

Formelsamling Fysik

Mekanik

Medelhastighet

$$egin{aligned} ar{v} &= rac{\Delta s}{\Delta t} \cdot s = vt \ ar{v} &= rac{v_0 + v}{2} \cdot s = s_0 + vt \end{aligned}$$

Konstant hasighet

$$egin{aligned} v &= rac{s}{t} \ s &= s_0 + vt \end{aligned}$$

Konstant acceleration

$$egin{align} ar{a} &= rac{\Delta v}{\Delta t} v = v_0 + at \ s &= rac{v_0 + v}{2} \cdot t = ar{v}t \ s &= s_0 + v_0 t + rac{at^2}{2} \ \end{cases} \ (2)$$

Krafter

Tyngdkraft

$$F_g = m \cdot g$$

Resulterande kraft

En kropp i vila $\Rightarrow F_{res} = 0$

$$F_{res} = m \cdot a$$

Centripetalkraft

$$F_c = rac{mv^2}{r}$$

där v är omloppshastigheten som är lika med^{\cdot}

 $v=rac{2\pi r}{T}$ där r är radien och T är omloppstiden.

Gravitationskraft

$$F_G = G \cdot rac{m_1 m_2}{r^2}$$

Friktionskraft

$$F_{\mu} = \mu \cdot F_N$$

Fjäder

$$F_{res}=-ky$$

$$T_{sv\ddot{a}ng}=2\pi\sqrt{rac{m}{k}}$$

Kraft i ett magnetfält

$$F_m = QvB$$

Kraftmoment

Definition

$$M = F \cdot r$$

Jämviktslagen

$$\stackrel{\curvearrowleft}{M}=\stackrel{\curvearrowright}{M}$$

Energi

Arbete

$$W = F \cdot s$$

Kinetisk energi

$$W_k=rac{mv^2}{2}$$

Rörelsemängd

$$ar p = mar v$$

Verkningsgrad

$$\eta = rac{E_{nyttig}}{E_{teoretisk}} = rac{P_{nyttig}}{P_{teoretisk}}$$

Bevarandelagen för kinetisk energi

I en elastisk stöt gäller att:

$$E_k^{f\ddot{o}re} = E_k^{efter}$$

Effekt

$$P = \frac{W}{t}$$

Potentiell energi

$$W_p = mgh$$

Impuls

$$I = F\Delta t = m\Delta v = \Delta p$$

Bevarandelagen för rörelsemängden i kollisioner

$$ar{p}_{f\ddot{o}re} = ar{p}_{efter}$$

Densitet

$$ho=rac{m}{V}$$

Termofysik

Tryck

$$p=rac{F}{A}$$

Ideala gaslagen

$$\frac{p \cdot V}{T} = \text{konstant}$$
 $PV = nRT$

Pascals lag

$$p=p_0+
ho hg$$

Omvandling mellan Celsius och Kelvin

$$T_{Kelvin} = T_{Celsius} + 273$$

Arkimedes princip

$$F_0 =
ho V g$$

Elektricitet

Coulombs lag

$$F=k\cdot rac{q_1\cdot q_2}{r^2}$$

Ohms lag

$$U=R\cdot I$$

Parallellkoppling $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$

Elektrisk fältstyrka

$$E = \frac{F}{q} = \frac{U}{s}$$

Effekt

$$P=UI=RI^2=rac{U^2}{R}$$

Laddad partikel i ett elektriskt fält

$$E_k = U \cdot Q$$

Spänning

$$U = \frac{W}{Q}$$

Seriekoppling

$$R = R_1 + R_2$$

Relativitetsteorin

Massa-energiekvivalensen

$$E_0 = mc^2$$
 $E_{tot} = E_0 + E_k = \gamma mc^2$ $E_k = E_{tot} - E_0 = mc^2(\gamma - 1)$

Längdkontraktion

$$L = \frac{L_0}{\gamma} = L_0 \sqrt{1 - (\frac{v}{c})^2}$$

Gammafaktorn

$$\gamma = rac{1}{\sqrt{1-(rac{v}{c})^2}}$$

Tidsdilatation

$$t = t_0 \cdot \gamma = t_0 \sqrt{1 - (\frac{v}{c})^2}$$

Kvantfysik

Fotonens energi

$$E_{foton} = h \cdot f = rac{h \cdot c}{\lambda}$$

Fotonens rörelsemängd

$$p=rac{h}{\lambda}$$

De Broglie våglängd

$$\lambda = \frac{h}{m \cdot v}$$

Fotoelektrisk effekt

$$E_{foton} = E_0 + E_k$$

Energinivåer för väte

$$E_n=rac{-13.6}{n^2}\left[eV
ight]$$

Vågor och optik

Frekvens

$$f=rac{1}{T}$$

Reflektionslagen

$$v_{infall} = v_{reflektion}$$

Interferens från dubbellspalt/gitter

$$sin(a) = rac{n \cdot \lambda}{d}$$

Stående våg (öppet rör)

$$L=nrac{\lambda}{2}\quad n=1,2,3...$$

Våglängd

$$\lambda = rac{v}{f}$$

Brytning

$$sin(v_1) \cdot n_2 = sin(v_2) \cdot n_1$$

Från <u>hög</u> brytningsindex till <u>låg</u> brytningsindex → brytning mot normalen

Slutet rör

$$L=rac{\lambda(2n-1)}{4}\quad n=1,2,3...$$

Linser

- Positiv lins → Konvex → fokuserar ljus
- Negativ lins → Konkav → sprider ljus

Linsformeln

 $\frac{1}{f}=\frac{1}{a}+\frac{1}{b}$ där f är brännvidden, a avståendet från ljuskällan till linsen och b bildens avstånd från linsen

Dopplereffekten

$$f_{mottagare} = f_{s\"{a}ndare} \cdot rac{v_{ljud} + v_{mottagare}}{v_{ljud} + v_{s\"{a}ndare}}$$

- Mottagaren rör sig mot sändare $\rightarrow v_{mottagare}$ i positiv riktning
- Mottagaren rör sig ifrån sändare $\rightarrow v_{mottagare}$ i negativ riktning
- Sändaren rör sig mot mottagare $\rightarrow v_{s\"{a}ndare}$ i positiv riktning
- Sändaren rör sig ifrån mottagare $o v_{s\"{a}ndare}$ i negativ riktning

Konstanter och värden

• En lista av värden som är bra att kunna som inte är med i listan tillgänglig under provet.

Beskrivning	Värde
Våglängdsintervall för mikrovågsstrålning	1mm-1m
Våglängdsintervall för ultraviolett ljus	1nm-380nm
Våglängdsintervall för synligt ljus,	380nm-740nm
Våglängdsintervall för infrarött ljus	740nm-1mm
Våglängdsintervall för röntgenstrålning	10pm-1nm
Vattnets densitet	$997pprox 10^3~kg/m^3$
Allmänna gaskonstanten	$R=N_A kpprox 8.3 rac{J}{mol\cdot K}$
Brytningsindex för luft	npprox 1