

 $July\ 26,\ 2018$

Strain, aka, unconstrained strain, is measured as the fraction change from a reference state (d_0) .

$$\epsilon_{ij} = \frac{d_{ij} - d_0}{d_0} \tag{1}$$

Residual stress is determined by measuring stress along 3 orthogonal directions

$$\sigma_{ij} = \frac{E}{(1+\nu)} [\epsilon_{ij} + \frac{\nu}{1-2\nu} (\epsilon_{11} + \epsilon_{22} + \epsilon_{33})]$$
 (2)

where

- ν is Poisson's Ratio.
- E is Young's Modulus.
- ϵ_{ij} are strains. Be noted that
 - $-\epsilon_{ij}$ with i=j are principle strains. But not all all three orthogonal strains are equivalent to principle strains.
 - The off-diagonal strain component, i.e., ϵ_{ij} with $i \neq j$ are all set to **zero**. It is very hard to measure these values in HB2B's setup.

In plane strain, ϵ_{33} is zero.

In plane stress, σ_{33} is zero. Therefore, ϵ_{33} can be calculated from ϵ_{11} and ϵ_{22} from $\sigma_{33} = 0$.

$$\sigma_{33} = 0 \tag{3}$$

$$= \frac{E}{(1+\nu)} [\epsilon_{33} + \frac{\nu}{1-2\nu} (\epsilon_{11} + \epsilon_{22} + \epsilon_{33})] \tag{4}$$

$$\epsilon_{33} = -\frac{\nu}{(1-2\nu)}(\epsilon_{11} + \epsilon_{22}) + -\frac{\nu}{(1-2\nu)}\epsilon_{33}$$
(5)

$$\epsilon_{33} = \frac{\nu}{\nu - 1} (\epsilon_{11} + \epsilon_{22}) \tag{6}$$

Therefore, for both plain stress and plain strain, d from 2 principle directions are enough, but not 3.