Finding Criminal Groups in Suspect Networks Using a Steiner Tree Approach

Fredy Troncoso^a Richard Weber^b Alex Barrales-Araneda^a

^aDepartamento de Ingeniería Industrial, Universidad del Bío-Bío ^bDepartamento de Ingeniería Industrial, Universidad de Chile

> 32nd EURO Conference July 6th, 2022. Espoo, Finland

Outline

- 1 Introduction
- 2 Background Node-Weighted Steiner Tree problem
- 3 A new model based on Steiner trees Steiner tree rational association model
- 4 Results
 The Public Prosecutor's Office of Chile Dataset
- **5** Conclusions and Future Work

Introduction

- 1 A criminal group is defined as a structured group formed by two or more people that is characterized by serious criminal activity over time, with high internal cohesion and a hierarchical and specialized structure[2]
- 2 The structure of a criminal group is given by the relationships between its members and is fundamental for the success of its operations.[1]

Node-Weighted Steiner Tree problem

- 1 The STP in graphs is a combinatorial optimization problem that has been widely used in network design, integrated circuit design, localization problems, machine learning, systems biology, and bioinformatics[3].
- 2 The STP seeks a tree that interconnects a set of nodes S called terminals at a minimum cost.

Figure: Figure ? |S| = 4

1 The search for association can be seen as the process by which a criminal planner s plans a group crime by choosing other criminals.

- The search for association can be seen as the process by which a criminal planner s plans a group crime by choosing other criminals.
- 2 The planner is rational and chooses criminals with the criminal skills that guarantee that the crime is carried out with the maximum utility.

- Criminal skills are represented by the criminal propensity pcg and trustworthiness through social distance between individuals d_{ij}
- 2 The social distance between two individuals is represented by a value between 0 and 1, where 1 represents the maximum distance between them.

Propensity to Commit Burglary in an Uninhabited Place * 0.75 Number of offenses committed in the last two years

Figure: PCG values for network of 77 suspects

Objective function

Utility function of a crime planner

$$\max U = \frac{\sum_{i \in N} pcg_i y_i}{pcg_{max} - pcg_s} - \frac{\sum_{(i,j) \in A} d_{ij} x_{ij}}{d_{max}}$$

Decision variables

tility function of a crime planner
$$y_i = \begin{cases} 1 & \text{Si } i \in N \text{ se encuentra en la banda} \\ 0 & \text{En otro caso} \end{cases}$$

$$\max U = \frac{\sum_{i \in N} pcg_i y_i}{pcg_{max} - pcg_s} - \frac{\sum_{(i,j) \in A} d_{ij} x_{ij}}{d_{max}}$$

$$x_{ij} = \begin{cases} 1 & \text{Si } i \in N \text{ se encuentra en la banda} \\ 0 & \text{En otro caso} \end{cases}$$

$$f_{ij} = \text{Flujo a través del arco } (i,j) \in A$$

Restricciones

Asignación de vértices:

$$\sum_{i\in N} x_{ij} = y_j \qquad \forall j\in N\setminus \{s\} \qquad (1)$$

• Conservación de flujo:

$$\sum_{i\in N} f_{ij} - \sum_{i\in N} f_{ji} = y_j \qquad \forall j\in N\setminus \{s\} \qquad (2)$$

Asociación del Flujo:

$$f_{ij} \leq (|N|-1)x_{ij} \qquad \forall (i,j) \in A \qquad (3)$$

Propensión máxima:

$$\sum_{i \in N} pcg_i y_i \le \varphi pcg_{max} \tag{4}$$

• Dominio de las Variables:

$$f_{ij} \ge 0$$
 $\forall (i,j) \in A$ (5)
 $x_{ij} \in \{0,1\}$ $\forall (i,j) \in A$ (6)
 $y_i \in \{0,1\}$ $\forall i \in N$ (7)

The Public Prosecutor's Office of Chile Dataset

The Public Prosecutor's Office of Chile Dataset

- The criminal network was provided by the criminal analysis unit of the Public Prosecutor's Office of Chile.
- The database consists of 1,666 crimes and 77 suspects.

Figure: The network of 77 suspects.

The Public Prosecutor's Office of Chile Dataset

Results

- 1 R1
- R2
- **3** R3

Figure: Precision and Recall to StRAM, LiRAM and SPA.

Figure: F-measure to StRAM, LiRAM and SPA

The Public Prosecutor's Office of Chile Dataset

Results

- R1
- 2 R2
- **3** R3
- 4 R4
- **5** R5

Table: Results to statistical tests for different values of φ .

Results to Statistical Tests					
	Maximum Payout Share to Members P-value				
Test	arphi=0.1	arphi=0.2	$\varphi = 0.3$	arphi=0.4	arphi=0.5
Shapiro-Wilk (LiRAM data)	0.0000000034111	0.0021649	0.0027877	0.0117392	0.2396275
Shapiro-Wilk (StRAM data)	0.02501584	0.00374289	0.00201161	0.04011305	0.00056471
Levene	0.00006102	0.1438	0.05163	0.03224	0.03611
Kruskal-Wallis	0.8504	0.4327	0.07577	0.6481	0.2407

Conclusions

- **1** C1.
- **2** C2.
- **3** C3.
- **4** C4.

Future Work

- **1** FW1.
- 2 FW2.
- **3** FW3.
- 4 FW4.

References I

- [1] Carles Ortolà Boscà. Así son las redes terroristas más eficientes según las matemáticas. *Global strategy reports*, 1(53), 2020.
- [2] Frank E. Hagan. "organized crime" and "organized crime": Indeterminate problems of definition. Trends Organ Crim, 9:127–137, 2006.
- [3] Ivana Ljubić. Solving steiner trees: Recent advances, challenges, and perspectives. *Networks*, 77(2):177–204, 2021.

Acknowledgment

- FONDEF project ID20I10230ANID
- The Criminal Analysis Unit of the Public Prosecutor's Office of Región del Biobío-Chile
- The Initiation Research Project2060204IF/I
- Project ING 2030 I+D 20-34.
- Fondecyt project 1181036
- Santiago based Complex Engineering Systems Institute (CONICYT PIA/BASALAFB180003).

Space for images

Finding Criminal Groups in Suspect Networks Using a Steiner Tree Approach

Fredy Troncoso^a Richard Weber^b Alex Barrales-Araneda^a

^aDepartamento de Ingeniería Industrial, Universidad del Bío-Bío ^bDepartamento de Ingeniería Industrial, Universidad de Chile

> 32nd EURO Conference July 6th, 2022. Espoo, Finland