GeekMaker|文章

笔记本: 收藏

创建时间: 2020/5/25 20:42

URL: https://www.geekmaker.com/article/7

QMK方案机械键盘PCB固件

本教程适用于包含GeekMaker B80在内的QMK系列固件,感谢豆仔对本教程的制作。

本教程中适用的系统为windows系统,本教程暂不适用于MAC系统。

软件下载:加入GeekMaker B系列官方群: 423032102, 群共享下载文件: QMK.ZIP

QMK builder在线生成固件网址: http://qmkeyboard.cn/

KLE: http://keyboard-layout-editor.com

— . DFU bootloader 固件驱动安装说明

刷机前按下背面的开关,键盘会进入 BOOTLOADER,首次使用需要安装驱动来识别 DFU

Windows

1. 安装软件和驱动

- 1) 按下键盘背面的按钮,进入 DFU 模式
- 2) 打开 zadig
- 3) 在 options 选项上勾选 list all devices

4) 下拉菜单选择 Atm32U4DFU

5) 驱动选择 libusb-win32

6) 点击下面的 install Driver,如果系统已经有驱动,按钮上的文字是 Reinstall Driver.7) 设备识别后会在设备管理器中显示为

7) 设备识别后会在设备管理器中显示为

2.上传固件

运行 QMK toolbox

- 1) 点击 open, 选择你的.hex 固件文件, 固件文件的生成方法点击这里
- 2) Microcontroller 绝大多数选择 atmega32u4
- 3) 将键盘接入电脑,按下 PCB 背部 RESET 按钮,或者按下在你的键盘中设置的 RESET 键位,这时候下方会有

提示 DFU device connected

```
- STM32 (ARM) via dfu-util (http://dfu-util.sourceforg
```

4) 点击 Flash, 固件刷完键盘自动识别。

```
- STM32 (ARM) via dfu-util (http://dfu-util.sourceforge.net/)
  DFU device connected: ATm32U4DFU -- 0x03EB:0x2FF4
*** Attempting to flash, please don't remove device
>>> dfu-programmer.exe atmega32u4 erase --force
   Erasing flash... Success
   Checking memory from 0x0 to 0x6FFF... Empty.
>> dfu-programmer.exe atmega32u4 flash C:\Users\doudou\Desktop\固件\qmk84.hex
   Checking memory from 0x0 to 0x5D7F... Empty.
                                100% Programming 0x5D80 bytes...
                                      Success
                                100% Reading 0x7000 bytes...
   0%
   [>>>>>>] Success
   Validating... Success
   0x5D80 bytes written into 0x7000 bytes memory (83.48%).
   dfu-programmer.exe atmega32u4 reset
```

二•刷机教程

初始化

登录 http:/qmkeyboard.cn,后有如下两个选项

1. 上传自己的布局

这个选项是上传自己生成的布局文件,然后进行修改,布局文件可到网站SETTINGS设置中下载,后续有详细说明。

2. 选择默认布局

根据自己的 PCB,选择相应的默认布局。

Or choose a preset layout 选择默认布局		
	QMK60带方向配列	
	QMK60标准配列	
	JC65	
	KEYCLACK65 V1	
	QMK84	

自定义固件

初始化后,有如下选项卡:WIRING 连线,PINS 针脚,KEYMAP 键位MACROS 宏,QU ANTUM 自定义程式,SETTINGS 设置,COMPILE 下载固件

一般只需要用到 KEYMAP 键位,MACROS 宏,SETTINGS 设置和 COMPILE 下载固件 这四个选项卡,其他的非开发者用不到

WIRING 和 PINS

通过这两个选项卡,可以了解按键的阵列和与主控的连接 PIN,红色线代表 ROW,灰色 线代表 COL,如图表示 5 行乘以15列的阵列,PIN 选项卡中显示了每一行每一列对应主控的 PIN,非开发者请勿随意改动这个设置,否则会使键盘阵列紊乱导致键位无法识别!

➤ 更改键位功能

➤ 键值的说明

(GUI=win,KC:除了MOD以外的常用按键,MOD:ALT、CTRL等功能键)

在第3步改键的步骤中会看到如下选项卡

PRIMARY: 主键区

PRIMARY SECONDARY KEYPAD LIGHTING FN OTHER
! @ # \$ % ^ & * ()
_ + { } : " ~ < > ?
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
F13 F14 F15 F16 F17 F18 F19 F20 F21 F22
F23 F24
PSCR SLCK PAUSE INS DEL HOME END PGUP PGDN LEFT DOWN UP
RIGHT
POWER SLEEP WAKE MUTE VOLD VOLU PLAY STOP
PREV NEXT

60 个主键区

GESC:除了 ESC 的功能,按 shift+esc 会打出·(常规 104 键盘 ESC 下面的那个键)

RESET:相当于 PCB 背部的 RESET 按钮

NO:忽略此键

NUBS: Non-US \ and

NUHS: Non-US # and ~

NUBS 和 NUHS为 EU 欧版配列用。

SECONDARY: 功能区

F 区:

STOP 停止,

PREV 上一首,

NEXT 下一首

KEYPAD 数字小键盘区

RIMARY	SECONDARY KEYPAD LIGHTING FN OTHER
NLCK	P* P- P+ P. P= PENT
P1 P2	P3 P4 P5 P6 P7 P8 P9 P0

LIGHTING 灯光控制区

PRIMARY	SECONDARY	KEYPAD	LIGHTING F	N OTHER)
BL_TOGG	BL_DEC B	L_INC BL_	STEP		
RGB_TOG	RGB_MOD	RGB_HUI	RGB_HUD	RGB_SAI	RGB_SAD
RGB_VAI	RGB_VAD				

BL_TOGG 背光 (轴灯) 开关

BL_DEC 背光减弱

BL_INC 背光增强

BL_STEP 背光步进

BL_BRTG 背光呼吸

RGB_TOG RGB 底灯开关

RGB_MOD RGB 底灯模式向前切换,按住 shift 再按 RGB_MOD,底灯模式向后切换

RGB_RMOD RGB 底灯模式向后切换,按住 shift 再按 RGB_RMOD,底灯模式向前切换

RGB_M_P 静态模式

RGB_M_B 呼吸模式

RGB_M_R 彩虹模式,单色渐变

RGB_M_SW 旋转模式,彩虹渐变

RGB_M_SN 贪吃蛇模式

RGB_M_K 霹雳游侠模式

RGB_M_X 圣诞动画模式

RGB_M_B 静态梯度动画模式

RGB_M_T 静态三色瞬变

RGB_HUI RGB 色相加

RGB_HUD RGB 色相减

RGB_SAI RGB 饱和度加

RGB_SAD RGB 饱和度减

RGB_VAI RGB 亮度加

RGB_VAD RGB 亮度减

FN:控制区

≻ 组合键

- □ LSFT(kc) 左 shift+kc。比如 LSFT(a) =LSHIFT+A
- □ **RSFT(kc)** –右 shift+kc。
- □ LCTL(kc) 左 ctrl+kc
- □ RCTL(kc) 右 ctrl+kc
- □ LALT(kc) 左 alt+kc
- □ RALT(kc) 右 alt+kc
- □ **LGUI(kc)** 左 gui+kc
- □ **RGUI(kc)** –右 gui+kc
- ☐ **HYPR(kc)** –shift+ctrl+gui+alt+kc
- ☐ **MEH(kc)** –shift+ctrl+alt+kc
- □ **LCAG(kc)** ctrl+gui+alt+kc
- □ **ALTG(kc)** ctrl+alt+kc
- ◆ Tag:你可以使用 LCTL(LALT(Lsft(kc)))这样的语法来定义一个键,比如 LCTL(LALT(KC_D EL))功能为 ctrl+alt+delete
- □ CTL_T(kc) 长按是 CTRL,短按(敲击)是 kc.比如 CTL_T(A),长按显示 CTRL,短按为A

- □ SFT_T(kc) -长按是 SHIFT,短按是 kc
 □ ALT_T(kc) -长按是 ALT,短按是 kc
 □ GUI_T(kc) -长按是 GUI,短按是 kc
 □ ALL_T(kc) -长按是 SHIFT+CTRL+GUI+ALT,短按是 kc
 □ LCAG_T(kc) -长按是 CTRL+GUI+ALT,短按是 kc
 □ MEH_T(kc) -长按是 SHIFT+CTRL+ALT,短按是 kc
 □ MT(mod, kc) 长按是 mod,短按是 kc. mod 是指 shift,ctrl,alt,gui 这些键
 □ OSM(mod) 其触发方式类似于 OSL(layer) ,如果你把一个键位设置为 OSL(mod) ,点击这个按键后,
 只有下一个点击的按键会触发 mod+kc。之后的点击不会触发 mod。例如当你点击 OSL(shift)后,点击
- □ M(n) -宏。n 为数字 , 理论上支持无限宏

➤ 开关和切换层

QMK 方案支持多达 15 层的布局, 也支持多种切换方式。

□ MO(layer)按下触发层,你可以把 MO(layer) ,理解成 Fn。当你松开这个键,layer 层会释放并恢复到上一层。

当你把 MO(layer)设置到一个键位, layer 层中的同一键位必须设置为 KC_TRNS,否则你松开这个按

键的时候不会回到上一层。比如你把第 0 层的 ESC 设置为 MO(1) ,则在第一层 ESC 的位置只能设置

成 KC_TRNS。你只能把 MO(layer) 这个键设置到 layer 上面的层,比如你可以在第 0 层设置 MO(1),

但是你不能在第 1 层设置 M0(0)。

□ OSL(layer)

临时触发层,如果你把一个键位设置为 OSL(1) ,点击这个按键后,只有下一个点击的按键 会从层 1 触

发。之后的点击回立即回到层 0 触发。例如:

层 0

层 1

在点击了 OSL(1) 之后,键盘敲击 1,只会触发一次层 1 的按键,显示 F1,再点击 2,则恢复触发层 0

的按键,显示2

☐ LT(layer, kc)

你可以把 LT(layer, kc) 理解成 MO(layer)+kc 一键两用。当你长按这个键,键位的功能就是 MO(layer),

点击这个键,键位的功能就是 kc. 经测试,这里的 kc 不能设置为 mod(ctrl, alt, gui shift 等键)。

例如:

层 0

层2

点击 LT(2, ESC), 触发 ESC, 按住 LT(2, ESC)+按下 1, LT(2, ESC)+2...LT(2,ESC),触发 M ACRO(0)-MACRO(11),

□ LM(layer,mod)

你可以把 LM(layer, mod) 理解成 MO(layer)+mod 一键两用。当你长按这个键,键位的功能就是

MO(layer)+ mod 同时生效。 这样你可以把 mod 键一键两用,范例:按下 LM(1,Lctrl)再按 1=按下 lctrl

再按 1=按下 mo(1)再按 1。

□ TO(layer)

一键切换到 layer。可以在任意层中设置。例如在层 0 设置了 TO(2),但是要记得最后在层 2 中设置 TO(0)

来恢复到默认层。

☐ **TG**(layer)

类似于 TG(layer) ,但是只能在某两层中来回切换。例如我在层 0 中 ESC 的位置设置了 TG(5) ,按下后

会立即跳转到层 5 中,在层 5 中 ESC 的位置只能设置为 KC_TRNS。你只能把 TG(layer) 这个键设置到

layer 上面的层,比如你可以在第0层设置 TG(5),但是你不能在第5层设置 TG(0)。

□ **DF**(layer)

键盘的默认层是层 0, 此键位的功能是设置默认层为 layer, 非必要不用改动默认层。

➤ QUANTUM: QMK 功能键

- □ LSPO 敲击为左括号(, 长按为 SHIFT
- □ RSPC 敲击为右括号) , 长按为 SHIFT
- □ **LEAD** 待测试
- □ LOCK 按下 LOCK 键,再敲击 KC,松开后 KC 会重复录入,再次敲击 KC,终止重复录入

> OTHER: 其他

可以将以下键值直接粘贴以实现其功能

KC_HELP 帮助

KC MENU 菜单

```
KC_AGAIN 重复
KC_UNDO 撤消
KC_CUT 剪贴
KC_COPY 复制
KC_PASTE 粘贴
KC_FIND 查找
KC_MUTE 静音
KC_MNXT 下一首
KC_MPRV 上一首
KC_MFFD 快进
KC_MRWD 回放
KC_MSTP 停止
KC_MPLY 开始/停止
KC_MSEL 选曲
KC_MAIL 邮件
KC_CALC 计算器
KC_MYCM 计算机
KC_WSCH www 查找
KC_WHOM www 主页
KC_WBAK www 后退
```

KC_SELECT 选择

KC_STOP 停止

```
KC_WFWD www 前进KC_WSTP www 停止
KC_WREF www 刷新
KC_WFAV www 收藏
鼠标功能:
KC_MS_U 鼠标指针向上
KC_MS_D 鼠标指针向下
KC_MS_L 鼠标指针向左
KC_MS_R 鼠标指针向右
KC_BTN1 鼠标按键 1
KC_BTN2 鼠标按键 2
KC_BTN3 鼠标按键 3
KC_BTN4 鼠标按键 4
KC_BTN5 鼠标按键 5
KC_WH_U 鼠标滚轮向上
KC_WH_D 鼠标滚轮向下
KC_WH_L 鼠标滚轮向左
KC_WH_R 鼠标滚轮向右
KC_ACLO 鼠标响应度 1
KC_ACL1 鼠标响应度 2
```

KC_ACL2 鼠标响应度 3

MACROS 宏

理论上可以支持无限个宏

1. 首先将 M(n)设置到键位上

2. 选择一个宏进行定义

3. 开始制作宏

首先点击"录制宏 Record Macro",这时系统会自动录制你此时的键盘动作,再点击"停止记录 Stop

Recording"结束录制。如果没有错误就完成了宏的录制,如果在录制的过程中有输入错误,可以通过"添加动作 Add Action",逐条点击修改,或可以通过"清除宏 Clear Mac ro"清除记录然后重新录制

在宏动作中有

Press:按下按键

Set Interval:延时,单位ms

Release:释放按键

Type:正常点击按键

Wait:等待

QUANTUM 自定义程式

可以通过添加程序代码实现键盘功能的改进,非开发者不要随意改动。

SETTINGS 设置

SETTINGS设置 COMPILE下载固件

配置你的设置 Configure your settings.							
Layout Name	JC65	0					
Bootloader Size	4096 KB *	0					
WS2812 LEDs	- 16 +	0					
Backlight Levels	- 3 +	0					
保存你的布局 Save your layout.							
Save Configuration							
检查错误							
Check errors and warnings.							
没有错误							
No errors or warnings!							

Layout Name:设置文件的名称

Bootloader Size: 设置 bootloader 的大小

Atmel DFU loader (ATmega32U4): 4096 默认

Atmel DFU loader (AT90USB1286): 8192

LUFA bootloader (ATmega32U4): 4096

Arduino Caterina (ATmega32U4): 4096

USBaspLoader (ATmega***): 2048

Teensy halfKay (ATmega32U4): 512

Teensy++ halfKay (AT90USB1286): 2048

如果不清楚你主控 BOOTLOADER 的大小, 请选择 4096KB

WS2812 LEDS: 底部 RGB 底灯个数

Backlight Levels:背光亮度级数

RGB Brightness: 初始状态下 RGB 底灯的亮度,值在 0-255 中设置

如果你对固件的修改没有发生错误,在底部会显示"没有错误"的提示,此时点击 Save Configuration,会提示你保存一个.JSON 的文件,文件名为你在 Layout Name 中设置的文件名称。如果日后想对固件再次修改,可以在初始化

页面上传自己的布局

注意:此文件并非固件,只是固件的自定义配置文件

COMPILE 下载固件

点击 download.hex 下载固件

■. BOOT MAGIC 功能指导

Boot Magic 功能是在键盘启动的时候执行。先按下 Boot Magic 的功能键,然后插入键盘数据线来执行 Boot Magic 的功能,如需取消设置,则重新按下 Boot Magic 的功能键插入数据线。例如 SPACE+N 插入数据线,键盘进入全键无趾模式,如果想切换回六键无冲,则拔下数据线,再次按下 SPACE+N,等待数秒后插入数据线。需要注意的是 Boot Magic的键值必须是在层 0。

General

• Space+ESC: 不读取 EEPROM 通过默认配置启动

• Sppace+Backspace: 清除保存在 EEPROM 中的配置来重置为默认配置。

Bootloader

• Space+B: 进入 BOOTLOADER 模式 (刷机模式)

Keymap

- Space+LCtrl: 交换 Ctrl 和 Capslock 的功能
- Space+CapsLock: 将 dfCapsLock 变为 Control
- Space+LAlt: 交换 LeftAlt 和 LGui 的功能
- Space+RAIt: 交换 ReftAlt 和 RGui 的功能
- Space+LGui: 禁用 LGui
- Space+Grave: 交换 Grave 和 Escape(MAC)
- Space+Back Slash(\): 交换 Backspace 和反斜杠\
- Space+N: 全键无冲

Default Layer

• Space+主键区数字 0-9, 设置默认层为 0-9

四.常见问题

1. 如何切换到全键无冲

按住空格+N 后接入电脑

2. 什么是层

你可以把一张键盘理解成有多层抽屉的柜子,键盘的一层就是柜子里的一层抽屉。每层抽屉的格子大小一样,

但是不同层中相同位置的格子里面的东西不一样。默认只能用一层抽屉 , 切换层就相当于换了抽屉。

3. RGB 底灯关机后无法关闭

请查在你的 BIOS 设置中将 USB 设置为关机断电,设置方法请参考你的主板说明书

4. 我的布局中空格没有分裂,但是初始化中的布局都是分裂的,怎么设置

上图为默认 60 配列,其中可分裂的键位有:

退格

左 shift

右 shift

空格

NO SPACE NO

如果您的这些键位没有分裂,则在自定义按键的时候只需要设置对应的键位键值,如果您的键位有分裂,则对旁边

的 NO 进行定义

Tag: NO: 忽略此键

5. PCB 支持 ISO 布局,但是初始化的布局中没有,怎么设置键位

本方案的 PCB 中,对标准 ANSI 布局中的回车和\进行配置后,会自动同布到 ISO 布局中的回车和\。只需要选择一个标准的 ANSI 布局进行配置就可以了

6. PCB 上没有 RESET 开关键,怎么进入 BOOTLOADER 刷机模式

默认的固件中,都设置了 rset 的键位,按 RESET 键会进入 BOOTLOADER。所以强烈建议大家在改键位的时候,不要忘了加上这个键

如果没有设置 RESET 键,可以通过 BOOT MAGIC 的功能进入,详细方法是:断开键盘 5 秒钟,按住

• Space+B: 后接入电脑 , 键盘进入 BOOTLOADER 模式

7. 一些关键字的解释

Mod: 包括 ctrl, shift, alt ,gui 等功能键

Kc: 除 Mod