AL 5 - Isométries d'un espace euclidien

Dans tout le chapitre E désigne un espace euclidien de dimension $n \in \mathbb{N}^*$, muni du produit scalaire $(\cdot|\cdot)$ de norme associée $\|\cdot\|$.

Isométries vectorielles 1

Définition 1

Un endomorphisme $u \in \mathcal{L}(E)$ est une isométrie vectorielle s'il conserve la norme, c'est-à-dire :

$$\forall x \in E, \|u(x)\| = \|x\|$$

Proposition 1

Un endomorphisme $u \in \mathcal{L}(E)$ est une isométrie vectorielle si, et seulement si il conserve le produit scalaire, c'est-à-dire :

$$\forall (x,y) \in E^2, (u(x)|u(y)) = (x|y)$$

Proposition 2

Un endomorphisme $u \in \mathcal{L}(E)$ est une isométrie vectorielle si, et seulement si l'image par u d'une b.o.n. est une b.o.n.

Proposition 3

Une isométrie vectorielle de E est un automorphisme de E, encore appelé automorphisme orthogonal.

Définition 2

Soit F est un sev de E.

- On appelle symétrie orthogonale par rapport à F la symétrie par rapport à F de direction F^{\perp} .
- Une symétrie orthogonale par rapport à un hyperplan $(\dim(F) = n 1)$ est appelée réflexion.

Proposition 4

Une symétrie orthogonale est un automorphisme orthogonal.

Définition 3

L'ensemble des automorphismes orthogonaux de E, noté O(E), est appelé groupe orthogonal de E.

Proposition 5

- $\mathrm{Id}_E \in O(E)$.
- $(f,g) \in (O(E))^2 \Rightarrow f \circ g \in O(E)$. $f \in O(E) \Rightarrow f^{-1} \in O(E)$.

Proposition 6

Soit $u \in O(E)$. Si u admet des valeurs propres, alors $\operatorname{Spec}\{u\} \subset \{-1,1\}$.

Proposition 7

Soient $u \in O(E)$, et F un sev de E. Si F est stable par u, alors F^{\perp} est stable par u.

Ainsi, si $\dim(F) = p$, alors la matrice de u dans une base adaptée à la décomposition $E = F \oplus F^{\perp}$ est

diagonale par blocs, de la forme :
$$M = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$
 où $A \in M_p(\mathbb{R})$ et $B \in M_{n-p}(\mathbb{R})$.

2 Matrices orthogonales

Définition 4

Une matrice $M \in M_n(\mathbb{R})$ est dite orthogonale si ${}^tMM = I_n$.

On note $O_n(\mathbb{R})$ (ou $O(\mathbb{R})$) l'ensemble des matrices orthogonales de $M_n(\mathbb{R})$, appelé groupe orthogonal d'ordre n.

Théorème 1

Si \mathcal{B} est une **b.o.n.** de E, alors $u \in \mathcal{L}(E)$ est orthogonal si, et seulement si $\mathrm{Mat}_{\mathcal{B}}(u)$ est orthogonale.

Proposition 8

 $M \in M_n(\mathbb{R})$ est orthogonale si, et seulement si ses vecteurs colonnes (resp. lignes) forment une b.o.n. de \mathbb{R}^n .

Proposition 9

Si \mathcal{B}_0 est une b.o.n. de E, une base \mathcal{B} de E est orthonormale si, et seulement si la matrice de passage de \mathcal{B}_0 à \mathcal{B} est orthogonale.

Proposition 10

- $M \in O(\mathbb{R}) \Rightarrow \det(M) = \pm 1$.
- $u \in O(E) \Rightarrow \det(u) = \pm 1$.

Définition 5

- L'ensemble $\{u \in O(E)/\det(u) = 1\}$ est appelé groupe spécial orthogonal de E. On le note $O^+(E)$ ou SO(E).
 - Les éléments de $O^+(E)$ sont appelés isométries vectorielles positives.
- L'ensemble $\{u \in O(E)/\det(u) = -1\}$ se note $O^-(E)$. Les éléments de $O^-(E)$ sont appelés isométries vectorielles négatives.
- L'ensemble $\{M \in O(\mathbb{R})/\det(M) = 1\}$ est également appelé groupe spécial orthogonal de E. On le note $O^+(n)$ ou SO(n).
- L'ensemble $\{M \in O(\mathbb{R})/\det(M) = -1\}$ se note $O^-(n)$.

3 Endomorphismes orthogonaux en dimension 2 et 3

3.1 Orientation

Définition 6

On dit que deux bases (ordonnées) $\mathcal{B} = (e_1, ..., e_n)$ et $\mathcal{B}' = (e'_1, ..., e'_n)$ d'un \mathbb{R} -espace vectoriel E définissent la même orientation si la matrice de passage de \mathcal{B} à \mathcal{B}' a un déterminant strictement positif.

Remarque 1

• Deux b.o.n. de E définissent la même orientation si, et seulement si leur matrice de passage appartient à SO(n).

Définition 7

- Orienter E, c'est choisir une base (ordonnée) \mathcal{B} .
- Soit \mathcal{B}' une base de E, orienté par \mathcal{B} . On dit que \mathcal{B}' est directe si elle définit la même orientation que \mathcal{B} , et qu'elle est indirecte sinon.

3.2 Endomorphismes orthogonaux en dimension 2

Dans cette section, n=2, et \mathcal{B} désigne une b.o.n. directe.

3.2.1Caractérisation

Théorème 2

$$M \in O(2) \Leftrightarrow \exists \theta \in [0, 2\pi[/ M = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \text{ ou } M = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

3.2.2 Ensemble $O^+(E)$

$$O^{+}(2) = \left\{ R_{\theta} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}; \theta \in [0, 2\pi[\right\}$$

Proposition 11

$$f \in SO(E) \Leftrightarrow \exists \theta \in [0, 2\pi[\ / \text{Mat}_{\mathcal{B}}(f) = R_{\theta}.$$

f est la rotation d'angle θ .

Proposition 12

Soit $f \in SO(E)$. Si $f \neq \pm Id_E$, alors f n'est pas diagonalisable.

Proposition 13

- $R_{\theta} \times R_{\theta'} = R_{\theta + \theta'}$ $R_{\theta}^{-1} = R_{-\theta} = {}^t R_{\theta}$

3.2.3 Ensemble $O^{-}(E)$

$$O^{-}(2) = \left\{ S_{\theta} = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}; \theta \in [0, 2\pi[\right\}$$

Proposition 14

$$f \in O^{-}(E) \Leftrightarrow \exists \theta \in [0, 2\pi[\ /\mathrm{Mat}_{\mathcal{B}}(f) = S_{\theta}.$$

f est une réflexion par rapport à Vect(u) où u a pour coordonnées $\left(\cos\left(\frac{\theta}{2}\right),\sin\left(\frac{\theta}{2}\right)\right)$ dans \mathcal{B} .

Proposition 15

Si $f \in O^-(E)$, alors f est diagonalisable, et $Spec(f) = \{-1, 1\}$.

Proposition 16

- $S_{\theta}^2 = I_2$. $S_{\theta}^{-1} = S_{\theta} = {}^t S_{\theta}$. $S_{\theta} \times S_{\theta'} = R_{\theta \theta'}$ (la composée de deux réflexions est une rotation).

3.2.4 Synthèse

Proposition 17 Classification par les invariants

Soit $f \in O(E)$. On note $F = Inv(f) = Ker(f - Id_E)$. Alors:

- $\hookrightarrow \dim(F) = 0$ si, et seulement si f est une rotation (éventuellement égale à $-\mathrm{Id}_E$).
- $\hookrightarrow \dim(F) = 1$ si, et seulement si f est une réflexion.
- $\hookrightarrow \dim(F) = 2$ si, et seulement si f est l'identité.

Proposition 18 Classification par les espaces propres

Soit $f \in O(E)$. Alors:

- $\hookrightarrow f$ est une rotation non triviale (c'est-à-dire différente de $\pm \mathrm{Id}_E$) si, et seulement si 1 et -1 ne sont pas valeurs propres de f.
- $\hookrightarrow f$ est une réflexion si, et seulement si 1 et -1 sont valeurs propres de f, (alors $\dim(E_1(f)) = \dim(E_{-1}(f)) = 1$).
- $\hookrightarrow f$ est Id_E (resp. $-\mathrm{Id}_E$) si, et seulement si 1 (resp. -1) est l'unique valeur propre de f avec $\dim(E_1(f)) = 2$ (resp. $\dim(E_{-1}(f)) = 2$).

3.3 Endomorphismes orthogonaux en dimension 3

Dans cette section, n = 3.

Proposition 19

Soient $f \in O(E)$, et $F = Inv(f) = Ker(f - Id_E)$.

- F^{\perp} est stable par f.
- $g = f_{|F^{\perp}} \in O(F^{\perp})$ et $\operatorname{Inv}(g) = \{0_E\}$.

3.3.1 Si $\dim(F)=3$

F = E, et $f = \mathrm{Id}_E$.

3.3.2 Si $\dim(F)=2$

 F^{\perp} est une droite; $g=-\mathrm{Id}_{F^{\perp}}$ et f est la réflexion par rapport au plan F, notée S_F .

Proposition 20

Si $\mathcal{B} = (\vec{i}, \vec{j}, \vec{k})$ est une base de E telle que : $F^{\perp} = \text{Vect}\{\vec{k}\}$, et (\vec{i}, \vec{j}) est une base de F, alors :

$$\operatorname{Mat}_{\mathcal{B}}(f) = \operatorname{diag}(1, 1, -1)$$

Remarque 2

- $\det(f) = -1$ et $f \in O^-(E)$.
- Spec $(f) = \{-1, 1\}$; $F = E_1(f)$; dim $(E_1(f)) = 2$ et dim $(E_{-1}(f)) = 1$.

3.3.3 Si $\dim(F)=1$

Proposition 21

Soient \vec{k} tel que $F = \text{Vect}\{\vec{k}\}$, et $(\vec{\imath}, \vec{\jmath})$ est une base de F^{\perp} tels que $\mathcal{B} = (\vec{\imath}, \vec{\jmath}, \vec{k})$ soit une b.o.n. de E, alors $g \in O(F^{\perp})$, avec $\text{Inv}(g) = \{0_E\}$.

g est une rotation d'angle θ dans F^{\perp} .

f est une rotation d'angle θ d'axe F, notée $R(\vec{k}, \theta)$

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Remarque 3

- $\det(f) = 1$ et $f \in O^+(E)$.
- $1 \in \text{Spec}(f)$; $F = E_1(f)$.
- f est diagonalisable si, et seulement si $\theta \equiv \pi[2\pi]$.

Définition 8

 $R(\vec{k}, \pi)$ est appelée demi-tour ou retournement d'axe $\text{Vect}\{\vec{k}\}$.

Proposition 22

Si $f = R(\vec{k}, \theta)$, et (\vec{i}, \vec{j}) est une b.o.n. de F^{\perp} telle que $\mathcal{B} = (\vec{i}, \vec{j}, \vec{k})$ b.o.n. directe de E, alors:

- $tr(f) = 1 + 2\cos\theta$.
- $\cos \theta = (f(\vec{\imath})|\vec{\imath}) \text{ et } \sin \theta = (f(\vec{\imath})|\vec{\jmath})$.

3.3.4 Si $\dim(F)=0$

Proposition 23

Il existe un vecteur \vec{k} non nul, tel que f soit la composée commutative de la rotation vectorielle $R(\vec{k}, \theta)$, et de la réflexion par rapport au plan k^{\perp} .

Dans la b.o.n. directe $\mathcal{B} = (\vec{\imath}, \vec{\jmath}, \vec{k})$ (où $(\vec{\imath}, \vec{\jmath})$ est une b.o.n. de F^{\perp}), on a :

$$\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & -1 \end{pmatrix}$$

Remarque 4

- $\det(f) = -1$ et $f \in O^{-}(E)$.
- $-1 \in \operatorname{Spec}(f)$.
- f est diagonalisable si, et seulement si $\theta \equiv \pi[2\pi]$, et alors $f = -\mathrm{Id}_E$.

Proposition 24

- Si P et P' sont deux plans, alors $S_P \circ S_{P'}$ est une rotation vectorielle.
- Toute rotation vectorielle est la composée de deux réflexions.
- Si $f \in O(E)$, telle que $Inv(f) = \{0_E\}$, alors il existe trois plans P, P' et P'' tels que $f = S_{P''} \circ S_{P'} \circ S_P.$

Méthode pour réduire une matrice orthogonale dans \mathbb{R}^3

Soit $M \in O_3(\mathbb{R})$ (${}^tMM = I_3$), la matrice d'un endomorphisme orthogonal f.

- \hookrightarrow Si det(M)=1, alors f est une rotation $R(\vec{k},\theta)$;
 - * $\vec{k} \in \operatorname{Ker}(f \operatorname{Id}_E)$;
 - $* \cos \theta = \frac{\operatorname{tr}(M) 1}{2}$
 - * Soient \vec{i} un vecteur orthogonal à \vec{k} , et $\vec{j} = \vec{k} \wedge \vec{i}$. Le signe de $\sin \theta$ est celui de $(f(\vec{i})|\vec{j})$.
- \hookrightarrow Si $\det(M) = -1$, alors f est la composée d'une rotation $R(\vec{k}, \theta)$ et de la réflexion par rapport au plan \vec{k}^{\perp} ;
 - * $\vec{k} \in \operatorname{Ker}(f + \operatorname{Id}_E)$;

 - * $\cos \theta = \frac{\operatorname{tr}(M) + 1}{2}$; * Soient \vec{i} un vecteur orthogonal à \vec{k} , et $\vec{j} = \vec{k} \wedge \vec{i}$. Le signe de $\sin \theta$ est celui de $(f(\vec{i})|\vec{j})$.

Remarque 5

• Si tr(M) = 1, f est la réflexion par rapport à \vec{k}^{\perp} .