Communication Complexity

lake Kinsella ınd Max von Hippel

Introducti Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem

Multi-Party Discrepency Method

Other Variants

Non-Determinist Randomized

Communication Complexity

Jake Kinsella and Max von Hippel

Northeastern University

April 9, 2021

Communication Complexity

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction Examples

Market

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variants

Non-Deterministic

If Alice knows x, and Bob knows y, how many bits of information must they communicate, in order for both Alice and Bob to know f(x,y)?

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction Examples

Methods

Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variants Non-Deterministic

1 Introduction

Examples

2 Methods

- 2-Party Problem
 - Fooling Set Method
 - Tiling Method
 - Discrepency Method
- Multi-Party Problem
 - Multi-Party Discrepency Method

3 Other Variants

- Non-Deterministic
- Randomized

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction

Methods

2-Party Problem Fooling Set Method Tiling Method Discrepency Method

Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variants

Non-Deterministic

Randomized

Consider a two-party communication problem, in which the participants

(a) Alice

and (b) Bob

participate to compute a function:

$$f: \underline{\mathbb{B}^n} \times \underline{\mathbb{B}^n} \to \underline{\mathbb{B}}$$
Alice's Bob's global input input output

Communication Complexity

Introduction

namely, for some natural $t \in \mathbb{N}$, a sequence of t-many functions $p_i: \mathbb{B}^* \to \mathbb{B}^*$ such that the communication between the players looks like this ...

The players can come up with a protocol $\Pi = (p_1, ..., p_t)$,

Communication Complexity

ake Kinsella nd Max von Hippel

Introduction

Examples

Methods

Fooling Set Method
Tiling Method
Discrepency Method

Multi-Party Problem
Multi-Party

Other Variants

Non-Deterministic

Alice is given input x.

Communication Complexity

Jake Kinsella and Max von

Introduction

Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party

Other Variant

Non-Deterministic

Alice is given input x.

Hello Bob. I can't reveal x, but $p_1(x)$ is p1.

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction

Examples

Method:

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party

Other Variant

Non-Determinis Randomized

Alice is given input x.

Hello Bob. I can't reveal x, but $p_1(x)$ is p1.

Bob is given input y.

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction

Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variant

Non-Determinis Randomized

Alice is given input x.

Hello Bob. I can't reveal x, but $p_1(x)$ is p1.

Bob is given input y.

hanks Alice. I can't reveal y, but $p_2(y, p1)$ is p2

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction

Examples

Methods

Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party

Other Variants

Non-Determinist Randomized

Alice is given input x.

Hello Bob. I can't reveal x, but $p_1(x)$ is p1.

Bob is given input y.

Thanks Alice. I can't reveal y, but $p_2(y, p1)$ is p2

... yada yada yada ...

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction

Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Metho
Multi-Party Problem
Multi-Party
Discrepency Metho

Other Variants

Non-Determinist Randomized

Alice is given input x.

Hello Bob. I can't reveal x, but $p_1(x)$ is p1.

Bob is given input y.

Thanks Alice. I can't reveal y, but $p_2(y,p1)$ is p2.

... yada yada yada ...

Pleasure doing business with you Bob. My final clue for you is that $p_{n-1}(x, p1, ..., pn-2)$ is pn-1.

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction

Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Metho
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variants Non-Deterministic

Alice is given input x.

Hello Bob. I can't reveal x, but $p_1(x)$ is p1.

Bob is given input y.

Thanks Alice. I can't reveal y, but $p_2(y,p1)$ is p2.

... yada yada yada ...

Pleasure doing business with you Bob. My final clue for you is that $p_{n-1}(x, p_1, ..., p_{n-2})$ is $p_{n-1}(x, p_1, ..., p_{n-2})$

Rad. Then $p_n(y, p1, ..., pn-1)$ is pn. TTFN!

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction

Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variant

Non-Determinis Randomized

- The functions p_i can be anything so long as they are well-defined. E.g., could solve the Halting Problem.
- After the final message, both parties must know f(x, y).

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction Examples

Methods

Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variant Non-Deterministic

■ The functions p_i can be anything so long as they are well-defined. E.g., could solve the Halting Problem.

■ After the final message, both parties must know f(x, y).

Definition (Communication Complexity)

Suppose Π is a protocol for f in which at most t bits are communicated between Alice and Bob. Then the communication complexity of Π , denoted $C(\Pi)$, is t.

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variants Non-Deterministic

■ The functions p_i can be anything so long as they are well-defined. E.g., could solve the Halting Problem.

■ After the final message, both parties must know f(x, y).

Definition (Communication Complexity)

Suppose Π is a protocol for f in which at most t bits are communicated between Alice and Bob. Then the communication complexity of Π , denoted $C(\Pi)$, is t.

Definition (C(f))

The communication complexity of f, denoted C(f), is the minimum communication complexity achieved by any protocol for f.

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction Examples

Examples

Method:

Fooling Set Metho

Tiling Method

Multi-Party Proble

Multi-Party Discrepency Meth

Other Variant

Non-Deterministi Randomized Example (Are the number of 1s in xy even (0), or odd (1)?)

 $f: \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{B}$ is precisely $(x, y) \mapsto \bigoplus xy$.

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction Examples

.

2-Party Problem
Fooling Set Method
Tilling Method
Discrepency Method
Multi-Party Problem

Other Variants

Non-Determinist Randomized

Example (Are the number of 1s in xy even (0), or odd (1)?)

 $f: \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{B}$ is precisely $(x, y) \mapsto \bigoplus xy$.

Example protocol Π :

P1 =
$$parity(x)$$
.

Communication Complexity

Jake Kinsella and Max von Hippel

Introduction Examples

Markada

2-Party Problem
Fooling Set Method
Tilling Method
Discrepency Method
Multi-Party Problem
Multi-Party

Other Variant

Non-Deterministic

Example (Are the number of 1s in xy even (0), or odd (1)?)

 $f: \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{B}$ is precisely $(x, y) \mapsto \bigoplus xy$.

Example protocol Π :

P1 =
$$parity(x)$$
.

 $P2 = parity(y) \oplus P1$

Communication Complexity

Jake Kinsella and Max von Hippel

Introductio Examples

Martinal

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variants Non-Deterministic

Example (Are the number of 1s in xy even (0), or odd (1)?)

 $f: \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{B}$ is precisely $(x, y) \mapsto \bigoplus xy$.

Example protocol Π :

P1 =
$$parity(x)$$
.

 $P2 = parity(y) \oplus P1$

Now both Alice and Bob know f(x,y) = P2. $C(f) \le 2$ because $C(\Pi) = 2$ and Π implements f. But $C(f) \ge 2$ because f depends on x and y. Hence C(f) = 2.

Communication Complexity

ake Kinsella nd Max von Hippel

Introductio Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variant

Non-Deterministic

Example (A_{TM})

 $H: \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{B}$ is precisely $\langle M, x \rangle \mapsto 1$ if M halts on x else 0.

Communication Complexity

Examples

Example (A_{TM})

 $H: \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{B}$ is precisely $\langle M, x \rangle \mapsto 1$ if M halts on x else 0.

Example protocol Π :

Communication Complexity

ake Kinsella nd Max von Hippel

Introductio Examples

Method

2-Party Problem
Fooling Set Method
Tilling Method
Discrepency Metho
Multi-Party Problem
Multi-Party

Other Variants

Non-Deterministi Randomized

Example (A_{TM})

 $H: \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{B}$ is precisely $\langle M, x \rangle \mapsto 1$ if M halts on x else 0.

Example protocol Π :

$$y_1 = y$$
.

P2=
$$(M \text{ does/doesn't accept } y)$$
.

Communication Complexity

lake Kinsella and Max von Hippel

Introductio Examples

Method

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party

Other Variants
Non-Deterministic

Example (A_{TM})

 $H: \mathbb{B}^n \times \mathbb{B}^n \to \mathbb{B}$ is precisely $\langle M, x \rangle \mapsto 1$ if M halts on x else 0.

Example protocol Π :

$$P1 = y$$
.

P2=
$$(M \text{ does/doesn't accept } y)$$
.

Both players have unlimited computation power. We are only interest in communication complexity.

Communication Complexity

ake Kinsella nd Max vor Hippel

Introduction Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem

Other Variants

If we find a protocol Π , then we know C(f) is at most $C(\Pi)$.

Communication Complexity

lake Kinsella ind Max von Hippel

Introduction Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variants

Non-Deterministic

If we find a protocol Π , then we know C(f) is at most $C(\Pi)$. What if we don't know any protocol Π ?

Communication Complexity

Jake Kinsella and Max von Hippel

Introductio Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variant

Non-Deterministic

If we find a protocol Π , then we know C(f) is at most $C(\Pi)$. What if we don't know any protocol Π ?

■ Could we upper-bound C(f) without knowing Π ?

Communication Complexity

Jake Kinsella and Max von Hippel

Introductio Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variants

Non-Deterministic

If we find a protocol Π , then we know C(f) is at most $C(\Pi)$. What if we don't know any protocol Π ?

■ Could we upper-bound C(f) without knowing Π ?

What if the only protocols we find seem really lousy?

Communication Complexity

Jake Kinsella and Max vor Hippel

Introductio Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variants

Non-Deterministic

If we find a protocol Π , then we know C(f) is at most $C(\Pi)$. What if we don't know any protocol Π ?

- Could we upper-bound C(f) without knowing Π ?
- What if the only protocols we find seem really lousy?
 - Could we lower-bound C(f) without finding a better protocol?

Communication Complexity

Jake Kinsella and Max von Hippel

Introductio Examples

Methods

2-Party Problem
Fooling Set Method
Tiling Method
Discrepency Method
Multi-Party Problem
Multi-Party
Discrepency Method

Other Variants

Non-Deterministic

If we find a protocol Π , then we know C(f) is at most $C(\Pi)$. What if we don't know any protocol Π ?

■ Could we upper-bound C(f) without knowing Π ?

What if the only protocols we find seem really lousy?

■ Could we lower-bound C(f) without finding a better protocol?

TL;DR: yup.

Fooling Set Method (Jake)

Communication Complexity

ake Kinsella nd Max von Hippel

Introduction

Methods

ivietnoas

2-Party Problem Fooling Set Method

Tiling Method

Discrepency Method

Multi-Party Proble

Multi-Party Discrepency Metho

Other Variants

Non-Deterministic

Tiling Method (Max)

Communication Complexity

ake Kinsella nd Max von Hippel

Introduction

Methods

2-Party Problem

Tiling Method

Discrenency A

Multi-Party Proble

Multi-Party Discrepency Meth

Other Variant

Non-Deterministic

2-Party Discrepency Method (Max)

Communication Complexity

ake Kinsella nd Max von Hippel

Introduction

Methods

2-Party Problem

Tiling Method

Discrepency Method

Multi-Party

Other Variant

Non-Deterministic

Multi-Party Problem (Jake)

Communication Complexity

ake Kinsella nd Max von Hippel

Introduction

Methods

2-Party Problem
Fooling Set Method
Tiling Method

Multi-Party Problem Multi-Party

Other Variants

Tiling Method
Discrepency Method

Multi-Party Discrepency Method (Max)

Communication Complexity

Discrepency Method

Non-Deterministic (Jake)

Communication Complexity

ake Kinsella nd Max von Hippel

Introduction

Methods

2-Party Problem
Fooling Set Meth

Tiling Method

Discrepency Metho

Multi-Party Problen

Other Variant

Non-Deterministic

Randomized (Max)

Communication Complexity

ake Kinsella nd Max von Hippel

Introduction

Methods

2-Party Problem
Fooling Set Method

Discrepency Method

Multi-Party Problem

Multi-Party
Discrepency Metho

Other Variants

Non-Deterministic