Smacof at 50: A Manual Part 3 smacofAC: Additive Constant

Jan de Leeuw

November 18, 2024

Table of contents

1	Intro	oduction	2									
2	Program											
	2.1	Parameters	2									
	2.2	Algorithm	4									
		2.2.1 Type AC1	4									
		2.2.2 Type AC2										
		2.2.3 Type AC3										
		2.2.4 Type AC4										
	2.3	Output										
	2.4	Plots										
3	Exa	mples										
	3.1	De Gruijter (1967)										
	3.2	Type AC1										
	3.3	Type AC2										
	3 4	Type AC3	1									

Note: This is a working manuscript which will be expanded/updated frequently. All suggestions for improvement are welcome. All Rmd, tex, html, pdf, R, and C files are in the public domain. Attribution will be appreciated, but is not required. All files can be found at https://github.

com/deleeuw in the smacofAC directories of the repositories smacofCode, smacofManual, and smacofExamples.

1 Introduction

In this part of the manual we discuss metric MDS, and the program smacofAC. Metric MDS is the core of all smacof programs, because they all have the majorization algorithm based on the Guttman transform in common.

There are two options, *bounds* and *constant*, to make smacofAC more widely applicable. Using these options the metric MDS problem becomes minimization of

$$\sigma(X,\hat{D}) = \sum \sum w_{ij} (\hat{d}_{ij} - d_{ij}(X))^2 (\#eq:sdefac) \tag{1} \label{eq:sdefac}$$

over both X and \hat{D} , allowing some limited "metric" transformations of the data Δ . Here Δ^- and Δ^+ are known matrices with bounds, and c is an unknown additive constant. The four "metric" types of transformations relating disparities \hat{d}_{ij} to dissimilarities δ_{ij} are

- 1. type AC1: if bounds = 0 and constant = 0 $\hat{d}_{ij} = \delta_{ij}$.
- 2. type AC2: if bounds = 0 and constant = 1 $\hat{d}_{ij} = \delta_{ij} + c$ for some c,
- 3. type AC3: if bounds = 1 and constant = $0 \delta_{ij}^- \le \hat{d}_{ij} \le \delta_{ij}^+$,
- 4. type AC4: if bounds = 1 and constant = $1 \delta_{ij}^- + c \le \hat{d}_{ij} \le \delta_{ij}^+ + c$ for some c,

All four types of transformations also require that $\hat{d}_{ij} \geq 0$ for all (i,j). There are extensions of the smacof theory (Heiser (1991)) that do not require non-negativity of the disparities, but in the implementations in this manual we always force them to be non-negative. Note that AC3 is AC4 with c=0 and AC2 is AC4 with $\Delta^-=\Delta^+=\Delta$.

Note that for types AC2 and AC4 the data Δ do not need to be non-negative. In fact, the original motivation for the additive constant in classical scaling (Messick and Abelson (1956)) was that Thurstonian analysis of tetrad or triad comparisons produced dissimilarities on an interval scale, and thus could very well include negative values.

In AC3 and AC4 there is no mention of Δ , which means the bounds Δ^- and Δ^+ are actually the data. There are several possible uses of the bounds. We could collect dissimilarity data by asking subjects for interval judgments. Instead of a rating scale with possible responses from one to ten we could ask for a mark on a line between zero and ten, and then interpret the marks as a choice of one of the intervals [k, k+1]. These finite precision or interval type of data could even come from physical measurements of distances. Thus the bounds parameter provides one

way to incorporate uncertainty into MDS, similar to interval analysis, fuzzy computing, or soft computing.

The non-negativity requirement for \hat{D} implies bounds for the additive constant c. In AC2 we need $c \geq -\min \delta_{ij}$ to maintain non-negativity. For AC4 we must have $c \geq -\min \delta_{ij}^+$, otherwise the constraints on the transformation are inconsistent. Clearly for consistency of AC3 and AC4 we require that $\delta_{ij}^- \leq \delta_{ij}^+$ for all (i,j). It makes sense in most situations to choose Δ^- and Δ^+ to be monotone with Δ , but there is no requirement to do so.

2 Program

2.1 Parameters

```
smacofAC <- function(delta,</pre>
                      ndim = 2,
                      wmat = NULL,
                      xold = NULL,
                      bounds = FALSE,
                      constant = FALSE,
                      deltalw = NULL,
                      deltaup = NULL,
                      alpha = 2,
                      labels = row.names(delta),
                      width = 15,
                      precision = 10,
                      itmax = 1000,
                      eps = 1e-10,
                      verbose = TRUE,
                      kitmax = 5,
                      keps = 1e-10,
                      kverbose = FALSE,
                      init = 1)
```

The parameters *constant*, *bounds*, *alpha*, *kitmax*, *kepsi*, and *kverbose* are only relevant for AC2, AC3, and AC4. Nevertheless even for AC1 they should have integer values, it just doesn't matter what these values are. Parameter *ndim* is the number of dimensions, and *init* tells if an initial configuration is read from a file (init = 1), is computed using classical scaling (init = 2), or is a random configuration (init = 3). Parameters *itmax*, *epsi*, and *verbose* control the

iterations. The maximum number of iterations is *itmax*, the iterations stop if the decrease of stress in an iteration is less than 1E-*epsi*, and if *verbose* is one intermediate iteration results are written to stdout. These intermediate iteration results are formatted with the R function formatC(), using *width* for the width argument and *precision* for the digits argument.

2.2 Algorithm

2.2.1 Type AC1

This is standard non-metric smacof, no bells and whistles.

2.2.2 Type AC2

For AC2 we also optimize over the additive constant c, and thus the ALS algorithm has two sub-steps. The first sub-step consists of a number of Guttman iterations to update X for given \hat{D} (i.e. for given c) and the second sub-step updates c for given X. Parameters kitmax, kepsi, and kverbose control the inner iterations in the first sub-step in the same way as itmax, epsi, and verbose control the outer iterations that include both sub-steps. No inner iterations are used to update the additive constant, which only requires computing a weighted average.

$$c = -\frac{\sum \sum w_{ij}(\delta_{ij} - d_{ij}(X))}{\sum \sum w_{ij}} (\#eq : updac2)$$
 (2)

AC2 should give the same results as the MDS method of Cooper (1972).

2.2.3 Type AC3

The algorithm for AC3 has the same structure as that for AC2. Instead of a second sub-step computing the additive constant, the second sub-step computes \hat{D} by squeezing the D(X) into the bounds. Thus

$$\hat{d}_{ij} = \begin{cases} \delta_{ij}^{-} & \text{if } d_{ij}(X) < \delta_{ij}^{-}, \\ \delta_{ij}^{+} & \text{if } d_{ij}(X) > \delta_{ij}^{+}, \, (\#eq:updac3) \\ d_{ij}(X) & \text{otherwise} \; . \end{cases} \tag{3}$$

Obviously no iterations are required in the second sub-step.

2.2.4 Type AC4

Of the four regression problems in the second ALS sub-step only the one for AC4 with both bounds and additive constant is non-trivial. We'll give it some extra attention.

It may help to give an example of what it actually requires. We use the De Gruijter example with nine Dutch political parties from 1967 (De Gruijter (1967)). For ease of reference we include the data here. Dissimilarities are averages over a group of 100 students from an introductory psychology course.

```
KVP PvdA VVD ARP
                          CHU
                               CPN
                                    PSP
                                          BP
                                              D66
    0.00 5.63 5.27 4.60 4.80 7.54 6.73 7.18 6.17
PvdA 5.63 0.00 6.72 5.64 6.22 5.12 4.59 7.22 5.47
     5.27 6.72 0.00 5.46 4.97 8.13 7.55 6.90 4.67
     4.60 5.64 5.46 0.00 3.20 7.84 6.73 7.28 6.13
ARP
    4.80 6.22 4.97 3.20 0.00 7.80 7.08 6.96 6.04
CHU
CPN
    7.54 5.12 8.13 7.84 7.80 0.00 4.08 6.34 7.42
PSP
     6.73 4.59 7.55 6.73 7.08 4.08 0.00 6.88 6.36
ΒP
     7.18 7.22 6.90 7.28 6.96 6.34 6.88 0.00 7.36
D66
     6.17 5.47 4.67 6.13 6.04 7.42 6.36 7.36 0.00
```

We compute distances from the Torgerson solution. The Shepard plot for c=0 and the Torgerson distances is in figure @ref(fig:bandplot). The two blue lines are connecting the δ^-_{ij} and the δ^+_{ij} , i.e. they give the bounds for c=0. In our example the lines are parallel, because $\delta^+_{ij} - \delta^-_{ij} = 2$ for all (i,j), but in general this may not be the case. The points between the two lines do not contribute to the loss, and the points outside the band contribute by how much they are outside, as indicated by the black vertical fitlines.

By varying c we shift the region between the two parallel lines upwards or downwards. The width of the region, or more generally the shape, always remains the same, because it is determined by the difference of δ^+ and δ^- and does not depend on c. The optimal c is that shift for which the red $(\delta_{ij}, d_{ij}(X))$ points are as much as possible within the strip between the δ^- and δ^+ lines. This is in the least squares sense, which means that we minimize the horizontal squared distances from the points outside the strip to the δ^- and δ^+ lines (i.e. the black vertical lines).

Let's formalize this. Define

$$\phi_{ij}(c) := \min_{\delta_{ij} \geq 0} \{ (\delta_{ij} - d_{ij}(X))^2 \mid \delta_{ij}^- + c \leq \delta_{ij} \leq \delta_{ij}^+ + c \} (\#eq:phiijdef) \qquad \text{(4)}$$

and

$$\phi(c) := \sum \sum w_{ij} \phi_{ij}(c) (\#eq: phidef)$$
 (5)

The constraints are consistent if $\delta_{ij}^+ + c \ge 0$, i.e. if $c \ge c_0 := -\min \delta_{ij}^+$. The regression problem is to minimize ϕ over $c \ge c_0 := -\min \delta_{ij}^+$.

Figure has an example of one of the ϕ_{ij} . The value of the $d_{ij}(X)$ we used is , δ_{ij} is , δ_{ij}^- is , and δ_{ij}^+ is . The two red vertical lines are at $c=d_{ij}(X)-\delta_{ij}^+$ and $c=d_{ij}(X)-\delta_{ij}^-$.

Now

$$\hat{d}_{ij} = \begin{cases} \delta^-_{ij} + c & \text{if } c \geq d_{ij}(X) - \delta^-_{ij}, \\ \delta^+_{ij} + c & \text{if } c \leq d_{ij}(X) - \delta^+_{ij}, \, (\#eq:solves) \\ d_{ij}(X) & \text{otherwise.} \end{cases} \tag{6}$$

and thus

$$\phi_{ij}(c) = \begin{cases} (d_{ij}(X) - (\delta_{ij}^- + c))^2 & \text{if } c \ge d_{ij}(X) - \delta_{ij}^-, \\ (d_{ij}(X) - (\delta_{ij}^+ + c))^2 & \text{if } c \le d_{ij}(X) - \delta_{ij}^+, \, (\#eq:funcs) \\ 0 & \text{otherwise.} \end{cases} \tag{7}$$

It follows that ϕ_{ij} is piecewise quadratic, convex, and continuously differentiable. The derivative is piecewise linear, continuous, and increasing. In fact

$$\mathcal{D}\phi_{ij}(c) = \begin{cases} 2(c - (d_{ij}(X) - \delta_{ij}^{-})) & \text{if } c \geq d_{ij}(X) - \delta_{ij}^{-}, \\ 2(c - (d_{ij}(X) - \delta_{ij}^{+})) & \text{if } c \leq d_{ij}(X) - \delta_{ij}^{+}, \, (\#eq: derivs) \\ 0 & \text{otherwise}. \end{cases} \tag{8}$$

Since ϕ is a positive linear combination of the ϕ_{ij} it is also piecewise quadratic, convex, and continuously differentiable, with a continuous piecewise linear increasing derivative. Note ϕ is **not** twice-differentiable and **not** strictly convex. Figure @ref(fig:morefunc) has a plot of ϕ for the De Gruijter example. The red vertical lines are at $c=c_0$ and at $c_1:=\max\{d_{ij}(X)-\delta_{ij}^-\}$. From @ref(eq:derivs) we see that if $c\geq c_1$ then $\mathcal{D}\phi(c_1)\geq 0$ and thus we can look for the optimum c in the interval $[c_0,c_1]$.

We minimize ϕ by using the R function optimize().

2.3 Output

2.4 Plots

3 Examples

3.1 De Gruijter (1967)

It may help to give an example of what it actually requires. We use the De Gruijter example with nine Dutch political parties from 1967 (De Gruijter (1967)). Dissimilarities are averages over a group of 100 students from an introductory psychology course.

We compute optimal solutions for all four types AC1-AC4 (two dimensions, Torgerson initial estimate, no weights). We iterate until the difference in consecutive stress values is less than 1e-10. For each of the four runs we give the number of iterations, the final stress, and the additive constant in case of AC2 and AC4. We also make three plots: the Shepard plot with points $(\delta_{ij}, d_{ij}(X))$ in blue and with points $(\delta_{ij}, \hat{d}_{ij})$ in red, the configuration plot with a labeled X, and the dist-dhat plot with points $(d_{ij}(X), \hat{d}_{ij})$ scattered around the line $d = \hat{d}$. Line segments are drawn in the plots to show the fit of all pairs (i, j).

3.2 Type AC1

Shepard Plot AC1

Configuration Plot AC1

For AC1 we find a minimum stress of 32.2208145 after 112 iterations. The Shepard plot has a substantial intercept, which suggest that an additive constant may improve the fit. This is typical for average similarity judgments over heterogeneous groups of individuals. It is the reason why Ekman (1954) linearly transformed his average similarities so that the smallest became zero and the largest became one. That amounts to applying the additive constant before the MDS analysis.

To give some content to the configuration plot: CPN (communists), PSP (pacifists), and PvdA (social democrats) are leftists parties, ARP (protestants), CHU (other protestants), KVP (catholics) are religious parties, BP (farmers) is a right-wing protest party, VVD (classical liberals) is a conservative party, and D'66 (pragmatists, centrists) was brand new in 1967 and was supposedly beyond left and right.

3.3 Type AC2

Shepard Plot AC2

Configuration Plot AC2

As expected, the additive constant improves the fit. We have convergence after 25 iterations to stress 3.6661492. The additive constant is -3.2, which means the smallest $\delta_{ij}+c$, between ARP and CHU, is now zero. The configuration shows the same three groups, but they cluster a bit more tightly. This is to be expected. Without the additive constant the dissimilarities are more equal and consequently the distances are more equal to. The configuration tends more to what we see if all dissimilarities are equal, i.e. to points regularly spaced on a circle (De Leeuw and Stoop (1984)).

3.4 Type AC3

itel	1 sold	97.4130852810 smid	41.9550246691 snew	8.4543139218
itel	2 sold	8.4543139218 smid	7.4098292411 snew	6.6451369923
itel	3 sold	6.6451369923 smid	5.8490240542 snew	5.2489286201
itel	4 sold	5.2489286201 smid	4.6072125696 snew	4.1502164078
itel	5 sold	4.1502164078 smid	3.6168200275 snew	3.2322363271
itel	6 sold	3.2322363271 smid	2.7379930587 snew	2.4414269275
itel	7 sold	2.4414269275 smid	2.1593556178 snew	1.9752760141
itel	8 sold	1.9752760141 smid	1.8092882729 snew	1.6764432789
itel	9 sold	1.6764432789 smid	1.5582549338 snew	1.4557443279
itel	10 sold	1.4557443279 smid	1.3629036613 snew	1.2793695305
itel	11 sold	1.2793695305 smid	1.2025292754 snew	1.1324574520
itel	12 sold	1.1324574520 smid	1.0674066563 snew	1.0078467610
itel	13 sold	1.0078467610 smid	0.9522276636 snew	0.9013064460
itel	14 sold	0.9013064460 smid	0.8535746120 snew	0.8098200136
itel	15 sold	0.8098200136 smid	0.7685362919 snew	0.7305939018
itel	16 sold	0.7305939018 smid	0.6945836967 snew	0.6615054424
itel	17 sold	0.6615054424 smid	0.6300498204 snew	0.6011559114
itel	18 sold	0.6011559114 smid	0.5735956560 snew	0.5483309878
itel	19 sold	0.5483309878 smid	0.5241981027 snew	0.5020869304
itel	20 sold	0.5020869304 smid	0.4809112562 snew	0.4614299495
itel	21 sold	0.4614299495 smid	0.4425815492 snew	0.4251667367
itel	22 sold	0.4251667367 smid	0.4082440772 snew	0.3925990995
itel	23 sold	0.3925990995 smid	0.3773608282 snew	0.3632632528
itel	24 sold	0.3632632528 smid	0.3494646668 snew	0.3366780605
itel	25 sold	0.3366780605 smid	0.3241244799 snew	0.3124866156
itel	26 sold	0.3124866156 smid	0.3010402505 snew	0.2904279430
itel	27 sold	0.2904279430 smid	0.2799638410 snew	0.2702326078
itel	28 sold	0.2702326078 smid	0.2606115288 snew	0.2516575222
itel	29 sold	0.2516575222 smid	0.2427970344 snew	0.2345497021
itel	30 sold	0.2345497021 smid	0.2263873344 snew	0.2187862641
itel	31 sold	0.2187862641 smid	0.2112642137 snew	0.2042558938
itel	32 sold	0.2042558938 smid	0.1973219792 snew	0.1908667641
itel	33 sold	0.1908667641 smid	0.1844985022 snew	0.1785576365
itel	34 sold	0.1785576365 smid	0.1726814275 snew	0.1672223800
itel	35 sold	0.1672223800 smid	0.1618749397 snew	0.1568871640
itel	36 sold	0.1568871640 smid	0.1520054971 snew	0.1474133814
itel	37 sold	0.1474133814 smid	0.1429220273 snew	0.1386839988
itel	38 sold	0.1386839988 smid	0.1345340757 snew	0.1306172696

itel	39 sold	0.1306172696 smi	d 0.1267823207	snew	0.1231570280
itel	40 sold	0.1231570280 smi			0.1162371624
itel	41 sold	0.1162371624 smi			0.1098197491
itel	42 sold	0.1098197491 smi			0.1038529288
itel	43 sold	0.1038529288 smi			0.0982958229
itel	44 sold	0.0982958229 smi	d 0.0956394236	snew	0.0931205429
itel	45 sold	0.0931205429 smi	d 0.0906400571	snew	0.0882903384
itel	46 sold	0.0882903384 smi	d 0.0859714475	snew	0.0837774185
itel	47 sold	0.0837774185 smi	d 0.0816103623	snew	0.0795595988
itel	48 sold	0.0795595988 smi	d 0.0775350522	snew	0.0756158480
itel	49 sold	0.0756158480 smi	d 0.0737069060	snew	0.0718997892
itel	50 sold	0.0718997892 smi	d 0.0700922565	snew	0.0683803581
itel	51 sold	0.0683803581 smi	d 0.0666579412	snew	0.0650295657
itel	52 sold	0.0650295657 smi	d 0.0633889911	snew	0.0618371988
itel	53 sold	0.0618371988 smi	d 0.0602695635	snew	0.0587893711
itel	54 sold	0.0587893711 smi	d 0.0572852862	snew	0.0558726314
itel	55 sold	0.0558726314 smi	d 0.0544335762	snew	0.0530845479
itel	56 sold	0.0530845479 smi	d 0.0517076720	snew	0.0504187686
itel	57 sold	0.0504187686 smi	d 0.0490986716	snew	0.0478667578
itel	58 sold	0.0478667578 smi	d 0.0466025175	snew	0.0454246636
itel	59 sold	0.0454246636 smi	d 0.0442126511	snew	0.0430859071
itel	60 sold	0.0430859071 smi	d 0.0419238186	snew	0.0408458015
itel	61 sold	0.0408458015 smi	d 0.0397344293	snew	0.0387034342
itel	62 sold	0.0387034342 smi	d 0.0376390715	snew	0.0366529538
itel	63 sold	0.0366529538 smi	d 0.0356351002	snew	0.0346922685
itel	64 sold	0.0346922685 smi	d 0.0337172756	snew	0.0328162870
itel	65 sold	0.0328162870 smi	d 0.0318859969	snew	0.0310252529
itel	66 sold	0.0310252529 smi	d 0.0301365454	snew	0.0293146845
itel	67 sold	0.0293146845 smi	d 0.0284661882	snew	0.0276818686
itel	68 sold	0.0276818686 smi			0.0261255295
itel	69 sold	0.0261255295 smi	d 0.0253515999	snew	0.0246386243
itel	70 sold	0.0246386243 smi	d 0.0239018541	snew	0.0232227235
itel	71 sold	0.0232227235 smi			0.0218768243
itel	72 sold	0.0218768243 smi			0.0205956586
itel	73 sold	0.0205956586 smi			0.0193766033
itel	74 sold	0.0193766033 smi			0.0182194345
itel	75 sold	0.0182194345 smi			0.0171212966
itel	76 sold	0.0171212966 smi			0.0160801664
itel	77 sold	0.0160801664 smi			0.0150940641
itel	78 sold	0.0150940641 smi			0.0141610730
itel	79 sold	0.0141610730 smi	d 0.0137017748	snew	0.0132793044

itel	80 sold	0.0132793044 smid	0.0128460418 snew	0.0124471117
itel	81 sold	0.0124471117 smid	0.0120383862 snew	0.0116620659
itel	82 sold	0.0116620659 smid	0.0112774626 snew	0.0109227851
itel	83 sold	0.0109227851 smid	0.0105587161 snew	0.0102248820
itel	84 sold	0.0102248820 smid	0.0098838778 snew	0.0095698425
itel	85 sold	0.0095698425 smid	0.0092487574 snew	0.0089536963
itel	86 sold	0.0089536963 smid	0.0086521341 snew	0.0083751510
itel	87 sold	0.0083751510 smid	0.0080919781 snew	0.0078322169
itel	88 sold	0.0078322169 smid	0.0075666147 snew	0.0073232264
itel	89 sold	0.0073232264 smid	0.0070742856 snew	0.0068464430
itel	90 sold	0.0068464430 smid	0.0066132474 snew	0.0064001456
itel	91 sold	0.0064001456 smid	0.0061817952 snew	0.0059826528
itel	92 sold	0.0059826528 smid	0.0057802663 snew	0.0055942116
itel	93 sold	0.0055942116 smid	0.0054047931 snew	0.0052311501
itel	94 sold	0.0052311501 smid	0.0050539660 snew	0.0048920336
itel	95 sold	0.0048920336 smid	0.0047266122 snew	0.0045756432
itel	96 sold	0.0045756432 smid	0.0044211081 snew	0.0042792136
itel	97 sold	0.0042792136 smid	0.0041326493 snew	0.0039985613
itel	98 sold	0.0039985613 smid	0.0038606482 snew	0.0037337299
itel	99 sold	0.0037337299 smid	0.0036026143 snew	0.0034825438
itel	100 sold	0.0034825438 smid	0.0033580833 snew	0.0032445924
itel	101 sold	0.0032445924 smid	0.0031268398 snew	0.0030196948
itel	102 sold	0.0030196948 smid	0.0029084545 snew	0.0028074476
itel	103 sold	0.0028074476 smid	0.0027025336 snew	0.0026074631
itel	104 sold	0.0026074631 smid	0.0025086875 snew	0.0024193512
itel	105 sold	0.0024193512 smid	0.0023262643 snew	0.0022424654
itel	106 sold	0.0022424654 smid	0.0021553797 snew	0.0020768877
itel	107 sold	0.0020768877 smid	0.0019953227 snew	0.0019219223
itel	108 sold	0.0019219223 smid	0.0018458400 snew	0.0017772963
itel	109 sold	0.0017772963 smid	0.0017057245 snew	0.0016446713
itel	110 sold	0.0016446713 smid	0.0015838944 snew	0.0015303032
itel	111 sold	0.0015303032 smid	0.0014763882 snew	0.0014277542
itel	112 sold	0.0014277542 smid	0.0013787501 snew	0.0013340577
itel	113 sold	0.0013340577 smid	0.0012890894 snew	0.0012477951
itel	114 sold	0.0012477951 smid	0.0012064204 snew	0.0011681595
itel	115 sold	0.0011681595 smid	0.0011299951 snew	0.0010944827
itel	116 sold	0.0010944827 smid	0.0010585786 snew	0.0010256055
itel	117 sold	0.0010256055 smid	0.0009925089 snew	0.0009618597
itel	118 sold	0.0009618597 smid	0.0009313870 snew	0.0009028660
itel	119 sold	0.0009028660 smid	0.0008742102 snew	0.0008476717
itel	120 sold	0.0008476717 smid	0.0008210857 snew	0.0007963649

itel	121 sol	ld	0.0007963649	smid	0.0007716538	snew	0.0007485214
itel	122 sol	ld	0.0007485214	smid	0.0007255726	snew	0.0007038565
itel	123 sol	ld	0.0007038565	smid	0.0006822460	snew	0.0006618474
itel	124 sol	ld	0.0006618474	smid	0.0006414818	snew	0.0006223115
itel	125 sol	ld	0.0006223115	smid	0.0006031260	snew	0.0005851042
itel	126 sol	ld	0.0005851042	smid	0.0005670511	snew	0.0005501055
itel	127 sol	ld	0.0005501055	smid	0.0005331016	snew	0.0005171660
itel	128 sol	ld	0.0005171660	smid	0.0005012225	snew	0.0004862336
itel	129 sol	ld	0.0004862336	smid	0.0004712550	snew	0.0004571555
itel	130 sol	ld	0.0004571555	smid	0.0004430868	snew	0.0004298229
itel	131 sol	ld	0.0004298229	smid	0.0004166114	snew	0.0004041327
itel	132 sol	ld	0.0004041327	smid	0.0003917278	snew	0.0003799870
itel	133 sol	ld	0.0003799870	smid	0.0003683391	snew	0.0003572921
itel	134 sol	ld	0.0003572921	smid	0.0003463530	snew	0.0003359581
itel	135 sol	ld	0.0003359581	smid	0.0003256809	snew	0.0003158995
itel	136 sol	ld	0.0003158995	smid	0.0003062400	snew	0.0002970358
itel	137 sol	ld	0.0002970358	smid	0.0002879569	snew	0.0002792959
itel	138 sol	ld	0.0002792959	smid	0.0002707632	snew	0.0002626133
itel	139 sol	ld	0.0002626133	smid	0.0002545945	snew	0.0002469255
itel	140 sol	ld	0.0002469255	smid	0.0002393903	snew	0.0002321738
itel	141 sol	ld	0.0002321738	smid	0.0002250933	snew	0.0002183027
itel	142 sol	ld	0.0002183027	smid	0.0002116497	snew	0.0002052599
itel	143 sol	ld	0.0002052599	smid	0.0001990090	snew	0.0001929963
itel	144 sol	ld	0.0001929963	smid	0.0001871232	snew	0.0001814652
itel	145 sol	ld	0.0001814652	smid	0.0001756810	snew	0.0001703685
itel	146 sol	ld	0.0001703685	smid	0.0001649346	snew	0.0001599422
itel	147 sol	ld	0.0001599422	smid	0.0001548371	snew	0.0001501463
itel	148 sol	ld	0.0001501463	smid	0.0001453494	snew	0.0001409426
itel	149 sol	ld	0.0001409426	smid	0.0001364348	snew	0.0001322952
itel	150 sol	ld	0.0001322952	smid	0.0001280586	snew	0.0001241703
itel	151 sol	ld	0.0001241703	smid	0.0001201882	snew	0.0001165364
itel	152 sol	ld	0.0001165364	smid	0.0001127934	snew	0.0001093639
itel	153 sol	ld	0.0001093639	smid	0.0001058460	snew	0.0001026255
itel	154 sol	ld	0.0001026255	smid	0.0000993192	snew	0.0000962953
itel	155 sol	ld	0.0000962953	smid	0.0000931880	snew	0.0000903490
itel	156 sol	ld	0.0000903490	smid	0.0000874289	snew	0.0000847637
itel	157 sol	ld	0.0000847637	smid	0.0000820194	snew	0.0000795176
itel	158 sol	ld	0.0000795176	smid	0.0000769388	snew	0.0000745906
itel	159 sol	ld	0.0000745906	smid	0.0000721671	snew	0.0000699633
itel	160 sol	ld	0.0000699633	smid	0.0000676859	snew	0.0000656178
itel	161 sol	ld	0.0000656178	smid	0.0000634777	snew	0.0000615371

itel	162 so		0.0000615371		0.0000595259		0.0000577052
itel	163 so		0.0000577052		0.0000558151		0.0000541071
itel	164 so		0.0000541071		0.0000523308		0.0000507287
itel	165 so		0.0000507287	smid	0.0000490594		0.0000475568
itel	166 so	ld	0.0000475568	smid	0.0000459880	snew	0.0000445788
itel	167 so	ld	0.0000445788	smid	0.0000431046	snew	0.0000417832
itel	168 so	ld	0.0000417832	smid	0.0000403977	snew	0.0000391588
itel	169 so	ld	0.0000391588	smid	0.0000379805	snew	0.0000368139
itel	170 so	ld	0.0000368139	smid	0.0000357070	snew	0.0000346100
itel	171 so	ld	0.0000346100	smid	0.0000335698	snew	0.0000325382
itel	172 so	ld	0.0000325382	smid	0.0000315605	snew	0.0000305904
itel	173 so	ld	0.0000305904	smid	0.0000296716	snew	0.0000287591
itel	174 so	ld	0.0000287591	smid	0.0000278957	snew	0.0000270375
itel	175 so	ld	0.0000270375	smid	0.0000262261	snew	0.0000254189
itel	176 so	ld	0.0000254189	smid	0.0000246563	snew	0.0000238972
itel	177 so	ld	0.0000238972	smid	0.0000231804	snew	0.0000224647
itel	178 so	ld	0.0000224647	smid	0.0000217632	snew	0.0000210923
itel	179 so	ld	0.0000210923	smid	0.0000204335	snew	0.0000198033
itel	180 so	ld	0.0000198033	smid	0.0000191846	snew	0.0000185926
itel	181 so	ld	0.0000185926	smid	0.0000180116	snew	0.0000174556
itel	182 so	ld	0.0000174556	smid	0.0000169099	snew	0.0000163878
itel	183 so	ld	0.0000163878	smid	0.0000158752	snew	0.0000153849
itel	184 so	ld	0.0000153849	smid	0.0000149035	snew	0.0000144430
itel	185 so	ld	0.0000144430	smid	0.0000139910	snew	0.0000135586
itel	186 so	ld	0.0000135586	smid	0.0000131340	snew	0.0000127280
itel	187 so	ld	0.0000127280	smid	0.0000123292	snew	0.0000119480
itel	188 so	ld	0.0000119480	smid	0.0000115735	snew	0.0000112155
itel	189 so	ld	0.0000112155	smid	0.0000108639	snew	0.0000105277
itel	190 so	ld	0.0000105277	smid	0.0000101975	snew	0.0000098819
itel	191 so	ld	0.0000098819	smid	0.0000095718	snew	0.0000092755
itel	192 so	ld	0.0000092755	smid	0.0000089843	snew	0.0000087061
itel	193 so	ld	0.0000087061	smid	0.0000084327	snew	0.0000081715
itel	194 so	ld	0.0000081715	smid	0.0000079148	snew	0.0000076696
itel	195 so	ld	0.0000076696	smid	0.0000074285	snew	0.0000071984
itel	196 so	ld	0.0000071984	smid	0.0000069720	snew	0.0000067559
itel	197 so	ld	0.0000067559	smid	0.0000065434	snew	0.0000063406
itel	198 so	ld	0.0000063406	smid	0.0000061410	snew	0.0000059506
itel	199 so	ld	0.0000059506	smid	0.0000057633	snew	0.0000055845
itel	200 so	ld	0.0000055845	smid	0.0000054083	snew	0.0000052405
itel	201 so	ld	0.0000052405	smid	0.0000050750	snew	0.0000049176
itel	202 so	ld	0.0000049176	smid	0.0000047623	snew	0.0000046145

itel	203	sold	0.0000046145	smid	0.0000044687	snew	0.0000043301
itel	204	sold	0.0000043301	smid	0.0000041932	snew	0.0000040631
itel	205	sold	0.0000040631	smid	0.0000039346	snew	0.0000038125
itel	206	sold	0.0000038125	smid	0.0000036919	snew	0.0000035773
itel	207	sold	0.0000035773	smid	0.0000034642	snew	0.0000033566
itel	208	sold	0.0000033566	smid	0.0000032504	snew	0.0000031494
itel	209	sold	0.0000031494	smid	0.0000030498	snew	0.0000029550
itel	210	sold	0.0000029550	smid	0.0000028615	snew	0.0000027726
itel	211	sold	0.0000027726	smid	0.0000026845	snew	0.0000026011
itel	212	sold	0.0000026011	smid	0.0000025174	snew	0.0000024393
itel	213	sold	0.0000024393	smid	0.0000023599	snew	0.0000022866
itel	214	sold	0.0000022866	smid	0.0000022111	snew	0.0000021425
itel	215	sold	0.0000021425	smid	0.0000020706	snew	0.0000020064
itel	216	sold	0.0000020064	smid	0.0000019381	snew	0.0000018781
itel	217	sold	0.0000018781	smid	0.0000018130	snew	0.0000017570
itel	218	sold	0.0000017570	smid	0.0000016951	snew	0.0000016428
itel	219	sold	0.0000016428	smid	0.0000015840	snew	0.0000015352
itel	220	sold	0.0000015352	smid	0.0000014793	snew	0.0000014338
itel	221	sold	0.0000014338	smid	0.0000013806	snew	0.0000013422
itel	222	sold	0.0000013422	smid	0.0000013125	snew	0.0000012735
itel	223	sold	0.0000012735	smid	0.0000012451	snew	0.0000012080
itel	224	sold	0.0000012080	smid	0.0000011811	snew	0.0000011458
itel	225	sold	0.0000011458	smid	0.0000011202	snew	0.000010867
itel	226	sold	0.0000010867	smid	0.0000010624	snew	0.000010305
itel	227	sold	0.0000010305	smid	0.0000010074	snew	0.0000009771
itel	228	sold	0.0000009771	smid	0.0000009551	snew	0.0000009264
itel	229	sold	0.0000009264	smid	0.0000009055	snew	0.0000008783
itel	230	sold	0.0000008783	smid	0.0000008584	snew	0.0000008326
itel	231	sold	0.0000008326	smid	0.0000008137	snew	0.000007892
itel	232	sold	0.0000007892	smid	0.0000007713	snew	0.000007480
itel	233	sold	0.0000007480	smid	0.0000007310	snew	0.000007089
itel	234	sold	0.000007089	smid	0.0000006927	snew	0.0000006718
itel	235	sold	0.0000006718	smid	0.0000006564	snew	0.000006366
itel	236	sold	0.0000006366	smid	0.0000006220	snew	0.000006033
itel	237	sold	0.000006033	smid	0.0000005897	snew	0.000005723
itel	238	sold	0.0000005723	smid	0.0000005599	snew	0.000005439
itel	239	sold	0.000005439	smid	0.0000005326	snew	0.0000005175
itel	240	sold	0.0000005175	smid	0.0000005072	snew	0.0000004925
itel	241	sold	0.000004925	smid	0.0000004681	snew	0.000004546
itel	242	sold	0.000004546		0.0000004332		0.0000004206
itel	243	sold	0.0000004206	smid	0.0000004013	snew	0.0000003894

itel	244 sc		0.000003894		0.000003720		0.000003610
itel	245 sc		0.000003610	smid	0.000003451		0.0000003349
itel	246 sc			smid	0.000003204		0.000003108
itel	247 sc		0.0000003108	smid	0.0000002976		0.0000002887
itel	248 s		0.0000002887	smid	0.0000002767	snew	0.0000002683
itel	249 sc	old	0.0000002683	smid	0.0000002573	snew	0.0000002496
itel	250 sc	old	0.0000002496	smid	0.0000002396	snew	0.0000002323
itel	251 sc	old	0.0000002323	smid	0.0000002231	snew	0.000002164
itel	252 sc	old	0.0000002164	smid	0.0000002080	snew	0.000002017
itel	253 sc	old	0.000002017	smid	0.000001941	snew	0.000001881
itel	254 sc	old	0.000001881	smid	0.000001812	snew	0.000001757
itel	255 sc	old	0.000001757	smid	0.000001694	snew	0.000001643
itel	256 sc	old	0.000001643	smid	0.000001585	snew	0.000001538
itel	257 sc	old	0.000001538	smid	0.000001486	snew	0.000001441
itel	258 sc	old	0.000001441	smid	0.000001393	snew	0.000001352
itel	259 sc	old	0.000001352	smid	0.000001308	snew	0.000001269
itel	260 sc	old	0.000001269	smid	0.000001228	snew	0.000001192
itel	261 sc	old	0.000001192	smid	0.000001155	snew	0.000001121
itel	262 sc	old	0.000001121	smid	0.000001086	snew	0.000001054
itel	263 sc	old	0.000001054	smid	0.000001023	snew	0.000000993
itel	264 sc	old	0.000000993	smid	0.000000964	snew	0.000000936
itel	265 sc	old	0.000000936	smid	0.000000910	snew	0.000000883
itel	266 sc	old	0.0000000883	smid	0.000000859	snew	0.000000834
itel	267 sc	old	0.0000000834	smid	0.000000812	snew	0.000000788
itel	268 sc	old	0.000000788	smid	0.000000768	snew	0.000000746
itel	269 sc	old	0.000000746	smid	0.000000727	snew	0.000000706
itel	270 sc	old	0.000000706	smid	0.000000689	snew	0.000000670
itel	271 sc	old	0.000000670	smid	0.000000654	snew	0.000000637
itel	272 sc	old	0.000000637	smid	0.0000000622	snew	0.000000606
itel	273 sc	old	0.000000606	smid	0.000000593	snew	0.000000577
itel	274 sc	old	0.000000577	smid	0.000000565	snew	0.000000550
itel	275 sc	old	0.000000550	smid	0.000000539	snew	0.000000525
itel	276 sc	old	0.000000525	smid	0.000000515	snew	0.000000502
itel	277 sc	old	0.000000502	smid	0.000000492	snew	0.000000479
itel	278 sc	old	0.000000479	smid	0.000000471	snew	0.000000459
itel	279 sc	old	0.000000459	smid	0.000000451	snew	0.000000439
itel	280 sc	old	0.000000439	smid	0.000000432	snew	0.0000000421
itel	281 sc	old	0.0000000421	smid	0.000000414	snew	0.000000404
itel	282 so		0.000000404		0.000000397		0.000000388
itel	283 sc		0.000000388		0.000000382	snew	0.000000373
itel	284 sc	old	0.000000373	smid	0.000000367	snew	0.000000359

itel	285	sold	0.000000359	smid	0.000000354	snew	0.000000345
itel	286	sold	0.000000345	smid	0.000000341	snew	0.000000333
itel	287	sold	0.000000333	smid	0.000000328	snew	0.000000321
itel	288	sold	0.000000321	smid	0.000000317	snew	0.000000310
itel	289	sold	0.000000310	smid	0.000000306	snew	0.000000300
itel	290	sold	0.0000000300	smid	0.0000000296	snew	0.0000000290
itel	291	sold	0.0000000290	smid	0.0000000286	snew	0.0000000281
itel	292	sold	0.0000000281	smid	0.000000278	snew	0.0000000274
itel	293	sold	0.0000000274	smid	0.000000271	snew	0.0000000268
itel	294	sold	0.0000000268	smid	0.000000265	snew	0.0000000262
itel	295	sold	0.0000000262	smid	0.000000260	snew	0.0000000258
itel	296	sold	0.0000000258	smid	0.0000000256	snew	0.0000000255
itel	297	sold	0.0000000255	smid	0.0000000253	snew	0.0000000251
itel	298	sold	0.0000000251	smid	0.000000250	snew	0.0000000249
itel	299	sold	0.0000000249	smid	0.000000247	snew	0.0000000246
itel	300	sold	0.0000000246	smid	0.0000000245	snew	0.0000000244
itel	301	sold	0.0000000244	smid	0.0000000243	snew	0.0000000242
itel	302	sold	0.0000000242	smid	0.0000000241	snew	0.0000000241
itel	303	sold	0.0000000241	smid	0.0000000239	snew	0.0000000240
itel	304	sold	0.0000000240	smid	0.0000000238	snew	0.0000000238
itel	305	sold	0.0000000238	smid	0.000000237	snew	0.0000000237
itel	306	sold	0.0000000237	smid	0.000000236	snew	0.0000000236

Shepard Plot AC3

Configuration Plot AC3

The bounds we use are $\delta_{ij}\pm 1$. After 306 iterations we arrive at stress 2.3629831×10^{-8} . In the configuration plot the centrists have moved to the center. ## Type AC4

Shepard Plot AC1

Configuration Plot AC1

After 306 iterations stress is 2.3629831×10^{-8} , i.e. practically zero. We succeeded in moving all distances within the bounds. The additive constant is -3.0664907. The configuration is again pretty much the same with D'66 in the center. VVD moves closer to the Christian Democrats, and BP is more isolated. # References

Cooper, L. G. 1972. "A New Solution to the Additive Constant Problem in Metric Multidimensional Scaling." *Psychometrika* 37 (3): 311–22.

De Gruijter, D. N. M. 1967. "The Cognitive Structure of Dutch Political Parties in 1966." Report E019-67. Psychological Institute, University of Leiden.

De Leeuw, J., and I. Stoop. 1984. "Upper Bounds for Kruskal's Stress." *Psychometrika* 49: 391–402.

Ekman, G. 1954. "Dimensions of Color Vision." *Journal of Psychology* 38: 467–74.

Heiser, W. J. 1991. "A Generalized Majorization Method for Least Squares Multidimensional Scaling of Pseudodistances that May Be Negative." *Psychometrika* 56 (1): 7–27.

Messick, S. J., and R. P. Abelson. 1956. "The Additive Constant Problem in Multidimensional Scaling." *Psychometrika* 21 (1–17).