$$S(\Gamma) = \inf \left\{ S \gtrsim 0 : \sum_{z \in \Gamma(0)} \left(\frac{1 - |z|}{1 + |z|} \right)^{S} < \infty \right\}$$

Note that

$$P_{\Gamma}(s) \leq \sum_{z \in \Gamma(0)} (1-|z|)^{s} = \sum_{z \in \Gamma(0)} (1+|z|)^{s} \left(\frac{1-|z|}{1+|z|}\right)^{s}$$

$$\leq 2^s P_r(s)$$

and so

$$\sum_{\xi \in L(0)} (1+1+1)^{\xi} < \infty$$

if and only if $P_r(s) < \infty$

and therefore

$$S(\Gamma) = \inf \left\{ S \geq 0 : \sum_{z \in \Gamma(0)} (1 - |z|)^{S} < \infty \right\}$$

Det 1 be Fuchian and 1'≤1.

daim: Γ' is a Fuchian group. Let $g \in \Gamma' \subseteq PSL(2, \mathbb{R}) \equiv \mathbb{R}^4$. Then $g \in \Gamma \text{ and so for some } E > 0, \text{ we}$ have $B(g, E) \cap \Gamma' = \{g\}. \text{ Since}$ $M' \subseteq \Gamma' = \{g\}. \text{ Since}$

 $P' \subseteq \Gamma$, it Sellows that $B(g, E) \cap \Gamma' = \{g\}$ and so Γ' is discrete. It is also a group by definition and so we are done.

dain: L(r') EL(r).

Let $z \in L(\Gamma')$ and $g_n \in \Gamma'$ be such that $g_n(o) \Rightarrow z$ (in 1.1). Since $g_n \in \Gamma' \subseteq \Gamma'$ it follows that $z \in \Gamma(o)$ and so $z \in L(\Gamma)$.

daim: $S(\Gamma') \leq S(\Gamma)$,

Let $S > S(\Gamma)$, which by definition means $P_{\Gamma'}(S) = \sum_{z \in \Gamma'(0)}^{1-|z|} \left(\frac{1-|z|}{1+|z|}\right)^{S} \leq \sum_{z \in \Gamma'(0)}^{1-|z|} \left(\frac{1-|z|}{1+|z|}\right)^{S} = P_{\Gamma}(S) < \infty$ and so $S(\Gamma') \leq S$. Since $S > S(\Gamma)$ arbitrary, result follows.

7

The limit set is the middle 3rd Cantor set!

(ii) Let $z = g(u) \in \Gamma(u)$ and note that if the length of the word describing g is k, then $\beta(z) = 3^{-k}k$. For example, the length of Id is 0, the words of length $g(u) = 3^{-k}k$. I are g, h, the words of length $g(u) = 3^{-k}k$. I are g, h, the words of length $g(u) = 3^{-k}k$. I are g, h, the words of length $g(u) = 3^{-k}k$.

2 are g^2 , h^2 , gh and hg. Let Γ_k denote the words of length k and observe that $\Gamma = \bigcup_{k=0}^{\infty} \Gamma_k$ is a disjoint union and, for all k, we have $|\Gamma_k| = 2^k$.

8 continued...

Hence
$$\sum_{z \in \Gamma(u)}^{S} \beta(z)^{s} = \sum_{k=0}^{\infty} \sum_{z \in \Gamma_{k}(u)}^{S} \beta(z)^{s}$$

$$= \sum_{k=0}^{\infty} \sum_{z \in \Gamma_h(u)} \left(\frac{3^{-k}}{2}\right)^s$$

$$= \sum_{k=0}^{\infty} | \Gamma_{k}(u) | \left(\frac{3-k}{2}\right)^{s}$$

$$= 2^{-s} \sum_{k=0}^{\infty} \left(\frac{2}{3^s}\right)^k$$

This is a geometric series, which converges if and only if 2/3s < 1 which holds if and only if $s > \frac{\log 2}{\log 3}$.

Therefore
$$S(\Gamma) = \frac{\log 2}{\log 3}$$

(iii) log? is the Housdorf dimension of the linit set!