

Response functions

 \bullet How is the constant volume heat capacity, $C_V,$ defined:

• Show that $\frac{C_v}{T} = \left(\frac{\partial S}{\partial T}\right)_V$

• Is the Gibbs free energy minimised at equilibrium or maximised at equilibrium (justify your answer).

• Use your answer to to the previous question to explain why $\delta E > T\delta S - P\delta V$.

• Use the result from the previous question to show, by expanding δE using the Taylor series, that $\left(\frac{\delta^2 E}{\delta S^2}\right)_V > 0$ and $\left(\frac{\delta^2 E}{\delta V^2}\right)_S > 0$.

ullet Hence, show that C_v must be greater than zero

• Give the definition of the isoentropic compressibility, κ_s .

• Show that $\kappa_s = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_S$

Response functions

 $\bullet\,$ Explain why the isoentropic compressibility must be positive