Chapitre 8

Colinéarité de vecteurs

I. Vecteurs colinéaires

Le plan est muni d'un repère (O; \vec{i} , \vec{j}).

1) Produit d'un vecteur par un nombre

Définition:

Soit $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur et λ un nombre réel.

Le produit du vecteur \vec{u} par le réel λ est le vecteur λ \vec{u} de coordonnées $\begin{pmatrix} \lambda x \\ \lambda y \end{pmatrix}$.

Exemple:

I est le milieu d'un segment [AB]équivaut à $\overrightarrow{AI} = \frac{1}{2} \overrightarrow{AB}$.

Propriétés:

Pour tout vecteur \vec{u} et tout nombre réel λ .

- $\lambda \vec{u}$ a même direction que \vec{u}
- Si $\lambda > 0$, alors \vec{u} et $\lambda \vec{u}$ sont de **même sens**.
- Si $\lambda < 0$, alors \vec{u} et $\lambda \vec{u}$ sont de sens contraire.
- $||\lambda \vec{u}|| = |\lambda|||\vec{u}||$

Exemple:

Dans la base ci-contre, $\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, $2\vec{u} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$ et $-2\vec{u} = \begin{pmatrix} -4 \\ -2 \end{pmatrix}$.

1

Remarques:

- Quel que soit le réel λ , $\lambda \vec{0} = \vec{0}$.
- Quel que soit le vecteur \vec{u} , $0\vec{u} = \vec{0}$

Propriétés:

Si une homothétie de centre O et de rapport λ transforme un point A en un point A' et un point B en un point B', alors $\overline{A'B'} = \lambda \overline{AB}$

2) Règles de calcul

Propriétés:

Pour tous vecteurs \vec{u} et \vec{v} et pour tous nombres réels λ et λ ':

- $\lambda(\vec{u}+\vec{v})=\lambda\vec{u}+\lambda\vec{v}$
- $(\lambda + \lambda')\vec{u} = \lambda \vec{u} + \lambda' \vec{u}$
- $\lambda(\lambda'\vec{u}) = (\lambda\lambda')\vec{u}$

Pour tout vecteur \vec{u} et tout nombre réel λ :

 $\lambda \vec{u} = \vec{0}$ si, et seulement si, $\lambda = 0$ ou $\vec{u} = \vec{0}$

Exemples:

- $3(\overline{AB} + \overline{EF}) = 3\overline{AB} + 3\overline{EF}$
- $2(\overline{AB} \overline{EF}) = 2\overline{AB} 2\overline{EF}$
- $2\overline{AB} 5\overline{AB} = (2-5)\overline{AB} = -3\overline{AB}$
- $-5(2\overline{AB}) = -10\overline{AB}$

3) Colinéarité de vecteurs

Définition:

Soient \vec{u} et \vec{v} deux vecteurs.

On dit que \vec{u} et \vec{v} sont **colinéaires** si, et seulement si, il existe un réel λ tel que $\vec{u} = \lambda \vec{v}$ ou $\vec{v} = \lambda \vec{u}$.

Remarques:

- Deux vecteurs, non nuls, sont colinéaires si, et seulement si, ils ont la même direction.
- Le vecteur nul est colinéaire à tous les vecteurs.

Exemple:

Les vecteurs $\vec{u} \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -8 \\ 20 \end{pmatrix}$ sont colinéaires car $\vec{v} = -4\vec{u}$.

Propriété :

Deux vecteurs \vec{u} et \vec{v} , non nuls, sont colinéaires si, et seulement si, leurs coordonnées sont proportionnelles.

<u>Démonstration:</u>

Soient deux vecteurs \vec{u} et \vec{v} de coordonnées respectives $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

 \vec{u} et \vec{v} sont colinéaires si, et seulement si, il existe λ tel que $\vec{u} = \lambda \vec{v}$ si, et seulement si, les coordonnées de \vec{u} et \vec{v} sont proportionnelles.

II. Applications

Le plan est muni d'une base (\vec{i}, \vec{j}) .

1) <u>Déterminant</u>

Définition:

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ deux vecteurs.

On appelle **déterminant** de \vec{u} et \vec{v} le nombre det $(\vec{u}, \vec{v}) = xy' - yx'$.

Remarque:

On note aussi $\det(\vec{u}, \vec{v}) = \begin{vmatrix} x x' \\ y y' \end{vmatrix}$.

Propriété :

Soient \vec{u} et \vec{v} deux vecteurs.

 \vec{u} et \vec{v} sont **colinéaires** si, et seulement si, det(\vec{u} , \vec{v}) = 0.

Exemple:

Les vecteurs $\vec{u} \begin{pmatrix} 2 \\ -5 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -8 \\ 20 \end{pmatrix}$ sont colinéaires car $2 \times 20 - (-5) \times (-8) = 40 - 40 = 0$.

3

Remarques:

- $\det(\vec{u}, \vec{u}) = 0$
- $\det(\vec{v}, \vec{u}) = -\det(\vec{u}, \vec{v})$

Propriété :

L'aire du parallélogramme ABCD est égale à $|\det(\overline{AB}, \overline{AD})|$.

Exemple:

Soit ABCD un parallélogramme tel que $\overrightarrow{AB} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ et $\overrightarrow{AD} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$. det $(\overrightarrow{AB}, \overrightarrow{AD}) = -9$. L'aire de ABCD est égale à 9 u.a.

2) Parallélisme

Propriété :

Soient A, B, C et D quatre points distincts.

Les droites (AB) et (CD) sont parallèles si, et seulement si, les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

Exemple:

Soit A(2; 3), B(5; 4), M(5; 1) et N(-1; -1).

On a donc
$$\overrightarrow{AB} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
 et $\overrightarrow{MN} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$.

Ainsi det $(\overrightarrow{AB}, \overrightarrow{MN}) = 3 \times 1 - 1 \times 3 = 3 - 3 = 0.$

Donc les vecteurs \overrightarrow{AB} et \overrightarrow{MN} sont colinéaires et les droites (AB) et (MN) sont parallèles.

<u>Propriété</u>:

Trois points distincts A, B et C sont alignés si, et seulement si, les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Remarque:

Si les vecteurs \overline{AB} et \overline{AC} sont colinéaires, alors les droites (AB) et (AC) sont parallèles. Mais comme elles ont un point commun, elles seront confondues, donc les points A, B et C sont alignés.

Exemple:

Soit A(-4; 3), B(7; 0) et C(0; 2).

On a donc
$$\overrightarrow{AB} \begin{pmatrix} 11 \\ -3 \end{pmatrix}$$
 et $\overrightarrow{AC} \begin{pmatrix} 4 \\ -1 \end{pmatrix}$.

Ainsi det $(\overline{AB}, \overline{AC}) = 11 \times (-1) - 4 \times (-3) = (-11) - (-12) = 1 \neq 0.$

