

HT7017 用户手册

钜泉光电科技 (上海) 股份有限公司

Tel: 021-51035886 Fax: 021-50277833

Email: sales@hitrendtech.com
Web: http://www.hitrendtech.com

版本更新说明

版本号	修改时间	修改内容
V2.0	2017-4-20	针对新版本 HT7017, 进版到 V2.0; 主要修改项如下:
		1. 新增 I1 通道移采样点校正方式以提高国网误差变差打分;
		2. 芯片动态范围修改为 8000: 1;
		3. 芯片 Device ID 修改为 0x705321;
		4. 供电电压修改为宽电压域: 3.0V—5.5V;
		5. 新增锰铜断火线检查功能说明;
		6. 新增校表参数 CRC 校验和;
		7. 芯片 Rx Pin 的持续 30mS 低电平暂停能量累加功能;
		8. 新增 U/I1 通道波形采样缓存功能;
		9. 新增脉冲加倍功能,方便客户提高量产效率。
V3.0	2017-05-27	1. 增加 UART 软件复位命令字 2
		2. HFconst 和 Poffset 计算公式中,删除 Femu 相关说明;
		3. 删除 CFMOD_CFG 相关说明;
		4. 修改 PoffsetL 的符号位说明;
		5. 增加 UART 连读下,CHECKSUM1 的说明;
		6. 删除电压过零翻转描述,即 ZXCFG 相关内容;
V3.1	2017-06-14	1. 增加 RST 管脚内部强上拉的等效电阻说明;
		2. 电气规格中增加输出 IO 口的 Isource Isink 典型值;
		3. 电气规格中增加抗静电试验相关数据;

目 录

1.	芯片概	况	5
	1.1.	芯片简介	5
	1.2.	芯片特性	5
	1.3.	整体框图	<i>6</i>
	1.4.	引脚定义	<i>6</i>
2.	系统复	<u> </u>	8
	2.1.	电源监测系统	8
	2.2.	系统复位方式	8
3.	系统功能	能	9
	3.1.	波形采样功能	9
	3.2.	有效值测量	9
	3.3.	有功功率计算	9
	3.4.	无功功率计算	10
	3.5.	视在功率计算	10
	3.6.	电能/频率转换	10
	3.7.	移采样点方式相位校正	10
	3.8.	直流测量	10
	3.9.	起动/潜动	10
	3.10.	计量可靠性机制	11
	3.11.	Rx Pin 暂停电能累加功能	11
	3.12.	中断源	11
	3.13.	锰铜掉线检测功能	11
	3.14.	脉冲加倍功能	11
	3.15.	自动防窃电功能	11
	3.16.	电压 SAG/PEAK 功能	12
	3.17.	电压过零丢失	13
	3.18.	ADC 波形缓存功能	13
	3.19.	校表参数校验	13
4.	通信接	口	15
	4. 1.	UART 接口	15
	4.2.	特殊命令	20
5.	寄存器		21
	5.1.	计量参数寄存器	21
	5.2.	校表参数寄存器	30
6.	电气规	格	53
	6.1.	绝对最大额定值	53
	6.2.	电气特性	53
7.	校表过	程	55
8.	芯片封	装	59
	8. 1.	HT7017 (SSOP16)	59

9. 典型应用......60

1. 芯片概况

1.1. 芯片简介

新版 HT7017 是一颗带 UART 通讯接口的高精度单相多功能计量芯片。 芯片支持宽电压,工作电压范围是 3.0 ~5.5V。 工作晶振为 6MHz。

1.2. 芯片特性

- 三路 19 bits Sigma-Delta ADC;
- 支持 8000:1 的动态范围;
- 比 5000:1 版本芯片更好的小信号精度表现
- 可以同时得到两路计量通道的有功功率、无功功率;
- 支持有功、无功、视在功率和有功电能脉冲输出;
- 能够同时得到三路 ADC 通道的有效值,及电压通道的频率;
- 支持 UART 通讯方式;
- 中断支持: 过零中断, 采样中断, 电能脉冲中断, 校表中断等;
- NORMAL 全速运行时功耗<4mA;
- 电源监测功能
- 支持电压跌落(SAG)和峰值检测(PEAK)功能;
- 新增计量可靠性机制
- 支持锰铜掉火线检测功能
- 提供校表参数的 CRC 校验
- 提供 128 点的 ADC 波形缓存功能
- 芯片封装: SSOP 16。

1.3. 整体框图

图 1-1 芯片整体框图

1.4. 引脚定义

1.4.1. PIN 脚封装图

(1) ssop16, 3 路 ADC+1 路 CF

图 1-2 HT7017 芯片 PIN 脚封装图

1.4.2. PIN 脚功能说明

序号	PIN 名字	类型	PIN 说明
1	AVCC	POWER	模拟电源输入, 3.0v~5.5v
2	V3P	INPUT	电压输入通道正;(VP-VN)范围±870mv 峰值
3	V3N	INPUT	电压输入通道负
4	V2P	INPUT	电流通道 2 单端输入; (VP-GND) 范围±900mv 峰值
5	V1P	INPUT	电流通道 1 输入正;(VP-VN)范围±900mv 峰值
6	V1N	INPUT	电流通道 1 输入负
7	VREF	OUTPUT	ADC 参考电压输出,典型值 1.2V,外接 0.1uF 并 1uF 电
			容
8	AGND	GND	模拟地
9	PF	OUTPUT	有功电能脉冲输出
10	RX	INPUT	UART 通讯,串口接收数据输入
11	TX / IRQ	OUTPUT	UART 通讯,串口数据输出,内部已上拉高电平。
			用户可通过命令字将TxPin 复用为中断IRQ 输出。
12	XTALI	INPUT	晶振 6MHz 输入,该引脚和 XTALO 之间不需要接 10M
			电阻
13	XTALO	OUTPUT	晶振 6MHz 输出,该引脚和 XTALI 之间不需要接 10M 电
			阻
14	DVDD	POWER	数字电源输入: 3.0v~5.5v
15	RST\	INPUT	芯片复位引脚,低电平有效,该引脚默认内部强上拉,当
			该引脚出现大于 200uS 低电平时,芯片复位。注1
16	VDD1P8	POWER	数字 1.8V 输出,外部接 0.1uf 电容

注 1:

内部强上拉等效阻值在 5V 供电下约为 10K, 在 3.3V 时约为 16K。

2. 系统复位

2.1. 电源监测系统

芯片內部有电源检测模块检测系统电源的变化,当低于检测阈值 2.6V 时芯片发生复位,电源电压高于启动阈值 2.8V 开始运行。从而保证电路上电和掉电时芯片的正确启动和正常工作;电源监控电路具有滤波电路,防止由电源噪声引发的错误。

2.2. 系统复位方式

系统上电复位:给 HT7017 提供工作电源,等待晶振起振以及 HT7017 内部电源系统建立,需要 20ms 时间,然后才可操作内部寄存器。

硬件 RST 复位:通过外部引脚 RESET 完成,当 Reset 出现大于 200uS (包含)的低电平时,芯片进入复位状态,当 RESET 变为高电平时芯片将从复位状态进入正常工作状态(需要等待 2ms 才可以操作寄存器)。

软件复位:通过 UART 接口完成:

- 1、当33H寄存器写入0x55;
- 2、当 UART 接收到波特率为 300 的命令字 0x00; 系统就进行一次复位,复位之后芯片从初始状态开始运行。

3. 系统功能

3.1. 波形采样功能

(1) 支持三通道的 ADC 采样数据输出, ADC 波形采样数据在默认频率配置下更新速度为 0.976KHz, 最快可以通过寄存器 FreCFG[2..0](41H)配置达到 15.62kHz

3.2. 有效值测量

(1) 同时支持三路 ADC 通道有效值计量,同时支持三路通道有效值小信号偏置校正,用于校正当 ADC 通道输入信号为 0 时,有效值存在的零漂。

3.3. 有功功率计算

有功功率是通过对去直流分量后的电流、电压信号进行乘法、加法、数字滤波等一系列数字信号处理后得到的。计算得到的有功功率也至少包含 41 次谐波信息。

3.4. 无功功率计算

3.5. 视在功率计算

视在功率的计算是通过将电压有效值和电流有效值相乘后得到。

 $S = Urms \times Irms$

3.6. 电能/频率转换

注:快速脉冲寄存器累加的能量单位为 1/HFConst.

3.7. 移采样点方式相位校正

新版芯片新增了移采样点的方式 校正 0.5L 时的相位差引起的初始误差。其直接作用于采样数据,因此相对于 GPhs 的校正方式响应速度更快。在误差变差打分 1.0 切换 0.5L 的过程中相对 GPhs 更快达到稳定。

此移采样点校正方式解决了老版 HT7017 概率性出现 1.0 到 0.5L 切换过程中的大误差值。

3.8. 直流测量

支持 3 路直流计量功能: 并支持 ADC offset 校正。

3.9. 起动/潜动

芯片检测到有功功率<mark>或无功功率</mark>大于起动功率阈值,该能量就开始计量,即起动; 当有 功功率<mark>或无功功率</mark>小于起动功率阈值,该能量停止计量,即潜动。

通过寄存器 EMUSR(19H)位 NoPld 和 NoQld 来指示芯片是否处于潜动状态,若潜动,则置位标志位。芯片是使用功率来做起动/潜动判断的。

HT7017 提供了两种判断潜动的方式。一是 P 和 Q 独立判断,二是 P 和 Q 联合判断(可通过寄存器 EMUCFG.Bit StartSel 使能)即只要 P 或 Q 有一个大于阈值,P 和 Q 就同时开始计量能量。

3.10. 计量可靠性机制

当 HT7017 上电启动或者发生复位后,用户需要对 ADC 通道增益寄存器(59H ADCCON) 进行一次写操作后,能量才会计量。

该机制可以防止 MCU 在初始化完成之前, 计量芯片已经按默认配置, 错误计量电能。

3.11. 中断源

中断标志寄存器 EMUIF 中的所有标识都可以读取。

芯片 TX pin 通过命令字(0xA5+0xC9+0xCCA5)可复用为中断输出。之后任何非本命令的读写操作均可切回。命令帧格式详细在通信接口-特殊命令中描述。

3.12. 锰铜掉线检测功能

芯片内部实现了对锰铜断线的检测功能,用户可通过 ANAEN. Bit VDC_DET_EN 使能该功能。 当锰铜发生火线地掉落事件时,芯片会给出指示标志位。

用户可配合使用VIP与VIN跨接电阻(抗混叠电路前端),实现掉信号线时功率潜动。

3.13. 脉冲加倍功能

HT7017 支持脉冲加倍功能,增加脉冲常数加倍选择寄存器 CFDouble[2..0],用于控制小电流时的脉冲常数加倍,从而使小电流时的校表速度加快 2/4/8/16 倍, CFDouble 加倍是通过将功率值放大实现的,功率寄存器的值也同时放大,便于进行 Poffset 校正。

3.14. 自动防窃电功能

可以通过防窃电模块对两路电流或者两路功率大小进行比较,选用较大的一路电流或功率进行计量。

可以通过 FLTON 设置是否开启自动防窃电功能。FLTON=0 时,可以根据 CHNSEL 选择当前有效计量通道; FLTON=1 时,防窃电单元根据 IPTAMP 和 ICHK 的设置,自动选择相应的通道进行计量。

- 1) 当两路计量通道至少有一路大于等于 IPTAMP 时,可进行自动防窃电的判断;
- 2) 通过 ICHK 可以设置发生窃电的比例,默认为 0x10H,表示当两路电流有效值或功率值相对误差到 6.25%时,同时满足 1) 的条件下,认为发生了窃电。
- 3) 当两路的电流的有效值或者功率值均小于 IPTAMP 设置的值时,可通过配置 TampSel=1 (default) 表示选择通道 1 为计量单元; TampSel=0 表示不切换,选择之前的计量通道。
 - 4) 窃电的相关状态标识:

I2GT1 为 0 表示 I1(P1)大于 I2(P2), 为 1 时表示 I2(P2)大于 I1(P1)。 TAMP 为 1 表示发生了窃电,即两路电流相比超过了设定的防窃电阈值。

3.15. 电压 SAG/PEAK 功能

PEAK 事件的定义: 过零数据来源移相低通滤波器后的数据,峰值数据来源于高通后

以半周波为单位,每半周波进行一次判别,并将峰值更新到 MAXUWAVE 寄存器(0x12),当电压波形采样值第一个半周波的绝对值峰值大于 PEAKLVL(校表参数 7AH)设定的 PEAK 阈值,记为事件判断开始。只要电压波形峰值的绝对值不小于设定的阈值(PEAKLVL),则一直处于 PEAK 状态,当计数值等于 UCyc(校表参数 7CH)设定的半周波数,则判定发生 PEAK 事件,并给出标志位 PEAKIF 及 UStart 标志位,之后每个半周波继续判别,每 Ucyc 个半周波更新标志位 PEAKIF。当电压波形峰值的绝对值小于设定的阈值(PEAKLVL),则停止当前计数,并给出 Uend 标志位,更新更新计数寄存器 UdetCNT(0x0F); UStart/Uend/PeakIF 标志读后清零。

SAG 事件的定义与流程与 PEAK 大致相同。具体如下

3.16. 电压过零丢失

当电压信号的两次过零之间的时间间隔大于内部设定值时,即发生一次过零丢失事件,HT7017 给出过零丢失标志位。当电压有效值寄存器值小于 0x00A300 时不进行事件判断,同时将 UFREQ 置为 0x2710。

3.17. ADC 波形缓存功能

芯片內置 128*16bit 的缓存 buffer,用于存放电压通道,电流 1 通道(注意芯片不提供缓存电流 2 通道)ADC 采样数据,供用户做进一步的分析。用户可通过发送命令启动 ADC 波形缓存,芯片在每一个波形更新周期(SPL 决定速率、SPLSel 选择数据源)将相应 ADC 数据(高 16bit 补码形式)保存到缓存中,写指针自动加 1,直到缓存 buffer 存满为止(写指针=0x80)。用户只要不发送新的启动命令,缓存的数据会一直保持上一次的数据。

用户可以随时读取缓存的内容,每读一次缓存后,地址指针会自动加 1,地址大于缓存长度后,回到起始地址。

用户可通过特殊命令改变内部读指针,便于用户任意指定要读取的缓存起始地址。命令重新启动缓冲后,不管之前用户读取缓冲数据到哪个地址,地址指针都会自动回到首地址。

读取有效数据的方法: 用户等待相应采样间隔时间以后, 去读缓存的内容。

缓存数据可通过进行连读模式、读指定起始地址等操作。

波形缓存的相关命令帧格式在通信接口-特殊命令中细述。

3.18. 校表参数校验

3.18.1. CRC 校验

芯片内部集成了 CRC 校验算法,用以对校表参数寄存器进行参数校验。

CRC_CCITT-FALSE参数如下:

CRC-CCITT	x16+x12+x5+1
Width	16
Poly	0x1021
Init	0xFFFF
RefIn	FALSE
RefOut	FALSE
XorOut	0x0000

3.18.2. SumChecksum 校验

将所有的校表寄存器做累加,累加后的结果放入一个 3 字节的参数和寄存器,参数和寄存器固定时间更新,这样用户可以通过查询这个寄存器的数据是否改变来判断是否出错。

用户可根据需要选择两种校验中的一种即可,注意两种校验均不对 6FH 到 74H 地址的寄存器。

4. 通信接口

4.1. UART 接口

4.1.1. 概述

- (1) 工作在从模式, 半双工通讯, 9位 UART (返回数据含偶校验位), 符合标准 UART 协议。
- (2) HT7017 通信波特率固定为 4800 bps。
- (3) 数据帧结构包含校验字节和 ACK 反馈字节。
- (4) 读操作时数据为 3 字节/4 字节可选(寄存器控制位选择)。
- (5) 支持连续读数模式。
- (6) 可使能接收数据的偶校验功能。

4.1.2. UART 接口说明

HT7017:

- (1) RX: HT7017 的数据接收引脚。
- (2) TX: HT7017 的数据发送引脚。

4.1.3. UART 接口图示

HT7017 UART 接口图示

4.1.4. UART 单个字节格式

4.1.5. HT7017 UART 通讯命令帧格式

HEAD	CMD[70]	DATA	CHKSUM/ACK
Fixed:0x6A W/R+Address			
		MSB LSB	

名称	解释
HEAD	传输字节帧头,固定为 0x6A
CMD[70]	命令字节,由主机端发送
	CMD[7]为命令类别: 0: 读操作 1: 写操作
	CMD[6:0]为需要操作的 HT7017 寄存器地址
DATA	数据字节,读操作由从机端 HT7017 发送,写操作由主机端发送。
	读寄存器一般为3字节传输;写寄存器是固定2字节传输,高字节在前。
CHKSUM	校验和:读操作时由从机端 HT7017 发送,写操作时由主机端发送。
	校验和算法如下:
	$CHKSUM[70] = \overline{HEAD[70] + CMD[70] + DATAn[70] + + DATA1[70]}$
	即将命令帧的各数据相加,抛弃进位,最后的结果按位取反。
ACK	写操作时由从机端 HT7017 表示用户发送的校验和与从机内部计算的校验和是否一致,
	如果一致则 ACK 为 0x54, 如果不一致则 ACK 为 0x63。
	ACK 的响应时间为从机端 HT7017 接收完数据后 26us 后响应。

4.1.6. HT7017 UART 通讯写操作格式

写操作特点	说明
9位 UART	单个字节信息由 11bit 组成,分别为: 起始位+数据位+奇偶校验位+停止位
6字节固定	每一个写操作数据帧都是6个字节固定长度,如果主机发送校验和后从机检测发现和
长度传输	接收的校验和不一致,则该帧数据也不会被写入 HT7017 寄存器,同时会给出 ACK
	信号。
字节传输	对于双字节的寄存器,数据帧写入时,高字节在前,低字节在后。
顺序	对于单字节的寄存器,数据帧写入时,高字节补 0, 低字节为用户需要写入的数据。
写保护	用户在对寄存器写操作前,需要写入写使能命令。
出错处理	错误一:数据头 HEAD 错误,则该字节被放弃,从下个字节开始重新判断是否正确
	收到数据头。
	错误二:校验和 CHECKSUM 比对错误,则从机放弃该帧数据,同时返回相应的 ACK
	信号 (0x63)。

4.1.7. HT7017 UART 通讯读操作格式

读操作特点	说明
9位 UART	单个字节信息由 11bit 组成,分别为:起始位+数据位+奇偶校验位+停止位
6字节默认	每一个读操作数据帧都是6个字节默认长度,从机接收到命令后返回4个字节,包含
长度传输	3个寄存器数据字节和1个校验和字节,读操作结束。

字节传输	对于多字节的寄存器,数据帧输出时,高字节在前,低字节在后。对于不足3个字节
顺序	的寄存器,HT7017 的内部寄存器与数据帧的低位对齐。
出错处理	错误一:数据头 HEAD 错误,则该字节被放弃,从下个字节开始重新判断是否正确
	收到数据头。

用户可通过使能 4 数据字节通信功能(45H.UARTCFG)来读取 4 字节寄存器。

读操作特点	说明
9位 UART	单个字节信息由 11bit 组成,分别为:起始位+数据位+奇偶校验位+停止位
7字节	使能 4 数据字节通信模式后,每一个读操作数据帧是 7 个字节长度。从机接收到命令
长度传输	后返回 5 个字节:包含 4 个寄存器数据字节和 1 个校验和字节,对于不满 4 字节的寄
	存器,低字节会补00返回。
字节传输	对于多字节的寄存器,数据帧输出时,高字节在前,低字节在后。对于不足3个字节
顺序	的寄存器(DATA2-DATA0),HT7017的内部寄存器与数据帧的低位对齐。
出错处理	错误一:数据头 HEAD 错误,则该字节被放弃,从下个字节开始重新判断是否正确
	收到数据头。

4.1.8. HT7017 UART 通讯连续读操作格式

连续读操作	说明
11 位 UART	单个字节信息由 11bit 组成,分别为: 起始位+数据位+奇偶校验位+停止位
命令字格式	连续读操作数据帧命令由5个字节组成:
	帧头(0x6A) + 特殊命令(0xC6)+数据(ADDR0 为起始地址, ADDR1 为结束地址) +

	CheckSum(前 4 个字节的按字节累加后取反低 8bit)
	从机接收到命令后返回 1 个字节 ACK 表明命令字是否正确;
回送数据格	接收 5 个字节数据后,检查 CheckSum 是否正确:
式	1) 正确则返回 ACK=0x54,并发送起始地址到结束地址的数据,数据格式按照每个
	地址 3 字节或这 4 字节(控制位选择), 即地址 0 的高字节~地址 0 的低字节,地址 1
	的高字节~地址 1 的低字节······地址 n 的高字节~地址 n 的低字节;最后返回所有
	数据的 CHECKSUM1。
	CHECKSUM1 是 DATA0—DATAn 按字节累加,取反再取低 8 位。
	选择为 4 字节数据通信时,不满 4 字节的寄存器返回值低字节补 00;
	空闲地址的数据补 0;
	注: ADDR0=0x7F,为连续读ADC 波形缓存模式。此时ADDR1 的值为读缓存的长
	度。
	2) 错误则返回 ACK=0x63,不返回地址内的数据。
出错处理	错误一:数据头 HEAD 错误,则该字节被放弃,从下个字节开始重新判断是否正确
	收到数据头。
	错误二:从机在寄存器校验和 CHECKSUM 比对错误,则从机放弃该帧,同时返回相
	应的 ACK 信号(0x63)。

4.1.9. HT7017 UART 通讯超时保护机制

HT7017 的 UART 通讯提供了超时保护机制,规定 byte 与 byte 间的间隔不得超过一定值 (20ms),否则 UART 模块自动复位。

具体步骤如下:

- (1) 每一 byte 的 Start Bit, 计数器清零并开始计数;
- (2) 当计数器发生溢出(超过 20ms),则 UART 模块自动复位,计数器清零并停止计数;
- (3) 完整数据帧发送/接收完成后, 计数器清零并停止计数。

4.1.10. HT7017 UART 通讯校验和

- (1) BCKREG: 会保存上一次 UART 通讯数据的值(该寄存器为了保证 UART 通讯的准确性, UART 写入操作为 2 个字节, BCKREG 高字节无效)。
- (2) ComChecksum: 对 UART 传输数据帧校验和寄存器的读取会导致该校验和寄存器的重新计算,每次 UART 通讯的命令(包括 HEAD 和 CMD)和数据都被累加放入 ComChecksum 寄存器的低两个字节。ComChecksum 的高 8 位 bit16....bit23 会保存 UART 通讯的上一次的命令。UART 通讯中的数据为单字节长度的加法。(该寄存器为了保证 UART 通讯的准确性)。

4.2. 特殊命令

HT7017 提供的特殊命令主要有: 0xA5, 0x7F, 0xC6, 0xC7, 0xC8, 0xC9

4.2.1. UART 模式特殊命令

特殊命令	帧	命令	数据	命令说明	
	头	字			
连续读	6A	C6	Addr0 Addr1	Addr0 为起始地址,Addr1 为结束地址。	
建铁 铁			Checksum	Tx 返回: ACK+DATA0~DATAn+Checksum	
Tx 复用 IRQ	A5	C9	CC A5 Checksum 00	此命令可将芯片 Tx 复用为 IRQ 输出。非此	
				命令的任何读写操作均会切回 Tx 功能。	
启动缓存	6A	C8	CC C0 Checksum	启动电压通道 U的 ADC 波形缓存功能	
口列级行	6A	C8	CC C1 Checksum	启动电流通道 I1 的 ADC 波形缓存功能	
			每读一次,缓存地址自动加一供用户下次读		
读单次缓存	6A	7F		取。返回值和 UART 读命令一致。(数据	
				3/4Bytes 取决于通信字节控制位)。	
连续读模式读				当连续读模式的 Addr0=0x7F 时, C6 命令为	
取缓存	6A	C6	7F Length Checksum	读缓存同时将 Addr1 默认为用户要读的	
以 级行				buffer 指定长度,地址指针跟随长度。	
				指定缓存数据的地址指针,Addr 为用户指定	
指定缓存地址 6A C7 00 Addr Checksum		00 Addr Chaelssum	的相对缓存起始地址的偏移地址。供用户先		
		OO Addi Checksuili	指定地址而后做读缓存操作。		
				注: 此功能下Addr 不可大于(可等于)0x7F	

5. 寄存器

5.1. 计量参数寄存器

5.1.1. 计量参数寄存器列表

表 5-1 计量参数寄存器列表(Read Only)

地址	名称	字节长度	功能描述
00H	Spl_I1	3	电流通道 1 的 ADC 采样数据
01H	Spl_I2	3	电流通道 2 的 ADC 采样数据
02H	Spl_U	3	电压通道的 ADC 采样数据
03H	I_Dc	3	I 通道直流均值(当前计量通道)
04H	U_Dc	3	U通道直流均值
06H	Rms_I1	3	电流通道1的有效值
07H	Rms_I2	3	电流通道 2 的有效值
08H	Rms_U	3	电压通道的有效值
09H	Freq_U	2	电压频率
0AH	PowerP1	3/4	第一通道有功功率,默认3字节。可配4字节
0BH	PowerQ1	3/4	第一通道无功功率,默认3字节。可配4字节
0CH	Power_S	3/4	视在功率,默认3字节。可配4字节
0DH	Energy_P	3	有功能量
0EH	Energy_Q	3	无功能量
0FH	UdetCNT	3	SAG/Peak 工况持续时间计数
10H	PowerP2	3/4	第二通道有功功率,默认3字节。可配4字节
11H	PowerQ2	3/4	第二通道无功功率,默认3字节。可配4字节
12H	MAXUWAVE	3	电压半波波形峰值寄存器,22bit
13H	Reserved		
14H	Reserved		
15H	CRCChecksum	3	校表参数校验和寄存器(CRC16)
16H	BackupData	3	通讯数据备份寄存器
17H	COMChecksum	3	通讯校验和寄存器
18H	SUMChecksum	3	校表参数校验和寄存器
19H	EMUSR	2	EMU 状态寄存器
1AH	SYSSTA	1	系统状态寄存器
1BH	ChipID	3	ChipID, 默认值为 7053B0
1CH	DeviceID	3	DeviceID,默认值为 705321

5.1.2. 计量参数寄存器说明

5.1.2.1. ADC 波形寄存器(SPLI1, SPLI2, SPLU)

Current 1	wave Register	(SPLI1)	Address:	00H			
	Bit23	22	21	20 3	2	1	Bit0
Read:	SPLI123	SPLI122	SPLI121	SPLI120SPLI13	SPLI12	SPLI11	SPLI10
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

Current 2	Current 2 wave Register (SPLI2)			01H			
	Bit23	22	21	20 3	2	1	Bit0
Read:	SPLI223	SPLI222	SPLI221	SPLI220SPLI23	SPLI22	SPLI21	SPLI20
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

Voltage w	oltage wave Register (SPLU)			02H			
	Bit23	22	21	20 3	2	1	Bit0
Read:	SPLU23	SPLU22	SPLU21	SPLU20SPLU3	SPLU2	SPLU1	SPLU0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

波形寄存器的更新速度由时钟配置寄存器 FreqCFG. [2:0]的 3个 bit 控制。此3个寄存器 有效位数为 19 位,bit18 为符号位,同时该符号位扩展到 bit23,即读出的数据中 bit23—bit18 都是符号位。

该 ADC 波形寄存器为未经过高通的数据,是 ADC 输出的未经过校正的原始数据。数据采用二进制补码格式。

5.1.2.2. 直流均值寄存器 (I_DC, U_DC)

I DC F	Register (I_DC,)		Address:	Address: 03H					
	Bit23	22	21	20 3	2	1	Bit0		
Read:	IS23	IS22	IS21	IS20IS3	IS2	IS1	IS0		
Write:	X	X	X	X	X	X	X		
Reset:	0	0	0	0	0	0	0		

电流通道直流均值寄存器为 3Bytes 有符号数据,最高位为符号位。更新频率为 12.5Hz。 注意:此寄存器的值是指当前电流计量通道(默认第一通道)。也即: I1 和 I2 直流均值同用此寄存器。

U DC	Register (I_DC,)	Address:	04H			
	Bit23	22	21	20 3	2	1	Bit0
Read:	US23	US22	US21	US20US3	US2	US1	US0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

电压通道直流均值寄存器为 3Bytes 有符号数据,最高位为符号位。更新频率为 12.5Hz。

5.1.2.3. 有效值输出(I1Rms, I2Rms, URms)

Current 1	Current 1 Rms Register (I1Rms)			06H			
	Bit23	22	21	20 3	2	1	Bit0
Read:	I1S23	I1S22	I1S21	I1S20I1S3	I1S2	IIS1	I1S0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

Current 2	Current 2 Rms Register (I2Rms)			07H			
	Bit23	22	21	20 3	2	1	Bit0
Read:	I2S23	I2S22	I2S21	I2S20I2S3	I2S2	I2S1	I2S0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

Voltage R	ms Register (Ul	Rms)	Address:	Address: 08H			
	Bit23	22	21	20 3	2	1	Bit0
Read:	US23	US22	US21	US20US3	US2	US1	US0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

有效值 Rms 是 24 位的无符号数,最高位恒为 0。当 EMU 时钟频率为 1MHz 时,参数更新 频率默认为 3.125Hz,可配置 FreqCFG[6: 5]到最高 12.5Hz。

如果用户需要在小信号时得到更加准确的有效值寄存器值,则需要通过 IRMSOFFSET 和 URMSOFFSET 寄存器对有效值进行零漂校正。

5.1.2.4. 电压频率测量(UFREQ)

Voltage F	requency Regist	ter (UFREQ)	Address:	09H			
	Bit15	14	13	12 3	2	1	Bit0
Read:	Ufreq15	Ufreq14	Ufreq13	Ufreq12Ufreq3	Ufreq2	Ufreq1	Ufreq0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

频率值是一个16位的无符号数,参数格式化公式为:

$$Frequency = \frac{femu}{(UFREQ \times 2)}$$

femu—— 计量模块工作频率

例如,如果系统时钟 CLKIN=6MHz,EMU 时钟(femu)选择为 1MHz,寄存器 UFREQ=10000,那么测量到的实际频率为: Frequency=1M/2/10000=50Hz。

注意: 当电压有效值寄存器小于0xA300, 芯片会将UFREQ 置为0x2710 电压频率寄存器的更新频率为1.56Hz

5.1.2.5. 功率参数输出(PowerP1, PowerQ1, PowerS)

Active Po	wer Register (P	owerP1)	1) Address: 0AH				
	Bit31	30	29	28 3	2	1	Bit0
Read:	AP31	AP30	AP29	AP28AP3	AP2	AP1	AP0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

Reactive Power Register (PowerQ1)			Address:	Address: 0BH				
	Bit31	30	29	28 3	2	1	Bit0	
Read:	AP31	AP30	AP29	AP28AP3	RP2	RP1	RP0	
Write:	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	

Apparent	Power Register	(PowerS)	werS) Address: 0CH				
	Bit31	30	29	28 3	2	1	Bit0
Read:	AP31	AP30	AP29	AP28AP3	SP2	SP1	SP0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

功率寄存器默认为 24 位二进制补码格式,最高位为符号位。默认配置下开放给用户的是高 3Bytes 的数据。用户也可通过配置 UART 通信帧为 4 字节数据格式,读取功率寄存器的第 4Byte (最低字节)。

参数默认更新频率为 3.125Hz。可配置 FreqCFG[6: 5]到最高 12.5Hz。

第一路功率参数 PowerP1、PowerO1 是二进制补码格式,24 位数据,其中最高位是符号位。

PowerS 选择当前有效计量通道,输出第一路或者第二路的视在功率。

设寄存器中的数据为 PowerPI, 则供计算用的 Preg 为:

 Preg = PowerP1
 ; 如果 PowerP1
 2^23

 Preg = PowerP1-2^24
 ; 如果 PowerP1>=2^23

设显示的有功功率为 P, 转换系数为 Kpqs,则:

 $P = Preg \times Kpqs$

Kpqs 为额定有功功率输入时,额定功率与PowerP1 读数的比值。 无功功率和视在功率做显示时的系数与有功功率的系数 Kpqs 相同。

例:

输入 1000w 有功功率, PowerP1 读数平均为 0x00C9D9(51673), 则

Kpqs = 1000/51673 = 0.01935

当PowerP1 读数为0xFF4534 时,其代表的功率值为:

P=Kpqs*Preg=0.01935*(-47820) = -925.3 w

其中Preg=PowerP1-2^24 = -47820

5.1.2.6. 电能参数输出(EnergyP, EnergyQ)

Active En	Active Energy Register (EnergyP)			0DH			
	Bit23	22	21	20 3	2	1	Bit0
Read:	EP23	EP22	EP21	EP20EP3	EP2	EP1	EP0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

Reactive 1	Energy (Energy	Q)	Address:	Address: 0EH				
	Bit23	22	21	20 3	2	1	Bit0	
Read:	EQ23	EQ22	EQ21	EQ20EQ3	EQ2	EQ1	EQ0	
Write:	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	

该能量累加寄存器默认配置为读后不清 0,可以通过寄存器 EMUCFG.13(EnergyClr)将该寄存器配置为读后清 0 型,该寄存器的最小单位代表的能量为 1/EC kWh。

例:假设脉冲常数EC为3200 imp/kWh,寄存器读数为0x001000(4096)时,其代表的能量为 E=4096/3200=1.28 kWh

5.1.2.7. SAG/PEAK 工况持续时间计数 (UdetCNT)

SAG/PE	G/PEAK Count(UdetCNT)			Address: 0FH			
	Bit23	22	21	20 3	2	1	Bit0
Read:	Udet23	Udet 22	Udet 21	Udet 20EQ3	Udet 2	Udet 1	Udet 0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

SAG/PEAK 工况持续时间计数寄存器,和 SAG、PEAK 功能相关。当发生 SAG 或 PEAK 事件后,芯片会把发生事件期间持续的 MAXUWAVE 半周波的个数赋与此寄存器记录。

5.1.2.8. 功率参数输出(PowerP2, PowerQ2)

Active Po	wer Register (Pe	owerP2)	Address:	Address: 10H			
	Bit23	22	21	20 3	2	1	Bit0
Read:	AP23	AP22	AP21	AP20AP3	AP2	AP1	AP0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

Reactive	Reactive Power Register (PowerQ2)			11H			
	Bit23	22	21	20 3	2	1	Bit0
Read:	RP23	RP22	RP21	RP20RP3	RP2	RP1	RP0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

第二路功率寄存器默认为 24 位二进制补码格式,最高位为符号位。默认配置下开放给客

户的是高 3Bytes 的数据。用户也可通过配置 UART 通信帧为 4 字节数据格式,读取功率寄存器的第 4Byte (最低字节)。

参数默认更新频率为 3.125Hz。可配置 FreqCFG[6: 5]到最高 12.5Hz。

5.1.2.9. 电压半波波形峰值寄存器 (MAXUWAVE)

MAX Vota	MAX Votage(MAXUWAVE)		Address: 12	CH CH				
	Bit21	20	19	18 3	2	1	Bit0	
Read:	SU_21	SU_20	SU_19	SU_18SU_3	SU_2	SU_1	SU_0	
Write:	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	

电压半波峰值寄存器,和 SAG、PEAK 功能相关,每半个周波该寄存器更新一次,得到 ADC 波形最大值,该寄存器取自高通后的数据,为了和 ADC 的位数对齐,该寄存器为 22bit。bit21 为符号位,同时该符号位扩展到 24 位,即读出的数据位中 bit23—bit21 都是符号位。数据采用二进制补码格式。

5.1.2.10. CRC 校验和寄存器 (CRCChecksum)

CRCChe	cksum Register	(Scheck)	Address:	Address: 15H				
	Bit23	22	21	203	2	1	Bit0	
Read:	CRC23	CRC 22	CRC 21	CRC 20 CRC 3	CRC 2	CRC 1	CRC 0	
Write:	X	X	X	X	X	X	X	
Reset:	0	0	0	0	0	0	0	

CRC 参数校验寄存器为所有校表参数寄存器的 CRC-CCITT 运算结果,包含地址从 40H 正向顺序到 7CH。其中连续地址中没有分配寄存器的部分不计算之内。6FH --74H 也不计算在内。

Default 值为 0x 00 F9 94

5.1.2.11. 数据备份寄存器 (BCKREG)

BackupD	BackupData Register (BCKREG)			Address: 16H					
	Bit23	22	21	203	2	1	Bit0		
Read:	BCKData23	BCKData22	BCKData21	BCKData20BCKData3	BCKData2	BCKData1	BCKData0		
Write:	X	X	X	X	X	X	X		
Reset:	0	0	0	0	0	0	0		

Backup Data 寄存器是保存上一次 UART 通讯传输的数据,共 3 个字节,分别代表 UART 通讯读取数据或者上一次写入的数据的高,中,低字节(UART 写入为 2 个字节,此时,该寄存器高字节为无效字节)。

5.1.2.12. 通讯校验和寄存器(COMChecksum)

ComChe	cksum Register	(Ccheck)	Address:	17H			
	Bit23	22	21	203	2	1	Bit0

Read:	Ccheck23	Ccheck 22	Ccheck 21	Ccheck20 Ccheck 3	Ccheck 2	Ccheck 1	Ccheck 0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

通讯校验和寄存器:

每次 UART 通讯的命令和数据都被累加放入 ComChecksum 寄存器的低两个字节。 ComChecksum 的高 8 位 bit16....bit23 会保存 UART 通讯的上一次的命令。UART 通讯 中的数据为单字节长度的加法。

5.1.2.13. 参数校验和寄存器 (SumChecksum)

SumChec	ksum Register	(Scheck)	Address:	18H			
	Bit23	22	21	203	2	1	Bit0
Read:	Scheck23	Scheck22	Scheck21	Scheck20 Scheck3	Scheck2	Scheck1	Scheck0
Write:	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0

参数和校验寄存器为所有校表参数寄存器的和,40H---7CH,其中连续地址中没有分配寄存器的部分不计算之内。计算不包含 6FH-74H 寄存器

Default 值为 0x 01 00 BD。

SumChecksum 寄存器的计算方式为:

对所有的校验寄存器采用三字节的无符号数加法,两/单字节寄存器高位补 0。

若配置过校表寄存器,此校验和寄存器随即更新,等待时间为 2us 左右,可忽略不计。

5.1.2.14. EMU 状态寄存器(EMUSR)

EMU Stat	tus Register (EMU	JSR)	Address: 19	H				
	Bit15	14	13	12	11	10	9	Bit8
Read:				Checksum Err	NoQLd2	NoPLd2	NoQLd1	NoPLd1
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	Chanelstatus	TAMP	I2PPXGTI1P		NoQLd	NoPLd	REVQ	REVP
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	0	0

位名称	描述
Checksum Err	使能内部校验和比较功能后,计算校验和与写入到 SUMCHECK 值不一样。
	1: 校验和出错
NOQLD2	第 2 通道无功功率潜动标志(需要开启 75H.bit5:En_NewStatus)
NOPLD2	第 2 通道有功功率潜动标志(需要开启 75H.bit5:En_NewStatus)
NOQLD1	第 1 通道无功功率潜动标志(需要开启 75H.bit5:En_NewStatus)
NOPLD1	第 1 通道有功功率潜动标志(需要开启 75H.bit5:En_NewStatus)
Chanelstatus	计量通道状态标志。(0: 指示使用电流通道 1 计量 1: 指示使用电流通道 2

	计量)
TAMP	窃电发生标志。(1: 发生窃电)
I2PPXGTI1P	第二通道有效值(功率)大于第一通道有效值(功率)标志。
	1: 第二通道大于第一通道
NOQLD	当前计量通道无功功率潜动标志
	NOQLD= NOQLD1 (Q1); NOQLD2 (Q2); NOQLD1&NOQLD2 (单相三
	线)
NOPLD	当前计量通道有功功率潜动标志
	NOPLD=NOPLD1 (P1); NOPLD2 (P2); NOPLD1&NOPLD2 (单相三线)
REVP	有功功率反向标志,PF 发脉冲时更新该标志。
	REVP=1: 有功功率反向
REVQ	无功功率反向标志,QF 发脉冲时更新该标志。
	REVQ=1: 无功功率反向

TAMP 窃电指示标识说明:

如果选择比较两路有效值大小做为防窃电的判断依据(40H.BIT.tampsel=0):

当 I1Rms>I2Rms*(1+IChk)或者 I2Rms>I1Rms*(1+IChk)时,标志起置 1。

如果选择比较两路有功功率(PowerP)大小做为防窃电的判断依据(tampsel=1):

当/PowerP1/>/PowerP2/*(1+IChk)或者/PowerP2/>/PowerP1/*(1+IChk)时,标志置1。

I2PPXGTI1P:

如果选择有效值做为防窃电的判断依据(tampsel=0):

=1 表示 I2Rms>I1Rms; =0 表示 I2Rms≤I1Rms。

如果选择有功功率 (|PowerP|) 的绝对值做为防窃电的判断依据 (tampsel=1):

=1 表示/PowerP2/>/PowerP1/; =0 表示/PowerP2/<=/PowerP1/。

5.1.2.15. 系统状态寄存器 (SYSSTA)

System st	atus Register (S	YSSTA)	Address:	1AH				
	Bit7	6	5	4	3	2	1	Bit0
Read:					TEST_RST	E_RST	LBOR	WREN
Write:	X	X	X	X	X	X	X	X
Reset:	0	0	0	0	0	0	1	0

位名称	描述
TEST_RST	TEST 引脚变化导致芯片发生复位,则该标志置位,读后清 0
E_RST	RESET 引脚变化导致芯片发生复位,则该标志置位,读后清 0
LBOR	系统电源掉落引起芯片发生复位,则该标志置位,读后清 0
WREN	写使能标志(0:表示写使能关闭 1:表示写使能打开)

BOR 复位为最高优先级,发生 LBOR 复位会将 TEST_RST 和 E_RST 标志清 0,但是发生 TEST_RST 和 E_RST 不会将 LBOR 标志清 0,该标志只能通过读后清 0。

5.1.2.16. ChipID

ChipID			Address: 1	Address: 1BH					
	Bit23	22	21	20	19	18	17	Bit16	
Read:	Co.4-22	Code22	Code01	Code20	Code10	Code 10	Code17	Code16	
Write:	Code23	Code22	Code21	Code20	Code19	Code18	Code17	Code16	
Reset:	0	1	1	1	0	0	0	0	

	Bit15	14	13	12	11	10	9	Bit8
Read:	Code15	Code14	Code12	Code12	Code11	Code10	Code9	Cadao
Write:	Code15	Code14 Code13	Code13	Code12	Code11	Code10	Code9	Code8
Reset:	0	1	0	1	0	0	1	1

	Bit7	6	5	4	3	2	1	Bit0
Read:	Code7	Code6	Code5	Code4	Code3	Code2	Code1	Code0
Write:	Code/	Codeo	Codes	Code4	Codes	Code2	Code1	Codeo
Reset:	1	0	1	1	0	0	0	0

寄存器默认值为 ChipID: 0x 70 53 B0

5.1.2.17. DeviceID

DeviceID			Address: 1	Address: 1CH					
	Bit23	22	21	20	19	18	17	Bit16	
Read:	0.1.00	G. 1.22	G. 1-21	G- 1-20	C- 1-10	G- 1-10	C. 1.17	0.1.16	
Write:	Code23	Code22	Code21	Code20	Code19	Code18	Code17	Code16	
Reset:	0	1	1	1	0	0	0	0	

	Bit15	14	13	12	11	10	9	Bit8
Read:	0.1.15	G: 1:14	G: 1:12	G: 1:12	C 1.11	G- 1-10	G- 1-0	C- 1-0
Write:	Code15	Code15 Code14	Code13	Code12	Code11	Code10	Code9	Code8
Reset:	0	1	0	1	0	0	1	1

	Bit7	6	5	4	3	2	1	Bit0
Read:	Code7	Code6	Code5	Code4	Code3	Code2	Code1	Code0
Write:	Code7	Codeb	Codes	Code4	Codes	Code2	Codei	Codeo
Reset:	0	0	1	0	0	0	0	1

寄存器默认值为 DeviceID: 0x 70 53 21

5.2. 校表参数寄存器

5.2.1. 校表参数寄存器列表

表 5-2 校表参数寄存器列表: (Read/Write)

地址		复位值	字节	功能描述
(ECADR)			长度	
30H	EMUIE	0000	2(15bit)	EMU 中断使能寄存器
31H	EMUIF	800000	3(16bit)	EMU 中断标志寄存器
32H	WPREG	00	1(8bit)	写保护寄存器
33H	SRSTREG	00	1(8bit)	软件复位寄存器
40H	EMUCFG	0000	2(15bit)	EMU 配置寄存器
41H	FreqCFG	0088	2(9bit)	时钟/更新频率配置寄存器
42H	ModuleEn	007E	2(14bit)	EMU 模块使能寄存器
43H	ANAEN	0003	1(7bit)	ADC 开关寄存器
45H	IOCFG	0000	2(10bit)	IO 输出配置寄存器
50H	GP1	0000	2(16bit)	通道1的有功功率校正
51H	GQ1	0000	2(16bit)	通道1的无功功率校正
52H	GS1	0000	2(16bit)	通道1的视在功率校正
54H	GP2	0000	2(16bit)	通道2的有功功率校正
55H	GQ2	0000	2(16bit)	通道2的无功功率校正
56H	GS2	0000	2(16bit)	通道2的视在功率校正
58H	QPhsCal	FF00	2(16bit)	无功相位补偿
59H	ADCCON	0000	2(12bit)	ADC 通道增益选择
5BH	I2Gain	0000	2(16bit)	电流通道 2 增益补偿
5CH	I1Off	0000	2(16bit)	电流通道1的偏置校正
5DH	I2Off	0000	2(16bit)	电流通道 2 的偏置校正
5EH	UOff	0000	2(16bit)	电压通道的偏置校正
5FH	PQStart	0040	2(16bit)	起动功率设置
61H	HFConst	0040	2(15bit)	输出脉冲频率设置
62H	СНК	0010	1(8bit)	窃电阈值设置
63H	IPTAMP	0020	2(16bit)	窃电检测电流域值
64H	Dec_Shift	0000	2(16bit)	通道1的相位校正(移采样点方式)

HT7017 用户手册

65H	D1OEECETH	00	1(8bit)/2(可	通道 1 有功功率偏置校正参数高 8 位,和
0011	P1OFFSETH		配置)	P1OFFSETL 组成为 16bit 补码
66H	P2OFFSETH	00	1(8bit) /2(可	通道 2 有功功率偏置校正参数高 8 位,和
	PZOFFSEIH		配置)	P2OFFSETL 组成为 16bit 补码
67H	Q10FFSETH	00	1(8bit) /2(可	通道 1 无功功率偏置校正参数高 8 位,和
	QTOTTSETTI		配置)	Q1OFFSETL 组成为 16bit 补码
68H	Q2OFFSETH	00	1(8bit) /2(可	通道 2 无功功率偏置校正参数高 8 位,和
	QZOTTSETTI		配置)	Q2OFFSETL 组成为 16bit 补码
69H	I1RMSOFFSET	0000	2(16bit)	通道1有效值补偿寄存器,为16bit无符号数
6AH	I2RMSOFFSET	0000	2(16bit)	通道 2 有效值补偿寄存器,为 16bit 无符号数
6BH	URMSOFFSET	0000	2(16bit)	通道 U 有效值补偿寄存器,为 16bit 无符号数
6CH	ZCrossCurrent	0004	2(16bit)	电流过零阈值设置寄存器
6DH	GPhs1	0000	2(16bit)	通道1的相位校正(PQ方式)
6EH	GPhs2	0000	2(16bit)	通道2的相位校正(PQ方式)
6FH	PFCnt	0000	2(16bit)	快速有功脉冲计数
70H	QFCnt	0000	2(16bit)	快速无功脉冲计数
72H	ANACON	0031	2(16bit)	模拟控制寄存器
73H	SUMCHECKL	0000	2(16bit)	校验和低 16 位,由用户写入,使能比较功能
				后,芯片比较给出标志
74H	SUMCHECKH	00	1(8bit)	检验和高8位,由用户写入,使能比较功能
				后,芯片比较给出标志
75H	MODECFG	00	1(8bit)	模式配置寄存器
76H	P1OFFSETL	00	1(8bit)	通道 1 有功功率偏置校正参数低 8 位,和
				P1OFFSETH 组成 16bit 补码
77H	P2OFFSETL	00	1(8bit)	通道 2 有功功率偏置校正参数低 8 位,和
				P2OFFSETH 组成 16bit 补码
78H	Q10FFSETL	00	1(8bit)	通道 1 无功功率偏置校正参数低 8 位,和
				Q10FFSETH 组成 16bit 补码
79H	Q2OFFSETL	00	1(8bit)	通道 2 无功功率偏置校正参数低 8 位,和
				Q2OFFSETH 组成 16bit 补码
7AH	UPeakLvl	0000	2(16bit)	UPEAK 阈值寄存器,16 位无符号数,与 ADC
				绝对值的高位对齐
7BH	USagLvl	0000	2(16bit)	USAG 阈值寄存器,16 位无符号数,与 ADC
				绝对值的高位对齐
7CH	UCycLen	0000	2(16bit)	PEAK SAG 检测周期设置寄存器,16bit

5.2.2. 校表参数寄存器说明

5.2.2.1. 中断使能寄存器(EMUIE)

EMU Inte	errupt Ena	able Register (EMU	(E)	Address:	30H			
Bit15 14 13			12	11	10	9	Bit8	
Read:		CZCDOS1 JE	CZCDOCA IE	HEACIE	PRms	DEOEIE	OFOFIE	
Write:		CZCROS1_IE	CZCROS2_IE	USAGIE	UpdatesIE	PEOFIE	QEOFIE	
Reset:	0	0	0	0	0	0	0	0

	Bit7	6	5	4	3	2	1	Bit0
Read:	UPEAKIE	TomplE	PFIE		UzxLoseIE	SPLIE	ZXIE	UdetIE
Write:	UPEAKIE	TampIE	PFIE		UZXLOSEIE	SPLIE	ZAIE	OdettE
Reset:	0	0	0	0	0	0	0	0

位名称	描述
CZCROS1_IE	电流通道 1 正向过零中断使能(0:禁止 1:使能)
CZCROS2_IE	电流通道 2 正向过零中断使能(0:禁止 1:使能)
USAGIE	电压通道信号 SAG 中断使能(0:禁止 1:使能)
PRms_UpdatesIE	功率寄存器,有效值寄存器更新中断使能(0:禁止 1:使能)
PEOFIE	有功电能寄存器溢出时的中断使能(0:禁止 1:使能)
QEOFIE	无功电能寄存器溢出时的中断使能(0:禁止 1:使能)
UPEAKIE	电压通道信号 PEAK 中断使能(0:禁止 1:使能)
TampIE	窃电中断使能(0:禁止 1:使能)
PFIE	PF 发脉冲时的中断使能(0:禁止 1:使能)
UzxLoseIE	电压过零丢失的中断(0:禁止 1:使能)
SPLIE	波形寄存器更新时的中断使能(0:禁止 1:使能)
ZXIE	电压发生用户指定的过零方式时的中断使能(0:禁止 1:使能)
UdetIE	电压通道 SAG/PEAK 进入/退出中断使能/(0:禁止 1:使能)

5.2.2.2. 中断标志寄存器 (EMUIF)

EMU Inte	errupt Flag Re	egister (EMUIF)		Address:	31H			
	Bit23	22	21	20	19	18	17	Bit16
Read:					616.11			
Write:					Shuntfail			
Reset:	0	0	0	0	0	0	0	0
	Bit15	14	13	12	11	10	9	Bit8
Read:	Uend	CZCROS1_IF	CZCROS2_IF	USAGIF	PRms	PEOFIF	OEOFIF	
Write:	Cena	CZCROS1_IF	CZCROS2_IF	USAGIF	UpdatesIF	PEOFIF	QEOFIF	
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0

Read:	LIDEARIE	TomasIE	PFIF		III ooo	CDI IE	ZVIE	Ustart
Write:	Write: UPEAKIF	TampIF	PFIF		UzxLose	SPLIF	ZXIF	Ostart
Reset:	0	0	0	0	0	0	0	0

位名称	描述
Shuntfail	锰铜断火线指示标志位(读后清零)
Uend	电压通道 SAG/PEAK 退出标志,读后清 0
CZCROS1_IF	电流通道1正向过零中断标志,读后清0
CZCROS2_IF	电流通道2正向过零中断标志,读后清0
USAGIF	电压通道信号低于设定阈值中断标志,读后清0
PRms_UpdatesIE	功率寄存器,有效值寄存器更新中断标志,读后清0
PEOFIF	有功电能寄存器溢出时,该标志置位,读后清 0
QEOFIF	无功电能寄存器溢出时,该标志置位,读后清 0
UPEAKIF	电压通道信号高于设定阈值中断标志,读后清0
TampIF	窃电发生时,该标志置位,读后清0
PFIF	PF 发脉冲时,该标志置位,读后清 0
UzxLose	电压过零丢失标志,读后清0
SPLIF	波形寄存器更新时,该标志置位,读后清0
ZXIF	电压发生用户指定的过零方式时,该标志置位,读后清0
Ustart	电压通道 SAG/PEAK 进入标志

芯片并无外部管脚的中断电平输出。若用户需要使用此功能可通过命令字将 TX pin 复用为中断输出。具体参考系统功能 — 中断源。

5.2.2.3. 写保护寄存器 (WPCFG)

Written p	rotect Register	(WPCFG)	Address:	32H				
	Bit7	6	5	4	3	2	1	Bit0
Read:	WDCEC7	WINGEGG	WINGEGS	WDCECA	WDCEC2	WDCEGO	WDCEC1	WDCEGO
Write:	WPCFG7	WPCFG6	WPCFG5	WPCFG4	WPCFG3	WPCFG2	WPCFG1	WPCFG0
Reset:	0	0	0	0	0	0	0	0

WPCFG = 0xA6: 表示写保护打开,只能操作 50H 到 7CH 的校表参数寄存器,不可操作 40H 到 45H 的校表参数寄存器。

WPCFG = 0xBC: 表示写保护打开,只能操作 40H 到 45H 的校表参数寄存器,不可操作 50H 到 7CH 的校表参数寄存器。

WPCFG = 其他值:表示写保护关闭,对校表参数寄存器操作无效写保护打开后,只要不改变WPCFG寄存器的值,那么写保护打开就一直有效。

5.2.2.4. 软件复位寄存器 (SRSTREG)

Soft reset	Soft reset Register (SRSTREG)			33H				
	Bit7	6	5 4 3 2 1				Bit0	
Read:	SRST7	SRST 6	SRST 5	SRST 4	SRST 3	SRST 2	SRST 1	SRST 0
Write:	SK31/	0 1676	СТСЯС	SK314	C 16A6	SK31 2	1 1626	SK310

SRSTREG 寄存器如果写入 0x55 会导致芯片发生复位,复位后该寄存器清 0。

5.2.2.5. EMU 配置寄存器 (EMUCFG)

EMUCFG	3		Address: 40H					
	Bit15	14	13	12	11	10	9	Bit8
Read:	G(4 G - 1	CDI C.1	E Cl.	OMODI	OMODO	DMOD1	DMODO	D 1
Write:	StartSel	SPLSel	EnergyClr	QMOD1	QMOD0	PMOD1	PMOD0	Reserved
Reset:	0	0	0	0	0	0	0	0

	Bit7	6	5	4	3	2	1	Bit0
Read:	711	710	Dagamad	CIADD1	ELTON	CHNEEL	CIADD	Town Col
Write:	Zxd1	Zxd0	Reserved	CIADD1	FLTON	CHNSEL	CIADD	TampSel
Reset:	0	0	0	0	0	0	0	0

位名称	描述
StartSel	防潜方式选择: 0: P/Q 单独; 1: P/Q 都使用 P&Q
SPLSel	波形数据选择(0:Dec 后数据, 1: 高通后数据)
	可通过此位选择 SPL 波形寄存器与波形缓存的数据来源。
EnergyClr	设置是否能量寄存器读后清 0 (0: 读后不清 0; 1: 读后清 0)
QMOD[10]	无功能量寄存器 EnergyQ 累加模式选择,详细配置见后表
PMOD[10]	有功能量寄存器 EnergyQ 累加模式选择,详细配置见后表
Reserved	用户需要保留为默认值, 0.
Zxd1	电压中断过零的选择,详细配置见后表
Zxd0	电压中断过零的选择,详细配置见后表
CIADD1	单相三线模式控制: 1=矢量和 0=绝对值(Default)
FLTON	自动防窃电模块开关(0:自动防窃电关闭 1:自动防窃电开启),
	详细见后表 ^注
CHNSEL	选择通道计量(0:选择通道1计量 1:选择通道2计量),详细见后表
CIADD	单相三线累加模式选择(0: 单通道方式 1: 电流累加和模式)
TampSel	防窃电源头选择(0:选择电流有效值做防窃电 1:选择有功功率做防窃电)
	CHK 和 IPTAMP 的源头选择,其中 IPTAMP 还受 IPTamp_Sel 控制,配置关系
	详见 5.2.2.39 配置表格说明。

注:

StartSel 防潜方式:

- =0 为单独防潜,PowerP(Q)与分别PQStart 比较,满足起动条件则对应的P(Q)FCnt 累加。
- =1 为综合防潜,PowerP 或 PowerQ 只要有一路满足起动条件,则 PFCnt 与 QFCnt 均累加。 电流相加模式:

每路通道用各自的校表参数数据,功率累加模式在电流相加模式下固定为绝对值累加模式。 在FLTON=1 时,即开启自动防窃电模块时,CIADD 和CHNSEL 将失去意义,虽可读写,但是无

效; 只有FLTON=0 时 CIADD 和 CHNSEL 可有效读写。

QMOD1	QMOD0	无功功率累加模式,即 QFCnt 的累加模式
0	0	计算能量时,按照代数和方式对功率进行累加 (default)
0	1	计算能量时,只累加正向功率,不累加负向功率
1	0	计算能量时,按照绝对值方式对功率进行累加
1	1	计算能量时,按照代数和方式对功率进行累加

PMOD1	PMOD0	有功功率累加模式,即 PFCnt 的累加模式
0	0	计算能量时,按照代数和方式对功率进行累加(default)
0	1	计算能量时,只累加正向功率,不累加负向功率
1	0	计算能量时,按照绝对值方式对功率进行累加
1	1	计算能量时,按照代数和方式对功率进行累加

ZXD1	ZXD0	电压过零输出选择,电压过零中断选择
0	0	正向过零中断产生;
0	1	负向过零中断产生;
1	X	双向过零中断产生;

输入信号	输入信号			输出信号		
FLTON	CIADD	CHNSEL	Chanelstatus	能量累加		
1	X	X	指示自动防窃电的	根据 Chanelstatus 来决定采用		
			通道选择结果	哪一路功率参与计量		
0	0	0	0	选择通道 1 参与计量		
				(default)		
0	0	1	1	选择通道2参与计量		
0	1	X	0	单相三线模式 (绝对值累加)		

5.2.2.6. 时钟配置寄存器(FreqCFG)

FreqCFG	+		Address: 4	1H				
	Bit15	14	13	12	11	10	9	Bit8
Read:					CED1.1.2	CED1.1.1	CED1.1.0	CEDI
Write:					CFDouble2	CFDouble1	CFDouble0	CFP1
Reset:	0	0	0	0	0	0	0	0

	Bit7	6	5	4	3	2	1	Bit0
Read:	CEDO	DDECEC1	DDECECO	Ealla atali	E	CDI 2	CDI 1	CDI O
Write:	CFP0	PRFCFG1	PRFCFG0	Emuclk_ctrl1	Emuclk_ctrl0	SPL2	SPL1	SPL0
Reset:	1	0	0	0	1	0	0	0

位名称	描述			
CFDouble[20]	脉冲加倍功能: 000=1 倍; 001=2 倍; 010=4 倍; 011=8 倍; 100=16 倍; 其他			
	=1 倍;			
SPL[20]	ADC 波形寄存器采样速率选择,详细见下表			
Emuclk_Ctrl[10]	EMU 时钟频率选择位,详细见下表			
CFP[1:.0]	脉宽调整位,详细见下表			
PRFCFG[10]	有效值更新速度选择,详细配置见后表			

SPL2	SPL1	SPL0	波形采样频率(EMU 时钟频率 1MHz)
0	0	0	0.976k Hz (femu/1024) (default)
0	0	1	1.953k Hz (femu/512)
0	1	0	3.906k Hz (femu/256)
0	1	1	7.812k Hz (femu/128)
1	X	X	15.62k Hz (femu/64)

Emuclk_Ctrl1	Emuclk_Ctrl0	EMU 时钟频率 (系统时钟为 6MHz)
0	0	2MHz
0	1	1MHz (default)
1	0	2MHz
1	1	1MHz

PRFCFG1	PRFCFG0	有效值更新速度(EMU 时钟频率 1MHz/2MHz)
0	0	3.125Hz (default)
0	1	3.125Hz
1	0	12.5Hz
1	1	12.5Hz

CFP 脉宽选择: EMU 时钟频率选择为 2MHz 的时候						
CFP[1:0]	00	01	10	11		
脉宽	80ms	80/2=40ms	80/4=20ms	80/8=10ms		

CFP 脉宽选择: EMU 时钟频率选择为 1MHz 的时候						
CFP[1:0]	00	01 (default)	10	11		
脉宽	160ms	160/2=80ms	160/4=40ms	160/8=20ms		

5.2.2.7. 模式控制寄存器 (ModuleEn)

ModuleEn			Address: 42H					
	Bit15	14	13	12	11	10	9	Bit8
Read:			D. C CEC					
Write:		PoffsetCFG						

Reset:	0	0	0	0	0	0	0	0

	Bit7	6	5	4	3	2	1	Bit0
Read:	I DEC -1		OP···	PRun	HDEONH	HDEONIA	HDEONH1	II-CC-1
Write:	LPFSel		QRun	PKun	HPFONU	HPFONI2	HPFONI1	HpfSel
Reset:	0	1	1	1	1	1	1	0

位名称	描述
PoffsetCFG	Poffset 扩位控制位(0: Poffset 保持 16bit; 1: 扩位位 24bit)
LPFSel	低通第二级系数选择(0:8 /1:9)
QRun	无功能量累加使能(0:停止计量 1:允许计量)
PRun	有功能量累加使能(0:停止计量 1:允许计量)
HPFONU	电压通道高通滤波器开关(0: 关闭 1: 开)
HPFONI2	电流通道 2 高通滤波器开关(0: 关闭 1: 开)注 2
HPFONI1	电压通道 1 高通滤波器开关(0: 关闭 1: 开)
HpfSel	高通系数选择(0: 11/1: 10)

5.2.2.8. ADC 开关寄存器 (ANAEN)

Analog E	Analog Enable Register (ANAEN)			Address: 43H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:	D 1	D 1	D 1	D 1	D 1	D 1	Reserved	D 1		
Write:	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	D 1	eserved Reserved Reserved	D 1	Reserved	VDC_DET	A.1. '2	A.1. 11	A.1		
Write:	Reserved		Reserved		_EN	Adc_i2on	Adc_i1on	Adc_uon		
Reset:	0	0	0	0	0	0	1	1		

位名称	描述
Bit15-Bit4	模拟保留位
VDC_DET_EN	锰铜掉火线检测使能(0:关闭 1:打开)
Adc_i2on	电流通道 I2 的 ADC 开关信号 (0: 关闭 1: 打开)
Adc_i1on	电流通道 I1 的 ADC 开关信号 (0: 关闭 1: 打开)
Adc_uon	电压通道 U 的 ADC 开关信号(0: 关闭 1: 打开)

5.2.2.9. 输出引脚配置寄存器 (IOCFG)

IOCFG	IOCFG			45H				
	Bit15	14	13	12	11	10	9	Bit8
Read:								

Write:								
Reset:	0	0	0	0	0	0	0	0

	Bit7	6	5	4	3	2	1	Bit0
Read:	POS Reserved		Donito CEC	nits CPC Processed	UARTCFG Reserved		Decomod	
Write:	103	Reserved	S Reserved ParityCFG	ParityCFG	Reserved	UARICIG	Reserved	Reserved
Reset:	0	0	0	0	0	0	0	0

位名称	描述
POS	0: PF 为高电平有效 1: PF 为低电平有效
ParityCFG	UART 通信接收偶校验功能 0: 不校验 1: 使能偶校验
UARTCFG	UART 通讯帧格式控制: 0: 数据为 3 字节, 低字节不读; 1: 数据为 4 字节

5.2.2.10. 通道 1 有功功率校正(GP1)

Active Power Gain 1 Register (GP1)			Address:	Address: 50H					
	Bit15	14	13	12 3	2	1	Bit0		
Read:	CD1 15	CD1 14	CD1 12	CD1 12 CD1 2	CDI 2	CDL 1	CD1 0		
Write:	rite: GP1_15	P1_15 GP1_14 GP1	GP1_13	GP1_13	GP1_2	GP1_1	GP1_0		
Reset:	0	0	0	0	0	0	0		

该寄存器为 16 位有符号数,最高位为符号位。用于对有功/无功/视在功率进行增益校正,计算关系为:

PowerP '=PowerP*(1+GP1/32768)或 PowerP '=PowerP*(1+ (GP1-65536) /32768)

功率因数为1的情况下,用户在校表过程中测得的误差为: Err%

Pgain = -*Err*%/ (1+*Err*%)

如果Pgain 为正数,则GP1 的写入值为: Pgain *32768

如果 Pgain 为负数,则 GP1 的写入值为: 65536+Pgain *32768

注意该增益寄存器同时作用于 PowerP/PowerQ/PowerS, 而 GQ1/GS1 寄存器已无效。

5.2.2.11. 通道 1 无功功率校正(GQ1)

Reactive 1	Power Gain Re	gister (GQ1)	Address:	51H			
	Bit15	14	13	12 3	2	1	Bit0
Read:	CO1 15	CO1 14	CO1 12	CO1 12 CO1 2	CO1 2	CO1 1	CO1 0
Write:	ite: GQ1_15	GQ1_14	GQ1_13	GQ1_12GQ1_3	GQ1_2	GQ1_1	GQ1_0
Reset:	0	0	0	0	0	0	0

5.2.2.12. 通道 1 视在功率校正(GS1)

Apparent Power Gain 1 Register (GS1)		Address: 5	2Н				
	Bit15	14	13	12 3	2	1	Bit0

Read:	CC1 15	CS1 14	CC1 12	CC1 12 CC1 2	CS1 2	CC1 1	CC1 0
Write:	GS1_15	GS1_14	GS1_13	GS1_12GS1_3	GS1_2	GS1_1	GS1_0
Reset:	0	0	0	0	0	0	0

5.2.2.13. 通道 2 有功功率校正 (GP2)

Active Po	wer Gain 2 Reg	ister (GP2)	Address: 5	54H			
	Bit15	14	13	12 3	2	1	Bit0
Read:	CP2 15	CD2 14	CD2 12	CP2 12 CP2 2	CD2 2	CD2 1	CD2 0
Write:	GP2_15	GP2_14	GP2_13	GP2_12GP2_3	GP2_2	GP2_1	GP2_0
Reset:	0	0	0	0	0	0	0

与 GP1 的计算公式相同。

注意该增益寄存器同时作用于 PowerP/PowerQ/PowerS, 而 GQ2/GS2 寄存器已无效。

5.2.2.14. 通道 2 无功功率校正 (GQ2)

Reactive Power Gain 2 Register (GQ2)		Address:	Address: 55H						
	Bit15	14	13	12 3	2	1	Bit0		
Read:	GO2 15	G02 14	CO2 12	602.12.602.2	G02.2	GO2 1	G02.0		
Write:	GQ2_15	GQ2_14	GQ2_13	GQ2_12GQ2_3	GQ2_2	GQ2_1	GQ2_0		
Reset:	0	0	0	0	0	0	0		

5.2.2.15. 通道 2 视在功率校正 (GS2)

Apparent	Power Gain 2	Register (GS2)	Address: 5	6Н			
	Bit15	14	13	12 3	2	1	Bit0
Read:	GG2 15	GG2 14	G02 12	GG2 12 GG2 2	GG2 2	GG2 1	GG2 0
Write:	GS2_15	GS2_14	GS2_13	GS2_12GS2_3	GS2_2	GS2_1	GS2_0
Reset:	0	0	0	0	0	0	0

5.2.2.16. 无功相位校正 (QPhsCal)

QPhsCal			Address: 58H							
	Bit15	14	138	73	2	1	Bit0			
Read:	ODCIE	ODC14	ODC12 ODC9	ODCZ ODC2	ODC2	ODC1	ODCO			
Write:	QPC15	QPC14	QPC13QPC8	QPC7QPC3	QPC2	QPC1	QPC0			
Reset:	1	1	1	0	0	0	0			

无功相位补偿寄存器也采用二进制补码形式,最高位为符号位。

该寄存器默认值 FF00H。

默认值对应于 femu=1MHz 时的情况, 50Hz 信号频率下不需要再校正;

当 femu=1MHz 时,60Hz 信号频率下此寄存器写入 FE98H 即可,也不需要额外校准;当 femu 改变,或者信号为其他频率时,需要按照下面的公式进行校正: 无功 0.5L,在 U,I 夹角为 30 度时进行校正,功率 Q 的误差值为:Err% QPhasCal 的计算公式为:

Result = Err%*32768/1.732-256

如果 Result 为正数则 QphsCal = Result;

如果 Result 为负数则 QphsCal = 65536+Result;

注:

1, 此寄存器校正内部相移滤波器,对两个计量通道来说,校准结果通用。

5.2.2.17. ADC 通道增益 (ADCCON)

ADC Channel Gain Register (ADCCON)				Address: 59H					
	Bit15	14	13	12	11	10	9	Bit8	
Read:			DC 4 2 4 2	DC 4 2 4 1	DCD	DCIA	DCII	DCI0	
Write:			PGA242	PGA241	DGI3	DGI2	DGI1	DGI0	
Reset:	0	0	0	0	0	0	0	0	

	Bit7	6	5	4	3	2	1	Bit0
Read:	DGU1	DGU0	PGA3	PGA2	PGA1	PGA0	UPGA1	UPGA0
Write:	DGUI	DGUU	PGAS	PGA2	PGAI	PGAU	UPGAI	UPGAU
Reset:	0	0	0	0	0	0	0	0

PGA242	PGA3	PGA2	I2Gain	PGA241	PGA1	PGA0	I1Gain	UPGA1	UPGA0	UGAIN
X	0	0	PGA=1	0	0	0	PGA=1	0	0	PGA=1
X	0	1	PGA=2	0	0	1	PGA=4	0	1	PGA=2
X	1	0	PGA=4	0	1	0	PGA=8	1	0	PGA=4
X	1	1	PGA=4	0	1	1	PGA=16	1	1	PGA=4
				1	0	0	PGA=24			
				1	0	1	PGA=2			
				1	1	0	PGA=4			
				1	1	1	PGA=24			

注意:

这里的 IIGain, I2Gain, UGain 分别指的是 ADC 模拟部分的电流通道 1 增益,电流通道 2 增益,电压通道增益。

DGU 1	DGU 0	电压通道	DGI1	DGI0	电流通道 1	DGI3	DGI2	电流通道 2
0	0	DG=1	0	0	DG=1	0	0	DG=1
0	1	DG=2	0	1	DG=2	0	1	DG=2
1	0	DG=4	1	0	DG=4	1	0	DG=4

1 1 DG=8	1 1	DG=8 1	1 DG=8
----------	-----	--------	--------

注意:

数字增益是通过移位放大 ADC 后的数字信号来实现的,放大倍率为 1/2/4/8。数字增益可以 用于小信号加倍,有效值也随之一起加倍。

此寄存器控制能量脉冲的累加,上电初始化或RST 后需对此寄存器进行一次写操作。

5.2.2.18. 电流通道 2 增益设置(I2Gain)

Current 2	Gain Register	(I2Gain)	Address: 5	ВН			
	Bit15	14	13	12 3	2	1	Bit0
Read:	10015	12014	12012	12012 1202	12.02	1201	1200
Write:	I2G15	I2G14	I2G13	I2G12I2G3	I2G2	I2G1	I2G0
Reset:	0	0	0	0	0	0	0

通道2电流增益寄存器采用二进制补码形式,最高位为符号位。定义参见校表过程。在相同外部电流通道输入时,使两路的电流有效值输出一致,主要为了调整由于两个电流通道的外部传感器不同而引入的两个电流 ADC 通道的有效值差异。

计算公式如下(*I1Rms* 和 *I2Rms* 分别为输入相同时电流通道 1 的有效值寄存器值和电流通道 2 的有效值寄存器值):

Gain=(I1Rms/I2Rms)-1;

若Gain>0, I2Gain=Gain* (2^15);

若Gain<0, I2Gain=2^16+Gain* (2^15);

5.2.2.19. 电流通道 1 直流偏置校正寄存器 (I1Off)

Current 1	Offset Register	· (I1Off)	Address: 5	СН			
	Bit15	14	13	12 3	2	1	Bit0
Read:	110015	110014	110012	110012 11002	11002	11001	11000
Write:	I1OS15	IIOS14	IIOS13	I1OS12I1OS3	IIOS2	IIOS1	I1OS0
Reset:	0	0	0	0	0	0	0

在测量直流信号的情况下使用,先关闭高通,当输入通道信号为 0 的时候,连续几次读寄存器 00H 的值平均后取反,得到 I1Off 寄存器的值,用户得到后将这个值存储起来,以后在使用过程中只需要在重新上电关闭高通后将之前存储的 I1Off 值重新写入寄存器。

该寄存器的最小单位与 ADC 输出的 16 位数据的最小单位一致。

该寄存器主要目的是当用户期望测试直流信号时,将芯片内部高通关闭,I1/I2/U 必须一起关高通,否则会引入相位误差。通过这个寄存器校正外部输入信号为 0 时的 ADC 零漂,一般来说用户测试交流信号不需要配置该寄存器。

注: IIOff 与I2Off 不能同时进行校正。

5.2.2.20. 电流通道 2 直流偏执校正寄存器 (I2Off)

Current 2	Current 2 Offset Register (I2Off)			DH			
	Bit15	14	13	12 3	2	1	Bit0

Read:	I2OS15 I2OS14 II		I2OS13	I2OS12I2OS3	I2OS2	I2OS1	I2OS0	
Write:	120515	120514	120515	12081212083	12052	12051	12030	
Reset:	0	0	0	0	0	0	0	

I2Off 寄存器功能同 I1Off。

注: IIOff 与I2Off 不能同时进行校正。

5.2.2.21. 电压通道直流偏执校正寄存器(UOff)

Voltage O	offset Register (U	UOff)	Address: 5	Address: 5EH					
	Bit15	14	13	12 3	1	Bit0			
Read:	HOG15 HOG14		UOS13	UOS12UOS3	UOS2	UOS1	UOS0		
Write:	UOS15	UOS14	00813	00\$1200\$3	0082	0081	0080		
Reset:	0	0	0	0	0	0	0		

UOff 寄存器功能同 I1Off

5.2.2.22. 潜动与启动 (PQStart)

PQStart			Address:	Address: 5FH					
	Bit15	14	13	12 7	6	52	1	Bit0	
Read:	POG15	DOC 14	DOC 12	POS 12 POS 7	DOG 6	DOG 5 DOG 2	DOC 1	DOC 0	
Write:	PQS15	PQS 14	PQS 13	PQS 12PQS 7	PQS 6	PQS 5PQS 2	PQS 1	PQS 0	
Reset:	0	0	0	0	1	0	0	0	

PQStart 是 16 位无符号数,做比较时,将其作为低 16 位与 *P/Q* (*PowerP 0x0AH / PowerQ 0x0BH*,均为 24bit 有符号数)的绝对值进行比较,以作起动判断。

/P/小于 PQStart 时,PF 不输出脉冲。同时将 REVP 反向标志清 0。 /Q/小于 PQStart 时,QF 不输出脉冲。同时将 REVQ 反向标志清 0。 应用方式:

- 1, 校表结束后, 输入 Ib, Un。
- 2, 读出 *PowerP* 的值为 *24bit* 补码 *x1*, 取其原码值为 *x2*。
- 3, 设写入 *PQStart* 的值为 *Y*, 假如要求 0.4%Ib 电表能够启动,则: $Y = x \ 2 \ \%$

5.2.2.23. 脉冲频率设置寄存器 (HFConst)

HFConst			Address:	61H				
	Bit15	14	13	127	6	52	1	Bit0
Read:	0	HEC14	HEC12	TIEC12 TIEC7	HEGG	HEGS HEGS	HECH	HECO
Write:	X	HFC14	HFC13	HFC12HFC7	HFC6	HFC5HFC2	HFC1	HFC0
Reset:	0	0	0	0	1	0	0	0

HFConst 是 15 位无符号数, 当快速脉冲 FCnt/QFCnt 寄存器的绝对值累加到等于 HFConst 的

值,那么就会有对应的 PF/QF 脉冲输出,同时能量寄存器加 1。 HFConst 的默认值是 0x0040。

5.2.2.24. 通道间窃电阈值|P|或者 IRMS 的域值设置 (Chk)

Check F	Register (Chk)		Address: 62	Address: 62H					
	Bit7	6	5	4	3	2	1	Bit0	
Read:	CHIZ	CHILE	CHIZE	CHIVA	CHIVA	CHIVA	CHIVI	CHIVO	
Write:	СНК7	CHK6	CHK5	СНК4	CHK3	CHK2	CHK1	CHK0	
Reset:	0	0	0	1	0	0	0	0	

通道间窃电阈值寄存器采用二进制补码形式,表示范围(0,+1)。

ICHK=ICK7*2^(-1) + ICK6*2^(-2) + ICK5*2^(-3) + ...+ ICK1*2^(-7) + ICK0*2^(-8) 当且仅当 Check Register 的某一个 Bit 为 1 时,对应的阈值如下表:

0.5
0.25
0.125
0.0625
0.03125
0.015625
0.007813
0.003906

例如: Check Register=0x1A 时, 窃电阈值为 0.0625+0.03125+0.007813=10.1563% 默认为: 0.0625 也即 6.25%。

开启自动防窃电后,当选择电流有效值作为防窃电比较的源头时,电流 1 和电流 2 两者之差比 $(I2Rms-I1Rms/I1Rms \to IIRms-I2Rms)$ 时超过窃电阈值电流值,则自动选择大的电流值参与功率计量,同时 TAMP=I。如果电流 2 大于电流 1,则将标志位 I2GTII 置为 1,否则标志位 I2GTII 为 0。

当选择功率作为防窃电比较的源头时,功率 *PowerP1* 和功率 *PowerP2* 两者之差比 (/*PowerP2-PowerP1*//*PowerP1* 或/*PowerP1-PowerP2*//*PowerP2*) 超过窃电值,则自动选择大的功率值参与功率计量,同时 *TAMP=1*。

5.2.2.25. 窃电检测阈值|P|或者 IRMS 的域值设置(IPTAMP)

IPTAMP			Address:					
	Bit15	14	13	13 123 2 1				
Read:	0	IPTAMP14	IPTAMP13	IPTAMP12IPTAMP3	IPTAMP2	IPTAMP1	IPTAMP0	
Write:	X	IPTAMP14	IPTAMP13	IPTAMP12IPTAMP3	If TAWIF 2	IFIAMFI	IF TAIVIFU	
Reset:	0	0	0	0	0	0	0	

该寄存器默认值为 0x0020。

格式同电流有效值寄存器或功率寄存器, IPTAMP[15:0]是高 16 位的电流有效值寄存器或功率寄存器。

注意: IPtamp 的最高位 bit15 用户写入无效,一直是 0,最大用户可以写入的值为 0x7FFF。自动防窃电处理模块开启时:

若选择使用电流有效值做为防窃电阈值的判断,当通道 1 和 2 的电流有效值都低于 *IPTAMP* 时,系统默认选择通道 1 作为有效输入,*TAMP、I2PPXGTIIP 和 CHNSEL* 均为 0;也可通过配置 *CHNFix = 1* 不切换保持之前的计量通道。

若选择使用功率 P 的绝对值做为防窃电阈值的判断,当 PowerP1 和 PowerP2 都低于 IPTamp 时,系统默认选择通道 1 做为有效输入,TAMP、I2PPXGTI1P 和 CHNSEL 均为 0;也可通过配置 CHNFix=1 不切换保持之前的计量通道。

IPTAMP 默认选择电流作为防窃电阈值的判定依据,也可通过 *TEMP_SEL、IPTemp_Sel* 组合配置为选择功率作为防窃电阈值的判断源头。

5.2.2.26. 移采样点方式相位校正(DEC_Shift)

DEC_Shi	ft		Address: 6	Address: 64H					
	Bi15	14	13	12 3	2	1	Bit0		
Read:	DEC_Shift	DEC_Shift	DEC_Shift	DEC_Shift	DEC_Shift	DEC_Shift	DEC_Shift		
Write:	15	14	13	12-3	2	1	0		
Reset:	0	0	0	0	0	0	0		

移采样点寄存器提供一种快速响应的相位校正方式,长度为1个字节。 对应相位校正公式如下:

Femu = 2M, OSR=64(OSR=64 为 Default 即 75H.Bit7=0)时:

0.5L 初始误差为正 err% , 则计算 err * 18.376 * 2 转换成 16 进制填入 64H 寄存器

0.5L 初始误差为负 err% , 则计算 err * 18.376 * 2 +192 转换成 16 进制填入 64H 寄存器

Femu = 2M, OSR=128(OSR=128 可配置,即 75H.Bit7=1)时:

0.5L 初始误差为正 err% , 则计算 err * 18.376 * 2 转换成 16 进制填入 64H 寄存器

0.5L 初始误差为负 err% ,则计算 err * 18.376 * 2 +256 转换成 16 进制填入 64H 寄存器

注意 2M64 和 2M128 下 误差为正时计算公式一样,为负时不同。

相位校正范围: 2M128 可校正- 3.45%~+ 3.45%

2M64 可校正 - 1.72%~+3.45%

移采样点方式主要用于打分, 暂不推荐 1M 时钟情况使用

举例: Femu = 2M. OSR=64

读取 0.5L 时初始误差为+0.3% 则 用 0.3*18.376*2=11 即把 0x000B 写入 64H 寄存器即可读取 0.5L 时初始误差为-0.3% 则 用(-0.3)* 18.376*2+192=181 即把 0x00B5 写入 64H 寄存器即可

5.2.2.27. 第一通道小信号有功功率校正高位(P1OFFSETH)

Power off	set 1 High (P10	OFFSETH)	Address: 6	5H				
	Bit15	14	13	12	11	10	9	Bit8
Read:	P1OFFH15	P1OFFH14	P1OFFH13	P1OFFH12	P1OFFH11	P1OFFH10	P1OFFH9	P1OFFH8

Write:								
Reset:	0	0	0	0	0	0	0	0
	Bit7	6	5	4	3	2	1	Bit0
Read:	P1OFFH7	P1OFFH6	P1OFFH5	P1OFFH4	P1OFFH3	P1OFFH2	P1OFFH1	P1OFFH0
Write:	FIOFFH/	FIOFFHO	FIOFFIS	FIOFFH4	FIOFFIS	FIOFFH2	FIOFFHI	FIOFFHO
Reset:	0	0	0	0	0	0	0	0

为提高小信号 Offset 校正范围,P1OFFSETH 寄存器可通过配置扩展为 2Bytes (默认为 1byte)。用户使用中需注意:

- (1) 默认配置下,*P1OFFSETH* 与 24 位寄存器 *PowerP1* 的低 8 位对齐。(与内部运算 32 位寄存器 *PowerP1'的 bit[15:8]*对齐)。即: *P1OFFSETH* 寄存器默认为只有[*bit7:bit0*]起校正作用。此时寄存器的最高位 Bit7 为符号位。
- (2) 用户可以通过 42H.BIT13.PoffsetCFG 使能[bit15:bit8]从而获得更宽的 Offset 校正范围。 此时 P10FFSETH 作为 2bytes 的最高位 Bit15 为符号位。Bit7 不再承担符号位功能。

注: P-offset 校验方法详见"推荐校表过程"第5步。

5.2.2.28. 第二通道小信号有功功率校正高位(P2OFFSETH)

Power off	set 2High (P2C	OFFSETH)	Address: 6	Address: 66H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:	DOCE III 5	PAOCELII 4	P2OFFIL12	D2OFFIL12	D2OFFIL1	P2OEEII10	PAOFELIO	MOEEIIO		
Write:	P2OFFH15	P2OFFH14	P2OFFH13	P2OFFH12	P2OFFH11	P2OFFH10	P2OFFH9	P2OFFH8		
Reset:	0	0	0	0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	DAOFELIA.	PAOPELIA	PAOPELIS	D2OFFI14	D2OFFI12	DAOLEITA	DOCETH1	PAOFELIO		
Write:	P2OFFH7	P2OFFH6	P2OFFH5	P2OFFH4	P2OFFH3	P2OFFH2	P2OFFH1	P2OFFH0		
Reset:	0	0	0	0	0	0	0	0		

寄存器功能同 PIOFFSETH

5.2.2.29. 第一通道小信号无功功率校正高位(Q1OFFSETH)

Reactive (Q10FFS		fset 1High	Address: 67H						
	Bit15	14	13	12	11	10	9	Bit8	
Read:	01000115	Q1OFFH14	010EEU12	O1OFFI112	O1OFFI11	010EEU10	OLOFFIIO	OLOFFILE	
Write:	Q1OFFH15	Q10FFH14	Q10FFH13	Q10FFH12	Q10FFH11	Q10FFH10	Q1OFFH9	Q1OFFH8	
Reset:	0	0	0	0	0	0	0	0	
	Bit7	6	5	4	3	2	1	Bit0	
Read:	OLOFFIZ	OLOFFILE	O1OFFUS	O1OFFI14	010000	OLOFFIA	0100011	OLOFFIA	
Write:	Q10FFH7	Q1OFFH6	Q1OFFH5	Q1OFFH4	Q1OFFH3	Q1OFFH2	Q1OFFH1	Q1OFFH0	
Reset:	0	0	0	0	0	0	0	0	

注: Q-offset校验方法与P-offset的校正方法相同,只是需要用户通过观察无功的精度来计算得到。

5.2.2.30. 第二通道小信号无功功率校正高位(Q2OFFSETH)

Reactive	Power of	fset 1High	Address: 6	Address: 68H								
(Q2OFFS	SETH)											
	Bit15	14	13	12	11	10	9	Bit8				
Read:	020000115	020000114	O20EEU12	020EEH12	O20EEU1	020EEU10	OZOEETIO	OZOFELIO				
Write:	Q2OFFH15	Q2OFFH14	Q2OFFH13	Q2OFFH12	Q2OFFH11	Q2OFFH10	Q2OFFH9	Q2OFFH8				
Reset:	0	0	0	0	0	0	0	0				
	Bit7	6	5	4	3	2	1	Bit0				
Read:	0205517	OZOFELIC	OZOFFIE	0205514	0205513	02000012	0205511	02055110				
Write:	Q2OFFH7	Q2OFFH6	Q2OFFH5	Q2OFFH4	Q2OFFH3	Q2OFFH2	Q2OFFH1	Q2OFFH0				
Reset:	0	0	0	0	0	0	0	0				

寄存器功能同 Q1OFFSETH

5.2.2.31. 电流通道 1 有效值偏置校正寄存器 (I1RMSOFFSET)

I1RMSO	FFSET		Address: 6	59H				
	Bi15	14	13	13 123 2 1				
Read:	I1RMS	IIRMS	IIRMS	I1RMS	I1RMS	I1RMS	I1RMS	
Write:	OFFSET15	OFFSET14	OFFSET13	OFFSET12I1RMSOFFSET3	OFFSET2	OFFSET1	OFFSET0	
Reset:	0	0	0	0	0	0	0	

电流通道1有效值校正寄存器采用二进制无符号数形式。

计算公式为:

当输入信号为0的时候,多次读取IIRMS,取平均值后,然后按照下面的公式计算。

 $I1RMSOFFSET = (I1RMS^2)/(2^15)$

如果外部噪声很大,则会导致通过上述公式计算出的*IIRMSOFFSET*超限,此时就只能通过用户软件来去除板级过大的噪声,该寄存器不能完全消除这种零漂噪声。

5.2.2.32. 电流通道 2 有效值偏置校正寄存器(I2RMSOFFSET)

I2RMSOI	FFSET		Address: 6	6AH				
	Bi15	14	13	13 123 2 1				
Read:	I2RMS	I2RMS	I2RMS	I2RMS	I2RMS	I2RMS	I2RMS	
Write:	OFFSET15	OFFSET14	OFFSET13	OFFSET12I2RMSOFFSET3	OFFSET2	OFFSET1	OFFSET0	
Reset:	0	0	0	0	0	0	0	

电流通道2有效值校正寄存器采用二进制无符号数形式

计算公式为:

当输入信号为 0 的时候,多次读取 I2RMS,取平均值后,然后按照下面的公式计算。 $I2RMSOFFSET = (I2RMS^2)/(2^15)$

5.2.2.33. 电压通道有效值偏置校正寄存器(URMSOFFSET)

I2RMSO	FFSET		Address: 6	ВН				
	Bi15	14	13	13 12 3 2 1				
Read:	URMS	URMS	URMS	URMS	URMS	URMS	URMS	
Write:	OFFSET15	OFFSET14	OFFSET13	OFFSET12URMSOFFSET3	OFFSET2	OFFSET1	OFFSET0	
Reset:	0	0	0	0	0	0	0	

电压通道有效值偏置校正同电流通道

5.2.2.34. 电流过零域值设定寄存器(ZCrossCurrent)

ZCrossCu	ırrent		Address:	6СН	H			
	Bit15 14 13 123 2 1				1	Bit0		
Read:	ZC15	70154	ZC13	ZC12ZC3	ZC2	701	ZC0	
Write:	2013	ZC154	2013	2012203	2.02	ZC1	ZCO	
Reset:	0	0	0	0	0	0	0	

注意:

电流有效值与ZCrossCurrent 相比较。ZCrossCurrent 对应IRMS 的低16 位Bit15...bit0。 过零电流域值设置寄存器,当电流有效值小于用户设定的电流过零域值设置寄存器的时候,则不 输出电流正向过零信号,内部输出恒为0。同时相应通道的角度寄存器输出为0,不进行角度计 算。

5.2.2.35. PQ 方式相位校正寄存器 (GPhs1)

Phase Ca	libration 1 Regi	ster (GPhs1)	Address:	6DH	Н			
	Bit15	14	13	13 12 3 2 1				
Read:	CDG1 15	CDC1 14	GDG1 12	CDC1 12 CDC1 2	CDG1 2	CDC1 1	CDG1 0	
Write:	GPS1_15	GPS1_14	GPS1_13	GPS1_12GPS1_3	GPS1_2	GPS1_1	GPS1_0	
Reset:	0	0	0	0	0	0	0	

PQ 方式校相位计算公式如下:

用户在信号输入为阻性的时候通过 GP 寄存器将输出误差校正到 0 附近

将信号输入调整为 0.5L, 此时观察误差为 Err%

如果 Err 为负数:

Gphs1 = -Err%*32768/1.732

如果 Err 为正数:

Gphs1 = 65536 - Err%*32768/1.732

5.2.2.36. PQ 方式相位校正寄存器(GPhs2)

Phase Cal	libration 2 Regis	ster (GPhs2)	Address: 6EH				
	Bit15	14	13	12 3	2	1	Bit0
Read:	GPS2_15	GPS2_14	GPS2_13	GPS2_12GPS2_3	GPS2_2	GPS2_1	GPS2_0

Write:							
Reset:	0	0	0	0	0	0	0

与 Gphs1 相同。

5.2.2.37. 快速脉冲计数器 (PFCNT, QFCNT)

Active En	ergy Counter R	egister (PFCNT)	Address:	6FH				
	Bit15	14	13	13 123 2 1				
Read:	DEC15	DEC14	DEC12	DEC12 DEC2	DEG2	DEC1	DECO	
Write:	PFC15	PFC14	PFC13	PFC12PFC3	PFC2	PFC1	PFC0	
Reset:	0	0	0	0	0	0	0	

Reactive 1	Energy Counter	(QFCNT)	Address:	70H					
	Bit15	14	13	13 123 2 1					
Read:	OEC15	OEC14	OEC12	OEC12 OEC2	OEC2	OECI	QFC0		
Write:	QFC15	QFC14	QFC13	QFC13 QFC12QFC3 QFC2 QFC1					
Reset:	0	0	0	0 0 0					

当快速脉冲计数寄存器 PFCnt/QFCnt 计数的值大于等于 HFconst 时,相应的 PF/QF/SF 会有脉冲溢出,能量寄存器 0x0DH-0x0FH 寄存器的值会相应的加 1。

为了防止上下电时丢失电能,掉电时 MCU 可将寄存器 PFCnt/QFCnt 值读回并进行保存累加。

5.2.2.38. 模拟控制寄存器 (ANACON)

Analog C	Control(ANACO	N)	Address: 7	Address: 72H						
	Bit15	14	13	12	11	10	9	Bit8		
Read:	Reserved	Reserved	Reserved	ADC_CHOP	ADC_CHOP	C_VREF[2]	C VDEE[1]	C VDEE[0]		
Write:	Reserved	Reserved	Reserved	_FRE1	_FRE0	C_VREF[2]	C_VREF[1]	C_VREF[0]		
Reset:				0	0	0	0	0		
	Bit7	6	5	4	3	2	1	Bit0		
Read:	D	D	D 1	D 1	D	D	D	D 1		
Write:	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		
Reset:	0	0	1	1	0	0	0	1		

模拟控制寄存器

位名称	描述
ADC_CHOP_FRE[1:0]	ADC_CHOP_FRE 选择,默认为 0
C_VREF[2: 0]	Vref TC 调整,默认为 0

该寄存器为模拟预留寄存器,默认值 0x0031,用户无需修改。

5.2.2.39. 用户校表校验和寄存器 (SUMCHECKL, SUMCHECKH)

SumChecksum Register (SumcheckL)

	Bit15	14	13	123	2	1	Bit0
Read:	Scheck15	Scheck14	Scheck13	Scheck12 Scheck3	Scheck2	Scheck1	Scheck0
Write:							
Reset:	0	0	0	0	0	0	0

用户写入的校验和寄存器低 16bit。

SumChec	ksum Register	(SumcheckH)	Address:	74H			
	Bit7	6	5	43	2	1	Bit0
Read:	Scheck7	Scheck6	Scheck5 Scheck4 Scheck3		Scheck2	Scheck1	Scheck0
Write:							
Reset:	0	0	0	0	0	0	0

用户写入的校验和寄存器高 8bits SUMCHECKH 与 16bits SUMCHECKL 一起构成 24bit 设定值。由用户校正好校表参数后,写入此寄存器,比较功能使能后,可以检测由于误操作引起的校表参数改变。芯片内部每一个 EMU clk 累加更新 SUMCHECK(18H)时,内部比较两个寄存器值,并给出相应状态标志。

5.2.2.40. MODE 配置寄存器 (MODECFG)

Mode Cor	Mode Configure (MODECFG)			Address: 75H				
	Bit7	6	5	4	3	2	1	Bit0
Read:	OCD	D 1	E. N. Cut	ADC	TT -1	EN_SumChe	CHNIE'-	IPTamp_S
Write:	OSR	Reserved	En_NewStatus	chopper	U chopper	ck	CHNFix	el
Reset:	0	0	0	0	0	0	0	0

位名称	描述
OSR	0:OSR=64(默认) 1:OSR=128
En_NewStatus	使能 EMUSR 高 8 位中 NoPLD 1,2 和 NoQLD1,2 功能以及防窃电阈值设置
	=0, 关闭功能, 输出 0, 窃电阈值由 TAMPSEL 决定;
	=1,使能功能,窃电阈值由 IPTamp_Sel 决定;
ADC chopper	设置 ADC chopper 是否开启,0 enable adc chopper,1 disable adc chopper
U chopper	设置 U chopper 是否开启,0 enable U chopper,1 disable U chopper
EN_SumCheck	=0, 关闭校表参数校验和自动比较功能;
	=1, 使能校表参数校验和自动比较功能;
CHNFix	决定在两路电路通道都降低到 IPTAMP 以下的时候,是选择固定第一电流通道
	计量还是不切换通道,保持之前的通道计量。
	=0,选择固定第一电流通道;
	=1,不切换保持之前通道计量; 注 2
IPTamp_Sel	在 En_NewStatus 为 1 的情况下:
	=0: IPTamp 寄存器选择有效值做为防窃电阈值。
	=1: IPTamp 寄存器选择功率做为防窃电阈值。 注 2

自动防窃电选择功率或有效值判断的配置:

EMUCFG	MODECFG(75H)	MODECFG(75H)	自动防窃电的判断依据	
---------------	--------------	--------------	------------	--

(40H)	En_NewStatus	IPTamp_Sel	
TampSel			
0	0	X	CHK(62H)、IPTAMP(63H)均基于有效值
			寄存器 code 比较是否发生窃电, 比较两
			路有效值百分比差值;
1	0	X	CHK(62H)、IPTAMP(63H)均基于功率寄
			存器 code 比较是否发生窃电,比较两路
			功率百分比差值;
0	1	0	CHK(62H)基于有效值,IPTAMP(63H)
			基于有效值
0	1	1	CHK(62H)基于有效值,IPTAMP(63H)
			基于功率
1	1	0	CHK(62H)基于功率,IPTAMP(63H)基于
			有效值
1	1	1	CHK(62H)基于功率,IPTAMP(63H)基于
			功率

5.2.2.41. 第一通道小信号有功功率校正低位(P1OFFSETL)

Power offset 1 Low (P10FFSETL)			Address: 76H					
	Bit7	6	5	4	3	2	1	Bit0
Read:	DI OFFI E	DIOTES (DIOTES 5	DIOTE I	DIOTE A	DIOTE A	DIOTE I	DIOPPLO
Write:	P1OFFL7	P1OFFL6	P1OFFL5	P1OFFL4	P1OFFL3	P1OFFL2	P1OFFL1	P1OFFL0
Reset:	0	0	0	0	0	0	0	0

该寄存器与 PIOFFSETH 组成 16bit/24bit 共同作用, 其符号位是 PIOFFSETH (65H)的符号位。PIOFFSETL 与内部运算 32 位寄存器 PowerPI'的低 8 位对齐。

5.2.2.42. 第二通道小信号有功功率校正低位(P2OFFSETL)

Power off	set 2 Low (P2	2OFFSETL)	Address: 77H					
	Bit7	6	5	4	3	2	1	Bit0
Read:	P2OFFL7	P2OFFL6	P2OFFL5	P2OFFL4	P2OFFL3	P2OFFL2	P2OFFL1	P2OFFL0
Write:	P2OFFL/	P2OFFL0	PZOFFLS	P2OFFL4	PZOFFLS	P2OFFL2	P2OFFL1	P2OFFL0
Reset:	0	0	0	0	0	0	0	0

该寄存器与 P2OFFSETH 组成 16bit/24bit 共同作用, 其符号位是 P2OFFSETH (66H)的符号位。P2OFFSETL 与内部运算 32 位寄存器 PowerP2'的低 8 位对齐。

5.2.2.43. 第一通道小信号无功功率校正低位(Q1OFFSETL)

Reactive	Power offs	set 1 Low	Address: 7	8H				
(Q10FFS	SETL)							
	Bit7	6	5	4	3	2	1	Bit0

Read:	Q1OFFL7	O1OFFL6	Q1OFFL5	Q1OFFL4	Q1OFFL3	Q1OFFL2	Q1OFFL1	Q1OFFL0
Write:	QIOFFL/	QIOFFLO	QIOFFLS	Q10FFL4	QIOFFLS	Q1OFFL2	QIOFFLI	QIOFFLO
Reset:	0	0	0	0	0	0	0	0

该寄存器与 *Q10FFSETH* 组成 *16bit/24bit* 共同作用, 其符号位是 *Q10FFSETH(67H)*的符号位。*Q10FFSETL* 与内部运算 32 位寄存器 *PowerQ1*'的低 8 位对齐。

5.2.2.44. 第二通道小信号无功功率校正低位(Q2OFFSETL)

Reactive (Q2OFFS		et 2 Low Address: 79H							
	Bit7	6	5	4	3	2	1	Bit0	
Read:	O1OFFI 7	O1OFFI 6	OLOGGI 5	O1OFFI 4	OLOGGE 2	010000	OLOFFI I	0105510	
Write:	Q10FFL7	Q10FFL6	Q1OFFL5	Q10FFL4	Q1OFFL3	Q1OFFL2	Q10FFL1	Q1OFFL0	
Reset:	0	0	0	0	0	0	0	0	

该寄存器与 Q2OFFSETH 组成 16bit/24bit 共同作用,其符号位是 Q2OFFSETH (68H) 的符号位。Q2OFFSETL 与内部运算 32 位寄存器 PowerQ2'的低 8 位对齐。

5.2.2.45. 电压 PEAK 阈值设置寄存器(UPeakLvl)

Reactive 1	Power offset (U	PeakLvl)	Address: 7AH				
	Bit15	14	13	123	2	1	Bit0
Read:		5 170 11 114	YVD 17 110	VP 11 110 VP 11 10	IID1.112	IID 11 11	IID 11 10
Write:	UPeakLvl15	UPeakLvl14	UPeakLvl13	UPeakLvl12 UPeakLvl3	UPeakLvl2	UPeakLvl1	UPeakLvl0
Reset:	0	0	0	0	0	0	0

16 位无符号数据,电压通道 PEAK 阈值设置寄存器,与 ADC 的绝对值高位对齐,当电压通道采样数据高于设定的检测阈值,且持续时间超过用户指定的检测数据长度 (UCycLen),则置位相应的 UPEAKIF 标志位。

当使能电平方式输出时,当电压通道采样数据高于设定的检测阈值时,*IRQ* 输出低电平或高电平(可配置)。

5.2.2.46. 电压 SAG 阈值设置寄存器 (USagLvl)

Reactive 1	Power offset	(USagLvl)	Address: 7BH				
	Bit15	14	13	123	2	1	Bit0
Read:	Y/3 + G15		LICACI2	VIG. 612 VIG. 62	110 1 00	****	***********
Write:	USAG15	USAG14	USAG13	USAG12 USAG3	USAG2	USAG1	USAG0
Reset:	0	0	0	0	0	0	0

16 位无符号数据,电压通道 SAG 阈值设置寄存器,与 ADC 的绝对值高位对齐,当电压通道 采样数据低于设定的检测阈值,且持续时间超过用户指定的检测数据长度 (UCycLen),则置位相 应的 USAGIF 标志位。

当使能电平方式输出时,当电压通道采样数据低于设定的检测阈值时, *IRQ* 输出低电平或高电平(可配置)。

5.2.2.47. 电压 SAG PEAK 检测时间(UCycLen)

Reactive Power offset (UCycLen)			Address: 7CH					
	Bit15	14	13	123	2	1	Bit0	
Read:	UCyclength	UCyclength	UCyclength	UC-sloved 12 UC-sloved 2	UCyclengt	UCyclengt	UCyclengt	
Write:	15	14	13	UCyclength 12 UCyclength 3	h 2	h1	h0	
Reset:	0	0	0	0	0	0	0	

16 位无符号数,用于设定 SAG /PEAK 检测数据长度,即 SAG 功能检测设定的数据长度后给出峰值。 $1 \uparrow LSB$ 对应半个周波。

注: 用户对寄存器写入非零的数据即为开启 SAG/PEAK 功能。

6. 电气规格

6.1. 绝对最大额定值

参数	最大限值			
AVDD to AGND	-0.3V~7V			
DVDD to DGND	-0.3V~7V			
Analog Input PIN (VxP VxN)	-3V~ +3V			
Reference Input PIN	-0.3V~AVDD+0.3V			
Digital Input PIN	-0.3V~AVDD+0.3V			
Operating Temperature Range	-40°C~85°C			
Storage Temperature Range	-65°C~150°C			
Junction Temperature	150℃			
ESD Protection to All Pins	+-6KV			

6.2. 电气特性

测量条件: Vcc=AVcc=5V, 系统频率 6M, 室温

参数	最小值	典型值	最大值	单位	测试条件
电能计量参数					
有功电能测量误差		0.1%			常温 8000:1 范围
无功电能测量误差		0.1%			常温 8000:1 范围
电压有效值测量误		0.1%			1000:1
差		0.5%			5000:1
电流有效值测量误		0.1%			1000:1
差		0.5%			5000:1
ADC 参数					
ADC 满量程		+-900mV		Vp-p	I1& I2 通道
ADC M 里住		+-867mV		Vp-p	U通道
直流输入阻抗		57k		Ω	I1
		620k		Ω	12
		620k		Ω	U
		(VN 接地)			
信噪比		75		dB	
带宽(-3dB)		14		KHz	ADC 采样频率 2MHz
		7			ADC 采样频率 1MHz
ADC 输出参考电压		1.17		V	
基准电压 Vref 值	1.172	1.176	1.180	V	

	10	35	ppm	
	3.07		mA	3路 ADC 全部打开
	2.38		mA	U, II 打开
			-	
3.0/4.5	3.3/5	3.6/5.5	V	
3.0/4.5	3.3/5	3.6/5.5	V	
	5	8	mA	3.3/5V
-40		85	$^{\circ}$	
-65		150	$^{\circ}$	
0.7Vcc				除了 RST 外所有 PIN
0.8Vcc				RST 引脚
		0.2Vcc		
0.9Vcc	8mA			PF
(Isourc				
e>4mA				
)				
0.9Vcc	5mA			Other Pins
(Isourc				
e>1mA				
)				
	15mA	0.1Vcc		PF
		, ,		
	8mA	0.1Vcc		Other Pins
		(Isink>1mA)		
	≥200		V	
	≥4000		V	
	3.0/4.5 -40 -65 0.7Vcc 0.8Vcc (Isourc e>4mA) 0.9Vcc (Isourc e>1mA	3.07 2.38 3.0/4.5 3.3/5 3.0/4.5 3.3/5 5 -40 -65 0.7Vcc 0.8Vcc 0.9Vcc (Isourc e>4mA) 0.9Vcc (Isourc e>1mA) 15mA 8mA	3.07 2.38 3.0/4.5 3.3/5 3.6/5.5 3.0/4.5 5 8 -40 85 -65 150 0.7Vcc 0.8Vcc 0.2Vcc 0.9Vcc (Isourc e>4mA) 0.9Vcc (Isourc e>1mA) 15mA 0.1Vcc (Isink>4mA) 8mA 0.1Vcc (Isink>1mA)	3.07 mA mA 3.07 x mA x x x x x x x x x

7. 校表过程

1. 在精度校正之前,需要先进行电流通道2增益校正(做防窃电时必需),如果用户不需要第二通道计量,则该步骤忽略。

防窃电时,需要对两个通道的电流有效值进行比较,因而在同样电流输入下,电流通道 1 与电流通道 2 的寄存器值应该相等。

通过电流通道 2 增益校正寄存器 I2GAIN,使同样输入电流情况下,二者寄存器的值一致。 假设同样输入额定电流,电流通道 1 有效值寄存器读数为 I1rms,电流通道 2 有效值寄存器 读数为 I2rms,则

Gain=I1rms/I2rms - 1

如果 Gain>=0, I2Gain=Gain*2^15

如果 Gain<0, I2Gain=Gain*2^15+2^16

举例说明:

两路通道都加入电流信号,读取电流通道 1 的有效值寄存器 RMS_I1(06H),读取电流通道 2 的有效值寄存器数据 RMS_I2(07H),得到结果如下:

RMS_I1 : 0x03BA55

RMS I2: 0x025A76

根据公式: Gain=I1rms/I2rms-1=0x03BA55/0x025A76-1=244309/154230-1=0.584由于 Gain>0, $I2Gain=0.584*2^15=0x4AC2$

使用 MCU 通过 UART 将 0x4AC2 写入 HT7017 的 I2Gain(5BH)寄存器:

格式: UART_Write(寄存器地址,写入数据)

实际: UART_Write(0x5B, 0x4AC2)

写入后读取电流 I1 有效值和电流 I2 有效值,两者应该很接近。

2. 高频脉冲常数设置(同一批表只需同样的 HFCONST)

通过 HFConst 寄存器将用户样表的误差精度调整到 15%以内。有两种方式计算。

方案一:

HFCONST 寄存器的默认值为 0x0040

用户观察电表的初始误差为 Err%,则按照下面公式将误差调整到 10 以内:

HFCONST = 0x0040 * (1 + Err%)

举例说明:

电表表常数 (EC) 设置为 3200, 功率因数为 1, HFCONST 寄存器为默认值 0x0040, 观察标准表上显示的误差为 52.8%。

根据公式: HFCONST = 0x0040 * (1+ Err%)

计算得到: HFCONST = 0x0040 * (1+52.8%) = 0x0061

使用 MCU 通过 UART 将 0x0061 写入 HT7017 的 HFCONST (61H) 寄存器:

格式: UART_Write(寄存器地址,写入数据)

实际: UART Write(0x61, 0x0061), 写入后标准表的显示误差应该在 10%以内

方案二:

 $HFConst = \frac{7.12}{Vu^*Vi^*10^10/(EC^*Un^*Ib)}$

Vu: 额定电压输入时,电压通道的电压(引脚上电压×放大倍数)

Vi: 额定电流输入时,电流通道的电压 (引脚上电压×放大倍数)

Un: 额定输入的电压 Ib: 额定输入的电流

EC: 电表常数

举例说明:

电表表常数(EC)设置为3200,功率因数为1。

Un (额定电压) 为 220V, Ib (额定电流) 为 5A, Vu (电压通道的电压) 为 0.22V

Vi (电流通道的电压) 为 1.75mV,内部电流通道 16 倍增益, Vi*16 = 28mV

根据公式: HFConst=7.12*Vu*Vi*10^10/(EC*Un*Ib)计算得到

 $HFConst = 7.12*0.22*0.028*10^10 / (3200*220*5) = 0x007D$

使用 MCU 通过 UART 将 0x007D 写入 HT7017 的 HFCONST (61H) 寄存器:

格式: UART_Write(寄存器地址,写入数据)

实际: UART_Write(0x61, 0x007D), 写入后标准表的显示误差应该在±10%以内

3. 第一通道有功、无功和视在增益校正

只需要在额定输入、功率因数为 1 时根据有功计算。通常有功、无功和视在增益写入相同的 值。

己知:

标准表上读出误差为 Err%

计算公式:

$$Pgain = \frac{-err}{1 + err}$$

如果 Pgain>=0,则 GP1=INT[Pgain*2¹⁵]

否则 Pgain<0,则 GP1=INT[2¹⁶+Pgain*2¹⁵]

举例说明:

电表表常数 (EC) 设置为 3200, 功率因数为 1, 在经过第一步 HFCONST 调整过后,标准表上读出的误差显示为 -2.18%。

根据公式: Pgain = -(-2.18%) / (1-2.18%) = 0.022

由于 Pgain >=0,则 GP1 = $0.022*2^15 = 0x02DA$

使用 MCU 通过 UART 将 0x02DA 写入 HT7017 的 GP1(50H), GQ1(51H), GS1(52H)寄存器:

格式: UART Write(寄存器地址,写入数据)

实际: UART_Write(0x50, 0x02DA) ; GP1

UART_Write(0x51, 0x02DA); GQ1

UART_Write(0x52, 0x02DA); GS1

写入后标准表的显示误差应该在0附近

4. 第一通道相位校正

在增益已经校正好之后,进行相位补偿。在功率因素 0.5L 处进行校正。已知:

0.5L 处标准表误差读数为 Err%是 0.5594%

方案 1: 使用 PQ 方式的 Gphs1 (6DH) 寄存器做相位补偿,根据补偿公式:

$$\theta = \frac{-err}{1.732} = \frac{-0.00594}{1.732} = -0.00323$$

由于 θ <0,Gphs1 = 2^16 + (-0.00323)*2^15 = 0xFF96

使用 MCU 通过 UART 将 0xFF96 写入 HT7017 的 Gphs1(6DH)寄存器:

格式: UART Write(寄存器地址,写入数据)

实际: UART_Write(0x6D, 0xFF96)

写入后标准表的显示误差应该在0附近。

方案 2: 使用移采样点方式的 Dec_Shift(64H)寄存器做相位补偿,根据补偿公式: 对应相位校正公式如下:

当 Femu = 2M, OSR=64 时:

0.5L 初始误差为正 err% ,则计算 err * 18.376 * 2 转换成 16 进制填入 64H 寄存器 0.5L 初始误差为负 err% ,则计算 err * 18.376 * 2 +192 转换成 16 进制填入 64H 寄存器

Dec Shift = 0.5594% *100 *18.376 *2 = 20.559

取整转成 HEX 后为 0x16,

使用 MCU 通过 UART 将 0x0016 写入 HT7017 的 Dec_Shift (64H) 寄存器:

格式: UART_Write(寄存器地址,写入数据)

实际: UART_Write(0x64, 0x0016)

两种校正方式,用户根据需求选择一种即可。

5. Poffset校正(小信号有功功率校正)

在经过步骤1,2,3之后,用户在Ib = 100%的时候电表误差校正到0附近,观察小信号x%Ib(5%,2%)点的电表误差为 Err%

x%Ib点在阻性下读取标准表上输出的有功功率值Preal

应用公式来计算Poffset = (Preal*EC*HFCONST*2^31*(-Err%))/ (5.625*10^10) 举例说明:

额定电压220V,额定电流(Ib)5A,表常数为3200,快速脉冲寄存器 (HFCONST) 读取为0x61,电表在Ib=100%时误差校正在0附近,观察小信号5%点的电表误差为0.5%,从标准表上读取小信号5%点的输出功率为55.2 (Preal)

根据公式 Poffset = (Preal*EC*HFCONST*2^31*(-Err%)) / (5.625*10^10) 计算得到注: 不论femu=2MHz/1MHz, 上述公式均适用

Poffset = (Preal*EC*HFCONST*2^31*(-Err%)) / (5.625*10^10)

 $= (55.2*3200*97*2^31*(-0.5\%)) / (5.625*10^10)$

= -3270.68

由于 Poffset < 0, 所以写入寄存器 P1OFFSETH 和 P1OFFSETL 的值为 2¹⁶ + Poffset = 62266 (0xF33A)

使用 MCU 通过 UART 将 0xF3 写入 HT7017 的 P1OFFSETH(65H)寄存器, 然后通过 UART 将 0x3A 写入 HT7017 的 P1OFFSETL(76H)寄存器。

格式: UART_Write(寄存器地址,写入数据)

实际:

UART_Write(0x65, 0xF3);

UART_Write(0x76, 0x3A);

写入后电表在5%点的显示误差应该在0附近。

6. 第二通道增益校正、相位校正

增益校正及PQ方式校正方式与第一通道校正方式相同。 注:第二通道不提供移采样点校正方式。

7. IRMS增益、URMS增益和两个通道的功率增益转换系数校正

这些参数没有相应的寄存器,需要由用户根据需要自行计算获取。 举例说明:

以电流通道1有效值为例,电流通道1标准台输出5A电流有效值,电流通道1有效值寄存器 RMS_I1(06H)的值读取得0x03BA55,如果用户希望在液晶上显示出5A,则需要自行计算两者 之间的转换系数如下: $K = 5/0x03BA55 = 2.046*10^{-5}$

这里的K就是转换系数,之后用户根据读取的RMS_II的值乘这个K,则得到正确的电流显示值。 详见有效值输出章节和功率参数输出章节。

8. 芯片封装

8.1. HT7017 (SSOP16)

SSOP16(150 III) PACKAGE OUTLINE DIMENSIONS

Cramba I	Dimensions Is	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
ъ	0. 200	0.300	0.008	0.012	
с	0.170	0.250	0.007	0.010	
D	4.700	5. 100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5. 800	6.200	0.228	0. 244	
е	0.635	(BSC)	0. 025	(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

9. 典型应用

