

Cálculo 1 - HONORS - CM311

Primitivas e Integrais Definidas

Diego Otero otero.ufpr@gmail.com / otero@ufpr.br

• Seja f uma função definida em um intervalo I. Dizemos que F é uma primitiva (antiderivada) de f se F'(x) = f(x) para todo $x \in I$.

Exemplo 1.1.

Ache as primitivas das funções abaixo:

a)
$$f(x) = x^2$$
.

b)
$$f(x) = \cos(x)$$
.

c)
$$f(x) = e^{2x}$$

Proposição 1.2.

Seja f uma função definida em um intervalo I. Se F e G são primitivas de f então existe uma constante C tal que F(x) - G(x) = C para todo $x \in I$.

Exemplo 1.3

Calcule as primitivas gerais das funcões abaixo

a)
$$f(x) = \operatorname{sen}(x)$$

b)
$$f(x) = x^n$$

c)
$$g(x) = x\sqrt{x}$$

• Seja f uma função definida em um intervalo I. Dizemos que F é uma primitiva (antiderivada) de f se F'(x) = f(x) para todo $x \in I$.

Exemplo 1.1.

Ache as primitivas das funções abaixo:

a)
$$f(x) = x^2$$
.

b)
$$f(x) = \cos(x)$$
.

c)
$$f(x) = e^{2x}$$
.

Proposição 1.2.

Seja f uma função definida em um intervalo I. Se F e G são primitivas de f então existe uma constante C tal que F(x) - G(x) = C para todo $x \in I$.

Exemplo 1.3

Calcule as primitivas gerais das funcões abaixo

a)
$$f(x) = \operatorname{sen}(x)$$

b)
$$f(x) = x^n$$

c)
$$g(x) = x\sqrt{x}$$

• Seja f uma função definida em um intervalo I. Dizemos que F é uma primitiva (antiderivada) de f se F'(x) = f(x) para todo $x \in I$.

Exemplo 1.1.

Ache as primitivas das funções abaixo:

a)
$$f(x) = x^2$$
.

a)
$$f(x) = x^2$$
. b) $f(x) = \cos(x)$.

c)
$$f(x) = e^{2x}$$
.

Proposição 1.2.

Seja f uma função definida em um intervalo I. Se F e G são primitivas de f então existe uma constante C tal que F(x) - G(x) = C para todo $x \in I$.

a)
$$f(x) = \operatorname{sen}(x)$$

b)
$$f(x) = x^n$$

c)
$$g(x) = x\sqrt{x}$$

• Seja f uma função definida em um intervalo I. Dizemos que F é uma primitiva (antiderivada) de f se F'(x) = f(x) para todo $x \in I$.

Exemplo 1.1.

Ache as primitivas das funções abaixo:

a)
$$f(x) = x^2$$

a)
$$f(x) = x^2$$
. b) $f(x) = \cos(x)$.

c)
$$f(x) = e^{2x}$$
.

Proposição 1.2.

Seja f uma função definida em um intervalo I. Se F e G são primitivas de f então existe uma constante C tal que F(x) - G(x) = C para todo $x \in I$.

Exemplo 1.3.

Calcule as primitivas gerais das funções abaixo:

a)
$$f(x) = sen(x)$$
. b) $f(x) = x^n$.

b)
$$f(x) = x^n$$

c)
$$g(x) = x\sqrt{x}$$
.

Integrais Indefinidas

Definição 1.4.

Sendo f uma função definida em um intervalo I denotamos uma primitiva F de f como

$$F(x) = \int f(x) \, dx.$$

Chamamos o símbolo acima de integral indefinida de f.

Exemplo 1.5

Calcule
$$\int x^3 + 6e^x + 1 dx$$
.

Integrais Indefinidas

Definição 1.4.

Sendo f uma função definida em um intervalo I denotamos uma primitiva F de f como

$$F(x) = \int f(x) \, dx.$$

Chamamos o símbolo acima de integral indefinida de f.

Exemplo 1.5.

Calcule
$$\int x^3 + 6e^x + 1 dx$$
.

- Para que serve cálculo de primitivas?
- R: Pode ser aplicado no cálculo de áreas de algumas regiões.
- ullet Seja uma função $f:[a,b]
 ightarrow \mathbb{R}$ com $f(x) \geq 0$.
- Como calcular a área A da região abaixo?

- Para que serve cálculo de primitivas?
- R: Pode ser aplicado no cálculo de áreas de algumas regiões.
- Seja uma função $f:[a,b] \to \mathbb{R}$ com $f(x) \ge 0$.
- Como calcular a área A da região abaixo?

- Para que serve cálculo de primitivas?
- R: Pode ser aplicado no cálculo de áreas de algumas regiões.
- Seja uma função $f:[a,b] \to \mathbb{R}$ com $f(x) \ge 0$.
- Como calcular a área A da região abaixo?

- Para que serve cálculo de primitivas?
- R: Pode ser aplicado no cálculo de áreas de algumas regiões.
- Seja uma função $f:[a,b] \to \mathbb{R}$ com $f(x) \ge 0$.
- Como calcular a área A da região abaixo?

• Podemos aproximar por figuras que sabemos calcular a área.

5/8

• Podemos aproximar por figuras que sabemos calcular a área.

5/8

• Podemos aproximar por figuras que sabemos calcular a área.

• Podemos aproximar por figuras que sabemos calcular a área.

• Podemos aproximar por figuras que sabemos calcular a área.

• Podemos aproximar por figuras que sabemos calcular a área.

• Podemos aproximar por figuras que sabemos calcular a área.

• Podemos aproximar por figuras que sabemos calcular a área.

Integrais Definidas e Teorema Fundamental do Cálculo

Definição 1.6.

Sendo $f:[a,b]\to\mathbb{R}$, denotamos a integral definida de f no intervalo [a, b] pelo limite abaixo, quando existir. Quando o limite existir dizemos que f é integrável no intervalo [a, b]

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{i=1}^{n} f(x_i) \Delta x.$$

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

• Convenções:
a)
$$\int_{a}^{a} f(x) dx = 0$$
.

b)
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$

Integrais Definidas e Teorema Fundamental do Cálculo

Definição 1.6.

Sendo $f:[a,b]\to\mathbb{R}$, denotamos a integral definida de f no intervalo [a, b] pelo limite abaixo, quando existir. Quando o limite existir dizemos que f é integrável no intervalo [a, b]

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{i=1}^{n} f(x_i) \Delta x.$$

Propriedade 1.7.

Sendo f integrável em [a, b] e $c \in (a, b)$ então

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

• Convenções:
a)
$$\int_{a}^{a} f(x) dx = 0$$
.

b)
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$

Integrais Definidas e Teorema Fundamental do Cálculo

Definição 1.6.

Sendo $f:[a,b]\to\mathbb{R}$, denotamos a integral definida de f no intervalo [a, b] pelo limite abaixo, quando existir. Quando o limite existir dizemos que f é integrável no intervalo [a, b]

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{i=1}^{n} f(x_i) \Delta x.$$

Propriedade 1.7.

Sendo f integrável em [a, b] e $c \in (a, b)$ então

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

• Convenções:
a)
$$\int_{0}^{a} f(x) dx = 0$$
.

b)
$$\int_{a}^{b} f(x) dx = - \int_{b}^{a} f(x) dx$$
.

• Em geral é difícil de calcular a integral definida pela definição.

Teorema 1.8 (Teorema Fundamental do Cálculo II (TFC II)).

Supondo que a integral acima existe e sendo F uma primitiva de f, temos

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{x=a}^{x=b}.$$

Exemplo 1.9.

Verifique o TFC no caso que $f(x) = x^2$ no intervalo [2, 6].

Observação 1.10

Fórmulas úteis para o exemplo anterior:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{e} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

• Em geral é difícil de calcular a integral definida pela definição.

Teorema 1.8 (Teorema Fundamental do Cálculo II (TFC II)).

Supondo que a integral acima existe e sendo ${\sf F}$ uma primitiva de ${\sf f}$, temos

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{x=a}^{x=b}.$$

Exemplo 1.9.

Verifique o TFC no caso que $f(x) = x^2$ no intervalo [2, 6].

Observação 1.10

Fórmulas úteis para o exemplo anterior:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{e} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Diego Otero Cálculo 1 7/8

• Em geral é difícil de calcular a integral definida pela definição.

Teorema 1.8 (Teorema Fundamental do Cálculo II (TFC II)).

Supondo que a integral acima existe e sendo ${\sf F}$ uma primitiva de ${\sf f}$, temos

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{x=a}^{x=b}.$$

Exemplo 1.9.

Verifique o TFC no caso que $f(x) = x^2$ no intervalo [2,6].

Observação 1.10

Fórmulas úteis para o exemplo anterior:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{e} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Diego Otero Cálculo 1 7/8

• Em geral é difícil de calcular a integral definida pela definição.

Teorema 1.8 (Teorema Fundamental do Cálculo II (TFC II)).

Supondo que a integral acima existe e sendo ${\sf F}$ uma primitiva de ${\sf f}$, temos

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = F(x) \Big|_{x=a}^{x=b}.$$

Exemplo 1.9.

Verifique o TFC no caso que $f(x) = x^2$ no intervalo [2,6].

Observação 1.10.

Fórmulas úteis para o exemplo anterior:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{e} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

Diego Otero Cálculo 1 7/8

Prova TFC

Teorema 1.11.

Se f é contínua em [a,b] então f é integrável, isto é, o limite abaixo existe

$$\lim_{n\to+\infty}\sum_{i=1}^n f(x_i)\Delta x = \int_a^b f(x)\,dx.$$

Teorema 1.12 (Teorema Fundamental do Cálculo I (TFC I)).

Sendo f contínua em [a,b], considere a função $F(x) = \int_a^x f(t) dt$. Temos F'(x) = f(x) para todo $x \in [a,b]$, isto é, F é uma primitiva de f.

Corolário 1.13

Toda função contínua definida em um intervalo admite uma primitiva.

Prova TFC

Teorema 1.11.

Se f é contínua em [a, b] então f é integrável, isto é, o limite abaixo existe

$$\lim_{n\to+\infty}\sum_{i=1}^n f(x_i)\Delta x = \int_a^b f(x)\,dx.$$

Teorema 1.12 (Teorema Fundamental do Cálculo I (TFC I)).

Sendo f contínua em [a, b], considere a função $F(x) = \int_a^x f(t) dt$. Temos F'(x) = f(x) para todo $x \in [a, b]$, isto é, F é uma primitiva de f.

Corolário 1.13

Toda função contínua definida em um intervalo admite uma primitiva.

Prova TFC

Teorema 1.11.

Se f é contínua em [a,b] então f é integrável, isto é, o limite abaixo existe

$$\lim_{n\to+\infty}\sum_{i=1}^n f(x_i)\Delta x = \int_a^b f(x)\,dx.$$

Teorema 1.12 (Teorema Fundamental do Cálculo I (TFC I)).

Sendo f contínua em [a,b], considere a função $F(x)=\int_a^x f(t)\,dt$. Temos F'(x)=f(x) para todo $x\in [a,b]$, isto é, F é uma primitiva de f.

Corolário 1.13.

Toda função contínua definida em um intervalo admite uma primitiva.