

Term Project 제안서

Computer Science	Department
Advanced Skills in Machine Learning	Course title
Prof. Sung Soo Lim	Instructor
M2018075	Student ID
정성민	Student Name
18.05.08	Due date

<u>목 차</u>

1.	데이터셋 (Dataset)	.3
2.	프로젝트의 목적	.4
3.	관련 알고리즘 (Algorithm)	. 5
	프로젝트 관련 정보	
	4.1 딥러닝 프레임워크	.7
	4.2 Github URL	.7
	4.3 역할 분담	.7
	4.4 프로젝트 마일스톤 (milestone)	.7
5.	참고자료	.8

1. 데이터셋 (Dataset)

프로젝트를 위한 dataset 은 Kaggle site 의 Datasets channel 을 활용하였습니다. (URL: https://www.kaggle.com/datafiniti/hotel-reviews)

해당 데이터셋은 Datafiniti의 비즈니스 데이터베이스에서 제공하는 1000 개의 호텔 및 리뷰 목록입니다. 데이터셋에는 호텔 위치, 이름, 평점, 리뷰 데이터, 제목, 사용자 이름 등이 포함되어 있습니다. 데이터셋의 크기는 약 36000 개입니다.

[Figure 1] Dataset 예시

2. 프로젝트의 목적

호텔 리뷰에 대한 데이터를 바탕으로 각 호텔별 평점을 예측하는 기계학습 기반의 모델을 만들 것입니다. 기본적으로 머신러닝을 활용하여 예측 모델을 세우기 위해서는 RNN, LSTM 과 같은 모델을 사용합니다. 본 프로젝트는 deep 하게 모델을 설계할 수 있는 LSTM 모델을 사용함으로써 빅데이터 기반의 딥러닝 모델을 학습하고, 높은 학습률 및 정확도를 나타내는 것을 목표로 하고 있습니다.

주어진 데이터셋은 호텔의 이름, 고객 정보, 휴대폰 번호, 지역, 리뷰 등 다양한 정보를 포함하고 있습니다(참고자료 4 참고). 본 프로젝트는 영어로 쓰인 리뷰 중에서, 리뷰의 점수(review.rating)와 리뷰에 해당하는 글(review.text)만을 파싱하여 사용하는 것을 목표하고 있습니다. 프로젝트 이후에는 다른 정보를 융합하여 호텔 추천 시스템을 만들 계획에 있습니다.

3. 관련 알고리즘 (Algorithm)

본 프로젝트는 리뷰 데이터(data)와 평점 데이터(label)를 이용하여 LSTM 기반의 예측모델을 만들 것 입니다.

RNN은 인공 신경망의 한 종류로, 유닛 간의 연결이 순환적 구조를 갖는 특징을 갖고 있습니다. 이러한 구조는 순차적 동적 특징을 모델링 할 수 있도록 신경망내부에 상태를 저장할 수 있게 해준다. Feedforward 신경망과 달리, recurrent 인공신경망은 내부의 메모리를 이용해 시퀀스 형태의 입력을 처리할 수 있습니다. 따라서 recurrent 인공 신경망은 필기체 인식이나 음성 인식과 같이 순차적 특징을 가지는데이터를 처리할 수 있습니다.

[Figure 2] Wikipedia RNN

하지만 RNN은 관련 정보와 그 정보를 사용하는 지점 사이 거리가 멀 경우 back propagation 시 gradient 가 점점 줄어 학습 능력이 크게 저하되는 현상을 가집니다. 이를 vanishing gradient problem 이라고 합니다. 이 문제를 보완하기 위해 RNN의 hidden state 와 cell state 를 추가로 가지고 있는 LSTM 모델을 사용할 계획입니다.

[Figure 3] RNN 와 LSTM 의 차이

LSTM 은 cell state 와 hidden state 를 통해 추가적인 연산을 하게 되는데, 이를 통한 3 가지의 gate 가 생성됩니다. Forget gate, input gate, output gate 인데, 이 gate 들은 이전 값을 얼마나 기억할지, 그리고 현재 값을 얼마나 기억할지 등의 값을 제어하기 위한 목적으로 사용이됩니다. 본 프로젝트는 간단한 LSTM model 을 설계함으로써 호텔 리뷰와 같은 다대일 (many-to-one) 문제를 해결할 것입니다.

4. 프로젝트 관련 정보

4.1 딥러닝 프레임워크

본 프로젝트는 Tensorflow v1.8을 사용하여 진행할 것입니다.

4.2 Github URL

https://github.com/bonopi07/2018-1_advML_project

4.3 역할 분담

- 데이터 수집 및 가공, 방법론 설계: 정성민
- Tensorflow 기반의 학습 모델 구현: 정성민
- 학습 모델 하이퍼 파라미터 튜닝 및 정확도 검증: 정성민

4.4 프로젝트 마일스톤 (milestone)

	5 월	5 월	5 월	5 월	6 월	6 월	6 월
	2 주차	3 주차	4 주차	5 주차	1 주차	2 주차	3 주차
	(5/7-5/13)	(5/14-5/20)	(5/21-5/27)	(5/28-5/31)	(6/1-6/3)	(6/4-6/10)	(6/11-6/17)
프로젝트							
준비							
데이터 가공							
학습 모델							
설계							
모델 튜닝 및							
정확도 검증							

5. 참고자료

- 1. 모두를 위한 머신러닝/딥러닝 강의. https://hunkim.github.io/ml/
- 2. github blog. https://ratsgo.github.io/natural%20language%20processing/2017/03/09/rnnlstm/
- 3. Kaggle dataset URL. https://www.kaggle.com/datafiniti/hotel-reviews
- 4. https://datafiniti-api.readme.io/docs/business-data-schema