Преобразование алгоритма в терминах нормальной схемы алгоритма Маркова в машину Тьюринга

Алгоритм преобразования

Докажем, что любой алгоритм Маркова можно преобразовать в машину Тьюринга.

Пусть нам дан алгоритм Маркова, определяемый конечным алфавитом Σ , набором преобразований P и конечным преобразованием P_0 .

Мы можем построить конечный автомат A, который ищет в строке слово α , а также машину Тьюринга TM, которая заменяет в строке некоторое слово α на некоторое слово β .

Для дальнейших рассуждений введём обозначение q_0 — начальное состояние нашей машины Тьюринга, реализующей данный алгоритм.

Поиск слова

Для слова $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ автомат A примет такой вид:

Его конечное состояние F, означающее, что слово найдено, будет начальным для машины TM, а достижение состояние E будет означать, что автомат дошёл до конца строки, но слова не нашёл (после этого необходимо вернуться в начало строки и перейти на начальное состояние автомата поиска следующего слова.

$$s_0 \alpha_1 \rightarrow s_1 \alpha_1 R$$

$$s_1 \alpha_2 \rightarrow s_2 \alpha_2 R$$

•••

$$s_n-1) \alpha_n \rightarrow F \alpha_n E$$

Также для каждого состояния будет сгенерированы команды:

s
$$\Lambda$$
 -> E Λ L,

отвечающая за переход к состоянию ошибки по достижению конца строки, и набор команд

$$s_i \alpha_j \rightarrow s_0 \alpha_j E$$
,

где $j \neq i$ для $\forall j \in \Sigma$ отвечающая за возврат в начальное состояние, если попал не тот символ, что ожидался.

Замена слова

В начале работы машина TM будет находиться в конце слова, которое необходимо заменить.

Поскольку слова α , длина которого n, и β , длина которого m, при построении машины известны, можно рассмотреть три случая:

1)
$$n = m$$

В этом случае нам нужны n команд для замены символов одного слова на другое с конца, где последняя команда также установит состояние машины на q_0 (начальное состояние машины)

2)
$$n < m$$

В этом случае вначале необходимо сдвинуть остаток строки на (m-n) ячеек влево (подробнее о сдвиге ниже), после чего начать запись справа налево нового слова.

3)
$$n > m$$

Необходимо сдвинуть остаток строки на (m-n) ячеек вправо, вернуться в конечную ячейку нового слова и записать его справа налево.

Свдиг «хвоста» строки

Сдвиг остатка строки на ленте машины Тьюринга на n ячеек можно реализовать n повторением сдвига на одну клетку. Рассмотрим сдвиг вправо.

Машина будет находиться в начальном состоянии q_start Первой командой машины Тьюринга для свдига строки будет:

$$q_start c -> q_c \Lambda R$$
,

где c — первый символ сдвигаемого «хвоста» строки.

Для каждого символа c алфавита Σ будет сгенерирован набор команд:

$$q_c b \rightarrow q_b c R$$

где b — каждый символ из алфавита $\Sigma - \{c\}$.

Таким образом мы записываем значение символа, которое храним в состоянии машины и запоминаем в состоянии значение, которое было в этой ячейке, сдвигаясь вправо.

Также для каждого символа c алфавита Σ будет сгенерирована команда:

$$q_c \Lambda -> q_end c E$$
,

где q end — состояние конца строки.

Теперь необходимо вернуться в ячейку, с которой мы начали сдвигать «хвост». Для этого нам понадобится набор команд

для каждого $c \in \Sigma$, что означает, что мы двигаемся влево, пока не встречаем пустой символ:

q end
$$\Lambda$$
-> q end2 Λ E

После этого машина приходит в состояние q_end2, означающее конец её работы.

Для сдвига «хвоста» влево все движение влево нужно заменить на движения вправо и наоборот.

Проблема сдвига «хвоста» решена.

Построение машины Тьюринга для замены одного преобразования нормального алгоритма Маркова

Каждое преобразование нормального алгоритма— это замена одной подстроки на другую. Эта задача разбивается на поиск подстроки и на её замену, реализация которых описана выше. Соединим эти два процесса.

Итак, нам необходимо заменить слово $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ на слово $\beta = \beta_1 \beta_2 \dots \beta_m$.

Начальное состояние нашей машины обозначим prod1_s_0. Построим машину, описанную в разделе «Поиск слова»:

$$\operatorname{prod1_08.01.2018s_0} \ \alpha_1 \ o \operatorname{prod1_s_1} \ \alpha_1 \ \operatorname{R}$$
 $\operatorname{prod1_s_1} \ \alpha_2 \ o \operatorname{prod1_s_2} \ \alpha_2 \ \operatorname{R}$... $\operatorname{prod1_s_(n-1)} \ \alpha_n \ o \operatorname{prod1_found} \ \alpha_n \ \operatorname{E}$ $\forall \operatorname{prod1_s} \in S, \forall \alpha_i, \alpha_j \in \Sigma, j \neq i \ , \operatorname{где} S \ o \ \operatorname{набор} \operatorname{состояний} \ \operatorname{машины} \ \operatorname{поиска}.$ $\operatorname{prod1_s} \ \Lambda \ o \operatorname{prod1_error} \ \Lambda \ \mathsf{L}$,

```
prod1_s_i \alpha_i -> prod1_s_0 \alpha_i E,
```

Нам понадобятся также обработка состояния ошибки prod1_error:

prod1 error
$$\Lambda$$
 -> prod2 s $0 \Lambda R$

 $\forall \alpha \in \Sigma$:

prod1_error α -> prod1_error α L,

где prod2_s_0 — начальное состояние машины поиска следующего преобразования алгоритма Маркова.

Теперь необходимо запустить замену слова α на слово β . Мы находимся в ячейке с символов α_n в состоянии prod1_found.

Если длина второго слова больше первого на (m-n)=d символов, то необходимо d раз сдвинуть «хвост» строки вправо. Построим машину Тьюринга, сдвигающую «хвост», с начальным состоянием prod1_found.

Первая команда нашей машины будет:

```
prod1_found \alpha_n -> prod1_shift1_c \Lambda R,
```

где $c = \alpha_n$.

Затем будет набор команд:

Где b — каждый символ из алфавита алгоритма.

Последней командой будет

prod1_shift1_c Λ -> prod1_shift1_end c E,

где $prod1_shift1_end - coстояние$ конца строки.

Теперь необходимо вернуться в ячейку, с которой мы начали сдвигать «хвост». Для этого нам понадобится набор команд

для каждого $c \in \Sigma$, что означает, что мы двигаемся влево, пока не встречаем пустой символ:

```
prod1 shift1 end \Lambda-> prod1 shift1 end2 \Lambda E
```

После этого машина приходит в состояние q_end2, означающее конец её работы.

В случае, если необходимо сдвинуть «хвост» более, чем на одну позицию, переходим на начальное состояние аналогичной машины prod1_shift2_start.

Далее аналогично.

Для последнего сдвига состояние prod1_shiftL_end2 будет начальным для машины, записывающей слово β :

```
prod1_shiftL_end2 \Lambda -> prod1_write_m \beta_m L prod1_write_m * -> prod1_write_(m-1) \beta_{m-1} L,
```

где * — любой символ (значит, таких команд будет столько же, сколько символов в алфавите).

Машина закончит свою работу в состоянии prod1_write_1. Вернём каретку на начало строки.

```
prod1_write_1 * -> prod1_write_1 * L,
```

где * — любой символ (значит, таких команд будет столько же, сколько символов в алфавите).

Если преобразование алгоритма Маркова, которое мы разбираем, не конечное, установим начальное состояние машины.

prod1_write_1
$$\Lambda$$
 -> prod1_s_0 Λ R

Если преобразование конечное («с точкой»), установим конечное состояние машины:

prod1_write_1
$$\Lambda$$
 -> q_end Λ R

Построение машины Тьюринга, выполняющей нормальный алгоритм Маркова

Чтобы получить конечную машину Тьюринга, выполняющую заданный алгоритм, необходимо каждое преобразование алгоритма Маркова «разобрать» на машину Тьюринга для поиска и замены слов данного преобразования.

Начальным состоянием всей машины будет prod1_s_0 — начальное состояние машины поиска слова из первого преобразования. Переход к последующему преобразованию будет происходить через состояние prodX_error, означающему, что искомое слово в строке не найдено, и нужно искать следующее.

Таким образом, можно построить такую машину Тьюринга TM, что $TM = \{Q, \Sigma, E, q_0, F\}$, где Q — конечный набор состояний машины, складываемый из состояний всех автоматов поиска и машин замены слова, Σ — алфавит данного алгоритма Маркова, E — конечный набор преобразований машины Тьюринга, складывающийся из описанных выше преобразований для каждого преобразования нормального алгоритма, q_0 — начальное состояние машины (prod1_s_0), F — набор финальных состояний машины Тьюринга.