libshirani - Jonathan Taylor

Exercises ISLR – Ch.4

Marcelo Previato Simoes Nº 2367070 08/09/2025

Exercise 4) Curse of Dimensionality (a-b)

a) 1 feature: 0.1 of the observations

b) 2 features: $0.1 \times 0.1 = 0.01$ of the observations

Exercise 4) Curse of Dimensionality (c-d)

c) 100 features: $(0.1)^100 = 10^(-100)$

d) Points near observation decrease exponentially, so it is necessary to increase the distance to get more neighbors, which increase the noise

Exercise 4) Curse of Dimensionality (e)

Length of the size of the hypercube to have 10% of data

$$p = 1 \rightarrow k = 0.100$$

$$p = 2 \rightarrow k^2 = 0.1 \rightarrow k = 0.1^{(1/2)} \sim 0.316$$

$$p = 100 \rightarrow k^{100} = 0.1 \rightarrow k = 0.1^{(1/100)} \sim 0.977$$

The size of the hypercube is getting bigger, so points are getting further from the observation.

Applied

Exercise 16 – Boston dataset

Ex.16) Data Prep

- Create binary variable of high crime (1 above median, 0 below median)
- Create training and test subsets: 70% training | 30% test (random)

crim

Min. : 0.00632

1st Qu.: 0.08205

Median : 0.25651

Mean : 3.61352

3rd Qu.: 3.67708

Max. :88.97620

Ex.16) Logistic Regression (all predictors)

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -16.137952
                          9.184105
              -0.076043
zn
ındus
              -0.064802
                                     -1.044 0.296500
              1.237067
chas
                          0.984795
                                     1.256 0.209056
             46.772792
                          8.707875
                                            7.82e-08 ***
nox
              -0.542088
                                     -0.650 0.515858
rm
                          0.834311
              0.019331
                          0 013568
                                     1 425 0 154236
age
dis
              0.633277
                                      2.415 0.015740 *
                          0.262238
              0.601721
rad
tax
              -0.006860
ptratio
              0.334189
                          0.158840
                                      2.104 0.035384 *
black
              -0.047817
                          0.019060
Istat
              -0.012217
                          0.060798
                                     -0.201 0.840743
medv
              0.139175
                          0.077494
                                     1.796 0.072502 .
```

```
Confusion Matrix - Test Data:
True
Pred 0 1
0 73 4
1 12 63
```

Accuracy: 0.895 Sensitivity: 0.940 Specificity: 0.859

- Very good performance in predicting classification (89.5%, 136 out of 152)
- Higher sensitivity (better in identifying positives) than specificity (negatives)

Ex.16) Logistic Regression (few predictors)

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.34010
                       7.05097
                               -1.183
                                        0.2369
                      0.03068 -2.255
                                        0.0241 *
           -0.06917
zn
           32.13938
                     5.95502 5.397 6.78e-08 ***
nox
dis
           0.41376
                      0.20660 2.003
                                        0.0452 *
          0.52514
                      0.13423 3.912 9.15e-05 ***
rad
          -0.02735
                      0.10340 -0.265
                                        0.7914
ptratio
black
           -0.03180
                       0.01463 - 2.173
                                        0.0298 *
```

```
Confusion Matrix - Test Data:
True
Pred 0 1
0 71 7
1 14 60
```

Accuracy: 0.862 Sensitivity: 0.896 Specificity: 0.835

- Deterioration of classification: 89.5% → 86.2% (16 → 21 errors)
- Keep full or try different subsets or information criteria

Ex.16) Linear Discriminant Analysis (LDA) 出間

Predictors: All variables

Priors: based on training data

0.4745763 0.5254237

```
Confusion Matrix - Test Data:
    True
Pred 0 1
   0 79 13
   1 6 54
```

Accuracy: 0.875 Sensitivity: 0.806 Specificity: 0.929

- Slightly worse than Logistic regression with all predictors: 89.5% → 87.5%
- Distinct balance between type of errors: worse sensitivity (94.0% → 80.6%), better specificity (85.9% \rightarrow 92.9%)

Ex.16) KNN: N = 1 to 10


```
K = 1
Confusion Matrix - Test Data:
    True
Pred 0 1
    0 72 5
    1 13 62
```

Accuracy: 0.882 Sensitivity: 0.925 Specificity: 0.847

K = 3

Confusion Matrix - Test Data:
True
Pred 0 1
0 77 5
1 8 62

Accuracy: 0.914
Sensitivity: 0.925
Specificity: 0.906

- KNN could perform better than the other methods depending on the choice K
- Improved performance for K=3: $89.5\% \rightarrow 91.4\%$ ($16 \rightarrow 13$ errors)

Ex.16) KNN: N = 1 to 10

Ex.16) Full Comparison

	Metodo <chr></chr>	Acuracia <dbl></dbl>	Sensibilidade <dbl></dbl>	Especificidade <dbl></dbl>
7	KNN (k=3)	0.914	0.925	0.906
1	Reg Log (full)	0.895	0.940	0.859
8	KNN (k=4)	0.895	0.925	0.871
9	KNN (k=5)	0.895	0.896	0.894
6	KNN (k=2)	0.888	0.940	0.847
5	KNN (k=1)	0.882	0.925	0.847
3	LDA (full)	0.875	0.806	0.929
2	Reg Log (short)	0.862	0.896	0.835
4	Naive Bayes (full)	0.836	0.821	0.847