TeamID: PNT2022TMID11080

Project: Real time river water quality monitoring and control system

IBM ID: IBM-Project-6262-1658825319

LITERATURE SURVEY:

Project: Real-Time River Water Quality Monitoring and Control System

Team Leader : S.SEETHALAKSHMI

Team Member 1: K.SUBIKSHA

Team Member 2: S.SATHIYA

Team Member 3: K.SNEHA

Abstract:

Current water quality monitoring system may be a manual system with an uneventful process and is extremely time-consuming. This paper

proposes a sensor-based water quality monitoring system. the most components of Wireless Sensor Network (WSN) include a

microcontroller for processing the system, communication system for inter and intra node communication and a number of other sensors.

Real-time data access is done by using remote monitoring and Internet of Things (IoT) technology. Data collected at the

apart site are often displayed during a visual format on a server PC with the assistance of Spark streaming analysis through Spark MLlib,

Deep learning neural network models, Belief Rule Based (BRB) system and is additionally compared with standard values. If the

acquired value is above the brink value automated warning SMS alert are sent to the agent, the distinctiveness of our

proposed paper is to get the water monitoring system with high frequency, high mobility, and low powered. Therefore, our

proposed system will immensely help Bangladeshi populations to become conscious against contaminated water further on

stop polluting the water.

Problem-Solution fit canvas 2.0 Purpose / Vision CS CC 5. CUSTOMER CONSTRAINTS 1. CUSTOMER SEGMENT(S) Sensors are used Aqua ponics Compact in size Dam safety organisation (SDSO) > Consumes low power Wholesaler of mineral water 6. PROBLEM ROOT CAUSE RC J&P 2. JOBS-TO-BE-DONE / PROBLEMS > It involves improper upkeep of the water supply and inappropriate upkeep of the > To control the flow of water using IOT people. > To identify the ph value and mineral content in > Lack of system administration and the water upkeep is the problem. > To identify the presents of algal bloom in the It uses a lot of electricity. tank or water bodies > The quality, quantity and temperature of the water can be maintained SL 7. YOUR SOLUTION TR 3. TRIGGERS > They are able to recognise the issue with > The system finds a way for supervising and the water without anyone's assistance. monitoring the real time river water so that It uses little energy and is small in size. quality & flow can be maintained Customers will find it easy to use > To consume less powerconsumption and to provide in cheaper cost 4. EMOTIONS: BEFORE / AFTER EM > The device will be in compact size and user Before :Anxity,time consumption and unaware of friendly to use 1 After:aware of things ,less time consumption and pleasure

Project Design Phase-II Solution Requirements (Functional & Nonfunctional)

Date	13 October 2022
Team ID	PNT2022TMID11080
Project Name	Project - lot Based Real time River water que monitoring and control System
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Requirements	River water Protection Monitors PH, Salinity, Turbidity, Conductivit and dissolve solvents and to analyze the q of river water.
FR-2	User Registration	Manual Registration Registration through Form Registration through webpage Registration through Gmail
FR-3	User Confirmation	Confirmation via Phone Confirmation via mail Confirmation via OTP
FR-4	Payment Options	Cash on Delivery NetBanking UPI Credit/Debit/ATM Card
FR-5	Product Delivery and Installation	Door Step delivery Take away Free Installation and 1 year Warranty
FR-6	Product Feedback	Through Webpages Through Phone calls Through Googleforms

Product type -.....+ & amount

TECHNOLOGY ARCHITECTURE

lot based used river water quality and monitoring system

CUSTOMER JOURNEY MAP

PHASES

MOTIVATION

INFORMATION GATHERING ANALZES VARIOUS PRODUCT

ACTIONS

Wants to reduce the river contamination

Wants to choose an efficient product to monitor and prevent contamination

Other water quality testing systems

TOUCHPOINTS

Buy as feel excited After Installation,people no need to worry about water quality User amuse by various products which are available

CUSTOMER FEELING

©

CUSTOMER THOUGHTS Customer thinks it will helpful for better status of river water It will leads for longer time

Customer things alter solution will available

OPPORTUNITIES

The people get better quality of river water Customer know about the process of the system

will aware about other products in the market

PROJECT PLANNING PHASE

PROJECT MILESTONE

Date	21 October 2022
Team ID	PNT2022TMID11080
Project Name	Real-Time River Water Quality Monitoring and Control System
Maximum Marks	4 marks

S.NO	ACTIVITY	ACTIVITY DESCRIPTION	DURATION
	TITLE		
1	Understanding the project	Assign the team members and create repository in the Github,	
	requirement	Assign the task to each	1 WEEK
		members and teach how to use	
		and open and class the Github	
		and IBM career education	
2	Starting of	Advice students to attend	
	project	classes of IBM portal create	
		and develop an rough diagram	
		based on project description	1 WEEK
		and gather of information on	
		IOT and IBM project and team	
		leader assign task to each	
		member of the project	
3	Attend class	Team members and team lead	
		must watch and learn from	
		classes provided by IBM and	4 WEEK
		NALAYATHIRAN and must gain	

Project Planning Phase

Sprint Delivery Plan

Date	21 October 2022	
Team ID	PNT2022TMID11080	
Project Name	Real-Time River Water Quality Monitoring and Control System	
Maximum Marks	8 Marks	

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story /Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Seethalakshmi. S
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	Sathiya.S
Sprint-2		USN-3	As a user, I can register for the application through Facebook	2	Low	Subiksha.K
Sprint-1		USN-4	As a user, I can register for the application through Gmall	2	Medium	Sneha. K
Sprint-1	Login	USN-5	As a user, I can log into the application by Entering email & password	1	High	Seethala kshmi.S

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	30	30 Oct 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	49	06 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	50	07 Nov 2022

Velocity:

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

SPRINT 1 TEAM ID: PNT2022TMID11080

REAL TIME RIVER-WATER QUALITY MONITORING AND CONTROL SYSTEM

PYTHON CODE:

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "84708c"
deviceType = "abcd"
deviceId = "12345"
authMethod = "token"
authToken = "12345678"
def myCommandCallback (cmd):
  print ("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status== "motoron":
    print ("motor is on")
  elif status == "motoroff":
    print ("motor is off")
  else:
    print ("please send proper command")
try:
     deviceOptions = {"org": organization, "type": deviceType, "id": dev
"auth-method":authMethod, "auth-token":authToken}
     deviceCli= ibmiotf.device.Client (deviceOptions)
#..
```

```
#..
except Exception as e:
    print ("Caught evention connecting device: %s" % str(e))
    sys.exit()
```

SPRINT 2

TEAM ID: PNT2022TMID11080

REAL TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM

AIM:

To create device in the IOT Watson Platform and Configure Node Red Services.

REQUIREMENT:

IBM cloud, IBM IOT WATSON PLATFORM, NODE RED SERVICES.

WORKFLOW:

STEP 1:

Log on to IBM cloud and create IBM Watson IOT Platform from IBM cloud Dashboard.

STEP 2:

After Creating IBM Watson IOT Platform, create an Organization (ex.84708c ID: 84708c Bluemix Free)

SPRINT 3 TEAM ID: PNT2022TMID11080

REAL TIME RIVER QUALITY MONITORING AND CONTROL SYSTEM

DESIGN AN APP IN MIT APP INVENTOR

PARAMETERS ARE:

- 1. Ph
- 2. Water turbidity
- 3. Moisture
- 4. Salinity
- 5. Dissolved Oxygen
- 6. Nutrients

SPRINT 4 TEAM ID: PNT2022TMID11080

REAL TIME RIVER QUALITY MONITORING AND CONTROL SYSTEM

NODE RED UI:

Node-red-dashboard

Edit function node

Delete					C
Properties					
Name	Ph				
O Setup		On Start	On Message	On Stop	
1 global 2 msg.pa 3 return	yload-msg.pa	g.payload.Ph) yload.Ph			