EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 1

Varianta 1

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
	σοιαρίο / σοιπρά αστοΣοιναίο
II.1.a.	$1 \rightarrow 2$ transformare izocoră
	$2 \rightarrow 3$ transformare izotermă
	reprezentare grafică în pV
b.	$v_t = \sqrt{\frac{3RT_2}{\mu}}$
	Răspuns: $v_t = 1933,77 \text{ m/s}$
c.	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$
	$p_2V_2=p_3V_3$
	Răspuns: $V_3 = 74,79 \cdot 10^{-3} m^3$
II.2.a.	$T_2 V_4^{\gamma - 1} = T_1 V_1^{\gamma - 1}$
	$\gamma = (C_V + R)/C_V = 5/3$
	$Răspuns: T_2 = 300 K$
b.	$\eta = 1 - \frac{T_2}{T_1}$
	Răspuns: $\eta = 0.4$
C.	$ \eta = \frac{L}{Q_p} \\ L = Q_p + Q_c $
	$L = Q_p + Q_c$
	Răspuns: $Q_c = -150 J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 2

Varianta 2

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr item	Soluție / schiță de rezolvare
II.1. a.	$p = p_0 + \frac{mg}{c}$
	Răspuns: $p = 101800Pa$
b.	p = const.
	$\frac{V_{initial}}{T_1} = \frac{V_{final}}{T_2}$
	T_1 T_2
	Răspuns: $\frac{V_{final}}{V_{final}} = 4/3$
	Răspuns: $\frac{V_{final}}{V_{initial}} = 4/3$ $Q_p = vC_p(T_2 - T_1)$
C.	$Q_p = \mathcal{VC}_p(T_2 - T_1)$
	$Q_p = \frac{5}{2} \cdot pSh\left(\frac{T_2}{T_1} - 1\right)$
	Răspuns: $Q_p = 10.18J$
II.2. a.	expresia randamentului ciclului Carnot
	Răspuns: $T_1 / T_2 = 2$
b.	$\eta' = \frac{\eta T_2 + \Delta T (1 - \eta)}{T_2 + \Delta T (1 - \eta)}$
	Răspuns: $\eta' \cong 53.8\%$
C.	$\eta^{"}=\eta+rac{\Delta T}{T_{_{1}}}$
	Răspuns: η " $\cong 58,3\%$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 3

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$L_{12} = \frac{p_1 \cdot V_1}{2} (3^2 - 1)$
	$R aspuns: L_{12} = 4 \cdot p_1 \cdot V_1$
b.	$T_2 = 9 \cdot T_1$
	$\Delta U_{12} = C_{v} \cdot \Delta T = (3/2)R \cdot 8T_{1}$
	R ăspuns: $\Delta U_{12} = 12p_1 \cdot V_1$
C.	$Q_{12} = \Delta U_{12} + L_{12} = 16 \cdot p_1 \cdot V_1$
	$Q_{23} = -(3/2)R \cdot 6 \cdot T_1 = -9 \cdot p_1 \cdot V_1$
	$Q_{31} = -(5/2)R \cdot 2 \cdot T_1 = -5 \cdot p_1 \cdot V_1$
	$\eta = 1 - \frac{14 \cdot p_1 \cdot V_1}{16 \cdot p_2 \cdot V}$
	$\eta = 1 - \frac{1}{16 \cdot p_1 \cdot V_1}$
	R ăspuns: $\eta = \frac{1}{8} = 12,5\%$
II.2.a.	$T = 273,1^{\circ} - 13,1^{\circ} = 260^{\circ} K$
	$\sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{\mu}}$
	Răspuns: $\sqrt{\overline{v^2}} = 450 m/s$
b.	masa moleculei: $m_{ extit{molecul ilde{a}}} = \mu/N_{A}$
	Răspuns: $m_{moleculă} = 5.31 \times 10^{-26} kg$
C.	ecuația de stare a molului de oxigen: $pV = RT$
	volumul locat unei molecule $v_{molecula} = \frac{RT}{pN_A}$
	$V_{molecula} = 3,58 \times 10^{-26} m^3$
	latura cubului : $\ell = \sqrt[3]{V_{molecula}}$
	R ăspuns: $\ell = 3,29 \times 10^{-9} m$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 3

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 4

Varianta 4

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	
	Soluție / schiță de rezolvare
II.1.a.	(F (A) (0 B T) (0 A)
II. I .a.	$\varepsilon = (E_{ctr} / N) = (3 \cdot R \cdot T) / (2 \cdot N_A)$
	$\frac{\varepsilon_1}{\varepsilon_2} = \frac{T_1}{T_2}$
	$\textbf{R "aspuns:} \qquad \varepsilon_1 / \varepsilon_2 = 0.75$
b.	conservarea energiei interne totale a ansamblului de gaze
	ecuația termică de stare scrisă pentru fiecare gaz
	$T = \frac{\left(p_1 \cdot V_1 + p_2 \cdot V_2\right) \cdot T_1 \cdot T_2}{p_1 \cdot V_1 \cdot T_2 + p_2 V_2 \cdot T_1}$
	$p_1 \cdot v_1 \cdot v_2 + p_2 v_2 \cdot v_1$ Răspuns: $T \cong 323,076 \text{K}$
C.	
C.	$p \cdot (V_1 + V_2) = \left(\frac{p_1 \cdot V_1}{R \cdot T_1} + \frac{p_2 \cdot V_2}{R \cdot T_2}\right) \cdot R \cdot T$
	$p = \frac{p_1 \cdot V_1 + p_2 \cdot V_2}{V_1 + V_2}$
	Răspuns: $p = 116,6(6)kPa$
II.2.a.	reprezentare grafică în coordonate (p,V)
	reprezentare grafică în coordonate (ho, T)
b.	$U = v \cdot C_{V} \cdot T$
	$T_{\text{max}} = 6 \cdot T$; $T_{\text{min}} = T$
	$U_{max}/U_{min} = T_{max}/T_{min}$
	Răspuns: $U_{max} / U_{min} = 6$
C.	$\eta = 1 - rac{\left Q_{ced} ight }{Q_{abs}}$
	$ Q_{ced} = v \cdot R \cdot T \cdot (4 + \gamma) / (\gamma - 1)$
	$Q_{abs} = v \cdot R \cdot T \cdot (2 + 3\gamma) / (\gamma - 1)$
	Răspuns: $\eta = 11,1(1)\%$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 5

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$\rho_1 V = \nu_1 R T_1$
	$p_1 = \frac{v_1 RT}{V}$
	Răspuns: $p_1 = 2,49atm$
b.	$v_T = \sqrt{\frac{3RT}{\mu}}$
	Răspuns: $v_T = 483,44 \text{m/s}$
c.	$p_2V = (v_1 + v_2 + v_3)RT_2$
	$p_2 = \frac{(\nu_1 + \nu_2 + \nu_3)}{V} RT_2$
	Răspuns: $p_2 = 16,62atm$
II.2.a.	$Q_{abs} = \nu \left(C_{v} + \frac{R}{2} \right) \cdot (T_{3} - T_{2}) + \nu C_{p} (T_{4} - T_{3}) + \nu C_{V} (T_{2} - T_{1}) \cong 8,72\nu RT$
	Răspuns: $Q_{abs} \cong 18,113KJ$
b.	$\left Q_{ced}\right = v\left(C_v + \frac{R}{2}\right) \cdot \left(T_4 - T_1\right) = 8.125vRT$
	Răspuns : $ Q_{ced} \approx 16,879KJ$
C.	$\eta_C = 1 - \frac{T_1}{T_4}$
	Răspuns: $\eta_C = 0.802 = 80.2\%$

Fizică Varianta 5 Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 6

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
	Soluție / Schița de lezolvale
II.1.a.	$v_{\tau} = \sqrt{\frac{3RT}{\mu}}$
	$\frac{V_{T1}}{V_{T2}} = \sqrt{\frac{\mu_2}{\mu_1}}$
	Răspuns: $V_{71} / V_{72} = 4$
b.	$m_2 = \frac{p_2 V \mu_2}{2RT}$
	$Răspuns: m_2 = 6,4 g$
C.	$m_{i} = \frac{p_{i}V\mu_{i}}{2RT}$
	$m' = m_1 - \frac{p_2 V \mu_1}{2RT}$
	Răspuns: trebuie scos gaz din compartimentul din stânga,
	masa scoasă: $m' = 0,4$ g
II.2.a.	$L_{41} = vR(T_1 - T_2)$
	$Q_{12} = \nu C_{\nu} (T_2 - T_1)$
	R ăspuns: $L_{41} = -1662 J$
b.	$T_2 = \frac{Q_{12}}{vC_V} + T_1$
	$\frac{p_1}{T_1} = \frac{p_2}{T_2} \text{ si } \frac{p_1}{T_2} = \frac{p_2}{T_3}$
	$T_3 = T_2^2 / T_1$
	Răspuns: $T_3 = 900 K$
C.	$\eta = 1 - \frac{\left Q_{34} \right + \left Q_{41} \right }{Q_{12} + Q_{23}}$
	$\eta = 1 - \frac{C_V(T_3 - T_2) + C_P(T_2 - T_1)}{C_V(T_2 - T_1) + C_P(T_3 - T_2)}$
	Răspuns: $\eta = 6,4\%$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 6

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 7

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	ecuațiile termice de stare $p_1V_1 = \nu_1 RT_1 \; ; p_2V_2 = \nu_2 RT_2$
	$p = (p_1V_1 + p_2V_2)/(V_1 + V_2)$ Răspuns: $p = 2,5$ atm
b.	conservarea energiei interne $T = (p_1V_1 + p_2V_2) T_1 T_2 / (p_1V_1 T_2 + p_2V_2 T_1)$ Răspuns: $T = 6000/11 K = 545,45 K$
C.	$V_{T} = \sqrt{\frac{3RT}{\mu}}$ $V_{T1}/V_{T2} = \sqrt{\mu_2}/\sqrt{\mu_1}$
	Răspuns: V _{T hidrogen} / V _{T oxigen} = 4
II.2.a.	reprezentare grafică în coordonate p-T
b.	$\begin{array}{l} \eta = L / Q_{\text{primit}} \text{sau} \ \eta = 1 - Q_{\text{cedat}} / Q_{\text{primit}} \\ \text{legile transformărilor izocoră și izobară} \\ L \text{sau} \ Q_{\text{cedat}} \\ \text{căldura primită pe ciclu } Q_p \\ \textbf{Răspuns:} \ \eta = 15,38 \% \end{array}$
C.	$\eta_{\text{C}} = 1 - T_{\text{rece}} / T_{\text{cald}}$
	$\eta_{\rm C} = 1 - T_{\rm min} / T_{\rm max} = 1 - T_{\rm 1} / T_{\rm 3}$
	Răspuns: $\eta_{\text{C}} = 75 \%$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 7

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 8

Varianta 8

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$pSh = \frac{m}{\mu}RT$
	Răspuns : $m = 0.67 g$
b.	$p_o S + m'g = pS$
	Răspuns : <i>m</i> '=10 <i>kg</i>
C.	legea transformării izobare $\frac{V_1}{T_1} = \frac{V_2}{T_2}$
	$\frac{Sh}{T} = \frac{S(h + \Delta h)}{T(1+f)}$
	$ \begin{array}{ll} I & I(1+T) \\ \Delta h = f h \end{array} $
	Răspuns: $\Delta h = 4 cm$
II.2.a.	reprezentare grafică a proceselor $1 \rightarrow 2 \rightarrow 3$ în coordonate p - V
b.	p _o V ₁ = v RT _o
D.	$\frac{V_0}{T_o} = \frac{V_1}{T_2}$ Răspuns: $T_2 = 739,4 K$
C.	$Q_{23} = vRT_2 \ln \frac{V_3}{V_2}$
	$Q_{23} = -v ReT_o$
	Răspuns : $Q_{23} = -30,74 kJ$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 9

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	$(\rho_0 + \rho gh)V = \frac{m}{\mu}RT_0$
	$(p_0 + \rho gh)V = \frac{m}{\mu}RT_0$ $m = \frac{\mu V(p_0 + \rho gh)}{RT_0}$
	Răspuns : <i>m</i> = 0,358 <i>g</i>
b.	$p = ct. \frac{V}{T_0} = \frac{V + 3Sh}{T}$
	$T = T_0 \left(1 + \frac{3Sh}{V} \right)$
	R "aspuns": T = 354,9K
C.	$Q = \mathcal{VC}_{p}(T - T_{0})$
	$Q = \frac{V(p_0 + \rho gh)}{RT_0} C_{\rho} (T - T_0)$
	Răspuns : <i>Q</i> = 19,035 <i>J</i>
II.2.a.	$Q_{abs} = Q_{12} = \nu \left(C_v + \frac{R}{2} \right) \cdot \left(T_2 - T_1 \right)$
	$Q_{abs} = 16\nu RT$
	Răspuns: $Q_{abs} = 33,24 \text{KJ}$
b.	$ Q_{ced} = Q_{23} + Q_{31} $
	$ Q_{ced} = 14\nu RT$
	$R\check{aspuns:}\left Q_{ced}\right = 29,08KJ$
C.	$\eta = 1 - \frac{ Q_{ced} }{Q_{abs}}$
	Răspuns : $\eta = 0.125 = 12.5\%$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 9

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 10

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1. a.	$p \cdot V_1 = \frac{m}{\mu} \cdot R \cdot T$ $p = p_{atm}; V_1 = S \cdot x$
	$p = p_{atm}$; $V_1 = S \cdot x$
	Răspuns : $x = \frac{m \cdot R \cdot T}{\mu \cdot p_{atm} \cdot S} \approx 0.87m$
b.	$\frac{V_2}{T} = \frac{V_1}{T + \Delta T} \implies \Delta T = T \cdot (\frac{V_1}{V_2} - 1)$
	$\frac{V_1}{V_2} = \frac{p_2}{p_1} = \frac{p_{atm} \cdot S + M \cdot g}{p_{atm} \cdot S} = \frac{21}{20}$
	$R \check{a} spuns: \Delta T \cong 14,7 \text{ K}$
C.	$L_{gaz} = p_1 \cdot (V_1 - V_2) = v \cdot R \cdot \Delta T$
	Răspuns: $L_{gaz} \cong 8,72 \mathrm{J}$
II.2. a.	identificarea transformărilor care au loc:
	1→2 izobară; 2→3 izotermă; 3→4 izocoră; 4→1 izotermă $p_2 = p_1$; $p_3 = p_2/2$; $p_4 = p_1/8$
	Răspuns : $p_4 = 0,125 \cdot 10^5$ Pa
b.	$\Delta U_{12} = \nu \cdot C \nu \cdot (T_{\text{max}} - T_{\text{min}})$
	$\Delta U_{34} = v \cdot C_{V} \cdot (T_{min} - T_{max})$
	Răspuns: $\frac{\Delta U_{12}}{\Delta U} = -1$
	ΔU_{34}
C.	$\eta_C = 1 - \frac{T_{min}}{T_{max}}$
	Răspuns :η = 75 %

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 11

Varianta 11

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	
	Soluție / schiță de rezolvare
11.4 .	was a superior and the superior and a superior and superi
II.1.a.	reprezentare grafică a proceselor în coordonate p-V
b.	$\rho_1 = \frac{\rho_1 \mu}{R T_1}$
	Răspuns : $\rho = 3,85 \text{ kg/m}^3$
C.	$ \frac{V_1}{T_1} = \frac{V_2}{T_2} \frac{T_2}{\rho_1} = \frac{T_3}{\rho_3} $
	$T_3 = k T_1 \frac{p_3}{p_1}$
	Răspuns : $T_3 = 300 K$
II.2.a.	$\frac{V_1}{T_o} = \frac{kV_1}{T_2}$ $T_2 = kT_o$
	Răspuns: $T_o = 546 \text{K}$
b.	$L_{12} = p_o(V_2 - V_1) = v R T_o(k-1)$
	Răspuns : $L_{12} = 11,34 kJ$
C.	$\eta = \frac{L_{12} + L_{31}}{Q_{12}}$
	$L_{31} = \nu R T_o \ln 1/2$
	$Q_{12} = v(C_V + R)(T_2 - T_o)$
	$\eta = \frac{R(1-\ln 2)}{C_V + R}$
	$V_V - \overline{C_V + R}$
	Răspuns : $\eta = 12,3\%$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 12

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	
	Soluție / schiță de rezolvare
II.1.a.	$pV = \frac{m}{\mu}RT$
	$pV = \frac{m}{\mu}RT$ $v_{\tau} = \sqrt{\frac{3RT}{\mu}}$
	$V = \frac{mv_T^2}{3\rho}$
	Răspuns: $V = 6 \ell$
b.	$U = \frac{3}{2} \rho V$
	Răspuns: $U = 1800 J$
C.	Conservarea numărului de moli
	$\rho V + \rho' V' = \rho_{fin} (V + V')$
	Răspuns: $p_{fin} = 1,25 atm$
II.2.a.	$\frac{p_1}{p_2} = \frac{V_1}{V_2}$
	$V_2 = 2V_1$
	$\rho_2 V_2 = \rho_3 V_3$
	Răspuns: $V_3 = 12 \ell$
b.	$L_{12} = Aria = 1.5 p_1 V_1$
	$\Delta U_{12} = \nu C_{V} (T_{2} - T_{1}) = 7.5 \rho_{1} V_{1}$
	$Q_{12} = \Delta U_{12} + L_{12}$
	R ăspuns: $Q_{12} = 5400 J$
C.	$L_{23} = \nu R T_2 \ln \frac{V_3}{V_2} = 4 \rho_1 V_1 \ln 2$
	$L_{31} = -3p_1V_1$
	$L_{1231} = L_{12} + L_{23} + L_{31}$
	Răspuns : $L_{1231} \cong 763,2J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 12

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 13

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr item	Soluție / schiță de rezolvare
II.1. a.	$\overrightarrow{F} + \overrightarrow{F_1} + \overrightarrow{F_2} = 0$ $F = F_1 - F_2 = S(p_1 - p_2)$
	Răspuns: $F = 200 N$
b.	$p_1V_1 = p_1V_1$ $p_2V_2 = p_2V_2$
	$p_2 \mathbf{v}_2 - p_2 \mathbf{v}_2$ $p_1 = p_2$
	$V_1 = V_2$
	$V_1 = S\left(\frac{\ell}{2} + x\right)$
	$V_2 = S\left(\frac{\ell}{2} - x\right)$
C.	Răspuns: $x = 20 \ cm$ trebuie scos gaz din compartimentul 1
	$pV = (m/\mu)RT$
	$\Delta m_1 = \frac{S\ell\mu}{2RT}(p_1 - p_2)$
	$\mathbf{R\check{a}spuns}: \Delta m_1 = 2{,}246g$
II.2. a.	expresia matematică a principiului I semnificația termenilor
b.	$V_3 = 2V_1$
	$\frac{p_1}{V_1} = \frac{p_3}{V_3}$
	$T_3 = \frac{p_3 V_3}{v_B}$
	VR Răspuns: $p_3 = 20 atm$; $V_3 = 6 dm^3$; $T_3 = 1444 K$
C.	$\eta = L/Q_{abs}$
	$L_{1\to 2\to 3\to 1} = L_{1\to 3\to 4\to 1} = p_1 V_1/2$
	$\frac{\eta_{1\to 2\to 3\to 1}}{\eta_{1\to 3\to 4\to 1}} = \frac{Q_{13}}{Q_{12} + Q_{23}}$
	$\eta_{1\to 3\to 4\to 1} \mathcal{Q}_{12} \mathcal{Q}_{23}$ Răspuns : $\eta_{1\to 2\to 3\to 1}/\eta_{1\to 3\to 4\to 1}=12/13$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 13

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 14

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	
	Soluție / schiță de rezolvare
II.1.a.	7 1 2 3 T
b.	$T_3 = 5T_1$
	$V = \sqrt{\frac{3RT}{\mu}}$ Răspuns: $V \cong 1492 \ m/s$
C.	
0.	$\eta_C = 1 - \frac{T_1}{T_2}$
	Răspuns: $\eta_C = 80\%$
II.2.a.	$m_0 = \frac{\mu}{N_A}$
	Răspuns : $m_0 \cong 3.3 \cdot 10^{-27} kg$
b.	$p_1 = p_2$
	$p_1 I_1 S = \frac{m_1}{\mu_{H_2}} R T_1, p_2 I_2 S = \frac{m_2}{\mu_{N_2}} R T_1, \frac{I_1}{I_2} = \frac{m_1 \mu_{N_2}}{m_2 \mu_{H_2}}$
	$I_1 = \frac{m_1 \mu_{N_2}}{m_1 \mu_{N_2} + m_2 \mu_{H_2}} I$
	$R aspuns: I_1 = 60cm$
c.	$T_1 = 300K$, $T_2 = 400K$
	$\frac{I_1'}{I_2'} = \frac{m_1 \mu_{N_2} T_1}{m_2 \mu_{H_2} T_2} \qquad ; \qquad I_1' = \frac{m_1 \mu_{N_2} T_1 I}{m_2 \mu_{H_2} T_2 + m_1 \mu_{N_2} T_1}$
	Răspuns : $I_1' = 54cm$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 14

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 15

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	Soluție / schiță de rezolvare
II. 1. a.	reprezentare grafică a ciclul în coordonate (p,V) $T_2 = 3T;$ $T_3 = 6T$
b.	$v_T = \sqrt{\frac{3RT}{\mu}}$
	$\frac{v_{T_{\text{min}}}}{v_{T_{\text{min}}}} = \sqrt{\frac{T_3}{T_1}}$
	Răspuns: $rac{v_{T_{ m max}}}{v_{T_{ m min}}} = \sqrt{6}$
C.	$Q_{abs} = Q_{12} + Q_{23} = VC_V(3T - T) + VC_p(6T - 3T)$
	$\gamma = \frac{4}{3} \Rightarrow C_v = 3R, C_p = 4R$
	$\Rightarrow Q_{abs} = 18 \nu RT$
	$Q_{ced} = \nu C_{v} (2T - 6T) + \nu C_{p} (T - 2T) = -16\nu RT$
	$\eta = 1 - rac{\left Q_{ced} ight }{Q_{abs}}$
	$\mathbf{R uspuns}: \eta = \frac{1}{9}$
II. 2. a.	reprezentarea ciclului Carnot în coordonate (p, v)
b.	expresia variației de energie internă
	$\mathbf{R\check{a}spuns:} \Delta U = \frac{3}{2} \nu R(T_2 - T_1)$
C.	$\frac{\left \mathcal{Q}_{2}\right }{\left \mathcal{Q}_{1}\right } = \frac{T_{2}}{T_{1}}$
	$\mathbf{R\check{a}spuns:} \frac{ Q_2 }{Q_1} = \frac{1}{n}$

Fizică Varianta 15

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 16

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$V_T = \sqrt{3RT/\mu}$
	$R \tilde{aspuns} : V_T = 475,31 m/s$
b.	$pV = \frac{m}{\mu}RT$
	$\rho = \frac{p\mu}{RT}$
	Răspuns: $\rho = 2.56 kg / m^3$
C.	$p_1 V = \frac{m_1}{\mu} RT$
	$m_1 = \frac{p_1 V \mu}{RT}$
	R aspuns: $m_1 = 5.31 \cdot 10^{-3} kg$
II.2.a.	$V(p_2 - p_1) = vR(T_2 - T_1)$
	$Q_{12} = \frac{C_V V}{R} (p_2 - p_1)$
	Răspuns: $Q_{12} = 45 \cdot 10^3 J$
b.	$\Delta U_{1\to 3} = \frac{3}{2} \nu R(T_3 - T_1)$
	$\Delta U_{1\to 3} = \frac{3}{2} (\rho_2 V_3 - \rho_1 V_1)$
	Răspuns: $\Delta U_{1 ightarrow 3} = 1,65 \cdot 10^5 J$
c.	$Q_{13} = v C_V (T_2 - T_1) + v C_p (T_3 - T_2)$
	$Q_{13} = p_2 (V_3 - V_1) + \frac{C_V}{R} (p_2 V_3 - p_1 V_1)$
	Răspuns: $Q_{13} = 2,45 \cdot 10^5 J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 16

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 17

Varianta 17

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	
	Soluție / schiță de rezolvare
II.1.a.	И
	$m_1 = nV \frac{\mu}{N_A}$
	m_1N_A
	$n = \frac{m_1 N_A}{V \mu}$
	Răspuns : $n = 1,2 \cdot 10^{27} m^{-3}$
b.	$p_1 = p_2 = \frac{2m_1RT}{Sl\mu_1}$
	$SI\mu_1$
	$\rho_2 = \frac{p_2 \mu_2}{RT}$
	Răspuns: $\rho_2 = 64 \ g/dm^3$
C.	$p_1'=p_2'$
	$\frac{m_1 RT(1+f)}{\mu_1 S(I/2+x)} = \frac{\rho_2 SIRT(1-f)}{2 \mu_2 S(I/2-x)}$
	x = f1/2
	R aspuns: x = 10 cm
II.2.a.	$v_t = \sqrt{\frac{3RT_o}{\mu}}$
	Răspuns: $v_t \cong 461 m/s$
b.	$L_{23} = vRT_2 \ln(V_3/V_2) = 2vRT_o \ln 2$
	$L_{31} = p_1(V_1 - V_3) = -p_o V_1$
	Răspuns : $L_{23}/L_{31} = -1,386$
c.	$Q_{12} = \nu C_V (T_2 - T_1)$ $Q_{23} = \nu R T_2 \ln \frac{V_3}{V_2}$ $Q_{31} = \nu (C_V + R)(T_1 - T_2)$
	$\eta = 1 + \frac{Q_{31}}{Q_{12} + Q_{22}}$
	$\eta = 1 - C_D / (C_V + 2R \ln 2)$
	Răspuns: $\eta = 9.9\%$
	1 ,

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 18

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	
	Soluție / schiță de rezolvare
II.1.a.	$T = P_1 \mu$
	$T_1 = \frac{\rho_1 \mu}{\rho_1 R}$
	$Răspuns: T_1 = 1000 K$
b.	$v_{T_1} = \sqrt{\frac{3RT_1}{\mu}}$
	Răspuns : $v_{T_1} = 882.6 \ m/s$
C.	$p_1V = \frac{m_1}{\mu}RT_1$
	$\rho_2 V = \frac{m_2}{\mu} R T_2$
	$m_1 = m_2 + \Delta m$
	$m_2 = \frac{\Delta m}{\left(\frac{p_1 T_2}{p_2 T_1} - 1\right)}$
	Răspuns: $m_2 = 6 kg$
II.2.a.	Reprezentarea grafică, în coordonate $p-V$
	Reprezentarea grafică, în coordonate $p-T$
b.	$\frac{V_2}{T_2} = \frac{V_3}{T_3}$
	$\frac{2V_1}{T_1} = \frac{0.5V_1}{T_2}$
	Răspuns: $T_3 = 200 \text{K}$
C.	$L_{12} = \nu R T_1 \ln \frac{V_2}{V_1}$
	$L_{23} = \nu R(T_3 - T_2)$
	Răspuns : $L_{123} = L_{12} + L_{23} \cong -378,9 J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 18

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 19

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	
	Soluție / schiță de rezolvare
II.1.a.	$L_{12} = \frac{p_1 \cdot V_1}{2} \left(\gamma^2 - 1 \right)$
	Răspuns : $L_{12} = \frac{8000}{3}J$
b.	$T_2 = \gamma^2 \cdot T_1$
	$\Delta U_{12} = \nu \cdot C_{\nu} \cdot \Delta T$
	$\Delta U_{12} = (3/2) \cdot p_1 \cdot V_1 \cdot \left(\gamma^2 - 1 \right)$
	$R \text{ `aspuns: } \Delta U_{12} = 8000 J$
C.	$Q_{12} = \Delta U_{12} + L_{12}$
	$Q_{12} = \nu \cdot C \cdot \Delta T$
	R ăspuns: $C = 2 \cdot R$
II.2.a.	$\rho V = \frac{m}{l}RT$
	$\mu_{ ext{aer}}$
	$T = \frac{p \cdot V \cdot \mu_{aer}}{m \cdot R}$
	m· n
b.	Răspuns: $T = 290,8K$
D.	$p \cdot V = \frac{m}{n}RT$
	$\mu_{ m aer}$
	$\begin{cases} \rho \cdot V = \frac{m}{\mu_{aer}} RT \\ \rho_0 \cdot V = \frac{m - \Delta m}{\mu_{aer}} RT \end{cases}$
	$\Delta m = m(1 - p_0/p)$
	Răspuns: $\Delta m = 0,588 kg$
C.	volumul eliberat $V_{eliberat} = V(\Delta m/m) \cdot (p/p_0)$
	$V_{eliberat} = 490 dm^3$
	R ăspuns: $\tau = 98 \text{min} ute$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 19

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 20

Varianta 20

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$pV = p_1V_1$
	$pV = p_2V_2$
	$V = \ell S; V_1 = 3\ell S/2; V_2 = \ell S/2$
	$p_2 = p_1 + \rho g h$
	Răspuns: $p = 3\rho gh/4$
b.	pV = p'V'
	$V' = \ell' S$
	$p_0 = p' + \rho g h$
	$R \text{ `aspuns: } \ell' = 3\ell/4$
C.	$\frac{pV}{T} = \frac{p'V"}{T'}$
	T $T'V'' = 2\ell S$
	V = 2ES Răspuns: $T' = 8T/3$
II.2.a.	$p_1 = aV_1$
	Răspuns : $p_1 = 10^5 Pa$
b.	$\Delta U = vC_V(T_2 - T_1)$
	$T_1 = \rho_1 V_1 / vR = aV_1^2 / vR$, $T_1 = \rho_2 V_2 / vR = aV_1^2 / vR$
	Răspuns : $V_2 = \sqrt{V_1^2 + \frac{2\Delta U}{3a}} = 1.41 \cdot 10^{-3} \ m^3$
C.	lucrul mecanic reprezintă aria de sub graficul transformării în coordonate p,V
	$L = a\left(V_2^2 - V_1^2\right)/2$
	$Q = \Delta U + L$
	Răspuns: Q = 200 J

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 21

Varianta 21

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
11.4	
II.1.a.	Reprezentări grafice $p = p(V)$ și $T = T(V)$
b.	$L = \frac{(p_1 + p_2)(V_2 - V_1)}{2}$
	$L = \frac{\nu R \Delta T}{2}$
	R äspuns: L = 1663kJ
C.	$\Delta U_{12} = \nu C_V \Delta T_{12} = \nu \frac{3}{2} R \cdot \Delta T$
	$Q = \Delta U + L$
	Răspuns : $Q_{12} = 6648kJ$
II.2.a.	$pV_1 = vRT = \frac{m}{\mu}RT$
	$V_1 = \frac{mRT}{p\mu}$
	Răspuns : $V_1 \approx 2,45l$
b.	$p = ct \Rightarrow \frac{V_1}{T_1} = \frac{V_2}{T_2}$
	$T_2 = \frac{T_1 \cdot V_2}{V_1}$
	Răspuns : $T_2 = 1155 K$
C.	$p\mu = \rho RT$
	$\frac{\rho_1}{\rho_2} = \frac{T_2}{T_1} = \frac{V_2}{V_1}$
	$ ho_2$ T_1 V_1
	Răspuns : $\frac{\rho_1}{\rho_2} \approx 4$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 22

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	condiția de echilibru a pistonului: $p_1 \cdot S = p_0 \cdot S + m \cdot g \cdot \sin \alpha$
	$p_1 = p_0 + (m \cdot g \cdot \sin \alpha / S)$
	Răspuns : $p_1 = 105 \cdot 10^3 \text{N} / \text{m}^2$
b.	$p_1 = n_1 \cdot k \cdot T_1$
	$k = \frac{R}{N_A}$
	R ăspuns: $n_1 = 2,64 \cdot 10^{25}$ molecule / m^3
C.	$(V_1/T_1) = (V/T)$
	$(S \cdot x_1 / T_1) = (S \cdot x / T)$
	$T = T_1 \cdot x / x_1$
	Răspuns: $T_{(x)} = 720 \cdot x$
II.2.a.	reprezentare grafică în coordonate p-V reprezentare grafică în coordonate V-T
	reprezentare grafică în coordonate p -T
b.	$\rho = \frac{p \cdot \mu}{R \cdot T}$
	$T_{A} = p_{A} \cdot V_{A} / vR$
	$T_A = \rho_A \cdot V_A / vR$ $T_C = \rho_C \cdot V_C / vR$
	$p_C = p_B$
	Răspuns: $\frac{\rho_A}{\rho_C} = 0.4$ $\eta_c = 1 - \frac{T_A}{T_C}$
C.	$\eta_c = 1 - \frac{T_A}{T_C}$
	Răspuns: $\eta_c = 50\%$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 22

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 23

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1. a.	$C_V = \frac{R}{\gamma - 1}$
	Răspuns : <i>Cv</i> = 20,775 J/mol·K
b.	$v_T = \sqrt{\frac{3 \cdot R \cdot T_{min}}{\mu}}$
	$T_{min} = T_{max} - \frac{L_{23}}{v \cdot C_V} = 280K$
	Răspuns : $v_T \cong 500$ m/s
C.	$\eta_{\rm C} = 1 - \frac{T_{min}}{T_{max}}$
	Răspuns: $\eta_C = 30\%$
II.2. a.	aplicarea legii transformării adiabatice la procesele i→a şi i→b:
	$T_i \cdot V_i^{\gamma - 1} = T_a \cdot V_a^{\gamma - 1}; T_i \cdot V_i^{\gamma - 1} = T_b \cdot V_b^{\gamma - 1}$
	Răspuns: $\frac{T_a}{T_b} \cong 1.6$
b.	$Q_{iaf} = Q_{ia} + Q_{af} = v \cdot C_{p} \cdot (T_f - T_a)$
	$Q_{ibf} = Q_{ib} + Q_{bf} = v \cdot C_{V} \cdot (T_f - T_b)$ $T_f = T_i$
	Răspuns : $\frac{Q_{iaf}}{Q_{ibf}} = 1,33$
C.	$\Delta U_{ibf} = \nu \cdot C_{\nu} \cdot (T_f - T_i); T_f = T_i$
	Răspuns: $\Delta U_{ibf} = 0$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 23

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 24

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	transformare izobară reprezentarea grafică
b.	$T_2 = 2T_1(), v = \frac{m}{\mu}(), L = p(V_2 - V_1) = vR(T_2 - T_1)()$
	Răspuns : <i>L</i> = 24,9 kJ
C.	$\Delta U = v C_V \Delta T \ (), Q = v C_p \Delta T \ ()$
	$\frac{\Delta U}{Q} = \frac{C_V}{C_\rho} = \frac{C_V}{C_V + R} = \frac{1}{1 + \frac{R}{C_V}}$
	Răspuns : $\frac{\Delta U}{Q} = \frac{5}{7} = 0.714$
II.2.a.	orice justificare corectă
b.	$\eta = 1 - \frac{T_{\text{min}}}{T_{\text{max}}}$ $\eta = \frac{L}{Q_{\text{p}}} sau \ \eta = 1 - \frac{ Q_{\text{c}} }{Q_{\text{p}}}$
	R ăspuns: $\eta = 33,3\%$
C.	$Q_{12.} = vRT \ln \frac{V_2}{V_1} () Q_{34} = vRT \ln \frac{V_4}{V_3} = -vRT \ln \frac{V_3}{V_4} ()$
	Răspuns : $\frac{Q_{12}}{Q_{34}} = -\frac{T_{\text{max}}}{T_{\text{min}}} = -\frac{3}{2}$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 24

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 25

Fizică

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	
	Soluție / schiță de rezolvare
II.1.a.	N. N.
II. I .a.	$N = \nu N_A$
	Răspuns : <i>N</i> = 12,06·10 ²³ molecule
b.	$p_1 = p_0 + \rho g h; V_1 = l_1 S$
	$p_2 = p_0 - \rho g h; V_2 = l_2 S$
	$p_1 V_1 = p_2 V_2$
	$p_0 = \rho g h \frac{l_1 + l_2}{l_2 - l_1}$
	Răspuns : $p_0 = 1,01\cdot10^5$ Pa
C.	Răspuns : $p_0 = 1,01 \cdot 10^5 \text{ Pa}$ $p_0 x = (p_0 + \rho g h) l_1$
	$x = l_1 \left(1 + \frac{\rho g h}{p_0} \right)$
	Răspuns : $x = 22.8 \text{ cm}$
II.2.a.	reprezentarea transformării ciclice în coordonate p-V și V-T.
b.	$T_2 = 2T_1$; $T_3 = 4T_1$; $T_4 = 2T_1$
	$Q_{p} = \nu C_{v} (T_{2} - T_{1}) + \nu C_{p} (T_{3} - T_{2}) = \nu C_{v} T_{1} (1 + 2\gamma)$
	$ Q_c = \nu C_V 2T_1 + \nu C_p T_1 = \nu C_V T_1 (2 + \gamma)$
	$\eta = 1 - rac{\left Q_{ced} ight }{Q_{prim}} = rac{\gamma - 1}{1 + 2 \gamma}$
	Răspuns : $\eta = 2/13 = 15,4\%$
C.	$\eta = 1 - \frac{T_1}{T_4}$
	Răspuns : $\eta = 3/4 = 75\%$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Varianta 25

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 26

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție/ rezolvare
I.1.a.	condiția de echilibru a pistonului $p_1 = p_0 + (m \cdot g / S)$ $p_0 \cdot S \cdot h = p_1 \cdot S \cdot h_1$ $x = h - h_1$ Răspuns: $x \cong 3,64 cm$
b.	$(V_{1}/T) = (V/T')$ $T' = T \cdot \frac{V}{V_{1}} = T \cdot \frac{h}{h_{1}}$ Răspuns: $T' \cong 322 K$
c.	$(p_0/T) = (p_2/T')$ $p_2 = p_0 \cdot \frac{T'}{T}$ Răspuns: $p_2 \cong 109,89 \cdot 10^3 \text{ N/m}^2$
II.2.a.	$v_T = \sqrt{3 \cdot R \cdot T / \mu}$ $\left(v_{T_2} / v_{T_1}\right) = \sqrt{\left(T_2 / T_1\right)}$ $T_2 = 3 \cdot T_1$ Răspuns: $v_{T_2} / v_{T_1} = \sqrt{3}$
b.	$L=$ aria ciclului $L=2\cdot p\cdot V=2\cdot v\cdot R\cdot T_{1}/3$ Răspuns: $L=4,432kJ$
C.	$Q_{23} = v \cdot C_V \cdot (T_3 - T_2)$ $T_3 = T_1$ Răspuns: $Q_{23} = -19,944 \text{ kJ}$

Varianta 26

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 27

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție/rezolvare
II.1.a.	
	$ \rho V_1 = \frac{m_1}{\mu_{_{He}}} RT $
	Răspuns: $p = 99,72 \text{ kPa}$
b.	$pV_2 = (N_2 / N_A) \cdot RT$
	$PV_2 = (N_2 / N_A) \cdot HI$ Răspuns: $N_2 = 1.2 \cdot 10^{21}$ atomi
C.	11aspuns. N ₂ = 1,2 · 10 atomi
	$\frac{pV_1}{T} = \frac{p'V_1}{T'}$
	$ \begin{array}{ll} T & T' \\ pV_2 = p'V'_2 \end{array} $
	$T' = T \cdot \frac{V_2}{V_1} \cdot \frac{V'_1}{V'_2}$
	Răspuns: T'= 750 K
II.2.a.	$L_{12} = v RT_1 \ln \frac{V_2}{V_1}$
	$L_{11'} = vR(T_1' - T_1)$
	$V_1/T_1 = V_1'/T_1'$
	$L_{1'2} = 0$
b.	Răspuns: $L_{12} / L_{11'2} = 0,693$ Răspuns: $\Delta U_{12} = 0$
5.	
C.	$\Delta U_{11'2} = 0$ $\eta = 1 - \frac{ Q_{1'2} + Q_{21} }{Q_{11'}}$
	$\eta = 1 - \frac{Q_{\Pi'}}{Q_{\Pi'}}$
	$Q_{1'2} = v C_V (T_2 - T_1')$
	$Q_{21} = vRT_1 \ln \frac{V_1}{V_2}$
	$Q_{11'} = v C_p(T_1' - T_1)$
	Răspuns: $\eta = 12,28\%$

Fizică Varianta 27 Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 28

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție/ rezolvare
II.1. a.	$p_1 = p_0 + \frac{M \cdot g}{S}$; $p_2 = p_0 + \frac{(M+m) \cdot g}{S}$
	$p_1 \cdot V_1 = p_2 \cdot V_2$ $V_2 = V_1 \cdot (1 - f) = 2 \cdot V_1 / 3$
	Răspuns: $p_2 = \frac{3 \cdot p_0 \cdot m}{2 \cdot m - M} = 4 \cdot 10^5 Pa$
b.	$\frac{V_2}{T_2} = \frac{V_3}{T_3}; T_2 = T_1$ $T_3 = T_2 + \Delta T$
	Răspuns: $\frac{\Delta V}{V_2} = \frac{\Delta T}{T_1} = 0.33 \approx 33.3\%$
C.	Răspuns: $\frac{\Delta V}{V_2} = \frac{\Delta T}{T_1} = 0.33 \cong 33.3\%$ Răspuns: $\frac{V_{T,3}}{V_{T,2}} = \sqrt{\frac{T_3}{T_1}} = \frac{2 \cdot \sqrt{3}}{3} \cong 1.15$
II.2. a.	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$; $T_2 \cdot V_2^{\gamma - 1} = T_3 \cdot V_3^{\gamma - 1}$; $\frac{V_3}{T_3} = \frac{V_4}{T_4}$; $\frac{p_4}{T_4} = \frac{p_1}{T_1}$; $T_{max} = T_2$ Răspuns: $T_4 = 300 \text{ K}$
b.	$\eta = 1 - \frac{ Q_{ced} }{Q_{abs}}$
	$Q_{abs} = Q_{41} + Q_{12} = v \cdot Cv \cdot [T_1 - T_4 + \gamma \cdot (T_2 - T_1)]$
	$Q_{ced} = v \cdot \gamma C v \cdot (T_4 - T_3)$ Răspuns: $\eta \approx 0,22 = 22\%$
C.	$L_{12} = p_1 \cdot (V_2 - V_1) = v \cdot R \cdot (T_2 - T_1)$
	Răspuns: $L_{12} = 6648 \text{J}$

3 Varianta 28

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 29

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	Soluție/rezolvare
II.1.a.	$m_0 = \mu_{H_2} / N_A$
b.	Răspuns: $m_0 \approx 3 \cdot 10^{-27} kg$ $v_T = \sqrt{\frac{3RT}{\mu}}$ $\frac{v_{T_1}}{v_{T_2}} = \sqrt{\frac{T_1}{T_2}}$
	$v_{\overline{t}_2} \sqrt{T_2}$ Răspuns: $\frac{v_{\overline{t}_1}}{v_{\overline{t}_2}} = \frac{\sqrt{3}}{2}$
c.	$pV_1 = \frac{m}{\mu_{H_2}}RT$, $pV_2 = \frac{3m}{\mu_{H_2}}RT$ Răspuns: $V_1/V_2 = 1/3$
II.2.a.	$N=N_A \frac{m}{\mu_{N_2}}$ Răspuns: $N=2N_A\approx 1,2\cdot 10^{24}$ molecule
b.	Reprezentări grafice corecte
C.	$L = 2p_1V_1$ $p_1V_1 = \frac{m}{\mu_{H_2}}RT_1$ Răspuns: $L = 2p_1V_1 = 2\frac{m}{\mu_{H_2}}RT_1 = 9,972 \cdot 10^6 J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 30

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	7. 21/ 2. PT
	$p_1 \cdot 3V_2 = \vartheta_1 RT_1$
	$p_2 \cdot V_2 = \vartheta_2 R T_2$
	Răspuns: $T_1 = T_2$
b.	$p_2 \cdot V_2 = \vartheta_2 RT$
	$p \cdot 4V_2 = (\vartheta_1 + \vartheta_2)RT$
	Răspuns: $p = 375 \text{ kPa}$
C.	
	$\frac{n'-n}{n} = \frac{N'/V - N/V}{N/V}$
	$N = N_1 + N_2, N' = N_1 + N'_2$
	$N_1 = \vartheta_1 N_A, N_2 = \vartheta_2 N_A, N_2' = 2 \vartheta_2 N_A$
II.2.a.	Răspuns: $\Delta n/n = 0.2$
II.Z.a.	temperatura maximă – starea 1
	temperatura minimă - starea 3
b.	
	$V_{T} = \sqrt{3RT/\mu} \; ; \; v_{T2}/v_{T1} = \sqrt{T_2/T_1}$
	$\eta = 1 - \frac{ Q_{\text{ced}} }{Q_{\text{pr}}}$
	$Q_{\text{ced.}} = Q_{2 \to 3} = \mathfrak{V}C_{p}(T_3 - T_2)$
	$Q_{\text{pr.}} = Q_{3 \to 1} = \vartheta C_{V} (T_1 - T_3)$
	Răspuns: $v_{T2}/v_{T1} = 0.8$
C.	, (V, V,) 2D(T, T,)
	$L_{2\to 3} = p_2(V_3 - V_2) = \vartheta R(T_3 - T_2)$ Propund: $I_2 = -465.36 \text{ J}$
	Răspuns: $L_{2\to 3} = -465,36 \text{ J}$

Fizică Varianta 30

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 31

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	o definiție corectă a transformării adiabatice
b.	suma algebrică a căldurilor schimbate de cantitățile de apă aflate în termos este nulă Răspuns: 30°C
C.	suma algebrică a căldurilor schimbate de cantitățile de apă aflate în termos este nulă Răspuns: 200 g
II.2.a.	$\eta = \frac{L}{Q_1}$
	$Q_1 = L + Q_2 $
	Răspuns: $\eta = \frac{1}{11} = 9,1\%$
b.	$T_{\text{max}} = 4T_{\text{min}}$
	$\eta = 1 - \frac{T_{\min}}{T_{\max}}$
	r _{max} Răspuns: η = 75%
C.	Q.
	$\eta = 1 - \frac{ Q_2 }{Q_1}$ sau altă expresie corectă a randamentului
	$\eta = \frac{\gamma - 1}{2\gamma + 1}$
	Răspuns: $\gamma = \frac{4}{3} = 1,33$

Fizică Varianta 31

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 32

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	$V = \sqrt{\frac{3RT}{\mu}}$ Răspuns: V = 516,8 m/s
b.	$p \cdot V = \frac{m}{\mu}RT \Rightarrow m = \frac{pV\mu}{RT}$ $m = 2,52Kg$
C.	$\frac{p}{T} = \frac{p'}{T'} \Rightarrow T' = T \frac{p'}{p}$ Răspuns: $T' = 400 K$
II.2.a.	$L_{ad} = -vC_v \Delta T$ $T_c = T_r + \frac{L_{ad}}{vC_v}$ $C_v = C_p - R$
b.	$C_v = C_p - R$ Răspuns: $T_c = 400K$
	$\eta=1-rac{T_r}{T_c}$ Răspuns: $\eta=25\%$
c.	$ \eta = \frac{L}{Q_p} $ $ Q_p = L + Q_c $ $ L = \frac{\eta Q_c }{1 - \eta} $
	Răspuns: $L = 1200J$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Subiectul C. TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție, rezolvare
II. 1.a.	
	$\frac{p_1}{V_1} = \frac{p_2}{V_2}$
	V_1 V_2 Răspuns: V $_2$ =100 l
b.	11d3puns. V 2 = 1001
	$p_2V_2 = vRT_2$; $p_1V_1 = vRT_1$; $\Delta T = \frac{p_2V_2 - p_1V_1}{vR}$
	Răspuns: $\Delta T = 252.7K$
C.	
	$L = \frac{p_1 + p_2}{2} (V_2 - V_1)$
	Răspuns: L=10500 J
II.2.a.	
	$T_C = \frac{P_B V_D}{vR}$
	VR Răspuns: T c =1000K
b.	
	$L = (P_B - P_D)(V_D - V_B)$
	Răspuns: L=4155 J
C.	T . T
	$T_B = \frac{T_C}{2} \; ; \; T_A = \frac{T_B}{2}$
	Q ₁ =16620 J
	Răspuns: $\eta = \frac{L}{Q_1}$ =0.25

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Varianta 34

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	$v_1 = \frac{p_1 V_1}{RT}$, $v_2 = \frac{p_2 V_2}{RT}$
	Răspuns: $v_1 = 0.40 moli$, $v_2 = 1.20 moli$
b.	
	$\rho = \frac{(v_1 + v_2)RT'}{V_1 + V_2}$
	$v_1 + v_2$ Răspuns: $p = 2,22 \cdot 10^5 \text{N/m}$
C.	11d3pulls. p = 2,22 · 10 / 11/
	$N = N_A \cdot (v_1 + v_2)$
	Răspuns: $N = 9,64 \cdot 10^{23}$ molecule
II.2.a.	T = T
	$T_3 = T_2$ $T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$
	, 2
	Răspuns: $\frac{T_3}{T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma-1} = \varepsilon^{\gamma-1}$
b.	$\eta = 1 - \frac{\left Q_c\right }{Q_{ ho}}$
	$Q_p = Q_{23} = \nu R T_2 \cdot ln \left(\frac{V_3}{V_2} \right)$
	$Q_C = Q_{31} = \nu \cdot C_V (T_1 - T_3)$
	Răspuns: $\eta = 1 - \frac{\varepsilon^{\gamma - 1} - 1}{(\gamma - 1)\varepsilon^{\gamma - 1} \ln \varepsilon}$
C.	$\eta_C = 1 - \frac{T_r}{T_c}$
	Răspuns: $\eta_C = 1 - \frac{T_1}{T_3} = 1 - \frac{1}{\varepsilon^{\gamma - 1}}$

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 35

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție/ rezolvare
II.1.a.	$v_T = \sqrt{\frac{3RT}{\mu}}$
	Răspuns: $v_{T1} / v_{T2} = 1$
b.	$v = m/\mu$
	$\nu_1 - m_1 \mu_{0_2}$
	$\frac{v_1}{v_2} = \frac{m_1 \mu_{O_2}}{m_2 \mu_{N_2}}$
	Răspuns: $v_1/v_2 = 4$
C.	$pV_1 = v_1RT_1$
	$pV_2 = v_2RT_2$
	$V_1/V_2 = v_1T_1/v_2T_2$
	$V = V_1 + V_2$
	Răspuns: $V_1 = 3.5 \ell$
II.2.a.	legea transformării generale pe transformarea $1 \rightarrow 2$
	Răspuns: $T_2 = 750 \mathrm{K}$
b.	$\Delta U_{12} = \nu C_{\nu} (T_2 - T_1)$
	$\Delta U_{12} = 3\nu RT_1$
	$L_{12} = Arie = 1,25vRT_1$
	$Q_{12} = \Delta U_{12} + L_{12}$
	$Q_{12} = 4,25\nu RT_1$
	Răspuns: $Q_{12} \cong 8829,37 J$
C.	$L_{tot} = 0.25 \nu RT_1$
	$\eta = \frac{L_{tot}}{Q_{12}}$
	$\sqrt{-Q_{12}}$
	Răspuns: $\eta \cong 5,8\%$

Varianta 35 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 36

Varianta 36

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
	220,427.220.000
II.1.a.	$\rho = \frac{m_2}{V_2}$
	$^{\prime}$ V_{2}
	$m_2 = v_2 \mu_2$
	Răspuns: $\mu_2 = 6g/mol$
b.	$\frac{p_2' - p_2}{p_2} = \frac{T_2 - T_1}{T_1}$
	Răspuns: $\Delta p_2 / p_2 = 25\%$
C.	
	$ \rho V_{total} = v_{total} R T_2 $
	$V_{total} = \ell_3 S + V_2; v_{total} = v_1 + v_2$
	Răspuns: $\ell_3 = 0.75 m$
II.2.a.	
b.	$Q_{12} = vC_V(T_2 - T_1)$
	$T_1 = \rho_1 V_1 / vR; T_2 = \rho_2 V_1 / vR$
	Răspuns: $p_2 = p_1 + 2Q_{12}/3V_1 = 2 \cdot 10^5 Pa$
C.	
	$L_{23} = vRT_2 \ln \frac{V_2}{V_1}$
	$p_2V_1 = vRT_2$
	Răspuns: : $L_{23} = -p_2 V_1 \ln 2 = -277,2 J$

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 37

Varianta 37

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr.item	Soluție,rezolvare
II.1.a.	
	$U = v \cdot C_V \cdot T$
	Răspuns: U=300J
b.	$V_{T} = \sqrt{\frac{3RT}{\mu}}$ $\frac{V_{T_{He}}}{V_{T_{Ar}}} = \sqrt{\frac{\mu_{Ar}}{\mu_{He}}}$ $V_{T_{He}} / V_{T_{Ar}} = \sqrt{10} = 3,16$
	$\frac{V_{T_{He}}}{V_{T_{Ar}}} = \sqrt{\frac{\mu_{Ar}}{\mu_{He}}}$
	$v_{T_{He}} / v_{T_{Ar}} = \sqrt{10} = 3,16$
C.	expresia energiei de translație
	$T'_T = p'V'_pV$
	Răspuns: $\epsilon'/\epsilon = 2$
II.2.a.	Reprezentări grafice corecte
b.	$\eta = 1 - \frac{\left Q_{\text{cedat}} \right }{Q_{\text{primit}}} = \frac{L}{Q_{\text{primit}}}$
	$\eta = 1 - \frac{\gamma(\epsilon - 1)}{\epsilon - 1 + \epsilon(\gamma - 1)\ln\epsilon}$
	Răspuns: η = 15,62 %
C.	$\eta_{c} = 1 - \frac{T_{min}}{T_{max}} = 1 - \frac{T_{3}}{T_{1}}$
	$\eta_{\rm C} = (\epsilon - 1) / \epsilon$
	Răspuns: $\eta_{C} = 66,67 \%$

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 38

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	$pV = \nu RT; \ p_0V = (\nu - \Delta \nu)RT; \ p_0\Delta V = \Delta \nu RT'$
	$\Delta V = D\tau$
	$\tau = \frac{T'}{T} \left(\frac{p}{p_0} - 1 \right) \frac{V}{D}$
	Răspuns: $ au\cong 8,2h$
b.	$\frac{pV}{T} = \frac{p_0 V_0}{T'}, (v, R = const.)$
	Răspuns: $V_0 = 6.1m^3$
C.	$p_0 = knT$
	$n = \frac{p_0}{kT},$
	Răspuns: $n = 5 \cdot 10^{25} m^{-3}$
II.2.a.	$\eta_{\scriptscriptstyle C} = 1 - rac{T_{rece}}{T_{cald}}$
	Răspuns: $\eta_C = 1 - \frac{1}{z}$
b.	reprezentarea grafică corectă
C.	$\eta = 1 - \frac{ Q_{cedat} }{Q_{primit}} sau \ \eta = \frac{L}{Q_{primit}}$
	$Q_{primit} = \nu C_V T_{\min}(z - 1)$
	Temperatura la sfârșitul destinderii adiabatice: $T_{\scriptscriptstyle 3} = T_{\scriptscriptstyle m min} {\cal E}$
	$\left Q_{cedat}\right = \nu C_p T_{\min}\left(\varepsilon - 1\right)$
	Răspuns: $\eta = 1 - \frac{(\varepsilon - 1)}{(z - 1)} \frac{\ln z}{\ln \varepsilon}$

Varianta 38

Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 39

Subiectul C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	$\rho = p_1 \mu / (RT_1)$
	$T_1 = p_1/(nk)$
	$k = R/N_A$
	Răspuns: $\rho = 0.32 \ kg / m^3$
b.	$v_{t_1} = \sqrt{\frac{3RT_1}{\mu}} , \ v_{t_2} = \sqrt{\frac{3RT_2}{\mu}}$
	$T_2 = 4 T_1$
	$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$
	Răspuns: $p_2 = 2 \cdot p_1 = 4 \text{ atm}$
C.	$\eta = 1 - \frac{T_1}{T_2}$
	Răspuns: $\eta = 75\%$
II.2.a.	recunoașterea tipului de transformare
b.	reprezentarea corectă a succesiunilor transformărilor $\Delta U_{14} = vC_v(T_4 - T_1)$
	$V_4 = V_1/2$
	$\Delta U_{14} = \frac{3}{2} (p_4 V_4 - p_1 V_1) = -\frac{3}{2} \cdot \frac{p_1 V_1}{2}$
	Răspuns: $\Delta U_{14} = -75 J$
C.	$L = -(p_2 - p_1) \cdot (V_1 - V_3)$
	$L = -p_1 V_1 / 2$
	Răspuns: $L = -50 J$

Fizică Varianta 39

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 40

Subiectul C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Soluție / rezolvare
$pV = \frac{m}{\mu}RT$
$p = \frac{mRT}{\mu V}$
Răspuns: p=4,45·10 ⁵ Pa
$p_f = p_0 + \Delta p ,$
$\rho_t V = \left(\frac{m}{\mu} + \frac{m'}{\mu'}\right) RT$
$m' = \mu' \left[\frac{V(p_0 + \Delta p)}{RT} - \frac{m}{\mu} \right]$
Răspuns: m' = 0,352 g
$\frac{m}{\overline{\mu}} = \frac{m}{\mu} + \frac{m'}{\mu'}$
$\overline{\mu}$ μ μ'
$\mu' = \frac{m+m'}{m-m'}$
$\mu' = \frac{m + m'}{\frac{m}{\mu} + \frac{m'}{\mu'}}$
Răspuns: $\mu' = 0.0295 \text{kg} \cdot \text{mol}^{-1}$
$Q_{abs} = vC_v(2T - T) + vC_p \cdot (4T - 2T) = \frac{13}{2}vRT$
Răspuns: $Q_{abs} = 13,503KJ$
$ Q_{ced} = v \left(C_v + \frac{R}{2} \right) \cdot (4T - T) = 6vRT = 12,465KJ$
Răspuns: $ Q_{ced} = 12,465KJ$
$\eta = 1 - \frac{ Q_{ced} }{Q_{abs}}$
Răspuns: η = 7,7%

Fizică Varianta 40

EXAMENUL DE BACALAUREAT - 2007

Fizică

Fizica

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 41

Subiectul C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Nr. Item	Soluție / rezolvare
II.1.a.	$p_1 V = \frac{m_1}{\mu} R T_1, \ p_2 V = \frac{m_2}{\mu} R T_2$
	$\Delta m = \frac{\mu V}{R} \left(\frac{p_1}{T_1} - \frac{p_2}{T_2} \right)$
	Răspuns: $\Delta m = 0,134 g$
b.	$N = N_A \frac{m_2}{\mu} = N_A \frac{p_2 V}{R T_2}$
	Răspuns: N ≈ 1,6 · 10 ²² molecule
C.	$v_{\scriptscriptstyle T} = \sqrt{\frac{3RT_2}{\mu}}$
	Răspuns: $v_{\tau} = 1321 m/s$
II.2.a.	$pV = \frac{m}{\mu}RT$ $T = \frac{\mu pV}{mR}$
	$T = \frac{\mu p V}{mR}$
	Răspuns: $T = 300 K$
b.	L=2pV
	Răspuns: $L = 49,86 kJ$
C.	$\eta = rac{L}{Q_{ extit{primit}}}$
	$Q_{primit} = Q_{12} + Q_{23}$
	$Q_{12} = \frac{m}{\mu} C_V (T_2 - T_1), \ Q_{23} = \frac{m}{\mu} (C_V + R) (T_3 - T_2)$
	$T_1 = \frac{\mu \rho V}{mR}$, $T_2 = 2T_1$, $T_3 = 6T_1$
	Răspuns: $\eta \cong 12\%$

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 42

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

	Soluție, rezolvare
II.1.a.	definirea căldurii specifice și precizarea unității de măsură
b.	$C = \frac{Q}{\Delta T}$ sau $C = \frac{Q}{\Delta t}$ Răspuns: 250 $\frac{J}{K}$
C.	$Q = mc\Delta T$ $\frac{m'}{m} = \frac{V'}{V} = \frac{1}{8}$ $\frac{Q'}{Q} = \frac{V'\Delta T'}{V\Delta T}$ Răspuns: $Q' = 5$ kJ
II.2.a.	$C_p = C_V + R$ Răspuns: $C_p = \frac{7}{2}R = 29.085 \frac{J}{\text{mol} \cdot K}$ $\gamma = \frac{C_p}{C_V}$ Răspuns: $\gamma = 1,4$
b.	$ Q_2 = 8,5 \ p_0 V_0$ $L = 0,5 \ p_0 V_0$ Răspuns: $L = 150 \ J$
C.	$v_{T} = \sqrt{\frac{3RT}{\mu}} \text{sau} v_{T} = \sqrt{\frac{3kT}{m_{0}}}$ $\frac{v_{T,2}}{v_{T,1}} = \sqrt{\frac{T_{2}}{T_{1}}}$ $\text{Răspuns:} \frac{v_{T,2}}{v_{T,1}} = 2$

Varianta 42

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Fizică

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii Proba F: Profil: tehnic - toate specializările

Varianta 43

Subiectul C. FIZICĂ MOLECULARĂ ŞI CĂLDURĂ

Nr. Item	Soluție / rezolvare
II.1. a.	$N = nV = \frac{pV}{kT} = 1,33 \cdot 10^{14}$
	Răspuns: N = 1,33·10 ¹⁴ molecule
b.	$v = \frac{N}{N_A} = \frac{m}{\mu} \Rightarrow m = \frac{N \cdot \mu}{N_A}$
	Răspuns: $m = 6,18 \cdot 10^{-12} \text{kg}$
C.	$U = \frac{3}{2} pV = 8.28 \cdot 10^{-7} J$
	Răspuns: $E = 8.28 \cdot 10^{-7} J$
2. a	$Q = Q_{12} + \overline{Q_{23}}$
	$Q = \frac{p_1 V_1}{T_1} \left[\frac{C_V}{R} (T_3 - T_1) + T_3 - T_2 \right]$
	Răspuns: Q = 1531,8J
b	$L = L_{12} + L_{23}$
	$L = p_3(V_3 - V_2) = \frac{p_1 V_1}{T_1} (T_3 - T_1)$
	Răspuns: L = 199,8J
С	ciclul Carnot $\eta = 1 - \frac{T_r}{T_c}$
	$\eta = 1 - \frac{T_1}{T_3}$
	Răspuns: $\eta \cong 21\%$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 44

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție, rezolvare
II.1.a.	$m = \mu \nu$
	$V_1 = m/\rho_1$
	Răspuns: $V_1 \cong 26,23 \cdot 10^{-3} m^3$
b.	$L = \nu R \Delta T$
	$\Delta T = T_2 - T_1$
	Răspuns: $T_2 \cong 657 K$
C.	ALL AC AT
	$\Delta U = \nu C_{\nu} \Delta T$ $C_{\nu} = R/(\gamma - 1)$
	$C_V = K/(\gamma - 1)$ Răspuns: $\Delta U \cong 7001J$
II.2.a.	
	$v_{T1} = \sqrt{3RT_1/\mu}$
	$v_{T2} = \sqrt{3RT_2/\mu}$
	$p_1/T_1 = p_2/T_2$
b.	$v_{T1}/v_{T2} \cong 1,41$
D.	$p_1V_1/T_1 = p_3V_3/T_3$
	$p_1/V_1 = p_3/V_3$
	Răspuns: $T_3 = 4T_1$
C.	m 1/0
	$\eta = L/Q_a$ $Q = \nu C (T - T) + \nu C (T - T)$
	$Q_{a} = vC_{V}(T_{2} - T_{1}) + vC_{P}(T_{3} - T_{2})$ $Q_{a} = 4vRT_{1}$
	$\mathcal{Q}_a = 4VKI_1$ $L = p_1V_1/2$
	$L = v_1 r_1 / 2$ $L = vRT_1 / 2$
	Răspuns: $\eta\cong 7,69\%$

Fizică Varianta 44

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Subiectul C. TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II. 1.a.	
	$Q_1 = Q_2 $ $Q_1 = v \cdot C_V (T - T_2)$
	$ Q_1 = C(T_1 - T_2)$ $ Q_2 = C(T_1 - T)$
	$T = \frac{CT_1 + v \cdot C_V T_2}{v \cdot C_V + C}$
	Răspuns: $T \cong 429K$
<u>b.</u>	3
	$\overline{\varepsilon}_{tr} = \frac{3}{2}kT$
	Răspuns: $\bar{\varepsilon}_{tr} \cong 888 \cdot 10^{-23} J$
C.	~_l
	$TV^{\gamma-1} = T_3V_3^{\gamma-1}$
	$pV = vRT_2$ $V = vRT_2 / p$
	$R\check{aspuns} \colon V_3 \cong 113 \cdot 10^{-3} m^3$
II.2.a.	11dopuno. 73 = 113 10 m
	$T_1 \cong 240K$
	legea transformării izocore $1 \rightarrow 2$ legea transformării izoterme $2 \rightarrow 3$
	Răspuns: $p_2 = 6 \cdot 10^5 N / m^2$; $V_2 = V_1 = 10\ell$; $T_2 \cong 720K$
	$p_3 = p_1 = 2 \cdot 10^5 \text{N} / m^2 ; V_3 = 3V_1 = 30\ell ; T_3 = T_2 \cong 720 \text{K}$
b.	
	$U_2 = U_3 = \nu C_V T_2$
	Răspuns: $U_2 \cong 18kJ$
C.	căldura schimbată într-o transformare izobară
	Răspuns: $Q_{31} = -1595,5J$

Fizică
Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 46

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	$T_1 = \frac{pV_1}{vR}$
	Răspuns: $T_1 = 120,3K$
b.	$L = p\Delta V = p(V_2 - V_1) = pV_1 \left(\frac{\rho_1}{\rho_2} - 1\right)$
	$\Delta U = \frac{C_V}{R} p \left(\frac{\rho_1}{\rho_2} - 1 \right) V_1$
	$Q = \Delta U + L = \nu C_P \Delta T$
C.	Răspuns: $L = 6kJ$; $\Delta U = 15kJ$; $Q = 21kJ$;
0.	$\frac{v_{T_1}}{v_{T_2}} = \frac{\sqrt{T_1}}{\sqrt{T_2}} = \sqrt{\frac{\rho_2}{\rho_1}}$
	Răspuns: $\frac{v_{T_1}}{v_{T_2}} = \frac{1}{2}$
II.2.a.	$p_1 = p_0 + \rho g \frac{l}{2}$
	Răspuns: $p_1 = 1,5atm$
b.	$p_1 V_1 = p_2 V_2$
	$p_1 = p_0 + \rho g \frac{l}{2};$ $V_1 = S \frac{l}{2};$ $p_2 + \rho g x = p_0;$ $V_2 = S(l - x);$
	$\rho g x^2 - x(p_0 + \rho g l) + \frac{p_0 l}{4} = 0$
	Răspuns: $x = l \left(1 - \frac{\sqrt{3}}{2} \right) = 10,2 cm$
C.	$\frac{\rho_1}{\rho_2} = \frac{V_2}{V_1} \Rightarrow \frac{\rho_1}{\rho_2} = \frac{(l-x)\cdot 2}{l}$
	Răspuns: $\frac{\rho_1}{\rho_2} = 1,73$

Varianta 46

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 47

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	
	$Q = Q_{\text{butelie}} + Q_{\text{oxigen}}$
	$Q_{\text{butelie}} = mc_{\text{otel}}(T_1 - T)$
	$Q_{\text{oxigen}} = \vartheta C_{V}(T_{1} - T)$
	$pV = \vartheta RT$
	Răspuns: Q=110 kJ
b.	m ₄
	$pV = \frac{m_1}{\mu}RT$
	$\Delta m = f m_1$
	$p_0 V_0 = \Delta mRT_0 / \mu$
	Răspuns: $V_0 \cong 0,44 \text{ m}^3$
C.	
	$pV = m_1RT/\mu$
	$p_1V = \frac{m_2}{\mu}RT = \frac{m_1 - fm_1}{\mu}RT$
	$ \begin{array}{ccc} \mu & \mu \\ \rho_1/T = \rho_{\text{max}}/T_{\text{max}} \end{array} $
	$p_1 r_1 - p_{\text{max}} r_{\text{max}}$ Răspuns: $T_{\text{max}} = 2400 \text{ K}$
II.2.a.	\reprezentare grafică
b.	
	$T_{\text{max}} = T_3$, $T_{\text{min}} = T_1$
	$\eta_{\rm C} = 1 - T_{\rm max} / T_{\rm min} = 1 - T_3 / T_1$
	$T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}, \ V_2/T_2 = V_3/T_3, \ T_3V_3^{\gamma-1} = T_4V_1^{\gamma-1}$
	$\gamma = C_p/C_V$
	Răspuns: $\eta_C = 0.895$
C.	$\eta = 1 - Q_{\text{ced.}} /Q_{\text{pr.}}$
	$\begin{aligned} & \Pi = \Pi - \mathcal{Q}_{\text{ced.}} /\mathcal{Q}_{\text{pr.}} \\ & Q_{\text{ced.}} = Q_{4 \to 1} = \vartheta C_{\text{V}}(T_1 - T_4), Q_{\text{pr.}} = Q_{2 \to 3} = \vartheta C_{\text{p}}(T_3 - T_2) \end{aligned}$
	·
	Răspuns: $\eta = 0.65$

3 Varianta 47

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 48

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Calutia varahova
II.1.a.	Soluție, rezolvare
	$m_0 = \frac{\mu}{N_A}$
	Răspuns: $m_0 \cong 5,31 \cdot 10^{-26} \ kg$
b.	$E_C = N_A \frac{m_0 v_T^2}{2} = \frac{\mu \cdot v_T^2}{2}$
	$v_T = \sqrt{\frac{3RT_0}{\mu}}$
	Răspuns: $E_C = 3402,94J$
C.	$\rho_0 = \frac{p_0 \mu}{R T_0}$
	Răspuns: $\rho_0 = 1.41 kg / m^3$
II.2.a.	Reprezentări grafice corecte
b.	$Q_p = Q_{12} + Q_{41}$
	$Q_{12} = \nu R T_1 \ln \frac{V_2}{V_1}$; $Q_{41} = \nu C_V (T_1 - T_2)$
	Răspuns: $Q_p = 5,4MJ$
C.	$\eta = 1 - \frac{ Q_c }{Q_p}$
	$Q_c = Q_{23} + Q_{34}$; $Q_{23} = vC_V(T_2 - T_1)$; $Q_{34} = vRT_2 \ln \frac{V_1}{V_2}$
	Răspuns: $\eta = 15,38\%$

Fizică Varianta 48

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 49

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție, rezolvare
II.1.a.	reprezentare grafică în coordonate p-V, realizată corect
b.	
	$Q = \Delta U + L$
	$\Delta U = \upsilon C_{\nu} (T_1 - T_3)$
	$L = -4p_1V_1$
	Ecuația de stare pentru determinarea $T_{\scriptscriptstyle 1}$, $T_{\scriptscriptstyle 3}$
	Răspuns: $Q = -24p_1V_1$
C.	1.101/0
	$\eta = 1 - Q_c /Q_p$ sau $\eta = L/Q_p$
	$Q_{p} = \upsilon \left[C_{\nu} (T_{2} - T_{1}) + C_{p} (T_{3} - T_{2}) \right]$
	$Q_p = 26pV$
	$Q_c = -24\rho V$
	Răspuns: $\eta = 1/13$
II.2.a.	reprezentare corectă
b.	
	pistonul nu se deplasează până când presiunea din interior ajunge $p_0^{}$
	$p_1/T_1 = p_0/T$
	$V_1/T = V_2/6T_1$
	Răspuns: $V_2 / V_1 = 6/5$
C.	
	$L = p_0(V_2 - V_1)$
	$L = p_0 V_1 / 5$
	Răspuns: $L = 20J$

Fizică Varianta 49

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 50

Subiectul D. FIZICĂ MOLECULARĂ ŞI TERMODINAMICĂ

Nr. item	Soluție/ rezolvare
II.1.a.	$p = p_0 + \frac{m_1 g}{S} = ct$
	$\Delta E_p = m_1 g \Delta h \Rightarrow \Delta h = \frac{\Delta E_p}{m_1 g}; pV_2 = \frac{m}{\mu} RT_2$
	$V_{2} = V_{1} + S\Delta h = V_{1} + \frac{\Delta E_{p} S}{m_{1} g}$
	$p(V_1 + \frac{\Delta E_p S}{m_1 g}) = \frac{m}{\mu} RT_2;$
	Răspuns: $V_1 = 2.5 dm^3$
b.	$pV_1 = vRT_1; T_1 = \frac{pV_1}{vR}$
	Rãspuns: $T_1 = 300K$
C.	$L = p(V_2 - V_1) = pS\Delta h = 16,6J$
	Rãspuns: $Q = vC_p (T_2 - T_1) = 58.2J$
	$\Delta U = Q - L = vC_v (T_2 - T_1) = 41.6J$
II.2.a.	$\frac{p_2}{T_2} = \frac{p_1}{T_1}; \frac{p_2}{T_3} = \frac{p_1}{T_4} \qquad ; \frac{T_3}{T2} = \frac{T_4}{T_1}; T_2 = T_4 = \sqrt{T_1 T_2} = 360K$
	Răspuns: $t_2 = 87^{\circ} C$
b.	$L = (p_2 - p_1)(V_3 - V_1) = vR(T_3 - 2T_2 + T_1)$ Rãspuns: $L = 9972J$
C.	$ \eta = \frac{L}{Q_p} \qquad Q_{12} = \nu C_{\nu} (T_2 - T_1) Q_{23} = \nu C_p (T_3 - T_2) Q_p = Q_{12} + Q_{23} \text{Rãspuns}: \eta = 44.5\% $

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 51

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	Soluție/ schiță de rezolvare
II.1.a.	$Q_{abs} = Q_{12} + Q_{23} = \nu C_{\nu} (2T - T) + \nu \left(C_{\nu} + \frac{R}{2} \right) \cdot (8T - 2T)$
	$Q_{abs} = \frac{27}{2} vRT$
b.	Răspuns $Q_{abs} = 28,046KJ$
D.	$\left Q_{ced}\right = \nu C_{\nu} (8T - 4T) + \nu \left(C_{\nu} + \frac{R}{2}\right) \cdot \left(4T - T\right)$
	$ Q_{ced} = 12vRT$
	Răspuns $Q_{ced} = -24,93KJ$
C.	$\eta = 1 - \frac{ Q_{ced} }{Q_{abs}}$
	$R \text{ `aspuns } \eta = \frac{3}{27} = 11\%$
II.2.a.	$\eta = \frac{L}{Q_{abs}}$
	$L = \eta \cdot Q_{abs}$
	Răspuns L=600J
b.	$\eta = 1 - \frac{T_{min}}{T_{max}}$
	$v_T = \sqrt{\frac{3RT}{\mu}}$
	$\frac{T_{\text{max}}}{T_{\text{obs}}} = \frac{1}{1-n} \qquad \frac{V_{\text{max}}}{V_{\text{obs}}} = \frac{1}{\sqrt{1-n}}$
	T_{min} $1-\eta$ V_{min} $\sqrt{1-\eta}$
	$\frac{V_{max}}{V_{min}} = 2$
C.	$\eta = 1 - \frac{ Q_{ced} }{Q_{abs}}$
	Nr. de cicluri din intervalul τ = 1 minut este: $n = \frac{\tau}{\Delta t}$
	$\left Q_{ced,total}\right = n \cdot Q(1-\eta)$
	$ Q_{ced,total} = 60 kJ$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 52

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$Q = \frac{3}{2} \nu R \Delta T$
	Răspuns $v = 4/3 \cong 1,33 moli$
b.	$v_T = \sqrt{\frac{3RT}{\mu}}$
	$\frac{v_{T_1}}{v_{T_2}} = \sqrt{\frac{T_1}{T_2}}$
	R aspuns $v_{T_1} / v_{T_2} = 0.5$
C.	$U = \frac{3}{2} vRT$
	$\frac{\Delta U}{U_4} = \frac{T_2 - T_1}{T_4}$
	$\mathbf{R\check{a}spuns} \ \frac{\Delta U}{U_1} = 3$
II.2.a.	legea transformării izoterme pe transformarea $1 \rightarrow 2$
	$p_2 = p_1/2$
	$p_3V_2 = p_2V_3$ Răspuns $p_3 = p_1/4 = 1$ atm
b.	$L_{23} = Arie = -3p_1V_1/8$
	Răspuns $L_{12} = -150 J$
C.	$Q_{12} = \nu R T_1 \ln(V_2 / V_1) = p_1 V_1 \ln 2$
	$\Delta U_{23} = \nu C_V (T_3 - T_2) = -15 \rho_1 V_1 / 8$
	$Q_{23} = \Delta U_{23} + L_{23}$
	$Q_{13} = Q_{12} + Q_{23}$
	Răspuns $Q_{13} \cong -622.8 J$

Varianta 52

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 53

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
	· ·
II.1.a.	$p_1 V = \frac{m_1}{\mu} R T_1$
	$p_2V = \frac{m_2}{\mu}RT_2$
	$m = m_1 - m_2 = \frac{V\mu}{R} \left(\frac{p_1}{T_1} - \frac{p_2}{T_2} \right)$
	R ăspuns $m = 1,34 Kg$
b.	$V_T = \sqrt{\frac{3RT_1}{\mu}}$
	Răspuns $V_T = 1367,38 m / s$
C.	
	$U = \frac{3}{2} VRT_2 = \frac{3}{2} p_2 \cdot V_2$
	$R \ddot{a} spuns U = 90 KJ$
II.2.a.	$L = (p_2 - p_1) \cdot (V_3 - V_1) \Rightarrow L = 3p_1V_1$
b.	Răspuns $L = 2493J$ $T_1 = \frac{p_1 V_1}{vP}$
	$T_1 = \frac{P + 1}{\nu R}$
	$\frac{p_1}{T_1} = \frac{p_2}{T_2} \Rightarrow T_2 = 2T_1$
	$\frac{V_2}{T_2} = \frac{V_3}{T_3} \Rightarrow T_3 = 8T_1$
	$\frac{V_1}{T_1} = \frac{V_4}{T_4} \Rightarrow T_4 = 4T_1$
	Răspuns $T_1 = 300K$, $T_2 = 600K$, $T_3 = 2400K$, $T_4 = 1200K$
C.	$\eta = 1 - \frac{T_{\min}}{T_{\max}}$,
	$\eta = 1 - \frac{T_1}{T_3}$
	Răspuns $\eta = 87.5\%$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 54

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	reprezentare grafică
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
b.	$L = -\Delta U$
	$L = \frac{m}{\mu} C_{\nu} (T_1 - T_2)$
	$T_2 = T_1 - \frac{L\mu}{mC_v}$
	Răspuns $T_2 = 350,85K$
C.	$\Delta U = \mathcal{VC}_{\nu}(T_1 - T_2)$
	Răspuns $\Delta U = 8.31kJ$
II.2.a.	$\rho_0 V = \frac{m_1}{\mu} R T_1$
	$m_1 = \frac{p_0 V \mu}{R T_1}$
	$\mathbf{R\check{a}spuns} m_1 = 12,03g$
b.	$(p_0 + mg/S) = p_1$
	Răspuns $p_1 = 101000 \ N / m^2$
c.	$m_2 = \frac{m_1}{2}$
	$(p_0 + \frac{mg}{S})V = m_1RT_3/2\mu$
	Răspuns $T_3 = 585,8 K$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 55

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$N = m \cdot N_A / \mu$
	Răspuns $N = 6,023 \cdot 10^{22}$ molecule
b.	$\rho_0 V = \rho \cdot (V - Sx)$
	$V = \frac{mRT}{\mu \cdot \rho_0} \; ; \; \; \rho = \rho_0 + \frac{Mg}{S}$
	$x = \frac{mRT}{\mu \cdot p_0 S} \cdot \frac{Mg}{p_0 S + Mg}$
C.	Răspuns $x = 11,33cm$
0.	$pV = \frac{m + \Delta m}{\mu}RT$
	$\Delta m = m \frac{Mg}{p_0 S}$
	Răspuns $\Delta m = 0.04g$
II.2.a.	$pV = \left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right) RT$
	Răspuns $p = 3,33 \cdot 10^5 \text{N} / m^2$
b.	$V = \sqrt{\frac{3RT}{\mu}} \; ; \; \frac{v_2}{v_1} = \sqrt{\frac{\mu_1}{\mu_2}}$
	$R \text{ `aspuns } v_2 / v_1 = \sqrt{7}$
C.	$p'V = \frac{m_2}{\mu_2}RT'$
	Răspuns $p' = 6 \cdot 10^5 \text{N} / m^2$

Varianta 55

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 56

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	Soluție / schiță de rezolvare
II.1.a.	Parametri de stare ai gazului în stările 1,2,3,4
	1. p_1, V_1, T_1
	2. $p_1 \cdot \varepsilon^{\gamma}, V_1/\varepsilon, T_1 \cdot \varepsilon^{\gamma-1} = 4T_1$
	3. $p_1 \cdot \varepsilon^{\gamma} \cdot \delta, V_1 / \varepsilon, T_1 \cdot \varepsilon^{\gamma - 1} \cdot \delta = 4T_1 \cdot \delta$
	4. $p_1 \cdot \delta, V_1, T_1 \cdot \delta$
	$Q_{23} = \nu \cdot C_{\nu} \cdot 4T_{1} \cdot (\delta - 1)$
	$Q_{41} = \nu \cdot C_{\nu} \cdot T_{1}(1 - \delta)$
	R ăspuns $Q_{23}/ Q_{41} = 4$
b.	$\eta = 1 - \frac{\left Q_{41}\right }{Q_{23}}$
	Răspuns $\eta = 75\%$
C.	$\eta = L/Q_{23}$
	$\mathbf{R}\check{aspuns} \qquad \frac{Q_{23}}{t} = 133,3 kW$
II.2.a.	$Q = m_{aer} \cdot c_{aer} \cdot \Delta t$
	Răspuns $Q = 91.8 J$
b.	$W = Q/\eta$
	Răspuns: $W = 612 J$
C.	Masa de semințe $M = W/E$
	Răspuns $M = 24,48 g$

Varianta 56 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 57

FIZICĂ

C. Termodinamică

Nr. Item	Soluție / schiță de rezolvare
II. 1. a.	reprezentare grafică în coordonate (p,V reprezentarea grafică în coordonate (V,T)
b.	$pV = \nu RT$
	$V_{1} = \frac{vRT_{1}}{p_{1}};$ $V_{2} = V_{1}\frac{T_{2}}{T_{1}};$
	$v_2 = v_1 \frac{1}{T_1}$, $p_3 = \frac{p_1 V_1}{V_1}$
	Răspuns $V_2 = 48,86 \cdot 10^{-3} m^3$ $p_3 = 1 atm$
C.	$v_{T} = \sqrt{3RT/\mu}$
	$v_{T_3} = \sqrt{3RT_3/\mu}$ $T_3 = T_1$
	R ăspuns $v_{T_3} = 1367, 4 \frac{m}{s}$
II. 2. a.	$p_{2} = p_{1} \frac{V_{2}}{V_{1}} = k p_{1}$
	Răspuns $T_2 = \frac{p_2 V_2}{\nu R} = k^2 \frac{p_1 V_1}{\nu R} = k^2 T_1$
b.	$\Delta U = Q - L_{12}$
	$\Delta U = \mathcal{V}C_{\nu} \left(T_2 - T_1 \right)$
	$L_{12} = \frac{p_1 + p_2}{2} (V_2 - V_1)$
	$Q_{12} = \frac{3}{2} \nu R (T_2 - T_1) + \frac{p_1 + p_2}{2} (V_2 - V_1)$
	R ăspuns $Q_{12} = 2p_1V_1(k^2 - 1)$
C.	Răspuns $Q_{12} = 2p_1V_1(k^2-1)$ $\eta_C = 1 - \frac{T_1}{T_2}$
	$\textbf{R\"{a}spuns} \eta_C = 1 - \frac{1}{k^2}$

3

Fizică
Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 58

FIZICĂ

Subiectul C. TERMODINAMICĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$p_1 = p_0 + \frac{Mg}{S}$
	Răspuns $p_1 = 1,1 \cdot 10^5 Pa$
b.	$\rho_1 V_2 = \frac{m}{\mu} R T_2$
	$T_2 = \frac{p_1 2Sh_1 \mu}{mR}$ $v_{T2} = \sqrt{\frac{3RT_2}{\mu}}$
	$v_{T2} = \sqrt{\frac{3RT_2}{\mu}}$
	Răspuns $v_{72} \cong 703.5 \frac{m}{s}$
C.	$\frac{p_1}{V_2} = \frac{p_3}{V_1}$
	$\rho_3 = \frac{p_1}{2}$
	Răspuns $p_3 = 0.55 \cdot 10^5 Pa$
II.2.a.	Reprezentare grafică în coordonate (p,T) Reprezentare grafică în coordonate (V,T)
b.	L= L ₁₂ + L ₂₃ + L ₃₁ L ₁₂ =0
	$L_{23} = vRT_2 \ln (V_3/V_2) = {}_1 V_1 \ln 2$
	$L_{31} = vR(T_1-T_3) = -p_1V_1$
C.	Răspuns L = 80 J $T_{\text{min}} = T_1$; $T_{\text{max}} = T_2$;
.	$T_{\min} = T_1, T_{\max} = T_2,$ $T_2 = 2T_1$
	$\eta = 1 - \frac{T_2}{T_1}$
	Răspuns $\eta = 50\%$

Varianta 58

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 59

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	reprezentare grafică în coordonate p-V
b.	$p_1 = mRT / \mu V = 6.2 \cdot 10^5 N / m^2$
	$p_2 = p_1, V_2 = 2V_1, T_2 = 2T_1$
	$p_3 = 2p_2, V_3 = V_1, T_3 = T_2$
	Răspuns $p_3 = 12,4 \cdot 10^5 N / m^2$, $V_3 = 1L$, $T_3 = 600 K$
C.	$\eta_C = 1 - \frac{T_1}{T_2}$
	Răspuns $\eta_{\scriptscriptstyle C}=50\%$
II.2.a.	reprezentare grafică în coordonate p-V
b.	$\Delta U = vC_{\nu}\Delta T$
	ecuațiile de stare
	Răspuns $\Delta U_2 = 9000J$
C.	$\eta = L/Q_P$
	$Q_{primit} = Q_1 + Q_2 = U[C_P(T_2 - T_1) + C_V(T_3 - T_2)]$
	$L = (p_2 - p_1)(V_2 - V_1)$
	Răspuns $\eta=7\%$

Varianta 59 Fizică

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 60

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICA ȘI FIZICĂ MOLECULARĂ

Nr item	Soluție / Schiță de rezolvare
II.1. a.	$p_A V_A = p_B V_B$
	$V_B = V_A \cdot \frac{p_A}{p_b}$
	R ăspuns $V_B = 24 dm^3$
b.	$p_c V_c = \nu R T_c$
	$p_A V_A = \nu R T_A$ $p V$
	$T_C = T_A \cdot \frac{p_C}{p_A} \cdot \frac{V_C}{V_A}$
	$\textbf{R\"{a}spuns} T_C = 900 \ K$
C.	$pV = \frac{m}{\mu}RT$
	μ
	$m = \frac{p_A V_A \mu}{RT_A}$
	Răspuns $m = 51.3 g$
II.2. a.	expresia principiului I verificare
b.	$L = p\Delta V = \nu R \Delta T$
	$Q_p = \frac{7}{2} \nu R \Delta T$
	$ \eta = \frac{L}{Q_{obs}} $
	$\eta = Q_{abs}$
	Răspuns $\eta \cong 14\%$
C.	$c_V = \frac{C_p - R}{\mu}$
	$C_p = \frac{Q_p}{v\Delta T} = \frac{Q\mu}{m\Delta T}$
	Răspuns $c_V \cong 649 J/kgK$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 61

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$\rho = m/V$
	$\rho_1 / \rho_2 = V_2 / V_1$
	Răspuns $\rho_1 / \rho_2 = 0.33$
b.	pV = vRT
	$p_2 = 3p_1$
	$Raspuns p_2 = 18 \cdot 10^4 Pa$
C.	$2v = v_1 + v_2$
	$v = p_1 V_1 / RT$
	$p = 3p_1/2$
	$R aspuns p = 9 \cdot 10^4 Pa$
II.2.a.	\uparrow^{p} $\stackrel{\bullet}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{\stackrel{\circ}{$
b.	$p_1V_1=p_3V_3$
	$p_2V_1^{\gamma} = p_3V_3^{\gamma}, p_2 = p_3(V_3/V_1)^{\gamma} = p_3(p_1/p_3)^{\gamma}$
	$\gamma = C_P / C_V = (C_V + R) / C_V$
	Răspuns $p_2 = 264kPa$
C.	$V_1 = p_3 V_3 / p_1$
	$L_{23} = -\nu C_V (T_1 - T_2)$ $T_1 = \rho V / \nu P$ $T_2 = \rho V / \nu P$
	$T_1 = p_1 V_1 / vR$, $T_2 = p_2 V_1 / vR$ $L_{23} = 5 p_3 V_3 (p_2 - p_1) / (2p_1)$
	$L_{23} = 5\rho_3 v_3 (\rho_2 - \rho_1)/(2\rho_1)$ Răspuns $L_{23} = 160 J$
	1143pun 23 - 1000

Varianta 61 Fizică

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 62

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	Răspuns
	$p = \frac{1}{3} n m_0 v_T^2 \text{ sau } p = \frac{2}{3} n \varepsilon_T \text{ sau } p = \frac{1}{3} \rho v_T^2$
	denumirile mărimilor
b.	$\rho = \frac{3p}{v_{\tau}^2}$
	Răspuns $0.6 \frac{kg}{m^3}$
C.	$v_T = \sqrt{\frac{3RT}{\mu}}$
	Răspuns $\frac{\Delta p}{p} = -0.5 = -50\%$
II.2.a.	$L=9 p_0 V_0$
	$Q_1 = 49.5 p_0 V_0$ Răspuns 1,8 kJ
b.	$\eta = \frac{L}{Q_1}$
	Răspuns $\eta = \frac{18}{99} = 18,18\%$
C.	$\eta = 1 - \frac{T_{\min}}{T_{\max}}$
	$\textbf{R\"{a}spuns} \eta = 93,75\%$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 63

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr.tem	Soluție / schită de rezolvare
II.1.a.	$m_1 = \mu \frac{p_1 V}{R T_1}, \ m_2 = \mu \frac{p_2 V}{R T_2}$
	$\Delta m = m_1 - m_2 = \mu \frac{V}{R} \left(\frac{p_1}{T_1} - \frac{p_2}{T_2} \right)$
	Răspuns $\Delta m \approx 3.8 g$
b.	$N = N_A \cdot \frac{m_2}{\mu}$
	$N = N_A \frac{p_2 V}{R T_2}$
	Răspuns $N \approx 1,6 \cdot 10^{21}$ molecule
C.	$v_{\tau} = \sqrt{\frac{3RT_2}{\mu}}$
	Răspuns $v_T \approx 400 m/s$
II.2.a.	Răspuns $\Delta U = U_{final} - U_{initial} = Q - L$
b.	$\rho_{1}V_{1}=\frac{m_{1}}{\mu_{1}}RT_{1}$
	$p_2 V_2 = \frac{m_2}{\mu_2} R T_2$
	$\frac{m_1}{m_2} = \frac{p_1 V_1 T_2 \mu_2}{p_2 V_1 T_1 \mu_1}$
	$\mathbf{R uspuns} \qquad \frac{m_1}{m_2} = 0,28$
C.	$\Delta U_1 = Q_1 - L_1$
	$\Delta U_2 = Q_2 - L_2$
	$Q_1 = -Q_2$ $L_1 = -L_2$
	$\begin{array}{cc} \mathbf{L}_1 - \mathbf{L}_2 \\ \mathbf{R} \mathbf{\check{a}} \mathbf{s} \mathbf{puns} & \Delta U = 0 \end{array}$

Varianta 63 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 64

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr.Item	Soluție / schiță de rezolvare
II.1.a.	$pV = \frac{m}{\mu}RT$ $m = \mu \frac{pV}{RT}$
	$m = \mu \frac{pV}{RT}$
	Răspuns $m = 4,043 \cdot 10^{-5} kg$
b.	$N = N_A \frac{m}{\mu}$
	Răspuns $N = 2.9 \cdot 10^{20}$ molecule
C.	$\varepsilon_c = \frac{3k_BT}{2} = \frac{3RT}{2N_A}$
	Răspuns $\overline{\varepsilon}_c = 6.2 \cdot 10^{-21} J$
II.2.a.	$L = p_1 V_1$
	$C_{V}\frac{3}{2}R,C_{\rho}=\frac{5}{2}R$
	$Q = \frac{13}{2} \rho_1 V_1$
	$\mathbf{R\check{a}spuns} \qquad L = \frac{2}{13}Q$
b.	$\eta = \frac{L}{Q}$
	$R \text{ aspuns } \eta = \frac{2}{13}$
C.	$T_{\text{max}} = 4T_1, T_{\text{min}} = T_1$
	$\eta_C = 1 - \frac{T_{\min}}{T_{\max}}$
	$\mathbf{R šspuns} \qquad \eta_C = \frac{3}{4}$

Varianta 64

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 65

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr.item	Soluție / schiță de rezolvare
II.1.a.	$p_1 V = \frac{m_1}{\mu} R T_1, p_2 V = \frac{m_2}{\mu} R T_2$
	$\Delta m = m_1 - m_2$
	Răspuns $\Delta m = 1,34 kg$
b.	$\rho_2 = n \frac{R}{N_A} T_2$
	Răspuns $n \cong 2.6 \cdot 10^{26} \text{ molecule}/m^3$
C.	$U_2 = \frac{m_2}{\mu} C_V T_2$ $U_2 = \frac{3}{2} p_2 V$
	$R \text{ is spuns} U_2 = 90 kJ$
II.2.a.	reprezentările grafice în coordonate (p,V)
	în coordonate (V,T)
b.	$T_3 = 4T_1$
	$v_T = \sqrt{\frac{3RT}{\mu}}$
	$\mathbf{R xspuns} \frac{v_{T_3}}{v_{T_1}} = 2$
C.	$\eta = \frac{L}{Q_{12} + Q_{23}}$
	$\eta = \frac{\gamma - 1}{1 + 2\gamma}$
	Răspuns $\eta = 10.5\%$

Varianta 65

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 66

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	reprezentare grafică în coordonate $V-T$ și $\rho-T$
b.	$\frac{v_{T_1}}{v_{T_2}} = \sqrt{\frac{T_1}{T_2}}$
	Răspuns $\frac{v_{T_1}}{v_{T_2}} = \frac{1}{2}$
C.	$ \eta = \frac{L}{Q_P} $
	$L = \nu R T_1 (3 - 2 \ln 2)$
	$Q_p = \frac{15}{2} \mu R T_1$
	Răspuns $\eta = 21,5\%$
II.2.a.	$pV = \frac{m_1}{\mu_1} RT \Rightarrow m_1 = \frac{pV\mu_1}{RT_1}$
	$\textbf{R \"{a} spuns} m_1 = 0.8 g$
b.	$p\mu_2 = \rho_2 RT$
	Răspuns $\rho_2 = 1{,}123kg / m^3$
C.	$U_1 = \frac{3}{2} pV$ $U_2 = \frac{5}{2} pV$
	Răspuns $U_1 = 750J$; $U_2 = 1250J$

Proba scrisă la Fizică Varianta 66

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 67

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	legile transformărilor liniară, izobară și izocoră
	Răspuns $p_2 = 3 p_1$ $T_2 = 9T_1$
	p ₃ = p ₁
	$T_3 = 3 T_1$
b.	lucrul mecanic pe întreg ciclul L _{tot} = 2 p ₁ V ₁
	căldura primită pe ciclu $Q = 16 p_1 V_1$
	expresia randamentului η
	Răspuns $\eta = 12,5\%$
C.	$\eta_{\rm C} = 1 - T_{\rm min} / T_{\rm max}$
	Răspuns $\eta c = 88,8\%$
II.2.a.	reprezentare grafică în coordonate V-T
	reprezentare grafică în coordonate p -V
b.	p ₂ V ₂ = p ₃ V ₃
	$Q_{23} = L_{23} = m \cdot R \cdot T_2 \cdot (\ln p_2/p_3) / \mu$
	Răspuns Q ₂₃ = L ₂₃ = 3455,298 J
C.	$\epsilon_1 = 3 \cdot k \cdot T_1 / 2$
	Răspuns $\epsilon_t = 6.21 \cdot 10^{-21} \text{ J}$

Fizică Varianta 67

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 68

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II. 1. a	Ecuația termică de stare
	, , , , , , , , , , , , , , , , , , ,
	$\rho_1 = \frac{\rho_1 \mu}{RT_1}$
	Răspuns $\rho_1 = 8.35 \cdot 10^{-2} \text{ kg / m}^3$
b.	
	$\Delta m = m_1 - m_2$
	$V = \frac{\Delta mR}{\sqrt{\frac{1}{2}}}$
	$V = \frac{\Delta mR}{p_1 \mu \left(\frac{1}{T_1} - \frac{1}{T_2}\right)}$
	Răspuns V = 1020 m ³
C.	$N = \frac{p_1 V}{k T_2}$
	Răspuns N = 2,38 · 10 ²⁸ molecule
II. 2. a.	
	$L_{41} = v R (T_1 - T_2)$
	Răspuns L ₄₁ = 1662 J
b.	$\eta = 1 - \frac{ Q_2 }{Q_1}$
	Q ₁ = V C _P (T ₁ – T ₂) + V R T ₁ ln $\frac{p_4}{p_2}$
	$Q_2 = v C_P (T_2 - T_1) + v R T_2 ln \frac{P_2}{P_4}$
	Răspuns $\eta = 0, 2 = 20 \%$
c.	$\eta_C = 1 - \frac{T_2}{T_1}$
	Răspuns $\eta c \approx 67 \%$

Varianta 68

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 69

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr.item	Soluție / schiță de rezolvare
II.1.a.	reprezentarea celor patru transformări în coordonate (p,V)
b.	aplicarea corectă a legilor de transformare
	R ăspuns $p_4 = 10^5 Pa; V_4 = 3,24l; T_4 = 972K$
C.	ecuația principiului I al termodinamicii: $\Delta U = Q-L$
	$Q = L = p_1 V_1 \left(\frac{k \left(n^2 - 1\right)}{2} + \frac{n \left(kn - \left(nk\right)^{\frac{1}{\gamma}}\right)}{\gamma - 1} - n^{\frac{\gamma + 1}{\gamma}} k^{\frac{1}{\gamma}} + 1 \right)$ R ăspuns $Q = L = 216 J$
II.2.a.	$v = \frac{m}{}$
	$v = \frac{1}{\mu}$
	$m = (v_1 + v_2)\mu$
	R ăspuns $m = 20g = 2 \cdot 10^{-2} kg$
b.	ecuația termică de stare $\ pV = u RT$
	R aspuns $p_1 = 10^6 Pa; p_2 = 9,375 \cdot 10^5 Pa$
C.	$pV_1 = v_1 RT; pV_2 = v_2 R(T + \Delta T); v_1 + v_2 = v_1 + v_2$
	$p = \frac{\left(\nu_1 + \nu_2\right) RT \left(T + \Delta T\right)}{\left(V_1 + V_2\right) T + V_1 \Delta T}$
	$\textbf{Răspuns} p = 11,36 \cdot 10^5 Pa$

Fizică Varianta 69 Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 70

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$
	$\rho = m/V, \ \rho_2/\rho_1 = V_1/V_2$
	Răspuns $\gamma = 5/3$
b	$\gamma = C_p / C_V$
b.	$C_{p} = C_{V} + R$
	R ăspuns $C_V = 1.5 R$
c.	$L = -\Delta U$
	$\Delta U = \vartheta C_V (T_2 - T_1)$
	$p_1V_1 = \vartheta RT_1$ Răspuns $L = 3,6 \text{ kJ}$
II.2.a.	
	din graficul dat $p = \frac{p_1}{V_4}V$
	$pV = \vartheta RT, \ p_1V_1 = \vartheta RT_1$
	lege: $T = \frac{T_1}{V^2}V^2$
	*1
b.	reprezentarea grafică $L_{1\to 2} = \sigma_{1-2-3V_1-V_1} = 6p_1V_1$
	$L_{3\to 1} = -\sigma_{1-3-3V_1-V_1} = -4p_1V_1$
	Răspuns $L_{1\to 2}/L_{3\to 1} = -1,5$
c.	$\eta = 1 - Q_{\text{ced}} /Q_{\text{pr}}$
	$Q_{\rm pr} = Q_{1\rightarrow 2} = \Delta U_{1\rightarrow 2} + L_{1\rightarrow 2}$
	$Q_{\text{ced}} = Q_{2 \to 3} + Q_{3 \to 1}, \ Q_{2 \to 3} = \Delta U_{2 \to 3}, \ Q_{3 \to 1} = \Delta U_{3 \to 1} + L_{3 \to 1}$
	$\Delta U_{1\to 2} = \vartheta C_{V}(T_{2} - T_{1}), \ \Delta U_{2\to 3} = \vartheta C_{V}(T_{3} - T_{2}), \ \Delta U_{3\to 1} = \vartheta C_{V}(T_{1} - T_{3})$
	$p_1 V_1 / T_1 = p_2 V_2 / T_2$
	R ăspuns $\eta \cong 4.8\%$

Varianta 70 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 71

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$\rho_1 V_1^{\gamma} = \rho_2 V_2^{\gamma}$
	$\ln \frac{\rho_1}{2}$
	$\gamma = \frac{\ln \frac{\rho_1}{\rho_2}}{\ln \frac{V_2}{V_L}}$
	* 1
h	Răspuns $\gamma = 1,5$ $T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$
b.	
	$\frac{T_2}{T_c} = 4^{\gamma - 1}$
	Răspuns $\frac{T_2}{T_1} = 2$
C.	$\Delta U = \nu C_V \Delta T$; $\Delta U = \nu C_V T_1 \left(\frac{T_2}{T_1} - 1 \right)$
	$\gamma = \frac{C_p}{C_V}$; $C_p - C_V = R$; $C_V = \frac{R}{\gamma - 1}$
	,
	$\Delta U = \frac{p_1 V_1}{\gamma - 1} \left(\frac{T_2}{T_1} - 1 \right)$
	$AU = 4 \cdot 10^5 J$
II.2.a.	Reprezentare grafică în coordonate p,T
b.	Reprezentare grafică în coordonate V,T $L = L_{12} + L_{23} + L_{31}$
J.	$L = \nu R(T_2 - T_1) + \nu RT_1 \ln \frac{V_1}{V_2}$
	• 2
	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$
	$L = 0.3 \cdot \nu RT_1$
C.	Răspuns L = 747,9J $Q_{abs} = \nu C_p (T_2 - T_1)$
0.	,
	$C_{p} = \frac{R\gamma}{\gamma - 1}$
	$Q_{abs} = \frac{\nu R\gamma}{\nu - 1} (T_2 - T_1)$
	$\eta = \frac{L}{Q_{\perp}}$
	Răspuns $\eta = 12\%$
	1100μα110 1/1 - 12/0

Varianta 71

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 72

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$N = m \cdot N_A / \mu$
	Răspuns $N = 12,046 \cdot 10^{23}$ molecule
b.	$\Delta V = Sh = \frac{\Delta E_p S}{m_1 g}$
	$L = (p_o + \frac{m_1 g}{S}) \frac{\Delta E_p S}{m_1 g}$
	Răspuns $L = 2020J$
C.	$(p_0 + \frac{m_1 g}{S}) \cdot V_1 = vRT_1$
	$(p_0 + \frac{m_1 g}{S}) \cdot V_2 = \nu R T_2$
	$T_1 = T_2 - \frac{\Delta E_p \cdot S \cdot \mu}{m_1 g m R} (p_0 + \frac{m_1 g}{S})$
	R aspuns $T_1 = 378,47 K$
II.2.a.	$V_2 = 2 \frac{vRT_1}{p_1}$
	$\mathbf{R\ddot{a}spuns} V_2 = 199,44m^3$
b.	reprezentarea transformării ciclice în coordonate (p, V)
c.	$\frac{p_1}{T_1} = \frac{2p_1}{T_2}, \frac{V_1}{T_2} = \frac{2V_1}{T_3}$
	T_1 T_2 T_2 T_3
	$T_3 = 4T_1$
	$\mathbf{R aspuns} T_3 = 1200^{o} C$

Varianta 72

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 73

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	reprezentare grafică în coordonate V-T reprezentare grafică în coordonate p -T
b.	$\begin{split} \eta = 1 - \frac{\left Q_{\text{cedat}} \right }{Q_{\text{primit}}} = \frac{L}{Q_{\text{primit}}} \\ Q_{\text{primit}} = Q_{12} + Q_{23} = p_1 V_1 \left(2C_p + C_v \right) / R \\ Q_{\text{cedat}} = Q_{34} + Q_{41} = -p_1 V_1 \left(C_p + 2C_v \right) / R \text{sau Lciclu} = p_1 V_1 \\ \textbf{Răspuns} \qquad \eta = 15,38 \% \end{split}$
C.	$\eta_c = 1 - \frac{T_{min}}{T_{max}} = 1 - \frac{T_1}{T_3}$ Răspuns $\eta_c = 75 \%$
II.2.a.	$\rho = \frac{N \cdot \mu}{V \cdot N_A}$
b.	Răspuns $\rho = 1,16 \text{ kg}$ $V_{T} = \sqrt{\frac{3RT}{\mu}}$
	Răspuns $V \cong 500 \text{ m/s}$
C.	legea transformării izoterme $p' = \frac{p}{3} = \frac{N \cdot R \cdot T}{3 \cdot V \cdot N_A}$ Răspuns $p' = 32kPa$
	1

Varianta 73 Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 74

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schiță de rezolvare
II.1.a.	$m = \nu \mu$
	$V_{_{1}}=\frac{\nu\mu}{\rho_{_{1}}}$
	$T_1 = \frac{p_1 V_1}{\nu R}$
	Răspuns $V_1 = 10 \text{ m}^3$; $T_1 = 500 \text{ K}$; $p_2 = 208,25 \text{ Pa}$; $V_2 = 20 \text{ m}^3$; $T_2 = 500 \text{ K}$
b.	$L = \frac{(p_1 - p_3)(V_2 - V_3)}{2}$
	Răspuns $L = 1041 \text{ J}; \Delta U = 0$
c.	$\eta = 1 - \frac{T_3}{T_1}$
	$T_3 = \frac{T_1}{2}$
	Răspuns $\eta = 50\%$
II.2.a.	$pV = \frac{m}{\mu}RT$
	$m' = \frac{fpV\mu}{RT}$
	Răspuns $m' = 0.62 \text{ kg}$
b.	Răspuns $m' = 0.62 \text{ kg}$ $p'V = \frac{(1-f)m}{\mu}RT$
	p' = (1 - f)p
	Răspuns <i>p'</i> = 14,4·10 ⁵ Pa
C.	$N_f = 2N$
	$V_f = \frac{N}{N_A}$
	p''V = 2vRT
	Răspuns $p'' = 28.8 \cdot 10^5 \text{ Pa}$

Varianta 74

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 75

FIZICĂ

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / schită de rezolvare
II. 1.a.	$L = Q_1 - Q_2 $
	Răspuns $ Q_2 = 0.5KJ$
b.	$L_{ad} = -\nu \cdot C_V(T_2 - T_1)$
	$T_1 = 900K$
	Răspuns $L_{ad} = 7,479KJ$
C.	expresia randamentului
	R ăspuns $\eta \cong 67\%$
II.2.a.	ecuația de stare a gazului ideal
	Răspuns $T_1 \cong 300,8K$
b.	Legea transformării izocore
	Răspuns $T_2 \cong 1203,3 \text{ K}$
C.	$p = \frac{vRT_m}{V}$
	$V - \overline{V}$
	Răspuns $p \cong 12,5atm$

Fizică Varianta 75 Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea: matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 76

Subiectul C. ELEMENTE DE TERMODINAMICA ŞI FIZICĂ MOLECULARĂ

Nr item	Soluție, rezolvare
II.1 a.	Reprezentări grafice corecte
b.	$L = L_{izocor} + L_{izobar}$
	$L_{izobar} = vR\Delta T$
	$v = \frac{p_0 V_1}{R T_1}$
	Răspuns: $L \cong 167J$
C.	Principiul I al termodinamicii $\Delta U = \nu C_V \Delta T$
	Răspuns: $Q \cong 583,3J$
II. 2. a.	$\eta = \frac{L}{Q_1}$
	Răspuns: $\eta = 40\%$
	$v_T = \sqrt{\frac{3RT}{\mu}}$ $\frac{T_{\text{max}}}{T_{\text{min}}} = \frac{Q_1}{\left Q_2\right }$ $\text{Răspuns: } \frac{v_{T_{\text{max}}}}{v_{T_{\text{min}}}} = \sqrt{\frac{Q_1}{\left Q_2\right }}$ $\text{Răspuns: } \frac{v_{T_{\text{max}}}}{v_{T_{\text{min}}}} \cong 1,3$
C.	$ \eta_2 = 1 - \frac{T_2}{nT_1} $ $ n = \frac{T_2}{T_1(1 - \eta_2)} $ Răspuns: $n = 1,2$

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 77

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție, rezolvare
II.1.a.	reprezentare grafică în coordonate V-T, realizată corect reprezentare grafică în coordonate p -T, realizată corect
b.	Răspuns: $p_1 = \frac{F}{S} = 500kPa$
	$p_2 = p_1 \frac{V_1}{V_2} = 385kPa$
	$T_3 = T_1 \frac{V_1}{V_2} = 308K$
C.	
	$\eta_c = 1 - \frac{T_3}{T_1} = 1 - \frac{V_1}{V_2}$
	Răspuns: $\eta_c = 23\%$
II.2.a.	
	$N = \frac{pV}{kT}$
	Răspuns: $N = 6,66 \cdot 10^{21} molec$
b.	
	$m = \frac{N\mu}{N_A}$
	Răspuns: $m = 3,1 \cdot 10^{-4} kg$
C.	
	$Q = \nu C_P \Delta T$
	$C_P = C_V + R = \frac{7}{2}R$
	$Q = \frac{7 pV(T'-T)}{2T}$
	Răspuns: $Q = 96,6J$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 78

Subiectul C. FIZICĂ MOLECULARĂ ŞI CĂLDURĂ

Nr. Item	Soluție / rezolvare
II.1. a.	L = (2p - p)(2V - V) = pV Răspuns: $L = 2,5 \cdot 10^5 J$
b.	$\begin{aligned} Q_{abs} &= Q_{12} + Q_{23} \\ Q_{12} &= vC_V (T_2 - T_1) \\ Q_{23} &= vC_p (T_3 - T_2) \\ Q_{abs} &= \frac{pV}{T_1} R \left[\frac{5}{2} (T_3 - T_1) + T_3 - T_2 \right] \\ R\Bar{aspuns:} Q_{abs} &= 19.6 \cdot 10^3 \text{ kJ} \end{aligned}$
C.	$\eta = 1 - \frac{T_{min}}{T_{max}}, T_{min} = T_1, T_{max} = T_3$ Răspuns: $\eta = 75\%$
2. a	$\rho_1 = \frac{\rho_1 \mu}{RT_1}$ Răspuns: $\rho_1 = 1.4 \frac{kg}{m^3}$
b	$m = \frac{p_1 V \mu}{R T_1}$ $ \Delta m = \frac{p_1 V \mu}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
C	Răspuns: $ \Delta m = 2,58 \ g$ $\frac{p_1}{T_2} = \frac{p}{T_1}$ $p_1 = \frac{pT_2}{T_1}$ Răspuns: $p_1 = 0,78 \cdot 10^5 \ \text{M/m}^2$

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Subiectul C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

	ELEMENTE DE TERMODINAMICA ȘI FIZICA MOLECULARA
Nr. item	Soluție / rezolvare
II.1.a.	Răspuns: $L_{132} = 1,6 \cdot 10^5 J$
	$L_{142} = 10^5 J$
b.	$\Delta U = vC_V \Delta T$
	observația $\Delta U_{132} = \Delta U_{142}$
	Răspuns: $\Delta U = 5.5 \cdot 10^5 J$
C.	$Q = \Delta U + L$
	Răspuns: $Q_{132} = 7.1 \cdot 10^5 J$
	$Q_{142} = 6.5 \cdot 10^5 J$
II.2.a.	$ \rho = \frac{\mu p}{RT} $
	Răspuns: $\rho = 1.83 \frac{kg}{m^3}$
b.	legea transformării izocore
	$T_1 = 2T$
	$Q_V = mc_V (T_1 - T)$
	Răspuns: $Q_V = 3{,}28kJ$
C.	legea transformării izobare
	$T_2 = 2T$
	$Q_P = m(c_V + \frac{R}{\mu})(T_2 - T)$
	μ
	Răspuns: $Q_P = 4.61kJ$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 80

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	
	$pV = \left(\frac{m}{\mu_1} + \frac{m}{\mu_2}\right) RT$
	$m = \frac{pV\mu_1\mu_2}{RT(\mu_1 + \mu_2)}$
	Răspuns: $m = 29,87g$
b.	$v = v_1 + v_2$
	$\mu = \frac{2\mu_1 \mu_2}{\mu_1 + \mu_2}$
	Răspuns: $\mu = 29,87 kg / kmol$
C.	$Q = \nu C_V (T_2 - T_1)$
	Răspuns: $Q = 831J$
II.2.a.	
	$v_T = \sqrt{\frac{3RT}{\mu}}$
	$V_{T_1} / V_{T_2} = \sqrt{T_1 / T_2} = \sqrt{\rho_1 / \rho_2}$
	Răspuns: $V_{T_1} / V_{T_2} = \sqrt{2} \cong 1,41$
b.	
	$\eta = \frac{L}{Q_P}$
	$ \eta = \frac{L}{Q_P} L = \frac{p_1 V_1}{8} $
	$Q_P = \frac{18p_1V_1}{8}$
	Răspuns: $\eta \cong 5,56\%$
C.	$\eta_C = 1 - \frac{T_3}{T_1}$
	$\frac{T_3}{T_1} = \frac{V_3}{V_1} \cdot \frac{\rho_2}{\rho_1}$
	1 1 11
	Răspuns: $\eta_C = 75\%$

Varianta 80

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 81

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	$T = const \Rightarrow p_0 V_0 = pV$
	$\rho = \rho_0 + \Delta \rho \Leftrightarrow \frac{m}{V} = \frac{m}{V_0} + \Delta \rho$
	$V = \frac{mV_0}{m + \Delta \rho \cdot V_0}$
	Răspuns: $V = 3l$
b.	$L = \nu RT \ln \frac{V_f}{V_i} \iff L = \frac{m}{\mu} RT \ln \left(\frac{m}{m + \Delta \rho \cdot V_0} \right)$
	Răspuns: $L = -32,4KJ$
C.	$\Delta U = 0$; $Q = \Delta U + L$
	Răspuns: $Q_{12} = -32,4KJ$
II.2.a.	(F* * Z1Z * *) * *
	$\frac{L_{12}}{L_{23}} = \frac{(p_1 + p_2)(V_2 - V_1)}{-2p_2(V_2 - V_1)}$
	$\frac{1}{L_{23}} - \frac{1}{-2p_2(V_2 - V_1)}$
	Răspuns: : $\frac{L_{12}}{L_{23}} = -\frac{3}{2}$
b.	$\Delta U_{123} = \Delta U_{12} + \Delta U_{23}$
	$\Delta U_{12} = 0$; $\Delta U_{23} = \nu C_V (T_3 - T_2) = \frac{5}{2} \nu R (T_3 - T_2)$; $T_3 = \frac{T_1}{T_2}$
	$\Delta U_{123} = -\frac{5}{4} \nu R T_1$
	Răspuns: $\Delta U_{123} = -4155KJ$
C.	Descriere corectă a evoluției temperaturii.

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 82

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. Item	
	Soluție / rezolvare
II.1.a.	2 3 5p
b.	$\frac{p_2}{T_2} = \frac{p_1}{T_1}, T_2 = T_1 \frac{p_2}{p_1}$ $\frac{V_2}{T_2} = \frac{V_3}{T_3}, T_3 = T_2 \frac{V_3}{V_2}$
	Răspuns: $T_2 = 450K$; $T_3 = 900K$
C.	$\eta = 1 - \frac{T_{\min}}{T_{\max}}$, $\eta = 1 - \frac{T_1}{T_3}$
	Răspuns: $\eta=67\%$
II.2.a.	pV = NkT
	$N = \frac{pV}{kT}, \qquad \frac{N}{N_A} = \frac{m}{\mu}$
	$m = \frac{pV}{kTN_A}\mu$
	Răspuns: $m = 4.6 \cdot 10^{-5} kg$
b.	$V_t = \sqrt{\frac{3RT}{\mu}} , V_t = \sqrt{\frac{3kN_AT}{\mu}}$
	Răspuns: $V_t = 516m/s$
C.	$E = \frac{3}{2} N \cdot k \cdot T$
	Răspuns: $E = 6.21J$

3

Fizică

Varianta 82

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Subjectul C. Elemente de Fizică Moleculară Termodinamică

	mente de Fizică Moleculară Termodinamică
Nr. Item	Soluție / rezolvare
II. 1. a.	$p_1 = \frac{vRT_1}{V_1}$ $p_1 = 2.5 \cdot 10^5 \frac{N}{m^2} = p_2$
	$T_2 = T_1 \frac{V_2}{V_1} = 2T_1$ Răspuns: $T_2 = 600K$
	$T_{_3} = T_{_2}$ (2-3 proces izoterm)
	$V_{_3} = V_{_1}$ (3-1 proces izocor)
	$p_3 = p_1 \frac{V_2}{V_1}$ (din 2-3 izoterm)
	Răspuns: $p_3 = 5 \cdot 10^5 \frac{N}{m^2}$
b.	Reprezentări corecte
C.	$L_{12} = p_1(V_2 - V_1)$ Răspuns: $L_{12} = 2500J$
	$L_{23} = \nu R T_2 \ln \frac{V_1}{V_2}$
	$L_{23} \cong -3480J$
	$L_{31} = 0$
	Răspuns: $L = L_{12} + L_{23} = -980J$
II. 2. a.	reprezentarea corectă
b.	ecuația de stare scrisă două stări $\left(T_2 > T_1, V_2 > V_1\right)$
	$a(V_2^2 - V_1^2) = vR\Delta T = \frac{R}{C_V} \Delta U$
	$L = \frac{p_1 + p_2}{2} (V_2 - V_1) = \frac{a}{2} (V_2^2 - V_1^2) = \frac{R}{2C_V} \Delta U$
	Răspuns: $\gamma \Delta U$: $L = \frac{(\gamma - 1)}{2} \Delta U$
C.	$\Delta U = Q - L$
	$Q = \Delta U + \frac{\gamma - 1}{2} \Delta U$
	$Q = \frac{\gamma + 1}{2} \Delta U = \frac{\gamma + 1}{2} \nu C_{\nu} \Delta T$
	Răspuns: $C = \frac{Q}{v\Delta T} = \frac{\gamma + 1}{2}C_v$

EXAMENUL DE BACALAUREAT - 2007

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 84

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție, rezolvare
II.1.a.	desen
b.	$p_1V_1=p_2V_2$ $p_1V_3^{\gamma}=p_2V_2^{\gamma}$ $\gamma=C_p/C_V$ Răspuns: $V_3=0,518~\ell$
c.	$Q = Q_{1 \to 2} + Q_{2 \to 3} + Q_{3 \to 1}$ $Q_{1 \to 2} = 2,3 \ \vartheta R T_1 \ \lg V_2 / V_1, \ Q_{2 \to 3} = 0, \ Q_{3 \to 1} = \vartheta C_p (T_1 - T_3)$ $V_3 / T_3 = V_1 / T_1$ $p_1 V_1 = \vartheta R T_1$ Răspuns: $Q = -219 \ \mathrm{J}$
II.2.a.	heliul trece prin porii pistonului până când devine uniform distribuit în tot cilindrul $p_1V_1=p_1'V_1'$ $V_1=hS,\ V_1'=2hS$ Răspuns: $p_1'=5$ kPa
b.	$p'_{1}(h-x)S = 0.25 \vartheta_{1}RT$ $p'_{1}(h+x)S = 0.75 \vartheta_{1}RT$ Răspuns: $x = 0.5 h = 15 \text{ cm}$
c.	condiția de echilibru mecanic pentru piston: $\vec{R}=0$ $F_1+G-F_2=0$ $F=pS$ legea transformării izoterme: $p_2hS=p_2'(h+x)S$ Răspuns: $p_2=30$ kPa

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 85

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	
	$ \rho = \frac{p\mu}{RT}; \rho = ct; \frac{\mu}{R} = ct. \Rightarrow \frac{p}{T} = ct. $
	Reprezentare grafică corectă în p,V
b.	$v_{t1} = \sqrt{\frac{3RT_1}{\mu}}$
	$v_{t2} = \sqrt{\frac{3RT_2}{\mu}}$
	Răspuns: $\frac{v_{t2}}{v_{t1}} = 2$
C.	$p_1 = 10^5 Pa, T_1 = 273K$
	$T_2 = 4T_1 \Rightarrow p_2 = 4p_1$
	$Q = \nu C_V (T_2 - T_1)$
11.0.0	Răspuns: Q≅17 kJ
II.2.a.	T_2
	$\eta = 1 - \frac{T_2}{T_1}$
	$\eta = 1 - \frac{ Q_{codat} }{Q_p}$
	$ Q_{cedat} = Q_p \cdot \frac{T_2}{T_1}$
	Răspuns: $Q_{cedat} = -1200J$
b.	$\eta'=2\eta$
	$\eta' = 1 - \frac{T_2}{T_1'}$
	$\eta' = 1 - \frac{T_2}{T_1'}$ $T_1' = \frac{T_2}{1 - 2\eta}$
	$\Delta T_1 = T_1 - T_1$
	Răspuns: $\Delta T_1 = 1000 \text{K}$
C.	
	$T = ct. \rightarrow \Delta U_{izoterm\ddot{a}} = 0$
	$\Delta U_{adiabatica} eq 0$
	Răspuns: $\frac{\Delta U_{izoterma}}{\Delta U_{adiabatica}} = 0$

Fizică Varianta 85

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 86

C. Termodinamică

Nr. Item	Solutie / rezolvare
	Solutie / Tezolvare
II. 1. a.	reprezentare corectă
b.	$T_1 = \frac{p_1 V_1}{\nu R} = T_2$ $T_3 = T_1 p_2 / p_1$ Rezultat final $T_1 = T_2 \cong 600K$; $T_3 \cong 120K$
c.	$L_{12} = \nu R T_1 \ln \frac{p_1}{p_2}$ $L_{23} = -p_2 (V_2 - V_1)$ Răspuns: $L = L_{12} + L_{23} \approx 3977.6J$
II. 2. a.	$\begin{aligned} &\frac{P_1}{T_1} = \frac{P_4}{T_4} \text{(1)} \\ &\text{p = a T + b trece prin 2 si 3} \Rightarrow a = -\frac{3P_1}{T_1} \; ; \text{b = 7 P}_1 \\ &\Rightarrow P_4 = -\frac{3P_1}{T_1} T_4 + 7P_1 \text{(2)} \\ &\text{Răspuns:} p_4 = \frac{7}{4} p_1 \end{aligned}$
b.	$P = -\frac{3P_1}{T_1} + 7P_1$ Dar $T = \frac{PV}{\nu R}$ Räspuns: $P(V) = 7P_1 / (1 + \frac{3V}{V_1})$
C.	$\begin{split} \frac{v_{T_3}}{v_{T_4}} &= \sqrt{\frac{T_3}{T_4}} \text{i} \\ \frac{T_3}{T_4} &= \frac{2T_1}{T_4} = \frac{2P_1}{P_4} \\ \text{Răspuns:} \frac{v_{T_3}}{v_{T_4}} &= \sqrt{\frac{8}{7}} = 2\sqrt{\frac{2}{7}} > 1 \Longrightarrow v_{T_3} > v_{T_4} \end{split}$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 87

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	
	$m_1 = p_1 V \mu / RT_1$
	$m_2 = p_2 V \mu / RT_2$
	$m = \frac{V\mu}{R} \left(\frac{p_1}{T_1} - \frac{p_2}{T_2} \right)$
	Răspuns: $m = 5,5g$
b.	$v_{\tau} = \sqrt{3RT/\mu}$
	$V_{T2}/V_{T1} = \sqrt{T_2/T_1}$
	Răspuns: $V_{T2}/V_{T1}=0.9 \left(\cong \sqrt{6/7}\right)$
C.	$\eta = 1 - \left(\left Q_C \right / Q_P \right)$ $Q_P = uC_V \left(T_2 - T_1 \right) + uRT_2 \ln(V_3 / V_1)$
	$Q_C = uC_P(T_1 - T_2)$
	$\eta = 1 - \left[C_P / \left(C_V + 2R \ln 2 \right) \right]$
	Răspuns: $\eta=5\%$
II.2.a.	reprezentare corectă
b.	$p_2 = 2p_1$
	$\begin{aligned} &\rho_2 - 2\rho_1 \\ &T_2 = 4T_1 \end{aligned}$
	$\begin{aligned} I_2 &= 4I_1 \\ p_3 &= 4p_1 \end{aligned}$
	$T_3 = 4T_1$
	Răspuns: $T_3 = 1200K$
C.	$\Delta U = \nu C_V (T_2 - T_1)$
	$v = p_1 V_1 / RT_1$
	$\Delta U = 15p_1V_1/2$
	Răspuns: $\Delta U = 3375J$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 88

Subiectul C. FIZICĂ MOLECULARĂ ŞI CĂLDURĂ

Nr. Item	Only the Lange Lange
	Soluție / rezolvare
II.1. a.	$ \frac{p_1}{T_1} = \frac{p_2}{T_2} \\ \frac{p_1}{T_4} = \frac{p_2}{T_2} $ $\Rightarrow T_2 = T_4 = \sqrt{T_1 T_3}$
	4 5
b.	Răspuns: $T_2 = T_4 = 346K$
D.	$L = (V_3 - V_1)(p_2 - p_1) \Rightarrow L = R(T_3 - T_2 - T_4 + T_1)$
	$\begin{aligned} p_1 V_1 &= \nu R T_1 \\ p_2 V_2 &= \nu R T_2 \end{aligned} \text{ dar } p_1 = p_4 \text{ $\it \$i } p_2 = p_3 \end{aligned}$
	$p_3V_3 = vRT_3$
	$p_4V_4 = vRT_4$
	$L = R(T_1 + T_3 - 2T_2) \Rightarrow L = 66,48kJ$
	Răspuns: $L = 66,48kJ$
C.	$\eta = 1 - \frac{T_{min}}{T_{max}}, T_{min} = T_1, T_{max} = T_3$
	Răspuns: $\eta = 1 - \frac{300}{400} = \frac{1}{4} = 25\%$
2. a	$p_1 V_1 = \nu R T_1$
	Răspuns: $\nu = 53,5kmol$
b	$\rho = \frac{m}{V}; m = v \cdot \mu$
	$\rho = 17.8 \frac{\text{kg}}{\text{m}^3}$
С	$\frac{p_1}{T_1} = \frac{p_2}{T_2}$
	Răspuns: $p_2 = 1,12 \cdot 10^5 \text{ N/m}^2$

Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

EXAMENUL DE BACALAUREAT - 2007 Proba scrisă la Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

- ♦ Sunt obligatorii toţi itemii din două arii tematice dintre cele patru prevăzute în programă, adică: A.MECANICĂ, B.ELECTRICITATE ŞI MAGNETISM, C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ, D. OPTICĂ
- ◆Se acordă 10 puncte din oficiu.
- ◆Timpul efectiv de lucru este de 3 ore.

Varianta 89

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II. 1.a.	reprezentarea ciclului în p-V
b	$\rho = \frac{8\mu v}{V_I}$ Răspuns: $\rho = 556.8 \cdot 10^{-3} \text{kg} / \text{m}^3$
C.	1100puno. p = 330,0 10 kg/m
	expresia randamentului căldura absorbită Răspuns: $\eta\cong 27.8\%$
II.2.a.	$P_I V = \frac{N}{N_A} \bullet RT$
	Răspuns: $N = 5 \cdot 10^{21}$ molecule
b.	$m_1 = \frac{p_1 V \mu}{R T_1}$ $E_{tr} = \frac{3}{2} p_1 v$
	$E_{tr} = \frac{1}{2} p_1 v$ Răspuns: $m_1 \cong 0.23g$, $E_{tr} \cong 41.4J$
C.	masa de gaz rămasă m2
	$\Delta m = m_1 - m_2$
	Răspuns: $\Delta m \cong 0.04$ g

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 90

Varianta 90

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

	ELEMENTE DE TERMODINAMICA ȘI FIZICA MOLECULARA
Nr. Item	Soluție / rezolvare
II.1.a.	$pV = \frac{m}{\mu}RT_1$
	$m_{i} = \frac{\mu p V}{R T_{i}}$
	Răspuns: $m_1 \approx 80 g$
b.	$V_{\tau} = \sqrt{\frac{3RT}{\mu}}$
	Răspuns: $V_{\tau} = 1832 ms^{-1}$
C.	$m_{1} = \frac{\mu pV}{RT_{1}}$
	$m_2 = \frac{\mu \rho V}{R T_2}$
	$\Delta m = m_1 - m_2 = \frac{\mu pV}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
	Răspuns: $\Delta m \approx 20 g$
II.2.a.	$Q_{p} = vC_{p}(T_{2} - T_{1})$
	$C_p = C_V + R$
	Răspuns: $Q_p = 145,39 J$
b.	$L = p\Delta V$
	$L = p(V_2 - V_1) = \upsilon R(T_2 - T_1)$
	Răspuns: $L = 41,55 J$
C.	$\eta = 1 - \frac{T_2}{T_1}$
	Răspuns: $\eta = 14,27\%$

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 91

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a	ecuația termică de stare $pV=rac{m}{\mu}RT$ $ ho=rac{p\mu}{RT}$
	Răspuns: $\rho = 2, 4 \frac{kg}{m^3}$
b.	volumul ocupat în condiții normale $V_0=rac{mRT_0}{\mu p_0}$
	Răspuns: $V_0 = 22, 4 \cdot 10^{-3} m^3$
c.	$\Delta v = \frac{m}{\mu} \left(\frac{p}{p_0} - 1 \right)$
	Răspuns: $\Delta v = 1 mol$
II.2.a.	reprezentarea corectă în coordonate Clapeyron a celor trei transformări
b.	$\frac{p_1V_1}{p_2V_2} = \frac{p_2V_2}{p_2V_2}$
	T_1 T_2
	$T_2 = \varepsilon^2 T_1$ cu $T_2 = T_3 = T_{\text{max}}$
	Răspuns: $T_{\text{max}} = 1200K$
c.	$\eta = 1 - \frac{ Q_{cedat} }{Q_{primit}}; Q_{primit} = Q_{12} + Q_{23}; Q_{cedat} = Q_{31}$
	$Q_p = vRT_1 \left(\frac{\varepsilon^2 - 1}{\gamma - 1} + \frac{\varepsilon^2 - 1}{2} + \varepsilon^2 \ln \varepsilon \right)$
	$ Q_c = \nu R T_1 \frac{\gamma}{\gamma - 1} (\varepsilon^2 - 1)$
	$\eta = 1 - \frac{2\gamma(\varepsilon^2 - 1)}{(\varepsilon^2 - 1)(\gamma + 1) + 2\varepsilon^2(\gamma - 1)\ln \varepsilon}$
	Răspuns: $\eta = 14,77\%$

Varianta 91

Fizică Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 92

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	fiecare reprezentare corectă câte
b.	$L = \Delta p \cdot \Delta V = \frac{1}{2} p_1 V_1$
	Răspuns: $L = 500J$
C.	$\eta = \frac{L}{Q_P}$; $\eta_C = 1 - \frac{T_{\min}}{T_{\max}}$
	$Q_p = \frac{vT_1}{2}(C_v + 3C_p)$
	$\eta = \frac{R}{C_v + 3C_p}$
	Răspuns: $\eta = \frac{1}{13}$; $\eta_c = 1 - \frac{T_1}{3T_1} = \frac{2}{3}$
II.2.a.	$\overline{E} = N \cdot \overline{\varepsilon}_{cin} \Rightarrow \overline{\varepsilon}_{cin} = \frac{\overline{E}}{\nu N_A} \Rightarrow v_T = \sqrt{\frac{2\overline{E}}{\nu \mu}}$
	Paspuns: $\varepsilon_{cin} = 0.83 \cdot 10^{-20} J$; $v_T \approx 1577 m/s$
b.	$\overline{E} = \frac{3}{2} \nu RT \Rightarrow T = \frac{2\overline{E}}{3\nu R} ; V = \frac{\nu RT}{p} ;$
	Răspuns: $T = 400K$; $V \cong 8,31l$
C.	$\Delta U = U_2 - U_1; \ U_1 = \overline{E} = \frac{3}{2} v_1 RT; \ U_2 = \frac{3}{2} v_2 RT \implies \Delta U = -\frac{3}{2} \frac{\Delta m}{\mu} RT$
	Răspuns: $\Delta U = -4,98 kJ$

Varianta 92

Fizică

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 93

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	
	Soluție/ rezolvare
II.1.a.	
	$V_T = \sqrt{\frac{3RT}{\mu}}$ $V_T = \sqrt{\frac{3p}{\rho}}$
	$V_T = \sqrt{\frac{3p}{\rho}}$
	Răspuns: $V_T \cong 495,43m/s$
b.	$pV = \frac{m}{\mu}RT$
	$pV = \frac{m}{\mu}RT$ $\mu = \frac{\rho RT}{p}$ $RY = \frac{\rho RT}{p}$
C.	Răspuns: $\mu \cong 30,47 kg / kmol$
J. 5.	$\rho_0 = \mu p_0 / RT_0$
	$\rho = \mu p / RT$
	Răspuns: $ ho_0 \cong 1{,}34kg/m^3$
II.2.a.	reprezentarea corectă a ciclului termodinamic
b.	$2p_1V_1 = VRT_2$
	$p_1 2V_1 = VRT_4$
	Răspuns: $T_2 = T_4$
C.	$\eta = L/Q_a$
	$L = p_1 V_1$
	$L = vRT_1$
	$Q_a = vC_V(T_2 - T_1) + vC_P(T_3 - T_2)$
	$Q_a = 13\nu RT_1/2$
	Răspuns: $\eta\cong15,38\%$

Fizică Varianta 93

Proba E: Specializarea : matematică –informatică, științe ale naturii Proba F: Profil: tehnic – toate specializările

Varianta 94

Subiectul C. FIZICĂ MOLECULARĂ ŞI CĂLDURĂ

Nr. Item	Soluție / rezolvare
II.1. a.	aplicarea corectă a legii transformării izoterme pentru cele două compartimente
	$p'_1 = p_0 \frac{L}{L + 2h} = 7.1 \cdot 10^4 \text{M/m}^2$
	$p'_2 = p_0 \frac{L}{L - 2h}$
	Răspuns: $p'_2 = 1,66 \cdot 10^5 \text{N/m}^2$
b.	Pentru: $F = (p'_2 - p'_1)S$
C.	Răspuns: F = 3,82kN
0.	$p'_{2} - p'_{1}$
	$\frac{\mathbf{p'}_2}{T_0} = \frac{\mathbf{p'}_1}{T_1}$
	$T_1 = \frac{p'_1 T_0}{p'_2}$
	Răspuns: $T_1 \cong 117~K$
2. a	Reprezentarea corectă în coordonate V-T
b	$V_2 = \frac{V_1}{16} = 2 \cdot 10^{-2} \text{m}^3$
	$1 - 2 p_2 = \frac{p_1 V_1}{V_2} = 32 \cdot 10^5 \text{M}_{\text{m}^2}$
	$T_2 = T_1 = 300K$ 1 - 3 $V_3 = V_1 = 32 \cdot 10^{-2} \text{m}^3$
	$p_3 = p_2 = 32 \cdot 10^5 \text{M/m}^2$
	Răspuns: $T_3 = \frac{p_3 T_1}{p_1} = 4800K$
С	T
	$\eta = 1 - \frac{T_{min}}{T_{max}}$ $T_{min} = T_1 = 300K$
	$T_{\min} = T_1 = 300K$
	$I_{max} = I_3 = 4800K$
	Răspuns: $\eta = 1 - \frac{T_1}{T_3} = 93\%$

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic - toate specializările

Varianta 95

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	$\frac{V_1}{T_1} = \frac{V_2}{T_3}$
	T_1 T_3
	$\frac{T_1}{{V_1}^2} = \frac{T_2}{{V_2}^2}$
	Răspuns: $T_2 = 1200K$
b.	
	$L = \frac{1}{2}(V_2 - V_1)(p_2 - p_1)$
	Răspuns: $L = 1246,5J$
C.	$\eta_C = 1 - \frac{T_1}{T_2}$
	Răspuns: $\eta_C = 75\%$
II.2.a.	unV
	$T_1 = \frac{\mu p V}{mR}$
	Răspuns: $T_1 = 72,3K$
b.	mN
	$N = \frac{mN_A}{\mu}$
	Răspuns: $N = 3.10^{23}$
C.	
	$T_2 = nT_1$
	Răspuns: $T_2 = 144,6K$
	L = pV(n-1)
	Răspuns: $L = 300J$

Proba F: Profil: tehnic - toate specializările

Varianta 96

Subiectul C. FIZICĂ MOLECULARĂ ŞI CĂLDURĂ

Nr. Item	Soluție/ rezolvare
II.1. a.	grafic corect
b.	$1 \rightarrow 2$ transformare izobară $\frac{V_1}{T_1} = \frac{V_2}{T_2}$
	$T_2 = \frac{V_2}{V_1} T_1$ unde $V_2 = 2V_1$
	Răspuns: $T_2 = 600K$
C.	$2 \rightarrow 3$ transformare izotermă $p_2 V_2 = p_3 V_3$
	$p_2 = p_1 \text{ si } V_3 = V_1$
	$p_{\text{max}} = \frac{p_1 V_2}{V_1} = 2p_1$
	Răspuns: $p_{max} = 4$ atm
2. a	$L = p_1 V_1$
	$p_1V_1 = vRT_1 \Longrightarrow T_1 = \frac{p_1V_1}{vR}$
	Analog pentru \Rightarrow $T_2 = \frac{p_2 V_2}{vR} = \frac{2p_1 V_1}{vR} = 2T_1$ respectiv pentru $T_3 = 4T_1$ şi $T_4 = 2T_1 = T_2$
	$Q_p = Q_{12} + Q_{23}$
	$Q_{12} = \nu C_{\nu} (T_2 - T_1) = \frac{3\nu RT_1}{2} \text{ $ \text{$ i $} $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$
	$Q_p = \frac{13}{2} p_1 V_1$ şi $L = \frac{2}{13} Q_p$
	Răspuns: L = 2kJ
b	Răspuns: L = 2kJ $Q_{ced} = Q_{34} + Q_{41} = -\frac{6vRT_1}{2} - \frac{5vRT_1}{2}$
	$Q_{ced} = -\frac{11}{2}p_1V_1 = -\frac{11}{13}Q_p = -11kJ$
	$Q_{ced} = -11kJ$
С	$\begin{aligned} &Q_{ced} = -11kJ \\ &Pentru \ \eta = \frac{L}{Q_p} \end{aligned}$
	Răspuns: $\eta = 15,3\%$

EXAMENUL DE BACALAUREAT - 2007

Fizică

Varianta 97

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	
	$p_1/V_1 = p_2/V_2$
	$p_1 V_1 / T_1 = p_2 V_2 / T_2$
	Răspuns: $T_2 = 1200K$
b.	
	$L = (p_1 + p_2)(V_2 - V_1)/2$
C.	Răspuns: $L = 150kJ$
	$C = Q/\nu\Delta T$
	$Q = \Delta U + L$
	$\Delta U = \nu C_{\nu} \Delta T$
	Răspuns: $C \cong 16,62kJ/kmol \cdot K$
II.2.a.	
	$ Q_c = fQ_a$
	$\eta = 1 - Q_c /Q_a$
	Răspuns: $\eta = 75\%$
b.	
	$\Delta T = T_1 - T_2$
	$\eta = 1 - T_2 / T_1$
	$T_1 = 1600K$
C.	
	$V_{T1} = \sqrt{3RT_1/\mu}$
	$V_{T2} = \sqrt{3RT_2/\mu}$
	Răspuns: $V_{T1}/V_{T2} = 2$

Fizică Varianta 97

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 98

Subiectul C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	
	ecuația transformării izoterme $\ pV=p_{0}\left(V+S\Delta x ight)$
	$p = p_0 + \frac{mg}{S}$
	ecuația termică de stare
	$\Delta x = \frac{mgvRT}{p_0S(p_0S + mg)}$
	Răspuns: $\Delta x = 12,5cm$
b.	
	$L = \nu R (T' - T)$
	Răspuns: $L=2,5J$
C.	reprezentarea corectă a destinderii izoterme urmată de o încălzire izobară
II.2.a.	reprezentarea corectă a celor 5 transformări
<u>b.</u>	$T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}; \frac{T_2}{T_1} = \varepsilon^{\gamma-1}$
	$\eta = 1 - rac{\left Q_{cedat} ight }{Q_{primit}}$
	Răspuns: $\eta_{1-2-B-1} = 1 - \frac{\varepsilon^{\gamma-1} - 1}{(\gamma-1)\varepsilon^{\gamma-1}\ln\varepsilon}$
C.	$\eta_C = 1 - \frac{T_{rece}}{T_{cald}}$ $\eta_C = 1 - \frac{T_1}{T_2}$
	$\eta_C = 1 - \frac{T_1}{T_2}$
	Răspuns: $\eta_{\scriptscriptstyle C} = 1 - \frac{1}{\varepsilon^{\gamma-1}}$

3

EXAMENUL DE BACALAUREAT - 2007

Fizică

Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 99

Subiectul C. ELEMENTE DE TERMODINAMICĂ ȘI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II. 1.a	$p_1 V = \frac{m}{m} RT_1$ $V = S h; \frac{m}{\mu}$ $p_1 = p_0 + \frac{Mg}{S}$ mRT_1
	$h = \frac{mRT_{1}}{\left(p_{0} + \frac{Mg}{S}\right)\mu S}$ Rezultat: h = 0,83 m
b.	$L = \frac{m}{\mu} R \left(T_2 - T_1 \right)$ Rezultat: L = 415,5 J
C.	$p(V_1 + V_2) = p_1 V_1 + p_2 V_2$
	$V_{1} = Sh \frac{T_{2}}{T}$ $p = \frac{p_{1}V_{1} + p_{2}V_{2}}{V_{1} + V_{2}}$
	Rezultat: $p = 2,03 \cdot 10^{5} \text{ N/m}^{2}$
II 2 a.	$T_{1} = \frac{pV}{vR} ; T_{2} = \frac{3 pV}{vR}$
	$T_3 = \frac{9 pV}{\nu R}$ $T_4 = \frac{3 pV}{\nu R}$ Rezultat: T _{max} \cong 1083 K
b.	$Q_{2} = \nu C_{V} (T_{4} - T_{3}) + \nu C_{P} (T_{1} - T_{4})$
C.	Rezultat: Q ₂ = - 28 KJ
	$\eta = 1 - \frac{ Q_2 }{\nu C_V (T_2 - T_1) + \nu C_P (T_3 - T_2)}$
	Rezultat: η = 22,2 %

3

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Proba E: Specializarea : matematică -informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările

Varianta 100

Subiectul C. ELEMENTE DE TERMODINAMICĂ ŞI FIZICĂ MOLECULARĂ

Nr. item	Soluție / rezolvare
II.1.a.	
	$p_2 = np_1$; $T_2 = n^2T_1$ Răspuns: $p_2 = 90.10^3$ Pa; $T_2 = 2700$ K
b.	Răspuns: $p_2 = 90.10^3$ Pa; $T_2 = 2700$ K $L = \frac{(p_2 - p_1)(V_2 - V_1)}{2}$ $L = \frac{(n^2 - 1)p_1V_1}{2}$
	$L = \frac{(n^2 - 1)p_1V_1}{2}$ Răspuns: $L = 36 \text{ kJ}$
C.	11d3pull3. L = 00 kg
	$\Delta U = \nu C_{\nu} \Delta T$
	$Q = \Delta U + L$
	Răspuns: $\Delta U = 108 \text{ kJ}$; $Q = 144 \text{ kJ}$
II.2.a.	
	$\eta = 1 - \frac{ Q_c }{Q_p}$ $ Q_c = (1 - \eta)Q_p$
	$\left Q_{c}\right =\left(1-\eta\right)Q_{p}$ Răspuns: $Q_{c}=$ -720 J
b.	$L = \eta Q_p$
	Răspuns: $L = 480 \text{ J}$
C.	$\eta = 1 - \frac{T_r}{T_c}$ $\eta' = 1 - \frac{T_r}{T_c + \Delta T}$
	$\eta' = 1 - \frac{T_r}{T_c + \Delta T}$
	$\frac{1-\eta}{1-\eta'} = \frac{T_c + \Delta T}{T_c}$
	$T_c = \frac{T_r}{1 - \eta}$
	$\Delta T = T_r \frac{\eta' - \eta}{(1 - \eta)(1 - \eta')}$ Răspuns: $\Delta T = 93.3 \text{ K}$
	Παορμίτο. Δ1

3

Fizică Proba E: Specializarea : matematică –informatică, științe ale naturii

Proba F: Profil: tehnic – toate specializările