TEMA 4b: Teoremas y aplicaciones de la derivada. La derivada en un máximo (o mínimo)

Definición (Máximo y mínimo local)

Se dice que f tiene un $\frac{máximo}{maximo}$ (respect. $\frac{m(nimo)}{mo}$) local (o relativo) en el punto c de su dominio, dom(f), si existe un intervalo abierto $I \subset dom(f)$ que contiene a c en su interior tal que $f(x) \leq f(c)$ (respect. $f(x) \geq f(c)$) $\forall x \in I$.

Lema

Si $f:[a,b] \to \mathbb{R}$ tiene un máximo (o mínimo) en un punto c del interior del intervalo (a < c < b), y es derivable en c, entonces f'(c) = 0.

Dem.: Supongamos que f tiene un máximo en x = c. Entonces $f(c + h) - f(c) \le 0$ para todo h, y por tanto

- si h > 0, entonces $\frac{f(c+h)-f(c)}{h} \le 0$;
- si h < 0, entonces $\frac{f(c+h)-f(c)}{h} \ge 0$.

La primera implica que $f'_+(c) \le 0$ y la segunda que $f'_-(c) \ge 0$. Como f'(c) existe, entonces $f'(c) = f'_+(c) = f'_-(c)$, y f'(c) tiene que ser cero.

(Si f tiene un mínimo, la demostración es similar).

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

F. Soria (UAM) Cálculo I 1 / 14

Maximos y mínimos de una función en un intervalo [a, b].

Definición (Puntos críticosI)

Dada f derivable, se denominan puntos críticos a todos aquellos valores c de su dominio donde la derivada se anula (f'(c) = 0).

Para hallar los valores máximos y mínimos de una función derivable en un intervalo [a,b], hay que tener en cuenta no sólo los máximos y mínimos relativos, sino además los extremos del intervalo.

Procedimiento: Si $f:[a,b] \to \mathbb{R}$ es derivable, su máximo y mínimo valor se hallan siguiendo estos pasos:

- Se calcula f en los extremos a y b; esto da f(a) y f(b);
- ② se hallan los puntos críticos de f en [a, b], lo que da ciertos valores $c_1, \ldots c_n$ en [a, b];
- \bullet se calculan $f(c_1), \ldots f(c_n)$;
- el máximo en [a, b] de f es el mayor valor entre $f(a), f(b), f(c_1), \ldots f(c_n)$; de forma semejante se determina el mínimo.

◆□ > ◆□ > ◆□ > ◆□ > □ □

Teorema de Rolle

Teorema (Teorema de Rolle)

Sea $f:[a,b] \to \mathbb{R}$ una función continua en [a,b] y diferenciable en (a,b). Si f(a) = f(b) entonces existe un punto interior $c \in (a,b)$ tal que f'(c) = 0.

Demostración.

- 1. Si f(x) = k contante, entonces f'(x) = 0 para todo x.
- 2. Si f(x) > f(a) para algún x, entonces $\exists x_M \in (a,b)$ tal que $f(x_M)$ es el máximo de f en [a,b]. Como $f(x_M) > f(a) = f(b)$, $x_M \in (a,b)$, f es derivable en x_M y por lo anterior, $f'(x_M) = 0$.
- **3.** Si f(x) < f(a), entonces se hace de forma similar al caso anterior, pero cambiando el máximo por un mínimo. (Ver gráfica)

F. Soria (UAM) Cálculo I

Teoremas del valor medio de Lagrange y de Cauchy

Teorema (Lagrange)

Sea $f:[a,b]\to\mathbb{R}$ una función continua en [a,b] y diferenciable en (a,b). Entonces existe un $c \in (a, b)$ tal que $f'(c) = \frac{f(b) - f(a)}{b}$.

Dem.: Esto se demuestra usando el teorema de Rolle para la función auxiliar

$$h(x) = [f(b) - f(a)]x - [b - a]f(x),$$

ya que h(a) = h(b).

Teorema (Cauchy)

Sean $f:[a,b]\to\mathbb{R}$, $g:[a,b]\to\mathbb{R}$ funciones continuas en [a,b], diferenciables en (a,b) y $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}.$ $g'(x) \neq 0, \forall x$. Entonces existe un $c \in (a, b)$ tal que

Dem.: Al igual que antes se usa el teorema de Rolle pero ahora con la función auxiliar

$$h(x) = [f(b) - f(a)]g(x) - [g(b) - g(a)]f(x).$$

De nuevo h(a)=h(b)

F. Soria (UAM)

La regla de L'Hopital

Teorema

Sean $f,g:\mathbb{R}\to\mathbb{R}$ funciones derivables donde $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ son ambas simultáneamente 0, o ambas simultáneamente ∞ . Entonces

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

siempre que el límite de la derecha exista.

Dem.: es una consecuencia del TVM de Cauchy.

En el límite anterior, a puede ser, además de un número, ∞ o $-\infty$.

Este límite permite resolver indeterminaciones del tipo $\frac{0}{0}$ ó $\frac{\infty}{\infty}$.

El resto de indeterminaciones se puede resolver usando este método con algún tratamiento previo:

- \bullet En general, indeterminaciones del tipo $\infty-\infty$ pueden resolverse manipulando algebraicamente el límite;
- Las indeterminaciones del tipo 0^0 , ∞^0 y 1^∞ pueden resolverse tomando previamente logaritmos.

Crecimiento y decrecimiento de funciones

Definición

Una función f se dice creciente en un intervalo I si para todo $x \le y$ se tiene que $f(x) \le f(y)$, y se dice decreciente si para todo $x \le y$ se tiene que $f(x) \ge f(y)$.

De hecho f es creciente $\iff \frac{f(x)-f(y)}{x-y} \geq 0$; es decreciente $\iff \frac{f(x)-f(y)}{x-y} \leq 0, \forall x,y \in I$.

Teorema

Sea I un intervalo y supongamos que $f:I \to \mathbb{R}$ es una función derivable en todo I. Entonces,

- $f'(x) \ge 0, \forall x \in I \iff f$ es creciente en I . Si $f'(x) > 0, \forall x \in I$, f es estrictamente creciente en I.
- $f'(x) \le 0, \forall x \in I \iff f$ es decreciente en I . Si $f'(x) < 0, \forall x \in I$, f es estrictamente decreciente en I.

Dem.: Es una consecuencia del TVM de Lagrange: $\frac{f(x)-f(y)}{x-y}=f'(z)$, para un z intermedio.

Nota: Para hallar los intervalos de crecimiento y decrecimiento de una función en un intervalo

- se hallan los puntos en que f'(x) = 0;
- se divide el intervalo en subintervalos usando los puntos hallados en el apartado anterior y el dominio de f;
- se estudia el signo de f' en cada uno de los subintervalos anteriores; para esto basta tomar un punto del subintervalo y evaluar f' sobre ese punto.

Puntos críticos y extremos locales

Si nos queremos referir indistintamente a máximos o mínimos locales de una función, usamos el término *extremos locales*.

Definición

Sea $f: I \to \mathbb{R}$ una función derivable. Un punto crítico de f es un punto c del intervalo I donde f'(c) = 0.

Nota: Si la función f es derivable, entonces f'(c) = 0 en un máximo o en un mínimo local. El recíproco no es cierto. Ejemplo: $f(x) = x^3$ cumple f'(0) = 0 pero 0 no es un extremo local.

Los puntos críticos pueden ser:

- máximos locales
- mínimos locales
- ninguno de los dos (puntos de silla)

F. Soria (UAM) Cálculo I 7 /

Criterio de la primera derivada para los extremos locales

Sirve para decidir si un punto crítico es o no extremo local. La razón es que si la función pasa de ser creciente a ser decreciente en *a* entonces se alcanza un máximo local y si pasa de ser decreciente a ser creciente, se alcanza un mínimo local.

Teorema

Supongamos que c es un punto crítico de una función f derivable (i.e., f'(c)=0).

- Si f' cambia de positiva a negativa en c, entonces f tiene un máximo local en c, (ya que pasa de creciente a decreciente).
- si f' cambia de negativa a positiva en c, entonces f tiene un mínimo local en c, (ya que pasa de decreciente a creciente).
- si f' no cambia de signo en c, entonces f no tiene ni máximo local, ni mínimo local en c (punto de silla).

F. Soria (UAM) Cálculo I 8 /

Criterio de la segunda derivada para los extremos locales

Otro criterio que sirve para decidir el carácter de un punto crítico es el siguiente:

Teorema

Sea $f:I \to \mathbb{R}$ una función derivable dos veces, y $a \in I$ un punto crítico de f. Entonces

- 1 si f''(a) < 0, a es un máximo local de f;
- 2 si f''(a) > 0, a es un mínimo local de f;
- si f''(a) = 0, no se puede decidir.

Dem.: En el primer caso, los cocientes incrementales de f' (usando que f'(a) = 0)

$$\frac{f'(x) - f'(a)}{x - a} = \frac{f'(x)}{x - a} \tag{1}$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

son negativos en un entorno de a, luego f' es positiva a la izquierda de a (f crece) y negativa a su derecha (f decrece).

En el segundo caso, los cocientes incrementales (1) de f' son positivos en un entorno de a, luego f' es negativa a la izquierda de a (f decrece) y positiva a su derecha (f crece).

En ambos casos se puede aplicar entonces el criterio de la primera derivada.

Concavidad y convexidad

Definición

- La función f se dice convexa si su primera derivada f' es creciente.
 Geométricamente esto se traduce en que la gráfica de f parece un valle.
- La función f se dice cóncava si su primera derivada f' es decreciente (y la gráfica de f parece una montaña).

Figura: Una función convexa.

Figura: Una función cóncava.

Concavidad y convexidad (cont.)

Un punto c donde la función cambia de concava a convexa o viceversa, se llama un punto de inflexión

Para hallar los intervalos de concavidad y convexidad de una función con dos derivadas en un intervalo (que puede ser \mathbb{R}):

- se hallan los puntos en que f''(x) = 0;
- se divide el intervalo I en subintervalos usando los puntos hallados en el apartado anterior y el dominio de f;
- se estudia el signo de f'' en cada uno de los subintervalos anteriores; en donde sea positivo hay convexidad, en donde sea negativo, concavidad.

F. Soria (UAM) Cálculo I 11

Gráficas de funciones

Para hallar la gráfica de una función conviene seguir los siguientes pasos:

- **① Dominio:** Hallar el dominio de f, esto es, los $x \in \mathbb{R}$ para los que f esté bien definida.
- Simetrías de la función: Hay que ver si la función cumple alguna de las siguientes posibilidades:
 - a) Simetría respecto al eje OY: para esto, examinamos si se cumple que f(x) = f(-x);
 - b) Simetría respecto al origen: examinamos si se cumple que f(x) = -f(-x).

Cortes con los ejes:

- a) Corte con el eje X: hallamos para qué x_i 's se tiene que $f(x_i) = 0$, y los puntos de corte serán $(x_i, 0)$;
- b) Corte con el eje Y: el punto (0, f(0)).

(continúa en la siguiente página)

F. Soria (UAM) Cálculo I 12 /

Gráficas de funciones (cont.)

Asíntotas:

a) Horizontales: Para esto hallamos (si existen) los límites

$$\lim_{x \to \infty} f(x) = A, \qquad \lim_{x \to -\infty} f(x) = B$$

y las asíntotas serán y = A e y = B (si existen).

b) Verticales: Buscamos los puntos x_i que no están en el dominio y estudiamos los límites

$$\lim_{x \to x_i^-} f(x), \qquad \lim_{x \to x_i^+} f(x)$$

Si alguno de ellos es $\pm \infty$, entonces $x = x_i$ es una asíntota.

c) Oblicuas: Para hallar éstas (si existen) hay que calcular los límites

$$\lim_{x\to\infty}\frac{f(x)}{x}=m_1,\qquad \lim_{x\to\infty}\left(f(x)-m_1x\right)=b_1$$

que (si existen ambos) darían la asíntota (por la derecha) $y=m_1\cdot x+b_1$, y los límites

$$\lim_{x \to -\infty} \frac{f(x)}{x} = m_2, \qquad \lim_{x \to -\infty} (f(x) - m_2 x) = b_2$$

que daría la asíntota (por la izquierda) $y = m_2 \cdot x + b_2$.

(continúa en la siguiente página)

F. Soria (UAM) Cálculo I 13

Gráficas de funciones (cont.)

- **9 Puntos críticos:** Estos se obtiene resolviendo la ecuación f'(x) = 0.
- Intervalos de crecimiento y decrecimiento: Se obtiene como se indicó anteriormente: se subdivide la recta real en subintervalos con los puntos críticos y aquellos no en el dominio, y se examina el signo de f'(x) en cada uno; en los positivos, f crece, en los negativos f decrece.
- Extremos locales: Se examinan los puntos críticos y se termina su carácter usando bien el primer o el segundo criterio de la derivada;
- **Intervalos de concavidad y convexidad:** Se subdivide la recta real en subintervalos con los puntos donde f''(x) = 0 y aquellos no en el dominio, y se examina el signo de f''(x) en cada uno; en los positivos, f es convexa, en los negativos f es cóncava.
- **Puntos de inflexión:** Los puntos donde f''(x) = 0 y bien f'' pasa de positiva a negativa, o viceversa.

←□ → ←□ → ← □ → ← □ → □ □