Real Analysis

Professor Rishi Vyas

Week 1

Due Tuesday, July 30, 2024

Shubhro Gupta

Collaborators: Sahithim Akella, Khushi Tyagi

QUESTION A 4 Points

Definition. Let $x \in \mathbb{R}$. If $n \in \mathbb{N}$, we define $x^n := \overbrace{x \dots x}$. By convention, for n = 0 we interpret this as defining $x^0 := 1$.

To Prove. Let $x, y, z \in \mathbb{R}$.

1. If 0' is an element of \mathbb{R} such that 0' + x = x for all $x \in \mathbb{R}$, then 0' = 0.

$$0' + x = x$$

$$0' + x + (-x) = x + (-x)$$

$$0' + 0 = 0 (Additive Inverse (4))$$

$$0' = 0$$

2. If 1' is an element of \mathbb{R} such that $1' \cdot x = x$ for all $x \in \mathbb{R}$, then 1' = 1.

$$1' \cdot x = x$$

$$1' \cdot x \cdot x^{-1} = x \cdot x^{-1}$$

$$1' \cdot 1 = 1 \qquad \text{(Multiplicative Inverse (8))}$$

$$1' = 1$$

3. $x \neq 0$ and xy = xz. Prove that y = z. Deduce that if xy = 1 then $y = x^{-1}$.

$$xy = xz$$

$$((x)^{-1} \cdot x)y = ((x)^{-1} \cdot x)z$$

$$y = z$$

$$\square$$

$$xy = 1$$
$$((x)^{-1} \cdot x)y = (x)^{-1} \cdot 1$$

$$4. -0 = 0$$

$$0 = 0$$

 $0 \times -1 = 0 \times -1$
 $0 = -0$

5. If
$$x \neq 0$$
, then $x^{-1} \neq 0$ and $(x^{-1})^{-1} = x$.

Suppose
$$x^{-1} = 0$$

$$x \cdot x^{-1} = x \cdot 0$$

$$1 = 0 \qquad \text{(Multiplicative inverse (8))}$$

$$1 \neq 0 \text{ so } x^{-1} \neq 0.$$

$$6. (-x) \times (-y) = xy.$$

$$(-x) \times (-y) = (-x)(-y) + 0y$$

$$= (-x)(-y) + (x + (-x))y$$

$$= (-x)(-y) + xy + (-x)y \qquad \text{(Distributive Law)}$$

$$= ((-x)(-y) + (-x)y) + xy$$

$$= (-x)(-y + y) + xy$$

$$= (-x)(0) + xy$$

$$= 0 + xy$$

$$(-x) \times (-y) = xy$$

- 7. If $x \neq 0$ and $n \in \mathbb{N}$, then $(-x)^{-1} = -(x^{-1})$ and $(x^{-1})^n = (x^n)^{-1}$.
- 8. If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$.

Suppose
$$xy = 0$$

$$x \cdot x^{-1} \cdot y = 0 \cdot x^{-1}$$

$$1 \cdot y = 0 \cdot x^{-1}$$

$$y = 0$$
*

QUESTION B 3 Points

Let $x, y, z \in \mathbb{R}$.

1. If x < y and z > 0, then xz < yz.

Proof.

If x < y, then y - x > 0. Since z > 0, we can multiply both sides of the inequality by z to get z(y - x) > 0. This implies zy - zx > 0, which is equivalent to xz < yz. Thus, if x < y and z > 0, then xz < yz.

2. If x < 0 then $x^{-1} < 0$.

Proof.

 $\exists x \in \mathbb{R}$ such that x < 0. Since x < 0, we have -x > 0. Since -x > 0, we can take the reciprocal of both sides to get $(-x)^{-1} > 0$. This implies $x^{-1} > 0$. Thus, if x < 0, then $x^{-1} > 0$. $x < 0 \implies x - x < 0 - x \implies -x > 0$.

3. If $x, y \ge 0$ and $n \in \mathbb{Z}_{>0}$, prove that $x \le y$ if and only if $x^n \le y^n$. Deduce that x < y if and only if $x^n < y^n$.

To Prove. $x, y \ge 0$ and $n \in \mathbb{Z}_{>0}$, then $x \le y \iff x^n \le y^n$. Case I, $x \le y$

QUESTION C 4 Points

- 1. Show that \mathbb{Q} is neither bounded above nor bounded below.
- 2. Determine the supremum and infimum of the following sets. Substantiate your claims with proofs: **Definition.** Let $S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

The element x is the *supremum* of S if $s \le x, \forall s \in S$ and for any upper bound y of S, $x \le y$. The element x is the *infimum* of S if $s \ge x, \forall s \in S$ and for any lower bound y of S, $x \ge y$.

(a)
$$(-1, 0] = \{x \in \mathbb{R}, -1 < x \le 0\}$$

To Prove. Supremum is 0, Infimum is -1.

Proof. 0 is an upper bound by the definition of the set. Let y be an upper bound for (-1, 0], since $0 \in (-1, 0] \implies 0 \le y$. So, 0 is the supremum.

-1 is a lower bound by the definition of the set. To show that -1 is the greatest lower bound, lets assume M is the infimum and M > -1 (M cannot be less than -1 since -1 is already a lower bound, and any number lesser than -1 cannot be the infimum).

Let x be the midpoint between M and -1, $x = \frac{M+(-1)}{2} = \frac{M-1}{2} = M - (\frac{1+M}{2})$. This implies M > x, and we have to show that x > -1.

But let's assume $x \leq -1$, then

$$M - \left(\frac{1+M}{2}\right) \le -1$$
$$M - 1 \le -2$$
$$M < -1$$

But we assumed M > -1, thus by contradiction, x > -1. This implies M > x > -1, which contradicts the assumption that M is the infimum. Thus, -1 is the infimum.

(b)
$$(1, 2) = \{x \in \mathbb{R}, 1 < x < 2\}$$

To Prove. Supremum is 2, Infimum is 1.

Proof. 2 is an upper bound by the definition of the set. To show that 2 is the least upper bound, let's assume M is the supremum and M < 2 (M cannot be greater than 2 since 2 is already an upper bound, and any number greater than 2 cannot be the supremum).

Let x be the midpoint between M and 2, $x = \frac{M+2}{2}$. This implies M < x, and we have to show that x < 2.

But let's assume $x \geq 2$, then

$$\frac{M+2}{2} \ge 2$$

$$M+2 \ge 4$$

$$M > 2$$

But we assumed M < 2, thus by contradiction, x < 2. This implies 2 > x > M, which contradicts the assumption that M is the supremum. Thus, 2 is the supremum.

1 is a lower bound by the definition of the set. To show that 1 is the greatest lower bound, lets assume M is the infimum and M < 1 (M cannot be greater than 1 since 1 is already a lower bound, and any number greater than 1 cannot be the infimum).

Let x be the midpoint between M and 1, $x = \frac{M+1}{2}$. This implies M < x, and we have to

show that x < 1. But let's assume $x \ge 1$, then

$$\frac{M+1}{2} \ge 1$$

$$M+1 \ge 2$$

$$M \ge 1$$

But we assumed M < 1, thus by contradiction, x < 1. This implies 1 > x > M, which contradicts the assumption that M is the infimum. Thus, 1 is the infimum. \square

QUESTION **D** 4 Points

1. Let $a, b \in \mathbb{R}$

(a) Consider the set $\{a,b\}$. Prove that the supremum of the set $\{a,b\}$, is equal to a if if $a \ge b$ and is equal to b of $b \ge a$.

Solution.

Case I, Let $a, b \in \mathbb{R}$ and $a \ge b$.

 $\forall x \in \{a, b\}, x \leq a \text{ therefore } a \text{ is an upper bound.}$

Let y be an upper bound for $\{a,b\}$, since $a \in \{a,b\} \implies a \le y$. So, a is the supremum.

Case II, Let $a, b \in \mathbb{R}$ and $b \geq a$.

 $\forall x \in \{a, b\}, x \leq b \text{ therefore } b \text{ is an upper bound.}$

Let y be an upper bound for $\{a,b\}$, since $b \in \{a,b\} \implies b \le y$. So, b is the supremum.

(b) To Prove.

$$\sup(\{a, b\}) = \frac{a + b + |a - b|}{2}.$$

Solution.

Case I, $a \ge b$

From QD.1(a), we know that the supremum of the set $\{a, b\}$ is a

$$\sup(\{a,b\}) = a$$

$$\sup(\{a,b\}) = a+b-b$$

$$\sup(\{a,b\}) = \frac{2a+b-b}{2}$$
Since $a \ge b, a-b = |a-b|$

$$\sup(\{a,b\}) = \frac{a+b+|a-b|}{2}$$

Case II, $b \ge a$

From QD.1(a), we know that the supremum of the set $\{a, b\}$ is b

$$\sup(\{a,b\}) = b$$

$$\sup(\{a,b\}) = a+b-a$$

$$\sup(\{a,b\}) = \frac{a+b-(a-b)}{2}$$
Since $a \le b, a-b \le 0 \implies |a-b| = -(a-b)$

$$\sup(\{a,b\}) = \frac{a+b+|a-b|}{2}$$

Thus for both cases, the formula $\sup(\{a,b\}) = \frac{a+b+|a-b|}{2}$ works. Hence proved.

(c) Formulate and prove a variant of the above formula describing the infimum of the set $\{a,b\}$. Solution.

Case I,
$$a \ge b$$

Using the same principle from QD.1(a)

$$\inf(\{a,b\}) = b$$

$$\inf(\{a,b\}) = b + a - a$$

$$\inf(\{a,b\}) = \frac{b+b+a-a}{2}$$

$$\inf(\{a,b\}) = \frac{a+b-a+b}{2}$$

$$\inf(\{a,b\}) = \frac{a+b-(a-b)}{2}$$
Since $a \ge b, a-b = |a-b|$

$$\inf(\{a,b\}) = \frac{a+b+|a-b|}{2}$$

Case II, $b \ge a$

Using the same principle from QD.1(a)

$$\inf(\{a, a\}) = a$$

$$\inf(\{a, b\}) = a + b - b$$

$$\inf(\{a, b\}) = \frac{a + b - b + a}{2}$$

$$\inf(\{a, b\}) = \frac{b + b - (b - b)}{2}$$
Since $a \ge b, a - b = |a - b|$

$$\inf(\{a, b\}) = \frac{a + b + |a - b|}{2}$$

2. Let a_1, \dots, a_n be elements of \mathbb{R} . Prove that

$$\sup (\{a_1, \dots, a_n\}) = \sup (\{\sup (\{a_1, \dots, a_{n-1}\}), a_n\}).$$

Deduce that $\sup (\{a_1, \ldots, a_n\}) \in \{a_1, \ldots, a_n\}.$

Solution.

<u>Case I</u>, Let a_1, \dots, a_n be elements of \mathbb{R} and $a_1 \geq a_2 \geq \dots \geq a_n$.

QUESTION E 3 Points

Let S be a subset of \mathbb{R} .

1. Show that S is bounded if and only if there exists an $m \in \mathbb{R}$ such that $|x| \leq m$ for all $x \in S$.

To Prove. S is bounded $\iff \exists m \in \mathbb{R} \text{ such that } |x| \leq \forall x \in S.$

Proof. Let $S \subseteq \mathbb{R}$ be a bounded set From $E(1), \exists m \in \mathbb{R}$ such that $|x| \leq m \forall x \in S$

$$\forall x \in S, x \leqslant m \text{ and } -x \leqslant m$$

$$\forall x \in S, -m \leqslant x \text{ and } x \leqslant m$$

$$\forall x \in S, -m \leqslant x \leqslant m$$

$$\forall x \in S, S \in [-m, m]$$

$$S \leq [-m, m] \quad [a \neq b]$$

Assume $\exists m \in \mathbb{R} \text{ sit } S \subseteq [-m, m]$

$$\Rightarrow \forall x \in S, -m \leqslant x \leqslant m$$

 $\Rightarrow \forall x \in S, -m \leqslant x \Rightarrow -m$ is a lower bound $\Rightarrow \forall \in S, x \leqslant m \Rightarrow m$ is an upper bound of S. Since S has a lower bound and an upper bound, S is bounded in \mathbb{R} .

$$[b \Rightarrow a]$$

- 2. Deduce that the following three statements are equivalent:
 - (a) The S is bounded.
 - (b) There exists $m \in \mathbb{R}$ such that $S \subseteq [-m, m]$.
 - (c) There exist $a, b \in \mathbb{R}$ with $a \leq b$ such that $S \subseteq [a, b]$.

QUESTION **F** 4 Points

1. Let $x, y \in \mathbb{R}$, and suppose x and y both satisfy the definition of an infimum of S. Show that x = y. **To Prove.** If $x, y \in \mathbb{R}$ and both satisfy the definition of an infimum of S, then x = y.

Definition. Let $S \subseteq \mathbb{R}$. We say that $x \in \mathbb{R}$ is the infimum of S if $x \leq s \forall s \in S$ and for any lower bound y of S, $x \geq y$.

Proof. Suppose x and y are the infimum of S.

Since y is an infimum of S, y is a lower bound of S. Therefore, by the property of infimum, $y \le x$ because x is the infimum.

Since x is an infimum of S, x is a lower bound of S. Therefore, by the property of infimum, $x \ge y$ because y is the infimum.

By the property of antisymmetry, $x \ge y$ and $y \ge x$ implies x = y. Thus, x = y. \square

- 2. Let $x \in \mathbb{R}$. Show that $x = \inf(S)$ if and only if it satisfies the following two conditions:
 - (a) The element x is a lower bound for S.
 - (b) Given $\epsilon > 0$, there exists some $y \in S$ such that $y < x + \epsilon$.

To Prove. $x = \inf(S) \iff x \text{ is a lower bound for } S \text{ and } \forall \epsilon > 0, \exists y \in S \text{ such that } y < x + \epsilon.$

Solution.

- (a) It's already in the definition of infimum that x has to be a lower bound, so no need to prove that.
- (b) If such y does not exist, $\forall y \in S, y \geq x + \epsilon \implies x + \epsilon$ is a lower bound of S. $x + \epsilon$ is a lower bound $> x \implies x$ is not infimum.

If such y exists, then $x + \epsilon$ is not a lower bound of S. Thus, x is the infimum of S.

- 3. Let $x \in \mathbb{R}$. Show that $x = \inf(S)$ if and only if it satisfies the following two conditions:
 - (a) The element x is a lower bound for S.
 - (b) Given $n \in \mathbb{Z}_{>0}$, there exists some $y \in S$ such that $y < x + \frac{1}{n}$.

QUESTION G 4 Points

Prove that in the presence of properties (1) to (16), property (17) and property (17)_L are equivalent. Deduce that every non-empty bounded below subset of \mathbb{R} has an infimum.

To Prove. If A and B are subsets of \mathbb{R} such that both A and B are non-empty and $a \leq b$ for all $a \in A$ and $b \in B$, there exists $s \in \mathbb{R}$ such that $a \leq s \leq b$ for all $a \in A$ and $b \in B \iff$ every non-empty bounded below subset of \mathbb{R} has an infimum.

Proof.

Assuming $17 \implies 17_L$

Property $(17)_L$ states that every non-empty bounded below subset of \mathbb{R} has an infimum. Let $S \subseteq \mathbb{R}$ be a non-empty bounded below subset. Define $B := \{x \in \mathbb{R} \mid x \leq s \text{ for all } s \in S\}$, the set of all lower bounds of S. Since S is bounded below, B is non-empty.

By property (17), there exists $t \in \mathbb{R}$ such that $t \leq s$ for all $s \in S$ and $b \leq t$ for all $b \in B$. Thus, t is a lower bound for S (since $t \leq s$ for all $s \in S$) and t is greater than or equal to any other lower bound of S (since $b \leq t$ for all $b \in B$). Therefore, t is the infimum of S.

We conclude that property $(17)_L$ holds.

Assuming $17_L \implies 17$

Assume property $(17)_L$ holds. We need to show that property (17) also holds.

Property (17) states that given non-empty subsets A and B of \mathbb{R} such that $a \leq b$ for all $a \in A$ and $b \in B$, there exists $t \in \mathbb{R}$ such that $a \leq t \leq b$ for all $a \in A$ and $b \in B$.

Let A and B be non-empty subsets of \mathbb{R} such that $a \leq b$ for all $a \in A$ and $b \in B$. This condition implies that every element of B is a lower bound for A, so A is bounded below. By property $(17)_L$, A has an infimum, say t. Since t is a lower bound for A, we have $t \leq a$ for all $a \in A$. Moreover, since t is the greatest lower bound of A, and every element of B is a lower bound for A, we have $b \leq t$ for all $b \in B$. Thus, there exists $t \in \mathbb{R}$ such that $a \leq t \leq b$ for all $a \in A$ and $b \in B$.

We conclude that property (17) holds.

Therefore 17 \iff 17_L. \square