Skin Disease Multi-Class Classification

Deep Learning

Team R Nil Tomàs Plans Yuxiang Jiang Pau Reig Vaqué

Problem Statement

Objective

Design and train

A lightweight Convolutional Neural Network (CNN) inspired by MobileNetv2.

Achieve

Performance comparable to the VGG16 model.

Low and efficient

Low computational cost and time efficient.

Dataset characteristics

Multiple Skin Disease Image Dataset.

Limitations

Small dataset: 4109 images

Noise: hair, microscope lens borders

and marker artifacts.

Acitinic Keratosis (Precancerous)

Melanoma (Cancerous)

Seborrheic Keratosis (Benign or non-cancerous lesions)

Basal Cell Carcinoma (Cancerous)

Nevus (Benian or non-cancerous lesions)

Squamous Cell Carcinoma

Dermatofibroma (Benign or non-cancerous lesions)

Pigmented Benign Keratosis (Benign or non-cancerous lesions)

Vascular Lesion (Benign or non-cancerous lesions)

Dataset characteristics

Distribution

State-of-art

State of the Art

State - of - the - art skin disease classification: a review of deep learning models

- Average an accuracy of 86.20% achieved by different deep learning models and data.

Best model using the same dataset: VGG16 89% of accuracy

- Transfer learning with a VGG16 model with pre-trained ImageNet weights.
- >20M parameters.

MyEfficientCNN

Architecture

Inspired by MobileNetV2 MyEfficientCNN vs

MobileNetv2

- # Inverted residual blocks→# channels, parameters

Model structure

 Uses inverted residuals, depthwise separable convolutions, and linear bottlenecks

Training approach

- Previous knowledge: good performance on simple data MNIST
- Performance in complex data?
 - Worse performance (1.5 loss, 50.7% accuracy)
 - Test with data pre-processing (Dull Razor algorithm)

- + Generalization
- + Robustness
- Diverse data
- Hyperparameters

Test

Results test set:

Loss: 1.26

Recall: 56.63%

Accuracy: 55.58%

Confusion mtx: observe label predictions against labels of each class

Transfer Learning

Transfer Learning Methodology

MobileNetV2

- Pretrained on ImageNet (1,000 classes).
- Lightweight model: ~2M parameters vs ~20M in VGG.

Why we choose it?

- Custom model are not strong enough
- Limited input data

Data adaptation

Normalized with ImageNet mean and std.

Training approach

- Input size: 224x224
- Number of total parameters: 2,235,401
- Feature Extraction
 - Validation Loss: 1.30, Accuracy: 57.32%, Recall: 56.82
 - Trainable variables: 11,529
- Fine Tuning (Unfreezing the last layers)
 - Validation Loss: 0.82, Accuracy: 73.41%, Recall: 73.03%
 - Trainable variables: 1,996,041

Test

Results test set:

Loss: 0.8205, Accuracy: 73.79%,

Recall: 74.38%

Seborrheic Keratosis (Benign or non-cancerous lesions)

Conclusions

What worked?

- Transfer learning improves performance over our model.
- 2M param close results to VGG16 (20.5M).

What didn't work?

- Did not achieve the VGG16 results.
- Obtain acceptable results with MyEfficientCNN.

Future work:

- Image processing techniques: segmentation, color spaces.
- Cross validation: builds a robust model.

References

	[1] BlueDokk/Dullrazor-algorithm: Pre-processing technique called DullRazor for the detection and removal of hairs on dermoscopic images. (2025). Retrieved May 24, 2025, from GitHub website: https://github.com/BlueDokk/Dullrazor-algorithm	
	[2] Jaiyeoba, O., Ogbuju, E., Ataguba, G., Jaiyeoba, O., Omaye, J. D., Eze, I., & Oladipo, F. (2025). State-of-the-art skin disease classification: a review of deep learning models. Network Modeling Analysis in Health Informatics and Bioinformatics, 14(1). https://doi.org/10.1007/s13721-024-00495-w	
	[3] mobilenet_v2 — Torchvision main documentation. (n.d.). https://docs.pytorch.org/vision/main/models/generated/torchvision.models.mobilenet_v2.html	
	[4] Parvathaneni Naga Srinivasu, Jalluri Gnana SivaSai, Ijaz, M. F., Akash Kumar Bhoi, Kim, W., & Kang, J. J. (2021). Classification of Skin Disease Using Deep Learning Neural Networks with MobileNet V2 and LSTM. Sensors, 21(8), 2852–2852. https://doi.org/10.3390/s21082852	
	[5] Shakya, M., Patel, R., & Joshi, S. (2025). A comprehensive analysis of deep learning and transfer learning techniques for skin cancer classification. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-024-82241-w	
	[6] Singh, P. (2023). Multiple Skin Disease Detection and Classification. Retrieved June 7, 2025, from Kaggle.com website:	
	https://www.kaggle.com/datasets/pritpal2873/multiple-skin-disease-detection-and-classification	

THANK YOU

