POSSIBLE CAUSE                                                                                                                     |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Probe is completely inoperative.          | Transistors Q8, Q9, Q11, or Q12.     Zener diodes ZD1 or ZD2 open or installed backwards.     Capacitor C9.                        |
| Indicator L1 does not light.              | Indicator L1.     Transistors Q1, Q2, or Q3.     Integrated circuits IC1, IC3, IC4, or IC5.     Diodes D2 or D6.                   |
| Indicator L2 does not light.              | Indicator L2.     Transistors Q4, Q5, or Q6.     Integrated circuits IC2, IC3, IC4, or IC5.     Diodes D1 or D5.                   |
| Indicator L1 stays lit.                   | Transistors Q2 or Q3.     Integrated circuits IC1, IC3, IC4, or IC5.                                                               |
| Indicator L2 stays lit.                   | Transistors Q5 or Q6.     Integrated circuits IC2, IC3, IC4, or IC5.                                                               |
| Light emitting diode LED1 does not light. | Light emitting diode LED1.     Silicon controlled rectifier SCR1.     Transistor Q7.     Diodes D3, D4, D7, or D8.     Switch SW2. |



# **SPECIFICATIONS**

#### DC Threshold Levels (switch selected)

| TTL Logic ZERO (V) | .8 ± .15 @ 5 VDC.    |
|--------------------|----------------------|
| TTL Logic ONE (V)  | $2.1\pm.25$ @ 5 VDC. |

| CMOS Logic ZERO (%) | $30 \pm 10$ of supply voltage. |
|---------------------|--------------------------------|
| CMOS Logic ONE (%)  | $70 \pm 10$ of supply voltage. |

#### Detection Characteristics:

#### **Input Condition**

Open circuit or abnormal level (between thresholds)

Constant Logic ZERO

Constant Logic ONE

Pulse or squarewave

High to abnormal or abnormal to high pulses or square wave.

Low to abnormal or abnormal to low pulses or square wave.

## State of Logic Level Indicators

Both indicators off.

Low (white) indicator on.

High (red) indicator on.

Both indicators flash (at 5 Hz or lower rate).

High indicator flashes; low indicator is off.

Low indicator flashes; high indicator is off.

#### Response Limits\*

TTL or CMOS @ 5 VDC:

Squarewave...... 100 MHz maximum.

CMOS @ 15 VDC

reset after turn-on.

±175 VDC (124 VAC); 5 seconds.

+25 VDC (17 VAC); 1 minute.

\* Response limits to be determined using high frequency ground clip and:

 $V_{HIGH} = 2.4 \text{ V for TTL}$ , 90% of supply voltage for CMOS.

 $V_{LOW} = .4 \text{ V for TTL}$ , 10% of supply voltage for CMOS.



| Power Requirements          | . 4.75 to 5.5 VDC @ 75 mA maximum (TTL).<br>4.75 to 15 VDC @ 115 mA maximum (CMOS).                                                                                                          |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating Temperature Range | . $10^{\circ}$ to $40^{\circ}$ C ( $50^{\circ}$ to $104^{\circ}$ F).                                                                                                                         |
| Features                    | . 34" power leads with integral strain relief and color-coded mini-clips.  Detachable high-frequency ground clip.  Insulated housing.  Standard, commercially available integrated circuits. |
| Weight                      | . 2-1/2 oz. (71g).                                                                                                                                                                           |
| Dimensions                  | . 9-1/4" (length) $\times$ 1" (max. diameter). (23.5 $\times$ 2.5 cm).                                                                                                                       |
|                             |                                                                                                                                                                                              |

The Heath Company reserves the right to discontinue products and to change specifications at any time without incurring any obligation to incorporate new features in products previously sold.



## CIRCUIT DESCRIPTION

Refer to the Schematic Diagram and the following Pictorials as you read the following "Circuit Description."

# **Theory of Operation**

The following paragraphs describe the general operation of the Logic Probe circuitry.

Pictorial 6-1 shows the major circuit building blocks that make up the Logic Probe. The monitored logic signal is coupled through the Input Filter and Protection circuit. This circuit protects the remaining circuitry from DC and low frequency over-voltages while permitting normal levels to reach the input of the High and Low circuits.

The Clock circuit, running at a 10 Hz rate, first generates a "reset" pulse. Then, 100 ms later, it generates a "clock" pulse. These pulses control detection and storage of the state, or change of state, of the inputs to the High and Low circuits.

The reset pulse clears the High and Low circuits in preparation for monitoring the Logic levels for the next 100 ms. If, at any time during this sampling period the input of the High circuit becomes more positive than its reference level, or the input of the Low circuit becomes less positive than its reference level, the detection part of either or both circuits will be "set" for the remainder of the 100 ms period. At the end of the sampling period, the clock pulse causes the storage circuitry to display the detected information until the next clock pulse occurs.

If the detected logic level was the same as in the previous sampling (constant high, constant low, or abnormal, i.e in-between level), then the state of the storage circuit does not change. If the logic level changed, however, the state of the storage circuit changes accordingly. The outputs of the storage circuits determine if 1) the HI (red) indicator, 2) the LO (white) indicator, 3) both indicators, or 4) neither indicator is to be lit.

Any change in the output of the storage circuit of either the High or Low circuit triggers the Memory Circuit. If it had previously been reset manually, the memory indicator will now be lit and it will remain lit until the reset switch is depressed.

Power to the Logic Probe circuitry is routed from the power supply clips through the 5-volt and 15-volt limiter circuits. These circuits are of a type that have only a small voltage drop across them for voltages up to the limiting value. If the supply voltage exceeds 5 volts, but is less than 15 volts, the 5-volt limiter circuit limits and regulates the 5-volt source voltage. This does not affect the voltage supplied by the "15-volt" source. For voltages above 15 volts, up to a maximum of 25 volts, the 15-volt limiter circuit limits and regulates this voltage source. If the polarity of the voltage applied to the power leads is accidentally reversed, both limiter circuits block the improper voltage, provided it is less than 25 volts.







# **Detailed Description**

The following paragraphs describe the operation of the individual circuits in more detail.

#### CLOCK CIRCUIT

The clock circuit employs a "555 timer" at IC5 to generate a very narrow pulse of the form high/low/high at approximately a 10 Hz rate. (See the waveforms shown on the Schematic Diagram.) C8 is initially discharged and, when power is applied to the Probe, charges through R36 and R37. Pins 2 and 6 of IC5 are inputs to internal circuits which determine when the voltage across C8 is higher than 2/3 or lower than 1/3 of the supply voltage. When C8 has charged to the 2/3 level, an internal flip-flop (storage element) is set. This discharges C8 through R37 by grounding pin 7 of IC5. R37 has a low resistance value: therefore, C8 is quickly discharged to the 1/3 level. When this occurs, ground is removed from pin 7, and C8 begins to charge again. The rate at which C8 is charged is primarily controlled by R36. This resistor, in conjunction with C8, produces a charge period of about 100 ms duration. The discharge rate is determined by R37 and internal propagation delays of IC5. These combined events produce a high/low/high pulse of about 5  $\mu$ s duration, occurring every 100 ms at pin 3 of IC5.

The low-to-high "edge" at the beginning of the 100 ms interval is capacitively coupled through C6; this turns on Q13, producing a low at its

collector. C6 quickly charges (about 1  $\mu$ s) through the base circuit of Q13 and also through R34. When C6 becomes charged, the base current in Q13 goes to zero, turning if off; then the collector goes high again. This high/low/high pulse is the "reset" pulse which clears the IC3 latch circuitry in preparation for the 100 ms sampling period.

At the end of the 100 ms interval, the high-to-low edge of the IC5 output pulse is capacitively coupled through C7. This turns Q14 on, producing a change from a low to a high collector voltage. In a manner similar to the earlier\_discussion, C7 charges, Q14 turns off and its collector voltage returns to low. This low/high/low pulse is the "clock" pulse which causes the state of the IC3 outputs to be stored in the IC flip-flop. Shortly after the clock pulse, the next reset pulse occurs and the cycle is repeated.

#### INPUT FILTER AND PROTECTION CIRCUIT

This circuit, composed of R1, R2, C1, D1 and D6, protects the Logic Probe circuit as follows: DC and low frequency voltages are coupled through R1 to the junction of D1 and D6. For positive over-voltages, this junction is "clamped" by D1 to approximately the level from the "15-volt" voltage source. For negative over-voltages, D6 clamps the junction to ground level. For high frequency signals, the C1/R2 circuit bypasses R1 to couple these signals directly to the comparator circuitry.

#### REFERENCE/BIAS CIRCUIT

The reference input of the comparators is derived from resistive voltage dividers which provide both a high and low voltage point from the regulated "5-volt" source for TTL, or from the "15-volt" source for CMOS.

For TTL logic, the divider is composed of R7, R5, R6, and R8, with the high voltage point at the R7/R5 junction. The high voltage point is nominally 1.95 volts, allowing for the forward voltage drop across D2. This produces equal inputs to comparator IC1 when the junction of D1/D2 is at 2.1 volts. This is the required high threshold. Similarly, the low point is nominally 0.95 volt, allowing for the forward voltage drop across D5. This produces equal inputs to comparator IC2 when the junction of D5/D6 is at 0.8 volt. This is the required low threshold.

For CMOS logic, the divider is composed of R9, R5, R6, and R11 which provide voltage points which are about 70% and 30% of the supply voltage of the 15-volt source. These are the required threshold levels for CMOS.

The voltage at the junction of R5/R6 is halfway between the two reference voltages and is used to bias the comparator inputs through R3 and R4 when the Logic Probe input is open-circuited. Under this condition, the (-) input of IC1 is biased lower than its (+) input, and the (+) input of IC2 is biased higher than its (-) input. This is interpreted as an open circuit (neither high nor low) signal and results in neither logic level indicator being lit. R3 and R4 also serve to discharge any stray capacitance at the comparator inputs to allow the Logic Probe to respond to short duration pulses between legal and abnormal logic levels. This will be described in the following paragraphs.

#### COMPARATOR CIRCUITS

IC1 and IC2 are high input impedance integrated circuits specifically intended for comparing the magnitude of the voltages applied to their inputs. If the voltage at the (-) or inverting input is less positive than the voltage at the (+) or non-inverting input, the output (pin 7) is high. However, if the voltage at the (-) input is more positive, the output is low. The transition from high output to low output occurs within a span of only a few millivolts at the input and, as such, the comparator have no linear (in-between) operation.

For TTL logic, the output of IC1 is high for a voltage lower than 2.1 volts at the D1/D2 junction. For voltages higher than 2.1 volts, the output is low. The output of IC2 is high for a voltage higher than 0.8 volt and low for voltages lower than 0.8 volt.

For CMOS logic, as previously described, the thresholds are at 70% and 30% of the 15-volt source. Operation of the comparator outputs is the same with respect to high and low inputs being compared to the thresholds.

Although the comparator IC's are very sensitive, their speed of response is limited such that very short duration pulses (less than 100 ns) might normally go undetected. However, the presence of D2 (for example) acts with the capacitance at the input of IC1 as a "peak detector." In this manner, pulse widths as short as 10 ns are extended for a time long enough to allow the comparator to respond. The capacitances which act as part of this circuit are discharged by R3 and R4 as previously mentioned.



#### LATCH AND FLIP-FLOP OPERATION

The latch circuit of IC3-B is shown in Pictorial 6-2. When the "reset" pulse (high/low/high) at pin 1 occurs at the beginning of a sample period, the low level forces a high level at the output of the NAND gate (point ②). If pins 2 and 3 are also at high level, then the output at pin 4 goes low, reinforcing the "reset." When the "reset" again goes high, and assuming pins 2 and 3 also stay high, the state of the outputs at pin 4 and ② will remain low and high, respectively. If either pin 2 or pin 3 go low (even for a short time), the output at pin 4 goes high, and this, along with the high at pin 1, causes the ② output to go low and latch in this new state.



LATCH

PICTORIAL 6-2

A return to a high level for both pins 2 and 3 cannot change the state of the outputs. Therefore, a high at the output indicates (detects) any duration of low at pins 2 and 3 and holds that "information" until the next "reset" pulse occurs. Note also that if either pin 2 or 3 was low during the time the "reset" pulse occurred, this still results in a high level at the output during and after the "reset" pulse. IC3-D operates in the same manner. Note, however, that sections A and C of IC3 have only two inputs at each NAND gate; although their operation is the same.

Pictorial 6-3, part A shows a flip-flop (storage element) circuit of IC4. Part B of the figure shows the "truth table" of operation resulting from what the J and K input levels are at the time the "clock" pulse occurs. Operation for each condition is explained as follows:

Unlike the latch circuit, the outputs of the flip-flop can change only when a "clock" pulse (complete low/high/low cycle) occurs. Thus, in the Logic Probe circuitry, the outputs of the flip-flops can only change at 100 ms intervals. In the first case of the truth table, for a condition of J and K both being low at the occurrence of the "clock" pulse, the Q and  $\overline{Q}$  (the — over the Q indicates "complement" or opposite level from Q) outputs cannot change from the states they were in prior to the "clock" pulse. Due to the operation of the inverter circuits (Q1 and Q4), in conjunction with the latch circuits, this condition cannot occur since either the J or the K (or both) will be high at the occurrence of the "clock" pulse.

In the second case of the truth table, if J is low and K is high at the occurrence of the "clock" pulse, the result will be a low at Q (and a high at  $\overline{Q}$ ) after the "clock" pulse. These output levels cannot change until the next "clock" pulse. If the J/K inputs remain low at that time, the outputs remain low/high for the next cycle.





| INP | UTS | OUTPUTS                  |
|-----|-----|--------------------------|
| J   | K   | Q/Q                      |
| L   | Ļ   | NO CHANGE                |
| L   | Н   | LOW/HIGH                 |
| H   |     | HIGH/LOW                 |
| Н   | Н   | COMPLEMENT<br>(OPPOSITE) |





# FLIP-FLOP

# **PICTORIAL 6-3**

The third case of J being high and K being low at the occurrence of a "clock" pulse, is the complement (opposite) of the second case and produces  $Q/\overline{Q}$  outputs of high/low after the "clock" pulse.

In the fourth case of the truth table, with J and K both being high, the outputs after the "clock" pulse is the complement (opposite) of the outputs prior to the "clock" pulse. Thus, if this condition were true for each "clock" pulse, the output would change (alternate) with each pulse, producing a 5 Hz square wave (period equals 200 ms) at each output with  $Q/\overline{Q}$  being low/high, then high/low, etc. In the Logic Probe, this results in one or both logic level lights flashing.

#### HIGH AND LOW CIRCUITS

The High and Low circuits are electrically identical from the comparator outputs to the logic level indicators. The operation of both circuits can be analyzed as one. This is because a low voltage at the comparator output confirms detection of a crossing of the threshold during the sampling period. A high voltage, however, confirms that a threshold crossing did not occur. To avoid confusion between the high and the low levels of the circuit operation, and the high and the low levels of the Logic Probe input, the operation will be described as follows: "Yes, a legal level was detected." and "No, a legal level was not detected." This being the case, one of the following conditions at the Logic Probe input will be detected during each sample period:

- Constant "abnormal" input (or open circuit).
- Constant high input.
- · Constant low input.
- Change from high to low (or low to high) input.
- Change from high to abnormal (or abnormal to high) input and then back.
- Change from low to abnormal (or abnormal to low) input and then back.



These conditions may be restated as follows:

- 1. Constant "No" input in both circuits.
- Constant "Yes" input in one circuit and "No" in the other.
- 3. Change from "Yes" in one circuit to "Yes" in the other.
- 4. Change from "No" in both circuits to "Yes" in one, then back to "No"
- 5. Change from "Yes" in one circuit to "No" in both, then back to "Yes."

Now, referring to Pictorial 6-4 and keeping in mind all the previous information, we can analyze these possible conditions to determine how all circuit elements work together in the Logic Probe between the occurrence of a "reset" pulse and a "clock" pulse. NOTE: In the Pictorial, L stands for low and H stands for high.

- Constant "No" in both circuits.
   A is high, B is thus low, and C is high. The high at A results in D being low and the low at B results in E being high. After the "clock" pulse.
   F is low, resulting in G being off. Since A and C are both high in both circuits, the logic level lights are both off. Note that B being low at the lower latch circuit "overrides" the fact that C was high.
- Constant "Yes" in this circuit and "No" in the other.

  A is low. B is thus high, and C is high. This results in D being high and E being low. After the "clock" pulse. F is high, resulting in G being on. Note that both B and C were high to the lower latch circuit. The lowat A becomes the C of the other circuit. With its A being high and its C being low, its logic level light remains off.

- Change from "Yes" in this circuit to "Yes" in the other circuit.

  A was low then high: this results in D being high. The change in A results in B being high and then low, resulting in E being high. With D and E both being high, and, assuming this occurs with each clock pulse. F will alternate between high and low each time, causing G to "flash" on and off. Note that either B or C is low, both resulting in E being high. With operation in the other circuit also having its A and C low at some time, its light will also flash.
- Change from "No" in both circuits to "Yes" in this circuit, then back to "No."

Here, A is high, then low, then high, resulting in D being high. This produces low, then high, then low at B, resulting in E also being high. As for #3, with D and E both being high, F alternates between high and low, resulting in this circuit's logic level light "flashing," However, in the other circuit, its A remains high for each clock pulse (threshold was never reached) with its B being low. This results in its D being low, its E being high, producing a constant low at F and a constant off at G. Since only one light is flashing, a condition of legal/illegal is thus indicated.

With this type of input signal, the comparator input threshold is quickly changed from illegal to legal by the peak detector circuit, resulting in response capability to even very short duration pulses of the form illegal/legal/illegal.



Change from "Yes" in this circuit to "No" in both circuits, then back to "Yes."

This condition is the complement of the condition in #4 and therefore, flashing of only one light results, however, speed of response is less. This is because the peak detector circuit at the comparator input, being charged by the measured signal, cannot quickly discharge in response to its absence. For this reason, only pulses that are longer than about 1.0  $\mu s$  can be detected if they are of the form legal/illegal/legal.

#### LOGIC INDICATOR CIRCUITS

When the Q output of either flip-flop is high, it provides an operating voltage source for the Q2 and Q3 (Q5 and Q6) constant current circuit. When the Q output is high, the current through R18 (R19) provides base current to Q3 (Q6). This is amplified by the gain of the transistor to the higher level required to light indicator L1 (L2). The bulb normally reaches full brightness for supply voltages of about 4 volts. For higher supply voltages, the bulb would conduct excessive current if it were not limited. The limiting action takes place at about 20 mA when the voltage drop across R25 (R26) begins to forward bias the base of Q2 (Q5). When this transistor is biased on, it diverts base current from Q3 (Q6) and limits the current in L1(L2). With a fixed resistance value and a controlled current, the voltage drop across L1 (L2) is essentially constant for voltages ranging from 4 to 15 volts from the "15-volt" voltage source. The remaining voltage is "dropped" across Q3 (Q6) with an additional, fixed voltage drop across R25 (R26).

#### MEMORY CIRCUIT

The Memory circuit, which is made up of Q7 and SCR1, is "edge-triggered" from any of the Q and  $\overline{Q}$  outputs of the flip-flop. Any low-to-high output change is capacitively coupled (C2, C3, C4, C5) through a diode (D3, D4, D7, D8) to R27 and Q7. The low-to-high edge of a pulse biases Q7 on and a positive voltage is developed across R29. This voltage is high enough to trigger SCR1. When it is triggered, SCR1 will conduct and remain on until its supply voltage is removed. With SCR1 conducting, current through R31 and LED1 indicates that a change in the output of either flip-flop has occurred. The Memory circuit is reset when SW2 is depressed. This diverts all current from LED1 and SCR1. When the current through SCR1 drops below its "holding level" current, it returns to a non-conducting state.

Resistors R21 through R24 discharge the coupling capacitors. R31 limits the current in LED1. High-to-low pulse edges coupled through the capacitors are blocked from Q7 (and each other) by the diodes being reverse biased.

#### 5-VOLT AND 15-VOLT LIMITER CIRCUITS

Operation of the 5-volt and 15-volt Limiter circuits is similar and as follows:

For power input voltage levels below the conduction point of zener diode .ZD1 (ZD2), FET Q9 (Q12) is operating at a "zero bias" condition and conducts current from the power input clip through the emitter-base junction of Q8 (Q11), through the FET and R38 (R39) to ground. The voltage



produced across R38 (R39) is normally low due to the "zero bias" current. However, this current is high enough to ensure saturating of O8 (O11) for any current used by the 5-volt (15-volt) circuits. Thus, the voltage drop across Q8 (Q11) remains very low (typically less than 0.1 volt). ZD1 (ZD2) is non-conducting at low voltages, i.e. voltages lower than 4.3 volts (15 volts). When the power input voltage increases, the "5-volt" ("15-volt") source voltage rises above the conduction point of ZD1 (ZD2), and the current through it increases sharply due to the low series resistance of R38 (R39). Therefore, an increase in the voltage at the zener diode is almost entirely coupled to R38 (R39). Due to the high gain of Q9 (Q12), an increase in its source voltage results in the transistor being turned off. This decreases the base current of Q8 (Q11), causing it to come out of saturation enough to limit the "5-volt" ("15-volt") supply voltage. For the "5-volt" source, limiting takes place at voltages of 4.5 volts or higher. For the "15-volt" source, limiting occurs at 15 volts and higher. However, this limit is set to protect the circuitry from over-voltages since operation up to 15 volts is normal.

In the event that the power input leads are inadvertently reversed, transistors Q8 and Q11 are of a special type having a very high (25 volts) emitter-to-base reverse breakdown voltage. Since the junctions are reverse biased, they do not conduct. This protects the circuitry.

C9 prevents transients from occurring on the "15-volt" supply. These transients would normally result from the very low "cold" resistance of indicator lamps L1 and L2 when they turn on at voltages below the regulating action of the Q11 and Q12 circuitry.



# SEMICONDUCTOR IDENTIFICATION CHARTS

## DIODES

| CIRCUIT<br>COMPONENT<br>NUMBER | HEATH<br>PART<br>NUMBER | MAY BE<br>REPLACED<br>WITH | IDENTIFICATION                          |
|--------------------------------|-------------------------|----------------------------|-----------------------------------------|
| D1, D3, D4<br>D6, D7, D8       | 56-56                   | 1N4149                     | IMPORTANT: THE BANDED END OF DIODES CAN |
| D2, D5                         | 56-87                   | FH1100                     | BE MARKED IN A NUMBER OF WAYS.          |
| ZD1                            | 56-612                  | 1N5229                     | DANDED END                              |
| ZD2                            | 56-620                  | 1N4744A                    |                                         |
| SCR1                           | 57-624                  | 2N5061                     | K G FLAT                                |
| LED1                           | 412-616                 | FLV117                     | A NODE<br>FLAT<br>CA THODE              |



# **TRANSISTORS**

| CIRCUIT<br>COMPONENT<br>NUMBER    | HEATH<br>PART<br>NUMBER | MAY BE<br>REPLACED<br>WITH | IDENTIFICATION   |
|-----------------------------------|-------------------------|----------------------------|------------------|
| Q14                               | 417-235                 | 2N4121                     | FLAT             |
| Q1, Q2, Q3, Q4<br>Q5, Q6, Q7, Q13 | 417-801                 | MPSA20                     |                  |
| Q8, Q11                           | 417-913                 | MPS404A                    | BC               |
| Q9                                | 417-241                 | EL131                      | FLAT             |
| Q12                               | 417-884                 | SF55048                    | D <sub>S</sub> G |



## INTEGRATED CIRCUITS

| CIRCUIT<br>COMPONENT<br>NUMBER | HEATH<br>PART<br>NUMBER | MAY BE<br>REPLACED<br>WITH | IDENTIFICATION                                                                              |
|--------------------------------|-------------------------|----------------------------|---------------------------------------------------------------------------------------------|
| IC5                            | 442-53                  | NE555V                     | 1. GROUND 2. TRIGGER 3. OUTPUT 4. RESET 5. CONTROL VOLTAGE 6. THRESHOLD 7. DISCHARGE 8. Vcc |
| IC1, IC2                       | 442-75                  | LM311                      | V+ OUT STROB BAL  8 7 6 5  GND INPUT                                                        |

| CIRCUIT<br>COMPONENT<br>NUMBER | HEATH<br>PART<br>NUMBER | MAY BE<br>REPLACED<br>WITH | IDENTIFICATION                                                                                                                                                                       |
|--------------------------------|-------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IC4                            | 443-606                 | CD4027AE                   | V <sub>DD</sub> 2Q 2Q 2CK CLR 2K 2J 2PR  16 15 14 13 12 11 10 9  Q PR Q PR Q CK Q PR Q PR 1 1 2 3 4 5 6 7 8  1 Q 1Q 1 CK 1 1K 1J 1PR Vss                                             |
| IC3                            | 443-854                 | SN74LS279                  | Vcc 4\$\bar{5} 4\$\bar{R} 4Q 3\$\bar{S}2 3\$\bar{S}1 3\$\bar{R} 3Q \\ 16 15 14 13 12 11 10 9 \\ 1 2 3 4 5 6 7 8 \\ 1 \bar{R} 1\$\bar{S}1 1\$\bar{S}2 1Q 2\$\bar{R} 2\$\bar{S} 2Q GND |



# CIRCUIT BOARD X-RAY VIEW

NOTE: To find the PART NUMBER of a component for the purpose of ordering a replacement part:

A. Find the circuit component number (R5, C3, etc.) on the X-Ray View.

- B. Locate this same number in the "Circuit Component Number" column of the "Parts List" in the front of this Manual.
- C. Adjacent to the circuit component number, you will find the PART NUMBER and DESCRIPTION which must be supplied when you order a replacement part.







#### CUSTOMER SERVICE

#### REPLACEMENT PARTS

Please provide complete information when you request replacements from either the factory or Heath Electronic Centers. Be certain to include the **HEATH** part number exactly as it appears in the parts list.

Replacement parts are maintained specifically to repair Heath products. Parts sales for other reasons will be declined.

#### ORDERING FROM THE FACTORY

Print all of the information requested on the parts order form furnished with this product and mail it to Heath. For telephone orders (parts only) dial 616 982-3571. If you are unable to locate an order form, write us a letter or card including:

- · Heath part number.
- Model number.
- · Date of purchase.
- · Location purchased or invoice number.
- · Nature of the defect.
- Your payment or authorization for COD shipment of parts not covered by warranty.

Mail letters to:

Heath Company Benton Harbor

MI 49022

Attn: Parts Replacement

Retain original parts until you receive replacements. Parts that should be returned to the factory will be listed on your packing slip.

#### OBTAINING REPLACEMENTS FROM HEATH ELECTRONIC CENTERS

For your convenience, "over the counter" replacement parts are available from the Heath Electronic Centers listed in your catalog. Be sure to bring in the original part and purchase invoice when you request a warranty replacement from a Heath Electronic Center.

#### **TECHNICAL CONSULTATION**

Need help with your kit? — Self-Service? — Construction? — Operation? — Call or write for assistance, you'll find our Technical Consultants eager to help with just about any technical problem except "customizino" for unique applications.

The effectiveness of our consultation service depends on the information you furnish. Be sure to tell us:

- The Model number and Series number from the blue and white label.
- . The date of purchase.
- · An exact description of the difficulty.
- Everything you have done in attempting to correct the problem.

Also include switch positions, connections to other units, operating procedures, voltage readings, and any other information you think might be helpful.

Please do not send parts for testing, unless this is specifically requested by our Consultants.

Hints: Telephone traffic is lightest at midweek — please be sure your Manual and notes are on hand when you call.

Heathkit Electronic Center facilities are also available for telephone or "walk-in" personal assistance.

#### REPAIR SERVICE

Service facilities are available, if they are needed, to repair your completed kit. (Kits that have been modified, soldered with paste flux or acid core solder, cannot be accepted for repair.)

If it is convenient, personally deliver your kit to a Heathkit Electronic Center. For warranty parts replacement, supply a copy of the invoice or sales slip.

If you prefer to ship your kit to the factory, attach a letter containing the following information directly to the unit:

- · Your name and address.
- Date of purchase and invoice number.
- Copies of all correspondence relevant to the service of the kit.
- · A brief description of the difficulty.
- Authorization to return your kit COD for the service and shipping charges. (This will reduce the possibility of delay.)

Check the equipment to see that all screws and parts are secured. (Do not include any wooden cabinets or color television picture tubes, as these are easily damaged in shipment. Do not include the kit Manual.) Place the equipment in a strong carton with at least THREE INCHES of resilient packing material (shredded paper, excelsior, etc.) on all sides. Use additional packing material where there are protrusions (control sticks, large knobs, etc.). If the unit weighs over 15 lbs., place this carton in another one with 3/4" of packing material between the two

Seal the carton with reinforced gummed tape, tie it with a strong cord, and mark it "Fragile" on at least two sides. Remember, the carrier will not accept liability for shipping damage if the unit is insufficiently packed. Ship by prepaid express, United Parcel Service, or insured Parcel Post to:

Heath Company Service Department Benton Harbor, Michigan 49022





THE WORLD'S FINEST ELECTRONIC EQUIPMENT IN KIT FORM



