Activité 5.2 – Représenter les molécules organiques

Objectifs:

Connaître les quatre représentations des molécules organiques.

Contexte : Les molécules organiques sont composées de chaînes carbonées, auxquelles sont ajoutés des atomes d'hydrogène, d'oxygène ou d'azote le plus souvent.

→ Comment représenter les molécules organiques ?

1 - La formule brute

Document 1 - Formule brute

Elle précise séparément le nombre d'éléments présents dans la molécule.

▶ Exemples : Le butane C₄H₁₀, l'éthanol C₂H₆O ou l'acide carbonique CH₂O₃ Elle permet de calculer facilement les **masses molaires** et de vérifier si deux molécules sont **isomères**. Par contre elle **ne permet pas** de déterminer la géométrie d'une molécule.

Deux molécules sont **isomères** si elles ont la même formule brute, mais un agencement des atomes différents.

▶ Exemples: Le glucose et le fructose sont isomères de formules brutes $C_6H_{12}O_6$, mais ce ne sont pas les mêmes molécules, car leurs géométries sont différentes.

L'oxybenzone est une molécule utilisée pour protéger des UVA et B issu du soleil. Sa formule brute est $C_{14}H_{12}O_3$.

1	_	Ind	iqu	er l	e n	om	bre	e d	'élé	ém	ent	\mathbf{d}	'hy	dr	oge	ènε	e, c	l'o	хуг	gèn	е е	et c	le (car	bc	ne	da	ans	s la	a n	nol	écι	ıle	ď	оху-
benzon	ıe.																																		
																										. 									
• • • • • •	• • •				• • •				• •		• •	• • •	• •			• • •		• •			• •		• • •	• •	• •	• • •	• •		• •	• • •		• •		• •	• •

L'alanine est un acide aminé utilisé dans le corps humain pour former des protéines. Sa représentation avec un modèle moléculaire est présentée ci-contre avec le code couleur suivant :

- Blanc : hydrogène.
- Noir : carbone.
- Rouge : oxygène.
- Bleu: azote.
- 2 Donner la formule brute de l'alanine

3 — Compter les liaisons de chaque carbone dans l'alanine et vérifier qu'ils ont bien la bonne valence. Faire de même pour l'azote et l'oxygène.

Document 2 – Formule développée

Elle représente tous les éléments chimiques et toutes les liaisons dans le même plan, ce qui permet de **préciser la géométrie d'une molécule**.

• Exemples :

Document 3 - Formule semi-développée

Comme la formule développée, elle représente tous les éléments chimiques, mais elle ne détaille pas les liaisons des éléments **hydrogènes**.

• Exemples:

$$HO-CH_2-CH_3$$
 $Cl-CH_2-SiH_3$

éthanol

chlorométhylsilane

Document 4 - Formule topologique

Elle représente les liaisons carbone-carbone C—C par des segments formant des angles. Chacune des extrémités d'un segment représente un carbone, sauf si un autre élément chimique y est attaché. Les éléments carbones et les hydrogènes qui sont attachés aux carbones ne sont pas représentés. Tous les autres éléments chimiques sont représentés normalement.

ightharpoonup Exemples:

$$HO$$
 Cl SiH_3 HO $Paracétamol$

4 — Donner la formule brute, semi-développée et développée du paracétamol.