1. INTRODUCTION

TEMPERATURE: Degree of relative coldness and hotness.

Temperature is effect of kinetic energy of molecule present in the substance.

Kelvin Temperature Scale: No Negative term in the temperature.

0 K = 0 kinetic energy of molecule.

Absolute Temperature: Temperature measured with respect to absolute **zero kelvin** temperature.

TK = TC + 273.

PRESSURE:

- 1) Normal Force exerted per unit area.
- 2) Rate of change of moment per unit area.

$$P = \frac{dM}{dt} / Area = \frac{F_n}{Area}$$

Pressure greater than atmospheric pressure				
		Gauge pressure (positive)		
Barometric pressure	Absolute pressure	Abso pres	Atmospheric pressure Gauge pressure - vacuum(negative) Pressure less than atmosperic pressure	
Absolute zero pressure				

Physical meaning of volume:

Δ	$-\Delta$
gas → Molecules move away => volume increase =>	gas → Molecules come together => volume decrease =>
Velocity increases => Kinetic energy increases	Velocity Decreases => Kinetic energy Decreases

Macroscopic Approach	Microscopic Approach
Average molecules behaviour	Each/individual molecules behaviour
Classical Thermodynamics	Statistical Thermodynamics because Large number of equations required to be solved
Qty uses: Average P, T, V	
Use in internal combusting engine, RAC, Power Plants	Use in Plasma, Laser, Missiles

Continuum Hypothesis: Metter is continuous function of space, time.

 $1 \text{ m}^3 => 2.4* 10^{24} \text{ Molecules}$

Mean Free Path: Average distance between molecules.

MFP < Characteristic length (**Continuum concept is valid**)

Highly vacuum condition /at high elevations /Rarefied Gases /MFP > Characteristic length (**Continuum concept is not valid**)

Because elevations $\land =>$ Pressure $\lor =>$ Density $\lor =>$ Volume $\land =>$ MFP \land