5.16. Ртуть, находящуюся при 0°С и давлении P=100 атм, расширяют адиабатически и квазистатически до атмосферного давления. Найти изменение температуры ртути в этом процессе, если коэффициент объемного расширения ртути в этих условиях положителен и равен $\alpha=1.81\cdot 10^{-4}\,^{\circ}\text{C}^{-1}$, удельная теплоемкость ртути $c_P=0.033$ кал/($\mathbf{r}\cdot\,^{\circ}$ С), плотность $\rho=13.6$ г/см³.

$$d = \frac{1}{\sqrt{\frac{\partial V}{\partial T}}} p \quad 1 dS = \frac{\partial S}{\partial T} dT + \frac{\partial S}{\partial P} dP = 0 \geq 0 dP = -\frac{\partial S}{\partial T} = -\frac{\partial S}{\partial P} dT + \frac{\partial S}{\partial$$

12.8. Мыльная пленка имеет толщину $h=10^{-3}$ мм и температуру $T=300~\rm K$. Вычислить понижение температуры этой пленки, если ее растянуть адиабатически настолько, чтобы площадь пленки удвоилась. Поверхностное натяжение мыльного раствора убывает на $0.15~\rm дин/cm$ при повышении температуры на $1~\rm K$, ___

12.9. В сосуде с адиабатическими стенками находится мыльный пузырь радиусом r=5 см. Общее количество воздуха в сосуде и в пузыре $\mathbf{v}=0.1$ моль, его температура T=290 К (предполагается, что она одинакова внутри и вне пузыря). При этой температуре поверхностное натяжение $\sigma=70$ дин/см, $d\sigma/dT=-0.15$ дин/(см · K). Как изменится температура воздуха в сосуде, если пузырь лопнет? Теплоемкостью образовавшихся капелек пренебречь.

на сколько изменится суммарная энтропия газа. Начальные радиусы пузырей $r_0=5$ см. Поверхностное натяжение масла $\sigma=30$ дин/см. Температура T=300 K.

Т-4. (2019) В одной из теоретических моделей теплоёмкость C_V кристалла при низких температурах равна $C_V = aVT^3$, где V — объём кристалла, a — постоянная величина. Изотермический модуль всестороннего сжатия кристалла равен K. Найдите разность теплоёмкостей $C_P - C_V$ кристалла как функцию его объёма и температуры.

сжатия кристалла равен
$$K$$
. Найдите разность теплоёмкостей $C_P - C_V$ кристалла как функцию его объёма и температуры.

Ответ: $a^2VT^7/9K$.

 $C_P - C_V = -\frac{1}{\sqrt{2V}} \left(\frac{\partial V}{\partial V} \right) + \frac{1}{\sqrt{2V}} \left(\frac{\partial V}{\partial V} \right) +$

5.63. При адиабатическом сжатии серебра на $\Delta V/V=0.01$ его температура возрастает на $\Delta T/T=0.028$. Определить коэффициент изотермической сжимаемости $\beta_{\rm T}$ серебра, если температурный коэффициент объемного расширения $\alpha=5.7\cdot 10^{-5}~{\rm K}^{-1}$, удельная теплоемкость серебра $c_V=0.23~{\rm Дж/(r\cdot K)}$, плотность $\rho=10.5~{\rm r/cm}^3$.

фициент объемного расширения
$$\alpha=5,7\cdot 10^{-5}~\mathrm{K}^{-1}$$
, удельная те емкость серебра $c_V=0,23~\mathrm{Дж/(r\cdot K)}$, плотность $\rho=10,5~\mathrm{r/cm}^3$.
$$\sqrt{C_V}=\sqrt{\frac{\partial S}{\partial T}}_V \qquad \beta\tau=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_T-\frac{1}{V}$$

$$\sqrt{\frac{\partial V}{\partial T}}_S \qquad \left(\frac{\partial V}{\partial T}\right)_S = \sqrt{\frac{1}{V}\cdot\frac{1}{K}}$$

$$\sqrt{\frac{\partial J}{\partial T}}_S \left(\frac{\partial J}{\partial S}\right)_T=-1$$

$$-\frac{C_V}{K}\cdot\frac{1}{K}\cdot\frac{X}{V}=\frac{\partial P}{\partial T}_V$$

1-= /96 1/181 KK1

$$kV = \frac{k \cdot \frac{m}{p}}{k \cdot \frac{m}{p}} = \frac{k \cdot \frac{m}{p}}{k \cdot \frac{m}{p}}$$

$$\frac{-\frac{1}{7} \cdot k }{3} \cdot \left(\frac{\partial f}{\partial r}\right) \left(\frac{\partial$$

5.28. При изотермическом сжатии $(T=293~{\rm K})$ одного моля глицерина от давления $P_1=1$ атм до давления $P_2=11$ атм выделяется теплота $Q=10~{\rm Дж}$. При адиабатическом сжатии этого глицерина на те же $10~{\rm атм}$ затрачивается работа $A=8,76~{\rm мДж}$. Плотность глицерина $\rho=1,26~{\rm г/cm}^3$, молярная масса $\mu=92~{\rm г/моль}$, $\gamma=C_P/C_V=1,1$. Определить по этим данным температурный коэффициент давления глицерина $(\partial P/\partial T)_V$, а также коэффициент теплового расширения α и изотермическую сжимаемость β_T .

$$1 = \frac{1}{\sqrt{2}} \left(\frac{2}{2} \right)_{p}$$

$$dQ = TdS = dU + pdV$$