

СВЕРХТОНКАЯ ТЕПЛОИЗОЛЯЦИЯ

СРАВНИТЕЛЬНАЯ ТАБЛИЦА ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ

Использования в качестве теплоизоляционного материала минеральной ваты и сверхтонкой теплоизоляции Броня на примере участка трубопровода

Ду 159мм длиной 1 п.м., температура 100°C, температура окружающей среды -30°C

Наименование	Ед. Изм.	Минеральная	Броня	Разница (%)
показателя		вата		
Толщина слоя*	MM	60	2	58(96,7%)
Теплопроводность	Втм/°С	0,041	0,001	0,040(97,6%)
Стоимость	руб./п.м.	≈1200**	≈600**	1000(50%)
монтажа, включая				
стоимость				
материалов и				
работ				
Срок	лет	5	15	10
эксплуатации				
Теплопотери	ккал/ч м	76,4 (0,0000764)	55,9 (0,0000559)	20,5 (36,8%)
	(Гкал/ч м)			
Теплопотери в	ккал/5160чм	394 224 (0,394	288 444 (0,288	105 780 (36,8%)
отопительный		Гкал)	Гкал)	
период				
(215суток • 24часа				
= 5160часов***)				
с одного п.м.				

- 1. Исходя из данных таблицы видно, что экономия при монтаже теплоизоляции Броня может составлять до 50% засчет малой трудоемкости работ и сроков ее нанесения. Например, для трубопровода 100 п.м. стоимость монтажа, включая стоимость материалов теплоизоляции составит: Мин.вата: 100 п.м. · 1200 руб./п.м. = 120 000 руб. Броня: 100 п.м. · 600 руб./п.м. = 60 000 руб.
- 2. Теплопотери в отопительный период (5160 часов) с одного погонного метра трубопровода, при использовании изоляции Броня толщиной слоя 2мм, на 36,8% (или на 0,106 Гкал) ниже по сравнению с изоляцией минеральной ватой.

Например, для трубопровода 100 п.м.

теплопотери составят:

Мин.вата: 0,394 (Гкал/5160ч м) · 100 (м) · 640,7 (руб./Гкал) = 25 244 руб./5160ч Броня: 0,288 (Гкал/5160ч м) · 100 (м) · 640,7 (руб./Гкал) = 18 452 руб./5160ч

Экономия за отопительный период, при использовании изоляции Броня, составит 6 800 руб., что на 36,85% меньше чем при использовании в качестве теплоизоляционного материала минеральной ваты. ИТОГО: Экономия

при монтаже 60 000 руб. + экономия за отопительный период 6 800 руб. =66800 руб. Таким образом, использование сверхтонкой теплоизоляции Броня позволяет получить экономию не только при монтаже, но и после нанесения, сразу в процессе эксплуатации. Учитывая вышеизложенное, а так же срок эксплуатации материала Броня, можно сделать ВЫВОД, что материал высокоэффективен не только по своим теплофизическим свойствам, но и с экономической точки зрения.

- * толщина слоя Броня рассчитана исходя из расхода материала 1л на 1 м2 толщиной 1 мм. Таким образом, для Ду 159мм (1 п.м. = 0,5м2) толщина слоя составит 2 мм. Расчет толщины изоляции исходя из норм СНиП 41-103-2000 показал толщину слоя Броня 1,6 мм.
- ** для новых трубопроводов, не требующих демонтажа старой изоляции
- *** кол-во суток отопительного периода по данным сайта Верхне-Волжского УГМС http://www.meteo.nnov.ru/