Example 3

In $\triangle ABC$, point E is the midpoint of AC. D is on BC and BD=1/3 BC. Show that AD bisects BE.

 $\begin{array}{c} \text{Connect } EF \text{ where } F \text{ is the midpoint of } DC. \\ \text{Since } E \text{ is the midpoint of } AC \text{ and } F \text{ is the midpoint of } DC, AD//EF. \\ \text{Therefore } EF = \frac{1}{2}AD. \end{array}$

In $\triangle BEF, PD//EF, BD = DF$. Therefore PD bisects BE , or in other words, AD bisects BE. Method 2: Draw EG//DC to meet AD at G.

Since point E is the midpoint of AC, by Theorem 2.2, G is the midpoint of AD and $EG = \frac{1}{2}DC$.

We know that BD=1/3BC. So $DC=\frac{2}{3}BC$ and $EG=\frac{1}{2}DC=\frac{1}{2}\times\frac{2}{3}BC=\frac{1}{3}BC=BD$. Thus $\triangle EGP\cong\triangle BDP(EG=BD,\angle GEP=\angle DBP)$ and $\angle GEP=\angle DBP)$. So BP=PE. In other words, AD bisects BE.