1. [0 points] Gradients and Hessians

Recall that a matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A^T = A$, that is, $A_{ij} = A_{ji}$ for all i, j. Also recall the gradient $\nabla f(x)$ of a function $f: \mathbb{R}^n \to \mathbb{R}$, which is the *n*-vector of partial derivatives

$$\nabla f(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x) \\ \vdots \\ \frac{\partial}{\partial x_n} f(x) \end{bmatrix} \text{ where } x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

The hessian $\nabla^2 f(x)$ of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the $n \times n$ symmetric matrix of twice partial derivatives,

$$\nabla^{2} f(x) = \begin{bmatrix} \frac{\partial^{2}}{\partial x_{1}^{2}} f(x) & \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} f(x) & \cdots & \frac{\partial^{2}}{\partial x_{1} \partial x_{n}} f(x) \\ \frac{\partial^{2}}{\partial x_{2} \partial x_{1}} f(x) & \frac{\partial^{2}}{\partial x_{2}^{2}} f(x) & \cdots & \frac{\partial^{2}}{\partial x_{2} \partial x_{n}} f(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}}{\partial x_{n} \partial x_{1}} f(x) & \frac{\partial^{2}}{\partial x_{n} \partial x_{2}} f(x) & \cdots & \frac{\partial^{2}}{\partial x_{n}^{2}} f(x) \end{bmatrix}.$$

- (a) Let $f(x) = \frac{1}{2}x^T A x + b^T x$, where A is a symmetric matrix and $b \in \mathbb{R}^n$ is a vector. What is $\nabla f(x)$?
- (b) Let f(x) = g(h(x)), where $g : \mathbb{R} \to \mathbb{R}$ is differentiable and $h : \mathbb{R}^n \to \mathbb{R}$ is differentiable. What is $\nabla f(x)$?
- (c) Let $f(x) = \frac{1}{2}x^T A x + b^T x$, where A is symmetric and $b \in \mathbb{R}^n$ is a vector. What is $\nabla^2 f(x)$?
- (d) Let $f(x) = g(a^T x)$, where $g : \mathbb{R} \to \mathbb{R}$ is continuously differentiable and $a \in \mathbb{R}^n$ is a vector. What are $\nabla f(x)$ and $\nabla^2 f(x)$? (*Hint:* your expression for $\nabla^2 f(x)$ may have as few as 11 symbols, including ' and parentheses.)

symbols, including 'and parentheses.)

(a) $\neq Ax + D$ (b) $h'(x) \cdot g'(h(x))$ (c) A(d) $\forall f(x) = A \cdot g'(a^Tx)$ $\nabla^2 f(x) = A \cdot g'(a^Tx)$ $A \cdot g''(a^Tx)$ $A \cdot g''(a^Tx)$

2. [0 points] Positive definite matrices

A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD), denoted $A \succeq 0$, if $A = A^T$ and $x^T A x \geq 0$ for all $x \in \mathbb{R}^n$. A matrix A is positive definite, denoted $A \succ 0$, if $A = A^T$ and $x^T A x > 0$ for all $x \neq 0$, that is, all non-zero vectors x. The simplest example of a positive definite matrix is the identity I (the diagonal matrix with 1s on the diagonal and 0s elsewhere), which satisfies $x^T I x = ||x||_2^2 = \sum_{i=1}^n x_i^2.$

- (a) Let $z \in \mathbb{R}^n$ be an *n*-vector. Show that $A = zz^T$ is positive semidefinite.
- (b) Let $z \in \mathbb{R}^n$ be a non-zero n-vector. Let $A = zz^T$. What is the null-space of A? What is the rank of A?
- (c) Let $A \in \mathbb{R}^{n \times n}$ be positive semidefinite and $B \in \mathbb{R}^{m \times n}$ be arbitrary, where $m, n \in \mathbb{N}$. Is BAB^T PSD? If so, prove it. If not, give a counterexample with explicit A, B.

(a) rank (A)=1 since every row/column is proportional to 2. The rank of A is equal to the number of non-zero eigenvalues of A AZ=Z(ZTZ)=(ZTZ)Z =) NZ (ZTZ is a scalar and a scalar is commutative) \=ZTZ=[|Z|]20 A is a symmetric matrix and the definiteness of a symmetric matrix depends entirely on the sign of its eigenvalues. Only non-zero Eigenvalue 2>0 A is positive semidefinite (b) N(A) = R"-R(A)

R(A) = {V \in R": V = XZ, X \in R} rank(A)=1

(9 Let XER" BTX = yXTBABTX= Y'AYE BABT 11 PSD.

3. [0 points] Eigenvectors, eigenvalues, and the spectral theorem

The eigenvalues of an $n \times n$ matrix $A \in \mathbb{R}^{n \times n}$ are the roots of the characteristic polynomial $p_A(\lambda) = \det(\lambda I - A)$, which may (in general) be complex. They are also defined as the values $\lambda \in \mathbb{C}$ for which there exists a vector $x \in \mathbb{C}^n$ such that $Ax = \lambda x$. We call such a pair (x, λ) an eigenvector, eigenvalue pair. In this question, we use the notation $\operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ to denote the diagonal matrix with diagonal entries $\lambda_1, \ldots, \lambda_n$, that is,

$$\operatorname{diag}(\lambda_{1}, \dots, \lambda_{n}) = \begin{bmatrix} \lambda_{1} & 0 & 0 & \cdots & 0 \\ 0 & \lambda_{2} & 0 & \cdots & 0 \\ 0 & 0 & \lambda_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}.$$

(a) Suppose that the matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable, that is, $A = T\Lambda T^{-1}$ for an invertible matrix $T \in \mathbb{R}^{n \times n}$, where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ is diagonal. Use the notation $t^{(i)}$ for the columns of T, so that $T = [t^{(1)} \cdots t^{(n)}]$, where $t^{(i)} \in \mathbb{R}^n$. Show that $At^{(i)} = \lambda_i t^{(i)}$, so that the eigenvalues/eigenvector pairs of A are $(t^{(i)}, \lambda_i)$.

A matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if $U^T U = I$. The spectral theorem, perhaps one of the most important theorems in linear algebra, states that if $A \in \mathbb{R}^{n \times n}$ is symetric, that is, $A = A^T$, then A is diagonalizable by a real orthogonal matrix. That is, there are a diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ and orthogonal matrix $U \in \mathbb{R}^{n \times n}$ such that $U^T A U = \Lambda$, or, equivalently,

$$A = U\Lambda U^T$$
.

Let $\lambda_i = \lambda_i(A)$ denote the *i*th eigenvalue of A.

(b) Let A be symmetric. Show that if $U = [u^{(1)} \cdots u^{(n)}]$ is orthogonal, where $u^{(i)} \in \mathbb{R}^n$ and $A = U\Lambda U^T$, then $u^{(i)}$ is an eigenvector of A and $Au^{(i)} = \lambda_i u^{(i)}$, where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$.

(c) Show that if A is PSD, then $\lambda_{i}(A) \geq 0$ for each i.

AT = $\begin{bmatrix} A_{i}(1) & ... & A_{i}(n) \end{bmatrix} = \begin{bmatrix} A_{i}(1) & ... & A_{i}(n)$

(C) Show that if Air PSP, then $\lambda_i(A) \geq 0$ for each in $X^TAX = X^TUAU^TX = \hat{X}^TA\hat{X} = \hat{Z}^i \lambda_i \hat{X}^i \geq 0$ To $\hat{Z}^i \lambda_i \hat{X}^i \geq 0$ be true for all \hat{X}^i , $\hat{X}^i \geq 0$ $\lambda_i(A) \geq 0$ must be true.

4. [0 points] Probability and multivariate Gaussians

Suppose $X = (X_1, ... X_n)$ is sampled from a multivariate Gaussian distribution with mean μ in \mathbb{R}^n and covariance Σ in S^n_+ (i.e. Σ is positive semidefinite). This is commonly also written as $X \sim \mathcal{N}(\mu, \Sigma)$.

- (a) Describe the random variable $Y = X_1 + X_2 + ... + X_n$. What is the mean and variance? Is this a well known distribution, and if so, which?
- (b) Now, further suppose that Σ is invertible. Find $\mathbb{E}[X^T\Sigma^{-1}X]$. (Hint: use the property of trace that $x^TAx = \operatorname{tr}(x^TAx)$).

(a) Y is the linear combination of the elements of a multivariate normal random variable.

This is a multivariate Gaussian distribution.

$$= tr(I + Z^{T} M M^{T})$$