

Black-Mouth

UM ROBÔ QUADRÚPEDE PARA PESQUISA

Orientador: Marco A. dos Reis

Robótica e Sistemas Autônomos, Senai Cimatec

Sistema FIEB

Introdução

Tema: Locomoção de robôs quadrúpedes

Objetivos: Estudar, implementar e testar um sistema de controle de movimentação de robôs quadrúpede no espaço tridimensional em simulação e em um protótipo real.

Objetivos específicos:

- Estudar a cinemática de um robô quadrúpede com motores elétricos e 3-DOF/perna
- Estudar designs, modelos dinâmicos e métodos de controle da movimentação tridimensional de um robô quadrúpede com as características supracitadas
- Implementar um sistema de controle e simular a movimentação no espaço tridimensional de um robô quadrúpede
- Construir um protótipo de robô quadrúpede com base no modelo simulado
- Testar sistema de controle implementado no protótipo

Metodologia

Foi desenvolvida uma Metodologia própria para o projeto, composta por 4 etapas: Fundamentação, Desenvolvimento, Resultados e Análise e Defesa.

SOTA

Aplicamos o método Bili para buscar artigos de referência para o SOTA. Durante a pesquisa bibliográfica o foco foi:

- Robô quadrúpede
- Design
- Estrutura
- Controle

Requisitos

Requisitos do cliente:

- O robô deverá ser capaz de operar por tempo suficiente para inspecionar um ambiente semelhante a uma sala de aula
- O robô deverá ser capaz de se locomover em ambientes irregulares
- O robô deverá ser capaz de transpor obstáculos pequenos, similares a um livro
- O robô deverá atuar em ambientes indoor e outdoor
- O transporte do robô deve ser realizado por uma única pessoa utilizando uma maleta
- O robô deverá suportar um payload de 2 kg

Requisitos

Requisitos técnicos:

- O robô deverá possuir uma altura máxima de 500 mm
- O robô deverá possuir um comprimento máximo de 500 mm
- Deverá ter uma massa de, no máximo, 10 kg + /- 1
- As juntas devem ser atuadas por servomotores
- A relação de massa entre pernas/corpo deve ser a menor possível
- O robô deverá ser capaz de transpor obstáculos de até 5cm
- O robô deverá ser capaz de operar por, no mínimo, 20 minutos

1	2	3	4	5	6
\Diamond		\Diamond		\blacksquare	\blacksquare
O robô deve ser de pequeno porte	O robô deve ser leve	As juntas devem ser atuadas por servomotores	A massa do robô deve ser bem distribuída entre membros e tronco	O robô deve ser capaz de dar passos mais altos que os obstáculos	O robô deve ser alimentado por bateria
0		0	•		
0	•	0	∇		•
•	0	•	•	0	
	0	∇	•		
•	∇		•	0	0
	•	0	•		0
	\Diamond	♦ ▲	de pequeno porte	eve Ser atuadas por Ser atuadas por Ser atuadas por Ser atuadas por Membros e tronco	oorte 🔷 🏲

- 1. Deve ser de pequeno porte
- 2. Deve ser leve
- 3. Juntas atuadas por servomotores
- 4. Massa bem distribuída entre corpo e pernas
- 5. Deve dar passos mais altos dos que os obstáculos
- 6. Deve ser alimentado por bateria

Benchmarking

A equipe realizou uma análise entre quatro projetos existentes que estivessem mais próximos do escopo do nosso protótipo.

Autor / Projeto	mike4192/SpotMicro	InotspotI/ notspot sim cpp	stanfordroboticsclub/ StanfordQuadruped	Shi et. al. /	
Code	C++ / Python	C++ / Python	C++ / Python	-	
Modelo 3D	Disponível	Indisponível	Disponível	Indisponível	
DoF	12	12	12	12	
Controle	IK	PID / IK	IK	PD / IK / Groud-contact model	
Passos	Crawl / Trot	Crawl / Trot	Trot	Trot	
Formato do Passo	Triangular			Composite Cycloid function	
Teleoperação	X / Y / Yaw	X / Yaw		X/Y	
Modelo Servos	PDI-HV5523MG		JX CLS6336HV	North No.	
Sensores	Lidar (opcional)	IMU	IMU	IMU	
Processamento	Raspberry Pi 3B	Raspberry Pi	Raspberry Pi 4	- IMIC	
Suporte ao ROS	Kinetic / Noetic (Fork)	Noetic	Não	Não	
Extras	URDF; LiDAR suppor; SLAM w/ ROS;	Possui repo no github com simulação no gazebo	Possui uma webpage	Possui um artigo	

Arquitetura Geral

Project Breakdown Structure

Especificação de Funcionalidades

Próximas Etapas

Fundamentação

- Finalizar escrita da Introdução
- Finalizar escrita da Metodologia
- Finalizar escrita da Fundamentação Teórica
- Definir do Método de Controle a ser utilizado

Desenvolvimento

- Elaborar do CAD mecânico
- Realizar projeto Elétrico-Eletrônico

Questions?

brenda.s.alencar@gmail.com, felipe18mohr@gmail.com, lucaslinssouza@gmail.com