Maximum Likelihood Estimation of State-Space Models

The Kalman filter forecasts $\hat{\boldsymbol{\xi}}_{t|t-1}$ and $\hat{\boldsymbol{y}}_{t|t-1}$ are linear projections of $\boldsymbol{\xi}_t$ and \boldsymbol{y}_t on $(\boldsymbol{x}_t, \mathcal{Y}_{t-1})$

They are optimal among all forecasts that are linear functions of (x_t, \mathcal{Y}_{t-1}) .

If $\boldsymbol{\xi}_1$ and $\{\boldsymbol{w}_t, \boldsymbol{v}_t\}_{t=1}^T$ are multivariate Gaussian

 $\hat{\xi}_{t|t-1}$ and $\hat{y}_{t|t-1}$ are optimal among all forecasts that are functions of (x_t, \mathscr{Y}_{t-1}) (linear and non-linear)

The distribution of y_t given (x_t, \mathcal{Y}_{t-1}) is also multivariate Gaussian, of the form:

$$y_t | x_t, \mathscr{Y}_{t-1} \sim MVN(A'x_t + H'\hat{\xi}_{t|t-1}, H'P_{t|t-1}H + R)$$

Thus, the density function is

$$f_{\mathbf{Y}_{t}|\mathbf{X}_{t},\mathscr{Y}_{t-1}}(\mathbf{y}_{t}|\mathbf{x}_{t},\mathscr{Y}_{t-1},\boldsymbol{\theta})$$

$$= (2\pi)^{-n/2}|H'P_{t|t-1}H + R|^{-1/2} \quad \text{x} \quad exp\{-1/2(\mathbf{y}_{t} - A'\mathbf{x}_{t} - H'\hat{\boldsymbol{\xi}}_{t|t-1}) \quad \text{x} \quad (H'P_{t|t-1}H + R)^{-1}(\mathbf{y}_{t} - A'\mathbf{x}_{t} - H'\hat{\boldsymbol{\xi}}_{t|t-1})'\}$$

where θ aggregates all known parameters in F, A, H, Q, and R

The log-likelihood is the joint density

$$\ell(\boldsymbol{\theta}) = \sum_{t=1}^{T} log(f_{\boldsymbol{Y}_{t}|\boldsymbol{X}_{t}, \mathscr{Y}_{t-1}}(\boldsymbol{y}_{t}|\boldsymbol{x}_{t}, \mathscr{Y}_{t-1}, \boldsymbol{\theta}))$$

The log-likelihood can be maximized numerically with respect to $F(\theta)$, $A(\theta)$, $H(\theta)$, $Q(\theta)$, and $R(\theta)$. This is an exact log likelihood and yields exact MLEs.

Max likelihood estimation for MA and ARMA can be computed in this manner.

Basic Prescription

- 1. Guess $\boldsymbol{\theta}^{(0)}$
- 2. Guess $\boldsymbol{\theta}^{(s)}$, compute $F(\boldsymbol{\theta}^{(s)}), A(\boldsymbol{\theta}^{(s)}), H(\boldsymbol{\theta}^{(s)}), Q(\boldsymbol{\theta}^{(s)})$, and $R(\boldsymbol{\theta}^{(s)})$
- 3. Using the Kalman Filter to iteratively compute $\hat{\xi}_{t|t-1}$ and $P_{t|t-1}$, $t=1,\ldots,T$
- 4. Compute the log-likelihood using $H(\boldsymbol{\theta}^{(s)}), A(\boldsymbol{\theta}^{(s)}), R(\boldsymbol{\theta}^{(s)}),$ and $\{\hat{\boldsymbol{\xi}}_{t|t-1}, P_{t|t-1}\}_{t=1}^T$
- 5. Use a numerical method to update $\boldsymbol{\theta}^{(s+1)}$
- 6. If $||\boldsymbol{\theta}^{(s+1)} \boldsymbol{\theta}^{(s)}|| < \tau$, stop. Otherwise, set i = i+1 and return to step 7.

Updating $\boldsymbol{\theta}^{(i)} \to \boldsymbol{\theta}^{(i+1)}$ may involve numerical or analytical derivatives.

Analytical derivatives of the log likelihood with respect to each θ_i will involve $\frac{\partial \hat{\xi}_{t|t-1}(\boldsymbol{\theta})}{\partial \theta_i} \frac{\partial P_{t|t-1}}{\partial \theta_i}$ These derivatives can be updated recursively similar to $\hat{\xi}_{t|t-1}$ and $P_{t|t-1}$