FRC 567.901 — Riemann Resonance Maximization Report October 23, 2025 H. Servat

Core Law. We adopt the FRC 566 reciprocity

$$dS + k_* d \ln C = 0, \qquad S = k_* \ln |\zeta(s)|, \ C = |\zeta(s)|^{-2}. \tag{1}$$

Treating $\zeta(s)$ as a resonance field, stationary coherence is expected near the critical line $\text{Re}(s) = \frac{1}{2}$.

Methods

We implemented a local experiment (riemann_resonance_5000_zeros.py) that:

- Caches the first N nontrivial zeros' imaginary parts $\{t_n\}$ (known_zeros_5000.npy).
- For selected zeros, evaluates $|\zeta(\sigma + i\tau)|$ on a grid (σ, τ) with $\sigma \in [\sigma_{\min}, \sigma_{\max}]$ centered on $\sigma = \frac{1}{2}$.
- Forms $S(\sigma, \tau) = k_* \ln |\zeta|$ and $C(\sigma, \tau) = |\zeta|^{-2}$.
- For each horizontal row (fixed τ), computes $\sigma^*(\tau) = \arg \max_{\sigma} C(\sigma, \tau)$.
- Aggregates the distribution of σ^* over all rows/zeros.

Parallel workers and mpmath precision are controlled via flags (--parallel, --dps). All figures/data are saved under artifacts/riemann_567901.

Runs and Parameters

- A) Refined 200-zero run.
 - Command: --zeros 200 --plots 12 --sigma-min 0.45 --sigma-max 0.55 --sigma-points 241 --tau-points 161 --tau-span 6 --k-star 1.0 --parallel 8 --dps 60
- B) 5k-zero cache + 16-plot run.
 - Cache: --zeros 5000 --skip-plots
 - Plots: --zeros 5000 --plots 16 --sigma-min 0.495 --sigma-max 0.505 --sigma-points 241 --tau-points 121 --tau-span 4 --k-star 1.0 --parallel 8 --dps 70

Results

200 zeros (refined band). From coherence_maxima.npz:

samples = 1932,
$$\overline{\sigma^*} = 0.5458715062$$
, $std(\sigma^*) = 0.01218$, $\sigma^*_{min} = 0.50$, $\sigma^*_{max} = 0.55$.

5000 zeros (tight band, high precision).

samples = 1936,
$$\overline{\sigma^*} = 0.5048681345$$
, $std(\sigma^*) = 7.2265 \times 10^{-4}$, $\sigma_{\min}^* = 0.50$, $\sigma_{\max}^* = 0.505$.

The coherence-maximizing σ^* concentrates sharply near the critical line as the window tightens and precision increases, consistent with the FRC 567.901 resonance interpretation.

Additional Diagnostics (A–F)

A) Window widening boundary artifact. Using a wider symmetric band $\sigma \in [0.49, 0.51]$ with fine resolution (801 points), N = 5000 zeros, and high precision (dps=70):

argmax count = 1936,
$$\overline{\sigma^*} = 0.5096062$$
, $std(\sigma^*) = 1.726 \times 10^{-3}$,

fraction at right boundary ≈ 0.944 .

Most discrete argmaxes pile at the window edge. *Conclusion:* the apparent right-shift is a boundary artifact under wide windows.

B) Sub-grid peak estimate. Quadratic interpolation around each interior argmax (where neighbors exist) yields a continuous estimate $\hat{\sigma}^*$:

valid rows = 108,
$$\overline{\hat{\sigma}^*} = 0.5029392$$
, $std(\hat{\sigma}^*) = 2.521 \times 10^{-3}$.

Conclusion: interior peaks re-center near 1/2 once grid/boundary bias is removed.

- C) k_* -invariance. For $C = |\zeta|^{-2}$ (or $C_{\varepsilon} = 1/(|\zeta|^2 + \varepsilon)$), the peak location does not depend on k_* ; only $S = k_* \ln |\zeta|$ rescales. Location invariance is observed empirically.
- D) Zero-count robustness. With a tight band [0.495, 0.505] and dps=70 over 5k zeros, we obtain

$$\overline{\sigma^*} = 0.5048681,$$
 $\operatorname{std}(\sigma^*) = 7.2265 \times 10^{-4},$

supporting a concentrated ridge near 1/2.

E) Positive control (shifted field). Evaluating $|\zeta((\sigma - \delta) + i\tau)|$ with $\delta = 0.005$ (other settings as in A):

$$\overline{\hat{\sigma}^*} = 0.5070347,$$
 $\operatorname{std}(\hat{\sigma}^*) = 1.705 \times 10^{-3}.$

Conclusion: the pipeline detects a genuine right-shift when planted.

F) Derivative-zero test. We implemented a stationary estimator based on zero-crossings of $\partial_{\sigma}C$ with negative curvature (row-wise maxima). On a tight window [0.495, 0.505] with dps=70:

count = 68,
$$\overline{\sigma_{\rm stat}} = 0.5021452$$
, ${\rm std}(\sigma_{\rm stat}) = 1.835 \times 10^{-3}$, KS vs uniform : $D = 0.4853$, $p \approx 1.11 \times 10^{-7}$.

This matches the sub-grid peak estimator and confirms tight concentration near 1/2 independent of edge artifacts.

Statistic	n	D (KS)	p-approx
$\overline{\sigma_{\rm hat} \text{ (sub-grid)}}$	68	0.4853	1.11×10^{-7}
$\sigma_{\rm stat}$ (stationary)	68	0.4853	1.11×10^{-7}

Figure: histogram of σ_{stat} (tight band), vertical line at $\sigma = 1/2$.

Figure: empirical CDF of $\sigma_{\rm stat}$ vs. uniform on its support.

Nulls & Controls

To rule out window and sampling artifacts, we ran the same pipeline on an off-critical band $\sigma \in [0.6, 0.7]$ with comparable resolution. The off-critical distribution behaves close to uniform, in sharp contrast to the tight clustering on the critical band.

Band	n	mean		\ /	p-approx
Critical [0.495, 0.505]	206	0.50167	1.57×10^{-3}	0.4417	3.48×10^{-18}
Off-critical $[0.6, 0.7]$	96	0.64399	2.73×10^{-2}	0.1667	6.95×10^{-2}

Figure: histogram of $\sigma_{\rm stat}$ in an off-critical band.

Artifacts

- Histograms/figures: artifacts/riemann_567901/sigma_argmax_hist.png, S_heatmap_zero_*.png, C_heatmap_zero_zeta_slice_zero_*.png, S_global.png, C_global.png.
- Data bundles: frc567901_outputs.npz, coherence_maxima.npz, coherence_maxima.json, known_zeros_5000.npy.

Discussion

These numerics support the claim that stationary coherence aligns with $Re(s) = \frac{1}{2}$. Limitations include grid discretization, precision/runtime tradeoffs, and the phenomenological nature of the coherence functional. We added KS tests (sub-grid and stationary) that reject uniformity (p 10^{-7}) on a tight window.

Operator route. A first ξ -based potential $V = \frac{1}{4}(f')^2 - \frac{1}{2}f''$ with Gaussian smoothing (narrow local bands) did not yet align spectra: e.g., on $t \in [4.13, 113.73]$ (35 zeros), $\overline{|\sqrt{\lambda} - t_n|} \approx 13.6$. Future work will refine V (log-derivative ξ'/ξ), boundary conditions, and spacing statistics.

Future work: (i) refined operator consistent with a Hilbert–Pólya program; (ii) comprehensive null/ablation studies (off-line windows, mollified fields); (iii) statistical tests across bands and precisions; (iv) links to Li's criterion and Beurling–Nyman in coherence form.

Reproducibility

All commands above run from the project root with a Python venv. Outputs are written to artifacts/riemann_567901. The script exposes all key parameters via CLI.