第6回 予測

村澤 康友

2022年11月1日

今日のポイント

- 1. 予測に用いる統計量を予測子, 予測子の実 現値を予測値という. 真の値の代わりに 予測値を用いることの損失を表す関数を 損失関数という. 予測子の損失の(条件付 き) 期待値を与える関数を危険(リスク) 関数という. 危険関数が最小の予測子が 最適. したがって最適予測は損失関数に 依存する.
- 2. 予測誤差の2乗の(条件付き)期待値を 予測子の平均 2 乗誤差 (MSE) という. MSE = 2次の損失の危険関数. 2次の損 失なら条件付き期待値が最適予測.
- 3.2 次の損失なら最適な h 期先予測は $E_t(y_{t+h})$. 正規過程なら $var_t(y_{t+h})$ から 予測の信頼区間を作成できる.

目次

1	統計的意思決定	1	注 3. $L\left(Y_{t+h},\hat{Y}_{t+h t}\right)$ と書く. $Y_{t+h}=\hat{Y}_{t+h t}$ た
1.1	予測子	1	ら損失は 0.
1.2	損失関数	1	
1.3	危険(リスク)関数	2	定義 4. 2 次の損失関数は、任意の y,\hat{y} について
1.4	最適予測	2	$L(y,\hat{y}) := (y - \hat{y})^2$
2	$\mathrm{AR}(1)$ 過程の予測	2	定義 $5.$ Y_{t+h} の $\hat{Y}_{t+h t}$ に対する予測誤差は
2.1	1 期先予測	2	$\sum_{t=0}^{\infty} T_{t+t} ^{2t} T_{t+t} ^{2t} T_{t+t} ^{2t}$
2.2	h 期先予測	3	$e_{t+h} := Y_{t+h} - \hat{Y}_{t+h t}$
3	$\mathrm{AR}(p)$ 過程の予測	3	注 4.2 次の損失=予測誤差の2乗. すなわち予測
3.1	1 期先予測	3	誤差の符号に関して対称な損失.

- 次回までの準備
- 1 統計的意思決定

今日のキーワード

1.1 予測子

5

確率過程 $\{Y_t\}$ の h 期先予測を考える.

定義 1. 予測に用いる統計量を予測子という.

注 1. 時点 t までの観測値を所与とした Y_{t+h} の予 測子を $\hat{Y}_{t+h|t}$ と書く.

定義 2. 予測子の実現値を**予測値**という.

1.2 損失関数

定義 3. 真の値の代わりに予測値を用いることの損 失を表す関数を**損失関数**という.

注 2. 経済学における効用関数と同じ(符号は逆).

1.3 危険(リスク)関数

時点 t までの観測値を所与とした条件付き期待値を $E_t(.)$ と書く.

定義 6. 予測子の損失の(条件付き)期待値を与える関数を**危険(リスク)関数**という.

注 5. $\hat{Y}_{t+h|t}$ の危険関数は

$$R\left(\hat{Y}_{t+h|t}\right) := \mathcal{E}_t\left(L\left(Y_{t+h}, \hat{Y}_{t+h|t}\right)\right)$$

定義 7. 予測誤差の 2 乗の(条件付き)期待値を予 測子の**平均** 2 **乗誤差(**mean squared error, MSE) という.

注 6. $\hat{Y}_{t+h|t}$ の MSE は

$$MSE\left(\hat{Y}_{t+h|t}\right) := E_t\left(\left(Y_{t+h} - \hat{Y}_{t+h|t}\right)^2\right)$$

すなわち MSE = 2次の損失の危険関数.

1.4 最適予測

危険関数が最小の予測子が最適. したがって最適 予測は損失関数に依存する. 2次の損失なら MSE が最小の予測子が最適. 時点 t までの観測値を所与 とした条件付き分散を $\operatorname{var}_t(.)$ と書く.

定理 1.

MSE
$$\left(\hat{Y}_{t+h|t}\right) = \operatorname{var}_t(Y_{t+h}) + \left(\hat{Y}_{t+h|t} - \operatorname{E}_t(Y_{t+h})\right)^2$$
 証明.

$$\begin{aligned} & \text{MSE} \left(\hat{Y}_{t+h|t} \right) \\ &= \text{E}_{t} \left(\left(Y_{t+h} - \hat{Y}_{t+h|t} \right)^{2} \right) \\ &= \text{E}_{t} \left(\left(Y_{t+h} - \text{E}_{t}(Y_{t+h}) - \left(\hat{Y}_{t+h|t} - \text{E}_{t}(Y_{t+h}) \right) \right)^{2} \right) \\ &= \text{E}_{t} \left(\left(Y_{t+h} - \text{E}_{t}(Y_{t+h}) \right)^{2} \right) \\ &- 2 \text{E}_{t} \left(\left(Y_{t+h} - \text{E}_{t}(Y_{t+h}) \right) \left(\hat{Y}_{t+h|t} - \text{E}_{t}(Y_{t+h}) \right) \right) \\ &+ \text{E}_{t} \left(\left(\hat{Y}_{t+h|t} - \text{E}_{t}(Y_{t+h}) \right)^{2} \right) \\ &= \text{var}_{t}(Y_{t+h}) \\ &- 2 (\text{E}_{t}(Y_{t+h}) - \text{E}_{t}(Y_{t+h})) \left(\hat{Y}_{t+h|t} - \text{E}_{t}(Y_{t+h}) \right) \\ &+ \left(\hat{Y}_{t+h|t} - \text{E}_{t}(Y_{t+h}) \right)^{2} \end{aligned}$$

第2項は0.

注 7. すなわち MSE =条件付き分散+予測子の偏りの 2 乗.

系 1. $\mathrm{MSE}\left(\hat{Y}_{t+h|t}\right)$ は $\hat{Y}_{t+h|t} = \mathrm{E}_t(Y_{t+h})$ のとき $\mathrm{var}_t(Y_{t+h})$ で最小.

証明. 前定理より明らか.

注 8. すなわち 2 次の損失なら条件付き期待値が最適予測.

2 AR(1) 過程の予測

2.1 1期先予測

簡単化のため $\{y_t\}$ を定数項なしの AR(1) 過程とする. すなわち任意の t について

$$y_t = \phi y_{t-1} + w_t$$
$$\{w_t\} \sim \text{WN}\left(\sigma^2\right)$$

簡単化のため母数は既知と仮定する.

定理 2. $\{w_t\}$ が iid なら任意の t について

$$E_t(y_{t+1}) = \phi y_t$$

証明.

$$E_t(y_{t+1}) = E_t(\phi y_t + w_{t+1})$$

$$= \phi y_t + E_t(w_{t+1})$$

$$= \phi y_t + E(w_{t+1})$$

$$= \phi y_t$$

注 9. $E_t(y_{t+1})$ は点予測を与える.

定理 3. $\{w_t\}$ が iid なら任意の t について

$$\operatorname{var}_t(y_{t+1}) = \sigma^2$$

$$\operatorname{var}_{t}(y_{t+1}) = \operatorname{var}_{t}(\phi y_{t} + w_{t+1})$$

$$= \operatorname{var}_{t}(w_{t+1})$$

$$= \operatorname{var}(w_{t+1})$$

$$= \sigma^{2}$$

注 10. 正規過程なら $\operatorname{var}_t(y_{t+1})$ から区間予測(= 予測の信頼区間)を作成できる。ただし本来は母数の推定誤差も考慮する必要がある。

2.2 h 期先予測

補題 1. 任意の t と $h \ge 1$ について

$$y_{t+h} = w_{t+h} + \phi w_{t+h-1} + \dots + \phi^{h-1} w_{t+1} + \phi^h y_t$$

証明.

$$y_{t+h} = \phi y_{t+h-1} + w_{t+h}$$

$$= w_{t+h} + \phi y_{t+h-1}$$

$$= w_{t+h} + \phi (w_{t+h-1} + \phi y_{t+h-2})$$

$$= w_{t+h} + \phi w_{t+h-1} + \phi^2 y_{t+h-2}$$

$$= \dots$$

$$= w_{t+h} + \phi w_{t+h-1} + \dots + \phi^{h-1} w_{t+1} + \phi^h y_t$$

定理 4. $\{w_t\}$ が iid なら任意の t と $h \ge 1$ について

$$E_t(y_{t+h}) = \phi^h y_t$$

証明. 補題より

$$\begin{aligned} & \mathbf{E}_{t}(y_{t+h}) \\ & = \mathbf{E}_{t} \left(w_{t+h} + \phi w_{t+h-1} + \dots + \phi^{h-1} w_{t+1} + \phi^{h} y_{t} \right) \\ & = \mathbf{E}_{t}(w_{t+h}) + \phi \, \mathbf{E}_{t}(w_{t+h-1}) + \dots \\ & + \phi^{h-1} \, \mathbf{E}_{t}(w_{t+1}) + \phi^{h} y_{t} \\ & = \mathbf{E}(w_{t+h}) + \phi \, \mathbf{E}(w_{t+h-1}) + \dots \\ & + \phi^{h-1} \, \mathbf{E}(w_{t+1}) + \phi^{h} y_{t} \\ & = \phi^{h} y_{t} \end{aligned}$$

定理 5. $\{w_t\}$ が iid なら任意の t と $h \ge 1$ について

$$\operatorname{var}_{t}(y_{t+h}) = \left[1 + \phi^{2} + \dots + \phi^{2(h-1)}\right] \sigma^{2}$$

証明. 補題より

$$\operatorname{var}_{t}(y_{t+h})$$

$$= \operatorname{var}_{t}(w_{t+h} + \phi w_{t+h-1} + \cdots + \phi^{h-1} w_{t+1} + \phi^{h} y_{t})$$

$$= \operatorname{var}_{t}(w_{t+h} + \phi w_{t+h-1} + \cdots + \phi^{h-1} w_{t+1})$$

$$= \operatorname{var}_{t}(w_{t+h}) + \operatorname{var}_{t}(\phi w_{t+h-1}) + \cdots$$

$$+ \operatorname{var}_{t}(\phi^{h-1} w_{t+1})$$

$$= \operatorname{var}_{t}(w_{t+h}) + \phi^{2} \operatorname{var}_{t}(w_{t+h-1}) + \cdots$$

$$+ \phi^{2(h-1)} \operatorname{var}_{t}(w_{t+1})$$

$$= \operatorname{var}(w_{t+h}) + \phi^{2} \operatorname{var}(w_{t+h-1}) + \cdots$$

$$+ \phi^{2(h-1)} \operatorname{var}(w_{t+1})$$

$$= \left[1 + \phi^{2} + \cdots + \phi^{2(h-1)}\right] \sigma^{2}$$

3 AR(p) 過程の予測

3.1 1 期先予測

 $\{y_t\}$ を定数項なしの $\mathrm{AR}(p)$ 過程とする. すなわち任意の t について

$$y_t = \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + w_t$$
$$\{w_t\} \sim WN(\sigma^2)$$

定理 6. $\{w_t\}$ が iid なら任意の t について

$$E_t(y_{t+1}) = \phi_1 y_t + \dots + \phi_p y_{t-p+1}$$

証明.

$$E_{t}(y_{t+1}) = E_{t}(\phi_{1}y_{t} + \dots + \phi_{p}y_{t-p+1} + w_{t+1})$$

$$= \phi_{1}y_{t} + \dots + \phi_{p}y_{t-p+1} + E_{t}(w_{t+1})$$

$$= \phi_{1}y_{t} + \dots + \phi_{p}y_{t-p+1} + E(w_{t+1})$$

$$= \phi_{1}y_{t} + \dots + \phi_{p}y_{t-p+1}$$

定理 7. $\{w_t\}$ が iid なら任意の t について

$$\operatorname{var}_t(y_{t+1}) = \sigma^2$$

証明.

$$\operatorname{var}_{t}(y_{t+1}) = \operatorname{var}_{t}(\phi_{1}y_{t} + \dots + \phi_{p}y_{t-p+1} + w_{t+1})$$

$$= \operatorname{var}_{t}(w_{t+1})$$

$$= \operatorname{var}(w_{t+1})$$

$$= \sigma^{2}$$

3.2 h 期先予測

簡単化のため p=2 とする. すなわち任意の t について

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + w_t$$

 $\{w_t\} \sim WN(\sigma^2)$

簡単化のためh=2とする.

定理 8. $\{w_t\}$ が iid なら任意の t について

$$E_t(y_{t+2}) = (\phi_1^2 + \phi_2) y_t + \phi_1 \phi_2 y_{t-1}$$

証明.
$$E_t(y_{t+1}) = \phi_1 y_t + \phi_2 y_{t-1}$$
 より

$$\begin{split} \mathbf{E}_t(y_{t+2}) &= \mathbf{E}_t(\phi_1 y_{t+1} + \phi_2 y_t + w_{t+2}) \\ &= \phi_1 \, \mathbf{E}_t(y_{t+1}) + \phi_2 y_t + \mathbf{E}_t(w_{t+2}) \\ &= \phi_1(\phi_1 y_t + \phi_2 y_{t-1}) + \phi_2 y_t + \mathbf{E}(w_{t+2}) \\ &= \left(\phi_1^2 + \phi_2\right) y_t + \phi_1 \phi_2 y_{t-1} \end{split}$$

定理 9. $\{w_t\}$ が iid なら任意の t について

$$\operatorname{var}_{t}(y_{t+1}) = (1 + \phi_{1}^{2}) \sigma^{2}$$

証明. $\operatorname{var}_t(y_{t+1}) = \sigma^2$ より

$$\operatorname{var}_{t}(y_{t+2}) = \operatorname{var}_{t}(\phi_{1}y_{t+1} + \phi_{2}y_{t} + w_{t+2})$$

$$= \operatorname{var}_{t}(\phi_{1}y_{t+1} + w_{t+2})$$

$$= \phi_{1}^{2} \operatorname{var}_{t}(y_{t+1}) + \operatorname{var}_{t}(w_{t+2})$$

$$= \phi_{1}^{2}\sigma^{2} + \operatorname{var}(w_{t+2})$$

$$= \phi_{1}^{2}\sigma^{2} + \sigma^{2}$$

$$= (1 + \phi_{1}^{2}) \sigma^{2}$$

注 $11. p, h \ge 3$ の場合も同様だが、かなり複雑. ベクトル・行列を用いると簡単になる.

4 MA・ARMA 過程の予測

反転可能な MA・ARMA 過程は $AR(\infty)$ で表現できる。したがって母数が既知なら $\{y_t\}$ から $\{w_t\}$ が一意に定まり、 $\{w_t\}$ も観測可能とみなせる.

 $\{y_t\}$ を平均 0 の $\mathrm{MA}(1)$ 過程とする. すなわち任意の t について

$$y_t = w_t - \theta w_{t-1}$$
$$\{w_t\} \sim WN(\sigma^2)$$

定理 10. $\{w_t\}$ が iid なら任意の t について

$$E_t(y_{t+1}) = -\theta w_t$$

証明.

$$E_t(y_{t+1}) = E_t(w_{t+1} - \theta w_t)$$
$$= -\theta w_t$$

定理 11. $\{w_t\}$ が iid なら任意の t について

$$\operatorname{var}_t(y_{t+1}) = \sigma^2$$

証明.

$$var_t(y_{t+1}) = var_t(w_{t+1} - \theta w_t)$$
$$= var_t(w_{t+1})$$
$$= var(w_{t+1})$$
$$= \sigma^2$$

注 12. より高次の MA 過程や ARMA 過程の h 期 先予測の場合も同様だが,かなり複雑.ベクトル・行列を用いると簡単になるが,実際には母数は未知 で $\{w_t\}$ は観測不可能なので,正確な計算には状態 空間モデルとカルマン・フィルターが必要.

5 今日のキーワード

予測子, 予測値, 損失関数, 2次の損失関数, 予 測誤差, 危険 (リスク) 関数, 平均2乗誤差 (MSE)

6 次回までの準備

提出 宿題 6

復習 復習テスト 6

予習 教科書第7章4.1節