Niveau: 2ème Sciences

Devoir de synthèse nº 3

Lycée Pilote Gabès 2022/2023

NOM.....PRENOM..

6/6)

EXERCICE 1 (8 points)

Pour le traçage des courbes on utilisera des couleurs différentes.

Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ $x \to \frac{2}{x}$. On note (C_f) sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1. a) Étudier la parité de f.
 - b) Étudier les variations de f et dresser son tableau de variation.
 - c) Tracer la courbe (C_f) dans le repère orthonormé $(0, \vec{i}, \vec{j})$.
- 2. Soit la fonction $g: \mathbb{R} \to \mathbb{R} x \to -x^2 + 2x + 2$. On note (C_g) sa courbe représentative dans le repère orthonormé $(0, \vec{i}, \vec{j})$.
 - a) Vérifier que pour tout $x \in \mathbb{R}^*$, g(x) = f(x) + 2.
 - b) Tracer la courbe (C_g) dans le même repère orthonormé $(0, \vec{i}, \vec{j})$.
- 3. Soit la fonction $h: \mathbb{R} \to \mathbb{R}$ $x \to \frac{2x+2}{|x|}$. On note (C_h) sa courbe représentative dans le repère orthonormé $(C_h, \overline{L}, \overline{L})$.
- a) Tracer à partir de (C_f) la courbe (C_h) dans le même repère orthonormé $(0, \vec{i}, \vec{j})$.
 - b) En déduire le tableau des variations de la fonction h.
- c) Déterminer, graphiquement, suivant les valeurs du réel m le nombre des solutions de l'équation : m|x| 2x 2| = 0.
 - d) Résoudre graphiquement l'équation : |h(x)| + h(x) = 6.

EXERCICE 2 (6 points)

On donne dans un repère orthonormé $(0, \vec{i}, \vec{j})$.les points A(0, 3) et B(4, -5).

مكتبة 14 جانفي قابس Librairie 14 Janvier Gabès Tél : +21655267618 On désigne par (C) le cercle de diamètre [AB].

- 1. a) Déterminer le centre I et le rayon R du cercle (C).
- 2. Soit Δ la droite d'équation : x 2y + 6 = 0.
 - a) Montrer que Δ est perpendiculaire à (AB).
- b) Montrer que (C) et Δ sont tangents et déterminer les coordonnées du leur point de contact.
- 3. Soit m un réel différent de 1. On désigne par (C_m) l'ensemble des points M(x,y) du plan vérifiant :

$$x^2 + y^2 - 2(2m+1)x + 2(m-1)y + 12m - 3 = 0.$$

- a) Déterminer l'ensemble (C_I) .
- b) Montrer que pour tout réel m $\neq 1$, (C_m) est un cercle dont on précisera le centre I_m et le rayon R_m .
 - c) Montrer que tous les centres Im sont alignés.

مكتبة14جانفي قابس Librairie 14 Janvier Gabès Tél : +21655267618

d) Déterminer m pour que le cercle (C_m) soit sécant à Δ .

EXERCICE 3 (6 points)

Dans l'espace on considère un tétraèdre ABCD tel que les faces BAC et BDA sont des triangles rectangles et isocèles en B et la face ACD est un triangle équilatéral.

Soit M le milieu du segment [CD] et le point E centre du gravité du triangle ACD. On se propose d'étudier le plan (BCD) et d'étudier le plan E sur le plan (BCD).

- 1. a) Montrer que BC = BD.
 - b) En déduire que (ABI) est le plan médiateur du segment [CD].
 - c) Montrer que (AB) est perpendiculaire au plan (BCD).
- d) Montrer que les plans (ABI) et (BCD) sont perpendiculaires.
 - 2)a) Montrer que (AB) est l'axe du cercle circonscrit au triangle ACD.

b) déduire que BEI est un triangle rectangle en E

3. a) Vérifier que (BI) est la droite l'intersection des plans (ABI) et (BCD).

b) Déduire que B, F et I sont aligné.

مكتبة 14 جانفي قابس Librairie 14 Janvier Gabès Tél : +21655267618 Niveau: 2ème Sciences

Correction devote de cynthèse nº 3

Lycée Pilote Ga 2022/2023

& Exercice 1

1) a)
$$D_f = \mathbb{R}^* =]-\infty, 0[\cup]0; +\infty[$$

 $x \neq 0 \Rightarrow -x \neq 0 \Rightarrow -x \in D_f$

1)
$$f(-x) = \frac{2}{-x} = -f(x)$$

donc f est impaire

b) Sur
$$]-\infty$$
; 0[
 $a < b < 0$
 $\frac{1}{b} < \frac{1}{a}$
 $f(b) < f(a)$

et sur $]0,+\infty[f]$

 C_f est un hyperbole de centre I(0;0)

$$x = 0$$
 AV et $y = 0$ AH.

2 a)
$$g(x) = \frac{2x+2}{x} = \frac{2x}{x} + \frac{2}{x} = 2 + \frac{2}{x} = f(x) + \frac{2}{x}$$

2

Voir Annexe.

b) TV (b)

c)

$$m|x| - 2x - 2 = 0$$

$$m|x| = 2x + 2; x \neq 0$$

$$m = \frac{2x + 2}{|x|}$$

h(x) = m n'a pas de sol Si $m \le -2$ une sol si $m \in]-2; 2]$ deux Sol si m > 2

d)

$$|h(x)| + h(x) = 6$$

$$|h(x)| = 6 - h(x) \Leftrightarrow 6 - h(x) \geqslant 0$$

$$h(x) \leqslant 6 \text{ alors Si } x > 0 \quad \frac{2x+2}{x} = 6 \Rightarrow 4x = 2 \Rightarrow x = \frac{1}{2}$$

$$\text{si } x < 0 \quad \frac{2n+2}{-n} = 6 \Rightarrow x = \left(-\frac{1}{4}\right)$$

$$S = \left] -\infty; -\frac{1}{4}\right] \cup \left[\frac{1}{2}; +\infty\right[$$

$$\text{Exercice 2}$$

$$C(\text{ diamètre }[AB])$$

$$A * B = (2; -1)$$
Rayon = $\frac{AB}{2} = \frac{\sqrt{16 + 64}}{2} = \frac{\sqrt{16 \times 5}}{2} = 2\sqrt{5}$.

Done

C:
$$(x-2)^2 + (y+1)^2 = 20 = (2\sqrt{5})^2$$
.
 $C(I(2;-1); R = 2\sqrt{5})$
2) $\Delta: x - 2y + 6 = 0$

a)
$$\vec{u} = {2 \choose 4}$$
 Vect directeur de Δ .

$$A\vec{B} = \begin{pmatrix} 4 \\ -8 \end{pmatrix}$$

$$2 \times 4 + 1 \times (-8) = 8 - 8 = 0 \Rightarrow \Delta \perp (AB)$$

b)
$$d(I(2;-1); \Delta: x-2y+6) = \frac{|2+2+6|}{\sqrt{1+4}}$$

$$=\frac{10}{\sqrt{5}} = \frac{10\sqrt{5}}{5} = 2\sqrt{5} = \text{Rayon}$$

donc A et tang a C en J

$$J(x,y)\in \Delta\Rightarrow x=2y-6.$$

$$J(x,y) \in C \Rightarrow (2y - 6 - 2)^2 + (y + 1)^2 = 20$$

$$\Rightarrow (2y-8)^2 + (y+1)^2 = 20$$

$$\Rightarrow 4y^2 - 32y + 64 + y^2 + 2y + 1 = 0$$

$$5y^2 - 30y + 45 = 0$$

$$y^2 - 6y + 9 = 0$$

$$a = 1$$

$$b = (-6)$$

$$C=9$$

$$\delta = 36 - 36 = 0 \Rightarrow y = \frac{-b}{2a} = \left(\frac{-9}{2}\right)$$

$$J\left(-15; -\frac{9}{2}\right) C \cap \Delta = \left\{ \left(-15; -\frac{9}{2}\right) \right\}$$

3)a)

$$m \neq 1$$

 $C_m: x^2 - 2(2m+1)x + y^2 + 2(m-1)y + 12m - 3 = 0$

مكتبة 14 جانفي قابس Librairie 14 Janvier Gabès Tél : +21655267618

$$(2m+1)^{2} - (2m+1)^{2} + (y+m-1)^{2} - (m-1)^{2} = -12m+3$$

$$(x-(2m+1))^{2} + (y-(-m+1))^{2}$$

$$= 4m^{2} - 4m - 1 - m^{2} + 2m - 1 = -12m+3$$
b)
$$(x-(2m+1))^{2} + (y-(1-m))^{2} = 5m^{2} - 10m+5$$

$$= 5(m^{2} - 2m+1)$$

$$= 5(m-1)^{2} > 0$$
car $m \neq 1$

donc C est un cercle de centre $I_m(2m+1;1-m)$ et de rayom $R_m=|m-1|\sqrt{5}$

c)
$$I_{m+1}(2m+3;-m); I_{m-1}(2m-1;2-m)$$

Det
$$(\overline{I_m I}; \overline{I_m I_{m-1}}) = \begin{vmatrix} 2 & -2 \\ -1 & 1 \end{vmatrix} = 2 - 2 = 0$$

donc tous les centres Im sont alignes.

d)
$$d(I_m; \Delta) = \frac{|2m+1+2n-2+6|}{\sqrt{1+4}} = \frac{|4m+5|}{\sqrt{5}}$$

<Rayon

$$\frac{|4m+5|}{\sqrt{5}} < (m-1)\sqrt{5} \Rightarrow |4m+5| < 5|m-1|$$

$$\left|\frac{4m+5}{m-1}\right| < 5 \Rightarrow -5 < \frac{4m+5}{m-1} < 5$$

❖ Exercice 3

$$AC = CD = AD$$

- 1) E centre de gravité de ACD
- a) $BC = BD = BA \operatorname{car} BCA \operatorname{et} BDA \operatorname{sont}$ isocèles.

b)

$$AC = AD$$

 $BC = BD$

$$FC = ID$$

donc (ABI) plan médiateur de [CD] c) $(AB) \perp (BD)$

$$(AB) \perp (BC)$$

 $\Rightarrow (AB) \perp (BCD)$
d) $(AI) \perp (CD)$ et $(AB) \perp (BCD) \Rightarrow$
 $(ABI) \perp (BCD)$

2) a) ADC triangle équilatéral

E centre de gravité et donc centre de cercles
circonscrit au triangle ACD: C et BA =

BC = BD

donc (BE) Axe du cercle C. b) $(BE) \perp (ADC) \Rightarrow (BE) \perp (EI)$ $\Rightarrow BEF$ triangle rectangle en E3)a) on a $(BI) \subset (BCD)$ $(BI) \subset (ABI) \Rightarrow (BCD) \cap (ABI) = (BI)$ b)

on $a(AB) \perp (BI)$ $(EF) \perp (BCD)$ $\Rightarrow (AB)//(EF)$ $\Rightarrow F \in (BI)$

B; F et I Sont alignes

مكتبة14 جانفي قابس Librairie 14 Janvier Gabès Tél : +21655267618

Lich مكتبة14جانفي قابس Librairie 14 Janvier Gabès Tél: +21655267618