Grouping Data with SQL

Introduction

Sometimes you may wish to find the mean, median, min, or max of a column feature. For example, there could be a customer relational database that you've been working with and you may wonder if there are differences in overall sales across offices or regions. We can use aggregate functions in SQL to assist with performing these analyses.

Objectives

You will be able to:

- Describe the relationship between aggregate functions and GROUP BY statements
- Use GROUP BY statements in SQL to apply aggregate functions like: COUNT, MAX, MIN, and SUM
- · Create an alias in a SQL query
- Use the HAVING clause to compare different aggregates
- · Compare the difference between the WHERE and HAVING clause

Entity Relationship Diagram

Once again we will be using this database, with 8 tables relating to customers, orders, employees, etc.

Connecting to the Database

As usual, start by creating a connection to the database. We will also import pandas in order to display the results in a convenient format.

```
In [1]: import sqlite3
import pandas as pd

In [2]: conn = sqlite3.Connection('data.sqlite')
```

GROUP BY and Aggregate Functions

Let's start by looking at some GROUP BY statements to aggregate our data. The GROUP BY clause groups records into summary rows and returns one record for each group.

Typically, GROUP BY also involves an aggregate function (COUNT , AVG , etc.).

Lastly, GROUP BY can group by one column or multiple columns.

Count of Customers by Country

One of the most common uses of GROUP BY is to count the number of records in each group. To do that, we'll also use the COUNT aggregate function.

```
In [3]: q = """
    SELECT country, COUNT(*)
    FROM customers
    GROUP BY country
    ;
    """

# Displaying just the first 10 countries for readability
pd.read_sql(q, conn).head(10)
```

Out[3]:

	country	COUNT(*)
0	Australia	5
1	Austria	2
2	Belgium	2
3	Canada	3
4	Denmark	2
5	Finland	3
6	France	12
7	Germany	13
8	Hong Kong	1
9	Ireland	2

Cool, we have the number of customers per country!

Interpreting COUNT(*)

Why did we pass in * to COUNT(*)?

COUNT is a function that is being invoked, similar to a function in Python. When we say to count *, we mean count every row containing non-null column values.

You will also see examples using COUNT(1), which counts every row regardless of whether it contains non-null column values, or something like COUNT(customerNumber), which just counts whether some particular column is non-null.

Most of the time this does not make a significant difference in the results produced or the processing speed, since databases have optimizers designed for this purpose. But it is useful to be able to recognize the various forms.

Alternative GROUP BY Syntax

Another thing to be aware of is that instead of specifying an actual column name to group by, we can group the data using the index of one of the columns already specified in the SELECT statement. These are 1-indexed (unlike Python, which is 0-indexed). So an alternative way to write the previous query would be:

```
In [4]: q = """
    SELECT country, COUNT(*)
    FROM customers
    GROUP BY 1
    ;
    """

# Displaying just the first 10 countries for readability
pd.read_sql(q, conn).head(10)
```

Out[4]:

	country	COUNT(*)
0	Australia	5
1	Austria	2
2	Belgium	2
3	Canada	3
4	Denmark	2
5	Finland	3
6	France	12
7	Germany	13
8	Hong Kong	1
9	Ireland	2

Aliasing

An alias is a shorthand for a table or column name. Aliases reduce the amount of typing required to enter a query, and can result in both queries and results that are easier to read.

Aliases are especially useful with JOIN, GROUP BY, and aggregates (SUM, COUNT, etc.). For example, we could rewrite the previous query like this, so that the count of customers is called customer_count instead of COUNT(*):

```
In [5]: q = """
    SELECT country, COUNT(*) AS customer_count
    FROM customers
    GROUP BY country
    ;
    """
    # Displaying just the first 10 countries for readability
    pd.read_sql(q, conn).head(10)
```

Out[5]:

	country	customer_count
0	Australia	5
1	Austria	2
2	Belgium	2
3	Canada	3
4	Denmark	2
5	Finland	3
6	France	12
7	Germany	13
8	Hong Kong	1
9	Ireland	2

Other notes on aliases:

- · An alias only exists for the duration of the query.
- The keyword AS is optional in SQLite. So, you could just say COUNT(*) customer_count
 with the same outcome. Historically some forms of SQL required AS and others would not
 work with AS, but most work either way now. In a professional setting you will likely have a
 style guide indicating whether or not to use it.

Other Aggregations

Aside from COUNT() some other useful aggregations include:

- MIN()
- MAX()
- SUM()
- AVG()

These are mainly useful when working with numeric data.

Payment Summary Statistics

In the cell below, we calculate various summary statistics about payments, grouped by customer.

Out[6]:

	customerNumber	number_payments	min_purchase	max_purchase	avg_purchase	total_spent
0	103	3	1676.14	14571.44	7438.120000	22314.36
1	112	3	14191.12	33347.88	26726.993333	80180.98
2	114	4	7565.08	82261.22	45146.267500	180585.07
3	119	3	19501.82	49523.67	38983.226667	116949.68
4	121	4	1491.38	50218.95	26056.197500	104224.79
93	486	3	5899.38	45994.07	25908.863333	77726.59
94	487	2	12573.28	29997.09	21285.185000	42570.37
95	489	2	7310.42	22275.73	14793.075000	29586.15
96	495	2	6276.60	59265.14	32770.870000	65541.74
97	496	3	30253.75	52166.00	38165.730000	114497.19

98 rows × 6 columns

Filtered Payment Summary Statistics with WHERE

Similar to before we used GROUP BY and aggregations, we can use WHERE to filter the data. For example, if we only wanted to include payments made in 2004:

Out[7]:

	customerNumber	number_payments	min_purchase	max_purchase	avg_purchase	total_spent
0	103	2	1676.14	6066.78	3871.460	7742.92
1	112	2	14191.12	33347.88	23769.500	47539.00
2	114	2	44894.74	82261.22	63577.980	127155.96
3	119	2	19501.82	47924.19	33713.005	67426.01
4	121	2	17876.32	34638.14	26257.230	52514.46
	•••					
83	486	2	5899.38	45994.07	25946.725	51893.45
84	487	1	12573.28	12573.28	12573.280	12573.28
85	489	1	7310.42	7310.42	7310.420	7310.42
86	495	1	6276.60	6276.60	6276.600	6276.60
87	496	1	52166.00	52166.00	52166.000	52166.00

88 rows × 6 columns

Some additional notes:

- Look at the difference in the first row values. It appears that customer 103 made 3 payments
 in the database overall, but only made 2 payments in 2004. So this row still represents the
 same customer as in the previous query, but it contains different aggregated information about
 that customer.
- This returned 88 rows rather than 98, because some of the customers are present in the overall database but did not make any purchases in 2004.
- Recall that you can filter based on something in a WHERE clause even if you do not SELECT
 that column. We are not displaying the paymentDate values because this would not make
 much sense in aggregate, but we can still use that column for filtering.

The HAVING Clause

Finally, we can also filter our aggregated views with the HAVING clause. The HAVING clause works similarly to the WHERE clause, except it is used to filter data selections on conditions **after** the GROUP BY clause.

For example, if we wanted to filter to only select aggregated payment information about customers with average payment amounts over 50,000:

Out[9]:

	customerNumber	number_payments	min_purchase	max_purchase	avg_purchase	total_spent
0	124	9	11044.30	111654.40	64909.804444	584188.24
1	141	13	20009.53	120166.58	55056.844615	715738.98
2	239	1	80375.24	80375.24	80375.240000	80375.24
3	298	2	47375.92	61402.00	54388.960000	108777.92
4	321	2	46781.66	85559.12	66170.390000	132340.78
5	450	1	59551.38	59551.38	59551.380000	59551.38

Note that in most flavors of SQL we can't use an alias in the HAVING clause. This is due to the internal order of execution of the SQL commands. So in most cases outside of SQLite you would need to write that query like this, repeating the aggregation code in the HAVING clause:

Out[10]:

	customerNumber	number_payments	min_purchase	max_purchase	avg_purchase	total_spent
0	124	9	11044.30	111654.40	64909.804444	584188.24
1	141	13	20009.53	120166.58	55056.844615	715738.98
2	239	1	80375.24	80375.24	80375.240000	80375.24
3	298	2	47375.92	61402.00	54388.960000	108777.92
4	321	2	46781.66	85559.12	66170.390000	132340.78
5	450	1	59551.38	59551.38	59551.380000	59551.38

Combining the WHERE and HAVING Clauses

We can also use the WHERE and HAVING clauses in conjunction with each other for more complex rules.

For example, let's say we want to filter based on customers who have made at least 2 purchases of over 50000 each.

To convert that into SQL logic, that means we first want to limit the records to purchases over 50000 (using WHERE), then after aggregating, limit to customers who have made at least 2 purchases fitting that previous requirement (using HAVING).

```
In [10]: |q = """
         SELECT
             customerNumber,
             COUNT(*) AS number payments,
             MIN(amount) AS min purchase,
             MAX(amount) AS max_purchase,
             AVG(amount) AS avg_purchase,
             SUM(amount) AS total spent
         FROM payments
         WHERE amount > 50000
         GROUP BY customerNumber
         HAVING number_payments >= 2
         pd.read_sql(q, conn)
```

Out[10]:

	customerNumber	number_payments	min_purchase	max_purchase	avg_purchase	total_spent
0	124	5	55639.66	111654.40	87509.512	437547.56
1	141	5	59830.55	120166.58	85024.068	425120.34
2	151	2	58793.53	58841.35	58817.440	117634.88
3	363	2	50799.69	55425.77	53112.730	106225.46

We can also use the ORDER BY and LIMIT clauses in queries containing these complex rules. Say we want to find the customer with the lowest total amount spent, who nevertheless fits the criteria described above. That would be:

```
In [11]: |q = """
         SELECT
             customerNumber,
             COUNT(*) AS number payments,
             MIN(amount) AS min purchase,
             MAX(amount) AS max_purchase,
             AVG(amount) AS avg_purchase,
             SUM(amount) AS total spent
         FROM payments
         WHERE amount > 50000
         GROUP BY customerNumber
         HAVING number_payments >= 2
         ORDER BY total_spent
         LIMIT 1
         ;
         pd.read_sql(q, conn)
Out[11]:
```

2

customerNumber number_payments min_purchase max_purchase avg_purchase total_spent

50799.69

55425.77

53112.73

Summary

0

363

106225.46

In this lesson, you learned how to use aggregate functions, aliases, and the HAVING clause to filter selections.