한양대학교 인공지능연구실 SinGAN: Learning a Generative Model from a Single Natural Image 20201102 세미나 강사무엘

Index

- Intro
- Method
- Result
- Reference

SinGAN Intro

- 현재까지 대부분의 GAN모델은 특정 Domain (사람 얼굴, 침실 등)에 한하여 Image를 생성했고, 많은 Data가 필요했다.
- 다양한 Class로 구성된 Dataset을 학습하는 것이 불가능 하였으며, Input 값에 조건을 걸어 주 거나 Task (Super Resolution, Inpainting 등) 를 한정하여 연구가 진행되었다.

적은 수의 Image만 가지고 (혹은 1장) GAN을 학습할 수 있을까?

Intro

Editing Paint to image **Super-resolution** Harmonization Animation Training Image Input Output

SinGAN Method

• SinGAN의 목표는 Single Training Image의 내부 분포를 배울 수 있는 Unconditional Generative Model을 형성하는 것

Image의 Global한 특징부터 Texture, Object의 세부적인 정보까지 학습 필요 한양대학교 인공지능연구실 Method

SinGAN Input Image Model Real Fake G_0 D_0 \tilde{x}_0 x_0 G_{N-1} D_{N-1} Training Progression z_{N-1} \tilde{x}_{N-1} x_{N-1} G_N z_N x_N **Mult-scale Patch Mult-scale Patch** Effective Discriminator **Patch Size** Generator

- 3x3 Conv-BatchNorm-LeakyReLU 를 5번 반복한 간단한 Fully-Convolutional 구조
- 제일 Coarse한 Generator는 32개의 Kernel을 사용하였고, 4개의 Scale이 증가할 때마다 Kernel 수를 2배로 증가

SinGAN

Model

$$\min_{G_n} \max_{D_n} \mathcal{L}_{adv}(G_n, D_n) + \alpha \mathcal{L}_{rec}(G_n).$$

• Loss Function은 Adversarial Loss와 Reconstruction Loss로 구성

$$\min_{G_n} \max_{D_n} \left| \mathcal{L}_{adv}(G_n, D_n) \right| + \alpha \mathcal{L}_{rec}(G_n).$$

- Adversarial Loss는 PatchGAN 원리를 이용
- 영역별 구체적인 정보를 학습하기 위해 사용
- 한 부분의 데이터를 알아내기 위해 이웃하고 있는 데이터들의 관계를 파악하여 판단
- $L_{adv}(\cdot)$: WGAN GP

$$\min_{G_n} \max_{D_n} \mathcal{L}_{adv}(G_n, D_n) + \alpha \mathcal{L}_{rec}(G_n).$$

- Reconstruction Loss에는 L2 Norm Loss 사용
- Global 한 정보를 얻기 위해 사용

$$\{z_N^{\text{rec}}, z_{N-1}^{\text{rec}}, \ldots, z_0^{\text{rec}}\} = \{z^*, 0, \ldots, 0\}$$

for
$$n < N$$
, $\mathcal{L}_{rec} = ||G_n(0, (\tilde{x}_{n+1}^{rec}) \uparrow^r) - x_n||^2$

for
$$n = N$$
. $\mathcal{L}_{\text{rec}} = \|G_N(z^*) - x_N\|^2$

Result

Training image

Random samples from a single image

SinGAN Result

1st Scale	Diversity	Survey	Confusion	
N	0.5	paired	$21.45\% \pm 1.5\%$	
		unpaired	$42.9\% \pm 0.9\%$	
N-1	0.35	paired	$30.45\% \pm 1.5\%$	
		unpaired	$47.04\% \pm 0.8\%$	

- Unpaired : Fake Image와 GT를 동시에 보여주 지 않고 1초간격으로 보여줌
- Paired : Fake Image와 GT를 동시에 보여줌

Result

trained on a dataset

trained on a single image

	External methods		Internal methods		
	SRGAN	EDSR	DIP	ZSSR	SinGAN
RMSE	16.34	12.29	13.82	13.08	16.22
NIQE	3.41	6.50	6.35	7.13	3.71

SinGAN Method

- https://openaccess.thecvf.com/content ICCV 2019/papers/Shaham SinGAN Learning a Generative Model From a Single Natural Image ICCV 2019 paper.pdf
- https://hoya012.github.io/blog/ICCV-2019_review_2/
- https://www.youtube.com/watch?v=-f8sz8AExdc