Supplementary Material: Proofs for Function-Coherent Gambles

Gregory Wheeler

1 Introduction

In this supplementary document we provide detailed proofs for the key properties and representation results underlying the framework of *function-coherent gambles* as presented in the main paper.

In our framework, a set of acceptable gambles is defined on a domain X by means of a strictly increasing and continuous utility function

$$u: X \to \mathbb{R}$$
.

with the normalization

$$u(0) = 0.$$

The acceptance set is defined as

$$\mathbb{D} = \{ f \in X : u(f) \ge 0 \}.$$

We assume the following axioms for function-coherence:

- (F1) Avoid Partial Losses: If f < 0 (i.e., f(s) < 0 for every state s), then $f \notin \mathbb{D}$.
- (F2) Monotonicity: If $f \geq g$ (pointwise) and $g \in \mathbb{D}$, then $f \in \mathbb{D}$.
- (F3) u-Convexity: For any $f, g \in \mathbb{D}$ and any nonnegative scalars λ, μ for which

$$h = u^{-1} \Big(\lambda \, u(f) + \mu \, u(g) \Big)$$

is well defined, we have $h \in \mathbb{D}$.

In addition, we assume:

- (F3a) The utility function $u: X \to u(X) \subseteq V$ is a strictly increasing and continuous bijection onto its image.
- (F3b) The image u(X) is convex.

The results below establish fundamental properties of \mathbb{D} (non-triviality, monotonicity/upward closure, convexity in the transformed space, invariance under strictly increasing transformations, a representation theorem, and closure under limits).

2 Non-Triviality and Consistency

Theorem 2.1 (Non-Triviality and Consistency). Under axioms (F1) and (F2), with acceptance defined by $u(f) \geq 0$ (and u(0) = 0), the acceptance set \mathbb{D} is nonempty and contains no sure losses. Moreover, every gamble f satisfying $u(f) \geq 0$ is acceptable.

Proof. Non-Triviality: Consider the constant gamble 0 defined by 0(s) = 0 for every state s. By normalization, u(0) = 0, so

$$u(0) > 0$$
,

and thus $0 \in \mathbb{D}$. Hence, \mathbb{D} is nonempty.

Avoidance of Sure Loss: Axiom (F1) stipulates that if f < 0 then $f \notin \mathbb{D}$. Because u is strictly increasing, any gamble f with f(s) < 0 for all s will satisfy u(f) < u(0) = 0, ensuring $f \notin \mathbb{D}$.

Consistency: By definition, a gamble f is acceptable if $u(f) \ge 0$. Moreover, axiom (F2) guarantees that if $f \in \mathbb{D}$ and $g(s) \ge f(s)$ for every state s, then $u(g) \ge u(f) \ge 0$ so that $g \in \mathbb{D}$.

3 Upward Closure

Theorem 3.1 (Upward Closure). Let $f \in \mathbb{D}$ and let $g \in X$ be any gamble such that $g(s) \geq f(s)$ for every state s. Then $g \in \mathbb{D}$.

Proof. Since $f \in \mathbb{D}$, we have $u(f) \geq 0$. Because $g(s) \geq f(s)$ for all s and u is strictly increasing, it follows that

$$u(q) \ge u(f) \ge 0.$$

Thus, by the definition of \mathbb{D} , we conclude $g \in \mathbb{D}$.

4 u-Convexity in the Transformed Space (Transform Convexity)

Theorem 4.1 (Transform Convexity). Under axiom (F3), the u-transformed acceptance set

$$U(\mathbb{D}) := \{ u(f) : f \in \mathbb{D} \}$$

is a convex cone. That is, for any $x, y \in U(\mathbb{D})$ and any nonnegative scalars λ, μ (with $\lambda x + \mu y$ lying in the range of u), we have

$$\lambda x + \mu y \in U(\mathbb{D}).$$

Proof. Let $x, y \in U(\mathbb{D})$. By definition, there exist $f, g \in \mathbb{D}$ such that

$$x = u(f)$$
 and $y = u(g)$.

For any nonnegative scalars λ , μ such that $\lambda u(f) + \mu u(g)$ lies in the range of u, define

$$h = u^{-1} \Big(\lambda u(f) + \mu u(g) \Big).$$

Axiom (F3) implies $h \in \mathbb{D}$, so that

$$u(h) = \lambda u(f) + \mu u(g) \in U(\mathbb{D}).$$

Thus, $U(\mathbb{D})$ is closed under nonnegative linear combinations and is therefore a convex cone.

5 Invariance Under Strictly Increasing Transformations

Theorem 5.1 (Transform Invariance). Let $\phi : \mathbb{R} \to \mathbb{R}$ be any strictly increasing function with $\phi(0) = 0$ and define $\tilde{u} = \phi \circ u$. Then

$$\{f \in X : \tilde{u}(f) \ge 0\} = \{f \in X : u(f) \ge 0\} = \mathbb{D}.$$

Proof. For any $f \in X$, since ϕ is strictly increasing and $\phi(0) = 0$, we have

$$u(f) \ge 0 \iff \phi(u(f)) \ge \phi(0) = 0.$$

That is,

$$u(f) \ge 0 \iff \tilde{u}(f) \ge 0.$$

Hence, the acceptance set defined via \tilde{u} coincides with \mathbb{D} .

6 Representation Theorem

Suppose that X is a real vector space of gambles and that V is a locally convex, Hausdorff topological vector space. Let $u: X \to V$ be a strictly increasing and continuous function with u(0) = 0. Assume that the acceptance set is given by

$$\mathbb{D} = \{ f \in X : u(f) > 0 \},\$$

and that the following regularity conditions hold:

- (R1) The *u*-transformed set $U(\mathbb{D}) = \{u(f) : f \in \mathbb{D}\}$ is closed in V.
- (R2) $U(\mathbb{D})$ has nonempty interior in V.

Theorem 6.1 (Representation Theorem). Under the above assumptions and regularity conditions, there exists a continuous linear functional $\ell: V \to \mathbb{R}$ (unique up to multiplication by a positive scalar) such that for every $f \in X$,

$$f \in \mathbb{D} \iff \ell(u(f)) \ge 0.$$

Proof. Since $U(\mathbb{D})$ is a closed convex cone with nonempty interior in V (by (F3) together with conditions (R1) and (R2)), a standard separation theorem (such as the Hahn–Banach theorem) guarantees the existence of a nonzero continuous linear functional $\ell: V \to \mathbb{R}$ such that

$$\ell(x) \ge 0$$
 for all $x \in U(\mathbb{D})$.

By definition, for any $f \in X$,

$$f \in \mathbb{D} \iff u(f) \in U(\mathbb{D}) \iff \ell(u(f)) \ge 0.$$

Defining the evaluation (or risk) functional $\rho: X \to \mathbb{R}$ by

$$\rho(f) := \ell(u(f)),$$

we obtain the desired representation. Uniqueness of ℓ up to a positive scalar follows from the properties of the separating hyperplane.

7 Closure Under Limits

Assume that X is endowed with a topology that makes it a topological vector space and that $u: X \to \mathbb{R}$ is continuous. Recall that

$$\mathbb{D} = \{ f \in X : u(f) \ge 0 \}.$$

Theorem 7.1 (Closure Under Limits). Let $\{f_n\}$ be a sequence in \mathbb{D} that converges to some $f \in X$. Then $f \in \mathbb{D}$.

Proof. Since $f_n \in \mathbb{D}$ for all n, we have

$$u(f_n) \ge 0$$
 for all n .

By the continuity of u, it follows that

$$\lim_{n \to \infty} u(f_n) = u(f).$$

Since the limit of nonnegative numbers is nonnegative, we have $u(f) \geq 0$. Hence, by definition, $f \in \mathbb{D}$.