Justin Espiritu Assignment 3

1.

a)

$\exists \neg n P(2n^2 + 3n + 1)$	Prove the negation
$\neg \exists n P(2n^2 + 3n + 1)$	
$\forall n \neg P(2n^2 + 3n + 1)$	De Morgan's
x = an arbitrary integer	Assumption
$\neg P((x)^2 + 3(x) + 1$	Universal instantiation
$\neg P((2x+1)(x+1)$	Distribution
$\neg P((2x+1)(x+1)$	because the equation can be a factor of 2 numbers it is not prime
$\therefore \exists P(2n^2 + 3n + 1)$	Invalid (Proof by contradiction)

Because the negation is proved to be true the hypothesis is invalid.

b)

$$x = 0$$
 assumption
 $P(2(0)^2 + 3(0) + 2)$
 $P(2)$
2 is prime
 $\therefore \exists P(2n^2 + 3n + 1)$ Valid (Definition of \exists)

2.

 $\frac{a}{b}$ =some rational number where a and b are integers $\frac{n}{m}$ =some rational number where a and b are integers x= some irrational number

assumption/definition of a rational number assumption/definition of a rational number assumption

$$\frac{a}{b} - x = \frac{n}{m} \\
-x = \frac{n}{m} - \frac{a}{b} \\
x = \frac{a}{b} - \frac{n}{m} \\
x = \frac{am - nb}{bm} \\
bm by definition is a rational number \\
\frac{a}{b} - x cannot be irrational via contradiction above$$

3.

$$\begin{array}{ll} |x|+|y| \geq |x+y| & \text{assumption} \\ |n| & = & {n \geq 0 \rightarrow n \choose n < 0 \rightarrow (-n)} \end{array}$$

Case 1.

$$x, y \ge 0 \Rightarrow |x| + |y| : x + y$$
 definition of absolute value $x, y \ge 0 \Rightarrow x + y \ge 0$ $x + y = |x + y|$ definition of absolute value $\therefore |x| + |y| = |x + y|$ when x and $y \ge 0$

Case 2.

$$\begin{array}{ll} x,y<0\Rightarrow |x|+|y|:(-x)+(-y) & \text{definition of absolute value} \\ (-x)+(-y)=-(x+y) & \\ x,y<0\Rightarrow -(x+y)<0 & \\ -(x+y)=|x+y| & \text{definition of absolute value} \\ \therefore |x|+|y|=|x+y| & \text{when } x \text{ and } y<0 & \end{array}$$

Justin Espiritu Assignment 3

Case 3.

$x \ge 0, y < 0 \Rightarrow x + y : x + (-y)$	definition of absolute value
$y < 0 \Rightarrow x + (-y) > x$	because we are subtracting a negative number it makes x bigger
$ x+y $ can either be $x+y \ge 0$ or $-(x+y) < 0$	can do this via definition of absolute value
$x \ge 0, y < 0 \Rightarrow x + y < x$	because $y < 0, x+a$ negative number will be less than x
$x + (-y) > x \Rightarrow x + (-y) > x + y$	because $x + y < x$ we can say $x + (-y) > x + y$
-(x+y) = -x - y	distribution
$x \ge 0 \Rightarrow x > -x$	
$x + (-y) = x - y \Rightarrow x - y > -x - y$	
$\therefore x + y > x + y $	when $x \ge 0, y < 0$

Case 4.

$x < 0, y \ge 0 \Rightarrow x + y : (-x) + y$	definition of absolute value
$x < 0 \Rightarrow (-x) + y > y$	because we are adding a negative, negative number it makes y bigger
$ x+y $ can either be $x+y \ge 0$ or $-(x+y) < 0$	can do this via definition of absolute value
$x < 0, y \ge 0 \Rightarrow x + y < y$	because $x < 0, y+a$ negative number will be less than x
$(-x) + y > y \Rightarrow (-x) + y > x + y$	because $x + y < y$ we can say $(-x) + y > x + y$
-(x+y) = -x - y	distribution
$y \ge 0, \Rightarrow y > -y$	
(-x) + y > -x - y	because $y > -y$ adding -x to y will always be greater than (-x) - y, as
	when $x \ge 0, y < 0$

Because all the cases of |x|+|y| are either \geq or =, $|x|+|y|\geq |x+y|$

4.

$$E(x) = x \text{ is even}$$

$$O(x) = x \text{ is odd}$$

$$E(x) = \neg O(x)$$

$$O(x) = \neg E(x)$$

$$E(x^2 + x + 1) \rightarrow O(x)$$

$$\neg O(x) \rightarrow \neg E(x^2 + x + 1) \qquad \text{start proof by contrapositive}$$

$$E(x) \rightarrow O(x^2 + x + 1) \qquad \text{definition}$$

$$k = \text{some arbitrary int} \qquad \text{assumption}$$

$$2k = \text{even } 2k + 1 = \text{odd} \qquad \text{definition of odd and even}$$

$$2k^2 + 2k + 1 = (2k^2 + 2k) + 1$$

$$2k^2 + 2k = \text{some integer } +1 = 2k + 1 \qquad \text{definition of odd}$$

$$\therefore E(x^2 + x + 1) \rightarrow O(x) \qquad \text{proof by contrapositive}$$

5.

3a + 5b = 7m, where m is some integer	3c + 5d = 7n, where n is some integer
3(a+c) + 5(b+d) = 7z	z =some integer
3a + 3c + 5b + 5d = 7z	distribute
3a + 3b + 3c + 5d = 7z	
7m + 7n = 7z	definition
7(m+n) = 7z	distribution
m+n =some integer	integer + integer = some integer
7(some integer) = 7(some integer)	
$\therefore 3(a+c) + 5(b+d) = 7z$	valid