Project 1 - RISC-Toy Design

EE361 - Digital Circuit Design and Language

Kyung Hee University Electrical Engineering

> Spring 2025 Seungkyu Choi (seungkc@khu.ac.kr)

Interface

RISC-Toy Interface

In CLK	Clock	Out [31:2] DADDR	Data mem. address
In RSTN	Reset / active low	Out DREQ	Data mem. request enable
Out [31:2] IADDR	Instruction address	Out DRW	Data mem. read(0)/write(1)
IREQ	Inst. request enable	Out [31:0] DWDATA	Data written into the mem.
In [31:0] INSTR	Instruction	In [31:0] DRDATA	Data read from the mem.

Modules

Design of the 5-stage pipelined RISC-Toy

Memory Description

- Two memories: INST_MEM, DATA_MEM
 - ✓ CSN: Activate the memory when 'low' WEN: Read/Write enable
 - ✓ For INST_MEM Instantiation:
 - Write your own instruction test code in 'inst.hex' to test the processor.
 - Ex: For ADDI r1, r1, #10: 00_42_00_0A
- Register File (inside): 32-entry general purpose registers
 - √ 2-read 1-write interface
 - ✓ Write operation is synchronized to the posedge CLK.
 - ✓ Read operation is not related to the clock signal.

Guideline

- Follow the manual of the instruction set architecture.
- DO NOT use 'initial' and 'delay' statement except for testbench.v and model.v
- DO NOT modify template files.
- Implement stalls or other techniques to prevent pipeline hazards.
- Note that read from the register file is asynchronous, and write to the register file is synchronous.

Submission Rule (Due:6/2 11:59 PM)

Submission file: Zip File - Verilog codes and report

File Name: prj1_xx.zip (xx: team number 01~24)

- Verilog Codes: All the Verilog codes you used (including RISC_TOY.v, model.v, testbench.v)
- Please do not modify model.v.
- Interface of the top module should be the same as page 2. Top module of the processor should be RISC_TOY.
- Report format: MS Word or Hancom (.doc(x) or .hwp(x))
- The report should contain:
 - ✓ Sufficient explanation on the design procedure
 - ✓ Overall block diagram of the data path + control showing the pipeline stages
 - ✓ Explanation on methods to resolve pipeline hazards
 - ✓ Verifications using custom instruction test codes
 - ✓ Less than 10 pages (Korean available)

