南京邮电大学 2014/2015 学年第一学期

《数学物理方法》期末试卷(A)

院(系)_		班级				<u>*</u>	学号		姓名				
		= 1	=	四	五	六	七	入	九	+	总	分	
题号													
得分										<u> </u>			
~	1	sat. Int to	# / #	田香 の 八	-11-	10 A\							
得分	-,	选择是	90(母	殴る力	· **	ىر ئالا 10 ر ئالا 10	, L&A c\		文》的		()	
							E的,它					70	
· · · · ·	(A	是,是	··	B)是,	不是		C)不是	,是	Ι))小足,	个友	Ē	
ż. 设ul.	₌₀ = μ ₁ ($(t), u_x$	$\mu_{x=l} = \mu_2$	(t), t	u果令1	$\iota(x,t)=$	v(x,t)	+ w(x,	t),则i	边界齐	欠化 函	i数	
应为: v	v(x,t):	· . =		可使収	_{x=0} =0	, v _x _{x=}	$_{l}=0$.			`. ·	()	
A) $\frac{u_2(t)}{t}$	$\frac{(1)-u_1(t)}{l}$	$\frac{1}{2}x + u_1(t)$	· ·	•			$(t)x + u_1$			•,			
C) $u_{l}(t)$	•				•		$\frac{(t)-u_1(t)}{2l}$					٠	
3. 边界	条件与	初始条件	件的在	定解问题	题中的(作用,「	下列描述	哪一个	正确。		()	
				•			条件用表						
B) 初	始条件	用来确	定本征	值与本	征函数	,边界	条件用	K确定 原	展开系 数	女 .			
c) =	者的作	∉用一样	;			D) 上	述都不	正确 .	• :				
4. 输运											; (()	
A) 双	曲型		B)椭圆	型	C)	抛物型		D)以上	都不对			٠.	
5. 三维	无限大	空间的	点源影	响函数	(格林	函数)ī	可表示为	方下面明	邓一项?				
A)	$\frac{\ln \vec{r}-\vec{r} }{2\pi}$	- 7 0	B)	$-\frac{1}{4\pi}$	$\frac{1}{ \vec{r}-\vec{r_0} }$	٠.	C) $\frac{1}{4\pi}$	$\frac{1}{\tau \vec{r} - \vec{r}_0 }$	12	D) - !	$\frac{\overline{r}-r_0}{4\pi}$	<u> </u>	
6. Eulei												()	
(A)	αr^{-3}	$+\beta r^3$	В) αr ⁻⁹	$+\beta r^9$		αr^{-3}		D)	αr^3		-	
								4 . 5					

得分 二、填空题(每空3分, 1. 分离变量法的思想是什	
2. 定解问题的适定性指的	。 是解的存在性、和。
·	间(-1,1)上把 $f(x) = x^2 + 2x + 1$ 展开为广义傅立
叶级数为	; 计算积分: $I = \int_{1}^{1} x^{3} P_{l}(x) P_{l+2}(x) dx = \int_{1}^{1} x^{3} P_{l}(x) dx$
4. Bessel 方程 r^2R "+ rR '+ $(3r^2-9)R=0$	的通解为 y =
其满足 R(0)=0,R(1)=2 的特解为 y=	
4. $\sqrt[4]{i} = $; co	
	•
	式为:第二类柱函数
$Y_n(x) = \underline{\hspace{1cm}};$	
	$\int_{n} y_{n}(x)$ 中系数 \int_{n} 的计算是利用本征函数 $y_{n}(x)$
彼此间的。 8. 一维波动方程 $u_{u}-a^2u_{xx}=0 (-\infty < 0)$ 的解为:	(止父性/完备性) $(x < +\infty) 满足初始条件 u _{t=0} = f(x), u_t _{t=0} = g(x)$
得分 三、求解均匀弦的自由模 移为零,初始速度为 x(1-	表表示,孩长为1,两端固定,初始时刻位

《数学物理方法》试卷 第 2 页 共 4 页

得 分

四、用分离变量法求解非齐次泛定方程非其次边界问题:

$$\begin{cases} u_{t} - a^{2}u_{xx} = x \\ u|_{x=0} = 2 \quad u|_{x=l} = 2 \\ u|_{t=0} = 0 \end{cases}$$
 (8 \(\frac{\frac{1}{2}}{2}\))

得分

五、判断 $x_0 = 0$ 是欧勒型常微分方程 $x^2y'' + xy' - m^2y = 0$ · (m^2 为常数) 的常点还是奇点,并用级数解法求解此方程在 $x_0 = 0$ 的邻域上的解。(8分)

(数学物理方法) 试卷 第3页共4页

一 六、二个同心球壳,半径分别为 a,b (b>a) ,内球壳电势为 $2\cos\theta$,外壳为导体并接地,求球壳之间的电势分布。 $(8\, \mathcal{G})$

得分

七、用分离变量法分析半径为α, 高为1的电磁谐振腔问题:

$$\begin{cases} \Delta u + \lambda u = 0, & \sqrt{\lambda} = \frac{\omega}{c} \\ u|_{z=0} = 0 & \text{, 试证该电磁谐振腔的固有频率为} \\ \frac{\partial u}{\partial z}|_{z=0} = \frac{\partial u}{\partial z}|_{z=l} = 0 \end{cases}$$

$$\omega_{mn} = c\sqrt{\lambda} = c\sqrt{\left(\frac{x_m^{(0)}}{a}\right)^2 + \left(\frac{n\pi}{l}\right)^2}, \quad n = 0, 1, 2, ...; \ m = 1, 2,$$
(8 \(\frac{\frac{1}{2}}{2}\))

《数学物理方法》试卷 第 4 页 共 4 页