中等题目训练

【开心提示:题目难度加大,加油!】

一、问题求解题	
1. 下列说法正确的是 ().	
(A) 有理数中, 零的意义仅表示没有	
(B) 正有理数和负有理数组成了全体有理数	
(C) 0.9 既不是整数,也不是分数,因此它不是有理数	
(D) 只有 1 的倒数等于本身	
(E) 0 既不是正数,也不是负数	
2. 下列叙述错误的有()个.	
(1)整数就是自然数和零 (2)整数和分数统称为有	
(3) 正整数、0和负整数统称为整数 (4) 整数不能只分成奇数	和偶数两
部分	
(A) $0 \uparrow$ (B) $1 \uparrow$ (C) $2 \uparrow$ (D) $3 \uparrow$ (E) $4 \uparrow$	
3. 已知实数 $a = 2014^2 - 2015 \times 2013$,则 $a^{2015} + \frac{1}{a^{2015}} = ($).	
(A) 1 (B) 2 (C) 3 (D) 4 (E) 0	
4. 把无理数 $\sqrt{5}$ 记为 a ,它的小数部分记作 b ,则 $a-\frac{1}{b}$ 等于()	
(A) 1 (B) -1 (C) 2 (D) -2 (E) 3	
5. 若 y 与 x -1成正比,比例系数为 k_1 ; y 又与 x +1成反比,比例系数	数为 k_2 ,
且 $k_1: k_2 = 2:3$, 则 x 的值为 ().	
(A) $\pm \frac{\sqrt{15}}{3}$ (B) $\frac{\sqrt{15}}{3}$ (C) $-\frac{\sqrt{15}}{3}$ (D) $\pm \frac{\sqrt{10}}{2}$ (E) $-\frac{\sqrt{10}}{2}$	
6. 适合关系式 $ 3x-4 + 3x+2 =6$ 的整数 x 的个数是().	
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4	
7. 若 $(x-y-2)^2 + xy-3 = 0$,则 $\left(\frac{3x}{x-y} - \frac{2x}{x-y}\right) \div \frac{1}{y}$ 的值等于().	
(A) $\frac{3}{2}$ (B) $-\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $-\frac{2}{3}$ (E) 1	
8. 代数式 $\frac{ a }{a} + \frac{ b }{b} + \frac{ c }{c} + \frac{ abc }{abc}$ 可能的取值有 () 个.	
(A) $4 \uparrow$ (B) $3 \uparrow$ (C) $2 \uparrow$ (D) $1 \uparrow$ (E) $5 \uparrow$	
9. 已知 $\frac{x}{2} = \frac{y}{3} = \frac{m}{4} \neq 0$,那么式子 $\frac{x^2 + y^2 + m^2}{xy + ym + mx}$ 的值是().	
(A) $\frac{27}{26}$ (B) $\frac{29}{26}$ (C) $\frac{26}{29}$ (D) 1 (E) 2	

10. 已知 $\frac{x}{a-b} = \frac{y}{b-c} = \frac{z}{c-a}$ (a, b, c互不相等), 求 $x+y+z$ 的值为 ().
(A) 1 (B) $\frac{1}{2}$ (C) ± 1 (D) -1 (E) 0
11. 一个分数的分子减少 25%, 而分母增加 25%, 则新分数比原来分数减少的百分率是(). (A) 30% (B) 35% (C) 40% (D) 50% (E) 60%
12. 一箱书,平均分给6个小朋友,多余1本;平均分给8个小朋友,也多余1本;平均分给9个小朋友,也多余1本,这箱书最少有m本,则m的各个数
位之和为(). (A) 10 (B) 3 (C) 4 (D) 5 (E) 6 13. 在一家三口人中,每两个人的平均年龄加上余下一人的年龄分别得到 47.
61, 60, 那么这三个人中年龄最大与年龄最小的差是(). (A) 28 (B) 27 (C) 26 (D) 25 (E) 24
14. 已知 a , b , c , d 均为正数,且 $\frac{a}{b} = \frac{c}{d}$, 则 $\frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}}$ 的值为 () .
(A) $\frac{a^2}{d^2}$ (B) $\frac{c^2}{d^2}$ (C) $\frac{a+b}{c+d}$ (D) $\frac{b^2}{d^2}$ (E) $\frac{c}{a}$
15. 已知 x_1, x_2, \dots, x_n 的几何平均值为 3,前面 $n-1$ 个数的几何平均值为 2,
则 x_n 的值是().
(A) $\frac{9}{2}$ (B) $\left(\frac{3}{2}\right)^n$ (C) $2\left(\frac{3}{2}\right)^n$ (D) $\left(\frac{3}{2}\right)^{n-1}$ (E) $\left(\frac{3}{2}\right)^{n+1}$
16. 已知 $x > 0$,函数 $y = \frac{2}{x} + 3x^2$ 的最小值是().
(A) $2\sqrt{6}$ (B) $3\sqrt[3]{3}$ (C) $4\sqrt{2}$ (D) 6 (E) $6\sqrt{2}$
17. 一个两位质数,将它的十位数字与个位数字对调后仍是一个两位质数,我们称它为 "无暇质数",则 50 以内的所有"无暇质数"之和等于(). (A) 87 (B) 89 (C) 99 (D) 109 (E) 119
18.
(A) -2 (B) 2 (C) 1 (D) -1 (E) 0 19. 一个自然数被 2 除余 1,被 3 除余 2,被 5 除余 4,满足此条件的介于 100~200的自然数有() 个.
(A) 2 (B) 3 (C) 4 (D) 5 (E) 6 20. 有 4 个小朋友, 4 人年龄逐个相差一岁, 4 人年龄的乘积是 360, 则 4 人
现在年龄之和为(). (A) 14 (B) 16 (C) 22 (D) 20 (E) 18 21. 用 1155 个大小相同的正方形拼成一个长方形,有()种不同的拼法. (A) 2 (B) 4 (C) 6 (D) 8 (E) 10

- 22. 已知 $1176 \times a = b^4$, a, b是正整数, a的最小值为().
 - (E) 2866 (A) 2646 (B) 2246 (C) 2686 (D) 1176
- 23. 王老师领一班同学去种树, 学生恰好平均分成三组, 如果老师与学生每 人种树一样多,则共种了572棵,且每人种树多于2棵而不超过20棵,那么, 这个班有学生()人,每人种树()棵.
 - (A) 51, 11 (B) 46, 11 (C) 46, 13 (D) 51, 13 24. 如果两数之和是64, 两数之积可以整除4875, 那么这两数之差是().
 - (C) 13 (D) 14 (A) 11 (B) 12 (E) 15
 - 25. |x-2|+|x-1|+|x-3|的最小值是().
 - (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 二、充分性判新题

$$1. \sqrt{\frac{x}{x-2}} = \frac{\sqrt{x}}{\sqrt{x-2}}.$$

- $(1) x \le 5$
- (2) x > 3

2.
$$\frac{|a|}{a+a^2} = -\frac{1}{a+1}$$
.

- (1) a < 0
- (2) a < -1
- 3. 已知x < 0 < z, xy > 0, 则|x+z| + |y+z| |x-y|的值为 0.
 - (1) |y| > |z| > |x|
- (2) |x| > |z| > |y|
- 4. x和 y的算术平均值为 5, 且 \sqrt{x} 和 \sqrt{y} 的几何平均值为 2.
- (1) x=4, y=6 (2) x=2, y=8
- 5. 能确定 $\frac{2n}{5}$ 是整数.
- (1) $m = \sqrt{5} + 2$, $m + \frac{1}{m}$ 的整数部分是 n
- (2) n 为整数, 且 $\frac{13n}{10}$ 是整数
- 6. |x-2|+|1+x|=3.
- (1) $x < \frac{\pi}{2}$ (2) x > 0
- 7. $\left| \frac{2x-1}{3} \right| \le \frac{2-x}{3}$.
- (1) $-1 < x < \frac{1}{2}$ (2) $\frac{1}{2} < x < 2$
- 8. $\left| \frac{3}{2x-1} \right| = \frac{3}{1-2x}$.

$$(1) \quad x \in \left(0, \frac{1}{2}\right) \qquad (2) \quad x \in \left(-\infty, \frac{1}{2}\right]$$

进阶训练详解

一、问题求解题

- 1. 【解析】E. A 中零的意义不仅仅表示没有,还表示绝对值中最小的数和正、负数的分界点; B 中缺少一个 0; C 中 0. 9 是有限小数,是有理数; D 中-1的倒数也为它本身.
- 2. 【解析】C. (1) 自然数已经包含了 0, 所以是错误的, 改成整数包括自然数和负整数就对了; (2) 正确的; (3) 正确的; (4) 整数按照奇偶性只能分为奇数和偶数.
- 3. 【解析】B. 利用 $a = 2014^2 2015 \times 2013 = 2014^2 (2014+1)(2014-1)=1$,代入求 出 $a^{2015} + \frac{1}{a^{2015}} = 2$.
 - 4. 【解析】D. $\sqrt{5}$ 的小数部分为 $b = \sqrt{5} 2$,所以 $a \frac{1}{b} = \sqrt{5} \frac{1}{\sqrt{5} 2} = -2$.
 - 5. 【解析】D. 方法一: 由 $y = k_1(x-1)$ (式①) 及 $y = \frac{k_2}{x+1}$ (式②), 用式①除

以式②,
$$1 = \frac{k_1}{k_2}(x-1)(x+1)$$
, 即 $x^2 - 1 = \frac{3}{2}$, $x^2 = \frac{5}{2} \Rightarrow x = \pm \frac{\sqrt{10}}{2}$

方法二: 可令
$$k_1 = 2$$
, $k_2 = 3$, 则有 $y = 2(x-1) = \frac{3}{x+1}$, 所以得 $x = \pm \frac{\sqrt{10}}{2}$.

- 6. 【解析】C. 因为|3x-4|+|3x+2|=6,所以 $\left|x-\frac{4}{3}\right|+\left|x+\frac{2}{3}\right|=2$,由绝对值的几何意义, $-\frac{2}{3} \le x \le \frac{4}{3}$,因为x是整数,所以x=0或 1.
 - 7. 【解析】A. 由 $(x-y-2)^2 + |xy-3| = 0$ 可知 x-y=2, xy=3, 所以

$$\left(\frac{3x}{x-y} - \frac{2x}{x-y}\right) \div \frac{1}{y} = \frac{xy}{x-y} = \frac{3}{2}$$

8. 【解析】B. 讨论 $\frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c} + \frac{|abc|}{abc}$ 的取值,实质是讨论a,b,c 的正负,分情况讨论如下:

$$a$$
, b , c 为两正一负: $\frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c} + \frac{|abc|}{abc} = 0$;

$$a$$
, b , c 为两负一正: $\frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c} + \frac{|abc|}{abc} = 0$;

$$a$$
 , b , c 为三负时: $\frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c} + \frac{|abc|}{abc} = -4$;

$$a$$
, b , c 为三正时: $\frac{|a|}{a} + \frac{|b|}{b} + \frac{|c|}{c} + \frac{|abc|}{abc} = 4a$.

所以可能情况有 3 种. 或者对上述 4 种情况 a , b , c 分别取特值, 也可以快速求解.

9. 【解析】B.
$$\diamondsuit x = 2k$$
, $y = 3k$, $m = 4k$ 代入 $\frac{x^2 + y^2 + m^2}{xy + ym + mx} = \frac{4k^2 + 9k^2 + 16k^2}{6k^2 + 12k^2 + 8k^2} = \frac{29}{26}$.

【评注】本题也可以取特值求解,可令x=2,y=3,m=4代入求解.

10.【解析】E. 设
$$\frac{x}{a-b} = \frac{y}{b-c} = \frac{z}{c-a} = k$$
,则 $x = (a-b)k$, $y = (b-c)k$, $z = (c-a)k$.
所以 $x + y + z = (a-b)k + (b-c)k + (c-a)k = (a-b+b-c+c-a)k = 0$.

【评注】本题也可以取特值求解,可令x=a-b, y=b-c, z=c-a代入求解.

11. 【解析】C. 方法一: 设原分数为 $\frac{a}{b}$, 由题意得到新分数为 $\frac{0.75a}{1.25b}$, 从而 $\left(\frac{a}{b} - \frac{0.75a}{1.25b}\right) \div \frac{a}{b} = 40\%$.

方法二: (特值法) 假定原分数为某一特值, 可设原分数为 $1=\frac{100}{100}$, 由题得到新分数为 $\frac{75}{125}$ =0.6, 从而 1-0.6=40%.

- 12. 【解析】A. 由题可得书的数量减 1 后能被 6, 8, 9 整除,由于 6, 8, 9 的最小公倍数为 72,则书最少为 73 本,各个数位之和为 10.
 - 13. 【解析】A. 设这三个人的年龄分别为a、b、c, 由题目可知:

$$\begin{cases} \frac{a+b}{2} + c = 47 \\ \frac{a+c}{2} + b = 61 \Rightarrow \begin{cases} a+b+2c = 94 & \text{(1)} \\ a+c+2b = 122 & \text{(2)} \\ b+c+2a = 120 & \text{(3)} \end{cases}$$

所以式②一式①, b-c=28.

【评注】或者让三式两两相减取差最大的即可,得到: b-c=28.

14. 【解析】C. 方法一: 将 $\frac{a}{b} = \frac{c}{d}$ 平方, 得 $\frac{a^2}{b^2} = \frac{c^2}{d^2}$, 由合分比定理:

$$\frac{a^2+b^2}{b^2} = \frac{c^2+d^2}{d^2}$$
, 交换两内项: $\frac{a^2+b^2}{c^2+d^2} = \frac{b^2}{d^2}$, 开平方根: $\frac{\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}} = \frac{b}{d}$.

研究 C 选项: $\frac{a}{b} = \frac{c}{d}$, 由合分比定理: $\frac{a+b}{b} = \frac{c+d}{d}$, 交换两内项: $\frac{a+b}{c+d} = \frac{b}{d}$,

从而有
$$\frac{\sqrt{a^2+b^2}}{\sqrt{c^2+d^2}} = \frac{a+b}{c+d} = \frac{b}{d}$$
.

$$\frac{\sqrt{a^2 + b^2}}{\sqrt{c^2 + d^2}} = \frac{\sqrt{b^2 k^2 + b^2}}{\sqrt{d^2 k^2 + d^2}} = \frac{\sqrt{1 + k^2} \cdot b}{\sqrt{1 + k^2} \cdot d} = \frac{b}{d}$$

$$\frac{a+b}{c+d} = \frac{bk+b}{dk+d} = \frac{(1+k)b}{(1+k)d} = \frac{b}{d}$$

15. 【解析】 C. 考查几何平均值的定义,因为 $\begin{cases} \sqrt[n]{x_1x_2\cdots x_n} = 3 \\ \sqrt[n-1]{x_1x_2\cdots x_{n-1}} = 2 \end{cases} \Rightarrow \begin{cases} x_1x_2\cdots x_n = 3^n \\ x_1x_2\cdots x_{n-1} = 2^{n-1} \end{cases}, 相除得<math>x_n = 3\left(\frac{3}{2}\right)^{n-1} = 2\left(\frac{3}{2}\right)^n.$

16. 【解析】B. 根据几何平均数和算术平均数之间的性质,有: $\frac{\frac{1}{x}+\frac{1}{x}+3x^2}{3} \geq \sqrt[3]{\frac{1}{x}\cdot\frac{1}{x}3x^2} = \sqrt[3]{3} \,, \,\, 所以 \, y \, 的最小值为 B 选项.$

17. 【解析】D. 设"无暇质数"为 \overline{xy} .

根据题意, \overline{xy} 与 \overline{yx} 均为质数, 并且 \overline{yx} 也是"无暇质数", 且 50 以内的"无暇质数"分别是 11, 13, 17, 31, 37, 共计 5个. 它们的和是 11 + 13 + 17 + 31 + 37 = 109.

18. A【解析】A. 因为
$$a(a+1) = \frac{\sqrt{5}-1}{2} \cdot \frac{\sqrt{5}+1}{2} = 1$$
,所以 $a^2 + a = 1$.

将
$$\frac{a^5 + a^4 - 2a^3 - a^2 - a + 2}{a^3 - a}$$
 变形为 $\frac{a^3(a^2 + a) - 2a^3 - (a^2 + a) + 2}{a \cdot (a^2 - 1)}$, 把 $a^2 + a = 1$ 代入,

$$\mathbb{N} \frac{a^3(a^2+a)-2a^3-(a^2+a)+2}{a\cdot(a^2-1)} = \frac{a^3-2a^3-1+2}{-a^2} = \frac{1-a^3}{1-a} = -(1+a+a^2) = -(1+1) = -2.$$

- 19. 【解析】B. 被 5 除余 4, 说明这个数的个位数为 4 或 9; 被 2 除余 1, 说明是奇数, 故这个数的个位只能为 9. 经检验, 119 满足被 3 除余 2, 又由于 2, 3, 5 的最小公倍数为 30, 从而介于 $100^{\circ}200$ 的数有 119, 149, 179, 共 3 个数.
- 20. 【解析】E. 360=2×2×2×3×3×5=3×4×5×6. 由于逐个大 1 岁, 所以 4 个小朋友的年龄分别是 3 岁、4 岁、5 岁、6 岁, 所以 4 人年龄之和为 18 岁.
- 21.【解析】D. 根据题意,可知将 1155 个同样大小的正方形拼成长宽不一的各种长方形, 其面积不变,可应用分解质因数的原理分解组合成两个数的乘积形式.

分解: 1155=1×1155=3×385=5×231=7×165=11×105=15×77=21×55=33 ×35. 因此, 共有 8 种拼法.

- 【注意】此题可用 1155 的约数个数除以 2, 即为所得. 因为 1155=3×5×7×11, 所以, 1155 的约数个数为 $C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4 = 2^4 = 16$ (个),则 $16 \div 2 = 8$ (个).
- 22. 【解析】A. 因为1176= $2^3 \times 3 \times 7^2$,所以 $2^3 \times 3 \times 7^2 \times a = b^4$, b^4 的各个质因数的指数都应为 4 的倍数,故 $a = 2 \times 3^3 \times 7^2 = 2646$ 为最小值.
- 23. 【解析】A. 依题意知,种树总数=每人种树棵数×师生总人数,即 572=每人种树棵数× (1+学生数),而学生数恰好平均分成三组,即学生数是 3 的倍数,再加上王老师一人,则师生总数被 3 除余 1.

下面先将 572 分解质因数: 572=2×2×11×13, 然后按照题意进行组合使之为两数之积.

若 572 = 44×(1+12), 1+12=13 为师生总人数,则每人种 44 棵,这不符合题意.

若572=11×(1+51), 1+61=52 为师生总人数,则每人种11 棵.

若 572 = 2×(285+1), 285+1=286 为师生总人数,则每人种 2 棵,这不符合题意.

因此,这个班共有学生51人,每人种树11棵.

24. 【解析】D. 设两数分别为a和b,由题意可知: $4875 = (a \times b) \cdot n$ (n 为整数).

根据被除数=除数×商的关系,则有 $4875=(a\times b)\cdot n$. 这样,运用分解质因数的原理进行分解,再根据 a+b=64 进行组合. $4875=3\times5\times5\times5\times13=(39\times25)\times5$.

故这两个数分别是 39 和 25, 它们之差是: 39-25=14.

25. 【解析】C. 设 A(1), B(2), C(3), P(x), 如图所示, 求 |x-1|+|x-2|+|x-3|

的最小值,即是在数轴上求一点 P,使 AP+BP+PC 为最小,显然,当 P与 B 重合,即 x=2 时,其和有最小值 2.

0 1 2 3

二、充分性判断题

- 1. 【解析】B. 题干只需 x > 2 即可, 所以条件(2) 充分.
- 2. 【解析】B. 由 $\frac{|a|}{a+a^2} = -\frac{1}{a+1} \Rightarrow \frac{|a|}{a(1+a)} = -\frac{1}{a+1} \Rightarrow a < 0$ 且 $a \neq -1$,故条件(2) 充分.
- 3. 【解析】D. 方法一:由(1),因为x < 0 < z, xy > 0, |y| > |z| > |x|,可知:x + z > 0, y + z < 0, x y > 0.

所以 |x+z|+|y+z|-|x-y|=0, 充分; 同理, 条件(2) 也充分. 方法二: 利用数轴画图:

x < 0 < z, xy > 0, |y| > |z| > |x|, $\pi \le x + z > 0$, y + z < 0, x - y > 0.

所以 |x+z|+|y+z|-|x-y|=x+z-y-z-x+y=0; 同理,条件(2) 也充分.

- 4. 【解析】B. 本题考查平均值的定义,由题得到 x + y = 10, xy = 16,故条件(2) 充分.
- 5. 【解析】B. 条件(1) $m + \frac{1}{m} = \sqrt{5} + 2 + \frac{1}{\sqrt{5} + 2} = \sqrt{5} + 2 + \sqrt{5} 2 = 2\sqrt{5}$,由于 $\sqrt{5} < 2.5$,故

整数部分 n=4,不充分;条件(2) $\frac{13n}{10}$ 为整数,所以 n 应该为 10 的倍数,充分.

- 6. 【解析】C. 题干的几何意义为: |x-2|+|x+1|=3,即在数轴上x到 2 的距离与到 -1 的距离之和为 3 的点,因为点 -1 与点 2 的距离为 3,所以点 x 在 [-1,2],因此联合起来充分.
- 7. 【解析】A. 根据绝对值的性质,对不等式两边同时平方, $(2x-1)^2 \le (2-x)^2 \Rightarrow x^2 \le 1 \Rightarrow -1 \le x \le 1$,可知(1) 是充分的.
 - 8. 【解析】A. 根据绝对值的性质,可知 $2x-1 < 0 \Rightarrow x < \frac{1}{2}$, 所以条件(1) 是充分的.