§ 7.2 二进制数字调制信号的相干解调

连续波数字调制信号的相干解调需要<u>在接收端恢复载波的频率与相位信息</u>,把通带信号相干地搬移到基带。这种相干搬移<u>不损失已调信号的任何信息,所以能够达到最佳的性能</u>。非相干解调一般<u>利用已调信号的包络特性</u>,在解调中<u>不需要恢复载波的相位信息</u>,在实现结构上比较简单,但性能明显不如相干解调。

任何二进制数字键控调制信号可以写成,

$$s(t) = \sum_{k=-\infty}^{\infty} I_k g_I(t - kT) \cos(2\pi f_c t + \theta) - \sum_{k=-\infty}^{\infty} Q_k g_Q(t - kt) \sin(2\pi f_c t + \theta)$$

其中 I_k 和 Q_k 是同相路和正交路的数据电平, $g_I(t)$ 和 $g_Q(t)$ 是基带脉冲,一般可取为幅度为 A,持续时间为 T 的方波 $g_T(t)$ 。

1/44

在OOK中,
$$Q_k = 0$$
, $I_k \in \{0,1\}$;
在BPSK中, $Q_k = 0$, $I_k \in \{\pm 1\}$; 或 $I_k = 0$, $Q_k \in \{\pm 1\}$
在2FSK中, $I_k = 1$, $Q_k \in \{\pm 1\}$
 $g_I(t) = g_T(t) \cos \pi \Delta f t$
 $g_Q(t) = g_T(t) \sin \pi \Delta f t$

在相干系统中我们可以假设 $\theta=0\,,\;f_c=N_c\,/\,T\,$,即载频等于符号率的整数倍。所以

$$s(t) = \sum_{k=-\infty}^{\infty} I_k g_I(t - kT) \cos \left[2\pi f_c(t - kT) \right] - \sum_{k=-\infty}^{\infty} Q_k g_Q(t - kT) \sin \left[2\pi f_c(t - kT) \right]$$

于是可以在一个符号时间间隔中考虑解调问题。

在一个符号时间间隔中信号码元:

$$s(t) = s_m(t - kT) , \quad kT \le t \le (k+1)T$$

$$s_m(t) = I_k g_I(t - kT) \cos \left[2\pi f_c(t - kT)\right]$$

$$-Q_k g_O(t - kT) \sin \left[2\pi f_c(t - kT)\right]$$

在二进制系统中,m 取 "0" 和 "1", $s_0(t)$ 和 $s_1(t)$ 分别代表数据 "0" 和 "1"。

在 AWGN 中二元信号最佳解调和检测可以采用相关接收器或匹配滤波器形式,在 $S_0(t)$ 和 $S_1(t)$ 等概情况下,最大似然检测的误符号率

$$P(e) = Q\left(\sqrt{\frac{\|\mathbf{s}_0 - \mathbf{s}_1\|^2}{2N_0}}\right)$$
 (6.3.75)

其中 $\|\mathbf{s}_0 - \mathbf{s}_1\|$ 为在信号空间中这两个信号点之间的距离。

3/44

7.2.2 OOK信号的相干解调

OOK<mark>信号的一般形式</mark>

$$\begin{split} s_{ook}(t) &= \sum_{k=-\infty}^{\infty} I_k g_T (t - kT) \cos \left[2\pi f_c (t - kT) \right] \\ I_n &\in \left\{ 0, 1 \right\} \\ g_T(t) &= \begin{cases} A & 0 \le t \le T \\ 0 & \exists \dot{\mathbf{E}} \end{cases} \end{split}$$

在一个符号间隔中, 二个码元信号为

在信号空间中表示:

\mathbf{s}_0	\mathbf{s}_1
0	\sqrt{E}

相干型解调器:

若发送信号为 $S_m(t)$,则收到的信号为: $r(t) = S_m(t) + n(t)$

发送"0"条件下:
$$z = \int_0^T r(t)\varphi(t)dt = n_0$$

发送"1"条件下:
$$z = \int_0^T r(t)\varphi(t)dt = \sqrt{E} + n_1$$

其中 n_0 和 n_1 是均值为零,方差为 $\frac{N_0}{2}$ 的独立高斯噪声。

5/44

按照最大似然准则: $\hat{m} = \arg\min_{m \in \{0,1\}} \left\{ \|z - s_m\|^2 \right\}$

等价于:
$$z > \frac{\sqrt{E}}{2}$$
 判发送 "1"

$$z < \frac{\sqrt{E}}{2}$$
 判发送 "0"

误码率为:
$$P_{OOK}(e) = \frac{1}{2} \{ P(e \mid s_0) + P(e \mid s_1) \}$$

$$P(e \mid s_0) = P(e \mid s_1) = \frac{1}{\sqrt{\pi N_0}} \int_{\frac{\sqrt{E}}{2}}^{\infty} e^{-\frac{x^2}{N_0}} dx = Q\left(\sqrt{\frac{E}{2N_0}}\right)$$

所以

$$P_{OOK}(e) = Q\left(\sqrt{\frac{E}{2N_0}}\right) = Q\left(\sqrt{\frac{E_{av}}{N_0}}\right)$$

其中平均信号码元能量 $E_{av} = E/2$

记平均信噪比为 $\rho = E_{av}/N_0$

$$P_{OOK}(e) = Q(\sqrt{\rho}) = \frac{1}{2} erfc\left(\sqrt{\frac{\rho}{2}}\right)$$

$$\approx \frac{1}{\sqrt{2\pi\rho}} e^{-\frac{\rho}{2}}, \quad (\rho >> 1)$$

实际上从信号空间图可见, $\left\|s_0-s_1\right\|^2=E$,代入公式 (6. 3. 75) 就得差错概率。

7/44

7.2.3 BPSK信号的相干解调

对于A类BPSK调制,已调信号可写成,

$$s(t) = \sum_{k=-\infty}^{\infty} \cos(2\pi f_c t + \varphi_k) g_T(t - kT), \quad \varphi_k = \{0, \pi\}$$

或
$$s(t) = \sum_{k=-\infty}^{\infty} I_k g_T(t-kT) \cos[2\pi f_c(t-kT)]$$
, $I_k \in \{\pm 1\}$

在一个符号间隔(0, T)中考虑信号码元,

$$s_0(t) = -g_T(t)\cos 2\pi f_c t$$
 发送 "0"

$$s_1(t) = g_T(t)\cos 2\pi f_c t$$
 发送"1"

这是一个一维调制,基函数为 $\varphi(t) = \frac{1}{\sqrt{E}} g_T(t) \cos 2\pi f_c t$,

二个信号在信号空间的座标为,

R/44

BPSK系统的相关接收机,

当发送信号 $s_m(t)$ 时,收到信号为, $r(t) = s_m(t) + n(t)$

发送"0"条件下:
$$z = -\sqrt{E} + n_0$$

发送"1"条件下:
$$z = \sqrt{E} + n_1$$

按最大似然概率准则,
$$\hat{m} = \arg\min_{m \in \{0,1\}} \left\{ \left\| z - s_m \right\|^2 \right\}$$

等价于

$$z > 0$$
 发送 "1" $z < 0$ 发送 "6"

9/44

误码率为:
$$P_{BPSK}(e) = \frac{1}{2} \left\{ P(e \mid s_0) + P(e \mid s_1) \right\}$$

$$P_{BPSK}(e) = \frac{1}{\sqrt{\pi N_0}} \int_{\sqrt{E}}^{\infty} e^{-\frac{x^2}{N_0}} dx = Q\left(\sqrt{\frac{2E}{N_0}}\right)$$

因为对BPSK信号, E就是平均码元能量(也是平均比特能量),

$$P_{BPSK}(e) = Q\left(\sqrt{\frac{2E_{av}}{N_0}}\right)$$

记平均符号信噪比(也是平均比特信噪比)为 $ho = E_{av} \, / \, N_0$

$$P_{BPSK}(e) = Q(\sqrt{2\rho}) = \frac{1}{2} erfc(\sqrt{\rho})$$

$$\approx \frac{1}{2\sqrt{\pi\rho}} e^{-\rho}, \quad (\rho >> 1)$$

其实在信号空间中 $\left\|s_0-s_1\right\|^2=4E$,代入公式(6.3.75)就得到误符号率。

[注意]原则上说,对于OOK和BPSK的相干解调也可以用匹配滤波器来代替相关器,但在实现时有因难。设位同步采样误差为, $t_k=T\left(1\pm\varepsilon\right)$,

由于匹配滤波器仅在T 时刻输出与相关器输出一样,采样误差使得匹配滤波输出值降低 $\cos\theta_\varepsilon$ 倍,其中 $\theta_\varepsilon=2\pi\cdot f_c\varepsilon T$,于是误码率为

$$P_{BPSK}(e) = Q\left(\sqrt{\frac{2E}{N_0} \cdot \cos^2 \theta_{\varepsilon}}\right)$$

例如当 $\varepsilon=0.003$, $T=0.5{
m ms}$, $f_c=100{
m kHz}$, 则 $\theta_\varepsilon=54$ °, 于是 $\cos^2\theta_\varepsilon=0.34$,这使性能下降许多。所以用射频匹配滤波器实现是不现实的。

得用基带的

11/44

7.2.4 2DPSK的相干解调

在2DPSK相干解调中,首先采用与BPSK相同的相干方式恢复出相对 码 $\left\{b_n
ight\}$,然后采用差分译码恢复绝对码 $\left\{a_n
ight\}$,

差分译码会引起误码扩散,如

2DPSK的误码率为

$$P_{DPSK}(e) = 2P_{RPSK}(e)[1 - P_{RPSK}(e)] \approx 2P_{RPSK}(e)$$

由于
$$P_{BPSK}(e) = Q(\sqrt{2\rho}) = \frac{1}{2} \operatorname{erfc}(\sqrt{\rho}) = \frac{1}{2\sqrt{\pi\rho}} e^{-\rho}$$
,

$$P_{DBPSK}(e) = erfc(\sqrt{\rho}) \approx \frac{1}{\sqrt{\pi \rho}} e^{-\rho}, \quad (\rho >> 1)$$

$$\rho = E_{av} / N_0$$

13/44

7.2.5 2FSK信号的相干解调

2FSK信号为

$$s(t) = \sum_{k=-\infty}^{\infty} \cos(2\pi f_c t + 2\pi Q_k \Delta f t) g_T(t - kT)$$

其中 $Q_k \in \{0,1\}$, $\Delta f = 1/T$ 。 当 $f_c = N_c/T$,2FSK信号也可写成,

$$s(t) = \sum_{k=-\infty}^{\infty} \cos \left[2\pi f_c(t - kT) + 2\pi Q_k \Delta f(t - kT) \right] g_T(t - kT)$$

在一个符号间隔中研究二个码元信号

$$s_0(t) = g_T(t) \cos\left[2\pi f_c t\right]$$
 表示发 "0"

$$s_1(t) = g_T(t)\cos\left[2\pi(f_c + \Delta f)t\right]$$
 表示发"1"

由于 $\Delta f = 1/T$, 所以两个码元信号正交。

这是二维调制, 二个基信号为

$$\varphi_0(t) = \frac{1}{\sqrt{E}} g_T(t) \cos(2\pi f_c t),$$

$$\varphi_1(t) = \frac{1}{\sqrt{E}} g_T(t) \cos[2\pi (f_c + \Delta f)t]$$

两个码元信号在信号空间中的座标点为:

$$\mathbf{s}_0 = (\sqrt{E}, 0)$$

$$\mathbf{s}_1 = (0, \sqrt{E})$$

当发送信号为 $S_m(t)$ 时,接收到信号

$$r(t) = S_m(t) + n(t)$$

在两个码元等概,等能量情况下,最大似然准则为最大相关准则,即

判发送 "0"
$$\mathbf{z} \cdot \mathbf{s}_0 > \mathbf{z} \cdot \mathbf{s}_1$$
 $\longleftrightarrow \begin{array}{c} z_1 \cdot \sqrt{E} > z_2 \cdot \sqrt{E} \\ z_1 \cdot \sqrt{E} < z_2 \cdot \sqrt{E} \end{array} \longleftrightarrow \begin{array}{c} z_1 - z_2 > 0 \\ z_1 - z_2 < 0 \end{array}$

在发送 $S_0(t)$ 条件下

$$z_1 = \sqrt{E} + n_1 , \qquad z_2 = n_2$$

在发送 $S_1(t)$ 条件下

$$z_1 = n_1 , \qquad z_2 = \sqrt{E} + n_2$$

误码率
$$P_{2FSK}(e) = \frac{1}{2} \{ P(e \mid \mathbf{s}_0) + P(e \mid \mathbf{s}_1) \}$$

由对称性
$$P(e | \mathbf{s}_0) = P(e | \mathbf{s}_1)$$

$$P_{2FSK}(e) = P(e \mid \mathbf{s}_0) = P\{n_1 - n_2 < -\sqrt{E}\}$$

记 $\zeta=n_1-n_2$,是零均值,方差为 N_0 的高斯随机变量,所以

$$P_{2FSK}(e) = \frac{1}{\sqrt{2\pi N_0}} \int_{-\infty}^{-\sqrt{E}} \exp\left\{-\frac{x^2}{2N_0}\right\} dx = Q\left(\sqrt{\frac{E}{N_0}}\right)$$

对于2FSK来说,两个码元信号等能量 $E_{av}=E$,所以,

$$P_{2FSK}(e) = Q\left(\sqrt{\frac{E_{av}}{N_0}}\right)$$

$$\Re \rho = E_{av}/N_0$$

$$P_{2FSK} = Q\left(\sqrt{\rho}\right) = \frac{1}{2} erfc(\sqrt{\frac{\rho}{2}})$$

$$\approx \frac{1}{\sqrt{2\pi\rho}} e^{-\frac{\rho}{2}}, \quad (\rho >> 1)$$

17/44

7.2.6 二进制数字调制信号相干解调的性能比较

调制方式	
оок	$P_{OOK}(e) = Q(\sqrt{\rho}) = \frac{1}{2} erfc \left(\sqrt{\frac{\rho}{2}}\right) \approx \frac{1}{\sqrt{2\pi\rho}} e^{-\frac{\rho}{2}}$
BPSK	$P_{BPSK}(e) = Q(\sqrt{2\rho}) = \frac{1}{2} erfc(\sqrt{\rho}) \approx \frac{1}{2\sqrt{\pi\rho}} e^{-\rho}$
2DPSK	$P_{DPSK}(e) \approx 2P_{BPSK}(e) = \frac{1}{\sqrt{\pi\rho}}e^{-\rho}$
2FSK	$P_{2FSK} = Q(\sqrt{\rho}) = \frac{1}{2} erfc \left(\sqrt{\frac{\rho}{2}}\right) \approx \frac{1}{\sqrt{2\pi\rho}} e^{-\frac{\rho}{2}}$

§ 7.3 M进制数字调制信号的相干解调

在M进制数字调制系统中,M进制数据用M个不同的码元信号表示。如果每隔T时间发送一个码元信号,即波特率 $R_B=1/T$,但是比特率为 $R_B=\log_2 M\cdot R_B$ (比特/秒)。在M进制调幅(包括正交调幅)和调相系统中,信号宽带是由符号率决定的,所以M进制调制信号 所需要的带宽与二进制调制信号相同,于是M进制调制的频带利用率远高于二进数字调制。M进制数字调制一般称为频谱高效调制。

19/44

7.3.1 MASK相干解调

M进制ASK信号的一般形式为

$$s_{MASK}(t) = \sum_{k=-\infty}^{\infty} I_k g_T(t - kT) \cos[2\pi f_c(t - kT)]$$

其中 $I_k \in \{A_m = A_0 + m, m = 0, 1, ..., M - 1\}$

$$g_T(t) = \begin{cases} A & 0 \le t \le T \\ 0 & \sharp \dot{\Sigma} \end{cases}$$

在一个符号间隔(0, T)中,这M个码元信号写为,

$$s_m(t) = A_m g_T(t) \cos 2\pi f_c t$$
, $m = 0, 1, ..., M-1$

一维调制,基信号
$$\varphi(t) = \frac{1}{\sqrt{E}} g_T(t) \cos 2\pi f_c t$$
, $E = A^2 T/2$

码元信号点的座标, $S_m = A_m \sqrt{E}$, m = 0, 1, ..., M-1

设发送信号为 $S_m(t)$, 则接到信号为,

$$r(t) = S_m(t) + n(t)$$

相关器输出采样值为,

$$z = A_n \sqrt{E} + n$$

其中n是零均值,方差为 $N_{
m o}$ / 2 的高斯变量。当信号码元是等概率

发送时,最大似然准则等价于最小距离准则。平均错误概率

$$P_{MASK}(e) = \frac{2(M-1)}{M} Q \left(\sqrt{\frac{2E}{N_0}} \right)$$
 (推导见[例6.3.9])

21/44

由于MASK码元信号的平均能量为,

$$E_{av} = \frac{1}{M} \left\{ \sum_{m=0}^{M-1} A_m^2 E \right\} = \frac{E}{M} \sum_{m=0}^{M-1} (A_0 + m)^2$$
$$= E \left[A_0^2 + A_0 (M - 1) + \frac{1}{6} (M - 1)(2M - 1) \right]$$

当 $A_0 = 0$ 时,即 M进制OOK调制 , 则

$$E_{av} = \frac{E}{6}(M-1)(2M-1)$$

$$E = \frac{6E_{av}}{M-1}$$

$$E = \frac{6E_{av}}{(M-1)(2M-1)}$$

所以
$$P_{MASK}(e) = \frac{2(M-1)}{M}Q\left(\sqrt{\frac{3E_{av}}{(M-1)(2M-1)N_0}}\right)$$

当M=2时,上式正是OOK调制信号相干解调的误码公式。

当 $A_0 = -(M-1)/2$, 这时信号码元对称于零点排列,

$$E_{av} = \frac{(M^2 - 1)E}{12}$$

$$E = \frac{12E_{av}}{M^2 - 1}$$

所以 $P_{MASK}(e) = \frac{2(M-1)}{M} Q \left(\sqrt{\frac{6E_{av}}{(M^2-1)N_0}} \right)$

记平均符号信噪比为 ρ = E_{av} / N_{0} ,则

$$P_{MASK}(e) = \frac{2(M-1)}{M} Q \left(\sqrt{\frac{6\rho}{(M^2-1)}} \right)$$

当M=2时,正好是BPSK信号相干解调的误码率(7.2.29)

23/44

7.3.2 MPSK的相干解调

对于M=4, N=1的QPSK信号可以写成:

$$\begin{split} s(t) &= \sum_{k=-\infty}^{\infty} \cos(2\pi f_c t + \varphi_k) g_T(t - kT) \\ &= \sum_{k=-\infty}^{\infty} \left\{ \cos \varphi_k \cdot g_T(t - kT) \cdot \cos[2\pi f_c(t - kT)] - \frac{1}{\sin \varphi_k \cdot g_T(t - kT) \cdot \sin[2\pi f_c(t - kT)]} \right\} \end{split}$$

其中
$$\varphi_k \in \left\{ \frac{2m+1}{4}\pi, \quad m=0,1,2,3 \right\}$$

在一个符号间隔(0, T)中,码元信号为,

$$s_{m}(t) = \cos \varphi_{m} g_{T}(t) \cos(2\pi f_{c}t) - \sin \varphi_{m} g_{T}(t) \sin(2\pi f_{c}t)$$

$$= \frac{\sqrt{2}}{2} [I \cos(2\pi f_{c}t) - Q \sin(2\pi f_{c}t)] g_{T}(t), \quad m=0, 1,2,3$$

其中 $I=\pm 1$, $Q=\pm 1$

24/44

• $S_3(10)$

 $(11)s_{2}$

因此QPSK信号相当于二路正交载波的BPSK,它的相干解调原理图:

设BPSK的差错概率为P(e),则QPSK相干解调的符号正确解调概率为,

$$P_{QPSK}(c) = \left[1 - P(e)\right]^2$$

所以QPSK相干解调的误符号率为

$$P_{QPSK}(e) = 1 - P_{QPSK}(c) = 2P(e) \left(1 - \frac{1}{2}P(e)\right)$$

25/44

现在BPSK信号点之间距离是 $\sqrt{2E}$,所以 $P(e) = Q\left(\sqrt{\frac{E}{N_0}}\right)$

于是误符号率:
$$P_{QPSK}(e) \approx 2Q \left(\sqrt{\frac{E}{N_0}} \right)$$

平均信号码元能量 $E_{av} = E$,所以

$$P_{QPSK}(e) \approx 2Q \left(\sqrt{\frac{E_{av}}{N_0}} \right)$$

采用Gray码映射,即相位相邻信号点仅相差一个比特,则误比特率为:

$$P_{QPSK}(be) \approx Q \left(\sqrt{\frac{E_{av}}{N_0}} \right)$$

QPSK符号代表两个比特,平均比特能量为平均符号能量一半,即

$$E_{bav} = E_{av}/2$$
 ,所以

$$P_{QPSK}(be) \approx Q \left(\sqrt{\frac{2E_{bav}}{N_0}} \right)$$
 (误比特率与BPSK一样)

对于的MPSK, M个码元信号为

$$s_m(t) = \left[\cos\varphi_m\cos(2\pi f_c t) - \sin\varphi_m\sin(2\pi f_c t)\right]g_T(t), \quad t \in [0, T]$$

其中
$$\varphi_m = 2\pi \cdot m / M$$
, $m = 0, 1, 2, \dots, M-1$

相应二维信号空间的基矢量为

$$\varphi_1(t) = \frac{1}{\sqrt{E}} g_T(t) \cos 2\pi f_c t , \qquad \varphi_2(t) = \frac{1}{\sqrt{E}} g_T(t) \sin 2\pi f_c t$$

M个信号矢量点均匀分布在半径为 \sqrt{E} 的圆周上,

在等概发送信号码元情况下,最大似 然接收相当于按最近距离作判决。在 信号空间中作M个对称扇区,每个扇 区中包含一个信号点。如接收矢量点 落在某扇区内,则判定发送信号是扇 区所含的那个信号点。

27/44

由于对称性,平均符号错误概率等于发送 $s_0(t)$,但接收到矢量 (z_1,z_2)

不在第0号扇区的概率,即

$$P_{MPSK}(e) = P\left\{ \left| \arctan \frac{z_2}{z_1} \right| > \frac{\pi}{M} \mid s_0 \right\}$$

当发送 $S_0(t)$ 条件下,接收到信号

$$r(t) = s_0(t) + n(t)$$

其中 n(t) 是零均值,功率谱密度为 $N_{_0}/2$ 的白高斯噪声。

记符号信噪比为
$$\rho = \frac{E}{2\sigma^2} = \frac{E}{N_0}$$

$$p_{\Theta}(\theta) = \frac{1}{2\pi} \exp\left\{-2\rho \sin^2\theta\right\} \int_0^\infty v \exp\left\{-\frac{\left(v - \sqrt{2\rho}\cos\theta\right)^2}{2}\right\} dv$$
 于是MPSK符号差错概率为
$$P_{MPSK}(e) = 1 - \int_{-\frac{\pi}{M}}^{\frac{\pi}{M}} p_{\Theta}(\theta) d\theta$$
 当 $\rho = E/N_0 >> 1$,以及 $|\theta| \le \pi/2$ 时,
$$p_{\Theta}(\theta) \approx \sqrt{\frac{2\rho}{\pi}} \cos\theta \cdot e^{-2\rho \sin^2\theta}$$

$$P_{MPSK}(e) = 1 - \int_{-\frac{\pi}{M}}^{\frac{\pi}{M}} \sqrt{\frac{2\rho}{\pi}} \cos\theta \cdot e^{-2\rho \sin^2\theta} d\theta$$

$$\approx 2Q \left(\sqrt{2\rho} \cdot \sin\frac{\pi}{M}\right)$$
 30/44

由于相位错误最可能是错成相邻的两个信号矢量,所以当采用Gray<mark>码</mark>对信号矢量进行编码时,一个符号错误只引起一个比特错误,于是误比特率为:

$$P_{MPSK}(be) = \frac{1}{k} P_{MPSK}(e)$$

其中

$$k = \log_2 M$$

由于比特信噪比 ρ_b 和符号信噪比 ρ 关系为,

$$\rho_b = \frac{\rho}{\log_2 M}$$

所以

$$P_{MPSK}(be) = \frac{2}{k} Q \left(\sqrt{2k\rho_b} \cdot \sin \frac{\pi}{M} \right)$$

当M=4时,与前面推导的QPSK结果一致。

31/44

7.3.4 MQAM的相干解调

MQAM调制可以看成二路ASK通过正交载波复用,在同一个频道上 传输,所以MQAM的带宽与ASK调制一样。MQAM信号形式为

$$s_{MQAM}(t) = \sum_{k=-\infty}^{\infty} I_K g_T(t - kT) \cos 2\pi f_c(t - kT) + \sum_{k=-\infty}^{\infty} Q_k g_T(t - kT) \sin 2\pi f_c(t - kT)$$

在一个符号间隔 (0,T)中,MQAM的信号码元为,

$$s_m(t) = I_m g_T(t) \cos 2\pi f_c t + Q_m g_T(t) \sin 2\pi f_c t$$

$$I_m, Q_m \in \{-\frac{K-1}{2} + i, \ i = 0, 1, ..., K-1\}$$

在二维信号空间中两个基函数为,

$$\varphi_1(t) = \frac{1}{\sqrt{E}}\cos 2\pi f_c t$$
, $\varphi_2(t) = \frac{1}{\sqrt{E}}\sin 2\pi f_c t$

信号点座标为: $\mathbf{s}_m = \left(I_m \sqrt{E}, Q_m \sqrt{E}\right)$, $m = 0, 1, \dots, M$, $M = K^2$

由于MQAM是二路正交,对称ASK组成,所以一般只能用相干方式解调。由于对称性,I 路和 Q 路差错概率相同,记为P,于是MQAM符号差错概率为: $P_{MQAM}\left(e\right)=1-\left(1-P\right)^{2}\approx2P$, P<<1

其中P是K进制ASK符号的差错概率。由公式(7.3.6)

$$P = \frac{2(K-1)}{K}Q\left(\sqrt{\frac{2E}{N_0}}\right) = 2\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{2E}{N_0}}\right)$$

33/44

所以
$$P_{MQAM}(e) \approx 4 \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{2E}{N_0}}\right)$$

由于MQAM信号码元的平均能量为

$$E_{av} = \frac{E}{K^2} \sum_{i=0}^{K-1} \sum_{j=0}^{K-1} \left\{ (2i+1-K)^2 + (2j+1-K)^2 \right\}$$
$$= \frac{2E}{3} (K^2 - 1) = \frac{2E}{3} (M - 1)$$

所以 $E = \frac{3E_{av}}{2(M-1)}$

$$P_{MQAM}(e) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3E_{av}}{(M-1)N_0}}\right)$$

MQAM和MPSK比较

对于16QAM,当
$$\frac{E_{av}}{N_0}$$
=100 时, $P_{16QAM}(e)$ =1.2×10⁻⁵

在同样信噪比下,16PSK误码率为 $P_{16PSK}(e) = 6 \times 10^{-3}$

在大信噪比情况下比较 $P_{\mathit{MQAM}}(e)$ 和 $P_{\mathit{MPSK}}(e)$

$$P_{MPSK}(e) \approx 2Q \left(\sqrt{\frac{2E}{N_0}} \cdot \sin \frac{\pi}{M} \right)$$
 $P_{MQAM}(e) = 4 \left(1 - \frac{1}{\sqrt{M}} \right) Q \left(\sqrt{\frac{3E_{av}}{(M-1)N_0}} \right)$

信噪比增益为

$$\gamma_{M} \stackrel{\triangle}{=} \left(\frac{SNR_{MQAM}}{SNR_{MPSK}} \right) = \frac{3}{2(M-1)\sin^{2}\frac{\pi}{M}}$$

当 M=4 , $\gamma_{M}=1$, 所以4PSK $\pi 4QAM$ 性能相当; 当M 充分大时,

$$\sin \frac{\pi}{M} \approx \frac{\pi}{M}$$
,于是

$$\gamma_M = \frac{3M^2}{2(M-1)\pi^2} \approx \frac{3M}{2\pi^2}$$

35/44

表 7.4.1	MOAM	相对工	MDSK	的信品	计模块
双文 /・4・1	MOAN	作りりて	MILDIV	的后院	に、増加

			_
M 10lo		$10\log_{10}\gamma_{M}(db)$	
	8	1.65	
[_	16	4.20	
	32	7.02	
	64	9.95	

7.3.5 MFSK相干解调

在MFSK系统中,已调信号可写成

$$s_{MFSK}(t) = \sum_{k=-\infty}^{\infty} \cos\left[2\pi f_c t + 2\pi Q_k \Delta f t\right] g_T(t - kt)$$

其中 $Q_k \in \{0, 1, \dots, M-1\}$

对于 $f_c = N_c \, / \, T$, $\Delta f = 1 / \, T$ 的正文FSK信号来说,它可写成

$$s_{MFSK}(t) = \sum_{k=-\infty}^{\infty} \cos\left[2\pi (f_c + Q_k \Delta f)(t - kT)\right] g_T(t - kT)$$

在一个符号间隔(0,T)中,MFSK信号码元为

$$s_m(t) = g_T(t)\cos[2\pi(f_c + m\Delta f)t]$$
, $m = 0, 1, ..., M-1$

MFSK是M维正交调制,在M维信号空间中,基矢量为

$$\varphi_m(t) = \frac{1}{\sqrt{E}} g_T(t) \cos[2\pi (f_c + m\Delta f)t], \quad m = 0, 1, ..., M-1$$

37/44

M个信号码元矢量的座标为:

$$\mathbf{s}_{m} = \left(0, 0, \dots, \sqrt{E}, 0, \dots, 0\right)$$

相干相关解调器

当发送信号码元为 $S_m(t)$ 时,接收到信号为

$$r(t) = s_m(t) + n(t)$$

经相关、采样后,

$$\mathbf{z}_{i} = \mathbf{n}_{i}$$
, $i \neq m$
 $\mathbf{z}_{m} = \sqrt{E} + \mathbf{n}_{m}$

其中 n_i , $i=0,1,\cdots,M-1$ 为相互独立,零均值,方差为 $N_0/2$ 的高斯随机

变量。在码元等概率发送条件下,由于码元是等能量的,所以最大似然

判决是选最大相关支路,即

$$\hat{m} = \arg\max_{m} \left\{ z_{m} \right\}$$

误码概率由式M元正交信号的错误公式(6.3.103)给出

$$P_{MFSK}(e) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left\{ 1 - \left[1 - Q(x) \right]^{M-1} \right\} \exp \left[-\frac{(x - \sqrt{2E/N_0})^2}{2} \right] dx$$

39/44

记码元信噪比为 $\rho = \frac{E}{N_0}$

$$P_{MFSK}(e) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left\{ 1 - \left[1 - Q(x) \right]^{M-1} \right\} \exp \left[-\frac{(x - \sqrt{2\rho})^2}{2} \right] dx$$

MFSK是M进制正交信号,误比特率约为误符号率的一半(例6.3.10),

$$P_{MFSK}(be) = \frac{M}{2(M-1)} P_{MFSK}(e)$$

同时比特信噪比和符号信噪比关系是

$$\rho_b = \frac{\rho}{\log_2 M}$$

所以误比特率与比特信噪比关系:

$$P_{MFSK}(be) = \frac{M}{2(M-1)\sqrt{2\pi}} \int_{-\infty}^{\infty} \left\{ 1 - \left[1 - Q(x)\right]^{M-1} \right\} \exp\left[-\frac{(x - \sqrt{2\rho_b \log_2 M})^2}{2} \right] dx$$

调制方式	误符号率	误比特率
MASK	$P_{MASK}(e) = \frac{2(M-1)}{M} Q \left(\sqrt{\frac{6\rho}{(M^2-1)}} \right)$	$P_{MASK}(be) \approx P_{MASK}(e)/\log_2 M$
QPSK	$P_{QPSK}(e) \approx 2Q(\sqrt{\rho})$	$P_{QPSK}(be) \approx 0.5 P_{QPSK}(e)$
MPSK	$P_{MPSK}(e) \approx 2Q \left(\sqrt{2\rho} \cdot \sin \frac{\pi}{M} \right)$	$P_{MPSK}(be) \approx P_{MPSK}(e)/\log_2 M$
MQAM	$P_{MQAM}(e) = 4\left(1 - \frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3\rho}{(M-1)}}\right)$	$P_{MQAM}(be) \approx P_{MQAM}(e)/\log_2 M$
MFSK	$P_{MFSK}(e) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left\{ 1 - \left[1 - Q(x)\right]^{M-1} \right\}$	$P_{MFSK}(be) = \frac{M}{2(M-1)} P_{MFSK}(e)$

Modulation Scheme		E_b/N_0 for BER = 10^{-6}	Bandwidth Efficiency	
PSK:	M = 2	10.5	0.5	
	M = 4	10.5	1.0	
	M = 8	14.0	1.5	
	M = 16	18.5	2.0	
	M = 32	23.4	2.5	
	M = 64	28.5	3.0	
	M = 128	33.8	3.5	
	M = 256	39.2	4.0	
QAM:	M = 4	10.5	1.0	
	M = 16	15.0	2.0	
	M = 64	18.5	3.0	
	M = 256	24.0	4.0	
	M = 1024	28.0	5.0	
	M = 4096	33.5	6.0	
FSK:	M = 2	13.5	0.40	
	M = 4	10.8	0.57	
	M = 8	9.3	0.55	
	M = 16	8.2	0.42	
	M = 32	7.5	0.29	
	M = 64	6.9	0.18	
	M = 128	6.4	0.11	
	M = 256	6.0	0.06	

