

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕДРА	Прикладная математика

Отчет по лабораторной работе №1 на тему:

"Методы численного решения обыкновенных дифференциальных уравнений"

Студент	ФН2-61Б		М.А. Каган
	(Группа)	(Подпись, дата)	(И. О. Фамилия)
Студент	ФН2-61Б		И.А. Яковлев
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Проверил			А. О. Колганова
		(Подпись, дата)	(И.О. Фамилия)

Оглавление 2

•

Контрольные вопросы	3
---------------------	---

Контрольные вопросы

1. Дайте определения терминам: корректно поставленная задача, понятие аппроксимации дифференциальной задачи разностной схемой, порядок аппроксимации, однородная схема, консервативная схема, монотонная схема, устойчивая разностная схема (условно/абсолютно), сходимость

Ответ:

Задача называется корректно поставленной, если ее решение существует, единственно, и непрерывно зависит от входных данных.

Пусть дана задача

$$Au = f$$
 в G , $Ru = \mu$ на ∂G ,

разностная схема

$$A_h y = \varphi$$
 в G_h , $R_h y = \nu$ на ∂G_h ,

тогда разностная схема аппроксимирует исходную задачу, если для

$$\psi_h = \varphi - f_h + ((Au)_h - A_h u_h),$$

$$\chi_h = \nu - \mu_h + ((Ru)_h - R_h u_h)$$

выполняется

$$\|\psi_h\|_{\psi} \to 0$$
, при $h \to 0$, $\|\chi_h\|_{\chi} \to 0$, при $h \to 0$.

р-й порядок аппроксимации:

$$\|\psi_h\|_{\psi} = O(h^p), \quad \|\chi_h\|_{\chi} = O(h^p).$$

Разностная схема называется **однородной**, если её уравнение записано одинаковым образом и на одном шаблоне во всех узлах сетки без явного выделения особенностей.

Разностная схема называется **консервативной**, если для её решения выполняются законы сохранения, присущие исходной задаче.

Разностная схема называется **монотонной**, если в одномерном случае её решение сохраняет монотонность по пространственной переменной, при условии, что соответствующее свойство справедливо для исходной задачи, а в многомерном — удовлетворяет принципу максимума исходной задачи.

Разностная схема называется **устойчивой**, если её решение непрерывно зависит от входных данных и эта зависимость равномерна по h. Пусть y^I , y^{II} —

решения для A_h и R_h , тогда разностная схема устойчива, если

$$\forall \varepsilon > 0 \; \exists \; \delta(\varepsilon) : \; \|\varphi^I - \varphi^{II}\|_{\varphi} \leq f, \; \|\nu^I - \nu^{II}\|_{\nu} \leq f \; \Longrightarrow \; \|y^I - y^{II}\|_{Y} < \varepsilon.$$

Если разностная схема не зависит от соотношения между шагами по различным независимым переменным, то такую устойчивость называют **безусловной**. В противном случае — **условной**.

Разностное решение сходится к точному, если $||y - A_h u||_Y$ стремится к нулю при шаге h стремящимся к нулю. С p-м порядком, если $||y - A_h u||_Y = O(h^p)$ при $h \to 0$.

2. Какие из рассмотренных схем являются абсолютно устойчивыми? Какая из рассмотренных схем позволяет вести расчеты с более крупным шагом по времени?

Ответ:

(а) Пусть $y^I, \ y^{II}$ решение разностных задача с одинаковым оператором, соответствующим правым частям $\varphi^I, \ \varphi^{II}$ и граничным условиям ν^I и ν^{II} . Разностную схему называют абсолютно устойчивой, если существуют M_1 и M_2 большие нуля, не зависящие от шага сетки, что справедливо неравенство

$$||y^{I} - y^{II}|| \le M_1 ||\varphi^{I} - \varphi^{II}|| + M_2 ||\nu^{I} - \nu^{II}||$$

вне зависимости от выбора соотношения шагов. Если при $M_1 = 0$ выполняется неравенство, то говорят об устойчивости по начальным условиям, а если M_2 , то об устойчивости по правой части.

Из рассмотренных схем, только смешанная разностная схема удовлетворяет данному условию.

- (b) Для схем с безусловной аппроксимацией порядка $O(\tau^2 + h)$ можно вести расчет с бо́льшим шагом по времени в сравнении с шагом h.
- 3. Будет ли смешанная схема (2.15) иметь второй поярдок аппроксимации при $\alpha_i=\frac{2K(x_i)K(x_{i-1})}{K(x_i)+K(x_{i-1})}$?

Om em:

Из выбора обозначений:

$$\alpha_i = \left(\frac{1}{h} \int_{x_{i-1}}^{x_i} \frac{dx}{K(x)}\right)^{-1}.$$

Введем $I = \int_{x_{i-1}}^{x_i} \frac{dx}{K(x)}$. Тогда

$$I = h \frac{K(x_i) + K(x_{i-1})}{2K(x_i)K(x_{i-1})} = h \frac{1}{2} \left(\frac{1}{K(x_i)} + \frac{1}{K(x_{i-1})} \right),$$

или

$$\int_{x_{i-1}}^{x_i} \frac{dx}{K(x)} = h \frac{1}{2} \left(\frac{1}{K(x_i)} + \frac{1}{K(x_{i-1})} \right),$$

что является формулой трапеций

$$\int_{x_{i-1}}^{x_i} f(x) \approx \frac{f(x_i) + f(x_{i-1})}{2} (x_i - x_{i-1}).$$

Метод трапеций имеет второй порядок, следовательно исследуемая схема также имеет второй порядок аппроксимации.

4. Вопрос 4

Omeem:

5. При каких h, τ и σ смешанная схема монотонна? Проиллюстрируйте результатами расчетов свойства монотонных и немонотонных разностных схем.

Ответ:

Явная двухслойная линейная однородная схема

$$\hat{y}_n = \sum_i d_i y_{n+i}$$

монотонна, если все $d_i \geq 0$.

Приведем уравнение теплопроводности к такому виду:

$$c\rho \frac{y_i^{j+1} - y_i^j}{\tau} = \frac{1}{h^2} \left[\sigma \left(\alpha_{i+1} (y_{i+1}^{j+1} - y_i^{j+1}) - \alpha_i (y_i^{j+1} - y_{i-1}^{j+1}) \right) + \left(1 - \sigma \right) \left(\alpha_{i+1} (y_{i+1}^j - y_i^j) - \alpha_i (y_i^j - y_{i-1}^j) \right) \right],$$

сгруппировав и перенеся необходимые слагаемые, получим

$$\begin{split} &\left(\frac{\sigma(\alpha_{i+1}+\alpha_i)}{h^2}+\frac{c\rho}{\tau}\right)y_i^{j+1} = \left(\frac{\sigma\alpha_{i+1}}{h^2}\right)y_{i+1}^{j+1} + \left(\frac{\sigma\alpha_i}{h^2}\right)y_{i-1}^{j+1} + \\ &\quad + \left(\frac{(1-\sigma)\alpha_{i+1}}{h^2}\right)y_{i+1}^{j} + \left(\frac{(1-\sigma)\alpha_i}{h^2}\right)y_{i-1}^{j} + \left(\frac{c\rho}{\tau} - \frac{(1-\sigma)(\alpha_{i+1}+\alpha_i)}{h^2}\right)y_i^{j}. \end{split}$$

Так как $0 \le \sigma \le 1$ и $\alpha_i > 0$ множитель в левой части, и все множители в правой части кроме одного положительны. Из-за него получаем условие:

$$\frac{c\rho}{\tau} > \frac{(1-\sigma)\left(\alpha_{i+1} + \alpha_i\right)}{h^2}.$$

6. Вопрос 6

Omeem:

(a) Смешанная разностная сетка определяемая параметром σ устойчива, если

$$\sigma \geqslant \frac{1}{2} - \frac{cph^2}{4\tau \tilde{K}}, \quad \tilde{K} = \max_{0 \leqslant x \leqslant L} K(x)$$

Для абсолютно устойчивых схем, в частности неявная, явная и симметричная, устойчивы при любых соотношениях шагов τ и h/

(b) Для $\sigma < 1/2$ устойчива при достаточно малом соотношении τ/h^2 , то такие схемы условно устойчивы.