# **Combinatorial Reciprocity Theorems**



Matthias Beck

San Francisco State University

math.sfsu.edu/beck

Based on joint work with

Thomas Zaslavsky

Binghamton University (SUNY)

"In mathematics you don't understand things. You just get used to them."

John von Neumann (1903–1957)

#### The Theme



#### The Theme



- ► Two-for-one charm of combinatorial reciprocity theorems
- "Big picture" motivation: understand/classify these polynomials

$$G = (V, E)$$
 — graph (without loops)

$$k$$
-coloring of  $G$  — mapping  $\boldsymbol{x} \in \{1, 2, \dots, k\}^V$ 

$$G = (V, E)$$
 — graph (without loops)

Proper k-coloring of  $G - \mathbf{x} \in \{1, 2, ..., k\}^V$  such that  $x_i \neq x_j$  if  $ij \in E$ 

$$\chi_G(k) := \# (proper \ k\text{-colorings of } G)$$



$$G = (V, E)$$
 — graph (without loops)

Proper k-coloring of  $G - \mathbf{x} \in \{1, 2, \dots, k\}^V$  such that  $x_i \neq x_j$  if  $ij \in E$ 

$$\chi_G(k) := \# (proper \ k\text{-colorings of } G)$$



$$\chi_{K_3}(k) = \mathbf{k} \cdots$$

$$G = (V, E)$$
 — graph (without loops)

Proper k-coloring of  $G - \mathbf{x} \in \{1, 2, ..., k\}^V$  such that  $x_i \neq x_j$  if  $ij \in E$ 

$$\chi_G(k) := \# (proper \ k\text{-colorings of } G)$$



$$\chi_{K_3}(k) = \frac{\mathbf{k}}{(k-1)} \cdots$$

$$G = (V, E)$$
 — graph (without loops)

Proper k-coloring of  $G - \mathbf{x} \in \{1, 2, ..., k\}^V$  such that  $x_i \neq x_j$  if  $ij \in E$ 

$$\chi_G(k) := \# (proper \ k\text{-colorings of } G)$$



$$\chi_{K_3}(k) = k(k-1)(k-2)$$



Theorem (Birkhoff 1912, Whitney 1932)  $\chi_G(k)$  is a polynomial in k.







$$\chi_{K_3}(k) = k(k-1)(k-2)$$

Theorem (Birkhoff 1912, Whitney 1932)  $\chi_G(k)$  is a polynomial in k.









 $|\chi_{K_3}(-1)|=6$  counts the number of acyclic orientations of  $K_3$ .



$$\chi_{K_3}(k) = k(k-1)(k-2)$$

Theorem (Birkhoff 1912, Whitney 1932)  $\chi_G(k)$  is a polynomial in k.









 $|\chi_{K_3}(-1)| = 6$  counts the number of acyclic orientations of  $K_3$ .

Theorem (Stanley 1973)  $(-1)^{|V|}\chi_G(-k)$  equals the number of pairs  $(\alpha, \boldsymbol{x})$  consisting of an acyclic orientation  $\alpha$  of G and a compatible k-coloring  $\boldsymbol{x}$ . In particular,  $(-1)^{|V|}\chi_G(-1)$  equals the number of acyclic orientations of G.



# If you get bored. . .

- Show that the coefficients of  $\chi_G$  alternate in sign. [old news]
- Show that the absolute values of the coefficients form a unimodal sequence. [J. Huh, arXiv:1008.4749]
- $\blacktriangleright$  Show that  $\chi_G(4)>0$  for any planar graph G. [impressive with or without a computer
- Show that  $\chi_G$  has no real root  $\geq 4$ . [open]
- Classify chromatic polynomials. [wide open]

$$\text{M\"obius function } \mu(F) := \begin{cases} 1 & \text{if } F = \mathbb{R}^d \\ -\sum_{G\supsetneq F} \mu(G) & \text{otherwise} \end{cases}$$

Characteristic polynomial 
$$p_{\mathcal{H}}(k) := \sum_{F \in \mathcal{L}(\mathcal{H})} \mu(F) \, k^{\dim F}$$





$$\text{M\"obius function } \mu(F) := \begin{cases} 1 & \text{if } F = \mathbb{R}^d \\ -\sum_{G\supsetneq F} \mu(F) & \text{otherwise} \end{cases}$$

Characteristic polynomial 
$$p_{\mathcal{H}}(k) := \sum_{F \in \mathcal{L}(\mathcal{H})} \mu(F) \, k^{\dim F}$$





$$\text{M\"obius function } \mu(F) := \begin{cases} 1 & \text{if } F = \mathbb{R}^d \\ -\sum_{G\supsetneq F} \mu(F) & \text{otherwise} \end{cases}$$

Characteristic polynomial 
$$p_{\mathcal{H}}(k) := \sum_{F \in \mathcal{L}(\mathcal{H})} \mu(F) \, k^{\dim F}$$





$$\text{M\"obius function } \mu(F) := \begin{cases} 1 & \text{if } F = \mathbb{R}^d \\ -\sum_{G\supsetneq F} \mu(F) & \text{otherwise} \end{cases}$$

Characteristic polynomial 
$$p_{\mathcal{H}}(k) := \sum_{F \in \mathcal{L}(\mathcal{H})} \mu(F) \, k^{\dim F}$$





$$\text{M\"obius function } \mu(F) := \begin{cases} 1 & \text{if } F = \mathbb{R}^d \\ -\sum_{G\supsetneq F} \mu(F) & \text{otherwise} \end{cases}$$

Characteristic polynomial 
$$p_{\mathcal{H}}(k) := \sum_{F \in \mathcal{L}(\mathcal{H})} \mu(F) \, k^{\dim F}$$





$$\text{M\"obius function } \mu(F) := \begin{cases} 1 & \text{if } F = \mathbb{R}^d \\ -\sum_{G\supsetneq F} \mu(F) & \text{otherwise} \end{cases}$$

Characteristic polynomial 
$$p_{\mathcal{H}}(k) := \sum_{F \in \mathcal{L}(\mathcal{H})} \mu(F) \, k^{\dim F} = k^2 - 3k + 2$$







$$p_{\mathcal{H}}(k) = \sum_{F \in \mathcal{L}(\mathcal{H})} \mu(F) k^{\dim F} = k^2 - 3k + 2$$

Note that  $\mathcal{H}$  divides  $\mathbb{R}^2$  into  $p_{\mathcal{H}}(-1) = 6$  regions...



$$p_{\mathcal{H}}(k) = \sum_{F \in \mathcal{L}(\mathcal{H})} \mu(F) k^{\dim F} = k^2 - 3k + 2$$

Note that  $\mathcal{H}$  divides  $\mathbb{R}^2$  into  $p_{\mathcal{H}}(-1) = 6$  regions...

Theorem (Zaslavsky 1975)  $(-1)^d p_{\mathcal{H}}(-1)$  equals the number of regions into which a hyperplane arrangement  $\mathcal{H}$  divides  $\mathbb{R}^d$ .



### If you get bored. . .

- ightharpoonup Compute  $p_{\mathcal{H}}(k)$  for [old news]
  - the Boolean arrangement  $\mathcal{H} = \{x_i = 0 : 1 \leq j \leq d\}$
  - the braid arrangement  $\mathcal{H} = \{x_i = x_k : 1 \leq j < k \leq d\}$
  - an arrangement  $\mathcal{H}$  in  $\mathbb{R}^d$  of n hyperplanes in general position.
- Show that the coefficients of  $p_{\mathcal{H}}(k)$  alternate in sign. [old news]
- Show that the absolute values of the coefficients form a unimodal sequence. [J. Huh, arXiv:1008.4749]
- Classify characteristic polynomials. [wide open]

Lattice polytope  $\mathcal{P} \subset \mathbb{R}^d$  – convex hull of finitely points in  $\mathbb{Z}^d$ 

For 
$$k \in \mathbb{Z}_{>0}$$
 let  $L_{\mathcal{P}}(k) := \# \left( k\mathcal{P} \cap \mathbb{Z}^d \right)$ 

Lattice polytope  $\mathcal{P} \subset \mathbb{R}^d$  – convex hull of finitely points in  $\mathbb{Z}^d$ 

For 
$$k \in \mathbb{Z}_{>0}$$
 let  $L_{\mathcal{P}}(k) := \# \left( k \mathcal{P} \cap \mathbb{Z}^d \right)$ 

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x + y \le 1 \}$$

$$L_{\Delta}(k) = \dots$$



Lattice polytope  $\mathcal{P} \subset \mathbb{R}^d$  – convex hull of finitely points in  $\mathbb{Z}^d$ 

For 
$$k \in \mathbb{Z}_{>0}$$
 let  $L_{\mathcal{P}}(k) := \# \left( k \mathcal{P} \cap \mathbb{Z}^d \right)$ 

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x + y \le 1 \}$$

$$L_{\Delta}(k) = {k+2 \choose 2} = \frac{1}{2}(k+1)(k+2)$$



Lattice polytope  $\mathcal{P} \subset \mathbb{R}^d$  – convex hull of finitely points in  $\mathbb{Z}^d$ 

For 
$$k \in \mathbb{Z}_{>0}$$
 let  $L_{\mathcal{P}}(k) := \# \left( k \mathcal{P} \cap \mathbb{Z}^d \right)$ 

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x + y \le 1 \}$$

$$L_{\Delta}(k) = {k+2 \choose 2} = \frac{1}{2}(k+1)(k+2)$$

$$L_{\Delta}(-k) = \binom{k-1}{2}$$



Lattice polytope  $\mathcal{P} \subset \mathbb{R}^d$  – convex hull of finitely points in  $\mathbb{Z}^d$ 

For 
$$k \in \mathbb{Z}_{>0}$$
 let  $L_{\mathcal{P}}(k) := \# \left( k \mathcal{P} \cap \mathbb{Z}^d \right)$ 

#### Example:

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2 : x, y \ge 0, x + y \le 1 \}$$

$$L_{\Delta}(k) = {k+2 \choose 2} = \frac{1}{2}(k+1)(k+2)$$

$$L_{\Delta}(-k) = {\binom{k-1}{2}} = L_{\Delta^{\circ}}(k)$$



For example, the evaluations  $L_{\Delta}(-1) = L_{\Delta}(-2) = 0$  point to the fact that neither  $\Delta$  nor  $2\Delta$  contain any interior lattice points.

Lattice polytope  $\mathcal{P} \subset \mathbb{R}^d$  – convex hull of finitely points in  $\mathbb{Z}^d$ 

For 
$$k \in \mathbb{Z}_{>0}$$
 let  $L_{\mathcal{P}}(k) := \# \left( k\mathcal{P} \cap \mathbb{Z}^d \right)$ 



Theorem (Ehrhart 1962)  $L_{\mathcal{P}}(k)$  is a polynomial in k.

Lattice polytope  $\mathcal{P} \subset \mathbb{R}^d$  – convex hull of finitely points in  $\mathbb{Z}^d$ 

For 
$$k \in \mathbb{Z}_{>0}$$
 let  $L_{\mathcal{P}}(k) := \# \left( k \mathcal{P} \cap \mathbb{Z}^d \right)$ 



Theorem (Ehrhart 1962)  $L_{\mathcal{P}}(k)$  is a polynomial in k.

Theorem (Macdonald 1971)  $(-1)^{\dim \mathcal{P}} L_{\mathcal{P}}(-k)$ enumerates the interior lattice points in  $k\mathcal{P}$ .



### If you get bored. . .

- ▶ Show how the previous page for d=2 follows from Pick's Theorem.
- ► Compute the Ehrhart polynomial of your favorite lattice polytope. Here are two of my favorites:
  - the cross polytope, the convex hull of the unit vectors in  $\mathbb{R}^d$  and their negatives [old news]
  - the Birkhoff-von Neumann polytope of all doubly-stochastic  $n \times n$  matrices. [open for  $n \ge 10$ ]
- Classify Ehrhart polynomials of lattice polygons. [Scott 1976]
- ► Classify Ehrhart polynomials of lattice 3-polytopes. [open]

### **Combinatorial Reciprocity**

Common theme: a combinatorial function, which is a priori defined on the positive integers,

- (1) can be algebraically extended beyond the positive integers (e.g., because it is a polynomial), and
- (2) has (possibly quite different) meaning when evaluated at negative integers.

## The Mother of All Combinatorial Reciprocity Theorems

Polyhedron  $\mathcal{P}$  – intersection of finitely many halfspaces

$$f_{\mathcal{P}}(k) := \sum_{\mathcal{F} \text{ face of } \mathcal{P}} k^{\dim \mathcal{F}} = k^3 + 6k^2 + 12k + 8$$

Note that  $f_{\mathcal{P}}(-1) = 1 \dots$ 



# The Mother of All Combinatorial Reciprocity Theorems

Polyhedron P – intersection of finitely many halfspaces

$$f_{\mathcal{P}}(k) := \sum_{\mathcal{F} \text{ face of } \mathcal{P}} k^{\dim \mathcal{F}} = k^3 + 5k^2 + 8k + 4$$

Note that  $f_{\mathcal{P}}(-1) = 0 \dots$ 



### The Mother of All Combinatorial Reciprocity Theorems

Polyhedron P – intersection of finitely many halfspaces

$$f_{\mathcal{P}}(k) := \sum_{\mathcal{F} \text{ face of } \mathcal{P}} k^{\dim \mathcal{F}} = k^3 + 5k^2 + 8k + 4$$

Note that  $f_{\mathcal{P}}(-1) = 0 \dots$ 

Theorem (Euler-Poincaré) For any polyhedron,  $f_{\mathcal{P}}(-1) = 0$  or  $\pm 1$ .







# **Graph Coloring a la Ehrhart**

$$\chi_{K_2}(k) = k(k-1) \dots$$





# **Graph Coloring a la Ehrhart**

$$\chi_{K_2}(k) = k(k-1) \dots$$

$$k+1$$

$$K_2$$

$$k+1$$

$$k+1$$

$$K_2$$

$$k+1$$
(Blass–Sagan)

$$\chi_G(k) = \#((\{1, 2, \dots, k\}^V \setminus \mathcal{H}) \cap \mathbb{Z}^V)$$

### **Graph Coloring a la Ehrhart**



$$\chi_G(k) = \# \Big( \big( \{1, 2, \dots, k\}^V \setminus \mathcal{H} \big) \cap \mathbb{Z}^V \Big)$$
$$= \# \Big( (k+1) \left( \square^{\circ} \setminus \mathcal{H} \right) \cap \mathbb{Z}^V \Big)$$

where  $\square$  is the unit cube in  $\mathbb{R}^V$ .

## Stanley's Theorem a la Ehrhart

$$\chi_G(k) = \# \left( (k+1) \left( \Box^{\circ} \setminus \mathcal{H} \right) \cap \mathbb{Z}^V \right)$$

Write  $\Box^\circ\setminus\mathcal{H}=\bigcup_j\mathcal{P}_j^\circ$ , then by Ehrhart–Macdonald reciprocity  $(-1)^{|V|}\chi_G(-k)=\sum_jL_{\overline{P_j}}(k-1)$ 

$$(-1)^{|V|}\chi_G(-k) = \sum_j L_{\overline{P_j}}(k-1)$$



So  $(-1)^{|V|}\chi_G(-k)$  counts lattice points in  $k\square$  with multiplicity #regions.

## Stanley's Theorem a la Ehrhart

$$\chi_G(k) = \# \left( (k+1) \left( \Box^{\circ} \setminus \mathcal{H} \right) \cap \mathbb{Z}^V \right)$$

Write  $\Box^{\circ} \setminus \mathcal{H} = \bigcup_{j} \mathcal{P}_{j}^{\circ}$ , then by Ehrhart–Macdonald reciprocity

 $(-1)^{|V|}\chi_G(-k) = \sum_j L_{\overline{P_j}}(k-1)$ 

#### Greene's observation

region of  $\mathcal{H}(G) \iff$  acyclic orientation of G

$$x_i < x_j \iff i \longrightarrow j$$



Stanley's Theorem  $(-1)^{|V|}\chi_G(-k)$  equals the number of pairs  $(\alpha, \mathbf{x})$  consisting of an acyclic orientation  $\alpha$  of G and a compatible k-coloring  $\mathbf{x}$ .

## **Inside-Out Polytopes**

Underlying setup of our proof of Stanley's theorem:

$$\mathcal{P}$$
 — (rational) polytope in  $\mathbb{R}^d$ 

$$\mathcal{P}^{\circ} \setminus \mathcal{H} = \bigcup_{j} \mathcal{P}_{j}^{\circ}$$

 $\mathcal{H}$  — (rational) hyperplane arrangement

Say we're interested in the counting function

$$f(k) := \# \left( k \left( \mathcal{P}^{\circ} \setminus \mathcal{H} \right) \cap \mathbb{Z}^d \right) = \sum_{j} L_{P_j^{\circ}}(k) .$$

### **Inside-Out Polytopes**

Underlying setup of our proof of Stanley's theorem:

$$\mathcal{P}$$
 — (rational) polytope in  $\mathbb{R}^d$ 

$$\mathcal{H}$$
 — (rational) hyperplane arrangement

$$\mathcal{P}^{\circ} \setminus \mathcal{H} = \bigcup_{j} \mathcal{P}_{j}^{\circ}$$

Say we're interested in the counting function

$$f(k) := \# \left( k \left( \mathcal{P}^{\circ} \setminus \mathcal{H} \right) \cap \mathbb{Z}^d \right) = \sum_j L_{P_j^{\circ}}(k) .$$

Ehrhart says that this is a (quasi-)polynomial, and by Ehrhart-Macdonald reciprocity,

$$f(-k) = (-1)^d \sum_{j} L_{\overline{P_j}}(k)$$

i.e.,  $(-1)^d f(-k)$  counts lattice points in  $k\mathcal{P}$  with multiplicity #regions.

# Make-Your-Own Combinatorial Reciprocity Theorem



### **Applications**

- Nowhere-zero flow polynomials (MB–Zaslavsky 2006, Breuer–Dall 2011, Breuer-Sanyal 2011)
- Magic & Latin squares (MB–Zaslavsky 2006, MB–Van Herick 2011)
- Antimagic graphs (MB–Zaslavsky 2006, MB–Jackanich 201?)
- Nowhere-harmonic & bivariable graph colorings (MB-Braun 2011, MB-Chavin-Hardin 201?)
- Golomb rulers (MB–Bogart–Pham 201?)
- . . . with lots of open questions.

### **Golomb Rulers**

Sequences of n distinct integers whose pairwise differences are distinct



#### **Golomb Rulers**

Sequences of n distinct integers whose pairwise differences are distinct



- Natural applications to error-correcting codes and phased array radio antennas
- ► Classical studies in additive number theory, more recent studies on existence problems (e.g., optimal Golomb rulers)

#### **Golomb Rulers**

Sequences of n distinct integers whose pairwise differences are distinct



- Natural applications to error-correcting codes and phased array radio antennas
- ► Classical studies in additive number theory, more recent studies on existence problems (e.g., optimal Golomb rulers)

$$g_m(t) := \# \left\{ \boldsymbol{x} \in \mathbb{Z}^{m+1} : \begin{array}{l} 0 = x_0 < x_1 < \dots < x_{m-1} < x_m = t \\ \text{all } x_j - x_k \text{ distinct} \end{array} \right\}$$

#### **Enumeration of Golomb Rulers**

### Goal Study/compute

$$g_{m}(t) := \# \left\{ \boldsymbol{x} \in \mathbb{Z}^{m+1} : \begin{array}{l} 0 = x_{0} < x_{1} < \cdots < x_{m-1} < x_{m} = t \\ \text{all } x_{j} - x_{k} \text{ distinct} \end{array} \right\}$$

$$= \# \left\{ \boldsymbol{z} \in \mathbb{Z}_{>0}^{m} : \begin{array}{l} z_{1} + z_{2} + \cdots + z_{m} = t \\ \sum_{j \in U} z_{j} \neq \sum_{j \in V} z_{j} \text{ for all dpcs } U, V \subset [m] \end{array} \right\}$$

where dpcs means disjoint proper consecutive subset.

#### **Enumeration of Golomb Rulers**

### Goal Study/compute

$$g_{m}(t) := \# \left\{ \boldsymbol{x} \in \mathbb{Z}^{m+1} : \begin{array}{l} 0 = x_{0} < x_{1} < \dots < x_{m-1} < x_{m} = t \\ \text{all } x_{j} - x_{k} \text{ distinct} \end{array} \right\}$$

$$= \# \left\{ \boldsymbol{z} \in \mathbb{Z}_{>0}^{m} : \begin{array}{l} z_{1} + z_{2} + \dots + z_{m} = t \\ \sum_{j \in U} z_{j} \neq \sum_{j \in V} z_{j} \text{ for all dpcs } U, V \subset [m] \end{array} \right\}$$

where dpcs means disjoint proper consecutive subset.



# **Golomb Ruler Reciprocity**

Real Golomb ruler —  $z \in \mathbb{R}^m_{>0}$  satisfying  $z_1 + z_2 + \cdots + z_m = t$  and

$$\sum_{j \in U} z_j \neq \sum_{j \in V} z_j \text{ for all dpcs } U, V \subset [m]$$

### **Golomb Ruler Reciprocity**

Real Golomb ruler —  $z \in \mathbb{R}^m_{\geq 0}$  satisfying  $z_1 + z_2 + \cdots + z_m = t$  and

$$\sum_{j \in U} z_j \neq \sum_{j \in V} z_j \text{ for all dpcs } U, V \subset [m]$$

 $oldsymbol{z}, \mathbf{w} \in \mathbb{R}^m_{\geq 0}$  are combinatorially equivalent if for any dpcs  $U, V \subset [m]$ 

$$\sum_{j \in U} z_j < \sum_{j \in V} z_j \qquad \iff \qquad \sum_{j \in U} w_j < \sum_{j \in V} w_j$$

Golomb multiplicty of  $z \in \mathbb{Z}_{\geq 0}^m$  — number of combinatorially different real Golomb rulers in an  $\epsilon$ -neighborhood of z

### Golomb Ruler Reciprocity

Real Golomb ruler —  $z \in \mathbb{R}^m_{>0}$  satisfying  $z_1 + z_2 + \cdots + z_m = t$  and

$$\sum_{j \in U} z_j \neq \sum_{j \in V} z_j \text{ for all dpcs } U, V \subset [m]$$

 $oldsymbol{z}, \mathbf{w} \in \mathbb{R}^m_{\geq 0}$  are combinatorially equivalent if for any dpcs  $U, V \subset [m]$ 

$$\sum_{j \in U} z_j < \sum_{j \in V} z_j \qquad \iff \qquad \sum_{j \in U} w_j < \sum_{j \in V} w_j$$

Golomb multiplicty of  $z \in \mathbb{Z}_{\geq 0}^m$  — number of combinatorially different real Golomb rulers in an  $\epsilon$ -neighborhood of  $\boldsymbol{z}$ 

Theorem  $g_m(t)$  is a quasipolynomial in t whose evaluation  $(-1)^m g_m(-t)$ equals the number of rulers in  $\mathbb{Z}_{\geq 0}^m$  of length t , each counted with its Golomb multiplicity. Furthermore,  $(-1)^m g_m(0)$  equals the number of combinatorially different Golomb rulers.

### **More Golomb Counting**

- ► Natural correspondence to certain mixed graphs
- Regions of the Golomb inside-out polytope correspond to acyclic orientations
- General reciprocity theorem for mixed graphs

### For much more. . .

math.sfsu.edu/beck/crt.html





Copyright 3 2003 United Feature Syndicate, Inc.