

Occam's razor vs market: How simple models can answer

complex questions

Mateusz Panasiuk Chief Scientific Officer, AI Investments

A brief sprint through financial modelling

- 1. Challenges of financial forecasting
- 2. Problem of model complexity
- 3. Solutions for model complexity
- 4. Results

Is speculation hard?

Is speculation hard?

How good do we need to be to beat the market?

How to solve a complex problem?

Newest neural networks

Newest neural networks

More features

Engineer features Newest neural networks

More features

Engineer features Newgetpheudannetworks More features

GPT! Engineer features Newgetharhermanherworks More features

William's razor

"Pluralitas non est ponenda sine necessitate." - attributed to William of Ockham

"Objects should not be multiplied without necessity."

Leading neural network architecture


```
{"d_model": 32,

"N": 6,

"heads": 8,

"features_count": 24,

"length": 20}
```

300'000 parameters

Number of observations

Standard Conformer was trained on 1000-1500 samples (daily), as higher frequency carries higher noise.

300`000 / 1'000 = 300

There are around 300 parameters for a single training sample.

XIV-century philosopher won't tell us what to do!

20 data points - only 25 parameters

20 data points - only 5 parameters

Bias vs. variance

Is model complexity and number of samples all that there is to overfitting?

What can we realistically expect from a model?

Whom would you rather trust?

- 1. A person claiming that can predict the direction of price change tomorrow with 80% of accuracy?
- 2. A person claiming that can predict the direction of price change tomorrow with 52% of accuracy?

What is the usual accuracy to which neural network is trained?

Usually ~65%.

It is equivalent to person that has found a rule that works 65% of the time. Having a rule working so well, can we realistically expect it to describe a "hidden pattern" of the market? Or have we just found a spurious rule?

"Up to now, you have refuted everything which has been said. You have done nothing to point out the true Dharma to us."

- a frustrated student to Huang Po Blofeld, *Teachings of Huang Po*

Time for some real-life talk

- Problem of model complexity
- Problem of dataset size
- Problem of excessive number of features

Embrace simplicity!

Linear classification model - f+1 parameters:

$$p_{\bar{a}}(\bar{x}) = \frac{1}{1 - e^{-\bar{x}\bar{a}}}$$

Bayesian classification model - 2*f*c parameters:

$$p(\bar{x}) = \prod_{i=1}^{k} \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{\bar{\mu}_i - \bar{x}_i}{2\sigma})^2}$$

Bayesian classifier / Gaussian process classifier

Bayesian classifier / Gaussian process classifier

Bayesian classifier / Gaussian process classifier

Neural network predictions ≉ probability

Neural network predictions * probability

Statistical models predictions

Statistical models predictions

What we have done

- Shrunk the model (300'000 \rightarrow 10s of parameters)
- Shrunk the feature space (10-100 \rightarrow 4)
- Based our decision on model's confidence

Did it work?

It does!

And it pays.

EURUSD

Interested?

Thank you for watching!

Remember to rate the presentation and leave your questions in the section below.

mateusz.panasiuk@aiinvestments.pl linkedin.com/in/mat-panasiuk

