

Nicholas Childs

Nicholas Childs TSgt, USAF

B-1 Weapon Systems Controller

Bomber/Special Integrated Communication/Navigation/Mission Systems Craftsman OAS?

github.com/boxswapper
Twitter/Instagram @Boxswapper
Email boxswappers@gmail.com

Why?

Things are broken, Avionics bus systems were designed for use not for security, Like most legacy systems, the addition of new technologies has introduced vulnerabilities.

I need your help..or

WE'RE ALL GONNA DIE!!!

Viewers Like you...

Mariah Kenny

@_mi5t_

MetaCTF Dungeon Master, TCAS hobbyist

Chris Kubecka

@SecEvangelism

APPSec CA "More than Turbulance" https://www.youtube.com/watch?v=l2sv7jiUY7E

Olivia Stella

@OliviaCurls

Airplane Mode Cybersecurity @ 30K Ft https://oliviastella.com/

C:\Users\1256369778>whoami

- 18 years experience in communication navigation systems
- Aeronautical Engineering Degree
- Mechanical repair and servicing experience with 737, L10-11, DC-10, 747
- -Proficient with multiple airframe avionics systems; C-17,C-5,C-141,KC-135,B-1
- 5 years experience Active Directory Administrator on DoD network
- Multiple cybersecurity certifications (all expired) 😊
- FCC Radiotelephone Operator License with Radar Endorsement

Maintainers have our own problems

(Origin Story)What problems did the BUS solve?

Communication along BUS systems

A few networks you should know about

Attack vectors sorry no POC

What problems does the BUS solve?

Figure 5.11 Evolution of avionics architectures.

What problems does the C/N BUS solve?

The MIL-STD-1553
-1973 To help with weight reduction, simplicity, standardization, and flexibility.

-First used in the F-16 Fighter.

Legacy Control and Navigation

C-141 Starlifter Cockpit
At Airshow McChord AFB

Modern Control and Navigation

C-5M Super Galaxy Cockpit

Paris- LeBourget ©Jonathan Zaniger

Generic 1553 bus system

FIGURE 1. Sample multiplex data bus architecture.

MIL-STD-1553b Data bus Standard Ref(b)

B-1b CITS

B-1b Offensive Officer Position Dyess AFB c/o Defense.gov

Commercial Aviation Bus system

MIL-STD-1553(B) Coded Language

- -Manchester II Encoding
- -Binary Phase Shift Keying (BPSK)
- -1.0 mbps
- -Accuracy of .1% Long term (1000hz)
- -Accuracy of .01% short term (1second)
- -each word is 16 bits plus sync wave and parity

FIGURE 2. Data encoding.

MIL-STD-1553(B) Word

ARINC-429 Coded Language

- -BOEING Standard in legacy systems
- -Each word is 32bits
- -No more than 20 receivers on single wire
- -Unidirectional (tx and rx are on different Ports)
- -12.5, 50, or 100kbps

Figure 2 • ARINC Standard

ARINC-429 Bus Standard Ref(c)

ARINC-429 Coded Word

-Contains five fields to every word: Parity Sign/Status Matrix Data Source/destination Label

Figure 3 • ARINC Data Bit Positions

ARINC-429 Bus Standard Ref(c)

AFDX® (ARINC-664)

Avionics Full-Duplex Ethernet Switching

- -Airbus Standard
- -Maximum 120 data terminals per controller
- -2 Mbps
- -Each word 32 bits
- -COTS Integration

Figure 9: An example of an AFDX based network. Each subsystem is attached physically to the network by two end systems. [19]

AFDX® (ARINC-664 upgraded)

TCP/IP Packet

Attack Vectors (If they existed)

- -COTS (Commercial Off the shelf Devices)
- -Local Data Connections
- -External Data Connections
- -People (always with the People)

Vectors -COTS

- -network hubs
- -USB hubs
- -computers
- -personal devices

Vectors - Local Data Connections

-OFP Loading (1553 Coax shown)

Using on A/C Data bus to load common Processors.

EX:

Primary Flight Computer OFP SATCOM network Radio Inertial Navigation Units More updates as tech advances

-MX data Media

Hot swappable HDD PCM/CIA Cards USB drive SD Cards

Vectors - External Data Connections

- -CPLDC (Controller Pilot Data Link)
- -ACARS (Aircraft Communication, Addressing and reporting System) [injection vulnerable]
- -Misdirection and wizard magic (TCAS)
- -Preventative Measures Done Right

Vectors - External Data Connections

-CPLDC (Controller Pilot Data Link)

Vectors - External Data Connections

-CPLDC (Controller Pilot Data Link)

- -CPLDC is Application layer relying on VDL2
- -Used for sending Clear text messages between the ATC and Pilot operators
- -Is based off a network to include Iridium Commercial Satellites and ground stations
- -VHF band in use for data

Vectors - External Data Connections

-ACARS (Aircraft Communication, Addressing and reporting System)

- VHF and HF
- Receive Data to print onto Thermal Paper
- Relies on Readily Available commercial networks
- Also a VDL2 product

Vectors - External Data Connections

CPDLC Security/Andrei Gurtov 2019-06-26 36

Very High Frequency Digital Link Mode 2

(VDL2)

118 - 136,975 MHz

Lager 1 – Physical layer

- Frequency control
- Encoding for bit errors

Lager 2 – Datalink layer

- Send data
- Framing
- Status
- Error detection

Lager 3 – Network layer

Data-packet flow

(h)Github DumpVDL2 from Tomasz Lemiech(szpajder)

https://github.com/szpajder/dumpvdl2

Andrei Gurtov Air Traffic Seminar 2019 ref(f)

Misdirection and Wizard Magic - TCAS

REDBALL?
REDBALL?
REDBALL?

- Operates with Mode S
- 1030 Mhz and 1090Mhz response
- DBPSK (Differential Binary Phase shift keyed
- Each A/C has a unique 24 Bit address (IFF)
- Examples of integration into AP

Misdirection and Wizard Magic - TCAS

Figure 2.10: Interrogation Pulse Sequence [35].

Exploring the Vulns of TCAS through SDR exploitation. Berges, P. (j)

Misdirection and Wizard Magic - TCAS

Figure 2.10: Interrogation Pulse Sequence [35].

04044 DD.4 10.4 01.2 46						
01011 PR:4 10:4 CL:3 10	AP:24	16	CL:3	IC:4	PR:4	01011

CONTRIBUTION

Vectors - External Data Connections

- -A little bit about VDL
- -ACARS and CPDLC are applications
- -VDL is a point-to-point communication technology
- -VHF, limited to 200NM of the Aircraft 3k-4k feet
- -SDR project Dumpvdl2 on Github

VDL mode 2 burst (maximum length of a burst: 131 071 bits, N=65 maximum)

European Telecommunications Standards Institute Master Documentation for VDL (Ref g)VDL Technical characteristics ETSI EN 301 841-1

Vectors - preventative example

-Link-16 TADILJ (Tactical Digital Information Link)

- -PSK on SECRET hardware devices (Air Gapped)
- -Uses freq hop to prevent jamming, (WOD,TOD, Net number) HAVEQUICK
- -960-1200MHZ VHF/UHF
- -Limited to LOS but this includes Satellites
- -Provides
 - -target data
 - -Friendly location data
 - -command and control
 - -Mesh Network
 - -Different hardware performs different roles/functions

REDBALL? REDBALL?

Vectors - preventative example

-Link-16 TADILJ (Tactical Digital Information Link)

Message Catalogue

Network Management

Precise Participant Location and Identification

Surveillance

Antisubmarine Warfare

Intelligence

Information Management

Weapons Coordination and Management

Control

Platform and System Status

Electronic

Threat warning

National Use

TADIL J Introduction and Reference Guide Ref(i)

Vectors - Users, Pilots & Maintainers

- -Aircraft Software updates are time sensitive, especially combat DoD
- -Chain of custody is not always verified in Commercial products
- -Engineers use publicly available sources (such as VDL2)
- -Pilots are starting to bring Personal devices to aircraft flight decks
- -Civilian customers on the Aircraft Network.

Hacker Hurdles

REDBALL?
REDBALL?
REDBALL?

- -Understanding Aircraft Infrastructure
- -Understanding Specific components Functions
- -Physical Access to hardware
- -Testing / Tabletop Access to Software & Hardware

Addendum: Things are happening

REDBALL?
REDBALL?
REDBALL?

- F-15 (Technical Assistance database System) TADS DEFCON'19
- Software Example, Boeing 737 MAX (OFP)
- US Government Probes A/C Vulns
- Devices inside company used for programming hardware found to be vulnerable/infected. (C.Kubecka)

RESOURCES

(a)Design and Development of Aircraft systems
Google-book http://bit.ly/2k6klCx

(b)MIL-STD-1553b Data bus Standard 1979/01/22 PDF http://bit.ly/39QFmLu

(c)ARINC-429 Bus Standard PDF (Archive.org) http://bit.ly/2qtYb5f

Data Link Advisory Circular PDF http://bit.ly/2pGR5Ke

(d)Evolution of Avionics Networks from ARINC-429 to AFDX PDF http://bit.ly/2N4DGnm

IRIG-106 Aeronautical telemetry Open source 1553 Mil standard format 0 http://bit.ly/31AMUgu

Data Comm Systems with FANS 1/A+, CPDLC DCL and ATN B1 PDF http://bit.ly/2N1jR0h

(e)ICAO International Introduction to ACARS ICS-200-1 PDF http://bit.ly/2Bvuhjp

SDRPlay Decoding ACARS Messages PDF http://bit.ly/2J9KMGf

(f)Andrei Gurtov Air Traffic Seminar 2019 http://bit.ly/2Na0pia

(g)VDL Technical characteristics ETSI EN 301 841-1 PDF

http://bit.ly/2pl63Qj

(h)Github DumpVDL2 from Tomasz Lemiech(szpajder) https://github.com/szpajder/dumpvdl2

(i)TADIL J Introduction and Reference Guide PDF http://bit.ly/2obvLf0

(j)Exploring the Vulns. Of TCAS through SDR PDF http://bit.ly/2Wcjzd6