SAMB for "Th1"

Generated on 2023-05-24 23:18 by MultiPie $1.1.1\,$

- Generation condition
 - $model\ type:\ {\tt tight_binding}$
 - time-reversal type: electric
 - irrep: [Ag]
 - spinful
- Unit cell:

$$a=1.0,\ b=1.0,\ c=1.0,\ \alpha=90.0,\ \beta=90.0,\ \gamma=90.0$$

• Lattice vectors:

$$\boldsymbol{a}_1 = \begin{pmatrix} 1.0 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{a}_2 = \begin{pmatrix} 0 & 1.0 & 0 \end{pmatrix}$$

$$\mathbf{a}_3 = \begin{pmatrix} 0 & 0 & 1.0 \end{pmatrix}$$

Table 1: High-symmetry line: Γ -X.

symbol	position	symbol	position
Γ	$\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$	X	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$

• Kets: dimension = 24

Table 2: Hilbert space for full matrix.

No.	ket	No.	ket	No.	ket	No.	ket	No.	ket
1	(s,\uparrow) @A ₁	2	(s,\downarrow) @A ₁	3	(p_x,\uparrow) @A ₁	4	(p_x,\downarrow) @A ₁	5	(p_y,\uparrow) @A ₁
6	(p_y,\downarrow) @A ₁	7	(p_z,\uparrow) @A ₁	8	(p_z,\downarrow) @A ₁				

• Sites in (primitive) unit cell:

Table 3: Site-clusters.

	site	position	mapping
S_1	A_1	$\begin{pmatrix} \frac{1}{2} & 0 & 0 \end{pmatrix}$	[1,2,3,4,13,14,15,16]
	A_2	$\left(\begin{array}{ccc} 0 & \frac{1}{2} & 0 \end{array}\right)$	[5,6,7,8,17,18,19,20]
	A_3	$\left(\begin{array}{ccc} 0 & 0 & \frac{1}{2} \end{array}\right)$	[9,10,11,12,21,22,23,24]

• Bonds in (primitive) unit cell:

 ${\bf Table\ 4:\ Bond\text{-}clusters.}$

					_		
	bond	tail	head	n	#	b@c	mapping
B_1	b_1	A_1	A_2	1	1		[1,14]
	b_2	A_1	A_2	1	1	$ \left(\begin{array}{ccc} \frac{1}{2} & -\frac{1}{2} & 0 \end{array} \right) @ \left(\begin{array}{ccc} \frac{3}{4} & \frac{3}{4} & 0 \end{array} \right) $	[2,13]
	b_3	A_1	A_2	1	1	$\left[\begin{array}{ccc} \left(-\frac{1}{2} & -\frac{1}{2} & 0 \right) @ \left(\frac{1}{4} & \frac{3}{4} & 0 \right) \end{array} \right]$	[3,16]
	b_4	A_1	A_2	1	1	$ \left(\begin{array}{ccc} \frac{1}{2} & \frac{1}{2} & 0 \end{array}\right) @ \left(\begin{array}{ccc} \frac{3}{4} & \frac{1}{4} & 0 \end{array}\right) $	[4,15]
	b_5	A_2	A_3	1	1	$ \left(\begin{array}{ccc} 0 & -\frac{1}{2} & \frac{1}{2} \end{array} \right) @ \left(0 & \frac{1}{4} & \frac{1}{4} \right) $	[5,19]
	b_6	A_2	A_3	1	1	$ \left(0 \frac{1}{2} \frac{1}{2} \right) @ \left(0 \frac{3}{4} \frac{1}{4} \right) $	[6,20]
	b_7	A_2	A_3	1	1	$ \left[\begin{array}{ccc} \left(0 & \frac{1}{2} & -\frac{1}{2}\right) @ \left(0 & \frac{3}{4} & \frac{3}{4}\right) \end{array} \right] $	[7,17]
	b_8	A_2	A_3	1	1	$ \left \begin{array}{ccc} \left(0 & -\frac{1}{2} & -\frac{1}{2}\right) @ \left(0 & \frac{1}{4} & \frac{3}{4}\right) \end{array} \right $	[8,18]

Table 4

	bond	tail	head	n	#	b@c	mapping
	b_9	A_1	A_3	1	1	$ \left(-\frac{1}{2} 0 \frac{1}{2} \right) @ \left(\frac{1}{4} 0 \frac{1}{4} \right) $	[-9,-22]
	b_{10}	A_1	A_3	1	1	$\left(\begin{array}{ccc} \frac{1}{2} & 0 & -\frac{1}{2} \end{array}\right) @ \left(\begin{array}{ccc} \frac{3}{4} & 0 & \frac{3}{4} \end{array}\right)$	[-10,-21]
	b_{11}	A_1	A_3	1	1	$ \left(\begin{array}{cccc} \frac{1}{2} & 0 & \frac{1}{2} \end{array}\right) @ \left(\begin{array}{cccc} \frac{3}{4} & 0 & \frac{1}{4} \end{array}\right) $	[-11,-24]
	b_{12}	A_1	A_3	1	1	$\left[\begin{array}{cccc} \left(-\frac{1}{2} & 0 & -\frac{1}{2}\right) @ \left(\frac{1}{4} & 0 & \frac{3}{4}\right) \end{array}\right]$	[-12,-23]
B_2	b ₁₃	A_1	A_1	2	1		[1,-2,3,-4,-13,14,-15,16]
	b_{14}	A_2	A_2	2	1	$ \left(\begin{array}{cccc} 0 & 1 & 0 \end{array} \right) @ \left(\begin{array}{cccc} 0 & 0 & 0 \end{array} \right) $	[5,-6,-7,8,-17,18,19,-20]
	b_{15}	A_3	A_3	2	1	$ \left(\begin{array}{cccc} 0 & 0 & 1 \end{array} \right) @ \left(\begin{array}{cccc} 0 & 0 & 0 \end{array} \right) $	[9,-10,11,-12,-21,22,-23,24]
B_3	b ₁₆	A_1	A_1	2	2	$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$	[1,-2,-3,4,-13,14,15,-16]
	b_{17}	A_2	A_2	2	2	$ \left[\begin{array}{ccc} \left(0 & 0 & 1 \right) @ \left(0 & \frac{1}{2} & \frac{1}{2} \right) \end{array} \right] $	[5,6,-7,-8,-17,-18,19,20]
	b_{18}	A_3	A_3	2	2		[9,-10,-11,12,-21,22,23,-24]
$\overline{\mathrm{B}_{4}}$	b ₁₉	A_1	A_1	2	3	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} @ \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$	[1,2,-3,-4,-13,-14,15,16]
	b_{20}	A_2	A_2	2	3		[5,-6,7,-8,-17,18,-19,20]
	b_{21}	A ₃	A_3	2	3		[9,10,-11,-12,-21,-22,23,24]

• SAMB:

No. 1
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, S₁]

$$\hat{\mathbb{Z}}_1 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_g)}]$$

$$\hat{\mathbb{Z}}_1(\boldsymbol{k}) = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}]$$

No. 2
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_2 = \mathbb{X}_{14}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_g)}]$$

$$\hat{\mathbb{Z}}_2(\mathbf{k}) = \mathbb{X}_{14}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}]$$

No. 3
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_3 = \mathbb{X}_{15}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_1[\mathbb{Q}_0^{(s,A_g)}]$$

$$\hat{\mathbb{Z}}_3(\mathbf{k}) = \mathbb{X}_{15}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}]$$

No. 4
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_4 = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_4(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2}$$

No. 5
$$\hat{\mathbb{G}}_3^{(A_g)}$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_5 = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{5}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2}$$

No. 6
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_6 = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{6}(\textbf{\textit{k}}) = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2}$$

No. 7
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₃, S₁]

$$\hat{\mathbb{Z}}_7 = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_3[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_2[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{7}(\boldsymbol{k}) = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2}$$

No. 8
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, B₁]

$$\hat{\mathbb{Z}}_8 = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{8}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{E}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{E}_{2}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(u,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(u,A_{g})}]}{3} +$$

No. 9 $\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$ [M₁, B₁]

$$\hat{\mathbb{Z}}_9 = \frac{\sqrt{3}\mathbb{X}_2[\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_3[\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_4[\mathbb{M}_{1,2}^{(b,T_g)}(1,-1)] \otimes \mathbb{Y}_{$$

$$\begin{split} \hat{\mathbb{Z}}_{9}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{2}[\mathbb{M}_{1,0}^{(a,T_{g})}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_{g})}]}{3} - \frac{\sqrt{2}\mathbb{X}_{2}[\mathbb{M}_{1,0}^{(a,T_{g})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_{g})}]}{21} - \frac{4\sqrt{6}\mathbb{X}_{2}[\mathbb{M}_{1,0}^{(a,T_{g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_{g})}]}{21} \\ &+ \frac{\mathbb{X}_{3}[\mathbb{M}_{1,1}^{(a,T_{g})}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_{g})}]}{3} + \frac{13\sqrt{2}\mathbb{X}_{3}[\mathbb{M}_{1,1}^{(a,T_{g})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_{g})}]}{42} + \frac{\sqrt{6}\mathbb{X}_{3}[\mathbb{M}_{1,1}^{(a,T_{g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_{g})}]}{14} \\ &+ \frac{\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(a,T_{g})}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_{g})}]}{3} - \frac{11\sqrt{2}\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(a,T_{g})}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_{g})}]}{42} + \frac{5\sqrt{6}\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(a,T_{g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_{g})}]}{42} \\ &+ \frac{5\sqrt{6}\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(u,E_{g})}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,2}^{(k,T_{g})}]}{42} \\ &+ \frac{5\sqrt{6}\mathbb{X}_{4}[\mathbb{M}_{1,2}^{(u,E_{g})}] \otimes \mathbb{T}_{9}[\mathbb{Q}_{2,2}^{(u,E_{g})}]}{42} \\ &+ \frac{5\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{2,2}^{(u,E_{g})}] \otimes \mathbb{T}_{9}[\mathbb{Q}_{2,2}^{(u,E_{g})}]}{42} \\$$

No. 10 $\hat{\mathbb{Q}}_0^{(A_g)}$ [M₂, B₁]

$$\hat{\mathbb{Z}}_{10} = \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{1,2}^{(b,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Z}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Z}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{7}[\mathbb{Q}_{1,2}^{(a$$

$$\begin{split} \hat{\mathbb{Z}}_{10}(\boldsymbol{k}) &= -\frac{\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_{u})}]}{3} + \frac{24\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_{u},1)}]}{91} + \frac{47\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_{u})}]}{546} \\ &- \frac{2\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_{u},1)}]}{91} + \frac{19\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_{u})}]}{3} \\ &- \frac{9\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_{u},1)}]}{91} + \frac{31\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_{u})}]}{7} \\ &+ \frac{2\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_{u})}]}{21} - \frac{\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_{u})}]}{3} \\ &- \frac{109\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_{u})}]}{546} - \frac{\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(x,T_{u})}]}{1} \\ &- \frac{11\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(x,T_{u})}]}{91} \\ &- \frac{11\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(x,T_{u})}]}{91} \\ &- \frac{11\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_{u})}]}{91} \\ &- \frac{11\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}]}{91} \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(u,E_{g})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(u,T_{u})}]}{91} \\ &- \frac{109\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,2}^{(u,E_{g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,2}^{(u,E_{g})}]}{91} \\ &- \frac{11\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(u,E_{g})}] \otimes \mathbb{E}_{1,2}^{(u,E_{g})}}{91} \otimes$$

No. 11 $\hat{\mathbb{Q}}_{4}^{(A_g)}$ [M₂, B₁]

$$\hat{\mathbb{Z}}_{11} = \frac{\sqrt{3}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{3,0}^{(b,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{3,1}^{(b,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{1,2}^{(b,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{9}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}] \otimes \mathbb{Y}_{19}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{9}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}] \otimes \mathbb{Z}_{9}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{9}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}] \otimes \mathbb{Z}_{9}[\mathbb{Q}_{1,2}^{(a,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{9}[\mathbb{Q}$$

$$\hat{\mathbb{Z}}_{11}(\boldsymbol{k}) = -\frac{\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_{u},1)}]}{3} - \frac{73\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_{u},1)}]}{546} + \frac{24\sqrt{2}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_{u})}]}{91} \\ + \frac{47\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_{u},1)}]}{546} - \frac{2\sqrt{6}\mathbb{X}_{5}[\mathbb{Q}_{1,0}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_{u},1)}]}{3} \\ + \frac{107\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_{u},1)}]}{546} - \frac{9\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_{u},1)}]}{3} \\ + \frac{546}{91} - \frac{9\sqrt{2}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_{u},1)}]}{3} \\ + \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_{u})}]}{3} \\ + \frac{\sqrt{6}\mathbb{X}_{6}[\mathbb{Q}_{1,1}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_{u})}]}{3} \\ - \frac{\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_{u},1)}]}{3} \\ - \frac{15\sqrt{2}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_{u})}]}{91} \\ + \frac{10\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(a,T_{u})}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_{u},1)}]}{91} \\ - \frac{11\sqrt{6}\mathbb{X}_{7}[\mathbb{Q}_{1,2}^{(u,E_{g})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(u,E_{g})}]}{91} \\ - \frac{11\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,2}^{(u,E_{g})}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{1,2}^{(u,E_{g})}]}{91} \\ - \frac{11\sqrt{6}\mathbb{X}_{9}[\mathbb{Q}_{1,2}^{(u,E$$

No. 12 $\hat{\mathbb{Q}}_0^{(A_g)}(1,0)$ [M₂, B₁]

$$\hat{\mathbb{Z}}_{12} = \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_7[\mathbb{Q}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_8[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_5[\mathbb{Q}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_6[\mathbb{Q}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_{1,1}^{(b,T_u)}(1,0)] \otimes \mathbb{Y}_6[\mathbb{Q}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_9[\mathbb{Q}_{1,1}^$$

$$\begin{split} \hat{\mathbb{Z}}_{12}(\pmb{k}) &= -\frac{\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_g)}] \otimes \mathbb{F}_9[\mathbb{T}_{1,2}^{(k,T_u)}]}{3} - \frac{15\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u,1)}]}{91} \\ &- \frac{109\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_9[\mathbb{T}_{1,2}^{(k,T_u)}]}{546} - \frac{11\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(k,T_u,1)}]}{91} \\ &+ \frac{5\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_9[\mathbb{T}_{1,2}^{(k,T_u)}]}{546} - \frac{\mathbb{X}_8[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_7[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_7[\mathbb{T}_{1,0}^{(k,T_u)}]}{3} + \frac{24\sqrt{2}\mathbb{X}_8[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_u,1)}]}{91} \\ &+ \frac{47\sqrt{2}\mathbb{X}_8[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_7[\mathbb{T}_{1,0}^{(k,T_u)}]}{3} - \frac{2\sqrt{6}\mathbb{X}_8[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_u,1)}]}{91} \\ &- \frac{19\sqrt{6}\mathbb{X}_8[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_7[\mathbb{T}_{1,0}^{(k,T_u)}]}}{546} - \frac{\mathbb{X}_9[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_g)}] \otimes \mathbb{F}_8[\mathbb{T}_{1,1}^{(k,T_u)}]}{91} \\ &+ \frac{19\sqrt{6}\mathbb{X}_8[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_7[\mathbb{T}_{1,0}^{(k,T_u)}]}}{546} - \frac{\mathbb{X}_9[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_g)}] \otimes \mathbb{F}_8[\mathbb{T}_{1,1}^{(k,T_u)}]}{91} \\ &+ \frac{19\sqrt{6}\mathbb{X}_8[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_8[\mathbb{T}_{1,0}^{(k,T_u)}]}}{546} + \frac{\mathbb{X}_9[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_u)}]}}{546} \\ &+ \frac{19\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_7[\mathbb{T}_{1,0}^{(u,E_g)}]}}{546} \\ &+ \frac{19\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_7[\mathbb{T}_{1,0}^{(u,E_g)}]}}{546} \\ &+ \frac{19\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_9[\mathbb{T}_{1,0}^{(u,E_g)}]}}{546} \\ &+ \frac{19\sqrt{6}\mathbb{X}_9[\mathbb{Q}_{1,1}^{(u,E_g)}]}}{546} \\ &+ \frac{19\sqrt{$$

No. 13 $\hat{\mathbb{Q}}_4^{(A_g)}(1,0)$ [M₂, B₁]

$$\hat{\mathbb{Z}}_{13} = \frac{\sqrt{3}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{8}[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{3,0}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{3,1}^{(b,T_u,1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(a,T_u,1)}(1,0)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{3,1}^{(a,T_u,1)}(1,0$$

$$\hat{\mathbb{Z}}_{13}(k) = -\frac{\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_{u},1)}]}{3} - \frac{17\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_{u},1)}]}{273} \\ -\frac{15\sqrt{2}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_{u})}]}{91} + \frac{10\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(k,T_{u},1)}]}{91} \\ -\frac{11\sqrt{6}\mathbb{X}_{10}[\mathbb{Q}_{1,2}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_{u})}]}{1} - \frac{\mathbb{X}_{8}[\mathbb{Q}_{1,0}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_{u},1)}]}{3} \\ -\frac{73\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{1,0}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_{u},1)}]}{1} + \frac{24\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{1,0}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(k,E_{u},1)}]}{91} \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_{u},1)}]} \\ -\frac{47\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{1,0}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(k,T_{u},1)}]} \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_{u},1)}]}{1} + \frac{24\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{1,0}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(k,E_{u},1)}]}{1} \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_{u},1)}]} \\ -\frac{47\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{1,0}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(k,T_{u},1)}]} \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_{u},1)}]}{1} + \frac{24\sqrt{2}\mathbb{X}_{8}[\mathbb{Q}_{1,0}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(k,E_{u},1)}]} \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_{u},1)}]}{1} \\ -\frac{47\sqrt{6}\mathbb{X}_{8}[\mathbb{Q}_{1,0}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(k,T_{u},1)}]} \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_{u},1)}]}{1} \\ -\frac{546}{91} \\ -\frac{9}{9}[\mathbb{Q}_{1,1}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,1}^{(a,T_{u},1)}]} \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_{u})}]}{1} \\ -\frac{9}{9}[\mathbb{Q}_{1,1}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,1}^{(u,E_{g})}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_{u},1)}]}{1} \\ -\frac{107\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(a,T_{u})}(1,0)] \otimes \mathbb{U}_{9}[\mathbb{Q}_{1,1}^{(k,T_{u},1)}]} \otimes \mathbb{F}_{11}[\mathbb{Q}_{1,1}^{(k,T_{u},1)}]}{1} \\ -\frac{107\sqrt{2}\mathbb{X}_{9}[\mathbb{Q}_{1,1}^{(a,T_{u})}(1,0)$$

No. 14
$$\hat{\mathbb{G}}_{3}^{(A_g)}(1,-1)$$
 [M₂, B₁]

$$\hat{\mathbb{Z}}_{14} = \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{19}[\mathbb$$

$$\begin{split} \hat{\mathbb{Z}}_{14}(k) &= \frac{\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_u)}]}{3} - \frac{24\sqrt{2}\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_u)}]}{91} \\ &- \frac{47\sqrt{2}\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_u)}]}{546} + \frac{2\sqrt{6}\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_u)}]}{182} \\ &+ \frac{19\sqrt{6}\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_u)}]}{182} + \frac{2\sqrt{6}\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,1}^{(k,T_u,1)}]}{3} \\ &+ \frac{9\sqrt{2}\mathbb{X}_{12}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_u,1)}]}{91} \\ &- \frac{31\sqrt{2}\mathbb{X}_{12}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_u)}]}{273} - \frac{\sqrt{6}\mathbb{X}_{12}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_u,1)}]}{7} \\ &- \frac{2\sqrt{6}\mathbb{X}_{12}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_u)}]}{21} + \frac{\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_u)}]}{3} \\ &+ \frac{15\sqrt{2}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u)}]}{91} + \frac{109\sqrt{2}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_u)}]}{546} \\ &+ \frac{11\sqrt{6}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u)}]}{91} - \frac{5\sqrt{6}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_u)}]}{546} \\ &+ \frac{11\sqrt{6}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u)}]}{91} - \frac{5\sqrt{6}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(u,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,T_u)}]}{546} \\ &+ \frac{11\sqrt{6}\mathbb{X}$$

$$\begin{split} & \boxed{ \begin{bmatrix} \mathbf{No}. 15 \end{bmatrix} } \hat{\mathbb{G}}_{3}^{(Ag)}(1,-1) \left[\mathbf{M}_{2}, \mathbf{B}_{1} \right] } \\ \hat{\mathbb{Z}}_{15} & = -\frac{\sqrt{3}\mathbb{X}_{11} \left[\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{Y}_{25} \left[\mathbb{T}_{3,0}^{(b,T_{u},1)} \right] }{3} - \frac{\sqrt{3}\mathbb{X}_{12} \left[\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{Y}_{26} \left[\mathbb{T}_{3,1}^{(b,T_{u},1)} \right] }{3} - \frac{\sqrt{3}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{Y}_{27} \left[\mathbb{T}_{3,2}^{(b,T_{u},1)} \right] }{3} \\ & + \frac{\mathbb{X}_{15} \left[\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{4} \left[\mathbb{Q}_{0}^{(u,Ag)} \right] \otimes \mathbb{F}_{10} \left[\mathbb{T}_{3,0}^{(k,T_{u},1)} \right] }{3} - \frac{73\sqrt{2}\mathbb{X}_{11} \left[\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(u,Eg)} \right] \otimes \mathbb{F}_{10} \left[\mathbb{T}_{3,0}^{(k,T_{u},1)} \right] }{3} \\ & + \frac{24\sqrt{2}\mathbb{X}_{11} \left[\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(u,Eg)} \right] \otimes \mathbb{F}_{7} \left[\mathbb{T}_{1,0}^{(k,T_{u})} \right] }{91} - \frac{73\sqrt{2}\mathbb{X}_{11} \left[\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(u,Eg)} \right] \otimes \mathbb{F}_{10} \left[\mathbb{T}_{3,0}^{(k,T_{u},1)} \right] }{546} \\ & - \frac{2\sqrt{6}\mathbb{X}_{11} \left[\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{6} \left[\mathbb{Q}_{2,1}^{(u,Eg)} \right] \otimes \mathbb{F}_{7} \left[\mathbb{T}_{1,0}^{(k,T_{u})} \right] }{91} - \frac{3}{3} \\ & + \frac{107\sqrt{2}\mathbb{X}_{12} \left[\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(u,Eg)} \right] \otimes \mathbb{F}_{11} \left[\mathbb{T}_{3,1}^{(k,T_{u},1)} \right] }{3} \\ & - \frac{9\sqrt{2}\mathbb{X}_{12} \left[\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(u,Eg)} \right] \otimes \mathbb{F}_{8} \left[\mathbb{T}_{1,1}^{(k,T_{u},1)} \right] }{3} \\ & - \frac{9\sqrt{6}\mathbb{X}_{12} \left[\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{6} \left[\mathbb{Q}_{2,1}^{(u,Eg)} \right] \otimes \mathbb{F}_{12} \left[\mathbb{T}_{3,2}^{(k,T_{u},1)} \right] }{3} \\ & - \frac{15\sqrt{2}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(u,Eg)} \right] \otimes \mathbb{F}_{9} \left[\mathbb{T}_{1,2}^{(k,T_{u},1)} \right] }{3} \\ & - \frac{17\sqrt{2}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{6} \left[\mathbb{Q}_{2,1}^{(k,T_{u},1)} \right] }{3} \\ & - \frac{10\sqrt{6}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{6} \left[\mathbb{Q}_{2,1}^{(u,Eg)} \right] \otimes \mathbb{F}_{12} \left[\mathbb{T}_{3,2}^{(k,T_{u},1)} \right] }{3} \\ & - \frac{10\sqrt{6}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1) \right] \otimes \mathbb{U}_{6} \left[\mathbb{Q}_{2,1}^{(u,Eg)} \right] \otimes \mathbb{F}_{12} \left[\mathbb{T$$

No. 16
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{16} = \frac{\sqrt{3}\mathbb{X}_{50}[\mathbb{Q}_{1,0}^{(a,T_u)}] \otimes \mathbb{Y}_{5}[\mathbb{Q}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{51}[\mathbb{Q}_{1,1}^{(a,T_u)}] \otimes \mathbb{Y}_{6}[\mathbb{Q}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{52}[\mathbb{Q}_{1,2}^{(a,T_u)}] \otimes \mathbb{Y}_{7}[\mathbb{Q}_{1,2}^{(b,T_u)}]}{3}$$

$$\hat{\mathbb{Z}}_{16}(\boldsymbol{k}) = -\frac{\mathbb{X}_{50}[\mathbb{Q}_{1,0}^{(a,T_u)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_u)}]}{3} + \frac{24\sqrt{2}\mathbb{X}_{50}[\mathbb{Q}_{1,0}^{(a,T_u)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_u,1)}]}{91} + \frac{47\sqrt{2}\mathbb{X}_{50}[\mathbb{Q}_{1,0}^{(a,T_u)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_u)}]}{546} \\ -\frac{2\sqrt{6}\mathbb{X}_{50}[\mathbb{Q}_{1,0}^{(a,T_u)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_u,1)}]}{91} - \frac{19\sqrt{6}\mathbb{X}_{50}[\mathbb{Q}_{1,0}^{(a,T_u)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_u)}]}{3} - \frac{\mathbb{X}_{51}[\mathbb{Q}_{1,1}^{(a,T_u)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_u)}]}{3} \\ -\frac{9\sqrt{2}\mathbb{X}_{51}[\mathbb{Q}_{1,1}^{(a,T_u)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_u,1)}]}{3} + \frac{31\sqrt{2}\mathbb{X}_{51}[\mathbb{Q}_{1,1}^{(a,T_u)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_u)}]}{7} \\ +\frac{2\sqrt{6}\mathbb{X}_{51}[\mathbb{Q}_{1,1}^{(a,T_u)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_u)}]}{21} - \frac{\mathbb{X}_{52}[\mathbb{Q}_{1,2}^{(a,T_u)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_u)}]}{3} + \frac{5\sqrt{6}\mathbb{X}_{52}[\mathbb{Q}_{1,2}^{(a,T_u)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u,1)}]}{91} \\ -\frac{109\sqrt{2}\mathbb{X}_{52}[\mathbb{Q}_{1,2}^{(a,T_u)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_u)}]}{3} - \frac{11\sqrt{6}\mathbb{X}_{52}[\mathbb{Q}_{1,2}^{(a,T_u)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u,1)}]}{91} \\ -\frac{109\sqrt{2}\mathbb{X}_{52}[\mathbb{Q}_{1,2}^{(a,T_u)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_u)}]}{91} - \frac{11\sqrt{6}\mathbb{X}_{52}[\mathbb{Q}_{1,2}^{(a,T_u)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}]}{91} + \frac{5\sqrt{6}\mathbb{X}_{52}[\mathbb{Q}_{1,2}^{(a,T_u)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(k,T_u)}]}{546} \\ -\frac{109\sqrt{2}\mathbb{X}_{52}[\mathbb{Q}_{1,2}^{(a,T_u)}] \otimes \mathbb{U}_{9}[\mathbb{Z}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(u,E_g)}]}{91} \\ -\frac{11\sqrt{6}\mathbb{X}_{52}[\mathbb{Q}_{1,2}^{(u,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{Z}_{1,2}^{(u,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{Z}_{1,2}^{(u,E_g)}]}{91} \otimes \mathbb{U}_{9}[\mathbb{Z}_{1,2}^{(u,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{Z}_{1,2}^{(u,E_g)}$$

$$\begin{array}{c} \overline{\text{No. 17}} \quad \widehat{\mathbb{Q}}_{1}^{(A_{9})} \left[\mathbf{M}_{4}, \mathbf{B}_{1} \right] \\ \widehat{\mathbb{Z}}_{17} = \frac{\sqrt{3} \mathbb{X}_{50} \left[\mathbb{Q}_{1,0}^{(\alpha, T_{9})} \right] \otimes \mathbb{Y}_{15} \left[\mathbb{Q}_{5,0}^{(\alpha, T_{9})} \right] \otimes \mathbb{Y}_{14} \left[\mathbb{Q}_{5,1}^{(\alpha, T_{9})} \right] \otimes \mathbb{Y}_{15} \left[\mathbb{Q}_{1,0}^{(\alpha, T_{9})} \right] \otimes \mathbb{Y}_{15} \left[\mathbb{Q}_{5,0}^{(\alpha, T_{9})} \right] \\ \widehat{\mathbb{Z}}_{17}(k) = \frac{\mathbb{Z}_{20} \left[\mathbb{Q}_{1,0}^{(\alpha, T_{9})} \right] \otimes \mathbb{P}_{17} \left[\mathbb{Z}_{5,0}^{(\alpha, T_{9})} \right] - \mathbb{Z}_{20} \mathbb{Z}_{20} \left[\mathbb{Q}_{1,0}^{(\alpha, T_{9})} \right] \otimes \mathbb{P}_{15} \left[\mathbb{Z}_{5,0}^{(\alpha, T_{9})} \right] \otimes \mathbb{P}_{17} \left[\mathbb{Z}_{5,0}^{(\alpha, T_{$$

$$\begin{split} & \boxed{\text{No. } 19} \quad \hat{\mathbb{Q}}_{4}^{(Ag)}(1,0) \; [M_{4},B_{1}] \\ & \hat{\mathbb{Z}}_{19} = \frac{\sqrt{3}\mathbb{X}_{53}[\mathbb{Q}_{1,0}^{(a,T_{u})}(1,0)] \otimes \mathbb{Y}_{13}[\mathbb{Q}_{3,0}^{(b,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{54}[\mathbb{Q}_{1,1}^{(a,T_{u})}(1,0)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{3,1}^{(b,T_{u},1)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{55}[\mathbb{Q}_{1,2}^{(a,T_{u})}(1,0)] \otimes \mathbb{Y}_{15}[\mathbb{Q}_{3,2}^{(b,T_{u},1)}]}{3} \\ \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{19}(\pmb{k}) &= -\frac{\mathbb{X}_{53}[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_g)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_u,1)}]}{3} - \frac{73\sqrt{2}\mathbb{X}_{53}[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(k,T_u,1)}]}{546} \\ &+ \frac{24\sqrt{2}\mathbb{X}_{53}[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_7[\mathbb{T}_{1,0}^{(k,T_u)}]}{91} - \frac{47\sqrt{6}\mathbb{X}_{53}[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_u,1)}]}{3} \\ &- \frac{2\sqrt{6}\mathbb{X}_{53}[\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_7[\mathbb{T}_{1,0}^{(k,T_u)}]}{91} - \frac{\mathbb{X}_{54}[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_7[\mathbb{T}_0^{(u,A_g)}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_u,1)}]}{3} \\ &+ \frac{107\sqrt{2}\mathbb{X}_{54}[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_u,1)}]}{546} - \frac{9\sqrt{2}\mathbb{X}_{54}[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_8[\mathbb{T}_{1,1}^{(k,T_u)}]}{91} \\ &- \frac{\sqrt{6}\mathbb{X}_{54}[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_u,1)}]}{7} + \frac{\sqrt{6}\mathbb{X}_{54}[\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_8[\mathbb{T}_{1,1}^{(k,T_u)}]}{91} - \frac{\mathbb{X}_{55}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(k,T_u,1)}]}{7} \\ &- \frac{17\sqrt{2}\mathbb{X}_{55}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u,1)}]}{91} - \frac{15\sqrt{2}\mathbb{X}_{55}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_9[\mathbb{T}_{1,2}^{(k,T_u)}]}{91} \\ &+ \frac{10\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_8[\mathbb{T}_{2,1}^{(k,T_u,1)}]}{91} - \frac{15\sqrt{2}\mathbb{X}_{55}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(k,T_u)}]}{91} \otimes \mathbb{F}_9[\mathbb{T}_{1,2}^{(k,T_u)}]} \\ &+ \frac{10\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(k,T_u,1)}]}{91} - \frac{15\sqrt{2}\mathbb{X}_{55}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(k,T_u)}]}{91} \otimes \mathbb{F}_9[\mathbb{T}_{1,2}^{(k,T_u)}]} \\ &+ \frac{10\sqrt{6}\mathbb{X}_{55}[\mathbb{Q}_{1,2}^{(k,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{2,1}^{(k,T_u,1)}]}{91} - \frac{15\sqrt{2}\mathbb{X}_{55}[\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)] \otimes \mathbb{U}_9[\mathbb{T}_{1,2}^{(k,T_u)}]}{91} \otimes \mathbb{F}_9[$$

No. 20
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₄, B₁]

$$\hat{\mathbb{Z}}_{20} = \frac{\sqrt{3}\mathbb{X}_{56}[\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1)] \otimes \mathbb{Y}_{17}[\mathbb{T}_{1,0}^{(b,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{57}[\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1)] \otimes \mathbb{Y}_{18}[\mathbb{T}_{1,1}^{(b,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{58}[\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{Y}_{19}[\mathbb{T}_{1,2}^{(b,T_{u})}]}{3}$$

$$\begin{split} \hat{\mathbb{Z}}_{20}(k) &= \frac{\mathbb{X}_{56}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_u)}]}{3} - \frac{24\sqrt{2}\mathbb{X}_{56}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{10}[\mathbb{T}_{3,0}^{(k,T_u)}]}{91} \\ &- \frac{47\sqrt{2}\mathbb{X}_{56}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_u)}]}{546} + \frac{2\sqrt{6}\mathbb{X}_{56}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(k,T_u,1)}]}{91} \\ &+ \frac{19\sqrt{6}\mathbb{X}_{56}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{7}[\mathbb{T}_{1,0}^{(k,T_u)}]}{182} + \frac{2\sqrt{6}\mathbb{X}_{56}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(k,T_u,1)}]}{3} \\ &+ \frac{9\sqrt{2}\mathbb{X}_{57}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{11}[\mathbb{T}_{3,1}^{(k,T_u,1)}]}{91} \\ &- \frac{31\sqrt{2}\mathbb{X}_{57}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_u)}]}{1} \\ &- \frac{2\sqrt{6}\mathbb{X}_{57}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{T}_{1,1}^{(k,T_u)}]}{1} \\ &+ \frac{15\sqrt{2}\mathbb{X}_{58}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u,1)}]}{91} \\ &+ \frac{11\sqrt{6}\mathbb{X}_{58}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u,1)}]}{91} \\ &+ \frac{11\sqrt{6}\mathbb{X}_{58}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u,1)}]}{91} \\ &- \frac{5\sqrt{6}\mathbb{X}_{58}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_u)}]}{1} \\ &+ \frac{11\sqrt{6}\mathbb{X}_{58}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{12}[\mathbb{T}_{3,2}^{(k,T_u,1)}]}{91} \\ &- \frac{5\sqrt{6}\mathbb{X}_{58}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_u)}]}{1} \\ &+ \frac{5\sqrt{6}\mathbb{X}_{58}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(k,T_u)}]}{1} \\ &+ \frac{5\sqrt{6}\mathbb{X}_{58}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}]}{1} \otimes \mathbb{F}_{9}[\mathbb{T}_{1,2}^{(u,E_g)}]} \\ &+ \frac{5\sqrt{6}\mathbb{X}_{58}[\mathbb{M}_{2,$$

$$\begin{split} & \boxed{ \begin{bmatrix} \hat{\mathbb{Q}}_{3}^{(Ag)}(1,-1) \, [\mathbb{M}_{4},\mathbb{B}_{1}] \\ \hat{\mathbb{Z}}_{21} = -\frac{\sqrt{3}\mathbb{X}_{56} [\mathbb{M}_{2,0}^{(a,Tu)}(1,-1)] \otimes \mathbb{Y}_{25} [\mathbb{T}_{3,0}^{(b,Tu,1)}] }{3} - \frac{\sqrt{3}\mathbb{X}_{57} [\mathbb{M}_{2,1}^{(a,Tu)}(1,-1)] \otimes \mathbb{Y}_{26} [\mathbb{T}_{3,1}^{(b,Tu,1)}] }{3} - \frac{\sqrt{3}\mathbb{X}_{58} [\mathbb{M}_{2,2}^{(a,Tu)}(1,-1)] \otimes \mathbb{Y}_{27} [\mathbb{T}_{3,2}^{(b,Tu,1)}] }{3} \\ \hat{\mathbb{Z}}_{21}(k) = -\frac{\mathbb{X}_{56} [\mathbb{M}_{2,0}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{4} [\mathbb{Q}_{0}^{(u,Ag)}] \otimes \mathbb{F}_{10} [\mathbb{T}_{3,0}^{(k,Tu,1)}] }{3} - \frac{73\sqrt{2}\mathbb{X}_{56} [\mathbb{M}_{2,0}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{5} [\mathbb{Q}_{2,0}^{(k,Tu,1)}] }{3} \\ + \frac{24\sqrt{2}\mathbb{X}_{56} [\mathbb{M}_{2,0}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{5} [\mathbb{Q}_{2,0}^{(u,Eg)}] \otimes \mathbb{F}_{7} [\mathbb{T}_{1,0}^{(k,Tu,1)}] }{91} - \frac{73\sqrt{2}\mathbb{X}_{56} [\mathbb{M}_{2,0}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{5} [\mathbb{Q}_{2,0}^{(k,Tu,1)}] }{546} \\ - \frac{2\sqrt{6}\mathbb{X}_{56} [\mathbb{M}_{2,0}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2,1}^{(u,Eg)}] \otimes \mathbb{F}_{7} [\mathbb{T}_{1,0}^{(k,Tu,1)}] }{91} \\ + \frac{107\sqrt{2}\mathbb{X}_{57} [\mathbb{M}_{2,1}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2,0}^{(u,Eg)}] \otimes \mathbb{F}_{7} [\mathbb{T}_{1,0}^{(k,Tu,1)}] }{546} \\ - \frac{\sqrt{6}\mathbb{X}_{57} [\mathbb{M}_{2,1}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2,1}^{(u,Eg)}] \otimes \mathbb{F}_{11} [\mathbb{T}_{3,1}^{(k,Tu,1)}] }{3} \\ - \frac{9}{\sqrt{6}\mathbb{X}_{57} [\mathbb{M}_{2,1}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2,1}^{(u,Eg)}] \otimes \mathbb{F}_{11} [\mathbb{T}_{3,1}^{(k,Tu,1)}] }{42} \\ - \frac{\mathbb{X}_{58} [\mathbb{M}_{2,2}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2,1}^{(u,Eg)}] \otimes \mathbb{F}_{12} [\mathbb{T}_{3,2}^{(k,Tu,1)}] }{3} \\ - \frac{15\sqrt{2}\mathbb{X}_{58} [\mathbb{M}_{2,2}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2,1}^{(u,Eg)}] \otimes \mathbb{F}_{9} [\mathbb{T}_{1,2}^{(k,Tu,1)}] }{3} \\ - \frac{10\sqrt{6}\mathbb{X}_{58} [\mathbb{M}_{2,2}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2,1}^{(u,Eg)}] \otimes \mathbb{F}_{12} [\mathbb{T}_{3,2}^{(k,Tu,1)}] }{3} \\ - \frac{10\sqrt{6}\mathbb{X}_{58} [\mathbb{M}_{2,2}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2,1}^{(u,Eg)}] \otimes \mathbb{F}_{12} [\mathbb{T}_{3,2}^{(k,Tu,1)}] }{3} \\ + \frac{10\sqrt{6}\mathbb{X}_{58} [\mathbb{M}_{2,2}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2,1}^{(u,Eg)}] \otimes \mathbb{F}_{12} [\mathbb{T}_{3,2}^{(k,Tu,1)}] }{3} \\ - \frac{10\sqrt{6}\mathbb{X}_{58} [\mathbb{M}_{2,2}^{(a,Tu)}(1,-1)] \otimes \mathbb{U}_{6} [\mathbb{Q}_{2,1}^{(u,Eg)}] \otimes \mathbb{F}_{12} [\mathbb{T}_{3,2}^{(u,Eg)}] }{3} \\ + \frac{10\sqrt{6}\mathbb{X}_{58} [\mathbb{M}_{2,2}^{(a,Tu)}(1$$

No. 22
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{22} = \mathbb{X}_{14}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{22}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(u,E_g)}] \otimes \mathbb{V}_{14}[\mathbb{Q}_{0}^{(u,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{0}^{(u,E_g)}] \otimes \mathbb$$

No. 23
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{23} = \mathbb{X}_{15}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_4[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{23}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(u,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{0}^{(u,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(u,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(u,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{0}^{(u,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(u,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{$$

$$\begin{split} & \frac{\left[N_{0.} \ 24\right]}{\hat{\mathbb{Q}}_{0}^{(A_g)}} \left[M_{3}, B_{1}\right]}{\hat{\mathbb{Z}}_{24}} & = \frac{\sqrt{5}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right] \otimes \mathbb{Y}_{8} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{5} + \frac{\sqrt{5}\mathbb{X}_{17} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right]}{5} \otimes \mathbb{Y}_{9} \left[\mathbb{Q}_{2,1}^{(b,E_g)}\right]}{5} + \frac{\sqrt{5}\mathbb{X}_{18} \left[\mathbb{Q}_{2,0}^{(a,T_g)}\right] \otimes \mathbb{Y}_{10} \left[\mathbb{Q}_{2,0}^{(b,T_g)}\right]}{5} + \frac{\sqrt{5}\mathbb{X}_{19} \left[\mathbb{Q}_{2,1}^{(a,T_g)}\right]}{5} \otimes \mathbb{Y}_{11} \left[\mathbb{Q}_{2,1}^{(b,T_g)}\right]} + \frac{\sqrt{5}\mathbb{X}_{20} \left[\mathbb{Q}_{2,2}^{(a,T_g)}\right] \otimes \mathbb{Y}_{12} \left[\mathbb{Q}_{2,2}^{(b,E_g)}\right]}{5} \\ & + \frac{18\sqrt{15}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{343} + \frac{\sqrt{15}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{343} + \frac{143\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(b,E_g)}\right]}{10290} \\ & + \frac{18\sqrt{15}\mathbb{X}_{17} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right] \otimes \mathbb{U}_{4} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{343} + \frac{18\sqrt{10}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{343} + \frac{143\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{10290} + \frac{163\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{10290} \\ & + \frac{\sqrt{15}\mathbb{X}_{17} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right] \otimes \mathbb{U}_{4} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right]}{15} + \frac{18\sqrt{10}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{10290} + \frac{143\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{10290} \\ & + \frac{\sqrt{15}\mathbb{X}_{17} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right] \otimes \mathbb{U}_{6} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right]}{15} + \frac{18\sqrt{10}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right] \otimes \mathbb{U}_{5} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{10290} + \frac{143\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{10290} \\ & + \frac{143\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{10290} + \frac{143\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,0}^{(a,E_g)}\right]}{10290} \\ & + \frac{143\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right] \otimes \mathbb{U}_{6} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right]}{10290} \\ & + \frac{143\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right] \otimes \mathbb{U}_{6} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right]}{10290} \\ & + \frac{143\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right] \otimes \mathbb{U}_{6} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right]}{10290} \\ & + \frac{143\sqrt{30}\mathbb{X}_{16} \left[\mathbb{Q}_{2,1}^{(a,E_g)}\right] \otimes \mathbb{U}_{6} \left[\mathbb{Q}_{2,1}^{(a,E_$$

$$\begin{array}{l} \begin{bmatrix} \text{No. 25} \end{bmatrix} \quad \hat{\mathbb{G}}_{3}^{(A,g)} \left[\text{M}_{3}, \text{B}_{1} \right] \\ \\ \hat{\mathbb{Z}}_{25} = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,1}^{(b,E_{g})}]}{2} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,0}^{(b,E_{g})}]}{2} \\ \\ \hat{\mathbb{Z}}_{25}(\boldsymbol{k}) = \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} + \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{2058} \\ \\ + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_{g})}]}{6} - \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{2058} - \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{343} \\ \\ - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_{g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{6} - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_{g})}]}{343} \\ \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{6} - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}}{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_{g})}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_{g})}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}$$

$$\begin{split} & \boxed{ \begin{aligned} & \boxed{No. 26} \quad \hat{\mathbb{Q}}_{4}^{(A_g)} \left[\mathbf{M}_{3}, \mathbf{B}_{1} \right] \\ & \hat{\mathbb{Z}}_{26} = \frac{\sqrt{30} \mathbb{X}_{16} [\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{8} [\mathbb{Q}_{2,0}^{(b,E_g)}]}{10} + \frac{\sqrt{30} \mathbb{X}_{17} [\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{9} [\mathbb{Q}_{2,1}^{(b,E_g)}]}{10} - \frac{\sqrt{30} \mathbb{X}_{18} [\mathbb{Q}_{2,0}^{(a,T_g)}] \otimes \mathbb{Y}_{10} [\mathbb{Q}_{2,0}^{(b,T_g)}]}{15} \\ & - \frac{\sqrt{30} \mathbb{X}_{19} [\mathbb{Q}_{2,1}^{(a,T_g)}] \otimes \mathbb{Y}_{11} [\mathbb{Q}_{2,1}^{(b,T_g)}]}{15} - \frac{\sqrt{30} \mathbb{X}_{20} [\mathbb{Q}_{2,2}^{(a,T_g)}] \otimes \mathbb{Y}_{12} [\mathbb{Q}_{2,2}^{(b,T_g)}]}{15} \end{split}$$

$$\hat{\mathbb{Z}}_{26}(k) = \frac{\sqrt{10}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{10} + \frac{\sqrt{10}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g)}]}{10} + \frac{143\sqrt{5}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ + \frac{18\sqrt{15}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} + \frac{18\sqrt{15}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} + \frac{18\sqrt{15}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} - \frac{143\sqrt{5}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3430} \\ + \frac{\sqrt{10}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{10} + \frac{18\sqrt{15}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{5}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ + \frac{\sqrt{10}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{10} + \frac{18\sqrt{15}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} - \frac{143\sqrt{5}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ + \frac{\sqrt{10}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{10} \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g)}]} - \frac{143\sqrt{5}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ + \frac{\sqrt{10}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{10} \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,E_g)}]} - \frac{143\sqrt{5}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ + \frac{\sqrt{10}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(k,E_g)}]} \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]} \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g)}]} \\ + \frac{143\sqrt{5}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(k,E_g)}]} \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]} \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]} \\ + \frac{143\sqrt{5}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(k,E_g)}]} \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]} \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(k,E_g)}]} \otimes \mathbb{U}_$$

No. 27
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\begin{split} \hat{\mathbb{Z}}_{27} &= \frac{\sqrt{5}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{23}[\mathbb{Q}_{2,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,0}^{(b,T_g)}]}{5} \\ &+ \frac{\sqrt{5}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{5} + \frac{\sqrt{5}\mathbb{X}_{25}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{5} \end{split}$$

$$\begin{split} \hat{\mathbb{Z}}_{27}(k) &= \frac{\sqrt{15}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g)}]}{15} + \frac{\sqrt{15}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{10290} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} + \frac{18\sqrt{10}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(u,E_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ &+ \frac{\sqrt{15}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(u,E_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ &+ \frac{\sqrt{15}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g)}]} \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(k,E_g)}]}}{343} \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(k,E_g)}]} \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(k,E_g)}]}}{343} \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,1}^{(k,E_g)}]} \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,1}^{(k,E_g)}]}}{343} \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,1}^{(k,E_g)}]} \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,1}^{(k,E_g)}]}}{343} \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]} \\ &+ \frac{18\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^$$

No. 28
$$\hat{\mathbb{G}}_{3}^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{28} = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{28}(\boldsymbol{k}) = \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \\ - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} + \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{1}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ - \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ - \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{2}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ - \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Q}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{P}_{3}[\mathbb{Q}_{2,1}^{(u,E_g)}]}{2058} \\ - \frac{143\sqrt{3}\mathbb{Q}_{22}[\mathbb{Q}_{2,1}^{(u,E_g)}(1,-1)] \otimes \mathbb{Q}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{Q}_{2,1}^{(u,E_g)}}{2058} \\ - \frac{143\sqrt{3}\mathbb{Q}_{22}[\mathbb{Q}_{2,1}^{(u,E_g)}(1,-1)] \otimes \mathbb{Q}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}]}{2058} \\ - \frac{143\sqrt{3}\mathbb{Q}_{22}[\mathbb{Q}_{2,1}^{($$

No. 29
$$\hat{\mathbb{Q}}_{4}^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\begin{split} \hat{\mathbb{Z}}_{29} &= \frac{\sqrt{30}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{8}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{10} + \frac{\sqrt{30}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{9}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{10} - \frac{\sqrt{30}\mathbb{X}_{23}[\mathbb{Q}_{2,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,0}^{(b,T_g)}]}{15} \\ &- \frac{\sqrt{30}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{15} - \frac{\sqrt{30}\mathbb{X}_{25}[\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{15} \\ &- \frac{\sqrt{30}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{15} - \frac{\sqrt{30}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{15} \\ &- \frac{\sqrt{30}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{15} - \frac{\sqrt{30}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{15} \\ &- \frac{\sqrt{30}\mathbb{X}_{24}[\mathbb{Q}_{2,1}^{(b,T_g)}(1,-1)] \otimes \mathbb{Y}_{14}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{15} \\$$

$$\hat{\mathbb{Z}}_{29}(k) = \frac{\sqrt{10}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(u,A_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g)}]}{10} + \frac{\sqrt{10}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_1[\mathbb{Q}_0^{(k,A_g)}]}{3430} \\ + \frac{143\sqrt{5}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ + \frac{18\sqrt{15}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3433} \\ + \frac{\sqrt{10}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_4[\mathbb{Q}_0^{(u,A_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]}{10} \\ - \frac{143\sqrt{5}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_5[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3430} \\ - \frac{143\sqrt{5}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ - \frac{143\sqrt{5}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_3[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ - \frac{143\sqrt{5}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ - \frac{163\sqrt{5}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ - \frac{163\sqrt{5}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_2[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3430} \\ - \frac{163\sqrt{5}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_6[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3430} \\ - \frac{163\sqrt{5}\mathbb{X}$$

No. 30
$$\hat{\mathbb{G}}_3^{(A_g)}(1,0)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{30} = \frac{\sqrt{3}\mathbb{X}_{26}[\mathbb{G}_{1,0}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{10}[\mathbb{Q}_{2,0}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{27}[\mathbb{G}_{1,1}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{11}[\mathbb{Q}_{2,1}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{G}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{Q}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{Y}_{12}[\mathbb{Q}_{2,2}^{(a,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{28}[\mathbb{Q}_{1,2}^{(a,T_g)}($$

$$\begin{split} \hat{\mathbb{Z}}_{30}(\boldsymbol{k}) &= \frac{\mathbb{X}_{26}[\mathbb{G}_{1,0}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{3} - \frac{\sqrt{2}\mathbb{X}_{26}[\mathbb{G}_{1,0}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{21} - \frac{4\sqrt{6}\mathbb{X}_{26}[\mathbb{G}_{1,0}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{21} \\ &+ \frac{\mathbb{X}_{27}[\mathbb{G}_{1,1}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{3} + \frac{13\sqrt{2}\mathbb{X}_{27}[\mathbb{G}_{1,1}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{42} + \frac{\sqrt{6}\mathbb{X}_{27}[\mathbb{G}_{1,1}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{14} \\ &+ \frac{\mathbb{X}_{28}[\mathbb{G}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{4}[\mathbb{Q}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{3} - \frac{11\sqrt{2}\mathbb{X}_{28}[\mathbb{G}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} + \frac{5\sqrt{6}\mathbb{X}_{28}[\mathbb{G}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{11\sqrt{2}\mathbb{X}_{28}[\mathbb{G}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} + \frac{5\sqrt{6}\mathbb{X}_{28}[\mathbb{G}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{11\sqrt{2}\mathbb{X}_{28}[\mathbb{G}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{5}[\mathbb{Q}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(u,E_g)}]}{42} + \frac{5\sqrt{6}\mathbb{X}_{28}[\mathbb{G}_{1,2}^{(a,T_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{11\sqrt{2}\mathbb{X}_{28}[\mathbb{G}_{1,2}^{(u,T_g)}(1,0)] \otimes \mathbb{U}_{6}[\mathbb{Q}_{1,2}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(u,E_g)}]}{42} \\ &+ \frac{11\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{1,2}^{(u,E_g)}(1,0)] \otimes \mathbb{Q}_{1,2}^{(u,E_g)}}{42} \\ &+ \frac{11\sqrt{2}\mathbb{X}_{28}[\mathbb{Q}_{1,2}^{(u,E_g)}(1,0)] \otimes \mathbb{Q}_{1,2}^{(u,E_g)}}{42}$$

No. 31
$$\hat{\mathbb{G}}_{3}^{(A_g)}$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{31} = \frac{\sqrt{3}\mathbb{X}_{29}[\mathbb{M}_{1,0}^{(a,T_g)}] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{30}[\mathbb{M}_{1,1}^{(a,T_g)}] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{31}[\mathbb{M}_{1,2}^{(a,T_g)}] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3}$$

$$\begin{split} \hat{\mathbb{Z}}_{31}(\pmb{k}) &= \frac{\mathbb{X}_{29}[\mathbb{M}_{1,0}^{(a,T_g)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{3} - \frac{\sqrt{2}\mathbb{X}_{29}[\mathbb{M}_{1,0}^{(a,T_g)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{21} - \frac{4\sqrt{6}\mathbb{X}_{29}[\mathbb{M}_{1,0}^{(a,T_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{21} \\ &+ \frac{\mathbb{X}_{30}[\mathbb{M}_{1,1}^{(a,T_g)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{3} + \frac{13\sqrt{2}\mathbb{X}_{30}[\mathbb{M}_{1,1}^{(a,T_g)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{42} + \frac{\sqrt{6}\mathbb{X}_{30}[\mathbb{M}_{1,1}^{(a,T_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{14} \\ &+ \frac{\mathbb{X}_{31}[\mathbb{M}_{1,2}^{(a,T_g)}] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{3} - \frac{11\sqrt{2}\mathbb{X}_{31}[\mathbb{M}_{1,2}^{(a,T_g)}] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} + \frac{5\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{1,2}^{(a,T_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{11\sqrt{2}\mathbb{X}_{31}[\mathbb{M}_{1,2}^{(a,T_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{9}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} + \frac{5\sqrt{6}\mathbb{X}_{31}[\mathbb{M}_{1,2}^{(a,T_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{11\sqrt{2}\mathbb{X}_{31}[\mathbb{M}_{1,2}^{(a,T_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}]$$

No. 32
$$\hat{\mathbb{G}}_3^{(A_g)}(1,1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{32} = \frac{\sqrt{3}\mathbb{X}_{32}[\mathbb{M}_{1,0}^{(a,T_g)}(1,1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(a,T_g)}(1,1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)]}{3} + \frac{\sqrt{3}\mathbb$$

$$\hat{\mathbb{Z}}_{32}(\boldsymbol{k}) = \frac{\mathbb{X}_{32}[\mathbb{M}_{1,0}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{3} - \frac{\sqrt{2}\mathbb{X}_{32}[\mathbb{M}_{1,0}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{21} - \frac{4\sqrt{6}\mathbb{X}_{32}[\mathbb{M}_{1,0}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{21} \\ + \frac{\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{3} + \frac{13\sqrt{2}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{42} + \frac{\sqrt{6}\mathbb{X}_{33}[\mathbb{M}_{1,1}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{14} \\ + \frac{\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{3} - \frac{11\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} + \frac{5\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ + \frac{11\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} + \frac{5\sqrt{6}\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ + \frac{11\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(a,T_g)}(1,1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} + \frac{11\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ + \frac{11\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(u,E_g)}]}{42} \\ + \frac{11\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{1,2}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(u,E_g)}]}{42} \\ + \frac{11\sqrt{2}\mathbb{X}_{34}[\mathbb{M}_{1$$

No. 33
$$\hat{\mathbb{G}}_{3}^{(A_g)}(1,-1)$$
 [M₃, B₁]

$$\hat{\mathbb{Z}}_{33} = \frac{\sqrt{3}\mathbb{X}_{35}[\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{22}[\mathbb{T}_{2,0}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{36}[\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{23}[\mathbb{T}_{2,1}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{T}_{2,2}^{(b,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(a,T_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{Y}_{24}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{37}[\mathbb{M}_{1$$

$$\begin{split} \hat{\mathbb{Z}}_{33}(\textbf{\textit{k}}) &= \frac{\mathbb{X}_{35}[\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{3} - \frac{\sqrt{2}\mathbb{X}_{35}[\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{21} - \frac{4\sqrt{6}\mathbb{X}_{35}[\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{4}[\mathbb{Q}_{2,0}^{(k,T_g)}]}{21} \\ &+ \frac{\mathbb{X}_{36}[\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{3} + \frac{13\sqrt{2}\mathbb{X}_{36}[\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(u,E_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{42} \\ &+ \frac{\sqrt{6}\mathbb{X}_{36}[\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{5}[\mathbb{Q}_{2,1}^{(k,T_g)}]}{14} + \frac{\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{7}[\mathbb{T}_{0}^{(u,A_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{3} \\ &- \frac{11\sqrt{2}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{2,0}^{(k,T_g)}]}{42} + \frac{5\sqrt{6}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{5\sqrt{6}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{4\sqrt{6}\mathbb{X}_{35}[\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{X}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{5\sqrt{6}\mathbb{X}_{37}[\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{4\sqrt{6}\mathbb{X}_{35}[\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{4\sqrt{6}\mathbb{X}_{35}[\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)] \otimes \mathbb{U}_{8}[\mathbb{T}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{4\sqrt{6}\mathbb{X}_{35}[\mathbb{M}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42} \\ &+ \frac{4\sqrt{6}\mathbb{X}_{35}[\mathbb{M}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{1,1}^{(u,E_g)}]}{42} \\ &+ \frac{4\sqrt{6}\mathbb{X}_{35}[\mathbb{M}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_{8}[\mathbb{Q}_{1,1}^{(u,E_g)}]}{42} \\ &+ \frac{4\sqrt{6}\mathbb{X}_{35}[\mathbb{Q}_{1,1}^{(u,E_g)}] \otimes \mathbb{F}_{8}[$$

$$\begin{split} & \frac{\left| \text{No. } 34 \right|}{2} \frac{\hat{G}_{3}^{(A_{2})}(1,-1) \left| \text{M}_{3}\text{B}_{1} \right|}{2} \\ & \frac{2}{34} = \mathbb{X}_{L7} [M_{3}^{(A,A_{2})}(1,-1)] \otimes V_{16} [T_{0}^{(A,A_{2})}] \\ & \frac{2}{34} (k) \\ & = \frac{\sqrt{3} \mathbb{X}_{L7} [M_{3}^{(A,A_{2})}(1,-1)] \otimes \mathbb{U}_{7} [T_{0}^{(a,A_{2})}] \otimes \mathbb{P}_{1} [Q_{0}^{(k,A_{2})}]}{3} + \frac{\sqrt{3} \mathbb{X}_{L7} [M_{3}^{(A,A_{2})}(1,-1)] \otimes \mathbb{U}_{8} [T_{0}^{(a,E_{2})}]}{3} + \frac{\sqrt{3} \mathbb{X}_{L7} [M_{3}^{(a,A_{2})}(1,-1)] \otimes \mathbb{U}_{9} [T_{2,1}^{(a,E_{2})}] \otimes \mathbb{P}_{2} [Q_{2,0}^{(k,E_{2})}]}{3} \\ & \frac{2}{3} \frac{1}{3} \frac{1}{3}$$

 $\frac{5\sqrt{6}\mathbb{X}_{43}[\mathbb{M}_{3,2}^{(a,T_g,2)}(1,-1)]\otimes\mathbb{U}_{9}[\mathbb{T}_{2,1}^{(u,E_g)}]\otimes\mathbb{F}_{6}[\mathbb{Q}_{2,2}^{(k,T_g)}]}{42}$

$$\begin{array}{l} \underbrace{ \begin{bmatrix} \mathbf{No}.37 \end{bmatrix} } \hat{\mathbb{Q}}_{0}^{(Ag)}(1,0) \, [\mathbf{M}_{3}, \mathbf{B}_{1}] \\ \\ \hat{\mathbb{Z}}_{37} = \underbrace{ \sqrt{5X_{44}} [\mathbf{T}_{2,0}^{(a,T_{2})}(1,0)] \otimes \mathbf{Y}_{22} [\mathbf{T}_{2,0}^{(b,T_{2})}] } + \underbrace{ \sqrt{5X_{45}} [\mathbf{T}_{2,1}^{(a,T_{2})}(1,0)] \otimes \mathbf{Y}_{23} [\mathbf{T}_{2,1}^{(b,T_{2})}] } }_{5} \\ \\ + \underbrace{ \sqrt{5X_{48}} [\mathbf{T}_{2,0}^{(a,T_{2})}(1,0)] \otimes \mathbf{Y}_{20} [\mathbf{T}_{2,0}^{(b,E_{2})}] }_{5} + \underbrace{ \sqrt{5X_{45}} [\mathbf{T}_{2,0}^{(a,E_{2})}(1,0)] \otimes \mathbf{Y}_{23} [\mathbf{T}_{2,1}^{(b,T_{2})}] } }_{5} \\ \\ \hat{\mathbb{Z}}_{37}(k) = \underbrace{ \frac{\sqrt{15X_{44}} [\mathbf{T}_{2,0}^{(a,T_{2})}(1,0)] \otimes \mathbf{U}_{7} [\mathbf{T}_{0}^{(a,A_{2})}] \otimes \mathbf{F}_{4} [\mathbf{Q}_{2,0}^{(k,T_{2})}] }_{5} + \underbrace{ \sqrt{5X_{45}} [\mathbf{T}_{2,0}^{(a,E_{2})}(1,0)] \otimes \mathbf{U}_{8} [\mathbf{T}_{2,0}^{(b,E_{2})}] }_{35} }_{35} \\ \\ + \underbrace{ \frac{\sqrt{15X_{44}} [\mathbf{T}_{2,0}^{(a,T_{2})}(1,0)] \otimes \mathbf{U}_{7} [\mathbf{T}_{0}^{(a,A_{2})}] \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,1}^{(k,T_{2})}] }_{15} + \underbrace{ \frac{15}{3\sqrt{30X_{45}} [\mathbf{T}_{2,0}^{(a,E_{2})}] \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,1}^{(k,T_{2})}] }_{35} }_{35} \\ \\ + \underbrace{ \frac{3\sqrt{10X_{45}} [\mathbf{T}_{2,0}^{(a,T_{2})}(1,0)] \otimes \mathbf{U}_{8} [\mathbf{T}_{2,0}^{(a,E_{2})}] \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,1}^{(k,T_{2})}] }_{10} \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,1}^{(k,T_{2})}] }_{20} \\ \\ + \underbrace{ \frac{11\sqrt{30X_{46}} [\mathbf{T}_{2,0}^{(a,E_{2})}(1,0)] \otimes \mathbf{U}_{5} [\mathbf{T}_{2,0}^{(a,E_{2})}] \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,0}^{(k,T_{2})}] }_{20} \\ \\ + \underbrace{ \frac{11\sqrt{30X_{45}} [\mathbf{T}_{2,0}^{(a,E_{2})}(1,0)] \otimes \mathbf{U}_{8} [\mathbf{T}_{2,0}^{(a,E_{2})}] \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,0}^{(k,E_{2})}] }_{20} \\ \\ + \underbrace{ \frac{11\sqrt{30X_{45}} [\mathbf{T}_{2,0}^{(a,E_{2})}(1,0)] \otimes \mathbf{U}_{5} [\mathbf{T}_{2,0}^{(a,E_{2})}] \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,0}^{(k,E_{2})}] }_{20} \\ \\ + \underbrace{ \frac{11\sqrt{30X_{45}} [\mathbf{T}_{2,0}^{(a,E_{2})}(1,0)] \otimes \mathbf{U}_{5} [\mathbf{T}_{2,0}^{(a,E_{2})}] \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,0}^{(k,E_{2})}] }_{20} \\ \\ + \underbrace{ \frac{11\sqrt{30X_{45}} [\mathbf{T}_{2,0}^{(a,E_{2})}(1,0)] \otimes \mathbf{U}_{5} [\mathbf{T}_{2,0}^{(a,E_{2})}] \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,0}^{(k,E_{2})}] }_{20} \\ \\ + \underbrace{ \frac{11\sqrt{30X_{45}} [\mathbf{T}_{2,0}^{(a,E_{2})}(1,0)] \otimes \mathbf{U}_{5} [\mathbf{T}_{2,0}^{(a,E_{2})}] \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,0}^{(k,E_{2})}] }_{20} \\ \\ + \underbrace{ \frac{11\sqrt{30X_{45}} [\mathbf{T}_{2,0}^{(a,E_{2})}(1,0)] \otimes \mathbf{U}_{5} [\mathbf{T}_{2,0}^{(a,E_{2})}] \otimes \mathbf{F}_{5} [\mathbf{Q}_{2,0}^{(k,E_{2})}] }_{20} \\ \\ + \underbrace{ \frac{1$$

$$\begin{split} & \boxed{\text{No. 38}} \quad \hat{\mathbb{G}}_{3}^{(A_g)}(1,0) \ [M_3,B_1] \\ & \hat{\mathbb{Z}}_{38} = \frac{\sqrt{2}\mathbb{X}_{48}[\mathbb{T}_{2,0}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{21}[\mathbb{T}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{49}[\mathbb{T}_{2,1}^{(a,E_g)}(1,0)] \otimes \mathbb{Y}_{20}[\mathbb{T}_{2,0}^{(b,E_g)}]}{2} \end{split}$$

$$\hat{Z}_{38}(k) = \frac{\sqrt{6}X_{48}[T_{2,0}^{(\alpha,E_{2})}(1,0)] \otimes U_{7}[T_{0}^{(\alpha,A_{2})}] \otimes F_{3}[Q_{2,1}^{(\epsilon,E_{2})}]}{6} + \frac{90X_{48}[T_{2,0}^{(\alpha,E_{2})}(1,0)] \otimes U_{8}[T_{2,0}^{(\alpha,E_{2})}]}{343} \otimes F_{2}[Q_{2,0}^{(\epsilon,E_{2})}] \\ + \frac{\sqrt{6}X_{48}[T_{2,0}^{(\alpha,E_{2})}(1,0)] \otimes U_{9}[T_{2,0}^{(\alpha,E_{2})}] \otimes F_{1}[Q_{0}^{(\epsilon,E_{2})}]}{6} \otimes F_{1}[Q_{0}^{(\epsilon,E_{2})}]} + \frac{143\sqrt{3}X_{48}[T_{2,0}^{(\alpha,E_{2})}(1,0)] \otimes U_{9}[T_{2,1}^{(\alpha,E_{2})}] \otimes F_{3}[Q_{2,0}^{(\epsilon,E_{2})}]}{90X_{48}[T_{2,0}^{(\epsilon,E_{2})}(1,0)] \otimes U_{9}[T_{2,1}^{(\epsilon,E_{2})}]} \otimes F_{3}[Q_{2,0}^{(\epsilon,E_{2})}]} \\ - \frac{\sqrt{6}X_{48}[T_{2,0}^{(\epsilon,E_{2})}(1,0)] \otimes U_{9}[T_{2,0}^{(\epsilon,E_{2})}] \otimes F_{2}[Q_{2,0}^{(\epsilon,E_{2})}]}{9} \otimes F_{3}[Q_{2,1}^{(\epsilon,E_{2})}]} - \frac{\sqrt{6}X_{48}[T_{2,0}^{(\epsilon,E_{2})}(1,0)] \otimes U_{9}[T_{2,1}^{(\epsilon,E_{2})}]}{90X_{48}[T_{2,0}^{(\epsilon,E_{2})}(1,0)] \otimes U_{9}[T_{2,1}^{(\epsilon,E_{2})}(1,0)] \otimes U_{9}[T_{2,1}^{(\epsilon,E_{2})}]} \\ - \frac{90X_{49}[T_{2,1}^{(\epsilon,E_{2})}(1,0)] \otimes U_{9}[T_{2,0}^{(\epsilon,E_{2})}]}{343} - \frac{90X_{49}[T_{2,1}^{(\epsilon,E_{2})}(1,0)] \otimes U_{9}[T_{2,1}^{(\epsilon,E_{2})}(1,0)] \otimes U_{9}[T_{2,1}^{(\epsilon,E_{$$

No. 40
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, B₂]

$$\hat{\mathbb{Z}}_{40} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{28}[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{40}(\textbf{\textit{k}}) = \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X$$

No. 41
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₂, B₂]

$$\hat{\mathbb{Z}}_{41} = \frac{\sqrt{3}\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{31}[\mathbb{T}_{1,0}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12}[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{32}[\mathbb{T}_{1,1}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{33}[\mathbb{T}_{1,2}^{(b,T_u)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{33}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{33}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)] \otimes \mathbb{Y}_{33}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{13}$$

$$\begin{split} \hat{\mathbb{Z}}_{41}(\boldsymbol{k}) &= \frac{\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{g})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{1,0}^{(k,T_{u})}]}{3} - \frac{11\sqrt{2}\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{g})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{1,0}^{(k,T_{u})}]}{42} \\ &+ \frac{5\sqrt{6}\mathbb{X}_{11}[\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{16}[\mathbb{T}_{1,0}^{(k,T_{u})}]}{42} + \frac{\mathbb{X}_{12}[\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{g})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{1,1}^{(k,T_{u})}]}{3} \\ &- \frac{\sqrt{2}\mathbb{X}_{12}[\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{g})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{1,1}^{(k,T_{u})}]}{21} - \frac{4\sqrt{6}\mathbb{X}_{12}[\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{17}[\mathbb{T}_{1,1}^{(k,T_{u})}]}{21} \\ &+ \frac{\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{g})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1,2}^{(k,T_{u})}]}{3} + \frac{13\sqrt{2}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{g})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1,2}^{(k,T_{u})}]}{42} \\ &+ \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1,2}^{(k,T_{u})}]}{14}}{\mathbb{X}_{14}} \\ &+ \frac{\sqrt{6}\mathbb{X}_{13}[\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{18}[\mathbb{T}_{1,2}^{(k,T_{u})}]}{14}}{\mathbb{X}_{14}} \\ &+ \frac{\mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}(1,-1)] \otimes \mathbb{X}_{3}[\mathbb{X}_{14}^{(a,T_{u})}] \otimes \mathbb{X}_{3}[\mathbb{X}_{14}^{(a,T_{u})}]}{\mathbb{X}_{14}} \\ &+ \frac{\mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}] \otimes \mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}] \otimes \mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}]}{\mathbb{X}_{14}} \\ &+ \frac{\mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}] \otimes \mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}] \otimes \mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}]}{\mathbb{X}_{14}} \\ &+ \frac{\mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}] \otimes \mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}] \otimes \mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}]}{\mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}]} \\ &+ \frac{\mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}] \otimes \mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}] \otimes \mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}]}{\mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}] \otimes \mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}]}{\mathbb{X}_{14}[\mathbb{X}_{14}^{(a,T_{u})}]} \\ &+ \frac{\mathbb{X}_{14}[\mathbb{X}_{14}^{($$

No. 42
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{42} = \mathbb{X}_{14}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{28}[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{42}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(a,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} \otimes \mathbb{E}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}] \otimes \mathbb{E}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}$$

No. 43
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{43} = \mathbb{X}_{15}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_{28}[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{43}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)]}{3} \otimes \mathbb{E}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{E}_{15}$$

No. 44
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{44} = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{29}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{30}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{44}(\boldsymbol{k}) = \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} \\ + \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} + \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ + \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ + \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(s,E_g)}]} \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ + \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]} \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]} \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]} \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]} \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]} \otimes \mathbb{U}_{3}[\mathbb$$

No. 45
$$\hat{\mathbb{G}}_3^{(A_g)}$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{45} = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{30}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{29}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

No. 46
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{46} = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{29}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{30}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{46}(\pmb{k}) &= \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{13}[\mathbb{Q}_0^{(k,A_g)}]}{6} \\ &+ \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} + \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ &+ \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} + \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{13}[\mathbb{Q}_0^{(k,E_g)}]}{6} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ &- \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(a,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ &- \frac{90\mathbb{$$

No. 47
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₃, B₂]

$$\hat{\mathbb{Z}}_{47} = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{30}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{29}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{47}(\boldsymbol{k}) = \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \\ - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} + \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ - \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{13}[\mathbb{Q}_{0}^{(k,E_g)}]}{2058} \\ - \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{15}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{14}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ - \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} + \frac{143\mathbb{Q}_{3}[\mathbb{Q}_{3,1}^{(k,E_g)}]}{2058} \\ - \frac{143\sqrt{3}\mathbb{Q}_{3}[\mathbb{Q}_{3,1}^{(k,E_g)}]}{2058} + \frac{143\mathbb{Q}_{3}[\mathbb{Q$$

No. 48
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, B₃]

$$\hat{\mathbb{Z}}_{48} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{34}[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{48}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{g})}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{g})}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(s,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_{g})}] \otimes \mathbb{V}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{V}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_{g})}] \otimes \mathbb{V}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{V}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_{g})}] \otimes \mathbb{V}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_{g})}] \otimes \mathbb{V}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_{g})}] \otimes \mathbb{V}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(s,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{$$

$$\begin{split} & \boxed{ \begin{bmatrix} \text{No. } 49 \end{bmatrix} } \ \hat{\mathbb{G}}_{3}^{(Ag)}(1,-1) \ [\text{M}_{2},\text{B}_{3}] \\ & \hat{\mathbb{Z}}_{49} = \frac{\sqrt{3}\mathbb{X}_{11} [\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1)] \otimes \mathbb{Y}_{37} [\mathbb{T}_{1,0}^{(b,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{12} [\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1)] \otimes \mathbb{Y}_{38} [\mathbb{T}_{1,1}^{(b,T_{u})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{13} [\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{Y}_{39} [\mathbb{T}_{1,2}^{(b,T_{u})}]}{3} \\ \hat{\mathbb{Z}}_{49}(\textbf{\textit{k}}) = \frac{\mathbb{X}_{11} [\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{1} [\mathbb{Q}_{0}^{(s,A_{g})}] \otimes \mathbb{F}_{22} [\mathbb{T}_{1,0}^{(k,T_{u})}]}{3} + \frac{13\sqrt{2}\mathbb{X}_{11} [\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{2} [\mathbb{Q}_{2,0}^{(s,E_{g})}] \otimes \mathbb{F}_{22} [\mathbb{T}_{1,0}^{(k,T_{u})}]}{42} \\ + \frac{\sqrt{6}\mathbb{X}_{11} [\mathbb{M}_{2,0}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{3} [\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{22} [\mathbb{T}_{1,0}^{(k,T_{u})}]}{14} + \frac{\mathbb{X}_{12} [\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{1} [\mathbb{Q}_{0}^{(s,A_{g})}] \otimes \mathbb{F}_{23} [\mathbb{T}_{1,1}^{(k,T_{u})}]}{3} \\ - \frac{11\sqrt{2}\mathbb{X}_{12} [\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{2} [\mathbb{Q}_{2,0}^{(s,E_{g})}] \otimes \mathbb{F}_{23} [\mathbb{T}_{1,1}^{(k,T_{u})}]}{42} + \frac{5\sqrt{6}\mathbb{X}_{12} [\mathbb{M}_{2,1}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{3} [\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{23} [\mathbb{T}_{1,1}^{(k,T_{u})}]}{42} \\ + \frac{\mathbb{X}_{13} [\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{1} [\mathbb{Q}_{0}^{(s,A_{g})}] \otimes \mathbb{F}_{24} [\mathbb{T}_{1,2}^{(k,T_{u})}]}{3} - \frac{\sqrt{2}\mathbb{X}_{13} [\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{2} [\mathbb{Q}_{2,0}^{(s,E_{g})}] \otimes \mathbb{F}_{24} [\mathbb{T}_{1,2}^{(k,T_{u})}]}}{21} \\ - \frac{4\sqrt{6}\mathbb{X}_{13} [\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{3} [\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{24} [\mathbb{T}_{1,2}^{(k,T_{u})}]}}{21} \\ - \frac{4\sqrt{6}\mathbb{X}_{13} [\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{3} [\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{24} [\mathbb{T}_{1,2}^{(k,T_{u})}]}}{21} \\ - \frac{4\sqrt{6}\mathbb{X}_{13} [\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{3} [\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{24} [\mathbb{T}_{1,2}^{(k,T_{u})}]}}{21} \\ - \frac{4\sqrt{6}\mathbb{X}_{13} [\mathbb{M}_{2,2}^{(a,T_{u})}(1,-1)] \otimes \mathbb{U}_{3} [\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{24} [\mathbb{T}_{1,2}^{(k,T_{u})}]}}{21} \\ - \frac{11}{2} \mathbb{E}_{\mathbb{Q}} [\mathbb{E}_{2,1}^{(a,T_{u})}(1,-1)] \otimes \mathbb{E}_{2,1}^{(a,T_{u})} \mathbb{E}_{2,1}^{(a,T_{u})}}}{21} \\ - \mathbb{E}_{\mathbb{Q}} [\mathbb{$$

No. 50
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{50} = \mathbb{X}_{14}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{34}[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{50}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(s,E_g)}]} \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(s,E_g)}]} \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(s,E_g)}]$$

No. 51
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{51} = \mathbb{X}_{15}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_{34}[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{51}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(a,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{Q}_{3}[\mathbb{Q}_{0}^{(a,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{Q}_{3}[\mathbb{Q}_{0}^{(a,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{Q}_{3}[\mathbb{Q}_{0}^{(a,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{Z}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{Q}_{3}$$

No. 52
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{52} = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{35}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{36}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{52}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} \\ &+ \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} + \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(s,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{30}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{30}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{30}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2058} \\ &+ \frac{2058}{12} \mathbb{Q}_{10}^{(s,E_g)} \otimes \mathbb{Q}_{10}^{(s,E_g)} \otimes \mathbb{Q}_{10}^{(s,E_g)} \otimes \mathbb{Q}_{10}^{(s,E_g)}}{2058} \\ &+ \frac{2058}{12} \mathbb{Q}_{10}^{(s,E_g)} \otimes \mathbb{Q}_{10}$$

No. 53 $\hat{\mathbb{G}}_3^{(A_g)}$ [M₃, B₃]

$$\hat{\mathbb{Z}}_{53} = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{36}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{35}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{53}(\boldsymbol{k}) = \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2058} \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}] \\ + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{E}_{20}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} - \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{E}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{343} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{6} + \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,1}^{(s,E_g)}]$$

No. 54
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{54} = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{35}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{36}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{54}(\boldsymbol{k}) &= \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &+ \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} + \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ &+ \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} + \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} \\ &- \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(a,E_g)}]}{343} \\ &- \frac{90$$

No. 55
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₃, B₃]

$$\hat{\mathbb{Z}}_{55} = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{36}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{35}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{55}(\mathbf{k}) = \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \\ - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} + \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ - \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{19}[\mathbb{Q}_{0}^{(k,E_g)}]}{2058} \\ - \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ - \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{20}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ - \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{2058} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{21}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ - \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,1}^{(a,E_g)}]}{2058} + \frac{143\sqrt{3}\mathbb{Q}_{2}[\mathbb{Q}_{2,1}^{(a,E_g$$

No. 56
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₁, B₄]

$$\hat{\mathbb{Z}}_{56} = \mathbb{X}_1[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{40}[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{56}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_{g})}] \otimes \mathbb{F}_{25}[\mathbb{Q}_{0}^{(k,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_{g})}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_{g})}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(a,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(a,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(a,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}]}{3} + \frac{\sqrt{3}\mathbb{X}_{1}[\mathbb{Q}_{0}^{(a,A_{g})}$$

$$\begin{split} & \boxed{ \begin{bmatrix} \text{No. 57} \end{bmatrix} } \hat{\mathbb{G}}_{3}^{(A_g)}(1,-1) \left[\text{M}_{2}, \text{B}_{4} \right] } \\ & \hat{\mathbb{Z}}_{57} = \frac{\sqrt{3}\mathbb{X}_{11} \left[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{Y}_{43} \left[\mathbb{T}_{1,0}^{(b,T_u)} \right] }{3} + \frac{\sqrt{3}\mathbb{X}_{12} \left[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{Y}_{44} \left[\mathbb{T}_{1,1}^{(b,T_u)} \right] }{3} + \frac{\sqrt{3}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{Y}_{45} \left[\mathbb{T}_{1,2}^{(b,T_u)} \right] }{3} \\ & \hat{\mathbb{Z}}_{57}(\boldsymbol{k}) = \frac{\mathbb{X}_{11} \left[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{1} \left[\mathbb{Q}_{0}^{(s,A_g)} \right] \otimes \mathbb{F}_{28} \left[\mathbb{T}_{1,0}^{(k,T_u)} \right] }{3} - \frac{\sqrt{2}\mathbb{X}_{11} \left[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{2} \left[\mathbb{Q}_{2,0}^{(s,E_g)} \right] \otimes \mathbb{F}_{28} \left[\mathbb{T}_{1,0}^{(k,T_u)} \right] }{3} \\ & - \frac{4\sqrt{6}\mathbb{X}_{11} \left[\mathbb{M}_{2,0}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{3} \left[\mathbb{Q}_{2,1}^{(s,E_g)} \right] \otimes \mathbb{F}_{28} \left[\mathbb{T}_{1,0}^{(k,T_u)} \right] }{21} + \frac{\mathbb{X}_{12} \left[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{1} \left[\mathbb{Q}_{0}^{(s,A_g)} \right] \otimes \mathbb{F}_{29} \left[\mathbb{T}_{1,1}^{(k,T_u)} \right] }{3} \\ & + \frac{13\sqrt{2}\mathbb{X}_{12} \left[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{2} \left[\mathbb{Q}_{2,0}^{(s,E_g)} \right] \otimes \mathbb{F}_{29} \left[\mathbb{T}_{1,1}^{(k,T_u)} \right] }{42} + \frac{\sqrt{6}\mathbb{X}_{12} \left[\mathbb{M}_{2,1}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{3} \left[\mathbb{Q}_{2,1}^{(s,E_g)} \right] \otimes \mathbb{F}_{29} \left[\mathbb{T}_{1,1}^{(k,T_u)} \right] }{3} \\ & + \frac{\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{1} \left[\mathbb{Q}_{0}^{(s,A_g)} \right] \otimes \mathbb{F}_{30} \left[\mathbb{T}_{1,2}^{(k,T_u)} \right] }{3} - \frac{11\sqrt{2}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{2} \left[\mathbb{Q}_{2,0}^{(s,E_g)} \right] \otimes \mathbb{F}_{30} \left[\mathbb{T}_{1,2}^{(k,T_u)} \right] }{42} \\ & + \frac{5\sqrt{6}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{3} \left[\mathbb{Q}_{2,1}^{(s,E_g)} \right] \otimes \mathbb{F}_{30} \left[\mathbb{T}_{1,2}^{(k,T_u)} \right] }{42}} \\ & + \frac{5\sqrt{6}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{3} \left[\mathbb{Q}_{2,1}^{(s,E_g)} \right] \otimes \mathbb{F}_{30} \left[\mathbb{T}_{1,2}^{(k,T_u)} \right] }{42}} \\ & + \frac{5\sqrt{6}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{3} \left[\mathbb{Q}_{2,1}^{(s,E_g)} \right] \otimes \mathbb{F}_{30} \left[\mathbb{T}_{1,2}^{(k,T_u)} \right] }{42}} \\ & + \frac{5\sqrt{6}\mathbb{X}_{13} \left[\mathbb{M}_{2,2}^{(a,T_u)}(1,-1) \right] \otimes \mathbb{U}_{3} \left[\mathbb{Q}_{3,1}^{(s,E_g)} \right] \otimes \mathbb{F}_{30} \left[\mathbb{T}_{1,2}^{(k,T_u)} \right] }{42}} \\ & + \frac{5\sqrt{6}\mathbb{X}$$

No. 58
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{58} = \mathbb{X}_{14}[\mathbb{Q}_0^{(a,A_g)}] \otimes \mathbb{Y}_{40}[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{58}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{25}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{14}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{3} \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(s,E_g)}]} \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(s,E_g)}]} \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{Q}_{27}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{Q}_{27}[\mathbb{Q}_{2,1}^{(s,E_g)}]$$

No. 59
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,1)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{59} = \mathbb{X}_{15}[\mathbb{Q}_0^{(a,A_g)}(1,1)] \otimes \mathbb{Y}_{40}[\mathbb{Q}_0^{(b,A_g)}]$$

$$\hat{\mathbb{Z}}_{59}(\boldsymbol{k}) = \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{25}[\mathbb{Q}_{0}^{(k,A_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)]}{3} + \frac{\sqrt{3}\mathbb{X}_{15}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)]}{3} \otimes \mathbb{E}_{27}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)] \otimes \mathbb{E}_{27}[\mathbb{Q}_{0}^{(a,A_g)}(1,1)]$$

No. 60
$$\hat{\mathbb{Q}}_0^{(A_g)}$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{60} = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{41}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{42}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{60}(\textbf{\textit{k}}) &= \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{25}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} + \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} \\ &+ \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} + \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{25}[\mathbb{Q}_{0}^{(k,A_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{E}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ &+ \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2$$

No. 61 $\hat{\mathbb{G}}_3^{(A_g)}$ [M₃, B₄]

$$\hat{\mathbb{Z}}_{61} = \frac{\sqrt{2}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{Y}_{42}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Y}_{41}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{61}(\textbf{\textit{k}}) = \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ + \frac{\sqrt{6}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{25}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} - \frac{143\sqrt{3}\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{16}[\mathbb{Q}_{2,0}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} - \frac{\sqrt{6}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{25}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{1} + \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{17}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}]}{343} + \frac{90\mathbb{X}_{18}[\mathbb{Q}_{2,1}^{(a,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{18}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Q}_{18}[\mathbb{Q}_{2,1}^{(a,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{18}[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{Q}_{18}[\mathbb{Q}_{2,1}^{(a,E_g)}]}{2058} \\ - \frac{90\mathbb{X}_{1$$

No. 62
$$\hat{\mathbb{Q}}_0^{(A_g)}(1,-1)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{62} = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{41}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2} + \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)]\otimes\mathbb{Y}_{42}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2}$$

$$\begin{split} \hat{\mathbb{Z}}_{62}(\pmb{k}) &= \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} + \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{25}[\mathbb{Q}_0^{(k,A_g)}]}{6} \\ &+ \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} + \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ &+ \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ &+ \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_1[\mathbb{Q}_0^{(s,A_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_2[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} + \frac{\sqrt{6}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{25}[\mathbb{Q}_0^{(k,E_g)}]}{6} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{25}[\mathbb{Q}_0^{(k,E_g)}]}{6} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} \\ &- \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_3[\mathbb{Q}_{2,1}^{(a,E_g)}] \otimes \mathbb{P}_{26}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^$$

No. 63
$$\hat{\mathbb{G}}_3^{(A_g)}(1,-1)$$
 [M₃, B₄]

$$\hat{\mathbb{Z}}_{63} = \frac{\sqrt{2}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{42}[\mathbb{Q}_{2,1}^{(b,E_g)}]}{2} - \frac{\sqrt{2}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{Y}_{41}[\mathbb{Q}_{2,0}^{(b,E_g)}]}{2}$$

$$\hat{\mathbb{Z}}_{63}(\mathbf{k}) = \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} + \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} \\ - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{2058} + \frac{\sqrt{6}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{25}[\mathbb{Q}_{0}^{(k,A_g)}]}{6} \\ - \frac{143\sqrt{3}\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{2058} - \frac{90\mathbb{X}_{21}[\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{6} \\ - \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{1}[\mathbb{Q}_{0}^{(s,A_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{6} - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{2}[\mathbb{Q}_{2,0}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{2,0}^{(k,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{2,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{2,1}^{(k,E_g)}]}{343} \\ - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{3,1}^{(s,E_g)}] \otimes \mathbb{F}_{26}[\mathbb{Q}_{3,1}^{(k,E_g)}]}{343} + \frac{143\sqrt{3}\mathbb{X}_{22}[\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3}[\mathbb{Q}_{3,1}^{(s,E_g)}] \otimes \mathbb{F}_{27}[\mathbb{Q}_{3,1}^{(k,E_g)}]}{343} \\ - \frac{90\mathbb{X}_{22}[\mathbb{Q}_{3,1}^{(a,E_g)}(1,-1)] \otimes \mathbb{U}_{3,1}^{(a,E_g)}} \otimes \mathbb{F}_{3,1}^{(a,E_g)} \otimes \mathbb{F}$$

Table 5: Atomic SAMB group.

group	bra	ket
M_1	$(s,\uparrow),(s,\downarrow)$	$(s,\uparrow),(s,\downarrow)$
M_2	$(s,\uparrow),(s,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$
M_3	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$
M_4	$(p_x,\uparrow),(p_x,\downarrow),(p_y,\uparrow),(p_y,\downarrow),(p_z,\uparrow),(p_z,\downarrow)$	$(s,\uparrow),(s,\downarrow)$

Table 6: Atomic SAMB.

symbol	type	group	form
\mathbb{X}_1	$\mathbb{Q}_0^{(a,A_g)}$	M_1	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$ $\begin{pmatrix} 0 & \frac{\sqrt{2}}{2}\\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{X}_2	$\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)$	M_1	$\begin{pmatrix} 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 \end{pmatrix}$
\mathbb{X}_3	$\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)$	M_1	$egin{pmatrix} 0 & -rac{\sqrt{2}i}{2} \ rac{\sqrt{2}i}{2} & 0 \end{pmatrix}$
\mathbb{X}_4	$\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)$	M_1	$\begin{pmatrix} 0 & -\frac{\sqrt{2}i}{2} \\ \frac{\sqrt{2}i}{2} & 0 \end{pmatrix}$ $\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 \\ 0 & -\frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_{5}	$\mathbb{Q}_{1,0}^{(a,T_u)}$	M_2	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 \end{pmatrix}$
\mathbb{X}_6	$\mathbb{Q}_{1,1}^{(a,T_u)}$	M_2	$\begin{pmatrix} 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 & 0 \end{pmatrix}$
\mathbb{X}_7	$\mathbb{Q}_{1,2}^{(a,T_u)}$	M_2	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$
\mathbb{X}_8	$\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)$	M_2	$egin{pmatrix} 0 & 0 & -rac{i}{2} & 0 & 0 & rac{1}{2} \ 0 & 0 & 0 & rac{i}{2} & -rac{1}{2} & 0 \end{pmatrix}$
\mathbb{X}_9	$\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)$	M_2	$\begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{i}{2} & -\frac{1}{2} & 0 \end{pmatrix}$ $\begin{pmatrix} \frac{i}{2} & 0 & 0 & 0 & 0 & -\frac{i}{2} \\ 0 & -\frac{i}{2} & 0 & 0 & -\frac{i}{2} & 0 \end{pmatrix}$
X ₁₀	$\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)$	M_2	$\begin{pmatrix} 0 & -\frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 \\ \frac{1}{2} & 0 & \frac{i}{2} & 0 & 0 & 0 \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{11}	$\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)$	M_2	$egin{pmatrix} 0 & 0 & rac{1}{2} & 0 & 0 & -rac{i}{2} \ 0 & 0 & 0 & -rac{1}{2} & rac{i}{2} & 0 \end{pmatrix}$
\mathbb{X}_{12}	$\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)$	M_2	$ \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & -\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \end{pmatrix} $
\mathbb{X}_{13}	$\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)$	M_2	$ \begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & -\frac{1}{2} & \frac{i}{2} & 0 \end{pmatrix} $ $ \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & -\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \end{pmatrix} $ $ \begin{pmatrix} 0 & -\frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 \\ \frac{i}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{14}	$\mathbb{Q}_0^{(a,A_g)}$	M_3	$ \begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix} $
\mathbb{X}_{15}	$\mathbb{Q}_0^{(a,A_g)}(1,1)$	M_3	$\begin{bmatrix} 0 & 0 & 0 & \frac{\sqrt{3}i}{6} & -\frac{\sqrt{3}}{6} & 0\\ \frac{\sqrt{3}i}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}i}{6}\\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} & 0\\ 0 & -\frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0\\ \frac{\sqrt{3}}{2} & 0 & \frac{\sqrt{3}i}{2} & 0 & 0 & 0 \end{bmatrix}$
\mathbb{X}_{16}	$\mathbb{Q}_{2,0}^{(a,E_g)}$	$ m M_3$	$ \begin{pmatrix} -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix} $
\mathbb{X}_{17}	$\mathbb{Q}_{2,1}^{(a,E_g)}$	$ m M_3$	$\begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$

Table 6

			C
symbol	type	group	form
\mathbb{X}_{18}	$\mathbb{Q}_{2,0}^{(a,T_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{19}	$\mathbb{Q}_{2,1}^{(a,T_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{20}	$\mathbb{Q}_{2,2}^{(a,T_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{21}	$\mathbb{Q}_{2,0}^{(a,E_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & \frac{\sqrt{6}}{12} & 0 \\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{12} \\ 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & \frac{\sqrt{6}i}{12} & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{22}	$\mathbb{Q}_{2,1}^{(a,E_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & \frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 \\ -\frac{\sqrt{2}}{4} & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_{23}	$\mathbb{Q}_{2,0}^{(a,T_g)}(1,-1)$	M ₃	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & \frac{\sqrt{2}i}{4} & 0\\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4}\\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{24}	$\mathbb{Q}_{2,1}^{(a,T_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$
\mathbb{X}_{25}	$\mathbb{Q}_{2,2}^{(a,T_g)}(1,-1)$	M_3	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{26}	$\mathbb{G}_{1,0}^{(a,T_g)}(1,0)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & -\frac{\sqrt{2}i}{4} & 0\\ 0 & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0\\ -\frac{\sqrt{2}}{4} & 0 & 0 & 0 & 0 & 0\\ \frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{27}	$\mathbb{G}_{1,1}^{(a,T_g)}(1,0)$	M_3	$\begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0\\ -\frac{\sqrt{2}i}{4} & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4}\\ 0 & 0 & \frac{\sqrt{2}i}{4} & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_{28}	$\mathbb{G}_{1,2}^{(a,T_g)}(1,0)$	М3	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}}{4} & 0 \\ 0 & -\frac{\sqrt{2}i}{4} & 0 & -\frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{29}	$\mathbb{M}_{1,0}^{(a,T_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 &$
\mathbb{X}_{30}	$\mathbb{M}_{1,1}^{(a,T_g)}$	$ m M_3$	$\begin{pmatrix} 0 & 0 & 0 & 0 & \frac{i}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{i}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$
\mathbb{X}_{31}	$\mathbb{M}_{1,2}^{(a,T_g)}$	M_3	$\begin{pmatrix} 0 & 0 & -\frac{i}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{i}{2} & 0 & 0 \\ \frac{i}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{i}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0$
\mathbb{X}_{32}	$\mathbb{M}_{1,0}^{(a,T_g)}(1,1)$	$ m M_3$	$ \begin{pmatrix} 0 & \frac{\sqrt{30}}{15} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{20} & 0\\ \frac{\sqrt{30}}{15} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{20}\\ 0 & -\frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0\\ \frac{\sqrt{30}i}{20} & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & 0\\ \frac{\sqrt{30}i}{20} & 0 & 0 & 0 & 0 & -\frac{\sqrt{30}}{30}\\ 0 & -\frac{\sqrt{30}}{20} & 0 & 0 & -\frac{\sqrt{30}}{30} & 0 \end{pmatrix} $

Table 6

	T	ī	
symbol	type	group	form
X 33	$\mathbb{M}_{1,1}^{(\alpha,T_g)}(1,1)$	$ m M_3$	$ \begin{bmatrix} 0 & \frac{\sqrt{30}i}{30} & 0 & \frac{\sqrt{30}}{20} & 0 & 0 \\ -\frac{\sqrt{30}i}{30} & 0 & \frac{\sqrt{30}}{20} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{15} & \frac{\sqrt{30}}{20} & 0 \\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{15} & 0 & 0 & -\frac{\sqrt{30}i}{20} \\ 0 & 0 & \frac{\sqrt{30}}{20} & 0 & 0 & \frac{\sqrt{30}i}{30} \\ 0 & 0 & 0 & -\frac{\sqrt{30}}{20} & -\frac{\sqrt{30}i}{30} & 0 \end{bmatrix} $
\mathbb{X}_{34}	$\mathbb{M}_{1,2}^{(a,T_g)}(1,1)$	$ m M_3$	$ \begin{bmatrix} -\frac{\sqrt{30}}{30} & 0 & 0 & 0 & 0 & \frac{\sqrt{30}}{20} \\ 0 & \frac{\sqrt{30}}{30} & 0 & 0 & \frac{\sqrt{30}}{20} & 0 \\ 0 & 0 & -\frac{\sqrt{30}}{30} & 0 & 0 & -\frac{\sqrt{30}i}{20} \\ 0 & 0 & 0 & \frac{\sqrt{30}}{30} & \frac{\sqrt{30}i}{20} & 0 \\ 0 & \frac{\sqrt{30}}{20} & 0 & -\frac{\sqrt{30}i}{20} & \frac{\sqrt{30}}{15} & 0 \\ \frac{\sqrt{30}}{20} & 0 & \frac{\sqrt{30}i}{20} & 0 & 0 & -\frac{\sqrt{30}}{15} \end{bmatrix} $
\mathbb{X}_{35}	$\mathbb{M}_{1,0}^{(a,T_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
\mathbb{X}_{36}	$\mathbb{M}_{1,1}^{(a,T_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & -\frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0\\ \frac{\sqrt{6}i}{6} & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -\frac{\sqrt{6}i}{6} & 0 & 0\\ 0 & 0 & \frac{\sqrt{6}i}{6} & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}i}{6}\\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix}$
\mathbb{X}_{37}	$\mathbb{M}_{1,2}^{(a,T_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & 0 \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{6} & 0 \\ 0 & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix}$

Table 6

symbol	type	group	form
- symbol	туре	group	
X38	$\mathbb{M}_{3,0}^{(a,T_g,1)}(1,-1)$	M_3	$ \begin{bmatrix} \frac{\sqrt{5}}{5} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & \frac{\sqrt{5}}{10} \\ 0 & \frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 \\ -\frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & 0 \\ -\frac{\sqrt{5}}{5} & 0 & 0 & 0 & 0 & -\frac{\sqrt{5}}{5} \end{bmatrix} $
\mathbb{X}_{39}	$\mathbb{M}_{3,1}^{(a,T_g,1)}(1,-1)$	$ m M_3$	$ \begin{pmatrix} 0 & \frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0\\ -\frac{\sqrt{5}i}{10} & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{5} & -\frac{\sqrt{5}}{10} & 0\\ -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{5} & 0 & 0 & \frac{\sqrt{5}i}{10}\\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10}\\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \end{pmatrix} $
\mathbb{X}_{40}	$\mathbb{M}_{3,2}^{(a,T_g,1)}(1,-1)$	$ m M_3$	$\begin{pmatrix} -\frac{\sqrt{5}}{10} & 0 & 0 & 0 & 0 & -\frac{\sqrt{5}}{10} \\ 0 & \frac{\sqrt{5}}{10} & 0 & 0 & -\frac{\sqrt{5}}{10} & 0 \\ 0 & 0 & -\frac{\sqrt{5}}{10} & 0 & 0 & \frac{\sqrt{5}i}{10} \\ 0 & 0 & 0 & \frac{\sqrt{5}}{10} & -\frac{\sqrt{5}i}{10} & 0 \\ 0 & -\frac{\sqrt{5}}{10} & 0 & \frac{\sqrt{5}i}{10} & \frac{\sqrt{5}}{5} & 0 \\ -\frac{\sqrt{5}}{10} & 0 & -\frac{\sqrt{5}i}{10} & 0 & 0 & -\frac{\sqrt{5}}{5} \end{pmatrix}$
\mathbb{X}_{41}	$\mathbb{M}_{3,0}^{(a,T_g,2)}(1,-1)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & \sqrt{3}i & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6} \\ 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}}{6} & 0 \end{pmatrix} $
\mathbb{X}_{42}	$\mathbb{M}_{3,1}^{(a,T_g,2)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & \frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0\\ -\frac{\sqrt{3}i}{6} & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & 0\\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0\\ -\frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{6}\\ 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6}\\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{6} & 0 \end{pmatrix}$

Table 6

Table 6			
symbol	type	group	form
\mathbb{X}_{43}	$\mathbb{M}_{3,2}^{(a,T_g,2)}(1,-1)$	M_3	$\begin{pmatrix} \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & 0 & -\frac{\sqrt{3}}{6} & 0 & 0 & \frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{3}}{6} & -\frac{\sqrt{3}i}{6} & 0 \\ 0 & \frac{\sqrt{3}}{6} & 0 & \frac{\sqrt{3}i}{6} & 0 & 0 \\ \frac{\sqrt{3}}{6} & 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{44}	$\mathbb{T}_{2,0}^{(a,T_g)}(1,0)$	$ m M_3$	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{6}i}{12} & \frac{\sqrt{6}}{12} & 0 \\ 0 & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 \\ -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{6} & 0 & 0 & 0 \\ \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{6} \end{pmatrix} $
\mathbb{X}_{45}	$\mathbb{T}_{2,1}^{(a,T_g)}(1,0)$	$ m M_3$	$ \begin{pmatrix} 0 & \frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 \\ -\frac{\sqrt{6}i}{6} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0 \\ 0 & \frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0 \\ \frac{\sqrt{6}}{12} & 0 & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \\ 0 & 0 & -\frac{\sqrt{6}}{12} & 0 & 0 & -\frac{\sqrt{6}i}{6} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{12} & \frac{\sqrt{6}i}{6} & 0 \end{pmatrix} $
\mathbb{X}_{46}	$\mathbb{T}_{2,2}^{(a,T_g)}(1,0)$	$ m M_3$	$ \begin{pmatrix} \frac{\sqrt{6}}{6} & 0 & 0 & 0 & 0 & -\frac{\sqrt{6}}{12} \\ 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}}{12} & 0 \\ 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \\ 0 & -\frac{\sqrt{6}}{12} & 0 & -\frac{\sqrt{6}i}{12} & 0 & 0 \\ -\frac{\sqrt{6}}{12} & 0 & \frac{\sqrt{6}i}{12} & 0 & 0 & 0 \end{pmatrix} $
\mathbb{X}_{47}	$\mathbb{M}_3^{(a,A_g)}(1,-1)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & -\frac{\sqrt{3}i}{6} \\ 0 & 0 & 0 & -\frac{\sqrt{3}}{6} & \frac{\sqrt{3}i}{6} & 0 \\ \frac{\sqrt{3}}{6} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{6} \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & 0 & \frac{\sqrt{3}}{6} & 0 \\ 0 & -\frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 \\ \frac{\sqrt{3}i}{6} & 0 & \frac{\sqrt{3}}{6} & 0 & 0 & 0 \end{pmatrix}$

Table 6

symbol	type	group	form
X48	$\mathbb{T}_{2,0}^{(a,E_g)}(1,0)$	M ₃	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}i}{4} \\ 0 & 0 & 0 & 0 & -\frac{\sqrt{2}i}{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} \\ 0 & 0 & 0 & 0 & \frac{\sqrt{2}}{4} & 0 \\ 0 & \frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 \\ -\frac{\sqrt{2}i}{4} & 0 & \frac{\sqrt{2}}{4} & 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \end{pmatrix}$
\mathbb{X}_{49}	$\mathbb{T}_{2,1}^{(a,E_g)}(1,0)$	$ m M_3$	$\begin{pmatrix} 0 & 0 & -\frac{\sqrt{6}}{6} & 0 & 0 & -\frac{\sqrt{6}i}{12} \\ 0 & 0 & 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}i}{12} & 0 \\ -\frac{\sqrt{6}}{6} & 0 & 0 & 0 & \frac{\sqrt{6}}{12} \\ 0 & \frac{\sqrt{6}}{6} & 0 & 0 & \frac{\sqrt{6}}{12} & 0 \\ 0 & -\frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 \\ \frac{\sqrt{6}i}{12} & 0 & \frac{\sqrt{6}}{12} & 0 & 0 & 0 \end{pmatrix}$
\mathbb{X}_{50}	$\mathbb{Q}_{1,0}^{(a,T_u)}$	$ m M_4$	$\begin{pmatrix} \frac{\sqrt{2}}{2} & 0\\ 0 & \frac{\sqrt{2}}{2}\\ 0 & 0\\ 0 & 0\\ 0 & 0\\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{51}	$\mathbb{Q}_{1,1}^{(a,T_u)}$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{52}	$\mathbb{Q}_{1,2}^{(a,T_u)}$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{\sqrt{2}}{2} & 0 \\ 0 & \frac{\sqrt{2}}{2} \end{pmatrix}$

Table 6

symbol	type	group	form
\mathbb{X}_{53}	$\mathbb{Q}_{1,0}^{(a,T_u)}(1,0)$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{i}{2} & 0 \\ 0 & -\frac{i}{2} \\ 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$
\mathbb{X}_{54}	$\mathbb{Q}_{1,1}^{(a,T_u)}(1,0)$	$ m M_4$	$\begin{pmatrix} -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} \\ 0 & 0 \\ 0 & 0 \\ 0 & \frac{i}{2} \\ i & 0 \end{pmatrix}$
\mathbb{X}_{55}	$\mathbb{Q}_{1,2}^{(a,T_u)}(1,0)$	$ m M_4$	$\begin{pmatrix} 0 & \frac{1}{2} \\ -\frac{1}{2} & 0 \\ 0 & -\frac{i}{2} \\ -\frac{i}{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
\mathbb{X}_{56}	$\mathbb{M}_{2,0}^{(a,T_u)}(1,-1)$	$ m M_4$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \\ 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix}$ $\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$
X ₅₇	$\mathbb{M}_{2,1}^{(a,T_u)}(1,-1)$	$ m M_4$	$\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \\ 0 & 0 \\ 0 & 0 \\ 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$

continued ...

Table 6

symbol	type	group	form
\mathbb{X}_{58}	$\mathbb{M}_{2,2}^{(a,T_u)}(1,-1)$	$ m M_4$	$\begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \\ 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$

Table 7: Cluster SAMB.

symbol	type	cluster	form
\mathbb{Y}_1	$\mathbb{Q}_0^{(s,A_g)}$	S_1	$\begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{Y}_2	$\mathbb{Q}_{2,0}^{(s,E_g)}$	S_1	$\left(-\frac{11\sqrt{6}}{42} - \frac{\sqrt{6}}{21} - \frac{13\sqrt{6}}{42} \right)$
\mathbb{Y}_3	$\mathbb{Q}_{2,1}^{(s,E_g)}$	S_1	$\left(\frac{5\sqrt{2}}{14} -\frac{4\sqrt{2}}{7} \frac{3\sqrt{2}}{14}\right)$
\mathbb{Y}_4	$\mathbb{Q}_0^{(b,A_g)}$	B_1	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_5	$\mathbb{Q}_{1,0}^{(b,T_u)}$	B_1	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_6	$\mathbb{Q}_{1,1}^{(b,T_u)}$	B_1	$\begin{pmatrix} \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & 0 & 0 & 0 & \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & \frac{\sqrt{13}}{13} \\ \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & \frac{\sqrt{13}}{13} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\sqrt{13}}{13} & \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} \end{pmatrix}$
\mathbb{Y}_7	$\mathbb{Q}_{1,2}^{(b,T_u)}$	B_1	$\begin{pmatrix} 13 & 13 & 13 & 13 & 26 & 26 & 26 \\ 0 & 0 & 0 & \frac{\sqrt{13}}{13} & \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & \frac{3\sqrt{13}}{13} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} \end{pmatrix}$
\mathbb{Y}_8	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_1	$ \left(-\frac{11\sqrt{6}}{\sqrt{6}} - \frac{11\sqrt{6}}{\sqrt{6}} - \frac{11\sqrt{6}}{\sqrt{6}} - \frac{11\sqrt{6}}{\sqrt{6}} - \frac{\sqrt{6}}{\sqrt{6}} - \frac{\sqrt{6}}{\sqrt{6}} - \frac{\sqrt{6}}{\sqrt{6}} - \frac{13\sqrt{6}}{\sqrt{6}} - \frac{13\sqrt{6}}{\sqrt$
\mathbb{Y}_9	$\mathbb{Q}_{2,1}^{(b,E_g)}$	B_1	$\begin{pmatrix} 5\sqrt{2} & 5\sqrt{2} & 5\sqrt{2} & 5\sqrt{2} & 5\sqrt{2} & 28 & 28 & -\frac{2\sqrt{2}}{7} & -\frac{2\sqrt{2}}{7} & -\frac{2\sqrt{2}}{7} & -\frac{2\sqrt{2}}{7} & \frac{3\sqrt{2}}{28} & \frac{3\sqrt{2}}{28} & \frac{3\sqrt{2}}{28} & \frac{3\sqrt{2}}{28} & \frac{3\sqrt{2}}{28} \end{pmatrix}$
\mathbb{Y}_{10}	$\mathbb{Q}_{2,0}^{(b,T_g)}$	B_1	$\left(egin{matrix} 0 & 0 & 0 & rac{1}{2} & -rac{1}{2} & rac{1}{2} & -rac{1}{2} & 0 & 0 & 0 \end{array} ight)$
\mathbb{Y}_{11}	$\mathbb{Q}_{2,1}^{(b,T_g)}$	B_1	$\left(egin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & rac{1}{2} & rac{1}{2} & -rac{1}{2} & -rac{1}{2} \end{array} ight)$
\mathbb{Y}_{12}	$\mathbb{Q}_{2,2}^{(b,T_g)}$	B_1	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{13}	$\mathbb{Q}_{3,0}^{(b,T_u,1)}$	B_1	$\left(\begin{array}{ccccccc} \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & 0 & 0 & 0 & -\frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} \end{array}\right)$
\mathbb{Y}_{14}	$\mathbb{Q}_{3,1}^{(b,T_u,1)}$	B_1	$\left(-\frac{3\sqrt{13}}{26} \frac{3\sqrt{13}}{26} \frac{3\sqrt{13}}{26} -\frac{3\sqrt{13}}{26} \frac{\sqrt{13}}{13} -\frac{\sqrt{13}}{13} -\frac{\sqrt{13}}{13} \frac{\sqrt{13}}{13} 0 0 0 0\right)$
\mathbb{Y}_{15}	$\mathbb{Q}_{3,2}^{(b,T_u,1)}$	B_1	$\begin{pmatrix} 0 & 0 & 0 & -\frac{3\sqrt{13}}{26} & -\frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & \frac{3\sqrt{13}}{26} & \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} & \frac{\sqrt{13}}{13} & -\frac{\sqrt{13}}{13} \end{pmatrix}$
\mathbb{Y}_{16}	$\mathbb{T}_0^{(b,A_g)}$	B_1	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{17}	$\mathbb{T}_{1,0}^{(b,T_u)}$	B_1	

Table 7

symbol	type	cluster	form
\mathbb{Y}_{18}	$\mathbb{T}_{1,1}^{(b,T_u)}$	B_1	
\mathbb{Y}_{19}	$\mathbb{T}_{1,2}^{(b,T_u)}$	B_1	$ \begin{pmatrix} 0 & 0 & 0 & \frac{\sqrt{13}i}{13} & \frac{\sqrt{13}i}{13} & -\frac{\sqrt{13}i}{13} & -\frac{\sqrt{13}i}{13} & -\frac{3\sqrt{13}i}{26} & \frac{3\sqrt{13}i}{26} & -\frac{3\sqrt{13}i}{26} & \frac{3\sqrt{13}i}{26} \end{pmatrix} $
\mathbb{Y}_{20}	$\mathbb{T}_{2,0}^{(b,E_g)}$	B_1	$ \left(-\frac{11\sqrt{6}i}{84} - \frac{11\sqrt{6}i}{84} - \frac{11\sqrt{6}i}{84} - \frac{11\sqrt{6}i}{84} - \frac{\sqrt{6}i}{84} - \frac{\sqrt{6}i}{42} - \frac{\sqrt{6}i}{42} - \frac{\sqrt{6}i}{42} - \frac{\sqrt{6}i}{42} - \frac{13\sqrt{6}i}{84} - \frac{13\sqrt{6}i$
\mathbb{Y}_{21}	$\mathbb{T}_{2,1}^{(b,E_g)}$	B_1	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{22}	$\mathbb{T}_{2,0}^{(b,T_g)}$	B_1	
\mathbb{Y}_{23}	$\mathbb{T}_{2,1}^{(b,T_g)}$	B_1	$\left(egin{matrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & -rac{i}{2} & -rac{i}{2} & rac{i}{2} & rac{i}{2} \end{pmatrix} ight.$
\mathbb{Y}_{24}	$\mathbb{T}_{2,2}^{(b,T_g)}$	B_1	$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{25}	$\mathbb{T}_{3,0}^{(b,T_u,1)}$	B_1	$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
\mathbb{Y}_{26}	$\mathbb{T}_{3,1}^{(b,T_u,1)}$	B_1	$\left(-\frac{3\sqrt{13}i}{26} \frac{3\sqrt{13}i}{26} \frac{3\sqrt{13}i}{26} -\frac{3\sqrt{13}i}{26} \frac{\sqrt{13}i}{13} -\frac{\sqrt{13}i}{13} -\frac{\sqrt{13}i}{13} \frac{\sqrt{13}i}{13} 0 0 0 0\right)$
\mathbb{Y}_{27}	$\mathbb{T}_{3,2}^{(b,T_u,1)}$	B_1	$ \begin{pmatrix} 0 & 0 & 0 & -\frac{3\sqrt{13}i}{26} & -\frac{3\sqrt{13}i}{26} & \frac{3\sqrt{13}i}{26} & \frac{3\sqrt{13}i}{26} & -\frac{\sqrt{13}i}{13} & \frac{\sqrt{13}i}{13} & -\frac{\sqrt{13}i}{13} & \frac{\sqrt{13}i}{13} \end{pmatrix} $
\mathbb{Y}_{28}	$\mathbb{Q}_0^{(b,A_g)}$	B_2	$\left(\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3} \frac{\sqrt{3}}{3}\right)$
\mathbb{Y}_{29}	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_2	$\left(-rac{11\sqrt{6}}{42} - rac{\sqrt{6}}{21} rac{13\sqrt{6}}{42} ight)$
\mathbb{Y}_{30}	$\mathbb{Q}_{2,1}^{(b,E_g)}$	B_2	$\left(\frac{5\sqrt{2}}{14} - \frac{4\sqrt{2}}{7} - \frac{3\sqrt{2}}{14}\right)$
\mathbb{Y}_{31}	$\mathbb{T}_{1,0}^{(b,T_u)}$	B_2	$\begin{pmatrix} i & 0 & 0 \end{pmatrix}$
\mathbb{Y}_{32}	$\mathbb{T}_{1,1}^{(b,T_u)}$	B_2	$\begin{pmatrix} 0 & i & 0 \end{pmatrix}$
\mathbb{Y}_{33}	$\mathbb{T}_{1,2}^{(b,T_u)}$	B_2	$\begin{pmatrix} 0 & 0 & i \end{pmatrix}$
\mathbb{Y}_{34}	$\mathbb{Q}_0^{(b,A_g)}$	B_3	$\left(rac{\sqrt{3}}{3} - rac{\sqrt{3}}{3} - rac{\sqrt{3}}{3} ight)$
\mathbb{Y}_{35}	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_3	$ \begin{pmatrix} \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & \frac{\sqrt{3}}{3} \\ -\frac{11\sqrt{6}}{42} & -\frac{\sqrt{6}}{21} & \frac{13\sqrt{6}}{42} \\ -\frac{5\sqrt{2}}{14} & -\frac{4\sqrt{2}}{7} & \frac{3\sqrt{2}}{14} \end{pmatrix} $
\mathbb{Y}_{36}	$\mathbb{Q}_{2,1}^{(b,E_g)}$	B_3	$\left(rac{5\sqrt{2}}{14} - rac{4\sqrt{2}}{7} - rac{3\sqrt{2}}{14} \right)$
\mathbb{Y}_{37}	$\mathbb{T}_{1,0}^{(b,T_u)}$	B_3	$\begin{pmatrix} 0 & 0 & i \end{pmatrix}$
\mathbb{Y}_{38}	$\mathbb{T}_{1,1}^{(b,T_u)}$	B_3	$\begin{pmatrix} i & 0 & 0 \end{pmatrix}$
\mathbb{Y}_{39}	$\mathbb{T}_{1,2}^{(b,T_u)}$	B_3	$\begin{pmatrix} 0 & i & 0 \end{pmatrix}$
\mathbb{Y}_{40}	$\mathbb{Q}_0^{(b,A_g)}$	B_4	$\left(\begin{array}{ccc} \sqrt{3} & \sqrt{3} & \sqrt{3} \\ 3 & 3 & 3 \end{array}\right)$
\mathbb{Y}_{41}	$\mathbb{Q}_{2,0}^{(b,E_g)}$	B_4	$\left(-\frac{11\sqrt{6}}{42} - \frac{\sqrt{6}}{21} - \frac{13\sqrt{6}}{42} \right)$
\mathbb{Y}_{42}	$\mathbb{Q}_{2,1}^{(b,E_g)}$	B_4	$\left(\frac{5\sqrt{2}}{14} - \frac{4\sqrt{2}}{7} - \frac{3\sqrt{2}}{14}\right)$
\mathbb{Y}_{43}	$\mathbb{T}_{1,0}^{(b,T_u)}$	B_4	$\begin{pmatrix} 0 & i & 0 \end{pmatrix}$
\mathbb{Y}_{44}	$\mathbb{T}_{1,1}^{(b,T_u)}$	B_4	$\begin{pmatrix} 0 & 0 & i \end{pmatrix}$
\mathbb{Y}_{45}	$\mathbb{T}_{1,2}^{(b,T_u)}$	B_4	$\begin{pmatrix} i & 0 & 0 \end{pmatrix}$

Table 8: Uniform SAMB.

symbol	type	cluster	form
\mathbb{U}_1	$\mathbb{Q}_0^{(s,A_g)}$	S_1	$\begin{pmatrix} \frac{\sqrt{3}}{3} & 0 & 0\\ 0 & \frac{\sqrt{3}}{3} & 0\\ 0 & 0 & \frac{\sqrt{3}}{3} \end{pmatrix}$
\mathbb{U}_2	$\mathbb{Q}_{2,0}^{(s,E_g)}$	S_1	$ \begin{pmatrix} -\frac{11\sqrt{6}}{42} & 0 & 0\\ 0 & -\frac{\sqrt{6}}{21} & 0\\ 0 & 0 & \frac{13\sqrt{6}}{42} \end{pmatrix} $
\mathbb{U}_3	$\mathbb{Q}_{2,1}^{(s,E_g)}$	S_1	$\begin{pmatrix} \frac{5\sqrt{2}}{14} & 0 & 0\\ 0 & -\frac{4\sqrt{2}}{7} & 0\\ 0 & 0 & \frac{3\sqrt{2}}{14} \end{pmatrix}$
\mathbb{U}_4	$\mathbb{Q}_0^{(u,A_g)}$	B_1	$\begin{pmatrix} 0 & \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} & 0 & \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{6} & 0 \end{pmatrix}$
\mathbb{U}_5	$\mathbb{Q}_{2,0}^{(u,E_g)}$	B_1	$ \begin{pmatrix} 0 & -\frac{11\sqrt{3}}{42} & \frac{13\sqrt{3}}{42} \\ -\frac{11\sqrt{3}}{42} & 0 & -\frac{\sqrt{3}}{21} \\ \frac{13\sqrt{3}}{42} & -\frac{\sqrt{3}}{21} & 0 \end{pmatrix} $
\mathbb{U}_6	$\mathbb{Q}_{2,1}^{(u,E_g)}$	В1	$\begin{pmatrix} 0 & \frac{5}{14} & \frac{3}{14} \\ \frac{5}{14} & 0 & -\frac{4}{7} \\ \frac{3}{4} & \frac{4}{3} & \frac{3}{4} \end{pmatrix}$
\mathbb{U}_7	$\mathbb{T}_0^{(u,A_g)}$	B_1	$\left(\begin{array}{ccc} \frac{\sqrt{6}i}{6} & -\frac{\sqrt{6}i}{6} & 0 \end{array}\right)$
\mathbb{U}_8	$\mathbb{T}_{2,0}^{(u,E_g)}$	B_1	$ \begin{bmatrix} 0 & -\frac{11\sqrt{3}i}{42} & -\frac{13\sqrt{3}i}{42} \\ \frac{11\sqrt{3}i}{42} & 0 & -\frac{\sqrt{3}i}{21} \\ \frac{13\sqrt{3}i}{42} & \frac{\sqrt{3}i}{21} & 0 \end{bmatrix} $
\mathbb{U}_9	$\mathbb{T}_{2,1}^{(u,E_g)}$	В1	$\begin{pmatrix} 0 & \frac{5i}{14} & -\frac{3i}{14} \\ -\frac{5i}{14} & 0 & -\frac{4i}{7} \\ \frac{3i}{14} & \frac{4i}{7} & 0 \end{pmatrix}$

Table 9: Structure SAMB.

symbol	type	cluster	form		
$\overline{\mathbb{F}_1}$	$\mathbb{Q}_0^{(k,A_g)}$	B_1	$\frac{\sqrt{3}c_{001}}{3} + \frac{\sqrt{3}c_{003}}{3} + \frac{\sqrt{3}c_{005}}{3} + \frac{\sqrt{3}c_{006}}{3} + \frac{\sqrt{3}c_{009}}{3} + \frac{\sqrt{3}c_{011}}{3}$		
\mathbb{F}_2	$\mathbb{Q}_{2,0}^{(k,E_g)}$	B_1	$-\frac{11\sqrt{6}c_{001}}{42} - \frac{11\sqrt{6}c_{003}}{42} - \frac{\sqrt{6}c_{005}}{21} - \frac{\sqrt{6}c_{006}}{21} + \frac{13\sqrt{6}c_{009}}{42} + \frac{13\sqrt{6}c_{011}}{42}$		
\mathbb{F}_3	$\mathbb{Q}_{2,1}^{(k,E_g)}$	B_1	$\frac{5\sqrt{2}c_{001}}{14} + \frac{5\sqrt{2}c_{003}}{14} - \frac{4\sqrt{2}c_{005}}{7} - \frac{4\sqrt{2}c_{006}}{7} + \frac{3\sqrt{2}c_{009}}{14} + \frac{3\sqrt{2}c_{011}}{14}$		
\mathbb{F}_4	$\mathbb{Q}_{2,0}^{(k,T_g)}$	B_1	$c_{005} - c_{006}$		
\mathbb{F}_5	$\mathbb{Q}_{2,1}^{(k,T_g)}$	B_1	$c_{009}-c_{011}$		
\mathbb{F}_6	$\mathbb{Q}_{2,2}^{\overline{(k,T_g)}}$	B_1	$c_{001}-c_{003}$		
\mathbb{F}_7	$\mathbb{T}_{1,0}^{(k,T_u)}$	B_1	$\frac{3\sqrt{13}s_{001}}{13} + \frac{3\sqrt{13}s_{003}}{13} - \frac{2\sqrt{13}s_{009}}{13} + \frac{2\sqrt{13}s_{011}}{13}$		
\mathbb{F}_8	$\mathbb{T}_{1,1}^{(k,T_u)}$	B_1	$\frac{2\sqrt{13}s_{001}}{13} - \frac{2\sqrt{13}s_{003}}{13} + \frac{3\sqrt{13}s_{005}}{13} - \frac{3\sqrt{13}s_{006}}{13}$		
\mathbb{F}_9	$\mathbb{T}_{1,2}^{(k,T_u)}$	B_1	$\frac{2\sqrt{13}s_{005}}{13} + \frac{2\sqrt{13}s_{006}}{13} - \frac{3\sqrt{13}s_{009}}{13} - \frac{3\sqrt{13}s_{011}}{13}$		
\mathbb{F}_{10}	$\mathbb{T}_{3,0}^{(k,T_u,1)}$	B_1	$\frac{2\sqrt{13}s_{001}}{12} + \frac{2\sqrt{13}s_{003}}{12} + \frac{3\sqrt{13}s_{009}}{12} - \frac{3\sqrt{13}s_{011}}{12}$		
\mathbb{F}_{11}	$\mathbb{T}_{3,1}^{(k,T_u,1)}$	B_1	$-\frac{3\sqrt{13}s_{001}}{13} + \frac{3\sqrt{13}s_{003}}{13} + \frac{2\sqrt{13}s_{005}}{13} - \frac{2\sqrt{13}s_{006}}{13}$		
\mathbb{F}_{12}	$\mathbb{T}_{3,2}^{(k,T_u,1)}$	B_1	$ \begin{array}{c} -\frac{3\sqrt{13}s_{001}}{13} + \frac{3\sqrt{13}s_{003}}{13} + \frac{2\sqrt{13}s_{005}}{13} - \frac{2\sqrt{13}s_{006}}{13} \\ -\frac{3\sqrt{13}s_{005}}{13} - \frac{3\sqrt{13}s_{006}}{13} - \frac{2\sqrt{13}s_{009}}{13} - \frac{2\sqrt{13}s_{011}}{13} \end{array} $		
\mathbb{F}_{13}	$\mathbb{Q}_0^{(k,A_g)}$	B_2	$\frac{\sqrt{6}c_{013}}{3} + \frac{\sqrt{6}c_{014}}{3} + \frac{\sqrt{6}c_{015}}{3}$		
\mathbb{F}_{14}	$\mathbb{Q}_{2,0}^{(k,E_g)}$	B_2	$-\frac{11\sqrt{3}c_{013}}{21} - \frac{2\sqrt{3}c_{014}}{21} + \frac{13\sqrt{3}c_{015}}{21}$		
\mathbb{F}_{15}	$\mathbb{Q}_{2.1}^{(k,E_g)}$	B_2	$\frac{5c_{013}}{7} - \frac{8c_{014}}{7} + \frac{3c_{015}}{7}$		
\mathbb{F}_{16}	$\mathbb{T}_{1,0}^{(k,T_u)}$	B_2	$\sqrt{2}s_{013}$		
\mathbb{F}_{17}	$\mathbb{T}_{1,1}^{(k,T_u)}$	B_2	$\sqrt{2}s_{014}$		
\mathbb{F}_{18}	$\mathbb{T}_{1,2}^{(k,T_u)}$ $\mathbb{O}^{(k,A_g)}$	B_2	$\sqrt{2}s_{015}$		
\mathbb{F}_{19}	₹ 0	B_3	$\frac{\sqrt{6}c_{016}}{3} + \frac{\sqrt{6}c_{017}}{3} + \frac{\sqrt{6}c_{018}}{3}$		
\mathbb{F}_{20}	$\mathbb{Q}_{2,0}^{(\kappa,E_g)}$	B_3	$-\frac{11\sqrt{3}c_{016}}{21} - \frac{2\sqrt{3}c_{017}}{21} + \frac{13\sqrt{3}c_{018}}{21}$		
\mathbb{F}_{21}	$\mathbb{Q}_{2,1}^{(k,E_g)}$	B_3	$\frac{5c_{016}}{7} - \frac{8c_{017}}{7} + \frac{3c_{018}}{7}$		
\mathbb{F}_{22}	$\mathbb{T}_{1,0}^{(k,T_u)}$	B_3	$\sqrt{2}s_{018}$		
\mathbb{F}_{23}	$\mathbb{T}_{1,1}^{(k,T_u)}$	B_3	$\sqrt{2}s_{016}$		
\mathbb{F}_{24}	$\mathbb{T}_{1,2}^{(\vec{k},T_u)}$	B_3	$\sqrt{2}s_{017}$		
\mathbb{F}_{25}	$\mathbb{Q}_0^{(k,A_g)}$	B_4	$\frac{\sqrt{6}c_{019}}{3} + \frac{\sqrt{6}c_{020}}{3} + \frac{\sqrt{6}c_{021}}{3}$		
\mathbb{F}_{26}	$\mathbb{Q}_{2,0}^{(\kappa,E_g)}$	$_{ m B_4}$	$-\frac{11\sqrt{3}c_{019}}{21} - \frac{2\sqrt{3}c_{020}}{21} + \frac{13\sqrt{3}c_{021}}{21}$		
\mathbb{F}_{27}	$\mathbb{Q}_{2,1}^{(k,E_g)}$	B_4	$\frac{5c_{019}}{7} - \frac{8c_{020}}{7} + \frac{3c_{021}}{7}$		
\mathbb{F}_{28}	$\mathbb{T}_{1,0}^{(k,T_u)}$	B_4	$\sqrt{2}s_{020}$		
\mathbb{F}_{29}	$\mathbb{T}_{1,1}^{(k,T_u)}$	$_{\mathrm{B}_{4}}$	$\sqrt{2}s_{021}$		
\mathbb{F}_{30}	$\mathbb{T}_{1,2}^{(\vec{k},T_u)}$	B_4	$\sqrt{2}s_{019}$		

Table 10: Polar harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{Q}_0^{(A_g)}$	0	A_g	-	_	1
2	$\mathbb{Q}_{1,0}^{(T_u)}$	1	T_u	-	0	x
3	$\mathbb{Q}_{1,1}^{(T_u)}$	1	T_u	_	1	y
4	$\mathbb{Q}_{1,2}^{(T_u)}$	1	T_u	_	2	z
5	$\mathbb{Q}_{2,0}^{(E_g)}$	2	E_g	_	0	$-\frac{x^2}{2} - \frac{y^2}{2} + z^2$
6	$\mathbb{Q}_{2,1}^{(E_g)}$	2	E_g	_	1	$\frac{\sqrt[2]{3}(x^2-y^2)}{2}$
7	$\mathbb{Q}_{2,0}^{(T_g)}$	2	T_g	_	0	$\sqrt{3}yz$
8	$\mathbb{Q}_{2,1}^{(T_g)}$	2	T_g	_	1	$\sqrt{3}xz$
9	$\mathbb{Q}_{2,2}^{(T_g)}$	2	T_g	_	2	$\sqrt{3}xy$
10	$\mathbb{Q}_{3,0}^{(T_u,1)}$	3	T_u	1	0	$\frac{x(2x^2-3y^2-3z^2)}{2}$
11	$\mathbb{Q}_{3,1}^{(T_u,1)}$	3	T_u	1	1	$-\frac{y(3x^2-2y^2+3z^2)}{2}$
12	$\mathbb{Q}_{3,2}^{(T_u,1)}$	3	T_u	1	2	$-\frac{z(3x^2+3y^2-2z^2)}{2}$

Table 11: Axial harmonics.

No.	symbol	rank	irrep.	mul.	comp.	form
1	$\mathbb{G}_{1,0}^{(T_g)}$	1	T_g	-	0	X
2	$\mathbb{G}_{1,1}^{(T_g)}$	1	T_g	_	1	Y
3	$\mathbb{G}_{1,2}^{(T_g)}$	1	T_g	_	2	Z
4	$\mathbb{G}_{2,0}^{(T_u)}$	2	T_u	-	0	$\sqrt{3}YZ$
5	$\mathbb{G}_{2,1}^{(T_u)}$	2	T_u	_	1	$\sqrt{3}XZ$
6	$\mathbb{G}_{2,2}^{(T_u)}$	2	T_u	_	2	$\sqrt{3}XY$
7	$\mathbb{G}_3^{(A_g)}$	3	A_g	_	_	$\sqrt{15}XYZ$
8	$\mathbb{G}_{3,0}^{(T_g,1)}$	3	T_g	1	0	$\frac{X(2X^2-3Y^2-3Z^2)}{2}$

Table 11

No.	symbol	rank	irrep.	mul.	comp.	form
9	$\mathbb{G}_{3,1}^{(T_g,1)}$	3	T_g	1	1	$-\frac{Y(3X^2-2Y^2+3Z^2)}{2}$
10	$\mathbb{G}_{3,2}^{(T_g,1)}$	3	T_g	1	2	$-\frac{Z(3X^2+3Y^2-2Z^2)}{2}$
11	$\mathbb{G}_{3,0}^{(T_g,2)}$	3	T_g	2	0	$\frac{\sqrt{15}X(Y-Z)(Y+Z)}{2}$
12	$\mathbb{G}_{3,1}^{(T_g,2)}$	3	T_g	2	1	$-\frac{\sqrt{15}Y(X-Z)(X+Z)}{2}$
13	$\mathbb{G}_{3,2}^{(T_g,2)}$	3	T_g	2	2	$\frac{\sqrt{15}Z(X-Y)(X+Y)}{2}$

 \bullet Group info.: Generator = {2001|0}, {2010|0}, {3^{+}_{111}|0}, {-1|0}

Table 12: Conjugacy class (point-group part).

rep. SO	symmetry operations
{1 0}	{1 0}
$\{2_{001} 0\}$	$\{2_{001} 0\}, \{2_{100} 0\}, \{2_{010} 0\}$
$\{3^{+}_{111} 0\}$	$\{3_{111}^{+} 0\}, \{3_{1-1-1}^{+} 0\}, \{3_{-11-1}^{+} 0\}, \{3_{-1-11}^{+} 0\}$
$\{3^{-}_{111} 0\}$	$\{3_{111}^{-} 0\}, \{3_{1-1-1}^{-} 0\}, \{3_{-11-1}^{-} 0\}, \{3_{-1-11}^{-} 0\}$
$\{-1 0\}$	$\{-1 0\}$
$\{m_{001} 0\}$	$\{m_{001} 0\}, \{m_{100} 0\}, \{m_{010} 0\}$
$\{-3^{+}_{111} 0\}$	$\{-3^{+}_{111} 0\}, \{-3^{+}_{1-1-1} 0\}, \{-3^{+}_{-11-1} 0\}, \{-3^{+}_{-1-11} 0\}$
$\{-3^{-}_{111} 0\}$	$\{-3^{-}_{111} 0\}, \{-3^{-}_{1-1-1} 0\}, \{-3^{-}_{-11-1} 0\}, \{-3^{-}_{-1-11} 0\}$

Table 13: Symmetry operations.

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
1	$\{1 0\}$	2	$\{2_{001} 0\}$	3	$\{2_{100} 0\}$	4	$\{2_{010} 0\}$	5	$\{3^{+}_{111} 0\}$

Table 13

No.	SO	No.	SO	No.	SO	No.	SO	No.	SO
6	$\{3^+_{1-1-1} 0\}$	7	$\{3^{+}_{-11-1} 0\}$	8	$\{3^{+}_{-1-11} 0\}$	9	$\{3^{-}_{111} 0\}$	10	$\{3^{1-1-1} 0\}$
11	$\{3^{-}_{-11-1} 0\}$	12	$\{3^{-}_{-1-11} 0\}$	13	$\{-1 0\}$	14	$\{m_{001} 0\}$	15	$\{m_{100} 0\}$
16	$\{m_{010} 0\}$	17	$\{-3^{+}_{111} 0\}$	18	$\{-3^+_{1-1-1} 0\}$	19	$\{-3^{+}_{-11-1} 0\}$	20	$\{-3^{+}_{-1-11} 0\}$
21	$\{-3^{-}_{111} 0\}$	22	$\{-3^{-}_{1-1-1} 0\}$	23	$\{-3^{-}_{-11-1} 0\}$	24	$\{-3^{-}_{-1-11} 0\}$		

Table 14: Character table (point-group part).

	1	2_{001}	3^{+}_{111}	3^{-}_{111}	-1	m_{001}	-3^{+}_{111}	-3^{-}_{111}
A_g	1	1	1	1	1	1	1	1
$E_{g}^{(a)}$	1	1	ω^*	ω	1	1	ω^*	ω
$E_g^{(b)}$	1	1	ω	ω^*	1	1	ω	ω^*
T_g	3	-1	0	0	3	-1	0	0
A_u	1	1	1	1	-1	-1	-1	-1
$E_u^{(a)}$	1	1	ω^*	ω	-1	-1	$-\omega^*$	$-\omega$
$E_u^{(b)}$	1	1	ω	ω^*	-1	-1	$-\omega$	$-\omega^*$
T_u	3	-1	0	0	-3	1	0	0

Table 15: Parity conversion.

\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow
$A_g(A_u)$	$E_g^{(a)} (E_u^{(a)})$	$E_g^{(b)} (E_u^{(b)})$	T_g (T_u)	$A_u (A_g)$
$E_u^{(a)} (E_g^{(a)})$	$E_u^{(b)} (E_g^{(b)})$	$T_u (T_g)$		

Table 16: Symmetric product, $[\Gamma \otimes \Gamma']_+$.

	A_g	$E_g^{(a)}$	$E_g^{(b)}$	T_g	A_u	$E_u^{(a)}$	$E_u^{(b)}$	T_u
A_g	A_g	$E_g^{(a)}$	$E_g^{(b)}$	T_g	A_u	$E_u^{(a)}$	$E_u^{(b)}$	T_u
$E_g^{(a)}$		$E_g^{(a)}$ $E_g^{(b)}$	A_g	T_g	$E_u^{(a)} \\ E_u^{(b)}$	$E_u^{(b)}$	A_u	T_u
$E_g^{(b)}$			$E_g^{(a)}$	T_g	$E_u^{(b)}$	A_u	$E_u^{(a)}$	T_{u}
$ \begin{array}{c} A_g \\ E_g^{(a)} \\ E_g^{(b)} \\ T_g \end{array} $				$A_g + E_g^{(a)} + E_g^{(b)} + T_g$	T_u	T_u	T_u	$A_u + E_u^{(a)} + E_u^{(b)} + 2T_u$
A_u					A_g	$E_g^{(a)}$ $E_g^{(b)}$	$E_g^{(b)}$	T_g
$E_u^{(a)}$ $E_u^{(b)}$						$E_g^{(b)}$	A_g	T_g
$E_u^{(b)}$							$E_g^{(a)}$	$T_{m{g}}$
T_u								$A_g + E_g^{(a)} + E_g^{(b)} + T_g$

Table 17: Anti-symmetric product, $[\Gamma \otimes \Gamma]_-.$

A_g	$E_g^{(a)}$	$E_g^{(b)}$	T_g	A_u	$E_u^{(a)}$	$E_u^{(b)}$	T_u
_			T_g	_	_	_	T_g

Table 18: Virtual-cluster sites.

No.	position	No.	position	No.	position	No.	position
1	$\begin{pmatrix} 3 & 2 & 1 \end{pmatrix}$	2	$\begin{pmatrix} -3 & -2 & 1 \end{pmatrix}$	3	$\begin{pmatrix} 3 & -2 & -1 \end{pmatrix}$	4	$\begin{pmatrix} -3 & 2 & -1 \end{pmatrix}$
5	$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$	6	$\begin{pmatrix} -1 & -3 & 2 \end{pmatrix}$	7	$\begin{pmatrix} 1 & -3 & -2 \end{pmatrix}$	8	$\begin{pmatrix} -1 & 3 & -2 \end{pmatrix}$
9	$\begin{pmatrix} 2 & 1 & 3 \end{pmatrix}$	10	$\begin{pmatrix} -2 & 1 & -3 \end{pmatrix}$	11	$\begin{pmatrix} -2 & -1 & 3 \end{pmatrix}$	12	$\begin{pmatrix} 2 & -1 & -3 \end{pmatrix}$
13	$\begin{pmatrix} -3 & -2 & -1 \end{pmatrix}$	14	$\begin{pmatrix} 3 & 2 & -1 \end{pmatrix}$	15	$\begin{pmatrix} -3 & 2 & 1 \end{pmatrix}$	16	$\begin{pmatrix} 3 & -2 & 1 \end{pmatrix}$
17	$\begin{pmatrix} -1 & -3 & -2 \end{pmatrix}$	18	$\begin{pmatrix} 1 & 3 & -2 \end{pmatrix}$	19	$\begin{pmatrix} -1 & 3 & 2 \end{pmatrix}$	20	$\begin{pmatrix} 1 & -3 & 2 \end{pmatrix}$
21	$\begin{pmatrix} -2 & -1 & -3 \end{pmatrix}$	22	$\begin{pmatrix} 2 & -1 & 3 \end{pmatrix}$	23	$\begin{pmatrix} 2 & 1 & -3 \end{pmatrix}$	24	$\begin{pmatrix} -2 & 1 & 3 \end{pmatrix}$

Table 19: Virtual-cluster basis.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{\sqrt{6}}{12} $ $ \frac{\sqrt{6}}{12} $ $ -\frac{\sqrt{7}}{14} $ $ \frac{\sqrt{7}}{28} $ $ \frac{\sqrt{7}}{28} $ $ \frac{3\sqrt{7}}{28} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c }\hline \mathbb{Q}_{1,0}^{(T_u)} & \frac{3\sqrt{7}}{28} & -\frac{3\sqrt{7}}{28} & \frac{3\sqrt{8}}{28} & -\frac{3\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{14} \\ & -\frac{\sqrt{7}}{14} & \frac{\sqrt{7}}{14} & -\frac{3\sqrt{2}}{28} & \frac{3\sqrt{7}}{28} & -\frac{3\sqrt{7}}{28} & \frac{3\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} \\ & -\frac{\sqrt{7}}{14} & \frac{\sqrt{7}}{14} & -\frac{\sqrt{7}}{14} & -\frac{\sqrt{7}}{14} & -\frac{\sqrt{7}}{14} & \frac{3\sqrt{7}}{28} & -\frac{3\sqrt{7}}{28} & -\frac{3\sqrt{7}}{28} & \frac{3\sqrt{7}}{28} & \frac{\sqrt{7}}{28} \\ & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{41} & \frac{\sqrt{7}}{14} & \frac{\sqrt{7}}{14} & -\frac{\sqrt{7}}{41} & -\frac{3\sqrt{7}}{41} & -\frac{3\sqrt{7}}{28} & \frac{3\sqrt{7}}{28} & \frac{3\sqrt{7}}{28} \\ & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} \\ & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} \\ & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & \frac{3\sqrt{7}}{28} \\ & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & \frac{3\sqrt{7}}{28} \\ & \frac{3\sqrt{7}}{28} & -\frac{3\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & \frac{3\sqrt{7}}{28} \\ & \frac{3\sqrt{7}}{28} & -\frac{3\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & \frac{3\sqrt{7}}{28} \\ & \frac{3\sqrt{7}}{28} & -\frac{3\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & -\frac{\sqrt{7}}{41} & \frac{3\sqrt{7}}{41} \\ & -\frac{3\sqrt{7}}{28} & \frac{3\sqrt{7}}{28} & -\frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & \frac{\sqrt{7}}{28} & -\frac{\sqrt{7}}{41} &$	$ \frac{\sqrt{7}}{28} $ $ \frac{\sqrt{7}}{28} $ $ -\frac{3\sqrt{7}}{28} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{\sqrt{7}}{28} $ $ \frac{\sqrt{7}}{28} $ $ -\frac{3\sqrt{7}}{28} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{\sqrt{7}}{28}$ $-\frac{3\sqrt{7}}{28}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{3\sqrt{7}}{28}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{3\sqrt{7}}{28}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31/7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31/7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{3\sqrt{7}}{28}$
	$\frac{\sqrt{7}}{14}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{13\sqrt{3}}{84}$
	$-\frac{\sqrt{3}}{42}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\frac{3}{28}$
	$-\frac{2}{7}$
0^{-9} , $\frac{\sqrt{2}}{\sqrt{2}}$ $-\frac{\sqrt{2}}{\sqrt{2}}$ $-\frac{\sqrt{2}}{\sqrt{2}}$ $-\frac{\sqrt{2}}{\sqrt{2}}$ $-\frac{\sqrt{2}}{\sqrt{2}}$ $-\frac{\sqrt{2}}{\sqrt{2}}$	3,/2
	$-\frac{3\sqrt{2}}{28}$ $-\frac{3\sqrt{2}}{14}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-\frac{3\sqrt{2}}{14}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{3\sqrt{2}}{14}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{14}{\frac{\sqrt{2}}{14}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-\frac{\sqrt{2}}{14}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\mathbb{Q}_{3}^{(A_{u})} \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{12} \frac{\sqrt{6}}{12}$	$-\frac{3\sqrt{2}}{28}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table 19

symbol	1	2	3	4	5	6	7	8	9	10
	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,0}^{(T_u,1)}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,1}^{(T_u,1)}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,2}^{(T_u,1)}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$
	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$	$-\frac{\sqrt{6}}{12}$	$\frac{\sqrt{6}}{12}$						
$\mathbb{Q}_{3,0}^{(T_u,2)}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$
	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$
	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$						
$\mathbb{Q}_{3,1}^{(T_u,2)}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$
	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$
	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$						
$\mathbb{Q}_{3,2}^{(T_u,2)}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$
	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$-\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{5\sqrt{21}}{84}$	$\frac{\sqrt{21}}{21}$	$\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$	$-\frac{\sqrt{21}}{21}$
	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$	$-\frac{\sqrt{21}}{84}$	$\frac{\sqrt{21}}{84}$						
$\mathbb{Q}_{4,0}^{(T_g,1)}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$
	$\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$
	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$						
$\mathbb{Q}_{4,1}^{(T_g,1)}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{9\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$
	$-\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{9\sqrt{829}}{23212}$
	$\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\tfrac{125\sqrt{829}}{23212}$						
$\mathbb{Q}_{4,2}^{(T_g,1)}$	$\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$
	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{125\sqrt{829}}{23212}$	$-\frac{64\sqrt{829}}{5803}$	$-\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$	$\frac{64\sqrt{829}}{5803}$
	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$	$\frac{9\sqrt{829}}{23212}$	$-\frac{9\sqrt{829}}{23212}$						
$\mathbb{Q}_{4,0}^{(T_g,2)}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$

Table 19

symbol	1	2	3	4	5	6	7	8	9	10
	$\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$
	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$						
$\mathbb{Q}_{4,1}^{(T_g,2)}$	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$
	$\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$\frac{39\sqrt{829}}{3316}$
	$-\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$						
$\mathbb{Q}_{4,2}^{(T_g,2)}$	$-\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$
	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$-\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$\frac{11\sqrt{829}}{3316}$	$-\frac{\sqrt{829}}{829}$	$-\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$	$\frac{\sqrt{829}}{829}$
	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$	$\frac{39\sqrt{829}}{3316}$	$-\frac{39\sqrt{829}}{3316}$						
$\mathbb{Q}_{5,0}^{(E_{u})}$	$\frac{5}{28}$	$\frac{5}{28}$	$\frac{5}{28}$	$\frac{5}{28}$	$-\frac{2}{7}$	$-\frac{2}{7}$	$-\frac{2}{7}$	$-\frac{2}{7}$	$\frac{3}{28}$	$\frac{3}{28}$
	$\frac{3}{28}$	$\frac{3}{28}$	$-\frac{5}{28}$	$-\frac{5}{28}$	$-\frac{5}{28}$	$-\frac{5}{28}$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{2}{7}$
	$-\frac{3}{28}$	$-\frac{3}{28}$	$-\frac{3}{28}$	$-\frac{3}{28}$						
$\mathbb{Q}_{5,1}^{(E_{u})}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{11\sqrt{3}}{84}$	$\frac{\sqrt{3}}{42}$	$\frac{\sqrt{3}}{42}$	$\frac{\sqrt{3}}{42}$	$\frac{\sqrt{3}}{42}$	$-\frac{13\sqrt{3}}{84}$	$-\frac{13\sqrt{3}}{84}$
	$-\frac{13\sqrt{3}}{84}$	$-\frac{13\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{11\sqrt{3}}{84}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$	$-\frac{\sqrt{3}}{42}$
	$\frac{13\sqrt{3}}{84}$	$\frac{13\sqrt{3}}{84}$	$\frac{13\sqrt{3}}{84}$	$\frac{13\sqrt{3}}{84}$						