МАТАН 2 Семестр

Носорев Константин

2019

Содержание

1	Ряды			1
	§1	Определение ряда. Основные свойства		
		$\Pi.0$	Конечные суммы	1
		$\Pi.1$	Числовые ряды	2
		$\Pi.2$	Основные свойства	2
		$\Pi.3$	Неотрицательные числовые ряды	4
		$\Pi.4$	Телескопический признак. Эталонный ряд $\sum_{k=1}^{\infty} rac{1}{n^p}$.	5
		$\Pi.5$	Признак Коши. Признак Даламбера	
		$\Pi.6$	Число е, как сумма ряда	9
	$\S 2$	Приз	нак Лейбница. Признак Дирихле. Признак Абеля	10
		$\Pi.1$		10
	§ 3	Абсол	пютно и условно сходящиеся ряды	13

Глава 1 Ряды

§1 Определение ряда. Основные свойства

П.0 Конечные суммы

$$a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$$

- $\sum_{k=1}^{n} a_n + \sum_{k=1}^{n} b_n = \sum_{k=1}^{n} (a_n + b_n)$
- $\lambda \sum_{k=1}^{n} a_n = \sum_{k=1}^{n} (\lambda a_n)$

$\Pi.1$ Числовые ряды

Определение §1.1. Числовым рядом называется выражение вида

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + \dots + a_n + \dots$$

где $a_k \in \mathbb{R}$ - общий член последовательности, а $S_1=a_1, S_2=a_1+a_2, S_n=\sum_{k=1}^n a_k$ - частичные суммы ряда

Определение §1.2. Числовой ряд называется *сходящимся*, если сходится последовательность его частичных сумм

$$\lim_{n \to \infty} S_n = S$$
 - сумма ряда, $\sum_{k=1}^{\infty} a_k = S \in \mathbb{R}$

Если предел бесконечен или не существует, то ряд расходится

Пример. $\sum_{k=0}^{\infty} q^k$ - геометрическая прогрессия

$$S_0 = 1, S_1 = 1 + q, S_2 = 1 + q + q^2, \dots, S_n = \sum_{k=1}^n q^k = \frac{1 - q^{n+1}}{1 - q}$$

Если
$$|q|<1$$
, то $S_n\xrightarrow{n\to\infty}\frac{1}{1-q}$ - ряд сходится Если $|q|>1$, то $S_n\xrightarrow{n\to\infty}\infty$ - ряд расходится Если $q=1$, то $S_n\xrightarrow{n\to\infty}\infty$ - ряд расходится Если $q=-1$, то $S_n=\begin{cases}0,&n=2k\\1,&n=2k+1\end{cases}$ - ряд расходится

$\Pi.2$ Основные свойства

Теорема §1.1 (Критерий Коши).

$$\sum_{k=1}^{\infty} a_k - \cos \theta u m c s \iff \forall \varepsilon > 0 \ \exists N : \ \forall m \ge n > N \ | \sum_{k=n}^{m} a_k | < \varepsilon$$

Доказательство. Используя критерий Коши для посл-ти частичных сумм

$$\sum_{k=1}^{\infty} a_k$$
 - сходится $\Leftrightarrow S_n = \sum_{k=1}^n a_k$ - сходится

$$\xrightarrow{\text{IIo Kp. Komm}} \forall \varepsilon > 0 \exists N \ : \forall m \geq n-1 > N \ |S_m - S_{n-1}| < \varepsilon$$

$$\forall \varepsilon > 0 \exists N : \forall m \ge n \ge N+1 \mid \sum_{k=n}^{m} a_k \mid < \varepsilon$$

Пример.

$$\sum_{k=1}^{\infty} \frac{1}{n}$$
 - расходится $\sum_{k=1}^{\infty} \frac{1}{n^2}$ - сходится

Следствие. Если в ряду изменить произвольным образом конечное число слагаемых, то новый ряд сходится, когда сходится исходный, и новый ряд расходится, если исходный расходится

Замечание. Сходимость ряда независит от поведения конечного числа слагаемых

Теорема §1.2 (Необходимый признак сходимости ряда). $Ecnu \sum_{k=1}^{\infty} a_k$ - cxodumcs, $mo \lim_{n\to\infty} a_n = 0$

Следствие. Если $\lim_{n\to\infty} a_n \neq 0$, то ряд расходится

Доказательство.

$$a_n = S_n - S_{n-1} \Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - S_{n-1} = 0$$

Теорема §1.3 (Арифметические свойства). Пусть ряды $\sum_{k=1}^{\infty} a_k \sum_{k=1}^{\infty} b_k$ - cxodsmcs, mosda

$$\forall \lambda, \mu \in \mathbb{R} \sum_{k=1}^{\infty} (\lambda a_k + \mu b_k) = \lambda \sum_{k=1}^{\infty} a_k + \mu \sum_{k=1}^{\infty} b_k - cxo \partial umcs$$

Доказательство. Пусть $S_n^A = \sum_{k=1}^n a_k \to S^A \ S_n^B = \sum_{k=1}^n b_k \to S^B$ Рассмотрим $\sum_{k=1}^{\infty} (\lambda a_k + \mu b_k)$,

$$S_n = \sum_{k=1}^n \lambda a_k + \mu b_k = \lambda \sum_{k=1}^n a_k + \mu \sum_{k=1}^n b_k = \lambda S_n^A + \mu S_n^B \Rightarrow$$

$$\exists \lim_{n \to \infty} S_n = \lim_{n \to \infty} (\lambda S_n^a + \mu S_n^B) = \lambda S^A + \mu S^B$$

Замечание. В частности $\sum_{k=1}^{\infty} \lambda a_k = \lambda \sum_{k=1}^{\infty} a_k$

$\Pi.3$ Неотрицательные числовые ряды

Рассмотрим $\sum_{k=1}^{\infty} a_k, a_k \geq 0, S_n \nearrow$

Теорема §1.4 (Критерий сходимости ряда с неотрицательными числами). Pяд, члены короторого неотрицательны, сходится \Leftrightarrow посл-ть частичных сумм ограничена

Доказательство.

⇒ Ряд сходится по определению последовательность частичных сумм сходится $\frac{\text{По свойству сходящейся посл-ти}}{\text{— то свойству сходящейся посл-ти}} \{S_n\}$ - ограничена $\{S_n\}$ - ограничена и $S_n\nearrow \frac{\text{По th. Вейерштрасса}}{\text{— бейерштрасса}} \{S_n\}$ - сходится $\frac{\text{По определению}}{\text{— ограничена и }}$

$$\Leftarrow \{S_n\}$$
 - ограничена и $S_n \nearrow \xrightarrow{\text{По th. Вейерштрасса}} \{S_n\}$ - сходится $\xrightarrow{\text{По определению}}$ ряд сходится

Теорема §1.5 (Признак сравнения). Пусть

$$\exists N > 0 : \forall n > N \sum_{k=n}^{\infty} a_k, \sum_{k=n}^{\infty} b_k, a_k \ge 0, b_k \ge 0 \ u \ a_k \le b_k$$

- 1. Из сходимости $\sum_{k=1}^{\infty} b_k \Rightarrow cxoдимость ряда \sum_{k=1}^{\infty} a_k$
- 2. Из расходимости $\sum_{k=1}^{\infty} a_k \Rightarrow$ расходимость ряда $\sum_{k=1}^{\infty} b_k$

Доказательство. Конченое число членов ряда не влияет на сходимость \Rightarrow будем считать, что $a_k \leq b_k \forall k \geq 1$

1. Пусть $S_n^A = \sum_{k=1}^n a_k, S_n^B = \sum_{k=1}^n b_k$

$$\forall k \geq 1 \ a_k \leq b_k \ \Rightarrow S_n^A \leq S_n^B \ \forall n \ , \ \text{если сходится} \ \sum_{k=1}^\infty b_k$$
 то $S_n^B \nearrow$ и сходится к S^B при $n \to \infty \Rightarrow S_n^A \leq S_n^B \leq S^B \Rightarrow S_n^A \nearrow$ ограничена сверху $S^B \xrightarrow{\text{по th } 4} \ \text{ряд} \ \sum_{k=1}^\infty a_k \ \text{сходится}$

2. (от противного) Пусть $\sum_{k=1}^{\infty} a_k$ - расходится, а $\sum_{k=1}^{\infty} b_k$ - сходится, тогда по пункту 1 ряд $\sum_{k=1}^{\infty} a_k$ - сходится $\Rightarrow \bot$

Теорема §1.6 (Признак сравнения в предельной форме). Пусть

$$\sum_{k=1}^{\infty}a_k,\;\sum_{k=1}^{\infty}b_k,a_k\geq 0\;b_k>0\;\;u\;\exists\lim_{n o\infty}rac{a_n}{b_n}=c>0$$
 - конечное

тогда ряды сходятся и расходятся одновременно

Доказательство.

$$\forall \varepsilon > 0 \exists N > 0 : \forall n > N \mid \frac{a_n}{b_n} - c \mid < \varepsilon$$
$$-\varepsilon < \frac{a_n}{b_n} - c < \varepsilon$$
$$-\varepsilon + c < \frac{a_n}{b_n} < \varepsilon + c$$
$$(-\varepsilon + c)b_n < a_n < (\varepsilon + c)b_n$$

Возьмем $\varepsilon = \frac{c}{2}$

$$\exists N_0 > 0: \ \forall n > N_0$$
$$\frac{c}{2}b_n < a_n < \frac{3c}{2}b_n$$

- 1. Пусть $\sum_{k=1}^{\infty} b_k$ сходится $\xrightarrow{\text{по сл-вию из th. Коши}} \sum_{k=N_0}^{\infty} b_k$ сходится $\xrightarrow{\text{по th 3}} \sum_{k=N_0}^{\infty} \frac{3c}{2} b_n$ сходится $\xrightarrow{\text{по th 5}} \sum_{k=N_0}^{\infty} a_n$ сходится $\xrightarrow{\text{по сл-вию из th. Коши}} \sum_{k=1}^{\infty} a_n$ сходится
- 2. Пусть $\sum_{k=1}^{\infty} b_k$ расходится $\xrightarrow{\frac{\text{по сл-вию из th. Коши}}{\longrightarrow}} \sum_{k=N_0}^{\infty} b_k$ расходится $\xrightarrow{\frac{\text{по th 3}}{\longrightarrow}} \sum_{k=N_0}^{\infty} \frac{c}{2} b_n$ расходится $\xrightarrow{\frac{\text{по th 5}}{\longrightarrow}} \sum_{k=N_0}^{\infty} a_n$ расходится $\xrightarrow{\frac{\text{по сл-вию из th. Коши}}{\longrightarrow}} \sum_{k=1}^{\infty} a_n$ расходится

 $\Pi.4$ Телескопический признак. Эталонный ряд $\sum_{k=1}^{\infty} rac{1}{n^p}$

Теорема §1.7 (Телескопический признак). Пусть $a_n \searrow, a_n \ge 0$ ряд $\sum_{k=1}^{\infty} a_n$ - $cxodumcs \Leftrightarrow cxodumcs \sum_{k=0}^{\infty} 2^n a_{2^n}$

Доказательство. Правый ряд $a_1 + 2a_2 + 4a_4 + \dots$

Рассмотрим $a_2 \leq a_2 \leq a_1$

$$2a_4 \le a_3 + a_4 \le 2a_2$$
$$4a_8 \le a_5 + a_6 + a_7 + a_8 \le 4a_4$$

 $2^n a_{2^{n+1}} \le \sum_{k=2^{n+1}}^{2^{n+1}} a_k \le 2^n a_{2^n}$

Сложим выражения в левой и правой частях

$$a_2 + 2a_4 + 4a_8 + \dots + 2^n a_{2^{n+1}} \le S_{2^{n+1}}^A - a_1 \le S_n^B$$
$$\frac{1}{2} (S_{n+1}^B - a_1) \le S_{2^{n+1}}^A - a_1 \le S_n^B$$

Рассмотрим отдельно каждое неравенство

1.
$$S_{2^{n+1}}^A-a_1\leq S_n^B$$
 Если ряд S_n^B - сходится $\Rightarrow S_{2^{n+1}}^A-a_1$ - сходится $\Rightarrow S_n^A\leq S^B$ и $\{S_n^A\}$ \nearrow $\xrightarrow{\text{По th. Вейерштрасса}}$ ряд $\sum_{k=1}^\infty a_k$ - сходится

2.
$$\frac{1}{2}(S_{n+1}^B - a_1) \le S_{2^{n+1}}^A - a_1$$

$$S_{n+1}^B \le 2S_{2^{n+1}}^A - a_1$$

Если ряд $\sum_{k=1}^\infty a_n$ - сходится $\Rightarrow S_n^B \le 2S_{2^{n+1}}^A - a_1$ и $\{S_n^B\}$ / По th. Вейерштрасса ряд $\sum_{k=1}^\infty 2^n a_{2^n}$ - сходится

Примечание: Расхождение доказывается по признаку сравнения

Теорема §1.8. $Pяд \sum_{k=1}^{\infty} \frac{1}{n^p} \begin{cases} cxodumcs, & ecnup > 1 \\ pacxodumcs, & ecnup \leq 1 \end{cases}$

Доказательство.

- Пусть $p>1 \Rightarrow 0 < \{\frac{1}{n^p}\}$ \searrow_0 Рассмотрим ряд из th $7\sum_{k=0}^{\infty} 2^n \frac{1}{2^{np}} = \sum_{k=0}^{\infty} (2^{1-p})^n$ геометрическая прогрессия $q=2^{1-p} \Rightarrow \sum_{k=1}^{\infty} (2^{1-p})^n$ сходится $\xrightarrow{\text{по th } 7} \sum_{k=1}^{\infty} \frac{1}{n^p}$ сходится
- Пусть $p \leq 1$

$$\frac{1}{n^p} > \frac{1}{n} \, \forall n \in \mathbb{N} \Rightarrow \, \text{ т.к } \frac{1}{n} \, \text{- расходится} \xrightarrow{\text{по признаку сравнения}} \frac{1}{n^p} \, \text{- расходится}$$

П.5 Признак Коши. Признак Даламбера

Теорема §1.9 (признак Даламбера). *Пусть* $a_n > 0$ u $\exists \overline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n} = q$, $mor \partial a$

1. Если $0 \le q < 1$, то ряд $\sum_{k=1}^{\infty} a_k$ - сходится

- 2. Если q>1, то ряд $\sum_{k=1}^{\infty}a_{n}$ расходится
- 3. Если q=1, то признак не работает

Замечание. Признак удобно применять, если в a_n есть $2^n, n!, n^k$ Доказательство.

$$\forall \varepsilon > 0 \; \exists N > 0 : \; \forall n > N \; \left| \frac{a_{n+1}}{a_n} - q \right| < \varepsilon$$
$$-\varepsilon < \frac{a_{n+1}}{a_n} - q < \varepsilon$$
$$(q - \varepsilon)a_n < \frac{a_{n+1}}{a_n} < (q + \varepsilon)a_n \quad \forall n = N+1, N+2, \dots$$

1. Пусть q<1 Возьмем $\varepsilon:\widetilde{q}=q+\varepsilon<1$ (Например $\varepsilon=\frac{1-q}{2}$) Тогда $\forall n>N$

$$a_{n+1} < a_n \widetilde{q}$$

$$N+1: a_{n+2} < a_{n+1} \widetilde{q}$$

$$N+2: a_{n+3} < a_{n+2} \widetilde{q} < a_{n+1} \widetilde{q}$$

 $N + k - 1 : a_{n+k} < a_{n+k-1} \widetilde{q} < \dots < a_{n+1} \widetilde{q}^{k-1}$

$$T$$
.к $\sum_{k=1}^{\infty}\widetilde{q}^k$ - геометрическая прогрессия $(\widetilde{q}<1)$ \Rightarrow сходится $\xrightarrow{\text{по признаку сравнения}}$ $\sum_{n=1}^{\infty}a_{n+k}$ - сходится $\xrightarrow{\text{Следствие критерия Коши}}$ $\sum_{n=1}^{\infty}a_n$ - сходится

2. Пусть q > 1

Возьмем
$$\varepsilon:\widetilde{q}=q-\varepsilon>1$$

Тогда
$$\forall n > N$$
 $a_n \widetilde{q} < a_{n+1} \xrightarrow{\text{по 1 пункту}} a_{n+k} > a_{n+1} \widetilde{q}^{k-1}$

$$a_{n+1}\widetilde{q}^{k-1} \xrightarrow{n \to \infty} 0 \Rightarrow a_{n+k} \xrightarrow{n \to \infty} 0 \xrightarrow{\text{по необходимому признаку}}$$
ряд расходится

3. Пусть q = 1

$$\sum_{n=1}^{\infty} \frac{1}{n}: \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1 \text{ ряд расходится}$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
: $\lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = 1$ ряд сходится

Пример.

$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}, \lim_{n \to \infty} \frac{\frac{(n+1)^2}{2^{n+1}}}{\frac{n^2}{2^n}} = \lim_{n \to \infty} \frac{(n+1)^2}{2n^2} = \frac{1}{2} < 1 \Rightarrow$$
 ряд сходится

Теорема §1.10 (радикальный признак Коши).

Пусть $a_n \ge 0$ и $\exists \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q$, тогда

- 1. Если $0 \le q < 1$, то ряд $\sum_{k=1}^{\infty} a_n$ сходится
- 2. Если q>1, то ряд $\sum_{k=1}^{\infty}a_{n}$ расходится
- 3. Если q=1, то признак не работает

Замечание. Признак удобно применять, если в a_n есть $2^n, n^k$

Доказательство.

$$\forall \varepsilon > 0 \; \exists N > 0 : \; \forall n > N \; | \sqrt[n]{a_n} - q | < \varepsilon$$
$$-\varepsilon < \sqrt[n]{a_n} - q < \varepsilon$$
$$(q - \varepsilon) < \sqrt[n]{a_n} < (q + \varepsilon) \quad \forall n = N + 1, N + 2, \dots$$

1. Пусть $q<1\Rightarrow \exists \widetilde{q}=\frac{q+1}{2}|q<\widetilde{q}<1\exists N>0:\ \forall n>N$

$$\sqrt[n]{a_n} < \widetilde{q} \Leftrightarrow a_n < \widetilde{q}^n \quad \sum_{n=1}^\infty \widetilde{q}^n$$
 - геометрическая прогрессия $(\widetilde{q} < 1)$

 $\Rightarrow\;$ ряд сходится $\xrightarrow{\text{по признаку сравнения}}$ сходится исходный ряд

- 2. Пусть $q>1\Rightarrow \exists \{a_{n_k}\}: \sqrt[n]{a_{n_k}}>1\Rightarrow a_{n_k}>1\Rightarrow \lim_{n\to\infty}a_{n_k}\neq 0\Rightarrow$ ряд расходится
- 3. Пусть q = 1

$$\sum_{n=1}^{\infty} \frac{1}{n}: \lim_{n \to \infty} \frac{1}{\sqrt[n]{n}} = 1$$
 ряд расходится

$$\sum_{n=1}^{\infty}\frac{1}{n^2}:\lim_{n\to\infty}\frac{1}{\sqrt[n]{n^2}}=1$$
ряд сходится

Пример.

$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n}\right)^{n^2}, \, \lim_{n\to\infty} \left(\frac{n-1}{n}\right)^n = e^{-1} < 1 \Rightarrow \text{ряд сходится}$$

Теорема §1.11 (Признак Раабе). Пусть $a_n > 0$ и $\exists \lim_{n \to \infty} n(\frac{a_n}{a_{n+1}} - 1) = q$, тогда

- 1. Если q<1, то ряд $\sum_{k=1}^{\infty}a_{n}$ расходится
- 2. Если q>1, то ряд $\sum_{k=1}^{\infty}a_{n}$ сходится
- 3. Если q=1, то признак не работает

Пример.

$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1)}{2^n \cdot n!}$$

Доломбер:

$$\lim_{n \to \infty} \frac{(1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n+1)) 2^n \cdot n!}{2^{n+1} \cdot (n+1)! (1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1))} = \lim_{n \to \infty} \frac{2n+1}{2 \cdot (n+1)} = 1$$

Раабе:

$$\lim_{n\to\infty} n(\frac{2(n+1)}{2n+1}-1) = \lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2} < 1 \Rightarrow \ \text{ряд расходится}$$

П.6 Число е, как сумма ряда

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} e_n$$

1.

$$e_n = (1 + \frac{1}{n})^n = \sum_{n=0}^{\infty} C_k^n \frac{1}{n^k} = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \frac{1}{n^k} =$$

$$= \sum_{k=0}^n \frac{(n-k+1)(n-k+2)\dots n}{k!n^k} < \sum_{k=0}^n \frac{n^k}{k!n^k} = \sum_{k=0}^n \frac{1}{k!} = S_n \Rightarrow e_n < S_n$$

2. Пусть m < n

$$e_n = \sum_{k=0}^n C_n^k \frac{1}{n^k} > \sum_{k=0}^m C_n^k \frac{1}{n^k} =$$

$$= 1 + 1 + \frac{n(n-1)}{2!n^2} + \frac{n(n-1)(n-2)}{3!n^3} + \dots + \frac{n(n-1)(n-2)\dots(n-m+1)}{m!n^m} = A_{n,m}$$

$$\Rightarrow e_n > A_{n,m} \text{ Зафиксируем m. Тогда при } n \to \infty \ e \ge S_m$$

3. $|\Rightarrow e_n < S_n \leq e$ и $\{S_n\} \nearrow \xrightarrow{\text{По th Вейерштрасса}}$ Ряд сходится

$$e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} + \dots$$

4. Оценка погрешности при приблежении числа е частичными суммами:

$$0 < e - S_n = \sum_{k=n+1}^{\infty} \frac{1}{k!} = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \frac{1}{(n+3)!} + \dots =$$

$$= \frac{1}{(n+1)!} \left[1 + \frac{1}{(n+2)} + \frac{1}{(n+2)(n+3)} + \dots \right] <$$

$$< \frac{1}{(n+1)!} \left[1 + \frac{1}{(n+1)} + \frac{1}{(n+1)^2} + \frac{1}{(n+1)^3} + \dots \right] = \frac{1}{(n+1)!} \frac{n+1}{n} = \frac{1}{n \cdot n!}$$

Упражнение. Доказать, что е - иррационально

Упражнение. Доказать, что 2<e<3

§2 Признак Лейбница. Признак Дирихле. Признак Абеля

 $\Pi.1$

Определение §2.1. Ряд вида $a_1-a_2+a_3-a_4+...=\sum_{n=1}^{\infty}{(-1)^n-1}a_n$ называется знакочередующимся, где $\forall n\ a_n>0$

Теорема §2.1 (Признак сходимости Лейбница знакочередующихся рядов). Пусть дан знакочередующийся ряд $\sum_{n=1}^{\infty} (-1)^{n-1} a_n \ a_n > 0$ Если $\lim_{n\to\infty} a_n = 0$ и $\{a_n\} \searrow$, то ряд сходится

Доказательство.

$$S_{2m} = a_1 - a_2 + a_3 - a_4 + \dots - a_{2m-2} + a_{2m-1} - a_{2m} =$$

$$= a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2m-2} - a_{2m-1}) - a_{2m} \le a_1 \Rightarrow$$

$$\Rightarrow \{S_{2m}\} \text{ - ограничена сверху}$$

$$S_{2m+2} = S_{2m} + (a_{2m+1} - a_{2m+2}) \ge S_{2m} \Rightarrow \{S_{2m}\} \nearrow | \xrightarrow{\text{по th Вейерштрасса}} \exists \lim_{n \to \infty} S_{2m} = S$$

$$S_{2m+1} = S_m + a_{2m+1} \xrightarrow{S_m \to S, a_{2m+1} \to 0 \text{ При } n \to \infty} \lim_{n \to \infty} S_{2m+1} = S$$

Замечание. Признак достаточный, но не необходимый!

Следствие (Оценка для остаточного члена ряда Лейбница).

$$S = S_n + R_n = S_n + (-1)^n a_{n+1} + (-1)^{n+1} a_{n+2} + \dots$$

$$|R_n| = |(-1)^n| |(a_{n+1} - a_{n+2}) + (a_{n+2} - a_{n+3}) + \dots| =$$

$$= a_{n+1} - (a_{n+2} - a_{n+3}) - (a_{n+4} - a_{n+5}) - \dots \le a_{n+1}$$

$$|\Rightarrow |R_n| \le a_{n+1}$$

Лемма (Абеля). Дано a_1, \ldots, a_n и b_1, \ldots, b_n . При этом:

1. $\{a_i\}$ монотонно

2.
$$\exists B > 0 : |\sum_{i=1}^{m} b_i| \le B$$
, где $m = 1, 2, 3, \dots, n$

Тогда выполняется неравенство $|\sum_{k=1}^{n} a_k b_k| \le B(|a_1| + 2|a_n|)$

. Обозначим $B_1=b_1, B_2=b_1+b_2, \ldots, B_n=b_1+b_2+\cdots+b_n$, также перепишем (2) условие, как $\exists B>0: |B_m|\leq B$, где $m=1,2,3,\ldots,n$

$$\sum_{k=1}^n a_k b_k = a_1 b_1 + a_2 b_2 + a_n b_n = a_1 B_1 + a_2 (B_2 - B_1) + \dots + a_n (B_n - B_{n-1}) =$$

$$= B_1 (a_1 - a_2) + B_2 (a_2 - a_3) + \dots + B_{n-1} (a_{n-1} - a_n) + B_n a_n$$

$$|\sum_{k=1}^n a_k b_k| = |B_1||a_1 - a_2| + \dots + |B_{n-1}||a_{n-1} - a_n| + |B_n||a_n| \le$$

$$\le B(\underbrace{|a_1 - a_2| + |a_2 - a_3| + \dots + |a_{n-1} - a_n|}_{\text{По монотонности, либо все модули раскроются с +, либо все с -}}_{\text{Использую неравенство треугольника}} + |a_n|) =$$

 $=B(|a_1-a_n|+|a_n|)\stackrel{ ext{Использую неравенство треугольника}}{\leq} B(|a_1|+2|a_n|)$

Теорема §2.2 (Признак Дирихле). Пусть дан ряд $\sum_{n=1}^{\infty} a_n b_n$ тогда, ес-

1. a_n монотонно сходится κ θ

2.
$$\exists C \ \forall n \ |\sum_{k=1}^m b_k| \leq C$$

Pяд $\sum_{n=1}^{\infty} a_n b_n$ cxodumcs

 $extit{Доказательство}. ext{ Из (1) условия } a_n$ - монотонно $extit{} o 0 \xrightarrow{ ext{ По определению предела}}$

Из (2) условия
$$\forall n \ \forall p \ |\sum_{k=1}^{n+p} b_k| = |\sum_{k=1}^{n+p} b_k - \sum_{k=1}^{n-1} b_k| < 2C$$

$$\forall \varepsilon > 0 \exists N > 0: \ \forall n > N \ |a_n| < \frac{\varepsilon}{6C}$$
 Из (2) условия $\forall n \ \forall p \ |\sum_{k=n}^{n+p} b_k| = |\sum_{k=1}^{n+p} b_k - \sum_{k=1}^{n-1} b_k| \leq 2C$ Рассмотрим a_n, \ldots, a_{n+p} и $b_n, \ldots, b_{n+p} \xrightarrow{\text{По лемме Абеля } (B = 2C)} |\sum_{k=1}^n a_k b_k| \leq 2C (|a_n| + 2|a_{n+p}|) \leq 6C \frac{\varepsilon}{6C} = \varepsilon \xrightarrow{\text{По критерию Коши}} \text{ряд } \sum_{n=1}^{\infty} a_n b_n \text{ сходится}$

Теорема §2.3 (Признак Абеля). Пусть дан ряд $\sum_{n=1}^{\infty} a_n b_n$ тогда, если:

1. a_n монотонно и ограничена

2.
$$\sum_{k=1}^{\infty} b_k$$

Pяд $\sum_{n=1}^{\infty} a_n b_n \ cxoдится$

Доказательство. Из (1) условия $\Rightarrow |a_n| \leq A \ \forall n$ Из (2) условия $\xrightarrow{\text{По пр. Коши}} \forall \varepsilon > 0 \exists N > 0 : \forall n > N \mid \sum_{k=n}^{n+p} b_k \mid < \frac{\varepsilon}{3A}$ Рассмотрим $a_n, a_{n+1}, \dots, a_{n+p}$ и $b_n, b_{n+1}, \dots, b_{n+p}$

$$\stackrel{\text{По лемме Абеля. }\{a_i\}\text{ - монот. из усл, }B=\frac{\varepsilon}{3A}}{}|\sum_{k=n}^{n+p}a_kb_k|\leq B(|a_n|+2|a_{n+p}|)=$$

$$= \frac{\varepsilon}{3A} (|a_n| + 2 |a_{n+p}|) \le \varepsilon$$

Тогда по кр. Коши для ряда $\sum_{k=1}^{\infty} a_k b_k$ - сходится

Докозательство. Теоремы 1. Вариант 2. Из условия, что $\{a_n\} \searrow 0$ и того факта, что $|\sum_{n=1}^{m} (-1)^n| \le 1$, по теореме Дирихле следует, что ряд $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ - сходится

Пример.

$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n} \ \forall x \in \mathbb{R}$$

Зафиксируем т. Тогда

$$a_n = \frac{1}{n} \searrow \text{ к } 0, b_n = sin(nx)$$

$$S_m = sin(x) + sin(2x) + sin(3x) + \dots + sin(mx) =$$

$$= \frac{1}{sin(x/2)} (sin(x)sin(x/2) + sin(2x)sin(x/2) + \dots + sin(mx)sin(x/2)) =$$

$$= \frac{1}{2sin(x/2)} (cos(x/2) - cos(3x/2) + \dots + cos(\frac{2m-1}{2}x) - cos(\frac{2m+1}{2}x) =$$

$$= \frac{1}{2sin(x/2)} (cos(x/2) - cos(\frac{2m+1}{2}x))$$
 Если $sin(x/2) = 0 \Rightarrow sin(nx) = 0 \Rightarrow \text{ряд сходится}$ Если $sin(x/2) \neq 0 \Rightarrow |\sum_{k=1}^n sin(nx)| \leq \frac{2}{2sin(x/2)} = \frac{1}{sin(x/2)} = C$
$$|\xrightarrow{\text{по признаку Дирихле}} \text{ряд сходится}$$

Упражнение.

$$\sum_{n=1}^{\infty} \frac{\sin(n)\cos(\frac{\pi}{4})}{2}$$

§3 Абсолютно и условно сходящиеся ряды

Определение. Числовой ряд $\sum_{n=1}^{\infty} a_n$ называется абсолютно сходящимся, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$

Теорема §3.1. Абсолютный ряд сходится

 \mathcal{A} оказательство. Дано $\sum_{n=1}^{\infty} |a_n|$ - сходится. Докажем, что сходится ряд $\sum_{n=1}^{\infty} a_n$ $\sum_{n=1}^{\infty} |a_n|$ - сходится $\xrightarrow{\text{по th. Komm}} \forall \varepsilon > 0 \; \exists N > 0 : \; \forall n > N \; \forall p \; |a_n| + |a_{n+1}| + \cdots + |a_{n+p}| < \varepsilon$ Рассмотрим ряд $\sum_{n=1}^{\infty} a_n \xrightarrow{\text{th. Komm}} \forall \varepsilon > 0 \; \exists N > 0 : \; \forall n > N \; \forall p \; |a_n + a_{n+1} + \cdots + a_{n+p}| \leq |a_n| + |a_{n+1}| + \cdots + |a_{n+p}| < \varepsilon \Rightarrow \text{ряд } \sum_{n=1}^{\infty} a_n \text{ - сходится } \square$