2.1 Basics on libraries

2.1.1 Probabilities

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$$

•
$$\Pr[A_1 \diamond L_1 \Rightarrow 1]$$
:

$$\Pr[(r_1 \leftarrow \mathbb{Z}_6) \stackrel{?}{=} (r_2 \leftarrow \mathbb{Z}_6)] = \frac{1}{6}$$

•
$$\mathbf{Pr}[A_1 \diamond L_2 \Rightarrow 1]$$
:

$$\Pr[0 \stackrel{?}{=} 0] = 1$$

•
$$\mathbf{Pr}[A_2 \diamond L_1 \Rightarrow 1]$$
:

$$\Pr[(r \leftarrow \mathbb{Z}_6) \stackrel{?}{\geq} 3] = \frac{1}{2}$$

•
$$\mathbf{Pr}[A_2 \diamond L_2 \Rightarrow 1]$$
:

$$\Pr[0 \stackrel{?}{\geq} 3] = 0$$

2.1.2 Equivalent libraries

Two Libraries L_{left} and L_{right} are equivalent iff:

$$P[A \diamond L_{left} \rightarrow 1] = P[A \diamond L_{right} \rightarrow 1]$$

•
$$\frac{L_{left}}{\begin{array}{c} \text{QUERY():} \\ \text{x} \leftarrow \{0,1\}^n \\ \text{return x} \end{array}}$$

$$\stackrel{?}{=} \begin{array}{c}
L_{right} \\
\hline
QUERY(): \\
x \leftarrow \{0,1\}^n \\
y := \overline{x} \\
\text{return y}
\end{array}$$

Because we can make a 1:1 correspondence (we could make a bijection) for each return value of L_{left} to each return value of L_{right} the probabilities for each return value are equal and therefore the libraries are equivalent.

•
$$\frac{L_{left}}{ \begin{array}{c} \text{QUERY():} \\ \text{x} \leftarrow \mathbb{Z}_n \\ \text{return x} \end{array}}$$

	L_{right}
2	QUERY():
≐	$\mathbf{x} \leftarrow \mathbb{Z}_n$
	y := 2x % n
	return y

For "even" n's:

Let us assume that n=2 and we calculate the probability of the return value being 1. In this case $\mathbb{Z}_2 = \{0,1\}$ and the probability of L_{left} returning 1 is therefore $\frac{1}{2}$. The library L_{right} will only return 1 if there is a possibility to solve the equation $1=2x\ \%\ 2$, with $x\in\mathbb{Z}_2$. Because there is no possible result L_{right} cannot return 1, so the probability is 0 and the libraries are therfore not equivalent.

For "uneven" n's:

For uneven n, the distributions are:

$$\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$$
$$2 \cdot \mathbb{Z}_n \% n = \{0, 2, 4, ..., n-1, 1, 3, ..., n-2\}$$

Therefore the second distribution is a permutation of the first one and therefore the libraries are equivalent.

•
$$\begin{array}{|c|c|c|c|}\hline L_{left} & & & L_{right} \\\hline QUERY(): & & & \\\hline x \leftarrow \{0,1\}^n & & \\ y \leftarrow \{0,1\}^n & & \\ return x \& y & & \\\hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|}\hline L_{right} & & \\\hline QUERY(): & & \\\hline z \leftarrow \{0,1\}^n & \\ return z & & \\\hline \end{array}$$

Let us assume that n=1. The probability of L_{left} returning 0 is $\frac{3}{4}$ because this is returned if $((x=0) \land (y=0)) \lor ((x=0) \land (y=1)) \lor ((x=1) \land (y=0))$. Only if $((x=1) \land (y=1)) L_{left}$ returns 1. L_{right} will return 0 with a possibility of $\frac{1}{2}$. Therefore they are not equivalent.

2.2 Security of a modified One-time Pad (OTP)

7 Given the two libraries from the lecture, we need to show that $L_{OTS_left} \equiv L_{OTS_right}$ so we can conclude the one-time secrecy:

For two arbitrary messages m_1 and m_2 , the eavesdrop() function will return the following bit string for either of the two libraries:

$$c_1c_2\cdots c_{n-2}c_{n-1}c_n$$

whereas: $c_{n-1} = c_n = 0$ and c_1, c_2, \dots, c_{n-2} are uniformaly distributed in $\{0, 1\}^{n-2}$

Because in either cases the ciphertexts will be distributed in the same way, a distinguishable algorithm A still will be unable to differ between those two libraries. This implies that both libraries are exchangeable due to the fact that $P[A \diamond L_{OTS-left} \Rightarrow 1] = P[A \diamond L_{OTS-right} \Rightarrow 1]$. So this cipher will provide a one time secrecy. \square

2.3 Construction of a distinguisher

First we can make a few assumptions:

- 1. If at least one of m or k is even the result for $(k \times m)\%10$ is even
- 2. Only if m and k are odd the result for $(k \times m)\%10$ is odd

Therefore we can compute the following table:

	k even	k odd
m even	c even	c even
m odd	c even	c odd

Now we can define a distinguishing algorithm A:

```
A: \\ m_l \leftarrow 2 \\ m_r \leftarrow 3 \\ c = Eavesdrop(m_l, m_r) \\ if \ (c \ mod \ 2 \ == \ 0) \ \{ \\ \frac{2}{3} \ likelihood \ that \ m_l \ encrypted \\ return \ 0 \\ \} \\ else \ \{ \\ Guaranteed \ that \ m_r \ is \ encrypted \\ return \ 1 \\ \} \\ end
```

Therefore for the probability follows:

$$P[A \diamond L_{OTS-left} \Rightarrow 1] = 0 \neq \frac{1}{2} = P[A \diamond L_{OTS-right} \Rightarrow 1]$$

We can see that this leads to the conclusion that the two libraries are NOT exchangeable and therefore the one-time secrecy cannot be provided.

2.4* Size of the OTP key space

_