Theoretische Informatik I

Übungsblatt 3: Relationen

Duale Hochschule Baden-Württemberg – Lörrach Studiengang Informatik – TIF21

 $H,\, \eta - \mathrm{Eta} \hspace{1cm} \Theta,\, \theta - \mathrm{Theta} \hspace{1cm} I,\, \iota - \mathrm{Jota}$

1. In dieser Aufgabe sei

$$R:=\{(x,y)\in \mathbb{Z}\times \mathbb{Z}\mid \exists z\in \mathbb{Z}: x-y=z\cdot 15\}.$$

(a) Geben Sie 3 Elemente aus $\mathbb{Z} \times \mathbb{Z}$ an, die in R enthalten sind.

Lösung:

Es gilt $(54, 54) \in R$, $(-3, -198) \in R$, $(-198, 12) \in R$.

(b) Geben Sie 3 Elemente aus $\mathbb{Z} \times \mathbb{Z}$ an, die nicht in R enthalten sind.

Lösung:

Es gilt $(53, 54) \notin R$, $(3, -198) \notin R$, $(2, 18) \notin R$.

(c) Zeigen oder widerlegen Sie: R ist eine Äquivalenzrelation auf \mathbb{Z} .

Lösung

Wir wollen zeigen, dass R eine Äquivalenzrelation auf $\mathbb Z$ ist.

Dazu müssen wir die Reflexivität, Symmetrie und Transitivität zeigen.

• Wir wollen zeigen, dass R reflexiv ist.

Also müssen wir zeigen, dass für alle $m \in \mathbb{Z}$ gilt: $(m, m) \in \mathbb{R}$.

Sei $a \in \mathbb{Z}$.

Wir müssen zeigen: $(a, a) \in R$.

Also zu zeigen: $\exists b \in \mathbb{Z} \text{ mit } a - a = b \cdot 15.$

Es gilt $0 \in \mathbb{Z}$ und $a - a = 0 \cdot 15$, also $\exists b \in \mathbb{Z}$ mit $a - a = b \cdot 15$, nämlich b = 0.

Also gilt $(a, a) \in R$.

• Wir wollen zeigen, dass R symmetrisch ist.

Also müssen wir zeigen, dass für alle $m_1,m_2\in\mathbb{Z}$ gilt:

aus
$$(m_1,m_2) \in R$$
 folgt, dass $(m_2,m_1) \in R.$

Seien $a, b \in \mathbb{Z}$.

Wir müssen zeigen: aus $(a,b) \in R$ folgt, dass $(b,a) \in R$.

Es gelte $(a, b) \in R$.

Wir müssen zeigen: $(b, a) \in R$.

Aus $(a,b) \in R$ folgt $\exists c_1 \in \mathbb{Z}$ mit $a-b=c_1 \cdot 15$ (1).

Wir müssen zeigen: $\exists c_2 \in \mathbb{Z} \text{ mit } b - a = c_2 \cdot 15.$

Es gilt
$$b-a=-(a-b)\stackrel{(1)}{=}-c_1\cdot 15,$$

also $b - a = -c_1 \cdot 15$.

Da $c_1 \in \mathbb{Z}$ gilt, gilt außerdem $-c_1 \in \mathbb{Z}.$

Also $\exists c_2 \in \mathbb{Z} \text{ mit } b-a=c_2 \cdot 15,$ nämlich $c_2=-c_1.$

Also gilt $(b, a) \in R$.

• Wir wollen zeigen, dass R transitiv ist.

Also müssen wir zeigen, dass für alle $m_1, m_2, m_3 \in \mathbb{Z}$ gilt:

aus $(m_1, m_2) \in R$ und $(m_2, m_3) \in R$ folgt, dass $(m_1, m_3) \in R$.

Seien $a, b, c \in \mathbb{Z}$.

Wir müssen zeigen: aus $(a,b) \in R$ und $(b,c) \in R$ folgt, dass $(a,c) \in R$.

Es gelte $(a,b) \in R$ und $(b,c) \in R$.

Wir müssen zeigen: $(a, c) \in R$.

Aus $(a,b) \in R$ folgt $\exists d_1 \in \mathbb{Z} \text{ mit } a-b=d_1 \cdot 15$ (1).

Aus $(b,c) \in R$ folgt $\exists d_2 \in \mathbb{Z}$ mit $b-c=d_2 \cdot 15$ (2).

Wir müssen zeigen: $\exists d_3 \in \mathbb{Z} \text{ mit } a - c = d_3 \cdot 15.$

Setzen wir ein, so erhalten wir

$$\begin{array}{l} a-c=(a-b)+(b-c)\stackrel{(1)}{=}d_1\cdot 15+(b-c)\stackrel{(2)}{=}d_1\cdot 15+d_2\cdot 15=(d_1+d_2)\cdot 15,\\ \text{also } a-c=(d_1+d_2)\cdot 15. \end{array}$$

Da $d_1, d_2 \in \mathbb{Z}$ gilt, gilt außerdem $d_1 + d_2 \in \mathbb{Z}$.

Also $\exists d_3 \in \mathbb{Z} \text{ mit } a-c=d_3 \cdot 15$, nämlich $d_3=d_1+d_2$.

Also gilt $(a, c) \in R$.

(d) Zeigen oder widerlegen Sie: Die Addition auf \mathbb{Z}/R ist vertreterunabhängig.

Das heißt, dass für alle $m_1, m_2, n_1, n_2 \in \mathbb{Z}$ gelten muss:

aus $(m_1, m_2) \in R$ und $(n_1, n_2) \in R$ folgt, dass $(m_1 + n_1, m_2 + n_2) \in R$.

Lösung:

Seien $a_1, a_2, b_1, b_2 \in \mathbb{Z}$.

Wir müssen zeigen: aus $(a_1,a_2)\in R$ und $(b_1,b_2)\in R$ folgt, dass $(a_1+b_1,a_2+b_2)\in R$.

Es gelte $(a_1, a_2) \in R$ und $(b_1, b_2) \in R$.

Wir müssen zeigen: $(a_1 + b_1, a_2 + b_2) \in R$.

Aus $(a_1, a_2) \in R$ folgt $\exists c_1 \in \mathbb{Z} \text{ mit } a_1 - a_2 = c_1 \cdot 15$ (1).

Aus $(b_1,b_2) \in R$ folgt $\exists c_2 \in \mathbb{Z} \text{ mit } b_1-b_2=c_2 \cdot 15$ (2).

Wir müssen zeigen: $\exists c_3 \in \mathbb{Z} \text{ mit } (a_1 + b_1) - (a_2 + b_2) = c_3 \cdot 15.$

Setzen wir ein, so erhalten wir

$$(a_1+b_1)-(a_2+b_2)=(a_1-a_2)+(b_1-b_2)\stackrel{(1)}{=}c_1\cdot 15+(b_1-b_2)\stackrel{(2)}{=}c_1\cdot 15+c_2\cdot 15=(c_1+c_2)\cdot 15,$$

also $(a_1 + b_1) - (a_2 + b_2) = (c_1 + c_2) \cdot 15$.

Da $c_1, c_2 \in \mathbb{Z}$ gilt, gilt außerdem $c_1 + c_2 \in \mathbb{Z}$.

Also $\exists c_3 \in \mathbb{Z} \text{ mit } (a_1+b_1)-(a_2+b_2)=c_3 \cdot 15,$ nämlich $c_3=c_1+c_2.$

Also gilt $(a_1 + b_1, a_2 + b_2) \in R$.

(e) Zeigen oder widerlegen Sie: Die Subtraktion auf \mathbb{Z}/R ist vertreterunabhängig. Das heißt, dass für alle $m_1, m_2, n_1, n_2 \in \mathbb{Z}$ gelten muss: aus $(m_1, m_2) \in R$ und $(n_1, n_2) \in R$ folgt, dass $(m_1 - n_1, m_2 - n_2) \in R$.

Lösung:

Seien $a_1, a_2, b_1, b_2 \in \mathbb{Z}$.

Wir müssen zeigen: aus $(a_1,a_2)\in R$ und $(b_1,b_2)\in R$ folgt, dass $(a_1-b_1,a_2-b_2)\in R$. Es gelte $(a_1,a_2)\in R$ und $(b_1,b_2)\in R$.

Wir müssen zeigen: $(a_1-b_1,a_2-b_2)\in R.$

Aus $(a_1, a_2) \in R$ folgt $\exists c_1 \in \mathbb{Z}$ mit $a_1 - a_2 = c_1 \cdot 15$ (1).

Aus $(b_1, b_2) \in R$ folgt $\exists c_2 \in \mathbb{Z} \text{ mit } b_1 - b_2 = c_2 \cdot 15$ (2).

Wir müssen zeigen: $\exists c_3 \in \mathbb{Z} \text{ mit } (a_1-b_1)-(a_2-b_2)=c_3 \cdot 15.$

Setzen wir ein, so erhalten wir

$$(a_1-b_1)-(a_2-b_2)=(a_1-a_2)-(b_1-b_2)\stackrel{(1)}{=}c_1\cdot 15-(b_1-b_2)\stackrel{(2)}{=}c_1\cdot 15-c_2\cdot 15=(c_1-c_2)\cdot 15,$$

also $(a_1 - b_1) - (a_2 - b_2) = (c_1 - c_2) \cdot 15.$

Da $c_1, c_2 \in \mathbb{Z}$ gilt, gilt außerdem $c_1 - c_2 \in \mathbb{Z}$.

Also $\exists c_3 \in \mathbb{Z} \text{ mit } (a_1-b_1)-(a_2-b_2)=c_3 \cdot 15, \text{ n\"{a}mlich } c_3=c_1-c_2.$

Also gilt $(a_1 - b_1, a_2 - b_2) \in R$.

(f) Zeigen oder widerlegen Sie: R ist eine Halbordnung auf \mathbb{Z} .

Lösung:

Wäre R eine Halbordnung, müsste R reflexiv, antisymmetisch und transitiv sein.

Wir wollen widerlegen, dass R antisymmetrisch ist.

Also müssen wir zeigen, dass nicht für alle $m_1, m_2 \in \mathbb{Z}$ gilt: aus $(m_1, m_2) \in R$ und $(m_2, m_1) \in R$ folgt, dass $m_1 = m_2$.

- Es gilt $1-16=-15=-1\cdot 15$, außerdem ist $-1\in\mathbb{Z}$. Also $\exists a_1\in\mathbb{Z}$ mit $1-16=a_1\cdot 15$, nämlich $a_1=-1$. Also gilt $(1,16)\in R$.
- Und es gilt $16-1=15=1\cdot 15$, außerdem ist $1\in\mathbb{Z}$. Also $\exists a_2\in\mathbb{Z}$ mit $16-1=a_2\cdot 15$, nämlich $a_2=1$. Also gilt $(16,1)\in R$.
- Aber offenbar gilt $1 \neq 16$.

Also gilt $(1, 16) \in R$ und $(16, 1) \in R$, aber $1 \neq 16$.

Damit haben wir gezeigt, dass nicht für alle $m_1,m_2\in\mathbb{Z}$ gilt:

aus $(m_1, m_2) \in R$ und $(m_2, m_1) \in R$ folgt, dass $m_1 = m_2$.

Damit ist R nicht antisymmetrisch.

Also ist R keine Halbordnung.