Personalized Singing Voice Beautifier

林泳鵬、汪宣甫、陳韋傑

Outline

- Motivation
- Methodology
- Results
- Findings

Motivation

- Our innovation aims to train a personalized singing voice beautifier.
- We referred to the relevant paper [1], but identified some limitations in its training data.
 - The training pair data: (professional, amateur) singing voice.
 - We observed that amateur singing surpasses that of ordinary individuals.
- So we want to investigate some methods that can generate data pairs which are more suitable to our scenarios.
- And use those optional datas to train a personalized voice beautifier.

Methodology

<u>Learning the Beauty in Songs: Neural Singing Voice Beautifier</u>

Figure 1: The overview of NVSB. The training process consists of 2 stages, and the second stage shares the same pipeline with the inference stage. "VAE Enc" means the encoder of CVAE; "VAE Dec" means the decoder of CVAE; "Mel" means the mel-spectrogram; " \mathbf{z} " means the latent variable of the vocal tone; the "a"/"p" subscript means the amateur/professional version.

Methodology (cont.)

- Singing Voice Conversion
 - Use so-vits-svc(SoftVC VITS Singing Voice Conversion)

Methodology (cont.)

- Task 1 : SVC + SVB
 - Use **PopBuTFy** Dataset(English)

(1) Inference (2) Train Good Generated Pretrained Data **Good Data** so-vits-svc (Ours.) (Pro.) Beautifier Bad Generated Pretrained Data **Bad Data** so-vits-svc (Ours.) (Ama.)

(1) SVC Inference

(1) SVC inference

Methodology (cont.)

- Task 2 : SVC + SVB + extend to chinese public dataset
 - Use OpenSinger dataset(Chinese)

Results

- F0 Root Mean Square Error (F0 RMSE)
 - We use F0 RMSE to estimate the pitch correction performance between the resulting audio and recordings of professional singers.

Method	F0 RMSE	
	泳鵬	宣甫
Baseline(Ours.)	122.44	152.58
Paper(SVB)	109.69	148.20
Task1(SVC+SVB)	110.15	146.85
Task2(SVC+SVB+CH)	108.32	146.15

Results

- Demo
 - Our Singing Voice
 - 泳鵬 / 宣甫 •
 - Paper(SVB)
 - 泳鵬 / 宣甫 •
 - Task1(SVC+SVB)
 - 泳鵬 / 宣甫 ●
 - Task2(SVC+SVB+CH)
 - 泳鵬 / 宣甫 •

Findings

- In inference, we encounter some instability due to the necessity of precise pitch information from the same singer, despite relying solely on pitch templates from professional singers.
- For better results in the inference, **aligning singing data** with professional audio is still necessary, as the original paper's alignment algorithm has limitations.
- We discovered that employing **auto-predicted f0** in the voice conversion system can somehow **simulates pitch mismatches**.
 - Thus, we use it to generate amateur data.
- The **timbre of the output is influenced** by utilizing different speakers' template pitch.