WikiDocker - sprawozdanie

Autorzy: Jan Kornacki, Hubert Lewandowski, Grzegorz Pozorski

Wstęp

Wikidocker, czyli szybki i nie tak naiwny klasyfikator Bayesa, jakby mogło się wydawać. Program ma kwalifikuje artykuł anglojęzyczny do najbardziej prawdopodobnej kategorii z 6 głównych, dostępnych na <u>Simple Wikipedia</u>.

Kategoria wyjściowa byłaby rekomendacją, która mogłaby znaleźć zastosowanie w kategoryzowaniu choćby nowych artykułów. Przykładowo taki program mógłby mieć zastosowanie do automatyzacji tworzenia nawigacji na stronach internetowych z olbrzymimi bazami danych.

Przygotowanie

Wykorzystana technologia

W projekcie użyty został naiwny klasyfikator Bayesowski wsparty techniką *stemmingu* (usuwanie końcówki wyrazu zostawiając tylko jego temat) do kwalifikacji wiadomości.

Wzór, którego użyliśmy, wygląda następująco:

$$P(X_i|y) = rac{N_{X_i|y} + lpha}{N_y + lpha \cdot |V|}$$

Opis symboli:

Symbol	Opis
$P(X_i y)$	Prawdopodobieństwo warunkowe słowa X_i należącego do klasy y
$N_{X_i y}$	Liczba wystąpień słowa X_i we wszystkich fragmentach należących do klasy \boldsymbol{y}
N_y	Liczba słów we wszystkich fragmentach należących do klasy \boldsymbol{y}
V	Całkowita liczba słów w słowniku
α	Parametr służący uniknięciu prawdopodobieństw zerowych

Biblioteki

Do wyciągnięcia artykułów dla zbioru uczącego posłużyliśmy się bibliotekami:

- requests obsługuje żądania, które były kierowane do strony Wikipedii
- Beautiful Soup w celu wyciągnięcia konkretnych danych
- sklearn do wygenerowania zbioru testowego

W celu uniknięcia każdorazowego pobierania danych i uczenia kwalifikatora użyliśmy serializacji słowników do pliku.

Zbiór uczący

Zbiorem uczącym słowniki są **wszystkie** artykuły z 6 głównych kategorii na stronie <u>Simple</u> <u>Wikipedia</u>.

Zbiór testowy

Dane o poprawności niniejszego kwalifikatora opierały się na zbiorze testowym wygenerowanym ze zbioru uczącego.

Proces obliczeniowy kwalifikatora

Pobranie artykułów

Jest to **najdłuższy** proces ze wszystkich. W obecnej wersji ten proces może zająć nawet kilkadziesiąt minut!

Nie jest on jednak brany pod uwagę, ponieważ można go zrobić <u>tylko raz</u> (lub też w sytuacji gdy chcemy zaktualizować bazę artykułów) i bazować na zserializowanym "dumpie".

Przy pobieraniu, każdy artykuł przechodzi przez proces usuwania półsłówek (np przysłówków, przymiotników, określniki, itp), które źle wpływają na rezultaty. Dzięki temu, słowa kluczowe mają większą szansę w słownikach.

Dane o wyrazach są wyciągnięte z wybranych artykułów dotyczących kategorii "Angielskie Lematy".

Generowanie zbioru uczącego i testowego

Drugi proces pod względem prędkości. Jest również pomijalny w użytku "codziennym" ponieważ po wygenerowaniu zbiorów i nauczeniu słowników, proces jest wymagany tylko przy zaktualizowanym dumpie.

Uczenie słowników

Najszybszy proces inicjalizacji całego kwalifikatora. Mimo, że najszybszy to również pomijalny dzięki serializacji słowników do plików.

Podsumowując

Program kolejno:

- 1. Generuje słowniki z plików
- 2. Pobiera paragrafy z artykułu podanego na wejściu
- 3. Przetwarza dane, w celu uzyskania formy akceptowalnej przez algorytm
- 4. Kwalifikuje artykuł do kategorii, dla której określono największe prawdopodobieństwo

Mając gotowe słowniki klas proces kwalifikacji będzie bardzo szybki, co jest kluczowe dla tego projektu.

Wyniki

Wyniki dla zbioru testowego

Wynik poprawności nauczonego kwalifikatora odnosi się do proporcji 0.8 w generowaniu zbiorów testowych. Przy kwalifikowaniu artykułów użyta jest proporcja 0.999 tak aby zbiór treningowy był jak największy.

Poniższe dane określa najlepszą poprawność decyzji, podjętej przez kwalifikator przy proporcji zbiorów 0.8.

```
### CORRECTNESS ###
50,373% of articles was qualified correctly.
```

Przykłady artykułów testowych

Applied sciences:

- Alaska: The Final (Architectural) Frontier
- Modern Architecture

People and social studies:

- Scientists Say: Placebo
- Common Mental Health Problems Students May Face This Year

Government and law:

- Poland's judges forced into retirement purgatory another blow to justice
- The Effectiveness of the International Criminal Court: Challenges and Pathways for <u>Prosecuting Human Rights Violations</u>

Natural sciences and maths:

- The pebbled path to planets
- Scientists Say: Pollen

Daily life, art and culture:

- Pop art
- In the Kitchen: Artist Jean Shin Shares the Korean Dumpling Recipe That Embodies the Same No-Waste Philosophy as Her Art

Religions and beliefs:

- Buddhism: Basic Beliefs
- <u>Islam</u>

Czy rezultat jest zadowalający?

Biorąc pod uwagę, że szansa wylosowania prawidłowej kategorii bez żadnej wiedzy, jest równa ~17%, wyniki sięgające nawet 50% (średnio 47%) są ogromną wartością dodaną, przy tak niskim czasie samej decyzji.

Wynik jest na poziomie losowego prawdopodobieństwa wybrania jednej z dwóch klas, mimo że mamy 6!