ECE 8 Robotics Notes 10-11-22

- Professor is not here today
- drones are passed out and video recording of the professor is presented
- IMPORTANT: this lecture is only to expose the class to all the different things involved in building and implementing a drone. We are not expected to know any of the information or recall it for later. So, the following notes are just fun facts.
- NOTE: there are several acronyms without formal explanation to what they mean/are that's because the presentation was too fast. So these are very-very relaxed notes. (Any line ending in (?) means I didn't understand what was mentioned)

Video: Applications

- Applications of Drones:
 - o farmers use drones
 - gives birds eye view of land
 - multispectral camera
 - map terrain
 - process data to understand the dynamics of the terrain
 - vineyards most often because of difficult terrain
 - o search & rescue
 - o construction site evolution process
 - warehouse logistics
 - location of items with drones to prevent potential injury and monitor stock items
 - delivery of goods
 - entertainment

- use GPS
 - o positioning
 - o used this to create a map of a region of for example: a farm
 - o can be adapted with cage to prevent damage to propellers
- types: classification by propulsion
 - o wing type
 - o rotor type
- other classification
 - military
 - o weight dependence
 - o capabilities
 - maneuverability
 - o flight time
 - examples:
 - fly up to 5 min
 - 30 min for delivery etc.
 - data gathering options
 - send the data back to the user while in air
 - network in-able
 - onboard storage only
 - o payload
 - carrying capabilities for subsystems
 - o See links in references (in slides) for more information/applications/math-focused papers
 - Next Module: we will see a Quadrotor Drone and how it's currently used

End of 1st video

Jake (tutor for the class):

- About Jake: helps in the lab and he is the one that designed the lab
- Quadrotor:
 - o ST (company?) I didn't catch the name
 - the chip found on the drones which were passed around
 - hobby drones' hardware was compressed to the ST chip
 - o FRAME
 - 3D plastic mechanical frame
 - not injection molded
 - Stratus printer used (?)
 - o ACTUATOR:
 - motors found on the drone
 - small cheap DC brushless motor (there are brush motors but brushless is preferred) (?)
 - single pull has no steps and are preferred (?)

- PROPELLERS:
 - size and weight
- SENSORS
 - o IMU: Internal measure unit
 - o can check acceleration
 - o gyroscope: understand self-rotations
 - o magnetometer: for relative position
 - o pressure sensor: for altitude sensing
- COMPUTING:
 - microcontroller
 - ARM cortex
 - o ST microcontroller
- COMMUNICATION
 - o Bluetooth
 - RX controller
- POWER
 - liPo batteries
 - o 5 min life
 - o ESC electronic speed controller
 - o have mosfets: they switch the power of the rotors on and off to test the speed of the rotor (?)
- USER INTERFACE
- something, he was too fast
- keywords:
- microcontrollers

2nd Presentation

- presentation gives specs
- at home drones can be built simply
- question posed by student:
 - o what is the purpose of the tape on the ground?
 - it is a defined space for the drone, as the origin point/reference point
 - this is referencing a video we watched of a drone

3rd Presentation

- Principles of motion and physics
- 4 motors have 6 degrees of freedom (i.e. less actuators than degrees of freedom)
 - o the 6 are x,y,z, pitch, roll, yaw
 - Vertical motion
 - ascend and descend
 - propellers give thrust (the faster the spin the more thrust)
- translational
 - o roll or pitch the drone
 - to pitch or roll we can make the front 2 propellers to move faster than the back 2
- Yall:
 - o rotation in the plane
 - o speed up the CW(clockwise) propellers and slow down the CCW (counterclockwise) propellers
 - o we need math to further understand but again it's the idea of isolating rotations

- Math used
 - torque
 - the moment about a body
 - o the sum of tau = I alpha
 - the sum of torques is equal to the moment about a rigid body times alpha
 - analogous to F=ma
 - I:moment of inertia
 - resistance of motion
 - o rigid body model for the quadrotor
 - see slides for the equations

Circuitry presentation

- Components
- power
- signals
- FCU: flight control unit
- Capacity = discharge * discharge time
 - 100mA will take 65h to drain a 6500mAh battery
- discharge rate
 - o max discharge = burst rate * mAh
 - o e.g.: 10C * 650mAh will give 6.5A
 - o 10C is usually written on the battery
- clock switch analogy (motors) (?)
 - o light switch
 - o multipole motor (stepper motor)
 - o the switch is the PWM (pulse width modulation)
 - duty cycle is a period s.t the % of time that the signal is high
 - o single pull motors best used with duty cycle PWM

Programming /Computing pt1 presentation

- software/coding
- material is lost on me

Last presentation

- controllers are on the drone and there is one not on the drone
- in any control system we require:
 - o a command to tell the desired state
 - a command to tell the current state
- PID: (?)
 - o commands the rotors and reduces the error between the current and desired angle
 - o cannot have one PID do all 4
 - o we use several PID controllers and outputs the motor commands

- within a PID (?)
 - o it has 2 PID's in series
 - takes in current and outputs desired rates
 - the error is given to the 2nd controller and the 2nd one is then the one that outputs the commands
 - o update rate:
 - inner loop runs faster than the outer
 - this is a good convention
 - the inner loop should converge before the outer system changes "its mind"
- Position feedback control (?)
 - o optitrack IPS: indoor positioning system
 - o computes similar to PID but relative to the space it is in to move the drone to a new position

Info on Lab 2

- Leaning control flow of programming
 - o if statements
 - loop statements
- if:
- o starts with if
- o ends with end
- condition: is it true or false
 - \circ e.g: given x = 2
 - \circ if x > 4
 - o print (x)
 - o since this is not true it will not print
 - see lab for a better example
- if vs switch
 - o if our if blocks are 5 or more then use a switch instead
 - o the compiler will use jump tables and it uses an inefficient compile
 - switch uses HashMap
- Loops
 - o while
 - o for
- Due 10/21 next Friday 6pm