International Rectifier

IRF1404

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Automotive Qualified (Q101)

Description

Seventh Generation HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications including automotive.

The TO-220 package is universally preferred for all automotive-commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

$V_{DSS} = 40V$ $R_{DS(on)} = 0.004\Omega$ $I_{D} = 202A$ ©

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	202⑥		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	143®	_ A	
I _{DM}	Pulsed Drain Current ①	808		
P _D @T _C = 25°C	Power Dissipation	333	W	
	Linear Derating Factor	2.2	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy®	620	mJ	
I _{AR}	Avalanche Current	See Fig.12a, 12b, 15, 16	А	
E _{AR}	Repetitive Avalanche Energy®		mJ	
dv/dt	Peak Diode Recovery dv/dt 3	1.5	V/ns	
TJ	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range	-55 to + 175	°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting Torque, 6-32 or M3 screw	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.45	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	·	-				
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.039		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.0035	0.004	Ω	V _{GS} = 10V, I _D = 121A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = 10V, I_D = 250\mu A$
g _{fs}	Forward Transconductance	76			S	V _{DS} = 25V, I _D = 121A
	Drain-to-Source Leakage Current			20		$V_{DS} = 40V$, $V_{GS} = 0V$
I _{DSS}	Diali-10-30dice Leakage Current			250	μA	V _{DS} = 32V, V _{GS} = 0V, T _J = 150°C
	Gate-to-Source Forward Leakage			200	1	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-200	nA ·	V _{GS} = -20V
Qg	Total Gate Charge		131	196		I _D = 121A
Q _{gs}	Gate-to-Source Charge		36		nC	$V_{DS} = 32V$
Q _{qd}	Gate-to-Drain ("Miller") Charge		37	56		V _{GS} = 10V⊕
t _{d(on)}	Turn-On Delay Time		17			$V_{DD} = 20V$
t _r	Rise Time		190			I _D = 121A
t _{d(off)}	Turn-Off Delay Time		46		ns	$R_G = 2.5\Omega$
t _f	Fall Time		33			$R_D = 0.2\Omega$ ④
L _D	Internal Drain Inductance		4.5		-11	Between lead, 6mm (0.25in.)
L _S	Internal Source Inductance		7.5		nH	from package and center of die contact
C _{iss}	Input Capacitance		5669			$V_{GS} = 0V$
Coss	Output Capacitance		1659		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		223			f = 1.0MHz, See Fig. 5
C _{oss}	Output Capacitance		6205		1 1	$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		1467		1 1	$V_{GS} = 0V$, $V_{DS} = 32V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance ⑤		2249		1 1	V _{GS} = 0V, V _{DS} = 0V to 32V

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current	2026	202©		MOSFET symbol		
	(Body Diode)			Α	showing the		
I _{SM}	Pulsed Source Current				000	^	integral reverse
	(Body Diode) ①			808		p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.5	V	$T_J = 25^{\circ}C$, $I_S = 121A$, $V_{GS} = 0V$ ④	
t _{rr}	Reverse Recovery Time		78	117	ns	$T_J = 25^{\circ}C, I_F = 121A$	
Q _{rr}	Reverse RecoveryCharge		163	245	nC	di/dt = 100A/µs ④	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)					

Notes

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{ll} \hline @ Starting $T_J=25^\circ$C, $L=85\mu$H \\ $R_G=25\Omega, I_{AS}=121$A. (See Figure 12) \\ \hline \end{tabular}$
- $\ \Im \ I_{SD} \leq 121A, \ di/dt \leq 130A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_{J} \leq 175^{\circ}C$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- $\ \ \, \ \, \ \,$ $\ \ \, \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\ \$ $\$ $\ \$ $\$ $\ \$ $\$
- © Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRF1404 International Internat

V_{DS}, Drain-to-Source Voltage (V)

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International

TOR Rectifier

IRF1404

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRF1404 International International IOR Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature

Fig 15. Typical Avalanche Current Vs. Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption:
- Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot I_{av} \text{)} = \triangle \text{T/ } Z_{thJC} \\ I_{av} &= 2\triangle \text{T/ [} 1.3 \cdot \text{BV} \cdot Z_{th} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

IRF1404 International Rectifier

Peak Diode Recovery dv/dt Test Circuit

* V_{GS} = 5V for Logic Level Devices

Fig 17. For N-channel HEXFET® Power MOSFETs

International IRF1404 IOR Rectifier

TO-220AB Package Outline

Dimensions are shown in millimeters

1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 2 CONTROLLING DIMENSION : INCH

3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.

4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURBS.

TO-220AB Part Marking Information

TO-220AB package is not recommended for Surface Mount Application.

Data and specifications subject to change without notice. This product has been designed and qualified for the automotive [Q101] market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.01/01

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/