# Метод Лагранжевых релаксаций

5 января 2023 г. 1:29

Метод выбора оптимальных параметров алгоритма сжатия, т.е. когда у нас зафиксирован набор параметров, и мы их выбираем, чтобы добиться наилучшего сжатия при заданном искажении или наоборот минимизировать искажение для данного коэффициента сжатия.

Пусть имеем изображение, разделенное на неперекрывающиеся блоки, которые кодируются независимо друг от друга.

Обозначим  $r_y^{\psi_i}$  как количество бит и  $d_y^{\psi_i}$  искажение как сумму квадратов разностей для блока, когда используется вектор параметров кодирования  $\psi_i$  "пси".

Для каждого блока будет свой параметр сжатия. Определим  $oldsymbol{\psi} = \{\psi_i\}$  как множество векторов, где  $\psi_i$ означает, что при кодировании блока  $b_i$  используется вектор  $\psi_i$  .

SSE для всего изображения:

$$d(\Psi) = \sum_{i=1}^{N} d_i^{\psi_i}$$
. grabels below

Для этого надо найти такой вектор параметров сжатия, что при нем искажение будет минимальным, а сжатие наилучшим (т.е. кол-во бит как можно меньше).

(то же на слайде)--

Для достижения точки на функции скорость-искажение необходимо найти такой вектор параметров кодирования  $\Psi^* \ \in \ \{\Psi\}$ , что

$$\begin{cases} d(\Psi^*) = \min_{\Psi \in \{\Psi\}} d(\Psi) \\ r(\Psi^*) \le r_{max}, \end{cases}$$

где  $r_{max}$  — целевое значение количества бит на изображение.



## Метод Лагранжевых релаксаций

## Теорема 1

#### **Theorem**

Для любого  $\lambda \geq 0$ , вектор параметров  $\Psi_{\lambda}^* \in \{\Psi\}$ , минимизирующий

$$d(\Psi) + \lambda \cdot r(\Psi), \tag{1}$$

является решением оптимизационной задачи, если  $r_{ extit{max}} = r(\Psi_{\lambda}^*).$ 

## Доказательство.

Предположим, что утверждение не верно, и существует вектор  $\Psi \in \{\Psi\}$ , такой что  $d(\Psi) < d(\Psi_\lambda^*)$  и  $r(\Psi) \leq r(\Psi_\lambda^*)$ . Тогда  $d(\Psi) + \lambda \cdot r(\Psi) < d(\Psi_\lambda^*) + \lambda \cdot r(\Psi_\lambda^*)$ , т.е., вектор  $\Psi_\lambda^*$  не минимизирует (1), что противоречит утверждению.

Из утверждения следует, что необходимо найти такое  $\lambda$ , что  $r(\Psi_{\lambda}^*) = r_{max}$ .

## Теорема 2

## **Theorem**

 $\mathcal{L}$ опустим, что для  $\lambda_1$  и  $\lambda_2$ , векторы  $\Psi_{\lambda_1}^*$  и  $\Psi_{\lambda_2}^*$ , минимизирующие (1) найдены. Тогда, если  $r(\Psi_{\lambda_1}^*) > r(\Psi_{\lambda_2}^*)$ , то выполняется:  $\lambda_2 \geq -\frac{d(\Psi_{\lambda_1}^*) - d(\Psi_{\lambda_2}^*)}{r(\Psi_{\lambda_1}^*) - r(\Psi_{\lambda_2}^*)} \geq \lambda_1. \tag{2}$ 

$$\lambda_2 \ge -\frac{d(\Psi_{\lambda_1}^*) - d(\Psi_{\lambda_2}^*)}{r(\Psi_{\lambda_1}^*) - r(\Psi_{\lambda_2}^*)} \ge \lambda_1. \tag{2}$$

Предположим, есть  $\lambda 1$  и  $\lambda 2$ , для них найдены векторы параметров сжатия, минимизирующие выражение "искажение+ $\lambda$ \*кол-во бит" согласно 1 теореме. Тогда если кол-во бит для первого вектора больше, чем для второго, то  $\lambda 2 \geq \lambda 1$  .

Для любого  $\lambda \geq 0$  вектор параметров сжатия, минимизирующий выражение "искажение+ $\lambda$ 

максимальное кол-во бит равно кол-ву бит

Т.е. надо найти такое  $\lambda$ , что максимальное кол-во бит будет равно кол-ву бит для нашего

\*кол-во бит" является решением

для данного вектора параметров.

вектора параметров

оптимизационной задачи, если

## Доказательство.

Из предыдущего утверждения следует, что 
$$d(\Psi_{\lambda_1}^*) + \textcolor{red}{\lambda_1} \cdot r(\Psi_{\lambda_1}^*) \leq d(\Psi_{\lambda_2}^*) + \textcolor{red}{\lambda_1} \cdot r(\Psi_{\lambda_2}^*). \tag{3}$$

Из (3) и 
$$r(\Psi_{\lambda_1}^*)>r(\Psi_{\lambda_2}^*)$$
 следует, что 
$$-\frac{d(\Psi_{\lambda_1}^*)-d(\Psi_{\lambda_2}^*)}{r(\Psi_{\lambda_1}^*)-r(\Psi_{\lambda_2}^*)}\geq \lambda_1.$$

$$-rac{d(\Psi_{\lambda_1}^*)-d(\Psi_{\lambda_2}^*)}{r(\Psi_{\lambda_1}^*)-r(\Psi_{\lambda_2}^*)}\geq \lambda_1.$$

#### Доказательство.

Из первого утверждения следует, что

$$d(\Psi_{\lambda_2}^*) + \frac{\lambda_2}{\lambda_2} \cdot r(\Psi_{\lambda_2}^*) \le d(\Psi_{\lambda_1}^*) + \frac{\lambda_2}{\lambda_2} \cdot r(\Psi_{\lambda_1}^*). \tag{4}$$

Из (4) и  $r(\Psi_{\lambda_1}^*) > r(\Psi_{\lambda_2}^*)$  следует, что

$$\lambda_2 \ge -\frac{d(\Psi_{\lambda_1}^*) - d(\Psi_{\lambda_2}^*)}{r(\Psi_{\lambda_1}^*) - r(\Psi_{\lambda_2}^*)}.$$
 (5)

Функция, описывающая сжатие (кол-во бит для вектора параметров сжатия), является неубывающей от аргумента  $\lambda$ .

Еще надо ответить на вопрос, как искать кол-во бит и из ажение для вектора параметров. Нужно найти минимум выражения "искажение+ $\lambda$ \*кол-во бит" для заданного вектора. С учетом того, что все блоки водируются независимо, справедливо следующее равенство:

$$\min_{\Psi}\{d(\Psi)+\lambda\cdot r(\Psi)\}=\min_{\Psi}\sum_{i=1}^{N}(r_i^{\psi_i}+\lambda d_i^{\psi_i})=\sum_{i=1}^{N}\min_{\psi_i}(r_i^{\psi_i}+\lambda d_i^{\psi_i}).$$

Поэтому, для поиска множества векторов параметров  $\mathbb{W}=\{\{d_i\}\}$  установно минимизировать  $r_i^{\psi_i}+\lambda d_i^{\psi_i}$  для каждого блока независимо.Поэтому

$$\psi_i = \arg\min_{k} \{r_i^k + \lambda d_i^k\}.$$

 $\lambda$  знаем (это какая-то константа), надо найти подходящий квантователь, который минимизирует. Т.е. вычислить шаг квантования,  $\psi_i$  им и будет.

Т.е. для каждого квантователя пробегаем зигзагом, Хаффманом и получаем г, выполняем обратное квантование и считаем d для каждого, сравнивая с оригиналом



С учетом того, что  $r(\Psi_{\lambda}^*)$  – невозрастающая функция, для поиска  $\lambda_{opt}$  может использоваться метод деления отрезака пополам.

### Метод Лагранжевых релаксаций

Шаг 1. Найти  $\lambda_1$  и  $\lambda_2$ , так что неравенства  $r(\Psi_{\lambda_1}^*) \leq r_{max} \leq r(\Psi_{\lambda_2}^*)$  заведомо выполняются.  $\Psi^* \leftarrow \Psi_{\lambda_1}^*$ ,  $n \leftarrow 0$ .

Шаг 2.

$$\lambda\leftarrow rac{\lambda_1+\lambda_2}{2}$$
. Вычислить  $r(\Psi^*_\lambda)$ .  
Если  $r(\Psi^*_\lambda)\leq r_{max}$  и  $r(\Psi^*_\lambda)>r(\Psi^*)$ , тогда  $\Psi^*\leftarrow \Psi^*_\lambda$ .  $n\leftarrow n+1$ .

Шаг 3.

Если 
$$|\lambda_1-\lambda_2|>arepsilon$$
 и  $n\leq n_{max}$ , тогда если  $r(\Psi^*_\lambda)\leq r_{max}$ , тогда  $\lambda_1\leftarrow\lambda$ , иначе  $\lambda_2\leftarrow\lambda$ ,

 $\dot{\mathsf{U}}$ начае, множество векторов параметров  $\Psi^*$  найдено.