EJEMPLOS DE PRUEBAS

Ejercicio 1. Hallar una prueba de $\emptyset \vdash (\neg \neg \rho \rightarrow \rho)$.

Demostración. Por el Teorema de Deducción, lo que nos piden equivale a probar

$$\{\neg\neg\rho\}\vdash\rho$$

- 1) $(\neg \neg \rho \rightarrow (\neg \rho \rightarrow \neg \neg \rho))$ (AX1)
- 2) $\neg \neg \rho$ (Hip)
- 3) $(\neg \rho \rightarrow \neg \neg \rho)$ (MP 1 y 2)
- 4) $((\neg \rho \rightarrow \neg \neg \rho) \rightarrow ((\neg \rho \rightarrow \neg \rho) \rightarrow \rho))$ (AX3)
- 5) $((\neg \rho \rightarrow \neg \rho) \rightarrow \rho)$ (MP 3 y 4)
- 6) $(\neg \rho \rightarrow \neg \rho)$ (Probado en la teoría)
- 7) ρ (MP 5 y 6)

Ejercicio 2. Hallar una prueba de $\emptyset \vdash ((\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta))$.

Demostración. Por el Teorema de la Deducción, lo que nos piden equivale a probar

$$\{(\neg \beta \to \neg \alpha), \alpha\} \vdash \beta$$

- 1) $((\neg \beta \rightarrow \neg \alpha) \rightarrow ((\neg \beta \rightarrow \alpha) \rightarrow \beta))$. (AX3)
- 2) $(\neg \beta \rightarrow \neg \alpha)$. (Hip)
- 3) $(\neg \beta \rightarrow \alpha) \rightarrow \beta$). (MP 1 y 2)
- 4) $\alpha \to (\neg \beta \to \alpha)$ (AX1)
- 5) α (Hip)
- 6) $(\neg \beta \rightarrow \alpha)$ (MP 4 y 5)
- 7) β (MP 3 y 6)

Ejercicio 3. Hallar una prueba de $\emptyset \vdash (\neg \neg \neg \rho \rightarrow \neg \rho)$.

Demostración. Por el Teorema de la Deducción, lo que nos piden equivale a probar

$$\{\neg\neg\neg\rho\}\vdash\neg\rho$$

- 1) $(\neg\neg\neg\rho \rightarrow (\neg\neg\rho \rightarrow \neg\neg\neg\rho))$. (AX1)
- 2) $\neg\neg\neg\rho$ (Hip)
- 3) $(\neg \neg \rho \rightarrow \neg \neg \neg \rho)$ (MP 1 y 2)
- 4) $((\neg\neg\rho \to \neg\neg\neg\rho) \to ((\neg\neg\rho \to \neg\neg\rho) \to \neg\rho))$ (AX3)
- 5) $(\neg \neg \rho \rightarrow \neg \neg \rho) \rightarrow \neg \rho)$ (MP 3 y 4)
- 6) $(\neg\neg\rho\rightarrow\neg\neg\rho)$ (Probado en la teórica)
- 7) $\neg \rho \ (MP \ 5 \ v \ 6)$

Ejercicio 4. Hallar una prueba de $\emptyset \vdash (\rho \rightarrow \neg \neg \rho)$.

Demostración. .

- 1) $(\neg\neg\neg\rho \to \neg\rho)$ (Probado en (3))
- 2) $((\neg\neg\neg\rho\to\neg\rho)\to(\rho\to\neg\neg\rho))$ (Probado en el ejercicio (2))

3)
$$(\rho \rightarrow \neg \neg \rho)$$
 (MP 1 y 2).

Ejercicio 5. Hallar una prueba de $\emptyset \vdash ((\alpha \rightarrow \beta) \rightarrow (\neg \neg \alpha \rightarrow \neg \neg \beta))$

Demostración. Por el Teorema de la Deducción, lo que nos piden equivale a probar:

$$\{(\alpha \to \beta), \neg \neg \alpha\}$$

- 1) $(\neg \neg \alpha \rightarrow \alpha)$ (Probado en el ejericicio (1)).
- 2) $\neg \neg \alpha$ (Hip)
- 3) α (MP 1 y 2)
- 4) $(\alpha \to \beta)$ (Hip)
- 5) β (MP 3 y 4)
- 6) $(\beta \rightarrow \neg \neg \beta)$ (Probado en el ejercicio (4)).

7)
$$\neg \neg \beta$$
 (MP 5 y 6)

Ejercicio 6. Hallar una prueba de $\emptyset \vdash ((\alpha \to \beta) \to (\neg \beta \to \neg \alpha))$.

Demostración. Por el Teorema de la Deducción, lo que nos piden equivale a probar

$$\{(\alpha \to \beta), \neg \beta\} \vdash \neg \alpha$$

- 1) $((\neg \neg \alpha \rightarrow \neg \neg \beta) \rightarrow ((\neg \neg \alpha \rightarrow \neg \beta) \rightarrow \neg \alpha))$ (AX3)
- 2) $((\alpha \to \beta) \to (\neg \neg \alpha \to \neg \neg \beta))$ (Probado en ejercicio (5)).
- 3) $(\alpha \to \beta)$ (Hip)
- 4) $(\neg \neg \alpha \rightarrow \neg \neg \beta)$ (MP 2 y 3)
- 5) $((\neg \neg \alpha \rightarrow \neg \beta) \rightarrow \neg \alpha)$ (MP 4 y 1)
- 6) $(\neg \beta \rightarrow (\neg \neg \alpha \rightarrow \neg \beta))$ (AX1)
- 7) $\neg \beta$ (Hip)
- 8) $(\neg \neg \alpha \rightarrow \neg \beta)$ (MP 6 y 7)

9)
$$\neg \alpha$$
 (MP 5 y 8)

Ejercicio 7. Probar que si $\Gamma \cup \{\varphi\}$ es inconsistente, entonces $\Gamma \vdash \neg \varphi$.

Demostración. Como $\Gamma \cup \{\varphi\}$ es inconsistente, existe ψ tal que $\Gamma \cup \{\varphi\} \vdash \psi$ y $\Gamma \cup \{\varphi\} \vdash \neg \psi$, por lo tanto por el Teorema de la Deducción:

$$\Gamma \vdash (\varphi \to \psi) \ \ y \ \Gamma \vdash (\varphi \to \neg \psi)$$

- 1) $((\neg\neg\varphi \to \neg\neg\psi) \to ((\neg\neg\varphi \to \neg\psi) \to \neg\varphi))$ (AX3)
- 2) $((\varphi \to \psi) \to (\neg \neg \varphi \to \neg \neg \psi)$ (Probado en el ejericio (5))
- 3) $(\varphi \to \psi)$ (Dato)
- 4) $(\neg\neg\varphi \rightarrow \neg\neg\psi)$ (MP 2 y 3)
- 5) $((\neg \neg \varphi \rightarrow \neg \psi) \rightarrow \neg \varphi)$ (MP 1 y 4)
- 6) $((\varphi \to \neg \psi) \to (\neg \neg \varphi \to \neg \psi))$ (Hecho en la práctica).
- 7) $(\varphi \to \neg \psi)$ (Dato)
- 8) $(\neg\neg\varphi\rightarrow\neg\psi)$ (MP 6 y 7)
- 9) $\neg \varphi$ (MP 5 y 8)