Dr SABER Takfarinas takfarinas.saber@dcu.ie

CA169 Networks & Internet

Link Layer 1-Frames

The Link Layer

- In the physical layer we looked at how digital information is transferred between two machines
- In the link layer we are concerned with how to send messages between two machines
 - Messages are called frames
- The link layer has a number of functions, some important ones are
 - Framing messages
 - Dealing with transmission errors
 - Regulating the flow of data so slow receivers are not swamped

Frames

 So far we have talked about sending packets, in the link layer these are put inside another structure called a frame

 Frames have additional information added in headers (before the message) and trailers (after the message)

Framing

- Breaking up the bit stream into frames is more difficult than it at first appears
- A good design must make it easy for a receiver to find the start of new frames while using little of the channel bandwidth
- We will look at three methods:
 - Byte count
 - Flag bytes with byte stuffing
 - Flag bits with bit stuffing

Framing - Byte Count

One of the simplest and most efficient methods

 Simply start the frame by having the first number be the count of how many bytes are in the frame

Framing - Byte Count

But what happens if the byte is corrupted in transmission?

Framing – Flag Byte

- The second framing method gets around the problem of resynchronization after an error by having each frame start and end with special bytes
- Often the same byte, called a flag byte, is used as both the starting and ending delimiter
- Two consecutive flag bytes indicate the end of one frame and the start of the next
- Thus, if the receiver ever loses synchronization it can just search for two flag bytes to find the end of the current frame and the start of the next frame

Framing – Flag Byte

- What happens if the flag byte appears in the data being sent?
- One solution is to insert a special escape byte (ESC) before any accidental flag byte
- This way we can tell when a frame ends or the byte is just data
- The receiver then removes these flag and escape bytes from data it receives
- This process is called byte stuffing

Framing – Escape Byte

- What happens if the escape byte appears in the data being sent?
- The simple solution is that another escape byte is stuffed before it

Framing - Flag Byte

- Byte stuffing has a drawback, adding these bytes increases the size of the message a lot
 - Because each flag adds another byte
- The third method of framing uses single bits for stuffing so the increase in size is not as much

- Each frame begins with the bit pattern 01111110
- Bit Stuffing
 - Sender: Whenever we see five 1s in our data we insert a 0
 - **Receiver:** Whenever we see five 1s we **remove** the following 0
- It is the same idea as byte stuffing but with less overhead
- The only problem is that the final frame could be of any number of bits but byte stuffing it is always a number of bytes

Physical Layer Framing

- There exists other methods of framing that we are not studying closely
- Some of them exploit knowledge of what is happening in the physical layer
 - If the physical layer is using a protocol such as 4B/5B
 - It means that we know that certain byte sequences cannot appear in the data
 - Therefore, we can use one of these Byte sequences to signal the start and end of frames

