1. Шпорцы к экзу по диф- 1.2. Классификация фурам by Rexhaif

1.1. Автономные системы. Основные свойства автономных систем. Положения равновесия.

Автономные системы: Сиситема обыкновенных ДУ называется автономной, когда переменная t явно не входит в систему. $\dot{x} = \frac{dx}{dt} = f(x)$; (1). Иначе, в координатном виде: $\frac{dx_i}{dt} = f_i(x_1, \dots, x_n), i = \overline{1, n}.$

Свойства автономных систем: 1. Если $x = \varphi(t)$ - решение системы (1), то $\forall C : x =$ $\varphi(t+C)$ - тоже решение системы. Док-во: $\frac{d\varphi(t+C)}{dt} = \frac{d\varphi(t+C)}{d(t+C)} = f(\varphi(t+C)).$

- 2. Две фазовые траектории либо не имеют общих точек, либо совпадают. Док-во: Пусть ρ_1, ρ_2 - фазовые траектории. Им отвечает интервал решения $x = \varphi(t), \dots, x =$ $\psi(x)$. И пусть $\varphi(t_1) = x_0 = \psi(t_2)$ (есть общая точка). Рассмотрим вектор-функцию $x = \psi(t + (t_2 - t_1)) = X(t)$. В силу св-ва (1) это тоже решение, притом: $X(t_1) = \varphi(t_1) \Rightarrow$ $X(t) = \varphi(t) \Rightarrow \varphi(t) = \psi(t + (t_2 - t_1))$, т.е кривые совпадают.
- 3. Фазовая траектория, отличная от точки, есть гладкая кривая. Док-во: Пусть $X^0 =$ $arphi(t_0) = rac{darphi(t_0)}{dt}$. Этот вектор - касательная и в каждой точке он не равен нулю. ЧТД. Положение равновесия: Точка $a \in \mathbb{R}^4$ называется точкой равновесия авт. системы, если $f(a) = 0(\dot{x}(a) = 0)$.

фазовых прямыми. траекторий автономных систем.

Всякая фазовая траектория принадлежит к одному из трех типов(классов): 1. Гладкая кривая без самопересечений. 2. Замкнутая гладкая кривая (цикл). 3. Точка. Теорема: Если фаз. траектория решения $x = \varphi(t)$ есть гладская замкн. кривая, то это решение есть периодическая ф-я t с периодом T > 0. NEED SOME PROOFS FOR THAT SHIT, BUT I'M TOO LAZY.

1.3. Групповые свойства решений автономной системы уравнений.

Пусть $x(t,x^0)|_{t=0} = x^0$ - решение системы (1), т.е $x^0 \neq 0$ - нач. условие для системы (1). Тогда $x(t_1+t_2,x^0)=x(t_2;x(t_1,x^0))=$ $x(t_1, x(t_2, x^0)).$

Док-во: Пусть вект. функции: $\varphi_1(t) =$ $x(t, x(t_1, x^0)); \varphi_2(t) = x(t + t_1, x^0)$ - это решение для системы 1. При t = 0: $\varphi_1(0) = x(t_1, x^0); \varphi_2(0) = x(t_1, x^0).$ T.e $\varphi_1(0) = \varphi_2(0)$. В силу теор. о единственности $\varphi_1(t) = \varphi_2(t) \forall t$. Отсюда следует оба уравнения из условия. Из предыдущег оследует: $x(-t, x(t, x^0)) = x_0$.

1.4. Структура решений автономной системы в окрестности неособой точки.

Дано: $\frac{dx}{dt} = f(x)$ в нек-й окрестности точки V точки a; $f(a) \neq 0$. Фазовые траектории в окрестности V будут кривыми и гладкой заменой переменных их можно сделать

Теорема о выпрямлении: пусть $f(a) \neq \pi u \dot{u}(x) \leq 0$, то участок ф-ии f(x) образует 0. Тогда в малой окрестности точки a систему (1) путем гладкой замены переменных можно привести к виду: (2) $\frac{dy_1}{dt}$ = $0; \frac{dy_2}{dt} = 0; \dots; \frac{dy_n}{dt} = 1.$ Траектории для (2) - прямые линии: $y_1 = C_1; \dots; y_n = t + C_n$. **Док-во**: Т.к $f(a) \neq 0$ - без огр. общн. говорим, что : $f_n(a) \neq 0$. Пров. гиперплоск. $P: x_n = a_n$. Её точки имеют вид: (ξ, a_n) . Пусть: $x = \varphi(t, \xi)$ - решение (1), такое, что $\varphi(0,\xi) = (\xi,a_n)$ - нач. точка лежит на P. Формула: $x = \varphi(t, \xi)$ - и дает искомую замену. Обознач. $y_1 = \xi_1; \dots; y_n = t$. В новых переменных траектории будут прямыми линиями, т.к из опред. решения имеем, что ξ_1, \dots, ξ_{n-1} лежат вдоль траектории $x = \varphi(t, \xi^0)$ и её уравн. в перем. y им. вид: $y_1 = \xi_1^0; \dots; y_n = t$.

1.5. Производная в силу системы. Геометрическая интерпретация.

 $\mathbf{\Pi}$ ано : $\frac{d\vec{x}}{dt} = \vec{f}(\vec{x},t)$ (1). Пусть в области $G \subset \mathbb{R}^{n+1}$ ф-я \vec{f} непр. дифф. по всем аргу-

Конструкция : Рассм. произв. ф-ю u = (t, \vec{x}) . Пусть $\vec{x} = \vec{\varphi}(t)$ - решение сист. (1) \Rightarrow Вдоль реш. системы имеем $u(t, \vec{\varphi}(t)) =$ $\mathbb{W}(t)$. Дифференцируем $\mathbb{W}(t)$ по t: $\frac{d\mathbb{W}}{dt}$ = $\big(\tfrac{\partial u(x,\vec{t})}{\partial t} + \sum_{j=1}^n \tfrac{\partial u(t,\vec{x})}{\partial x_j} \cdot \tfrac{dx_j}{dt}\big)\big|_{\vec{x} = \vec{\varphi}(t)} = \tfrac{\partial u(t,\vec{x})}{\partial t} +$ $\sum_{j=1}^n rac{\partial u(t,ec{x})}{\partial x_j} \cdot f_j(t,ec{x})|_{ec{x}=ec{arphi}(t)}$ (2). Полученное лу системы (1). Обозн. \dot{u} или $\frac{du}{dt}$.

вектор $\nabla u(x)$ ортогонален к S в точке х и рез них.

направлен в сторону возр. ф-ии u(x). Еспрямой или тупой угол с вектором $\nabla u(x)$.

1.6. Первые интегралы. Теорема о первых интегралах. Независимые интегралы.

Определение: Ф-я u(x) называется первым интегралом автономной системы (1) если она постоянна вдоль каждой траектории этой системы.

(1) Теорема опервых интегралах: Для того, чтобы ф-я u(x) была перв. интег. системы (1) необх. и достаточно, чтобы она удовл. соотн в области D: $\sum_{j=1}^{n} \frac{\partial u(x)}{\partial x_{j}}$. $f_i(x) = 0 \ (\#)$

Док-во (1) : Пусть u(x) - непр. интегрируемо в обл. $D. x = \varphi(t)$ - решение системы (1) \Rightarrow $\mathbb{W}(t) = u(\varphi(t))$ - постоянна $\forall t \Rightarrow \dot{u}(x) = 0$ в D. Обратно: Пусть # - в области $D \Rightarrow$ пусть $x = \varphi(t)$ - решение для (1) $\Rightarrow \frac{d}{dt}u(\varphi(t)) = \sum_{j=1}^{n} \frac{\partial u(x)}{\partial x_j} f_j(x)|_{x=\varphi(t)} = 0$ $\Rightarrow u(\varphi(t))$ - не зависит от $t \Rightarrow$ - явл. первым интегралом. ЧТД.

(2) Теорема о независимых интегра**лы** : Пусть т. a не есть положение равновесия. Тогда в её некоторой окрестности $\exists n-1$ независимых интегралов первых интегралов $u_1(x), \ldots, u_{n-1}(x)$ и любой иной первый интеграл выражается через них.

Док-во (2) : Пусть окр. a дост. мала $\Rightarrow \exists$ окр. V точки y = 0 и гладкая обратимая в (2) выражение - производной ф-ии u в си- u замена x=arphi(y) приводящая систему к виду $\frac{dy_1}{dt} = 0; \dots; \frac{dy_n}{dt} = 1$. Полученная си-**Геом. интерпретация**: Пусть u(x) - глад- стема имеет n-1 незав. первых интегракая и $\nabla u(x) \neq 0$ в уч. обл. $D. \Rightarrow$ ур-е лов $u_1(y) = y_1; \dots; u_{n-1}(y) = y_{n-1}$ и всяu(x) = 0 опр. гладкую поверхность S, а кий иной первый интеграл выражается че-