Contents

1	Growth of Functions	•
	Data Structures 2.1 Elementary structures	
	Hashing 3.1 Direct-Address	,

Chapter 1

Growth of Functions

Definition:

Θ-notation asymptotically tight bound

$$\Theta(g(n)) = \{ f(n) \mid \exists c_1, c_2, n_0 \text{ s.t. } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \ \forall n \ge n_0 \}$$

O-notation asymptotic upper bound

$$O(g(n)) = \{ f(n) \mid \exists c, n_0 \text{ s.t. } 0 \le f(n) \le cg(n) \ \forall n \ge n_0 \}$$

 Ω -notation asymptotic lower bound

$$\Omega(g(n)) = \{ f(n) \mid \exists c, n_0 \text{ s.t. } 0 \le cg(n) \le f(n) \ \forall n \ge n_0 \}$$

o-notation asymptotically smaller

$$o(g(n)) = \{ f(n) \mid \forall c > 0, \exists n_0 \text{ s.t. } 0 \le f(n) < cg(n) \ \forall n \ge n_0 \}$$

 ω -notation asymptotically larger

$$\omega(g(n)) = \{ f(n) \, | \, \forall c > 0, \, \exists n_0 \text{ s.t. } 0 \le cg(n) < f(n) \, \, \forall n \ge n_0 \}$$

Proposition 1.1.

- 1. For any two function f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- 2. $f(n) = \omega(g(n))$ if and only if g(n) = o(f(n)) and $f(n) = \Omega(g(n))$ if and only if g(n) = O(f(n))

A function f(n) is **polylogarithmically bounded** if $f(n) = O(\lg^k n)$. Any exponential function with a base strictly greater than 1 grows faster than any polynomial function and any polynomial function grows faster than any polylogarithmic function.

Remark 1 (Stirling's approximation).

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right) \tag{1.1}$$

Theorem 1.2 (Master's theorem). Let $a \ge 1$ and b > 1 be constants. The recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(b)$$

has the bounds

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$ then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$ then $T(n) = \Theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$ and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n then $T(n) = \Theta(f(n))$.

Example 1.1. Multiplication of two number $x = \overline{x_{n-1} \dots x_0}$ and $y = \overline{y_{n-1} \dots y_0}$ can be done in $\Theta(n^2)$ by noting that $x = A \times 10^{n/2} + B$ and $y = C \times 10^{n/2} + D$ then

$$yx = AC \times 10^{n} + (AC + BD) \times 10^{n/2} + DB$$

therefore,

$$T(n) = 4T\left(\frac{n}{2}\right) + O(n)$$

and by master theorem $T(n) = \Theta(n^2)$. However, we can do better by first multiplying (A + B)(C+D) and then computing AC and BD. Then, AC+BD = (A+B)(C+D)-AC-BD which means that the new recurrence is

$$T(n) = 3T\left(\frac{n}{2}\right) + O(n)$$

and improves the bound to $\Theta(n^{\lg 3})^1$. It is also possible to devise an algorithm with complexity of $\Theta(n \lg n \lg(\lg n))^2$ and even $\Theta(n \lg n)^3$. It is proven that for any $\epsilon > 0$ there exists an alogrithm with $\Theta(n^{1+\epsilon})$

Example 1.2. Given a tournament graph (directed complete graph), find a Hamiltonian path.

Problems

1. Given the recurrence

$$T(n) = T(\alpha n) + T(\beta n) + n$$

solve for $\alpha + \beta < 1$ and $\alpha + \beta = 1$.

¹Karatsuba algorithm

²Schönhage–Strassen algorithm

³Harvey's algorithm

Chapter 2

Data Structures

2.1 Elementary structures

2.1.1 Stack

Stack is FIFO, First in first out. We can do m pushes (with doubling if needed) and n pops in the order of O(m+n).

Example 2.1. Some examples of stacks include

1. Bracket matching

Example 2.2. Numbers $a_1, \ldots a_n$ are given. For each index i find the smallest index j such that $\forall j < k \leq i, \ a_k \leq a_i$

2.1.2 Queue

Queue is LIFO, Last in first out. Pushing (amortized) and poping is done in constant time, O(1).

Example 2.3. Some examples of stacks include

1. simulating queues -_-

2.1.3 Linked lists

In **singly linked list** every element points to the next element. In **doubly linked list** every element points to the next and previous element. In **circulare linked list** the last element's next is the head and the head's previous is the last. Insertion and deletion is done in constant time.

Example 2.4. Write a program that reverses an SLL.

Example 2.5. Write a program that removes duplicates from an SLL.

6 2. Data Structures

2.1.4 Trees

2.1.5 Priority queue

It is complete binary tree with duplicate key. Insertion $O(\lg n)$ Finding max $O(\lg n)$ **Exercises**

1. Implement a stack using two queues. Implement a queue using two stacks.

Chapter 3

Hashing

3.1 Direct-Address

works well for relatively small number keys which are unique. Each address is key of the object.

3.2 Hashing function

To reduce the memory usage of the direct-address, we devise a function $h: U \to \{0, \ldots, m-1\}$ where m is relatively smaller than n = |U|. To avoid collision each address points to linked list. A good hash function sets the keys uniformly to the $\{0, \ldots, m-1\}$. Given a good hash function and the fact that k keys have already put in the table, then on average searching for a key takes $O(1+\alpha)$ where $\alpha = \frac{k}{m}$.