Homework Assignment #4

Note: You must provide sufficient detail in your derivations or proofs to earn full credit. No late homework will be graded.

1. Let X follow an exponential family of distributions with the density function

$$f_{\theta}(x) = a(\theta)h(x)exp(T(x)^T\theta)$$

where $\theta \in \mathbb{R}^k$, and $a(\theta)$ and h(x) are given functions. Calculate the mean of T(x).

- 2. Let X_1, \dots, X_n be a random sample from the exponential distribution with $f_{\theta}(x) = exp\{-x + \theta\}$ on $x > \theta$. Let $X_{(1)}$ and $X_{(n)}$ be the smallest and the largest order statistics.
 - (a) Show that $X_{(1)}$ is the complete sufficient statistic for θ .
 - (b) Is $X_{(1)}$ independent of $X_{(n)} X_{(1)}$?
- 3. Let X_1, \dots, X_n be a random sample from a Poisson family of distributions with mean λ .
- (a) Is the sample mean \bar{X} the complete sufficient statistic? Prove or disprove.
- (b) Obviously, \bar{X} is a method of moments estimator of λ . Another method of moments estimator of λ is the sample variance S^2 . Compare the two estimators in terms of the mean squared error when n=3.
 - 4. Let X_1, \dots, X_n be a random sample from $Unif(-\theta, \theta)$.
 - (a) Find a method of moments estimator T(x) of θ .
 - (b) Is T(x) an unbiased estimator of θ ?
 - (c) Find the maximum likelihood estimator of θ .