Mathematical Methods in Engineering and Applied Science

Prof. A. Kasimov. Skoltech. F2021

Problem Set 4. Due on Oct. 30 at 23:59.

- (1) Explain:
 - (a) why $A^T A$ is not singular when matrix A has independent columns;
 - (b) why A and A^TA have the same nullspace.
- (2) A plane in \mathbb{R}^3 is given by the equation $x_1 2x_2 + x_3 = 0$.
 - (a) Identify two orthonormal vectors u_1 and u_2 that span the plane.
 - (b) Find a projector matrix P that projects any vector x from \mathbb{R}^3 to the plane and a projector P_{\perp} that projects any vector to the direction normal to the plane.
 - (c) Using these projectors find the unit normal to the plane and verify that it agrees with a normal found by calculus methods (that use the gradient).
- (3) Let $M = span\{v_1, v_2\}$ where $v_1 = \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}^T$, $v_2 = \begin{bmatrix} 1 & -1 & 0 & -1 \end{bmatrix}^T$.
 - (a) Find the orthogonal projector P_M on M.
 - (b) Find the kernel (nullspace) and range (column space) of P_M .
 - (c) Find $x \in M$ which is closest in 2-norm to the vector $a = \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}^T$.
- (4) The following problems look at tests of positive definiteness.
 - (a) Using the determinant test, find c and d that make the following matrices positive definite:

$$A = \left[\begin{array}{ccc} c & 1 & 1 \\ 1 & c & 1 \\ 1 & 1 & c \end{array} \right], \quad B = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & d & 4 \\ 3 & 4 & 5 \end{array} \right].$$

(b) A positive definite matrix cannot have a zero (or a negative number) on its main diagonal. Show that the matrix

$$A = \left[\begin{array}{rrr} 4 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 5 \end{array} \right]$$

is not positive definite by finding x such that $x^T A x \leq 0$.

- (5) Matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 3 & 1 \\ 1 & 1 & 4 \end{bmatrix}$ is positive definite. Explain why and determine the minimum value of $z = x^T A x + 2b^T x + 1$, where $x = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}^T$ and $b^T = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}$.
- (6) Explain these inequalities from the definition of the norms:

$$||ABx|| \le ||A|| \, ||Bx|| \le ||A|| \, ||B|| \, ||x||,$$

and deduce that $||AB|| \le ||A|| \, ||B||$.

(7) Compute by hand the norms and condition numbers of the following matrices:

$$A_1 = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

1