CSE 5526: Homework 2 Solution

a) (2 points)

We set the desired output of points in C_1 to -1, and that of points in C_2 to 1. Training in action (Assume in augmented space with $\eta=1/2$) $w(n+1)=w(n)+\Delta w(n)=w(n)+\eta[d(n)-y(n)]x(n)$

Weight (w)	Input (x)	Desired (d)	Actual output (y)	(<i>d</i> - <i>y</i>)	
(0, 0, 0)	(0, 0, 1)	-1	1	-2	
(0, 0, -1)	(0, 1, 1)	-1	-1	0	
(0, 0, -1)	(1, 0, 1)	1	-1	2	
(1, 0, 0)	(1, 1, 1)	1	1	0	
(1, 0, 0)	(0, 0, 1)	-1	1	-2	
(1, 0, -1)	(0, 1, 1)	-1	-1	0]\
(1, 0, -1)	(1, 0, 1)	1	1	0	correct
(1, 0, -1)	(1, 1, 1)	1	1	0	classification
(1, 0, -1)	(0, 0, 1)	-1	-1	0]′

Hence, the resulting decision boundary is $\mathbf{w}^{\mathrm{T}}\mathbf{x}=0$, therefore, $x_1-1=0$ or $x_1=1$.

b) (1 point)

Here we set the desired output of points in C_1 to 1, and that of points in C_2 to -1.

Training in action (Assume in augmented space with $\eta=1/2$)

Weight (w)	Input (x)	Desired (d)	Actual output (y)	(<i>d</i> - <i>y</i>)
(0, 0, 0)	(0, 0, 1)	-1	1	-2
(0, 0, -1)	(0, 1, 1)	1	-1	2
(0, 1, 0)	(1, 0, 1)	1	1	0
(0, 1, 0)	(1, 1, 1)	-1	1	-2
(-1, 0, -1)	(0, 0, 1)	-1	-1	0
(-1, 0, -1)	(0, 1, 1)	1	-1	2
(-1, 1, 0)	(1, 0, 1)	1	-1	2
(0, 1, 1)	(1, 1, 1)	-1	1	-2
(-1, 0, 0)	(0, 0, 1)	-1	1	-2
(-1, 0, -1)	(0, 1, 1)	1	-1	2
(-1, 1, 0)	(1, 0, 1)	1	-1	2
(0, 1, 1)	(1, 1, 1)	-1	1	-2
(-1, 0, 0)	(0, 0, 1)	-1	1	-2
•••	•••	•••		•••

One can see from the above table that the weights will repeat. Perceptron learning thus will not converge but loop forever.

2. (3 points)

Explanation:

Consider the first group of 4 neurons in the first layer.

The first neuron will output 1 if $x_1 >= 1$, and -1 otherwise.

The second neuron will output 1 if - $x_1 > = -8$ (equivalently $x_1 < = 8$), and -1 otherwise.

The third neuron will output 1 if $x_2 >= 0$, and -1 otherwise.

The fourth neuron will output 1 if - $x_2 \ge -1$ (equivalently $x_2 \le 1$), and -1 otherwise.

The first neuron in the second layer will output 1 if all four of the above neurons output 1, and will output -1 otherwise.

This gives the conditions $1 \le x_1 \le 8$, and $0 \le x_2 \le 1$, which is exactly the area occupied by Class 1.

The other 2 classes are determined similarly.

3. (4 points)

$$X = \{-0.5, -0.2, -0.1, 0.3, 0.4, 0.5, 0.7\}$$

$$D = \{-1, 1, 2, 3.2, 3.5, 5, 6\}$$

$$E = \frac{1}{2} \sum_{i} (d_{i} - wx_{i})^{2} = \frac{1}{2} \sum_{i} (x_{i}^{2}w^{2} - 2d_{i}x_{i}w + d_{i}^{2})$$

$$= \frac{1}{2} [(-0.5)^{2}w^{2} - 2 \cdot (-1) \cdot (-0.5)w + (-1)^{2}$$

$$+ (-0.2)^{2}w^{2} - 2 \cdot 1 \cdot (-0.2)w + 1^{2}$$

$$+ (-0.1)^{2}w^{2} - 2 \cdot 2 \cdot (-0.1)w + 2^{2}$$

$$+ 0.3^{2}w^{2} - 2 \cdot 3.2 \cdot 0.3w + 3.2^{2}$$

$$+ 0.4^{2}w^{2} - 2 \cdot 3.5 \cdot 0.4w + 3.5^{2}$$

$$+ 0.5^{2}w^{2} - 2 \cdot 5 \cdot 0.5w + 5^{2}$$

$$+ 0.7^{2}w^{2} - 2 \cdot 6 \cdot 0.7w + 6^{2}]$$

$$= \frac{1}{2} [1.29w^{2} - 18.32w + 89.49]$$

Average over data points:

$$\overline{E} = \frac{E}{7} = \frac{1.29w^2 - 18.32w + 89.49}{14}$$

Direct differentiation:

$$\frac{\partial \overline{E}}{\partial w} = \frac{2.58w - 18.32}{14}$$

the gradient at the point w=2:

$$\nabla E_w = \frac{\partial \overline{E}}{\partial w} = \frac{2.58 \times 2 - 18.32}{14} = -0.94$$

LMS approximation:

$$\nabla E_{w} = \frac{\partial}{\partial w(k)} E = \frac{1}{2} \frac{\partial}{\partial w(k)} (e^{2}(k)) = -e(k)x(k)$$

when w=2

x(k)	y(k)	d(k)	e(k)=d(k)-y(k)	-e(k)x(k)
-0.5	-1	-1	0	0
-0.2	-0.4	1	1.4	0.28
-0.1	-0.2	2	2.2	0.22
0.3	0.6	3.2	2.6	-0.78
0.4	0.8	3.5	2.7	-1.08
0.5	1.0	5	4	-2
0.7	1.4	6	4.6	-3.22

So

$$\nabla \overline{E}_{w}(k) = \frac{1}{7} [0.0 + 0.28 + 0.22 - 0.78 - 1.08 - 2 - 3.22] = -0.94$$

Therefore, the gradients at the point w=2 from the 2 approaches agree exactly.