The data compression problem
Process evaluation
Analytic information theory
Application to covariance analysis

# Asymptotics on the Lempel-Ziv 78 compression of Markov sources

Exploring analytic information theory: from Markov source sampling to combinatorial analysis proofs

#### Guillaume Duboc

Computer Science Department Ecole Normale Supérieure de Lyon

M1 Internship, 2018





### Table of contents

- The data compression problem
  - Introduction to information sources
  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- Process evaluation
  - Theoretical models
  - Experimental conditions
  - Extracting results
- Analytic information theory
  - Power series
  - Complex analysis tools
- Application to covariance analysis
  - Tail symbols
  - Simulation results



Duboc

2/41

- The data compression problem
  - Introduction to information sources
  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- Process evaluation
  - Theoretical models
  - Experimental conditions
  - Extracting results
- 3 Analytic information theory
  - Power series
  - Complex analysis tools
- Application to covariance analysis
  - Tail symbols
  - Simulation results



### Words or sequences, and memoryless sources

### Definition: word or sequence or string

Given an alphabet A, a **word** or **sequence** or **string** is an infinite sequence of random variables  $X = (X_k)_{k\mathbb{N}^*}$ , each  $X_k$  representing a symbol in A.

### Definition: Bernoulli or Memoryless source

A source of information is a **Bernoulli** or **memoryless source** when all the symbols of  $\mathcal{A}$  occur independently with a fixed probability. The word can be seen as an *infinite sequence of Bernoulli trials*.





### Markov sources definition

#### Definition: Markov source

An information source is a *Markov source* when there is a *Markov dependency* between the consecutive symbols of a string.

#### Definition: order of a Markov source

Let  $V = |\mathcal{A}|$ . A *Markov source* is of *order r* when the dependency can be encoded in a transition matrix of size  $V^r \times V$ , with coefficients:

$$P(c|w) \quad \forall (w,c) \in A^r \times A$$

Informally: the probability that a symbols occurs depends on the previous r symbols.



- The data compression problem

  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- - Theoretical models
- - Complex analysis tools
- - Tail symbols
  - Simulation results



Duboc

6/41

# Description of the LZ78 algorithm

### Algorithm

Given a word w.

- Initialize an empty dictionary
- While it is possible:

Find longest prefix of *w* that is not in the dictionary

Add it to the dictionary, cut it from w





Introduction to information sources
The LZ78 compression scheme
The compression ratio, and entropy
Algorithmic improvements

#### Elements description

The data representation is (dictionary\_reference, symbol).

#### Remarks

The LZ78 algorithm builds a prefix tree from which the original word can be reconstructed.





### Definition: number of phrases

After compressing a word w, the number of phrases in the dictinary is noted M(w).

For words of size n, we write  $M_n(w)$ .

### Code length

$$C(w) = \sum_{k=0}^{M(w)} (\lceil \log_2(k) \rceil + \lceil \log_2(A) \rceil)$$





- The data compression problem

  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- - Theoretical models
- - Complex analysis tools
- - Simulation results



10/41

Duboc

### Definition: compression ratio

Let w a word, and C(w) its *encoding* by a compression algorithm. The *compression ratio* of w is  $\frac{|C(w)|}{|w|}$ .

### Main goals of compression algorithms

- Improving the compression ratio
- Fast compression/decompression speed in Mb/s

#### Т

he tradeoff between these two goals is a sensitive research problem. Different compression standards:

- Google (Brotli, 2015)
- Facebook (Zstandard, 2016)



11/41

# Optimal encoding

### Entropy of a Markov source

Let  $\pi$  be a stationary distribution. The entropy of a Markov chain is

$$h = -\sum_{i=1}^{V} \pi \sum_{j=1}^{V} p_{ij} \log(p_{ij})$$

#### Optimality of LZ78

Considering words of length *n*.

$$\frac{|C(w)|}{|w|} - h$$
 goes to zero for  $n \to +\infty$ 





- The data compression problem

  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- - Theoretical models
- - Complex analysis tools
- - Simulation results



13/41

Duboc

The data compression problem
Process evaluation
Analytic information theory
Application to covariance analysis

Introduction to information sources The LZ78 compression scheme The compression ratio, and entropy Algorithmic improvements

# Optimal parsing





The data compression problem
Process evaluation
Analytic information theory
Application to covariance analysis

Introduction to information sources The LZ78 compression scheme The compression ratio, and entropy Algorithmic improvements

# Flexible parsing





- The data compression problem
  - Introduction to information sources
  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- Process evaluation
  - Theoretical models
  - Experimental conditions
  - Extracting results
- 3 Analytic information theory
  - Power series
  - Complex analysis tools
- Application to covariance analysis
  - Tail symbols
  - Simulation results



# Markov Independent Model

```
X(1) = {00000000...}

X(2) = {1010101...}

X(3) = {1001101...}

X(4) = {001100111...}
```





- The data compression problem
  - Introduction to information sources
  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- Process evaluation
  - Theoretical models
  - Experimental conditions
  - Extracting results
- 3 Analytic information theory
  - Power series
  - Complex analysis tools
- Application to covariance analysis
  - Tail symbols
  - Simulation results



18/41

### Coding details

- ullet Python code  $\sim$  2000 lines
- Markov source sampling
- Optimized datastructure (digital search tree)
- Parallelization
- Reproducibility of datasets





- The data compression problem
  - Introduction to information sources
  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- Process evaluation
  - Theoretical models
  - Experimental conditions
  - Extracting results
- Analytic information theory
  - Power series
  - Complex analysis tools
- Application to covariance analysis
  - Tail symbols
  - Simulation results



Duboc

### Central Limit Theorem confirmation



# Hypothesis testing for the variance

### Complex matrix

Defining 
$$P(s)$$
 as  $\begin{array}{ccc} p_{11}^{-s} & p_{12}^{-s} \\ p_{21}^{-s} & p_{22}^{-s} \end{array}$ 

### Variance expression

$$V_n = \left(\ddot{\lambda}(-1) - \dot{\lambda}(-1)^2\right) \frac{n}{\ln^2 n}$$













- The data compression problem
  - Introduction to information sources
  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- Process evaluation
  - Theoretical models
  - Experimental conditions
  - Extracting results
- Analytic information theory
  - Power series
  - Complex analysis tools
- Application to covariance analysis
  - Tail symbols
  - Simulation results



# Definition, usage

#### Definition

$$A(z) = \sum_{n \geqslant 0}^{a} z^n$$

#### Remarks

- Used as an algebraic item with the convolution product
- No convergence problems





25/41

- 1 The data compression problem
  - Introduction to information sources
  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- Process evaluation
  - Theoretical models
  - Experimental conditions
  - Extracting results
- Analytic information theory
  - Power series
  - Complex analysis tools
- Application to covariance analysis
  - Tail symbols
  - Simulation results



### Poissonization and Depoissonization

$$\widetilde{G}(z) = \sum_{n \geqslant 0} a_n \frac{z^n}{n!} e^{-z}$$

#### Mellin transform

Make recurrence relation between random variables become linear in order to solve them more easily.





- The data compression problem
  - Introduction to information sources
  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- Process evaluation
  - Theoretical models
  - Experimental conditions
  - Extracting results
- 3 Analytic information theory
  - Power series
  - Complex analysis tools
- Application to covariance analysis
  - Tail symbols
  - Simulation results



## Tail symbols

#### Illustration

```
X(1) = {00000000...}

X(2) = {1010101...}

X(3) = {1001101...}

X(4) = {001100111...}
```

#### Definition

Let c be a character from our alphabet  $\{a, b\}$ . In the case when all the sequences start with a c, we define  $T_n^c$  the number of times a is a tail symbol in the experiment.





### Definition and relation

#### Recurrence

For  $n \ge 0$ , we have :

$$T_{n+1}^c = \delta_a + \widetilde{T}_{N_a}^a + \widetilde{T}_{N_b}^b$$

#### **Notations**

- $\delta_a = \begin{cases} 1 & \text{if } a \text{ is the tail symbol of the first sequence} \\ 0 & \text{else} \end{cases}$
- N<sub>a</sub> is the random variable giving the size of the left subtree which contains phrases whose second letter is a
- $\widetilde{T}_{N_a}^a$  is the number of times a is a tail symbol for the sequences that were used to build the subtree with



# Total path lenght

#### **Definition**

Defining  $L_n^c$  as the total path length of the nodes of the DST that was built with MI model with n sequences starting with letter c. It is the sum of the lengths of all the prefix phrases.

#### Recurrence relation

For all  $n \ge 0$ :

$$C_{n+1}^{c} = n + \widetilde{L}_{N_a}^{a} + \widetilde{L}_{N_b}^{b}$$



- The data compression problem
  - Introduction to information sources
  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- Process evaluation
  - Theoretical models
  - Experimental conditions
  - Extracting results
- 3 Analytic information theory
  - Power series
  - Complex analysis tools
- Application to covariance analysis
  - Tail symbols
  - Simulation results



The data compression problem Process evaluation Analytic information theory Application to covariance analysis

Tail symbols Simulation results Analytic solution

Inconclusive, but informative





- The data compression problem
  - Introduction to information sources
  - The LZ78 compression scheme
  - The compression ratio, and entropy
  - Algorithmic improvements
- Process evaluation
  - Theoretical models
  - Experimental conditions
  - Extracting results
- 3 Analytic information theory
  - Power series
  - Complex analysis tools
- Application to covariance analysis
  - Tail symbols
  - Simulation results



#### Recurrence

$$\mathsf{Cov}(T_{n+1}^{\,c},L_{n+1}^{\,c}) = \mathsf{Cov}(\widetilde{T}_{N_a}^{\,a},\widetilde{L}_{N_a}^{\,a}) + \mathsf{Cov}(\widetilde{T}_{N_b}^{\,b},\widetilde{L}_{N_b}^{\,b})$$





#### Poisson transform

### Defining

$$C_c(z) = \sum_{n\geqslant 0} \operatorname{Cov}(T_n^c, L_n^c) \frac{z^n}{n!} e^{-z}$$

#### Differential equation

$$\partial_z C_c(z) + C_c(z) = C_a(zp) + C_b(zq)$$





















38/41

















The data compression problem
Process evaluation
Analytic information theory
Application to covariance analysis

Tail symbols Simulation results Analytic solution



