Support Vector Machines (SVMs)

V.S. Subrahmanian

Dartmouth College

vs@dartmouth.edu

Basic Idea, I

- Looking at 2-class SVMs.
- You have two classes we will call them -1 and +1.
- You have a set of independent variables.
- You have a table
 - Rows correspond to entities (e.g. people, movies, events, loans)
 - Columns correspond to the IVs and the DV (-1,+1).
- SVM tries to find a "separator" line/formula that separates the rows with DV=-1 from those that have DV=+1.

Basic Idea, II: Geometry

- Suppose we have k IVs in all.
- Each row [vector of independent variables] can be thought of as a point in a k-dimensional vector space.
- Thus, the values of the IVs determine the location of the point in the *k*-dimensional vector space.
- The color of the point denotes whether it is a +1 or a -1, e.g. color=red means +1, color=blue means -1.

Basic Idea, III: Picture

Support vectors

- Consider k=2.
- SVM tries to identify a separator line that separates the +1's (reds) from the -1's (blues).

Separator line

Picture from:

http://www.mblondel.org/journal/2010/09 /19/support-vector-machines-in-python/ Margin: bigger the better.
We usually look for classifiers with the biggest possible margins.
No error so far.

Example: Loans

Name	Education	Education	Salary	Debt	ОК
Joe	1	3	80000	200000	1
Mary	1	2	250000	160000	1
Jim	1	1	40000	872000	-1
Tina	0	2	86000	40000	1
Ed	0	3	400000	20000	-1
Lisa	0	1	69000	76000	-1

IVs map onto a 4-dimensional space.

Back to 2-d

- Consider *k=2.*
- SVM tries to identify a
 separator line that
 separates the +1's (reds)
 from the -1's (blues).

Separator line equation in 2-d is y=mx+c

Everything in this region satisfies the constraint y > mx + c

Everything in this region satisfies the constraint y < mx + c

Back to 2-d

- Consider *k=2*.
- SVM tries to identify a
 separator line that
 separates the +1's (reds)
 from the -1's (blues).
 - In n-dimensions, the equation mx
 + c = 0 is replaced by the equation
 w. x + c = 0 where w, x are
 vectors and the "." is dot product.
 - This is a "hyperplane" and it also divides the *n*-dimensional space into 2.

Next few slides deal with the "Separable" case where the assumption is that a separator hyperplane exists.

Generalization to k-dimensions

- Now, you have a vector \vec{x} of dimensionality k.
- Separator line equation is $\mathbf{w} \cdot \mathbf{x} + c = 0$. [generalizes 2-d case]
- Here \mathbf{w} is an unknown weight vector that assigns a weight to each of the dimensions in \mathbf{x} .
- Upper boundary is the equation $\mathbf{w} \cdot \mathbf{x} + c = +1$.
- Lower boundary is the equation $\mathbf{w} \cdot \mathbf{x} + c = -1$.
- We need to "learn" the weight vector w and c from the data.
- Plan: for a non-training point **z**, predict
 - $+1 \text{ if } \mathbf{w}. \mathbf{z} + c \ge +1$
 - -1 if **w**. $x + c \le -1$

Generalization to k-dimensions

- Suppose a new vector z of dimensionality k
 comes in and needs to be classified.
- In reality, z may lie between the two boundaries.
- In this case, compute

$$\boldsymbol{w}.\boldsymbol{z}+c$$

- If $w.z + c \ge 0$ [+1], then classify as "+1".
- If $\mathbf{w} \cdot \mathbf{z} + c < 0$ [-1], then classify as a "-1".
- The red +1's are used in training, the 0's are used when the classifier is deployed.

How to find the separator line

- Suppose you have n training feature vectors x_1, \dots, x_n .
- Suppose $t_i \in \{-1, +1\}$ denotes the classification of $\overrightarrow{x_i}$.
- Write down the constraint:
 - $t_i(\mathbf{w}. \mathbf{x_i} + c) \ge 1$ for each i=1,..,n.
- When $t_i = +1$, this constraint is satisfied iff $w. x_i + c \ge +1$ which allows us to classify $\overrightarrow{x_i}$ as +1.
- When $t_i = -1$, this constraint is satisfied iff $w.x_i + c \le -1$ which allows us to classify $\overrightarrow{x_i}$ as -1.

How to find the separator line, II

- Choose w, b so that the distance between the separator and the nearest point is maximized.
- The margin is $\frac{1}{\|\vec{w}\|}$ on each side of the separator, so total margin is $\frac{2}{\|\vec{w}\|}$
- $\|\vec{w}\|^2 = w_1^2 + \dots + w_k^2$ where $w = (w_1, \dots, w_k)$
- Maximizing $\frac{2}{\|\vec{w}\|}$ subject to a set C of constraints is same as minimizing either $\|\boldsymbol{w}\|$ or $\|\boldsymbol{w}\|^2$ subject to the same set of constraints.

Why is the margin $\frac{2}{\|\vec{w}\|}$?

- Any point in the separator line satisfies the equation $w \cdot x + c = 0$.
- So if we have two points
 a, b on the separator line:
- w. a + c = 0
- $\mathbf{w} \cdot \mathbf{b} + c = 0$.
- Subtracting: $\mathbf{w} \cdot (\mathbf{a} \mathbf{b}) = 0$.
- $(\vec{a} \vec{b})$ is parallel to the separator, so w must be perpendicular as shown.

$$w^T(\overrightarrow{x_i}) + c = 1$$

$$w^T(\overrightarrow{x_i}) + c = -1$$

Why is the margin $\frac{2}{\|\vec{w}\|}$?

- In general, if we have two vectors u, v then
- The length of the perpendicular on v is

$$u*\frac{v}{\|v\|}$$

Why is the margin $\frac{2}{\|\vec{w}\|}$?

- Now suppose a, b are support vectors as shown.
- w.a + c = -1
- w.b + c = +1.
- Subtracting 1st from the second: $\mathbf{w} \cdot (\mathbf{b} \mathbf{a}) = +2$.
- By standard linear algebra, we now have two vectors:
 - -(b-a) shown in green
 - w shown in grey.
- Distance is $\frac{w \cdot (b-a)}{\|w\|}$
- As w(b-a)=2, distance is $\frac{2}{\|w\|}$

$$\mathbf{w}.\,\mathbf{x_i}+c=1$$

$$\mathbf{w}.\,\mathbf{x_i}+c=-1$$

Maximizing margins

- We want to maximize the margins.
- That is, we want to solve the optimization problem

Maximize
$$\frac{2}{\|w\|}$$

Subject to $t_i(w, x + c) \ge 1$ for each training point $(\overrightarrow{x_i}, t_i)$ for i=1,...,n.

• This maximization is the same as minimizing either $\|\mathbf{w}\|$ or $\|\mathbf{w}\|^2$ subject to the same constraints.

How to find a good separator line

Minimize $||w||^2$

Subject to $t_i * (w.x_i + c) \ge 1$ for each i=1,..,n.

- Here the set of constraints is linear
- But the objective function is quadratic.
- Can be solved by several classical algorithms in mathematics called
 - Quadratic Programming Algorithms
 - Gradient Descent

Example in 2-d


```
Let w = (w_1, w_2)

Constraints: Point (2,7)

1 * [(w_1, w_2) * (2,7) + c]

\ge 1
```


Let $w = (w_1, w_2)$

Constraints: Add (9,5)

$$1 * [(w_1, w_2) * (2,7) + c] \ge 1$$
$$-1 * [(w_1, w_2) * (95) + c] \ge 1$$

Let $w = (w_1, w_2)$

Constraints: Add (9,2)

$$1 * [(w_1, w_2) * (2,7) + c] \ge 1$$
$$-1 * [(w_1, w_2) * (95) + c] \ge 1$$

$$-1 * [(w_1, w_2) * (9,2) + c] \ge 1$$

Let
$$w = (w_1, w_2)$$

Constraints: Add (6,9)

$$1 * [(w_1, w_2) * (2,7) + c] \ge 1$$

$$-1 * [(w_1, w_2) * (95) + c] \ge 1$$

$$-1 * [(w_1, w_2) * (9,2) + c] \ge 1$$

$$1 * [(w_1, w_2) * (6,9) + c] \ge 1$$


```
Let w = (w_1, w_2)

Constraints: Add (4,8),(8,3),(6,2):

1 * [(w_1, w_2) * (2,7) + c] \ge 1

-1 * [(w_1, w_2) * (95) + c] \ge 1

-1 * [(w_1, w_2) * (9,2) + c] \ge 1

1 * [(w_1, w_2) * (6,9) + c] \ge 1

1 * [(w_1, w_2) * (4,8) + c] \ge 1

-1 * [(w_1, w_2) * (8,3) + c] \ge 1

-1 * [(w_1, w_2) * (6,2) + c] \ge 1
```

To find the best solution

Minimize $||w||^2$

Subject to:

$$1 * [(w_1, w_2) * (2,7) + c] \ge 1$$

$$-1 * [(w_1, w_2) * (95) + c] \ge 1$$

$$-1 * [(w_1, w_2) * (9,2) + c] \ge 1$$

$$1 * [(w_1, w_2) * (6,9) + c] \ge 1$$

$$1 * [(w_1, w_2) * (4,8) + c] \ge 1$$

$$-1 * [(w_1, w_2) * (8,3) + c] \ge 1$$

$$-1 * [(w_1, w_2) * (6,2) + c] \ge 1$$

- Recall that the norm of a vector, i.e. $||w||^2$ where $w = (w_1, w_2)$ is given by $||w||^2 = w_1^2 + w_2^2$.
- So the optimization problem on the left has 3 unknowns and 7 constraints and hence (hopefully) can be solved.

In the next few slides, we remove the assumption that a separator hyperplane exists.

Variant

- Preceding slides assume that:
 - a separator of the kind shown exists which may not true
 - allow for no error, i.e. no misclassifications.
- SVM's quadratic programming formulation can be redone so as to avoid these two problems.
- How?

How to find a good separator line when misclassification is allowed

Minimize $||w||^2 + \tau * \sum_i e_i$ Subject to $t_i * (w.x_i + c) \ge 1 - e_i$ for each i=1,..,n.

- t is a factor that captures error tolerance. Big value of
 suggests that we have less tolerance for error.
- e_i is the distance between a misclassified point and the separator line.
- Can be solved by a classical set of algorithms in mathematics called Quadratic Programming Algorithms => We will not go into this in the class.

Hyper-parameter Optimization:Effects of τ

- When τ is small:
 - SVM pays less attention to points near the decision boundary.
 - Margin goes up.
- When is large:

- Minimize $||w||^2 + \tau * \sum_i e_i$ Subject to $t_i * (w.x_i + c) \ge 1 - e_i$ for each i=1,..,n.
- SVM pays a high penalty when there are points near the decision boundary.
- So margin goes down.

With Misclassification Error

Minimize $||w||^2 + \tau * \sum_i e_i$ Subject to $t_i * (w.x_i + c) \ge 1 - e_i$ for each i=1,...,n.

- t is a factor that captures error tolerance. Big value of t suggests that we have less tolerance for error.
- e_i is an error term.
- Can be solved by a classical set of algorithms in mathematics called Quadratic Programming Algorithms => We will not go into this in the class.

Non-Linear Separators

- Thus far, we have looked at SVM with linear separators, i.e. the separating hyperplane is linear.
- Can do the same thing with non-linear (e.g. quadratic) separators.
 - Optimization problem can be written similarly but the resulting optimization problem may no longer be quadratic
 - Distance computations may get more complex

SAMPLE QUADRATIC CURVE FROM:
http://www.civilized.com/mlabexamples/multsitebind.htmld/
Point placement by me!

What if we have the following situation?

Will a linear separator work?
What about a polynomial separator?

What if we have the following situation?

But this is a good separator!

Kernels Help

How do Kernels Work?

- Map training points into a new "feature" space.
- 2. How?
 - a. Associate a set of "landmark" points in the space.
 - b. Compute similarity between training points and landmarks
 - c. Use these similarities to derive features.

Kernel Example

How do Kernels Work?

- 1. Suppose we use the 5 points shown in orange as landmarks.
- 2. Compute similarity between each training point and these 5 landmarks according to some similarity measure.
- 3. Thus, each training point now has an associated vector of length 5.

Gaussian Radial Basis Kernel

GAUSSIAN RADIAL BASIS KERNEL

- Pick all n training points $x_1, ..., x_n$ as landmarks.
- Associate a feature vector for each training point x.
- The *i*'th feature (for *x*) is the similarity between *x* and the *i*'th training point.
- $f_i(x) = e^{-\left(\frac{\|x-x_i\|^2}{2\sigma^2}\right)}$ where σ is some constant.
- $||x x_i||^2 = \sum_{j=1}^m (x^j x_i^j)^2$
- When x, x_i are near each other, this feature value is close to 1.
- When they are far apart, the feature value is close to 0.

Other kernels differ in the formula used for $f_i(x)$, e.g. use a non-Gaussian formula.

Gaussian Radial Basis Kernels

Gaussian Radial Basis Kernels

GAUSSIAN RADIAL BASIS KERNEL

• So for each training point x, we have an n-dimensional feature vector $(f_1(x), \dots, f_{n(x)})$ where $f_i(x)$ is the similarity of x to the i'th training point.

Gaussian Radial Basis Kernels

GAUSSIAN RADIAL BASIS KERNELS

- Predict class "1" for test example x when $\alpha_0 + \alpha_1 f_1(x) + \cdots + \alpha_n f_n(x) \ge 0$. Otherwise predict class -1.
- How do we learn $\alpha_0, ..., \alpha_n$ from the training data?
- We solve an optimization problem as before.

Other Types of Kernels

POLYNOMIAL KERNELS:

$$f(x, x_i) = (x. x_i)^d$$

or

$$f_i(x) = (x.x_i)^d$$

Uses dot product

Hyper-parameter Optimization

- Determining which kernel to use is an input parameter to the SVM.
- Need to identify the right parameter settings when using SVM.
 - Linear?
 - What should τ be?
 - Kernel SVM?
 - Which type of kernel?
 - What should τ be?

```
Minimize ||w||^2 + \tau * \sum_i e_i
Subject to t_i * (w. x_i + c) \ge 1 - e_i
for each i=1,..,n.
```

Hyper-parameter Optimization:Effects of au

- When τ is small:
 - SVM pays less attention to points near the decision boundary.
 - Margin goes up.
- When is large:

- Minimize $||w||^2 + \tau * \sum_i e_i$ Subject to $t_i * (w. x_i + c) \ge 1 - e_i$ for each i=1,...,n.
- SVM pays a high penalty when there are points near the decision boundary.
- So margin goes down.

THE END