МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙ-СКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» (МОСКОВСКИЙ ПОЛИТЕХ)

«РАСЧЁТ РЕДУКТОРА»

Курсовой проект по дисциплине «Компьютерное проектирование деталей машин» по направлению 09.03.01 Информатика и вычислительная техника Образовательная программа (профиль) «Интеграция и программирование в САПР»

Студентка:		/ Дмитриева Ю.М.,	211-324
	подпись	ФИО,	группа
Преподаватель	: :	/ Толстиков А.В., к.т.н.	
	подпись	ФИО, уч. звание и степень	

ЗАДАНИЕ

Имеются исходные данные: кинематическая схема привода (Рисунок 1), тяговое усиление на цепи, скорость движения цепи, диаметр барабана, вид передачи, срок службы привода. Используя представленную информацию, спроектировать редуктор. Вариант 10-5.

Рисунок 1 - Кинематическая схема привода

Нагрузка - постоянная;

Вид передач - нереверсивные;

Срок службы привода - 10 лет при работе в одну смену;

Срок службы подшипников - 20000 часов;

Диаметр барабана – D = 0.5 м

Тяговое усилие на цепи – $F = 4 \ \kappa H$

Скорость движения цепи $-v=1\,$ м/с

ОГЛАВЛЕНИЕ

Расчет редуктора	4
Расчет закрытой передачи	
Расчет открытой передачи	
Расчет валов	16
Компоновка редуктора	21
Конструирование корпуса	
Лира	
Расчет на жесткость тихоходного вала	
Inventor	
СПИСОК ИСТОЧНИКОВ	35

Расчет редуктора

Найдем общий КПД привода, он равен произведению частных КПД.

$$\eta_{M} \coloneqq 1$$
 - КПД муфты

 $\eta_{_{3.N.4}}\!\coloneqq\!0.97$ - среднее значение КПД закрытой передачи

 $\eta_{o.n.y} \coloneqq$ 0.91 - среднее значение КПД открытой передачи

 $\eta_{nn} \coloneqq 0.99$ - КПД одной пары подшипников

n = 3 - число пар подшипников

$$\eta_{\varSigma} \coloneqq \eta_{M} \cdot \eta_{3.n.y} \cdot \eta_{o.n.y} \cdot \eta_{n.n}^{n} = 0.856$$
 - общий КПД привода

 $P_{p.6} := F \cdot v = 4$ кВт - мощность на валу рабочего органа привода

$$P_{\mathit{mp.эd.}} \coloneqq \frac{P_{\mathit{p.6.}}}{\eta_{\varSigma}} = 4.67$$
 кВт - требуемая электромощность двигателя

Выбор электродвигателя

Требуемая частота вращения вала электродвигателя

 $u_{o.n.y} := 3$ - рекомендуемое передаточное число открытой передачи (цепная)

 $u_{3.n.y} := 4$ - рекомендуемое передаточное число закрытой передачи (цилиндрическая)

$$\omega_{p.s.} \coloneqq \frac{2 \cdot v}{D} = 4 - \frac{pa\partial}{c}$$
 - угловая скорость рабочего вала

 $u_{\Sigma pex} \coloneqq u_{3.n.u} \cdot u_{o.n.u} = 12$ - возможное среднее рекомендуемое передаточное число привода

$$n_{mp.эд.} \coloneqq \frac{30 \cdot \omega_{p.s.} \cdot u_{\Sigma pex}}{\pi} = 458.366$$
 об/мин - требуемая частота вращения вала электродвигателя

Тип двигателя	Исполнение	Мощность, кВт	Число полюсов	Частота вращения, об/мин	T _{Max} /T _{nom}	Диаметр вала, мм
AHP132M8	IM1001 - 1082	5,5	8	712	2,2	38

Рисунок 2 - Характеристики электродвигателя

$$n_{3\partial}$$
:=712 об/мин - частота вращения двигателя $\omega_{3\partial}$:= $\frac{\pi \cdot n_{3\partial}}{30}$ =74.56 рад/с - угловая скорость вала электродвигателя u_{Σ} := $\frac{\omega_{3\partial}}{\omega_{p.s.}}$ =18.64 - общее передаточное число привода $u_{3.n.}$:= $\frac{u_{\Sigma}}{u_{o.n.y.}}$ =6.213 - передаточное число закрытой передачи $u_{3.n.3se3\partial ovxa}$:=6.3 $u_{3.n.3se3\partial ovxa}$:=6.3 - передаточное число открытой передачи

Определение угловых скоростей валов

Определение частоты вращения валов

 $n_1 \coloneqq n_{\ni \hat{\sigma}} = 712$ об/мин - частота вращения 1-го вала

$$n_2 \coloneqq n_I = 712$$
 об/мин - частота вращения 2-го вала $n_3 \coloneqq \frac{30 \cdot \omega_3}{\pi} = 113.016$ об/мин - частота вращения 3-го вала $n_4 \coloneqq \frac{30 \cdot \omega_4}{\pi} = 38.197$ об/мин - частота вращения 4-го вала

Определение мощностей на валах

$$P_1 \coloneqq P_{mp.3\partial} = 4.67$$
 Вт - мощность 1-го вала $P_2 \coloneqq P_1 \cdot \eta_M \cdot \eta_{n.n} = 4.624$ Вт - мощность 2-го вала $P_3 \coloneqq P_2 \cdot \eta_{3.n.y} \cdot \eta_{n.n} = 4.44$ Вт - мощность 3-го вала $P_4 \coloneqq P_3 \cdot \eta_{o.n.y} \cdot \eta_{n.n} = 4$ Вт - мощность 4-го вала

Определение вращающих моментов на валах

$$T_{I}\coloneqq rac{P_{I}}{\omega_{I}} = 0.063~$$
 Нм - вращающий момент 1-го вала $T_{2}\coloneqq rac{P_{2}}{\omega_{2}} = 0.062~$ Нм - вращающий момент 2-го вала $T_{3}\coloneqq rac{P_{3}}{\omega_{3}} = 0.375~$ Нм - вращающий момент 3-го вала $T_{4}\coloneqq rac{P_{4}}{\omega_{4}} = 1~$ Нм - вращающий момент 4-го вала

Анализ результатов кинематического расчета

Валы		Величины						
привода								
	ω, рад/с	ю, рад/с п, об/мин Р, кВт Т, кН * м						
1	74.56	712	4.67	0.063				
2	74.56	712	4.624	0.062				
3	11.835	113.016	4.44	0.375	u* _{s.n.} = 6.3			
4	4	38.197	4	1				

Рисунок 3 - Результаты кинематического расчета привода

Расчет закрытой передачи

Вращающий момент

$$T'_1 = T_2 \cdot 10^6 = 6.201 \cdot 10^4$$
 H * MM

$$T'_2 := T_3 \cdot 10^6 = 3.752 \cdot 10^5$$
 H * MM

Угловая скорость

$$\omega'_1 := \omega_2 = 74.56$$
 рад/с

$$\omega'_2 := \omega_3 = 11.835$$
 рад/с

Частота вращения

$$n'_2 := n_3 = 113.016$$
 об/мин

Передаточное число

$$u_{12} \coloneqq \frac{n'_1}{n'_2} = 6.3 \quad \frac{H}{MM^2}$$

Коэффициенты

 $c \coloneqq 1$

 $K_{HL} \coloneqq 1$ - долговечность для редукторостроения

 $S_H \coloneqq 1.2$ $S_F \coloneqq 1.8$ - безопасности

$$K_{FC} \coloneqq 1$$
 - нереверсивное движение

Размер заготовок для прямозубой передачи

$$d_{13a2om} := 3 \cdot \sqrt[3]{\frac{T'_2}{c \cdot u_{12}^2}} = 63.431$$

$$d_{23a2om} = d_{13a2om} \cdot u_{12} = 399.613$$

Материал колеса: сталь 45Л, литье, термообработка - нормализация, диаметр заготовки свыше 300

$$HB_2$$
 ≔ 180 - твердость

$$\sigma_{B2}$$
 = 520 МПа - предел прочности

$$\sigma_{T2}$$
 ≔ 290 МПа - предел текучести

Предел выносливости зубьев при базовом числе циклов переменных напряжений изгиба

$$\sigma_{Flimb2} := 1.8 \cdot HB_2 = 324 \text{ M}\Pi a$$

Предел контактной выносливости при базовом числе циклов

$$\sigma_{Hlimb2} := 2 \cdot HB_2 + 70 = 430 \text{ M}\Pi a$$

$$\sigma_{H2} \coloneqq \frac{\sigma_{Hlimb2}}{S_H} \cdot K_{HL} = 358.333$$
 МПа - допускаемое контактное напряжения на зубчатом колесе

$$\sigma_{F2} \coloneqq \frac{\sigma_{Flimb2}}{S_F} \cdot K_{FL} \cdot K_{FC} = 180 \,\,$$
 МПа - допускаемое напряжение изгиба для зубчатого колеса

$$HB_{I} \coloneqq HB_{2} \cdot \sqrt[6]{u_{I2}} = 244.622$$
 - твердость

Материал шестерни: сталь $30 {\rm X} \Gamma {\rm C}$, прокат, термообработка - улучшение, диаметр заготовки до 80 мм.

$$HB_1 := 250$$
 - твердость

 σ_{BI} = 860 МПа - предел прочности

 σ_{TI} = 730 МПа - предел текучести

 σ_{Hlimb1} = 2 • HB_1 + 70 = 570 МПа - предел контактной выносливости при базовом числе циклов

 $\sigma_{Flimb1} \coloneqq 1.8 \cdot HB_I = 450~$ МПа - предел выносливости зубьев при базовом числе циклов переменных напряжений изгиба

$$\sigma_{HI} \coloneqq \frac{\sigma_{Hlimb1}}{S_H} \cdot K_{HL} = 475$$
 МПа - допускаемое напряжение для шестерни

$$\sigma_{FI}\coloneqq \frac{\sigma_{Flimb1}}{S_F} \cdot K_{FL} \cdot K_{FC} = 250 \,\,$$
 МПа - допускаемое напряжение изгиба для шестерни

 σ_{H} := σ_{H2} = 358.333 МПа - расчетное контактное напряжение

$$a = \frac{\sigma_{HI} + \sigma_{H2}}{2} = 416.667 \text{ M}\Pi a$$

Определение параметров зацепления и размеров зубчатых колес

 $K_H \coloneqq 1.2$ - коэффициент нагрузки

 $\psi_{ba\omega} := 0.315$ - коэффициент ширины колеса по межосевому расстоянию

C = 310 - для прямозубых передач

β **=** 0 ° - угол наклона

Минимальное расчетное межосевое расстояние из условий контактной прочности

$$a_{\omega} \coloneqq \left(u_{12} + 1\right) \cdot \sqrt[3]{\left(\frac{C}{\sigma_H \cdot u_{12}}\right)^2 \cdot \frac{T'_2 \cdot K_H}{\psi_{ba\omega}}} = 218.864$$

 a'_{ω} = 225 - ближайшее стандартное значение

 $m_n \coloneqq 0.01 \cdot a'_{\omega} = 2.25$ мм - модуль внешнего зацепления

$$z_c \coloneqq \frac{2 \cdot a'_{\omega}}{m_n} = 200$$
 - суммарное число зубьев

$$z_{I} \coloneqq \frac{z_{c}}{u_{I2} + 1} = 27.397$$
 - число зубьев шестерни

$$z_I = \text{round}(z_I) = 27$$

$$z_2$$
 = z_c − z_I = 173 - число зубьев колеса

$$u'_{12} \coloneqq \frac{z_2}{z_1} = 6.407$$
 - уточнение передаточного числа

$$delta_u \coloneqq \left| \frac{u_{I2} - u'_{I2}}{u_{I2}} \right| \cdot 100 = 1.705$$
 - расхождение с исходным значением

Определение основных геометрических размеров передачи

Диаметры делительных окружностей

$$d_1 \coloneqq m_n \cdot z_1 \cdot \frac{1}{\cos(\beta)} = 60.75 \qquad d_2 \coloneqq m_n \cdot z_2 \cdot \frac{1}{\cos(\beta)} = 389.25$$

$$d'_2 := d_2$$

$$a_{\omega} \coloneqq \frac{d_2 + d_1}{2} = 225$$
 - проверка

Диаметры окружностей выступов

$$d_{al} := d_1 + 2 \cdot m_n = 65.25$$
 $d_{a2} := d_2 + 2 \cdot m_n = 393.75$

Диаметры окружностей впадин

$$d_{f1} := d_1 - 2.5 \cdot m_n = 55.125$$
 $d_{f2} := d_2 - 2.5 \cdot m_n = 383.625$

Ширина зубчатых колес

$$b_2 \coloneqq \psi_{ba\omega} \cdot a'_{\omega} = 70.875$$
 $b_2 \coloneqq \text{floor}(b_2) = 70$
 $b_1 \coloneqq b_2 + 5 = 65$ $b_1 \coloneqq \text{floor}(b_1) = 65$ $b_2 \coloneqq 60$

Проверочный расчет передачи

$$\psi_{bd} \coloneqq \frac{b_2}{d_I} = 0.988$$
 - коэффициент ширины относительно диаметра

$$v \coloneqq \frac{\omega_I \cdot d_I}{2 \cdot 1000} = 2.265$$
 - окружная скорость

Степень точности изготовления колес - 8

		Окружная	скорость передач V	м/с	
C	Прямые зубья і	передачах	Непрямые зубья в передачах		
Степень точности	цилиндрической	конической	цилиндрической	конической	
5 и более	св. 15	св. 12	св 30	св. 20	
6	до 15	до 12	до 30	до 20	
7	до 10	до 8	до 15	до 10	
8	до 6	до 4	до 10	до 7	
9	до 2	до 1,5	до 4	до 3	

Рисунок 4 - Степень точности изготовления зубчатых передач

 $K_{Ha} \coloneqq 1$ - коэффициент неравномерности распределения нагрузки между зубьями

 $K_{H\beta} \coloneqq 1.05$ - коэффициент неравномерности распределения нагрузки по ширине венца

 $K_{Hv} \coloneqq 1.05$ - динамический коэффициент

 $K'_{H} \coloneqq K_{H\alpha} \cdot K_{H\beta} \cdot K_{H\nu} = 1.103$ - уточнение коэффициента нагрузки

$$\sigma'_H \coloneqq \frac{C}{a'_{\omega} \cdot u'_{I2}} \cdot \sqrt[2]{\frac{T'_2 \cdot K'_H}{b_2} \left(u'_{I2} + 1\right)^3} = 359.93$$
 - условие прочности

$$delta_\sigma \coloneqq \frac{\sigma_H - \sigma'_H}{\sigma_H} \cdot 100 = -0.445$$

Значения коэффициента формы зуба для зубчатых передач

$$Y_{F1} \coloneqq 3.8$$
 $Y_{F2} \coloneqq 3.6$

Сравнительная оценка прочности на изгиб

$$\frac{\sigma_{F1}}{Y_{F1}} = 65.789$$
 $\frac{\sigma_{F2}}{Y_{F2}} = 50$

Значения коэффициента формы зуба $Y_{\rm F}$ для зубчатых передач по ГОСТ 21354—87 [17]

z или $Z_{\rm v}$	17	20	25	30	40	50	60	80	100 и более
$Y_{\rm F}$	4,18	4,09	3,90	3,80	3,70	3,66	3,62	3,61	3,60

Рисунок 5 - Значение коэффициента формы зуба

 $K_{F\alpha} \coloneqq 1$ - коэффициент неравномерности распределения нагрузки между зубьями

 $K_{F\beta} \coloneqq 1.13$ - коэффициент неравномерности распределения нагрузки по ширине венца

 $K_{F_V} \coloneqq 1.45$ - коэффициент динамичности

$$K_F \coloneqq K_{F\alpha} \cdot K_{F\beta} \cdot K_{F\nu} = 1.639$$
 - коэффициент нагрузки

$$Y_{\beta} \coloneqq 1 - \frac{\beta}{140} = 1$$
 - коэффициент учитывающий наклон зубьев

$$\sigma'_{FI} \coloneqq \frac{2 \cdot T'_I \cdot K_F}{z_I \cdot b_I \cdot m_n^2} \cdot Y_{FI} \cdot Y_{\beta} = 75.325$$

$$\sigma'_{F2} \coloneqq \frac{2 \cdot T'_2 \cdot K_F}{z_2 \cdot b_2 \cdot m_n^2} \cdot Y_{F2} \cdot Y_{\beta} = 84.223$$

$$\sigma_{FI} = 250$$

$$\sigma_{F2} = 180$$

$$\alpha = 20^{\circ}$$

Окружные силы

$$F_{t2} = \frac{2 \cdot T'_{l}}{d_{l}} = 2.042 \cdot 10^{3} \text{ H}$$

$$F_{t1} = F_{t2} = 2.042 \cdot 10^3$$
 H

Радиальные силы

$$F_{rl} := F_{rl} \cdot \tan(\alpha) = 743.049 \text{ H}$$

$$F_{r2} = F_{r1} = 743.049 \text{ H}$$

Силы нормального давления

$$F_{nl} \coloneqq \frac{F_{tl}}{\cos(\alpha)} = 2.173 \cdot 10^3 \text{ H}$$

$$F_{n2} = F_{nl} = 2.173 \cdot 10^3 \text{ H}$$

Расчет открытой передачи

 $T'_1 := T_3 \cdot 10^6 = 3.752 \cdot 10^5$ Н*мм - вращающий момент на ведущей звездочке

 $n'_1 := n_3 = 113.016$ об/мин - частота вращения на ведущей звездочке

 $P'_{I} = P_{3} \cdot 10^{3} = 4.44 \cdot 10^{3} \,\mathrm{Br}$ - мощность на ведущей звездочке

 $u_{12} \coloneqq u_{o.n.36e3\partial oчкa} = 2.959$ - передаточное число открытой цепной

$$z_1 = 31 - 2 \cdot u_{12} = 25.083$$
 - число зубьев ведущей

 z_1 **≔** 25 - принимаем

 $z_2 = z_1 \cdot u_{12} = 73.969$ - число зубьев ведомой звездочки

 $z_2 = 74$ - принимаем

 $u'_{12} \coloneqq \frac{z_2}{z_1} = 2.96$ - уточнение передаточного отношения

 $delta_u \coloneqq \left| \frac{u_{I2} - u'_{I2}}{u_{I2}} \right| \cdot 100 = 0.042$ - расхождение с исходным значением

 $K_d = 1.5$ - коэффициент при толчкообразной, переменной нагрузке

$$K_a := 1$$
 при $a = (30...50)t$

 $K_{H} \coloneqq 1.25$ - коэффициент при наклоне свыше 60град.

 $K_p = 1.25$ - коэффициент при периодическом регулировании

 $K_{cm} \coloneqq 1.4$ - коэффициент при периодической смазке

 $K_n \coloneqq 1$ - коэффициент при односменной работе

$$p = 29$$

$$K_{\mathfrak{p}} \coloneqq K_{d} \cdot K_{a} \cdot K_{H} \cdot K_{p} \cdot K_{cm} \cdot K_{n} = 3.281$$
 - коэффициент эксплуатации

$$t\!\coloneqq\!2.8\, {\color{red} \bullet}\, \sqrt[3]{\frac{T'_I\!\!\!\! \bullet\! K_9}{z_I\!\!\!\! \bullet\! p\!\!\!\! \bullet\! 1}}\!=\!33.404\,\mathrm{mm}$$
 - определяем шаг цепи

t=38. мм - согласно ГОСТ принимаем цепь с данным шагом

t		\mathbf{B}_{BH}	d	d*1	h	b	Fp, H	q, кг/м	S. MM ²
38,1	0	25,4	11,1	22,23	36,2	58	124587	5,5	394

Рисунок 6 - Параметры выбранной цепи

$$d_{l.z} = 22.23$$
 $F_p = 124587$ $q = 5.5$ $S = 394$

Проверка условия обеспечения износостойкости

$$p_{mq\bar{0}\bar{\tau}} := 19$$

$$V \coloneqq \frac{z_I \cdot n'_I \cdot t}{60000} = 1.794$$
 м/с - скорость цепи

$$F_t = \frac{P'_l}{V} = 2.475 \cdot 10^3$$
 Н - окружная сила

$$p \coloneqq \frac{F_t \cdot K_9}{S} = 20.61$$
 МПа - условие износостойкости

$$p' \coloneqq p_{ma\delta\pi} \cdot (1 + 0.01 \cdot (z_I - 17)) = 20.52$$
 МПа - допускаемое давление в шарнире

$$delta_p := \frac{p - p'}{p} \cdot 100 = 0.436$$
 - определяем недогрузку

Определение геометрических параметров передачи

$$a = 40 \cdot t = 1.524 \cdot 10^3$$
 мм - межосевое расстояние

$$L_t \coloneqq \frac{2 \cdot a}{t} + \frac{z_1 + z_2}{2} + \left(\frac{z_2 - z_1}{2 \cdot \pi}\right)^2 \cdot \frac{t}{a} = 131.02$$
 - число звеньев цепи

$$L_t = 132$$

Уточняем межосевое расстояние

$$a' \coloneqq \frac{t}{4} \left(L_t - \frac{z_1 + z_2}{2} + \sqrt[2]{\left(L_t - \frac{z_1 + z_2}{2} \right)^2 - 8 \cdot \left(\frac{z_2 - z_1}{2 \pi} \right)^2} \right) = 1.543 \cdot 10^{\frac{2}{3}} \text{ MM}$$

 $a'' \coloneqq 0.997 \cdot a' = 1.538 \cdot 10^3$ мм - монтажное межосевое расстояние $a'' \coloneqq 1538$ мм

Делительные диаметры ведущей и ведомой звездочки

$$d_{I} \coloneqq \frac{t}{\sin\left(\frac{180^{\circ}}{z_{I}}\right)} = 303.99 \text{ MM}$$

$$d_{2} \coloneqq \frac{t}{\sin\left(\frac{180^{\circ}}{z_{2}}\right)} = 897.713 \text{ MM}$$

Зависимость коэффициента высоты зуба от геометрической характеристики зацепления

λ	1,401,50	1,501,60	1,601,70	1,701,80	1,802,00
K	0,480	0,532	0,555	0,575	0,565

Рисунок 7 - Зависимость коэффициент высоты зуба от геометрической характеристики зацепления

 $K \coloneqq 0.575$ - коэффициент высоты зуба

$$\lambda_{I.2.} \coloneqq \frac{t}{d_{I.z}} = 1.714$$
 - коэффициент геометрической характеристики зацепления

 $K_{f} = 1$ - коэффициент при вертикальном расположении цепи

 $K_{B} \coloneqq 1.15$ - угол наклона передачи более 40град.

Наружные диаметры ведущей и ведомой звездочки

$$D_I = t \cdot \left(K + \cot\left(\frac{180^{\circ}}{z_I}\right)\right) = 323.5 \text{ MM}$$

$$D_2 := t \cdot \left(K + \cot\left(\frac{180^{\circ}}{z_2}\right)\right) = 918.811$$
 мм
$$s := \frac{F_p}{F_t \cdot K_d + q \cdot V^2 + \frac{9.81 \cdot K_f \cdot q \cdot a''}{1000}} = 32.676$$
 - коэффициент запаса прочности

Определение силы, действующей на валы

$$F_B$$
 := F_t • K_B = 2.846 • 10³ Н - сила на валы цепной передачи

Расчет валов

Быстроходный вал

Рисунок 8 - Чертеж быстроходного вала

$$T_{\mathcal{B}} \coloneqq T_2 \cdot 10^6 = 6.201 \cdot 10^4$$
 Н*мм - вращающий момент $d_{\mathcal{B}} \coloneqq \sqrt[3]{\frac{T_{\mathcal{B}}}{0.2 \cdot 25}} = 23.147$ мм - диаметр выходного конца $d_{\mathfrak{B}} \coloneqq 38$ мм $d_{\mathcal{B}} \coloneqq 32$ мм

$$d'_{\mathcal{B}} := d_{9\partial} \cdot 0.8 = 30.4 \text{ MM}$$

 $L_{\it E}$ = 58 мм - длина выходного вала

Диаме	Диаметр <i>d</i>	Длина	I		
ря	д	исполне	ние	r	c
1-й	2-й	1	2		
10, 11	_	23	20	0,6	0,4
12, 14	-	30	25	1,0	0,6
16, 18	19	40	28	1,0	0,6
20, 22	24	50	36	1,6	1,0
25, 28	-	60	42	1,6	1,0
32, 36	30, 35, 38	80	58	2,0	1,6
40, 45	42, 48	110	82	2,0	1,6
50, 55	52, 56	110	82	2,5	2,0
60, 70	63, 65, 71, 75	140	105	2,5	2,0
80, 90	85, 95	170	130	3,0	2,5
100, 110, 125	120	210	165	3,0	2,5
140	130, 150	250	200	4,0	3,0
160, 180	170	300	240	4,0	3,0
200, 220	190	350	280	5,0	4,0
250	240, 260	410	330	5,0	4,0
280, 320	300	470	380	5,0	4,0

Примечания:

Рисунок 9 - Основные размеры цилиндрических концов валов

Расчет шпонки

$$b_{\underline{\mathcal{L}}_{\underline{\mathcal{L}}MNOHKa}} \coloneqq 10$$
 мм

$$h_{\underline{F}_\underline{u}\underline{n}\underline{o}\underline{n}\underline{\kappa}\underline{a}} \coloneqq 8 \quad \text{MM}$$

$$t_{IB_шпонка}$$
:=5 мм

$$t_{2E_шпонка} := 3.3 \text{ мм}$$

^{1.} Концы валов изготавливают двух исполнений: 1 — длинные; 2 — короткие.

У основания свободного конца вала допускается наличие технологической канавки для выхода шлифовального круга по ГОСТ 8820.

Шпонки призматические (по ГОСТ 23360-78 [29], с сокращениями

В миллиметрах

Turner name d	Сечение шпонки	Глуби	на паза	Фаска
Диаметр вала <i>d</i>	b × h	Вала t_I	Втулки t ₂	s×45°
Св. 10 до 12	4 × 4	2,5	1,8	0,08-0,16
Св. 12 до 17	5 × 5	3,0	2,3	
Св. 17 до 22	6 × 6	3,5	2,8	0,16-0,25
Св. 22 до 30	8 × 7	4,0	3,3	
Св. 30 до 38	10 × 8	5,0	3,3	
Св. 38 до 44	12 × 8	5,0	3,3	
Св. 44 до 50	14 × 9	5,5	3,8	0,25-0,40
Св. 50 до 58	16 × 10	6,0	4,3	
Св. 58 до 65	18 × 11	7,0	4,4	
Св. 65 до 75	20 × 12	7,5	4,9	
Св. 75 до 85	22 × 14	9,0	5,4	0.4 0.60
Св. 85 до 95	25 × 14	9,0	5,4	0,4, -0,60
Св. 95 до 110	28 × 16	10,0	6,4	

Примечания:

- 1. Длину шпонки выбирают из ряда: 6; 8; 10; 12; 14; 16; 18; 20; 25; 28; 32; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140; 160; 180; 200...(до 500).
- Материал шпонок сталь чистотянутая, с временным сопротивлением разрыву не менее 590 МПа.
- 3. Примеры условного обозначения шпонок:

Исполнение 1, Сечение шпонки $b \times h = 20 \times 12$, длина 90 мм:

Шпонка 20 × 12 × 90 ГОСТ 23360-78.

Рисунок 10 - Шпонки призматические

Подшипник 307 ГОСТ 8338 - 75

 $d_{\Pi.Б.}$ \coloneqq 35 мм - диаметр под подшипник

 $d_{3.Б.} \coloneqq d_{\Pi.Б.} + 10 = 45$ мм - диаметр заплечика

Рисунок 11 - Шариковый подшипник

 $d_{\it E}$ ≔35 мм - диаметр быстроходного вала

 $D_{\mathcal{B}} \coloneqq 80$ мм - диаметр наружный цилиндрической поверхности наружного кольца

 $B_{\it Б}$ ≔21 мм - ширина подшипника

 $r_{\it B}$ ≔ 2.5 - координата монтажной фаски

 $l_{\it B}\!\coloneqq\!B_{\it E}\!+\!1\!=\!22$ мм - длина участка под правым подшипником

Тихоходный вал

Рисунок 12 - Чертеж тихоходного вала

$$T_T = T_3 \cdot 10^6 = 3.752 \cdot 10^5$$
 Н*мм - вращающий момент

$$d_T \coloneqq \sqrt[3]{\frac{T_T}{0.2 \cdot 15}} = 50.007$$
 мм - диаметр выходного конца

$$d_T = 52$$
 MM

 $L_T = 82$ мм - длина выходного вала

Шпонка

$$b_{T_илонка} \coloneqq 10$$
 мм $h_{T_илонка} \coloneqq 8$ мм $t_{IT_илонка} \coloneqq 5$ мм

$$t_{2T_ипонка} := 3.3 \text{ мм}$$
 $s_{T_ипонка} := 0.25 - 0.4 \text{ мм}$

$$d_{T,T} := d_T + 8 = 60$$
 мм - диаметр под подшипник

$$d_{C,T} \coloneqq d_{T,T} + 5 = 65$$
 мм - диаметр под ступицу

$$d_{\mathit{V\!E}}\!\coloneqq\!d_{\mathit{C.T.}}\!+\!10\!=\!75$$
 мм - диаметр упорного буртика

$$l_C = b_2 - 2 = 58$$
 мм - длина участка вала под ступицу

Подшипник 312 ГОСТ 8338 - 75

$$d_T$$
:= 60 мм - диаметр тихоходного вала

 $D_T = 130 \text{ мм}$ - диаметр наружный цилиндрической поверхности наружного кольца

$$B_T$$
 = 31 мм - ширина подшипника

$$r_T = 3.5$$
 - координата монтажной фаски

$$l_T = B_T + 1 = 32$$
 мм - длина под правым подшипником

Компоновка редуктора

Рисунок 13 - Пример компоновки

 a'_{ω} =225 мм - требуемое межосевое расстояние

Межосевое расстояние	Толщина стенки корпуса и крышки	Диаметр фунда- ментных болтов	Диаметр Диаметр болтов болтов у подшип- на фланце корпуса		Диаметр штифтов	Длина подшипниковых гнезд
$a'_{o,MM}$	δ,мм	d_1	d_2	d_3	$d_{mmu\phi m} = d_{3MM}$	$L_{{\scriptscriptstyle \scriptscriptstyle {\it PMe}}{\it 3}{\it 6}a}$, мм
До 80	6	M12	M10	М8	8	8+29+(35)
От 90 до 180	8	M16	M12	M10	10	δ+32+(35)
От 200 до 280	10	M20	M16	M12	12	8+37+(35)
От 315 до 355	12	M24	M20	M14	14	δ+45+(35)
От 400 до 450	14	M27	M24	M16	16	δ+54+(35)
От 500 до 560	16	M30	M27	M16	16	8+58+(35)

Рисунок 14 - Параметры корпуса цилиндрического редуктора

$$\delta \coloneqq 10 \text{ мм } d_{l_{_k}} \coloneqq 20 \text{ мм } d_{2_{_k}} \coloneqq 16 \text{ мм } d_{3_{_k}} \coloneqq 12 \text{ мм}$$
 $d_{umu\phi m} \coloneqq d_{3_{_k}} = 12 \text{ мм } L_{\mathit{\it Ene3da}} \coloneqq \delta + 37 + 3 = 50 \text{ мм}$

v = 2.265 м/с - окружная скорость колес

Установка мазеудерживающих колец, которые на 1...2 мм выступаю во внутреннюю полость корпуса редуктора (нижняя часть рисунка выше)

Рисунок 15 - Чертеж мазеудерживающих колец

Торцовые (накладные) крышки

Рисунок 16 - Чертеж торцевых крышек

D	D_1	D_2	D_3	d	d_1	M	n	H	h	S
40-62	D + 15	D + 30		7	14	М6	4	10	5-15	5
65-75	D ± 20	D ± 40	D — 10	9	18	M8	4	12	5-20	6
75–95	D + 20	D + 40		9	10	NIO	6	12	3-20	O
100-145	D + 25	D + 50	D — 15	11	22	M10	6	15	5-30	7
150-180	D ± 20	D ± 60	D — 15	13	24	M12	6	18	5-30	8
190-220		D + 30 D + 60	D — 20	13	24	IVIIZ	Ü	10	5-30	d

Примечание:

 D^* , d^* , h^* — размеры манжет резиновых армированных по ГОСТ 8752—79.

Рисунок 17 - Размеры торцевых (накладных) крышек

Манжета

Рисунок 18 - Манжеты резиновые армированные

Для быстроходного вала

$$D_{B} = 80 \text{ MM} \quad D_{IB} := D_{B} + 20 = 100 \text{ MM}$$

$$D_{2B} := D_B + 40 = 120 \text{ MM}$$
 $D_{3B} := D_B - 10 = 70 \text{ MM}$

$$d'_{\overline{b}} := 9 \text{ MM}$$
 $d_{I\overline{b}} := 18 \text{ MM}$ $M_{\overline{b}} := 8 \text{ MM}$ $n_{\overline{b}} := 6$

$$H_{\mathcal{B}} \coloneqq 12 \quad h = 5 - 20 \qquad \equiv 6 \qquad M_{\mathcal{B}} \coloneqq 8$$

Манжета
$$_{\it I\!E\!.}\!:=\!d_{\it I\!I\!.E\!.}\!=\!35$$
 $D_{\it M\!E\!.}\!:=\!58$ $h_{\it I\!E}\!:=\!10$ Тип 1

Для тихоходного вала

$$D_T = 130 \text{ MM}$$
 $D_{IT} = D_T + 25 = 155 \text{ MM}$

$$D_{2T} = D_T + 50 = 180$$
 MM $D_{3T} = D_T - 15 = 115$ MM

$$d'_T = 11$$
 MM $d_{IT} = 22$ MM $M_T = 10$ $n_T = 6$

$$H_T = 15$$
 $h = 5 - 30$ $s_T = 7$

Манжета

Тип 1
$$d_{M.T} := d_{T.T.} = 60$$
 $D_{M.E.} := 85$ $b_{I.T} := 12$

Компоновка

Рисунок 19 - Компоновка редуктора

Конструирование корпуса

L = 454.5 мм - расстояние между внешними поверхностями детали

$$a = \sqrt[3]{L} + 3 = 10.689$$
 мм - зазор

$$b_0 = 3 \cdot a = 33$$

 $\delta \coloneqq 10$ мм - толщина корпуса редуктора

$$d_{l k} = 20$$
 мм - фундаментные болты

$$d_{2k} = 16$$
 мм - болты у подшипников

$$d_{3k} := 12$$
 мм - болты на фланце корпуса

$$d_{umu\phi m} := d_{3_k} = 12$$
 мм - штифты

$$L_{\it {\it Ehe3da}}\!\coloneqq\!\delta\!+\!37\!+\!3\!=\!50$$
 мм - гнезда подшипников

$$m_n = 2.25 < \text{h}$$
 масла $< h_{max} \coloneqq 0.25 \cdot d'_2 = 97.313$

$$h_{masla} := 43 + 0.1 \cdot d'_2 = 81.925$$
 $h_{masla} := 82$

Лира

Рисунок 20 - Эпюра Мх

Рисунок 21 - Эпюра Му

Рисунок 22 - Эпюра Mz

Рисунок 23 - Эпюра Qy

Рисунок 24 - Эпюра Qz

Рисунок 25 - Эпюра fy

Рисунок 26 - Эпюра перемещений

Рисунок 27 - Перемещение на левой опоре

Рисунок 28 - Перемещение на правой опоре

Расчет на жесткость тихоходного вала

$$M_x := 375000 \quad M_y := 27200 \quad M_{k2} := 375200$$

$$T_T = 3.752 \cdot 10^5$$

$$M_{9\kappa6} := \sqrt{M_x^2 + M_y^2 + M_{k2}^2} = 5.312 \cdot 10^5$$

$$d_{npo6} := \sqrt[3]{\frac{M_{9\kappa6}}{0.1 \cdot 60}} = 44.568$$

Резерв прочности вала

$$\delta \coloneqq \left(\frac{d_{C.T.} - d_{npos.}}{d_{C.T.}}\right) \cdot 100 = 31.433 \%$$

Жесткость вала по прогибу

fy, мм	fx, мм	$fmax = \sqrt{f_x^2 + f_y^2}$	[ƒ], мм	PE3EPB (PA3)
-0,0141000	0	0,0141	0,0225	1,60

Жесткость вала по углу поворота сечения на левой опоре

вАуг, рад	вАхг, рад	$\theta A \sum = \sqrt{\theta_{Ayz}^2 + \theta_{Axz}^2}$	[θ], paò	PE3EPB (PA3)
0,0000936	0,0000051837	0,0000937325	0,005	53,34

Жесткость вала по углу поворота сечения на правой опоре

вВуг, рад	вВуг, рад	$\theta B \Sigma = \sqrt{\theta_{\mathrm{B}yz}^2 + \theta_{\mathrm{B}xz}^2}$	[θ], paờ	PE3EPB (PA3)
-0,0000473768	-0,0000047986	0,0000476192	0,005	105,00

Рисунок 29 - Расчет на жесткость тихоходного вала

Inventor

 Материал
 Сталь

 Модуль упругости
 Е 206000 МПа

 Модуль жесткости
 G 80000 МПа

 Плотность
 ρ 7860 кг/м^3

Рисунок 30 - Параметры при расчете

Рисунок 31 - Эпюра Му

Рисунок 32 - Эпюра Mz

Рисунок 33 - Эпюра Qу

Рисунок 34 - Эпюра Qz

Рисунок 35 - Эпюра fy

Рисунок 36 - Эпюра fz

Рисунок 37 - Эпюра приведенного напряжения

Рисунок 38 – Редуктор

Рисунок 39 - Редуктор без крышки

Рисунок 40 - Зубчатое соединение

СПИСОК ИСТОЧНИКОВ

- 1. Чернавский, С. А. Курсовое проектирование деталей машин: учеб. пособие / С. А. Чернавский, К. Н. Боков, И. М. Чернин и др. 3-е изд., перераб. и доп. М.: ИНФРА-М, 2014. 414 с.; ил. ISBN 978-5-16-004336-4.
- 2. Дунаев, П. Ф. Конструирование узлов и деталей машин: учеб. пособие для студ. техн. спец. вузов / П. Ф. Дунаев, О. П. Леликов. 8-е изд., перераб. и доп. М.: Издательский центр «Академия», 2004. 496 с. ISBN 5-7695-1041-2.
- 3. Дунаев П. Ф. Детали машин. Курсовое проектирование: учеб. пособие для машиностроит. спец. учреждений среднего профессионального образования / П. Ф. Дунаев, О. П. Леликов. 5-с издание, дополн. М.: Машиностроение, 2004. 560 с., ил. ISBN 5-217-03253-7
- 4. Шейнблит, А. Е. Курсовое проектирование деталей машин: учеб. пособие. Изд-е 2-е. перераб. и дополн. Калининград: Янтар. сказ, 2002. 454 с.: ил., черт. Б. ц.
- 5. Цехнович, Л. И. Атлас конструкций редукторов: учеб. пособие для технических вузов / Л. И. Цехнович, И. П. Петриченко. 2-е изд., перераб. и доп. Киев.: Вища школа, 1990. 150 с.: ил. ISBN5-11-002156-2.
- 6. Решетов, Д. Н. Детали машин: Атлас конструкций: учеб. пособие для студентов машиностроительных специальностей вузов. В 2-х ч. / Б. А. Байков, В. Н. Богачев, А. В. Буланже и др.: Под общ. ред. д-ра техн. наук проф. Д. Н. Решетова. 5-е изд. перераб. и доп. М.: Машиностроение, 1992. 352 с.: ил. ISBN5-217-01507-1.
- 7. Курмаз, Л. В. Детали машин. Проектирование: справочное учебнометодическое пособие / Л. В. Курмаз, А. Т. Скойбеда. 2-е изд., испр.: М.: Высш. Шк., 2005. -- 309 с.: ил. ISBN5-06-004806-3.