COMA – A system for flexible combination of schema matching approaches

Hong-Hai Do, Erhard Rahm University of Leipzig, Germany dbs.uni-leipzig.de

Content

- Motivation
- The COMA approach
 - Comprehensive matcher library
 - Flexible combination scheme
 - Novel reuse-oriented match approach
- Evaluation setup and results
- Conclusions and future work

Motivation

- Schema matching: Finding semantic correspondences between two schemas
- Crucial step in many applications
 - Data integration: mediators, data warehouses
 - E-Business: XML message mapping
 - **...**
- Currently manual, time-consuming, tedious
 - Need for approaches to automate the task as much as possible

PO1.ShipTo.shipToCity ← **PO2.DeliverTo.Address.City**

Individual Match Approaches

Survey paper [Rahm, Bernstein - VLDB Journal'01]

Combining Match Approaches

Combination of match algorithms

- Hybrid: fixed combination, difficult to extend and improve
 - currently most common: Cupid, SemInt, SimilarityFlooding, DIKE, MOMIS, TranScm
- Composite: combination of the results of independently executed matchers
 - > currently only for machine learning-based techniques: LSD, GLUE
- COMA: Framework for flexible COmbination of MAtch algorithms
 - Extensible matcher library
 - Combination scheme with various combination strategies

System Architecture

Combination Scheme

Match Processing: Example

Max1

S2 elements	S1 elements	Sim
City	shipToCity	0.7

3. Selection

Threshold(0.5)

S2 elements	S1 elements	Sim
City	shipToCity	0.7
City	shipToStreet	0.6

Matcher Library

Туре	Matcher	Schema Info	Auxiliary Info	Constituent Matchers
Simple	Simple Affix Elem		_	_
	n-gram	Element names	-	_
	Soundex	Element names	-	_
	EditDistance	Element names	-	_
	Synonym	Element names	Element names External dictionaries	
	DataType	Data types	Data type compatibility table	_
	UserFeedback	_	User-specified (mis-) matches	_
Hybrid	Hybrid Name Element		_	Affix, 3-Gram, Synonym
TypeName		Data Types+Names	_	DataType, Name
	NamePath	Names+Paths	-	Name
	Children	Child elements	-	TypeName
	Leaves	Leaf elements	_	TypeName
Reuse- oriented	Schema	_	Existing schema-level match results	_

Reuse-oriented Matching

- The MatchCompose operation: Transitivity of element similarity
 - Composition of similarity relationships
- Reuse of multiple match correspondences
 - vs. reuse of single element-level correspondences from synonym tables, thesauries

Schema-level Reuse

■ The Schema matcher:

- Reuse complete match results at the schema level
- Exploit all possible reuse opportunities
- Limit negative effects of transitivity

Real-world Evaluation

- 5 real-world schemas (XML Purchase order), 10 match tasks
 - CIDX, Excel, Noris, Paragon, Apertum from biztalk.org
 - 40-145 elements
- Systematic evaluation (automatic mode)
 - 1 Series = 10 Experiments: Test of 1 configuration of (Matcher, Aggregation, Direction, Selection, Combined similarity) with 10 match tasks
 - 12,312 series = 123,120 experiments

Λ	Matchers	Aggregation	Direction	Selection	Combined Sim
reuse 1	5 single		-LargeSmall -SmallLarge -Both	-MaxN(1-4) -Delta(0.01-0.1) -Threshold(0.3-1.0) -Threshold(0.5)+ MaxN(1-4) -Threshold(0.5)+ Delta(0.01-0.1)	-Average
	11 combinations	-Max -Average -Min			-Dice
	2 single				
	12 combinations	-Max -Average -Min			-Average
Σ =	16 + 14	3	3	36	2

Match Quality Measures

 Comparison of automatically with manually (i.e. real) derived match correspondences

Quality measures:

$$Precision = \frac{|B|}{|B| + |C|} \quad Recall = \frac{|B|}{|A| + |B|}$$

SimilarityFlooding [ICDE02]:
$$Overall = 1 - \frac{|A| + |C|}{|A| + |B|} = \frac{|B| - |C|}{|A| + |B|} = Recall* \left(2 - \frac{1}{Precision}\right)$$

- Overall: post-match effort to add missed and to remove false matches; negative $Overall \rightarrow$ no gain
- Computed for single experiments and averaged over 10 experiments for each series (average Overall, etc.)

Results: Combination Strategies (1)

- Most no-reuse series have negative average Overall
- "Good" matcher/strategy:
 - Positive average Overall
 - High presence in higher Overall ranges

Aggregation: Average (compensating)

Results: Combination Strategies (2)

- Direction: Both (considering both directions)
- Selection: Threshold+Delta (above threshold + within tolerance)
- Combined similarity: Average (pessimistic)
- Matcher: All (combination of all hybrid matchers)

Results: Single Matchers

SchemaM: Schema with *manually* derived (real) match results

SchemaA: Schema with match results *automatically* derived using the default match operation

- Instability of some single (hybrid) matchers (negative Overall) because of shared elements
 - E.g. Deliver To. Address and Bill To. Address
- Considering hierarchical names (NamePath) more accurate
- Schema-level reuse very effective:
 - Essential improvement over no-reuse hybrid matchers
 - Reusing approved match results better than automatically derived match results

Results: Combined Match Approaches

All: Combination of all no-reuse hybrid matchers

All+SchemaM: Combination of all no-reuse hybrid matchers and SchemaM

- Reuse matchers outperform no-reuse matchers
 - Best no-reuse All: 0.73 average Overall (Precision 0.95, Recall 0.78)
 - Best reuse All+SchemaM: 0.82 average Overall (Precision 0.93, Recall 0.89)
- Combinations outperform single hybrid matchers
 - Combined matchers, e.g. All, consider many aspects at the same time
 - NamePath+Leaves: effective scheme, considering paths to identify context of shared elements, and leaves to cope with structural conflicts

Results: Match Sensitivity

- Impact of schema characteristics:
 - Degrading match quality with increase of schema size
- Best combinations: no-reuse All and reuse-oriented All+Schema
 - High stability across different match tasks
 - Little tuning effort for the default match operation

Conclusions and Future Work

The COMA framework

- Extensible matcher library, including novel reuse approach
- Powerful combination scheme for both specifying match operations and constructing new matchers from existing ones

Comprehensive evaluation on real-world schemas

- High effectiveness on large schemas
- Reuse: essential improvement over no-reuse
- Composite approach as THE solution for matcher combination

Future work

- Matchers: more powerful reuse strategies, instance-based matchers
- More intelligent combination strategies
- Application to more real-world scenarios, esp. in bioinformatics