1. Popravni kolokvij iz Moderne fizike 1 7. 2. 2013

- 1. Mimo merila, mirujočega v sistemu \mathcal{S} , potuje palica z neznano hitrostjo. V nekem trenutku opazovalec v sistemu merila \mathcal{S} označi trenutno lego levega in desnega konca palice, in odčita razliko med oznakama, ki znaša 4 m. Tudi opazovalec, ki se giblje skupaj s palico, na merilu v sistemu \mathcal{S} sočasno naredi oznaki za konec in začetek palice. Razlika med oznakama je tokrat 9 m. Kolikšna je lastna dolžina palice in kolikšna je njena hitrost?
- 2. Dvakrat ionizirani atom litija Li⁺⁺ (Z=3) pri prehodu iz nekega vzbujenega v osnovno stanje enega za drugim izseva dva fotona, prvega z valovno dolžino $\lambda_1=72.91\,\mathrm{nm}$ in nato še drugega z $\lambda_2=13.5\,\mathrm{nm}$. V katerem vzbujenem stanju se je prvotno nahajal ion?
- 3. Elektron v harmonskem oscilatorju s konstanto $k = 480 \,\mathrm{N/m}$ se nahaja v stanju

$$\psi(x) \propto \psi_{\text{osn.stanje}}(x) + 3 \psi_{\text{2.vzb.stanje}}(x)$$
, (1)

kjer je $\psi_n(x)$ lastna funkcija za energijo. Najprej izračunaj tej funkciji ortogonalno valovno funkcijo ψ_{\perp} , nato pa še energijo obeh stanj, E in E_{\perp} ter njuno razliko, $\Delta E = E - E_{\perp}$. Pripravimo linearno kombinacijo funkcij z enako strukturo kot v enačbi (1) še v neskončni potencialni jami. Kolikšna mora biti širina jame, da velja

$$(\Delta E)_{\text{LHO}} = (\Delta E)_{\text{jama}}$$
?

4. Elektron v vodikovem atomu je v stanju, ki ga opiše normirana valovna funkcija

$$\psi(r, \vartheta, \varphi) = (1/(64\pi r_{\rm B}^3))^{1/2} \exp(-r/(4r_{\rm B}))$$
.

Kolikšna je verjetnost, da se elektron nahaja v osnovnem stanju vodikovega atoma? Kolikšna pa je energija elektrona v stanju ψ ? Osnovno stanje je

$$\psi_{100} = \left(2/r_{\rm B}^{3/2}\right) \exp\left(-r/r_{\rm B}\right)/\sqrt{4\pi}$$
.