ELETRÔNICA BÁSICA I – ELE08497 - LABORATÓRIO 4 TRANSISTOR BIPOLAR DE JUNÇÃO – CURVAS CARACTERÍSTICAS

1- OBJETIVO

Levantar as curvas características de entrada e saída e de chaveamento de um transistor bipolar de junção (BJT).

2- INTRODUÇÃO TEÓRICA

2.1- IDENTIFICAÇÃO DOS TERMINAIS DE UM TRANSISTOR BIPOLAR DE JUNÇÃO - BJT

As junções de um transistor Bipolar de Junção (BJT) recebem um encapsulamento adequado, conforme o tipo de aplicação e a ligação dos três terminais para conexões. Quando não existe nenhum detalhe que identifique os terminais de um BJT, o coletor é frequentemente marcado com uma "pinta" ou com algum outro detalhe identificador. Quando o BJT tem invólucro metálico, o terminal do coletor pode ser ligado a esse invólucro.

Recomenda-se a consulta ao manual técnico do transistor para a identificação dos terminais, e tomada de conhecimento dos principais parâmetros e características do BJT. A identificação dos terminais do BJT é importante para que a sua polarização e utilização sejam feitas corretamente.

O BJT pode ser entendido como constituído por dois diodos, embora não seja possível ter-se o efeito transistor com a associação simples de dois diodos. Com ohmímetro pode-se determinar o tipo transístor (NPN ou PNP), e o terminal de base. O procedimento consiste em supor que um terminal qualquer é a base e verificar se as supostas junções BE e BC comportam-se como diodos. Aquele terminal que apresentar valores de medida de resistência mensurável, na polarização direta, e infinita, na polarização reversa, é o terminal de base.

Na polarização direta, o terminal positivo do ohmímetro é ligado ao lado P e o negativo ao lado N do diodo. Portanto em função do sentido da polarização identifica-se o tipo de transístor: NPN ou PNP. A dúvida que ainda persiste é qual dos dois terminais é o emissor ou o coletor.

2.2- CURVA CARACTERÍSTICA DE ENTRADA

A curva característica de entrada representa a relação entre a tensão base e emissor (V_{BE}) e a corrente de base (I_B). Esta curva é a mesma de um diodo diretamente polarizado, modificada ligeiramente pela tensão entre coletor e emissor (V_{CE}). A configuração emissor comum é a usada na definição desta curva.

2.3- CURVA CARACTERÍSTICA DE SAÍDA

A curva característica de saída representa a relação entre a tensão coletor e emissor (V_{BE}) e a corrente de coletor (I_C), tendo a corrente de base (I_B) como parâmetro. A configuração emissor comum é a usada na definicão desta curva.

2.4- TEMPOS DE COMUTAÇÃO DE TRANSISTOR

O funcionamento do transistor como chave se refere à comutação do estado de saturação, em que a tensão V_{CE} fica limitada a um valor próximo a zero, para o estado de corte, em que não existe corrente de coletor e a tensão V_{CE} fica limitada à tensão de alimentação V_{CC} e vice-versa.

No estado de saturação a corrente de coletor do transistor é limitada pela resistência de coletor: I_{CSAT}=V_{CC}/ R_L.

A figura abaixo exibe uma tensão de onda quadrada aplicada entre base e emissor do transistor e sua resposta entre coletor e emissor. No intervalo em que a tensão de entrada é positiva, o transistor satura, e no intervalo em que é negativa o transistor corta.

Os tempos de comutação são:

- t_d carga da capacitância da junção base emissor (tempo necessário para os portadores minoritários atravessarem a junção em direção à base).
- t_r e t_f a corrente de coletor passa pela região ativa.
- ts remoção da carga de saturação, a dos portadores minoritários, na base.
- TEMPO DE COMUTAÇÃO (t_t) : $t_t = t_d + t_r + t_f + t_S$

3- PARTE EXPERIMENTAL

3.1- CARACTERÍSTICA DE ENTRADA

3.1.1- Crie no simulador o circuito da figura abaixo.

- 3.1.2- Tire um print da tela do arquivo .sch, mostrando como ficou circuito e os recursos de simulação usados.
- 3.1.3- Simule a variação do resistor de 1 M Ω , a partir de uma resistência mínima de 20 K Ω até o seu valor máximo em incrementos de 20 K Ω , e construa uma tabela com os valores da corrente de base (IB) e da tensão base emissor (VBE).
- 3.1.4- Usando os dados da tabela do item 3.1.3 plote a curva da corrente de base (I_B) versus tensão base emissor (V_{BE}), com a tensão (V_{BE}) no eixo horizontal e a corrente (I_B) no eixo vertical.

3.2- CARACTERÍSTICA DE SAÍDA

3.2.1- Crie no simulador o circuito da figura abaixo.

- 3.2.2- Tire um print da tela do arquivo .sch, mostrando como ficou circuito e os recursos de simulação usados.
- 3.2.3- Ajuste o valor de I_B para 10 μA e para valores de V_{CC} variando de 0 a 10 V_{CC}, de 100 em 100 mV e registre em uma tabela os valores da corrente de coletor (I_C) e a tensão entre coletor e emissor (V_{CE}) para cada valor de V_{CC}.
- 3.2.4- Ajuste o valor de I_B para 100 μ A e para valores de V_{CC} variando de 0 a 10 V_{CC} , de 100 em 100 mV e registre em uma tabela os valores da corrente de coletor (I_C) e a tensão entre coletor e emissor (V_{CE}) para cada valor de V_{CC} .
- 3.2.5- Ajuste o valor de I_B para 200 μ A e para valores de V_{CC} variando de 0 a 10 V_{CC} , de 100 em 100 mV e registre em uma tabela os valores da corrente de coletor (I_C) e a tensão entre coletor e emissor (V_{CE}) para cada valor de V_{CC} .
- 3.2.6- Através das tabelas levantadas nos itens 3.2.3, 3.2.4 e 3.2.5, plote em um único gráfico as curvas I_C versus V_{CE} , tendo I_B como parâmetro.

3.3- TRANSISTOR COMO CHAVE

3.3.1- Monte o circuito da figura abaixo.

- 3.3.2- Tire um print da tela do arquivo .sch, mostrando como ficou circuito e os recursos de simulação usados.
- 3.3.3- Plote em um mesmo gráfico e sem interferência de um no outro, as formas de onda da onda quadrada de entrada do circuito e a da tensão entre coletor e emissor (V_{ce}) do transistor. Ajuste a escala de tempo para que apareça somente um ciclo completo da onda.
- 3.3.4- Para as mesmas condições do item 3.2.2, diminua a escala de tempo ao máximo, mas de tal maneira que apenas a transição negativa da onda de entrada e a transição positiva de V_{ce} apareça no gráfico. Desta forma podese tornar mais nítido o valor do tempo de transição t_s (storage time). Meça o valor de t_s .