E. Willem, Chtholly and Seniorious

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

— Willem
— What's the matter?
— It seems that there's something wrong with Seniorious
— I'll have a look

Seniorious is made by linking special talismans in particular order.

After over 500 years, the carillon is now in bad condition, so Willem decides to examine it thoroughly.

Seniorious has n pieces of talisman. Willem puts them in a line, the i-th of which is an integer a_i .

In order to maintain it, Willem needs to perform m operations.

There are four types of operations:

- 1 l r x: For each i such that $l \le i \le r$, assign $a_i + x$ to a_i .
- 2 l r x: For each i such that $l \le i \le r$, assign x to a_i .
- 3 l r x: Print the x-th smallest number in the index range [l, r], i.e. the element at the x-th position if all the elements a_i such that $l \le i \le r$ are taken and sorted into an array of non-decreasing integers. It's guaranteed that $1 \le x \le r l + 1$.
- 4 l r x y: Print the sum of the x-th power of a_i such that $l \le i \le r$, modulo y, i.e. .

Input

The only line contains four integers n, m, seed, v_{max} ($1 \le n$, $m \le 10^5$, $0 \le seed < 10^9 + 7$, $1 \le vmax \le 10^9$).

The initial values and operations are generated using following pseudo code:

```
def rnd():
    ret = seed
    seed = (seed * 7 + 13) mod 1000000007
    return ret

for i = 1 to n:
    a[i] = (rnd() mod vmax) + 1

for i = 1 to m:
    op = (rnd() mod 4) + 1
    l = (rnd() mod n) + 1
    r = (rnd() mod n) + 1
```

```
if (l > r):
    swap(l, r)

if (op == 3):
    x = (rnd() mod (r - l + 1)) + 1

else:
    x = (rnd() mod vmax) + 1

if (op == 4):
    y = (rnd() mod vmax) + 1
```

Here op is the type of the operation mentioned in the legend.

Output

For each operation of types 3 or 4, output a line containing the answer.

Examples

```
input

10 10 7 9

output

2
1
0
3
```

```
input
10 10 9 9
output

1
1
3
3
```

Note

In the first example, the initial array is $\{8, 9, 7, 2, 3, 1, 5, 6, 4, 8\}$.

The operations are:

- · 2679
- 13108
- 44624
- 1458
- 2 1 7 1
- 47944
- 1279
- 45811
- 2575
- 431085