Digital output mathematical model A and B coefficient calculation

Mathematical model: P=A*(<u>ADC/8388608)</u>+B, in which P is the pressure value, A and B are the compensation coefficients, and ADC is the data composed of 3 registers 06, 07 and 08.

					ADC full sc	ADC full scale is 2^23=	
Min. pressure value:	120			Min. output:	0.1	ADC	838861
Max. pressure value:	1080			Max. output:	0.9	ADC=	7549747

Coefficient A=	1200	Coefficient B=	0
----------------	------	----------------	---

For example: pressure 120-1080Kpa corresponds to output target value 0.1-0.9

Then A=1200, B=0

Then P=1200*(ADC/8388608)

When the ADC data obtained is 838861, P=120kpa
When the obtained ADC data is 7549747, P=1079.9999kpa
When the ADC data obtained is 4194304, P=600kpa

Note: Mathematical model is P=A*(ADC/8388608)+B.

Key Steps for Utilization:

Calibration: Confirm the pressure range and corresponding output range(which must be the same as the configuration when you calibrated). Fill these values in a calibration table. This step enables the automatic calculation of the coefficients.

Documentation: Provide with the mathematical model and the calculated coefficients A and B.

Operation: Input chip data into the model as follows to derive pressure readings.