A Search for the Neutrinoless Double Beta Decay of Xenon-136 with Improved Sensitivity from Waveform Denoising

Clayton G. Davis

April 3, 2014

Outline

 $\beta\beta2\nu$ and $\beta\beta0\nu$ Decay

The EXO-200 Detector

What is Double-Beta Decay?

Feynman diagram for $\beta\beta2\nu$ decay. Equivalent to two single- β decays:

$$2n \rightarrow 2p + 2e^- + 2\bar{\nu}_e$$

What is Double-Beta Decay?

Feynman diagram for $\beta\beta2\nu$ decay. Equivalent to two single- β decays:

$$2n \to 2p + 2e^- + 2\bar{\nu}_e$$

Feynman diagram for $\beta\beta0\nu$ decay. Neutrinos annihilate each other:

$$2n \rightarrow 2p + 2e^-$$

 $\beta\beta2\nu$ is allowed in the Standard Model; $\beta\beta0\nu$ is not.

Implications of Double-Beta Decay

Lepton number changes:

$$\Delta L = +2$$

Neutrinos can convert to their own antiparticle:

$$\bar{\nu}_R \rightarrow \nu_L$$

Neutrinos have mass through a Majorana interaction:

$$-\frac{m_L}{2}\left(\overline{\Psi^c_L}\Psi_L+\overline{\Psi_L}\Psi^c_L\right)$$

$$-\frac{m_R}{2}\left(\overline{\Psi_R^c}\Psi_R+\overline{\Psi_R}\Psi_R^c\right)$$

The A = 136 Isobar

¹³⁶Cs undergoes single- β decay.

 $^{136}\mbox{Xe}$ cannot, due to energy conservation – but it can $\beta\beta$ decay through $^{136}\mbox{Cs}$ to $^{136}\mbox{Ba}.$

The *Q*-value of 136 Xe \rightarrow 136 Ba is 2457.83 \pm 0.37 keV, shared between all final products of the decay.

We observe energy in electrons; energy in neutrinos is lost.

Ideal Double-Beta Energy Spectrum

 $^{136} \rm{Xe}~\beta\beta2\nu$ produces a smooth energy spectrum; "missing" energy carried off by neutrinos.

Ideal Double-Beta Energy Spectrum

 $^{136}{\rm Xe}~\beta\beta0\nu$ has no neutrinos, so no "missing" energy; mono-energetic peak at $Q=2458~{\rm keV}.$

Ideal Double-Beta Energy Spectrum

If the $\beta\beta 0\nu$ peak exists, neutrinos have Majorana mass; peak height gives a measurement of that mass.

The EXO-200 Detector

The EXO-200 Detector

To search for rare decays, low background is key:

- Clean (low-radioactivity) materials surrounding TPC.
- Deep underground to avoid cosmogenics.

EXO-200 TPC

110 kg of liquid xenon in active volume, enriched to 80.6% in ¹³⁶Xe, contained in a time projection chamber (TPC).

Xenon continuously circulates through purifiers outside of the cryostat.

EXO-200 TPC

Charge drifts under an electric field and is collected by wires on the anodes. Light is observed by APDs behind the wires.

Energy from Ionization and Scintillation

Energy is independently measured from scintillation and ionization.

They are anticorrelated – better energy resolution from both together than either independently.

Primary Backgrounds: ²³²Th, ²³⁸U, and ¹³⁷Xe

Here I would show the three plots (with a dashed line to indicate Q-value):

- Thorium spectrum (SS and MS together)
- U spectrum (SS and MS together)
- Xe-137 spectrum (SS and MS together)

My concern is that maybe it's better if I don't mention SS and MS discrimination. It's important, but it's not critical to my main point about the impact of denoising. But if I have time or if it's critical, I can go back — so hold off on making these plots.

Primary Backgrounds: ²³²Th, ²³⁸U, and ¹³⁷Xe

Show plot of Xe-137 first – smooth background, smooth change in background vs energy resolution.

Backgrounds vs. Resolution

Backup Slides

Anticorrelated Scintillation/Charge

