Guia de ejercicios para la evaluación del segundo parcial

EVALUACIÓN PARCIAL 02 -OCTUBREE-2018 De 16:00 a 17:00 HORAS - Salón P-204

- 1. Demuesta que si la suma de dos superficies es una esfera, entonces las dos superficies son esferas. ¿Puedes mostrar que si el toro o el plano proyectivo son la suma conexa de dos superficies, una de ellas debe ser una esfera?.
- 2. ¿Qué superficies son estas?

- 3. Demuestrar que la suma conexa es asociativa y conmutativa.
- 4. Demostrar que si dos superficies compactas no son homeomorfas entonces sin importar cuantos discos topológicos se les hagan a las superficies, estas no pueden ser homeomorfas.
- 5. Demostrar que para cada superficie S no orientable existe una curva $c \subset S$ cerrada tal que S-c es una superficie orientable.
- 6. Sean X,Y dos espacios topológicos. Definimos $M(X,Y)=\{f:X\to Y|f \text{ es continua}\}$. Demuestrar que \simeq es una relación que cumple lo siguiente:
 - Si $f \in M(X,Y)$ entonces $f \simeq f$ (\simeq es Reflexiva).
 - Si $\{f,g\} \subset M(X,Y)$ tal que $f \simeq g$ entonces $g \simeq f$ (\simeq es Simetrica).
 - Si $\{f,g,h\} \subset M(X,Y)$ tal que $f \simeq g$, $g \simeq h$ entonces $f \simeq h$ (\simeq es Transitiva).
- 7. Sea X un espacio topológico. Demostrar que X es contraible si y solamente si para cualquier $x \in X$, X es homotopicamente equivalente a $\{x\}$.
- 8. Sean X, Y, Z espacios topológicos. Demostrar que si X es contraible entonces para cualesquiera $f:Z\to X$ y $g:X\to Y$ continuas son nulhomotópicas.
- 9. Sea X un espacio topológico. Demostrar que si X es contraible entonces es conectable por trayectorias.
- 10. Demostrar que si $f,g:X\to\mathbb{S}^2$ son continuas tales que $\forall x\in X$, $f(x)\neq -g(x)$ entonces $f\simeq g$.

Tarea 02 Octubre 2018

- 11. Sea X un espacio topológico, $\{x_0,x_1\}\subset X$. Si $f,g:I\to X$ son dos trayectorias con $f(0)=g(0)=x_0$ y $f(1)=g(1)=x_1$ tal que $f\simeq g$ entonces $\hat{f}\simeq \hat{g}$, donde $\hat{f}(t)=f(1-t)\,\forall t\in I$
- 12. Sean X un espacio topólogico simplemente conexo y $\{x_0,x_1\}\subset X$. Demostrar que si $f,g:I\to X$ son dos trayectorias con $f(0)=g(0)=x_0$ y $f(1)=g(1)=x_1$ entonces $f\simeq g$.

Tarea 02 Octubre 2018