1 October 2018

1-Oct-18

	October 2018		
Page 1/7		,	
	Last Name	•	First Name

Instructions:

- <u>Show all work</u> on the <u>front</u> of the test papers. No work shown may mean 0 points given! If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will <u>not</u> be graded without an indication on the front.
- Read each question <u>carefully</u> and <u>follow the instructions</u>. Unless otherwise stated, <u>you must show</u> <u>your work and clearly illustrate your steps</u>.
- If you round a numerical answer, you must give at least 3 significant digits.
- Put your name at the top of <u>each</u> test page and be sure your exam consists of the number of pages designated in the headers.
- The space provided does <u>NOT</u> necessarily represent the amount of writing necessary.
- You may <u>not</u> use any notes, homework, labs, or other books. Only **memoryless** calculator is allowed.
- You may <u>not</u> use any notes, homework, labs, or other books.

COMMENTS, FEEDBACK, or any special instructions for the professor:

Problem	Available	Points
1		
2		
3		
4		
5		
Total		

Important: In completing this exam, I used a calculator with no communications capability, and no information of relevance to the course was stored in the calculator. I did not use any other electronic device or any other references. My work was solely my own.

Your Calculator's Maker and Model#: ______, Signature: _____

You must sign this to receive credit for the exam.

Important Boolean Algebra Laws

Identity law

- $\bullet \quad A+0=A$
- $A \cdot 1 = A$

Zero and One laws

- A + 1 = 1
- $A \cdot 0 = 0$

Associative laws

- A + (B + C) = (A + B) + C
 - $A \cdot (B \cdot C) = A \cdot (B \cdot C)$

Distributive laws

• (B + C) = (A.B) + (B.C)

 $A+(B\cdot C)=(A+B)\cdot (A+C)$

DeMorgan's laws

- $(A \cdot B)' = A' + B'$
- (A+B)'=A'·B'

Inverse laws

- A + A' = 1
- $A \cdot A' = 0$

Commutative laws

- $\bullet \quad A+B=B+A$
 - $A \cdot B = B \cdot A$

Sample Exam 1 1 October 2018

1-Oct-18

Page 2/7

	_ ,		•
Last Name		First Name	

Remember to show ALL work here and in EVERY problem on this exam.

- Q1.Do the following conversions (Note: The numbers in this problem are **unsigned** numbers. There is **no sign bit**. Your answer should also be unsigned numbers as well.).
- a) $1110.11_2 = 14.75_{10}$
- b) $14.625_{10} = 1110.101_2$

Sample Exam 1 1 October 2018

1-Oct-18

Page 3/7

Last Name	First Name

Q2. Do the following conversions between decimal number and 8-bit **signed** integer in the **2's complement** format. (**Note:** The binary numbers in this problem are **signed** 8-bit integers. When doing decimal-to-binary conversion, give your binary number answer in the same format. When doing binary-to-decimal conversion, indicate the sign of your decimal number answer.).

- a) -9_{10} =11110111₂
- b) $10000000_2 = -128_{10}$

1	\sim		1	0
1	-O	ct-	. 1	×

Page 4/7

	,	
Last Name		First Name

Q3. Perform following binary calculation. Each number is an **8-bit signed integer** with 2's complement representation. **Give your answer in 8-bit 2's complement format and clearly state whether an overflow happens or not.** (**Note:** (1) your answer MUST BE 8-bit number. Deduction will be given for 9-bit or other representation. (2) If there is no overflow, you need to clearly state that an overflow does not happen)

a) 11101100₂+11000011₂

Solution

10101111₂, no overflow

b) $01001111_2 - 10110001_2$

Solution

10011110₂, overflow

1-Oct-18

Page 5/7

Last Name , First Name

Q4.

(a)

Use algebraic manipulation to convert the following Function $F3 = (a + b)^2c^2 + a(b^2 + c)^2 + a(b^2 + d)^2c^2 + a(b^$

Solution:

$$F_3 = (a+b)'c' + a(b'+c)' + a(b+d)'c$$

= $a' \cdot b' \cdot c' + a \cdot b \cdot c' + a \cdot b' \cdot d' \cdot c$
.... DeMorgan's law
 $F_3 = a'b'c' + abc' + ab'cd'$

- (b)
 i. A fire sprinkler system should spray water if high heat is sensed and the system is set to enabled.
 - <u>Solution</u>: Let Boolean variable h represent "high heat is sensed," e represent "enabled," and F represent "spraying water." Then an equation is: F = h AND e.
- **ii.** A car alarm should sound if the alarm is enabled, and either the car is shaken or the door is opened.
 - <u>Solution:</u> Let a represent "alarm is enabled," s represent "car is shaken," d represent "door is opened," and F represent "alarm sounds." Then an equation is: F = a AND (s OR d).
 - **Alternatively**, assuming that our door sensor d represents "door is closed" instead of open (meaning d=1 when the door is closed, 0 when open), we obtain the following equation: F = a AND (s OR NOT(d)).

1-Oct-18

Page 6/7

Last Name	, First l	Name

Q5. (Computer Performance Assessment) Two compliers are used to compile the same benchmark program with the same instruction set architecture (ISA) for the same computer (clock rate=1GHz). There are three classes of instructions in this ISA, and each of them takes different numbers of clock cycles to finish. Class A instruction takes 2 clock cycles to finish, Class B instruction takes 3 clock cycles to finish, and Class C instruction takes 4 clock cycles to finish. The numbers of instructions generated by complier 1 and complier 2 are listed below.

	# of Inst. Generated by Compiler 1	# of Inst. Generated by Compiler 2
Class A ($CPI = 2$)	5 Millions	1 Millions
Class B ($CPI = 3$)	2 Millions	2 Millions
Class C ($CPI = 4$)	1 Millions	2 Millions

The following equation might be helpful:

$$\frac{\text{seconds}}{\text{program}} = \frac{\text{Instructions}}{\text{program}} \times \frac{\text{cycles}}{\text{Instructions}} \times \frac{\text{seconds}}{\text{cycle}}$$
$$= Instruction Count \times CPI \times Clock Cycle Time$$

Which compiler makes faster machine code (You must write down your calculation)?

Solution

Clock period= 10⁻⁹ second

Compiler 1 execution time

$$(5\times2+2\times3+1\times4)\times10^{6}\times10^{-9}=0.02 \text{ sec}$$

Compiler 2

$$(1\times2+2\times3+2\times4)\times10^{6}\times10^{-9}=0.016$$
 sec

Compiler 2 is faster

USC Upstate
Mathematics and Computer Science Division

CSCIU 210 Fall 2018

Dr. AKM Jahangir Alam Majumder

Sample Exam 1 1 October 2018

1-Oct-18

Page 7/7

Last Name , First Name

This Page Intentionally Left Blank