Project 0A: (in C++) This project is for you to practices on a simple I/O in C++ via the implementation of two (2) threshold operations: a) the binary threshold, and b) the non-binary threshold operations. If you know C++, this project can be easily done with little time. ** There is a simple requirement for you to record 2 minutes of screen recording while you are doing compilation and running of the program. -2 if you do not submit screen recording with your submission. See the screen recording requirements guide posted on Blackboard. *** Place your screen recording YouTube link in your project submission email body below the 5 questions.

a) The binary threshold operation: given a grey-scale image and a threshold value, the <u>binary threshold</u> operation is to transform pixels in the input image (imgIn) from grey-scale to binary values in the output image (imgOut) where

```
if imgIn (i, j) \ge threshold value imgOut (i, j) \leftarrow 1 else imgOut (i, j) \leftarrow 0
```

b) The non-binary threshold operation: Given a grey-scale image, and a threshold value, the <u>non-binary threshold</u> is to transform pixels in the input image (imgIn) from grey-scale to non-binary values in the output image (imgOut) where

```
if imgIn (i, j) \ge threshold value imgOut (i, j) \leftarrow imgIn (i, j) else imgOut (i, j) \leftarrow 0
```

What you have to do:

- 1) implement the program according the specs given below.
- 2) compile your program until it passes compilation
- 3) run your program with data1

Include in your hard copy (pdf file) // See Project Submission Requirement for how to create hard copy.

- a cover page
- source code
- inFile
- outFile1
- outFile2

Language: C++

Project Name: Binary and non-binary thresholding

Project points: 4 pts (-2 if not submit screen recording) //Screen recording requirements is posted on Blackboard.

Due Date: (4/4) 2/3/2023 Saturday before midnight (-4/4) 2/3/2023 Saturday after midnight

- *** Name your soft copy and hard copy files using the naming convention in the **project submission requirement**.
- *** All submission MUST include Soft copy (*.zip) and hard copy (*.pdf) in the same email attachments with correct email subject as stated in the project submission requirement; otherwise, your submission will be rejected.
- *** place your screen recording in your project submission email body below the 5 questions.
- *** Email subject: (CV) first name last name <Project 0A: binary and non-binary thresholding (C++)>

header of an image consists of four numRows – number of row numCols – number of colu- minVal – the minimum gre	"header" of the input image then follows by rows and cols of integers. The integers: s in the input image
For example,	
4 6 1 12 // image has 4 rows, 2 3 4 11 2 9 5 6 11 2 10 7 1 1 12 1 9 9 4 5 6 9 9 9	6 cols, min is 1, max is 12
b) thrValue (argv[2]): for this project	t use threshold value 43.
***********	**
II. a) outFile1 (argv [3]): The result of the	binary threshold operation of input image.
Note: The output binary image also	needs to have the image header.
For example, given the above imag then the binary image would be:	e and 6 as the threshold value
4 6 0 1 // 1 0 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 1	notice the min and max values have changed!
b) outFile2 (argv [4]): The result of the r	non-binary threshold operation of input image.
Note: The output non-binary image	also needs to have the image header.
For example, given the above imag then the non-binary image would b	
4 6 0 12 //1 0 0 0 11 0 9 0 6 11 0 10 7 0 0 12 0 9 9 0 0 6 9 9 9	notice the min value has changed!

III. Data structure:	
- Image class - (int) numRows - (int) numCols - (int) minVal - (int) maxVal - (int) thrValue	
Method: constructor () Processing ()	

```
************
IV. SmithJ Project0A Main (...) // replace "SmithJ" with your last name and first name initial!!
***********
step 0: inFile ← open argy [1] // i.e., ifstream inFile.open (argy [1])
      thrValue \leftarrow cast argy [2] from string to integer // i.e., int (argy [2]) or (int) argy [2]
      outFile1 ← open argy [3]
      outFile2 ← open argy [4]
      numRows ←read from inFile // i.e., inFile >> numRows
      numCols 

read from inFile
      minVal, maxVal ←read from inFile
      maxVal ←read from inFile
step 1: outFile1 ← output numRows, numCols, 0, 1 to outFile1 // i.e., outFile1 << numRows etc.
      outFile2 ← output numRows, numCols, 0, maxVal to outFile2
step 2: processing (inFile, outFile1, outFile2, thrValue)
step 3: close all files
***********
V. processing (inFile, outFile1, outFile2, thrValue) // the 3 files need to pass by references (i.e., precede by &)
************
step 0: (int) pixelVal
      (int) count \leftarrow 0
step 1: pixelVal ← read one integer from inFile // i.e., inFile >> pixelVal
step 2: if pixelVal >= thrVal
                    outFile1 ← write 1 follows by 1 blank // binary threshold.
                    outFile2 	write pixelVal follows by 1 blank //non-binary threshold.
           else
                    outFile1 ← write 0 follows by 1 blank
                    outFile2 ← write 0 follows by 2 blanks
step 3: count++
step 4: if count > numCols
                outFile1 ← write end of text line
                outFile2 ← write end of text line
                count \leftarrow 0
step 5: repeat step 1 - step 4 until the inFile is empty
```