What is Science?

Javier Larrosa

UPC

larrosa@cs.upc.edu

September 19, 2019

1 / 10

Science

Science

Science is about adding new knowledge to the world

- Non-Scientific Method
 - Intuition/Believe
 - Consensus
 - Authority
 - Casual observation (humans do selective observation)
 - Weak argumentation

The previous methods are subjective and biased

Science

Science

Science is about adding new knowledge to the world

- Scientific Method
 - Systematic Observation
 - Statistics
 - Formal Logic (good argumentation)
- Six Principles:
 - Objective
 - Clear concepts, assumptions, procedures,...
 - No matter who conducts the study
 - Empirically Testable (observation)
 - Falsifiable
 - Replicability
 - Transparency
 - Logically consistent

Scientific Attitude

Science has a strong Social component (team work)

- Critical (willing to get constructive feedback)
- Open (willing to accept critics)
- Transparent (willing to socialized your ideas)

Some definitions

• Hypothesis:

- describes patterns and general relations
- become more certain as more and more observations support them
- Law: very precise description (often mathematical equation)

Observation:

- accuracy relative to its purpose
- does not describe/explain general relations
- Purpose: confirm or contradict hypothesis

• Explanation:

- Human understanding
- Comes along with the hypothesis
- important for knowledge improvement (progress)
- Theory: coherent set of well supported hypothesis
 - closest thing to certainty that we have
 - In Science there is no certainty. Only provisional best explanations

Types of Research

We can (roughly) distinguish three types of activities:

- Basic Research: Understanding the world
- Applied Research: Discovering how to take advantage of our understanding of the world
- Development and Innovation: Making applied research readily available

The frontier is not clear at all.

When a new technology arises the bulk of research slowly moves from Basic to Innovation (see Computer Science)

- Greek Scholars (400 BC).
 - Look for Natural Explanation of phenomena (as opposed to Divine Explanation)
 - Metathinking (being aware of our cognitive processes)

- Greek Scholars (400 BC).
 - Plato. Rationalism. Myth of the cave
 - We cannot trust observation (our perceptions are fictitious)
 - Knowledge can only be gained by reasoning
 - Aristotle. Knowledge has to be gained by observation and reasoning
 - First Empiricist
 - First formalization of reasoning (Formal Logic)
 - premises are learned from observation

- Enlightment (1600). Separate Science from Theology
 - Galileo. Systematic Observation
 - Hume (1730). Skepticism. **Problem of Induction**: We never know if the next observation will satisfy the claim

- Modern Science (1900).
 - Idealism (1830). Focus on the Fundamental Nature of Being (Metaphisics). Too theoretical. Useless in practical
 - Logical Positivism (Wien Circle). Science= study of meaningful statements
 - Meaningful: it must be possible to determine the truth (verification principle)
 - Two types of statements: Analytic (definitions+ verifiable by formal logic), Synthetic (verifiable by observation)
 - It is not allowed to reason about unobservables
 - Logical Empiricism. A statement is useful if it is falsifiable.
 - relax verification principle by confirmation
 - allow unobservables (for convenience)
 - Constructive Empiricism.
 - Science attempts to construct empirical adequate theories
 - Unobservables are allowed
 - Scientific claims are true only as far as the observables go along