

FDC6321C Dual N & P Channel , Digital FET

General Description

These dual N & P Channel logic level enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. This device has been designed especially for low voltage applications as a replacement for digital transistors in load switching applications. Since bias resistors are not required this dual digital FET can replace several digital transistors with different bias resistors.

Features

- N-Ch 25 V, 0.68 A, $R_{DS(ON)} = 0.45 \Omega$ @ $V_{GS} = 4.5 V$
- P-Ch -25 V, -0.46 A, $R_{DS(ON)}$ = 1.1 Ω @ V_{GS} = -4.5 V.
- Very low level gate drive requirements allowing direct operation in 3 V circuits. V_{GS(th)} < 1.0V.
- Gate-Source Zener for ESD ruggedness.
 >6kV Human Body Model
- Replace multiple dual NPN & PNP digital transistors.

Mark:.321

Absolute Maximum Ratings $T_A = 25^{\circ}\text{C}$ unless other wise noted

Symbol	Parameter	N-Channel	P-Channel	Units
V _{DSS} , V _{CC}	Drain-Source Voltage, Power Supply Voltage	25	-25	V
V_{GSS}, V_{IN}	Gate-Source Voltage,	8	-8	V
_D , I _O	Drain/Output Current - Continuous	0.68	-0.46	А
	- Pulsed	2	-1.5	
)	Maximum Power Dissipation (Note 1a)	0	.9	W
	(Note 1b)	0	.7	
T_J , T_{STG}	Operating and Storage Tempature Ranger	-55 to	°C	
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100pf / 1500 Ohm)	(6	kV
THERMA	L CHARACTERISTICS			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	14	40	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case (Note 1)	6	0	°C/W

Symbol	Parameter	Conditions	7	Гуре	Min	Тур	Max	Units
OFF CHARA	ACTERISTICS	1						I
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	1	N-Ch	25			V
		$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	ı	P-Ch	-25			
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	I _D = 250 μA, Referenced to 2	25 °C I	N-Ch		26		mV /°C
555 1		$I_D = -250 \mu\text{A}$, Referenced to	25 °C I	P-Ch		-22		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 20 \text{ V}, \ V_{GS} = 0 \text{ V},$	ı	N-Ch			1	μA
		T,	_ = 55°C				10	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -20 \text{ V}, \ V_{GS} = 0 \text{ V},$		P-Ch			-1	μA
			_J = 55°C				-10	
I _{GSS}	Gate - Body Leakage Current	$V_{GS} = 8 \text{ V}, \ V_{DS} = 0 \text{ V}$	1	N-Ch			100	nA
		$V_{GS} = -8 \text{ V}, \ V_{DS} = 0 \text{ V}$	ı	P-Ch			-100	nA
ON CHARAC	CTERISTICS (Note 2)		1	,	LI CONTRACTOR OF THE PROPERTY		•	
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	$I_D = 250 \mu\text{A}$, Referenced to 2	25°C	N-Ch		-2.6		mV/°C
00(11)		$I_D = -250 \mu\text{A}$, Referenced to	25°C I	P-Ch		2.1		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	ı	N-Ch	0.65	0.8	1.5	V
		$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	ı	P-Ch	-0.65	-0.86	-1.5	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 0.5 \text{ A}$	ı	N-Ch		0.33	0.45	Ω
		T,	, =125°C			0.51	0.72	
		$V_{GS} = 2.7 \text{ V}, I_{D} = 0.25 \text{A}$				0.44	0.6	
		$V_{GS} = -4.5 \text{ V}, I_{D} = -0.5 \text{ A}$		P-Ch		0.87	1.1	
		T	, =125°C			1.21	1.8	
		$V_{GS} = -2.7 \text{ V}, I_{D} = -0.25 \text{ A}$				1.22	1.5	
I _{D(ON)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, \ V_{DS} = 5 \text{ V}$	1	N-Ch	1			Α
		$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$	ı	P-Ch	-1			
g_{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 0.5 \text{ A}$	1	N-Ch		1.45		S
		$V_{DS} = -5 \text{ V}, I_{D} = -0.5 \text{ A}$	I	P-Ch		0.8		
DYNAMIC CI	HARACTERISTICS							
C _{iss}	Input Capacitance	N-Channel	1	N-Ch		50		pF
		$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$		P-Ch		63		
Coss	Output Capacitance	f = 1.0 MHz	<u> </u>	N-Ch		28		pF
		P-Channel	1	P-Ch		34		
C_{rss}	Reverse Transfer Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{V},$	1	N-Ch		9		pF
		f = 1.0 MHz		P-Ch		10		

Electrical Characteristics ($T_A = 25$ °C unless otherwise noted)

SWITCHING CHARACTERISTICS (Note 2)

Symbol	Parameter	Conditions	Туре	Min	Тур	Max	Units
t _{D(on)}	Turn - On Delay Time	urn - On Delay Time N-Channel			3	6	nS
		$V_{DD} = 6 \text{ V}, I_{D} = 0.5 \text{ A},$	P-Ch		7	20	
t,	Turn - On Rise Time	V_{Gs} = 4.5 V, R_{GEN} = 50 Ω	N-Ch		8	16	nS
			P-Ch		9	18	
t _{D(off)}	Turn - Off Delay Time	P-Channel	N-Ch		17	30	nS
		$V_{DD} = -6 \text{ V}, I_{D} = -0.5 \text{ A},$	P-Ch		55	110	
t,	Turn - Off Fall Time	$V_{\rm Gen}$ = -4.5 V, $R_{\rm GEN}$ = 50 Ω	N-Ch		13	25	nS
			P-Ch		35	70	
Q_g	Total Gate Charge	N-Channel	N-Ch		1.64	2.3	nC
		$V_{DS} = 5 \text{ V}, I_{D} = 0.5 \text{ A},$	P-Ch		1.1	1.5	
Q_{gs}	Gate-Source Charge	V _{GS} = 4.5 V	N-Ch		0.38		nC
		P- Channel	P-Ch		0.32		
Q_{gd}	Gate-Drain Charge	$V_{DS} = -5 V$,	N-Ch		0.45		nC
		$I_D = -0.25 \text{ A}, V_{GS} = -4.5 \text{ V}$	P-Ch		0.25		
DRAIN-SC	URCE DIODE CHARACTERISTICS	AND MAXIMUM RATINGS					

Is	Maximum Continuous Drain-Source Diode	Maximum Continuous Drain-Source Diode Forward Current							
			P-Ch		-0.5				
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 0.5 \text{ A}$ (Note)	N-Ch	0.83	1.2	V			
		T _J =	=125°C	0.69	0.85				
		$V_{GS} = 0 \text{ V}, I_{S} = -0.5 \text{ A}$ (Note)	P-Ch	-0.89	-1.2				
		T _J =	=125°C	-0.75	-0.85				

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

a. 140°C/W on a 0.125 in² pad of 2oz copper.

b. 180°C/W on a 0.005 in² of pad of 2oz copper.

Notes:

1. R_{p,n} is the sum of the junction-to-case and case-to-ambient thermal resistance where thecase thermal reference is defined as the solder mounting surface of the drain pins. R_{p,ic} is guaranteed by design while R_{p,c,n} is determined by the user's board design.

Typical Electrical Characteristics: N-Channel

Figure 1. On-Region Characteristics.

Figure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On Resistance Variation with Gate-To-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics: N-Channel (continued)

Figure 7. Gate Charge Characteristics.

Figure 8. Capacitance Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

Typical Electrical Characteristics: P-Channel

Figure 11. On-Region Characteristics.

Figure 13. On-Resistance Variation with Temperature.

Figure 15. Transfer Characteristics.

Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 14. On Resistance Variation with Gate-To- Source Voltage.

Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Electrical Characteristics: P-Channel (continued)

150 100 CAPACITANCE (pF) 50 10 = 1 MHz _V_{GS} = 0 V -V $_{\mathrm{DS}}$, DRAIN TO SOURCE VOLTAGE (V)

Figure 17. Gate Charge Characteristics.

Figure 19. Maximum Safe Operating Area.

Figure 20. Single Pulse Maximum Power Dissipation.

Figure 21. Transient Thermal Response Curve.

Note: Thermal characterization performed using the conditions described in note 1b.Transient thermal response will change depending on the circuit board design.

SuperSOT[™]-6 Tape and Reel Data and Package Dimensions, continued

SSOT-6 Embossed Carrier Tape

	Dimensions are in millimeter													
Pkg type	A0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	т	Wc	Тс
SSOT-6 (8mm)	3.23 +/-0.10	3.18 +/-0.10	8.0 +/-0.3	1.55 +/-0.05	1.00 +/-0.125	1.75 +/-0.10	6.25 min	3.50 +/-0.05	4.0 +/-0.1	4.0 +/-0.1	1.37 +/-0.10	0.255 +/-0.150	5.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)
Component Rotation

Sketch B (Top View)
Component Rotation

Sketch C (Top View)
Component lateral movement

SSOT-6 Reel Configuration: Figure 4.0

	Dimensions are in inches and millimeters								
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9
8mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9

SuperSOT[™]-6 Tape and Reel Data and Package Dimensions, continued

SuperSOT™-6 (FS PKG Code 31, 33)

Scale 1:1 on letter size paper

Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 0.0158

LAND PATTERN RECOMMENDATION

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

NOTES: UNLESS OTHERWISE SPECIFIED

1.0 STANDARD LEAD FINISH: 150 MICROINCHES 93.81 MICROMETERS) MINIMUM TIN / LEAD (SOLDER) ON COPPER.

2.0 NO JEDEC REGISTRATION AS OF JULY 1996

SUPER SOT 6 LEADS

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTM ISOPLANARTM COOIFETTM MICROWIRETM

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

 $\begin{array}{lll} \text{FACT Quiet Series}^{\text{TM}} & \text{Quiet Series}^{\text{TM}} \\ \text{FAST}^{\text{®}} & \text{SuperSOT}^{\text{TM}}\text{-3} \\ \text{FASTr}^{\text{TM}} & \text{SuperSOT}^{\text{TM}}\text{-6} \\ \text{GTO}^{\text{TM}} & \text{SuperSOT}^{\text{TM}}\text{-8} \\ \text{HiSeC}^{\text{TM}} & \text{TinyLogic}^{\text{TM}} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.