CMSC 510 – L09 Regularization Methods for Machine Learning

Instructor:

Dr. Tom Arodz

Recap: MLE for P(y|x)

- Let's say we have a probability distribution P(y|x) of a certain shape, and the distribution is parameterized by a vector w, so P(y|x)=P(y|x,w)
- How to estimate w?
 - We have a training set S with m samples
 - We could do maximum likelihood estimation of w $\max P(y_1, y_2, ..., y_m | x_1, x_2, ..., x_m, w)$
 - For which w are the observed y's for x's most likely?
 - We don't need to know anything about probability of x's
 - we're not estimating P(x,y), just P(y|x)
 - Samples are i.i.d: they're independent, so:

$$P(y_1, y_2, ..., y_m | x_1, x_2, ..., x_m, w) = \prod_{i=1}^m P_w(y_i | x_i, w)$$

ML estimate of w:

w that maximizes:

$$\max \prod_{i=1}^{m} P(y_i | x_i, w)$$

Recap: MLE / Logistic regression

Under the assumption that class conditional probabilities depend on an unknown w in this way:

- Maximum likelihood estimate of w is:
- Solve this instead: $\max \prod_{i=1}^m P(y_i | x_i, w)$

$$\min -\frac{1}{m} \ln \prod_{i=1}^{m} a(y_i w^T x_i)$$

• Or this: $\min \frac{1}{m} \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$

Back to our view of LR

Under the assumption that class conditional probabilities depend on an unknown w in this way:

- Logistic regression minimizing the logistic loss: $\min \frac{1}{m} \sum_{i=1}^m \ln(1 + \mathrm{e}^{-y_i w^T x_i})$
- is a maximum likelihood estimate of w given the training set:

$$\max P(y_1, y_2, ..., y_m | x_1, x_2, ..., x_m, w)$$

Logistic regression is a *maximum likelihood* estimate of **w** given the training set:

$$\arg \max_{w} P(y_1, y_2, ..., y_m | x_1, x_2, ..., x_m, w)$$

$$\arg \max_{w} \prod_{i=1}^{m} P(y_i | x_i, w)$$

Maximum a posteriori (MAP) estimate of w is:

```
\arg \max_{w} P(y_1, y_2, ..., y_m | x_1, x_2, ..., x_m, w) P(w)
\arg \max_{w} P(w) \prod_{i=1}^{m} P(y_i | x_i, w)
```

- We take into account our estimate of probability
 P(w) of each possible vector of weights w
 - Here, we can insert a belief that large w are unlikely:
 P(large w) is small, P(small w) is large

Maximum a posteriori (MAP) estimate of w is:

$$\arg \max_{w} P(y_1, y_2, ..., y_m | x_1, x_2, ..., x_m, w) P(w)$$

$$\arg \max_{w} P(w) \prod_{i=1}^{m} P(y_i | x_i, w)$$

Applying the standard log() trick:

$$\arg \max_{w} \ln P(w) + \sum_{i=1}^{m} \ln P(y_i | x_i, w)$$

$$\arg \min_{w} - \ln P(w) + \sum_{i=1}^{m} - \ln P(y_i | x_i, w)$$

$$\arg \min_{w} \ln \frac{1}{P(w)} + \sum_{i=1}^{m} \ln \frac{1}{P(y_i | x_i, w)}$$

Logistic regression was a maximum likelihood estimate of **w** given the training set, for a specific form of P(y|x,w): $P(y_i|x_i,w) = \frac{1}{1+e^{-y_iw^Tx_i}}$

$$\arg\min_{w} \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$$

Maximum a posteriori (MAP) estimate of w for the same form of P(y|x,w) is:

$$\arg\min_{w} \left[\ln \frac{1}{P(w)} \right] + \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$$

- Let's assume: $P(y_i|x_i,w)=rac{1}{1+\mathrm{e}^{-y_iw^Tx_i}}$
- Maximum a posteriori (MAP) estimate of w given the training set is:

$$\arg\max_{w} P(w) \prod_{i=1}^{m} P(y_i | x_i, w)$$

$$\arg\min_{w} \left[\ln \frac{1}{P(w)} \right] + \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$$

- P(w) = plausibility of this particular w
 - unless we have some evidence that large w are needed,
 we believe large w are unlikely to be truly necessary
 - More likely, they're artificial effect of correlated features
- P(w) should be: small for large w, large for small w

- P(w) should be: small for large w, large for small w
- How to measure if w is large or small? $\binom{w_0}{w_1}$

- P(w) should be: small for large w, large for small w
- How to measure if w is large or small?

L_p norm:
$$\|w\|_p = \left(\sum_{f=1}^F |w_f|^p\right)^{1/p}$$

large w = large value of ||w||

we raise ||w|| to power p for convenience

$$||w||_p^p = \left(\sum_{f=1}^F |w_f|^p\right)$$

- Let's assume: $P(y_i | x_i, w) = \frac{1}{1 + \mathrm{e}^{-y_i w^T x_i}}$
- Maximum a posteriori (MAP) estimate of w:

$$\arg\min_{w} \left[\ln \frac{1}{P(w)} \right] + \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$$

■ P(w) should be: small for large L_p norm of w, large for small L_p norm of w

$$||w||_p^p = \left(\sum_{f=1}^F |w_f|^p\right)$$

- What form should P(w) take?
 - $P(w)=f(||w||^p)$ where $0 \le ||w||^p \le \infty$
 - What would be a convenient choice for f()?

- Let's assume: $P(y_i|x_i,w)=\frac{1}{1+e^{-y_iw^Tx_i}}$
- Maximum a posteriori (MAP) estimate of w:

$$\arg\min_{w} \left[\ln \frac{1}{P(w)} \right] + \sum_{i=1}^{m} \ln(1 + \mathrm{e}^{-y_i w^T x_i})$$
• P(w) should be: small for large w,
$$\lim_{x \to \infty} \int_{0}^{\infty} \mathrm{e}^{-\frac{x}{C}} dx = C$$
 large for small w

$$P(w) = \frac{1}{C} e^{-\frac{1}{C} \|w\|_p^p}$$

L_D norm large w = large norm

$$||w||_p^p = \left(\sum_{f=1}^F |w_f|^p\right)$$

P(w) should be: small for large w, large for small w

$$||w||_p^p = \left(\sum_{f=1}^F |w_f|^p\right)$$

$$P(w) = \frac{1}{C} e^{-\frac{1}{C} \|w\|_{2}^{2}}$$

$$P(w) = \frac{1}{C} e^{-\frac{1}{C} \|w\|_1}$$

- Let's assume: $P(y_i|x_i,w) = \frac{1}{1+e^{-y_iw^Tx_i}}$
- Maximum a posteriori (MAP) estimate of w:

$$\arg\min_{w} \left[\ln \frac{1}{P(w)} \right] + \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$$

Gaussian prior

 $P(w) = \frac{1}{C} e^{-\frac{1}{C} \|w\|_{2}^{2}}$

Constant C is standard deviation or its equivalent

$$P(w) = \frac{1}{C} e^{-\frac{1}{C} \|w\|_1}$$

- Lower C => P(w) concentrated more around 0
- Lower C => promotes smaller feature weights w

L_1 vs L_2 regularization $P(w) = \frac{1}{C} e^{-\frac{1}{C} ||w||_p^p}$

P(w) for L₂ regularization

P(w) for L₁ regularization

L_p regularization

- L_p regularization $\arg\min_{w} \left[\ln \frac{1}{P(w)} \right] + \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$
- What does the first term expand to?
- We have:

$$P(w) = \frac{1}{C} e^{-\frac{1}{C} \|w\|_p^p}$$

So:

$$\ln \frac{1}{P(w)} = \frac{1}{C} ||w||_p^p + \ln C$$

Regularization

$$\ln \frac{1}{P(w)} = \frac{1}{C} \|w\|_p^p + \ln C$$

Logistic regression with L_p regularization
$$\arg\min_{w} \left[\ln\frac{1}{P(w)}\right] + \sum_{i=1}^{m} \ln(1 + \mathrm{e}^{-y_i w^T x_i}) \\ \arg\min_{w} \frac{1}{C} \|w\|_p^p + \sum_{i=1}^{m} \ln(1 + \mathrm{e}^{-y_i w^T x_i})$$
• We're adding a penalty term $\frac{1}{C} \|w\|_p^p$

- The penalty term looks like this:

$\|w\|_{p}^{p} = \left(\sum_{f=1}^{F} |w_{f}|^{p}\right)$

or this:

Regularization

Logistic regression with L_p regularization

$$\arg\min_{w} \frac{1}{C} \|w\|_{p}^{p} + \sum_{i=1}^{m} \ln(1 + e^{-y_{i}w^{T}x_{i}})$$

- We're adding a penalty term $\frac{1}{C}\|w\|_p^p$
- Algorithm minimizes: empirical risk of h() + penalty for complexity of h()

L₂ Regularization
$$\underset{w}{\operatorname{arg min}} \frac{1}{C} |w||_{p}^{p} + \sum_{i=1}^{m} \ln(1 + e^{-y_{i}w^{T}x_{i}})$$

- Logistic regression with L₂ regularization
- Higher 1/C => higher penalty for large norm of w
 - Example: two points (x=1,y=1), (x=-1,y=-1), $w_0=0$ (fixed value)

L₂ Regularization
$$\arg\min_{w} \frac{1}{C} ||w||_{p}^{p} + \sum_{i=1}^{m} \ln(1 + e^{-y_{i}w^{T}x_{i}})$$

- Example: two points (x=3,y=1), (x=-1,y=-1), $w_0=-1$ (fixed value)
 - $wx+w_0=3*w+(-1)>0 => w>1/3$ (condition for correct prediction)
 - $wx+w_0=-1*w+(-1)<0$ => w>-1 (condition for correct prediction)
- Too much regularization is bad: 1/C=10 => w=0.11 => wrong prediction

L₂ Regularization

Logistic regression:

$$\arg\min_{w} \sum_{i=1}^{m} \ln(1 + e^{-y_i w^T x_i})$$

Solved through gradient descent:

$$w_{t+1} = w_t - \frac{\partial \left(\sum_{i=1}^m \ln(1 + e^{-y_i w^T x_i})\right)}{\partial w}$$
$$w_{t+1} = w_t - \sum_{i=1}^m \frac{\partial \ln(1 + e^{-y_i w^T x_i})}{\partial w}$$

Weights may grow and grow, gradient never going to 0

L₂ Regularization

Logistic regression with L₂ regularization:

$$\arg\min_{w} \frac{1}{C} \|w\|_{2}^{2} + \sum_{i=1}^{m} \ln(1 + e^{-y_{i}w^{T}x_{i}})$$

Solved through gradient descent:

$$w_{t+1} = w_t - \frac{\partial \left(\frac{1}{C} ||w||_2^2 + \sum_{i=1}^m \ln(1 + e^{-y_i w^T x_i})\right)}{\partial w}$$

$$w_{t+1} = w_t - \frac{2}{C} w_t - \sum_{i=1}^m \frac{\partial \ln(1 + e^{-y_i w^T x_i})}{\partial w}$$

Weight decay!

- In each iteration, old weights are reduced by a fraction
 - Before we add something new, from gradient
- Weights don't grow to be large

Coding classification methods

Thankfully, we do not have to act like in HW1

In the last couple of years, a number of libraries for automating gradient descent became popular

Tensorflow, PyTorch

4

Automatic differentiation

Tensorflow/PyTorch are libraries for performing calculations and derivatives on a computational graph

Example: $y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$

We want to compute y and dy/dx₁ for:

$$(x_1, x_2) = (2, 5)$$

4

Automatic differentiation

- In machine learning, we rarely want to calculate gradient of loss w.r.t. feature values x_i
- Instead, we will have model weights (w,b) as the starting variables for the computational graph (training samples x,y would just be constants somewhere in the graph)

Automatic differentiation (AD)

Forward Primal Trace

$$v_{-1} = x_1 = 2$$

$$v_0 = x_2 = 5$$

$$v_1 = \ln v_{-1} = \ln 2$$

$$v_2 = v_{-1} \times v_0 = 2 \times 5$$

$$v_3 = \sin v_0 = \sin 5$$

$$v_4 = v_1 + v_2 = 0.693 + 10$$

$$v_5 = v_4 - v_3 = 10.693 + 0.959$$

$$y = v_5 = 11.652$$

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)$$
 $(x_1, x_2) = (2, 5)$

AD

Dot over a variable represents a derivative Over what? Below, over x_1

There will be a similar trace for x₂

Forward Primal Trace

$$v_{-1} = x_1$$
 = 2
 $v_0 = x_2$ = 5
 $v_1 = \ln v_{-1}$ = $\ln 2$
 $v_2 = v_{-1} \times v_0$ = 2×5
 $v_3 = \sin v_0$ = $\sin 5$
 $v_4 = v_1 + v_2$ = $0.693 + 10$
 $v_5 = v_4 - v_3$ = $10.693 + 0.959$
 $v_7 = v_8$ = v_8 = v_8

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \quad (x_1, x_2) = (2, 5)$$

AD

Dot over a variable represents a derivative Over what? Below, over x_1

There will be a similar trace for x₂

Forward Primal Trace

$$v_{-1} = x_1 = 2$$

$$v_0 = x_2 = 5$$

$$v_1 = \ln v_{-1} = \ln 2$$

$$v_2 = v_{-1} \times v_0 = 2 \times 5$$

$$v_3 = \sin v_0 = \sin 5$$

$$v_4 = v_1 + v_2 = 0.693 + 10$$

$$v_5 = v_4 - v_3 = 10.693 + 0.959$$

$$y = v_5 = 11.652$$

$$y = f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \quad (x_1, x_2) = (2, 5)$$

We do not get derivatives in a form of mathematical formulas

We just get the value of the derivative for specific x_1, x_2

That's what we need for gradient descent!

AD

https://arxiv.org/pdf/1502.05767.pdf

Forward Primal Trace

$$v_{-1} = x_1$$
 = 2
 $v_0 = x_2$ = 5
 $v_1 = \ln v_{-1}$ = $\ln 2$
 $v_2 = v_{-1} \times v_0$ = 2×5
 $v_3 = \sin v_0$ = $\sin 5$
 $v_4 = v_1 + v_2$ = $0.693 + 10$
 $v_5 = v_4 - v_3$ = $10.693 + 0.959$
 $v_6 = v_7$ = v_8 = v_8

 $=\dot{v}_5$

$$\dot{v}_{-1} = \dot{x}_1 = 0
\dot{v}_0 = \dot{x}_2 = 0
\dot{v}_1 = \dot{v}_{-1}/v_{-1} = 1/2
\dot{v}_2 = \dot{v}_{-1} \times v_0 + \dot{v}_0 \times v_{-1} = 1 \times 5 + 0 \times 2
\dot{v}_3 = \dot{v}_0 \times \cos v_0 = 0 \times \cos 5
\dot{v}_4 = \dot{v}_1 + \dot{v}_2 = 0.5 + 5
\dot{v}_5 = \dot{v}_4 - \dot{v}_3 = 5.5 - 0$$

= 5.5

Above, we had forward differentiation

Calculate d v_i / d x for increasing i

Until we get to $d v_5 / d x = d y / d x$

There is an alternative way, closer to backpropagation

Calculate d y / d v_i for decreasing i x_1 –

Until we get to d y / d v_0 = d y / d x

Forward Primal Trace

$$v_{-1} = x_1 \qquad \qquad = 2$$

$$v_0 = x_2 = 5$$

$$v_1 = \ln v_{-1} = \ln 2$$

$$v_2 = v_{-1} \times v_0 = 2 \times 5$$

$$v_3 = \sin v_0 = \sin 5$$

$$v_4 = v_1 + v_2 = 0.693 + 10$$

$$v_5 = v_4 - v_3 = 10.693 + 0.959$$

$$y = v_5 = 11.652$$

Reverse Adjoint (Derivative) Trace alternative way (faster)

$$\bar{x}_1 = \bar{v}_{-1} = 5.5$$
 $\bar{x}_2 = \bar{v}_0 = 1.716$

$$\bar{v}_{-1} = \bar{v}_{-1} + \bar{v}_{1} \frac{\partial v_{1}}{\partial v_{-1}} = \bar{v}_{-1} + \bar{v}_{1}/v_{-1} = 5.5$$

$$\bar{v}_0 = \bar{v}_0 + \bar{v}_2 \frac{\partial v_2}{\partial v_0} = \bar{v}_0 + \bar{v}_2 \times v_{-1} = 1.716$$

$$\bar{v}_{-1} = \bar{v}_2 \frac{\partial v_2}{\partial v_{-1}} \qquad = \bar{v}_2 \times v_0 \qquad = 5$$

$$\bar{v}_0 = \bar{v}_3 \frac{\partial v_3}{\partial v_0} = \bar{v}_3 \times \cos v_0 = -0.284$$

$$\bar{v}_2 = \bar{v}_4 \frac{\partial v_4}{\partial v_2} = \bar{v}_4 \times 1 = 1$$

$$\bar{v}_2 = \bar{v}_4 \frac{\partial v_4}{\partial v_2} = \bar{v}_4 \times 1 = 1$$

$$\bar{v}_1 = \bar{v}_4 \frac{\partial v_4}{\partial v_1} = \bar{v}_4 \times 1 = 1$$

$$\bar{v}_3 = \bar{v}_5 \frac{\partial v_5}{\partial v_3} = \bar{v}_5 \times (-1) = -1$$

$$\bar{v}_4 = \bar{v}_5 \frac{\partial v_5}{\partial v_4} = \bar{v}_5 \times 1 = 1$$

$$\bar{v}_5 = \bar{y} = 1$$