Fondamenti di Comunicazioni e Internet -Esame del 03-07-2021

Cognome	SOLUZIONE
Nome	CORRETTA
C. persona	1234567890
Matricola	9876543

Punteggi

Esercizio 1:

Esercizio 2:

Esercizio 3:

Quesiti:

Esercizio 1

(6 punti)

Nella rete in figura il client A vuole scaricare una pagina web dal server S costituita da un documento base html di lunghezza $F_{html} = 75~kB$ e 10 oggetti della lunghezza di $F_{obj} = 3~MB$ ciascuno usando il protocollo HTTP.

Il client è configurato in modo da collegarsi al server S attraverso il proxy P.

Nella rete sono presenti anche:

- 4 flussi interferenti bidirezionali di lunga durata tra B e C,
- 1 flusso interferente bidirezionale di lunga durata tra D e C.

Le connessioni TCP sono aperte dal client A e dal proxy P solo all'occorrenza. Si considerino trascurabili le lunghezze dei messaggi di apertura connessione TCP e di GET HTTP.

Si calcoli il tempo totale del trasferimento del file, dall'istante di inizio apertura della connessione TCP fino all'istante di ricezione completa dell'intera pagina web (HTML e oggetti) nei due seguenti casi:

- a) il proxy P possiede il documento base e tutti gli oggetti nella propria cache; tutte le connessioni TCP sono aperte in modalità non persistente e con trasferimento in parallelo degli oggetti;
- b) il proxy P possiede il documento base e soltanto 6 dei 10 oggetti; tutte le connessioni TCP sono aperte in modalità persistente (senza uso di pipelining).

Soluzione:

$$RTT_{A-P} = 40 \ ms$$

$$RTT_{P-S} = 30 \ ms$$
a)
$$R_{html,A-P} = (C_3 - C_6)/2 = 25 \ Mb/s$$

$$R_{obj,A-P} = C_3/15 = 6 \ Mb/s$$

$$T_{html,A-P} = \frac{F_{html}}{R_{html,A-P}} = 24 \ ms$$

$$T_{obj,A-P} = \frac{F_{obj}}{R_{obj,A-P}} = 4 \ s$$

$$T_{tot,a} = 2RTT_{A-P} + \frac{F_{html}}{R_{html,A-P}} + 2RTT_{A-P} + \frac{F_{obj}}{R_{obj,A-P}} = 4184 \ ms = 4.184 \ s$$

b)
$$R_{html,A-P} = R_{obj,A-P} = (C_3 - C_6)/2 = 25 \, Mb/s$$

$$R_{obj,P-S} = C_4 = 80 \, Mb/s$$

$$T_{html,A-P} = \frac{F_{html}}{R_{html,A-P}} = 24 \, ms$$

$$T_{obj,A-P} = \frac{F_{obj}}{R_{obj,A-P}} = 960 \, ms$$

$$T_{obj,P-S} = \frac{F_{obj}}{R_{obj,P-S}} = 300 \, ms$$

$$T_{tot,b} = RTT_{A-P} + \left(RTT_{A-P} + \frac{F_{html}}{R_{html,A-P}}\right) + 6\left(RTT_{A-P} + \frac{F_{obj,A-P}}{R_{obj,A-P}}\right) + RTT_{P-S} + 4\left(RTT_{A-P} + RTT_{P-S} + \frac{F_{obj}}{R_{obj,P-S}} + \frac{F_{obj}}{R_{obj,A-P}}\right) = 11454 \, ms = 11.454 \, s$$

Esercizio 2

(6 punti)

Nella rete in figura sono presenti 7 router (R1, ..., R7) e 6 reti IP (Net A, ..., Net F). I costi di attraversamento sono indicati accanto ad ogni link, i link sono bidirezionali e simmetrici (si faccia attenzione ai collegamenti tratteggiati, di costo unitario, tramite cui alcuni router si interconnettono alle reti Net A, ... Net F).

- a) Considerando il grafo della rete costituito dai soli router (si omettano nel grafo le reti Net A, ..., Net F) e applicando l'algoritmo di Bellman-Ford <u>al nodo R5</u>, si scriva la tabella di routing del <u>nodo R5</u> per ciascun passo dell'algoritmo finché non si raggiunge la convergenza (suggerimento: si considerino come destinazione i singoli router diversi dal nodo R5).
- b) Si disegni il MST finale ottenuto al punto a).
- c) Si riporti la tabella di routing del <u>nodo R5</u> in cui le destinazioni sono le reti Net A, ..., Net F.
- d) Sulla base del MST calcolato, indicare il contenuto dei Distance vector (DV) inviati dal **router R5** nei casi
 - 1. DV base
 - 2. DV in modalità Split Horizon con Poisonous Reverse

Per ciascun DV inviato, indicare chiaramente il destinatario del DV e le reti raggiungibili comunicate con i rispettivi costi.

Soluzione:

a-b)

Dest.	Costo	NH									
R1	4	R1									
R2	Inf	-	R2	9	R1	R2	6	R4	R2	6	R4
R3	Inf	-	R3	5	R4	R3	5	R4	R3	5	R4
R4	2	R4									
R6	12	R6	R6	12	R6	R6	8	R1	R6	8	R1
R7	inf	-	R7	6	R1	R7	6	R1	R7	6	R1

c)

Dest.	Costo	NH
Net A	1	Dir.
Net B	3	R4
Net C	6	R4
Net D	7	R4
Net E	7	R1
Net F	9	R1

d)

DV base: R5 \rightarrow R1, R4, R6

Dest.	Costo
Net A	1
Net B	3
Net C	6
Net D	7
Net E	7
Net F	9

SH con PS:

DV R5→R6		DV R5	DV R5→R1		R5 → R4
Dest.	Costo	Dest.	Costo	Dest.	Costo
Net A	1	Net A	1	Net A	1
Net B	3	Net B	3	Net B	Inf
Net C	6	Net C	6	Net C	Inf
Net D	7	Net D	7	Net D	Inf
Net E	7	Net E	Inf	Net E	7
Net F	9	Net F	Inf	Net F	9

Esercizio 3 (6 punti)

Un router ha 3 interfacce di rete con i seguenti indirizzi MAC, IP e Netmask:

Interfaccia	MAC	IP	Netmask	MTU
eth0	11:AA:AA:AA:AA	30.12.162.254	255.255.252.0	600 B
eth1	22:BB:BB:BB:BB	30.12.192.254	255.255.255.128	800 B
eth2	33:CC:CC:CC:CC	30.12.192.1	255.255.255.128	1200 B

E la seguente tabella di routing:

Riga	Network	Netmask	Next hop
1	30.12.224.128	255.255.255.192	30.12.192.202
2	30.12.224.176	255.255.255.240	30.12.192.126
3	30.12.224.0	255.255.254.0	30.12.192.225
4	30.14.192.0	255.255.252.0	30.12.161.254
5	30.13.0.0	255.255.255.0	30.12.160.3
6	0.0.0.0	0.0.0.0	30.12.192.64

Indicare l'azione del router sui seguenti pacchetti ricevuti.

					Flag	
pacchetto	interfaccia	MAC Destinazione	IP Destinazione	Size	D	TTL
1	eth1	22:BB:BB:BB:BB	30.12.224.144	700 B	0	28
2	eth0	11:AA:AA:AA:AA	30.12.225.255	400 B	1	55
3	eth2	55:CD:CD:CD:CD	30.12.192.3	800 B	1	1
4	eth1	FF:FF:FF:FF:FF	0.0.0.126	600 B	0	1
5	eth1	22:BB:BB:BB:BB	30.13.1.3	700 B	1	244
6	eth2	33:CC:CC:CC:CC	30.12.163.254	800 B	1	10

Compilando la tabella sottostante, si indichi, per ciascun pacchetto, quale delle seguenti azioni viene operata: pacchetto inoltrato, pacchetto scartato, pacchetto inviato ai livelli superiori.

- Nel caso il pacchetto venga inoltrato, si specifichi se si tratta di un inoltro diretto o
 indiretto, su quale interfaccia viene inoltrato il pacchetto ed eventualmente la relativa
 riga della tabella di routing.
- Nel caso il pacchetto venga scartato, se ne specifichi il **motivo**, indicando anche le informazioni (tipo di inoltro, interfaccia ed eventualmente riga della tabella di routing) eventualmente usate per l'inoltro (diretto o indiretto) qualora non fosse stato necessario scartare il pacchetto.

Pacch.	Azione	Tipo di inoltro (diretto/indiretto)	Riga tabella di routing	Interfaccia d'uscita	Motivo di scarto
1					
2					
3					
4					
5					
6					

Soluzione:

Interfaccia	rete
eth0	30.12.160.0/22
eth1	30.12.192.128/25
eth2	30.12.192.0/25

Riga	netmask	Interfaccia
1	/26	eth1
2	/28	eth2
3	/23	eth1
4	/22	eth0
5	/24	eth0
6	/0	eth2

pacchetto	
1	inoltrato riga 1, eth1
2	inoltrato riga 3, eth1
3	scartato al livello 2 (MAC dest != MAC eth2)
4	passato livelli superiori
5	inoltrato riga 6, eth2
6	scartato al livello 3 (MTU <size -="" df="1)" diretto="" e="" eth0<="" inoltro="" sarebbe="" su="" td=""></size>

Quesiti (9 punti) Domanda 1 (2 punti)

In una LAN di capacità C=10 Gb/s sono trasmesse trame lunghe L=15 kB. Il mezzo trasmissivo ha velocità di propagazione v=200 000 km/s.

Si indichi simbolicamente il vincolo da imporre alla dimensione d della LAN e si calcoli il valore numerico limite d^* affinché si possa usare CSMA/CD come protocollo di accesso al mezzo trasmissivo, specificando se tale limite costituisce un valore di distanza minima o massima.

Soluzione:

$$T \ge 2\tau \to \frac{L}{c} \ge 2\frac{d}{v}$$

 $T \ge 2\tau \to \frac{L}{c} \ge 2\frac{d}{v}$ $d_{max} = \frac{Lv}{2c} = 1200 \text{ m (massima distanza tra due stazioni nella LAN)}$

Domanda 2 (3 punti)

Indicare nello spazio sottostante se ciascuna delle seguenti osservazioni è Vera o Falsa, motivando la risposta. RISPOSTE NON MOTIVATE SARANNO CONSIDERATE ERRATE.

- 1) L'accesso casuale con backoff è utile perché attraverso questo sistema si possono rilevare le collisioni senza ricorrere ad ACK.
- 2) L'ADSL è un tipico esempio di tecnologia che fa uso di multiplazione tipo TDM.
- 3) Il protocollo BGP è usato all'interno di un AS dove è definito un hop limit maggiore di 16.

Soluzione:

- 1) F. Serve a ridurre la probabilità di nuove collisioni. CSMA/CD consente di rinunciare ad **ACK**
- 2) F. ADSL usa FDM
- 3) F. BGP è usato tra router di AS diversi

Domanda 3 (4 punti)

Nella rete in figura, l'host A apre una connessione TCP verso l'host B per scaricare un file di dimensione F [Byte]. Supponendo che B invii segmenti di dimensione pari a MSS = 270 [Byte], che RCWND sia molto grande, e che ACK e header siano di dimensione trascurabile, si indichi:

- a) il valore della finestra che consentirebbe trasmissione continua, specificando il link su cui ciò può avvenire;
- b) il valore minimo di F, espresso in Byte, che consente la trasmissione continua, assumendo SSTHRESH=32 MSS.

```
Soluzione:
```

a) $RTT = \sum T_i + 2\sum \tau_i = (10.8 + 21.6 + 24 + 27) + 2 \times 400 \ [\mu s] = 883.4 \ [\mu s]$ $W_{cont} = [RTT/T_4] = [32.72] = 33 \ MSS \ (sul link R3-B, link 4)$

b) CWND assume i seguenti valori (1)-(2)-(4)-(8)-(16)-(32)-(33), quindi deve essere $F \ge 1 + 2 + 4 + 8 + 16 + 32 + 33$ [MSS] = 96 [MSS] = 25920 [Byte]

Alternativamente, considerando l'inizio della trasmissione continua, si ha: $F' \ge 1 + 2 + 4 + 8 + 16 + 32 + 1$ [MSS] = 64 [MSS] = 17280 [Byte]