

King Saud University College of Computer and Information Sciences

King	Saud University		•	omputer and infor		lices		
		Co	urse Code:	CSC 227				
		Co	urse Title:	Operating Syste	ems			
		Ser	nester:	Spring 2017-20	18			
		Туре	e of Examination:	Midterm 2 Ex	kam.			
					Instructions			
Student Name:					• This exam has 8			
Student ID:					pages. • Do not use pencil.			
Studer	Student Section No.					Write clearly and neatly		
Studen	it Section No.							
Instruc	ctor Name:							
Tick the Relevant Computer Science		ence B.Sc. Program ABET Student Outcomes			Question No. Relevant Is Hyperlinked	Covering %		
X	a) Apply knowledg computer scier		mputing and mathematics	s appropriate to the				
X		em, and identify and define the quirements appropriate to its solution			Q.1-Q.2- Q.4	75%		
X		ent and evaluate a computer-based system, process, program to meet desired needs;			Q.3	25%		
X	d) Function effective	vely on	teams to accomplish a co	ommon goal;				
			Full 1	Mark	Stude	nt's Mark		

Question No.1	8.0	
Question No.2	4.0	
Question No.3	4.0	
Question No.4	4.0	
Total	20	

Page 1 of 6

King Saud University College of Computer and Information Sciences CSC 227: Operating Systems

Total Marks: 25 Time: 7:00pm – 8:30pm (90 minutes)		
Fall 2015-16 Name:	Mi	dterm Exam I
ID#;	Date:	20-Oct-2015
Section#: or Teacher Name:		

<u>• .</u>

Question 1. [6 marks] Select ONLY ONE ANSWER (the best answer). [CLO 4] Copy your answer for question 1-1 to 1-12 in the table on page2. ONLY THAT TABLE WILL BE GRADED.

1	The section that contains the global variables of a process is:	2.	The scheduler that selects which processes should be brought into the ready queue is:
a.	The text section.	a.	The long-term scheduler.
b.	The stack section.	b.	The short-term scheduler.
c.	The heap section.	c.	The medium-term scheduler.
d.	The data section.	d.	The CPU scheduler.

3.	Which of the following is NOT a reason for processes cooperation?	4.	A process that has terminated, but whose parent has not yet called wait(), is known as:
a.	Independency.	a.	Orphan process.
b.	Information sharing.	b.	Zombie process.
c.	Modularity.	c.	Terminated process.

d.	Computation Speedup.		d.	Child process
5.	In cascading termination:		6.	Which of the following queues contains a set of all processes in the system?
a.	Only children who has exceeded allocated resources are terminated.		a.	Job queue.
b.	Only children whose assigned task is no longer needed are terminated.		b.	Ready queue.
c.	All children are terminated.		c.	Device queue.
d.	Only the last created child is terminated.		d.	Waiting queue.
		'		
1	1			

7.	An instruction executed atomically means:	8.	One common problem among the methods suggested for critical section problem is:
a.	It cannot be interrupted during its execution	a.	Continuous waiting
b.	It can interrupt any other instruction	b.	Busy waiting
c.	It can be executed in kernel mode	c.	Too difficult to program
d.	It can enter critical section anytime.	d.	Take long time to execute

Page 2 of 6

9.	A non-preemptive kernel is:
a.	Free of critical section
b.	Free of deadlock
c.	Free of race conditions in kernel mode
d.	Free of starvation

11.	One solution to critical section problem in uniprocessor machine is:
a.	Disabling interrupts

b.	Enabling interrupts
c.	Using machine language instructions instead of semaphores
d.	Using set_and_test instruction

13.	in the context of a multi-threaded process
a.	The system delivers the signal to the thread to which the signal applies
b.	The system, deliver the signal to every thread in the process
c.	A specific thread is assigned to receive all signals for the process

d.	All	the above				b.	W	ith java progr	am for mathe	ematical calcul	ations
						c.	W	ith C program	n for mathem	atical calculati	ons
15.	Asy	nchronous th	read cancell	ation is,		d.	With program to create user level passwords				ls
a.	The activity of synchronization between two running threads that share data.										
b.	Whe	When one thread runs and the other remains in hot standby mode, in case it is needed.					In a multithreaded process, which of these models will result in the minimum use of memory ?				
c.	Thr	ead is allowe	ed to termina	te another		a.	Tv	vo-level mode	el		
d.	A th	A thread remains in waiting mode until the other					Or	ne-to-one mod	lel		
		thread terminates, then it receives it results and continues execution.					M	any-to-one m	ıodel		
						d.	Ma	any-to-many	model		
10.	A preemptive kernel:										
a.		es not allow p kernel mode	preemption of	process when	n running	16.	In deferred thread cancellation, when a thread				
b.	Al	lows multipro	ocessing				receives a cancellation request,				
c.	Do	oes not allow 1	multiprocessir	ng		a.	It is allowed to wait until the current I/O is finished				
d.	All in	lows preemp kernel mode	tion of proces	ss when runr	ning	b.	The thread is allowed to terminate after it closes all the opened files				
						c.	The thread is allowed to terminate itself immediately and close everything at once				
12.	A	thread librar	y provides th	e programm	ner	d.	Thread is allowed to continue running until it reaches a cancellation point and terminate itself				
a.	W	ith an API fo	r creating an	d managing	threads			orderly fasl			
		1.	2.	3.	4.	5.		6.	7.	8.]
		1.	۷.	J.	4.	3.		0.	7.	0.	
											_
		9.	10.	11.	12.	13.		14.	15.	16.	

Question 2. [4 marks] [CLO 5]

2-a) [1 marks] Fill in the FOUR blanks in the following process state diagram.

Answer:

2-b) [3 marks] Consider the following C program: [CLO ??]

```
1
2
3
4
5
6
7
8
9
      #include <stdio.h>
      int num;
      int main() {
             num = 10;
             if (fork() > 0) {
                   num = num * 2;
                   wait(NULL);
                   printf ("num= %d\n", num);
             } else {
10
                   num = num + 5;
11
                   printf("num= %d\n", num);
12
                   fork();
13
                   num++;
14
                   printf("num= %d\n", num);
15
             fork();
17
18
```

I. [1 mark] How many processes will be created by this program including the parent process?

II. [1 mark] Draw the process tree resulting from this program:

Р	
C1 C5	
C4 C2	
C3	
	Page 4 of 6
III. [1 mark] What is the output of this program?	
num= 15 num= 16 num= 16 num= 20	
Question 3. [4 marks] [CLO 7	
3-a) [0.5 marks] What is the critical section problem?	
Critical section problem is to design protocol to solve concurrent accessamong various processes.	s to shared data
3-b) [1.5 marks] List the requirements that a solution to the critical section problem must satisfied.	sfy.
1) Mutual exclusion. 2) Progress. 3) Bounded waiting.	

A process may never be removed from the semaphore queue in which it is suspended.

Causes: Deadlock, or LIFO semaphore queue where the rate of wait is higher than signal.

Page 5 of 6

Question 4. [4 marks] [CLO 4]

4-a) [2 marks] Let us consider a process composed of the following CPU bursts and IO bursts:

N∘	Activity	Duration (milliseconds)		
		CPU	Waiting I/O	Total
1	Starting and initialization	5	10	15
2	Reading Data from a Network	15	20	35
3	Processing Data	50	0	50
4	Saving results to a file	25	15	40
5	Terminating	10	0	10
	Total execution time	105	45	150

1- [0.5 mark] If you want to speed-up this process using multi-threading, which task will you select to implement multi-threading? Why?

The task 3, because it is the largest task in terms of CPU activity, and is the one that can give the best time saving.

3- [0.5 mark] After implementing multi-threading, what will be the best total execution time of this

process, from start to the termination				
50 / 1.2 = 125 ms				

- **4-b)** [1 mark] The threads of a same process share part of the process resources. Which resources are different for each thread:
 - Registers
 - Stack
- **4-c**) [1 mark] The multi-threading model one-to-one has the advantage of offering a high independence to user threads. What are its disadvantages?

Creating a kernel thread of each user thread takes time Creating a kernel thread of each user thread uses a lot of memory

Page 6 of 6