Professor William L. Harrison

Language Specification First Example: Propositional Logic

Professor William L. Harrison

September 28, 2016

Professor William L. Harrison

Review

Formal Derivation

Proposition Logic Syntax Proofs Semantics

An example

Q: Is the following a legal C program?

```
$ cat helloworld.c
#include <stdio.h>
int main() {
   printf("hello world\n")
}
```

```
Language
Specification
```

Professor William L. Harrison

Review

Formal Derivatio

Propositiona Logic Syntax Proofs Semantics

An example

Q: Is the following a legal C program?

```
$ cat helloworld.c
#include <stdio.h>
int main() {
   printf("hello world\n")
}
```

Nope.

Professor William L. Harrison

Review

Review

• C has some means of expressing and checking structure of an input file that a programmer claims is a program.

Professor William L. Harrison

Review

Formal

Propositio Logic Syntax

Review

- C has some means of expressing and checking structure of an input file that a programmer claims is a program.
- "Context-free Grammar" (CFG): structural rules that determine whether a sequence of symbols is, in fact, a sentence (program) in a language.

Professor William L. Harrison

Review

Formal Derivation

Propositio Logic Syntax Proofs

Review

- C has some means of expressing and checking structure of an input file that a programmer claims is a program.
- "Context-free Grammar" (CFG): structural rules that determine whether a sequence of symbols is, in fact, a sentence (program) in a language.
- CFGs are expressive enough to describe PL syntax and can be readily adapted to programming (parsing).

Professor William L. Harrison

Review

Formal Derivation

Propositio Logic Syntax Proofs Semantics

Review

- C has some means of expressing and checking structure of an input file that a programmer claims is a program.
- "Context-free Grammar" (CFG): structural rules that determine whether a sequence of symbols is, in fact, a sentence (program) in a language.
- CFGs are expressive enough to describe PL syntax and can be readily adapted to programming (parsing).
- Kernighan & Ritchie (2nd edition, App. 9.2, page 222):

expression-statement: expression_{opt};

Professor William L. Harrison

Review

Formal Derivation

Proposition Logic Syntax Proofs Semantics

Review

- C has some means of expressing and checking structure of an input file that a programmer claims is a program.
- "Context-free Grammar" (CFG): structural rules that determine whether a sequence of symbols is, in fact, a sentence (program) in a language.
- CFGs are expressive enough to describe PL syntax and can be readily adapted to programming (parsing).
- Kernighan & Ritchie (2nd edition, App. 9.2, page 222):

expression-statement : expression_{opt} ;

Says "an expression-statement is an expression (in this case the call to printf) followed by a semicolon."

Professor William L. Harrison

Review

Formal Derivation

Propositio Logic Syntax Proofs Semantics

The ideas and issues which we will consider are:

- What is a language?
- Syntax: How do we define precisely what are the well-formed sentences of a language?
- Semantics: Given a well-formed sentence, what does it mean?
- The separation between syntax and semantics.

Professor William L. Harrison

Review

Formal Derivation

Propositio Logic Syntax

Syntax Proofs Semantic Solving linear equation: 5x + 7 = 9

Assume

$$5x + 4 = 9$$
 (i)

Professor William L. Harrison

Review

Formal Derivation

Propositio Logic

Syntax Proofs Semantic Solving linear equation: 5x + 7 = 9

Assume

$$5x + 4 = 9 \tag{i}$$

Subtract 4 from each side of Equation (i):

$$5x = 5 (ii)$$

Professor William L. Harrison

Review

Formal Derivation

Propositio Logic

Proofs Semantic Solving linear equation: 5x + 7 = 9

Assume

$$5x + 4 = 9 \tag{i}$$

Subtract 4 from each side of Equation (i):

$$5x = 5 (ii)$$

Divide both sides of Equation (ii) by 5:

$$x = 1$$
 (iii)

Professor William L. Harrison

Review

Formal Derivation

Proposition Logic Syntax

Syntax Proofs Semantic Two rules

$$kx + l = m \implies kx = m - l$$
 "subtract from both sides" $kx = l \implies x = l/k$ $(k \neq 0)$ "divide both sides"

Professor William L. Harrison

Review

Formal Derivation

Logic Syntax Proofs Semantics

Two rules

$$kx + l = m \implies kx = m - l$$
 "subtract from both sides" $kx = l \implies x = l/k$ $(k \neq 0)$ "divide both sides"

Consider

$$5x + 4 = 9$$

Professor William L. Harrison

Review

Formal Derivation

Proposition Logic Syntax Proofs

Two rules

$$kx + l = m \implies kx = m - l$$
 "subtract from both sides" $kx = l \implies x = l/k$ $(k \neq 0)$ "divide both sides"

Consider

$$5x + 4 = 9 \Rightarrow 5x = 9 - 4$$

Professor William L. Harrison

Review

Formal Derivation

Logic
Syntax
Proofs
Semantics

Two rules

$$kx + l = m \implies kx = m - l$$
 "subtract from both sides" $kx = l \implies x = l/k \qquad (k \neq 0)$ "divide both sides"

Consider

$$5x + 4 = 9 \implies 5x = 9 - 4 \implies x = (9 - 4)/5$$

Professor William L. Harrison

Review

Formal Derivation

Logic Syntax Proofs Semantics

Two rules

$$kx + l = m \implies kx = m - l$$
 "subtract from both sides" $kx = l \implies x = l/k$ $(k \neq 0)$ "divide both sides"

Consider

$$5x + 4 = 9 \implies 5x = 9 - 4 \implies x = (9 - 4)/5$$

Question: Can we solve 3x + 5 + 6x = 0 with these rules?

Professor William L. Harrison

Review

Formal Derivation

Logic Syntax Proofs Semantics

Two rules

$$kx + l = m \implies kx = m - l$$
 "subtract from both sides" $kx = l \implies x = l/k$ $(k \neq 0)$ "divide both sides"

Consider

$$5x + 4 = 9 \implies 5x = 9 - 4 \implies x = (9 - 4)/5$$

Question: Can we solve 3x + 5 + 6x = 0 with these rules? Answer: No.

Professor William L. Harrison

Review

Formal Derivation

Proposition Logic Syntax Proofs

Derivation System (High Level)

Has some notion of a "sentence" or "formula"

$$-(E+-E)$$
 $2B \lor \neg 2B$

Professor William L. Harrison

Review

Formal Derivation

Proposition

Syntax Proofs Semantics

Derivation System (High Level)

• Has some notion of a "sentence" or "formula"

$$-(E+-E)$$
 $2B \lor \neg 2B$

• Rules for producing new formulae from existing ones

$$E \Rightarrow -E$$
 $\frac{\varphi \quad \varphi \supset \gamma}{\gamma}$

Professor William L. Harrison

Review

Formal Derivation

Propositio Logic

Syntax Proofs Semantics

Derivation System (High Level)

• Has some notion of a "sentence" or "formula"

$$-(E + -E)$$

$$2B \vee \neg 2B$$

• Rules for producing new formulae from existing ones

$$E \Rightarrow -E$$

$$\frac{\varphi \quad \varphi \supset \gamma}{\gamma}$$

• Notion of "proof" or "derivation". Sequence of sentences:

$$S_1,\ldots,S_n$$

where S_i result of applying a rule to (members of) $\{S_1, \ldots, S_{i-1}\}$

Professor William L. Harrison

Review

Formal Derivation

Proposition Logic Syntax

Syntax Proofs Semantic

Derivation Systems Everywhere

Defining syntax

$$E\Rightarrow i \qquad (where \ i\in \{\ldots,-1,0,1,\ldots\})$$

 $E\Rightarrow -E$

Professor William L. Harrison

Review

Formal Derivation

Proposition Logic Syntax Proofs

Derivation Systems Everywhere

Defining syntax

$$E\Rightarrow i \qquad (where \ i\in \{\ldots,-1,0,1,\ldots\})$$

 $E\Rightarrow -E$

Derivation: E

Professor William L. Harrison

Review

Formal Derivation

Proposition: Logic Syntax

Syntax Proofs Semantics

Derivation Systems Everywhere

Defining syntax

$$E\Rightarrow i \qquad (\textit{where } i\in \{\ldots,-1,0,1,\ldots\}) \\ E\Rightarrow -E$$

Derivation: $E \Rightarrow -E$

Professor William L. Harrison

Review

Formal Derivation

Propositiona Logic Syntax

Syntax Proofs Semantics

Derivation Systems Everywhere

Defining syntax

$$E\Rightarrow i \qquad (where \ i\in \{\ldots,-1,0,1,\ldots\}) \ E\Rightarrow -\ E$$

Professor William L. Harrison

Formal Derivation

Derivation Systems Everywhere

Defining syntax

$$E\Rightarrow i \qquad (where \ i\in \{\ldots,-1,0,1,\ldots\})$$

 $E\Rightarrow -E$

Derivation:
$$E \Rightarrow -E \Rightarrow --E \Rightarrow --9$$

Professor William L. Harrison

Review

Formal Derivation

Proposition
Logic
Syntax
Proofs
Semantics

Derivation Systems Everywhere

Defining syntax

$$E\Rightarrow i$$
 (where $i\in\{\ldots,-1,0,1,\ldots\}$)
 $E\Rightarrow -E$

Derivation: $E\Rightarrow -E\Rightarrow --E\Rightarrow --9$
 $\therefore --9$ is an E

Professor William L. Harrison

Review

Formal Derivation

Proposition

Syntax Proofs Semanti

Derivation Systems Everywhere

Defining types

$$\frac{i \in \{\dots, -1, 0, 1, \dots\}}{i :: Int} \qquad \frac{e :: Int}{-e :: Int}$$

Professor William L. Harrison

Formal

Derivation

Derivation Systems Everywhere

Defining types

$$\frac{i \in \{\dots, -1, 0, 1, \dots\}}{i :: Int} \qquad \frac{e :: Int}{-e :: Int}$$

Derivation

$$\frac{9 \in \{\dots, -1, 0, 1, \dots\}}{\underbrace{\begin{array}{c} 9 :: Int \\ -9 :: Int \\ \hline --9 :: Int \end{array}}}$$

Professor William L. Harrison

Review

Derivation

Propositio

Syntax Proofs

Derivation Systems Everywhere

Defining types

$$\frac{i \in \{\dots, -1, 0, 1, \dots\}}{i :: Int} \qquad \frac{e :: Int}{-e :: Int}$$

Derivation

$$\frac{9 \in \{\dots, -1, 0, 1, \dots\}}{\underbrace{\begin{array}{c} 9 :: Int \\ -9 :: Int \\ \hline --9 :: Int \end{array}}}$$

$$\therefore$$
 - - 9 :: Int

Professor William L. Harrison

Review

Formal Derivation

Proposit Logic Syntax Proofs

Derivation Systems Everywhere

Professor William L. Harrison

Review

Formal Derivation

Proposit Logic Syntax Proofs

Derivation Systems Everywhere

$$\begin{aligned} \textit{length}[x, y, z] \\ \Rightarrow 1 + \textit{length}[y, z] \end{aligned}$$

Professor William L. Harrison

Review

Formal Derivation

Propositi Logic Syntax Proofs

Derivation Systems Everywhere

$$\begin{aligned} & \textit{length}[x, y, z] \\ & \Rightarrow 1 + \textit{length}[y, z] \\ & \Rightarrow 1 + 1 + \textit{length}[z] \end{aligned}$$

Professor William L. Harrison

Review

Formal Derivation

Proposition
Logic
Syntax
Proofs

Derivation Systems Everywhere

$$\begin{aligned} \textit{length}[x, y, z] \\ \Rightarrow 1 + \textit{length}[y, z] \\ \Rightarrow 1 + 1 + \textit{length}[z] \\ \Rightarrow 1 + 1 + 1 + \textit{length}[] \end{aligned}$$

Professor William L. Harrison

Review

Formal Derivation

Propositio Logic Syntax Proofs

Derivation Systems Everywhere

$$\begin{aligned} \textit{length}[x,y,z] \\ \Rightarrow 1 + \textit{length}[y,z] \\ \Rightarrow 1 + 1 + \textit{length}[z] \\ \Rightarrow 1 + 1 + 1 + \textit{length}[] \\ \Rightarrow 1 + 1 + 1 + 0 \end{aligned}$$

Professor William L. Harrison

Review

Formal Derivation

Proposition Logic Syntax

Derivation Systems Everywhere

```
\begin{aligned} & length[x,y,z] \\ &\Rightarrow 1 + length\left[y,z\right] \\ &\Rightarrow 1 + 1 + length\left[z\right] \\ &\Rightarrow 1 + 1 + 1 + length\left[\right] \\ &\Rightarrow 1 + 1 + 1 + 0 \\ &\Rightarrow 3 \end{aligned}
```

Professor William L. Harrison

Review

ormal

Propositional

Logic Syntax

Proofs Semanti

Digital Logic

Professor William L. Harrison

Daviou

Formal

Propositional Logic

Syntax Proofs

Digital Logic

An Equivalent Boolean Expression

(A and B) or ((B or C) and (C and B))

Professor William L. Harrison

Review

Formal

Propositional

Logic

Syntax Proofs

Truth Table

Α	В	C	(A and B) or $((B \text{ or } C) \text{ and } (C \text{ and } B))$
Т	Т	Т	?
Т	Т	F	?

Professor William L. Harrison

Reviev

Formal Derivation

Propositional

Syntax Proofs

Propositional Logic

• **Proposition**: a statement that is either true or false E.g., "It is raining", "Socrates was Greek", etc.

Professor William L. Harrison

Review

Formal Derivation

Propositional

Syntax Proofs

Propositional Logic

- **Proposition**: a statement that is either true or false E.g., "It is raining", "Socrates was Greek", etc.
- Propositional Sentences

E.g., Let p and q stand for "it is raining" and "the street is wet", respectively, then $p\supset q$ is a propositional sentence. Connective \supset stands for "implies".

Professor William L. Harrison

Review

Formal Derivation

Propositional

Logic Syntax Proofs Semantics

Propositional Logic

• **Proposition**: a statement that is either true or false E.g., "It is raining", "Socrates was Greek", etc.

Propositional Sentences

E.g., Let p and q stand for "it is raining" and "the street is wet", respectively, then $p\supset q$ is a propositional sentence. Connective \supset stands for "implies".

• Propositional Logic:

A derivation system for logical consequence in Prop. Logic I.e., assuming P_1, \ldots, P_n , must Q hold?

Professor William L. Harrison

Reviev

Formal Derivation

Propositional

Logic Syntax Proofs Semantics

Propositional Logic

• **Proposition**: a statement that is either true or false E.g., "It is raining", "Socrates was Greek", etc.

Propositional Sentences

E.g., Let p and q stand for "it is raining" and "the street is wet", respectively, then $p\supset q$ is a propositional sentence. Connective \supset stands for "implies".

• Propositional Logic:

A derivation system for logical consequence in Prop. Logic I.e., assuming P_1, \ldots, P_n , must Q hold?

Propositional Logic Semantics: namely, truth tables.

Professor William L. Harrison

Reviev

Formal Derivation

Propositional Logic

Syntax Proofs Semantics

Propositional Logic

• **Proposition**: a statement that is either true or false E.g., "It is raining", "Socrates was Greek", etc.

Propositional Sentences

E.g., Let p and q stand for "it is raining" and "the street is wet", respectively, then $p\supset q$ is a propositional sentence. Connective \supset stands for "implies".

• Propositional Logic:

A derivation system for logical consequence in Prop. Logic I.e., assuming P_1, \ldots, P_n , must Q hold?

• Propositional Logic Semantics: namely, truth tables.

Derivation systems will play a role in all of these.

Professor William L. Harrison

Reviev

Formal

Propositiona Logic

Syntax Proofs Semantic

The Language Syntax

The propositional calculus is the simplest form of mathematical logic.

Definition (Propositional Calculus)

A propositional formula has one of the following forms:

- a *propositional variable*; usually denoted by a roman letter, p, q, r, etc.
- a *negation*; e.g., $\neg \varphi$ where φ is a propositional formula.
- an *implication*; e.g., $(\varphi \supset \gamma)$ where φ and γ are propositional formulae.

Professor William L. Harrison

Revie

Forma

Proposition

Logic Syntax Proofs Semantics

The Language Syntax as Context Free Grammar

Before giving a precise definition, let's consider an example. Let Var be an infinite set of symbols. We will refer to typical elements of Var with lower case roman letters (e.g., p, q, r, etc.). Assume $\{(,),\neg,\wedge\} \cap Var = \emptyset$, then let alphabet A be the set $\{(,),\neg,\wedge\} \cup Var$. Here is a CFG:

$$Prop \rightarrow p$$
 for any $p \in Var$ (1)

$$Prop \rightarrow (\neg Prop)$$
 (2)

$$Prop \rightarrow (Prop \supset Prop)$$
 (3)

This CFG defines a language, denoted $\mathcal{L}(Prop)$.

Professor William L. Harrison

Review

Formal Derivation

Propositiona

Syntax Proofs Semantic

Deriving members of $\mathcal{L}(Prop)$

• How do we determine if a particular sequence of symbols from A is in $\mathcal{L}(Prop)$?

¹I use "string" and "sequence of symbols" interchangably.

Professor William L. Harrison

Review

Formal Derivation

Propositiona Logic

Syntax Proofs

Deriving members of $\mathcal{L}(Prop)$

- How do we determine if a particular sequence of symbols from A is in $\mathcal{L}(Prop)$?
- We perform a *derivation* of the string.

¹I use "string" and "sequence of symbols" interchangably.

Professor William L. Harrison

Review

Formal Derivation

Propositiona Logic

Syntax Proofs Semantics

Deriving members of $\mathcal{L}(Prop)$

- How do we determine if a particular sequence of symbols from A is in $\mathcal{L}(Prop)$?
- We perform a *derivation* of the string.
- For instance, is the string $(\neg p) \in \mathcal{L}(Prop)$? Yes, and here's the derivation:

$$\begin{array}{c} Prop \rightarrow (\neg Prop) \\ \rightarrow (\neg p) \end{array}$$

¹I use "string" and "sequence of symbols" interchangably.

Definition (Well-Formed Formulae of Propositional Logic)

The primitive symbols of *L* are:

$$\neg$$
 \supset ()

The propositional symbols of L are of the form A_i for any positive integer i. The symbols, \neg and \supset , are called connectives. Any propositional symbol is a well-formed formula (wff) of L. Furthermore, if φ and γ are wffs, the so are:

$$(\neg \varphi)$$

and

$$(\varphi \supset \gamma)$$

Professor William L. Harrison

Syntax

Definitional Extensions

Definition (Disjunction, Conjunction and Equivalence)

Familiar connectives are defined by:

$$(\varphi \leftrightarrow \gamma)$$
 is $(\varphi \supset \gamma) \land (\gamma \supset \varphi)$ (equivalence)

Professor William L. Harrison

Review

Formal Derivation

Propositiona

Syntax Proofs Semantic

Definitional Extensions

Definition (Disjunction, Conjunction and Equivalence)

Familiar connectives are defined by:

$$\begin{array}{lll} (\varphi \vee \gamma) & \text{is } \neg \varphi \supset \gamma & \text{(disjunction)} \\ (\varphi \wedge \gamma) & \text{is } \neg (\neg \varphi \vee \neg \gamma) & \text{(conjunction)} \\ (\varphi \leftrightarrow \gamma) & \text{is } (\varphi \supset \gamma) \wedge (\gamma \supset \varphi) & \text{(equivalence)} \end{array}$$

I will typically drop the parentheses when possible.

Professor William L. Harrison

Proofs

Axiom System for Propositional Logic

$$\varphi\supset (\gamma\supset\varphi)$$
 (Ax.1)

$$(\varphi \supset (\gamma \supset \psi)) \supset ((\varphi \supset \gamma) \supset (\varphi \supset \psi))$$
 (Ax.2)

$$((\neg \gamma \supset \neg \varphi) \supset ((\neg \gamma \supset \varphi) \supset \gamma)) \tag{Ax.3}$$

There is only one inference rule in propositional logic, namely Modus Ponens.

$$\frac{\varphi \quad \varphi \supset \gamma}{\gamma} \text{ (MP)}$$

Professor William L. Harrison

Reviev

Derivation

Proposition Logic Syntax Proofs Semantics

Instances

An instance of an axiom is a substitution of a wff for φ, γ, ψ Instances of Axiom 1 $(\varphi \supset (\gamma \supset \varphi))$ include

<u>Instance</u>	Substitution
$A\supset (B\supset A)$	$[\varphi \mapsto A, \gamma \mapsto B]$
$A\supset ((A\supset A)\supset A)$	$[\varphi \mapsto A, \gamma \mapsto (A \supset A)]$
į.	:

Professor William L. Harrison

Review

Formal Derivation

Proposition Logic Syntax Proofs

Formal Proofs

Definition (Proof)

Let Φ be the sequence $\varphi_1, \ldots, \varphi_n$ of propositional wffs. Then, Φ is a *proof* of φ_n if, and only if, for each φ_i in Φ , φ_i is either:

- an instance of Ax.1, Ax.2, or Ax.3, or
- there are φ_j and φ_k such that j < i and k < i and φ_i follows from φ_i and φ_k by MP.

Professor William L. Harrison

Review

Formal Derivation

Propositiona Logic

Syntax Proofs Semantics

Example Proof

Professor William L. Harrison

Review

Formal Derivation

Propositiona Logic Syntax

Syntax Proofs Semantics

Example Proof

Professor William L. Harrison

Proofs

Example Proof

Professor William L. Harrison

Review

Proposition:

Syntax
Proofs
Semantics

Example Proof

Say I want to prove that $A \supset A$.

MP2,1

Professor William L. Harrison

Review

Formal Derivation

Propositions Logic Syntax Proofs

Example Proof

Professor William L. Harrison

Review

Derivation

Proposition: Logic Syntax Proofs

Example Proof

Professor William L. Harrison

Svntax

Proofs

Proof as Tree: $A \supset A$

$$\frac{A \supset (A \supset A)}{A \supset (A \supset A)} \xrightarrow{(A \times 1)} \frac{A \supset ((A \supset A) \supset A)}{(A \supset (A \supset A)) \supset ((A \supset A)) \supset (A \supset A))} \xrightarrow{(A \times 2)} (A \times 2)$$

$$\frac{A \supset (A \supset A)}{A \supset A} \xrightarrow{(A \supset A)} (A \times 1)$$

$$\frac{A \supset (A \supset A)}{A \supset A} \xrightarrow{(A \supset A)} (A \times 2)$$

Professor William L. Harrison

Reviev

Formal Derivat

Propositiona Logic Syntax Proofs

Semantics

Semantics: What does it mean?

Semantics (a.k.a., model theory) is another way of establishing the validity of a wff. The semantics of propositional logic consists of the well-known "truth tables".

	Α	В	$\neg B$	$(A\supset B)$	$(A \wedge B)$	$\neg (A \supset \neg B)$
	Т	Т	F	Т	Т	
ſ	Т	F	Т	F	F	
ĺ	F	Т	F	Т	F	
Ì	F	F	Т	Т	F	

Professor William L. Harrison

Review

Formal Derivation

Proposition Logic Syntax Proofs Semantics

Another Truth Table

Α	В	С	$(A \land B) \lor ((B \lor C) \land (C \land B))$
Т	Т	Т	
Т	Т	F	
Т	F	Т	
Т	F	F	
F	Т	Т	
F	Т	F	
F	F	Т	
F	F	F	