

Deep Neural Networks

S.Lan

Motivatio

Feedforward neural network

Deep Neura Networks

Lecture 7 Deep Neural Networks

Shiwei Lan¹

¹School of Mathematical and Statistical Sciences Arizona State University

STP598 Machine Learning and Deep Learning Fall 2021

Table of Contents

Deep Neural Networks S.Lan

Motivotio

Feedforward neural network

Deep Neura Networks Motivation

2 Feedforward neural network

Deep Neural Networks S.Lan

Motivation

Feedforward neural network

Deep Neur Networks

Samples of cats and dogs images from Kaggle: Link

Deep Neural Networks S.Lan

//otivatio

Feedforward neural networ

- Neural Networks were first developed as models for the human brain, where we have many units (neurons) that simultaneously process signals to give a joint decision.
- The neurons fire when the total signal passed to that unit exceeds a certain threshold.
- The collective signal from all neurons tells you whether its a dog or a cat.

Deep Neural Networks S.Lan

Motivation

Feedforward neural network

Table of Contents

Deep Neural Networks

 $\mathsf{S}.\mathsf{Lan}$

Motivation

Feedforward neural network

Deep Neura Networks Motivation

Peedforward neural network

Oeep Neural Networks

Formulate the problem

Deep Neural Networks

S.Lan

Motivatio

Feedforward neural network

Deep Neura Networks

- Given a training set $\{x_i, y_i\}_{i=1}^n$,
 - For regression: $y_i \in \mathbb{R}^K$ is a K dimensional continuous outcome
 - For classification: $y_i \in \{1, 2, ..., K\}$
- The goal is still to model the relationship

$$E(Y|X) = f(X)$$

• Instead of modeling the probabilities directly using X, we build M hidden neurons as a hidden layer between X and Y:

$$Z = (1, Z_1, Z_2, \dots, Z_M)$$

= $(1, \sigma(X^{\mathsf{T}}\alpha_1), \sigma(X^{\mathsf{T}}\alpha_2), \dots, \sigma(X^{\mathsf{T}}\alpha_M))$

Formulate the problem

Deep Neural Networks

S.Lan

Motivatio

Feedforward neural network

Networks

- $\sigma(\cdot)$ is an activation function. Some examples?
- We model Y using the hidden layer variables Z through some link function $g(\cdot)$

$$X \stackrel{\sigma(\cdot)}{\Longrightarrow} Z \stackrel{g(\cdot)}{\Longrightarrow} Y$$

• In classification problems (K class), we can use logit link g_k to model the probability of Y = k, for k = 1, ..., K:

$$g_k(Z) = \frac{\exp(Z^{\mathsf{T}} \beta_k)}{\sum_{l=1}^K \exp(Z^{\mathsf{T}} \beta_k)}$$

• In regression problems (could be multidimensional), we can simply use a linear function to model the *k*th entry of *Y*:

$$g_k(Z) = Z^{\mathsf{T}} \beta_k$$

Formulate the problem

Deep Neural Networks S.Lan

Motivatio

Feedforward neural network

Deep Neura Networks • The multidimensional function $\mathbf{f}(x)$ can be represented as a convoluted way of mapping $x \in \mathbb{R}^p$ to $y \in \mathbb{R}^K$

$$\mathbf{f}(x) = \mathbf{g} \circ \boldsymbol{\sigma}(x)$$

- The notations \mathbf{g} and $\boldsymbol{\sigma}$ here are multidimensional.
- The parameters involved are: $\alpha_1, \ldots, \alpha_M$, and β_1, \ldots, β_K .

Examples of activation functions

Deep Neural Networks

 $\mathsf{S}.\mathsf{Lan}$

Notivation

Feedforward neural network

Networks

- The activation function $\sigma(\cdot)$ takes a linear combination of the input variables, and output a scaler through nonlinear transformation. Examples:
 - sigmoid:

$$\sigma(v) = \frac{1}{1+e^{-v}} = \frac{e^v}{e^v+1}$$

hyperbolic tangent (tanh):

$$\sigma(v) = \frac{e^v - e^{-v}}{e^v + e^{-v}}$$

• rectified linear unit (ReLU):

$$\sigma(v) = \max(0, v)$$
, soft approx. $\ln(1 + e^v)$

• And many others: exponential linear unit, arctangent, etc.

Activation Functions

Deep Neural Networks

S.Lan

Motivatio

Feedforward neural network

Deep Neur Networks

Sigmoid: $(1 + e^{-v})^{-1}$

ReLU: max(0, v),

Step function: I(v > 0)

Activation Functions

Deep Neural Networks

1otivatio

Feedforward neural network

- Originally, a step function I(v > 0) was considered as the activation function (to mimic the biological interpretation). Hence for each neuron, signal is triggered only when $x^{\mathsf{T}}\alpha$ is above a certain threshold
- It was later recognized that the step function is not smooth enough for optimization, hence was replaced by a smoother threshold function, the sigmoid function
- "Feedforward" as signals can only pass to the next layer. There is no "cycle" in the model

Why Neural Networks work

Networks

S.Lan

Motivatio

Feedforward neural network

Deep Neura Networks

Universal Approximation Theorem (Cybenko, 1989; Hornik 1991)

Any continuous function f(x) on the space $[0,1]^p$ can be approximated (for any $\varepsilon > 0$) by a finite set of neurons with a bounded monotone-increasing activation function $\sigma(\cdot)$:

$$|f(x) - \sum_{k} w_{k} \sigma(\beta_{k}^{\mathsf{T}} x + b_{k})| < \varepsilon$$

for some w_k , β_k , and b_k . Hence, the functions defined by the neurons is dense.

Multiple Layers

Deep Neural Networks S.Lan

Motivatio

Feedforward neural network

Deep Neura Networks

S.Lan

Antivatio

Feedforward neural network

- Try this a really cool website: http://playground.tensorflow.org/
- Implementation in Python:
 - packages: sklearn.neural_network, (TensorFlow, PyTorch)
 - MLPClassifier implements a multi-layer perceptron (MLP) algorithm for classification.
 - MLPRegressor implements a multi-layer perceptron (MLP) for regression.
 - MLP trains using Stochastic Gradient Descent, Adam, or L-BFGS.
 - Important parameters:
 - number of neurons: hidden_laver_sizes
 - activation functions: activation
 - size of minibatches: batch_size
 - solver for back-propagation: solver
 - learning step sizes: learning_rate, learning_rate_init
 - regularization: alpha

Networks

S.Lan

Motivatio

Feedforward neural network

- The parameters (weights) α 's and β 's need to be optimized.
- For a single hidden layer NN, we have

$$\{lpha_1,\ldots,lpha_M\}$$
 : M(p+1) weights $\{eta_1,\ldots,eta_K\}$: K(M+1) weights

- where *p* is the number of non-intercept *X* features; *M* is the number of hidden neurons in a single layer; and *K* is the number of categories for classification.
- K = 1 if its a univariate regression problem.

Deep Neura Networks

S.Lan

Motivatio

Feedforward neural network

Deep Neura Networks

- Neural Networks training is based on error minimization using a Gradient Descent algorithm, known as error back-propagation.
- For *K* classification, we minimize Deviance:

$$-\sum_{i=1}^{n}\sum_{k}^{K}\mathbf{1}\{y_{i}=k\}\log f_{k}(x_{i})$$

• For univariate regression, we minimize RSS (since *g* is linear):

$$\sum_{i=1}^n (y_i - f(x_i))^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 \sigma(x^\mathsf{T} \alpha_1) - \cdots \sigma(x^\mathsf{T} \alpha_M))^2$$

Deep Neural Networks

S.Lan

Motivatio

Feedforward neural network

Deep Neur Networks • The objective function can be written as

$$R(\boldsymbol{\theta}) = \sum_{i=1}^{n} R_i(\boldsymbol{\theta})$$

where R_i represents the deviance or residual sum of squares for the *i*th data point, and θ represents an aggregated vector of all weights

- Initiate weights $\theta^{(0)}$
- We then calculate the derivative wrt each of the weights evaluated at the current iteration value $\theta^{(t)}$:

$$\left. \sum_{i=1}^{n} \frac{\partial R_{i}}{\beta_{km}} \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}} \qquad \sum_{i=1}^{n} \frac{\partial R_{i}}{\alpha_{mj}} \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}}$$

• Stochastic GD: the summation can be taken over a random subset of the *n* samples

GD vs. Stochastic GD

Deep Neural Networks

 $\mathsf{S}.\mathsf{Lan}$

Motivatio

Feedforward neural network

Deep Neural Networks

 $\mathsf{S}.\mathsf{Lan}$

Motivation

Feedforward neural network

Deep Neura Networks • The derivatives for K = 1 regression case is essentially

$$\frac{\partial R_i}{\beta_m} = -2(y_i - f(x_i))z_{mi}$$
$$\frac{\partial R_i}{\alpha_{ml}} = -2(y_i - f(x_i))\beta_m \sigma'(\alpha_m^T x_i)x_{il}$$

- Some redundant calculations can be saved in the above equations. The property is called back-propagation.
- We then do the update, at the t-th iteration

$$\beta_m^{(t+1)} = \beta_m^{(t)} - \gamma \sum_{i=1}^n \frac{\partial R_i}{\beta_m^{(t)}}$$

$$\alpha_{ml}^{(t+1)} = \alpha_{ml}^{(t)} - \gamma \sum_{i=1}^{n} \frac{\partial R_i}{\alpha_{ml}^{(t)}}$$

where γ is a step size for gradient descent.

Deep Neura Networks S.Lan

Motivatio

Feedforward neural network

- The derivatives can be calculated by Chain Rules
- The algorithm can be implemented by a forward-backward sweep over the network
- In the forward pass, compute the hidden variables and the output $\widehat{f}(x_i)$ based on the current weights $\theta^{(t)}$
- ullet In the backward pass, compute the derivatives, and update $m{ heta}^{(t)}
 ightarrow m{ heta}^{(t+1)}$

Table of Contents

Deep Neural Networks

 $\mathsf{S}.\mathsf{Lan}$

1otivatio

Feedforward neural network

Deep Neural Networks Motivation

2 Feedforward neural network

Oeep Neural Networks

Going Deeper...

Deep Neural Networks S.Lan

Motivatio

Feedforward neural networ

- Deep Neural Networks are one type of deep learning models.
- Deep neural Networks are just ... Neural Networks with more than one hidden layer.
- But neural networks have been around for more than 70 years... why it gets popular just in recent years?
 - computational issues
 - a better way to generate/construct features
 - ..

Deep Neural Networks

Deep neural

Deep Neural Networks

S.Lan

Networks

Convolutional Neural Networks

Deep Neura Networks S.Lan

Motivatio

Feedforward neural networ

- One example is the Convolutional Neural Networks, which attempts to generate better features
- Instead of using all input features to create the linear combination, a "convolutional layer" builds neurons that each takes a subset (a local region) of the input features.
- This is motivated by the fact that biologically, the neurons only take signals from neighboring neurons.

Convolutional Neural Networks

Deep Neural Networks

S.Lan

Motivatio

Feedforward

Networks

Deep Neural Networks: Feature Hierarchy

Hierarchical information processing in the brain

(Source: Simon Thorpe)

Convolutional Neural Networks

Deep Neural Networks

S.Lan

Networks

See this hand digit writing recognition example, and this interesting application by Tesla.