15-11-15_Sr.IPLCO_JEE-ADV_(2011_P2)_RPTA-12_Key &Sol's

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI

A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

 Sec: Sr.IPLCO
 JEE-ADVANCE
 Date: 15-11-15

 Time: 3 Hours
 2011-P2-Model
 Max Marks: 240

KEY & SOLUTIONS

CHEMISTRY

1	D	2	A	3	A	4	С	5	D	6	A
7	A	8	D	9	AB	10	AB	11	ABCD	12	ABD
13	6	14	4	15	5	16	4	17	7	18	4

19 A - P, S,T; B - Q,R,T; C - P,T; D - Q,R,T | 20 A - P,R,S,T; B -P,Q,R,S,T; C - P,Q,T; D - P,Q,T

PHYSICS

21	C	22	В	23	С	24	В	25	С	26	В
27	A	28	С	29	BD	30	ABD	31	AC	32	ABD
33	7	34	4	35	2	36	9	37	5	38	2
39	A-P,R;	40	A-P,Q;								

39 A-P,R; 40 A-P,Q; B-S; C-P,Q,R; D-P,R D-Q,R

MATHEMATICS

41	В	42	A	43	В	44	A	45	С	46	В
47	C	48	A	49	AC	50	AC	51	BD	52	ABCD
53	0	54	4	55	4	56	4	57	7	58	2

59 A - Q; 60 A - Q; B - S; B - R; C - P; C - S; D - P D - P

Sri Chaitanya IIT Academy

15-11-15_Sr.IPLCO_JEE-ADV_(2011_P2)_RPTA-12_Key &Sol's

PHYSICS

21.
$$B = \frac{\mu_0}{2} Jr$$
, $J = \frac{I}{3/4} \pi R^2$ and $r = R/2$

22.
$$\tau = BANI = C\theta$$

$$\Rightarrow \frac{\theta}{I} = \frac{BAN}{C}$$

23. The points LiR on a single straight on either side of element at equal distance.

24.
$$\frac{\mu_0}{2}Jr = \frac{\mu_0}{2\pi R}J \times \pi a^2$$

25.
$$\oint \vec{B}.d_1^{-1} = \mu_0 I_{enclosed}.$$

26.
$$dB = \frac{\mu_0 dI}{2r}, dI = wrdr\sigma$$
$$\therefore B = \int_{r=0}^{R} dB$$

27. The force is along negative x-axis. Consider two elements symmetric to y-axis and analyse the force.

28.
$$dF = BI \frac{dr}{\cos 37}, B = \frac{\mu_0 I}{2\pi r};$$
$$F = \int_{r=0}^{a+\frac{8a}{5}} dF$$

29. In (A), (C) the particle cannot remain in XY-plane

30. Compare the problem with a point on the circumference of a rolling wheel $v_0 = \frac{E}{R}$

$$R = \frac{mL}{eB^2}$$

31. $\overrightarrow{B_1} \uparrow 1 I_2 \Rightarrow F = zero$

Turns in clockwise direction.

32.
$$\tau_{net} = F_y \frac{(l-y)}{2} - \frac{F_x (l-x)}{2}$$

$$= \frac{BI}{2} [y(l-y) - x(l-x)] & y > x$$

$$= \frac{BI}{2} [l(y-x) - (y^2 - x^2)]$$

$$= \frac{BI}{2} (y-x) [l - (x+y)] \text{ is counter clock wise whenever } l > (x+y)$$

33.
$$\vec{B} = \frac{\mu_0 I}{4\pi R} \left(-\hat{i} \right) + \frac{\mu_0 I}{8R} \left(-\hat{i} \right) + \frac{\mu_0 I}{4\pi R} \left(-\hat{k} \right)$$

34.
$$B = \frac{\mu_0}{2} Jd$$

35.
$$dB = \frac{\mu_0 dI (R \sin \theta)^2}{2R^3}, \quad dI = \frac{N}{\pi} d\theta$$

$$B=2\int\limits_{0}^{\pi\!\!/2}dB$$

36.
$$\frac{u_E}{u_B} = \frac{\left(\frac{1}{2} \in_0 E^2\right)}{\left(\frac{B^2}{2\mu_0}\right)} = (\mu_0 \in_0) \left(\frac{E}{B}\right)^2$$

37.
$$B2\pi r = \mu_0 \int \frac{J_0 r}{a} 2\pi r dr$$

38.
$$T = 2\pi \sqrt{\frac{d}{g}}, d = 0.01m$$