第八章 多元函数微分学

1. 考虑二元函数 f(x, y) 的下面四条性质:

	① $f(x,y)$ 在点 (x_0,y_0) 处连续; ② $f(x,y)$ 在点 (x_0,y_0) 处两个偏导数都 ③ $f(x,y)$ 在点 (x_0,y_0) 处可微; ④ $f(x,y)$ 在点 (x_0,y_0) 处两个偏导数都 若用" $P \Longrightarrow Q$ " 表示性质 P 推出性质 Q , (A) ③ \Longrightarrow ② \Longrightarrow ①		· · · · · · · · · · · · · · · · · · ·	
2.		$y^3 + 3x^2 + 3y^2 - 9x$ 自		
	(A) (1,0)	(B) (-3,2)	(C) (-3,0)	(D) (1,2)
3.	设 $z = \sin(xy)$, 则 $\frac{\partial}{\partial x}$	$\frac{\partial z}{\partial x} = ($).		
	$(A) y \sin(x y)$	(B) $-y\sin(xy)$	(C) $y \cos(x y)$	$(D) - y\cos(xy)$
4.	如果 $f_x'(x_0, y_0) = f_y'$	(x ₀ , y ₀)=0, 则二元逐	数 $z = f(x, y)$ 在点 ((x ₀ , y ₀)处().
	(A) 一定连续		(B) 一定偏导数存在	Ē
	(C) 一定可微		(D) 一定有极值	
5 .	设 $z = x e^{xy}$, 则 $\frac{\partial z}{\partial x}$	等于().		
	$(A) xye^{xy}$	(B) e^{xy}	(C) $x^2 e^{xy}$	(D) $(1+xy)e^{xy}$
6.	设 $z = \arctan \frac{y}{x}$, 则	$\frac{\partial z}{\partial x}$ 等于 ().		
	$(\mathbf{A}) - \frac{y}{x^2 + y^2}$	(B) $\frac{y}{x^2 + y^2}$	$\textbf{(C)} \; \frac{x}{x^2 + y^2}$	$(D) - \frac{x}{x^2 + y^2}$

(C) 充要条件

(D) 无关条件

7. 函数 f(x,y) 在点 (x_0,y_0) 连续是 f(x,y) 在点 (x_0,y_0) 偏导数存在的 ().

(B) 必要条件

(A) 充分条件

- **8.** 函数 $f(x,y) = x^2 y^2$ 在其定义域上 (
 - (A) 有极大值无极小值

(B) 无极大值有极小值

(C) 有极大值有极小值

- (D) 无极大值无极小值
- **9.** [另附] 函数 f(x,y) = xy 在其定义域上 ().
 - (A) 有极大值无极小值

(B) 无极大值有极小值

(C) 有极大值有极小值

- (D) 无极大值无极小值
- **10**. 设 $z = \sqrt{\ln(xy)}$, 则 $\frac{\partial z}{\partial x}$ 等于 ().

 - (A) $\frac{1}{x\sqrt{\ln(x\,v)}}$ (B) $\frac{1}{2v\sqrt{\ln(x\,v)}}$ (C) $\frac{1}{2x\sqrt{\ln(x\,v)}}$ (D) $\frac{1}{2\sqrt{\ln(x\,v)}}$
- 11. 设 $z = x^2 e^y + y^2 \sin x$, 则 $dz|_{(\pi,0)} =$ ______.
- 12. 设二元函数 $z = \int_{1}^{xy} \ln t \, dt$,则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______.
- **14.** 设 z = f(3x 2y, xy), 且 f(u, v) 可微,则全微分 dz =
- 15. 设 $z = f(x \ln y, y x)$, 且 f 具有一阶连续偏导数,则全微分 $dz = \underline{\hspace{1cm}}$
- **16.** 已知函数 $z = \ln(1 + x^2 y^2)$, 则 $dz|_{(1,1)} =$
- **17.** 函数 $z = x^2 y + \frac{x}{y}$ 的全微分 dz =_____.
- **18.** 设函数 $z = e^x \sin y$, 则 $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \underline{\qquad}$.
- **19.** 函数 $z = \sqrt{1 x^2} + \sqrt{y^2 1}$ 的定义域是
- **20.** 求二元函数 $z = 3x^2 4xy + 5y^2 2x 6y + 1$ 的极值.

- **22.** 设函数 z = f(x, y) 由方程 $e^z = xyz$ 所确定,求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$
- **23**. 求二元函数 f(x,y) = xy 在附加条件 x + y = 1 下的极大值.
- **24.** 设函数 z = f(x, y) 由方程 $e^z = x^3 y^2 + z$ 所确定, 求 $\frac{\partial^2 z}{\partial x \partial y}$
- **25.** 设二元函数 $f(x,y) = 3x + 4y ax^2 2ay^2 2bxy$, 试讨论参数 a,b 满足什么条件时, f(x,y) 有唯一极大值, 或有唯一极小值.
- **26.** 已知 f 具有二阶连续偏导数,且 $z = f(x^2 y^2, xy)$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x^2}$.
- **27.** 设 $x^3 + y xyz^5 = 0$, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.
- **28.** 已知直角三角形斜边长为 *l*, 试求两条直角边等于何值时, 直角三角形的周长最大?
- **29.** 已知 f 具有二阶连续偏导数,且 $z = f(xy, \frac{y}{x})$, 求 $\frac{\partial^2 z}{\partial x \partial y}$.
- **30.** 设函数 z = f(x, y) 由方程 $x^2 + y^2 + z^2 4z = 0$ 所确定, 求 $\frac{\partial^2 z}{\partial x^2}$.
- **31**. 求抛物线 $y = x^2$ 和直线 x y 2 = 0 之间的最短距离.
- **32.** 设 $z = \arctan(xy)$, 求 $\frac{\partial^2 z}{\partial x \partial y}$.
- **33.** [另附] 设 $z = \arctan(\frac{y}{x})$, 求 $\frac{\partial^2 z}{\partial x \partial y}$.
- 34. 设 z = z(x, y) 由方程 $\frac{y}{z} = \ln \frac{z}{x}$ 所确定, 求 dz.
- **35**. 已知求函数 $z = \ln(y + \sqrt{x^2 + y^2})$, 求 $\frac{\partial^2 z}{\partial y^2}$.

36. 设二元函数 F(x,y) 在 (x_0,y_0) 某邻域内具有二阶连续的偏导数,且

$$F(x_0, y_0) = 0$$
, $F_x(x_0, y_0) = 0$, $F_{xx}(x_0, y_0) \cdot F_y(x_0, y_0) \neq 0$.

证明: 由方程 F(x,y) = 0 在 (x_0,y_0) 某邻域内确定的隐函数 y = y(x) 在点 $x = x_0$ 处取得极值.

- **37.** 设 $z = f[x + \varphi(y)]$, 其中 f 二次可导, φ 可导, 证明 $\frac{\partial z}{\partial x} \cdot \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial^2 z}{\partial x^2}$.
- **38.** 设 y = f(x, t), 而 t 是由方程 F(x, y, t) = 0 所确定的 x, y 的函数, 其中 f, F 都具有一阶连续偏导数, 试证

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\partial f}{\partial x} \cdot \frac{\partial F}{\partial t} - \frac{\partial f}{\partial t} \cdot \frac{\partial F}{\partial x}}{\frac{\partial f}{\partial t} \cdot \frac{\partial F}{\partial y} + \frac{\partial F}{\partial t}}.$$