EURO 2024 groupstage predictions: 1st match day

Leonardo Egidi - Giulio Fantuzzi | University of Trieste

12th June 2022

Contents

The statistical model (in brief)

1

The statistical model (in brief)

We use a diagonal-inflated Bivariate-Poisson model with dynamic team-specific abilities for the attack and the defence. Let (X_i, Y_i) denote the random number of goals scored by the home and the away team in the *i*-th game, $i = 1, \ldots, n$, respectively. ranking denotes the Coca-Cola FIFA ranking at October 6th, 2022, whereas att and def denote the attack and the defence abilities, respectively.

$$(X_i, Y_i) \sim \begin{cases} (1-p)BP(x_i, y_i | \lambda_1, \lambda_2, \lambda_3) & \text{if } x \neq y \\ (1-p)BP(x_i, y_i | \lambda_1, \lambda_2, \lambda_3) + pD(x, \eta) & \text{if } x = y, \end{cases}$$
(1)

$$\log(\lambda_{1i}) = \operatorname{att}_{h_i,t} + \operatorname{def}_{a_i,t} + \frac{\gamma}{2}(\operatorname{ranking}_{h_i} - \operatorname{ranking}_{a_i})$$
 (2)

$$\log(\lambda_{2i}) = \operatorname{att}_{a_i,t} + \operatorname{def}_{h_i,t} - \frac{\bar{\gamma}}{2}(\operatorname{ranking}_{h_i} - \operatorname{ranking}_{a_i}), \quad i = 1, \dots, n \text{ (matches)},$$
 (3)

$$\log(\lambda_{3i}) = \rho, \tag{4}$$

$$\operatorname{att}_{k,t} \sim \mathcal{N}(\operatorname{att}_{k,t-1}, \sigma^2),$$
 (5)

$$\operatorname{def}_{k,t} \sim \mathcal{N}(\operatorname{def}_{k,t-1}, \sigma^2), \tag{6}$$

$$\rho, \ \gamma \sim \mathcal{N}(0, 1) \tag{7}$$

$$p \sim \text{Uniform}(0,1)$$
 (8)

$$\sum_{k=1}^{n_t} \operatorname{att}_{k,} = 0, \ \sum_{k=1}^{n_t} \operatorname{def}_{k,} = 0, \ k = 1, \dots, n_t \text{ (teams)}, \ t = 1, \dots, T \text{ (times)}.$$
 (9)

Lines (1) displays the likelihood's equations (diagonal inflated bivariate Poisson); lines (2)-(4) display the log-linear models for the scoring rates λ_1, λ_2 and the covariance parameter λ_3 ; lines (5)-(6) display the dynamic prior distributions for the attack and the defence parameters, respectively; lines (7)-(8) display prior distributions for the other model parameters; line (9) displays the sum-to-zero identifiability constraints. Model fitting has been obtained through the Hamiltonian Monte Carlo sampling, 2000 iterations, 4 chains using the footBayes R package (with the underlying rstan package). The historical data used to fit the models come from all the international matches played during the years' range 2020-2024.

The idea is to provide a dynamic predictive scenario: at the end of each match-day, the model will be refitted to predict the remaining matches.

home	away	home win	draw	away win	mlo
Germany	Scotland	0.582	0.242	0.177	1-0 (0.142)
Hungary	Switzerland	0.327	0.322	0.351	$0-0 \ (0.173)$
Spain	Croatia	0.468	0.284	0.248	$1-0 \ (0.15)$
Italy	Albania	0.725	0.190	0.085	2-0 (0.149)
Poland	Netherlands	0.156	0.210	0.635	0-2 (0.113)
Slovenia	Denmark	0.181	0.266	0.553	0-1 (0.166)
Serbia	England	0.112	0.210	0.678	$0-1 \ (0.146)$
Romania	Ukraine	0.263	0.277	0.460	0-1 (0.132)
Belgium	Slovakia	0.731	0.188	0.081	2-0 (0.158)
Austria	France	0.169	0.240	0.591	0-1 (0.139)
Turkey	Georgia	0.484	0.239	0.276	1-1 (0.096)
Portugal	Czech Republic	0.691	0.194	0.115	1-0 (0.122)

Posterior match probabilities

