Examen d'analyse

Durée 2 heures; Documents autorisés

- 1. (4 points) On considère la suite u_n définie par $u_0 = 2$ et $u_{n+1} = u_n^2 1$, $n \ge 0$.
- a) Montrez que cette suite est croissante, en étudiant $u_{n+1} u_n = f(u_n)$.
- **b**) Montrez par récurrence que pour tout n, $u_n > n$. En déduire que la suite diverge.
- c) Vérifiez que $u_{n+1} \sim u_n^2$. Que peut-on en conclure ?
- 2. (4 points) Etudiez la convergence des deux séries suivantes :

$$S = \sum_{n=1}^{+\infty} \log \left(1 + Arctg \left[\frac{(-1)^n}{\sqrt{n}} \right] \right); T = \sum_{n=2}^{+\infty} Arctg \left(\log \left[1 + \frac{(-1)^n}{\sqrt{n}} \right] \right)$$

- 3. (2 points) Montrez que la fonction f(x) = |x| est uniformément continue sur R.
- 4. Soit f une fonction définie et dérivable au voisinage de 0, telle que f(0) = f'(0) = 0. Vérifiez que f(x) = o(x). Quelle est la forme de f au voisinage de 0 si f''(0) < 0? Que peut-on dire de la limite en 0 de $\frac{f(x)}{g(x)}$ si de plus g(0) = g'(0) = 0 et g''(0) < 0? (2 points)
- 5. On définit sur \mathbb{R}^3 la fonction f définie par f(0, 0, 0) = 0 et $f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$ pour $(x, y, z) \neq (0, 0, 0)$.

Montrez que f est continue et qu'elle n'est pas différentiable en (0, 0, 0). (4 points)

6. Etudiez dans \mathbb{R}^2 les extrema locaux de la fonction : $f(x, y) = x^2 e^{-x^2} + y^2 e^{-y^2}$. (4 points)