Universitat Autònoma de Barcelona Facultat de Ciències

Modelització i Inferencia Pràctica 2

Autor:

Gerard Lahuerta Martín NIU: 1601350

2 de Desembre del 2021

$\acute{\mathbf{I}}\mathbf{n}\mathbf{dex}$

1	Presentació del problema	3
2	Resolució del primer apartat	4
3	Resolució del segon apartat	5
4	Resolució del tercer apartat	6
5	Resolució del quart apartat	7

1 Presentació del problema

Suposa una mostra aleatòria X_1, \dots, X_n distribuïda segons una $Weibull(\alpha, k)$ amb la següent funció de densitat:

$$f_X(x|\alpha, k) = \frac{k}{\alpha} x^{k-1} e^{-\frac{x^k}{\alpha}}, \ x > 0, \ \alpha, k > 0$$

Considera k=2.

- (a) Troba l'estimador de màxima versemblança per a α , i comprova que el que has trobat és un maximitzador de la funció de versemblança.
- (b) Demostra que l'estimador de màxima versemblança de α , $\hat{\alpha}$, és un estimador no esbiaxat per a α .

Pista: Per a resoldre aquest exercici, necessites trobar primer la distribució de X_i^2 sabent que $X_i \sim Weibull(\alpha, 2)$. Pots fer la demostració a partir de la distribució de probabilitat acumulada (CDF) sabent que:

$$\mathbb{P}(X_i^2 \le c) = \mathbb{P}(X_i \le \sqrt{c}) = \int_0^{\sqrt{c}} f_{X_i}(x_i|\alpha) \partial x_i$$

- (c) Calcula la informació de Fisher esperada per a α
- (d) És $\hat{\alpha}$ l'estimador per a α més eficient entre tots els estimadors no esbiaxats? Justifica la teva resposta.

2 Resolució del primer apartat

Trobem l'estimador de màxima versemblança per a α (que anomenarem $\hat{\alpha}$) a partir del seu MLE ($Most\ Likelihood\ Estimator$): Calculem la funció de versemblança, la log-versemblança i la funció "score":

• Funció de versemblança: $L(\alpha|x)$

$$L(\alpha|x) = \prod_{i=1}^{n} f_{X_i}(x_i|\alpha, 2) = \prod_{i=1}^{n} \left(\frac{2}{\alpha} x_i e^{-\frac{x_i^2}{\alpha}}\right) = \left(\frac{2}{\alpha}\right)^n e^{-\frac{\sum_{i=1}^{n} x_i^2}{\alpha}} \prod_{i=1}^{n} x_i$$

• Funció de log-versemblança: $l(\alpha|x) = \log(L(\alpha|x))$

$$l(\alpha|x) = \log\left[\left(\frac{2}{\alpha}\right)^n e^{-\frac{\sum_{i=1}^n x_i^2}{\alpha}} \prod_{i=1}^n x_i\right] = n \log\left(\frac{2}{\alpha}\right) - \frac{\sum_{i=1}^n x_i^2}{\alpha} + \log\left(\prod_{i=1}^n x_i\right) = n \left(\log(2) - \log(\alpha)\right) - \frac{1}{\alpha} \sum_{i=1}^n (x_i^2) + \sum_{i=1}^n (\log(x_i))$$

• Funció score: $s(\alpha|x) = \frac{\partial}{\partial \alpha} l(\alpha|x)$

$$s(\alpha|x) = \frac{\partial}{\partial \alpha} \left(n \left(\log(2) - \log(\alpha) \right) - \frac{1}{\alpha} \sum_{i=1}^{n} (x_i^2) + \sum_{i=1}^{n} (\log(x_i)) \right) =$$

$$= \frac{1}{\alpha^2} \sum_{i=1}^{n} (x_i^2) - \frac{n}{\alpha}$$

• Igualem la funció score a 0 per a trobar el màxim.

$$s(\alpha|x) = 0 \iff \frac{1}{\alpha^2} \sum_{i=1}^n (x_i^2) - \frac{n}{\alpha} = 0 \implies \frac{1}{\alpha^2} \sum_{i=1}^n (x_i^2) = \frac{n}{\alpha} \implies \frac{1}{n} \sum_{i=1}^n (x_i^2) = \alpha \implies \hat{\alpha} = \frac{1}{n} \sum_{i=1}^n (x_i^2)$$

• Comprovem ara que el valor de l'estimador $\hat{\alpha}$ trobat es el màxim a partir del signe de la derivada de la funció score: $s'(\alpha|x)$.

$$s'(\alpha|x) = \frac{-2}{\alpha^3} \sum_{i=1}^n (x_i^2) + \frac{n}{\alpha^2} \underset{(\alpha = \hat{\alpha})}{\stackrel{\uparrow}{=}} -2n^3 \left(\sum_{i=1}^n (x_i^2) \right)^{-2} + n^3 \left(\sum_{i=1}^n (x_i^2) \right)^{-2} =$$

$$= -n^3 \left(\sum_{i=1}^n (x_i^2) \right)^{-2} < 0 \text{ ja que } n \in \mathbb{N} (n > 0) \text{ i} \left(\sum_{i=1}^n (x_i^2) \right)^{-2} \in \mathbb{R}^+ \Rightarrow$$

$$\implies \hat{\alpha} = \frac{1}{n} \sum_{i=1}^n (x_i^2) \text{ és realment l'estimador de màxima versemblança per } \alpha$$

$$(1)$$

3 Resolució del segon apartat

Comprovem si l'estimador $\hat{\alpha}$ trobat a l'apartat anterior és no esbiaxat, sabent que no ho serà si i nomès si $Bias(\hat{\alpha}) = 0$. Calculem el $Bias(\hat{\alpha}) = E(\hat{\alpha}) - \alpha$, calculant previamente l'esperança de l'estimador: $E(\hat{\alpha})$

• Càlcul de l'esperança de l'estimador $\hat{\alpha}: E(\hat{\alpha})$

$$E(\hat{\alpha}) = E\left(\frac{1}{n}\sum_{i=1}^{n}(X_i^2)\right) \underset{(I)}{=} E\left(X_i^2\right)$$

(I): X_1, \dots, X_n independents i idènticament distribuïdes

• Calculem ara $E(X_i^2)$ trobat la distribució de X_i^2 :

$$\mathbb{P}(X_i^2 \le u) = \mathbb{P}(X_i \le \sqrt{u}) = \int_0^{\sqrt{u}} \left(\frac{2}{\alpha} x_i e^{-\frac{x_i^2}{\alpha}}\right) dx = 1 - e^{\frac{-u}{\alpha}} \Longrightarrow$$

$$\Longrightarrow X_i^2 = \left(1 - e^{\frac{-x_i}{\alpha}}\right)' = \frac{1}{\alpha} e^{\frac{-x_i}{\alpha}} \Longrightarrow$$

$$\Longrightarrow E(X_i^2) = \int_0^\infty \frac{1}{\alpha} x e^{\frac{-x}{\alpha}} dx = \left[-(\alpha + x) e^{\frac{-x}{\alpha}}\right]_0^\infty = 0 - (-\alpha) = \alpha$$
(2)

• Calculem ara el $Bias(\hat{\alpha})$:

$$Bias(\hat{\alpha}) = E(\hat{\alpha}) - \alpha = \alpha - \alpha = 0 \Longrightarrow$$
 L'estimador $\hat{\alpha}$ és no esbiaxat

4 Resolució del tercer apartat

Calculem l'informació de Fisher esperada per a α : $J(\alpha)$, calculant previament l'informació observada de Fisher, $I(\alpha)$.

• L'informació observada de Fisher: $I(\alpha) = -s'(\alpha)$ calculada anteriorment a l'apartat 2.1

$$I(\alpha) = -\frac{n}{\alpha^2} + \frac{2}{\alpha^3} \sum_{i=1}^{n} (x_i^2)$$

• Informació de Fisher esperada: $J(\alpha) = E(I(\alpha))$

$$J(\alpha) = E\left(\frac{-n}{\alpha^2} + \frac{2}{\alpha^3} \sum_{i=1}^n (x_i^2)\right) = \frac{-n}{\alpha^2} + \frac{2n}{\alpha^3} E(x_i^2) \underset{(II)}{=} \frac{-n}{\alpha^2} + \frac{2n}{\alpha^2} = \frac{n}{\alpha^2} \Longrightarrow$$

$$\Longrightarrow$$
 L'informació de Fisher esperada per a α és: $J(\alpha) = \frac{n}{\alpha^2}$

(II): $E(X_i^2) = \alpha$ la sabem per l'apartat 3.2

5 Resolució del quart apartat

Sabem que el millor estimador no esbiaxat serà aquell que tingui una menor variança. Per descobrir si $\hat{\alpha}$ és el millor estimador calculem la seva variança: $V(\hat{\alpha})$.

• Calculem $V(\hat{\alpha})$:

$$V(\hat{\alpha}) = V\left(\frac{1}{n}\sum_{i=1}^{n}(X_i)^2\right) = \frac{1}{n^2}V\left(\sum_{i=1}^{n}(X_i)^2\right) = \frac{1}{n}V\left(X_i^2\right)$$

• Calculem $V(X_i^2)$:

$$V(X_i^2) = E((X_i^2)^2) - E(X_i^2)^2 = E((X_i^2)^2) - \alpha^2$$

$$E(\hat{\alpha}^2) = \int_0^\infty x^2 \frac{1}{\alpha} e^{\frac{-x}{\alpha}} dx = \left[-(x^2 + 2x\alpha + 2\alpha^2) e^{\frac{-x}{\alpha}} \right]_0^\infty = 2\alpha^2$$

$$\implies V(X_i^2) = \alpha^2 \implies V(\hat{\alpha}) = \frac{\alpha^2}{n}$$

Sabem, també, que la Cota de Cramer-Rao $(CR = J^{-1}(\alpha))$ ens diu si un estimador és o no eficient i, a més, si es el més eficient.

Serà l'estimador més eficient si la seva variança és igual a la Cota de Cramer Rao.

• Calculem doncs la Cota de Cramer Rao:

$$CR = J^{-1}(\alpha) = \frac{1}{\frac{n}{\alpha^2}} = \frac{\alpha^2}{n}$$

Observem que $CR = V(\alpha) \Longrightarrow$

 \Longrightarrow L'estimador $\hat{\alpha}$ és el millor d'entre tots els estimadors no esbiaxats