

### UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú , DECANA DE AMËRICA) FACULTAD DE INGENIERIA ELECTRÓNICA

E.A.P. INGENIERIA ELECTRONICA

## CURSO DE ELECTROTECNIA

LABORATORIO N° LEY DE OHM

### **OBJETIVOS:**

- Utilizar adecuadamente los equipos e instrumentos del laboratorio.
- Verificar experimentalmente la Ley de Ohm.
- Estudio y aplicación de los 02 circuitos de medición de resistencias por el método voltímetroamperímetro.
- Determinar y evaluar los errores metodológicos constituidos en la mediciones.

# INFORME PREVIO:

- 1. Definición, características y uso del voltímetro, amperímetro y ohmímetro
- 2. Explique las precauciones de seguridad cuando utiliza el voltímetro, amperimetro y ohmímetro
- 3. Defina los términos: voltaje, intensidad de corriente, resistencia, potencia, amperímetro, voltímetro.
- 4. ¿Qué es la Ley de Ohm? ¿Quién y cuando estableció la Ley de Ohm?
- 5. ¿Qué sucede con la intensidad de la corriente que circula por un resistor cuando: a. se triplica el voltaje aplicado al resistor, b. se triplica la intensidad de de corriente?
- 6. ¿Qué es una fuente de alimentación C.C.?. Explique sus características.

# III. INSTRUMENTOS Y MATERIALES:

- 01 Fuente de C.C.
- 01 Multimetro (VOM)
- 03 cajas de décadas de resistencias
- Conectores largos, cortos y puntos de prueba para el multímetro

# IV. PROCEDIMIENTO:

- 1. Verificar el estado de las cajas de décadas de resistencias.
- 2. Utilizando las décadas de resistencias realizar el conexionado del circuito de la Fig. 1.



Fig. 1

3. Medir la resistencia equivalente R13 en el circuito de la Fig. 1 para los valores dados en la Tabla 1. Anote los valores.

| Caso | R1    | R2    | R3     | R13   |
|------|-------|-------|--------|-------|
| 1    | 100 Ω | 10 KΩ | 33 KΩ  | 34.81 |
| II   | 200 Ω | 8 KΩ  | 3.3 KΩ | 91024 |
| III  | 500 Ω | 6 ΚΩ  | 1.2 ΚΩ | 7.19  |

Tabla 1

# 4. Conecte el circuito de la Fig. 2



Fig. 2

Mida la intensidad de corriente que circula en el circuito de la Fig. 2 para los voltajes dados en la Tabla
 Anote los valores.

| V (Voltios) | I (Amperios) |          |            |  |
|-------------|--------------|----------|------------|--|
|             | R = 470 Ω    | R = 1 KΩ | R = 2.2 KΩ |  |
| 5           |              |          |            |  |
| 10          |              |          |            |  |
| 15          |              |          |            |  |

Tabla 2

 Mida y anote le valor de la intensidad de la corriente que circula en el circuito para los diferentes valores de resistores de indicados en la Tabla 3.

| 5V (       | Potencia que |                          |
|------------|--------------|--------------------------|
| R (Ohmios) | I (Amperios) | se disipa en el resistor |
| 100        |              |                          |
| 150        |              |                          |
| 220        |              |                          |
| 470        |              |                          |

Tabla 3

# ONAL MAYOO OK SHEET OF THE STORY OF THE STOR

### V. INFORME FINAL:

- Calcule teóricamente el valor de la resistencia total (equivalente) de cada uno de los valores dados en la Tabla 1 y determine los errores.
- 2. Indique el sentido de la corriente en el circuito de la Fig. 1.
- 3. Sobre el mismo gráfico dibuje tres curvas de I = f (V); R = 470  $\Omega$ , R = 1 K $\Omega$ , R = 2.2 K $\Omega$ , con los datos experimentales obtenidos de la Tabla 2. Utilice papel milimetrado.
- 4. Calcule teóricamente el valor de la intensidad de corriente para cada uno de los valores dados en la Tabla 2 y determine los errores.
- Dibuje un gráfico de I = f (R); cuando V es cte., con los datos experimentales obtenidos de la Tabla 3.
  Utilice papel milimetrado.
- Calcule teóricamente el valor de la intensidad de corriente para cada uno de los valores dados en la Tabla 3 y determine los errores.
- 7. Dar conclusiones.