Bottleneck Transformers for Visual Recognition

A Self-attention model for vision

Will, Tin, Tarunyaa

Premise: Out with CNNs

Better alternatives to pure CNNs for CV such as object detection, image classification

(a) CNNs: VGG [53], ResNet [21], etc.

→ ResNet: Residual Neural Network

Intermediate input added to the output of a aries of convolutional blocks to enable scaling.

They capture local patterns information but they fail to understand long-term dependencies + require many layers.

Premise: Out with CNNs

Self-attention to model long-term dependencies

- → Longer-term memory than RNNs & LSTMs
- → NLP to Image processing
- → GPT, BERT

They capture long term dependencies and don't require as many layers.

```
The FBI is chasing a criminal on the run.
The FBI is chasing a criminal on the run.
The
     FBI is chasing a criminal on the run.
     FBI is chasing a criminal on the run.
The
The
     FBI
          is chasing a criminal on the run.
The
     FBI is chasing a criminal on the run.
The
     FBI
          is chasing a criminal on the run.
The
     FBI is
              chasing a criminal on the run.
The
     FBI is
              chasing a criminal on the run.
          is chasing a criminal
The
     FBI
                                   on
                                        the run.
```

Proposal: Using Self-Attention in Vision

HYBRID SOLUTION: Replace spatial convolutional layers w/ multi-head self attention layer

- Use convolutions to deal with large images efficiently; do spatial downsampling
- → Letting global self-attention work on small resolutions

Avoids processing large images w/ self-attention since its memory & computation required scales quadratically w/ spatial dimensions

ResNet Bottleneck

Bottleneck Transformer

Proposal: Using Self-Attention in Vision

HYBRID SOLUTION: Replace spatial convolutional layers w/ multi-head self attention layer

Method: Positional Encoding

Making the attention-operation position aware

→ Global attention is performed on a 2D feature map

→ Split relative position encodings, *Rh* and *Rw*, for height and width respectively

Method: Model Architecture

Low relative overhead

stage	output	ResNet-50	BoTNet-50	
c1	512×512	7×7, 64, stride 2	7×7, 64, stride 2	
c2		3×3 max pool, stride 2	3×3 max pool, stride 2	
	256 × 256	[1×1, 64]	[1×1, 64]	
		3×3, 64 ×3	3×3, 64 ×3	
		1×1, 256	1×1, 256	
с3	128 × 128	[1×1, 128]	[1×1, 128]	
		3×3, 128 ×4	3×3, 128 ×4	
		1×1, 512	1×1, 512	
c4	64 × 64	[1×1, 256]	[1×1, 256]	
		3×3, 256 ×6	3×3, 256 ×6	
		1×1, 1024	1×1, 1024	
c5	32 × 32	[1×1,512]	[1×1,512]	
		3×3, 512 ×3	MHSA, 512 ×3	
		$1\times1,2048$	1×1, 2048	
# params.		25.5×10^6	20.8 ×10 ⁶	
M.Adds		85.4 $\times 10^9$	102.98 ×10 ⁹	
TPU steptime		786.5 ms	1032.66 ms	

→ Only difference is the use MHSA layer in c5

→ BoT50 has only 1.2 x multiple-adds and 1.3 x training overheads with 1.2x fewer parameters.

Results: Comparison w/ ResNet on Coco

BoT50 is better than R50 and R101, competitive with R152

Backbone	AP^{bb}	AP ^{mk}
R50	42.1	37.7
BoT50	43.6 (+ 1.5)	38.9 (+ 1.2)
R101	43.3	38.4
BoT101	45.5 (+ 2.2)	40.4 (+ 2.0)
R152	44.2	39.1
BoT152	46.0 (+ 1.8)	40.6 (+ 1.5)

Relative positional encoding boosts performance

Backbone	Att. Type	AP^{bb}	AP ^{mk}
R50	-	42.1	37.7
BoT50	qk^T	42.7 (+ 0.6)	38.3 (+ 0.6)
BoT50	$qr_{ m relative}^T$	43.1 (+ 1.0)	38.4 (+ 0.7)
BoT50	$qk^T + qr_{ m relative}^T$	43.6 (+ 1.5)	38.9 (+ 1.2)
BoT50	$qk^T + qr_{ m abs}^T$	42.5 (+ 0.4)	38.1 (+ 0.4)

Surpasses previous best published model on ResNet

Results: Comparison w/ ResNet on Coco

BoTNet benefits from training on larger images

Backbone	res	AP^{bb}	AP ^{mk}
R50	1280	44.0	39.5
BoT50	1024	45.9 (+ 1.9)	40.7 (+ 1.2)
BoT50	1280	46.1 (+ 2.1)	41.2 (+ 1.8)
R101	1280	46.4	41.2
BoT101	1024	47.4 (+ 1.0)	42.0 (+ 0.8)
BoT101	1280	47.9 (+ 1.5)	42.4 (+ 1.2)

COCO dataset

```
annotation{
  "id"
                     : int,
  "image id"
                     : int,
  "category id"
                     : int,
  "segmentation"
                     : RLE or [polygon],
  "area"
                     : float,
  "bbox"
                     : [x,y,width,height],
  "iscrowd"
                     : 0 or 1,
categories[{
  "id"
                     : int,
  "name"
                     : str,
  "supercategory"
                     : str,
}]
```

```
annotations
captions_train2017.json
aptions_val2017.json
  instances_train2017.json
  instances_val2017.json
  person_keypoints_train2017.json
person_keypoints_val2017.json
resized_train2017
sample_data
train2017
a 000000000009.jpg
000000000025.jpg
00000000030.jpg
000000000034.jpg
  00000000036.jpg
  000000000042.jpg
  nnnnnnnnna ina
```


http://images.cocodataset.org/train2017/000000562150.jpg

Instance segmentation

Object detection

Mask R-CNN Architecture


```
1 import torch.nn as nn
 2 from torchvision.models.detection import MaskRCNN
 3 from torchvision.models.detection.rpn import AnchorGenerator
 4 from torchvision.ops import MultiScaleRoIAlign
 7 backbone = ResNet(Bottleneck, [3, 4, 6, 3], resolution=(224, 224), heads=4)
 9 # you are effectively informing the rest of the MaskRCNN model about the shape
10 # of the tensors it will receive from the backbone. This ensures that subsequent
11 # layers can be correctly configured to work with these tensors.
12 backbone.out_channels = 2048
14 anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),), aspect_ratios=((0.5, 1.0, 2.0),))
16 roi_pooler = MultiScaleRoIAlign(featmap_names=['0'], output_size=7, sampling_ratio=2)
18 mask_roi_pooler = MultiScaleRoIAlign(featmap_names=['0'], output_size=14, sampling_ratio=2)
20 # Define the model
21 model = MaskRCNN(backbone, num_classes=91, # COCO has 80 classes + background
                   rpn_anchor_generator=anchor_generator,
                   box roi pool=roi pooler,
                   mask roi pool=mask roi pooler)
```

(2, 224, 224, 3)

Our Code

- → Image Classification on CIFAR
- → Does slightly better than CNN and uses fewer parameters
- **→** Exploration of the architecture
- → Here

Thank you!