GSERM - St. Gallen 2023 Analyzing Panel Data

June 16, 2023

Logit/Probit Redux

Start with:

$$Y_i^* = \mathbf{X}_i \boldsymbol{\beta} + u_i$$

$$Y_i = 0 \text{ if } Y_i^* < 0$$

 $Y_i = 1 \text{ if } Y_i^* \ge 0$

So:

$$Pr(Y_i = 1) = Pr(Y_i^* \ge 0)$$

$$= Pr(\mathbf{X}_i \beta + u_i \ge 0)$$

$$= Pr(u_i \ge -\mathbf{X}_i \beta)$$

$$= Pr(u_i \le \mathbf{X}_i \beta)$$

$$= \int_{-\infty}^{\mathbf{X}_i \beta} f(u) du$$

"Standard logistic" PDF:

$$\Pr(u) \equiv \lambda(u) = \frac{\exp(u)}{[1 + \exp(u)]^2}$$

CDF:

$$\Lambda(u) = \int \lambda(u) du$$

$$= \frac{\exp(u)}{1 + \exp(u)}$$

$$= \frac{1}{1 + \exp(-u)}$$

Logistic → "Logit"

$$Pr(Y_i = 1) = Pr(Y_i^* > 0)$$

$$= Pr(u_i \le \mathbf{X}_i \beta)$$

$$= \Lambda(\mathbf{X}_i \beta)$$

$$= \frac{\exp(\mathbf{X}_i \beta)}{1 + \exp(\mathbf{X}_i \beta)}$$

(equivalently) = $\frac{1}{1 + \exp(-\mathbf{X}_i \boldsymbol{\beta})}$

Likelihoods

$$L_i = \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})}\right)^{Y_i} \left[1 - \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})}\right)\right]^{1 - Y_i}$$

$$L = \prod_{i=1}^{N} \left(\frac{\exp(\mathbf{X}_{i}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}\boldsymbol{\beta})} \right)^{Y_{i}} \left[1 - \left(\frac{\exp(\mathbf{X}_{i}\boldsymbol{\beta})}{1 + \exp(\mathbf{X}_{i}\boldsymbol{\beta})} \right) \right]^{1 - Y_{i}}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) + \left(1 - Y_i \right) \ln \left[1 - \left(\frac{\exp(\mathbf{X}_i \boldsymbol{\beta})}{1 + \exp(\mathbf{X}_i \boldsymbol{\beta})} \right) \right]$$

Probit...

$$\Pr(u) \equiv \phi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right)$$

$$\Phi(u) = \int_{-\infty}^{u} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du$$

Standard Normal and Logistic PDFs

Standard Normal and Logistic CDFs

Probit (continued...)

$$\begin{array}{lcl} \Pr(Y_i = 1) & = & \Phi(\mathbf{X}_i \boldsymbol{\beta}) \\ & = & \int_{-\infty}^{\mathbf{X}_i \boldsymbol{\beta}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(\mathbf{X}_i \boldsymbol{\beta})^2}{2}\right) d\mathbf{X}_i \boldsymbol{\beta} \end{array}$$

$$L = \prod_{i=1}^{N} \left[\Phi(\mathbf{X}_{i}\beta) \right]^{Y_{i}} \left[1 - \Phi(\mathbf{X}_{i}\beta) \right]^{(1-Y_{i})}$$

$$\ln L = \sum_{i=1}^{N} Y_i \ln \Phi(\mathbf{X}_i \boldsymbol{\beta}) + (1 - Y_i) \ln [1 - \Phi(\mathbf{X}_i \boldsymbol{\beta})]$$

Panel / TSCS: What Can Go Wrong?

Suppose:

$$X_{it} = \rho_X \mathbf{X}_{it-1} + \nu_{it}$$

$$u_{it} = \rho_u u_{it-1} + \epsilon_{it}$$

For high values of ρ , logit/probit:

- $\hat{\beta}$ s are consistent, but s.e.s are biased, inefficient (Poirier and Ruud 1988);
- \rightarrow underestimate $Var(\beta)$ by up to 50 percent (Beck and Katz 1997).

One-way unit effects:

$$Y_{it} = f(\mathbf{X}_{it}\beta + \alpha_i + u_{it})$$

for logit only, so:

$$\Pr(Y_{it} = 1) = \frac{\exp(\mathbf{X}_{it}\beta + \alpha_i)}{1 + \exp(\mathbf{X}_{it}\beta + \alpha_i)} \equiv \Lambda(\mathbf{X}_{it}\beta + \alpha_i)$$

Incidental Parameters:

- Nonlinearity \rightarrow inconsistency in both $\hat{\alpha}$ s and $\hat{\beta}$.
- Anderson:

$$L^{U} = \prod_{i=1}^{N} \prod_{t=1}^{T} \Lambda(\mathbf{X}_{it} + \alpha_i)^{\mathbf{Y}_{it}} [1 - \Lambda(\mathbf{X}_{it} + \alpha_i)]^{1 - \mathbf{Y}_{it}}$$

• Chamberlain:

$$L^{C} = \prod_{i=1}^{N} \Pr\left(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT} \mid \sum_{t=1}^{T} Y_{it}\right)$$

Fixed-Effects (continued)

Intuition: Suppose we have T=2. That means that:

- $Pr(Y_{i1} = 0 \text{ and } Y_{i2} = 0 \mid \sum_{\tau} Y_{it} = 0) = 1.0$
- $Pr(Y_{i1} = 1 \text{ and } Y_{i2} = 1 \mid \sum_{T} Y_{it} = 2) = 1.0$

and:

$$\Pr\left(Y_{i1} = 0 \text{ and } Y_{i2} = 1 \mid \sum_{\mathcal{T}} Y_{it} = 1\right) = \frac{\Pr(0, 1)}{\Pr(0, 1) + \Pr(1, 0)}$$

with a similar statement for $Pr(Y_{i1} = 1 \text{ and } Y_{i2} = 0 \mid \sum_{T} Y_{it} = 1)$.

Points:

- Fixed effects = no estimates for β_h
- Interpretation: per logit, but $|\hat{\alpha}_i|$.
- BTSCS in IR: Green et al. (2001) v. B&K (2001).

Model is:

$$Y_{it}^* = \mathbf{X}_{it}\beta + u_{it}$$

 $Y_{it} = 0 \text{ if } Y_{it}^* \le 0 ;$
 $= 1 \text{ if } Y_{it}^* > 0$

with:

$$u_{it} = \alpha_i + \eta_{it}$$

with $\eta_{it} \sim \text{i.i.d. N(0,1)}$, and $\alpha_i \sim N(0, \sigma_{\alpha}^2)$. This implies:

$$Var(u_{it}) = 1 + \sigma_{\alpha}^2$$

and so:

$$\mathsf{Corr}(u_{it}, u_{is}, \ t \neq s) \equiv \rho = \frac{\sigma_{\alpha}^2}{1 + \sigma_{\alpha}^2}$$

which means that we can write $\sigma_{\alpha}^2 = \left(\frac{\rho}{1-\rho}\right)$.

Random Effects Variants

Probit:

$$L_{i} = \text{Prob}(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT})$$

$$= \int_{-\infty}^{X_{i1}\beta} \int_{-\infty}^{X_{i2}\beta} ... \int_{-\infty}^{X_{iT}\beta} \phi(u_{i1}, u_{i2}...u_{iT}) du_{iT}... du_{i2} du_{i1}$$

Logit:

$$L_{i} = \text{Prob}(Y_{i1} = y_{i1}, Y_{i2} = y_{i2}, ... Y_{iT} = y_{iT})$$

$$= \int_{-\infty}^{X_{i1}\beta} \int_{-\infty}^{X_{i2}\beta} ... \int_{-\infty}^{X_{iT}\beta} \lambda(u_{i1}, u_{i2}...u_{iT}) du_{iT}... du_{i2} du_{i1}$$

Solution?

$$\phi(u_{i1}, u_{i2}, ... u_{iT}) = \int_{-\infty}^{\infty} \phi(u_{i1}, u_{i2}, ... u_{iT} \mid \alpha_i) \phi(\alpha_i) d\alpha_i$$

Practical Things

- $\hat{\rho}$ = proportion of the variance due to the α_i s.
- Implementation: Gauss-Hermite guadrature or MCMC.
- Best with N large and T small.
- Critically requires $Cov(\mathbf{X}, \alpha) = 0$ (see notes re: Chamberlain's CRE Estimator).

Unit Effects in Practice - Some Simulations

Start with:

$$Y_{it}^* = 0 + (1 \times X_{it}) + (1 \times D_{it}) + (1 \times \alpha_i) + u_{it}$$

 $Y_{it} \in \{0,1\} = f(Y_{it}^*)$

where:

- $\alpha_i \sim N(0,1)$
- $X_{it} \sim N(0, \sigma_X^2)$
- $D_{it} \in \{0, 1\}$
- $Cov(X_{it}, \alpha_i) = \{0, 0.69\}$
- $Cov(D_{it}, \alpha_i) = 0$
- $f(\cdot) = \{ \text{logit, probit} \}$ (as appropriate)

and N = T = 100.

Logit $\hat{\beta}_X$ s for $Cov(X_{it}, \alpha_i) = 0$

Logit $\hat{\beta}_X$ s for $Cov(X_{it}, \alpha_i) \approx 0.69$

Logit $\hat{\beta}_X$ s for $Cov(X_{it}, \alpha_i) \approx 0.69$

Software

R

- pglm (panel GLMs) (maximum likelihood + quadrature)
- bife (fixed-effects logit / probit only)
- glmer (general mixed-effects models, including RE)
- glmmML (via Gauss-Hermite quadrature)
- MCMCpack (MCMChlogit)
- Various user-generated functions (e.g., here).

Stata

- xtprobit, xtlogit, xtcloglog
- Plus xttrans (transition probabilities), quadchk (quadrature checking), xtrho / xtrhoi (estimation of within-unit covariances)

Example: WDI "Plus"

Data from the WDI plus POLITY and the UCDP:

- ISO3 The country's International Standards Organization (ISO) three-letter identification code.
- Year The year that row of data applies to.
- CivilWar Civil conflict indicator: 1 if there was a civil conflict in that country in that year;
 0 otherwise. From UCDP.
- OnsetCount The sum of new conflict episodes in that country / year. From UCDP.
- LandArea Land area (sq. km).
- PopMillions Popluation (in millions).
- PopGrowth Population Growth (percent).
- UrbanPopulation Urban Population (percent of total).
- GDPPerCapita GDP per capita (constant 2010 \$US).
- GDPPerCapGrowth GDP Per Capita Growth (percent annual).
- PostColdWar 1 if Year > 1989, 0 otherwise.
- POLITY The POLITY score of democracy/autocracy. Scaled so that 0 = most autocratic, 10 = most democratic.

 $N=216, \ \bar{T}=61, \ NT \ \text{varies (due to missingness)}.$

Data

> describe(DF,skew=FALSE)

	vars	n	mean	sd	min	max	range	se
IS03*	1	13607	108.49	62.35	1.00	216.0	215.00	0.53
Year*	2	13607	32.00	18.18	1.00	63.0	62.00	0.16
country*	3	13545	108.00	62.07	1.00	215.0	214.00	0.53
CivilWar	4	9052	0.13	0.34	0.00	1.0	1.00	0.00
OnsetCount	5	9394	0.05	0.24	0.00	4.0	4.00	0.00
LandArea	6	12728	611322.13	1764229.22	2.03	16389950.0	16389947.97	15637.77
PopMillions	7	13300	24.92	104.04	0.00	1412.4	1412.36	0.90
UrbanPopulation	8	13268	51.55	25.74	2.08	100.0	97.92	0.22
GDPPerCapita	9	9843	11874.12	18895.82	144.03	204190.2	204046.13	190.46
GDPPerCapGrowth	10	9818	1.93	6.17	-64.43	140.5	204.91	0.06
PostColdWar	11	13545	0.52	0.50	0.00	1.0	1.00	0.00
POLITY	12	8279	5.55	3.71	0.00	10.0	10.00	0.04
POLITYSquared	13	8279	44.57	40.24	0.00	100.0	100.00	0.44

Pooled Logit

```
> Logit <- glm(CivilWar~log(LandArea)+log(PopMillions)+
              UrbanPopulation+log(GDPPerCapita)+
              GDPPerCapGrowth+PostColdWar+POLITY+
              POLITYSquared, data=DF, family="binomial")
> summary(Logit)
Call:
glm(formula = CivilWar ~ log(LandArea) + log(PopMillions) + UrbanPopulation +
   log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar + POLITY +
   POLITYSquared, family = "binomial", data = DF)
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
               -1.49782
                            0.51881 -2.89 0.00389 **
(Intercept)
                0.01617
                            0.03242 0.50 0.61792
log(LandArea)
log(PopMillions) 0.65816
                            0.03675 17.91 < 2e-16 ***
UrbanPopulation
                 0.00792
                           0.00331 2.39 0.01668 *
log(GDPPerCapita) -0.43195
                            0.06004 -7.19 6.3e-13 ***
GDPPerCapGrowth -0.04159
                           0.00649 -6.40 1.5e-10 ***
PostColdWar
              -0.29512 0.08563 -3.45 0.00057 ***
POT.TTY
               0.68401
                            0.06105 11.20 < 2e-16 ***
POLITYSquared -0.06648
                            0.00578 -11.51 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 5840.7 on 6998 degrees of freedom
Residual deviance: 4639.8 on 6990 degrees of freedom
  (6608 observations deleted due to missingness)
ATC: 4658
Number of Fisher Scoring iterations: 6
```

Fixed Effects

```
> FELogit <- bife (CivilWar~log(LandArea)+log(PopMillions)+
              UrbanPopulation+log(GDPPerCapita)+
              GDPPerCapGrowth+PostColdWar+POLITY+
+
              POLITYSquared | ISO3, data=DF, model="logit")
> summary(FELogit)
binomial - logit link
CivilWar ~ log(LandArea) + log(PopMillions) + UrbanPopulation +
   log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar + POLITY +
   POLITYSquared | ISO3
Estimates.
                  Estimate Std. error z value Pr(> |z|)
log(LandArea)
                 -13.76753
                             8.17528 -1.68
                                                 0.092 .
log(PopMillions)
                 0.68167 0.29453
                                      2.31
                                                0.021 *
UrbanPopulation
                  0.01736 0.01242 1.40
                                              0.162
log(GDPPerCapita) -0.32466 0.17392 -1.87
                                             0.062 .
GDPPerCapGrowth
                 -0.05224 0.00844 -6.19 6.0e-10 ***
PostColdWar
                 -0.22301 0.17875 -1.25
                                              0.212
POT.TTY
                 0.71218
                            0.09359
                                      7 61 2 8e-14 ***
POLITYSquared
                 -0.07382
                             0.00890 -8.29 < 2e-16 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
residual deviance= 2838.
null deviance= 4419.
n= 3970, N= 83
( 6608 observation(s) deleted due to missingness )
( 3029 observation(s) deleted due to perfect classification )
Number of Fisher Scoring Iterations: 6
Average individual fixed effect= 171.8
```

Alternative Fixed Effects (using feglm)

```
> FELogit2<-feglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
                   GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared | ISO3, data=DF, family="binomial")
NOTES: 6,608 observations removed because of NA values (LHS: 4,555, RHS: 6,608).
      77 fixed-effects (3,029 observations) removed because of only 0 (or only 1) outcomes.
> FELogit2
GLM estimation, family = binomial, Dep. Var.: CivilWar
Observations: 3.970
Fixed-effects: ISO3: 83
Standard-errors: Clustered (ISO3)
                  Estimate Std. Error t value
                                                Pr(>|t|)
log(LandArea)
               -13.76929 9.21285 -1.4946 0.135025561
log(PopMillions) 0.68167 0.75849 0.8987 0.368802391
UrbanPopulation
                 0.01736 0.03675 0.4724 0.636653205
log(GDPPerCapita) -0.32466 0.41321 -0.7857 0.432038386
GDPPerCapGrowth
                 -0.05224 0.01279 -4.0830 0.000044449 ***
PostColdWar
                 -0.22301 0.48194 -0.4627 0.643556228
POT.TTY
                 0.71218 0.24823 2.8690 0.004117503 **
POLITYSquared
               -0.07382
                           0.02448 -3.0161 0.002560480 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Log-Likelihood: -1,419.0 Adi. Pseudo R2: 0,317077
          BIC: 3.592.1
                           Squared Cor.: 0.401272
```

Random Effects

```
> RELogit <- pglm(CivilWar~log(LandArea)+log(PopMillions)+
                 UrbanPopulation+log(GDPPerCapita)+
                 GDPPerCapGrowth+PostColdWar+POLITY+
                POLITYSquared | ISO3.data=DF.familv=binomial.
                 effect="individual".model="random")
> summary(RELogit)
Maximum Likelihood estimation
Newton-Raphson maximisation, 3 iterations
Return code 3: Last step could not find a value above the current.
Boundary of parameter space?
Consider switching to a more robust optimisation method temporarily.
Log-Likelihood: -1659
10 free parameters
Estimates:
                  Estimate Std. error t value Pr(> t)
(Intercept)
                 0.8269498 0.6811125 1.21
                                                0.22
log(LandArea) 0.0000976 0.0479679 0.00 1.00
log(PopMillions) 0.6302824 0.1045877 6.03 1.7e-09 ***
UrbanPopulation -0.0011367 0.0010206 -1.11 0.27
log(GDPPerCapita) -0.7120370 0.0806616 -8.83 < 2e-16 ***
GDPPerCapGrowth -0.0499556 0.0076386 -6.54 6.2e-11 ***
PostColdWar -0.0071774 0.1213515 -0.06
                                               0.95
POT.TTY
               0.8713968 0.0964073 9.04 < 2e-16 ***
POLITYSquared -0.0949833 0.0097413 -9.75 < 2e-16 ***
              2.3422224 0.0878870 26.65 < 2e-16 ***
sigma
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Nice Table...

Models of Civil War

	Logit	FE Logit	FEs+Robust	RE Logit
Intercept	-1.50*			0.83
	(0.52)			(0.68)
In(Land Area)	0.02	-13.77	-13.77	0.00
	(0.03)	(8.18)	(9.21)	(0.05)
In(Population)	0.66*	0.68*	0.68	0.63*
	(0.04)	(0.29)	(0.76)	(0.10)
Urban Population	0.01*	0.02	0.02	-0.00
	(0.00)	(0.01)	(0.04)	(0.00)
In(GDP Per Capita)	-0.43^{*}	-0.32	-0.32	-0.71^*
	(0.06)	(0.17)	(0.41)	(80.0)
GDP Growth	-0.04*	-0.05^*	-0.05*	-0.05^*
	(0.01)	(0.01)	(0.01)	(0.01)
Post-Cold War	-0.30*	-0.22	-0.22	-0.01
	(0.09)	(0.18)	(0.48)	(0.12)
POLITY	0.68*	0.71*	0.71*	0.87*
	(0.06)	(0.09)	(0.25)	(0.10)
POLITY Squared	-0.07*	-0.07^*	-0.07*	-0.09^*
	(0.01)	(0.01)	(0.02)	(0.01)
Estimated $\hat{\sigma}$				2.34*
				(0.09)
AIC	4657.80			3337.27
BIC	4719.48			
Log Likelihood	-2319.90	-1419.03	-1419.03	-1658.63
Deviance	4639.80	2838.06	2838.06	
Num. obs.	6999	3970	3970	
Num. groups: ISO3			83	
Pseudo R ²			0.32	
* n < 0.05				

p < 0.05

Models For Event Counts

Event Counts

Properties:

- Discrete / integer-values
- Non-negative
- "Cumulative"

Motivation:

Arrival Rate =
$$\lambda$$

$$Pr(Event)_{t,t+h} = \lambda h$$

$$Pr(No Event)_{t,t+h} = 1 - \lambda h$$

$$Pr(Y_t = y) = \frac{\exp(-\lambda h)\lambda h^y}{y!}$$
$$= \frac{\exp(-\lambda)\lambda^y}{y!}$$

Poisson: Assumptions and Motivations

- No Simultaneous Events
- Constant Arrival Rate
- Independent Event Arrivals

Another motivation: For M independent Bernoulli trials with (sufficiently small) probability of success π and where $M\pi \equiv \lambda > 0$,

$$Pr(Y_i = y) = \lim_{M \to \infty} \left[\binom{M}{y} \left(\frac{\lambda}{M} \right)^y \left(1 - \frac{\lambda}{M} \right)^{M-y} \right]$$
$$= \frac{\lambda^y \exp(-\lambda)}{y!}$$

Poisson: Characteristics

- Discrete
- $E(Y) = Var(Y) = \lambda$
- Is not preserved under affine transformations...
- For $X \sim \text{Poisson}(\lambda_X)$ and $Y \sim \text{Poisson}(\lambda_Y)$, $Z = X + Y \sim \text{Poisson}(\lambda_{X+Y})$ iff X and Y are independent but
- ...same is not true for differences.
- $\lambda \to \infty \iff Y \sim N$

Poisson Regression

Suppose

$$\mathsf{E}(Y_i) \equiv \lambda_i = \mathsf{exp}(\mathbf{X}_i \boldsymbol{\beta})$$

then

$$\Pr(Y_i = y | \mathbf{X}_i, \boldsymbol{\beta}) = \frac{\exp[-\exp(\mathbf{X}_i \boldsymbol{\beta})][\exp(\mathbf{X}_i \boldsymbol{\beta})]^y}{y!}$$

with likelihood:

$$L = \prod_{i=1}^{N} \frac{\exp[-\exp(\mathbf{X}_{i}\beta)][\exp(\mathbf{X}_{i}\beta)]^{Y_{i}}}{Y_{i}!}$$

and log-likelihood:

$$\ln L = \sum_{i=1}^{N} \left[-\exp(\mathbf{X}_{i}\boldsymbol{\beta}) + Y_{i}\mathbf{X}_{i}\boldsymbol{\beta} - \ln(Y_{i}!) \right]$$

Event Counts: Unit Effects

The Poisson model:

$$Y_{it} \sim \mathsf{Poisson}(\mu_{it} = \alpha_i \lambda_{it})$$

with $\lambda_{it} = \exp(\mathbf{X}_{it}\boldsymbol{\beta})$ implies:

$$E(Y_{it} \mid \mathbf{X}_{it}, \alpha_i) = \mu_{it}$$

$$= \alpha_i \exp(\mathbf{X}_{it}\beta)$$

$$= \exp(\delta_i + \mathbf{X}_{it}\beta)$$

where $\delta_i = \ln(\alpha_i)$.

Fixed-Effects Poisson:

- ...has no "incidental parameters" problem (see e.g. Cameron and Trivedi, pp. 281-2)
- This means "brute force" approach works
- Fitted via glmmML in R, xtpoisson (and xtnbreg) in Stata

Random-Effects Models

The Poisson with random effects is:

$$Pr(Y_{i1} = y_{i1}, ... Y_{iT} = y_{iT}) = \int_0^\infty Pr(Y_{i1} = y_{i1}, ... Y_{iT} = y_{iT}) f(\alpha_i) d\alpha_i$$
$$= \int_0^\infty \left[\prod_{t=1}^T Pr(Y_{it} \mid \alpha_i) \right] f(\alpha_i) d\alpha_i$$

- Simplest to assume $\alpha_i \sim \Gamma(\theta)$
- Yields a model with $\mathsf{E}(Y_{it}) = \lambda_{it}$ and $\mathsf{Var}(Y_{it}) = \lambda_{it} + \frac{\lambda_{it}^2}{\theta}$
- Via glmmML or glmer in R, or xtpois, re in Stata
- ∃ random effects negative binomial too...

Panel Models: Software

R:

- Tobit = censReg (in censReg)
- Poisson (random effects) = glmmML in glmmML or glmer in lme4
- Poisson (fixed effects) = glmmML or "brute force"

Stata:

- Tobit = xttobit (re only)
- Poisson / negative binomial = xtpoisson, xtnbreg (both with fe, re options)

Conflict Onsets: Pooled Poisson

```
> xtabs(~DF$OnsetCount)
DF$OnsetCount
  0 1
           30
8981 375
                 7
> Poisson<-glm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+
              GDPPerCapGrowth+PostColdWar+POLITY+POLITYSquared,data=DF,family="poisson")
> summary(Poisson)
Call.
glm(formula = OnsetCount ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
   POLITY + POLITYSquared, family = "poisson", data = DF)
Coefficients:
                 Estimate Std. Error z value
                                              Pr(>|z|)
(Intercept)
                -2.46627
                            0.71420 -3.45
                                             0.00055 ***
log(LandArea)
                 0.07460
                            0.04698 1.59
                                             0.11232
log(PopMillions) 0.42366
                            0.04575 9.26
                                            < 2e-16 ***
UrbanPopulation
                  0.00612
                            0.00469 1.31
                                               0 19129
log(GDPPerCapita) -0.42730
                            0.07996 -5.34 0.000000091 ***
GDPPerCapGrowth -0.03720
                            0.00661 -5.62 0.000000019 ***
PostColdWar
                  0.26711
                            0 12019
                                       2.22
                                               0.02626 *
POLITY
                  0.32677
                            0.08290
                                       3.94 0.000080877 ***
POLITYSquared -0.03607
                            0.00793 -4.55 0.000005383 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 2387.1 on 6998 degrees of freedom
Residual deviance: 1946.9 on 6990 degrees of freedom
  (6608 observations deleted due to missingness)
ATC: 2699
Number of Fisher Scoring iterations: 6
```

Fixed Effects Poisson

```
> FEPoisson<-pglm(OnsetCount~log(LandArea)+log(PopMillions)+
              UrbanPopulation+log(GDPPerCapita)+
              GDPPerCapGrowth+PostColdWar+POLITY+
              POLITYSquared, data=DF, family="poisson",
              effect="individual", model="within")
> summary(FEPoisson)
Maximum Likelihood estimation
Newton-Raphson maximisation, 3 iterations
Return code 8: successive function values within relative tolerance limit (reltol)
Log-Likelihood: -1018
8 free parameters
Estimates:
               Estimate Std. error t value Pr(> t)
log(LandArea) -2.81096
                         2.86598 -0.98 0.32669
log(PopMillions) 0.63667 0.31900 2.00 0.04595 *
              UrbanPopulation
GDPPerCapGrowth -0.02865 0.00682 -4.20 0.00002673 ***
PostColdWar 0.47487 0.19574 2.43
                                        0.01526 *
          0.52050 0.10801 4.82 0.00000144 ***
POLITY
POLITYSquared -0.05323 0.01062 -5.01 0.00000054 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Equivalent Fixed Effects Poisson (using feglm)

```
> FEPoisson<-feglm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+
                   log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
                   POLITYSquared | ISO3, data=DF, family="poisson")
NOTES: 6,608 observations removed because of NA values (LHS: 4,213, RHS: 6,608).
      67 fixed-effects (2,502 observations) removed because of only 0 outcomes.
> summary(FEPoisson,cluster="ISO3")
GLM estimation, family = poisson, Dep. Var.: OnsetCount
Observations: 4.497
Fixed-effects: ISO3: 93
Standard-errors: Clustered (ISO3)
                 Estimate Std. Error t value
                                                Pr(>|t|)
log(LandArea) -2.81096
                            3.679400 -0.7640 0.4448843443
log(PopMillions) 0.63667 0.343155 1.8553 0.0635490951 .
UrbanPopulation -0.04563 0.019612 -2.3265 0.0199895986 *
log(GDPPerCapita) -0.10200
                           0.153751 -0.6634 0.5070840537
GDPPerCapGrowth -0.02865
                            0.006643 -4.3133 0.0000160819 ***
PostColdWar
             0.47487
                            0.297378 1.5969 0.1102958347
POT.TTY
              0.52050
                            0.111801 4.6556 0.0000032305 ***
POLITYSquared -0.05323
                            0.011664 -4.5632 0.0000050385 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Log-Likelihood: -1,154.2
                          Adj. Pseudo R2: 0.095024
          BIC: 3.158.0
                            Squared Cor.: 0.16378
```

Random Effects Poisson

```
> REPoisson<-pglm(OnsetCount~log(LandArea)+log(PopMillions)+UrbanPopulation+
                  log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
                  POLITYSquared,data=DF,family="poisson",effect="individual",
                  model="random")
> summary(REPoisson)
Maximum Likelihood estimation
Newton-Raphson maximisation, 4 iterations
Return code 8: successive function values within relative tolerance limit (reltol)
Log-Likelihood: -1289
10 free parameters
Estimates:
                Estimate Std. error t value Pr(> t)
(Intercept)
             -3.69707 1.04333 -3.54 0.00039 ***
log(LandArea) 0.05669 0.07318 0.77
                                             0.43856
log(PopMillions) 0.44479 0.08006 5.56 0.000000028 ***
UrbanPopulation
                -0.00563 0.00639 -0.88 0.37854
log(GDPPerCapita) -0.19570 0.10268 -1.91
                                             0.05666 .
GDPPerCapGrowth -0.03401 0.00680 -5.00 0.000000574 ***
PostColdWar 0.28947 0.12897 2.24
                                             0.02480 *
             0.47485 0.09588 4.95 0.000000732 ***
POLITY
POLITYSquared -0.05263 0.00929 -5.66 0.000000015 ***
sigma
                1.69967
                         0.41207 4.12 0.000037125 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Negative Binomial: Fixed Effects

```
> FENegBin2<-fenegbin(OnsetCount~log(LandArea)+log(PopMillions)+

+ UrbanPopulation+log(GDPPerCapita)+

+ GDPPerCapGrowth+PostColdWar+POLITY+

+ POLITYSquared|ISO3,data=DF)

NOTES: 6,608 observations removed because of NA values (LHS: 4,213, RHS: 6,608).

67 fixed-effects (2,502 observations) removed because of only 0 outcomes.

Very high value of theta (10000). There is no sign of overdispersion, you may consider a Poisson model.

Warning message:

[femlm]: The information matrix is singular: presence of collinearity.
```

Table!

Panel Event Count Models

	Poisson	FE Poisson	RE Poisson
Intercept	-2.47^{*}		-3.70^{*}
	(0.71)		(1.04)
In(Land Area)	0.07	-2.81	0.06
	(0.05)	(2.87)	(0.07)
In(Population)	0.42*	0.64*	0.44*
	(0.05)	(0.32)	(80.0)
Urban Population	0.01	-0.05^*	-0.01
	(0.00)	(0.01)	(0.01)
In(GDP Per Capita)	-0.43^{*}	-0.10	-0.20
	(80.0)	(0.15)	(0.10)
GDP Growth	-0.04*	-0.03*	-0.03*
	(0.01)	(0.01)	(0.01)
Post-Cold War	0.27*	0.47*	0.29*
	(0.12)	(0.20)	(0.13)
POLITY	0.33*	0.52*	0.47^{*}
	(80.0)	(0.11)	(0.10)
POLITY Squared	-0.04*	-0.05^{*}	-0.05*
	(0.01)	(0.01)	(0.01)
Estimated $\hat{\sigma}$			1.70*
			(0.41)
AIC	2699.12	2052.26	2598.61
BIC	2760.80		
Log Likelihood	-1340.56	-1018.13	-1289.31
Deviance	1946.94		
Num. obs.	6999		
*p < 0.05			

Wrap-Up: Some Useful Packages

• pglm

- Workhorse package for panel (FE, RE, BE) GLMs
- Binary + ordered logit/probit, Poisson / negative binomial
- Discussed + used extensively in Croissant and Millo (2018) Panel Data Econometrics with R
- The one thing it won't (apparently) do is fixed-effects, binary-response models...

• fixest

- Fast / efficient fitting of FE models
- · Fits linear models, logit, Poisson, and negative binomial
- Includes easy coefficient plots & tables; simple multi-threading; built-in "robust" S.E.s

alpaca

- Fast / efficient fitting of GLMs with high-dimensional fixed effects
- Includes bias correction for incidental parameters after binary-response models
- Also includes useful panel data simulation routines + average partial effects

Generalized Estimating Equations

Quick GLM review

Linear-normal model is:

$$Y_i = \mu_i + u_i$$

with:

$$\mu_i = \mathbf{X}_i \boldsymbol{\beta}.$$

Generalize:

$$g(\mu_i) = \mathbf{X}_i \boldsymbol{\beta}$$

and:

$$Y_i \sim \text{i.i.d. } F[\mu_i, \mathbf{V}_i].$$

GLM Estimation

"Score" equations:

$$\mathbf{U}(\beta) = \sum_{i=1}^{N} \mathbf{D}'_{i} \mathbf{V}_{i}^{-1} [Y_{i} - \mu_{i}] = \mathbf{0}.$$

with:

- $\mathbf{D}_i = \frac{\partial \mu_i}{\partial \beta}$,
- $\mathbf{V}_i = rac{h(\mu_i)}{\phi}$, and
- $(Y_i \mu_i) \approx \text{a "residual."}$
- Known as "quasi-likelihood" (e.g. Wedderburn 1974 Biometrika).

Now suppose:

$$Y_{it} = \mu_{it} + u_{it}$$

where

- $i \in \{1, ...N\}$ are i.i.d. "units,"
- $t \in \{1, ... T\}$, T > 1 are "time points,"
- we want $g(\mu_{it}) = \mathbf{X}_{it}\boldsymbol{\beta}$.

Key issue: Accounting for (conditional) dependence in Y over time.

GEE Basics

Full joint distributions over T are hard. But...

Define:

$$\mathbf{R}_{i}(\boldsymbol{\alpha}) = \begin{pmatrix} 1.0 & \alpha_{12} & \cdots & \alpha_{1,T} \\ \alpha_{21} & 1.0 & \cdots & \alpha_{2,T} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{T,1} & \cdots & \alpha_{T,T-1} & 1.0 \end{pmatrix},$$

- \rightarrow "working correlation" matrix.
 - Completely defined by α ,
 - Structure specified by the analyst.

GEE Origins

Liang and Zeger (1986): We can decompose the variance of Y_{it} as:

$$\mathbf{V}_i = \mathsf{diag}(\mathbf{V}_i^{rac{1}{2}}) \, \mathbf{R}_i(lpha) \, \mathsf{diag}(\mathbf{V}_i^{rac{1}{2}})$$

With a standard GLM assumption about the mean and variance, this is:

$$\mathbf{V}_{i} = \frac{\left(\mathbf{A}_{i}^{\frac{1}{2}}\right) \mathbf{R}_{i}(\alpha) \left(\mathbf{A}_{i}^{\frac{1}{2}}\right)}{\phi}$$

where

$$\mathbf{A}_i = egin{pmatrix} h(\mu_{i1}) & 0 & \cdots & 0 \ 0 & h(\mu_{i2}) & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & \cdots & 0 & h(\mu_{iT}) \end{pmatrix}$$

What does that mean?

$$\mathbf{V}_i = \text{Var}(Y_{it}|\mathbf{X}_{it},\boldsymbol{\beta})$$
 has two parts:

- \mathbf{A}_i = unit-level variation,
- $R_i(\alpha)$ = within-unit temporal variation.

Specifying $\mathbf{R}_i(\alpha)$

Independent:
$$\mathbf{R}_i(\alpha) = \begin{pmatrix} 1.0 & 0 & \cdots & 0 \\ 0 & 1.0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 1.0 \end{pmatrix}$$

- Assumes no within-unit temporal correlation.
- Equivalent to GLM on pooled data.

Exchangeable:
$$\mathbf{R}_{i}(\alpha) = \begin{pmatrix} 1.0 & \alpha & \cdots & \alpha \\ \alpha & 1.0 & \cdots & \alpha \\ \vdots & \vdots & \ddots & \vdots \\ \alpha & \cdots & \alpha & 1.0 \end{pmatrix}$$

- One free parameter in $\mathbf{R}_i(\alpha)$ $(\alpha_{ts} = \alpha \ \forall \ t \neq s)$
- Temporal correlation within units is constant across time points.
- Akin (in some respects) to a random-effects model...

Specifying $\mathbf{R}_i(\alpha)$

$$AR(p) \text{ (e.g., } AR(1)): \qquad \mathbf{R}_{i}(\alpha) = \begin{pmatrix} 1.0 & \alpha & \alpha^{2} & \cdots & \alpha^{T-1} \\ \alpha & 1.0 & \alpha & \cdots & \alpha^{T-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha^{T-1} & \cdots & \alpha^{2} & \alpha & 1.0 \end{pmatrix}$$

- One free parameter in $\mathbf{R}_i(\alpha)$ ($\alpha_{ts} = \alpha^{|t-s|} \ \forall \ t \neq s$).
- Conditional within-unit correlation an exponential function of the lag.

$$Stationary(p): \qquad \mathbf{R}_i(\alpha) = \begin{pmatrix} 1.0 & \alpha_1 & \cdots & \alpha_p & 0 & \cdots & 0 \\ \alpha_1 & 1.0 & \alpha_1 & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \alpha_p & \cdots & \alpha_1 & 1.0 \end{pmatrix}$$

- AKA "banded," or "p-dependent."
- $p \leq T 1$ free parameters in $\mathbf{R}_i(\alpha)$.
- Conditional within-unit correlation an exponential function of the lag, up to lag p, and zero thereafter.

Specifying $\mathbf{R}_i(\alpha)$

Unstructured:
$$\mathbf{R}_{i}(\alpha) = \begin{pmatrix} 1.0 & \alpha_{12} & \alpha_{13} & \cdots & \alpha_{1,\tau-1} \\ \alpha_{12} & 1.0 & \alpha_{23} & \cdots & \alpha_{2,\tau-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \alpha_{1,\tau-1} & \alpha_{2,\tau-1} & \cdots & \alpha_{\tau-1,\tau-1} & 1.0 \end{pmatrix}$$

- $\frac{T(T-1)}{2}$ free parameters in $\mathbf{R}_i(\alpha)$.
- Conditional within-unit correlation is completely data-dependent.

Score equations:

$$\boldsymbol{U}_{GEE}(\beta_{GEE}) = \sum_{i=1}^{N} \mathbf{D}_{i}^{\prime} \left[\frac{(\mathbf{A}_{i}^{\frac{1}{2}}) \, \mathbf{R}_{i}(\alpha) \, (\mathbf{A}_{i}^{\frac{1}{2}})}{\phi} \right]^{-1} \left[Y_{i} - \mu_{i} \right] = \mathbf{0}$$

Two-step estimation:

- For fixed values of α_s and ϕ_s at iteration s, use Newton scoring to estimate $\hat{\beta}_s$,
- Use $\hat{\beta}_s$ to calculate standardized residuals $(Y_i \hat{\mu}_i)_s$, from which consistent estimates of α_{s+1} and ϕ_{s+1} can be estimated.

Inference

Liang & Zeger (1986):

$$\hat{oldsymbol{eta}}_{ extit{GEE}} \mathop{\sim}\limits_{ extit{N} o \infty} extit{N}(oldsymbol{eta}, oldsymbol{\Sigma}).$$

For $\hat{\Sigma}$, two options:

$$\hat{\mathbf{\Sigma}}_{\mathsf{Model}} = N \left(\sum_{i=1}^{N} \hat{\mathbf{\mathcal{D}}}_{i}' \hat{\mathbf{\mathcal{V}}}_{i}^{-1} \hat{\mathbf{\mathcal{D}}}_{i} \right)$$

$$\hat{\boldsymbol{\Sigma}}_{\mathsf{Robust}} = N \left(\sum_{i=1}^{N} \hat{\boldsymbol{D}}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{D}}_{i} \right)^{-1} \left(\sum_{i=1}^{N} \hat{\boldsymbol{D}}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{S}}_{i} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{D}}_{i} \right) \left(\sum_{i=1}^{N} \hat{\boldsymbol{D}}_{i}^{\prime} \hat{\boldsymbol{V}}_{i}^{-1} \hat{\boldsymbol{D}}_{i} \right)^{-1}$$

where $\hat{\boldsymbol{S}}_i = (Y_i - \hat{\mu}_i)(Y_i - \hat{\mu}_i)'$.

Inference (aka, magic!)

- ullet $\hat{\Sigma}_{\mathsf{Model}}$
 - Requires that $\mathbf{R}_i(\alpha)$ be "correct" for consistency.
 - Is slightly more efficient than $\hat{\Sigma}_{\mathsf{Robust}}$ if so.

- \bullet $\hat{\Sigma}_{\mathsf{Robust}}$
 - Is consistent even if $R_i(\alpha)$ is misspecified.
 - ullet Is slightly less efficient than $\hat{\Sigma}_{\mathsf{Model}}$ if $R_i(lpha)$ is correct.

Moral: Use $\hat{\Sigma}_{\mathsf{Robust}}$

Summary

GEEs:

- Are a straightforward variation on GLMs, and so
- Can be applied to a range of data types (continuous, binary, count, proportions, etc.),
- Yield robustly consistent point estimates of β s,
- Account for within-unit correlation in an informed way, but also
- Yield consistent inferences even if that correlation is misspecified.

Practical Issues: Model Interpretation

- In general, GEEs = GLMs.
- GEEs are marginal models, so:
 - $\hat{\beta}$ s have an interpretation as average / total effects.
 - Estimates / effect sizes generally be smaller than conditional (e.g. fixed/random) effects models.
 - E.g., for logit, $\hat{\beta}_M \approx \frac{\hat{\beta}_C}{\sqrt{1+0.35\sigma_{\eta}^2}}$, where $\sigma_{\eta}^2 > 0$ is the variance of the unit effects.
 - See (e.g.) Gardiner et al. (2009) or Koper and Manseau (2009) for expositions.

Practical Issues: Specifying $\mathbf{R}_i(\alpha)$

- Has been called "more art than science."
- Pointers:
 - · Choose based on substance of the problem.
 - · Remember that $\mathbf{R}_i(\alpha)$ is conditional on \mathbf{X} , $\hat{\boldsymbol{\beta}}$.
 - \cdot Consider unstructured when T is small and N large.
 - · Try different ones, and compare.
- In general, it shouldn't matter terribly much...

GEEs: Software

Software	${\sf Command}(s)/{\sf Package}(s)$
R	gee / geepack / geeM / multgeeB / orth / repolr
Stata	<pre>xtgee / xtlogit / xtprobit / xtpois / etc.</pre>
SAS	<pre>genmod (w/ repeated)</pre>

GEEs: Software Tips

- Generally follow GLMs (specify "family" + "link")
- Certain combinations not possible/recommended
- Estimation: Fisher scoring, MLE, etc. (MCMC?)

From the geepack manual:

Warning

Use "unstructured" correlation structure only with great care. (It may cause R to crash).

Civil War Redux... GEE: Independence

```
> GEE.ind<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+
              log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
              POLITYSquared, data=DF, id=ISO3, family="binomial",
+
              corstr="independence")
> summary(GEE.ind)
Call:
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
   POLITY + POLITYSquared, family = "binomial", data = DF, id = ISO3,
   corstr = "independence")
 Coefficients:
                 Estimate Std.err Wald Pr(>|W|)
(Intercept)
              -1.49782 2.05999 0.53
                                          0.4672
log(LandArea) 0.01617 0.12454 0.02
                                          0.8967
log(PopMillions) 0.65816 0.15550 17.92 0.000023 ***
UrbanPopulation 0.00792 0.01428 0.31 0.5794
log(GDPPerCapita) -0.43195 0.25246 2.93 0.0871 .
GDPPerCapGrowth -0.04159 0.01310 10.08 0.0015 **
PostColdWar -0.29512 0.26142 1.27 0.2589
POT.TTY
                0.68401 0.21059 10.55 0.0012 **
POLITYSquared -0.06648 0.01936 11.79 0.0006 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Correlation structure = independence
Estimated Scale Parameters:
           Estimate Std err
(Intercept)
              0.805
                     0.313
Number of clusters: 160 Maximum cluster size: 57
```

GEE: Exchangeable

```
> GEE.exc<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+
                   log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
                   POLITYSquared, data=DF, id=ISO3, family="binomial",
                 corstr="exchangeable")
> summarv(GEE.exc)
Call:
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
   POLITY + POLITYSquared, family = "binomial", data = DF, id = ISO3,
    corstr = "exchangeable")
 Coefficients:
                 Estimate Std.err Wald Pr(>|W|)
(Intercept)
               -2.71412 2.03596 1.78 0.18250
log(LandArea) 0.02935 0.15493 0.04 0.84975
log(PopMillions) 0.55753 0.16214 11.82 0.00058 ***
UrbanPopulation
                  0.00488 0.01164 0.18 0.67488
log(GDPPerCapita) -0.20698 0.17283 1.43 0.23108
GDPPerCapGrowth -0.03678 0.00925 15.83 0.000069 ***
PostColdWar = 0.14425 0.23432 0.38 0.53816
POLITY
               0.55323 0.17081 10.49 0.00120 **
POLITYSquared -0.05639 0.01669 11.42 0.00073 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Correlation structure = exchangeable
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
              0.731 0.177
 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha
        0.343 0.112
Number of clusters: 160 Maximum cluster size: 57
```

GEE: AR(1)

```
> GEE.ar1<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+
                   log(GDPPerCapita)+GDPPerCapGrowth+PostColdWar+POLITY+
                   POLITYSquared.data=DF.id=ISO3.familv="binomial".
                   corstr="ar1")
> summarv(GEE.ar1)
Call:
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + PostColdWar +
   POLITY + POLITYSquared, family = "binomial", data = DF, id = ISO3,
   corstr = "ar1")
 Coefficients:
                 Estimate Std.err Wald Pr(>|W|)
(Intercept)
                -1.39416 3.04574 0.21
                                          0.647
log(LandArea) 0.08486 0.21368 0.16
                                          0.691
log(PopMillions) 0.38180 0.21907 3.04
                                          0.081 .
UrbanPopulation
                 -0.00424 0.01753 0.06
                                          0.809
log(GDPPerCapita) -0.32445 0.26143 1.54
                                          0.215
GDPPerCapGrowth -0.01668 0.00790 4.45
                                          0.035 *
              0.21084 0.24470 0.74
                                          0.389
PostColdWar
POLITY
                  0.19120 0.12532 2.33 0.127
POLITYSquared -0.02143 0.01328 2.60
                                          0.107
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Correlation structure = ar1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept)
              0.816
                       0.37
 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha
        0.922 0.0386
Number of clusters: 160 Maximum cluster size: 57
```

GEE: Unstructured (2013-2017)

```
> GEE.unstr<-geeglm(CivilWar~log(LandArea)+log(PopMillions)+UrbanPopulation+log(GDPPerCapita)+GDPPerCapGrowth+POLITY+
                  POLITYSquared,data=DF5,id=ISO3,family="binomial",corstr="unstructured")
> summary(GEE.unstr)
Call:
geeglm(formula = CivilWar ~ log(LandArea) + log(PopMillions) +
   UrbanPopulation + log(GDPPerCapita) + GDPPerCapGrowth + POLITY +
   POLITYSquared, family = "binomial", data = DF5, id = ISO3,
    corstr = "unstructured")
Coefficients:
                Estimate Std.err Wald Pr(>|W|)
(Intercept)
                -2.8329 3.2113 0.78 0.37769
log(LandArea)
                0.1657 0.1925 0.74 0.38927
log(PopMillions) 0.8493 0.2479 11.74 0.00061 ***
UrbanPopulation
                0.0302 0.0175 2.98 0.08441
log(GDPPerCapita) -0.7275 0.3095 5.53 0.01873 *
GDPPerCapGrowth -0.0111 0.0277 0.16 0.68822
POI TTY
                0.5221 0.4166 1.57 0.21011
POLITYSquared -0.0603 0.0366 2.71 0.09978 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Correlation structure = unstructured
Fetimated Scale Parameters:
           Estimate Std.err
(Intercept)
           0.678 0.808
 Link = identity
Estimated Correlation Parameters:
         Estimate Std err
alpha.1:2 0.395 0.489
alpha.1:3 0.408 0.508
alpha.1:4 0.352 0.441
alpha.1:5 0.325 0.405
alpha.2:3 0.757 0.862
alpha.2:4 0.290 0.367
alpha.2:5 0.518 0.593
alpha.3:4 0.400 0.509
alpha.3:5
           0.742 0.861
alpha.4:5 0.436 0.547
```

Number of clusters: 159 Maximum cluster size: 5

Comparing $\hat{oldsymbol{eta}}$ s

Comparing $\widehat{s.e.s}$

GEEs: Wrap-Up

GEEs are:

- Robust.
- Flexible
- Extensible beyond panel/TSCS context

Appendix: Discrete-Time Survival Models

Survival Analysis

Survival models:

- ...are models for time-to-event data.
- ...have their roots in biostats/epidemiology, plus engineering, sociology, economics.
- Examples...
 - Political careers, confirmation durations, position-taking, bill cosponsorship, campaign contributions, policy innovation/adoption, etc.
 - Cabinet/government durations, length of civil wars, coalition durability, etc.
 - War duration, peace duration, alliance longevity, length of trade agreements, etc.
 - · Strike durations, work careers (including promotions, firings, etc.), criminal careers, marriage and child-bearing behavior, etc.

Time-To-Event Data

Characteristics:

- *Discrete* events (i.e., not continuous),
- Take place over time,
- May not (or <u>never</u>) experience the event (i.e., possibility of censoring).

Terminology:

 Y_i = the duration until the event occurs,

 Z_i = the duration until the observation is "censored"

 $T_i = \min\{Y_i, Z_i\},$

 $C_i = 0$ if observation *i* is *censored*, 1 if it is not.

Density:

$$f(t) = Pr(T_i = t)$$

CDF:

$$Pr(T_i \le t) \equiv F(t) = \int_0^t f(t) dt$$

Survival function:

$$Pr(T_i \ge t) \equiv S(t) = 1 - F(t)$$

= $1 - \int_0^t f(t) dt$

Hazard:

$$Pr(T_i = t | T_i \ge t) \equiv h(t) = \frac{f(t)}{S(t)}$$
$$= \frac{f(t)}{1 - \int_0^t f(t) dt}$$

Grouped-Data Survival Approaches

Model:

$$\Pr(C_{it}=1)=f(\mathbf{X}_{it}\beta)$$

Advantages:

- Easily estimated, interpreted and understood
- Natural interpretations:
 - $\hat{\beta}_0 \approx$ "baseline hazard"
 - · Covariates shift this up or down.
- Can incorporate data on time-varying covariates
- Lots of software

Potential Disadvantages:

- Requires time-varying data
- Must deal with time dependence explicitly

Temporal Issues in Grouped-Data Models

(Implicit) "Baseline" hazard:

$$h_0(t) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)}$$

→ No temporal dependence / "flat" hazard

Time trend:

$$\Pr(Y_{it} = 1) = f(\mathbf{X}_{it}\beta + \gamma T_{it})$$

- ullet $\hat{\gamma} > 0 \,
 ightarrow {
 m rising\ hazard}$
- $\hat{\gamma} < 0 \, o \, \mathrm{declining} \, \, \mathrm{hazard}$
- $\hat{\gamma} = 0 \,
 ightarrow \,$ "flat" (exponential) hazard

Variants/extensions: Polynomials...

$$Pr(Y_{it} = 1) = f(\mathbf{X}_{it}\beta + \gamma_1 T_{it} + \gamma_2 T_{it}^2 + \gamma_3 T_{it}^3 + ...)$$

Temporal Issues in Grouped-Data Models

"Time dummies":

$$Pr(Y_{it} = 1) = f[\mathbf{X}_{it}\beta + \alpha_1 I(T_{i1}) + \alpha_2 I(T_{i2}) + ... + \alpha_{t_{max}} I(T_{it_{max}})]$$

- → Beck, Katz, and Tucker's (1998) cubic splines; might also use:
 - Fractional polynomials
 - Smoothed duration
 - Loess/lowess fits
 - Other splines (B-splines, P-splines, natural splines, etc.)