Digital Image Processing

Lecture #4 Ming-Sui (Amy) Lee

- Morphology
 - Morpho-: shape/form/structure
 - -ology: study
- Morphological image processing
 - Post-processing
 - Binary images → gray-level image

- For some applications
 - Structures of objects composed by lines or arcs
 - Care about the pattern connectivity
 - Independent of width

Hand-written characters

- Binary image connectivity
 - Pixel bond
 - Specify the connectivity of a pixel with its neighbors
 - Four-connected neighbor → bond = 2
 - **Eight-connected** neighbor → bond = 1

- Minimally connected
 - Elimination of any black pixel (except boundary pixels) results in disconnection of the remaining black pixels

- Binary hit or miss transformations
 - Select a nxn hit pattern (odd-sized mask)
 - Compare with a nxn image window
 - Match → hit → change the central pixel value
 - Otherwise → miss → do nothing
 - Example
 - To clean the isolated binary noise

- Binary hit or miss transformations
 - 0 → background
 - $1 \rightarrow \text{object}$

Logical expression

$$\bigcirc$$

$$G(j,k) = X \cap (X_0 \cup X_1 \cup \dots \cup X_7)$$

Example

If
$$G(j,k) = X \cap 1$$
 \rightarrow do nothing

If
$$X=0 \rightarrow G(j,k)=0 \rightarrow do nothing$$

If
$$X=1 \rightarrow hit \rightarrow G(j,k)=0$$

Binary hit or miss transformations

$$G(j,k) = X \cap (X_0 \cup X_1 \cup \dots \cup X_7)$$

$$\implies 2^9 \text{possible mask patterns}$$

- Implementation
 - Pixel stack
 - Treat the 8 neighboring pixels as a "byte"

$$\begin{bmatrix} X_3 & X_2 & X_1 \\ X_4 & X & X_0 \\ X_5 & X_6 & X_7 \end{bmatrix} \otimes \begin{bmatrix} 2^{-4} & 2^{-3} & 2^{-2} \\ 2^{-5} & 2^0 & 2^{-1} \\ 2^{-6} & 2^{-7} & 2^{-8} \end{bmatrix}$$

Look-Up-Table (LUT)

- Simple morphological processing based on binary hit or miss rules
 - Additive operators (0→1)
 - Interior fill
 - Diagonal fill
 - Bridge
 - 8-neighbor dilate

Interior fill

Create a pixel if all four-connected neighbor pixels are

white

Diagonal fill

 Create a pixel if creation eliminates the eightconnectivity of the background

Bridge

 Create a white pixel if creation results in connectivity of previously unconnected neighboring white pixels

1	0	0	1	0	0
0	0 -	1	0>	1_	1_
0	0	0	0	0	0

⊃<mark>8-ne</mark>ighbor <mark>dilate</mark>

 Create a black pixel if at least one eight-connected neighbor pixel is white

0	0	0	0	0	0
0	0 -	0	0 >	1	0
1	0	0	1	0	0

- Simple morphological processing based on binary hit or miss rules
 - Subtractive operators (1→0)
 - Isolated pixel removal
 - Spur removal
 - Interior pixel removal
 - H-break / Eight-neighbor erode

- Isolated pixel removal
 - Erase a white pixel with eight black neighbors

- Spur removal
 - Erase a white pixel with a single eight-connected neighbor

- Interior pixel removal
 - Erase a white pixel if all four-connected neighbors are

white

- H-break
 - Erase a white pixel that is H-connected

- Eight-neighbor erode
 - Erase a white pixel if at least one eight-connected neighbor pixel is black

- Example
 - Subtractive operator

- doesn't prevent total erasure and ensure connectivity
- In this case, only a 3x3 window does not sufficient to tell whether the final stage of iteration is reached or not

Solutions

- Approach I
 - Apply a filter with larger size
 - "fairly complicated patterns", "many combinations"

Approach II

- Consider a structural (composite) design with 3x3 filters: two-stage approach
 - Application dependent
 - Thinning, shrinking, skeletonizing
 - Share the same structure but vary in some modular details

- Advanced morphological processing
 - Shrinking/Thinning/Skeletonizing
 - Conditional erosion
 - Prevent total erasure & Ensure connectivity

- Advanced morphological processing
 - Shrinking/Thinning/Skeletonizing
 - Conditional erosion
 - Prevent total erasure & Ensure connectivity

- Shrinking/Thinning/Skeletonizing
 - Stage I
 - Generate a binary image M(j,k) called the conditional array (or mask)
 - If M(j,k)=1, it means (j,k) is a candidate for erasure
 - If M(j,k)=0, it means no further operation is needed on (j,k)
 - Stage II
 - Based on the center pixel, X, and M(j,k) pattern, we decide whether to erase X or not in the output G(j,k)
 - O If there's a hit → do nothing
 - If there's a miss → erase the center pixel

Stage I → Part of Table 14.3-1

[onal Mark Patterns [M = 1 if hit]]

0 1 0

 $0 \ 0 \ 0$

0 1 0

1 1 1

TABLE	14.3-1	l. Shrink,	Thin and	l Skeleton	ize Condit	tional Ma
Table	Bon	d			Patterr	n)
		0 0 1	1 0 0	0 0 0	0 0 0	
S	1	0 1 0	0 1 0	0 1 0	0 1 0	
		0 0 0	0 0 0	1 0 0	0 0 1	Bono
		0 0 0	0 1 0	0 0 0	0 0 0	
S	2	0 1 1	0 1 0	1 1 0	0 1 0	Patte
		0 0 0	0 0 0	0 0 0	0 1 0	
		0 0 1	0 1 1	1 1 0	1 0 0	0 0 0
S	3	0 1 1	0 1 0	0 1 0	1 1 0	1 1 0
		0 0 0	0 0 0	0 0 0	0 0 0	1 0 0
		0 1 0	0 1 0	0 0 0	0 0 0	
TK	4	0 1 1	1 1 0	1 1 0	0 1 1	

0 0 1

0 1 1

 $0 \ 0 \ 1$

STK

0 0 0 0 1 0

0 1 0

 $0 \ 0 \ 0$

1 0 0

1 1 0

1 0 0

Bond: classification, narrow down the search space

0 0 0 0 0 0

0 1 0 0 1 0

1 1 0 0 1 1

Pattern: coded as an 8-bit symbol for a filter

 $0 \ 0 \ 0$

0 1 1

 $0 \ 0 \ 1$

$$\begin{bmatrix} X_3 & X_2 & X_1 \\ X_4 & X & X_0 \\ X_5 & X_6 & X_7 \end{bmatrix} \otimes \begin{bmatrix} 2^{-4} & 2^{-3} & 2^{-2} \\ 2^{-5} & 2^0 & 2^{-1} \\ 2^{-6} & 2^{-7} & 2^{-8} \end{bmatrix}$$
22

Stage II → Part of Table 14.3-2

TABLE 14.3-2. Shrink and Thin Unconditional Mark Patterns $[P(M, M_0, M_1, M_2, M_3, M_4, M_5, M_6, M_7) = 1$ if hit]^a

					Patter	rn			
Spur 0 0 <i>M</i> 0 <i>M</i> 0 0 0 0	M0 0 0 M0 0 0 0	Single 4 0 0 0 0 <i>M</i> 0 0 <i>M</i> 0	-connecti 0 0 0 0 <i>MM</i> 0 0 0	on	where P	(M,N)	$\overline{M} \cup P(M)$ M_1, \ldots, M_7 M_7 M_7 M_7	is an	$,M_7$
L Cluste 0 0 M 0 MM 0 0 0	o MM 0 M0 0 0 0	<i>MM</i> 0 0 <i>M</i> 0 0 0 0	M0 0 MM0 0 0 0	0 0 0 MM0 M0 0	0 M 0	0 0 0 0 <i>M</i> 0 0 <i>MM</i>	0 0 0 0 <i>MM</i> 0 0 <i>M</i>		
4-Conne 0 <i>MM</i> <i>MM</i> 0 0 0 0	ected offse MM0 0 MM 0 0 0	0 M0 0 MM 0 0 M	0 0 <i>M</i> 0 <i>MM</i> 0 <i>M</i> 0		$egin{bmatrix} M_3 \ M_4 \ M_5 \ \end{bmatrix}$		$\begin{bmatrix} M_1 \\ M_0 \\ M_7 \end{bmatrix} \otimes \begin{bmatrix} 2^{-4} \\ 2^{-5} \\ 2^{-6} \end{bmatrix}$	2^{-3} 2^{0} 2^{-7}	$ \begin{bmatrix} 2^{-2} \\ 2^{-1} \\ 2^{-8} \end{bmatrix} $

Stage II → Part of Table 14.3-2 (cont'd)

Spur corner cluster

Corner cluster

MMD

MMD

DDD

Tee branch

```
DM0
                                0 M0
      0 MD
            0 \, 0 \, D
                  D 0 0
                         DMD
                                      0 M0
                                             DMD
MMM
      MMM
            MMM
                         MM0
                                MM0
                                      0 MM
                   MMM
                                             0 MM
            0 MD
                         0 M0
D 0 0
      0 \ 0 \ D
                  DM0
                                DMD
                                      DMD
                                             0 M0
```

$$A \cup B \cup C = 1$$
, $D = 0 \cup 1$, $A \cup B = 1$

Stage II → Part of Table 14.3-3

TABLE 14.3-3. Skeletonize Unconditional Mark Patterns

 $[P(M, M_0, M_1, M_2, M_3, M_4, M_5, M_6, M_7) = 1 \text{ if hit}]^a$ $A \cup B \cup C = 1, D = 0 \cup 1$

									,		
					Pat	tern					
Spur											
0	0	0	0	0	0	0	0	M	M	0	0
0	M	0	0	M	0	0	M	0	0	M	0
0	0	M	M	0	0	0	0	0	0	0	0
Singl	le 4-co	nnection									
0	0	0	0	0	0	0	0	0	0	M	0
0	M	0	0	M	M	M	M	0	0	M	0
0	M	0	0	0	0	0	0	0	0	0	0
L cor	rner										
0	M	0	0	M	0	0	0	0	0	0	0
0	M	M	M	M	0	0	M	M	M	M	0
0	0	0	0	0	0	0	M	0	0	M	0

Example - shrinking

Example - shrinking

Shrinking

 Erase black pixels such that an object without holes erodes to a single pixel at or near its center of mass, and an object with holes erodes to a connected ring lying midway between each hole and its nearest outer boundary

Thinning

 Erase black pixels such that an object without holes erodes to a minimally connected stroke located equidistant from its nearest outer boundaries, and an object with holes erodes to a minimally connected ring midway between each hole and its nearest outer boundary

- Skeletonizing
 - The medial axis skeleton consists of the set of points that are equally distant from two closest points of an object boundary

Algebraic operations on binary arrays

- Generalized dilation and erosion
 - Reflection and translation of a binary image

Dilation

$$G(j,k) = F(j,k) \oplus \underline{H(j,k)}$$

Structuring element

Erosion

$$G(j,k) = F(j,k)\Theta H(j,k)$$

- **Dilation** $G(j,k) = F(j,k) \oplus H(j,k)$
 - Can be implemented in several ways
 - Minkowski addition definition

- **Erosion** $G(j,k) = F(j,k)\Theta H(j,k)$
 - Can be implemented in several ways
 - **Dual relationship of Minkowski addition**

$$G(j,k) = \bigcap_{(r,c) \in H} T_{r,c} \{ F(j,k) \}$$

//Sternberg definition//

$$G(j,k) = \bigcap \bigcap_{(r,c)\in H} T_{r,c} \{F(j,k)\}$$

//Serra definition//

$$G(j,k) = \bigcap \bigcap_{(r,c) \in H} T_{r,c} \{ F(j,k) \}$$
 $G(j,k) = \bigcap \bigcap_{(r,c) \in \widetilde{H}} T_{r,c} \{ F(j,k) \}$ ³⁴

Example

Example

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

	0	1	0
	1	1	1
ſ	0	1	0

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Example

Example

The original fingerprint contains ridges with width of several pixels. The skeletonized fingerprint contains ridges only a single pixel wide.

Applications

- Boundary Extraction
 - Extract the boundary (or outline) of an object
- Hole Filling
 - Given a pixel inside a boundary, hole filling attempts to fill that boundary with object pixels
- Connected Component Labeling
 - Scan an image and groups its pixels into components based on pixel connectivity

Boundary Extraction

$$\beta(F(j,k)) = F(j,k) - (F(j,k)\Theta H(j,k))$$

Origin

Hole Filling

$$G_i(j,k) = (G_{i-1}(j,k) \oplus H(j,k)) \cap F^c(j,k)$$
 $i = 1,2,3...$
 $G(j,k) = G_i(j,k) \cup F(j,k)$

Connected Component Labeling

$$G_i(j,k) = (G_{i-1}(j,k) \oplus H(j,k)) \cap F(j,k)$$
 i = 1,2,3,...

Original Image

Labelled Components

Applications

Open operator

$$G(j,k) = F(j,k) \circ H(j,k) = [F(j,k)\Theta\widetilde{H}(j,k)] \oplus H(j,k)$$

- With a compact structuring element
 - Smoothes contours of objects
 - Eliminates small objects
 - Breaks narrow strokes

Applications

Close operator

$$G(j,k) = F(j,k) \bullet H(j,k) = [F(j,k) \oplus H(j,k)]\Theta \widetilde{H}(j,k)$$

- With a compact structuring element
 - Smoothes contours of objects
 - Eliminate small holes
 - Fuses short gaps between objects

original

(a) close

(b) open

Compare (a) with the original image

original image

MCBall

