Information Collection Strategies in Memetic Cooperative Neuro-evolution for Time Series Prediction

Gary Wong¹, Anurag Sharma², Rohitash Chandra³ School of Computing Science, Information and Mathematical Sciences, The University of the South Pacific, Fiji^{1,2}.

Centre for Translational Data Science, The University of Sydney, Australia³

<u>1</u> <u>gary.wong.fiji@gmail.com</u> <u>anuraganand.sharma@usp.ac.fj</u> <u>c.rohitash@gmail.com</u>

Outline

- Introduction
- Background
- Proposed Methods
 - 1. Sequential Collection
 - 2. Concurrent Collection
- Experiments / Results
- Discussion & Conclusion

Introduction

Research Objective

 Explore memetic cooperative neuro-evolution methods that features the storage of global solutions/information for local search refinement

Contributions

- Methods that retain features of global search that would otherwise be lost in a single meme sharing scheme
- Improve prediction accuracy
- Pathway for future work in memetic cooperative neuroevolution

Background: Evolutionary Algorithms

- Evolutionary Algorithms (EA) are successful search and optimization techniques
- EAs used for training neural networks are known as Neuro-Evolutionary algorithms that provide a diversity of solutions
- Drawback is convergence costs as they are black-box optimization methods
- Gradient training methods provide solution intensification and are computationally cheap with regular occurrences of premature convergence

Background: Memetic Algorithms

- Memetic algorithms (MAs) are meta-heuristics that balance exploration and exploitation
- The term 'meme' refers to cultural information as opposed to genes
- MAs are capable of tackling largescale real-world problems with better efficiency than canonical evolutionary
- Global search provides diversity while local search provides refinement

Background: Memetic Neuro-evolution

- Previous work implemented a single meme synergy between Cooperative Coevolution and Stochastic Gradient Descent
- Throughout the memetic process, Global and Local Search will take turns refining a single solution according to below parameters
 - LSF: Local Search Frequency
 - How often to apply local search (save a meme in this study)
 - LSI: Local Search Intensity
 - How much refinement time

Proposed Information Collection Strategies

- Information collection refers to the storage of global solutions or memes.
 How the memes are stored
- This study explores 2 methods;
 - 1. Sequential Meme Collection
 - Concurrent Meme Collection

Method 1. Sequential Meme Collection

- The meme collection strategy extracts and concatenates the fittest individuals from all the subpopulations at a uniform rate in sequential order during the entire phase of evolution
- Uses Adaptive LSI see following slide.

Method 1. Adaptive Local Search Intensity

- Each meme will have different refinement durations according to when the meme was saved.
- Those memes collected <u>closer to the end of evolution</u> will have less refinement time than those collected earlier in the evolution cycle. <u>This is</u> <u>to ensure fair refinement time</u>.
 - T_{max}: Max evaluations allowed
 - T_{elapsed}: Evaluations so far

calculateLSI() =
$$lsf - \frac{(lsf \times \Gamma_{elapsed})}{\Gamma_{max}}$$

Method 1. Sequential Meme Collection

1. Initialization Step

- Initialize the subpopulations of CC that represent the weights of the neural network
- Assign fitness

2. Meme Collection Step

- Perform global search for <u>max evaluation time</u>
 - After every LSF evaluations, save the fittest CC solution to the meme collection

3. Refinement Step

- Each meme is refined with varying LSI
- Compare accuracy of each meme in collection and save the best meme as the current optimal solution

Symbols

Variable	Description	Variable	Description
α	Mutation Rate	$arepsilon_{oldsymbol{t}}$	Test Accuracy.
μ	Population Size	lsf	LS Frequency.
Γ_{max}	Max Evaluations.	lsi	LS Intensity.
$\Gamma_{elapsed}$	Total Evaluations.	δ^*	Best Meme.
$\dot{\lambda}$	Learning Rate.	L	sp Set.
γ	Optimization Time	sp	Sub-population.
i	# Input Neurons.	$w_{m{min}}$	Lower Weight Limit.
h	# Hidden Neurons.	$w_{oldsymbol{max}}$	Upper Weight Limit.
0	# Output neurons.	mc	Meme Collection.
$arepsilon_{min}$	Required Minimum ε_t .	$e_{counter}$	Elapsed Counter
ec	Elapsed Times	n	Top # of Memes
F	Sub-population Fitness		

Method 1. Sequential Meme Collection

```
Algorithm 1: Sequential Strategy
1 Step 1: Population Initialization
s = h + o; \Gamma_{elapsed} = 0;
3 for y \in \{1,..., s\} do
         L(y) = \operatorname{rand}(\mu, w_{max}, w_{min});
         F(y) = \text{eval}(L(y));
         \Gamma_{elapsed} = \Gamma_{elapsed} + |L(y)|;
7 Step 2: Collection (Global Search)
8 while \Gamma_{elapsed} < \Gamma_{max} do
         while (\Gamma_{elapsed} - e_{counter}) < (lsf + 1) do
               for y \in \{1,..,s\} do
                     for j \in \{1,...,\mu\} do
11
                          L(y) = \text{evolve}(L(y)); \Gamma_{elapsed} += \mu \times (\gamma + 1);
12
         \delta^* = \text{getBestSolution}(L);
13
         mc = mc \cup \delta^*;
         ec = ec \cup \Gamma_{elapsed};
16 Step 3: Refinement (Local Search)
17 for u \in \{1,..,|mc|\} do
         \Gamma_{elapsed} = ec(u);
         lsi = lsf - \frac{(lsf \times \Gamma_{elapsed})}{\Gamma_{max}}
```

 $\varepsilon_t = \text{bpnn}(\delta^*, \lambda, mc(u), lsi);$

21 evalMemes (mc);

Method 2. Concurrent Meme Collection

 This meme collection strategy collects a list of the fittest individuals from the subpopulations <u>at the same time</u> at the end of the exploration phase

Method 2. Concurrent Meme Collection

1. Initialization Step

- Initialize the subpopulations of CC that represent the weights of the neural network
- Assign fitness

2. Meme Collection Step

- Perform global search for <u>max evaluation time</u>
- At the end of max evaluations, save the best N solutions from CC populations into the meme collection

3. Refinement Step

- Each meme is refined with same LSI
- Compare accuracy of each meme in collection and save the best meme as the current optimal solution

Method 2. Concurrent Meme Collection

Algorithm 2: Concurrent Strategy

```
1 Step 1: Population Initialization
2 s = h + o; \Gamma_{elapsed} = 0;
3 for y \in \{1,..., s\} do
        L(y) = \operatorname{rand}(\mu, w_{max}, w_{min});
      F(y) = \text{eval}(L(y));
       \Gamma_{elapsed} = \Gamma_{elapsed} + |L(y)|;
7 Step 2: Collection (Global Search)
   while \Gamma_{elapsed} < \Gamma_{max} do
         while (\Gamma_{elapsed} - e_{counter}) < (lsf + 1) do
              for y \in \{1,..,s\} do
                    for j \in \{1,...,\mu\} do
                        L(y) = \text{evolve}(L(y)); \Gamma_{elapsed} += \mu \times (\gamma + 1);
14 L = \operatorname{orderAsc}(L);
15 mc = \text{getTopSolutions}(L, n);
16 Step 3: Refinement (Local Search)
17 for u \in \{1,..,\mu\} do
      \varepsilon_t = \text{bpnn}(\delta^*, \lambda, mc(u), lsi);
19 evalMemes (mc):
```


Benchmark Problems

- We apply the proposed methods to 5 time series benchmark problems
 - 1. Sunspot Time Series Dataset
 - 2. Santa Fe Laser Time Series Competition Data
 - 3. Mackey Glass Dataset
 - 4. Lorenz Dataset
 - 5. Taiwan Trading Index

Dataset	Samples	Dim. and Time Lag	Train/Val/Test
Laser	1000	D: 3, T: 2	194 / 166 / 166
Lorenz	1000	D: 3, T: 2	299 / 99 / 99
MackeyGlass	1000	D: 3, T: 2	299 / 99 / 99
Sunspot	2000	D: 5, T: 3	399 / 132 / 132
TWIExchange	304	D: 5, T: 1	177 / 55 / 55

Experiment Setup

- CC Population size: 300
- Max Evaluations: 100,000
- SGD Learning Rate: 0.1
- Method 1 Seq. Strategy
 - LSF: Save meme at every 5000 evaluations
 - LSI: Adaptive
- Method 2 Con. Strategy
 - LSF: Save meme at the end of evolution
 - LSI: 2000 epochs
- Feed-forward neural network used

Measuring Accuracy

- Fitness is measured via the Root Mean Squared Error (RMSE)
 - Yi : Actual Output
 - Yi^: Predicted output

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2}$$

Results and Analysis

PERFORMANCE FOR THE SUNSPOT PROBLEM

Method	Mean ε_t	Best ε_t	Worst ε_t	Eval. $\Gamma_{elapsed}$
Sequential	0.0127696	0.0107341	0.0195412	205,039
Concurrent	0.019353	0.014647	0.02512103	121,200
MCNE [22]	0.0478444	0.0246412	0.0671124	100,000

PERFORMANCE FOR THE TWI Exchange PROBLEM [31]

Method	Mean ε_t	Best ε_t	Worst ε_t	Eval. $\Gamma_{elapsed}$
Sequential	0.0394227	0.035412	0.0412148	272,318
Concurrent	0.0397674	0.0363142	0.0432614	121,200
MCNE [22]	0.0852743	0.0745214	0.0912457	100,000

PERFORMANCE FOR THE SANTA FE LASER PROBLEM [29]

Method	Mean ε_t	Best ε_t	Worst ε_t	Eval. $\Gamma_{elapsed}$
Sequential	0.069533	0.0571243	0.072142	269,421
Concurrent	0.0768557	0.0634781	0.0793412	121,200
MCNE [22]	0.194982	0.147142	0.2188464	100,000

Results and Analysis

PERFORMANCE FOR THE MACKEY GLASS PROBLEM [28]

Method	Mean ε_t	Best ε_t	Worst ε_t	Eval. $\Gamma_{elapsed}$
Sequential	0.00454625	0.00192641	0.0057482	271,031
Concurrent	0.00595269	0.00320041	0.00671213	121,200
MCNE [22]	0.0252556	0.012321489	0.03451222	100,000

PERFORMANCE FOR THE LORENZ PROBLEM [30]

Method	Mean ε_t	Best ε_t	Worst ε_t	Eval. $\Gamma_{elapsed}$
Sequential	0.073145	0.071354	0.078321	260,668
Concurrent	0.34457	0.32148871	0.3811421	121,200
MCNE [22]	0.0747062	0.075321	0.0793321	100,000

Discussion and Conclusion

- The sequential strategy had the best generalization performance in all the problems tested
- Adapting LSI seems to be useful in providing a better balance for solutions collected at different points of the global search
- Improved accuracy than the standalone methods but computationally expensive
- Using collected information/memes with later refinement can be useful in a memetic structure
- Refining solutions collection during evolution seems to be a better approach than those collected post evolution
- Future work can implement multiple local search methods on the pool of memes with a metaheuristic for controlling when and how to apply each local search method
- Other work can try reversing the roles where global search would provide refinement

The End. Thank you