

<u>Course</u> > <u>Unit 10</u>... > <u>Lec. 26:</u>... > 11. Exe...

11. Exercise: Expected time to absorption

None due May 29, 2020 05:29 IST

Exercise: Expected time to absorption

0.0/2.0 points (ungraded)

Consider again the Markov chain with the following transition probability graph:

Assuming that $X_0=9$, what is the expected time until the Markov chain eventually reaches states 7 or 8?

Answer: 4.75

Solution:

States 7 and 8 can be combined into a mega-state, say state 10. Let μ_j be the expected time to eventually reach state 10 given that the chain starts in state j. We want to calculate μ_9 . We can write a system of three equations with three unknowns (μ_9 , μ_3 and μ_4) as follows:

$$\mu_9 \; = \; 1 + rac{1}{3} \mu_9 + rac{2}{3} \mu_3$$

$$egin{array}{lll} \mu_3 &=& 1 + rac{1}{3} \mu_3 + rac{1}{3} \mu_4 \ \ \mu_4 &=& 1 + rac{1}{2} \mu_3 + rac{1}{4} \mu_4, \end{array}$$

which gives the solution $\mu_3=13/4$, $\mu_4=14/4$, and $\mu_9=19/4$.

Submit

You have used 0 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 10: Markov chains:Lec. 26: Absorption probabilities and expected time to absorption / 11. Exercise: Expected time to absorption

Show all posts 🗸 by r	ecent activity 🗸
matrix solution	5
hint You can also ignore the network from state 9 to the left and calculate the expected number of step	s fro

© All Rights Reserved

