$10_{141} \ (K10n_{25})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^6 + u^5 - 3u^4 - u^3 + 3u^2 + b + 1, \ u^6 + u^5 - 4u^4 - u^3 + 6u^2 + 2a, \ u^7 + 3u^6 - 5u^4 + 4u^2 + 2u + 2 \rangle$$

$$I_2^u = \langle b^2 - bu + u^2 - 1, \ u^2 + a - u - 2, \ u^3 - u^2 - 2u + 1 \rangle$$

$$I_3^u = \langle b + 1, \ 2a - u + 2, \ u^2 - 2 \rangle$$

$$I_1^v = \langle a, b-1, v+1 \rangle$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 16 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^6 + u^5 - 3u^4 - u^3 + 3u^2 + b + 1, \ u^6 + u^5 - 4u^4 - u^3 + 6u^2 + 2a, \ u^7 + 3u^6 - 5u^4 + 4u^2 + 2u + 2 \rangle$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{6} - \frac{1}{2}u^{5} + 2u^{4} + \frac{1}{2}u^{3} - 3u^{2} \\ -u^{6} - u^{5} + 3u^{4} + u^{3} - 3u^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{6} + \frac{1}{2}u^{5} - u^{4} + \frac{1}{2}u^{3} + 1 \\ -u^{6} - u^{5} + 3u^{4} + u^{3} - 3u^{2} - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{6} + \frac{1}{2}u^{5} - u^{4} + \frac{1}{2}u^{3} + u^{2} - u + 1 \\ u^{6} + u^{5} - 2u^{4} + 2u^{2} + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{6} + \frac{1}{2}u^{5} - u^{4} - \frac{1}{2}u^{3} + 1 \\ u^{6} + u^{5} - 2u^{4} - u^{3} + u^{2} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $2u^5 8u^3 + 6u$

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6	$u^7 - 3u^6 + 5u^4 - 4u^2 + 2u - 2$
c_2	$u^7 + 9u^6 + 30u^5 + 45u^4 + 46u^3 + 32u^2 + 22u + 14$
c_3, c_4, c_8 c_{10}	$u^7 + u^6 - u^4 + 3u^3 + u^2 - 1$
c_7, c_9	$u^7 + u^6 + 8u^5 + 3u^4 + 13u^3 + 3u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing		
c_1, c_5, c_6	$y^7 - 9y^6 + 30y^5 - 45y^4 + 28y^3 + 4y^2 - 12y - 4$		
c_2	$y^7 - 21y^6 + 182y^5 + 203y^4 + 304y^3 - 260y^2 - 412y - 196$		
c_3, c_4, c_8 c_{10}	$y^7 - y^6 + 8y^5 - 3y^4 + 13y^3 - 3y^2 + 2y - 1$		
c_7, c_9	$y^7 + 15y^6 + 84y^5 + 197y^4 + 181y^3 + 37y^2 - 2y - 1$		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.050170 + 0.492398I		
a = -1.369620 - 0.237150I	3.39904 + 5.13113I	0.70211 - 5.71003I
b = -0.828738 + 0.848640I		
u = 1.050170 - 0.492398I		
a = -1.369620 + 0.237150I	3.39904 - 5.13113I	0.70211 + 5.71003I
b = -0.828738 - 0.848640I		
u = -1.33623		
a = -0.889511	3.10278	2.54950
b = -0.610544		
u = -0.122110 + 0.584395I		
a = 1.254020 + 0.529753I	-0.192432 - 1.318890I	-1.84900 + 4.97200I
b = 0.441920 + 0.538118I		
u = -0.122110 - 0.584395I		
a = 1.254020 - 0.529753I	-0.192432 + 1.318890I	-1.84900 - 4.97200I
b = 0.441920 - 0.538118I		
u = -1.75995 + 0.15485I		
a = 1.060360 - 0.362677I	13.3363 - 7.9365I	0.87212 + 4.07397I
b = 1.19209 + 0.98985I		
u = -1.75995 - 0.15485I		
a = 1.060360 + 0.362677I	13.3363 + 7.9365I	0.87212 - 4.07397I
b = 1.19209 - 0.98985I		

II.
$$I_2^u = \langle b^2 - bu + u^2 - 1, u^2 + a - u - 2, u^3 - u^2 - 2u + 1 \rangle$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} + u + 2 \\ b \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} - b + u + 2 \\ b \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2}b - bu - 2b + 1 \\ -bu + u^{2} - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} - b + u + 2 \\ -u^{2}b + b + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 2

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6	$(u^3 + u^2 - 2u - 1)^2$
c_2	$(u^3 - 3u^2 - 4u - 1)^2$
$c_3, c_4, c_8 \ c_{10}$	$u^6 + u^5 - 2u^3 + 2u - 1$
c_7, c_9	$u^6 + u^5 + 4u^4 + 10u^3 + 8u^2 + 4u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6	$(y^3 - 5y^2 + 6y - 1)^2$
c_2	$(y^3 - 17y^2 + 10y - 1)^2$
c_3, c_4, c_8 c_{10}	$y^6 - y^5 + 4y^4 - 10y^3 + 8y^2 - 4y + 1$
c_{7}, c_{9}	$y^6 + 7y^5 + 12y^4 - 42y^3 - 8y^2 + 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.24698		
a = -0.801938	3.05488	2.00000
b = -0.623490 + 0.407699I		
u = -1.24698		
a = -0.801938	3.05488	2.00000
b = -0.623490 - 0.407699I		
u = 0.445042		
a = 2.24698	-2.58490	2.00000
b = 1.14526		
u = 0.445042		
a = 2.24698	-2.58490	2.00000
b = -0.700221		
u = 1.80194		
a = 0.554958	14.3344	2.00000
b = 0.90097 + 1.19801I		
u = 1.80194		
a = 0.554958	14.3344	2.00000
b = 0.90097 - 1.19801I		

III.
$$I_3^u = \langle b+1, \ 2a-u+2, \ u^2-2 \rangle$$

$$a_1 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_8 = \begin{pmatrix} \frac{1}{2}u - 1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} \frac{1}{2}u \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} \frac{1}{2}u \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u\\ u-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

Crossings	u-Polynomials at each crossing		
$c_1, c_2, c_5 \ c_6$	u^2-2		
c_3, c_7, c_8 c_9	$(u-1)^2$		
c_4, c_{10}	$(u+1)^2$		

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_5 c_6	$(y-2)^2$		
c_3, c_4, c_7 c_8, c_9, c_{10}	$(y-1)^2$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -0.292893	1.64493	-4.00000
b = -1.00000		
u = -1.41421		
a = -1.70711	1.64493	-4.00000
b = -1.00000		

IV.
$$I_1^v = \langle a,\ b-1,\ v+1
angle$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2\\1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing		
$c_1, c_2, c_5 \ c_6$	u		
c_3, c_8	u+1		
c_4, c_7, c_9 c_{10}	u-1		

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	y
c_3, c_4, c_7 c_8, c_9, c_{10}	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5, c_6	$u(u^{2}-2)(u^{3}+u^{2}-2u-1)^{2}(u^{7}-3u^{6}+5u^{4}-4u^{2}+2u-2)$
c_2	$u(u^{2}-2)(u^{3}-3u^{2}-4u-1)^{2}$ $\cdot (u^{7}+9u^{6}+30u^{5}+45u^{4}+46u^{3}+32u^{2}+22u+14)$
c_3,c_8	$((u-1)^2)(u+1)(u^6+u^5+\cdots+2u-1)(u^7+u^6+\cdots+u^2-1)$
c_4, c_{10}	$(u-1)(u+1)^{2}(u^{6}+u^{5}+\cdots+2u-1)(u^{7}+u^{6}+\cdots+u^{2}-1)$
c_7, c_9	$(u-1)^{3}(u^{6} + u^{5} + 4u^{4} + 10u^{3} + 8u^{2} + 4u + 1)$ $\cdot (u^{7} + u^{6} + 8u^{5} + 3u^{4} + 13u^{3} + 3u^{2} + 2u + 1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_6	$y(y-2)^{2}(y^{3}-5y^{2}+6y-1)^{2}$ $\cdot (y^{7}-9y^{6}+30y^{5}-45y^{4}+28y^{3}+4y^{2}-12y-4)$
c_2	$y(y-2)^{2}(y^{3}-17y^{2}+10y-1)^{2}$ $\cdot (y^{7}-21y^{6}+182y^{5}+203y^{4}+304y^{3}-260y^{2}-412y-196)$
c_3, c_4, c_8 c_{10}	$(y-1)^{3}(y^{6} - y^{5} + 4y^{4} - 10y^{3} + 8y^{2} - 4y + 1)$ $\cdot (y^{7} - y^{6} + 8y^{5} - 3y^{4} + 13y^{3} - 3y^{2} + 2y - 1)$
c_{7}, c_{9}	$(y-1)^{3}(y^{6} + 7y^{5} + 12y^{4} - 42y^{3} - 8y^{2} + 1)$ $\cdot (y^{7} + 15y^{6} + 84y^{5} + 197y^{4} + 181y^{3} + 37y^{2} - 2y - 1)$