Course2 - Task3

Question

An increase in customer default rates is bad for Credit One since its business is approving customers for loans in the first place. This is likely to result in the loss of Credit One's business customers. You need to build a model that can better predict what credit limit a customer should be assigned.

There can be two ways to answer this question either to predict the loan defaulters or predict the credit limit anyone can get. We can see performance of the both below.

Predicting loan defaulters (Default Payment next month default)

cred	it_csv.info()		
	ss 'pandas.core.frame.DataFrame'> 4Index: 30000 entries, 0 to 30000		
Data	columns (total 30 columns):		
#	Column	Non-Null Count	Dtype
0	ID	30000 non-null	int64
1	LIMIT_BAL	30000 non-null	int64
2	MARRIAGE	30000 non-null	int64
3	AGE	30000 non-null	int64
4	PAY_0	30000 non-null	int64
5	PAY_2	30000 non-null	int64
6	PAY_3	30000 non-null	int64
7	PAY_4	30000 non-null	int64
8	PAY_5	30000 non-null	int64
9	PAY_6	30000 non-null	int64
10	BILL_AMT1	30000 non-null	int64
11	BILL_AMT2	30000 non-null	int64
12	BILL_AMT3	30000 non-null	int64
13	BILL_AMT4	30000 non-null	int64
14	BILL_AMT5	30000 non-null	int64
15	BILL_AMT6	30000 non-null	int64
16	PAY_AMT1	30000 non-null	int64
17	PAY_AMT2	30000 non-null	int64
18	PAY_AMT3	30000 non-null	int64
19	PAY_AMT4	30000 non-null	int64
20	PAY_AMT5	30000 non-null	int64
21	PAY_AMT6	30000 non-null	int64
22	SEX_female	30000 non-null	uint8
23	SEX_male	30000 non-null	uint8
24	EDUCATION_graduate school	30000 non-null	uint8
25	EDUCATION_high school	30000 non-null	uint8
26	EDUCATION_other	30000 non-null	
27	EDUCATION_university	30000 non-null	
28	default payment next month_default	30000 non-null	uint8
29	default payment next month_not default	30000 non-null	uint8
	es: int64(22), uint8(8)		
memo	ry usage: 5.5 MB		

Here Column 29 is the dependent variable and column 1 to 28 are the input variables. The best data set is post discretization of AGE and LIMIT_BAL columns.

Accuracy with Naive Data Set for Decision Tree Classifier (No Discretization)

	precision	recall	f1-score	support
	-			
0	0.84	0.82	0.83	7052
1	0.38	0.42	0.40	1948
accuracy			0.73	9000
macro avg	0.61	0.62	0.61	9000
weighted avg	0.74	0.73	0.73	9000

Accuracy Post Discretization for Decision Tree Classifier - AGE Column

	precision	recall	f1-score	support
0	0.83	0.81	0.82	7052
1	0.38	0.41	0.39	1948
accuracy			0.73	9000
macro avg	0.61	0.61	0.61	9000
weighted avg	0.73	0.73	0.73	9000

<u>Accuracy Post Discretization for Decision Tree Classifier - AGE + LIMIT_BAL Column</u>

This accuracy is with the best data set so far identified.

	precision	recall	f1-score	support
0	0.84	0.95	0.89	7052
1	0.66	0.37	0.47	1948
accuracy			0.82	9000
macro avg	0.75	0.66	0.68	9000
weighted avg	0.80	0.82	0.80	9000

Accuracy with Best Data Set for Random Forest Classifier

	precision	recall	f1-score	support
0	0.85	0.93	0.89	7052
1	0.62	0.39	0.47	1948
accuracy			0.82	9000
macro avg	0.73	0.66	0.68	9000
weighted avg	0.80	0.82	0.80	9000

Accuracy with Best Data Set for Gradient Boosting Classifier

support	f1-score	recall	precision	
7052	0.89	0.95	0.85	0
1948	0.48	0.38	0.66	1
9000	0.82			accuracy
9000	0.69	0.66	0.75	macro avg
9000	0.80	0.82	0.81	weighted avg

<u>Inference</u>

The accuracy improved from 0.74 precision to 0.80 precision post discretizing AGE & LIMIT_BAL columns. The accuracy didn't improve much when trying Random Forest or Gradient Boosting Classifier.

Predicting Credit Balance (LIMIT_BAL)

Refer to figure 1,Column 1 is the dependent variable and column 2 to 29 are the input variables. The best data model for this data set is Random Forest Regressor.

Cross Validation Score for models

Random Forest Regressor 0.46806924662896304 Linear Regression 0.3581989426610764 Support Vector Regression -0.050380094472762

Random Forest Regressor

R Squared: 0.471 RMSE: 93591.065

Linear Regressor

R Squared: 0.360 RMSE: 102975.437

Support Vector Regressor

R Squared: -0.037 RMSE: 131045.067

<u>Inference</u>

Random Forest Regressor is the one with the lowest RMSE value. This one is gotten with the NAIVE data set with no discretization. The Discretization of AGE, LIMIT_BAL, BILL_AMT & PAY_AMT columns is only making the performance of the model poor.

CONCLUSION

Since we have constructed a better model, it's best for CREDIT ONE to use the models created for predicting defaulters and amount of credit they can be approved before hand to improve the accuracy of the credit score and thereby helping clients.