

Reconstruction of 3D CT Volume from 2D X-ray/DRR Image using Deep Learning

Final Presentation - Master Thesis

Aritra Mazumdar

¹ Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg

²Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg

Outline

- · Introduction
- · Project Goal
- · Theory
- · Experiments
- Results
- · Conclusion
- Miscellaneous

Outline

- · Introduction
- Project Goa
- · Theory
- Experiments
- Results
- Conclusion
- Miscellaneous

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Types:

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Types:

CT scan

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Types:

- CT scan
- MRI

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Types:

- CT scan
- MRI

Ultrasonography

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Types:

- CT scan
- MRI

- Ultrasonography
- Endoscopy

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Types:

- CT scan
- MRI

- Ultrasonography
- Endoscopy

X-ray

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Types:

- CT scan
- MRI

- Ultrasonography
- Endoscopy

- X-ray
- Fluoroscopy

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Types:

- CT scan
- MRI

- Ultrasonography
- Endoscopy

- X-ray
- Fluoroscopy

Types of concern:

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Types:

- CT scan
- MRI

- Ultrasonography
- Endoscopy

- X-ray
- Fluoroscopy

Types of concern:

CT scan

Medical imaging is the mechanism of imaging the internal complicated structures of a human body for clinical diagnosis and treatment.

Types:

CT scan

Ultrasonography

X-ray

MRI

Endoscopy

Fluoroscopy

Types of concern:

CT scan

X-ray

Introduction - X-ray

Introduction - X-ray

X-ray is an electromagnetic radiation, which travels from generator through human body to detector. Detector converts this radiation into raw X-ray image.

Introduction - X-ray

X-ray is an electromagnetic radiation, which travels from generator through human body to detector. Detector converts this radiation into raw X-ray image.

[2, 2019]

Introduction - CT scan

Introduction - CT scan

CT scan makes use of multiple X-ray images captured from several angles to produce cross-sectional images of human body.

Introduction - CT scan

CT scan makes use of multiple X-ray images captured from several angles to produce cross-sectional images of human body.

[4, 2018]

Outline

- Introduction
- · Project Goal
- · Theory
- Experiments
- Results
- Conclusion
- Miscellaneous

X-ray:

X-ray:

Advantages

X-ray:

Advantages

Cheap

X-ray:

Advantages

- Cheap
- Easily accessible

X-ray:

Advantages

- Cheap
- Easily accessible

X-ray:

Advantages

- Cheap
- Easily accessible

Disadvantages

Obscurity of relevant structures

X-ray:

Advantages

- Cheap
- · Easily accessible

- · Obscurity of relevant structures
- Loss of detail (2D)

X-ray:

Advantages

- Cheap
- Easily accessible

CT scan:

- · Obscurity of relevant structures
- Loss of detail (2D)

X-ray:

Advantages

- Cheap
- Easily accessible

CT scan:

Advantages

- · Obscurity of relevant structures
- Loss of detail (2D)

X-ray:

Advantages

- Cheap
- Easily accessible

CT scan:

Advantages

High resolution (3D)

- · Obscurity of relevant structures
- · Loss of detail (2D)

X-ray:

Advantages

- Cheap
- Easily accessible

CT scan:

Advantages

- High resolution (3D)
- · Easy manipulation of data

- Obscurity of relevant structures
- · Loss of detail (2D)

X-ray:

Advantages

- Cheap
- Easily accessible

CT scan:

Advantages

- High resolution (3D)
- · Easy manipulation of data

Disadvantages

- Obscurity of relevant structures
- Loss of detail (2D)

X-ray:

Advantages

- Cheap
- Easily accessible

CT scan:

Advantages

- High resolution (3D)
- · Easy manipulation of data

Disadvantages

- Obscurity of relevant structures
- Loss of detail (2D)

Disadvantages

Expensive

Project Goal - Context

X-ray:

Advantages

- Cheap
- Easily accessible

CT scan:

Advantages

- High resolution (3D)
- · Easy manipulation of data

Disadvantages

- Obscurity of relevant structures
- Loss of detail (2D)

Disadvantages

- Expensive
- High amount of radiation

Project Goal - Context

X-ray:

Advantages

- Cheap
- Easily accessible

CT scan:

Advantages

- High resolution (3D)
- · Easy manipulation of data

Motivation:

Disadvantages

- Obscurity of relevant structures
- Loss of detail (2D)

Disadvantages

- Expensive
- High amount of radiation

Project Goal - Context

X-ray:

Advantages

- Cheap
- Easily accessible

CT scan:

Advantages

- High resolution (3D)
- Easy manipulation of data

Disadvantages

Disadvantages

- Expensive
- · High amount of radiation

Loss of detail (2D)

Obscurity of relevant structures

Motivation : Reconstruction of 3D CT volume data with **high anatomic detailing** from **cheap** X-ray/DRR image using **deep learning**.

Outline

- Introduction
- Project Goa
- · Theory
- Experiments
- Results
- Conclusion
- Miscellaneous

AI:

AI:

· Smart cities

AI:

- · Smart cities
- · Weather forecast

AI:

ML:

- · Smart cities
- Weather forecast

AI:

- · Smart cities
- Weather forecast

ML:

· Anomaly detection

AI:

- Smart cities
- Weather forecast

ML:

- · Anomaly detection
- Sentiment analysis

AI:

· Smart cities

Weather forecast

ML:

Anomaly detection

- Anomaly detection
- Sentiment analysis

DL:

AI:

Smart cities

Weather forecast

ML:

Anomaly detection

Sentiment analysis

DL:

Object detection

AI:

· Smart cities

Weather forecast

ML:

· Anomaly detection

· Sentiment analysis

DL:

Object detection

Image segmentation

AI:

- Smart cities
- Weather forecast

ML:

- Anomaly detection
- · Sentiment analysis

DL:

- Object detection
- · Image segmentation

Deep Learning

AI:

- Smart cities
- Weather forecast

ML:

- Anomaly detection
- · Sentiment analysis

DL:

- Object detection
- Image segmentation

Deep Learning

Made progress in computer vision

AI:

Smart cities

Weather forecast

ML:

- Anomaly detection
- · Sentiment analysis

DL:

- Object detection
- Image segmentation

Deep Learning

- Made progress in computer vision
- · Yet to make advancements in medical imaging

Types of Learning:

Types of Learning:

Supervised

Types of Learning:

Supervised

Unsupervised

Types of Learning:

Supervised

Unsupervised

Reinforcement

Types of Learning:

Supervised

Unsupervised

Reinforcement

Approach of concern:

Types of Learning:

Supervised

Unsupervised

Reinforcement

Approach of concern: Supervised

Types of Learning:

Supervised

Unsupervised

Reinforcement

Approach of concern: Supervised

• Input (2D DRR)

Types of Learning:

Supervised

Unsupervised

Reinforcement

Approach of concern: Supervised

Input (2D DRR)

· Label (3D CT scan)

Theory - UNet Architecture

Theory - UNet Architecture

[5, 2019]

· Drawback:

• Drawback : Evaluation data was a part of training dataset.

Outline

- Introduction
- Project Goa
- · Theory
- · Experiments
- Results
- Conclusion
- Miscellaneous

Experiments - General and Deep Learning Setup

General:

General:

Remote

General:

Remote

AnyDesk

General:

Remote

- AnyDesk
- Chrome Remote

General : Remote

IDE

- AnyDesk
- · Chrome Remote

General:

Remote

IDE

PyCharm

AnyDesk

- Chrome Remote

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- · Google Colab

System GPU

2×Nvidia Geforce GTX 1080 Ti

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- · Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Deep Learning:

Batch Size

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- · Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Deep Learning:

Batch Size

•

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- · Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Deep Learning:

Batch Size

- •
- 4

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- · Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Deep Learning:

Batch Size

Regularisation

- •
- 4

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Deep Learning:

Batch Size

Regularisation

•

• L2

• 4

General:

Remote

- AnvDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Deep Learning:

Batch Size

Regularisation

12

• 4

- Dropout

General:

Remote

• 4

- AnvDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Deep Learning:

Regularisation **Batch Size**

- - · 12

 - Dropout

Optimiser

General:

Remote

- AnvDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Deep Learning:

Regularisation **Batch Size Optimiser** · 12 Adam

• 4

- Dropout

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Batch Size	Regularisation	Optimiser	
• 1	• L2	 Adam 	
• 4	 Dropout 	• SGD	

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Batch Size	Regularisation	Optimiser	Loss
• 1	• L2	 Adam 	
• 4	 Dropout 	• SGD	

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- · Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Batch Size	Regularisation	Optimiser	Loss
• 1	• L2	 Adam 	$\cdot L_D$
• 4	 Dropout 	• SGD	

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Batch Size	Regularisation	Optimiser	Loss
• 1	• L2	 Adam 	$ullet$ L_D
• 4	 Dropout 	• SGD	• L_D + L_R

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Batch Size	Regularisation	Optimiser	Loss	Metric
• 1	• L2	 Adam 	$ullet$ L_D	
• 4	 Dropout 	• SGD	• L_D + L_R	

General:

Remote

- AnyDesk
- Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Batch Size	Regularisation	Optimiser	Loss	Metric
• 1	• L2	 Adam 	\cdot L_D	 SSIM
• 4	 Dropout 	• SGD	• L_D + L_R	

General:

Remote

- AnyDesk
- · Chrome Remote

IDE

- PyCharm
- Google Colab

System GPU

- 2×Nvidia Geforce GTX 1080 Ti
- 4×Nvidia V100 Tensor Core GPU

Batch Size	Regularisation	Optimiser	Loss	Metric
• 1	• L2	 Adam 	\cdot L_D	 SSIM
• 4	 Dropout 	• SGD	• L_D + L_R	 PSNR

Experiments - Complete Workflow

Experiments - Complete Workflow

Experiments - Data Processing

Experiments - Data Processing

Experiments - Network Diagram

Experiments - Network Diagram

1. Baseline:

1. Baseline: MeVisLab

1. Baseline: MeVisLab

2. Dataset Pre-processing Method:

1. Baseline: MeVisLab

2. Dataset Pre-processing Method: Python

1. Baseline: MeVisLab

2. Dataset Pre-processing Method: Python

3. CT-DRR Combination:

1. Baseline: MeVisLab

2. Dataset Pre-processing Method: Python

3. CT-DRR Combination: Frontal

1. Baseline: MeVisLab

2. Dataset Pre-processing Method: Python

3. CT-DRR Combination: Frontal

4. Loss:

1. Baseline: MeVisLab

2. Dataset Pre-processing Method: Python

3. CT-DRR Combination: Frontal

4. **Loss**: Decomposition+Reconstruction

1. Baseline: MeVisLab

2. Dataset Pre-processing Method: Python

3. CT-DRR Combination: Frontal

4. Loss: Decomposition+Reconstruction

5. Dimension:

1. Baseline: MeVisLab

2. Dataset Pre-processing Method: Python

3. CT-DRR Combination: Frontal

4. Loss: Decomposition+Reconstruction

5. **Dimension**: $512 \times 512 \times 512$ pixels

- 1. Baseline: MeVisLab
- 2. Dataset Pre-processing Method: Python
- 3. CT-DRR Combination: Frontal
- 4. Loss: Decomposition+Reconstruction
- 5. **Dimension**: $512 \times 512 \times 512$ pixels
- 6. Viewpoint:

1. Baseline: MeVisLab

2. Dataset Pre-processing Method: Python

3. CT-DRR Combination: Frontal

4. **Loss**: Decomposition+Reconstruction

5. **Dimension**: $512 \times 512 \times 512$ pixels

6. Viewpoint: Frontal+Lateral

Outline

- · Introduction
- · Project Goa
- · Theory
- · Experiments
- Results
- Conclusion
- · Miscellaneous

Results - Input DRR (MeVisLab) Patient 920 (LIDC - IDRI)

Results - Input DRR (MeVisLab) Patient 920 (LIDC - IDRI)

Frontal

Results - Input DRR (MeVisLab) Patient 920 (LIDC - IDRI)

SSIM:

SSIM: 63.5%

SSIM: 63.5%

PSNR:

SSIM: 63.5% **PSNR**: 16.339 dB

SSIM: 63.5% **PSNR**: 16.339 dB **Loss**:

SSIM: 63.5% **PSNR**: 16.339 dB **Loss**: 150214.282

SSIM:

SSIM: 63.5%

SSIM: 63.5%

SSIM: 63.5%

Drawbacks:

SSIM: 63.5%

Drawbacks:

Unrelated CT-DRR

SSIM: 63.5%

Drawbacks:

Unrelated CT-DRR

Non-isotropic CT

SSIM: 63.5%

Drawbacks:

Unrelated CT-DRR

Non-isotropic CT

Unrealistic DRR

Results - Input DRRs (Python) Patient 920 (LIDC-IDRI)

Results - Input DRRs (Python) Patient 920 (LIDC-IDRI)

Frontal

Results - Input DRRs (Python) Patient 920 (LIDC-IDRI)

Frontal

Results (CT Slices) - Dataset Pre-processing Method (Python)

Results (CT Slices) - Dataset Pre-processing Method (Python)

SSIM:

SSIM: 65%

SSIM:65%

Baseline :

SSIM: 65% Baseline: 63.5%

SSIM: 65% **Baseline**: 63.5%

SSIM: 65% **Baseline**: 63.5%

Drawback:

SSIM: 65% **Baseline**: 63.5%

Drawback:

Unrelated semantics between CT and DRR

SSIM:

SSIM: 72.5%

SSIM: 72.5%

Baseline :

SSIM: 72.5% **Baseline**: 63.5%

SSIM: 72.5% **Baseline**: 63.5%

SSIM: 72.5% **Baseline**: 63.5%

Improvement:

SSIM: 72.5% **Baseline**: 63.5%

Improvement:

· Better optimisation with advanced loss factor

SSIM:

SSIM: 72.9%

SSIM: 72.9%

Baseline :

SSIM: 72.9% **Baseline**: 63.5%

SSIM: 72.9% **Baseline**: 63.5%

SSIM: 72.9% **Baseline**: 63.5%

Improvement:

SSIM: 72.9% **Baseline**: 63.5%

Improvement:

· More information with increased resolution

SSIM:

SSIM: 80.2%

SSIM: 80.2%

Baseline :

SSIM: 80.2% **Baseline**: 63.5%

SSIM: 80.2% **Baseline**: 63.5%

SSIM: 80.2% **Baseline**: 63.5%

Improvement:

SSIM: 80.2% **Baseline**: 63.5%

Improvement:

· More perspective with additional view points

Frontal

Results (Learning Curves) - Viewpoint (Frontal+Lateral)

SSIM:

SSIM: 80.2%

SSIM: 80.2%

PSNR:

SSIM: 80.2%

PSNR: 22.714 dB

SSIM: 80.2%

PSNR: 22.714 dB

Loss:

SSIM: 80.2%

PSNR: 22.714 dB

Loss: 86451.029

Baseline

SSIM: 80.2% **Baseline** : 63.5%

PSNR: 22.714 dB

Loss: 86451.029

SSIM: 80.2% **Baseline** : 63.5%

PSNR: 22.714 dB

Loss: 86451.029

September 14, 2021

SSIM: 80.2% **Baseline** : 63.5%

PSNR: 22.714 dB: 16.339 dB

Loss: 86451.029

SSIM: 80.2% **Baseline**: 63.5%

PSNR: 22.714 dB: 16.339 dB

Loss: 86451.029

:

SSIM: 80.2% Baseline : 63.5% **PSNR**: 22.714 dB : 16.339 dB Loss: 86451.029

: 150214.282

SSIM:

SSIM: 80.2%

SSIM: 80.2%

Baseline :

SSIM: 80.2% **Baseline**: 63.5%

SSIM: 80.2% **Baseline**: 63.5%

SSIM: 80.2% **Baseline**: 63.5%

Improvement:

Improvement:

· Advanced network architecture

Results - Overview

Results - Overview

Stage	Option	CT Slices	SSIM
Baseline	MeVisLab	Original Slice 0 Reconstructed Slice 50 100 150 200 200 200 300 200 300 200	63.5%
Data Proc.	Python	Original Slice 0 Reconstructed Slice 100 110 110 200 200 200 100 200 100 200	65%
CT-DRR	Frontal	Original Slice 50 -	72.5%

Results - Overview (Extended)

Results - Overview (Extended)

Stage	Option	CT Slices	SSIM
Loss	Dec.+Rec.	Original Silce So - 100 - 150 - 100 - 150 - 200 - 200 - 100 200 -	72.9%
Dimension	512 pixels	Original Slice 100 - 200 - 300 - 400 - 200 400 - 200 400	80.2%
Viewpoint	Double	Original Slice Original Slice 100 - 200 - 300 - 400 - 200 400	80.2%

Outline

- · Introduction
- Project Goa
- · Theory
- · Experiments
- Results
- · Conclusion
- Miscellaneous

Test SSIM value of 80.2% achieved

- Test SSIM value of 80.2% achieved
- Not a substantial improvement with additional viewpoint

- Test SSIM value of 80.2% achieved
- Not a substantial improvement with additional viewpoint
- Easy dataset pre-processing method devised

- Test SSIM value of 80.2% achieved
- Not a substantial improvement with additional viewpoint
- · Easy dataset pre-processing method devised
- Multiple network weights saved as per requirement

- Test SSIM value of 80.2% achieved
- Not a substantial improvement with additional viewpoint
- · Easy dataset pre-processing method devised
- · Multiple network weights saved as per requirement
- Satisfying output CT slices generated during evaluation

Conclusion - Future Work

Conclusion - Future Work

Training a wider 2D-3D UNet

Conclusion - Future Work

- Training a wider 2D-3D UNet
- Use of 3D-GANs (3D-GAN)

- Training a wider 2D-3D UNet
- Use of 3D-GANs (3D-GAN)
- 3D-R2N2 network architecture

- Training a wider 2D-3D UNet
- Use of 3D-GANs (3D-GAN)
- · 3D-R2N2 network architecture
- · A cleaner dataset

- Training a wider 2D-3D UNet
- Use of 3D-GANs (3D-GAN)
- · 3D-R2N2 network architecture
- · A cleaner dataset
- Style transfer from X-ray to DRR

- Training a wider 2D-3D UNet
- Use of 3D-GANs (3D-GAN)
- 3D-R2N2 network architecture
- · A cleaner dataset
- Style transfer from X-ray to DRR
- Generation of other imaging modalities from X-ray

- Training a wider 2D-3D UNet
- Use of 3D-GANs (3D-GAN)
- 3D-R2N2 network architecture
- · A cleaner dataset
- Style transfer from X-ray to DRR
- Generation of other imaging modalities from X-ray
- Building an UI for the application

- Training a wider 2D-3D UNet
- Use of 3D-GANs (3D-GAN)
- 3D-R2N2 network architecture
- · A cleaner dataset
- Style transfer from X-ray to DRR
- Generation of other imaging modalities from X-ray
- Building an UI for the application (in process)

- Training a wider 2D-3D UNet
- Use of 3D-GANs (3D-GAN)
- 3D-R2N2 network architecture
- · A cleaner dataset
- Style transfer from X-ray to DRR
- Generation of other imaging modalities from X-ray
- Building an UI for the application (in process)
- Hosting the same

Conclusion - Thank You

Thanks for your time!

Thanks for your time!

Additional Thanks to Ivo, Professor Knopp and UKE.

Thanks for your time!

Additional Thanks to Ivo, Professor Knopp and UKE.

Any Question or Suggestion?

References

- Ashraf Darwish, Aboul Ella Hassanien, and Swagatam Das. "A survey of swarm and evolutionary computing approaches for deep learning". In: *Artificial Intelligence Review* 53 (Mar. 2020). DOI: 10.1007/s10462-019-09719-2.
- Wilco Koppert et al. "A comparative study of NaI(TI), CeBr3, and CZT for use in a real-time simultaneous nuclear and fluoroscopic dual-layer detector". In: *Physics in Medicine and Biology* 64 (June 2019). DOI: 10.1088/1361-6560/ab267c.
- Ying Siu Liang. "End-user Robot Programming in Cobotic Environments". PhD thesis. June 2019.
- ☐ Cyber Physics. CT Scan Imaging Diagram.
 https://www.cyberphysics.co.uk/topics/medical/CTScanner.htm. 2018.
- Liyue Shen, Wei Zhao, and Lei Xing. "Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning". In: *Nature Biomedical Engineering* 3 (Nov. 2019). DOI: 10.1038/s41551-019-0466-4.

Outline

- Introduction
- Project Goa
- · Theory
- Experiments
- Results
- Conclusion
- · Miscellaneous

Miscellaneous - Network Architecture

Miscellaneous - Network Architecture

Frontal

Lateral

Top

SSIM:

SSIM: 72.7%

SSIM: 72.7%

Baseline :

SSIM: 72.7%

Baseline: 63.5%

SSIM: 72.7% **Baseline**: 63.5%

SSIM:

SSIM: 74%

SSIM: 74%

Baseline :

SSIM: 74%

Baseline: 63.5%

SSIM: 74% **Baseline**: 63.5%

Miscellaneous - 3D CT -> 2D DRR

Miscellaneous - 3D CT -> 2D DRR

SSIM:

Miscellaneous - 3D CT -> 2D DRR

SSIM: 98.1%

SSIM: 98.1%

Miscellaneous - 3D CT -> 3D CT

Miscellaneous - 3D CT -> 3D CT

SSIM:

Miscellaneous - 3D CT -> 3D CT

SSIM: 91.9%

SSIM: 91.9%

Miscellaneous - Data Augmentation (Elastic Transform ($\alpha = 1, \beta = 50$)

Miscellaneous - Data Augmentation (Elastic Transform ($\alpha = 1, \beta = 50$)

DRRs

Miscellaneous - Data Augmentation (Elastic Transform ($\alpha=1,\beta=50$)

Miscellaneous - Data Augmentation (Elastic Transform ($\alpha=1,\beta=50$)

CT Slices

Miscellaneous - Data Augmentation (Elastic Transform ($\alpha=1,\beta=50$)

SSIM:

SSIM: 94%

SSIM: 94%

Miscellaneous - UI (in process)

Miscellaneous - UI (in process)

