In proof by cases, should the implications for all the cases be true or is it sufficient if even one of the implications is true?

How to prove the following statement by induction?

$$F_{m+n} = F_m F_{n+1} + F_{m-1} F_n$$
 for all $m \ge 1$ and $n \ge 0$.

- Dinduction on m (with n arbitrary)

 Dinduction on m (with n arbitrary)
 - 3 Induction on m+n
- 2 Base Cases:

$$n = 0$$

$$LHS = F_{m}$$

$$RHS = F_{m}F_{1} + F_{m-1}F_{0} = F_{m}$$

$$\gamma = 1$$
LHS = Fm+1

Induction n > 2 fm+n-1 = FmFn+1 + Fm-1 + Fn-1 hy > 6 = FmFn-1 + Fm-1 + Fm-1 + Fm-1 $F_{m+n} = F_m(F_{n+1})$ $+ F_{m-1}(F_{n-1})$ $= F_m F_{n+1} + F_{m-1} F_n$ 3 Induction on m+nBase m+n=1 $\rightarrow m=1$, n=0 m+n=2 $\rightarrow m=1$, n=1or m=2, n=0

Induction Take men >> 3 True for men - 1, men - 2

care 1: m >/ 3

Case 2: n >, 2

m + n - 1 = (m - 1) + n m + n - 2 = (m - 2) + n m + n - 1 = m + (n - 1)m + n - 2 = m + (n - 2) Case 3: m < 3 and n < 2 m < 2 and n < 1 m + n > 3 m = 2 and n = 1

Prove that: $gcd(F_{n+1}, F_n) = 1$ for all $n \ge 0$.

F, is divisible by p

[2] 124 induction on n.

Prove that:

$$\gcd(F_m, F_n) = F_{\gcd(m,n)} \text{ for all } m, n \text{ (not both zero)}.$$

$$m \neq n \qquad m = qn + r$$

$$\gcd(F_m, F_n) = \gcd(F_n, F_r)$$

$$m = n + k \qquad F_m = F_n f_{k+1} + F_{k-1} F_k$$

$$\gcd(F_m, F_n) = \gcd(F_{m-1} f_k, F_n)$$

$$= \gcd(F_m, F_n) = \gcd(F_m, F_n)$$

How to prove the following statement?

Consider the following function with m and n non-negative integers.

```
int g ( int m, int n)
{
   if ((m == 0) || (n == 0)) return 1;
   return g(m,n-1) + g(m-1,n);
}
```

Express the return value of g(2,n) as a function of n.

$$g(0,n) = 1 \quad \forall n \ge 0$$

$$g(1,n) = g(1,n-1) + g(0,n)$$

$$= g(1,n-1) + 1$$

$$= g(1,n-2) + 2$$

$$= g(1,0) + n = n+1$$

$$= g(2,n) = g(2,n-1) + g(1,n) = g(2,n-1) + n+1$$

$$= g(2,n-2) + (n) + (n+1) = --- = g(2,0) + 2 + -+n+1$$

$$= 1 + 2 + --+ n + 1 = (n+1)(n+2)$$

for $(i=1; i \le n; ++i) L[i] = 0;$

for (i=1; i<=n; ++i)
for (j=i; j<=n; j+=i)
$$L[j] = 1 - L[j];$$

After this, L[i] = 1 for which values of i?

Binomial Trees

Prove that there are $\binom{n}{i}$ nodes in B(n) at level i.

B(n) contains 2^n nodes (easy to prove by strong induction). You are given two disjoint copies of B(n). How can you efficiently make a single copy of B(n+1)?

