Exercice **①**

Soit $\left(u_{n}\right)$ une suite numérique définie par : $\begin{cases}u_{0}=1\\ \left(\forall n\in\mathbb{N}\right);u_{n+1}=\frac{4u_{n}-1}{4u_{n}}\end{cases}$

02

1) Montrer que $(\forall n \in \mathbb{N})$; $u_n > \frac{1}{2}$.

01

2) Montrer que $u_{n+1} - u_n = \frac{-(2u_n - 1)^2}{4u_n}$

01

- 3) Déduire que (u_n) est décroissante et que $(\forall n \in \mathbb{N}); u_n \le 1$
- 4) Soit (v_n) une suite définie par $(\forall n \in \mathbb{N}); v_n = \frac{3}{2u_n 1}$

1..5

02

a) Montrer que (v_n) est une suite <u>arithmétique</u> de raison r=3, puis calculer v_0 .

01

b) Déterminer v_n en fonction de n puis déduire $(\forall n \in \mathbb{N})$; $u_n = \frac{1}{2} \left(\frac{n+2}{n+1} \right)$.

01

c) Calculer $S = v_0 + v_1 + v_2 + ... + v_{20}$

Exercice 2

Soit (u_n) une suite numérique définie par : $\begin{cases} u_0 = 3 \\ (\forall n \in \mathbb{N}); u_{n+1} = \frac{8u_n - 8}{u_n + 2} \end{cases}$

02

1) Montrer que $(\forall n \in \mathbb{N})$; $2 < u_n < 4 (c - \hat{a} - d : Montrer que <math>(\forall n \in \mathbb{N})$; $u_n < 4 \text{ et } u_n > 2)$

1.5

2) Montrer que pour tout n de $\mathbb{N} : u_{n+1} - u_n = \frac{(u_n - 2)(4 - u_n)}{u_n + 2}$

01

3) Montrer que la suite (u_n) est croissante.

4) On considère la suite (v_n) définie par : $(\forall n \in \mathbb{N})$; $v_n = \frac{u_n - 4}{u - 2}$

0.5

a) calculer v_0 et Montrer que (v_n) est une suite géométrique de raison $q = \frac{2}{3}$.

0.5

1. 5

b) Exprimer v_n en fonction de n

01

c) Déduire que : $(\forall n \in \mathbb{N}); u_n = \frac{2 \times \left(\frac{2}{3}\right)^n + 4}{\left(\frac{2}{3}\right)^n + 1}$

- 01
- 5) On pose $(\forall n \in \mathbb{N}^*)$; $S_n = v_0 + v_1 + \dots + v_{n-1}$. Montrer que: $(\forall n \in \mathbb{N}^*)$; $S_n = -3\left(1 \left(\frac{2}{3}\right)^n\right)$
- 01

6) Montrer que $(\forall n \in \mathbb{N})$; $u_{n+1} < 2(u_n - 1)$

01

- 7) Déduire que $(\forall n \in \mathbb{N}); u_n < 2^{n+1}$
 - « La vie n'est bonne qu'à étudier et à enseigner les mathématiques »
 - ${\it ~~}\textit{En math\'ematiques, on ne comprend pas les choses, on s'y habitue } {\it ~~}\textit{~~}$