媒体与认知 课堂 2 复习大纲 2021 v1.0

周次	主题内容	知识点
1.	媒体与认知概述	• 媒体、信息的概念,媒体的分类
		• 认知与信息处理: 人的认知、机器智能
		◆ 人工智能的三大流派: 符号主义、连接主义、行为主义
		• 媒体与认知的相互作用: 获取信息、拓展认知、创造新媒体
		• 案例: 青蒿素的发现、文字识别、植入式脑机接口
		• 数学基础
		• 编程环境、编程基础
	机器学习基础	• 机器学习基本概念
		・ 机器学习的基本任务: 监督学习 (回归、分类)、非监督学习(聚类)
		· 模式分类:数据获取与预处理、特征提取与变换、分类决策
		· 设计模式识别系统的阶段:训练、测试。训练使用训练集、验证集数据,测试使用测试集数据
		・ 生成式模型与鉴别式模型
		• 神经元模型:线性加权及偏置量,激活函数(Sigmoid, Tanh, ReLU等)
		• 线性回归、感知机、逻辑回归
		· 线性回归用于回归任务,目标函数:均方误差
		◆ <mark>误差反向传播、梯度下降法</mark> 更新模型参数、随机梯度下降法(SGD), 批量梯度下降法(BGD), 小批量随机梯度下降 │
2.		法(MSGD)
		· 感知机用于二分类任务,激活函数为符号(Sign)函数 (注:类别标签为-1,1),目标函数:误分类点到超平面的总距离
		· 逻辑回归用于二分类任务,激活函数为 Sigmoid 函数 (注:类别标签为 0, 1),目标函数:交叉熵
		• 模型的评估
		・ 模型的容量, 误差
		· 模型的泛化能力,过拟合,欠拟合
		· 错误率与识别率,混淆矩阵,召回率 Recall、准确率 Precision、F1 分数、真阳性率(True Positive Rate)、假阳性率(False
		Positive Rate)
		· 交叉验证方法: K-折交叉验证、留一法
		• 案例: 人脸识别

		• 从感知机到多层感知机 (前馈神经网络) 的发展
3.		 前馈神经网络 (Feedforward Neural Network)
	A4 17 F3 14	· 具有一个隐含层的前馈神经网络的函数逼近能力
	神经网络	· 目标函数:均方误差、基于 Softmax 计算的交叉熵
		· 前向计算、误差反向传播、梯度下降法更新模型参数、复合函数求导链式法则
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	· 基于神经网络的非线性回归、非线性分类
	深度学习	• 深度学习
		・计算图
		· 网络参数的向量/矩阵化表示: 矩阵求导
		• 深度学习的优化方法
		神经网络优化问题: 局部极小值、鞍点
		学习率调整,如 step decay
		优化方法: 随机梯度下降法(SGD) 等
4.		◇ 梯度估计调整,如动量法
		◆ 梯度估计调整+自适应学习率,如 Adam
		◆ 有助于优化的方法: 使用线性函数、增加跳跃链接、增加隐含层辅助代价函数
		参数初始化
		深度学习超参数
		数据预处理
		• 深度学习的正则化方法
		· 防止过拟合的方法:参数L ₁ 或L ₂ 范数惩罚、Dropout、提前终止、数据增强
	卷积神经网络:引入局	• 卷积神经网络(Convolutional Neural Network)
	部感受野	・局部感受野、权值共享、亚采样(池化)
		・数据输入通道数、卷积核大小、卷积核数目(输出通道数)、步长、边界延拓、空洞卷积膨胀率
_		◆ 卷积层参数量计算,输出特征图尺寸计算
5.		・分组卷积、深度可分离卷积、可变形卷积
		・卷积神经网络误差反向传播,对权值共享的参数的梯度计算方法
		· 防止梯度消失的方法: 批量归一化
		・常见 CNN 模型: LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, DenseNet, ShuffleNet, MobileNet
		而元 CIVIN 法主: Leinet, Aleanet, Voornet, Googleinet, Resinet, Deliseinet, Silumetret, Moulieinet

6.	卷积神经网络应用	CNN 应用:图像分类(迁移学习)、图像分割 (转置卷积)、目标检测
		卷积神经网络可视化
	循环神经网络:引入反	
	馈对数据进行再利用	・传统循环神经网络,计算图,沿时间展开
		・误差随时间反向传播(BPTT)算法: 具有多个中间变量的复合函数求导方法,权值共享相当于引入多个中间变量,此外,
		还需要考虑不同时刻的损失函数
7.		・具有门控机制的循环神经网络
		门的概念:门用一个神经元实现,输入包括两部分: x _i , h _{i-1} , 有权值系数及偏置量
		LSTM, GRU
		・深层循环神经网络:
		常见两种网络架构: BiLSTM + CTC 解码; 编码器-解码器架构
		• 序列建模案例: 连写文字识别、诗词生成、音乐生成
	深度学习中的注意力	在特征表示中引入加权系数
	机制	• 卷积神经网络中的注意力机制
8.		・対特征图空间位置加权
0.		· 对特征图通道加权
		• 循环神经网络
		· 对特征序列进行加权
	七牡台县和	• 自注意力机制
	支持向量机	• 支持向量机 SVM ・ 线性可分问题
		最大间隔分类、拉格朗日乘子法求解不等式约束条件的优化问题
		· 近似线性可分问题
9.		针对每类样本离群点引入松弛因子,实现软间隔分类; SMO 算法
		・非线性分类问题: 核函数相当于在高维空间中计算内积的函数 $K\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T}\phi\left(\mathbf{x}_{j}\right)$, 但把数据从低维到高维空间
		的映射函数 $\phi(\mathbf{x})$ 不需要显式定义出来
10.	统计模式识别	• 贝叶斯决策
100		・概率基础: 条件概率、联合概率、全概率公式

		 . 贝叶斯公式,先验概率、后验概率、类条件概率密度函数、样本特征向量概率分布 . 最小错误率决策:依据最大后验概率进行分类判决 . 两类分类问题的决策面方程 • 正态分布条件下的贝叶斯决策 . 概率基础:最大似然估计,正态分布参数的最大似然估计 . 正态分布条件下贝叶斯决策的判别函数:利用后验概率,去除与分类无关的项,取对数(对数函数的单调性)协方差矩阵的不同情形: 1. 元素相等的对角阵(欧氏距离分类器) 2. 各类共享协方差矩阵(马氏距离分类器) 3. 各类不同的协方差矩阵;
		前两种相当于线性判别函数,最后一种相当于二次判别函数;二次判别函数的改进形式: MQDF • 非监督学习与聚类: · K-Means 算法,混合高斯模型,EM 算法 • 案例: 脱机手写字符识别
11.		五一调课
12.	隐含马尔可夫模型	 概率论与随机过程基础: 马尔可夫过程、马尔可夫链 双重随机过程,用三元组描述: 内部状态序列为马尔可夫链,用初始状态分布及转移概率描述 每一状态对应一个可以观察的事件,用观测概率描述 评估问题:前向法、后向法 解码问题: Viterbi 算法 学习问题: Baum-Welch 算法(一种 EM 算法) 基于 HMM 的语音识别 (语音特征提取: MFCC)
13.	特征提取与特征降 维	 特征提取 . 傅里叶变换的尺度变换特性,时-频窗 . 傅里叶变换→加窗傅里叶变换 (Gabor 变换) →小波变换 . Gabor 滤波器组 特征降维:特征选择、特征变换

		· PCA, 无监督的特征降维 · LDA, 有监督的特征降维, 需要计算类内、类间散布矩阵, 有效维数为 C-1 (C 为类别总数) · 自动编码器, 无监督深度学习方法, 可以实现一种非线性特征降维 其他实用数据降维方法: t-SNE, UMAP
14.	认知的生物机制	 感觉与知觉 视觉感知 视觉的生理机制:视网膜,感受野(同心圆感受野、简单感受野、复杂感受野之间的关系) 视觉的传导机制 视觉的中枢机制:初级视皮层(纹状皮层)、纹外皮层 知觉的信息加工过程:自下而上的加工(数据驱动),自上而下的加工(概念驱动) 注意 注意的概念 注意的概念 注意的认知资源分配 注意的生理机制 计算机视觉中的注意力机制 记忆 记忆的生理机制 感觉记忆:保持几秒以内,容量≥9 短时记忆:保持1分钟以内,容量7±2 长时记忆:保持1分钟以上,容量巨大
15.	媒体与认知相互作 用	 类脑认知计算 从信息熵的角度理解识别过程 信息的获取与利用 光场相机、结构光成像 利用人的认知特点创造新媒体 视觉暂留与电影,立体视觉,虚拟现实与增强现实

数学基础

- 概率与统计相关
 - · 离散或连续随机变量、概率、条件概率、联合概率、全概率公式
 - · 先验概率、类条件概率,后验概率,贝叶斯公式
 - · 随机变量均值、方差的计算
 - · 两个随机变量的协方差
 - 随机变量的信息熵、条件熵
 - · 均方误差
 - · 二分类、多分类(Softmax)交叉熵
- 微积分及线性代数
 - · 函数求导
 - 复合函数求导:链式法则
 - · 多个自变量、中间变量的复合函数求导
 - · 矩阵及向量求导
 - · 向量范数
 - · 卷积
 - ◆ 利用矩阵乘法实现卷积