Université
de Strasbourg

Hierarchical clustering

Maja Temerinac-Ott temerinacott@unistra.fr

Slides adopted from Germain Forestier

Agglomerative clustering:

- Classification hiérarchique ascendante (CHA)
- Principle: create, at each step, a partition obtained by aggregating the closest elements two by two.

Elements:

- Individuals or objects to be classified
- Groups of individuals generated by the algorithm
- Each individual or cluster is gradually absorbed by the closest cluster

Birds/Mammals

Predators/Non-Predators

- What is a cluster?
- Which features and normalization should be used?
- How to define pair-wise similarity?
- How many clusters?
- Which clustering method?
- Does the data have any clustering tendency?
- Are the discovered clusters & partition valid?

40 Genes measured under two different conditions

http://www.nature.com/nbt/journal/v23/n12/full/nbt1205-1499.html

15.09.17

Université de Strasbourg

- Classification hiérarchique ascendante (CHA)
- **Result**: partition hierarchy, in the form of trees containing n - 1 partitions.
- **Defintion**: The set D of data, partitioned into K classes, is a hierarchy H iff:
 - 1. *D∈H*
 - 2. $\forall x \in D, \{x\} \in H$
 - 3. $\forall h, h' \subseteq H, h \cap h' = \emptyset$ ou $h \subseteq h'$ ou $h' \subseteq h$

Université

de Strasbourg

Université de Strasbourg

- these trees give an idea of the number of classes actually existing in the population.
- By "cutting" the tree by a horizontal line, we obtain a partition
- The closer the line is to the terminal elements the finer the partition is.

Université

de Strasbourg

Agglomerative clustering:

• $P = \{\{C1, C2\}, \{C3, C4\}, \{C5\}, \{C6\}\}\}$

- these trees give an idea of the number of classes actually existing in the population.
- By "cutting" the tree by a horizontal line, we obtain a partition
- The closer the line is to the terminal elements the finer the partition is.
- A hierarchy therefore makes it possible to provide a chain of n partitions having from 1 to n classes.

- At the beginning all the individuals have a distance: how is it defined?
 - The distance between an individual and a group
 - The distance between two groups
- Define a strategy of grouping the elements: calculating the distances between disjoint groups of individuals
 - Aggregation criterion

Université de Strasbourg

Agglomerative clustering:

- Example:
 - **Single linkage**: define the distance from H to y by the **smallest** distance of the elements from H to y:

$$d(H,y) = min \{d(x_i,y)\} x_i \in H$$

and the distance between two clusters H₁ and H₂ can be defined by:

$$d(H_1, H_2) = min\{d(x_i, y_i)\} où x_i \in H_1, y_i \in H_2$$

Université

de Strasbourg

- Example:
 - minimum link index (nearest neighbor)

$$D(h_1, h_2) = \min_{x_i \in h_1, x_j \in h_2} d(x_i, x_j)$$

de Strasbourg

Agglomerative clustering:

Example: Single Linkage

Université

- Example: Single Linkage
 - Distance matrix

	a	b	c	d	e	f	g	h
a	0	1.118	1	2	2.23	4.24	4.03	4.47
b	1.118	0	0.707	1.118	1.118	3.201	2.91	3.35
c	1	0.707	0	1	1.414	3.605	3.201	3.605
d	2	1.118	1.118	0	1	3.162	2.121	2.828
e	2.23	1.118	1.414	1	0	2.236	1.802	2.236
f	4.24	3.20	3.605	3.162	2.236	0	1.118	1.414
g	4.03	2.91	3.201	2.121	1.802	1.118	0	0.707
h	4.47	3.35	3.605	2.828	2.236	1.414	0.707	0

Université

- Example: Single Linkage
 - Dendogram

Université

de Strasbourg

Example: Single Linkage

Distance matrix

	a	{b,c}	d	e	f	g	h
a	0	1	2	2.23	4.24	4.03	4.47
{b,c}		0	1	1.118	3.201	2.91	3.35
d			0	1	3.162	2.121	2.828
e				0	2.236	1.802	2.236
f					0	1.118	1.414
g						0	0.707
h							0

Université

- Example: Single Linkage
 - Dendogram

Université

- Example: Single Linkage
 - Distance matrix

	a	{b,c}	d	e	f	{g,h}
a	0	1	2	2.23	4.24	4.03
{b,c}		0	1	1.118	3.201	2.91
d			0	1	3.162	2.121
e				0	2.236	1.802
f					0	1.118
{g,h}						0

Université

- Example: Single Linkage
 - Dendogram

Université

- Example: Single Linkage
 - Distance matrix

	a	$\{\{b,c\},d\}$	e	f	{g,h}
a	0	1	2.23	4.24	4.03
{{b,c},d}		0	1.118	3.201	2.121
е			0	2.236	1.802
f				0	1.118
{g,h}					0

Université

de Strasbourg

Example: Single Linkage

Université

- Example: Single Linkage
 - Distance matrix

	${a,{\{b,c\},d\}}}$	e	f	${g,h}$
${a,{\{\{b,c\},d\}\}}}$	0	1.118	3.201	2.121
e		0	2.236	1.802
f			0	1.118
{g,h}				0

Université

de Strasbourg

Example: Single Linkage

Dendogram

26

Université

- Example: Single Linkage
 - Distance matrix

	$\{\{a,\{\{b,c\},d\}\},e\}$	f	{g,h}
$\{\{a,\{\{b,c\},d\},e\}$	0	3.201	2.121
f		0	1.118
{g,h}			0

- Example: Single Linkage
 - Dendogram

Université

- Example: Single Linkage
 - Distance matrix

	$\{\{a,\{\{b,c\},d\}\},e\}$	$\{f,\{g,h\}\}$
$\{\{a,\{\{b,c\},d\},e\}$	0	1.802
$\{f,\{g,h\}\}$		0

Université

- Example: Single Linkage
 - Dendogram

Université de Strasbourg

Agglomerative clustering:

- Example:
 - Complete linkage: define the distance from H to y by the **bigest** distance of the elements from H to y:

$$d(H_1, H_2) = max \{ d(x_i, y_j) \} où x_i \in H_1, y_j \in H_2$$

Attention: We still link the classes with the smallest distance!!

Université

de Strasbourg

- Example:
 - maximum link index (maximum diameter)

$$D(h_1, h_2) = \max_{x_i \in h_1, x_j \in h_2} d(x_i, x_j)$$

Université

de Strasbourg

Example: Complete Linkage

$$d({e},{b,c,d}) = d(e,c) = 1,4$$

< $d({a},{b,c,d}) = d(a,d) = 2$

Université

de Strasbourg

single vs complete linkage: different result!

de Strasbourg

Chain problem in the classification!

de Strasbourg

Chain problem in the classification!

Université icuse Agglomerative Clustering

de Strasbourg

Chain problem in the classification!

icuse Agglomerative Clustering

- Chain problem in the classification!
 - Consider the variance of the classes: Ward index
 - **Updating:**
 - After merging h1 and h2: the distance is calculated with another block

$$\delta_{1}(h_{1} \cup h_{2}, h) = \frac{|h| + |h_{1}|}{|h| + |h_{1}| + |h_{2}|} \delta_{1}(h_{1}, h)$$

$$+ \frac{|h| + |h_{2}|}{|h| + |h_{1}| + |h_{2}|} \delta_{1}(h_{2}, h) + \frac{|h_{1}| + |h_{2}|}{|h| + |h_{1}| + |h_{2}|} \delta_{1}(h_{1}, h_{2})$$

it can be shown that at each step the new partition is the one that limits the increase in intra-class inertia

icuse Agglomerative Clustering

Université

de Strasbourg

- Distance measure:
 - centers of gravity (average distance)

$$D(h_1, h_2) = d(g_1, g_2)$$

ICU3E Agglomerative Clustering

Université

de Strasbourg

- Distance measure:
 - Aggreagation of variation of inertia

$$\delta_1(h_1, h_2) = \frac{p(h_1) \cdot p(h_2)}{p(h_1) + p(h_2)} d(g_1, g_2)$$

Compute the likelihood of the link

$$\delta_1(h_1, h_2) = -\log\left(-\log\left(\left[d(h_1, h_2)\right]^{(n_1, n_2)^{\varepsilon}}\right)\right)$$

- where d (h1, h2) is the index of the simple link
- facilitates the fusion of low variance classes

ICU3E Ultrametric Space

- In mathematics, an ultrametric space is a special kind of metric space in which the triangle inequality is replaced
- Definition: $d: M \times M \rightarrow R^+$
- It has the following properties:

$$\forall (x,y) \in M^2$$
, $d(x,y) = 0 \leftrightarrow x = y$
 $\forall (x,y) \in M^2$, $d(x,y) = d(y, x)$
and

$$\forall (x,y,z) \in M^3, d(x,z) \leq \max\{d(x,y),d(y,z)\}$$

A hierearchy is indexed if there is f such that

$$\forall x \in H, f(\{x\}) = 0$$

 $\forall h, h' \in H, h \neq h', h' \subset h => f(h') < f(h)$

15.09.17

- It can be shown:
 - any indexed hierarchy makes it possible to define an ultrametric
 - any ultrametric allows to define an indexed hierarchy

ICU3E Ultrametric Space

 $\{b\};\{c\} \rightarrow 0.707 / \{h\},\{g\} \rightarrow 0.707\{b,c\},\{d\} \rightarrow 1$ $\{\{b,c\},\{d\}\},\{a\} \rightarrow 1 \quad \{\{a\},\{b,c\},\{d\}\},\{e\} \rightarrow 1.118$ $\{g,h\}.\{f\} \rightarrow 1.118 \quad \{\{a\},\{b,c\},\{d\}.\{e\}\}\{\{f\},\{g,h\}\} \rightarrow 1.802$

	a	b	c	d	e	f	g	h
a	0	1	1	1	1.118	1.802	1.802	1.802
b	1	0	0.707	1	1.118	1.802	1.802	1.802
c	1	0.707	0	1	1.118	1.802	1.802	1.802
d	1	1	1	0	1.118	1.802	1.802	1.802
e	1.118	1.118	1.118	1.118	0	1.802	1.802	1.802
f	1.802	1.802	1.802	1.802	1.802	0	1.118	1.118
G	1.802	1.802	1.802	1.802	1.802	1.118	0	0.707
Н	1.802	1.802	1.802	1.802	1.802	1.118	0.707	0

ICU3E Ultrametric Space

Minimum likelihood clustering

Chameleon algorithm

- Combines initial partition of data with hierarchical clustering techniques it modifies clusters dynamically
- Principle: estimate the intra-cluster and extracluster density from the k nearest neighbors (k-nn) graph

ICU3E Chameleon algorithm

- Step 1:
 - Find the initial clusters
 - By partitioning the graph k-nn into m "solid" partitions (where the distance between points is minimized)
- Step 2:
 - Dynamically merge sub-clusters
 - Depending on two subcriteria:
 - 1. RI(C,C'): relative inter-connectivity
 - 2. RC(C,C'): relative proximity

ICU3E Chameleon algorithm

$$RC(C,C') = \frac{(|C|+|C'|)DC(C,C')}{|C|DC(C)+|C'|DC(C')}$$

$$RI(C,C') = \frac{2 \times |EC(C,C')|}{|EC(C)| \times |EC(C')|}$$

EC(C,C'): set of edges that connect C and C' (absolute interconnectivity between 2 clusters)

EC(C): smallest set of arrays that partition C into 2 clusters of proximally same size (internal interconnectivity)

DC(C,C'): average distance between points of C and C'

DC(C): average distance between points in C

ICU3E Chameleon algorithm

Problems:

- Costs are too high to compute all distances O(n³)
- Binary tree:
 - We need to find k
 - Verify that the indices between every pair of k classes are minimal

 Principle: by division of classes, we build a sequence of nested partitions whose classes form the hierarchy H sought

Data mining - Hierarchical clustering

- Problems:
 - How to select which class to divide?
 - How many subclasses are there?

- How to select which class to divide?
 - at each level, all classes that can be developed according to a certain criterion
 - only the class with the strongest criterion is developed
- Possible criteria
 - minimum variance
 - Number of objects
 - study of the histograms of values taken from the data

51

Using the distribution of the vlaues

- Principle: for each attribute
 - find a threshold separating the histogram into two "subclasses »
 - separate these two subclasses if necessary
 - iterate

- Calculation of a theoretical threshold:
 - s = (max + min)/2 = 10,5

Calculation of the weighted average:

 $10,5 \neq 8,8 =>$ we divide at 9

 $10,5 \neq 8,8 =>$ we divide at 9

Next iteration « class » 1

« class » 2

- K-means example:
 - two approaches when developing a class
 - Either only the objects inside the class are reclassified

- K-means example:
 - two approaches when developing a class
 - Either only the objects inside the class are reclassified and new centers computed

- K-means example:
 - two approaches when developing a class
 - Or all objects are reclassified from all centers

- K-means example:
 - two approaches when developing a class
 - Or all objects are reclassified from all centers

- K-means example:
 - inconvenient
 - the initial class does not cover all the objects assigned to the new kernels -> we use the property of a hierarchy

- How to determine K:
 - 1. K is found using statistical criteria
 - 2. K is found by studying the histograms
 - 3. K is fix: in general K=2
 - K-means example:
 - The first two cases correspond to ISODATA
 - for the third case, the problem of the initialization of new centers remains

Université							
		de Strasbourg					

Hierarchical K-means:

- Generate in the class you would like to split two points by slightly perturbing the center of gravities
- Apply the K-means algorithm to the class you would like to split
- iterate