Obsah

8	Zák	adní poznatky molekulové fyziky a termodynamiky	1
	8.1	Kinetická teorie stavby látek	1
		8.1.1 Důkazy neuspořádaného pohybu	1
	8.2	Síly mezi částicemi	1
	8.3	Energie částic	2
		8.3.1 Vazebná energie	2
		8.3.2 Kinetická energie	3
	8.4	Vzájemné působení částic	3
		8.4.1 Pevné látky	3
		8.4.2 Kapalné látky	3
		8.4.3 Plynné látky	3
		8.4.4 Plazma	4
	8.5	Stav soustavy	5
		8.5.1 Soustavy	5
		8.5.2 Rovnovážný stav soustavy	5
	8.6	Termodynamická teplota	5
		8.6.1 Teploměr	5

8 Základní poznatky molekulové fyziky a termodynamiky

- metody molekulové fyziky a termodynamiky
 - makroskopický pohled
 - * pozorování těles a dějů
 - * neuvážení jednotlivých částicích, uvážení jen rozměrů těles
 - termodynamická metoda
 - * pozorování tepelných jevů
 - * založeno na zákonu zachování a přeměny energie
 - * neuvažujeme částicové složení látky z molekul, atomů
 - statická metoda
 - * zabývá se strukturou látek
 - * odvětví molekulové fyziky

8.1 Kinetická teorie stavby látek

- látka složena z částic
- částice v neustálém a neuspořádaném pohybu
 - posuvný pohyb (plyny)
 - otáčivý pohyb (molekuly plynů)
 - kmitavý pohyb (pevné a kapalné látky)
- vzájemné působení částic silami
 - malé vzdálenosti odpudivé
 - velké vzdálenosti přitažlivé
- částice v pohybu \rightarrow kinetická energie
- plyn narážení částic do stěn nádoby \rightarrow tlak / tlaková síla

8.1.1 Důkazy neuspořádaného pohybu

Difúze

- samovolné pronikání částic jedné látky mezi částice druhé látky
- vyšší teplota \rightarrow rychlejší difúze \rightarrow vyšší rychlost částic

Osmóza

- samovolný pohyb částic roztoku přes polopropustnou membránu
- přesun média z místa malé koncentrace do místa velké koncentrace \rightarrow vyrovnání koncentrací
- důležitá v biologických systémech

Brownův pohyb

- náhodný pohyb mikroskopických částic v plynu nebo kapalině
- částice náhodně posouvána nárazy částicemi látky
- rozptyl částic z jednoho místa náhodnými směry zvyšování entropie

Obr. 8.1: Znázornění Brownova pohybu

8.2 Síly mezi částicemi

- vzájemná interakce elektronových obalů a atomových jader
- tzv. vazebné sily
- malá vzdálenost $(r < r_0)$ prudké zvyšování odpudivé síly částic
- rovnovážná poloha $(r_0 \approx 0.01 \, \text{nm} r_0 \approx 0.1 \, \text{nm})$ místo vyrovnání odpudivé a přitažlivé síly
- velká vzdálenost $(r>r_0)$ přitažlivá síla, se vzdáleností klesá, projevení do vzdálenosti asi $\approx 1\,\mathrm{nm}$

8.3 Energie částic

8.3.1 Vazebná energie

- rovno práci potřebné pro rozdělení částic ve vazbě
- potenciální energie vazby
- způsobena vazebnými silami

Obr. 8.2: Graf závislosti síly na vzdálenosti

8.3.2 Kinetická energie

- kinetická energie pohybující se částice
- při pohybu či kmitání
- rostoucí s rostoucí teplotou

8.4 Vzájemné působení částic

8.4.1 Pevné látky

- pevné uspořádání částic pomocí vazeb
 - pravidelné krystalické látky
 - nepravidelné amorfní látky
- střední vzdálenosti částic velmi malé
- kmitání částic okolo rovnovážných poloh s teplotou roste amplituda
- potenciální energie částic větší než kinetická energie

Typy vazeb

- iontová
 - způsobena elektrostatickou silou částic
 - mezi elektropozitivním a elektronegativním prvkem
- vodíková vodíkové můstky, např. mezi krystaly ledu
- kovová způsobeno uvolněnými valenčními elektrony
- kovalentní sdílení valenčních elektronů
- van der Waalsova
 - slabá vazba elektrické povahy
 - převážně při nízkých teplotách
 - I, Cl, O, H, organické sloučeniny, krystaly s velkou relativní hmotností

8.4.2 Kapalné látky

- částic více pohyblivé jak u pevných látek, ale méně než u plynů
- kmitání kolem časově proměnných rovnovážných poloh
- vnější síla \rightarrow přesun částic ve směru síly \rightarrow tekutost
- potenciální energie srovnatelná s kinetickou energií

8.4.3 Plynné látky

- · volný pohyb částic
- zanedbatelné přitažlivé síly
- nemají rovnovážné polohy
- vykonávání tepelného pohybu posuvný pohyb různými rychlostmi a různých velikostech a směrech
- změna rychlosti částic srážkou
- růst střední rychlosti molekul s teplotou
- potenciální energie mnohem menší, než kinetická

Rychlosti částic

- velikost rychlosti částice může dosahovat hodnot od 0 do nekonečna \to nelze určit kinetickou energii jedné částice
- popis pomocí rychlostí vycházejících z Maxwellovy rozdělovací funkce
 - určení pravděpodobnosti dané rychlosti pro danou částici

Nejpravděpodobnější rychlost

- hodnota rychlosti s největší pravděpodobností
- v bodě $\frac{\mathrm{d}f}{\mathrm{d}v} = 0$

$$v_{\rm p} = \sqrt{\frac{2kT}{m}}$$

- $-k = 1,380649 \cdot 10^{23} \,\text{J} \cdot \text{K}^{-1}$ Boltzmannova konstanta
- -T termodynamická teplota
- m hmotnost jedné částice/molekuly

Střední rychlost

• průměr rychlostí všech molekul

$$\bar{v} = \sqrt{\frac{8kT}{\pi m}}$$

Střední kvadratická rychlost

• aritmetický průměr kvadrátu rychlostí všech částic

$$\overline{v^2} = \frac{3kT}{m}$$

používáno při určení střední energie molekuly nebo tlaku plynu

Efektivní rychlost

· odmocnina střední kvadratické rychlosti

$$v_{\rm ef} = \sqrt{\frac{3kT}{m}}$$

Vnitřní energie plynu

• celková kinetická energie všech částic

$$E_{\mathbf{k}} = \frac{1}{2}m\overline{v^2} \cdot N = \frac{1}{2}m \cdot \frac{3kT}{m} \cdot N = \frac{3}{2}kTN$$

N – počet částic

• střední hodnota kinetické energie jedné částice

$$\bar{\varepsilon} = \frac{3}{2}kT$$

• celková vnitřní energie

$$U = E_{\mathbf{k}} = \frac{3}{2}kTN = \frac{3}{2}kT \cdot nN_{\mathbf{A}} = \frac{3}{2}nRt$$

- -n látkové množství
- $-R \doteq 8{,}314\,\mathrm{J\cdot K^{-1}\cdot mol^{-1}}$ plynová konstanta

8.4.4 Plazma

- soustava elektricky nabitých částic (iontů, volných elektronů, a neutrálních částic)
- při vysokých teplotách možnost složení pouze z elektronů a jader
- vysoká energie částic

8.5 Stav soustavy

- popsán stavovými veličinami teplota, objem, tlak, hmotnost...
- další popis stavu chemické složení, skupenství, uspořádání částic...
- termodynamická soustava zkoumaná skupina těles (plyn ve válci s pístem, voda a pára...)
- stavová změna soustavy při interakci s okolím; přechod mezi stavy → změna stavových veličin

8.5.1 Soustavy

Izolovaná soustava

- nedochází k výměně energie ani částic s okolím
- děje probíhají pouze v rámci soustavy
- idealizovaný případ, reálně nedosažitelný
- termoska s čajem, kalorimetr...

Uzavřená a otevřená soustava

- uzavřená dochází k výměně energie, nedochází k výměně částic; hrnec s poklicí
- otevřená výměna energie i částic s okolím; hrnek s čajem

Adiabaticky izolovaná soustava

- nedochází k tepelné výměně
- sifonová láhev

8.5.2 Rovnovážný stav soustavy

- neměnný stav soustavy
- setrvávající stav při neměnných vnějších vlivech
- konstantní stavové veličiny
- rovnovážný děj procházení soustavy mezi řadou na sebe navazujících rovnovážných stavů

8.6 Termodynamická teplota

- veličina vyjadřující energii systému
- vnímaní člověkem jako studené/teplé

8.6.1 Teploměr

- zařízení měřící teplotu
- nepřímé měření měření objemu kapaliny, tlak plynu...
- měření teploty v různých stupnicích
 - Celsiova stupnice
 - * jednotka stupeň Celsia (°C)
 - $*~0\,^{\circ}\mathrm{C}$ bod tání ledu; $100\,^{\circ}\mathrm{C}$ bod vypařování vody
 - * obvyklé značení t
 - Kelvinova stupnice
 - * rozestupy stupňů stejné jako u Celsiovy
 - * 0 K částice bez pohybu, nekmitají, nulová kinetická energie
 - * $0 \,\mathrm{K} = 273,15 \,\mathrm{^{\circ}C}$
 - * značení T

Туру

- kapalinové
 - roztahování kapaliny
 - použitelné pouze při určitých intervalech teplot
 - rtuť, líh
- plynové
 - změna tlaku/objemu plynu při zahřívání
 - široký interval teplot
- bimetalové
 - rozdílná tepelná roztažnost dvou kovových plátků
 - orientační měření teploty
- odporové
 - měření elektrického odporu polovodiče
 - měření pomocí Wheatstonova můstku či děliče napětí
- termoelektrické
 - měření termoelektrického jevu na termočlánku
- radiační
 - založeny na zákonu o tepelném záření
 - měření vysokých teplot