

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER PUBLICATION DATE:

05150036 18-08-93

APPLICATION DATE

30-11-91

APPLICATION NUMBER

: 08342364

APPLICANT: NEC CORP:

INVENTOR: NOMOTO SELJI:

INT.CL.

: G01S 13/44

TITLE

: RADAR DEVICE

ABSTRACT : PURPOSE: To improve the angle measuring accuracy of a radar device performing monopulse azimuth angle measurement.

> CONSTITUTION: A monopulse azimuth angle measuring redar device is provided with an amplitude-comparing angle-measuring computing element 8 for computing the target azimuth by performing the comparing-inter-polating calculation of sum video amplitude of two beams adjacent in the azimuth direction; a weighting coefficient generator 9 for generating a weighting coefficient, receiving the azimuth outputted from a monopulse angle measuring computing element 6; and a weighted average value computer 10 for computing the weighted average of the azimuth angles outputted from the monopulse angle measuring computing element 6 and amplitude-comparing angle-measuring computing element 8. The weighting coefficient of the weighting coefficient generator 9 is so set that weight A is multiplied to the output of the amplitude-comparing anglemeasuring computing element 8 near the beam nose of a sum pattern and the middle part of two adjacent beams-but weight is multiplied to the output of the monopulse angle measuring computing element 6 at the middle part between the two regions.

COPYRIGHT: (C)1993.JPO&Japio

(19)8年89年87 (79) (12)公開特許公報(A)

(11)特許出額公開業長

特開平5-150036 (40)公開日 平成5年(1990)6月18日

COMPACT .

繁殖記号 /方向整理修订

82.5

被继续带领等

G 0 1 8 13/44

8849~83

新教育学 未設定 脱水塔の数1(全 5 頁)

(21) 振騰器等。

(22) (588) (7

等数等3~342384

平成3年(1991)11月30日

(71) 8388 A 988084237

另本數數學式会社

双双都带以芝玉丁目7番1号

(72)発明者 野本 誠二

POST MERCE

(74)代理人 芳橙生 錦木 東夫

(54) (発明の名称) レーダ装置

(57) (38-85)

(目的) モノバルス方位郷角を行うレーダ級数の拠角 粉聚金数粉分表。

「構成」 モノバルス方位開角を行うレーダ装置に、方 位方向に隣接する3ビームの箱ビデオの接觸を比較・内 押削事することにより目標の方位角を算出する振幅比較 製肉液算器8と、モノバルス制角液算器出力の方位角を 入力として減ら付け保険を発生させる減ら付け保険発生 器分と、モノバルス製角演算器出力の力位角と振幅比較 類角と演算器出力の方位角との裏み付け平均折算を持う 系分付付平均数据出版102を備える。**发**み付け数数据 生器9の服み付け条数は、初パターンのビームノーズ例 近水び粉後2ビームの中間付近では影響比較差角度算器 8の出力に基みを掛け、その2つの複雑の中間ではモノ バルス開発展開発もの出力に関みを掛けるように設定す 85 s

---289---

(開催金の創御)

【謝孝模士】 所定のビーム産業プログラムに従ってビ 一ム方向を影響するビーム方向解釋器と、定められたビ 一ム方向において方位方向にモノバルス機角剤の物パタ 一ンと差パターンを同時に形成することが可能な空中観 と、部号を受賞する受信機と、日報報号以外の受信信号 **を辞正する信号処理器と、物パターンと差パターンの数** 個特性により目標の方位角を算出するモノバルス拠角資 算器と、個号処理出力の日際個号を影響する記憶器と、 方位方向に務後する2ビームの和ビデオ当務務局の振器 26 ーンのビームノーズからの服務例9は弱々の振器特性動 を比較する影響比較器と、方位方向に微核する2ビーム の和ビデオの振幅を比較・内部計算することにより目標 の方位角を製出する振幅比較服角族算器と、モノバルス 部角逐界器出力の方位角を入力として選挙付け係款を発 生させる最み付け条数発生器と、モノバルス部外演算器 田力の方位角と振爆比較額角と振算器出力の方位角との 業の付け平均計算を行う業み付け平均億算出額とを備え ることを特徴とするレーダ経療。

(発明の詳細な説明)

(0001)

[産業上の利用分野] 本発明は複素レーダ装置に関し、 特に方位に関してモノバルス拠角処理を行うことにより 日等の方位角情報を得るレーダ協関に関する。

19 0 0 23

【従来の技術】従来、この機のレーダ基盤は、日都の3 次元位置情報を得るため、所定のビーム差差プログラム に使ってペンシルビームを方律及び仰角方面に走査して いた。例えば、複像レーダ製器の場合、広範囲の製筒を 接案するために、同一方位の各種角単に隣接する複数の ベンシルビームを選次形成し、これを水平面内で回転さ 30 せる方法が使われる。又、追尾レーダの場合、目標の報 密な3次元位置物等を得るために運転的に目標にペンシ ルビームを開催する。

[0003] 第2世紀来のレーダ後継の機能例を示す。 このレーダ装置では、先ず、必要とする方向にビーム差 **煮を行うために、ビーム方向制御器** 1 においてビーム方 海網御報号を発生し、空中線2へ出力する。空中線2は ビーム方向制御祭界に従って、指定された方向にペンシ ルビームを形成する。方位拠角をモノバルス方式で行う ために、空中級2は図3に示すような箱パターンと整パーの 計算を行う認み付け平均額算出器とを構える。 ターンの2個額のビームバターンを開時に空間に形成す。 る。空中観さからの美術器等は、美術観るにおいて高層 数から中間周数に変異された後、哲号処理器4へ出力さ れる。個學及整整4では、自然以外の登録個學に対する 類深処理を行った後、受債債券の中から一定レベル以上 の信号を目標からの反射信号と物定し、機構比較第5天 び記憶器でへ出力する。影像器では現在の方位より過去 に走査した方位開放ビームにおける目標保管を振露比較 勝るに出力する。顕像比較器をは、現在の方位の目標的 号と過去に走ました方位階後と一ムにおける目報信号の「砂」 【実施例】次に、本発明について報道を参照して説明す

和ビデオを比較して後者の方が大きい場合。モノバルス 概角複算器もへ出力する。モノバルス個角複数器もで は、各機健等に対してモノバルス網角処理により方位向 を募出し、出力する。

(6004) ここで、モノバルス製角処理の原理を図る 及び関4を参照して説明する。 わパターン101と差パ ターン102の2種類のアンデナバターンから特徴部署 104として物ビデオと整ビデオが得られる。物ビデオ と菓ビデオの機構像をそれぞれる。などすれば、知バタ 様より求められる。この蘇某角をとピーム方向を加算す ることにより、日本の方位外が得られる。

100061

(発明が解決しようとする解題) この使来のレーダ報報 では、方位振角としてモノバルス調角処理を行っている ために、物バターンのビームノーズ付近に個角精度が劣 化する不够物が生じる。ここで、不够物について簡単を 参照して放明する。和バターン101において、ピーム ノーズ付近では受傷レベルが高いので、自傷傷号105 20 の受象は容易である。ところが、この整数はちょうど無 パターン102のナル素付近に相当しているため、智器 個号105の数ピデオはノイズに埋めれて、正確な機能 僧女が得られない。このため、図4に※すようにこの翼 **域は正確な関系値が得られない不感象での**主になるとい う問題点がある。さらに知バターン101のビームノー ズから離れるに従って、おビデオのS/Nが劣化するこ とによる服务策度の劣化という問題点があった。本発明 の目的は、衛角雑食を改善したレーダ数数を提供するこ ఉడుతిని.

130061

(協議を解放するための手術) 本発明のレーダ装置は、 ピーム方向網線器、空中線、受信機、部界処理器、モノ バルス総角演算器、影像器、表び振躍比較器を有するシ **ーダ装置に、方位方向に開催する 2 ビームの和ビデオの** 振蕩を比較・対策計算することにより目標の方位角を算 出する影響比較部角密算器と、モノバルス製角器算器出 力の方位角を入力として重み付け複数を発生させる電み 付け複数発生器と、モノバルス製角複算器出力の方位角 と振駆比較観角と寂寞器出力の方位角との窓み付け平均

(88887)

(作用)和パターンのビームノーズ付置及び開催2ビー ムの中間付近では振幅比較拠角変算器の出力に重みを差 け、その2つの機械の中間では遊にモノバルス製造機算 器の出力に繋みを掛けるように繋み付け係数を設定し、 この係数をモノバルス副奏演算器の出力及び顕微比較拠 角演算器の出力とともに案み付け平均値算出器で業み付 **世平時計算を行ない、目標の方位会として出力する。**

[0008]

---270---

る。第1は本発明の一実施例を示すプロック図である。 異、第2に乗した従来技術の構成と同一部分には同一の 等等を付してあり、ヒーム制御器1、空中線2、受御機 3、個學的學說4、振暢比較服5、モノバルス與角線算 報号、記憶器での動作は従来技術と関係であるため説明 を容易する。本党等では、この構成に更に影響比較物質 赛斯服 8、累み付け等数発生器 9、氯み付け平均数据出 器を付款している。新配額網は散務角減算器をは、信号 総理器を出力の現在の方位の日間盤件の物ビデオの機構 位号の位置デオの振幅報を比較・内得計算することによ り、日都の方位身を製出し、出力する。又、敷み付け係 教発生器をは、モノバルス網角複算器を出力の目標の方 位着を入力パラメータとして厳み付け条数を発生させ

[0000] 服み何け部数の後の方は次のようにする。 先ず、原際比較影角演算器多の出力の方位共は、目標の フラクチュエーションによる解除が大金い代わりに、モ ノバルス部外のような不懈的はなく。 お位に関して物像 は一部であると見てより、逆に、モノバルス製肉質製器 20 名。 その出力の方位角は、日都のフラクチュエーションによ る解差がない代わりに、不確奪が生じるとともに、知べ ターンのビームノーズから**照れた領域では**8万Nの発化 により初角物度が劣化している。

【9010】したがって、減み付け係数としては、定パ ターンのビームノーズ付近及び締接2ビームの中間付近 では振興比較都角鐵路器をの出力に電みを掛け、その2 つの策略の中間では逆にモノバルス海角演算器もの出力 に類みが掛かるように、象み付け部数を設定する。この ようにして年のた業み付け価数は、モノバルス制角演算 30 9 最み付け係数発生器 器多の出力及び器構比較器角接算器多の出力ととも比策 み付け平均銀算出器よりに入力まれ、激み付け平均計算

を行った後に、日間の方依角として出力される。 [0.011]

[発明の効果] 以上総明したように本発明は、方位額条 において、モノバルス網角影響を行うさともに、方位器 第2ビームの音響信号の物ビデオを用いて影響比較製金 処理を行い、両方の出力に対してモノバルス観点におけ る不够等の概能と新パターンのビームノーズより動れた ※単での5/N労化による影差及び振楽比較個角におけ る目標のフラクチュエーションの概念を考慮した業等付 優と、発展器で出力の方位方向に顕微するビームの目標 切 け平均計算を行うことにより、複数線度を設置するとい う効果がある。

(開催の簡単な説明)

【図1】本発明のレーダ装置の一条筋肉のブロック構成 额である。

【図2】従来のレーダ装置の一例のブロック構成図であ

【簡3】モノバルス顕角方式におけるビームパターンの MARTES.

【関イ】モノバルス開発力式における影響特性曲線であ

[新号の数約]

- 1 ピーム方向制御器
- 2 3950
- 3 490000
- 4 00000000
- 5 10/834/600
- 6 モノバルス湖角微算器
- 7 37598
- 8 新维比较聚合级莱装
- - 10 第四付け平均億額出署

(\$8.83)

08/43

(XXI)

