EE 382M-14: Final Project Fully-Differential Folded-Cascode Amplifier

Soham Roy (sr46579)

Design Schematic

Input Sources:

Biasing circuit:

CFMB(3) circuit:

Design Variables:

	Name	Value	
1	va	810u	
2	l_cmfb	66u	
3	11	220u	
4	12	50u	
5	13	270u	
6	W1	36u	
7	W2	40u	
8	W3	138u	
9	W4	12u	
10	W5	9u	
11	Lmin	180n	
12	Lmax	500n	
13	R	1M	
14	C	15f	
15	C_bias	5p	
16	VDD	1.8	
17	f	10K	
18	C_L	5p	

Calculations and Analysis

1. Overdrive voltages:

$$\Delta V_{o,pk-pk} = 1.4 V$$

$$V_{DD} = 1.8 V$$

$$|V_{ov_2}| + |V_{ov_3}| = V_{ov_4} + V_{ov_5} = \frac{V_{DD} - \Delta V_{o,pk-pk}}{2} = \frac{1.8 - 1.4}{2} = 0.2 V$$

$$|V_{ov_2}| < |V_{ov_3}| \Rightarrow |V_{ov_2}| = \mathbf{0.05} \ V \ (cascode) \ and \ |V_{ov_3}| = 0.2 - 0.05 = \mathbf{0.15} \ V \ (main) \ [assume]$$

$$V_{ov_4} < V_{ov_5} \Rightarrow V_{ov_4} = \mathbf{0.05} \ V \ (cascode) \ and \ V_{ov_5} = 0.2 - 0.05 = \mathbf{0.15} \ V \ (main) \ [assume]$$

$$V_{ov_1} = |V_{ov_2}| = V_{ov_4} = \mathbf{0.1} \ V \ (input) \ [assume]$$

2. Device sizes:

$$g_{m_1} \ge 2\pi f_{ugb}C_L = 2\pi (100 * 10^6)(5 * 10^{-9}) \Rightarrow g_{m_1} \ge 3.1 \text{ mS}$$

$$\frac{2I_1}{V_{ov,1}} = g_{m_1} \Rightarrow I_1 = \frac{3.1 * 10^{-3} * 0.1}{2} = 157 \,\mu\text{A}$$

Let us assume $L_1=0.18~\mu m$ (input) NMOS I_D versus V_{ov} plot: current is 44.73 μA for a 10 μm wide device at $V_{ov}=0.05~V$ $W_1=\left[\frac{157}{44.73}*10\right]=36~\mu m$

Let us assume
$$I_2 = I_4 = I_5 = 50 \mu A \sim \frac{I_1}{3}$$

Let us assume $L_2=0.18~\mu m$ (cascode) PMOS I_D versus V_{ov} plot: current is 12.68 μA for a 10 μm wide device at $|V_{ov}|=0.05~V$

$$W_2 = \left[\frac{50}{12.68} * 10\right] = 40 \ \mu m$$

 $I_3 = I_1 + I_2 = 207 \ \mu A$

Let us assume $L_3 = 0.25 \mu m (main)$

PMOS I_D versus V_{ov} plot: current is 37.25 μA for a 10 μm wide device at $|V_{ov}|=0.15~V$

$$W_3 = \left[\frac{207}{37.25} * 10 \right] = 56 \ \mu m$$

Let us assume $L_4 = 0.18 \, \mu m$ (cascode)

NMOS I_D versus V_{ov} plot: current is 44.73 μA for a $10~\mu m$ wide device at $V_{ov}=0.05~V$

$$W_4 = \left[\frac{50}{44.73} * 10 \right] = 12 \ \mu m$$

Let us assume $L_5 = 0.25 \,\mu m \,(main)$

NMOS I_D versus V_{ov} plot: current is 131 μA for a 10 μm wide device at $V_{ov}=0.15$ V

$$W_5 = \left[\frac{50}{131} * 10 \right] = 4 \ \mu m$$

3. CMFB Compensation Parameters & Device Resizing:

For CMFB(3):
$$f_p = \frac{1}{R'_L C'_L}$$
 where $R'_L = R||R_L$ and $C'_L = C + C_L$.

Therefore, R should be maximized and C should be minimized.

$$R = 1M\Omega$$
 and $C = 15 fF$ (assume)

Gain of CMFB stage:
$$A_{o,CMFB} = \frac{g_{m_{CMFB_1}}}{g_{m_{CMFB_3}}} \sim 3 \text{ (assume)}$$

To achieve this, $L_{CMFB_1} = L_{CMFB_3}$ and $W_{CMFB_1} = 3W_{CMFB_3} = W_4$ (assume)

This CMFB design does not give enough f_{ugb} .

To increase f_{ugb} and f_p , we should increase R_L because $C'_L \sim C_L$ which is given. R_L can be increased by increasing L_3 and L_5 .

Let us assume $L_3 = 0.5 \mu m$ (main)

PMOS I_D versus V_{ov} plot: current is 15.08 μA for a 10 μm wide device at $|V_{ov}|=0.15~V$

$$W_3 = \left[\frac{207}{15.08} * 10 \right] = 138 \,\mu m$$

Let us assume $L_5=0.5~\mu m$ (main) NMOS I_D versus V_{ov} plot: current is 57.27 μA for a 10 μm wide device at $V_{ov}=0.15~V$

$$W_5 = \left[\frac{50}{57.27} * 10\right] = 9 \,\mu m$$

4. DC Current Adjustment & Biasing Circuit Device Resizing:

Using the above device sizes and CMFB stage parameters, we do not get sufficient gain. Therefore, dc currents should be increased by changing the device sizes in the biasing circuit.

 $I_1 = 220 \mu A$, $I_2 = 50 \mu A$ and $I_3 = 270 \mu A$ are set as the new dc currents.

5. CMFB Current Adjustment:

 $I_{cmfb}=66~\mu A$ is set so that currents in both branches of the CMFB circuit are equal.

This ensures that V_{OCM} tracks $V_{CM} = 900 \text{ mV}$.

6. Input Voltage AC Amplitude Adjustment

 $v_a = 810 \ \mu V$ is set so as to achieve $\Delta V_{o,pk-pk}$ close to 1.4 V.

Results

Transient Simulation

AC Simulation

CMFB Loop Stability

PM(deg)	@Freq(Hz)	GM(dB)	@Freq(Hz)
73.384	29.39M	28.245	392.14M

Transient Operating Points:

signal	OPT("/M1p" "??")		
gm	3.923m		
signal	OPT("/M3p" "??")		
gm	2.956m		
signal	OPT("/M5p" "??")		
gm	615.5u		

Thermal Noise Analysis:

$$P_{sig} = \frac{V_{peak,FD}^2}{2} = \frac{(1.4 \, V)^2}{2} = 0.98 \, V^2$$

From simulations:

$$g_{m_1} = 3.923 \text{ mS}$$

$$g_{m_3} = 2.956 \text{ mS} = \frac{2.956}{3.923} g_{m_1} = 0.754 g_{m_1}$$

$$g_{m_5} = 615.5 \text{ } \mu\text{S} = \frac{615.5}{3923} g_{m_1} = 0.157 g_{m_1}$$

 $\Rightarrow g_{m_1} + g_{m_2} + g_{m_3} = g_{m_1} + 0.754g_{m_1} + 0.157g_{m_1} = 1.911g_{m_1}$

In the presence of biasing capacitors (to attenuate noise from biasing current mirrors):

$$P_{out,n} = \overline{v_{o,n,tot}^2} = \frac{2kT}{C_L} \gamma (g_{m_1} + g_{m_3} + g_{m_5}) R_o = \frac{2kT}{C_L} \gamma \times 1.911 g_{m_1} R_o$$

$$Assume \ \gamma = \frac{2}{3}$$

$$\begin{split} From \ simulations: |A_{DC}| &= 2g_{m_1}R_o = 10^{\frac{59.25}{20}} = 917.28 \Rightarrow g_{m_1}R_o = \frac{917.29}{2} = 458.64 \\ &\Rightarrow P_{out,n} = \frac{2 \times 1.38 * 10^{-23} \ m^2 kg \ s^{-2} \ K^{-1} \times 300 K}{5 * 10^{-12} F} \times \frac{2}{3} \times 1.911 \times 458.64 \\ &= 96763.41 * 10^{-11} \ V^2 \end{split}$$

$$SNR = 10 \log_{10} \frac{P_{sig}}{P_{out,n}} = 10 \log_{10} \frac{0.98}{96763.41 * 10^{-11}} = 10 \log_{10} 1012779.52 = 60.055 \, dB$$

Summary

<u>Parameter</u>	<u>Specification</u>	<u>Achieved</u>
FD DC Gain	> 400	$10^{\frac{59.25}{20}} = 917.28 \checkmark (2x+)$
Load Cap	5 pF	5 pF √
Output FD signal	1.4 V	0.7038*2 = 1.408 V √
VDD	1.8 V	1.8 V √
UGB Frequency	100 MHz	103.699 MHz √
PM	> 70°	-96.067°-(-180°) = 83.93° √
SNR	> 60 dB	60.055 dB √