Méthode de la théorie des EDL

14 février 2019

Exponentielle de matrices 1

1.1

Soient X et Y des matrices carrées réelles telles que : $\forall t \in \mathbf{R}$ $e^{tX}e^{tY} = e^{tY}e^{tX}$. Montrer que XY = YX.

Groupes à un paramètre, essentiel

Soit ϕ un morphisme continu de $(\mathbf{R}, +)$ dans $(GL_n(\mathbf{C}), \times)$. Montrer qu'il existe une matrice A telle que, pour tout $t \in \mathbf{R}$, $\phi(t) = e^{tA}$.

2 DSE

Franchissement de singularités

On envisage l'équation différentielle : $(E): y'' + (1 - \frac{2}{t^2})y = 0$.

a) Montrer qu'elle admet une solution développable en série entière sur R que l'on calculera (évaluer $\frac{1}{(2k)!} - \frac{1}{(2k+1)!}$).

b) Montrer qu'il existe une fonction impaire w, développable en série entière sur R, telle que $t \to \frac{1}{t} + w(t)$ soit solution de (E) sur $]0, +\infty[$.

c) Donner les solutions bornées sur R.

2.2

Soit p une fonction développable en série entière au voisinage de 0. Montrer que les solutions de y" = py sont développables en série entière au voisinage de 0.

3 EDLS

3.1

Trouver toutes les applications dérivables $f:]-1,1[\to \mathbf{R}$ telles que pour tout $x \in]-1,1[,f'(x)f(-x)=\frac{1}{1-x^2}.$

3.2

Soit E le sev de $C^2([1], \mathbb{R})$ telles que f(0) = f'(0) = 0. Pour $f \in E$ on pose $N(f) = ||f + 2f' + f''||_{\infty}$. Montrer que N est une norme, la comparer à $||f||_{\infty}$, (E, N) est-il complet?

3.3

Soit (y_1, y_2) un système fondamental de solutions d'une EDL à données continues y'' + a(t)y' + b(t)y =sur l'intervalle non trivial I. Soit n un nombre entier ≥ 1 . Montrer que la famille $y_1^p y_2^q$, p+q=n, est libre.

3.4 ·

Soient a > 0 et $f \in \mathcal{C}^1([1, +\infty[, \mathbf{R}^{+*})$ telle que $\lim_{+\infty} f' = a$. On considère $u \in \mathcal{C}^2([1, +\infty[, \mathbf{R})$ bornée et solution de l'équation différentielle (E): $y'' - \frac{f'}{f}y' - \frac{y}{f^2} = 0$.

- a) Montrer que u'(x) = O(1/x) quand $x \to +\infty$ (utiliser un facteur intégrant).
- b) Montrer que $u(x) \to 0$ quand $x \to +\infty$.

4 Systèmes

4.1

On envisage le système (t-1)x' = x - y, (t+1)y' = x - ty. En donner une solution évidente, puis déterminer un système fondamental de solutions en cherchant une seconde solution sous la forme $\lambda(x,y) + \mu(x',y')$, λ et μ étant des fonctions de classe C^1 .

4.2

- a) Soit $A \in \mathcal{C}^0(\mathbf{R}^+, \mathcal{M}_n(\mathbf{R}))$, intégrable sur \mathbf{R}^+ . Soit u à valeurs dans $\mathcal{M}_{n,1}(\mathbf{R})$, solution de l'équation différentielle u' = A(t)u. Montrer que u est bornée, puis que u admet une limite en $+\infty$.
- b) Soit ϕ l'application qui à $u_0 \in \mathcal{M}_{n,1}(\mathbf{R})$ associe la limite en $+\infty$ de la solution u précédente avec la condition initiale $u(0) = u_0$. Montrer que ϕ est un automorphisme de $\mathcal{M}_{n,1}(\mathbf{R})$ et calculer son déterminant.

5 Calcul variationnel

Soient E l'ensemble des applications f de classe C^2 de [0,1] dans \mathbf{R} telles que f(0) = f(1) = 0, F l'espace affine des fonctions f de classe C^2 de [0,1] dans \mathbf{R} telles que f(0) = 0 et f(1) = 1. On pose, pour $f \in F$:

$$I(f) = \int_0^1 e^t (f^2(t) + f'^2(t)) dt.$$

- a) Soit $g \in E$. Déterminer la dérivée en 0 de $\lambda \to I(f + \lambda g)$.
- b) Montrer que I possède un min. sur F et déterminer les points en lequel il est atteint.

6 Solutions oscillantes et équations d'Euler

Soit $q:[0,+\infty[\to \mathbf{R}$ continue.

- a) On suppose que ϕ est une solution bornée non nulle de y''+q(t)y=0 (E) qui ne s'annule pas au voisinage de $+\infty$. Montrer que $t\to tq(t)$ est intégrable sur \mathbf{R}^+ .
- b) On suppose que la limite inférieure de $t \to t^2 q(t)$ en $+\infty$ est strictement supérieure à $\frac{1}{4}$. Soit ϕ une solution de y'' + q(t)y = 0 (E) montrer que ϕ s'annule une infinité de fois.
- c) On suppose que $t \to t^2 q(t)$ est inférieure à $\frac{1}{4}$ pour t assez grand; soit ϕ une solution de y'' + q(t)y = 0 (E) montrer que ϕ s'annule un nombre fini de fois.