Capítulo VI

Primitivação

6.1 Definição de Primitiva. Relação entre primitiva e derivadas.

Dada uma função F já sabemos determinar uma nova função F' que se obtém da anterior através da derivação. Pensemos no problema ao contrário:

Dada uma função
$$f$$
, será possível determinar uma outra função F tal que $F'(x) = f(x)$?

A uma tal função F chama-se **primitiva** ou **integral** de f.

Tal como há regras para a derivação, vamos encontrar regras para a primitivação ou integração.

Definição:

Uma função F é uma primitiva ou integral de uma função f : $I \rightarrow IR$ se

$$F'(x) = f(x), \forall x \in I$$

(I é um intervalo ou reunião finita de intervalos).

Exemplo:

- 1) $F(x) = x^2 + x$ é uma primitiva de f(x) = 2x + 1. $G(x) = x^2 + x + 2$ também é uma primitiva de f(x) = 2x + 1. $H(x) = x^2 + x - 30$ também é uma primitiva de f(x) = 2x + 1.
- 2) Uma primitiva de $f(x) = e^{2x} + x^2$ é $F(x) = \frac{1}{2}e^{2x} + \frac{1}{3}x^3$, outro exemplo também pode ser $G(x) = \frac{1}{2}e^{2x} + \frac{1}{3}x^3 + 5$. De facto, tem-se F'(x) = G'(x).

Teorema:

Se F, G são duas primitivas de $f: I \to IR$, então F e G diferem apenas numa constante, isto é, existe C constante, tal que G(x) = F(x) + C, $\forall x \in I$.

Segundo este teorema não se tem uma só primitiva de uma função, mas sim uma família de primitivas, cuja diferença entre elas é uma constante. Assim, podemos dizer que uma primitiva é **única** a menos de uma constante.

Notação:

Para indicar uma primitiva geral de f (nos termos do teorema anterior), utiliza-se a notação:

Escreve-se $\int f(x) dx = F(x) + C$ quando F'(x) = f(x). C é a constante de integração.

Exemplo:

1)
$$\int \frac{1}{2\sqrt{x}} dx = \sqrt{x} + C$$
 2) $\int \frac{1}{x} dx = \ln(x) + C, \ x > 0$ 3) $\int e^x dx = e^x + C$

6.2 Primitivas imediatas. Regras de primitivação.

Como vimos pela definição a primitivação ou **integração é a operação inversa da derivação** e portanto temos as seguintes propriedades:

•
$$\frac{d}{dx} (\int f(x) dx) = f(x)$$
.

Esta relação permite obter directamente propriedades e primitivas de várias funções a partir das propriedades e tabelas de derivação:

Fórmula de derivação	Fórmula de primitivação
$\frac{d}{dx}(C) = 0$	$\int 0 dx = C$
$\frac{d}{dx}(ax) = a$	$\int a dx = ax + C$
$\frac{d}{dx}(x^n) = nx^{n-1}$	$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C \text{ para } (n \neq -1) \text{ (*)}$
$\frac{d}{dx}(\ln(x)) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + C \tag{**}$
$\frac{d}{dx}(sen(x)) = cos(x)$	$\int \cos(x) dx = \operatorname{sen}(x) + C$
$\frac{d}{dx}(\cos(x)) = -\operatorname{sen}(x)$	$\int sen(x) dx = -\cos(x) + C$
$\frac{d}{dx}(e^x) = e^x$	$\int e^x dx = e^x + C$
$\frac{d}{dx}(arctg(x)) = \frac{1}{1+x^2}$	$\int \frac{1}{1+x^2} dx = arctg(x) + C$
$\frac{d}{dx}(arcsen(x)) = \frac{1}{\sqrt{1-x^2}}$	$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin(x) + C$

(a e C são constantes.)

A fórmula (*) não é válida para o caso em que n=-1, nesse caso aplica-se a fórmula (**).

Exercício:

Verifique que
$$\frac{d}{dx}(\ln|x|) = \frac{1}{x}$$
.

Proposição:

Tal como a derivação também a primitivação é uma operação linear, isto é:

- $\int k.f(x) dx = k \int f(x) dx$
- $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$

Exercício 2:

Calcule as seguintes primitivas.

$$1) \quad \int \left(3x^4 - 2x + 5\right) dx$$

$$2) \quad \int \frac{x+1}{\sqrt{x}} \ dx$$

$$3) \quad \int \frac{3x^2 - 2}{x^2} \, dx$$

4)
$$\int \frac{dx}{x^2}$$

Resolução de 4)

$$\int \frac{dx}{x^2} = -\frac{1}{x} + C.$$

Observação:

Se considerarmos x>0 comparemos o gráfico das três diferentes primitivas de $f(x)=\frac{1}{x^2}$. Os gráficos correspondem a funções da forma $-\frac{1}{x}+C$, para valores de C iguais a 1, 0 e -1:

Exercício 3:

Determine a primitiva F da função $f(x) = 2x + e^{-x}$ tal que F(0) = 3.

Resolução:

 1°) Calcular a primitiva de f:

$$\int (2x + e^{-x}) dx = \int 2x dx + \int e^{-x} dx = 2 \int x dx + \int e^{-x} dx = 2 \frac{x^2}{2} + C_1 + \int e^{-x} dx =$$

$$= x^2 + C_1 + \int e^{-x} dx$$

É fácil de ver que uma primitiva de e^{-x} é $-e^{-x}$: $\frac{d}{dx}(-e^{-x})=e^{-x}$.

Logo
$$\int (2x + e^{-x}) dx = x^2 + C_1 - e^{-x} + C_2 = x^2 - e^{-x} + C = F(x)$$
.

Note-se que a soma das constantes C_1 , C_2 ainda é uma constante, C.

2°) Determinar C de modo que F(0) = 3:

$$F(0) = 0^2 - e^{-0} + C = 3 \iff -1 + C = 3 \iff C = 4$$

A resposta é $F(x) = x^2 - e^{-x} + 4$.

Nota:

- Podemos sempre verificar se o resultado de uma primitiva está ou não correcto, por derivação;
- Resultados de uma primitiva aparentemente distintos podem, na verdade, diferir entre si apenas em uma constante;
- Há funções que apesar de serem *elementares* a sua primitiva não é *elementar*, por exemplo e^{-x^2} e $\frac{sen(x)}{x}$.

6.3 Primitivação por substituição.

Já vimos como calcular primitivas de funções simples a partir da tabela de derivação. Passemos agora a funções mais "complicadas".

A **Regra da Cadeia** (ou regra da derivada da função composta – rever página 108) para derivação de uma **função composta** é:

$$\frac{d}{dx}F(u(x)) = F'(u(x))u'(x)$$

Relacionando a regra da cadeia com a primitivação temos:

$$\int F'(u(x))u'(x) dx = F(u(x)) + C$$

Exemplo:

Seja $f(x) = e^{kx}$ onde k é uma constante diferente de zero.

Pretende-se determinar $\int ke^{kx} dx$.

Podemos encarar a função f como composta das funções u(x) = kx e $F(x) = e^x$.

Então, temos que:

- $F(u(x)) = e^{kx}$
- $F'(u(x)) \cdot u'(x) = ke^{kx}$ (derivada da função composta).
- $\int ke^{kx} dx = \int F'(u(x)) \cdot u'(x) dx = \int [F(u(x))] dx = F(u(x)) + C = e^{kx} + C$

Se em vez de $\int ke^{kx}dx$ tivermos $\int e^{kx}dx$, o problema é de fácil resolução pois

$$\int e^{kx} dx = \int \frac{k}{k} e^{kx} dx = \frac{1}{k} \int k e^{kx} dx$$

e este integral já sabemos calcular e portanto $\int e^{kx} dx = \frac{1}{k} e^{kx} + C$.

Exercício:

a) Calcule a primitiva da função $f(x) = 2xe^{x^2-1}$.

Resolução:

Fazendo $u(x) = x^2 - 1$ vem que

$$\int f(x)dx = \int 2xe^{x^2 - 1}dx = \int u'(x)e^{u(x)}dx = \int \left(e^{u(x)}\right)' dx = e^{u(x)} + C = e^{x^2 - 1} + C$$

b)
$$\int 2xe^{x^2-1}dx$$

Resolução:

Fazendo $u(x) = x^2 - 1$, u' = 2x vem que

$$\int \underbrace{2x}_{u'} \underbrace{e^{x^2 - 1}}_{e^u} dx = \int \left(e^{x^2 - 1} \right)' dx = e^{x^2 - 1} + C$$

c)
$$\int \frac{e^{\sqrt{x}-1}}{\sqrt{x}} dx$$

Resolução:

Fazendo $u(x) = \sqrt{x} - 1$, $u' = \frac{1}{2\sqrt{x}}$ podemos escrever o integral como $\int \frac{1}{\sqrt{x}} e^{\sqrt{x} - 1} dx$, mas só aparece o factor $\frac{1}{\sqrt{x}}$ em vez de $\frac{1}{2\sqrt{x}}$. Ora este problema resolve-se multiplicando o integral por $\frac{2}{2}$:

$$\int \frac{1}{\sqrt{x}} e^{\sqrt{x}-1} dx = 2 \int \frac{1}{2\sqrt{x}} e^{\frac{e^{u}}{\sqrt{x}-1}} dx = 2 e^{\frac{e^{u}}{\sqrt{x}-1}} + C.$$

Deduzimos assim uma fórmula mais geral de primitivação da função exponencial:

$$\int u'e^u \, dx = e^u + C$$

Ora esta fórmula pode, também, ser deduzida tendo em conta que se u é função de x:

$$\frac{d}{dx}\left(e^{u(x)}\right) = u'(x)e^{u(x)} \tag{1} \int u'e^u dx = e^u + C$$

Procedendo de forma análoga temos:

Capítulo VI: Primitivação

$\frac{d}{dx}\left(\frac{u^{n+1}}{n+1}\right) = u'u^n$	(2) $\int u' \cdot u^n dx = \frac{u^{n+1}}{n+1} + C$, se $n \neq -1$
$\frac{d}{dx}(\ln u) = \frac{u'}{u}$	$(3) \int \frac{u'}{u} dx = \ln u + C$
$\frac{d}{dx}(sen(u)) = u'.\cos(u)$	$(4) \int u'.\cos(u) \ dx = sen(u) + C$
$\frac{d}{dx}(\cos(u)) = -u'sen(u)$	$(5) \int -u' sen(u) dx = -\cos(u) + C$
$\frac{d}{dx}(arctg(u)) = \frac{u'}{1+u^2}$	(6) $\int \frac{u'}{1+u^2} dx = arctg(u) + C$
$\frac{d}{dx}(arcsen(u)) = \frac{u}{\sqrt{1 - u^2}}$	(7) $\int \frac{u'}{\sqrt{1-u^2}} dx = arcsen(u) + C$

Exemplo:

a)
$$\int 2x (x^2 + 1)^5 dx$$

Resolução:

Fazendo
$$u(x) = x^2 + 1$$
, $u' = 2x$, $\log_{10} \int_{0}^{u'} \sqrt{(x^2 + 1)^5} dx = \frac{(x^2 + 1)^6}{6} + C$

b)
$$\int \frac{3x^2 + 4}{x^3 + 4x} dx$$

Resolução:

Fazendo
$$u(x) = x^3 + 4x$$
, $u' = 3x^2 + 4$, logo

$$\int \frac{3x^2 + 4}{x^3 + 4x} dx = \int (3x^2 + 4) \frac{1}{x^3 + 4x} dx \stackrel{(3)}{=} \ln |x^3 + 4x| + C$$

O que fizemos nos exercícios anteriores foi reconhecer que a função integrando, podia ser escrita como a derivada de uma função composta.

Esta técnica pode ser usada de uma forma mais sistemática pelo chamado <u>Método de</u> <u>substituição de variável</u> para o qual existe uma notação particularmente adequada e prática:

Suponhamos que queremos calcular $\int f(u(x)) \cdot u'(x) dx$.

Se u(x) for derivável temos $\frac{du}{dx} = u'(x)$ encarando $\frac{du}{dx}$ como um quociente, temos: du = u'(x) dx

Então, com esta notação

$$\int \underbrace{f(u(x))}_{f(u)} \cdot \underbrace{u'(x)}_{du} dx = \underbrace{F(u(x))}_{F(u)} + C , \qquad se \quad F' = f$$

Ou seja:

$$\int f(u)du = F(u) + C .$$

Exemplo:

$$\int x\sqrt{x^2+4}\,dx$$

Resolução:

O cálculo deste integral pode ser feito do seguinte modo:

Consideramos a substituição: $u = x^2 + 4$. Então $\frac{du}{dx} = 2x$ e portanto $\frac{1}{2}du = x dx$

Logo
$$\int x \sqrt{x^2 + 4} \, dx = \int \underbrace{\sqrt{x^2 + 4}}_{\sqrt{u}} \underbrace{x}_{\frac{1}{2}du} = \int \sqrt{u} \frac{1}{2} du = \frac{1}{2} \int \sqrt{u} \, du$$

Calculamos a primitiva expressa em função de u:

$$\frac{1}{2} \int \sqrt{u} \ du = \frac{1}{2} \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{1}{3} u^{\frac{3}{2}} + C$$

Como o nosso objectivo é a determinação de uma primitiva de $x\sqrt{x^2+4}$ substituímos por fim u por x^2+4 obtendo:

$$\frac{1}{3}u^{3/2} + C = \frac{1}{3}(x^2 + 4)^{3/2} + C$$

Este é o <u>método de substituição</u> para o cálculo de primitivas ou integrais e deve ser empregue sempre que o cálculo do integral $\int f(u) du$ for mais simples.

Exercício:

Calcule os seguintes integrais usando o método de substituição:

a)
$$\int xe^{x^2}dx$$
 fazendo $u = x^2$

b)
$$\int \frac{1+\sqrt{x}}{\sqrt{x}} dx$$
 fazendo $u = \sqrt{x}$;

c)
$$\int \frac{\ln(x)}{2x} dx$$
 fazendo $u = \ln(x)$

d)
$$\int \frac{1}{x \ln(x)} dx$$

e)
$$\int \frac{1}{\sqrt{x}(1+x)} dx$$

f)
$$\int \frac{x}{9 - 4x^2} dx$$

g) $\int e^{\sqrt{x}} dx$ (faça apenas a substituição $u = \sqrt{x}$, a continuação da resolução implica a utilização da técnica de primitivação por partes, que será dada a seguir).

Resolução:

a)
$$\int xe^{x^2}dx$$

Se
$$u = x^2$$
 então $\frac{du}{dx} = 2x \iff \frac{du}{2} = xdx$.

Logo
$$\int xe^{x^2} dx = \int e^{x^2} x dx = \int e^u du = e^u + C = e^{x^2} + C$$
.

b)
$$\int \frac{1+\sqrt{x}}{\sqrt{x}} dx$$

Se
$$u = \sqrt{x}$$
 então $\frac{du}{dx} = \frac{1}{2\sqrt{x}} \iff 2du = \frac{dx}{\sqrt{x}}$

Logo
$$\int \frac{1+\sqrt{x}}{\sqrt{x}} dx = \int 2(1+u)du = \int (2+2u)du = 2u+u^2+C = 2\sqrt{x}+x+C$$
.

c)
$$\int \frac{\ln(x)}{2x} dx$$

Se
$$u = \ln(x)$$
 então $\frac{du}{dx} = \frac{1}{x} \iff du = \frac{dx}{x} \Leftrightarrow \frac{du}{2} = \frac{dx}{2x}$

Logo
$$\int \frac{\ln(x)}{2x} dx = \int \ln(x) \cdot \frac{dx}{2x} = \int u \frac{du}{2} = \frac{1}{2} \int u \, du = \frac{1}{2} \frac{u^2}{2} + C = \frac{(\ln x)^2}{4} + C$$

d)
$$\int \frac{1}{x \ln(x)} dx$$

Se
$$u = \ln(x)$$
 então $\frac{du}{dx} = \frac{1}{x} \iff du = \frac{dx}{x}$.

Logo
$$\int \frac{1}{x \ln(x)} dx = \int \frac{1}{\ln(x)} \cdot \frac{dx}{x} = \int \frac{1}{u} du = \ln|u| + C = \ln|\ln(x)| + C$$

e)
$$\int \frac{1}{\sqrt{x(1+x)}} dx$$

Se
$$u = \sqrt{x}$$
 então $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ \iff $2du = \frac{1}{\sqrt{x}}dx$

Logo
$$\int \frac{1}{\sqrt{x(1+x)}} dx = \int \frac{1}{1+x} \cdot \frac{dx}{\sqrt{x}} = \int \frac{2}{1+u^2} du = 2arctg(u) + C = 2arctg(\sqrt{x}) + C$$

f)
$$\int \frac{x}{9-4x^2} dx$$

Se
$$u = 9 - 4x^2$$
 então $\frac{du}{dx} = -8x \iff \frac{1}{-8}du = x dx$

Logo
$$\int \frac{x}{9-4x^2} dx = \int \frac{1}{9-4x^2} x dx = \int \frac{1}{u} \frac{du}{-8} = \frac{-1}{8} \int \frac{1}{u} du = \frac{-1}{8} \ln|u| + C = \frac{-1}{8} \ln|9-4x^2| + C$$

g)
$$\int e^{\sqrt{x}} dx$$

Se
$$u = \sqrt{x}$$
 então $\frac{du}{dx} = \frac{1}{2\sqrt{x}}$ \iff $2 du = \frac{1}{\sqrt{x}} dx$.

Mas $\frac{1}{\sqrt{x}}dx$ não aparece na primitiva.

Então tendo em conta que $u = \sqrt{x}$ temos $2 du = \frac{1}{\sqrt{x}} dx \Leftrightarrow 2u du = dx$.

Substituindo:

$$\int e^{\sqrt{x}} dx = \int e^u 2u \, du = \int 2u e^u \, du$$

(a continuação da resolução implica a utilização da técnica de primitivação por partes, que será dada a seguir).

Note que a partir do momento em que se substitui dx por du só pode aparecer u na primitiva.

6.4 Primitivação por partes.

A regra para a derivação do produto de duas funções é:

$$\frac{d(fg)}{dx} = f'g + fg'$$

Então, em termos de primitivas temos:

$$\int \frac{d(fg)}{dx} dx = \int f'g \, dx + \int fg' \, dx \quad \Leftrightarrow \quad fg = \int f'g \, dx + \int fg' \, dx \,.$$

logo,

$$\int f'gdx = fg - \int fg'dx$$

esta é a fórmula para o método de primitivação por partes.

Nota:

- 1. Aplicámos primitivação por partes quando temos as condições:
 - Queremos primitivar um produto de funções que não conseguimos primitivar directamente, $\int f'(x)g(x)dx$;
 - Conhecemos uma primitiva de f', $\int f'(x) dx = f(x)$;
 - A primitiva $\int f(x)g'(x)dx$ é mais simples de calcular.

2. Quando queremos primitivar um produto de funções por este método, escolhemos uma função para primitivar, f', e outra para derivar, g. Essa escolha deve ser feita tendo em conta os três pontos anteriores.

Exemplos:

- $\mathbf{a)} \quad \int x(x-1)^8 \ dx$
 - Escolhendo $f'(x) = (x-1)^8$ temos $f(x) = \frac{(x-1)^9}{9}$ pois $\int (x-1)^8 dx = \frac{(x-1)^9}{9}$;
 - Escolhendo g(x) = x temos g'(x) = 1

Aplicando a fórmula de primitivação por partes temos:

$$\int \underbrace{x}_{g} \underbrace{(x-1)^{8}}_{f'} dx = x \frac{\underbrace{(x-1)^{9}}_{g}}{9} - \int 1 \underbrace{(x-1)^{9}}_{g} dx = x \frac{(x-1)^{9}}{9} - \frac{1}{9} \frac{(x-1)^{10}}{10} + C$$

Note que:

Se tivéssemos escolhido f'(x) = x e $g(x) = (x-1)^8$ ao aplicar a fórmula de primitivação por partes ficaríamos com uma primitiva mais complicada para calcular.

$$\mathbf{b)} \quad \int \underbrace{x} e^{-2x} dx$$

Escolhendo $f'(x) = e^{-2x}$ e g(x) = x temos $f(x) = \int e^{-2x} dx = \frac{e^{-2x}}{-2}$ e g'(x) = 1.

Aplicando a fórmula de primitivação por partes temos:

$$\int \underbrace{xe^{-2x}}_{g} dx = x \frac{e^{-2x}}{-2} - \int 1 \frac{e^{-2x}}{-2} dx = -x \frac{e^{-2x}}{2} + \frac{1}{2} \int e^{-2x} dx = -x \frac{e^{-2x}}{2} + \frac{1}{2} \frac{e^{-2x}}{(-2)} + C$$

$$\mathbf{c)} \quad \int x^2 e^x \, dx$$

Escolhendo $f'(x) = e^x$ e $g(x) = x^2$ temos $f(x) = \int e^x dx = e^x$ e g'(x) = 2x.

Aplicando o método de primitivação por partes temos

$$\int \underbrace{x^{2}}_{g} \underbrace{e^{x}}_{f'} dx = \underbrace{x^{2}}_{g} \underbrace{e^{x}}_{f} - \int \underbrace{2x}_{g'} \underbrace{e^{x}}_{f} dx$$

Ora a primitiva $\int 2xe^x dx$ também não é imediata, aplicando novamente o método de primitivação por partes da seguinte forma:

fazendo
$$f'(x) = e^x$$
 e $g(x) = 2x$ temos $f(x) = \int e^x dx = e^x$ e $g'(x) = 2$ e portanto
$$\int \underbrace{2xe^x}_{g = f'} dx = 2xe^x - \int 2e^x dx = 2xe^x - 2e^x + C$$

Logo

$$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx = x^2 e^x - (2x e^x - 2e^x) + C = x^2 e^x - 2x e^x + 2e^x + C$$

Note que:

Na segunda vez que se aplica a fórmula de primitivação por partes devemos continuar a considerar como $f'(x) = e^x$.

Em geral, sempre que é necessário aplicar repetidamente o método de primitivação por partes devemos manter a escolha de f'

d) $\int arctg(x) dx$

Note que:

Neste integral só temos uma função para integrar. Mas não sabemos primitivar o arctg(x). Então para podermos aplicar integração por partes olhamos para a função a integrar como 1.arctg(x).

Então
$$\int arctg(x) dx = \int 1.arctg(x) dx$$

Fazendo
$$f'(x) = 1$$
 e $g(x) = arctg(x)$ temos $f(x) = \int 1 dx = x$ e $g'(x) = \frac{1}{1 + x^2}$

Aplicando a fórmula de primitivação por partes temos

$$\int arctg(x) dx = \int \underbrace{1.arctg(x)}_{g} dx = x.arctg(x) - \int x \frac{1}{1+x^{2}} dx$$
$$= x.arctg(x) - \frac{1}{2} \int \frac{2x}{1+x^{2}} dx$$
$$= x.arctg(x) - \frac{1}{2} \ln|1+x^{2}| + C$$

e) $\int \ln(x) dx$ (resolução análoga à anterior)

 $f) \quad \int e^{2x} \cos(x) \, dx$

Escolhendo $f'(x) = e^{2x}$ e $g(x) = \cos(x)$ temos $f(x) = \frac{e^{2x}}{2}$ e g'(x) = -sen(x).

Aplicando a fórmula de primitivação por partes temos

$$\int \underbrace{e^{2x}}_{f'} \underbrace{\cos(x)}_{g} dx = \underbrace{\frac{e^{2x}}{2}}_{g} \underbrace{\cos(x)}_{g} - \int \underbrace{\frac{e^{2x}}{2}}_{f} \underbrace{\left(-\frac{sen(x)}{2}\right)}_{g'} dx$$
$$= \underbrace{\frac{e^{2x}}{2} sen(x)}_{g} + \underbrace{\frac{1}{2}}_{g} \underbrace{\int e^{2x} sen(x)}_{g'} dx$$

Aplicando novamente primitivação por partes (e tendo em conta o que foi dito numa nota anterior) temos que:

$$\int \underbrace{e^{2x}}_{f'} \underbrace{sen(x)}_{g} dx = \underbrace{\frac{e^{2x}}{2}}_{f} \underbrace{sen(x)}_{g} - \int \underbrace{\frac{e^{2x}}{2}}_{g'} \underbrace{\cos(x)}_{g'} dx$$
$$= \underbrace{\frac{e^{2x}}{2} sen(x)}_{g} - \underbrace{\frac{1}{2}}_{g} \int e^{2x} \cos(x) dx$$

Assim

$$\int e^{2x} \cos(x) dx = \frac{e^{2x} sen(x)}{2} + \frac{1}{2} \int e^{2x} sen(x) dx$$

$$= \frac{e^{2x} sen(x)}{2} + \frac{1}{2} \left(\frac{e^{2x} sen(x)}{2} - \frac{1}{2} \int e^{2x} \cos(x) dx \right)$$

$$= \frac{e^{2x} sen(x)}{2} + \frac{e^{2x} sen(x)}{4} - \frac{1}{4} \int e^{2x} \cos(x) dx$$

Note que:

O integral que aparece no 2° membro é igual ao inicial, então podemos passá-lo para o primeiro membro e resolver a equação em ordem a $\int e^{2x} \cos(x) dx$:

$$\int e^{2x} \cos(x) \, dx = \frac{e^{2x} sen(x)}{2} + \frac{e^{2x} sen(x)}{4} - \frac{1}{4} \int e^{2x} \cos(x) \, dx$$

$$\Leftrightarrow \frac{5}{4} \int e^{2x} \cos(x) \, dx = \frac{e^{2x} sen(x)}{2} + \frac{e^{2x} sen(x)}{4}$$

$$\Leftrightarrow \int e^{2x} \cos(x) \, dx = \frac{4}{5} \left(\frac{e^{2x} sen(x)}{2} + \frac{e^{2x} sen(x)}{4} \right) + C$$

Exercício:

Calcule as seguintes primitivas utilizando primitivação por partes:

1.
$$\int sen^2(x) dx$$

$$2. \quad \int x\sqrt{x+5}dx$$

$$3. \int sen(\ln(x))dx$$

$$4. \quad \int x \ln(x) \, dx$$

$$5. \quad \int \frac{xe^x}{(1+x)^2} dx$$

$$6. \int sen(2x)e^{sen(x)} dx$$