An Overview of single-cell ATAC-seq and Multiome analysis

CDN Workshop

June 9, 2025

Dongwon Lee, PhD
Division of Nephrology
Boston Children's Hospital &
Harvard Medical School
Broad Institute of MIT and Harvard

cis-regulatory elements & Open Chromatin

cis-regulatory elements (CREs)

- Regions of non-coding DNA that regulate the transcription of genes
- Promoter, Enhancer, Insulator, Silencers
- Different epigenetic marks are associated with different types of CREs
- Clustering of transcription factor binding sites (TFBSs)
- Sequence-specific DNA binding of Transcription Factors (TFs)

Open chromatin is a general marker of CREs

Open chromatin and ATAC-seq

ATAC-seq

Assay for Transposase-Accessible Chromatin (ATAC) with high-throughput sequencing - Buenrostro et al., Nat Methods, 2013

ATAC-seq: alignment example

Single-cell (nucleus) ATAC-seq

- In single-cell ATAC-seq, a unique cell "barcode" is assigned to every fragment
- Also single-nucleus ATAC-seq, or snATAC-seq
- Approaches
 - Combinatorial indexing-based techniques
 - Microfluidics-based approaches

scATAC-seq technologies (1)

- Combinatorial indexing based approaches
 - Sci-ATAC-seq (Cusanovich et al., Science 2015)
 - Paired-seq (Zhu et al., Nat Struct Mol Biol 2019)
 - dsciATAC-seq (Lareau et al., Nat Biotech 2019)
 - Sci-ATAC-seq3 (Domcke et al., Science 2020)
 - ...
- Highly scalable & Cost effective
 - Barcodes can be added multiple times
 - ~ 1 million cells can be analyzed in one experiment
- Potentially less sensitive than other methods

scATAC-seq technologies (2)

- Microfluidics-based approaches
 - Plate-based: Fluidigm's integrated fluidics circuit (IFC)

• Droplet-based: 10X Genomics Chromium

ATAC-seq data analysis workflow (1): Raw reads → Cell x peak matrix

- **1. Preprocessing:** Demultiplexing, adapter trimming, and read alignment to the reference genome.
- 2. Quality Control (QC): Assessing data quality, filtering low-quality reads, and nuclei, and removing doublets
- 3. Peak Calling: Identifying statistically significant open chromatin regions (peaks).
- 4. Quantifying Accessibility: Generating a cell-by-peak matrix.

ATAC-seq data analysis workflow (2): Cell x peak matrix → Clusters

- **1. Dimensionality Reduction:** Transforming high-dimensional data into lower dimensions for visualization (e.g., UMAP, t-SNE).
- 2. Clustering: Grouping nuclei based on similar chromatin accessibility profiles to identify distinct cell populations.
- 3. Cell Type Annotation: Assigning biological identities to clusters using known markers or atlases.

ATAC-seq data analysis workflow (3): Downstream analysis & Biological Interpretation

- 1. Differential Accessibility (DA) Analysis: Identifying regions with significant accessibility changes between cell types or conditions.
- 2. Motif Enrichment Analysis: Discovering transcription factor binding motifs enriched in open chromatin regions.
- 3. Gene Activity Scores / Peak-to-Gene Linking: Estimating gene expression potential from chromatin accessibility and linking regulatory elements to target genes.

The entire analysis process is **iterative**, and **visualization** at every step is critical!

The accessible chromatin landscape of the murine hippocampus at single-cell resolution

John R. Sinnamon,^{1,8} Kristof A. Torkenczy,^{2,8} Michael W. Linhoff,¹ Sarah A. Vitak,² Ryan M. Mulqueen,² Hannah A. Pliner,³ Cole Trapnell,³ Frank J. Steemers,⁴ Gail Mandel,¹ and Andrew C. Adey^{2,5,6,7}

sci-ATAC-seq of 2,346 cells from mouse hippocampus

GRN: granule cells INT: interneurons

NR1: pyramidal neurons (1) NR2: pyramidal neurons (2)

AST: astrocytes MRG: microglia

OLI: oligodendrocytes

OPC: OLI progenitor cells

Log2 Fold Change

(Sinnamon et al., Genome Res, 2019)

¹The Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA; ²Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA; ³Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA; ⁴Illumina, Incorporated, San Diego, California 92122, USA; ⁵Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA; ⁶Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon 97239, USA; ⁷Knight Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, Oregon 97239, USA

Single-Nucleus Multiome (RNA + ATAC)

Why Multiome? The Power of Integration:

- Simultaneous measurement of chromatin accessibility (ATAC) and gene expression (RNA) from the *same* single nucleus.
- Address limitations of inferring relationships from separate datasets.
- Directly connect regulatory elements to gene activity in specific cell types.
- Gain a more comprehensive understanding of cellular states and regulatory mechanisms.

10X Multiome Experimental Overview

(Source: 10X Genomics)

Key Concepts in Multiome Data Analysis

- Independent Preprocessing: Initial processing of ATAC and RNA modalities separately.
- Joint Dimensionality Reduction & Clustering: Integrating both modalities to identify more robust cell types/states (e.g., Weighted Nearest Neighbor (WNN) analysis).
- Enhanced Cell Annotation: Using both RNA and ATAC features for more precise cell type identification.
- Direct Regulatory Linkages:
 - Correlating gene expression with accessibility of promoters and enhancers.
 - Building gene regulatory networks.

Linking CREs to their target genes

Key Considerations & Future Directions

- Computational Demands: High-throughput data requires robust computational infrastructure.
- **Data Sparsity:** Challenges in analyzing sparse single-cell epigenomic data.
- **Tool Selection:** Overview of popular software packages and frameworks (e.g., Seurat/Signac, ArchR, CellRanger Multiome).
- **Biological Interpretation:** The ultimate goal is to derive meaningful biological insights!

scATAC-seq analysis tools

Tool	Platform	Feature Matrix	Preprocessing	Clustering	DAR	Motif/k-mer	Gene activity	Co- accessibility	Trajectory	Pathway
ChromVAR	R	TF motifs, k-mer	0	0	X	0	X	Х	X	X
SCRAT	R/Web	Selectable feature	0	0	0	X	X	X	X	X
scABC	R	Peak	0	0	X	O (ChromVAR)	X	X	X	X
Cicero	R	TSS	0	0	0	X	0	0	O	X
Scasat	Python/R	Peak	0	0	0	X	X	X	X	O (GREAT)
cisTopic	R	Peak	0	0	Χ	X	0	X	X	0
snapATAC	Python/R	Bin, peak	0	0	O	O (ChromVAR, Homer)	0	X	X	O (GREAT)
epiScanpy	Python	Peak	0	0	X	X	X	X	X	X
Destin	R	Peak	0	0	0	X	X	X	X	X
SCALE	Python	Peak	0	0	0	O (ChromVAR)	X	X	X	X
scATAC-pro	Python/R	Peak	0	0	0	O (ChromVAR)	0	O (Cicero)	X	O (GREAT)
Signac	R	Peak	0	0	0	O (ChromVAR)	0	X	X	X
ArchR	R	Bin, peak	0	0	0	O (ChromVAR), TF footprinting	0	0	0	X

Questions?