Portfolio Optimization

1. Input Data EDA

Return & Risk for Input Data

1. Input Data EDA

Return & Risk for Input Data

2. Target Data EDA

Return & Risk for Target Data

2. Target Data EDA

Target Data Correlation

2. Target Data EDA

Target Data Detail

	Returns	Risk	Sharpe Ratio	Max Returns	Min Returns	Median Returns	Total Return
TLT	0.000310	0.007899	-1.226716	0.075196	-0.066683	0.000246	0.231300
EMB	0.000365	0.006937	-1.388965	0.100498	-0.101104	0.000088	0.288800
AGG	0.000205	0.002862	-3.422357	0.038688	-0.068395	0.000156	0.104900
Cash	0.000177	0.000237	-41.454003	0.004194	-0.000105	0.000108	0.002429
SPY	0.000466	0.011981	-0.795774	0.145197	-0.109424	0.000485	-0.657000
EFA	0.000282	0.012521	-0.776152	0.158875	-0.123889	0.000000	-1.251600
vwo	0.000298	0.015119	-0.641707	0.202822	-0.153423	0.000672	-1.469200
GLD	0.000269	0.010164	-0.957426	0.112905	-0.087808	0.000000	-0.336900
DBC	0.000226	0.011282	-0.866286	0.068745	-0.077844	0.000036	-0.830600

3. The ways of setting weights

Maximize Sharpe-Ratio, Optimization (MVO)

```
Asset labels of Portfolio:
 ['TLT', 'EMB', 'AGG', 'Cash', 'SPY', 'EFA', 'VWO', 'GLD', 'DBC']
Mean Returns:
 [0.031 0.037 0.021 0.018 0.047 0.028 0.03 0.027 0.023]
Variance-Covariance Matrix of Returns:
 \begin{bmatrix} 0.624 & 0.024 & 0.159 & 0. & -0.287 & -0.314 & -0.354 & 0.089 & -0.168 \end{bmatrix}
 \begin{bmatrix} 0.159 & 0.042 & 0.082 & 0. & -0.019 & -0.014 & -0.021 & 0.039 & -0.005 \end{bmatrix}
          0. 0. 0.001 0. 0. -0.001 -0.
 .0
                                                             -0.001
 \begin{bmatrix} -0.287 & 0.25 & -0.019 & 0. & 1.435 & 1.124 & 1.255 & 0.018 & 0.378 \end{bmatrix}
 \begin{bmatrix} -0.314 & 0.245 & -0.014 & 0. & 1.124 & 1.568 & 1.441 & 0.15 \end{bmatrix}
                                                             0.495]
 [-0.354 \quad 0.37 \quad -0.021 \quad -0.001 \quad 1.255 \quad 1.441 \quad 2.286 \quad 0.222 \quad 0.648]
 [-0.168 \quad 0.122 \quad -0.005 \quad -0.001 \quad 0.378 \quad 0.495 \quad 0.648 \quad 0.339 \quad 1.273]]
Risk free rate (daily %): 0.000
Maximal Sharpe Ratio: [[11.713]]
Annualized Risk (%): [[0.378]]
Annualized Expected Portfolio Return(%): [4.455]
Optimal weights (%):
 [[ 0.366]
 [ 0. ]
 [ 0. ]
 [99.49]
 [ 0. ]
 [ 0. ]
 [ 0. ]
 [0.144]
 [ 0. ]]
```

3. The ways of setting weights

Maximize Sharpe-Ratio, Optimization (MVO)

```
# weight = Clusetered_Bond -> 6, Clustered_Stock -> 4
# TLT, AGG, GLD, CASH = 0.6
# EMB, SPY, EFA, VWD, DBC = 0.4

weights = np.array([0.15, 0.15, 0.15, 0.15, 0.06, 0.01, 0.14, 0.08, 0.11])
```

```
Daily Portfolio Risk: 0.17 %

Annualized Portfolio Risk: 6.62 %

Daily Portfolio Return: 0.03 %

Annualized Expected Portfolio Return: 6.97 %

PortfolioSharpe Ratio: 1.05 %
```

4. Rebalancing & Extracting Weight

print('Optimal Rebalanced Portfolio Weights', OptimalRebalWeights)

extract the optimal solution (rebalanced weights)

OptimalRebalWeights = HOFIndividualW

Rebalancing Portfolio with Transaction

```
# compute risk, return and Sharpe Ratio of the optimal rebalanced portfolio
DailyRebalancedPortfolioReturn = np.sum(np.multiply(MeanData, OptimalRebalWeights))
# number of trading days = 261
AnnualRebalancedPortfolioReturn = 261 * DailyRebalancedPortfolioReturn*100
print('Rebalanced portfolio annualized return ', AnnualRebalancedPortfolioReturn)
DailyRebalancedPortfolioRisk= np.sqrt(np.matmul( np.matmul(OptimalRebalWeights, CovData), OptimalRebalWeights.T))
AnnualRebalancedPortfolioRisk = np.sqrt(261) * DailyRebalancedPortfolioRisk*100
print('Rebalanced portfolio annualized risk', AnnualRebalancedPortfolioRisk)
SharpeRatio = (AnnualRebalancedPortfolioReturn-RiskFreeRate)/AnnualRebalancedPortfolioRisk
print('Rebalanced portfolio Sharpe Ratio', SharpeRatio)
# compare results with risk, return and Sharpe Ratio of the original portfolio
print('Original portfolio annualized return ', OriginalPortfolioAnnReturn)
print('Original portfolio annualized risk', OriginalPortfolioAnnRisk)
print('Original portfolio Sharpe Ratio', OriginalPortfolioSharpeRatio)
['TLT', 'EMB', 'AGG', 'Cash', 'SPY', 'EFA', 'VWO', 'GLD', 'DBC']
Optimal Rebalanced Portfolio Weights [0.081 0.107 0.205 0.265 0.071 0.035 0.135 0.06 0.042]
Rebalanced portfolio annualized return 87024145.93077376
Rebalanced portfolio annualized risk 92906.87221109867
Rebalanced portfolio Sharpe Ratio 936.6814728521002
Original portfolio annualized return 6.58
Original portfolio annualized risk 5.53
Original portfolio Sharpe Ratio 1.19
```

Rebalancing Portfolio with Transaction

```
for data in train_data.take(1):
    print(f'데이터셋(X) 구성(batch_size, window_size, feature갯수): {data[0].shape}')
    print(f'데이터셋(Y) 구성(batch_size, window_size, feature갯수): {data[1].shape}')
데이터셋(X) 구성(batch_size, window_size, feature갯수): (32, 20, 30)
데이터셋(Y) 구성(batch_size, window_size, feature갯수): (32,)
```


6. Without Cash

Backtesting

```
p = Engine(
start_date = '2003-01-01',
portfolio = ['TLT', 'EMB', 'AGG', 'SPY', 'EFA', 'VWO', 'GLD', 'DBC'],
weights = [0.11, 0.145, 0.28, 0.096, 0.047, 0.183, 0.081, 0.057],
benchmark = ['EFA'])
```

Backtest

Annual return	6.0%
Cumulative return	218.53%
Annual volatility	8.8 %
Winning day ratio	54.8%
Sharpe ratio	0.76
Calmar ratio	0.22
Information ratio	-0.0
Stability	0.95
Max Drawdown	-0.3 %
Sortino ratio	1.08
Skew	-0.13
Kurtosis	19.57
Tail Ratio	0.99
Common sense ratio	1.14
Daily value at risk	-1.0 %
Alpha	0.03
Beta	0.34

Cumulative Returns vs Benchmark

6. Without Cash

Years

Feature Correlation

Monthly Returns (%)

- 0%

- -2%

- -5%

- -8%

-- -10%

	2003	-0.47	0.12	-0.20	1.38	1.51	0.01	-0.89	0.51	0.84	0.21	0.37	1.31
	2004	0.58	0.81	0.24	-1.82	0.10	0.66	-0.08	0.99	0.45	0.73	0.37	0.80
	2005	-0.07	0.37	-1.83	0.35	1.07	1.55	0.97	1.20	1.66	-1.94	2.45	2.47
	2006	3.21	-0.47	0.29	2.77	-2.71	-0.21	1.52	1.10	0.38	1.88	3.16	0.27
	2007	0.21	0.76	0.79	1.78	0.93	0.36	1.27	0.78	3.99	4.25	-1.04	0.55
	2008	-0.58	1.19	-0.80	2.25	0.41	-2.16	-1.53	-2.01	-5.42	-13.24	2.23	8.60
	2009	-5.60	-3.24	5.31	4.82	6.34	-0.65	4.40	1.22	4.17	-0.27	4.00	-1.00
	2010	-1.76	1.44	2.44	1.43	-2.65	0.96	3.69	0.87	4.19	1.51	-1.61	2.59
,	2011	-1.12	1.46	1.38	3.10	-0.22	-1.08	1.78	0.14	-5.54	5.71	-0.24	-0.73
	2012	4.09	1.78	-0.96	0.44	-3.45	2.42	1.94	1.21	1.77	-0.64	0.86	1.06
	2013	-0.17	-0.70	0.16	1.29	-3.44	-3.68	1.51	-1.14	2.26	2.14	-1.01	-0.28
	2014	-1.07	2.79	0.88	1.05	1.70	1.42	-0.59	2.09	-3.26	1.09	-0.01	-1.49
	2015	2.01	0.63	-0.86	1.71	-1.06	-1.81	-1.36	-2.77	-0.95	2.63	-1.50	-1.54
	2016	-0.62	1.53	4.13	1.53	-0.80	3.80	1.82	-0.00	0.67	-1.42	-3.30	0.51
	2017	2.18	1.70	0.46	1.17	0.92	-0.01	1.91	1.88	-0.38	0.98	0.36	1.71
	2018	1.95	-2.77	0.46	-1.04	0.07	-1.40	1.11	-0.72	-0.19	-3.45	0.90	-0.09
	2019	4.46	0.35	1.94	0.69	-0.91	3.72	-0.14	1.73	-0.29	1.45	0.04	2.38
	2020	0.27	-1.23	-7.16	4.67	2.93	2.73	4.82	0.95	-1.42	-0.95	4.49	2.76
	2021	-0.47	-0.79	-0.67	2.54	1.58	0.11	0.00	0.00	0.00	0.00	0.00	0.00
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC

6. Without Cash

Drawdown Point

Underwater Plot

Top 5 Drawdown Periods

6. Regression Analysis

Volatility

Rolling Volatility (6-Months)

Rolling Sharpe (6-Months)

Rolling Beta to Benchmark

THANK YOU