PAT-NO:

A STATE OF THE STATE OF

JP405013286A

DOCUMENT-IDENTIFIER:

JP 05013286 A

TITLE:

SOLID ELECTROLYTIC CAPACITOR

PUBN-DATE:

January 22, 1993 /

INVENTOR-INFORMATION:

NAME

KOMATSU, AKIHIKO ITO, MASAYOSHI MIYASHITA, TSUTOMU

ASSIGNEE-INFORMATION:

NAME RUBYCON CORP COUNTRY N/A

APPL-NO:

JP03189223

APPL-DATE:

July 2, 1991

INT-CL (IPC): H01G009/05, H01G009/02 , H01G009/02

US-CL-CURRENT: 361/531

ABSTRACT:

PURPOSE: To obtain a solid electrolytic capacitor having simple manufacturing steps and excellent characteristics by providing a special

interval or air gap between an anode foil and a cathode foil, and filling solid

electrolyte made of conductive polymer in a capacitor element.

CONSTITUTION: In a solid electrolytic capacitor in which solid electrolyte

made of conductive polymer is formed in a capacitor element having an anode $\hfill \hfill \$

foil formed with an oxide film by anodizing and a cathode foil 12 to be wound,

an interval or an air gap of 10μm or more is provided between the anode foil

and the cathode foil 12, and solid electrolyte made of conductive polymer is

filled in the element. Thus, since a large quantity of conductive polymer $% \left(1\right) =\left(1\right) +\left(1\right) +$

material can be fed into the element at the time of forming the electrolyte,

the capacitor having a high volumetric efficiency and excellent characteristics, can be obtained.

(19)日本国特新 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平5-13286

(43)公開日 平成5年(1993)1月22日

世纪主二倍化

(51)Int.Cl. ⁵		識別記	记号	厅内整理番号	FI	技術表示箇所			
H 0 1 G	9/05		H	7924-5E					
	9/02	3 0	1	7924-5E					
		3 3	1	7924-5E					
	9/05		G	7924—5E					
						審査請求 未請求 請求項の数3(全 5 頁)			
(21)出願番号		特願平3-189223			(71)出願人	(71)出願人 000190091			
						ルピコン株式会社			
(22)出願日		平成3年(19	91)7)	月2日		長野県伊那市大字西箕輪1938番地1			
					(72)発明者	小松 昭彦			
					1	長野県伊那市大字伊那165番地 ルピコン			
						株式会社伊那工場内			
					(72)発明者	伊藤 雅良			
						長野県伊那市大字伊那165番地 ルピコン			
						株式会社伊那工場内			
					(72)発明者	宮下 努			
						長野県伊那市大字伊那165番地 ルピコン			
						株式会社伊那工場内			
					(74)代理人	. 弁理士 綿貫 隆夫 (外1名)			

(54)【発明の名称】 固体電解コンデンサ

(57)【要約】

【目的】 製造工程が簡単で特性の良好な固体電解コン デンサを提供する。

【構成】 陽極酸化により酸化皮膜を形成した陽極箔 と、陰極箔とを巻回したコンデンサ素子に導電性高分子 よりなる固体電解質を形成した固体電解コンデンサにお いて、陽極箔と陰極箔との間に10µm以上の間隔もし くは空隙部を設け、前記導電性高分子からなる固体電解 質を充填したことを特徴としている。

1

【特許請求の範囲】

【請求項1】 陽極酸化により酸化皮膜を形成した陽極 箔と、陰極箔とを巻回したコンデンサ素子に導電性高分 子よりなる固体電解質を形成した固体電解コンデンサに おいて、陽極箔と陰極箔との間に10µm以上の間隔も しくは空隙部を設け、前記導電性高分子からなる固体電 解質を充填したことを特徴とする固体電解コンデンサ。 【請求項2】 陰極箔と陽極箔との間に絶縁性支持部材 を介在させて前記間隔を保持したことを特徴とする請求

項1記載の固体電解コンデンサ。 【請求項3】 陽極酸化により酸化皮膜を形成した陽極 箔と、陰極箔とをセパレータを介して巻回したコンデン サ素子に導電性高分子よりなる固体電解質を形成した固 体電解コンデンサにおいて、陽極箔および陰極箔とセパ レータとの間に10 μm以上の間隔もしくは空隙部を設 け、前記導電性高分子よりなる固体電解質を充填したこ

【発明の詳細な説明】

とを特徴とする固体電解コンデンサ。

[0001]

の安定した固体電解コンデンサに関する。

[0002]

【従来の技術】近年、電子機器のデジタル化に伴って。 高周波特性の良好なコンデンサへの要求が高まってい る。しかし、一般の電解液を用いた電解コンデンサの場 合、イオン伝導によるため高周波での容量減少が極めて 大きく、また比抵抗も極端に低くすることはできないの で、高周波でのインピーダンスが大きいという問題点が ある。一方、二酸化マンガン等を用いた従来の固体電解 コンデンサでは、前述のような問題点はないが、二酸化 30 マンガンの比抵抗が十分には低くないので、高周波での インピーダンスにまだ問題がある。そこで、最近では有 機半導体を用いた固体電解コンデンサが広く研究されて きている。

[0003]

【発明が解決しようとする課題】有機半導体を固体電解 質として用いた固体電解コンデンサのうち、ピロール系 の導電性高分子を用いたものとしては、電極箔を板状と した技術が種々開示されているが、体積効率が悪く形状 が大形化してしまうという問題があり、また、陰極とし 40 て銀ペーストを使用するので、コストが高くなるという 問題点もあった。

【0004】また、陽極箔と陰極箔とを巻回したコンデ ンサ素子を用いた技術もいくつか開示されている。例え ば、特開昭64-24410号公報では捲回型アルミニ ウム電解コンデンサ素子を導電性高分子化合物のモノマ 一溶液に浸漬した後、有機酸またはその塩を共存させた 酸化剤溶液に浸漬して重合させる方法が開示されてい る。しかし、この方法では温度が高いと重合が早く進む ため素子の表面近くが優先的に重合して固化してしま

い、素子内部まで均一に重合させることが難しい。ま た、低温にすれば重合に長時間を要するという問題点が ある。

2

【0005】特開平2-186616号公報では、陽極 箔と陰極箔との間に多孔質セパレータを介在させて巻回 した素子を用い、含浸用ピロール溶液を含浸し、酸化剤 溶液に浸漬してピロールの化学重合を行った後、さらに 電解重合を行う方法が開示されている。しかし、この方 法は工程が複雑であり、また、電解重合の際にモノマー 10 が素子内部まで十分に供給され難いという問題点を有す る。

【0006】また、特開平2-62028号公報には、 やはり捲回型コンデンサ素子を電解重合溶液中に浸漬し て陰極箔を正極とし陽極箔を負極として電解重合する方 法が開示されている。しかし、電解重合の装置及び条件 が複雑であるばかりか、電解重合時に陽極箔を損傷する 恐れがあり。また、導電性高分子は正極側から形成され るので、負極の陽極箔のエッチング構造の中まで均一に 形成することは難しい。本発明は上述の点に鑑みてなさ 【産業上の利用分野】本発明は、製造工程が簡単で特性 20 れたものであり、その目的とするところは製造工程が簡 単で特性の良好な固体電解コンデンサを提供することで ある。

[0007]

【課題を解決するための手段】上記目的による本発明で は、陽極酸化により酸化皮膜を形成した陽極箔と、陰極 箔とを巻回したコンデンサ素子に導電性高分子よりなる 固体電解質を形成した固体電解コンデンサにおいて、陽 極箔と陰極箔との間に10μm以上の間隔もしくは空隙 部を設け、前記導電性高分子からなる固体電解質を充填 したことを特徴としている。陰極箔と陽極箔との間に絶 緑性支持部材を介在させて前記間隔を保持すると好適で ある。また、陽極酸化により酸化皮膜を形成した陽極箔 と、陰極箔とをセパレータを介して巻回したコンデンサ 素子に導電性高分子よりなる固体電解質を形成した固体 電解コンデンサにおいて、陽極箔および陰極箔とセパレ ータとの間に10μm以上の間隔もしくは空隙部を設 け、前記導電性高分子よりなる固体電解質を充填したこ とを特徴としている。

[0008]

【作用】本発明によれば、固体電解質形成時にコンデン サ素子内部に多量の導電性高分子材料を送り込むことが できるので、特性の安定した固体電解コンデンサを得る ことができる。間隔または空隙部は10μmより小さい と導電性高分子の充填がうまくいかないので10µm以 上が望ましく、とりわけ50μm~200μm程度が特 に望ましい。

[0009]

【実施例】以下、添付図面に基づいて本発明の好適な実 施例を詳細に説明する。

50 実施例1

3

引出しリード線10を接続した陰極箔12の両面中央部 に厚さ50μmのポリエステル製粘着テープ14(絶縁 性支持部材)を貼りつけた後(第1図参照)、陽極箔 (図示せず) とともに巻回して25V47µF (5ø× 111) 用の巻回型コンデンサ素子を作製した。粘着テ ープ14によって、陰極箔と陽極箔との間に50μmの 間隔が保持される。

【0010】実施例2

引出しリード線10を接続した陰極箔12の両面に、幅 方向にかつ長さ方向に所定間隔をおいて厚さ200μm 10 程の紫外線硬化樹脂16 (絶縁性支持部材)を塗布した 後、紫外線を照射して樹脂を硬化させた(第2図参 照)。次に、この陰極箔12を陽極箔(図示せず)とと もに巻回して25 V 47 μF (5 φ×111) 用の巻回 型コンデンサ素子を作製した。紫外線硬化樹脂16によ って陰極箔12と陽極箔との間に200μmの間隔が保 持される。

【0011】実施例3

陽極箔と陰極箔を、エンボス加工をして厚さを10µm 5V47µF(5ø×111)の巻回型コンデンサ素子 を作製した。エンボス加工によって陰極箔、陽極箔とセ パレータとの間に間隙部が確保される。

【0012】実施例4

陽極箔用エッチド箔18を長さ方向に垂直に蛇腹状に折 りたたんでから引きのばしエンボス加工を行って、厚さ を約100µm増加させた後(第3図参照)化成を行っ て酸化皮膜を形成した。次に陰極箔(図示せず)も同様 にエンボス加工を行ってから、陽極箔及び陰極箔をセパ レータを介して巻回し25V47µF(50×111) の巻回型コンデンサ素子を作製した(図示せず)。折り たたみ、引きのばしとエンボス加工によって間隙部が確 保される。

【0013】以上の様にして、作製したコンデンサ素子 をリン酸アンモニウム水溶液等の化成液中に浸漬し、陽 極箔裁断面や陽極リード引出し部などの再化成修復処理 をした。続いて、ドデシルベンゼンスルホン酸鉄 (III) 25wt%と該ドデシルベンゼンスルホン酸鉄 (III)のモル数に対して3倍量のモル数のピロールを添加 した-50℃のメタノール溶液中に前記素子を浸漬し、 含浸させた後、25℃雰囲気中に20分間放置して導電 性高分子膜の重合を行った。その後、メタノールで洗浄 し90℃10分の乾燥を行ってから金属ケースに封入し コンデンサとした。次に、85℃中で10V印加し3時 間のエージングを行った後、定格電圧を10Vとして諸 特性を測定した。

4

【0014】比較例

陽極箔と陰極箔とをセパレータを介して巻回し、通常の $25V47\mu F (5\phi \times 111)$ 電解コンデンサ素子を 作製した。この素子をリン酸アンモニウム水溶液等の化 成液中に浸漬し、陽極箔裁断面や陽極リード引出し部な アップさせた50μm厚のセパレータを介して巻回し2 20 どの再化成修復処理をした。続いて、ピロール4: パ ラトルエンスルホン酸テトラエチルアンモニウム6: メタノール2の溶液を含浸させた後、過硫酸アンモニウ **ム20wt%、 パラトルエンスルホン酸テトラエチルア** ンモニウム10wt%を含む水溶液に1時間浸漬して重 合した。 重合終了後メタノールで洗浄し、90℃10分 の乾燥を行ってから金属ケースに封入しコンデンサとし た。次に、85℃中で10V印加し3時間のエージング を行った後、定格電圧を10Vとして諸特性を測定し た。実施例及び比較例として試作したコンデンサ特性を 30 表1に示した。

[0015]

【表1】

6

	容量 (µF/1208z)	容量出現率	100kHzでの容量 変化率 (2)	Tanδ (120Hz)	漏れ電流 (μA/10V)	ESR (mΩ/100KHz)
実施例1	46.3	97.9	-15.1	0.090	0.3	42
実施例2	46.8	98.9	-13.7	0.093	0.2	39
実施例3	46.1	97.5	-17.8	0.091	0.2	46
実施例4	46.8	98.9	-13.5	0.091	0.3	38
比較到	16.9	35.7	-70.3	0.383	0.2	105

【0016】表1から明らかなように本発明による実施 例は陽極箔のエッチングピット内部にまで効果的に導電 性高分子が充填できるため、容量出現率が極めて高い。 そして、陽極箔と陰極箔の間に十分な量の導電性高分子 を存在させることができるので高周波での容量変化率や ESRを低く抑えることができる。

【0017】以上、本発明につき好適な実施例を挙げて 種々説明したが、本発明はこの実施例に限定されるもの 30 例の斜視図である。 ではなく、発明の精神を逸脱しない範囲において多くの 改変を施し得るのはもちろんのことである。例えば、陽 極箔は実施例では交流エッチングによる海綿状エッチン グ構造のものを用いたが直流エッチングによるトンネル 型構造のものも利用できる。陰極箔としては、固体電解 コンデンサでは陰極容量が必要ないのでエッチングして あってもしてなくても良い。また、重合方法について も、実施例にあげた方法に限定されるものではなく、他 の方法を利用することもできる。

* [0018]

【発明の効果】本発明によれば、体積効率が高く特性の 良好な固体電解コンデンサを提供することができる。

【図面の簡単な説明】

【図1】絶縁性支持部材を取り付けた陰極箔の斜視図で

【図2】絶縁性支持部材を取り付けた陰極箔の他の実施

【図3】折りたたみ、引きのばした状態の陽極箔の説明 図である。

【符号の説明】

- 10 引出しリード線
- 12 陰極箔
- 14 粘着テープ
- 16 紫外線硬化樹脂
- 18 陽極箔

【図3】

【図1】

【図2】

