Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Институт прикладной математики и компьютерных наук

ОТЧЁТ ПО ПРОИЗВОДСТВЕННОЙ ПРАКТИКЕ

ИССЛЕДОВАНИЕ МНОГОЛИНЕЙНОЙ СИСТЕМЫ С ОБРАТНОЙ СВЯЗЬЮ И ГИПЕРЭКСПОНЕНЦИАЛЬНЫМ ОБСЛУЖИВАНИЕМ

по направлению подготовки 01.03.02 Прикладная математика и информатика, направленность (профиль) «Прикладная математика и информатика»

Рыжикова Валерия Валентиновна

Руководитель ВКР				
доктор техн. наук, профессор				
Назаров А.А.				
подпись				
Автор работы				
студентка группы №931720				
	Рыжикова В.В.			
подпись (())	2021г.			

ОГЛАВЛЕНИЕ

Введение	. 3
1 Математическая модель и постановка задач	. 5
2 Уравнения Колмогорова	. 7
3 Первый этап асимтотического анализа	. 13
4 Второй этап асимтотического анализа	. 18
5 Метод асимтотическо диффузионного анализа	. 27
Список использованной литературы	33

ВВЕДЕНИЕ

Системы массового обслуживания с орбитами, также называемые RQ-системы, обладают большой популярностью и широко рассмотрены в литературе [6, 8, 12, 13].

Очень похожая работа была также рассмотрена в [18]. В ней, так же как и в этой работе, гиперэкспаненциальное время обслуживания и, если заявка пришла в тот момент, когда все приборы заняты, то она так же отправляется на орбиту, где ожидает время, распределённое по экспоненциальному закону. Однако, после завершения обслуживания, в работе [18] заявка покидает в систему, в то время как в данной работе заявка может также уйти на орбиту или же мгновенно перейти на повторное обслуживание. И так же, с помощью асимптотически диффузионного анализа был найден ряд распределения количества заявок на орбите.

В данной работе рассматривется двухфазна система $M|H_2|N$ с обратной связью.

Исследование двухфазных систем проводилось [7]. Но принципиальное отличие предложенной системы состоит в том, что в системе, исследуемой в [7] фазы расположены последовательно, с орбиты заявка поступает только на вторую фазу, обратной связи нет. А в данной работе модель предполагает, что заявка из входящего потока выбирает одну из двух фаз обслуживания с определённой вероятностью и имеется обратная связь.

В первой главе исследуется система $M|H_2|2$ методом асимптотического анализа в асимптотическом условии предельно малой интенсивности обращений заявок с орбиты. В стационарном режиме получено распределение вероятностей числа занятых приборов на первой и второй фазе, а также построена аппроксимация ряда распределения вероятностей числа заявок на орбите. Приведены численные примеры. В первой главе для получения результата был рассмотрен одномерный процесс, характеризующий состояние блока обслуживания, однако во второй главе для исследования системы $M|H_2|N$ рассматривается двумерный процесс, характеризующий состояние блока обслуживания и орбиты. Для исследования применялся метод асимптотически диффузионного анализа, использующее асимптотическое условие предельное малой интенсивности заявки на орбите [1]. Для системы $M|H_2|N$ стационарном режиме найдено распределение вероятностей числа занятых приборов на первой и второй фазах, а также построена аппроксимация ряда распределения вероятностей числа заявок на орбите в стационарном режиме. Приведены результаты численных экспериментов и сравнения с результатами имитационного моделирования.

Но в нашем исследовании намного больше пригодилась статья [19].

Также помогли книги [1,2,3,5,9,10,11] и статья [4] для ознакомления с различными

методами.

Цель дипломной работы: построить ряд распределения, или его апроксимацию, для количества заявок на орите для RQ-системы $M|H_2|N$ в стационарном режиме.

Задачи:

- 1. Построить математическую модель системы $M|H_2|N$ с обратной связью.
- 2. Составить систему дифференциальных уравнений Колмогорова для системы $M|H_2|N$ с обратной связью.
- 3. С помощью метода асимптотического анализа найти коэффициенты переноса и диффузии дифференциальных уравнений системы $M|H_2|N$ с обратной связью.
- 4. С помощью метода асимптотически диффузионного анализа вычислить ряд распределений вероятностей количества заявок на орбите.

1 МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И ПОСТАНОВКА ЗАДАЧ

Рассмотрим систему массового обслуживания $M|H_2|N$ с обратной связью (Рисунок 1).

Рисунок 1 — Система массового обслуживания $M|H_2|N$ с обратной связью

Система имеет N обслуживающих приборов. Заявки поступают в систему согласно простейщиму потоку с параметром λ . Каждая заявка занимеет один из свободных приборов на время, распределенное по гиперэкспоненциальному закону. Это означает, что заявка на приборе с вероятностью q поступает на первую фазу, с экспоненциальным распределением с параметром μ_1 , и с вероятность 1-q на вторую, с параметром μ_2 .

После завершения обслуживания заявка с вероятностью r_0 покидает систему, с вероятностью r_1 мгновенно поступает на повторное обслуживание и с вероятностью r_2 уходит на орбиту. Также, если на момент поступления заявки из потока все приборы заняты, то заявка уходит на орбиту. Через время, продолжительность которого распределена по экспоненциальному закону с пареметром σ , заявка вновь обращается с орбиты к приборам.

Пусть i(t) — число заявок на орбите в момент времени $t,\,n_1(t)$ — число приборов занятых на первой фазе в момент времени $t,\,n_2(t)$ — число приборов занятых на второй фазе в момент времени t.

Рассмотрим трехмерный процесс $\{n_1(t),n_2(t),i(t)\}$. Под состоянием системы будем понимать состояние процесса $\{n_1(t),n_2(t),i(t)\}$ в момент времени t.

Обозначим вероятности следующим образом

$$P(n_1(t) = n_2, n_2(t) = n_2, i(t) = i) = P_{n_1, n_2}(i,t)$$

вероятность того, что n_1 – приборов занято на первой фазе, а n_2 – приборов занято на второй фазе. При этом $P_{n_1,n_2}(i,t)=0,$ если $n_1\leq 0,$ $n_2\leq 0$ или $n_1+n_2>N.$

Для решения будем применять методы асимптотически анализа предложенные в [5, 8, 12, 19] и асимптотически диффузионного анализа предложенные в [19].

2 УРАВНЕНИЯ КОЛМОГОРОВА

Для данных вероятностей составим систему уравнений в конечных разностях [1, 2, 11]. Для упрощения выражений введем индикатор

$$E_a^b = \begin{cases} 1, & a = b \\ 0, & a \neq b, \end{cases}$$
$$\overline{E}_a^b = 1 - E_a^b.$$

$$\begin{split} P_{n_1,n_2}(i,t+\Delta t) = & (1-\Delta t(\lambda+i\sigma\overline{E}^N_{n_1+n_2}+\mu_1n_1+\mu_2n_2))P_{n_1,n_2}(i,t) + \\ & + \Delta t\mu_1r_1qn_1P_{n_1,n_2}(i,t) + \Delta t\mu_2(1-q)r_1n_2P_{n_1,n_2}(i,t) + \\ & + \Delta t\lambda E^N_{n_1+n_2}P_{n_1,n_2}(i-1,t) + \\ & + \Delta t\lambda qP_{n_1-1,n_2}(i,t) + \Delta t(i+1)\sigma qP_{n_1-1,n_2}(i+1,t) + \\ & + \Delta t\lambda(1-q)P_{n_1,n_2-1}(i,t) + \Delta t(i+1)\sigma(1-q)P_{n_1,n_2-1}(i+1,t) + \\ & + \Delta t\mu_1r_0(n_1+1)P_{n_1+1,n_2}(i,t) + \Delta t\mu_1r_2(n_1+1)P_{n_1+1,n_2}(i-1,t) + \\ & + \Delta t\mu_2r_0(n_2+1)P_{n_1,n_2+1}(i,t) + \Delta t\mu_2r_2(n_2+1)P_{n_1,n_2+1}(i-1,t) + \\ & + \Delta t\mu_1r_1(1-q)(n_1+1)P_{n_1+1,n_2-1}(i,t) \\ & + \Delta t\mu_2r_1q(n_2+1)P_{n_1-1,n_2+1}(i,t) + o(\Delta t). \end{split}$$

Расскроем скобки, разделим на каждое уравнение на Δt , получим

$$\begin{split} \frac{P_{n_1,n_2}(i,t+\Delta t)-P_{n_1,n_2}(i,t)}{\Delta t} &= -\left(\lambda+i\sigma\overline{E}^N_{n_1+n_2}+\mu_1n_1+\mu_2n_2\right)P_{n_1,n_2}(i,t)+\\ &+n_1\mu_1r_1qP_{n_1,n_2}(i,t)+\mu_2r_1(1-q)n_2P_{n_1,n_2}(i,t)+\\ &+\lambda E^N_{n_1+n_2}P_{n_1,n_2}(i-1,t)+\lambda qP_{n_1-1,n_2}(i,t)+\\ &+(i+1)\sigma qP_{n_1-1,n_2}(i+1,t)\lambda(1-q)P_{n_1,n_2-1}(i,t)+\\ &+(i+1)\sigma(1-q)P_{n_1,n_2-1}(i+1,t)+\\ &+\mu_1r_0(n_1+1)P_{n_1+1,n_2}(i,t)+\\ &+\mu_2r_0(n_2+1)P_{n_1,n_2+1}(i,t)+\\ &+\mu_2r_2(n_2+1)P_{n_1,n_2+1}(i-1,t)+\\ &+\mu_1r_1(1-q)(n_1+1)P_{n_1+1,n_2-1}(i,t)+\\ &+\mu_2r_1q(n_2+1)P_{n_1-1,n_2+1}(i,t)+o(\Delta t)/\Delta t. \end{split}$$

Устремим $\Delta t \to 0$, получим

$$\begin{split} \frac{dP_{n_1,n_2}(i,t)}{\partial t} &= -\left(\lambda + i\sigma\overline{E}_{n_1+n_2}^N + \mu_1 n_1 + \mu_2 n_2\right) P_{n_1,n_2}(i,t) + \mu_1 r_1 q n_1 P_{n_1,n_2}(i,t) + \\ &+ \mu_2 r_1 (1-q) n_2 P_{n_1,n_2}(i,t) + \lambda E_{n_1+n_2}^N P_{n_1,n_2}(i-1,t) + \\ &+ \lambda q P_{n_1-1,n_2}(i,t) + (i+1)\sigma q P_{n_1-1,n_2}(i+1,t) + \\ &+ \lambda (1-q) P_{n_1,n_2-1}(i,t) + (i+1)\sigma (1-q) P_{n_1,n_2-1}(i+1,t) + \\ &+ \mu_1 r_0 (n_1+1) P_{n_1+1,n_2}(i,t) + \mu_1 r_2 (n_1+1) P_{n_1+1,n_2}(i-1,t) + \\ &+ \mu_2 r_0 (n_2+1) P_{n_1,n_2+1}(i,t) + \mu_2 r_2 (n_2+1) P_{n_1,n_2+1}(i-1,t) + \\ &+ \mu_1 r_1 (1-q) (n_1+1) P_{n_1+1,n_2-1}(i,t) + \mu_2 r_1 q (n_2+1) P_{n_1-1,n_2+1}(i,t). \end{split}$$

Введем частичные характеристические функции

$$H_{n_1,n_2}(u,t) = \sum_{i=0}^{\infty} e^{iuj} P_{n_1,n_2}(i,t).$$

Тогда уравнения будут иметь вид

$$\begin{split} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} &= -\left(\lambda + \mu_1 n_1 + \mu_2 n_2\right) H_{n_1,n_2}(u,t) + j\sigma \overline{E}_{n_1+n_2}^N \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ &\quad + \mu_1 r_1 q n_1 H_{n_1,n_2}(u,t) + \mu_2 r_1 (1-q) n_2 H_{n_1,n_2}(u,t) + \\ &\quad + \lambda e^{ju} E_{n_1+n_2}^N H_{n_1,n_2}(u,t) + \lambda q H_{n_1-1,n_2}(u,t) - \\ &\quad - j\sigma q e^{-ju} \frac{\partial H_{n_1-1,n_2}(u,t)}{\partial u} + \\ &\quad + \lambda (1-q) H_{n_1,n_2-1}(u,t) - j\sigma (1-q) e^{-ju} \frac{\mathrm{d} H_{n_1,n_2-1}(u,t)}{\mathrm{d} u} + \\ &\quad + \mu_1 r_0(n_1+1) H_{n_1+1,n_2}(u,t) + \mu_1 r_2 e^{ju} (n_1+1) H_{n_1+1,n_2}(u,t) + \\ &\quad + \mu_2 r_0(n_2+1) H_{n_1,n_2+1}(u,t) + \mu_2 r_2 e^{ju} (n_2+1) H_{n_1,n_2+1}(u,t) + \\ &\quad + \mu_1 r_1 (1-q) (n_1+1) H_{n_1+1,n_2-1}(u,t) + (n_2+1) \mu_2 r_1 q H_{n_1-1,n_2+1}(u,t). \end{split}$$

Просуммируем по n_1 и n_2

$$\begin{split} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} &= -\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} H_{n_1,n_2}(u,t) + j\sigma \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \overline{E}_{n_1+n_2}^{N} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} - \\ &- \mu_1 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) - \mu_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) + \\ &+ \mu_1 r_1 q \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \\ &+ \mu_2 r_1 (1-q) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) + \\ &+ \lambda e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} H_{n_1,n_2}(u,t) + \\ &+ \lambda q \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} H_{n_1,n_2}(u,t) + \\ &+ \lambda (1-q) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} H_{n_1,n_2-1}(u,t) u - \\ &- j\sigma (1-q) e^{-ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2-1}(u,t) u - \\ &- j\sigma (1-q) e^{-ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2-1}(u,t) + \\ &+ \mu_1 r_0 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} (n_1+1) H_{n_1+1,n_2}(u,t) + \\ &+ \mu_2 r_0 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} (n_2+1) H_{n_1,n_2+1}(u,t) + \\ &+ \mu_2 r_0 e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} (n_2+1) H_{n_1,n_2+1}(u,t) + \\ &+ \mu_2 r_1 q \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} (n_2+1) H_{n_1,n_2+1}(u,t). \end{split}$$

Преобразуем

$$\begin{split} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} &= -\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} H_{n_1,n_2}(u,t) + +j\sigma \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} - \\ &- \mu_1(r_0+r_2) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \\ &- \mu_2(r_0+r_2) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) + \\ &+ \lambda e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} H_{n_1,n_2}(u,t) + \\ &+ \lambda q \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} H_{n_1,n_2}(u,t) - j\sigma q e^{-ju} \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ &+ \lambda (1-q) \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} H_{n_1,n_2}(u,t) - \\ &- j\sigma (1-q) e^{-ju} \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ &+ \mu_1 r_0 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \mu_1 r_2 e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \\ &+ \mu_2 r_0 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) + \mu_2 r_2 e^{ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t). \end{split}$$

Приведем подобные слагаемые

$$\begin{split} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} = & \lambda(e^{ju}-1) \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} H_{n_1,n_2}(u,t) - \\ & - j \sigma q(e^{-ju}-1) \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} - \\ & - j \sigma (1-q)(e^{-ju}-1) \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ & + \mu_1 r_2(e^{ju}-1) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \\ & + \mu_2 r_2(e^{ju}-1) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t), \end{split}$$

$$\sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} = \lambda (e^{ju} - 1) \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} H_{n_1,n_2}(u,t) -$$

$$- j\sigma(e^{-ju} - 1) \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} +$$

$$+ \mu_1 r_2(e^{ju} - 1) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) +$$

$$+ \mu_2 r_2(e^{ju} - 1) \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t).$$

Вынесем $(e^{ju}-1)$

$$\begin{split} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} = & (e^{ju}-1) \bigg\{ \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} H_{n_1,n_2}(u,t) + \\ & + j\sigma e^{-ju} \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ & + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) \bigg\}. \end{split}$$

Получим уравнения

$$\begin{split} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} &= -(\lambda + \mu_1 n_1 + \mu_2 n_2) H_{n_1,n_2}(u,t) + j \sigma \overline{E}_{n_1+n_2}^N \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ &+ \mu_1 r_1 q n_1 H_{n_1,n_2}(u,t) + \mu_2 r_1 (1-q) n_2 H_{n_1,n_2}(u,t) + \\ &+ \lambda e^{ju} E_{n_1+n_2}^N H_{n_1,n_2}(u,t) + \\ &+ \lambda q H_{n_1-1,n_2}(u,t) - j \sigma q e^{-ju} \frac{\partial H_{n_1-1,n_2}(u,t)}{\partial u} + \\ &+ \lambda (1-q) H_{n_1,n_2-1}(u,t) - j \sigma (1-q) e^{-ju} \frac{\mathrm{d} H_{n_1,n_2-1}(u,t)}{\mathrm{d} u} + \\ &+ \mu_1 r_0 (n_1+1) H_{n_1+1,n_2}(u,t) + \mu_1 r_2 e^{ju} (n_1+1) H_{n_1+1,n_2}(u,t) + \\ &+ \mu_2 r_0 (n_2+1) H_{n_1,n_2+1}(u,t) + \mu_2 r_2 e^{ju} (n_2+1) H_{n_1,n_2+1}(u,t) + \\ &+ \mu_1 r_1 (1-q) (n_1+1) H_{n_1+1,n_2-1}(u,t) + \\ &+ (n_2+1) \mu_2 r_1 q H_{n_1-1,n_2+1}(u,t), \end{split}$$

$$\sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial t} = (e^{ju}-1) \left\{ \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} H_{n_1,n_2}(u,t) + \\ &+ j \sigma e^{-ju} \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} \frac{\partial H_{n_1,n_2}(u,t)}{\partial u} + \\ &+ \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}(u,t) + \\ &+ \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 H_{n_1,n_2}(u,t) \right\}. \end{split}$$

3 ПЕРВЫЙ ЭТАП АСИМТОТИЧЕСКОГО АНАЛИЗА

Будем решать систему уравнений (1) и уравнение (2) методом асимптотического анализа. Сделаем замены

$$\sigma = \varepsilon, \tau = t\varepsilon, u = \varepsilon w, H_{n_1, n_2}(u, t) = F_{n_1, n_2}(w, \tau, \varepsilon).$$

Тогда мы можем переписать систему уравнений (1) и уравнение (2)

$$\begin{split} \varepsilon \frac{\partial F_{n_{1},n_{2}}(w,\tau,\varepsilon)}{\partial \tau} &= -(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2})F_{n_{1},n_{2}}(w,\tau,\varepsilon) + j\overline{E}_{n_{1}+n_{2}}^{N} \frac{\partial F_{n_{1},n_{2}}(w,\tau,\varepsilon)}{\partial w} + \\ &+ \mu_{1}r_{1}qn_{1}F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \mu_{2}r_{1}(1-q)n_{2}F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \\ &+ \lambda e^{j\varepsilon w}E_{n_{1}+n_{2}}^{N}F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \lambda qF_{n_{1}-1,n_{2}}(w,\tau,\varepsilon) - \\ &- jqe^{-j\varepsilon w}\frac{\partial F_{n_{1}-1,n_{2}}(w,\tau,\varepsilon)}{\partial w} + \lambda(1-q)F_{n_{1},n_{2}-1}(w,\tau,\varepsilon) - \\ &- j(1-q)e^{-j\varepsilon w}\frac{\mathrm{d}F_{n_{1},n_{2}-1}(w,\tau,\varepsilon)}{\mathrm{d}w} + \mu_{1}r_{0}(n_{1}+1)F_{n_{1}+1,n_{2}}(w,\tau,\varepsilon) + \\ &+ \mu_{1}r_{2}e^{j\varepsilon w}(n_{1}+1)F_{n_{1}+1,n_{2}}(w,\tau,\varepsilon) + \mu_{2}r_{0}(n_{2}+1)F_{n_{1},n_{2}+1}(w,\tau,\varepsilon) + \\ &+ \mu_{2}r_{2}(n_{2}+1)e^{j\varepsilon w}F_{n_{1},n_{2}+1}(w,\tau,\varepsilon) + \\ &+ \mu_{2}r_{1}(1-q)(n_{1}+1)F_{n_{1}+1,n_{2}-1}(w,\tau,\varepsilon) + \\ &+ \mu_{2}r_{1}q(n_{2}+1)F_{n_{1}-1,n_{2}+1}(w,\tau,\varepsilon), \\ \varepsilon \sum_{n_{1}=0}^{N}\sum_{n_{2}=0}^{N-n_{1}}\frac{\partial F_{n_{1},n_{2}}(w,\tau,\varepsilon)}{\partial \tau} = (e^{j\varepsilon w}-1)\bigg\{\lambda\sum_{n_{1}=0}^{N}\sum_{n_{2}=N-n_{1}}^{N-n_{1}}F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \\ &+ je^{-j\varepsilon w}\sum_{n_{1}=0}^{N-1}\sum_{n_{2}=0}^{N-1}\frac{\partial F_{n_{1},n_{2}}(w,\tau,\varepsilon)}{\partial w} + \\ &+ \mu_{1}r_{2}\sum_{n_{1}=0}^{N}\sum_{n_{2}=0}^{N-n_{1}}n_{1}F_{n_{1},n_{2}}(w,\tau,\varepsilon) + \mu_{2}r_{2}\sum_{n_{1}=0}^{N-n_{1}}\sum_{n_{2}=0}^{N-n_{1}}n_{2}F_{n_{1},n_{2}}(w,\tau,\varepsilon)\bigg\}. \end{split}$$

При условии, что $\varepsilon \to 0$, можно доказать следующее утверждение.

Теорема 2.1. Компоненты $R_{n_1,n_2}(x)$ распределения вероятностей числа приборов, занятых на первой и второй фазе имеет вид

$$R_{n_1,n_2}(x) = \frac{L_{n_1,n_2}(x)}{c(x)},\tag{4}$$

где

$$L_{n_1,n_2}(x) = (\mu_1 \mu_2 (1 - r_1))^{N - (n_1 + n_2)} \frac{N!}{(n_1 + n_2)!} C_{n_1 + n_2}^{n_2} (\mu_1 (1 - q))^{n_2} (\mu_2 q)^{n_1} (\lambda + x)^{n_1 + n_2},$$

$$c(x) = \sum_{n_1 = 0}^{N} \sum_{n_2 = 0}^{N - n_1} L_{n_1,n_2}.$$

$$x = x(\tau); x'(\tau) = a(x) = \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} R_{n_1,n_2} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} R_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 R_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 R_{n_1,n_2}.$$

Доказательство. Рассмотрим первое уравнение системы (3) в пределе $\varepsilon \to 0$, обозначим

$$\lim_{\varepsilon \to 0} F_{n_1, n_2}(w, \tau, \varepsilon) = F_{n_1, n_2}(w, \tau)$$

и получим

$$-(\lambda + n_{1}\mu_{1} + n_{2}\mu_{2})F_{n_{1},n_{2}}(w,\tau) + j\overline{E}_{n_{1}+n_{2}}^{N} \frac{\partial F_{n_{1},n_{2}}((w,\tau)}{\partial w} + \mu_{1}r_{1}qn_{1}F_{n_{1},n_{2}}(w,\tau) + \mu_{2}r_{1}(1-q)n_{2}F_{n_{1},n_{2}}(w,\tau) + \mu_{2}E_{n_{1}+n_{2}}^{N}F_{n_{1},n_{2}}(w,\tau) + \lambda qF_{n_{1}-1,n_{2}}(w,\tau) - iq\frac{\partial F_{n_{1}-1,n_{2}}(w,\tau)}{\partial w} + \lambda(1-q)F_{n_{1},n_{2}-1}(w,\tau) - iq\frac{\partial F_{n_{1},n_{2}-1}(u,t)}{\partial w} + \mu_{1}r_{0}(n_{1}+1)F_{n_{1}+1,n_{2}}(w,\tau) + iq\frac{\partial F_{n_{1},n_{2}-1}(w,\tau)}{\partial w} + \mu_{2}r_{0}(n_{2}+1)F_{n_{1},n_{2}+1}(w,\tau) + iq\frac{\partial F_{n_{1},n_{2}-1}(w,\tau)}{\partial w} + \mu_{2}r_{1}q(n_{2}+1)F_{n_{1},n_{2}+1}(w,\tau) + iq\frac{\partial F_{n_{1},n_{2}}(w,\tau)}{\partial w} + iq\frac{\partial F_{n_{1},n_{2}}(w,\tau)}{\partial w} + iq\frac{\partial F_{n_{1},n_{2}}(w,\tau)}{\partial w} + iq\frac{\partial F_{n_{1},n_{2}-1}(w,\tau)}{\partial w} + iq\frac{\partial F_{n_{1},n_{2}-1}(w,\tau)}{\partial w} + iq\frac{\partial F_{n_{1},n_{2}}(w,\tau)}{\partial w} + iq\frac{\partial F_{n_{1},n_{2}}(w,\tau$$

Находим решение уравнения (5) в виде $F_{n_1,n_2}(w,\tau)=L_{n_1,n_2}e^{jwx(\tau)}.$ Получим следующую систему

$$-(\lambda + \mu_{1}n_{1} + n_{2}\mu_{2})L_{n_{1},n_{2}} - x(\tau)\overline{E}_{n_{1}+n_{2}}^{N}L_{n_{1},n_{2}} +$$

$$+ \mu_{1}r_{1}qn_{1}L_{n_{1},n_{2}} + \mu_{2}r_{1}(1-q)n_{2}L_{n_{1},n_{2}} +$$

$$+ \lambda E_{n_{1}+n_{2}}^{N}L_{n_{1},n_{2}} + \lambda qL_{n_{1}-1,n_{2}} +$$

$$+ x(\tau)qL_{n_{1}-1,n_{2}} + \lambda(1-q)L_{n_{1},n_{2}-1} +$$

$$+ x(\tau)(1-q)L_{n_{1},n_{2}-1} + \mu_{1}r_{0}(n_{1}+1)L_{n_{1}+1,n_{2}} +$$

$$+ \mu_{1}r_{2}(n_{1}+1)L_{n_{1}+1,n_{2}} + \mu_{2}r_{0}(n_{2}+1)L_{n_{1},n_{2}+1} +$$

$$+ \mu_{2}r_{2}(n_{2}+1)L_{n_{1},n_{2}+1} +$$

$$+ \mu_{1}r_{1}(1-q)(n_{1}+1)L_{n_{1}+1,n_{2}-1} +$$

$$+ \mu_{2}r_{1}q(n_{2}+1)L_{n_{1}-1,n_{2}+1} = 0,$$

ИЛИ

$$L_{n_{1},n_{2}}\left\{-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) - x(\tau)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1-q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N}\right\} + L_{n_{1}-1,n_{2}}\left\{\lambda q + x(\tau)q\right\} + L_{n_{1},n_{2}-1}\left\{\lambda (1-q) + x(\tau)(1-q)\right\} + L_{n_{1},n_{2}-1}\left\{\mu_{1}r_{0}(n_{1}+1) + \mu_{1}r_{2}(n_{1}+1)\right\} + L_{n_{1}+1,n_{2}}\left\{\mu_{2}r_{0}(n_{2}+1) + \mu_{2}r_{2}(n_{2}+1)\right\} + L_{n_{1}+1,n_{2}-1}\mu_{1}r_{1}(1-q)(n_{1}+1) + L_{n_{1}-1,n_{2}+1}\mu_{2}r_{1}q(n_{2}+1) = 0.$$
(6)

Чтобы доказать утверждение (4) воспользуемся языком программирования Python и символьным исчислением библиотеки SymPy [21], реализация данной части доказательства выложена в открытый доступ [15]. Однако, чтобы сделать это, нужно избавится от индикаторов, поэтому рассмотрим частные случаи.

 $n_1 = 0, n_2 = 0$:

$$L_{0,0}\{-\lambda - x(\tau)\} + L_{1,0}\{\mu_1 r_0 + \mu_1 r_2\} + L_{0,1}\{\mu_2 r_0 + \mu_2 r_2\} = 0.$$
(7)

 $n_1 = 0, n_2 > 0, n_1 + n_2 < N$:

$$L_{0,n_2}\{-(\lambda + \mu_2 n_2) - x(\tau) + \mu_2 r_1 (1 - q) n_2\} +$$

$$+ L_{0,n_2-1}\{\lambda (1 - q) + x(\tau) (1 - q)\} +$$

$$+ L_{1,n_2}\{\mu_1 r_0 + \mu_1 r_2\} +$$

$$+ L_{0,n_2+1}\{\mu_2 r_0 (n_2 + 1) + \mu_2 r_2 (n_2 + 1)\} +$$

$$+ L_{1,n_2-1}\mu_1 r_1 (1 - q) = 0.$$
(8)

 $n_1 > 0, n_2 = 0, n_1 + n_2 < N$:

$$L_{n_{1},0}\{-(\lambda + \mu_{1}n_{1}) - x(\tau) + \mu_{1}r_{1}qn_{1}\} +$$

$$+ L_{n_{1}-1,0}\{\lambda q + x(\tau)q\} +$$

$$+ L_{n_{1}+1,0}\{\mu_{1}r_{0}(n_{1}+1) + \mu_{1}r_{2}(n_{1}+1)\} +$$

$$+ L_{n_{1},1}\{\mu_{2}r_{0} + \mu_{2}r_{2}(n_{2}+1)\} +$$

$$+ L_{n_{1}-1,n_{2}+1}\mu_{2}r_{1}q(n_{2}+1) = 0.$$
(9)

 $n_1 > 0, n_2 > 0, n_1 + n_2 < N$:

$$L_{n_{1},n_{2}}\left\{-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) - x(\tau) + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1 - q)n_{2}\right\} +$$

$$+ L_{n_{1}-1,n_{2}}\left\{\lambda q + x(\tau)q\right\} +$$

$$+ L_{n_{1},n_{2}-1}\left\{\lambda(1 - q) + x(\tau)(1 - q)\right\} +$$

$$+ L_{n_{1}+1,n_{2}}\left\{\mu_{1}r_{0}(n_{1} + 1) + \mu_{1}r_{2}(n_{1} + 1)\right\} +$$

$$+ L_{n_{1},n_{2}+1}\left\{\mu_{2}r_{0}(n_{2} + 1) + \mu_{2}r_{2}(n_{2} + 1)\right\} +$$

$$+ L_{n_{1}+1,n_{2}-1}\mu_{1}r_{1}(1 - q)(n_{1} + 1) +$$

$$+ L_{n_{1}-1,n_{2}+1}\mu_{2}r_{1}q(n_{2} + 1) = 0.$$
(10)

 $n_1 = 0, n_2 = N$:

$$L_{0,N}\{-(\lambda + N\mu_2) + N\mu_2 r_1(1-q) + \lambda\} +$$

$$+ L_{0,N-1}\{\lambda(1-q) + x(\tau)(1-q)\} +$$

$$+ L_{1,N-1}\mu_1 r_1(1-q) = 0.$$
(11)

 $n_1 = N, n_2 = 0$:

$$L_{N,0}\{-N\mu_1 + N\mu_2 r_1 q\} + L_{N-1,0}\{\lambda q + x(\tau)q\} + L_{N-1,1}\mu_2 r_1 q = 0.$$
(12)

 $n_1 + n_2 = N, n_1 \neq N, n_2 \neq N$:

$$L_{n_{1},n_{2}}\left\{-(\mu_{1}n_{1} + \mu_{2}n_{2}) + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1-q)n_{2}\right\} + L_{n_{1}-1,n_{2}}\left\{\lambda q + x(\tau)q\right\} + L_{n_{1},n_{2}-1}\left\{\lambda(1-q) + x(\tau)(1-q)\right\} + L_{n_{1},n_{2}-1}(n_{1}+1)\mu_{1}r_{1}(1-q) + L_{n_{1}-1,n_{2}+1}\mu_{2}r_{1}q(n_{2}+1) = 0.$$

$$(13)$$

Подставляя (4) в предложенные равенства, получим тождество. Следовательно (4) яв-

ляется решением. Заметим, что

$$\sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} R_{n_1,n_2} = 1.$$

Для этого разделим полученное решение на сумму всех L_{n_1,n_2}

$$c = \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} L_{n_1,n_2}.$$

Получим

$$R_{n_1, n_2} = \frac{L_{n_1, n_2}}{c}.$$

Найдем $x = x(\tau)$. Рассмотрим второе уравнение (3) в пределе $\varepsilon \to 0$.

$$\begin{split} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \frac{\partial F_{n_1,n_2}(w,\tau)}{\partial \tau} = & jw \bigg\{ \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} F_{n_1,n_2}(w,\tau,\varepsilon) + \\ & s + j \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial F_{n_1,n_2}(w,\tau)}{\partial w} + \\ & + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 F_{n_1,n_2}(w,\tau) + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 F_{n_1,n_2}(w,\tau) \bigg\}. \end{split}$$

Выполним замену $F_{n_1,n_2}(w, au) = R_{n_1,n_2}e^{jwx(au)}$, тогда

$$x'(\tau) = \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} R_{n_1,n_2} - x(\tau) \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} R_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 R_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 R_{n_1,n_2}.$$

Обозначим через

$$x'(\tau) = a(x) = \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} R_{n_1,n_2} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} R_{n_1,n_2} +$$

$$+ \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 R_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 R_{n_1,n_2}.$$

$$(14)$$

Теорема доказана.

4 ВТОРОЙ ЭТАП АСИМТОТИЧЕСКОГО АНАЛИЗА

В системе уравнений (1) и уравнение (2) сделаем замену

$$H_{n_1,n_2}(u,t) = e^{j\frac{u}{\sigma}x(\sigma t)}H_{n_1,n_2}^{(1)}(u,t),$$

получим систему

$$\begin{split} &\frac{\partial H_{n_1,n_2}^{(1)}(cu,t)}{\partial t} + jux'(\sigma t)H_{n_1,n_2}^{(1)}(u,t) = -(\lambda + \mu_1 n_1 + \mu_2 n_2)H_{n_1,n_2}^{(1)}(u,t) + \\ &+ j\sigma \overline{E}_{n_1+n_2}^{N} \frac{\partial H_{n_1,n_2}^{(1)}(u,t)}{\partial u} - x(\sigma t)\overline{E}_{n_1+n_2}^{N}H_{n_1,n_2}^{(1)} + \\ &+ \mu_1 r_1 q n_1 H_{n_1,n_2}^{(1)}(u,t) + \mu_2 r_1(1-q) n_2 H_{n_1,n_2}^{(1)}(u,t) + \\ &+ \lambda e^{ju} E_{n_1+n_2}^{N}H_{n_1,n_2}^{(1)}(u,t) + \\ &+ \lambda q H_{n_1-1,n_2}^{(1)}(u,t) - j\sigma q e^{-ju} \frac{\partial H_{n_1-1,n_2}^{(1)}(u,t)}{\partial u} + \\ &+ q e^{-ju} x(\sigma t)H_{n_1,n_2-1}^{(1)}(u,t) - j\sigma (1-q) e^{-ju} \frac{d H_{n_1,n_2-1}^{(1)}(u,t)}{du} + \\ &+ (1-q)e^{-ju} x(\sigma t)H_{n_1,n_2-1}^{(1)}(u,t) + j\sigma (1-q)e^{-ju} \frac{d H_{n_1,n_2-1}^{(1)}(u,t)}{du} + \\ &+ \mu_1 r_2 e^{ju} (n_1+1)H_{n_1+1,n_2}^{(1)}(u,t) + \\ &+ \mu_2 r_2 e^{ju} (n_1+1)H_{n_1+1,n_2}^{(1)}(u,t) + \\ &+ \mu_2 r_2 e^{ju} (n_2+1)H_{n_1,n_2+1}(u,t) + \\ &+ \mu_2 r_2 e^{ju} (n_2+1)H_{n_1,n_2+1}(u,t), \\ \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-1} \left\{ \frac{\partial H_{n_1,n_2}^{(1)}(u,t)}{\partial t} + jux'(\sigma t)H_{n_1,n_2}^{(1)}(u,t) \right\} = \\ &= (e^{ju}-1) \left\{ \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} H_{n_1,n_2}^{(1)}(u,t) + \\ &+ e^{-ju} \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1} \left[j\sigma \frac{\partial H_{n_1,n_2}^{(1)}(u,t)}{\partial u} - \\ &- x(\sigma t)H_{n_1,n_2}^{(1)}(u,t) \right] + \\ &+ \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}^{(1)}(u,t) + \\ &+ \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}^{(1)}(u,t) + \\ &+ \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}^{(1)}(u,t) \right\}. \end{split}$$

С учетом (14) перепишем систему (15)

$$\begin{split} &\frac{\partial H_{n_1,n_2}^{(1)}(u,t)}{\partial t} + jua(x)H_{n_1,n_2}^{(1)}(u,t) = -(\lambda + \mu_1 n_1 + \mu_2 n_2)H_{n_1,n_2}^{(1)}(u,t) + \\ &+ j\sigma \overline{E}_{n_1+n_2}^N \frac{\partial H_{n_1,n_2}^{(1)}(u,t)}{\partial u} - x \overline{E}_{n_1+n_2}^N H_{n_1,n_2}^{(1)} + \\ &+ \mu_1 r_1 q n_1 H_{n_1,n_2}^{(1)}(u,t) + \mu_2 r_1(1-q) n_2 H_{n_1,n_2}^{(1)}(u,t) + \\ &+ \lambda e^{ju} E_{n_1+n_2}^N H_{n_1,n_2}^{(1)}(u,t) + \\ &+ \lambda q H_{n_1-1,n_2}^{(1)}(u,t) - j\sigma q e^{-ju} \frac{\partial H_{n_1-1,n_2}^{(1)}(u,t)}{\partial u} + \\ &+ q e^{-ju} x H_{n_1-1,n_2}^{(1)}(u,t) + j\sigma (1-q) e^{-ju} \frac{d H_{n_1,n_2-1}^{(1)}(u,t)}{du} + \\ &+ (1-q) H_{n_1,n_2-1}^{(1)}(u,t) - j\sigma (1-q) e^{-ju} \frac{d H_{n_1,n_2-1}^{(1)}(u,t)}{du} + \\ &+ (1-q) e^{-ju} x H_{n_1,n_2-1}^{(1)}(u,t) + \\ &+ \mu_1 r_0(n_1+1) H_{n_1+1,n_2}^{(1)}(u,t) + \\ &+ \mu_1 r_2 e^{ju}(n_1+1) H_{n_1+1,n_2}^{(1)}(u,t) + \\ &+ \mu_2 r_2 e^{ju}(n_2+1) H_{n_1,n_2+1}(u,t) + \\ &+ \mu_2 r_2 e^{ju}(n_2+1) H_{n_1,n_2+1}(u,t) + \\ &+ (n_2+1) \mu_2 r_1 q H_{n_1-1,n_2+1}^{(1)}(u,t) + \\ &+ (n_2+1) \mu_2 r_1 q H_{n_1-1,n_2+1}^{(1)}(u,t) + \\ &+ (n_2+1) \mu_2 r_1 q H_{n_1-1,n_2+1}^{(1)}(u,t) + \\ &+ e^{-ju} \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \left[\sigma_j \frac{\partial H_{n_1,n_2}^{(1)}(u,t)}{\partial u} - x H_{n_1,n_2}^{(1)}(u,t) \right] + \\ &+ \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}^{(1)}(u,t) + \\ &+ \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 H_{n_1,n_2}^{(1)}(u,t) \right\}. \end{split}$$

Обозначив $\sigma = \varepsilon^2$ и сделав следующие замены в (16)

$$\tau = t\varepsilon^2, u = \varepsilon w, H_{n_1, n_2}^{(1)}(u1, t) = F_{n_1, n_2}^{(1)}(w, \tau, \varepsilon),$$

можем написать

$$\begin{split} &\varepsilon^2 \frac{\partial F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon)}{\partial t} + j\varepsilon w a F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) = -(\lambda + \mu_1 n_1 + \mu_2 n_2) F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) + \\ &+ j\varepsilon \overline{E}_{n_1+n_2}^N \frac{\partial F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon)}{\partial w} - x \overline{E}_{n_1+n_2}^N F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) + \\ &+ \mu_1 r_1 q n_1 F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) + \mu_2 r_1 (1-q) n_2 F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) + \\ &+ \lambda e^{j\varepsilon w} E_{n_1+n_2}^N F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) + \\ &+ \lambda q F_{n_1-1,n_2}^{(1)}(w,\tau,\varepsilon) - j\varepsilon q e^{-j\varepsilon w} \frac{\partial F_{n_1-1,n_2}^{(1)}(w,\tau,\varepsilon)}{\partial w} + \\ &+ q e^{-ju} x F_{n_1-1,n_2}^{(1)}(w,\tau,\varepsilon) + \\ &+ \lambda (1-q) F_{n_1,n_2-1}^{(1)}(w,\tau,\varepsilon) + \\ &+ (1-q) e^{-j\varepsilon w} x F_{n_1,n_2-1}^{(1)}(w,\tau,\varepsilon) + \\ &+ \mu_1 r_0 (n_1+1) F_{n_1+1,n_2}^{(1)}(w,\tau,\varepsilon) + \\ &+ \mu_1 r_2 e^{j\varepsilon w} (n_1+1) F_{n_1+1,n_2}^{(1)}(w,\tau,\varepsilon) + \\ &+ \mu_2 r_0 (n_2+1) F_{n_1,n_2+1}^{(1)}(w,\tau,\varepsilon) + \\ &+ \mu_2 r_2 e^{j\varepsilon w} (n_2+1) F_{n_1,n_2+1}^{(1)}(w,\tau,\varepsilon) + \\ &+ \mu_1 r_1 (1-q) (n_1+1) F_{n_1+1,n_2-1}^{(1)}(w,\tau,\varepsilon) + \\ &+ (n_2+1) \mu_2 r_1 q F_{n_1-1,n_2+1}^{(1)}(w,\tau,\varepsilon) + \\ &+ (n_2+1) \mu_2 r_1 q F_{n_1-1,n_2+1}^{(1)}(w,\tau,\varepsilon) + \\ &+ e^{-j\varepsilon w} \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1} \left[j\varepsilon \frac{\partial F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon)}{\partial u} - x F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) \right] \\ &+ \mu_1 r_2 \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1} \left[n_2 F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) + \\ &+ \mu_2 r_2 \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1} \left[n_2 F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) + \\ &+ \mu_2 r_2 \sum_{n_1=0}^{N-N-n_1} \sum_{n_2=0}^{N-n_1} n_2 F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) + \\ &+ \mu_2 r_2 \sum_{n_1=0}^{N-N-n_1} \sum_{n_2=0}^{N-n_1} n_2 F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) \right\}. \end{aligned}$$

Перепишем первое уранение (17) с учетом разложения

$$e^{j\varepsilon w} = 1 + (j\varepsilon w) + O(\varepsilon^2),$$
 (18)

$$j\varepsilon waF_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) = -\left(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}\right)F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + j\varepsilon\overline{E}_{n_{1}+n_{2}}^{N}\frac{\partial F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon)}{\partial w} - x\overline{E}_{n_{1}+n_{2}}^{N}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{1}qn_{1}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \mu_{2}r_{1}(1-q)n_{2}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + \lambda E_{n_{1}+n_{2}}^{N}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + j\varepsilon w\lambda E_{n_{1}+n_{2}}^{N}F_{n_{1},n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + \lambda qF_{n_{1}-n_{2}}^{(1)}(w,\tau,\varepsilon) - \varepsilon q\frac{\partial F_{n_{1}-n_{2}}^{(1)}(w,\tau,\varepsilon)}{\partial w} + \\ + qxF_{n_{1}-n_{2}}^{(1)}(w,\tau,\varepsilon) - j\varepsilon wqxF_{n_{1}-n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + \lambda (1-q)F_{n_{1},n_{2}-1}^{(1)}(w,\tau,\varepsilon) - j\varepsilon (1-q)\frac{dF_{n_{1},n_{2}-1}^{(1)}(w,\tau,\varepsilon)}{dw} + \\ + (1-q)xF_{n_{1},n_{2}-1}^{(1)}(w,\tau,\varepsilon) - j\varepsilon w(1-q)xF_{n_{1},n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{0}(n_{1}+1)F_{n_{1}+n_{2}}^{(1)}(w,\tau,\varepsilon) + j\varepsilon w\mu_{1}r_{2}(n_{1}+1)F_{n_{1}+1,n_{2}}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{2}r_{0}(n_{2}+1)F_{n_{1},n_{2}+1}^{(1)}(w,\tau,\varepsilon) + j\varepsilon w\mu_{2}r_{2}(n_{2}+1)F_{n_{1},n_{2}+1}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{1}(1-q)(n_{1}+1)F_{n_{1}+n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{1}(1-q)(n_{1}+1)F_{n_{1}+n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{1}(1-q)(n_{1}+1)F_{n_{1}+n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\ + \mu_{1}r_{1}(1-q)(n_{1}+1)F_{n_{1}+n_{2}-1}^{(1)}(w,\tau,\varepsilon) + \\ + (n_{2}+1)\mu_{2}r_{1}qF_{n_{1}-1,n_{2}+1}^{(1)}(w,\tau,\varepsilon).$$
(19)

Решение задачи (19) можно записать в виде разложения

$$F_{n_1,n_2}^{(1)}(w,\tau,\varepsilon) = \Phi(w,\tau)\{R_{n_1,n_2} + j\varepsilon w f_{n_1,n_2}\} + O(\varepsilon^2), \tag{20}$$

где $\Phi(w,\tau)$ – скалярная функция, форма которой определена ниже.

Получим

$$j\varepsilon wa\Phi(w,\tau)\{R_{n_{1},n_{2}}+j\varepsilon wf_{n_{1},n_{2}}\}=\Phi(w,\tau)\{\{R_{n_{1},n_{2}}+j\varepsilon wf_{n_{1},n_{2}}\}\{-(\lambda+\mu_{1}n_{1}+\mu_{2}n_{2})-x\overline{E}_{n_{1}+n_{2}}^{N}+\mu_{1}r_{1}qn_{1}+\mu_{2}r_{1}(1-q)n_{2}+\lambda E_{n_{1}+n_{2}}^{N}+j\varepsilon w\lambda E_{n_{1}+n_{2}}^{N}\}+\\+\{R_{n_{1}-1,n_{2}}+j\varepsilon wf_{n_{1}-1,n_{2}}\}\{\lambda q+qx-j\varepsilon wqx\}+\\+\{R_{n_{1},n_{2}-1}+j\varepsilon wf_{n_{1},n_{2}-1}\}\{\lambda (1-q)+(1-q)x-j\varepsilon w(1-q)x\}+\\+\{R_{n_{1}+1,n_{2}}+j\varepsilon wf_{n_{1}+1,n_{2}}\}\{\mu_{1}r_{0}(n_{1}+1)+\mu_{1}r_{2}(n_{1}+1)+j\varepsilon w\mu_{1}r_{2}(n_{1}+1)\}+\\+\{R_{n_{1},n_{2}+1}+j\varepsilon wf_{n_{1},n_{2}+1}\}\{\mu_{2}r_{0}(n_{2}+1)+\mu_{2}r_{2}(n_{2}+1)+j\varepsilon w\mu_{2}r_{2}(n_{2}+1)\}+\\+\{R_{n_{1}+1,n_{2}+1}+j\varepsilon wf_{n_{1}-1,n_{2}-1}\}\mu_{1}r_{1}(1-q)(n_{1}+1)+\\+\{R_{n_{1}-1,n_{2}+1}+j\varepsilon wf_{n_{1}-1,n_{2}+1}\}(n_{2}+1)\mu_{2}r_{1}q+\\+\frac{\partial\Phi(w,t)}{\partial w}\{j\varepsilon\overline{E}_{n_{1}+n_{2}}^{N}\{R_{n_{1},n_{2}}+j\varepsilon wf_{n_{1},n_{2}}\}-j\varepsilon q\{R_{n_{1}-1,n_{2}}+j\varepsilon wf_{n_{1}-1,n_{2}}\}-\\-j\varepsilon(1-q)\{R_{n_{1},n_{2}-1}+j\varepsilon wf_{n_{1},n_{2}-1}\}\}.$$

Тогда

$$\begin{split} j\varepsilon wa\Phi(w,\tau)R_{n_1,n_2} = &\Phi(w,\tau)\{\{R_{n_1,n_2}+j\varepsilon wf_{n_1,n_2}\}\{-(\lambda+\mu_1n_1+\mu_2n_2)+\\ &-x\overline{E}_{n_1+n_2}^N+\mu_1r_1qn_1+\mu_2r_1(1-q)n_2+\lambda E_{n_1+n_2}^N\}+\\ &+j\varepsilon w\lambda E_{n_1+n_2}^NR_{n_1,n_2}+\\ &+\{R_{n_1-1,n_2}+j\varepsilon wf_{n_1-1,n_2}\}\{\lambda q+qx\}-j\varepsilon wqxR_{n_1-1,n_2}+\\ &+\{R_{n_1,n_2-1}+j\varepsilon wf_{n_1,n_2-1}\}\{\lambda(1-q)+\\ &+(1-q)x\}-j\varepsilon w(1-q)xR_{n_1,n_2-1}+\\ &+\{R_{n_1+1,n_2}+j\varepsilon wf_{n_1+1,n_2}\}\{\mu_1r_0(n_1+1)+\\ &+\mu_1r_2(n_1+1)\}+j\varepsilon w\mu_1r_2(n_1+1)R_{n_1+1,n_2}+\\ &+\{R_{n_1,n_2+1}+j\varepsilon wf_{n_1,n_2+1}\}\{\mu_2r_0(n_2+1)+\\ &+\mu_2r_2(n_2+1)\}+j\varepsilon w\mu_2r_2(n_2+1)R_{n_1,n_2+1}+\\ &+\{R_{n_1+1,n_2+1}+j\varepsilon wf_{n_1-1,n_2-1}\}\mu_1r_1(1-q)(n_1+1)+\\ &+\{R_{n_1-1,n_2+1}+j\varepsilon wf_{n_1-1,n_2+1}\}(n_2+1)\mu_2r_1q\}+\\ &+\frac{\partial\Phi(w,t)}{\partial w}\{j\varepsilon\overline{E}_{n_1+n_2}^NR_{n_1,n_2}-j\varepsilon qR_{n_1-1,n_2}-j\varepsilon(1-q)R_{n_1,n_2-1}\}. \end{split}$$

С учетом (6) разделим последнее уравнение на $\Phi(w,\tau)j\varepsilon w$ и положим $\varepsilon\to 0$

$$\begin{split} aR_{n_1,n_2} = & f_{n_1,n_2} \{ -(\lambda + \mu_1 n_1 + \mu_2 n_2) + \\ & - x \overline{E}_{n_1+n_2}^N + \mu_1 r_1 q n_1 + \mu_2 r_1 (1-q) n_2 + \lambda E_{n_1+n_2}^N \} + E_{n_1+n_2}^N R_{n_1,n_2} + \\ & + f_{n_1-1,n_2} \{ \lambda q + q x \} - q x R_{n_1-1,n_2} + \\ & + f_{n_1,n_2-1} \{ \lambda (1-q) + \\ & + (1-q) x \} - (1-q) x R_{n_1,n_2-1} + \\ & + f_{n_1+1,n_2} \{ \mu_1 r_0 (n_1+1) + \\ & + \mu_1 r_2 (n_1+1) \} + \mu_1 r_2 (n_1+1) R_{n_1+1,n_2} + \\ & + f_{n_1,n_2+1} \{ \mu_2 r_0 (n_2+1) + \\ & + \mu_2 r_2 (n_2+1) \} + \mu_2 r_2 (n_2+1) R_{n_1,n_2+1} + \\ & + f_{n_1-1,n_2-1} \mu_1 r_1 (1-q) (n_1+1) + \\ & + f_{n_1-1,n_2+1} (n_2+1) \mu_2 r_1 q + \\ & + \frac{\partial \Phi(w,t) / \partial w}{w \Phi(w,t)} \{ \overline{E}_{n_1+n_2}^N R_{n_1,n_2} - q R_{n_1-1,n_2} - (1-q) R_{n_1,n_2-1} \}. \end{split}$$

Перепишем последнее уравнение

$$f_{n_{1},n_{2}}\left\{-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) - x\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1-q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N}\right\} + f_{n_{1}-1,n_{2}}\left\{\lambda q + qx\right\} + f_{n_{1},n_{2}-1}\left\{\lambda (1-q) + (1-q)x\right\} + f_{n_{1},n_{2}-1}\left\{\lambda (1-q) + (1-q)x\right\} + f_{n_{1}+1,n_{2}}\left\{\mu_{1}r_{0}(n_{1}+1) + \mu_{1}r_{2}(n_{1}+1)\right\} + f_{n_{1}-1,n_{2}+1}\left\{\mu_{2}r_{0}(n_{2}+1) + \mu_{2}r_{2}(n_{2}+1)\right\} + f_{n_{1}-1,n_{2}-1}\mu_{1}r_{1}(1-q)(n_{1}+1) + f_{n_{1}-1,n_{2}+1}(n_{2}+1)\mu_{2}r_{1}q = e^{-aR_{n_{1},n_{2}}} + E_{n_{1}+n_{2}}^{N}R_{n_{1},n_{2}} - qxR_{n_{1}-1,n_{2}} - (1-q)xR_{n_{1},n_{2}-1} + f_{n_{1}-1}(n_{1}+1)R_{n_{1}+1,n_{2}} + \mu_{2}r_{2}(n_{2}+1)R_{n_{1},n_{2}+1} + f_{n_{1}-1,n_{2}-1}\left\{E_{n_{1}+n_{2}}^{N}R_{n_{1},n_{2}} - qR_{n_{1}-1,n_{2}} - (1-q)R_{n_{1},n_{2}-1}\right\}.$$

$$(21)$$

Решение f_{n_1,n_2} можно записать в виде

$$f_{n_1,n_2} = R_{n_1,n_2} + g - \varphi \frac{\partial \Phi(w,t)/\partial w}{w\Phi(w,t)},\tag{22}$$

которое мы подставляем в (21) и получаем

$$\varphi_{n_{1},n_{2}}(-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1 - q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N} - x\overline{E}_{n_{1}+n_{2}}^{N}) + \\
+ \varphi_{n_{1}-1,n_{2}}(\lambda q\overline{E}_{n_{1}}^{0} + xq\overline{E}_{n_{1}}^{0}) + \varphi_{n_{1},n_{2}-1}(\lambda(1 - q)\overline{E}_{n_{2}}^{0} + x(1 - q)\overline{E}_{n_{2}}^{0}) + \\
+ \varphi_{n_{1}+1,n_{2}}(\mu_{1}r_{0}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{2}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) + \\
+ \varphi_{n_{1},n_{2}+1}(\mu_{2}r_{0}(n_{2} + 1)\overline{E}_{n+n_{2}}^{N} + \mu_{2}r_{2}(n_{2} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) + \\
+ \varphi_{n_{1}+1,n_{2}-1}(1 - q)\mu_{1}r_{1}(n_{1} + 1) + \varphi_{n_{1}-1,n_{2}+1}q\mu_{2}r_{1}(n_{2} + 1) = \\
= R_{n_{1},n_{2}}x\overline{E}_{n_{1}+n_{2}}^{N} - R_{n_{1}-1,n_{2}}xq\overline{E}_{n_{1}}^{0} - R_{n_{1},n_{2}-1}x(1 - q)\overline{E}_{n_{2}}^{0}, \\
g_{n_{1},n_{2}}(-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1 - q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N} - x\overline{E}_{n_{1}+n_{2}}^{N}) + \\
+ g_{n_{1}-1,n_{2}}(\lambda q\overline{E}_{n_{1}}^{0} + xq\overline{E}_{n_{1}}^{0}) + g_{n_{1},n_{2}-1}(\lambda(1 - q)\overline{E}_{n_{2}}^{0} + x(1 - q)\overline{E}_{n_{2}}^{0}) + \\
+ f_{n_{1}+1,n_{2}}(\mu_{1}r_{0}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{2}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) + \\
+ g_{n_{1},n_{2}+1}(\mu_{2}r_{0}(n_{2} + 1)\overline{E}_{n+n_{2}}^{N} + \mu_{2}r_{2}(n_{2} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) + \\
+ g_{n_{1}+1,n_{2}-1}(1 - q)\mu_{1}r_{1}(n_{1} + 1) + g_{n_{1}-1,n_{2}+1}q\mu_{2}r_{1}(n_{2} + 1) = \\
= R_{n_{1},n_{2}}a - \lambda R_{n_{1},n_{2}}E_{n_{1}+n_{2}}^{N} + xq\overline{E}_{n_{1}}^{N}R_{n_{1}-1,n_{2}} + x(1 - q)\overline{E}_{n_{2}}^{N}R_{n_{1},n_{2}-1} - \\
- \mu_{1}r_{2}(n_{1} + 1)R_{n_{1}+1,n_{2}}\overline{E}_{n_{1}+n_{2}}^{N} - \mu_{2}r_{2}(n_{2} + 1)R_{n_{1},n_{2}+1}\overline{E}_{n_{1}+n_{2}}^{N}.$$

Рассмотрим первое уравнение системы (6), дифференцируем его по x, получим урав-

нение

$$\frac{\partial R_{n_{1},n_{2}}}{\partial x} \left\{ -(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) - x(\tau)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1-q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N} \right\} + \\
+ \frac{\partial R_{n_{1}-1,n_{2}}}{\partial x} \left\{ \lambda q + x(\tau)q \right\} + \\
+ \frac{\partial R_{n_{1},n_{2}-1}}{\partial x} \left\{ \lambda (1-q) + x(\tau)(1-q) \right\} + \\
+ \frac{\partial R_{n_{1}+1,n_{2}}}{\partial x} \left\{ \mu_{1}r_{0}(n_{1}+1) + \mu_{1}r_{2}(n_{1}+1) \right\} + \\
+ \frac{\partial R_{n_{1},n_{2}+1}}{\partial x} \left\{ \mu_{2}r_{0}(n_{2}+1) + \mu_{2}r_{2}(n_{2}+1) \right\} + \\
+ \frac{\partial R_{n_{1}+1,n_{2}-1}}{\partial x} \mu_{1}r_{1}(1-q)(n_{1}+1) + \\
+ \frac{\partial R_{n_{1}-1,n_{2}+1}}{\partial x} \mu_{2}r_{1}q(n_{2}+1) - \\
- R_{n_{1},n_{2}}x\overline{E}_{n_{1}+n_{2}}^{N} + R_{n_{1}-1,n_{2}}xq\overline{E}_{n_{1}}^{0} + R_{n_{1},n_{2}-1}x(1-q)\overline{E}_{n_{2}}^{0} = 0.$$
(24)

Учитывая (24) и последнее уравнение для φ , запишем равенство

$$\varphi_{n_1,n_2} = \frac{\partial R_{n_1,n_2}}{\partial x},\tag{25}$$

где $\sum_{n_1=0}^{N}\sum_{n_2=0}^{N-n_1}\varphi_{n_1,n_2}=0$. В силу (23) g_{n_1,n_2} является частным решением системы (24). Следовательно, она удовлетворяет условию

$$\sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} g_{n_1,n_2} = 0.$$
 (26)

Тогда решение g_{n_1,n_2} системы (24), удовлетворяющее условию (26), определяется однозначно.

Теперь рассмотрим второе уравнение системы (17), в которую подставляем разложение (20)

$$\begin{split} &\varepsilon^{2} \frac{\partial \Phi(w,\tau)}{\partial \tau} + ja\varepsilon w \Phi(w,\tau) \bigg\{ 1 + j\varepsilon w \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} f_{n_{1},n_{2}} \bigg\} = \\ &= (j\varepsilon w + \frac{(j\varepsilon w)^{2}}{2}) \bigg[\lambda \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} \Phi(w,\tau) \{ R_{n_{1},n_{2}} + j\varepsilon w f_{n_{1},n_{2}} \} + \\ &+ \mu_{1} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{1} \Phi(w,\tau) \{ R_{n_{1},n_{2}} + j\varepsilon w f_{n_{1},n_{2}} \} + \\ &+ \mu_{2} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{2} \Phi(w,\tau) \{ R_{n_{1},n_{2}} + j\varepsilon w f_{n_{1},n_{2}} \} + \\ &+ j\varepsilon \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-n_{1}-1} \frac{\partial \Phi_{n_{1},n_{2}}}{\partial w} - (1 - j\varepsilon w) x \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-n_{1}-1} \Phi(w,\tau) \{ R_{n_{1},n_{2}} + j\varepsilon w f_{n_{1},n_{2}} \} \bigg]. \end{split}$$

Тогда с помощью уравнения (14)

$$\varepsilon^{2} \frac{\partial \Phi(w,\tau)}{\partial \tau} = (jw\varepsilon)^{2} \Phi(w,\tau) \left[\lambda \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} f_{n_{1},n_{2}} + \mu_{1} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{1} f_{n_{1},n_{2}} + \mu_{2} r_{2} \sum_{n_{1}=0}^{N-n_{1}} \sum_{n_{2}=0}^{N-n_{1}-1} n_{2} f_{n_{1},n_{2}} - x \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} f_{n_{1},n_{2}} + x \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-n_{1}-1} R_{n_{1},n_{2}} - a \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} f_{n_{1},n_{2}} \right] + \left(j\varepsilon w \right)^{2} \Phi(w,\tau) \left[\lambda \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} R_{n_{1},n_{2}} + \mu_{1} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{1} R_{n_{1},n_{2}} + \mu_{2} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{2} R_{n_{1},n_{2}} - x \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-n_{1}-1} R_{n_{1},n_{2}} \right] + (j\varepsilon)^{2} w \sum_{n_{1}=0}^{N-1} \sum_{n_{2}=0}^{N-1} R_{n_{1},n_{2}} \frac{\partial \Phi_{n_{1},n_{2}}}{\partial w},$$

получаем следующее уравнение,

$$\frac{\partial \Phi(w,\tau)/\partial \tau}{\Phi(w,\tau)} = \frac{(jw)^2}{2} \Phi(w,\tau) \left[2\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} f_{n_1,n_2} + 2\mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 f_{n_1,n_2} + 2\mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 f_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} f_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} f_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} f_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} R_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} f_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} R_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} f_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} R_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} f_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} R_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} f_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} R_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} f_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} R_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} f_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} R_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} f_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1} R_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_1=0}^{N-1} R_{n_1,n_2} -$$

в которое мы подставляем (22)

$$\frac{\partial \Phi(w,\tau)/\partial \tau}{\Phi(w,\tau)} = \frac{(jw)^2}{2} \Phi(w,\tau) \left[2\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} g_{n_1,n_2} + 2\mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 g_{n_1,n_2} + 2\mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 g_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} g_{n_1,n_2} + \frac{2m_1 \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2}}{2m_1 \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2}} \right] + w \frac{\partial \Phi(w,\tau)/\partial w}{\Phi(w,\tau)} \left[\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \varphi_{n_1,n_2} + \frac{2m_1 \sum_{n_1=0}^{N-n_1-1} \varphi_{n_1,n_2}}{2m_1 \sum_{n_1=0}^{N-n_1} \sum_{n_2=0}^{N-n_1} n_2 \varphi_{n_1,n_2}} \right] - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} \varphi_{n_1,n_2} - \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2} \right]. \tag{27}$$

Результатом второго этапа асимптотического анализа является b(x), определенная следующим образом

$$b(x) = 2\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} g_{n_1,n_2} + 2\mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 g_{n_1,n_2} + 2\mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 g_{n_1,n_2} - 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} g_{n_1,n_2} + 2x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2} + a.$$

5 МЕТОД АСИМТОТИЧЕСКО ДИФФУЗИОННОГО АНАЛИЗА

Построим аппроксимацию распределения вероятностей числа заявок на орбите методом асимптотически диффузионного анализа. Сформулируем и докажем следующую теорему.

Теорема 2.2. Предельное распределение вероятностей нормированного числа заявок на орбите в условии растущего времени задержки заявок на орбите имеет функцию плотности вероятности

$$\pi(z) = \frac{C}{b(z)} exp \left\{ \frac{2}{\sigma} \int_{0}^{z} \frac{a(x)}{b(x)} dx \right\},\tag{28}$$

где C – нормировочная константа,

$$a(x) = \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} R_{n_1,n_2} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} R_{n_1,n_2} + \frac{1}{N-1} \sum_{n_1=0}^{N-1-n_1} R_{n_1,n_2} + \frac{1}{N-1} \sum_{n_1=0}^{N-1-n_1} R_{n_1,n_2} + \frac{1}{N-1} \sum_{n_1=0}^{N-1-1-1} R_{n_1,n_2} + a,$$

 g_{n_1,n_2} определяется системой уравнений

$$g_{n_{1},n_{2}}(-(\lambda + \mu_{1}n_{1} + \mu_{2}n_{2}) + \mu_{1}r_{1}qn_{1} + \mu_{2}r_{1}(1 - q)n_{2} + \lambda E_{n_{1}+n_{2}}^{N} - x\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ g_{n_{1}-1,n_{2}}(\lambda q \overline{E}_{n_{1}}^{0} + xq \overline{E}_{n_{1}}^{0}) + g_{n_{1},n_{2}-1}(\lambda (1 - q)\overline{E}_{n_{2}}^{0} + x(1 - q)\overline{E}_{n_{2}}^{0}) +$$

$$+ g_{n_{1}+1,n_{2}}(\mu_{1}r_{0}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{1}r_{2}(n_{1} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ g_{n_{1},n_{2}+1}(\mu_{2}r_{0}(n_{2} + 1)\overline{E}_{n_{1}+n_{2}}^{N} + \mu_{2}r_{2}(n_{2} + 1)\overline{E}_{n_{1}+n_{2}}^{N}) +$$

$$+ g_{n_{1}+1,n_{2}-1}(1 - q)\mu_{1}r_{1}(n_{1} + 1) + g_{n_{1-1,n_{2}+1}}q\mu_{2}r_{1}(n_{2} + 1) =$$

$$= R_{n_{1},n_{2}}a - \lambda R_{n_{1},n_{2}} + xqE_{n_{1}}^{0}R_{n_{1}-1,n_{2}} + x(1 - q)\overline{E}_{n_{2}}^{0}R_{n_{1},n_{2}-1}$$

$$- \mu_{1}r_{2}(n_{1} + 1)R_{n_{1}+1,n_{2}}\overline{E}_{n_{1}+n_{2}}^{N} - \mu_{2}r_{2}(n_{2} + 1)R_{n_{1},n_{2}+1}\overline{E}_{n_{1}+n_{2}}^{N},$$

$$\sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} g_{n_{1},n_{2}} = 0.$$

Доказательство. Подставим b(x) в (27)

$$\frac{\partial \Phi(w,\tau)/\partial \tau}{\Phi(w,\tau)} = \frac{(jw)^2}{2} \Phi(w,\tau)b(x) - w \frac{\partial \Phi(w,\tau)/\partial w}{\Phi(w,\tau)} \left[\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \varphi_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 \varphi_{n_1,n_2} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 \varphi_{n_1,n_2} - \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} \varphi_{n_1,n_2} - \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2} \right].$$
(29)

Рассмотрим

$$\begin{split} &\lambda \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} \varphi_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 \varphi_{n_1,n_2} + \\ &+ \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 \varphi_{n_1,n_2} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} \varphi_{n_1,n_2} - \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-n_1-1} R_{n_1,n_2}. \end{split}$$

Подставим (25) в последнее выражение, получим

$$\lambda \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} \frac{\partial R_{n_{1},n_{2}}}{\partial x} + \mu_{1} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{1} \frac{\partial R_{n_{1},n_{2}}}{\partial x} + \mu_{2} r_{2} \sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} n_{2} \frac{\partial R_{n_{1},n_{2}}}{\partial x} - \sum_{n_{1}=0}^{N-n_{1}-1} \sum_{n_{2}=0}^{N-n_{1}-1} R_{n_{1},n_{2}}.$$

$$(30)$$

Рассмотрим функцию a(x), найдем ее производную по x, учитывая, что R_{n_1,n_2} , как решение зависит от x

$$a'(x) = \lambda \sum_{n_1=0}^{N} \sum_{n_2=N-n_1}^{N-n_1} \frac{\partial R_{n_1,n_2}}{\partial x} - x \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} \frac{\partial R_{n_1,n_2}}{\partial x} - \sum_{n_1=0}^{N-1} \sum_{n_2=0}^{N-1-n_1} R_{n_1,n_2} + \mu_1 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_1 \frac{\partial R_{n_1,n_2}}{\partial x} + \mu_2 r_2 \sum_{n_1=0}^{N} \sum_{n_2=0}^{N-n_1} n_2 \frac{\partial R_{n_1,n_2}}{\partial x}.$$

Тогда (29) перепишем в виде

$$\frac{\partial \Phi(w,\tau)}{\partial \tau} = a'(x)w\frac{\partial \Phi(w,\tau)}{\partial w} + \frac{(jw)^2}{2}b(x)\Phi(w,\tau) \tag{31}$$

Уравнение с это преобразование Фурье уравнения Фокера-Планка для плотности распределения вероятностей $P(y,\tau)$ значений центрированного и нормированного количества заявок

на орбите. Находя обратное преобразование Фурье от (31), получим

$$\frac{\partial P(y,\tau)}{\partial \tau} = -\frac{\partial}{\partial y} \{ a'(x)yP(y,\tau) \} + \frac{1}{2} \frac{\partial^2}{\partial y^2} \{ b(x)P(y,\tau) \}. \tag{32}$$

Следовательно $P(y,\tau)$ плотность распределения вероятностей диффузионного процесса [10], который обозначим $y(\tau)$ с коэффициентом переносом a(x) и коэффициентом диффузии b(x)

$$dy(\tau) = a'(x)yd\tau + \sqrt{b(x)}dw(\tau). \tag{33}$$

Рассмотрим стохастический процесс нормированного числа заявок на орбите

$$z(\tau) = x(\tau) + \varepsilon y(\tau), \tag{34}$$

где $\varepsilon=\sqrt{\sigma}$, исходя из (14), $dx(\tau)=a(x)d\tau$, следует

$$dz(\tau) = d(x(\tau) + \varepsilon y(\tau)) = (a(x) + \varepsilon y a'(x))d\tau + \varepsilon \sqrt{b(x)}dw(\tau). \tag{35}$$

Разложим a(z) в ряд

$$a(z) = a(x + \varepsilon y) = a(x) + \varepsilon y a'(x) + O(\varepsilon^{2}),$$

$$\varepsilon \sqrt{b(z)} = \varepsilon \sqrt{b(x + \varepsilon y)} = \varepsilon \sqrt{b(x) + O(\varepsilon)} = \sqrt{\sigma b(x)} + O(\varepsilon).$$

Перепишем уравнение (35) с точностью до $O(\varepsilon^2)$

$$dz(\tau) = a(z)d\tau + \sqrt{\sigma b(z)}dw(\tau). \tag{36}$$

Обозначим плотность распределения вероятностей для процесса z(au)

$$\pi(z,\tau) = \frac{\partial P\{z(\tau) < z\}}{\partial z}.$$

Так как $z(\tau)$ – это решение стохастического дифференциального уравнения (36), следовательно, процесс является диффузионным и для его плотности распределения вероятностей можем записать уравнение Фокера-Планка

$$\frac{\partial \pi(z,\tau)}{\partial \tau} = -\frac{\partial}{\partial z} \{a(z)\pi(z,\tau)\} + \frac{1}{2} \frac{\partial^2}{\partial z^2} \{\sigma b(z)\pi(z,\tau)\}. \tag{37}$$

Предполагая, что существует стационарный режим, обозначим

$$\pi(z,\tau) = \pi(z),\tag{38}$$

запишем уравнение Фокера-Планка для стационарного распределения вероятностей $\pi(z)$

$$(a(z)\pi(z))' + \frac{\sigma}{2}(b(z)\pi(z))'' = 0,$$

$$-a(z)\pi(z) + \frac{\sigma}{2}(b(z)\pi(z))' = 0.$$

Решая данную систему уравнений получаем плотность распределения вероятностей $\pi(z)$ нормированного числа заявок на орбите

$$\pi(z) = \frac{C}{b(z)} exp \left\{ \frac{2}{\sigma} \int_{0}^{z} \frac{a(x)}{b(x)} dx \right\}.$$
 (39)

Теорема доказана.

Получим дискретное распределение вероятностей

$$P(i) = \pi(\sigma i) / \sum_{i=0}^{\infty} \pi(\sigma i), \tag{40}$$

которое будем называть диффузионной аппроксимацией дискретного распределения вероятностей количества заявок на орбите для изучаемой системы.

Возможно показать, что условием существования стационарного режима рассматриваемой системы является неравенство

$$\lambda < Nr_0 / \left(\frac{q}{\mu_1} + \frac{1 - q}{\mu_2}\right). \tag{41}$$

Введем следующую замену для того, чтобы среднее время обслуживания равнялось единице

$$q = \frac{\mu_1(1 - \mu_2)}{\mu_1 - \mu_2}.$$

В таком случае неравенство (41) имеет вид

$$\lambda < Nr_0$$
.

Эксперимент 1.

На рисунке 5 представлены графики изменения a(x) и b(x), в зависимости от x, на рисунке 6 ряд распределения вероятностей количества заявок на орбите для следующих параметров системы $N=2,\,r_0=0,5,r_1=0,2,r_2=0,3,\lambda=0,8,\mu_1=1,2,\mu_2=0,6,q=0,8,\sigma=0.2.$

Рисунок 2 — Коэффициенты переноса a(x) и диффузии b(x)

Рисунок 3 — Ряд распределения вероятностей числа заявок на орбите

Эксперимент 2.

На рисунке 7 представлены графики изменения a(x) и b(x), в зависимости от x, на рисунке 8 ряд распределения вероятностей количества заявок на орбите для следующих параметров системы $N=10,\,r_0=0,5,r_1=0,2,r_2=0,3,\lambda=0,8,\mu_1=1,2,\mu_2=0,6,q=0,8,\sigma=0.1.$

Рисунок 4 — Коэффициенты переноса a(x) и диффузии b(x)

Рисунок 5 — Ряд распределения вероятностей числа заявок на орбите

Численные результаты были получены с помощью библиотек NymPy [20] (для a(x) и b(x)) языка программирования Python, реализация выложена в открытый доступ [14]. Данные графики были построены с помощью библиотеки Matplotlib [17] языка Python.

Сравним полученные результаты с имитационной моделью [16]. Для этого обозначим ряд распределения вероятностей числа заявок на орбите, полученный в результате [16], – $P^{(2)}(i)$ и представим на рисунке 9 P(i) и $P^{(2)}(i)$ для следующих параметров системы N=64, $r_0=0,5, r_1=0,2, r_2=0,3, \lambda=40,96, \mu_1=1,2, \mu_2=0,6, q=0,8, \sigma=0.2.$

Рисунок 6 — Ряд распределения вероятностей числа заявок на орбите, полученный численно P(i) и с помощью имитационной модели $P^{(2)}(i)$

Для сравнения двух распределений вероятностей будем использовать расстояние Колмогорова

$$\Delta = \max_{0 \le n \le \infty} \left| \sum_{i=0}^{n} (P(i) - P^{(2)}(i)) \right|.$$

Приведем полученные результаты в таблице 1 для изменяющегося числа приборов N и σ .

Таблица 1 – Расстояние Колмогорова

Δ	$\sigma = 5$	$\sigma = 1$	$\sigma = 0, 2$	$\sigma = 0.04$
N=2	0,02124	0,02185	0,00179	0,00060
N=4	0,03852	0,02108	0,00206	0,00030
N = 16	0,07338	0,01649	0,00266	0,00056
N = 64	0,03329	0,00582	0,00176	0,00032

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Гнеденко Б.В. Введение в теорию массового обслуживания / Б.В. Гнеденко, К.И. Николаевич. М.:КомКнига, 2005. 400 с.
- 2. Гельфонд А.О. Исчисление конечных разностей: учебное пособие / Гельфонд А.О. М.: КомКнига, 2006. 376 с.
- 3. Ивченко Г.И. Теория массового обслуживания: учебное пособие / Г.И. Ивченко, В.А. Каштанов, И.Н. Коваленко. М.: Высшая школа, 1982. 296 с.
- 4. Любина Т.В. Исследование математических моделей динамических и адаптивных RQ-систем с входящим MMPP-потоком: дисс. ... канд. физ. мат. наук. Томск., 2013. 163 с.
- 5. Моисеев А.Н. Бесконечнолинейные системы и сети массового обслуживания / А.Н. Моисеев, Назаров А.А.— Томск: Изд-во научно-технической литературы, 2015. 240 с.
- 6. Моисеева С. П. Численное исследование RQ-системы MIM11 в условии большой загрузки / С. П. Моисеева, А. А. Назаров // Информационные технологии и математическое моделирование. Ч. 1: материалы X Всероссийской научно-практической конференции с международным участием. 2011. С. 160-164.
- 7.Назаров А. А. Асимптотический анализ двухфазной RQ-системы M|M|1 в условии большой задержки на орбите / А. А. Назаров, А. А. Анисимова // Марчуковские научные чтения -2017, 25 июня 14 июля 2017 года : труды. -2017. -C. 641–647.
- 8. Назаров А. А. Исследование двухфазной RQ-системы M|M|1 методом моментов /A. А. Назаров, А. А. Анисимова // Марчуковские научные чтения 2017. С. 157.
- 9. Назаров А.А. Метод асимптотического анализа в теории массового обслуживания / А.А. Назаров, Моисеева С. П. Томск: Изд-во НТЛ, 2006. 112 с.
- 10. Назаров А.А. Теория вероятностей и случайных процессов / А.А. Назаров, А.Ф. Терпугов. Томск : Изд-во научно-технической литературы, 2006. 199 с.
- 11. Назаров А.А. Теория массового обслуживания/ А.А. Назаров, А.Ф. Терпугов. Томск : Изд-во научно-технической литературы, 2010. 228 с.
- 12. Artalejo J.R. Retrial Queueing Systems: A Computational Approach / J. R. Artalejo, A. Gomez-Corral. Springer, 2008. 309 p.
- 13. Falin, G.I. Retrial queues / G.I. Falin, J.G.C. Templeton. London : Chapman Hall, 1997.–328
 - 14. GitHub / calculationPi a b. [M].
- https://github.com/ValeriyaRyzhikova/calculationPi_a_b (дата обращения: 01.06.2021).
 - 15. GitHub / checkPhase2EquationR. [M.].
- https://github.com/ValeriyaRyzhikova/checkPhase2EquationR (дата обращения: 01.06.2021). 16. GitHub / TwoPhaseOrbitImitation. [M.].
- https://github.com/ValeriyaRyzhikova/TwoPhaseOrbitImitation (дата обращения: 01.06.2021). 17.Matplotlib documentation. [M.].
- https://matplotlib.org/stable/contents.html (дата обращения 04.06.2021.).
 - 18. Moiseev A. N. Asymptotic diffusion analysis of multi-server retrial queue with hyper-

- exponential service / A. N. Moiseev, A. A. Nazarov, S. V. Paul // Mathematics. $-2020. N_{\odot} 4. P.$ 1-16.
- 19. Nazarov A.A. Method of asymptotic diffusuon analysis of queueing sistem M|M|N with feedback / A.A. Nazarov, S.V. Paul, E.A. Pavlova // Lecture Notes in Computer Science. -2020.-P.131-143.
 - 20.NumPy 1.2 documentation / Linear algebra. [M.].
- https://numpy.org/doc/1.20/reference/routines.linalg.html (дата обращения 10.04.2021.). 21.SymPy 1.6 documentation/Matrices. [M.].
- https://docs.sympy.org/latest/modules/matrices/matrices.html/ (дата обращения: 28.10.2020.).