

Sequence Listing

<110> Avi J. Ashkenazi
Kevin P. Baker
David Botstein
Luc Desnoyers
Dan L. Eaton
Napoleone Ferrara
Sherman Fong
Wei-Qiang Gao
Hanspeter Gerber
Mary E. Gerritsen
Audrey Goddard
Paul J. Godowski
Austin L. Gurney
Ivar J. Kljavin
Jennie P. Mather
Mary A. Napier
James Pan
Nicholas F. Paoni
Margaret Ann Roy
Timothy A. Stewart
Daniel Tumas
Colin K. Watanabe
P. Mickey Williams
William I. Wood
Zemin Zang

<120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC ACIDS ENCODING THE SAME

<130> P3130R1C5

<150> 10/002,796
<151> 2001-11-15

<150> 60/056974
<151> 1997-08-26

<150> 60/059115
<151> 1997-09-17

<150> 60/059263
<151> 1997-09-18

<150> 60/059588
<151> 1997-09-17

<150> 60/062285
<151> 1997-10-17

<150> 60/062816
<151> 1997-10-24

<150> 60/063082
<151> 1997-10-31

<150> 60/063329

<151> 1997-10-27

<150> 60/063733
<151> 1997-10-29

<150> 60/066364
<151> 1997-11-21

<150> 60/066840
<151> 1997-11-25

<150> 60/069694
<151> 1997-12-16

<150> 60/074086
<151> 1998-02-09

<150> 60/074092
<151> 1998-02-09

<150> 60/079294
<151> 1998-03-25

<150> 60/081049
<151> 1998-04-08

<150> 60/095998
<151> 1998-08-10

<150> 60/097000
<151> 1998-08-18

<150> 60/099601
<151> 1998-09-09

<150> 60/099803
<151> 1998-09-10

<150> 60/099811
<151> 1998-09-10

<150> 60/099812
<151> 1998-09-10

<150> 60/100858
<151> 1998-09-17

<150> 60/101922
<151> 1998-09-24

<150> 60/106032
<151> 1998-10-28

<150> 60/109304
<151> 1998-11-20

<150> 60/125778

<151> 1999-03-23

<150> 60/139695
<151> 1999-06-15

<150> 60/145070
<151> 1999-07-20

<150> 60/145698
<151> 1999-07-26

<150> 60/149396
<151> 1999-08-17

<150> 60/169495
<151> 1999-12-07

<150> 08/918874
<151> 1997-08-26

<150> 08/933821
<151> 1997-09-19

<150> 08/960507
<151> 1997-10-29

<150> 09/114844
<151> 1998-07-14

<150> 09/136801
<151> 1998-08-19

<150> 09/136804
<151> 1998-08-19

<150> 09/136828
<151> 1998-08-19

<150> 09/158342
<151> 1998-09-21

<150> 09/180997
<151> 1998-09-10

<150> 09/202088
<151> 1998-12-08

<150> 09/254311
<151> 1999-03-03

<150> 09/254460
<151> 1999-03-09

<150> 09/254465
<151> 1999-03-05

<150> 09/284663
<151> 1999-04-15

<150> 09/332928
<151> 1999-06-14

<150> 09/332929
<151> 1999-06-14

<150> 09/333075
<151> 1999-06-14

<150> 09/333077
<151> 1999-06-14

<150> 09/380137
<151> 1999-08-25

<150> 09/380138
<151> 1999-08-25

<150> 09/380139
<151> 1999-08-25

<150> 09/403296
<151> 1999-10-18

<150> 09/403297
<151> 1999-10-18

<150> 09/423741
<151> 1999-11-10

<150> 09/423844
<151> 1999-11-12

<150> 09/522342
<151> 2000-03-09

<150> 09/548815
<151> 2000-04-13

<150> 09/664610
<151> 2000-09-18

<150> 09/665350
<151> 2000-09-18

<150> 09/709238
<151> 2000-11-08

<150> 09/767609
<151> 2001-01-22

<150> 09/802706
<151> 2001-03-09

<150> 09/808689
<151> 2001-03-14

<150> 09/866028

<151> 2001-05-25

<150> 09/870574
<151> 2001-05-30

<150> 09/872035
<151> 2001-06-01

<150> 09/886342
<151> 2001-06-19

<150> PCT/US98/14552
<151> 1998-07-14

<150> PCT/US98/18824
<151> 1998-09-10

<150> PCT/US98/19093
<151> 1998-09-14

<150> PCT/US98/19330
<151> 1998-09-16

<150> PCT/US98/19437
<151> 1998-09-17

<150> PCT/US98/24855
<151> 1998-11-20

<150> PCT/US98/25108
<151> 1998-12-01

<150> PCT/US98/25190
<151> 1998-11-25

<150> PCT/US99/05028
<151> 1999-03-08

<150> PCT/US99/12252
<151> 1999-06-02

<150> PCT/US99/20111
<151> 1999-09-01

<150> PCT/US99/20594
<151> 1999-09-08

<150> PCT/US99/21090
<151> 1999-09-15

<150> PCT/US99/21547
<151> 1999-09-15

<150> PCT/US99/28301
<151> 1999-12-01

<150> PCT/US99/28313
<151> 1999-11-30

<150> PCT/US99/28565
<151> 1999-12-02

<150> PCT/US99/30999
<151> 1999-12-20

<150> PCT/US00/00219
<151> 2000-01-05

<150> PCT/US00/04341
<151> 2000-02-18

<150> PCT/US00/04342
<151> 2000-02-18

<150> PCT/US00/04414
<151> 2000-02-22

<150> PCT/US00/05601
<151> 2000-03-01

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/06471
<151> 2000-03-09

<150> PCT/US00/07377
<151> 2000-03-20

<150> PCT/US00/08439
<151> 2000-03-30

<150> PCT/US00/13358
<151> 2000-05-15

<150> PCT/US00/13705
<151> 2000-05-17

<150> PCT/US00/14042
<151> 2000-05-22

<150> PCT/US00/14941
<151> 2000-05-30

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/22031
<151> 2000-08-11

<150> PCT/US00/23328
<151> 2000-08-24

<150> PCT/US00/23522
<151> 2000-08-23

<150> PCT/US00/32678

<151> 2000-12-01

<150> PCT/US01/06520
<151> 2001-02-28

<150> PCT/US01/17443
<151> 2001-05-30

<150> PCT/US01/17800
<151> 2001-06-01

<150> PCT/US01/19692
<151> 2001-06-20

<150> PCT/US01/21066
<151> 2001-06-29

<150> PCT/US01/21735
<151> 2001-04-09

<160> 151

<210> 1
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 1
tgtaaaacga cggccagttt aatagacctg caattattaa tct 43

<210> 2
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 2
caggaaacag ctatgaccac ctgcacacacct gcaaattccat t 41

<210> 3
<211> 2290
<212> DNA
<213> Homo Sapien

<400> 3
ggctgagggg aggcccgag ctttctggg gcctggggga tcctcttgc 50
ctggtgtggtg gagagaagcg cctgcagcca accagggtca ggctgtgctc 100
acagtttctt ctggcggcat gtaaaggctc cacaaggag ttgggagttc 150
aaatgaggct gctgcggacg gcctgaggat ggaccccaag ccctggacct 200

gccgagcgtg gcactgaggc agcggctgac gctactgtga gggaaagaag 250
gttgtgagca gccccgcagg acccctggcc agccctggcc ccagcctctg 300
ccggagccct ctgtggaggc agagccagtg gagcccagtg aggcagggct 350
gcttggcagc caccggcctg caactcagga acccctccag aggcattgga 400
caggctgccc cgctgacggc cagggtgaag catgtgagga gcccggccgg 450
agccaagcag gagggaaagag gctttcatag attctattca caaagaataa 500
ccaccattt gcaaggacca tgaggccact gtgcgtgaca tgctggtggc 550
tcggactgct ggctgccatg ggagctgttg caggccagga ggacggtttt 600
gagggcactg aggagggctc gccaagagag ttcatattacc taaacaggtt 650
caagcgggctg ggcgagtcggc aggacaagtg cacctacacc ttcattgtgc 700
cccagcagcg ggtcacgggt gccatctgcg tcaactccaa ggagcctgag 750
gtgcttctgg agaaccgagt gcataaggcag gagctagagc tgctcaacaa 800
tgagctgctc aagcagaagc ggcagatcga gacgctgcag cagctggtgg 850
aggtggacgg cggcattgtg agcgaggtga agctgctgcg caaggagagc 900
cgcaacatga actcgccgggt cacgcagctc tacatgcagc tcctgcacga 950
gatcatccgc aagcgggaca acgcgttggc gctctccag ctggagaaca 1000
ggatcctgaa ccagacagcc gacatgctgc agctggccag caagtacaag 1050
gacctggagc acaagtacca gcacctggcc acactggccc acaaccaatc 1100
agagatcatc gcgcagcttg aggagcaactg ccagaggggt ccctcgccca 1150
ggcccggtccc ccagccaccc cccgctgcggc cgccccgggt ctaccaacca 1200
cccacccata accgcacatcat caaccagatc tctaccaacg agatccagag 1250
tgaccagaac ctgaagggtgc tgccacccccc tctgcccact atgcccactc 1300
tcaccagcct cccatcttcc accgacaagc cgtcggggcc atggagagac 1350
tgcctgcagg ccctggagga tggccacgac accagctcca tctacctgg 1400
gaagccggag aacaccaacc gcctcatgca ggtgtggtgc gaccagagac 1450
acgaccccccgg gggctggacc gtcatccaga gacgcctgga tggctctgtt 1500
aacttcttca ggaactggga gacgtacaag caagggtttt ggaacattga 1550
cggcgaatac tggctggcc tggagaacat ttactggctg acgaaccaag 1600
gcaactacaa actccctgggt accatggagg actggtccgg ccgcaaaagtc 1650

tttgccagaat acgccagttt ccgcctggaa cctgagagcg agtattataa 1700
gctgcggctg gggcgctacc atggcaatgc gggtgactcc ttacatggc 1750
acaacggcaa gcagttcacc accctggaca gagatcatga tgtctacaca 1800
ggaaactgtg cccactacca gaagggaggc tgggtggata acgcctgtgc 1850
ccactccaac ctcaacgggg tctggtaccg cgggggccat taccggagcc 1900
gctaccagga cggagtctac tgggctgagt tccgaggagg ctcttactca 1950
ctcaagaaag tggtgatgat gatccgaccg aaccccaaca cctccacta 2000
agccagctcc ccctcctgac ctctcgtggc cattgccagg agcccaccct 2050
ggtcacgctg gccacagcac aaagaacaac tcctcaccag ttcatcctga 2100
ggctgggagg accgggatgc tggattctgt tttccgaagt cactgcagcg 2150
gatgatggaa ctgaatcgat acgggtttt ctgtccctcc tactttcctt 2200
cacaccagac agccccctcat gtctccagga caggacagga ctacagacaa 2250
ctctttcttt aaataaaatta agtctctaca ataaaaaaaa 2290

<210> 4
<211> 493
<212> PRT
<213> Homo Sapien

```

<400> 4
Met Arg Pro Leu Cys Val Thr Cys Trp Trp Leu Gly Leu Leu Ala
1 5 10 15

Ala Met Gly Ala Val Ala Gly Gln Glu Asp Gly Phe Glu Gly Thr
20 25 30

Glu Glu Gly Ser Pro Arg Glu Phe Ile Tyr Leu Asn Arg Tyr Lys
35 40 45

Arg Ala Gly Glu Ser Gln Asp Lys Cys Thr Tyr Thr Phe Ile Val
50 55 60

Pro Gln Gln Arg Val Thr Gly Ala Ile Cys Val Asn Ser Lys Glu
65 70 75

Pro Glu Val Leu Leu Glu Asn Arg Val His Lys Gln Glu Leu Glu
80 85 90

Leu Leu Asn Asn Glu Leu Leu Lys Gln Lys Arg Gln Ile Glu Thr
95 100 105

Leu Gln Gln Leu Val Glu Val Asp Gly Gly Ile Val Ser Glu Val
110 115 120

Lys Leu Leu Arg Lys Glu Ser Arg Asn Met Asn Ser Arg Val Thr
125 130 135

```

Gln Leu Tyr Met Gln Leu Leu His Glu Ile Ile Arg Lys Arg Asp
 140 145 150
 Asn Ala Leu Glu Leu Ser Gln Leu Glu Asn Arg Ile Leu Asn Gln
 155 160 165
 Thr Ala Asp Met Leu Gln Leu Ala Ser Lys Tyr Lys Asp Leu Glu
 170 175 180
 His Lys Tyr Gln His Leu Ala Thr Leu Ala His Asn Gln Ser Glu
 185 190 195
 Ile Ile Ala Gln Leu Glu Glu His Cys Gln Arg Val Pro Ser Ala
 200 205 210
 Arg Pro Val Pro Gln Pro Pro Ala Ala Pro Pro Arg Val Tyr
 215 220 225
 Gln Pro Pro Thr Tyr Asn Arg Ile Ile Asn Gln Ile Ser Thr Asn
 230 235 240
 Glu Ile Gln Ser Asp Gln Asn Leu Lys Val Leu Pro Pro Pro Leu
 245 250 255
 Pro Thr Met Pro Thr Leu Thr Ser Leu Pro Ser Ser Thr Asp Lys
 260 265 270
 Pro Ser Gly Pro Trp Arg Asp Cys Leu Gln Ala Leu Glu Asp Gly
 275 280 285
 His Asp Thr Ser Ser Ile Tyr Leu Val Lys Pro Glu Asn Thr Asn
 290 295 300
 Arg Leu Met Gln Val Trp Cys Asp Gln Arg His Asp Pro Gly Gly
 305 310 315
 Trp Thr Val Ile Gln Arg Arg Leu Asp Gly Ser Val Asn Phe Phe
 320 325 330
 Arg Asn Trp Glu Thr Tyr Lys Gln Gly Phe Gly Asn Ile Asp Gly
 335 340 345
 Glu Tyr Trp Leu Gly Leu Glu Asn Ile Tyr Trp Leu Thr Asn Gln
 350 355 360
 Gly Asn Tyr Lys Leu Leu Val Thr Met Glu Asp Trp Ser Gly Arg
 365 370 375
 Lys Val Phe Ala Glu Tyr Ala Ser Phe Arg Leu Glu Pro Glu Ser
 380 385 390
 Glu Tyr Tyr Lys Leu Arg Leu Gly Arg Tyr His Gly Asn Ala Gly
 395 400 405
 Asp Ser Phe Thr Trp His Asn Gly Lys Gln Phe Thr Thr Leu Asp
 410 415 420
 Arg Asp His Asp Val Tyr Thr Gly Asn Cys Ala His Tyr Gln Lys

425	430	435
Gly Gly Trp Trp Tyr Asn Ala Cys Ala His Ser Asn Leu Asn Gly		
440	445	450
Val Trp Tyr Arg Gly Gly His Tyr Arg Ser Arg Tyr Gln Asp Gly		
455	460	465
Val Tyr Trp Ala Glu Phe Arg Gly Gly Ser Tyr Ser Leu Lys Lys		
470	475	480
Val Val Met Met Ile Arg Pro Asn Pro Asn Thr Phe His		
485	490	

<210> 5
 <211> 33
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 5
 gctgacgaac caaggcaact acaaactcct ggt 33

<210> 6
 <211> 41
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 6
 tgcggccgga ccagtcctcc atggcacca ggagtttcta g 41

<210> 7
 <211> 33
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 7
 ggtggtaac tgcttgcgt tggccatgt aaa 33

<210> 8
 <211> 1218
 <212> DNA
 <213> Homo Sapien

<400> 8
 cccacgcgtc cggcgccgtg gcctcggtc catcttgcc gttctctcg 50
 acctgtcaca aaggagtcgc gccgcccgg ccggccctc cctccgggtgg 100
 gccccggagg tagagaaaat cagtgcacca gccccgaccgc gctgctctga 150

gcccctgggca cgccggAACgg gagggaggtct gaggggttggg gacgtctgtg 200
agggagggga acagccgctc gagcctgggg cggggcgacc ggactggggc 250
cggggtaggc tctggaaagg gcccggaga gaggtggcgt tggtcagaac 300
ctgagaaaca gcccggaggt tttccaccga ggcccgcgt tgagggatct 350
gaagagggttc ctggaaagggt gtgtccctc ttccgggggt cctcaccaga 400
agaggttctt gggggtcgcc cttctgagga ggctgcggct aacaggggccc 450
agaactgcctt ttggatgtcc agaatccctt gtagttgata atgttggaa 500
taagctctgc aactttcttt ggcattcagt tgttaaaaac aaataggatg 550
caaattcctc aactccaggt tatgaaaaca gtacttggaa aactgaaaac 600
tacctaaatg atcgtctttt gttggccgt gttcttagcg agcagaagcc 650
ttggccaggg tctgttgtt actctcgaag agcacatagc ccacttccta 700
gggactggag gtgcgcgtac taccatgggt aattcctgta tctgcccaga 750
tgacagtgga acagatgaca gtgttgacac ccaacagcaa caggccgaga 800
acagtgcagt acccactgct gacacaagga gccaaccacg ggaccctgtt 850
cggccaccaa ggagggcccg aggacctcat gagccaagga gaaagaaaca 900
aaatgtggat gggctagtgt tggacacact ggcagtaata cggactcttg 950
tagataagta agtatctgac tcacggtcac ctccagtggta atgaaaagtg 1000
ttctgcccgg aaccatgact ttaggactcc ttcagttcct ttaggacata 1050
ctcgccaaagc ctttgctca cagggcaaag gagaatattt taatgctccg 1100
ctgatggcag agtaaatgat aagatttgat gttttgctt gctgtcatct 1150
actttgtctg gaaatgtcta aatgtttctg tagcagaaaa cacgataaaag 1200
ctatgatctt tattagag 1218

<210> 9
<211> 117
<212> PRT
<213> Homo Sapien

<400> 9
Met Ile Val Phe Gly Trp Ala Val Phe Leu Ala Ser Arg Ser Leu
1 5 10 15
Gly Gln Gly Leu Leu Leu Thr Leu Glu Glu His Ile Ala His Phe
20 25 30
Leu Gly Thr Gly Gly Ala Ala Thr Thr Met Gly Asn Ser Cys Ile
35 40 45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

Cys Arg Asp Asp Ser Gly Thr Asp Asp Ser Val Asp Thr Gln Gln
50 55 60

Gln Gln Ala Glu Asn Ser Ala Val Pro Thr Ala Asp Thr Arg Ser
65 70 75

Gln Pro Arg Asp Pro Val Arg Pro Pro Arg Arg Gly Arg Gly Pro
80 85 90

His Glu Pro Arg Arg Lys Lys Gln Asn Val Asp Gly Leu Val Leu
95 100 105

Asp Thr Leu Ala Val Ile Arg Thr Leu Val Asp Lys
110 115

<210> 10
<211> 1231
<212> DNA
<213> Homo Sapien

<400> 10
cccacgcgtc cgcgcagtcg cgcagttctg cctccgcctg ccagtctcgc 50
ccgcgcatccc ggcccggggc tggcggtcg actccgaccc aggcagccag 100
cagccccgcg gggagccgga ccgcgcgcgg aggagctcg acggcatgtct 150
gagccccctc ctttgctgaa gcccgcgtgc ggagaagccc gggcaaacgc 200
aggctaagga gaccaaagcg gcgcgcgtgc gagacagcgg acaaggcagcg 250
gaggagaagg aggaggaggc gaacccagag agggcagca aaagaagcgg 300
tggtggtggc cgtcggtggcc atggcgccgg ctatcgccag ctcgcgtcatc 350
cgtcagaaga ggcaagcccc cgagcgcgag aaatccaaacg cctgcgttg 400
tgtcagcagc cccagcaaag gcaagaccag ctgcgcacaaa aacaagttaa 450
atgtcttttc cgggtcaaa ctcttcggct ccaagaagag ggcgcagaaga 500
agaccagagc ctcagcttaa gggtagttt accaagctat acagccgaca 550
aggctaccac ttgcagctgc aggccggatgg aaccattgtat ggcacccaaag 600
atgaggacac cacttacact ctgtttaacc tcattccgtt gggctgtcg 650
gtgggtggcta tccaaaggat tcaaaccatg ctgtacttgg caatgaacag 700
tgagggatac ttgtacaccc cggactttt cacacctgag tgcaaattca 750
aagaatcagt gtttggaaat tattatgtga catattcatc aatgatatac 800
cgtcagcagc agtcaggccg aggggtggat ctgggtctga acaaagaagg 850
agagatcatg aaaggcaacc atgtgaagaa gaacaaggct gcagctcatt 900
ttctgcctaa accactgaaa gtggccatgt acaaggagcc atcactgcac 950

gatctcacgg agttctcccg atctggaagc gggaccccaa ccaagagcag 1000
 aagtgtctct ggcgtgctga acggaggcaa atccatgagc cacaatgaat 1050
 caacgtagcc agtgaggca aaagaaggc tctgtaacag aaccttacct 1100
 ccaggtgctg ttgaattctt ctagcagtcc ttcacccaaa agttcaaatt 1150
 tgtcagtgac atttacccaa caaacaggca gagttcacta ttctatctgc 1200
 cattagacct tcttatcatc catactaaag c 1231

 <210> 11
 <211> 245
 <212> PRT
 <213> Homo Sapien

 <400> 11
 Met Ala Ala Ala Ile Ala Ser Ser Leu Ile Arg Gln Lys Arg Gln
 1 5 10 15
 Ala Arg Glu Arg Glu Lys Ser Asn Ala Cys Lys Cys Val Ser Ser
 20 25 30
 Pro Ser Lys Gly Lys Thr Ser Cys Asp Lys Asn Lys Leu Asn Val
 35 40 45
 Phe Ser Arg Val Lys Leu Phe Gly Ser Lys Lys Arg Arg Arg Arg
 50 55 60
 Arg Pro Glu Pro Gln Leu Lys Gly Ile Val Thr Lys Leu Tyr Ser
 65 70 75
 Arg Gln Gly Tyr His Leu Gln Leu Gln Ala Asp Gly Thr Ile Asp
 80 85 90
 Gly Thr Lys Asp Glu Asp Ser Thr Tyr Thr Leu Phe Asn Leu Ile
 95 100 105
 Pro Val Gly Leu Arg Val Val Ala Ile Gln Gly Val Gln Thr Lys
 110 115 120
 Leu Tyr Leu Ala Met Asn Ser Glu Gly Tyr Leu Tyr Thr Ser Glu
 125 130 135
 Leu Phe Thr Pro Glu Cys Lys Phe Lys Glu Ser Val Phe Glu Asn
 140 145 150
 Tyr Tyr Val Thr Tyr Ser Ser Met Ile Tyr Arg Gln Gln Gln Ser
 155 160 165
 Gly Arg Gly Trp Tyr Leu Gly Leu Asn Lys Glu Gly Glu Ile Met
 170 175 180
 Lys Gly Asn His Val Lys Lys Asn Lys Pro Ala Ala His Phe Leu
 185 190 195
 Pro Lys Pro Leu Lys Val Ala Met Tyr Lys Glu Pro Ser Leu His

200	205	210
Asp Leu Thr Glu Phe Ser Arg Ser Gly Ser Gly Thr Pro Thr Lys		
215	220	225
Ser Arg Ser Val Ser Gly Val Leu Asn Gly Gly Lys Ser Met Ser		
230	235	240
His Asn Glu Ser Thr		
245		
<210> 12		
<211> 744		
<212> DNA		
<213> Homo Sapien		
<400> 12		
atggccgcgg ccatcgctag cggcttgatc cgccagaagc ggcaggcg 50		
ggagcagcac tgggaccggc cgtctgccag caggaggcgg agcagcccc 100		
gcaagaaccg cgggctctgc aacggcaacc tggtgatat cttctccaaa 150		
gtgcgcatct tcggcctcaa gaagcgcagg ttgcggcgcc aagatcccc 200		
gctcaagggt atagtgcacca ggttatattt caggcaaggc tactactgc 250		
aaatgcaccc cgatggagct ctcgatggaa ccaaggatga cagcactaat 300		
tctacactct tcaacctcat accagtggaa ctacgtgtt ttgcacatcca 350		
gggagtgaaa acagggttgt atatagccat gaatggagaa gtttacctct 400		
acccatcaga acttttacc cctgaatgca agttaaaga atctgtttt 450		
gaaaattatt atgtaatcta ctcatccatg ttgtacagac aacaggaatc 500		
tggtagagcc tggttttgg gattaaataa ggaaggcga gctatgaaag 550		
ggaacagagt aaagaaaacc aaaccagcag ctcattttct acccaagcca 600		
ttggaagttg ccatgtaccg agaaccatct ttgcatgatg ttggggaaac 650		
ggtcccgaag cctggggtaa cgccaaagtaa aagcacaagt gcgtctgcaa 700		
taatgaatgg aggcaaacca gtcaacaaga gtaagacaac atag 744		
<210> 13		
<211> 247		
<212> PRT		
<213> Homo Sapien		
<400> 13		
Met Ala Ala Ala Ile Ala Ser Gly Leu Ile Arg Gln Lys Arg Gln		
1	5	10
15		
Ala Arg Glu Gln His Trp Asp Arg Pro Ser Ala Ser Arg Arg Arg		
20	25	30

Ser	Ser	Pro	Ser	Lys	Asn	Arg	Gly	Leu	Cys	Asn	Gly	Asn	Leu	Val
35														45
Asp	Ile	Phe	Ser	Lys	Val	Arg	Ile	Phe	Gly	Leu	Lys	Lys	Arg	Arg
50														60
Leu	Arg	Arg	Gln	Asp	Pro	Gln	Leu	Lys	Gly	Ile	Val	Thr	Arg	Leu
65														75
Tyr	Cys	Arg	Gln	Gly	Tyr	Tyr	Leu	Gln	Met	His	Pro	Asp	Gly	Ala
80														90
Leu	Asp	Gly	Thr	Lys	Asp	Asp	Ser	Thr	Asn	Ser	Thr	Leu	Phe	Asn
95														105
Leu	Ile	Pro	Val	Gly	Leu	Arg	Val	Val	Ala	Ile	Gln	Gly	Val	Lys
110														120
Thr	Gly	Leu	Tyr	Ile	Ala	Met	Asn	Gly	Glu	Gly	Tyr	Leu	Tyr	Pro
125														135
Ser	Glu	Leu	Phe	Thr	Pro	Glu	Cys	Lys	Phe	Lys	Glu	Ser	Val	Phe
140														150
Glu	Asn	Tyr	Tyr	Val	Ile	Tyr	Ser	Ser	Met	Leu	Tyr	Arg	Gln	Gln
155														165
Glu	Ser	Gly	Arg	Ala	Trp	Phe	Leu	Gly	Leu	Asn	Lys	Glu	Gly	Gln
170														180
Ala	Met	Lys	Gly	Asn	Arg	Val	Lys	Lys	Thr	Lys	Pro	Ala	Ala	His
185														195
Phe	Leu	Pro	Lys	Pro	Leu	Glu	Val	Ala	Met	Tyr	Arg	Glu	Pro	Ser
200														210
Leu	His	Asp	Val	Gly	Glu	Thr	Val	Pro	Lys	Pro	Gly	Val	Thr	Pro
215														225
Ser	Lys	Ser	Thr	Ser	Ala	Ser	Ala	Ile	Met	Asn	Gly	Gly	Lys	Pro
230														240
Val	Asn	Lys	Ser	Lys	Thr	Thr								
245														

<210> 14
 <211> 2609
 <212> DNA
 <213> Homo Sapien

<400> 14
 ctcgcagccg agcgcggccg ggaaaggct ctccttccag cgccgagcac 50
 tgggcctgg cagacgcccc aagatttttg tgaggagtct agccagttgg 100
 tgagcgctgt aatctgaacc agctgtgtcc agactgaggc cccatttgc 150
 ttgtttaaca tacttagaaa atgaagtgtt catttttaac attcctcc 200

caattggttt aatgctgaat tactgaagag ggctaagcaa aaccaggtgc 250
ttgcgctgag ggctctgcag tggctggag gacccggcg ctctccccgt 300
gtcctctcca cgactcgctc ggccctctg gaataaaaca cccgcgagcc 350
ccgagggccc agaggaggcc gacgtgccc agtcctccg ggggtcccgc 400
ccgcgagctt tcttctcgcc ttcgcacatctc ctccctcgcc gtcttggaca 450
tgccaggaat aaaaaggata ctcactgtta ccattctggc tctctgtctt 500
ccaagccctg ggaatgcaca ggcacagtgc acgaatggct ttgacctgga 550
tcgcccagtca ggacagtgtt tagatattga tgaatgccga accatccccg 600
aggcctgccg aggagacatg atgtgtgtta accaaaatgg cgggtattta 650
tgcattcccc ggacaaaccc tgtgtatcga gggccctact cgaaccctta 700
ctcgacccccc tactcagggtc cgtacccagc agtcgccccca ccactctcag 750
ctccaaacta tcccacgatc tccaggcctc ttatatgccg ctttggatac 800
cagatggatg aaagcaacca atgtgtggat gtggacgagt gtgcaacaga 850
ttccccaccag tgcaacccca cccagatctg catcaatact gaaggccgg 900
acacctgctc ctgcacccgac ggatattggc ttctggagg ccagtgccta 950
gacattgatg aatgtcgcta tggttactgc cagcagctct gtgcgaatgt 1000
tcctggatcc tattttgtt catgcaaccc tggtttacc ctcaatgagg 1050
atggaagggtc ttgccaagat gtgaacgagt gtgccaccga gaacccctgc 1100
gtgcaaacct gcgtcaacac ctacggctct ctcatctgcc gctgtgaccc 1150
aggatataa cttgaggaag atggcgatc ttgcagtgtat atggacgagt 1200
gcagcttcctc tgagttcctc tgccaaacatg agtgtgtgaa ccagccggc 1250
acataacttct gtcctgtccc tccaggctac atcctgctgg atgacaacccg 1300
aagctgccaa gacatcaacg aatgtgagca caggaaccac acgtgcaacc 1350
tgcagcagac gtgcataat ttacaagggg gcttcaaattt catcgaccc 1400
atcccgctgtg aggagcctta tctgaggatc agtgataacc gctgtatgt 1450
tcctgctgag aaccctggct gcagagacca gcccttacc atcttggacc 1500
gggacatgga cgtgggtgtca ggacgctccg ttcccgctga catcttccaa 1550
atgcaagcca cgacccgctt ccctggggcc tattacattt tccagatcaa 1600
atctggaaat gagggcagag aattttacat gggcaaaacg ggcccccata 1650

gtgccaccct ggtgatgaca cgccccatca aaggccccg ggaaatccag 1700
ctggacttgg aaatgatcac tgtcaacact gtcataact tcagaggcag 1750
ctccgtgatc cgactgcgga tatatgtgc gcagtagcca ttctgagcct 1800
cgggctggag cctccgacgc tgcctctcat tggcaccaag ggacaggaga 1850
agagagggaaa taacagagag aatgagagcg acacagacgt taggcatttc 1900
ctgctgaacg tttccccgaa gagtcagccc cgacttcctg actctcacct 1950
gtactattgc agacctgtca ccctgcagga cttgccaccc ccagttccta 2000
tgacacagtt atcaaaaagt attatcattt ctccccctgat agaagattgt 2050
tggtgaattt tcaaggcatt cagtttattt ccactatttt caaagaaaaat 2100
agatttagtt tgcgggggtc tgagtctatg ttcaaagact gtgaacagct 2150
tgctgtcact tcttcaccc tcctcacttct tctctcactg tgttactgct 2200
ttgcaaagac ccgggagctg gcggggaaacc ctgggagtag ctatggct 2250
ttttgcgtac acagagaagg ctatgtaaac aaaccacagc agatcgaag 2300
gtttttaga gaatgtgttt caaaaccatg cctggatttt tcaaccataa 2350
aagaagttc agttgtcattt aaatttgtat aacggttaa ttctgtcttg 2400
ttcattttga gtattttaa aaaatatgtc gtatgttcc ttcgaaaggc 2450
cttcagacac atgctatgtt ctgtcttccc aaaccagtc tccctccat 2500
tttagccctg tgttttttt gaggaccctt taatcttgc ttcttttagaa 2550
tttttaccca attggattgg aatgcagagg tctccaaact gattaaatat 2600
ttgaagaga 2609

<210> 15
<211> 448
<212> PRT
<213> Homo Sapien

<400> 15
Met Pro Gly Ile Lys Arg Ile Leu Thr Val Thr Ile Leu Ala Leu
1 5 10 15
Cys Leu Pro Ser Pro Gly Asn Ala Gln Ala Gln Cys Thr Asn Gly
20 25 30
Phe Asp Leu Asp Arg Gln Ser Gly Gln Cys Leu Asp Ile Asp Glu
35 40 45
Cys Arg Thr Ile Pro Glu Ala Cys Arg Gly Asp Met Met Cys Val
50 55 60

Asn	Gln	Asn	Gly	Gly	Tyr	Leu	Cys	Ile	Pro	Arg	Thr	Asn	Pro	Val
65									70				75	
Tyr	Arg	Gly	Pro	Tyr	Ser	Asn	Pro	Tyr	Ser	Thr	Pro	Tyr	Ser	Gly
80									85				90	
Pro	Tyr	Pro	Ala	Ala	Ala	Pro	Pro	Leu	Ser	Ala	Pro	Asn	Tyr	Pro
95									100				105	
Thr	Ile	Ser	Arg	Pro	Leu	Ile	Cys	Arg	Phe	Gly	Tyr	Gln	Met	Asp
110									115				120	
Glu	Ser	Asn	Gln	Cys	Val	Asp	Val	Asp	Glu	Cys	Ala	Thr	Asp	Ser
125									130				135	
His	Gln	Cys	Asn	Pro	Thr	Gln	Ile	Cys	Ile	Asn	Thr	Glu	Gly	Gly
140									145				150	
Tyr	Thr	Cys	Ser	Cys	Thr	Asp	Gly	Tyr	Trp	Leu	Leu	Glu	Gly	Gln
155									160				165	
Cys	Leu	Asp	Ile	Asp	Glu	Cys	Arg	Tyr	Gly	Tyr	Cys	Gln	Gln	Leu
170									175				180	
Cys	Ala	Asn	Val	Pro	Gly	Ser	Tyr	Ser	Cys	Thr	Cys	Asn	Pro	Gly
185									190				195	
Phe	Thr	Leu	Asn	Glu	Asp	Gly	Arg	Ser	Cys	Gln	Asp	Val	Asn	Glu
200									205				210	
Cys	Ala	Thr	Glu	Asn	Pro	Cys	Val	Gln	Thr	Cys	Val	Asn	Thr	Tyr
215									220				225	
Gly	Ser	Leu	Ile	Cys	Arg	Cys	Asp	Pro	Gly	Tyr	Glu	Leu	Glu	Glu
230									235				240	
Asp	Gly	Val	His	Cys	Ser	Asp	Met	Asp	Glu	Cys	Ser	Phe	Ser	Glu
245									250				255	
Phe	Leu	Cys	Gln	His	Glu	Cys	Val	Asn	Gln	Pro	Gly	Thr	Tyr	Phe
260									265				270	
Cys	Ser	Cys	Pro	Pro	Gly	Tyr	Ile	Leu	Leu	Asp	Asp	Asn	Arg	Ser
275									280				285	
Cys	Gln	Asp	Ile	Asn	Glu	Cys	Glu	His	Arg	Asn	His	Thr	Cys	Asn
290									295				300	
Leu	Gln	Gln	Thr	Cys	Tyr	Asn	Leu	Gln	Gly	Gly	Phe	Lys	Cys	Ile
305									310				315	
Asp	Pro	Ile	Arg	Cys	Glu	Glu	Pro	Tyr	Leu	Arg	Ile	Ser	Asp	Asn
320									325				330	
Arg	Cys	Met	Cys	Pro	Ala	Glu	Asn	Pro	Gly	Cys	Arg	Asp	Gln	Pro
335									340				345	
Phe	Thr	Ile	Leu	Tyr	Arg	Asp	Met	Asp	Val	Val	Ser	Gly	Arg	Ser

350	355	360
Val Pro Ala Asp Ile Phe Gln Met Gln Ala Thr Thr Arg Tyr Pro		
365	370	375
Gly Ala Tyr Tyr Ile Phe Gln Ile Lys Ser Gly Asn Glu Gly Arg		
380	385	390
Glu Phe Tyr Met Arg Gln Thr Gly Pro Ile Ser Ala Thr Leu Val		
395	400	405
Met Thr Arg Pro Ile Lys Gly Pro Arg Glu Ile Gln Leu Asp Leu		
410	415	420
Glu Met Ile Thr Val Asn Thr Val Ile Asn Phe Arg Gly Ser Ser		
425	430	435
Val Ile Arg Leu Arg Ile Tyr Val Ser Gln Tyr Pro Phe		
440	445	

<210> 16
 <211> 2447
 <212> DNA
 <213> Homo Sapien

<400> 16
 caggtccaaac tgcacacctgg ttcttatcgat tgaattcccc ggggatcctc 50
 tagagatccc tcgacacctgaa cccacgcgtc cgaacacagg tccttggc 100
 tgcagagaag cagttgtttt gctggaagga gggagtgcgcc gggctgcccc 150
 gggctccctcc ctgccccctc ctctcagtggttccag gcaccctgtc 200
 tggggcaggg agggcacagg cctgcacatc gaaggtgggg tgggaccagg 250
 ctgccccctcg ccccaagcatc caagtcctcc ctggggcgcc cgtggccctg 300
 cagactctca gggctaagggt cctctgttgc tttttgggttc caccttagaa 350
 gaggctccgc ttgactaaga gtagcttcaa ggaggcacca tgcaggagct 400
 gcatctgctc tgggtggcgcc ttctccctggg cctggctcag gcctgcctg 450
 agccctgcga ctgtggggaa aagtatggct tccagatcgcc cgactgtgcc 500
 taccgcgacc tagaatccgt gcccctggc ttcccgccaa atgtgactac 550
 actgagccctg tcagccaaacc ggctgcccagg cttggccggag ggtgccttca 600
 gggaggtgcc cctgctgcag tcgctgtggc tggcacacaa tgagatccgc 650
 acgggtggccg ccggagccct ggcctctctg agccatctca agagcctgga 700
 cctcagccac aatctcatct ctgactttgc ctggagcgcac ctgcacaacc 750
 tcagtgccct ccaattgctc aagatggaca gcaacgagct gaccttcatc 800

ccccgcgacg ccttccgcag cctccgtgct ctgcgcgcgc tgcaactcaa 850
ccacaaccgc ttgcacacat tggccgaggg caccttcacc ccgctcaccg 900
cgctgtccca cctgcagatc aacgagaacc ccttcgactg cacctgcggc 950
atcgtgtggc tcaagacatg ggcctgacc acggccgtgt ccatcccgga 1000
gcaggacaac atcgctgca cctcacccca tgtgctcaag ggtacaccgc 1050
tgagccgcct gccgccactg ccatgctcg cgccctcagt gcagctcagc 1100
taccaaccga gccaggatgg tgccgagctg cggcctgggtt ttgtgctggc 1150
actgcactgt gatgtggacg ggcagccggc ccctcagctt cactggcaca 1200
tccagatacc cagtggcatt gtggagatca ccagcccaa cgtggcact 1250
gatgggcgtg ccctgcctgg caccctgtg gccagctccc agccgcgcctt 1300
ccaggcctt gccaatggca gcctgcttat ccccgacttt ggcaagctgg 1350
aggaaggcac ctacagctgc ctggccacca atgagctggg cagtgctgag 1400
agctcagttgg acgtggcact ggccacgccc ggtgagggtg gtgaggacac 1450
actggggcgc aggttccatg gcaaagcggt tgagggaaag ggctgctata 1500
cggttgacaa cgaggtgcag ccattcaggc cggaggacaa tgtggtcatc 1550
atctacctca gccgtgctgg gaaccctgag gctgcagtcg cagaaggggt 1600
ccctggcag ctgccccag gcctgctcct gctggccaa agcctcctcc 1650
tcttcttctt ctcacactcc ttctagcccc acccagggtc tccctaactc 1700
ctcccccttc ccttaccaat gccccttaa gtgctgcagg ggtctgggt 1750
tggcaactcc tgaggcctgc atgggtgact tcacatttc ctacctctcc 1800
ttctaatctc ttctagagca cctgctatcc ccaacttcta gacctgctcc 1850
aaactagtga ctaggataga atttgatccc ctaactcact gtctgcggtg 1900
ctcattgctg ctaacagcat tgcctgtgct ctccctctcag gggcagcatg 1950
ctaacggggc gacgtcctaa tccaaactggg agaagcctca gtgggtgaaat 2000
tccaggcact gtgactgtca agctggcaag ggccaggatt gggggaaatgg 2050
agctggggct tagctggag gtggtctgaa gcagacaggg aatgggagag 2100
gaggatggga agtagacagt ggctggatag gctctgaggc tccctggggc 2150
ctgctcaagc tcctcctgct cttgctgtt ttctgatgat ttggggcatt 2200
gggagtcctt ttgttcctcat ctgagactga aatgtgggaa tccaggatgg 2250

ctttccttcc tcttaccctt cttccctcag cctgcaacct ctatcctgga 2300
 acctgtcctc ctttctccc caactatgca tctgttgtct gctcctctgc 2350
 aaaggccagc cagcttggga gcagcagaga aataaacagc atttctgatg 2400
 ccaaaaaaaaaaaa aaaaaaaaaaaa gggcggccgc gactctagag tcgacct 2447

 <210> 17
 <211> 428
 <212> PRT
 <213> Homo Sapien

 <400> 17
 Met Gln Glu Leu His Leu Leu Trp Trp Ala Leu Leu Leu Gly Leu
 1 5 10 15
 Ala Gln Ala Cys Pro Glu Pro Cys Asp Cys Gly Glu Lys Tyr Gly
 20 25 30
 Phe Gln Ile Ala Asp Cys Ala Tyr Arg Asp Leu Glu Ser Val Pro
 35 40 45
 Pro Gly Phe Pro Ala Asn Val Thr Thr Leu Ser Leu Ser Ala Asn
 50 55 60
 Arg Leu Pro Gly Leu Pro Glu Gly Ala Phe Arg Glu Val Pro Leu
 65 70 75
 Leu Gln Ser Leu Trp Leu Ala His Asn Glu Ile Arg Thr Val Ala
 80 85 90
 Ala Gly Ala Leu Ala Ser Leu Ser His Leu Lys Ser Leu Asp Leu
 95 100 105
 Ser His Asn Leu Ile Ser Asp Phe Ala Trp Ser Asp Leu His Asn
 110 115 120
 Leu Ser Ala Leu Gln Leu Leu Lys Met Asp Ser Asn Glu Leu Thr
 125 130 135
 Phe Ile Pro Arg Asp Ala Phe Arg Ser Leu Arg Ala Leu Arg Ser
 140 145 150
 Leu Gln Leu Asn His Asn Arg Leu His Thr Leu Ala Glu Gly Thr
 155 160 165
 Phe Thr Pro Leu Thr Ala Leu Ser His Leu Gln Ile Asn Glu Asn
 170 175 180
 Pro Phe Asp Cys Thr Cys Gly Ile Val Trp Leu Lys Thr Trp Ala
 185 190 195
 Leu Thr Thr Ala Val Ser Ile Pro Glu Gln Asp Asn Ile Ala Cys
 200 205 210
 Thr Ser Pro His Val Leu Lys Gly Thr Pro Leu Ser Arg Leu Pro
 215 220 225

Pro	Leu	Pro	Cys	Ser	Ala	Pro	Ser	Val	Gln	Leu	Ser	Tyr	Gln	Pro
230									235				240	
Ser	Gln	Asp	Gly	Ala	Glu	Leu	Arg	Pro	Gly	Phe	Val	Leu	Ala	Leu
245									250				255	
His	Cys	Asp	Val	Asp	Gly	Gln	Pro	Ala	Pro	Gln	Leu	His	Trp	His
260									265				270	
Ile	Gln	Ile	Pro	Ser	Gly	Ile	Val	Glu	Ile	Thr	Ser	Pro	Asn	Val
275									280				285	
Gly	Thr	Asp	Gly	Arg	Ala	Leu	Pro	Gly	Thr	Pro	Val	Ala	Ser	Ser
290									295				300	
Gln	Pro	Arg	Phe	Gln	Ala	Phe	Ala	Asn	Gly	Ser	Leu	Leu	Ile	Pro
305									310				315	
Asp	Phe	Gly	Lys	Leu	Glu	Glu	Gly	Thr	Tyr	Ser	Cys	Leu	Ala	Thr
320									325				330	
Asn	Glu	Leu	Gly	Ser	Ala	Glu	Ser	Ser	Val	Asp	Val	Ala	Leu	Ala
335									340				345	
Thr	Pro	Gly	Glu	Gly	Glu	Asp	Thr	Leu	Gly	Arg	Arg	Phe	His	
350									355				360	
Gly	Lys	Ala	Val	Glu	Gly	Lys	Gly	Cys	Tyr	Thr	Val	Asp	Asn	Glu
365									370				375	
Val	Gln	Pro	Ser	Gly	Pro	Glu	Asp	Asn	Val	Val	Ile	Ile	Tyr	Leu
380									385				390	
Ser	Arg	Ala	Gly	Asn	Pro	Glu	Ala	Ala	Val	Ala	Glu	Gly	Val	Pro
395									400				405	
Gly	Gln	Leu	Pro	Pro	Gly	Leu	Leu	Leu	Gly	Gln	Ser	Leu	Leu	
410									415				420	
Leu	Phe	Phe	Phe	Leu	Thr	Ser	Phe							
425														

<210> 18
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 18
 gtggctggca cacaatgaga tc 22

<210> 19
 <211> 22
 <212> DNA
 <213> Artificial Sequence

220
223 Synthetic oligonucleotide probe
400 19
ccaatgtgtg caagcggttg tg 22
210 20
211 50
212 DNA
213 Artificial Sequence
220
223 Synthetic oligonucleotide probe
400 20
tcaagagcct ggacctcagc cacaatctca tctctgactt tgcctggagc 50
210 21
211 2033
212 DNA
213 Homo Sapien
400 21
ccaggccggg aggcgacgctg cccagccgtc taaacggaa cagccctggc 50
tgagggagct gcagcgcagc agagtatctg acggcgccag gttgcgtagg 100
tgcggcacga ggagtttcc cggcagcggag gaggcctga gcagcatggc 150
ccggaggagc gccttccctg ccggccgcgt ctggctctgg agcatcctcc 200
tgtgcctgct ggcactgcgg gcggaggccg ggccgcccga ggaggagagc 250
ctgtacctat ggatcgatgc tcaccaggca agagtactca taggatttga 300
agaagatatac ctgattgttt cagagggaa aatggcacct tttacacatg 350
atttcagaaa agcgcaacag agaatgccag ctattcctgt caatatccat 400
tccatgaatt ttacctggca agctgcaggg caggcagaat acttctatga 450
attcctgtcc ttgcgcgtccc tggataaagg catcatggca gatccaaccg 500
tcaatgtccc tctgctggga acagtgcctc acaaggcattc agttgttcaa 550
gttggtttcc catgtcttgg aaaacaggat ggggtggcag catttgaagt 600
ggatgtgatt gttatgaatt ctgaaggcaa caccattctc caaacaccc 650
aaaatgctat cttctttaaa acatgtcaac aagctgagtg cccaggccgg 700
tgccgaaatg gaggcttttg taatgaaaga cgcattctgcg agtgcctga 750
tgggttccac ggacctcact gtgagaaagc ccttgcgtacc ccacgatgt 800
tgaatggtgg actttgtgtg actcctgttt tctgcattctg cccacctgg 850
ttctatggag tgaactgtga caaagcaaac tgctcaacca cctgctttaa 900

tgaggggacc tgtttctacc ctggaaaatg tatttgcctt ccaggactag 950
agggagagca gtgtgaaatc agcaaatgcc cacaaccctg tcgaaatgga 1000
ggtaaatgca ttggtaaaag caaatgtaag tttccaaag gttaccaggg 1050
agacctctgt tcaaagcctg tctgcgagcc tggctgtggt gcacatggaa 1100
cctgccatga acccaacaaa tgccaatgtc aagaaggttg gcatggaaga 1150
cactgcaata aaaggtacga agccagcctc atacatgccc tgaggccagc 1200
aggcgcccag ctcagggcagc acacgccttc actaaaaaag gcccaggagc 1250
ggcgggatcc acctgaatcc aattacatct ggtgaactcc gacatctgaa 1300
acgtttaag ttacaccaag ttcatagcct ttgttaacct ttcatgtgtt 1350
gaatgttcaa ataatgttca ttacacttaa gaatactggc ctgaatttt 1400
ttagcttcat tataaatcac tgagctgata ttactcttc ctttaagtt 1450
ttctaagtac gtctgttagca tgatggata gatttcttg tttcagtgct 1500
ttgggacaga ttttatatta tgtcaattga tcaggtaaa atttcagtg 1550
tgtagttggc agatattttc aaaattacaa tgcattatg gtgtctgggg 1600
gcaggggaac atcagaaagg ttaaattggg caaaaatgcg taagtcacaa 1650
gaatttggat ggtgcagttt atgttgaagt tacagcattt cagattttat 1700
tgtcagatat ttagatgttt gttacattt taaaaattgc tcttaatttt 1750
taaactctca atacaatata tttgacattt accattttc cagagattca 1800
gtattaaaaa aaaaaaaatt acactgtggt agtggcattt aaacaatata 1850
atataattcta aacacaatga aataggaaat ataatgtatg aacttttgc 1900
attggcttga agcaatataa tatattgtaa aaaaaacaca gctcttacct 1950
aataaacatt ttatactgtt tgtatgtata aaataaaggt gctgctttag 2000
tttttggaa aaaaaaaaaa aaaaaaaaaa aaa 2033

<210> 22
<211> 379
<212> PRT
<213> Homo Sapien

<400> 22
Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp
1 5 10 15
Ser Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro
20 25 30

Pro	Gln	Glu	Glu	Ser	Leu	Tyr	Leu	Trp	Ile	Asp	Ala	His	Gln	Ala
					35				40				45	
Arg	Val	Leu	Ile	Gly	Phe	Glu	Glu	Asp	Ile	Leu	Ile	Val	Ser	Glu
					50				55				60	
Gly	Lys	Met	Ala	Pro	Phe	Thr	His	Asp	Phe	Arg	Lys	Ala	Gln	Gln
					65				70				75	
Arg	Met	Pro	Ala	Ile	Pro	Val	Asn	Ile	His	Ser	Met	Asn	Phe	Thr
					80				85				90	
Trp	Gln	Ala	Ala	Gly	Gln	Ala	Glu	Tyr	Phe	Tyr	Glu	Phe	Leu	Ser
					95				100				105	
Leu	Arg	Ser	Leu	Asp	Lys	Gly	Ile	Met	Ala	Asp	Pro	Thr	Val	Asn
					110				115				120	
Val	Pro	Leu	Leu	Gly	Thr	Val	Pro	His	Lys	Ala	Ser	Val	Val	Gln
					125				130				135	
Val	Gly	Phe	Pro	Cys	Leu	Gly	Lys	Gln	Asp	Gly	Val	Ala	Ala	Phe
					140				145				150	
Glu	Val	Asp	Val	Ile	Val	Met	Asn	Ser	Glu	Gly	Asn	Thr	Ile	Leu
					155				160				165	
Gln	Thr	Pro	Gln	Asn	Ala	Ile	Phe	Phe	Lys	Thr	Cys	Gln	Gln	Ala
					170				175				180	
Glu	Cys	Pro	Gly	Gly	Cys	Arg	Asn	Gly	Gly	Phe	Cys	Asn	Glu	Arg
					185				190				195	
Arg	Ile	Cys	Glu	Cys	Pro	Asp	Gly	Phe	His	Gly	Pro	His	Cys	Glu
					200				205				210	
Lys	Ala	Leu	Cys	Thr	Pro	Arg	Cys	Met	Asn	Gly	Gly	Leu	Cys	Val
					215				220				225	
Thr	Pro	Gly	Phe	Cys	Ile	Cys	Pro	Pro	Gly	Phe	Tyr	Gly	Val	Asn
					230				235				240	
Cys	Asp	Lys	Ala	Asn	Cys	Ser	Thr	Thr	Cys	Phe	Asn	Gly	Gly	Thr
					245				250				255	
Cys	Phe	Tyr	Pro	Gly	Lys	Cys	Ile	Cys	Pro	Pro	Gly	Leu	Glu	Gly
					260				265				270	
Glu	Gln	Cys	Glu	Ile	Ser	Lys	Cys	Pro	Gln	Pro	Cys	Arg	Asn	Gly
					275				280				285	
Gly	Lys	Cys	Ile	Gly	Lys	Ser	Lys	Cys	Lys	Cys	Ser	Lys	Gly	Tyr
					290				295				300	
Gln	Gly	Asp	Leu	Cys	Ser	Lys	Pro	Val	Cys	Glu	Pro	Gly	Cys	Gly
					305				310				315	
Ala	His	Gly	Thr	Cys	His	Glu	Pro	Asn	Lys	Cys	Gln	Cys	Gln	Glu

320 325 330
Gly Trp His Gly Arg His Cys Asn Lys Arg Tyr Glu Ala Ser Leu
335 340 345
Ile His Ala Leu Arg Pro Ala Gly Ala Gln Leu Arg Gln His Thr
350 355 360
Pro Ser Leu Lys Lys Ala Glu Glu Arg Arg Asp Pro Pro Glu Ser
365 370 375
Asn Tyr Ile Trp

<210> 23
<211> 783
<212> DNA
<213> Homo Sapien

<400> 23
agaacctcag aaatgtgagt tatttggaa tggctgtttg taaaatgtcct 50
tacgtaagcc aagaggaggt cttgacttgg ggtcccagggt gtaccgcaga 100
tcccaggggac tggagcagca ctagcaagct ctggaggatg agccaggagt 150
ctggaattga ggctgagcca aagaccccaag ggccgtctca gtctcataaaa 200
aggggatcag gcaggaggag tttgggagaa acctgagaag ggcctgattt 250
gcagcatcat gatgggcctc tccttggcct ctgctgtgct cctggcctcc 300
ctcctgagtc tccacccctgg aactgccaca cgtggagtg acatatccaa 350
gacctgctgc ttccaataaca gccacaagcc ccttccctgg acctgggtgc 400
gaagctatga attcaccagt aacagctgct cccagcgggc tgtgatattc 450
actaccaaaa gaggcaagaa agtctgtacc catccaagga aaaaatgggt 500
gcaaaaatac atttctttac tgaaaactcc gaaacaattg tgactcagct 550
gaattttcat ccgaggacgc ttggaccccg ctcttggctc tgcagccctc 600
tggggagcct gcggaatctt ttctgaaggc tacatggacc cgctggggag 650
gagaggggtgt ttccctccag agttacttta ataaaggttt ttcataagagt 700
tgaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 750
aaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaa 783

<210> 24
<211> 94
<212> PRT
<213> Homo Sapien

<400> 24

Met Met Gly Leu Ser Leu Ala Ser Ala Val Leu Leu Ala Ser Leu
1 5 10 15
Leu Ser Leu His Leu Gly Thr Ala Thr Arg Gly Ser Asp Ile Ser
20 25 30
Lys Thr Cys Cys Phe Gln Tyr Ser His Lys Pro Leu Pro Trp Thr
35 40 45
Trp Val Arg Ser Tyr Glu Phe Thr Ser Asn Ser Cys Ser Gln Arg
50 55 60
Ala Val Ile Phe Thr Thr Lys Arg Gly Lys Lys Val Cys Thr His
65 70 75
Pro Arg Lys Lys Trp Val Gln Lys Tyr Ile Ser Leu Leu Lys Thr
80 85 90
Pro Lys Gln Leu

<210> 25
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 25
ggatcaggca ggaggagttt ggg 23

<210> 26
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 26
ggatgggtac agactttctt gcc 23

<210> 27
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 27
atgatggggcc ttccttggc ctctgtgtg ctctggcct ccctcctgag 50

<210> 28
<211> 3552
<212> DNA
<213> Homo Sapien

<400> 28
gcgagaaacct ttgcacgcgc acaaactacg gggacgattt ctgattgatt 50
tttggcgctt tcgatccacc ctcctccctt ctcatggac tttggggaca 100
aagcgtcccg accgcctcga ggcgtcgagc agggcgctat ccaggagcca 150
ggacagcgtc gggaaaccaga ccatggctcc tggaccccaa gatccttaag 200
ttcgtcgctc tcatcgctc gggtctgctg ccggccggg ttgactctgc 250
caccatcccc cggcaggacg aagttccca gcagacagtg gccccacagc 300
aacagaggcg cagcctcaag gaggaggagt gtccagcagg atctcataga 350
tcagaatata ctggagcctg taaccgtgc acagagggtg tggattacac 400
cattgcttcc aacaatttgc cttcttgct gctatgtaca gtttgtaaat 450
caggtcaaaac aaataaaaagt tcctgtacca cgaccagaga caccgtgtgt 500
cagtgtgaaa aaggaagctt ccaggataaa aactcccctg agatgtgccg 550
gacgtgtaga acagggtgtc ccagagggat ggtcaagggtc agtaattgt 600
cgccccggag tgacatcaag tgcaaaaatg aatcagctgc cagttccact 650
gggaaaaccc cagcagcgga ggagacagtg accaccatcc tggggatgct 700
tgccctctccc tatcaactacc ttatcatcat agtggttta gtcatcattt 750
tagctgtggt tgtggttggc ttttcatgtc ggaagaaatt catttcttac 800
ctcaaaggca tctgctcagg tggtgagga ggtcccgAAC gtgtgcacag 850
agtccttttc cggccggcggtt catgtccttc acgagttccct ggggccggagg 900
acaatgcccggca acacgagacc ctgagtaaca gatacttgca gcccacccag 950
gtctctgagc aggaaatcca aggtcaggag ctggcagagc taacaggtgt 1000
gactgttagag tcgcccagagg agccacagcg tctgctggaa caggcagaag 1050
ctgaagggtg tcagaggagg aggctgctgg ttccagtgaa tgacgctgac 1100
tccgctgaca tcagcacctt gctggatgcc tcggcaacac tggagaagg 1150
acatgcaaaag gaaacaattc aggaccaact ggtgggctcc gaaaagctct 1200
tttatgaaga agatgaggca ggctctgcta cgtcctgcct gtgaaagaat 1250
ctcttcagga aaccagagct tccctcattt acctttctc ctacaaagg 1300
aagcagcctg gaagaaacag tccagtactt gacccatgcc ccaacaaact 1350
ctactatcca atatggggca gcttaccaat ggtccttagaa ctttgttaac 1400
gcacttggag taattttat gaaatactgc gtgtgataag caaacgggag 1450

aaatttat cagattctt gctgcatagt tatacgattt tgtattaagg 1500
gtcgtttag gccacatgcg gtggctcatg cctgtaatcc cagcacttt 1550
ataggctgag gcaggtggat tgcttgagct cggagttt agaccagcct 1600
catcaacaca gtgaaactcc atctcaattt aaaaagaaaa aaagtggttt 1650
taggatgtca ttcttcgcag ttcttcatca tgagacaagt cttttttct 1700
gcttcattata ttgcaagctc catctctact ggtgtgtca tttaatgaca 1750
tctaactaca gatgccgcac agccacaatg cttgcctta tagttttta 1800
actttagaac gggattatct tgtttattacc tgtatttca gtttcggata 1850
tttttgactt aatgatgaga ttatcaagac gtagccctat gctaagtcat 1900
gagcatatgg acttacgagg gttcgactta gagttttgag ctttaagata 1950
ggattattgg ggcttacccc caccttaatt agagaaacat ttatattgct 2000
tactactgta ggctgtacat ctctttccg atttttgtat aatgatgtaa 2050
acatggaaaa actttaggaa atgcacttat taggctgttt acatgggttg 2100
cctggataaca aatcagcagt caaaaatgac taaaaatata actagtgacg 2150
gagggagaaa tcctccctct gtgggaggca cttactgcat tccagttctc 2200
cctcctgcgc cctgagactg gaccagggtt tggctggc cagttctca 2250
aggggcagct tgtcttactt gttatttta gaggtatata gccatattta 2300
tttataaaata aatattttt tattttatata taagtagatg tttacatatg 2350
cccaggattt tgaagagcct ggtatcttg ggaagccatg tgtctggtt 2400
gtcgtgtgg gacagtcatg ggactgcatc ttccgacttg tccacagcag 2450
atgaggacag tgagaattaa gttagatccg agactgcgaa gagcttctct 2500
ttcaagegcc attacagttt aacgttagtg aatcttgagc ctcatttggg 2550
ctcagggcag agcaggtgtt tatctgcccc ggcacatctgc atggcatcaa 2600
gagggaaagag tggacgggtgc ttggaaatgg tggaaatgg ttggccactc 2650
aggcatggat gggccctct cgttctgg ggtctgtgaa ctgagtcct 2700
gggatgcctt ttagggcaga gattcctgag ctgcgttttta gggtacagat 2750
tccctgttttgg aggagcttgg cccctctgta agcatctgac tcacatcaga 2800
gatatacaatt cttaaacact gtgacaacgg gatctaaaat ggctgacaca 2850
tttgccttgg tgcacgttc cattatTTTA tttaaaaacc tcagtaatcg 2900

ttttagcttc tttccagcaa actcttctcc acagtagccc agtcgtggta 2950
 ggataaaatata cgatatacg tattctagg gtttcgtct tttccatctc 3000
 aaggcattgt gtgtttgtt ccgggactgg tttggctggg acaaagtttag 3050
 aactgcctga agttcgcaca ttcagattgt tgtgtccatg gagttttagg 3100
 aggggatggc ctttccggtc ttcgcacttc catcctctcc cacttccatc 3150
 tggcggtccca caccttgcacttc cctgcacttc tggatgacac agggtgctgc 3200
 tgcctccatg tcttgcctt tgctgggcct tctgtgcagg agacttggtc 3250
 tcaaagctca gagagagcca gtccggtccc agtcctttg tcccttcctc 3300
 agaggccttc cttgaagatg catctagact accagcctta tcagtgttta 3350
 agcttattcc tttaacataa gcttcctgac aacatgaaat tggatgggtt 3400
 tttggcggtt ggttatttg ttttaggtttt gctttataacc cggggccaaat 3450
 agcacataac acctggttat atatgaaata ctcatatgtt tatgacccaaa 3500
 ataaaatatga aacccatrt taaaaaaaaaaaaaaaaaaaaaaaaaa 3550
 aa 3552

<210> 29
 <211> 386
 <212> PRT
 <213> Homo Sapien

<400> 29

Met	Gly	Leu	Trp	Gly	Gln	Ser	Val	Pro	Thr	Ala	Ser	Ser	Ala	Arg
1				5				10					15	
Ala	Gly	Arg	Tyr	Pro	Gly	Ala	Arg	Thr	Ala	Ser	Gly	Thr	Arg	Pro
								20		25			30	
Trp	Leu	Leu	Asp	Pro	Lys	Ile	Leu	Lys	Phe	Val	Val	Phe	Ile	Val
								35		40			45	
Ala	Val	Leu	Leu	Pro	Val	Arg	Val	Asp	Ser	Ala	Thr	Ile	Pro	Arg
								50		55			60	
Gln	Asp	Glu	Val	Pro	Gln	Gln	Thr	Val	Ala	Pro	Gln	Gln	Arg	
								65		70			75	
Arg	Ser	Leu	Lys	Glu	Glu	Glu	Cys	Pro	Ala	Gly	Ser	His	Arg	Ser
								80		85			90	
Glu	Tyr	Thr	Gly	Ala	Cys	Asn	Pro	Cys	Thr	Glu	Gly	Val	Asp	Tyr
								95		100			105	
Thr	Ile	Ala	Ser	Asn	Asn	Leu	Pro	Ser	Cys	Leu	Leu	Cys	Thr	Val
								110		115			120	

<210> 30
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 30
cataaaaagtt cctgcaccat gaccagagac acagtgtgtc agtgtaaaga 50

<210> 31
<211> 963
<212> DNA
<213> Homo Sapien

<400> 31
gcggcacctg gaagatgcgc ccattggctg gtggcctgct caaggtggtg 50
ttcgtggtct tcgcctcctt gtgtgcctgg tattcggggt acctgctcgc 100
agagctcatt ccagatgcac ccctgtccag tgctgcctat agcatccgca 150
gcatcgggga gaggcctgtc ctcaaagctc cagtcgggaa aaggcaaaaa 200
tgtgaccact ggactccctg cccatctgac acctatgcct acaggttact 250
cagcggaggt ggcagaagca agtacgc当地 aatctgcttt gaggataacc 300
tacttatggg agaacagctg ggaaatgttg ccagaggaat aaacattgcc 350
attgtcaact atgtaactgg gaatgtgaca gcaacacgat gtttgatat 400
gtatgaaggc gataactctg gaccgatgac aaagtttatt cagagtgctg 450
ctccaaaatc cctgctcttc atggtgacct atgacgacgg aagcacaaga 500
ctgaataacg atgccaagaa tgccatagaa gcacttgaa gtaaagaaat 550
caggaacatg aaattcaggt ctagctgggt atttattgca gcaaaaggct 600
tggactccc ttccgaaatt cagagagaaa agatcaacca ctctgatgct 650
aagaacaaca gatattctgg ctggcctgca gagatccaga tagaaggctg 700
catacccaaa gaacgaagct gacactgc当地 ggtcctgagt aaatgtgttc 750
tgtataaaca aatgcagctg gaatcgctca agaatcttatt ttttctaaat 800
ccaacagccc atatttgatg agtattttgg gtttggta aaccaatgaa 850
catttgctag ttgtatcaaa tcttggtagc cagttttt ataccagtat 900
tttatgttagt gaagatgtca attagcagga aactaaaatg aatggaaatt 950
cttaaaaaaaaaaaa aaa 963

<210> 32
<211> 235
<212> PRT
<213> Homo Sapien

<400> 32

Met	Arg	Pro	Leu	Ala	Gly	Gly	Leu	Leu	Lys	Val	Val	Phe	Val	Val
1				5				10					15	
Phe	Ala	Ser	Leu	Cys	Ala	Trp	Tyr	Ser	Gly	Tyr	Leu	Leu	Ala	Glu
			20					25					30	
Leu	Ile	Pro	Asp	Ala	Pro	Leu	Ser	Ser	Ala	Ala	Tyr	Ser	Ile	Arg
				35				40					45	
Ser	Ile	Gly	Glu	Arg	Pro	Val	Leu	Lys	Ala	Pro	Val	Pro	Lys	Arg
				50				55					60	
Gln	Lys	Cys	Asp	His	Trp	Thr	Pro	Cys	Pro	Ser	Asp	Thr	Tyr	Ala
				65				70					75	
Tyr	Arg	Leu	Leu	Ser	Gly	Gly	Arg	Ser	Lys	Tyr	Ala	Lys	Ile	
			80					85					90	
Cys	Phe	Glu	Asp	Asn	Leu	Leu	Met	Gly	Glu	Gln	Leu	Gly	Asn	Val
				95				100					105	
Ala	Arg	Gly	Ile	Asn	Ile	Ala	Ile	Val	Asn	Tyr	Val	Thr	Gly	Asn
				110					115				120	
Val	Thr	Ala	Thr	Arg	Cys	Phe	Asp	Met	Tyr	Glu	Gly	Asp	Asn	Ser
				125				130					135	
Gly	Pro	Met	Thr	Lys	Phe	Ile	Gln	Ser	Ala	Ala	Pro	Lys	Ser	Leu
				140				145					150	
Leu	Phe	Met	Val	Thr	Tyr	Asp	Asp	Gly	Ser	Thr	Arg	Leu	Asn	Asn
				155				160					165	
Asp	Ala	Lys	Asn	Ala	Ile	Glu	Ala	Leu	Gly	Ser	Lys	Glu	Ile	Arg
				170				175					180	
Asn	Met	Lys	Phe	Arg	Ser	Ser	Trp	Val	Phe	Ile	Ala	Ala	Lys	Gly
				185				190					195	
Leu	Glu	Leu	Pro	Ser	Glu	Ile	Gln	Arg	Glu	Lys	Ile	Asn	His	Ser
				200				205					210	
Asp	Ala	Lys	Asn	Asn	Arg	Tyr	Ser	Gly	Trp	Pro	Ala	Glu	Ile	Gln
				215				220					225	
Ile	Glu	Gly	Cys	Ile	Pro	Lys	Glu	Arg	Ser					
				230				235						
<210>	33													
<211>	18													
<212>	DNA													
<213>	Artificial Sequence													
<220>														
<223>	Synthetic oligonucleotide probe													
<400>	33													
	ggctggccctg	cagagatc	18											

<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 34
aatgtgacca ctggactccc 20

<210> 35
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 35
aggcttggaa ctccccttc 18

<210> 36
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 36
aagattcttg agcgattcca gctg 24

<210> 37
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 37
aatccctgct cttcatggtg acctatgacg acggaagcac aagactg 47

<210> 38
<211> 1215
<212> DNA
<213> Homo Sapien

<400> 38
ccggggaggg gagggccctgt cccgccccctc cccgtctctc cccgccccctc 50
cccgccccctc ccgcgcgaagc tccgtcccgcc cccggggcccg gctccggccct 100
cacctcccgcc cccggggctgc cctctgccccg gttgtccaa gatggagggc 150
gctccaccggc ggtcgctcgcc cctccggctc ctgctgttcg tggcgctacc 200

cgccctccggc tggctgacga cgggcgc(ccc cgagccgccc cgcgtgtccg 250
gagccccaca ggacggcatc agaattaatg taactacact gaaagatgat 300
ggggacatat ctaaacagca gggtgttctt aacataacct atgagagtgg 350
acaggtgtat gttaatgact tacctgtaaa tagtggtgta acccgaataa 400
gctgtcagac tttgatagtg aagaatgaaa atcttggaaa tttggaggaa 450
aaagaatatt ttggaaattgt cagtgttaagg attttagttc atgagtggcc 500
tatgacatct gggtccagtt tgcaactaat tgtcattcaa gaagaggttag 550
tagagattga tggaaaacaa gttcagcaaa aggatgtcac tggaaattgat 600
attttagtta agaaccgggg agtactcaga cattcaaact ataccctccc 650
tttggaaagaa agcatgctct actcttatttc tcgagacagt gacattttat 700
ttacccttcc taacctctcc aaaaaagaaa gtgttagttc actgcaaacc 750
actagccagt atcttatcag gaatgtggaa accactgttag atgaagatgt 800
tttacctggc aagttacctg aaactccctc cagagcagag ccgcacatctt 850
catataaggt aatgtgtcag tggatggaaa agtttagaaa agatctgtgt 900
aggttctgga gcaacgtttt cccagtttc tttagttt tgaacatcat 950
ggtggttgga attacaggag cagctgtgg aataaccatc taaaagggtgt 1000
ttttcccaagt ttctgaatac aaaggaattc tttagttgga taaagtggac 1050
gtcataccctg tgacagctat caacttatcc cagatggc cagagaaaag 1100
agctgaaaac cttgaagata aaacatgtat taaaacgccc atctcatatc 1150
atggactccg aagtagcctg ttgcctccaa atttgccact tgaatataat 1200
tttctttaaa tcgtt 1215

<210> 39
<211> 330
<212> PRT
<213> Homo Sapien

<400> 39
Met Glu Gly Ala Pro Pro Gly Ser Leu Ala Leu Arg Leu Leu Leu
1 5 10 15
Phe Val Ala Leu Pro Ala Ser Gly Trp Leu Thr Thr Gly Ala Pro
20 25 30
Glu Pro Pro Pro Leu Ser Gly Ala Pro Gln Asp Gly Ile Arg Ile
35 40 45
Asn Val Thr Thr Leu Lys Asp Asp Gly Asp Ile Ser Lys Gln Gln

50	55	60
Val Val Leu Asn Ile Thr Tyr Glu Ser Gly Gln Val Tyr Val Asn		
65	70	75
Asp Leu Pro Val Asn Ser Gly Val Thr Arg Ile Ser Cys Gln Thr		
80	85	90
Leu Ile Val Lys Asn Glu Asn Leu Glu Asn Leu Glu Glu Lys Glu		
95	100	105
Tyr Phe Gly Ile Val Ser Val Arg Ile Leu Val His Glu Trp Pro		
110	115	120
Met Thr Ser Gly Ser Ser Leu Gln Leu Ile Val Ile Gln Glu Glu		
125	130	135
Val Val Glu Ile Asp Gly Lys Gln Val Gln Gln Lys Asp Val Thr		
140	145	150
Glu Ile Asp Ile Leu Val Lys Asn Arg Gly Val Leu Arg His Ser		
155	160	165
Asn Tyr Thr Leu Pro Leu Glu Glu Ser Met Leu Tyr Ser Ile Ser		
170	175	180
Arg Asp Ser Asp Ile Leu Phe Thr Leu Pro Asn Leu Ser Lys Lys		
185	190	195
Glu Ser Val Ser Ser Leu Gln Thr Thr Ser Gln Tyr Leu Ile Arg		
200	205	210
Asn Val Glu Thr Thr Val Asp Glu Asp Val Leu Pro Gly Lys Leu		
215	220	225
Pro Glu Thr Pro Leu Arg Ala Glu Pro Pro Ser Ser Tyr Lys Val		
230	235	240
Met Cys Gln Trp Met Glu Lys Phe Arg Lys Asp Leu Cys Arg Phe		
245	250	255
Trp Ser Asn Val Phe Pro Val Phe Phe Gln Phe Leu Asn Ile Met		
260	265	270
Val Val Gly Ile Thr Gly Ala Ala Val Val Ile Thr Ile Leu Lys		
275	280	285
Val Phe Phe Pro Val Ser Glu Tyr Lys Gly Ile Leu Gln Leu Asp		
290	295	300
Lys Val Asp Val Ile Pro Val Thr Ala Ile Asn Leu Tyr Pro Asp		
305	310	315
Gly Pro Glu Lys Arg Ala Glu Asn Leu Glu Asp Lys Thr Cys Ile		
320	325	330

<210> 40
<211> 2498

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 279 280 281 282 283 284 285 286 287 288 289 289 290 291 292 293 294 295 296 297 298 299 299 300 301 302 303 304 305 306 307 308 309 309 310 311 312 313 314 315 316 317 318 319 319 320 321 322 323 324 325 326 327 328 329 329 330 331 332 333 334 335 336 337 338 339 339 340 341 342 343 344 345 346 347 348 349 349 350 351 352 353 354 355 356 357 358 359 359 360 361 362 363 364 365 366 367 368 369 369 370 371 372 373 374 375 376 377 378 379 379 380 381 382 383 384 385 386 387 388 389 389 390 391 392 393 394 395 396 397 398 399 399 400

<212> DNA
<213> Homo Sapien

<400> 40
cgtctctgcg ttcgccatgc gtcccggggc gccagggcca ctctggcctc 50
tgccctgggg ggccctggct tggccgtgg gcttcgttag ctccatgggc 100
tcggggaaacc ccgcgcggc tgggtttgc tggctccagc agggccagga 150
ggccacctgc agcctggtgc tccagactga tgtcacccgg gccgagtgct 200
gtgcctccgg caacattgac accgcctggt ccaacctcac ccacccgggg 250
aacaagatca acctcctcgg cttcttggc cttgtccact gccttccctg 300
caaagattcg tgcgacggcg tggagtgcgg cccgggcaag gcgtgcccga 350
tgctgggggg ccgccccggc tgcgagtgcg cgcccgactg ctcggggctc 400
ccggcgccgc tgcaggtctg cggctcagac ggcccaccc accgcgacga 450
gtgcgagctg cgccgcgcgc gctgcccgg ccacccggac ctgagcgtca 500
tgtaccgggg ccgctgcccgc aagtctgtg agcacgtggt gtgcccggc 550
ccacagtctg gctcgctgga ccagacgggc agcgcact gcgtggtgtg 600
tcgagcggcg ccctgcccgt tgccctccag cccggccag gagctttgcg 650
gcaacaacaa cgtcacctac atctcctctg gccacatgcg ccaggccacc 700
tgcgtccat cggcgtgcgc cacgcggca gctgcgcagg 750
cacccctgag gagccgcag gtggtagtc tgcagaagag gaagagaact 800
tcgtgtgagc ctgcaggaca ggcctggcc tggcccga ggccccccat 850
catcccctgt tatttattgc cacagcagag tctaatttat atgccacgga 900
caactccttag agcccgatt cggaccactt gggatccca gaacctccct 950
gacgataatcc tggaaaggact gaggaaggga ggctgggggg ccggctggtg 1000
ggtagggatag acctgcgttc cggacactga gcgcctgatt tagggccctt 1050
ctctaggatg cccagcccc tacccctaaga cctattgccc gggaggattc 1100
cacacttccg ctcccttggg gataaaccta ttaattattg ctactatcaa 1150
gagggctggg cattctctgc tggtaattcc tgaagaggca tgactgttt 1200
tctcagcccc aagccctctag tctgggtgtg tacggagggt ctagcctggg 1250
tgtgtacgga gggcttagcc tgggtgagta cggagggtct agcctgggtg 1300
agtacggagg gtctagcctg ggtgagtagc gagggcttag cctgggtgtg 1350

tatggaggat ctagcctggg tgagtatgga gggtagcc tgggtgagta 1400
 tggagggtct agcctgggtg tgtatggagg gtctagcctg ggtgagtatg 1450
 gagggtctag cctgggtgtg tatggagggt ctagcctggg tgagtatgga 1500
 gggtagcc tgggtgtgt aggagggtct agtctgagtg cgtgtgggaa 1550
 ctcagaaca ctgtgacattt agcccagcaa gccaggccct tcatgaaggc 1600
 caagaaggct gccaccatcc cctgccagcc caagaactcc agttccccca 1650
 ctgcctctgt gtgcctcttt gcgtcctgtg aaggccattt agaaatgccc 1700
 agtgtgcccc ctgggaaagg gcacggcctg tgctcctgac acgggctgtg 1750
 cttggccaca gaaccaccca gcgtctcccc tgctgctgtc cacgtcagtt 1800
 catgaggcaa cgtcgcgtgg tctcagacgt ggagcagcca gcggcagctc 1850
 agagcagggc actgtgtccg gggagccaa gtccactctg ggggagctct 1900
 ggcggggacc acgggccact gtcacccac tggcccccggag ggggggtgttag 1950
 acgccaagac tcacgcacatgt gtgacatccg gagtcctgga gcccgggtgtc 2000
 ccagtggcac cactaggtgc ctgctgcctc cacagtgggg ttcacacacca 2050
 gggctccttg gtccccccaca acctgccccggcc cccaggcctg cagacccaga 2100
 ctccagccag acctgcctca cccaccaatg cagccggggc tggcgacacc 2150
 agccaggtgc tggctttggg ccagttctcc cacgacggct caccctcccc 2200
 tccatctgcg ttgatgctca gaatgcctca cctgtgcctg cgtgtaaacc 2250
 acagcctcag accagctatg gggagaggac aacacggagg atatccagct 2300
 tccccggctct ggggtgagga atgtggggag cttgggcattc ctcctccagc 2350
 ctcctccagc ccccaggcag tgccttacct gtggtgccca gaaaagtgcc 2400
 ccttaggttgg tgggtctaca ggagcctcag ccaggcagcc caccaccc 2450
 tggggccctg ctcaccaag gaaataaaga ctcaagccat aaaaaaaaaa 2498

<210> 41
 <211> 263
 <212> PRT
 <213> Homo Sapien

<400> 41
 Met Arg Pro Gly Ala Pro Gly Pro Leu Trp Pro Leu Pro Trp Gly
 1 5 10 15
 Ala Leu Ala Trp Ala Val Gly Phe Val Ser Ser Met Gly Ser Gly
 20 25 30

Asn	Pro	Ala	Pro	Gly	Gly	Val	Cys	Trp	Leu	Gln	Gln	Gly	Gln	Glu
35									40					45
Ala	Thr	Cys	Ser	Leu	Val	Leu	Gln	Thr	Asp	Val	Thr	Arg	Ala	Glu
50									55					60
Cys	Cys	Ala	Ser	Gly	Asn	Ile	Asp	Thr	Ala	Trp	Ser	Asn	Leu	Thr
65									70					75
His	Pro	Gly	Asn	Lys	Ile	Asn	Leu	Leu	Gly	Phe	Leu	Gly	Leu	Val
80									85					90
His	Cys	Leu	Pro	Cys	Lys	Asp	Ser	Cys	Asp	Gly	Val	Glu	Cys	Gly
95									100					105
Pro	Gly	Lys	Ala	Cys	Arg	Met	Leu	Gly	Gly	Arg	Pro	Arg	Cys	Glu
110									115					120
Cys	Ala	Pro	Asp	Cys	Ser	Gly	Leu	Pro	Ala	Arg	Leu	Gln	Val	Cys
125									130					135
Gly	Ser	Asp	Gly	Ala	Thr	Tyr	Arg	Asp	Glu	Cys	Glu	Leu	Arg	Ala
140									145					150
Ala	Arg	Cys	Arg	Gly	His	Pro	Asp	Leu	Ser	Val	Met	Tyr	Arg	Gly
155									160					165
Arg	Cys	Arg	Lys	Ser	Cys	Glu	His	Val	Val	Cys	Pro	Arg	Pro	Gln
170									175					180
Ser	Cys	Val	Val	Asp	Gln	Thr	Gly	Ser	Ala	His	Cys	Val	Val	Cys
185									190					195
Arg	Ala	Ala	Pro	Cys	Pro	Val	Pro	Ser	Ser	Pro	Gly	Gln	Glu	Leu
200									205					210
Cys	Gly	Asn	Asn	Asn	Val	Thr	Tyr	Ile	Ser	Ser	Cys	His	Met	Arg
215									220					225
Gln	Ala	Thr	Cys	Phe	Leu	Gly	Arg	Ser	Ile	Gly	Val	Arg	His	Ala
230									235					240
Gly	Ser	Cys	Ala	Gly	Thr	Pro	Glu	Glu	Pro	Pro	Gly	Gly	Glu	Ser
245									250					255
Ala	Glu	Glu	Glu	Glu	Asn	Phe	Val							
260														
<210> 42														
<211> 20														
<212> DNA														
<213> Artificial Sequence														
<220>														
<223> Synthetic oligonucleotide probe														
<400> 42														
tcctgtgagc acgtggtg 20														

<210> 43
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 43
gggtgggata gacctgcg 18

<210> 44
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 44
aaggccaaga aggctgcc 18

<210> 45
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 45
ccaggcctgc agacccag 18

<210> 46
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 46
cttcctcagt ctttccagga tatac 24

<210> 47
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 47
aagctggata tcctccgtgt tgtc 24

<210> 48
<211> 27
<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 48
cctgaagagg catgactgct tttctca 27

<210> 49
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 49
ggggataaaac ctattaatta ttgctac 27

<210> 50
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 50
aacgtcacct acatctcctc gtgccacatg cgccaggcca cctg 44

<210> 51
<211> 1690
<212> DNA
<213> Homo Sapien

<400> 51
tgcagagctt gtggaggcca tggggcgcggt cgtcgcggag ctcgtctcct 50
cgctgctggg gttgtggctg ttgctgtgca gctgcggatg ccccgagggc 100
gccgagctgc gtgctccgcc agataaaaatc gcgattattt gagccggaat 150
tggtggcact tcagcagcct attacctgcg gcagaaaattt gggaaaatgt 200
tgaagataga cctgtttgaa agagaagagg tcggggcccg cctggctacc 250
atgatggtgc aggggcaaga atacgaggca ggaggttctg tcatccatcc 300
tttaaatctg cacatgaaac gttttgtcaa agacctgggt ctctctgctg 350
ttcaggcctc tggtggccta ctggggatataatggaga gactctggta 400
tttggggaga gcaactgggtt cataattaac gtgattaaat tagttggcg 450
ctatggattt caatccctcc gtatgcacat gtgggttagag gacgtgttag 500
acaaggatcat gaggatctac cgctaccagt ctcataacta tgccttcagt 550

agtgtcgaaa aattacttca tgctctagga ggagatgact tccttggaaat 600
gcttaatcga acacttcttg aaaccttgca aaaggccgac ttttctgaga 650
agttcctcaa tgaaatgatt gctcctgtta tgagggtcaa ttatggccaa 700
agcacggaca tcaatgcctt tgtggggcgt gtgtcactgt cctgttctga 750
ttctggcctt tggcagtag aaggtggcaa taaacttgtt tgctcagggc 800
ttctgcaggc atccaaaagc aatcttatat ctggctcagt aatgtacatc 850
gaggagaaaa caaagaccaa gtacacagga aatccaacaa agatgtatga 900
agtggtctac caaattggaa ctgagactcg ttcagacttc tatgacatcg 950
tcttggtggc cactccgttg aatcgaaaaa tgtcgaatat tactttctc 1000
aactttgatc ctccaattga ggaattccat caatattatc aacatatagt 1050
gacaacttta gttaaggggg aattgaatac atctatctt agctctagac 1100
ccatagataa atttggcctt aatacagttt taaccactga taattcagat 1150
ttgttcattt acagtattgg gattgtgccc tctgtgagag aaaaggaaga 1200
tcctgagcca tcaacagatg gaacatatgt ttggaagatc ttttcccaag 1250
aaactcttac taaagcacaa attttaaagc tctttctgtc ctatgattat 1300
gctgtgaaga agccatggct tgcatatcct cactataagc ccccgagaa 1350
atgcccctct atcattctcc atgatcgact ttattacctc aatggcatag 1400
agtgtgcagc aagtgcacatg gagatgagtg ccattgcagc ccacaacgct 1450
gcactccttg cctatcaccg ctggAACGGG cacacagaca tgattgatca 1500
ggatggctta tatgagaaac ttaaaactga actatgaagt gacacactcc 1550
ttttccctt cctagttcca aatgactatc agtggcaaaa aagaacaaaa 1600
tctgagcaga gatgatttg aaccagatat tttgccatta tcattgttta 1650
ataaaaagtaa tccctgctgg tcataaggaaa aaaaaaaaaa 1690

<210> 52
<211> 505
<212> PRT
<213> Homo Sapien

<400> 52
Met Gly Arg Val Val Ala Glu Leu Val Ser Ser Leu Leu Gly Leu
1 5 10 15
Trp Leu Leu Leu Cys Ser Cys Gly Cys Pro Glu Gly Ala Glu Leu
20 25 30

Arg	Ala	Pro	Pro	Asp	Lys	Ile	Ala	Ile	Ile	Gly	Ala	Gly	Ile	Gly	
						35				40			45		
Gly	Thr	Ser	Ala	Ala	Tyr	Tyr	Leu	Arg	Gln	Lys	Phe	Gly	Lys	Asp	
						50			55			60			
Val	Lys	Ile	Asp	Leu	Phe	Glu	Arg	Glu	Glu	Val	Gly	Gly	Arg	Leu	
						65			70			75			
Ala	Thr	Met	Met	Val	Gln	Gly	Gln	Glu	Tyr	Glu	Ala	Gly	Gly	Ser	
						80			85			90			
Val	Ile	His	Pro	Leu	Asn	Leu	His	Met	Lys	Arg	Phe	Val	Lys	Asp	
						95			100			105			
Leu	Gly	Leu	Ser	Ala	Val	Gln	Ala	Ser	Gly	Gly	Leu	Leu	Gly	Ile	
						110			115			120			
Tyr	Asn	Gly	Glu	Thr	Leu	Val	Phe	Glu	Glu	Ser	Asn	Trp	Phe	Ile	
						125			130			135			
Ile	Asn	Val	Ile	Lys	Leu	Val	Trp	Arg	Tyr	Gly	Phe	Gln	Ser	Leu	
						140			145			150			
Arg	Met	His	Met	Trp	Val	Glu	Asp	Val	Leu	Asp	Lys	Phe	Met	Arg	
						155			160			165			
Ile	Tyr	Arg	Tyr	Gln	Ser	His	Asp	Tyr	Ala	Phe	Ser	Ser	Val	Glu	
						170			175			180			
Lys	Leu	Leu	His	Ala	Leu	Gly	Gly	Asp	Asp	Phe	Leu	Gly	Met	Leu	
						185			190			195			
Asn	Arg	Thr	Leu	Leu	Glu	Thr	Leu	Gln	Lys	Ala	Gly	Phe	Ser	Glu	
						200			205			210			
Lys	Phe	Leu	Asn	Glu	Met	Ile	Ala	Pro	Val	Met	Arg	Val	Asn	Tyr	
						215			220			225			
Gly	Gln	Ser	Thr	Asp	Ile	Asn	Ala	Phe	Val	Gly	Ala	Val	Ser	Leu	
						230			235			240			
Ser	Cys	Ser	Asp	Ser	Gly	Leu	Trp	Ala	Val	Glu	Gly	Gly	Asn	Lys	
						245			250			255			
Leu	Val	Cys	Ser	Gly	Leu	Leu	Gln	Ala	Ser	Lys	Ser	Asn	Leu	Ile	
						260			265			270			
Ser	Gly	Ser	Val	Met	Tyr	Ile	Glu	Glu	Lys	Thr	Lys	Thr	Lys	Tyr	
						275			280			285			
Thr	Gly	Asn	Pro	Thr	Lys	Met	Tyr	Glu	Val	Val	Tyr	Gln	Ile	Gly	
						290			295			300			
Thr	Glu	Thr	Arg	Ser	Asp	Phe	Tyr	Asp	Ile	Val	Leu	Val	Ala	Thr	
						305			310			315			
Pro	Leu	Asn	Arg	Lys	Met	Ser	Asn	Ile	Thr	Phe	Leu	Asn	Phe	Asp	

320	325	330
Pro Pro Ile Glu Glu Phe His Gln Tyr Tyr Gln His Ile Val Thr		
335	340	345
Thr Leu Val Lys Gly Glu Leu Asn Thr Ser Ile Phe Ser Ser Arg		
350	355	360
Pro Ile Asp Lys Phe Gly Leu Asn Thr Val Leu Thr Thr Asp Asn		
365	370	375
Ser Asp Leu Phe Ile Asn Ser Ile Gly Ile Val Pro Ser Val Arg		
380	385	390
Glu Lys Glu Asp Pro Glu Pro Ser Thr Asp Gly Thr Tyr Val Trp		
395	400	405
Lys Ile Phe Ser Gln Glu Thr Leu Thr Lys Ala Gln Ile Leu Lys		
410	415	420
Leu Phe Leu Ser Tyr Asp Tyr Ala Val Lys Lys Pro Trp Leu Ala		
425	430	435
Tyr Pro His Tyr Lys Pro Pro Glu Lys Cys Pro Ser Ile Ile Leu		
440	445	450
His Asp Arg Leu Tyr Tyr Leu Asn Gly Ile Glu Cys Ala Ala Ser		
455	460	465
Ala Met Glu Met Ser Ala Ile Ala Ala His Asn Ala Ala Leu Leu		
470	475	480
Ala Tyr His Arg Trp Asn Gly His Thr Asp Met Ile Asp Gln Asp		
485	490	495
Gly Leu Tyr Glu Lys Leu Lys Thr Glu Leu		
500	505	

<210> 53
 <211> 728
 <212> DNA
 <213> Homo Sapien

<400> 53
 catttccaaac aagagcactg gccaaagtca gttttctga gagagtcgt 50
 agaagacatg atgctacact cagctttggg tctctgcctc ttactcgta 100
 cagtttcttc caaccttgcc attgcaataa aaaaggaaaa gaggcctcct 150
 cagacactct caagaggatg gggagatgac atcacttggg tacaaaactta 200
 tgaagaaggt ctctttatg ctcaaaaaag taagaagcca ttaatggta 250
 ttcatcacct ggaggattgt caatactctc aagcactaaa gaaagtat 300
 gccccaaatg aagaaataca agaaatggct cagaataagt tcatacatgct 350

aaaccttatg catgaaacca ctgataagaa tttatcacct gatgggcaat 400
 atgtgcctag aatcatgttt gtagaccctt cttAACAGT tagAGCTGAC 450
 atAGCTGGAA gataCTCTAA cAGATTGTC ACATATGAGC CTCGGGATT 500
 ACCCCTATTG ATAGAAAACA TGAAGAAAGC ATTAAGACTT ATTCAGTCAG 550
 AGCTATAAGA GATGATGGAA AAAAGCCTTC ACTTCAAAGA AGTCAAATT 600
 CATGAAGAAA ACCTCTGGCA CATTGACAAA TACTAAATGT GCAAGTATAT 650
 AGATTTGTA ATATTACTAT TTAGTTTTT TAATGTGTTT GCAATAGTCT 700
 TATTAATAAATA AATGTTTTT AAATCTGA 728

<210> 54
 <211> 166
 <212> PRT
 <213> Homo Sapien

<400> 54
 Met Met Leu His Ser Ala Leu Gly Leu Cys Leu Leu Leu Val Thr
 1 5 10 15

Val Ser Ser Asn Leu Ala Ile Ala Ile Lys Lys Glu Lys Arg Pro
 20 25 30

Pro Gln Thr Leu Ser Arg Gly Trp Gly Asp Asp Ile Thr Trp Val
 35 40 45

Gln Thr Tyr Glu Glu Gly Leu Phe Tyr Ala Gln Lys Ser Lys Lys
 50 55 60

Pro Leu Met Val Ile His His Leu Glu Asp Cys Gln Tyr Ser Gln
 65 70 75

Ala Leu Lys Lys Val Phe Ala Gln Asn Glu Glu Ile Gln Glu Met
 80 85 90

Ala Gln Asn Lys Phe Ile Met Leu Asn Leu Met His Glu Thr Thr
 95 100 105

Asp Lys Asn Leu Ser Pro Asp Gly Gln Tyr Val Pro Arg Ile Met
 110 115 120

Phe Val Asp Pro Ser Leu Thr Val Arg Ala Asp Ile Ala Gly Arg
 125 130 135

Tyr Ser Asn Arg Leu Tyr Thr Tyr Glu Pro Arg Asp Leu Pro Leu
 140 145 150

Leu Ile Glu Asn Met Lys Lys Ala Leu Arg Leu Ile Gln Ser Glu
 155 160 165

Leu

<210> 55
 <211> 537
 <212> DNA
 <213> Homo Sapien

<400> 55
 taaaacagct acaatattcc agggccagtc acttgccatt tctcataaca 50
 gcgtcagaga gaaagaactg actgaaacgt ttgagatgaa gaaagttctc 100
 ctcctgatca cagccatctt ggcagtggct gttggttcc cagtctctca 150
 agaccagggaa cgagaaaaaa gaagtatcg tgacagcgt gaatttagctt 200
 cagggttttt tgggttttcc tacccatatac catttcgccc acttccacca 250
 attccatttc caagatttc atggttttaga cgttaatttc ctattccaat 300
 acctgaatct gcccctacaa cttcccttcc tagcgaaaag taaacaagaa 350
 ggataagtcg cgtaaaacctt ggtcacctga aattgaaatt gagccacttc 400
 cttgaagaat caaaaattcct gttataaaaa gaaaaacaaa tgtaattgaa 450
 atagcacacacatgcattctca gtcaatatct ttagtgatct tctttaataa 500
 acatgaaaagc aaagattttg gtttcttaat ttccaca 537

<210> 56
 <211> 85
 <212> PRT
 <213> Homo Sapien

<400> 56
 Met Lys Lys Val Leu Leu Ile Thr Ala Ile Leu Ala Val Ala
 1 5 10 15

Val Gly Phe Pro Val Ser Gln Asp Gln Glu Arg Glu Lys Arg Ser
 20 25 30

Ile Ser Asp Ser Asp Glu Leu Ala Ser Gly Phe Phe Val Phe Pro
 35 40 45

Tyr Pro Tyr Pro Phe Arg Pro Leu Pro Pro Ile Pro Phe Pro Arg
 50 55 60

Phe Pro Trp Phe Arg Arg Asn Phe Pro Ile Pro Ile Pro Glu Ser
 65 70 75

Ala Pro Thr Thr Pro Leu Pro Ser Glu Lys
 80 85

<210> 57
 <211> 2997
 <212> DNA
 <213> Homo Sapien

<400> 57

cgacgcgtg ggcggcgcg ccgggaggga ccggcgccgg catggccgg 50
ggccctggg atgcgggccc gtctcgccgc ctgctgccc tggtgctgct 100
gctcgccctg gcccgcggcg ccgcgggagc gccgggcccc gacggtttag 150
acgtctgtgc cacttgccat gaacatgcca catgccagca aagagaaggg 200
aagaagatct gtatttgc当地 ctatggattt gtagggAACg ggaggactca 250
gtgtgtt当地 aaaaatgagt gccagtttgg agccactctt gtctgtgggaa 300
accacacatc ttgccacaac acccccgggg gcttctattt cattgcctg 350
gaaggatatc gagccacaaa caacaacaag acattcattc ccaacgatgg 400
cacctttgt acagacatag atgagtgtga agtttctggc ctgtgcaggc 450
atggagggcg atgcgtgaac actcatgggaa gcttgaatg ctactgtatg 500
gatggatact tgccaaggaa tggacctgaa ccttccacc cgaccaccga 550
tgccacatca tgcacagaaa tagactgtgg taccctctt gaggttccag 600
atggctatcatat cataggaat tatacgctt gtctggcag ccaggttcgt 650
tatgcttgca gagaaggatt ctgcgtgtt ccagaagata cagttcaag 700
ctgcacagggc ctggcacat gggagtcccc aaaattacat tgccaagaga 750
tcaactgtgg caaccctcca gaaatgcggc acggcatctt ggttaggaaat 800
cacagctcca ggctggcg ggctggctcgc tatgtctgtc aagagggttt 850
tgagagccct ggaggaaaga tcacttctgt ttgcacagag aaaggcacct 900
ggagagaaag tactttaaca tgcacagaaa ttctgacaaa gattaatgtat 950
gtatcactgt ttaatgatac ctgtgtgaga tggcaataa actcaagaag 1000
aataaaccggc aagatctcat atgtgatatac cataaaagga caacggttgg 1050
accctatggaa atcagttcgt gaggagacag tcaacttgac cacagacagc 1100
aggaccccgag aagtgtgcct agccctgtac ccaggcacca actacaccgt 1150
gaacatctcc acagcacctc ccaggcgctc gatgccagcc gtcatcggtt 1200
tccagacagc tgaagttgat ctcttagaaatg atgatggaaatg tttcaatatt 1250
tcaatattta atgaaacttg tttgaaattt aacaggcggtt ctaggaaagt 1300
tggatcagaa cacatgtacc aatttaccgt tctgggtcag aggtggatc 1350
tggcttaactt ttctcatgca acatcggttta acttcacaac gagggaaacaa 1400
gtgcctgttag tgtgtttggaa tctgtaccct acgactgatt atacgggtgaa 1450

tgtgaccctg ctgagatctc ctaagcggca ctcagtgc aaataacaatag 1500
caactcccc agcagtaaaa cagaccatca gtaacatttc aggatttaat 1550
gaaacacctgct tgagatggag aagcatcaag acagctgata tggaggagat 1600
gtatTTatttc cacatttggg gccagagatg gtatcagaag gaatttgc 1650
aggaaatgac cttaaatatc agtagcagca gccagatcc cgagggtgc 1700
ttggacctac gtccgggtac caactacaat gtcagtctcc gggctctg 1750
ttcggaaactt cctgtggta tctccctgac aaccagata acagagcctc 1800
ccctcccgga agtagaattt tttacgggtgc acagaggacc tctaccacgc 1850
ctcagactga ggaagccaa ggagaaaaat ggaccaatca gttcataatca 1900
ggtagtttagtg cttccctgg ccctccaaag cacattttct tgtgattctg 1950
aaggcgcttc ctccctcttt agcaacgcct ctgatgctga tggatacgtg 2000
gctgcagaac tactggccaa agatgttcca gatgtgcca tggagataacc 2050
tataggagac aggctgtact atgggaata ttataatgca cccttgaaaa 2100
gagggagtga ttactgcatt atattacgaa tcacaagtga atggaataag 2150
gtgagaagac actccctgtgc agtttggct caggtgaaag attcgtcact 2200
catgctgctg cagatggcgg gtgttggact gggttccctg gctgttgc 2250
tcattctcac attccctctcc ttctcagcgg tgtgatggca gatggacact 2300
gagttgggag gatgcactgc tgctggcag gtgttctggc agcttctcag 2350
gtgcccgcac agaggctccg tgtgacttcc gtccaggag catgtggcc 2400
tgcaacttcc tccattccca gctggggcccc attccctggat ttaagatgg 2450
ggctatccct gaggagtcac cataaggaga aaactcagga attctgagtc 2500
ttccctgcta caggaccagt tctgtcaat gaacttgaga ctccctgatgt 2550
acactgtgat attgaccgaa ggctacatac agatctgtga atcttggctg 2600
ggacttcctc tgagtgtatgc ctgagggtca gtcctctag acattgactg 2650
caagagaatc tctgcaaccc cctatataaa agcattctg ttaattcatt 2700
cagaatccat tctttacaat atgcagtgag atgggcttaa gtttggct 2750
gagtttgact ttatgaagga ggtcattgaa aaagagaaca gtgacgtagg 2800
caaatgttcc aagcaacttta gaaacagtac tttcctata attagttgat 2850
atactaatac gaaaatatac tagcctggcc atgccaataa gtttccctgct 2900

gtgtctgtta ggcagcattg ctttgatgca atttctattg tccttatatat 2950
 tcaaaaagtaa tgtctacatt ccagtaaaaa tatcccgtaa ttaaaaa 2997
 <210> 58
 <211> 747
 <212> PRT
 <213> Homo Sapien
 <400> 58
 Met Gly Arg Gly Pro Trp Asp Ala Gly Pro Ser Arg Arg Leu Leu
 1 5 10 15
 Pro Leu Leu Leu Leu Gly Leu Ala Arg Gly Ala Ala Gly Ala
 20 25 30
 Pro Gly Pro Asp Gly Leu Asp Val Cys Ala Thr Cys His Glu His
 35 40 45
 Ala Thr Cys Gln Gln Arg Glu Gly Lys Lys Ile Cys Ile Cys Asn
 50 55 60
 Tyr Gly Phe Val Gly Asn Gly Arg Thr Gln Cys Val Asp Lys Asn
 65 70 75
 Glu Cys Gln Phe Gly Ala Thr Leu Val Cys Gly Asn His Thr Ser
 80 85 90
 Cys His Asn Thr Pro Gly Gly Phe Tyr Cys Ile Cys Leu Glu Gly
 95 100 105
 Tyr Arg Ala Thr Asn Asn Asn Lys Thr Phe Ile Pro Asn Asp Gly
 110 115 120
 Thr Phe Cys Thr Asp Ile Asp Glu Cys Glu Val Ser Gly Leu Cys
 125 130 135
 Arg His Gly Gly Arg Cys Val Asn Thr His Gly Ser Phe Glu Cys
 140 145 150
 Tyr Cys Met Asp Gly Tyr Leu Pro Arg Asn Gly Pro Glu Pro Phe
 155 160 165
 His Pro Thr Thr Asp Ala Thr Ser Cys Thr Glu Ile Asp Cys Gly
 170 175 180
 Thr Pro Pro Glu Val Pro Asp Gly Tyr Ile Ile Gly Asn Tyr Thr
 185 190 195
 Ser Ser Leu Gly Ser Gln Val Arg Tyr Ala Cys Arg Glu Gly Phe
 200 205 210
 Phe Ser Val Pro Glu Asp Thr Val Ser Ser Cys Thr Gly Leu Gly
 215 220 225
 Thr Trp Glu Ser Pro Lys Leu His Cys Gln Glu Ile Asn Cys Gly
 230 235 240

Asn	Pro	Pro	Glu	Met	Arg	His	Ala	Ile	Leu	Val	Gly	Asn	His	Ser
245									250				255	
Ser	Arg	Leu	Gly	Gly	Val	Ala	Arg	Tyr	Val	Cys	Gln	Glu	Gly	Phe
260									265				270	
Glu	Ser	Pro	Gly	Gly	Lys	Ile	Thr	Ser	Val	Cys	Thr	Glu	Lys	Gly
275									280				285	
Thr	Trp	Arg	Glu	Ser	Thr	Leu	Thr	Cys	Thr	Glu	Ile	Leu	Thr	Lys
290									295				300	
Ile	Asn	Asp	Val	Ser	Leu	Phe	Asn	Asp	Thr	Cys	Val	Arg	Trp	Gln
305									310				315	
Ile	Asn	Ser	Arg	Arg	Ile	Asn	Pro	Lys	Ile	Ser	Tyr	Val	Ile	Ser
320									325				330	
Ile	Lys	Gly	Gln	Arg	Leu	Asp	Pro	Met	Glu	Ser	Val	Arg	Glu	Glu
335									340				345	
Thr	Val	Asn	Leu	Thr	Thr	Asp	Ser	Arg	Thr	Pro	Glu	Val	Cys	Leu
350									355				360	
Ala	Leu	Tyr	Pro	Gly	Thr	Asn	Tyr	Thr	Val	Asn	Ile	Ser	Thr	Ala
365									370				375	
Pro	Pro	Arg	Arg	Ser	Met	Pro	Ala	Val	Ile	Gly	Phe	Gln	Thr	Ala
380									385				390	
Glu	Val	Asp	Leu	Leu	Glu	Asp	Asp	Gly	Ser	Phe	Asn	Ile	Ser	Ile
395									400				405	
Phe	Asn	Glu	Thr	Cys	Leu	Lys	Leu	Asn	Arg	Arg	Ser	Arg	Lys	Val
410									415				420	
Gly	Ser	Glu	His	Met	Tyr	Gln	Phe	Thr	Val	Leu	Gly	Gln	Arg	Trp
425									430				435	
Tyr	Leu	Ala	Asn	Phe	Ser	His	Ala	Thr	Ser	Phe	Asn	Phe	Thr	Thr
440									445				450	
Arg	Glu	Gln	Val	Pro	Val	Val	Cys	Leu	Asp	Leu	Tyr	Pro	Thr	Thr
455									460				465	
Asp	Tyr	Thr	Val	Asn	Val	Thr	Leu	Leu	Arg	Ser	Pro	Lys	Arg	His
470									475				480	
Ser	Val	Gln	Ile	Thr	Ile	Ala	Thr	Pro	Pro	Ala	Val	Lys	Gln	Thr
485									490				495	
Ile	Ser	Asn	Ile	Ser	Gly	Phe	Asn	Glu	Thr	Cys	Leu	Arg	Trp	Arg
500									505				510	
Ser	Ile	Lys	Thr	Ala	Asp	Met	Glu	Glu	Met	Tyr	Leu	Phe	His	Ile
515									520				525	
Trp	Gly	Gln	Arg	Trp	Tyr	Gln	Lys	Glu	Phe	Ala	Gln	Glu	Met	Thr

530	535	540
Phe Asn Ile Ser Ser Ser Arg Asp	Pro Glu Val Cys Leu Asp	
545	550	555
Leu Arg Pro Gly Thr Asn Tyr Asn Val	Ser Leu Arg Ala Leu Ser	
560	565	570
Ser Glu Leu Pro Val Val Ile Ser Leu	Thr Thr Gln Ile Thr Glu	
575	580	585
Pro Pro Leu Pro Glu Val Glu Phe Phe	Thr Val His Arg Gly Pro	
590	595	600
Leu Pro Arg Leu Arg Leu Arg Lys Ala	Lys Glu Lys Asn Gly Pro	
605	610	615
Ile Ser Ser Tyr Gln Val Leu Val Leu	Pro Leu Ala Leu Gln Ser	
620	625	630
Thr Phe Ser Cys Asp Ser Glu Gly Ala	Ser Ser Phe Phe Ser Asn	
635	640	645
Ala Ser Asp Ala Asp Gly Tyr Val Ala	Ala Glu Leu Leu Ala Lys	
650	655	660
Asp Val Pro Asp Asp Ala Met Glu Ile	Pro Ile Gly Asp Arg Leu	
665	670	675
Tyr Tyr Gly Glu Tyr Tyr Asn Ala Pro	Leu Lys Arg Gly Ser Asp	
680	685	690
Tyr Cys Ile Ile Leu Arg Ile Thr Ser	Glu Trp Asn Lys Val Arg	
695	700	705
Arg His Ser Cys Ala Val Trp Ala Gln	Val Lys Asp Ser Ser Leu	
710	715	720
Met Leu Leu Gln Met Ala Gly Val Gly	Leu Gly Ser Leu Ala Val	
725	730	735
Val Ile Ile Leu Thr Phe Leu Ser Phe	Ser Ala Val	
740	745	

<210> 59

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 59

ccacttgccca tgaacatgcc ac 22

<210> 60

<211> 25

<212> DNA

213 Artificial Sequence
220
223 Synthetic oligonucleotide probe
400 60
cctcttgaca gacatagcga gccac 25
210 61
211 43
212 DNA
213 Artificial Sequence
220
223 Synthetic oligonucleotide probe
400 61
caactcttgc tggggaaacc acacatcttgc acacactgtt ggc 43
210 62
211 2015
212 DNA
213 Homo Sapien
400 62
ggaaaaggta cccgcgagag acagccagca gttctgttgg gcagcggtgg 50
ccggcttagga tgggctgtct ctggggcttg gctctgcccc ttttcttctt 100
ctgctgggag gttggggctt ctgggagctc tgcaggcccc agcaccgcga 150
gagcagacac tgcgtatgaca acggacgaca cagaagtgcgc cgctatgact 200
ctagcacccgg gccacgcgcgc tctggaaact caaacgctga gcgcgtgagac 250
ctcttcttagg gcctcaaccc cagccggccc cattccagaa gcagagacca 300
ggggagccaa gagaatttcc cctgcaagag agaccaggag tttcacaaaa 350
acatctccca acttcatggt gctgatgcgc acctccgtgg agacatcagc 400
cgccagtggc agccccgagg gagctggaaat gaccacagtt cagaccatca 450
caggcagtga tcccggagaa gccatcttg acaccctttg caccgatgac 500
agctctgaag aggcaaagac actcacaatg gacatattga cattggctca 550
cacctccaca gaagcttaagg gcctgtcctc agagagcagt gcctcttccg 600
acggccccca tccagtcatac accccgtcac gggcctcaga gagcagcgcc 650
tcttccgacg gccccatcc agtcatcacc ccgtcacggg cctcagagag 700
cagcgcctct tccgacggcc cccatccagt catcaccccg tcatggtccc 750
cgggatctga tgtcaacttc ctcgctgaag ccctggtgac tgtcacaaac 800
atcgaggtta ttaattgcag catcacagaa atagaaacaa caacttccag 850

catccctggg gcctcagaca tagatctcat ccccacggaa ggggtgaagg 900
cctcgccac ctccgatcca ccagctctgc ctgactccac tgaagcaaaa 950
ccacacatca ctgaggtcac agcctctgcc gagaccctgt ccacagccgg 1000
caccacagag tcagctgcac ctcatgccac gggtgggacc ccactcccc 1050
ctaacagcgc cacagaaaga gaagtgacag caccggggc cacgaccctc 1100
agtggagctc tggcacagt tagcaggaat cccctggaag aaacctcagc 1150
cctctctgtt gagacaccaa gttacgtcaa agtctcagga gcagctccgg 1200
tctccataga ggctgggtca gcagtggca aaacaacttc ctttgcgtgg 1250
agctctgctt cctcttacag cccctcgaa gccgcctca agaacttcac 1300
cccttcagag acaccgacca tggacatcgc aaccaagggg cccttcccc 1350
ccagcagggaa ccctcttcct tctgtccctc cgactacaac caacagcagc 1400
cgagggacga acagcacctt agccaagatc acaacctcag cgaagaccac 1450
gatgaagccc caacagccac gcccacgact gcccggacga ggccgaccac 1500
agacgtgagt gcaggtgaaa atggagggtt ctccttcctg cggctgagtg 1550
tggcttcccc ggaagacctc actgacccca gagtggcaga aaggctgatg 1600
cagcagctcc accggaaact ccacgcccac gcgcctcaact tccaggtctc 1650
cttactgcgt gtcaggagag gctaacggac atcagctgca gccaggcatg 1700
tcccgatgc caaaagaggg tgctgcccct agcctgggcc cccacccaca 1750
gactgcagct gcgttactgt gctgagaggt acccagaagg ttcccatgaa 1800
gggcagcatg tccaagcccc taacccaga tgtggcaaca ggaccctcgc 1850
tcacatccac cggagtgtat gatatgggag gggcttcacc tggtccccaga 1900
ggtgtccttg gactcacctt ggcacatgtt ctgtgtttca gtaaagagag 1950
acctgatcac ccatctgtgt gcttccatcc tgcattaaaa ttcactcagt 2000
gtggcccaaa aaaaaa 2015

<210> 63
<211> 482
<212> PRT
<213> Homo Sapien

<400> 63
Met Gly Cys Leu Trp Gly Leu Ala Leu Pro Leu Phe Phe Phe Cys
1 5 10 15
Trp Glu Val Gly Val Ser Gly Ser Ser Ala Gly Pro Ser Thr Arg

20	25	30
Arg Ala Asp Thr Ala Met Thr Thr Asp Asp Thr Glu Val Pro Ala		
35	40	45
Met Thr Leu Ala Pro Gly His Ala Ala Leu Glu Thr Gln Thr Leu		
50	55	60
Ser Ala Glu Thr Ser Ser Arg Ala Ser Thr Pro Ala Gly Pro Ile		
65	70	75
Pro Glu Ala Glu Thr Arg Gly Ala Lys Arg Ile Ser Pro Ala Arg		
80	85	90
Glu Thr Arg Ser Phe Thr Lys Thr Ser Pro Asn Phe Met Val Leu		
95	100	105
Ile Ala Thr Ser Val Glu Thr Ser Ala Ala Ser Gly Ser Pro Glu		
110	115	120
Gly Ala Gly Met Thr Thr Val Gln Thr Ile Thr Gly Ser Asp Pro		
125	130	135
Glu Glu Ala Ile Phe Asp Thr Leu Cys Thr Asp Asp Ser Ser Glu		
140	145	150
Glu Ala Lys Thr Leu Thr Met Asp Ile Leu Thr Leu Ala His Thr		
155	160	165
Ser Thr Glu Ala Lys Gly Leu Ser Ser Glu Ser Ser Ala Ser Ser		
170	175	180
Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg Ala Ser Glu Ser		
185	190	195
Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile Thr Pro Ser Arg		
200	205	210
Ala Ser Glu Ser Ser Ala Ser Ser Asp Gly Pro His Pro Val Ile		
215	220	225
Thr Pro Ser Trp Ser Pro Gly Ser Asp Val Thr Leu Leu Ala Glu		
230	235	240
Ala Leu Val Thr Val Thr Asn Ile Glu Val Ile Asn Cys Ser Ile		
245	250	255
Thr Glu Ile Glu Thr Thr Thr Ser Ser Ile Pro Gly Ala Ser Asp		
260	265	270
Ile Asp Leu Ile Pro Thr Glu Gly Val Lys Ala Ser Ser Thr Ser		
275	280	285
Asp Pro Pro Ala Leu Pro Asp Ser Thr Glu Ala Lys Pro His Ile		
290	295	300
Thr Glu Val Thr Ala Ser Ala Glu Thr Leu Ser Thr Ala Gly Thr		
305	310	315

Thr	Glu	Ser	Ala	Ala	Pro	His	Ala	Thr	Val	Gly	Thr	Pro	Leu	Pro
320														330
Thr	Asn	Ser	Ala	Thr	Glu	Arg	Glu	Val	Thr	Ala	Pro	Gly	Ala	Thr
335														345
Thr	Leu	Ser	Gly	Ala	Leu	Val	Thr	Val	Ser	Arg	Asn	Pro	Leu	Glu
350														360
Glu	Thr	Ser	Ala	Leu	Ser	Val	Glu	Thr	Pro	Ser	Tyr	Val	Lys	Val
365														375
Ser	Gly	Ala	Ala	Pro	Val	Ser	Ile	Glu	Ala	Gly	Ser	Ala	Val	Gly
380														390
Lys	Thr	Thr	Ser	Phe	Ala	Gly	Ser	Ser	Ala	Ser	Ser	Tyr	Ser	Pro
395														405
Ser	Glu	Ala	Ala	Leu	Lys	Asn	Phe	Thr	Pro	Ser	Glu	Thr	Pro	Thr
410														420
Met	Asp	Ile	Ala	Thr	Lys	Gly	Pro	Phe	Pro	Thr	Ser	Arg	Asp	Pro
425														435
Leu	Pro	Ser	Val	Pro	Pro	Thr	Thr	Thr	Asn	Ser	Ser	Arg	Gly	Thr
440														450
Asn	Ser	Thr	Leu	Ala	Lys	Ile	Thr	Thr	Ser	Ala	Lys	Thr	Thr	Met
455														465
Lys	Pro	Gln	Gln	Pro	Arg	Pro	Arg	Leu	Pro	Gly	Arg	Gly	Arg	Pro
470														480

Gln Thr

<210> 64
<211> 1252
<212> DNA
<213> Homo Sapien

<400> 64
gcctctgaat tgttggcag tctggcagtg gagctctccc cggctctgaca 50
gccactccag aggccatgct tcgtttcttg ccagatttgg ctttcagctt 100
cctgttaatt ctggctttgg gccaggcagt ccaatttcaa gaatatgtct 150
ttctccaatt tctgggctta gataaggcgc cttcacccca gaagttccaa 200
cctgtgcctt atatcttcaa gaaaatttgc caggatcgcg aggcagcagc 250
gaccactggg gtctcccgag acttatgcta cgtaaaggag ctgggcgtcc 300
gcgggaatgt acttcgctt ctcctgcctg cagaagctcc tctacttcaa 350
aagaaaaattt cccaaatcc tcctgcctg cagaagctcc tctacttcaa 400

cctgtctgcc atcaaagaaa gggAACAGTT gacATTGGCC cAGCTGGCC 450
tggacttggg gcccattct tactataacc tgggaccaga gctggaactg 500
gctctgttcc tggttcagga gcctcatgtg tggggccaga ccacccctaa 550
gccaggtaaa atgtttgtgt tgcggtcagt cccatggcca caaggtgctg 600
ttcacttcaa cctgctggat gtagctaagg attggaatga caaccccccgg 650
aaaaatttcg ggttattcct ggagatactg gtcaaagaag atagagactc 700
aggggtgaat tttcagcctg aagacacctg tgccagacta agatgctccc 750
ttcatgcttc cctgctggtg gtgactctca accctgatca gtgccaccct 800
tctcgaaaaa ggagagcagc catccctgtc cccaaGCTTT cttgtaaagaa 850
cctctgccac cgtcaccagc tattcattaa cttccgggac ctgggttggc 900
acaagtggat cattcccccc aaggggttca tggcaaattt ctgccatgga 950
gagtgtccct tctcaactgac catctctctc aacagctcca attatgcttt 1000
catgcaagcc ctgatgcatg ccgttgaccc agagatcccc caggctgtgt 1050
gtatccccac caagctgtct cccatttcca tgctctacca ggacaataat 1100
gacaatgtca ttctacgaca ttatgaagac atggtagtcg atgaatgtgg 1150
gtgtggtag gatgtcagaa atggaaatag aaggagtgaa cttaggtaa 1200
atcttttaat aaaactacct atctggttta tgaccactta gatcgaaatg 1250

tc 1252

<210> 65
<211> 364
<212> PRT
<213> Homo Sapien

<400> 65
Met Leu Arg Phe Leu Pro Asp Leu Ala Phe Ser Phe Leu Leu Ile
1 5 10 15
Leu Ala Leu Gly Gln Ala Val Gln Phe Gln Glu Tyr Val Phe Leu
20 25 30
Gln Phe Leu Gly Leu Asp Lys Ala Pro Ser Pro Gln Lys Phe Gln
35 40 45
Pro Val Pro Tyr Ile Leu Lys Ile Phe Gln Asp Arg Glu Ala
50 55 60
Ala Ala Thr Thr Gly Val Ser Arg Asp Leu Cys Tyr Val Lys Glu
65 70 75
Leu Gly Val Arg Gly Asn Val Leu Arg Phe Leu Pro Asp Gln Gly

80	85	90
Phe Phe Leu Tyr Pro Lys Lys Ile Ser Gln Ala Ser Ser Cys Leu		
95	100	105
Gln Lys Leu Leu Tyr Phe Asn Leu Ser Ala Ile Lys Glu Arg Glu		
110	115	120
Gln Leu Thr Leu Ala Gln Leu Gly Leu Asp Leu Gly Pro Asn Ser		
125	130	135
Tyr Tyr Asn Leu Gly Pro Glu Leu Glu Leu Ala Leu Phe Leu Val		
140	145	150
Gln Glu Pro His Val Trp Gly Gln Thr Thr Pro Lys Pro Gly Lys		
155	160	165
Met Phe Val Leu Arg Ser Val Pro Trp Pro Gln Gly Ala Val His		
170	175	180
Phe Asn Leu Leu Asp Val Ala Lys Asp Trp Asn Asp Asn Pro Arg		
185	190	195
Lys Asn Phe Gly Leu Phe Leu Glu Ile Leu Val Lys Glu Asp Arg		
200	205	210
Asp Ser Gly Val Asn Phe Gln Pro Glu Asp Thr Cys Ala Arg Leu		
215	220	225
Arg Cys Ser Leu His Ala Ser Leu Leu Val Val Thr Leu Asn Pro		
230	235	240
Asp Gln Cys His Pro Ser Arg Lys Arg Arg Ala Ala Ile Pro Val		
245	250	255
Pro Lys Leu Ser Cys Lys Asn Leu Cys His Arg His Gln Leu Phe		
260	265	270
Ile Asn Phe Arg Asp Leu Gly Trp His Lys Trp Ile Ile Ala Pro		
275	280	285
Lys Gly Phe Met Ala Asn Tyr Cys His Gly Glu Cys Pro Phe Ser		
290	295	300
Leu Thr Ile Ser Leu Asn Ser Ser Asn Tyr Ala Phe Met Gln Ala		
305	310	315
Leu Met His Ala Val Asp Pro Glu Ile Pro Gln Ala Val Cys Ile		
320	325	330
Pro Thr Lys Leu Ser Pro Ile Ser Met Leu Tyr Gln Asp Asn Asn		
335	340	345
Asp Asn Val Ile Leu Arg His Tyr Glu Asp Met Val Val Asp Glu		
350	355	360
Cys Gly Cys Gly		

<210> 66
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 66
gtctgacagc cactccagag 20

<210> 67
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 67
tctccaaattt ctgggcttag ataaggcgcc ttcaccccaag aagttcc 47

<210> 68
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 68
gtcccaggtt atagtaagaa ttgg 24

<210> 69
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 69
gtgttgcgtt cagtcctatg 20

<210> 70
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 70
gctgtctccc atttccatgc 20

<210> 71
<211> 24
<212> DNA

<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 71
cgactaccat gtcttcataa tgtc 24

<210> 72
<211> 2849
<212> DNA
<213> Homo Sapien

<400> 72
cactttctcc ctcttcttcc ttactttcga gaaaccgcgc ttccgcttct 50
ggtcgcagag acctcggaga ccgcgcgggg gagacggagg tgctgtgggt 100
gggggggacc tggctgtct cgtaccgcgc cccaccctcc tcttctgcac 150
tgccgtcctc cgaaagacct tttccctcgc tctgtttctc tcaccgagtc 200
tgtgcacgc cccggacctg gcccggagga ggcttggccg gcgggagatg 250
ctctagggc ggcgcggag gagcggccgg cggacggag ggcccggcag 300
gaagatgggc tccctggac agggactctt gctggcgtac tgcctgctcc 350
ttgcctttgc ctctggcctg gtcctgagtc gtgtgccccca tgtccagggg 400
gaacagcagg agtgggaggg gactgaggag ctgcgcgc ctcggacca 450
tgccgagagg gctgaagaac aacatgaaaa atacaggccc agtcaggacc 500
aggggctccc tgctcccg tgcttgcgt gctgtgaccc cggtaacctcc 550
atgtacccgg cgaccgcgt gccccagatc aacatcaacta tcttgaaagg 600
ggagaaggg gaccgcggag atcgaggct ccaaggaaaa tatggcaaaa 650
caggctcagc aggggccagg ggccacactg gacccaaagg gcagaaggc 700
tccatgggg cccctggga gcggtgcaag agccactacg ccgcctttc 750
ggtggccgg aagaagccca tgcacagcaa ccactactac cagacggtga 800
tcttcgacac ggagttcgtg aacctctacg accactcaa catgttcacc 850
ggcaagttct actgctacgt gcccggcctc tacttcttca gcctcaacgt 900
gcacacctgg aaccagaagg agacctacct gcacatcatg aagaacgagg 950
aggaggtggt gatcttgttc gcgcagggtgg gcgcacccgag catcatgcaa 1000
agccagagcc tggatgttggaa gctgcgagag caggaccagg tgtgggtacg 1050
cctctacaag ggcgaaacgtg agaacgcctt cttagcgcag gagctggaca 1100

cctacatcac cttcagtggc tacctggtca agcacgccac cgagccctag 1150
ctggccggcc acctccttgc ctctcgccac cttccacccc tgcgctgtgc 1200
tgacccaccgc gcctcttccc cgatccctgg actccgactc cctggctttg 1250
gcattcagtgc agacgcctg cacacacaga aagccaaagc gatcggtgct 1300
cccagatccc gcagcctctg gagagagctg acggcagatg aaatcaccag 1350
ggcggggcac ccgcgagaac cctctggac cttccgcggc cctctctgca 1400
cacatcctca agtgcaccccg cacggcgaga cgcgggtggc ggcaggcg 1450
cccagggtgc ggcacccgccc ctccagtcct tggaaataat taggcaaatt 1500
ctaaaggctc caaaaggagc aaagtaaacc gtggaggaca aagaaaagg 1550
ttgttatttt tgtctttcca gccagcctgc tggctccaa gagagaggcc 1600
tttcagttg agactctgtc taagagaaga tccaaagtta aagctctggg 1650
gtcaggggag gggccggggg cagggaaacta cctctggctt aattctttta 1700
agccacgttag gaactttctt gagggatagg tggaccctga catccctgtg 1750
gccttgcaca agggctctgc tggctttctt gagtacacgc tgcgaggtga 1800
tgggggctgg ggccccaggc gtcagcctcc cagagggaca gctgagcccc 1850
ctgccttggc tccaggttgg tagaagcagc cgaaggcgtc ctgacagtgg 1900
ccagggaccc ctgggtcccc caggcctgca gatgtttcta tgagggcag 1950
agctccttgg tacatccatg tgtggctctg ctccacccct gtgccacccc 2000
agagccctgg ggggtggctt ccatgcctgc caccctggca tcggctttct 2050
gtgccgcctc ccacacaaat cagccccaga agggcccgaa gccttggctt 2100
ctgtttttta taaaacaccc caagcagcac tgcagtctcc catctccctcg 2150
tgggctaagc atcaccgctt ccacgtgtgt tgtgttgggtt ggcagcaagg 2200
ctgatccaga ccccttctgc ccccactgccc ctcatccagg cctctgacca 2250
gtagcctgag aggggctttt tctaggcttc agagcagggg agagctggaa 2300
ggggctagaa agctcccgct tgcgtgtttc tcaggctctt gtgagcctca 2350
gtcctgagac cagagtcaag aggaagtaca cgtcccaatc acccgtgtca 2400
ggattcactc tcaggagctg ggtggcagga gaggcaatag cccctgtggc 2450
aattgcagga ccagctggag cagggttgcg gtgtctccac ggtgctctcg 2500
ccctgcccattt ggccacccca gactctgatc tccaggaacc ccatagcccc 2550

tctccacctc accccatgtt gatgccagg gtcactcttg ctacccgctg 2600
 ggcccccaaa ccccccgtgc ctctcttctt cccccccatc ccccacctgg 2650
 ttttgactaa tcctgcttcc ctctctggc ctggctgccc ggatctgggg 2700
 tccctaagtc cctctcttta aagaacttct gcgggtcaga ctctgaagcc 2750
 gagttgctgt gggcgtgccc ggaagcagag cgccacactc gctgcttaag 2800
 ctcccccagc tcttccaga aaacattaaa ctcagaattg tgtttcaa 2849
 <210> 73
 <211> 281
 <212> PRT
 <213> Homo Sapien
 <400> 73
 Met Gly Ser Arg Gly Gln Gly Leu Leu Leu Ala Tyr Cys Leu Leu
 1 5 10 15
 Leu Ala Phe Ala Ser Gly Leu Val Leu Ser Arg Val Pro His Val
 20 25 30
 Gln Gly Glu Gln Gln Glu Trp Glu Gly Thr Glu Glu Leu Pro Ser
 35 40 45
 Pro Pro Asp His Ala Glu Arg Ala Glu Glu Gln His Glu Lys Tyr
 50 55 60
 Arg Pro Ser Gln Asp Gln Gly Leu Pro Ala Ser Arg Cys Leu Arg
 65 70 75
 Cys Cys Asp Pro Gly Thr Ser Met Tyr Pro Ala Thr Ala Val Pro
 80 85 90
 Gln Ile Asn Ile Thr Ile Leu Lys Gly Glu Lys Gly Asp Arg Gly
 95 100 105
 Asp Arg Gly Leu Gln Gly Lys Tyr Gly Lys Thr Gly Ser Ala Gly
 110 115 120
 Ala Arg Gly His Thr Gly Pro Lys Gly Gln Lys Gly Ser Met Gly
 125 130 135
 Ala Pro Gly Glu Arg Cys Lys Ser His Tyr Ala Ala Phe Ser Val
 140 145 150
 Gly Arg Lys Lys Pro Met His Ser Asn His Tyr Tyr Gln Thr Val
 155 160 165
 Ile Phe Asp Thr Glu Phe Val Asn Leu Tyr Asp His Phe Asn Met
 170 175 180
 Phe Thr Gly Lys Phe Tyr Cys Tyr Val Pro Gly Leu Tyr Phe Phe
 185 190 195
 Ser Leu Asn Val His Thr Trp Asn Gln Lys Glu Thr Tyr Leu His

200	205	210
Ile Met Lys Asn Glu Glu Glu Val Val	Ile Leu Phe Ala Gln Val	
215	220	225
Gly Asp Arg Ser Ile Met Gln Ser Gln	Ser Leu Met Leu Glu Leu	
230	235	240
Arg Glu Gln Asp Gln Val Trp Val Arg	Leu Tyr Lys Gly Glu Arg	
245	250	255
Glu Asn Ala Ile Phe Ser Glu Glu Leu Asp	Thr Tyr Ile Thr Phe	
260	265	270
Ser Gly Tyr Leu Val Lys His Ala Thr Glu Pro		
275	280	

<210> 74
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 74
 tacaggccca gtcaggacca gggg 24

<210> 75
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 75
 ctgaagaagt agaggccggg cacg 24

<210> 76
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 76
 cccggtgctt gcgctgctgt gaccccggtt cttccatgtt cccgg 45

<210> 77
 <211> 1042
 <212> DNA
 <213> Homo Sapien

<400> 77
 gaattcggca cgagggaaaga agagaaagaa aatctccggg gctgctggga 50

gcataataaag aagccctgtg gccttgctgg ttttaccatc cagaccagag 100
tcaggccaca gacggacatg gctgctcaag gctggtccat gtcctgctg 150
gctgtcctta acctaggcat ctgcgtccgt ccctgtgaca ctcaagagct 200
acgatgtctg tgtattcagg aacactctga attcattcct ctcaaactca 250
ttaaaaatat aatggtgata ttcgagacca tttactgcaa cagaaaggaa 300
gtgatagcag tcccaaaaaa tgggagatag atttgtttgg atcctgatgc 350
tccatgggtg aaggtactg ttggcccaat tactaacagg ttcctacctg 400
aggaccta acaaaaaggaa ttccacccgg caatgaagct tctgtatagt 450
gtttagcatg aaaagcctct atatcttca tttgggagac ctgagaacaa 500
gagaatattt cccttccaa ttcccggagac ctctagacac tttgctgatt 550
tagctcacaa cagtatagg aattttctac gggactccag tgaagtcagc 600
ttgacaggca gtgatgccta aaagccactc atgaggcaaa gagtttcaag 650
gaagctctcc ttctggagtt ttggcggtct cattcttata ctctattccc 700
gcgttagtct ggtgtatgga tctatgagct ctctttat attttattat 750
aaatgtttta ttacttaac ttccctagtga atgttcacag gtgactgctc 800
ccccatcccc atttcttgat attacatata atggcatcat atacccttt 850
attgactgac aaactactca gattgcttaa cattttgtgc ttcaaagtct 900
tatcccactc cactatggc ttttacagag tgcattctgg ttttagagcaa 950
ggctccttgt ctcaagtgc ccagggtgaa atacttctt gaaaaatttt 1000
cattcatcag aaaatctgaa ataaaaatat gtcttaattt ag 1042

<210> 78
<211> 167
<212> PRT
<213> Homo Sapien

<400> 78
Met Ala Ala Gln Gly Trp Ser Met Leu Leu Leu Ala Val Leu Asn
1 5 10 15
Leu Gly Ile Phe Val Arg Pro Cys Asp Thr Gln Glu Leu Arg Cys
20 25 30
Leu Cys Ile Gln Glu His Ser Glu Phe Ile Pro Leu Lys Leu Ile
35 40 45
Lys Asn Ile Met Val Ile Phe Glu Thr Ile Tyr Cys Asn Arg Lys
50 55 60

Glu	Val	Ile	Ala	Val	Pro	Lys	Asn	Gly	Ser	Met	Ile	Cys	Leu	Asp
65														75
Pro	Asp	Ala	Pro	Trp	Val	Lys	Ala	Thr	Val	Gly	Pro	Ile	Thr	Asn
80														90
Arg	Phe	Leu	Pro	Glu	Asp	Leu	Lys	Gln	Lys	Glu	Phe	Pro	Pro	Ala
95														105
Met	Lys	Leu	Leu	Tyr	Ser	Val	Glu	His	Glu	Lys	Pro	Leu	Tyr	Leu
110														120
Ser	Phe	Gly	Arg	Pro	Glu	Asn	Lys	Arg	Ile	Phe	Pro	Phe	Pro	Ile
125														135
Arg	Glu	Thr	Ser	Arg	His	Phe	Ala	Asp	Leu	Ala	His	Asn	Ser	Asp
140														150
Arg	Asn	Phe	Leu	Arg	Asp	Ser	Ser	Glu	Val	Ser	Leu	Thr	Gly	Ser
155														165

Asp Ala

<210> 79
<211> 798
<212> DNA
<213> Homo Sapien

<220>
<221> unsure
<222> 794
<223> unknown base

<400> 79
cagacatggc tcagtcactg gctctgagcc tccttatacct gtttctggcc 50
tttggcatcc ccaggaccca aggcagtgtat ggaggggctc aggactgttg 100
cctcaagtac agccaaagga agattccgc caaggttgc cgcagctacc 150
ggaagcagga accaagctta ggctgctcca tccagctat cctgttcttg 200
ccccgcaagc gctctcaggc agagctatgt gcagacccaa aggagctctg 250
ggtcagcag ctgatgcagc atctggacaa gacaccatcc ccacagaaac 300
cagcccaggg ctgcaggaag gacagggggg cctccaagac tggcaagaaa 350
ggaaagggct ccaaaggctg caagaggact gagcggtcac agacccctaa 400
agggccatag cccagtgagc agcctggagc cttggagacc ccaccagcct 450
caccagcgct tgaagcctga acccaagatg caagaaggag gctatgctca 500
ggggccctgg agcagccacc ccatgctggc cttgccacac tctttctcct 550
gctttaacca ccccatctgc attccagct ctaccctgca tggctgagct 600

gcccacagca ggccaggtcc agagagacccg aggagggaga gtctcccagg 650
 gagcatgaga ggaggcagca ggactgtccc cttgaaggag aatcatcagg 700
 accctggacc tgatacggct ccccagtaca ccccacctct tccttgtaaa 750
 tatgatttat acctaactga ataaaaagct gttctgtctt cccnccca 798

 <210> 80
 <211> 134
 <212> PRT
 <213> Homo Sapien

 <400> 80
 Met Ala Gln Ser Leu Ala Leu Ser Leu Leu Ile Leu Val Leu Ala
 1 5 10 15
 Phe Gly Ile Pro Arg Thr Gln Gly Ser Asp Gly Gly Ala Gln Asp
 20 25 30
 Cys Cys Leu Lys Tyr Ser Gln Arg Lys Ile Pro Ala Lys Val Val
 35 40 45
 Arg Ser Tyr Arg Lys Gln Glu Pro Ser Leu Gly Cys Ser Ile Pro
 50 55 60
 Ala Ile Leu Phe Leu Pro Arg Lys Arg Ser Gln Ala Glu Leu Cys
 65 70 75
 Ala Asp Pro Lys Glu Leu Trp Val Gln Gln Leu Met Gln His Leu
 80 85 90
 Asp Lys Thr Pro Ser Pro Gln Lys Pro Ala Gln Gly Cys Arg Lys
 95 100 105
 Asp Arg Gly Ala Ser Lys Thr Gly Lys Lys Gly Lys Gly Ser Lys
 110 115 120
 Gly Cys Lys Arg Thr Glu Arg Ser Gln Thr Pro Lys Gly Pro
 125 130

 <210> 81
 <211> 20
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Synthetic oligonucleotide probe

 <400> 81
 agacatggct cagtcactgg 20

 <210> 82
 <211> 19
 <212> DNA
 <213> Artificial Sequence

 <220>

<223> Synthetic oligonucleotide probe

<400> 82
gaccgcctaaa gggccatag 19

<210> 83
<211> 924
<212> DNA
<213> Homo Sapien

<400> 83
aaggagcagc ccgcaagcac caagttagag gcatgaagtt acagtgtgtt 50
tccctttggc tcctgggtac aatactgata ttgtgctcag tagacaacca 100
cggtctcagg agatgtctga tttccacaga catgcaccat atagaagaga 150
gtttccaaga aatcaaaaga gccatccaag ctaaggacac cttcccaa 200
gtcactatcc tgtccacatt ggagactctg cagatcatta agcccttaga 250
tgtgtgctgc gtgaccaaga acctcctggc gttctacgtg gacagggtgt 300
tcaaggatca tcaggagcca aaccccaaaa tcttgagaaa aatcagcagc 350
attgccaact ctttcctcta catgcagaaa actctgcggc aatgtcagga 400
acagaggcag tgtcaactgca ggcaggaagc caccaatgcc accagagtca 450
tccatgacaa ctatgatcag ctggagggtcc acgctgctgc cattaaatcc 500
ctgggagagc tcgacgtctt tctagcctgg attaataaga atcatgaagt 550
aatgttctca gcttgatgac aaggaacctg tatagtgatc cagggatgaa 600
cacccctgt gcggtttact gtgggagaca gcccaccttg aaggggaagg 650
agatgggaa ggcccttgc agctgaaagt cccactggct ggcctcaggc 700
tgtcttattc cgcttgaaaa taggcaaaaa gtctactgtg gtatttgtaa 750
taaactctat ctgctgaaag ggctgcagg ccatcctggg agtaaaggc 800
tgccttccca tctaatttat tgtaaagtca tatagtccat gtctgtgatg 850
tgagccaaat gatatcctgt agtacacatt gtactgagtg gttttctga 900
ataaaattcca tattttacccat atga 924

<210> 84
<211> 177
<212> PRT
<213> Homo Sapien

<400> 84
Met Lys Leu Gln Cys Val Ser Leu Trp Leu Leu Gly Thr Ile Leu
1 5 10 15

Ile	Leu	Cys	Ser	Val	Asp	Asn	His	Gly	Leu	Arg	Arg	Cys	Leu	Ile
20								25				30		
Ser	Thr	Asp	Met	His	His	Ile	Glu	Glu	Ser	Phe	Gln	Glu	Ile	Lys
35							40					45		
Arg	Ala	Ile	Gln	Ala	Lys	Asp	Thr	Phe	Pro	Asn	Val	Thr	Ile	Leu
50								55				60		
Ser	Thr	Leu	Glu	Thr	Leu	Gln	Ile	Ile	Lys	Pro	Leu	Asp	Val	Cys
65							70					75		
Cys	Val	Thr	Lys	Asn	Leu	Leu	Ala	Phe	Tyr	Val	Asp	Arg	Val	Phe
80								85				90		
Lys	Asp	His	Gln	Glu	Pro	Asn	Pro	Lys	Ile	Leu	Arg	Lys	Ile	Ser
95								100				105		
Ser	Ile	Ala	Asn	Ser	Phe	Leu	Tyr	Met	Gln	Lys	Thr	Leu	Arg	Gln
110								115				120		
Cys	Gln	Glu	Gln	Arg	Gln	Cys	His	Cys	Arg	Gln	Glu	Ala	Thr	Asn
125								130				135		
Ala	Thr	Arg	Val	Ile	His	Asp	Asn	Tyr	Asp	Gln	Leu	Glu	Val	His
140								145				150		
Ala	Ala	Ala	Ile	Lys	Ser	Leu	Gly	Glu	Leu	Asp	Val	Phe	Leu	Ala
155								160				165		
Trp	Ile	Asn	Lys	Asn	His	Glu	Val	Met	Phe	Ser	Ala			
170								175						

<210> 85
 <211> 2137
 <212> DNA
 <213> Homo Sapien

<400> 85
 gctcccagcc aagaacctcg gggccgctgc gcgggtgggaa ggagttcccc 50
 gaaacccggc cgctaagcga ggccctccccc tcccgagat ccgaacggcc 100
 tgggcggggt caccgggct gggacaagaa gccgcccct gcctgcccgg 150
 gccccgggag ggggctgggg ctggggccgg aggccccgtg tgagtgggtg 200
 tgtgcggggg gcggaggctt gatgcaatcc cgataagaaa tgctcgggtg 250
 tcttgggacac ctacccgtgg ggcccgtaag gcgcgtactat ataaggctgc 300
 cggcccgagcc cgcgcgcgc gtcagagcag gagcgctgcg tccaggatct 350
 agggccacga ccatcccaac cggcactca cagccccgca ggcgcaccccg 400
 gtcgcccggcc agcctcccgcc accccccatcg ccggagctgc gccgagagcc 450
 ccagggaggt gccatgcgga gcgggtgtgt ggtggtccac gtatggatcc 500

tggccggcct ctggctggcc gtggccgggc gccccctcgc cttctcgac 550
gcggggccccc acgtgcacta cggctggggc gaccccatcc gcctgcggca 600
cctgtacacc tccggccccc acgggctctc cagctgcttc ctgcgcacatcc 650
gtgccgacgg cgtcgtggac tgcgcgccgg gccagagcgc gcacagttg 700
ctggagatca aggcaagtgc tctgcggacc gtggccatca agggcgtgca 750
cagcgtgcgg tacctctgca tgggcgccga cggcaagatg caggggctgc 800
ttcagtactc ggaggaagac tgtgctttcg aggaggagat cgcgcacat 850
ggctacaatg tgtaccgatc cgagaagcac cgcctcccg tctccctgag 900
cagtgcacaaa cagcggcagc tgtacaagaa cagaggctt cttccactct 950
ctcatttcct gccatgctg cccatggtcc cagaggagcc tgaggacctc 1000
aggggccact tggaatctga catgttctct tcgccccctgg agaccgacag 1050
catggaccca tttgggcttg tcacccggact ggaggccgtg aggagtccca 1100
gctttgagaa gtaactgaga ccatgcccgg gcctcttcac tgctgccagg 1150
ggctgtggta cctgcagcgt gggggacgtg cttctacaag aacagtcctg 1200
agtccacggt ctgttagct ttaggaagaa acatctagaa gttgtacata 1250
ttcagagttt tccattggca gtgccagttt ctgcacata gacttgtctg 1300
atcataacat tgtaagcctg tagcttgcgg agctgctgcc tggggccccc 1350
ttctgctccc tcgaggttgc tggacaagct gctgcactgt ctcagttctg 1400
cttgaataacc tccatcgatg gggaaactcac ttcccttggaa aaaattctta 1450
tgtcaagctg aaattctcta atttttctc atcacttccc caggaggcagc 1500
cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgta 1550
aaacacgcagg taaatttcac tcaaccccat gtgggaattt atctatatct 1600
ctacttccag ggaccatttg cccttcccaa atccctccag gccagaactg 1650
actggagcag gcatggccca ccaggcttca ggagtagggg aagcctggag 1700
ccccactcca gccctggac aacttgagaa ttccccctga ggccagttct 1750
gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctgctt 1800
ccatctccca gcccaccagc cctctgcccc cctcacatgc ctccccatgg 1850
attggggcct cccaggcccc ccacctttag tcaacctgca cttctgttc 1900
aaaaatcagg aaaagaaaag atttgaagac cccaagtctt gtcaataact 1950

tgctgtgtgg aagcagcggg ggaagaccta gaacccttc cccagcactt 2000
ggttttccaa catgatattt atgagtaatt tattttgata tgtacatctc 2050
ttatttctt acattattta tgcccccaaa ttatattat gtatgtaagt 2100
gaggtttggtt ttgtatatta aaatggagtt tgtttgt 2137

<210> 86
<211> 216
<212> PRT
<213> Homo Sapien

<400> 86
Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly
1 5 10 15
Leu Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala
20 25 30
Gly Pro His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg
35 40 45
His Leu Tyr Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu
50 55 60
Arg Ile Arg Ala Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser
65 70 75
Ala His Ser Leu Leu Glu Ile Lys Ala Val Ala Leu Arg Thr Val
80 85 90
Ala Ile Lys Gly Val His Ser Val Arg Tyr Leu Cys Met Gly Ala
95 100 105
Asp Gly Lys Met Gln Gly Leu Leu Gln Tyr Ser Glu Glu Asp Cys
110 115 120
Ala Phe Glu Glu Glu Ile Arg Pro Asp Gly Tyr Asn Val Tyr Arg
125 130 135
Ser Glu Lys His Arg Leu Pro Val Ser Leu Ser Ser Ala Lys Gln
140 145 150
Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu Pro Leu Ser His Phe
155 160 165
Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro Glu Asp Leu Arg
170 175 180
Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu Glu Thr Asp
185 190 195
Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala Val Arg
200 205 210
Ser Pro Ser Phe Glu Lys
215

<210> 87
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 87
atccgcccag atggctacaa tgtgta 26

<210> 88
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 88
gcctcccggt ctccctgagc agtgccaaac agccgcgtg ta 42

<210> 89
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 89
ccagtccggc gacaagccca aa 22

<210> 90
<211> 1857
<212> DNA
<213> Homo Sapien

<400> 90
gtctgttccc aggagtcctt cggcggctgt tgtgtcagtgc gcctgatcgc 50
gatggggaca aaggcgcaag tcgagaggaa actgttgtgc ctcttcataat 100
tggcgatcct gttgtgctcc ctggcattgg gcagtgttac agtgcactct 150
tctgaacctg aagtcaaat tcctgagaat aatcctgtga agttgtcctg 200
tgcctactcg ggctttctt ctccccgtgt ggagtgaaag tttgaccaag 250
gagacaccac cagactcggt tgctataata acaagatcac agcttcctat 300
gaggaccggg tgaccttctt gccaaactggt atcaccttca agtccgtgac 350
acgggaagac actgggacat acacttgtat ggtctctgag gaaggcggca 400
acagctatgg ggaggtcaag gtcaagctca tcgtgcttgc gcctccatcc 450
aagcctacag ttaacatccc ctccctgtcc accattggga accggggcagt 500

gctgacatgc tcagaacaag atggttcccc accttctgaa tacacctgg 550
tcaaagatgg gatagtgatg cctacgaatc ccaaaggcac ccgtgccttc 600
agcaactctt cctatgtcct gaatcccaca acaggagagc tggctttga 650
tccccgtca gcctctgata ctggagaata cagctgtgag gcacggaatg 700
ggtatggac acccatgact tcaaatgctg tgcgcatgga agctgtggag 750
cggaatgtgg gggtcatcgt ggcagccgtc cttgtaaccc tgattctcct 800
ggaaatcttgc tttttggca tctggttgc ctatagccga ggccactttg 850
acagaacaaa gaaagggact tcgagtaaga aggtgattt cagccagcct 900
agtgcggaa gtgaaggaga attcaaacag acctcgcat tcctggtgt 950
agcctggtcg gtcaccgc tatcatctgc atttgcctta ctcaggtgct 1000
accggactct ggccctgtat gtctgttagtt tcacaggatg ccttatttgt 1050
cttctacacc ccacagggcc ccctacttct tcggatgtgt ttttaataat 1100
gtcagctatg tgccccatcc tccttcatgc cctccctccc ttccctacca 1150
ctgctgagtgc ccttggaaact tttttaaagt gtttattccc catttctttg 1200
agggatcagg aaggaatccc gggtatgcca ttgacttccc ttctaaatgt 1250
acagcaaaaa tggcgggggc cgcaggaatc tgcaatcaac tgcccacctg 1300
gctggcaggg atcttgaat aggtatcttgc agcttggttc tggctcttt 1350
ccttgcgtac tgacgaccag ggccagctgt tctagagcgg gaatttagagg 1400
ctagagcggc tgaaatggtt ttttggtgat gacactgggg tcctccatc 1450
tctggggccc actctttct gtctccat gggaaagtgcc actgggatcc 1500
ctctgcctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt 1550
ggaaaatggg agctttgtt gtggagagca tagtaaattt tcagagaact 1600
tgaagccaaa aggatttaaa accgctgctc taaagaaaag aaaactggag 1650
gctggcgcga gtggctcagc cctgtaatcc cagaggctga ggcaggcgg 1700
tcacctgagg tcgggagttc gggatcagcc tgaccaacat ggagaaaccc 1750
tactggaaat acaaagtttgc ccaggcatgg tggtgcatgc ctgttagtccc 1800
agctgctcag gagcctggca acaagagcaa aactccagct caaaaaaaaaa 1850
aaaaaaaa 1857

<210> 91
<211> 299

<212> PRT
<213> Homo Sapien

<400> 91

Met	Gly	Thr	Lys	Ala	Gln	Val	Glu	Arg	Lys	Leu	Leu	Cys	Leu	Phe
1				5					10				15	
Ile	Leu	Ala	Ile	Leu	Leu	Cys	Ser	Leu	Ala	Leu	Gly	Ser	Val	Thr
	20					25					30			
Val	His	Ser	Ser	Glu	Pro	Glu	Val	Arg	Ile	Pro	Glu	Asn	Asn	Pro
	35					40					45			
Val	Lys	Leu	Ser	Cys	Ala	Tyr	Ser	Gly	Phe	Ser	Ser	Pro	Arg	Val
	50						55					60		
Glu	Trp	Lys	Phe	Asp	Gln	Gly	Asp	Thr	Thr	Arg	Leu	Val	Cys	Tyr
	65						70					75		
Asn	Asn	Lys	Ile	Thr	Ala	Ser	Tyr	Glu	Asp	Arg	Val	Thr	Phe	Leu
	80					85					90			
Pro	Thr	Gly	Ile	Thr	Phe	Lys	Ser	Val	Thr	Arg	Glu	Asp	Thr	Gly
	95						100					105		
Thr	Tyr	Thr	Cys	Met	Val	Ser	Glu	Glu	Gly	Gly	Asn	Ser	Tyr	Gly
	110					115					120			
Glu	Val	Lys	Val	Lys	Leu	Ile	Val	Leu	Val	Pro	Pro	Ser	Lys	Pro
	125						130					135		
Thr	Val	Asn	Ile	Pro	Ser	Ser	Ala	Thr	Ile	Gly	Asn	Arg	Ala	Val
	140					145					150			
Leu	Thr	Cys	Ser	Glu	Gln	Asp	Gly	Ser	Pro	Pro	Ser	Glu	Tyr	Thr
	155						160					165		
Trp	Phe	Lys	Asp	Gly	Ile	Val	Met	Pro	Thr	Asn	Pro	Lys	Ser	Thr
	170						175					180		
Arg	Ala	Phe	Ser	Asn	Ser	Ser	Tyr	Val	Leu	Asn	Pro	Thr	Thr	Gly
	185					190					195			
Glu	Leu	Val	Phe	Asp	Pro	Leu	Ser	Ala	Ser	Asp	Thr	Gly	Glu	Tyr
	200						205					210		
Ser	Cys	Glu	Ala	Arg	Asn	Gly	Tyr	Gly	Thr	Pro	Met	Thr	Ser	Asn
	215						220					225		
Ala	Val	Arg	Met	Glu	Ala	Val	Glu	Arg	Asn	Val	Gly	Val	Ile	Val
	230						235					240		
Ala	Ala	Val	Leu	Val	Thr	Leu	Ile	Leu	Leu	Gly	Ile	Leu	Val	Phe
	245						250					255		
Gly	Ile	Trp	Phe	Ala	Tyr	Ser	Arg	Gly	His	Phe	Asp	Arg	Thr	Lys
	260					265					270			

Lys Gly Thr Ser Ser Lys Val Ile Tyr Ser Gln Pro Ser Ala
275 280 285

Arg Ser Glu Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
290 295

<210> 92
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 92
tcgcggagct gtgttctgtt tccc 24

<210> 93
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 93
tgatcgcgat ggggacaaaag gcgcaagctc gagagggaaac tgttgtgcct 50

<210> 94
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 94
acacctgggtt caaagatggg 20

<210> 95
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 95
taggaagagt tgctgaaggc acgg 24

<210> 96
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 96
ttgccttact caggtgctac 20

<210> 97
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 97
actcagcagt ggttaggaaag 20

<210> 98
<211> 1200
<212> DNA
<213> Homo Sapien

<400> 98
cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca 50
acctcactct gtgcttacag ctgctgatcc tctgctgtca aactcagttac 100
gtgagggacc agggcgccat gaccgaccag ctgagcaggc ggcagatccg 150
cgagtaccaa ctctacagca ggaccagtgg caagcacgtg caggtcaccg 200
ggcgtcgcat ctccgccacc gccgaggacg gcaacaagtt tgccaagctc 250
atagtggaga cggacacgtt tggcagccgg gttcgcatca aaggggctga 300
gagtgagaag tacatctgtt tgaacaagag gggcaagctc atcgggaagc 350
ccagcgggaa gagcaaagac tgcgtgttca cggagatcgt gctggagaac 400
aactatacgg cttccagaa cgcggcac gagggcttgtt tcatggcctt 450
cacgcggcaag gggcgcccccc gccaggcttc cgcagccgc cagaaccagc 500
gcgaggccca cttcatcaag cgcctctacc aaggccagct gccctcccc 550
aaccacgccc agaagcagaa gcagttcgag tttgtggct cggcccccac 600
ccgcccggacc aagcgcacac ggcggccccca gccctcacg tagtctggga 650
ggcagggggc agcagccctt gggccgcctc cccacccctt tcccttctta 700
atccaaggac tgggctgggg tggcgggagg ggagccagat ccccgaggg 750
ggaccctgag ggccgcgaag catccgagcc cccagctggg aaggggcagg 800
ccgggtgcccc aggggcggct ggcacagtgc ccccttccccg gacgggtggc 850
aggccctgga gaggaactga gtgtcaccct gatctcagggc caccagccctc 900
tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg 950

aaggccttgc agacaaccgt ctggagggtgg ctgcctcaa aatctgcttc 1000
 tcggatctcc ctcagtctgc ccccagcccc caaactcctc ctggctagac 1050
 tgttaggaagg gactttgtt tttttgtttt tttcaggaaa aaagaaaagg 1100
 agagagagga aaatagaggg ttgtccactc ctcacattcc acgaccagg 1150
 cctgcacccc acccccaact cccagccccg gaataaaacc attttcctgc 1200

 <210> 99
 <211> 205
 <212> PRT
 <213> Homo Sapien

 <400> 99
 Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln
 1 5 10 15

 Leu Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly
 20 25 30

 Ala Met Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln
 35 40 45

 Leu Tyr Ser Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg
 50 55 60

 Arg Ile Ser Ala Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu
 65 70 75

 Ile Val Glu Thr Asp Thr Phe Gly Ser Arg Val Arg Ile Lys Gly
 80 85 90

 Ala Glu Ser Glu Lys Tyr Ile Cys Met Asn Lys Arg Gly Lys Leu
 95 100 105

 Ile Gly Lys Pro Ser Gly Lys Ser Lys Asp Cys Val Phe Thr Glu
 110 115 120

 Ile Val Leu Glu Asn Asn Tyr Thr Ala Phe Gln Asn Ala Arg His
 125 130 135

 Glu Gly Trp Phe Met Ala Phe Thr Arg Gln Gly Arg Pro Arg Gln
 140 145 150

 Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu Ala His Phe Ile Lys
 155 160 165

 Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn His Ala Glu Lys
 170 175 180

 Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr Arg Arg Thr
 185 190 195

 Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr
 200 205

<210> 100
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 100
cagtagtga gggaccaggg cgccatga 28

<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 101
ccggtgacact gcacgtgctt gccca 24

<210> 102
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<220>
<221> unsure
<222> 21
<223> unknown base

<400> 102
gcggatctgc cgcctgctca nctggtcgggt catggcgccc t 41

<210> 103
<211> 1679
<212> DNA
<213> Homo Sapien

<400> 103
gttgtgtcct tcagcaaaac agtggattta aatctccttg cacaagcttg 50
agagcaacac aatcttatcag gaaagaaaaga aagaaaaaaaaa ccgaacctga 100
caaaaaagaa gaaaaagaag aagaaaaaaaaa atcatgaaaa ccatccagcc 150
aaaaatgcac aattcttatct cttggcaat cttcacgggg ctggctgctc 200
tgtgtctctt ccaaggagtg cccgtgcgca gcggagatgc cacctcccc 250
aaagctatgg acaacgtgac ggtccggcag ggggagagcg ccaccctcag 300
gtgcactatt gacaaccggg tcacccgggt ggcctggcta aaccgcagca 350

ccatccctcta tgctggaaat gacaagtggc gcctggatcc tcgcgtggc 400
cttctgagca acacccaaac gcagtgacgc atcgagatcc agaacgtgga 450
tgtgtatgac gagggccctt acacctgctc ggtgcagaca gacaaccacc 500
caaagacctc tagggtccac ctcattgtgc aagtatctcc caaaattgta 550
gagattctt cagatatctc cattaatgaa gggacaata ttagcctcac 600
ctgcatagca actggtagac cagagcctac ggtaacttgg agacacatct 650
ctccccaaagc ggttggctt gtgagtgaa agcataactt ggaaattcag 700
ggcatcaccc gggagcagtc agggactac gagtcagtg cctccaatga 750
cgtggccgca cccgtggta gggaggtaaa ggtaaccgtg aactatccac 800
catacatttc agaagccaag ggtacaggtg tccccgtggg aaaaaagggg 850
acactgcagt gtgaagcctc agcagtcccc tcagcagaat tccagtggta 900
caaggatgac aaaagactga ttgaaggaaa gaaagggtg aaagtggaaa 950
acagacctt cctctcaaaa ctcatcttct tcaatgtctc tgaacatgac 1000
tatggaaact acacttgcgt ggcctccaac aagctggcc acaccaatgc 1050
cagcatcatg ctatggtc cagggccgt cagcgaggtg agcaacggca 1100
cgtcgaggag ggcaggctgc gtctggctgc tgccctttct ggtctgcac 1150
ctgcttctca aattttgatg tgagtgccac ttccccaccc gggaaaggct 1200
gccgccacca ccaccaccaa cacaacagca atggcaacac cgacagcaac 1250
caatcagata tatacaaattg aaattagaag aaacacagcc tcatgggaca 1300
gaaatttgag ggagggaaac aaagaatact ttggggggaa aagagttta 1350
aaaaagaaat tgaaaattgc cttgcagata ttttaggtaca atggagttt 1400
ctttcccaa acgggaagaa cacagcacac cccggcttggc cccactgcaa 1450
gctgcacgt gcaaccttgc tggtgccagt gtgggcaagg gctcagcctc 1500
tctgcccaca gagtgccccc acgtggaaaca ttctggagct ggccatccca 1550
aattcaatca gtccatagag acgaacagaa tgagaccttc cggcccaagc 1600
gtggcgctgc gggcactttg gtagactgtg ccaccacggc gtgtgttgc 1650
aaacgtgaaa taaaaagagc aaaaaaaaaa 1679

<210> 104
<211> 344
<212> PRT
<213> Homo Sapien

<400> 104

Met	Lys	Thr	Ile	Gln	Pro	Lys	Met	His	Asn	Ser	Ile	Ser	Trp	Ala	
1				5			10							15	
Ile	Phe	Thr	Gly	Leu	Ala	Ala	Leu	Cys	Leu	Phe	Gln	Gly	Val	Pro	
				20					25					30	
Val	Arg	Ser	Gly	Asp	Ala	Thr	Phe	Pro	Lys	Ala	Met	Asp	Asn	Val	
				35					40					45	
Thr	Val	Arg	Gln	Gly	Glu	Ser	Ala	Thr	Leu	Arg	Cys	Thr	Ile	Asp	
				50					55					60	
Asn	Arg	Val	Thr	Arg	Val	Ala	Trp	Leu	Asn	Arg	Ser	Thr	Ile	Leu	
				65					70					75	
Tyr	Ala	Gly	Asn	Asp	Lys	Trp	Cys	Leu	Asp	Pro	Arg	Val	Val	Leu	
				80					85					90	
Leu	Ser	Asn	Thr	Gln	Thr	Gln	Tyr	Ser	Ile	Glu	Ile	Gln	Asn	Val	
				95					100					105	
Asp	Val	Tyr	Asp	Glu	Gly	Pro	Tyr	Thr	Cys	Ser	Val	Gln	Thr	Asp	
				110					115					120	
Asn	His	Pro	Lys	Thr	Ser	Arg	Val	His	Leu	Ile	Val	Gln	Val	Ser	
				125					130					135	
Pro	Lys	Ile	Val	Glu	Ile	Ser	Ser	Asp	Ile	Ser	Ile	Asn	Glu	Gly	
				140					145					150	
Asn	Asn	Ile	Ser	Leu	Thr	Cys	Ile	Ala	Thr	Gly	Arg	Pro	Glu	Pro	
				155					160					165	
Thr	Val	Thr	Trp	Arg	His	Ile	Ser	Pro	Lys	Ala	Val	Gly	Phe	Val	
				170					175					180	
Ser	Glu	Asp	Glu	Tyr	Leu	Glu	Ile	Gln	Gly	Ile	Thr	Arg	Glu	Gln	
				185					190					195	
Ser	Gly	Asp	Tyr	Glu	Cys	Ser	Ala	Ser	Asn	Asp	Val	Ala	Ala	Pro	
				200					205					210	
Val	Val	Arg	Arg	Val	Lys	Val	Thr	Val	Asn	Tyr	Pro	Pro	Tyr	Ile	
				215					220					225	
Ser	Glu	Ala	Lys	Gly	Thr	Gly	Val	Pro	Val	Gly	Gln	Lys	Gly	Thr	
				230					235					240	
Leu	Gln	Cys	Glu	Ala	Ser	Ala	Val	Pro	Ser	Ala	Glu	Phe	Gln	Trp	
				245					250					255	
Tyr	Lys	Asp	Asp	Lys	Arg	Leu	Ile	Glu	Gly	Lys	Lys	Gly	Val	Lys	
				260					265					270	
Val	Glu	Asn	Arg	Pro	Phe	Leu	Ser	Lys	Leu	Ile	Phe	Phe	Asn	Val	
				275					280					285	

Ser	Glu	His	Asp	Tyr	Gly	Asn	Tyr	Thr	Cys	Val	Ala	Ser	Asn	Lys
290						295						300		
Leu	Gly	His	Thr	Asn	Ala	Ser	Ile	Met	Leu	Phe	Gly	Pro	Gly	Ala
305							310					315		
Val	Ser	Glu	Val	Ser	Asn	Gly	Thr	Ser	Arg	Arg	Ala	Gly	Cys	Val
320								325					330	
Trp	Leu	Leu	Pro	Leu	Leu	Val	Leu	His	Leu	Leu	Leu	Lys	Phe	
								335				340		

<210> 105
 <211> 1734
 <212> DNA
 <213> Homo Sapien

<400> 105
 gtggactctg agaagccca agcagttgagg acaggagaga gaaggctgca 50
 gacccagagg gagggaggac agggagtcgg aaggaggagg acagaggagg 100
 gcacagagac gcagagcaag ggcggcaagg aggagaccct ggtgggagga 150
 agacactctg gagagagagg gggctggca gagatgaagt tccaggggcc 200
 cctggcctgc ctccctgctgg ccctctgcct gggcagtggg gaggctggcc 250
 ccctgcagag cggagaggaa agcactggga caaatattgg ggaggccctt 300
 ggacatggcc tgggagacgc cctgagcgaa ggggtggaa aggccattgg 350
 caaagaggcc ggagggcag ctggctctaa agtcagttag gcccattggcc 400
 aagggaccag agaagcagtt ggcactggag tcagggcaggt tccaggctt 450
 ggcgcagcag atgctttggg caacagggtc ggggaagcag cccatgtct 500
 gggaaacact gggcacgaga ttggcagaca ggcagaagat gtcattcgac 550
 acggagcaga tgctgtccgc ggctcctggc aggggggtgcc tggccacagt 600
 ggtgcttggg aaacttctgg aggccatggc atctttggct ctcaaggtag 650
 ccttggaggc cagggccagg gcaatcctgg aggtctgggg actccgtggg 700
 tccacggata ccccgaaac tcagcaggca gctttggaaat gaatcctcag 750
 ggagctccct ggggtcaagg aggcaatggaa gggccaccaa actttgggac 800
 caacactcag ggagctgtgg cccagcctgg ctatggttca gtgagagcca 850
 gcaaccagaa tgaagggtgc acgaatcccc caccatctgg ctcaggtgg 900
 ggctccagca actctggggg aggcagcggc tcacagtcgg gcagcagtgg 950
 cagttggcagc aatggtgaca acaacaatgg cagcagcagt ggtggcagca 1000

gcagtggcag cagcagtggc agcagcagtg gcggcagcag tggcggcagc 1050
 agtggtggca gcagtggcaa cagtggtggc agcagaggtg acagcggcag 1100
 tgagtctcc tggggatcca gcaccggctc ctctccggc aaccacggtg 1150
 ggagcggcgg aggaaatgga cataaaccgg ggtgtgaaaa gccagggaat 1200
 gaagcccgcg ggagcgggaa atctgggatt caggcattca gaggacaggg 1250
 agtttccagc aacatgaggg aaataagcaa agagggcaat cgccctccttg 1300
 gaggctctgg agacaattat cggggcaag ggtcgagctg gggcagtgg 1350
 ggaggtgacg ctgttggtgg agtcaatact gtgaactctg agacgtctcc 1400
 tgggatgtt aacttgaca ctttctgaa gaattttaaa tccaagctgg 1450
 gtttcatcaa ctgggatgcc ataaacaagg accagagaag ctctcgcatc 1500
 ccgtgacctc cagacaagga gccaccagat tggatggag cccccacact 1550
 ccctccttaa aacaccaccc tctcatcact aatctcagcc cttgcccttg 1600
 aaataaacct tagctgcccc aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1700
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1734

<210> 106
 <211> 440
 <212> PRT
 <213> Homo Sapien

<400> 106
 Met Lys Phe Gln Gly Pro Leu Ala Cys Leu Leu Leu Ala Leu Cys
 1 5 10 15
 Leu Gly Ser Gly Glu Ala Gly Pro Leu Gln Ser Gly Glu Glu Ser
 20 25 30
 Thr Gly Thr Asn Ile Gly Glu Ala Leu Gly His Gly Leu Gly Asp
 35 40 45
 Ala Leu Ser Glu Gly Val Gly Lys Ala Ile Gly Lys Glu Ala Gly
 50 55 60
 Gly Ala Ala Gly Ser Lys Val Ser Glu Ala Leu Gly Gln Gly Thr
 65 70 75
 Arg Glu Ala Val Gly Thr Gly Val Arg Gln Val Pro Gly Phe Gly
 80 85 90
 Ala Ala Asp Ala Leu Gly Asn Arg Val Gly Glu Ala Ala His Ala
 95 100 105
 Leu Gly Asn Thr Gly His Glu Ile Gly Arg Gln Ala Glu Asp Val

110	115	120
Ile Arg His Gly Ala Asp Ala Val Arg	Gly Ser Trp Gln Gly Val	
125	130	135
Pro Gly His Ser Gly Ala Trp Glu Thr	Ser Gly Gly His Gly Ile	
140	145	150
Phe Gly Ser Gln Gly Gly Leu Gly Gly	Gln Gly Gln Gly Asn Pro	
155	160	165
Gly Gly Leu Gly Thr Pro Trp Val His	Gly Tyr Pro Gly Asn Ser	
170	175	180
Ala Gly Ser Phe Gly Met Asn Pro Gln	Gly Ala Pro Trp Gly Gln	
185	190	195
Gly Gly Asn Gly Gly Pro Pro Asn Phe	Gly Thr Asn Thr Gln Gly	
200	205	210
Ala Val Ala Gln Pro Gly Tyr Gly Ser	Val Arg Ala Ser Asn Gln	
215	220	225
Asn Glu Gly Cys Thr Asn Pro Pro Pro	Ser Gly Ser Gly Gly Gly	
230	235	240
Ser Ser Asn Ser Gly Gly Ser Gly	Ser Gln Ser Gly Ser Ser	
245	250	255
Gly Ser Gly Ser Asn Gly Asp Asn Asn	Asn Gly Ser Ser Ser Gly	
260	265	270
Gly Ser Ser Ser Gly Ser Ser Ser Gly	Ser Ser Ser Gly Gly Ser	
275	280	285
Ser Gly Gly Ser Ser Gly Gly Ser Ser	Gly Asn Ser Gly Gly Ser	
290	295	300
Arg Gly Asp Ser Gly Ser Glu Ser Ser	Trp Gly Ser Ser Thr Gly	
305	310	315
Ser Ser Ser Gly Asn His Gly Gly Ser	Gly Gly Asn Gly His	
320	325	330
Lys Pro Gly Cys Glu Lys Pro Gly Asn	Glu Ala Arg Gly Ser Gly	
335	340	345
Glu Ser Gly Ile Gln Gly Phe Arg Gly	Gln Gly Val Ser Ser Asn	
350	355	360
Met Arg Glu Ile Ser Lys Glu Gly Asn	Arg Leu Leu Gly Gly Ser	
365	370	375
Gly Asp Asn Tyr Arg Gly Gln Gly Ser	Ser Trp Gly Ser Gly Gly	
380	385	390
Gly Asp Ala Val Gly Gly Val Asn Thr	Val Asn Ser Glu Thr Ser	
395	400	405

Pro Gly Met Phe Asn Phe Asp Thr Phe Trp Lys Asn Phe Lys Ser
 410 415 420

Lys Leu Gly Phe Ile Asn Trp Asp Ala Ile Asn Lys Asp Gln Arg
 425 430 435

Ser Ser Arg Ile Pro
 440

<210> 107
 <211> 918
 <212> DNA
 <213> Homo Sapien

<400> 107 .
 agccaggcag cacatcacag cgggaggagc tgtcccaggt ggcccagctc 50
 agcaatggca atgggggtcc ccagagtcat tctgctctgc ctctttgggg 100
 ctgcgcctcg cctgacaggg tcccaagccc tgcagtgcta cagctttgag 150
 cacacctact ttggccctt tgacctcagg gccatgaagc tgcccagcat 200
 ctcctgtcct catgagtgct ttgaggctat cctgtctctg gacaccgggt 250
 atcgcgccgccc ggtgaccctg gtgcggaaagg gctgctggac cgggcctcct 300
 gcgggccaga cgcaatcgaa cccggacgcg ctgcccggcag actactcggt 350
 ggtgcgcggc tgcacaactg acaaattgcaa cgcccacctc atgactcatg 400
 acggccctccc caacctgagc caagcacccg acccgccgac gctcagcggc 450
 gcccggatgt acgcctgtat cggggtccac cagatgact ggcgtatcgg 500
 caggtcccgaa cgagtccagt gtcaccagga ccagaccggc tgcttccagg 550
 gcagtgccag aatgacagtt ggcaatttct cagtcctgtt gtacatcaga 600
 acctgccacc ggcctcctg caccaccgag ggcaccacca gcccctggac 650
 agccatcgac ctccagggtc cctgctgtga ggggtacctc tgcaacagga 700
 aatccatgac ccagcccttc accagtgttt cagccaccac ccctccccga 750
 gcactacagg tcctggccct gtcctccca gtcctcctgc tgggtgggct 800
 ctcagcatag accggccctc cagatgtt gggacagggc tcacacaccc 850
 cattcttgct gttcagccc ctatcacata gtcactgga aaatgtatgtt 900
 aaagtaagaa ttgcaaaa 918

<210> 108
 <211> 251
 <212> PRT
 <213> Homo Sapien

<400> 108

Met Ala Met Gly Val Pro Arg Val Ile Leu Leu Cys Leu Phe Gly
1 5 10 15

Ala Ala Leu Cys Leu Thr Gly Ser Gln Ala Leu Gln Cys Tyr Ser
20 25 30

Phe Glu His Thr Tyr Phe Gly Pro Phe Asp Leu Arg Ala Met Lys
35 40 45

Leu Pro Ser Ile Ser Cys Pro His Glu Cys Phe Glu Ala Ile Leu
50 55 60

Ser Leu Asp Thr Gly Tyr Arg Ala Pro Val Thr Leu Val Arg Lys
65 70 75

Gly Cys Trp Thr Gly Pro Pro Ala Gly Gln Thr Gln Ser Asn Pro
80 85 90

Asp Ala Leu Pro Pro Asp Tyr Ser Val Val Arg Gly Cys Thr Thr
95 100 105

Asp Lys Cys Asn Ala His Leu Met Thr His Asp Ala Leu Pro Asn
110 115 120

Leu Ser Gln Ala Pro Asp Pro Pro Thr Leu Ser Gly Ala Glu Cys
125 130 135

Tyr Ala Cys Ile Gly Val His Gln Asp Asp Cys Ala Ile Gly Arg
140 145 150

Ser Arg Arg Val Gln Cys His Gln Asp Gln Thr Ala Cys Phe Gln
155 160 165

Gly Ser Gly Arg Met Thr Val Gly Asn Phe Ser Val Pro Val Tyr
170 175 180

Ile Arg Thr Cys His Arg Pro Ser Cys Thr Thr Glu Gly Thr Thr
185 190 195

Ser Pro Trp Thr Ala Ile Asp Leu Gln Gly Ser Cys Cys Glu Gly
200 205 210

Tyr Leu Cys Asn Arg Lys Ser Met Thr Gln Pro Phe Thr Ser Ala
215 220 225

Ser Ala Thr Thr Pro Pro Arg Ala Leu Gln Val Leu Ala Leu Leu
230 235 240

Leu Pro Val Leu Leu Val Gly Leu Ser Ala
245 250

<210> 109

<211> 1813

<212> DNA

<213> Homo Sapien

<400> 109

ggagccgccc tgggtgtcag cggctcggt cccgcgcacg ctccggccgt 50
cgcgcagcct cggcacctgc aggtccgtgc gtccccggc tggcgccccct 100
gactccgtcc cggccaggga gggccatgat ttccctcccg gggccccctgg 150
tgaccaactt gctgcggttt ttgttccctgg ggctgagtgc cctcgccccc 200
ccctcgccgg cccagctgca actgcacttg cccgccaacc gggtgcaggc 250
ggtggaggga gggaaagtgg tgcttccagc gtggtacacc ttgcacgggg 300
aggtgtcttc atcccagcca tgggaggtgc cctttgtgat gtggttcttc 350
aaacagaaaag aaaaggagga tcaggtgttg tcctacatca atggggtcac 400
aacaagcaaa cctggagttat ccttggtcta ctccatgccc tcccgaaacc 450
tgtccctgcg gctggagggt ctccaggaga aagactctgg cccctacagc 500
tgctccgtga atgtgcaaga caaacaaggc aaatctaggg gccacagcat 550
caaaaacctta gaactcaatg tactggttcc tccagctctt ccattctgcc 600
gtctccaggg tgtgccccat gtgggggcaa acgtgaccct gagctgccag 650
tctccaaggga gtaagccgc tgtccaatac cagtgggatc ggcagcttcc 700
atccttccag actttcttg caccagcatt agatgtcatc cgtgggtctt 750
taagcctcac caacccttcg tcttccatgg ctggagttcta tgtctgcaag 800
gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc tggaaagttag 850
cacagggcct ggagctgcag tgggtgctgg agctgttgg ggtaccctgg 900
ttggactggg gttgctggct gggctggc tcttgtacca cggccggggc 950
aaggccctgg aggagccagc caatgatatac aaggaggatg ccattgctcc 1000
ccggaccctg ccctggccca agagctcaga cacaatctcc aagaatggga 1050
ccctttctc tgtcacctcc gcacgagccc tccggccacc ccatggccct 1100
cccaggccctg gtgcattgac ccccacgccc agtctctcca gccaggccct 1150
gccctcacca agactgccc caacagatgg ggcccaccct caaccaatat 1200
cccccatccc tggtggggtt tcttcctctg gcttgagccg catgggtgct 1250
gtgcctgtga tggtgccctgc ccagagtcaa gctggctctc tggatgatg 1300
acccccaccac tcattggcta aaggatttg ggtctctctt tcctataagg 1350
gtcacctcta gcacagaggc ctgagtcatg ggaaagagtc acactcctga 1400
cccttagtac tctgccccca cctctcttta ctgtggaaa accatctcag 1450

taagacctaa gtgtccagga gacagaagga gaagaggaag tggatctgga 1500
attgggagga gcctccaccc acccctgact cctccttatg aagccagctg 1550
ctgaaattag ctactcacca agagtgaggg gcagagactt ccagtcactg 1600
agtctccag gcccccttga tctgtacccc acccctatct aacaccaccc 1650
ttggctcca ctccagctcc ctgtattgat ataacctgtc aggctggctt 1700
ggttaggtt tactggggca gaggataggg aatctcttat taaaactaac 1750
atgaaatatg tgttgtttc atttgcaaat taaaataaag atacataatg 1800
tttgtatgaa aaa 1813

<210> 110
<211> 390
<212> PRT
<213> Homo Sapien

<400> 110
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe
1 5 10 15
Leu Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln
20 25 30
Leu Gln Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly
35 40 45
Gly Glu Val Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val
50 55 60
Ser Ser Ser Gln Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe
65 70 75
Lys Gln Lys Glu Lys Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly
80 85 90
Val Thr Thr Ser Lys Pro Gly Val Ser Leu Val Tyr Ser Met Pro
95 100 105
Ser Arg Asn Leu Ser Leu Arg Leu Glu Gly Leu Gln Glu Lys Asp
110 115 120
Ser Gly Pro Tyr Ser Cys Ser Val Asn Val Gln Asp Lys Gln Gly
125 130 135
Lys Ser Arg Gly His Ser Ile Lys Thr Leu Glu Leu Asn Val Leu
140 145 150
Val Pro Pro Ala Pro Pro Ser Cys Arg Leu Gln Gly Val Pro His
155 160 165
Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser Pro Arg Ser Lys
170 175 180

Pro	Ala	Val	Gln	Tyr	Gln	Trp	Asp	Arg	Gln	Leu	Pro	Ser	Phe	Gln
185									190					195
Thr	Phe	Phe	Ala	Pro	Ala	Leu	Asp	Val	Ile	Arg	Gly	Ser	Leu	Ser
200								205						210
Leu	Thr	Asn	Leu	Ser	Ser	Ser	Met	Ala	Gly	Val	Tyr	Val	Cys	Lys
215								220						225
Ala	His	Asn	Glu	Val	Gly	Thr	Ala	Gln	Cys	Asn	Val	Thr	Leu	Glu
230								235						240
Val	Ser	Thr	Gly	Pro	Gly	Ala	Ala	Val	Val	Ala	Gly	Ala	Val	Val
245								250						255
Gly	Thr	Leu	Val	Gly	Leu	Gly	Leu	Leu	Ala	Gly	Leu	Val	Leu	Leu
260								265						270
Tyr	His	Arg	Arg	Gly	Lys	Ala	Leu	Glu	Glu	Pro	Ala	Asn	Asp	Ile
275								280						285
Lys	Glu	Asp	Ala	Ile	Ala	Pro	Arg	Thr	Leu	Pro	Trp	Pro	Lys	Ser
290								295						300
Ser	Asp	Thr	Ile	Ser	Lys	Asn	Gly	Thr	Leu	Ser	Ser	Val	Thr	Ser
305								310						315
Ala	Arg	Ala	Leu	Arg	Pro	Pro	His	Gly	Pro	Pro	Arg	Pro	Gly	Ala
320								325						330
Leu	Thr	Pro	Thr	Pro	Ser	Leu	Ser	Ser	Gln	Ala	Leu	Pro	Ser	Pro
335								340						345
Arg	Leu	Pro	Thr	Thr	Asp	Gly	Ala	His	Pro	Gln	Pro	Ile	Ser	Pro
350								355						360
Ile	Pro	Gly	Gly	Val	Ser	Ser	Ser	Gly	Leu	Ser	Arg	Met	Gly	Ala
365								370						375
Val	Pro	Val	Met	Val	Pro	Ala	Gln	Ser	Gln	Ala	Gly	Ser	Leu	Val
380								385						390

<210> 111
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic oligonucleotide probe

<400> 111
 aggggtctcca ggagaaaagac tc 22

<210> 112
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 112
attgtgggcc ttgcagacat agac 24

<210> 113
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 113
ggccacagca tcaaaaacctt agaactcaat gtactggttc ctccagctcc 50

<210> 114
<211> 2479
<212> DNA
<213> Homo Sapien

<400> 114
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt 50
ttgcacatgg aggacagcag caaagaggc aacacaggct gataagacca 100
gagacagcag ggagattatt ttaccatacg ccctcaggac gttccctcta 150
gctggagttc tggacttcaa cagaacccca tccagtcatt ttgattttgc 200
tgtttatattt ttttttcttt ttcttttcc caccacattt tattttatattt 250
ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
ctttttcctt gaagtcttgg cttatcattt ccctggggct ctactcacag 350
gtgtccaaac tcctggcctg cccttagtgc tgccgctgcg acaggaactt 400
tgtctactgt aatgagcgaa gcttgacctc agtgcctttt gggatcccg 450
agggcgtaac cgtactctac ctccacaaca accaaattaa taatgctgga 500
tttcctgcag aactgcacaa tgtacagtgc gtgcacacgg tctacctgta 550
tggcaaccaa ctggacgaat tccccatgaa ccttcccaag aatgtcagag 600
ttctccattt gcagaaaaac aatattcaga ccatttcacg ggctgctctt 650
gcccagctct tgaagcttga agagctgcac ctggatgaca actccatatac 700
cacagtgggg gtgaaagacg gggccttccg ggaggctatt agcctcaaatt 750
tgttgtttt gtctaagaat cacctgagca gtgtgcctgt tgggcttccct 800
gtggacttgc aagagctgag agtggatgaa aatcgaatttgc tgcataatc 850
cgacatggcc ttccagaatc tcacgagttt ggagcgtctt attgtggacg 900

ggaacctcct gaccaacaag ggtatcgccg agggcacctt cagccatctc 950
accaagctca aggaatttgc aattgtacgt aattcgctgt cccaccctcc 1000
tcccgatctc ccaggtacgc atctgatcag gctctatttgc caggacaacc 1050
agataaaacca cattcctttg acagccttct caaatctgcg taagctggaa 1100
cggtggata tatccaacaa ccaactgcgg atgctgactc aagggtttt 1150
tgataatctc tccaacctga agcagctcac tgctcgaaat aacccttgg 1200
tttgtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct 1250
tcatctctca acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg 1300
ggggatggcc gtcaggaaat taaatatgaa tctttgtcc tgtcccacca 1350
cgaccccccgg cctgcctctc ttcaccccg ccccaagtac agcttctccg 1400
accactcagc ctcccacccct ctctattcca aacccttagca gaagctacac 1450
gcctccaact cctaccacat cgaaacttcc cacgattctt gactggatg 1500
gcagagaaag agtgacccca cctatttctg aacggatcca gctctctatc 1550
cattttgtga atgatacttc cattcaagtc agctggctct ctctttcac 1600
cgtgatggca tacaaactca catgggtgaa aatgggccac agtttagtag 1650
ggggcatcgat tcaggagcgc atagtcagcg gtgagaagca acacctgagc 1700
ctggtaact tagagcccg atccacctat cggatttgg tagtgccact 1750
ggatgctttt aactaccgcg cggtagaaga caccatttgc tcagaggcca 1800
ccacccatgc ctcctatctg aacaacggca gcaacacagc gtccagccat 1850
gagcagacga cgtcccacag catgggctcc ccctttctgc tggcgggctt 1900
gatcgggggc gcggtgatat ttgtgctgg ggtcttgctc agcgctttt 1950
gctggcatat gcacaaaaag gggcgctaca cctcccgaaat gttggaaatac 2000
aaccggggcc ggcggaaaga tgattattgc gaggcaggca ccaagaagga 2050
caactccatc ctggagatga cagaaaccag ttttcagatc gtctccttaa 2100
ataacgatca actccctaaa ggagatttca gactgcagcc catttacacc 2150
ccaaatgggg gcattaatta cacagactgc catatccca acaacatgcg 2200
atactgcaac agcagcgtgc cagacctgga gcactgccat acgtgacagc 2250
cagaggccca gcgttatcaa ggcggacaat tagactcttgc agaacacact 2300
cgtgtgtgca cataaaagaca cgcagattac atttgataaa tgttacacag 2350

atgcatttgt gcatttgaat actctgtaat ttatacggtg tactatataa 2400
 tgggatttaa aaaaagtgct atctttctta tttcaagtta attacaaca 2450
 gtttgtaac tcttgcttt taaaatctt 2479

<210> 115
 <211> 660
 <212> PRT
 <213> Homo Sapien

<400> 115
 Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe
 1 5 10 15

Leu Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val
 20 25 30

Ser Lys Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn
 35 40 45

Phe Val Tyr Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly
 50 55 60

Ile Pro Glu Gly Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile
 65 70 75

Asn Asn Ala Gly Phe Pro Ala Glu Leu His Asn Val Gln Ser Val
 80 85 90

His Thr Val Tyr Leu Tyr Gly Asn Gln Leu Asp Glu Phe Pro Met
 95 100 105

Asn Leu Pro Lys Asn Val Arg Val Leu His Leu Gln Glu Asn Asn
 110 115 120

Ile Gln Thr Ile Ser Arg Ala Ala Leu Ala Gln Leu Leu Lys Leu
 125 130 135

Glu Glu Leu His Leu Asp Asp Asn Ser Ile Ser Thr Val Gly Val
 140 145 150

Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser Leu Lys Leu Leu Phe
 155 160 165

Leu Ser Lys Asn His Leu Ser Ser Val Pro Val Gly Leu Pro Val
 170 175 180

Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile Ala Val Ile
 185 190 195

Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg Leu Ile
 200 205 210

Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly Thr
 215 220 225

Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn

230	235	240
Ser Leu Ser His Pro Pro Pro Asp Leu Pro Gly Thr His Leu Ile		
245	250	255
Arg Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr		
260	265	270
Ala Phe Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn		
275	280	285
Asn Gln Leu Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser		
290	295	300
Asn Leu Lys Gln Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp		
305	310	315
Cys Ser Ile Lys Trp Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser		
320	325	330
Ser Leu Asn Val Arg Gly Phe Met Cys Gln Gly Pro Glu Gln Val		
335	340	345
Arg Gly Met Ala Val Arg Glu Leu Asn Met Asn Leu Leu Ser Cys		
350	355	360
Pro Thr Thr Thr Pro Gly Leu Pro Leu Phe Thr Pro Ala Pro Ser		
365	370	375
Thr Ala Ser Pro Thr Thr Gln Pro Pro Thr Leu Ser Ile Pro Asn		
380	385	390
Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro Thr Thr Ser Lys Leu		
395	400	405
Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg Val Thr Pro Pro		
410	415	420
Ile Ser Glu Arg Ile Gln Leu Ser Ile His Phe Val Asn Asp Thr		
425	430	435
Ser Ile Gln Val Ser Trp Leu Ser Leu Phe Thr Val Met Ala Tyr		
440	445	450
Lys Leu Thr Trp Val Lys Met Gly His Ser Leu Val Gly Gly Ile		
455	460	465
Val Gln Glu Arg Ile Val Ser Gly Glu Lys Gln His Leu Ser Leu		
470	475	480
Val Asn Leu Glu Pro Arg Ser Thr Tyr Arg Ile Cys Leu Val Pro		
485	490	495
Leu Asp Ala Phe Asn Tyr Arg Ala Val Glu Asp Thr Ile Cys Ser		
500	505	510
Glu Ala Thr Thr His Ala Ser Tyr Leu Asn Asn Gly Ser Asn Thr		
515	520	525

Ala Ser Ser His Glu Gln Thr Thr Ser His Ser Met Gly Ser Pro
530 535 540
Phe Leu Leu Ala Gly Leu Ile Gly Gly Ala Val Ile Phe Val Leu
545 550 555
Val Val Leu Leu Ser Val Phe Cys Trp His Met His Lys Lys Gly
560 565 570
Arg Tyr Thr Ser Gln Lys Trp Lys Tyr Asn Arg Gly Arg Arg Lys
575 580 585
Asp Asp Tyr Cys Glu Ala Gly Thr Lys Lys Asp Asn Ser Ile Leu
590 595 600
Glu Met Thr Glu Thr Ser Phe Gln Ile Val Ser Leu Asn Asn Asp
605 610 615
Gln Leu Leu Lys Gly Asp Phe Arg Leu Gln Pro Ile Tyr Thr Pro
620 625 630
Asn Gly Gly Ile Asn Tyr Thr Asp Cys His Ile Pro Asn Asn Met
635 640 645
Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu His Cys His Thr
650 655 660

<210> 116

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 116

cggtctacct gtagggcaac c 21

<210> 117

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 117

gcaggacaac cagataaacc ac 22

<210> 118

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 118

acgcagattt gagaaggctg tc 22
<210> 119
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 119
ttcacgggct gctcttgccc agctcttcaa gcttgaagag ctgcac 46

<210> 120
<211> 2857
<212> DNA
<213> Homo Sapien

<400> 120
tgaagagtaa tagttggaaat caaaaagagtc aacgcaatga actgttattt 50
actgctgcgt tttatgttgg gaattccctct cctatggcct tgtcttggag 100
caacagaaaa ctctcaaaca aagaaagtca agcagccagt gcgatctcat 150
ttgagagtga agcgtggctg ggtgtggaaac caatttttg taccagagga 200
aatgaataacg actagtcatc acatcggcca gctaagatct gatttagaca 250
atggaaacaa ttctttccag tacaagcttt tggagctgg agctggaaagt 300
acttttatca ttgatgaaag aacaggtgac atatatgccaa tacagaagct 350
tgatagagag gagcgatccc tctacatctt aagagcccgag gtaatagaca 400
tcgctactgg aaggcgtgtg gaacctgagt ctgagttgt catcaaagtt 450
tcggatatca atgacaatga accaaaattc ctagatgaac cttatgaggc 500
cattgtacca gagatgtctc cagaaggaac attagttatc caggtgacag 550
caagtgtatgc tgacgatccc tcaagtggta ataatgctcg tctcctctac 600
agcttacttc aaggccagcc atattttctt gttgaaccaa caacaggagt 650
cataagaata tcttctaaaa tggatagaga actgcaagat gagtattggg 700
taatcattca agccaaaggac atgattggtc agccaggagc gttgtctgga 750
acaacaagtg tattaattaa actttcagat gttaatgaca ataagcctat 800
atttaaagaa agtttataacc gcttgactgt ctctgaatct gcacccactg 850
ggacttctat aggaacaatc atggcatatg ataatgacat aggagagaat 900
gcagaaaatgg attacagcat tgaagaggat gattcgcaaa catttgacat 950
tattactaat catgaaaactc aagaaggaat agttatatta aaaaagaaaag 1000

tggattttga gcaccagaac cactacggta ttagagcaaa agttaaaaac 1050
catcatgttc ctgagcagct catgaagtac cacactgagg cttccaccac 1100
tttcatattaatccagggtgg aagatgttga tgagcctcct ctttccctcc 1150
ttccatatta tgtatggaa gttttgaa aaaccccaca gggatcattt 1200
gtaggcgtgg tgtctgccac agacccagac aataggaaat ctcctatcag 1250
gtattctatt actaggagca aagtgttcaa tatcaatgat aatggtacaa 1300
tcactacaag taactcactg gatcgtgaaa tcagtgcctt gtaaaccta 1350
agtattacag ccacagaaaa atacaatata gaacagatct cttcgatccc 1400
actgtatgtg caagttctta acatcaatga tcatgctcct gagttctctc 1450
aatactatga gacttatgtt tgtgaaaatg caggctctgg tcaggttaatt 1500
cagactatca gtgcagtggaa tagagatgaa tccatagaag agcaccattt 1550
ttactttaat ctatctgttag aagacactaa caattcaagt tttacaatca 1600
tagataatca agataaacaca gctgtcattt tgactaatag aactggttt 1650
aaccttcaag aagaacctgt cttctacatc tccatcttaa ttgcgcacaa 1700
tggaatcccg tcacttacaa gtacaaacac ccttaccatc catgtctgtg 1750
actgtggtga cagtgggagc acacagacct gccagttacca ggagottgtg 1800
ctttccatgg gattcaagac agaagttatc attgcttattc tcatttgcatt 1850
tatgatcata ttgggttta ttttttgac ttgggttta aaacaacgga 1900
gaaaacagat tctatttcct gagaaaagtg aagatttcag agagaatata 1950
ttccaatatg atgatgaagg gggtgagaa gaagatacag aggccttga 2000
tatagcagag ctgaggagta gtaccataat gcgggaacgc aagactcgga 2050
aaaccacaag cgctgagatc aggagcctat acaggcagtc ttgcaagtt 2100
ggccccgaca gtccatatt cagggaaattc attctggaaa agctcgaaga 2150
agctaatact gatccgtgtg cccctccctt tgattccctc cagacctacg 2200
cttttgaggg aacagggtca ttagctggat ccctgagctc cttagaatca 2250
gcagtctctg atcaggatga aagctatgat taccttaatg agttgggacc 2300
tcgctttaaa agattagcat gcatgtttgg ttctgcagtg cagtcaaata 2350
attaggcattttaccatca aaatttttaa aagtgcataat gtgtattcga 2400
acccaatggt agtcttaaag agttttgtgc cctggctcta tggcqggaa 2450

agccctagtc tatggagttt tctgattcc ctggagtaaa tactccatgg 2500
 ttatTTtaag ctacctacat gctgtcattg aacagagatg tggggagaaa 2550
 tgtaaacaat cagctcacag gcatcaatac aaccagattt gaagtaaaat 2600
 aatgttagaa gatattaaaaa gtagatgaga ggacacaaga tgtagtcgat 2650
 ccttatgcga ttatATcatt atttacttag gaaagagtaa aaataccaaa 2700
 cgagaaaaatt taaaggagca aaaatttgcA agtcaaatag aaatgtacaa 2750
 atcgagataa cattacatt tctatcatat tgacatgaaa attgaaaatg 2800
 tatagtcaga gaaattttca tgaattattc catgaagtat tgTTTcTTT 2850
 atttaaa 2857

<210> 121
 <211> 772
 <212> PRT
 <213> Homo Sapien

<400> 121
 Met Asn Cys Tyr Leu Leu Leu Arg Phe Met Leu Gly Ile Pro Leu
 1 5 10 15

Leu	Trp	Pro	Cys	Leu	Gly	Ala	Thr	Glu	Asn	Ser	Gln	Thr	Lys	Lys
20								25					30	

Val	Lys	Gln	Pro	Val	Arg	Ser	His	Leu	Arg	Val	Lys	Arg	Gly	Trp
35								40					45	

Val	Trp	Asn	Gln	Phe	Phe	Val	Pro	Glu	Glu	Met	Asn	Thr	Thr	Ser
50								55					60	

His	His	Ile	Gly	Gln	Leu	Arg	Ser	Asp	Leu	Asp	Asn	Gly	Asn	Asn
65								70					75	

Ser	Phe	Gln	Tyr	Lys	Leu	Leu	Gly	Ala	Gly	Ala	Gly	Ser	Thr	Phe
80								85					90	

Ile	Ile	Asp	Glu	Arg	Thr	Gly	Asp	Ile	Tyr	Ala	Ile	Gln	Lys	Leu
95								100					105	

Asp	Arg	Glu	Glu	Arg	Ser	Leu	Tyr	Ile	Leu	Arg	Ala	Gln	Val	Ile
110								115					120	

Asp	Ile	Ala	Thr	Gly	Arg	Ala	Val	Glu	Pro	Glu	Ser	Glu	Phe	Val
125								130					135	

Ile	Lys	Val	Ser	Asp	Ile	Asn	Asp	Asn	Glu	Pro	Lys	Phe	Leu	Asp
140								145					150	

Glu	Pro	Tyr	Glu	Ala	Ile	Val	Pro	Glu	Met	Ser	Pro	Glu	Gly	Thr
155								160					165	

Leu Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Ser Ser

170	175	180
Gly Asn Asn Ala Arg Leu Leu Tyr Ser	Leu Leu Gln Gly Gln	Pro
185	190	195
Tyr Phe Ser Val Glu Pro Thr Thr Gly	Val Ile Arg Ile Ser Ser	
200	205	210
Lys Met Asp Arg Glu Leu Gln Asp Glu	Tyr Trp Val Ile Ile Gln	
215	220	225
Ala Lys Asp Met Ile Gly Gln Pro Gly	Ala Leu Ser Gly Thr Thr	
230	235	240
Ser Val Leu Ile Lys Leu Ser Asp Val	Asn Asp Asn Lys Pro Ile	
245	250	255
Phe Lys Glu Ser Leu Tyr Arg Leu Thr	Val Ser Glu Ser Ala Pro	
260	265	270
Thr Gly Thr Ser Ile Gly Thr Ile Met	Ala Tyr Asp Asn Asp Ile	
275	280	285
Gly Glu Asn Ala Glu Met Asp Tyr Ser	Ile Glu Glu Asp Asp Ser	
290	295	300
Gln Thr Phe Asp Ile Ile Thr Asn His	Glu Thr Gln Glu Gly Ile	
305	310	315
Val Ile Leu Lys Lys Val Asp Phe	Glu His Gln Asn His Tyr	
320	325	330
Gly Ile Arg Ala Lys Val Lys Asn His	His Val Pro Glu Gln Leu	
335	340	345
Met Lys Tyr His Thr Glu Ala Ser Thr	Thr Phe Ile Lys Ile Gln	
350	355	360
Val Glu Asp Val Asp Glu Pro Pro Leu	Phe Leu Leu Pro Tyr Tyr	
365	370	375
Val Phe Glu Val Phe Glu Glu Thr Pro	Gln Gly Ser Phe Val Gly	
380	385	390
Val Val Ser Ala Thr Asp Pro Asp Asn	Arg Lys Ser Pro Ile Arg	
395	400	405
Tyr Ser Ile Thr Arg Ser Lys Val Phe	Asn Ile Asn Asp Asn Gly	
410	415	420
Thr Ile Thr Thr Ser Asn Ser Leu Asp	Arg Glu Ile Ser Ala Trp	
425	430	435
Tyr Asn Leu Ser Ile Thr Ala Thr Glu	Lys Tyr Asn Ile Glu Gln	
440	445	450
Ile Ser Ser Ile Pro Leu Tyr Val Gln	Val Leu Asn Ile Asn Asp	
455	460	465

His	Ala	Pro	Glu	Phe	Ser	Gln	Tyr	Tyr	Glu	Thr	Tyr	Val	Cys	Glu
470														480
Asn	Ala	Gly	Ser	Gly	Gln	Val	Ile	Gln	Thr	Ile	Ser	Ala	Val	Asp
485														495
Arg	Asp	Glu	Ser	Ile	Glu	Glu	His	His	Phe	Tyr	Phe	Asn	Leu	Ser
500														510
Val	Glu	Asp	Thr	Asn	Asn	Ser	Ser	Phe	Thr	Ile	Ile	Asp	Asn	Gln
515														525
Asp	Asn	Thr	Ala	Val	Ile	Leu	Thr	Asn	Arg	Thr	Gly	Phe	Asn	Leu
530														540
Gln	Glu	Glu	Pro	Val	Phe	Tyr	Ile	Ser	Ile	Leu	Ile	Ala	Asp	Asn
545														555
Gly	Ile	Pro	Ser	Leu	Thr	Ser	Thr	Asn	Thr	Leu	Thr	Ile	His	Val
560														570
Cys	Asp	Cys	Gly	Asp	Ser	Gly	Ser	Thr	Gln	Thr	Cys	Gln	Tyr	Gln
575														585
Glu	Leu	Val	Leu	Ser	Met	Gly	Phe	Lys	Thr	Glu	Val	Ile	Ile	Ala
590														600
Ile	Leu	Ile	Cys	Ile	Met	Ile	Ile	Phe	Gly	Phe	Ile	Phe	Leu	Thr
605														615
Leu	Gly	Leu	Lys	Gln	Arg	Arg	Lys	Gln	Ile	Leu	Phe	Pro	Glu	Lys
620														630
Ser	Glu	Asp	Phe	Arg	Glu	Asn	Ile	Phe	Gln	Tyr	Asp	Asp	Glu	Gly
635														645
Gly	Gly	Glu	Glu	Asp	Thr	Glu	Ala	Phe	Asp	Ile	Ala	Glu	Leu	Arg
650														660
Ser	Ser	Thr	Ile	Met	Arg	Glu	Arg	Lys	Thr	Arg	Lys	Thr	Thr	Ser
665														675
Ala	Glu	Ile	Arg	Ser	Leu	Tyr	Arg	Gln	Ser	Leu	Gln	Val	Gly	Pro
680														690
Asp	Ser	Ala	Ile	Phe	Arg	Lys	Phe	Ile	Leu	Glu	Lys	Leu	Glu	Glu
695														705
Ala	Asn	Thr	Asp	Pro	Cys	Ala	Pro	Pro	Phe	Asp	Ser	Leu	Gln	Thr
710														720
Tyr	Ala	Phe	Glu	Gly	Thr	Gly	Ser	Leu	Ala	Gly	Ser	Leu	Ser	Ser
725														735
Leu	Glu	Ser	Ala	Val	Ser	Asp	Gln	Asp	Glu	Ser	Tyr	Asp	Tyr	Leu
740														750
Asn	Glu	Leu	Gly	Pro	Arg	Phe	Lys	Arg	Leu	Ala	Cys	Met	Phe	Gly

755

760

765

Ser Ala Val Gln Ser Asn Asn
770

<210> 122
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 122
cttgactgtc tctgaatctg caccc 25

<210> 123
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 123
aagtgggtgga agcctccagt gtgg 24

<210> 124
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 124
ccactacggt attagagcaa aagttaaaaa cca

gc 52

<210> 125
<211> 1152
<212> DNA
<213> Homo Sapien

<400> 125
cttcagaaca ggttctcctt ccccagtcac cagg

gtctgcaatg gccggccctgc agaaatctgt gag

ccctggccac cagctgcctc cttctttgg ccct

gcagctgcgc ccatcagctc ccactgcagg ctt

gcagccctat atcaccaacc gcacccat gct

tggctgataa caacacagac gttcgtctca ttg

ggagtcagta tgagtgagcg ctgctatctg atgaagcagg tgctgaactt 350
cacccttcaa gaagtgcgt tccctcaatc tgataggttc cagccttata 400
tgcaggaggt ggtgcccttc ctggccaggc tcagcaacag gctaagcaca 450
tgtcatattg aagggtatga cctgcataatc cagaggaatg tgcaaaagct 500
gaaggacaca gtgaaaaagc ttggagagag tggagagatc aaagcaattt 550
gagaactgga tttgctgttt atgtctctga gaaatgcctg catttgcacca 600
gagcaaagct gaaaaatgaa taactaacc cctttccctg cttagaaataa 650
caatttagatg ccccaaagcg attttttta accaaaagga agatggaaag 700
ccaaactcca tcatgtatgg tggattccaa atgaacccct gcgttagtta 750
caaaggaaac caatgccact tttgtttata agaccagaag gtagactttc 800
taagcataga tatttattga taacatttca ttgttaactgg tgttctatac 850
acagaaaaca atttatttt taaataattt tcttttcca taaaaaaagat 900
tactttccat tccttttaggg gaaaaaaaccc ctaaatagct tcatgtttcc 950
ataatcagta ctttatattt ataaatgtat ttatttattt tataagactg 1000
catttatattt atatcatttt attaatatgg atttattttt agaaacatca 1050
ttcgatattt ctacttgagt gtaaggctaa tattgatatt tatgacaata 1100
attatagagc tataacatgt ttatggacc tcaataaaaca cttggatatc 1150
cc 1152

<210> 126
<211> 179
<212> PRT
<213> Homo Sapien

<400> 126
Met Ala Ala Leu Gln Lys Ser Val Ser Ser Phe Leu Met Gly Thr
1 5 10 15
Leu Ala Thr Ser Cys Leu Leu Leu Ala Leu Leu Val Gln Gly
20 25 30
Gly Ala Ala Ala Pro Ile Ser Ser His Cys Arg Leu Asp Lys Ser
35 40 45
Asn Phe Gln Gln Pro Tyr Ile Thr Asn Arg Thr Phe Met Leu Ala
50 55 60
Lys Glu Ala Ser Leu Ala Asp Asn Thr Asp Val Arg Leu Ile
65 70 75
Gly Glu Lys Leu Phe His Gly Val Ser Met Ser Glu Arg Cys Tyr

80	85	90
Leu Met Lys Gln Val Leu Asn Phe Thr Leu Glu Glu Val Leu Phe		
95	100	105
Pro Gln Ser Asp Arg Phe Gln Pro Tyr Met Gln Glu Val Val Pro		
110	115	120
Phe Leu Ala Arg Leu Ser Asn Arg Leu Ser Thr Cys His Ile Glu		
125	130	135
Gly Asp Asp Leu His Ile Gln Arg Asn Val Gln Lys Leu Lys Asp		
140	145	150
Thr Val Lys Lys Leu Gly Glu Ser Gly Glu Ile Lys Ala Ile Gly		
155	160	165
Glu Leu Asp Leu Leu Phe Met Ser Leu Arg Asn Ala Cys Ile		
170	175	

```
<210> 127
<211> 2557
<212> DNA
<213> Homo Sapien
```

<400> 127
gcccctaacct tcccaggggct cagctcttg gagctgccca ttcctccggc 50
tgcgagaaaag gacgcgcgccc ctgcgtcggt cgaagaaaag aagcaaaaact 100
tgtcgggagg gtttcgtcat caacccctt cccgcaaaacc taaaccttct 150
gccggggcca tccctagaca gaggaaaagtt cctgcagagc cgaccagccc 200
tagtggatct ggggcaggca gcggcgctgg ctgtggaatt agatctgttt 250
tgaacccagt ggagcgcacatc gctggggctc ggaagtcacc gtccgcgggc 300
accgggttgg cgctgcccga gtggaaaccga cagttgcga gcctcggctg 350
caagtggcct ctccctccccg cggttgttgt tcagtgtcgg gtgagggctg 400
cgagtgtggc aagttgcaaa gagagcctca gaggtccgaa gagcgcgtcgc 450
ctcctactcg cgttcgcttc ttccctttct cggttcccta ctgtgaaatc 500
gcagcgcacat ttacaaaggc ctccgggtcc taccgagacc gatccgcagc 550
gtttggcccg gtcgtgccta ttgcacatcggt agcccccgag cacoggcgaa 600
atggcgaggt tccccgaaggc cgacacctggcc gtcgcaggag ttatgttact 650
ttgccacttc ttcacggacc agtttcagtt cgccgatggg aaacccggag 700
accaaatacct tgattggcag tatggagttt ctcaggccctt ccctcacaca 750
qaqqqaqqqaqq tqqaqatqtqa ttcacacqcq tacaqccaca qqtqaaaaaq 800

aaacttggac tttctcaagg cggttagacac gaaccgagca agcgtcgcc 850
aagactctcc tgagcccaga agcttcacag acctgctgct ggatgatggg 900
caggacaata acactcagat cgaggaggat acagaccaca attactata 950
atctcgaata tatggtccat ctgattctgc cagccggat ttatgggtga 1000
acatagacca aatggaaaaa gataaagtga agattcatgg aatattgtcc 1050
aatactcatc ggcaagctgc aagagtgaat ctgtccttcg attttccatt 1100
ttatggccac ttcctacgtg aaatcactgt ggcaaccggg ggtttcatat 1150
acactggaga agtcgtacat cgaatgctaa cagccacaca gtacatagca 1200
ccttaatgg caaatttcga tcccagtgtt tccagaaatt caactgtcag 1250
atattttgat aatggcacag cacttgggtt ccagtggac catgtacatc 1300
tccaggataa ttataaacctg ggaagcttca cattccaggc aaccctgctc 1350
atggatggac gaatcatctt tggataaaaa gaaattcctg tcttggtcac 1400
acagataagt tcaaccaatc atccagtgaa agtcggactg tccgatgcat 1450
ttgtcggtt ccacaggatc caacaaattc ccaatgttcg aagaagaaca 1500
atttatgaat accaccgagt agagctacaa atgtcaaaaa ttaccaacat 1550
ttcggctgtg gagatgaccc cattaccac atgcctccag tttaacagat 1600
gtggcccttg tgtatcttct cagattggct tcaactgcag ttgggtgtgt 1650
aaacttcaaa gatgtccag tggatttgat cgtcatcgcc aggactgggt 1700
ggacagtgga tgccctgaag agtcaaaaga gaagatgtgt gagaatacag 1750
aaccagtgga aacttcttct cgaaccacca caaccgtagg agcgacaacc 1800
acccagttca gggtcctaac taccaccaga agagcagtga cttctcagtt 1850
tcccaccacg ctccctacag aagatgatac caagatagca ctacatctaa 1900
aagataatgg agcttctaca gatgacagtg cagctgagaa gaaaggggga 1950
accctccacg ctggcctcat cattggaatc ctcatcctgg tcctcattgt 2000
agccacagcc attcttgtga cagtctatata gtatcaccac ccaacatcag 2050
cagccagcat cttcttatt gagagacgcc caagcagatg gcctgcgtat 2100
aagtttagaa gaggtctgg acatcctgcc tatgctgaag ttgaaccagt 2150
tggagagaaa gaaggcttta ttgtatcaga gcagtgcata aatttctagg 2200
acagaacaac accagtactg gtttacaggt gttaagacta aaattttgcc 2250

tataacctta agacaaacaa acaaacacac acacaaacaa gctctaagct 2300
 gctgtagcct gaagaagaca agattctgg acaagctcag cccagggaaac 2350
 aaagggtaaa caaaaaacta aaacttatac aagataccat ttacactgaa 2400
 catagaattc cctagtgaa tgtcatctat agttcactcg gaacatctcc 2450
 cgtggactta tctgaagtat gacaagatta taatgcttt ggcttaggtg 2500
 cagggttgca aaggatcag aaaaaaaaaa tcataataaa gcttagttc 2550
 atgaggg 2557

<210> 128
 <211> 529
 <212> PRT
 <213> Homo Sapien

<400> 128
 Met Ala Arg Phe Pro Lys Ala Asp Leu Ala Ala Ala Gly Val Met
 1 5 10 15

Leu Leu Cys His Phe Phe Thr Asp Gln Phe Gln Phe Ala Asp Gly
 20 25 30

Lys Pro Gly Asp Gln Ile Leu Asp Trp Gln Tyr Gly Val Thr Gln
 35 40 45

Ala Phe Pro His Thr Glu Glu Glu Val Glu Val Asp Ser His Ala
 50 55 60

Tyr Ser His Arg Trp Lys Arg Asn Leu Asp Phe Leu Lys Ala Val
 65 70 75

Asp Thr Asn Arg Ala Ser Val Gly Gln Asp Ser Pro Glu Pro Arg
 80 85 90

Ser Phe Thr Asp Leu Leu Leu Asp Asp Gly Gln Asp Asn Asn Thr
 95 100 105

Gln Ile Glu Glu Asp Thr Asp His Asn Tyr Tyr Ile Ser Arg Ile
 110 115 120

Tyr Gly Pro Ser Asp Ser Ala Ser Arg Asp Leu Trp Val Asn Ile
 125 130 135

Asp Gln Met Glu Lys Asp Lys Val Lys Ile His Gly Ile Leu Ser
 140 145 150

Asn Thr His Arg Gln Ala Ala Arg Val Asn Leu Ser Phe Asp Phe
 155 160 165

Pro Phe Tyr Gly His Phe Leu Arg Glu Ile Thr Val Ala Thr Gly
 170 175 180

Gly Phe Ile Tyr Thr Gly Glu Val Val His Arg Met Leu Thr Ala
 185 190 195

Thr	Gln	Tyr	Ile	Ala	Pro	Leu	Met	Ala	Asn	Phe	Asp	Pro	Ser	Val
200								205						210
Ser	Arg	Asn	Ser	Thr	Val	Arg	Tyr	Phe	Asp	Asn	Gly	Thr	Ala	Leu
215								220						225
Val	Val	Gln	Trp	Asp	His	Val	His	Leu	Gln	Asp	Asn	Tyr	Asn	Leu
230								235						240
Gly	Ser	Phe	Thr	Phe	Gln	Ala	Thr	Leu	Leu	Met	Asp	Gly	Arg	Ile
245								250						255
Ile	Phe	Gly	Tyr	Lys	Glu	Ile	Pro	Val	Leu	Val	Thr	Gln	Ile	Ser
260								265						270
Ser	Thr	Asn	His	Pro	Val	Lys	Val	Gly	Leu	Ser	Asp	Ala	Phe	Val
275								280						285
Val	Val	His	Arg	Ile	Gln	Gln	Ile	Pro	Asn	Val	Arg	Arg	Arg	Thr
290								295						300
Ile	Tyr	Glu	Tyr	His	Arg	Val	Glu	Leu	Gln	Met	Ser	Lys	Ile	Thr
305								310						315
Asn	Ile	Ser	Ala	Val	Glu	Met	Thr	Pro	Leu	Pro	Thr	Cys	Leu	Gln
320								325						330
Phe	Asn	Arg	Cys	Gly	Pro	Cys	Val	Ser	Ser	Gln	Ile	Gly	Phe	Asn
335								340						345
Cys	Ser	Trp	Cys	Ser	Lys	Leu	Gln	Arg	Cys	Ser	Ser	Gly	Phe	Asp
350								355						360
Arg	His	Arg	Gln	Asp	Trp	Val	Asp	Ser	Gly	Cys	Pro	Glu	Glu	Ser
365								370						375
Lys	Glu	Lys	Met	Cys	Glu	Asn	Thr	Glu	Pro	Val	Glu	Thr	Ser	Ser
380								385						390
Arg	Thr	Thr	Thr	Thr	Val	Gly	Ala	Thr	Thr	Thr	Gln	Phe	Arg	Val
395								400						405
Leu	Thr	Thr	Thr	Arg	Arg	Ala	Val	Thr	Ser	Gln	Phe	Pro	Thr	Ser
410								415						420
Leu	Pro	Thr	Glu	Asp	Asp	Thr	Lys	Ile	Ala	Leu	His	Leu	Lys	Asp
425								430						435
Asn	Gly	Ala	Ser	Thr	Asp	Asp	Ser	Ala	Ala	Glu	Lys	Lys	Gly	Gly
440								445						450
Thr	Leu	His	Ala	Gly	Leu	Ile	Ile	Gly	Ile	Leu	Ile	Leu	Val	Leu
455								460						465
Ile	Val	Ala	Thr	Ala	Ile	Leu	Val	Thr	Val	Tyr	Met	Tyr	His	His
470								475						480
Pro	Thr	Ser	Ala	Ala	Ser	Ile	Phe	Phe	Ile	Glu	Arg	Arg	Pro	Ser

485 490 495
Arg Trp Pro Ala Met Lys Phe Arg Arg Gly Ser Gly His Pro Ala
500 505 510
Tyr Ala Glu Val Glu Pro Val Gly Glu Lys Glu Gly Phe Ile Val
515 520 525
Ser Glu Gln Cys

<210> 129
<211> 4834
<212> DNA
<213> Homo Sapien

<220>
<221> unsure
<222> 3784
<223> unknown base

<400> 129
gcagccctag cagggatgga catgatgctg ttgggtgcagg gtgcttgcgg 50
ctcgaaccag tggctggcg 50
cggtgctcct cagcctgtgc tgcctgctac 100
cctcctgcct cccggctgga cagagtgtgg acttcccctg ggcggccgtg 150
gacaacatga tggtcagaaa aggggacacg gcggtgctta ggtgttattt 200
ggaagatgga gcttcaaagg gtgcctggct gaaccggta agtattattt 250
ttgcgggagg tgataagtgg tcagtggatc ctcagtttc aatttcaaca 300
ttgaataaaa gggactacag cctccagata cagaatgtag atgtacaga 350
tgatggccca tacacgtgtt ctgttcagac tcaacataca cccagaacaa 400
tgcaggtgca tctaactgtg caagttcctc ctaagatata tgacatctca 450
aatgatatga ccgtcaatga aggaaccaac gtcactctta cttgtttggc 500
cactgggaaa ccagagcctt ccatttcttgcgcacacatc tccccatcag 550
caaaaccatt tgaaaatgga caatatttgg acatttatgg aattacaagg 600
gaccaggctg gggaatatga atgcagtgcg gaaaatgtg tgcattccc 650
agatgtgagg aaagtaaaag ttgttgcctt ctttgctcct actattcagg 700
aaattaaatc tggcaccgtg acccccggac gcagtggcct gataagatgt 750
gaaggtgcag gtgtgccgccc tccagcctt gaatggtaca aaggagagaa 800
gaagctcttc aatggccaac aaggaattat tattcaaat ttttagcacaa 850
gatccattct cactgttacc aacgtgacac aggagcactt cggcaattat 900

acttgtgtgg ctgccaacaa gctaggcaca accaatgcga gcctgcctct 950
taaccctcca agtacagccc agtatggaat taccgggagc gctgatgttc 1000
tttctcctg ctggcacctt gtgttgacac tgtcctcttt caccagcata 1050
ttctacctga agaatgccat tctacaataa attcaaagac ccataaaagg 1100
ctttaagga ttctctgaaa gtgctgatgg ctggatccaa tctggtagac 1150
tttgttaaaa gcagcgtggg atataatcg cagtgcctac atggggatga 1200
tcgccttcgt tagaattgct cattatgtaa atacttaat tctactcttt 1250
tttgattagc tacattacct tgtgaagcag tacacattgt cctttttta 1300
agacgtgaaa gctctgaaat tactttaga ggatattaat tgtgatttca 1350
tgtttgtaat ctacaacttt tcaaaagcat tcagtcatgg tctgcttagt 1400
tgcaggctgt agtttacaaa aacgaatatt gcagtgaata tgtgattctt 1450
taaggctgca atacaagcat tcagttccct gttcaataa gagtcaatcc 1500
acatttacaa agatgcattt ttttctttt tgataaaaaaa gcaaataata 1550
ttgccttcag attatttctt caaaatataa cacatatcta gattttctg 1600
ctcgcatgat attcaggttt caggaatgag cttgtataa taactggctg 1650
tgcagctctg cttcttttc ctgttaagttc agcatgggtg tgccttcata 1700
caataatatt tttcttttg tctccaacta atataaaatg ttttgctaaa 1750
tcttacaatt tgaaagtaaa aataaaccag agtgatcaag taaaaccata 1800
cactatctct aagtaacgaa ggagctattg gactgtaaaa atctcttcct 1850
gcactgacaa tggggttga gaatttgcc ccacactaac tcagttctg 1900
tgatgagaga caatttaata acagtatagt aaatatacca tatgatttct 1950
ttagttgtag ctaaatgtta gatccaccgt gggaaatcat tccctttaaa 2000
atgacagcac agtccactca aaggattgcc tagcaataca gcatctttc 2050
ctttcactag tccaagccaa aaattttaag atgattgtc agaaaggcga 2100
caaagtccata tcacctaata ttacaagagt tggttaagcgc tcatttcata 2150
ttttattttg tggcagctaa gttagttatga cagaggcagt gtcctgtgg 2200
acaggagcat tttgcattt ttccatctga aagtatcact cagttgatag 2250
tctggaatgc atgttatata tttaaaact tccaaaatatt attataacaa 2300
acattctata tcggatgtta gcagaccaat ctctaaaata gctaattctt 2350

caataaaatc tttctatata gccatttcag tgcaaacaag taaaatcaa 2400
aaagaccatc ctttattttt ctttacatga tataatgtaa atgcgatcaa 2450
ataaaagacaa aacaccagtg atgagaatat cttaagataa gtaattatca 2500
aattattgtg aatgttaaat tatttctact ataaagaagc aaaactacat 2550
ttttgaagga aaatgtgtt actctaacat taatttacag gaatagttt 2600
atggtttac tctttactaa agaaaggcca tcaccttcaa agccatttt 2650
caggtttgcat gaagttacca atttcagttt acctaaatctt ctacaaatag 2700
tcccccttta caagttgtaa caacaaagac cctataataa aatttagatac 2750
aagaaatttt gcagtggta tacatatttgc agatatctt tagttgccc 2800
tagcagggat ggcttaaaaaa ctgtgatttt ttttcttcaa gtaaaactta 2850
gtcccaaagt acatcataaa tcaattttaa ttagaaaaat gaatcttaaa 2900
tgaggggaca taagtataact ctttccacaa aatggcaata ataaggcata 2950
aagctagtaa atctactaac tgtaataat gtatgacatt attttgcattt 3000
atacattaaa aaagagtttt tagaacaaat atggcattta actttattat 3050
ttatggctt ttaagaaata ttctttgtgg aattgttcaa taaactataa 3100
aatattattt tgtattgcag cttttaaagtgc gcacactcca taataatcta 3150
cttactagaa atagtggtgc taccacaaaa aatgttaacc atcagtacca 3200
ttgtttggga gaaagaaaca gatcaagaat gcatattattt cagtgaccgc 3250
tttccttagag ttaaaatacc tcctcttgc aaggttgtt ggtaaattgtt 3300
ggtataaaact atggatgaac caaataatgtt gttcaaaatgtt ttgtcatgtt 3350
tccaaatttgc tggagtctgg tggttttacc atagaatgtt acagaagttt 3400
agtcatagct cagtagctat atgtatttgc ctttatgtt gaagagactt 3450
tcttgagtgtt cattttaaa tagaggaggtt attcaatgtt ttttctgtt 3500
tcacagcagc attccttagtc ctttaggcctt cggacagagt gaaatcatgtt 3550
gtatattatgtt gttcaatattt gtcaaaataag gctacagtat ttgtttttttt 3600
gtgtgaatgtt attgcataatgtt atgttcaagt agatgattttt acatttatgg 3650
acatataaaa tgtctgatta ccccatatgtt tcagtcctgtt ctgtacaaga 3700
ttgttgcaat ttcaaaatgtt cagttttata aattgttcaatgtt tcttttaatc 3750
tataacaattt tgtgttagct gttcatttca ggantatattt ttctacaatgtt 3800

tccacttgc ggactccctt tggccctt atttttttt aaagaaggaa 3850
gaaagaaaaa taatggcag tttaaaaatg agaatggaga gaaaagaaaa 3900
agaatgaaaa ggaaaggcag taaagaggaa aaaaaaagga aggatgaaag 3950
gaatgaagga aggaagggag gaaggggaga aggttaggaag aaagaaagga 4000
tgagagggaa ggaagaatca gagtattag gtatgttact tacacattt 4050
cattcttagt ttaactgcaa gtgggtgttac tatgttttc aatgatcgca 4100
tttggaaacat aagtccattt ataccattaa gttccttattt tgcagcaatt 4150
atataataaa aagtactgcc caagttatag taatgtgggt gttttgaga 4200
caactaaaaga tttgagaggg agaatttcaa acttaaagcc acttttgggg 4250
ggtttataaac ttaactgaaa aattaatgct tcatacataac atttaagcta 4300
tatctagaaaa gtagactgga gaaactgagaa aattaccag gtaattcagg 4350
gaaaaaaaaa aatatatata tatataaata cccctacatt tgaagtcaga 4400
aaactctgaa aaactgaatt atcaaagtca atcatctata atgatcaaat 4450
ttactgaaca attgttattt tatccattgt gcttagctt gtgacacagc 4500
caaaagttac ctatataatc tttcaataa aaattgtttt ttgaaatcca 4550
gaaatgattt aaaaagaggt cagggtttt actattttt gaagtatgtg 4600
gatgtacagt atttcaatag atatgaatat gaataaatgg tatgccttaa 4650
gattcttga atatgtatTTT actttaaaga ctggaaaaag ctcttcctgt 4700
cttttagtaa aacatccata tttcataacc tgatgtaaaa tatgttgcac 4750
tgtttccat aggtgaatat aaactcagtt tatcaattaa aaaaaaaaaa 4800
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 4834

<210> 130
<211> 354
<212> PRT
<213> Homo Sapien

<400> 130
Met Asp Met Met Leu Leu Val Gln Gly Ala Cys Cys Ser Asn Gln
1 5 10 15
Trp Leu Ala Ala Val Leu Leu Ser Leu Cys Cys Leu Leu Pro Ser
20 25 30
Cys Leu Pro Ala Gly Gln Ser Val Asp Phe Pro Trp Ala Ala Val
35 40 45
Asp Asn Met Met Val Arg Lys Gly Asp Thr Ala Val Leu Arg Cys

50	55	60
Tyr Leu Glu Asp Gly Ala Ser Lys Gly Ala Trp Leu Asn Arg Ser		
65	70	75
Ser Ile Ile Phe Ala Gly Gly Asp Lys Trp Ser Val Asp Pro Arg		
80	85	90
Val Ser Ile Ser Thr Leu Asn Lys Arg Asp Tyr Ser Leu Gln Ile		
95	100	105
Gln Asn Val Asp Val Thr Asp Asp Gly Pro Tyr Thr Cys Ser Val		
110	115	120
Gln Thr Gln His Thr Pro Arg Thr Met Gln Val His Leu Thr Val		
125	130	135
Gln Val Pro Pro Lys Ile Tyr Asp Ile Ser Asn Asp Met Thr Val		
140	145	150
Asn Glu Gly Thr Asn Val Thr Leu Thr Cys Leu Ala Thr Gly Lys		
155	160	165
Pro Glu Pro Ser Ile Ser Trp Arg His Ile Ser Pro Ser Ala Lys		
170	175	180
Pro Phe Glu Asn Gly Gln Tyr Leu Asp Ile Tyr Gly Ile Thr Arg		
185	190	195
Asp Gln Ala Gly Glu Tyr Glu Cys Ser Ala Glu Asn Asp Val Ser		
200	205	210
Phe Pro Asp Val Arg Lys Val Lys Val Val Val Asn Phe Ala Pro		
215	220	225
Thr Ile Gln Glu Ile Lys Ser Gly Thr Val Thr Pro Gly Arg Ser		
230	235	240
Gly Leu Ile Arg Cys Glu Gly Ala Gly Val Pro Pro Pro Ala Phe		
245	250	255
Glu Trp Tyr Lys Gly Glu Lys Lys Leu Phe Asn Gly Gln Gln Gly		
260	265	270
Ile Ile Ile Gln Asn Phe Ser Thr Arg Ser Ile Leu Thr Val Thr		
275	280	285
Asn Val Thr Gln Glu His Phe Gly Asn Tyr Thr Cys Val Ala Ala		
290	295	300
Asn Lys Leu Gly Thr Thr Asn Ala Ser Leu Pro Leu Asn Pro Pro		
305	310	315
Ser Thr Ala Gln Tyr Gly Ile Thr Gly Ser Ala Asp Val Leu Phe		
320	325	330
Ser Cys Trp Tyr Leu Val Leu Thr Leu Ser Ser Phe Thr Ser Ile		
335	340	345

Phe Tyr Leu Lys Asn Ala Ile Leu Gln
350

<210> 131
<211> 823
<212> DNA
<213> Homo Sapien

<400> 131
atagtagaag aatgtctctg aaattactgg atgagtttca gtcataacttt 50
cacatggcca caatttcaca ttcaagctcc ttatcctagg ctaattttat 100
attatgttaa atcacttgtt tttgttctca cggcttcctg cctgctatag 150
gcataattac gaggaagcag aacttctcca gaagcaagcg cacatgcgtt 200
ccaaaataag agcaaattcg ctctaaacac agaaaaagac ctgaagcttt 250
aattaagggg ttacatccaa ccccagagcg cttttgtggg cactgattgc 300
tccagcttct gcgtcactgc gcgagggaaag agggaaagagg atccaggcgt 350
tagacatgta tagacacaaa aacagctgga gattggcctt aaaataccca 400
ccaagctcca aagaagagac ccaagtcccc aaaacattga tttcagggct 450
gccaggaagg aagagcagca gcaggggtggg agagaagctc cagtcagccc 500
acaagatgcc attgtcccc ggcctctgc tgctgctgct ctccggggcc 550
acggccacccg ctgcctgccc cctggagggt ggccccacccg gccgagacag 600
cgagcatatg caggaagcgg caggaataag gaaaagcagc ctccctgactt 650
tcctcgcttg gtggtttgag tggacctccc aggccagtgc cgggccccctc 700
ataggagagg aagctcgaaa ggtggccagg cggcaggaag ggcacccccc 750
ccagcaatcc gcgccccggg acagaatgcc ctgcaggaac ttcttctgga 800
agaccttctc ctccatccaa tag 823

<210> 132
<211> 155
<212> PRT
<213> Homo Sapien

<400> 132
Met Tyr Arg His Lys Asn Ser Trp Arg Leu Gly Leu Lys Tyr Pro
1 5 10 15
Pro Ser Ser Lys Glu Glu Thr Gln Val Pro Lys Thr Leu Ile Ser
20 25 30
Gly Leu Pro Gly Arg Lys Ser Ser Ser Arg Val Gly Glu Lys Leu
35 40 45

Gln Ser Ala His Lys Met Pro Leu Ser Pro Gly Leu Leu Leu Leu
50 55 60

Leu Leu Ser Gly Ala Thr Ala Thr Ala Ala Leu Pro Leu Glu Gly
65 70 75

Gly Pro Thr Gly Arg Asp Ser Glu His Met Gln Glu Ala Ala Gly
80 85 90

Ile Arg Lys Ser Ser Leu Leu Thr Phe Leu Ala Trp Trp Phe Glu
95 100 105

Trp Thr Ser Gln Ala Ser Ala Gly Pro Leu Ile Gly Glu Glu Ala
110 115 120

Arg Glu Val Ala Arg Arg Gln Glu Gly Ala Pro Pro Gln Gln Ser
125 130 135

Ala Arg Arg Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr
140 145 150

Phe Ser Ser Cys Lys
155

<210> 133
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 133
tcagggtctgc caggaaggaa gagc 24

<210> 134
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 134
gcaggaggag aaggcttcc agaagaag 28

<210> 135
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 135
agaagttcca gtcagccac aagatgccat tgtccccgg cctcc 45

<210> 136

<211> 1875
<212> DNA
<213> Homo Sapien

<400> 136
gtcgtgtgct tggaggaagc cgcgaaaccc ccagcgtccg tccatggcgt 50
ggagccttgg gagctggctg ggtggctgcc tgctgggtgc agcattggga 100
atggtaccac ctcccgaaaaa tgcagaatg aattctgtta atttcaagaa 150
cattctacag tgggagtcac ctgccttgc caaaggaaac ctgactttca 200
cagctcagta cctaaagttat aggatattcc aagataaattg catgaatact 250
accttgacgg aatgtgattt ctcaagtctt tccaaagtatg gtgaccacac 300
cttgagagtc agggctgaat ttgcagatga gcattcagac tgggtaaaca 350
tcacccctcg tcctgtggat gacaccatta ttggacccccc tggaaatgcaa 400
gtagaagtac ttgcgtattc ttacatatg cgtttcttag cccctaaaaat 450
tgagaatgaa tacgaaactt ggactatgaa gaatgtgtat aactcatgga 500
cttataatgt gcaatactgg aaaaacgta ctgatgaaaaa gtttcaaatt 550
actccccagt atgactttga ggtcctcaga aacctggagc catggacaac 600
ttattgtgtt caagttcgag ggttcttcc tgatcggAAC aaagctgggg 650
aatggagtga gcctgtctgt gagcaaacaa cccatgacga aacggcccc 700
tcctggatgg tggccgtcat cctcatgcc tcggcttca tggctgcct 750
ggcactcctc ggctgcttct ctttgctgtg gtgcgtttac aagaagacaa 800
agtacgcctt ctcccttagg aattctcttc cacagcacct gaaagagttt 850
ttgggccatc ctcataa cacacttctg ttttcttcc ttccattgtc 900
ggatgagaat gatgttttg acaagctaag tgtcattgca gaagactctg 950
agagcggcaa gcagaatcct ggtgacagct gcagcctcgg gacccgcct 1000
gggcaggggc cccaaagcta ggctctgaga agggaaacaca ctggctggg 1050
cacagtgacg tactccatct cacatctgcc tcagtgaggg atcaggcag 1100
caaacaaggc ccaagaccat ctgagccagc cccacatcta gaactccaga 1150
cctggactta gccaccagag agtacatatt taaaggctgt ctggcaaaa 1200
atactccatt tggaaactca ctgccttata aaggcttca tgatgtttc 1250
agaagttggc cactgagagt gtaatttca gcctttata tcactaaaaat 1300
aagatcatgt tttaattgtg agaaacaggg ccgagcacag tggctcacgc 1350

ctgtaatacc agcaccttag aggtcgaggc aggccgatca cttgagggtca 1400
ggagttcaag accagcctgg ccaatatggt gaaacccagt ctctactaaa 1450
aatacaaaaa ttagcttaggc atgatggcgc atgcctataa tcccagctac 1500
tcgagtcct gaggcaggag aattgcatga acccgggagg aggaggagga 1550
ggttgcagtg agccgagata gcggcactgc actccagcct gggtgacaaa 1600
gtgagactcc atctcaaaaa aaaaaaaaaa aaattgttag aaacagaaaat 1650
acttaaaatg aggaataaga atggagatgt tacatctggt agatgtaaaca 1700
ttctaccaga ttatggatgg actgatctga aaatcgacct caactcaagg 1750
gtggtcagct caatgtaca cagagcacgg acttttgat tctttgcagt 1800
actttgaatt tattttcta cctatataatg ttttatatgc tgctggtgct 1850
ccattaaagt tttactctgt gttgc 1875

<210> 137
<211> 325
<212> PRT
<213> Homo Sapien

<400> 137
Met Ala Trp Ser Leu Gly Ser Trp Leu Gly Gly Cys Leu Leu Val
1 5 10 15
Ser Ala Leu Gly Met Val Pro Pro Pro Glu Asn Val Arg Met Asn
20 25 30
Ser Val Asn Phe Lys Asn Ile Leu Gln Trp Glu Ser Pro Ala Phe
35 40 45
Ala Lys Gly Asn Leu Thr Phe Thr Ala Gln Tyr Leu Ser Tyr Arg
50 55 60
Ile Phe Gln Asp Lys Cys Met Asn Thr Thr Leu Thr Glu Cys Asp
65 70 75
Phe Ser Ser Leu Ser Lys Tyr Gly Asp His Thr Leu Arg Val Arg
80 85 90
Ala Glu Phe Ala Asp Glu His Ser Asp Trp Val Asn Ile Thr Phe
95 100 105
Cys Pro Val Asp Asp Thr Ile Ile Gly Pro Pro Gly Met Gln Val
110 115 120
Glu Val Leu Ala Asp Ser Leu His Met Arg Phe Leu Ala Pro Lys
125 130 135
Ile Glu Asn Glu Tyr Glu Thr Trp Thr Met Lys Asn Val Tyr Asn
140 145 150

Ser	Trp	Thr	Tyr	Asn	Val	Gln	Tyr	Trp	Lys	Asn	Gly	Thr	Asp	Glu
155									160					165
Lys	Phe	Gln	Ile	Thr	Pro	Gln	Tyr	Asp	Phe	Glu	Val	Leu	Arg	Asn
170									175					180
Leu	Glu	Pro	Trp	Thr	Thr	Tyr	Cys	Val	Gln	Val	Arg	Gly	Phe	Leu
185									190					195
Pro	Asp	Arg	Asn	Lys	Ala	Gly	Glu	Trp	Ser	Glu	Pro	Val	Cys	Glu
200									205					210
Gln	Thr	Thr	His	Asp	Glu	Thr	Val	Pro	Ser	Trp	Met	Val	Ala	Val
215									220					225
Ile	Leu	Met	Ala	Ser	Val	Phe	Met	Val	Cys	Leu	Ala	Leu	Leu	Gly
230									235					240
Cys	Phe	Ser	Leu	Leu	Trp	Cys	Val	Tyr	Lys	Lys	Thr	Lys	Tyr	Ala
245									250					255
Phe	Ser	Pro	Arg	Asn	Ser	Leu	Pro	Gln	His	Leu	Lys	Glu	Phe	Leu
260									265					270
Gly	His	Pro	His	His	Asn	Thr	Leu	Leu	Phe	Phe	Ser	Phe	Pro	Leu
275									280					285
Ser	Asp	Glu	Asn	Asp	Val	Phe	Asp	Lys	Leu	Ser	Val	Ile	Ala	Glu
290									295					300
Asp	Ser	Glu	Ser	Gly	Lys	Gln	Asn	Pro	Gly	Asp	Ser	Cys	Ser	Leu
305									310					315
Gly	Thr	Pro	Pro	Gly	Gln	Gly	Pro	Gln	Ser					
320									325					

<210> 138
 <211> 2570
 <212> DNA
 <213> Homo Sapien

<400> 138
 cgagcgccaa cccgctagcg cctgaatccg gctgtctgcc cgctcgccgc 50
 ccggccatggc ccgcgcagcc ccgctgctcg ccgcgttgac cgcgctccctc 100
 gccgcgcgcg ctgctggcgg agatccccg ccggggaaaa tcgcgggtgg 150
 tggggctggg attggggct ctgctgtggc ccattttctc cagcagcact 200
 ttggacctcg ggtgcagatc gacgtgtacg agaaggaaac cgtgggtggc 250
 cgcttggcca ccatctcagt caacaaggcag cactatgaga gcggggctgc 300
 ctccctccac tccctgagcc tgcacatgca ggacttcgtc aagctgctgg 350
 ggctgaggca cggcgccgag gtggtggca ggagcgccat cttcgccgg 400

gagcacttca tgctggagga gactgactgg tacctgctga acctcttccg 450
cctctggtgg cactatggca tcagcttccct gaggctgcag atgtgggtgg 500
aggaggtcat ggagaagttc atgaggatct ataagtacca ggcccacggc 550
tatgccttct cgggtgtgga ggagctgctc tactcaactgg gggagtccac 600
ctttgttaac atgacccagc actctgtggc tgagtccctg ctgcagggtgg 650
gcgtcacgca gcgcatttatt gatgatgtcg ttctgtgt cctgcgggcc 700
agctatggcc agtcagcagc gatgcccggc tttgcaggag ccatgtcact 750
agccggggcc caaggcagcc tgtggtctgt ggaaggaggc aataagctgg 800
tttgttccgg tttgtgaag ctcaccaagg ccaatgtgat ccatgccaca 850
tgacaccttg tgaccctgca cagcacagag gggaaagccc tgtaccaggt 900
ggcgtatgag aatgaggttag gcaacagctc tgacttctat gacatcgtgg 950
tcatgccac cccctgcac ctggacaaca gcagcagcaa cttAACCTT 1000
gcaggcttcc acccgcccat tgatgacgtg cagggttctt tccagccac 1050
cgtcgtctcc ttggccacg gctacctcaa ctgcgtctac ttgggttcc 1100
cagaccctaa gctttcccc tttgccaaca tccttaccac agatttcccc 1150
agcttcttct gcactctgga caacatctgc cctgtcaaca tctctgccag 1200
cttccggcga aagcagcccc aggaggcagc tgtttggcga gtccagtccc 1250
ccaagccctt ctccggacc cagctaaaga ccctgttccg ttccattac 1300
tcagtgaga cagctgagtg gcaggccat cccctctatg gtcggccccc 1350
cacgctcccg aggtttgcac tccatgacca gctttctac ctcaatgccc 1400
tggagtggc ggccagctcc gtggaggtga tggccgtggc tgccaagaat 1450
gtggccttgc tggcttacaa ccgctggtag caggacctag acaagattga 1500
tcaaaaagat ttgatgcaca aggtcaagac tgaactgtga gggctctagg 1550
gagagcctgg gaactttcat cccccactga agatggatca tcccacagca 1600
gcccaggact gaataagcca tgctcgccca ccaggcttct ttctgacccc 1650
tcatgtatca agcatctcca ggtgacctac tgtctgccta tattaagggt 1700
ccacacggcg gctgctgctt ttttttaagg gggaaagtaa gaaaagagaa 1750
gaaaatccaa gccagtatat ttgttttatt tattttttt aagaagaaaa 1800
aagttcatct tcacaagggtg ctccagactt ggtttcttag ctagaaacca 1850

gaagactacg ggagggaata taaggcagag aactatgagt cttattttat 1900
tactgtttt cactacctac tcccacaatg gacaatcaat tgaggcaacc 1950
tacaagaaaa catttacaac cagatggta caaataaaagt agaagggaaag 2000
atcagaaaaac ctaagaaaatg atcatagctc ctggttactg tggacttgat 2050
ggatttgaag tacctagttc agaactccct agtcaccatc tccaagcctg 2100
tcaacatcac tgcataattgg aggagatgac tgtggtagga cccaaggaag 2150
agatgtgtgc ctgaatagtc gtcaccatat ctccaagcctt cctggcaacc 2200
agtggaaaaa gaaacatgcg aggctgtagg aagagggaaag ctcttccttg 2250
gcacctagag gaattagcca ttctcttcct tatgcaaaga ttgaggaatg 2300
caacaatata aagaagagaa gtccccagat ggtagagagc agtcataatct 2350
tacccctaga tgttcatccc agcagaagaa agaagaaggt gttgggttag 2400
gattcttcag aggttagcct ggtactttct catcagacac tagcttgaag 2450
taagaggaga attatgcttt tctttgcttt ttctacaaac ccttaaaaat 2500
cacttgtttt aaaaagaaag taaaagccct tttcattcaa aaaaaaaaaa 2550
aaaaaaaaaaa aaaaaaaaaa 2570

<210> 139
<211> 494
<212> PRT
<213> Homo Sapien

<400> 139
Met Ala Arg Ala Ala Pro Leu Leu Ala Ala Leu Thr Ala Leu Leu
1 5 10 15
Ala Ala Ala Ala Gly Gly Asp Ala Pro Pro Gly Lys Ile Ala
20 25 30
Val Val Gly Ala Gly Ile Gly Gly Ser Ala Val Ala His Phe Leu
35 40 45
Gln Gln His Phe Gly Pro Arg Val Gln Ile Asp Val Tyr Glu Lys
50 55 60
Gly Thr Val Gly Gly Arg Leu Ala Thr Ile Ser Val Asn Lys Gln
65 70 75
His Tyr Glu Ser Gly Ala Ala Ser Phe His Ser Leu Ser Leu His
80 85 90
Met Gln Asp Phe Val Lys Leu Leu Gly Leu Arg His Arg Arg Glu
95 100 105
Val Val Gly Arg Ser Ala Ile Phe Gly Gly Glu His Phe Met Leu

110	115	120
Glu Glu Thr Asp Trp Tyr Leu Leu Asn	Leu Phe Arg Leu Trp Trp	
125	130	135
His Tyr Gly Ile Ser Phe Leu Arg Leu	Gln Met Trp Val Glu Glu	
140	145	150
Val Met Glu Lys Phe Met Arg Ile Tyr	Lys Tyr Gln Ala His Gly	
155	160	165
Tyr Ala Phe Ser Gly Val Glu Glu	Leu Leu Tyr Ser Leu Gly Glu	
170	175	180
Ser Thr Phe Val Asn Met Thr Gln His	Ser Val Ala Glu Ser Leu	
185	190	195
Leu Gln Val Gly Val Thr Gln Arg Phe	Ile Asp Asp Val Val Ser	
200	205	210
Ala Val Leu Arg Ala Ser Tyr Gly Gln	Ser Ala Ala Met Pro Ala	
215	220	225
Phe Ala Gly Ala Met Ser Leu Ala Gly	Ala Gln Gly Ser Leu Trp	
230	235	240
Ser Val Glu Gly Gly Asn Lys Leu Val	Cys Ser Gly Leu Leu Lys	
245	250	255
Leu Thr Lys Ala Asn Val Ile His Ala	Thr Val Thr Ser Val Thr	
260	265	270
Leu His Ser Thr Glu Gly Lys Ala Leu	Tyr Gln Val Ala Tyr Glu	
275	280	285
Asn Glu Val Gly Asn Ser Ser Asp Phe	Tyr Asp Ile Val Val Ile	
290	295	300
Ala Thr Pro Leu His Leu Asp Asn Ser	Ser Ser Asn Leu Thr Phe	
305	310	315
Ala Gly Phe His Pro Pro Ile Asp Asp	Val Gln Gly Ser Phe Gln	
320	325	330
Pro Thr Val Val Ser Leu Val His Gly	Tyr Leu Asn Ser Ser Tyr	
335	340	345
Phe Gly Phe Pro Asp Pro Lys Leu Phe	Pro Phe Ala Asn Ile Leu	
350	355	360
Thr Thr Asp Phe Pro Ser Phe Phe Cys	Thr Leu Asp Asn Ile Cys	
365	370	375
Pro Val Asn Ile Ser Ala Ser Phe Arg	Arg Lys Gln Pro Gln Glu	
380	385	390
Ala Ala Val Trp Arg Val Gln Ser Pro	Lys Pro Leu Phe Arg Thr	
395	400	405

Gln Leu Lys Thr Leu Phe Arg Ser Tyr Tyr Ser Val Gln Thr Ala
410 415 420

Glu Trp Gln Ala His Pro Leu Tyr Gly Ser Arg Pro Thr Leu Pro
425 430 435

Arg Phe Ala Leu His Asp Gln Leu Phe Tyr Leu Asn Ala Leu Glu
440 445 450

Trp Ala Ala Ser Ser Val Glu Val Met Ala Val Ala Ala Lys Asn
455 460 465

Val Ala Leu Leu Ala Tyr Asn Arg Trp Tyr Gln Asp Leu Asp Lys
470 475 480

Ile Asp Gln Lys Asp Leu Met His Lys Val Lys Thr Glu Leu
485 490

<210> 140
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 140
gggacgtgct tctacaagaa cag 23

<210> 141
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 141
caggcttaca atgttatgtat cagaca 26

<210> 142
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 142
tattcagagt tttccattgg cagtgcgcgt t 31

<210> 143
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 143
ggccttgcag acaaccgt 18

<210> 144
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 144
cagactgagg gagatccgag a 21

<210> 145
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 145
gcagatttg aggacagcca cctcca 26

<210> 146
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 146
catcaagcgc ctctacca 18

<210> 147
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 147
cacaaactcg aactgcttct g 21

<210> 148
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 148
cagctgccct tccccaaacca 20

<210> 149
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 149
ggcagagact tccagtcact ga 22

<210> 150
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 150
gccaagggtg gtgttagata gg 22

<210> 151
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 151
caggccccct tgatctgtac ccca 24