Lab 2 Report

g14_longest_row.vhd

Top-level I/O

Inputs Outputs

ASP_r_0 ... ASP_r_7 – ASP_arrays ASP_lrow : 2 bit std_logic_vector

ASP dr - 7 bit vector

ASP_empty – 7 bit vector

NM – bit

NB: the ASP array data type is a 4 by 3 array of std logic vector

Description of Circuit

This circuit takes in 8 registers of the type ASP_array, which contain the current state of the filled positions on the connect-4 board. The 7 bit vector ASP_dr reflects the states of the registers as to whether they are full or not full at present. The 7 bit vector ASP_empty reflects the states of the registers as to whether they are empty or not at present. NM is an enable bit.

The circuit evaluates the non-empty and non-full registers, searching for the register which contains the longest row of filled cells. Once all the registers have been parsed, the output ASP Irow returns a 2 bit vector containing the ID of the register with the longest row.

Flow summary and timing analyzer summary could not be completed on this circuit due to the specified inputs and outputs requiring 212 pins, while the device which the circuit was designed for has only 189 I/O pins. Thus, Quartus II could not run the flow analysis necessary to generate these reports. However, it showed that 258 logic elements were required for the circuit.

Group 14 -Jerome Colomb 260349913 Matthew Johnston 260349319

Flow Status Flow Failed - Thu Oct 13 14:28:00 2011 Quartus II Version 9.0 Build 235 06/17/2009 SP 2 SJ Full Version Revision Name g14_lab2 Top-level Entity Name g14_longest_row Family FLEX10K EPF10K70RC240-4 Device Timing Models Met timing requirements N/A 258 / 3,744 (7%) Total logic elements

Total pins 212 / 189 (112 %)
Total memory bits 0 / 18,432 (0 %)

Testing

The circuit was tested by creating sample situations by assigning the register values arbitrary numbers and then adjusting ASP_dr and ASP_empty to correspond to the register values. This was done with various setups of arbitrary register values. As shown in the case included, registers 1, 2, 6, and 7 are empty, register 4 is full, and the longest register counted is register 3. The circuit operates correctly, as "001" is returned for ASP_lrow, indicating that register 3 is indeed the longest row.

g14_row_config.vhd

Top-level I/O

Inputs	Outputs
ASP_r_i – type ASP_array	horiz -bit
ASP_c_i – type ASP_array	vetic -bit
	r_l_diag – bit
	I_r_diag – bit

Description of Circuit

This circuit takes in two registers (ASP_r_i and ASP_c_i) of type ASP_array, again 4x3 std_logic_vector arrays, which represent the row and column registers for the connect-4 board. The circuit then checks the first two positions of each register (0 and 1) to search for filled cells in horizontal, vertical, and both diagonal configurations. If a configuration is found, its corresponding output becomes true.

Flow analysis was successful for this circuit and showed that 13 logic elements and 28 I/O pins were required for the implementation of this circuit. Timing analyzer showed that the worst-case propagation delay of the circuit was 34.3 ns.

| Flow Status | Successful - Thu Oct 13 14:25:00 2011 | Quartus II Version | 9.0 Build 235 06/17/2009 SP 2 SJ Full Version |

 Revision Name
 g14_lab2

 Top-level Entity Name
 g14_row_config

 Family
 FLEX10K

 Device
 EPF10K70RC240-4

Timing Models Final
Met timing requirements Yes

Total logic elements 13 / 3,744 (< 1 %)
Total pins 28 / 189 (15 %)
Total memory bits 0 / 18,432 (0 %)

1	Timing Analyzer Summary									
	Туре	Slack	Required Time	Actual Time	From	То	From Clock	To Clock	Failed Paths	
	Worst-case tpd	N/A	None	34.300 ns	ASP_c_i[0][0]	110112			0	
	Total number of failed paths								0	

Testing

The circuit was tested by applying random values to the register locations at ASP_r_i and ASP_c_i at indices 0 and 1, as they were the only ones checked by the circuit. Each possible output case was identified and is discussed as follows.

- 1) Horizontal is found when ASP_r_i[1] = "111"
- 2) Horizontal is found when r[0] = r[1] and c[0] + 1 = c[1]
- 3) Vertical is found when r[0] + 1 = r[1] and c[0] = c[1]
- 4) L_R _diag is found when r[0] + 1 = r[1] and c[0] = c[1] + 1
- 5) R_L_{diag} is found when r[0] + 1 = r[1] and c[0] + 1 = c[1]

				700 _, 0 ns	
	Name				
₽ 0	■ ASP_r_i[0]	010 X		000	
→ 4	■ ASP_r_i[1]	100 X	001	X	010
№ 8	■ ASP_c_i[0]	001			011
12 1 2 1 3	■ ASP_c_i[1]	111 X	011	X	000
⊚ 16	horiz				
⊚ 17	vertic	oxdot			
⊚ 18	l_r_diag				
⊚ 19	r_l_diag				

			940 _, 0 ns
	Name		
™ 0	■ ASP_r_i[0]	000 \ 001	X
→ 4	■ ASP_r_i[1]	100 \ 001	010
№ 8	■ ASP_c_i[0]	011 \ 010	111
12 12 1	■ ASP_c_i[1]	101	011
⊚ 16	horiz		
17	vertic		
@ 18	l_r_diag		
19 19	r_l_diag		

Group 14 -Jerome Colomb 260349913 Matthew Johnston 260349319

