UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MEK 1100 — Feltteori og vektoranalyse.

Eksamensdag: Tirsdag 20. mars 2018.

Tid for eksamen: 14:30-16:30.

Oppgavesettet er på 3 sider.

Vedlegg: Formeltillegg på 2 sider.

K. Rottmann: Matematische Formelsamlung, Tillatte hjelpemidler: godkjent kalkulator.

> Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Det er 15 spørsmål. Alle spørsmålene teller like mye. Det er bare ett riktig alternativ på hvert spørsmål. Dersom du svarer feil eller lar være å svare på et spørsmål, får du 0 poeng. Du blir altså ikke "straffet" for å gjette. Krysser du av mer enn ett alternativ på et spørsmål, får du 0 poeng.

Oppgave 1. En karusell roterer med omløpstid 5 s. Hva er vinkelfarten?

a) $\frac{1}{5} \frac{m}{s}$ b) $\frac{2\pi}{5} \frac{m}{s}$ c) $\frac{5s}{2\pi}$ d) $\frac{2\pi}{5}$ e) $\frac{2\pi}{5s}$

b)
$$\frac{2\pi}{5} \frac{m}{8}$$

c)
$$\frac{5s}{2\pi}$$

d)
$$\frac{27}{5}$$

e)
$$\frac{2\pi}{5s}$$

Oppgave 2. Newtons gravitasjonslov for tyngdekraften mellom to punktmasser M_1 og M_2 sier

$$F = G \frac{M_1 M_2}{r^2}$$

hvor F er kraften, G er den universelle gravitasjonskonstanten, og r er avstanden mellom de to punktmassene. Hva er den fysiske enheten til G?

a) $\frac{m^2}{kg^2}$

b) Den er dimensjonsløs. c) N d) $\frac{N m^2}{kg^2}$ e) $\frac{N kg^2}{m^2}$

Oppgave 3. Hva er gradienten til $f(x, y, z) = 3x^2 + 5xy - 3\sin z$?

a) $6x\mathbf{i} + 5x\mathbf{j} - 3\cos z\mathbf{k}$

b) $(6x + 5y)i + 5xj - 3\cos zk$

c) $11xi + 5yj + 3\sin zk$

d) $11x + 5y - 3\cos z$

e) $6x\mathbf{i} + 5y\mathbf{j} - 3\cos z\mathbf{k}$

Oppgave 4. Temperaturen i lufta er gitt ved $T(x, y, z) = T_0 + \alpha x + \beta y + \gamma z$. Her er α og β og γ og T_0 konstanter, xy-planet er horisontalt, x peker mot øst, y peker mot nord og z peker oppover. Hva er den retningsderiverte til temperaturen i retning nordøst?

a)
$$\frac{\alpha+\beta}{\sqrt{2}}$$

b)
$$\frac{\alpha+\beta+\gamma}{\sqrt{2}}$$

c)
$$\frac{\alpha+\beta+\gamma}{\sqrt{3}}$$

a)
$$\frac{\alpha+\beta}{\sqrt{2}}$$
 b) $\frac{\alpha+\beta+\gamma}{\sqrt{2}}$ c) $\frac{\alpha+\beta+\gamma}{\sqrt{3}}$ d) $\alpha \boldsymbol{i} + \beta \boldsymbol{j}$ e) $\frac{\alpha \boldsymbol{i} + \beta \boldsymbol{j}}{\sqrt{2}}$

e)
$$\frac{\alpha i + \beta j}{\sqrt{2}}$$

Oppgave 5. Hvilket vektorfelt svarer dette pileplottet til?

a)
$$yi + xj$$

b)
$$x\mathbf{i} + y\mathbf{j}$$

c)
$$-x\mathbf{i} + y\mathbf{j}$$

a)
$$y\mathbf{i} + x\mathbf{j}$$
 b) $x\mathbf{i} + y\mathbf{j}$ c) $-x\mathbf{i} + y\mathbf{j}$ d) $-y\mathbf{i} + x\mathbf{j}$ e) $y\mathbf{i} - x\mathbf{j}$

e)
$$y\mathbf{i} - x\mathbf{j}$$

Oppgave 6. Hva er divergensen til vektorfeltet $\mathbf{v} = xy\mathbf{i}$?

c)
$$xy$$

$$d)$$
 yi

c)
$$xy$$
 d) yi e) $x + y$

Oppgave 7. Hva er virvlinga til vektorfeltet $\mathbf{v} = xy\mathbf{i}$?

c)
$$x\mathbf{k}$$
 d) $y\mathbf{i} + x\mathbf{j}$ e) $-x\mathbf{k}$

e)
$$-x\mathbf{k}$$

Oppgave 8. Hva er (skalar) potensialet til vektorfeltet v = xyi?

a) Har ikke potensial. b) $\frac{1}{2}x^2y$ c) $\frac{1}{2}xy^2$ d) xy e) $x^2 + y^2$

b)
$$\frac{1}{2}x^2y$$

c)
$$\frac{1}{2}xy^2$$

e)
$$x^2 + y^2$$

Oppgave 9. Hva er strømfunksjonen til vektorfeltet $\mathbf{v} = xy\mathbf{i}$?

b)
$$\frac{1}{2}x^2y$$

c)
$$\frac{1}{2}xy^2$$

a) $x^2 + y^2$ b) $\frac{1}{2}x^2y$ c) $\frac{1}{2}xy^2$ d) xy e) Har ikke strømfunksjon.

Oppgave 10. Hvilket av følgende alternativer beskriver strømlinjer til vektorfeltet $\mathbf{v} = xy\mathbf{i}$?

- a) Rette linjer gjennom origo.
- b) Rette linjer parallelle med y-aksen.
- c) Rette linjer parallelle med x-aksen.
- d) Sirkler rundt origo.
- e) Hyperbler.

Oppgave 11. Finn sirkulasjonen til v = xyi rundt randa γ av firkanten $\Gamma: \{0 \le x \le a, 0 \le y \le b, z = 0\}$. La den lukkede kurven γ være orientert slik at vi vandrer fra origo langs x-aksen til x = a, deretter til punktet x = aog y = b, deretter til y-aksen for y = b og så tilbake til origo. Svaret blir:

a) $-\frac{1}{2}ab^2$ b) ab c) a^2b d) $\frac{1}{2}a^2b$ e) $-\frac{1}{2}a^2b$

Oppgave 12. Ei elv renner i x-retning med strømningshastighet v = $c(a^2-y^2)(b-z)\boldsymbol{i}$ innenfor tverrsnittet $-a \leq y \leq a$ og $-b \leq z \leq 0$. Her tenker vi oss at xy-planet er horisontalt, y-aksen er orientert på tvers av elva, og z-aksen peker oppover. Den integrerte fluksen av strømningshastigheten (også kjent som volumfluksen) gjennom et tverrsnitt av elva er:

a) 0

b) a^3b^2c c) a^2b^2c d) $2a^3b^2c$ e) $2a^2b^2c$

Oppgave 13. I elva beskrevet i forrige oppgave plasserer vi en kuleformet netting med radius b/2 fullt nedsenket i vannet. For at netting-ballen skal få plass i elva må vi selvfølgelig ha $a \ge b/2$. Nettingen beskriver altså kuleskallet $x^2 + y^2 + (z + \frac{b}{2})^2 = (\frac{b}{2})^2$, og vi kan tenke oss at nettingen utgjør et oppdrettsanlegg for fjell-ørret. Vi antar at vannet strømmer gjennom nettingen uten å bli forstyrret. Den integrerte fluksen av strømningshastigheten (volumfluksen) ut av netting-ballen er:

a) $\frac{\pi}{2}a^2b^3c$

b) 0 c) $\pi a^2 b^3 c$ d) $\frac{3\pi}{2} a^2 b^3 c$ e) $4\pi a^2 b^3 c$

Oppgave 14. Dersom strømningshastigheten til elva $\mathbf{v} = c(a^2 - y^2)(b - z)\mathbf{i}$ måles i m/s, lengde måles i m, og tid måles i s, da må konstanten c måles i:

a) $\frac{1}{m^2s}$ b) $\frac{1}{ms}$ c) $\frac{1}{m^3s}$ d) $\frac{1}{s}$ e) $\frac{m}{s}$

Oppgave 15. La oss betrakte et vektorfelt i 3D gitt ved posisjonsvektor $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Regn ut den integrerte fluksen av \mathbf{r} ut gjennom kuleskallet $x^2 + y^2 + (z + \frac{b}{2})^2 = (\frac{b}{2})^2$ hvor b nå er en dimensjonsløs konstant. Svaret blir:

a) πb^3 b) $\frac{\pi}{2}b^3$ c) $\frac{3\pi}{2}b^3$ d) $2\pi b^3$ e) 0