

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

$$\alpha-h=\alpha_1+h_1$$
, or $h+h_1=\alpha-\alpha_1$ (2).

But $\lambda = 40^{\circ}$, $\alpha = 343^{\circ}$, $\alpha_1 = 245^{\circ} 45'$. $\delta = -30^{\circ} 12'$, $\delta_1 = -26^{\circ} 12'$.

$$...$$
 662065cosh $-$ 687337cosh $_1 = 39538...$ (3).

$$\cos(h+h_1) = \cos 97^{\circ} \ 15' = -.12620....(4).$$

Let $\cos h = x$, $\cos h_1 = y$. From (4) $y = -.12620x \pm .992005 \sqrt{1-x^2}$. This in (3) gives, $748806.9294x \pm 681841.7407 \sqrt{1-x^2} = 39538$.

- $\therefore x^2 .057736x = .451771.$ $\therefore x = .701626 \text{ or } .643890.$
- $h=45^{\circ} 26' 31''$ or $130^{\circ} 4' 57''$. The first value of h gives h, positive.
- h=3 hours, 1 minute, 46 seconds.
- \cdot : sidereal time= $\alpha-h=19$ hours, 50 minutes, 14 seconds.

37. Proposed by F. M. SHIELDS, Coopwood, Mississippi.

A gentleman owned and lived in the center, R, of a rectangular tract of land whose diagonal, D, was 350 rods, dividing the tract into two equal right-angled triangles, in each of which is inscribed the largest square field, F and F_1 , possible; the north and south boundary lines of the two square fields being extended and joined formed a little rectangular lot, R, in the center around the residence. The difference in the area of the entire rectangular tract and the sum of the areas of the two square fields, F, F_1 , is 187½ acres. Give the dimensions and area of the entire tract, and one of the square fields, F or F_1 .

I. Solution by G. B. M. ZERR, A. M., Ph. D., Professor of Mathematics and Applied Science in Texarkana College, Texarkana, Arkansas-Texas.

Let
$$AB=a$$
, $AD=b$, $AH=x$. $\therefore a^2+b^2=122500$(1). $ab-2x^2=187\frac{1}{2}$ acres=30000 square rods...(2).

$$ax+bx=ab$$
 (3),

from triangles BAD and BEK.

From (3) $x^2(a^2+2ab+b^2)=a^2b^2.....(4)$.

(1) and (2) in (4) gives $62500x^2 = 900000000$.

- $\therefore x^2 = 14400 \text{ square rods} = 90 \text{ acres.}$
- $\therefore x=120 \text{ rods}.$
- \therefore ab=58800 square rods=367 acres.

$$a+b=490 \text{ rods.}$$
 $a-b=70 \text{ rods.}$ $a=280, b=210.$

II. Solution by ISAAC L. BEVERAGE, Monterey, Virginia.

If a=AB and b=AD, then ab=area of entire farm. Now ab/(a+b)=AH, since it is the side of an inscribed square of a triangle.

 $[ab/(a+b)]^2$ = the area of F or F_1 . Hence, we readily obtain,

$$ab-2[ab/(a+b)]^2=187\frac{1}{2}\times 160....(1),$$

and
$$\sqrt{a^2 + b^2} = 350....(2)$$
.

Whence a = 280 rods, and b = 210 rods; also $ab = 58800 \text{ square rods} = 367\frac{1}{2}$ acres. ... ab/(a+b) = 120 rods, and $[ab/(a+b)]^2 = 14400 \text{ square rods} = 90 \text{ acres}$.

III. Solution by A. H. BELL, Box 184, Hillsboro, Illinois.

Let 350 rods=87½ chains=2a, DK=a-y and BK=a+y. Also, 187½ acres=1875 square chains= b^2 , and side of square=x; then $DG=EB=\sqrt{(a+y)^2-x^2}$, $DH=BF=\sqrt{(a-y)^2-x^2}$,

$$(1/(\overline{a+y})^2-x^2+x)^2+(1/(\overline{a-y})^2-x^2+x)^2=4a^2$$
....(1).

Plainly,
$$x_V (\overline{a+y})^2 - x^2 + x_V (\overline{a-y})^2 - x^2 = b^2 \dots (2)$$
.

(2) \times 2, and subtracted from (1), when expanded, $y^2 = a^2 - b^2 \dots (3)$.

$$a+y: a-y: \sqrt{(a+y)^2-x^2}: x.$$
 $\therefore x^2=(a^2-y^2)^2/2(a^2+y^2)...(4).$

Substituting values, y=6.25 chains, $x^2=90$ acres, x=30 chains, EB=DG=40 chains, BF=DH=22.5 chains, AB=DC=70 chains, $AD=BC=52\frac{1}{2}$ chains, $DC\times AD=367\frac{1}{2}$ acres, in the rectangle.

Also solved by P. S. BERG, A. H. HOLMES, and B. F. YANNEY.

PROBLEMS.

45. Proposed by EDWARD R. ROBBINS, Master in Mathematics and Physics, Lawrenceville School Lawrenceville, New Jersey.

Required several numbers each of which, divided by 10 leaves a remainder 9; by 9 leaves 8; by 8 leaves 7; by 7 leaves 6, and so on. Also find the least such number which, when divided by 28 leaves 27; by 27 leaves 26; by 26 leaves 25; by 25 leaves 24, et cetera ad unum.

46. Proposed by A. H. HOLMES, Box 963, Brunswick, Maine.

The base BC of the triangle ABC is 2c, the sum of the two sides, AB and BC, is 2a. BP is always perpendicular to AB and cuts AC in P. What is the locus of the point P?

47. Proposed by S. HART WRIGHT, A. M., Ph. D., Penn Yan, New York.

In longitude 75 degrees west of Greenwich, latitude 43 degrees, 30 minutes north on January 1, 1895, at 3 o'clock A. M., local time. What points of the ecliptic were then rising, setting and on the meridian? Any other necessary data may be taken from an ephemeris.

48. Proposed by F. P. MATZ, M. Sc., Ph. D., Professor of Mathematics and Astronomy in Irving College, Mechanicsburg, Pennsylvania.

In case of *mischance*, with what force would the cow, weighing w=700 pounds, jumping over the moon, have struck Her Lunar Majesty in the face?