Model Dua Faktor dengan Interaksi: Efek Tetap

Responsi 12 STA1333 Pengantar Model Linear

• Ilustrasi:

Model untuk desain 2 factor dengan interaksi:

yang lain dari factor B.

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}$$

i= 1,2,...,a; j=1,2,...,b; k=1,2,...,n

- τ_i merupakan efek dari factor pertama, β_j merupakan efek dari factor kedua, dan $(\tau\beta)_{ij}$ interaksi antara factor pertama dan kedua.
- Dengan hipotesis yang diuji:
 - Ho : Tidak ada interaksi antara factor I dan factor II
 - H'o : Tidak ada perbedaan pengaruh dari level factor ke I
 - H"o : Tidak ada perbedaan pengaruh dari level factor ke II

Model Linier dalam Matriks (1)

• Penjabaran dari model $y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}$, i= 1,2,...,a; j=1,2,...,b; k=1,2,...,n $y_{111} = \mu + \tau_1 + \beta_1 + (\tau \beta)_{11} + \varepsilon_{111}$

$$y_{11n} = \mu + \tau_1 + \beta_1 + (\tau \beta)_{11} + \varepsilon_{11n}$$

$$y_{1b1} = \mu + \tau_1 + \beta_b + (\tau \beta)_{1b} + \varepsilon_{1b1}$$

•

$$y_{1bn} = \mu + \tau_1 + \beta_b + (\tau \beta)_{1b} + \varepsilon_{1bn}$$

•

$$y_{ab1} = \mu + \tau_a + \beta_b + (\tau \beta)_{ab} + \varepsilon_{ab1}$$

.

$$y_{abn} = \mu + \tau_a + \beta_b + (\tau \beta)_{ab} + \varepsilon_{abn}$$

$$\underline{\varepsilon}_{abnx1} = \begin{bmatrix} \varepsilon_{11a} \\ \vdots \\ \varepsilon_{1b1} \\ \vdots \\ \varepsilon_{1bn} \end{bmatrix}$$

 $\begin{bmatrix} \boldsymbol{\varepsilon}_{1bn} \\ \boldsymbol{\varepsilon}_{2bn} \\ \vdots \\ \boldsymbol{\varepsilon}_{abn} \end{bmatrix} \qquad \underline{\boldsymbol{\beta}} = \begin{bmatrix} (\tau\beta)_{11} \\ (\tau\beta)_{1b} \\ \vdots \\ (\tau\beta)_{a1} \\ (\tau\beta)_{ab} \end{bmatrix}$

Review Materi:

2. Solusi persamaan normal dengan Metode Matriks Kebalikan Umum

Dalam kasus Model Tak Penuh persamaan normal:

$$(X'X)\underline{b} = X'\underline{y}$$

Solusi dari Sistem persamaan normal:

$$\underline{b} = (X'X)^C X' \underline{y}$$

Dimana (X'X)^c merupakan matriks kebalikan umum dari X'X dan bersifat tidak unik

3. Solusi persamaan normal dengan Metode Reparameterisasi

Supaya parameter dapat diduga didefinisikan:

$$\mu^* = \mu + \overline{\tau} + \overline{\beta} + \overline{\tau\beta}$$

$$\tau^*_{i} = \tau_{i} - \overline{\tau} + \overline{(\tau\beta)}_{i.} - \overline{(\tau\beta)}$$

$$\beta^*_{j} = \beta_{j} - \overline{\beta} + \overline{(\tau\beta)}_{.j} - \overline{(\tau\beta)}$$

$$(\tau\beta)^*_{ij} = (\tau\beta)_{ij} - \overline{(\tau\beta)}_{i.} - (\overline{\tau\beta)}_{.j} + \overline{(\tau\beta)}$$

Sehingga diperoleh parameter baru yang dapat diduga dengan persamaan aditif:

$$y_{ijk} = \mu^* + \tau^*_i + \beta^*_j + (\tau\beta)^*_{ij} + \varepsilon_{ijk}$$
 $i = 1,2$ $j = 1,2$ $k = 1,2,3,4$

Ketika model diatas dijabarkan akan membentuk persamaan dasar model desain 2 factor dengan interaksi.

• Untuk mendapatkan solusi dari system persamaan normal $(\mathbf{X}'\mathbf{X})\underline{\boldsymbol{b}} = \mathbf{X}'\underline{\boldsymbol{y}}$ didefinisikan restriksi $\sum_{i=1}^a \tau^*_i = 0$, $\sum_{j=1}^b \beta^*_j = 0$, $\sum_{i=1}^a \sum_{j=1}^b (\tau\beta)^*_{ij} = 0$ $\sum_{i=1}^a (\tau\beta)^*_{i} = 0$, $\sum_{j=1}^b (\tau\beta)^*_{j} = 0$

Dari penjelasan sebelumnya <u>b</u> merupakan penduga BLUE dari <u>β</u>
Diperoleh solusi untuk system persamaan normal:

$$\underline{\boldsymbol{b}^*} = \begin{bmatrix} \widehat{\mu}^* \\ \widehat{\tau^*}_1 \\ \vdots \\ \widehat{\tau^*}_a \\ \widehat{\beta^*}_1 \\ \vdots \\ \widehat{\beta^*}_2 \\ (\widehat{\tau\beta)^*}_{ab} \end{bmatrix} = \begin{bmatrix} \overline{y}_{...} \\ \overline{y}_{1.} - \overline{y}_{...} \\ \overline{y}_{2.} - \overline{y}_{...} + \overline{y}_{...} \end{bmatrix}$$

Review Materi:

IPB Univers Bogor Indonesia

2. Pengujian Hipotesis Interaksi dengan Metode Matriks Kebalikan Umum

- Pengujian interaksi:
 - Ho: $\mathbf{C}\underline{\boldsymbol{\beta}}$ =o, dimana \mathbf{C} merupakan matriks berordo (a-1)(b-1)x (a+b+ab+1) yang merupakan penjabaran dari definisi $\left((\tau\beta)_{ij}-(\tau\beta)_{ij'}\right)-\left((\tau\beta)_{i'j}-(\tau\beta)_{i'j'}\right)=0$ untuk seluruh kondisi i,i',j,j'
 - Pengujian dilakukan sesuai dengan Langkah Pengujian Pada Kondisi Umum (Myers 6.1)
 - Statistik Uji:

$$F_{m,n-r} = \frac{\left(C\underline{b}\right)'\left\{C(X'X)^{C}C'\right\}^{-1}(C\underline{b})/m}{s^{2}}$$

- Dimana m merupakan rank dari matriks C yang berordo mxp.
- Tolak Ho jika F hit > F tabel

- Misal model 2 factor dengan jumlah taraf factor pertama berjumlah 2(a=2), jumlah taraf factor kedua berjumlah 2(b=2), dan ulangan untuk masing-masing kombinasi factor masing2 sebanyak 2(n=2).
- Ho: $((\tau\beta)_{11} (\tau\beta)_{12}) ((\tau\beta)_{21} (\tau\beta)_{22}) = 0$
- Dalam bentuk matriks Ho: Cβ=o
- Dimana $C = [0 \ 0 \ 0 \ 0 \ 1 \ -1 \ -1 \ 1] \beta$

3. Pengujian Hipotesis Interaksi dengan Metode Reparameterisasi

- Ho: $(\tau\beta)^*_{ij} = 0$
- Jumlah kuadrat regresi full dapat diperoleh dengan rumus:

$$JK_{reg(full)} = \underline{\boldsymbol{b}^{*'}}\boldsymbol{X}'\underline{\boldsymbol{y}}$$

Jika model 2 factor berdasarkan uji di atas menunjukkan tidak ada interaksi maka dilakukan uji untuk factor utama 1 dan factor utama 2 dengan hipotesis

•
$$H'_0: \tau^*_1 = \cdots = \tau^*_a = 0$$

•
$$H''_0: \beta^*_1 = \cdots = \beta^*_b = 0$$

Pengujiannya sama dengan pengujian model 2 factor tanpa interaksi dengan n≥1

Sumber	JK	db
Regresi Model penuh	$\sum\nolimits_{i = 1}^a {\sum\nolimits_{j = 1}^b {{y_{ij.}^2}} {\Big/ {n}} }$	ab
Model tereduksi	$\sum_{i} y_{i}^{2} / b n + \sum_{j} y_{j}^{2} / a n - y_{}^{2} / a b n$	(a+b-1)
Model Hipotesis	$\sum\nolimits_{i = 1}^a {\sum\nolimits_{j = 1}^b {{y_{ij.}^2}/n} } \;\; - \sum\nolimits_{j = 1}^{} {{y_{i.}^2}/bn} - \sum\nolimits_j {{y_{j.}^2}/an} + y_{}^2/abn$	(a-1)(b-1)
Residual/Galat	$\sum_{i}\sum_{j}\sum_{k}y_{ijk}^{2} - \sum_{i=1}^{a}\sum_{j=1}^{b}y_{ij.}^{2}/n$	ab(n-1)
Total	$\sum_{i}\sum_{k}y_{ijk}^{2}$	abn

IPB			
— В	ogor Ir	idonesia	

Sumber	JK	db
Regresi Model penuh	$\sum\nolimits_{i = 1}^a {\sum\nolimits_{j = 1}^b {{y_{ij.}^2}} {\left/ n \right.} }$	ab
Nilai Tengah	y²/ab n	1
Model Hipotesis(τ)	$\sum y_i^2/bn - y_i^2/abn$	(a-1)
Model Hipotesis(β)	$\sum_{j} y_{,j}^{2} / a n - y_{,}^{2} / ab n$	(b-1)
Model Hipotesis(τβ)	$\sum_{i=1}^{n} \sum_{j=1}^{b} y_{ij}^{2} / n - \sum_{i} y_{i}^{2} / b n - \sum_{i} y_{j}^{2} / a n + y_{i}^{2} / a b n$	(a-1)(b-1)
Residual/Galat	$\sum_{i}\sum_{j}\sum_{k}y_{ijk}^{2}-\sum_{i=1}^{a}\sum_{j=1}^{b}y_{ij.}^{2}/n$	ab(n-1)
Total	$\sum \sum_{i} \sum_{k} y_{ijk}^{2}$	abn

Tabel Anova Umum Model 2 Faktor Dengan Interaksi

LATIHAN SOAL

Kerjakan soal soal berikut selama 1 jam lalu jawaban discan dan satukan dalam file pdf dengan format penamaan : NIM Nama Latihan12.pdf

dikumpulkan ke link : https://ipb.link/latihan-pml58p1

Ozonation as a secondary treatment for effluent following absorption by ferrous chloride was studied for three reaction times and three PH levels. These data are obtained on effluent decline:

		PH Level (Factor I)		
		7	9	10.5
Reaction	20	23	16	14
		21	18	13
		22	15	16
	40	20	14	12
Time in		22	13	11
Minutes (Factor II)		19	12	10
	60	21	13	11
		20	12	13
		19	12	12

Derive the complete ANOVA table for these data and interpret the findings.

Menggunakan taraf nyata 5%

Terima Kasih

Departemen Statistika
Fakultas Matematika dan Ilmu Pengetahuan Alam
JI Meranti Wing 22 Level 4
Kampus IPB Darmaga - Bogor 16680
0251-8624535 | http://stat.ipb.ac.id