```
In [1]: #Import necessary libraries
   import numpy as np
   import pandas as pd
   from sklearn.model_selection import train_test_split
   from sklearn.neighbors import KNeighborsClassifier
   from sklearn import metrics
```

```
In [2]: #Load the dataset
dta=pd.read_csv("C:/Users/hp/Downloads/archive (8).zip")
```

In [3]: #Check the shape of the dataset
dta.shape

Out[3]: (150, 6)

In [9]: #Drop 'Id' column since it is not needed for classification
dta1=dta.drop(columns=["Id"]);dta1

Out[9]:		SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

```
In [10]: |dta1.head()
Out[10]:
             SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                    Species
                       5.1
                                                  1.4
          0
                                    3.5
                                                               0.2 Iris-setosa
                       4.9
                                    3.0
                                                  1.4
                                                               0.2 Iris-setosa
          2
                       4.7
                                    3.2
                                                  1.3
                                                               0.2 Iris-setosa
           3
                       4.6
                                    3.1
                                                  1.5
                                                               0.2 Iris-setosa
          4
                       5.0
                                    3.6
                                                  1.4
                                                               0.2 Iris-setosa
In [11]: #Replace the species names with numerical labels
          dta1["Species"].replace({"Iris-setosa":1,"Iris-versicolor":2,"Iris-virginica":3},inplace=True)
In [15]: #Extract the features columns
         x=pd.DataFrame(dta1,columns=["SepalLengthCm","SepalWidthCm","PetalLengthCm","PetalWidthCm"]).values
In [16]: #Extract column Species
         y=dta1.Species.values.reshape(-1,1)
In [17]: #Split the dataset into training and testing dataset
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random state=42)
         #Define number of neighbors k
In [18]:
          k=6
In [20]: #Create K Nearest Neighbors classifier with k neighbors
          knn=KNeighborsClassifier(n neighbors=k);knn
Out[20]: KNeighborsClassifier(n neighbors=6)
```

```
In [21]: #Fit the classifier to training dataset
         knn.fit(x train,y train)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\neighbors\_classification.py:198: DataConversionWarning:
         A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n samples,), for
         example using ravel().
           return self. fit(X, y)
Out[21]: KNeighborsClassifier(n neighbors=6)
In [23]: #Prediction on Test data
         y_pred=knn.predict(x_test);y_pred
Out[23]: array([2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 3, 1, 1, 1, 1, 2, 3, 2, 2, 3, 1, 3,
                1, 3, 3, 3, 3, 1, 1], dtype=int64)
In [24]: #Calculate accuracy
         accuracy=metrics.accuracy score(y test,y pred);accuracy
Out[24]: 1.0
In [25]: Accuracy=accuracy*100;Accuracy
Out[25]: 100.0
In [ ]:
```