

ENVC 24: Energy and Environment

Instructor: Prof. Amit Kumar Bhattacharjee

Department of Physics

Asutosh College

Course Web: https://amitbny.github.io/akb.github.io/enerenv.html

Course timeline: Feb-June, '18

Evaluation: Weekly/monthly assignments followed by final examination

Course: Marks - 25; Credit - 2

- General overview Sun as a source of Energy, Solar Radiation & its Spectral Characteristics,
 Conventional & Nonconventional Energy Sources, Fossil Fuels Classification, Composition, Physico-Chemical Characteristics & Energy Content of Coal, Petroleum and Natural Gas.
- Nuclear Energy Fission & Fusion, Bioenergy Energy from Biomass and Biogas, Anaerobic Digestion.
- Non-Conventional Energy → Principles of Generation of Solar, Hydropower, Wind, Geothermal & Ocean Energy, Solar Collectors, Solar Pond, Photo-voltaic, Energy Use Pattern in Different Parts of World and in India.
- Energy Measurement Energy Consumption, Energy Conservation, Increased Efficiency &
 Cogeneration, Energy Policy, Management of Nuclear Energy Wastes, Research & Development on
 Renewable Energy, Energy Conservation Policy.
- Environmental Implication of Energy Use → Green-house Gas Emission, Global Warming.
- Energy Security & Energy Budget of the Earth.

Energy and Environment

Why should we study? If asked a few decades back, probably there were not so strong support.

Earth recordered from Apollo 17 crew in 1972 (NASA)

Energy and Environment

Why should we study? If asked a few decades back, probably there were not so strong support, **But**

AQI (air quality index) as on 04/02/2018

New York, USA Kolkata, India

Zürich, CH

New York, USA

Kolkata, India

Energy and Environment

■ Energy is a prime mover of economic growth and is vital to sustain the economy. Energy consumption is an indicator of economic growth of a nation. Future economic growth depends upon the long term availability of the energy resources which are affordable, accessible and environment friendly. Industrialization contributes to the growth of the economy and requires energy. Consumption of energy and industrialization go together. If the economy has to grow then energy consumption also has to grow. The growth of economy depends upon the growth of infrastructure, and the infrastructure demands the consumption of energy.

• Major energy intensive industries in 2005 required energy ~ 68% of the total energy consumption, e.g., sectors that produced chemicals (Cement & others) took ~ 29% of the total energy, Iron/Steel sector consumed ~ 20% of the total energy. Steel and Cement are two main infrastructure materials. Non-metallic minerals have consumed ~ 10% of the total energy, Paper/Pulp ~ 6% of the total energy and Nonferrous metal ~ 3% energy.

■ Major energy intensive industries in 2005 required energy ~ 68% of the total energy consumption, e.g., sectors that produced chemicals (Cement & others) took ~ 29% of the total energy, Iron/Steel sector consumed ~ 20% of the total energy. Steel and Cement are two main infrastructure materials. Non-metallic minerals have consumed ~ 10% of the total energy, Paper/Pulp ~ 6% of the total energy and Nonferrous metal ~ 3% energy. Though this data corresponds to 2005, but similar energy consumption is present in the subsequent years. India has setup ~ 7.6% economic growth for 2019-20. With this high economic rate of growth, the demands on infrastructure materials like Cement, Steel, non-ferrous material is bound to grow. In an estimate, India would be needing ~ 600 billion tons of Cement and ~ 300 **billion tons** of Steel by the end of the year 2030. This suggests that industrialization, growth of economy, and energy consumption are highly interrelated.

In this perspective, we list what are the energy resources available because "the long term sustenance of the economy will depend upon the availability of the energy resources which are affordable, accessible and environment friendly". Ultimate energy resource is the **Sun**. It is the **solar power** that gives energy to life. Part of this energy is stored below the earth crust and part is available above the

earth crust. The Electromagnetic Spectrum Short wavelength Long wavelength Ultra-Microwave FM Gamma X-rays Infrared Shortviolet rays rays rays wave Wavelength Visible light Violet Blue Yellow Red Green Orange

- In this perspective, we list what are the energy resources available because "the long term sustenance of the economy will depend upon the availability of the energy resources which are affordable, accessible and environment friendly". Ultimate energy resource is the **Sun**. It is the **solar power** that gives energy to life. Part of this energy is stored below the earth crust and part is available above the earth crust. As such, energy resources are divided in two parts, (a) Primary energy resources (Natural), (b) Secondary energy resources (Synthetically manufactured as demand from the industry). We first take the Primary energy resources, that can be further subdivided into the following,
 - (i) Non-renewable energy resources.
 - (ii) Renewable energy resources.

- Non-renewable means it takes several millions of years to form such resource. "Radiomatric dating" shows that Earth formed over 4 billion years ago. In this perspective, we have non-renewable and renewable the renewable resources are available to us all the time. Example of non-renewable energy resources are *fossil fuels* and renewable energy resources are generated from natural resources.
- Renewable means they are constantly recyclable, they never exhaust as long as the solar power is. But non-renewable resources takes several millions of years to form below the earth-crust, that is in this time scale the fossil fuels are termed as non-renewable energy vis-a-vis renewable energy resources.

■ Fossil fuels are in fact "plant origin". And among these fossil fuels, one have three different types of fuel, (a) Coal, (b) Petroleum, (c) Natural gas.

■ Fossil fuels are in fact "plant origin". And among these fossil fuels, one have three different types of fuel, (a) Coal, (b) Petroleum, (c) Natural gas. Among the renewable energy resources, the most important one is (i) Solar power, (ii) Geothermal, (iii) Wind, (iv) Biomass, (v) Hydrothermal.

■ Fossil fuels are in fact "plant origin". And among these fossil fuels, one have three different types of fuel, (a) Coal, (b) Petroleum, (c) Natural gas. Among the renewable energy resources, the most important one is (i) Solar power, (ii) Geothermal, (iii) Wind, (iv) Biomass, (v) Hydrothermal. Let's see how these nonrenewable energy resources of plant origin are formed. There are special type of plants that give petroleum, natural gas and coal. Coalification or coal formation consist of two stages. First stage is the *Biochemical stage*. In this stage, the plant materials decay under the Earth crust, and they are degraded by the bacteria under moist condition. After this, there are several earth movement below the earth crust there are several ecological forces also acting under the Earth crust to the deposit, which has been there at a particular time. It gets further buried into/below the earth crust and as a result of temperature and pressure, the process of coal formation begins.

■ The second stage is called Metamorphism or dynamochemical stage. In this stage, there is an effect of pressure because of the depth. Because of the movement of the earth crust, the deposit which has been occurred earlier gets buried further and as a result of this the effect of pressure begins as one go down the depth. Also, there is a tectonic pressure which is caused by the movement of the Earth and as a result, the deposit gets buried into some type of rocks below the Earth crust. Then there comes the effect of temperature because there is a rise of 3-5°C for every 100 meter increase in depth. This is the most important stage in the formation of the coal deposit. And there is an effect of temperature and very high pressure and on account of it, several physico-chemical reactions take place during the life of the formation of the coal. So certain chemical reaction occur at dynamochemical stage.

■ They are, for example, dehydration (removal of water), decarbooxylation and dehydrogenation, and, on account of this three chemical reaction which are occurring because of the very large increase in pressure and temperature, and these results in removal of H_2O , CO_2 CH_4 and H_2S . So on account of these physicochemical reaction or dynamochemical reaction, the formation of coal occurs. The coal consists of organic mass (because it is from plant origin), and, this organic mass is a complex mixture of organic compounds of C, H, N, S and O. Then also coal contain inorganic substances like water and mineral. So as a result of these physico-chemical reaction which are a function of the pressure and temperature, the coal formation occur at several stages.

■ Stages of coal formation \bigcirc Wood followed by Peat. This is in the increasing order of the life of formation – meaning, if one stops at Wood, Peat is obtained. Then with further depth, one obtain Lignite followed by Bituminous, which is followed by Anthracite and then ultimately goes to Graphite. So as a result of the physicochemical changes physical change is reflected in colour, strength, density and structure. To a user the chemical changes are important, for example, O₂ content on DryAshFreeBasis (DAF) decreases from 40% for Wood to 30% for Peat and 20% for Lignite, 5% for Bituminus coal and 2% for Anthracite. So the progressive action of the pressure and temperature brings the O_2 down the value to 2%. As a result of this the volatile matter (VM) decreases from ~ 70% for Wood to < 5% for Anthracite. So decrease in VM and O_2 content increases the available carbon from about 30% for Wood/Peat to almost 100% for Anthracite. Based on the extent of Coalification, Lignite is higher in rank than Peat and Anthracite is higher in rank than

- Petroleum is formed under the Earth crust by special type of plants which are gelatinous in nature. Near sea coast, such type of plants are present and with the same process as coal buried under the earth crust and over the time period of millions of years, the deposits of petroleum are formed below the earth crust. Liquid fuel of s derived from Crude petroleum and, is not a natural resource - it is obtained from Petroleum. Petroleum is a natural resource and it comes from in greek Petra means rock and oleum means oil, so after drilling the rock beneath, petroleum is available for usage. Petroleum also contain elements e.g. C, H, N, O, S. From Crude Petroleum several types of bi-products are obtained, e.g. Gasolin, Lubricating oil, Fuel Oil and so on.
- These are the non-renewable energy resources along with natural gas.

Among renewable energy resources, one is Geothermal that is, energy obtained by trapping the heat of Earth below its surface - hot underground water or steam is used to produce electricity because solar power is partly absorbed by the Earth to produce hot water.

- Among renewable energy resources, one is Geothermal that is, energy obtained by trapping the heat of Earth below its surface hot underground water or steam is used to produce electricity because solar power is partly absorbed by the Earth to produce hot water.
- Another important source is the *Biomass* energy and it consists of Biogas, that is produced from current waste streams like *paper* and sugar production, animal waste and so on, and *CH*₄ is the main product.
 Also there are biofuel like biodiesel, ethanol which are derived from plants.

We also have solid Biomass - woodfuel, biogenic portion of municipal waste

and certain plants.

• Hydrothermal is water in the form of kinetic energy, temperature difference and as such we have say hydrothermal powerstations for the conversion of kinetic energy of the water into the electrical energy.

Maithan Dam $6 \times 10^4 \, kW$ electric power

- Hydrothermal is water in the form of kinetic energy, temperature difference and as such we have say hydrothermal powerstations for the conversion of kinetic energy of the water into the electrical energy.
- Solar energy or energy collected from sunlight. It can be used in many ways - for example - generation of electricity, photovoltaic cells (but with very low efficiency factor), generation of electricity using concentric solar power.

Asutosh College
20 kW solar power

- Hydrothermal is water in the form of kinetic energy, temperature difference and as such we have say hydrothermal powerstations for the conversion of kinetic energy of the water into the electrical energy.
- Solar energy or energy collected from sunlight. It can be used in many ways - for example - generation of electricity, photovoltaic cells (but with very low efficiency factor), generation of electricity using concentric solar power.
- Another source of energy is windpower. Whenever windpower is available, it can be used for production of electricity.

Muppandal , TN

15000 MW wind power

Indian Context

Lets try to realize in India, as our nation is 6th in World in terms of total energy consumption and needs to accelerate the development of its energy sectors in order to sustain 8-9% of growth in the country – as energy, infrastructure, and growth are interrelated. India, though rich in coal and abandantly endowed with the renewable energy, it has a very small hydrocarbon resource (fossil fuel) of the order of 4% of the total World resource. India is a net importer of energy, more than 25% of the primary energy needs been met through the import of the Crude Oil and Natural Gas. This is important when we relate our economic growth with the energy, as we are also based on the import of the energy resources. This brings us to the *energy production sector* - coal and oil account for 54% and 34% respectively, and natural gas around 6%.

Indian Context

- India's total energy production is contributed by fossil fuel, to the extent of 90%, now rest say hydrothermal is around 6%, nuclear is around 1%
 & rest being geothermal, windpower and so on ...
- India is a large consumer of the fossil fuel energy resources not only India but the World, around **80-90**% of the energy is being produced by primary energy resources such as coal, oil and natural gas. Industrial sector in India consumes around **5.2**% of energy. When we relate energy with the economy, then it is also has a relation with the standard of living. And standard of living can be measured in terms of energy consumption per person.

Indian Context

Consumption of primary energy in India is 530kg of oil equivalent per person as in 2004 compared to 1240kg oil equivalent per person in China and World average of 1770kg of oil equivalent per person. So growth in economy is highly related with the energy consumption and so in terms of energy consumption, we are at least 3-4 times lower than the World average. If the primary energy consumption per person is an indicator of the economic growth, then it has to grow, because economy is a Country's index of prosperity. When this is the scenario, that 90% of the derived energy is from the *fossil fuels*, we are also convinced that the economy has to grow as the country has to prosper, and then, energy consumption must increase. The question is how that can be met?

AKB