Probability and Distribution Theory: Exercises 1

- 1. Let $\Omega = \{a, b, c, d\}$. Giving justification, determine whether each of the following constitutes a σ -field or not.
 - (a) $\mathcal{F}_1 = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\};$
 - (b) $\mathcal{F}_2 = \{\emptyset, \{c\}, \{d\}, \{a, b\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\};$
 - (c) $\mathcal{F}_3 = \{\emptyset, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c, d\}\}.$
- 2. Let \mathcal{F} be a σ -field of subsets of a set Ω .
 - (a) Show that if $A, B \in \mathcal{F}$, then $A \setminus B \in \mathcal{F}$.
 - (b) The symmetric difference $A\triangle B$ of two subsets A and B of Ω is defined to be the set of points of Ω which are in either A or B but not both. Show that if $A, B \in \mathcal{F}$, then $A\triangle B \in \mathcal{F}$.
- 3. Let A and B be independent.
 - (a) Show that A^c and B are independent.
 - (b) Show that A^c and B^c are independent.
 - (c) If $\mathbb{P}(A) = \frac{1}{3}$ and $\mathbb{P}(B^c) = \frac{1}{4}$, find $\mathbb{P}(A \cup B)$.
- 4. Write down all equalities that must hold for the family of events $\{A, B, C\}$ to be independent.
- 5. A supplier of a certain testing device claims that his device has high reliability in as much as $\mathbb{P}(A \mid B) = \mathbb{P}(A^c \mid B^c) = 0.95$, where $A = \{\text{device indicates component is faulty}\}$ and $B = \{\text{component is faulty}\}$. You hope to use the device to locate the faulty components in a large batch of components of which 5 percent are faulty.
 - (a) Find the value of $\mathbb{P}(B \mid A)$.
 - (b) Suppose you want $\mathbb{P}(B \mid A) = 0.9$. Let $p = \mathbb{P}(A \mid B) = \mathbb{P}(A^c \mid B^c)$. How large does p have to be?

- 6. Show that $\mathbb{P}(A \cap B \cap C) = \mathbb{P}(A \mid B \cap C)\mathbb{P}(B \mid C)\mathbb{P}(C)$.
- 7. (a) Prove 4 in Lemma 2 of Chapter 1.
 - (b) Optional question (for those who have previously studied proof by induction this technique will not be examinable)
 Give the proof of 5 in Lemma 1 of Chapter 1, by using induction on n.
- 8. A fair coin is tossed 10 times. Describe the appropriate probability space in detail for the two cases when
 - (a) the outcome of every toss is of interest,
 - (b) only the total number of tails is of interest.
- 9. Express the distribution function of $Y = \max\{0, X\}$ in terms of the distribution function F_X of X.