Geometria Simplética 2024, Lista 4

Prof. H. Bursztyn

Entrega dia 30/09

Problem 1: Let M be a compact, connected, orientable n-dimensional manifold. Let $\Lambda_0, \Lambda_1 \in \Omega^n(M)$ be two volume forms on M such that $\int_M \Lambda_0 = \int_M \Lambda_1$. Show that there is a diffeomorphism $\phi \in \text{Dif}(M)$ such that $\phi^*(\Lambda_1) = \Lambda_0$.

Hint: Show that $\Lambda_t = (1-t)\Lambda_0 + t\Lambda_1$ is a volume form $\forall t \in [0,1]$, and note that the equality of total volumes implies that Λ_0 and Λ_1 define the same cohomology class (justify this fact). Then apply Moser's method.

Problem 2: Give an example of two symplectic forms on \mathbb{R}^4 that induce the same orientation, but admit a convex combination that is degenerate. Is it possible to find an example like that, but admitting another path of *symplectic* forms from one to the other? What happens if we consider \mathbb{R}^2 instead of \mathbb{R}^4 ?

Problem 3: This problem is useful for Problem 4. (Cf. Problem 7 in lista 1) Let (V, Ω) be a symplectic vector space (or, more generally, a symplectic vector bundle), and let $W \subseteq V$ be a coisotropic subspace (resp., coisotropic subbundle).

- a) Let E be a complement of W^{Ω} in W (i.e., $W = W^{\Omega} \oplus E$). Show that the restriction of Ω to E is nondegenerate.
- b) Let J be a Ω -compatible complex structure, with g the associated inner product. Show that Ω induces an identification of $J(W^{\Omega}) = W^{\perp}$ with $(W^{\Omega})^*$. Taking E as the orthogonal complement (with respect to g) to W^{Ω} in W, show that the identification

$$V \cong E \oplus (W^{\Omega} \oplus (W^{\Omega})^*), \tag{1}$$

is an isomorphism of symplectic vector spaces (resp. bundles) – on the right-hand side, E is equipped with its induced symplectic form (see (a) above) and $W^{\Omega} \oplus (W^{\Omega})^*$ with its canonical symplectic form.

Problem 4: Prove the following generalization of Weinstein's lagrangian neighborhood theorem to coisotropic submanifolds (due to Gotay, 1982): Let (M_0, ω_0) and (M_1, ω_1) be symplectic manifolds, and $\iota_0: Q \to M_0$, $\iota_1: Q \to M_1$ be coisotropic embeddings. If $\iota_0^*\omega_0 = \iota_1^*\omega_1$, then there exist open neighborhoods \mathcal{U}_0 and \mathcal{U}_1 of Q, in M_0 and M_1 , and a diffeomorphism $\varphi: \mathcal{U}_0 \to \mathcal{U}_1$ such that $\varphi(p) = p$ for all $p \in Q$ and $\varphi^*\omega_1 = \omega_0$,.

Hint: For i = 0, 1, use compatible almost complex structures to write $TM_i|_Q$ as in (??); conclude that there is an isomorphism $(TM_0|_Q, \omega_0) \to (TM_1|_Q, \omega_1)$ of symplectic vector bundles, so you can apply Weinstein's generalized Darboux theorem.