## Инструкция

#### ПРОФИЛОМЕТР

#### Билет:

### Рабочее место №5 – Профилометр. Билет №1

1. Провести калибровку профилометра. Установить номинальные значения согласно чертежу. Определить годность детали, измерив ее шероховатость, согласно отметке на чертеже, которую сделают линейные эксперты. Вывести протокол через печать чека. Распечатать чек.

### Подготовка рабочего места:

Наденьте перчатки и защитные очки. Аккуратно вставьте щуп в профилометр. Возьмите меру для калибровки и протрите ее спиртом. Меру нужно поместить на рабочий стол профилометра и закрепить зажимами. Т.к. она поцарапана посередине, нужно расположить ее немного левее или правее центра так, чтобы щуп располагался над неповрежденной поверхностью. Для передвижения рабочего стола используются крутящиеся ручки. Внимание! С задней стороны ручки две, нам нужна нижняя из них. Другая поворачивает рабочий стол вокруг своей оси, а это не нужно для данной работы.



Включите блок управления профилометром (кнопка располагается на правом боку прибора). Над экраном открывается панель и там нужно взять стилус для более удобного пользования прибором.



### Калибровка:

Когда калибровочная мера и щуп установлены, а панель управления включена, нужно опустить щуп на меру. Это происходит за счет поворота винта на верху прибора. По мере прижимания щупа к поверхности на экране в столбике (индикаторе положения щупа) слева будут загораться прямоугольники от красного до зеленого. Нам нужно прижать щуп, чтобы зеленый прямоугольник был посередине столбика. После этого приступаем к калибровке.



На панели инструментов блока управления нажимаем Меню, и в нем выбираем пункт «Calib. Meas.». Откроется окно с номинальным значением меры, оно должно совпадать с указанным на физической мере (на паре мы использовали меру с шероховатостью Ra=2,97). Если значение (на картинке 5 в красном кружке, правый нижний угол) совпадает с мерой нажимаем Старт на панели инструментов.

После этого щуп начнет движение по поверхности меры, и на экране отобразится значение шероховатости меры, оно должно быть максимально близко к номинальному. Если значение сильно отклоняется от нормы, лучше провести калибровку еще раз.

## Измерения:

Перед тем как проводить измерения поднимите щуп и уберите меру с рабочей поверхности.

У вас будет деталь и ее чертеж. Для удобства расположите деталь в соответствии с чертежом. Также деталь должна быть параллельна поверхности, без наклона. Деталь также протереть спиртом.





На паре мы проводили два измерения поверхности на детали: линейное и измерение на скругленной поверхности. Эксперты должны сказать, какое из измерений вы должны делать.

# Начнем с линейной поверхности.

Щуп нужно установить на измеряемую поверхность, чтобы ему хватило длины поверхности для измерения. Также нельзя чтобы щуп хоть немного выходил за грань выбранного отрезка и был выше или ниже него. Это даст большую погрешность, засчитав как шероховатость.



Также нужно выставить несколько настроек в меню. Заходим в «Cond/ Settings».

Для линейной поверхности на чертеже указано Ra=0.4 - 0.8, в следующей таблице ищем соответствия:

| Непериодические профили  Шлифование, доводка, притирка, электроэрозионная обработка |             | Периодические<br>профили                                                                    | Условия измерения в соответствии с EN ISO 4288 и EN ISO 3274  г ф Максимальный радиус наконечника щупа Ir Базовая длина In Длина оценки It Длина трассирования (длина оценки плюс предварительная и последующая длина) |                    |      |                  |
|-------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|------------------|
|                                                                                     |             | Обработка<br>токарным,<br>фрезерным,<br>строгальным<br>инструментом                         |                                                                                                                                                                                                                        |                    |      |                  |
| MKM                                                                                 | Ra<br>MKM   | RSm<br>MM                                                                                   | r <sub>tip</sub>                                                                                                                                                                                                       | λ <sub>c</sub> = r | In   | цая длина)<br>Іt |
| > 0,0250,1                                                                          | > 0,0060,02 | > 0,0130,04                                                                                 | - Section -                                                                                                                                                                                                            | MM                 | MM   | MM               |
| > 0,1_0,5                                                                           | > 0,02_0,1  | > 0,04_0,13                                                                                 | 2                                                                                                                                                                                                                      | 0,08               | 0,4  | 0,48             |
| > 0,5_10                                                                            | > 0,1_2     | >0.13.04                                                                                    | 2                                                                                                                                                                                                                      | 0,25               | 1,25 | 1,5              |
| > 10_50                                                                             | > 2_10      | > 0,4_1,3                                                                                   | 7*                                                                                                                                                                                                                     | 0,8                | 4    | 4,8              |
|                                                                                     | > 1080      |                                                                                             | 5                                                                                                                                                                                                                      | 2,5                | 12,5 |                  |
| > 50_200                                                                            | 1000        | ри Rz > 3 мкм или Ra > 0,5 мку может быть использован нак<br>ме того, шаг точки измерения A |                                                                                                                                                                                                                        |                    | 100  | 15               |

На картинке выше вы видите настройки, которые соответствуют нашей степени шероховатости. Выставите следующие настройки:



N зависит от длины выбранной измеряемой поверхности. На чертеже у нас ровно 5. Если длины поверхности не хватает, можно уменьшить на 1, но нужно сообщить об этом экспертам, чтобы они были в курсе, что вы не ошиблись.

Нажимаете на Parameter, открывается следующее меню:



В нем должно быть нажато (подсвечивается синим) Ra. Потом нажимаем на кнопку внизу (с карандашиком). Открываются следующие настройки, нажимаем то, что указано на картинках:



Вводим границы шероховатости:



Выходим в основное меню и нажимаем Старт. Выходит что-то подобное:





Желательно чтобы Ra было в диапазоне наших границ шероховатости, но если никак не выходит, то просто говорим, что деталь с браком.

## Печатаем, настройки как на двух последних картинках:







(рядом с print prof стилусом перекрыто, но там «1» стоит)

Если нам нужно снять еще и второй участок шероховатости, то вышедший чек пока не отрываем.

# Измерения на скругленной поверхности:



Поставьте щуп примерно на середину скругленной поверхности.

Для линейной поверхности на чертеже указано Ra=1,25-1,6. Исходя из таблицы Лямда $_c$  как и в предыдущем случае равна 0,8.

Все настройки кроме двух ставим как в предыдущем случае.

Меняем эти две настройки на:



Если в предыдущем случае меняли N с 5 на 4, то нужно вернуть обратно на 5.

Возвращаемся в основное меню. нажимаем старт. Оцениваем результат, если нужно переснимаем.

Печатаем с теми же настройками, что и в прошлый раз.

2. Ответить на теоретический вопрос: «Какие международные стандарты заложены в программы измерений на профилометре, и какие существуют базовые методы оценки погрешности результатов измерений»

В основу оценки структуры поверхности в профилометр заложены следующие стандарты:

- 1. Стандарт ISO (International Organization for Standardization) стандарт Международной организации по стандартизации.
- 2. Стандарт ANSI (American national standards institute) стандарт Американского национального института стандартов.
- 3. Стандарт VDA (Verband der Automobilindustrie) стандарт Ассоциации автомобильной промышленности Германии
- 4. Стандарт JIS (Japan Industrial Standards японские промышленные стандарты) стандарт Японской ассоциации стандартов.

Базовые методы оценки погрешности результатов измерений:

Среднее арифметическое, среднее квадратическое отклонение (СКО), доверительные границы случайной погрешности, доверительные границы неисключенной систематической погрешности и др. параметры.

(ответы из файла Наумова)