Internet Traffic Analysis using Wireshark

Tan Wei Xuan (49003140)

tanweixuan@postech.ac.kr

May 3, 2019

1 Project Overview

Wireshark 3.0.1 is used to analyze the network traffic captured over a specified period of time.

2 Traffic Analysis using Wireshark

Analysis is done on the captured network traffic within the provided tracefile. Network Traffic is captured for a period of **59.088** seconds.

2.1 Total Number of Packets and Bytes

Statistics

<u>Measurement</u>	Captured	<u>Displayed</u>	Marked
Packets	4137680	4137680 (100.0%)	_
Time span, s	59.088	59.088	_
Average pps	70026.3	70026.3	_
Average packet size, B	754	754	_
Bytes	3120951509	3120951509 (100.0%)	0
Average bytes/s	52 M	52 M	_
Average bits/s	422 M	422 M	_

Figure 1: Capture Statistics (Statistics \rightarrow Capture File Properties)

The total number of packets being captured between a **59 second period** is **4137680**. The total number of Bytes between captured is **3120951509**. This information can be obtained thorugh $Stastics \rightarrow Capture\ File\ Properties$.

2.2 Time Difference between First and Last Packet

frame.number == 1 frame.number == 4137680					
No. Time Source Destination Protoc					
Г	1 0.000000	141.223.170.141	112.162.88.78	TCP	
	4137680 59.087530	95.39.36.34	141.223.60.4	SIP	

We know that the total number of packets being captured is 4137680. As such, the first

frame be captured will be 1 and the last frame being captured will be 4137680. We can filter out these two frames by applying the filter, (frame.number == 1) || (frame.number == 4137680). From the filtered results, we can see that the first packet is being transmitted at 0.0 seconds while the last packet is being transmitted at 59.087530 seconds. As such, the time difference between the first and last packet is 59.087530 seconds

2.3 The number of packet and total bytes of TCP, UDP and ICMP traffic

Protocol	Percent Packets	Packets	Percent Bytes	Bytes
✓ Frame	100.0	4137680	8.6	269186417
✓ Ethernet	100.0	4137782	1.9	57928948
✓ Internet Protocol Version 4	100.0	4137680	2.7	82753600
User Datagram Protocol	61.2	2533291	0.6	20266328
> Transmission Control Protocol	37.9	1568769	1.4	43878139
Internet Protocol Version 6	0.1	3870	0.0	112314
Internet Control Message Protocol	0.8	31256	0.0	978571

Figure 2: TCP, UDP and ICMP Proticol Hierarchy (Statistics \rightarrow Protocol Hierarchy)

The entirety of the network traffic is being transmitted through IPv4 as it takes up 100% of the total packets. The total number of packet and total bytes of IPv4 TCP, UDP and Internel Control Message Protocol (ICMP) traffic are as follow:

1. **TCP**

The total number of packets being transmitted using TCP is 1568769 and the total number of bytes being transmitted is 43878139. TCP takes up 37.9% of total network traffic.

2. **UDP**

The total number of packets being transmitted using UDP is **2533291** and the total number of bytes being transmitted is **20266328**. UDP takes up **61.2**% of total network traffic.

3. **ICMP**

The total number of packets being transmitted using ICMP is **31256** and the total number of bytes being transmitted is **978571**. ICMP takes up **0.8**% of total network traffic.

For this captured network traffic, IPv4 TCP and UDP take the majority of the percent of total packets, with **UDP taking up most of the traffic** (61%). Most of the traffic is probably allocated for UDP services such as Media Streaming, VoIP, etc. This information can be obtained thorugh $Statistics \rightarrow Protocol\ Hierarchy$.

IPv6 TCP · 36092 IPv4 · 113434 UDP · 149198 Address Packets Bytes Tx Packets Tx Bytes Rx Packets Rx Bytes 102 108 k 00:00:00_00:00:00 204 217 k 102 108 k 2,744,902 2214 M 1,392,766 906 M Cisco_ac:3a:80 4,137,668 3120 M 4,137,667 3120 M 1,392,778 906 M 2,744,889 2214 M Cisco_b5:fc:80 25 1850 IPv4mcast_0a 25 1850 0 0 74 1 74 0 0 43:9c:8c:42:1e:ab 1 47:86:02:8f:0e:25 1 74 0 0 1 74 70 0 0 94:37:f5:08:ae:3c 1 1 70 d8:78:02:10:9b:72 70 0 0 1 70 1

2.4 Total Number of Packets and Bytes of each end host

Figure 3: End Points (Statistics \rightarrow Endpoints)

From the figure above, the main end hosts are Cisco_ac:3a:80 and Cisco_b5:fc:80. As there few Ethernet end nodes with many IP end nodes, we have two routers that sends/receives packets from many remote devices during the entire capture period. For Cisco_ac:3a:80, the total amount of transmitted packets is 2,744,902 and the total amount of received packets is 1,392,766. The total number of transmitted bytes is 2214MB and the total number of received bytes is 906MB.

For Cisco_b5:fc:80, the total amount of transmitted packets is 1,392,778 and the total amount of received packets is 2,744,902. The total number of transmitted bytes is 906MB and the total number of received bytes is 2214MB.

All transmitted packets &bytes of Cisco_b5:fc:80 are received by Cisco_b5:fc:80 and vice versa.

2.5 The number of packet and total bytes of FTP, SSH, DNS, and HTTP

In order to identify the total number of packets and bytes trasmitted using File Transfer Protocol (FTP), Secure Shell (SSH), Domain Name System (DNS) and Hypertext Transfer Protocol (HTTP), we have to know the reserved port numbers that are being allocated to these services. The ports allocated for each of these services are as shown in the diagram below:

Port	Usage
20	FTP - Data
21	FTP - Control
22	SSH
23	Telnet
25	SMTP
37	TIME
49	TACACS
53	DNS
67	DHCP Server (UDP)
68	DHCP Client (UDP)
69	TFTP (UDP)
79	Finger
80	HTTP
110	POP3
111	RPC (UDP)
119	NNTP
123	NTP
137-139	NetBIOS
161	SNMP
162	Trap (UDP)

Figure 4: Well-Known Ports (https://networking.ringofsaturn.com/Protocols/wellknownports.php)

1. **FTP**

The port numbers that are being reserved for FTP is 20 and 21. FTP uses two TCP connections for communication. Port 20 to pass control information and Port 21 to send the data files between the client and the server. The connection has to be established before the files can actually be sent across. As FTP is a TCP connection and thus in order to analyze only the traffic on ports 21 and 22, we apply a display filter to the entire captured traffic (tep.port == 20)||tep.port == 21)||

(tcp.port==21 tcp.port==20)					
No.	Time	Source	Destination	Protocol	Length 1
509072	7.066944	121.180.215.243	141.223.49.78	FTP	90 1
1183616	16.735828	195.2.240.180	141.223.30.53	TCP	62
1183617	16.735835	195.2.240.180	141.223.30.53	TCP	62
1183628	16.735947	195.2.240.180	141.223.30.53	TCP	62
1183629	16.735954	195.2.240.180	141.223.30.53	TCP	62
1183641	16.736030	195.2.240.180	141.223.30.53	TCP	62
1183642	16.736036	195.2.240.180	141.223.30.53	TCP	62
1183647	16.736104	195.2.240.180	141.223.30.53	TCP	62

Figure 5: Filter By FTP Port Numbers

Statistics		
Measurement Packets Time span, s	<u>Captured</u> 4137680 59.088	<u>Displayed</u> 127 (0.0%) 47.645
Average pps	70026.3	2.7
Average packet size, B	754	63
Bytes	3120951509	7946 (0.0%)
Average bytes/s	52 M	166
Average bits/s	422 M	1334

Figure 6: FTP Capture Statistics (Stastics \rightarrow Capture File Properties)

From the capture statistics, we can tell that the total number of packets being cap-

tured for FTP is **127** and the total number of Bytes being captured is **7946**. FTP takes up close to **0%** of the entire network traffic. From Figure 4, we can tell that there are two Source Destination, **121.180.215** and **195.2.240.180** and two destination addresses, **141.223.49.78** and **141.223.30.53**. This sequence of captured traffic is probably the exchange of files (63.568kb) between POSTECH webpages and a client's computer as the IP prefix for POSTECH is *141.223.xx.xx*.

2. **SSH**

The port number that is being reserved for SSH is 22. As SSH is a TCP connection and thus in order to analyze only the traffic on port 22, we apply a display filter to the entire captured traffic (tcp.port == 22)

(tcp.port==22)							
No.		Time	Source	Destination	Protocol	Length	
	3843	0.053993	141.223.175.232	222.122.81.122	TCP	114	
	4476	0.062046	222.122.81.122	141.223.175.232	TCP	66	
	9437	0.126503	141.223.175.232	222.122.81.122	TCP	114	
	10007	0.133305	222.122.81.122	141.223.175.232	TCP	66	
	15535	0.205917	141.223.175.232	222.122.81.122	TCP	114	
	16123	0.213105	222.122.81.122	141.223.175.232	TCP	66	
	20789	0.268580	141.223.200.153	1.97.49.96	TCP	78	
	26633	0.345960	141.223.175.232	222.122.81.122	TCP	114	
	27053	0.352743	222.122.81.122	141.223.175.232	TCP	66	

Figure 7: Filter By SSH Port Numbers

5tatistics		
<u>Measurement</u>	<u>Captured</u>	<u>Displayed</u>
Packets	4137680	799 (0.0%)
Time span, s	59.088	58.909
Average pps	70026.3	13.6
Average packet size, B	754	166
Bytes	3120951509	132704 (0.0%)
Average bytes/s	52 M	2252
Average bits/s	422 M	18 k

Figure 8: SSH Capture Statistics (Statistics \rightarrow Capture File Properties)

From the capture statistics, we can tell that the total number of packets being captured for SSH is **799** and the total number of Bytes being captured is **132704**. SSH takes up close to **0**% of the entire network traffic. SSH is typically used to log into a remote machine and execute commands and can be used to transfer files using the associated SSH file transfer (SFTP) or secure copy protocols (SCP). SSH uses the client-server model.

Figure 9: SSH Traffic Info

From Figure 9, the [ACK] indicates that a host is acknowledging having received some data, and the [PSH,ACK] indicates the host is acknowledging receipt of some previous data and also transmitting some more data. This sequence of captured data is thus probably the transfers of files between a Postech Server (Identifiable by IP Address Prefix) and a Client's Computer.

3. **DNS**

A DNS server listens for requests on port **53** (both UDP and TCP). In order to analyze both TCP and UDP traffic on port 53, we apply a display filter to the entire captured traffic $(tcp.port == 53 \mid\mid udp.port == 53)$

(tcp.port== 53 udp.port == 53)							
No.		Time	Source	Destination	Protocol	Length	
	98292	1.325406	141.223.82.102	168.126.63.2	DNS	72	
	98632	1.329624	141.223.1.33	192.112.36.4	DNS	87	
	98675	1.330268	141.223.1.33	192.112.36.4	DNS	87	
	98676	1.330301	141.223.1.33	192.112.36.4	DNS	88	
	98684	1.330425	141.223.1.33	192.112.36.4	DNS	88	
İ	98752	1.331466	141.223.1.34	192.43.172.30	DNS	90	
İ	98766	1.331598	141.223.1.34	192.43.172.30	DNS	90	
	98792	1.331966	141.223.1.34	119.205.216.45	DNS	91	
	98847	1.332616	141.223.1.34	119.205.216.45	DNS	84	

Figure 10: Filter By DNS Port Numbers

Statistics		
Measurement	<u>Captured</u>	<u>Displayed</u>
Packets	4137680	31076 (0.8%)
Time span, s	59.088	59.081
Average pps	70026.3	526.0
Average packet size, B	754	124
Bytes	3120951509	3850567 (0.1%)
Average bytes/s	52 M	65 k
Average bits/s	422 M	521 k

Figure 11: DNS Capture Statistics (Statistics \rightarrow Capture File Properties)

From the capture statistics, we can tell that the total number of packets being captured for DNS is **31076** and the total number of Bytes being captured is **3850567**. DNS takes up about **0.8%** of the entire network traffic.

Statistics Displayed Measurement Captured 4137680 27129 (0.7%) Packets Time span, s 59,088 59.081 Average pps 70026.3 459.2 Average packet size, B 131 3120951509 3560143 (0.1%) Bytes Average bytes/s 52 M 60 k 422 M 482 k Average bits/s Figure 12: DNS (UDP) Capture Statistics Statistics Measurement <u>Captured</u> <u>Displayed</u> Packets 4137680 3947 (0.1%) 59.088 58.848 Time span, s 70026.3 67.1 Average pps Average packet size, B 754 74 Bytes 3120951509 290424 (0.0%) Average bytes/s 52 M 4935 Average bits/s 422 M 39 k

Figure 13: DNS (TCP) Capture Statistics

DNS realizes UDP as its main transport layer protocol as it is much faster than TCP, which requires a 3 way handshake. TCP is generally used for transmitted large amount of information (> 512 bytes). Comparing Figure 12 and 13, this is true for the captured network traffic as **more UDP pfacknets (27129)** are being sent over the network as compared to TCP packets (3947).

4. **HTTP**

The port number that is being reserved for HTTP is **80**.As HTML is a TCP connection and thus in order to analyze only the traffic on port 80, we apply a display filter to the entire captured traffic (tcp.port == 80)

	tcp.port == 80					
No		Time	Source	Destination	Protocol	Length 1
	43	0.000653	208.72.192.133	141.223.159.200	TCP	66
7	62	0.000982	112.169.44.132	141.223.114.1	HTTP	834 (
	129	0.002070	12.161.242.20	141.223.169.130	TCP	1434
	131	0.002084	12.161.242.20	141.223.169.130	TCP	1434
	139	0.002266	27.101.11.29	141.223.137.76	TCP	1514
	152	0.002513	27.101.11.29	141.223.137.76	TCP	1514
	160	0.002623	27.101.11.29	141.223.137.76	TCP	1230
	162	0.002634	211.115.209.190	141.223.118.85	TCP	60
	183	0.002928	66.249.67.66	141.223.114.1	TCP	66 4
	184	0.002929	211.115.209.190	141.223.118.85	TCP	60 (

Figure 14: Filter By HTTP Port Numbers

Figure 15: HTTP Capture Statistics (Statistics \rightarrow Capture File Properties)

HTTP is used by the World Wide Web and it defines how messages are formatted and transmitted by browser. As such, we expect HTTP requests to take up a rather significant portion of the captured traffic. From the capture statistics, we can tell that the total number of packets being captured for HTTP is **280541** and the total number of Bytes being captured is **181146248**. HHTP takes up close to **8%** of the entire network traffic. From Figure 14, we can tell that most of the HTTP traffic are actually between POSTECH's webpages (Identifiable by the IP prefix) and a client's computer.

2.6 Select two applications other than the aforementioned applications, and print out the number of packets and the bytes of the traffic which allocates well-known port number (TCP/UDP 1 - 1024)

The two other applications that I have selected are **DHCP** (**Dynamic Host Configuration Protocol**) and **SMTP** (**Simple Mail Transfer Protocol**).

1. **DHCP**

The port numbers that are being reserved for DHCP are 67 and 68. DHCP uses two UDP connections for communication., port 67 for the server and port 68 for the client. The interaction between DHCP clients and servers enables a client to obtain its IP address and corresponding configuration information from a DHCP server. As DHCP utilises a UDP connection, in order to analyze only the traffic on ports 67 and 68, we apply a display filter to the entire captured traffic (udp.port == 67 || udp.port == 68)

udp.port == 67 udp.port == 68						
No.	Time	Source	Destination	Protocol	Length 1	
7351	1.005326000	141.223.65.67	203.81.166.2	BOOTP	1066 l	
73519	1.005398000	141.223.65.180	203.81.166.3	BOOTP	1066 l	
13915	1.877314000	141.223.65.48	203.81.166.3	BOOTP	1066 l	
181510	2.479444000	141.223.126.150	141.223.255.255	BOOTP	590	
18151	2.479454000	141.223.126.150	141.223.255.255	BOOTP	590	
181539	2.479693000	141.223.126.150	141.223.255.255	BOOTP	590	

Figure 16: Filter By DHCP Port Numbers

Statistics

		_	1
<u>Measurement</u>	<u>Captured</u>		<u>Displayed</u>
Packets	4137680		499 (0.0%)
Time span, s	59.088	/	56.687
Average pps	70026.3	/	8.8
Average packet size, B	754	- 1	655
Bytes	3120951509	- 1	326778 (0.0%)
Average bytes/s	52 M	(5764
Average bits/s	422 M	\	46 k

Figure 17: DHCP Capture Statistics (Stastics \rightarrow Capture File Properties)

From the capture statistics, we can tell that the total number of packets being captured for DHCP is **499** and the total number of Bytes being captured is **326778**. DHCP takes up close to **0**% of the entire network traffic. The average bytes of each packet being transmitted is about 655.

2. **SMTP**

The port number that is being reserved for SMTP is **25**. As SMTP utilises both UDP and TCP Connections and thus in order to analyze only the traffic on port 25, we apply a display filter to the entire captured traffic (tcp.port == 25 -- udp.port == 25)

T S		T	(· · <u>I</u> · I		- /	
tcp.port =	== 25 udp.p	ort == 25				
No.		Time	Source	Destination	Protocol	Length
	88	0.001319000	141.223.1.112	74.125.155.27	TCP	66
	372	0.005808000	178.236.49.96	141.223.1.8	TCP	60
	1693	0.023879000	141.223.114.1	77.184.0.21	TCP	66
	2185	0.031949000	141.223.1.8	112.225.174.196	SMTP	103
	2951	0.041228000	91.220.127.217	141.223.1.8	TCP	66
	4981	0.067551000	141.223.1.8	209.85.214.175	TCP	66
	4997	0.067759000	141.223.1.8	209.85.214.175	TCP	66

Figure 18: Filter By SMTP Port Numbers

Statistics					
Measurement	Captured		<u>Displayed</u>		Marked
Packets	4137680	/	6386 (0.2%)	\	_
Time span, s	59.088	/	58.982	1	_
Average pps	70026.3	- 1	108.3	1	_
Average packet size, B	754		352	1	_
Bytes	3120951509		2250069 (0.1%)	/	0
Average bytes/s	52 M		38 k	/	_
Average bits/s	422 M	1	305 k		_
			/		

Figure 19: SMTP Capture Statistics (Statistics \rightarrow Capture File Properties)

From the capture statistics above, we can tell that the total number of packets being captured for SMTP is **6386** and the total number of Bytes being captured is **2250069**. SMTP takes up close to **0**% of the entire network traffic. SMTP is generally used for for sending e-mail messages between servers (*POSTECH and several other clients*)

for these capture traffic)

Figure 21: SMTP (TCP) Capture Statistics

Although SMTP realises both TCP and UDP, it makes more sense to use TCP over UDP. SMTP is a mail transport protocol, and in mail every single packet is important. If you lose several packets in the middle of the message the recipient might not even receive the message and if they do they might be missing key information. This makes TCP more appropriate because it ensures that every packet is delivered. Comparing Figure 20 and 21. this is true for the capture network traffic as TCP Packets (6357) and bytes (2219155) are being sent over the network as compared to UDP Packets (29) and bytes (30914)

2.7 Enumerate the average packet size, average packet inter-arrival time

1. Average Packet Size

Topic / Item	Count	Average	Min val	Max val	Rate (ms)	Percent	Burst rate	Burst start
▼ Packet Lengths	4108237	759.03	60	1514	69.5280	100%	84.7000	33.585
0-19	0	-	-	-	0.0000	0.00%	-	-
20-39	0	-	-	-	0.0000	0.00%	-	-
40-79	882592	62.21	60	79	14.9370	21.48%	22.4900	2.355
80-159	115399	118.07	80	159	1.9530	2.81%	4.1100	39.135
160-319	65085	254.85	160	319	1.1015	1.58%	5.2900	44.907
320-639	1226380	419.86	320	639	20.7553	29.85%	22.6200	26.080
640-1279	401930	1056.08	640	1279	6.8023	9.78%	10.1400	44.490
1280-2559	1416851	1477.77	1280	1514	23.9788	34.49%	36.0700	18.385
2560-5119	0	-	-	-	0.0000	0.00%	-	-
5120 and gre	eater 0	-	-	-	0.0000	0.00%	-	-

Figure 22: Average Packet Size (Statistics \rightarrow Packet Lengths)

There were **4108237 packets** comprising roughly **3120.95MB** of traffic throughout the capture period. The **average packet size** for the these packets is **759.03 bytes**. Majority of the packets are between 1280 - 2559 bytes, and we can tell that higher the amount of byte being trasferred, the higher the transfer rate(ms) will be.

2. Average Packet Inter-arrival Time

Figure 23: Average Packet Inter-Arrival Time (Statistics \rightarrow I/O Graph)

From the figure above, we can tell that over the capture period of 60s, the average packet inter-arrival time is somewhere between 13 to $14\mu s$