Lineární Algebra 2 - NMAI058

LS 2019/2020

Mgr. Pavel Hubáček, Ph.D.

3. 3. 2020

https://iuuk.mff.cuni.cz/~hubacek/LA2

2. přednáška

- ortonormální báze
- Fourierovy koeficienty
- Gramova-Schmidtova ortogonalizace

Dnes

ortogonální doplněk + ortogonální projekce

Ortogonální doplněk

Definice 8.38 - Ortogonální doplněk

Buď V vektorový prostor a $M\subseteq V$. Pak ortogonální doplněk M je

$$M^{\perp} := \{x \in V; \langle x, y \rangle = 0 \ \forall y \in M\}$$
.

Tvrzení 8.40 - Vlastnosti ortogonálního doplňku množiny

Buď V vektorový prostor a $M,N\subseteq V$. Pak

- 1. M^{\perp} je podprostor V,
- 2. je-li $M \subseteq N$ pak $M^{\perp} \supseteq N^{\perp}$,
- 3. $M^{\perp} = \operatorname{span}(M)^{\perp}$.

Tvrzení 8.41 - Vlastnosti ortogonálního doplňku podprostoru

Buď U podprostor vektorového prostoru V. Potom platí:

- 1. Je-li z_1,\ldots,z_m ortonormální báze U, a je-li $z_1,\ldots,z_m,z_{m+1},\ldots,z_n$ její rozšíření na ortonormální bázi V, pak z_{m+1},\ldots,z_n je ortonormální báze U^\perp .
- 2. $\dim V = \dim U + \dim U^{\perp}$,
- 3. $V = U + U^{\perp}$,
- 4. $(U^{\perp})^{\perp} = U$,
- 5. $U \cap U^{\perp} = \{o\}.$

Ortogonální projekce

Definice 8.43 - Ortogonální projekce

Buď V vektorový prostor a U jeho podprostor. Pak projekcí vektoru $x \in V$ rozumíme takový vektor $x_U \in U$, který splňuje

$$||x - x_U|| = \min_{y \in U} ||x - y||$$
.

Tvrzení 8.44 - O kolmici

Buď U podprostor vektorového prostoru V.

Buď
$$x \in V$$
 a $y \in U$ takové, že $x - y \in U^{\perp}$. Pak

$$||x-y|| < ||x-z|| \quad \forall z \in U \setminus \{y\}$$
.

Tvrzení 8.45 - O ortogonální projekci

Buď U podprostor vektorového prostoru V. Pak pro každé $x \in V$ existuje právě jedna projekce $x_U \in U$ do podprostoru U.

Navíc, je-li z_1, \ldots, z_m ON báze U, pak

$$x_U = \sum_{i=1}^m \langle x, z_i \rangle z_i.$$

Důsledek 8.46 - Charakterizace projekce

Vektor $y \in U$ je projekcí vektoru $x \in V$ do podprostoru U právě tehdy, když $x-y \in U^{\perp}.$

Gramova-Schmidtova Ortogonalizace

Vstup: $x_1, \ldots, x_n \in V$ lineárně nezávislé.

- 1. for k := 1 to n do
- 2. $y_k := x_k \sum_{j=1}^{k-1} \langle x_k, z_j \rangle z_j$, //nalezneme kolmici
- 3. $z_k \coloneqq \frac{1}{\|y_k\|} y_k$, //normalizujeme délku na 1
- 4. end for

Výstup: z_1, \ldots, z_n ortonormální báze prostoru span $\{x_1, \ldots, x_n\}$.

Tvrzení 8.53 - Gramova matice

Buď U podprostor reálného vektorového prostoru V. Nechť U má bázi $B = \{w_1, \ldots, w_m\}$. Označme jako Gramovu matici $G \in \mathbb{R}^{m \times m}$ matici s prvky $G_{ij} = \langle w_i, w_j \rangle$.

Pak G je regulární a vektor souřadnic $s=[x_U]_B$ projekce x_U libovolného vektoru $x\in V$ do podprostoru U je řešením soustavy

$$Gs = (\langle w_1, x \rangle, \dots, \langle w_m, x \rangle)^T.$$

Ortogonální projekce v \mathbb{R}^m

Tvrzení 8.54 - Ortogonální doplněk v \mathbb{R}^n

Buď
$$A \in \mathbb{R}^{m \times n}$$
. Pak $\mathcal{R}(A)^{\perp} = \text{Ker}(A)$.

Důsledek 8.57

Buď $A \in \mathbb{R}^{m \times n}$. Pak

- 1. $Ker(A^TA) = Ker(A)$,
- 2. $\mathcal{R}(A^TA) = \mathcal{R}(A)$,
- 3. $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$.

Tvrzení 8.59 - Ortogonální projekce v \mathbb{R}^m

Buď $A \in \mathbb{R}^{m \times n}$ hodnosti n. Pak projekce vektoru $x \in \mathbb{R}^m$ do sloupcového prostoru $\mathcal{S}(A)$ je $x' = A(A^TA)^{-1}A^Tx$.

3. přednáška - shrnutí

- ortogonální doplněk
- ortogonální projekce
- projekce v \mathbb{R}^n

Příští přednáška

projekce a metoda nejmenších čtverů + ortogonální matice