CS 242 - CS252 Data Structures

Algorithm Analysis

Why need algorithm analysis?

- Writing a working program is not good enough
- The program may be inefficient!
- If the program is run on a large data set, then the *running* time becomes an issue

Algorithm Efficiency

- ▶ The content of the input affects the running time
 - The input size (number of items in the input) is the main consideration
 - ▶ E.g. sorting problem: the number of items to be sorted
 - E.g. multiply two matrices together: the total number of elements in the two matrices
- Machine model assumed Instructions are executed one after another, with no concurrent operations
 - Not parallel computers

Experimental Analysis

Two <u>algorithms</u> for composing a string of repeated characters

```
/** Uses repeated concatenation to
compose a String with n copies of
character c. */
public static String repeat1(char c, int n) {
   String answer = "";
   for (int j=0; j < n; j++)
        answer += c;
    return answer;
```

```
/** Uses StringBuilder to compose a String
with n copies of character c. */
public static String repeat2(char c, int n) {
    StringBuilder sb = new StringBuilder();
    for (int j=0; j < n; j++)
        sb.append(c);
    return sb.toString();
```

Experimental Analysis

Results of timing

n	repeat1 (in ms)	repeat2 (in ms)
50,000	2,884	1
100,000	7,437	1
200,000	39,158	2
400,000	170,173	3
800,000	690,836	7
1,600,000	2,874,968	13
3,200,000	12,809,631	28
6,400,000	59,594,275	58
12,800,000	265,696,421	135

3 days!

< 1 sec

Algorithm Efficiency

- Predicting the resources that the algorithm requires such as
 - Memory
 - Communication bandwidth
 - Computational time (usually most important)
- Factors affecting the running time
 - Computer, compiler, algorithm used, input to the algorithm

Moving Beyond Experimental Analysis

Our goal is to develop an approach to analyzing the efficiency of algorithms that:

- Allows us to evaluate the relative efficiency of any two algorithms in a way that is independent of the hardware and software environment.
- Is performed by studying a high-level description of the algorithm without need for implementation.
- ▶ Takes into account all possible inputs.

Time complexity & Primitive Operation

- Time complexity is the execution time it takes for your algorithm to solve a problem.
- Primitive Operations are basic computations performed by an algorithm such as:
 - Evaluating an expression
 - Following an object reference
 - Performing an arithmetic operation (for example, adding two numbers)
 - Assigning a value to a variable
 - Indexing into an array
 - Calling a method
 - Returning from a method

Counting Primitive Operations

```
# operations
public static int sum( int n )
   int partialSum;
                                          The declarations count for no time
   partialSum = 0;
   for( int i = 1; i <= n; i++)
                                                  2N + 2
        partialSum += i * i * i;
                                                     4N
   return partialSum;
```

• f(n) = 6n + 4

Total 6n + 4

Big-O Notation

- We are not interested in knowing the exact number of operations the algorithm performs. mainly interested in knowing how the number of operations grows with increased input size.
- Why?
 - Given large enough input, the algorithm with faster growth will execute more operations and takes long time
- ▶ The simplification of efficiency is known as big-O analysis.
- We don't need to determine the complete measure of efficiency, only the factor that determines the magnitude. This factor is the **big-O**, and expressed as O(n) that is, on the order of n.

Big-O Notation

- The big O notation can be derived from f(n) using the following steps:
 - Ignore the lower order terms and the coefficients of the highest-order term
 - 2. Keep the largest term in the function and discard the others.
 - 3. No need to specify the base of logarithm
 - 4. Nested loop
 - Iterations = inner loop iterations x outer loop iterations
 - 5. Consecutive program fragments (Larger O(f(n)))
 - 6. If statement (worst-case scenario)

Linear loop

```
i = 1
loop ( i <= n )
   application code
   i=i+1
end loop</pre>
```

iteration	Value of	
1	1	
2	2	
3	3	> n
n	n	

O(n)

▶ What if we change the incremental condition? Ex: i=i+2

Logarithmic loop

```
i = 1
loop ( i < n )
    application code
    i = i x 2
end loop</pre>
```

 $O(log_2 n)$

iteration	Value of			
1	1			
2	2			
3	4			
4	8			
5	16			
6	32			
7	64			
8	128			
9	256			
10	512			
11	1024			

2 iteration < 1000

Logarithmic loop

```
i=n
loop ( i >= 1)
   application code
   i = i / 2
end loop
```

 $O(log_2 n)$

iteration	Value of			
1	1000			
2	500			
3	250			
4	125			
5	62			
6	31			
7	15			
8	7			
9	3			
10	1			
Exit	0			

1000/2 iteration >=1

Linear logarithmic

```
i=1
loop(i \le n)
   j=1
                                       n
   loop(j \le n)
      application code
                              log_2 n
      j = j \times 2
   end loop
   i = i + 1
end loop
```

 $O(n [log_2 n])$

Nested loop

Quadratic

```
i = 1
loop (i \le n)
   i = 1
   loop (j \le n)
                                 n
   application code
      j = j + 1
   end loop
   i = i + 1
end loop
```

 $O(n^2)$

Nested loop

Dependent Quadratic: inner loop iteration depend upon the outer loop counter value

```
i = 1
loop(i \le n)
   loop(j \le i)
      application code
                           the average is 55/10 = 5.5
      j = j + 1
                                   (n+1)/2
   end loop
   i = i + 1
end loop
```

Worst-case Running Time

Worst-case running time of an algorithm

- The longest running time for any input of size n
- An upper bound on the running time for any input guarantee that the algorithm will never take longer
- Example: Sort a set of numbers in increasing order; and the data is in decreasing order

Best case running time

sort a set of numbers in increasing order; and the data is already in increasing order

Average case running time

May be difficult to define what "average" means

Consecutive Program Fragments

The total running time is the maximum of the running time of the individual fragments.

```
sum = 0;

for (i = 0; i < n; i++)

sum = sum + i;

n

sum = 0;

for (i = 0; i < n; i++)

for (j = 0; j < 2n; j++)

sum++;
```

The first loop runs in O(n) time, the second - $O(n^2)$ time, the maximum is $O(n^2)$

If statement

The running time is the maximum of the running times of SI and S2.

```
if cond
{
    S1;
}
else
{
    S2;
}
```

Choose the worst case scenario to calculate O(f(n))

Big-O Complexity Chart

Elements

constant	logarithm	linear	n-log-n	quadratic	cubic	exponential
1 <	$\log n$ <	n <	$n \log n$	$<$ n^2	$< n^3$	< a ⁿ

Calculate the big-O notation for

• f(n) = n [(n+1)/2]

Solution:

```
\frac{1}{2} n<sup>2</sup> + \frac{1}{2} n (Remove the coefficient)

n<sup>2</sup> + n (keep the largest term)

n<sup>2</sup>

So, the big-O notation is stated as O(f(n)) = O(n<sup>2</sup>)
```