Prof. Dr. Ignaz Rutter, Simon D. Fink



\*\*

 $\star$ 

\*\*

# Exercise Sheet 2

Discussion during the exercise on 16.11.2021, 12:00 - 14:00 in IM SR 034. For optional feedback: Hand in until 15.11.2021 12:00 via E-Mail to simon.fink@uni-passau.de or via upload to StudIP.

### Question 1: Graph Coloring and Independent Sets

Let G be a graph with n vertices. Show that  $\chi(G) \leq r$  if and only if  $\alpha(G \times K_r) = n$ .

The cartesian product  $G_1 \times G_2$  of two graphs  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  is defined as  $G_1 \times G_2 = (V_1 \times V_2, E)$  with  $E = \{\{(v_1, v_2), (v'_1, v'_2)\} \mid \text{ either } v_1 = v'_1 \text{ and } \{v_2, v'_2\} \in E_2 \text{ or } v_2 = v'_2 \text{ and } \{v_1, v'_1\} \in E_1\}$  (see example below).



In what way does this show that INDEPENDENT SET is NP-hard (given that GRAPH COLORING is NP-hard)?

#### **Question 2:** Commutating Operations

Let x and y be distinct vertices in a graph G. Show that  $(G \circ x) - y = (G - y) \circ x$ .

#### Question 3: Algorithmic Vertex Multiplication

Let  $x_1, \ldots, x_n$  be the vertices of graph G and let  $h = (h_1, \ldots, h_n)$  be a vector with  $h_i \in \mathbb{N}_0$ . Observe that the algorithm shown on the right yields the graph  $H = G \circ h$ . Determine the runtime of the algorithm. Is this optimal and if not, how could the algorithm be improved? *Hint:* How does the runtime relate to the output size?

$$H \leftarrow G;$$
  
for  $i \leftarrow 1$  to  $n$  do  
if  $h_i = 0$  then  
 $H \leftarrow H - x_i;$   
else  
while  $h_i > 1$  do  
 $H \leftarrow H \circ x_i;$   
 $h_i \leftarrow h_i - 1;$ 

please turn over

## Question 4: A little bit perfect?

Find a graph G with  $\alpha(G) = k(G)$  and  $\omega(G) < \chi(G)$ . Why doesn't this contradict the Perfect Graph Theorem?

## Question 5: Clique Cover and Independent Sets

Let G be a graph with  $\alpha(G) = k(G)$ . Furthermore, let K be a clique cover with  $|\mathcal{K}| = k(G)$  and let  $\mathcal{U}$  be the set of all independent sets of size  $\alpha(G)$ . Show that  $|U \cap K| = 1$  for all  $U \in \mathcal{U}$  and  $K \in \mathcal{K}$ .

\*\*

\*

\*\*\*

\*\*

Also give the dual statement for graphs with  $\omega(G) = \chi(G)$ .

### Question 6: Not perfect at all

Show that the difference between the clique number and the chromatic number can grow arbitrarily big. To do so, show that for all  $k \in \mathbb{N}$  with  $k \geq 2$  there exists a graph G with  $\omega(G) = 2$  and  $\chi(G) = k$ .

### Question 7: Graph Parameters and the Normal Product

The normal product  $G_1 \cdot G_2$  of two graphs  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  is defined as  $G_1 \cdot G_2 = (V_1 \times V_2, E \cup E^+)$  with  $E = \{\{(v_1, v_2), (v_1', v_2')\} \mid \text{ either } v_1 = v_1' \text{ and } \{v_2, v_2'\} \in E_2 \text{ or } v_2 = v_2' \text{ and } \{v_1, v_1'\} \in E_1\}$  and  $E^+ = \{\{(v_1, v_2), (v_1', v_2')\} \mid \{v_1, v_1'\} \in E_1 \text{ and } \{v_2, v_2'\} \in E_2\}$  (see example below).



Show the following statements:

- (a)  $\chi(G_1 \cdot G_2) \ge \max{\{\chi(G_1), \chi(G_2)\}}$
- (b)  $\omega(G_1 \cdot G_2) = \omega(G_1) \cdot \omega(G_2)$
- (c)  $\alpha(G_1 \cdot G_2) \geq \alpha(G_1) \cdot \alpha(G_2)$
- (d)  $k(G_1 \cdot G_2) \le k(G_1) \cdot k(G_2)$

For (a), (c) and (d) also give examples for both equality and inequality of both sides of the relation.