Ćwiczenie I - Predykaty Geometryczne Jakub Frączek - grupa nr 4

1. Wstęp

Opis ćwiczenia

Ćwiczenie polegało na wygenerowaniu 4 różnych zbiorów punktów, a następnie sklasyfikowaniu ich ze względu na to po której stronie prostej się znajdują.

Dane techniczne - software

Ćwiczenie zostało zrealizowane w języku Python przy użyciu środowiska Jupyter notebook. Wykorzystane biblioteki to: numpy, random, pandas, matplotlib, bitalg.

Dane techniczne - hardware

Laptop z systemem operacyjnym Linux Mint, procesorem AMD Ryzen 5 5500U 2.1 GHZ oraz 8 GB pamięci RAM.

2. Generacja punktów

Wygenerowane zbiory

- 1. 10⁵ losowych punktów o współrzędnych z przedziału [-1000, 1000]
- 2. 10⁵ losowych punktów o współrzędnych z przedziału [-10¹⁴, 10¹⁴]
- 3. 1000 losowych punktów leżących na okręgu o środku (0,0) i promieniu R=100
- 4. 1000 losowych punktów o współrzędnych z przedziału [-1000, 1000] leżących na prostej wyznaczonej przez wektor (a, b), gdzie a = [-1.0, 0.0], b = [1.0, 0.1].

Sposób generowania

Punkty zostały wygenerowane za pomocą funkcji random.uniform() z biblioteki random. W przypadku punktów leżących na okręgu skorzystałem z równań okręgu zadanego parametrycznie:

$$x = a \cos(t)$$

$$y = a \sin(t)$$

$$dla t \in [0, 2\pi)$$

W przypadku punktów leżących na prostej skorzystałem ze wzoru na prostą w postaci kierunkowej

$$y = \frac{y_A - y_B}{x_A - X_B} x + (y_A - \frac{y_A - y_B}{x_A - X_B} x_A)$$

Wizualizacja wygenerowanych zbiorów

Wizualizacja została zrealizowana przy pomocy biblioteki bitalg napisanej przez koło naukowe BIT.

Wykresy

Poniższe wykresy (Wykres 1, Wykres 2, Wykres 3, Wykres 4) obrazują wygenerowane punkty:

3. Określenie po której stronie znajduje się punkt

Sposób określania

Położenie punktu względem prostej można łatwo określić obliczając iloczyn wektorowy \overrightarrow{ab} x \overrightarrow{ac} . Przez punkty a i b przechodzi prosta, a punkt c jest tym którego położenie chcemy określić. Ta metoda jest równoważna z wyliczeniem wyznacznika:

macierzy 2 x 2:

$$a_x - c_x a_y - c_y b_x - c_x b_y - c_y$$

lub macierzy 3x3:

Przyjąłem, że jeśli det(A) < 0 to punkt leży po prawej stronie prostej, det(A) > 0 po lewej, a det(A) = 0 na prostej.

Sposoby wyliczania wyznaczników

Zaimplementowane zostały 4 funkcje:

- 1. mat det 3x3() wyliczająca wyznacznik macierzy 3x3 metodą Sarrusa
- 2. mat_det_3x3_lib() wyliczająca wyznacznik macierzy 3x3 przy użyciu funkcji linalg.det() z biblioteki numpy
- 3. mat_det_2x2() wyliczająca wyznacznik macierzy 2x2 mnożąc wyrazy macierzy stojące na przekątnej, a następnie odejmując je od siebie
- 4. mat_det_2x2_lib() wyliczająca wyznacznik macierzy 2x2 przy użyciu funkcji linalg.det() z biblioteki numpy

4. Analiza danych

Sposób analizy

Dane ze zbiorów 1-4 zostały przeanalizowane wszystkimi 4 sposobami obliczania wyznaczników, przy użyciu dwóch różnych precyzji typu danych float (float64, float32), a także w zależności od zbioru, różnych wartości tolerancji, czyli dokładności z jaką klasyfikuje punkt jako leżący na prostej. Pod każdą tabelą znajdują się wybrane przeze mnie najciekawsze wykresy. Zielony kolor na wykresie oznacza punkty na lewo od prostej, pomarańczowy na prawo, a fioletowy punkty leżące na prostej. Gwiazda w tabeli oznacza, że każda użyta metoda dała taki sam efekt.

Dane ze zbioru 1.

Dla każdej wybranej metody wyniki były takie same. Są one przedstawione w Tabeli 1. Przetestowane epsilony to: 10^{-15} , 10^{-10} , 10^{-5} .

Wyznacznik	Precyzja float'a	Epsilon	Punkty po lewej	Punkty na prostej	Punkty po prawej
*	*	*	49787	0	50213

Tabela 1. Klasyfikacja danych ze zbioru 1.

Dane ze zbioru 2.

Wyznacznik 3x3 okazał się nieskuteczny przy wykryciu punktów leżących na prostej. Odmienne rezultaty dał wyznacznik 2x2 są one przedstawione w Tabeli 2. Po ręcznym przetestowaniu co zwracają oba wyznaczniki okazało się, że wyznacznik 2x2 zwraca dokładnie 0, a wyznacznik 3x3 bardzo dużą, lub bardzo małą liczbę w zależności od punktu. Pod tabelą (wykres 6. i wykres 7.) znajduje się graficzne porównanie dla dwóch różnych precyzji floata i funkcji mat_det_2x2. Przetestowane epsilony to: 10^{-100} , 10^{-15} , 10^{-10} , 10^{-5} .

Wyznacznik	Precyzja float'a	Epsilon	Punkty po lewej	Punkty na prostej	Punkty po prawej
mat_det_2x2	64 bity	*	50068	6	49926
	32 bity	*	50066	8	49926

mat_det_2x2_lib	64 bity	*	50066	6	49928
	32 bity	*	50067	6	49927

Tabela 2. Klasyfikacja danych ze zbioru 2.

Wykres 6. mat_det_2x2, eps = 10^{-15} , float64 Wykres 7. mat_det_2x2, eps = 10^{-15} , float32

Dane ze zbioru 3.

Podobnie jak w przypadku zbioru 1. nie udało się trafić punkty na prostej oraz metody dały ten sam wynik zaprezentowany w Tabeli 3. Przetestowane epsilony to: 10^{-15} , 10^{-10} , 10^{-5} .

Wyznacznik	Precyzja float'a	Epsilon	Punkty po lewej	Punkty na prostej	Punkty po prawe
*	*	*	50240	0	49760

Tabela 3. Klasyfikacja danych ze zbioru 3.

Dane ze zbioru 4.

Rezultaty dla zbioru 4. są zdecydowanie najciekawsze. Każda użyta metoda dała inne wyniki dla różnych tolerancji i precyzji. W tym wypadku punkty mimo, że zostały wygenerowane na prostej nie wszystkie zostały zakwalifikowane jako takowe. Dla tolerancji= 10^-10 wszystkie punkty zostały określone jako leżące na prostej. Dane zostały zestawione w tabeli 4. Pod tabelą na wykresie 8. przedstawiony jest wynik dla najmniej skutecznej metody, a na wykresie 9. dla optymalnej moim zdaniem funkcji mat_det_2x2 i tolerancji 10⁻¹⁵.

Wybrane wykresy dla danych ze zbioru 4.

Zestaw 4						
Wyznacznik	Precyzja float'a	Epsilon	Punkty po lewej	Punkty na prostej	Punkty po prawej	
mat_det_3x3	64 bity	10 ⁻¹⁰	0	100	0	
		10 ⁻¹⁵	20	46	34	
		10 ⁻²⁰	20	44	36	
		10 ⁻¹⁰⁰	20	44	36	
	32 bity	10 ⁻¹⁰	46	17	37	
		10 ⁻¹⁵	51	7	42	
		10 ⁻²⁰	51	7	42	

		10 ⁻¹⁰⁰	51	7	42
		10 ⁻¹⁰	0	100	0
	C4 hite	10 ⁻¹⁵	35	33	32
	64 bity	10 ⁻²⁰	42	25	33
		10 ⁻¹⁰⁰	42	25	33
mat_det_3x3_lib		10 ⁻¹⁰	46	17	37
	22 hitu	10 ⁻¹⁵	52	7	41
	32 bity	10 ⁻²⁰	52	6	42
		10 ⁻¹⁰⁰	52	6	42
		10 ⁻¹⁰	0	100	0
	64 bity	10 ⁻¹⁵	17	75	8
		10 ⁻²⁰	18	74	8
mat dat 2v2		10 ⁻¹⁰⁰	18	74	8
mat_det_2x2		10 ⁻¹⁰	46	17	37
	32 bity	10 ⁻¹⁵	48	14	38
		10 ⁻²⁰	48	14	38
		10 ⁻¹⁰⁰	48	14	38
	64 bity	10 ⁻¹⁰	0	100	0
mat_det_2x2_lib-		10 ⁻¹⁵	26	60	14
		10 ⁻²⁰	26	60	14
		10 ⁻¹⁰⁰	26	60	14
	32 bity	10 ⁻¹⁰	46	17	37
		10 ⁻¹⁵	51	7	42
		10 ⁻²⁰	48	12	40
		10 ⁻¹⁰⁰	48	12	40

Tabela 4. Klasyfikacja danych ze zbioru 4.

Wykres 8. mat_det_3x3_lib, eps = 10^{-100} , float32

Wykres 9. mat_det_2x2, eps = 10^{-15} , float64

5. Wnioski

Dane ze zbiorów 1 i 3 dały takie same wyniki, nie udało się wygenerować żadnego punktu leżącego na prostej. Próbowałem eksperymentować z dość dużą wartością tolerancji tj. 10⁻¹ i udało się uzyskać 3 punkty w przypadku zbioru 1 i 33 punkty w przypadku zbioru 3, które zostały sklasyfikowane jako leżące na prostej. Jednak nie można powiedzieć, że leżą one na tej prostej, a jedynie w pobliżu. W przypadku obu zbiorów, szansa że jakiś punkty wypadnie dokładnie na prostej była bardzo znikoma.

W zbiorze 2. udało się wygenerować kilka punktów leżących na prostej. Mogę być tego pewny ponieważ zarówno wyznacznik 2x2 obliczony moją metodą jak i metodą biblioteczną niezależnie dla jakiej tolerancji dawał niemal te same wyniki (6 pkt. lub 8pkt. dla mat_det_2x2 i float32). Należy to uznać za duże szczęście ponieważ zbiór 2. zawierał 10⁵ punktów z przedziału [-10⁴, 10⁴] dużo większego niż zbiór 1.

Zdecydowanie najciekawsze rezultaty otrzymałem dla zbioru 4. Co ciekawe dla tolerancji 10^{-10} wszystkie punkty zostały określone jako leżące na prostej niezależnie od sposobu sprawdzenia. Jednak wraz z wzrostem tolerancji malała ich liczba. Zmiana z 64 bitowego float'a na 32 bitowy również znacznie zmniejszyła liczbę tych punktów. Najbardziej zaskoczyło mnie, że dla float32 zaledwie 17/100 punktów leżało na prostej, gdzie dla tej samej tolerancji (10^{-10}) wszytkie na niej leżały. Dzieje się tak ponieważ przez taką zmianę znacznie traci się na precyzji. Przy takich obliczeniach liczby daleko po przecinku mają znaczenie, a ich utrata wiążę się z błędnym określeniem pozycji punktu.

W moim przypadku najlepsze wyniki dała funkcja obliczająca wyznacznik macierzy 2x2 zaimplementowana przeze mnie, a optymalną tolerancją jest 10⁻¹⁵.