

Using mobility and social network data to predict and prevent future pandemics

Mark Lurie, PhD

MAPPS PI

Associate Professor of Epidemiology
Interim Director, International Health Institute

Why Study Mobility and Social Mixing?

Funding & Awards ^ News & Events Y Science Topics Y About NSF Y

MAPPS: Central, simple premise

- Infectious disease follows the movement of people
- Understanding how humans interact and move through space and time is therefore fundamental to how disease spread through populations
- If we know who interacts with who and under what circumstances, we could potentially implement targeted interventions that slow or eliminate spread

Epidemiological lens R_o the Basic Reproductive Number

 R_0

- Important measure of epidemic potential
- Answers the question: on average, how many new infections will a primary case produce when introduced into a totally susceptible population
- R_o > 1 means continued spread
- R_o < 1 epidemic dies out

The Basic Reproductive Number: How Fast Will An Epidemic Grow?

on any contact
(Transmission Probability)

Likelihood of transmission

Rate at which infected people have contact with uninfected people (Contact Patterns/Networks)

Outline

- I. Rationale for MAPPS
- II. Main components of MAPPS
 - Brief overview of MAPPING@Brown Project
- III. Overview and structure of the workshop

Our grand challenge:

How can we best measure and use human mobility and population mixing data to inform real-time pandemic responses across a range of pathogens and under conditions of uncertainty while balancing benefits, risks and harms?

Data

Device

Modeling and Prediction

Data

Collect, catalogue and make publicly available data on human mobility and social mixing

Federated database; data protections

Data clearinghouse for pandemic researchers

Develop new technologies for measuring mobility, social interactions and biometrics

• wearables, phone apps

Develop methodologies for analysing and using "passive" surveillance data

Swipe cards, wifi login

Device

Modeling and Prediction

To use data from our devices and library of studies to model the impact of new pathogens spreading through a network and to identify potential interventions that could slow disease spread

To infuse our work with a strong ethical foundation, addressing issues of privacy and confidentiality

To think critically and educate the Brown community about big data, privacy and confidentiality

To develop MAPPS ethics primer, a Q and A addressing likely ethical concerns of app users

Data

Device

Modeling and Prediction

Data

Device

MAPPING@Brown

Modeling and Prediction

MAPPING@Brown: Main Goals

- Measure the social network at Brown University
- Use the social network data to populate flexible and realistic mathematical models of disease transmission
 - Intervention assessment: Explore transmission dynamics under different scenarios of social mixing and mobility
- Simulation exercise
 - Introduce a virtual pathogen with specific epidemiological characteristics into the network and observe spread through the network
 - Identify point of intervention/changes in social mixing that would be effective at elimination or containment of the virtual pathogen

MAPPING@Brown: Overarching, proof-of-concept study

- 18-month goals:
 - Device development
 - Deep community engagement
 - Pilot in Brown School of Public Health in AY 2022/23
- 5-year goal:
 - To map the entire social network at Brown (!)
- 5-10 year goal
 - Add biometrics and other measurements;
 - Discover wider applications

MAPPING@Brown

More to come about this in the breakout sessions!

Data

Device

MAPPING@Brown

Modeling and Prediction

MAPPS 18-month and 5-year goals

MAPPS	18 Month Vision	Five Year Vision
Thrust 1: Data BB BB	Develop methods for collating, cataloguing and analyzing existing data streams on human mobility and social networks	Launch a secure human mobility and social network data clearinghouse with robust infrastructure for accessing and sharing data in real-time
Thrust 2: Device	Identify core functions of and overcome technical impediments to developing a novel wearable device	Pilot test a wearable device capable of measuring social networking, mobility and biometrics in real-time
Thrust 3: Models & Decisions	Develop modeling method-ologies leveraging existing data sources to describe the impacts of social networking and mobility on pandemic potential at multiple scales to inform decisions	Create an open-source mathematical modeling platform fed by new and existing data sources to predict pandemics in real-time
Thrust 4: Ethics & Community Engagement	Support work across each thrust focusing on ethical applications of big data in pandemic preparedness; Select appropriate secure systems and integrate privacy algorithms	Operate as a center of excellence in pandemic preparedness and a leader in the ethical use of big data to guide pandemic preparedness activities

NSF PIPP Phase 2

RFA not yet released

Approximately 7 years and \$20-25 million

Privacy and Ethics in Pandemic Data Collection and Processing Websites

Workshop Website

ICERM Website

https://mapps-brown.github.io/workshop2023/

The workshop materials can be found here. We will post materials to this website throughout the week.

https://icerm.brown.edu/topical_workshops/tw-23-pep

The daily agenda will be posted here, and ICERM will live stream the keynotes each day.

Purpose

- Develop a framework for state of the art privacy and ethics protection in the context of pandemic data collection and processing;
- Develop protocol for MAPPING@Brown exercise;
- Develop new collaborations for Phase 2 PIPP Application.

Desired Outcomes

- 1. Data: Prioritized list of data needs for measuring movement and social mixing during MAPPING@Brown
- 2. Privacy and Ethics: Concrete approaches to managing the ethical issues that arise from collecting, managing, analyzing, and sharing human mobility and social mixing data
- 3. Technical Execution: Outline the technical approaches to responsible use of shared data
- **4. Modeling:** Outline modeling and simulation scenarios using MAPPING@Brown data to facilitate optimal prediction and prevention of future pandemics
- 5. Data Sharing: Identify techniques for ethically using multi-party computation to analyze mobility and social mixing datasets from multiple institutions at once

Structure

- Distinguished keynote speakers;
- Breakout sessions in which we ask for your input in the design, ethics, implementation and analysis of MAPPING@Brown

- Small, focused, interdisciplinary and participatory;
- Plenty of time for discussions
- Lots of unstructured time
- These walls can speak

Breakout Sessions

Focus on MAPPING@Brown exercise

Data collection

Ethical concerns

Privacy protection

Simulation design

Data storage & collaboration

Solving specific ethical, technical and analytical issues arising in MAPPING@Brown exercise

Breakout Sessions

Focus on MAPPING@Brown exercise

Data collection

Ethical concerns

Privacy protection

Simulation design

Data storage & collaboration

What data will we collect during MAPPING@Brown in order to map mobility and social mixing patterns within the Brown community? How and how often might these data be collected?

Data collection

Tuesday, 3:00-4:30 PM

Led by Mark Lurie

How might we approach the ethical issues that arise from collecting, managing, analyzing, and sharing the types of data identified in Breakout 1?

Wednesday, 1:15-2:45 PM

Led by Julia Netter

How can we protect participants' right to privacy on a technical level using cryptographic approaches like differential privacy, which guide what questions we can ask of our data without risking reidentification or other harms?

Privacy protection

Wednesday, 3:15-4:45 PM

Led by Anna Lysyanskaya

How do we make best use of he social network data we will gather in MAPPING@Brown and what can we use that to advance network science?

What is the optimal design of an embedded outbreak simulation using MAPPING@Brown data to inform our efforts to predict and prevent future pandemics?

Simulation design & analysis

Thursday, 10:30-12:00 PM

Led by Thomas Trikalinos, Jason Gantenberg, and Aditya Khanna

How can we use multi-party computation to enable researchers to analyze MAPPING@Brown-type datasets from multiple institutions in conjunction?

Data storage & collaboration

Thursday, 3:15-4:45 PM

Led by Anna Lysyanskaya

MAPPING@Brown Breakouts

Data collection

Ethical concerns

Privacy protection

Simulation design & analysis

Data storage & collaboration

MAPPS Team: Principal investigator

Mark Lurie, PhD
Associate Professor of Epidemiology;
Interim Director, International Health Institute

MAPPS Team: Co-Investigators

Sohini Ramachandran, PhD
Professor of Ecology, Evolution, and Organismal
Biology; Director, Data Science Initiative

Kimani Toussaint, PhD
Professor of Engineering; Senior Associate Dean of Engineering

Thomas Trikalinos, PhD
Professor of Health Services, Policy and Practice
and Biostatistics; Director: Center for Evidence
Bases Synthesis in Health

Anna Lysyanskaya, PhDProfessor of Computer Science

Julia Netter, DPhil
Visiting Assistant Professor of Philosophy;
Coordinator: Social Responsible Computing Program

MAPPS Team: Featured researchers

Jason Gantenberg, PhD

Research Scientist Departme

Research Scientist, Department of Health Services, Policy & Practice; Assistant Professor of Epidemiology

Aditya Khanna, PhD

Computational Epidemiologist and Statistician, Department of Behavioral and Social Science

Guixing Wei, PhD

Senior GIS Developer, Spatial Structures in the Social Sciences (S4)

MAPPS Team: Workshop organizing committee

Peyton LuizMAPPS Project Manager

Betsy Stubblefield Loucks, ScM, MBA
Associate Director of Research Strategy,
Office of the Vice President of Research

MAPPS Team: Knowledge keepers

- Josi DeHaven, MPH, BSN, RN, CCM
- **Scott Griffy**, PhD student in computer science
- Jorge Ledesma, PhD student in epidemiology
- Aquielle Person, RA with the Pandemic Center at Brown University
- Maria Pieruccini, MPH Student
- Gage Reitzel, MPH student
- Leah Rosenbloom, PhD student in computer science
- Qiuhong (Anna) Wei, BS/MS student in computer science
- Marta Wilson-Barthes, School of Public Health Project Coordinator
- Isabella Zangari, undergraduate student at Colgate University
- Mohammed Akel, Undergraduate computer science and public health student

