Assignment 2 - Pandas

Tanvir, Ahmed, 20075186

The Story

Use Markdown cells to write a brief summary of the data analysis you are planning to undertake:

- What is the goal of this work?
- What kind of data is analyzed in this work?
- What summary statistics are obtained in this work?

This part is worth 3 marks. I recommend writing this part once you have completed all the remaining parts of this assignment.

Brief introduction and objective of the analysis

- 1. Constructed 2 dataframes using World Bank data.
- 2. The first DataFrame: 'dataframe_1' describes the Economy of the selected countries.
- 3. The second DataFrame: 'dataframe_2' describes the Energy consumption of the countries, access to electricity, how electricity is produced (fossil, renewable).
- 4. The goal was to identify which factors has the most correlation with renewable energy usage or shifts towards it.

Please note: that initially a few extra indicators were chosen to get a feel of the economy and the energy consumption but all of them weren't used in the analysis.

The data analysed was numeric, structured with proper labels.

Summary

No correlation was found between strength or size of an economy and the dependency on renewable sources for electricity generation.

France and Canada are utilising green sources the most from my country list and European countries have more inclination towards renewable energy.

Data Preparation

Countries

```
In [1]:
         # Codes for the chosen countries
         country codes = ["CAN", "CHN", "DEU", "EGY", "FRA", "GBR", "IND", "JPN", "NGA", "USA", "ZAF"]
In [2]:
         # Creating a dictionary in the country code:country name format:
         # Step 1: Creating a list of country names in the same order as the country codes list
         country proper names = ['Canada', 'China', 'Egypt', 'France', 'Germany', 'India', 'Japan', 'Nigeria',
                                  'South Africa', 'United Kingdom', 'United States']
         country names = {}
         for i in range(0,len(country codes)):
             country names[country codes[i]] = country proper names[i]
         # The final dictionary
         country names
        {'CAN': 'Canada',
Out[2]:
          'CHN': 'China',
          'DEU': 'Egypt',
          'EGY': 'France',
          'FRA': 'Germany',
          'GBR': 'India',
          'IND': 'Japan',
          'JPN': 'Nigeria',
          'NGA': 'South Africa',
          'USA': 'United Kingdom',
          'ZAF': 'United States'}
In [3]:
         # Grouping the countries in their respective continents in a dictionary
```

```
country_groups = {'EGY':'Africa', 'NGA':'Africa', 'ZAF':'Africa', 'CHN':'Asia', 'IND':'Asia', 'JPN':'Asia',
                            'FRA': 'Europe', 'DEU': 'Europe', 'GBR': 'Europe', 'CAN': 'North America', 'USA': 'North America'}
         country groups
        {'EGY': 'Africa',
Out[3]:
          'NGA': 'Africa',
          'ZAF': 'Africa',
          'CHN': 'Asia',
          'IND': 'Asia',
          'JPN': 'Asia',
          'FRA': 'Europe',
          'DEU': 'Europe',
          'GBR': 'Europe',
          'CAN': 'North America',
          'USA': 'North America'}
        Indicators
In [4]:
         import numpy as np
         import pandas as pd
         import wbgapi as wb
         import matplotlib.pyplot as plt
         %matplotlib inline
In [5]:
         # Creating a list of Indicator IDs for my first DataFrame
         indicator ids 1 = ['SP.POP.TOTL', 'SL.TLF.TOTL.IN', 'NY.GDP.MKTP.CD', 'NY.GDP.MKTP.KD.ZG', 'GC.DOD.TOTL.GD.ZS',
                             'FI.RES.TOTL.CD', 'BX.GSR.GNFS.CD', 'BM.GSR.GNFS.CD']
         # Indicator IDs (indicator ids 2) for my second DataFrame is done in a similar method
```

DataFrames

```
In [6]: # Creating a Pandas DataFrame from World Bank data
my_dataframe_1 = wb.data.DataFrame(indicator_ids_1, country_codes, time=range(2011, 2016))
#replacing most recent 5 years mrv=5 with time for chosen years
```

YR2013

YR2014

YR2015

2.120215e+12

2.241603e+12

2.002282e+12

2.355595e+12

2.462902e+12

2.360152e+12

```
df = my_dataframe_1.unstack().stack(level=0) # using unstack and stack method to get the dataframe to my desired shape
# unstack() takes the indicators from being subcategories in the rows under country names to subcategories of year columns
# applying stack() again on level = 0 takes the year columns to a sublevel of rows
# How it Looks
df.head(10)
```

Out[6]: series BM.GSR.GNFS.CD BX.GSR.GNFS.CD FI.RES.TOTL.CD GC.DOD.TOTL.GD.ZS NY.GDP.MKTP.CD NY.GDP.MKTP.KD.ZG SL.TLF.TOTL.IN SP.PO economy **CAN YR2011** 5.684596e+11 5.467770e+11 6.581899e+10 NaN 1.793327e+12 3.146881 19147395.0 3.43393 YR2012 5.894798e+11 5.549615e+11 6.854634e+10 NaN 1.828366e+12 1.762223 19322866.0 3.47142 YR2013 1.846597e+12 2.329123 19546552.0 3.50829 5.890646e+11 5.600825e+11 7.193709e+10 NaN YR2014 5.896265e+11 5.733055e+11 7.469996e+10 NaN 1.805750e+12 2.870036 19629145.0 3.54374 YR2015 5.347210e+11 4.961373e+11 7.975352e+10 NaN 1.556509e+12 0.659177 19747709.0 3.57029 CHN YR2011 1.826949e+12 2.008852e+12 3.254674e+12 NaN 7.551500e+12 9.550832 778977720.0 1.34503 YR2012 1.943247e+12 2.175092e+12 3.387513e+12 8.532230e+12 7.863736 782865417.0 1.35419 NaN

```
•
```

NaN

NaN

NaN

9.570406e+12

1.047568e+13

1.106155e+13

7.766150

7.425764

7.041329

786673270.0 1.36324

791323527.0 1.37186

795251107.0 1.37986

3.880368e+12

3.900039e+12

3.405253e+12

```
In [8]:
          # Multiindexina the columns
          dataframe 1.columns = pd.MultiIndex.from tuples([('Population', 'Total'), ('Population', 'Total labor force'),
                                                             ('GDP', 'Growth (annual %)'), ('GDP', 'Gross (USD)'),
                                                             ('Economic strength', 'Central government debt (% of GDP)'),
                                                             ('Economic strength', 'Total reserves (USD)'),
                                                             ('Commerce', 'Exports (USD)'), ('Commerce', 'Imports (USD)')])
 In [9]:
          # Re-arranging the columns using a variable called 't'
          t = list(dataframe 1.columns)
                                             # creates a list of column names
          # I want to swap positions of column 3 and 4
          t[2], t[3] = t[3], t[2]
          dataframe 1 = dataframe 1[t]
          .....
          This can also be manually done as below.
          dataframe 1 = dataframe 1[[('Population', 'Total'), ('Population', 'Total labor force'),
                                      ('GDP', 'Gross (USD)'), ('GDP', 'Growth (annual %)'),
                                      ('Economic strength', 'Central government debt (% of GDP)'),
                                      ('Economic strength', 'Total reserves (USD)'),
                                      ('Commerce', 'Exports (USD)'), ('Commerce', 'Imports (USD)')]]
          0.00
          "\nThis can also be manually done as below.\n\ndataframe 1 = dataframe 1[[('Population', 'Total'), ('Population', 'Total labor for
Out[9]:
                                            ('GDP', 'Gross (USD)'), ('GDP', 'Growth (annual %)'), \n
          ce'),\n
                                                                                                                                 ('Economic str
          ength', 'Central government debt (% of GDP)'), \n
                                                                                        ('Economic strength', 'Total reserves (USD)'), \n
          ('Commerce', 'Exports (USD)'), ('Commerce', 'Imports (USD)')]]\n"
In [10]:
          # My first DataFrame
          dataframe 1.head(10)
Out[10]:
                                       Population
                                                                       GDP
                                                                                                    Economic strength
                                                                                                                                    Commerce
                                       Total labor
                                                                    Growth
                                                                             Central government debt (%
                                                                                                        Total reserves
                                                                                                                          Exports
                                                                                                                                      Imports
                               Total
                                                   Gross (USD)
                                                                                             of GDP)
                                                                                                                           (USD)
                                            force
                                                                  (annual %)
                                                                                                               (USD)
                                                                                                                                        (USD)
          Country Year
```

			Population		GDP	Ec	onomic strength		Commerce
		Total	Total labor force	Gross (USD)	Growth (annual %)	Central government debt (% of GDP)	Total reserves (USD)	Exports (USD)	Imports (USD)
Country	Year								
CAN	2011	3.433933e+07	19147395.0	1.793327e+12	3.146881	NaN	6.581899e+10	5.467770e+11	5.684596e+11
	2012	3.471422e+07	19322866.0	1.828366e+12	1.762223	NaN	6.854634e+10	5.549615e+11	5.894798e+11
	2013	3.508295e+07	19546552.0	1.846597e+12	2.329123	NaN	7.193709e+10	5.600825e+11	5.890646e+11
	2014	3.543744e+07	19629145.0	1.805750e+12	2.870036	NaN	7.469996e+10	5.733055e+11	5.896265e+11
	2015	3.570291e+07	19747709.0	1.556509e+12	0.659177	NaN	7.975352e+10	4.961373e+11	5.347210e+11
CHN	2011	1.345035e+09	778977720.0	7.551500e+12	9.550832	NaN	3.254674e+12	2.008852e+12	1.826949e+12
	2012	1.354190e+09	782865417.0	8.532230e+12	7.863736	NaN	3.387513e+12	2.175092e+12	1.943247e+12
	2013	1.363240e+09	786673270.0	9.570406e+12	7.766150	NaN	3.880368e+12	2.355595e+12	2.120215e+12
	2014	1.371860e+09	791323527.0	1.047568e+13	7.425764	NaN	3.900039e+12	2.462902e+12	2.241603e+12
	2015	1.379860e+09	795251107.0	1.106155e+13	7.041329	NaN	3.405253e+12	2.360152e+12	2.002282e+12

```
# The dataframe has a column with NaN values (there are a few inputs in this column though, let's see if it'll be useful).

# Please note:
# some of the columns will be excluded in this analysis, they're just presented for informational purposes
# and possible exploratory data analysis

# I'll keep this dataframe as is for now and drop the columns not necessary as we as the NaN column when needed.
```

Out[12]:		series	SP.POP.TOTL	EG.USE.ELEC.KH.PC	EG.ELC.RNWX.ZS	EG.ELC.NUCL.ZS	EG.ELC.LOSS.ZS	EG.ELC.HYRO.ZS	EG.ELC.FOSL.ZS	EG.ELC.ACCS.ZS
	Country	Year								
	CAN	2011	3.433933e+07	15644.540278	3.298016	14.707805	8.800576	59.040234	22.543932	100.000000
		2012	3.471422e+07	15336.624857	3.507259	14.900157	8.438532	59.723302	21.424611	100.000000
		2013	3.508295e+07	15750.811633	4.409954	15.549008	8.466956	58.888079	20.769341	100.000000
		2014	3.543744e+07	15588.487146	5.570376	16.119075	8.711767	57.254617	20.763125	100.000000

```
2015 3.570291e+07
                                         NaN
                                                       6.267257
                                                                       15.546561
                                                                                            NaN
                                                                                                        56.744193
                                                                                                                        21.067180
                                                                                                                                        100.000000
CHN 2011 1.345035e+09
                                  3295.784868
                                                       2.137640
                                                                        1.835336
                                                                                         5.740233
                                                                                                        14.624130
                                                                                                                        81.174003
                                                                                                                                         99.848724
       2012 1.354190e+09
                                  3466.019539
                                                       2.657515
                                                                        1.953846
                                                                                        5.810062
                                                                                                        17.308734
                                                                                                                        77.859893
                                                                                                                                         99.961929
       2013 1.363240e+09
                                  3757.185088
                                                       3.564878
                                                                        2.053005
                                                                                        5.777010
                                                                                                        16.731349
                                                                                                                        77.424467
                                                                                                                                         99.996445
       2014 1.371860e+09
                                  3905.317598
                                                       4.056660
                                                                        2.339286
                                                                                        5.471266
                                                                                                        18.552494
                                                                                                                        74.822887
                                                                                                                                        100.000000
```

NaN

NaN

19.069813

72.962076

100.000000

4.857004

NaN

2015 1.379860e+09

NaN

5.740233

5.810062

5.777010

5.471266

NaN

2.137640

2.657515

3.564878

4.056660

4.857004

3295.784868

3466.019539

3757.185088

3905.317598

NaN

Out[13]:				Population		Electricity T&D	Electri	city product	ion source (% of total)
			Total	Access to electricity (% of population)	Electricity consumption (kWh/capita)	Trans & Dist loss (% of output)	Solar & Wind	Nuclear	Hydro	Fossil fuels
	Country	Year								
	CAN	2011	3.433933e+07	100.000000	15644.540278	8.800576	3.298016	14.707805	59.040234	22.543932
		2012	3.471422e+07	100.000000	15336.624857	8.438532	3.507259	14.900157	59.723302	21.424611
		2013	3.508295e+07	100.000000	15750.811633	8.466956	4.409954	15.549008	58.888079	20.769341
		2014	3.543744e+07	100.000000	15588.487146	8.711767	5.570376	16.119075	57.254617	20.763125

Data Analysis

2015 3.570291e+07

2012 1.354190e+09

2013 1.363240e+09

2014 1.371860e+09

2015 1.379860e+09

CHN 2011 1.345035e+09

Use Pandas groupby() and pivot_table() methods to construct 8 different summary statistics. They must include the following Pandas techniques:

100.000000

99.848724

99.961929

99.996445

100.000000

100.000000

6.267257 15.546561 56.744193 21.067180

2.339286

1.835336 14.624130 81.174003

1.953846 17.308734 77.859893

2.053005 16.731349 77.424467

18.552494 74.822887

NaN 19.069813 72.962076

- groupby() combined with aggregate(), filter(), transform(), and apply() methods.
- groupby() using an external key, the dictionary country_groups you have constructed above.
- at least one summary statistics must use the pivot_table() method.
- at least two summary statistics must use data from both DataFrames.

The necessary Pandas techniques are explained in Notebooks 2.8 and 2.9.

Important: Make sure your summary statistics make sense and tell a story. This story must be summarized in the first part of this assignment, "The Story".

This part is worth 10 marks: 1 mark for Python code for each summary statistic and 2 marks for comments explaining the Python code and the summary statistics.

```
In [14]: # Application of groupby

gdp_max = dataframe_1.groupby(level='Country')[[('GDP', 'Gross (USD)')]].mean()
gdp_max.sort_values(by=[('GDP', 'Gross (USD)')], ascending=False)
```

Out[14]: GDP

Gross (USD)

Country

USA 1.685798e+13

CHN 9.438274e+12

JPN 5.411953e+12

DEU 3.651388e+12

GBR 2.848216e+12

FRA 2.731172e+12

IND 1.930025e+12

CAN 1.766110e+12

GDP

Gross (USD)

Country

NGA 4.805336e+11

ZAF 4.042793e+11

EGY 2.877005e+11

USA, China and Japan had higher avearge GDP than the rest of the countries between 2011 and 2015

```
In [15]: # GDP growth of the countries using groupby.filter()
# Filter by average GDP growth more than 5%
#dataframe_1.groupby('Country').filter(lambda x: x[('GDP','Growth (annual %)')].mean() > 3)
growth = dataframe_1.groupby('Country').filter(lambda x: x[('GDP','Growth (annual %)')].mean() > 5)
growth.groupby('Country')[[('GDP','Growth (annual %)')]].mean().sort_values([('GDP','Growth (annual %)')], ascending=False)
```

Out[15]:

GDP

Growth (annual %)

Country

CHN	7.929562
IND	6.498058
NGA	5.034347

China's GDP was the fastest growing between 2011-2015

```
In [16]: # The percentage of the labor force in the countries apply() method

df_3 = dataframe_1[[('Population', 'Total')]].droplevel(level=0, axis=1)
    df_3 = df_3.reset_index()
```

```
df 4 = df 4.reset index()
          def ratio(x):
              x['Total labor force'] /= df 3['Total']/100
               return x
          labor force percentage = df 4.groupby('Country').apply(ratio)
          labor force percentage.columns = ['Country', 'Year', 'labor force percetage']
          labor force percentage.groupby('Country')['labor force percetage'].mean()
          Country
Out[16]:
                 55.567898
          CAN
          CHN
                 57.749414
          DEU
                 52.180651
          EGY
                 32.302633
                 45.881623
          FRA
          GBR
                 51,592087
          IND
                 36.040963
          JPN
                 51.508466
                 31.700477
          NGA
          USA
                 50.113420
          ZAF
                 37.488959
          Name: labor force percetage, dtype: float64
         China, Canada, Germany, United Kingdom, Japan and the US have more than 50 percent of their population into the workforce
In [17]:
          # Application of groupby.aggregate method
          export by countries = dataframe 1.groupby(level='Country')[[('Commerce', 'Exports (USD)')]].aggregate(['min',
                                                                                                                    np.mean,
                                                                                                                    max])
          export by countries.sort values(by=[('Commerce', 'Exports (USD)', 'max')], ascending=False)
Out[17]:
                                              Commerce
                                           Exports (USD)
                          min
                                     mean
                                                   max
          Country
```

df 4 = dataframe 1[[('Population', 'Total labor force')]].droplevel(level=0, axis=1)

```
Commerce
```

Exports (USD)

	min	mean	max
Country			
CHN	2.008852e+12	2.272519e+12	2.462902e+12
USA	2.143556e+12	2.275359e+12	2.392613e+12
DEU	1.575247e+12	1.672834e+12	1.773618e+12
JPN	7.847108e+11	8.644595e+11	9.306604e+11
GBR	8.037030e+11	8.284525e+11	8.679430e+11
FRA	7.775447e+11	8.173200e+11	8.535030e+11
CAN	4.961373e+11	5.462527e+11	5.733055e+11
IND	4.286309e+11	4.545416e+11	4.855830e+11
ZAF	9.634652e+10	1.130611e+11	1.269350e+11
NGA	4.904777e+10	8.680304e+10	1.024375e+11
EGY	3.756940e+10	4.503704e+10	4.860130e+10

Out[18]: Commerce

Imports (USD)

 min
 mean
 max

 Country
 2.698073e+12
 2.775889e+12
 2.876564e+12

 CHN
 1.826949e+12
 2.026859e+12
 2.241603e+12

```
Commerce
```

Imports (USD)

		min	mean	max	
	Country				
	DEU	1.320209e+12	1.446217e+12	1.515877e+12	
	JPN	8.079867e+11	9.480099e+11	1.014813e+12	
	GBR	8.475310e+11	8.679509e+11	9.221976e+11	
	FRA	7.873782e+11	8.515478e+11	8.897318e+11	
		5.347210e+11			
	IND		5.477624e+11		
	ZAF		1.172173e+11		
		7.194744e+10		9.079363e+10	
	EGY	6.138110e+10	6.748850e+10	7.399600e+10	
Out[19]:	Country CHN DEU NGA ZAF - EGY - CAN - FRA - GBR -	.sort_values(<pre>Exports (USD)', 'mean')] - import_by_countries[('Commerce', 'Imports (USD)', 'mean')]</pre>
	IND -	9.322084e+10 5.005302e+11			
		float64			
	China. U	ISA and Germa	any are the to	n 3 evnorters	and importers of good and services among the countries

China, USA and Germany are the top 3 exporters and importers of good and services among the countries.

China, Germany and Nigeria are making profits.

```
In [20]: # Total reserves by continents using dataframe_1
# To groupby() using the dictionary country_groups (an external key) I need to reset the index of the multi-indexed dataframe.
reset_df1 = dataframe_1.reset_index()
#print(reset_df)
# Now setting the index to the newly created column 'Country' assigning the value to a new dataframe
country_idx_df_1 = reset_df1.set_index(['Country'])
#reset_df_groupby = reset_df.groupby(country_groups)[[('Economic strength', 'Total reserves (USD)')]].sum()
#reset_df_groupby on the new dataframe q to use country_groups
reserves_by_continent = country_idx_df_1.groupby(country_groups)[[('Economic strength', 'Total reserves (USD)')]].sum()
reserves_by_continent
```

Out[20]: Economic strength

Total reserves (USD)

Country

```
Africa5.076284e+11Asia2.572806e+13Europe2.447299e+12North America2.738945e+12
```

```
reserves_list = dataframe_1.groupby('Country')[[('Economic strength', 'Total reserves (USD)')]].max()
reserves_list.sort_values(by=[('Economic strength', 'Total reserves (USD)')], ascending=False)
```

Out[21]: Economic strength

Totalneseivetr(USD)

Country	
	Total reserves (USD)

Country	
CHN	3.900039e+12
JPN	1.295839e+12
USA	5.742681e+11
IND	3.533191e+11
DEU	2.488565e+11
FRA	1.845218e+11
GBR	1.481093e+11
CAN	7.975352e+10
ZAF	5.068808e+10
NGA	4.383064e+10
EGY	1.863754e+10

The selected Asian countries have the highest reserves than the rest due to China and Japan having the most amount of reserves at the top 2 position on the table.

Out[22]:

Electricity production source (% of total)

Solar & Wind

Country	
Africa	0.536075
Asia	4.535155
Europe	13.502376
North America	5.393571

Europe has larger proportion of its electricty production by Solar and Wind energies.

```
In [23]:
          # Which countries used more renewable sources to generate electricity than fossil fuels?
          renewable = dataframe 2[[('Electricity production source (% of total)','Solar & Wind'),
                                           ('Electricity production source (% of total)', 'Nuclear'),
                                           ('Electricity production source (% of total)', 'Hydro')]]
          renewable[('Electricity production source (% of total)', 'Fossil')] = dataframe 2[[('Electricity production source (% of total)',
                                                                                              'Fossil fuels')]]
          #removing multi-index from the columns
          renewable = renewable.droplevel(level=0, axis=1)
          renewable = renewable.reset index()
          renewable['Sum of renewable (% of total electricity prod.)'] = renewable[['Solar & Wind', 'Nuclear', 'Hydro']].sum(axis=1)
         C:\Users\Tan\AppData\Local\Temp/ipykernel_17236/2697585201.py:8: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versu
         s-a-copy
           renewable[('Electricity production source (% of total)', 'Fossil')] = dataframe_2[[('Electricity production source (% of total)',
```

Out[24]: Sum of renewable (% of total electricity prod.)

Country	
FRA	92.360655
CAN	78.305179
DEU	40.370703
GBR	35.661474
USA	31.704813
CHN	22.348338
NGA	19.140297
IND	18.718404
JPN	15.535208
EGY	8.843665
ZAF	5.334028

France and Canada generate most of their electricity from renewable sources

Country

ZAF 93.674061

Fossil fuels

Country		
EGY	91.156335	
NGA	80.859703	
IND	80.685692	
JPN	79.925226	
CHN	76.848665	
USA	67.929200	
GBR	63.655315	
DEU	58.223146	
CAN	21.313638	
FRA	7.177624	

Most countries rely very heavily on fossil fuels for electricity production with the only exception of Canada and France as seen in the previous summary.

Out[26]: Population Electricity T&D

Total Electricity consumption (kWh/capita)

Country	Population	Electricity T&D
	Total	Electricity consumption (kWh/capita)

Country		
CAN	3.570291e+07	15750.811633
USA	3.207390e+08	13245.881928
JPN	1.278330e+08	8099.598695
FRA	6.654827e+07	7367.843768
DEU	8.168661e+07	7281.272174
GBR	6.511622e+07	5471.933475
ZAF	5.538637e+07	4566.323754
CHN	1.379860e+09	3905.317598
EGY	9.244255e+07	1685.818794
IND	1.310152e+09	804.516349
NGA	1.811375e+08	156.797152

Per capita electricity usage is very high in Canada and the US. The table shows that population doesn't have any impact on the energy consumption.

Out[27]: GDP Electricity production source (% of total)

Gross (USDP) Electricaty/pinoduction/uscluse (% of Hotal)

Country	Year	Gross (USD)	Solar & Wind	Nuclear	Hydro
Country	Year				
CAN	2011	1.793327e+12	3.298016	14.707805	59.040234
	2012	1.828366e+12	3.507259	14.900157	59.723302
	2013	1.846597e+12	4.409954	15.549008	58.888079
	2014	1.805750e+12	5.570376	16.119075	57.254617
	2015	1.556509e+12	6.267257	15.546561	56.744193
CHN	2011	7.551500e+12	2.137640	1.835336	14.624130
	2012	8.532230e+12	2.657515	1.953846	17.308734
	2013	9.570406e+12	3.564878	2.053005	16.731349
	2014	1.047568e+13	4.056660	2.339286	18.552494
	2015	1.106155e+13	4.857004	NaN	19.069813
DEU	2011	3.749315e+12	17.473173	17.780965	2.910110
	2012	3.527143e+12	19.512504	15.946309	3.487954
	2013	3.733805e+12	20.439059	15.371004	3.633491
	2014	3.889093e+12	22.980747	15.617152	3.149349
	2015	3.357586e+12	26.271087	14.319926	2.960683
EGY	2011	2.359897e+11	1.109869	0.000000	8.216968
	2012	2.791167e+11	0.909323	0.000000	7.970090
	2013	2.884341e+11	0.936626	0.000000	7.945254
	2014	3.055954e+11	0.966976	0.000000	7.903931
	2015	3.293666e+11	0.878133	NaN	7.381153
FRA	2011	2.865158e+12	3.524242	79.511660	8.050506
	2012	2.683672e+12	4.342710	75.962780	10.484644

GDP Electricity production source (% of total)

		Gross (USD)	Solar & Wind	Nuclear	Hydro
Country	Year				
	2013	2.811877e+12	4.576583	74.704486	12.468703
	2014	2.855964e+12	5.193969	78.235588	11.261935
	2015	2.439189e+12	6.196517	77.627801	9.661150
GBR	2011	2.674891e+12	7.928430	18.956122	1.560624
	2012	2.719158e+12	9.955860	19.557542	1.468100
	2013	2.803291e+12	13.665173	19.862831	1.323307
	2014	3.087166e+12	17.505286	19.012625	1.757567
	2015	2.956574e+12	22.970305	20.913853	1.869745
IND	2011	1.823050e+12	3.954730	3.004739	13.362233
	2012	1.827638e+12	4.643609	2.926497	11.089365
	2013	1.856722e+12	4.960653	2.874003	12.388661
	2014	2.039127e+12	5.173683	2.790639	11.080157
	2015	2.103588e+12	5.361011	NaN	9.982039
JPN	2011	6.233147e+12	3.719216	9.471488	7.743628
	2012	6.272363e+12	4.050228	1.508472	7.144020
	2013	5.212328e+12	4.834342	0.878002	7.370949
	2014	4.896994e+12	6.300470	0.000000	7.758890
	2015	4.444931e+12	7.755688	0.911553	8.229093
NGA	2011	4.049936e+11	0.000000	0.000000	21.761486
	2012	4.555015e+11	0.000000	0.000000	19.713649
	2013	5.086930e+11	0.000000	0.000000	18.439913
	2014	5.466764e+11	0.000000	0.000000	17.591313

GDP Electricity production source (% of total)

		Gross (USD)	Solar & Wind	Nuclear	Hydro
Country	Year				
	2015	4.868033e+11	0.000000	NaN	18.195125
USA	2011	1.554258e+13	4.789611	18.984846	7.436102
	2012	1.619701e+13	5.486241	18.757920	6.521156
	2013	1.678485e+13	6.320009	19.173831	6.317910
	2014	1.752716e+13	6.900029	19.230239	6.053798
	2015	1.823830e+13	7.386955	19.323778	5.841638
ZAF	2011	4.582015e+11	0.125975	5.201559	0.792446
	2012	4.344005e+11	0.130241	4.689443	0.472710
	2013	4.008860e+11	0.151269	5.571266	0.457755
	2014	3.811989e+11	0.902309	5.529300	0.390827
	2015	3.467098e+11	1.930403	NaN	0.324638

```
In [28]: #Using transform() method #normalised the column by
```

#normalised the column by dvinding the max value for each category

comparison_2.groupby('Country').transform(lambda x: x/x.max())

Out [28]: GDP Electricity production source (% of total)

		Gross (USD)	Solar & Wind	Nuclear	Hydro
Country	Year				
CAN	2011	0.971152	0.526230	0.912447	0.988563
	2012	0.990127	0.559616	0.924380	1.000000
	2013	1.000000	0.703650	0.964634	0.986015

GDP Electricity production source (% of total)

		ODI	Electricity production source (70 or total)		(70 OI total)
		Gross (USD)	Solar & Wind	Nuclear	Hydro
Country	Year				
	2014	0.977880	0.888806	1.000000	0.958665
	2015	0.842906	1.000000	0.964482	0.950118
CHN	2011	0.682680	0.440115	0.784571	0.766873
	2012	0.771341	0.547151	0.835232	0.907651
	2013	0.865196	0.733966	0.877620	0.877374
	2014	0.947035	0.835219	1.000000	0.972872
	2015	1.000000	1.000000	NaN	1.000000
DEU	2011	0.964059	0.665110	1.000000	0.800913
	2012	0.906932	0.742737	0.896819	0.959946
	2013	0.960071	0.778006	0.864464	1.000000
	2014	1.000000	0.874754	0.878307	0.866756
	2015	0.863334	1.000000	0.805351	0.814831
EGY	2011	0.716496	1.000000	NaN	1.000000
	2012	0.847435	0.819307	NaN	0.969955
	2013	0.875724	0.843907	NaN	0.966933
	2014	0.927828	0.871253	NaN	0.961904
	2015	1.000000	0.791204	NaN	0.898282
FRA	2011	1.000000	0.568746	1.000000	0.645657
	2012	0.936658	0.700831	0.955367	0.840877
	2013	0.981404	0.738574	0.939541	1.000000
	2014	0.996791	0.838208	0.983951	0.903216
	2015	0.851328	1.000000	0.976307	0.774832

GDP Electricity production source (% of total)

		GD1	Electricity production source (70 or total)		
		Gross (USD)	Solar & Wind	Nuclear	Hydro
Country	Year				
GBR	2011	0.866455	0.345160	0.906391	0.834672
	2012	0.880794	0.433423	0.935148	0.785187
	2013	0.908047	0.594906	0.949745	0.707747
	2014	1.000000	0.762083	0.909092	0.940004
	2015	0.957698	1.000000	1.000000	1.000000
IND	2011	0.866638	0.737684	1.000000	1.000000
	2012	0.868819	0.866181	0.973961	0.829904
	2013	0.882645	0.925320	0.956490	0.927140
	2014	0.969357	0.965057	0.928746	0.829215
	2015	1.000000	1.000000	NaN	0.747034
JPN	2011	0.993748	0.479547	1.000000	0.941006
	2012	1.000000	0.522227	0.159265	0.868142
	2013	0.830999	0.623329	0.092699	0.895718
	2014	0.780726	0.812368	0.000000	0.942861
	2015	0.708653	1.000000	0.096242	1.000000
NGA	2011	0.740829	NaN	NaN	1.000000
	2012	0.833220	NaN	NaN	0.905896
	2013	0.930519	NaN	NaN	0.847365
	2014	1.000000	NaN	NaN	0.808369
	2015	0.890478	NaN	NaN	0.836116
USA	2011	0.852195	0.648388	0.982460	1.000000
	2012	0.888077	0.742693	0.970717	0.876959

		Gross (USD)	Solar & Wind	Nuclear	Hydro
Country	Year				
	2013	0.920308	0.855564	0.992240	0.849627
	2014	0.961009	0.934083	0.995159	0.814109
	2015	1.000000	1.000000	1.000000	0.785578
ZAF	2011	1.000000	0.065258	0.933640	1.000000
	2012	0.948056	0.067468	0.841719	0.596520
	2013	0.874912	0.078361	1.000000	0.577649
	2014	0.831946	0.467420	0.992467	0.493191
	2015	0.756675	1.000000	NaN	0.409666

The normalised dataframe above shows that use of Solar and Wind energy had been gradually increasing in all countries except Egypt. No data on Nigeria is available for this category.

```
comparison_2.groupby('Country')[[('Electricity production source (% of total)', 'Solar & Wind')]].mean().round(3)
```

Out[29]: Electricity production source (% of total)

Solar & Wind

Country	
CAN	4.611
CHN	3.455
DEU	21.335
EGY	0.960
FRA	4.767
GBR	14.405
IND	4.819

Electricity production source (% of total)

Solar & Wind

Country	
JPN	5.332
NGA	0.000
USA	6.177
ZAF	0.648

Germany is leading in harnessing solar and wind energy followed by the United Kingdom.