

Консультант

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ_		<u>ИНФОРМАТИ</u> Ь	(А И СИСТЕМЫ УПРАВЛ	ІЕНИЯ
КАФЕДРА	ТЕОРЕТИЧЕС	КАЯ ИНФОРМАТИЬ	КА И КОМПЬЮТЕРНЫЕ	ТЕХНОЛОГИИ
РАСЧ	ETHO-	поясн	ИТЕЛЬНА	Я ЗАПИСКА
	K	КУРСОВ	ОЙ РАБОТ	TE.
		HA 7	ГЕМУ:	
-	Метод	ы выделения гра	ниц на рентгенограм	max
Студент <u>ИУ9</u> (Гру	9-51б		(Подпись, дата)	<u>М. Ибрагимов</u> (И.О.Фамилия)
Руководитель к	урсовой работі	Ы		<u> А. В. Брагин</u>

Москва

(Подпись, дата)

(Подпись, дата)

(И.О.Фамилия)

(И.О.Фамилия)

А. В. Брагин _

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	3
1. ПОСТАНОВКА ЗАДАЧИ	4
2. ОПИСАНИЕ ТЕХНОЛОГИЙ ДЛЯ НАПИСАНИЯ ПРОГРАММЫ	5
2.1 Язык программирования Python	5
2.2 Библиотека PIL	5
2.3 Библиотека OpenCV	6
2.4 Библиотека Matplotlib	
3. ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА ИЗОБРАЖЕНИЙ	8
3.1 Основные понятия	8
3.2 Приведение RGB изображения в оттенки серого	
4. АНАЛИЗ ПРЕДОБРАБОТАННЫХ ИЗОБРАЖЕНИЙ	11
4.1 Методы и реализации выделения контуров	11
4.1.1 Перекрёстный оператор Робертса	11
4.1.2 Оператор Прюитт	12
4.1.3 Оператор Собеля	13
4.1.4 Оператор Шарра	14
4.1.5 Оператор Лапласа	14
4.1.6 Оператор Кирша	15
4.1.7 Оператор Робинсона	17
4.1.8 Оператор Кэнни	19
5. РЕЗУЛЬТАТЫ ТЕСТОВ	23
ЗАКЛЮЧЕНИЕ	28
СПИСОК ПИТЕРАТУРЫ	20

ВВЕДЕНИЕ

Цель курсовой работы – разработка алгоритмов для выделения контуров на медицинских изображениях (рентгенограммах).

В настоящее время все большее применение находит машинная графика. Компьютерное зрение применяется во многих сферах жизни: камеры видеонаблюдения, автономные транспортные средства, анализ документов и т.д. Так компьютерное зрение не обошло стороной и медицину.

Задача анализа медицинских изображений на данный момент очень популярна. "Правильная" обработка изображений способна очень сильно облегчить жизнь специалистам, сократив время постановления диагноза и уменьшив вероятность ошибки при постановлении диагноза.

Базовая задача — это выделение контуров на изображениях. Во-первых, это удаляет всё "ненужное" со снимков, и специалисту легче рассматривать такие изображения. Во-вторых, обработанные такими методами изображения могут использоваться в задачах машинного обучения для автоматического постановления диагноза.

В данной работе тестирование реализованных алгоритмов будет применяться на рентгенограммах костей, а именно костей кисти.

Снимки были взяты из датасета для соревнований по глубокому обучению от Стэнфорда – Bone X-Ray Deep Learning Competition.

1. ПОСТАНОВКА ЗАДАЧИ

Цель данной работы – выделение контуров на рентгенограммах.

Для достижения данной цели необходимо решить следующие задачи:

- Изучить существующие методы, для данной задачи.
- Выбрать список технологий, с помощью которых лучше реализовывать данные алгоритмы
- Тестировать полученные результаты.

Результатами данной работы являются снимки с выделенными контурами.

В заключении будет произведено сравнение методов на основе скорости их работы и точности выделения границ.

2. ОПИСАНИЕ ТЕХНОЛОГИЙ ДЛЯ НАПИСАНИЯ ПРОГРАММЫ

Алгоритм – это конечная совокупность точно заданных правил решения некоторого класса задач или набор инструкций, описывающих порядок действий исполнителя для решения определённой задачи.

Для реализации алгоритмов выделения контуров необходимо выбрать:

- Высокоуровневый язык программирования
- Библиотеки для работы с изображениями

2.1 Язык программирования Python

Язык программирования Python версии 3.8 был выбран как язык для реализации данной задачи.

Python имеет простой синтаксис, на нем реализовано огромное количество библиотек, для работы с изображениями.

По скорости работы, реализации на Python будут выполняться примерно столько же, сколько на C/C++, т. к. основная сложность — это вычисления, а они в свою очередь выполняются с помощью библиотеки NumPy, которая написана на C.

2.2 Библиотека PIL

Библиотека PIL (Python Image Library) – библиотека языка Python, предназначенная для работы с растровой графикой.

Возможности библиотеки:

- Поддержка бинарных, полутоновых, индексированных, полноцветных изображений.
- Поддержка большого набора форматов изображений (BMP, EPS, GIF, JPEG, PDF, PNG, PNM...) на чтение и запись
- Поддержка форматов (MPEG, ICO, PSD, PCX, WMF) только для чтения
- Преобразование изображений из одного формата в другой
- Правка изображений (использование фильтров, рисование, взятие значения пикселя)

Изображение в PIL представляет собой объект (object).

В данной работе PIL нужен для чтения и записи к значениям пикселей. Обычно в PIL работают с RGB-значениями, но в данной работе будет обработка изображения в оттенках серого, поэтому у пикселя будет одно значение.

Для чтения значения пикселя применяется метод getpixel(). В качестве аргументов в данный метод передается кортеж (x, y) – координаты.

```
Image.getpixel((100, 100)) #255
```

Также, придется и изменять значения пикселей, следовательно нужен метод для записи. В PIL за запись в пиксель отвечает метод putpixel(). В качестве аргументов в данный метод передается кортеж (x, y) – координаты и значение пикселя.

```
Image.putpixel((100, 100), 255)
```

2.3 Библиотека OpenCV

OpenCV - библиотека алгоритмов компьютерного зрения, обработки изображений и численных алгоритмов общего назначения с открытым кодом. Имеет реализации во множестве языков. Может свободно использоваться в академических целях.

В OpenCV доступен огромный набор возможностей, для работы с изображениями. В ней уже реализованы операторы для выделения границ, но т. к. это было целью данной работы, поэтому операторы будут реализованы с нуля, а OpenCV будет использоваться как библиотека для предварительной обработки изображений, и для удобного доступа к пикселям.

Основные модули библиотеки:

- Cxcore ядро, содержит реализации алгоритмов для работы с матрицами, базовые функции 2D графики и т.д.
- CV модуль обработки изображений и компьютерного зрения: базовые операции над изображениями (фильтры, геометрические преобразования); анализ изображений (поиск контуров); анализ движения, слежения за объектами; обнаружение объектов (лиц)
- HighGUI модуль для ввода/вывода изображений и видео, создание пользовательского интерфейса
- Cvaux экспериментальные функции (нахождение черт лица)
- CvCam захват видео.

В данной работе OpenCV будет использована для предварительной обработки изображений, а именно: для применения фильтра Гаусса (сглаживание методом Гаусса). Описание и применение предварительной обработки будет описано далее.

2.4 Библиотека Matplotlib

Библиотека Matplotlib - библиотека на языке программирования Python для визуализации данных двумерной графикой (3D графика также поддерживается). Получаемые изображения могут быть использованы в качестве иллюстраций в публикациях.

Matplotlib является гибким, легко конфигурируемым пакетом, который вместе с NumPy, SciPy и IPython предоставляет возможности, подобные MATLAB.

Пакет поддерживает многие виды графиков и диаграмм:

- Графики
- Диаграммы разброса
- Столбчатые диаграммы
- Круговые диаграммы
- Контурные графики
- Поля градиентов

С помощью Matplotlib можно работать с изображениями, например подмодуль Matplotlib — Pyplot используется в данной курсовой работе для красивого вывода изображений.

Набор поддерживаемых форматов:

- JPEG
- PDF
- PNG
- SVG
- TIFF
- RGBA (сырой формат)

3. ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА ИЗОБРАЖЕНИЙ

3.1 Основные понятия

Рентгенограмма - зарегистрированное на светочувствительном материале (фотоплёнке, фотопластинке) изображение объекта, возникающее в результате взаимодействия рентгеновских лучей с веществом.

Рентгенография применяется для диагностики: Рентгенологическое исследование органов позволяет уточнить форму данных органов, их положение, тонус, перистальтику, состояние рельефа слизистой оболочки.

Сегментация изображения – процесс разделения цифрового изображения на несколько сегментов.

Контраст изображения, диапазон яркостей изображения — отношение яркостей самой светлой и самой тёмной частей изображения.

Градиент — характеристика, показывающая направление наискорейшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой.

RGB формат изображения — аддитивная цветовая модель, описывающая способ кодирования цвета для цветовоспроизведения с помощью трёх цветов (R – red (красный), G – green (зеленый), B – blue (синий)), которые принято называть основными.

Оттенки серого - цветовой (одноканальный) режим изображений, которые отображаются в оттенках серого, размещённые в виде таблицы в качестве эталонов яркости белого цвета.

Свёртка — операция над парой матриц, результатом которой является так же матрица. В операции перемножаются соответствующие элементы, затем сумма произведений записывается в центральный элемент матрицы (применимо к матрицам с нечетным порядком).

3.2 Приведение RGB изображения в оттенки серого

Большинство изображений изначально представлено RGB формате. Для выделения контуров важно только значение контраста. Поэтому логично перевести изображение в оттенки серого.

Изначально, загрузив изображение, с помощью библиотеки PIL или же с помощью OpenCV, в режиме по умолчанию и, прочитав любой пиксель, нам вернется кортеж из 3 значений (R, G, B) ($0 \le R$, G, B ≤ 255).

Наиболее простой способ перевести изображение в одноканальный режим – это взять среднее арифметическое из 3 значений (формула (1)).

$$X = (R + G + B)/3 \tag{1}$$

где R — значение красного канала; G — значение зеленого канала; B — значение синего; X — результат в одноканальном формате (яркость пикселя $0 \le X \le 255$)

Не стоит забывать о том, что наши глаза воспринимают яркости разных цветов по-разному. Например, для человеческого глаза зеленый цвет в 10 раз светлее, чем синий. Для того чтобы отношения яркостей при конвертации сохранялись, были подобраны коэффициенты, для вычисления одноканальных значений. (формула (2)).

$$X = 0.2126 * R + 0.7152 * G + 0.0722 * B$$
 (2)

где R, G, B, X – это те же переменные, что и в формуле (1).

Данные коэффициенты не рекомендуется использовать, если яркости изображения высокие. Поэтому для очень ярких изображений используют гамма-компрессию. Гамма-компрессия, простыми словами, это процесс затемнение изображения. Вычисление с гамма-компрессией показано в формуле (3).

$$X = 0.299 *R + 0.587 *G + 0.114 *B$$
 (3)

где R, G, B, X – это те же переменные, что и в формуле (1).

Есть несколько возможностей конвертировать изображение из RGB в оттенки серого с помощью Python.

- 1) Прямое чтение R, G, B значений из пикселя и запись в отдельно созданную новую матрицу (двумерный массив) вычисленных значений.
- 2) Инкапсуляцией, т.е. конвертацией с помощью методов, реализованных в библиотеках.

Например, конвертировать в оттенки серого из RGB с помощью библиотеки OpenCV или PIL можно прямо при загрузке изображения.

Ниже приведён пример загрузки изображения в оттенках серого с помощью OpenCV:

```
cv2.imread('./images/brush.png', 0)
```

Ниже приведён пример загрузки изображения в оттенках серого с помощью PIL:

```
Image.open('./images/brush.png').convert('L')
```

Конвертация в оттенки серого из RGB в PIL и OpenCV происходит без гаммакомпрессии, т.е. по формуле (2).

4. АНАЛИЗ ПРЕДОБРАБОТАННЫХ ИЗОБРАЖЕНИЙ

Когда изображения переведены в оттенки серого, можно приступать к основной задаче — к задаче выделения контуров.

Процесс обнаружения точных разрывов яркости на изображении называется процессом выделения границ. Разрывы — это резкие изменения в группе пикселей, которые являются границами объектов. Классический алгоритм обнаружения границ задействует свертку изображения с помощью оператора, который основывается на чувствительности к большим перепадам яркости на изображении, а при проходе однородных участков возвращает нуль.

Вычисление свертки — это, по факту, вычисления градиента (величина перепада в дальнейшем). Один из исторически первых методов — это перекрёстный оператор Робертса. Позже Прюиттом был предложен оператор на основе понятия центральной разницы. Основным недостатком является чувствительность таких методов к шуму. Наиболее известным из дифференциальных методов выделения контуров является оператор Собеля.

4.1 Методы и реализации выделения контуров

На сегодняшний день реализовано большое количество операторов выделения границ. Исследования в этой области ведутся с середины XX века. Ниже будут приведены описания некоторых операторов.

4.1.1 Перекрёстный оператор Робертса

Область 3х3, показанная на рисунке ниже, представляет собой значения яркости в окрестности некоторого элемента изображения.

z ₁	z_2	z ₃
Z ₄	z ₅	z ₆
z ₇	<i>z</i> ₈	Z ₉

Рис. 3 – окрестность данного изображения

Оператор выделения границ Робертса введен Лоуренсом Робертсом в 1964 году. Основан он на перепадах яркости.

По сути, перекрёстный оператор Робертса вычисляет на плоском дискретном изображении сумму квадратов разниц между диагонально смежными пикселями.

Это может быть выполнено сверткой изображения с двумя ядрами:

-1	0	0	-1
0	1	1	0

Рис. 4 Маски оператора Робертса

Градиенты вычисляются по формулам ниже:

$$Gx = (z_9 - z_5) \tag{4}$$

где Gx — это величина перепада яркости по абсциссе

$$Gy = (z_8 - z_6) \tag{5}$$

где Gy — это величина перепада яркости по ординате

$$G = \sqrt{Gx^{-2} + Gy^{-2}} \tag{6}$$

где G – результирующая величина перепада.

Реализация масок размерами 2x2 не очень удобна, т.к. у них нет четко выраженного центрального элемента, что существенно отражается на результате выполнения фильтрации. Но этот "минус" порождает очень полезное свойство данного алгоритма — высокую скорость обработки изображения.

4.1.2 Оператор Прюитт

Оператор Прюитт - метод выделения границ в обработке изображений, который вычисляет максимальный отклик на множестве ядер свертки для нахождения локальной ориентации границы в каждом пикселе. Он был создан доктором Джудит Прюитт для обнаружения границ медицинских изображений в 1970 году.

Метод Прюитта оперирует с окрестностью (см. рис. 3), по факту, так же, как и оператор Робертса, но отличие в том, что в методе Прюитта для свертки используются 2 маски размером 3х3.

-1	-1	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

Рис. 5 Маски оператора Прюитта

Градиенты вычисляются по формулам ниже:

$$Gx = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$$
 (7)

где Gx — это величина перепада яркости по абсциссе

$$Gy = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$$
 (8)

где Gy — это величина перепада яркости по ординате

$$G = \sqrt{Gx^{-2} + Gy^{-2}} \tag{9}$$

где G – результирующая величина перепада.

4.1.3 Оператор Собеля

Оператор Собеля введен Собелем в 1970 году. Данный оператор очень схож с оператором Прюитта, различия только в коэффициентах матрицы.

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

Рис. 6 Маски оператора Собеля

Градиенты вычисляются по формулам ниже:

$$Gx = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$$
 (10)

где Gx — это величина перепада яркости по абсциссе

$$Gy = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_7)$$
 (11)

где Gy — это величина перепада яркости по ординате

$$G = \sqrt{Gx^2 + Gy^2} \tag{12}$$

где G – результирующая величина перепада.

$$theta = tan^{-1}(Gy / Gx)$$
 (13)

где theta – направление градиента.

4.1.3 Оператор Шарра

Оператор Собеля сглаживает паразитные эффекты на изображении, вызываемые чисто центрально-дифференциальным оператором, но не обладает полной вращательной симметрией. Шарр исследовал улучшение этого свойства и пришёл к выводу, что лучшие результаты дают следующие выражения.

$$Gx = (3z_1 + 10z_2 + 3z_3) - (3z_7 + 10z_8 + 3z_9)$$
 (14)

где Gx — это величина перепада яркости по абсциссе

$$Gy = (3z_1 + 10z_4 + 3z_7) - (3z_3 + 10z_6 + 3z_9)$$
 (15)

где Gy — это величина перепада яркости по ординате

4.1.4 Оператор Лапласа

Оператор Лапласа для выделения границ работает аналогичным методом (как предыдущие), но использует другую маску для свертки.

0	1	Ο
1	-4	1
О	1	O

Рис. 7 Маска оператора Лапласа

Формула для вычислений здесь только одна:

$$G = |z_2 + z_4 + z_6 + z_8 - z_5| \tag{16}$$

где G — это величина перепада яркости

4.1.4 Оператор Кирша

Обнаружение границ этим методом было введено Киршем в 1971 году. Алгоритм основан на использовании всего одной маски, которую вращают по восьми главным направлениям: север, северо-запад, запад, юго-запад, юг, юго-восток, восток и северо-восток. Маски имеют следующий вид:

$$\mathbf{K}\mathbf{1} = \begin{bmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & 5 \end{bmatrix} \quad \mathbf{K}\mathbf{2} = \begin{bmatrix} -3 & 5 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & -3 \end{bmatrix} \quad \mathbf{K}\mathbf{3} = \begin{bmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix} \mathbf{K}\mathbf{4} = \begin{bmatrix} 5 & 5 & -3 \\ 5 & 0 & -3 \\ -3 & -3 & -3 \end{bmatrix}$$

$$\mathbf{K}5 = \begin{bmatrix} 5 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & -3 & -3 \end{bmatrix} \quad \mathbf{K}6 = \begin{bmatrix} -3 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & 5 & -3 \end{bmatrix} \quad \mathbf{K}7 = \begin{bmatrix} -3 & -3 & -3 \\ -3 & 0 & -3 \\ 5 & 5 & 5 \end{bmatrix} \quad \mathbf{K}8 = \begin{bmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & 5 & 5 \end{bmatrix}$$

Рис. 8 Маски оператора Кирша

Ниже показаны несколько результатов вычисления по первым трем маскам.

б)

в) Рис. 9: а) – K1, б) – K2, в) – K3

Можно заметить, что на результирующих изображениях много шума, контуры выделены плохо. Это проблема решается выбором максимальной свертки на каждой итерации.

4.1.4 Оператор Робинсона

Метод Робинсона, введенное в 1977, подобен методу Кирша, но является более простым в реализации в силу использования коэффициентов 0, 1 и 2. Маски данного оператора симметричны относительно центральной оси, заполненной нулями. Достаточно получить результат от обработки первых четырех масок, остальные же можно получить, инвертируя первые.

Рис. 10 – Маски оператора Робинсона

Вычисления выполняются аналогично предыдущим методам.

Ниже показаны несколько результатов вычисления по первым трем маскам.

б)

в) Рис. 10: а) $-r_0$, б) $-r_1$, в) $-r_2$

В результате, так же как и в операторе Кирша, мы получаем плохо выделенные контуры. Это решается так же – выбором максимальной свертки.

4.1.4 Оператор Кэнни

Детектор границ Кэнни является одной из самых популярных алгоритмов обнаружения контуров. Впервые он был предложен Джоном Кэнни в магистерской диссертации в 1983 году, и до сих пор является лучше многих алгоритмов, разработанных позднее.

Алгоритм состоит из 5 этапов:

- 1) Сглаживание (размытие удаление шумов)
- 2) Поиск градиентов
- 3) Подавление не-максимумов только локальные максимумы отмечаются как границы
- 4) Двойная пороговая фильтрация потенциальные границы определяются порогами
- 5) Трассировка области неоднозначности. Все "сильные границы" отмечаются белым цветом, а все слабые границы удаляются (отмечаются черным цветом).

Сглаживание. Сглаживание, по сути, является одним из этапов предобработки изображения. В последнее время на медицинских изображениях все меньше шумов, но из-за специфической работы оператора Кэнни, шум проявляется в результирующем изображении в виде границ, поэтому Джоном Кэнни было решено включить в алгоритм оператора удаление шумов.

Для удаления шумов в операторе Кэнни используется размытие Гаусса. Вычисление значения "размытых" пикселей, применяется по формуле

$$G(x,y,\sigma) = \frac{1}{2 \cdot \pi \cdot \sigma^2} \cdot e^{-\frac{(x^2 + y^2)}{2 \cdot \sigma^2}}$$
(17)

где σ – входной параметр, влияющий на размытие; х и у координаты.

Но на практике удобнее применять свертку. К окрестностям изображения (рис. 3)

	1	2	1
16	2	4	2
	1	2	1

Рис. 11 Маска фильтра Гаусса

Рис.12 Применение размытия Гаусса

Поиск градиентов. Поиск градиентов является главным шагом в алгоритме оператора Кэнни. На данном шаге можно взять, например, оператор Прюитта или Собеля.

Оператор Кэнни в оригинале, применяет оператор Собеля. Именно в операторе Кэнни, важно направления градиента, т. к. для следующего этапа будет оно будет использоваться.

Рис. 13 Применение оператора Собеля

Подавление не-максимумов. Локальный максимум (пиксель) – это такой пиксель, значение которого больше соседних.

Направление градиента подсказывает нам, с какими пикселями сравнивать главный текущий пиксель.

Выделяют 8 направлений градиента.

- 1) $0 > theta > \pi/4$
- 2) $\pi/4 > theta > \pi/2$
- 3) $\pi/2 > theta > 3\pi/4$
- 4) $3\pi/4 > theta > \pi$
- 5) $\pi > theta > -3\pi/4$
- 6) $-3\pi/4 > theta > -\pi/2$
- 7) $-\pi/2 > theta > -\pi/4$
- 8) $-\pi/4 > theta > 0$

Возьмем любую окрестность исходного изображения (рис. 3). Мы находимся в центре матрицы (элемент z5).

Если значение направление градиента 1), то мы сравниваем z5 с z4 и с z6. Если, например, z5 меньше хотя бы одного соседа, то мы присваиваем z5 значение 0.

Далее, если направление градиента 2), то мы сравниваем z5 c z3 и c z7.

Если направление 3), сравниваем z5 c z2 и c z8.

Если направление 4), сравниваем z5 c z1 и c z9.

5), 6), 7), 8) направления – по факту выполняем то же, что и в 1), 2), 3), 4) – соответственно.

Рис. 14 Удаление локальных не-максимумов

Двойная пороговая фильтрация и трассировка области **неоднозначности** очищают конечный результат от шумов, и слабых контуров.

Эти два этапа оператора Кэнни, можно реализовать совместно. Оператор принимает на вход два параметра, например, р и q ($0 \le p, q \le 255$). Все пиксели, имеющие значения < р объявляются слабыми (значит, что граница в этом месте слабая). Все пиксели > q объявляются сильными.

Затем всем сильным пикселям мы придаем значение 255 (белый цвет), а всем слабым придаем значение 0 (черный). Существуют реализации, где пиксели, значения которых находятся в диапазоне между р и q, никак не изменяют, либо придают какое-либо значение, введенное вручную.

Рис. 15 Применение 4) и 5)

5. РЕЗУЛЬТАТЫ ТЕСТОВ

Перекрестный оператор Робертса хорошо показывает себя на тестах, т. к. выполняется он быстрее всех (благодаря матрице 2х2, а не 3х3 или больше, коэффициенты в матрице очень маленькие), без фильтра Гаусса на изображении мало шумов, контуры тонкие и видны хорошо.

Проблема в выделении контуров с помощью оператора Робертса может возникнуть, если изображение само по себе темное, либо если контраст на изображении небольшой.

На данный момент, оператор Робертса применяется из-за быстроты вычислений, в остальных показателях данный оператор проигрывает. Например, если нам подается на вход сильно зашумленное изображение, то в результате контуров даже не будет видно. В медицине таких изображений на данный момент нет, поэтому выбор оператора Робертса оправдан.

Оператор Робертса можно усовершенствовать, добавив, например, увеличение контраста в предобработку.

Рис. 16 Перекрестный оператор Робертса

Оператор Прюитт так же, как и оператор Робертса, эффективен в выполнении задачи. Лучше выделяет контуры на изображениях, чем оператор Робертса, но и работает дольше из — за того, что там в свертке участвуют две маски 3х3. Но из-за небольших коэффициентов, программа работает относительно быстро.

Рис. 17 Оператор Прюитт

Оператор Собеля сильно похож алгоритмом на оператор Прюитт, поэтому и результаты похожи. Но если брать тёмные изображения оператор Собеля, проявляет себя лучше, чем оператор Прюитт. Коэффициенты в масках Собеля не намного больше, чем в масках Прюитта, поэтому свертка занимает примерно одно и то же время. Поэтому оператор Собеля выигрывает у оператора Прюитт.

Рис. 18 Оператор Собеля

Оператор Шарра из-за больших весов, слишком сильно чувствителен к шуму, поэтому на практике он малоэффективен. Возможно улучшение — это применение фильтра Гаусса для удаления шумов, но результат будет похожим на оператор Собеля, поэтому лучше просто использовать оператор Собеля.

Рис. 19 Оператор Шарра

Оператор Лапласа сильно чувствителен к шуму. Контуры выделяются слабо, может быть применим из-за быстрой скорости работы, т. к. используется всего одна маска. Но время работы примерно одинаковое с временем работы перекрестного оператора Робертса, а результирующее изображение намного хуже, поэтому выбор данного оператора не оправдан.

Рис. 20 Оператор Лапласа

Оператор Кирша работает очень долго даже на относительно мощных компьютерах, из-за вычисления большого количества сверток. Так же из-за больших весов маски, оператор сильно чувствителен к шуму. Поэтому данный оператор на практике малоэффективен.

Рис. 21 Оператор Кирша

Оператор Робинсона по времени работает столько же, сколько и оператор Кирша. Был эффективен в XX веке, но с появлением оператора Кэнни стал малоэффективным, т.к время работы намного дольше, результат при этом хуже.

Рис. 22 Оператор Робинсона

Оператор Кэнни эффективен в выполнении задачи выделения контуров, т. к. время работы чуть больше, чем в операторе Собеля, но результирующее изображение намного лучше.

Из-за двойной пороговой фильтрации границы выделены ярко, при этом они тонкие. К шуму на медицинских изображениях практически не чувствителен из-за применения фильтра Гаусса.

Рис. 23 Оператор Кэнни

ЗАКЛЮЧЕНИЕ

В данной курсовой работе была принята попытка изучить на практике и описать методы выделения контуров на медицинских изображениях.

В процессе работы над курсовой были изучены библиотеки OpenCV, PIL и Pyplot.

Было реализовано восемь операторов для выделения контуров. В результате были получены изображения с выделенными границами костей кисти.

В дальнейшем в Python лучше использовать готовые реализации операторов, т.к. код написан на С, использованы различные оптимизации (OpenCV уже реализованы оператор Кэнни, оператор Собеля и т.д).

Обработка изображений – быстро развивающаяся область в дисциплине компьютерного зрения.

Подводя итоги, можно сказать, что на данный момент нет универсального метода, который был бы эффективен и во времени, и в расходуемой памяти, и в результирующем изображении.

Например, если конечной целью является выделение контуров, то тогда оправдано использовать оператор Кэнни. Т.к., например, сделав рентгеновский снимок, можно подождать еще пару секунд, для выделения границ. А если же, к примеру, нам быстро нужно выделить контуры и затем передать изображение в качестве входного параметра в нейросеть (например, для постановления диагноза), то тогда лучше использовать перекрестный оператор Робертса, т. к. он выполняется намного быстрее, а дефекты в изображении на хорошо обученной нейросети не так критичны.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Н.Н. Красильников Цифровая обработка 2D- и 3D-изображений: учебное пособие. БХВ-Петербург, 2014. -С. 353-365.
- 2. Marr D., Hildreth E. Theory of edge detection // Proc. Royal Society of London. 1980. P. 187-217
- 3. Документация к языку Python. Режим доступа: https://docs.python.org/3.8/
- 4. Документация библиотеки OpenCV. Режим доступа: https://docs.opencv.org/
- 5. Документация библиотеки PIL. Режим доступа: https://pillow.readthedocs.io/en/stable/
- 6. М. М. Ибрагимов [Репозиторий]. Режим доступа: https://github.com/Curryrasul/outlineSelection