

ECUE21.2 Science des données | 13 Juin 2025 ■■

■ ANALYSE EN COMPOSANTES PRINCIPALES

■ Fléau de la dimension

Dans \mathbb{R}^d S boule de rayon r \mathcal{C} cube de côté $\ell=2r$

$$\mathcal{C}$$
 cube de côté $\ell=2r$

$$|\mathcal{C}| = \ell^d$$
 $|\mathcal{S}| = \frac{r^d \pi^{d/2}}{\Gamma(d/2 + 1)}$ $\frac{|\mathcal{C}|}{|\mathcal{S}|} = 2^d \frac{\Gamma(d/2 + 1)}{\pi^{d/2}}$

$$\frac{|\mathcal{C}|}{|\mathcal{S}|} = 2^d \frac{\Gamma(d/2 + 1)}{\pi^{d/2}}$$

■ Le jeu de données Iris

■ Standardisation

Données brutes

■ Standardisation

Données standardisées

Données standardisées

Premier axe principal

Deuxième axe principal

Données dans le nouveau repère

■ Choix du nombre d'axes

Proportion de variance expliquée

■ Choix du nombre d'axes

Proportion cumulée de variance expliquée

■ Contribution des individus

Notations

X matrice $n \times p$ de données (déterministe) $\Sigma = X^{\mathsf{T}}X \text{ matrice } p \times p \text{ de covariance empirique}$

 $\lambda_1>\lambda_2>\cdots>\lambda_p$ valeurs propres ordonnées de Σ

 $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_p$ vecteurs propres correspondants

$$\frac{\langle \vec{x}^i, \vec{w}_k \rangle^2}{n\lambda_k}$$
 contribution de l'individu *i* à l'axe *k*

■ Contribution des individus

■ Cercle des corrélations

Notations X matrice $n \times p$ de données (déterministe) $\Sigma = X^\mathsf{T} X \text{ matrice } p \times p \text{ de covariance empirique}$ $\lambda_1 > \lambda_2 > \dots > \lambda_p \text{ valeurs propres ordonnées de } \Sigma$ $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_p \text{ vecteurs propres correspondants}$

$$\frac{\langle \vec{x}_j, X \vec{w}_k \rangle^2}{\sqrt{\lambda_k}}$$
 corrélation entre la variable j et la composante k

■ Cercle des corrélations

