

# Winning Space Race with Data Science

Georgios Konstantinou 15/02/2023



### Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

## **Executive Summary**

- The following methodologies were used to analyze data:
  - Data Collection with web scraping and SpaceX API;
  - Exploratory Data Analysis ("EDA"), including data wrangling, data visualization and interactive visual analytics;
  - Machine Learning Prediction.
- Summary of all results
  - Data collected from sources publicly available;
  - EDA allowed to identify which features are the best to predict success of launchings
  - Best features for successful landing prediction via EDA;
  - ML Prediction showed the best model.

#### Introduction

- The objective is to evaluate the viability of the Startup Space Y competitor of Space X.
- Questions:
  - How to estimate the total cost for launches, by predicting successful landings of the first stage of rockets?
  - Where is the best place to make launches?



# Methodology

#### **Executive Summary**

- Data collection methodology:
  - Data from Space X was obtained from 2 sources:
    - Space X API (<a href="https://api.spacexdata.com/v4/rockets/">https://api.spacexdata.com/v4/rockets/</a>)
    - WebScraping (https://en.wikipedia.org/wiki/List\_of\_Falcon/\_9/\_and\_Falcon\_Heavy\_launches)
- Perform data wrangling
  - Collected data was enriched by creating a landing outcome label based on outcome data after summarizing and analyzing features
- Perform exploratory data analysis (EDA) using visualization and SQL

# Methodology

#### **Executive Summary**

- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - Data normalized and divided in training and test data sets and evaluated by four different classification models, being the accuracy of each model evaluated using different combinations of parameters.

#### **Data Collection**

Data sets were collected from Space X API (<a href="https://api.spacexdata.com/v4/rockets/">https://api.spacexdata.com/v4/rockets/</a>)
 and from Wikipedia
 (<a href="https://en.wikipedia.org/wiki/List of Falcon/9/">https://en.wikipedia.org/wiki/List of Falcon/9/</a> and Falcon Heavy launches), using web scraping technics.

#### Data Collection – API

Request API and parse the SpaceX launch data



Filter data to only include Falcon 9 launches



Deal with Missing Values

- SpaceX offers a public API from where data can be obtained and then used;
- This API was used according to the flowchart beside and then data is persisted.

## Data Collection - Data Scraping

- Data from SpaceX launches can also be obtained from Wikipedia;
- Data are downloaded from Wikipedia according to the flowchart and then persisted.

Request the Falcon9
Launch Wiki page



Extract all column/variable names from the HTML table header



Create a data frame by parsing the launch HTML tables

# **Data Wrangling**

- Initially some EDA was performed on the dataset.
- Then the summaries launches per site, occurrences of each orbit and occurrences of mission outcome per orbit type were calculated.
- The landing outcome label was created from Outcome.



#### **EDA** and Data Visualization

- To explore data, scatterplots and barplots were used to visualize the relationship between pair of features:
  - Payload Mass X Flight Number, Launch Site X Flight Number, Launch Site X Payload Mass, Orbit and Flight Number, Payload and Orbit



## EDA with SQL

- The following SQL queries were performed:
  - Names of the unique launch sites in the space mission;
  - Top 5 launch sites whose name begin with the string 'CCA';
  - Total payload mass carried by boosters launched by NASA (CRS);
  - Average payload mass carried by booster version F9 v1.1;
  - Date when the first successful landing outcome in ground pad was achieved;
  - Names of the boosters which have success in drone ship and have payload mass between 4000 and 6000 kg;
  - Total number of successful and failure mission outcomes;
  - Names of the booster versions which have carried the maximum payload mass;
  - Failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015; and
  - Rank of the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20.

# Build an Interactive Map with Folium

#### Folium Maps

- Markers indicate points like launch sites;
- Circles indicate highlighted areas around specific coordinates, like NASA Johnson Space Center;
- Marker clusters indicates groups of events in each coordinate, like launches in a launch site;
   and
- Lines are used to indicate distances between two coordinates.

## Build a Dashboard with Plotly Dash

- The following graphs and plots were used to visualize data
  - Percentage of launches by site
  - Payload range
- This combination allowed to quickly analyze the relation between payloads and launch sites, helping to identify where is best place to launch according to payloads.

# Predictive Analysis (Classification)

 Methods: logistic regression, support vector machine, decision tree and k nearest neighbors.

Comparison of results

#### Results

- 1. Space X uses 4 different launch sites;
- The first launches were done to Space X itself and NASA;
- 3. The average payload of F9 v1.1 booster is 2,928 kg;
- 4. The first success landing outcome happened in 2015 fiver year after the first launch;
- Many Falcon 9 booster versions were successful at landing in drone ships having payload above the average;
- 6. Almost 100% of mission outcomes were successful;
- 7. Two booster versions failed at landing in drone ships in 2015: F9 v1.1 B1012 and F9 v1.1 B1015;
- 8. The number of landing outcomes became as better as years passed.

#### Results

- Using interactive analytics was possible to identify that launch sites use to be in safety places, near sea, for example and have a good logistic infrastructure around.
- Most launches happens at east cost launch sites.





#### Results

 Predictive Analysis showed that Decision Tree Classifier is the best model to predict successful landings, having accuracy over 87% and accuracy for test data over 94%.





# Flight Number vs. Launch Site

- According to the catplot below, the best launch site is CCAF5 SLC 40, as the most of recent launches were successful;
- 2<sup>nd</sup> VAFB SLC 4E and 3<sup>rd</sup> KSCLC 39A;



# Payload vs. Launch Site

- Payloads over 9,000kg (about the weight of a school bus) have excellent success rate;
- Payloads over 12,000kg seems to be possible only on CCAFS SLC 40 and KSC LC 39A launch sites.



# Success Rate vs. Orbit Type

- Orbits with highest success rates:
  - ES-L1;
  - GEO;
  - HEO; and
  - SSO.
  - VLEO
  - LFO



# Flight Number vs. Orbit Type

- Success rate improved over time to all orbits;
- VLEO orbit seems a new business opportunity, due to recent increase of its frequency.



# Payload vs. Orbit Type

- No relation between payload and success rate to orbit GTO;
- ISS orbit has the widest range of payload and a good rate of success;



#### Success Annual Trend

• Success rate started increasing from 2013;



### Site Names

• According to data, there are four launch sites:

#### **Launch Site**

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

# Launch Site Names Begin with 'CCA'

#### • 5 records where launch sites begin with `CCA`:

| Date       | Time UTC | Booster<br>Version | Launch Site | Payload                                                                | Payload<br>Mass kg | Orbit     | Customer           | Mission<br>Outcome | Landing<br>Outcome     |
|------------|----------|--------------------|-------------|------------------------------------------------------------------------|--------------------|-----------|--------------------|--------------------|------------------------|
| 2010-06-04 | 18:45:00 | F9 v1.0 B0003      | CCAFS LC-40 | Dragon Spacecraft<br>Qualification Unit                                | 0                  | LEO       | SpaceX             | Success            | Failure<br>(parachute) |
| 2010-12-08 | 15:43:00 | F9 v1.0 B0004      | CCAFS LC-40 | Dragon demo flight<br>C1, two CubeSats,<br>barrel of Brouere<br>cheese | 0                  | LEO (ISS) | NASA (COTS)<br>NRO | Success            | Failure<br>(parachute) |
| 2012-05-22 | 07:44:00 | F9 v1.0 B0005      | CCAFS LC-40 | Dragon demo flight<br>C2                                               | 525                | LEO (ISS) | NASA (COTS)        | Success            | No attempt             |
| 2012-10-08 | 00:35:00 | F9 v1.0 B0006      | CCAFS LC-40 | SpaceX CRS-1                                                           | 500                | LEO (ISS) | NASA (CRS)         | Success            | No attempt             |
| 2013-03-01 | 15:10:00 | F9 v1.0 B0007      | CCAFS LC-40 | SpaceX CRS-2                                                           | 677                | LEO (ISS) | NASA (CRS)         | Success            | No attemp              |

# **Total Payload Mass**

Total payload carried by boosters from NASA:

Total Payload (kg)
111.268

• Total payload calculated above, by summing all payloads whose codes contain 'CRS', which corresponds to NASA.

# Average Payload Mass by F9 v1.1

Avg payload mass carried by booster version F9 v1.1:

Avg Payload (kg)

2.928

• Filtering data by the booster version above and calculating the average payload mass we obtained the value of 2,928 kg.

# First Successful Ground Landing Date

• First successful landing outcome on ground pad:

Min Date

2015-12-22

#### Successful Drone Ship Landing with Payload between 4000 and 6000

 Boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

|         | •          |
|---------|------------|
| Booster | Version    |
| Doostei | V CI SIOII |

F9 FT B1021.2

F9 FT B1031.2

F9 FT B1022

F9 FT B1026

#### Total Number of Successful and Failure Mission Outcomes

• Number of successful and failure mission outcomes:

| Mission Outcome                  | Occurrences |
|----------------------------------|-------------|
| Success                          | 99          |
| Success (payload status unclear) | 1           |
| Failure (in flight)              | 1           |

# **Boosters Carried Maximum Payload**

• Boosters which have carried the maximum payload mass

| Вос | ster Ve | rsion |
|-----|---------|-------|
| F9  | B5 B104 | 18.4  |
| F9  | B5 B104 | 18.5  |
| F9  | B5 B104 | 19.4  |
| F9  | B5 B104 | 19.5  |
| F9  | B5 B104 | 19.7  |
| F9  | B5 B105 | 51.3  |
| F9  | B5 B105 | 51.4  |
| F9  | B5 B105 | 51.6  |
| F9  | B5 B105 | 6.4   |
| F9  | B5 B105 | 58.3  |
| F9  | B5 B106 | 50.2  |
| F9  | B5 B106 | 50.3  |

#### 2015 Launch Records

• Failed landing outcomes in drone ship, their booster versions, and launch site names for in year 2015

| <b>Booster Version</b> | Launch Site |
|------------------------|-------------|
| F9 v1.1 B1012          | CCAFS LC-40 |
| F9 v1.1 B1015          | CCAFS LC-40 |

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

| Landing Outcome        | Occurrences |
|------------------------|-------------|
| No attempt             | 10          |
| Failure (drone ship)   | 5           |
| Success (drone ship)   | 5           |
| Controlled (ocean)     | 3           |
| Success (ground pad)   | 3           |
| Failure (parachute)    | 2           |
| Uncontrolled (ocean)   | 2           |
| Precluded (drone ship) | 1           |



#### All launch sites



# Launch Outcomes by Site

• Green markers depict the successful and red ones failure.



# Logistics and Safety



 Launch site KSCLC-39A is being near railroad and road and relatively far from inhabited areas.



# Successful Launches by Site

• The place from where launches are realised looks like a significant factor for successful missions.



#### Launch Success Ratio for KSC LC-39A

• More than the 2/3 of the launches from this site are successful.



# Payload vs. Launch Outcome

• Payloads under 6,000kg and FT boosters are the most successful combination.



### Payload vs. Launch Outcome

No estimation for over 7,000kg





#### Classification Accuracy

 4 classification models were tested, the accuracy and score of which are plotted underneath.

• The model with the highest classification accuracy is Decision Tree Classifier, which has accuracies over than 85%.



#### Confusion Matrix of Decision Tree Classifier

- Confusion matrix of Decision Tree Classifier: Up left True Negatives, Up right False Positives, Down left False Negatives, Down right True Positives
- The high accuracy is observable.



#### Conclusions

The best launch site is KSC LC-39A;

Launches above 7,000kg are less risky;

Decision Tree Classifier can be used to predict successful landings and increase profits.

