Spivak's Calculus Solutions

Sebastian Miles

Contents

1 Basic Properties of Numbers

5

4 CONTENTS

Chapter 1

Basic Properties of Numbers

1.1.

(i) Suppose that ax = a and $a \neq 0$, then there exists a number a^{-1} . Multiplying a^{-1} on both sides yields

$$(a^{-1}a) \cdot x = a^{-1}a$$
$$x = 1$$

as desired.

(ii) We use the distributive property on (x - y)(x + y), this can be done by letting a = x - y:

$$(x - y)(x + y) = a(x + y)$$

= $ax + ay = (x - y)x + (x - y)y$
= $x^2 - yx + xy - y^2 = x^2 - y^2$

- (iii) If we have $x^2 = y^2$ then we certainly have $x^2 y^2 = 0$. By (ii) we know that 0 = (x y)(x + y), this implies that x y = 0 or x + y = 0, this is equivalent to saying that x = y or x = -y.
- (iv) Same method as (ii):

$$a(x^{2} + xy + y^{2}) = ax^{2} + axy + ay^{2}$$

$$= (x - y)x^{2} + (x - y)xy + (x - y)y^{2}$$

$$= x^{3} - yx^{2} + x^{2}y - xy^{2} + xy^{2} - y^{3}$$

$$= x^{3} - y^{3}$$

(v) We prove this by induction, the base case n=2 is already proven in (ii). Suppose $x^n-y^n=(x-y)(x^{n-1}+x^{n-2}y+\cdots+xy^{n-2}+y^{n-1})$ is true. Then we equivalently have $x^n=(x-y)(x^{n-1}+x^{n-2}y+\cdots+xy^{n-2}+y^{n-1})+y^n$. We now prove the n+1 case:

$$x^{n+1} - y^{n+1} = x \cdot x^n - y^{n+1}$$

$$= x(x-y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}) + xy^n - y^{n+1}$$

$$= (x-y)(x^n + x^{n-1}y + \dots + x^2y^{n-2} + xy^{n-1}) + (x-y)y^n$$

$$= (x-y)(x^n + x^{n-1}y + \dots + xy^{n-1} + y^n)$$

The resulting relation concludes the finite induction, thus $x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \cdots + xy^{n-2} + y^{n-1}).$

- (vi) We know from (iv) that $a^3 b^3 = (a b)(a^2 + ab + b^2)$, by letting a = x and b = -y we get $x^3 + y^3 = (x + y)(x^2 xy + y^2)$.
- **1.2.** Multiplying by the multiplicative inverse of x y works only when $x y \neq 0$, that is $x \neq y$, however, the hypothesis explicitly states x = y. So it is not possible to find the multiplicative inverse of x y and thus the step is invalid.

1.3.

- (i) Say we have $\frac{a}{b}$ and $b \neq 0$ then the same fraction can be written as ab^{-1} . Suppose we also have a variable c such that $c \neq 0$, then we have $ab^{-1} \cdot (cc^{-1})$ and consequently $(ac)(b^{-1}c^{-1}) = \frac{ac}{bc}$. The final equality holds by (iii) which is proven below.
- (ii) By (i) $\frac{ad}{bd} + \frac{bc}{db} = ad(bd)^{-1} + bc(bd)^{-1} = (ad + bc)(bd)^{-1} = \frac{ad+bc}{bd}$
- (iii) ab exists if $a, b \neq 0$. Let $x = (ab)^{-1}$, then

$$\begin{array}{lll} x(ab) = (ab)^{-1}(ab) = (xa)b = 1 & \text{(Multiply x with ab)} \\ (xa)(bb^{-1}) = b^{-1} = xa = b^{-1} & \text{(Multiply by b^{-1})} \\ x(aa^{-1}) = b^{-1}a^{-1} = x & \text{(Multiply by a^{-1})} \end{array}$$

(iv) Suppose $b,d \neq 0$, then $\frac{a}{b} \cdot \frac{c}{d} = (ab^{-1}) \cdot (cd^{-1}) = (ac)(b^{-1}d^{-1}) = (ac)(bd)^{-1} = \frac{ac}{bd}$

- (v) Suppose $b, c, d \neq 0$, then $\frac{a}{b}/\frac{c}{d} = (ab^{-1})(cd^{-1})^{-1} = (ab^{-1})(c^{-1}d) = (ac)(bd)^{-1} = \frac{ac}{bd}$
- (vi) Suppose $b, d \neq 0$. Assume $\frac{a}{b} = \frac{c}{d}$, multiplying by bd on both side yields the relation ad = bc. For the converse multiply ad = bc by $(bd)^{-1}$.

1.4.

- (i) $4 x < 3 2x \iff (4 4) + (-x + 2x) < (3 4) + (2x 2x) \iff x < -1.$
- (ii) $5 x^2 < 8 \iff -3 < x^2$. Note that $x^2 \ge 0$ and for every single value of x, so our solution is every x.
- (iii) $5 x^2 < -2 \iff 7 < x^2 \iff \sqrt{7} < x \text{ or } -\sqrt{7} > x$.
- (iv) The product is positive when x-1 > 0 and x-3 > 0 or when x-1 < 0 and x-3 < 0, that is when x > 3 or when x < 1.
- (v) Complete the square $x^2 2x + 2 = (x 1)^2 + 1$. The product $(x 1)^2$ is always positive, and since we have the +1 as well in the inequality, this inequality must be true for every single x.
- (vi) The inequality is equivalent to $x^2+x-1>0$. Completing the square $(x+\frac{1}{2})^2>\frac{5}{4}$. If $x\geq -\frac{1}{2}$ then $x>\frac{-1+\sqrt{5}}{2}$. If $x<-\frac{1}{2}$ then $x<\frac{-1-\sqrt{5}}{2}$. Thus, the solution is $x>\frac{-1+\sqrt{5}}{2}$ and $x<\frac{-1-\sqrt{5}}{2}$.
- (vii) Equivalently we have $(x-\frac{1}{2})^2 > \frac{25}{4}$. If $x \ge \frac{1}{2}$ then x > 3 if $x < \frac{1}{2}$ then x < -2. The solution set is x > 3 and x < -2.
- (viii) Equivalently $(x+\frac{1}{2})^2+\frac{3}{4}>0$. This is true for every x because $(x+\frac{1}{2})\geq$ and $\frac{3}{4}>0$. Adding them gives $(x+\frac{1}{2})^2+\frac{3}{4}>0$.
 - (ix) Let b = (x+5)(x-3). Then b is positive if x > 3 or x < -5 and negative if -5 < x < 3. Let $a = x \pi$. a is positive if $x > \pi$. ab is positive if both a and b are positive or if both are negative. So ab is positive if $x > \pi$ (b must be positive because x > 3). ab is negative if -5 < x < 3 (This implies $x < \pi$).

- (x) If $x > \sqrt[3]{2}$ and $x > \sqrt{2}$ then the product is positive, thus the first solution is $x > \sqrt{2}$. If $x < \sqrt[3]{2}$ and $x < \sqrt{2}$ then the product is positive. The second solution is $x < \sqrt[3]{2}$.
- (xi) Apply \log_2 on both sides: x < 3.
- (xii) Suppose x < 1, we will show this is a solution. We have $3^x < 3^1 = 3$, adding x < 1 to the inequality we get $x + 3^x < 3 + 1 = 4$. Since both 3^x and x are strictly increasing expressions finding the inequality x < 1 suffices as all real solutions.
- (xiii) Noting that $x \neq 0$ and $x \neq 1$. Expanding the fractions we get $\frac{1-x}{x(1-x)} + \frac{x}{x(1-x)} = \frac{1}{x(1-x)} > 0$. The solutions depends on if the denominator is positive. Thus x(1-x) > 0 has the same solution set. The solutions are 0 < x < 1.
- (xiv) Note $x \neq -1$. Expand by (x+1): $\frac{(x-1)(x+1)}{(x+1)^2} > 0$. Since the denominator is always positive we can multiply this on both sides, $x^2 1 > 0$, Thus x < -1 and x > 1.

1.5.

- (i) Suppose a < b and c < d then we have b a > 0 and d c > 0 by property 11(b a) + (d c) > 0 which is the same as b + d > a + c.
- (ii) Suppose a < b then $0 < b a \iff -b < (b b) a = -b < -a$.
- (iii) Suppose a < b and c < d, by (ii): -c < -d, then by (i) we have a d < b d.
- (iv) Suppose a < b then b a > 0. Assume c > 0, Using (P12) we know that c(b a) > 0 and consequently $bc ac > 0 \iff bc > ac$.
- (v) Suppose a < b then b a > 0. Assume c < 0, then by (ii) we have -c > 0. Using P12 we know that -c(b a) > 0 and consequently $ac bc > 0 \iff ac > bc$.
- (vi) Since a > 1 > 0 we apply (iv) by letting c = a. Thus $a^2 > a$
- (vii) Because a is positive, it follows by applying (iv) to a < 1 that $a^2 < a$

- (viii) Using (iv), multiply a < b with c and c < d with b. This means that we have ac < bc and bc < bd, this is the same as ac < bc < bd, thus ac < bd.
- (ix) Using (viii) we multiply the same inequality twice, $a^2 < b^2$
- (x) Suppose $a, b \ge 0$, we prove the contra-positive, therefore $a \ge b$. Multiply by a and b respectively gives two inequalities $a^2 \ge ab$ and $ab \ge b^2$ which is the same as $a^2 \ge ab \ge b^2$. This concludes the contra-positive proof because $a^2 \ge b^2$ is the logical opposite of $a^2 < b^2$

1.6.

- (a) The base case is n=2 which was proven in problem 1.5. Assume $x^n < y^n$ for $0 \le x < y$. By (viii) we have $x \cdot x^n < y \cdot y^n \iff x^{n+1} < y^{n+1}$. The induction is complete, thus if $0 \le x, y$ then $x^n < y^n$ for $n=1,2,\ldots$
- (b) Suppose x < y, let the base case be n = 3