Boolean formula:

Variables: X, X, X, ..., Xn taking values True or False literals: X, X, X, X, X, X, Xn, Xn

> N = ANDV = BR

CNF = conjunctive normal form

clause is an OR of several literals

example: (X3 VX5 VX2 VX,)

formula f is the AND of m such clauses: example: (X2) 1 (X3VX5VX2VX1)1 (X2VX1)

input: Given formula f in CNF with n variables

Som clauses

output: assignment satisfying f if one exists

NO if no satisfying assignment exists

&-SAT: Some as SAT but the input of has clauses with $\leq k$ literals in each.

Well see: SAT is NP-complete L-SAT is NP-complete for each k=3. Today: 2-5AT has a poly-time algorithm. Take input if for 2-SAT. We'll assume all clauses have size exactly 2. What about "unit clauses = clauses of size 1? For f, take a unit clause say literal (ai)
-Satisfy it (so set ai = T)
-Temove all clauses containing ai (these are
all satisfied) - Draf any occurrences of a: Let f' be the resulting formula.

Observations of is satisfiable of is satisfiable.
Thus we can repeat the above procedure until

No unit clauses remain.

Note: a path X: N>X; means setting X:=T we must also set X;=T
we most also set X = T
Thus if there's a gath xi, > Xi then we can't
set xi=T and satisfy f.
Similarly if there's a path Xi >> X: then we can't set X:= F.
Therefore if xi & Xi are in the same SCC
then f is unsatisfiable.
Lemma: f is satisfiable () Vi, X: 2X; are in
We just argued that if I i where x, & X; are in the same SCC
Thus we groved =>.
lib and need to show the
We now need to show to which we'll do by giving an algorithm.
and and and and and
Key idea: Take a sink SCC S Take a sink SCC S Set S to T (by satisfying all literals in S)
Note: S has no outgoing edges So no implications
Note: S has no outgoing edges so no implications from setting S=T.
But we've set 5=F (loss 5 have incoming elges?)
exges ()

Take	2 Source SCC S	(
	- Set St & F	
	Note: 5' has no incoming edges so we'll never be forced to set 5 to T.	
	Bot: we've set 5'=T (Does 5' have outgoing edges?)

Lemma: 5 is a sink SCC \$\ 5 is a source SCC.

So we take a sink SCC S:

- Set S=T (and thus S=F)

- Remove S & S

- Repeat youtil empty graph.

This is valid because no variable X; has Xi & X; in the same SCC.

Just need to prove the lemma.

Claim: Path & >> B => Path B >> Z
Proof: Let's prove =>. Take path & n>B say it's:
To > V, > > > De where Vo= X
edge 8; -> 8;+1 comes from
clause (Fiv 8:+1) and the
otheredge is Vi+1>Vi
This we have the path
$V_{\ell} \rightarrow V_{\ell-1} \rightarrow \cdots \rightarrow V_{0}$ where $V_{\ell} = \overline{\lambda}$ $V_{0} = \overline{\lambda}$
For & Similarly from a goth BND d we can construct a path dNDB.
construct a path dn> B.
Take SCC S.
For x, BeS, there's paths x 13 B & Bry 2
Thus there's also paths \$100 Langes and so al Bare in the same SCCS
Therefore 5 is a SCC.
So 5 is a SCC ← 5 is a SCC.
And 5 has no incoming edges (so source SCC)
iff S has no outgoing edges (sink SCC).
This proves the lemma.