III. Законы сохранения. Работа и мощность.

1. <u>Импульс материальной точки</u> $\vec{p} = m \cdot \vec{v}$ m - масса материальной точки

2. Импульс системы материальных точек равен векторной сумме импульсов всех

точек, входящих в эту систему.

 $\vec{p}_{\text{cuct}} = \vec{p}_1 + \vec{p}_2 + \ldots + \vec{p}_n$

<u>Пример:</u> импульс однородного диска, вращающегося вокруг неподвижной оси, проходящей через центр

$$\vec{p}_{\text{\tiny JUCK}} = \vec{p}_1 + \vec{p}_2 + \vec{p}_3 + \vec{p}_4 + \ldots + \vec{p}_n = 0$$

3. Теорема об изменении импульса материальной точки

$$\Delta \vec{p} = \sum \vec{F} \cdot \Delta t$$

$$\sum \vec{F} = \text{const}$$

 Δt - время действия сил.

 $\vec{F} \cdot \Delta t$ - импульс силы.

 $\Delta \vec{p} = \sum \vec{F} \cdot \Delta t$ $\Delta \vec{p} = \vec{p}_2 - \vec{p}_1$ - изменение импульса материальной точки. $\sum \vec{F}$ - сумма всех сил, действующих на материальную точку. $\Delta \vec{p} = \vec{p}_2 - \vec{p}_1$ - изменение импульса материальной точки. $\Delta \vec{p} = \vec{p}_2 - \vec{p}_1$ - изменение импульса материальной точки. $\Delta \vec{p} = \vec{p}_2 - \vec{p}_1$ - изменение импульса материальной точки. $\Delta \vec{p} = \vec{p}_2 - \vec{p}_1$ - сумма всех сил, действующих на материальную точку. $|\vec{a}| = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t}$ Подставив в уравнение и, домножив обе части на Δt , получим ...

4. Теорема об изменении импульса системы материальных точек

Из п. 2:
$$\Delta \vec{p}_{\text{сист}} = \Delta \vec{p}_1 + \Delta \vec{p}_2 + \ldots + \Delta \vec{p}_n = \sum \vec{F} \Delta t$$
; $\sum \vec{F} = \sum \vec{F}_{\text{внеш}} + \sum \vec{F}_{\text{внеш}} + \sum \vec{F}_{\text{внеш}} + 0$

 $\sum \vec{F}$ — сумма всех сил, действующих на все мат. точки системы

Из п.3: $\Delta \vec{p}_1 = \sum \vec{F}_1 \Delta t$, $\Delta \vec{p}_2 = \sum \vec{F}_2 \Delta t$, ... $\sum \vec{F}_{_{
m BHeIII}}$ — сумма <u>внешних</u> сил, действующих на все мат. точки системы

 \sum $ec{F}_{_{\mathrm{BHVTD}}}$ — сумма $_{\mathrm{BHYTD}}$ сил, действующих на все мат. точки системы

$$\sum \vec{F}_{\text{внутр}} = \underline{\vec{F}_{21}} + \underline{\underline{\vec{F}_{31}}} + \dots + \underline{\vec{F}_{12}} + \underline{\underline{\vec{F}_{32}}} + \dots + \underline{\underline{\vec{F}_{13}}} + \underline{\underline{\vec{F}_{23}}} + \dots = 0 \quad \text{— по III закону Ньютона} \quad \vec{F}_{12} + \vec{F}_{21} = 0, \quad \vec{F}_{13} + \vec{F}_{31} = 0, \quad \dots$$

$$\Delta \vec{p}_{\text{сист}} = \sum \vec{F}_{\text{внешн}} \cdot \Delta t$$

 $\vec{F}_{\text{внеш}} = \text{const}$

 $\Delta \! ec{p}_{ ext{cuct}} = \! \sum \! ec{F}_{ ext{внеш}} \! \cdot \! \Delta t \! ig|_{\cdot}^{\cdot} \! ec{F}_{ ext{внеш}} - ext{сумма } \! ext{внешних } ext{сил, действующих на все мат. точки системы}$

 Δt — время, в течение которого действовали силы.

 $\Delta ec{\mathcal{p}}_{ ext{cuct}}$ — изменение импульса системы материальных точек за время Δt

5. <u>Закон сохранения импульса:</u>

$\vec{p}'_{\scriptscriptstyle ext{CHCT}} = \vec{p}''_{\scriptscriptstyle ext{CHCT}}$

 $1) \sum \vec{F}_{\text{BHeIII}} = 0$ Если,

2) $\Delta t \approx 0$ - при быстрых взаимодействиях (взрывах, выстрелах, соударениях), если внешние силы не возрастают до больших значений и остаются малы по сравнению с внутренними силами.

Импульс системы материальных точек сохраняется, если

1) Сумма внешних сил, действующих на эту систему равна нулю.

2) Время действия внешних сил мало так, что импульс системы не успевает существенно измениться - выстрелы, взрывы, соударения, при которых внешние силы малы по сравнению с внутренними силами.

Кроме того, 3) сохраняется проекция импульса на ту координатную ось, к которой перпендикулярна сумма внешних сил.

$$p'_{ ext{cucт}_x} = p''_{ ext{cucт}_x}$$
, если $\sum \vec{F}_{ ext{внеш}} \bot OX$

Единица измерения работы в СИ 1Дж = 1H·м

$$A_{ec{F}} = ec{F} \cdot \Delta ec{r} = F \cdot \left| \Delta ec{r} \right| \cdot \cos \alpha$$
 $A_{ec{F}} = \Delta ec{r} = \Gamma \cdot \Delta ec{r} = \Gamma \cdot \Delta ec{r} \cdot \Delta ec{r} \cdot \Delta ec{r} = \Gamma \cdot \Delta ec{r} \cdot \Delta ec{r} \cdot \Delta ec{r} = \Gamma \cdot \Delta ec{r} \cdot \Delta ec{r}$

 $\vec{F} = \text{const}$ (и движение <u>по прямой</u>, в неизменном направлении.)

 $\underline{A < 0}$, если $\alpha - \underline{\text{тупой}}$ угол. \vec{F} $\Delta \vec{r}$

A = 0, если $\alpha = 90^{\circ}$. $^{\uparrow}F$

Чтобы найти работу не постоянной силы над точкой, которая движется по произвольной траектории, надо мысленно разбить движение на такие малые перемещения $d\vec{r}_1, d\vec{r}_2, \dots$, чтобы на каждом из них с достаточной точностью можно было бы считать движение

прямолинейным, а силу постоянной. Тогда $A = \vec{F_1} d\vec{r_1} + \vec{F_2} d\vec{r_2} + \dots$

7. Мощность

Единица измерения мощности в СИ $1 B_T = 1 Дж/c$

$$N = \frac{A}{t}$$

$$N = \text{const}$$

Работа, совершенная за время t.

Если мощность не постоянна, то вычисляется

мгновенная мощность:

$$N = \frac{\vec{F}d\vec{r}}{dt} = \vec{F} \cdot \vec{v} \quad N = F \cdot v \cdot \cos\alpha$$

8. Механическая энергия

$$E_{\text{mex}} = E_{\text{K}} + E_{\text{p}}$$

Потенциальная энергия — этой энергией обладают тела, на которые действуют консервативные силы: $F_{\text{грав}}(F_{\text{тяж}}), F_{\text{упр}}, F_{\text{электр}}$ Консервативны, если они неизменны во времени для каждого

Основное свойство консервативных сил: работа консервативных сил над системой, совершившей движение по замкнутой траектории

Потенциальная энергия — это такая функция от расположения

системы, убыль которой при перемещении системы равна работе

консервативных сил на этом перемещении. $E_{p1} - E_{p2} = A_{\text{конс1-2}}$

(когда конечное положение совпадает с начальным), равна нулю.

Чтобы вычислить конкретное значение E_p , договариваются в каком

положении системы "О" считать $E_p(O) = 0$. Тогда в произвольном

Силы, работа которых над системой при ее перемещении зависит только от

начального и конечного положений этой системы. Работа консервативных сил не зависит от того, каким способом (по какой траектории) система была

переведена из начального положения в конечное.

положения, или являются внутренними для системы.

Кинетическая энергия

Этой энергией обладают движущиеся тела.

$$E_k = \frac{mv^2}{2}$$

$$E_k^{
m cucr} = E_{k1} + E_{k2} + \dots$$
 пер

материальных точек.

Кинетическая энергия

Работа всех сил, действующих в системе.

кинетической энергии системы

материальной точки массой m, движущейся со скоростью \mathcal{U} .

положении "М" потенциальная энергия системы $E_p(M) = A_{\text{конс M-O}}$

Теорема о кинетической

энергии: $\Delta E_k = A_{\text{всех сил}}$ Изменение -

9. Теорема о механической энергии

$$\Delta E_{\text{мех}} = \Delta E_k + \Delta E_p = A_{\text{всех сил}} - A_{\text{конс}} = A_{\text{неконс. сил}}$$

$$\Delta E_{\text{Mex}} = A_{\text{Hekohc}}$$

 $E_{p(\text{тяж})} = \pm mgh_{\text{центра масс над нулевым уровнем}}$

10. Закон сохранения механической энергии

Механическая энергия системы материальных точек сохраняется, если в системе совершают работу только консервативные силы ($A_{\text{нек}} = 0$)

Если $A_{\text{неконс}} = 0$

11. <u>Диссипативные силы</u> — неконсервативные силы, работа которых сопровождается выделением

 $F_{
m Tpehua}$ скольжения ; $F_{
m conp.}$ жидк. и г.; $F_{
m Heynpyr.}$ взаимод.

 $E'_{\text{mex}} - E''_{\text{mex}} = Q$ $A_{\text{внутр. дис}} = -Q$ — не зависит от системы отсчета Если $A_{\text{неконс}} = A_{\text{внутр. дис.}}$

12. <u>Методы вычисления работы</u>

13. Средняя по времени сила

тепла.

$$\vec{F}_{\rm cp} = \frac{\Delta \vec{p}_{\rm cuct}}{\Delta t}$$

Средняя по времени сумма внешних сил, действующих на систему материальных точек

Изменение импульса системы за время Δt