Leçons de chimie Agrégation 2019-2020

Table des matières

1	LP1	LP10 capteur électrochimiques		
	1.1	Introduction		
		1.1.1	Cellule conductimétrique	2
		1.1.2	Conductivité elctrique d'une solution	2
		1.1.3	Cellule conductiùétrique	2
		1.1.4	Loi de Kolraush	2

1 LP10 capteur électrochimiques

Bibliographie:

— ;

Niveau : Lycée

Pré-requis:

- Titrage, dosage par étallonage;
- Oxydoréduction;
- Loi d'Ohm

Objectifs de la leçon:

Expériences:

— ;

1.1 Introduction

Polution : polution des eaux usées des rejets industriels, pollution liée à des accidents (incedie à Notre Dame). Pour contrôler l'état de la polution : capteur lectrochimiques

Un capteur électrochimique est un capteur qui permet de relier la concentration d'une espèce en solution à une grandeur électrique. On s'intéresse à des solution ioniques : le courant est créé par un déplacement d'ions. On peut faire de la conductimétrie, ou de la potetiométrie.

1.1.1 Cellule conductimétrique

Sous l'effet d'une ddp, les charges vont se déplacer

1.1.2 Conductivité eletrique d'une solution

La conductivité d'une solution est la capacité d'une solution chimique à conduire le courant notée σ . Elle s'exprime en S.m⁻¹

1.1.3 Cellule conductiùétrique

La cellule conductiétrique est coposée de deux plaque métalliques et d'un ohmètre. Elle permet de mesure G=1/R. Le conductimètre relie la conductance mesurée à la conductivité de la solution :

$$\sigma = kG \tag{1}$$

où k est la constance de cellule

EXP: mesure de la conductivité d'une solution de nitrate de plomb

1.1.4 Loi de Kolraush

$$\sigma = \lambda_{PB^{2+}}^{0}[Pb^{2+}] + \dots$$
 (2)

Le coefficient λ^0 est a conductivité ionique molaire exprimée en $S.m^2.mol^{-1}$. La loi de Kolraush exprime les concentration en $mol.m^{-3}$.