Investigating Autonomous Systems Behavior in Russia and Ukraine using GRIP

Aviva Smith

Presentation Overview

- Project Relevance
- Topic + Methodology Review
- GRIP Overview
- Methology
 - Documentation Parameters
 - Pulling data from API using curl queries
 - Parsing .json files (file parsing, type data accessed, challenges)
 - Event Tags
- Interesting Results
- Future Work

Project Relevance

- Pre-invasion on Feb. 24, 2022, Russia allegedly launched several cyberattacks targeting Ukraine's critical infrastructure
- Upon further investigation, none of these alleged attacks could be definitively classified as BGP Hijacking Attacks, even if behavior was Suspicious.
- Nature of attacks cannot always be proven malicious, even if behavior is suspicious
- Possible Reasons:
 - Cyberattack could trigger military action on the part of Ukrainian alies
 - Russian motives possibly more focused on razing country to rebuild
 - Cyberattacks occurring, but not detected as focus on more espionage related activities

SECURITY

Russian cyberattacks on Ukraine alarm global cybersecurity community

Russian cyberattacks on Ukraine have raised cybersecurity red flags globally. 23 February 2022

Topic + Methodology

Topic: Investigate BGP data from 2022 and determine if there was an increase in suspicious behavior of ASes in Ukraine and Russia pre-invasion

- > Learn how GRIP API works
- Create notebook for interacting with GRIP API
- ➤ Use CURL bindings to make an HTTP query to return data collected over last two months
- **≻Write python script to parse output (.json files)**
- > Determine if data returned by query includes nationality information
 - > Yes! Geographic Information returned by GRIP API
- Graphically visualize notable trends (if any)
- **➢ Bonus: Investigate behavior that constitutes increase in activity**

GRIP

- System that continuously monitors BGP data for attacks
 - From Route Views and RIPE RIS
- Detects different types of attacks (MOAS, SUBMOAS, Defcon, NewEdge)
- Tags attack events with labels
 - Information on ASN history, path, fat-finger, ASN type, blacklist, prefix, AS relationship, RPKI
- Infers a risk level for the event

GRIP API Documentation Parameters

- Access UI: GRIP Global Routing Intelligence Platform (gatech.edu)
- API Documentation: grip-api/api-spec.md at master · InetIntel/grip-api · GitHub

Query parameters (none required)

parameter	default	type	range/format/example	definition	
event_type	"all"	str	"moas", "submoas", "defcon", "edges", "all"	event type	
ts_start	-inf	str	"YYYY-MM-DDTHH:MM:SS"	UTC timestamp of the start of the event	
ts_end	+inf	str	"YYYY-MM-DDTHH:MM:SS"	UTC timestamp of the end of the event	
start	0	int	0 – +inf	starting index (used for pagination)	
length	100	int	1 – 1000	the number of events should return	
asns		str	e.g. 213,456	list of AS numbers formatted as , separated string	
tags		str	e.g. tag1,tag2	list of event tags formatted as , separated string	
pfxs	1111	str	e.g. 8.8.8.0/24,1.1.1.0/24	list of event prefixes formatted as , separated strin	
min_susp	0	int	0 – 100	minimum suspicion levels	
max_susp	100	int	0 – 100	maximum suspicion levels	
min_duration	0	int	0 – +inf	minimum event duration in seconds	
max_duration	+inf	int	0 - +inf	maximum event duration in seconds	
full	false	bool	true/false	whether to export full events including AS paths	

Event object

- id: event ID
 - o this can be used in event details end-point to retrieve more detailed information
- duration : duration of the events in seconds, null if event is still ongoing
- event_type : type of the event
- view_ts: event time in unix time format
- finished_ts: event finished time, null if still ongoing
- external : data extracted from external sources (e.g. ASRank, and IIJ Hegemony Score)
- summary: information summarized from the prefix events of this event
 - o ases: ASes involved in the event
 - prefixes: prefixes involved in the event
 - o tr_worthy : whether the event is traceroute worthy
 - o tags: list of tags from all prefix events
 - o attackers and victims: inferred potential attackers and victims of the event
 - o inference result : inference result for the event
 - inferences list of all inferences extracted from the prefix events
 - inference_id : name of the inference
 - suspicion_level : suspicion level of the prefix event from this inference
 - confidence : confidence level
 - explanation : explanation of this inference
 - labels: extra labels of the inference for grouping and searching
 - primary_inference : the main inference from the list of all inferences, highest confidence and highest suspicion_{level}
- pfx_events : list of prefix events objects (as-paths excluded if full parameter is not true)

Pulling Data using Curl Queries

Curl URL Queries are constructed with the follow:

- HTTP hosting API
- Number of Events Queried
- Start Date
- End Date
- Minimum Suspicious and Maximum Suspicion
- Event Type

Example: MOAS EVENTS 2.01.22 -> 2.10.22

curl https://api.grip.inetintel.cc.gatech.edu/dev/json/events?length=100&start=0&ts_start=2022-02-01T19%3A03&ts_end=2022-02-10T19%3A03&min_susp=80&max_susp=100&event_type=moas

APIs for Running Curl Query with Good Formatting: https://reqbin.com/req/c-g95rmxs0/curl-for-windows

Parsing API Data

- File Parsing
 - Saved .json files locally
 - Accessed files from Notebook
 - Accessed data according to metadata descriptions provided on API documentation
- Brief Walkthrough of notebook
- Challenges
 - A LOT of data available -> took time to parse through
 - Gaps in available information for even entry -> code optimized to handle this case
 - Investigating UI and API
 - What data is relevant to Ukraine-Russian conflict?

Georgia

Tags

Prefix Event List

Prefix	Tags	Inferences	Traceroute Worthy	Traceroute Available	
45.89.72.0/22 (AS197726, AS210512)	 Rpki Some Newcomer Unknown Roa Rpki All Newcomer Unknown Roa Not Previously Announced By Any Newcomer Oldcomer Path Prepending Rpki Some Oldcomer Unknown Roa Rpki All Oldcomer Unknown Roa 	P Default Tr Worthy (80)	true	false	Details
217.197.172.0/22 (AS197726, AS210512)	Rpki Some Newcomer Unknown Roa Rpki All Newcomer Unknown Roa Not Previously Announced By Any Newcomer Oldcomer Path Prepending Rpki Some Oldcomer Unknown Roa Rpki All Oldcomer Unknown Roa	P Default Tr Worthy (80)	true	false	Details
77.83.204.0/22 (AS197726, AS210512)	Rpki Some Newcomer Unknown Roa Rpki All Newcomer Unknown Roa Not Previously Announced By Any Newcomer Oldcomer Path Prepending Rpki Some Oldcomer Unknown Roa Rpki All Oldcomer Unknown Roa	₱ Default Tr Worthy (80)	true	false	Details
193.32.152.0/22 (AS197726, AS210512)	Rpki Some Newcomer Unknown Roa Rpki All Newcomer Unknown Roa Not Previously Announced By Any Newcomer Oldcomer Path Prepending Rpki Some Oldcomer Unknown Roa Rpki All Oldcomer Unknown Roa	P Default Tr Worthy (80)	true	false	Details

Tags are useful for investigating an event more closely. For example, a prefix with the tag "Not Previously Announced by Any Newcomer" could indicate that some new prefix yet to be explored is being advertised.

Review of Notebooks

- MOAS_Ukraine_Russia_Exploration Jupyter Notebook
- <u>SUBMOAS_Ukraine_Russia_Exploration Jupyter Notebook</u>

Project Takeaways

- Based on although an increase in activity, no malicious activity launched by Russia or any other country against Ukraine has definitively detected -> Closer inspection required
- More subMOAS activity than MOAS activity recorded in region
- Super_pfx and Sub_prefix do not indicate especially malicious activity
- Notable frequently occurring tags:
 - 'some-newcomers-stub-ases'
 - 'some-newcomer-announced-no-pfxs'
 - 'all-origins-same-country'
 - 'all-newcomer-announced-no-pfxs'
 - 'not-previously-announced-by-any-newcomer'

Remaining Work

- Finish pulling data for December and January for subMOAS events
- Take a closer look at the available tags, especially on subMOAS events to determine if malicious behavior is detected.
- Investigate activity other countries in regions (Beleru, Romania, Poland, Moldova, Slovakia)
- Investigate if especially suspicious prefixes were advertised in subMOAS data
- Investigate relationship between organizations hosting ASes

