Homework 12 - Arnav Kucheriya - Graphs

1.

Problem 13

$$a_n=2^n, a_0=1$$

This is a simple exponential sequence.

Solution:

$$a_n = 2^n$$

Problem 14

$$a_n = 2a_{n-1}, a_0 = 1$$

This is a homogeneous linear recurrence.

Solution:

$$a_n=2^n$$

Problem 16

$$a_n = 7a_{n-1} - 10a_{n-2}, a_0 = 5, a_1 = 16$$

This is a linear recurrence with constant coefficients.

Step 1: Form the characteristic equation

$$r^2 - 7r + 10 = 0$$

Step 2: Solve the equation

$$r=2, \quad r=5$$

Step 3: Write the general solution

$$a_n = A \cdot 2^n + B \cdot 5^n$$

Step 4: Apply initial conditions

From $a_0 = 5$:

$$A + B = 5$$
 (1)

From $a_1 = 16$:

$$2A + 5B = 16$$
 (2)

Step 5: Solve the system of equations

From (1):

$$B = 5 - A$$

Substitute into (2):

$$2A + 5(5 - A) = 162A + 25 - 5A = 16 - 3A = -9 \Rightarrow A = 3B = 2$$

2.

(a) Solve:

$$T(n) = 3T(n/3) + n$$

Use Master Theorem:

Here, $a=3,\,b=3,\,f(n)=n$ Since $f(n)=\Theta(n^{\log_b a})=\Theta(n),$

Case 2 applies ⇒

$$T(n) = \Theta(n \log n)$$

(b) Solve:

$$T(n) = 4T(n/2) + n^2$$

Here, a = 4, b = 2, $f(n) = n^2$

 $\log_b a = \log_2 4 = 2$

Since $f(n) = \Theta(n^2) = n^{\log_b a}$,

Case 2 applies ⇒

$$T(n) = \Theta(n^2 \log n)$$

(c) Solve:

$$T(n)=2T(n/2)+n^2$$

Here, a = 2, b = 2, $f(n) = n^2$

 $\log_b a = \log_2 2 = 1$

Since $f(n) = \Omega(n^{1+\epsilon})$ for some $\epsilon > 0$,

Case 3 applies ⇒

$$T(n) = \Theta(n^2)$$

Euler Paths and Cycles

(a) G1:

Check degrees of all vertices:

• Even degrees: Euler cycle exists.

Euler cycle (example):

$$a \to b \to c \to l \to j \to f \to d \to a \to c \to h \to g \to e \to d$$

Euler Cycle exists

(b) G2:

Check degrees of vertices:

- If exactly 2 vertices have odd degree → Euler path exists
- If more than 2 → No Euler path/cycle

Check each degree:

Vertices with odd degree: more than 2

No Euler path or cycle

(c) G3:

Check degrees:

All vertices have even degree

Euler Cycle exists

Euler cycle (example):

$$a \rightarrow b \rightarrow f \rightarrow g \rightarrow e \rightarrow i \rightarrow h \rightarrow g \rightarrow f \rightarrow c \rightarrow d \rightarrow e \rightarrow a \rightarrow c \rightarrow b$$

Section 8.6 - Graph Isomorphism

1. G1 ≅ G2

Same number of vertices, edges, and connectivity structure.

$\mathbf{2.~G1}\cong\mathbf{G2}$

Both are complete graphs (K₅).

3. $G1 \cong G2$

Each is a double triangle (two connected K_3s).

7. G1 ≠ G2

Degree of vertices differs. Not isomorphic.