Forecasting the spatio-temporal uncoupling of bumblebee-flower interaction networks

Michael D. Catchen ^{1,2} Francis Banville ^{3,4,2} Paul CaraDonna ^{5,6} Dominique Caron ^{1,2}

Philippe Desjardins-Proulx ^{3,2} Norma R. Forero-Muñoz ^{3,2} Andrew Gonzalez ^{1,2} Dominique Gravel ^{4,2}

Jane E. Ogilvie ⁵ Laura Pollock ^{1,2} Timothée Poisot ^{3,2} Tanya Strydom ^{3,2} Julian Resasco ⁷

¹ McGill University ² Québec Centre for Biodiversity Sciences ³ Université de Montréal ⁴ Université de Sherbrooke ⁵ Rocky Mountain Biological Laboratory ⁶ Chicago Bontanic Garden ⁷ University of Colorado Boulder

Correspondance to:

Michael D. Catchen — michael.catchen@mail.mcgill.ca

This work is released by its authors under a CC-BY 4.0 license

Last revision: October 24, 2021

Purpose: This template provides a series of scripts to render a markdown document into an interactive website and a series of PDFs.

Motivation: It makes collaborating on text with GitHub easier, and means that we never need to think about the output.

Internals: GitHub actions and a series of python scritpts. The markdown is handled with pandoc.

1	title ideas: Forecasting the spatio-temporal uncoupling of bumblebee-flower interaction networks
2	Introduction
3	Species interactions and climate change.
4	Two dimensions: spatial and temporal.
5	1) Elevation gradients.
6	range shifts in latitude context
7	apply this to elevational gradients
8	dispersal capacity and range shifts

- 2) Phenological uncoupling (Olesen2011MisFor?).
- · Abundance is a function of time in the year 10
- In this paper we.... combine data from a variety of sources: field data from several sites, crowd-sourced
- data (GBIF), and remotely-sensed data. to produce a spatially and temporally explict metaweb of
- bumblebee-flower interactions across Colorado. We then estimate the change in spatial and temporal
- overlap over time using the CMIP6 climate consensus forecast (Karger2017CliHig?).

Methods

[Figure 1 about here.]

Data

16

- This project involves assembly and integration of data from a variety of (both structured and unstructured)
- sources. This data can be divided into four categories: field data, GBIF data, remote-sensing data, and
- phylogenetic data.

21 Field data

- The field data consists of: (1) a seven year data-set from Rocky Mountain Biological Laboratory, consisting
- of season-long interaction and phenology data six plots along an elevation gradient. (2) a similar six year
- data set from Elk Meadows, CO, and (3) a year across a large elevation gradient at Pikes Peak.
- 25 Additional in-situ environmental sensors.
- The partitioning of this data into training, test, and validation sets if described in the *Models* section.

27 GBIF data

- 28 The data from Global Biodiversity Information Facility (GBIF) itself comes in two forms: (1) spatial
- records of bumblebee and flower records (2) sparsely available records of the plants a bee was observed on
- 30 (TODO details from Julian).

31 Remote-sensing data

- 32 The remote-sensing data consists of high-resolution LiDAR elevation data at 1 meter spatial resolution
- [(NationalEcologicalObservatoryNetworkNEON2021EleLid?);], and daily 1km resolution
- precipitation and temperature from CHELSA (Karger2021GloDai?).

35 Phylogenic data

The phylogenetic data consists of genomic barcodes available from NCBI GenBank.

A spatiotemporally explicit predictive metaweb model

- What does it mean for it to be "spatiotemporally explicit?" Well the formal definition of a metaweb is total
- 39 species pool and
- We denote the predicted probability of two species, i and j, interacting a p_{ij} . The outcome is here is to
- build a model f, or rather a set of candidate models, that take i and j and inputs, and which potentially
- combine this with .features

$$p_{ij} = f(i, j)$$

43 Candidate models

- 44 **True Neutral**: $f(i, j) = \frac{1}{\sum_{i} \sum_{j} 1} = 1/(P \cdot F)$
- ⁴⁵ *Relative-abundance (interaction neutral)*: $f(i, j) = A_i A_j$ where A_x is the relative abundance of species
- 46 X.
- Relative-abundance + environment-embedding: $f(i, j) = g(i, j, E_i, E_j)$
- 48 Relative-abundance + phylogeny-embedding: \$\$
- 49 Relative-abundance + environment-embedding + phylogeny-embedding
- 50 In gravel et al 2017

$$P(X_{iy}, X_{jy}, L_{ijy}|E_y) = P(X_{iy}, X_{jy}P(L_{ijy}|X_{iy}, X_{jy}, E_y)$$

Then decompose probability of co-occurence as

$$P(X_{iy}, X_{jy}) = P(X_{iy})P(X_{jy})$$

52 A predictive model to make spatially explicit network prediction

- The goal is two have two predictive models: interaction-predictor model and a distribution-predictor
- model (a la Strydom & Catchen et al. 2021, figure 2).
- The interaction-predictor model, $f_i(s_i, s_j, \theta_i)$ predicts interaction based on species-level features (s_i, s_j) ,
- 56 and is trained on the field-data.
- 57 These features could include Phylogeny (to be determined: how available are genomes or trees for these
- 58 species) Environment/Climate Traits (to be determined: what trait data is available, how annoying is it to
- clean) Time (only for the phenology model, see 3.2 and 3.3)
- The distribution-predictor model, $f_s(s_i, \vec{x}, t)$ is trained on GBIF data to predict the occurrence of species
- with features si at a location in space x, and time t. Many options here. Here the species level features
- 62 could be Climatic variables derived from remote sensing products. Co-occurence to make a JSDM

- 63 Potentially weighted by phenology information from field data. Time (only for the phenology model, see
- 64 3.2 and 3.3)

65 Combining distribution-predictor and interaction-predictor models

- ⁶⁶ Can split this into two based on how the distribution-predictor works. If f_s predicts co-occurrence, then
- draw the species pool first and predict interactions between the species in that pool. If f_s is a
- single-species SDM, get the occurrence probability for each species p_s and compute the probability of
- observing interaction as function of the product of occ. prob.

70 Results

- After comparing different combinations of features/model structures and finding the 'best' performing
- 72 model on validation data.

73 Figure one: spatial species pool and network prediction

- Figure that is two panels: a map of total species richness and a map of network properties across Colorado.
- 75 This model doesn't consider time, only other predictors.

76 Figure two: Phenology

- 77 Same as figure one but consists of maps but at different times of the year (e.g. March, June, August) and
- ₇₈ uses both an interaction-predictor and distribution-predictor that incorporate time into predictions

79 Figure three: Climate

- Much as climate change has shifted temperature gradients to get warmer toward the poles, it has also
- moved temperature gradients up in elevation.
- We can get a CMIP6 forecast of temperature and precipitation, and then predict how many observed
- interactions in the field data will no longer have their composing species' distributions overlap.
- ⁸⁴ Decompose temporal component of overlap from spatial component.

- **Discussion**
- 86 Acknowledgements
- 87 References

Figure 1: todo