Université de Nantes Faculté des Sciences et des Techniques

Master Miage & Alma & ORO

Le protocole IEEE 802.3 et Ethernet

Salima Hamma Salima.Hamma@univ-nantes.fr

S.Hamma

Le protocole IEEE 802.3 et Ethernet

- ➤ Introduction
- > Les supports de transmission
- ➤ Le protocole MAC
 - le principe de CSMA/CD
 - 1'algorithme du BEB
 - le format de la trame
 - la fonction de la couche MAC
 - le service de la couche MAC
 - la transmission d'une trame
 - · la réception d'une trame
- Conclusions

a

Le protocole IEEE 802.3 et Ethernet *Introduction (1)*

- initié dans les laboratoires de Xerox au début des années 70.
- > inspiré du protocole Aloha.
- - Ethernet à 3 Mb/s ou experimental Ethernet devint DIX (Digital Intel Xerox) Ethernet version 1.1 à 10 Mb/s
- soumis à l'IEEE (Institute of Electrical and Electronic Engineers) et à ECMA (European Computer Manufacturer Association).
 - version 2.0 de DIX ou Ethernet II (quelques modifications).

Hamma

Le protocole IEEE 802.3 et Ethernet *Introduction* (2)

- Cette version servira de base à la spécification par l'IEEE (802.3) adoptée en 1983.
- Basée sur la méthode d'accès CSMA/CD
 - CSMA : Accès multiple avec écoute de la porteuse
 - CD: Détection de collision
- Topologie adoptée est celle en bus
- Son débit est de 10 Mb/s

.Hamma 4

Le protocole IEEE 802.3 et Ethernet Les supports de transmission (1)

- Les supports utilisés respectent le protocole CSMA/CD tel que spécifié dans le standard
- Plusieurs types de supports physiques sont utilisés par le protocole IEEE 802.3
- Chaque support porte dans sa notation:
 - − **le débit** du support en Mb/s
 - le procédé de codage (base : bande de base et broad : modulation)
 - la longueur maximale d'un segment (l'unité=100m)
 ou le type de support (T pour paire torsadée ou Twisted pair
 et F pour Fibre optique)

Hamma

Le protocole IEEE 802.3 et Ethernet Les supports de transmission (2)

	10base5	10base2	1base5	10broad36	10baseT
médium de transmission	coaxial (50Ohms)	coaxial (50Ohms)	paire non blindée	coaxial (75Ohms)	paire torsadée
technique de signalisation	Manchester	Manchester	Manchester	modulation fréquence	Manchester
vitesse de transmission	10 Mb/s	10 Mb/s	1 Mb/s	10 Mb/s	10 Mb/s
longueur max du segment	500 m (bus)	185 m (bus)	500 m (étoile)	3600 m (bus)	100 m (étoile)
longueur max du réseau	2500 m	925 m	2500 m	6200 m	400 m
nombre de noeuds/seg	100	30			dépend de équip actif
espacement noeuds (min)	2,5 m	0,5 m			6

Le protocole IEEE 802.3 et Ethernet Les supports de transmission (3) Les répéteurs • augmentent la portée des réseaux 10base5 et 10base2. • régénèrent le signal avant qu'il ne soit trop atténué • interconnectent des supports de types différents (ex : 10base2 vers 10base5). Les débits doivent être identiques (pas de mémorisation dans les répéteurs).

Le protocole IEEE 802.3 et Ethernet Les supports de transmission (4)

Les hubs

- assurent la concentration et la retransmission des messages
- considérés comme un répéteur à plusieurs ports d'entrées/sorties
- la méthode d'accès est identique à celle d'un bus
- lorsque deux stations émettent en même temps, le hub génère des signaux de collisions vers tous les équipements.

S.Hamma

Le protocole IEEE 802.3 et Ethernet Les supports de transmission (5)

Les ponts

- permettent d'augmenter la distance maximale entre deux stations
- permettent de diminuer la charge du réseau
- le pont construit au fur et à mesure une table de correspondance entre adresses sources et segments sur lesquels les trames correspondantes sont acheminées

Le protocole IEEE 802.3 et Ethernet Les supports de transmission (6)

Les routeurs

- équipement complexe comprenant les couches de protocoles de niveau physique, liaison et réseau
- équipement souvent dédié (CISCO, ...)
- parfois ordinateur (SUN, PC, etc)
- supporte toute topologie
- comprend des tables de routage construites soit manuellement, soit dynamiquement par l'intermédiaire de protocoles spécialisés
- A accède à C se trouvant sur réseau 2 via le routeur sur l'interface Réseau 1 (130.20.0.1)

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - CSMA/CD (1)

Principe de CSMA/CD

- > c'est un protocole aléatoire
 - émission sur le support à des instants aléatoires
 - contentions d'accès au support (collisions)
- > définition des règles de transmission
 - avant toute transmission
 - pendant toute transmission
 - lorsqu'une contention a lieu

S.Hamma 11

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - CSMA/CD (2)

Avant une transmission

- > une station écoute le canal avant d'émettre
- ➤ n'émet que si le canal est libre
 - ✓ aucune porteuse n'est détectée

> Exemple:

S Hamm

- \$2 veut émettre mais trouve le canal occupé (\$1 en émission)
- continue d'écouter jusqu'à ce que le canal devienne libre (S1 finit d'émettre)
- après un intervalle minimum de silence (délai inter-trame ou interframe gap), la station S2 commence à émettre

12

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - CSMA/CD (3)

- > cette règle diminue les collisions mais ne les élimine pas cas de collisions :
 - S2 et S3 écoutent le canal en même temps
 - le détecte libre en même temps
 - transmettent en même temps et entrent en collision

Une collision est un signal brouillé violant les règles de codage en bande de base

15

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - CSMA/CD (4)

Principe de détection des collisions

• pour pouvoir *détecter* une éventuelle collision, la station écoute aussi le canal pendant sa propre transmission

$$\underline{\underline{L}} >= 2 * t_p$$

où:

L: Longueur minimum d'une trame

C : Capacité du support de transmission

t_p: temps de propagation égal d/V
 d : distance séparant deux stations les plus éloignées

V : Vitesse de propagation

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - CSMA/CD (4)

Principe de détection des collisions (suite)

- Si la station détecte une collision :
- ⇒ stoppe son émission,
 - ⇒ transmet une séquence de bourrage (jamming signal)
 - ✓ avertir les autres stations
 - ✓ séquence suffisamment longue pour être détectée par les autres stations (jamsize: taille minimal)

S.Hamma

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - CSMA/CD (5)

Illustration de la collision et de sa détection

S.Han

 $t_0: S1$ commence sa transmission

 $t_0 + \Delta t - \varepsilon$

S2 commence sa transmission

 $t_0 + \Delta t$

S2 détecte la collision et émet la séquence de bourrage

 $t_0 + 2\Delta t$: S1 détecte la collision

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - CSMA/CD (6)

Les paramètres du protocole

Fenêtre de collision ou slot time

- > unité de temps du protocole
- délai maximum avant qu'une station détecte une collision (ou qu'elle soit certaine que sa transmission s'est effectuée sans problème)
- > égale à deux fois le temps de propagation d'un signal sur le support
- la norme : le slot time fixé à 51.2 μs
- correspond à une longueur de trame minimum de 512 bits pour 10 Mb/s > durée minimum d'une trame supérieure ou égale au slot time
- si la taille de la trame est inférieur à 64 octets, des bits de bourrage (padding) sont introduits

S.Hamm

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - CSMA/CD (7)

La période de vulnérabilité

- > représente la durée pendant laquelle une station peut détecter le canal libre et transmettre
- ➤ égale à un temps de propagation entre les deux stations les plus éloignées

Le délai inter-trame ou interframe gap

> représente le temps d'attente entre deux transmissions successives, il est de 9,6 µs

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - CSMA/CD (8)

Reprise après collision

Si collision Alors retransmission après un délai aléatoire

Algorithme BEB (Binary Exponential Backoff)

But: • minimiser le temps d'attente en cas de faible trafic

 minimiser le nombre de collisions successives en cas de trafic important

Principe:

- ✓ tirer au sort la durée d'attente avant la prochaine tentative d'émission $0 <= T < 2^k$ où : $k = \min(n, 10)$ et n = nombre total de collisions subies par la station
- \checkmark la station attend donc T fois le slot time
- ✓ lorsque n atteint 16, la transmission est alors abandonnée et la couche supérieure est informée.

S.Hamma

19

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - format de trame (2)

- **Préambule**: 56 bits = 7 X (10101010), dure 5.6 µs et permet à la station réceptrice de synchroniser son horloge avec celle de l'émetteur.
- Délimiteur de début de trame (Start Frame Delimiter):
 8 bits = 10101011; permet aux autres stations de séparer les différentes trames qui se succèdent.
- Adresse destination :
 - ✓ premier bit transmis :
 - \bullet = 0 adresse d'une station unique
 - = 1 adresse d'un groupe de stations (multicast)
 - ✓ second bit transmis:
 - = 1 adresse administrée localement
 - \bullet = 0 adresse administrée globalement (universelle IEEE)
 - ✓ tous les bits à 1: adresse de broadcast, toutes les stations du réseau sont concernées (FF:FF:FF:FF:FF)

S.Hamma

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - format de trame (3)

• Adresse source : adresse physique de la station émettrice ✓ premier bit transmis = 0 (adresse d'une station)

IEEE attribue des tranches d'adresse aux constructeurs (les trois premiers octets indiquent l'origine du matériel)

- 00:00:0C:XX:XX:XX : Cisco
- 08:00:20:XX:XX:XX : Sun
- 08:00:09:XX:XX:XX : HP Les adresses Ethernet (MAC) sont uniques
- Longueur du champ de données: valeur comprise entre 0 et 1500, indique le nombre d'octets de données effectives contenues dans le champ suivant et permet de distinguer les données des octets de bourrage.

S.Hamma 24

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - format de trame (4)

- Data : champ de données + padding.
- Padding: un contenu sans signification complétant à 64 octets la taille totale d'une trame si inférieure à 46 octets.
- 46 <= (données + padding) <= 1500 (trame considérée valide)
- FCS: Frame Control Sequence Champ contrôle sur 32 bits (CRC).

Le polynôme de degré 32 s'applique aux champs : adresses (destination et source), taille des données, données+padding).

La trame Ethernet diffère de la trame IEEE 802.3 par le champ type qui indique le type de protocole véhiculé dans la trame

Iamma

Le protocole IEEE 802.3 et Ethernet Le protocole MAC - format de trame (5)

- **Type** :
 - ✓ champ sur 2 octets représenté en hexadécimal par XXYY
 - ✓ la valeur du champ type est supérieure à 1500 (valeur maximum du champ longueur de données dans la trame IEEE 802.3. Quelques valeurs connues :

• 0800 : IP • 0806 : ARP

• 6000-6009 : protocole DEC

• ...

Hamma 26

Le protocole IEEE 802.3 et Ethernet

Fonction de la couche MAC

- indépendante du média de communication, il suffit qu'il supporte l'accès CSMA/CD
- > deux principales fonctions :
 - gestion des données
 - ✓ mise en forme de la trame : champs, gestion FCS
 - gestion de la liaison
 - ✓ allocation du canal et gestion des collisions en écoutant les signaux «carrier sense» et «collision detection» générés par la couche physique.

S.Hamma 27

Le protocole IEEE 802.3 et Ethernet Le service MAC

- Les services qu'offre la couche MAC à la couche LLC (interface entre MAC et LLC) modélisés par des fonctions :
 - Transmet-trame : requête LLC --> MAC
 - paramètre d'appel : @dest, @sce, taille, données
 - paramètre de retour : statut de transmission (OK ou trop de collision : >16 essais)
 - Reçoit-trame : requête LLC --> MAC
 - paramètre de retour : @dest, @sce, taille, données, statut (OK, erreur de FCS, erreur d'alignement, erreur de taille : champ taille inconsistant)

S.Hamma 28

Le protocole IEEE 802.3 et Ethernet Transmission d'une trame

- > La sous couche LLC fait un appel «transmet-trame»
- La couche MAC :
 - ajoute préambule et SFD à la trame
 - ajoute le padding si nécessaire
 - assemble les champs : @src, @dest, taille, données et padding
 - calcul le FCS et l'ajoute à la trame
 - transmet la trame à la couche physique :
 - Si «carrier sense» est faux depuis 9,6 μs au moins, la transmission s'effectue.
 - Sinon, attend que «carrier sense» devienne faux, elle attend 9,6 µs et commence la transmission.

amma

Le protocole IEEE 802.3 et Ethernet *Réception d'une trame (1)*

- ➤ La sous couche LLC fait un appel «reçoit-trame»
- ➤ La couche MAC est à l'écoute du signal «carrier sense, elle reçoit tous les bits circulant sur le câble :
 - les limites des trames sont indiquées par le signal «carrier sense»
 - Ôte le préambule, le SFD et l'éventuel padding
 - analyse l'adresse du destinataire dans la trame
 - si elle est différente de l'adresse de la station, la trame est ignorée

amma 30

Le protocole IEEE 802.3 et Ethernet Réception d'une trame (2)

- si l'adresse inclut la station :
 - elle découpe la suite de bits reçus en octets, puis en champs
 - transmet à la couche LLC les champs : @dest, @src, taille, données
 - calcul le FCS et indique une erreur à la couche LLC si :
 - ✓ FCS incorrect
 - ✓ trame trop grande : >1526 octets avec préambule
 - ✓ longueur de la trame n'est pas un nombre entier d'octets (erreur d'alignement)
 - ✓ trame trop petite : < 64 octets (trame avec collision)

.Hamma

31

Le protocole IEEE 802.3 et Ethernet Analyse d'une trame Ethernet

adresse destination adresse source protocole

08 00 20 08 4d 0 08 00 20 03 ce d6 08 00 45 00

00 3e 2d ed 00 00 1d 11 f8 ce c1 31 3c 8f c1 30

b8 02 04 11 00 a1 00 2a 1f 56 30 20 02 01 00 04

06 70 75 62 6c 69 63 a1 13 02 02 08 bc 02 01 00

02 01 00 30 07 30 05 06 01 28 05 00

CRC

✓ les 3 premiers octets de l'adresse indiquent que c'est une machine SUN ✓ le champ type =0800 \implies protocole IP ✓ les données sont donc un datagramme IP

S.Hamma

32

Le protocole IEEE 802.3 et Ethernet

Conclusions

- > Ethernet est le réseau local le plus répandu au monde
- > fonctionne très bien
- ▶ les problèmes recensés :
 - sécurité et confidentialité
 - vitesse variable (pas plus vite que 10 Mb/s)
 - priorité
- > pour supporter des services multimédias
 - évolution du réseau Ethernet vers le haut débit (100 Mb/s)

S.Hamma

Le protocole IEEE 802.3 et Ethernet

Conclusions (suite)

- ✓ Fast Ethernet ou 802.14 ou 100baseT évolution de 10baseT
 - topologie en étoile
 - protocole d'accès CSMA/CD
- ✓100 VGAnyLan ou 802.12
 - topologie en étoile-arbre
 - protocole d'accès DPAM (Demand Priority Access Method) : centralisé au niveau du hub
- Ethernet commuté ou switched Ethernet
 - ✓ hub remplacé par un commutateur à haut débit
 - ✓ ne retransmet une trame que vers le port de destination
 - ✓ commutation en parallèle de plusieurs communications

S.Hamma 34