VAJE IZ VERJETNOSTI Z MERO

Martin Raič

Datum zadnje spremembe: 15. januar 2019

Kazalo

1.	Merljivost in mera	2
2.	Lebesgueov integral	8
3.	Operacije z merami	13
4.	Mera in konvergenca	16
5 .	Produktne mere	18
6.	Pogojna pričakovana vrednost	19
	REŠITVE	23
1.	Merljivost in mera	24
2.	Lebesgueov integral	31
3.	Operacije z merami	37
4.	Mera in konvergenca	43
5.	Produktne mere	46
6.	Pogojna pričakovana vrednost	48

1. Merljivost in mera

Merljivost množic in funkcij. Mera.

Za funkcijo $f \colon X \to Y$ in podmnožico $A \subseteq X$ definiramo sliko množice A glede na f kot množico:

$$f(A) := \{ f(x) ; x \in A \}.$$

1. Dani sta funkcija $f(x) = x^2$ in množica A = [-2, 3). Določite f(A).

Za funkcijo $f \colon X \to Y$ in podmnožico $B \subseteq Y$ definiramo **prasliko** množice B glede na f kot množico:

$$f^{-1}(B) := \{x \in X \; ; \, f(x) \in B\} \; .$$

V nalogah od 2. do 4. določite praslike vseh intervalov $B_b := (-\infty, b]$ glede na dano funkcijo f (ki je definirana povsod, kjer ima ustrezni izraz pomen).

- 2. $f(x) = e^{-x}$.
- 3. $f(x) = x + \frac{1}{x}$.
- 4. $f(x) = \text{ctg}(x^2)$.

 σ -algebra na množici Ω je družina podmnožic \mathcal{F} te množice, ki ima naslednje lastnosti:

- $\emptyset \in \mathcal{F}$.
- Za vsak $A \in \mathcal{F}$ je tudi $A^c := \Omega \setminus A \in \mathcal{F}$.
- Za vsako zaporedje množic $A_1, A_2, \ldots \in \mathcal{F}$ je tudi $A_1 \cup A_2 \cup \cdots \in \mathcal{F}$.

Množici, opremljeni s σ -algebro, pravimo **merljivi prostor**, elementom izbrane σ -algebre pa **merljive množice**.

Vsaka σ -algebra \mathcal{F} na Ω ima še naslednje lastnosti:

- $\Omega \in \mathcal{F}$.
- Za vsako zaporedje množic $A_1, A_2, \ldots \in \mathcal{F}$ je tudi $A_1 \cap A_2 \cap \cdots \in \mathcal{F}$.
- Za poljubni množici $A, B \in \mathcal{F}$ je tudi $A \setminus B = A \cap B^c \in \mathcal{F}$.

Družina $\{\emptyset, \Omega\}$ je najmanjša, potenčna množica 2^{Ω} pa največja σ -algebra na Ω .

Presek poljubne neprazne družine σ -algeber na Ω je tudi σ -algebra na Ω .

Za vsako družino \mathcal{A} podmnožic dane množice Ω obstaja najmanjša σ -algebra, ki vsebuje \mathcal{A} : to je presek vseh σ -algeber na Ω , ki vsebujejo \mathcal{A} . Najmanjšo σ -algebro, ki vsebuje \mathcal{A} , označimo s $\sigma(\mathcal{A})$. Če je $\mathcal{A} = \mathcal{F}$, pravimo, da \mathcal{A} generira \mathcal{F} .

5. Dana je množica $\Omega = \{1, 2, 3\}$. Ali sta množici

$$\mathcal{F} = \{\emptyset, \{1\}, \{2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$
$$\mathcal{G} = \{\emptyset, \{1\}, \{2, 3\}, \{1, 2, 3\}\}$$

 σ -algebri na Ω ? Če katera od teh dveh množic ni σ -algebra, poiščite najmanjšo σ -algebro, ki jo vsebuje.

- 6. Na množici $\Omega = \{1, 2, 3, 4, 5\}$ določite najmanjšo σ -algebro, ki vsebuje množici $\{1, 2\}$ in $\{2, 3\}$. Koliko elementov ima?
- 7. Za vsak $n \in \mathbb{N}$ označimo z \mathcal{A}_n najmanjšo σ -algebro na množici \mathbb{N} , ki vsebuje množice $\{1\}, \{2\}, \ldots, \{n\}$.
 - a) Dokažite, da je, če je m < n, A_m prava poddružina družine A_n .
 - b) Definirajmo $\mathcal{A} := \bigcup_{n=1}^{\infty} \mathcal{A}_n$. Dokažite, da \mathcal{A} ni σ -algebra.
 - c) Določite najmanjšo σ -algebro, ki vsebuje \mathcal{A} .
- 8. Naj bo Ω poljubna neprazna množica. Določite najmanjšo σ -algebro, ki vsebuje vse enoelementne podmnožice množice Ω .
- 9. Naj bo $\Omega = \{(x,y) \in \mathbb{R}^2 : x > 0, y > 0, x^2 + y^2 < 1\}$ in naj bo \mathcal{M} najmanjša σ -algebra, ki vsebuje vse pravokotnike oblike $M_{\alpha} := (0, \cos \alpha] \times (0, \sin \alpha]$, kjer je $0 < \alpha < \pi/2$. Ali \mathcal{M} vsebuje množico $T := \{(x,y) \in \Omega : x + y \leq 1\}$?
- 10. Naj bo zdaj $\Omega = \{(x,y) \in \mathbb{R}^2 : x \geq 0, y \geq 0, x^2 + y^2 \leq 1\}$, za \mathcal{M} pa vzamemo najmanjšo σ -algebro, ki vsebuje vse pravokotnike oblike $[0, \cos \alpha] \times [0, \sin \alpha]$, kjer je $0 < \alpha < \pi/2$. Ali zdaj \mathcal{M} vsebuje množico $T := \{(x,y) \in \Omega : x + y \leq 1\}$?

Borelova¹ σ -algebra $na \mathbb{R}, \mathcal{B}(\mathbb{R}), je$:

- najmanjša σ -algebra, ki vsebuje vse intervale;
- najmanjša σ -algebra, ki vsebuje vse odprte intervale;
- \bullet najmanjša σ -algebra, ki vsebuje vse zaprte intervale;
- najmanjša σ -algebra, ki vsebuje vse poltrake $(-\infty, b]$;
- najmanjša σ -algebra, ki vsebuje vse poltrake $(-\infty, b)$;
- najmanjša σ -algebra, ki vsebuje vse poltrake $[a, \infty)$;
- najmanjša σ -algebra, ki vsebuje vse poltrake (a, ∞) .

Pri tem lahko a in b pretečeta vso realno os ali pa tudi določeno povsod gosto množico, denimo racionalna števila.

Elementom Borelove σ -algebre pravimo Borelove množice.

11. Dokažite, da za vsako Borelovo množico $B \subseteq \mathbb{R}$ in za vsak $c \in \mathbb{R}$ velja, da je tudi množica $B + c = \{x + c : x \in B\}$ Borelova.

¹Félix Édouard Justin Émile Borel (1871–1956), francoski matematik

Naj bosta (X, \mathcal{F}) in (Y, \mathcal{G}) merljiva prostora. Preslikava $f: X \to Y$ je **merljiva** (glede na izbrani σ -algebri \mathcal{F} in \mathcal{G}), če za vsako množico $B \in \mathcal{G}$ velja, da je $f^{-1}(B) \in \mathcal{F}$.

Če \mathcal{A} generira \mathcal{G} , je za merljivost preslikave $f: X \to Y$ dovolj že, da za vsako množico $B \in \mathcal{A}$ velja, da je $f^{-1}(B) \in \mathcal{F}$.

Če se ne dogovorimo drugače, pri funkcijah, ki slikajo v \mathbb{R} , tam vzamemo Borelovo σ -algebro. Če je torej (Ω, \mathcal{F}) merljiv prostor, je funkcija $f: \Omega \to \mathbb{R}$ merljiva natanko tedaj, ko:

- za vsak interval I velja, da je $f^{-1}(I) \in \mathcal{F}$;
- za poljubna a < b velja, da je $\{\omega \in \Omega : a < f(\omega) < b\} \in \mathcal{F};$
- za poljubna a < b velja, da je $\{\omega \in \Omega : a \le f(\omega) \le b\} \in \mathcal{F};$
- za vsak $b \in Q$ velja, da je $\{\omega \in \Omega : f(\omega) \leq b\} \in \mathcal{F};$
- za vsak $b \in Q$ velja, da je $\{\omega \in \Omega ; f(\omega) < b\} \in \mathcal{F};$
- za vsak $a \in Q$ velja, da je $\{\omega \in \Omega : f(\omega) \geq a\} \in \mathcal{F};$
- za vsak $a \in Q$ velja, da je $\{\omega \in \Omega : f(\omega) > a\} \in \mathcal{F}$.

Pri tem je lahko Q poljubna množica, ki je gosta v \mathbb{R} .

- 12. Naj bo (Ω, \mathcal{F}) merljiv prostor in $f: \Omega \to \mathbb{R}$ funkcija z največ števno zalogo vrednosti.
 - a) Pokažite, da je f merljiva natanko tedaj, ko so vse množice $f^{-1}(\{y\})$ merljive.
 - b) Pokažite, da brez predpostavke o števnosti zaloge vrednosti funkcije f ti dve trditvi nista ekvivalentni.

Včasih je ugodno realnim številom priključiti neskončnost. Če ločimo pozitivno in negativno neskončnost, dobimo linearno urejeno množico $[-\infty, \infty]$. Borelova σ -algebra na $[-\infty, \infty]$, $\mathcal{B}([-\infty, \infty])$, je:

- najmanjša σ -algebra, ki vsebuje vse poltrake $[-\infty, b]$;
- najmanjša σ -algebra, ki vsebuje vse poltrake $[-\infty, b)$;
- najmanjša σ -algebra, ki vsebuje vse poltrake $[a, \infty]$;
- najmanjša σ -algebra, ki vsebuje vse poltrake $(a, \infty]$.

Pri tem lahko a in b spet pretečeta vso realno os ali pa tudi določeno povsod gosto množico, denimo racionalna števila. Elementom te σ -algebre spet pravimo Borelove množice.

Borelovi množici sta tudi $\{\infty\}$ in $\{-\infty\}$. Nasploh je množica $B \subseteq [-\infty, \infty]$ Borelova natanko tedaj, ko je $B \cap \mathbb{R}$ Borelova gledano na \mathbb{R} . Z drugimi besedami, velja $\mathcal{B}([-\infty,\infty]) = \{B \subseteq [-\infty,\infty] ; B \cap \mathbb{R} \in \mathcal{B}(\mathbb{R})\}$.

Ko gledamo merljivost, tudi pri funkcijah, ki slikajo v $[-\infty, \infty]$, če se ne dogovorimo drugače, tam vzamemo Borelovo σ -algebro.

13. Naj bo (Ω, \mathcal{F}) merljiv prostor in $f, g \colon \Omega \to [-\infty, \infty]$ merljivi funkciji. Dokažite, da so množice:

$$\left\{ \omega \in \Omega \; ; \; f(\omega) < g(\omega) \right\}, \quad \left\{ \omega \in \Omega \; ; \; f(\omega) > g(\omega) \right\}, \quad \left\{ \omega \in \Omega \; ; \; f(\omega) \leq g(\omega) \right\},$$

$$\left\{ \omega \in \Omega \; ; \; f(\omega) \geq g(\omega) \right\} \quad \text{in} \quad \left\{ \omega \in \Omega \; ; \; f(\omega) = g(\omega) \right\}$$

merljive.

- 14. Naj bo (Ω, \mathcal{F}) merljiv prostor in $f_1, f_2, \ldots : \Omega \to [-\infty, \infty]$ merljive funkcije. Dokažite, da so tudi $\sup_{n \in \mathbb{N}} f_n$, $\inf_{n \in \mathbb{N}} f_n$, $\limsup_{n \to \infty} \inf_{n \to \infty} (\text{vse definirano po točkah})$ merljive funkcije.
- 15. Naj bo (Ω, \mathcal{F}) merljiv prostor in naj bodo $f_1, f_2, \ldots : \Omega \to \mathbb{R}$ merljive funkcije.
 - a) Dokažite, da je množica točk, kjer to zaporedje konvergira v \mathbb{R} , merljiva.
 - b) Naj bo g še ena merljiva funkcija. Dokažite, da je tudi funkcija:

$$f(\omega) = \begin{cases} \lim_{n \to \infty} f_n(\omega) & ; f_n(\omega) \text{ konvergira} \\ g(\omega) & ; \text{ sicer} \end{cases}$$

merljiva.

16. Naj bo $f: \mathbb{R} \to \mathbb{R}$ z desne zvezna funkcija: za vsak $x \in \mathbb{R}$ in vsak $\varepsilon > 0$ naj obstaja tak $\delta > 0$, da za vsak $y \in (x, x + \delta)$ velja $|f(y) - f(x)| < \varepsilon$. Dokažite, da je množica točk, kjer je f (obojestransko) zvezna, Borelovo merljiva.

Namig: če je f z desne zvezna, za vsako padajoče zaporedje x_1, x_2, \ldots z limito x velja $f(x) = \lim_{n \to \infty} f(x_n)$.

Pozitivna mera na merljivem prostoru (Ω, \mathcal{F}) je funkcija $\mu \colon \mathcal{F} \to [0, \infty]$, ki ima naslednji dve lastnosti:

- $\bullet \ \mu(\emptyset) = 0.$
- Če so $A_1, A_2, \ldots \in \mathcal{F}$ paroma disjunktne množice z unijo A, velja $\mu(A) = \sum_{k=1}^{\infty} \mu(A_k)$.
- 17. $Diracova^2$ mera na množici Ω , ki pripada točki $a \in \Omega$, je funkcija $\delta_a \colon 2^{\Omega} \to \{0, 1\}$, definirana po predpisu:

$$\delta_a(A) = \mathbf{1}(a \in A) = \begin{cases} 1 & ; a \in A \\ 0 & ; a \notin A \end{cases}$$

Dokažite, da je to res pozitivna mera.

²Paul Adrien Maurice Dirac (1902–1984), angleški teoretični fizik

18. Naj bo Ω neprazna množica in $f \colon \Omega \to [0, \infty]$ poljubna funkcija. Dokažite, da je:

$$\mu(A) := \sum_{a \in A} f(a) = \sum_{a \in \Omega} f(a) \mathbf{1}(a \in A)$$

mera na $(\Omega, 2^{\Omega})$.

- 19. Naj bo Ω neštevna množica \mathcal{F} pa σ -algebra množic, ki so bodisi števne bodisi njihovi komplementi. Definiramo $\mu(A)=0$, če je μ števna množica, in $\mu(A)=1$, če je A komplement števne množice. Dokažite, da je μ pozitivna mera na (Ω, \mathcal{F}) .
- 20. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero in naj bosta $f, g: \mathbb{R} \to \mathbb{R}$ merljivi funkciji. Za vsak $c \in \mathbb{R}$ naj bo $\mu(\{\omega ; f(\omega) > c > g(\omega)\}) = 0$. Dokažite, da je tudi $\mu(\{\omega ; f(\omega) > g(\omega)\}) = 0$.

$$A_1 \subseteq A_2 \subseteq \cdots \implies \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n)$$

$$\mu(A_1) < \infty, \quad A_1 \supseteq A_2 \supseteq \cdots \implies \mu\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mu(A_n)$$

- 21. Dokažite, da zgornje pravilo ne velja nujno, če izpustimo pogoj $\mu(A_1) < \infty$.
- 22. Naj bo $\mathcal{A} = \{A_1, A_2, \dots, A_n\}$ končna družina podmnožic množice Ω .
 - a) Označimo s \mathcal{P} družino vseh možnih presekov oblike $\tilde{A}_1 \cap \tilde{A}_2 \cap \cdots \cap \tilde{A}_n$, kjer za vsak $k = 1, 2, \ldots, n$ velja bodisi $\tilde{A}_k = A_k$ bodisi $\tilde{A}_k = A_k^c$. Dokažite, da je $\sigma(\mathcal{A})$ množica vseh možnih unij množici iz \mathcal{P} , vključno s prazno unijo, ki je po definiciji prazna množica. Za kakšne unije gre?
 - b) Označimo z \mathcal{R} družino množic, ki vsebuje družino \mathcal{A} in vse množice, ki jih lahko po končno mnogo korakih dobimo iz množic iz \mathcal{A} le z uporabo operacije razlike množic, pri čemer mora biti odštevanec vselej vsebovan v zmanjševancu. Dokažite: če je \mathcal{A} zaprta za končne preseke, je tudi \mathcal{R} zaprta za končne preseke in še za vsakršne razlike.
 - c) Privzemimo spet, da je \mathcal{A} zaprta za končne preseke, in še, da pokrije Ω . Dokažite, da je $\mathcal{P} \subseteq \mathcal{R}$.
 - d) Še vedno privzemamo, da je \mathcal{A} zaprta za končne preseke in da pokrije Ω . Dokažite, da se poljubni dve pozitivni meri, ki se ujemata na \mathcal{A} in sta tam končni, ujemata tudi na $\sigma(\mathcal{A})$.
 - e) Dokažite, da prejšnja trditev ne velja, če izpustimo predpostavko o zaprtosti za preseke.

Lebesgueova³ mera na $\mathcal{B}(\mathbb{R})$ je edina mera λ_1 , za katero velja, da je:

$$\lambda_1((a,b)) = b - a,$$

brž ko je a < b. Pri tem lahko namesto odprtih intervalov (a,b) vzamemo tudi intervale [a,b), (a,b] ali [a,b], za a in b pa je dovolj, da pretečeta določeno povsod gosto množico, denimo racionalna števila; slednja množica je lahko za a in b različna.

Lebesgueova mera na $\mathcal{B}(\mathbb{R}^d)$ je edina mera λ_d , za katero velja, da je:

$$\lambda_d((a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_d, b_d)) = (b_1 - a_1)(b_2 - a_2) \cdots (b_d - a_d),$$

brž ko je $a_k < b_k$ za vse k = 1, 2, ..., d. Spet lahko namesto odprtih intervalov vzamemo polodprte ali zaprte, za a_k in b_k pa je dovolj, da pretečejo števne povsod goste množice.

23. $Cantorjeva^4$ množica je množica $C = \bigcap_{n=1}^{\infty} A_n$, kjer je:

$$A_n = \bigcup_{k=0}^{3^{n-1}-1} \left(\left[3k \cdot 3^{-n}, (3k+1) \cdot 3^{-n} \right] \cup \left[(3k+2) \cdot 3^{-n}, (3k+3) \cdot 3^{-n} \right] \right).$$

- a) Koliko znaša njena Lebesgueova mera?
- b) Konstruirajte množico s poljubno Lebesgueovo mero, ki ne vsebuje nobenega intervala.

Lebesgueova mera in afine transformacije

Naj bo \mathbf{M} : $\mathbb{R}^d \to \mathbb{R}^d$ linearna transformacija, $b \in \mathbb{R}^d$ in $B \in \mathcal{B}(\mathbb{R}^d)$.

- Če je M neizrojena, je tudi $MB + b \in \mathcal{B}(\mathbb{R}^d)$ in $\lambda_d(MB + b) = |\det \mathbf{M}| \lambda_d(B)$.
- Če je **M** izrojena in $\mathbf{M}B + b \in \mathcal{B}(\mathbb{R}^d)$, je $\lambda_d(\mathbf{M}B + b) = 0$.
- 24. Konstruirajte odprto povsod gosto množico na realni osi s poljubno strogo pozitivno, a končno Lebesgueovo mero.

Namig: izhajajte iz množice racionalnih števil, ki je števna in povsod gosta.

³Henri-Léon Lebesgue (1875–1941), francoski matematik

⁴Georg Ferdinand Ludwig Philipp Cantor (1845–1918), nemški matematik

8

2. Lebesgueov integral

Integral enostavnih funkcij z vrednostmi v $[0,\infty]$. Integral merljivih funkcij z vrednostmi v $[0,\infty]$, izrek o monotoni konvergenci, števna aditivnost. Integral merljivih realnih funkcij, izrek o dominirani konvergenci, števna aditivnost.

Integral enostavnih funkcij z vrednostmi v $[0,\infty]$

Enostavna funkcija je taka, ki se da zapisati v obliki:

$$f = \sum_{k=1}^{n} a_k \, \mathbf{1}_{A_k},$$

kjer so A_k merljive množice. Če so a_k iz intervala $[0, \infty]$, je Lebesgueov integral integral funkcije f po meri μ definiran kot:

$$\int f d\mu = \int f(\omega) d\mu(\omega) = \int f(\omega) \mu(d\omega) := \sum_{k=1}^{n} a_k \mu(A_k).$$

Pri tem je vrednost neodvisna od izbire vrednosti a_k in A_k , odvisen je le od funkcije same.

Zapis $\int_A f d\mu$ pomeni integral funkcije f po zožitvi mere μ na množico A (natančneje, zožitvi mere na vse merljive podmnožice množice A). Velja $\int_A f d\mu = \int f \mathbf{1}_A d\mu$.

Za poljubno konstanto $c \in [0, \infty]$ in enostavno funkcijo s z vrednostmi v $[0, \infty]$ velja $\int (cf) d\mu = c \int f d\mu$.

Za poljubni enostavni funkciji f, g z vrednostmi v $[0, \infty]$, ki slikata iz istega merljivega prostora, je tudi f + g enostavna funkcija in velja

$$\int (f+g) d\mu = \int f d\mu + \int g d\mu.$$

1. Funkcija $f \colon \mathbb{R} \to [0, \infty]$ je definirana po predpisu:

$$f(x) := \begin{cases} 0 & ; x \le 1 \\ 1 & ; 1 < x \le 3 \\ 4 & ; 3 < x \le 5 \\ 1 & ; 5 < x \le 8 \\ 0 & ; x > 8 \end{cases}$$

Izračunajte $\int f \, \mathrm{d}\lambda_1$.

9

2. Harmonična števila so vsote:

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$
.

Definirajmo funkcije $f_n \colon \mathbb{R} \to [0, \infty]$ po predpisu:

$$f_n(x) = \begin{cases} 0 & ; x \le 0 \\ H_k & ; k - 1 < x \le k, k = 1, 2, \dots, n \\ 0 & ; x > n. \end{cases}$$

- a) Zapišite vsoto, ki odgovarja integralu $\int f_n d\lambda_1$ po definiciji.
- b) Poiščite alternativen zapis funkcije, ki integral $\int f_n d\lambda_1$ izrazi s H_n .

Integral merljivih funkcij z vrednostmi v $[0,\infty]$

Lebesgueov integral merljive funkcije f z vrednostmi v $[0, \infty]$ po meri μ je enak:

$$\int f \, \mathrm{d}\mu := \sup \left\{ \int s \, \mathrm{d}\mu \; ; \; 0 \le s \le f \right\} \, .$$

 $\check{C}e$ je f enostavna funkcija, se integral po novi definiciji ujema z integralom po stari definiciji.

$$\check{C}e\ je\ f\leq g,\ je\ tudi\int f\ \mathrm{d}\mu\leq\int g\ \mathrm{d}\mu.$$

3. Izračunajte $\int_{(0,1]} \frac{1}{x^2} d\lambda_1(x)$.

Izrek o monotoni konvergenci in števna aditivnost

Če zaporedje merljivih funkcij $0 \le f_1 \le f_2 \le \dots$ po točkah konvergira k funkciji f z vrednostmi v $[0,\infty]$, velja:

$$\int f \, \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu.$$

Poleg tega za poljubno zaporedje merljivih funkcij g_1, g_2, \ldots z vrednostmi v $[0, \infty]$ velja:

$$\int \left(\sum_{k=1}^{\infty} g_k\right) d\mu = \sum_{k=1}^{\infty} \int g_k d\mu.$$

4. Izračunajte $\int_{[0,2)} x^2 d\lambda_1(x)$.

5. Naj bo $a \geq 0$. Kakšen rezultat da izrek o monotoni konvergenci za funkcije $f_n(k) := \binom{n}{k} \left(\frac{a}{n}\right)^k$, ki jih integriramo po meri na \mathbb{N}_0 , ki šteje, torej po μ_0 ? Pri tem se dogovorimo, da je $\binom{n}{k} = 0$, brž ko je k > n. Utemeljite tudi, da so pogoji izreka izpolnjeni.

Naj bo na prostoru z mero $(\Omega, \mathcal{F}, \mu)$ definiran predikat P. Pravimo, da je P pravilen **skoraj povsod** ali da je izjava $P(\omega)$ pravilna **za skoraj vse** ω glede na mero μ , če je množica tistih ω , kjer je P napačen, vsebovana v neki množici $N \in \mathcal{F}$, za katero je $\mu(N) = 0$.

6. Dokažite, da je poljubna merljiva funkcija f z vrednostmi v $[0, \infty]$ skoraj povsod enaka nič natanko tedaj, ko je njen Lebesgueov integral enak nič (vse seveda glede na izbrano mero μ).

Ujemanje Riemannovega in Lebesgueovega integrala

Naj bo $-\infty \le a < b \le \infty$ in $f: (a,b) \to [0,\infty)$ merljiva funkcija. Če obstaja posplošeni Riemannov integral te funkcije po intervalu (a,b), se le-ta ujema z Lebesgueovim po Lebesgueovi meri:

$$\int_{(a,b)} f \, \mathrm{d}\lambda_1 = \int_a^b f(x) \, \mathrm{d}x.$$

Če je f klasično Riemannovo integrabilna na vsakem zaprtem podintervalu intervala (a,b) in gredo ti Riemannovi integrali proti neskončno, ko gresta meji proti a in b, velja $\int_{(a,b)} f \, \mathrm{d}\lambda_1 = \infty$.

7. Za $\beta \in (0, \infty)$ izračunajte limito

$$\lim_{n\to\infty} \int_0^n \left(1 - \frac{x}{n}\right)^n x^{\beta - 1} \, \mathrm{d}x \,.$$

Lebesgueov integral realnih funkcij

Lebesgueov integral je možno definirati tudi za funkcije $f: \Omega \to \mathbb{R}$, ki pripadajo razredu $L^1(\mu)$, kar pomeni, da so merljive in da je $\int |f| d\mu < \infty$.

Če definiramo $f_+(\omega) := \max\{f(\omega), 0\}$ in $f_-(\omega) = -\min\{f(\omega), 0\}$, velja $f = f_+ - f_-$. Poleg tega je $f \in L^1(\mu)$ natanko tedaj, ko je $f_+ \in L^1(\mu)$ in $f_- \in L^1(\mu)$. Za take funkcije f definiramo:

$$\int f \, \mathrm{d}\mu := \int f_+ \, \mathrm{d}\mu - \int f_- \, \mathrm{d}\mu.$$

Če f slika v $[0,\infty)$, se integral po novi definiciji ujema z integralom po stari definiciji.

Integral je linearen: če je $f, g \in L^1(\mu)$ in $a, b \in \mathbb{R}$, je tudi $af + bg \in L^1(\mu)$ in velja $\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu$.

8. Izpeljite načelo vključitev in izključitev za končne pozitivne mere: če je μ taka mera in A_1, A_2, \ldots, A_n poljubne množice, velja:

$$\mu(A_1 \cup A_2 \cup \dots \cup A_n) = \mu(A_1) + \mu(A_2) + \dots + \mu(A_n) - \mu(A_1 \cap A_2) - \mu(A_1 \cap A_3) - \dots - \mu(A_{n-1} \cap A_n) + \dots + (-1)^{n+1} \mu(A_1 \cap A_2 \cap \dots \cap A_n)$$

Namiqi:

- $\mu(A) = \int \mathbf{1}_A \, \mathrm{d}\mu;$
- $(A_1 \cup A_2 \cup \cdots \cup A_n)^c = A_1^c \cap A_2^c \cap \cdots \cap A_n^c$
- $\mathbf{1}_{A^c} = 1 \mathbf{1}_A$;
- $\mathbf{1}_{A \cap B} = \mathbf{1}_A \, \mathbf{1}_B$.

Izrek o dominirani konvergenci

Naj zaporedje merljivih funkcij f_1, f_2, \dots z vrednostmi v \mathbb{R} skoraj povsod konvergira k merljivi funkciji f z vrednostmi v \mathbb{R} . Če je:

$$\int \left(\sup_{n} |f_n|\right) d\mu < \infty , \qquad (*)$$

velja:

$$\int f \, \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \, \mathrm{d}\mu.$$

Pogoj (*) je izpolnjen, če obstaja taka funkcija F z vrednostmi v $[0, \infty]$, da je $\int F d\mu < \infty$ in da za vse n in ω velja $|f_n(\omega)| \leq F(\omega)$.

9. Izračunajte limito:

$$\lim_{n\to\infty} \int_{1+1/n}^{\infty} \frac{1}{x^2 + \sin(x/n)} \, \mathrm{d}x.$$

10. Izpeljite Stirlingov obrazec:

$$\lim_{a \to \infty} \Gamma(a) \, \frac{e^a}{a^{a-1/2}} = \sqrt{2\pi} \, .$$

Namiqi:

- V standardno integralsko izražavo $\Gamma(a)=\int_0^\infty x^{a-1}\,e^{-x}\,\mathrm{d}x$ vpeljite substitucijo $u=\frac{x-a}{\sqrt{a}}.$
- Za vse t > -1 velja $t \frac{t^2}{2(1-t_-)} \le \ln(1+t) \le t \frac{t^2}{2(1+t_+)}$, kjer je $t_+ = \max\{t,0\}$ in $t_- = \max\{-t,0\}$.
- \bullet Pri ocenjevanju lahko privzamete, da je $a \geq 4.$
- Velja $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Števna aditivnost Lebesgueovega integrala realnih funkcij

Naj bodo g_1, g_2, \ldots funkcije iz $L^1(\mu)$. Če je:

$$\sum_{k=1}^{\infty} \int |g_k| \, \mathrm{d}\mu < \infty \,,$$

vrsta $\sum_{k=1}^{\infty} g_k(\omega)$ konvergira za skoraj vsak ω , torej obstaja merljiva funkcija g, za katero skoraj povsod velja $g = \sum_{k=1}^{\infty} g_k$. Vsaka taka funkcija je v $L^1(\mu)$ in velja:

$$\int g \, \mathrm{d}\mu = \sum_{k=1}^{\infty} g_k \, \mathrm{d}\mu.$$

11. Izrazite vsoto:

$$\sum_{n=0}^{\infty} (-1)^n \frac{a^{2n}}{n! (2n+1)}$$

z Gaussovim verjetnostnim integralom:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-z^2/2} \, \mathrm{d}z.$$

Namig:
$$\frac{1}{m+1} = \int_0^1 t^m \, \mathrm{d}t.$$

3. Operacije z merami

Množenje mere s funkcijo. Potisk mere. Enoličnost mer. Potisk Lebesgueove mere, pomnožene s funkcijo, vzdolž preslikave z neizrojeno Jacobijevo matriko in vzdolž projekcije.

Množenje mere s funkcijo

Za mero μ na merljivem prostoru (Ω, \mathcal{F}) in za merljivo funkcijo $g \colon \Omega \to [0, \infty]$ lahko definiramo mero $g \cdot \mu$ po predpisu:

$$(g \cdot \mu)(A) := \int_A g \,\mathrm{d}\mu$$
.

1. Izračunajte $\int_{[0,\infty)} f d(g \cdot \lambda_1)$, kjer je $f(x) = 2^{\lfloor x \rfloor}$ in $g(x) = 3^{-x}$.

Za poljubno mero μ ter merljivi funkciji f in g, ki slikata v $[0, \infty]$, velja:

$$\int f \, \mathrm{d}(g \cdot \mu) = \int f g \, \mathrm{d}\mu \,. \tag{*}$$

Če pa f slika v \mathbb{R} , g pa še vedno v $[0, \infty]$, je $f \in L^1(g \cdot \mu)$ natanko tedaj, ko je $fg \in L^1(\mu)$. Če je slednje res, še vedno velja (*).

Naj bo $\varphi \colon (\Omega, \mathcal{F}) \to (\Omega', \mathcal{F}')$ merljiva preslikava in μ mera na Ω, \mathcal{F}). **Potisk** mere μ vzdolž preslikave φ je mera μ_{φ} na prostoru (Ω', \mathcal{F}') , definirana po predpisu:

$$\mu_{\varphi}(B) := \mu(\varphi^{-1}(B)).$$

2. Izračunajte potisk mere $\mu = 2 \delta_{-1} + 4 \delta_0 + 3 \delta_1 + 8 \delta_2$, definirane na prostoru $\Omega = \mathbb{Z}$, vzdolž preslikave $\varphi \colon \Omega \to \Omega' := \mathbb{N}_0$, definirane po predpisu $\varphi(x) = x^2$. Za σ -algebro na obeh prostorih vzamemo potenčno množico.

Enoličnost pozitivnih mer

Naj bosta μ in ν meri na (ω, \mathcal{F}) , ki se ujemata na družini $\mathcal{A} \subseteq \mathcal{F}$, ki je zaprta za končne neprazne preseke. Obstaja naj zaporedje množic A_1, A_2, \ldots iz \mathcal{A} , ki pokrije Ω in na katerih sta meri μ in ν končni. Tedaj se μ in ν ujemata tudi na $\sigma(\mathcal{A})$.

V nalogah od 3. do 10. vse mere jemljemo na realni osi z Borelovo σ -algebro.

3. Izračunajte $(\lambda_1)_{\varphi}$, kjer je $\varphi(x) = e^{-x}$.

4. Izračunajte $(g \cdot \lambda_1)_{\varphi}$, kjer je:

$$g(x) = \frac{1}{1+x^2}$$
 in $\varphi(x) = \begin{cases} 0 & ; x \le 0 \\ x^2 & ; x \ge 0 \end{cases}$.

Naj bo $B \subseteq \mathbb{R}$ Borelova množica, $g \colon B \to [0, \infty]$ in $\varphi \colon B \to \mathbb{R}$ pa merljivi funkciji. Naj bo $D \subseteq B$ odprta množica, naj bo φ na D zvezno odvedljiva in naj bo $\varphi'(x) \neq 0$ za vse $x \in D$. Nadalje naj bo:

$$(g \cdot \lambda_1)(B \setminus D) = \int_{B \setminus D} g \, d\lambda_1 = 0.$$

Tedaj velja $(g \cdot \lambda_1)_{\varphi} := (g \cdot (\lambda_1|_B))_{\varphi} = h \cdot \lambda_1$, kjer je:

$$h(y) = \sum_{\substack{x \in D \\ \varphi(x) = y}} \frac{g(x)}{|\varphi'(x)|}.$$

5. Slučajna spremenljivka X je porazdeljena standardno normalno. Določite porazdelitev slučajne spremenljivke $Y=(X-1)^2$.

Naj bodo:

- $g: \mathbb{R} \to [0, \infty]$ merljiva funkcija;
- $D, D' \subseteq \mathbb{R}$ odprti množici;
- $\varphi \colon D \to D'$ bijektivna funkcija;
- $\bullet \ \varphi^{-1} \colon \ D' \to D$ zvezno odvedljiva funkcija.

Tedaj velja $(g \cdot \lambda_1)_{\varphi} := ((g \cdot \lambda_1)|_{D})_{\varphi} = h \cdot \lambda_1$, kjer je:

$$h(y) = \begin{cases} g(\varphi^{-1}(y)) | (\varphi^{-1})'(y)| & ; y \in D' \\ 0 & ; sicer. \end{cases}$$

Pri tem se je treba zavedati, da slikamo z množice D in ne morda s kakšne večje množice, s katere zožimo funkcijo φ . Če je φ zožitev funkcije $\bar{\varphi}$, se meri $(g \cdot \lambda_1)_{\varphi}$ in $(g \cdot \lambda_1)_{\bar{\varphi}}$ ujemata, brž ko je:

$$(g \cdot \lambda_1)(\mathbb{R} \setminus D) = \int_{\mathbb{R} \setminus D} g \, d\lambda_1 = 0.$$

6. Izračunajte $(g \cdot \lambda_1)_{\sigma}$, kjer je $g(x) = x^4$ in $\varphi(x) = x^3$.

$$(a\mu)_{\varphi} = a\,\mu_{\varphi}, \quad (\mu + \nu)_{\varphi} = \mu_{\varphi} + \nu_{\varphi}$$

- 7. Ponovno. Slučajna spremenljivka X je porazdeljena standardno normalno. Določite porazdelitev slučajne spremenljivke $Y=(X-1)^2$.
- 8. Ponovno, le malo drugače. Za a, b > 0 definirajmo funkciji:

$$g_{a,b}(x) = e^{-a^2x^2 - b^2/x^2}$$
 in $\varphi(x) = ax - \frac{b}{x}$.

- a) Izračunajte mero $(g_{a,b} \cdot \lambda_1)_{\omega}$.
- b) Izračunajte integral $\int_{-\infty}^{\infty} e^{-a^2x^2-b^2/x^2} dx$.
- 9. *Ponovno*. Izračunajte $(g \cdot \lambda_1)_{\varphi}$, kjer je:

$$g(x) = \frac{1}{1+x^2}$$
 in $\varphi(x) = \begin{cases} 0 & ; x \le 0 \\ x^2 & ; x \ge 0 \end{cases}$

Naj bodo:

- $g: \mathbb{R}^n \to [0, \infty]$ merljiva funkcija;
- $D, D' \subseteq \mathbb{R}^n$ odprti množici;
- $\varphi \colon D \to D'$ bijektivna preslikava;
- $\varphi^{-1} \colon D' \to D$ parcialno zvezno odvedljiva preslikava.

Tedaj velja $(g \cdot \lambda_1)_{\varphi} = ((g \cdot \lambda_1)|_D)_{\varphi} = h \cdot \lambda_1$, kjer je:

$$h(y) = \begin{cases} g(\varphi^{-1}(y)) |J\varphi^{-1}(y)| & ; y \in D' \\ 0 & ; sicer, \end{cases}$$

 $J\varphi^{-1}$ pa je determinanta Jacobijeve matrike: če je $\varphi^{-1}=(\psi_1,\ldots,\psi_n),$ je:

$$J\varphi^{-1} = \begin{vmatrix} \frac{\partial \psi_1}{\partial x_1} & \frac{\partial \psi_1}{\partial x_2} & \cdots & \frac{\partial \psi_1}{\partial x_n} \\ \frac{\partial \psi_2}{\partial x_1} & \frac{\partial \psi_2}{\partial x_2} & \cdots & \frac{\partial \psi_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \psi_n}{\partial x_1} & \frac{\partial \psi_n}{\partial x_2} & \cdots & \frac{\partial \psi_n}{\partial x_n} \end{vmatrix}$$

Spet se je treba zavedati, da slikamo z množice D in ne morda s kakšne večje množice.

10. Naj bosta X in Y neodvisni standardni normalni slučajni spremenljivki in naj bodo (R,Θ) polarne koordinate slučajnega vektorja (X,Y), t. j. $R = \sqrt{X^2 + Y^2}$ in $\Theta = \arg(X,Y) \in (-\pi,\pi]$. Določite porazdelitev slučajnega vektorja (R,Θ) .

4. Mera in konvergenca

Vrste konvergence funkcij: skoraj povsod, po meri, v L^p . Jensenova neenakost.

Konvergenca funkcij

Zaporedje merljivih realnih funkcij $f_1, f_2, ...,$ definiranih na istem prostoru z mero μ , konvergira proti funkciji f:

- **skoraj povsod** glede na μ $(f_n \xrightarrow[n \to \infty]{\text{p.p.}(\mu)} f)$, če za skoraj vse ω glede na μ velja $\lim_{n \to \infty} f_n(\omega) = f(\omega)$;
- **po meri** μ $(X_n \xrightarrow[n \to \infty]{\mu} X)$, če za vsak $\varepsilon > 0$ velja $\lim_{n \to \infty} \mu(\{\omega : |f_n(\omega) f(\omega)| \ge \varepsilon\}) = 0;$
- $-\mathbf{v} L^p(\mu) (f_n \xrightarrow[n\to\infty]{L^p(\mu)} f)$ za $p \in (0,\infty)$, če velja $\lim_{n\to\infty} \int |f_n f|^p d\mu = 0$;
- $-\mathbf{v} L^{\infty}(\mu) \left(f_n \xrightarrow[n \to \infty]{L^{\infty}(\mu)} f\right)$, če obstaja taka merljiva množica E, da je $\mu(E^c) = 0$ in da zaporedje na E konvergira enakomerno $(t. j. \lim_{n \to \infty} \sup_{E} |f_n f| = 0).$

Za vse zgornje tipe konvergence je limitna funkcija določena skoraj enolično: če zaporedje konvergira proti dvema funkcijama, se le-ti skoraj povsod ujemata. Za poljuben $p \in (0, \infty]$ iz konvergence v $L^p(\mu)$ sledi konvergenca po meri μ . Iz konvergence v $L^\infty(\mu)$ sledi konvergenca skoraj povsod glede na μ .

Konvergenci v $L^{\infty}(\mu)$ bi bilo sicer smiselno reči skoraj enakomerna konvergenca, a slednji izraz je že rezerviran za šibkejšo lastnost: zaporedje funkcij f_1, f_2, \ldots konvergira proti f skoraj enakomerno, če za vsak $\varepsilon > 0$ obstaja taka množica E, da je $\mu(E^c) < \varepsilon$ in da zaporedje na E konvergira enakomerno.

- 1. Za dana zaporedja funkcij, definiranih na realni osi, opremljeni z Lebesgueovo mero, določite, na katere načine konvergirajo proti nič:
 - a) $f_n = \mathbf{1}_{(n,n+1]};$
 - b) $f_n = 2^n \mathbf{1}_{[0,3^{-n}]};$
 - c) $f_n(x) = \frac{1}{n} e^{-x^2/n^3};$
 - d) $f_n(x) = e^{-n^2 x} \mathbf{1} \left(x \ge -\frac{1}{n} \right);$
 - e) $f_n(x) = \frac{1}{nx} \mathbf{1} \left(\frac{1}{n} \le x \le n \right)$.

Jensenova⁵ neenakost

Če je X slučajna spremenljivka in φ konveksna funkcija, velja:

$$\varphi(E(X)) \le E[\varphi(X)].$$

- 2. Dokažite, da za poljubni pozitivni slučajni spremenljivki X in Y, za kateri je $XY \geq 1$, velja E(X) $E(Y) \geq 1$.
- 3. Naj bo $X \geq 0$ slučajna spremenljivka. Dokažite ne
enakost:

$$\min\{E(X), (E(X))^2\} \le E[\min\{2X, X^2\}].$$

Namig: uporabite Jensenovo neenakost za primerno konveksno funkcijo φ , za katero bo veljalo $\min\{x, x^2\} \leq \varphi(x) \leq \min\{2x, x^2\}$.

4. Naj bo $f\colon (0,\infty)\to [0,\infty)$ funkcija, za katero velja $\int_0^\infty \frac{f(x)}{x}\,\mathrm{d}x=1.$ Dokažite neenakost:

$$\int_0^\infty f(x) \, \mathrm{d}x \le \left(\int_0^\infty x^3 f(x) \, \mathrm{d}x \right)^{1/4} \, .$$

⁵Johan Ludwig William Valdemar Jensen (1859–1925), danski matematik

18

5. Produktne mere

Tonellijev in Fubinijev izrek

Naj bosta (S, S) in (T, T) merljiva prostora. **Produktna** σ -algebra $S \otimes T$ na $S \times T$ je σ -algebra, generirana z vsemi merljivimi pravokotniki $A \times B$, kjer je $A \in S$ in $B \in T$.

Naj bo μ σ -končna mera na (S, \mathcal{S}) , ν pa σ -končna mera na (T, \mathcal{T}) . **Produktna** mera je mera $\mu \times \nu$ na produktnem prostoru $(S \times T, \mathcal{S} \otimes \mathcal{T})$, karakterizirana z lastnostjo:

$$(\mu \times \nu)(A \times B) = \mu(A) \, \nu(B) \, .$$

Če $\mathbb{R}^m \times \mathbb{R}^n$ identificiramo z \mathbb{R}^{m+n} , produktna algebra $\mathcal{B}(\mathbb{R}^m) \otimes \mathcal{B}(\mathbb{R}^n)$ ustreza kar Borelovi σ -algebri $\mathcal{B}(\mathbb{R}^{m+n})$, produktna mera $\lambda_m \times \lambda_n$ pa (m+n)-razsežni Lebesgueovi meri λ_{m+n} .

Tonellijev⁶ izrek

Za poljubno produktno merljivo funkcijo f z vrednostmi v $[0,\infty]$ velja:

$$\int f d(\mu \times \nu) = \int \int f(x, y) d\mu(x) d\nu(y) = \int \int f(x, y) d\nu(y) d\mu(x).$$

- 1. Za poljubna $a,b \in \mathbb{R}$ izračunajte integral $\int_0^\infty \ln \frac{x^2+b^2}{x^2+a^2} \, \mathrm{d}x$.
- 2. Izračunajte $\int_0^1 \frac{2 \ln(1+x) \ln(4x)}{1-x} dx$.

Namig: integrand zapišite kot primeren določeni integral funkcije

$$f(x,y) = \frac{1}{(1+y)(x+y)}.$$

Fubinijev⁷ izrek

Za poljubno funkcijo $f \in L^1(\mu \times \nu)$ velja:

$$\int f d(\mu \times \nu) = \int \int f(x, y) d\mu(x) d\nu(y) = \int \int f(x, y) d\nu(y) d\mu(x).$$

3. Izračunajte $\int_0^1 \frac{(x-1)e^x + (x+1)e^{-x}}{x^2} dx$.

Namig: integrand zapišite kot primeren določeni integral funkcije $f(x,y) = y e^{xy}$.

⁶Leonida Tonelli (1885–1946), italijanski matematik

⁷Guido Fubini (1879–1943), italijanski matematik

6. Pogojna pričakovana vrednost

Pogojna pričakovana vrednost glede na dogodek in σ -algebro. Primer, ko je σ -algebra generirana s particijo. Primer, ko je generirana s slučajno spremenljivko. Osnovne lastnosti. Uporaba pogojevanja.

Pogojna pričakovana vrednost glede na dogodek je definirana po predpisu:

$$E(X \mid B) = \frac{E[X \mathbf{1}_B]}{P(B)}$$

Seveda mora biti P(B) > 0, za slučajno spremenljivko X pa privzamemo, da ima bodisi vrednosti v $[0, \infty]$ bodisi je v $L^1(P)$.

1. Naj bosta X in Y neodvisni slučajni spremenljivki, porazdeljeni enakomerno na [0,1]. Izračunajte $E(X\mid X\leq Y)$.

Naj bo $(H_k)_{k\in K}$ števna merljiva particija verjetnostnega prostora Ω . Označimo $K_+ := \{k \in K \; ; \; P(H_k) > 0\}$. Tedaj za vsak dogodek A velja **izrek o polni verjetnosti**:

$$P(A) = \sum_{k \in K_{+}} P(H_{k}) P(A \mid H_{k}).$$

Nadalje naj bo X slučajna spremenljivka, ki ima bodisi vrednosti v $[0, \infty]$ bodisi pripada $L^1(P)$. Tedaj velja **izrek o polni pričakovani vrednosti**:

$$E(X) = \sum_{k \in K_+} P(H_k) E(X \mid H_k).$$

2. Pošten kovanec mečemo, dokler ne padeta dve cifri zapored. Meti so med seboj neodvisni. Izračunajte pričakovano število vseh metov.

Pogojna pričakovana vrednost slučajne spremenljivke X glede na σ -algebro \mathcal{H} je slučajna spremenljivka Z, ki ima naslednji dve lastnosti:

- je merljiva glede na \mathcal{H} (ali krajše \mathcal{H} -merljiva), kar pomeni, da za poljubno Borelovo množico C velja $\{X \in C\} \in \mathcal{H}$;
- za vsako množico $B \in \mathcal{H}$ velja $E[X \mathbf{1}_B] = E[Z \mathbf{1}_B]$.

Pišemo $Z = E(X \mid \mathcal{H}).$

Opombe.

 $\bullet\,$ Pogojna pričakovana vrednost obstaja, brž koXslika v $[0,\infty]$ ali pa je $X\in L^1(P).$

- Pogojna pričakovana vrednost je določena (le) do skoraj gotove enakosti natančno. Zato je treba enakosti z izrazi, kot je $E(X \mid \mathcal{H})$, razumeti v nekoliko posplošenem smislu enačaj tu nima klasičnega pomena. Strogo gledano je $E(X \mid \mathcal{H})$ ekvivalenčni razred slučajnih spremenljivk in formalno pravilno bi bilo treba pisati $Z \in E(X \mid \mathcal{H})$, a to ni uveljavljeno. Predstavnikom ekvivalenčnih razredov pravimo verzije.
- Če je $X \in L^1(P)$, se lahko pri pogoju, da za vsako množico B velja $E[X \mathbf{1}_B] = E[Z \mathbf{1}_B]$, omejimo le na množice iz neke družine $A \subseteq \mathcal{H}$, ki je zaprta za neprazne končne preseke in v smislu σ -algeber generira \mathcal{H} .

Če sta $\mathcal Z$ in $\mathcal W$ ustrezna ekvivalenčna razreda skupaj z ekvivalenčnima relacijama, zapis $\mathcal Z=\mathcal W$ pomeni, da je presek ekvivalenčnih razredov, ki ju dobimo iz $\mathcal Z$ in $\mathcal W$, tako da ekvivalenčno relacijo zamenjamo z ekvivalenčno ovojnico obeh relacij, neprazen. V tovrstne zveze vključimo tudi slučajne spremenljivke, tako da jih zamenjamo z ekvivalenčnimi razredi z relacijo enakosti. Zapis $Z=E(X\mid \mathcal H)$ tako implicira, da je X merljiva glede na $\mathcal H$. Pač pa tako posplošeni enačaj ni tranzitivna relacija – je le skoraj tranzitivna, saj iz zapisa $\mathcal Z=\mathcal W$ sledi, da sta poljubna predstavnika ekvivalenčnih razredov $\mathcal Z$ in $\mathcal W$ skoraj gotovo enaka.

Pogojna pričakovana vrednost glede na particijo

Če je \mathcal{H} σ -algebra, generirana s števno merljivo particijo $(H_k)_{k \in K}$ prostora Ω , je $Z = E(X \mid \mathcal{H})$ natanko tedaj, ko:

- je slučajna spremenljivka Z na vseh dogodkih H_k konstantna, t. j. za vsak $k \in K$ obstaja tak z_k , da je $Z(\omega) = z_k$ za vse $\omega \in H_k$;
- za vsak k, za katerega je $P(H_k) > 0$, velja $z_k = E(X \mid H_k)$; v primeru, ko je $P(H_k) = 0$, je vrednost z_k lahko poljubna.
- 3. Slučajna spremenljivka X naj bo porazdeljena zvezno z gostoto:

$$f_X(x) = \begin{cases} \frac{2}{x^3} & ; x \ge 1\\ 0 & ; \text{ sicer.} \end{cases}$$

Privzemimo, da X zagotovo (ne le skoraj gotovo) zavzame vrednosti na intervalu $[1,\infty)$. Tedaj dogodki $H_k:=\{k\leq X< k+1\},\ k\in\mathbb{N},\$ tvorijo števno merljivo particijo. Določite pogojno pričakovano vrednost slučajne spremenljivke X glede na σ -algebro, ki jo generira ta particija.

Merljivost glede na σ -algebro, generirano s slučajno spremenljivko

Poljubna merljiva funkcija slučajne spremenljivke Y, ki slika v merljiv prostor (T, \mathcal{T}) , je merljiva glede na σ -algebro, ki jo generira Y, torej glede na $\sigma(Y) := \{ \{ Y \in D \} ; Y \in \mathcal{T} \}.$

Obratno, poljubna **realna** slučajna spremenljivka Z, ki je merljiva glede na $\sigma(Y)$, je merljiva funkcija slučajne spremenljivke Y: obstaja torej taka merljiva funkcija φ , da je $Z = \varphi(Y)$.

Pogojno pričakovano vrednost $E(X \mid Y)$ definiramo kot $E(X \mid \sigma(Y))$. Po prejšnjem je to nujno funkcija slučajne spremenljivke Y. Slednji pravimo **regresijska funkcija**. Le-ta je karakterizirana s pogojem, da za vsako množico $D \in \mathcal{T}$ velja $E[X \mathbf{1}(Y \in D)] = E[\varphi(Y) \mathbf{1}(Y \in D)]$. Če je $X \in L^1(P)$, je dovolj vzeti množice D iz družine $A \subseteq \mathcal{T}$, ki je zaprta za neprazne končne preseke in v smislu σ -algeber generira \mathcal{T} .

4. Naj bo0 < q < 1. Slučajna spremenljivka Nnaj bo porazdeljena diskretno po predpisu:

$$P(N = n) = -\frac{1}{\ln(1 - q)} \frac{q^n}{n}; \quad n = 1, 2, 3, \dots$$

Naj bo Y slučajna spremenljivka, ki je pogojno na N=n porazdeljena eksponentno Exp(n), kar pomeni, da zavzame vrednosti v $(0,\infty)$ in da za poljuben y>0 velja:

$$F_{Y|N}(y \mid n) = 1 - e^{-ny}$$
.

- a) Dokažite, da je, gledano brezpogojno, Y porazdeljena zvezno, in določite njeno porazdelitveno gostoto.
- b) Izračunajte $E(N \mid Y)$.
- 5. Naj bo X zvezno porazdeljena realna slučajna spremenljivka s porazdelitveno gostoto f. Privzemimo še, da je $X \in L^1(P)$. Izračunajte $E(X \mid |X|)$.

Pogojna pričakovana vrednost je linearna:

$$E(X + Y \mid \mathcal{H}) = E(X \mid \mathcal{H}) + E(X \mid \mathcal{H}),$$

$$E(aX \mid \mathcal{H}) = a E(X \mid \mathcal{H}).$$

Pri slednji enakosti je seveda mišljeno, da je a konstanta. A to je možno okrepiti: brž ko je W slučajna spremenljivka, merljiva glede na \mathcal{H} , velja:

$$E(XW \mid \mathcal{H}) = E(X \mid \mathcal{H}) W.$$

Posledično za poljubno slučajno spremenljivko Y in funkcijo ψ velja:

$$E(X\psi(Y)\mid Y) = E(X\mid Y)\,\psi(Y)\,.$$

Velja še:

$$E[E(X \mid \mathcal{H})] = E(X).$$

6. Pošteno kocko mečemo, dokler ne pade šestica, meti so neodvisni. Izračunajte pričakovani delež enojk med vsemi meti.

$$\check{C}$$
e je X neodvisna od \mathcal{H} , je $E(X\mid\mathcal{H})=E(X).$

Če je
$$\mathcal{G} \subseteq \mathcal{H}$$
, je $E[E(X \mid \mathcal{H}) \mid \mathcal{G}] = E(X \mid \mathcal{G})$.

- 7. Naj bodo X, Y in Z slučajne spremenljivke ter $a \in \mathbb{R}$. Privzemimo naslednje:
 - X, Y aX in Z aY so neodvisne.
 - E(X) = E(Y) = E(Z) = 0.
 - $E(X^2) = E(Y^2) = E(Z^2) = 1$.

Izračunajte $E(Z \mid X, Y)$ in $E(YZ \mid X)$.

1. Merljivost in mera

- **1.** [0, 9).
- 2. Velja $f^{-1}(B_b) = \{x \in \mathbb{R} : e^{-x} \leq b\}$. Za $b \leq 0$ ta neenačba ni izpolnjena nikjer, torej je $f^{-1}(B_b) = \emptyset$. Za b > 0 pa je ta neenačba izpolnjena za $x \geq -\ln b$, torej je $f^{-1}(B_b) = [-\ln x, \infty)$.
- 3. Spet moramo za vse $b \in \mathbb{R}$ rešiti ne
enačbo $x + \frac{1}{x} \le b$. Ločimo tri primere glede na x:
 - Za x = 0 neenačba nima pomena.
 - Za x>0 je neenačba ekvivalentna neenačbi $x^2-bx+1\leq 0$. Za |b|<2 ta neenačba nima rešitve, za b=2 je edina rešitev $x=\frac{1}{2}b$, za |b|>2 pa je njena rešitev $\frac{1}{2}\big(b-\sqrt{b^2-4}\big)\leq x\leq \frac{1}{2}\big(b+\sqrt{b^2-4}\big)$. Opazimo še, da za b<-2 velja $\frac{1}{2}\big(b+\sqrt{b^2-4}\big)<0$, medtem ko za b>2 velja $\frac{1}{2}\big(b-\sqrt{b^2-4}\big)>0$. Sledi:

$$f^{-1}(B_b) \cap (0, \infty) = \begin{cases} \emptyset & ; b < 2 \\ \{1\} & ; b = 2 \\ \left[\frac{1}{2}(b - \sqrt{b^2 - 4}), \frac{1}{2}(b + \sqrt{b^2 - 4})\right] & ; b > 2. \end{cases}$$

• Za x < 0 je neenačba ekvivalentna neenačbi $x^2 - bx + 1 \ge 0$. Za $|b| \ge 2$ ta neenačba velja za vse x, za |b| > 2 pa je njena rešitev $x \le \frac{1}{2} \left(b - \sqrt{b^2 - 4} \right)$ ali $x \ge \frac{1}{2} \left(b + \sqrt{b^2 - 4} \right)$. Ob isti primerjavi krajišč z 0 kot prej dobimo:

$$f^{-1}(B_b) \cap (-\infty, 0) =$$

$$= \begin{cases} \left(-\infty, \frac{1}{2} \left(b - \sqrt{b^2 - 4} \right) \right] \cup \left[\frac{1}{2} \left(b + \sqrt{b^2 - 4} \right), 0 \right) & ; b < -2 \\ (-\infty, 0) & ; b \ge -2 \end{cases}$$

Združimo skupaj in dobimo:

$$f^{-1}(B_b) = \begin{cases} \left(-\infty, \frac{1}{2} \left(b - \sqrt{b^2 - 4}\right)\right] \cup \left[\frac{1}{2} \left(b + \sqrt{b^2 - 4}\right), 0\right) & ; b < -2 \\ \left(-\infty, 0\right) & ; -2 \le b < 2 \\ \left(-\infty, 0\right) \cup \left\{1\right\} & ; b = 2 \\ \left(-\infty, 0\right) \cup \left[\frac{1}{2} \left(b - \sqrt{b^2 - 4}\right), \frac{1}{2} \left(b + \sqrt{b^2 - 4}\right)\right] & ; b > 2. \end{cases}$$

- **4.** $\bigcup_{n=0}^{\infty} \left(\left(-\sqrt{(n+1)\pi}, -\sqrt{n\pi + \operatorname{arcctg} b} \right) \cup \left[\sqrt{n\pi + \operatorname{arcctg} b}, \sqrt{(n+1)\pi} \right) \right)$.
- 5. Množica \mathcal{F} ni σ -algebra, množica \mathcal{G} pa je. Najmanjša σ -algebra, ki vsebuje \mathcal{F} , je kar 2^{Ω} .
- 6. To so vse podmnožice, za katere velja, da vsebujejo število 4 natanko tedaj, ko vsebujejo število 5. Ta σ -algebra ima 16 elementov.

- 7. a) \mathcal{A}_m je natančno družina množic, za katere velja, da množico $\{m+1, m+2, \ldots\}$ bodisi v celoti vsebujejo bodisi imajo z njo prazen presek. To pa ne velja za množico $\{n\} \in \mathcal{A}_n$.
 - b) \mathcal{A} je družina vseh množic, ki so bodisi same končne bodisi je končen njihov komplement. Množica sodih števil ni taka množica.
- 8. To je družina vseh podmnožic, ki so bodisi števne bodisi so števni njihovi komplementi.
- 9. Najprej opazimo, da \mathcal{M} vsebuje vse preseke:

$$((0, \cos \alpha] \times (0, \sin \alpha]) \cap ((0, \cos \beta] \times (0, \sin \beta]) =$$

$$= ((0, \min\{\cos \alpha, \cos \beta\}] \times (0, \min\{\sin \alpha, \sin \beta\}]).$$

To pa so vsi pravokotniki $(0, u] \times (0, v]$, kjer je u, v > 0 in $u^2 + v^2 \le 1$: za dana u, v namreč lahko vzamemo $\alpha = \arccos u$ in $\beta = \arcsin v$ (velja $\sin \alpha \ge v = \sin \beta$ in $\cos \beta \ge u = \cos \alpha$).

Nadalje opazimo, da \mathcal{M} vsebuje vse množice oblike $T_n = \{(x,y) \in \Omega : x+y < 1+\frac{1}{n}\}$, saj je T_n unija vseh pravokotnikov $(0,u] \times (0,v]$, kjer je $u,v \in (0,\infty) \cap \mathbb{Q}, u^2+v^2 \leq 1$ in $u+v < 1+\frac{1}{n}$. Končno, ker je T presek vseh množic T_n , kjer je $n \in \mathbb{N}$, mora pripadati \mathcal{M} .

- 10. Ne. Definirajmo $L := \{(\cos \alpha, \sin \alpha) : 0 < \alpha < \pi/2\}$ in $\partial L := \{(1,0), (0,1)\}$. Nadalje naj bo \mathcal{N} družina množic, ki bodisi ne sekajo ∂L , L pa sekajo v števno mnogo točkah, bodisi vsebujejo ∂L in še vse točke iz L razen števno mnogo. Opazimo, da je \mathcal{N} σ -algebra, ki vsebuje vse pravokotnike M_{α} , torej je $\mathcal{M} \subseteq \mathcal{N}$. Množica T pa ne pripada \mathcal{N} , torej tudi ne pripada \mathcal{M} .
- 11. Fiksirajmo c. Očitno trditev velja, če je množica B poltrak: za $B = (-\infty, b]$ je namreč $B+c=(-\infty,b+c]$. Označimo z \mathcal{B}_c družino množic B, za katero je množica B+c Borelova. Ta družina je σ -algebra, ki vsebuje vse poltrake $B=(-\infty,b]$, potem pa mora vsebovati tudi vso Borelovo σ -algebro.
- 12. a) Ker so vse enoelementne množice $\{y\}$ Borelove, morajo biti, če je f merljiva, tudi njihove praslike merljive. Obratno, če ima f števno zalogo vrednosti C, lahko za vsako množico $B \subseteq \mathbb{R}$ zapišemo:

$$f^{-1}(B) = \bigcup_{y \in B \cap C} f^{-1}(\{y\}),$$

kar je merljiva množica.

b) Za protiprimer za f vzemimo identiteto na \mathbb{R} , pri čemer za σ -algebro na \mathbb{R} kot domeni (definicijskem območju) vzamemo družino vseh množic, ki so bodisi števne bodisi komplementi števnih; na \mathbb{R} kot kodomeni pa kot običajno vzamemo Borelovo σ -algebro. Interval [0,1] je Borelova množica, torej merljiva v σ -algebri, vezani

na kodomeno. Ker je f identiteta, je interval [0,1] sam svoja praslika. Ker pa ni niti sam števen niti njegov komplement ni števen, ni merljiv v σ -algebri, vezani na domeno.

13. Opazimo, da je $f(\omega) < g(\omega)$ natanko tedaj, ko obstaja tak $q \in \mathbb{Q}$, da je $f(\omega) < q < g(\omega)$. Torej je:

$$\{\omega \in \Omega ; f(\omega) < g(\omega)\} = \bigcap_{q \in \mathbb{Q}} \left(f^{-1}([-\infty, q)) \cap g^{-1}((q, \infty)) \right),$$

kar je merljiva množica (tu se ne moremo neposredno sklicati na merljivost razlike funkcij, ker slikata v $[-\infty,\infty]$). Če zamenjamo vlogi funkcij f in g, vidimo, da je tudi druga množica merljiva. Merljivost ostalih sledi iz izražav:

$$\begin{split} \{\omega \in \Omega \; ; \; & f(\omega) \leq g(\omega)\} = \{\omega \in \Omega \; ; \; f(\omega) > g(\omega)\}^{\mathrm{c}} \; , \\ \{\omega \in \Omega \; ; \; & f(\omega) \geq g(\omega)\} = \{\omega \in \Omega \; ; \; f(\omega) < g(\omega)\}^{\mathrm{c}} \; , \\ \{\omega \in \Omega \; ; \; & f(\omega) = g(\omega)\} = \{\omega \in \Omega \; ; \; f(\omega) \leq g(\omega)\} \cap \{\omega \in \Omega \; ; \; f(\omega) \geq g(\omega)\} \; . \end{split}$$

14. Opazimo, da je $\sup_{n\in\mathbb{N}} f_n(\omega) \leq b$ natanko tedaj, ko za vse $n\in\mathbb{N}$ velja $f_n(\omega) \leq b$. Če torej označimo $g:=\sup_{n\in\mathbb{N}} f$, je $g^{-1}\big([-\infty,b]\big)=\bigcap_{n=1}^\infty f_n^{-1}\big([-\infty,b]\big)$, kar je merljiva množica. Ker je Borelova σ -algebra na $[0,\infty]$ generirana že s poltraki $[-\infty,b]$, je tudi funkcija $g=\sup_{n\in\mathbb{N}} f_n$ merljiva.

Podobno je $\inf_{n\in\mathbb{N}} f_n(\omega) \geq a$ natanko tedaj, ko za vse $n\in\mathbb{N}$ velja $f_n(\omega) \geq a$. Če torej označimo $h:=\inf_{n\in\mathbb{N}} f$, je $h^{-1}\big([a,\infty]\big)=\bigcap_{n=1}^\infty f_n^{-1}\big([a,\infty]\big)$, kar je merljiva množica. Ker je Borelova σ -algebra na $[0,\infty]$ generirana že s poltraki $[a,\infty]$, je tudi funkcija $h=\inf_{n\in\mathbb{N}} f_n$ merljiva.

Zadnji dve funkciji pa sta merljivi, ker se izražata v obliki $\limsup_{n\to\infty} f_n(\omega) = \inf_{n\in\mathbb{N}} \sup_{m\in\{m,m+1,\ldots\}} f_m(\omega)$ in $\liminf_{n\to\infty} f_n(\omega) = \sup_{n\in\mathbb{N}} \inf_{m\in\{m,m+1,\ldots\}} f_m(\omega)$.

15. a) $Prvi\ na\check{c}in$: uporabimo, da je zaporedje konvergentno natanko tedaj, ko je Cauchyjevo⁸. Če torej s K označimo množico točk ω , kjer zaporedje $f_1(\omega), f_2(\omega), \ldots$ konvergira v \mathbb{R} , velja:

$$K = \bigcap_{j=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{r=n}^{\infty} \bigcap_{s=n}^{\infty} \left(\left\{ \omega \in \Omega ; f(\omega) < g(\omega) + \frac{1}{j} \right\} \cap \left\{ \omega \in \Omega ; g(\omega) < f(\omega) + \frac{1}{j} \right\} \right),$$

kar je merljiva množica.

Drugi način. Če te funkcije gledamo kot funkcije iz Ω v $[-\infty, \infty]$, so še vedno merljive. Zaporedje $f_1(\omega), f_2(\omega), \ldots$ konvergira v $\mathbb R$ natanko tedaj, ko je $-\infty < \lim\inf_{n\to\infty} f_n(\omega) = \lim\sup_{n\to\infty} f_n(\omega) < \infty$. Iz prejšnjih dveh nalog sledi, da je množica točk ω , kjer to drži, merljiva.

b) V definiciji funkcije f smemo limito $\lim_{n\to\infty} f_n(\omega)$ zamenjati z $f_+(\omega) := \lim\sup_{n\to\infty} f_n(\omega)$. Potem pa za vsak $b\in\mathbb{R}$ velja:

$$f^{-1}\big((-\infty,b]\big) = \Big(f_+^{-1}\big((-\infty,b]\big) \cap K\Big) \cup \Big(g^{-1}\big((-\infty,b]\big) \setminus K\Big),$$

⁸baron Augustin-Louis Cauchy (1789–1857), francoski matematik

kar je merljiva množica. To pa je dovolj za merljivost funkcije f.

16. Funkcija f je zvezna v x natanko tedaj, ko za vsak $j \in \mathbb{N}$ obstaja tak $k \in \mathbb{N}$, da za vsak $y \in \left(x - \frac{1}{k}, x + \frac{1}{k}\right)$ velja $|f(y) - f(x)| \leq \frac{1}{j}$. Toda za vsak y iz intervala $\left(x - \frac{1}{k}, x + \frac{1}{k}\right)$ obstaja zaporedje racionalnih števil q_1, q_2, \ldots iz tega intervala, ki konvergira k x. Zaradi desne zveznosti funkcije f je potem tudi $\lim_{n \to \infty} f(q_n) = f(x)$. Potem pa je za to, da za vsak $y \in \left(x - \frac{1}{k}, x + \frac{1}{k}\right)$ velja $|f(y) - f(x)| \leq \frac{1}{j}$, dovolj, da slednje velja za vsak $y \in \left(x - \frac{1}{k}, x + \frac{1}{k}\right) \cap \mathbb{Q}$. Še drugače, funkcija f je zvezna v x natanko tedaj, ko za vsak $j \in \mathbb{N}$ obstaja tak $k \in \mathbb{N}$, da za $y \in \mathbb{Q}$ velja bodisi $y - x \geq \frac{1}{k}$ bodisi $x - y \leq \frac{1}{k}$ bodisi $f(y) - \frac{1}{j} \leq f(x) \leq f(y) + \frac{1}{j}$. To pomeni, da se množica točk x, kjer je f zvezna, izraža v obliki:

$$\bigcap_{j=1}^{\infty}\bigcup_{k=1}^{\infty}\bigcap_{y\in\mathbb{O}}\left(\left[y+\frac{1}{k},\,\infty\right)\cup\left(-\infty,\,y-\frac{1}{k}\right]\cup f^{-1}\left(\left(f(y)-\frac{1}{j},\,f(y)+\frac{1}{j}\right)\right)\right)\,,$$

kar je res Borelovo merljiva množica.

- 17. Očitno je $\delta_a(\emptyset) = \emptyset$. Naj bo zdaj A_1, A_2, \ldots zaporedje paroma disjunktnih množic z unijo A. Če a ni element množice A, a ni element nobene množice A_k , torej je $\delta_a(A) = 0$ in $\delta_a(A_k) = 0$ za vse k. Sledi $\delta_a(A) = \sum_{k=1}^{\infty} \delta_a(A_k) = 0$. Če pa je a element množice A, je a element natanko ene množice A_k . Tedaj je $\delta_a(A) = \sum_{k=1}^{\infty} \delta_a(A_k) = 1$. V vsakem primeru je $\delta_a(A) = \sum_{k=1}^{\infty} \delta_a(A_k)$.
- 18. Očitno je $\mu(\emptyset) = \sum_{a \in \emptyset} f(a) = 0$. Naj bo zdaj A_1, A_2, \ldots zaporedje paroma disjunktnih množic z unijo A. Iz prejšnje naloge sledi, da je:

$$\mathbf{1}(a \in A) = \delta_a(A) = \sum_{k=1}^{\infty} \delta_a(A_k) = \sum_{k=1}^{\infty} \mathbf{1}(a \in A_k),$$

torej je:

$$\mu(A) = \sum_{a \in \Omega} f(a) \mathbf{1}(a \in A) =$$

$$= \sum_{a \in \Omega} f(a) \sum_{k=1}^{\infty} \mathbf{1}(a \in A_k) =$$

$$= \sum_{k=1}^{\infty} \sum_{a \in \Omega} f(a) \mathbf{1}(a \in A_k) =$$

$$= \sum_{k=1}^{\infty} \mu(A_k).$$

19. Ker je prazna množica števna, je $\mu(\emptyset) = 0$. Naj bo zdaj A_1, A_2, \ldots zaporedje paroma disjunktnih množic z unijo A. Če so vse množice A_k števne, je tudi A števna. Tedaj velja $\mu(A) = 0$ in $\mu(A_k) = 0$ za vse k, torej $\mu(A) = \sum_{k=1}^{\infty} \mu(A_k) = 0$. Če pa obstaja tak l, da je A_l komplement števne množice, so vse ostale množice $A_k, k \neq l$, števne,

saj so podmnožice števne množice A_l^c . Torej je $\mu(A_l) = 1$ in $\mu(A_k) = 0$ za vse $k \neq l$. Tudi množica A je komplement števne množice, saj je tudi A^c podmnožica števne množice A_l^c , torej je $\mu(A) = 1$. Sledi $\mu(A) = \sum_{k=1}^{\infty} \mu(A_k) = 1$. V vsakem primeru je $\mu(A) = \sum_{k=1}^{\infty} \mu(A_k)$.

20. Zveza $f(\omega) > g(\omega)$ velja natanko tedaj, ko obstaja tako racionalno število $c \in \mathbb{Q}$, da je $f(\omega) > c > g(\omega)$. Torej je:

$$\{\omega \; ; \; f(\omega) > g(\omega)\} = \bigcup_{c \in \mathbb{Q}} \{\omega \; ; \; f(\omega) > c > g(\omega)\} \, .$$

Sledi $\mu(\{\omega ; f(\omega) > g(\omega)\}) \leq \sum_{c \in \mathbb{Q}} \mu(\{\omega ; f(\omega) > c > g(\omega)\}) = 0$, torej tudi $\mu(\{\omega ; f(\omega) > g(\omega)\}) = 0$.

- **21.** Vzemimo $\Omega = \mathbb{N}$, za σ -algebro vzemimo potenčno množico, μ pa naj bo mera, ki šteje. Nadalje naj bo $A_n = \{n, n+1, n+2, \ldots\}$. Tedaj za vse n velja $\mu(A_n) = \infty$, medtem ko je $\mu(A) = 0$, saj je $A = \emptyset$.
- 22. a) Opazimo, da je \mathcal{P} particija množice Ω . Vse unije množici iz \mathcal{P} so torej disjunktne. Označimo družino teh unij (vključno s prazno unijo) z \mathcal{U} . Velja torej $\mathcal{U} = \{\bigcup S : S \subseteq \mathcal{P}\}$. Očitno je $\mathcal{U} \subseteq \sigma(\mathcal{A})$. Družina \mathcal{U} pa je tudi σ -algebra: vsebuje prazno množico, je zaprta za unije, ker so unije disjunktne, pa velja tudi $(\bigcup S)^c = \bigcup (\mathcal{P} \setminus S)$. To pa pomeni, da je tudi $\mathcal{U} \supseteq \sigma(\mathcal{A})$. Sklep: $\sigma(\mathcal{A}) = \mathcal{U}$.
 - b) Najprej bomo pokazali, da za vsak $A \in \mathcal{A}$ in vsak $B \in \mathcal{R}$ velja $A \cap B \in \mathcal{R}$. Po predpostavki to velja, če je $B \in \mathcal{A}$. Nadalje opazimo, da za poljubni množici $B \supseteq C$, za kateri je $A \cap B \in \mathcal{R}$ in $A \cap C \in \mathcal{R}$, velja $A \cap B \supseteq A \cap C$, torej je tudi $(A \cap B) \setminus (A \cap C) = A \cap (B \setminus C) \in \mathcal{R}$. Z indukcijo dobimo, da res za vsak $A \in \mathcal{A}$ in vsak $B \in \mathcal{R}$ velja $A \cap B \in \mathcal{R}$.

Nadalje pokažimo, da za vsak $A \in \mathcal{R}$ in vsak $B \in \mathcal{R}$ velja $A \cap B \in \mathcal{R}$. Za primer, ko je $A \in \mathcal{A}$, smo to pravkar dokazali. Vzemimo sedaj množico $C \in \mathcal{R}$ ter poljubni množici $A \supseteq B$, za kateri je $A \cap C \in \mathcal{R}$ in $B \cap C \in \mathcal{R}$. Spet velja $A \cap C \supseteq B \cap C$, torej je tudi $(A \cap C) \setminus (B \cap C) = (A \setminus B) \cap C \in \mathcal{R}$. Z indukcijo dobimo zahtevano trditev.

Končno lahko za poljubni množici $A, B \in \mathcal{R}$ zapišemo $A \setminus B = A \setminus (A \cap B)$. Ker je $A \cap B \subseteq A$ in $A \cap B \in \mathbb{R}$, je $A \setminus B$ tudi prava razlika množici iz \mathcal{R} , zato pripada \mathcal{R} . c) Vsako množico $D \in \mathcal{P}$ lahko zapišemo tudi v obliki $D_1 \cap \cdots \cap D_r \cap D_{r+1}^c \cap \cdots \cap D_n^c$, kjer je zaporedje $D_1, \ldots D_n$ permutacija zaporedja A_1, \ldots, A_n in $r = 0, 1, \ldots, n$. Za r = 0 dobimo $D_1 \cap \cdots \cap D_n = A_1 \cap \cdots \cap A_n$, kar pripada \mathcal{R} , saj je le-ta zaprta za končne preseke. Za r = n dobimo $A_1^c \cap \cdots \cap A_n^c = (A_1 \cup \cdots \cup A_n)^c = \emptyset$, ker prav tako pripada \mathcal{R} , ker je to enako $A_1 \setminus A_1$. Sicer pa lahko množico zapišemo v obliki:

$$(\tilde{D} \setminus D_{r+1}) \cap \cdots \cap (\tilde{D} \setminus D_n)$$
,

kjer je $\tilde{D} = D_1 \cap \cdots \cap D_r$. Ker je \mathcal{R} zaprta za končne preseke in razlike, mora vsebovati tudi množico D.

d) Če je μ pozitivna mera, $A\supseteq B$ merljivi množici in $\mu(B)<\infty,$ je $\mu(A\setminus B)=$

29

 $\mu(A) - \mu(B)$. Od tod z indukcijo dobimo, da se poljubni meri, ki se na \mathcal{A} ujemata in sta tam končni, ujemata tudi na \mathcal{R} , torej tudi na \mathcal{P} . V točki a) smo videli, da je vsaka množica iz $\sigma(\mathcal{A})$ disjunktna unija množic iz \mathcal{P} ; ta unija pa je tudi končna, saj je množica \mathcal{P} končna. To pa pomenim da se morata poljubni meri, ki se ujemata na \mathcal{P} , ujemati tudi na $\sigma(\mathcal{A})$.

e) Vzemimo $\Omega = \{1, 2, 3, 4\}$ in $\mathcal{A} = \{\{1, 2\}, \{1, 3\}, \{1, 2, 3, 4\}\}$. Ni težko preveriti, da je $\sigma(\mathcal{A}) = 2^{\Omega}$. Seveda \mathcal{A} pokrije Ω . Definirajmo $\mu(A) := \delta_1(A) + \delta_4(A)$ in $\nu(A) := \delta_2(A) + \delta_3(A)$. Ni težko preveriti, da sta μ in ν pozitivni meri. Velja $\mu(\{1, 2\}) = \nu(\{1, 2\}) = \mu(\{1, 3\}) = \nu(\{1, 3\}) = 1$ in $\mu(\{1, 2, 3, 4\}) = \nu(\{1, 2, 3, 4\}) = 2$, torej se μ in ν ujemata na \mathcal{A} . Ne ujemata pa se na $\sigma(\mathcal{A}) = 2^{\Omega}$, saj je $\mu(\{1\}) = 1$, medtem ko je $\nu(\{1\}) = 0$.

23. a) Definirajmo $C_n := A_1 \cap A_2 \cap \cdots \cap A_n$. Velja:

$$C_n = \bigcup_{(a_1,\dots,a_n)\in\{0,1\}^n} \left[2\sum_{k=1}^n a_k 3^{-k}, 2\sum_{k=1}^n a_k 3^{-k} + 3^{-n} \right],$$

kar je unija 2^n disjunktnih intervalov dolžine 3^{-n} , torej ima Lebesgueovo mero $(2/3)^n$. Ker je $C = \bigcap_{n=1}^{\infty} C_n$, je $\lambda_1(C) = \lim_{n \to \infty} \lambda_1(C_n) = 0$.

b) Posplošimo konstrukcijo na naslednji način: izberimo zaporedje števil $\mathbf{q} = (q_1, q_2, \ldots) \in \left(0, \frac{1}{2}\right)^{\mathbb{N}}$ in definirajmo:

$$C_n^{\mathbf{q}} := \bigcup_{(a_1,\dots,a_n)\in\{0,1\}^n} \left[\sum_{k=1}^n a_k q_1 q_2 \cdots q_{k-1} (1-q_k), \sum_{k=1}^n a_k q_1 q_2 \cdots q_{k-1} (1-q_k) + q_1 q_2 \cdots q_n \right].$$

Prvi dve množici:

$$C_1^{\mathbf{q}} = [0, q_1] \cup [1 - q_1, 1],$$

$$C_2^{\mathbf{q}} = [0, q_1 q_2] \cup [q_1 (1 - q_2), q_1] \cup [1 - q_1, 1 - q_1 + q_1 q_1] \cup [1 - q_1 q_2, 1].$$

To je unija 2^n disjunktnih intervalov dolžine $q_1q_2\cdots q_n$, torej ima Lebesgueovo mero $2^nq_1q_2\cdots q_n$; standardno Cantorjevo množico dobimo za $q_n=\frac{1}{3}$. Če zdaj izberemo padajoče zaporedje $1=l_0>l_1>l_2>\cdots$ in izberemo $q_n:=\frac{l_n}{2l_{n-1}}$, ima množica C_n^q dolžino l_n . Množice C_n^q še vedno tvorijo padajoče zaporedje, torej ima njihov presek $C^q:=\bigcap_{n=1}^{\infty}C_n^q$ Lebesgueovo mero $l:=\lim_{n\to\infty}l_n$, ne vsebuje pa nobenega intervala.

Na ta način smo za poljuben $l \in [0,1)$ konstruirali poljubno množico, ki ima Lebesgueovo mero l in ne vsebuje nobenega intervala. Za poljuben k > 0 ima množica $k C^q$ dolžino kl. Tako torej konstruiramo množico s poljubno končno Lebesgueovo mero, ki ne vsebuje nobenega intervala. Množico z neskončno Lebesgueovo mero, ki ne vsebuje nobenega intervala, pa dobimo tako, da za določen l > 0 vzamemo unijo $\bigcup_{n \in \mathbb{Z}} (C^q + n)$.

Opomba. Če še ne vemo, da je $\lambda_1(kA+b) = |k| \lambda_1(A)$, lahko prejšnje sklepanje še vedno utemeljimo s tem, da je $\lambda_1(C_n^q + n) = l_n$.

24. Ker je množica racionalnih števil števna, jo lahko zapišemo v obliki $\mathbb{Q}=\{q_1,q_2,q_3,\ldots\}$. Množica $U:=\bigcup_{n=1}^{\infty}\left(q_n-2^{-n},q_n+2^{-n}\right)$ je prav tako povsod gosta, a tudi odprta. Ker je $U\supseteq\left(q_1-\frac{1}{2},q_1+\frac{1}{2}\right)$, je $\lambda_1(U)\ge 1$, velja pa tudi $\lambda_1(U)\le\sum_{n=1}^{\infty}\lambda_1\left(\left(q_n-2^{-n},q_n+2^{-n}\right)\right)=2$. Množica $\frac{l}{\lambda_1(U)}U$ ima torej Lebesgueovo mero l ter je prav tako odprta in povsod gosta.

2. Lebesgueov integral

1. Prvi način: iz $f = 0 \cdot \mathbf{1}_{(-\infty,1]} + 1 \cdot \mathbf{1}_{(1,3]} + 4 \cdot \mathbf{1}_{(3,5]} + 1 \cdot \mathbf{1}_{(5,8]} + 0 \cdot \mathbf{1}_{(8,\infty)}$ dobimo $\int f \, d\lambda_1 = 0 \cdot \infty + 1 \cdot 2 + 4 \cdot 2 + 1 \cdot 3 + 0 \cdot \infty = 13$.

Drugi način: iz $f = 1 \cdot \mathbf{1}_{(1,3] \cup [5,8)} + 4 \cdot \mathbf{1}_{(3,5]}$ dobimo $\int f \, d\lambda_1 = 1 \cdot 5 + 4 \cdot 2 = 13$.

Tretji način: iz $f = 1 \cdot \mathbf{1}_{(1.8]} + 3 \cdot \mathbf{1}_{(3.5]}$ dobimo $\int f \, d\lambda_1 = 1 \cdot 7 + 3 \cdot 2 = 13$.

- **2.** a) $\sum_{k=1}^{n} H_k$.
 - b) Iz zapisa $f = \sum_{k=1}^{n} \frac{1}{k} \mathbf{1}_{(k-1,n]}$ dobimo:

$$\int f_n \, d\lambda_1 = \sum_{k=1}^n \frac{n-k+1}{k} = (n+1)H_n - n.$$

Torej je:

$$\sum_{k=1}^{n} H_k = (n+1)H_n - n.$$

3. Naj bo $f(x):=1/x^2$; to gledamo kot funkcijo, ki slika iz $(0,1]v[0,\infty]$. Za vsak $\varepsilon\in(0,1]$ lahko ocenimo $0\leq s_\varepsilon\leq f$, kjer je:

$$s_{\varepsilon}(x) := \begin{cases} \frac{1}{\varepsilon^2} & ; \ 0 < x \le \varepsilon \\ 0 & ; \ \varepsilon < x \le 1 \,. \end{cases}$$

Torej je $\int_{(0,1]} \frac{1}{x^2} d\lambda_1(x) = \int f d\lambda_1 \ge \int s_{\varepsilon} d\lambda_1 = \frac{1}{\varepsilon}$. Ker to velja za vsak $\varepsilon \in (0,1]$, ni druge možnosti, kot da je $\int_{(0,1]} \frac{1}{x^2} d\lambda_1(x) = \infty$.

4. Funkcija $f(x)=x^2\,\mathbf{1}(0\le x<2)$ je limita naslednjega naraščajočega zaporedja enostavnih funkcij:

$$f_n := \sum_{k=0}^{2 \cdot 2^n - 1} (k \cdot 2^{-n})^2 \mathbf{1}_{[k \cdot 2^{-n}, (k+1) \cdot 2^{-n})}.$$

Izračunajmo:

$$\int f_n \, d\lambda_1 = \sum_{k=0}^{2 \cdot 2^n - 1} (k \cdot 2^{-n})^2 \cdot 2^{-n} = 2^{-3n} \sum_{k=0}^{2 \cdot 2^n - 1} k^2.$$

Spomnimo se, da je:

$$\sum_{k=1}^{m} k^2 = \frac{m(m+1)(2m+1)}{6}, \qquad \sum_{k=0}^{m-1} k^2 = \frac{m(m-1)(2m-1)}{6}.$$

Torej je:

$$\int f_n \, d\lambda_1 = 2^{-3n} \cdot \frac{2 \cdot 2^n (2 \cdot 2^n - 1) (4 \cdot 2^n - 1)}{6} = \frac{(2 - 2^{-n}) (4 - 2^{-n})}{3}$$

in po izreku o monotoni konvergenci dobimo $\int_{[0,2)} x^2 \, \mathrm{d} \lambda_1(x) = \int f \mathrm{d} \lambda_1 = \frac{8}{3}.$

5. Velja:

$$\int f_n d\mu_0 = \sum_{k=0}^{\infty} {n \choose k} \left(\frac{a}{n}\right)^k = \sum_{k=0}^n {n \choose k} \left(\frac{a}{n}\right)^k = \left(1 + \frac{a}{n}\right)^n.$$

Iz zapisa:

$$f_n(k) = \frac{1}{k!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right) a^k$$

je razvidno, da funkcije f_n tvorijo naraščajoče zaporedje, ki po točkah konvergira k funkciji $f(k):=\frac{a^k}{k!}$. Velja:

$$\int f_n \, \mathrm{d}\mu_0 = \sum_{k=0}^{\infty} \frac{a^k}{k!} \, .$$

Izrek o monotoni konvergenci nam torej pove, da je:

$$\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n = \sum_{k=0}^{\infty} \frac{a^k}{k!}.$$

To sta dve možni definiciji naravne eksponentne funkcije $\exp(a)$.

Opomba. Dokazana zveza ne velja le za $a \ge 0$, temveč tudi za poljuben kompleksen a, možne pa so tudi nadaljnje posplošitve, npr. na Banachove algebre.

6. Naj bo $P := \{\omega : f(\omega) > 0\}$. Funkcija f je skoraj povsod enaka nič natanko tedaj, ko je $\mu(P) = 0$. Če je slednje res, je $f \le \infty \cdot \mathbf{1}_P$, torej je $\int f \, \mathrm{d}\mu \le \int (\infty \cdot \mathbf{1}_P) \, \mathrm{d}\mu = \infty \cdot \mu(P) = \infty \cdot 0 = 0$.

Privzemimo sedaj obratno, torej da je $\int f d\mu = 0$. Velja $P = \bigcup_{n=1}^{\infty} P_n$, kjer je $P_n = \{\omega ; f(\omega) \geq \frac{1}{n}\}$. Velja tudi $f \geq \frac{1}{n} \mathbf{1}_{P_n}$, torej je $0 = \int f d\mu \geq \int \left(\frac{1}{n} \mathbf{1}_{P_n}\right) d\mu = \frac{1}{n} \mu(P_n)$, od koder sledi $\mu(P_n) = 0$. Iz subaditivnosti sledi $\mu(P) = 0$.

7. Če definiramo funkcije $f_n: (0, \infty) \to \mathbb{R}$ po predpisu:

$$f_n(x) := \begin{cases} \left(1 - \frac{x}{n}\right)^n x^{\beta - 1} & ; \ 0 < x < n \\ 0 & ; \ x > n \end{cases}$$

zaradi ujemanja Riemannovega in Lebesgueovega integrala velja:

$$\int_0^n \left(1 - \frac{x}{n}\right)^n x^{\beta - 1} dx = \int_{(0, n)} f_n d\lambda_1 = \int_{(0, \infty)} f_n d\lambda_1.$$

Funkcije f_n slikajo v $[0, \infty)$. Pokažimo, da tvorijo nepadajoče zaporedje, t. j. da za vsak x > 0 in vsak $n \in \mathbb{N}$ velja $f_n(x) \leq f_{n+1}(x)$. Če je x > n, je $f_n(x) = f_{n+1}(x) = 0$.

Če je $n < x \le n+1$, je $0 = f_n(x) \le f_{n+1}(x)$. Preostane še pokazati, da za vse $0 \le x < n$ velja $\left(1 - \frac{x}{n}\right)^n \le \left(1 - \frac{x}{n+1}\right)^{n+1}$. To gre na vsaj dva načina.

Prvi način. Neenakost logaritmiramo in dobimo $n \ln \left(1 - \frac{x}{n}\right) \leq (n+1) \ln \left(1 - \frac{x}{n+1}\right)$. Za vsak x > 0 definirajmo funkcijo g_x : $(x, \infty) \to \mathbb{R}$ po predpisu $g_x(\alpha) := \alpha \ln \left(1 - \frac{x}{\alpha}\right)$. Njen odvod je enak:

$$\ln\left(1 - \frac{x}{\alpha}\right) + \frac{1}{1 - \frac{x}{\alpha}} \frac{x}{\alpha} = \sum_{k=1}^{\infty} \frac{k-1}{k} \left(\frac{x}{\alpha}\right)^k \ge 0,$$

od koder sledi, da so funkcije g_x nepadajoče, torej zahtevana neenakost res velja. Drugi način. Neenakost zapišemo v obliki $\left(1-\frac{x}{n}\right)^{-n} \geq \left(1-\frac{x}{n+1}\right)^{-n-1}$ in razvijemo:

$$\left(1 - \frac{x}{n}\right)^{-n} = \sum_{k=0}^{\infty} {\binom{-n}{k}} \left(-\frac{x}{n}\right)^k = \sum_{k=0}^{\infty} \frac{x^k}{k!} \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \cdots \left(1 + \frac{k}{n}\right).$$

Iz slednje oblike se vidi, da je zgornji izraz nenaraščajoča funkcija spremenljivke n, torej zahtevana neenakost velja.

Zdaj lahko uporabimo izrek o monotoni konvergenci – velja:

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n} \right)^n x^{\beta - 1} \, \mathrm{d}x = \int_{(0, \infty)} \lim_{n \to \infty} \left(1 - \frac{x}{n} \right)^n x^{\beta - 1} \, \mathrm{d}x =$$

$$= \int_{(0, \infty)} e^{-x} x^{\beta - 1} \, \mathrm{d}x =$$

$$= \int_0^\infty x^{\beta - 1} e^{-x} \, \mathrm{d}x =$$

$$= \Gamma(\beta).$$

8. Izrazimo:

$$\mathbf{1}_{A_{1}\cup A_{2}\cup\cdots\cup A_{n}} = 1 - \mathbf{1}_{(A_{1}\cup A_{2}\cup\cdots\cup A_{n})^{c}} =$$

$$= 1 - \mathbf{1}_{A_{1}^{c}\cap A_{2}^{c}\cap\cdots\cap A_{n}^{c}} =$$

$$= 1 - \mathbf{1}_{A_{1}^{c}} \mathbf{1}_{A_{2}^{c}} \cdots \mathbf{1}_{A_{n}^{c}} =$$

$$= 1 - (1 - \mathbf{1}_{A_{1}})(1 - \mathbf{1}_{A_{2}}) \cdots (1 - \mathbf{1}_{A_{n}}) =$$

$$= 1 - 1 + \mathbf{1}_{A_{1}} + \mathbf{1}_{A_{2}} + \cdots + \mathbf{1}_{A_{n}} -$$

$$- \mathbf{1}_{A_{1}\cap A_{2}} - \mathbf{1}_{A_{1}\cap A_{3}} - \cdots - \mathbf{1}_{A_{n-1}\cap A_{n}} +$$

$$+ \mathbf{1}_{A_{1}\cap A_{2}\cap A_{3}} + \mathbf{1}_{A_{1}\cap A_{2}\cap A_{4}} + \cdots + \mathbf{1}_{A_{n-2}\cap A_{n-1}\cap A_{n}} -$$

$$\cdots$$

$$+ (-1)^{n+1} \mathbf{1}_{A_{1}\cap A_{2}\cap\cdots\cap A_{n}}$$

Zdaj pa integriramo po meri μ , upoštevamo linearnost integrala in dobimo.

9. Iz izreka o ujemanju Lebesgueovega in Riemannovega integrala sledi:

$$\int_{1+1/n}^{\infty} \frac{1}{x^2 + \sin(x/n)} \, \mathrm{d}x = \int_{(1,\infty)} f_n \, \mathrm{d}\lambda,$$

kjer je:

$$f_n(x) = \begin{cases} 0 & ; \ 1 \le x \le 1 + a \\ \frac{1}{x^2 + \sin(x/n)} & ; \ x > 1 + 1/n \end{cases}$$

Mimogrede opazimo, da so funkcije f_n dobro definirane. Za $1 < x \le \pi$ namreč velja $\sin(x/n) \ge 0$, torej imenovalec ni enak nič. Še več, lahko ocenimo $f_n(x) \le \frac{1}{x^2}$. Za $x > \pi$ pa je imenovalec enak najmanj $\pi^2 - 1$ in torej prav tako ne more biti enak nič. Tokrat lahko ocenimo $f_n(x) \le \frac{1}{x^2-1}$. Za vse $n \in \mathbb{N}$ in vse $x \in (1, \infty)$ je torej:

$$f_n(x) \le F(x) := \begin{cases} \frac{1}{x^2} & ; \ 1 \le x \le \pi \\ \frac{1}{x^2 - 1} & ; \ x \ge \pi \end{cases}$$

Funkcija F pripada $L^1(\lambda_1|_{(1,\infty)})$, saj je:

$$\int_{1}^{\pi} \frac{1}{x^{2}} dx + \int_{\pi}^{\infty} \frac{1}{x^{2} - 1} dx = -\frac{1}{x} \Big|_{1}^{\pi} + \frac{1}{2} \ln \frac{x - 1}{x + 1} \Big|_{\pi}^{\infty} = 1 - \frac{1}{\pi} + \frac{1}{2} \ln \frac{\pi + 1}{\pi - 1} < \infty.$$

Torej lahko uporabimo izrek o dominirani konvergenci, po katerem je:

$$\lim_{n \to \infty} \int_{1+1/n}^{\infty} \frac{1}{x^2 + \sin(x/n)} dx = \lim_{n \to \infty} \int_{(1,\infty)} f_n d\lambda_1 = \int_{(1,\infty)} f d\lambda_1 = \int_1^{\infty} \frac{1}{x^2} dx = 1.$$

10. Po vpeljavi substitucije iz namiga in ureditvi dobimo:

$$\Gamma(a) \frac{e^a}{a^{a-1/2}} = \int_{-\sqrt{a}}^{\infty} \left(1 + \frac{u}{\sqrt{a}}\right)^{a-1} e^{-u\sqrt{a}} du.$$

Po izreku o ujemanju Riemannovega in Lebesgueovega integrala lahko zapišemo tudi $\Gamma(a)=\int_{\mathbb{R}}g_a\,\mathrm{d}\lambda_1,$ kjer je:

$$g_a(u) = \begin{cases} 0 & ; u \le -\sqrt{a}, \\ \left(1 + \frac{u}{\sqrt{a}}\right)^{a-1} e^{-u\sqrt{a}} & ; u > -\sqrt{a}. \end{cases}$$

Iz namiga razberemo, da za $u > -\sqrt{a}$ velja:

$$\frac{1}{1 + \frac{u}{\sqrt{a}}} \exp\left(-\frac{u^2}{2\left(1 - \frac{u^2}{\sqrt{a}}\right)}\right) \le g_a(u) \le \frac{1}{1 + \frac{u}{\sqrt{a}}} \exp\left(-\frac{u^2}{2\left(1 + \frac{u_+}{\sqrt{a}}\right)}\right).$$

Tako zgornja kot spodnja meja za $g_a(u)$ gresta za fiksen u proti $g(u) := e^{-u^2/2}$, ko gre a proti neskončno (prej ali slej je $u > -\sqrt{a}$). Pokažimo še, da so funkcije g_a za $a \ge 4$ enakomerno omejene s funkcijo, ki je v $L^1(\lambda_1)$. Za $u \ge 0$ ocenimo:

$$g_a(u) \le \exp\left(-\frac{u^2}{2+u}\right)$$
,

35

za $-\sqrt{a} < u < 0$ pa najprej ocenimo:

$$\ln\left(1 + \frac{u}{\sqrt{a}}\right) \le \frac{u}{\sqrt{a}} - \frac{u^2}{2a},$$

nato:

$$(a-1)\ln\left(1+\frac{u}{\sqrt{a}}\right) \le u\sqrt{a} - \frac{u^2}{2} - \frac{u}{\sqrt{a}} + \frac{u^2}{2a} \le u\sqrt{a} - \frac{3u^2}{8} - \frac{u}{2}$$

in končno:

$$g_a(u) \le \exp\left(-\frac{3u^2}{8} - \frac{u}{2}\right)$$
.

Ta ocena avtomatično velja tudi za $u \leq -\sqrt{a}$. Za vse $a \geq 4$ torej velja $g_a(u) \leq G(u)$, kjer je:

$$G(u) := \begin{cases} \exp\left(-\frac{3u^2}{8} - \frac{u}{2}\right) & ; u < 0, \\ \exp\left(-\frac{u^2}{2+u}\right) & ; u \ge 0. \end{cases}$$

Preverimo, da je $G \in L^1(\lambda_1)$. Ker je G pozitivna in omejena, je dovolj preveriti, da obstajata posplošena Riemannova integrala $\int_{-\infty}^{-2} G(u) \, \mathrm{d}u = \int_{2}^{\infty} G(-v) \, \mathrm{d}v$ in $\int_{2}^{\infty} G(u) \, \mathrm{d}u$. Za $u \geq 2$ velja $G(u) \leq e^{-u^2/(u+u)} \leq e^{-u/2}$ in integral $\int_{2}^{\infty} e^{-u/2} \, \mathrm{d}u$ obstaja. Za $v \geq 2$ pa velja $G(-v) = e^{v/2-3v^2/8} \leq e^{v/2-3v/4} \leq e^{-v/4}$ in integral $\int_{2}^{\infty} e^{-v/4} \, \mathrm{d}v$ spet obstaja. Torej je res $G \in L^1(\lambda_1)$.

Izrek o dominirani konvergenci uporabimo tako, da vzamemo poljubno zaporedje a_1, a_2, a_3, \ldots števil, večjih ali enakih 4, ki gredo proti neskončno. Za vse $u \in \mathbb{R}$ velja $\lim_{n\to\infty} g_{a_n}(u) = e^{-u^2/2}$ in $|g_{a_n}(u)| \leq G(u)$, torej so pogoji izreka izpolnjeni in velja $\lim_{n\to\infty} \int_{\mathbb{R}} g_{a_n} \, \mathrm{d}\lambda_1 = \int_{\mathbb{R}} g \, \mathrm{d}\lambda_1$. Sledi:

$$\lim_{a \to \infty} \Gamma(a) \frac{e^a}{a^{a-1/2}} = \int_{\mathbb{R}} g \, \mathrm{d}\lambda_1 =$$

$$= \int_{-\infty}^{\infty} e^{-u^2/2} \, \mathrm{d}u =$$

$$= 2 \int_{0}^{\infty} e^{-u^2/2} \, \mathrm{d}u =$$

$$= \sqrt{2} \int_{0}^{\infty} x^{-1/2} e^{-x} \, \mathrm{d}x =$$

$$= \sqrt{2} \Gamma(\frac{1}{2}) =$$

$$= \sqrt{2\pi}.$$

11. Če dano vsoto označimo z F(a), velja:

$$F(a) = \sum_{n=0}^{\infty} (-1)^n \frac{a^{2n}}{n!} \int_0^1 t^{2n} dt = \int_0^1 \sum_{n=0}^{\infty} (-1)^n \frac{a^{2n}}{n!} t^{2n} dt,$$

kar utemeljimo z izrekom o ujemanju Lebesgueovega in Riemannovega integrala ter s tem, da je:

$$\sum_{n=0}^{\infty} \int_{0}^{1} \left| (-1)^{n} \frac{a^{2n}}{n!} t^{2n} \right| dt = \sum_{n=0}^{\infty} \frac{a^{2n}}{n!} \int_{0}^{1} t^{2n} dt =$$

$$= \sum_{n=0}^{\infty} \frac{a^{2n}}{n! (2n+1)} \le$$

$$\le \sum_{n=0}^{\infty} \frac{a^{2n}}{n!} =$$

$$= e^{a^{2}} < \infty.$$

Nadaljujemo račun, tako da seštejemo eksponentno vrsto:

$$F(a) = \int_0^1 e^{-a^2 t^2} \, \mathrm{d}t \,.$$

Za $a \neq 0$ z vpeljavo substitucije $z = at\sqrt{2}$ dobimo:

$$F(a) = \frac{1}{a\sqrt{2}} \int_0^{a\sqrt{2}} e^{-z^2/2} dz = \frac{\sqrt{\pi}}{a} \Phi(a\sqrt{2}),$$

za a=0 pa neposredno iz prvotne definicije z vsoto dobimo, da je F(0)=0.

Opomba. Iz definicije z vrsto in nekaj osnovne teorije vrst sledi, da je F definirana na vsej realni osi in tam tudi zvezna (da se celo razširiti v celo analitično funkcijo). Pri izražavi z Gaussovom verjetnostnim integralom pa smo funkcijo v izhodišču izračunali posebej. A s pomočjo L'Hôpitalovega pravila lahko zveznost funkcije F v izhodišču razberemo tudi iz končne oblike (limita, ko gre a proti nič, je v resnici kar odvod funkcije Φ v izhodišču, pomnožen s $\sqrt{2\pi}$, slednje pa je enako 1).

Opomba. Iz definicije z vrsto vidimo tudi, da je funkcija F soda. To se prav tako vidi tudi iz končne oblike in lihosti funkcije Φ .

3. Operacije z merami

1. Funkcija f slika v $[0,\infty]$. Za $x \in [n,n+1)$ je $f(x)=2^n$, torej lahko funkcijo na $[0,\infty)$ zapišemo v obliki $f=\sum_{n=0}^{\infty}2^n~\mathbf{1}_{[n,n+1)}$. Sledi:

$$\int_{[0,\infty)} f \, d(g \cdot \lambda_1) = \sum_{n=0}^{\infty} \int_{[0,\infty)} 2^n \, \mathbf{1}_{[n,n+1)} \, d(g \cdot \lambda_1) =$$

$$= \sum_{n=0}^{\infty} 2^n (g \cdot \lambda_1) ([n, n+1)) =$$

$$= \sum_{n=0}^{\infty} 2^n \int_{[n,n+1)} g \, d\lambda_1 =$$

$$= \sum_{n=0}^{\infty} 2^n \int_n^{n+1} 3^{-x} \, dx =$$

$$= \frac{2}{3 \ln 3} \sum_{n=0}^{\infty} \frac{2^n}{3^n} =$$

$$= \frac{2}{\ln 3}.$$

2. Naj bo $\nu := \mu_f$. Dovolj je za vsak $y \in \mathbb{N}_0$ izračunati $\nu(\{y\}) = \mu\{\varphi^{-1}(y)\}$. Če je y popoln kvadrat, t. j. $y = x^2$, kjer je $x \in \mathbb{N}_0$, je $\nu(\{y\}) = \mu(\{-x,x\}) = \mu(\{x\}) + \mu(\{-x\})$, sicer pa je $\nu(\{y\}) = 0$. Tako dobimo:

$$\nu(\{0\}) = 4\,, \quad \nu(\{1\}) = 5\,, \quad \nu(\{4\}) = 8\,,$$

za vse $y \notin \{0,1,4\}$ pa je $\nu(\{y\}) = 0$. Sledi $\nu = 4\delta_0 + 5\delta_1 + 8\delta_4$.

Opomba. Enako mero bi dobili tudi, če bi za Ω in Ω' vzeli realno os z Borelovo σ -algebro.

- **3.** Mero $\nu := (\lambda_1)_{\varphi}$ bomo najprej izračunali na dveh vrstah intervalov:
 - Če je 0 < a < b, je $\nu([a, b]) = \lambda_1([\ln a, \ln b]) = \ln b \ln a$.
 - Če je $a < b \le 0$, pa je $\nu([a, b]) = \lambda_1(\emptyset) = 0$.

Opazimo, da v obeh primerih velja $\nu \big([a,b]\big) = \int_{[a,b]} g \, \mathrm{d} \lambda_1$, kjer je:

$$g(y) = \begin{cases} 0 & ; y \le 0 \\ \frac{1}{y} & ; y > 0. \end{cases}$$

Z drugimi besedami, na vseh intervalih [a,b], kjer je bodisi 0 < a < b bodisi $a < b \le 0$, se mera ν ujema z mero $g \cdot \lambda_1$. Družina teh intervalov pa je zaprta za končne neprazne preseke, generira Borelovo σ -algebro, meri ν in $g \cdot \lambda_1$ pa sta na vseh množicah iz te družine končni. Poleg tega intervali [-n,0] in $\left[\frac{1}{n},n\right]$ iz te družine pokrijejo realno os. Sledi $\nu = g \cdot \lambda_1$.

- 4. Mero $\nu:=(\lambda_1)_{\varphi}$ bomo najprej izračunali na treh vrstah množic:
 - Če je 0 < a < b in B = [a, b], je:

$$\nu(B) = (g \cdot \lambda_1) (\left[\sqrt{a}, \sqrt{b}\right]) = \int_{\sqrt{a}}^{\sqrt{b}} \frac{\mathrm{d}x}{1 + x^2} = \operatorname{arctg} \sqrt{b} - \operatorname{arctg} \sqrt{a}.$$

- Če je a < b < 0 in spet B = [a, b], je $\nu(B) = (g \cdot \lambda_1)(\emptyset) = 0$.
- Če pa je $B = \{0\}$, je:

$$\nu(B) = (g \cdot \lambda_1) ((\infty, 0]) = \int_{-\infty}^{0} \frac{\mathrm{d}x}{1 + x^2} = \frac{\pi}{2}.$$

Opazimo, da za vse množice B iz družine:

$$\mathcal{A} := \{ [a, b] ; 0 < a < b \} \cup \{ [a, b] ; a < b < 0 \} \cup \{ \{0\} \}$$

velja $\nu(B) = \frac{\pi}{2} \mathbf{1}(0 \in B) + \int_B g \, d\lambda_1$, kjer je:

$$g(y) = \begin{cases} 0 & ; y \le 0\\ \frac{1}{2\sqrt{y}(1+y)} & ; y > 0. \end{cases}$$

Z drugimi besedami, na vseh množicah iz družine \mathcal{A} se mera ν ujema z mero $\frac{\pi}{2}\delta_0 + g \cdot \lambda_1$. Družina \mathcal{A} pa je zaprta za končne neprazne preseke, generira Borelovo σ -algebro, meri ν in $\frac{\pi}{2}\delta_0 + g \cdot \lambda_1$ pa sta na vseh množicah iz te družine končni. Poleg tega množice $\left[-n, -\frac{1}{n}\right]$, $\{0\}$ in $\left[\frac{1}{n}, n\right]$ iz družine \mathcal{A} pokrijejo realno os. Sledi $\nu = \frac{\pi}{2}\delta_0 + g \cdot \lambda_1$.

5. Porazdelitev slučajne spremenljivke X je mera $\mu := g \cdot \lambda_1$, kjer je:

$$g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$
.

Porazdelitev slučajne spremenljivke Y pa je mera $\nu := \mu_{\varphi}$, kjer je $\varphi(x) = (x-1)^2$. Funkcija φ je definirana in tudi zvezno odvedljiva na množici $B := \mathbb{R}$, odvod pa je različen od nič na odprti množici $D := \mathbb{R} \setminus \{1\}$. Velja $\lambda_1(B \setminus D) = \lambda_1(\{1\}) = 0$, torej je tudi $(g \cdot \lambda_1)(B \setminus D) = 0$. Sledi $\nu = h \cdot \lambda_1$, kjer za y > 0 velja:

$$h(y) = \sum_{\substack{x \neq 1 \\ (x-1)^2 = y}} \frac{g(x)}{|\varphi'(x)|} =$$

$$= \sum_{\substack{x \in \{1 + \sqrt{y}, 1 - \sqrt{y}\} \\ |\varphi'(x)|}} \frac{g(x)}{|\varphi'(x)|} =$$

$$= \frac{g(1 + \sqrt{y})}{|\varphi'(1 + \sqrt{y})|} + \frac{g(1 - \sqrt{y})}{|\varphi'(1 + \sqrt{y})|} =$$

$$= \frac{1}{2\sqrt{2\pi y}} \left(e^{-(1 + \sqrt{y})^2/2} + e^{-(1 - \sqrt{y})^2/2} \right),$$

za $y \leq 0$ pa lahko postavimo h(y) = 0. Slučajna spremenljivka Y je torej porazdeljena zvezno z gostoto:

$$f_Y(y) = \begin{cases} \frac{1}{2\sqrt{2\pi y}} \left(e^{-(1+\sqrt{y})^2/2} + e^{-(1-\sqrt{y})^2/2} \right) & ; y > 0 \\ 0 & ; \text{ sicer} \end{cases}$$

- 6. Funkcija φ je sicer strogo naraščajoča in bijektivno realno os na realno os, toda njen inverz $\varphi^{-1}(y) = \sqrt[3]{y}$ ni povsod zvezno odvedljiv. Toda ker je $(g \cdot \lambda_1)(\{0\}) = 0$, lahko funkcijo φ zožimo na odprto množico $D := \mathbb{R} \setminus \{0\}$: če je φ_1 ustrezna zožitev, je $(g \cdot \lambda_1)_{\varphi} = (g \cdot \lambda_1)_{\varphi_1}$. Funkcija φ_1 množico D bijektivno preslika spet na D. Njen inverz φ_1^{-1} je tam zvezno odvedljiv z odvodom $\varphi_1^{-1}(y) = \frac{1}{3\sqrt[3]{y^2}}$. Sledi $(g \cdot \lambda_1)_{\varphi} = h \cdot \lambda_1$, kjer je $h(y) = \frac{1}{3}\sqrt[3]{y^2}$.
- 7. Porazdelitev slučajne spremenljivke X je mera $\mu := g \cdot \lambda_1$, kjer je:

$$g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

Porazdelitev slučajne spremenljivke Y pa je mera $\nu := \mu_{\varphi}$, kjer je $\varphi(x) = (x-1)^2$. Funkcija φ je definirana na celi realni osi, ni pa injektivna in tudi ne obstaja odprta množica D, na kateri bi bila φ injektivna in za katero bi veljalo še $(q \cdot \nu)(\mathbb{R} \setminus D) = 0$.

Pač pa je možno mero μ razdeliti: velja $\mu = \mu_1 + \mu_2$, kjer je $\mu_1 = g_1 \cdot \lambda_1$, $\mu_2 = g_2 \cdot \lambda_1$ in:

$$g_1(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \mathbf{1}(x < 1), \qquad g_2(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \mathbf{1}(x > 1).$$

Naj bo φ_1 zožitev funkcije φ na odprto množico $D_1 := (-\infty, 1), \ \varphi_2$ pa zožitev funkcije φ na odprto množico $D_2 := (1, \infty)$. Ker je $\mu_1(\mathbb{R} \setminus D_1) = \mu_2(\mathbb{R} \setminus D_2) = 0$, je:

$$\mu_{\varphi} = (\mu_1)_{\varphi} + (\mu_2)_{\varphi} = (\mu_1)_{\varphi_1} + (\mu_2)_{\varphi_2}.$$

Funkcija φ_1 oziroma φ_2 bijektivno preslika množico D_1 oziroma D_2 na odprto množico $D_1' = D_2' := (0, \infty)$. Nadalje je:

$$\varphi_1^{-1}(y) = 1 - \sqrt{y}, \qquad \varphi_2^{-1}(y) = 1 + \sqrt{y}$$

in obe funkciji sta na $(0, \infty)$ zvezno odvedljivi z odvodoma:

$$(\varphi_1^{-1})'(y) = -\frac{1}{2\sqrt{y}}, \qquad (\varphi_2^{-1})'(y) = \frac{1}{2\sqrt{y}}.$$

Sledi $(\mu_1)_{\varphi_1} = h_1 \cdot \lambda_1$ in $(\mu_2)_{\varphi_2} = h_2 \cdot \lambda_1$, kjer je:

$$h_1(y) = \frac{1}{2\sqrt{2\pi y}} e^{-(1+\sqrt{y})^2/2} \mathbf{1}(y>0), \qquad h_2(y) = \frac{1}{2\sqrt{2\pi y}} e^{-(1-\sqrt{y})^2/2} \mathbf{1}(y>0).$$

Seštejemo in dobimo, da je slučajna spremenljivka Y porazdeljena zvezno z gostoto:

$$h(y) = h_1(y) + h_2(y) = \frac{1}{2\sqrt{2\pi y}} \left(e^{-(1-\sqrt{y})^2/2} + e^{-(1+\sqrt{y})^2/2} \right) \mathbf{1}(y > 0).$$

8. a) Funkcija φ je definirana na odprti množici $D := \mathbb{R} \setminus \{0\}$, a na njej ni injektivna in tudi ne obstaja odprta množica D, na kateri bi bila φ injektivna in za katero bi veljalo še $(g \cdot \nu)(\mathbb{R} \setminus D) = 0$. Pač pa je možno mero $g_{a,b} \cdot \lambda_1$ razdeliti: če definiramo $D_1 := (-\infty, 0)$ in $D_2 := (0, \infty)$ ter $g_{a,b,1} := g_{a,b} \cdot \mathbf{1}_{D_1}$ in $g_{a,b,2} := g_{a,b} \cdot \mathbf{1}_{D_2}$, velja $g_{a,b} = g_{a,b,1} + g_{a,b,2} \cdot \mathbf{1}_{D_2}$ in posledično tudi $g_{a,b} \cdot \lambda_1 = g_{a,b,1} \cdot \lambda_1 + g_{a,b,2} \cdot \lambda_1$. Naj bo φ_1 zožitev funkcije φ na D_1 , φ_2 pa zožitev funkcije φ na množico D_2 . Ker je $(g_{a,b,1} \cdot \lambda_1)(\mathbb{R} \setminus D_1) = (g_{a,b,2} \cdot \lambda_1)(\mathbb{R} \setminus D_2) = 0$, je:

$$(g_{a,b} \cdot \lambda_1)_{\varphi} = (g_{a,b,1} \cdot \lambda_1)_{\varphi} + (g_{a,b,2} \cdot \lambda_1)_{\varphi} = (g_{a,b,1} \cdot \lambda_1)_{\varphi_1} + (g_{a,b,2} \cdot \lambda_1)_{\varphi_2}.$$

Množici D_1 in D_2 sta odprti in funkciji φ_1 in φ_2 ju bijektivno preslikata na realno os. Krajši račun pokaže, da je:

$$\varphi_1^{-1}(y) = \frac{y - \sqrt{y^2 + 4ab}}{2a}, \qquad (\varphi_1^{-1})'(y) = \frac{1}{2a} - \frac{y}{2a\sqrt{y^2 + 4ab}},$$
$$\varphi_2^{-1}(y) = \frac{y + \sqrt{y^2 + 4ab}}{2a}, \qquad (\varphi_2^{-1})'(y) = \frac{1}{2a} + \frac{y}{2a\sqrt{y^2 + 4ab}}.$$

(opazimo, da je $\sqrt{y^2+4ab}>|y|$ ter zato $\varphi_1^{-1}(y)<0,\ \varphi_2^{-1}(y)>0,\ (\varphi_1^{-1})'(y)>0$ in $(\varphi_2^{-1})'(y)>0$). Nadalje opazimo še, da je:

$$g_{a,b}(x) = e^{-(ax-b/x)^2 - 2ab}$$
.

Sledi $(g_{a,b,1} \cdot \lambda_1)_{\varphi_1} = h_{a,b,1} \cdot \lambda_1$ in $(g_{a,b,2} \cdot \lambda_1)_{\varphi_2} = h_{a,b,2} \cdot \lambda_1$, kjer je:

$$h_{a,b,1}(y) = \left(\frac{1}{2a} - \frac{y}{2a\sqrt{y^2 + 4ab}}\right) e^{-y^2 - 2ab},$$

$$h_{a,b,2}(y) = \left(\frac{1}{2a} + \frac{y}{2a\sqrt{y^2 + 4ab}}\right) e^{-y^2 - 2ab}.$$

Seštejemo in dobimo $(g_{a,b} \cdot \lambda_1)_{\varphi} = h_{a,b} \cdot \lambda_1$, kjer je:

$$h_{a,b}(y) = \frac{1}{a} e^{-y^2 - 2ab}$$
.

b) Velja:

$$\int_{-\infty}^{\infty} e^{-a^2x^2 - b^2/x^2} dx = (g_{a,b} \cdot \lambda_1)(\mathbb{R} \setminus \{0\}) = (g_{a,b} \cdot \lambda_1)(\varphi^{-1}(\mathbb{R})) = (g_{a,b} \cdot \lambda_1)_{\varphi}(\mathbb{R}) =$$

$$= \frac{1}{a} e^{-2ab} \int_{-\infty}^{\infty} e^{-y^2} dy = \frac{\sqrt{\pi}}{a} e^{-2ab}.$$

Opomba. Zgornji izračun integrala je v resnici uvedba nove spremenljivke, preoblečena v teorijo mere in potiske. Izračun bi bil v osnovi enak, če bi integral najprej razdelili na dva dela (od $-\infty$ do 0 in od 0 do ∞), nakar bi uvedli novo spremenljivko $y = ax - \frac{b}{x}$.

9. Funkcija φ je definirana na celi realni osi, ni pa injektivna in tudi ne obstaja odprta množica D, na kateri bi bila φ injektivna in za katero bi veljalo še $(g \cdot \nu)(\mathbb{R} \setminus D) = 0$. Pač pa je možno mero $\mu := g \cdot \lambda_1$ razdeliti: velja $\mu = \mu_1 + \mu_2$, kjer je $\mu_1 = g_1 \cdot \lambda_1$, $\mu_2 = g_2 \cdot \lambda_1$ in:

$$g_1(x) = \frac{1}{1+x^2} \mathbf{1}(x>0), \qquad g_2(x) = \frac{1}{1+x^2} \mathbf{1}(x \le 0).$$

Naj bo φ_1 zožitev funkcije φ na množico $D_1 := (0, \infty)$, φ_2 pa zožitev funkcije φ na množico $D_2 := (-\infty, 0]$. Ker je $(g_1 \cdot \lambda_1)(\mathbb{R} \setminus D_1) = (g_2 \cdot \lambda_1)(\mathbb{R} \setminus D_2) = 0$, je $(\mu_1)_{\varphi} = (\mu_1)_{\varphi_1}$ in $(\mu_2)_{\varphi} = (\mu_2)_{\varphi_2}$.

Funkcija φ_1 bijektivno preslika odprto množico D_1 na odprto množico $D_1' := (0, \infty)$, njen inverz $\varphi_1^{-1}(y) = \sqrt{y}$ pa je zvezno odvedljiv z odvodom $(\varphi_1^{-1})'(y) = \frac{1}{2\sqrt{y}}$. Sledi $(\mu_1)_{\varphi_1} = h_1 \cdot \lambda_1$, kjer je:

$$h_1(y) = \begin{cases} \frac{1}{2\sqrt{y}(1+y)} & ; y > 0\\ 0 & ; y \le 0. \end{cases}$$

Funkcija φ_2 pa je konstantna in potisk mere μ_2 vzdolž nje izračunamo neposredno:

$$(\mu_2)_{\varphi_2}(B) = \mu_2(\varphi_2^{-1}(B)).$$

Če je $0 \in B$, je $\varphi_2^{-1}(B) = (-\infty, 0]$ in:

Velja:

$$(\mu_2)_{\varphi_2}(B) = \mu_2(\varphi_2^{-1}(B)) = \int_{(-\infty,0]} g_2 \,d\lambda_1 = \int_{-\infty}^0 \frac{dx}{1+x^2} = \frac{\pi}{2}.$$

Če je pa $0 \in B$, je $\varphi_2^{-1}(B) = \emptyset$ in $\mu_2(\varphi_2^{-1}(B)) = \emptyset$. Sledi $(\mu_2)_{\varphi_2}(B) = \mu_2(\varphi_2^{-1}(B)) = \frac{\pi}{2} \mathbf{1}(0 \in B) = \frac{\pi}{2} \delta_0(B)$, torej je $(\mu_2)_{\varphi_2} = \delta_0$. Iskana mera pa je enaka:

$$\mu_{\varphi} = \mu_{1\varphi_1} + \mu_{2\varphi_2} = h_1 \cdot \lambda_1 + \frac{\pi}{2} \, \delta_0 \,.$$

10. Porazdelitev slučajnega vektorja (X,Y) je mera $\mu := g \cdot \lambda_2$, kjer je:

$$g(x,y) = \frac{1}{2\pi} e^{-(x^2+y^2)/2}$$
.

Preslikava $\varphi(x,y) = (\sqrt{x^2 + y^2}, \arg(x,y))$ je sicer naravno definirana na $\mathbb{R}^2 \setminus \{0\}$, toda njena slika $(0,\infty) \times (-\pi,\pi]$ ni odprta množica. Če pa preslikavo φ zožimo na množico odprto množico $D := \mathbb{R}^2 \setminus ((-\infty,0] \times \{0\})$, je slika $D' := \varphi(D) = (0,\infty) \times (-\pi,\pi)$ odprta množica. Na potisku se to ne bo poznalo, saj je $P((X,Y) \notin D) = (g \cdot \lambda_1)(\mathbb{R}^2 \setminus D) = 0$, ker je tudi $\lambda_1(\mathbb{R}^2 \setminus D) = 0$.

$$\varphi^{-1}(r,\theta) = (r\cos\theta, r\sin\theta)$$
.

Preslikava φ^{-1} je na D' parcialno zvezno odvedljiva z Jacobijevo determinanto:

$$J\varphi^{-1} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r.$$

Porazdelitev slučajnega vektorja (R,Θ) je torej mera $\mu_{\varphi}=h\cdot\lambda_{2}$, kjer je:

$$h(r,\theta) = \frac{r}{2\pi} e^{-r^2/2} \mathbf{1}(r > 0, -\pi < \theta < \pi).$$

Z drugimi besedami, slučajni vektor (R,Θ) je porazdeljen zvezno z gostoto h. To pomeni tudi, da sta R in Θ neodvisni, pri čemer je Θ porazdeljena enakomerno na intervalu $(-\pi,\pi)$, R pa zvezno z gostoto $f_R(r) = r e^{-r^2/2} \mathbf{1}(r > 0)$.

Opomba. Tako je možno generirati psevdonaključna števila z normalno porazdelitvijo. Če sta namreč U in V neodvisni slučajni spremenljivki, porazdeljeni enakomerno na intervalu (0,1), izračunamo:

$$R = \sqrt{-2 \ln U}$$
, $\Theta = \pi (2V - 1)$,
 $X = R \cos \Theta$, $Y = R \sin \Theta$.

Da se preveriti, da imata v tem primeru R in Θ ustrezni porazdelitvi. Tako sta potem tudi X in Y neodvisni in porazdeljeni standardno normalno.

4. Mera in konvergenca

1. a) Brž ko je $n \geq x$, je $f_n(x) = 0$, zato za vsak $x \in \mathbb{R}$ velja $\lim_{n \to \infty} f_n(x) = 0$. Zaporedje torej konvergira ne le skoraj povsod, temveč prav povsod.

Nadalje za vsak $n \in \mathbb{N}$ velja $\lambda_1(\{x : |f_n(x)| \ge 1\}) = 1$, torej zaporedje ne konvergira po meri. Ker ne konvergira po meri, tudi ne konvergira v $L^p(\lambda_1)$ za noben $p \in (0, \infty]$.

b) Brž ko je x < 0 ali $n \ge -\log_3 x$, je $f_n(x) = 0$, zato za vsak $x \in \mathbb{R} \setminus \{0\}$ velja $\lim_{n\to\infty} f_n(x) = 0$. Za x = 0 pa zaporedje divergira, a še vedno konvergira skoraj povsod.

Za vsak $\varepsilon > 0$ velja $\{x : |f_n(x)| \ge \varepsilon\} \subseteq [0, 3^{-n}]$, torej je $\lambda_1(\{x : |f_n(x)| \ge \varepsilon\}) \le 3^{-n}$, od koder sledi $\lim_{n\to\infty} \lambda_1(\{x : |f_n(x)| \ge \varepsilon\}) = 0$, torej zaporedje konvergira po meri.

Za $p \in (0,\infty)$ velja $\int_{\mathbb{R}} |f_n|^p \mathrm{d}\lambda_1 = 2^{np} \, 3^{-n} = e^{n(p \ln 2 - \ln 3)}$, kar gre proti nič natanko tedaj, ko je $p < \ln 3 / \ln 2$. Nadalje, če je $\mu(E^c) = 0$, ima E z vsakim intervalom $\left[0,3^{-n}\right]$ neprazen presek, torej je $\sup_{x \in E} |f_n(x)| = 2^n$, potem pa zaporedje na E ne konvergira enakomerno. Torej ne konvergira v $L^\infty(\lambda_1)$. Sklep: zaporedje konvergira v $L^p(\lambda_1)$ natanko tedaj, ko je $p < \ln 3 / \ln 2$.

c) Ker za vsak $x \in \mathbb{R}$ velja $|f_n(x)| \leq 1/n$, zaporedje proti nič konvergira enakomerno, od koder sledi, da konvergira v $L^{\infty}(\lambda_1)$, skoraj povsod in po meri. Nadalje za $p \in (0, \infty)$ velja:

$$\int_{\mathbb{R}} |f_n|^p \, d\lambda_1 = \frac{1}{n^p} \int_{-\infty}^{\infty} e^{-px^2/n^3} \, dx = \frac{n^{3/2}}{n^p} \, \frac{\sqrt{\pi}}{\sqrt{p}},$$

kar gre proti nič natanko tedaj, ko je p>3/2: natanko za te p zaporedje konvergira v $L^p(\lambda_1)$.

d) Če je x < 0, je $f_n(x) = 0$, brž ko je $n > -\frac{1}{x}$. Nadalje za vse $n \in \mathbb{N}$ velja $f_n(x) = 1$. Če pa je x > 0, je $f_n(x) = e^{-n^2x}$. Sledi, da zaporedje konvergira proti nič skoraj povsod (prav povsod pa konvergira proti $\mathbf{1}_{\{0\}}$).

Ker za vsak $\varepsilon \in (0,1]$ velja $\{x : |f_n(x)| \ge \varepsilon\} \subseteq \left[-\frac{1}{n}, \frac{\ln \varepsilon}{n^2}\right]$, je $\lambda_1\left(\{x : |f_n(x)| \ge \varepsilon\}\right) \le \frac{1}{n} + \frac{\ln \varepsilon}{n^2}$, od koder sledi, da zaporedje konvergira po meri.

Če je $\mu(E^{\rm c})=0$, ima E z intervalom $\left[-\frac{1}{n},0\right]$ neprazen presek. Sledi:

$$\sup_{x \in E} |f_n(x)| \ge \sup_{x \in E \cap [-1/n,0]} |f_n(x)| \ge \inf_{x \in E \cap [-1/n,0]} |f_n(x)| \ge \inf_{x \in [-1/n,0]} |f_n(x)| = 1,$$

torej zaporedje na množici E ne more enakomerni konvergirati proti nič. Zaporedje torej v $L^{\infty}(\lambda_1)$ ne konvergira proti nič.

Za $p \in (0, \infty)$ pa velja:

$$\int_{\mathbb{R}} |f_n|^p \, d\lambda_1 = \int_{-1/n}^{\infty} e^{-pn^2 x} \, dx = \frac{e^{np}}{n^2 p},$$

kar gre vselej proti neskončno, ko gre n proti neskončno. Zaporedje torej za noben p ne konvergira proti nič v $L^p(\lambda_1)$.

e) Če je $x \leq 0$, je $f_n(x) = 0$ za vse $n \in \mathbb{N}$. Če pa je x > 0, je $|f_n(x)| \leq 1/n$, torej zaporedje povsod konvergira proti nič.

Za vsak $x \in \mathbb{R}$ in vsak $n \in \mathbb{N}$ velja $|f_n(x)| \leq 1$. Toda če je $0 < \varepsilon < 1$ in $\mu(E^c) = 0$, ima E z intervalom $\left[\frac{1}{n}, \frac{1}{n\varepsilon}\right]$ neprazen presek. Sledi:

$$\sup_{x\in E}|f_n(x)|\geq \sup_{x\in E\cap[1/n,1/(n\varepsilon)]}|f_n(x)|\geq \inf_{x\in E\cap[1/n,1/(n\varepsilon)]}|f_n(x)|\geq \inf_{x\in[1/n,1/(n\varepsilon)]}|f_n(x)|=\varepsilon\,,$$

torej zaporedje funkcij f_n na E ne konvergira enakomerno, potem pa ne konvergira v $L^{\infty}(\lambda_1)$.

Za $p \in (0, \infty) \setminus \{1\}$ pa velja:

$$\int_{\mathbb{R}} |f_n|^p d\lambda_1 = \frac{1}{n^p} \int_{1/n}^n x^{-p} dx = \frac{1}{1-p} (n^{1-2p} - n^{-1})$$

in nadalje velja:

$$\int_{\mathbb{R}} |f_n| \, \mathrm{d}\lambda_1 = \frac{1}{n} \int_{1/n}^n \frac{\mathrm{d}x}{x} = \frac{2 \ln n}{n} \, .$$

Sledi, da zaporedje konvergira v $L^p(\lambda_1)$ natanko tedaj, ko je $\frac{1}{2} . Torej konvergira tudi po meri.$

Povzetek:

	skoraj povsod	po meri	$ ext{v} \ L^p$
a)	DA	NE	za noben p
b)	DA	DA	za $p < \ln 3 / \ln 2$
c)	DA	DA	za $p > 3/2$
d)	DA	DA	za noben p
e)	DA	DA	$za \frac{1}{p}$

- **2.** Ker je $XY \ge 1$, je $Y \ge 1/X$. Ker je funkcija $\varphi(x) = 1/x$ konveksna na $(0, \infty)$, po Jensenovi neenakosti velja $E(Y) \ge E(1/X) \ge 1/E(X)$.
- 3. Definirajmo:

$$\varphi(x) := \left\{ \begin{array}{ll} x^2 & ; \ x \le 1 \\ 2x - 1 & ; \ x \ge 1 \, . \end{array} \right.$$

Funkcija φ je odvedljiva, njen odvod:

$$\varphi'(x) := \left\{ \begin{array}{ll} 2x & ; \ x \le 1 \\ 2 & ; \ x \ge 1 \end{array} \right.$$

pa je nepadajoča funkcija, zato je φ konveksna. Nadalje opazimo naslednje:

• Za
$$x \le 1$$
 je $\varphi(x) = x^2 = \min\{x, x^2\} = \min\{2x, x^2\}.$

- Za $x \ge 1$ je $\varphi(x) = 2x 1 \ge x = \min\{x, x^2\}.$
- Za $1 \le x \le 2$ je $\varphi(x) = 2x 1 \le x^2 = \min\{2x, x^2\}.$
- Za $x \ge 2$ je $\varphi(x) = 2x 1 \le 2x = \min\{2x, x^2\}.$

Sledi $\min\{x, x^2\} \le \varphi(x) \le \min\{2x, x^2\}$ (izkaže se, da je φ edina funkcija, ki ustreza vsem zahtevam). Po Jensenovi neenakosti je:

$$\min\{E(X), (E(X))^2\} = \varphi(E(X)) \le E[\varphi(X)] \le E[\min\{2X, X^2\}].$$

4. Ker je $\int_0^\infty \frac{f(x)}{x} \, \mathrm{d}x = 1$ in je f nenegativna funkcija, je $P := g \cdot \lambda_1$, kjer je $g(x) = \frac{f(x)}{x}$, verjetnostna mera na $(0, \infty)$. Neenakost prepišemo v obliki:

$$\int_0^\infty x g(x) \, \mathrm{d}x \le \left(\int_0^\infty x^4 g(x) \, \mathrm{d}x \right)^{1/4} \, .$$

Če je X kar identiteta na $(0, \infty)$, torej slučajna spremenljivka s porazdelitvijo P, neenakost dobi obliko:

$$E(X) \le \left[E(X^4) \right]^{1/4}$$

oziroma:

$$\left[E(X) \right]^4 \le E(X^4) \,,$$

kar je Jensenova neenakost za konveksno funkcijo $\varphi(x)=x^4.$

5. Produktne mere

1. Z odvajanjem:

$$\frac{\partial}{\partial t}\ln(x^2+t^2) = \frac{2t}{x^2+t^2}$$

dobimo:

$$\int_0^\infty \ln \frac{x^2 + b^2}{x^2 + a^2} \, \mathrm{d}x = \int_0^\infty \int_a^b \frac{2t}{x^2 + t^2} \, \mathrm{d}t \, \mathrm{d}x.$$

Najprej privzemimo, da je $0 \le a \le b$. Tedaj imamo opravka z integralom nenegativne funkcije:

$$\int_{0}^{\infty} \frac{x^{2} + b^{2}}{x^{2} + a^{2}} dx = \int_{(0,\infty)} \int_{(a,b)} \frac{2t}{x^{2} + t^{2}} d\lambda_{1}(t) d\lambda_{1}(x) =$$

$$= \int_{(0,\infty)\times(a,b)} \frac{2t}{x^{2} + t^{2}} d(\lambda_{1} \times \lambda_{1})(t,x) =$$

$$= \int_{(a,b)} \int_{(0,\infty)} \frac{2t}{x^{2} + t^{2}} d\lambda_{1}(x) d\lambda_{1}(t) =$$

$$= \int_{a}^{b} \int_{0}^{\infty} \frac{2t}{x^{2} + t^{2}} dx dt =$$

$$= \int_{a}^{b} \pi dt =$$

$$= \pi(b - a).$$

Upoštevajoč, da tako začetni kot tudi končni izraz prevrže znak, če zamenjamo a in b, dobimo, da enakost velja za poljubna $a, b \ge 0$. Za splošna realna a, b pa velja:

$$\int_0^\infty \frac{x^2 + b^2}{x^2 + a^2} \, \mathrm{d}x = \pi (|b| - |a|).$$

2. Najprej izračunamo nedoločeni integral:

$$\int f(x,y) \, dy = \frac{\ln(x+y) - \ln(1+y)}{1-x} + C =: F(x,y) + C$$

(velja, če je y > -1 in y > -x). Krajši račun pokaže, da je:

$$\frac{2\ln(1+x) - \ln(4x)}{1-x} = F(x,1) - F(x,x),$$

torej je

$$\int_0^1 \frac{2\ln(1+x) - \ln(4x)}{1-x} \, \mathrm{d}x = \int_0^1 \int_x^1 f(x,y) \, \mathrm{d}y \, \mathrm{d}x.$$

Funkcija f je za 0 < x < 1 in x < y < 1 oziroma za 0 < x < y < 1 nenegativna, torej po Tonellijevem izreku velja:

$$\int_0^1 \frac{2\ln(1+x) - \ln(4x)}{1-x} \, dx = \iint_{0 < x < y < 1} f(x,y) \, dx \, dy =$$

$$= \int_0^1 \int_0^y \frac{1}{(1+y)(x+y)} \, dx \, dy =$$

$$= \int_0^1 \frac{\ln(2y) - \ln y}{1+y} \, dy =$$

$$= (\ln 2)^2.$$

3. Spet najprej izračunamo nedoločeni integral:

$$\int f(x,y) \, dy = \frac{(xy-1) e^{xy}}{x^2} + C =: F(x,y) + C.$$

Krajši račun pokaže, da je:

$$\frac{(x-1)e^x + (x+1)e^{-x}}{x^2} = F(x,1) - F(x,-1),$$

torej je

$$\int_0^1 \frac{(x-1)e^x + (x+1)e^{-x}}{x^2} dx = \int_0^1 \int_{-1}^1 f(x,y) dy dx.$$

Ker je funkcija f na zaprtem pravokotniku $[0,1] \times [-1,1]$ zvezna, je omejena. Ker je tudi omenjeni pravokotnik omejen, je $f \in L^1(\lambda_2|_{[0,1]\times[-1,1]})$ (in spomnimo se še, da je $\lambda_2 = \lambda_1 \times \lambda_1$). Po Fubinijevem izreku je:

$$\int_0^1 \frac{(x-1)e^x + (x+1)e^{-x}}{x^2} dx = \iint_{\substack{0 \le x \le 1 \\ -1 \le y \le 1}} f(x,y) dx dy =$$

$$= \int_{-1}^1 \int_0^1 y e^{xy} dx dy =$$

$$= \int_{-1}^1 (e^x - 1) dx =$$

$$= e - e^{-1} - 2.$$

6. Pogojna pričakovana vrednost

1.
$$E(X \mid X \le Y) = \frac{\iint_{0 \le x, y \le 1} x \, dx \, dy}{\iint_{0 \le x, y \le 1} dx \, dy} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}.$$

 ${f 2.}$ Označimo z N število vseh metov in definirajmo naslednje tri hipoteze:

 $H_1 = \{ v \text{ prvem metu pade grb} \}.$

 $H_2 = \{ v \text{ prvem metu pade cifra, } v \text{ drugem pa grb} \}.$

 $H_3 = \{ v \text{ prvih dveh metih pade cifra} \}.$

Če se zgodi H_3 , je očitno N=2 in torej tudi $E(N \mid H_3)=2$. Če pa se zgodita H_1 ali H_2 , je nadaljnje dogajanje spet zaporedje neodvisnih metov kovanca, zato je $E(N \mid H_1)=1+E(N)$ in $E(N \mid H_2)=2+E(N)$. Sledi:

$$E(N) = \frac{1}{2} (1 + E(N)) + \frac{1}{4} (2 + E(N)) + \frac{1}{4} \cdot 2,$$

od koder sledi E(N) = 6.

3. Poljubna verzija pogojne pričakovane vrednosti je na H_k enaka:

$$E(X \mid H_k) = \frac{\int_k^{k+1} \frac{2}{x^2} dx}{\int_k^{k+1} \frac{2}{x^3} dx} = \frac{2k(k+1)}{2k+1}.$$

Še drugače, če s \mathcal{H} označimo dano σ -algebro in še $Y=\lfloor X \rfloor$, je $E(X\mid \mathcal{H})=\frac{2Y(Y+1)}{2Y+1}.$

4. a) Za poljuben y > 0 velja:

$$F_Y(y) = P(Y \le y) =$$

$$= \sum_{n=1}^{\infty} P(N = n) P(Y \le y) | N = n) =$$

$$= -\frac{1}{\ln(1 - q)} \sum_{n=1}^{\infty} \frac{q^n}{n} (1 - e^{-ny}) =$$

$$= 1 - \frac{\ln(1 - q e^{-y})}{\ln(1 - q)}.$$

Za $y \leq 0$ je seveda $F_Y(y) = 0$. Torej je F_Y zvezna in odsekoma zvezno odvedljiva. Z odvajanjem dobimo, da je Y porazdeljena zvezno z gostoto:

$$f_Y(y) = -\frac{1}{\ln(1-q)} \frac{q e^{-y}}{1-q e^{-y}}.$$

b) Najprej izračunamo:

$$E(N) = -\frac{1}{\ln(1-q)} \sum_{n=1}^{\infty} q^n = -\frac{1}{\ln(1-q)} \frac{q}{1-q} < \infty.$$

Torej je $N \in L^1(P)$. Najti moramo torej tako merljivo funkcijo φ , da za poljubno množico D iz primerne družine \mathcal{A} velja $E[N \mathbf{1}(Y \in D)] = E[\varphi(Y) \mathbf{1}(Y \in D)]$. Za \mathcal{A} lahko vzamemo družino vseh intervalov $(-\infty, y]$, saj je le-ta zaprta za neprazne končne preseke in generira Borelovo σ -algebro. A ker Y zavzame vrednosti le v $(0, \infty)$, se je dovolj omejiti le na y > 0. Za vsak tak y mora torej veljati L(y) = R(y), kjer je:

$$L(y) := E \lceil N \mathbf{1}(Y \le y) \rceil$$
 in $R(y) := E \lceil \varphi(Y) \mathbf{1}(Y \le y) \rceil$.

Velja:

$$R(y) = \int_{-\infty}^{y} \varphi(t) f_Y(t) dt = -\frac{1}{\ln(1-q)} \int_{0}^{y} \varphi(t) \frac{q e^{-y}}{1 - q e^{-y}} dt.$$

Izračunajmo še:

$$L(y) = \sum_{n=1}^{\infty} P(N = n) E[N \mathbf{1}(Y \le y) \mid N = n] =$$

$$= \sum_{n=1}^{\infty} P(N = n) E[n \mathbf{1}(Y \le y) \mid N = n] =$$

$$= \sum_{n=1}^{\infty} n P(N = n) P(Y \le y \mid N = n) =$$

$$= -\frac{1}{\ln(1 - q)} \sum_{n=1}^{\infty} q^{n} (1 - e^{-ny}) =$$

$$= -\frac{1}{\ln(1 - q)} \sum_{n=1}^{\infty} q^{n} (1 - e^{-ny}) =$$

$$= -\frac{1}{\ln(1 - q)} \sum_{n=0}^{\infty} q^{n} (1 - e^{-ny}) =$$

$$= -\frac{1}{\ln(1 - q)} \left(\frac{1}{1 - q} - \frac{1}{1 - q e^{-y}} \right).$$

Zdaj pa odvajamo in dobimo:

$$L'(y) = -\frac{1}{\ln(1-q)} \frac{q e^{-y}}{1 - q e^{-y}}, \qquad R'(y) = \varphi(y) \frac{q e^{-y}}{1 - q e^{-y}}.$$

Izenačimo in dobimo:

$$\varphi(y) = \frac{1}{1 - q e^{-y}},$$

od koder zaključimo, da je:

$$E(N \mid Y) = \frac{1}{1 - q e^{-Y}}.$$

5. Velja $E(X \mid |X|) = \varphi(|X|)$, kjer je funkcija φ karakterizirana s tem, da za poljuben y > 0 velja L(y) = R(y), kjer je:

$$L(y) := E \left[X \, \mathbf{1}(|X| \leq y) \right] \quad \text{in} \quad R(y) := E \left[\varphi(|X|) \, \mathbf{1}(|X| \leq y) \right].$$

Velja:

$$L(y) = \int_{-y}^{y} x f(x) dx = y (f(y) - f(-y)),$$

$$R(y) = \int_{-y}^{y} \varphi(|x|) f(x) dx = \varphi(y) (f(y) + f(-y)).$$

Izenačimo in dobimo, da, brž ko je f(y) + f(-y) > 0, velja:

$$\varphi(y) = y \frac{f(y) - f(-y)}{f(y) + f(-y)},$$

od koder zaključimo, da je:

$$E(X \mid |X|) = Y \frac{f(Y) - f(-Y)}{f(Y) + f(-Y)}.$$

6. Označimo z Y število vseh metov, z X pa označimo število vseh enojk. Pogojno na Y = y je $X \sim \text{Bin}(Y-1, 1/5)$ (kar pomeni $P(X = x \mid Y = y) = {y-1 \choose x} \left(\frac{1}{5}\right)^x \left(\frac{4}{5}\right)^{y-1-x}$), od koder sledi:

$$E(X \mid Y) = \frac{Y - 1}{5} \,.$$

Dani delež enojk je X/Y in velja:

$$E\left(\frac{X}{Y} \mid Y\right) = \frac{Y-1}{5Y}.$$

Pričakovani delež enojk med vsemi meti pa je:

$$E\left(\frac{X}{Y}\right) = E\left(\frac{Y-1}{5Y}\right) = \frac{1}{5}\left[1 - E\left(\frac{1}{Y}\right)\right] = \frac{1}{5} - \frac{1}{30}\sum_{k=1}^{\infty} \frac{1}{k}\left(\frac{5}{6}\right)^{k-1} = \frac{1}{5} - \frac{\ln 6}{25} \doteq 0.128.$$

7. Pišimo Z = Z - aY + aY in uporabimo, da je slučajna spremenljivka Z - aY neodvisna od para (X, Y - aX). Ker se par (X, Y) deterministično izraža z (X, Y - aX), je Z - aY neodvisna tudi od para (X, Y). Zato je:

$$E(Z - aY \mid X, Y) = E(Z - aY) = 0.$$

Slučajna spremenljivka Y pa je funkcija para (X,Y), zato je:

$$E(Y \mid X, Y) = Y.$$

Sledi:

$$E(Z \mid X, Y) = E(Z - aY \mid X, Y) + a E(Y \mid X, Y) = aY.$$

Drugo pogojno pričakovano vrednost izračunamo s pomočjo:

$$E(YZ \mid X, Y) = Y E(Z \mid X, Y) = aY^{2}.$$

Sledi:

$$E(YZ \mid X) = a E(Y^2 \mid X) =$$

$$= a E[(Y - aX)^2 + 2aX(Y - aX) + a^2X^2 \mid X] =$$

$$= a E[(Y - aX)^2] + 2a^2X E(Y - aX) + a^3X^2.$$

Očitno je E(Y - aX) = 0. Nadalje je:

$$(Y - aX)^2 = Y^2 - 2aXY + X^2 = Y^2 - 2aX(Y - aX) + (1 - 2a^2)X^2$$

Z uporabo neodvisnosti ter prvih in drugih momentov dobimo $E\left[(Y-aX)^2\right]=1-a^2,$ torej je končno:

$$E(YZ \mid X) = a - a^3 + a^3 X^2$$
.