Stroke Prediction Analysis

ROLLAND OSAGIE, OLGA POSTOLACHI, WILLIAM RICHARDSON, AND BRYAN WERTH; DECEMBER 2021

Predicting Strokes with Machine Learning

Purpose and Questions we hope to answer:

- Every year more than 795,000 people in the US suffers a stroke, contributing to 1 out of every 6 deaths due to cardiovascular disease in 2018.
- How likely is someone to suffer a stroke based on our variables: gender, age, hypertenstion, heart disease history, BMI(Body Mass Index), smoking status, avg glucose level, if they were ever married, what type of work they do, and where they reside- rural or urban?
- Which variable contributes the most to suffering a stroke?
- Which age bracket shows when strokes start affecting people based on the data?

Data Storage

Data Storage Challenges

- Storage Location?
- > How to share database with team members?

Solution

- SQLite is a high quality, visual, open-source tool to create, design, and edit database files compatible with SQLite.
- ▶ DBHub.io a simple API server, used for querying databases remotely was used to share data amongst team members.

Setting Up Database and Potential Expansion

DBHub.io Website Database View

Failed Join Dataset

Exporting Database to Jupyter Notebook

Also utilizing the wonderful world of google search results, I found a
way to connect our program running in python, to the database file.

Preliminary Data Exploration

- After getting our data from Kaggle.com, we performed some initial clean up and data exploration techniques to describe its characteristics including size, quantity, and accuracy of the data.
- Using Python and Jupyter Notebook, we Extracted,
 Transformed, and Load our data into a Dataframe that we could analyze and manipulate.
- We went from 5110 rows to 5109 dropping one due to gender being "unknown"; we also replaced NaN values in our BMI column with the median value to avoid dropping a large number of our data points.

```
# Check unique values
 df2['gender'].unique()
array(['Male', 'Female', 'Other'], dtype=object)
 # Count how many 'Other' values are in gender column
 df2['gender'].value counts()
Female
          2994
Male
          2115
Other
Name: gender, dtype: int64
 # Drop the row that contains 'Other' value
 other value = df2[df2['gender'] =='Other'].index
 df3 = df2.drop(other value)
 df3.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 5109 entries, 1 to 5110
Data columns (total 11 columns):
     Column
                        Non-Null Count
                                        Dtype
                        5109 non-null
     gender
                                        object
                        5109 non-null
                                        float64
     age
                        5109 non-null
     hypertension
                                        int32
     heart disease
                        5109 non-null
                                        int32
     ever married
                                        object
                        5109 non-null
     work type
                        5109 non-null
                                        object
     Residence type
                        5109 non-null
                                        object
     avg glucose level 5109 non-null
                                        float64
     bmi
                        5109 non-null
                                        float64
                                        object
     smoking status
                        5109 non-null
     stroke
                        5109 non-null
                                        int32
dtypes: float64(3), int32(3), object(5)
memory usage: 419.1+ KB
Since we dropped 1 row, now we have 5109 rows.
```

Data Source: https://www.kaggle.com/fedesoriano/stroke-prediction-dataset

Data Analysis using Visualizations

Tableau Visualizations

Distribution of predicted values:

```
# Visualize distribution of predicted values
sns.countplot(x='stroke', data=df3)
df3.stroke.value_counts()

0    4860
1    249
Name: stroke, dtype: int64

5000
4000
```

stroke

2000

1000

Correlation between our variables and stroke:

```
# Check what correlation can be found between the stroke and variables in the dataset
correlation = df3.corr()
fig, axes = plt.subplots(figsize=(7, 7))
sns.heatmap(correlation, vmax=.8, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10});
```


Machine learning

Data Preprocessing/ Cleaning

- **►** Importing all necessary libraries
- **▶** Drop ID columns
- **→** Handling missing data
- **➤** Convert categorical variables to numerical (object to int or float)
- **►** Label encoding (get_dummies)

Preparing data for the model

- **▶** Defining features and target sets (X, y)
- >Splitting data into Train (80%) and Test (20%) sets (X_train, X_test, y_train, y_test)
- **➤** Scaling the data (StandardScaler())

```
# Check the numbers of positive and negative predicted stroke in training set
from collections import Counter
Counter(y_train)
Counter({0: 3900, 1: 187})
```

➢Oversample X and y training sets (SMOTE)

```
# Oversample X and y training sets
X_resampled, y_resampled = SMOTE(random_state=1).fit_resample(X_train, y_train)
Counter(y_resampled)
Counter({0: 3900, 1: 3900})
```

Create/ Fit/ Predict

1. Support Vector Machine

```
# Create SVM model
SVM_model = SVC(kernel='linear')
# Fit the model using resampled data
SVM model.fit(X resampled, y resampled)
# Create predictions
y_pred = SVM_model.predict(X_test)
# Calculated the balanced accuracy score
acc score = balanced accuracy score(y test, y pred)
acc score
0.7613071236559139
```

Confusion Matrix

```
: # Display the confusion matrix
  plt.figure(figsize = (7, 4))
  sns.heatmap(cm, cmap = 'Greens', annot = True, fmt = 'd', linewidths = 5
               yticklabels = ['Actual No stroke', 'Actual Stroke'], xtickla
  plt.yticks(rotation = 0)
  plt.show()
                           703
                                                       257
   Actual No stroke -
                            13
                                                        49
     Actual Stroke -
                       Predicted no stroke
                                                   Predicted stroke
```

Classification report

	precision	recall	f1-score	support
0	0.98	0.73	0.84	960
1	0.16	0.79	0.27	62
accuracy			0.74	1022
macro avg	0.57	0.76	0.55	1022
weighted avg	0.93	0.74	0.80	1022

Accuracy Score: 0.735812133072407

--

F1 Score: 0.2663043478260869

- -

Train score: 0.9542454529664988

--

Precision score: 0.16013071895424835

--

Recall Score: 0.7903225806451613

Comparison of Machine Learning models

	Models	Accuracy score	Recall
0	Random Forest	91%	13%
1	K Near Neighbour	81%	37%
2	Suport Vector machine	74%	79%
3	Logistic Regression	74%	79%
4	Naive Bias	30%	100%

The best Accuracy score has the Random forest classifier, but it also has the lowest Recall. On the other hand, Naive Bias has a 100% Recall, but the lowest Accuracy score. In conclusion we can say that the best performance showed SVM and Logistic regression with an Accuracy score of 74% and a Recall of 79%.

- We could have more access to data from hospitals that represented the entire population of the U.S.
- Have access to more cloud database options that are easily accessed and more affordable.
- **❖** A geographical map of stroke data across the Country.
- Use the Neural Network model for optional results.
- Questions?

Recommendations for Future Analysis

