

Implementation

Implementation: MC Prediction (State Values)

The pseudocode for (first-visit) MC prediction (for the state values) can be found below. (Feel free to implement either the first-visit or every-visit MC method. In the game of Blackjack, both the first-visit and every-visit methods return identical results.)

```
Input: policy \pi, positive integer num\_episodes Output: value function V \ (\approx v_{\pi} \ \text{if } num\_episodes \ \text{is large enough}) Initialize N(s) = 0 for all s \in \mathcal{S} Initialize returns\_sum(s) = 0 for all s \in \mathcal{S} for i \leftarrow 1 to num\_episodes do

Generate an episode S_0, A_0, R_1, \ldots, S_T using \pi for t \leftarrow 0 to T-1 do

if S_t is a first visit (with return G_t) then

N(S_t) \leftarrow N(S_t) + 1
returns\_sum(S_t) \leftarrow returns\_sum(S_t) + G_t
end

end

V(s) \leftarrow returns\_sum(s)/N(s) for all s \in \mathcal{S}
return V
```

If you are interested in learning more about the difference between first-visit and every-visit MC methods, you are encouraged to read Section 3 of **this paper**.

Their results are summarized in Section 3.6. The authors show:

- Every-visit MC is **biased**, whereas first-visit MC is unbiased (see Theorems 6 and 7).
- Initially, every-visit MC has lower mean squared error (MSE), but as more episodes are collected, first-visit MC attains better MSE (see Corollary 9a and 10a, and Figure 4).

Implementation

long as the agent gets enough experience with each state, the value function estimate will be pretty close to the true value.) In the case of first-visit MC, convergence follows from the Law of Large Numbers, and the details are covered in section 5.1 of the textbook.

Please use the next concept to complete **Part 0: Explore BlackjackEnv** and **Part 1: MC Prediction: State Values** of Monte_Carlo.ipynb. Remember to save your work!

If you'd like to reference the pseudocode while working on the notebook, you are encouraged to open **this sheet** in a new window.

Feel free to check your solution by looking at the corresponding sections in Monte_Carlo_Solution.ipynb.

NEXT