Hidden Markov Models

Theoretical Aspects. Octave Implementation. Applications

Alexandru Sorici, Tudor Berariu

Romanian Asociation for Artificial Intelligence

October, 27th, 2012

PART 1. **Intro**

Theory of HMMs

PART 3. **Demo & Discussions**

2 / 41

Intro

- ARIA Education Workshops
 - ARIA's Mission
 - ARIA Education
 - Workshop Program

- ARIA Education Workshops
 - ARIA's Mission
 - ARIA Education
 - Workshop Program

- ARIA Education Workshops
 - ARIA's Mission
 - ARIA Education
 - Workshop Program

ARIA EDU

:

- ARIA Education Workshops
 - ARIA's Mission
 - ARIA Education
 - Workshop Program

Today's Program

9:00	Registration
10:00	Rahaturi despre ARIA
11:00	HMM Theory

Theory of HMMs

- Machine Learning Applications for HMM
 - Machine Learning
 - Where do HMMs fit into Machine Learning?
- Theory of HMMs
 - The 3 things you want from an HMM
 - Mathematical Foundations for HMMs
 - Notation Conventions & Framework Description
- Implementing HMMs
 - Using the Model for Estimations: the Forward-Backward algorithm
 - Learning from Observations: Baum-Welch algorithm
 - Uncovering Hidden states: Viterbi algorithm

- Machine Learning Applications for HMM
 - Machine Learning
 - Where do HMMs fit into Machine Learning?
- Theory of HMMs
 - The 3 things you want from an HMM
 - Mathematical Foundations for HMMs
 - Notation Conventions & Framework Description
- 4 Implementing HMMs
 - Using the Model for Estimations: the Forward-Backward algorithm
 - Learning from Observations: Baum-Welch algorithm
 - Uncovering Hidden states: Viterbi algorithm

What is Machine Learning?

Machine Learning

..Trascau is a beautiful horse.

Machine Learning Applications

- Computer Vision: Google Car
- Machine Translation
- Speech Recognition
- Recommender Systems
- Intelligent Advertising

- Machine Learning Applications for HMM
 - Machine Learning
 - Where do HMMs fit into Machine Learning?
- Theory of HMMs
 - The 3 things you want from an HMM
 - Mathematical Foundations for HMMs
 - Notation Conventions & Framework Description
- 4 Implementing HMMs
 - Using the Model for Estimations: the Forward-Backward algorithm
 - Learning from Observations: Baum-Welch algorithm
 - Uncovering Hidden states: Viterbi algorithm

Machine Learning Classification

Types of Machine Learning Problems

- Regression
- Classification
- Reinforcement Learning
- supervised learning (eg. ..)
- unsupervised

Sequence / Temporal problems (I)

OBJECT TRACKING

Speaker GPS
Detection

Robotics
Surface
to air Ship or rocket
missille navigation

SPEECH RECOGNITION

Voice user interfaces e.g. SIRI speech-to-text processing Direct voice input - aircraft

GESTURE RECOGNITION

Personalized
Signature Recognition
Sign Language Recognition

Sequence / Temporal problems (II)

BIOINFORMATICS

Protein Sequencing

Modeling of a gene regulatory network

ECONOMICS

stock price prediction

econometrics

- estimate a country's econmic indicators across time -

Sequence / Temporal problems (III)

Some tools of the trade:

- DBN
- Kalman Filters
- HMMs

Probabilistic Reasoning over Time

Robot localization

- Robot localization
- DNA sequence analysis

- Robot localization
- DNA sequence analysis
- Hand-Writing Recognition

- Robot localization
- DNA sequence analysis
- Hand-Writing Recognition
- Speech Recognition (newxt on baywatch)

- Machine Learning Applications for HMM
 - Machine Learning
 - Where do HMMs fit into Machine Learning?
- Theory of HMMs
 - The 3 things you want from an HMM
 - Mathematical Foundations for HMMs
 - Notation Conventions & Framework Description
- 4 Implementing HMMs
 - Using the Model for Estimations: the Forward-Backward algorithm
 - Learning from Observations: Baum-Welch algorithm
 - Uncovering Hidden states: Viterbi algorithm

The 3 fundamental problems [Rabiner, 1989]

Particularization of temporal inference problems to HMMs

Evaluation Problem

Given a model and a sequence of observations, how do we compute the probability that the observed sequence was produced by the model?

The 3 fundamental problems [Rabiner, 1989]

Particularization of temporal inference problems to HMMs

Evaluation Problem

Given a model and a sequence of observations, how do we compute the probability that the observed sequence was produced by the model?

Best Explanation of Observations Problem

Given a model and a sequence of observations how do we choose a corresponding sequence of states which *gives meaning* to the observations? How do we *uncover* the hidden part of the model?

The 3 fundamental problems [Rabiner, 1989]

Particularization of temporal inference problems to HMMs

Evaluation Problem

Given a model and a sequence of observations, how do we compute the probability that the observed sequence was produced by the model?

Best Explanation of Observations Problem

Given a model and a sequence of observations how do we choose a corresponding sequence of states which gives meaning to the observations? How do we *uncover* the hidden part of the model?

Model Estimation (Training) Problem

Given some observed sequences, how do we adjust the parameters of an HMM model that best tries to explain the observations?

- 2 Machine Learning Applications for HMM
 - Machine Learning
 - Where do HMMs fit into Machine Learning?
- Theory of HMMs
 - The 3 things you want from an HMM
 - Mathematical Foundations for HMMs
 - Notation Conventions & Framework Description
- 4 Implementing HMMs
 - Using the Model for Estimations: the Forward-Backward algorithm
 - Learning from Observations: Baum-Welch algorithm
 - Uncovering Hidden states: Viterbi algorithm

Elements of an HMM

- N Hidden States : $S_1, S_2, \dots S_N$
- M Observable Variables : O₁, O₂, ... O_M

Parameters:

- Transition Function / Matrix between states
- Emission probabilities
- Initial state probabilities

Formalisation of the estimation problem

Formalisation of problem # 2

•
$$P(Q_1) = \sum_{x=\{1,2\}}^{N} P(Q_2)\theta\Pi$$

•
$$P(Q_i|q_i=s_x)=i\times x\cdot i\dots$$

Formalisation of parameters estimation problem

- Machine Learning Applications for HMM
 - Machine Learning
 - Where do HMMs fit into Machine Learning?
- Theory of HMMs
 - The 3 things you want from an HMM
 - Mathematical Foundations for HMMs
 - Notation Conventions & Framework Description
- 4 Implementing HMMs
 - Using the Model for Estimations: the Forward-Backward algorithm
 - Learning from Observations: Baum-Welch algorithm
 - Uncovering Hidden states: Viterbi algorithm

Notation Conventions

Variables in Octave

- 2 Machine Learning Applications for HMM
 - Machine Learning
 - Where do HMMs fit into Machine Learning?
- Theory of HMMs
 - The 3 things you want from an HMM
 - Mathematical Foundations for HMMs
 - Notation Conventions & Framework Description
- Implementing HMMs
 - Using the Model for Estimations: the Forward-Backward algorithm
 - Learning from Observations: Baum-Welch algorithm
 - Uncovering Hidden states: Viterbi algorithm

- 2 Machine Learning Applications for HMM
 - Machine Learning
 - Where do HMMs fit into Machine Learning?
- Theory of HMMs
 - The 3 things you want from an HMM
 - Mathematical Foundations for HMMs
 - Notation Conventions & Framework Description
- Implementing HMMs
 - Using the Model for Estimations: the Forward-Backward algorithm
 - Learning from Observations: Baum-Welch algorithm
 - Uncovering Hidden states: Viterbi algorithm

- 2 Machine Learning Applications for HMM
 - Machine Learning
 - Where do HMMs fit into Machine Learning?
- Theory of HMMs
 - The 3 things you want from an HMM
 - Mathematical Foundations for HMMs
 - Notation Conventions & Framework Description
- Implementing HMMs
 - Using the Model for Estimations: the Forward-Backward algorithm
 - Learning from Observations: Baum-Welch algorithm
 - Uncovering Hidden states: Viterbi algorithm

Viterbi s-a nascut in ...

Demo & Discussions

37 / 41

5 A Case for HMMs in Symbol Recognition

Types of HMMs

Discussions and Recap

• HMM are useful for temporal sequence problems

- HMM are useful for temporal sequence problems
- there are 3 fundamental problems for HMMs:

- HMM are useful for temporal sequence problems
- there are 3 fundamental problems for HMMs:
 - given an HMM, estimating the probability of an observed sequence

- HMM are useful for temporal sequence problems
- there are 3 fundamental problems for HMMs:
 - given an HMM, estimating the probability of an observed sequence
 - given observed data, estimating the parameters of an HMM

- HMM are useful for temporal sequence problems
- there are 3 fundamental problems for HMMs:
 - given an HMM, estimating the probability of an observed sequence
 - given observed data, estimating the parameters of an HMM
 - uncovering the hidden states

- HMM are useful for temporal sequence problems
- there are 3 fundamental problems for HMMs:
 - given an HMM, estimating the probability of an observed sequence Forward-Backward Algorithm
 - given observed data, estimating the parameters of an HMM
 - uncovering the hidden states

- HMM are useful for temporal sequence problems
- there are 3 fundamental problems for HMMs:
 - given an HMM, estimating the probability of an observed sequence Forward-Backward Algorithm
 - given observed data, estimating the parameters of an HMM Baum-Welch Algorithm
 - uncovering the hidden states

- HMM are useful for temporal sequence problems
- there are 3 fundamental problems for HMMs:
 - given an HMM, estimating the probability of an observed sequence Forward-Backward Algorithm
 - given observed data, estimating the parameters of an HMM Baum-Welch Algorithm
 - uncovering the hidden states Viterbi Algorithm

References I

Rabiner, L. (1989).

A tutorial on hidden markov models and selected applications in speech recognition.

Proceedings of the IEEE, 77(2):257-286.

Thank you!