

Integer, Binary, and Mixed Integer **Programming**

Integer Programming Models Types of Models

Total Integer

Model:

All decision variables required to have *integer*

solution values

0-1 Integer

Model:

All decision variables required to have integer

values of zero or one

Mixed Integer

Model:

Some of the decision variables (but not all)

required to have integer values

A Total Integer Model

- Machine shop obtaining new presses and lathes
- Marginal profitability: each press \$100/day; each lathe \$150/day
- Resources: \$40,000 budget, 200 sq. ft. floor space
- Machine purchase prices and space requirements:

Machine	Required Floor Space (ft. ²)	Purchase Price
Press	15	\$8,000
Lathe	30	4,000

A Total Integer Model

- Machine shop obtaining new presses and lathes
- Marginal profitability: each press \$100/day; each lathe \$150/day
- Resources: \$40,000 budget, 200 sq. ft. floor space

Machine	Required Floor Space (ft. ²)	Purchase Price
Press	15	\$8,000
Lathe	30	4,000

Model Decision Variables?

 $x_1 = number of presses$

 x_2 = number of lathes

Objective Function?

Maximize
$$Z = \$100x_1 + \$150x_2$$

Constraints?

Budget: $\$8,000x_1 + \$4,000x_2 \le \$40,000$

Floor Space: $15x_1 + 30x_2 \le 200 \text{ ft}^2$

Non-neg.: $x_1, x_2 \ge 0$

Integer restr.: x_1, x_2 integer

A 0 - 1 Integer Model

- Recreation facilities selection to maximize daily usage by residents
- Resource constraints: \$120,000 budget; 12 acres of land
- Selection constraint: either swimming pool or tennis center (not both)

Recreation Facility	Expected Usage (people/day)	Cost (\$)	Land Requirement (acres)
Swimming pool	300	35,000	4
Tennis Center	90	10,000	2
Athletic field	400	25,000	7
Gymnasium	150	90,000	3

STEVENS STITUTE OF TECHNOLOGY

A 0 - 1 Integer Model

Recreation Facility	Expected Usage (people/day)	Cost (\$)	Land Requirement (acres)
Swimming pool	300	35,000	4
Tennis Center	90	10,000	2
Athletic field	400	25,000	7
Gymnasium	150	90,000	3

Recreation facilities selection to maximize daily usage by residents

Resource constraints: \$120,000 budget; 12 acres of land

Selection constraint: either swimming pool or tennis center (not both)

Model Decision Variables?

 $x_1 = construction of a swimming pool$

 $x_2 = construction of a tennis center$

 x_3 = construction of an athletic field

 x_4 = construction of a gymnasium

The value of xi will be:

0 if it is not built

1 if it is built

Objective Function?

Maximize
$$Z = 300x_1 + 90x_2 + 400x_3 + 150x_4$$

Constraints?

Budget: $$35,000x_1 + 10,000x_2 + 25,000x_3 + 90,000x_4 \le $120,000$

Acres: $4x_1 + 2x_2 + 7x_3 + 3x_4 \le 12$ acres

Either/or: $x_1 + x_2 \le 1$ facility

Binary: $x_1, x_2, x_3, x_4 = 0 \text{ or } 1$

Different Types of Constraints

for Integer Models

 $x_1 = construction of a swimming pool$

 x_2 = construction of a tennis center

 x_3 = construction of an athletic field x_4 = construction of a gymnasium

Original constraint:

$$x_1 + x_2 \le 1$$
 a mutually exclusive constraint

What if the swimming pool OR tennis court MUST be built?

$$x_1 + x_2 = 1$$
 a multiple choice constraint

What if some pre-set number of facilities MUST be built, say 2?

$$x_1 + x_2 + x_3 + x_4 = 2$$

What if the town couldn't exceed 3 facilities?

$$x_1 + x_2 + x_3 + x_4 \le 3$$

What if the tennis court won't be built unless the swimming pool is also built?

Think of the possible combinations...

$$x_2 \le x_1$$
 a conditional constraint $x_2 = 0 x_1 = 1, x_2 = 1 x_1 = 1, x_2 = 0 x_1 = 0$

What if a deal is struck...if the tennis court is constructed then the pool MUST be constructed?

$$x_2 = x_1$$
 a co-requisite constraint

A Mixed Integer Model

■ \$250,000 available for investments providing greatest return after one year

Data:

- Condominium cost \$50,000/unit; \$9,000 profit if sold after one year
- Land cost \$12,000/ acre; \$1,500 profit if sold after one year
- Municipal bond cost \$8,000/bond; \$1,000 profit if sold after one year
- Only 4 condominiums, 15 acres of land, and 20 municipal bonds available

A Mixed Integer Model

- \$250,000 available for investments providing greatest return after one year
- Data:
 - Condominium cost \$50,000/unit; \$9,000 profit if sold after one year
 - Land cost \$12,000/ acre; \$1,500 profit if sold after one year
 - Municipal bond cost \$8,000/bond; \$1,000 profit if sold after one year
 - Only 4 condominiums, 15 acres of land, and 20 municipal bonds available

Model Decision Variables?

 $x_1 = condominiums purchased$

 x_2 = acres of land purchased

 x_3 = bonds purchased

Objective Function?

Maximize
$$Z = \$9,000x_1 + 1,500x_2 + 1,000x_3$$

Constraints?

Budget:

 $50,000x_1 + 12,000x_2 + 8,000x_3 \le 250,000$

Condo avail.:

 $x_1 \le 4$ condominiums

Acres avail.:

 $x_2 \le 15$ acres

Bonds avail.:

 $x_3 \le 20$ bonds $x_1, x_2, x_3 \ge 0$

Non-negativ.:

 x_1, x_3 integer Integer restric.:

Integer Programming Graphical Solution

■ Rounding non-integer solution values up (using standard rounding practices) to the nearest integer value can result in an infeasible solution

■ A feasible solution is ensured by always rounding down non-integer solution values - but this may result in a less-than-optimal (sub-optimal) solution

Integer Programming Example Graphical Solution: Machine Shop

Maximize $Z = \$100x_1 + \$150x_2$ subject to:

$$8,000x_1 + 4,000x_2 \le $40,000$$

 $15x_1 + 30x_2 \le 200 \text{ ft}^2$
 $x_1, x_2 \ge 0 \text{ and integer}$

Optimal Solution:

$$Z = $1,055.56$$

 $x_1 = 2.22$ presses
 $x_2 = 5.55$ lathes

Rounding down:

$$Z = $950$$

$$x_1 = 2 \text{ presses}$$

$$x_2 = 5 \text{ lathes}$$

THIS IS SUB-OPTIMAL!

Branch and Bound Method

- Traditional approach to solving integer programming problems
- Feasible solutions can be partitioned into smaller subsets
 - Smaller subsets evaluated until best solution is found
 - Method is a tedious and complex mathematical process
- Excel and QM for Windows provide this functionality in their calculations, and you can watch and SEE the iterations as they happen! WOW! ②
- See what happens when we look at the machine shop example...

Model Decision Variables?

$$x_1$$
 = number of presses

$$x_2$$
 = number of lathes

Objective Function?

Maximize
$$Z = \$100x_1 + \$150x_2$$

Constraints?

Budget: $\$8,000x_1 + \$4,000x_2 \le \$40,000$

Floor Space: $15x_1 + 30x_2 \le 200 \text{ ft}^2$

Non-neg.: $x_1, x_2 \ge 0$

Integer restr.: x_1, x_2 integer

	Solver Parameters	X
	Set Target Cell: \$B\$12	Solve Close
	\$B\$10:\$B\$11 Subject to the Constraints: \$B\$10:\$B\$11 = integer \$E\$6:\$E\$7 <= \$G\$6:\$G\$7	Options
Integer variables	<u>Change</u> <u>Delete</u>	Reset All Help

Computer Solution of IP Problems 0 – 1 Model with Excel

Model Decision Variables?

 $x_1 = construction of a swimming pool$

 x_2 = construction of a tennis center

 x_3 = construction of an athletic field

 x_4 = construction of a gymnasium

Objective Function?

Maximize
$$Z = 300x_1 + 90x_2 + 400x_3 + 150x_4$$

Constraints?

Budget: $$35,000x_1 + 10,000x_2 + 25,000x_3 + 90,000x_4 \le $120,000$

Acres: $4x_1 + 2x_2 + 7x_3 + 3x_4 \le 12$ acres

Either/or: $x_1 + x_2 \le 1$ facility

Binary: $x_1, x_2, x_3, x_4 = 0 \text{ or } 1$

Model Decision Variables?

 $x_1 = condominiums purchased$

 x_2 = acres of land purchased

 x_3 = bonds purchased

Objective Function?

Maximize $Z = \$9,000x_1 + 1,500x_2 + 1,000x_3$

Constraints?

Budget: $$50,000x_1 + 12,000x_2 + 8,000x_3 \le $250,000$

Condo avail.: $x_1 \le 4$ condominiums

Acres avail.: $x_2 \le 15$ acres

Bonds avail.: $x_3 \le 20$ bonds

Non-negativ.: $x_1, x_2, x_3 \ge 0$

Integer restric.: x_1, x_3 integer

Capital Budgeting Example

- University bookstore expansion project, undertaking one or more smaller projects.
- Not enough space available for both a computer department and a clothing department

Duainet	NPV Return	Project Costs per Year (\$1000)		
Project	(\$1,000s)	1	2	3
1. Web site	\$120	\$55	\$40	\$25
2. Warehouse	85	45	35	20
3. Clothing department	105	60	25	
4. Computer department	140	50	35	30
5. ATMs	75	30	30	
Available funds per year		150	110	60

DEVELOP THE MODEL!

Capital Budgeting Example

0 – 1 Integer Programming

Model Decision Variables?

```
x_1 = selection of web site project
```

```
x_2 = selection of warehouse project
```

 x_3 = selection clothing department project*

 x_4 = selection of computer department project*

 x_5 = selection of ATM project

 $x_i = 1$ if project "i" is selected, 0 if project "i" is not selected

Objective Function?

Maximize $Z = \$120x_1 + \$85x_2 + \$105x_3 + \$140x_4 + \$75x_5$

Constraints?

Budget year 1: $$55x_1 + 45x_2 + 60x_3 + 50x_4 + 30x_5 \le 150$

Budget year 2: $$40x_1 + 35x_2 + 25x_3 + 35x_4 + 30x_5 \le 110$

Budget year 3: $$25x_1 + 20x_2 + 30x_4 \le 60$

* depts. either/or: $x_3 + x_4 \le 1$

Binary restric.: $x_i = 0$ or 1 (which takes care of non-neg.)

0 – 1 Integer Programming Modeling Capital Budgeting Example

0 – 1 Integer Programming Modeling Capital Budgeting Example

UPS wants to construct the minimum set of new hubs in these twelve cities such that there is a hub within 300 miles of every city:

	<u>Cities</u>		Cities within	<u>300 miles</u>
4	A 1	A 1	O1 1	3 T 1 '11

- 1. Atlanta Atlanta, Charlotte, Nashville
- 2. Boston Boston, New York
- 3. Charlotte Atlanta, Charlotte, Richmond
- 4. Cincipacti Detroit In linear
- 4. Cincinnati
 5. Detroit
 6. Cincinnati
 7. Detroit
 8. Cincinnati
 8. Detroit
 8. Detroit
 9. Cincinnati
 9. Detroit
 10. Detroit
 11. Mainapolis
 12. Mashville
 13. Pittsburgh
 14. Cincinnati
 15. Detroit
 16. Detroit
 17. Mashville
 18. Pittsburgh
 18. Detroit
 18. Detroit</l
- 6. Indianapolis Cincinnati, Detroit, Indianapolis, Milwaukee, Nashville, St. Louis
- 7. Milwaukee Detroit, Indianapolis, Milwaukee
- 8. Nashville Atlanta, Cincinnati, Indianapolis, Nashville, St. Louis
- 9. New York Boston, New York, Richmond
- 10. Pittsburgh Cincinnati, Detroit, Pittsburgh, Richmond
- 11. Richmond Charlotte, New York, Pittsburgh, Richmond
- 12. St. Louis Indianapolis, Nashville, St. Louis

Think about the way this problem is stated.

There must be at least one hub within 300 miles of each city, but there's nothing that says there couldn't be two, if necessary.

The minimization function will take care of assuring the least number of hubs are built.

But the constraint operators will be ≥ 1 rather than ≤ 1

 $x_i = \text{city i}$, i = 1 to 12; $x_i = 0$ if city is not selected as a hub and $x_i = 1$ if it is

Minimize
$$Z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12}$$

subject to: Atlanta: $x_1 + x_3 + x_8 \ge 1$

Boston: $x_2 + x_9 \ge 1$

Charlotte: $x_1 + x_3 + x_{11} \ge 1$

Cincinnati: $x_4 + x_5 + x_6 + x_8 + x_{10} \ge 1$

Detroit: $x_4 + x_5 + x_6 + x_7 + x_{10} \ge 1$

Indianapolis: $x_4 + x_5 + x_6 + x_7 + x_8 + x_{12} \ge 1$

Milwaukee: $x_5 + x_6 + x_7 \ge 1$

Nashville: $x_1 + x_4 + x_6 + x_8 + x_{12} \ge 1$

New York: $x_2 + x_0 + x_{11} \ge 1$

Pittsburgh: $x_4 + x_5 + x_{10} + x_{11} \ge 1$

Richmond: $x_3 + x_9 + x_{10} + x_{11} \ge 1$

St L.: $x_6 + x_8 + x_{12} \ge 1$ $x_{ij} = 0 \text{ or } 1$

Total Integer Programming Modeling Problem Statement

- Textbook company developing two new regions
- Planning to transfer some of its 10 salespeople into new regions
- Average annual expenses for sales person:
 - Region 1 \$10,000/salesperson
 - Region 2 \$7,000/salesperson
- Total annual expense budget is \$72,000
- Sales generated each year:
 - Region 1 \$85,000/salesperson
 - Region 2 \$60,000/salesperson
- How many salespeople should be transferred into each region in order to maximize increased sales?

Develop the model!

Total Integer Programming Modeling Model Formulation

Step 1: Decision Variables:

```
x_1 = \# of salespeople to switch to Region 1
```

 $x_2 = \#$ of salespeople to switch to Region 2

Step 2: Objective Function

```
Maximize Z = $85,000x_1 + 60,000x_2 subject to:
```

 $x_1 + x_2 \le 10$ salespeople

 $10,000x_1 + 7,000x_2 \le 72,000$ expense budget

 $x_1, x_2 \ge 0$ and integer

Total Integer Programming Modeling Solution with QM for Windows

		Chapter5-	Example Solution		
	X1	X2		RHS	Equation form
Maximize	85,000	60,000			Max 85000X1 + 60000X2
Salespeople	1	1	<=	10	X1 + X2 <= 10
Expense budget (\$)	10,000	7,000	<=	72,000	10000X1 + 7000X2 <= 72000
Variable type	Integer	Integer			
Solution->	3	6	Optimal Z->	615,000	

Fixed Charge and Facility Example

Which of six farms should be purchased that will meet current production capacity at minimum total cost, including annual fixed costs and shipping costs?

Plant	Available Capacity (tons,1000s)
Α	12
В	10
С	14

Farms	Annual Fixed Costs (\$1000)	Projected Annual Harvest (tons, 1000s)
1	405	11.2
2	390	10.5
3	450	12.8
4	368	9.3
5	520	10.8
6	465	9.6

	Plant (\$/ton shipped)			
Farm	Α	В	С	
1	18	15	12	
2	13	10	17	
3	16	14	18	
4	19	15	16	
5	17	19	12	
6	14	16	12	

DEVELOP THE MODEL!

Fixed Charge and Facility Example 0 – 1 Integer Programming

Model Decision Variables?

 $y_i = 0$ if farm i is not selected, and 1 if farm i is selected; i = 1,2,3,4,5,6

 x_{ij} = potatoes (1000 tons) shipped from farm i to plant j; j = A,B,C

Objective Function?

Minimize
$$Z = 18x_{1A} + 15x_{1B} + 12x_{1C} + 13x_{2A} + 10x_{2B} + 17x_{2C} + 16x_{3A} + 14x_{3B} + 18x_{3C} + 19x_{4A} + 15x_{4B} + 16x_{4C} + 17x_{5A} + 19x_{5B} + 12x_{5C} + 14x_{6A} + 16x_{6B} + 12x_{6C} + 405y_1 + 390y_2 + 450y_3 + 368y_4 + 520y_5 + 465y_6$$

Constraints?

Harvested tons:

$$x_{1A} + x_{1B} + x_{1C} - 11.2y_1 \le 0$$

 $x_{3A} + x_{3B} + x_{3C} - 12.8y_3 \le 0$
 $x_{5A} + x_{5B} + x_{5C} - 10.8y_5 \le 0$

$$x_{2A} + x_{2B} + x_{2C} - 10.5y_2 \le 0$$

 $x_{4A} + x_{4B} + x_{4C} - 9.3y_4 \le 0$
 $x_{6A} + x_{6B} + X_{6C} - 9.6y_6 \le 0$

Available plant capacities:

$$x_{1A} + x_{2A} + x_{3A} + x_{4A} + x_{5A} + x_{6A} = 12$$

 $x_{1B} + x_{2B} + x_{3B} + x_{4B} + x_{5B} + x_{6B} = 10$
 $x_{1C} + x_{2C} + x_{3C} + x_{4C} + x_{5C} + x_{6C} = 14$

NOTICE that here you need both types of constraints – binary AND non-negativity!

Non-negativ.: $x_{ij} \ge 0$

Binary for farm selection: $y_i = 0$ or 1

0 – 1 Integer Programming Modeling Fixed Charge and Facility Example

0 – 1 Integer Programming Modeling Fixed Charge and Facility Example

