МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра дискретной математики и информационных технологий

РЕАЛИЗАЦИЯ СИСТЕМЫ МОНИТОРИНГА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА С ИСПОЛЬЗОВАНИЕМ ИНТЕРНЕТА УМНЫХ ВЕЩЕЙ

БАКАЛАВРСКАЯ РАБОТА

студента 4 курса 421 группы направления 09.03.01 — Информатика и вычислительная техника факультета КНиИТ Лаптева Юрия Владиславовича

Научный руководитель доцент, к. фм. н.	 А. Д. Панфёров
Заведующий кафедрой	
к. фм. н.	 Л. Б. Тяпаев

СОДЕРЖАНИЕ

BE	ЗЕДЕ	НИЕ		3
1	Оби	цие свед	цения о предметной области	6
	1.1	Интер	нет умных вещей	6
	1.2	Систе	мы мониторинга для муфельных печей и их применение	6
2	Свед	дения о	конфигурации системы мониторинга технологического	
	проі	цесса		6
	2.1	Однопалатный компьютер PrangePi One		6
	2.2	Твердотельное реле SSR-25DA		6
	2.3	Термопара К-типа и модуль преобразователя термопары МАХ6675		6
	2.4	Дисплей SPI 1602 LCD 6		6
	2.5	Общая	я схема подключения	6
3	Теоретические сведения об используемых в разработке технологиях		6	
	3.1	Клиен	т-серверная архитектура	6
	3.2	Серве	рная часть приложения	6
		3.2.1	Python	6
		3.2.2	Протокол SPI	6
		3.2.3	Протокол I2C	6
		3.2.4	Библиотека руА20	6
		3.2.5	JavaScript Object Notation	6
		3.2.6	Apache HTTP Server	6
	3.3	Клиен	тская часть приложения	6
		3.3.1	Javascript	6
		3.3.2	HTML CSS	6
4	Разработка приложения		6	
	4.1	Серверная часть приложения		6
	4.2	Клиентская часть приложения		6
		4.2.1	Начальная страница	6
		4.2.2	Страница текущего состояния	6
		4.2.3	Страница режимов работы	6
3A	КЛЮ)ЧЕНИІ	Е	
CT	тисс	ук исп	ЮЛГЗОВУННГІХ ИСТОПНИКОВ	6

ВВЕДЕНИЕ

За последние годы технологии продвинулись далеко вперед. Были открыты новые направления как в промышленности, так и в ИТ сфере. Одной из ключевых концепций, позволивших расширить возможности технологических процессов является Интернет вещей.

Интернет вещей (IoT) - концепция, объединения различных устройств посредством как беспроводных технологий, так и через интернет. Устройства могут обмениваться информацией как при участии человека, так и без какого-либо вмешательства. Развитие концепции Интернета вещей произошло благодаря широкому распространению беспроводных сетей, смартфонов, ноутбуков.

Применение устройств из категории Интернета вещей так же получило распространение и в производстве. Были изобретены системы удаленного мониторинга с различными возможностями, требуемыми в конкретной отрасли.

Устройства из категории Интернет вещей можно найти и в ювелирном деле. Так появились устройства, способные точно и быстро вырезать необходимые заготовки из ювелирного воска по загруженным удаленно с ноутбука 3D моделям, лазерные установки, способные как выжигать сложные элементы на металле, так и прожигать его. Так же существуют контролеры для работы с муфельными печами. Данные устройства позволяют отслеживать и корректировать температуру внутри изолированного короба.

Муфельные печи появились в конце XVII - начале XVIII вв. и представляли собой контейнер (муфель), устойчивый к высоким температурам и имеющий непроницаемую для отвода тепла структуру.С увеличением масштабов производства необходимость таких конструкций значительно возросло.

В современном мире муфельные печи получили системы контроля температуры и времени работы. На рынке представлено широкий ассортимент систем мониторинга таких как: механический контролеры температуры печи, автоматические регуляторы муфельной печи.

На данный момент не существует гибко настраиваемых систем мониторинга для муфельных печей с возможностью дистанционного управления через WEB интерфейс. Целью данной выпускной квалификационной работы является разработка системы мониторинга технологического процесса со следующими функционалом: поддержание определенной температуры в течении

установленного периода времени(так называемых "температурных полок"), сбор, хранение и показ статистики о температуре и времени ее поддержания при работе устройства, удаленное создание и редактирование температурных полок.

Для реализации данной цели было необходимо решить следующие задачи:

- изучить общие положения концепции Интернета вещей;
- изучить представленные на рынке системы мониторинга для муфельных печей;
- разработать конструкцию муфельной печи, способную сохранять целостность при высоких температурах;
- изучить электронные компоненты, способные работать длительное время под нагрузками;
- продумать и разработать клиентскую и серверную часть приложения

- 1 Общие сведения о предметной области
- 1.1 Интернет умных вещей
- 1.2 Системы мониторинга для муфельных печей и их применение
- 2 Сведения о конфигурации системы мониторинга технологического процесса
 - 2.1 Однопалатный компьютер PrangePi One
 - 2.2 Твердотельное реле SSR-25DA
 - 2.3 Термопара К-типа и модуль преобразователя термопары МАХ6675
 - 2.4 Дисплей SPI 1602 LCD
 - 2.5 Общая схема подключения
- **3** Теоретические сведения об используемых в разработке технологиях
 - 3.1 Клиент-серверная архитектура
 - 3.2 Серверная часть приложения
 - 3.2.1 Python
 - 3.2.2 Протокол SPI
 - 3.2.3 Протокол І2С
 - 3.2.4 Библиотека руА20
 - 3.2.5 JavaScript Object Notation
 - 3.2.6 Apache HTTP Server
 - 3.3 Клиентская часть приложения
 - 3.3.1 Javascript
 - 3.3.2 HTML CSS
 - 4 Разработка приложения
 - 4.1 Серверная часть приложения
 - 4.2 Клиентская часть приложения
 - 4.2.1 Начальная страница
 - 4.2.2 Страница текущего состояния
 - 4.2.3 Страница режимов работы

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ