Homework 7 - Math 140

Name:

 $Calculate\ the\ following\ derivatives.$

$$1. \ \frac{d}{dx}6\sqrt{x}$$

$$2. \ \frac{d}{dx} \frac{3}{x^2}$$

$$3. \ \frac{d}{dt}16t^2 - 64t + 100$$

$$4. \frac{d}{dp} \left(p^{-2} - p^2 \right)$$

$$5. \ \frac{d}{dt}2t^3(t^2+\sqrt{t})$$

$$6. \ \frac{d}{dx}(x-5)(x+3)$$

Find the slope of the tangent line for the following functions at the indicated point.

7.
$$y = 4 - 3x - x^2$$
 at $x = 1$.

8.
$$y = \frac{4}{x^2}$$
 at $x = -1$.

Where do	the	following	functions	have	horizontal	tangent	lines?	Hint:	find the	derivatives	first,	then	solve	for	when	$th\epsilon$
derivative	equa	uls zero.														

9.
$$f(x) = x^3 - 3x^2$$

10.
$$y = \frac{1}{5}x^5 - \frac{7}{4}x^4 + 4x^3$$
.

Solve the following.

11. A company estimates that if they hire L workers, the output of their factor will be $Q(L) = 600L^{2/3}$. Find the derivative Q'(x), then use Q'(1000) to estimate how much output will increase if they have 1,000 workers and hire one more.

12. A ball thrown in the air has a height of $h(t) = 6 + 29t - 16t^2$ feet, where t is time in seconds. If the ball hits the ground at t = 2 seconds, calculate how fast the ball is falling then. Recall that velocity is the derivative of the position (i.e., the height).