EP0605 Tutorial 6 – Static Electricity

Some useful constants: $m_{\text{electron}} = 9.11 \times 10^{-31} \text{ kg}$, $m_{\text{proton}} = 1.67 \times 10^{-27} \text{ kg}$, magnitude of charge of proton or electron = $1.6 \times 10^{-19} \text{ C}$, $k = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$,

- 1. The electron and proton of a hydrogen atom are separated (on the average) by a distance of about 5.3×10^{-11} m. Find the magnitude of the electric force.
- 2. Three charges lies along the x-axis as shown. The positive charge $q_1 = 15 \mu C$ is at x = 2.0 m, and the positive charge $q_2 = 6.0 \mu C$ is at the origin. A negative charge q_3 is placed on the x-axis. Where should q_3 be located so that the resultant electric force on it is zero?

- 3. Charge $q_1 = 7.00 \,\mu\text{C}$ is at the origin, and $q_2 = -5.00 \,\mu\text{C}$ is on the *x*-axis, 0.300 m from the origin as shown. Find
 - (a) the magnitude and direction of the electric field at point P, which has coordinates (0, 0.400) m.
 - (b) the force on a charge of 2.00×10^{-8} C placed at P.

- 4. In an experiment in space, one proton is held fixed and another proton is released from rest a distance of 2.50 mm away. What is the initial acceleration of the proton after it is released?
- 5. A proton is travelling horizontally to the right at 4.50×10^6 m/s.
 - (a) Find the magnitude and direction of the weakest electric field that can bring the proton uniformly to rest over a distance of 3.20 cm.
 - (b) How much time does it take the proton to stop after entering the field?
 - (c) What minimum field (magnitude and direction) would be needed to stop an electron under the conditions of part (a)?

6. A point charge $+8.75 \,\mu\text{C}$ is glued down on a horizontal frictionless table. It is tied to a point charge $-6.50 \,\mu\text{C}$ by a light, nonconducting wire of length 2.50 cm. A uniform electric field of magnitude $1.85 \times 10^8 \,\text{N/C}$ is directed parallel to the wire, as shown in the figure at right.

- (a) Find the tension in the wire.
- (b) What would the tension be if both charges were negative?
- 7. A point charge $q_1 = -4.00$ nC is at the point x = 0.600 m, y = 0.800 m and a second point charge $q_2 = +6.00$ nC is at the point x = 0.600 m, y = 0. Calculate the magnitude and direction of the net electric field at the origin due to these two point charges.
- 8. A point charge $q_1 = +2.40 \,\mu\text{C}$ is held stationary at the origin. A second point charge $q_2 = -4.30 \,\mu\text{C}$ moves from the point $x = 0.150 \,\text{m}$, y = 0 to the point $x = 0.250 \,\text{m}$, $y = 0.250 \,\text{m}$. How much work is done by the electric force on q_2 ?
- 9. A point charge q_1 is held stationary at the origin. A second charge q_2 is placed at point A and the electric potential energy of the pair of charges is $+5.4 \times 10^{-8}$ J. When the second charge is moved to point B, the electric force on the charge does -1.9×10^{-8} J of work. What is the electric potential energy of the pair of charges when the second charge is at point B?
- 10. Point charges $q_1 = +2.00 \,\mu\text{C}$ and $q_2 = -2.00 \,\mu\text{C}$ are placed at adjacent corners of a square for which the length of each side is 3.00 cm. Point A is at the center of the square, and point B is at the empty corner closest to q_2 . Take the electric potential to be zero at a distance far from both charges.
 - (a) What is the electric potential at point a due to q_1 and q_2 ?
 - (b) What is the electric potential at point B?
 - (c) A point charge $q_3 = -5.00 \,\mu\text{C}$ moves from point A to point B. How much work is done on q_3 by the electric forces exerted by q_1 and q_2 ? Is this work positive or negative?
- 11. A positive charge +q is located at the point x = 0, y = -a and a negative charge -q is located at the point y = a.
 - (a) Derive an expression for the potential *V* at points on the *y*-axis as a function of the coordinate *y*. Take *V* to be zero at an infinite distance from the charges.
 - (b) Find the potential at a point on the positive y-axis for the case y > a.
 - (c) What are the answers to parts (a) and (b) if the two charges are interchanged so that +q is at y = a and -q is at y = -a?

Answers

- 1. $F_e = 8.2 \times 10^{-8} \text{ N}$
- 2. x = 0.77 m
- 3. $E = 2.71 \times 10^5 \text{ N/C}, \ \phi = 66.6^\circ, \ F = 5.42 \times 10^{-3} \text{ N}$
- 4. $a = 2.2 \times 10^4 \text{ m/s}^2$
- 5. a) 3.30×10^6 N/C to the left b) t = 14.2 ns c) 1.80×10^3 N/C
- 6. a) T = 382 N b) $T = 2.02 \times 10^3 \text{ N}$
- 7. E = 131.6 N/C, 12.6° above the -ve x-axis or 167.4° counter clockwise from +ve x-axis.
- 8. $W = -0.356 \,\mathrm{J}$
- 9. $W = 7.3 \times 10^{-8} \text{ J}$
- 10. a) V = 0 b) $V = -1.75 \times 10^5$ V c) W = -0.875 J
- 11. a) V = k(-q/|y-a| + q/|y+a|) b) $V = -2kqa/(y^2)$ c) The potential is of the opposite sign.