

TRRT Workshop 5 Hand-In

MARIO L. GUTIERREZ ABED

s1685113@sms.ed.ac.uk

Problem 1 (Solution to Exercise 5). We are assuming that

$$\frac{\pi}{2} \leq \theta := \measuredangle(\alpha, \beta) < \pi,$$

where θ is as large as possible, and from the table

$\langle \beta, \alpha \rangle$	$\langle \alpha, \beta \rangle$	θ	$\frac{(\beta,\beta)}{(\alpha,\alpha)}$
0	0	$\frac{\pi}{2}$	undefined
1	1	$\frac{\pi}{3}$	1
-1	-1	$\frac{2\pi}{3}$	1
2	1	$ \frac{\frac{\pi}{2}}{\frac{\pi}{3}} $ $ \frac{2\pi}{3} $ $ \frac{\pi}{4} $ $ 3\pi $	2
-2	-1	$\frac{3\pi}{4}$	2
3	1	$\frac{4}{6}$ 5π	3
-3	-1	$\frac{5\pi}{6}$	3

we have only four viable options for θ : $\pi/2$, $2\pi/3$, $3\pi/4$, $5\pi/6$.

We now consider the case $\theta = 2\pi/3$, in which $|\beta| = |\alpha|$:

But the scalar multiples $-\alpha$ and $-\beta$ are also in R, so we extend the diagram to

Proceeding even further, by the result from Q4 we know that if $\pi/2 < \measuredangle(\alpha,\beta) < \pi$, then $\alpha+\beta \in R$ (and

so is the scalar multiple $-(\alpha + \beta)$). Thus we extend the diagram further:

Now, by repeatedly applying the reflections s_{α} (with α being a root on this diagram) and using the table above (or, equivalently, by calling on the result of Q4), we conclude that these roots exhaust all the elements of R for $\theta = 2\pi/3$.