Глубинное обучение в анализе графовых данных

7. Аугментации и обучение

в предыдущих сериях...

Части GNN

Различные архитектуры

- GCN
- GraphSage
- GAT

Связь слоев

Связь слоев

Последовательно

Рецептивное поле

Решение 1

Skip-connections

Пример

A standard GCN layer

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right)$$

This is our F(x)

A GCN layer with skip connection

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} + \mathbf{h}_{v}^{(l-1)} \right)$$

$$F(\mathbf{x}) + \mathbf{x}$$

Аугментации

Проблемы

- нет фичей
- sparse
- dense
- large

Решения

- нет фичей аугментации
- sparse добавить связей
- dense использовать сэмплирование
- large сэмплировать подграфы

Нет фичей

- 1) добавить всем константные фичи
- 2) добавить айдишники

Сравнение

	Constant node feature	One-hot node feature
Expressive power	Medium. All the nodes are identical, but GNN can still learn from the graph structure	High. Each node has a unique ID, so node-specific information can be stored
Inductive learning (Generalize to unseen nodes)	High. Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN	Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn't know how to embed unseen IDs
Computational cost	Low. Only 1 dimensional feature	High . $O(V)$ dimensional feature, cannot apply to large graphs
Use cases	Any graph, inductive settings (generalize to new nodes)	Small graph, transductive settings (no new nodes)

Циклы

 v_1 resides in a cycle with length 3

 v_1 resides in a cycle with length 4

 v_1 resides in a cycle with infinite length

The computational graphs for node v_1 are always the same

Добавление вершин/ребер

• сокращение дистанции

Сэмплирование соседей

Обучение

Output of a GNN: set of node embeddings

Иерархический global pooling

$$\{-1, -2, 0, 1, 2\}$$

 $\{-10, -20, 0, 10, 20\}$

Splitting

