How to Analyze Space Issues Related to PGA and SGA Using AWR Report

Space issues related to **PGA** (**Program Global Area**) and **SGA** (**System Global Area**) can lead to degraded database performance, including excessive disk I/O, contention, and memory-related wait events. The AWR report provides detailed metrics to diagnose such issues.

1. Analyzing PGA Utilization

AWR Sections to Review:

- PGA Memory Statistics
- Instance Efficiency Percentages

Key Metrics and Indicators:

- 1. PGA Target vs. PGA Allocated:
 - Example AWR Output:

PGA Aggr Target Stats

Aggregate PGA Target Parameter: 2,048 MB Aggregate PGA Auto Target: 1,800 MB PGA Memory Allocated: 2,150 MB Maximum PGA Allocated: 2,400 MB

Analysis:

 PGA Memory Allocated (2,150 MB) exceeds the target (2,048 MB), indicating PGA memory pressure.

2. Over-allocated Count:

Example AWR Output:

Over-Allocated Count: 120

Analysis:

 A high over-allocated count suggests frequent allocation beyond the PGA target, forcing operations to use disk.

3. PGA Cache Hit Ratio:

Example AWR Output:

PGA Cache Hit %: 75.2

Analysis:

 A cache hit ratio below 90% means a significant number of memory operations are spilling to disk.

2. Analyzing SGA Utilization

AWR Sections to Review:

- SGA Memory Summary
- Buffer Cache Advisory
- Shared Pool Statistics

Key Metrics and Indicators:

- 1. SGA Target vs. Allocated:
 - o Example AWR Output:

SGA Target Size: 4,096 MB

SGA Memory Allocated: 4,200 MB

Analysis:

 SGA Memory Allocated exceeds the target, indicating memory contention.

2. Shared Pool Free Memory:

Example AWR Output:

Shared Pool Statistics: Free Memory: 15 MB Shared Pool Size: 800 MB

Analysis:

• Low free memory (< 50 MB) in the shared pool can lead to frequent flushing, affecting query performance.

3. Buffer Cache Advisory:

Example AWR Output:

Buffer Cache Advisory Size Factor: 1.0

Estimated Physical Reads: 2,500,000

Analysis:

 High physical reads (> 1,000,000) suggest insufficient buffer cache, leading to excessive disk I/O.

3. Reviewing Instance Efficiency Percentages

AWR Section to Review:

• Instance Efficiency Percentages

Key Metrics and Indicators:

- 1. Buffer Cache Hit Ratio:
 - Example AWR Output:

Buffer Cache Hit Ratio: 82.5%

Analysis:

• A buffer cache hit ratio below 90% indicates inadequate buffer cache, leading to excessive physical reads.

2. Library Cache Hit Ratio:

Example AWR Output:

Library Cache Hit Ratio: 85%

Analysis:

 A low ratio (< 90%) indicates frequent hard parsing, often due to shared pool memory pressure.

4. Reviewing Wait Events

AWR Sections to Review:

• Top 10 Foreground Events

Wait Class: Memory

Key Metrics and Indicators:

• Example AWR Output:

Top Foreground Wait Events					
Event	Waits Time (s) Avg Wait (ms)				
latch: shared pool	50,000 5,000 100				
free buffer waits	10,000 2,000 200				

Analysis:

- o The latch: shared pool event indicates contention for shared pool memory.
- o The free buffer waits event points to insufficient buffer cache.

5. Analyzing Temporary Tablespace Usage

AWR Sections to Review:

- Temporary Tablespace Statistics
- Segment Statistics

Key Metrics and Indicators:

- 1. Temporary Tablespace Usage:
 - Example AWR Output:

Temporary Tablespace Stats Temp Tablespace Size: 2,000 MB Temp Space Used: 1,950 MB

Analysis:

 High temporary tablespace usage indicates sorts or hash joins spilling to disk due to insufficient PGA.

Consolidated Table for Analysis

Metric/Indicator	AWR Section	Threshold	Conclusion
PGA Allocated vs.	PGA Memory	Allocated >	Insufficient PGA memory,
Target	Statistics	Target	causing disk spills.
Over-allocated	PGA Memory	> 0	Frequent allocations
Count	Statistics		beyond PGA target indicate
			memory pressure.
PGA Cache Hit Ratio	PGA Memory	< 90%	Low ratio indicates
	Statistics		excessive disk I/O due to
			inadequate PGA.
SGA Allocated vs.	SGA Memory	Allocated >	Insufficient SGA memory,
Target	Summary	Target	leading to contention.
Free Memory in	Shared Pool	< 50 MB	Low free memory indicates
Shared Pool	Statistics		flushing and hard parsing.
Buffer Cache Hit	Instance	< 90%	High disk I/O due to
Ratio	Efficiency		inadequate buffer cache.
	Percentages		
Library Cache Hit	Instance	< 90%	Excessive hard parsing,
Ratio	Efficiency		indicating shared pool
	Percentages		pressure.
Wait Events: latch:	Top Foreground	High Waits	Contention in shared pool
shared pool	Wait Events		memory.
Wait Events: free	Top Foreground	High Waits	Insufficient buffer cache,
buffer waits	Wait Events		leading to wait events.
Temporary	Temporary	Temp Space	High usage indicates PGA
Tablespace Usage	Tablespace	Used ≈ Temp	pressure and disk spills.
	Statistics	Size	

By systematically analyzing the above sections and metrics in the AWR report, you can effectively diagnose and conclude potential space issues related to PGA and SGA. For resolution, consider tuning memory parameters such as **PGA Target Size**, **SGA Target Size**, and optimizing query execution plans to reduce memory usage.