Everlasting privacy and efficient coercion resistance in remote electronic voting

Panagiotis Grontas, Aris Pagourtzis and Alexandros Zacharakis

In a nutshell...

- We propose a new electronic voting framework that provides:
 - Efficient coercion resistance
 - Everlasting privacy
- By combining:
 - The coercion resistance framework of Juels, Catalano and Jakobsson (JCJ)
 - The blind signature based protocol of Fujioka, Okamoto and Ohta (FOO)
- Using a new primitive:
 - Conditional Blind Signatures

Electronic Voting is hard

- Voting is a general decision making process that follows each era's technology
- Why can't we vote with our computers?
- Because voting is inherently hard, as it must reconcile many conflicting properties
- Integrity: The result reflects the aggregate choices of the voters
 - No votes are altered, deleted or inserted by an adversary
 - Implemented by End-To-End-Verifiability
 - Cast as intended
 - Recorded as cast
 - Counted as recorded

Electronic Voting is hard

- Privacy: A means to and end (the voters express their true opinion)
 - Secrecy: The vote is protected against the talliers (anonymity will also do)
 - Receipt Freeness: The vote is protected against malicious voters wanting to sell their votes
 - Coercion Resistance: Active adversary that can dictate voter behavior
 - Specific/Random Vote
 - Impersonation
 - Forced Abstention
 - Essential for remote electronic voting
- Many more desirable properties
 - Fairness
 - Availability
 - Usability ...

Everlasting Privacy

- Moran and Naor (2006)
- Integrity is ephemeral useful until all parties concede
- Privacy has to outlast the election:
 - Fear of a future oppressive regime
 - Theoretical and practical advances work against computational assumptions
 - In 30 years time all current cryptographic keys will be useless (Adi Shamir ~ 2010)
- Verifiability makes election data widely available
- Information theoretic (everlasting) privacy is required

The JCJ Coercion Resistance Framework

- Juels Catalano Jakobsson (2005)
- Main idea: A coercer has no incentive to attack if he cannot tell if his attack succeeded or not.
- Implementation: Each voter can cast many indistinguishable votes –fake and real
 - The validity is determined by an accompanying credential
 - A single credential is registered as valid during a one-time untappable registration process
 - Under coercion the voter generates a random but indistinguishable credential to cast an invalid vote
 - Using an assumed moment of privacy the voter casts the real vote using the correct credential
- Before counting, invalid votes must be removed in a manner undetectable by the coercer

The JCJ Coercion Resistance Framework

- Vote authorization:
 - The valid credentials are published encrypted during registration
 - The counters check them against the supplied ones in encrypted form
 - If the check is ok the vote is counted
- Complexity: Quadratic in the number of votes very inefficient
- Many efforts have tried to provide linear complexity
- Our approach:
 - Uses 2 phases to reduce complexity
 - Combines coercion resistance with everlasting privacy

Cryptography and Voting

- Cryptographic Primitives have been proposed to implement
 - Vote secrecy and anonymity (Mixnets, Blind Signatures, Homomorphic Encryption)
 - Integrity (Zero Knowledge Proofs)
- Many schemes have been proposed but few have been applied in practice
- The majority of proposals in the literature focus on integrity
- Privacy is achieved under:
 - Computational Assumptions: Factoring, DLOG etc. have no PT algorithm
 - Distributed Trust Assumptions: We trust the majority of the voting authorities' members

Basic Cryptographic Assumptions

The DLOG Problem is hard

Given a cyclic group $G = \langle g \rangle$ of prime order q and a random element $y \in G$ compute $x \in \mathbb{Z}_q$: $y = g^x$

The CDH Problem is hard

Given a cyclic group $G = \langle g \rangle$ of prime order q and a 2 elements $y_{1,} = g^{x_1}, y_2 = g^{x_2} \in G$ compute $g^{x_1 x_2}$

The DDH Problem is hard

Given a cyclic group G=< g> of prime order q, a random element y and 2 elements $y_1=g^{x_1},y_2=g^{x_2}\in G$ decide if $y=g^{x_1x_2}$

- The DLOG problem is believed to be the hardest.
- There are groups with easy DDHP and difficult CDHP and DLOG

Basic Cryptographic Primitives

- Homomorphic Encryption Scheme
 - $Enc_h(m_1r_1) Enc_h(m_2, r_2) =$ $Enc_h(m_1m_2, r_1 + r_2)$
 - Reencryption
 - Modified El Gamal (for proofs)
 - Group of prime order q where the DDH problem is hard
 - Private key: $x \in \mathbb{Z}_q$
 - Public key: $h = g_1^x$
 - $Enc_h(m,r) = (g_1^r, g_2^r, mh^r)$
 - $Dec_x(a, b, c) = ca^{-x}$

- Plaintext Equivalence Test (PET) (Jakobsson - Juels 2000)
 - Prove that two ciphertexts indeed encrypt the same plaintext without decrypting them

- Zero knowledge proofs
 - Prove possession of credential and vote
 - Prove candidate selection validity
 - Prove correct decryption

Blind Signatures

- A variation of digital signatures for anonymity (Chaum 1982) with many instantiations
- The signer receives and signs a blinded version of a message
- The user unblinds the signature and obtains a regular one
- Security properties:
 - Blindness: Cannot associate messages with signing sessions
 - Unforgeability: Cannot generate valid signatures without the private key

- A useful real world analogy:
 - A message and a piece of carbon paper is placed in an envelope
 - The signer signs the envelope
 - Because of the carbon the signature is transferred to the message
 - The user removes the signed message from the envelope

Conditional Blind Signatures

- Blind signatures that can only be verified by a designated verifier
- Inject a secret bit of information to the signature
- The designated verifier can use his secret key to extract this information
- The signer passes embedded information to the verifier using the signature
- This information is hidden from the user
- Extra Security properties
 - Conditional Verifiability

An instantiation using Okamoto – Schnorr Blind Signatures

An instantiation using Okamoto – Schnorr Blind Signatures

Signature Verification

$$m, (x^*, e^*, sig_1, sig_2), \mathbf{z}, \mathbf{s}$$
 $e^{*'} \leftarrow_r H(m, x^*)$
 $y'_1 \leftarrow Dec_z (sig_1)$
 $y'_2 \leftarrow sig_2$

Check:

$$e^{*'} = e^{*}$$

$$x^{*S} = y'_{1}g_{2}^{y'_{2}S}v^{e^{*}S}$$

Round Reduction

- The first step of the interaction can be removed:
 - The signer and the user preagree on a common way to generate the randomness

Security

- Blindness: Information Theoretic
- Unforgeability: CDHP
- Conditional Verifiability: DDHP

Using CBS for coercion resistance: Main idea

- Vote authorization occurs during registration and not during counting
- Each ballot is signed using a conditional blind signature
- If the ballot carries the valid registration credential the bit 1 is embedded in the signature
- If the ballot carries a random credential (coercion) then the bit 0 is embedded in the signature
- Efficiency: We can use the voter id to retrieve the credential
- Privacy: The blindness of the scheme hides the ballot contents

Security Analysis

- Eligibility
 - Only the eligible voters vote
 - Based on the Unforgeability of CBS Scheme
- Everlasting Privacy
 - Perfect Blindness of the CBS Scheme
- Coercion Resistance
 - Simulation based argument based on the DDH Assumption

- Verifiability
 - Standard Zero Knowledge Proofs
 - Voting Authority actions to be verified:
 - Registration: A vote is valid iff the credential is valid
 - Tallying: A vote is counted iff it is valid
 - Depends on Conditional Verifiability of CBS
 - Distributed Voting Authority
 - Threshold CBS with honest majority
 - Real world conflict of interest
 - This is the same assumption that most voting schemes do for **privacy**

Questions - Discussion

