

Test report No.: 10517778S-A Page: 1 of 54

Issued date : December 11, 2014 Revised date : December 16, 2014

FCC ID : YSKW55

RADIO TEST REPORT

Test Report No.: 10517778S-A

Applicant : OLYMPUS IMAGING CORP.

Type of Equipment : Wireless LAN Module

Model No. : S055WIFI-PCA

FCC ID : YSKW55

Test regulation : FCC Part 15 Subpart C: 2014

Test result : Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.

Date of test:	November 10 to 14, 2014
Tested by:	W. Kojima
	Wataru Kojima
	Engineer
	Consumer Technology Division
Approved by :	T. Amamura
	Toyokazu Imamura
	Leader
	Consumer Technology Division

╛	The testing in which	"Non-accreditation"	is displayed is of	outside the accred	itation scopes in	UL J	apan.
---	----------------------	---------------------	--------------------	--------------------	-------------------	------	-------

There is no testing item of "Non-accreditation".

UL Japan, Inc.

Shonan EMC Lab. 13-EM-F0429 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 10517778S-A Page : 2 of 54

Issued date : December 11, 2014 Revised date : December 16, 2014

FCC ID : YSKW55

REVISION HISTORY

Original Test Report No.: 10517778S-A

Revision	Revision	Test report No.	Date	Page revised	Contents
1 10517778S-A December 16, 2014 4 Correction of antenna information	- (Original)	10517778S-A	December 11, 2014	-	-
		10517778S-A	December 16, 2014	4	Correction of antenna information

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10517778S-A Page

: 3 of 54 : December 11, 2014 Issued date

FCC ID : YSKW55

Contents

	Page
SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	5
SECTION 4: Operation of E.U.T. during testing	8
SECTION 5: Conducted emission	9
SECTION 6: 6dB bandwidth & Occupied bandwidth (99%)	10
SECTION 7: Maximum peak conducted output power	10
SECTION 8: Peak power density	10
SECTION 9: Radiated emission	11
Contents of APPENDIXES	13
APPENDIX 1: Data of Radio tests	14
APPENDIX 2: Test instruments	51
APPENDIX 3: Photographs of test setup	52

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10517778S-A Page: 4 of 54

Issued date : December 11, 2014 Revised date : December 16, 2014

FCC ID : YSKW55

SECTION 1: Customer information

Company Name : OLYMPUS IMAGING CORP.

Address : 2951, Ishikawa-machi, Hachioji-shi, Tokyo, 192-8507, Japan

Telephone Number : +81-42-642-2283 Facsimile Number : +81-42-642-2398 Contact Person : Kenichi Aoki

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Wireless LAN Module Model No. : S055WIFI-PCA Serial No. : Refer to 4.2 Rating : DC3.2V

Receipt Date of Sample : November 7, 2014

Country of Mass-production : China

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification of EUT : No modification by the test lab.

2.2 Product description

Model: S055WIFI-PCA (referred to as the EUT in this report) is a Wireless LAN Module.

Clock frequency(ies) in the system : 26MHz

Radio specification:

Equipment type : Transceiver Frequency of operation : 2412-2462MHz

Bandwidth : 20MHz Channel spacing : 5MHz

Type of modulation : DSSS (IEEE 802.11b), OFDM (IEEE 802.11g/n)

Antenna type : $\lambda/4$ Monopole

Antenna connector type : None
Antenna gain : -3.5dBi
ITU code : D1D, G1D
Operation temperature range : -10 to +40 deg.C

FCC 15.31 (e) / 212

This host device provides stable voltage (DC3.2V) constantly to the module regardless of input voltage.

Therefore, the equipment complies with the requirement.

FCC 15.203 / 212

It is impossible for end users to replace the antenna, because it is soldered on the circuit board.

Therefore, the equipment complies with the requirement.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 10517778S-A Page : 5 of 54

Issued date : December 11, 2014

FCC ID : YSKW55

SECTION 3: Test specification, procedures & results

3.1 Test specification

Test specification : FCC Part 15 Subpart C: 2014,

final revised on August 15, 2014 and effective October 14, 2014

Title FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.209 Radiated emission limits, general requirements

Section 15.247 Operation within the bands 902-928MHz, 2400-2483.5MHz,

and 5725-5850MHz

3.2 Procedures & Results

Item	Test Procedure *1)	Specification	Remarks	Deviation	Worst Margin	Results
Conducted emission	ANSI C63.10:2009	FCC 15.207	-	N/A	31.6dB Freq.: 0.18468MHz Detector: Quasi-Peak Phase: N Mode: Tx 2412MHz, IEEE 802.11g	Complied
6dB bandwidth	ANSI C63.10:2009	FCC 15.247 (a)(2)	Conducted	N/A		Complied
Maximum peak conducted output power	ANSI C63.10:2009	FCC 15.247 (b)(3)	Conducted	N/A	* See data	Complied
Out of band emission & Restricted band edges	ANSI C63.10:2009	FCC 15.109, 15.247 (d) & 15.209	Conducted / Radiated	N/A	7.4dB Freq.: 12060.000MHz Polarization: Horizontal Detection: Average Mode: Tx 2412MHz, IEEE 802.11n	Complied
Power density	ANSI C63.10:2009	FCC 15.247 (e)	Conducted	N/A	* See data	Complied

Note: UL Japan's EMI Work Procedures No.13-EM-W0420 and 13-EM-W0422.

3.3 Addition to standard

Item	Test Procedure	Specification	Remarks	Worst Margin	Results	
Occupied bandwidth (99%)	ANSI C63.4:2009 RSS-Gen 4.6.1	-	Conducted	-	-	
Note: UL Japan's Work Procedures No. 13-EM-W0420 and 13-EM-W0422						

^{*} Other than above, no addition, exclusion nor deviation has been made from the standard.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*1)} These tests were also referred to KDB 558074 v03 r02 (FCC), "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247".

Test report No.: 10517778S-A Page: 6 of 54

Issued date : December 11, 2014

FCC ID : YSKW55

3.4 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Item	Frequency range	No.1 SAC*1/SR*2 (±)	No.2 SAC/SR (±)	No.3 SAC/SR (±)
Conducted emission (AC Mains) LISN	150kHz-30MHz	3.6 dB	3.4 dB	3.4 dB
Radiated emission	9kHz-30MHz	3.7 dB	3.5 dB	3.5 dB
(Measurement distance: 3m)	30MHz-300MHz	4.8 dB	4.9 dB	4.7 dB
	300MHz-1GHz	5.0 dB	5.0 dB	4.8 dB
	1GHz-15GHz	4.9 dB	4.9 dB	4.9 dB
Radiated emission	15GHz-18GHz	5.7 dB	5.7 dB	5.7 dB
(Measurement distance: 1m)	18GHz-40GHz	4.5 dB	4.3 dB	4.3 dB

^{*1:} SAC=Semi-Anechoic Chamber

Conducted emission test

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test

The data listed in this test report has enough margin, more than the site margin.

Antenna port conducted test

Power measurement uncertainty above 1GHz for this test was: (±) 0.68dB Spurious emission (Conducted) measurement (below 1GHz) uncertainty for this test was: (±) 1.5dB Spurious emission (Conducted) measurement (1G-3GHz) uncertainty for this test was: (±) 1.7dB Spurious emission (Conducted) measurement (3G-18GHz) uncertainty for this test was: (±) 2.4dB Spurious emission (Conducted) measurement (18G-26.5GHz) uncertainty for this test was: (±) 2.5dB Bandwidth Measurement uncertainty for this test was: (±) 0.66%

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2:} SR= Shielded Room is applied besides radiated emission

Test report No. : 10517778S-A Page : 7 of 54

Issued date : December 11, 2014

FCC ID : YSKW55

3.5 Test location

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number : +81 463 50 6400 Facsimile number : +81 463 50 6401 JAB Accreditation No. : RTL02610

or in recreation rec.	111202010			
	IC Registration No.	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Maximum measurement distance
☐ No.1 semi-anechoic chamber	2973D-1	20.6 x 11.3 x 7.65	20.6 x 11.3	10m
No.2 semi-anechoic chamber ■	2973D-2	20.6 x 11.3 x 7.65	20.6 x 11.3	10m
☐ No.3 semi-anechoic chamber	2973D-3	12.7 x 7.7 x 5.35	12.7 x 7.7	5m
☐ No.4 semi-anechoic chamber	-	8.1 x 5.1 x 3.55	8.1 x 5.1	1
☐ No.1 shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	1
☑ No.2 shielded room	-	6.8 x 4.1 x 2.7	6.8 x 4.1	1
☐ No.3 shielded room	-	6.3 x 4.7 x 2.7	6.3 x 4.7	1
☐ No.4 shielded room	-	4.4 x 4.7 x 2.7	4.4 x 4.7	1
☐ No.5 shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
☐ No.6 shielded room	-	7.8 x 6.4 x 2.7	7.8 x 6.4	-
No.1 Measurement room	-	2.55 x 4.1 x 2.5	-	-

3.6 Test setup, Data of test & Test instruments

Refer to APPENDIX 1 to 3.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 10517778S-A Page : 8 of 54

Issued date : December 11, 2014

FCC ID : YSKW55

SECTION 4: Operation of E.U.T. during testing

4.1 Operating mode

Test item	Mode	Tested frequency	Worst data mode *1)
Conducted emission, Radiated emission (below 1GHz) *2)	Transmitting IEEE 802.11g	2412MHz	PN9, 36Mbps
Other items	Transmitting IEEE 802.11b	2412MHz, 2437MHz, 2462MHz	PN9, 11Mbps
	Transmitting IEEE 802.11g	2412MHz, 2437MHz, 2462MHz	PN9, 36Mbps
	Transmitting IEEE 802.11n HT20	2412MHz, 2437MHz, 2462MHz	PN9, MCS0

^{*1)} The worst condition was determined based on the test result of Maximum Peak Output Power.

EUT has the power settings by the software as follows:

Ect has the power settings by the software as follows,				
Power settings	Fixed	ı		
Software	Wireless Test v1.0.1.2	i		

Justification: The system was configured in typical fashion (as customer would normally use it) for testing.

4.2 Configuration and peripherals

^{*}Cabling and setup were taken into consideration and test data was taken under worse case conditions.

Description of EUT and support equipment

	arbiton of he i una support equipment							
No.	Item	Model number	Serial number	Manufacturer	Remark			
A	Wireless LAN Module	S055WIFI-PCA	*2)	OLYMPUS	EUT			
				IMAGING CORP.				
В	Digital Still Camera	E-P5	PP2-216	OLYMPUS	-			
				IMAGING CORP.				
C	Rechargeable	BLN-1	QTB0BLN1-008	OLYMPUS	-			
	Li-ion Battery			IMAGING CORP.				
D	Power Supply	PAN35-10A	ML002085	Kikusui	*1)			

List of cable used

No.	Item	Length (m)	Shield	Remark
1	FPC	0.04	Unshielded	-
2	DC line	0.2	Unshielded	*1)
3	AC Power	1.5	Unshielded	*1)

^{*1)} This item was used during Conducted emission test and Antenna port conducted tests.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*2)} Test operating mode was determined as follows according to "Section 1 of 6 802.11 a/b/g/n testing- Managing Complex Regulatory Approvals - "of TCB Council Workshop October 2009.

^{*2)} Conducted emission test and Antenna port conducted tests: PP2-001, Radiated emission tests: PP2-002:

Test report No.: 10517778S-A Page: 9 of 54

Issued date : December 11, 2014

FCC ID : YSKW55

SECTION 5: Conducted emission

5.1 Operating environment

Test place : See test data (APPENDIX 1)
Temperature : See test data (APPENDIX 1)
Humidity : See test data (APPENDIX 1)

5.2 Test configuration

EUT was placed on a platform of nominal size, 1m by 1.5m, raised 0.8m above the conducting ground plane.

The table is made of Styrofoam and covered with polyvinyl chloride. That has very low permittivity.

The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT, including peripherals was aligned and was flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from LISN.

Each EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN to the input power source.

Photographs of the set up are shown in APPENDIX 3.

5.3 Test conditions

Frequency range : 0.15 - 30MHz EUT position : Table top

5.4 Test procedure

The AC Mains Terminal Continuous disturbance Voltage had been measured with the EUT within a Shielded room. The EUT was connected to a Line Impedance Stabilization Network (LISN) via DC power supply. An overview sweep with peak detection has been performed.

The measurements had been performed with a quasi-peak detector and if required, a CISPR average detector.

The conducted emission measurements were made with the following detection of the test receiver.

Detection Type : Quasi-Peak/ CISPR Average

IF Bandwidth : 9kHz

5.5 Results

Summary of the test results: Pass

Refer to APPENDIX 1.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10517778S-A Page: 10 of 54

Issued date : December 11, 2014

FCC ID : YSKW55

SECTION 6: 6dB bandwidth & Occupied bandwidth (99%)

Test procedure

The bandwidth was measured with a spectrum analyzer connected to the antenna port.

The test was measured based on Method 8.2 Option 2 of KDB 558074 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247".

Summary of the test results: Pass

Refer to APPENDIX 1.

SECTION 7: Maximum peak conducted output power

Test procedure

The Maximum Peak Output Power was measured with a power meter connected to the antenna port. The test was measured based on Method 9.1.2 PKPM1 of KDB 558074 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247".

Detection type: Peak / Average *1)

Summary of the test results: Pass

Refer to APPENDIX 1

SECTION 8: Peak power density

Test procedure

The peak power density was measured with a spectrum analyzer connected to the antenna port.

 $\begin{array}{lll} \text{Instrument used} & : & \text{Spectrum Analyzer} \\ \text{RBW} \ / \ \text{VBW} & : & 3 \text{kHz} \ / \ 9.1 \text{kHz} \end{array}$

The test was measured based on Method 10.2 PKPSD of KDB 558074 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247".

Summary of the test results: Pass

Refer to APPENDIX 1.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

^{*1)} Average detector was used only for Reference data.

Test report No.: 10517778S-A Page: 11 of 54

Issued date : December 11, 2014

FCC ID : YSKW55

SECTION 9: Radiated emission

9.1 Operating environment

Test place : See test data (APPENDIX 1)
Temperature : See test data (APPENDIX 1)
Humidity : See test data (APPENDIX 1)

9.2 Test configuration

EUT was placed on a urethane platform of nominal size, 0.5m by 0.5m, raised 0.8m above the conducting ground plane. Photographs of the set up are shown in APPENDIX 3.

9.3 Test conditions

Frequency range : 30MHz - 25GHz EUT position : Table top

9.4 Test procedure

The Radiated Electric Field Strength intensity has been measured on a semi-anechoic chamber with a ground plane and at a distance of 3m (below 15GHz) / 1m (above 15GHz) (Refer to Figure 1). Measurements were performed with quasi-peak, peak and average detector. The measuring antenna height was varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detection.

Frequency	30-1000MHz	1-25GHz		20dBc
Detection type	Quasi-Peak	Peak	Average *1)	Peak
IF Bandwidth	120kHz	RBW: 1MHz	RBW: 1MHz	RBW: 100kHz
		VBW: 3MHz	VBW: 3MHz	VBW: 300kHz
			Detector: Linear Voltage Averaging	

^{*1)} Average Power Measurement was measured based on 13.3.2 of KDB 558074 "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247".

The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

Worst case:

Antenna polarization	Below 1GHz	Above 1GHz	
		1-18GHz	18-25GHz
Horizontal	Y	Y	Y
Vertical	Y	Z	X

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 10517778S-A Page : 12 of 54

Issued date : December 11, 2014

FCC ID : YSKW55

Figure 1. Antenna angle

9.5 Band edge

Band edge level at 2390MHz and 2483.5MHz is below the limits of FCC 15.209 and band edge level at 2400MHz is below the 20dBc. Refer to the data.

9.6 Results

Summary of the test results: Pass

* No noise was detected above the 8th order harmonics.

Refer to APPENDIX 1.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 10517778S-A Page : 13 of 54

Issued date : December 11, 2014

FCC ID : YSKW55

Contents of APPENDIXES

APPENDIX 1: Data of Radio tests

Conducted emission
6dB bandwidth
Maximum peak output power
Radiated emission (Spurious emissions)
Peak power density
Occupied bandwidth

APPENDIX 2: Test instruments

Test instruments

APPENDIX 3: Photographs of test setup

Conducted emission Radiated emission Pre-check of the worst position

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Shonan EMC Lab. No.2 Shielded Room

Date: 2014/11/14

OLYMPUS IMAGING CORP. Company Kind of EUT

Wireless LAN Module S055WIFI-PCA

PP2-001

Serial No. Remarks

Model No.

Transmitting(IEEE802.11g)2412MHz Mode

Order No. 10517778S Power DC 3.2V

Temp./Humi. 23deg.C. / 30%RH

Limit1 : FCC 15C(15.207) QP Limit2 : FCC 15C(15.207) AV

Engineer : Wataru Kojima

	F	Rea	ding	0.5	Res	ults	Lin	nit	Mai	rgin		
No.	Freq.	<qp></qp>	<av></av>	C.Fac	<qp></qp>	<av></av>	<qp></qp>	<av></av>	<qp></qp>	<av></av>	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15000	20.2		12.6	32.8		66.0	56.0	33.2		N	
2	0.18468	20.0		12.6	32.6		64.2	54.2	31.6		N	
3	0.67703	10.0		12.6	22.6		56.0	46.0	33.4		N	
4	4.99999	2.1		13.0			56.0	46.0			N	
5	12.00396			13.4	19.7		60.0	50.0			N	
6	24.00000			13.9	17.9		60.0	50.0			N	
7	0.15000	20.4		12.6	33.0		66.0	56.0	33.0		L1	
8	0.18469	19.9		12.6	32.5		64.2	54.2	31.7		L1	
9	0.67703	9.9		12.6	22.5		56.0	46.0	33.5		L1	
10	4.99999	1.9		13.0	14.9		56.0	46.0	41.1		L1	
11	12.00000	8.5		13.4	21.9		60.0	50.0			L1	
12	24.00000	3.5		13.9	17.4		60.0	50.0	42.6		L1	

-6dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014
Temperature / Humidity 25deg.C , 54%RH
Engineer Akio Hayashi

Mode Tx, IEEE802.11b, PN9, worst data mode 11Mbps

Freq.	-6dB Bandwidth	Limit
[MHz]	[MHz]	[MHz]
2412.0000	7.062	> 0.500
2437.0000	7.357	> 0.500
2462.0000	7.489	> 0.500

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-6dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014
Temperature / Humidity 25deg.C , 54%RH
Engineer Akio Hayashi

Mode Tx, IEEE802. 11g, PN9, worst data mode 36Mbps

Freq.	-6dB Bandwidth	Limit
[MHz]	[MHz]	[MHz]
2412.0000	15.747	> 0.500
2437.0000	15.424	> 0.500
2462.0000	15.748	> 0.500

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

-6dB Bandwidth

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014
Temperature / Humidity 25deg.C , 54% RH
Engineer Akio Hayashi

Mode Tx, IEEE802.11n HT20, PN9, worst data mode 0(MCS)

Freq.	-6dB Bandwidth	Limit
[MHz]	[MHz]	[MHz]
2412.0000	16.125	> 0.500
2437.0000	15.145	> 0.500
2462.0000	15.135	> 0.500

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

$\underbrace{ \textbf{Maximum Peak Conducted Output Power}}_{(PKPM1)}$

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

Mode Tx, IEEE802.11b, PN9, 11 Mbps worst data mode:

(* P/M: Power Meter with power sensor)

			(
	Ch	Freq.	P/M (Peak)	Cable	Atten.	Res	Result		mit	Margin		
			Reading	Loss	Loss							
ı		[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]		
ı	Low	2412.0	-2.83	1.85	9.90	8.92	7.80	30.00	1000	21.08		
	Mid	2437.0	-3.39	1.86	9.90	8.37	6.87	30.00	1000	21.63		
	High	2462.0	-3.50	1.88	9.89	8.27	6.71	30.00	1000	21.73		

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

[Pre check]

Data rate	Freq.	P/M (Peak)	Cable	Atten.	Do	cult	T i	mit	Margin	1
Data Tate	rieq.	` ′	Cable	Auen.	Result		Lillit		Margin	
		Reading	Loss	Loss						
[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
1	2412.0	-3.18	1.85	9.90	8.57	7.19	30.00	1000	21.43]
2	2412.0	-3.13	1.85	9.90	8.62	7.28	30.00	1000	21.38]
5.5	2412.0	-3.08	1.85	9.90	8.67	7.36	30.00	1000	21.33	
11	2412.0	-2.83	1.85	9.90	8.92	7.80	30.00	1000	21.08	W

Vorst

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Conducted Output Power(Reference)

(AVGPM)

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014
Temperature / Humidity 25deg.C , 54%RH

Akio Hayashi

Mode Tx, IEEE802.11b, PN9, worst data mode : 11 Mbps

(* P/M: Power Meter with power sensor, AV: Average)

		(17/11 Tower Meter with power sensor, 117/11/erage)										
Ch	Freq.	P/M (AV)	Cable	Atten.		Re	sult					
		Reading (*1)	Loss	Loss		i						
	[MHz]	[dBm]	[dB]	[dB]		[dBm] [mW]						
Low	2412.0	-6.29	1.85	9.90		5.46 3.52						
Mid	2437.0	-6.64	1.86	9.90		5.12	3.25					
High	2462.0	-6.78	1.88	9.89		4.99 3.16						

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

[Pre check]

Engineer

	Data rate	Freq.	P/M (AV)	Cable	Atten.	Re	sult
			Reading (*1)	Loss	Loss		
	[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
	1	2412.0	-6.50	1.85	9.90	5.25	3.35
	2	2412.0	-6.40	1.85	9.90	5.35	3.43
	5.5	2412.0	-6.32	1.85	9.90	5.43	3.49
	11	2412.0	-6.29	1.85	9.90	5.46	3.52

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

It was means that the intervals during which the transmitter is off or is transmitting at reduced power level is not included in the average.

Therefore, there is no need to add duty cycle correction to the result.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^(*1) Power was measured with using the gate function of power meter.

$\underbrace{ \textbf{Maximum Peak Conducted Output Power}}_{(PKPM1)}$

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

Mode Tx, IEEE802. 11g, PN9, 36 Mbps worst data mode:

(* P/M: Power Meter with power sensor)

		•	1 ,							
Ch	Freq.	P/M (Peak)	Cable	Atten.	Res	Result		mit	Margin	
		Reading	Loss	Loss						
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
Low	2412.0	5.65	1.85	9.90	17.40	54.95	30.00	1000	12.60	
Mid	2437.0	5.10	1.86	9.90	16.86	48.53	30.00	1000	13.14	
High	2462.0	5.00	1.88	9.89	16.77	47.53	30.00	1000	13.23	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

[Pre check]

Data rate	Freq.	P/M (Peak)	Cable	Atten.	Re	sult	Li	mit	Margin	
		Reading	Loss	Loss						
[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
6	2412.0	4.26	1.85	9.90	16.01	39.90	30.00	1000	13.99	
9	2412.0	5.47	1.85	9.90	17.22	52.72	30.00	1000	12.78	
12	2412.0	4.81	1.85	9.90	16.56	45.29	30.00	1000	13.44	
18	2412.0	4.21	1.85	9.90	15.96	39.45	30.00	1000	14.04	
24	2412.0	5.00	1.85	9.90	16.75	47.32	30.00	1000	13.25	
36	2412.0	5.65	1.85	9.90	17.40	54.95	30.00	1000	12.60	Wors
48	2412.0	5.53	1.85	9.90	17.28	53.46	30.00	1000	12.72	
54	2412.0	4.67	1.85	9.90	16.42	43.85	30.00	1000	13.58	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Conducted Output Power(Reference)

(AVGPM)

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014

Temperature / Humidity 25deg.C , 54%RH

Engineer Akio Hayashi

Mode Tx, IEEE802. 11g, PN9, worst data mode: 24 Mbps

(* P/M: Power Meter with power sensor, AV: Average)

_			,	meter with po		υ,		
ſ	Ch	Freq.	P/M (AV)	Cable	Atten.		Re	sult
			Reading (*1)	Loss	Loss			
ı		[MHz]	[dBm]	[dB]	[dB]		[dBm]	[mW]
ĺ	Low	2412.0	-5.86	1.85	9.90		5.89	3.88
	Mid	2437.0	-6.31	1.86	9.90		5.45	3.51
	High	2462.0	-6.36	1.88	9.89		5.41	3.48

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

[Pre check]

Data rate	Freq.	P/M (AV)	Cable	Atten.	Re	sult
		Reading (*1)	Loss	Loss		
[Mbps]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
6	2412.0	-6.10	1.85	9.90	5.65	3.67
9	2412.0	-6.15	1.85	9.90	5.60	3.63
12	2412.0	-6.02	1.85	9.90	5.73	3.74
18	2412.0	-6.20	1.85	9.90	5.55	3.59
24	2412.0	-5.86	1.85	9.90	5.89	3.88
36	2412.0	-5.98	1.85	9.90	5.77	3.78
48	2412.0	-5.99	1.85	9.90	5.76	3.77
54	2412.0	-6.01	1.85	9.90	5.74	3.75

Sample Calculation:

 $Result = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Atten.\ Loss$

It was means that the intervals during which the transmitter is off or is transmitting at reduced power level is not included in the average.

Therefore, there is no need to add duty cycle correction to the result.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^(*1) Power was measured with using the gate function of power meter.

$\underbrace{ \textbf{Maximum Peak Conducted Output Power}}_{(PKPM1)}$

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Akio Hayashi Engineer

Mode Tx, IEEE802.11n HT20, PN9, worst data mode: 0 (MCS)

(* P/M: Power Meter with power sensor)

Ch	Freq.	P/M (Peak)	Cable	Atten.	Res	sult	Liı	mit	Margin
		Reading	Loss	Loss					
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]
Low	2412.0	4.80	1.85	9.90	16.55	45.19	30.00	1000	13.45
Mid	2437.0	4.32	1.86	9.90	16.08	40.55	30.00	1000	13.92
High	2462.0	4.62	1.88	9.89	16.39	43.55	30.00	1000	13.61

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

[Pre check]

Mode	Freq.	P/M (Peak)	Cable	Atten.	Re	sult	Li	mit	Margin	
		Reading	Loss	Loss						
(MCS)	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	
0	2412.0	4.80	1.85	9.90	16.55	45.19	30.00	1000	13.45	Worst
1	2412.0	4.00	1.85	9.90	15.75	37.58	30.00	1000	14.25	
2	2412.0	4.40	1.85	9.90	16.15	41.21	30.00	1000	13.85	
3	2412.0	4.67	1.85	9.90	16.42	43.85	30.00	1000	13.58	
4	2412.0	4.61	1.85	9.90	16.36	43.25	30.00	1000	13.64	
5	2412.0	3.82	1.85	9.90	15.57	36.06	30.00	1000	14.43	
6	2412.0	4.29	1.85	9.90	16.04	40.18	30.00	1000	13.96	
7	2412.0	3.78	1.85	9.90	15.53	35.73	30.00	1000	14.47	

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Conducted Output Power(Reference)

(AVGPM)

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014

Temperature / Humidity 25deg.C , 54%RH

Engineer Akio Hayashi

Mode Tx, IEEE802.11n HT20, PN9, worst data mode : 5 (MCS)

(* P/M: Power Meter with power sensor, AV: Average)

		(meter with po	,		
Ch	Freq.	P/M (AV)	Cable	Atten.	Re	sult
		Reading (*1)	Loss	Loss		
	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
Low	2412.0	-6.09	1.85	9.90	5.66	3.68
Mid	2437.0	-6.29	1.86	9.90	5.47	3.52
High	2462.0	-6.41	1.88	9.89	5.36	3.44

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

[Pre check]

Mode	Freq.	P/M (AV)	Cable	Atten.	Re	sult
		Reading (*1)	Loss	Loss		
(MCS)	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]
0	2412.0	-6.23	1.85	9.90	5.52	3.56
1	2412.0	-6.14	1.85	9.90	5.61	3.64
2	2412.0	-6.22	1.85	9.90	5.53	3.57
3	2412.0	-6.12	1.85	9.90	5.63	3.66
4	2412.0	-6.26	1.85	9.90	5.49	3.54
5	2412.0	-6.09	1.85	9.90	5.66	3.68
6	2412.0	-6.13	1.85	9.90	5.62	3.65
7	2412.0	-6.13	1.85	9.90	5.62	3.65

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

It was means that the intervals during which the transmitter is off or is transmitting at reduced power level is not included in the average.

Therefore, there is no need to add duty cycle correction to the result.

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

^(*1) Power was measured with using the gate function of power meter.

Radiated Emission

Test place No.2 Semi Anechoic Chamber

Date November 12, 2014 November 13, 2014 Temperature / Humidity 24 deg.C, 49 %RH 24 deg.C, 34 %RH

Engineer Wataru Kojima

Mode Tx, 2412 MHz

Tx, IEEE802.11b, PN9, 11Mbps

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2390.000	PK	43.2	25.9	14.5	38.2	45.4	73.9	28.5	100	354	
Hori.	3618.000	PK	45.5	28.1	6.8	37.9	42.5	73.9	31.4	100	354	
Hori.	4824.000	PK	41.2	30.5	8.0	37.1	42.6	73.9	31.3	100	0	
Hori.	7236.000	PK	44.5	36.3	9.0	39.4	50.4	73.9	23.5	100	0	
Hori.	9648.000	PK	42.7	38.3	9.9	37.6	53.3	73.9	20.6	100	0	
Hori.	12060.000	PK	43.0	39.3	11.3	38.5	55.1	73.9	18.8	100	0	
Hori.	18090.000	PK	52.1	40.8	1.6	49.0	45.5	73.9	28.4	100	16	
Hori.	2390.000	AV	33.1	25.9	14.5	38.2	35.3	53.9	18.6	100	354	
Hori.	3618.000	AV	39.7	28.1	6.8	37.9	36.7	53.9	17.2	100	354	
Hori.	4824.000	AV	32.1	30.5	8.0	37.1	33.5	53.9	20.4	100	0	
Hori.	7236.000	AV	34.2	36.3	9.0	39.4	40.1	53.9	13.8	100	0	
Hori.	9648.000	AV	32.2	38.3	9.9	37.6	42.8	53.9	11.1	100	0	
Hori.	12060.000	AV	34.2	39.3	11.3	38.5	46.3	53.9	7.6	100	0	
Hori.	18090.000	AV	50.3	40.8	1.6	49.0	43.7	53.9	10.2	100	16	
Vert.	2390.000	PK	43.2	25.9	14.5	38.2	45.4	73.9	28.5	100	354	
Vert.	3618.000	PK	44.9	28.1	6.8	37.9	41.9	73.9	32.0	100	136	
Vert.	4824.000	PK	41.1	30.5	8.0	37.1	42.5	73.9	31.4	100	0	
Vert.	7236.000	PK	44.7	36.3	9.0	39.4	50.6	73.9	23.3	100	0	
Vert.	9648.000	PK	42.4	38.3	9.9	37.6	53.0	73.9	20.9	100	0	
Vert.	12060.000	PK	43.1	39.3	11.3	38.5	55.2	73.9	18.7	100	0	
Vert.	18090.000	PK	51.0	40.8	1.6	49.0	44.4	73.9	29.5	100	7	
Vert.	2390.000	AV	33.2	25.9	14.5	38.2	35.4	53.9	18.5	100	354	
Vert.	3618.000	AV	39.4	28.1	6.8	37.9	36.4	53.9	17.5	100	136	
Vert.	4824.000	AV	32.1	30.5	8.0	37.1	33.5	53.9	20.4	100	0	
Vert.	7236.000	AV	34.2	36.3	9.0	39.4	40.1	53.9	13.8	100	0	
Vert.	9648.000	AV	32.2	38.3	9.9	37.6	42.8	53.9	11.1	100	0	
Vert.	12060.000	AV	34.2	39.3	11.3	38.5	46.3	53.9	7.6	100	0	
Vert.	18090.000	AV	48.8	40.8	1.6	49.0	42.2	53.9	11.7	100	7	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor : 15GHz - 40GHz : 20log(3.0m/1.0m) = 9.5dB

20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.000	PK	79.1	25.9	14.6	38.2	81.4	-	-	
Hori.	2400.000	PK	34.2	25.9	14.5	38.2	36.4	61.4	25.0	
Vert.	2412.000	PK	81.6	25.9	14.6	38.2	83.9	-	-	
Vert.	2400.000	PK	34.0	25.9	14.5	38.2	36.2	63.9	27.7	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Radiated Emission

Test place No.2 Semi Anechoic Chamber

Date November 12, 2014 November 13, 2014 Temperature / Humidity 24 deg.C, 49 %RH 24 deg.C, 34 %RH

Engineer Wataru Kojima

Mode 2437 MHz Tx,

Tx, IEEE802.11b, PN9, 11Mbps

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	3655.490	PK	48.0	28.1	6.9	37.9	45.1	73.9	28.8	100	1	
Hori.	4874.000	PK	41.0	30.7	8.0	37.1	42.6	73.9	31.3	100	0	
Hori.	7311.000	PK	42.5	36.4	9.0	39.4	48.5	73.9	25.4	100	0	
Hori.	9748.000	PK	41.5	38.3	9.9	37.6	52.1	73.9	21.8	100	0	
Hori.	12185.000	PK	42.5	39.2	11.3	38.4	54.6	73.9	19.3	100	0	
Hori.	18277.450	PK	52.8	40.8	1.6	49.0	46.2	73.9	27.7	100	1	
Hori.	3655.490	AV	40.4	28.1	6.9	37.9	37.5	53.9	16.4	100	1	
Hori.	4874.000	AV	31.1	30.7	8.0	37.1	32.7	53.9	21.2	100	0	
Hori.	7311.000	AV	33.3	36.4	9.0	39.4	39.3	53.9	14.6	100	0	
Hori.	9748.000	AV	31.0	38.3	9.9	37.6	41.6	53.9	12.3	100	0	
Hori.	12185.000	AV	32.6	39.2	11.3	38.4	44.7	53.9	9.2	100	0	
Hori.	18277.450	AV	50.1	40.8	1.6	49.0	43.5	53.9	10.4	100	1	
Vert.	3655.490	PK	45.4	28.1	6.9	37.9	42.5	73.9	31.4	100	357	
Vert.	4874.000	PK	40.7	30.7	8.0	37.1	42.3	73.9	31.6	100	0	
Vert.	7311.000	PK	42.3	36.4	9.0	39.4	48.3	73.9	25.6	100	0	
Vert.	9748.000	PK	41.6	38.3	9.9	37.6	52.2	73.9	21.7	100	0	
Vert.	12185.000	PK	42.4	39.2	11.3	38.4	54.5	73.9	19.4	100	0	
Vert.	18277.450	PK	50.4	40.8	1.6	49.0	43.8	73.9	30.1	100	12	
Vert.	3655.490	AV	37.0	28.1	6.9	37.9	34.1	53.9	19.8	100	357	
Vert.	4874.000	AV	31.1	30.7	8.0	37.1	32.7	53.9	21.2	100	0	
Vert.	7311.000	AV	32.9	36.4	9.0	39.4	38.9	53.9	15.0	100	0	
Vert.	9748.000	AV	31.2	38.3	9.9	37.6	41.8	53.9	12.1	100	0	
Vert.	12185.000	AV	32.5	39.2	11.3	38.4	44.6	53.9	9.3	100	0	
Vert.	18277.450	AV	47.2	40.8	1.6	49.0	40.6	53.9	13.3	100	12	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)
Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Radiated Emission

Test place No.2 Semi Anechoic Chamber

Date November 12, 2014 November 13, 2014 Temperature / Humidity 24 deg.C, 49 %RH 24 deg.C, 34 %RH

Engineer Wataru Kojima

Mode Tx, 2462 MHz

Tx, IEEE802.11b, PN9, 11Mbps

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2483.500	PK	41.9	25.9	14.6	38.1	44.3	73.9	29.6	100	4	
Hori.	3692.800	PK	45.4	28.2	6.9	37.9	42.6	73.9	31.3	100	326	
Hori.	4924.000	PK	42.3	30.9	8.0	37.0	44.2	73.9	29.7	100	0	
Hori.	7386.000	PK	42.7	36.5	9.1	39.4	48.9	73.9	25.0	100	0	
Hori.	9848.000	PK	39.7	38.3	9.9	37.5	50.4	73.9	23.5	100	0	
Hori.	12310.000	PK	41.0	39.1	11.4	38.3	53.2	73.9	20.7	100	0	
Hori.	18465.000	PK	52.1	40.8	1.6	49.1	45.4	73.9	28.5	100	1	
Hori.	2483.500	AV	32.7	25.9	14.6	38.1	35.1	53.9	18.8	100	4	
Hori.	3692.800	AV	40.0	28.2	6.9	37.9	37.2	53.9	16.7	100	326	
Hori.	4924.000	AV	31.7	30.9	8.0	37.0	33.6	53.9	20.3	100	0	
Hori.	7386.000	AV	32.7	36.5	9.1	39.4	38.9	53.9	15.0	100	0	
Hori.	9848.000	AV	30.2	38.3	9.9	37.5	40.9	53.9	13.0	100	0	
Hori.	12310.000	AV	31.4	39.1	11.4	38.3	43.6	53.9	10.3	100	0	
Hori.	18465.000	AV	49.2	40.8	1.6	49.1	42.5	53.9	11.4	100	1	
Vert.	2483.500		42.5	25.9	14.6	38.1	44.9	73.9	29.0	121	117	
Vert.	3693.000	PK	44.5	28.2	6.9	37.9	41.7	73.9	32.2	100	138	
Vert.	4924.000	PK	41.4	30.9	8.0	37.0	43.3	73.9	30.6	100	0	
Vert.	7386.000	PK	43.3	36.5	9.1	39.4	49.5	73.9	24.4	100	0	
Vert.	9848.000	PK	40.0	38.3	9.9	37.5	50.7	73.9	23.2	100	0	
Vert.	12310.000	PK	40.4	39.1	11.4	38.3	52.6	73.9	21.3	100	0	
Vert.	18465.000	PK	50.9	40.8	1.6	49.1	44.2	73.9	29.7	114	10	
Vert.	2483.500	AV	33.1	25.9	14.6	38.1	35.5	53.9	18.4	121	117	
Vert.	3693.000	AV	38.1	28.2	6.9	37.9	35.3	53.9	18.6	100	138	
Vert.	4924.000	AV	31.4	30.9	8.0	37.0	33.3	53.9	20.6	100	0	
Vert.	7386.000	AV	32.7	36.5	9.1	39.4	38.9	53.9	15.0	100	0	
Vert.	9848.000	AV	30.3	38.3	9.9	37.5	41.0	53.9	12.9	100	0	
Vert.	12310.000	AV	31.0	39.1	11.4	38.3	43.2	53.9	10.7	100	0	
Vert.	18465.000	AV	48.7	40.8	1.6	49.1	42.0	53.9	11.9	114	10	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor : 15GHz - 40GHz : 20log(3.0m/1.0m) = 9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Radiated Emission

Test place No.2 Semi Anechoic Chamber

Date November 12, 2014 November 13, 2014 Temperature / Humidity 24 deg.C, 49 %RH 24 deg.C, 34 %RH

Wataru Kojima Engineer

Mode Tx, 2412 MHz

Tx, IEEE802.11g, PN9, 36Mbps

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	336.000	QP	42.5	14.7	6.7	31.7	32.2	46.0	13.8	100	221	
Hori.	2390.000	PK	42.5	25.9	14.5	38.2	44.7	73.9	29.2	100	314	
Hori.	3618.000	PK	45.8	28.1	6.8	37.9	42.8	73.9	31.1	100	0	
Hori.	4824.000	PK	41.1	30.5	8.0	37.1	42.5	73.9	31.4	100	0	
Hori.	7236.000	PK	43.5	36.3	9.0	39.4	49.4	73.9	24.5	100	0	
Hori.	9648.000	PK	43.1	38.3	9.9	37.6	53.7	73.9	20.2	100	0	
Hori.	12060.000	PK	43.4	39.3	11.3	38.5	55.5	73.9	18.4	100	0	
Hori.	18090.000	PK	53.4	40.8	1.6	49.0	46.8	73.9	27.1	100	3	
Hori.	2390.000	AV	32.0	25.9	14.5	38.2	34.2	53.9	19.7	100	314	
Hori.	3618.000	AV	39.0	28.1	6.8	37.9	36.0	53.9	17.9	100	0	
Hori.	18090.000	AV	51.5	40.8	1.6	49.0	44.9	53.9	9.0	100	3	
Vert.	143.936	QP	36.5	14.6	8.3	31.8	27.6	43.5	15.9	100	275	
Vert.	336.000	QP	45.2	14.7	6.7	31.7	34.9	46.0	11.1	176	320	
Vert.	432.002	QP	39.9	16.6	7.3	31.7	32.1	46.0	13.9	128	247	
Vert.	2390.000	PK	43.1	25.9	14.5	38.2	45.3	73.9	28.6	100	146	
Vert.	3618.000	PK	45.6	28.1	6.8	37.9	42.6	73.9	31.3	100	332	
Vert.	4824.000	PK	41.6	30.5	8.0	37.1	43.0	73.9	30.9	100	0	
Vert.	7236.000	PK	43.6	36.3	9.0	39.4	49.5	73.9	24.4	100	0	
Vert.	9648.000	PK	42.3	38.3	9.9	37.6	52.9	73.9	21.0	100	0	
Vert.	12060.000	PK	43.3	39.3	11.3	38.5	55.4	73.9	18.5	100	0	
Vert.	18090.000	PK	52.7	40.8	1.6	49.0	46.1	73.9	27.8	110	12	
Vert.	2390.000	AV	32.9	25.9	14.5	38.2	35.1	53.9	18.8	100	146	
Vert.	3618.000	AV	38.7	28.1	6.8	37.9	35.7	53.9	18.2	100	332	
Vert.	18090.000		50.5	40.8	1.6	49.0	43.9	53.9	10.0	110	12	

Result = Reading + Ant. Fac. + Loss (Cable + (Attenuator or Filter) (below 18GHz) - Distance factor (above 15GHz)) - Gain (Amprifier) - Gain (Am

Distance factor: 15GHz - 40GHz: 20log(3.0m/1.0m) = 9.5dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Result	Limit	Margin	Remark
							Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4824.000	AV	30.7	30.5	8.0	37.1	1.0	33.1	53.9	20.8	
Hori.	7236.000	AV	33.2	36.3	9.0	39.4	1.0	40.1	53.9	13.8	
Hori.	9648.000	AV	31.3	38.3	9.9	37.6	1.0	42.9	53.9	11.0	
Hori.	12060.000	AV	33.1	39.3	11.3	38.5	1.0	46.2	53.9	7.7	
Vert.	4824.000	AV	30.7	30.5	8.0	37.1	1.0	33.1	53.9	20.8	
Vert.	7236.000	AV	33.4	36.3	9.0	39.4	1.0	40.3	53.9	13.6	
Vert.	9648.000	AV	31.0	38.3	9.9	37.6	1.0	42.6	53.9	11.3	
Vert.	12060.000	AV	33.0	39.3	11.3	38.5	1.0	46.1	53.9	7.8	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier) + Duty factor Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.000	PK	76.4	25.9	14.6	38.2	78.7	-	-	
Hori.	2400.000	PK	36.3	25.9	14.5	38.2	38.5	58.7	20.2	
Vert.	2412.000	PK	80.0	25.9	14.6	38.2	82.3	-	-	
Vert.	2400.000	PK	37.9	25.9	14.5	38.2	40.1	62.3	22.2	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Telephone Facsimile

: +81 463 50 6400 27 of 54 : +81 463 50 6401

Radiated Emission

Test place No.2 Semi Anechoic Chamber

Date November 12, 2014 November 13, 2014 Temperature / Humidity 24 deg.C, 49 %RH 24 deg.C, 34 %RH

Wataru Kojima Engineer

Mode 2437 MHz Tx,

Tx, IEEE802.11g, PN9, 36Mbps

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	3655.500	PK	45.2	28.1	6.9	37.9	42.3	73.9	31.6	100	333	
Hori.	4874.000	PK	40.6	30.7	8.0	37.1	42.2	73.9	31.7	100	0	
Hori.	7311.000	PK	42.6	36.4	9.0	39.4	48.6	73.9	25.3	100	0	
Hori.	9748.000	PK	41.4	38.3	9.9	37.6	52.0	73.9	21.9	100	0	
Hori.	12185.000	PK	41.8	39.2	11.3	38.4	53.9	73.9	20.0	100	0	
Hori.	18277.400	PK	52.4	40.8	1.6	49.0	45.8	73.9	28.1	100	1	
Hori.	3655.500	AV	39.4	28.1	6.9	37.9	36.5	53.9	17.4	100	333	
Hori.	18277.400	AV	50.0	40.8	1.6	49.0	43.4	53.9	10.5	100	1	
Vert.	3655.500	PK	43.8	28.1	6.9	37.9	40.9	73.9	33.0	100	12	
Vert.	4874.000	PK	41.0	30.7	8.0	37.1	42.6	73.9	31.3	100	0	
Vert.	7311.000	PK	42.5	36.4	9.0	39.4	48.5	73.9	25.4	100	0	
Vert.	9748.000	PK	41.8	38.3	9.9	37.6	52.4	73.9	21.5	100	0	
Vert.	12185.000	PK	42.0	39.2	11.3	38.4	54.1	73.9	19.8	100	0	
Vert.	18277.400	PK	51.6	40.8	1.6	49.0	45.0	73.9	28.9	110	12	
Vert.	3655.500	AV	36.8	28.1	6.9	37.9	33.9	53.9	20.0	100	12	
Vert.	18277.400	AV	48.4	40.8	1.6	49.0	41.8	53.9	12.1	110	12	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Result	Limit	Margin	Remark
							Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4874.000	AV	31.3	30.7	8.0	37.1	1.0	33.9	53.9	20.0	
Hori.	7311.000	AV	33.1	36.4	9.0	39.4	1.0	40.1	53.9	13.8	
Hori.	9748.000	AV	31.3	38.3	9.9	37.6	1.0	42.9	53.9	11.0	
Hori.	12185.000	AV	32.5	39.2	11.3	38.4	1.0	45.6	53.9	8.3	
Vert.	4874.000	AV	31.6	30.7	8.0	37.1	1.0	34.2	53.9	19.7	
Vert.	7311.000	AV	33.1	36.4	9.0	39.4	1.0	40.1	53.9	13.8	
Vert.	9748.000	AV	31.6	38.3	9.9	37.6	1.0	43.2	53.9	10.7	
Vert.	12185.000	AV	32.8	39.2	11.3	38.4	1.0	45.9	53.9	8.0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier) + Duty factor Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Radiated Emission

Test place No.2 Semi Anechoic Chamber

Date November 12, 2014 November 13, 2014 Temperature / Humidity 24 deg.C, 49 %RH 24 deg.C, 34 %RH

Engineer Wataru Kojima

Mode 2462 MHz Tx,

Tx, IEEE802.11g, PN9, 36Mbps

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Eroguanav	Dataston		Ant Foo	Logg	Gain	Result	Limit	Morain	Unight	Anglo	Remark
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss				Margin	Height	C	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2483.500	PK	43.9	25.9	14.6	38.1	46.3	73.9	27.6	138	6	
Hori.	3693.000	PK	44.0	28.2	6.9	37.9	41.2	73.9	32.7	100	0	
Hori.	4924.000	PK	42.0	30.9	8.0	37.0	43.9	73.9	30.0	100	0	
Hori.	7386.000	PK	42.5	36.5	9.1	39.4	48.7	73.9	25.2	100	0	
Hori.	9848.000	PK	40.3	38.3	9.9	37.5	51.0	73.9	22.9	100	0	
Hori.	12310.000	PK	40.8	39.1	11.4	38.3	53.0	73.9	20.9	100	0	
Hori.	18464.900	PK	52.8	40.8	1.6	49.1	46.1	73.9	27.8	100	18	
Hori.	2483.500	AV	34.6	25.9	14.6	38.1	37.0	53.9	16.9	138	6	
Hori.	3693.000	AV	38.1	28.2	6.9	37.9	35.3	53.9	18.6	100	0	
Hori.	18464.900	AV	49.9	40.8	1.6	49.1	43.2	53.9	10.7	100	18	
Vert.	2483.500	PK	42.3	25.9	14.6	38.1	44.7	73.9	29.2	100	355	
Vert.	3693.000	PK	43.6	28.2	6.9	37.9	40.8	73.9	33.1	100	8	
Vert.	4924.000	PK	41.7	30.9	8.0	37.0	43.6	73.9	30.3	100	0	
Vert.	7386.000	PK	42.9	36.5	9.1	39.4	49.1	73.9	24.8	100	0	
Vert.	9848.000	PK	40.2	38.3	9.9	37.5	50.9	73.9	23.0	100	0	
Vert.	12310.000	PK	40.6	39.1	11.4	38.3	52.8	73.9	21.1	100	0	
Vert.	18464.900	PK	52.4	40.8	1.6	49.1	45.7	73.9	28.2	107	10	
Vert.	2483.500	AV	34.1	25.9	14.6	38.1	36.5	53.9	17.4	100	355	
Vert.	3693.000	AV	37.2	28.2	6.9	37.9	34.4	53.9	19.5	100	8	
Vert.	18464.900	AV	49.5	40.8	1.6	49.1	42.8	53.9	11.1	107	10	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)
Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Result	Limit	Margin	Remark
							Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4924.000	AV	31.6	30.9	8.0	37.0	1.0	34.5	53.9	19.4	
Hori.	7386.000	AV	32.9	36.5	9.1	39.4	1.0	40.1	53.9	13.8	
Hori.	9848.000	AV	30.7	38.3	9.9	37.5	1.0	42.4	53.9	11.5	
Hori.	12310.000	AV	31.4	39.1	11.4	38.3	1.0	44.6	53.9	9.3	
Vert.	4924.000	AV	31.6	30.9	8.0	37.0	1.0	34.5	53.9	19.4	
Vert.	7386.000	AV	33.0	36.5	9.1	39.4	1.0	40.2	53.9	13.7	
Vert.	9848.000	AV	30.6	38.3	9.9	37.5	1.0	42.3	53.9	11.6	
Vert.	12310.000	AV	31.2	39.1	11.4	38.3	1.0	44.4	53.9	9.5	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier) + Duty factor Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Radiated Emission

Test place No.2 Semi Anechoic Chamber

Date November 12, 2014 November 13, 2014 Temperature / Humidity 24 deg.C, 49 %RH 24 deg.C, 34 %RH

Wataru Kojima Engineer

Mode Tx, 2412 MHz Tx, IEEE802.11n, PN9, MCS0

(* PK: Peak, AV: Average, QP: Quasi-Peak)

			IV. Average, QI									
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	2390.000	PK	45.8	25.9	14.5	38.2	48.0	73.9	25.9	143	15	
Hori.	3618.000	PK	44.7	28.1	6.8	37.9	41.7	73.9	32.2	100	355	
Hori.	4824.000	PK	41.8	30.5	8.0	37.1	43.2	73.9	30.7	100	0	
Hori.	7236.000	PK	44.6	36.3	9.0	39.4	50.5	73.9	23.4	100	0	
Hori.	9648.000	PK	42.4	38.3	9.9	37.6	53.0	73.9	20.9	100	0	
Hori.	12060.000	PK	44.0	39.3	11.3	38.5	56.1	73.9	17.8	100	0	
Hori.	18090.000	PK	53.6	40.8	1.6	49.0	47.0	73.9	26.9	100	359	
Hori.	2390.000	AV	37.8	25.9	14.5	38.2	40.0	53.9	13.9	143	15	
Hori.	3618.000	AV	39.5	28.1	6.8	37.9	36.5	53.9	17.4	100	355	
Hori.	18090.000	AV	51.5	40.8	1.6	49.0	44.9	53.9	9.0	100	359	
Vert.	2390.000	PK	42.7	25.9	14.5	38.2	44.9	73.9	29.0	115	293	
Vert.	3618.000	PK	44.4	28.1	6.8	37.9	41.4	73.9	32.5	100	108	
Vert.	4824.000	PK	41.7	30.5	8.0	37.1	43.1	73.9	30.8	100	0	
Vert.	7236.000	PK	44.5	36.3	9.0	39.4	50.4	73.9	23.5	100	0	
Vert.	9648.000	PK	42.1	38.3	9.9	37.6	52.7	73.9	21.2	100	0	
Vert.	12060.000	PK	43.7	39.3	11.3	38.5	55.8	73.9	18.1	100	0	
Vert.	18090.000	PK	51.9	40.8	1.6	49.0	45.3	73.9	28.6	108	14	
Vert.	2390.000	AV	32.9	25.9	14.5	38.2	35.1	53.9	18.8	115	293	
Vert.	3618.000	AV	38.2	28.1	6.8	37.9	35.2	53.9	18.7	100	108	
Vert.	18090.000	AV	49.6	40.8	1.6	49.0	43.0	53.9	10.9	108	14	
D 1. D	1' 4 . 5		11 (4		\4 1 104	TII \ D	C . (1		G : ()	· C· \		

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Result	Limit	Margin	Remark
							Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4824.000	AV	31.7	30.5	8.0	37.1	0.2	33.3	53.9	20.6	
Hori.	7236.000	AV	34.0	36.3	9.0	39.4	0.2	40.1	53.9	13.8	
Hori.	9648.000	AV	32.3	38.3	9.9	37.6	0.2	43.1	53.9	10.8	
Hori.	12060.000	AV	34.2	39.3	11.3	38.5	0.2	46.5	53.9	7.4	
Vert.	4824.000	AV	31.6	30.5	8.0	37.1	0.2	33.2	53.9	20.7	
Vert.	7236.000	AV	33.9	36.3	9.0	39.4	0.2	40.0	53.9	13.9	
Vert.	9648.000	AV	32.3	38.3	9.9	37.6	0.2	43.1	53.9	10.8	
Vert.	12060.000	AV	33.9	39.3	11.3	38.5	0.2	46.2	53.9	7.7	

 $Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator\ or\ Filter)(below\ 18GHz) - Distance\ factor(above\ 15GHz)) - Gain(Amprifier) + Duty\ factor\ Distance\ factor:\ 15GHz\ -40GHz:\ 20log(3.0m/1.0m) = 9.5dB$

20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2412.000	PK	79.9	25.9	14.6	38.2	82.2	-	-	
Hori.	2400.000	PK	41.4	25.9	14.5	38.2	43.6	62.2	18.6	
Vert.	2412.000	PK	76.3	25.9	14.6	38.2	78.6	-	-	
Vert.	2400.000	PK	36.1	25.9	14.5	38.2	38.3	58.6	20.3	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz - 40GHz: 20log(3.0m/1.0m) = 9.5dB

UL Japan, Inc. **Shonan EMC Lab.**

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Radiated Emission

Test place No.2 Semi Anechoic Chamber

Date November 12, 2014 November 13, 2014 Temperature / Humidity 24 deg.C, 49 %RH 24 deg.C, 34 %RH

Engineer Wataru Kojima

Mode 2437 MHz Tx, Tx, IEEE802.11n, PN9, MCS0

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	3655.500	PK	44.6	28.1	6.9	37.9	41.7	73.9	32.2	100	346	
Hori.	4874.000	PK	41.4	30.7	8.0	37.1	43.0	73.9	30.9	100	0	
Hori.	7311.000	PK	42.1	36.4	9.0	39.4	48.1	73.9	25.8	100	0	
Hori.	9748.000	PK	41.2	38.3	9.9	37.6	51.8	73.9	22.1	100	0	
Hori.	12185.000	PK	42.1	39.2	11.3	38.4	54.2	73.9	19.7	100	0	
Hori.	18277.400	PK	53.0	40.8	1.6	49.0	46.4	73.9	27.5	100	359	
Hori.	3655.500	AV	39.6	28.1	6.9	37.9	36.7	53.9	17.2	100	346	
Hori.	18277.400	AV	50.3	40.8	1.6	49.0	43.7	53.9	10.2	100	359	
Vert.	3655.500	PK	44.0	28.1	6.9	37.9	41.1	73.9	32.8	100	144	
Vert.	4874.000	PK	41.2	30.7	8.0	37.1	42.8	73.9	31.1	100	0	
Vert.	7311.000	PK	41.9	36.4	9.0	39.4	47.9	73.9	26.0	100	0	
Vert.	9748.000	PK	41.2	38.3	9.9	37.6	51.8	73.9	22.1	100	0	
Vert.	12185.000	PK	42.0	39.2	11.3	38.4	54.1	73.9	19.8	100	0	
Vert.	18277.400	PK	52.6	40.8	1.6	49.0	46.0	73.9	27.9	110	10	
Vert.	3655.500	AV	37.7	28.1	6.9	37.9	34.8	53.9	19.1	100	144	
Vert.	18277.400	AV	49.2	40.8	1.6	49.0	42.6	53.9	11.3	110	10	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Result	Limit	Margin	Remark
							Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4874.000	AV	31.6	30.7	8.0	37.1	0.2	33.4	53.9	20.5	
Hori.	7311.000	AV	33.3	36.4	9.0	39.4	0.2	39.5	53.9	14.4	
Hori.	9748.000	AV	31.2	38.3	9.9	37.6	0.2	42.0	53.9	11.9	
Hori.	12185.000	AV	32.5	39.2	11.3	38.4	0.2	44.8	53.9	9.1	
Vert.	4874.000	AV	31.5	30.7	8.0	37.1	0.2	33.3	53.9	20.6	
Vert.	7311.000	AV	32.8	36.4	9.0	39.4	0.2	39.0	53.9	14.9	
Vert.	9748.000	AV	31.3	38.3	9.9	37.6	0.2	42.1	53.9	11.8	
Vert.	12185.000	AV	32.5	39.2	11.3	38.4	0.2	44.8	53.9	9.1	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier) + Duty factor Distance factor: 15GHz - 40GHz: 20log(3.0m/1.0m)= 9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Radiated Emission

Test place No.2 Semi Anechoic Chamber

Date November 12, 2014 November 13, 2014 Temperature / Humidity 24 deg.C, 49 %RH 24 deg.C, 34 %RH

Wataru Kojima Engineer

Mode 2462 MHz Tx,

Tx, IEEE802.11n, PN9, MCS0

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Protector Protector Reading Anti-Fac. Loss Gain Result Limit Margin Regint Angle Remark Hori. (MHz) (MB/m) (MB/m)	D-1i4	Г	D-44	D 41	A + E	T	C-i-	D14	T invite	Manain	TT-:-1-4	A1-	Damade
Hori. 2483.500 PK 46.1 25.9 14.6 38.1 48.5 73.9 25.4 150 6 Hori. 3693.000 PK 45.1 28.2 6.9 37.9 42.3 73.9 31.6 100 355 Hori. 4924.000 PK 40.8 30.9 8.0 37.0 42.7 73.9 31.2 100 0 Hori. 7386.000 PK 42.4 36.5 9.1 39.4 48.6 73.9 25.3 100 0 Hori. 12310.000 PK 41.1 39.1 11.4 38.3 53.3 73.9 20.6 100 0 Hori. 12483.500 PK 52.2 40.8 1.6 49.1 45.5 73.9 28.4 100 359 Hori. 3693.000 AV 39.2 28.2 6.9 37.9 36.4 53.9 17.5 100 355 Hori. 18464.900 PK 44.3 25.9 14.6 38.1 37.2 53.9 16.7 150 6 Hori. 18464.900 PK 44.3 25.9 14.6 38.1 37.2 53.9 10.9 100 359 Hori. 18464.900 PK 44.3 25.9 14.6 38.1 37.2 53.9 10.9 100 359 Hori. 18464.900 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 2483.500 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 3693.000 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 4924.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 7386.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 9848.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 9848.000 PK 41.9 36.5 9.1 39.4 48.1 73.9 25.8 100 0 Vert. 9848.000 PK 41.9 36.5 9.1 39.4 48.1 73.9 25.8 100 0 Vert. 9848.000 PK 41.9 36.5 9.1 39.4 48.1 73.9 25.8 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 110 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 110 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 110 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290	Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	C	Remark
Hori. 3693.000 PK 45.1 28.2 6.9 37.9 42.3 73.9 31.6 100 355 Hori. 4924.000 PK 40.8 30.9 8.0 37.0 42.7 73.9 31.2 100 0 Hori. 7386.000 PK 42.4 36.5 9.1 39.4 48.6 73.9 25.3 100 0 Hori. 9848.000 PK 40.3 38.3 9.9 37.5 51.0 73.9 22.9 100 0 Hori. 12310.000 PK 41.1 39.1 11.4 38.3 53.3 73.9 20.6 100 359 Hori. 18464.900 PK 52.2 40.8 1.6 49.1 45.5 73.9 28.4 100 359 Hori. 3693.000 AV 39.2 28.2 6.9 37.9 36.4 53.9 17.5 100 355 Hori. 18464.900 PK 44.3 25.9 14.6 38.1 37.2 53.9 16.7 150 6 Hori. 18464.900 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 Vert. 2483.500 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 Vert. 3693.000 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 Vert. 4924.000 PK 44.3 25.9 14.6 38.1 46.7 73.9 33.0 100 125 Vert. 4924.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 7386.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 9848.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 25.8 100 0 Vert. 9848.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 23.3 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 12483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 18464.900 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 18464.900 PK 51.5 40.8 1.6 49.1 44.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290		. ,		[dBuV]	. ,			. ,	. ,			[deg]	
Hori. 4924.000 PK 40.8 30.9 8.0 37.0 42.7 73.9 31.2 100 0 Hori. 7386.000 PK 42.4 36.5 9.1 39.4 48.6 73.9 25.3 100 0 Hori. 9848.000 PK 40.3 38.3 9.9 37.5 51.0 73.9 22.9 100 0 Hori. 12310.000 PK 41.1 39.1 11.4 38.3 53.3 73.9 20.6 100 0 Hori. 18464.900 PK 52.2 40.8 1.6 49.1 45.5 73.9 28.4 100 35.9 Hori. 3693.000 AV 39.2 28.2 6.9 37.9 36.4 53.9 17.5 100 35.5 Hori. 18464.900 AV 49.7 40.8 1.6 49.1 43.0 53.9 10.9 100 35.9 Vert. 2483.500 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 3693.000 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 4924.000 PK 44.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 7386.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 9848.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 9848.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 25.8 100 0 Vert. 9848.000 PK 41.1 30.9 38.3 9.9 37.5 50.6 73.9 23.3 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 18464.900 PK 51.5 40.8 1.6 49.1 44.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 18464.900 PK 51.5 40.8 1.6 49.1 44.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290	Hori.	2483.500	PK	46.1	25.9	14.6	38.1	48.5	73.9	25.4	150	6	
Hori.	Hori.	3693.000	PK	45.1	28.2	6.9	37.9	42.3	73.9	31.6	100	355	
Hori. 9848.000 PK 40.3 38.3 9.9 37.5 51.0 73.9 22.9 100 0 Hori. 12310.000 PK 41.1 39.1 11.4 38.3 53.3 73.9 20.6 100 0 Hori. 18464.900 PK 52.2 40.8 1.6 49.1 45.5 73.9 28.4 100 359 Hori. 2483.500 AV 39.2 28.2 6.9 37.9 36.4 53.9 17.5 100 355 Hori. 18464.900 AV 49.7 40.8 1.6 49.1 43.0 53.9 10.9 100 359 Vert. 2483.500 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 3693.000 PK 43.7 28.2 6.9 37.9 40.9 73.9 33.0 100 125 Vert. 4924.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 7386.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 9848.000 PK 39.9 38.3 9.9 37.5 50.6 73.9 23.3 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 12464.900 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 12464.900 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 12464.900 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 12464.900 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 12464.900 PK 51.5 40.8 1.6 49.1 44.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 35.8 25.9 44.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 44.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 44.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 44.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 44.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 44.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 44.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 44.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 44.6 38.1 38.2 53.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9 3	Hori.	4924.000	PK	40.8	30.9	8.0	37.0	42.7	73.9	31.2	100	0	
Hori. 12310.000 PK 41.1 39.1 11.4 38.3 53.3 73.9 20.6 100 0 Hori. 18464.900 PK 52.2 40.8 1.6 49.1 45.5 73.9 28.4 100 359 Hori. 2483.500 AV 34.8 25.9 14.6 38.1 37.2 53.9 16.7 150 6 Hori. 3693.000 AV 39.2 28.2 6.9 37.9 36.4 53.9 17.5 100 355 Hori. 18464.900 AV 49.7 40.8 1.6 49.1 43.0 53.9 10.9 100 359 Vert. 2483.500 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 3693.000 PK 43.7 28.2 6.9 37.9 40.9 73.9 33.0 100 125 Vert. 4924.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 7386.000 PK 41.9 36.5 9.1 39.4 48.1 73.9 25.8 100 0 Vert. 9848.000 PK 39.9 38.3 9.9 37.5 50.6 73.9 23.3 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 12483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290	Hori.	7386.000	PK	42.4	36.5	9.1	39.4	48.6	73.9	25.3	100	0	
Hori. 18464.900 PK 52.2 40.8 1.6 49.1 45.5 73.9 28.4 100 359 Hori. 2483.500 AV 34.8 25.9 14.6 38.1 37.2 53.9 16.7 150 6 Hori. 3693.000 AV 39.2 28.2 6.9 37.9 36.4 53.9 17.5 100 355 Hori. 18464.900 AV 49.7 40.8 1.6 49.1 43.0 53.9 10.9 100 359 Vert. 2483.500 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 3693.000 PK 43.7 28.2 6.9 37.9 40.9 73.9 33.0 100 125 Vert. 4924.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 7386.000 PK 41.9 36.5 9.1 39.4 48.1 73.9 25.8 100 0 Vert. 9848.000 PK 39.9 38.3 9.9 37.5 50.6 73.9 23.3 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 12483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 38.3 28.2 6.9 37.9 37.9 35.5 53.9 18.4 100 125	Hori.	9848.000	PK	40.3	38.3	9.9	37.5	51.0	73.9	22.9	100	0	
Hori. 2483.500 AV 34.8 25.9 14.6 38.1 37.2 53.9 16.7 150 6 Hori. 3693.000 AV 39.2 28.2 6.9 37.9 36.4 53.9 17.5 100 355 Hori. 18464.900 AV 49.7 40.8 1.6 49.1 43.0 53.9 10.9 100 359 Vert. 2483.500 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 3693.000 PK 43.7 28.2 6.9 37.9 40.9 73.9 33.0 100 125 Vert. 4924.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 7386.000 PK 41.9 36.5 9.1 39.4 48.1 73.9 25.8 100 0 Vert. 9848.000 PK 39.9 38.3 9.9 37.5 50.6 73.9 23.3 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 12483.500 PK 51.5 40.8 1.6 49.1 44.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 18.4 100 125	Hori.	12310.000	PK	41.1	39.1	11.4	38.3	53.3	73.9	20.6	100	0	
Hori. 3693.000 AV 39.2 28.2 6.9 37.9 36.4 53.9 17.5 100 355 Hori. 18464.900 AV 49.7 40.8 1.6 49.1 43.0 53.9 10.9 100 359 Vert. 2483.500 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 4924.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 33.0 100 125 Vert. 7386.000 PK 41.9 36.5 9.1 39.4 48.1 73.9 25.8 100 0 Vert. 9848.000 PK 39.9 38.3 9.9 37.5 50.6 73.9 23.3 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 18464.900 PK 51.5 40.8 1.6 49.1 44.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 38.3 28.2 6.9 37.9 35.5 53.9 18.4 100 125	Hori.	18464.900	PK	52.2	40.8	1.6	49.1	45.5	73.9	28.4	100	359	
Hori. 18464.900 AV 49.7 40.8 1.6 49.1 43.0 53.9 10.9 100 359 Vert. 2483.500 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 3693.000 PK 43.7 28.2 6.9 37.9 40.9 73.9 33.0 100 125 Vert. 4924.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 7386.000 PK 41.9 36.5 9.1 39.4 48.1 73.9 25.8 100 0 Vert. 9848.000 PK 39.9 38.3 9.9 37.5 50.6 73.9 23.3 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 18464.900 PK 51.5 40.8 1.6 49.1 44.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 38.3 28.2 6.9 37.9 35.5 53.9 18.4 100 125	Hori.	2483.500	AV	34.8	25.9	14.6	38.1	37.2	53.9	16.7	150	6	
Vert. 2483.500 PK 44.3 25.9 14.6 38.1 46.7 73.9 27.2 117 290 Vert. 3693.000 PK 43.7 28.2 6.9 37.9 40.9 73.9 33.0 100 125 Vert. 4924.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 7386.000 PK 41.9 36.5 9.1 39.4 48.1 73.9 25.8 100 0 Vert. 9848.000 PK 39.9 38.3 9.9 37.5 50.6 73.9 23.3 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 18464.900 PK 51.5 40.8 1.6 49.1 44.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 38.3 28.2 6.9 37.9 35.5 53.9 18.4 100 125	Hori.	3693.000	AV	39.2	28.2	6.9	37.9	36.4	53.9	17.5	100	355	
Vert. 3693.000 PK 43.7 28.2 6.9 37.9 40.9 73.9 33.0 100 125 Vert. 4924.000 PK 41.1 30.9 8.0 37.0 43.0 73.9 30.9 100 0 Vert. 7386.000 PK 41.9 36.5 9.1 39.4 48.1 73.9 25.8 100 0 Vert. 9848.000 PK 39.9 38.3 9.9 37.5 50.6 73.9 23.3 100 0 Vert. 12310.000 PK 40.6 39.1 11.4 38.3 52.8 73.9 21.1 100 0 Vert. 18464.900 PK 51.5 40.8 1.6 49.1 44.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 38.3 28.2 6.9 37.9 35.5 53.9 18.4 100 125	Hori.	18464.900	AV	49.7	40.8	1.6	49.1	43.0	53.9	10.9	100	359	
Vert. 4924.000 PK 41.1 30.9 RK 37.0 30.9 RK 37.0 30.9 RK 30.9 RK 100 0 RK 0 Vert. 7386.000 PK 41.9 36.5 PK 9.1 39.4 RK 48.1 RK 73.9 RK 25.8 RK 100 RK 0 Vert. 9848.000 PK 39.9 RK 39.1 RK 39.1 RK 38.3 RK 52.8 RK 73.9 RK 23.3 RK 100 RK 0 Vert. 12310.000 PK 40.6 RK 39.1 RK 11.4 RK 38.3 RK 52.8 RK 73.9 RK 21.1 RK 100 RK 0 Vert. 18464.900 PK 51.5 RK 40.8 RK 1.6 RK 49.1 RK 44.8 RK 73.9 RK 29.1 RK 111 RK	Vert.	2483.500	PK	44.3	25.9	14.6	38.1	46.7	73.9	27.2	117	290	
Vert. 7386.000 PK 41.9 PK 36.5 PK 9.1 PK 39.4 PK 48.1 PK 73.9 PK 25.8 PK 100 PK 00 PK 00 PK 39.9 PK 38.3 PK 9.9 PK 37.5 PK 50.6 PK 73.9 PK 23.3 PK 100 PK 00 PK	Vert.	3693.000	PK	43.7	28.2	6.9	37.9	40.9	73.9	33.0	100	125	
Vert. 9848.000 PK PK 39.9 PK 40.6 39.1 PK 39.1 38.3 PK 39.1 50.6 PK 39.1 73.9 PK 38.3 223.3 PK 39.9 100 PK 39.1 00 PK 39.1 11.4 PK 38.3 52.8 PK 39.9 21.1 PK 39.9 21.1 PK 39.9 21.1 PK 39.9 21.1 PK 39.9 20.1 PK 39.9	Vert.	4924.000	PK	41.1	30.9	8.0	37.0	43.0	73.9	30.9	100	0	
Vert. 12310.000 PK 40.6 PK 39.1 PK 11.4 PK 38.3 PK 52.8 PK 73.9 PK 21.1 PK 100 PK 0 PK Vert. 18464.900 PK 51.5 PK 40.8 PK 1.6 PK 49.1 PK 44.8 PK 73.9 PK 29.1 PK 111 PK	Vert.	7386.000	PK	41.9	36.5	9.1	39.4	48.1	73.9	25.8	100	0	
Vert. 18464.900 PK 51.5 40.8 1.6 49.1 44.8 73.9 29.1 111 11 Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 38.3 28.2 6.9 37.9 35.5 53.9 18.4 100 125	Vert.	9848.000	PK	39.9	38.3	9.9	37.5	50.6	73.9	23.3	100	0	
Vert. 2483.500 AV 35.8 25.9 14.6 38.1 38.2 53.9 15.7 117 290 Vert. 3693.000 AV 38.3 28.2 6.9 37.9 35.5 53.9 18.4 100 125	Vert.	12310.000	PK	40.6	39.1	11.4	38.3	52.8	73.9	21.1	100	0	
Vert. 3693.000 AV 38.3 28.2 6.9 37.9 35.5 53.9 18.4 100 125	Vert.	18464.900	PK	51.5	40.8	1.6	49.1	44.8	73.9	29.1	111	11	
	Vert.	2483.500	AV	35.8	25.9	14.6	38.1	38.2	53.9	15.7	117	290	
Vert. 18464.900 AV 48.3 40.8 1.6 49.1 41.6 53.9 12.3 111 11	Vert.	3693.000	AV	38.3	28.2	6.9	37.9	35.5	53.9	18.4	100	125	
	Vert.	18464.900	AV	48.3	40.8	1.6	49.1	41.6	53.9	12.3	111	11	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier)
Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

Average measurement value with duty factor

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Duty	Result	Limit	Margin	Remark
							Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4924.000	AV	31.6	30.9	8.0	37.0	0.2	33.7	53.9	20.2	
Hori.	7386.000	AV	32.8	36.5	9.1	39.4	0.2	39.2	53.9	14.7	
Hori.	9848.000	AV	30.3	38.3	9.9	37.5	0.2	41.2	53.9	12.7	
Hori.	12310.000	AV	31.3	39.1	11.4	38.3	0.2	43.7	53.9	10.2	
Vert.	4924.000	AV	31.9	30.9	8.0	37.0	0.2	34.0	53.9	19.9	
Vert.	7386.000	AV	32.6	36.5	9.1	39.4	0.2	39.0	53.9	14.9	
Vert.	9848.000	AV	30.3	38.3	9.9	37.5	0.2	41.2	53.9	12.7	
Vert.	12310.000	AV	31.1	39.1	11.4	38.3	0.2	43.5	53.9	10.4	

Result = Reading + Ant.Fac. + Loss (Cable + (Attenuator or Filter) (below 18GHz) - Distance factor (above 15GHz)) - Gain (Amprifier) + Duty factor Distance factor : 15GHz - 40GHz : <math>20log(3.0m/1.0m) = 9.5dB

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No : 10517778S-A
Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

 $\begin{array}{ll} \text{Date} & \text{November 10, 2014} \\ \text{Temperature / Humidity} & \text{25deg.C} & \text{, 54\%RH} \\ \end{array}$

Engineer Akio Hayashi

Burst rate confirmation

Tx, IEEE802.11b, PN9, worst data mode 11Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No : 10517778S-A
Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

 $\begin{array}{ll} \text{Date} & \text{November 10, 2014} \\ \text{Temperature / Humidity} & \text{25deg.C} & \text{, 54\%RH} \\ \end{array}$

Engineer Akio Hayashi

Duty Factor Calculation chart

Tx, IEEE802. 11g, PN9, worst data mode 36Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No : 10517778S-A
Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH

Engineer Akio Hayashi

Duty Factor Calculation chart

Tx, IEEE802.11n HT20, PN9, worst data mode 0(MCS)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test Report No: 10517778S-A No.1 Measurement Room

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

Spurious emission (Conducted) Tx, IEEE802.11b, PN9, worst data mode 11Mbps

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

Spurious emission (Conducted) Tx, IEEE802.11b, PN9, worst data mode 11Mbps

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

Spurious emission (Conducted) Tx, IEEE802.11b, PN9, worst data mode 11Mbps

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

Spurious emission (Conducted)

Tx, IEEE802. 11g, PN9, worst data mode 36Mbps

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

Spurious emission (Conducted)

Tx, IEEE802. 11g, PN9, worst data mode 36Mbps

UL Japan, Inc. **Shonan EMC Lab.**

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

Spurious emission (Conducted)

Tx, IEEE802. 11g, PN9, worst data mode 36Mbps

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

<u>Spurious emission (Conducted)</u> Tx, IEEE802.11n HT20, PN9, worst data mode 0(MCS)

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

<u>Spurious emission (Conducted)</u> Tx, IEEE802.11n HT20, PN9, worst data mode 0(MCS)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

<u>Spurious emission (Conducted)</u> Tx, IEEE802.11n HT20, PN9, worst data mode 0(MCS)

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Power Spectral Density

(PKPSD)

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014
Temperature / Humidity 25deg.C , 54%RH
Engineer Akio Hayashi

Mode Tx, IEEE802.11b, PN9, worst data mode 11Mbps

Ch. Freq.	Freq.	Reading	Cable	Atten.	Result	Limit	Margin
	Reading		Loss				
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.0000	2411.69	-28.71	1.38	9.90	-17.43	8.00	25.43
2437.0000	2435.88	-28.15	1.39	9.90	-16.86	8.00	24.86
2462.0000	2461.84	-29.08	1.40	9.89	-17.79	8.00	25.79

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Power Spectral Density

(PKPSD)

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014
Temperature / Humidity 25deg.C , 54%RH
Engineer Akio Hayashi

Mode Tx, IEEE802. 11g, PN9, worst data mode 36Mbps

Ch. Freq.	Freq.	Reading	Cable	Atten.	Result	Limit	Margin
	Reading		Loss				
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.0000	2418.24	-30.08	1.38	9.90	-18.80	8.00	26.80
2437.0000	2434.52	-30.94	1.39	9.90	-19.65	8.00	27.65
2462.0000	2461.38	-30.41	1.40	9.89	-19.12	8.00	27.12

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Maximum Power Spectral Density

(PKPSD)

Test place UL Japan, Inc. Shonan EMC Lab. No.1 Measurement Room

Date November 10, 2014
Temperature / Humidity 25deg.C , 54% RH
Engineer Akio Hayashi

Mode Tx, IEEE802.11n HT20, PN9, worst data mode 0(MCS)

Ch. Freq.	Freq.	Reading	Cable	Atten.	Result	Limit	Margin
	Reading		Loss				
[MHz]	[MHz]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	[dB]
2412.0000	2412.65	-28.88	1.38	9.90	-17.60	8.00	25.60
2437.0000	2436.69	-31.07	1.39	9.90	-19.78	8.00	27.78
2462.0000	2462.61	-30.91	1.40	9.89	-19.62	8.00	27.62

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Atten. Loss

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

Test place UL Japan, Inc. Shonan EMC Lab.

Date November 10, 2014 Temperature / Humidity 25deg.C , 54%RH Engineer Akio Hayashi

99% Occupied Bandwidth

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

APPENDIX 2 Test Instruments

EMI test equipment

cturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
	E4446A	MY46180525	AT	2014/03/04 * 12
	8990B	MY5100272	AT	2014/04/04 * 12
	N1923A	MY5326009	AT	2014/04/04 * 12
	SUCOFLEX 102	31599/2	AT	2014/03/14 * 12
orp.	54A-10	37588	AT	2014/04/22 * 12
	CTH-202	Q.C.17	AT	2014/04/22 * 12
	SAEC-02(NSA)	2	RE	2014/07/08 * 12
ration	TPA0118-36	1440490	RE	2013/11/22 * 12
	SUCOFLEX 104A	46498/4A	RE	2014/04/22 * 12
	SUCOFLEX 104	296199/4	RE	2014/05/15 * 12
	BBHA9120D	9120D-726	RE	2014/08/12 * 12
	AD-5681	4063325	RE	2014/10/30 * 12
	E4448A	MY48250106	RE	2014/03/17 * 12
	_	-	RE,CE	-
	TEPTO-DV(RE,CE, RFI,MF)	_	RE,CE	-
	8493C-010	74864	RE	2013/11/22 * 12
NICS	HPM50111	051	RE	2013/11/22 * 12
EN	3160-09	LM3640	RE	2014/03/15 * 12
ration	HAP18-26W	00000019	RE	2014/03/14 * 12
	SUCOFLEX 102	32703/2		2014/03/13 * 12
	310N	290212	RE	2014/02/17 * 12
	50HF-006N	-	RE	2014/02/17 * 12
Э.	50HF-003N	-	RE	2014/08/27 * 12
	BBA9106	91032665	RE	2013/11/24 * 12
hner/Suhn	8D2W/12DSFA/14 1PE/141PE/141PE /141PE/NS4906	-/0901-270(RF Selector)	RE	2014/04/25 * 12
	8D2W/12DSFA/14 1PE/141PE/141PE /141PE/NS4906		RE	2014/04/25 * 12
	UHALP9108A	UHALP 9108-A 0893	RE	2013/11/24 * 12
warz	ESU26	100484	RE,CE	2014/09/03 * 12
	RG223U/141PE/N S4906	-/0901-270(RF Selector)	CE	2014/04/25 * 12
warz	ENV216	100513	CE	2014/02/14 * 12
	50HF-003N	-	CE	2014/02/17 * 12
	AD-5681	4061512	CE	2014/03/07 * 12
-				

The expiration date of the calibration is the end of the expired month As for some calibrations performed after the tested dates , those test equipment have been controlled by means of an unbroken chains of calibrations

All equipment is calibrated with valid calibrations . Each measurement data is traceable to the national or international standards

Test Item:

CE: Conducted emission, RE: Radiated emission ,

AT: Antenna terminal disturbance voltage

UL Japan, Inc. Page: 51 of 54