

O que me deixou orgulhoso foi que usei poucas peças para construir um computador que poderia realmente exibir palavras numa tela e digitar palavras num teclado e rodar uma linguagem de programação que poderia executar jogos. E eu fiz tudo isso sozinho.

Steve Wozniak

- Utiliza-se do conceito de polarização da luz para formar a imagem
- Os pixels são formados por retenção de luz.
 - No caso dos displays com leds, os pixels são formados por emissão de luz.
- Geralmente possui um microcontrolador integrado
- São encontrados em formato de 7 segmentos, matricial ou com ícones dedicados
 - Os formatos matriciais mais comuns são 5x7 e 5x8
- No formato matricial é possível representar as letras, números e diversos símbolos

- Este tipo de display pode ser visto como uma solução de exibição completa:
 - O microcontrolador faz o papel da placa de vídeo
 - O display faz o papel do monitor
 - A comunicação é feita através de um barramento paralelo
 - O barramento é comandado por 3 sinais de controle

Função dos terminais

- 1. GND/Terra (0v) 9. Bit 2
- 2. VCC (+5v) 10. Bit 3
- 3. Ajuste do contraste 11. Bit 4
- 4. Seleção de registro(RS) 12. Bit 5
- 5. Read/Write (RW) 13. Bit 6
- 6. Clock, Enable (EN) 14. Bit 7
- 7. Bit 0 15. Backlight +
- 8. Bit 1 16. Backlight Gnd

Função dos terminais

Rotina de envio de dados ou comandos

- 1. Para comando RS = 0; Para dados RS = 1;
- 2. Habilitar a escrita (RW=1) ou leitura (RW=0)
- 3. Colocar a informação no barramento (8 ou 4 bits)
- 4. Acionar terminal EN (enable)
- 5. Desligar o terminal EM
- 6. Se for comunicação de 4 bits voltar para o item 3 e colocar os últimos 4 bits
- 7. Delay para o LCD entender o comando/caracter

Caracteres conhecidos (ROM A00)

Quatro bits mais significativos

				_	_	-	-	_		. `			_	-		
	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000				Ø	a	P	٠.	Ĥ					ē,	=	68	р
0001				1	Œ	Ø	ıπ	₹			0	۳.	;	Ţ	1	ø
0010			=	2	В	R	Ь	r			Γ	4	ŋ	×	ρ	0
0011			#	3	С	5	c	S			_	Ċ	Ţ	ŧ	Ξ	M
0100			\$	4	۵	T	T	ŧ.				I	ŀ	÷	ΗI	a
0101			×	۱IJ	Ы	U	ψ	3				†5	+ .	1	6	Ö
0110			œ	6	Ł	₽	f.	٥			П	ħ	.	=	ρ	Σ
0111			۰.	۲-	Œ	W	ū	3			Þ	#	Þκ	ij.	ū	π
1000			$ \leftarrow $	∞	Ι	X	h	X			4	ņ	*	ņ	Г	ď
1001			\sim	9	I	7	i	ፓነ			Ð	Ļ.	٦,	ιĿ	-1	Ŧ
1010			*	-	Т,	N	j	М			Н	П	ì	۷	i.	+
1011			+	-7.	K		k	~ ~			۴.	† ۰	L		••	ĭ
1100			,	<	L	#	1				£	ភា	r	þ	φ.	Ħ
1101			_	=	Ħ		M	٠,			ヿ	K	1	ń	‡	ŀ
1110			•	>	И	^	n	†			Ш	۳	÷	*	ñ	
1111			/	?	0		0	÷			ij	y	P		Ö	

Quatro bits menos significativos

Comandos

la chara a a	DC	DVA				E	Bits	3 2 1 0 0 0 0 1 37 us 0 0 1 - 1.5ms 0 1 ID S 37 us 1 D C B 37 us SC RL - 37 us			
Instrução	RS	RW	7	6	5	4	3	2	1	0	iempo
Limpa	0	0	0	0	0	0	0	0	0	1	37 us
Reset	0	0	0	0	0	0	0	0	1	-	1.5ms
Config.	0	0	0	0	0	0	0	1	ID	S	37 us
Config.	0	0	0	0	0	0	1	D	С	В	37 us
Movim.	0	0	0	0	0	1	SC	RL	-	-	37 us
Config.	0	0	0	0	1	DL	N	F	-	-	37 us
Movim (l,c)	0	0	1	X	0	0	Coluna		37 us		
Ocup.	0	1	BF	-	-	-	-	-			10 us

Opções dos comandos

- ID: 1 -- Incrementa, 0 -- Decrementa
- S: 1 -- O display acompanha o deslocamento
- SC: 1 -- Desloca o display, 0 -- Desloca o cursor
- RL: 1 -- Move para direita, 0 -- Move para esquerda
- DL: 1 -- 8 bits, 0 -- 4 bits
- N: 1 -- 2 linhas, 0 -- 1 linha
- F: 1 -- 5x10 pontos, 0 -- 5x8 pontos
- BF: 1 -- Ocupado, 0 -- Disponível
- X: 1 -- 2a linha, 0 -- 1a linha
- Coluna: nibble indicativo da coluna

Criação da biblioteca LCD

- Função para enviar comandos
- Função para enviar dados
- Função de inicialização
- Funções de impressão pré-formatada
 - Texto (string) e Número (inteiros)
- Função de controle de posicionamento

```
#ifndef LCD
#define LCD

void lcdCommand(char value);
void lcdChar(char value);
void lcdInit(void);
void lcdString(char msg[]);
void lcdNumber(int value);
void lcdPosition(int line, int col);
#endif
```

- Além das funções disponibilizadas pela biblioteca, foram criadas funções internas:
 - Duas rotinas de delay
 - Geração de pulso de clock
 - Envio de 4 bits de dados
 - Envio de 8 bits de dados
- Estas funções simplificam a criação das rotinas de controle do LCD


```
#include "so.h"
#include "io.h"
#include "lcd.h"
void delayMicro(int a) {
       volatile int i;
       for (i = 0; i < (a * 2); i++);
void delayMili(int a) {
       volatile int i;
       for (i = 0; i < a; i++) {
               delayMicro(1000);
//Gera um clock no enable
void pulseEnablePin() {
       digitalWrite(LCD EN PIN, HIGH);
       delayMicro(5);
       digitalWrite(LCD EN PIN, LOW);
       delayMicro(5);
```

```
//Envia 4 bits e gera um clock no enable
void pushNibble(char value, int rs) {
       soWrite(value);
       digitalWrite(LCD_RS_PIN, rs);
       pulseEnablePin();
//Envia 8 bits em dois pacotes de 4
void pushByte(char value, int rs) {
       soWrite(value >> 4);
       digitalWrite(LCD_RS_PIN, rs);
       pulseEnablePin();
       soWrite(value & 0x0F);
       digitalWrite(LCD_RS_PIN, rs);
       pulseEnablePin();
}
```

```
void lcdCommand(char value) {
        pushByte(value, LOW);
        delayMili(2);
}
void lcdChar(char value) {
        pushByte(value, HIGH);
        delayMicro(80);
}
```



```
void lcdPosition(int line, int col) {
       if (line == 0) { lcdCommand(0 \times 80 + (col \% 16)); }
       if (line == 1) { lcdCommand(0xC0 + (col \% 16)); }
//Imprime um texto (vetor de char)
void lcdString(char msg[]) {
       int i = 0;
       while (msg[i] != 0) {
               lcdChar(msg[i]);
               i++;
void lcdNumber(int value) {
       int i = 10000; //Máximo 99.999
       while (i > 0) {
               lcdChar((value / i) % 10 + 48);
               i /= 10;
```

```
// Rotina de incialização
void lcdInit() {
       pinMode(LCD_EN_PIN, OUTPUT);
       pinMode(LCD_RS_PIN, OUTPUT);
       soInit();
       delayMili(15);
       // Comunicação começa em estado incerto
       pushNibble(0x03, LOW);
       delayMili(5);
       pushNibble(0x03, LOW);
       delayMicro(160);
       pushNibble(0x03, LOW);
       delayMicro(160);
       // Mudando comunicação para 4 bits
       pushNibble(0x02, LOW);
       delayMili(10);
       // Configura o display
       lcdCommand(0x28);
                         //8bits, 2 linhas, fonte: 5x8
       lcdCommand(0x08 + 0x04); //display on
       lcdCommand(0x01);
                             //limpar display, posição 0
```

- A maioria dos LCD's permite a criação de caracteres customizados
- Para os displays compatíveis com a controladora HD44780:
 - 8 caracteres disponíveis
 - Formato binário e matricial de 8*5
 - Armazenados a partir do endereço 0x40
 - Os valores são salvos por linha de caracter

0x40 Caracter 0 0x47 0x48 Caracter 1 0x4F 0x50 Caracter 2 0x57 0x70 Caracter 6 0x77 0x78 Caracter 7 0x7F

0x50	1a linha	0x04
0x51	2a linha	0x0E
0x52	3a linha	0x0E
0x53	4a linha	0x0E
0x54	5a linha	0x0E
0x55	6a linha	0x1F
0x56	7a linha	0x00
0x57	8a linha	0x04

Enviando o símbolo para o lcd

```
//Cada linha é representada por um caracter
char sino[8] = {0x04, 0x0E, 0x0E, 0x0E, 0x0E,
0x1F, 0x00, 0x04};
//Configura para a primeira posição de memória
lcdCommand(0x40);
//Envia cada uma das linhas em ordem
for(i=0; i<8; i++){
   lcdChar(sino[i]);
}</pre>
```


- É possível criar um desenho/imagem de até 20*16 pixels (4*2 caracteres)
- A imagem será binária, apenas pixels brancos ou pretos
- Existe uma separação entre os caracteres, que pode prejudicar de certa maneira a imagem em questão

- 1. Criar uma imagem binária com o desenho desejado;
- 2. Segmentar a imagem em retângulos de 8x5;
- 3. Transcrever cada linha em binário/hexadecimal;
- 4. Gerar o código fonte.

• 1 - Criar uma imagem binária com o desenho desejado;

• 2 - Segmentar a imagem em retângulos de 8x5;

• 3 - Transcrever cada linha em binário/hexadecimal;

0x01	0	0	0	0	1	0x11	1	0	0	0	1	0x10	1	0	0	0	0
0x03	0	0	0	1	1	0x1F	1	1	1	1	1	0x18	1	1	0	0	0
0x03	0	0	0	1	1	0x00	0	0	0	0	0	0x18	1	1	0	0	0
0x0E	0	1	1	1	0	0x01	0	0	0	0	1	0x0E	0	1	1	1	0
0x1C	1	1	1	0	0	0x1F	1	1	1	1	1	0x07	0	0	1	1	1
0x18	1	1	0	0	0	0x12	1	0	0	1	0	0x03	0	0	0	1	1
0x08	0	1	0	0	0	0x14	1	0	1	0	0	0x02	0	0	0	1	0
0x08	0	1	0	0	0	0x1F	1	1	1	1	1	0x02	0	0	0	1	0
0x08	0	1	0	0	0	0x12	1	0	0	1	0	0x02	0	0	0	1	0
0x18	1	1	0	0	0	0x14	1	0	1	0	0	0x03	0	0	0	1	1
0x1C	1	1	1	0	0	0x1F	1	1	1	1	1	0x07	0	0	1	1	1
0x0E	0	1	1	1	0	0x08	0	1	0	0	0	0x0E	0	1	1	1	0
0x03	0	0	0	1	1	0x00	0	0	0	0	0	0x18	1	1	0	0	0
0x03	0	0	0	1	1	0x1F	1	1	1	1	1	0x18	1	1	0	0	0
		0	0	0	1	0x11	1	0	0	0	1	0x10	1	0	0	0	0
0x01	0	<u> </u>															

• 4 - Gerar o código fonte.

```
//Cada linha é representada por um caracter
char logo[48] = {
       0x01, 0x03, 0x08, 0x0E, 0x1C, 0x18, 0x08, 0x08, //0, 0
       0x11, 0x1F, 0x00, 0x01, 0x1F, 0x12, 0x14, 0x1F, //0, 1
       0x10, 0x18, 0x18, 0x0E, 0x07, 0x03, 0x02, 0x02, //0,2
       0x08, 0x18, 0x1C, 0x0E, 0x03, 0x03, 0x01, 0x00, //1, 0
       0x12, 0x14, 0x1F, 0x08, 0x00, 0x1F, 0x11, 0x00, //1,1
       0x02, 0x03, 0x07, 0x0E, 0x18, 0x18, 0x10, 0x00 //1,2
};
lcdCommand(0x40); //Configura para a primeira posição de memória
//Envia cada uma das linhas em ordem
for(i=0; i<48; i++){
       lcdChar(logo[i]);
```


