FY1001/TFY4109/TFY4145. Institutt for fysikk, NTNU. Høsten 2015. Øving 6. Tips.

Oppgave 1 og 2.

Mekanisk likevekt, mhp translasjon og rotasjon.

Oppgave 3.

a) og b) Fire ukjente – θ_0 , S, f, N – krever fire ligninger. Ved den etterlyste grensen, $\theta = \theta_0$, har friksjonskraften f sin maksimale verdi. Statisk likevekt betyr at du kan bruke Newtons 1. lov, for translasjon og rotasjon. Alternative korrekte uttrykk for snordraget:

$$S = \frac{MgR}{r+R}\sin\theta_0 = Mg\left(\sin\theta_0 - \mu_s\cos\theta_0\right).$$

c) Nå kan du regne vinkelen θ som kjent. Det er da fire ukjente: a, S_1 , f, N. Det er ikke lenger statisk men kinetisk friksjon (glidende friksjon). Bruk N2 for translasjon og rotasjon, og pass på å bruke riktig rullebetingelse (evt "utrullingsbetingelse").

Oppgave 4.

- a) Velg kulas massesenter som referansepunkt i denne deloppgaven. Eliminer størrelsen $F\Delta t$ fra de to ligningene $\Delta p = F\Delta t$ og $\Delta L = \tau \Delta t$.
- c) Friksjonskraften f virker slik at bevegelsen går mot ren rulling. Du finner derfor retningen pf ved å vurdere om rotasjonen er for rask eller for langsom eller motsatt: om translasjonen er for langsom eller rask (dvs i forhold til ren rulling).
- d) Dreieimpulsen like etter støtet, L_0 , må være den samme som ved ren rulling, L_r , pga dreieimpulsbevarelse. Spesialtilfellet med ren rulling umiddelbart skal gi $V_r = V_0$.
- e) Translasjonshastigheten endres pga en konstant akselererende kraft. Finn akselerasjonen, og bruk denne til å bestemme t_r . Du kjenner start- og slutthastigheten, eller i alle fall sammenhengen mellom disse, fra d). Sjekk at spesialtilfellet som gir ren rulling stemmer.

EKSTRA:

- f) Total kinetisk energi er $K_{\text{trans}} + K_{\text{rot}}$. Ved ren rulling er $\omega_r = V_r/R$, og i starten er ω_0 funnet i punkt a). Finn uttrykk for total kinetisk energi K_0 (rett etter støtet) og K_r (ved ren rulling). Det kan være informativt å regne ut og analysere forholdet K_r/K_0 .
- g) Forskjøvet lengde x_r kan finnes fra gjennomsnittsfart og tiden t_r : $x_r = \langle V \rangle t_r$. Fasitsvar:

$$\Delta K = K_r - K_0 = -\frac{1}{2}MV_0^2 \cdot \frac{2}{7} \left(1 - \frac{5h}{2R} \right)^2$$
$$x_r = \frac{2V_0^2}{49\mu_k g} \left(6 + \frac{5h}{2R} \right) \left| 1 - \frac{5h}{2R} \right|$$