

86.03 – DISPOSITIVOS SEMICONDUCTORES Evaluación Parcial 23 de junio de 2022

Nombre y apellido:			Tema 2
Padrón:	Turno:	N° de examen: $_$	
Es condición necesar	ia para aprobar el parcial que al menos	el 60% de cada problema esté correctam	ente

- Es condición necesaria para aprobar el parcial que al menos el 60 % de cada problema esté correctamente planteado.
- Se considerará: La claridad y síntesis conceptual de las respuestas y justificaciones, los detalles de los gráficos/circuitos, la exactitud de los resultados numéricos.
- Cada uno de los dos ejercicios debe estar resuelto en hojas independientes.

Calificación:

Datos generales: $q = 1,602 \times 10^{-19} \,\mathrm{C}$; $m_0 = 9,109 \times 10^{-31} \,\mathrm{kg}$; $k = 1,381 \times 10^{-23} \,\mathrm{J/K}$; $h = 6,626 \times 10^{-34} \,\mathrm{J\,s}$; $\varepsilon_0 = 8,85 \times 10^{-12} \,\mathrm{F/m}$; $\varepsilon_r(\mathrm{Si}) = 11,7$; $\varepsilon_r(\mathrm{SiO}_2) = 3,9$.

1)

- a) Se tiene el circuito de la figura 1 donde R_1 , R_2 y R_3 son resistencias fabricadas con distintos materiales semiconductores intrínsecos. Inicialmente $I_1 = I_2 = I_3$ pero, pasado un tiempo y como consecuencia del efecto Joule, esta igualdad deja de cumplirse. Sabiendo que la relación que existe entre las energías de brecha de los materiales es $E_{g1} < E_{g2} < E_{g3}$, determinar por cuál resistencia circulará la mayor intensidad de corriente y explicar por qué no son necesarios más datos para predecir este fenómeno.
- b) En base al circuito de la figura 2 determinar el rango de valores de R_1 y R_2 para que la corriente que atraviesa el diodo D ($V_{D(ON)}=0.7\,\mathrm{V}$) sea de $I_D=1\,\mathrm{mA}$. Otros datos: $V_{IN}=7.5\,\mathrm{V}$; $|V_Z|=5.6\,\mathrm{V}$; $|I_{Z\,\mathrm{min}}|=2\,\mathrm{mA}$; $|I_{Z\,\mathrm{min}}|=6\,\mathrm{mA}$; $T=300\,\mathrm{K}$.

Figura 1

Figura 2

- 2) Se tiene un transistor MOSFET canal P del que se conocen los siguientes parámetros: $V_T = -0.83 \,\mathrm{V}$, $\lambda = 0 \,\mathrm{V}^{-1}$, $t_{\rm ox} = 20 \,\mathrm{nm}$, $W = 100 \,\mathrm{\mu m}$ y $L = 10 \,\mathrm{\mu m}$. El substrato está dopado con $N_D = 1 \times 10^{17} \,\mathrm{cm}^{-3}$ y las movilidades para este caso son $\mu_n = 740 \,\mathrm{cm}^2/\mathrm{Vs}$ y $\mu_p = 340 \,\mathrm{cm}^2/\mathrm{Vs}$.
 - a) Considerar que $V_B = V_S = V_D = 0 \,\mathrm{V}$, formando un capacitor MOS, y con $V_{GB} = -1.5 \,\mathrm{V}$ y calcular la carga en x = 0 y en $x = -t_{\mathrm{ox}}$, es decir en ambas interfaces del óxido con el semiconductor y con el "metal", respectivamente.
 - b) El transistor se utiliza en el circuito de la figura 3, donde $R_{G1}=47\,\mathrm{k}\Omega,\ R_{G2}=150\,\mathrm{k}\Omega,\ R_D=3,3\,\mathrm{k}\Omega$ y $V_{DD}=15\,\mathrm{V}.$ Determinar el modo de operación, el punto de trabajo y realizar el gráfico de la curva de salida y la recta de carga, resaltando el punto de trabajo. Además, calcular los elementos del modelo de pequeña señal para bajas frecuencias.

Figura 3