Introduzione al Trattamento Automatico del Linguaggio

Rachele Sprugnoli – <u>rachele.sprugnoli@unicatt.it</u>

Centro Interdisciplinare di Ricerche per la Computerizzazione dei Segni dell'Espressione (CIRCSE)

DEFINIZIONI

Computational linguistics and natural language processing [...] are sometimes used interchangeably to describe the field concerned with the processing of human language by computers

- Computational Linguistics is used to describe research interested in answering linguistic questions using computational methodology
- Natural Language Processing describes research on automatic processing of human language for practical applications

Bender, Emily M. 2016. "Linguistic Typology in Natural Language Processing". Linguistic Typology 20(3), 645-660.

DEFINIZIONI

Testo e Computer, 2016

"L'obiettivo centrale della Linguistica Computazionale (LC) è quello di sviluppare modelli computazionali della lingua, cioè modelli del funzionamento del linguaggio naturale che possano essere tradotti in programmi eseguibili dal calcolatore e che consentano a quest'ultimo di acquisire le competenze necessarie per comunicare direttamente nella nostra lingua"

COSA VUOL DIRE STUDIARE IL FUNZIONAMENTO DEL LINGUAGGIO?

Il computer può essere usato per la gestione e l'analisi avanzata dei dati linguistici in formato digitale studiando, ad esempio:

- le costruzioni grammaticali
- la distribuzione della parole
- i cambiamenti semantici delle parole nel tempo
- le differenze linguistiche tra vari registri/autori/generi

Fonetica	netica Studia la produzione e la percezione dei suoni			
Fonologia	Studia il sistema mentale dei suoni			
Morfologia Studia la formazione e la struttura interna delle par				
Sintassi	Studia la struttura interna delle frasi			
Semantica Studia il significato delle parole o delle frasi				
Pragmatica	Studia l'uso contestuale della lingua			

MA...

Il computer, di per sé, NON conosce il linguaggio naturale!

Il **Trattamento Automatico del Linguaggio** (TAL) ha lo scopo di dotare il computer di conoscenze linguistiche, di creare macchine che capiscano (e addirittura riproducano) il linguaggio naturale, di sviluppare programmi che assistano l'essere umano in compiti (*task*) linguistici:

- riconoscimento automatico del parlato
- sintesi automatica della voce
- traduzione automatica
- analisi automatica del sentimento

1. Ambiguità grammaticale

PAROLA	CATEGORIA GRAMMATICALE	
C'	AVVERBIO/PRONOME	
era	VERBO/NOME	
una	ARTICOLO/PRONOME/NUMERALE	
volta	NOME/VERBO (voltare)/VERBO (volgere)	
un	ARTICOLO/NUMERALE	
pezzo	NOME	
di	PREPOSIZIONE	
legno	NOME/VERBO	

Ambiguità sintattica: «una vecchia porta la sbarra»

«una vecchia porta la sbarra» «una vecchia porta la sbarra (la strada)»

3. Ambiguità semantica: «amo» / «navigare»

- 4. La lingua cambia
 - Lingue classiche/storiche:

Ahi quanto a dir qual era è cosa dura esta selva selvaggia e aspra e forte che nel pensier rinova la paura!

Lingue non-standard:

#SanremoFunky con @elodie e qualche considerazione sulla prima serata di #Sanremo2020 ☐ che sta per partire

Neologismi: petaloso / Brexit

5. Espressioni multi-parola, ovvero «2 +2 non fa sempre 4»

Il loro significato non corrisponde alla combinazione lessicale delle parole che li compongono

- espressioni metaforiche: «parlare dietro le spalle»
- proverbi: «si salvi chi può»
- espressioni idiomatiche: «conosco i miei polli»

6. Servono informazioni di contesto o di conoscenza del mondo «Elsa e Anna sono sorelle»

COME ANALIZZARE IL LINGUAGGIO

 Struttura a PIPELINE: catena i cui moduli descrivono ognuno un diverso livello di analisi linguistica e dove l'output di un modulo diventa l'input per il modulo successivo. Esempio:

Le analisi presentate nelle prossime slide sono l'output della pipeline di Stanford CoreNLP

demo online: http://corenlp.run/

C'era una volta un pezzo di legno. C'era | una | volta | un | pezzo | di | legno. C' | era | una | volta | un | pezzo | di | legno | .

When you see what happened with crooked Hillary today, it was a disaster. A disaster. She had a disaster. Trump, 2016-08-05

MORPHOLOGY

LEMMA

Trump, 2016-08-05

SYNTAX / PARSING

Trump, 2016-08-05

a costituenti

SYNTAX / PARSING

Trump, 2016-08-05

a dipendenze

ENTITY

When you see what happened with crooked Hillary today, it was a disaster.

PER

A disaster .

Trump, 2016-08-05

3 She had a disaster .

COREFERENCE

When you see what happened with crooked Hillary today , it was a disaster .

2 A disaster .

3 She had a disaster .

TIME EXPRESSIONS

Trump, 2016-08-05

2016-08-05 1 When you see what happened with crooked Hillary today , it was a disaster . 2 A disaster . 3 She had a disaster .

SENTIMENT

Trump, 2016-08-05

LOOKUP LIST

- Sistema che riconosce solo le parole memorizzate nei suoi elenchi detti "gazetteers"
- Vantaggi: semplice, veloce, facile da utilizzare
- Svantaggi: la raccolta e il mantenimento degli elenchi richiede tempo, gli elenchi non gestiscono tutte le possibili varianti delle parole e non possono risolvere l'ambiguità, nessun tipo di inferenza

LISTA_VALUTE	LISTA_CITTÀ	
Euro, dollaro, dollari,	http://download.geonames.	
sterlina, sterline, \$, €	org/export/dump/	

SISTEMI A REGOLE (RULE BASED)

PRO

- basato su evidenze linguistiche
- preciso

CONTRO

- difficile da estendere o da adattare a nuovi domini
- richiede tempo per essere sviluppato

SISTEMI A REGOLE (RULE BASED)

- Esempio: Part-of-Speech tagging:
- 1) assegnazione ad ogni parola di tutti i possibili PoS usando un dizionario

NOUN VERB ART VERB «paghiamo il conto»

- 2) applicazione delle regole per rimuovere etichette ambigue
- «rimuovere VERB se in alternativa con NOUN e preceduto da ART»

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

- algoritmi che permettono al computer di imparare a svolgere un task a

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

- 3 tipi principali di algoritmi di ML
- NON SUPERVISIONATI: non necessitano di un corpus annotato a mano per creare il modello
- SUPERVISIONATI: utilizzano un corpus annotato a mano per la creazione dei modelli
- 3. SEMI-SUPERVISIONATI: combinano informazioni derivanti sia da corpora annotati che da dati non annotati

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

- ML NON SUPERVISIONATO, esempio
- CLUSTERING: raggruppamento dell'input in base a una qualche relazione di similitudine tra i dati

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

- ML NON SUPERVISIONATO, esempio
- CLUSTERING: raggruppamento dell'input in base a una qualche relazione di similitudine tra i dati

Output in base alla forma:

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

- ML SUPERVISIONATO, esempio
- CLASSIFICAZIONE: dato un insieme di classi predefinite determinare a quale classe appartiene una certa entità

Input (training):

Classificazione di nuovi dati (test):

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

ML SUPERVISIONATO

Il ciclo MATTER

(Pustejovsky and Stubbs (2012) "Natural Language Annotation for Machine Learning". O'Reilly Media.)

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

- ML SUPERVISIONATO
- Il ciclo MATTER:
 - **Model**: descrizione teorica di un fenomeno linguistico
 - Annotate: annotazione del corpus con uno schema di annotazione basato sul modello
 - Train: addestramento di un algoritmo di ML sul corpus annotato
 - **Test**: test del sistema addestrato su un nuovo campione di dati
 - Evaluate: valutazione delle performance del sistema
 - **Revise**: revisione del modello e dello schema di annotazione

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

ML SUPERVISIONATO

- ANNOTAZIONE
 - aggiunta di informazioni (linguistiche) al testo tramite etichette (tag)
 - copre ogni aspetto dell'analisi linguistica
 - rende esplicita e analizzabile dal computer la struttura linguistica implicita nel testo
- SCHEMA DI ANNOTAZIONE
 - repertorio di categorie per l'annotazione: lista di tag e attributi
- LINEE GUIDA DI ANNOTAZIONE
 - documento in cui viene spiegato il modo in cui l'annotazione è proiettata sul testo

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

ML SUPERVISIONATO

Dati necessari:

- di training (training set): dati annotati per l'addestramento del modello
- di test (test set): dati NON annotati, diversi da quelli di training, su cui applicare il modello addestrato
- di valutazione (*gold standard*): dati del test annotati su cui valutare le performance del modello addestrato

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

ML SUPERVISIONATO

- Esempio: **Sentiment Polarity Classification**

	-				
subj	Subjectivity: possible values are 0 and 1.				
	A subjective tweet will have $subj = 1$;				
	an objective tweet $subj = 0$.				
opos	Positive overall polarity: possible values are 0 and 1.				
	A tweet exhibiting positive polarity will have $opos = 1$;				
	a tweet without positive polarity will have $opos = 0$.				
oneg	Negative overall polarity: possible values are 0 and 1.				
	A tweet exhibiting negative polarity will have $neg = 1$;				
	a tweet without negative polarity will have $neg = 0$.				
iro	Irony: possible values are 0 and 1.				
	A tweet with an ironic twist will have $iro = 1$,				
	otherwise $iro = 0$.				
lpos	Positive literal polarity: possible values are 0 and 1.				
	A tweet exhibiting positive <i>literal</i> polarity will have $pos = 1$;				
	tweet without positive <i>literal</i> polarity will have $pos = 0$.				
lneg	Negative literal polarity: possible values are 0 and 1.				
	A tweet exhibiting negative <i>literal</i> polarity will have $neg = 1$;				
	tweet without negative <i>literal</i> polarity will have $neg = 0$.				

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

ML SUPERVISIONATO

- Esempio: Sentiment Polarity Classification

subj	opos	oneg	iro	lpos	lneg	description and explanatory tweet in Italian		
0	0	0	0	0	0	objective l'articolo di Roberto Ciccarelli dal manifesto di oggi http://fb.me/1BQVy5WAk		
1	0	0	0	0	0	subjective with neutral polarity and no irony Primo passaggio alla #strabrollo ma secondo me non era un iscritto		
1	1	0	0	1	0	subjective with positive polarity and no irony splendida foto di Fabrizio, pluri cliccata nei siti internazionali di Photo Natura http://t.co/GWoZgbxAuS		
1	0	1	0	0	1	subjective with negative polarity and no irony Monti, ripensaci: l'inutile Torino-Lione inguaia l'Italia: Tav, appello a Mario Monti da Mercalli, Cicconi, Pont http://t.co/3CazKS7Y		
1	1	1	0	1	1	subjective with both positive and negative polarity (mixed polarity) and no irony Dati negativi da Confindustria che spera nel nuovo governo Monti. Castiglione: "Avanti con le riforme" http://t.co/kIKnbFY7		
1	1	0	1	1	0	subjective with positive polarity, and an ironic twist Questo governo Monti dei paschi di Siena sta cominciando a carburare; speriamo bene		

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

- ML SUPERVISIONATO
- Inter-Annotator Agreement (IAA) = accordo tra almeno 2 annotatori sullo stesso testo
 - consistenza dell'annotazione
 - plausibilità cognitiva del modello
 - un ampio accordo tra gli annotatori è considerato garanzia della validità di tale schema e dei dati annotati
 - K di Cohen (annotatori = 2) o di Fleiss (annotatori > 2)

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

- ML SUPERVISIONATO
- VALUTAZIONE: analisi quantitativa delle prestazioni del modello
 - confronto dell'output del modello sui dati di test con il gold standard

Sistemi di apprendimento automatico – MACHINE LEARNING (ML)

- ML SUPERVISIONATO
- **VALUTAZIONE**: analisi quantitativa delle prestazioni del modello
 - uso di metriche standard: ACCURACY

Esempio:

- 150 frasi annotate nel test
- 120 frasi annotate con sentiment corretto
- accuracy = 120/150 = 0.8 (80%)

GRAZIE!

Email: rachele.sprugnoli@unicatt.it

Twitter: @RSprugnoli

- Sistemi di apprendimento automatico MACHINE LEARNING (ML)
- ML SUPERVISIONATO
- VALUTAZIONE: matrice di confusione

		Actual		
		Positive	Negative	
ted	Positive	True Positive	False Positive	
Predi	Negative	False Negative	True Negative	

- Sistemi di apprendimento automatico MACHINE LEARNING (ML)
- ML SUPERVISIONATO
- VALUTAZIONE: analisi quantitativa delle prestazioni del modello
 - uso di metriche standard: PRECISION, misura il rapporto tra le entità correttamente riconosciute dal sistema ed il totale delle entità riconosciute

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

- Sistemi di apprendimento automatico MACHINE LEARNING (ML)
- ML SUPERVISIONATO
- VALUTAZIONE: analisi quantitativa delle prestazioni del modello
 - uso di metriche standard: RECALL, misura il rapporto tra le entità correttamente riconosciute dal sistema ed il totale delle entità corrette

- Sistemi di apprendimento automatico MACHINE LEARNING (ML)
- ML SUPERVISIONATO
- **VALUTAZIONE**: analisi quantitativa delle prestazioni del modello
 - uso di metriche standard: **F-MEASURE**, media armonica tra precision e recall

```
F-MEASURE = 2 * precision * recall precision + recall
```

- Sistemi di apprendimento automatico MACHINE LEARNING (ML)
- ML SUPERVISIONATO
- **VALUTAZIONE**: analisi quantitativa delle prestazioni del modello
 - Esempio:

		ACTUAL (gold standard)		
		Positive	Negative	
PREDICTED (test set)	Positive	70 (TP)	15 (FP)	
	st set) Negative	30 (FN)	45 (TN)	

- Precision: 70 / (70+15) = 70 / 85 = 0.82
- Recall: 70 / (70+30) = 70 / 100 = 0,70
- F-measure: 2*0,82*0,7 / (0,82+0,70) = 0,75