

LOG2810 STRUCTURES DISCRÈTES

TD 1: LOGIQUE PROPOSITIONNELLE

A2022

Directives pour la remise :

- Répondez directement sur ce document papier.
- La remise est individuelle, mais le travail en équipe est encouragé.
- La remise se fait à la fin de la séance de TD.
- Aucun retard ne sera accepté.
- Le non-respect des consignes entraînera automatiquement la note 0 pour ce TD.

Identification

Veuillez inscrire votre section, nom, prénom et matricule ainsi que les noms des collègues avec lesquels vous avez collaboré pour le TD

des collègues avec lesquels vous avez collaboré pour le TD
Section:
Nom:
Prénom :
Matricule :
Collègues :

Exercice 1:

Soit les propositions :

T: « Rémi vient en TD »

C: « Rémi réussit le cours »

P: « Rémi mange du poulet »

S: « Rémi fait du sport »

Traduisez en langage courant (avec des phrases simples) chacune des propositions suivantes :

a) ¬ P

Réponse : Rémi ne mange pas de poulet

b) T \wedge S

Réponse : Rémi vient en TD et fait du sport

 $c) \neg T \lor C$

Réponse : plusieurs formulations possibles.

- Rémi ne vient pas en TD ou il réussit le cours.
- Si Rémi vient en TD, alors réussit le cours.
- Rémi vient au TD implique qu'il réussisse le cours
- Rémi réussit le cours dès qu'il vient en TD
- Rémi réussit le cours s'il vient en TD
- Il est suffisant que Rémi vienne en TD pour qu'il réussisse le cours.
- Il est nécessaire que Rémi réussisse le cours pour qu'il vienne en TD.

d)
$$(\neg T \lor \neg P) \rightarrow \neg C$$

Réponse : Plusieurs formulations possibles, en basant sur les formulations vues en cours. Seul 2 exemples sont donnés ici.

- Si Rémi ne va pas en TD ou ne mange pas de poulet, il ne réussira pas le cours
- Rémi ne réussit pas le cours, ou mange du poulet et va en TD.

e)
$$(P \leftrightarrow S) \land (T \leftrightarrow C)$$

Réponse : Rémi mange du poulet si et seulement si il fait du sport, et Rémi réussit le cours si et seulement si il va en TD.

Exercice 2:

Soit P et Q les propositions suivantes :

- P : « Jean est fort en Mathématiques »
- Q: « Jean est fort en Algorithmique »

De plus, on suppose qu'être faible, c'est ne pas être fort. Représentez les énoncés suivants en logique propositionnelle, à l'aide des symboles $PQ \neg \Lambda V \rightarrow \longleftrightarrow$

a) Jean est fort en Mathématiques mais faible en Algorithmique.

Réponse : P ∧ ¬Q

b) Jean n'est fort ni en Mathématiques ni en Algorithmique.

Réponse : ¬P ∧ ¬Q

c) Jean est fort en Mathématiques ou il est à la fois fort en Algorithmique et faible en Mathématiques.

Réponse : P V (Q ∧ ¬P)

d) Jean est fort en Mathématiques s'il est faible en Algorithmique.

Réponse : $\neg Q \rightarrow P$

e) Jean est fort en Algorithmique et en Mathématiques ou il est faible en Mathématiques et fort en Algorithmique.

Réponse : $(Q \land P) \lor (\neg P \land Q)$

f) Il suffit que Jean soit fort en Mathématiques pour être fort en Algorithmique.

Réponse : $P \rightarrow Q$

Exercice 3 : Soit l'énoncé : "Si tu gagnes, tu reçois un prix".

Parmi les énoncés ci-dessous, lesquels sont équivalents à cette implication et lesquels sont équivalents à sa réciproque ? Justifiez votre réponse, par exemple en représentant les énoncés en logique propositionnelle (y compris celui de l'énoncé).

"Si tu gagnes, tu reçois un prix" se traduit par : $G \rightarrow R$

a) Tu gagnes ou tu ne reçois pas un prix.

Réponse:

 $G \lor \neg R \equiv R \rightarrow G$. C'est la réciproque.

b) Tu ne gagnes pas ou tu reçois un prix.

Réponse :

 $\neg G \lor R \equiv G \rightarrow R$. C'est l'implication.

c) Tu gagneras et recevras un prix.

Réponse:

G Λ R. Ce n'est équivalent ni à l'implication, ni à la réciproque.

d) C'est nécessaire pour toi de gagner pour recevoir un prix.

Réponse :

(G nécessaire pour R) \equiv R \rightarrow G. C'est la réciproque.

e) C'est suffisant de gagner pour recevoir un prix.

Réponse :

(G suffisant pour R) \equiv G \rightarrow R. C'est l'implication.

f) Tu gagneras si et seulement si tu reçois un prix

Réponse :

 $(R \leftrightarrow G) \equiv (R \rightarrow G) \land (G \rightarrow R)$. Ce n'est équivalent ni à l'implication, ni à la réciproque.

Exercice 4 : Simplifiez le plus possible la proposition suivante :

$$((P \rightarrow R) \land (R \leftrightarrow Q) \land P)$$

Indications:

- chaque lettre ne doit pas apparaître plus d'une fois
- les opérateurs \rightarrow et \leftrightarrow ne font pas partie du résultat final

Réponse:

$$((P \rightarrow R) \land (R \leftrightarrow Q) \land P)$$

 $((P \rightarrow R) \land (R \rightarrow Q) \land (Q \rightarrow R) \land P$ traduction de l'implication double

 $(\neg P \lor R) \land (\neg R \lor Q) \land (\neg Q \lor R) \land P$ traduction des implications

 $P \wedge (\neg P \vee R) \wedge (\neg R \vee Q) \wedge (\neg Q \vee R)$

 $((P \land \neg P) \lor (P \land R)) \land (\neg R \lor Q) \land (\neg Q \lor R)$ distributivité

 $(\mathbf{F} \vee (P \wedge R)) \wedge (\neg R \vee Q) \wedge (\neg Q \vee R)$ loi d'identité

 $P \wedge R \wedge (\neg R \vee Q) \wedge (\neg Q \vee R)$ loi de domination

 $P \wedge ((R \wedge \neg R) \vee (R \wedge Q)) \wedge (\neg Q \vee R)$ distributivité

 $P \wedge R \wedge Q \wedge (\neg Q \vee R)$ identité et domination

 $P \wedge R \wedge ((Q \wedge \neg Q) \vee (Q \wedge R))$ distributivité

 $P \wedge R \wedge Q \wedge R$ identité et domination

 $P \wedge R \wedge Q$ Idempotence

Exercice 5:: Soit la proposition suivante : $P \land \neg (Q \lor (P \land \neg Q))$.

En dérivant la proposition, dites s'il s'agit d'une contingence, d'une tautologie ou d'une contradiction.

Justifiez chaque étape de votre réponse.

Réponse :

 $P \land \neg (Q \lor (P \land \neg Q))$ $\equiv P \land (\neg Q \land \neg (P \land \neg Q)) \text{ De Morgan}$ $\equiv P \land (\neg Q \land (\neg P \lor Q)) \text{ De Morgan}$ $\equiv (P \land \neg Q) \land (\neg P \lor Q) \text{ Associativit\'e de } \land$ $\equiv \neg (\neg P \lor Q) \land (\neg P \lor Q) \text{ De Morgan}$ $\equiv \neg R \land R \text{ avec } R \equiv (\neg P \lor Q)$ C'est donc une contradiction.