Programming Languages and Computation

Week 7: Proof by Induction & Operational Semantics

1 Proof by Induction

* 1. Consider the exponential function for natural numbers with the following recursive definition:

$$x^0 = 1$$
$$x^{n+1} = x \cdot x^n$$

Prove by induction that $(x \cdot y)^z = x^z \cdot y^z$ for any $x, y, z \in \mathbb{N}$. You may assume that multiplication satisfies the usual laws of associativity and commutativity.

** 2. The *height* of an arithmetic expression is defined recursively as follows:

```
\begin{array}{ll} \operatorname{height}(n) &= 1 \\ \operatorname{height}(x) &= 1 \\ \operatorname{height}(e_1 + e_2) &= 1 + \max\{\operatorname{height}(e_1), \operatorname{height}(e_2)\} \\ \operatorname{height}(e_1 - e_2) &= 1 + \max\{\operatorname{height}(e_1), \operatorname{height}(e_2)\} \\ \operatorname{height}(e_1 * e_2) &= 1 + \max\{\operatorname{height}(e_1), \operatorname{height}(e_2)\} \end{array}
```

- (a) Prove by structural induction over arithmetic expressions that height(e) > 0 for all arithmetic expressions $e \in A$.
- (b) Prove by structural induction over arithmetic expressions that $2^{\text{height}(e)-1} \ge \#FV(e)$ for all arithmetic expressions $e \in A$ where #FV(e) is the number of free variables appearing in that expression.

Hint: Try using the facts that, if $x \ge 2y$, 2z, then $x \ge y + z$, and that $\#A + \#B \ge \#(A \cup B)$.

** 3. If x is a variable and e_1 and e_2 are arithmetic expressions, then we write $e_1[x \mapsto e_2]$ for the expression that results from *substituting* e_2 for x in the expression e_1 . Formally, this operation it

is defined by recursion over the expression e_1 as follows:

$$n[x \mapsto e] = n$$

$$y[x \mapsto e] = \begin{cases} e & \text{if } x = y \\ y & \text{otherwise} \end{cases}$$

$$(e_1 + e_2)[x \mapsto e] = e_1[x \mapsto e] + e_2[x \mapsto e]$$

$$(e_1 - e_2)[x \mapsto e] = e_1[x \mapsto e] - e_2[x \mapsto e]$$

$$(e_1 * e_2)[x \mapsto e] = e_1[x \mapsto e] * e_2[x \mapsto e]$$

- (a) Compute the value of the expression $(y-x)[x\mapsto z]$ in the state $[x\mapsto 1, y\mapsto 2, z\mapsto 3]$.
- (b) Find a state σ such that $[y-x]_{\mathcal{A}}(\sigma)$ evaluates to the same answer you got in part (a). What is the relationship between this state and the state $[x \mapsto 1, y \mapsto 2, z \mapsto 3]$?
- (c) Prove by structural induction over expressions, for any state $\sigma \in \mathsf{State}$, any pair of arithmetic expressions $e_1, e_2 \in A$ and any variable $x \in \mathsf{Var}$, we have that:

$$\llbracket e_1[x \mapsto e_2] \rrbracket_{\mathcal{A}}(\sigma) = \llbracket e_1 \rrbracket_{\mathcal{A}}(\sigma[x \mapsto \llbracket e_2 \rrbracket_{\mathcal{A}}(\sigma)]).$$

Remember that e_1 may be an *arbitrary* variable.

** 4. Write down the induction principle for Boolean expressions. Try to generalise from the induction principle for arithmetic expressions as it appears in the reference notes (https://uob-coms20007.github.io/reference/semantics/induction.html).

Hint: the cases for Boolean expressions of the form $e_1 \le e_2$ and $e_1 = e_2$ are not inductive cases as the sub-expressions are not actually Boolean expressions.

** 5. We extend the notion of *free variables* of an arithmetic expression to Boolean expressions. Formally, we define a function $FV : \mathcal{B} \to \mathcal{P}(Var)$ from Boolean expressions to sets of variables by recursion over the structure of expressions as follows:

$$FV(true) = \emptyset$$

$$FV(false) = \emptyset$$

$$FV(e_1 \le e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(e_1 = e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(!e) = FV(e)$$

$$FV(e_1 \&\& e_2) = FV(e_1) \cup FV(e_2)$$

$$FV(e_1 \| e_2) = FV(e_1) \cup FV(e_2)$$

- (a) Find two Boolean expressions e_1 , $e_2 \in \mathcal{B}$ that are semantically equivalent, i.e. they evaluate to the same value on all states, but for which $\mathsf{FV}(e_1) \neq \mathsf{FV}(e_2)$.
- (b) Prove by induction that for all Boolean expressions $e \in \mathcal{B}$ and pair of states σ , $\sigma' \in \mathsf{State}$

that:

$$\llbracket e \rrbracket_{\mathcal{B}}(\sigma) = \llbracket e \rrbracket_{\mathcal{B}}(\sigma')$$

where $\forall x \in FV(e)$. $\sigma(x) = \sigma'(x)$.

You may assume the fact that the analogous result holds for arithmetic expressions in your answer.

** 6. The set of *contexts* is defined by the following grammar:

$$C \rightarrow \varepsilon |A+C|C+A|A-C|C-A|A*C|C*A$$

where *A* is an arbitrary arithmetic expression. We write \mathcal{C} for the set of contexts.

Given a context $C \in \mathcal{C}$ and an arithmetic expression $e \in \mathcal{A}$, we write $C[e] \in \mathcal{A}$ for the arithmetic expression that is derived by replacing the " ε " in C with the expression e. For example, $(x + \varepsilon)[y]$ is the expression x + y. Formally, this operation is defined by recursion over contexts:

$$\begin{split} \varepsilon[e_1] &= e_1 \\ (e_2 + C)[e_1] &= e_2 + C[e_1] \\ (C + e_2)[e_1] &= C[e_1] + e_2 \\ (e_2 - C)[e_1] &= e_2 - C[e_1] \\ (C - e_2)[e_1] &= C[e_1] - e_2 \\ (e_2 * C)[e_1] &= e_2 * C[e_1] \\ (C * e_2)[e_1] &= C[e_1] * e_2 \end{split}$$

- (a) Consider the arithmetic expressions x + x and x * 2 and the context $y + \varepsilon$. Show that $(y + \varepsilon)[x + x]$ and $(y + \varepsilon)[x * 2]$ are semantically equivalent.
- (b) Now suppose e_1 and e_2 are arbitrary arithmetic expressions that are semantically equivalent. Show that $(y + \varepsilon)[e_1]$ and $(y + \varepsilon)[e_2]$ are semantically equivalent as well.
- (c) Prove by structural induction that, for any context $C \in \mathcal{C}$, and any two semantically equivalent arithmetic expressions $e_1 \in \mathcal{A}$ and $e_2 \in \mathcal{A}$, that $C[e_1]$ and $C[e_2]$ are semantically equivalent.
- *** 7. Strong induction is a variation on proof by induction where the induction hypothesis applies to all smaller values rather than just the predecessor or the subtrees. Formally, it can be stated as following principle:

In order to prove $\forall n \in \mathbb{N}. P(n)$, prove:

1. P(0);

2. And, P(n+1) under the assumption that P(m) holds for all $m \le n$.

Prove that strong induction follows from standard induction. That is, given a property P of the natural numbers that satisfies the requirements (1) and (2), prove that P(n) is true for all $n \in \mathbb{N}$.

Hint: Try proving the property $P'(n) = \forall m \le n$. P(n) by induction.

2 Operational Semantics

This section is about the big-step operational semantics of While programs as given by the relation $\psi \subseteq S \times State \times State$, which is defined inductively by these inference rules:

Figure 1: Inference rules for operational semantics.

- * 8. Write down a derivation for the judgement $x \leftarrow 1$; $\{x \leftarrow 2; x \leftarrow 3\}$, $[] \downarrow [x \mapsto 3]$ using the inference rules in Figure 1.
- * 9. Write down a derivation for the judgement $\{x \leftarrow 1; x \leftarrow 2\}; x \leftarrow 3, [] \downarrow [x \mapsto 3]$ using the inference rules in Figure 1.
- * 10. Write down a derivation for the judgement $\{x \leftarrow 1; x \leftarrow 2\}; x \leftarrow 3, [] \Downarrow [x \mapsto 3]$ using the inference rules in Figure 1.
- * 11. Compute the final state for the program if $x \le y$ then $x \leftarrow y$ else $y \leftarrow x$ when executed in each of the following states:
 - [
 - $[x \mapsto 2, y \mapsto 3]$
 - $[x \mapsto 4, y \mapsto 2]$

- * 12. Find a state σ such that $x \leftarrow 1$; $y \leftarrow x * 2$, [] $\psi \sigma$. You must also write down the derivation of the statement.
- * 13. Find a state $\sigma \in$ State for which there exists a derivation of the judgement while $!(x \le -1)$ do $x \leftarrow x + d$, $[d \mapsto -1] \Downarrow \sigma$. You should provide the derivation.
- ** 14. Find a state σ such that $x \leftarrow 2$; $y \leftarrow x * y$, $\sigma \Downarrow [x \mapsto 2, y \mapsto 4]$. You must write down the derivation of the statement.
- * 15. Suppose $e \in \mathcal{B}$ is a Boolean expression that is semantically equivalent to false. Prove that while e do S, $\sigma \Downarrow \sigma$ for any state $\sigma \in \mathsf{State}$.
- ** 16. Suppose $S_1, S_2 \in \mathcal{S}$ are two statements such that $S_1, \sigma \Downarrow \sigma'$ and $S_2, \sigma \Downarrow \sigma'$ for some states $\sigma, \sigma' \in \mathsf{State}$. Prove that if e then S_1 else $S_2, \sigma \Downarrow \sigma'$ for any Boolean expression $e \in \mathcal{B}$.
- ** 17. Suppose we introduce a new language construct do S while e where $S \in \mathcal{S}$ is a statement and $e \in \mathcal{B}$ is a Boolean expression. The operational semantics for this construct is given by the following inference rules:

$$\frac{S,\,\sigma_1 \Downarrow \sigma_2}{\text{do } S \text{ while } e,\,\sigma_1 \Downarrow \sigma_2} \llbracket e \rrbracket_{\mathcal{B}}(\sigma_2) = \bot \quad \frac{S,\,\sigma_1 \Downarrow \sigma_2 \quad \text{do } S \text{ while } e,\,\sigma_2 \Downarrow \sigma_3}{\text{do } S \text{ while } e,\,\sigma_1 \Downarrow \sigma_3} \llbracket e \rrbracket_{\mathcal{B}}(\sigma_2) = \top$$

- (a) Find a state $\sigma \in \mathsf{State}$ such that do $x \leftarrow x + 1$ while $x \le 1$, [] $\psi \sigma$ and give the associated derivation.
- (b) For a given statement $S \in \mathcal{S}$ and a Boolean expression $e \in \mathcal{B}$ find a While program that is equivalent to the program do S while e but does not use the new construct. That is, find a statement $S' \in \mathcal{S}$ such that:

$$S', \sigma \Downarrow \sigma' \Leftrightarrow do S \text{ while } e, \sigma \Downarrow \sigma'$$

You do not need to prove that your answer is correct but should provide a derivation of judgement S', $[] \Downarrow \sigma$ where S is given to be the statement $x \leftarrow x + 1$, e is given to be the expression $x \le 1$ and σ is the state from part (a).

*** 18. Suppose we introduce a new language construct for x do S where $S \in \mathcal{S}$ is a statement and $x \in Var$ is a variable The operational semantics for this construct is given by the following inference rules:

$$\frac{S,\,\sigma_1 \Downarrow \sigma_2 \quad \text{for } x \text{ do } S,\,\sigma_2[x \mapsto \sigma_2(x) - 1] \Downarrow \sigma_3}{\text{for } x \text{ do } S,\,\sigma_1 \Downarrow \sigma_3} \sigma_1(x) > 0$$

- (a) Find a state $\sigma \in$ State such that for x do $y \leftarrow y + x$; $x \leftarrow x 2$, $[x \mapsto 3] \Downarrow \sigma$ and give the associated derivation.
- (b) For a given statement $S \in \mathcal{S}$ and a variable $x \in Var$ find a While program that is equivalent

to the program for x do S but does not use the new construct. That is, find a statement $S' \in \mathcal{S}$ such that:

$$S'$$
, $\sigma \Downarrow \sigma' \Leftrightarrow \text{for } x \text{ do } S$

You do not need to prove that your answer is correct but should provide a derivation of judgement S', $[x \mapsto 3] \Downarrow \sigma$ where S is given to be the statement $y \leftarrow y + x$; $x \leftarrow x - 2$, x is given to be the variable x and σ is the state from part (a).