[Total No. of Printed Pages—2

Seat No.

[**5668**]-**138**

S.E. (E&TC/Electronics) (Sem. II) EXAMINATION, 2019 INTEGRATED CIRCUITS

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
 - (ii) Figures to the right indicate full marks.
- 1. (a) Explain following op-amp parameters and give its ideal value: [6]
 - (i) Input offset voltage
 - (ii) Input bias current
 - (iii) Gain bandwidth product.
 - (b) Draw neat circuit diagram and explain voltage follower. [6]

 Or
- 2. (a) Draw circuit diagram of current mirror circuit and explain in detail. [6]
 - (b) Draw circuit diagram of practical differentiator and its frequency response. Explain it over ideal differentiator. [6]
- 3. (a) Explain in detail with neat circuit diagram sample and hold circuit, also draw its input and output waveform. [7]
 - (b) Draw circuit diagram and explain D/A converter with binary weighted resistors and give output voltage equation $V_0 = ?$ [6]

P.T.O.

4.	(a)	Explain in detail working of square wave generator with neat
		circuit diagram. Draw waveform of output voltage and capacitor
		voltage. Give equation of output frequency f_o . [7]
	(b)	Draw and explain successive approximation A/D converter. [6]
5.	(a)	For PLL IC 565 give expression of free running frequency,
		lock range and capture range. [6]
	(<i>b</i>)	Draw and explain Wein bridge oscillator. Also give frequency
		of oscillator $f_o = ?$ [6]
	,0,	Or S
6.	(a)	Draw block diagram and explain any one application of IC
		PLL 565 in detail. [6]
	(b)	Draw and explain quadrature oscillator. Also give frequency
		of oscillation $f_o = 0$ [6]
7.	(a)	Draw circuit diagram of 2nd order HPF and explain in
		detail.
	(<i>b</i>)	Draw circuit diagram of 1st order wide band stop filter with
		its frequency response. [7]
		Or
8.	(a)	Design 1st order LPF with $F_H = 1$ kHz having passband
		gain = 2, assume $C = 0.1 \mu f$. [6]
	(<i>b</i>)	Draw neat circuit diagram of 1st order LPF with its frequency
		response. [7]
[5668]	-138	response. [7]