

Kathir College of Engineering

[Approved by AICTE | Affiliated to Anna University | Accredited by NAAC]
Wisdom Tree, Neelambur, Avinashi Road, Coimbatore-62

IBM COURSE – NALAIYATHIRAN

DOMAIN

CLOUD APPLICATION DEVELOPMENT

TEAM LEADER

ABHIJITH M

TEAM MEMBERS

SANTHOSH S

SARAN K

SARANKUMAR M

USECASE

SMART FASHION RECOMMENDER APPLICATION

TEAM ID

PNT2022TMID42734

LITERATURE SURVEY

S.NO	PAPER	AUTHOR	YEAR	METHOD AND ALGORITHM	ACCURACY/ PRECISION
1	Redefining the Offline Retail Experience: Designing Product Recommendation Systems for Fashion Stores.	Hanke, Jannis and Hauser, Matthias and Alexander and Thiesse.	2018	Our research particularly aims at answering the issues of whether and to what extent (i) the sensing capabilities of smart fashion retail environments and (ii) the integration of contextual information can improve the quality of such recommendations. To this end, we consider smart fitting rooms with the ability to detect products and customers as a showcase; a transaction dataset from a leading German fashion retailer; and contextual information about the time of purchase, the store type, and the weather conditions	75%
2	Interactive design recommendation using sensor based smart wear and weather WebBot.	Chung, Kyung-Yong and Na, Young-Joo and Lee, Jung- Hyun	2013	The first is to apply several Supervised Machine Learning algorithms namely Linear Regression, Support Vector Regression, Decision Tree Regression, and Random Forest Regression. The second purpose is to compare and evaluate algorithms used to create a predictive model based on various evaluation metrics. The last purpose is to determine the most important parameters that influence the chance of admission. The experimental results showed that the Random Forest Regression is the most suitable Machine Learning algorithm for predicting university admission	80%

3	A framework for robust feature selection for real-time fashion style recommendation.	Chao, Xiaofei and Huiskes, Mark J and Gritti, Tommaso and Ciuhu, Calina	2009	The system uses intelligent vision technology to recognize clothing styles and supports realtime fashion recommendation. An important design challenge is to achieve sufficiently high style recognition accuracy while simultaneously offering robustness to input variations occurring in practice. We propose a framework for the selection of features that offer robust performance by assessing various evaluation measures under realistic deviations of optimal input data	70%
4	Scenery-based fashion recommendation with cross-domain geneartive adverserial networks	Jo, Sang- Young and Jang, Sun-Hye and Cho, Hee- Eun and Jeong, Jin- Woo	2019	The scenery (natural landscape) around users is also presents a novel system to recommend fashion designs that fit target sceneries. To address this, the exemplar photos regarding the target landscape are first collected from the database. Afterwards, a cross-domain generative adversarial network (GAN) is applied to generate fashion designs from the sceneries.an important affective factor in recommending fashions.	75%
5	A semantic approach for fashion recommendation using logistic regression and ontologies	Yethindra, D Naga and Deepak, Gerard	2021	The focus of the system is to improve the efficiency of the recommendation to cope up to the speed of the user's thought process and expectations at the same time generate only those options that have been validated closely to the user's style hunt trajectory. In the presented approach the user's historical click data and searches is preprocessed and converted into query words.	90%