

Ensino Médio Integrado ao Técnico

 $\frac{1}{a(b+c)=cb+ac} = \frac{1}{a(b+c)=cb+ac} = \frac{1}{a(b+ac)=cb+ac} = \frac{1}{a(b+ac)=ac} =$

Matemática

Matrizes e Determinantes

Prof^a: Queila Batista Muniz de Azevedo

Citation		1.40	100	9.00	-	District Co.	0	100		Oliminas onto
1 🕸	Corinthians	6	2	2	0	0	6	1	5	0000
2 🍿	Atletico-MG	6	2	2	0	0	3	0	3	0000
3 🍜	Bragantino	4	2	1	1	0	6	2	4	0000
4 💗	Flamengo	4	2	1	1	0	4	2	2	0000
5 11	Santos	4	2	1	1	0	2	1	1	0000
6 💖	Fluminense	4	2	1	1	0	1	0	1	0000
7 🐃	São Paulo	3	2	1	0	1	5	3	2	0000
8 😝	Coritiba	3	2	1	0	1	4	2	2	0000
9 🐠	América-MG	3	2	1	0	1	4	2	2	0000
10 🔯	Botafogo	3	2	1	0	1	4	4	0	0000
11 🔮	Cuiabá	3	2	1	0	1	1	1	0	0000
12 👸	Ceará	3	2	1	0	1	4	5	-1	0000
13 🗿	Internacional	3	2	1	0	1	2	3	-1	0000
14 фр	Avaí	3	2	1	0	1	1	3	-2	0000
15 🚷	Palmeiras	1	2	0	1	1	3	4	-1	0000
16 🏀	Juventude	1	2	0	1	1	3	6	-3	0000
17 (Goiás	1	2	0	1	1	1	4	-3	0000
18 🙀	Atlético-GO	1	2	0	1	1	1	5	-4	0000
19 💗	Fortaleza	0	2	0	0	2	1	3	-2	8800
20 🌌	Athletico-PR	0	2	0	0	2	0	5	-5	0000

Pts PJ VIT E DER GP GC SG Úffimas cinc

Clube

(UFC) Na confecção de três modelos de camisas (A, B e C) são usados botões grandes (G) e pequenos (P). O número de botões por modelos é dado pela tabela:

	Camisa A	Camisa B	Camisa C
Botões p	3	1	3
Botões G	6	5	5

O número de camisas fabricadas, de cada modelo, nos meses de maio e junho, é dado pela tabela:

	Maio	Junho
Camisa A	100	50
Camisa B	50	100
Camisa C	50	50

Nestas condições, obter a tabela que dá o total de botões usados em maio e junho.

Definição de matriz

Define-se **matriz** do tipo $m \times n$ (lemos "m por n") uma tabela com $m \cdot n$ números dispostos em m linhas e n colunas.

Os números que compõem uma matriz são chamados elementos ou termos. Para escrever uma matriz, dispõem-se os elementos entre colchetes, [], ou entre parênteses, ().

Definição de matriz

- a) $\begin{bmatrix} 5 & 2 \\ -3 & 4 \\ 4 & 0 \end{bmatrix}$ é uma matriz do tipo 3 × 2 (lemos: "três por dois").
- **b)** $\begin{pmatrix} \sqrt{3} & \frac{1}{2} & 4 \\ 2 & -1 & 3 \\ 0 & \sqrt{5} & -0,3 \end{pmatrix}$ é uma matriz do tipo 3 × 3 (lemos: "três por três").
- c) $\begin{bmatrix} 1 \\ 7 \end{bmatrix}$ é uma matriz do tipo 2 × 1 (lemos: "dois por um"), que, por ter uma só coluna, recebe o nome especial de **matriz coluna**.
- **d)** $\left(-8 \frac{3}{4} \ 0 \ 5,1\right)$ é uma matriz do tipo 1 × 4 (lemos: "um por quatro"), que, por ter uma só linha, é chamada **matriz linha**.

Definição de matriz

O tipo da matriz também pode ser indicado ao lado dela, na extremidade inferior direita.

a)
$$\begin{pmatrix} 6 & 0 & -4 & 1 \\ 1 & 9 & \sqrt{2} & 3 \end{pmatrix}_{2 \times 4}$$

b)
$$\begin{bmatrix} 5 & 4 & 3 & 2 & 1 \\ 7 & -1 & 2 & 7 & 4 \\ 9 & 0 & \sqrt{5} & 3 & 0 \end{bmatrix}_{3 \times 5}$$

Representação genérica de uma matriz

Em uma matriz, cada elemento ocupa uma posição definida por determinada linha e determinada coluna, nessa ordem.

Um elemento genérico da matriz pode ser representado pelo símbolo $\boldsymbol{a_{ij}}$, em que \boldsymbol{i} indica a linha que o elemento ocupa e \boldsymbol{j} indica a coluna.

Genericamente, uma matriz A é representada por $A = (a_{ii})_{m \times n}, \text{ em que } 1 \leq i \leq m \text{ e } 1 \leq j \leq n, \text{ com } i \text{ e } j \in \mathbb{N}.$

Representação genérica de uma matriz

Uma matriz A, do tipo $m \times n$, pode ser representada por:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix}_{m \times n}$$

Exercício resolvido

R1. Escrever a matriz $A = (a_{ij})_{2 \times 3}$ na qual $a_{ij} = i + 2j$.

Resolução

Uma matriz do tipo 2 × 3 é representada genericamente por:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

Aplicando a "lei de formação" dos elementos dessa matriz, temos:

$$\bullet a_{11} = 1 + 2 \cdot 1 = 3 \quad \bullet a_{12} = 1 + 2 \cdot 2 = 5 \quad \bullet a_{13} = 1 + 2 \cdot 3 = 7$$

$$\bullet a_{21} = 2 + 2 \cdot 1 = 4 \quad \bullet a_{22} = 2 + 2 \cdot 2 = 6 \quad \bullet a_{23} = 2 + 2 \cdot 3 = 8$$

Portanto:
$$A = \begin{pmatrix} 3 & 5 & 7 \\ 4 & 6 & 8 \end{pmatrix}$$

9:

Exercício resolvido

R2. Escrever a matriz $A = (a_{ij})_{3 \times 2}$ em que $a_{ij} = \begin{cases} 10i + j, \text{ se } i = j \\ 0, \text{ se } i \neq j \end{cases}$

Resolução

Uma matriz do tipo 3 × 2 é representada genericamente por:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

Quando i = j, temos $a_{ij} = 10 + i$, então:

$$\bullet a_{11} = 10 \cdot 1 + 1 = 11$$
 $\bullet a_{22} = 10 \cdot 2 + 2 = 22$

Quando $i \neq j$, temos $a_{ij} = 0$, então: $a_{12} = a_{21} = a_{31} = a_{32} = 0$

Portanto:
$$A = \begin{pmatrix} 11 & 0 \\ 0 & 22 \\ 0 & 0 \end{pmatrix}$$

Igualdade de matrizes

Quando duas matrizes A e B são de mesmo tipo, os elementos de mesmo índice, isto é, aqueles que ocupam a mesma posição, são denominados **elementos correspondentes**.

Exemplo

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$$

Nessas matrizes, os elementos correspondentes são:

$$a_{11} e b_{11}$$
 $a_{12} e b_{12}$ $a_{13} e b_{13}$ $a_{21} e b_{21}$ $a_{22} e b_{22}$ $a_{23} e b_{23}$ $a_{31} e b_{31}$ $a_{32} e b_{32}$ $a_{33} e b_{33}$

Duas matrizes A e B são matrizes iguais quando são do mesmo tipo e têm os elementos correspondentes iguais.

Exercício resolvido

R3. Determinar os valores de x, y e z que tornam as matrizes A e B iguais.

$$A = \begin{pmatrix} 2 & x+1 & 1 \\ 3 & 5 & y-2 \\ 2 & 0 & 6 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 7 & 1 \\ 3 & 5 & 9 \\ 4 & 0 & 6 \end{pmatrix}$$

Resolução

Para que as matrizes A e B sejam iguais, é necessário que os elementos correspondentes sejam iguais; portanto, devemos ter:

$$x + 1 = 7 \Rightarrow x = 6$$

 $y - 2 = 9 \Rightarrow y = 11$
 $|z| = 4 \Rightarrow z = \pm 4$

Matriz nula

Uma matriz que tem todos os elementos iguais a zero é denominada **matriz nula**.

Indica-se uma matriz nula do tipo $m \times n$ por: $\mathbf{0}_{m \times n}$

a)
$$0_3 \times 2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

b)
$$0_{2 \times 4} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Matriz quadrada

Toda matriz cujo número de linhas é igual ao número de colunas é chamada matriz quadrada.

Nesse caso, consideramos que a matriz com m linhas e m colunas é do tipo $m \times m$, ou que a matriz é de ordem m.

Exemplos

a) $A = \begin{pmatrix} 5 & -1 \\ 0 & 2 \end{pmatrix}$ é uma matriz quadrada 2 × 2 ou, simplesmente, matriz de ordem 2.

b)
$$B = \begin{pmatrix} \sqrt{3} & -1 & 7 \\ 2 & 1 & 3 \\ 0 & 5 & \frac{1}{2} \end{pmatrix}$$
 é uma matriz quadrada 3 × 3 ou matriz de ordem 3.

Diagonais de uma matriz quadrada

Toda matriz quadrada de ordem n tem duas diagonais.

Os elementos a_{ij} com i=j formam a **diagonal principal** da matriz; os elementos a_{ij} com i+j=n+1 formam a **diagonal secundária** da matriz.

Exemplo

$$A = \begin{pmatrix} 1 & 0 & 5 \\ 6 & 2 & -7 \\ -5 & 7 & 3 \end{pmatrix}$$

diagonal secundária

diagonal principal

Matriz identidade

Chamamos **matriz identidade** a matriz quadrada em que todos os elementos da diagonal principal são iguais a 1 e os demais são iguais a zero.

Assim, em qualquer matriz identidade, temos: $a_{ij} = \begin{cases} 1, \text{se } i = j \\ 0, \text{se } i \neq j \end{cases}$ Indicamos uma matriz identidade de ordem n por: \mathbf{I}_n

a)
$$i_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 b) $i_5 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

Matriz diagonal

Uma matriz é denominada **matriz diagonal** se é quadrada e todos os elementos que **não** estão na diagonal principal são nulos.

a)
$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{b)} \ I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Matriz transposta

matriz do tipo $n \times m$ cujas linhas são, ordenadamente, iguais às colunas

Indicamos a matriz transposta de A por \mathbf{A}^t .

a)
$$A = \begin{pmatrix} 2 & 3 \\ 5 & 1 \\ 0 & 2 \end{pmatrix}_{3 \times 2}$$
 então $A^t = \begin{pmatrix} 2 & 5 & 0 \\ 3 & 1 & 2 \end{pmatrix}_{2 \times 3}$

b)
$$B = \begin{pmatrix} -1 & \frac{1}{2} & -2 & \frac{1}{4} \\ \frac{1}{3} & -1 & \frac{1}{9} & -3 \end{pmatrix}_{2 \times 4}$$
 então $B^t = \begin{pmatrix} -1 & \frac{1}{3} \\ \frac{1}{2} & -1 \\ -2 & \frac{1}{9} \\ \frac{1}{4} & -3 \end{pmatrix}_{4 \times 3}$

Matriz simétrica

Uma matriz A é simétrica se é quadrada e coincide com sua transposta, isto é, se $A = A^t$.

a)
$$A = \begin{pmatrix} 4 & 2 \\ 2 & -1 \end{pmatrix}$$
 é simétrica, pois $A = A^t = \begin{pmatrix} 4 & 2 \\ 2 & -1 \end{pmatrix}$

b)
$$B = \begin{pmatrix} 4 & 3 & -1 \\ 3 & -14 & 16 \\ -1 & 16 & 10 \end{pmatrix}$$
 é simétrica, pois $B = B^t = \begin{pmatrix} 4 & 3 & -1 \\ 3 & -14 & 16 \\ -1 & 16 & 10 \end{pmatrix}$

Observe que, em uma matriz simétrica, quaisquer dois elementos simétricos em relação à diagonal principal são iguais.

gonal principal
$$\begin{pmatrix} 4 & 3 & -1 \\ 3 & -14 & 16 \\ -1 & 16 & 19 \end{pmatrix}$$
 diagonal principal

Adição de matrizes

Dadas duas matrizes de mesmo tipo, $A = (a_{ij})_{m \times n}$ e $B = (b_{ij})_{m \times n}$, a matriz soma A + B é a matriz $C = (c_{ii})_{m \times n}$, na qual $c_{ii} = a_{ii} + b_{ii}$ para todo i e todo j.

Exemplo

Considere as matrizes
$$A \in B$$
: $A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & 4 \end{pmatrix} \in B = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 3 & 5 \end{pmatrix}$

Para obter a matriz C = A + B, basta somar os elementos correspondentes de A e B:

$$C = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 2 \\ -1 & 3 & 5 \end{pmatrix} = \begin{pmatrix} 2+0 & 3+1 & 1+2 \\ 0+(-1) & 1+3 & 4+5 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 \\ -1 & 4 & 9 \end{pmatrix}$$

Matriz oposta

Dada uma matriz A do tipo $m \times n$, chama-se **matriz oposta** de A, e indica-se por -A, a matriz que somada com A resulta na matriz nula de mesmo tipo, ou seja: $A + (-A) = 0_{m \times n}$

Se
$$A = \begin{pmatrix} 1 & -2 \\ -3 & 5 \end{pmatrix}$$
, então $-A = \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix}$, pois:

$$\begin{pmatrix} 1 & -2 \\ -3 & 5 \end{pmatrix} + \begin{pmatrix} -1 & 2 \\ 3 & -5 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Propriedades da adição de matrizes

Dadas as matrizes A, B, C e a matriz nula $0_{m \times n}$, todas de mesmo tipo, valem as seguintes propriedades:

- Comutativa: A + B = B + A
- **Associativa**: (A + B) + C = A + (B + C)
- Existência do elemento neutro: $A + 0_{m \times n} = 0_{m \times n} + A = A$
- Existência do elemento oposto: $A + (-A) = (-A) + A = 0_{m \times n}$
- Cancelamento: $A + C = B + C \Leftrightarrow A = B$

Subtração de matrizes

A diferença entre duas matrizes A e B, de mesmo tipo, é a soma da matriz A com a oposta de B, isto é:

$$A-B=A+(-B).$$

Sejam:
$$A = \begin{pmatrix} 2 & 3 & 5 \ -4 & -2 & 0 \end{pmatrix}$$
 e $B = \begin{pmatrix} 0 & -2 & 1 \ -3 & 4 & 5 \end{pmatrix}$
 $A - B = A + (-B) = \begin{pmatrix} 2 & 3 & 5 \ -4 & -2 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -2 & 1 \ -3 & 4 & 5 \end{pmatrix} =$

$$= \begin{pmatrix} 2 & 3 & 5 \ -4 & -2 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 2 & -1 \ 3 & -4 & -5 \end{pmatrix} = \begin{pmatrix} 2 & 5 & 4 \ -1 & -6 & -5 \end{pmatrix}$$

9:

Exercício resolvido

R6. Dadas as matrizes $A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$ e $B = \begin{pmatrix} -1 & 2 \\ 5 & 0 \end{pmatrix}$, obter uma matriz $X_{2 \times 2}$ tal que A + X = B.

Resolução

Representando a matriz X por: $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, temos:

$$\begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix} + \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 5 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 2+a & 1+b \\ 0+c & 3+d \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 5 & 0 \end{pmatrix}$$

Então:

$$■ 2 + a = -1 \Rightarrow a = -3$$

$$-0 + c = 5 \Rightarrow c = 5$$

Logo:
$$X = \begin{pmatrix} -3 & 1 \\ 5 & -3 \end{pmatrix}$$

$$-1 + b = 2 \Rightarrow b = 1$$

$$■ 3 + d = 0 \Rightarrow d = -3$$

Multiplicação de um número real por uma matriz

Sejam a matriz $A = (a_{ij})_{m \times n}$ e k um número real, então $k \cdot A$ é uma matriz do tipo $m \times n$ obtida pela multiplicação de k por todos os elementos de A, ou seja, $kA = (ka_{ij})$.

Se
$$A = \begin{pmatrix} 2 & 0 \\ 3 & -7 \\ 5 & \frac{2}{3} \end{pmatrix}$$
 e $k = 3$, então:

$$k \cdot A = 3 \cdot \begin{pmatrix} 2 & 0 \\ 3 & -7 \\ 5 & \frac{2}{3} \end{pmatrix} = \begin{pmatrix} 3 \cdot 2 & 3 \cdot 0 \\ 3 \cdot 3 & 3 \cdot (-7) \\ 3 \cdot 5 & 3 \cdot \frac{2}{3} \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 9 & -21 \\ 15 & 2 \end{pmatrix}$$

Exercício resolvido

R7. Determinar a matriz X na equação: $\begin{pmatrix} 2 & 5 \ -1 & 7 \end{pmatrix} + 2X = \begin{pmatrix} 4 & -1 \ -5 & 9 \end{pmatrix}$

Resolução

$$\begin{pmatrix} 2 & 5 \\ -1 & 7 \end{pmatrix} + 2 \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ -5 & 9 \end{pmatrix}$$

$$\begin{pmatrix} 2+2a & 5+2b \\ -1+2c & 7+2d \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ -5 & 9 \end{pmatrix}$$

Aplicando a definição de igualdade, temos:

$$-2 + 2a = 4 \Rightarrow a = 1$$

$$■ 5 + 2b = -1 \Rightarrow b = -3$$

$$-1 + 2c = -5 \Rightarrow c = -2$$
 $-7 + 2d = 9 \Rightarrow d = 1$

$$■ 7 + 2d = 9 \Rightarrow d = 1$$

Logo:
$$X = \begin{pmatrix} 1 & -3 \\ -2 & 1 \end{pmatrix}$$

Dadas as matrizes $A = (a_{ij})_{m \times n}$ e $B = (b_{ij})_{n \times p}$, o produto de A por B é a matriz $C = (c_{ij})_{m \times p}$, na qual cada elemento c_{ij} é a soma dos produtos obtidos multiplicando-se ordenadamente os elementos da linha i de A pelos elementos da coluna j de B.

O produto das matrizes A e B, indicado por $A \cdot B$, só é definido se o número de colunas de A é igual ao número de linhas de B. Esse produto terá o mesmo número de linhas da matriz A e o mesmo número de colunas da matriz B.

$$A_{m \times n} \cdot B_{n \times p} = C_{m \times p}$$
iguais

Exemplo

Dadas as matrizes $A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & 4 \end{pmatrix}$ e $B = \begin{pmatrix} 0 & 1 \\ 5 & 4 \\ 3 & 1 \end{pmatrix}$, vamos determinar $A \cdot B$.

Como a matriz A é do tipo 2×3 e a matriz B é do tipo 3×2 , existe o produto $A \cdot B$ (pois o número de colunas da matriz A é igual ao número de linhas da matriz B).

Então: $A \cdot B = C$, sendo $C = (c_{ij})_{2 \times 2}$

Exemplo

Os elementos da matriz C são obtidos do seguinte modo:

- c_{11} : multiplicamos, ordenadamente, a 1ª linha de A pela 1ª coluna de B;
- c_{12} : multiplicamos, ordenadamente, a 1ª linha de A pela 2ª coluna de B;
- c_{21} : multiplicamos, ordenadamente, a $2^{\underline{a}}$ linha de A pela $1^{\underline{a}}$ coluna de B;
- c_{22} : multiplicamos, ordenadamente, a $2^{\underline{a}}$ linha de A pela $2^{\underline{a}}$ coluna de B.

Exemplo

Assim, temos:

$$A \cdot B = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 5 & 4 \\ 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 \cdot 0 + 0 \cdot 5 + 1 \cdot 3 & 2 \cdot 1 + 0 \cdot 4 + 1 \cdot 1 \\ 1 \cdot 0 + 3 \cdot 5 + 4 \cdot 3 & 1 \cdot 1 + 3 \cdot 4 + 4 \cdot 1 \end{pmatrix}$$

$$Logo: C = \begin{pmatrix} 3 & 3 \\ 27 & 17 \end{pmatrix}$$

(UFC) Na confecção de três modelos de camisas (A, B e C) são usados botões grandes (G) e pequenos (P). O número de botões por modelos é dado pela tabela:

	Camisa A	Camisa B	Camisa C
Botões p	3	1	3
Botões G	6	5	5

O número de camisas fabricadas, de cada modelo, nos meses de maio e junho, é dado pela tabela:

	Maio	Junho
Camisa A	100	50
Camisa B	50	100
Camisa C	50	50

Nestas condições, obter a tabela que dá o total de botões usados em maio e junho.

SOLUÇÃO: O problema se resume na multiplicação das matrizes:

	Maio	Junho
Botões p	500	400
Botões G	1100	1050

Propriedades da multiplicação de matrizes

Dadas as matrizes A, B e C, valem as seguintes propriedades:

- Associativa: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- Distributiva à direita: $(A + B) \cdot C = A \cdot C + B \cdot C$
- Distributiva à esquerda: $C \cdot (A + B) = C \cdot A + C \cdot$

Nem sempre temos $A \cdot B = B \cdot A$. Logo, **não** vale a propriedade comutativa na multiplicação de matrizes.

Dadas as matrizes $A = \begin{pmatrix} 2 & 5 \\ -1 & 3 \end{pmatrix}$ e $B = \begin{pmatrix} 0 & 3 \\ 2 & -2 \end{pmatrix}$, obtemos os seguintes produtos:

$$A \cdot B = \begin{pmatrix} 10 & -4 \\ 6 & -9 \end{pmatrix} e B \cdot A = \begin{pmatrix} -3 & 9 \\ 6 & 4 \end{pmatrix}$$
 Observe que $A \cdot B \neq B \cdot A$.

Matriz inversa

Seja A uma matriz quadrada de ordem n. Se existir uma matriz B, quadrada de mesma ordem, tal que $A \cdot B = B \cdot A = I_n$, então B será a **matriz inversa** de A, indicada por A^{-1} .

Quando uma matriz tem inversa, dizemos que ela é invertível ou não singular.

Ex:

A inversa da matriz $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$ é matriz $A^{-1} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$, pois:

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} e$$

$$A^{-1} \cdot A = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Sendo A e B matrizes quadradas, pode-se demonstrar que, se

$$A \cdot B = I$$
, então $B \cdot A = I$.

Determinante de uma matriz

A toda matriz quadrada associa-se um número, denominado **determinante da matriz**, que é obtido por meio de operações entre os elementos da matriz.

Para representar o determinante de uma matriz A (indicado por **det** A), substituímos os parênteses ou colchetes da matriz por barras simples:

$$A = \begin{pmatrix} 0 & 3 & 8 \\ 1 & 4 & 3 \\ 6 & 1 & 7 \end{pmatrix} e \det A = \begin{vmatrix} 0 & 3 & 8 \\ 1 & 4 & 3 \\ 6 & 1 & 7 \end{vmatrix}$$

$$A = [4] e \det A = |4|$$

$$A = \begin{bmatrix} 1 & 0 \\ 7 & -5 \end{bmatrix}$$
 e det $A = \begin{bmatrix} 1 & 0 \\ 7 & -5 \end{bmatrix}$

O determinante de uma matriz quadrada de ordem 1,

$$A = (a_{11})$$
, é o próprio elemento de A .

$$\det A = |a_{11}| = a_{11}$$

a)
$$A = (4) \Rightarrow \det A = |4| = 4$$

b)
$$B = (-\sqrt{2}) \Rightarrow \det B = |-\sqrt{2}| = -\sqrt{2}$$

O determinante de uma matriz quadrada de ordem 2,

 $A=\begin{pmatrix} a_{11}&a_{12}\\a_{21}&a_{22} \end{pmatrix}$, é a diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária.

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

a)
$$A = \begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \Rightarrow \det A = \begin{vmatrix} 2 & -3 \\ -1 & 4 \end{vmatrix} = (2 \cdot 4) - [(-3) \cdot (-1)] = 8 - 3 = 5$$

Dada uma matriz *A*, quadrada de ordem 3, o determinante de *A* pode ser calculado pela **regra de Sarrus**, conforme o procedimento explicado a seguir.

Considere a matriz:
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Descrição do procedimento	Aplicação do procedimento
1º) Ao lado da matriz, copiam-se suas duas primeiras colunas.	$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$
2º) Multiplicam-se os elementos da diagonal principal e, na mesma direção dessa diagonal, multiplicam-se os elementos de cada uma das duas paralelas à sua direita.	$egin{array}{c ccccccccccccccccccccccccccccccccccc$

Descrição do procedimento

3º) Multiplicam-se os elementos da diagonal secundária e, na mesma direção dessa diagonal, os elementos de cada uma das duas paralelas à sua direita.

Aplicação do procedimento

4º) O determinante da matriz é obtido pela diferença entre as somas dos produtos do 2º e do 3º passo, nessa ordem.

$$\det A = (a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}) - (a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32} + a_{12}a_{21}a_{33})$$

Exemplo

a) Considerando a matriz $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ -1 & 3 & 5 \end{pmatrix}$, temos:

Assim:

$$\det A = (10 - 8 + 0) - (-6 + 12 + 0) = -4$$

9:

Exercício resolvido

R12. Determinar *x* para que a igualdade a seguir seja verdadeira.

$$\begin{vmatrix} 2 & -1 & -x \\ 3 & 2 & 1 \\ x & -1 & -2 \end{vmatrix} = 0$$

Resolução

Pela regra de Sarrus:

Assim, temos:

$$(-8 - x + 3) - (-2x^2 - 2 + 6) = 0$$

$$-2x^2 - 2x - 12 = 0$$

$$x^2 - x - 6 = 0$$

$$x = 2 \text{ ou } x = -3$$

Portanto, a igualdade

é verdadeira para:

$$x = 2 \text{ ou } x = -3$$

9:

Exercício resolvido

R13. Dado um triângulo RST, com coordenadas cartesianas dos vértices R(-2, 2), S(4, 3) e T(5, -3), pode-se calcular sua área por meio da fórmula:

$$A_{RST} = \frac{1}{2} \cdot |D|$$
, em que $D = \begin{vmatrix} x_R & y_R & 1 \\ x_S & y_S & 1 \\ x_T & y_T & 1 \end{vmatrix}$

Resolução

$$D = \begin{vmatrix} -2 & 2 & 1 \\ 4 & 3 & 1 \\ 5 & -3 & 1 \end{vmatrix} = (-6 + 10 - 12) - (15 + 6 + 8) = -37$$

$$A_{RST} = \frac{1}{2} \cdot |-37| = 18,5$$

Logo, a área do triângulo é 18,5 unidades de área.

Determinante de uma matriz de ordem maior que 3

Sugestão de vídeoaulas:

- Cofator de uma matriz / Teorema de Laplace: https://www.youtube.com/watch?v=726AOpEEXrw&list=RDCMUCZLyNRqqp2M <u>eFuwuZdbGDJw&index=2</u>
- Propriedades (simplificando cálculos):
 https://www.youtube.com/watch?v=939xOYVcJ2I&list=RDCMUCZLyNRqqp2MeFuwuZdbGDJw&start_radio=1&rv=939xOYVcJ2I&t=177
- Teorema de Jacob: https://www.youtube.com/watch?v=3DinmEi5ygQ

ANOTAÇÕES EM AULA

Coordenação editorial: Juliane Matsubara Barroso

Edição de texto: Ana Paula Souza Nani, Adriano Rosa Lopes, Enrico Briese Casentini, Everton José Luciano,

Juliana Ikeda, Marilu Maranho Tassetto, Willian Raphael Silva

Assistência editorial: Pedro Almeida do Amaral Cortez

Preparação de texto: Renato da Rocha Carlos

Coordenação de produção: Maria José Tanbellini

Iconografia: Daniela Chahin Barauna, Erika Freitas, Fernanda Siwiec, Monica de Souza e Yan Comunicação

Ilustração dos gráficos: Adilson Secco

EDITORA MODERNA

Diretoria de Tecnologia Educacional Editora executiva: Kelly Mayumi Ishida

Coordenadora editorial: Ivonete Lucirio

Editores: Andre Jun, Felipe Jordani e Natália Coltri Fernandes

Assistentes editoriais: Ciça Japiassu Reis e Renata Michelin

Editor de arte: Fabio Ventura

Editor assistente de arte: Eduardo Bertolini

Assistentes de arte: Ana Maria Totaro, Camila Castro e Valdeí Prazeres

Revisores: Antonio Carlos Marques, Diego Rezende e Ramiro Morais Torres

© Reprodução proibida. Art. 184 do Código Penal e Lei 9.610 de 19 de fevereiro de 1998.

Todos os direitos reservados.

EDITORA MODERNA

Rua Padre Adelino, 758 – Belenzinho São Paulo – SP – Brasil – CEP: 03303-904 Vendas e atendimento: Tel. (0__11) 2602-5510

Fax (0__11) 2790-1501 www.moderna.com.br

2012