腹部超音波画像からの腫瘍検出

B3 原 英吾

1 研究背景および目的

背景

- 検査実施者は超音波器具の操作と同時に診断を行わなければ ならず高難易度
- 肝臓は沈黙の臓器と呼ばれ、炎症やガンがあっても初期には 自覚症状がほとんどない
 - * 自覚しているときには重症化しているケースが多い
- 機械学習による診断のサポート
 - * 提供されているデータセットには、図1の様に明らかなアノテーション不足のある画像が存在する

目的

- 既存の研究を踏まえたモデルの精度向上
 - * noisy label¹による精度低下の改善
- 超音波支援システムの開発
 - * 早期発見につながると良い

図 1: アノテーション不足のある診断画像例

2 これまでの研究のまとめ

- データセット
 - 国立研究開発法人日本医療研究開発機構 $({\rm AMED})^2$ が提供している約9万人に及ぶ以下のデータが付随している
 - *腹部超音波画像, ROI
 - * 年龄, 性別

図 2: データセットに含まれているメタデータの分布

¹今回は図 1 の様なアノテーションが不足しているものを指す

²https://www.amed.go.jp/

- 性別 (図 2a)
 - * 肝細胞癌 (hcc) は男性が罹患しやすい
 - * 血管腫 (hemangioma) は女性が罹患しやすい
- 年齢 (図 2b)
 - * 肝細胞癌 (hcc) は比較的高齢者が罹患しやすい
 - * 単純嚢胞 (cyst), 血管腫 (hemangioma), 転移性癌 (meta) の分布にははあまり特徴がない
 - * その他 (other) は分布が広がっている
 - . 様々な診断が含まれているため

3 前回のLTからの進捗

● データセットの画像サイズとそれに対する bbox の割合を算出

(a) 診断名毎の画像サイズ $(h \times w)$ の分布

(b) 診断名毎の bbox の割合

図 3: データセットに含まれている画像や bbox のサイズ

- 画像サイズの分布 (図 3a)
 - * 先輩方の先行研究で排除されていた 400×400 以下の画像が cyst (単純嚢胞) に 3 枚含まれている
 - * hemangioma(血管腫) は比較的画像サイズが統一されている
 - ・血管腫であるから腫瘍の大きさにあまり偏りが生じていない?
- 診断名毎の bbox の割合 (図 3b)
 - * $\operatorname{cyst}($ 単純嚢胞) は他の診断と比べて bbox の割合が低い $(\frac{1}{2}$ 程度)
 - * cyst(単純嚢胞)での1に近い画像群は先(400×400以下)の画像と同じ
 - ・ 腫瘍全体が映し出されている画像
- 他のモデルを使う環境を整えた
 - YOLOX の動作確認
 - * 超音波画像での学習は行っていない
 - HRNet³の動作確認
 - * 超音波画像での学習は行っていない
 - * 論文の閲読
 - · Deep High-Resolution Representation Learning for Human Pose Estimation [1]
 - · Deep High-Resolution Representation Learning for Visual Recognition [2]
 - · HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation [3]
- GPGPUでの環境を構築

³https://github.com/HRNet

4 今後の課題&スケジュール

- 10/26 まで
 - データが扱いにくいので整理する
 - その形式の DataLoader を作成
 - * ImageFolder を継承したらできそう?
 - * COCO Dataset の様に json 形式で保存すると便利かも?
- できるだけ早めに
 - 研究の方向性を決める
 - 他のモデルで実験を行ってみる
 - * YOLOX
 - * HRNet
 - Confident Learning [4] を利用してみる
 - * ラベルにノイズが含まれていると予想されるデータセットに対して精度を向上させることのできる学習 を行う手法
 - * pip でインストールできる cleanlab⁴というライブラリを用いることで簡単に使える
 - . 調べてみたら元は Keras?

参考文献

- [1] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep High-Resolution Representation Learning for Human Pose Estimation, 2019.
- [2] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, Wenyu Liu, and Bin Xiao. Deep High-Resolution Representation Learning for Visual Recognition, 2020.
- [3] Bowen Cheng1, Bin Xiao2, Jingdong Wang2, Honghui Shi1,3, Thomas S. Huang1, and Lei Zhang. HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation, 2020.
- [4] Curtis G. Northcutt, Lu Jiang, and Isaac L. Chuang. Confident Learning: Estimating Uncertainty in Dataset Labels, 2021.

⁴https://github.com/cleanlab/cleanlab