Income Analysis OBPD

```
#list of files in dir.
contigency.table.dir <- "/Users/omachowda/Google Drive/StatCom 3/OBPD/Contingency table</pre>
s/Income folder"
cont.tables.list <- list.files(contigency.table.dir)</pre>
#take only .csv files
cont.tables.list <- cont.tables.list[grep(cont.tables.list,pattern = ".csv")]</pre>
#get table names
table.name <- gsub(cont.tables.list,pattern = ".csv",replacement = "");</pre>
#assign table to name
for(i in 1:length(table.name)){
  tab <- read.csv(cont.tables.list[i]);</pre>
  tab \leftarrow tab[-c(nrow(tab)), -c(1, ncol(tab))]; #get rid of row and column sums and first 2
rows
  assign(table.name[i],tab)
}
SIS <- dget("/Users/omachowda/Google Drive/StatCom 3/OBPD/Robin/Sequential Importance Sa
mpling Function.R") #import SIS function
## Warning: package 'Rmpfr' was built under R version 3.2.5
## Loading required package: gmp
## Warning: package 'gmp' was built under R version 3.2.5
## Attaching package: 'gmp'
## The following objects are masked from 'package:base':
##
##
       %*%, apply, crossprod, matrix, tcrossprod
## C code of R package 'Rmpfr': GMP using 64 bits per limb
## Attaching package: 'Rmpfr'
## The following objects are masked from 'package:stats':
##
##
       dbinom, dnorm, dpois, pnorm
```

```
## The following objects are masked from 'package:base':
##

cbind, pmax, pmin, rbind
```

```
#facilities to age output
```

Example of how table is simulated

```
SIS(get(table.name[1]),dist = "hyper")$upper
```

```
##
        [,1] [,2] [,3] [,4]
## [1,]
          15
                7
                      4
## [2,]
          58
                34
                     16
                           9
## [3,]
          61
                25
                     17
                          29
```

```
SIS(get(table.name[1]),dist = "hyper")$lower
```

```
## [,1] [,2] [,3] [,4]
## [1,] 0 0 0 0
## [2,] 0 0 0 0
## [3,] 0 0 0 0
```

```
SIS(get(table.name[1]),dist = "hyper")$X
```

```
##
        [,1] [,2] [,3] [,4] [,5]
                      3
                           3
## [1,]
           6
                3
## [2,]
                           4
          26
               16
                     8
                                4
## [3,]
          34
               17
                     10
                          13
                               53
## [4,]
          27
                      5
                          13
                               60
               10
```

```
SIS(get(table.name[1]),dist = "hyper")$p.value
```

```
## 1 'mpfr' number of precision 128 bits
## [1] 0
```

```
#reference character items as objects
SIS.results <- lapply(sapply(table.name,get),function(x) SIS(x,dist = "hyper")$p.value)</pre>
```

SIS P-values for all questions based on income

```
SIS.results
```

```
## $\income and facilities\
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $\income and oversee sports core\
## 1 'mpfr' number of precision 128
                                       bits
## [1] 1
##
## $\income and park areas analysis complete\
## 1 'mpfr' number of precision 128
## [1] 0.10631787240688266260983289763525813178
##
## $\income and recreation programs\
## 1 'mpfr' number of precision 128
                                       bits
## [1] 1
##
## $\income and satisfaction with district\
## 1 'mpfr' number of precision 128
## [1] 1
##
## $\income and satisfaction with facilities\
## 1 'mpfr' number of precision 128
## [1] 1
##
## $\income and satisfaction with maintenence\
## 1 'mpfr' number of precision 128
## [1] 0
##
## $`income and satisfaction with outdoor amenities and parks`
## 1 'mpfr' number of precision 128
## [1] 1
##
## $\income and satisfaction with programs\
## 1 'mpfr' number of precision 128
## [1] 1
##
## $`income and satisfaction with staff`
## 1 'mpfr' number of precision 128
## [1] 0.9567847910166206783076073545828345655049
##
## $\income and special events\
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
##
## $\income and work with sports core\
## 1 'mpfr' number of precision 128
                                       bits
## [1] 0
```

```
##### M^2 Test #####
corr_calc <- function(df){</pre>
  columns = length(df)
  new_df = data.frame()
 v1=c()
 v2=c()
  z = 0
  for (i in 1:4){
    for (j in 1:columns){
      new_df <- rbind(new_df, c(i,j, df[i,j]))</pre>
      z = z + df[i,j]
    }
  }
  for (i in 1:(4*columns)){
    v1 = append(v1, c(rep(new_df[i,1],new_df[i,3])))
  for (i in 1:(4*columns)){
    v2 = append(v2, c(rep(new_df[i,2],new_df[i,3])))
  }
  fit = cor(x = v1, y = v2)
 M = (z-1)*(fit)
  p = pchisq(M, 12)
  return (p)
}
resulted = lapply(sapply(table.name,get),FUN= corr calc)
```

M^2 p-values for all questions based on income

resulted

```
## $\income and facilities\
## [1] 0.9999831
##
## $\income and oversee sports core\
## [1] 0.9999992
##
## $\income and park areas analysis complete\
## [1] 0.9999997
##
## $\income and recreation programs\
## [1] 0.9987597
##
## $\income and satisfaction with district\
## [1] 0.831943
## $\income and satisfaction with facilities\
## [1] 0.9999978
## $`income and satisfaction with maintenence`
## [1] 0.03205391
##
## $`income and satisfaction with outdoor amenities and parks`
## [1] 0.9999755
## $\income and satisfaction with programs\
## [1] 0
##
## $`income and satisfaction with staff`
## [1] 0.9439812
##
## $\income and special events\
## [1] 0.06394473
##
## $\income and work with sports core\
## [1] 0.9216534
```

```
par(mfrow=c(1,1))
```

Mosaic Plots for questions based on income

```
for( i in 1:12){
  mosaicplot(x = get(table.name[i]), shade = TRUE,color = TRUE, main= table.name[i])
}
```

income and facilities

income and oversee sports core

income and park areas analysis complete

income and recreation programs

income and satisfaction with district

income and satisfaction with facilities

income and satisfaction with maintenence

income and satisfaction with outdoor amenities and parks

income and satisfaction with programs

income and satisfaction with staff

income and special events

income and work with sports core

