| Date          | 8 <sup>th</sup> November 2023             |
|---------------|-------------------------------------------|
| Team ID       | Team- 592083                              |
| Project Name  | Disease Prediction Using Machine Learning |
| Maximum Marks | 8 Marks                                   |

# **Project Planning Phase**

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)
Product Backlog, Sprint Schedule, and Estimation (4 Marks)

| Sprint   | Functional<br>Requirement<br>(Epic) | User<br>Story<br>Number | User Story                                                                                                                                                                                            | Acceptance Criteria                                                                                                    | Story<br>points | Priority | Team Members          |
|----------|-------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------|----------|-----------------------|
| Sprint 1 | Data Collection                     | DSP-1                   | As a data scientist, I want to collect and prepare a dataset of medical records and symptoms for training the machine learning model, so that the model can be trained to predict disease accurately. | Collect medical records and symptoms data from a variety of sources, such as hospitals, clinics, and research studies. | 3               | medium   | Revanth,Kavya         |
| Sprint 1 | Feature<br>Engineering              | DSP-2                   | Split the data into training and test sets.                                                                                                                                                           | The data should be split into training and test sets in a ratio of 80% to 20%.                                         | 5               | High     | Minal                 |
| Sprint 2 | Model<br>Training                   | DSP-3                   | Develop and engineer features from the collected data that are relevant to predicting disease.                                                                                                        |                                                                                                                        | 5               | High     | Dharani, Minal, kavya |
| Sprint 2 | Model<br>Evaluation                 | DSP-4                   | Train a machine learning model to predict disease based on the engineered features.                                                                                                                   |                                                                                                                        | 4               | High     | Revanth, Dharani      |

| Sprint 3 | Model<br>Deployment                                                  | DSP-5  | Deploy the trained machine learning model to production.                                               | The model should be deployed to a production environment so that it can be used to predict disease for new patients.       | 2 | Medium | Revanth          |
|----------|----------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---|--------|------------------|
| Sprint 3 | User Interface<br>(UI)<br>Development                                | DSP-6  | Develop a user interface that allows users to input their symptoms and receive a disease prediction.   | The user interface should be easy to use and navigate. It should also implement security measures to protect user data.    | 5 | High   | Kavya, Dharani   |
| Sprint 4 | Integration with<br>Electronic<br>Health Records<br>(EHR)<br>Systems | DSP-7  | Integrate the disease prediction model with EHR systems.                                               | The model should be integrated with EHR systems so that clinicians can easily access predictions for their patients.       | 4 | High   | Revanth, Minal   |
| Sprint 4 | Performance<br>Monitoring and<br>Improvement                         | DSP-8  | Monitor the performance of the disease prediction model in production and make improvements as needed. | The model's performance should be monitored on real-world data. Any performance issues should be identified and addressed. | 2 | Medium | kavya            |
| Sprint 4 | Documentatio n and Training                                          | DSP-9  | Develop documentation and training materials on how to use the disease prediction model.               | The documentation and training materials should be clear, concise, and easy to understand.                                 | 3 | Medium | Dharani          |
| Sprint 4 | Security and Compliance                                              | DSP-10 | Implement security and compliance measures to protect the privacy and security of patient data.        | The model should be used in a safe and ethical manner.                                                                     | 5 | High   | Minal,Kavya,Dhar |

## **Project Tracker, Velocity & Burndown Chart: (4 Marks)**

| Sprint   | Total<br>Story<br>Points | Duration | Sprint Start Date         | Sprint End<br>Date (Planned) | Story Points<br>Completed (as<br>on Planned End<br>Date) | Sprint Release<br>Date(Actual) |
|----------|--------------------------|----------|---------------------------|------------------------------|----------------------------------------------------------|--------------------------------|
| Sprint-1 | 8                        | 3 Days   | 5 <sup>th</sup> Nov 2023  | 7 <sup>th</sup> Nov 2023     | 8                                                        | 5 <sup>th</sup> Nov 2023       |
| Sprint-2 | 9                        | 4 Days   | 8 <sup>th</sup> Nov 2023  | 11 <sup>th</sup> Nov 2023    |                                                          |                                |
| Sprint-3 | 7                        | 6 Days   | 12 <sup>th</sup> Nov 2023 | 17 <sup>th</sup> Nov 2023    |                                                          |                                |
| Sprint-4 | 10                       | 3 Days   | 18 <sup>h</sup> Nov 2023  | 20 <sup>th</sup> Nov 2023    |                                                          |                                |

## **Velocity:**

Imagine we have a 16-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity}$$

AV= sprint duration/ Velocity = 20/16 = 1.43

## **Burndown Chart:**

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.



#### **Backlog Chart:**



# **Board chart:**



#### Time line chart:



