	-	
	_ _	
	_ _	
	<u> </u>	
		
	_ _	
using the furrier transform		
		
	 _	
	apply boundary conditions as and	as
	applying the conditions ,	
	and — , —	
	- -	
	<u> </u>	

derivation for the potential of a point charge above thin layer of uniform dielectric above an anisotropic substrate bulk material

let 1+2 1-2 3+4 3-4 sub 5 in to 7 sub 6 in to 8 sub 9 in to 10

let

returns expected results

let

	
returns expected results	
let	
	_
\equiv	
	
returns expected results	
let	
	
	

giving		
		Ξ
		
	<u> </u>	
		
		
as		
	-	
then		
		<u> </u>
where		
		
		

trivial cases:		
h=0		
	 	
	 	<u> </u>
when using the case of k=0	 	_
returns expected results let		
	 	<u></u> - <u></u>

take case where	k=0 as otherwi	ise =0		
			<u> </u>	
returns expecte	d results			
let				
			_	
	_		<u> </u>	

returns expected results

Dipole approximation using the principle of superposition

where

as

then

second particle

using the principle of superposition

	_	_	- -	
				
				
		_	-	
	—			
_		=======================================		
		=		
				
		_	_	
		<u> </u>		-
		_ _	_ _	
g Taylor expansion where	, and	and grater orders are ignored.		

using

first term

	-	_		_	_		_	
							=	=
						_		
econd term								
			_					
				_				
						_		
			_				-	
					_			
			·			<u> </u>	<u> </u>	
			-	_	- -			
				_		_		
					_			
-					_		-	
								
				_			-	
					_			
					_		=	
						_		
						_		

third term

there for

as

		_				
	 	_		=		
	 		_		_	
				_	_	-
				_		
taking the case where k=0						
			_			
						

```
second term
third term
calculating
first term
```


and

