1 Moore model FSM minimization

- 1. From the last lecture
 - a. Was working on the Moore model edge detector FSM
 - b. Used Partition Minimization Procedure to minimize the original state diagram
 - i. $P_3 = (S_i)(S_1, S_{11})(S_0, S_{00})(S_{01})(S_{10})$
 - c. Now use this to create minimized state diagram
 - i. K-successors are the same for the multiple-state blocks, use that to combine them together

- 2. Implementing the minimized FSM
 - a. From our minimized, equivalent FSM we get the following state table

Present State	Next	Output	
Present State	<i>x</i> = 0	x = 1	Z
i	0	1	0
0	00	01	0
1	10	11	0
00	00	01	0
01	10	01	1
10	00	01	1
11	10	11	0

()rigina	Ctata Lahla
OHEIHA	State Table

Present State	Next	Output		
Present State	<i>x</i> = 0	x = 1	Z	
i	0	1	0	
0	0	01	0	
1	10	1	0	
01	10	1	1	
10	0	01	1	

Minimized State Table

- b. Next, assign binary codes
 - i. Will need 3 flip flops to represent 5 states, call these A, B, and C

Present State	Binary	Pres	ent S	tate	Input	Ne	xt St	Output	
Present State	Code	Α	В	С	x	A'	B'	C'	z
i	000	0	0	0	0	0	0	1	0
i	000	0	0	0	1	0	1	0	0
0	001	0	0	1	0	0	0	1	0
0	001	0	0	1	1	0	1	1	0
1	010	0	1	0	0	1	0	0	0
1	010	0	1	0	1	0	1	0	0
01	011	0	1	1	0	1	0	0	1
01	011	0	1	1	1	0	1	0	1
10	100	1	0	0	0	0	0	1	1
10	100	1	0	0	1	0	1	1	1

Moore model FSM minimization c. Create K-maps for each flip flop based on input and present state

- i. States that weren't assigned form don't cares

A'		AB					B'		AB					C'		AB				
		00	01	11	10				00	01	11	10				00	01	11	10	
	00	0	1	d	0			00	0	0	d	0	-		00	1	0	d	1	
Сх	01	0	0	d	0			01	1	1	d	1	-	Сх	01	0	0	d	1	
CA	11	0	0	d	d		Сх	11	1	1	d	d		3.	11	1	0	d	d	
	10	0	1	d	d			10	0	0	d	d			10	1	0	d	<u>a</u>	
A' =	$A' = B\overline{x}$ $B' = x$						C'= A	$1 + \overline{B}$	\overline{x} +	BC	ı	4	I							

- d. Use derivations from these K-maps to design initial combinational circuit
- e. Create a K-Map based on flip-flops to determine the output combinational circuit
 - i. Assign don't cares for the same reason as above

Ζ		AB							
		00	01	11	10				
_	0	0	0	Ø	Z				
С	1	0	(9	d)				
z = A + BC									