PROBLEM STATEMENT:- TO PREDICT THE RAINFALL BASED ON VARIOUS FEATURES OF THE DATASET

In [40]:

```
# importing necessary libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn import preprocessing,svm
```

In [42]:

```
#Reading the dataset
df=pd.read_csv(r"C:\Users\mural\Downloads\rainfall.csv")
df
```

Out[42]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NC
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326.0	315
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301.2	275
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276.1	198
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167.1	34
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206.9	29
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3	308.4	343.2	172
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3	263.1	234.9	84
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7	266.2	359.4	213
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9	230.7	213.1	93
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5	163.1	157.1	117
641 r	ows × 19 columns												

DATA CLEANING AND PREPROCESSING

In [43]:

df.head()

Out[43]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
0	ANDAMAN And NICOBAR ISLANDS	NICOBAR	107.3	57.9	65.2	117.0	358.5	295.5	285.0	271.9	354.8	326.0	315.2	250.9
1	ANDAMAN And NICOBAR ISLANDS	SOUTH ANDAMAN	43.7	26.0	18.6	90.5	374.4	457.2	421.3	423.1	455.6	301.2	275.8	128.3
2	ANDAMAN And NICOBAR ISLANDS	N & M ANDAMAN	32.7	15.9	8.6	53.4	343.6	503.3	465.4	460.9	454.8	276.1	198.6	100.0
3	ARUNACHAL PRADESH	LOHIT	42.2	80.8	176.4	358.5	306.4	447.0	660.1	427.8	313.6	167.1	34.1	29.8
4	ARUNACHAL PRADESH	EAST SIANG	33.3	79.5	105.9	216.5	323.0	738.3	990.9	711.2	568.0	206.9	29.5	31.7
4														•

In [44]:

df.tail()

Out[44]:

	STATE_UT_NAME	DISTRICT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
636	KERALA	IDUKKI	13.4	22.1	43.6	150.4	232.6	651.6	788.9	527.3	308.4	343.2	172.§
637	KERALA	KASARGOD	2.3	1.0	8.4	46.9	217.6	999.6	1108.5	636.3	263.1	234.9	84.€
638	KERALA	PATHANAMTHITTA	19.8	45.2	73.9	184.9	294.7	556.9	539.9	352.7	266.2	359.4	213.5
639	KERALA	WAYANAD	4.8	8.3	17.5	83.3	174.6	698.1	1110.4	592.9	230.7	213.1	93.€
640	LAKSHADWEEP	LAKSHADWEEP	20.8	14.7	11.8	48.9	171.7	330.2	287.7	217.5	163.1	157.1	117.7
4													•

In [45]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 641 entries, 0 to 640
Data columns (total 19 columns):
Column Non-Null Count D

#	Column	Non-Null Count	Dtype
0	STATE_UT_NAME	641 non-null	object
1	DISTRICT	641 non-null	object
2	JAN	641 non-null	float64
3	FEB	641 non-null	float64
4	MAR	641 non-null	float64
5	APR	641 non-null	float64
6	MAY	641 non-null	float64
7	JUN	641 non-null	float64
8	JUL	641 non-null	float64
9	AUG	641 non-null	float64
10	SEP	641 non-null	float64
11	OCT	641 non-null	float64
12	NOV	641 non-null	float64
13	DEC	641 non-null	float64
14	ANNUAL	641 non-null	float64
15	Jan-Feb	641 non-null	float64
16	Mar-May	641 non-null	float64
17	Jun-Sep	641 non-null	float64
18	Oct-Dec	641 non-null	float64
d+vn	os: float64(17)	object(2)	

dtypes: float64(17), object(2)

memory usage: 95.3+ KB

In [46]:

df.describe()

Out[46]:

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	
count	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.000000	641.00
mean	18.355070	20.984399	30.034789	45.543214	81.535101	196.007332	326.033697	291.152262	194.60
std	21.082806	27.729596	45.451082	71.556279	111.960390	196.556284	221.364643	152.647325	99.83
min	0.000000	0.000000	0.000000	0.000000	0.900000	3.800000	11.600000	14.100000	8.60
25%	6.900000	7.000000	7.000000	5.000000	12.100000	68.800000	206.400000	194.600000	128.80
50%	13.300000	12.300000	12.700000	15.100000	33.900000	131.900000	293.700000	284.800000	181.30
75%	19.200000	24.100000	33.200000	48.300000	91.900000	226.600000	374.800000	358.100000	234.10
max	144.500000	229.600000	367.900000	554.400000	733.700000	1476.200000	1820.900000	1522.100000	826.30
4									•

```
In [47]:
#Checking for null values
df.isnull().sum()
Out[47]:
STATE_UT_NAME
DISTRICT
JAN
FEB
              0
MAR
              0
APR
              0
              0
MAY
              0
JUN
              0
JUL
              0
AUG
              0
SEP
OCT
              0
NOV
              0
DEC
              0
ANNUAL
              0
Jan-Feb
              0
Mar-May
              0
Jun-Sep
              0
Oct-Dec
dtype: int64
In [48]:
#Checking for duplicate values
df.duplicated().sum()
Out[48]:
0
In [50]:
df.columns
Out[50]:
dtype='object')
In [52]:
df.shape
Out[52]:
(641, 19)
```

Feature scaling:spliting the data into train data and test data

```
In [53]:

x=df[['MAR']]
y=df[['JAN']]
```

In [54]:

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=100)
```

DATA VISUALIZATION

In [56]:

```
plt.figure(figsize=(14,7))
sns.histplot(data=df,x='MAR',color='orange')
```

Out[56]:

<Axes: xlabel='MAR', ylabel='Count'>

In [57]:

sns.pairplot(df)

Out[57]:

<seaborn.axisgrid.PairGrid at 0x2038ff622d0>

In [58]:

```
df=df[['JAN','FEB','MAR','APR','DEC']]
sns.heatmap(df.corr(),annot=True)
plt.show()
```


LINEAR REGRESSION

In [59]:

```
from sklearn.linear_model import LinearRegression
reg=LinearRegression()
reg.fit(X_train,y_train)
print(reg.intercept_)
coeff_=pd.DataFrame(reg.coef_,x.columns,columns=['coefficient'])
coeff_
```

[8.05318034]

Out[59]:

coefficient

MAR 0.342951

In [60]:

```
score=reg.score(X_test,y_test)
print(score)
```

0.3746861023792344

In [61]:

predictions=reg.predict(X_test)

In [62]:

plt.scatter(y_test,predictions)

Out[62]:

<matplotlib.collections.PathCollection at 0x203a1dd3490>

In [63]:

```
df500=df[:][:500]
sns.lmplot(x="MAR",y="JAN",order=2,ci=None,data=df500)
plt.show()
```


In [64]:

```
X_train,X_test,y_train,y_test=train_test_split(x,y,test_size=0.33)
reg.fit(X_train,y_train)
reg.fit(X_test,y_test)
```

Out[64]:

```
LinearRegression
LinearRegression()
```

In [66]:

```
y_pred=reg.predict(X_test)
plt.scatter(X_test,y_test,color='pink')
plt.plot(X_test,y_pred,color='purple')
plt.show()
```


In [67]:

```
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(X_train,y_train)
y_pred=model.predict(X_test)
r2=r2_score(y_test,y_pred)
print("R2 Score:",r2)
```

R2 Score: 0.4723678424322967

RIDGE MODEL

In [68]:

```
from sklearn.linear_model import Lasso,Ridge
from sklearn.preprocessing import StandardScaler
```

In [69]:

```
features= df.columns[0:4]
target= df.columns[-4]
```

In [70]:

```
x=np.array(df['MAR']).reshape(-1,1)
y=np.array(df['JAN']).reshape(-1,1)
```

In [71]:

```
x= df[features].values
y= df[target].values
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4,random_state=100)
```

In [72]:

```
ridgeReg=Ridge(alpha=10)
ridgeReg.fit(x_train,y_train)
train_score_ridge=ridgeReg.score(x_train,y_train)
test_score_ridge=ridgeReg.score(x_test,y_test)
```

```
print("\n Ridge Model:\n")
print("the train score for ridge model is{}".format(train_score_ridge))
print("the test score for ridge model is{}".format(test_score_ridge))
```

In [74]:

```
lr=LinearRegression()
```

In [77]: figure(figsize=(8,8)) plot(features,ridgeReg.coef_,alpha=0.6,linestyle='none',marker="*",markersize=5,color='blue',label=r'Ridge plot(features,alpha=0.4,linestyle='none',marker="o",markersize=8,color='orange',label='LinearRegression') xticks(rotation=85)

legend()
show()

LASSO MODEL

In [78]:

```
print("\n Lasso Model:\n")
lasso=Lasso(alpha=9)
lasso.fit(x_train,y_train)
train_score_ls=lasso.score(x_train,y_train)
test_score_ls=lasso.score(x_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is{}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.9998493280695062 The test score for ls model is 0.9998642481931751

In [79]:

```
pd.Series(lasso.coef_,features).sort_values(ascending=True).plot(kind="hist")
```

Out[79]:

<Axes: ylabel='Frequency'>

In [80]:

```
from sklearn.linear_model import LassoCV
lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_train,y_train)
print(lasso_cv.score(x_train,y_train))
print(lasso_cv.score(x_test,y_test))
```

0.9999999482560009

0.9999999653904249

```
In [83]:
```

```
gure(figsize= (8,8))
ot(features,ridgeReg.coef_,alpha=0.8,linestyle='none',marker="*",markersize=5,color='yellow',label=r'Ridge
ot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,color='blue',label=r'Ridge;$\alpha=10
ot(features,alpha=0.4,linestyle='none',marker='o',markersize=7,color="red",label='LinearRegression')
icks(rotation=85)
icks(rotation = 85)
gend()
ow()
```


ELASTICNET

0.9999946106160088

In [84]:

```
In [85]:
```

```
y_pred_elastic = eln.predict(x_train)
mean_squared_error=np.mean((y_pred_elastic - y_train)**2)
print(mean_squared_error)
```

0.005384495296322562