Deontic Disjunction

Melissa Fusco Meaning Sciences Club

September 30, 2014

Two Puzzles

2 / 11

Free Choice Permission

(1) You may have the gin or the whiskey. MAY(G OR W)

Free Choice Permission

(1) You may have the gin or the whiskey. MAY(G OR W)

(FC) MAY $(\phi \text{ OR } \psi) \Rightarrow \text{MAY } \phi \land \text{MAY } \psi$.

Free Choice Permission

(1) You may have the gin or the whiskey. MAY(G OR W)

(FC)
$$MAY(\phi \text{ OR } \psi) \Rightarrow MAY \phi \land MAY \psi$$
.

(Exclusivity) MAY(
$$\phi$$
 OR ψ) \Rightarrow MAY($\phi \wedge \psi$).

(2) I ought to post the letter. OUGHT(R)

- (2) I ought to post the letter. OUGHT(R)
- (3) I ought to post the letter or burn it. OUGHT(R OR B)

- (2) I ought to post the letter. OUGHT(R)
- (3) I ought to post the letter or burn it. OUGHT(R OR B)

(R) OUGHT(ϕ) \Rightarrow OUGHT(ψ OR ψ).

- (2) I ought to post the letter. OUGHT(R)
- (3) I ought to post the letter or burn it. OUGHT(R OR B)

(R) OUGHT(
$$\phi$$
) \Rightarrow OUGHT(ψ OR ψ).

(R+) OUGHT(
$$\phi$$
 OR ψ) \Rightarrow MAY $\phi \land$ MAY ψ).

$$OUGHT(\phi) \Rightarrow OUGHT(\phi \text{ OR } \psi)$$

Enderton (1972)

$$OUGHT(\phi) \Rightarrow OUGHT(\phi \text{ OR } \psi)$$

Enderton (1972)

(4) Ralph may go to the movies.

$$OUGHT(\phi) \Rightarrow OUGHT(\phi \text{ OR } \psi)$$

Enderton (1972)

- (4) Ralph may go to the movies.
- (5) Ralph ought to pay back his loan.

$$OUGHT(\phi) \Rightarrow OUGHT(\phi \text{ OR } \psi)$$

Enderton (1972)

- (4) Ralph may go to the movies.
- (5) Ralph ought to pay back his loan.
- (6) Ralph ought to pay back his loan or go to the movies.

$$OUGHT(\phi) \Rightarrow OUGHT(\phi \text{ OR } \psi)$$

Enderton (1972)

- (4) Ralph may go to the movies.
- (5) Ralph ought to pay back his loan.
- (6) Ralph ought to pay back his loan or go to the movies.

(SM) MAY(ψ) \wedge OUGHT(ϕ) \Rightarrow OUGHT(ϕ OR ψ)

(Conditionals-1)

I may do $(\phi \text{ OR } \psi) \Rightarrow \text{If I do not do } \phi$, I may do ψ ; I may do $(\phi \text{ OR } \psi) \Rightarrow \text{If I do not do } \psi$, I may do ϕ .

(Conditionals-1)

I may do $(\phi \text{ OR } \psi) \Rightarrow \text{If I do not do } \phi$, I may do ψ ; I may do $(\phi \text{ OR } \psi) \Rightarrow \text{If I do not do } \psi$, I may do ϕ .

(Conditionals-2)

I ought to do $(\phi \text{ OR } \psi) \Rightarrow \text{If I do not do } \phi$, I ought to do ψ ; I ought to do $(\phi \text{ OR } \psi) \Rightarrow \text{If I do not do } \psi$, I ought to do ϕ .

6 / 11

May:

(Failure of 'or' intro)
$$\text{MAY } \phi \Rightarrow \text{MAY} (\phi \text{ OR } \psi)$$

(FC) $\text{MAY} (\phi \text{ OR } \psi) \Rightarrow \text{MAY } \phi, \text{MAY } \psi$

(Conditionals 2) MAY(ϕ OR ψ) \Rightarrow if $\neg \phi$, then MAY ψ

Ought:

(Failure of 'or' intro) OUGHT
$$\phi \Rightarrow$$
 OUGHT $(\phi \text{ OR } \psi)$
(R+) OUGHT $(\phi \text{ OR } \psi) \Rightarrow \text{MAY } \phi$, MAY ψ
(Conditionals 1) OUGHT $(\phi \text{ OR } \psi) \Rightarrow \text{if } \neg \phi$, then OUGHT ψ

Table: Data for 'ought' and 'may'.

Proto-Semantics with Kripke Frames

8 / 11

Proto-Semantics with Kripke Frames

Definition (Circumstantial Possibility)

 ϕ is **circumstantially possible at** s iff $\exists w' \in s$ such that ϕ is true at w'.

Thank You!

Bibliography

Enderton, Herbert B. (1972). A Mathematical Introduction to Logic. Boston: Academic Press.