SIDDHARTH JAIN

Tempe, AZ | +1 (623) 326-7382 | sjain238@asu.edu | www.tellsiddh.com | linkedin.com/in/tellsiddh | github.com/tellsiddh

SUMMARY

Driven by a profound passion for robotics and AI, I am determined to leverage my comprehensive expertise in autonomous systems, ML, and embedded development to make impactful contributions to forward-thinking enterprises.

EDUCATION

ARIZONA STATE UNIVERSITY

Tempe, AZ

Master of Science, Robotics and Autonomous Systems

May 2024

Relevant Coursework: Reinforcement Learning, Deep Learning, Multi-Robot Systems, Optimal Control

GPA:

3.78/4.0

D. J. Sanghvi College of Engineering

Mumbai, IN

Bachelor of Engineering, Mechanical

May 2022

TECHNICAL SKILLS

Languages

Python, C++, C, MATLAB, SQL, PowerShell

Software & Tools

Docker, ROS2, Gazebo, Solidworks, Arduino IDE, Altium, MS Office

Frameworks & Cloud Services Hardware & Protocols

Tensorflow, PyTorch, React Native, FreeRTOS, AWS (IoT Core, Lambda, DynamoDB), FastAPI Raspberry Pi, PCB Design, Semtech SX12xx, NRF BLE, CAN Bus, ZigBee, LoRa, MQTT, Ethernet

WORK EXPERIENCE

ENTERPRISE TECHNOLOGY

Tempe, AZ

ML Ops and AI Development Engineer

Aug 2023 - Present

- Pioneered the development of a custom Llama endpoint for our Language Learning Model (LLM) and integrated it with a TTS endpoint for personalized voice capabilities. This innovative system boasts a 98.5% accuracy in real-time face detection.
- Engineered the entire system to run on a Raspberry Pi, ensuring a compact and wireless design. The platform also features celebrity match-making and an advanced image generation tool (DALLE-3) inside a wireless robot head.

Embedded Systems Engineer

Oct 2022 - Jul 2023

- Implemented real-time UHF mesh protocol with AES encryption using C++, LoRa, MQTT, and AWS IoT for cart tracking, while enabling BLE mesh network with ESP32/React-Native, boosting emergency response efficiency by 20%.
- Devised AWS Lambda functions with Python, API Gateways, and Timestream, increasing data retrieval by 30%.
- Optimized mpu9250 for deep sleep acceleration-based interrupt in IoT-based cart tracker, extending battery life to 3 years.

BIO-INSPIRED ROBOTICS, TECHNOLOGY AND HEALTHCARE LAB

Tempe, AZ

Graduate Student Researcher

Dec 2022 - Present

- Developed a novel 3-axis testing setup equipped with a 6-axis load cell to automate and accurately measure the frictional characteristics of a PDMS pad on both rusted and non-rusted curved surfaces. Utilized a PID controller to ensure precise normal loading forces.
- Conducting 180 experiments in a controlled environment for the thesis, focusing on evaluating the frictional behaviors of the pads.

DJS KRONOS INDIA

Mumbai, IN

Vice Captain

Mar 2019 – May 2021

- Spearheaded the development and optimization of an all-terrain electric vehicle using Simulink, resulting in a 17% boost in efficiency.
- Seamlessly integrated the GSM SIM 900 Module with Raspberry Pi Zero, enabling real-time transmission of sensor data via the ThingSpeak Communication Library, which significantly enhanced the accuracy and speed of data acquisition.

ACADEMIC PROJECTS

DEXTEROUS MANIPULATION WITH A ROBOTIC HAND | Reinforcement Learning, Actor Critic, Python, Linux

- Examined on-policy and Monte-Carlo methods, achieving 20% success enhancement with Advantage Weighted Actor Critic.
- Harmonized offline/online tuning to refine a 6 DoF robotic hand using reinforcement learning in Linux.

MoM (MINUTES OF MEETING) BOT | Speaker Diarization, vLLM, Streaming LLM, Whisper, TTS

• Developed a Minutes of Meeting Bot that seamlessly records, diarizes, and transcribes meetings using Whisper, then queries a custom Llama endpoint with VLLM, streaming LLM, and RoPe for context-rich responses within 3.5 seconds.

DYNAMIC PATH FINDING IN COMPLEX ENVIRONMENT | Python, C++, Algorithm Design, Dynamic Programming

• Developed and compared advanced pathfinding algorithms (A*, Dijkstra's, DFS, BFS) using Python. Adapted them to real-world scenarios with moving obstacles, achieving path lengths of 24-25 steps and times ranging from 0.0011 to 3.288 seconds.

CUSTOM LoRa AND ETHERNET COMMUNICATION BOARD | ESP32 S3, PCB Design, FreeRTOS, Embedded C

• Designed a 4-layer PCB with Xtensa LX7, RFM95W LoRa, and LAN8720 Ethernet, integrating 50-ohm impedance control for RF integrity. Utilized C and FreeRTOS for concurrent tasks and power management, enhancing efficiency and reliability.

CO-CURRICULAR ACTIVITIES

- Part of the Robotics and Autonomous Systems club wherein we conducted various seminars and workshops.
- Mentoring the DJS Kronos India Team with their goal to achieve a self driving autonomous electric all-terrain vehicle.