Ejercicios de Análisis Matemático II

19 de abril de 2016

 $\mathbf{\acute{I}ndice}$

- 1. Sucesiones de funciones
- 1.1. Sucesiones de funciones
- 1.2. Series de potencias

2. Integral de Lebesgue

2.1. Medida de Lebesgue en \mathbb{R}^N

5. Probar que M es la mayor σ -álgebra que contiene los intervalos acotados y sobre la que λ^* es aditiva.

Supongamos que existe otra σ -álgebra N que contiene los intervalos acotados y sobre la que λ^* es aditiva. Terminaremos demostrando que en ese caso $N \subseteq M$.

Recordemos que $M = \{B \cup Z : B \in \mathfrak{B}, \lambda^*(Z) = 0\} \subseteq C_{\mathbb{R},\lambda}$

La σ -subaditividad nos decía:

$$\lambda^*(A \cup B) < \lambda^*(A) + \lambda^*(B)$$

Llamaremos $\lambda' = \lambda^*/N$

Por ser una σ -álgebra $\Omega \in N$, al estar hablando de intervalos $\Omega = \mathbb{R}$

Sea $E \subseteq \mathbb{R}$, cogemos un conjunto arbitrario $A \subseteq \mathbb{R}$. Sabemos, en virtud de la propiedad de regularidad de la medida exterior (Prop. 2.1.10), que existe un boreliano B

$$B: A \subseteq B, \lambda'(A) = \lambda'(B)$$

 $\lambda'(A) = \lambda'(B)$, usando la propiedad de que N contiene los intervalos acotados podemos usar la σ -aditividad. $B \cap E, B \cap E^c \in N$

$$\lambda'(B) = \lambda'\left((B \cap E) \cup (B \cap E^c)\right) \geqslant \lambda'(A \cap E) + \lambda'(A \cap E^c) \geqslant \lambda'(A)$$

Por tanto $E \in C_{\mathbb{R},\lambda'}$ lo que es equivalente a $E \in M \implies N \subseteq M$

2.2. Integral de Lebesgue en \mathbb{R}^N

2.3. Teoremas de convergencia

- 3. Técnicas de integración
- 3.1. Técnicas de integración en una variable
- 3.2. Técnicas de integración en varias variables