

Vera Kublanovskaya 1920-2012

QR iterations with singular A

Theorem If A is nonsingular then there exists a unique QR decomposition A = QR of A such that R has positive diagonal entries.

QR iterations with singular A

Theorem If A is nonsingular then there exists a unique QR decomposition A = QR of A such that R has positive diagonal entries.

Theorem If A is a singular properly upper Hessenberg matrix, then the last row of the matrix A_1 obtained after one step of the QR algorithm is zero.

QR iterations with singular A

Theorem If A is nonsingular then there exists a unique QR decomposition A = QR of A such that R has positive diagonal entries.

Theorem If A is a singular properly upper Hessenberg matrix, then the last row of the matrix A_1 obtained after one step of the QR algorithm is zero.

Corollary Let ρ be an eigenvalue of A and B be the matrix obtained after one step of shifted QR with shift ρ . Then the last row of B is $[0, 0, \cdots \rho]$.

Let $A \in \mathbb{C}^{n \times n}$ and $\rho, \tau \in \mathbb{C}$. Consider one iteration of Shifted QR with shift ρ followed by another with shift τ :

$$A - \rho I = Q_{\rho} R_{\rho}, \hat{A} = R_{\rho} Q_{\rho} + \rho I$$

 $\hat{A} - \tau I = Q_{\tau} R_{\tau}, \tilde{A} = R_{\tau} Q_{\tau} + \tau I$

Let $Q=Q_{
ho}Q_{ au}$ and $R=R_{ au}R_{
ho}.$ Then,

$$(A - \rho I)(A - \tau I) = QR$$
 and $\tilde{A} = Q^*AQ$.

Also if A is real and $\tau = \bar{\rho}$, then $(A - \rho I)(A - \tau I)$ and \tilde{A} are real.

Additionally, if ρ and τ are not eigenvalues of A, then given any QR decomposition $(A - \rho I)(A - \tau I) = Q_1 R_1$ of $(A - \rho I)(A - \tau I)$, if $A_1 := Q_1^* A Q_1$, then there exists diagonal matrix D with $D(i,i) = \pm 1, i = 1, \ldots, n$, such that $A_1 = \bar{D}\tilde{A}D$.

Let $A \in \mathbb{C}^{n \times n}$ and $\rho, \tau \in \mathbb{C}$. Consider one iteration of Shifted QR with shift ρ followed by another with shift τ :

$$A - \rho I = Q_{\rho} R_{\rho}, \hat{A} = R_{\rho} Q_{\rho} + \rho I$$

 $\hat{A} - \tau I = Q_{\tau} R_{\tau}, \tilde{A} = R_{\tau} Q_{\tau} + \tau I$

Let $Q=Q_{
ho}Q_{ au}$ and $R=R_{ au}R_{
ho}.$ Then,

$$(A - \rho I)(A - \tau I) = QR$$
 and $\tilde{A} = Q^*AQ$.

Also if A is real and $\tau = \bar{\rho}$, then $(A - \rho I)(A - \tau I)$ and \tilde{A} are real.

Additionally, if ρ and τ are not eigenvalues of A, then given any QR decomposition $(A - \rho I)(A - \tau I) = Q_1 R_1$ of $(A - \rho I)(A - \tau I)$, if $A_1 := Q_1^* A Q_1$, then there exists diagonal matrix D with $D(i,i) = \pm 1, i = 1, \ldots, n$, such that $A_1 = \bar{D}\tilde{A}D$.

Exercise: Prove the above statements!

Let
$$A_0 = A$$
 and $\rho_j, au_j \in \mathbb{F}$ for $j = 0, 1, \ldots$

for
$$j = 1, 2, ...$$

- (i) Form $M = (A_{j-1} \rho_{j-1}I)(A_{j-1} \tau_{j-1}I)$.
- (ii) Find a reflectors $Q_{j-1}^{(1)}, Q_{j-1}^{(2)}, \dots, Q_{j-1}^{(n-1)}$ such that

$$\mathbf{Q}_{j-1}^{(n-1)} \cdots \mathbf{Q}_{j-1}^{(2)} \mathbf{Q}_{j-1}^{(1)} M$$

is upper triangular.

$$\textit{(iii)} \ \textit{Find} \ \textit{A}_{j} = \textbf{Q}_{j-1}^{(n-1)} \cdots \textbf{Q}_{j-1}^{(2)} \textbf{Q}_{j-1}^{(1)} \textit{A}_{j-1} \textbf{Q}_{j-1}^{(1)} \textbf{Q}_{j-1}^{(2)} \cdots \textbf{Q}_{j-1}^{(n-1)}.$$

Let $A_0 = A$ and $\rho_j, \tau_j \in \mathbb{F}$ for $j = 0, 1, \ldots$

for j = 1, 2, ...

- (i) Form $M = (A_{j-1} \rho_{j-1}I)(A_{j-1} \tau_{j-1}I)$.
- (ii) Find a reflectors $Q_{j-1}^{(1)}, Q_{j-1}^{(2)}, \dots, Q_{j-1}^{(n-1)}$ such that

$$\mathbf{Q}_{j-1}^{(n-1)}\cdots\mathbf{Q}_{j-1}^{(2)}\mathbf{Q}_{j-1}^{(1)}\mathit{M}$$

is upper triangular.

(iii) Find
$$A_j = \mathbf{Q}_{j-1}^{(n-1)} \cdots \mathbf{Q}_{j-1}^{(2)} \mathbf{Q}_{j-1}^{(1)} A_{j-1} \mathbf{Q}_{j-1}^{(1)} \mathbf{Q}_{j-1}^{(2)} \cdots \mathbf{Q}_{j-1}^{(n-1)}$$
.

Generally the shifts ρ_{j-1} and τ_{j-1} are taken to be the eigenvalues of

$$\left[\begin{array}{cc} a_{n-1,n-1}^{(j-1)} & a_{n-1,n}^{(j-1)} \\ a_{n,n-1}^{(j-1)} & a_{nn}^{(j-1)} \end{array}\right].$$

This is called generalized Rayleigh Quotient shifting strategy.

Let
$$A_0 = A$$
 and $\rho_j, \tau_j \in \mathbb{F}$ for $j = 0, 1, \ldots$

for
$$j = 1, 2, ...$$

(i) Form
$$M = (A_{j-1} - \rho_{j-1}I)(A_{j-1} - \tau_{j-1}I)$$
.

(Costs $O(n^3)$ flops and may be severely affected by rounding error. Also M is not upper Hessenberg!)

(ii) Find reflectors $Q_{j-1}^{(1)}, Q_{j-1}^{(2)}, \dots, Q_{j-1}^{(n-1)}$ such that

$$\mathbf{Q}_{j-1}^{(n-1)} \cdots \mathbf{Q}_{j-1}^{(2)} \mathbf{Q}_{j-1}^{(1)} \mathit{M}$$

is upper triangular.

(iii) Find
$$A_j = \mathbf{Q}_{j-1}^{(n-1)} \cdots \mathbf{Q}_{j-1}^{(2)} \mathbf{Q}_{j-1}^{(1)} A_{j-1} \mathbf{Q}_{j-1}^{(1)} \mathbf{Q}_{j-1}^{(2)} \cdots \mathbf{Q}_{j-1}^{(n-1)}$$
.

Generally the shifts ρ_{j-1} and τ_{j-1} are taken to be the eigenvalues of

$$\left[\begin{array}{cc} a_{n-1,n-1}^{(j-1)} & a_{n-1,n}^{(j-1)} \\ a_{n,n-1}^{(j-1)} & a_{nn}^{(j-1)} \end{array}\right].$$

This is called generalized Rayleigh Quotient shifting strategy.

