https://github.com/physicell-training/02-How-to-nanoHUB

# Lesson 2: How to use a PhysiCell nanoHUB app

Paul Macklin, Ph.D.



## PhysiCell Project

last updated: November 13, 2019





#### nanoHUB Account

- These tutorials use cloud-hosted PhysiCell models on <u>nanoHUB.org</u>.
- nanoHUB is free, but it requires a onetime registration.

#### Steps:

- Visit <a href="https://nanohub.org/register">https://nanohub.org/register</a>
- 2. Choose "Sign in with Google"
- 3. Choose a Google account
- 4. Click "No" (so it doesn't try to associate with some other nanoHIB account)
- 5. Finish filling in details, and you're done!
- 6. Use your google account for future logins.







#### Goals

 Many of the PhysiCell lessons are paired with educational microapps: targeted cloud-hosted models designed to illustrate a core PhysiCell concept.

All PhysiCell-powered nanoHUB apps share common features.

This brief lesson will walk you through those features.

#### **Tools versus Apps**

- After considerable debate, the nanoHUB community arrived at these definitions:
  - A tool is an application with broader feature sets and less constrained use cases. A tool tends to require more extensive training to understand the full feature set.
    - ♦ Future PhysiCell-powered nanoHUB resources may be tools if they allow general-purpose modeling using PhysiCell as the engine.
  - An app is purpose-driven model or constrained tool with relatively constrained and focused use cases. Users can generally learn an app in one or two unguided sessions.
    - ♦ Most PhysiCell-powered nanoHUB resources are apps.
- There may be blurred distinctions between tools and apps in some cases, such as PhysiCell apps that can simulate a broad variety of nanotherapies.

# Sample nanoHUB app: biorobots

- This sample model explores how engineered cells could be used as a multicellular cargo delivery system.
- Director cells: Release a chemoattractant to guide delivery of cargo
- Cargo cells: Release a chemoattractant to guide worker cells until they are attached.
- Worker cells: When unattached to cargo, use chemotaxis to seek cargo cells and adhere to them.

When attached to cargo, use chemotaxis to drag cargo towards directors for delivery.

# Splash screen and launching the tool

- Each PhysiCell-powered nanoHUB app has a splash page:
  - Background information on the tool and model
  - Use metrics
  - Citation information
  - A LAUNCH TOOL button. Click this!



#### **About**

- The about tab gives inapp documentation about the mathematics of the model:
  - background
  - diffusing substrates
  - key cell types and behaviors

 This tab also describes the main user parameters of the model.



# **Configuration basics**

- The config basics tab lets you set up the simulation:
  - Set the domain size and spatial resolution
    - ♦ Might be disabled in some apps.
  - Set the final simulation time
  - Set the number of threads (capped at 4 on nanoHUB)
  - Specify how often to save cell plots
  - Specify how often to save diffusing substrate data



#### Microenvironment

- The microenvironment tab lets you set diffusion options:
  - For each substrate, set:
    - ♦ diffusion coefficient
    - ♦ decay rate
    - initial condition
      - » applied uniformly throughout the domain
    - Dirichlet boundary condition
      - » applied uniformly to the boundary
      - "uncheck" to disable this and revert to Neumann (zero flux) conditions
  - Enable or disable calculation of substrate gradients
    - ♦ needed for cell chemotaxis
  - Enable or disable full tracking of internalized substrates in each cell
    - needed for some models



#### **User parameters**

- The user parameters tab is where you set parameters that are specific to the app.
- Each row is a parameter:
  - parameter name
  - parameter value
  - units
  - short parameter description
- Consult the about tab for more mathematical information on the parameters



## Running

- Once ready, click Run
- The standard model outputs will start appearing below
- Click Cancel to end early and choose new parameters





## Simulation output

- The Out: Plots tab shows the simulation outputs as it runs.
- Slide the "frame" bar to advance time in the simulation.
- Use the dropdown box to choose a different substrate for visualization.
  - Use "fix" to manually set the plot range
  - Click the righthand dropdown box to change coloring (YIOrRd, viridis, jet, ...)
- The checkboxes on the right let you choose plotting options for the cells.
- Note: Some older apps may split the output into separate "substrate" and "cell" tabs, rather than overlay them.



# Downloading simulation plots and data

- At the bottom of the output tab, you can find options to download your simulation data.
- Click svg.zip to download all the SVG cell plots as a single ZIP file.
- Click mcds.zip to download all the simulation data (in MultiCellDS format) as a single ZIP file.
- Note: These download buttons only work after a simulation has finished running.
- See the <u>PhysiCell-Tools</u> ecosystem for tips on loading simulation data in Matlab, Python, and other environments.



#### Live demo

## **Next steps**

**Super fast:** Please proceed to 4 (Introduction to PhysiCell)

link: <a href="https://github.com/physicell-training/04-PhysiCell-intro">https://github.com/physicell-training/04-PhysiCell-intro</a>

**Intermediate:** Please proceed to 4 (Introduction to PhysiCell)

link: <a href="https://github.com/physicell-training/04-PhysiCell-intro">https://github.com/physicell-training/04-PhysiCell-intro</a>

Full training: Please proceed to 3 (What is an agent-based model?)

link: <a href="https://github.com/physicell-training/03-What-is-ABM">https://github.com/physicell-training/03-What-is-ABM</a>

More lessons: <a href="https://github.com/physicell-training/master-list">https://github.com/physicell-training/master-list</a>

#### **Credits**

**Lesson Planning:** Paul Macklin, Drew Willis\*, Randy Heiland

Slides: Paul Macklin, Drew Willis, Randy Heiland

Recording: Paul Macklin, Drew Willis\*

Paul Macklin, Drew Willis\*, Kali Konstantinopoulos\* **Post-production:** 

Microapps: https://www.nanohub.org/tools/pc4biorobots

\* denotes undergraduate researcher

#### Funding:







#### **PhysiCell Development:**

- **Breast Cancer Research Foundation**
- Jayne Koskinas Ted Giovanis Foundation for Health and Policy
- National Cancer Institute (U01CA232137)
- National Science Foundation (1720625)

#### **Training materials:**

\* Administrative supplement to NCI U01CA232137 (Year 2)

