

Week 11 Machine Learning - Basic Regression and Classification

Applied Data Science

Columbia University - Columbia Engineering

Course Agenda

- Week 1: Python Basics: How to Translate Procedures into Codes
- ❖ Week 2: Intermediate Python Data structures for Your Analysis
- Week 3: Relational Databases Where Big Data is Typically Stored
- Week 4: SQL Ubiquitous Database Format/Language
- Week 5: Statistical Distributions The Shape of Data
- Week 6: Sampling When You Can't or Won't Have ALL the Data

- Week 7:Hypothesis Testing Answering Questions about Your Data
- Week 8: Data Analysis and Visualization Using Python's NumPy for Analysis
- Week 9: Data analysis and visualization Using Python's Pandas for Data Wrangling
- Week 10: Text Mining Automatic Understanding of Text
- *Week 11: Machine learning Basic Regression and Classification
- Week 12: Machine learning Decision Trees and Clustering

Machine learning using Regression

Out[1]:

Read the data

Generate a few summary statistics

Data set 1: Rocks vs. Mines

- · Independent variables: sonar soundings at different frequencies
- · Dependent variable (target): Rock or Mine

	0	1	2	3	4	5	6
count	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000
mean	0.029164	0.038437	0.043832	0.053892	0.075202	0.104570	0.121747
std	0.022991	0.032960	0.038428	0.046528	0.055552	0.059105	0.061788
min	0.001500	0.000600	0.001500	0.005800	0.006700	0.010200	0.003300
25%	0.013350	0.016450	0.018950	0.024375	0.038050	0.067025	0.080900
50%	0.022800	0.030800	0.034300	0.044050	0.062500	0.092150	0.106950
75%	0.035550	0.047950	0.057950	0.064500	0.100275	0.134125	0.154000
max	0.137100	0.233900	0.305900	0.426400	0.401000	0.382300	0.372900

```
In [1]: import pandas as pd
    from pandas import DataFrame
    url="https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bence
    df = pd.read_csv(url, header=None)
    df.describe()
```


Examine the distribution of the data in column 4

Quartile 1: from .0067 to .03805

Quartile 2: from .03805 to .0625

Quartile 3: from .0625 to .100275

Quartile 4: from .100275 to .401

Quartile 4 is much larger than the other quartiles. This raises the possibility of outliers

A Quantile - Quantile (qq) plot can help identify outliers

- · y-axis contains values
- x-axis is the cumulative normal density function plotted as a straight line (-3 to +3)
- · y-axis is the values ordered from lowest to highest
- the closer the curve is to the line, the more it reflects a normal distribution


```
In [3]: import numpy as np
   import pylab
   import scipy.stats as stats
   import matplotlib
   import matplotlib.pyplot as plt
   matplotlib.style.use('ggplot')
   %matplotlib inline

stats.probplot(df[4], dist="norm", plot=pylab)
   pylab.show()
```


Examine dependent variable

In [4]: df[60].unique()

Out[4]: array(['R', 'M'], dtype=object)

Examine correlations

In [5]: df.corr()

Out[5]:

	0	1	2	3	4	5	6
0	1.000000	0.735896	0.571537	0.491438	0.344797	0.238921	0.260815
1	0.735896	1.000000	0.779916	0.606684	0.419669	0.332329	0.279040
2	0.571537	0.779916	1.000000	0.781786	0.546141	0.346275	0.190434
3	0.491438	0.606684	0.781786	1.000000	0.726943	0.352805	0.246440
4	0.344797	0.419669	0.546141	0.726943	1.000000	0.597053	0.335422
5	0.238921	0.332329	0.346275	0.352805	0.597053	1.000000	0.702889


```
In [6]: import matplotlib.pyplot as plot
    plot.pcolor(df.corr())
    plot.show()
```


Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x1169575f8>

Highly correlated items = not good!

Low correlated items = good ¶

Correlations with target (dv) = good (high predictive power)

Data Set: Wine Data

- Independent variables: Wine composition (alcohol content, sulphites, acidity, etc.)
- Dependent variable (target): Taste score (average of a panel of 3 wine tasters)

```
In [8]: url = "http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/wine
import pandas as pd
from pandas import DataFrame
w_df = pd.read_csv(url,header=0,sep=';')
w_df.describe()
```

Out[8]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000

In [9]:	w_df['volatile	acidity']
Out[9]:	0	0.700	
25 32	1	0.880	
	2	0.760	
	3	0.280	
	4	0.700	
	5	0.660	
	6	0.600	
	7	0.650	
	8	0.580	
	9	0.500	
	10	0.580	
	11	0.500	
	12	0.615	
	13	0.610	
	14	0.620	
	15	0.620	
	16	0.280	
	17	0.560	
	18	0.590	
	19	0.320	
	20	0.220	
	21	0.390	

Data Set: Wine Data

In [10]: w_df.corr() Out[10]: fixed volatile citric residual acidity acidity acid sugar fixed 1.000000 -0.256131 0.671703 0.114777 acidity volatile -0.256131 | 1.000000 | -0.552496 | 0.001918 acidity

In [11]: import matplotlib.pyplot as plot
plot.pcolor(w_df.corr())
plot.show()

Examining the Correlation of One Variable with Other

Pandas scatter matrix function helps visualize the relationship between features

Use with care though, because it is processor intensive

In [13]: from pandas.tools.plotting import scatter_matrix
p=scatter_matrix(w_df, alpha=0.2, figsize=(12, 12), diagonal='kde')

And we can examine quintile plots as we did with the rocks and mines data

```
In [14]: import numpy as np
import pylab
import scipy.stats as stats
%matplotlib inline

stats.probplot(w_df['alcohol'], dist="norm", plot=pylab)
pylab.show()
```


Training a Classifier on Rock Vs Mine


```
In []: import numpy
import random
from sklearn import datasets, linear_model
from sklearn.metrics import roc_curve, auc
import pylab as pl
```

Out[16]:

	0	1	2	3	4	5
count	208.000000	208.000000	208.000000	208.000000	208.000000	208.000000
mean	0.029164	0.038437	0.043832	0.053892	0.075202	0.104570
std	0.022991	0.032960	0.038428	0.046528	0.055552	0.059105
min	0.001500	0.000600	0.001500	0.005800	0.006700	0.010200
25%	0.013350	0.016450	0.018950	0.024375	0.038050	0.067025
50%	0.022800	0.030800	0.034300	0.044050	0.062500	0.092150
75%	0.035550	0.047950	0.057950	0.064500	0.100275	0.134125
max	0.137100	0.233900	0.305900	0.426400	0.401000	0.382300

Training a Classifier on Rock Vs Mine

Convert labels R and M to 0 and 1

```
In [17]: df[60]=np.where(df[60]=='R',0,1)
```

Divide the dataset into training and test samples

Separate out the x and y variable frames for the train and test samples

Build the model and fit the training data

```
In [ ]: model = linear_model.LinearRegression()
   model.fit(x_train,y_train)
```

Interpreting Categorical Prediction Results

Precision

Recall

True Positive Rate

False Positive Rate

Precision recall curve

ROC curve

F-Score *

Area under PR curve

Area under ROC curve

Classification Metrics: Confusion Matrix

	Actual	Predict
TP	1	1
FN	1	0
TP	1	1,
TP	1	1
TP	1	1
FN	1	0
TP	1	1
TN	0	0
TN	0	0
FP	0	1
TN	0	0
TN	0	0
FP	0	1
FP	0	1

Classification Metrics

- Precision: what proportion of the cases that the model said were 1 were actually 1
 - precision = TP/(TP+FP)
 - $\cdot 5/(5+2) = 71.4\%$
- Recall: what proportion of the cases that were actually 1 were identified as 1 by the model
 - •recall = TP/(TP + FN)
 - $\cdot 5/(5+3) = 62.5\%$
- F-Score: measures accuracy by balancing precision and recall
 - •fscore = 2 * (P * R)/(P + R)
 - •67%

- True Positive Rate (TPR): what proportion of the cases that were actually 1 were identified as 1(tpr = recall)
 - tpr = TP/(TP+FN)
 - -5/(5+3) = 62.5%
- False Positive Rate (FPR): what proportion of the cases that the model said were 1 were actually zero
 - •fpr = FP/(TN + FP)
 - $\cdot 2/(4+2) = 33.3\%$

Fixing and Determining the Threshold

Fixing the Threshold

- ROC Curve: plots the True Positive Rate against the False Positive Rate as the threshold varies from 0 to 1
- Precision-Recall Curve: Plots precision against recall as the threshold varies from 0 to 1

Determining the Threshold

- AUROC: The area under the ROC curve. AUROC is used to determine if the classifier is doing better than a random classifier. It can also help pick a threshold.
- AUPRC: The area under the PRC curve.

Generate Predictions in Sample Error

```
COLUMBIA ENGINEERING EXECUTIVE EDUCATION
```

```
In [22]: training predictions = model.predict(x train)
         print(np.mean((training predictions - y train) ** 2))
         0.08541463252093508
In [23]: print('Train R-Square:', model.score(x train, y train))
         print('Test R-Square:', model.score(x test,y test))
         Train R-Square: 0.657934733571
         Test R-Square: 0.0425249928917
 In [24]: training predictions
 Out[24]: array([-0.10188075, 0.38338
                  0.06581291, 0.51937
                  0.65898004, -0.36202
                  0.8790505 , 0.22359
                  0 44177435 0 66517
  In [25]: y train
  Out[25]: 6
            193
            179
            139
            94
            24
```

These are horrible! But do we really care?

- · Focus on the problem
- · Do we need to recognize both rocks as well as mines correctly?
- · How do we interpret the predicted y-values

Generate Predictions in Sample Error


```
In [ ]: print(max(training_predictions), min(training_predictions), np.mean(training_predictions))
```

We want to predict categories: Rocks or Mines

But we're actually getting a continuous value

Not the same things. So R-Square probably doesn't mean a whole lot

We need to convert the continuous values into categorical 1s and 0s. We can do this by fixing a threshold value between 0 and 1

Values greater than the threshold are 1 (Mines). Values less than or equal to the threshold are 0 (Rocks)

Confusion Matrix

- · Reports the proportion of
- 1. true positive: predicts mine and is a mine
- 2. false positive: predicts mine and is not a mine
- 3. true negative: predicts not mine and is not a mine
- 4. false negative: Predicts not mine but turns out to be a mine (BOOM!)

```
In [26]: def confusion matrix(predicted, actual, threshold):
             if len(predicted) != len(actual): return -1
             tp = 0.0
             fp = 0.0
             tn = 0.0
             fn = 0.0
             for i in range(len(actual)):
                 if actual[i] > 0.5: #labels that are 1.0 (positive examples)
                     if predicted[i] > threshold:
                         tp += 1.0 #correctly predicted positive
                     else:
                          fn += 1.0 #incorrectly predicted negative
                                     #labels that are 0.0 (negative examples)
                 else:
                      if predicted[i] < threshold:</pre>
                          tn += 1.0 #correctly predicted negative
                     else:
                         fp += 1.0 #incorrectly predicted positive
             rtn = [tp, fn, fp, tn]
             return rtn
```

In [31]: [tp, fn, fp, tn] = confusion matrix(testing predictions, np.array(y test), 0.5)

f score = 2 * (precision * recall)/(precision + recall)

In [28]: testing predictions = model.predict(x test)

precision = tp/(tp+fp)

print(precision, recall, f score)

0.84375 0.75 0.7941176470588235

recall = tp/(tp+fn)

Confusion matrix (and hence precision, recall etc.) depend on the Selected threshold

As the threshold changes, we will need to tradeoff precision and recall

```
In [32]: [tp, fn, fp, tn] = confusion_matrix(testing_predictions,np.array(y_test),0.9)
    precision = tp/(tp+fp)
    recall = tp/(tp+fn)
    f_score = 2 * (precision * recall)/(precision + recall)
    print(precision,recall,f_score)

0.8823529411764706 0.41666666666666667 0.5660377358490566
```

ROC: Receiver Order Characteristic

ROC: Receiver Order Characteristic

- An ROC curve shows the performance of a binary classifier as the threshold varies.
- · Computes two series:
- 1. False positive rate (FPR) Fall out/false alarm = False Positives/(True Negatives + False Positives)
 - · Or, what proportion of rocks are identified as mines
- 2. True Positive rate (TPR) Sensitivity/recall = True Positives/(True Positives + False Negatives)
 - Or, what proportion of actual mines are identified as mines
- · true positive: predicts mine and is a mine
- false positive: predicts mine and is not a mine
- . true negative: predicts not mine and is not a mine
- false negative: Predicts not mine but turns out to be a mine (BOOM!)

ROC: Receiver Order Characteristic

Let's first plot the predictions against actuals

The goal is to see if our classifier has discriminated at all

```
In [34]: df_p = pd.DataFrame(positives)
    df_n = pd.DataFrame(negatives)
    fig, ax = plt.subplots()
    a_heights, a_bins = np.histogram(df_p)
    b_heights, b_bins = np.histogram(df_n, bins=a_bins)
    width = (a_bins[1] - a_bins[0])/3
    ax.bar(a_bins[:-1], a_heights, width=width, facecolor='cornflowerblue')
    ax.bar(b_bins[:-1]+width, b_heights, width=width, facecolor='seagreen')
```

Out[34]: <Container object of 10 artists>

Drawing ROC

sklearn has a function roc_curve that does this for us

In [36]: from sklearn.metrics import roc curve, auc

```
In-sample ROC Curve
In [38]: (fpr, tpr, thresholds) = roc curve(y train, training predictions)
         area = auc(fpr,tpr)
         area
Out[381: 0.98323809523809524
 In []: (fpr, tpr, thresholds) = roc curve(y train, training predictions)
         area = auc(fpr,tpr)
         pl.clf() #Clear the current figure
         pl.plot(fpr,tpr,label="In-Sample ROC Curve with area = %1.2f"%area)
         pl.plot([0, 1], [0, 1], 'k') #This plots the random (equal probability line)
         pl.xlim([0.0, 1.0])
         pl.ylim([0.0, 1.0])
         pl.xlabel('False Positive Rate')
         pl.ylabel('True Positive Rate')
                                                                                 In [39]: (fpr, tpr, thresholds) = roc curve(y train, training predictions)
         pl.title('In sample ROC rocks versus mines')
         pl.legend(loc="lower right")
         pl.show()
```

In-sample ROC Curve

```
area = auc(fpr,tpr)
        fpr, tpr, thresholds
                                      , 0.01428571, 0.01428571, 0.04285714,
Out[39]: (array([ 0.
                 0.04285714, 0.05714286, 0.05714286, 0.07142857, 0.07142857,
                 0.08571429, 0.08571429, 0.1
                                                   , 0.1
                                                                  0.18571429,
                 0.18571429, 0.31428571, 0.31428571, 1.
                                                               1),
         array([ 0.01333333, 0.74666667, 0.74666667, 0.85333333, 0.85333333,
                                      , 0.90666667, 0.90666667, 0.92
                 0.88
                          , 0.88
                 0.92
                          , 0.94666667, 0.94666667, 0.97333333, 0.97333333,
                 0.98666667, 0.98666667, 1.
                                                , 1.
         array([ 1.44222918, 0.68043704, 0.67032538, 0.60883173, 0.57137311,
                 0.56550712, 0.52840754, 0.51937525, 0.51039308, 0.5088578,
                 0.48382492, 0.47656187, 0.47511402, 0.47086282, 0.40703878,
                 0.38338798, 0.28354984, 0.28275932, -0.47183391))
```

Drawing ROC


```
In [40]: (fpr, tpr, thresholds) = roc_curve(y_train, training_predictions)
    area = auc(fpr, tpr)
    pl.clf() #Clear the current figure
    pl.plot(fpr, tpr, label="In-Sample ROC Curve with area = %1.2f"%area)

pl.plot([0, 1], [0, 1], 'k') #This plots the random (equal probability line)
    pl.xlim([0.0, 1.0])
    pl.ylim([0.0, 1.0])
    pl.xlabel('False Positive Rate')
    pl.ylabel('True Positive Rate')
    pl.title('In sample ROC rocks versus mines')
    pl.legend(loc="lower right")
    pl.show()
In []: (fpr, tpr, thresholds)
```


So, what threshold should we actually use?

ROC curves and AUC give you a sense for how good your classifier is and how sensitive it is to changes in threshold

Too sensitive is not good

Example: Let's say

- Everything classified as a rock needs to be checked with a hand scanner at 200/scan
- Everything classified as a mine needs to be defused at 1000 if it is a real mine or 300 if it turns out to be a rock

```
In []: cm = confusion_matrix(testing_predictions,np.array(y_test),.1)
    cost1 = 1000*cm[0] + 300 * cm[2] + 200 * cm[1] + 200 * cm[3]
    cm = confusion_matrix(testing_predictions,np.array(y_test),.9)
    cost2 = 1000*cm[0] + 300 * cm[2] + 200 * cm[1] + 200 * cm[3]

    print(cost1,cost2)

41100.0 24800.0
```

Example: Let's say

- Everything classified as a rock will be assumed a rock and if wrong, will cost 5000 in injuries
- Everything classified as a mine will be left as is (no one will walk on it!)

```
In []: cm = confusion_matrix(testing_predictions,np.array(y_test),.1)
    cost1 = 0*cm[0] + 0 * cm[2] + 5000 * cm[1] + 0 * cm[3]
    cm = confusion_matrix(testing_predictions,np.array(y_test),.9)
    cost2 = 0*cm[0] + 0 * cm[2] + 5000 * cm[1] + 0 * cm[3]
    print(cost1,cost2)

10000.0 105000.0
```


www.emeritus.org