V4A3 Sheet 7

So Murata

(i)

Given two roots $\alpha, \beta \in R$, we have

$$\langle \alpha^{\vee}, \beta \rangle = \frac{2(a, b)}{(a, a)} = \frac{2\|\beta\|}{\|\alpha\|} \cos \theta \in \mathbb{Z}.$$

Similarly for β , α , we derive

$$\langle \alpha^{\vee}, \beta \rangle \langle \beta^{\vee}, \alpha \rangle = 4 \cos^2 \theta \in \mathbb{Z}.$$

Thus the possibilities of $\cos \theta$ are

$$\pm 1, \pm \frac{1}{2}, \pm \frac{\sqrt{3}}{2}, \frac{1}{\sqrt{2}}$$

Thus angles corresponding them in $0 \le \theta \le \pi$ are

$$\frac{1}{6}\pi, \frac{1}{3}\pi, \frac{1}{4}\pi, \frac{1}{2}\pi, \frac{2}{3}\pi, \frac{3}{4}\pi, \frac{5}{6}\pi.$$

(ii)

Let $\Delta = \{\alpha, \beta\}$ be its simple roots. Then the angle between α, β are only the angles listed above. If the root system R is reducible then Span $R = \operatorname{Span} R_1 \oplus \operatorname{Span} R_2$. Span R has a dimension 2, therefore Span R_1 , Span R_2 both have dimension 1 and correspond to the standard basis. This is only possible when the angle between them are $\frac{1}{2}\pi$ with $\Delta = \{2e_1, 2e_2\}, R = \{\pm 2e_1, \pm 2e_2\}$.

(iii)

We now have to show that each irreducible root systems have angles corresponding to

$$\frac{1}{6}\pi, \frac{1}{3}\pi, \frac{1}{4}\pi, \frac{2}{3}\pi, \frac{3}{4}\pi, \frac{5}{6}\pi.$$

As we are talking about the reduced and irreducible root system, we can examine the Dynkin diagram to get all the possibilities.

1. For $\frac{2}{3}\pi$, it corresponds to A_2 ,

- 2. For $\frac{5}{6}\pi$, it corresponds to G_2 ,
- 3. For $\frac{3}{4}\pi$, it corresponds to either B_2, C_2 depending on the direction of the arrow.