

SAYISAL INTEGRAL

Sayısal Integrasyon Kavramı ve Çeşitleri

$$\int_{a}^{b} f(x). dx \approx yaklaşık hesaplama$$
 fikirlerinin bütününe sayısal integrasyon denir

Sayısal Analiz dersinde Newton Cotes formüllerine odaklanacağız

polinom
$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} f_{n}(x) dx \approx$$
polinom
$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} f_{n}(x) dx \approx$$
fork polinom
gazmaya Galisicam

Figure polinom

Polinomu doğru, parabol, kübik bir ifade olarak uydurabiliriz. Bunların her biri de Newton Cotes için bir alt başlıktır

Burda lonksiyonun intercalini yoklasik olarak hesaphyorum

eper polinomumun dere cesi
U l'ise bir dopru 2. dereceden
ise bir para l'bol 3. dereceden ise bir kubik pegirmis mo Gevinneye Golsi

interral demek alan demektir

İntegralin sınırları olan a ve b sayıları sabit ve fonksiyon bu aralıkta sürekli ise integralin sonucu da sabit olup, değeri y=f(x) eğrisinin altında ve x=a ile x=b doğruları arasında kalan alana eşittir

TRAPEZ (YAMUK) YÖNTEMİ

Bu yöntemde integral **n** sayıda dikdörtgen kullanılarak hesaplanır N ne kadar büyük ise gerçek değere o kadar yakın sonuç elde edilir

$$I = \sum h_i f_i$$

$$f_i \to f(x_i)$$

$$h_i \to i. \text{ dikdörtgenin genişliği}$$

$$h_i = x_{i+1} - x_i \text{ olarak tanımlanır}$$

Eğer dikdörtgenlerin genişliği sabit olduğundan $h = \frac{b-a}{n}$ olarak yazılır

 $I = \int_a^b f(x) dx$ integralinin değerini hesaplamak üzere [a, b] kapalı aralığını **n** eşit parçaya ayıralım

Her bölme noktasından (xi) dik doğrular çıkarak, diklerin f(x) eğrisini kestiği noktaları birer doğru ile birleştirerek n tane yamuk elde edebiliriz x_0ABx_1 dik yamuğunun alanı :

Toplam Alan
$$S = S_{1+}S_{2+}S_3 + ... + S_n$$
 olacağından

$$S = \frac{1}{2} h(y_0 + y_1) + \frac{1}{2} h(y_1 + y_2) + \frac{1}{2} h(y_2 + y_3) + ... + \frac{1}{2} h(y_{n-1} + y_n)$$

$$S = h/2 [y_0 + 2y_1 + 2y_2 + 2y_3 + ... + 2y_{n-1} + y_n]$$

$$S = h \left[\frac{(y_0 + y_n)}{2} + y_1 + y_2 + y_3 + ... + y_{n-1} \right]$$

$$S = h \left[\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i \right]$$

$$a \rightarrow x_0$$
 $b \rightarrow x_n$ $h = \Delta x = (x_n - x_0)/n$ olarak kabul edersek

$$S = \Delta \mathbf{x} \left[\frac{f(x_0) + f(x_n)}{2} + \sum_{k=1}^{n-1} f(x_0 + k\Delta \mathbf{x}) \right]$$

$$\int_0^1 \frac{1}{1+x^2} \, dx$$

İntegralini n=4 alarak Trapez yöntemi ile hesaplayınız.

$$x_0 = 0$$
 $x_n = 1$ $h = (1 - 0)/4 = 0.25$

	Х		f(x)
x0	0	+0,25	1
x1	0,25	+0,25	0,94118
x2	0,5	+0,25	0,8
х3	0,75	+0,25	0,64
x4	1		0,5

$$S = 0.25 \left[\frac{1 + 0.5}{2} + (0.9412 + 0.8 + 0.64) \right]$$

$$S = 0,78279 \text{ br}^2$$

Bu fonksiyon için gerçek integral

$$I = \int_0^1 \frac{1}{1+x^2} dx = \tan^{-1} x \Big|_0^1 = \arctan(x) \Big|_0^1$$

Burda 2. derece den hir polinom pegiricem

SIMPSON YÖNTEMİ (1/3 kuralı)

$$f(x) = ax^2 + bx + c$$

şeklinde verilmiş ise

de verilmiş ise

Burdo posterildiği

Burdo posterildiği

Burdo posterildiği

Nokto pegirice?

$$S = \int_{a}^{b} f(ax^{2} + bx + c) dx$$

Analitik olarak incelersek

$$S = a \frac{x^3}{3} + b \frac{x^2}{2} + cx \begin{vmatrix} h \\ -h \end{vmatrix} = a \frac{h^3}{3} + b \frac{h^2}{2} + ch - [-a \frac{h^3}{3} + b \frac{h^2}{2} - ch]$$

$$S = \frac{2}{3}ah^3 + 2ch = \frac{h}{3}(2ah^2 + 6c)$$

Trapez yönteminde dopru pegirmistik burda para bol pegircez

Benim lonk. Su sekilde _ ax 2 thx + C

Denklemin katsayıları bilinmediğinden S eşitliğini y_0, y_1, y_2 cinsinden bulalım

$$x = -h$$
 için $f(x) = y_0 = ah^2 - bh + c$
 $x = 0$ için $f(x) = y_1 = c$
 $x = h$ için $f(x) = y_2 = ah^2 + bh + c$

$$y_0 + y_2 = ah^2 - bh + c + ah^2 + bh + c = 2ah^2 + 2c$$

c =
$$y_1$$
 olduğundan:
 $2ah^2 + 2y_1 = y_0 + y_2$
 $2ah^2 = y_0 - 2y_1 + y_2$

$$S = h/3 (y_0 - 2y_1 + y_2 + 6y_1)$$

 $S = h/3 (y_0 + 4y_1 + y_2)$

$$\delta = h/(2\alpha h^2 + 6c)$$

Simpson yönteminde çubuklar ikişer ikişer alındığından aralık sayısı ÇİFT olmalıdır

Simpson formülünde $h = (x_n - x_0) / n$ alınarak

$$S = \frac{h}{3} \left[f(x_0) + f(x_n) + 4 \sum_{k=1,3,5}^{n-1} f(x_0 + k * h) + 2 \sum_{i=2,4,6}^{n-2} f(x_0 + i * h) \right]$$

 $y = x^3$ eğrisinin x=-1, x=2 ve Ox ekseni ile sınırlı bölgenin alanı nedir?

$$S_1 = -\int_{-1}^0 x^3 \, dx$$

n=4 h=0,25

	X	f(x)
x0	-1	1
x1	-0,75	0,4218
x2	-0,5	0,125
х3	-0,25	0,0156
х4	0	0

 $S_1 = 0.25/3 [(1 + 0) + 2*(0.125) + 4*(0.4218 + 0.0156)] = 0.2499$

$$S_2 = \int_0^2 x^3 \, dx$$

n=4 h=0,5

	Х	f(x)
x0	0	0
x1	0,5	0,125
x2	1	1
х3	1,5	3,375
х4	2	8

$$S = 4 + 0.2499 = 4.25 \text{ br}^2$$

$$S_2 = 0.5/3 [(0 + 8) + 2*1 + 4*(0.125 + 3.375)] = 4$$

 $f(x) = (x^2 - 1)(x + 2)$ eğrisinin altında ve Qx ekseninin üstünde kalan bölgenin alanını bulunuz n=4 alarak bulunuz.

Analitik çözüm

$$I = \int_{-2}^{-1} (x^3 + 2x^2 - x - 2) dx$$

$$I = \frac{1}{4} x^4 + \frac{2}{3} x^3 - \frac{1}{2} x^2 - 2x \begin{vmatrix} -1 \\ -2 \end{vmatrix} = 0,41 \text{ br}^2$$

Trapez Yöntemi ile çözüm

$$S_T = \int_{-2}^{1} (x^2 - 1) (x + 2) dx$$

$$h=(-1-(-2))/4=0.25$$

	X	f(x)
x0	-2	0
x1	-1,75	0,5156
x2	-1,50	0,625
х3	-1,25	0,4218
х4	-1	0

$$S_{T} = h \left[\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i \right]$$

$$S_T = 0.25 \left[\frac{0+0}{2} + (0.5156 + 0.625 + 0.4218) \right]$$

$$S = 0.391 \, br^2$$

Simpson Yöntemi ile çözüm

$$S_T = \int_{-2}^{1} (x^2 - 1) (x + 2) dx$$

$$h=(-1-(-2))/4=0.25$$

	x	f(x)
x0	-2	0
x1	-1,75	0,5156
x2	-1,50	0,625
х3	-1,25	0,4218
x4	-1	0

$$S_{s} = \frac{h}{3} \left[f(x_{0}) + f(x_{n}) + 4 \sum_{k=1,3,5}^{n-1} f(x_{0} + k * h) + 2 \sum_{i=2,4,6}^{n-2} f(x_{0} + i * h) \right]$$

$$Ss = 0.25/3 [(0 + 0) + 2*0.625 + 4*(0.4218 + 0.0156)] = 0.4166 br^{2}$$

Simpson's 3/8 kuralı

$$\int_{a}^{b} f(x) dx \cong \int_{a}^{b} f^{3}(x) dx$$

$$\int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{3}(x) dx = (b-a) \cdot \frac{f(a) + 3 \cdot f(x_{1}) + 3 \cdot f(x_{2}) + f(b)}{8}$$

$$\int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{3}(x) dx = (b-a) \cdot \frac{f(a) + 3 \cdot f(x_{1}) + 3 \cdot f(x_{2}) + f(b)}{8}$$

$$\int_{a}^{b} f(x) dx \cong \int_{a}^{b} f_{3}(x) dx = (b-a) \cdot \frac{f(a) + 3 \cdot f(x_{1}) + 3 \cdot f(x_{2}) + f(b)}{8}$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$y = f(x)$$

$$n = 2 i \sin \int_{a}^{a+b} f(x) dx + \int_{a+b}^{b} f(x) dx$$

$$\int_{1+x^4}^{6} dx ile veriler integralin sayisal gözülmünü Simpson $\frac{3}{8}$
lewali ile $n=1$ ve $n=2$ için yapınız.$$

$$0=2 \implies \int_{0}^{3} \frac{1}{1+x^{4}} dx + \int_{2}^{6} \frac{1}{1+x^{4}} dx = 1$$

$$3 \cdot \frac{\frac{1}{2}(0) + 3 \cdot \frac{1}{2}(1) + 3\frac{1}{2}(2) + \frac{1}{2}(3)}{8} + 3 \cdot \frac{\frac{1}{2}(1) + 3\frac{1}{2}(4) + 3 \cdot \frac{1}{2}(5) + \frac{1}{2}(6)}{8}$$

$$= \left(3 \cdot \frac{1+3 \cdot \left(\frac{1}{2}\right)}{8} + 3 \cdot \frac{\frac{1}{2}}{12} + 3 \cdot \frac{1}{2} + 3 \cdot \frac{1}{2} + 3 \cdot \frac{1}{2} + \frac{1}{$$

İki Katlı Integralin Sayısal Çözümü

$$I = \int_2^3 \int_x^{2x^3} (x^2 + y) dy dx$$

$$I = \int_{2}^{3} g(x) dx$$
 n=4

$$h = (b-a)/n = (3-2)/4 = 0.25$$

	Х	g(x)
x0	2	g0
x1	2,25	g1
x2	2,5	g2
х3	2,75	g3
x4	3	g4

1.Adım
$$x_0=2$$
 için

$$I = \int_{2}^{16} (x_o^2 + y) dy$$

$$h = (16-2)/4 = 3.5$$

$$g_0 = 3.5/3 [(6 + 20) + 2*13 + 4*(9.5 + 16.5)] = 182$$

	у	f(y)
y0	2	6
у1	5,5	9,5
y2	9	13
уЗ	12,5	16,5
у4	16	20

$$I = \int_{2,25}^{22,78} (x_1^2 + y) dy$$
 h = (22,78-2,25)/4 = 5,13

$$g_1 = 5,13/3 [(7,31 + 27,76) + 2*17,57 + 4*(12,44 + 22,7)]$$

 $g_1 = 360,417$

	У	f(y)
y0	2,25	7,31
у1	7,38	12,44
y2	12,51	17,57
у3	17,64	22,7
у4	22,77	27,76

3.Adım
$$x_2=2,5$$
 için

$$I = \int_{2,5}^{31,25} (x_2^2 + y) dy$$
 h = (31,25-2,5)/4 = 7,19

$$g_2 = 7,19/3 [(8,75 + 37,51) + 2*23,13 + 4*(15,94 + 30,32)]$$

 $g_2 = 665,22$

	У	f(y)
y0	2,5	8,75
у1	9,69	15,94
y2	16,88	23,13
у3	24,07	30,32
у4	31,26	37,51

$$I = \int_{2,75}^{41,59} (x_3^2 + y) dy$$

$$g_3 = 9.71/3 [(10.31 + 49.15) + 2*29.73 + 4*(20.02 + 39.44)]$$

 $g_3 = 1154.7$

	У	f(y)
y0	2,75	10,31
у1	12,46	20,02
y2	22,17	29,73
у3	31,88	39,44
у4	41,59	49,15

5.Adım x₄=3 için

$$I = \int_3^{54} (x_4^2 + y) dy$$

$$g_4$$
 = 12,75/3 [(12 + 63) + 2*37,5 + 4*(24,75 + 50,35)] g_4 = 1912,5

У	f(y)
3	12
15,75	24,75
28,5	37,5
41,25	50,35
54	63
	3 15,75 28,5 41,25

Ss = h/3 [
$$g_0 + g_4 + 4*(g_1 + g_3) + 2*g_2$$
]
Ss = 0,25/3 [182 + 1912,5 + 4*(360,417 + 1154,7) + 2*665,22] = 790,451

$$S_{\text{analitik}} = 790,55$$

 $S_{\text{s}} = 790,451$

Hata = |790,451 - 790,55| = 0,099

