AI Masters, теория игр, весна 2023

Домашнее задание 1. Доминирование стратегий.

Решения задач нужно рассказать на одной из устных сдач. Устные сдачи проходят по четвергам и пятницам с 12:00 по 15:00 (Московского времени). За день перед сдачей нужно написать семинаристу (Якунину Александру) в личные сообщения в телеграмме, что вы собираетесь сдавать. В процессе сдачи можно (и рекомендуется) использовать заранее заготовленные записи, также можно писать решение на какой-нибудь онлайн-доске.

Мягкий дедлайн по каждому листку с задачами - через 3 недели после публикации задания (за это время нужно и решить, и сдать задачу). После мягкого дедлайна задачи можно сдавать с коэффициентом 0.75, еще через месяц коэффициент падает до 0.5. Жесткий дедлайн будет где-то в мае.

Определение 1. Статическая игра, или игра в нормальной форме, это тройка (N, S, u), где

- N > 1 число игроков, $\{1, ..., N\}$ множество игроков;
- $S = (S_1, \dots, S_N)$, каждое S_i непустое множество, называемое множеством стратегий; $u: S_1 \times \dots \times S_N \to \mathbb{R}^N$ функция выигрыша.

Обозначение. Будем обозначать через S_{-i} множество $S_1 \times \cdots \times S_{i-1} \times S_{i+1} \times \cdots \times S_N$, а через s_{-i} кортеж $(s_1,\ldots,s_{i-1},s_{i+1},\ldots,s_N)$. При этом под (s_i,s_{-i}) будем понимать кортеж, в котором s_i поставлено на правильное место.

Определение 2. Стратегия $s_i \in S_i$ называется *осторожной*, если она дает наибольший возможный выигрыш в худшем случае, т. е. если

$$\min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i}) = \max_{s_i' \in S_i} \min_{s_{-i} \in S_{-i}} u_i(s_i', s_{-i})$$

Определение 3. Стратегия $s_i \in S_i$ сильно доминирует стратегию $s_i' \in S_i$ если она дает строго больший выигрыш при любых действиях других игроков, т. е.

$$\forall s_{-i} \in S_{-i} : u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

Определение 4. Стратегия $s_i \in S_i$ слабо доминирует стратегию $s_i' \in S_i$ если она дает не меньший выигрыш при любых действиях других игроков, и строго больший выигрыш при хотя бы каких-то действиях, т. е. если

$$\forall s_{-i} \in S_{-i} : u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$$

$$\exists s_{-i} \in S_{-i} : u_i(s_i, s_{-i}) > u_i(s_i', s_{-i})$$

Определение 5. Стратегия *s* называется сильно (слабо) *доминирующей*, если она сильно (слабо) доминирует все остальные стратегии этого же игрока.

Стратегия s называется сильно (слабо) доминируемой, если ее сильно (слабо) доминирует хотя бы одна другая стратегия этого же игрока.

Определение 6. Последовательное исключение сильно доминируемых стратегий (кратко IESDS) игры G — это последовательность игр (G_0,\ldots,G_m) , в которой $G=G_0,\,G_{i+1}$ отличается от G_i удалением некоторого числа сильно доминируемых стратегий, а в G_m нет сильно доминируемых стратегий. Игру G_m называют результатом исключения.

Последовательное исключение слабо доминируемых стратегий (кратко IEWDS) определяется аналогично, только со слабым доминированием¹ вместо сильного.

Определение 7. Профиль стратегий (s_1,\ldots,s_N) называется *Парето-оптимальным*, если не существует другого профиля (s'_1, \ldots, s'_N) , такого что:

¹Обратите внимание, что по нашему определению нельзя вычёркивать ни одну из двух стратегий, которые всегда приносят один и тот же выигрыш, даже если такое совпадение появилось после ряда вычёркиваний

- (слабая Парето-оптимальность) Для каждого i верно $u_i(s'_1, \ldots, s'_N) > u_i(s_1, \ldots, s_N);$
- (сильная Парето-оптимальность) Для каждого i верно $u_i(s'_1,\ldots,s'_N) \ge u_i(s_1,\ldots,s_N)$ и для какогото i выполнено $u_i(s'_1,\ldots,s'_N) > u_i(s_1,\ldots,s_N)$;
- 1. (10 баллов) Докажите, что в играх с конечным числом стратегий результат IESDS не зависит от порядка исключаемых стратегий.
- 2. (10 баллов) Приведите пример игры двух игроков, в которой нет слабо доминируемых стратегий, и у каждого игрока ровно две стратегии.
- **3.** (10 баллов) Приведите пример игры, в которой у какого-то игрока есть две стратегии $s_1, s_2,$ и в результате IEWDS может остаться только стратегия $s_1,$ и может остаться только стратегия s_2 .
- 4. (5 баллов за каждый пункт) Может ли осторожная стратегия
 - а) быть сильно доминируемой?
 - б) быть слабо доминируемой?
 - в) Могут ли все осторожные стратегии в какой-то игре быть слабо доминируемыми?
 - г) Могут ли все осторожные стратегии быть исключенными в результате IEWDS?
- 5. (10 баллов) Рассмотрим следующую игру: два игрока выбирают число от 0 до 10. Если один игрок выбрал число, на 1 большее чем второй, то его выигрыш равен 1, а выигрыш второго игрока равен -1. В противном случае выигрыш обоих игроков равен 0.

Есть ли в этой игре слабо доминирующие или осторожные стратегии? Найдите результат IEWDS.

- 6. (5 баллов за каждый пункт) Две курицы продают яйца на рынке. Изготовление одного яйца приносит издержки c=5 (нецелое число яиц изготовить нельзя). Если суммарное число яиц на рынке равно q, то цена одного яйца составит $\max\{0,30-q^2\}$. Курицы максимизируют свою прибыль, т. е. разность между суммарной ценой проданных яиц и суммарными издержками.
 - а) Составьте матрицу соответствующей игры
 - б) Пусть курицы сформировали картель и максимизируют суммарную прибыль. Сколько яиц они поставят на рынок?
 - в) Пусть курицы сформировали картель, но не имеют возможности передавать друг другу прибыль. Найдите все Парето-оптимальные исходы (и в сильном, и в слабом смысле).
 - г) Найдите результат IESDS. Будет ли он Парето-оптимальным?