# Numerical Analysis Home Assignment 4

#### Barak-Naday Diker

March 6, 2024

### Contents

## 1 Question 1

We have the following data on the number of unemploy in a certain city Evaluate using interpolation the number of unemploy at the year 1955

| year       | 1951 | 1961 | 1971 | 1981 |
|------------|------|------|------|------|
| unemployed | 35   | 42   | 58   | 84   |

### 1.1 Solution Newton interpolation

In order to use newton interpolation we should calculate the divided difference

Here is a sample code on how to calculate it , It's a simple recursion by definition

```
def div_diff(x , y):
    if len(x) == 1:
        return y[0]
    return (div_diff(x[1:],y[1:]) - div_diff(x[:-1],y[:-1]))/(x[-1] -
        x[0])
#example
#return div_diff([8.1,8.3],[16.9446 , 17.56492])
```

None

```
# newton_coeff = | 35 | 0.7 | 0.045 |
# [y_0] = 35 , [y_0,y_1] = 0.7 , [y_0,y_1,_2] = 0.045
```

Here I am creating the function interpolation.

Please note that interpolation is function from  $\mathbb{R}$  to  $\mathbb{R}$  which is polynomial

#### 1.2 Visualize the Solution

Here is some basic code for viewing the function



Show that given a linear function i.e y=ax+b . You'll need at most 1 iteration of newton-rhapson to find the root

## 2.1 Solution

Let  $x\in\mathbb{R}$  if  $x=\frac{-b}{a}$  we are done else, let  $x\neq\frac{-b}{a}$  run 1 iteration of newton-rhapson and show that  $x_1=\frac{-b}{a}$ 

$$x_1 = x - \frac{y(x)}{y'(x)}$$

$$x_1 = x - \frac{ax + b}{a}$$

$$x_1 = x - x + \frac{-b}{a}$$

$$x_1 = \frac{-b}{a}$$

Given the function f and let Q(x) be the interpolation of f at  $(x_0, x_1, ..., x_n)$ 

and let P(x) be the newton interpolation of points  $(x_0, x_1, ..., x_n, t, t)$  for arbitrary  $t \in \mathbb{R}$ 

Writing Q(x) explicitly we'll have

$$Q(x) = [y_0] + [y_0, y_1](x - x_0) + \dots + [y_0, \dots, y_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$
(1)

and writing P(x) explicitly grants us

$$P(x) = [y_0] + [y_0, y_1](x - x_0) + \dots + [y_0, \dots, y_n](x - x_0)(x - x_1) \dots (x - x_{n-1}) + [y_0, \dots, y_n, t](x - x_0)(x - x_1) \dots (x - x_{n-1})(x - t) + [y_0, \dots, y_n, t, t](x - x_0)(x - x_1) \dots (x - x_{n-1})(x - t)^2$$

Clearly we can see that

$$P(x) - Q(x) = [y_0, \dots, y_n, t](x - x_0)(x - x_1) \cdots (x - x_{n-1})(x - t) + [y_0, \dots, y_n, t, t](x - x_0)(x - x_1) \cdots (x - x_{n-1})(x - t)^2$$

Evaluate the integral

$$\int_0^1 \frac{1}{1+x^3} dx$$

using the trapezoidal rule we have the following formula

$$\int_{a}^{b} f(x)dx = \frac{b-a}{n} \left( \frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(a + \frac{b-a}{n}i) \right)$$

Using python code we have

```
def f(x):
    return 1/(1+x**3)
a = 0; b = 1; n = 4
return (b - a)/n *( (f(b)-f(a))/2 + sum([f(a+(b-a)*i/n) for i in
    range(1,n-1)]) )
```

#### 0.4058760683760684

```
def f(x):
    return 1/(1+x**3)
a = 0; b = 1; n = 40
return (b - a)/n *( (f(b)-f(a))/2 + sum([f(a+(b-a)*i/n) for i in
    range(1,n-1)]) )
```

#### 0.7976353006745376

Happily we can see that after 40 iteration we are really close to the true solution which is 0.83525

$$relative error = \frac{\Delta y}{y} = \frac{0.83525 - 0.7976353006745376}{0.83525} = 0.045$$

Write a program in C++ that can calculate the integral from 0 to 1 divided by n sequents

```
#include <iostream>
double f(double x){ // Example function , one can pick anyfunction he
    wants
    return 1/(x*x*x + 1);
}
double integral_calculator(int n , double a = 0 , double b=1){
    double my_sum = 0;
    for(int i =1; i < n-1; i++){
        my_sum += f(a+(b-a)*i/n);
    }
    return (b-a)/n*((f(b)+f(a))/2 + my_sum);
}
int main() {
    std::cout << "The answer is :" << integral_calculator(19);
    return 0;
}</pre>
```

The answer is :0.80703

## 6 Question 6

Write a Program in C++ that given n+1 point on  $\mathbb{R}^2$  Creates interpolation polinom

#### 6.1 Answer a - lagrange interpolation

Here is code snippet that implement lagrange interpolation

```
#include <iostream>
#include <vector>
#include <tuple>
#include <utility>
using namespace std;
double lagrange_basis(double x,int j,vector<tuple<double,double>
                                                                     > data
→ ){
    double p = 1;
    auto [x_j,y_j] = data[j];
    data.erase(data.begin()+j);
        for(auto [x_i,y_i] : data){
            p *= (x-x_i)/(x_j-x_i);
    data.insert(data.begin()+j,make_tuple(x_j,y_j));
    return p;
}
double lagrange_interpolation(double x ,vector<tuple<double,double>
    double sum_lagrange = 0;
    int j = 0;
    for(auto [x_i,y_i] :data){
        sum_lagrange += y_i*lagrange_basis(x,j,data);
    return sum_lagrange;
int main(){
    vector<tuple<double,double>
                                   > data ;
    data.push_back(make_tuple(1,2));
    data.push_back(make_tuple(3,4));
      //lagrange_basis(30,0,data);
        cout << "Given the x = 2 the interpolation is "

→ <<lagrange_interpolation(2,data);</li>
}
```

Given the x = 2 the interpolation is 3

But It makes sense that the point (2,3) is on the interpolation of the data (1,2), (3,4) because it's a simple line!

#### 6.2 Answer B - Use Newton Interpolation

Implement via the programming language c++ the newton interpolation

```
// Calculate the finite difference function
#include <iostream>
#include <vector>
using namespace std;
double div_diff(vector<double>x, vector<double>y){
    if (x.size() == 1)
        return y[0];
    vector<double>::const_iterator start = x.begin() + 1;
    vector<double>::const_iterator end = x.end();
    vector<double> x_from_1(start, end);
    start = y.begin() +1;
    end = y.end();
    vector<double> y_from_1(start, end);
    start = x.begin();
    end = x.end() - 1;
    vector<double> x_no_last_element(start, end);
    start = y.begin();
    end = y.end() - 1;
    vector<double> y_no_last_element(start, end);
    return ((div_diff(x_from_1 , y_from_1) -
    \  \, \to \  \, div\_diff(x\_no\_last\_element,y\_no\_last\_element)))/(x.back() \,\, -

    x.front());
int main(){
    // example of usage
    vector \langle double \rangle x = \{8.1, 8.3\};
    vector \langle double \rangle y = \{16.9446 , 17.56492\};
    std::cout << "The div different is " << div_diff(x,y);</pre>
    return 1;
```

#### The div different is 3.1016

```
def div_diff(x , y):
    if len(x) == 1:
        return y[0]
    return (div_diff(x[1:],y[1:]) - div_diff(x[:-1],y[:-1]))/(x[-1] -
        x[0])
#example
return div_diff([8.1,8.3],[16.9446 , 17.56492])
```

#### 3.1015999999999813

Clearly in python it's more elegant In order to calculate the final newton interpolation I'll use the same code from question just in c++

```
#include <vector>
#include <iostream>
#include <cmath>
using namespace std;
double newton_interpolation(double x ,vector<double> x_arr ,

    vector<double>div_diff_arr){
 double acc = 0;
  for (int i =0;i < div_diff_arr.size() ;i++){</pre>
      double mal = div_diff_arr[i];
      for(int j = 0; j < i; j++){
          mal *= std::pow((x-x_arr[j]),j);
          acc += mal;
 return acc;
}
int main(){
    vector \langle double \rangle x = \{1951, 1961, 1971, 1981\}; // from question 1
    vector <double > div_diff_arr = {35 , 0.7 , 0.045}; // from question 1
    std::cout << "Interpolation is " << newton_interpolation(1955 , x ,</pre>

→ div_diff_arr);
}
```

#### Interpolatoin is 35.43

Please note that the result 35.43 is close to 36.72, now I'll combine the 2 function together to have entire pipe

The following code looks the same but it combines both of the functions

```
#include <vector>
#include <iostream>
#include <cmath>
using namespace std;
double div_diff(vector<double>x, vector<double>y){
   if (x.size() == 1)
       return y[0];
   vector<double>::const_iterator start = x.begin() + 1;
   vector<double>::const_iterator end = x.end();
   vector<double> x_from_1(start, end);
   start = y.begin() +1;
    end = y.end();
   vector<double> y_from_1(start, end);
   start = x.begin();
   end = x.end() - 1;
   vector<double> x_no_last_element(start, end);
```

```
start = y.begin();
    end = y.end() - 1;
    vector<double> y_no_last_element(start, end);
    return ((div_diff(x_from_1 , y_from_1) -

→ div_diff(x_no_last_element,y_no_last_element)))/(x.back() -

    x.front());
double newton\_interpolation(double x ,vector<double> x\_arr ,
→ vector<double>div_diff_arr){
  double acc = 0;
  for (int i =0;i < div_diff_arr.size();i++){</pre>
      double mal = div_diff_arr[i];
      for(int j = 0; j < i; j++){
          mal *= std::pow((x-x_arr[j]),j);
          acc += mal;
}
  return acc;
}
vector <double> subarray(vector <double> arr , auto first , auto last ){
    vector<double> subarr(first , last);
    return subarr;
int main(){
    vector <double > x = \{1951 , 1961 , 1971 , 1981\}; // from question 1
    vector \langle double \rangle y = \{35,42,58,84\}; // from question 1
    vector <double> div_diff_arr;
    vector <double>sub_x;
    vector <double> sub_y;
    auto first_x = x.begin();
    auto last_x = x.begin();
    auto first_y = y.begin();
    auto last_y = y.begin();
    for( int i =0 ; i < x.size() ; i++ ){</pre>
           first_x = x.begin();
           last_x = x.begin() + i + 1;
           sub_x = subarray(x, first_x, last_x);
           first_y = y.begin();
           last_y = y.begin() + i + 1;
           sub_y = subarray(y,first_y, last_y);
        \label{linear_diff_arr.push_back} \\ \mbox{div\_diff(sub\_x , sub\_y} \\
    std::cout << "Interpolation is " << newton_interpolation(1955 , x ,</pre>

→ div_diff_arr);
```

Interpolatoin is 35.174

Calculate the newton interpolation polinom of the function

$$f(x) = x^3$$

using the the set of point

using the function from question the

I'll calculate the coefficient

$$[y_0], [y_0, y_1], [y_0, y_1, y_2], [y_0, y_1, y_2, y_3]$$

```
def div_diff(x , y):
    if len(x) == 1:
        return y[0]
    return (div_diff(x[1:],y[1:]) - div_diff(x[:-1],y[:-1]))/(x[-1] -
        x[0])
#example
#return div_diff([8.1,8.3],[16.9446 , 17.56492])
x = my_data[0][1:] #Get the data from the table
y = my_data[1][1:] # Get the data from the table
newton_coeff = [div_diff(x[:i], y[:i]) for i in range(1,len(x))]
return newton_coeff
```

$$1 \quad 7.0 \quad 6.0 \quad 1.0$$

which is exactly

From the formula of newton interpolation

$$N(x) = [y_0] + [y_0, y_1](x - x_0) + \dots + [y_0, \dots, y_k](x - x_0)(x - x_1) \dots (x - x_{k-1})$$
(2)

$$N(x) = 1 + 7(x-1) + 6(x-1)(x-2) + 1(x-1)(x-2)(x-3)$$
 (3)

```
from sympy import symbols , init_printing , simplify
x = symbols('x')
init_printing(use_unicode=True)
return simplify(1+7*(x-1)+6*(x-1)*(x-2) + 1*(x-1)*(x-2)*(x-3))
```

x\*\*3

Which means that our interpolation simplify to  $x^3$ Note that the error from the function  $f(x) = x^3$  is

$$E = |f(x) - N(x)| = |x^3 - x^3| = 0$$

which means that for all  $x \in \mathbb{R}$  the error is 0