(1)

PTP 3 mercee « Concernence mucha conggreremen preprin DA-92 Harisarea Durenpa Hopitiolivea Bapièrem SII (III)

Brignei ganei: (bapiarem 111)

-3.35	-4.19	-4.58	-4.15	-3.16	-3.54	-4.51	-3.73	-3.67	-3.39
-1.07	-3.42	3.12	-2.68	-3.39	0.18	-4.37	-1.3	3.18	-3.92
-3.41	-4.16	-0.45	0.63	-4.59	-3.14	-3.48	-4.45	-2.06	-1.97
-3.97	-4.3	-4.61	-3.43	-4.44	0.22	1.65	-4.12	-2.85	-1.01
-4.37	-4.06	-4.17	-3.45	-4.19	-3.44	-4.29	-2.69	-3.82	-0.06
-2.44	-2.7	-4.17	-4.5	-3.42	-3.88	0.71	-3.98	-4.06	-1.46
-2.07	-3.98	-3.66	-4.19	-4.01	-4.45	-0.43	-1.78	-4.16	-3.69
-1.27	-4.5	4.72	-1.02	-2.53	-3.82	-4.41	-2.33	-0.86	2.28
-2.54	11.08	2.29	-1.95	-3.81	-2.84	-4.33	-2.86	-1.65	-3.06
-3.11	-3.15	-3.6	-1.24	-4.35	-3.65	-3.5	-3.64	-4.07	-3.79

1) tropolecmen nephanirenin areaniz hudippen: nod.

and much vertenin pag. (give tempe. - vennephanistreni),

evenipularly of-conto peznoging (give reenpp. - inemepbanessey), in specepik, nominote reamon (give guekp.)

ado riamorpaning (reenep.).

Modgage uso immerbansrenie manuerneurement preg.

mer le ganci & reeneprephrecelle:

Due zpyreneocni, nodggoli piegg, nodgggéciéo choreaning bapiterièreme pieg:

-4.61 -4.37 -4.17 -3.98 -3.67 -3.43 -3.11 -2.44 -1.27 0.22

-4.59	-4.37	-4.16	-3.97	-3.66	-3.42	-3.06	-2.33	-1.24	0.63
-4.58	-4.35	-4.16	-3.92	-3.65	-3.42	-2.86	-2.07	-1.07	0.71
-4.51	-4.33	-4.15	-3.88	-3.64	-3.41	-2.85	-2.06	-1.02	1.65
-4.5	-4.3	-4.12	-3.82	-3.6	-3.39	-2.84	-1.97	-1.01	2.28
-4.5	-4.29	-4.07	-3.82	-3.54	-3.39	-2.7	-1.95	-0.86	2.29
-4.45	-4.19	-4.06	-3.81	-3.5	-3.35	-2.69	-1.78	-0.45	3.12
-4.45	-4.19	-4.06	-3.79	-3.48	-3.16	-2.68	-1.65	-0.43	3.18
-4.44	-4.19	-4.01	-3.73	-3.45	-3.15	-2.54	-1.46	-0.06	4.72
-4.41	-4.17	-3.98	-3.69	-3.44	-3.14	-2.53	-1.3	0.18	11.08

Omperence irenvept, manuern, prog:

				Комулятивні	
Класи (інтервали)	Частоти	Комулятивні частоти	Відносні частоти	відносні частоти	Середина класу
[-4.7;-2.4)	71	71	0.71	0.71	-3.55
[-2.4;-0.1)	17	88	0.17	0.88	-1.25
[-0.1;2.2)	6	94	0.06	0.94	1.05
[2.2; 4.5)	4	98	0.04	0.98	3.35
[4.5;6.8)	1	99	0.01	0.99	5.56
[6.8;9.1)	0	99	0	0.99	7.95
[9.1;11.4)	1	100	0.01	1	10.25

hodyeggenes riemorpaneer ligrescreex ma ada.

namon, ligresagatoren res oci OX nevexi vernepbarno, a no O'S ligrescree ma ade, reacmismen
ligresgigno.

le Sareenes, « readip gareux veax leveleg, greare.

enessono - 11.03, onemin genzo cnomboprose récino pa

en Hodygyernes pozonneme rea reseau ..., ree spa
xobyronen leveleg, and ocmarenin zamenneme lèg
kpennem, no greane rerue nonamo s successione.

therep nosygyeuro chame	amwereeie prog:
Hapenwempu ludipuu:	
Od'ème leedipun -	100
Mainverennière en	-4.61
Haridinanne eel	4.72 (не враховуючи викиду)
0	
Populeux - rearid - rearing =	9.33 (не враховуючи викиду)
K-mes reacto - 1 + [log2	od'eu heripker J = 7
1	comb meent = 1.5
k-	and recent

Omperende irenvept, manuem, prog:

				Комулятивні	
Класи (інтервали)	Частоти	Комулятивні частоти	Відносні частоти	відносні частоти	Середина класу
[-4.8;-3.3)	57	57	0.57	0.57	-4.05
[-3.3;-1.8)	19	76	0.19	0.76	-2.55
[-1.8;-0.3)	12	88	0.12	0.88	- <mark>1.0</mark> 5
[-0.3; 1.2)	5	93	0.05	0.93	0.45
[1.2;2.7)	3	96	0.03	0.96	1.95
[2.7;4.2)	2	98	0.02	0.98	3.45
[4.2;	2	100	0.02	1	=

(відкритий клас)

Modycycue richorpaneer ligheorreers ma ada.

Maemon, leghvagatoren reo oci OX unexi cremopbanch, a no OG ligheorrei ma ada, leachneomen
ligheograpeo.

Therep vicino yava mas repansent lung.

Ha ocreoli ompuesareux gareux nodygy eues (7) Europeanobyronen ocharreit nos. anam. pag. 0 , X = -4,8 0,57, -4.86 X < -3,3 0,46 -3,3 < x < -1,8 0,83 -1,86×4-0,3 F*(x) = 0,93-0,34×41,2 0,96 1,2 < x = 2,7 0,98 2,7 4 x 6 4,2 1, x74,2 0,93 0,46

2) Fractimes ludipuole cepegre , ludipuoley guenepciro ma lumpa buency & ludipuoley quenepcires. διατί geruo ludipuole cepeghe, щο lusp. 39

φ-μοτο $\frac{7}{3} = \frac{1}{h} \sum_{j=1}^{\infty} x_j$ $\frac{7}{3} = \frac{-260,25}{100} = -2,6025$

Fredrigen ledipkoly guenepeiro, cera luzm. 3a 90-4000 $\mathcal{D}_{\Sigma}^{**} = \frac{1}{h} \sum_{j=1}^{2} (x_{j} - \frac{1}{3})^{2}$

Dz = 5,6327

Frequique lunpabuerry ludipkoby guerre peiro, esea luzri. za apopunyuoro $\mathcal{D}_{\xi}^{*****} = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \overline{\xi})^2$

Dx** = 5,6898

3) Orpegrennegbanne ma lucyregnu rinomezy +
npo pozn. ver cykynreoani.

heurs nogebrennell reg hichorpanie 3 nyrekmy 1, no motree nominmum, uso boren reanagyrones usintente ex noreeregitieno poznoginy iz zustom. Vintentiente yn hedipen pezanameetbarii 2 setta no mobones expano oducemii luzzi.

4) treprelipeemes rinonwerry za rep. tripcorea χ^2 rea 3)
pribrui zreare. $\chi = 0.05$.

Dre napamenym a ma & lizburence greer., upo Tym obraccivererny y nyrekmi 5 npu zreax. Ogiheok a*, 8* za ellele M.

Omox, npuny communo, uso garea lesti vori cepayor. Leines pozpogimenea 34 marcoro unimoreiamo:

$$f_{3}(x) = \begin{cases} \frac{1}{2.0045} e^{-\frac{x+4.61}{2.0045}}, & x 71-4.61 \\ 0, & x 2-4.61 \end{cases}$$

Franceeur χ^2 , roper encytoneurs pozdammeen raitementeur y n. 1.

Класи (інтервали)	Частоти	Теоретичні імовірності
[-4.8;-3.3)	57	
[-3.3;-1.8)	19	
[-1.8;-0.3)	12	
[-0.3; 1.2)	5	
[1.2;2.7)	3	
[2.7;4.2)	2	
[4.2;	2	

Frederice meg in band que koxtrero iremep- (10) baney.

Due greax inob rea iremeplanic z modu. (a; b),

ckoperem brearmelieme Pfacz 2 by = Sfz(x) dx.

marener recever, cerescer.

Definite integral:

$$\int_{-4.8}^{-3.3} \frac{\exp\left(-\frac{x+4.61}{2.0075}\right)}{2.0075} \, dx = 0.578554$$

Definite integral:

$$\int_{-3.3}^{-1.8} \frac{\exp\left(-\frac{x+4.61}{2.0075}\right)}{2.0075} \, dx = 0.274056$$

Definite integral:

$$\int_{-1.8}^{-0.3} \frac{\exp\left(-\frac{x+4.61}{2.0075}\right)}{2.0075} \, dx = 0.129818$$

Definite integral:

$$\int_{-0.3}^{1.2} \frac{\exp\left(-\frac{x+4.61}{2.0075}\right)}{2.0075} \, dx = 0.0614939$$

Definite integral:

$$\int_{1.2}^{2.7} \frac{\exp\left(-\frac{x+4.61}{2.0075}\right)}{2.0075} \, dx = 0.0291292$$

Definite integral:

$$\int_{2.7}^{4.2} \frac{\exp\left(-\frac{x+4.61}{2.0075}\right)}{2.0075} \, dx = 0.0137982$$

Definite integral:

$$\int_{4.2}^{+\infty} \frac{\exp\left(-\frac{x+4.61}{2.0075}\right)}{2.0075} \, dx = 0.0124188$$

Класи (інтервали)	Частоти	Теоретичні імовірності	npi
[-4.8;-3.3)	57	0.5785	57.85
[-3.3;-1.8)	19	0.2741	27.41
[-1.8;-0.3)	12	0.1298	12.98
[-0.3; 1.2)	5	0.0615	6.15
[1.2;2.7)	3	0.0291	2.91
[2.7;4.2)	2	0.0138	1.38
[4.2;	2	0.01242	1.242

he Farenne, ter que baix vienneplecob lux. NPi 710, nous od'Egreaturo ix:

Класи (інтервали)	Частоти	Теоретичні імовірності	npi
[-4.8;-3.3)	57	0.5785	57.85
[-3.3;-1.8)	19	0.2741	27.41
[-1.8;-0.3)	12	0.1298	12.98
[-0.3;	12	0.1168	11.68

Meme p mosse mo grecuinm χ^2 2a cp-nor. $\chi^2 = \sum_{i=1}^{m} \frac{(n_i - np_i)^2}{np_i} = \frac{(57 - 57.85)^2}{= 57.85} + \frac{(19 - 27.41)^2}{27.41} + \frac{(12 - 12.98)^2}{12.98} + \frac{(12 - 11.68)^2}{11.68} = 2.87872$ Pagam 2 nama, $\chi^2_{\alpha;m-r-1} = \chi^2_{0.05;1} = 3.84$

Ix Saveures, trepobreiones $X_n \leq X_{\alpha,m-r-1,*}^2$ 2,87872 \leq 3,84 lientereyembre, moving representation rinormetry upo nue, up ver cynegur, poznoeriwenes 3a even. 3axonoue zi zieinserinelle z napau. $a^* = -4,61$, $3^* = 2,0075$.

5) Menogour reouverence ma menogour mare. mab. gonogidreouni greacines ogsteres napamenget peznogi-Ogirenco napaciempu reamarko peznogiciez me no-gon momerenit: Dz = Dz Mark er gue zagregmoro ekcnoreengiù reoro pozn. Dz ma Ez 6 genoti

Ez = Z

teenac, mo zreanigeneo ix kopuem. $E_3 = \int x f_3(x) dx = \frac{1}{y} \int x e^{-\frac{x-a}{y}} dx = \frac{1}{y} \int 0 dx + \frac{1}{y} \int 0 dx$ $+\frac{1}{8}\int_{0}^{+\infty} xe^{-\frac{x-\alpha}{8}} dx = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \\ +\frac{1}{8}x - \alpha \end{cases} = \begin{cases} +\frac{1}{8}x - \alpha \\ +\frac$ $= \frac{1}{8} \cdot 8^{2} \int_{0}^{1} te^{t} dt + \frac{1}{8} x a \int_{0}^{1} e^{t} dt = \begin{cases} 1 & \text{thm. 1} : \\ 1 & \text{thm. 1} : \\ 1 & \text{thm. 1} : \end{cases}$ $= \frac{1}{8} \cdot 8^{2} \int_{0}^{1} te^{t} dt + \frac{1}{8} x a \int_{0}^{1} e^{t} dt = \begin{cases} 1 & \text{thm. 1} : \\ 1$

$$\begin{array}{c} -8 \lim_{A \to +\infty} e^{+} \Big|_{0}^{A} - a \lim_{A \to +\infty} e^{+} \Big|_{0}^{A} = -8 \lim_{A \to +\infty} (A - 0)^{-} \\ -8 \lim_{A \to +\infty} (e^{-A} - e^{\circ}) - a \lim_{A \to +\infty} (e^{A} - e^{\circ}) = 0 - 8 \cdot (-1)^{-} \\ -a(-1) = 8 + a \\ D_{x}^{2} = \int_{0}^{\infty} x^{2} f_{x}(x) dx - (E_{x}^{2})^{2} = \int_{0}^{\infty} x^{2} e^{-\frac{x-a}{8}} dx + (E_{x}^{2})^{2} \\ = \int_{0}^{\infty} 0 dx + \int_{0}^{\infty} \int_{0}^{\infty} x^{2} e^{-\frac{x-a}{8}} dx - (a + 8)^{2} = \int_{0}^{\infty} \lim_{N \to \infty} \sup_{n \to \infty} \lim_{N \to \infty} \lim_$$

$$\begin{cases} 8^{2} = D_{3}^{**} & 8^{*2} = 5,632 \pm 6525 \\ \alpha^{*} + 8^{*} = 3 & \alpha^{*} + 8^{*} = -2,6025 \\ \alpha^{*} + 8^{*} = 3 & \alpha^{*} = -2,6025 \\ \alpha^{*} = -2,6025 - 8^{*} \end{cases}$$

$$\begin{cases} 8^{*} = \lambda,3733 & 8^{*} = D_{3}^{**} \\ \alpha^{*} = -2,6025 - 8^{*} \end{cases}$$

$$\begin{cases} 8^{*} = \lambda,3733 & 8^{*} = D_{3}^{**} \\ \alpha^{*} = -2,6025 - 8^{*} \end{cases}$$

$$\begin{cases} 8^{*} = \lambda,3733 & 8^{*} = D_{3}^{**} \\ \alpha^{*} = -2,6025 - 8^{*} \end{cases}$$

$$\begin{cases} 2^{*} = \lambda,3733 & 8^{*} = D_{3}^{**} \\ \alpha^{*} = -2,6025 - 8^{*} \end{cases}$$

$$\begin{cases} 2^{*} = \lambda,6025 -$$

$$-\frac{n}{8} + \frac{1}{8^{2}} \left(\sum_{i=1}^{n} x_{i} - n\alpha \right) = 0$$

$$-\frac{n8}{8^{2}} + \frac{1}{8^{2}} \left(\sum_{i=1}^{n} x_{i} - n\alpha \right) = 0$$

$$8^{*} \neq 0, -n8 + \sum_{i=1}^{n} x_{i} - n\alpha = 0$$

$$8^{*} = (\sum_{i=1}^{n} x_{i} - n\alpha) \cdot \frac{1}{h}$$

$$8^{*} = \frac{1}{h} \sum_{i=1}^{n} x_{i} - \alpha = \frac{1}{3} - \alpha$$

Etyper reconcuizaerii no a: $\angle(x_1,...,x_n,a,8) = \prod_{i=1}^{n} \begin{cases} \frac{1}{8}e^{-\frac{x_i-a}{8}}, & x_i \neq a \end{cases}$ + Racid. year, $0, & x_i \neq a \end{cases}$ drugo bui $x_i \neq a = x_i$

Ompe, lue Mill M, ceatilo:

$$\begin{cases}
X^* = \frac{7}{3} - \min_{i=1,n} x_i = -2,6025 + 4,61 = 2.00 + 5 \\
a^* = \min_{i=1,n} x_i = -4,61
\end{cases}$$

6) Due voxreoro napamentpy kpangy 3 wex ogireore neprelipueme na (aumenmon) resserins recients, vorzuinnere mnicons mer exektenbruicons. Eggenso ne pelipie mer ognitiker, uso grandgetti za

Matt, max are bone zarb. Kpanje.

The zeriese teienes:

$$a^* = \min_{i=1,n} x_i$$
, $x_i - \text{reezare}$, egreanobo pozn. z_i usinon.

 $f_z(x) = \begin{cases} \frac{1}{8}e^{-\frac{x-\alpha}{8}} \times 7\alpha \\ 0 & x < \alpha \end{cases}$

Thogi worked exopermanuells operiore, uso $\sqrt{3}$ year learning to the series of the seri

thogi moxrea exopulmanulus q_p - more, uso δq us luberer legerea rea mexini y pozgimi q_p - uni lig lum, berem.

Finin $(x) = h(1 - F_2(x))^{n-1} f_3(x)$ $\times x - a$

$$F_{3}(x) = \int_{-\infty}^{\infty} f_{3}(x) dx = \int_{\alpha}^{\infty} e^{-\frac{x-\alpha}{x}} dx = \begin{cases} + = \frac{x-\alpha}{x} \\ + = \frac{x-\alpha}{x} \end{cases}$$

$$= \int_{-\infty}^{\infty} f_{3}(x) dx = \int_{\alpha}^{\infty} e^{-\frac{x-\alpha}{x}} dx = \begin{cases} + = \frac{x-\alpha}{x} \\ + = \frac{x-\alpha}{x} \end{cases}$$

$$= \int_{-\infty}^{\infty} f_{3}(x) dx = \int_{\alpha}^{\infty} e^{-\frac{x-\alpha}{x}} dx = \begin{cases} + = \frac{x-\alpha}{x} \\ + = \frac{x-\alpha}{x} \end{cases}$$

$$= \int_{-\infty}^{\infty} f_{3}(x) dx = \int_{\alpha}^{\infty} e^{-\frac{x-\alpha}{x}} dx = \begin{cases} + = \frac{x-\alpha}{x} \\ + = \frac{x-\alpha}{x} \end{cases}$$

$$f_{\min}(x) = N(1-1+e^{-\frac{x-\alpha}{8}})^{n-1} \frac{1}{y} e^{-\frac{x-\alpha}{8}} = \frac{(x-\alpha)(n-1)}{x}.$$

$$\frac{-x-a}{8} = \frac{n}{8} e^{-\frac{(x-a)(n-1)-x+a}{8}} = \frac{n}{8} \exp(\frac{-xn+x+an-a-x}{x}) = \frac{n}{8} \exp(\frac$$

Due repelipeur rea resque. grecciqueux Efmin

 $Efmin = \frac{n}{8} \int_{\alpha}^{\infty} x \exp(-xn + an) dx = \begin{cases} x = u \\ du = dx \\ dv = exp(-xn + an) \end{cases}$

 $V = \int \exp(-xn + an) dx = \begin{cases} f = -xn + an \\ 3f = -\frac{x}{8}dx \end{cases} = \int -\frac{x}{n}e^{+}dt = \begin{cases} 3x = -\frac{x}{n}dt \end{cases}$ $= -\frac{x}{n}e^{\frac{1}{2}} = -\frac{x}{n}e^{-\frac{x}{n}+\frac{\alpha n}{\delta}}$ $=\frac{1}{8}\left(-\frac{x}{h}xe^{-\frac{x}{8}}+\frac{1}{4}xe^{-\frac{x}{8}}+\frac{1}{4}xe^{-\frac{x}{8}}dx\right)=$ $= -\frac{xe^{\frac{\alpha n}{\delta}}}{e^{\frac{xn}{\delta}}} \left| \frac{1}{1000} - \frac{xn + \alpha n}{\delta} \right| + \infty$ $= -\frac{xe^{\frac{\alpha n}{\delta}}}{e^{\frac{xn}{\delta}}} \left| \frac{1}{1000} - \frac{xn + \alpha n}{\delta} \right| + \infty$ $= -\frac{xe^{\frac{\alpha n}{\delta}}}{e^{\frac{xn}{\delta}}} \left| \frac{1}{1000} - \frac{xn + \alpha n}{\delta} \right| + \infty$ $= -\frac{xe^{\frac{\alpha n}{\delta}}}{e^{\frac{xn}{\delta}}} \left| \frac{1}{1000} - \frac{xn + \alpha n}{\delta} \right| + \infty$ $= -\frac{xe^{\frac{\alpha n}{\delta}}}{e^{\frac{xn}{\delta}}} \left| \frac{1}{1000} - \frac{xn + \alpha n}{\delta} \right| + \infty$ $= -\frac{xe^{\frac{\alpha n}{\delta}}}{e^{\frac{xn}{\delta}}} \left| \frac{1}{1000} - \frac{xn + \alpha n}{\delta} \right| + \infty$ $= -\frac{xn + \alpha n}{\delta} \left| \frac{1}{1000} - \frac{xn + \alpha n}{\delta} \right| + \infty$ 90,820 $-\frac{an+an}{s} = a - \frac{8}{n}(o-1) = a + \frac{8}{n}.$ Trepediperus yuroby Ea*=a. a + & + a - en Jarenneo, terezuningereienne ugagnitue ave; lim (a + (x)) = a, money ognikka a* & accellen.
Negreningenreoro.

Therep repub. reezueusereiones gue 8 = 3 - a, 18 bbaxaroner, uso a-ligouerie nepaemeng. ogre pospogiuenci $E_{8}^{*} = E(\bar{3}-\alpha) = E(\bar{$ $= Ex - \alpha = \alpha + 8 - \alpha = 8$ Ex= Ez - max, paneirue. 8=8, omke, 8- reequeinserved ogireka Konecelemerentieme: Tepelipues ogirery a*, xoperny rouces ucuero, uso dijua possereryma rea weresti: lkerso a*-acemen riezu. i Dat -> 0, me a*- korecue-n >+0 merenirea. Precingence Dart: $E(at)^{2} = E(\min xi)^{2} = \int_{8}^{n} \exp(-xn + on) \cdot x^{2} dx = \begin{cases} u = x^{2} \\ du = 2xdx \end{cases}$ a $dv = e^{\frac{x}{8}}$ $= \sqrt[4]{\exp(\frac{\alpha n}{8})} \left(-\frac{nx}{4} + \frac{nx}{4}\right)^{+\infty} + 2\sqrt[4]{x} +$ $= e^{\frac{\alpha n}{8}} \left(-\frac{x^2}{e^{\frac{nx}{8}}} \right|_{\alpha}^{+\infty} + 2 \int_{\alpha}^{+\infty} e^{-\frac{nx}{8}} dx = \frac{\lambda}{4} \int_{\alpha}^{\infty} e^{-\frac{nx}{8}} d$

$$e^{\frac{\alpha n}{8}}\left(\lim_{A \to +\infty} \left(-\frac{A^{2}}{e^{\frac{nA}{8}}}\right) + \alpha^{2}e^{\frac{-n\alpha}{8}} + 2\left(-\frac{8}{n} \times e^{\frac{-n\alpha}{8}}\right) + \frac{8}{n}e^{\frac{-n\alpha}{8}}\right)$$

$$= \alpha^{2}e^{\frac{-n\alpha}{8} + \frac{n\alpha}{8}} + 2e^{\frac{\alpha n}{8}}\left(\lim_{A \to +\infty} \left(Ae^{\frac{-nA}{8}}\right) + \frac{8}{n}ae^{\frac{-n\alpha}{8}} - \frac{8}{n^{2}}e^{\frac{-n\alpha}{8}}\right) + \frac{8}{n}ae^{\frac{-n\alpha}{8}} - \frac{8}{n^{2}}e^{\frac{-n\alpha}{8}}\right)$$

$$= \alpha^{2} + 2\frac{8}{n}a + 2\frac{8}{n^{2}}e^{\frac{-n\alpha}{8}}\left(\lim_{A \to +\infty} e^{\frac{-nA}{8}} - e^{\frac{-n\alpha}{8}}\right) - \frac{\alpha^{2} + 2\frac{8}{n}a + 2\frac{8}{n^{2}}}{e^{\frac{-n\alpha}{8}}}$$

$$= \alpha^{2} + 2\frac{8}{n}a + 2\frac{8}{n^{2}}e^{\frac{-n\alpha}{8}} - 2\frac{8}{n^{2}}e^{\frac{-n\alpha}{8}} - 2\frac{8}{n^{2}}e^{\frac{-n\alpha}{8}}$$

$$= \alpha^{2} + 2\frac{8}{n}a + 2\frac{8}{n^{2}}e^{\frac{-n\alpha}{8}} - 2\frac{8}{n^{2}}e^{\frac{-n\alpha}{8}} - 2\frac{8}{n^{2}}e^{\frac{-n\alpha}{8}}$$

$$= \alpha^{2} + 2\frac{8}{n}a + 2\frac{8}{n^{2}}e^{\frac{-n\alpha}{8}}e^{\frac{-n\alpha}{8}} - 2\frac{8}{n^{2}}e^{\frac{-n\alpha}{8}}e$$

$$= \alpha^{2} + 2 \frac{8}{n} \alpha + 2 \frac{8^{2}}{n^{2}} - \alpha^{2} - 2 \frac{8}{n} \alpha - \frac{8^{2}}{n^{2}} = \frac{8^{2}}{n^{2}}$$

lim Da* = lim = 1/2 = 0. Yuestu vecen l'exoreanci => Ogirera ai e korecucmerem-

Trepeliperus menep ochreny & *:

$$8^* = \overline{3} - \alpha = \sum_{i=1}^{N} \frac{x_i}{n} - \alpha \xrightarrow{3B^{N}} Ex - \alpha = 8 + \alpha - \alpha = 8$$

Onixe, & x xorecucmerenirea. trepelèperus rea expermebraiones orinery 8 .

Parieme ogue grangeres, uso 3 ln L = - n + 1/2.

$$=\left(\sum_{i=1}^{n}x_{i}-n\alpha\right)=-\frac{n}{\delta}+\frac{1}{\delta^{2}}n\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}-\alpha\right)=$$

$$= -\frac{n}{8} + \frac{1}{3^{2}}n(\frac{1}{5} - \alpha) = \frac{5}{8} + \frac{1}{8} - \alpha = \frac{n}{8} + \frac{n}{8} + \frac{n}{8} + \frac{n}{8} = \frac{1}{8} - \frac{n}{8} = \frac{n}{8} - \frac{n}{8} + \frac{n}{8} = \frac{1}{8} - \frac{n}{8} = \frac{n}{8} + \frac{n}{8} = \frac{1}{8} - \frac{n}{8} = \frac{n}{8} + \frac{n}{8} = \frac{1}{8} - \frac{n}{8} = \frac{1}{8} -$$

Onixe, op-viro 3 ln L moxtrea gamecame one

 $C(n, \chi)(\chi^* - \chi) = \frac{n}{3^2}(\chi^* - \chi)$, moving $\chi^* - experimenter$ tea ourrera.

I) hodygybanne golipremie irenceplane que naparen. Poznoepinez reacquireiento 0,85. Motores ree Tyg. que a B Exp(a,8).

trodygyeur goliprenen irenneplan que de

$$8^* - E_8^* = 8$$

$$\sqrt{D_8^*} = \left\{ D_8^* = D_3 - D_0 = D(D_1^* \times i) - 0 = \frac{1}{h^2} \times D_2^* = \frac{1}{h^2} \times D$$

 $= \frac{3 - \alpha - 8}{8} = m(3 - \alpha - 8) = m(3 - \alpha) = m$

$$\frac{\sqrt{N}(\frac{2}{5}-a)}{\sqrt{N}(\frac{2}{5}-a)} - \sqrt{N} \sim N(0,1)$$
 $\frac{\sqrt{N}(\frac{2}{5}-a)}{\sqrt{N}(\frac{2}{5}-a)} - \sqrt{N} < x_{0,95} = 0,95$
 $\frac{\sqrt{N}(\frac{2}{5}-a)}{\sqrt{N}(\frac{2}{5}-a)} - \sqrt{N} < x_{0,95} = 1,96$
 $\frac{\sqrt{N}(\frac{2}{5}-a)}{\sqrt{N}(\frac{2}{5}-a)} - \sqrt{N} < 1,96$
 $\frac{\sqrt{N}(\frac{2}{5}-a)}{\sqrt{N}(\frac{2}{5}-a)} = 0,95$
 $\frac{\sqrt{N}(\frac{2}{5}-a)}{\sqrt{N}(\frac{2}{5}-a)} - \sqrt{N} < 1,96$
 $\frac{\sqrt{N}(\frac{2}{5}-a)}{\sqrt{N}(\frac{2}{5}-a)} = 0,95$
 $\frac{\sqrt{N}(\frac{2}{5}-a)}{\sqrt{N}(\frac{2}{5}-a)} - \sqrt{N} < \frac{\sqrt{N}(\frac{2}{5}-a)}{\sqrt{N}(\frac{2}{5}-a)}$
 $\frac{\sqrt{N}(\frac{2}{5}-a)}{\sqrt{N}(\frac{2}{5}-a)} > \frac{1,96+10}{\sqrt{N}(\frac{2}{5}-a)}$

m (\(\frac{1}{5} - \alpha \)

\[\lambda \lambda \)

\[\lambda \lambda \lambda \)

\[\lambda \lambda \lambda \lambda \]

\[\lambda \lambd

Omke, omp, golipment itemps been!