COMPLETE LISTING OF THE CLAIMS

The following lists all of the claims that are or were in the above-identified patent application. The status identifiers respectively provided in parentheses following the claim numbers indicate the current statuses of the claims.

- 1. (Original) A method of transferring a plurality (I) of independent optical signals
 - {S_i} through an optical channel having two ends, the method comprising the steps of:
- (a) generating a plurality of (I) independent pseudorandom bit sequences (PRBSs);
- (b) modulating a preselected optical mode of the i^{th} independent optical signal S_i according to the i^{th} independent pseudorandom bit sequence PRBS_i to form an i^{th} modulated optical signal MS_i , where $i=\{1,...\}$;
- (c) combining a plurality (I) of the modulated optical signals {MSi} to form an optical multiplex signal;
- (d) transmitting the optical multiplex signal through the optical channel from one end to the other end;

SN: 10/087,386 10004331-1

- (Original) The method of claim 3 wherein the optical channel comprises a fiber optical channel.
- (Original) The method of claim 2 wherein the optical channel comprises free space.

6.	(Original) The method of claim 5 wherein the plurality (I) of independent PRBSs are mutually orthogonal.
7.	(Original) The method of claim 2 wherein the plurality (I) of independent PRBSs are mutually orthogonal.
8.	(Original) The method of claim 1 wherein the optical channel comprises an optical waveguide.
9.	(Original) The method of claim 8 wherein the plurality (I) of independent PRBSs are mutually orthogonal.

10. (Original) An apparatus for transferring a plurality (I) of independent optical signals {S_i} through an optical channel having two ends, the apparatus comprising:

a first pseudorandom bit sequence (PRBS) generator for generating a plurality (I) of independent PRBSs;

a plurality (I) of electro-optical modulators each coupled to the PRBS generator and disposed for modulating the polarization mode of the ith optical signal S_i according to the ith pseudorandom bit sequence PRBS_i to form a modulated optical signal MS, where i={1,...|}:

an optical combiner disposed at one end of the optical channel for combining a plurality (I) of the modulated optical signals {MS_i} to form an optical multiplex signal for transmission through the optical channel;

at least one electro-optical modulator coupled to the PRBS generator and disposed at the other end of the optical channel for modulating the polarization mode of the optical multiplex signal according to the iⁱⁿ pseudorandom bit sequence PRBS₁ to form an ith modulated multiplex signal MMS_i; and

a polarized filter disposed at the other end of the optical channel for filtering the ith modulated multiplex signal MMS_n, whereby the independent optical signal S. is recovered.

11. (Original) The appartus of claim 10 further comprising:

a second PRBS generator disposed at the other end of the optical channel; and

correlator means for correlating the PRBSs from the second PRBS generator with the PRBSs from the first PRBS generator.

12. (Original) The apparatus of claim 11 further comprising:

an optical splitter disposed at the other end of the optical channel for splitting the optical multiplex signal to form a plurality (I) of optical multiplex signal copies {MSC_i};

a plurality (I) of electro-optical modulators, each coupled to the second PRBS generator and disposed at the other end of the optical channel for modulating the polarization mode of the ith multiplex optical signal copy MSC_i according to the ith pseudorandom bit sequence PRBS_i to form a modulated multiplex signal MMS_i; and

a plurality (I) of polarized filters, each disposed at the other end of the optical channel for filtering the ith modulated multiplex signal MMS, whereby the plurality (I) of independent optical signal {S} are recovered.

14.	(Original) The apparatus of claim 13 wherein the optical channel comprises a fiber optical channel.
15.	(Original) The apparatus of clam 11 wherein the optical channel included mode distortion and at least one independent optical signal S_p is transmitted through the optical channel, the apparatus further comprising:
distort	distortion recovery means for recovering the optical channel mode tion from the independent optical signal $\mathbf{S}_{\mathbf{p}}$.
16.	(Original) The apparatus of claim 15 wherein the optical channel comprises free space.
17.	(Original) The apparatus of claim 10 wherein the optical channel comprises an optical waveguide.
SN: 10/ 100043	087,386 31-1 7

(Original) The apparatus of claim 12 wherein the optical channel comprises an

13.

optical waveguide.

18.	(Original) The apparatus of claim 17 wherein the optical channel comprises a fiber optical channel.
1 9.	(Original) The apparatus of claim 10 wherein the optical channel comprises free space.
20.	(Original) The apparatus of claim 10 wherein the plurality (I) of independent PRBSs are mutually orthogonal.
21-25	(Canceled)

- 26. (Original) An apparatus for receiving, from an optical channel, an optical multiplex signal representing a plurality (I) of independent optical signals {S_i} and for recovering therefrom an independent optical signal S_i, the apparatus comprising:
- receiving means for accepting the optical multiplex signal from the optical channel:
- a first pseudorandom bit sequence (PRBS) generator for generating a plurality (I) of independent PRBSs;
- at least one electro-optical modulator coupled to the PRBS generator for modulating the polarization mode of the optical multiplex signal according to the ith pseudorandom bit sequence PRBS_i to form an ith modulated multiplex signal MMS_i; and a polarized filter for filtering the ith modulated multiplex signal MMS_i, whereby the independent optical signal S_i is recovered.

- 27. (Original) The apparatus of claim 26 wherein a second PRBS generator is disposed at the other end of the optical channel, the apparatus further comprising:
- correlator means for correlating the PRBSs from the first PRBS generator with the PRBSs from the second PRBS generator.

28. (Original) The apparatus of claim 27 further comprising:

an optical splitter for splitting the optical multiplex signal to form a plurality

(i) of optical multiplex signal copies {MSC_i};

a plurality (I) of electro-optical modulators, each coupled to the first PRBS generator for modulating the polarization mode of the ith multiplex optical signal copy MSC₁ according to the ith pseudorandom bit sequence PRBS₁ to form a modulated multiplex signal MMS; and

a plurality (I) of polarized filters for filtering the ith modulated multiplex signal MMS, whereby the plurality (I) of independent optical signal {S} are recovered.

- (Original) The apparatus of claim 28 wherein the optical channel comprises an optical waveguide.
- (Original) The apparatus of claim 29 wherein the optical channel comprises a fiber optical channel.

 (Original) The apparatus of claim 27 wherein the optical channel included mode distortion and at least one independent optical signal S_o is transmitted through the

optical channel.	the	annaratus	further	comprising

distortion recovery means disposed at the other end of the optical channel for recovering the optical channel mode distortion from the independent optical signal S_n .

- (Original) The apparatus of claim 31 wherein the optical channel comprises free space.
- (Original) The apparatus of claim 26 wherein the optical channel comprises an optical waveguide.
- (Original) The apparatus of claim 33 wherein the optical channel comprises a fiber optical channel.
- (Original) The apparatus of claim 26 wherein the optical channel comprises free space.

36.	(Original) The apparatus of claim 26 wherein the plurality (I) of independent
	PRBSs are mutually orthogonal.