Formal Language and Automata Theory

Chapter One

INTRODUCTION

Formal Language

• A formal language is an abstraction of the general characteristics of programming languages. A formal language consists of a set of symbols and some rules of formation by which these symbols can be combined into entities called sentences.

Formal Language

- Developed with strict rules.
- Predefined syntax and semantics.
- Precise
- Unambiguous

Disadvantage:

- Unfamiliar natation
- Initial learning effort

E.g. C++, Pascal,....

Natural language

- Rules come after the language
- Evolve and develop
- Highly flexible
- Quite powerful
- No special learning effort needed

Disadvantage:

- Vague
- Imprecise and ambiguous
- User and context dependent

E.g. Amharic, English,

Mathematical preliminaries and notations

• **Set**: is a collection of elements, without any structure other than membership.

If m is an element of the set S, we write m ε S.

A set is specified by enclosing some description of its elements in curly braces. E.g. S={a,b,c}

Universal set U of all possible elements is, if U is specified, then $S = \{ x: x \in U, x \not\in S \}$

The set with no element is called the **empty set** or **null set**. It is denoted by Ø.

Operation on sets

- Let A and B be two sets and
 - A \underline{c} B iff, for all x ε A, x ε B
 - A=B iff, A \underline{c} B and B \underline{c} A
 - A c B iff, A \underline{c} B but A \neq B
 - A u B={x: x ε A or x ε B}
 - $A \cap B = \{x: x \in A \text{ and } x \not\in B\}$
 - $A X B = \{ (x, y), x \varepsilon A \text{ and } y \varepsilon B \}$

Graphs and Trees

A graph is a construct consisting of two finite sets $V=\{v_1,v_2,v_n\}$ of vertices and the set $E=\{e_1, e_2,e_m\}$ of edges. Each edge is a pair of vertices from V. e. g $e_i=(v_j, v_k)$. The vertices are represented as circles and the edges as lines with arrows connecting the vertices.

- The degree of vertex V in graph is the number of edges with V as an end vertex.
- A path in a graph is an alternating sequence of vertices and edges of the form $v_1e_1v_2e_2...e_{n-1}v_n$ and no edge or vertex is repeated in the sequence.

Tree

- Trees are a particular type of graph.
- A tree is a directed graph that has no cycles, and that has one distinct vertex called the **root**.
- There are some vertices without outgoing edges, these are called the **leaves** of the tree.
- If there is an edge from v_i to v_j , then v_i is said to be the parent of v_j , and v_j the child of v_i

- A tree with n vertices have n-1 edges.
- A leaf in a tree is a vertex of degree one.
- The number of edges in the path is called the length of the path.
- The height of the tree is the length of the longest path from the root.
- A vertex v in a tree is at level k if there is a path of length k from the root to the vertex v.

Alphabet and Strings

An alphabet is a finite set of symbols which are used to form words in a language. An example of an alphabet might be a set like {a, b}.

• Example: $\Sigma = \{a, b, c, d\}$ is an alphabet set where 'a', 'b', 'c', and 'd' are alphabets.

• String:

- string over E is some number of elements of E (possibly none) placed in order. So if $E = \{a, b\}$ then strings over E can be a, ab, bbaa, abab and so on.

- Length of a String

It is the number of symbols present in a string. (Denoted by |S|). **E.g.**

- If S= 'cabcad', |S|=6
- If |S|=0, it is called an **empty string** (Denoted by λ or ε)

Kleene Star

- **Definition**: The set Σ^* is the infinite set of all possible strings of all possible lengths over Σ including λ .
- **Representation**: $\Sigma^* = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup \ldots$
- **Example**: If $\Sigma = \{a, b\}, \Sigma^* = \{\lambda, a, b, aa, ab, ba, bb, \dots \}$

Kleene Closure / Plus

- **Definition**: The set Σ + is the infinite set of all possible strings of all possible lengths over Σ excluding λ .
- Representation: $\Sigma^+ = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup \ldots$ $\Sigma^+ = \Sigma^* - \{ \lambda \}$
- **Example**: If $\Sigma = \{a, b\}$, $\Sigma^+ = \{a, b, aa, ab, ba, bb, \dots \}$

Transpose Operation

- for any string $x \in \Sigma^*$ and $a \in \Sigma$, $(xa)^T = a(x)^T$.
- A palindrome of even length can be obtained by the concatenation of a string and its transpose.

```
e.g. Let \Sigma = \{0, 1\}

Y = (01001)T

(xa)^T = (0100 \ 1)^T

= 1(0100)^T

= 100(01)^T

= 10010
```

Language

- **Definition**: A language is a subset of Σ^* for some alphabet Σ . It can be finite or infinite.
- **Example**: If the language takes all possible strings of length 2 over $\Sigma = \{a, b\}$, then $L = \{ab, bb, ba, bb\}$

Grammars

- Grammars denote syntactical rules for conversation in natural languages. Linguistics have attempted to define grammars since the inception of natural languages like English, Amharic.
- Strings may be derived from other strings using the productions in a grammar.
- The set of all strings that can be derived from a grammar is said to be the language generated from that grammar. More on chapter 3& 5

Automata

- The term "Automata" is derived from the Greek word "αὐτόματα" which means "selfacting". An automaton (Automata in plural) is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically.
- An automaton with a finite number of states is called a **Finite Automaton** (FA) or **Finite State Machine** (FSM).

- Finite automata are useful model for many kinds of hardware and software.
 - Software for designing and checking the behavior of digital circuits.
 - The lexical analyzer of typical compiler.
 - Software for scanning large bodies of a text.
 - Software for verifying systems of all types with a finite distinct state. Such as communication protocols or protocols for secure information exchange.

- Finite Automata (Finite state machine)
 - We denote a FA by the 5-tuple(Q, E, q_0 , δ , A) where Q is a set of states, E is an alphabet, q_0 is the starting state, δ is a transition function, and A is the set of accepting states.
- Finite Automaton can be classified into two types:
 - Deterministic Finite Automata (DFA)
 - Non-deterministic Finite Automata (NDFA)

Deterministic Finite Automaton (DFA)

- In DFA, for each input symbol, one can determine the state to which the machine will move. Hence, it is called **Deterministic Automaton.**
- As it has a finite number of states, the machine is called **Deterministic Finite Machine** or **Deterministic Finite Automaton**.

Non-deterministic Finite Automaton (NDFA)

- In NDFA, for a particular input symbol, the machine can move to any combination of the states in the machine. In other words, the exact state to which the machine moves cannot be determined.
- Hence, it is called Non-deterministic
 Automaton. As it has finite number of states, the
 machine is called Non-deterministic Finite
 Machine or Non-deterministic Finite
 Automaton.