Contents

1	1.1 Set Theory	_
2	- Constituting	6
1	Preliminaries	
1.3	1 Set Theory	
	• N, Q	
	 Operations: union intersection symmetric difference difference 	
	• Equivalence relations and equivalence classes	
1.2	2 Logic	
	• Quantifiers	
	- presentation style: quantifiers first and assertions last	

- quantifier order is crucial
- Operators
 - inclusivity of \vee

1.3 Cuts

Theorem 1.1

 $\sqrt{2}$ is irrational.

Definition 1.2. A **cut** in \mathbb{Q} is a pair of subsets of A, B of \mathbb{Q} such that:

- (a) $A \cup B = \mathbb{Q}, A \neq \emptyset, B \neq \emptyset, A \cap B = \emptyset.$
- (b) If $a \in A$ and $b \in B$, then a < b.

(c) A contains no largest element.

Definition 1.3. A real number is a cut in \mathbb{Q} .

Definition 1.4. The cut x = A|B is less than or equal to the cut y = C|D, if $A \subset C$.

Definition 1.5. $M \in \mathbb{R}$ is an **upper bound** for a set $S \subset \mathbb{R}$ if each $s \in S$ satisfies $s \leq M$. Thus, we say the set S is **bounded above** by M.

An upper bound for S that is less than all other upper bounds for S is a **least upper bound** for S.

Theorem 1.6 (Least Upper Bound Property)

The set \mathbb{R} , constructed by the means of Dedekind cuts, is **complete**:

If S is a non-empty subset of \mathbb{R} and is bounded above, then in \mathbb{R} there exists a least upper bound for S.

Proof. Let $\mathscr{C} \in \mathbb{R}$ be any non-empty collection of cuts. Suppose \mathscr{C} is bounded above by some X|Y.

Define two sets as follows:

$$C = \{ a \in \mathbb{Q} \mid \exists (A|B \in \mathscr{C}) : a \in A \}$$
 (1)

$$C' = \mathbb{Q} \setminus C \tag{2}$$

We claim that C|C' is a cut, checking three conditions.

- (a) $C \cup C' = \mathbb{Q}$, $C \neq \emptyset$, since \mathscr{C} is not empty by definition, $C' \neq \emptyset$, since \mathscr{C} is bounded above, and $C \cap C' = \emptyset$ by definition of C and C'.
- (b) If $c \in C$ and $c' \in C'$, then c < c', since, for all $d \in C'$, $d \notin C$.
- (c) C contains no largest element, since any A in A|B of $\mathscr C$ contains no greatest element.

Note that, for all A in A|B of \mathscr{C} , $A \subset C$, and hence C|C' is an upper bound for \mathscr{C} . Let D|D' be any upper bound for \mathscr{C} . Therefore, for all $A|B \in \mathscr{C}$, $A \subset D$, and hence $C \subset D$, giving $C|C' \leq D|D'$. Thus, of all upper bounds for \mathscr{C} , C|C' is the least.

Theorem 1.7

The set \mathbb{R} of all cuts in \mathbb{Q} is a complete ordered field that contains \mathbb{Q} as an ordered subfield.

Theorem 1.8 (Triangle Inequality)

$$\forall (x, y \in \mathbb{R}) : |a + b| \le |a| + |b|$$

Definition 1.9. Let $a_1, a_2, a_3, \dots = (a_n), n \in \mathbb{N}$, be a sequence of real numbers.

The sequence (a_n) converges to a limit $b \in \mathbb{R}$ as $n \to \infty$ provided that for each $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \geq N$:

$$|a_n - b| < \epsilon$$

Definition 1.10 (Cauchy Condition). $\forall (\epsilon < 0) \exists (N \in \mathbb{N}) : n, m \geq N \Rightarrow |a_n - a_m| < \epsilon$.

Theorem 1.11

 \mathbb{R} is **complete** with respect to Cauchy sequences, that is, if (a_n) is a sequence of real numbers obeying a Cauchy condition, then it converges to a limit in \mathbb{R} .

Proof. Let A be the set of real numbers comprising the sequence (a_n) ,

$$A = \{ x \in \mathbb{R} \mid \exists n \in \mathbb{N} : a_n = x \}.$$

Since A obeys the Cauchy condition, then for $\epsilon = 1$ there exists an integer N_1 such that for all $n, m \geq N_1$, $|a_n - a_m| < 1$. Then, for each $n \geq N_1$,

$$|a_n - a_{N_1}| < 1. (3)$$

Therefore, for $n \geq N_1$, $a_n \in (a_{N_1} - 1, a_{N_1} + 1)$.

For the finite set $B = \{a_1, a_2, \dots, a_{N_1} + 1\}$ choose $M = \max\{|\min B|, |\max B|\}$.

By definition of M and from the equation 3 it follows that all the elements of A are in [-M, M], and so A is bounded.

Consider now the set

$$S = \{s \in [-M, M] : \exists \text{ infinitely many } n \in \mathbb{N}, \text{ for which } a_n \geq s \}$$

Since -M is in S, S is not empty. Moreover, S is bounded above by M. Therefore, by the Least Upper Bound property for \mathbb{R} , there exists $b \in \mathbb{R}$ such that $b = \sup S$. We claim that the sequence a_n converges to b.

Suppose some $\epsilon > 0$ is given. Since (a_n) satisfies the Cauchy condition,

$$\exists N_2: m, n \ge N_2 \Rightarrow |a_m - a_n| < \frac{\epsilon}{2}$$

Since b is the least upper bound, $b + \frac{\epsilon}{2}$ is not in S. Thus, terms in (a_n) are greater or equal to $b + \frac{\epsilon}{2}$ only finitely many times. Therefore, there exists N_3 such that

$$n \ge N_3 \Rightarrow a_n \le b + \frac{\epsilon}{2}.$$

Since b is the least upper bound, note also that $b-\frac{\epsilon}{2}$ is not an upper upper bound. Since real numbers are dense, there exists $s \in S$ such that $s > b - \frac{\epsilon}{2}$, which implies that there exists $N \ge N_3$ such that $a_N > b - \frac{\epsilon}{2}$.

Since $N \geq N_3$,

$$a_N \in (b - \frac{\epsilon}{2}, b + \frac{\epsilon}{2}].$$

Theorem 1.12 (Cauchy Convergence Criterion for sequences)

A sequence (a_n) in \mathbb{R} converges if and only if

$$\forall (\epsilon > 0) \exists (N \in \mathbb{N}) : n, m \ge N \Rightarrow |a_n - a_m| < \epsilon$$

Definition 1.13. Let a < b be given in \mathbb{R} . Define the **intervals** (a,b) and [a,b] as follows:

$$(a,b) = \{x \in \mathbb{R} : a < x < b\} \tag{4}$$

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\} \tag{5}$$

Theorem 1.14

Every interval (a, b) contains both rational and irrational numbers.

Lemma 1.15

 \mathbb{R} has the **Archimedean property**: for each $x \in \mathbb{R}$ there is an integer n that is greater than x.

Theorem 1.16 (ϵ -principle)

If a, b are real numbers and if, for each $\epsilon > 0$, $a \le b + \epsilon$, then $a \le b$.

If x, y are real numbers and, for each $\epsilon > 0$, $|x - y| \le \epsilon$, then x = y.

1.4 Euclidean Space

Definition 1.17. Given sets A and B, the **Cartesian product** of A and B is the set $A \times B$ of all ordered pairs (a, b) such that $a \in A$ and $b \in B$.

The Cartesian product of \mathbb{R} with itself m times is denoted as \mathbb{R}^m .

Definition 1.18. The **dot product** of $x = (x_1, x_2, \dots, x_m), y = (y_1, y_2, \dots, y_m) \in \mathbb{R}^m$ is defined as

$$\langle x, y \rangle = \sum_{i=1}^{m} x_i y_i$$

Lemma 1.19

The dot product operation is bilinear, symmetric, and positive definite, i.e., for any $x, y, z \in \mathbb{R}^m$ and any $c \in \mathbb{R}$,

$$\langle x, y + cz \rangle = \langle x, y \rangle + c \langle x, z \rangle \tag{6}$$

$$\langle x, y \rangle = \langle y, x \rangle \tag{7}$$

$$\langle x, x \rangle \ge 0$$
, and $\langle x, x \rangle = 0 \Leftrightarrow x = \mathbf{0}$ (8)

Definition 1.20. The **length** or **magnitude** of a vector $x \in \mathbb{R}^m$ is defined to be

$$|x| = \sqrt{\langle x, x \rangle}$$

Theorem 1.21 (Cauchy-Schwarz Inequality)

For all $x, y \in \mathbb{R}^m$, $\langle x, y \rangle \leq |x| |y|$.

Corollary 1.22

For all $x, y \in \mathbb{R}^m$,

$$|x+y| \le |x| + |y|$$

Definition 1.23. The **Euclidean distance** between $x, y \in \mathbb{R}^m$ is defined as the length of their difference.

$$|x - y| = \sqrt{\langle x - y, x - y \rangle}$$

Definition 1.24. The jth coordinate of the point (x_1, \ldots, x_m) is the number x_j appearing in the jth position.

Definition 1.25. The jth coordinate axis is the set of $x \in \mathbb{R}^m$ which kth coordinates are zero for all $k \neq j$.

Definition 1.26. The integer lattice is the set $\mathbb{Z}^m \subset \mathbb{R}^m$ of ordered *m*-tuples of integers.

Definition 1.27. The first orthant of \mathbb{R}^m is the set of points $x \in \mathbb{R}^m$ all of which coordinates are nonnegative.

Definition 1.28. A box is a Cartesian product of intervals in \mathbb{R}^m

$$[a_1,b_1]\times\cdots\times[a_m,b_m]$$

Definition 1.29. The unit cube in \mathbb{R}^m is the box $[0,1]^m = [0,1] \times \cdots \times [0,1]$.

Definition 1.30. The unit ball in \mathbb{R}^m is the set

$$B^m = \{ x \in \mathbb{R}^m \mid |x| \le 1 \}.$$

Definition 1.31. The unit sphere in \mathbb{R}^m is the set

$$S^{m-1} = \{ x \in \mathbb{R}^m \, | \, |x| = 1 \}.$$

2 Continuity

Definition 2.1. The function $f:[a,b]\to\mathbb{R}$ is **continuous** if for each $\epsilon>0$ and each $x\in[a,b]$ there is a $\delta>0$ such that

$$t \in [a, b]$$
 and $|t - x| < \delta \Rightarrow |f(t) - f(x)| < \epsilon$

2.1 Three Hard Theorems

Theorem 2.2

If f is a continuous function on [a,b] and f(a)<0< f(b), then its values form a bounded subset of \mathbb{R} . Thus, there exist $m,M\in\mathbb{R}$ such that for all $x\in[a,b]$, $m\leq f(x)\leq M$.

Proof. For $x \in [a, b]$, let

$$V_x = \{ y \in \mathbb{R} \mid \exists (t \in [a, x]) : y = f(t) \}.$$

Set

$$X = \{x \in [a, b] \mid V_x \text{ is a bounded set of } \mathbb{R}\}.$$

We prove now that b is in X.

Since $a \in X$, X is not empty. Note also that b is an upper bound for X.

Thus, there exists in \mathbb{R} a least upper bound $c \leq b$ for X.

Since f is continuous, consder the neighbourhood of c for $\epsilon = 1$. By definition of continuity, there exists a $\delta > 0$ such that $|x - c| < \delta$ implies |f(x) - f(c)| < 1 Since c is the least upper bound for X, there is some $x \in X$ in the interval $[c - \delta, c]$ (otherwise $c - \delta$ is a smaller upper bound for X).

With t varying from a to c, t is first mapped to $f(t) \in V_x$, and then f(t) varies in the bounded set J = (f(c) - 1, f(c) + 1).

The union of two bounded set is a bounded set, and thus V_c is bounded. Therefore, $c \in X$.

If c < b, then by continuity, for some t > c, f(t) still varies in the bounded set J, which contradicts the fact that that c is an upper bound for X. Thus, c = b, $b \in X$, and the values of f form a bounded subset of \mathbb{R} .

Theorem 2.3

If f is a continuous function on [a, b], then there exist some numbers x_0, x_1 in [a, b] such that $f(x_0) \le f(x) \le f(x_1)$ for all x in [a, b].

Proof. Let $M = \sup\{f(t) \mid t \in [a, b]\}$. By theorem 2.2, M exists.

Let $X = \{x \in [a, b] | \sup\{V_x\} < M\}$, where

$$V_x = \{ y \in \mathbb{R} \mid \exists (t \in [a, x]) : y = f(t) \}.$$

We first prove that f achieves a maximum on [a, b].

Case (1). f(a) = M

Thus, f takes on a maximum at a.

Case (2). f(a) < M

Thus, X is not empty and $\sup\{X\}$ exists. Suppose $\sup\{X\} = c$.

If f(c) < M, choose $\epsilon > 0$ such that $\epsilon < M - f(c)$. By continuity, there exists a $\delta > 0$ such that $|t - c| < \delta$ implies $|f(t) - f(c)| < \epsilon$. Thus, $\sup\{V_c\} < M$.

If c < b, then there exists a point t > c) at which $\sup\{(V_c)\} < M$, which contradicts the fact that c is an upper bound of such points.

Thus, c = b, and hence M < M, which is a contradiction. Therefore, f(c) = M, so f achieves a maximum at c.

Theorem 2.4

A continuous function defined on an interval [a,b] achieves all intermediate values: if $f(a) = \alpha, f(b) = \beta$, and γ is given such that $\alpha \le \gamma \le \beta$ or $\beta \le \gamma \le \alpha$, then there exists some $c \in [a,b]$ such that $f(c) = \gamma$.