Beachten Sie bitte die Hinweise auf dem Deckblatt!

Aufgabe 1

propose intel

2 Punkte

(a) Seien (X, d) ein metrischer Raum, $a \in X$ und $M \subset X$.

Definieren Sie die Begriffe

- . Umgebung von a.
- * Innerer Punkt von M.

10 Punkte (b) Bestimmen Ste (mit Beweis) die Menge \mathring{M} aller inneren Punkte der Menge

$$M := \left\{ \left(\frac{x}{2} \right) \in \mathbb{R}^{2} \mid 0 < x^{2} + y^{2} \leq 1 \right\}$$

in (R¹, d₂).

Aufgabe 2

2 Punkte (a) Seien $D \subset \mathbb{R}^n$, $a \in D$ und $f:D \longrightarrow \mathbb{R}$. Formulieren Sie die Definition der Stetigkeit von f im Punkt a sowie das Folgenkriterium dafür. (\mathbb{R}^n bzw. \mathbb{R} seien mit einer Norm versehen.)

(b) Set $n = \binom{n}{2} \in \mathbb{R}^2$, and set $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ durch

$$f(x,y) := \begin{cases} \frac{-12}{\sqrt{2}}, & \text{folls } y = 0, \\ 0, & \text{falls } y = 0. \end{cases}$$

X+9 1/91

definiert. Zelgdu Sie, dass

- 4 Punkte (i) f-storig ist in a, wenn a2 \$0 gilt,
- . Puriote (ii) f which stetig ist in a, when $a_1 = 0$ gilt.

TPunta Animabe 3

Bewelsen Sie die folgende Aussage aus dem Kurs:

Set $M \subseteq \mathbb{R}^n$ and a sin innerer Punkt von M. Let $f \in Abb(M, \mathbb{R}^n)$ differentiaring in a set is f auch stating in a.

5 Punkts Aufgabe 4

Bestimmer Sie die Stellen $\binom{x}{y}$, in denen die Funktion

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}_1 \left(\frac{\pi}{2}\right) \longrightarrow f(x,y) := x^3 - 3x^3 + 4x - 2 - 4xy - 4y - 2y^2$$

lokale Maxima, lokale Minima bzw. Sattelpunkte hat

Aufgabe 5

I Punkt (a) Seien $I := [\alpha, \beta]$ ein kompaktes Intervall mit $\alpha \leq \beta$ und $\varphi : I \longrightarrow \mathbb{R}^n$ eine parametrisierte Kurve in \mathbb{R}^n . Für eine Intervallteilung $T = (k_0, \dots, k_m)$ vor I mit $m \in \mathbb{N}$ und $\alpha = k_0 \leq \dots \leq k_m = \beta$ sei

$$L(\varphi,T) := \sum_{n=1}^{m} \|\varphi(t_{\mu}) - \varphi(t_{\mu-1})\|_{2}.$$

Wie ist die totale Variation von \(\phi \) (bez. | \(\frac{1}{2} \)) definiert?

7 Punkte (b) Bestimmen Sie (bez. || ||2) die Länge der Kurve [p] mit

$$\varphi:[0,3] \longrightarrow \mathbb{R}^2, t \longrightarrow \varphi(t) := \begin{pmatrix} t^3 \cos t \\ t^2 \sin t \end{pmatrix} \cdot t^2 \sin t$$

Hinweis: Die Länge einer stetig differenzierberen Kurve kann oft unter geeigneten Voraussetzungen mithilfe eines Integrals bestimmt werden.

Aufgabe 6

Set $V:=\{(f)\in\mathbb{R}^2\mid 1\leq x\leq 2 \text{ and } 0\leq xy\leq 1\}$, and $f:V\longrightarrow\mathbb{R}$ so definient.

- 4 Punkts (a) Berechnen Sie $\int f d\lambda_2$ durch direkte Anwendung des Satzes von Fubini. Dabei können Sie ohne Beweis benutzen, dass $f \in \mathcal{L}(V)$ gib.
- Punkte (b) Begründen Sie, dass

$$T:\left\{\left(\begin{smallmatrix} u\\ v\end{smallmatrix}\right)\in\mathbb{R}^2\mid u>0\right\}\longrightarrow\mathbb{R}^2, \left(\begin{smallmatrix} u\\ u\end{smallmatrix}\right)\longrightarrow T(u,v):=\left(\begin{smallmatrix} u\\ v\end{smallmatrix}\right)$$

injektiv und stetig differenzierbar ist, und berechnen Sie det T'(u,v) für u>0

6 Punkte (c) Beweisen Sie für $U:=[1,2]\times[0,1]$ die Beziehung T(U)=V, und berechnen Sie $\int f\,d\lambda_2=\int \int d\lambda_2$, indem Sie zunächst den Transformationssatz und dann den Satz von Fübini anwenden.

memento: $\cos^2 + \sin^2 = 1$ # ψ 3t²cost - t³sint

2t sint + t²cost $|| \varphi'||_2 = \sqrt{9t^4 \cos t} + t^6 \sin t - 6t^5 \cos t \sin t + 4t^2 \sin^2 t + t^4 \cos^2 t + 4t^3 \sin^2 t + (4+t^4) \sin^2 t . . .$ sintcost

Klausur am 02.08.2008

Lösungsvorschläge zu den Klausuraufgaben

Aufgabe 1

(a) Seien (X, d) ein metrischer Raum, $a \in X$ und $M \subset X$.

 $U\subset X$ helds Umgebung von $lpha_+$ wonn es ein arepsilon>0 gibt, sodess die arepsilon- Uingebung von $lpha_+$ also $U_i(a) := \{x \in X \mid d(x,a) < \varepsilon\}$, in U enthalten isc. Weiter helift a inneres Punkt von M. wenn M Umgebung von a ist.

(b) Wir zeigen für $M:=\{(\vec{x})\in\mathbb{R}^2\mid 0< x^3+y^2\leq 1\}$, dass für die Menge M der inneren Punkte von M die Beziehung

$$M = \{(3) \in \mathbb{R}^2 \mid 0 < \pi^2 + y^2 < 1\}$$

gilt.

(i) Sei $a = \binom{a}{b} \in \mathbb{R}^7$ mit $0 < a^2 + \beta^2 < 1$ gegeben. Wir zeigen, dass a innerer Punkt von Mist. Dazu setzen wir $\varepsilon := \min\{d_2(a, \binom{0}{0}), 1 - d_2(a, \binom{0}{0})\} \text{ (vgl. Skizze)}.$

Fall: a liegt näher an der Kreislinie als bei 0, also $\varepsilon = 1 - d_2(a, \binom{a}{0})$ Kreislinie, also $\varepsilon = d_2(a, \binom{a}{0})$

Fall: a liegt näher bei 0 cls an der

Dann ist $\varepsilon>0$, und es gilt $U_{\varepsilon}(a)\subset M$, denn für $x=\binom{\varepsilon}{\varepsilon}\in U_{\varepsilon}(a)$ ist nach der Dreiecksungleichung

 $\frac{d_2(x,\binom{0}{0})}{\leq d_2(x,a) + d_2(a,\binom{0}{0})} < \varepsilon + d_2(a,\binom{0}{0}) \leq 1 - d_2(a,\binom{0}{0}) + d_2(a,\binom{0}{0}) = 1.$ Elso $d_2(x,\binom{0}{n})=\sqrt{\xi^2+\eta^2}<1$ und folglich $\xi^2+\eta^2<1$, und außerdem ist nach der Dreiacksungleichung

$$d_2(a,\binom{0}{0}) \leq d_2(a,x) + d_2(x,\binom{0}{0}) < \varepsilon + d_2(z,\binom{0}{0}) \leq d_2(a,\binom{0}{0}) + d_2(x,\binom{0}{0})$$

was $0 < d_2(x, \binom{n}{n}) = \sqrt{\xi^2 + \eta^2}$ zur Folge hat. Insgesamt gilt also $0 < \xi^2 - \eta^2 < 1$ für $x \in U_2(a)$, d. h. $U_2(a) \subset M$. Damit ist a als innerer Punkt von M nachgewiesen.

- (ii) Is: a innerer Punkt von M, so ist M Umgebung von M und muss damit a enthalten. Es folgt, dass Punkte, die nicht zu M gehören, keine inneren Punkte von M sein können. Folglich ist $a = \binom{2}{3}$ mit $\alpha = \beta = 0$ bzw. mit $\alpha^2 + \beta^2 > 1$ kein innerer Punkt von M.
- (iii) Auch die Punkte $a=\binom{a}{\beta}$ mit $\alpha^2+\beta^2=1$ sind keine inneren Punkte: Sei ein solcher Punkt a vorgelegt. Wir zeigen, dass jede Umgebung U von a einen Punkt anthält, der nicht zu M gehört, und folglich $U\not\subset M$ gilt. Sei dazu U eine Umgebung von a, und sei s>0 so gewählt, dass $U_s(a)\subset U$ gilt. Dann betrachten wir $x=\binom{s}{\gamma}:=(1+\frac{s}{2})a$.

Hierfür gilt $\xi^2 + \eta^2 = (1 + \xi)^2 (\alpha^2 + \beta^2) = (1 + \xi)^2 > 1$, also $x \notin M$. Außerdem gilt $x \in U_{\epsilon}(a)$, also $x \in U$, de $d_1(x, a) = ||x - \alpha||_2 = ||(1 + \xi)a - \alpha||_2 = ||\xi a||_2 = \frac{\epsilon}{2} ||\alpha||_2 = \frac{\epsilon}$

Aufgabe 2

(a) Seien $D \subset \mathbb{R}^n$, $a \in D$ und $f:D \longrightarrow \mathbb{R}$. Die Funktion f beißt stetig in a, wenn as zu jeder Umgebung V von f(a) eine Umgebung U von a derart gibt, sodass $f(U \cap D) \subset V$ gilt.

f ist geneu dann in a stetig, wenn für jede Polge (c_k) in D mit $\lim_{k \to \infty} r_k = a$ die Beziehung inm $f(x_k) = f(a)$ gilt.

(b) Sei $a=\binom{a_1}{a_2}\in \mathbb{R}^2$, und sei $f:\mathbb{R}^2\longrightarrow \mathbb{R}$ durch

$$f(x,y) := \begin{cases} \frac{x + y}{\sqrt{|y|}}, & \text{falls } y \neq 0, \\ 0, & \text{falls } y = 0, \end{cases}$$

definiert.

(i) Es sei $M:=\{\binom{x}{y}\in\mathbb{R}^2\mid y\neq 0\}$. Wir zeigen, dass f in allen $a\in M$ stetig ist. Dazu zeigen wir zunächst, dass die Einschränkung von f auf M, also die Funktion f_{M} , stetig ist. Die Projektionen

$$\pi_1:\mathbb{R}^2\longrightarrow\mathbb{R},\; \binom{\pi}{p}\longrightarrow\pi_1(x,y):=x\;\;\;\mathrm{und}\;\;\;\pi_2:\mathbb{R}^2\longrightarrow\mathbb{R},\; \binom{\pi}{p}\longrightarrow\pi_2(x,y):=y$$

und damit die Einschränkungen $\pi_1|_M$ und $\pi_2|_M$ sind stetig. Da die Betragsfunktion $|\cdot|$ und die Wurzelfunktion $\sqrt{-\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2}$ stetig. Aufgrund der Rechenzegeln für stetige Funktionen ist dann

$$f|_{\mathcal{M}} = \frac{\pi_1|_{\mathcal{M}} + \pi_2|_{\mathcal{M}}}{\sqrt{\sigma ||\sigma \pi_2|_{\mathcal{M}}}}$$