Distributed Databases 2018 HW 1

Student ID: 2018280070 Name: Peter Garamvoelgyi

Problem 5.2

```
Q1: duration of assignment (ASG.DUR)

- 5 different sites based on ASG.RESP

Q2:

- 2 different sites based on ASG.DUR<20
```

Primary horizontal fragmentation:

... i.e. there are 7 predicates, 5 based on RESP, 2 based on DUR. Pr is complete and minimal.

Minterm predicates:

```
m1: RESP="Manager"
                       ∧ DUR<20
                                      m2: RESP="Manager"
                                                              \Lambda DUR>=20
m3: RESP="Consultant" ∧ DUR<20
                                      m4:
                                           RESP="Consultant" \( \Lambda \) DUR>=20
m5: RESP="Engineer"
                       ∧ DUR<20
                                      m6:
                                           RESP="Engineer"
                                                              \Lambda DUR>=20
m7: RESP="Programmer" ∧ DUR<20
                                           RESP="Programmer" A DUR>=20
                                      m8:
M9: RESP="Analyst"
                       ∧ DUR<20
                                      m10: RESP="Analyst"
                                                              \Lambda DUR>=20
```

The corresponding fragments (see next page):

ASG.m1

ENO	PNO	RESP	DUR
E1	P1	Manager	12

ASG.m3

ENO	PNO	RESP	DUR
E3	Р3	Consultant	10

ASG.m5

ENO	PNO	RESP	DUR
-----	-----	------	-----

ASG.m7

ENO	PNO	RESP	DUR
E4	P2	Programmer	18

ASG.m9

ENO	PNO	RESP	DUR
E2	P2	Analyst	6

ASG.m2

ENO	PNO	RESP	DUR
E5	P2	Manager	24
E6	P4	Manager	48
E8	Р3	Manager	40

ASG.m4

ENO PNO	RESP	DUR
---------	------	-----

ASG.m6

ENO	PNO	RESP	DUR
E3	P4	Engineer	48
E7	Р3	Engineer	36

ASG.m8

ENO PNO	RESP	DUR
---------	------	-----

ASG.m9

ENO	PNO	RESP	DUR
E2	P1	Analyst	24

Problem 5.8

First, let us construct the use matrix:

(use)	A _{EMP.ENO}	A _{EMP} .ENAME	A _{EMP.TITLE}	A _{ASG.PNO}	A _{ASG.RESP}	A _{ASG.DUR}
q1	1	1	1	1	1	1
q2	1	0	0	0	0	1

... and the frequency matrix:

(freq)	S1	S2	S 3
q1	10	20	0
q2	0	20	10

Using these, we can calculate the affinity matrix:

(aff)	A _{EMP.ENO}	A _{EMP} .ENAME	A _{EMP} .TITLE	A _{ASG.PNO}	A _{ASG.RESP}	A _{ASG.DUR}
A _{EMP.ENO}	60	30	30	30	30	60
A _{EMP} .ENAME	30	30	30	30	30	30
AASG.PNO	30	30	30	30	30	30
AASG.RESP	30	30	30	30	30	30
A _{ASG.DUR}	60	30	30	30	30	60

... and the transformed affinity matrix:

(aff')	A _{EMP.ENO}	A _{ASG.DUR}	A _{EMP} .ENAME	A _{EMP} .TITLE	A _{ASG.PNO}	A _{ASG.RESP}
A _{EMP.ENO}	60	60	30	30	30	30
A _{ASG.DUR}	60	60	30	30	30	30
A _{EMP} .ENAME	30	30	30	30	30	30
AASG.PNO	30	30	30	30	30	30
AASG.RESP	30	30	30	30	30	30

From this we can see that it's best to have a vertical split where

The resulting fragments on ASG are:

(Note that we had to add PNO and ENO, respectively, as these two together form the key.)

Problem 5.17

First, let us perform horizontal fragmentation on ASG and EMP using

```
Pr<sub>ASG</sub> = { DUR=24, DUR≠24 }
Pr<sub>EMP</sub> = { TITLE="Programmer", TITLE≠"Programmer" }
```

The resulting two fragments are:

ASG.f1

ENO	PNO	RESP	DUR
E2	P1	Analyst	24
E5	P2	Manager	24

ASG.f2

ENO	PNO	RESP	DUR
E1	P1	Manager	12
E2	P2	Analyst	6
E3	Р3	Consultant	10
E3	P4	Engineer	48
E4	P2	Programmer	18
E6	P4	Manager	48
E7	Р3	Engineer	36
E8	Р3	Manager	40

... and the corresponding derived fragments on EMP:

EMP.f1

ENO	ENAME	TITLE	
E4	J. Miller	Programmer	

EMP.f2

ENO	ENAME	TITLE
E1	J. Doe	Elect. Eng
E2	M. Smith	Syst. Anal
E3	A. Lee	Mech. Eng.
E5	B. Casey	Syst. Anal
E6	L. Chu	Elect. Eng
E7	R. Davis	Mech. Eng.
E8	J. Jones	Syst. Anal

q2 only accesses the attributes ENO and DUR from ASG. Thus, we can use vertical fragmentation on ASG. (This insight is also supported by the affinity matrix shown previously.)

(see next page...)

ASG.f11

ASG. f12

ENO	PNO	DUR
E2	P1	24
E5	P2	24

ENO	PNO	RESP
E2	P1	Analyst
E5	P2	Manager

ASG.f21

ASG.f22

ENO	PNO	DUR
E1	P1	12
E2	P2	6
E3	Р3	10
E3	P4	48
E4	P2	18
E6	P4	48
E7	Р3	36
E8	Р3	40

ENO	PNO	RESP
E1	P1	Manager
E2	P2	Analyst
E3	Р3	Consultant
E3	P4	Engineer
E4	P2	Programmer
E6	P4	Manager
E7	Р3	Engineer
E8	Р3	Manager
	1	

q2 only accesses ASG.f11 and ASG.f21. As site3 only handles this kind of query, it is sufficient to only store these two fragments on this site.

q1 only accesses ASG.f11, ASG.f12 and EMP.f1. As site1 only handles this kind of query, it is sufficient to only store these two fragments on this site.

EMP.f2 and ASG.f22 are not accessed by any of these queries. From what we know, we can store them anywhere, they will not contribute to our cost estimation.

Now, the question is: What should we store on site2?

- As access frequencies of site2 are higher (20), let us start from the assumption that we store everything on this site. (ASG.f11, ASG.f12, ASG.f21, EMP.f1)
- Data transfer is reasonably fast between site2 and site3, but it's slower between site1 and site2. Thus, let us store a replica of ASG.f11 on site1. (This way, we only need to keep track of two replicas of this fragment.)
- Furthermore, let us also store EMP.f1 and ASG.f12 on site1 and ASG.f21 on site2. This way we have 2-replication for all fragments considered.

