

Problem Statement:

Prepare a classification model using Naive Bayes for salary data train data

1. Import Necessary Libraries

```
In [2]: import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
```

2. Import Data

```
In [3]: Naive_bayes_Train_Data = pd.read_csv('SalaryData_Train.csv')
Naive_bayes_Train_Data
```

Out[3]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	;
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	N
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	N
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	N
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	N
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Fem
30156	27	Private	Assoc- acdm	12	Married-civ- spouse	Tech- support	Wife	White	Ferr
30157	40	Private	HS-grad	9	Married-civ- spouse	Machine- op-inspct	Husband	White	N
30158	58	Private	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Ferr
30159	22	Private	HS-grad	9	Never- married	Adm- clerical	Own-child	White	N
30160	52	Self-emp- inc	HS-grad	9	Married-civ- spouse	Exec- managerial	Wife	White	Ferr
30161 rows × 14 columns									

30161 rows × 14 columns

3. Data Understanding

```
In [4]: Naive_bayes_Train_Data.shape
Out[4]: (30161, 14)
In [5]: Naive_bayes_Train_Data.dtypes
Out[5]: age
                           int64
        workclass
                          object
                          object
        education
        educationno
                           int64
        maritalstatus
                          object
                          object
        occupation
                          object
        relationship
        race
                          object
        sex
                          object
        capitalgain
                           int64
                           int64
        capitalloss
        hoursperweek
                           int64
        native
                          object
        Salary
                          object
        dtype: object
In [6]: Naive_bayes_Train_Data.isna().sum()
Out[6]: age
                          0
        workclass
                          0
        education
                          0
        educationno
                          0
        maritalstatus
                          0
        occupation
                          0
        relationship
                          0
                          0
        race
                          0
        sex
                          0
        capitalgain
                          0
        capitalloss
        hoursperweek
                          0
        native
                          0
                          0
        Salary
        dtype: int64
```


In [7]: Naive_bayes_Train_Data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30161 entries, 0 to 30160
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	30161 non-null	int64
1	workclass	30161 non-null	object
2	education	30161 non-null	object
3	educationno	30161 non-null	int64
4	maritalstatus	30161 non-null	object
5	occupation	30161 non-null	object
6	relationship	30161 non-null	object
7	race	30161 non-null	object
8	sex	30161 non-null	object
9	capitalgain	30161 non-null	int64
10	capitalloss	30161 non-null	int64
11	hoursperweek	30161 non-null	int64
12	native	30161 non-null	object
13	Salary	30161 non-null	object
dtvn	es: int64(5). o	biect(9)	

dtypes: int64(5), object(9)

memory usage: 3.2+ MB

In [9]: Naive_bayes_Train_Data.describe(include='all')

Out[9]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship
count	30161.000000	30161	30161	30161.000000	30161	30161	30161
unique	NaN	7	16	NaN	7	14	6
top	NaN	Private	HS-grad	NaN	Married-civ- spouse	Prof- specialty	Husband
freq	NaN	22285	9840	NaN	14065	4038	12463
mean	38.438115	NaN	NaN	10.121316	NaN	NaN	NaN
std	13.134830	NaN	NaN	2.550037	NaN	NaN	NaN
min	17.000000	NaN	NaN	1.000000	NaN	NaN	NaN
25%	28.000000	NaN	NaN	9.000000	NaN	NaN	NaN
50%	37.000000	NaN	NaN	10.000000	NaN	NaN	NaN
75%	47.000000	NaN	NaN	13.000000	NaN	NaN	NaN
max	90.000000	NaN	NaN	16.000000	NaN	NaN	NaN
4							>

```
In [11]: Naive_bayes_Train_Data.describe(include='all').nunique()
Out[11]: age
                           8
         workclass
                           4
         education
                           4
         educationno
                           8
         maritalstatus
         occupation
         relationship
         race
         sex
                           5
         capitalgain
         capitalloss
                           5
         hoursperweek
         native
                           4
         Salary
         dtype: int64
In [17]: Naive_bayes_Train_Data['workclass'].nunique()
Out[17]: 7
In [18]: Naive_bayes_Train_Data['workclass'].unique()
Out[18]: array([' State-gov', ' Self-emp-not-inc', ' Private', ' Federal-gov',
                 'Local-gov', 'Self-emp-inc', 'Without-pay'], dtype=object)
```



```
In [29]: Naive_bayes_Train_Data
```

Out[29]:

on_	educationno	maritalstatus	occupation	relationship	race	sex	capitalgain	capitalloss	hour
ırs	13	Never- married	Adm- clerical	Not-in-family	White	Male	2174	0	
ors	13	Married-civ- spouse	Exec- managerial	Husband	White	Male	0	0	
ad	9	Divorced	Handlers- cleaners	Not-in-family	White	Male	0	0	
th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Male	0	0	
ırs	13	Married-civ- spouse	Prof- specialty	Wife	Black	Female	0	0	
lm	12	Married-civ- spouse	Tech- support	Wife	White	Female	0	0	
ad	9	Married-civ- spouse	Machine- op-inspct	Husband	White	Male	0	0	
ad	9	Widowed	Adm- clerical	Unmarried	White	Female	0	0	
ad	9	Never- married	Adm- clerical	Own-child	White	Male	0	0	
ad	9	Married-civ- spouse	Exec- managerial	Wife	White	Female	15024	0	

4. Data Preparation

In [24]: from sklearn.preprocessing import LabelEncoder

```
In [25]: Label = LabelEncoder()
```

```
In [30]: Naive_bayes_Train_Data['workclass'] = Label.fit_transform(Naive_bayes_Train_Data|
    Naive_bayes_Train_Data['education'] = Label.fit_transform(Naive_bayes_Train_Data|
    Naive_bayes_Train_Data['maritalstatus'] = Label.fit_transform(Naive_bayes_Train_Data|
    Naive_bayes_Train_Data['occupation'] = Label.fit_transform(Naive_bayes_Train_Data|
    Naive_bayes_Train_Data['relationship'] = Label.fit_transform(Naive_bayes_Train_Data['race|
    Naive_bayes_Train_Data['race'] = Label.fit_transform(Naive_bayes_Train_Data['race|
    Naive_bayes_Train_Data['sex'] = Label.fit_transform(Naive_bayes_Train_Data['sex']
    Naive_bayes_Train_Data['native'] = Label.fit_transform(Naive_bayes_Train_Data['salary'] = Label
```


In [31]: Naive_bayes_Train_Data

Out[31]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	39	5	9	13	4	0	1	4	1
1	50	4	9	13	2	3	0	4	1
2	38	2	11	9	0	5	1	4	1
3	53	2	1	7	2	5	0	2	1
4	28	2	9	13	2	9	5	2	0
30156	27	2	7	12	2	12	5	4	0
30157	40	2	11	9	2	6	0	4	1
30158	58	2	11	9	6	0	4	4	0
30159	22	2	11	9	4	0	3	4	1
30160	52	3	11	9	2	3	5	4	0

30161 rows × 14 columns

In [32]: Naive_bayes_Train_Data.dtypes

Out[32]: age

int64 workclass int64 education int32 educationno int64 maritalstatus int32 occupation int32 relationship int32 int32 race int32 sex capitalgain int64 capitalloss int64 hoursperweek int64 native int32 Salary int32

dtype: object

5. Model Building

```
In [34]: X = Naive_bayes_Train_Data.drop(['Salary'], axis=1)
         y = Naive_bayes_Train_Data['Salary']
```


In [35]: X

Out[35]:

class	education	educationno	maritalstatus	occupation	relationship	race	sex	capitalgain	capitall
5	9	13	4	0	1	4	1	2174	
4	9	13	2	3	0	4	1	0	
2	11	9	0	5	1	4	1	0	
2	1	7	2	5	0	2	1	0	
2	9	13	2	9	5	2	0	0	
2	7	12	2	12	5	4	0	0	
2	11	9	2	6	0	4	1	0	
2	11	9	6	0	4	4	0	0	
2	11	9	4	0	3	4	1	0	
3	11	9	2	3	5	4	0	15024	

olumns

```
In [36]: y
Out[36]: 0
         1
         2
         3
         30156
         30157
                  1
         30158
         30159
         30160
         Name: Salary, Length: 30161, dtype: int32
In [37]: | from sklearn.model_selection import train_test_split
In [57]: X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.20, random_s
In [58]: X_train.shape, y_train.shape
Out[58]: ((24128, 13), (24128,))
In [59]: X_test.shape, y_test.shape
Out[59]: ((6033, 13), (6033,))
```


6. Model training | Testing | Evaluation

```
In [60]: from sklearn.naive bayes import MultinomialNB
         nb Classifier = MultinomialNB()
In [62]: |nb_Classifier.fit(X_train, y_train)
         MultinomialNB()
Out[62]: MultinomialNB()
In [63]: y_pred = nb_Classifier.predict(X_test)
         y pred
Out[63]: array([0, 0, 0, ..., 0, 0, 0])
In [64]: from sklearn.metrics import accuracy score, precision score, confusion matrix, cla
In [71]: print("Accuracy Score:", round(accuracy_score(y_test, y_pred),4))
         Accuracy Score: 0.7721
In [73]: print("Confusion Matrix:", confusion_matrix(y_test, y_pred))
         Confusion Matrix: [[4358 199]
          [1176 300]]
In [81]: print("Classification Report:", classification report(y test, y pred))
         Classification Report:
                                               precision
                                                            recall f1-score
                                                                               support
                            0.79
                                       0.96
                                                 0.86
                                                           4557
                                                 0.30
                                                           1476
                    1
                            0.60
                                       0.20
             accuracy
                                                 0.77
                                                           6033
            macro avg
                            0.69
                                      0.58
                                                 0.58
                                                           6033
         weighted avg
                            0.74
                                       0.77
                                                 0.73
                                                           6033
In [75]: print("Precision Scoree:", round(precision_score(y_test, y_pred),4))
         Precision Scoree: 0.6012
```

7. Model Deployment

```
In [90]: from pickle import dump
In [91]: dump(nb_Classifier, open('lognb_Classifier.plktrain', 'wb'))
In [92]: from pickle import load
```

```
In [93]: nb_Classifier_pickle = load(open('lognb_Classifier.plktrain', 'rb'))
In [94]: Pickle_pred = nb_Classifier_pickle.predict(X_test)
```

Conclusion:

Classification model using Naive Bayes for salary data train data with model accuracy 77%