

Lossless and Lossy Compression for Distributed Acoustic Sensing Using Inter-channel Predictions

Aleix Seguí¹, Arantza Ugalde², Sergi Ventosa², Josep Ramon Morros³ ¹ ETH Zürich; ²Institut de Ciències del Mar; ³Universitat Politècnica de Catalunya

Motivation

- Distributed Acoustic Sensing (DAS) monitoring:
 - Long distance.
 - High-density. Real-time.
- Long term archiving initiatives face serious challenges:
 - Generation of huge amount of
 - Need vast storage capacities.
 - Long data transfer times.

Compression Opportunities

We exploit redundancies in 2D signals.

- Temporal (intra-channel)
 - Linear Predictive Coding.
- Spatial (inter-channel)
 - Frequency analysis.
- Statistical distribution
 - Entropy Coding.

Data is sampled in non-overlapping

Compression Process and Techniques

2D Wavelet Filters Apply LGT 5/3 Wavelet decomposition in both dimensions Separates signals from high-frequency noise. Inv. low-pass Low-pass Wavelet → X(t) Space

Time

Wavelet

Transform

Linear Predictive Coding

 Approximate samples by a linear combination of past samples (LPC).

$$c_i(t) = \sum_{k=1}^K a_k c_i(t-k)$$

Predicted

End

encoding

- Applied only along the time dimension in the low-frequency region.
- The coefficients are quantized and transmitted in the bitstream.

Arithmetic

Coding

LPC accurately models low frequencies.

Residual

Context-Adaptive Arithmetic Coding

The **entropy** (*H*) expresses the limit on how much a source channel can be losslessly encoded.

- A different model is needed for every region to model the entropy. We use a conditional probability mode, $p(x_n) = p(x_n | x_{n-1}, x_{n-2}, ...)$, conditioned to past
- Arithmetic coding assigns different **number of bits** to different messages according to the probability.

Compression Results

Start

Encoder

Data			H5 GZIP	H5TurboPfor	JPEG2000	Ours
Interrogator	Freq.	Tested Channels				
Aragon Photonics	50 Hz	3000	1.22	1.14	2.31	2.53
ASN OptoDAS	100 Hz	1000	1.38	1.10	2.81	2.80
			Compression factor (size is divided by xN)			

Reversible encoding pipeline

Sign up for release!

Lossy Mode

- High-frequency noise is responsible for most of the file size.
- Integer quantization is application-dependent and quality metrics should be studied.
- Lossy compression has great potential, with compression factors of more than x5.

Conclusions and Future Work

- Compression is an effective solution for storage of DAS data.
- LPC and Wavelets effectively achieve decorrelated signals.
- An efficient implementation is necessary and will be released soon.
- Lossy compression should be considered for some applications.

Acknowledgements

- This work was partly funded by the Spanish Ministry of Science, Innovation and Universities, grant PID2020-117142GB-I00 [DeeLight project].
- Funding was provided by the European Union NextGenerationEU/PRTR Program projects PSI (ref. PLEC2021-007875) and TREMORS (ref. CPP2021-008869).

References

- Bin Dong, Alex Popescu, Verónica Rodríguez Tribaldos, Suren Byna, Jonathan Ajo-Franklin, Kesheng Wu, Real-time and post-hoc compression for data from Distributed Acoustic Sensing, Computers & Geosciences, Volume 166, 2022, 105181, ISSN 0098-3004, https://doi.org/10.1016/j.cageo.2022.105181
- Wu, Chengjun, et al. "A Lossless Data Compression Method for Distributed Acoustic Sensors." Optical Fiber Sensors. Optica Publishing Group, 2023.
- The Global DAS Month of February 2023. Seismological Research Letters (2024) 95 (3): 1569–1577. https://doi.org/10.1785/0220230180