Количество и сумма делителей числа

- 1. Через $\tau(n)$ обозначим количество делителей натурального числа n. Вычислите $\tau(p_1^{\alpha_1}p_2^{\alpha_2}\dots p_m^{\alpha_m})$, где p_1 , p_2, \dots, p_m попарно различные простые числа.
- **2.** Докажите, что $\tau(n) < 2\sqrt{n}$ для любого $n \in \mathbb{N}$.
- 3. В тюрьме 100 камер, пронумерованные числами от 1 до 100. Шериф, осуществляя частичную амнистию, поступил следующим образом. Сначала он открыл все камеры. Затем запер каждую вторую камеру. На третьем этапе он повернул ключ в замке каждой третьей камеры (открыл запертые и запер открытые). Продолжая действовать таким образом, на сотом этапе он повернул ключ только в замке сотой камеры. Укажите номера всех камер, которые оказались открытыми.
- 4. Пусть d_1, d_2, \ldots, d_n это все натуральные делители числа 10!. Найдите сумму

$$\frac{1}{d_1 + \sqrt{10!}} + \frac{1}{d_2 + \sqrt{10!}} + \ldots + \frac{1}{d_n + \sqrt{10!}}.$$

- **5.** Через $\sigma(n)$ обозначим сумму делителей натурального числа n. Вычислите $\sigma(p_1^{\alpha_1}p_2^{\alpha_2}\dots p_m^{\alpha_m})$, где $p_1,\ p_2,\ \dots,\ p_m$ попарно различные простые числа.
- **6.** Докажите, что $\sigma(n) \geq \tau(n) \sqrt{n}$ для любого $n \in \mathbb{N}$.
- 7. Докажите, что если n+1 і 24, $n\in\mathbb{N}$, то и $\sigma(n)$ і 24.
- 8. Натуральное число n называется cosepwenhum, если сумма его собственных делителей (т. е. всех без самого числа) равна n, например, 6 и 28. Докажите, что
- а) если число 2^p-1 b) любое чётное совершенное простое, то $2^{p-1}(2^p-1)$ число имеет вид $2^{p-1}(2^p-1)$, совершенное число; где число 2^p-1 простое.