Approximating atomic measures from trigonometric moments

Paul Catala*. Ongoing work with M. Hockmann*, S. Kunis* and M. Wageringel* *University of Osnabrück, Institute for Mathematics.

ICCHA, 15.09.21

Motivations

Sparse super-resolution. Estimate $\mu = \sum_{j=1}^s \lambda_j \delta_{\mathbf{x}_j}$ (with $\lambda_j \in \mathbb{C}$, $\mathbf{x}_j \in \mathbb{T}^d$) from

$$c_k = \int \mathrm{e}^{-2\imath\pi\langle k,x\rangle} \mathrm{d}\mu(x)$$

for k such that $||k||_{\infty} \leqslant n$.

- ubiquitous problem in image processing (low-pass filtering)
- relevant model for compressed sensing, mixture estimation, ...
- sharp recovery algorithms / computational tractability

ı

 $^{^1}$ images from the cell image library (http://cellimagelibrary.org/)

Support identification.

- Prony¹/ Subspace methods^{2,3}(SVD) support = common roots of a few polynomials
- Dual certificates $^4(\infty$ -dimensional optimization) support \subset saturation points of one polynomial

Approximation.

■ Christoffel functions^{5,6}(SVD) support ⊂ *level sets of a rational function*

R. de Prony, 1795, Sur les Lois de la Dilatabilité des Fluides Elastiques ...

² Schmidt, 1986, Multiple emitter location and signal parameter estimation

³ Roy and Kailath, 1989, ESPRIT- Estimation of Signal Parameters vie Rotational Invariance Techniques

Support identification.

- Prony / Subspace methods (SVD) support = common roots of a few polynomials
- Dual certificates $1(\infty$ -dimensional optimization) support \subset saturation points of one polynomial

Approximation.

■ Christoffel functions^{2,3}(SVD) support ⊂ level sets of a rational function

 $^{^{1}}$ Candès and Fernandez-Granda, 2014, Towards a Mathematical Theory of Super-Resolution

Support identification.

- Prony / Subspace methods (SVD) support = common roots of a few polynomials
- Dual certificates (∞-dimensional optimization) support ⊂ saturation points of one polynomial

Approximation.

■ Christoffel functions^{1,2}(SVD) support ⊂ level sets of a rational function

¹ Lasserre and Pauwels, 2016, Sorting Out Typicality with the Inverse Moment Matrix SOS polynomial

 $^{^2}$ Pauwels et al., 2020, Data Analysis from Empirical Moments and the Christoffel Function

Support identification.

- Prony / Subspace methods (SVD) support = common roots of a few polynomials
- Dual certificates (∞-dimensional optimization) support ⊂ saturation points of one polynomial

Approximation.

■ Christoffel functions^{1,2}(SVD) support ⊂ level sets of a rational function

In this work.

- ightarrow computationally efficient polynomial approximation of μ , with rate
- ightarrow polynomial approximation of unweighted counterpart $\mu^1 = \sum \delta_{\mathsf{x}_{\!j}}$

 $¹_{\it Lasserre\ and\ Pauwels,\ 2016,\ Sorting\ Out\ Typicality\ with\ the\ Inverse\ Moment\ Matrix\ SOS\ polynomial}$

² Pauwels et al., 2020, Data Analysis from Empirical Moments and the Christoffel Function

Preliminaries

Topology of Radon Measures

$$d\in\mathbb{N}\setminus\{0\},\ \mathbb{T}\stackrel{ ext{def.}}{=}\mathbb{R}/\mathbb{Z}$$
 Torus $\mu\in\mathcal{M}(\mathbb{T}^d)$ $arphi\in\mathscr{C}(\mathbb{T}^d)$

Topology of Radon Measures

Topology of Radon Measures

$$d \in \mathbb{N} \setminus \{0\}$$
, $\mathbb{T} \stackrel{\scriptscriptstyle \mathsf{def.}}{=} \mathbb{R}/\mathbb{Z}$ Torus

$$\langle \varphi, \, \mu \rangle = \int_{\mathbb{T}^d} \varphi(x) \mathrm{d}\mu(x)$$

Def. (Weak-* convergence of measures)

$$\mu_n \rightharpoonup \mu \iff \langle \varphi, \mu_n - \mu \rangle \to 0$$

Moment Matrix

$$\mu \in \mathcal{M}(\mathbb{T}^d), \ k \in \mathbb{Z}^d,$$
 k -th trigonometric moment:

$$c_k(\mu) \stackrel{\text{\tiny def.}}{=} \int_{\mathbb{T}^d} e^{-2i\pi\langle k, x \rangle} \mathrm{d}\mu(x)$$

Def. $n \in \mathbb{N}$, $N \stackrel{\text{def.}}{=} (n+1)^d$, truncated moment matrix

$$T_n \stackrel{\text{\tiny def.}}{=} (c_{k-l})_{k,l \in \mathbb{N}_n^d} \in \mathbb{C}^{N \times N}$$

Vandermonde decomposition. When $\mu = \sum_{j=1}^s \lambda_j \delta_{x_j}$, then

$$T_n = \sum_{j=1}^s \lambda_j a_j a_j^* = A_n \Lambda A_n^*, \quad \text{where} \quad a_j \stackrel{\text{def.}}{=} \left[e^{-2\imath \pi \langle k, \mathsf{x}_j \rangle} \right]_{k \in \mathbb{N}_n^d}$$

6

Moment Matrix

$$\mu \in \mathcal{M}(\mathbb{T}^d), \ k \in \mathbb{Z}^d,$$
 k -th trigonometric moment:

$$c_k(\mu) \stackrel{\text{\tiny def.}}{=} \int_{\mathbb{T}^d} e^{-2i\pi\langle k, x \rangle} \mathrm{d}\mu(x)$$

Def. $n \in \mathbb{N}$, $N \stackrel{\text{def.}}{=} (n+1)^d$, truncated moment matrix

$$T_n \stackrel{\text{\tiny def.}}{=} (c_{k-1})_{k,l \in \mathbb{N}_n^d} \in \mathbb{C}^{N \times N}$$

Vandermonde decomposition. When $\mu = \sum_{i=1}^{s} \lambda_{i} \delta_{x_{i}}$, then

$$T_n = \sum_{i=1}^s \lambda_j a_j a_j^* = A_n \Lambda A_n^*, \quad ext{where} \quad a_j \stackrel{ ext{ iny def.}}{=} \left[e^{-2\imath \pi \langle k, x_j
angle}
ight]_{k \in \mathbb{N}_n^d}$$

Singular value decomposition. $T_n = \sum_{j=1}^s \sigma_j u_j v_j^* = U \Sigma V^*$, where $U, V \in \mathbb{C}^{N \times s}$ and $\Sigma \in \mathbb{C}^{s \times s}$

Polynomial estimates

Weighted approximation

Let

$$p_n(x) \stackrel{\text{\tiny def.}}{=} \frac{1}{N} a(x)^* T_n a(x) = \frac{1}{N} \sum_{i=1}^s \sigma_i u_i(x) \overline{v_i(x)}$$

where $a(x) = (e^{-2i\pi\langle k, x \rangle})_{k \in \mathbb{N}_n^d}$

Lemma. (Weighted sum of kernels) One has

$$p_n(x) = \sum_j \lambda_j F_n(x - x_j),$$

where F_n is the Fejér kernel, i.e. $F_n(y) \stackrel{\text{def.}}{=} \frac{1}{N} \prod_{i=1}^d \frac{\sin((n+1)\pi y_i)}{\sin(\pi y_i)}$.

Rem. Since $p_n = F_n * \mu$, it can be evaluated very efficiently using Fast Fourier Transforms.

Thm. (Weak-* convergence) Let μ_n be the measure with density p_n . Then $\mu_n \rightharpoonup \mu$.

Thm. (Wasserstein-1 convergence) We have

$$\mathcal{W}_1(\mu_n,\mu) = O\left(rac{d\log(n)}{n}
ight)$$

Numerics

Wasserstein-1 distance between μ_n and μ , averaged over 100 randomly generated measures with sparsity $2\leqslant s\leqslant 20$, in 1D (left) and 2D (right).

Unweighted approximation

$$\rho_n^1(x) = a(x)^* UU^* a(x) = \sum_{i=1}^r |u_i(x)|^2$$

Rem. UU^* is **not** the moment matrix of $\mu^1 \stackrel{\text{def.}}{=} \sum_j \delta_{x_j}$

Prop. (Support identification) For n large enough, $0 \le p_n^1 \le N$ and $p_n^1(x) = N$ if and only if $x \in \text{Supp } \mu$.

Prop. (Weak-* convergence) Let $\mu_n^1(x)$ be the measure with density ρ_n^1 . Then $\mu_n^1 \rightharpoonup \mu^1$.

Sketch of proof. Consider the QR decomposition $A_n = QR$ with $Q \in \mathbb{C}^{N \times s}$ unitary

Prop. (Weak-* convergence) Let $\mu_n^1(x)$ be the measure with density ρ_n^1 . Then $\mu_n^1 \rightharpoonup \mu^1$.

Sketch of proof. Consider the QR decomposition $A_n=QR$ with $Q\in\mathbb{C}^{N imes s}$ unitary

$$a = \sum |a_j(x)|^2 = \sum F_n(x - x_j)$$

Prop. (Weak-* convergence) Let $\mu_n^1(x)$ be the measure with density ρ_n^1 . Then $\mu_n^1 \rightharpoonup \mu^1$.

Sketch of proof. Consider the QR decomposition $A_n=QR$ with $Q\in\mathbb{C}^{N imes s}$ unitary

$$a = \sum |a_j(x)|^2 = \sum F_n(x - x_j)$$

$$q = \sum |q_j(x)|^2 \text{ satisfies } q = p_n^1$$

Prop. (Weak-* convergence) Let $\mu_n^1(x)$ be the measure with density p_n^1 . Then $\mu_n^1 \rightharpoonup \mu^1$.

Sketch of proof. Consider the QR decomposition $A_n=QR$ with $Q\in\mathbb{C}^{N imes s}$ unitary

$$a=\sum |a_j(x)|^2=\sum F_n(x-x_j)$$
 $q=\sum |q_j(x)|^2$ satisfies $q=p_n^1$ **Lemma.** one has $\|a-q\|_1=O(1/n)$

Prop. (Weak-* convergence) Let $\mu_n^1(x)$ be the measure with density p_n^1 . Then $\mu_n^1 \rightharpoonup \mu^1$.

Sketch of proof. Consider the QR decomposition $A_n=QR$ with $Q\in\mathbb{C}^{N imes s}$ unitary

$$a = \sum |a_j(x)|^2 = \sum F_n(x - x_j)$$

$$q = \sum |q_j(x)|^2 \text{ satisfies } q = p_n^1$$
 Lemma. one has $||a - q||_1 = O(1/n)$

Then, for φ Lipschitz,

$$\left| \int \varphi(x) p_n^1(x) dx - \sum \varphi(x_j) \right| \leq ||a - q||_1 ||\varphi||_{\infty} + C \int F_n(x) |x| dx$$

Conclusion

Conclusion

Summary.

New tools to estimate discrete measures from moments Computationally efficient polynomial approximations Convergence with respect to Wasserstein-1 distances

Outlook.

Extend results to non-discrete measures

Derive convergence rate for Christoffel in the discrete case

Thank you for your attention!

References

- Candès, E. and Fernandez-Granda, C. (2014). Towards a mathematical theory of super-resolution. *Comm. Pure Appl. Math.*, 67(6):906–956.
- Lasserre, J. and Pauwels, E. (2016). Sorting out typicality with the inverse moment matrix sos polynomial. In *NIPS*.
- Pauwels, E., Putinar, M., and Lasserre, J. (2020). Data analysis from empirical moments and the Christoffel function. *F. Comp. Math.*
- R. de Prony, G. (1795). Essai expérimental et analytique: Sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alkool, à différentes températures. Journal de l'École Polytechnique Floréal et Plairial, 1(cahier 22):24–76.
- Roy, R. and Kailath, T. (1989). ESPRIT-estimation of signal parameters via rotational invariance techniques. *IEEE Trans. Acoustics Speech Signal Process.*, 37(7):984–995.
- Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. *IEEE Trans. Antennas Propagation*, 34(3):276–280.