Mathematical Formulation and code explanation of Variational Autoencoders

May 20, 2025

Architecture

A Variational Autoencoder consists of:

- An encoder network $q_{\phi}(z|x)$ that maps input x to a latent distribution.
- A decoder network $p_{\theta}(x|z)$ that reconstructs data from latent variable z.

Latent variables z are sampled from a prior p(z), typically a standard normal distribution:

$$p(z) = \mathcal{N}(0, I)$$

The encoder produces parameters $\mu(x)$ and $\sigma^2(x)$ to approximate a Gaussian posterior distribution over latent variable z given input x:

$$q_{\phi}(z|x) = \mathcal{N}(z; \mu_{\phi}(x), \operatorname{diag}(\sigma_{\phi}^{2}(x)))$$

where $\mu(x)$ is the mean and $\sigma^2(x)$ is the variance of the latent variable, ϕ are the parameters of the encoder network, and the covariance matrix is diagonal.

Objective Function

The variational lower bound (ELBO) on the log-likelihood log $p_{\theta}(x)$ is:

$$\log p_{\theta}(x) \ge \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}(q_{\phi}(z|x)||p(z))$$

• Reconstruction loss: $\mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)]$

• Regularization: $\mathrm{KL}(q_{\phi}(z|x)||p(z))$

KL Divergence Term

For Gaussian posterior and standard normal prior:

$$KL(q_{\phi}(z|x)||p(z)) = \frac{1}{2} \sum_{i=1}^{d} (\mu_i^2 + \sigma_i^2 - \log \sigma_i^2 - 1)$$

Reparameterization Trick

To backpropagate through the sampling process:

$$z = \mu + \sigma \odot \epsilon, \quad \epsilon \sim \mathcal{N}(0, I)$$

This allows rewriting the expectation:

$$\mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] \approx \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta}(x|z^{(l)})$$

with
$$z^{(l)} = \mu + \sigma \odot \epsilon^{(l)}$$

Final Loss Function

The total loss to minimize (negative ELBO):

$$\mathcal{L}_{\text{VAE}}(x) = -\mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] + \text{KL}(q_{\phi}(z|x)||p(z))$$