Age Gender Total_Bilirubin Direct_Bilirubin Alkaline_Phosphotase Alamine_Aminotransferase Aspartate_Aminotransferase 0 65 Female 0.7 0.1 187 16 18 1 62 Male 10.9 5.5 699 64 100 2 62 Male 7.3 4.1 490 60 68 3 58 Male 1.0 0.4 182 14 20 4 72 Male 3.9 2.0 195 27 59

```
oclass 'pandes.core.frame.DataFrame's
Hampelinden: tall entries, 0 to 582
Duta enhumns (total 11 columns):
                                  Non-Mull Count Dtype
    Column
                                                   ****
                                  ------------
     ATTENDED.
                                                   16164
                                  S83 non-mill
                                                   object:
                                  sax non-null:
 1
     Gender
                                                   float64
                                  583 non-mull
     Total Billirubin
                                                   #Loats4
                                  SEX mon-multi-
     Direct_Bilirubin
 h
                                                   Entitle.
                                  583 non-null
     Alkaline_Phosphotase
 4
                                                   Entisa.
                                  SES non-mull
     Alamine Aminotransferess
    Aspartste Aminotransferese tell non-oull
                                                   5×154
                                                   #Inst64
                                  SWS mon-multi-
     Total_Protlens
                                                   float64
                                  583 non-null
     A28wm2n
     Allbrancin and Globullin Batter
                                                   #loat64
                                 SITS more results.
                                                   Entisa.
                                  SEX non-null
    Dataset
stypes: #lmat64(%), let64(%), object(%)
memory unage: 58.2+ KB
```

data.isnull().any()

Age	False
Gender	False
Total_Bilirubin	False
Direct_Bilirubin	False
Alkaline_Phosphotase	False
Alamine_Aminotransferase	False
Aspartate_Aminotransferase	False
Total_Protiens	False
Albumin	False
Albumin_and_Globulin_Ratio	True
Dataset	False
dtype: bool	

data.isnull().sum()

Age	9
Gender	9
Total_Bilirubin	9
Direct_Bilirubin	9
Alkaline_Phosphotase	9
Alamine_Aminotransferase	9
Aspartate_Aminotransferase	0
Total_Protiens	9
Albumin	9
Albumin_and_Globulin_Ratio	4
Dataset	9
dtype: int64	

data.describe()

	age	Total_Billirubin	Direct_Billirubin	Alkaline_Phosphotase	Alanine_Aminotransferase	Aspartate_Aminotransferase	Total_Protiens	Albumin
count	583 000000	583.000000	583 000000	583 000000	583 000000	583 000000	583 000000	583 000000
mean	44 746141	3 298799	1.486106	290 578329	80 713551	109 910806	6 483190	3 141852
std	16.189633	6.209522	2 808498	242 937989	182 620356	288 918529	1 085451	0.795519
min	4 000000	0.400000	0 100000	63 000000	10 000000	10-000000	2.700000	0 900000
25%	33.000000	0.800000	0.200000	175 500000	23 000000	25 000000	5 800000	2 600000
50%	45 000000	1.000000	0 300000	208 000000	35 000000	42 000000	6 600000	3 100000
75%	58.000000	2.600000	1.300000	298 000000	60 500000	87 000000	7.200000	3.800000
max	90 000000	75 000000	19 700000	2110.000000	2000 000000	4929 000000	9 6000000	5 500000

```
1 sns.distplot(data['age'])
2 plt.title('Age Distribution Graph')
3 plt.show()
```

D:\Anaconda\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `dist
oved in a future version. Please adapt your code to use either `displot` (a figur
`histplot` (an axes-level function for histograms).
warnings.warn(msg, FutureWarning)


```
plt.figure(figsize=(10,7))

sns.heatmap(df.corr(),annot=True)
```

<AxesSubplot:>

1 X_scaled.head()

	age	gender	Total_Bilirubin	Direct_Bilirubin	Alkaline_Phosphotase
0	1.252098	-1.762281	-0.418878	-0.493964	-0.426715
1	1.066637	0.567446	1.225171	1.430423	1.682629
2	1.066637	0.567446	0.644919	0.931508	0.821588
3	0.819356	0.567446	-0.370523	-0.387054	-0.447314
4	1.684839	0.567446	0.096902	0.183135	-0.393756
<					

```
1 y_train.value_counts()

1 329
0 137
Name: outcome, dtype: int64
```

```
1 y_train_smote.value_counts()
1 329
```

Name: outcome, dtype: int64

```
-Asparate_Aminotrons
                                                                         -Alanin Aminotransferase -
1 #Age Gender Total_Bilrubin Direct_Bilrubin Alkaline_Phosphotase
  model4.predict([[50,1,1.2,0.8,150,70,80,7.2,3.4,0.8]])
:\Anaconda\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but DecisionTreeClass
fier was fitted with feature names
                                                                                                                          0.75
warnings.warn(
erray([1], dtype=int64)
                                                                                                                         : 0.76
         "Gender "Total Bilrubin "Direct Bilrubin Alkaline Phosphotase
                                                                          "Alanin_Aminotransferase
                                                                                                      "Asparate_Aminotrons
  model1.predict([[50,1,1.2,0.8,150,70,88,7.2,3.4,0.8]])
                                                                                                                         : 0.77
:\Anaconda\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but RandomForestClass : 0.77
fier was fitted with feature names
warnings.warn(
```

classification models accuracy_score

0	KNN Classifier	0.555556
1	RandomForestClassifier	0.709402
2	DecisionTreeClassifier	0.683761
3	LogisticRegression	0.641026

```
from sklearn.ensemble import ExtraTreesClassifier
model=ExtraTreesClassifier()
model.fit(X,y)
```

ExtraTreesClassifier()

1 model.feature_importances_

Direct Billirubin 0.106485

Total_Bilirubin 0.106254

Total_Protiens 0.090334

Albumin_and_Globulin_Ratio 0.094976

Albumin 0.098824

gender 0.028632

```
1 dd.plot(kind='barh', figsize=(7,6))
2 plt.title("FEATURE IMPORTANCE", fontsize=14)
```

Text(0.5, 1.0, 'FEATURE IMPORTANCE')


```
import joblib
joblib.dump(model1, 'ETC.pkl')

['ETC.pkl']
```