

张天佳

龙蜥社区商密SIG Maintainer

阿里云

商密算法体系

从2010年起,国家密码管理局陆续公布了国内研制的若干密码算法。 从2015年起,SM2,SM3,ZUC,SM9,SM4算法陆续成为ISO/IEC国际标准。 伴随着相关法律法规的完善,我国商用密码国际标准体系已初步成型。

行业现状

密码作为安全基础设施,已经 非常成熟。

商用密码标准体系相对完善。

法律法规体系基本形成。

行业成熟

为密码生态提供更多的选择。

国内信息安全基础设施的多样化需要。

密码多样化

作为基础设施,在操作系统和 基础软件中的支持有限。

行业和社区解决方案众多,但 各自为战,没有形成社区合力。

合规门槛高,行业排他性强。

国密碎片化严重

与主流国际算法相比,国密支 持度低。

性能差,没有硬件指令支持。

常常是为合规服务,仍然有很 多应用场景不支持国密。

用户体验差

商密软件栈SIG

让天下没有难用的国密

应用生态 NGINX, Tengine, curl HTTPS, fscrypt, LUKS, TLCP应用 算法基础库 OpenSSL / Tongsuo, libgcrypt, nettle sm3sum, TLS 1.3 + 商密套件 内核 Linux 内核, grub, shim modsign, IMA

硬件固件 CPU, 加速器, UEFI SecureBoot

目标:建立以国密算法为主的系统组件,在固件,bootloader,内核以及基础应用中支持国密算法,基于Anolis OS社区发行版构建开箱即用的国密技术栈及解决方案生态

《商用密码技术最佳实践白皮书》

PDF 下载地址: https://openanolis.cn/shangmi

白皮书电子版: https://openanolis.github.io/whitebook-shangmi

白皮书电子版 git 仓库:

https://github.com/openanolis/whitebook-shangmi

(本仓库接受勘误及PR,欢迎贡献优质内容,共建商密生态)

社区开发原则

原则:依托基础软件上游社区,为已有的轮子支持商密算法,不重新造轮子

开发者 上游社区 龙蜥社区 产品化

国密算法社区支持情况

原则:依托基础软件上游社区,为已有的轮子支持商密算法,不重新造轮子

开源软件名称	SM2	SM3	SM4	PKCS#7	X509	commit数	修改行数
gnulib	-	$\overline{\checkmark}$	-	-	-	5	-5/+1046
libgcrypt	V	V	V	-	-	22	-155/+4202
linux	V	Y	Y	~	✓	68	-1536/+15478
RustCrypto	×	V	Y	-	-	1	-0/+851
ima-evm-utils	V	V	-	-	-	5	-13/+97
Itp	×	V	V	-	-	2	-7/+30
libkcapi	-	V	V	-	-	2	-3/+287
nettle	×	V	V	-	-	11	-11/+1241
OpenSSL	Y	Y	~	Y	Y	14	-81/+471

Anolis OS 8.8 内置完整国密能力

性能优化 ANCK 5.10, SM4提升40倍

开箱即用 不依赖任何外部组件

内置商密 OpenSSL支持SM2签名能力

兼容稳定 向前兼容,补齐国密能力

文件加密 (fscrypt)

> fscryptctl add_key /mnt < /tmp/keyfile 23086a13ed81fd75ca5fe9b8f2ff25c7 > fscryptctl set_policy \ --contents=SM4-XTS \ --filenames=SM4-CTS \ 23086a13ed81fd75ca5fe9b8f2ff25c7 \ /mnt/test f root@vm-amd64 /mnt/test JHj63LH6s_e2WCoK6v9cJ9_TmxQfDKuTGIGmfJ6FjJhcTWSCMB0_Xw SJMCpbBT9qU41pYqh258LJpN0krkxjF-0KqQJfED79ljuRvadXqJ-g 50e52h6fkmZlrki1B90qWgMlAx9wfgHyDnTjE9 KDiJz0c uP6DFw dCBa4yOndL3rw1enWE8enR0G_HtjqykHX3-UBC3EaItXqZwHdTU7nQ eIca9dsc41TiizW3IEyyhC70-Gvyr0E23a6iGuWQhWxRtQmH3hthPA TF4D20xgD0Mwz4krxg0Hoe23ZgSNJ-GDRZh9Sc2NW0AFGRSKPPTeBw 1 directory, 5 files

Kernel TLS (KTLS)

KTLS通过把TLS中的数据平面卸载到内核,减少用户态和内核的数据拷贝,是TLS的重要加速手段

ANCK 5.10 内核支持 KTLS 使用 SM4 GCM/CCM算法:

#define TLS_CIPHER_SM4_GCM #define TLS_CIPHER_SM4_CCM

55 56

SM2 支持无 Za 的签名

```
Za = SM3 (entla | distid | a | b | xG | yG | xA | yA)
hash = SM3 (Za || Message)
sig = SM2_sign(hash)
PR: https://github.com/openssl/openssl/pull/20853
# 生成证书签名请求
openssl req -verbose -new -sm3 \
     -sigopt "sm2-za:no" -key sm2.key -out sm2.csr
#签名CSR
openssl x509 -req -days 10000 -sm3 \
     -sigopt "sm2-za:no" -vfyopt "sm2-za:no" \
     -extfile genkey.conf -extensions v3_req \
     -CA ca.cert -CAkey ca.key -CAcreateserial \
     -in sm2.csr -out sm2.cert
```


SIG地址: https://openanolis.cn/sig/crypto

Anolis 商密软件栈 SIG

