Ústav fyzikální elektroniky Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Milan Suk **Naměřeno:** 9. března 2017

Obor: F **Skupina:** ČT 8:00 **Testováno:**

Úloha č. **5**:

Měření modulu pružnosti pevných látek

 $T = 23,8 \, {}^{\circ}\text{C}$

p = 99, 9 hPa

 $\varphi = 45 \%$

1. Úvod

Cílem toho měření je změřit

- 1. modul pružnosti v tahu přímou metodou pro ocelový drát zavěšený při stěně
- 2. modul pružnosti v tahu z průhybu nosníku
- 3. modul pružnosti ve smyku pro ocelový drát dynamickou metodou z torzních kmitů

2. Postup měření

N	závaží pro 1. měření	závaží pro 2. měření
1	112.759	99.643
2	108.130	99.643
3	112.200	98.985
4	113.586	99.752
5	113.163	99.771
6	112.054	99.682
7	113.350	99.645
8	120.120	99.385
9	108.389	99.418
10	115.190	99.133

Tabulka 1: Měření hmotností závaží

2.1. Modul pružnosti v tahu přímou metodou

Nejprve jsem určil hmotnosti m_i zatěžovacích závaží na digitálních váhách. Znám délku drátu l=1.565m a změřil jsem si jeho tloušťku $d=(1.00\pm0.01)mm$.

Obrázek 1: Měření prodloužení drátu v závěrslosti na celkovém zatížení

Fitování na linerání funkci (f(x) = ax + b) jsem provedl v programu gnuplot s následujícím výsledkem.

$$f(x) = 113.015x - 3.39723$$

pro směrnici a=113.0, u(a)=0.3 platí

$$u(E) = \frac{4gl}{\pi d^2 a} \tag{1}$$

Pro odchylku ze ZŠN platí

$$u(E) = \frac{4gl}{\pi d^2 a} \sqrt{\left(\frac{2u(d)}{d}\right)^2 + \left(\frac{u(a)}{a}\right)^2}$$
 (2)

tedy výsledná nejistota modulu pružnosti je

$$u(E) = 3490$$

a po dosazení

$$E = (173 \pm 3)kPa$$

2.2. Modul pružnosti v tahu z průhybu nosníku

Nejprve jsem změřil rozměry nosníků

$$a_{mosaz} = (0.51 \pm 0.05)mm$$

 $b_{mosaz} = (2.84 \pm 0.05)mm$
 $l_{mosaz} = (90.1 \pm 0.1)mm$
 $a_{ocel} = (0.48 \pm 0.05)mm$
 $b_{ocel} = (2.84 \pm 0.05)mm$
 $l_{ocel} = (90.1 \pm 0.1)mm$

mosaz (a [cm])	mosaz (b [cm])	ocel (a [cm])	ocel (b [cm])
0.510	2.835	0.485	2.845
0.505	2.840	0.480	2.855
0.505	2.840	0.485	2.845
0.525	2.830	0.480	2.840
0.500	2.835	0.480	2.840
0.520	2.840	0.485	2.840
0.510	2.845	0.485	2.830
0.500	2.850	0.490	2.840
0.510	2.840	0.485	2.845
0.505	2.840	0.470	2.855

Tabulka 2: Rozměry nosníku

Obrázek 2: Měření prohnutí desek v závislosti na zatížení. Fialové body = mosaz. Modré body = ocel

Podobně jako u prvního měření si nechám programem gnuplot vypočítat lineární regresy a zjistím parametr y z rovnice níže.

$$E = \frac{mgl^3}{4a^3by} \tag{3}$$

$$y_{mosaz} = 0.0047733 \pm 9.441 \cdot 10^{-6}$$

 $y_{ocel} = 0.00273151 \pm 2.145 \cdot 10^{-6}$

Ze ZŠN určím nejistotu měření pomocí vzorce níže.

$$u(E) = \frac{gl^3}{4a^3by} \sqrt{\left(\frac{3u(l)}{l}\right)^2 + \left(\frac{3u(a)}{a}\right)^2 + \left(\frac{u(b)}{b}\right)^2 + \left(\frac{u(y)}{y}\right)^2}$$
(4)

po dosazení

$$E_{mosaz} = (10.0 \pm 0.3)MPa$$

 $E_{ocel} = (197.0 \pm 0.6)MPa$

2.3. Modul pružnosti ve smyku

Hmostnot m koule je známa a její poloměr R jsem změřil. Dále jsem určil délku drátu l a jeho poloměr r.

$$R = (49.76 \pm 0.01)mm$$

$$r = (0.99 \pm 0.01)m$$

$$l = (52.2 \pm 0.1)cm$$

$$m = (1.99 \pm 0.01)cm$$

Poté jsem měl dobu trvání deseti period otáčení koule.

$$T = (1.98 \pm 0.01)s$$

$$G = \frac{16\pi mR^2l}{5r^4T^2} \tag{5}$$

Nejistotu měření určím pomocí

$$u(G) = G\sqrt{\left(\frac{2u(R)}{R}\right)^2 + \left(\frac{u(l)}{l}\right)^2 + \left(\frac{4u(r)}{r}\right)^2 + \left(\frac{2u(T)}{T}\right)^2}$$
 (6)

což po dosazení dává výsledek

$$G = (340 \pm 8)GPa$$

3. Zhodnocení měření, závěr

Modul pružnosti v tahu vyšel přímou metodou

$$E_1 = (173 \pm 3)kPa$$

Modul pružnosti z průhybu nosníku vyšel pro mosaz

$$E_{mosaz} = (10.0 \pm 0.3) MPa$$

a pro ocel

$$E_{ocel} = (197.0 \pm 0.6) MPa$$

A pro modul prožnosti ve smyku jsem zjistil hodnotu

$$G = (340 \pm 8)GPa$$