两线远程 I/0 扩展芯片 CH423

手册 版本:2A http://wch.cn

1、概述

CH423 是两线串行接口的通用远程 I/0 扩展芯片。CH423 提供 8 个双向输入输出引脚和 16 个通用输出引脚,支持输入电平变化中断; CH423 内置电流驱动电路,可以静态驱动 24 只 LED 发光管或者动态驱动 128 只 LED (相当于 16 只数码管); CH423 通过 2 线串行接口与单片机等交换数据。

2、特点

- 通过两线串行接口远程扩展出 8 个通用输入输出引脚 GPIO 和 16 个通用输出引脚 GPO。
- 内置电流驱动级,连续驱动电流不小于 15mA, 0C 引脚输出 1/16 脉冲灌电流不小于 120mA。
- 静态显示驱动方式支持 24 只发光管 LED 或者 3 位共阳数码管。
- 分时动态扫描显示驱动方式支持 128 只发光管 LED 或者 16 位共阴数码管,支持亮度控制。
- 双向 1/0 引脚在输入方式下具有输入电平变化时产生中断的功能,中断输出低电平有效。
- 16 个通用输出引脚可以选择推挽输出或者开漏输出。
- 支持 3V~5V 电源电压,支持低功耗睡眠,可以被输入电平变化唤醒。
- 高速 2 线串行接口,时钟速度从 0 到 1MHz,兼容两线 1²C 总线,节约引脚。
- 提供 DIP28S 和 SOP28 两种无铅封装,兼容 RoHS。

3、封装

I	封装形式	対装形式 宽度 SOP28 7.62mm 300miⅠ		引脚间距		封装说明	订货型号	
	S0P28			1. 27mm	50mil	标准的 28 脚贴片	CH423S	
	DIP28S SK-DIP28	7. 62mm	300mil	2. 54mm	100mil	窄 28 脚双列直插	CH423A	

注: SDIP28 封装(引脚间距 1.78mm)的 CH423D 已停产。请优先使用贴片封装形式。

4、引脚

引脚号	引脚号 引脚名称 类型		引脚说明			
25	VCC	电源	正电源,持续电流不小于 150mA			
11	GND	电源	公共接地,持续电流不小于 150mA			
23, 24, 26,	100~107	三态输出及输入	双向输入输出,内置弱上拉电阻			
27, 28, 1, 2, 3	100/~107	二心制山及制入	动态扫描时为共阴数码管的段驱动,高电平有效			
4∼8、	000~0015	 推挽或开漏输出	通用输出,可选开漏输出,低电平有效			
12~22	000, 0015	1年1光以开/桐刊山	动态扫描时为共阴数码管的字驱动,低电平有效			
10	SDA	开漏输出及输入	2 线串行接口的数据输入和输出,内置上拉电阻			
9	SCL	输入	2 线串行接口的数据时钟			

5、功能说明

5.1. 内部电路原理 (用于解释功能,不含动态驱动,仅供参考)

5.2. 一般说明

本手册中的数据,以 B 结尾的为二进制数,以 H 结尾的为十六进制数,否则为十进制数,标注 为 x 的位表示该位可以是任意值。

单片机(也可以是 CPU、DSP、微处理器、MCU 等控制器)通过 2 线串行接口控制 CH423 芯片,CH423 的 2 线串行接口是由硬件实现的,单片机可以频繁地通过串行接口进行高速操作,而绝对不会降低 CH423 的工作效率。

5.3. 双向输入输出引脚

CH423 的 107~100 引脚为双向输入输出引脚,默认为输入方向,用于输入外部引脚的当前状态, 当设置为输出方向时,可以输出高低电平以驱动 LED 发光管或者进行 1/0 扩展。

在动态扫描显示驱动方式下,107~100 引脚可以用于驱动数码管的各个段引脚,由于 CH423 内部可以对段驱动电流进行限制,所以外部串联的段限流电阻可以省掉。

5.4. 通用输出引脚

CH423 的 0C15~0C0 引脚为推挽或者开漏输出引脚,默认为推挽输出。

选择开漏输出方式后只有输出低电平和不输出两种状态,无法输出高电平,默认为不输出状态。 在动态扫描显示驱动方式下,0C15~0C0 引脚可以用于驱动共阴数码管的各个公共端,并且能够 以脉冲方式吸收较大的灌电流。

如果只驱动 8 位数码管, 那么剩余的 8 个通用输出引脚仍然可以用于 GPO。

5.5. 电平变化中断

如果允许输入电平变化中断,那么 CH423 的 0C15 引脚将作为中断请示输出引脚,低电平有效。 CH423 的 107~100 引脚用于输入时,可以支持输入电平变化中断,输入电平变化是指检测到从 107~100 引脚输入的当前状态与事先写入 107~100 引脚的输出寄存器(图中的 U4)中的数据不同。 如果检测到上述变化(图中的 U2 为比较器),那么 CH423 将通过 0C15 引脚输出低电平有效的中断,直到单片机重新写入 107~100 引脚的输出寄存器,并且新值与从 107~100 引脚输入的当前状态相同时,CH423 的 0C15 引脚才恢复为高电平或者不输出。

5.6. 上电复位

CH423 内置上电复位电路(图中的 R12 和 C11),用于在芯片刚通电时将内部各寄存器恢复为默认的状态。例如,每次上电后,双向输入输出引脚为输入状态,通用输出引脚为高电平状态。

5.7. 串行接口

CH423 具有硬件实现的 2 线串行接口,包含 2 根信号线:串行数据时钟输入线 SCL、串行数据输入和输出线 SDA。

SDA 是带上拉电阻的准双向信号线,默认是高电平。SDA 用于串行数据输入和输出,高电平表示位数据 1,低电平表示位数据 0,串行数据输入的顺序是高位在前,低位在后。

SCL 是输入信号线,默认为高电平。SCL 用于提供串行时钟,CH423 在其上升沿从 SDA 输入数据,在其下降沿从 SDA 输出数据。

在 SCL 为高电平期间发生的 SDA 下降沿定义为串行接口的启动信号,在 SCL 为高电平期间发生的 SDA 上升沿定义为串行接口的停止信号。CH423 只在检测到启动信号后才接收并分析命令。所以在单片机 I/O 引脚资源紧张时,可以在保持 SDA 引脚状态不变的情况下,将 SCL 引脚与其它接口电路共用;如果能够确保 SDA 引脚的变化仅在 SCL 引脚为低电平期间发生,那么 SCL 引脚和 SDA 引脚都可以

与其它接口电路共用。

单片机与 CH423 的通讯过程总是分为 6 个步骤,按单片机的操作方向分成两种类型,一种是写操作,用于输出数据,一种是读操作,用于输入数据。具体过程可以参考例子程序中的说明。

写操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输出字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 总是固定为 1,输出字节 1 和输出字节 2 各自包含 8 个数据位,即一个字节数据。

读操作包括以下 6 个步骤:输出启动信号、输出字节 1、应答 1、输入字节 2、应答 2、输出停止信号。其中,启动信号和停止信号如上所述,应答 1 和应答 2 总是固定为 1,输出字节 1 和输入字节 2 各自包含 8 个数据位,即一个字节数据。

下图是一个写操作的实例,字节 1 为 01001000B,即 48H;字节 2 为 00000001B,即 01H。

5.8. 动态驱动数码管

CH423 可以动态驱动 16 个共阴数码管,所有数码管的相同段引脚(段 A~段 G 及小数点)并联后,通过串接的 8 只限流电阻 R1~R8 连接 CH423 的段驱动引脚 $107\sim100$,各数码管的公共阴极分别由 CH423 的 $0C15\sim0C0$ 引脚进行驱动。段引脚串接的电阻 RN8 用于限制和均衡段驱动电流,在 5V 电源电压下,串接 $270\,\Omega$ 电阻通常对应段电流 10mA。CH423 可以连接 8×16 矩阵的发光二级管 LED 阵列或者 128 个独立发光管,或者通过外接反相驱动器支持共阳数码管,或者外接大功率管支持大尺寸的数码管,可参考 CH452 数据手册中的方法。

CH423 内部具有 16 个 8 位的数据寄存器(相当于 16 个图中的 U4),用于保存 16 个字数据,分别对应于 CH423 所驱动的 16 个数码管或者 16 组每组 8 个的发光二极管。数据寄存器中字数据的位 7~位 0 分别对应 8 个数码管的小数点和段 G~段 A,对于发光二极管阵列,则每个字数据的数据位唯一地对应一个发光二级管。当数据位为 1 时,对应的数码管的段或发光管就会点亮;当数据位为 0 时,则对应的数码管的段或发光管就会熄灭。例如,第三个数据寄存器的位 0 为 1,所以对应的第三个数码管的段 A 点亮。下图是数码管的段名称。

6、操作命令

CH423 的操作命令分为 6 组。各命令的启动信号、停止信号、应答 1 和应答 2 都相同,区别在于输出字节 1 和字节 2 的数据不同以及字节 2 的传输方向不同。字节 1 用于两线串口控制逻辑,或者用于产生地址(图中的 AOUT 总线),字节 2 用于输入和输出数据(图中的 DIN 和 DOUT 总线)。

6.1. 设置系统参数命令(图中的 WR-SET 控制线)

该命令的输出字节 1 为 01001000B, 即 48H; 该命令可以支持 7 个系统参数, 输出字节 2 为 [SLEEP][INTENS][OD EN][X INT][DEC H][DEC L][IO 0E]B。

设置系统参数命令用于设定 CH423 的系统级参数(写入图中的 U12): 双向输入输出引脚 $107\sim100$ 的输出使能 10_0 E、输出引脚 $0C7\sim0C0$ 的动态扫描使能 DEC_L、输出引脚 $0C15\sim0C8$ 的动态扫描使能 DEC_H、输入电平变化中断使能 X_INT、输出引脚 $0C15\sim0C0$ 开漏输出使能 $0D_0$ EN、动态显示驱动亮度 控制 INTENS、低功耗睡眠控制 SLEEP。上电复位后,上述参数默认都为 0。

I0_0E 用于控制双向输入输出引脚 I07 \sim I00 的三态输出,为 0 时禁止输出(用于通过图中的 U3 进行输入),为 1 时允许输出(图中的 U5 输出)。

DEC_L 用于控制输出引脚 0C7~0C0 的动态扫描使能,为 0 时 0C7~0C0 用于 I/0 扩展的通用输出(选择图中的 U6),为 1 时 0C7~0C0 由定时扫描计数器译码后控制(选择图中的 U10),同一时刻选择 0C7~0C0 引脚中的某一个引脚输出低电平,其余引脚不输出,用于实现分时显示驱动。

DEC_H 用于控制输出引脚 $0C15\sim0C8$ 的动态扫描使能,为 0 时 $0C15\sim0C8$ 用于 I/O 扩展的通用输出(选择图中的 $IO(15\sim0C8)$ 由定时扫描计数器译码后控制(选择图中的 $IO(15\sim0C8)$ 可以 $IO(15\sim0C8)$ 可以

X_INT 用于使能输入电平变化中断(控制图中的 U14),为 0 时禁止电平变化中断,为 1 并且 DEC_H 为 0 时允许从 0C15 引脚输出电平变化中断(由图中的 U2 比较产生)。

 OD_EN 用于使能输出引脚 $OC15\sim OCO$ 的开漏输出,为 0 时 $OC15\sim OCO$ 是推挽输出(可以输出低电平和高电平),为 1 时 $OC15\sim OCO$ 是开漏输出(只能输出低电平和不输出)。

INTENS 用于控制动态显示驱动的亮度,包含两位数据,有 4 种组合:数据 00B、01B、10B 分别设置显示驱动占空比为 4/4、1/4、2/4,并且启用内部的段驱动限流;数据 11B 设置显示驱动占空比为 4/4,但是禁止内部的段驱动限流,所以外部需要在段引脚串接限流电阻 R1~R8。

SLEEP 用于使 CH423 进入低功耗睡眠状态,从而可以节约电能。处于低功耗睡眠状态中的 CH423 可以被下述两种事件中的任何一种唤醒,第一种事件是输入电平变化,即检测到 107~100 引脚输入的当前状态与事先写入 107~100 引脚的输出寄存器(图中的 U4)中的数据不同;第二种事件是接收到单片机发出的下一个操作命令。当 CH423 被唤醒后,SLEEP 位会自动清 0。睡眠和唤醒操作本身不会影响 CH423 的其它工作状态。如果是被前一种事件唤醒,那么唤醒同时将产生电平变化中断。

例如,输出字节 2 为 17H 时,那么 0C15 \sim 0C0 以开漏方式动态驱动 16 个数码管;输出字节 2 为 03H 时,仅 0C7 \sim 0C0 动态驱动 8 个数码管,剩余的 0C15 \sim 0C8 仍然用于通用输出 GP0;输出字节 2 为 05H 时,仅 0C15 \sim 0C8 动态驱动 8 个数码管,剩余的 0C7 \sim 0C0 仍然用于通用输出 GP0。

该命令不影响各个引脚的输出寄存器和内部数据缓冲区中的数据。

6.2. 设置低 8 位通用输出命令(图中的 WR-OCL 控制线)

该命令的输出字节 1 为 44H,输出字节 2 为 $[0C_L_DAT]$ B,即 00H 到 0FFH 之间的 8 位数据,用于写入输出引脚 0C7 \sim 0C0 的输出寄存器(图中的 U6),写 0 则使引脚输出低电平,写 1 则输出高电平。

6.3. 设置高 8 位通用输出命令(图中的 WR-OCH 控制线)

该命令的输出字节 1 为 46H,输出字节 2 为 $[0C_H_DAT]$ B,即 00H 到 0FFH 之间的 8 位数据,用于写入输出引脚 $0C15\sim0C8$ 的输出寄存器(图中的 U9),写 0 则使引脚输出低电平,写 1 则输出高电平。

6.4. 设置双向输入输出命令(图中的 WR-10 控制线)

该命令的输出字节 1 为 60H、62H、64H、66H、68H、6AH、6CH、6EH、70H、72H、74H、76H、78H、7AH、7CH、7EH,其中位 $4\sim$ 位 1 为地址,可以忽略,输出字节 2 为[10_DAT]B,即 00H 到 0FFH 之间的 8 位数据,用于写入双向输入输出引脚 $107\sim100$ 的输出寄存器(图中的 U4),如果 10_DE 为 1 允许输出,那么写 0 则使引脚输出低电平,写 1 则使引脚输出高电平。

6.5. 加载字数据命令(用于数码管自动动态显示驱动,命令码与设置双向输入输出命令相同)

该命令的字节 1 为 011[DIG_ADDR] 0B, 即 60H、62H、64H、66H、68H、6AH、6CH、6EH、70H、72H、74H、76H、78H、7AH、7CH、7EH; 字节 2 为 [DIG_DATA] B, 即 00H 到 0FFH 之间的值。

加载字数据命令用于将字数据 DIG_DATA 写入 DIG_ADDR 指定地址的数据寄存器中。DIG_ADDR 通过 4 位数据指定数据寄存器的地址,数据 $00008\sim11118$ 分别指定地址 $0\sim15$,对应于 $000\sim0015$ 引脚驱动的 16 个数码管。DIG_DATA 是 8 位的字数据。例如,命令数据 011000008、011110018 表示将字数据 79H 写入第 1 个数据寄存器,使 000 引脚驱动的数码管将显示 E。

上电复位后 CH423 内部数据寄存器中的数据是不确定的,所以在开启显示之前,应该先清空数据 寄存器中的数据,或者直接加载将要显示的数据,复位过程不影响数据寄存器中的数据。

6.6. 读取双向输入输出命令(图中的 RD-10 控制线)

该命令的输出字节 1 为 01001101B,即 4DH;输入字节 2 为双向输入输出引脚 $107\sim100$ 的当前引脚状态。

读取双向输入输出命令用于获得 107~100 引脚的当前状态,当 10_0E 为 0 时为获取输入状态,否则为获取输出状态。该命令属于读操作,是唯一的具有数据返回的命令,单片机必须先释放 SDA 引脚(三态输出禁止或者上拉到高电平),然后 CH423 从 SDA 引脚输出当前引脚状态。

当 CH423 用于数码管显示驱动时,可以在临时关闭显示后,读取外部的 8 个按键输入状态。

7、参数

7.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	$^{\circ}\!\mathbb{C}$
TS	储存时的环境温度	-55	125	$^{\circ}\!\mathbb{C}$
VCC	电源电压(VCC 接电源,GND 接地)	-0. 5	6. 0	٧
V10	输入或者输出引脚上的电压	-0. 5	VCC+0. 5	٧
IMoc	单个 0C 引脚的连续驱动电流	0	30	mA
l Mocp	单个 0C 引脚的 1/16 脉冲驱动电流	0	150	mA
lMio	单个 10 引脚的连续驱动电流	-25	25	mA
lMall	所有 I0 引脚的连续驱动电流的总和 或所有 0C 引脚的连续驱动电流的总和	0	160	mA

7. 2. 电气参数 (测试条件: TA=25℃, VCC=5V, 如果 VCC=3. 3V 那么表中电流值需乘以 40%)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压	2. 9	5	5. 3	V
ICC	工作电流	0. 1	80	120	mA
ICCs5	5V 时静态电流(SCL 和 SDA 为高电平)		0. 4	0. 9	mA
ICCs3	3. 3V 时静态电流(SCL 和 SDA 为高电平)		0. 1	0. 3	mA
VIL	SCL 和 SDA 引脚低电平输入电压	-0. 5		0.8	٧
VIH	SCL 和 SDA 引脚高电平输入电压	2. 0		VCC+0. 5	٧
VILio	10 引脚低电平输入电压	-0. 5		0. 6	V
VIHio	10 引脚高电平输入电压	1. 9		VCC+0. 5	٧
V0Loc	0C 引脚低电平输出电压(-100mA)		0. 6	0.8	V
V0Loc	0C 引脚低电平输出电压 (-30mA)		0. 2	0. 3	٧
V0Hoc	0C 引脚高电平输出电压(5mA)	VCC-0. 5			V
V0Lio	IO 引脚低电平输出电压 (-15mA)			0. 5	٧
V0Hio	IO 引脚高电平输出电压(20mA)	VCC-0. 5			V
VOL	SDA 引脚低电平输出电压(-4mA)			0. 5	V
IUP1	I0 引脚的输入弱上拉电流	1	5	10	uA
IUP2	SDA 引脚的输入上拉电流	150	250	400	uA
VR	上电复位的默认电压门限	2. 3	2. 6	2. 9	V

7.3. 时序参数 (测试条件: TA=25℃, VCC=5V, 参考附图)

(注:本表计量单位以纳秒即 10⁻⁹秒为主,未注明最大值则理论值可以无穷大)

名称	参数说明	最小值	典型值	最大值	单位
TPR	电源上电检测产生的复位时间	15	30	80	mS
TSSTA	SDA 下降沿启动信号的建立时间	100			nS
THSTA	SDA 下降沿启动信号的保持时间	100			nS

TSST0	SDA 上升沿停止信号的建立时间	100		nS
THST0	SDA 上升沿停止信号的保持时间	100		nS
TCLOW	SCL 时钟信号的低电平宽度	100		nS
TCHIG	SCL 时钟信号的高电平宽度	100		nS
TSDA	SDA 输入数据对 SCL 上升沿的建立时间	30		nS
THDA	SDA 输入数据对 SCL 上升沿的保持时间	10		nS
TAA	SDA 输出数据有效对 SCL 下降沿的延时	3	30	nS
TDH	SDA 输出数据无效对 SCL 下降沿的延时	3	40	nS
Rate	平均数据传输速率	0	1 M	bps

8、应用

8.1. 远程 I/0 扩展(下图)

CH423 通过 2 线串行接口 SCL 和 SDA 与外部的单片机相连接, 电容 C1 用于电源退耦。

CH423 的 $107\sim100$ 引脚可以用于输入或者输出,图中将 106 和 107 引脚用于驱动两种极性的 LED 发光管。CH423 的 $0C15\sim0C0$ 引脚只能用于输出。为了获得较大的连续电流驱动能力,可以使能开漏输出,并参考图中将 0C4、0C5、0C6、0C7 引脚并联用于驱动继电器 K1。

8.2. 动态显示驱动(下图)

CH423 的动态显示驱动方式用于驱动 128 只 LED 或者 16 只共阴数码管,由 107~100 引脚分别驱动共阴数码管的各个段引脚(各数码管并联),由 0C15~0C0 引脚分别驱动各个共阴数码管的公共端。单片机在加载完所有字数据后,开启 DEC_L 和 DEC_H 控制位由 CH423 自动地进行分时动态显示扫描。如果只需要驱动 8 只数码管,那么可以只开启 DEC_L 或者 DEC_H 其中的一个控制位,剩余的另

外 8 个通用输出引脚仍然可以用于通用输出。

由于 CH423 内部可以对段驱动电流进行限制,所以段引脚所串联的限流电阻 R1~R8 可以省掉。

8.3. 数字电位器 (下图)

CH423 的 0C 引脚在开漏输出方式下是低阻开漏输出,导通电阻小于 10 欧姆,可以用作一端接地

的模拟开关,多个 0C 引脚各自外接电阻并组合导通后,可以构成一端接地的数字可编程电阻。

例如,通过外接 9 个电阻可以构成一个数字电位器,8 个电阻任意并联组合后可以得到最多 256 个阻值,从中可以挑选出不少于 32 个有效阻值(满足阻值按某种方式递增的要求)。下图是用 18 个外接电阻构成的双通道数字电位器,单片机通过 CH423 控制电阻 R21~R28 独立对地导通,得到 256 级阻值的可编程下拉电阻,该下拉电阻与 R29 分压后,产生可编程的分压输出提供给后级的运放 U23,实现了数字电位器的功能。图中的 R31~R39 构成另一通道。

图中的 U22 为 4 选 1 模拟开关,单片机通过 CH423 控制该模拟开关选择输入通道,再由 9 个电阻 R21~R29 进行可编程分压后输出。图中的可选上拉电阻 R6 用于在上电复位时将模拟开关 U22 默认置为关闭状态,图中的可选电阻 R20 和 R30 用于在模拟开关 U22 和 CH423 都关闭时防止输出信号悬浮。

图中各分压电阻的阻值应该根据实际需要确定,例如,R29(R39)选择 4. 7K Ω ,R21~R28(R31~R38)分别选择 220 Ω 、470 Ω 、1K Ω 、2. 2K Ω 、4. 7K Ω 、10K Ω 、22K Ω 、47K Ω ,那么最小分压输出为 2. 4%(00 引脚全部导通时),最大为 100%(00 引脚全部关闭时),调节范围约为 40 倍。

8.4. 抗干扰 (重要)

由于 CH423 的驱动电流较大,会在电源上产生较大的毛刺电压,所以如果电源线或者地线的 PCB 布线不合理,将有可能影响单片机或者 CH423 的稳定性,有关电源干扰的解决措施:

- ①、建议使用较短的和较粗的电源线和地线,尤其当 CH423 和单片机分属两块 PCB 时;
- ②、靠近 CH423 在正负电源之间并联电源退耦电容,至少一只 0. 1uF 的电容和一只电解电容。对于信号线较长时的外来干扰,参考下图解决:
- ①、 在信号线的靠近 CH423 引脚端,增加电容 C3 和 C4,电容值可以是 47pF 到 470pF,电容越大,与单片机通讯接口的传输速度越慢;
- ②、 可选地增加电阻 R8 和 R9, 电阻值可以是 100Ω 到 470Ω :
- ③、降低单片机与 CH423 之间的传输速度(因为增加了电阻电容);
- ④、如果是由准双向 I/O 引脚驱动(例如标准 MCS51 单片机),建议增加电阻 R6 和 R7,电阻值可以是 500 Ω 到 10K Ω,以加强 MCS-51 单片机的准双向 I/O 引脚的上拉能力,以便在远距离传输时保持较好的数字信号波形;信号线较短时无需上拉电阻 R6 和 R7,对于图腾柱驱动方式的双向 I/O 引脚,无需上拉电阻 R6 和 R7。

另外,对于强干扰的应用环境,单片机可以每隔数秒定期对 CH423 进行刷新,包括重新加载各个 I/O 引脚的输出寄存器,以及重新设置系统参数。

8.5. 单片机接口程序

网站上提供了部分单片机的 C 语言和 ASM 汇编接口程序。