$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{4ik}{\alpha_0+2\alpha_0k^2}$	$-\frac{2 \sqrt{2} k}{\alpha_0 (1 + 2 k^2)^2}$	0	$-\frac{4k^2}{\alpha_0(1+2k^2)^2}$
$\tau_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	$-\frac{2}{\alpha_0 (1+2 k^2)^2}$	0	$\frac{2 i \sqrt{2} k}{\alpha_0 (1 + 2 k^2)^2}$
$\sigma_{1^-}^{\#1}{}_{\alpha}$	0	0	0	0	$-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$	0	$\frac{4ik}{\alpha_0 + 2\alpha_0k^2}$
3	loi)2)2				
$\tau_1^{\#1}{}_+\alpha\beta$	$\frac{2 \mathbb{I} \sqrt{2} k}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2ik}{\alpha_0(1+k^2)^2}$	$-\frac{2k^2}{\alpha_0(1+k^2)^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{lphaeta}$ $ au_{1}^{\#1}{}_{lpha\mu}$	$\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2} = \frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0 k^2}$	$-\frac{2}{\alpha_0 (1+k^2)^2} - \frac{2ik}{\alpha_0 (1+k^2)^2}$	$\frac{2ik}{\alpha_0 (1+k^2)^2} \left -\frac{2k^2}{\alpha_0 (1+k^2)^2} \right $	0 0	0 0	0 0	0 0
		l lor	1	0 0 0	0 0 0	0 0 0	\downarrow^{α} 0 0 \downarrow^{α}

Lagrangian density

$$-\frac{1}{2}\alpha_{0}\omega_{\alpha\zeta\beta}\omega^{\alpha\beta\zeta} - \frac{1}{2}\alpha_{0}\omega^{\alpha\beta}_{\alpha}\omega_{\beta}^{\zeta} - \alpha_{0}f^{\alpha\beta}\partial_{\beta}\omega_{\alpha}^{\zeta} +$$

$$\alpha_{0}\partial_{\beta}\omega^{\alpha\beta}_{\alpha} + \alpha_{0}f^{\alpha\beta}\partial_{\zeta}\omega_{\alpha\beta}^{\zeta} - \alpha_{0}f^{\alpha}_{\alpha}\partial_{\zeta}\omega^{\beta\zeta}_{\beta}$$
Added source term:
$$f^{\alpha\beta}\tau_{\alpha\beta} + \omega^{\alpha\beta\chi}\sigma_{\alpha\beta\chi}$$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	0	$\frac{2i\sqrt{2}}{\alpha_0 k}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2i\sqrt{2}}{\alpha_0 k}$	$\frac{2}{\alpha_0 k^2}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$-\frac{4}{\alpha_0}$

				×			
$f_{1^-}^{\#2}$	0	0	0	$-\frac{1}{2}\bar{I}\alpha_0k$	0	0	0
$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\alpha_0}{2\sqrt{2}}$	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{\alpha_0}{4}$	$-\frac{\alpha_0}{2\sqrt{2}}$	0	$l \alpha_0 k$
$f_{1}^{\#1}{}_{\alpha\beta}$	$\frac{i\alpha_0 k}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{\alpha_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha\beta$	<u>α</u> 0	$\frac{\alpha_0}{2\sqrt{2}}$	$-\frac{i\alpha_0 k}{2\sqrt{2}}$	0	0	0	0
	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$+^{\alpha \beta}$	1 †α	2 †α	1 †α	2 †α
	ω_1^{*1}	$\omega_1^{\#2}$	7# 1+1	$\omega_{1^{\bar{-}}}^{\#1}$	$\omega_{1}^{\#2}$ \dagger	$f_1^{\#1}$	$f_{1}^{#2}$

	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	0	$-\frac{i\sqrt{2}}{\alpha_0 k}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2}}{\alpha_0 k}$	$-\frac{1}{\alpha_0 k^2}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\!\#\!1}\dagger$	0	0	0	$\frac{2}{\alpha_0}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_{2}^{\sharp 1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	$-\frac{\alpha_0}{4}$	$\frac{i \alpha_0 k}{2 \sqrt{2}}$	0
$f_2^{#1} \dagger^{\alpha\beta}$	$-\frac{i\alpha_0 k}{2\sqrt{2}}$	0	0
$\omega_2^{\sharp 1} \dagger^{\alpha \beta \chi}$	0	0	$-\frac{\alpha_0}{4}$

Source constraints

- Source constraints	
SO(3) irreps	#
$\tau_{0+}^{\#2} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 \bar{\imath} k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1^{-}}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	3
Total #:	10

(No massive particles)

Unitarity conditions