I. Compter le nombre de succès dans un schéma de Bernoulli

On considère un schéma de Bernoulli de paramètres n et p et de succès S.

A. Cœfficients binomiaux

Définition 1

Soit n un entier naturel et k un entier naturel compris entre 0 et n.

On considère une expérience aléatoire constituée de la répétition de n épreuves de Bernoulli identiques et indépendantes, représentée par un arbre.

Le cœfficient binomial noté $\binom{n}{k}$ (lire « k parmi n ») est le nombre de chemins de l'arbre réalisant k succès pour les n répétitions de l'épreuve.

Exemples • Certains coefficient binomiaux sont faciles à calculer :

- 1°) On réalise 4 épreuves. Combien de chemins réalisent exactement 1 succès? Il y en a 4 donc $\binom{4}{1}=4$.
- 2°) On réalise 100 épreuves. Combien de chemins réalisent exactement 1 succès? Il y en a 100 donc $\binom{100}{1}=100$.
- 3°) On réalise 18 épreuves. Combien de chemins réalisent exactement 0 succès? Il y en a 1 donc $\binom{18}{0}=1$.
- 4°) Combien de combinaisons à 6 nombres différents existent-il avec 49 nombres différents?

<u> Remarque</u>

? On réalise 10 épreuves. Combien de chemins réalisent exactement 6 succès ?

On pourrait faire un arbre de probabilité et compter les chemins un par un mais ce serait trop long : l'arbre possède $2^{10} = 1\,024$ chemins différents !

On utilise donc la calculatrice pour trouver 210.

B. Variable aléatoire

Définition 2

On note X la fonction qui, à chaque issue du schéma de Bernoulli, associe le nombre de succès obtenus.

On dit que X est la **variable aléatoire** associé à ce schéma de Bernoulli.

<u> Remarque</u>

\$ La variable aléatoire X peut donc prendre toutes les valeurs comprises entre 0 et n.

Exemple • On lance dix fois un dé non pipé à 6 faces. On cherche à obtenir le 3. La variable aléatoire X compte le nombre de 3 obtenus au bout des 10 lancers. On peut donc avoir $X = 0, X = 1, \ldots, X = 10$.

<u>Définition 3</u>

On appelle **loi de probabilité** de X la donnée de toutes les probabilités de X résumées dans le tableau ci-dessous.

k	0	1	• • •	n
p_k	p(X=0)	p(X = 1)		p(X = n)

₿₽

Propriété 1

Pour tout entier naturel k tel que $0 \leqslant k \leqslant n$, la probabilité p_k que l'événement S soit réalisé exactement k fois à l'issue de n épreuves de Bernoulli indépendantes est donnée par :

$$p_k = p(X = k) = \binom{n}{k} \times p^k \times (1-p)^{n-k}.$$

Exemple • On lance un dé à 6 faces dix fois de suite. Le succès est S: « obtenir le nombre 3 » tel que $p(S) = \frac{1}{6}$

On a donc un schéma de Bernoulli de paramètres n=10 et $p=\frac{1}{6}$

On cherche la probabilité d'obtenir exactement 6 fois le nombre 3

Autrement dit, on cherche p(X = 6):

$$p(X = 6) = {10 \choose 6} \times \left(\frac{1}{6}\right)^6 \times \left(\frac{5}{6}\right)^4 \approx 0,002 \ 170 \ 635 \approx 0,22\%.$$

II. Loi binomiale

Définition 4

On considère un schéma de Bernoulli de paramètres n et p et X la variable aléatoire qui compte le nombre de succès.

On appelle **loi binomiale** de paramètres $\mathfrak n$ et $\mathfrak p$ la loi de probabilité, notée $\mathscr B(\mathfrak n$; $\mathfrak p)$, définie par :

$$p(\{X=k\}) = \binom{n}{k} \times p^k \times (1-p)^{n-k} \quad \text{pour tout} \quad 0 \leqslant k \leqslant n.$$

On dit que X suit la loi binomiale.

Définition 5

Soit Ω l'univers associé à une expérience aléatoire.

On suppose Ω fini ; on note n le nombre d'éléments de Ω (n entier naturel non nul).

On suppose de plus que les n issues x_1, x_2, \ldots, x_n sont des nombres réels et qu'une loi de probabilité est définie sur Ω ; pour tout entier naturel i compris entre 1 et n, on note p_i la probabilité de l'événement élémentaire $\{x_i\}$.

L'espérance de la loi de probabilité est le nombre E défini par :

$$E = \sum_{i=1}^{n} p_i x_i.$$

<u> Remarque</u>

 $\sum_{i=1}^n p_i = 1 \text{ donc on peut \'ecrire } E = \frac{\sum_{i=1}^n p_i x_i}{\sum_{i=1}^n p_i} \text{ et on retrouve la formule d'une moyenne statistique.}$

L'espérance d'une loi de probabilité est la valeur que l'on peut espérer obtenir en moyenne dans le cas d'un grand nombre de répétitions.

Propriété 2

Soit $\mathcal{B}(n; p)$ la loi binomiale de paramètres n et p.

L'espérance E de $\mathcal{B}(n; p)$ est E = np.

