PROBLEM SET 9

Anthony Tam, CSC236

02/12/2016

Question 1.

Part a) Give a 4-state DFA that accepts this language L.

The initial state of the DFA is q_0

The accepting states of the DFA are q_0 , q_1 , and q_2

Part b) Give a proper state invariant for each state of your DFA.

State q_0 - ϵ or A string ending in a which does not contain bba

State q_1 - A string ending with a single b

State q_2 - A string ending with at least two consecutive b's

State q_3 - A string containing the substring bba

Part c) Prove that your DFA has the minimal number of states for accepting L.

Lets pick the following strings:

 $w_0 = \epsilon$

 $w_1 = b$

 $w_2 = bb$

 $w_3 = bba$

Pair 1 (w_0 and w_1) Pair 2 (w_0 and w_2)

Choose x = ba Choose x = a

 $w_0x = ba$, accepted. $w_1x = bba$, rejected. $w_0x = a$, accepted. $w_2x = bba$, rejected.

Pair 3 (w_0 and w_3) Pair 4 (w_1 and w_2)

Choose $x = \epsilon$ Choose x = a

 $w_0x = \epsilon$, accepted. $w_1x = bba$, rejected. $w_1x = ba$, accepted. $w_2x = bba$, rejected.

Pair 5 (w_1 and w_3) Pair 6 (w_2 and w_3)

Choose $x = \epsilon$ Choose $x = \epsilon$

 $w_1x = b$, accepted. $w_3x = bba$, rejected. $w_2x = bb$, accepted. $w_3x = bba$, rejected.

: Since no pairs end in the same state, 4 states are needed.

Assignment № 9 Page 1

Question 2. Use the subset construction algorithm from lecture to produce an equivalent DFA from the following NFA.

Old State	Symbol	New State	Parent State Number	State Number	New State
$\{q_0\}$	ϵ	$\{q_0, q_4\}$	NA	1	Υ
$\{q_0, q_4\}$	0	$\{q_2, q_3\}$	1	2	Y
$\{q_0, q_4\}$	1	{ q ₃ }	1	3	Y
$\{q_2,q_3\}$	ϵ	$\{q_1, q_2, q_3\}$	2	4	Y
$\{q_2,q_3\}$	0	$\{q_4\}$	2	5	Y
$\{q_2,q_3\}$	1	$\{q_{2}\}$	2	6	Υ
{q ₃ }	0	$\{q_4\}$	3	5	N
{ q ₃ }	1	Ø	3	NA	N
$\{q_1, q_2, q_3\}$	ϵ	$\{q_1, q_2, q_3\}$	4	4	N
$\{q_1, q_2, q_3\}$	0	$\{q_4\}$	4	5	N
$\{q_1, q_2, q_3\}$	1	$\{q_1,q_2\}$	4	7	Υ
$\{q_4\}$	0	Ø	5	NA	N
$\{q_4\}$	1	$\{q_3\}$	5	3	N
{q ₂ }	ϵ	9 1	6	8	Υ
{q ₂ }	0	Ø	6	NA	N
{q ₂ }	1	{ q ₂ }	6	6	N
$\{q_1, q_2\}$	ϵ	$\{q_1, q_2, q_3\}$	7	4	N
$\{q_1, q_2\}$	0	Ø	7	NA	N
$\{q_1,q_2\}$	1	$\{q_1, q_2\}$	7	7	N
{q ₁ }	ϵ	q ₃	8	3	N
$\{q_1\}$	0	Ø	8	NA	N
{q ₁ }	1	$\{q_1\}$	8	8	N

Assignment № 9 Page 2