

RELATÓRIO DOS ENSAIOS DE CARACTERIZAÇÃO FÍSICA DO SOLO

YGOR VINÍCIUS PEREIRA NUNES

ygor.nunes@estudantes.ifg.edu.br 20221070080180

SUMÁRIO

1. INTRODUÇÃO	03
2. ENSAIOS DE CARACTERIZAÇÃO DOS SOLOS	03
2.1. MASSA ESPECÍFICA DOS SÓLIDOS	03
2.1.1. OBJETIVO	03
2.1.2. APARELHAGEM	03
2.1.3. PROCEDIMENTO	04
2.1.4. CÁLCULOS	04
2.2. GRANULOMETRIA	04
2.2.1. OBJETIVO	04
2.2.2. APARELHAGEM	05
2.2.3. PENEIRAMENTO	05
2.2.4. SEDIMENTAÇÃO	05
2.2.4. CÁLCULOS	06
2.3. ÍNDICES DE PLASTICIDADE	06
2.3.1. OBJETIVO	06
2.3.2. APARELHAGEM	06
2.3.3. PROCEDIMENTO	06
2.3.4. CÁLCULOS	07
2.4. COMPACTAÇÃO	07
2.4.1. OBJETIVO	07
2.4.2. APARELHAGEM	07
2.4.3. PROCEDIMENTO	07
2.4.4. CÁLCULOS	
2.5. CLASSIFICAÇÃO DOS SÓLIDOS	09
3. ANÁLISE DOS RESULTADOS	09
3.1. MASSA ESPECÍFICA DO SÓLIDOS	09
3.2. GRANULOMETRIA	10
3.3. ÍNDICE DE PLASTICIDADE E COMPACTAÇÃO	
3.4. CLASSIFICAÇÃO DOS SÓLIDOS	12
4. CONCLUSÃO	13
5 DEFEDÊNCIAS RIRI IOCDÁFICAS	1/

1. INTRODUÇÃO

No contexto da análise de solos necessária durante o período pré-obra, constata-se a necessidade da excussão de uma série de ensaios em laboratório (que também podem ser reproduzidos em campo) a fim de determinar as propriedades físicas dos solos, tais como a massa específica, o teor de umidade, o índice granulométrico e entre outros. Desta forma, este trabalho visa discorrer acerca destes ensaios, seus respectivos resultados e importâncias, dada uma amostra retirada do Parque Lago de Formosa-GO.

A primeira etapa a ser realizada para todos os ensaios é a separação da amostra. A norma ABNT: NBR 9404 determina o passo a passo necessário para a realização deste fracionamento. Em suma, o processo consiste em remover os resíduos e matérias orgânicas da superfície do terreno, cavar cerca de 1 (um) metro de solo que não será utilizado como amostra e, por fim, retirar a quantidade de solo necessária para a realização dos ensaios. Para este estudo, foram utilizados 5 (cinco) kg de solo.

Ademais, cada ensaio realizado possui uma norma técnica que regulamenta suas etapas de execução e descreve a maneira correta da leitura e obtenção de seus respectivos resultados. Portanto, dado o "quarteamento" do solo - método de separação uniforme do solo necessário para fragmentar as quantidades de material para cada experimento-, as quantidades utilizadas, a metodologia, os cálculos e resultados serão descritos de acordo com cada característica física que se deseja determinar para a amostra coletada.

2. ENSAIOS DE CARACTERIZAÇÃO DOS SOLOS

2.1 MASSA ESPECÍFICA DOS SÓLIDOS

2.1.1 OBJETIVO

Segundo a norma NBR 6508:1984, este ensaio tem o objetivo de determinar a massa específica dos grãos de solo que passam na peneira 4,8 mm, utilizando o picnômetro.

2.1.2 APARELHAGEM

Os aparelhos utilizados durante a execução do ensaio são:

Estufa;

- Aparelho de dispersão com hélices metálicas e copo munido de chicanas metálicas;
- Picnômetro de 1000 mL;
- Bomba de vácuo;
- Balança;
- Funil de vidro.

2.1.3 PROCEDIMENTO

O procedimento deste ensaio inicia-se separando e destorroando o material da amostra. Após, pesa-se 250g e realiza-se o processo de quarteamento deste material e separa-se 120g do mesmo, denotando-se este valor como M1. Este material foi adicionado ao copo de dispersão, juntamente com cerca da metade da medida do copo de água. Deixamos o aparelho de dispersão ligado por 15 minutos com a mistura de solo e água e pesamos o picnômetro apenas com água, atentando-se à marcação do frasco, este valor é considerado como M3. Por fim, adiciona-se a mistura de água e solo ao picnômetro e completa-se com mais água até a marcação do frasco. Aplicar vácuo de, no mínimo 88 kPa, durante 15 minutos, agitando-se o picnômetro. Por fim, acrescentar água (caso falte) até a marcação do picnômetro e pesar o frasco, denotando-se como M2.

2.1.4 CÁLCULOS

A fórmula utilizada para a obtenção da massa específica é:

$$\delta = \frac{M_1 \times 100/(100+h)}{\left[M_1 \times 100/(100+h)\right] + M_3 - M_2} \times \delta_T$$

2.2 GRANULOMETRIA

2.2.1 OBJETIVO

Segundo a norma NBR 7181:2016, o objetivo deste ensaio é determinar o índice granulométrico dos solos utilizando o método do peneiramento ou da sedimentação combinada com o peneiramento.

2.2.2 APARELHAGEM

Os aparelhos utilizados durante a execução do ensaio são:

- Estufa;
- Balança;
- Proveta de vidro;
- densímetro de bulbo simétrico, calibrado a 20 °C e com resolução de 0,001 mm graduado de 0,995 a 1,050;
- Cronômetro;
- peneiras de 50 mm, 38 mm, 25 mm, 19 mm, 9,5 mm, 4,8 mm, 2,0 mm, 1,2 mm, 0,6 mm, 0,42 mm, 0,25 mm, 0,15 mm e 0,075 mm, de acordo com as ABNT NBR NM ISO 3310-1 e ABNT NBR NM ISO 3310-2;
- Cápsulas metálicas para a determinação do teor de umidade.

2.2.3 PENEIRAMENTO FINO

O procedimento do ensaio inicia-se com a separação, destorroamento e pesagem da amostra conforme indicado na norma ABNT NBR 6457. Realiza-se a denotação da massa da amostra seca, em temperatura ambiente. Passar o material pela peneira 2,0 mm com auxílio de água e após secar o material em estufa por, no mínimo, 24h. Neste experimento, o processo de secagem durou mais de 48h. Após a retirada do material da estufa, deve-se destorroá-lo novamente e passar o material pelas respectivas peneiras supracitadas na aparelhagem, anotando as massas retidas acumuladas. Cabe ressaltar que a norma exige o uso de agitador mecânico, entretanto, para uma melhor execução em laboratório, o peneiramento foi realizado manualmente.

2.2.4 SEDIMENTAÇÃO

Ainda com a mesma amostra, separa-se 70g para a realização do ensaio de sedimentação. Adiciona-se o solo à proveta com água e agita-se até que a mistura torne-se visualmente homogênea. Coloca-se o densímetro dentro da proveta e denota-se a marcação seguindo as divisões de tempo de 30s, 1 min, 2 min, 4 min, 8 min, 15 min, 30 min e 1h, atentando-se à estabilização das marcações.

2.2.5 CÁLCULOS

A fórmula utilizada para a obtenção das porcentagens de materiais que passam em cada peneira do ensaio é:

$$Q_g = \frac{\left(M_s - M_r\right)}{M_s} \times 100$$

2.3 ÍNDICES DE PLASTICIDADE

2.3.1 OBJETIVO

Segundo a norma NBR 7180:1984, o objetivo deste ensaio é determinar o limite de plasticidade, bem como calcular o índice de plasticidade do solo.

2.3.2 APARELHAGEM

Os aparelhos utilizados durante a execução do ensaio são:

- Estufa;
- Cápsula;
- Espátula;
- Balança;
- Gabarito cilíndrico para comparação;
- Placa de vidro de superfície esmerilhada.

2.3.3 PROCEDIMENTO

A referida norma enfatiza a necessidade da execução deste ensaio em um ambiente climatizado, para que seja evitada a perda de umidade da amostra. Primeiramente, deve-se colocar o material em uma cápsula de porcelana e amassar e revolver com o auxílio de uma espátula até que seja formada uma pasta homogênea, de consistência plástica. Para amostras que passaram por secagem prévia, deve-se realizar o procedimento adicionando água destilada aos poucos. Após este processo, para o segundo passo deve-se formar uma bola utilizando cerca de 10g do material e pressioná-la contra a placa vidro, formando o cilindro. Caso a amostra se fragmente antes de atingir o diâmetro de 3 mm, deve-se voltá-la à cápsula de porcelana, adicionar água, e amassar até que se torne homogênea. Após a amostra ficar

com 3 mm de espessura, deve-se repetir o segundo passo até que a amostra atinja o diâmetro de 3 mm e o comprimento da ordem de 100 mm. Após, deve-se determinar a umidade da amostra.

2.3.4 CÁLCULOS

A fórmula utilizada para a determinar o índice de plasticidade do solo é:

$$IP = LL - LP$$

2.4 COMPACTAÇÃO

2.4.1 OBJETIVO

Segundo a norma NBR 7182:2016, este ensaio tem como objetivo estabelecer uma relação entre o teor de umidade e a massa específica aparente seca dos solos, quando compactados.

2.4.2 APARELHAGEM

Os aparelhos a serem utilizados durante a execução do ensaio são:

- Balança;
- Peneiras 19 mm de 4,8 mm;
- Estufa;
- Cápsulas metálicas;
- Bandejas metálicas;
- Régua de aço;
- Espátulas;
- Cilindro metálico pequeno.

2.4.3 PROCEDIMENTO

O ensaio de compactação pode ser realizado com ou sem reuso de material. O passo inicial do experimento é compreender os tipos de energias de compactação utilizadas:

C''' 1	Características inerentes	Energia			
Cilindro	a cada energia de compactação	Normal	Intermediária	Modificada	
	Soquete	Pequeno	Grande	Grande	
Pequeno	Número de camadas	3	3	5	
	Número de golpes por camada	26	21	27	
Grande	Soquete	Grande	Grande	Grande	
	Número de camadas	5	5	5	
	Número de golpes por camada	12	26	55	
	Altura do disco espaçador (mm)	63,5	63,5	63,5	

Tabela 1: Energias de Compactação. Fonte: ABNT. NBR 7182: Solo — Ensaio de Compactação. 2016.

O passo a passo para o ensaio com e sem reuso de material são semelhantes, distinguem-se apenas na preparação do material. Desta forma, o processo inicia-se ajustando o cilindro a ser utilizado em sua respectiva base, lembrando-se que o cilindro pequeno apenas deve ser utilizado caso a amostra passe completamente na peneira 4,8 mm. Após o preparo da amostra, deve-se adicionar água até que se obtenha um teor de umidade cerca de 5% abaixo da umidade ótima presumível enquanto mistura-se o material até atingir a homogeneidade. Após esse processo, realiza-se a compactação do material, segundo a energia de compactação desejada (vide Tabela 1). Ao final da compactação, retirar o molde cilíndrico da base e pesar o conjunto e, subtrair o peso do molde, obtém-se o valor da massa úmida do solo compactado (M_u). O processo deve ser repetido ao menos 5 vezes, aumentando 2% o teor de umidade entre os resultados.

2.4.4 CÁLCULOS

A fórmula utilizada para determinar a massa específica aparente seca do solo é:

$$P_{d} = \frac{M_{u} \times 100}{V(100 + w)}$$

A fórmula utilizada para determinar a curva de saturação (relação entre o teor de umidade e a massa específica aparente seca é:

$$Pd = \frac{S}{\frac{w}{P_w} + \frac{S}{P_s}}$$

2.5 CLASSIFICAÇÃO DOS SÓLIDOS

Com base nos resultados dos ensaios de determinação das características físicas de um determinado solo, é possível realizar a classificação deste material, de acordo com parâmetros estabelecidos mundialmente. Atualmente, existem 3 principais sistemas de classificação dos solos: SUCS (Sistema Unificado de Classificação dos Solos), TRB (*Transportation Research Board*) e MCT (Miniatura Compactada Tropical). Esses sistemas utilizam os parâmetros físicos dos solos e suas composições químicas para classificá-los em prol de um uso específico, todavia, o sistema SUCS é o mais utilizado entre estes.

3. ANÁLISE DOS RESULTADOS

3.1 MASSA ESPECÍFICA

	TEOR DE UMIDADE				
AMOSTRA PESO SECO PESO UMIDO TARA UMIDADE(%					
A1	19,96	21,22	6,04	9,05	
A2	23,03	24,86	5,74	10,58	
A3	21,29	22,87	5,73	10,15	
Média:			9,93		

Tabela 2: Teor de Umidade. **Fonte:** Autoral.

MASSA ESPECÍFICA					
M1 M2 M3 H δágua δsolo				δsolo	
120,00	1237,40	1166,30	9,93	1,00	2,87

Tabela 3: Massa Específica do Solo. **Fonte:** Autoral.

Os resultados apresentados nas tabelas 2 e 3, são relacionados aos ensaios de teor de umidade e massa específica do solo. Os dados foram obtidos experimentalmente, de acordo

com o passo a passo descrito em norma técnica. Entretanto, foi necessária a adaptação de algumas etapas do ensaio, em prol da maior eficiência da aula e, também, pela indisponibilidade de certos recursos e pela dispensabilidade de um controle rigoroso da execução dos ensaios, visto que estes resultados possuem apenas caráter educacional.

3.2 GRANULOMETRIA

	PENEIRAMENTO GROSSO				
PENEIRA	ABERTURA(mm)	SOLO RETIDO (g)	SOLO RETIDO ACUMULADO (g)	MATERIAL QUE PASSA (%)	
2"	50,80	0,00	0,00	100,00	
1 1/2"	38,10	0,00	0,00	100,00	
1"	25,40	0,00	0,00	100,00	
3/4"	19,10	0,00	0,00	100,00	
3/8"	9,50	0,00	0,00	100,00	
4	4,76	0,62	0,62	99,94	
10	2,00	4,10	4,72	99,53	

Tabela 4: Peneiramento Grosso. **Fonte:** Autoral.

	PENEIRAMENTO FINO				
PENEIRA	ABERTURA(mm)	SOLO RETIDO (g)	SOLO RETIDO ACUMULADO (g)	MATERIAL QUE PASSA (%)	
30	0,59	139,60	139,60	86,04	
40	0,42	48,65	188,25	81,18	
50	0,30	43,58	231,83	76,82	
60	0,25	13,00	244,83	75,52	
100	0,15	49,20	294,03	70,60	
200	1,12	26,75	320,78	67,92	

Tabela 5: Peneiramento Fino. **Fonte:** Autoral.

TEMPO	LEITURA SEM	TEMPERATURA	
TEIVIPO	DEFLOCULANTE	(°C)	
0,15"	1,007	25	
0,30"	1,006	25	
1'	1,006	25	
2'	1,005	25	
4'	1,005	25	
8'	1,004	25	
15'	1,004	25	
30'	1,004	25	

Tabela 6: Resultados da Sedimentação. **Fonte:** Autoral.

As tabelas 4 e 5 referem-se à etapa do peneiramento e a tabela 5 refere-se à etapa da sedimentação, procedimentos necessários para a elaboração da curva granulométrica. A execução dos ensaios de peneiramento e sedimentação é necessária para a caracterização física do solo, visto que determina o diâmetro característico dos grãos da amostra. Esta informação está diretamente relacionada à resistência do solo e, consequentemente, ao uso atribuído à este.

Gráfico 1.1: Curva Granulométrica. **Fonte:** Autoral.

Com os resultados obtidos experimentalmente em laboratório didático, é possível elaborar a curva granulométrica do solo, como pode ser observado nos gráficos 1.1 e 1.2. Esta curva descreve o comportamento do solo mediante os processos de peneiramento e sedimentação, descritos previamente.

3.3 ÍNDICES DE PLASTICIDADE E COMPACTAÇÃO

Os ensaios de plasticidade e compactação do solo não puderam ser realizados no decorrer das aulas deste semestre, portanto, não há resultados práticos a serem discutidos neste relatório.

Estes ensaios são de suma importância para a determinação das características físicas relacionadas à resistência de um determinado solo e para sua classificação mediante as informações físicas e a composição química determinadas nos procedimentos.

3.4 CLASSIFICAÇÃO DOS SOLOS

Mediante os resultados obtidos nos ensaios, é possível realizar a classificação do solo, segundo o método SUCS. Este sistema de nomenclatura, baseia-se em parâmetros físicos, como a granulometria do solo, para classificar os solos entre finos (argilas e siltes) ou granulares (pedregulhos e areias). Observando as tabelas abaixo, e sob posse dos resultados do ensaio de granulometria, podemos obter a classificação inicial para a amostra utilizada como sendo SW, ou seja, uma Areia Bem Graduada.

%Passa # 200 (0,075 mm) < 50%			
Pedregulhos	Pedregulhos limpos	CNU ≥ 4	GW
% Passa #4	(% Passa #200 < 5%)	CNU < 4	GP
(4,8 mm) <	Pedregulhos com finos	Abaixo da linha A	GM
50%	(%Passa #200 >12%)	Acima da linha A	GC
Areias	Areias limpas	CNU ≥ 6	SW
% Passa #4	(% Passa #200 < 5%)	CNU < 6	SP
(4,8 mm) >	Areias com finos	Abaixo da linha A	SM
50%	(%Passa #200 >12%)	Acima da linha A	SC

Tabela 7: Classificação SUCS para solos grossos. **Fonte:** DANTAS, André. **Aula 08 - Classificação dos Solos**. Notas de aula.

%Passa # 200 (0,075 mm) > 50%			
Siltes e argilas	Inorgânicos	Acima da linha A, IP > 7	CL
com LL < 50%		Abaixo da linha A, IP < 4	ML
	Orgânicos	LL seco < 0,75 LL natural	OL
Siltes e argilas	Inorgânicos	Acima da linha A	CH
com LL > 50%		Abaixo da linha A	МН
	Orgânicos	LL seco < 0,75 LL natural	ОН
Solos altamente orgânicos	Principalmente matéria orgânica, cor escura e cheiro característico		PT

Tabela 8: Classificação SUCS para solos finos. Fonte: DANTAS, André. Aula 08 - Classificação dos Solos. Notas de aula.

4. CONCLUSÃO

Deste modo, compreende-se a importância da execução dos ensaios de determinação das características físicas do solo como sendo o primeiro passo fundamental na análise do terreno que receberá uma determinada obra. A massa específica, a granulometria e o índice de plasticidade dos solos ajudam na determinação de sua resistência, bem como o conhecimento dos materiais que compõem aquela localidade.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6457: Amostras de solo**— **Preparação para ensaios de compactação e ensaios de caracterização**. Rio de Janeiro. 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 6458:** Grãos de pedregulho retidos na peneira de abertura 4,8 mm — Determinação da massa específica, da massa específica aparente e da absorção de água. Rio de Janeiro. 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7180: Solo** — **Determinação do limite de plasticidade**. Rio de Janeiro. 2016.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7181: Solo — Análise granulométrica**. Rio de Janeiro. 1994.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7182: Ensaio de compactação**. Rio de Janeiro. 2016.

DANTAS, André. Aula 08 - Classificação dos Solos. Notas de aula.