TEOREMA DE STOKES.

10. Usar el teorema de Stokes para calcular la integral de línea

$$\int_C (y^2 - z^2) dx + (z^2 - x^2) dy + (x^2 - y^2) dz,$$

donde C es la curva intersección de la superficie del cubo $0 \le x \le a, \ 0 \le y \le a, \ 0 \le z \le a$ y el plano x+y+z=3a/2, recorrida en sentido positivo.

Solución

La curva dada tiene la forma del hexágono de la figura adjunta.

Para aplicar el teorema de Stokes, calculamos en primer lugar el rotacional del campo vectorial:

$$\operatorname{rot} F = \left| \begin{array}{ccc} i & j & k \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ y^2 - z^2 & z^2 - x^2 & x^2 - y^2 \end{array} \right| = (-2y - 2z, -2z - 2x, -2x - 2y).$$

Si llamamos S a la superficie interior de dicho hexágono y D a la proyección de S sobre el plano XY, la superficie S viene parametrizada por la fórmula explícita z=3a/2-x-y, con $(x,y)\in D$. De este modo, el vector normal exterior a la superficie es $\overrightarrow{n}=(-\partial z/\partial x,-\partial z/\partial y,1)=(1,1,1)$.

Al aplicar el teorema de Stokes, resulta:

$$I = \iint_{S} \overrightarrow{\operatorname{rot} F} \cdot \overrightarrow{n} \, dS$$

$$= \iint_{D} (-2y - 2z, -2z - 2x, -2x - 2y) \cdot (1, 1, 1) \, dx dy$$

$$= \iint_{D} -6a \, dx dy = -6a \cdot \text{ área } (D) = -6a(a^{2} - a^{2}/4) = -9a^{3}/2.$$

11. Hallar el trabajo realizado por el campo vectorial $\overrightarrow{F}(x,y,z) = (y+z,2+x,x+y)$ a lo largo del arco más corto de la circunferencia mayor de la esfera $x^2+y^2+z^2=25$ que une los puntos A=(3,4,0) y B=(0,0,5).

Solución

La trayectoria descrita por el móvil es la ilustrada en la figura adjunta.

Dicha curva está contenida en la intersección de la esfera $x^2 + y^2 + z^2 = 25$ con el plano y = 4x/3. Si escribimos las ecuaciones de la curva como

$$C: \left\{ \begin{array}{ll} x^2 + 16x^2/9 + z^2 = 25 \\ y = 4x/3 \end{array} \right. \quad \text{o bien} \quad \left\{ \begin{array}{ll} x^2/9 + z^2/25 = 1 \\ y = 4x/3, \end{array} \right.$$

podemos parametrizarla como
$$C$$
 :
$$\left\{ \begin{array}{l} x=3\cos t\\ y=4\cos t\\ z=5\sin t \end{array} \right.,\ 0\leq t\leq \pi/2.$$

Así pues, el trabajo realizado se calcula mediante la fórmula

$$W = \int_{C} \overrightarrow{F} ds$$

$$= \int_{0}^{\pi/2} (4\cos t + 5\sin t, 2 + 3\cos t, 7\cos t) \cdot (-3\sin t, -4\sin t, 5\cos t) dt$$

$$= \int_{0}^{\pi/2} (-24\sin t \cos t - 15\sin^{2} t - 8\sin t + 35\cos^{2} t) dt = 5\pi - 20.$$

Si queremos calcular la integral aplicando el teorema de Stokes, la trayectoria debe ser cerrada. Esto se consigue completando el circuito con los segmentos de recta BO y OA. De

este modo, si llamamos S a la superficie limitada por dicho circuito, el teorema de Stokes afirma que

$$\int_{C} \overrightarrow{F} + \int_{\overline{BO}} \overrightarrow{F} + \int_{\overline{OA}} \overrightarrow{F} = \iint_{S} \operatorname{rot} F.$$

Por un lado, rot
$$F = \begin{vmatrix} i & j & k \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ y + z & 2 + x & x + y \end{vmatrix} = (1, 0, 0).$$

Una parametrización de la superficie S se obtiene escribiendo las coordenadas esféricas de un punto de la superficie y teniendo en cuenta que los puntos de S están en el plano 4x = 3y. De este modo,

$$S: \left\{ \begin{array}{l} x = (3/5)u \sin v \\ y = (4/5)u \sin v \\ z = u \cos v \end{array} \right., \ 0 \le u \le 5, \ 0 \le v \le \pi/2.$$

El vector normal a la superficie es

$$T_u \times T_v = ((3/5) \sin v, (4/5) \sin v, \cos v) \times ((3/5)u \cos v, (4/5)u \cos v, -u \sin v)$$

= $(-(4/5)u, (3/5)u, 0).$

Elegimos como vector normal el correspondiente a la cara exterior de la superficie, con respecto al sentido del recorrido de la curva C, es decir $\overrightarrow{n} = (4u/5, -3u/5, 0)$. Así pues,

$$\iint_{S} \operatorname{rot} F = \iint_{D} (1, 0, 0) \cdot (4u/5, -3u/5, 0) \, du \, dv = \int_{0}^{5} du \int_{0}^{\pi/2} \frac{4}{5} u \, dv = 5\pi.$$

Por otra parte, el segmento \overline{BO} tiene como vector de posición $\overrightarrow{r}(t) = (0,0,5-t)$, con $0 \le t \le 5$. Entonces,

$$\int_{\overline{BO}} \overrightarrow{F} = \int_0^5 F(r(t)) \cdot r'(t) \, dt = \int_0^5 (5 - t, 0, 0) \cdot (0, 0, -1) \, dt = 0.$$

Por último, el segmento \overline{OA} se parametriza por r(t)=(t,4t/3,0), con $0 \le t \le 3.$ De este modo,

$$\int_{\overline{OA}} \overrightarrow{F} = \int_0^3 F(r(t)) \cdot r'(t) dt$$

$$= \int_0^3 (4t/3, 2 + t, 7t/3) \cdot (1, 4/3, 0) dt = \int_0^3 (8t/3 + 8/3) dt = 20.$$

En definitiva, de la igualdad

$$\int_{C} \overrightarrow{F} + \int_{\overline{BO}} \overrightarrow{F} + \int_{\overline{OA}} \overrightarrow{F} = \iint_{S} \operatorname{rot} F,$$

deducimos (como era de esperar) que

$$\int_{C} \overrightarrow{F} = -\int_{\overline{BO}} \overrightarrow{F} - \int_{\overline{OA}} \overrightarrow{F} + \iint_{S} \operatorname{rot} F = 5\pi - 20.$$

- 12. Hallar la circulación del vector $\overrightarrow{a} = (2xz, x^2 y, 2z x^2)$ a lo largo del circuito del primer octante limitado por la esfera centrada en el origen y de radio 1, el plano z = y y los planos coordenados XOZ, YOZ.
 - a) Directamente, mediante integral curvilínea.
 - b) Aplicando el teorema de Stokes.

Solución

El circuito indicado está formado por tres tramos: la curva C_1 es el arco de circunferencia máxima contenido en la esfera dada entre los puntos A=(1,0,0) y $B=(0,\sqrt{2}/2,\sqrt{2}/2)$; el segmento C_2 une el punto B con el origen; el segmento C_3 une el origen con el punto A.

Así pues,

$$\int_{C} \overrightarrow{a} \ ds = \int_{C_{1}} \overrightarrow{a} \ ds + \int_{C_{2}} \overrightarrow{a} \ ds + \int_{C_{3}} \overrightarrow{a} \ ds.$$

En primer lugar, como

$$C_1: \left\{ \begin{array}{l} x^2+y^2+z^2=1 \\ y=z \\ x\geq 0, y\geq 0, z\geq 0 \end{array} \right. \iff \left\{ \begin{array}{l} x^2+2y^2=1 \\ y=z \\ x\geq 0, y\geq 0, z\geq 0 \end{array} \right. \\ \iff \left\{ \begin{array}{l} x=\cos t \\ y=(\sqrt{2}/2)\sin t \\ z=(\sqrt{2}/2)\sin t \end{array} \right., \ 0\leq t\leq \pi/2,$$

entonces

$$\int_{C_1} \overrightarrow{a} \, ds = \int_0^{\pi/2} (\sqrt{2} \sin t \cos t, \cos^2 t - (\sqrt{2}/2) \sin t, \sqrt{2} \sin t - \cos^2 t) \cdot (-\sin t, (\sqrt{2}/2) \cos t, (\sqrt{2}/2) \cos t) \, dt = \frac{1}{4} - \frac{\sqrt{2}}{3}.$$

Con respecto a C_2 , el vector de posición del segmento \overline{BO} se expresa por $\overrightarrow{r}(t) = (0, (\sqrt{2}/2) - t, (\sqrt{2}/2) - t)$, donde $0 \le t \le \sqrt{2}/2$. Así pues,

$$\int_{C_2} \overrightarrow{a} \, ds = \int_0^{\sqrt{2}/2} (0, -(\sqrt{2}/2) + t, \sqrt{2} - 2t) \cdot (0, -1, -1) \, dt$$
$$= \int_0^{\sqrt{2}/2} (t - \sqrt{2}/2) \, dt = -\frac{1}{4}.$$

Para calcular la integral a lo largo de C_3 , parametrizamos dicho segmento por el vector $\overrightarrow{r}(t) = (t, 0, 0)$, con $0 \le t \le 1$. Por lo tanto,

$$\int_{C_3} \overrightarrow{a} \, ds = \int_0^1 (0, t^2, -t^2) \cdot (1, 0, 0) \, dt = 0.$$

En definitiva, $\int_C \overrightarrow{a} ds = -\frac{\sqrt{2}}{3}$.

Vamos a resolver a continuación la integral utilizando el teorema de Stokes. Para ello, calculamos

Además, si S es la superficie encerrada por el circuito C, entonces

$$S: \left\{ \begin{array}{l} z = y \\ x^2 + y^2 + z^2 \le 1 \\ x \ge 0, y \ge 0, z \ge 0 \end{array} \right. \iff \left\{ \begin{array}{l} z = y \\ x^2 + 2y^2 \le 1 \\ x \ge 0, y \ge 0, z \ge 0 \end{array} \right.$$

Esto permite definir la superficie S por su fórmula explícita z=y a lo largo de la región $D: x^2+2y^2 \le 1,$ con $x \ge 0,$ $y \ge 0.$

De este modo, el vector normal exterior a la superficie es $\overrightarrow{n} = (0, -1, 1)$ y, como consecuencia del teorema de Stokes,

$$\int_C \overrightarrow{a} \, ds = \iint_S \operatorname{rot} a \, dS = \iint_D (0, 4x, 2x) \cdot (0, -1, 1) \, dx dy = \iint_D -2x \, dx dy.$$

Resolvemos la integral doble utilizando el cambio de coordenadas

$$\left\{ \begin{array}{l} x=u\cos v \\ y=(1/\sqrt{2})u\sin v \end{array} \right. , \; (0\leq u\leq 1, \; 0\leq v\leq \pi/2).$$

Como el jacobiano de la transformación es $J = u/\sqrt{2}$, tenemos:

$$\iint_D -2x \, dx \, dy = \int_0^1 du \int_0^{\pi/2} -2u \cos v \cdot (1/\sqrt{2}) u \, dv = -\frac{\sqrt{2}}{3},$$

resultado que coincide con el obtenido al calcular directamente la integral de línea.

13. Calcular $\iint_S \overrightarrow{\operatorname{rot} F} \cdot \overrightarrow{n} \, dS$, siendo $\overrightarrow{F}(x,y,z) = (xz,-y,-x^2y)$, donde S consta de las tres caras no situadas en el plano XZ del tetraedro limitado por los tres planos coordenados y el plano 3x+y+3z=6, y la normal \overrightarrow{n} es la normal unitaria exterior del tetraedro.

Solución

Si llamamos S_1 al plano XY, S_2 al plano YZ y S_3 al plano 3x + y + 3z = 6, entonces:

$$I = \iint_{S} \overrightarrow{\operatorname{rot} F} \cdot \overrightarrow{n} \, dS = \sum_{i=1}^{3} \iint_{S_{i}} \overrightarrow{\operatorname{rot} F} \cdot \overrightarrow{n} \, dS.$$

Si aplicamos ahora el teorema de Stokes y simplificamos caminos opuestos:

$$I = \sum_{i=1}^{3} \int_{\partial S_i} \overrightarrow{F} \cdot \overrightarrow{ds}.$$

Las curvas $C_i = \partial S_i$ vienen parametrizadas por (ver figura):

$$C_1$$
: $x = 2 - t$, $y = 0$, $z = 0$ $(0 \le t \le 2)$

$$C_2$$
 : $x = 0, y = 0, z = t \ (0 \le t \le 2)$

$$C_3$$
: $x = t$, $y = 0$, $z = 2 - t$ $(0 \le t \le 2)$.

En definitiva,

$$I = 0 + 0 + \int_0^2 t \cdot (2 - t) dt = (t^2 - t^3/3) \Big|_0^2 = \frac{4}{3}.$$

14. Hallar, tanto directamente como aplicando el teorema de Stokes, la circulación del campo

$$\overrightarrow{a} = (x-z)\overrightarrow{i} + (x^3 + yz)\overrightarrow{j} - 3xy^2\overrightarrow{k}$$

a lo largo del circuito limitado por

$$z = 2 - \sqrt{x^2 + y^2}, \ z = 0.$$

6

Solución

Para calcular la circulación del campo, buscamos una parametrización de la curva dada. En este caso,

$$C: \left\{ \begin{array}{l} z = 2 - \sqrt{x^2 + y^2} \\ z = 0 \end{array} \right. \iff \left\{ \begin{array}{l} x = 2\cos t \\ y = 2\sin t \\ z = 0 \end{array} \right. \quad (0 \le t \le 2\pi).$$

Así pues,

$$\int_{C} \overrightarrow{a} \, ds = \int_{0}^{2\pi} (2\cos t, 8\cos^{3} t, -24\cos t \sin^{2} t) \cdot (-2\sin t, 2\cos t, 0) \, dt$$
$$= \int_{0}^{2\pi} (-4\sin t \cos t + 16\cos^{4} t) \, dt = 12\pi.$$

Si queremos aplicar el teorema de Stokes, llamamos S al interior del círculo limitado por la curva C y calculamos el rotacional del campo vectorial. Como

entonces

$$\int_C \overrightarrow{a} \, ds = \iint_S \operatorname{rot} \overrightarrow{a} \, dS$$

$$= \iint_S (-6xy - y, -1 + 3y^2, 3x^2) \cdot (0, 0, 1) \, dx dy = \iint_S 3x^2 \, dx dy.$$

Resolvemos la integral mediante un cambio a coordenadas polares, $x=u\cos v,\,y=u\sin v,\,\cos 0\leq u\leq 2,\,0\leq v\leq 2\pi.$ Como el jacobiano de la transformación es $J=u,\,$ resulta:

$$\iint_{S} 3x^{2} dxdy = \int_{0}^{2} du \int_{0}^{2\pi} 3u^{3} \cos^{2} v dv = 12\pi.$$