

LEVELV

USN'avy Lib-KSTL

CL

ADA 0 81.81

6 OCEANOGRAPHIC ANALYSES AND FORECASTS
FOR FLEET SUPPORT

(Services and Codes),

Mirricka.

MAR 1 4 1980

Fleet Numerical Weather Facility Monterey, California

(14) 17111-11-21

Technical Memo. No. 11-2

Revised Aug

12/2/

This document has been approved in public release and sale; its distribution in unlimited.

80 1 23 084

MIC FILE COPY

Contents

- i. Introduction
- ii. Requests for services and transmission of analyses/forecasts
 - Wave analyses/forecasts
 - 2. Thermal structure analyses/forecasts
 - 2.1 Sea Surface Temperature
 - 2.2 Mixed Layer Depth; Sonic Layer Depth; Thermocline Magnitude and Gradient
 - 2.3 Transient Thermoclines
 - 2.4 Temperature at standard depths
 - 2.5 Detailed Small-Scale Analyses/Forecasts
 (Zoom Programs)
 - 3. Temperature and sound speed profiles
 - 3.1 Temperature-depth profiles
 - 3.2 Sound speed profiles
 - 3.3 Sound propagation loss, convergence zone range, and other sonar forecasts
 - 4. Other oceanographic services and products
 - 4.1 Outlooks
 - 4.2 Currents, current boundaries
 - 4.3 Other oceanographic programs
 - 5. Codes
 - 5.1 Message format
 - 5.2 Profile codes
 - 6. Table I

INTRODUCTION

The Fleet Numerical Weather Facility provides timely, hemisphere-wide oceanographic products in support of the Operating Forces of the U. S. Navy. These products are issued on an operational basis in the form of oceanographic analyses and forecasts.

This memorandum describes the type and availability of FNWF oceanographic services and their corresponding codes. The codes presented in this memorandum are those of the type which are in general use, however codes can be used which are mutually agreed upon by the users. A series of manuals and textbooks describe both numerical and subjective methods or use in oceanographic support problems.

The Fleet Numerical Weather Facility at Monterey appreciates comment, criticism and suggestions from all units in the belief that these lead to improvement of the environmental support. Periodic revisions of this memorandum will occur as additional progress is made in the field of synoptic oceanography. This memorandum cancels FNWF Technical Memo No. 11-11.

Acceptation For

NT15 Grank!

DDC TAB

Uncommouseed

Supplification

By

Discrimitation

Accident or

Dist openial

التي الله التي التيونيون بالتأثير الوياف التيونيو (1954 م) ...

REQUEST FOR SERVICES AND TRANSMISSION OF DATA

FNWF oceanographic services are divided into two categories

- a. Those which are disseminated on a routine basis to the operating forces and
- b. Those which are intermittently requested for specific areas, times and occasions.

Request for Services

Requests for specific services and forecasts, see
Table I, should be directed to the appropriate Fleet
Weather Central or to Fleet Numerical Weather Facility at
Monterey. Requests for new programs or extensive changes
in the existing routine services should be addressed to
the Commander, Naval Weather Service Command:

Dissemination of FNWF Products

The numerical oceanographic analyses/forecasts prepared at Monterey are disseminated via high-speed computer data links to the Fleet Weather Centrals. The
weather centrals in turn plot the data on their local
area charts, making subjective changes that are dictated
by peculiar local conditions, and then retransmit the
data either in a message or facsimile form. Transmission
times and frequencies are established and promulgated by
the fleet commanders.

1. WAVE ANALYSES/FORECASTS

Sea and swell wave analyses and forecasts which can be extended to 48 hours upon request, are computed twice daily with base times of 00Z and 12Z. They are transmitted to various Fleet Weather Centrals for broadcasting in either facsimile or message form. The analysis consists of computed heights, periods and direction, as a function of wind speed, fetch and duration, modified by wave observations from ships.

Upon request, standard message programs can extract from the analysis or forecasts for any given latitude and longitude intersection either the significant wave height, period and direction or the predominant swell height, period and direction. However, care should be exercised in the use of these parameters in areas where there are significant local effects caused by terrain. Wave heights are also included in the SOCAL, NFK and HPS exercise area forecasts, see 5.1.

2. THERMAL STRUCTURE ANALYSES/FORECASTS

Thermal structure analyses and forecasts are descriptions of the water mass types at specific latitude and longitude intersections, in either a chart or temperature-depth profile form. They are transmitted via addressed message or over assigned multipurpose brandcasts, in either a code format or facsimile presentation.

2.1 Sea Surface Temperature

Sea surface temperature analyses for the northern hemisphere are prepared twice daily at 00Z and 12Z. There are presently in preparation various SST prognosis programs.

However, an analysis is sufficient to support most short range naval operations. Forecasts of this element can be expected to show a standard deviation of 0.7°F.

2.2 Mixed Layer Depth, Sonic Layer Depth, Thermocline Magnitude and Gradient

The mixed layer depth, MLD, is defined by FNWF as the 24 hour average depth of the lower boundary of the turbulent, mixed surface layer or the upper boundary of the thermocline. In the absence of any sharp inflection point, the MLD can be defined as the depth where the temperature is 2°F colder than the SST. Thus, under some conditions in which a well defined thermocline might not exist, the potential depth of the thermocline can still be defined. The MLD is analyzed twice daily and a 24 hour forecast is made.

The MLD might or might not coincide with the sonic layer depth, SLD is defined as the depth of maximum sound velocity in the surface layers. In areas where the density of BT observations permits a determination of the upper sound speed maximum, the SLD replaces the MLD on FNWF analyses. The differences between the two have diminished in importance as complete sound speed profiles are now being provided by FNWF.

Analyses of the thermocline gradient and the depth to the bottom of the thermocline are available twice daily upon request.

2.3 Transient Thermoclines

Transient thermoclines, the "afternoon effect" resulting in an upper sound channel, are computed twice daily at 00Z and 12Z. Their depth, intensity and the probability of overnight persistence is incorporated into the charts and messages. Transient thermoclines are most common during the spring and summer.

2.4 Temperatures at standard depths

Hemispheric analyses of surface and subsurface temperatures are computed twice daily for the following levels: 0, 100, 200, 300, 400, 500, 600, 800 and 1200 feet. These are routinely transmitted to the various weather centrals in chart form and are available upon request.

2.5 Small-Scale Analyses/Forecast (Zoom Programs)

Detailed oceanographic analyses and forecasts are made twice daily for three Navy exercise areas, SOCAL, GLFM, NFK, and the HPS, on a small-scale grid (about 25 miles at present). Similar analyses, such as special zoom programs for unusual current boundary areas -- an example of which is the SST and current analyses provided the U. S. Coast Guard in the International Ice Patrol area, can be made for any ocean area for any scale which is justified by the three-dimensional variability, the data density and users requirement. However, in many ocean areas the smallest meaningful grid size is about 100 miles.

3. TEMPERATURE AND SOUND SPEED PROFILES

3.1 Temperature-depth/Sound speed profiles

Twice daily, at selected ocean locations, temperature-depth extractions are made. These vertical profiles are utilized, with an average salinity of 35°/oo for the present in the computation of the BT/SV forecasts. This data is transmitted to the various users in either a message or graphical chart form. Amplifying information such as (a) depth of transients, probability of their occurrence, magnitude and probability of persistence and (b) the depth of the thermocline, its tendency and range of short-term fluctions, is also included.

3.2 Sound propagation forecasts

This data is now operationally available on a requested basis for any Northern hemisphere ocean location. Detailed descriptions and applications are covered in FNWF Technical Notes 17, 18, and 30 of 1967. Examples of this data are:

- a. depth excess of convergence zone propagation
- b. range to the convergence zone
- c. propagation loss for a number of frequencies
- d. ray tracing for significant rays
- e. best depth for variable depth sonar.

However, when requesting this service the type of sonar equipment should be specified.

4. OTHER OCEANOGRAPHIC SERVICES AND PRODUCTS

4.1 Upon request, outlooks of oceanographic and sonar conditions in specified areas can be prepared for planning purposes. These outlooks are computed from hydrocline information in a condensed form placing special emplasis on local conditions which might significantly affect a given operation

4.2 Currents, current boundaries

Surface current analyses and 24-hour forecasts are computed twice daily, and this information is available upon request. The computations give current transport in nautical miles per 24 hours and the current directions. The locations of the boundaries of major currents (boundaries of water mass types and oceanographic regimes) can be computed twice daily and are thus available upon request.

4.3 Other oceanographic programs

The following oceanographic analyses are available or are being developed.

- *a. Light penetration and visibility in the ocean.
- b. Oceanic tides (ranges, cotidal times) and internal tides.
- c. Anomalies of oceanographic parameters, e.g., Sea Surface Temperature, Mixed Layer Depth, Heat Exchange, etc.
- d. Analyses/Forecast for amphibious and other coastal operations.
- *e. Bottom sediment types and their sonic properties (partially completed).

Comments and requirements for these programs are invited, especially those under development.

5. CODES

Codes are divided into two groups -- those in general use and those agreed upon between the particular users and weather facilities. This section deals only with the first group of codes.

5.1 Message format

Data can be extracted at given latitude and longitude points for desired parameters; messages can then be prepared for transmission via high-speed computer link or conventional teletype.

Sample Forecast Mixed Layer Depth Message:

Catalog number → B40Q 24

N	24 180	12Z 22 179W	SEP 65 178W	POTMLD 177W	LAYER 176W	DEPTH 175W	FEET 174W	173W
e e	00000	00355	00286	00021	00089	00239	00301 (0023
55 54	00289	00330	00256	00311	00365	00370		00201
	00193	00336	00350	00342	00326	00268		0013
	-00157	00226	00225	00197	00172	00151	00135	0010
51	00135	00177	00158	00136	00132	00124		0011
50	00138	00186	00159	00158	00195	00170		00141
49	00146	00169	00168	00180	100177	00184		0019.
48	7001 <u>8</u> 67	-00192	00198		$-\frac{00211}{}$	00222		0021
47	00248	00243	00237	00215	00235	00189		0015:
46	00306	00315	00299	00275	00263	00240	00215	0018

Examples:

53.0N	Mixed	Layer	Depth	316	feet
179.0W					
49.0N	Mixed	Layer	Depth	177	feet
176.0W					

For the Navy exercise areas off Norfolk, Southern California, Gulof Mexico & Hawaii, sea environmental forecasts are prepared twice daily. An example of such a forecast is given below:

```
VCAP
      SEA
           24 HR PROG
                       FROM
                             002
                                  19 FEB
                                           66 SEA ENVIRON
           74.5
                 74.0 73.5
                             73.0
                                    72.5 72.0 71.5
                                                      71.0
                                                            70.5
                                                                   70.0
420
                                                            20335 32035
415
                                                      32136 33436 33436
410
                                          31838 33337 33537 33337 33337
405
                                    33541 33540 33439 33438 33339 33339
400
                       23943 23743 33543 33442 33442 33442 33342 33347
395
           21045 23844 23544 33544 33543 33444 33444 33444 33345 33346
390
     20845 22744 23743 33544 33544 33544 33545 33446 33447 3334
385
     <del>21846 23844 33544 33544 33444 33443 33445 33347 33348 3325</del>0 3325.
     22646 33646 33446 33346 33345 33347 33249 33251 33253 3315
375
     33647 33346 33247 33249 33250 33251 33152 33153 33154 33055 3305
     33148 33147 33150 33053 33055 33056 32956 32956 32956 32958 32958
370
     33053 32952 32955 32857 32859 32860 32860 32860 32860 32861 3276
365
```

The first vertical column gives N latitude for every half degree and the second horizontal line gives W longitude for every half degree. At the intersection of corresponding latitudes-longitudes the five figure group gives sea height (in code), mixed layer depth in tens of feet and sea surface temperature in °F.

Example: 39.0N 074.5PW

22744

- 2 sea height code (WMO 75), wave height 1/3 to 1-2/3 feet
- 27 mixed layer depth 270 feet
- 44 sea surface temperature 44°F

5.2 Temperature-depth profile codes

The profile codes are computed in either a classified or unclassified form. When the position of the profile is classified, as agreed upon by the user and FNWF, a geographical indicator and a number will be transmitted. However, the text portion of the code form is identical.

HEADING: PAC/LANT 36 HR BT/SV FCST FROM 12Z 15 JUN 67

XQLaLaLa $Z_1 Z_1 TTT \quad Z_2 Z_2 TTT...et$ L_CL_CY₁Y₂ OOTTT

 $^{TZ}g^{Z}g^{P}l^{T}l$ $^{PP}2^{M}d^{Z}g^{Z}g$ $^{GT}g^{T}g^{Z}g^{Z}g$

 $XQL_aL_aL_a$

Beginning of message; can be a bilateral special code (e.g. X - English units; Y - metric units)

Q Octant of the globe

Latitude in full and tenth of degree LaLaLa

LoLoLoY1Y2

Lororo Longitude in full and tenth of degree

Filler; can be used to provide bilateral special codes (e.g. $Y_1 = K$ - profile does not reach 1000 feet; $Y_2 = L$, profile deeper Y_1Y_2 than 1000 feet.

When the position is classified the group "GINN" will proceed the text.

GI Geogra; hicul Indicator

PO = Pacific Ocean AO = Atlantic Ocean,

MS = Mediterranean Sea NS = Norwegian Sca, etc.

NN Numerical designator of the position.

^	•	_	-	•
11	11	и.	"I	1
·	u	_	- 1	

00	Surface identifier
TTT	Surface temperature in °F and tenths
$z_1^z_1$ TTT	
$z_1 z_1$	Average depth of the top of thermocline in tens of feet
TTT	Temperature at the top (upper boundary) of the thermocline °F and tenths
Z_2Z_2TTT	
$\mathbf{Z}_{2}\mathbf{Z}_{2}$	Depth (at hundred foot intervals
2 2	04 = 400; 12 = 1200)
TZgZgP ₁ T ₁	This is an optional group for transients. This might be omitted or repeated if several transient thermoclines are expected. No more than two will be forecasted.
T	Identifier for transient thermoclines.
$z_g z_g$	Depth of the transient thermoclines in feet.

Code for reporting sea conditions

(WMO 75)

Code		Неі	g h t
Figure		meters	feet
0	Calm-glassy	ð	0
1	Calm-rippled	0 - 0.1	0 1 1/3
2	Smooth-wavelets	0.1 - 0.5	1/3 - 1 2/3
3	Slight	0.5 - 1.25	1 2/3 - 4
4	Moderate	1.25 - 2.5	4 - 8
5	Rough	2.5 - 4	8 - 13
6	Very rough	4 - 6	13 - 20
7	High	6 - 9	20 - 30
8	Very high	9 - 14	30 - 45
9	Phenomenal	over 14	over 45

Probability of occurrence of the transient thermoclines (diurnal thermoclines or "afternoon effects") in tens of percent (i.e. 0 - 9 = 0, 10 - 19=1, 20 - 29 = 2, etc.)

Code for the magnitude of the transient thermoclines and/or the temperature difference between the sea surface and top of the thermocline

Code Number	Temperature	difference	in	<u>• F</u>
0	< 0.3	3°F		
3	>0.3°	≤0.6°F		
6	>0.60	≤0.9°F		
9	>0.9	9°F		

 $PP_2M_dZ_2Z_2$ Optional Group

P Identifier

Probability of the persistence of the transient thermocline throughout the night and into the next day in tens of percent (i.e. 0 to 9 = 0, 10 to 19 = 1, 20 to 29 = 2, etc.)

M_d Code of the expected tendency of the change of average depth of the thermocline.

Code Number	cline nature description
1	Large fall > - 15 feet
2	Small fall -5 to -15 feet
3	Small or no change -5 to +5 feet
4	Small rise +5 to +15 feet
5	Large rise > + 15 feet

	Code Number	Tendency criteria and thermo- cline nature description
	6	Deep thermocline, near- homothermal structure at medium and high latitudes
	7	Thermocline gradient small, thermocline not well develope and its depth difficult to ascertain
	8	Large fluctuations of MLD
z _g z _g	depth of the	short-term fluctuations of the main thermocline in feet nternal waves and other factors
	(Standard dev	viation)
oto. The fre	cimilo chamt co	ostoine o cucacina ban an aba

Note: The facsimile chart contains a crossing bar on the temperature-depth trace with an identifying letter T and with the code numbers of probability of occurrence (P₁), probability of persistence (P₂) and gradient (T₁). The average depth of the thermoclin is likewise identified with a crossing bar, identifying letter P and code number for thermocline nature and tendency (M_d) and the + fluctuation range will be printed out.

GT T Z Z Z	Optional group, but will be present in most computerized thermal profile forecast:
G	Group identifier
TgTg	Temperature gradient °F/100 feet in the thermocline, in full and tenth of °F
Z _g Z _g	Bottom of the thermocline in tens of feet (If the profile exceeds 1000 feet, the unit of thousands is omitted.)

SOUND VELOCITY PROFILE

The SVP message form will normally follow the TD profile to which it pertains in the following code form, with the position omitted:

SVP
$$XY_1S_8$$
 or (S_9) 00VVV TZ_L VVV BZ_2 VVV Z_3Z_3 VVV $ZZVVV$ etc.

SVP XY1S1

X and Y_1 have the same meaning (units and depth) as above. S_1 indicates whether an actual (or climatological) salinity distribution has been used in sound velocity computation or a constant value has been taken (35%): $S_1 = 8$ - salinity has been taken constant 35%. $S_1 = 9$ - actual (or climatological salinities have been considered.

00000	
00	Surface identifier
vvv	Sound speed in feet per second, omitting the thousand digit (4 or 5)
TZ ₁ VVV	Optional group
T	Identifier, top of transient
z_1	Top of transient in tens of feet
VVV	Sound speed at this depth
BZ ₂ VVV	Optional group
В	Identifier, bottom of transient
z_2	Depth of the bottom of the transient
ZZVVV	Depth of the maximum sound speed and the actual speed (or sound speed at MLD)
ZZVVV	Depth and sound speed at 100 foot intervals as in BTP code above

Other codes for different sonar forecasts such as propagation loss forecasts are classified and will be provided upon request. The list of other oceanographic analyses/forecasts and their identifier are given in Table 1.

Synoptic oceanographic analyses/forecasts available for fleet support

All base time 002/12Z

	Product	Fest Period	Chart	Msg	Ident	Cat#	Remarks
	Waves						
		12.24.36.48		×	W	B01	Tens of degrees (from)
	wave ulrection	12.24.36.48		×	МР	B02	Seconds/2
	wave reriod Wave height	12,24,36,48	×	×	WH	B03	Feet
	•	מין של יול טר		>	ď	BOU	Tens of degrees (from)
	Swell direction	01,06,47,71		< >	d S	805	•
1	Swell period Swell height	12,24,36,48	×	: ×	SH	B06	Feet
. 3	•	0 0 0 0		>	ć	RO7	Tens of degrees (from)
	Combined direction	17, 24, 30, 40	•	< ×	<u>a</u>	B08	Seconds/2
	Combined period Combined height	12,24,36,48	×	:×	CH	B09	Feet
	Surface Currents						
	Current transport Current streem function	24 24	××	×	CURTRANS CURRSTRM	B31 B30	Nautical miles/day Non-dimensional stream function
	soine June + towns		×		GG THETA	B35	
	u component of current transport	24			U CURR	B32	
	v component of current transport	24			V CURR	B33	
	Current direction, transport and stream function for 2 zoom areas for U.S.C.G. Intl. Ice Patrol	!	×	TABLE	re I		

Product	Fest	Fost Period	Chart	Msg	Ident	Cat #	Remarks
Ocean Outlook Exercise climatology (see 4.1)	*						
Temperature, salinity and sound speed from surface to bottom	*		×				
Thermal Structure Sea surface temperature			×	×	SEA TEMP	B10	Degrees & 10ths of °F or °C
Sea surface temperature Hawaiian Operating Area			×	×	HAWTS	B11	Degrees & 10ths of °F or °C
Sea surface temperature Norfolk Optrating Area			×	×	NFKTS	B13	Degrees & 10ths of °F or °C
Sea surface temperature Southern California Area			×	×	SCTS	B12	Degrees & 10ths of °F or °C
Sea surface temperature in International Ice Patrol Areas	rol /	Vreas (2)	×		CGA, B	В14	Degrees & loths pf °F or °C
Sea surface temperature Gulf of Mexico			×		GLFM	B14	Degrees & 10ths of °F or °C
yer Dep	th 24	_	×	×	POT MLD	B40	Tens of feet
Hawaiian Operating Area	24	_		×	LD HAW	B60	Tens of feet
Mixed layer depth Norfolk Operating Area	24	-		×	LD MFK	B62	Tens of feet
Mixed layer dapth Southern California Area	5h	_		×	LDSC	B61	Tens of feet

Prepared for specified time increments upon request. *Profile extracts available at any specified position

	Product	Fcst	cst Period	Chart	Msg	Ident	Cat#	Remarks
	Thermocline Gradient	24		×	×	GT	P10	Degrees F/100 feet
	Thermocline gradient Hawaiian Operating Area	24*		ŝ		GTHAW	PII	Degrees F/100 feet
	Thermocline gradient Norfolk Operating Area	24*		ŝ		GTNFK	P12	Degrees F/100 feet
	Thermocline gradient Southern California Area	24*		8		GTSCL	P13	Degrees F/100 feet
	Magniture of Thermocline	#		8	×	MT	P20	
	Magnitude of thermocline Hawaiian Operating Area	#		ŝ		MTHAW	P21	
1	Magnitude of thermocline Norfolk Operating Area	40		ŝ		MTNFK	P22	
,5	Magnitude of thermocline Southern California Area	*		8		MTSCL	P23	
	Probability of Occurrence of Transients			×	×	P occ	B42	Percent
	dradient of Transients	**			×	TR	P30	Degrees and 10th °F
	Thermocline Terdency	*			×	TT	P31	Code
	Thermocline Fluctuations	*			×	FT	P32	Feet
	Temperature at Standard Levels (100, 200, 300, 400, 600, 800, 1200 feet)	*			×	TS()		Degrees and 10ths F° Catalog numbers assigned for each level - see catalo;

* Prepared upon request.

^{**} In BT/SV messages (fields available upon request

Product	Fest Period	Chart Msg	Msg	Ident	Cat#	Remarks
						c
Latent and Sensible Heat Exchange		×	×	X QHE	B70	g cal cm ⁻² (24) ⁻³
Total Heat Exchange		×	×	V	B71	g cal cm ⁻² (24h) ⁻¹
Sound Propagation						
Sound Velocity Profiles Bathythermograph Profile Propagetion Loss	24** 24** . *	××§×	××××	SOUNDVEL BT FCST S-L R-Z	B50 B51 P53 P54	Feet/second °F vs. depth 80 and 85 db distance Nautical miles or kyds
>	* * *	888				
Sea Terp Small-Scale Disturbance		×		SD SEA	B15	
Sea Temp Residual Field Pattern		×		SR SEA	B16	
Sea Temp Large-Scale		×		SL SEA	B17	
Sea Temp Anomalies from Long Term Mean Value (5, 15 and 30 day anomalies	တ	×		TA	B18	

* Prepared upon special request