机器学习导论 (2023 春季学期)

六、支持向量机

主讲教师: 周志华

线性分类器回顾

在样本空间中寻找一个超平面,将不同类别的样本分开

线性分类器回顾

将训练样本分开的超平面可能有很多,哪一个更好呢?

"正中间"的: 鲁棒性最好, 泛化能力最强

间隔(margin)与支持向量(support vector)

超平面方程: $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 0$

支持向量机基本型

最大间隔: 寻找参数 \boldsymbol{w} 和 b , 使得 γ 最大

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,max}} \frac{2}{\|\boldsymbol{w}\|}$$
s.t. $y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i + b) \ge 1, \ i = 1, 2, \dots, m.$

$$\underset{\boldsymbol{w},b}{\operatorname{arg\,min}} \quad \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i + b) \ge 1, \ i = 1, 2, \dots, m.$

凸二次规划问题, 能用优化计算包求解, 但可以有更高效的办法

对偶问题

拉格朗日乘子法

■第一步:引入拉格朗日乘子 $\alpha_i \geq 0$ 得到拉格朗日函数

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^{m} \alpha_i \left(1 - y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + b)\right)$$

■第二步: 令 $L(\boldsymbol{w},b,\boldsymbol{\alpha})$ 对 \boldsymbol{w} 和 b 的偏导为零可得

$$\mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i , \quad 0 = \sum_{i=1}^{m} \alpha_i y_i$$

□ 第三步: 回代可得

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$
s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0 , \quad \alpha_i \geqslant 0 , \quad i = 1, 2, \dots, m$$

解的特性

最终模型:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\top} \boldsymbol{x} + b = \sum_{i=1}^{m} \alpha_i y_i \boldsymbol{x}_i^{\top} \boldsymbol{x} + b$$

KKT条件:

$$\begin{cases} \alpha_i \ge 0; \\ 1 - y_i f(\boldsymbol{x}_i) \le 0; \\ \alpha_i (1 - y_i f(\boldsymbol{x}_i)) = 0. \end{cases} \quad \text{where } \alpha_i = 0 \text{ deg}$$

解的稀疏性: 训练完成后, 最终模型仅与支持向量有关

支持向量机(Support Vector Machine, SVM) 因此而得名

求解方法 - SMO

基本思路:不断执行如下两个步骤直至收敛

- 第一步: 选取一对需更新的变量 α_i 和 α_j
- ullet 第二步:固定 α_i 和 α_j 以外的参数,求解对偶问题更新 α_i 和 α_j

仅考虑 α_i 和 α_j 时,对偶问题的约束 $0=\sum_{i=1}^m \alpha_i y_i$ 变为

$$\alpha_i y_i + \alpha_j y_j = c , \quad \alpha_i \geqslant 0 , \quad \alpha_j \geqslant 0$$

用 α_i 表示 α_j ,代入对偶问题

$$\max_{\alpha} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j x_i^{\mathrm{T}} x_j$$
 有闭式解!

对任意支持向量 (\boldsymbol{x}_s,y_s) 有 $y_sf(\boldsymbol{x}_s)=1$,由此可解出 b

为提高鲁棒性,通常使用所有支持向量求解的平均值

特征空间映射

若不存在一个能正确划分两类样本的超平面,怎么办?

将样本从原始空间映射到一个更高维的特征空间, 使样本在这个特征空间内线性可分

如果原始空间是有限维(属性数有限),那么一定存在一个高维特征空间使样本可分

在特征空间中

设样本 \boldsymbol{x} 映射后的向量为 $\phi(\boldsymbol{x})$, 划分超平面为 $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathsf{T}}\phi(\boldsymbol{x}) + b$

原始问题

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i(\boldsymbol{w}^{\top} \phi(\boldsymbol{x}_i) + b) \ge 1, i = 1, 2, \dots, m.$

对偶问题

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \phi(\boldsymbol{x}_i)^{\mathrm{T}} \phi(\boldsymbol{x}_j)$$
s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0 , \quad \alpha_i \geqslant 0 , \quad i = 1, 2, \dots, m$$

预测

$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x}) + b = \sum_{i=1}^{\infty} \alpha_i y_i \phi(\boldsymbol{x}_i)^{\mathrm{T}} \phi(\boldsymbol{x}) + b$$

只以内积 形式出现

核函数 (kernel function)

基本思路:设计核函数

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \phi(\boldsymbol{x}_i)^{\mathrm{T}} \phi(\boldsymbol{x}_j)$$

绕过显式考虑特征映射、以及计算高维内积的困难

Mercer 定理: 若一个对称函数所对应的核矩阵半正定,则它就能作为核函数来使用

任何一个核函数,都隐式地定义了一个RKHS (Reproducing Kernel Hilbert Space, 再生核希尔伯特空间)

"核函数选择"成为决定支持向量机性能的关键!

核函数

常用核函数

名称	表达式	参数
线性核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$	
多项式核	$\kappa(oldsymbol{x}_i, oldsymbol{x}_j) = (oldsymbol{x}_i^{\mathrm{T}} oldsymbol{x}_j)^d$	d ≥ 1 为多项式的次数
高斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ ^2}{2\sigma^2}\right)$	$\sigma > 0$ 为高斯核的带宽(width)
拉普拉斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ }{\sigma}\right)$	$\sigma > 0$
Sigmoid 核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tanh(\beta \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j + \theta)$	\tanh 为双曲正切函数, $\beta > 0$, $\theta < 0$

基本经验:文本数据常用线性核,

可通过函数组合得到:

情况不明时可先尝试高斯核

若 κ_1 和 κ_2 是核函数,则对任意正数 γ_1 、 γ_2 和任意函数 g(x),

均为核函数
$$\begin{cases} \gamma_1 \kappa_1 + \gamma_2 \kappa_2 \\ \kappa_1 \otimes \kappa_2(\boldsymbol{x}, \boldsymbol{z}) = \kappa_1(\boldsymbol{x}, \boldsymbol{z}) \kappa_2(\boldsymbol{x}, \boldsymbol{z}) \\ \kappa(\boldsymbol{x}, \boldsymbol{z}) = g(\boldsymbol{x}) \kappa_1(\boldsymbol{x}, \boldsymbol{z}) g(\boldsymbol{z}) \end{cases}$$

SVM 与统计学习简史

1963: Vapnik 提出支持向量的概念

1968: Vapnik 和 Chervonenkis 提出 VC 维

1974: 提出结构风险最小化原则

... ... 苏联解体前一年(1990), Vapnik 来到美国

1995: Support Vector Network 文章发表

1995: 《The Nature of Statistical Learning》出版

1998: SVM 在文本分类上取得巨大成功

1998: 《Statistical Learning Theory》出版

... ...

"Nothing is more practical than a good theory"

-- V. Vapnik

V. Vapnik (1936-)

软间隔

现实中很难确定合适的核函数,使训练样本在特征空间中线性可分 即便貌似线性可分,也很难断定是否是因过拟合造成的

引入软间隔 (soft margin), 允许在一些样本上不满足约束

优化目标

基本思路:最大化间隔的同时,

让不满足约束 $y_i(\boldsymbol{w}^T\boldsymbol{x}_i+b) \ge 1$ 的样本尽可能少

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^{m} \ell_{0/1} \left(y_i \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + b \right) - 1 \right)$$

其中 $l_{0/1}$ 是 0/1损失函数 (0/1 loss function):

$$\ell_{0/1}(z) = \begin{cases} 1, & \text{if } z < 0; \\ 0, & \text{otherwise.} \end{cases}$$

障碍: 0/1损失函数非凸、非连续, 不易优化!

替代损失 (surrogate loss)

- 采用替代损失函数,是在解决困难问题时的常见技巧
- 求解替代函数得到的解是否仍是原问题的解?理论上称为替代损失的 "一致性" (consistency)问题

软间隔支持向量机

原始问题

引入"松弛变量" (slack variables) ξ_i

$$\min_{\boldsymbol{w},b,\xi_i} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{i=1}^m \xi_i$$
s.t. $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \geqslant 1 - \xi_i$, $\xi_i \geqslant 0$, $i = 1, 2, \dots, m$.

对偶问题

$$\max_{\boldsymbol{\alpha}} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$
 与"硬间隔SVM"的区别 s.t. $\sum_{i=1}^{m} \alpha_i y_i = 0$, $0 \leqslant \alpha_i \leqslant C$, $i = 1, 2, \ldots, m$.

根据 KKT 条件可知, 最终模型仅与支持向量有关, 也即采用hinge 损失 函数后仍保持了 SVM 解的稀疏性

正则化 (regularization)

统计学习模型 (例如 SVM) 的更一般形式

- □正则化可理解为"罚函数法" 通过对不希望的结果施以惩罚,使得优化过程趋向于希望目标
- □从贝叶斯估计的角度,则可认为是提供了模型的先验概率

如何使用SVM

解决自己特定的任务?

以回归学习为例

基本思路: 允许模型输出与实际输出间存在 2ε 的差别

ε-不敏感(insensitive)损失函数

落入 2ε 间隔带的样本不计算损失

支持向量回归 (SVR)

原始问题

$$\min_{\boldsymbol{w},b,\xi_{i},\hat{\xi}_{i}} \frac{1}{2} \|\boldsymbol{w}\|^{2} + C \sum_{i=1}^{m} (\xi_{i} + \hat{\xi}_{i})$$
s.t.
$$f(\boldsymbol{x}_{i}) - y_{i} \leqslant \epsilon + \xi_{i} ,$$

$$y_{i} - f(\boldsymbol{x}_{i}) \leqslant \epsilon + \hat{\xi}_{i} ,$$

$$\xi_{i} \geqslant 0, \ \hat{\xi}_{i} \geqslant 0 , \ i = 1, 2, \dots, m$$

对偶问题

$$\max_{\boldsymbol{\alpha}, \hat{\boldsymbol{\alpha}}} \sum_{i=1}^{m} y_i (\hat{\alpha}_i - \alpha_i) - \epsilon (\hat{\alpha}_i + \alpha_i) - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} (\hat{\alpha}_i - \alpha_i) (\hat{\alpha}_j - \alpha_j) \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$$

s.t.
$$\sum_{i=1}^{m} (\hat{\alpha}_i - \alpha_i) = 0 , \quad 0 \leqslant \alpha_i, \hat{\alpha}_i \leqslant C$$

预测
$$f(\mathbf{x}) = \sum_{i=1}^{\infty} (\hat{\alpha}_i - \alpha_i) \mathbf{x}_i^{\mathrm{T}} \mathbf{x} + b$$

现实应用中

如何使用SVM?

- 入门级—— 实现并使用各种版本SVM
- 专业级—— 尝试、组合核函数
- 专家级—— 根据问题而设计目标函数、替代损失、 进而……

根据当前任务"度身定制"是关键

表示定理 (Representer Theorem)

核 SVM:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x}) + b = \sum_{i=1}^{m} \alpha_i y_i \kappa(\boldsymbol{x}, \boldsymbol{x}_i) + b$$
 核 SVR: $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x}) + b = \sum_{i=1}^{m} (\hat{\alpha}_i - \alpha_i) \kappa(\boldsymbol{x}, \boldsymbol{x}_i) + b$

无论SVM还是SVR, 学得模型总能表示成核函数的线性组合

更一般的结论(表示定理): 对于任意单调递增函数 $\Omega:[0,\infty]\mapsto\mathbb{R}$ 和任意非负损失函数 $\ell:\mathbb{R}^m\mapsto[0,\infty]$,优化问题

$$\min_{h \in \mathbb{H}} F(h) = \Omega(\|h\|_{\mathbb{H}}) + \ell(h(\boldsymbol{x}_1), h(\boldsymbol{x}_2), \dots, h(\boldsymbol{x}_m))$$
的解总可写为 $h^*(\boldsymbol{x}) = \sum_{i=1}^m \alpha_i \kappa(\boldsymbol{x}, \boldsymbol{x}_i)$

核方法 (Kernel methods)

基于表示定理能得到很多线性模型的"核化"(kernelized)版本

例如 KLDA (Kernelized LDA):

将样本映射到高维特征空间,然后在此特征空间中做线性判别分析

$$\max_{\boldsymbol{w}} J(\boldsymbol{w}) = \frac{\boldsymbol{w}^{\mathrm{T}} \mathbf{S}_{b}^{\phi} \boldsymbol{w}}{\boldsymbol{w}^{\mathrm{T}} \mathbf{S}_{w}^{\phi} \boldsymbol{w}}$$

$$\int h(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x}) = \sum_{i=1}^{m} \alpha_{i} \kappa(\boldsymbol{x}, \boldsymbol{x}_{i})$$

$$\max_{\alpha} J(\alpha) = \frac{\alpha^{\mathrm{T}} \mathbf{M} \alpha}{\alpha^{\mathrm{T}} \mathbf{N} \alpha}$$

"核技巧" (kernel trick) 是机器学习中处理非线性 问题的基本技术之一

前往第七站.....

