

CS 329P: Practical Machine Learning (2021 Fall)

4.1 Evaluation Metrics

Qingqing Huang, Mu Li, Alex Smola

https://c.d2l.ai/stanford-cs329p

Model Metrics

- Loss measures how good the model in predicting the outcome in supervised learning
- Other metrics to evaluate the model performance
 - Model specific: e.g. accuracy for classification, mAP for object detection
 - Business specific: e.g. revenue, inference latency
- We select models by multiple metrics
 - Just like how you choose cars

Metrics for Binary Classification

Accuracy: # correct predictions / # examples

```
sum(y == y hat) / y.size
```

Precision: # True positive / # (True positive + False positive)____

```
sum((y_hat == 1) & (y == 1)) / sum(y_hat == 1)
```

Recall: # True positive / # Positive examples

```
sum((y_hat == 1) & (y == 1)) / sum(y == 1)
```

Be careful of division by 0

- One metric that balances precision and recall
 - F1: the harmonic mean of precision and recall: $\frac{2pr}{(p+r)}$

AUC-ROC

- Measures how well the model can separate the two classes
- Choose decision threshold θ , predict positive if $o \ge \theta$ else neg
- In the range [0.5, 1]

Case Study: Displaying Ads

• Ads is one major revenue source for Internet companies

Business Metrics for Displaying Ads

Optimize both revenue and customer experience

- Latency: ads should be shown to users at the same time as others
- ASN: average #ads shown in a page

- CTR: actual user click through rate
- ACP: average price advertiser pays per click
- revenue = #pageviews x ASN x CTR x ACP

Matters to whom

User

Advertiser

Displaying Ads: Model → Business Metrics

The key model metric is AUC

- A new model with increased AUC may harm business metrics, possible reasons:
 - Lower estimated CTR \rightarrow less ads displayed
 - Lower real CTR because we trained and evaluated on past data
 - Lower prices
- Online experiment: deploy models to evaluate on real traffic data

Summary

- We evaluate models with multiple metrics
- Model metrics evaluate model performance on examples
 - E.g. accuracy, precision, recall, F1, AUC for classification models
- Business metrics measure how models impact the product