Module-2 CSEN 3104 Lecture 16

Dr. Debranjan Sarkar

- Show figure
- Single stage recirculating network with N = 64 PEs
- In one circulation step, each PE_i is allowed to send data to any one of PE_{i+1} , PE_{i+1} and PE_{i+1}
- In practice, N is a perfect square and r = sqrt(N). For Illiac IV, r = 8
- The interconnection network of Illiac IV is characterized by the following four routing functions:
 - $R_{+1}(i) = (i+1) \mod N$
 - $R_{-1}(i) = (i-1) \mod N$
 - $R_{+r}(i) = (i+r) \mod N$
 - R_{-r}(i) = (i-r) mod N

Where $0 \le i \le (N-1)$

- In the reduced Illiac network, the outputs of IS_i are connected to the inputs of OS_j for j = i+1, i-1, i+r, and i-r
- In other words, OS_i gets its inputs from IS_i for i = j-1, j+1, j-r, and j+r respectively
- Each PE_i is directly connected to its four nearest neighbours in the mesh network
- Permutation Cycle (a b c) (d e) represents the permutation $a \rightarrow b$, $b \rightarrow c$, $c \rightarrow a$ and $d \rightarrow e$, $e \rightarrow d$ in a circular fashion within each pair of parentheses
- We may write for Horizontal PEs

$$R_{+1} = (0 \ 1 \ 2 \dots N-2 \ N-1)$$

 $R_{-1} = (N-1 \ N-2 \dots 2 \ 1 \ 0)$

 When the routing function is executed, data is routed as per above only if all PEs in the cycle are active

For Vertical PEs, we may write

$$R_{+r} = \prod (i i+r i+2r i+N-2r i+N-r), \text{ for } r = 0, 1, 2, ..., r-1$$

 $R_{-r} = \prod (i+N-r i+N-2r i+2r i+r i), \text{ for } r = 0, 1, 2, ..., r-1$

In the reduced Illiac network,

$$R_{+4} = (0 4 8 12) (1 5 9 13) (2 6 10 14) (3 7 11 15)$$

 $R_{-4} = (12 8 4 0) (13 9 5 1) (14 10 6 2) (15 11 7 3)$

- The cycle (2 6 10 14) in the above permutation R_{+4} will not be executed if one or more among PE_2 , PE_6 , PE_{10} , and PE_{14} is disabled by masking
- Generally speaking, when R_{+r} or R_{-r} is executed, data are permuted only if PE_{i+kr} , where $0 \le k \le r-1$ are active for each i

- The Illiac network is a partially connected network (Show figure)
- It is noted that
 - In one step, only 4 PEs can be reached from any PE PE_0 to PE_1 , PE_4 , PE_{12} or PE_{15}
 - In two steps, 7 PEs can be reached from any PE PE_0 to PE_2 , PE_3 , PE_5 , PE_8 , PE_{11} , PE_{13} or PE_{14}
 - In three steps, 11 PEs can be reached from any PE
 - Processing elements PE₆, PE₇, PE₉ or PE₁₀ can be reached from PE₀ in the worst case
 of three steps
- It takes I steps (recirculations) to route data from PE_i to any other PE_j, in an Illiac network of size N, where I is upper-bounded by

$$l \leq sqrt(N) - 1$$

At most sqrt(64) - 1 = 7 steps are needed in Illiac IV to route data from any one PE to another PE

If connectivity is increased, the upper bound can be lowered

Single Stage Dynamic Network

- Also called recirculating network
- Data items may have to recirculate through the single stage several times before reaching their final destination
- The number of recirculations needed depends on the connectivity of the network
- Generally, the higher the connectivity, the less is the number of recirculations
- The crossbar network is an extreme case where only one circulation is needed to establish any connection path
- However it is very costly. A fully connected crossbar network has a cost of O(N²)
 which may be prohibitive for large N
- Most recirculating networks have cost O(NlogN) or lower, which is much more cost-effective for large N

Multistage Dynamic Networks

- Many stages of interconnected switches form a multistage network
 - Described by 3 characterizing features
 - Switch box
 - Network topology
 - Control structure
 - Many switch boxes are used
 - Each switch box is basically an interchange device with 2 inputs and 2 outputs (show figure)
 - A two function switch box can be in any of the following states
 - Straight
 - Exchange
 - A four function switch box can be in any of the following states
 - Straight
 - Exchange
 - Upper broadcast
 - Lower broadcast

Multistage Networks

- Capable of connecting an arbitrary input terminal to an arbitrary output terminal
- Consists of n stages where $N = 2^n$ is the number of input and output lines
- Each stage may use N/2 switch boxes
- Each stage is connected to the next stage by at least N paths
- The interconnection patterns from stage to stage determine the network topology
- The network delay is proportional to the number of stages
- The control structure can be
 - Individual stage control
 - uses the same control signal to set all switch boxes in the same stage.
 - Requires n sets of control signals
 - Individual box control
 - Separate control signal is used to set the state of each switch box
 - High flexibility but more cost
 - Partial stage control
 - Compromise design

- Can be implemented as a
 - single-stage (or recirculating) network
 - Multistage network
- Show figure of a 3-dimensional cube
- Horizontal lines (parallel to x-axis) connect vertices (PEs) whose addresses differ in the LSB position
- Vertical lines (parallel to y-axis) connect vertices (PEs) whose addresses differ in the MSB position
- Lines parallel to z-axis connect vertices (PEs) whose addresses differ in the middle bit position

- The unit cube concept may be extended to an n-dimensional unit space, called n-cube with n-bit address for each vertex
- In the n-cube, each PE located at a corner is directly connected to its n neighbours
- The addresses of the neighbouring PEs differ in one bit position only
- The routing functions of an n-dimensional cube network are given by:

$$C_i(a_{n-1} a_1 a_0) = a_{n-1} a_{i+1} a_i' a_{i-1} a_1 a_0$$
 for $i = 0,1,2,...., n-1$

- Examples of cube network
 - Pease's binary n-cube
 - The flip network
 - Programmable switching network proposed for the Phoenix project

- In the recirculating (single stage) cube network, each IS_A (for $0 \le A \le N-1$) is connected to n OSs whose addresses are $a_{n-1}a_{n-2}$ $a_{i+1}a_i$ ' a_{i-1} a_1a_0 (for $0 \le i \le n-1$)
- Similarly, each OS_T with $T = t_{\eta-1}t_{n-2} \dots t_1t_0$ gets its inputs from ISs whose addresses are $t_{n-1}t_{n-2} \dots t_{i+1}t_i t_{i-1} \dots t_1t_0$ (for $0 \le i \le n-1$)
- The n routing functions are given by:

$$C_i(a_{n-1}a_{n-2} a_1a_0) = a_{n-1}a_{n-2}a_{i+1}a_i'a_{i-1} a_1a_0 \text{ (for } 0 \le i \le n-1)$$

- Show the diagram of recirculating cube network
- $C_0 = (0,1)(2,3)(4,5)(6,7)$
- $C_1 = (0,2)(1,3)(4,6)(5,7)$
- $C_2 = (0,4) (1,5) (2,6) (3,7)$
- If all the 3 connecting patterns are assembled together, the 3-cube is obtained

- The same set of cube-routing functions may be implemented by a three-stage cube network (Show figure)
- Two-function (Straight and Exchange) switch boxes are used
- Stage i implements the C_i routing function
- This means the switch boxes at stage i connect an input line to the output line that differs from it only at the ith bit position
- Individual box control is assumed in a multistage cube network
- Show the path between a source and a destination
- Supports up to *N* one-to-one simultaneous connections
- There may be some permutations which cannot be established
- Also supports one-to-many connections; that is, an input device can broadcast to all or a subset of the output devices (Show figure)

- We may note that the permutation (0,1) (0,2) (0,4) is performed only if the top row boxes (a, e, i) are set to exchange and the rest are set to straight
- Masking may change the data-routing patterns
- General practice is to disable all the PEs belonging to the same cycle of a permutation
- In case of $P_2 = (0,4) (1,5) (2,6) (3,7)$, if both PE_2 and PE_6 become inactive by masking, the cycles (2,6) are removed and the cube-routing function C_2 performs only the partial permutation (0,4) (1,5) (3,7)
- If only PE₂ is disabled,
 - the above partial permutation will still be performed
 - Data in both PE₂ and PE₆ will be transferred to PE₂
 - PE₆ will not receive any data
- Masking should be carefully applied to cube networks

Thank you