QUANTUM ALGORITHMS HOMEWORK 11 ADDITIONAL PROBLEMS

PROF. MATTHEW MOORE

Due: 2021-04-27

- 1. Let $t \in \mathbb{N}$.
 - (i) Prove that

$$x^{t} - 1 = (x - 1) \sum_{k=0}^{t-1} x^{k}.$$

- (ii) Prove that $x = e^{2\pi i(m/t)}$ is a solution to $x^t 1$ for $m \in \mathbb{Z}$.
- (iii) Let $m \in \mathbb{Z}$ with $0 \le m < t$. Use the previous parts to prove that

$$\sum_{k=0}^{t-1} e^{2\pi i (km/t)} = \begin{cases} t & \text{if } m=0, \\ 0 & \text{otherwise.} \end{cases}$$

Recall that the *n*-qubit Quantum Fourier Transform (\mathcal{QFT}_n) is characterized by its action on basis vector $|x\rangle$,

$$\mathcal{QFT}_n|x\rangle$$

$$= 2^{-n/2} \left(|0\rangle + e^{2\pi i [0.x_n]} |1\rangle \right) \otimes \left(|0\rangle + e^{2\pi i [0.x_{n-1}x_n]} |1\rangle \right) \otimes \cdots \otimes \left(|0\rangle + e^{2\pi i [0.x_1x_2...x_n]} |1\rangle \right)$$

$$= 2^{-n/2} \bigotimes_{k=1}^{n} |0\rangle + e^{2\pi i [x]/2^k} |1\rangle ,$$

where $[0, \cdots]$ represents the number with binary decimal representation $0, \cdots$ and likewise [x] represents the number with binary representation $x \in \{0,1\}^n$.

- 2. (i) Explicitly calculate $QFT_n | 0^n \rangle$.
 - (ii) Explicitly calculate $QFT_n | 1^n \rangle$.
- **3.** Show that

$$QFT_n |x\rangle = 2^{-n/2} \sum_{y \in \{0,1\}^n} e^{2\pi i [x][y]/2^n} |y\rangle,$$

where [x] represents the number with binary representation $x \in \{0,1\}^n$ (and so [x][y] is the product of x and y, regarded as binary numbers).

Problems continue on the next page.

4. Use the previous problem to prove that

$$QFT_n^{\dagger} |x\rangle = 2^{-n/2} \sum_{y \in \{0,1\}^n} e^{-2\pi i [x][y]/2^n} |y\rangle$$

for basis vector $|x\rangle \in \{0,1\}$ defines the inverse of \mathcal{QFT}_n .

Hint 1: Show that $QFT_n \circ QFT_n^{\dagger} |x\rangle = QFT_n^{\dagger} \circ QFT_n |x\rangle = |x\rangle$.

Hint 2: You may find this identity useful

$$\sum_{k=0}^{2^{n}-1} e^{2\pi i \ k\ell/2^{n}} = 0 \qquad \text{if} \qquad \ell \neq 0.$$

- **5.** (i) Write the matrix for \mathcal{QFT}_3 in the standard computational basis (i.e. $|x\rangle$ for $x \in \{0,1\}^n$). Use the notation $\omega_n = e^{2\pi i/n}$. [Hint: this is an 8×8 matrix.]
- (ii) Write the matrix for $\mathcal{QFT}_3^{\dagger}$ in the standard computational basis (i.e. $|x\rangle$ for $x \in \{0,1\}^n$).