Cyber Security Internship – Task 5 Report

Task Title: Capture and Analyze Network Traffic Using Wireshark

Name: Gitika Khira Date: 11-08-2025

1. Objective

The objective of this task is to:

- Capture live network packets using Wireshark.
- Identify at least three different protocols.
- Analyze packet details and understand protocol interactions.

2. Tools & Environment

• **Software:** Wireshark (latest version)

• Operating System: Linux

• **Network Interface:** *Ethernet (eth0)*

3. Procedure

3.1 Installation

Wireshark came pre-installed with Kali-Linux, so no installation was required.

3.2 Packet Capture

- Selected the active network interface [Etherner(eth0)].
- Started live capture.
- Generated network traffic by:
 - Visiting websites in the browser.
 - o Pinging google.com from terminal/command prompt.
- Stopped the capture after ~1 minute.

Screenshot 1:

3.3 Filtering and Analysis

- Applied protocol filters:
 - o $QUIC \rightarrow quic$
 - o $DNS \rightarrow dns$
 - o $ARP \rightarrow arp$
- Checked source/destination IPs, ports, and packet info.

• Screenshot 2:

Screenshot 3:

3.4 Exporting Data

• Saved the captured traffic as cybersecurity_task_5.pcapng.

4. Observations

Protocol	Purpose	Example Observation
QUIC	Multiplexed transport over UDP, used for HTTP/3	QUIC Initial and Handshake packets exchanged between 10.0.2.15 and 34.36.137.203
ARP	Maps IP addresses to MAC addresses	Reply: 10.0.2.2 is at 52:54:00:12:35:02
DNS	Resolves domain names to IP addresses	Query for example.org sent to 8.8.8.8

Additional Notes:

- QUIC traffic was encrypted, so only handshake and packet metadata were visible, not the actual payload.
- ARP packets were exchanged within the local network before any communication with external servers.
- DNS queries preceded QUIC traffic, indicating that domain name resolution happens before establishing encrypted connections.

5. Conclusion

This task provided practical exposure to packet capturing and protocol analysis. I successfully identified DNS, HTTP, and TCP protocols, and understood their sequence in typical web communication.

6. Deliverables

- Packet Capture File: task5 capture.pcap
- **GitHub Repository:** https://github.com/gitikakhira69/CyberSecurity_Task_5.git