What is claimed is:

1	1.	A method for improving the performance of a rotary actuator in a disk		
2	drive, the rotary actuator comprises a voice coil motor (VCM) characterized by a torque			
3	parameter, the disk drive comprises a servo control system having a motor driver circuit			
4	for receiving a series of command effort signals transmitted based on a first seek profile,			
5	and for providing an operating current to the VCM based on the command effort signals			
6	for causing a movement of the actuator from a first radial location to a target radial			
7	location, the method comprising:			
8		recording the series of transmitted command effort signals, and while the		
9	actuator is moving:			
10	•	adjusting each recorded command effort signal to account for at		
11		least one disk drive influence on the actuator movement;		
12		storing the adjusted command effort signals;		
13		monitoring the velocity of the moving actuator;		
14		calculating an acceleration value corresponding to the moving		
15		actuator from the stored command effort signals and the monitored		
16		velocity; and		
17		adjusting the acceleration value to account for a radial torque		
18		parameter variation.		
1	2.	The method as defined in claim 1, wherein the recording further comprises:		
2		comparing each command effort signal to a threshold value; and		
3		determining if the compared command effort signal exceeds the threshold value		
1	3.	The method as defined in claim 2, wherein the storing further comprises:		
2		storing the last command effort signal transmitted prior to the command		
3	effor	t signal exceeding the threshold value; and		
4		storing a subset of the command effort signals transmitted following the		
5	command effort signal exceeding the threshold value wherein each command			
6	effor	t in the subset exceeds the threshold value.		
1	4.	The method as defined in claim 3, wherein the monitoring further comprises:		

PATENT ATTY DOCKET K35A1284

2	determining an initial velocity of the moving actuator corresponding to the		
3	first-transmitted command effort signal in the subset of the command effort		
4	signals following the exceeding of the threshold value; and		
5	determining a final velocity of the moving actuator corresponding to the		
6	most recently transmitted command effort signal in the subset of the command		
7	effort signals.		
1	5. The method as defined in claim 4, wherein the calculating further comprises:		
2	calculating a velocity differential between the determined initial velocity		
3	and the final velocity;		
4	performing a summation of the stored subset of command effort signals		
5	and generating a summation result;		
6	subtracting a first value corresponding to a selected command effort signal in		
7	subset of the command effort signals from a second value corresponding to the last		
8	command effort signal transmitted prior to the command effort signal exceeding the		
9	threshold value, and generating a subtraction result;		
10	multiplying the subtraction result by a VCM-delay value and generating a		
11	multiplication result;		
12	adding the multiplication result to the summation result and generating an		
13	addition result; and		
14	dividing the velocity differential by the addition result and generating a		
15	first division result wherein the calculated acceleration value comprises the first		
16	division result.		
1	6. The method as defined in claim 5, wherein the VCM-delay value is a		
2	normalized VCM-delay value of 0.5.		
1	7. The method as defined in claim 5, further comprising:		
2	modifying the first seek profile based on the adjusted acceleration value.		
1	8. The method as defined in claim 7, wherein the movement of the actuator		
2	comprises an acceleration phase followed by a deceleration phase.		
1	9. The method as defined in claim 8, wherein the calculating occurs during		
2	the acceleration phase.		

1	10.	The method as defined in claim 9, wherein modifying the first seek profile	
2	comprises:		
3		adjusting the configuration of deceleration phase to reduce a time period	
4	assoc	ated with the movement of the actuator from the first radial location to the	
5	target radial location.		
1	11.	The method as defined in claim 10, wherein the threshold value corresponds	
2	to an approximate saturation current of the motor driver circuit.		
1	12.	The method as defined in claim 11, wherein the subset of command effort	
2	signals comprises a predetermined number of command effort signals.		
1	13.	The method as defined in claim 12, wherein the predetermined number of	
2	command effort signals is six.		
1	14.	The method as defined in claim 5, wherein the servo control system comprises	
2	a compensator for determining command effort signals during track-follow operations.		
1	15.	The method as defined in claim 14, further comprising:	
2		applying a gain factor to the determined command effort signals based on	
3	the adjusted acceleration value.		
1	16.	The method as defined in claim 15, further comprising:	
2		scaling the gain factor by a ratio of the calculated acceleration value and an	
3	initial acceleration value wherein the initial acceleration value is determined		
4	to the recording.		
1	17.	The method as defined in claim 16, wherein the threshold value	
2	corresponds to a current less than a saturation current of the motor driver circuit.		
1	18.	The method as defined in claim 17, wherein the subset of command effort	
2	signals comprises a predetermined number of command effort signals.		
1	19.	The method as defined in claim 18, wherein the predetermined number of	
2	command effort signals is three.		
1	20.	The method as defined in claim 1, wherein the adjusting the acceleration	
2	value further comprises:		
3		obtaining a value corresponding to the radial torque parameter variation; and	
4		adjusting the calculated acceleration value based on the obtained value.	

PATENT ATTY DOCKET K35A1284

1	21.	The method as defined in claim 20, wherein the value corresponding to the	
2	radial torque parameter variation is obtained from a look up table.		
1	22.	The method as defined in claim 1, wherein the motor driver circuit	
2	comprises a digital to analog converter (DAC).		

- 23. The method as defined in claim 1, wherein the first seek profile is determined based on an initial acceleration value determined prior to the recording.
- 1 24. The method as defined in claim 1, further comprising: 2 reducing the effects of noise-induced deviations in the adjusted 3 acceleration value.

1

2

1

2

1

2

3

4

- The method as defined in claim 24, wherein the reducing further comprises: applying a slew rate limit to the adjusted acceleration profile.
 - 26. The method as defined in claim 25, wherein the reducing further comprises: applying a low-pass filter to the adjusted acceleration profile.
 - 27. The method as defined in claim 1, wherein the disk drive influence is caused by a flex bias of a cable connecting the rotary actuator to the servo system and wherein the adjusting each command effort signal further comprises filtering a flex bias feed forward component from the command effort signal.
- The method as defined in claim 1, wherein the disk drive comprises a disk having a plurality of recorded servo tracks and wherein the disk drive influence is caused by a variation in the position of a recorded servo track and wherein the adjusting each command effort signal further comprises filtering from the command effort signal a component corresponding to the variation in the position of the recorded servo track.