

Prof. Dra. Leiliane Pereira de Rezende Departamento de Ciência da Computação Universidade Federal de Uberlândia leily_rezende@yahoo.com.br

Sumário

- Introdução
- Máquinas multinível
- Evolução da arquitetura dos computadores
 - Modelo de Von Neumann
- Zoológico dos computadores

- Arquitetura
 - Comportamento funcional de um sistema computacional segundo o programador.
 - Exemplos:
 - Tipos de operações implementadas (adição, subtração e chamadas de rotinas);
 - Números de bits usados para representar diversos tipos de dados;
 - Mecanismos de E/S e técnicas para endereçamento de memória.
- Organização
 - Relacionamentos estruturais que não são vistos pelo programador.
 - Exemplos:
 - Sinais de controle;
 - Frequência de clock;
 - Interfaces com dispositivos periféricos;
 - Tecnologia usada na memória.

- Computador
 - Uma máquina que pode resolver problemas para as pessoas, executando instruções que lhe são dadas.
- Programa
 - Sequência de instruções descrevendo como realizar determinada tarefa
- Circuitos eletrônicos
 - Podem reconhecer e executar diretamente um conjunto limitado de instruções simples
- Instruções simples
 - Todos os programas são convertidos nelas antes que possam ser executados.
 - Raramente são mais complicadas do que:
 - Some dois números.
 - Verifique se um número é zero.
 - Copie dados de uma parte da memória do computador para outra.

- Linguagem de máquina
 - Linguagem L0
 - Formada por um conjunto de instruções primitivas de um computador
 - O computador só executada programas escritos em sua linguagem de máquina
 - Problema:
 - Sua utilização direta pelas pessoas é difícil e tediosa;
 - Decidir quais instruções incluir em sua linguagem de máquina.
 - Solução
 - Linguagem L1
 - Um novo conjunto de instruções mais conveniente para as pessoas usarem do que o conjunto embutido de instruções de máquina.

Método de execução de um programa escrito em L1

Tradução

- Primeiramente substitui cada instrução do programa por uma sequência equivalente de instruções em LO.
- Posteriormente, o programa resultante consiste totalmente em instruções LO.
- Por fim, o computador executa o novo programa LO em vez do antigo programa L1.

Interpretação

- Um programa em LO considera os programas em L1 como dados de entrada e os executa
 - cada instrução é examinanda e executada diretamente considerando a sequência equivalente de instruções LO.
- O programa que interpreta é chamado de interpretador.

em

Programa fonte FONTE FONTE FONTE FONTE FONTE tradutor 0001001110 1101001100 0100111010 0001100101 1101010001 1000111011 Programa objeto

Tradução × interpretação

- Semelhança
 - O computador executa instruções em L1 executando sequências de instruções equivalentes em LO.
- Diferença
 - Tradução
 - O programa L1 inteiro é convertido para um LO, posteriormente desconsiderado e somente o LO é carregado na memória do computador e executado;
 - O programa LO recém-gerado está no controle do computador.
 - Interpretação:
 - Cada instrução L1 é examinada, decodificada e executada de imediato.
 - Nenhum programa traduzido é gerado.
 - O interpretador está no controle do computador.

- LO e L1 não deverão ser "muito" diferentes para tomar prática a tradução ou a interpretação
 - <u>Problema</u>: L1, embora melhor que LO, ainda estará longe do ideal para a maioria das aplicações.
 - Solução: linguagem L2
 - Outro conjunto de instruções que seja mais orientado a pessoas e menos orientado a máquinas que a L1.
- A invenção de toda uma série de linguagens, cada uma mais conveniente que suas antecessoras, pode prosseguir indefinidamente, até que, por fim, se chegue a uma adequada.
 - Cada linguagem usa sua antecessora como base
 - Um computador que use essa técnica pode ser considerado como uma série de camadas ou níveis, um sobre o outro.

- Cada máquina tem uma linguagem de máquina, consistindo em todas as instruções que esta pode executar.
- Apenas programas escritos na linguagem LO podem ser executados diretamente pelos circuitos eletrônicos, sem a necessidade de uma tradução ou interpretação intervenientes.
- Os programas escritos em Ll, L2, ..., Ln devem ser interpretados por um interpretador rodando em um nível mais baixo ou traduzidos para outra linguagem correspondente a um nível mais baixo.

Nível 6	Usuário		
		Programas Aplicativos	•
Nível 5	Linguagens de Alto Nível		
		Tradução (compilador)	
Nível 4	Linguagem de Montagem/Código de Máquina		
		Tradução (montador)	
Nível 3	Máquina do Sistema Operacional		
		Interpretação parcial (sistema o _l	peracional)
Nível 2	Arquitetura do Conjunto de instrução		
		Interpretação (microprograma) o	u execução direta
Nível 1	Microarquitetura		
		Hardware (portas lógicas)	•
Nível 0	Lógico Digital		
		Transistores e Fios	
Nível -1	Dispositivo		1.1

Nível (-1) – Dispositivo

- Composto por componentes elétricos
 - Transistores e Fios.
- Nesse nível, o funcionamento do computador é perdido em detalhes de:
 - Voltagem;
 - Corrente;
 - Atrasos de propagação de sinais;
 - Efeitos quânticos; e
 - Outros assuntos de baixo nível.

Nível 0 – Lógico Digital

Portas Lógicas

- Implementam o nível mais baixo de operações lógicas das quais o funcionamento do computador depende;
- Compostas de no máximo alguns transistores;
- Cada porta tem uma ou mais entradas digitais e calcula como saída alguma função simples dessas entradas

Nível 1 – Microarquitetura

- Unidades funcionais construídas por portas lógicas
 - Registradores;
 - ULA Unidade Lógica e Aritmética
 - Memória interna.
- Os registradores estão conectados à ULA para formar um caminho de dados, sobre o qual estes fluem.
 - Operação básica do caminho de dados: seleciona um ou dois registradores, de modo que a ULA opere sobre eles, além de armazenar o resultado de volta para algum registrador.
- A operação do caminho de dados é controlada:
 - Por um programa chamado micro programa (firmware);
 - Ou diretamente pelo hardware.

Nível 2 – Arquitetura do Conjunto de instrução

- Também chamado nível ISA (Instruction Set Architecture)
- Descreve as instruções executadas de modo interpretativo pelo micro programa ou circuitos de execução do hardware.

Nível 3 – Máquina do Sistema Operacional

- As novas facilidades acrescentadas no nível 3 são executadas por um interpretador rodando no nível 2
 - Sistema operacional.
- A maior parte das instruções em sua linguagem também está no nível ISA.
 - Algumas das instruções de nível 3 são interpretadas pelo sistema operacional e algumas o são diretamente pelo microprograma

Nível 4 – Linguagem de Montagem/Código de Máquina

- Montador
 - Traduz o programa para linguagem de máquina de nível 1, 2 ou 3 para, em seguida, ser interpretado pela máquina virtual ou real adequada.
- Linguagem de máquina
 - Corresponde à zeros e uns
 - Olham "para baixo" na hierarquia.
 - Atendem as necessidades dos aspectos de baixo nível do projeto de máquina.
 - Tratam com questões de hardware relacionadas com registradores e a transferência de dados entre eles.
- A coleção de instruções de linguagem de máquina define o conjunto de instruções de máquina.

```
// I 15;
MOV R3, #15
STR R3, [R11, #-8]
//J * 25;
MOV R3, #25
STR R3, [R11, #-12]
// I*I*J:
LDR R2, [R11, #-8]
LDR R3, [R11, #-12]
ADD R3, R2, R3
STR R3, [R11, #-8]
```

Nível 5 – Linguagens de Alto Nível

- Programador
 - Usa a linguagem sem preocupar com os detalhes de baixo nível da máquina.
 - Utiliza os tipos de dados e instruções da linguagem de alto nível sem saber como os mesmos são implementados na máquina
- Compilador
 - Em geral, traduz os programas escritos nessas linguagens para o nível 3 ou 4
 - Mapeia os tipos de dados e instruções da linguagem de alto nível para o hardware do computador

Nível 6 – Usuário

- O usuário interage com o computador executando programas
 - Editores de texto
 - Planilhas
 - Jogos
 - etc ...
- O computador é visto através de programas que rodam nele
 - Muito pouco (ou nada) da sua estrutura interna (ou de mais baixo nível) é visível.

Interação entre os níveis

- Níveis 1, 2 e 3:
 - As linguagens de máquina são numéricas.
 - Os programas consistem em uma longa série de números, muito boa para máquinas, mas ruim para as pessoas.
 - Voltados principalmente para a execução dos interpretadores e tradutores
 - Necessários para dar suporte aos níveis mais altos.
 - Escritos pelos programadores de sistemas
 - o Profissionais que se especializam no projeto e execução de novas máquinas virtuais.
- Programas escritos em uma verdadeira linguagem de máquina (nível 1) de um computador podem ser executados diretamente pelos circuitos eletrônicos (nível 0) do computador
 - Sem qualquer interpretador ou tradutor interveniente.

Interação entre os níveis

- Níveis 4 e acima
 - As linguagens contêm palavras e abreviações.
 - Voltados para o programador de aplicações (solucionar um problema)
- Computadores são projetados como uma série de níveis, cada um construído sobre seus antecessores.
 - Cada nível representa uma abstração distinta na qual estão presentes diferentes objetos e operações.

- Hardware do computador
 - Circuitos eletrônicos junto com a memória e dispositivos de entrada/saída
 - Consiste em objetos tangíveis
 - Circuitos integrados, placas de circuito impresso, cabos, fontes de alimentação, memórias e impressoras
- Software
 - Ideias abstratas: algoritmos (instruções detalhadas que dizem como fazer algo) e suas representações no computador isto é, programas.
 - A essência é o conjunto de instruções que compõe os programas, e não o meio físico no qual estão gravados.
- Hardware e software são logicamente equivalentes.

A invenção da micro programação

- Os primeiros computadores digitais, na década de 1940, tinham apenas dois níveis:
 - o nível ISA, no qual era feita toda a programação, e
 - o nível lógico digital, que executava esses programas.
- Em torno de 1970, a ideia de interpretar o nível ISA por um micro programa, em vez de diretamente por meios eletrônicos, era dominante.

A invenção do sistema operacional

- Por volta de 1960, as pessoas tentaram reduzir o desperdício de tempo automatizando o trabalho do operador.
- Um programa era mantido no computador o tempo todo.
 - Sistema operacional
- O programador produzia certos cartões de controle junto com o programa, que eram lidos e executados pelo sistema operacional.

Migração de funcionalidade para microcódigo

- Assim que os projetistas de máquinas perceberam como era fácil acrescentar novas instruções, começaram a procurar outras características para adicionar aos seus micro programas.
- Alguns exemplos desses acréscimos são:
 - Instruções para multiplicação e divisão de inteiros.
 - Instruções aritméticas para ponto flutuante.
 - Instruções para chamar e sair de procedimentos.
 - Instruções para acelerar laços (looping).
 - Instruções para manipular cadeias de caracteres
 - Características para acelerar cálculos que envolvessem vetores (indexação e endereçamento indireto).
 - Características para permitir que os programas fossem movidos na memória após
 o início da execução (facilidades de relocação).

Migração de funcionalidade para microcódigo

- Alguns exemplos desses acréscimos são:
 - Características para acelerar cálculos que envolvessem vetores (indexação e endereçamento indireto).
 - Características para permitir que os programas fossem movidos na memória após o início da execução (facilidades de relocação).
 - Sistemas de interrupção que avisavam o computador tão logo uma operação de entrada ou saída estivesse concluída.
 - Capacidade para suspender um programa e iniciar outro com um pequeno número de instruções.
 - Instruções especiais para processar arquivos de áudio, imagem e multimídia.
- Por fim, alguns pesquisadores perceberam que, eliminando o microprograma, as máquinas podiam ficar mais rápidas.

Eliminação da micro programação

- Máquinas mais rápidas
 - Redução drástica no conjunto de instruções
 - As restantes executadas diretamente
 - Controle do caminho de dados por hardware.
- Obs.: o projeto de computadores fechou um círculo completo, voltando ao modo como era antes que Wilkes inventasse a micro programação.
- Processadores modernos ainda contam com a micro programação
 - Traduzem instruções complexas em microcódigo interno, que pode ser executado diretamente no hardware preparado para isso.

Primeiras Máquinas de cálculos (500 a.c. - 1880)

Ábaco (Século V a.C.)

- Primeira máquina que ajudava o homem a calcular;
- Estima-se que surgiu no oriente médio;
- Muito utilizado até o século XVII e ainda é usado em alguns países orientais.

Primeiras Máquinas de cálculos (500 a.c. - 1880)

Régua de Cálculo (1621)

- Desenvolvida pelo matemático inglês William Oughtred
- Instrumento analógico de cálculo, baseado no uso de escalas logarítmicas em réguas, normalmente duas fixas e uma que desliza.
- Inicialmente usada para multiplicar e dividir, mais tarde foram inventadas réguas para exponenciação, cálculo de logaritmos, extração de raízes e operações trigonométricas.

Primeiras Máquinas de cálculos (500 a.c. - 1642)

"relógio de cálculo" (1623)

- Construída por Wilhelm Schikard;
- Primeira máquina de calcular mecânica;
- Somava e subtraía números de até 6 dígitos;
- Utilizava um sistema baseado em rodas dentadas.

Geração Zero - computadores mecânicos (1642-1945)

"Pascalina" (1642 a 1647)

- Máquina de calcular operacional construída pelo cientista francês Blaise Pascal.
- Inteiramente mecânica, usava engrenagens e funcionava com uma manivela operada à mão.
- Somava e subtraia números de até 8 dígitos;
- Funcionamento semelhante ao odômetro de um carro.

Geração Zero - computadores mecânicos (1642-1945)

Modificação da Pascalina (1671)

- modificada pelo matemático alemão Gottfried Von Leibnitz;
- equivalente a uma calculadora de bolso de quatro operações
 - multiplicação e divisão baseadas na repetição dos processos de soma e subtração.

Arithmometer (1820)

- Charles Thomas de Comar aperfeiçoa a máquina de Leibnitz;
- primeira máquina de calcular com sucesso comercial.

Geração Zero - computadores mecânicos (1642-1945)

Cartões perfurados (1801)

- Joseph Marie Jacquard (matemático francês) introduz o conceito de armazenamento de informações em placas perfuradas
 - Utilizadas em máquinas de tear.
- Cartões perfurados são um dispositivo de entrada de dados, que mais tarde foram usados em computadores
 - A capacidade de se mudar o padrão do tecido através de um código nos cartões faz esses teares serem considerados máquinas programáveis.

Geração Zero - computadores mecânicos (1642-1945)

Máquina diferencial

- Construída por Charles Babbage com o auxílio do governo;
- Executa um único algoritmo: o método de diferenças finitas que usava polinômios
 - Calcular tabelas de números úteis para a navegação marítima
- Método de saída
 - Perfurava os resultados sobre uma chapa de gravação de cobre com uma punção de aço
- Não funcionou de forma satisfatória por causa de problemas nas engrenagens;
 - Em 1991, ela foi reconstruída e funcionou perfeitamente.

Geração Zero - computadores mecânicos (1642-1945)

- Máquina Analítica (1833)
 - Construída por Charles Babbage
 - Primeiro projeto de um computador de propósito geral
 - Continha quatro componentes:
 - Armazenagem (memória)
 - Moinho (unidade de cálculo)
 - Seção de entrada (leitora de cartões perfurados)
 - Seção de saída (saída perfurada e impressa)
 - Nunca ficou pronta
 - tecnologia da época tornou o projeto caro e trabalhoso.
 - Ada Lovelace escreveu programas para essa máquina

Geração Zero - computadores mecânicos (1642-1945)

Máquina de tabulação (1880)

- Construída por Hermann Hollerith (matemático especializado em estatística).
- Um método de contagem automática baseada nas ideias de Babbage e Jacquard
- Utilizada no censo norte-americano de 1890;
- Cartões perfurados foram usados como entrada e, os valores dos cartões foram contados através de um sistema de relays mecânicos;
 - reduziu em um terço o tempo necessário para contagem do censo americano.
- Em 1896, Hermann Hollerith funda a Tabulating Machine Company (TMC)
 - 1911 associou-se a outras companhias.
 - 1914, Thomas Watson assume a direção da TMC
 - 1924 a TMC passa a chamar-se IBM.

Geração Zero - computadores mecânicos (1642-1945)

- <u>1935</u> 1^a calculadora eletrônica
 - Desenvolvida pelo alemão Konrad Zuse
 - Usava relés eletromagnéticos
- 1936 Máquina de Turing
 - Ou teoria da máquina universal
 - Desenvolvida por Alan Mathison Turing
 - Matemático inglês
 - Resolve qualquer cálculo arbitrário desde que carregada com um programa pertinente.

Geração Zero - computadores mecânicos (1642-1945)

Máquina de Atanasoff (1939)

- John Atanasoff e George Stibbitz.
- Usava aritmética binária
- Memória composta de capacitores recarregados periodicamente para impedir fuga de carga
 - Os chips modernos de memória dinâmica (DRAM) funcionam desse mesmo modo.
- Nunca se tornou operacional de fato.
 - Derrotada pela tecnologia de hardware inadequada que existia em seu tempo

Geração Zero - computadores mecânicos (1642-1945)

- Howard Aiken
 - Construiu com relês o computador de uso geral de Babbage.
 - Importância de fazer cálculos à máquina.
 - Mark I (1944)
 - Primeira máquina de Aiken concluída em Harvard.
 - A entrada e a saída usavam fita de papel perfurada.
 - Mark II
 - Os computadores de relês já eram obsoletos.
 - A era eletrônica tinha começado.
- 1941 primeiro computador eletromecânico (Z3) construído por Konrad Zuze
 - marca o que chamamos de Geração Zero dos computadores.

Primeira Geração -Válvulas (1945-1955)

COLOSSUS (1943)

- Computador eletrônico criado pelo governo britânico
- Alan Turing ajudou a projetar.
- Primeiro computador digital eletrônico do mundo
- Decodificava mensagens submarinas de guerra
- Todos os aspectos do projeto foi guardado como segredo militar durante 30 anos
 - A linha COLOSSUS foi um beco sem saída.

Primeira Geração -Válvulas (1945-1955)

ENIAC - (1943)

- Electronic Numerical Integrator And Computer
 - Integrador e Computador Numérico Eletrônico
- Mauchley e J. Presper Eckert
- 18 mil válvulas e 1.500 relés
- 30 toneladas e consumo de 140 kw de energia
- 20 registradores
- Programado com o ajuste de até 6 mil interruptores multiposição e com a conexão de uma imensa quantidade de soquetes com uma verdadeira floresta de cabos de interligação.

Primeira Geração -Válvulas (1945-1955)

- EDSAC (1949) :: Universidade de Cambridge por Maurice Wilkes.
- JOHNNIAC (1954) :: Rand Corporation;
- ILLIAC :: Universidade de Illinois;
- MANIAC (1952) :: Los Alamos Laboratory;
- WEIZAC :: Weizmann Institute em Israel.
- EDVAC :: Universidade da Pensilvânia iniciado por Eckert e Mauchley
- IAS :: Institute of Advanced Studies de Princeton
 - Versão do EDVAC proposto por John von Neumann com colaboração de Herman Goldstine

Primeira Geração -Válvulas (1945-1955)

- Observações dos computadores por John von Neumann
 - Programação era uma tarefa lenta, tediosa e inflexível.
 - Possibilidade de representar o programa em forma digital na memória do computador junto com os dados.
 - Possibilidade de substituir a aritmética decimal pela aritmética binária paralela.
 - Atanasoff tinha percebido anos antes.
- Modelo de von Neumann Usado no EDSAC
 - Representação binária
 - Programa armazenado
 - Armazenamento tanto do programa quanto dos dados a serem processados na memória do computador
 - Possibilitou o desenvolvimento de compiladores e sistemas operacionais.
 - Base de quase todos os computadores digitais.

Primeira Geração -Válvulas (1945-1955)

Modelo de von Neumann

Segunda Geração – Transistores (1955-1965)

- Invenção do transistor por John Bardeen, Walter Brattain e William Shockley no Bell Labs em 1948.
- TX-0 (Transistorized eXperimental Computer 0)
 - Primeiro computador transistorizado construído no Lincoln Laboratory do MIT
 - Uma máquina de 16 bits projetada para controle em tempo real.
- IBM 7090 e o 7094
 - O computador mais rápido do mundo na época e custava milhões.
 - Dominaram a computação científica durante anos na década de 1960.
 - Marcaram o final das máquinas do tipo ENIAC.

Segunda Geração - Transistores (1955-1965)

- DEC PDP-1
 - Metade do desempenho do IBM 7090.
 - Plotava pontos em qualquer lugar de sua tela de 512 por 512
 - Spacewar → primeiro videogame
 - Vendeu dezenas de PDP-ls custando 120 mil dólares
 - Nascia a indústria de minicomputadores

Segunda Geração – Transistores (1955-1965)

- DEC PDP-8
 - Uma máquina de 12 bits de 16 mil dólares
 - Inovação: um barramento único, o omnibus
 - Adotada por quase todos os computadores de pequeno porte.
 - o Ruptura da arquitetura da máquina LAS, centrada na memória
 - Consolidou a DEC como a líder no negócio de minicomputadores.

Segunda Geração – Transistores (1955-1965)

- Aparecimento de linguagens de programação de nível superior ao das linguagens Assembly da época
- Criação da tabela ASCII (American Standard Code for Information Interchange).
- Aparecimento de unidades aritméticas e lógicas mais complexas, assim como unidade de controle.

53

Terceira Geração - Circuitos Integrados (1965-1980)

- Jack Kilby e Robert Noyce inventaram o circuito integrado de silício
 - Um modo de acomodar os componentes eletrônicos
 - Transistores, capacitores, resistores
 - Formar múltiplos transistores em um único elemento de silício
- Dezenas de transistores foram colocados em um único chip
 - Permitiu a construção de computadores menores, mais rápidos e mais baratos

Terceira Geração - Circuitos Integrados (1965-1980)

IBM - Linha System/360

- Baseada em circuitos integrados
- Projetada para computação científica e comercial
- Memória principal orientada a byte
- Aumento no espaço de endereçamento
 - 16 bits e posteriormente 32 bits
- Multiprogramação
 - Vários programas na memória ao mesmo tempo
- Emulava (simulava) outros computadores.
 - Antigos programas binários eram executados sem modificação
- Mesma linguagem de montagem mas tamanho e capacidade crescentes

Quarta Geração - Integração em Escala muito Grande (1980—?)

- Milhões de transistores em um único chip
- Início a era do computador pessoal
 - O usuário tinha que escrever o software;
 - Gary Kildall escreveu o sistema operacional CP/M.
- · Início da indústria dos computadores pessoais.
 - Steve Jobs e Steve Wozniak projetaram os computadores pessoal Apple e, mais tarde, o Apple II.
 - Em 1981, A IBM construiu o IBM Personal Computer com componentes encontrados na praça.
 - Equipada com o sistema operacional MS-DOS
 - Os planos completos do projeto da máquina foram publicados em um livro.

Quarta Geração - Integração em Escala muito Grande (1980—?)

- Surgimento da interface gráfica por meio do Macintosh da Apple
 - GUI Graphical User Interface
- Lançamento do primeiro computadores portátil.
 - Osbome-1 com 11 quilos
- Desenvolvimento do sistema operacional Windows que rodava sobre o MS-DOS
- A Intel e a ainda Microsoft destronaram a IBM
- Substituição das arquiteturas CISC pela RISC
- Em 1992 a DEC surgiu com o Alpha de 64 bits
- Em 2001, a IBM introduziu a arquitetura dual core POWER4

Quinta Geração - Computadores de Baixa Potência e Invisíveis

- Telas sensíveis ao toque e reconhecimento de escrita
- PDAs (Personal Digital Assistants assistentes digitais pessoais)
 - A interface de escrita do PDA foi aperfeiçoada por Jeff Hawkins
- Dos PDAs, surgiram os smartphones
 - PDA mais telefone, jogos e e-mail
 - Plataformas Apple iPhone e Google Android
- Computadores "invisíveis"
 - Hardware e software costumam ser projetados em conjunto
- Resumo da geração
 - Mudança de paradigma em vez de uma nova arquitetura específica.

Ano	Nome	Construído por	Comentários	
1834	Máquina analítica	Babbage	Primeira tentativa de construir um computador digital	
1936	Z1	Zuse	Primeira máquina de calcular com relés	
1943	COLOSSUS	Governo britânico	Primeiro computador eletrônico	
1944	Mark I	Aiken	Primeiro computador norte-americano de uso geral	
1946	ENIAC	Eckert/Mauchley	A história moderna dos computadores começa aqui	
1949	EDSAC	Wilkes	Primeiro computador com programa armazenado	
1951	Whirlwind I	MIT	Primeiro computador de tempo real	
1952	IAS	von Neumann	A maioria das máquinas atuais usa esse projeto	
1960	PDP-1	DEC	Primeiro minicomputador (50 vendidos)	
1961	1401	IBM	Máquina para pequenos negócios, com enorme popularidade	
1962	7094	IBM	Dominou computação científica no início da década de 1960	

Ano	Nome	Construído por	Comentários	
1963	B5000	Burroughs	Primeira máquina projetada para uma linguagem de alto nível	
1964	360	IBM	Primeira linha de produto projetada como uma família	
1964	6600	CDC	Primeiro supercomputador científico	
1965	PDP-8	DEC	Primeiro minicomputador de mercado de massa (50 mil vendidos)	
1970	PDP-11	DEC	Dominou os minicomputadores na década de 1970	
1974	8080	Intel	Primeiro computador de uso geral de 8 bits em um chip	
1974	CRAY-1	Cray	Primeiro supercomputador vetorial	
1978	VAX	DEC	Primeiro superminicomputador de 32 bits	
1981	IBM PC	IBM	Deu início à era moderna do computador pessoal	
1981	Osborne-1	Osborne	Primeiro computador portátil	
1983	Lisa	Apple	Primeiro computador pessoal com uma GUI	

Ano	Nome	Construído por	Comentários	
1985	386	Intel	Primeiro ancestral de 32 bits da linha Pentium	
1985	MIPS	MIPS	Primeira máquina comercial RISC	
1985	XC2064	Xilinx	Primeiro FPGA (Field-Programmable Gate Array)	
1987	SPARC	Sun	Primeira estação de trabalho RISC baseada em SPARC	
1989	GridPad	Grid Systems	Primeiro computador tablet comercial	
1990	RS6000	IBM	Primeira máquina superescalar	
1992	Alpha	DEC	Primeiro computador pessoal de 64 bits	
1992	Simon	IBM	Primeiro smartphone	
1993	Newton	Apple	Primeiro computador palmtop (PDA)	
2001	POWER4	IBM	Primeiro multiprocessador com chip dual core	

Lei de Moore

• Prevê aumento anual de 50% no número de transistores que podem ser colocados em um chip.

• Tipos de computador disponíveis atualmente.

Tipo	Preço (US\$)	Exemplo de aplicação
Computador descartável	0,5	Cartões de felicitação
Microcontrolador	5	Relógios, carros, eletrodomésticos
Computador móvel e de jogos	50	Videogames domésticos e smartphones
Computador pessoal	500	Computador de desktop ou notebook
Servidor	5K	Servidor de rede
Mainframe	5M	Processamento de dados em bloco em um banco

Computadores descartáveis

- Cartão de congratulações
- Chips RFID
 - Vantagens e desvantagens.

Computadores embutidos

- Às vezes denominados micro controladores;
- Gerenciam os dispositivos e manipulam a interface de usuário;
- Encontrados em grande variedade de aparelhos diferentes, exemplos:
 - Eletrodomésticos.
 - Aparelhos de comunicação.
 - Periféricos de computadores.
 - Equipamentos de entretenimento.
 - Aparelhos de reprodução de imagens.
 - Equipamentos médicos.
 - Sistemas de armamentos militares.
 - Dispositivos de vendas.
 - Brinquedos.

Micro controladores

- O custo varia dependendo de quantos bits eles têm;
- Funcionam em tempo real
- muitas vezes têm limitações físicas relativas a
 - Tamanho
 - Peso
 - consumo de bateria
 - outras limitações elétricas e mecânicas
- Computadores móveis e de jogos

Computadores de jogos

- Recursos gráficos especiais
- Software limitado e pouca capacidade de extensão
- Sistemas fechados
- Iniciaram como CPUs de baixo valor
- Hoje, ultrapassam o desempenho dos computadores pessoais em certas dimensões

Computadores móveis

- Utilizam o mínimo de energia possível para realizar suas tarefas.
- Espera capacidades de alto desempenho
 - Gráficos 3D
 - Processamento de multimídia de alta definição
 - Jogos.

Computadores pessoais

- Abrange os modelos de desktop e notebook.
- A placa de circuito impresso está no coração de cada computador pessoal.
- Nos tablet o disco rígido giratório é substituído por um disco em estado sólido

Servidores

- Um único processador com múltiplos processadores;
- Têm gigabytes de memória;
- Centenas de gigabytes de espaço de disco rígido;
- Capacidade para trabalho em rede de alta velocidade.
- Podem manipular milhares de transações por segundo;
- Executam os mesmos sistemas operacionais que os computadores pessoais.

<u>Clusters</u>

- Sistemas padrão do tipo servidor
- Conectados por redes de gigabits/s.
- Permite a todas as máquinas trabalharem juntas em um único problema

<u>Mainframes</u>

- Têm mais capacidade de E/S
- Costumam ser equipados com vastas coleções de discos
 - Milhares de gigabytes de dados.
- Podem manipular quantidades maciças de transações de ecommerce por segundo
 - Em particular em empresas que exigem imensas bases de dados

Referências Bibliográficas

- TANEMBAUM, Andrew. S. Organização Estruturada de Computadores. 5ª edição, Prentice-Hall Brasil, 2007.
- MURDOCCA, M. J. Introdução à Arquitetura de Computadores. Rio de Janeiro: Campus, 2001.
- STALLINGS, William. Arquitetura e Organização de Computadores. 5ª edição, Prentice-Hall Brasil, 2002.
- MONTEIRO, Mário A. Introdução à Organização de Computadores. 4ª edição, LTC, 2001.

