Problem R-07A C₈H₁₆O

Calculate the ¹³C chemical shifts of the carbons marked c and d in the 75 MHz ¹³C NMR spectrum of 5-methyl-3-heptanone below. Use as a model the appropriate shifts of 3-pentanone shown. Show the parameters you used. (15 points)

$$\delta_c =$$

$$\delta_d$$
 =

Calculate f using any sound method.

$$\delta_f$$
 =

Using this and any other calculations or model compounds needed, assign the carbons a-g (mark the letters on the spectrum). Note any remaining ambiguities. What spectroscopic information would be needed to complete the assignment?

Problem R-07A C₈H₁₆O

Calculate the ¹³C chemical shifts of the carbons marked c and d in the 75 MHz ¹³C NMR spectrum of 5-methyl-3-heptanone below. Use as a model the appropriate shifts of 3-pentanone shown. Show the parameters you used. (15 points)

3
$$\delta_c = 35.4 + 2\beta + \gamma + 2^{\circ}(3^{\circ}) - 2^{\circ}(1^{\circ}) = 49.2 \text{ (obs: 49.5)}$$

7.9 35.4

3
$$\delta_d = 7.9 + 2\alpha + \beta + 3^{\circ}(1^{\circ}) + 3^{\circ}(2^{\circ}) + 3^{\circ}(2^{\circ}) - 1^{\circ}(2^{\circ}) = 28.1 \text{ (obs: 29.6)}$$

Calculate f using any sound method.

From CH₄:

$$\delta_f = -2.1 + 2\alpha + 2\beta + \gamma_{C=O} + 2^{\circ}(1^{\circ}) + 2^{\circ}(3^{\circ}) = 30.4$$
 ($\gamma_{C=O}$ is from the "n- iso- table, -2 ppm)

Note: all calculations are within 1.5 ppm of the observed values

Using this and any other calculations or model compounds needed, assign the carbons a-g (mark the letters on the spectrum). Note any remaining ambiguities. What spectroscopic information would be needed to complete the assignment?

3
$$\delta_g = 11.3$$
 $\delta_{f} = 29.3$ $\delta_{f} = 29.3$ Model

The signals at 30.9 and 29.6 are too close to call - would need an APT experiment (DEPT or coupled 13 C spectrum) to distinguish the CH $_2$ from the CH

Grant-Paul Parameters

 $\delta_C = -2.1 + \Sigma n_i A_i + \Sigma$ (branching corrections) (in δ from TMS)

A_i Branching Corrections (1°(3°) = a CH₃ (1°) with a CHR₂ carbon (3°) attached to it).

α	+9.1	1°(1°) 0	2°(1°) 0	3°(1°) 0	4°(1°) -1.5
β	+9.4	1°(2°) 0	2°(2°) 0	3°(2°) -3.7	4°(2°) -8.4
γ	-2.5	1°(3°) -1.1	2°(3°) -2.5	3°(3°) -9.5	4°(3°) -15.0
δ	+0.3	1°(4°) -3.4	2°(4°) -7 5	3°(4°) -15 0	4°(4°) -25 0

ε +0.1

ε +0.1