

Flüssigkristallanzeigen

DTSM – 3. Klasse IT/APC

Definitionen

- LCD Liquid Crystal Display
 - Flüssigkristallbildschirm bzw. Flüssigkristallanzeige
 - Wenn elektrische Spannung angelegt wird, ändern Flüssigkristalle ihre Ausrichtung und Licht wird durchgelassen
- LCDs sind in Segmente (=Pixel) aufgeteilt, die unabhängig voneinander angesteuert werden
- Segment-Anzeigen
 - sollen nur bestimmte Zeichen dargestellt werden haben die Segmente oft eine spezielle Formen, (z.B. bei Uhren -Sieben-Segment-Anzeige)

Bestandteile von LCDs

- Flüssigkristalle
 - Flüssig Kristalle können sich bewegen

(nematisch – orientieren sich parallel zueinander entlang eines elektrischen Felds)

Fest

- Kristalle brechen Licht
- 2 Glas oder Kunststoff-Scheiben mit "Orientierungsschicht"
 - Sind im 90° Winkel zueinander angeordnet
 - Flüssigkristalle richten sich danach aus
 - Kristalle bilden eine Helix

Bestandteile von LCDs

- 2 Polarisationsfilter
 - Das Licht wird nur in <u>einer</u> Wellenausrichtung (vertikal oder horizontal) durchgelassen
 - Restliches Licht ausgefiltert
 - Beide Filter sind ebenfalls im 90° Winkel zueinander ausgerichtet – wie die Orientierungsschichten!

Funktion von Flüssigkristall-Zellen

Basiswissen – Heller oder dunkler Lichtpunkt

- Heller Lichtpunkt
 - Flüssigkristalle im Ruhezustand (Helix-Form)
 - Brechen das Licht um 90°
 - Licht geht durch die beiden Pol-Filter und Flüssigkristalle durch und oben raus
- Dunkler Lichtpunkt
 - Flüssigkristalle durch elektrisches Feld anders ausgerichtet – brechen Licht NICHT
 - Licht geht gerade durch Zelle durch und wird vom oberen Filter blockiert

Twisted-Nematic-Zelle

"Ruhezustand" > Hell

- Ruhezustand kein Strom
- Oberer Polarisationsfilter (PI) und unterer Filter (P2) stehen im 90° Winkel zueinander
- Flüssigkristalle sind waagerecht in Helix-Form ausgerichtet (nach oberer und unterer Scheibe)
- Kristalle brechen Licht im 90° Winkel
- Licht wird im zweiten Filter durchgelassen
- Zelle ist transparent (I)

Twisted-Nematic-Zelle

- Zwischen Elektroden (E1, E2) liegt Strom an > elektr. Feld
- Flüssigkristalle richten sich zwischen den Elektroden aus
- Kristalle stehen senkrecht zur Lichtrichtung
- Licht wird nicht gebrochen
- Zweiter Polarisationsfilter lässt kein Licht mehr durch
- Zelle ist dunkel (I)

TN-Zelle heute

- "TSTN"
 - Triple Super Twisted Nematik
 - Zusätzliche Farbfilter
 - Alias:TN, Film-TN

- Beleuchtung (1)
- hinterer Pol-Filter (2)
- hinterer Farbfilter (3)
- hintere Glasscheibe (4)
- -TN-Flüssigkristall-Zelle (5)
- vordere Glasscheibe (6)
- vordere Farbfilter-Folie (7)
- vorderer Polarisator (8)
- Licht tritt farbig aus (9)

Weitere Techniken

- PVA/MVA (Patterned Vertical Alignment)
 - Elektroden sind schräg angeordnet
 - Ausrichtung der Kristalle im Ruhezustand beinahe senkrecht = Zelle dunkel
 - Vorteile:

Weitere Techniken

• IPS - In-Plane-Switching

Weitere Techniken

- IPS In-Plane-Switching
 - Im Ruhezustand dunkel
 - Kristalle sind in einer Ebene ausgerichtet ("in plane")
 - Spannung dreht sie um 90° in der Ebene/Waagerechten
 - Licht kann durch die Polarisationsfilter durch
 - bessere Farbtreue und Kontrast
 - höhere Blickwinkel-Unabhängigkeit
 - ➤ Manchmal höherer Stromverbrauch
 - >> Grund: stärkeres Licht benötigt!
 - > (es gibt aber Sonderformen mit transparenten Elektroden!)

Erzeugung des Lichts

- Die Hintergrundbeleuchtung wird gefiltert um die Grundfarben der Zellen (rot, grün und blau) zu gewinnen.
- Drei Zellen sind zeilenweise für jeweils einen Farbpunkt zuständig
- Durch additive Farbmischung mehrerer Farbpunkte (RGB) entsteht der Farbeindruck
- Zusätzliche Farben erweitern Farbraum (RGBY – mit Gelb oder verbessern die Helligkeit (Bsp: RGBW – mit Weiß

Ansteuerung der Bildzellen

- Passiv-Matrix-Technik
 - Strom wird auf Zeile und Spalte angelegt
 - Höherer Strom am Schnittpunkt
 - Kristalle werden ausgerichtet
 - Langsam, ungenau veraltet

- Aktiv-Matrix-Technik
 - Jede Zelle besitzt eigene Ansteuerung
 - ➤ Aktuelles Verfahren

(Wird zB. auch bei OLED-Displays eingesetzt: Active Matrix OLED = AMOLED)

Aktiv-Matrix-Displays

- TFT Thin-Film-Transistoren
 - Steuern die Ladung der Zellen richten die Kristalle aus
 - Integrierter Kondensator speichert die Ladung
 - So wird die Ladung der Zelle während einer Bildperiode gehalten - Kristalle bleiben ausgerichtet

Hintergrundbeleuchtung

- Ohne
 - Über Spiegel wird Tageslicht reflektiert
 - Taschenrechner, ...
- Leuchtstoffröhren
 - Am Bildrand oder mehrere verteilt über Bildschirm
- LEDs

0

LED-Hintergrundbeleuchtung

- Edge-LED
 - verteilt am Bildschirmrand
 - · Licht wird Lichtleiter-Platten, Folien etc. verteilt
 - dünne Displays möglich
- Direct-LED
 - LEDs verteilt hinter dem Bildschirm
 - Möglichkeit des Local-Dimming
 - An dunklen Bildbereiche werden LEDs zusätzlich abgeschaltet – besseres Schwarz
 - Eher teurer (aber für gutes HDR nötig!)

Vorteile von LC-Monitoren

- Wenig Stromaufnahme möglich
 - je nach Beleuchtung und Größe
- Bild ist
 - Flimmerfrei, verzerrungsfrei, scharf
- Strahlungen:
 - Erzeugt keine Röntgenstrahlung und kaum elektromagnetische Strahlung (wie CRT-Monitore)
 - Wird nicht durch Magnetfelder beeinträchtigt
- geringes Gewicht und geringe Einbautiefe

- Wenn geringe Reaktionszeit
 - Schlieren-Bildung bei schnellen Bewegungen
 - Bewegungsunschärfe
- Teilweise mangelhafte Farbechtheit
- Fixe Bildauflösung für scharfe Bilder
 - Ansteuerung mit anderen Auflösungen führt zu Qualitätsverlusten

Entwicklungen

- ,,100/120/144Hz"
 - Reduktion von Bewegungs-Unschärfen, flüssigere Darstellung
- ,,200/240Hz"-Technik
 - Zwischenbilder synthetisch eingefügt (Schwarz – ruhiger, Weiß – heller)
- Verbesserung der Schaltzeiten
- Verbesserung des Farbumfangs
- Bessere Hintergrundbeleuchtung

Sonstige Technologien

- OLED
 - Licht-Erzeugung mittels organischer Leuchtdioden
- QLED
 - LC-Display mit verbesserter
 Hintergrundbeleuchtung mit Quantum-Dots
- QD-OLED
 - OLED-Full-Array Hintergrundbeleuchtung
 - Farberzeugung durch Quantum-Dot "Filter"

LCD vs. OLED

LCD vs. QD-OLED

OLED vs. QD-OLED

OLED Displays:

- Organische Leuchtdiode ("organic light emitting diode")
- Selbstleuchtendes Bauelement aus organischen, halbleitenden Materialien.
- Keine zusätzliche Lichtquelle nötig
- Varianten:
 - PM-OLED (Passive-Matrix OLED)
 - AMOLED (ActiveMatrix OLED)
 - POLED (Polymer OLED, Plastik- statt Glas-Substrat)

OLED Displays:

