

EE2211 Introduction to Machine Learning

Lec 0

Wang Xinchao

Yueming Jin

Welcome to EE2211!

Team

- Lecturers
 - Xinchao Wang (Lec 1-3, Lec 10-12)
 - Yueming Jin (Lec 4-9)
- Python Tutor
 - Liu Songhua (Week 1-2)
- Graduate Assistants (i.e., Graders)
 - Yu Runpeng
 - Ai Yihao
 - Guo Jingyuan
 - Shen Qiuhong
 - Wang Shizun
 - · Yan Weilong
- Support and Coordinators
 - Celine Cheong

- Tutors
 - Goh Shu Ting
 - Hou Linxin
 - Prof Mehul Motani
 - Neil Banerjee
 - Qingqing Ni
 - Sangit Sasidhar
 - Yutong Du
 - CHAN EE HONG
 - ERIK MAURITS SPAANS
 - JEROME TEO SZE YONG
 - PANG KAI LIN
 - TEOH JING YANG
 - YU JUEZHAO
 - ZHU SHAOHAN STEVEN

Course Contents

- Introduction and Preliminaries (Xinchao)
 - Introduction
 - Data Engineering
 - Introduction to Probability and Statistics
- Fundamental Machine Learning Algorithms I (Yueming)
 - Systems of linear equations
 - Least squares, Linear regression
 - Ridge regression, Polynomial regression
- Fundamental Machine Learning Algorithms II (Yueming)
 - Over-fitting, bias/variance trade-off
 - Optimization, Gradient descent
 - Decision Trees, Random Forest
- Performance and More Algorithms (Xinchao)
 - Performance Issues
 - K-means Clustering
 - Neural Networks

Logistics

Schedule

- 12 Weeks Lectures, starting from Week 1
- 12 Weeks Tutorials, starting from Week 2
- 2 Programming Tutorials (optional and highly recommended)
 - Week 1 2, Friday
 - Right after the lecture (i.e., 2 to 3 PM)
- 1 Mid-term Quiz (using ExamSoft)
 - Tentatively held offline on <u>9 March 2024</u> (Recess Week)
 - Content up to Week 5 (inclusive)
- 1 Briefing Session on ExamSoft
 - Tentative on Week 3, exact time to be confirmed with CIT Staff
- 1 Final Exam (using ExamSoft)
 - Held on <u>3-May-2024</u>
- 3 Assignments
 - Assignment 1: released on Week 4, due on Week 6 (tentatively)
 - Assignment 2: released on Week 6, due on Week 9 (tentatively)
 - Assignment 3: released on Week 9, due on Week 13 (tentatively)

Logistics

- 3 Assignments (36%) + Tutorial Attendance (4%)
- 1 Mid-term (30%)
- 1 Final Exam (30%)
- Held online:
 - Lectures
- Held offline (in classrooms):
 - Tutorials

Videos of lectures are made available after lectures.

Responsibility of Team Members

- All members, together, strive to serve you well! However, we have a huge class of >600 students!!
- The lecturers will spare no effort in helping you, but it wouldn't be possible for us two to answer *all* questions from 600 students on time...
- Therefore, to get the most prompt and high-quality answers to your questions, when you have:
 - Logistic-related Questions, go to <u>Lecturers</u>
 - Lecture-related Questions, go to <u>Lecturers</u>
 - Fundamental Python Questions (Week 1-2), go to GAs
 - Tutorial-related Questions, go to <u>Tutors</u>
 - Assignment-related Questions, go to <u>GAs</u>
- We will also actively use Canvas Discussion to answer questions so that everyone benefits! Feel free to post questions there!

Reference Books

- [Book1] Andriy Burkov, "The Hundred-Page Machine Learning Book", 2019.
 (read first, buy later: http://themlbook.com/wiki/doku.php)
- [Book2] Andreas C. Muller and Sarah Guido, "Introduction to Machine Learning with Python: A Guide for Data Scientists", O'Reilly Media, Inc., 2017.
- [Book3] Jeff Leek, "The Elements of Data Analytic Style: A guide for people who want to analyze data", Lean Publishing, 2015.
- [Book4] Vincent Tan, "Introduction to Machine Learning for EE2211", https://vyftan.github.io/papers/ee2211book.pdf
 - Follows the flow of the lectures and contains many additional "theory" practice problems (no solutions yet)

Something to Note...

- The topic of machine learning, per se, is a mixture of concepts and applications.
- <u>Lectures</u> are treated as the "<u>theory</u>" part and <u>tutorials</u> as the "<u>practice</u>" part.
- Hence,
 - During lecture, we focus on <u>learning concepts</u>
 - Unfortunately, we won't be able to spend much time showing code since we
 will only have 2 hours, especially for Lecs 1-3 and Lecs 10-12 (but don't
 worry, there won't be coding questions for these two parts either. ;-))
 - During tutorials, we focus on <u>reviewing concepts and coding</u>
 - The tutors will discuss coding and some concepts with you
 - You may somehow treat tutorial as a small lecture for coding as well...
- We understand that our students come from different departments all across CDE
 - Don't worry too much if you consider your coding skills to be not perfect, you will have chances to learn and improve in EE2211. ;-)
 - The whole team is here to offer help whenever your need!
 - In past semesters, very majority of students end up doing great!

Something to Note...

- In a couple of week, we might slightly go beyond 1 hour and 40 mins
 - We will need to explain the concepts clearly
 - Feel free to leave if you have to at 1hour 35 mins; the lectures are recorded.

We are here to help! Let us know your questions!