AMENDMENTS TO THE CLAIMS

In the Claims:

1. (Currently Amended) A compound of formula (I)

$$\begin{array}{c} \text{Ar } \mathsf{CHCH_2NHCR^4R^5(CH_2)_nO(CH_2)_m} \\ \text{OH} \end{array}$$

(1)

or a salt, or solvate thereof, wherein:

n is an integer of from 2 to 8;

m is an integer of from 3 to 11, with the proviso that the sum of n + m is from 5 to 19:

R¹ is hydrogen or -XSO₂NR⁶R⁷;

wherein X is $-(CH_2)_p$ - or C_{2-6} alkenylene;

p is an integer from 0 to 6;

 R^6 and R^7 are independently selected from hydrogen, C_{1-8} alkyl, C_{3-7} cycloalkyl, $CONR^8R^9$, phenyl and phenyl(C_{1-4} alkyl)-,

or R^6 and R^7 , together with the nitrogen atom to which they are bonded, form a 5-, 6- or 7- membered nitrogen – containing ring;

and R^6 and R^7 are each independently optionally substituted by 1 or 2 groups independently selected from halo, C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy-substituted C_{1-6} alkoxy,

 $C_{1:6}$ haloalkyl, CO_2R^8 , $SO_2R^8R^9$, $-CONR^8R^9$, $-NR^8C(O)R^9$ or a 5-, 6- or 7-membered heterocyclic ring;

 R^8 and R^9 are independently selected from hydrogen, $C_{1.6}$ alkyl, $C_{3.7}$ cycloalkyl, phenyl and phenyl($C_{1.6}$ alkyl)-;

 R^2 and R^3 are independently selected from hydrogen, $C_{1\text{-}8}$ alkyl, $C_{1\text{-}8}$ alkoxy, halo, phenyl and $C_{1\text{-}8}$ haloalkyl;

 R^4 and R^5 are independently selected from hydrogen and $C_{1:4}$ alkyl with the proviso that the total number of carbon atoms in R^4 and R^5 is not more than 4,

and

Ar is a group selected from the group consisting of:

wherein R¹¹ represents hydrogen, halogen, -(CH₂)_qOR¹⁴, -NR¹⁴C(O)R¹⁵, -NR¹⁴SO₂R¹⁵, -SO₂NR¹⁴R¹⁵, -NR¹⁴R¹⁵, -OC(O)R¹⁶ or OC(O)NR¹⁴R¹⁵, and R¹⁰ represents hydrogen, halogen or C₁₋₄ alkvl:

or R^{11} represents $-NHR^{17}$ and R^{10} and $-NHR^{17}$ together form a 5- or 6-membered heterocyclic ring;

 R^{12} represents hydrogen, halogen, $-OR^{14}$ or $-NR^{14}R^{15}$; $-OC(O)R^{16}$ or $-OC(O)NR^{14}R^{15}$;

R¹³ represents hydrogen, halogen, haloC₁₋₄ alkyl, -OR¹⁴ or -NR¹⁴ R¹⁵;

 $\ensuremath{\mathsf{R}}^{14}$ and $\ensuremath{\mathsf{R}}^{15}$ each independently represents hydrogen or C_{14} alkyl, or in the groups

 $^{-}$ NR 14 R 15 , $^{-}$ SO $_2$ NR 14 R 15 and $^{-}$ OC(O)NR 14 R 15 , R 14 and R 15 independently represent hydrogen or C $_{14}$ alkyl or together with the nitrogen atom to which they are attached form a 5-, 6- or 7- membered nitrogen-containing ring.

 R^{16} represents an aryl (eg phenyl or naphthyl) group which may be unsubstituted or substituted by one or more substituents selected from halogen, C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy or halo C_{1-4} alkyl; and

q is zero or an integer from 1 to 4;

provided that when R^1 is hydrogen Ar is not a group (a) wherein; $R^{11} \text{ is } -(CH_2)_qOR^{14}, \text{ q is zero or 1 and } R^{12} \text{ is } OR^{14},$ or $R^{11} \text{ is } -(CH_2)_qOR^{14}, \text{ q is zero and } R^{13} \text{ is } OR^{14},$ or $R^{11} \text{ is } -NR^{14}SO_2 R^{15} \text{ or } NR^{14}COR^{15} \text{ and } R^{12} \text{ is } OR^{14},$ or $R^{11} \text{ is } -NR^{14}SO_2 R^{15} \text{ or } NR^{14}COR^{15} \text{ and } R^{12} \text{ is } NR^{14}R^{15};$ Ar is not a group (b) wherein $R^{11} \text{ is } -(CH_2)_qOR^{14} \text{ and } R^{12} \text{ is } OR^{14};$ Ar is not a group (c), and when $R^1 \text{ is } SSO_2NR^6R^7, \text{ Ar is not a group (a) wherein } R^{11} \text{ is } (CH_2)_qOR^{14} \text{ or } NR^{14}COR^{15}, \text{ and } R^{12} \text{ is } OR^{14}.$

 (Previously Presented) A compound of formula (I) according to claim 1 wherein, in the group Ar, R¹¹ represents halogen, -(CH₂)₀OR¹⁴, -NR¹⁴C(O)R¹⁵, -NR¹⁴SO₂R¹⁵, -SO₂NR¹⁴R¹⁵, -NR¹⁴R¹⁵, -OC(O)R¹⁶ or OC(O)NR¹⁴R¹⁵.

and R10 represents hydrogen,

or R¹¹ represents –NHR¹⁷ and R¹⁰ and –NHR¹⁷ together form a 5- or 6membered heterocyclic ring:

and

R¹³ represents hydrogen, halogen, halo, C₁₋₄ alkyl, -OR¹⁴, or -NR¹⁴R¹⁵;

- 3. (Previously Presented) A compound of formula (I) according to claim 1 wherein the group R^1 is attached to the meta-position relative to the $-\mathsf{O}\text{-}(\mathsf{CH}_2)_m$ link.
- (Previously Presented) A compound of formula (I) according to claim 1 wherein R¹ represents SO₂NR⁶R⁷ wherein R⁶ and R⁷ are independently selected from hydrogen and C₁₋₆alkyl.
- (Previously Presented) A compound of formula (I) according to claim 1 wherein R⁴ and R⁵ are independently selected from hydrogen and methyl.
- 6. (Previously Presented) A compound of formula (I) according to claim 1 wherein R² and R³ each represent hydrogen.
- 7. (Previously Presented) A compound of formula (I) according to claim 1 wherein n is 5 or 6 and m is 3 or 4 such that m + n is 8. 9 or 10.
- 8. (Previously Presented) A compound of formula (I) according to claim 1 wherein Ar represents a group selected from the group consisting of:

$$(xv) \qquad (xvi) \qquad (xvii)$$

$$(xviii) \qquad (xviiiii) \qquad (xix) \qquad (xx)$$

9. (Canceled)

- 10. (Previously Presented) A compound of formula (I) according to claim 8 wherein R^1 is $XSO_2NR^6R^7$ and Ar is selected from the group consisting of (iii), (iv), (xiv), (xv), (xvi) and (xix).
- 11. (Previously Presented) A compound selected from the group consisting of:

8- Hydroxy-5-((1R)-1-hydroxy-2-[[6-(4-phenylbutoxy)hexyl]amino]ethyl) quinolin-2(1H)-one;

3-{4-[(6-{[(2R)-2-Hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-yl)ethyl]amino}hexyl)oxy]butyl}benzenesulfonamide;

```
5-Hydroxy-8-(1-hydroxy-2-{[6-(4-phenylbutoxy)hexyl]amino}ethyl)-2H-1,4-benzoxazin-3(4H)-one;
```

3-{4-[(6-{[2-hydroxy-2-(5-hydroxy-3-oxo-3,4-dihydro-2*H*-1,4-benzoxazin-8-vl)ethyl]amino}hexyl)oxy|butyl}benzenesulfonamide;

4-Hydroxy-7-((1R)-1-hydroxy-2-{[6-(4-phenylbutoxy)hexyl]amino}ethyl)-1,3-benzothiazol-2(3H)-one:

4-Hydroxy-7-(1-hydroxy-2-{[6-(4-phenylbutoxy)hexyl]amino}ethyl)-1,3-

benzothiazol-2(3H)-one;

3-{4-[(6-{[(2R)-2-(3-Fluoro-4-hydroxyphenyl)-2-

hydroxyethyl]amino}hexyl)oxy]butyl}benzenesulfonamide;

3-(4-{[6-({2-Hydroxy-2-[5-hydroxy-6-(hydroxymethyl)pyridin-2-

yl]ethyl}amino)hexyl]oxy}butyl)benzenesulfonamide;

3-[4-({6-[((2R)-2-Hydroxy-2-{4-hydroxy-3-

[(methylsulfonyl)amino]phenyl}ethyl)amino]hexyl}oxy)butyl]benzenesulfonamide;

3-{3-[(7-{[(2R)-2-(3-Fluoro-4-hydroxyphenyl)-2-

hydroxyethyl]amino}heptyl)oxy]propyl}benzenesulfonamide;

3-(3-{[7-({2-Hydroxy-2-[5-hydroxy-6-(hydroxymethyl)pyridin-2-

yl]ethyl}amino)heptyl]oxy}propyl)benzenesulfonamide;

3-[3-({7-[((2R)-2-Hydroxy-2-{4-hydroxy-3-

[(methylsulfonyl)amino]phenyl}ethyl)amino]heptyl}oxy)propyl]benzenesulfonamid e;

3-{3-[(7-{[(2R)-2-Hydroxy-2-(8-hydroxy-2-oxo-1,2-dihydroquinolin-5-

yl)ethyl]amino}heptyl)oxy]propyl}benzenesulfonamide;

3-(3-{[7-({(2R)-2-[3-(Formylamino)-4-hydroxyphenyl]-2-

hydroxyethyl}amino)heptyl]oxy}propyl)benzenesulfonamide;

a salt thereof, and a solvate thereof.

 (Currently Amended) A method for the prophylaxis or treatment of a clinical condition in a mammal for which a selective β₂-adrenoreceptor agonist is indicated, which comprises administering a therapeutically effective amount of a

compound of formula (I) according to claim 1, or a pharmaceutically acceptable salt, or solvate thereof.

13. (Canceled)

14. (Previously Presented) A pharmaceutical formulation comprising a compound of formula (I), according to claim 1, or a pharmaceutically acceptable salt, or solvate thereof, and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.

15. (Canceled)

16. (Previously Presented) A process for the preparation of a compound of formula (I), according to claim 1, or a salt, or solvate thereof, which comprises:

deprotecting a protected intermediate of formula (II):

$$\mathbb{R}^{2S}$$
 \mathbb{R}^{2S}
 \mathbb{C}
 \mathbb{R}^{2S}
 \mathbb{C}
 \mathbb{R}^{2S}
 \mathbb{C}
 \mathbb{R}^{2S}
 \mathbb{C}
 \mathbb{R}^{2S}
 \mathbb{C}
 \mathbb{R}^{2S}
 $\mathbb{R}^$

or a salt or solvate thereof, wherein R^1 , R^2 , R^3 , R^4 , R^5 , m and n are as defined for the compounds of formula (I) R^{25} represents an optionally protected form of Ar, and R^{26} and R^{27} each independently represent either hydrogen or a protecting

group, provided that the compound of formula (II) contains at least one protecting group

$$LCR^4R^5(CH_2)_nO(CH_2)_m$$

$$R^3$$
(VI)

$$\begin{array}{c} \bigcap\limits_{\mathbf{R}^4-\mathbf{C}\cdot(\mathbf{CH}_2)_n} \mathbf{O}(\mathbf{CH}_2)_m & \bigcap\limits_{\mathbf{R}^3} \mathbf{R}^1 \\ & \bigcap\limits_{\mathbf{R}^3} \mathbf{R}^3 \end{array}$$

$$\mathsf{H}_2\mathsf{NCR}^4\mathsf{R}^5(\mathsf{CH}_2)_n\mathsf{O}(\mathsf{CH}_2)_m - \underbrace{\mathsf{R}^2}_{\mathsf{R}^3} \mathsf{R}^1$$

wherein said process may further optionally comprise one or more of the following steps in any order:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;
- (iii) converting the product to a corresponding salt, solvate, or
- (iv) converting a group R^1 , R^2 and/or R^3 to another group R^1 , R^2 and/or R^3 .
- 17. (Previously Presented) A compound of the formula (I) according to claim 1, wherein m is an integer ranging from 3 to 7.
- 18. (Previously Presented) A compound of the formula (I) according to claim 1, wherein the sum of n + m ranges from 5 to 12.
- 19. (Previously Presented) A compound of the formula (I) according to claim 1, wherein p is an integer ranging from 0 to 4.
- 20. (Previously Presented) A method according to claim 12, wherein the mammal is a human

- 21. (Previously Presented) A method according to claim 12, wherein the clinical condition is asthma.
- 22. (Previously Presented) A method according to claim 12, wherein the clinical condition is COPD.
- 23. (Previously Presented) A process for the preparation of a compound of formula (I), according to claim 1 or a salt, or solvate thereof, which comprises:

reacting a compound of formula (XIII):

Wherein Ar is as defined above with a compound of formula (VI):

$$LCR^4R^5(CH_2)_nO(CH_2)_m$$

$$R^3$$
(VI)

wherein L is a leaving group and R^1 , R^2 , R^3 , R^4 , R^5 , n and m are as defined for compounds of formula (I);

wherein said process may further optionally comprise one or more of following steps in any order:

- (i) removing any protecting groups:
- (ii) separating an enantiomer from a mixture of enantiomers;
- (iii) converting the product to a corresponding salt, solvate, or
- (iv) converting a group R¹, R² and/or R³ to another group R¹, R² and/or R³.
- 24. (Previously Presented) A process according to claim 23, wherein the leaving group comprises a halo group.
- (Previously Presented) A process according to claim 24, wherein the halo group is selected from the group consisting of chloro, bromo, and iodo.
- 26. (Previously Presented) A process according to claim 23, wherein the leaving group comprises a sulphonate group.
- 27. (Previously Presented) A process according to claim 26, wherein the sulphonate group is a methanesulphonate group.
- 28. (Previously Presented) A process for the preparation of a compound of formula (I), according to claim 1, or a salt or solvate thereof, which comprises:

reacting a compound of formula (XV):

wherein L is a leaving group, with an amine of formula (XVI):

$$H_2NCR^4R^5(CH_2)_nO(CH_2)_m$$
 R^2
 R^1
 R^3
 (XVI)

wherein R^1 , R^2 , R^3 , R^4 , R^5 , n and m are as defined for formula (I); and wherein said process may further optionally comprise one or more of the following steps in any order:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers:
- (iii) converting the product to a corresponding salt, solvate, or
- (iv) converting a group R^1 , R^2 and/or R^3 to another group R^1 , R^2 and/or R^3 .
- 29. (Previously Presented) A process according to claim 28, wherein the leaving group comprises a halo group.
- 30. (Previously Presented) A process according to claim 28, wherein the halo group is selected from the group consisting of chloro, bromo, and iodo.
- 31. (Previously Presented) A process according to claim 28, wherein the leaving group comprises a sulphonate group.

- 32. (Previously Presented) A process according to claim 28, wherein the sulphonate group is a methanesulphonate group.
- 33. (Previously Presented) A process for the preparation of a compound of formula (I), according to claim 1 or a salt or solvate thereof, wherein said process is selected from the group consisting of (i) and (ii):
 - (i) reacting a compound of formula (XIII):

Wherein Ar is as hereinbefore defined and R³⁴ is a chiral auxiliary group.

with a compound of formula (XVII):

wherein R¹, R², R³, R⁴, n and m are as hereinbefore defined; optionally followed by removing said chiral auxiliary group R³⁴;

and (ii) reacting a compound of formula (XVIII):

wherein Ar is as hereinbefore defined; with an amine of formula (XVI):

$$H_2NCR^4R^5(CH_2)_nO(CH_2)_m$$
 R^2
 R^1
 R^3
 (XVI)

under conditions suitable to effect reductive amination,

wherein said process may further optionally comprise one or more of the following steps in any order:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers;

- (iii) converting the product to a corresponding salt, solvate,
- (iv) converting a group R¹, R² and/or R³ to another group R¹, R² and/or R³.