Miary związku i analiza korespodencji

Aleksandra Palka

10 grudnia 2023

1 Wstęp

W projekcie zostały przeanalizowane dane pod względem występowania zależności między nimi i sile tych związków. Wykorzystane zostały testy niezależności, miary współzmienności i analiza korespondecji.

2 Zadanie 1- testowanie niezależności

Korzystamy z funkcji *chisq.test* w pakiecie R, na poziomie istotności 0.05 by zweryfikować hipotezę o niezależności stopnia zadowolenia z pracy i wynagrodzenia dla danych przedstawionych w Tabeli 1.

Wynagrodzenie	b. niezadow.	niezadow.	zadow.	b. zadow.	Suma
poniżej 6000	32	44	60	70	206
6000-15000	22	38	104	125	289
15000-25000	13	48	61	113	235
powyżej 25000	3	18	54	96	171
Suma	62	108	319	412	901

Tabela 1: Stopień zadowolenia z pracy w zależności od wynagrodzenia

```
tabela_1<-matrix(c(32,22,13,3,44,38,48,18,60,104,61,54,70,125,113,96),ncol=4)
rownames(tabela_1)<-c("<6000","6000-15000","15000-25000","25000<")
colnames(tabela_1)<-c("b.niez","niezaw","zaw","b.zaw")

test<-chisq.test(tabela_1)
test_z_poprawka<-chisq.test(tabela_1,correct=TRUE)
test_simulate<-chisq.test(tabela_1,simulate.p.value = TRUE)</pre>
```

Po przeprowadzeniu testu Chi-squared w wersji z poprawką Yatesa i bez niej w obu przypadkach dostajemy taką samą p-wartość, mniejszą niż poziom istotności 0.05 dlatego odrzucamy hipotezę o niezależności i wnioskujemy, że stopień zadowolenia z pracy jest zależny od wynagrodzenia. Przeprowadzamy też test Chisquared korzystając z parametru simulate.p.value=TRUE, p-wartość na podstawei 2000 symulacji Monte Carlo jest równa 0.0004998, co jest większe niż ta policzona dokładnie. Nadal jest mniejsza niż poziom istotności i oznacza odrzucenie hipotezy.

Odrzucenie hipotezy o niezależności jest równoznaczne z odrzuceniem hipotezy o jednorodnośći rozkładów warunkowych, zatem nie są one takie same w poszczególnych grupach.

Dla danych z tej tabeli narysujemy również association plot korzystając z funkcji assoc z pakiety vcd. Pozwala on zobaczyć odchylenia, czyli które komórki tabeli mają największy wpływ na odrzucenie hipotezy zerowej.

```
library(vcd)
assoc(tabela_1,shade=TRUE)
```

Jak widać na wykresie (rys.1.) największą różnicę powodują odpowiedzi osób o skrajnych zarobkach. Wśród osób zarabiających najmniej jest jest znacznie więcej bardzo niezadowolonych niż średnio dla wszystkich badanych i mniej bardzo zadowolonych niż średnio. Dla grupy zarabiającej najlepiej obserwujemy dokładnie odwrotną sytuację.

Rysunek 1: Wykres z funkcji assoc dla danych z zadania 1.

3 Zadanie 2 - miary związku

W oparciu o dane w pliku dotyczące reakcji pacjentów na różne dawki dwóch rodzajów leku obliczamy wartości miar współzmienności. Dane składają się ze zmiennych:

- Dawka opisującej ilośc podanego leku w skali logarytmicznej,
- Rodzaj 0 lub 1 w zależności od producenta leku,
- Reakcja 1 gdy nastapiła poprawa po podaniu leku i 0 gdy nie nastapiła,
- Miejsce to miejsce podanie leku szpital (1) lub dom (0).

3.1 Miara współzmienności dla zmiennych Reakcja i Dawka.

Zmienna Dawka określa ilość podanej dawki leku (w skali logarytmicznej), jest zmienną porządkową. Jako miarę zmienności wykorzystamy współczynnik γ i obliczymy go za pomocą funkcji GoodmanKruskalGamma z pakietu DescTools na poziomie ufności 0.95.

```
library(DescTools)
reakcja <- read.csv2(file="Reakcja.csv",header=TRUE)

> GoodmanKruskalGamma(ftable(reakcja,col.vars="Reakcja",row.vars = "Dawka"),direction = "column")
[1] 0.4879575
```

Obliczona wartość wynosi ok. 0.5 i jest dodatnia, co sugeruje zauważalną dodatnią zależność pomiędzy badanymi zmiennymi. Wraz ze zwiększaniem się dawki można było zaobserwować wzrost ilości pozytywnych reakcji na lek.

3.2 Miara współzmienności dla zmiennych Reakcja i Miejsce.

Zmienna Miejsce przyjmuje wartości 0-pacjent leczony w domu i 1-w szpitalu. Jest zatem zmienną nominalną i użyjemy współczynnika τ Goodmana-Kruskala. Do wyliczenia użyjemy funkcji GoodmanKruskalTau z pakietu DescTools na poziomie ufności 0.95.

```
> GoodmanKruskalTau(ftable(reakcja,col.vars="Reakcja",row.vars = "Miejsce"),direction = "column")
[1] 0.08022077
```

Obliczona wartość wynosi ok. 0.08. Zależność zmiennych między sobą jest niewielka, jednak sugeruje, że trochę częściej pozytywne reakcje na lek można było zauważyć u osób leczonych w szpitalu.

4 Zadanie 3 - analiza danych o wynagrodzeniu

Korzystamy z danych zawartych w Tabela 1 dotyczących zadowolenia z pracy i zarobków badanych osób.

```
tabela1 = matrix(c(32, 44, 60, 70, 22, 38, 104, 125, 13,48,61,113, 3,18,54,96),nrow=4,byrow=TRUE) dimnames(tabela1) <- list(Wynagrodzenie=c("ponizej 6000 ", "6000-15000 ", "15000-25000", "powyzej 25000"), Zadowoleniezpracy=c("b. niezadow.", "niezadow.", "zadow.", "b. zadow."))
```

4.1 Miara współzmienności

Chcemy policzyć miarę współ
zmienności zmiennych Wynagrodzenie i Stopień zadowolenia z pracy, czyli sprawdzić czy występuje między nimi jakaś zależność. Skorzystamy ponownie ze współczynnika γ na poziomie ufności 0.95.

```
> GoodmanKruskalGamma(tabela1)
[1] 0.218102
```

Dodatni wynik w tych granicach oznacza, żę dane są od siebie dodatnio zależne. Osoby o wyższych zarobkach są średnio bardziej zadowolone z pracy w porównaniu do osób z mniej płatną pracą.

4.2 Analiza korespondencji

Miara współzmienności pozwala określić siłę zależności między zmiennymi, ale nie dostarcza informacji o jej charakterze. W celu dokładniejszego określenia powiązań między zmiennymi wykorzstamy analizę korespodencji. Do obliczneia współrzednych punktów skorzystamy z funkcji zaimplementowanej na podstawie [1].

```
#funkcja znajdujaca macierze F i G
FG = function(dane){
  c = t(((addmargins(dane)[nrow(dane)+1,]/sum(dane))[-ncol(dane)-1]))
  r = t(((addmargins(dane)[,ncol(dane)+1]/sum(dane))[-nrow(dane)-1]))
 Dr = diag(c(r))
  Dc = diag(c(c))
  P = dane/sum(dane)
  A = solve(Dr^{(1/2)}) \% \% (P-t(r) \% \% c) \% \% solve(Dc^{(1/2)})
  A_{rozklad} = svd(A)
  U = A_rozklad$u
  V = A_rozklad$v
  D = diag(A_rozklad$d)
  F = solve(Dr^{(1/2)}) \% \% U \% \% D
  G = solve(Dc^{(1/2)}) \%*\% V \%*\% D
  inercja = sum(D^2)
  inercje_procent = A_rozklad$d^2/inercja
  return (list("F"=F,"G"=G,"inercja"=inercja,"procent"=inercje_procent))
```

```
# tworzenie wykresu
wsF = FG(tabela1)$F
wsG = FG(tabela1)$G
```

```
inercja = FG(tabela1)$inercja
inercja_wymiarow= FG(tabela1)$procent
 \texttt{xlimit} = \texttt{c}(\texttt{min}(\texttt{min}(\texttt{wsF}[,1]),\texttt{min}(\texttt{wsG}[,1])), \ \texttt{max}(\texttt{max}(\texttt{wsF}[,1]),\texttt{max}(\texttt{wsG}[,1]))) 
ylimit = xlim = c(min(min(wsF[,2]),min(wsG[,2])), max(max(wsF[,2]),max(wsG[,2])))
xlabel = paste("Wymiar 1-inercja",toString(round(inercja_wymiarow[1]*100,1)),"%")
ylabel = paste("Wymiar 1-inercja",toString(round(inercja_wymiarow[2]*100,1)),"%")
plot(wsF, col=c("blue"),pch=16,xlim=xlimit,ylim=ylimit,xlab=xlabel,ylab=ylabel)
abline(h=0,v=0,lty=2, lwd=1)
points(wsG, col=c("red"),pch=15)
zarobki_nazwy = c("ponizej 6000 ", "6000-15000 ", "15000-25000" , "powyzej 25000")
zadow_nazwy = c("b. niezadow.", "niezadow.", "zadow." ,"b. zadow.")
for (i in 1:nrow(wsF)){
  text(x=wsF[i,1]+0.01,y=wsF[i,2]+0.01,zarobki_nazwy[i])
for (i in 1:nrow(wsG)){
  text(x=wsG[i,1]+0.01,y=wsG[i,2]+0.01,zadow_nazwy[i])
inercja
```

```
# funkcja z pakietu ca
library(ca)
plot(ca(tabela1))
```


Rysunek 2: Wykres pokazujący zależność zmiennych dla zadania 6 korzystając z własnej funkcji.

Rysunek 3: Wykres pokazujący zależność zmiennych dla zadania 6korzystając z pakiety ca.

Oba wykresy (rys.2 i 3) są podobne, współrzędne punktów są zgodne, funckja została zaiplementowana poprawnie.

Inercja całkowita, inaczej bezwładność dla tych danych wynosi ~ 0.057 , przy czym maksymalna możliwa wartość to $min\{R-1,C-1\}=3$ (gdzie C-liczba kolumn, a R-wierszy). Inercje możemy interpretować jako miarę rozproszenia układu, więc to rozproszenie jest bardzo małe, punkty znajdują się w dość niewielkich odległościach od siebie.

Na podstawie wykresu możemy uzyskać informacje o charakterystyce zależności badanych zmiennych. Ogólnie im bliżej siebie położone są punkty, tym bardziej są podobne.

Wymiar 1 odpowiada za 80% wariancji danych, a wymiar 2-gi za 18.9%. Oznacza to, że przedstawiając dane na wykresie straciliśmy bardzo niewiele zmienności danych.

Najbardziej odstającą od środka odpowiedzią było duże niezadowolenie z pracy, to właśnie ta cecha najbardziej różnicuje dane. Również osoby o skrajnych zarobkach mocno odstawały od profilu przeciętnego te punkty znajdują się po przeciwnych stronach osi OX. Zatem odpowiedzi na pytanie znacząco różniły się pomięzy grupami. Najniższe zarobki wiązały się z odpowiedziami najbardziej różnymi od przeciętnych. Poza tym można zauważyć podobieństwo wśród odpowiedzi osób o zarobkach w dwóch środkowych przedziałachsą one równocześnie najbardziej zbliżone do profilu średniego.

Analizując rozmieszczenie punktów możemy zauważyć ogólną zależność - osoby o niższych zarobkach częściej odpowiadały, że są niezadowolone lub nawet bardzo niezadowolone ze swojej pracy. Nie oznacza to, że większość z tych osób tak odpowiedziała, lecz, że procentowy stosunek tych odpowiedzi był w tej grupie wyższy niz w innych. Zarobki od 6 do 15 tyś często wiązały się z odpowiedzią o zadowoleniu z pracy. Wśród tej grupy i osób zarabiających od 15 do 25 tyś. odpowiedzi były dość podoobne do średnich dla wszystkich badanyhc(mała odległość od środka), są wśród nich osoby zadowolone jak i niezadowolone. Dla najlepiej zarabiających widać, że przedstawiciele tej grupy przeważnie nie byli niezadowoleni.

5 Zadanie 4 - analiza przykładowych danych o lekach

Korzystamy z danych zawartych w Tabela 2, wyników ankiety dotyczącej najczęściej stosowanego leku przeciwbólowego. Odpowiedzi zostały dodatkowo podzielone ze względu na wiek ankietowanych.

Wiek	do lat 35	od 36 do 55	powyżej 55	Suma
Ibuprom	35	0	0	35
Apap	22	22	0	44
Paracetamol	15	15	15	45
Ibuprofen	0	40	10	50
Panadol	18	3	5	26
Suma	90	80	30	200

Tabela 2: Wiek ankietowanych i preferencje dotyczące leków

5.1 Miary współzmienności

Do sprawdzenia na poziomie ufności 0.95 zależności wybieranego leku od wieku wykorzystamy współczynnik τ .

```
> GoodmanKruskalTau(ftable(leki,col.vars = "Lek",row.vars = "Wiek"),direction="column")
[1] 0.1512141
```

Obliczona wartość wskazuje na zależność, aczkolwiek że nie jest ona bardzo silna.

5.2 Analiza korespondencji

```
#tworzenie wykresu
wsF = FG(leki) F
wsG = FG(leki)$G
inercja = FG(leki)$inercja
inercja_wymiarow= FG(leki)$procent
xlimit = c(min(min(wsF[,1]), min(wsG[,1])), max(max(wsF[,1]), max(wsG[,1])))
ylimit = xlim = c(min(min(wsF[,2]), min(wsG[,2])), max(max(wsF[,2]), max(wsG[,2])))
xlabel = paste("Wymiar 1-inercja",toString(round(inercja_wymiarow[1]*100,1)),"%")
ylabel = paste("Wymiar 1-inercja",toString(round(inercja_wymiarow[2]*100,1)),"%")
plot(wsF, col=c("blue"),pch=16,xlim=xlimit,ylim=ylimit,xlab=xlabel,ylab=ylabel)
abline(h=0,v=0,lty=2, lwd=1)
points(wsG, col=c("red"),pch=15)
leki_nazwy = c("Ibuprom", "Apap", "Paracetamol", "Ibuprofen", "Panadol")
wiek_nazwy = c("do lat 35" ,"od 36 do 55" ,"powyzej 55")
for (i in 1:nrow(wsF)){
  text(x=wsF[i,1]+0.07,y=wsF[i,2]+0.02,leki_nazwy[i])
for (i in 1:nrow(wsG)){
  text(x=wsG[i,1]+0.07,y=wsG[i,2]+0.02,wiek_nazwy[i])
inercja
```


Rysunek 4: Wykres pokazujący zależność zmiennych dla zadania 7 korzystając z własnej funkcji.

Inercja całkowita, inaczej bezwładność dla tych danych wynosi ~ 0.57 , przy czym maksymalna możliwa wartość to $min\{R-1,C-1\}=2$. Rozproszenie układu nie jest bardzo duże.

Pierwszy wymiar odpowiada za 81.4% bezwładności, a drugi-18.6%, co oznacza, że na wykresie przedstawiona jest znaczna większość zmienności danych.

Patrząc na punkty odpowiadające wiekowi respondentów widzimy, że odpowiedzi na pytanie rożniły się w grupach wiekowych. Osoby młodsze poniżej 35 lat wybierały najczęściej inny lek niż starsze. Osoby w wieku średnim i starsze również odpowiadały inaczej na pytanie, lecz te róznice nie są aż tak duże jak w przypadku najmłodszych badanych.

Wśród leków najbardziej skrajne na mapie są punkty odpowiadające wyborowi Ibupromu i Ibuprofenu. Procent wyboru tych leków wśród różnych grup znacząco się różnił, czyli wśród grupy, która wybierała Ibuprom niewiele wybierało Ibuprofen i na odwrót. Duży odsetek wyboru Ibupromu wiązał się też z częstym wyborem Pandolu przez innych przedstawicieli grupy.

Ibuprom oraz Panadol wybierały głównie osoby młode, a Ibuprofen był często wybieranym lekiem przez osoby w średnim wieku. Starsi decydowali częściej od innych na Paracetamol.

Najbliżej profilu środkowego położone są Apap, i Paracetamol - to te leki najmnniej rożnicowały grupy, tj. choć były preferowane wbardziej śród starszych, młodsi również po nie sięgali.

Bibliografia

[1] M.Greenacre O. Nenadic. "Correspondance analysis in R, with two- and three-dimensional graphics: the ca package". W: *Journal of Statistica Software* (2007).

Rysunek 5: Wykres pokazujący zależność zmiennych dla zadania 7 korzystając z pakiety $\it ca.$