

T.C MİMAR SİNAN GÜZEL SANATLAR ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ İSTATİSTİK BÖLÜMÜ

IST 306 Zaman Serileri Analizi

Uluslararası Göç Akışı – Kanada EViews Proje Raporu

Danışmanlar:

Prof. Dr. Barış Aşıkgil

Öğr. Gör. Dr. Damla İlter

Hazırlayanlar:

Osman Coşkun

Ecenur Can

İÇERİK

Veriye EViews'ta Bakış	
Gözlemler İlişkili Midir?	4
Korelasyon	
Otokorelasyon	
Trendin İncelenmesi	6
Histogram ve Genel İstatistikler	6
Birim Kök Testi (Durağanlaştırma)	7
Deterministik Trendin Modellenmesi	9
Doğrusal Trend Modeli	
Birinci Farklar Trend Modeli	
Üstel Trend Modeli	
Karesel Trend Modeli	
Lojistik Trend Modeli	
Kübik Trend Modeli	
Logaritmik Trend Modeli	
Kurulan Model Grafiklerinin Karşılaştırılması	
En İyi Modelin Kararlaştırılması ve İncelenmesi	23
Çoklu Bağlantı Problemi İncelemesi	
Hataların İncelenmesi	
Hatalar İçin Normallik İncelemesi	
Hatalar İçin Otokorelasyon İncelemesi	
Hatalar İçin Değişen Varyanslılık İncelemesi	
Dönüşüm (Karekök Alma İşlemi)	26
Yeni Karesel Trend Modeli	27
Yeni Karesel Trend Modeli İçin Çoklu Bağlantı Problemi İncelemesi	
Üstel Düzleştirme Yöntemleri	30
Çiftel Üstel Düzleştirme	
Holt'un Üstel Düzleştirmesi	
Ayrıştırma Yöntemleri	32
Mevsimsel Olmayan Box-Jenkins Modeli (ARMA)	35
Sonuç ve Nihai Tahmin	49
Kaynakça	50

Veriye EViews'ta Bakış:

Projede EViews programında Kanada'nın 1980 – 2013 yılları (1980 ve 2013 yılları da dahil) arasında tutulan göç verileri kullanılarak analizler yapılacaktır. Yapılan analizlerden elde edilen bilgilere göre 2014 – 2015 – 2016 yılı göçmen sayıları tahminlenecektir. Verimize aşağıdaki görsellerde göz atalım.

		1996	452142
1980	286274	1997	432072
1981	257282	1998	348390
1982	242350	1999	379900
1983	178370	2000	454910
1984	176544	2001	501272
1985	168692	2002	458098
1986	198702	2003	442698
1987	304150	2004	471644
1988	323170	2005	524484
1989	383100	2006	503280
		2007	473506
1990	432902	2008	494488
1991	465604	2009	504340
1992	509574	2010	561374
1993	513276	2011	497496
1994	448764	2012	515806
1995	425728	2013	518042

GÖZLEMLER İLİŞKİLİ MİDİR?

KORELASYON

- H₀: Gözlemler ilişkisizdir. Bu bir zaman serisi değildir.
- H₁: Gözlemler ilişkilidir. Bu bir zaman serisidir.

Probability değerlerine bakıldığında hepsinin 0.000 (0.05'ten küçük) olduğu görülüyor. Bu nedenle H0 hipotezi reddedilir. Bu veri setindeki gözlemler ilişkilidir ve bu bir zaman serisidir.

Verimiz yıllık bir veri olduğu için mevsimsellik aranmaz. Fakat arıyor olsaydık lag = 200 değeriyle eğilimi kaldırarak sarmal autocorrelation yapısını elde edebilirdik ve mevsimsellik olduğunu söyleyebilirdik.

OTOKORELASYON

- H₀: Otokorelasyon yoktur.
- H₁: Otokorelasyon vardır.

Güven sınırlarını aşan durumlar olduğundan H₀ reddedilir. Gözlemler ilişkilidir ve otokorelasyon vardır.

TRENDIN INCELENMESI

Yukarıda Immigrants değişkeninin çizgi grafiği bulunmaktadır. Grafiğe göre doğrusal olmayan artan trend olduğu söylenebilir.

Histogram ve Genel İstatistikler

- H₀: p = 0 (Veri normal dağılıma sahiptir.)
- H₁: p ≠ 0 (Veri normal dağılıma sahip değildir.)

Değişkenimizin histogram grafiğini incelediğimizde Jarque-Bera probability değeri 0.05'ten büyük olduğu için H0 hipotezi reddedilemez. Veri normal dağılıma sahiptir. Ortanca değerimiz ortalama değerinden büyük ve verinin skewness değeri 0.853 olduğu için sola çarpıklıktan bahsedebiliriz.

Birim Kök Testi (Durağanlaştırma)

- H₀: Seri durağan değildir, stokastik trende sahiptir ve birim kök içerir.
- H₁: Seri durağandır, stokastik trende sahip değildir ve birim kök içermez.

Fark işlemi yapılmadan sadece sabit katsayı B₀ ile oluşturulan regresyon modeline göre;

Augmented Dickey-Fuller Unit Root Test on IMMIGRANTS

Null Hypothesis: IMMIGRANTS has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=8)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ıller test statistic 1% level 5% level 10% level	-1.120106 -3.646342 -2.954021 -2.615817	0.6960

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(IMMIGRANTS)

Method: Least Squares Date: 05/20/22 Time: 14:52 Sample (adjusted): 1981 2013

Included observations: 33 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
IMMIGRANTS(-1) C	-0.074824 37248.43	0.066801 28041.18	-1.120106 1.328347	0.2713 0.1938
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.038898 0.007895 43809.92 5.95E+10 -398.4847 1.254637 0.271272	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	7023.273 43983.88 24.27180 24.36250 24.30232 1.549976

Unit Root Test'i yalnızca Intercept seçerek (B_0 kullanarak) yaptığımızda probability değeri (0.6960) 0.05'ten büyük çıktığı için H0 hipotezi reddedilemez. Yani seri durağan değildir, stokastik trende sahiptir ve birim kök içerir.

Hipotez reddedildiğinden yani serinin durağan olmadığı kararına varıldığından durağanlaştırma işlemi yapılır. Test trend and Intercept seçeneği ile (hem B₀'ı hem trendi dahil ederek) tekrarlanır.

Probability değeri 0.05'ten küçük olduğundan H₀ hipotezi reddedilir. Seri durağandır, stokastik trende sahip değildir ve birim kök içermez.

Trendi eklediğimizde seri durağanlaştığından fark almaya gerek kalmadı.

Durağanlaştırmış veriyi kaydettik. Grafiği aşağıdadır.

Deterministik Trendin Modellenmesi

Doğrusal Trend Model

Kurulan regresyon modeli;

 $Y_t = 250093.8 + 9528.050t$

B₀(c) Katsayısı:

 H_0 : $B_0(c)$ katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : $B_0(c)$ katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B₀ katsayısının probability değeri 0.05'ten küçük olduğu için H₀ hipotezini reddederiz. B₀ katsayısı anlamlıdır ve deterministik trend vardır.

B₁(@trend) Katsayısı:

H₀: B₁(@trend) katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : $B_1(@trend)$ katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_1 katsayısının probability değeri 0.05'ten küçük olduğu için H_0 hipotezini reddederiz. B_1 katsayısı anlamlıdır ve deterministik trend vardır.

Sonuç: B₀ (c) ve B₁ (@trend) katsayıları anlamlı olduğu için doğrusal trend modeli bu seride anlamlıdır ve kullanılabilir.

Birinci Farklar Trend Modeli:

Kurulan regresyon modeli;

$$D(Y_t) = 8017.886 - 58.50668t$$

B₀(c) Katsayısı:

H₀: B₀(c) katsayısı anlamsızdır. Deterministik trend yoktur.

H₁: B₀(c) katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_0 katsayısının probability değeri 0.05'den büyük olduğu için H_0 hipotezi reddedilemez. B_0 katsayısı anlamsızdır. Deterministik trend yoktur.

B₁(@trend) Katsayısı:

H₀: B₁(@trend) katsayısı anlamsızdır. Deterministik trend yoktur.

H₁: B₁(@trend) katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_1 katsayısının probability değeri 0.05'den büyük olduğu için H_0 hipotezi reddedilemez. B_1 katsayısı anlamsızdır. Deterministik trend yoktur.

Sonuç: B_0 (c) ve B_1 (@trend) katsayıları anlamsız olduğu için birinci farklar trend trend modeli bu seride anlamlı değildir ve kullanılamaz.

Üstel Trend Modeli:

Kurulan regresyon modeli;

$$ln(Y_t) = 12.40989 + 0.027612t$$

B₀(c) Katsayısı:

 H_0 : $B_0(c)$ katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : $B_0(c)$ katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B₀ katsayısının probability değeri 0.05'ten küçük olduğu için H₀ hipotezini reddederiz. B₀ katsayısı anlamlıdır ve deterministik trend vardır.

B₁(@trend) Katsayısı:

H₀: B₁(@trend) katsayısı anlamsızdır. Deterministik trend yoktur.

H₁: B₁(@trend) katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_1 katsayısının probability değeri 0.05'ten küçük olduğu için H_0 hipotezini reddederiz. B_1 katsayısı anlamlıdır ve deterministik trend vardır.

Sonuç: B_0 (c) ve B_1 (@trend) katsayıları anlamlı olduğu için üstel trend modeli bu seride anlamlıdır ve kullanılabilir.

Karesel Trend Modeli:

Kurulan regresyon modeli;

 $Y_t = 191953 + 20429.43t - 330.3450t^2$

B₀(c) Katsayısı:

 H_0 : $B_0(c)$ katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : $B_0(c)$ katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_0 katsayısının probability değeri 0.05'ten küçük olduğu için H_0 hipotezini reddederiz. B_0 katsayısı anlamlıdır ve deterministik trend vardır.

B₁(@trend) Katsayısı:

H₀: B₁(@trend) katsayısı anlamsızdır. Deterministik trend yoktur.

H₁: B₁(@trend) katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B1 katsayısının probability değeri 0.05'ten küçük olduğu için H0 hipotezini reddederiz. B1 katsayısı anlamlıdır ve deterministik trend vardır.

B₂(@trend^2) Katsayısı:

H₀: B₂(@trend^2) katsayısı anlamsızdır. Deterministik trend yoktur.

H₁: B₂(@trend^2) katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_2 katsayısının probability değeri 0.05'ten küçük olduğu için H_0 hipotezini reddederiz. B_2 katsayısı anlamlıdır ve deterministik trend vardır.

Sonuç: B_0 (c), B_1 (@trend) ve B_2 (@trend^2) katsayıları anlamlı olduğu için karesel trend modeli bu seride anlamlıdır ve kullanılabilir.

Lojistik Trend Modeli:

Serideki en büyük değer 561374'tür. Bu değerden büyük bir değer olarak 1000000 değeri belirlenmiş (keyfi olarak seçilmiştir) ve modele dahil edilmiştir.

Kurulan regresyon modeli;

$$ln(L/Y_t - 1) = 1.119667 - 0.043025t$$

B₀(c) Katsayısı:

 H_0 : $B_0(c)$ katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : $B_0(c)$ katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B₀ katsayısının probability değeri 0.05'ten küçük olduğu için H₀ hipotezini reddederiz. B₀ katsayısı anlamlıdır ve deterministik trend vardır.

B₁(@trend) Katsayısı:

H₀: B₁(@trend) katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : B_1 (@trend) katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_1 katsayısının probability değeri 0.05'ten küçük olduğu için H_0 hipotezini reddederiz. B_1 katsayısı anlamlıdır ve deterministik trend vardır.

Sonuç: B_0 (c) ve B_1 (@trend) katsayıları anlamlı olduğu için lojistik trend modeli bu seride anlamlıdır ve kullanılabilir.

Kübik Trend Modeli:

Kurulan regresyon modeli;

 $Y_t = 182182.1 + 24272.03t - 625.8374t^2 + 5.969544t^3$

B₀(c) Katsayısı:

 H_0 : $B_0(c)$ katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : $B_0(c)$ katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B₀ katsayısının probability değeri 0.05'ten küçük olduğu için H₀ hipotezini reddederiz. B₀ katsayısı anlamlıdır ve deterministik trend vardır.

B₁(@trend) Katsayısı:

 H_0 : B_1 (@trend) katsayısı anlamsızdır. Deterministik trend yoktur.

H₁: B₁(@trend) katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_1 katsayısının probability değeri 0.05'ten küçük olduğu için H_0 hipotezini reddederiz. B_1 katsayısı anlamlıdır ve deterministik trend vardır.

B₂(@trend^2) Katsayısı:

H₀: B₂(@trend^2) katsayısı anlamsızdır. Deterministik trend yoktur.

H₁: B₂(@trend^2) katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B₂ katsayısının probability değeri 0.05'ten büyük olduğu için H₀ hipotezi reddedilemez. B₂ katsayısı anlamsızdır ve deterministik trend yoktur.

B₂(@trend^3) Katsayısı:

H₀: B₃(@trend^3) katsayısı anlamsızdır. Deterministik trend yoktur.

H₁: B₃(@trend^3) katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_3 katsayısının probability değeri 0.05'ten büyük olduğu için H_0 hipotezi reddedilemez. B_3 katsayısı anlamsızdır ve deterministik trend yoktur.

Sonuç: B_2 (@trend^2) ve B_3 (@trend^3) katsayıları anlamlı olmadığı için kübik trend modeli bu seride anlamlı değildir ve kullanılamaz.

Logaritmik Trend Modeli:

Kurulan regresyon modeli;

 $Y_t = 123890.3 + 108783.8ln(t)$

B₀(c) Katsayısı:

 H_0 : $B_0(c)$ katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : $B_0(c)$ katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B₀ katsayısının probability değeri 0.05'ten küçük olduğu için H₀ hipotezini reddederiz. B₀ katsayısı anlamlıdır ve deterministik trend vardır.

B₁(log(w)) Katsayısı:

 H_0 : $B_1(log(w))$ katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : $B_1(log(w))$ katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_1 katsayısının probability değeri 0.05'ten küçük olduğu için H_0 hipotezini reddederiz. B_1 katsayısı anlamlıdır ve deterministik trend vardır.

Sonuç: B_0 (c) ve B_1 (log(w)) katsayıları anlamlı olduğu için logaritmik trend modeli bu seride anlamlıdır ve kullanılabilir.

Deterministik trend modelleri seriye uygulanmıştır. Elde edilen sonuçlara göre; doğrusal trend, üstel trend, karesel trend, lojistik trend ve logaritmik trend modellerinin kullanılabileceğine, birinci farklar trend ve kübik trend modellerinin ise kullanılamayacağına karar verilmiştir. Bir sonraki adımda ise seride kullanılabilir olan modellerin grafikleri karşılaştırılarak en uygun modele karar verilecektir.

Kurulan Model Grafiklerinin Karşılaştırılması:

Doğrusal Trend Modeli:

1980	250093.8	
1981	259621.8	
1982	269149.9	
1983	278677.9	
1984	288206.0	
1985	297734.0	
1986	307262.1	
1987	316790.1	
1988	326318.2	
1989	335846.2	
1990	345374.3	
1991	354902.3	
1992	364430.4	
1993	373958.4	
1994	383486.5	
1995	393014.5	
1996	402542.6	
1997	412070.6	
1998	421598.7	
1999	431126.7	
2000	440654.8	
2001	450182.8	
2002	459710.9	
2003	469238.9	
2004	478767.0	
2005	488295.0	
2006	497823.1	
2007	507351.1	
2008	516879.2	
2009	526407.2	
2010	535935.3	
2011	545463.3	
2012	554991.4	
2013	564519.4	
2014	574047.5	
2015	583575.5	
2016	593103.6	

Forecast: IMMIGRANTS_DOGRUSAL Actual: IMMIGRANTS Forecast sample: 1980 2016 Included observations: 37 Root Mean Squared Error 65452.65 Mean Absolute Error 50949.74 15.89983 Mean Abs. Percent Error Theil Inequality Coef. 0.077838 0.000000 **Bias Proportion** Variance Proportion 0.099412 **Covariance Proportion** 0.900588 Theil U2 Coefficient 1.748877 Symmetric MAPE 14.53529

Üstel Trend Modeli:

4000		
1980	245214.8	
1981	252080.0	
1982	259137.4	
1983	266392.3	
1984	273850.5	
1985	281517.4	
1986	289398.9	
1987	297501.1	
1988	305830.2	
1989	314392.4	
1990	323194.3	
1991	332242.7	
1992	341544.4	
1993	351106.5	
1994	360936.3	
1995	371041.4	
1996	381429.3	
1997	392108.0	
1998	403085.8	
1999	414370.8	
2000	425971.9	
2001	437897.7	
2002	450157.3	
2003	462760.3	
2004	475716.0	
2005	489034.5	
2006	502725.8	
2007	516800.5	
2008	531269.2	
2009	546143.0	
2010	561433.2	
2011	577151.4	
2012	593309.7	
2013	609920.5	
2014	626996.2	
2015	644550.0	
2016	662595.3	

Forecast: IMMIGRANTS_USTEL Actual: IMMIGRANTS Forecast sample: 1980 2016 Included observations: 37 Root Mean Squared Error 73450.44 58576.12 Mean Absolute Error Mean Abs. Percent Error 16.85467 Theil Inequality Coef. 0.087616 **Bias Proportion** 0.007190 Variance Proportion 0.007248 0.985562 **Covariance Proportion** Theil U2 Coefficient 1.678291 Symmetric MAPE 16.16631

Karesel Trend Modeli:

1980	191953.0	
1981	212052.1	
1982	231490.5	
1983	250268.2	
1984	268385.3	
1985	285841.6	
1986	302637.2	
1987	318772.2	
1988	334246.4	
1989	349060.0	
1990	363212.9	
1991	376705.1	
1992	389536.6	
1993	401707.4	
1994	413217.5	
1995	424066.9	
1996	434255.7	
1997	443783.7	
1998	452651.1	
1999	460857.8	
2000	468403.7	
2001	475289.0	
2002	481513.6	
2003	487077.5	
2004	491980.8	
2005	496223.3	
2006	499805.1	
2007	502726.3	
2008	504986.7	
2009	506586.5	
2010	507525.6	
2011	507804.0	
2012	507421.7	
2013	506378.7	
2014	504675.0	
2015	502310.7	
2016	499285.6	

Forecast: IMMIGRANTS_KARESEL Actual: IMMIGRANTS Forecast sample: 1980 2016 Included observations: 37 58969.29 Root Mean Squared Error 44785.46 Mean Absolute Error 14.43730 Mean Abs. Percent Error Theil Inequality Coef. 0.070047 **Bias Proportion** 0.000000 0.077510 Variance Proportion **Covariance Proportion** 0.922490 Theil U2 Coefficient 1.554266 Symmetric MAPE 13.43087

Lojistik Trend Modeli:

1980	246073.0	
1981	254142.0	
1982	262383.6	
1983	270795.4	
1984	279374.7	
1985	288118.4	
1986	297023.0	
1987	306084.5	
1988	315298.4	
1989	324659.9	
1990	334163.7	
1991	343804.1	
1992	353574.9	
1993	363469.6	
1994	373481.3	
1995	383602.5	
1996	393825.5	
1997	404142.4	
1998	414544.7	
1999	425023.8	
2000	435570.7	
2001	446176.2	
2002	456831.0	
2003	467525.4	
2004	478249.7	
2005	488994.1	
2006	499748.7	
2007	510503.5	
2008	521248.6	
2009	531974.1	
2010	542670.1	
2011	553326.9	
2012	563935.0	
2013	574484.8	
2014	584967.3	
2015	595373.4	
2016	605694.4	

Forecast: IMMIGRANTS_LOJISTIK Actual: IMMIGRANTS Forecast sample: 1980 2016 Included observations: 37 Root Mean Squared Error 67543.69 Mean Absolute Error 53016.35 Mean Abs. Percent Error 15.92189 Theil Inequality Coef. 0.080596 **Bias Proportion** 0.003910 Variance Proportion 0.050144 **Covariance Proportion** 0.945946 Theil U2 Coefficient 1.677300 Symmetric MAPE 14.94685

Logaritmik Trend Modeli:

1980	123890.3	
1981	199293.4	
1982	243401.4	
1983	274696.6	
1984	298971.0	
1985	318804.6	
1986	335573.7	
1987	350099.7	
1988	362912.6	
1989	374374.1	
1990	384742.3	
1991	394207.7	
1992	402915.1	
1993	410976.8	
1994	418482.1	
1995	425502.9	
1996	432097.8	
1997	438315.8	
1998	444197.4	
1999	449777.3	
2000	455084.8	
2001	460145.5	
2002	464981.1	
2003	469610.9	
2004	474051.7	
2005	478318.2	
2006	482423.8	
2007	486380.0	
2008	490197.3	
2009	493885.3	
2010	497452.3	
2011	500906.0	
2012	504253.5	
2013	507501.0	
2014	510654.4	
2015	513718.9	
2016	516699.5	

Forecast: IMMIGRANTS_LOGARITMIK Actual: IMMIGRANTS Forecast sample: 1980 2016 Included observations: 37 Root Mean Squared Error 67165.86 Mean Absolute Error 48063.09 Mean Abs. Percent Error 16.69938 Theil Inequality Coef. 0.079901 **Bias Proportion** 0.000000 Variance Proportion 0.105929 **Covariance Proportion** 0.894071 Theil U2 Coefficient 1.922732 Symmetric MAPE 15.30508

En İyi Modelin Kararlaştırılması ve İncelenmesi

- Forecast işlemi gerçekleştirildikten sonra ilk karşılaştırma basağımız Theil U değerleridir. En iyi model olabilmesi için Theil U değerinin 0.55'ten daha küçük olması beklenir. Tüm modelleri incelediğimizde Theil U değerlerinin 0.55'ten küçük olduğu görülmüştür. Bu nedenle RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), MAPE (Mean Abs. Percent Error) değerleri incelenerek en iyi modele karar verilecektir.
- Model seçimine karar verirken hata değerlerinin (RSME, MAE, MAPE) en küçük olduğu yanı hatanın en az olduğu ve güvenilirliğin daha yüksek olduğu model seçilecektir.
- İlk olarak doğrusal trend modeli ile üstel regresyon modeli karşılaştırıldı. Karşılaştırma sonucunda RMSE, MAE, MAPE değerleri en iyi çıkan model doğrusal trend modelidir.
- Karşılaştırmaya doğrusal trend modeli ve karesel trend modeli ile devam edildi. Karşılaştırma sonucunda RMSE, MAE, MAPE değerleri en iyi çıkan model karesel trend modelidir.
- Sıradaki karşılaştırma karesel trend modeli ile lojistik trend modeli için gerçekleştirildi.
 Karşılaştırma sonucunda RMSE, MAE, MAPE değerleri en iyi çıkan model karesel trend modelidir.
- Son olarak karesel trend modeli ile logaritmik trend modeli karşılaştırıldı. Karşılaştırma sonucunda RMSE, MAE, MAPE değerleri en iyi çıkan model karesel trend modelidir.

En iyi model olarak belirlenen karesel trend modeli çoklu bağlantı problemi içeriyor mu inceleyelim.

Çoklu Bağlantı Problemi İncelemesi:

Variance Inflation Factors Date: 05/29/22 Time: 18:59 Sample: 1980 2016 Included observations: 34

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
C	9.00E+08	8.019048	NA
@TREND	17690990	58.11652	15.17969
@TREND^2	15174.98	33.54985	15.17969

Çoklu bağlantı probleminin olmaması için Centered VIF değerlerinin 1 ile 5 arasında olması gerekir. Karesel trend modelinin Centered VIF değerlerinin 1-5 aralığında olmadığı görülmektedir. Karesel trend modelinde çoklu bağlantı problemi vardır. Dönüşüm yapılarak çoklu bağlantı problemi ortadan kaldırılabilir.

HATALARIN İNCELENMESİ

Hatalar İçin Normallik İncelemesi:

H₀: Seri normal dağılıma sahiptir.

H₁: Seri normal dağılıma sahip değildir.

Karar: Jarque-Bera Probability değeri 0.05'den büyük olduğundan H₀ reddedilemez. Yani seri normal dağılıyor.

Hatalar İçin Otokorelasyon İncelemesi:

	Correlogram of Residuals						
Date: 05/29/22 Time: 22:23 Sample (adjusted): 1980 2013 Included observations: 34 after adjustments Autocorrelation Partial Correlation AC PAC Q-Stat Prob							
		1 0.695 2 0.325 3 0.047 4 -0.129 5 -0.360 6 -0.578 7 -0.560 8 -0.397 9 -0.187 10 -0.084 11 0.018 12 0.168 13 0.246 14 0.173 15 0.092 16 0.054	-0.304 -0.076 -0.088 -0.378 -0.299 0.057 -0.080 0.003 -0.188 -0.115 -0.017 -0.143 -0.222 0.021	17.894 21.931 22.019 22.695 28.180 42.766 56.983 64.388 66.097 66.460 71.573 73.401 73.949 74.146	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		

Autocorrelation bölümü incelendiğinde güven aralığını aşan değerler olduğu görülmektedir. Buna göre bu seri için otokorelasyon vardır.

Hatalar İçin Değişen Varyanslılık İncelemesi:

Heteroskedasticity Test: White Null hypothesis: Homoskedasticity

F-statistic	2.442723	Prob. F(4,29)	0.0691
Obs*R-squared	8.568550	Prob. Chi-Square(4)	0.0728
Scaled explained SS	6.086807	Prob. Chi-Square(4)	0.1928

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 05/29/22 Time: 22:28 Sample: 1980 2013 Included observations: 34

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND*2 @TREND*@TREN @TREND @TREND*2*2	4.92E+09 -23483373 -418456.9 3.57E+08 20949.10	3.09E+09 1.69E+08 7735040. 1.34E+09 116235.9	1.591804 -0.139228 -0.054099 0.266515 0.180229	0.1223 0.8902 0.9572 0.7917 0.8582
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.252016 0.148846 4.26E+09 5.26E+20 -799.3827 2.442723 0.069069	Mean depen S.D. depend Akaike info c Schwarz crit Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	3.48E+09 4.61E+09 47.31663 47.54109 47.39318 1.200970

Probability değerleri 0.05'ten büyük olduğu için değişen varyanslılık problemi yoktur.

Karesel trend modelimiz çoklu bağlantı sorunu içerdiği için dönüşüme ihtiyaç duymaktadır. Karesel trend modelinden elde edilen forecast değerlerinin karekökleri alınarak bir dönüşüm gerçekleştirilecek ve bu dönüşüme yeniden karesel trend modeli kurulumu gerçekleştirilecektir.

Dönüşüm (Karekök Alma İşlemi):

Karesel trend modelinden elde edilen forecast değerlerini içeren immigrants_karesel değişkenine karekök alma işlemi gerçekleştirilmiş ve yapılan işlem immigrants_donusum adlı değişkene atanmıştır.

Yeni Karesel Trend Modeli:

Is immigrants_donusum c @trend @trend^2

Dependent Variable: IMMIGRANTS_DONUSUM Method: Least Squares Date: 06/03/22 Time: 01:13 Sample: 1980 2016 Included observations: 37

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C @TREND @TREND ²	449.0018 17.99104 -0.305378	1.742898 0.224016 0.006015	257.6179 80.31137 -50.76876	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.998055 0.997941 3.726619 472.1814 -99.60996 8724.480 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		639.0850 82.12421 5.546485 5.677100 5.592532 0.133746

1980	449.0018	
1981	466.6875	
1982	483.7624	
1983	500.2265	
1984	516.0799	
1985	531.3226	
1986	545.9544	
1987	559.9756	
1988	573.3859	
1989	586.1856	
1990	598.3744	
1991	609.9525	
1992	620.9199	
1993	631.2765	
1994	641.0223	
1995	650.1574	
1996	658.6817	
1997	666.5953	
1998	673.8981	
1999	680.5902	
2000	686.6715	
2001	692.1420	
2002	697.0018	
2003	701.2508	
2004	704.8891	
2005	707.9166	
2006	710.3334	
2007	712.1394	
2008	713.3347	
2009	713.9192	
2010	713.8929	
2011	713.2559	
2012	712.0081	
2013	710.1496	
2014	707.6803	
2015	704.6003	
2016	700.9095	

Forecast: IMMIGRANTS_DONUSUM_KARESEL Actual: IMMIGRANTS_DONUSUM Forecast sample: 1980 2016 Included observations: 37 Root Mean Squared Error 3.572346 Mean Absolute Error 2.964244 0.495906 Mean Abs. Percent Error Theil Inequality Coef. 0.002773 **Bias Proportion** 0.000000 0.000487 Variance Proportion **Covariance Proportion** 0.999513 Theil U2 Coefficient 0.275672 Symmetric MAPE 0.495300

Kurulan regresyon modeli;

$$Yt = 449.0018 + 17.99104t - 0.305378t^2$$

B₀(c) Katsayısı:

 H_0 : $B_0(c)$ katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : $B_0(c)$ katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B₀ katsayısının probability değeri 0.05'ten küçük olduğu için H₀ hipotezini reddederiz. B₀ katsayısı anlamlıdır ve deterministik trend vardır.

B₁(@trend) Katsayısı:

H₀: B₁(@trend) katsayısı anlamsızdır. Deterministik trend yoktur.

 H_1 : $B_1(@trend)$ katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_1 katsayısının probability değeri 0.05'ten küçük olduğu için H_0 hipotezini reddederiz. B_1 katsayısı anlamlıdır ve deterministik trend vardır.

B₂(@trend^2) Katsayısı:

H₀: B₂(@trend^2) katsayısı anlamsızdır. Deterministik trend yoktur.

H₁: B₂(@trend^2) katsayısı anlamlıdır. Deterministik trend vardır.

Karar: B_2 katsayısının probability değeri 0.05'ten küçük olduğu için H_0 hipotezini reddederiz. B_2 katsayısı anlamlıdır ve deterministik trend vardır.

Sonuç: B_0 (c), B_1 (@trend) ve B_2 (@trend^2) katsayıları anlamlı olduğu için karesel trend modeli bu seride anlamlıdır ve kullanılabilir.

Yeni Karesel Trend Modeli İçin Çoklu Bağlantı Problemi İncelemesi:

Variance Inflation Factors Date: 06/03/22 Time: 01:15 Sample: 1980 2016 Included observations: 37

Variable	Coefficient	Uncentered	Centered
	Variance	VIF	VIF
C	3.037694	8.093117	NA
@TREND	0.050183	58.56044	15.24176
@TREND^2	3.62E-05	33.73453	15.24176

Elde edilen yeni karesel trend modelinin Centered VIF değerlerinin de 1-5 aralığında olmadığı görülmektedir. Yeni karesel trend modeli de çoklu bağlantı problemi içermektedir. Bu nedenle yapılan dönüşüm çoklu bağlantı sorununu ortadan kaldıramamış ve ilk karelin VIF değerlerinden de yüksek VIF değerleri vermiştir. Bu nedenle ilk karesel model esas alınacak ve çoklu bağlantı sorunu gözardı edilerek diğer işlemlere devam edilecektir.

Üstel Düzleştirme Yöntemleri

Serimizde trend var, mevsimsellik yoktur. Bunun için düzleştirme yöntemlerinden **çiftel üstel düzleştirme** ve **Holt'un üstel düzleştirmesini** kullanacağız.

Çiftel Üstel Düzleştirme:

Date: 06/09/22 Time: 18:57 Sample: 1980 2013 Included observations: 34 Method: Double Exponential Original Series: IMMIGRANTS Forecast Series: IMMIGRSM_DBL

Parameters: Alpha		0.5880
Sum of Squared Residuals		1.01E+11
Root Mean Squared Error		54370.89
End of Period Levels:	Mean Trend	517343.9 956.3490

Holt'un Üstel Düzleştirmesi:

Date: 06/09/22 Time: 18:59

Sample: 1980 2013 Included observations: 34

Method: Holt-Winters No Seasonal Original Series: IMMIGRANTS Forecast Series: IMMIGRSM_HWNS

Parameters: Alpha Beta Sum of Squared Reside Root Mean Squared Err		1.0000 0.0000 6.20E+10 42698.05
End of Period Levels:	Mean Trend	518042.0 8576.353

Holt Winters No Seasonal'ın Root Mean Squared Error değeri daha küçük olduğundan o yöntemle devam edilir.

Orijinal seri ve Holt Winters No Seasonal üstel düzleştirme yönteminin karşılaştırılması.

Ayrıştırma Yöntemleri

Veriden trend özellikleri ayrıştırılacaktır. Hareketli ortalama yöntemleri ile saf trendi bulmak için serideki en anlamlı model olan karesel trend modeli orijinal seriden çıkartılacaktır.

İlk seriyi, trendden arındırmak için farktrend serisini oluşturduk.

	Modified: 1980 2016 // f	arktrend=immigrants-immigrants karesel
1980	94320.95	
1981	45229.86	
1982	10859.46	
1983	-71898.25	
1984	-91841.26	
1985	-117149.6	
1986	-103935.2	
1987	-14622.18	
1988	-11076.44	
1989	34039.99	
1990	69689.11	
1991	88898.92	
1992	120037.4	
1993	111568.6	
1994	35546.49	
1995	1661.061	
1996	17886.32	
1997	-11711.73	
1998	-104261.1	
1999	-80957.76	
2000	-13493.74	
2001	25982.97	
2002	-23415.63	
2003	-44379.54	
2004	-20336.76	
2005	28260.71	
2006	3474.866	
2007	-29220.29	
2008	-10498.75	
2009	-2246.518	
2010	53848.40	
2011	-10307.99	
2012	8384.308	
2013	11663.30	
2014	NA	
2015	NA	
2016	NA	

FARKTREND 150,000 100,000 50,000 -50,000 -100,000 1980 1985 1990 1995 2000 2005 2010 2015

Toplamsal Model (Tahmin): (trend+hata)

Gerçek değerlerden tahmin değerlerini çıkararak hata değerleri bulunur.

	IMMIGRANTS	TAHMIN	HATA
	IMMIGRANTS	TAHMIN	HATA
1980	286274	191953.0	94320.95
1981	257282	212052.1	45229.86
1982	242350	231490.5	10859.46
1983	178370	250268.2	-71898.25
1984	176544	268385.3	-91841.26
1985	168692	285841.6	-117149.6
1986	198702	302637.2	-103935.2
1987	304150	318772.2	-14622.18
1988	323170	334246.4	-11076.44
1989	383100	349060.0	34039.99
1990	432902	363212.9	69689.11
1991	465604	376705.1	88898.92
1992	509574	389536.6	120037.4
1993	513276	401707.4	111568.6
1994	448764	413217.5	35546.49
1995	425728	424066.9	1661.061
1996	452142	434255.7	17886.32
1997	432072	443783.7	-11711.73
1998	348390	452651.1	-104261.1
1999	379900	460857.8	-80957.76
2000	454910	468403.7	-13493.74
2001	501272	475289.0	25982.97
2002	458098	481513.6	-23415.63
2003	442698	487077.5	-44379.54
2004	471644	491980.8	-20336.76
2005	524484	496223.3	28260.71
2006	503280	499805.1	3474.866
2007	473506	502726.3	-29220.29
2008	494488	504986.7	-10498.75
2009	504340	506586.5	-2246.518
2010	561374	507525.6	53848.40
2011	497496	507804.0	-10307.99
2012	515806	507421.7	8384.308
2013	518042	506378.7	11663.30
2014	NA	504675.0	NA
2015	NA	502310.7	NA
2016	NA	499285.6	NA

Orijinal seri (immigrants), tahmin (immigrants_karesel) ve hata (immigrants-immigrants_karesel) değerleri karşılaştırıldı.

Mevsimsel Olmayan Box-Jenkins Modelleri (ARMA)

ARMA(1,0)

c katsayısı:

H₀: c katsayısı anlamsızdır.

H₁: c katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. c katsayısı anlamlıdır.

AR(1) katsayısı:

H₀: AR(1) katsayısı anlamsızdır.

H₁: AR(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. AR(1) katsayısı anlamlıdır.

Sonuç: AR(1) katsayısı istatistiksel olarak anlamlı olduğundan bu model geçerli olarak kullanılabilir.

ARMA(2,0)

Equation: UNTITLE	Workfile: CA	ANADA::Canad		ids S
Dependent Variable: IMMIGRANTS Method: ARMA Conditional Least Squares (Gauss-Newton / Marquardt steps) Date: 06/12/22 Time: 19:26 Sample (adjusted): 1982 2013 Included observations: 32 after adjustments Convergence achieved after 3 iterations Coefficient covariance computed using outer product of gradients				
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2)	468822.2 1.133010 -0.238247	84527.22 0.176875 0.176583	5.546405 6.405713 -1.349209	0.0000 0.0000 0.1877
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.866182 0.856953 43138.97 5.40E+10 -385.3408 93.85614 0.000000	Mean depen S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	415777.1 114059.3 24.27130 24.40871 24.31685 1.985301
Inverted AR Roots	.85	.28		

H₀: c katsayısı anlamsızdır.

H₁: c katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. c katsayısı anlamlıdır.

AR(1) katsayısı:

 H_0 : AR(1) katsayısı anlamsızdır.

H₁: AR(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. AR(1) katsayısı anlamlıdır.

AR(2) katsayısı:

H₀: AR(2) katsayısı anlamsızdır.

H₁: AR(2) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den büyük olduğundan H₀ reddedilemez. AR(2) katsayısı anlamsızdır.

Sonuç: c katsayısı ve AR(1) anlamlı ama AR(2) katsayısı istatistiksel olarak anlamsız olduğundan bu model kullanılamaz.

ARMA(0,1)

H₀: c katsayısı anlamsızdır.

H₁: c katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. c katsayısı anlamlıdır.

MA(1) katsayısı:

H₀: MA(1) katsayısı anlamsızdır.

H₁: MA(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. MA(1) katsayısı anlamlıdır.

Sonuç: MA(1) katsayısı istatistiksel olarak anlamlı olduğundan bu model geçerli olarak kullanılabilir

ARMA(0,2):

Equation: UNTITLE	Y Y 1	7 7			
View Proc Object Print	Name Freeze	Estimate Forec	ast Stats Res	ias	
Dependent Variable: IMMIGRANTS					
Method: ARMA Conditi	ional Least Squ	.ares (Gauss-l	Newton / Mai	rquardt	
steps) Date: 06/12/22 Time:	19-27				
Sample (adjusted): 19					
Included observations:		tments			
Failure to improve likel					
Coefficient covariance		ng outer produ	ct of gradien	its	
MA Backcast: 1978 19	179				
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	419736.9	27894.66	15.04721	0.0000	
MA(1)	1.235333	0.055845	22.12059	0.0000	
MA(2)	0.892230	0.052183	17.09823	0.0000	
R-squared 0.811044 Mean dependent var 407306.6					
R-squared	0.811044	Mean depend	dent var	407306.6	
R-squared Adjusted R-squared	0.811044 0.798853	Mean depend S.D. depende		407306.6 115830.0	
			ent var		
Adjusted R-squared	0.798853	S.D. depende	ent var riterion	115830.0	
Adjusted R-squared S.E. of regression	0.798853 51949.05	S.D. depende Akaike info c	ent var riterion erion	115830.0 24.63801	
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.798853 51949.05 8.37E+10	S.D. depende Akaike info co Schwarz crit	ent var riterion erion nn criter.	115830.0 24.63801 24.77269	
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.798853 51949.05 8.37E+10 -415.8462	S.D. depende Akaike info co Schwarz crit Hannan-Quir	ent var riterion erion nn criter.	115830.0 24.63801 24.77269 24.68394	

H₀: c katsayısı anlamsızdır.

H₁: c katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. c katsayısı anlamlıdır.

MA(1) katsayısı:

H₀: MA(1) katsayısı anlamsızdır.

H₁: MA(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. MA(1) katsayısı anlamlıdır.

MA(2) katsayısı:

H₀: MA(2) katsayısı anlamsızdır.

 H_1 : MA(2) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. MA(2) katsayısı anlamlıdır.

Sonuç: MA(2) katsayısı istatistiksel olarak anlamlı olduğundan bu model geçerli olarak kullanılabilir.

ARMA(1,1):

.89

-.30

Inverted AR Roots

Inverted MA Roots

H₀: c katsayısı anlamsızdır.

H₁: c katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. c katsayısı anlamlıdır.

AR(1) katsayısı:

H₀: AR(1) katsayısı anlamsızdır.

H₁: AR(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. AR(1) katsayısı anlamlıdır.

MA(1) katsayısı:

H₀: MA(1) katsayısı anlamsızdır.

H₁: MA(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den büyük olduğundan H₀ reddedilemez. MA(1) katsayısı anlamsızdır.

Sonuç: MA(1) katsayısı istatistiksel olarak anlamsız olduğundan bu model kullanılamaz.

ARMA(1,2):

Equation: UNTITLE	O Workfile: CA	ANADA::Canad	da\ 🗖		
View Proc Object Print	Name Freeze	Estimate Fored	ast Stats Res	ids	
Dependent Variable: IM Method: ARMA Conditi steps) Date: 06/12/22 Time: Sample (adjusted): 19 Included observations: Failure to improve likel Coefficient covariance MA Backcast: 1979 19	onal Least Squ 19:30 81 2013 33 after adjus ihood (non-zer computed usi	tments o gradients) a	fter 7 iteratio	ns	
Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	467916.5	107109.5	4.368581	0.0001	
AR(1)	0.894970	0.097602	9.169598	0.0000	
MA(1)	0.280856	0.212544	1.321399	0.1967	
MA(2)	-0.034642	0.214732	-0.161325	0.8730	
R-squared 0.869941 Mean dependent var 410974.2					
Adjusted R-squared 0.856487 S.D. dependent var 115603.7					
S.E. of regression	43794.29	Akaike info c	riterion	24.32561	
Sum squared resid	5.56E+10	Schwarz criterion 24.50700		24.50700	
Log likelihood	-397.3725	Hannan-Quinn criter. 24.38664		24.38664	
F-statistic	64.65869	Durbin-Wats	son stat	2.000438	
Prob(F-statistic)	0.000000				
Inverted AR Roots	.89				
Inverted MA Roots	.09	37			
			·		

H₀: c katsayısı anlamsızdır.

H₁: c katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. c katsayısı anlamlıdır.

AR(1) katsayısı:

H₀: AR(1) katsayısı anlamsızdır.

 H_1 : AR(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. AR(1) katsayısı anlamlıdır.

MA(1) katsayısı:

H₀: MA(1) katsayısı anlamsızdır.

H₁: MA(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den büyük olduğundan H₀ reddedilemez. MA(1) katsayısı anlamsızdır.

MA(2) katsayısı:

H₀: MA(2) katsayısı anlamsızdır.

H₁: MA(2) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den büyük olduğundan H₀ reddedilemez. MA(2) katsayısı anlamsızdır.

Sonuç: MA(1) ve MA(2) katsayısı istatistiksel olarak anlamsız olduğundan bu model kullanılamaz.

ARMA(2,1):

H₀: c katsayısı anlamsızdır.

H₁: c katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. c katsayısı anlamlıdır.

AR(1) katsayısı:

H₀: AR(1) katsayısı anlamsızdır.

H₁: AR(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den büyük olduğundan H₀ reddedilemez. AR(1) katsayısı anlamsızdır.

AR(2) katsayısı:

H₀: AR(2) katsayısı anlamsızdır.

H₁: AR(2) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den büyük olduğundan H₀ reddedilemez. AR(2) katsayısı anlamsızdır.

MA(1) katsayısı:

H₀: MA(1) katsayısı anlamsızdır.

H₁: MA(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den büyük olduğundan H₀ reddedilemez. MA(1) katsayısı anlamsızdır.

Sonuç: AR(1), AR(2) ve MA(1) katsayısı istatistiksel olarak anlamsız olduğundan bu model kullanılamaz.

ARMA(2,2):

H₀: c katsayısı anlamsızdır.

H₁: c katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. c katsayısı anlamlıdır.

AR(1) katsayısı:

H₀: AR(1) katsayısı anlamsızdır.

H₁: AR(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. AR(1) katsayısı anlamlıdır.

AR(2) katsayısı:

H₀: AR(2) katsayısı anlamsızdır.

H₁: AR(2) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. AR(2) katsayısı anlamlıdır.

MA(1) katsayısı:

H₀: MA(1) katsayısı anlamsızdır.

H₁: MA(1) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den küçük olduğundan H₀ reddedilir. MA(1) katsayısı anlamlıdır.

MA(2) katsayısı:

H₀: MA(2) katsayısı anlamsızdır.

H₁: MA(2) katsayısı anlamlıdır.

Karar: Probability değeri 0.05'den büyük olduğundan H₀ reddedilemez. MA(2) katsayısı anlamsızdır.

Sonuç: MA(2) katsayısı istatistiksel olarak anlamsız olduğundan bu model kullanılamaz.

ARMA(1,0), ARMA(0,1) ve ARMA(0,2) kullanılabilir modellerdir.

Modellerin hata katsayıları (R²):

ARMA(1,0) = 0.860872

ARMA(0,1) = 0,675310

ARMA(0,2) = 0.811044

Kullanılabilir modellerin R²'leri kıyaslandığında en iyi modelin ARMA(1,0) olduğuna karar verildi.

Sonuç ve Nihai Tahmin

Karesel Trend Modeli

R-squared	0.732961	Mean dependent var	407306.6
Adjusted R-squared	0.715733	S.D. dependent var	115830.0
S.E. of regression	61756.76	Akaike info criterion	24.98389
Sum squared resid	1.18E+11	Schwarz criterion	25.11857
Log likelihood	-421.7262	Hannan-Quinn criter.	25.02982
F-statistic	42.54397	Durbin-Watson stat	0.534449
Prob(F-statistic)	0.000000		

Holt'un Üstel Düzleştirmesi

Parameters: Alpha Beta Sum of Squared Reside Root Mean Squared Err		1.0000 0.0000 6.20E+10 42698.05
End of Period Levels:	Mean Trend	518042.0 8576.353

Mevsimsel Olmayan Box-Jenkins Modelleri ARMA(1,0)

R-squared	0.860872	Mean dependent var	410974.2
Adjusted R-squared	0.856384	S.D. dependent var	115603.7
S.E. of regression	43809.92	Akaike info criterion	24.27180
Sum squared resid	5.95E+10	Schwarz criterion	24.36250
Log likelihood	-398.4847	Hannan-Quinn criter.	24.30232
F-statistic	191.8170	Durbin-Watson stat	1.549976
Prob(F-statistic)	0.000000	Durbin-vvatson stat	1.549976

Holt'un üstel düzleştirmesi için R^2 değeri olmadığından Sum of Squared Residuals karşılaştırıldı. En düşük değere sahip model Karesel Trend Modeli'dir.

2014-2015-2016 yılları için Kanada'nın alacağı tahmini göç sayısı aşağıdaki gibidir.

2014	504675.0	
2015	502310.7	
2016	499285.6	

KAYNAKÇA

- https://www.kaggle.com/datasets/rohankarthik/international-migration-flow-canada
- https://www.clarify.io/learn/time-series-data
- http://canererden.com/zaman-serisi-tahminleri-ve-arima-modelleri/
- https://www.influxdata.com/what-is-time-series-data/
- https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-to-time-seriesanalysis/