

Mathématiques

Classe: BAC

Chapitre: Dérivabilité

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1

(5) 15 min

3 pts

1 / D'après le graphique :

b) Justifier que
$$f'(0) = \frac{1}{2}$$

c) Justifier que
$$\lim_{x\to 1} \frac{f(x) - \frac{3}{2}}{x-1} = \frac{3}{2}$$

2) Soit la fonction
$$g: \mathbb{R} \to \mathbb{R}$$
; $x \to f(x^2 - 2)$ et

$$u: x \rightarrow x^2 - 2$$
.

a) Prouver que la courbe représentative de $\,g\,$ admet une tangente horizontale en son point d'abscisse $\,0\,$.

b) Déterminer $g'(\sqrt{3})$.

Exercice 2

(S) 25 min

5 pts

I/ Soit f une fonction vérifiant :

(1): f est continue sur [a,b] (un intervalle de IR)

(2) : f est dérivable sur]a, b[

(3) : il existe un réel M tel que f(t)≤M pour tout t ∈]a, b[

1) Soit la fonction $u:[a,b]\to IR$; $x\mapsto u(t)=f(t)-f(a)-M(t-a)$ Etudier les variations de u

2) Déduire que f(b)-f(a)≤M(b-a)

II/ Soit f est une fonction définie, continue sur $]0,+\infty[$ et dérivable sur les intervalles]0,2[et $[2,+\infty[$. (C) est la courbe de f dans un repère R. On donne ci-dessous le

Tableau de variation de f' de f.

1/ Déterminer l'extremum de f et l'abscisse du point d'inflexion de (C).

2/ Comparer f(2) et f(4) en justifiant.

3/ Montrer que $f(4) \le 2 + f(2)$.

4/ Dresser le tableau de variation de f sachant que f(1)=2, f(2)=1, f(4)=2, $\lim_{x\to 0^+} f(x)=+\infty$

et
$$\lim_{x\to +\infty} f(x) = -\infty$$
.

5/ On donne de plus $\lim_{x\to +\infty} \frac{f(x)}{x} = -\infty$. Donner l'allure de (C).

Exercice 3

(5) 25 min

5 pts

On donne ci-contre le tableau de variation d'une fonction f dérivable sur IR et vérifiant : $f(0) = \frac{1}{4}$ et pour tout $x \in [-1,1]$, $|f'(x)| \leq \frac{1}{2}$.

- **1°)** Justifier que l'équation f(x) = x admet une solution unique α dans [-1,1].
- **2°)** Soit la suite réelle (u_n) définie sur IN par : $\begin{cases} u_0 = \frac{1}{4} \\ u_{n+1} = f(u_n) \end{cases}$
 - a) Montrer que pour tout $n \in IN$, $-1 \le u_n \le 1$.
 - **b)** Montrer que pour tout $n \in IN$, $|u_{n+1} \alpha| \le \frac{1}{2} |u_n \alpha|$.
 - c) En déduire que pour tout $n \in IN$, $|u_n \alpha| \le 5 \left(\frac{1}{2}\right)^{n+2}$.
 - **d)** Montrer que (u_n) est convergente et déterminer sa limite.
- 3°) Soit $v_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n^2}\right)$, pour tout $n \in IN$. Montrer pour tout $n \in IN$,

$$f\left(\frac{1}{n^2}\right) \le v_n \le f\left(\frac{1}{n}\right)$$
 et en

déduire la limite de (v_n) .

Exercice 4

(\$\) 25 min

5 pts

Soit la fonction f définie sur $]1,+\infty[$ par : $f(x) = \frac{1}{x-1} - \sqrt{x}$.

- 1) Etudier les variations de f sur $]1,+\infty[$ et calculer les limites de f aux bornes de l'intervalle $]1,+\infty[$.
- 2)
- a) Montrer que l'équation f(x) = 0 admet une unique solution α dans $]1,+\infty[$.

- b) Montrer que : $1 < \alpha < 2$.
- 3) Soit la fonction g définie sur $[1,+\infty[$ par $g(x)=1+\frac{1}{\sqrt{x}}$. Montrer que : $g(\alpha)=\alpha$.

4)

- a) Déterminer l'image de l'intervalle $[1,+\infty[$ par la fonction g
- b) Montrer que $\forall x \in [1, +\infty[$ on $a : |g'(x)| \le \frac{1}{2}$.
- c) En déduire que $\forall x \in [1, +\infty[$, on a : $|g(x) \alpha| \le \frac{1}{2} |x \alpha|$.
- 5) Soit la suite U définie sur $\mathbb N$ par $U_0=2$ et $\forall n\in\mathbb N$; $U_{_{n+1}}=g\left(U_{_n}\right)$.
 - a) Montrer que $\forall n \in \mathbb{N}$; $1 \le U_n \le 2$.
 - b) Montrer que $\forall n \in \mathbb{N}$; on a: $|U_{n+1} \alpha| \le \frac{1}{2} |U_n \alpha|$.
 - c) Montrer que $\forall n \in \mathbb{N}$, on a : $|U_n \alpha| \le \left(\frac{1}{2}\right)^n$ et en déduire la limite de suite U.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000