

Roteiro de Exploratory Data Analysis - EDA

Este roteiro contempla os principais elementos utilizados em uma análise de dados, para exploração, entendimento, organização e definições sobre o conjunto de dados.

O conjunto de dados

Será utilizado o conjunto Automobile Sales Data, coletado no Kaggle. O arquivo encontra no GitHub relativo ao curso, na pasta EDA. A seguir algumas informações importantes sobre as *features* que compõem o conjunto.

ORDERNUMBER	This column represents the unique identification number assigned to each order.
QUANTITYORDERED	It indicates the number of items ordered in each order.
PRICEEACH	This column specifies the price of each item in the order.
ORDERLINENUMBER	It represents the line number of each item within an order.
SALES	This column denotes the total sales amount for each order, which is
	calculated by multiplying the quantity ordered by the price of each item.
ORDERDATE	It denotes the date on which the order was placed.
DAYS_SINCE_LASTORDER	This column represents the number of days that have passed since the last
	order for each customer. It can be used to analyze customer purchasing
	patterns.
STATUS	It indicates the status of the order, such as "Shipped," "In Process,"
	"Cancelled," "Disputed," "On Hold," or "Resolved."
PRODUCTLINE	This column specifies the product line categories to which each item
	belongs.
MSRP	It stands for Manufacturer's Suggested Retail Price and represents the
	suggested selling price for each item.
PRODUCTCODE	This column represents the unique code assigned to each product.
CUSTOMERNAME	It denotes the name of the customer who placed the order.
PHONE	This column contains the contact phone number for the customer.
ADDRESSLINE1	It represents the first line of the customer's address.
CITY	This column specifies the city where the customer is located.
POSTALCODE	It denotes the postal code or ZIP code associated with the customer's
	address.
COUNTRY	This column indicates the country where the customer is located.
CONTACTLASTNAME	It represents the last name of the contact person associated with the
	customer.
CONTACTFIRSTNAME	This column denotes the first name of the contact person associated with
	the customer.
DEALSIZE	It indicates the size of the deal or order, which are the categories "Small,"
	"Medium," or "Large."

Para a prática, vamos utilizar esse roteiro como base para consulta aos comandos. Os comandos devem ser escritos e não copiados, para evitar problemas com a fonte, caracteres, etc, quando colados.

O instrutor irá guia-los com os comandos, explicando e mostrando os exemplos e avaliações que podem ser feitas.

Curso Inteligência Artificial e Ciência de Dados Inatel Competence Center – Educação Continuada

import pandas as pd

```
df = pd.read_csv('Auto Sales data.csv') ou df = pd.read_csv('caminho')
Considerações: (..., parse_dates=['column'], dayfirst=True)
```

Manipulação básica de Dataframe

```
df.head()
pd.unique()
df.info()
df['column'].head()
df[['column1', 'column2']].head()
df.loc[row]
df.loc[rowM:rowN]
df.loc[rowM:rowN, ['column1', 'column2']]
```

Definição de uma coluna como a "principal"

```
df.set_index('column').head()
df.set_index('column', inplace=True)
```

Obs: inplace é útil quando um índice 0,1,2,etc refere-se a um elemento apenas de uma coluna. df.loc['item'] #item dentro da coluna que virou index df['column'].head()

Criação de uma lista ou um numpy a partir de um Dataframe

```
df['column'].to_list()
df['column'].to_numpy()
```

...visualização

```
column = df['column'].to_numpy()
N = len(column)
plt.scatter(range(N), column)
plt.xlabel('xlabel')
plt.ylabel('ylabel')
plt.title('title');
```

df.sort_values('column', inplace=True) #lembrar que inplace mantém no df original

```
df.drop('column', axis=1)
df.drop('index', axis=0)
```

Ordenação dos dados

df.sort_values('column', inplace=True) #útil para visualizar relacionamento condicional

Criar uma nova coluna

As vezes não precisamos de dados de um tipo específicos para a análise. Categóricos, numéricos que não são informativos, etc.

```
df.select_dtypes(inlcude=['Dtype', 'Dtype'])
Drop nos selecionados
df_num = df.select_dtypes(inlcude=['Dtype', 'Dtype']).drop(columns=['column'])
Ver as colunas restantes, daqueles tipos especificados
print(df_num.columns, len(list(df_num.columns.values)))
```

Descrição de um Dataframe

```
df.describe() #para numéricos (padrão)
df.select_dtypes(include=['object']).describe() #para objetos
Para visualização "transposta", usar .describe().T
```

Valores faltantes e duplicados

```
df.isnull()
df.isnull().sum()
df.duplicated() #considera todas as colunas, pra identificar se as linhas são iguais
df.duplicated(subset=['column']) #uma coluna específica ou várias colunas
```

Consultas condicionais

```
df.query('column CONDITION value')
df.query('column CONDITION @variable')
CONDITION: <, <=, >, >=, !=
```

Visualizações

```
df.plot.bar()
df['column'].value_counts().plot.bar()
df['column'].plot.hist()
df['column'].plot.pie()
exemplo: df.loc[1:5, ['column']].plot.pie(subplots=True)
```

Visualizações com Plotly

```
fig = px.bar('dataframe', x='index', y='values')

exemplo: count = df['STATUS'].value_counts()

fig = px.bar(count, x=value_counts.index, y=value_counts.values)

fig.show()

fig = px.pie(values='values')

exemplo numérico:

percentage = df.loc[1:5, ['SALES']] / df.loc[1:5, ['SALES']].sum() * 100

perc = percentage['SALES'].to_numpy()

fig = px.pie(values=perc, hole=0.3)

fig.show()

exemplo categórico:

percentage = df.loc[1:5, ['PRODUCTLINE']].value_counts() / df.loc[1:5, ['PR
```

Curso Inteligência Artificial e Ciência de Dados Inatel Competence Center – Educação Continuada

Visualizações com Seaborn

```
sns.histplot(df['column'], bins=numbins) #kde=True para kernel density estimation
plt.show()
sns.boxplot(df['column'])
plt.show()
sns.pairplot(data=numeric_data)
exemplo: df2 = df.select_dtypes(['int64', 'float64']).drop(columns=['ORDERNUMBER'])
         sns.pairplot(data=df2, corner=True)
sns.lineplot(data=dataframe, x='column', y='column')
observações: hue=agrupamento para ter linhas de cores diferentes (exemplo 'Year'). A
separação pode ser por dia, mês, ano, etc.
exemplo: df['Year']=df['ORDERDATE'].dt.year
          sns.lineplot(data=df, x='ORDERDATE', y='SALES', hue='Year')
          plt.show()
sns.barplot(data=dataframe, x='column', y='column')
observações: hue=agrupamento para ter barras de cores diferentes (exemplo 'DEALSIZE').
exemplo: sns.barplot(data=df, x='PRODUCTLINE', y='SALES', hue='DEALSIZE')
          plt.show()
```

Visualização com MatplotLib

```
plt.fill_between(dataframe.x, dataframe.y)
observações: pode separar os valores por where= (por exemplo, cruzamento dos eixos ou
valores das curvas) e definir cores diferentes com o color=.

<u>exemplo:</u> df['SELLING_PRICE_DIFF'] = df['PRICEEACH']-df['MSRP']

plt.fill_between(df['ORDERDATE'], df['SELLING_PRICE_DIFF'], color='red', where=(
df['SELLING_PRICE_DIFF'] < 0))

plt.fill_between(df['ORDERDATE'], df['SELLING_PRICE_DIFF'], color='green', where=(
df['SELLING_PRICE_DIFF'] >= 0))

plt.show()
```

Para analisar!

Ordene a coluna *ORDERDATE* e reexecute o <u>Fill_Between</u>. O que acontece com o resultado visual?

Cumulative Distribution Function (CDF)

Curso Inteligência Artificial e Ciência de Dados Inatel Competence Center – Educação Continuada

É interessante plotar histograma e CDF no mesmo gráfico.

```
exemplo: fig, ax = plt.subplots()
    ax.plot(x, cdf_x, color='red')
    ax2 = ax1.twinx()
    ax2.hist(x, bins=20, alpha=0.7) #tente trocar a ordem do plot e hist!
```

BoxPlot

ATIVIDADE

Um exemplo de criação de tabela, a partir do conjunto completo:

```
df['PRODUCTCODE'].unique()
len(df['PRODUCTCODE'].unique()
product_df = df[['PRODUCTCODE', 'PRODUCTLINE', 'MSRP']]
product_df.drop_duplicates(inplace=True)
product_df.reset_index(drop=True, inplace=True)
```

Esta sequência irá criar um novo dataframe com apenas 3 colunas. As linhas, serão mantidas apenas se não forem duplicadas. Compare a quantidade de linhas do novo dataframe (.shape) após o drop_duplicate com a quantidade de valores unique.

Agora, faça o mesmo para as seguintes colunas: ORDERNUMBER, PRODUCTCODE, CUSTOMERNAME, ORDERDATE, ORDERLINENUMBER, QUANTITYORDERED, PRICEEACH, SALES, DAYS_SINCE_LASTORDER, DEALSIZE, STATUS, criando um novo dataframe para colunas relacionadas a *orders*.