Algébre Linéaire

March 17, 2023

7 madox

Contents

1	Les Espaces Vectoriels							
	1.1	Introd	uction					
		1.1.1	Définitions:					
		1.1.2	Exemples:					
		1.1.3	Propriétés:					
	1.2	Sous-e	space vectoriel					
		1.2.1	Définition:					
		1.2.2	Caracterisation:					
		1.2.3	Sous-espace vectoriel engendré					
		1.2.4	Somme de Sous-espaces vectoriels					
		1.2.5	Intersubsection de Sous-espaces vectoriels					
		1.2.6	Supplémentaire de Sous-espaces vectoriels					
		1.2.7	Produit Cartésien de Sous-espaces vectoriels					
	1.3	Famill	e de Vecteurs					
		1.3.1	Famille génératrice					
		1.3.2	Famille libre, liée					
		1.3.3	Base d'un espace vectoriel					
	1.4	Dimen	sion					
		1.4.1	Théorème d'existence de base:					
		1.4.2	Théorème de la base incomplète:					
		1.4.3	Proposition:					
		1.4.4	Proposition:					
		1.4.5	Formule de Grassman:					
2	Les	Applic	cations Linéaires 21					
	2.1		tions					
		2.1.1	Application Linéaire:					
		2.1.2	Noyau, Image:					
	2.2	Caract	terisation par les bases:					
		2.2.1	Théorème:					
		2.2.2	Théorème:					
	2.3		tions, Symétries:					
	-	2.3.1	Projecteurs:					
		2.3.2	Symétrie:					

4 CONTENTS

	2.4	L'espace $L(E,F)$:						
		2.4.1	Théorème:	25				
	2.5	Rang:		25				
		2.5.1	Définition:	25				
		2.5.2	Théorème:	26				
		2.5.3	Théorème du rang:	26				
	2.6	Stabili	té:	26				
	2.7		ces:	27				
		2.7.1	Projecteurs:	27				
		2.7.2	Lemmes de factorisation:	27				
		2.7.3	Inégalité de Sylvester:	27				
		2.7.4	Endomrophismes particuliers:	28				
	2.8		éments:	28				
		2.8.1	Drapeaux:	28				
		2.8.2	Espace vectoriel quotient:	28				
		2.8.3	L'espace L(E):	29				
		2.0.0	L'espace E(L)	2.				
3	Les	Matri	ces	31				
	3.1	Généra	alités:	31				
		3.1.1	Définition:	31				
		3.1.2	Opérations sur les matrices:	32				
		3.1.3	Matrices élémentaires:	32				
		3.1.4	$\operatorname{Mn}(K)$	33				
	3.2	Matric	te d'une application linéaire	36				
	_	3.2.1	Définition:	36				
		3.2.2	Théorème:	36				
		3.2.3	Proposition:	37				
		3.2.4	Corollaire:	37				
	3.3	-	ement de bases:	37				
	0.0	3.3.1	Définition:	37				
		3.3.2	Remarque:	37				
		3.3.3	Proposition:	38				
	3.4	Rang:		38				
	0.4	3.4.1	Définition:	38				
	3.5	-	alence, similitude et trace:	39				
	5.5	3.5.1		39				
		3.5.1	Equivalence:	39				
			Similitude:	39				
	2.6	3.5.3	Trace					
	3.6		e définie par bloc	40				
	3.7		ces:	40				
	3.8		éments:	40				
		3.8.1	Matrice diagonalement dominantes -HP	40				
1	Dát	onmins	ants	43				
±	Det	Déterminants 4						
5	Compléments: Dualité et $Gl_n(K)$							

CONTENTS 5

6	PRO	OBLE	MES	47
	6.1	Traces	:	47
		6.1.1	Matrice de trace nulle	47
		6.1.2	Traces modulo p	47
	6.2	Formu	le de Burnside, Théorème de Mashke(après matrice hehe-	
		hehe).		48
	6.3		tion:	48
	6.4	Famille	e positivement génératrice:	48
	6.5		position de Fitting	48
	6.6		é de Sylvester, Identité de Jacobi	49
	6.7	Dual d	le $\operatorname{Mn}(K)$	49
	6.8		sation du $\operatorname{GLn}(K)$	50
	6.9		ection des hyperplans avec $GLn(K)$	50
			vation de similitude par passage vers un surcorps	50
	6.11		sion maximale d'un sous-espace vectoriel de $M_n(K)$ de	
				51
	6.12	Décom	aposition de Bruhat	51
7	Réd	uction	des endomorphismes et matrice carrées	53
•	7.1		alités:	53
		7.1.1	Elements propres d'un endomorphisme et de matrice carrée	
		7.1.2	Polynome caractéristique	55
		7.1.3	Diagonalisation	56
		7.1.4	Trigonalisation	57
		7.1.5	Réduction simultanée-HP	58
	7.2		ome d'endomorphisme, et de matrice carrée	58
	• • •	7.2.1	Généralités	58
		7.2.2	Polynôme minimal	59
		7.2.3	Théorème de Cayley-Hamilton	61
		7.2.4	Sous-espace caractéristiques	61
	7.3		ces	62
		7.3.1	Techniques de Diagonalisation	62
	7.4	Compl	éments	62
		7.4.1	Matrice circulantes	62
		7.4.2	Matrice de Toeplitz	63
		7.4.3	Matrice de Hankel	63
		7.4.4	Matrice monotones	64
		7.4.5	Matrices de transvections et de dilatation	64
		7.4.6	Dunford	64
		7.4.7	Jordan	64
		7.4.8	Frobenius	64
		7.4.9	Simplicité	64
		7.4.10	Nilpotence	64
		7.4.11	Stochastique	64

6 CONTENTS

Chapter 1

Les Espaces Vectoriels

1.1 Introduction

Un espace vectoriel est une structure algébrique stable par addition interne (de vecteurs) et par multiplication externe (par un scalaire).

1.1.1 Définitions:

Définition

Soit E un ensemble non vide, et (K,+,x) un corps dont le neutre pour la loi "+" est noté, et pour la loi "x" est noté .

On note l'ensemble E muni d'une loi interne " + " et d'une loi externe " \cdot " ."

On dit que est un K-espace vectoriel lorsque :

- i) (E,+) forme un groupe abélien, dont l'élément neutre, noté 0_E , est appelé le vecteur nul.
- ii) La loi est distributive par rapport à la loi + :

$$\forall \lambda \in K, \forall (x, y) \in E^2, \lambda.(x + y) = (\lambda.x) + (\lambda.y)$$

iii)
$$\forall (\lambda, \mu) \in K^2, \forall x \in E, (\lambda + \mu).x = (\lambda . x) + (\mu . x)et(\lambda * \mu).x = \lambda . (\mu . x)$$

iv)
$$\forall x \in E, 1_K.x = x$$

Les éléments de E s'appellent des vecteurs et les éléments de K des scalaires.

1.1.2 Exemples:

 $(R^2, +, *)$ est un R-espace vectoriel, en effet:

• (i): $(R^2, +)$ est un groupe abélien de neutre (0,0).

• (ii): Soient $\lambda \in R$, $(x,y) \in R^2 * R^2$ tel que $x = (x_1,x_2)$ et $y = (y_1,y_2)$, on a :

$$\lambda(x+y) = \lambda(x_1 + y_1, x_2 + y_2)$$

$$\Leftrightarrow = (\lambda x_1 + \lambda y_1, \lambda x_2 + \lambda y_2)$$

$$\Leftrightarrow = ((\lambda x_1, \lambda x_2) + (\lambda y_1, \lambda y_2))$$

$$\Leftrightarrow = \lambda(x_1, x_2) + \lambda(y_1, y_2)$$

$$\Leftrightarrow = (\lambda x_1 + \lambda x_2) + (\lambda x_2 + \lambda x_2)$$

$$\Leftrightarrow = (\lambda x_1 + \lambda x_2) + (\lambda x_2 + \lambda x_2)$$

• (iii): Soient $(\lambda, \mu) \in \mathbb{R}^2, x \in \mathbb{R}^2$ tel que $x = (x_1, x_2)$ on a:

$$(\lambda + \mu).x = (\lambda + \mu).(x_1, x_2)$$

$$\Leftrightarrow = (\lambda.x_1 + \mu.x_1, \lambda.x_2 + \mu.x_2)$$

$$\Leftrightarrow = (\lambda.x_1, \lambda.x_2) + (\mu.x_1, \mu.x_2)$$

$$\Leftrightarrow = (\lambda.x) + (\mu.x)$$

$$(\lambda * \mu).x = (\lambda * \mu.x_1, \lambda * \mu.x_2)$$

$$\Leftrightarrow = \lambda.(\mu.x_1, \mu.x_2)$$

(Car la multiplication est associative dans R.)

(iv) Soit
$$x \in R^2$$
 tel que $x=(x_1,x_2)$ on a:
$$1_R.x=1.x=(1.x_1,1.x_2)=(x_1,x_2)=x. \text{ (Car } x_1,x_2 \text{ sont dans R.)}$$

Donc $(R^2, +, .)$ est un R-espace vectoriel, on peut visualiser cet espace et illustrer les proposition et les theorèmes qu'on va étudier sur cet espace, on peut également les illustrer à travers le R-espace vectoriel $(R^3, +, .)$ pour lequel la démonstration est similaire à ce qu'on a déja fait.

Illustration (vecteur, addition, par scalaire)

1.1.3 Propriétés:

Propriétés

- $\forall \lambda \in K, \forall x \in E, \lambda.x = 0 \Leftrightarrow \lambda = 0_K \text{ ou } x = 0_E.$
- $\forall x \in E, (-1_K).x = -x.$ $(-1_K \text{ est l'opposé de } 1_K \text{ dans K et -x est l'opposé de x dans E.})$

Remarque: On verra lors de l'étude de l'algebre linéaire plusieurs exemples d'espaces vectoriels dont on va détaillera l'étude et les propriétés prochainement.

1.2 Sous-espace vectoriel

1.2.1**Définition:**

Définition

Soit E un K-espace vectoriel et F une partie de E, F est un sous-espace vectoriel si la restriction des lois "+", "." sur F lui confère la structure d'un espace vectoriel, c'est à dire, si F est aussi un K-espace vectoriel.

Exemples: Si E est un K-espace vectoriel alors E et $\{0_E\}$ sont les deux des sous espaces vectoriels de E.

1.2.2Caracterisation:

Caractérisation:

oit F une partie de E. On peut montrer que F est un sous-espace vectoriel de E si les conditions suivantes sont réalisées:

 $i)F \neq .$

ii) $\forall (x, y) \in E, \forall (\lambda, \mu) \in K, \lambda.x + \mu.y \in F.$

Remarque: 0_E est dans F et $0_F = 0_E$, généralement, on montre qu'un ensemble est un sous-espace vectoriel d'un K espace vectoriel en utilisant cette caractérisation en commencant par montrer que 0_E est dans F, souvent on montre aussi qu'un ensemble est un K espace vectoriel en montrant qu'il est en effet un sous-espace vectoriel d'un K espace vectoriel usuel.

Exemples:

Sous-espace vectoriel engendré 1.2.3

Combinaison linéaire

Soit I un ensemble eventuellement infini.

Définition

On appelle combinaison linéaire d'éléments de la famille de vecteurs $(x_i)_{i\in I}$ tout vecteur v de E tel qu'il existe une famille de scalaires $(\lambda_i)_{i\in I}\in K$ tel que les $(\lambda_i)_{i\in I}$ sont nuls sauf un nombre fini d'entre eux et qu'elle vérifie $v = \sum_{i \in I} \lambda_i x_i$.

Exemples:-illus Soient (0,1), (3,2), (5,1) trois vecteurs du -espace vectoriel \mathbb{R}^2 , alors (-1,-3/5) est une combinaison linéaire de ces vecteur, en effet on a:

 $(1,-1,2/5)\in R$ tels que (-1,-3/5)=1*(0,1)-1*(-3,2)+2/5*(5,1) S-ev engendré par une famille de vecteurs

Définition

On appelle sous-espace vectoriel de E engendré par la famille $(x_i)_{i\in I}$, qu'on note $\mathrm{Vect}\,((x_i)_{i\in I})$: l'ensemble des combinaisons linéaires d'éléments de $(x_i)_{i\in I}(x_i)_{i\in I}$:

$$\operatorname{Vect}((x_i)_{i \in I}) = \left\{ \sum_{i \in I} \lambda_i x_i \mid (\forall i \in I), \lambda_i \in K \right\}.$$

L'ensemble $\text{Vect}((x_i)_{i \in I})$ est, au sens de l'inclusion, le plus petit sousespace vectoriel de E contenant tous les x_i .

Exemples: -illus S-ev engendré par une partie

Définition

Soient E un espace vectoriel sur K et $A \subset E$.

On appelle sous-espace vectoriel engendré par A, et l'on note $\mathrm{Vect}(A)$ l'ensemble de toutes les combinaisons linéaires d'éléments de A:

$$\operatorname{Vect}(A) = \left\{ \sum_{i=1}^{n} \lambda_i . a_i \mid n \in \mathbb{N}, (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, (a_1, \dots, a_n) \in \mathbb{A}^n \right\}$$

Il s'agit, au sens de l'inclusion, du plus petit espace vectoriel contenant A.

Exemples-illus

11

1.2.4 Somme de Sous-espaces vectoriels

Définition

Soient FetG deux sous-espaces vectoriels de E. On définit la somme de Fet G comme l'ensemble :

$$F+G=\{u+v\mid (u,v)\in F\times G\}.$$

Remarque: $F + G = \text{Vect}(F \cup G)$.

Exemples-illus

1.2.5 Intersubsection de Sous-espaces vectoriels

Proposition

Toute intersubsection de sous-espaces vectoriels de E est un sous-espace vectoriel de E.

Démonstration: Soient E un K-espace vectoriel, F et G deux sous espaces vectoriel de E,

- i) puisque F et G sont deux sous espaces vectoriel de E , $0_E \in F$ et $0_E \in G$ donc $0_E \in F \cap G$ donc $F \cap G \neq$.
- ii) Soient $(x, y, \lambda) \in F \cap G * F \cap G * K$, on a $(x, y, \lambda) \in F * F * K$ donc $x + \lambda y \in F$ car F est un sous espace vectoriel de E, De même $(x, y, \lambda) \in G * G * K$ donc $x + \lambda y \in G$ car G est un sous espace vectoriel de E, donc $x + \lambda y \in F \cap G$.

Donc d'après la caractérisation des sous espaces vectoriel on déduit que $F \cap G$ est un sous espace vectoriel de E.

Pour une intersubsection de plus de deux sous espaces vectoriel , on montre la proposition en utilisant la récurrence sur le nombre des sous espaces vectoriel, en fait l'hérédite se montre exactement comme on a fait ci-dessus.

Remarque: Cette dernière n'est pas toujours vraie pour la réunion.

Proposition-HP

Si K est un corps commutatif et E un K-espace vectoriel et F et G deux sous espaces vectoriel de E tel que $F \cup G$ est un sous espace vectoriel de E, alors $F \subset G$ ou $G \subset F$.

Démonstration: Raisonnement par absurde:

Soient K est un corps commutatif et E un K-espace vectoriel et F et G deux sous espaces vectoriel de E tel que $F \cup G$ est un sous espace vectoriel de E,

Supposons le contraire de " $F \subset G$ ou $G \subset F$ ", c'est à dire " $F \not\subset G$ et $G \not\subset F$ " alors il existe $x \in F, x \notin G$ et $y \in G, y \notin F$.

On a $x+y\in F\cup G$ donc $x+y\in F$ ou $x+y\in G$ Si $x+y\in F$, puisque $x\in F, -x\in F,$ donc $x+y+(-x)=x+y-x=y\in F,$ ce qui est absurde. De même si $x+y\in G,$ on obtient $x\in G,$ ce qui est aussi absurde.

Donc dans tous les cas , par raisonemment par absurde on obtient $F\subset G$ ou $G\subset F.$

1.2.6 Supplémentaire de Sous-espaces vectoriels

Définition

Deux sous-espaces vectoriels F et G de E sont dits supplémentaires si F+G=E et $F\cap G=\{0\}$ autrement dit : si $E\subset F+G$ et $F\cap G\subset \{0\}$ On note alors $E=F\oplus G$.

Exemples-illus

1.2.7 Produit Cartésien de Sous-espaces vectoriels

Définition

Soient E et F deux K-espaces vectoriels.

On définit l'espace produit de E et F comme l'ensemble produit $E\times F$, muni des deux lois suivantes, qui en font un K-espace vectoriel :

$$(x,y) +_{E \times F} (x',y') := (x +_E x', y +_F y')$$
 et $\lambda \cdot_{E \times F} (x,y) := (\lambda \cdot_E x, \lambda \cdot_F y)$

Exemples:

1.3 Famille de Vecteurs

1.3.1 Famille génératrice

Définition

La famille $(x_i)_{i\in I}$ est dite génératrice de E si $E = \text{Vect}((x_i)_{i\in I})$. Cela équivaut à dire que tout vecteur de E s'exprime comme combinaison linéaire de la famille $(x_i)_{i\in I}$:

$$\forall v \in E \quad \exists (\lambda_i)_I \in K^{Card(I)} \quad v = \sum \lambda_i x_i$$

Remarque: Si A est une partie de E et E = Vect(A), on dit que A est une partie génératrice de E.

Exemples:

• fonctions.

1.3.2 Famille libre, liée

Définitions:

Définitions

On dit que la famille $(x_i)_{i\in I}$ est libre, ou que les vecteurs x_i sont linéairement indépendants, si aucun vecteur n'est combinaison linéaire des autres vecteurs.

Cela équivaut à dire que :

$$\forall (\lambda_i)_{i \in I} \in K^{Card(I)} \quad \sum \lambda_i x_i = 0 \Rightarrow \forall i \in I \quad \lambda_i = 0.$$

Une famille qui n'est pas libre est dite liée. Elle est donc liée si un vecteur est une combinaison linéaire des autres dans , c'est-à-dire :

$$\exists (\lambda_i)_{i \in I} \in K^{Card(I)} \quad \sum \lambda_i x_i = 0 \text{ et } (\lambda_i)_{i \in I} \neq (0).$$

Exemples : (3 classiques de gourdon) avec dem Dans le R-espace vectoriel des fonctions continues de R dans R, les familles suivantes sont des familles libres:

- i) $(f_{\lambda})_{{\lambda} \in R}$ oû $f_{\lambda} : R \to R \ x \mapsto \exp({\lambda} x)$.
- ii) $(f_{\lambda})_{{\lambda} \in R}$ oû $f_{\lambda} : R \to R \ x \mapsto \cos(\lambda x)$.
- iii) $(f_{\lambda})_{{\lambda} \in R}$ oû $f_{\lambda} : R \to R \ x \mapsto |x \lambda|$.
- iv) $(f_k)_{\in N}$ où $f_n: R \to R \ x \mapsto \cos(x^n)$.

Soit K un sous corps de C, dans le K-espace vectoriel K[X], la famille $(1, X, ..., X^{n-p-1}, P(X), P(X+1), ..., P(X+p))$ avec $P \in K[X]$ de degré $n \ge 1$ et $p \in [|0, n|]$, est libre quelque soit $p \in [|0, n|]$.

Démonstration:

i) On note le R-espace vectoriel par E et on montre par absurde que la famille est libre.

On suppose que la famille $(f_{\lambda})_{\lambda \in R}$ oû $f_{\lambda}: R \to R$ $x \mapsto \exp(\lambda x)$ est liée. On aura donc:

 $\exists (\lambda_i)_{1 \leq i \leq n} \in R^n, \exists (\mu_i)_{1 \leq i \leq n} \in R^n, \text{ avec les } \mu_i \text{ sont non tous nuls telles que}$

$$\sum_{1 \le i \le n} \mu_i \lambda_i = 0_E$$

On indexe les λ_i de sorte que $\lambda_i \leq \lambda_j$ si $j \leq i$, c'est à dire: $\lambda_n \leq ... \leq \lambda_1$.

Soit $k \in [|1, n|]$ tel que $k = min\{\{1, ..., n\} | \mu_i \neq 0_R\}$

 $Lim_{x\to +\infty}exp(-\lambda_1 x)\sum_{i=k}^n \mu_i exp(\lambda_i x) = \sum_{i=k}^n \mu_i exp(\lambda i - \lambda_1) = \mu_1.$ car pour tout $i\geq 2, \lambda_i-\lambda_1\leq 0.$. Or $\sum_{i=k}^n \mu i f_{\lambda_i} = 0$,, donc $u_1=0$, ce qui est absurde.

On conclut par raisonnement par absurde que la famille $(f_{\lambda})_{{\lambda} \in R}$ oû $f_{\lambda}: R \to R \ x \mapsto \exp(\lambda x)$ est libre.

La famille $(f_{\lambda})_{{\lambda}\in R}$ oû $f_{\lambda}: R\to R$ $x\mapsto \cos{(\lambda x)}$ étant libre est équivalent à

$$\forall (\mu_i) \in K^{Card(I)} \sum_{i \in I} \mu_i x_i = 0 \Rightarrow \forall \in I, \mu_i = 0.$$

l'ensemble I qui indexe les μ_i contient qu'un nombre fini d'éléments non nuls qu'on note $n \in N^*$ donc $(\mu_i)_{i \in I} = (\mu_i)_{i \in [|1,n|]}$,

On conclut donc qu montrer que la liberté de la famille est équivalent à montrer que :

$$\begin{array}{l} P: \forall n \in N^*, \forall (\lambda_i)_{i \in [|1,n|]} \in R^n \ \forall (\mu_i)_{i \in [|1,n|]} \in R^n \sum_{i=1}^n \mu_i f_{\lambda_i} = 0_E \\ \Rightarrow \forall i \in [|1,n|], \mu_i = 0_R \end{array}$$

Or le cos étant paire on va prendre (les λ_i distincts dans R^+). On montrera alors cette proposition par récurrence simple sur $n \in N^*$

Initialisation: P(1)

Pour n=1, soient $(\lambda_1, \mu_1) \in \mathbb{R}^2$ telles que $\mu_1 f_{\lambda_1} = 0_E$, on a donc $\forall x \in$ $R, \mu_1.\cos \lambda_1 x = 0_R$, pour $x = 0, \cos(0) = 1$ donc $\mu_1 = 0_R$).

On a montré donc

$$\forall \mu_1 \in R, \forall \lambda_1 \in R^+, (\mu_1 f_{\lambda_1} = 0_E) \Rightarrow (\mu_1 = 0_R).$$

Hérédité: $P(n) \Rightarrow P(n+1)$

Soit $n \geq 1$, supposant la proposition vraie au rang n, et montrons la au rang

Soient $(\mu_i)_{i \in [|1,n+1|]}$ et $(\lambda_i)_{i \in [|1,n+1|]}$ telles que

 $\sum_{i \in [|1, n+1|]} \mu_i f_{\lambda_i} = 0_E$

Par double dérivation et puisque (les λ_i distincts dans R^+) on a:

 $\sum_{i=1}^{n+1} \mu_i(-\lambda_i^2) f_{\lambda_i} = 0_E \ (1)$

et par multiplication par $\lambda_n^2:\sum_{i=1}^{n+1}\mu_i(\lambda_n^2)f_{\lambda_i}=0_E$ (2) On ajoute (1) et (2) et on obtient $\lambda_{n+1}^2:\sum_{i=1}^n\mu_i(\lambda_{n+1}^2-\lambda_i^2)f_{\lambda_i}=0_E$ D'après l'hypothèse de la récurrence "P(n)", on a :

 $\forall i \in [|1, n|], \mu_i(\lambda_{n+1}^2 - \lambda i^2) = 0_R$

Et puisque les λ_i distincts dans R^+ on déduit que :

 $\forall i \in [|1, n|], \mu_i = 0_R$

Donc $\sum_{i \in [|1,n+1|]} \mu_i f_{\lambda_i} = 0_E$ devient $\mu_{n+1} f_{\lambda_{n+1}} = 0_E$ ce qui veut dire $\forall x \in R, \mu_{n+1} f_{\lambda_{n+1}}(x) = 0_R$ donc $\mu_{n+1} = 0_R$.

Donc $\forall i \in [|1, n+1|], \mu_i = 0_R$

On a montré que , en supposant que P(n) est vraie on déduit que : $\sum_{i \in [1,n+1]} \mu_i f_{\lambda_i} =$ $0_E \Rightarrow \forall i \in [|1, n+1|], \mu_i = 0_R$

Finalement par raisonnement par récurrence :

La famille $(f_{\lambda})_{{\lambda}\in R}$ oû $f_{\lambda}: R\to R$ $x\mapsto \cos(\lambda x)$ est libre.

On montrerai par absurde que la famille $(f_{\lambda})_{{\lambda}\in R}$ oû $f_{\lambda}: R \to R \ x \mapsto |x-\lambda|$ est libre.

Supposant que la famille $(f_{\lambda})_{\lambda \in R}$ est liée, alors comme précédemment la libérté de la famille étant équivalent à

 $P: \forall n \in N^*, \forall (\lambda_i)_{i \in [[1,n]]} \in \mathbb{R}^n \ \forall (\mu_i)_{i \in [[1,n]]} \in \mathbb{R}^n \sum_{i=1}^n \mu_i f_{\lambda_i} = 0_E \Rightarrow \forall i \in \mathbb{R}^n$ $[|1, n|], \mu_i = 0_R$

On supposera:

 $P(bar): \exists n \in N^*, \exists (\lambda_i)_{i \in [|1,n|]} \in R^n, \exists (\mu_i)_{i \in [|1,n|]} \in R^n \sum_{i=1}^n \mu_i f_{\lambda_i} = 0_E \text{ et les}$ μ_i non tous nuls.

D'après la proposition il existe $\lambda_0 \in R$ tel que f_{λ_0} est combinaison linéaire des

 $(f_{\lambda})_{\lambda \in R - \{\lambda_0\}}$ ce qui est équivalent à : $\exists n \in N^*, \exists (\lambda_i)_{i \in [|1,n|]} \in R^n - \{\lambda_0\}, \exists (\mu_i)_{i \in [|1,n|]} \in R^n f_{\lambda_0} = \sum_{i=1}^n \mu_i f_{\lambda_i}$ Pour tout $\lambda \in R$ la fonction de R dans R $x \mapsto |x - \lambda|$ est dérivable en tout $x \neq \lambda$ donc $\forall i \in [|1, n|], f_{\lambda_i}$ est dérivable sur λ_0 car $\forall i \in [|1, n|], \lambda_0 \neq \lambda_i$

Cependant, par addition de fonction dérivable au même point et multiplication par scalaires $\sum_{i=1}^{n} \mu_i f_{\lambda_i}$ est dérivable en λ_0 or $f_{\lambda_0} = \sum_{i=1}^{n} \mu_i f_{\lambda_i}$ donc f_{λ_0} est dérivable en λ_0 ce qui est absurde.

Finalement on a montré que la proposition $P: \forall n \in N^*, \forall (\lambda_i)_{i \in [|1,n|]} \in \mathbb{R}^n$ $\forall (\mu_i)_{i \in [[1,n]]} \in \mathbb{R}^n \sum_{i=1}^n \mu_i f_{\lambda_i} = 0_E \Rightarrow \forall i \in [[1,n]], \mu_i = 0_R \text{ est vraie, donc}$

La famille $(f_{\lambda})_{{\lambda}\in R}$ oû $f_{\lambda}: R \to R \ x \mapsto |x-\lambda|$ est libre.

1.3.3 Base d'un espace vectoriel

Définition

Une famille $(e_i)_{i\in I}$ de vecteurs de E est une base de E si et seulement si elle est libre et génératrice de E.

Ce qui est équivalent à:

Tout vecteur de E s'écrit comme une combinaison linéaire unique des e_i

$$\forall v \in E \quad \exists ! (\lambda_i)_{i \in I} \in K^{Card(I)} \quad v = \sum \lambda_i e_i$$

Les $(\lambda_i)_{i\in I}$ sont tous nuls sauf un nombre fini, et sont alors appelées les coordonnées de v dans la base $(e_i)_{i \in I}$.

Exemple:

- (1,i) est une base du R-espace vectoriel (C,+,.).
- il existe une certaine type de base dit priviligée qui s'appele base canonique, elle apparait comme la base la plus simple pour un espace vectoriel: Soit $n \in {}^*$, la base canonique du R-espace vectoriel n est $B_c =$

1.4. DIMENSION 17

 $(e_1, e_2, \ldots, e_n \text{ avec } \forall i \in [|1, n|], e_i = (0, \ldots, 1, \ldots, 0)$, le 1 étant le i-ème coefficient du vecteur e_i , tout simplement e_i est le vecteur dont tous ces coefficients sont nuls sauf le i-ème qui égale à 1.

Cette base parait celle la plus naturelle à considérer, en fait prenant l'exemple de $(R^3,+,.)$ un vecteur de ce dernier s'écrit sous la forme : (a,b,c) avec $a,b,c\in R$ donc :

$$(a, b, c) = a * (1, 0, 0) + b * (0, 1, 0) + c * (0, 0, 1)$$

du coup la base canonique de $(R^2, +, .)$ est $((1,0,0), (0,1,0), (0,0,1)), e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)$, il faut bien retenir et comprendre la base canonique car elle est utilisée extensivement en algébre linéaire.

Théorème

Si E est un espace vectoriel engendré par une famille de vecteurs finie $(x_i)_{i\in[[1,n]]}, n\in N^*$, alors:

- i) Toute famille libre a au plus n vecteurs.
- ii) Toute famille génératrice a au moins n vecteurs.

Démonstration

1.4 Dimension

Définition

Un espace vectoriel est dit de dimension finie s'il existe un famille génératrice finie de celui ci, dans le cas contraire , on parle d'espace vectoriel de dimension infinie.

Remarque: Il faut faire attention au corps de base de l'espace vectoriel car il agit sur la dimension , par exemple (,.,+ est un espace vectoriel de dimension 2 si on le voit en tant que R-espace vectoriel, en fait sa base est (1,i), cependant en tant qu'un C-espace vectoriel , il est de dimension 1.

On aborde cette remarque avec plus de détail dans les subsections concernant la notion hors programme d'extension de corps.

Exemples:

• Soit $n \in *$ alors $(R^n, +, *)$ est de dimension n.

1.4.1 Théorème d'existence de base:

Théorème d'existence de base

Soit E un espace de dimension finie, si $G=(x_i)_{i\in I}$ est une famille génératrice de E et il existe $J\in I$ pour laquelle la famille $L=(x_i)_{i\in J}$ est libre, alors il existe une base B de E tq $L\subset B\subset G$

Démonstration:

1.4.2 Théorème de la base incomplète:

Théorème de la base incomplète

Soit E un K-espace vectoriel de dimension finie,

De toute famille génératrice de E, on peut en extraire une base en prenant les vecteurs linéairement indépendants.

Toute famille libre de E peut être complétée en une base, en ajoutant des vecteurs qui ne sont pas une combinaison linéaire des vecteurs de la famille libre.

Définition

Soit E un K-espace vectoriel de dimension finie, toutes les bases de E ont le même cardinal qu'on note $\dim_K E$.

Par convention : $dim_K E = 0$ pour $E = \{0\}$.

1.4.3 Proposition:

Proposition

Soit E un K-espace vectoriel de dimension $n \in {}^*$:

Toute famille de n vecteurs libre de est une base de E.

Toute famille de n vecteurs génératrice est une base de E.

Démonstration:

1.4.4 Proposition:

Proposition

Soit E un K-espace vectoriel de dimension finie et F un sous espace vectoriel de E alors:

 $dim_K E \leq dim_K F$.

Cas d'égalité: Si $dim_K E = dim_K F$, on a E = F.

1.4. DIMENSION 19

Démonstration:

1.4.5 Formule de Grassman:

Formule de Grassman

Soit E un K-espace vectoriel et E_1 et E_2 deux sous espace vectoriels de E alors E_1+E_2 est aussi un sous espace vectoriel de E et on a la formule suivante:

$$dim_K E_1 dim_K E_2 = dim_K (E_1 + E_2) - dim_K (E_1 \cap E_2)$$

$$\begin{array}{l} dim_K E = dim_K E_1 + dim_K E_2 \text{ et } E_1 \cap E_2 = \{0\}. \\ \Longleftrightarrow \quad dim_K E = dim_K E_1 + dim_K E_2 \text{ et } E = E_1 + E_2 \iff E = E_1 \oplus E_2 \end{array}$$

Chapter 2

Les Applications Linéaires

2.1 Definitions

Soient E et F deux K-espaces vectoriels:

2.1.1 Application Linéaire:

Définition:

Définition

Une application $u:E\to F$ est dite linéaire si elle vérifie :

- i) L'additivité: $\forall (x,y) \in E^2, u(x+y) = u(x) + u(y)$
- ii) L'homogéniété: $\forall x \in E, \forall \lambda \in K, u(\lambda x) = \lambda u(x)$

ou encore, si elle vérifie :

$$\forall (x,y) \in E^2, \forall \lambda \in K, u(\lambda x + y) = \lambda u(x) + u(y).$$

Elles s'appellent donc des homomorphismes (ou tout simplement morphismes) et leur ensemble est un K-espace vectoriel noté L(E,F)

Exemples:

Propriétés

- L'addition, composée, de deux applications linéaires est une application linéaire.
- Une application linéaire reste linéaire si elle est multipliée par un scalaire.
- La reciproque d'une bijection linéaire est encore linéaire.

Termes:

Propriétés

On appelle :

- Endomorphisme de E : toute application linéaire de E dans E.
- Isomorphisme de E vers F: toute bijection linéaire de E dans F;
- Automorphisme de E: tout endomorphisme bijectif de E, ou encore, tout isomorphisme de E dans E.
- Forme linéaire sur E: toute application linéaire de E dans K.

Remarque:

- L'ensemble L(E,E) des endomorphismes de E se note plus simplement L(E).
- L'ensemble des automorphismes de E s'appelle le groupe linéaire de E et se note GL(E).
- L'ensemble L(E, K) des formes linéaires sur E se note plus simplement E* et porte le nom de dual de E. (On va voir plus tard).

2.1.2 Noyau, Image:

Définitions:

Définitions

Soit $u \in L(E, F)$. On appelle :

- L'ensemble $f(E) = \{u(x) \mid x \in E\}$, s'appele l'image de u et est noté Im(u).
- L'ensemble $f^{-1}(\{0_F\}) = \{x \in E \mid u(x) = 0_F\}$, s'appele le noyau de u et est noté Ker(u).

Remarque: La notation "Ker" vient du mot allemand "Kern" qui signifie noyau. Théorème

Théorème

Soit $u \in L(E, F)$.

L'image réciproque par u d'un sous-espace vectoriel de F est un sous-espace vectoriel de E ; L'image directe par u d'un sous-espace vectoriel de E est un sous-espace vectoriel de F.

Corollaire

Corollaire

- Ker(u) est un sous-espace vectoriel de E.
- Im(u) est un sous-espace vectoriel de F.

Théorème:

Théorème

Soit $u \in L(E, F)$.

- u est injective si et seulement si Ker(u) = 0.
- u est surjective si et seulement si Im(u) = F.

Demonstration:

2.2 Caracterisation par les bases:

2.2.1 Théorème:

Théorème

Pour toute base $(e_i)_{i\in I} deE$, l'application

$$u \mapsto (u(e_i))_{i \in I}$$

est bijective.

2.2.2 Théorème:

Théorème

Soit $u \in L$ (E,F).

- u est surjective si et seulement si l'image par u d'au moins une famille génératrice de E est génératrice de F (de plus, l'image par u de toute famille qui engendre E est alors génératrice de F).
- u est injective si et seulement si l'image par u d'au moins une base de E est libre (de plus, l'image par u de toute famille libre est alors libre); u est un isomorphisme si et seulement si l'image par u d'au moins une base (ou de toute base) de E est une base de F.

2.3 Projections, Symétries:

2.3.1 Projecteurs:

Définition

Définition

Soient E_1 et E_2 deux sous espaces vectoriels de E tel que $E_1 \oplus E_2 = E$ ie: $\forall x \in E, \exists! (x_1, x_2) \in E_1 x E_2$ tel que $x = x_1 + x_2$

L'application $p: E \to E$ $x \mapsto x_1$ s'appelle la projection sur E_1 parallèlement à E_2 .

- i) $p \in L(E)$.
- ii) $Im(p) = E_1$ et $Ker(p) = E_2$.
- iii) $p \circ p = p$.

Reciproquement si $p \in L(E)$ et $p \circ p = p$ alors p est un projecteur.

Théorème:

Théorème

Soit $p \in L(E)$ p est un projecteur \Leftrightarrow p est la projection sur Im(p) parallèlement à Ker(p).

Dans ce cas $E = Im(p) \oplus Ker(p)$

2.3.2 Symétrie:

Définition:

Définition

Soient E_1 et E_2 deux sous espaces vectoriels de E tel que $E_1 \oplus E_2 = E$ ie: $\forall x \in E, \exists ! (x_1, x_2) \in E_1 x E_2$ tel que $x = x_1 + x_2$

L'application $s: E \to E$ $x \mapsto x_1 - x_2$ s'appelle symétrie par rapport à E_1 parallèlement à E_2 .

- i) $s \in L(E)$.
- ii) Si $p \in L(E)$ est la projection sur E_1 parallèlement à E_2 alors: $s = 2p Id_E$

Proposition:

Proposition

Dans le cadre du programme , K=R ou C donc on a le résultat suivant: $s \in L(E)$ est une symétrie $\Leftrightarrow s \circ s = Id_E$

Dans ce cas si $p = 1/2(s + Id_E)$, p est un projecteur et s est la symétrie par rapport à Im(p) parallèlement à Ker(p).

On expliquera plus loin, plus ce résultat et d'ou il vient (Voir Notion Caractéristique d'un corps).

2.4 L'espace L(E,F):

2.4.1 Théorème:

Théorème

Si E est de dimension finie alors $\dim(\mathcal{L}(E,F)) = \dim(E) \times \dim(F)$..

Remarque: Si $u \in L(E, F)$ et $v \in L(F, G)$ alors $v \circ u \in L(E, G)$.

2.5 Rang:

2.5.1 Définition:

Définition

Le rang d'une application linéaire est la dimension de son image. Si $u: E \to F$ est une application linéaire alors on note son rang par rg(u) et on a : $rg(u) = dim_K(Im(u))$.

2.5.2 Théorème:

Théorème

La composition par un isomorphisme laisse le rang invariant, c'est à dire : Soit $u \in L(E, F)$:

 $\forall v \in L(F, G) \text{ bijective } rg(v \circ u) = rg(u).$

 $\forall v \in L(F, G) \text{ bijective } rg(v \circ u) = rg(u).$

2.5.3 Théorème du rang:

Théorème du rang

Soit E un K-espace vectoriel de dimension finie et F un espace vectoriel , et $u \in L(E,F)$ alors: u est de rang fini et on a : $dim_K(E) = dim_K(Im(u)) + dim_K(Ker(u))$

Corollaire

Soient E, F deux K-espaces vectoriel de même dimension finie $u\in L(E,F)$, alors les assertions suivantes sont équivalentes:

- i) u bijective.
- ii) u surjective.
- iii) u injective.

2.6 Stabilité:

2.7. EXERCICES: 27

2.7 Exercices:

2.7.1 Projecteurs:

2.7.2 Lemmes de factorisation:

Exercice:

Soient E,F,G 3 K-espaces vectoriels de dimension finie, et soit $g:E\Rightarrow G$ une application linéaire.

- 1) Soit $f: E \Rightarrow F$ une application linéaire, montrer que: $(\exists h: F \Rightarrow G \in L(F,G) \text{ tel que } g = h \circ f.) \Leftrightarrow (Kerf \subset Kerg.)$
- 2) Soit $h: F \Rightarrow G$ une application linéaire, montrer que: $(\exists f: E \Rightarrow F \in L(E, F), \text{ tel que } g = h \circ f.) \Leftrightarrow (Img \subset Imh.)$
- 3) On suppose maintenant que $g: E \Rightarrow F \in L(E, F)$, montrer que: $(rgg \leq rgf.) \Leftrightarrow (\exists h \in GL(F) \text{ et } k \in L(E) \text{ tels que } h \circ g = f \circ k.)$

Correction:

2.7.3 Inégalité de Sylvester:

Exercice:

Soient E un K-espace vectoriel de dimension finie, F un K-espace vectoriel et $f,g\in L(E,F)$:

- 1) Montrer que $|rgf rgg| \le rg(f+g) \le rgf + rgg$.
- 2) Supposant maintenant que f et g sont les deux des endomorphismes de E, montrer que : $(rg(f+g)=rg(f)+rg(g).)\Leftrightarrow (Im(f)\cap Im(g)=etKer(f)+Ker(g)=E.)$
- 3) Montrer l'inégalité de Sylvester : $rg(f) + rg(g) dim_K(E) \le rg(fg) \le min(rg(f), rg(g)).$

Correction:

2.7.4 Endomrophismes particuliers:

Exercice:

Soient E un K-espace vectoriel de dimension finie et $u \in L(E)$:

- 1) Montrer que les assertions sont équivalentes:
 - i) $E = Keru \oplus Imu$.
 - ii) $\exists v \in L(E), v \circ u = 0etv + u \in GL(E).$
 - iii) $Keru = Keru^2$.
 - iv) $Imu = Imu^2$.

Correction:

2.8 Compléments:

2.8.1 Drapeaux:

2.8.2 Espace vectoriel quotient:

Définitions

Soient E un K-espace vectoriel et F un sous espace vectoriel de E, La relation R() définit une relation d'equivalence sur E. L'espace quotient E/F muni des lois "+":x+y=x+y, ".": $\lambda.x=\lambda.x$ est un K-espace vectoriel

si E/F est de dimension finie, On appele codimension de F la dimension de E/f tel que :

 $dim_K(E/F) = codim_E(F)$.

Dans ce cas on dit que F est de codimension finie.

Proposition

Soit E un K-espace vectoriel et F un sous espace vectoriel de E. (F est de codimension finie) \Leftrightarrow (F admet un supplémentaire S dans E). Dans ce cas $dim_K(S) = codim_E(F)$.

Démonstration: j

Corollaire

Si E est un K-espace vectoriel de dimension finie et F un sous espace vectoriel de E , alors F est de codimension finie et : $dim_K(E/F) = dim_K(E) - dim_K(F).$

Corollaire

Si E, F sont deux K-espaces vectoriel et $u \in L(E,F)$, alors Im(u) est isomorphe à E/Ker(u).

2.8.3 L'espace L(E):

Théorème-Programme

 $({\rm L}(E),+,\cdot,\circ)$ est une K-algèbre associative unifère (non commutative si $\dim(E)\geq 2).$

Définition

On appelle homothétie $u \in L(E)$ de rapport $\lambda \in K$ l'endomorphisme $\lambda.Id_E$

Proposition

Soit $u \in L(E)$,

(u est une homothétie) \Leftrightarrow $(\forall x \in E, \text{ la famille } (x, f(x)) \text{ est liée.})$

Démonstration: On a

Proposition-HP

Le centre du groupe linéare Gl(E) est l'ensemble des homotéthie de rapport non nul.

Proposition-HP

Soit E un K-espace vectoriel de dimension finie $n \in N^*$ $u \in L(E)$, (u est une homothétie) \Leftrightarrow (si $k \in [|1, n-1|]$ u stabilise tous les sous-espace vectoriels de E de dimension k)

Démonstration:

Démonstration: Idéaux de L(E)

Chapter 3

Les Matrices

3.1 Généralités:

3.1.1 Définition:

Définition

Une matrice à coefficients dans K est une famille $(a_{i,j})_{(i,j)\in[1,m]\times[1,n]}$ d'éléments de K.

Les nombres m et n sont appelés dimensions de la matrice. On dit qu'une matrice est de taille m \times n.

Les éléments $a_{i,j}$ sont appelés coefficients de la matrice.

Une matrice $A=(a_{i,j})_{(i,j)\in [\![1,m]\!]\times [\![1,n]\!]}$ est notée de la manière suivante :

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} & \dots & a_{m,n} \end{pmatrix}$$

Remarques:

- L'ensemble des matrices de dimensions données à coefficients dans K est noté $\mathcal{M}_{m,n}\left(K\right)$.
- L'ensemble $M_{n,n}(K)$ est noté plus simplement $M_n(K)$.
- \bullet Une matrice de largeur n = 1 est appelée vecteur, ou plus spécifiquement vecteur colonne.
- Une matrice de hauteur m = 1 est appelée vecteur ligne.
- Une matrice telle que m = n est appelée matrice carrée.

3.1.2 Opérations sur les matrices:

Addition:

Définition

Soient A et B deux matrices de même taille à coefficients dans K. Alors il est possible de les additionner. Leur somme est une matrice A+B à coefficients dans K, de même taille que A et B:

$$(a_{i,j})_{(i,j)\in[\![1,m]\!]\times[\![1,n]\!]} + (b_{i,j})_{(i,j)\in[\![1,m]\!]\times[\![1,n]\!]} := (a_{i,j}+b_{i,j})_{(i,j)\in[\![1,m]\!]\times[\![1,n]\!]}.$$

Produit matricielle:

Définition

Par un scalaire

Le produit d'une matrice $A \in \mathcal{M}_{m,n}(K)$ par un scalaire $\lambda \in K$ est la matrice $\lambda A \in \mathcal{M}_{m,n}(K)$ dont les coefficients sont ceux de A multipliés par λ :

$$\lambda \ (a_{i,j})_{(i,j) \in [\![1,m]\!] \times [\![1,n]\!]} := (\lambda a_{i,j})_{(i,j) \in [\![1,m]\!] \times [\![1,n]\!]}.$$

Définition

Produit de deux matrices

Soient $A = (a_{i,j})_{(i,j) \in [\![1,m]\!] \times [\![1,n]\!]} \in \mathcal{M}_{m,n(K)}$ et $B = (b_{i,j})_{(i,j) \in [\![1,n]\!] \times [\![1,p]\!]} \in \mathcal{M}_{n,p(K)}$ deux matrices telles que . Le produit de A par B est la matrice suivante :

$$AB = \left(\sum_{k=1}^{n} a_{i,k} b_{k,j}\right)_{(i,j) \in \llbracket 1,m \rrbracket \times \llbracket 1,p \rrbracket} \in \mathcal{M}_{m,p(K)}.$$

Remarque: La condition pour la possibilité du produit matricielle est que le nombre de colonnes de la première matrice est égale au nombre de lignes de la deuxième.

3.1.3 Matrices élémentaires:

Matrice nulle:

3.1. GÉNÉRALITÉS:

33

Définition

La matrice nulle de
$$\mathbf{M}_{m,n}(K)$$
, notée 0 ou $\mathbf{0}_{\mathbf{M}_{m,n}(K)}$, est :
$$\mathbf{0}_{\mathbf{M}_{m,n}(K)} := \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \mathbf{0}_{\mathbf{M}_{m,n}(K)} := \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \text{ où } 0 \text{ est }$$

l'élément neutre pour l'addition dans l'anneau K — siK = R ou C, c'est simplement le zéro habituel.

Matrice identité

Définition

On appelle matrice identité de taille n la matrice

$$I_{n} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} I_{n} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}.$$

Propriétés

- $\forall A \in \mathcal{M}_{m,n}(K)$ $AI_n = A$.
- $\forall B \in M_{n,p}(K) \quad I_n B = B$

Propriétés (binome, produit, triangulaire)

3.1.4 Mn(K)

Transposition d'une matrice:

Définition

La matrice transposée ou la transposée d'une matrice $A \in \mathcal{M}_{m,n}(K)$ est la matrice notée ${}^{t}A \in \mathcal{M}_{n,m}(K)$ (aussi notée A^{T} ou A^{t}), B telle que:

$$\forall (i,j) \in \{1,\ldots,n\} \times \{1,\ldots,m\} \qquad b_{i,j} = a_{j,i}.$$

Inverse d'une matrice:

Définition

Soit A une matrice carrée de taille n \times n. Lorsqu'elle existe, on appelle inverse à gauche (resp à droite) de A, une matrice telle que : $A_G^{-1} A = I_n$.(resp $A A_D^{-1} = I_n$) Lorsqu'une matrice admet un inverse à gauche et à droite on dit que cette matrice est inversible , cet inverse ainsi est unique et l'on note A^{-1} ,

Théorème

Une matrice carrée A est inversible si et seulement si det $A \neq 0$, et dans ce cas, on a :

$$A^{-1} = \frac{1}{\det A} t(\operatorname{com} A)$$

Proposition

Soit $A \in M_n(K)$. Les propositions suivantes (dans lesquelles on identifie Mn,1(K) à Kn) sont équivalentes :

- i) A est inversible.
- ii) l'application linéaire $K^n \to K^n$, $X \mapsto AX$ est bijective (ou, ce qui est équivalent : injective, ou encore : surjective).
- iii) A est inversible à gauche, c'est-à-dire qu'il existe une matrice B telle que ${\rm BA}={\rm In}.$
- iv) A est inversible à droite, c'est-à-dire qu'il existe une matrice B telle que AB = In.
- v) les colonnes de A forment une base de Kn ; la transposée de A est inversible (et dans ce cas, on a $({}^t\!A)^{-1}={}^t\!(A^{-1})$.

3.1. GÉNÉRALITÉS:

35

Propriétés

- Si $\lambda \in K^*\lambda \in K^*$, la matrice scalaire λI_n est inversible : $(\lambda I_n)^{-1} = \frac{1}{\lambda} I_n$.
- Plus généralement, une matrice diagonale diag $(\lambda_1, \ldots, \lambda_n)$ est inversible si et seulement si tous ses termes diagonaux λ_i sont non nuls, et son inverse est alors diag $\left(\frac{1}{\lambda_1}, \ldots, \frac{1}{\lambda_n}\right)$.
- Si une matrice carrée Aest inversible, alors sa transposée l'est aussi, et la transposée de l'inverse de Aest égale à l'inverse de sa transposée : ${}^{t}(A^{-1}) = ({}^{t}A)^{-1}$.
- $(n, \dim =2)$

Matrice triangulaire:

Définitions

Soit A une matrice de $M_n(K)$

On appele A triangulaire supérieure si $a_{i,j}=0$ pour $i\geq j.$

On appale A triangulaire inférieure si $a_{i,j} = 0$ pour $i \leq j$.

Matrice diagonale:

Définitions

Soit A une matrice de $M_n(K)$

On appele A diagonale si $a_{i,j} = 0$ pour $i \neq j$.

Matrice scalaire:

Définition

Soit A une matrice de $M_n(K)$

On appelle A matrice scalaire si $\exists \lambda \in K^*$ tel que $A = \lambda I_n$

Matrices symétriques et antisymétriques:

Définitions

Soit A une matrice de $M_n(K)$,

- On appelle A matrice symétrique si $\forall (i,j) \in [|1,n|]^2, a_{i,j} = a_{j,i}$ (c'est à dire si ${}^{t}A = A$).
- On appele A matrice antisymétrique $\forall (i,j) \in [|1,n|]^2, a_{i,j} = -a_{j,i}$ (c'est à dire si ${}^{t}A = -A$).

Matrice nilpotente:

3.2 Matrice d'une application linéaire

Soient E, F, G trois espace vectoriels, avec : $B = (e_1,, e_m)$ base de E, $C = (f_1,, f_n)$ base de F, et D base de G.

3.2.1 Définition:

Définition

Une application $u: E \to F$ est linéaire si et seulement s'il existe une matrice $A \in \mathcal{M}_{m,n}(K)$ telle que pour tout vecteur x de E:

Si X désigne la matrice colonne des coordonnées de x dans la base B c'est à dire si X=.. avec $x=\sum i\in [|1,m|]x_ie_i$ et Y celle des coordonnées de u(x) dans la base C, c'est à dire si Y= avec $u(x)=\sum i\in [|1,n|]y_if_i$, alors

$$Y = AX$$
.

De plus, cette matrice A est alors unique : pour tout $j \in [1, n]$, sa j-ème colonne est constituée des coordonnées de $u(e_j)$ dans la base C.

La matrice A est donc appelée la matrice de u dans les bases B, C et notée $\mathrm{Mat}_{B,C}(u).$

Remarque: Si F = E et C = B, on l'appelle la matrice de udans la base B.

3.2.2 Théorème:

Théorème

L'application $\operatorname{Mat}_{B,C}: \operatorname{L}(E,F) \to \operatorname{M}_{m,n}(K)$ est un isomorphisme d'espaces vectoriels.

3.2.3 Proposition:

Proposition

Soient $u:E\to F$ et $v:F\to G$ deux applications linéaires. Alors, ${\rm Mat}_{B,D}(v\circ u)={\rm Mat}_{C,D}(v)$ ${\rm Mat}_{B,C}(u)$.

Démonstration:

3.2.4 Corollaire:

Corollaire

Le produit matriciel est associatif.

Démonstration:

3.3 Changement de bases:

3.3.1 Définition:

Définition

La matrice de passage de Ba B' est :

la matrice ${\rm Mat}_{B',B}({\rm Id_E})$ de l'application identité IdE, de E muni de la base B' dans E muni de la base B ou, ce qui est équivalent :

la matrice dont les colonnes sont les coordonnées dans $B{\operatorname{des}}$ vecteurs de B'.

3.3.2 Remarque:

Définition

Soit P la matrice de passage de B à B'. Il résulte immédiatement de la définition que :

Pest inversible : son inverse est la matrice de passage de B'à B; si un même vecteur de E a pour coordonnées X dans B et X' dans B', alors X = PX'.

3.3.3 Proposition:

Proposition

Soient:

 $u: E \to F$ une application linéaire ; Pla matrice de passage de B à B' (bases de E); Q la matrice de passage de C à C' (bases de F). Alors, $\mathrm{Mat}_{B',C'}(u) = Q^{-1} \, \mathrm{Mat}_{B,C}(u) \, P$.

Démonstration:

3.4 Rang:

3.4.1 Définition:

Définition

Soit A une matrice de $M_{(p,q)}(K)$, on appelle rang de A , le rang de ses vecteurs colonnes dans K^p , et on le note $\operatorname{rg}(A)$. Dans le cas oû A est une matrice d'une application linéaire u , on a : $\operatorname{rg}(A) = \operatorname{rg}(u)$.

Propriétés

- Si $A \in M_{p,q}(K)$, $rg(A) \leq inf\{p,q\}$.
- Si $A \in M_n(K)$ alors (A est inversible.) \Leftrightarrow (rg(A)=n.)

Théorème

Soient $A \in M_{p,q}(K)$ et $r \in N^*$, si rg(A)=r alors A est équivalent à J_r avec

$$J_r = I_r \qquad 00 \qquad 0$$

Définition

Soit $A=(a_{i,j})_{(i,j)\in[|1,p|]*[|1,q|]}\in M_{(p,q)}(K)$, et soient deux sousensembles non vide $I\subset\{1,...,p\}$ et $J\subset\{1,...,q\}$. On appelle la matrice $(a_{i,j})_{(i,j)\in I*J}\in M_{(p,q)}(K)$ matrice extraite et A matrice bordante.

Théorème

Soient $A \in M_{p,q}(K)$, son rang est égale à la taille de la plus grande matrice carrée inversible qu'on peut extraire de cette dernière.

Corollaire

Le rang de la transposée d'une matrice est égal à celui de la dernière.

3.5 Equivalence, similitude et trace:

3.5.1 Equivalence:

Définition:

Définition

Deux matrices M et N sont dites équivalentes s'il existe deux matrices inversibles P et Qtelles que : $N=Q^{-1}MP$.

IV - Q - IVII

Théorème:

Théorème

Deux matrices de même taille sont équivalentes si et seulement si elles ont même rang.

Démonstration: k

3.5.2 Similitude:

Définition:

Définition

Deux matrices carrées M et N sont dites semblables s'il existe une matrice inversible Ptelle que :

 $N = P^{-1}MP.$

3.5.3 Trace

Définition:

Définition

Soit A une matrice carrée. La trace de A est la somme des éléments diagonaux de A (les éléments de sa diagonale principale). Elle est notée : $\operatorname{tr} \mathbf{A}$, ou $\operatorname{Tr} \mathbf{A}$.

Propriétés:

Propriété

L'application $tr: M_n(K) \to K$ est une forme linéaire.

Propriétés

Soient **A** et **B** deux matrices carrées de même taille et a un scalaire. Alors: tr $(\mathbf{A} + \mathbf{B}) = \text{tr } \mathbf{A} + \text{tr } \mathbf{B}$; tr $(a \mathbf{A}) = a \text{ tr } \mathbf{A}$; tr $(^{t}\mathbf{A}) = \text{tr } \mathbf{A}$;

Démonstration:

Remarque: Si $A, B, C \in M_n(K)$ on peut avoir tr(ABC) = tr(CAB) = tr(BCA) mais $tr(ABC) \neq tr(ACB)$.

Corollaire

Soient $\mathbf{A} \in \mathcal{M}_{m,n}(K)$ et $\mathbf{B} \in \mathcal{M}_{n,m}(K)$. Alors : tr (\mathbf{AB}) = tr (\mathbf{BA}) .

Démonstration: m

Propriété

Deux matrices semblables ont même trace.

Propriété

Soit E un K-espace vectoriel et $p \in L(E)$ un projecteur, alors $trp = rg(p).1_K$

- 3.6 Matrice définie par bloc
- 3.7 Exercices:
- 3.8 Compléments:
- 3.8.1 Matrice diagonalement dominantes -HP

Définition

Soit $A = (a_{i,j})_{1 \le i,j \le n} \in M_n(C)$ A est dite de diagonale dominante si :

$$\forall i \in [|1, n|], \sum_{1 < j < n, j \neq i} |a_{i,j}| \le |a_{i,i}|$$

Lemme de Hadamard

Soit A une matrice de diagonale dominante, A est inversible.

Démonstration

Déterminants

Compléments: Dualité et

 $Gl_n(K$

PROBLEMES

6.1 Traces:

6.1.1 Matrice de trace nulle

Matrice de trace nulle

Soit $A \in M_n(R)$ telle que $TrA = 0_R$

- 1) Montrer que A est semblable à une matrice n'ayant que de $\mathbf{0}_R$ dans sa diagonale.
- 2) Montrer que $\exists X, Y \in M_n(R)$ tels que A = XY YX

6.1.2 Traces modulo p

Exercice:

Soit p un nombre premier et $A, B \in M_n(Z)$.

- 1) Montrer que $Tr((A+B)^p) = Tr(A^p) + Tr(B^p)[p.$
- 2) En déduire que $Tr(A^p) = Tr(A)[p]$.
- 3) Soit la suite récurrente (u_n) définie par $u_0 = 3, u_1 = 0, u_2 = 2$ $\forall n \in \mathbb{N}, u_{n+3} = u_{n+1} + u_n.$ Montrer p divise u_p .

- 6.2 Formule de Burnside, Théorème de Mashke(après matrice hehehehe)
- 6.3 Dérivation:
- 6.4 Famille positivement génératrice:
- 6.5 Décomposition de Fitting

Exercice:

Soient E un K-espace vectoriel de dimension finie $n \in {}^*$, et $u \in L(E)$:

- 1) Montrer que les suites $(Imu^k)_{k\in N}$ et $(Keru^k)_{k\in N}$ sont strictement monotones pour l'inclusion jusqu'un certain rang m d'oû elle deviennent stationnaire.
- 2) Montrer que la suite $(dim_K Ker(u^{k+1}) dim_K Ker(u^k))_{k \geq 0}$ est décroissante.
- 3) Montrer que $E = keru^m \oplus Imu^m$.

4)

6.6 Identité de Sylvester, Identité de Jacobi

Exercice:

- 1) Identité de Jacobi: Soit $A \in Gl_n(K)$. On note $T = A^{-1}$ et on considère l'écriture par blocs des matrices A et T: $A = \begin{pmatrix} B & C \\ S & E \end{pmatrix} T = \begin{pmatrix} W & X \\ Y & Z \end{pmatrix} \text{ avec } B, W \in M_r(K) \text{ et } 1 \leq r \leq n.$ Montrer que (detA)(detW) = detE.
- 2) Soient $I, J \subset \{1, ..., n\}$, $card(I) = card(J) = r, A = (a_{i,j})_{(i,j) \in [|1,n|]^2} \in M_n(K)$ On note $A_{I,J} \in M_r(K)$ la matrice extraite de A. Notons I*, J* les complémentaires de I, J das $\{1, ..., n\}$ et $S(I, J) = \sum_{i \in I} i + \sum_{j \in J} j$. Montrer que : $(A \in Gl_n(C) \text{ avec } T = A^{-1}) \Rightarrow ((det A)(det T_{J,I}) = (-1)^{S(I,J)}(det A_{I*,J*}))$
- 3) Identité de Sylvester: Soit $A=(a_{i,j})_{(i,j)\in[|1,n|]^2\in M_n(K)}$, on pose : $\Gamma_{I,J}=det(com(A))_{I,J}, \Delta_{I,J}=det(A_{I*,J*}).$ Montrer que :

$$\Gamma_{I,J} = (-1)^{S(I,J)} \cdot \Delta_{I,J} \cdot (detA)^{r-1}$$

*

Correction:

6.7 Dual de Mn(K)

Exercice:

Si $A \in M_n(K)$, on note ϕ_A la forme linéaire définie par : $\phi_A: M_n(K) \to K$ $X \mapsto Tr(AX)$ Montrer que $\phi: M_n(K) \to M_n(K)^*$ $A \mapsto \phi_A$ est un isomorphisme.

6.8 Stabilisation du GLn(K)

Exercice

Soit $A \in M_n(C)$ et $\phi \in L(M_n(C))$ tel que : $(A \in Gl_n(C)) \Rightarrow (\phi(A) \in Gl_n(C))$

- 1) Montrer que : $(A \in Gl_n(C)) \Leftrightarrow (\exists P \in Gl_n(C), \forall \lambda \in C, P \lambda.A \in Gl_n(C))$
- 2) Montrer que $(\phi(A) \in Gl_n(C)) \Rightarrow (A \in Gl_n(C))$

Correction:

6.9 Intersection des hyperplans avec GLn(K)

Exercice:

Soit $n \geq 2$, Montrer que tout hyperplan de $M_n(K)$ coupe $Gl_n(K)$ c'est à dire :

$$H \subset M_n(K) \Rightarrow Gl_n(K) \cap H \neq$$
.

Correction:

6.10 Conservation de similitude par passage vers un surcorps

Exercice:

- 1) Soient $A, B \in M_n(R)$ semblabes sur C. Montrer qu'elles sont semblabes sur R.
- 2) Cas general: Soient K un corps infini et L une extension de K. Montrer que si $A, B \in M_n(K)$ semblabes sur L, alors elles sont semblabes sur K.

Dimension maximale d'un sous-espace vec-6.11 toriel de $M_n(K)$ de rang p

Exercice:

Soit $n \geq 2$ et K un corps commutatif infini.

Soit V un sous-espace vectoriel de $M_n(K)$, posons $p = max\{rgA|M \in$ V} avec $p \le n$.

- 1) Montrer que V est isomorphe à un sous-espace vectoriel contenant $J = \begin{pmatrix} I_p & 0_{p,n-p} \\ 0_{n-p,p} & 0_{p,p} \end{pmatrix}$. Dans la suite on suppose que $J \in V$.
- 2) Montrer que $siM \in V,$ alors $\exists (A,B,C) \in M_p(K) * M_{p,n-p}(K) *$ $M_{n-p,p}(K)$, tel que (M= $\begin{pmatrix} A & B \\ C & 0_{p,p} \end{pmatrix}$. et $BC=0_{M_{n-p,n-p}(K)}$ On notera d'ailleurs pout tout $M \in V, A=a(M), B=b(M), C=$
- 3) Soient $M \in V$ tel que $C = 0_{M_{n-p,p}(K)}$ et E un sev de K^p tel que $E = \bigcup_{N \in V} Im(C)$ Montrer que $E \subset Ker(b(M))$.
- 4) notons $r = dim_K E$ et soit $(e_1, ..., e_r)$ une base de E complété par $(e_{r+1},...,e_p)$ en une base de K^p . Posons l'application suivante: $\phi: V \to M_p(K) * K^{n-pp-r} * M_{p,n-p}(K)$

 $M = \begin{pmatrix} A & B \\ C & 0_{p,p} \end{pmatrix} \mapsto (A, Be_{r+1}, ..., Be_p, C)$ Montrer alors que $dim_K V \leq np$.

5) Supposons K = R Montrer que $dim_K V \leq np$.

Correction:

Décomposition de Bruhat 6.12

Exercice:

Réduction des endomorphismes et matrice carrées

7.1 Généralités:

7.1.1 Elements propres d'un endomorphisme et de matrice carrée

Cas d'endomorphisme:

Soient K un corps, E un K-espace vectoriel et u un endomorphisme de L(E).

Définition

Soit $\lambda \in K$, on dit que λ est une valeur propre de u si $\exists x \in E \setminus \{0_E\}$ tel que : $u(x) = \lambda x$ ce qui est équivalent aux assetions suivantes:

- i) $ker(u \lambda . Id_E) \neq \{0_E\}.$
- ii) $u \lambda . Id_E$ n'est pas injective.
- iii) $u \lambda I d_E$ n'est pas inversible (Seulement si E est de dimension finie).

L'ensemble des valeurs propres d'un endomorphisme s'appelle son spectre et il dépend du corps de base de l'espace vectoriel ainsi on note:

$$Sp_K(u) = \{\lambda \in K | \exists x \in E \setminus \{0_E\}, u(x) = \lambda.x\}$$

54CHAPTER 7. RÉDUCTION DES ENDOMORPHISMES ET MATRICE CARRÉES

Définition

Soit $x \in E \setminus \{0_E\}$, on dit que x est une valeur propre de u si $\exists \lambda \in K$ tel que : $u(x) = \lambda x$

Remarque:

- Une valeur propre peut être nulle.
- Un vecteur propre ne peut jamais être nul.

Définition

Si λ est une valeur propre, on appelle sous-espace propre : l'ensemble des vecteurs propres associées à cette valeur qu'on note $E_{\lambda}(u)$ ainsi on a :

$$E_{\lambda}(u) = ker(u - \lambda.Id_E)$$

Cas d'une matrice carrée:

Définitions

Toutes les définitions précédentes s'étend pour les matrices carrées en considèrant, pour une matrice $A \in M_n(K)$ l'endomorphisme : $\varphi_A: K^n \to K^n, \ X \mapsto AX$. c'est à dire :

- $\lambda \in K$ est une valeur propre de u si $\exists X \in K^n \setminus \{0_{K^n}\}$ tel que : $AX = \lambda X$ ce qui est équivalent à $ker(A \lambda I_n) \neq \{0_{K^n}\}$.
- $X \in K^n \setminus \{0_{K^n}\}$ est une valeur propre de A si $\exists \lambda \in K$ tel que : $AX = \lambda X$.
- $E_{\lambda}(A) = ker(A \lambda I_n)$ est le sous-espace propre associé à la valeur propre λ .

Théorème

Soit $k \in N^*$ si $\lambda_1,...,\lambda_k$ des valeurs propres distincts deux à deux d'un endomorphisme u alors les sous-espaces propres $E_{\lambda_1},...,E_{\lambda_k}$ sont en somme directe.

Démonstration: k

Proposition

Si E est un K-espace vectoriel de dimension finie $n \in K^*$ alors si u est un endomorphisme de E, il admet au plus n valeurs propres.

Démonstration: k

7.1.2 Polynome caractéristique

Depuis maintenant, on considera que E est un espace vectoriel de dimension $n \in N^*$

Définition

Soit $A\in M_n(K),$ on appelle polynôme caractéristique de A , le polynôme noté χ_A définit par :

$$\chi_A(X) = det(A - X.I_n)$$

Définition

Soit $u\in L(E)$, on appelle polynôme caractéristique de u , le polynôme caractéristique de sa matrice dans une base quelconque de E, et on le note χ_u .

Remarque: Par convention, le polynôme caractéristique est unitaire.

Proposition

Soit $A \in M_n(K)$, alors $\chi_A = \chi_A$

Proposition

Deux matrices semblables ont le même polynôme caractéristique.

Démonstration: k

Proposition-coef

Proposition-matricetriangulaire

Proposition-induit

Proposition

Soit $u \in L(E)$, on a:

 $(\lambda \text{ valeur propre de } u) \Leftrightarrow (\chi_u(\lambda) = 0_K)$

Définition

Soit $u \in L(E)$ et $\lambda \in Sp_K(u)$, on appelle multiplicité de λ sa multiplicité en tant que racine du polynôme caractéristique de u et on la note par m_{λ} .

Proposition

Soit $u \in L(E)$ et $\lambda \in Sp_K(u)$ on a :

 $dim_K(E_{\lambda}) \leq m_{\lambda}.$

7.1.3 Diagonalisation

Définition

Soit $u \in L(E)$, u est diagonalisable s'il existe une base de E composée seulement de vecteurs propres de u.

Dans une telle base, sa matrice est diagonale d'oû la définition suivante: Un endomorphisme est diagonalisable si sa matrice est semblable à une matrice diagonale.

Démonstration: l

Définition

Une matrice $A \in M_n(K)$ est diagonalisable si elle est semblable à une matrice diagonale c'est à dire si :

 $\exists P \in Gl_n(K), \exists \Lambda = diag(\lambda_1, ..., \lambda_n) \in M_n(K), A = P\Lambda P^{-1}.$

Conditions de diagonalisabilité

Soit $u \in L(E)$, avec $r = card(Sp_K(u)), Sp_K(u) = \{\lambda_1, ..., \lambda_r\}$. Conditions nécessaires de diagonalisabilité:

Les assertions suivantes sont équivalentes:

- i) u est diagonalisable.
- ii) χ_u est scindé et $\forall i \in [|1,r|] \lambda_i$, $m_{\lambda_i} = dim_K(E_{\lambda_i})$.
- iii) $E = \bigoplus_{i \in [|1,r|]} E_{\lambda_i}$

Conditions suffisantes de diagonalisabilité:

Les assertions suivantes sont équivalentes:

- i) $r = dim_K(E)$.
- ii) χ_u est scindé et à racines simples.
- iii) les valeurs propres de u sont distinctes deux à deux.

Dans le cas oû une des assertions ci-dessus est verifié alors u est diagonalisable.

Démonstration: k

Proposition

Si $u \in L(E)$ est diagonalisable et F un sous-espace vectoriel de E stable par u alors $u_{|F}$ est diagonalisable.

7.1.4 Trigonalisation

Définition

Soit $u \in L(E)$, u est trigonalisable s'il existe une base dans laquelle sa matrice est triangulaire supérieure.

Définition

Soit $A \in M_n(K)$, A est trigonalisable si elle est semblable à une matrice triangulaire supérieure c'est à dire si:

Proposition

Soit $u \in L(E)$ (resp $A \in M_n(K)$), u (resp A) est diagonalisable si χ_u (resp χ_A) est scindé sur K.

Démonstration: k

7.1.5 Réduction simultanée-HP

7.2 Polynome d'endomorphisme, et de matrice carrée

7.2.1 Généralités

Définition

Soient $u \in L(E), A \in M_n(K)$ les applications $f_u : K[X] \to L(E)$ $P \mapsto P(u), f_A : K[X] \to M_n(K)$ $P \mapsto P(A)$ sont des morphismes d'algèbres tels que:

$$\forall P \in K[X] \ f_u(P) = P(u) = \text{et } f_A(P) = P(A) =$$

Si $\exists r \in N^*$ et $\exists (a_i)_{i \in [[0,r]]} \in K^r$ tel que $P(X) = \sum_{i \in [[1,r]]} a_i X^i$ alors

$$P = \sum_{i \in [|1,r|]} a_i . u^i, P = \sum_{i \in [|1,r|]} a_i . A^i$$

on a donc: $\forall x \in E, f_u(P)(x) = \sum_{i \in [[1,r]]} a_i.u^i(x)$

Remarque:

- Notons que pour $i \in N^*, u^i = u \circ u \circ ... \circ u$ (i fois).
- $P(u) \in L(E)$, ie: P(u) est un endomorphisme!!
- $P(A) \in M_n(K)$, ie: P(A) est une matrice!!
- si

Proposition

- i) $Ker f_u = \{P \in K[X] | P(u) = 0_{L(E)}\}$ est un idéal de K[X].
- ii) $Imf_u = \{P(u)|P \in K[X]\}$ est une sous algèbre commutative de L(E) noté K[u].

Démonstration: .

7.2.2Polynôme minimal

Définition

On considère l'ideal $I=Kerf_u=\{P\in K[X]|P(u)=0_{L(E)}\}$, on a $I\neq\{0_{K[X]}\}$ alors il est généré par un seul élément noté " μ_u " ou " π_u " c'est à dire:

$$I = \pi_u K[X]$$

On a donc:

$$(\forall P \in K[X], P(u) = 0.) \Leftrightarrow (\pi_u - P.)$$

Démonstration:

Remarque: Le polynôme minimal est unitaire.

Définition

De même on considère l'ideal $I=Kerf_A=\{P\in K[X]|P(A)=0_{M_n(K}\},$ on a $I\neq\{0_{K[X]}\}$ alors il est généré par un seul élément noté " μ_A " ou " π_A " c'est à dire:

$$I = \pi_A K[X]$$

On a donc:

$$(\forall P \in K[X], P(A) = 0.) \Leftrightarrow (\pi_A - P.)$$

Proposition

Si d est le degré du Polynôme minimal d'un endomorphisme alors la famille $(u^k)_{1 \le k \le d-1}$ est une base de K[u].

60CHAPTER 7. RÉDUCTION DES ENDOMORPHISMES ET MATRICE CARRÉES

Proposition

Soit $u \in L(E), \lambda \in K$ on a:

Les racines de μ_{λ} dans K sont les valeurs propres de u. ce qui est equivalent à

$$(\mu_{\lambda}(\lambda) = 0_K) \Leftrightarrow (\lambda \in Sp_K(u).)$$

Lemme de décomposition de noyaux

Soient $P_1,...,P_r$ des polynômes premiers entre eux deux à deux tel que $P=\Pi_{i=1}^rPi$ alors:

$$Ker(P(u)) = \bigoplus_{i=1}^{r} Ker(P_i(u)).$$

Démonstration: k

Proposition

Soit $u \in L(E)$, les assertions suivantes sont équivalentes:

- i) u est diagonalisable.
- ii) μ_u est scindé dans K à racines simples.
- iii) $\exists P \in K[X]$ scindé à racines simples tel que $P(u) = 0_{L(E)}$.

Proposition

De même si $A \in M_nK$, les assertions suivantes sont équivalentes:

- i) A est diagonalisable.
- ii) μ_A est scindé dans K à racines simples.
- iii) $\exists P \in K[X]$ scindé à racines simples tel que $P(A) = 0_{M_nK}$.

Démonstration: k

Proposition

Si F est un sous-espace vectoriel de E, stable par u et $u_{|F}$ l'endomorphisme induit par u sur F alors $\mu_{u_{|F}}$ divise μ_{u} . Et si u est diagonalisable alors $u_{|F}$ est aussi diagonalisable.

Proposition

Soit $u \in L(E)$, les assertions suivantes sont équivalentes:

- i) u est trigonalisable.
- ii) μ_u est scindé dans K.
- iii) $\exists P \in K[X]$ scindé tel que $P(u) = 0_{L(E)}$.

Proposition

De même si $A \in M_n(K, les assertions suivantes sont équivalentes:$

- i) A est trigonalisable.
- ii) μ_A est scindé dans K.
- iii) $\exists P \in K[X]$ scindé tel que $P(u) = 0_{M_nK}$.

7.2.3 Théorème de Cayley-Hamilton

Théorème

Soit $u \in L(E)$, χ_u son polynôme caractéristique, alors $\chi_u = 0_{L(E)}$

Démonstration: k

Sous-espace caractéristiques

Définition

Soit $u \in L(E)$ tel que son polynôme caractéristique χ_u est scindé dans K ie : $\exists s \in N^*$ tel que $\exists (\lambda_1, ..., \lambda_s) \in K^s, (\alpha_1, ..., \alpha_s) \in N^s,$

 $P = (X - \lambda_1)_1^{\alpha} ... (X - \lambda_s)_s^{\alpha}$

Pour tout $i \in [|1,s|]$ on appelle sous-espace caractéristique le sous-espace vectoriel $Ker(u - \lambda_i.Id)_i^{\alpha}$.

Proposition

- i) Pour tout $i \in [|1, s|], Ker(u \lambda_i . Id)_i^{\alpha}$ est stable par u.
- ii) $E = \bigoplus_{i=1}^{s} Ker(u \lambda_i.Id)_i^{\alpha}$.
- iii) Pour tout $i \in [|1, s|], dim_K(Ker(u \lambda_i.Id)_i^{\alpha}) = \alpha_i.$

Démonstration: k

62CHAPTER 7. RÉDUCTION DES ENDOMORPHISMES ET MATRICE CARRÉES

7.3 Exercices

7.3.1 Techniques de Diagonalisation

7.4 Compléments

7.4.1 Matrice circulantes

Généralités

Définition

Soit $M \in M_n(C)$, on dit que M est une matrice circulante si elle s'écrit

sous la forme suivante :
$$M = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ c_n & c_1 & \dots & c_{n-1} \\ c_{n-1} & c_n & \dots & c_{n-2} \\ \vdots & \ddots & \vdots & & \\ c_2 & c_3 & \dots & c_1 \end{pmatrix}$$
 avec $\forall i \in [|1, n|] \ c_i \in C)$

Proposition

On note une matrice circulante de sorte que la matrice précédente est noté $M(c_1,...,c_n)$

On pose alors
$$J = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 1 & 0 & 0 & \dots & 0 \end{pmatrix}$$
 de sorte que

 $J=M(0,1,...,0),\,\mathrm{on}$ a donc :

(M est une matrice circulante) ⇔ (M est un polynôme en J)

Démonstration: k

Proposition

L'ensemble des matrice circulantes est une sous-algébre commutative de ${\cal M}_n(C)$

Démonstration: k

Réduction des matrices circulantes

Réduction de la matrice J

La matrice J est diagonalisable, ses valeurs propres sont les racines nièmes de l'unité et ses vecteurs propres s'expriment ainsi:

On pose $w = exp(2i\pi/n)$ alors pour tout $k \in [|1, n|], w^k$ est valeur propre

de J et :
$$\forall k \in [|1, n|], = \begin{pmatrix} 1 \\ w^k \\ w^{2k} \\ \vdots \\ w^{(n-1)k} \end{pmatrix}$$
 est vecteur propre de J.

Démonstration On a $J^n=I_n$ donc le polynôme X^n-1 est annulateur de J, ce dernier étant scindé a racines simples dans C, J est diagonalisable. Les valeurs propres de J sont les racines de X^n-1 , du coup elles sont les racines n-ièmes de l'unité

Réduction d'une matrice circulante

7.4.2 Matrice de Toeplitz

Définition

Définition

Matrice de Toeplitz tridiagonale

Valeurs propres

Démonstration k

7.4.3 Matrice de Hankel

Définition

- 7.4.6 Dunford
- 7.4.7 Jordan
- 7.4.8 Frobenius
- 7.4.9 Simplicité
- 7.4.10 Nilpotence
- 7.4.11 Stochastique