Занятие № 5. Дискретные случайные величины. Независимость.

 \bigcirc Составитель: ∂ . ϕ .-м.н., про ϕ . Рябов П.Е.

Ко всем задачам, где есть числовой ответ, напишите программу (код) с использованием инструментария $\pmb{Jupyter\ Notebook}$, который иллюстрирует статистическую устойчивость события A, а также постройте график зависимости относительной частоты $\hat{p}(A) \stackrel{\text{def}}{=} \frac{N(A)}{N}$ события A от числа проведенных реализаций опыта N.

5.1. Дискретные случайные величины X_1, X_2, X_3 независимы и имеют одинаковое распределение

X_k	1	2	3	4	5	
P	0, 2	0, 2	0, 2	0, 2	0, 2	•

Пусть $Y = \max\{X_1; X_2; X_3\}$. Найдите распределение Y.

- **5.2.** Дискретная случайная величина принимает только целые значения 1; 2; 3; 4; 5 и 6, при этом все указанные значения равновероятны. Пусть Y_n остаток от деления X на n (n=2 или n=3). Верно ли, что Y_2 и Y_3 независимы. Решить ту же задачу, если распределение X пропорционально принимаемым значениям, т.е. $\mathbf{P}(X=k) = A \cdot k, k=1,\ldots,6$.
- **5.3.** Независимые случайные величины X,Y,Z могут принимать только целые значения: X от 0 до 12 с вероятностью $\frac{1}{13}$, Y от 0 до 13 с вероятностью $\frac{1}{14}$, а Z только значения 3 и 7, при этом $\mathbf{P}(Z=3)=\frac{9}{10}$. Найдите: а) вероятность того, что сумма данных случайных величин будет равна 12 и доказать ее статистическую устойчивость, построив график зависимости относительной частоты указанного события от числа экспериментов; б) наиболее вероятное значение суммы X+Y+Z и вероятность такого события; в) распределение X+Y+Z.

Ответ: a) $\mathbb{P}(X + Y + Z = 12) = 0.05274725274725277$;

6)
$$M = 16$$
, $\mathbb{P}(X + Y + Z = M) = 0.0697802197802198$.

5.4. Независимые случайные величины X,Y,Z принимают только целые значения: X – от 1 до 15 с вероятностью $\frac{1}{15}$, Y – от 1 до 12 с вероятностью $\frac{1}{12}$,

Z — от 1 до 11 с вероятностью $\frac{1}{11}$. Найдите вероятность: а) P(X < Y < Z); б) P(2X < Y < 2Z) и доказать ее статистическую устойчивость, построив график зависимости относительной частоты указанного события от числа экспериментов.

Ответ: a) 0.08333333333333333 б) 0.103535353535354.

5.5. Независимые случайные величины X,Y,Z могут принимать только целые значения: X — от 1 до 7 с вероятностью $\frac{1}{7}$, Y — от 1 до 14 с вероятностью $\frac{1}{14}$, а Z только значения 7 и 14, при этом $\mathbf{P}(Z=7)=\frac{3}{5}$. Найдите вероятность того, что сумма данных случайных величин будет не меньше 29 и доказать ее статистическую устойчивость, построив график зависимости относительной частоты указанного события от числа экспериментов.

Ответ: 0.1142857142857142.

- **5.6.** Независимые дискретные случайные величины X_1, X_2, \ldots, X_9 принимают только целые значения, при этом X_n принимает только значения от 0 до n и все эти значения равновероятны $(n=1,\ldots,9)$. Найдите $\mathbb{P}(X_1X_2\cdots X_9=0)$ и доказать ее статистическую устойчивость, построив график зависимости относительной частоты указанного события от числа экспериментов.
- **5.7.** Независимые случайные величины X,Y,Z принимают только целые значения: X от 1 до 13 с вероятностью, пропорциональной принимаемому целому значению, т.е. $\mathbf{P}(X=i)=A\cdot i, i=1,\ldots,13; Y$ от 1 до 12 с вероятностью также пропорционально принимаемому значению $\mathbf{P}(Y=j)=B\cdot j, j=1,\ldots,12; Z$ от 1 до 8 с вероятностью $\mathbf{P}(Z=k)=C\cdot k, k=1,\ldots,8$. Найдите вероятность того, что X,Y,Z примут разные значения, т.е. $\mathbf{P}(X\neq Y,X\neq Z,Y\neq Z)$ и доказать ее статистическую устойчивость, построив график зависимости относительной частоты указанного события от числа экспериментов.

Ответ: 0.7836479759556683.

5.8. Независимые дискретные случайные величины X_1, X_2, \ldots, X_{40} принимают только положительные или отрицательные значения, при этом $\mathbb{P}(X_i > 0) = 0,98$ для всех X_i ($i=1,2,\ldots,40$). Найдите $\mathbb{P}(X_1X_2\cdots X_{40}>0)$ и доказать ее статистическую устойчивость, построив график зависимости относительной частоты указанного события от числа экспериментов.