Problem Set

CS 340 - Theory of Computation

- 1. Let $\Sigma = \{0, 1\}$. Construct DFAs accepting the following subsets of Σ^* .
 - (a) $L_1 = \{ w \mid w \text{ contains at least three 0s and even number of 1s} \}$
 - (b) $L_2 = \{w \mid \text{every consecutive block of three letters in } w \text{ contains at most one } 0\}$

For the second part, assume that all strings of length less than three are in L_2 except 00.

- 2. Given a DFA M is it possible to determine if L(M) is finite?
- 3. Construct a DFA M such that $L(M) = \{w \in \{a,b\}^* \mid w \text{ has } ababb \text{ as a substring}\}.$
- 4. Construct an NFA N with at most 5 states such that $L(N) = L(\alpha)$ where $\alpha = a^* + a^*ba^* + b^* + b^*ab^*$.
- 5. Let $\Sigma = \{0, 1\}$. Give a regular expression α such that $L(\alpha)$ corresponds to the following set:
 - (a) Set of all binary strings with at least one 0 and at least one 1.
- 6. Let $\Sigma = \{0\}$ and $A = \{0^{n!} \mid n \ge 0\}$. Using pumping lemma prove that A is not regular.