

University of Stuttgart

Cluster of Excellence in Data-integrated Simulation Science

Doctoral Advisor: Prof. Dr. Christian Holm Institute for Computational Physics

Low-rank approximations of unitary simulators for stochastic processes

Daniel Fink

Stochastic Processes

We consider bi-infinite stationary discrete-time stochastic processes with

- ullet a sequence of random variables $X_t \in \mathbb{N}$ with $t \in \mathbb{Z}$
- the past defined as $X := \dots, X_{-2}, X_{-1}$
- the *future* defined as $\overrightarrow{X} := X_0, X_1, \dots$
- a governing joint probability distribution P(X, X)
- a conditional distribution $P(\overline{X}|\overline{X})$, given a specific past instance \overline{X}

Example Process

Graphical representation of the *quasi cycle process* with memory states s_i , emissions, and transition probabilities x|P(x).

Classical Models

The provably optimal classical models are ϵ -machines, which are based on the equivalence relation

$$\overleftarrow{X} \sim \overleftarrow{X}' \iff P(\overrightarrow{X}|\overleftarrow{X}) = P(\overrightarrow{X}|\overleftarrow{X}').$$
 (1)

For each class, one *memory state* $\mathcal{E}(\overleftarrow{x}) = s_i$ is allocated. The model initializes to a state defined by the input \overleftarrow{x} and outputs a single time step once at a time:

Quantum Models

The quantum analog is called *q*-simulator and operates onto quantum memory states $|s_i\rangle$ as

$$|1_i\rangle := U|s_i\rangle|0\rangle = \sum_{x} \sqrt{P(x|s_i)}|s_{\lambda(i,x)}\rangle|x\rangle,$$
 (2)

where $\lambda(i, x)$ denotes the index to the next state. A measurement operation onto the second register of $|1_i\rangle$ thus outputs x with probability $P(x|s_i)$:

Low-rank Approximations

We aim for approximate models $(\widehat{P} \approx P)$ and start with the following

Theorem [1]: Given a stochastic process with P, λ , and $\{s_i\}_{i=1}^n$. A q-simulator exists iff

$$\langle s_i | s_j \rangle = \langle 1_i | 1_j \rangle \quad \forall i, j = 1, 2, \dots, n.$$
 (3)

 \rightarrow The main idea of this work is to perform a low-rank approximation of the overlap matrix $C_{i,j} = \langle 1_i | 1_j \rangle$ and derive the quantum states $|s_i\rangle$ and unitary simulator U from it.

Sketch of the algorithm

- **1** Construct the overlap matrix $C \leftarrow P, \lambda, \{s_i\}_{i=1}^n$
- **2** Perform a SVD of $C = V\Sigma W^{\dagger} = V\Sigma V^{\dagger} = V\sqrt{\Sigma}\sqrt{\Sigma}V^{\dagger}$
- **3** Shrink to a low-rank approximation $C \to C^{(d)} = V \sqrt{\Sigma^{(d)}} \sqrt{\Sigma^{(d)}} V^{\dagger}$
- **4** Identify the quantum states $|\widehat{s}_i\rangle$ as columns of $\widehat{S} = \sqrt{\Sigma^{(d)}} V^{\dagger}$
- **6** Construct the approximate one-step matrix \hat{F} with columns $\hat{F}_i = |\hat{1}_i\rangle$
- 6 Approximate the unitary simulator as

$$\underset{\widehat{U}}{\operatorname{arg\,min}} ||\widehat{U}\widehat{S} \odot |0\rangle - \widehat{F}||_F^2 \quad \text{s.t.} \quad \widehat{U}^{\dagger}\widehat{U} = I \quad (4)$$

Interpretation: The approximate states $|\hat{s}_i\rangle$ are the quantum states to a slightly different stochastic process \hat{P} simulated by \hat{U} following (2).

Results

→ Via comparison with the best classical models [2], these approximate quantum models are superior with respect to the KL divergence

$$D(P,\widehat{P}) = \sum_{\overleftarrow{x},\overrightarrow{x}} P(\overleftarrow{x}) P(\overrightarrow{x}|\overleftarrow{x}) \log_2 \frac{P(\overrightarrow{x}|\overleftarrow{x})}{\widehat{P}(\overrightarrow{x}|\overleftarrow{x})}. \tag{5}$$

Future Directions

- Derive upper bounds onto the KL divergence
- Include complex phases for the overlap matrix *C*
- Derive QML ansätze to learn approximations based only on data

References

[1] Felix C. Binder, Jayne Thompson, and Mile Gu.

Practical unitary simulator for non-markovian complex processes. *Phys. Rev. Lett.*, 120:240502, Jun 2018.

[2] Chengran Yang, Andrew J. P. Garner, Feiyang Liu, Nora Tischler, Jayne Thompson, Man-Hong Yung, Mile Gu, and Oscar Dahlsten. Provably superior accuracy in quantum stochastic modeling. *Phys. Rev. A*, 108:022411, Aug 2023.

