Introduction to Simulation - Lecture 10

Modified Newton Methods

Jacob White

Thanks to Deepak Ramaswamy, Jaime Peraire, Michal Rewienski, and Karen Veroy

Outline

- Damped Newton Schemes
 - Globally Convergent if Jacobian is Nonsingular
 - Difficulty with Singular Jacobians
- Introduce Continuation Schemes
 - Problem with Source/Load stepping
 - More General Continuation Scheme
- Improving Continuation Efficiency
 - Better first guess for each continuation step
- Arc Length Continuation

Multidimensional Newton Method

Newton Algorithm

Newton Algorithm for Solving F(x) = 0

$$x^0$$
 = Initial Guess, $k = 0$

Repeat {

Compute
$$F(x^k)$$
, $J_F(x^k)$

Solve
$$J_F(x^k)(x^{k+1}-x^k) = -F(x^k)$$
 for x^{k+1}

$$k = k + 1$$

} Until
$$||x^{k+1}-x^k||$$
, $||F(x^{k+1})||$ small enough

Multidimensional Newton Method

Multidimensional Convergence Theorem Theorem Statement

Main Theorem

If

a)
$$||J_F^{-1}(x^k)|| \le \beta$$
 (Inverse is bounded)

b)
$$||J_F(x)-J_F(y)|| \le \ell ||x-y||$$
 (Derivative is Lipschitz Cont)

Then Newton's method converges given a sufficiently close initial guess

Multidimensional Newton Method

Multidimensional
Convergence Theorem
Implications

If a function's first derivative never goes to zero, and its second derivative is never too large...

Then Newton's method can be used to find the zero of the function provided you all ready know the answer.

Need a way to develop Newton methods which converge regardless of initial guess!

Limiting the changes in X might improve convergence

Newton Algorithm

Newton Algorithm for Solving F(x) = 0

$$x^0$$
 = Initial Guess, $k = 0$
Repeat {

Compute
$$F(x^k)$$
, $J_F(x^k)$

Solve
$$J_F(x^k)\Delta x^{k+1} = -F(x^k)$$
 for Δx^{k+1}
 $x^{k+1} = x^k + \text{limited}(\Delta x^{k+1})$

$$k = k + 1$$

} Until
$$\|\Delta x^{k+1}\|$$
, $\|F(x^{k+1})\|$ small enough

Damped Newton Scheme

General Damping Scheme

Solve
$$J_F(x^k)\Delta x^{k+1} = -F(x^k)$$
 for Δx^{k+1}
$$x^{k+1} = x^k + \alpha^k \Delta x^{k+1}$$

Key Idea: Line Search

Pick
$$\alpha^{k}$$
 to minimize $\left\| F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right) \right\|_{2}^{2}$

$$\left\| F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right) \right\|_{2}^{2} \equiv F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right)^{T} F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right)$$

Method Performs a one-dimensional search in Newton Direction

Damped Newton

Convergence Theorem

<u>If</u>

a)
$$||J_F^{-1}(x^k)|| \le \beta$$
 (Inverse is bounded)

b)
$$||J_F(x)-J_F(y)|| \le \ell ||x-y||$$
 (Derivative is Lipschitz Cont)

Then

There exists a set of α^k ' $s \in (0,1]$ such that

$$||F(x^{k+1})|| = ||F(x^k + \alpha^k \Delta x^{k+1})|| < \gamma ||F(x^k)|| \text{ with } \gamma < 1$$

Every Step reduces F-- Global Convergence!

Damped Newton

Nested Iteration

$$x^{0} = \text{Initial Guess}, k = 0$$

$$\text{Repeat } \{$$

$$\text{Compute } F\left(x^{k}\right), J_{F}\left(x^{k}\right)$$

$$\text{Solve } J_{F}\left(x^{k}\right) \Delta x^{k+1} = -F\left(x^{k}\right) \text{ for } \Delta x^{k+1}$$

$$\text{Find } \alpha^{k} \in (0,1] \text{ such that } \left\|F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right)\right\| \text{ is minimized } x^{k+1} = x^{k} + \alpha^{k} \Delta x^{k+1}$$

$$k = k+1$$

$$\} \text{ Until } \left\|\Delta x^{k+1}\right\|, \left\|F\left(x^{k+1}\right)\right\| \text{ small enough}$$

Damped Newton

Example

$$I_r - \frac{1}{10}V_r = 0$$

$$I_d - I_s(e^{V_d/V_t} - 1) = 0$$

Nodal Equations with Numerical Values

$$f(v_2) = \frac{(v_2 - 1)}{10} + 10^{-16} (e^{(v_2 - 0)/0.025} - 1) = 0$$

Damped Newton

Example cont.

Damped Newton

Nested Iteration

$$x^{0} = \text{Initial Guess, } k = 0$$

$$\text{Repeat } \{$$

$$\text{Compute } F\left(x^{k}\right), J_{F}\left(x^{k}\right)$$

$$\text{Solve } J_{F}\left(x^{k}\right) \Delta x^{k+1} = -F\left(x^{k}\right) \text{ for } \Delta x^{k+1}$$

$$\text{Find } \alpha^{k} \in \{0,1\} \text{ such that } \left\|F\left(x^{k} + \alpha^{k} \Delta x^{k+1}\right)\right\| \text{ is minimized } x^{k+1} = x^{k} + \alpha^{k} \Delta x^{k+1}$$

$$k = k+1$$

$$\text{Yuntil } \left\|\Delta x^{k+1}\right\|, \left\|F\left(x^{k+1}\right)\right\| \text{ small enough}$$

How can one find the damping coefficients?

Damped Newton

Theorem Proof

By definition of the Newton Iteration

$$x^{k+1} = x^k - \alpha^k \quad J_F(x^k)^{-1} F(x^k)$$
Newton Direction

Multidimensional Mean Value Lemma

$$||F(x)-F(y)-J_F(y)(x-y)|| \le \frac{\ell}{2}||x-y||^2$$

Combining

$$\left\| F\left(x^{k+1}\right) - F\left(x^{k}\right) + J_{F}\left(x^{k}\right) \left[\alpha^{k} J_{F}\left(x^{k}\right)^{-1} F\left(x^{k}\right)\right] \right\| \leq \frac{\ell}{2} \left\|\alpha^{k} J_{F}\left(x^{k}\right)^{-1} F\left(x^{k}\right)\right\|^{2}$$

Damped Newton

Theorem Proof-Cont

From the previous slide

$$\left\| F\left(x^{k+1}\right) - F\left(x^{k}\right) + J_{F}\left(x^{k}\right) \left[\alpha^{k} J_{F}\left(x^{k}\right)^{-1} F\left(x^{k}\right)\right] \right\| \leq \frac{\ell}{2} \left\|\alpha^{k} J_{F}\left(x^{k}\right)^{-1} F\left(x^{k}\right)\right\|^{2}$$

Combining terms and moving scalars out of norms

$$\left\|F\left(x^{k+1}\right) - \left(1 - \alpha^{k}\right)F\left(x^{k}\right)\right\| \leq \left(\alpha^{k}\right)^{2} \frac{\ell}{2} \left\|J_{F}\left(x^{k}\right)^{-1}F\left(x^{k}\right)\right\|^{2}$$

Using the Jacobian Bound and splitting the norm

$$\left\|F\left(x^{k+1}\right)\right\| \leq \left[\left(1-\alpha^{k}\right)\left\|F\left(x^{k}\right)\right\| + \left(\alpha^{k}\right)^{2} \frac{\beta^{2}\ell}{2}\left\|F\left(x^{k}\right)\right\|^{2}\right]$$

Yields a quadratic in the damping coefficient

Damped Newton

Theorem Proof-Cont-II

Simplifying quadratic from previous slide

$$\left\| F\left(x^{k+1}\right) \right\| \leq \left[1 - \alpha^k + \left(\alpha^k\right)^2 \frac{\beta^2 \ell}{2} \left\| F\left(x^k\right) \right\| \right] \left\| F\left(x^k\right) \right\|$$

Two Cases:

1)
$$\frac{\beta^2 \ell}{2} \| F(x^k) \| < \frac{1}{2}$$
 Pick $\alpha^k = 1$ (Standard Newton)

$$\Rightarrow \left(1 - \alpha^k + \left(\alpha^k\right)^2 \frac{\beta^2 \ell}{2} \left\| F\left(x^k\right) \right\| \right) < \frac{1}{2}$$

2)
$$\frac{\beta^2 \ell}{2} \left\| F\left(x^k\right) \right\| > \frac{1}{2} \quad \text{Pick } \alpha^k = \frac{1}{\beta^2 \ell \left\| F\left(x^k\right) \right\|}$$

$$\Rightarrow \left(1-\alpha^{k}+\left(\alpha^{k}\right)^{2}\frac{\beta^{2}\ell}{2}\left\|F\left(x^{k}\right)\right\|\right)<1-\frac{1}{2\beta^{2}\ell\left\|F\left(x^{k}\right)\right\|}$$

Damped Newton

Theorem Proof-Cont-III

Combining the results from the previous slide

$$||F(x^{k+1})|| \le \gamma^k ||F(x^k)||$$
 not good enough, need γ independent from k

The above result does imply

$$||F(x^{k+1})|| \le ||F(x^0)||$$
 not yet a convergence theorem

For the case where $\frac{\beta^2 \ell}{2} \|F(x^k)\| > \frac{1}{2}$

$$1 - \frac{1}{2\beta^2 \ell \left\| F\left(x^k\right) \right\|} \leq 1 - \frac{1}{2\beta^2 \ell \left\| F\left(x^0\right) \right\|} \leq \gamma^0$$

Note the proof technique

First – Show that the iterates do not increase

Second – Use the non-increasing fact to prove convergence

Damped Newton

Nested Iteration

Repeat {
 Compute
$$F(x^k)$$
, $J_F(x^k)$
 Solve $J_F(x^k)\Delta x^{k+1} = -F(x^k)$ for Δx^{k+1}

Find $\alpha^k \in (0,1]$ such that $\|F(x^k + \alpha^k \Delta x^{k+1})\|$ is minimized $x^{k+1} = x^k + \alpha^k \Delta x^{k+1}$
 $k = k+1$
} Until $\|\Delta x^{k+1}\|$, $\|F(x^{k+1})\|$ small enough

Many approaches to finding α^k

Damped Newton

Singular Jacobian Problem

Damped Newton Methods "push" iterates to local minimums Finds the points where Jacobian is Singular

Basic Concepts

Source or Load-Stepping

- Newton converges given a close initial guess
 - Generate a sequence of problems
 - Make sure previous problem generates guess for next problem
- Heat-conducting bar example

- 1. Start with heat off, T=0 is a very close initial guess
- 2. Increase the heat slightly, T=0 is a good initial guess
- 3. Increase heat again

Basic Concepts

General Setting

Solve
$$\tilde{F}(x(\lambda), \lambda) = 0$$
 where:

- a) $\tilde{F}(x(0),0) = 0$ is easy to solve Starts the continuation
- b) $\tilde{F}(x(1),1) = F(x)$ Ends the continuation
- c) $x(\lambda)$ is sufficiently smooth Hard to insure!

Basic Concepts

Template Algorithm

Solve
$$\tilde{F}(x(0),0)$$
, $x(\lambda_{prev}) = x(0)$
 $\delta\lambda = 0.01$, $\lambda = \delta\lambda$
While $\lambda < 1$ {
 $x^{0}(\lambda) = x(\lambda_{prev})$
Try to Solve $\tilde{F}(x(\lambda),\lambda) = 0$ with Newton
If Newton Converged
 $x(\lambda_{prev}) = x(\lambda)$, $\lambda = \lambda + \delta\lambda$, $\delta\lambda = 2\delta\lambda$
Else
 $\delta\lambda = \frac{1}{2}\delta\lambda$, $\lambda = \lambda_{prev} + \delta\lambda$
}

Basic Concepts

Source/Load Stepping Examples

Source/Load Stepping Does Not Alter Jacobian

Jacobian Altering Scheme

Description

$$\tilde{F}(x(\lambda), \lambda) = \lambda F(x(\lambda)) + (1 - \lambda)x(\lambda)$$
Observations

$$\frac{\lambda=0}{\partial \tilde{F}(x(0),0)} = x(0) = 0$$

$$\frac{\partial \tilde{F}(x(0),0)}{\partial x} = I$$

Problem is easy to solve and Jacobian definitely nonsingular.

$$\frac{\lambda=1}{\partial \tilde{F}(x(1),1)} = F(x(1))$$

$$\frac{\partial \tilde{F}(x(0),0)}{\partial x} = \frac{\partial F(x(1))}{\partial x}$$

Back to the original problem and original Jacobian

Basic Algorithm

Solve
$$\tilde{F}(x(0),0)$$
, $x(\lambda_{prev}) = x(0)$
 $\delta\lambda = 0.01$, $\lambda = \delta\lambda$
While $\lambda < 1$ {
 $x^{0}(\lambda) = x(\lambda_{prev}) + ?$
Try to Solve $\tilde{F}(x(\lambda),\lambda) = 0$ with Newton
If Newton Converged
 $x(\lambda_{prev}) = x(\lambda)$, $\lambda = \lambda + \delta\lambda$, $\delta\lambda = 2\delta\lambda$
Else
 $\delta\lambda = \frac{1}{2}\delta\lambda$, $\lambda = \lambda_{prev} + \delta\lambda$
}

Jacobian Altering Scheme

Initial Guess for each step.

Jacobian Altering Scheme

Update Improvement

$$\tilde{F}(x(\lambda + \delta\lambda), \lambda + \delta\lambda) \approx \tilde{F}(x(\lambda), \lambda) + \frac{\partial \tilde{F}(x(\lambda), \lambda)}{\partial x} (x(\lambda + \delta\lambda) - x(\lambda)) + \frac{\partial \tilde{F}(x(\lambda), \lambda)}{\partial \lambda} \delta\lambda$$

$$\Rightarrow \frac{\partial \tilde{F}(x(\lambda),\lambda)}{\partial x} \left(x^{0}(\lambda+\delta\lambda)-x(\lambda)\right) = -\frac{\partial \tilde{F}(x(\lambda),\lambda)}{\partial \lambda}\delta\lambda$$

Have From last step's Newton

Better Guess for next step's Newton

Jacobian Altering Scheme

Update Improvement Cont.

If

$$\tilde{F}(x(\lambda),\lambda) = \lambda F(x(\lambda)) + (1-\lambda)x(\lambda)$$

Then

$$\frac{\partial \tilde{F}(x,\lambda)}{\partial \lambda} = F(x) - x(\lambda)$$
Easily Computed

Jacobian Altering Scheme

Update Improvement Cont. II.

$$x^{0}(\lambda + \delta\lambda) = x(\lambda) - \left(\frac{\partial \tilde{F}(x(\lambda), \lambda)}{\partial x}\right)^{-1} \frac{\partial \tilde{F}(x(\lambda), \lambda)}{\partial \lambda} \delta\lambda \quad \text{Graphically}$$

Jacobian Altering Scheme

Still can have problems

Jacobian Altering Scheme

Arc-length Steps?

Must Solve For Lambda

$$\tilde{F}(x,\lambda) = 0$$

$$(\lambda - \lambda_{prev})^{2} + ||x - x(\lambda_{prev})||_{2}^{2} - arc^{2} = 0$$

Jacobian Altering Scheme

Arc-length steps by Newton

$$\begin{bmatrix} \frac{\partial \tilde{F}(x^{k}, \lambda^{k})}{\partial x} & \frac{\partial \tilde{F}(x^{k}, \lambda^{k})}{\partial \lambda} \\ 2(x^{k} - x(\lambda_{prev}))^{T} & 2(\lambda^{k} - \lambda_{prev}) \end{bmatrix} \begin{bmatrix} x^{k+1} - x^{k} \\ \lambda^{k+1} - \lambda^{k} \end{bmatrix} =$$

$$-\left[\frac{\tilde{F}(x^{k},\lambda^{k})}{\left(\lambda^{k}-\lambda_{prev}\right)^{2}+\left\|x^{k}-x(\lambda_{prev})\right\|_{2}^{2}-arc^{2}}\right]$$

Jacobian Altering Scheme

Arc-length Turning point

What happens here?

Upper left-hand Block is singular

$$\frac{\partial \tilde{F}(x^k, \lambda^k)}{\partial x}$$

Summary

- Damped Newton Schemes
 - Globally Convergent if Jacobian is Nonsingular
 - Difficulty with Singular Jacobians
- Introduce Continuation Schemes
 - Problem with Source/Load stepping
 - More General Continuation Scheme
- Improving Efficiency
 - Better first guess for each continuation step
- Arc-length Continuation