Homework 2

Collaboration in the sense of discussion is allowed, however, the assignment is **individual** and the work you turn in should be entirely your own. See the collaboration and academic integrity statement here: https://natanaso.github.io/ece276b. Books may be consulted but not copied from. Please acknowledge in writing people you discuss the problems with and provide references for any books or papers you use.

Submission

Upload your solutions on **Gradescope** by the deadline shown at the top right corner. You may use latex, scanned handwritten notes (write legibly!), or any other method to prepare a pdf file. Do not just write the final result. Present your work in detail, explaining your approach at every step.

Problems

In square brackets are the points assigned to each part.

- 1. Consider the deterministic shortest path (DSP) problem in Fig. 1 with start node S and goal node T.
 - (a) [5 pts] Define the vertex set \mathcal{V} of the graph. How many elements are in \mathcal{V} ? What is the planning horizon of the equivalent deterministic optimal control problem?
 - (b) [10 pts] Apply the (backward) dynamic programming algorithm to compute the minimum cost to travel from each node to T. State the shortest path and its cost for each node.

Figure 1: A deterministic shortest path problem.

2. [25 pts] Consider a robot with position $(x,y) \in [-5,5]^2$ and orientation $\theta \in [-\pi,\pi)$. Let the body of the robot be a line segment of length 1 such that the body frame of the robot is at the center of the line segment and its x axis is in the direction of the line segment. In other words, if the robot's position is (0,0) with orientation 0° , the front tip of the robot is located at (0.5,0), while its back tip is located at (-0.5,0). Similarly, if the robot's position is (0,0) with orientation 30° , the front tip of the robot is located at (0.433,0.25), while its back tip is located at (-0.433,-0.25). Now, suppose that there is a circular obstacle at (0,0) with radius 1. Plot the configuration space of the robot, including the configuration space obstacle in Python.

- 3. A heuristic function h is **admissible** if $h(\mathbf{x}_i) \leq \mathbf{dist}(\mathbf{x}_i, \mathbf{x}_{\tau})$ for every node i with coordinates \mathbf{x}_i , where $\mathbf{dist}(\mathbf{x}_i, \mathbf{x}_{\tau})$ is the shortest distance from \mathbf{x}_i to the goal \mathbf{x}_{τ} . A heuristic function h is **consistent** if:
 - $h(\mathbf{x}_{\tau}) = 0$ for the goal node τ with coordinates \mathbf{x}_{τ} ,
 - $h(\mathbf{x}_i) \leq c(\mathbf{x}_i, \mathbf{x}_j) + h(\mathbf{x}_j)$ for every node i with coordinates \mathbf{x}_i and its children j with coordinates \mathbf{x}_j .

Finally, a heuristic h is ϵ -consistent with $\epsilon \geq 1$ if:

- $h(\mathbf{x}_{\tau}) = 0$ for the goal node τ with coordinates \mathbf{x}_{τ} ,
- $h(\mathbf{x}_i) \le \epsilon c(\mathbf{x}_i, \mathbf{x}_j) + h(\mathbf{x}_j)$ for every node i with coordinates \mathbf{x}_i and its children j with coordinates \mathbf{x}_j .
- (a) [5 pts] Prove that if $h^{(1)}$ and $h^{(2)}$ are consistent heuristics, then $h := \max\{h^{(1)}, h^{(2)}\}$ is also consistent.
- (b) [5 pts] Prove that if $h^{(1)}$ and $h^{(2)}$ are consistent heuristics, then $h := h^{(1)} + h^{(2)}$ is ϵ -consistent.
- 4. [30 pts] Consider the graph in Fig. 2 with nodes $\mathcal{V} = \{1, \ldots, 10\}$ and edge costs $c_{ij} = c_{ji} = 1$. Apply the Real-time Adaptive A* (RTAA*) algorithm to find a path from node 1 to node 10 using the heuristic function provided in Fig. 3 and expanding N=4 nodes per RTAA* iteration. If two nodes $i, j \in \mathcal{V}$ have the same f-values, $f_i = f_j$, then expand the node with the smaller index, e.g., i < j, first. For each RTAA* iteration, show the CLOSED list, the heuristic function for all nodes, the OPEN list, and the f-values for all nodes in the OPEN list. After an RTAA* iteration, move N=4 steps before starting the next RTAA* iteration. Report the final path from 1 to 10 obtained by RTAA*.

i	1	2	3	4	5	6	7	8	9	10
h_i	5	4	3	2	3	4	3	2	1	0

Figure 3: Heuristic function

Figure 2: A weighted undirected graph.

5. Consider the deterministic shortest path problem in Fig. 4 with initial node 2 and goal node 4.

Figure 4: Deterministic shortest path problem on a graph with seven nodes and directed edges labeled by transition costs.

- (a) [10 pts] Perform 4 iterations of the weighted A* algorithm on Slide 21 of Lecture 8 with weight $\epsilon = 2$ using the heuristic function in Table 1. Report the g values computed by A* by filling out Table 2.
- (b) [10 pts] Which of the 7 nodes are inconsistent after the 4 iterations of A*?

Table 1: Heuristic function for the deterministic shortest path problem in Fig. 4.

	h_1	h_2	h_3	h_4	h_5	h_6	h_7	
ſ	1	10	3	0	2	7	5	1

Table 2: Weighted A^* Algorithm

Iteration	Node exiting OPEN	OPEN	g_1	g_2	g_3	g_4	g_5	g_6	g_7
0	_	{2}	∞	0	∞	∞	∞	∞	∞
1	2								