0714

[TeraTerm]

TeraTerm をインストールした. 細かい設定は使用する時に行う.

ネットワークを経由して他のコンピュータ(サーバ)に接続し、遠隔操作する SSH で接続する際に使用するソフトである.

1つのディスプレイに接続されている2つのラズパイの選択も可能.

今回は自分のパソコン(Windows)とラズパイの接続のために使用.

ラズパイの IP アドレスを指定しても「拒否された」と表示される.

【最終的な構造】

【UART 通信を用いた MONOSTICK 1 台での送受信(ループバック)】

始めとして、自身で送信(UART の Tx を使用)したデータを受信(UART の Rx を使用)するように構築する. 以下がコードである.

```
import serial
import struct

use_port = '/dev/ttyUSB0'
```

```
_serial = serial.Serial(use_port)
_serial.baudrate = 9600
_serial.parity = serial.PARITY_NONE
_serial.bytesize = serial.EIGHTBITS
_serial.stopbits = serial.STOPBITS_ONE
_serial.timeout = 5 #sec

commands = [ 0xB6, 0x01, 0x02, 0x00 ]

for cmd in commands:
    data = struct.pack("B", cmd)
    print("tx: ", data)
    _serial.write(data)

_serial.flush()

rx = _serial.readline()
print("rx: ", rx)
_serial.close()
```

serial:初期設定 (シリアル通信の設定)

write:バイナリーデータ (bytes 型) を送信する

readline: データを受信する

open:ポート開く close:ポート閉じる

flush:データを送信するまで待機する

実行結果として、3行目の use_port = '/dev/ttyUSB0' にエラーが表示される.

以下は Python でのシリアル通信 API の詳細 URL である.

pySerial API — pySerial 3.0 documentation (pythonhosted.org)

【狭い範囲でマルチホップ型になっているかの確認】 院生の研究室内で以下のように配置して行った. Eからデータを送信し, 宛先は C にしている.

C

Sniffer

(1) Eを Router9 の近くに配置し、データを送信した.

以下が実行結果である. 送信元が R9の MAC アドレスになっている.

Frame Counter: 2

Extended Source: IEEERegi_01:22:01:54:b2 (00:1b:c5:01:22:01:54:b2)

(2) Eを Router8 の近くに配置し、データを送信した.

以下が実行結果である. 送信元が R8の MACアドレスになっている.

Destination: 0x0000

Source: 0x599b

Radius: 30

Sequence Number: 187

[Extended Source: IEEERegi_01:22:01:6c:13 (00:1b:c5:01:22:01:6c:13)]

考察として,

- (2)の結果は配置の観点から正しいが、
- (1)は R9→R8→C ならば、送信元のアドレスとしては R8 を示すはずだが、

Sniffer が同じ狭い空間にいるため、送信元として R9 の MAC アドレスを示す.

【スケジュール】

大力ジュール 実施したこと できなかったこと 来週への課題					
5/26 ~ 6/2 JN5169にbeaconがないため JN5189を検討結果使用しない pollコードを制御 ・wiresharkの全般の理解 ・ wiresharkの確認		スケジュール	実施したこと	できなかったこと	来週への課題
6/2 ~ 9	5/26 ~ 6/2			・wiresharkの全般の理解	・E→Cの送信で検証 ・wiresharkでの確認
 6/9~16 ・ラズパイの初期設定 ・フィルタありのwireshark ・ ラズパイの初期設定 ・ wiresharkのフィルタで表示内容 を制限 ・ wiresharkでので表示内容 を制限 ・ wiresharkでので表示内容 ・ を制限 ・ wiresharkでのが達にデータの確認 ・ 実際のセンサを用いた過程での プログラム構築 ・ UART通信を実現するプログラム 構築 ・ AD変換に必要なテップ (ADS1015)を実装 ・ E→R→Cの経路をsnifferで確認 ・ AD変換チップをラズパイに 実装 ・ UARTの初期設定 ・ AD変換チップをラズパイに 実装 ・ UARTの初期設定 ・ AD変換チップをラズパイに 実装 ・ OUARTの初期設定 ・ AD変換チップをラズパイに 実装 ・ OUART通信の対象を表示 ・ ラズパイとMONOSTICK間 でのUART通信の構築 ・ 狭い範囲でのSnifferをWiresharkで確認 ・ タスパイとMONOSTICK間 でのUART通信の場類を ・ タスパイとMONOSTICK間 でのUART通信の内容に対していた。 ・ SnifferをWiresharkで確認 ・ UART通信のloopback ・ SnifferをWiresharkで確認 ・ UART通信のloopback ・ AD変換チップの実装 ・ UART通信のloopback ・ AD変換チップの実装 ・ UART通信のloopback ・ AD変換チップの実装 	6/2 ~ 9		・E→Cでの送信	・wiresharkでの正確な表示	を用いてAD変換を実施す
 ・wiresharkでのデータ確認 ・PythonでのAD変換とUART 通信プログラミング ・AD変換に必要なチップ (ADS1015)を実装 ・E→R→Cの経路をsnifferで確認 ・AD変換チップをラズパイに 実装 ・UARTに関する情報収集 ・論文調査 ・ UART通信の大まかなプログラミ ・ MAT通信の大まかなプログラミ ・ MAT通信の内容を表します。 ・ Wiresharkでの送信データの確認 ・ プログラムの動作確認 ・ プログラムの動作確認 ・ センサとチップを使用しプログラムの動作確認 ・ センサとチップを使用しプログラムの動作確認 ・ おり のチップが手元にないた かり ・ AD変換チップが手元にないた に実装する。 ・ AD変換チップをラズパイに に実装する。 ・ WARTに関する情報収集 ・ 論文調査 ・ DARTに関する情報収集 ・ 論文調査 ・ UART通信の大まかなプログラミ ング ・ Yログラムの動作確認 ・ ・ センサとチップを使用しプログラムの動作確認 ・ ・ とい のチップが手元にないた いため、未確認 ・ AD変換チップが手元にない に実装する。 ・ AD変換チップをラズパイに に実装する。 ・ UART通信のloopback ・ AD変換チップの実装 ・ Ioopbackを可能にする ・ AD変換チップの実装 ・ AD変換チップの実装 ・ ND変換チップの実装 ・ ND変換チップの実装 	6/9 ~ 16		・wiresharkのフィルタで表示内容	・適切なフィルター表示	バケットのみを表示 ・ラズパイでデータ収集 ・AD変換のプログラミン グ
6/23~30	6/16 ~23	・PythonでのAD変換とUART	・実際のセンサを用いた過程での プログラム構築 ・UART通信を実現するプログラム	(AD変換に必要なラズパイ のチップが手元にないた	・センサとチップを使用し
6/30~7/7実装 ・ UARTの初期設定・ UARTに関する情報収集 ・ 論文調査・ AD変換チップの実装 ・ に実装する。7/7~14・ ラズパイとMONOSTICK間 でのUART通信の構築 ・ 狭い範囲でのSnifferを動作・ UART通信の大まかなプログラミ ング ・ SnifferをWiresharkで確認・ UART通信のloopback ・ UART通信のloopback ・ AD変換チップの実装	6/23~30	(ADS1015)を実装 ・E→R→Cの経路をsnifferで	特にR→Cの経路をsnifferで確認	U)	
7/7~14 でのUART通信の構築 ・狭い範囲でのSnifferを動作 ・SnifferをWiresharkで確認 ・UART通信のloopback ・AD変換チップの実装	6/30~7/7	実装		AD変換チップの実装	
7/14~ 21 · AD変換チップの実装	7/7~14	でのUART通信の構築	ング	・UART通信のloopback	·
	7/14~ 21	・AD変換チップの実装			