Generalizzazione del modello NLIN per sistemi WDM con guadagno di Raman e attenuazione variabili

Step 3: generalization of $X_{0,m,m}$ nel caso di impulsi gaussiani

Francesco Lorenzi

Ottobre-Novembre 2021

Impulsi gaussiani

Si suppongano impulsi gaussiani: l'effetto della propagazione lineare è esprimibile in forma chiusa come

$$g(z,t) = \frac{U_0 \exp\left[\frac{i}{2}\arctan(D(z))\right]}{(1+D^2(z))^{1/4}} \exp\left[-\frac{t^2}{2T_0^2}\frac{1+iD(z)}{1+D^2(z)}\right]$$
(1)

dove $D(z) = z\beta_2/T_0^2$.

Assumendo la normalizzazione dell'energia dell'impulso a 1, i parametri di ampiezza e larghezza devono soddisfare

$$U_0^2 T_0 \sqrt{\pi} = 1 (2)$$

Usando questa scrittura dell'impulso, si sostituisce nella scrittura del coefficiente di XPM.

Sostituzione

$$X_{0,m,m} = \int_0^L dz f_B(z) \int_{\mathbb{R}} dt |g^{(0)}(z,t)|^2 |g^{(0)}(z,t-mT-\beta_2 \Omega z)|^2$$
 (3)

quindi considerando

$$|g^{(0)}(z,t)|^2 = \frac{U_0^2}{(1+D^2(z))^{1/2}} \exp\left[-\frac{t^2}{T_0^2} \frac{1}{1+D^2(z)}\right]$$

si ha la seguente espressione

$$X_{0,m,m} = \int_0^L dz f_B(z) \int_{\mathbb{R}} dt \frac{U_0^4}{1 + D^2(z)} \cdot \exp \left[-\frac{1}{T_0^2 (1 + D^2(z))} \underbrace{\left(t^2 + (t - mT - \beta_2 \Omega z)^2\right)}_{\varphi} \right]$$

Completamento del quadrato

Per comodità di scrittura, definiamo s come

$$s := mT + \beta_2 \Omega z$$

allora è possibile riscrivere φ come

$$\varphi = 2t^2 - 2ts + s^2$$

$$= \left(\sqrt{2}t - \frac{s}{\sqrt{2}}\right)^2 + \frac{s^2}{2}$$

a questo punto cambiamo variabile di integrazione: $\eta:=\sqrt{2}t-\frac{s}{\sqrt{2}}$ da cui $dz\,dt=dz\,d\eta\,\frac{1}{\sqrt{2}}$. Perciò $\varphi=\eta^2+\frac{s^2}{2}$, e si riscrive l'integrale come

$$X_{0,m,m} = \int_0^L dz f_B(z) \int_{\mathbb{R}} \frac{d\eta}{\sqrt{2}} \frac{U_0^4}{1 + D^2(z)} \cdot \exp\left[-\frac{\eta^2}{T_0^2(1 + D^2(z))}\right] \exp\left[-\frac{s^2}{2T_0^2(1 + D^2(z))}\right]$$

Assunzione di interazione locale

Possiamo ora assumere che l'integranda contribuisca all'integrale solo localmente, ovvero approssimativamente per $z=z_m=-mT/\beta_2\Omega$. Questo significa che le funzioni $f_B(z)$ e D(z) possono essere sostituite con le costanti $f_B(z_m)$ e $D(z_m)$, rispettivamente. Possiamo inoltre estendere l'integrazione spaziale a tutto \mathbb{R} , per ogni m tale per cui $z_m \in [0,L]$. Allora è possibile semplificare l'integrale:

$$X_{0,m,m} = f_B(z_m) \frac{U_0^4}{1 + D^2(z_m)} \frac{1}{\sqrt{2}} \int_{\mathbb{R}} dz \int_{\mathbb{R}} d\eta \cdot \exp\left[-\frac{\eta^2}{T_0^2(1 + D^2(z))}\right] \exp\left[-\frac{s^2}{2T_0^2(1 + D^2(z))}\right]$$

Restano così due integrali gaussiani si facile soluzione, infatti ricordando

$$\int_{\mathbb{R}} dt \exp\left[-\frac{t^2}{\alpha}\right] = \sqrt{\alpha \pi} \tag{4}$$

si ha la soluzione dell'integrale in η

$$f_B(z_m) \frac{U_0^4}{1 + D^2(z_m)} \frac{1}{\sqrt{2}} \left(T_0^2 (1 + D^2(z_m))\right)^{\frac{1}{2}} \sqrt{\pi} \int_{\mathbb{R}} dz \exp\left[-\frac{s^2}{2T_0^2 (1 + D^2(z))}\right]$$
(5)

Soluzione in interazione locale

Infine, utilizzando s come nuova variabile di integrazione

$$s = mT + \beta_2 \Omega z \qquad dz = \frac{1}{\beta_2 \Omega} ds \tag{6}$$

è possibile risolvere anche l'ultimo integrale, quindi si ha

$$X_{0,m,m} = \frac{f_B(z_m)}{\beta_2 \Omega} \frac{U_0^4}{1 + D^2(z_m)} \frac{1}{\sqrt{2}} \sqrt{2} T_0^2 (1 + D^2(z_m)) \pi = \frac{f_B(z_m)}{\beta_2 \Omega} U_0^4 T_0^2 \pi$$
 (7)

Ora ricordiamo la condizione di normalizzazione per l'energia degli impulsi (2), sostituendo si ha una cancellazione dei parametri U_0 e T_0 dell'impulso

$$X_{0,m,m} = \frac{f_B(z_m)}{\beta_2 \Omega} \underbrace{U_0^4 T_0^2 \pi}_{=1} = \frac{f_B(z_m)}{\beta_2 \Omega}$$
(8)

Si noti come questa espressione sia molto simile con quella derivata tramite l'approssimazione di Papoulis [1, eq. 10] (in questo caso abbiamo assunto $z_m \in [0,L]$). Inoltre, mentre l'approssimazione originaria è valida solo a partire da una lunghezza di dispersione $(z_0 = \beta_2/T_0^2)$, la (8) è valida sempre per impulsi gaussiani.

Approssimazione di Papoulis

Quanto ottenuto nella (8) fa sospettare che lo stesso risultato sarebbe stato ottenibile usando l'approssimazione in modo esatto. Infatti un aspetto fondamentale del ragionamento in [1] è che gli impulsi siano proporzionali e scalati rispetto ai loro spettri. Questo per un impulso gaussiano è sempre vero.

Verifichiamo se l'approssimazione vale in modo esatto: scriviamo i campi in dominio del tempo e della frequenza e confrontiamoli con la [1, eq. 10]. Secondo l'Addendum 1, nel dominio del tempo abbiamo questa espressione equivalente

$$u(z,t) = U_0 \left(\frac{1+iD(z)}{1+D^2(z)}\right)^{\frac{1}{2}} \exp\left[-\frac{t^2}{2T_0^2} \frac{1+iD(z)}{1+D^2(z)}\right]$$
(9)

Mentre nel dominio della frequenza si ha (trasformata standard)

$$\hat{u}(z,\omega) = U_0 T_0 \exp\left[-\frac{1}{2}\omega^2 (T_0^2 - i\beta_2 z)\right]$$
 (10)

ora si sostituisce $\omega \leftarrow \frac{t}{\beta_2 z}$ e si ottiene

Verifica dell'approssimazione

$$\hat{u}(z,\omega) = U_0 T_0 \exp\left[-\frac{t^2}{2\beta_2^2 z^2} (T_0^2 - i\beta_2 z)\right]$$

$$= U_0 T_0 \exp\left[-\frac{t^2}{2T_0^2} \left(\frac{1}{D^2(z)} - i\frac{1}{D(z)}\right)\right]$$

$$= U_0 T_0 \exp\left[-\frac{t^2}{2T_0^2} \left(\frac{1 - iD(z)}{D^2(z)}\right)\right]$$

Osserviamo l'approssimazione

$$u(z,t) \approx \sqrt{\frac{i}{2\pi\beta_2 z}} \exp\left[-i\frac{t^2}{2\beta_2 z}\right] \hat{u}\left(0, \frac{t}{\beta_2 z}\right)$$
(11)

il termine contrassegnato da A risulta

$$A = U_0 T_0 \exp\left[-i\frac{t^2}{2T_0^2} \frac{1}{D(z)}\right] \exp\left[-\frac{t^2}{2T_0^2} \left(\frac{1 - iD(z)}{D^2(z)}\right)\right] = U_0 T_0 \exp\left[-\frac{t^2}{2T_0^2} \left(\frac{1}{D^2(z)}\right)\right]$$

Verifica dell'approssimazione

Quindi dobbiamo verificare la seguente uguaglianza

$$U_0 \sqrt{\frac{1+iD(z)}{1+D^2(z)}} \exp\left[-\frac{t^2}{2T_0^2} \frac{1+iD(z)}{1+D^2(z)}\right] \stackrel{?}{=} U_0 \sqrt{\frac{i}{2\pi D(z)}} \exp\left[-\frac{t^2}{2T_0^2} \left(\frac{1}{D^2(z)}\right)\right]$$
(13)

Queste espressioni non sembrano tuttavia combaciare esattamente. Possiamo approssimare il termine di sinistra, per D(z)>>1 con

$$U_0 \sqrt{\frac{i}{D(z)}} \exp\left[-\frac{t^2}{2T_0^2} \frac{1}{D^2(z)}\right] \exp\left[-\frac{t^2}{2T_0^2} \frac{i}{D(z)}\right]$$
 (14)

tuttavia si nota che manca un termine 2π a denominatore, e l'esponenziale di fase scompare dall'espressione.

La conclusione *provvisoria* è che l'approssimazione non vale in maniera esatta, ed anzi la sua validità nel caso gaussiano è da valutare in un'ulteriore analisi.

Riferimenti

Ronen Dar et al. «Properties of nonlinear noise in long, dispersion-uncompensated fiber links». In: Optics Express 21.22 (ott. 2013), p. 25685. DOI: 10.1364/oe.21.025685. URL: https://doi.org/10.1364%2Foe.21.025685.

Addendum 1 - espressione del campo propagato linearmente

L'espressione del campo in (1) contiene un termine di fase del tipo $\exp\left[\frac{i}{2}\arctan(D(z))\right].$ Questo termine viene scritto in questo modo per evidenziare la divisione del coefficiente della funzione gaussiana tra una componente di modulo ed una di fase. L'espressione è ottenibile tramite antitrasformata di Fourier, da cui si ha l'espressione

$$u(z,t) = U_0 \left(\frac{1+iD(z)}{1+D^2(z)}\right)^{\frac{1}{2}} \exp\left[-\frac{t^2}{2T_0^2} \frac{1+iD(z)}{1+D^2(z)}\right]$$
(15)

Può essere utile evidenziare l'algebra del passaggio da questa espressione a quella data. Infatti, usando delle semplici identità goniometriche:

$$\begin{split} &\exp\left[\frac{i}{2}\arctan(D(z))\right] = \exp\left[2i\arctan(D(z))\right]^{\frac{1}{4}} = \\ &= \left[\cos(2\arctan(D(z))) + i\sin(2\arctan(D(z)))\right]^{\frac{1}{4}} = \\ &= \left[\frac{1-t^2}{1+t^2} + i\frac{2t}{1+t^2}\right]^{\frac{1}{4}} = \qquad \text{dove } t = \tan\left(\frac{2\arctan(D(z))}{2}\right) = D(z) \\ &= \left[\frac{(1+iD(z))^2}{1+D^2(z)}\right]^{\frac{1}{4}} = \frac{(1+iD(z))^{\frac{1}{2}}}{(1+D^2(z))^{\frac{1}{4}}} \end{split}$$

11/11