Wydział Informatyki i Telekomunikacji

Laboratorium 2. Wykorzystanie LCD i klawiatury.

Prawa autorskie

Plik może zostać wykorzystany na zajęciach na Wydziale Informatyki i Telekomunikacji Politechniki Poznańskiej.

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z kolejnymi komponentami, które można wykorzystywać w połączeniu z mikrokontrolerem Arduino oraz przedstawienie ich przykładowych zastosowań w praktyce.

Przebieg ćwiczenia

W naszym ćwiczeniu wykorzystamy Arduino UNO. Z komponentów wykorzystamy dedykowany do pracy z mikrokontrolerami wyświetlacza LCD, klawiaturę numeryczną, potencjometr oraz fotorezystor.

W pierwszej kolejności zajmiemy się działaniem wyświetlacza LCD oraz potencjometru.

LCD + potencjometr

Podłączonym do wyświetlacza potencjometrem możemy kontrolować intensywność wyświetlanych treści na wyświetlaczu.

```
#include <LiquidCrystal.h> //Importujemy bibliotekę potrzebną do obsługi LCD
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup() {
  lcd.begin(16, 2); //Konfiguracja numeru kolumn i wierszy
  lcd.print("hello, world!");
}

void loop() {
  lcd.setCursor(0, 1);
}
```

Klawiatura numeryczna

Program ten wyświetla w monitorze portu szeregowego odpowiedni znak wciśnięty na klawiaturze.

```
};
Keypad klawiatura = Keypad( makeKeymap(keys), rowPins, colPins,
ROWS, COLS ); //inicjalizacja klawiatury

void setup() {
   Serial.begin(9600);
}

void loop() {
   char klawisz = klawiatura.getKey();
   if (klawisz) {
       Serial.println(klawisz);
   }
}
```

Fotorezystor

Fotorezystor został tu wykorzystany jako analogowy czujnik światła. Po przekroczeniu zdefiniowanej wartości program zapala diodę.

Zadania do wykonania

Zad.1. Wyświetlacz.

Wykorzystaj wyświetlacz do wyświetlania temperatury oraz stopień nasłonecznienia.

Zad.2. Kalkulator.

Zbuduj prosty kalkulator z wykorzystaniem wyświetlacza LCD oraz klawiatury numerycznej. Początkowo na wyświetlaczu powinien pojawić się wybór rodzaju obliczenia (dodawanie, odejmowanie, mnożenie i dzielenie). Następnie po dokonaniu wyboru, powinny się pojawić wprowadzane liczby oraz wynik. Wynik ma być wyświetlony na wyświetlaczu LCD oraz w monitorze portu szeregowego.

Zad.3. Wizualizacja kolorów.

Z wykorzystaniem klawiatury oraz diody RGB, zbuduj wizualizator kolorów. Należy zdefiniować kilka różnych kombinacji kolorystycznych pod odpowiednie cyfry na klawiaturze membranowej. Dodatkowo pod przyciski "*" i "#", proszę zaimplementować symulacje przejść kilku kolorów.

Dodatek

Standardowy wyświetlacz LCD łączy się za pomocą 16 pinów. Istnieje rozwiązanie ograniczające użycie pinów. Takim rozwiązaniem jest komunikacja wyświetlacza za pomocą magistrali I2C. Dzięki temu zużywamy tylko 4 piny: (SCL, SDA, VCC i GND). Do tego jest potrzebny dodatkowy konwerter (albo gotowy wyświetlacz z konwerterem). Taki konwerter posiada wbudowany potencjometr.

Osobny konwerter umożliwiający połączenie po magistrali I2C.

Źródło: https://physics.uwb.edu.pl/wf/fi-bot/?p=1132

Wlutowany konwerter w wyświetlacz

Źródło zdjęcia:

http://wiki.chssigma.com/index.php?title=File:Lcd screen backpack wiring thing.png#filelinks

Sposób podłączenia wyświetlacza.