CS24N Lecture 15:
 T5 and
 large language model

INSTRUCTIONS

- 1. why and what is T5
- 2. T5 base structure
 - Data source
 - Pretraining objective
 - Baseline experimental procedure
- 3. T5를 위한 design dicision
 - Model structure
 - pre-training objective
 - variants of pre-training dataset
 - multi-tasking pretraining
 - scaling strategy

- 4. MT5
- 5. closed-book question-answering
- 6. Do model memorize training data?

1 Why and What is T5

Why and what is T5

- 특정 task를 해결하기 위해 transformer의 구조를 수정하거나 파라미터를
 조정하는 시도
- 모든 것을 같게 세팅하는 최고의 모델을 만들 순 없는가?
- ° "Treating all text problems in the same format "(모든 문제를 같은 포맷으로 해결한다)

T5, text-to-text transfer transformer

Why and what is T5

- 모든 것을 text로서 학습함
- "Accept", "3.8" 도 분류, 회귀모델이 아닌 text로 학습
- Vanilla transformer를 제안된 그대로 사용할 수 있다는 장점

T5 base structure

T5 base structure – Pretraining objective

- 랜덤하게 token 선택하고, drop 함
- Drop된 token은 sentinal token으로 대체
- Model의 goal은 빈칸을 채우는 것
- Missing word를 재건축한다는 점에서 BERT모델과 유사

T5 base structure – Baselline experimental procedure

Pretrain Model:

- BERT base size의 인코더와 디코더,
 BERT보다 파라미터가 두배정도 많음
- Denoising objective : masked language modeling
- C4 dataset 사용
- Pre-train할때 34billion 개의 token사용, BERT의 ¼정도

T5 base structure – Baselline experimental procedure

여러 task를 진행하기 위한 finetuning

- GLUE: sentence classification, sentence-pair classification, regression task
- CNN/Daliy Mail: summarization
- SQuAD : question answering, reading comprehensive benchmark
- SuperGLUE: GLUE의 difficult version
- WMT14EnDe/WMT15EnFr/WMT16En Ro: translation
- Pre-train모델을 가지고 각각의 task에 따라 개별적으로 fine tuning
- 약 17 billion 개 token 으로 finetuning

T5 base structure – Baseline experimental procedure

	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Baseline average	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Baseline standard deviation	0.235	0.065	0.343	0.416	0.112	0.090	0.108
No pre-training	66.22	17.60	50.31	53.04	25.86	39.77	24.04

- Pre-training하지 않은 모델은 성과가 매우 안좋음
- GLUE, CNNDM, SQuAD는 BERT와 비교해도 낮은 성능이 아님

3

T5를 위한 design decision

- 많은 실험들로 성능비교
- 하이퍼 파라미터를 조정하는 실험은 하지 않음
- ° 왜냐하면 우리는 모든 문제들을 같은 framework로 다루기 원하기 때문에 하이퍼 파라미터를 조정할 필요가 없다
- Text-to-text maximum likelihood training

Model structures

Architecture	Params	Cost	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Encoder-decoder	2P	M	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Enc-dec, shared	P	M	82.81	18.78	80.63	70.73	26.72	39.03	27.46
Enc-dec, 6 layers	P	M/2	80.88	18.97	77.59	68.42	26.38	38.40	26.95
Language model	P	M	74.70	17.93	61.14	55.02	25.09	35.28	25.86
Prefix LM	P	M	81.82	18.61	78.94	68.11	26.43	37.98	27.39

- ° Encoder-decoder모델이 성능이 가장 좋음
- 파라미터의 개수에 차이가 있어도 총 문장의 길이는 모두 같음

Pre-training objective

Pre-training과정에서 모델이 학습하고자 하는 것은 무엇인가?

- Language model: 다음 token예측
- ° Deshuffling: input문장을 shuffle하고 unshuffled 문장을 예측
- BERT-style
- ① Mask: uncorrupted input문장을 예측한다.
- ② Replace Span:
- ③ Drop: mask token을 drop, 예측

Pre-training objective

Objective	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
BERT-style (Devlin et al., 2018)	82.96	19.17	80.65	69.85	26.78	40.03	27.41
MASS-style (Song et al., 2019)	82.32	19.16	80.10	69.28	26.79	39.89	27.55
Replace corrupted spans	83.28	19.24	80.88	71.36	26.98	39.82	27.65
Drop corrupted tokens	84.44	19.31	80.52	68.67	27.07	39.76	27.82
							- C

- Mask token만 예측하는 것이 target sentence가 더 짧아서 overall cost가 상대적으로 낮다.
- T5는 마지막 두개를 best approach로 결정하고, 얼마나 많은 token을 mask할지 같은 다른 하이퍼 파라미터들을 고려함

Variants of pre-training dataset

Dataset	Size	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
₹ C4	745GB	83.28	19.24	80.88	71.36	26.98	39.82	27.65
C4, unfiltered	6.1TB	81.46	19.14	78.78	68.04	26.55	39.34	27.21
RealNews-like	/35GB	83.83	19.23	80.39	×72.38	26.75	39.90	27.48
WebText-like	17GB	84.03	19.31	81.42	71.40	26.80	39.74	27.59
Wikipedia /	16GB	×81.85	19.31	81.29	68.01	26.94	39.69	27.67
Wikipedia + TBC	20GB /	83.65	19.28	82.08	>73.24	26.77	39.63	27.57

- Pre-training dataset를 어떻게 사용할지에 대한 결정
- Wikipedia+TBC가 SuperGLUE에서 가장 좋은 성능
- Wikipedia만을 사용하는 것은 C4보다도 좋지 않은 성능
- 데이터양이 작아도 성능차이가 그렇게 크지 않음

Variants of pre-training dataset

Number of tokens	Repeats	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Full dataset	0	83.28	19.24	80.88	71.36	26.98	39.82	27.65
2^{29}	64	82.87	19.19	80.97	72.03	26.83	39.74	27.63
2^{27}	256	82.62	19.20	79.78	69.97	27.02	39.71	27.33
2^{25}	1,024	79.55	18.57	76.27	64.76	26.38	39.56	26.80
2^{23}	4,096	76.34	18.33	70.92	59.29	26.37	38.84	25.81
	0.6	-	marie		-	Full d 229	ataset	
	0.0				-	227		
	0.4	1			-	225		
		1				223		
	0.2		-					
	0.0 —							
	0	100	200 30	0 400	500			

Dataset은 pre-training 할 때 오버피팅이 일어나지 않을 만큼의 크기를 가지면 됨 . 더 많은 데이터가 필요하면 이를 repeat하면 됨

Multi-task pretraining

- ° Multi-task learning을 할 때, multi-task에 대해 model training을 한번에 진행함
- 즉, 모든 downstream task를 같이 훈련하는 것
- 파생되는 문제는, 각각의 task에 데이터를 어떻게 배정할 것이냐..!!
 - ① 모든 task에 동일한 비율로 sample
 - ② Example proportional mixing 방법: 하이퍼파라미터 K

Temperature가 클수록 Equal mixing에 가까워진다.

Multi-task pretraining

CLUE	CNNDM	SOUAD	SCLUE	EnDo	EnE	EnRo
GLUE	CIVIDAL	SQUAD	SGLUE	Embe	Ener	Enno
83.28	19.24	80.88	71.36	26.98	39.82	27.65
81.42	19.24	79.78	67.30	25.21	36.30	27.76
83.11	19.12	80.26	71.03	27.08	39.80	28.07
81.98	19.05	79.97	71.68	26.93	39.79	27.87
79.93	18.96	77.38	65.36	26.81	40.13	28.04
	81.42 83.11 81.98	83.28 19.24 81.42 19.24 83.11 19.12 81.98 19.05	83.28 19.24 80.88 81.42 19.24 79.78 83.11 19.12 80.26 81.98 19.05 79.97	83.28 19.24 80.88 71.36 81.42 19.24 79.78 67.30 83.11 19.12 80.26 71.03 81.98 19.05 79.97 71.68	83.28 19.24 80.88 71.36 26.98 81.42 19.24 79.78 67.30 25.21 83.11 19.12 80.26 71.03 27.08 81.98 19.05 79.97 71.68 26.93	83.28 19.24 80.88 71.36 26.98 39.82 81.42 19.24 79.78 67.30 25.21 36.30 83.11 19.12 80.26 71.03 27.08 39.80 81.98 19.05 79.97 71.68 26.93 39.79

- Unsupervised task를 포함해서 multi-task를 먼저 한 다음에 각 task에 따라 fine tuning을 하는 것도 성능에 큰 악영향 X
- ° 위 방법의 장점은 pre-training하면서 각 task의 성능에 대해서 모니터링 가능하다는 것

Scaling strategy(making big model size)

Scaling strategy	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
Baseline	83.28	19.24	80.88	71.36	26.98	39.82	27.65
1× size, 4× training steps	85.33	19.33	82.45	74.72	27.08	40.66	27.93
$1 \times$ size, $4 \times$ batch size	84.60	19.42	82.52	74.64	27.07	40.60	27.84
$2 \times$ size, $2 \times$ training steps	86.18	19.66	84.18	77.18	27.52	41.03	28.19
4× size, 1× training steps	85.91	19.73	83.86	78.04	27.47	40.71	28.10
4× ensembled	84.77	20.10	83.09	71.74	28.05	40.53	28.57
4× ensembled, fine-tune only	84.05	19.57	82.36	71.55	27.55	40.22	28.09

- 위의 표는 연산의 양을 4배로 가중시켰다고 가정할때 시도할 수 있는 여러 방법들을 보여준다.
- 단순히 training size를 늘리는 것만이 좋은 것이 아니다.
- 모델의 사이즈를 2배로, training 사이즈를 2배로 늘리는 것이 가장 성능이 좋음

LET'S REVIEW

Model structure

Encoder-Decoder architecture을 사용

Text-to-text format에 최적이기 때문.

Multi-task pretraining

Unsupervied data를 포함한 multi-task pre training을 진행한 뒤, 각 task에 따라 fine tuning한다.

Pre-training objective

Span prediction objective을 택함. 처음에 설명한 baseline모델과 동일함.

Scaling strategy

모델의 사이즈를 크게 하는 방법을 사용.

Pre-training Dataset

C4 Dataset이용

가장 성능이 좋았고, 과적합되지 않을 충분한 양을 가짐 4 MT5(Multilingual T5)

MT5

- 다른 모든 부분은 동일, Multilingual corpus로 train한다는 것이 차이점
- C4 dataset에 다른 언어들이 포함된 것을 사용함. 하지만 각 언어별로 텍스트의 양이 다름
- Temperature scaling을 사용
- Temperature이 작을수록 uniform distribution에 가까움
- ° Temperature이 작으면 low resource language에서 성능이 좋고, temperature이 크면 반대로 작용

5 Closed-book question answering

Closed-book question answering

- Reading comprehension, open-domain question-answering 모델과 다르게
 외부 지식 source와 연결할 수 없고, 모델이 가진 지식을 기반으로 답을 해야 한다.
- 즉, pre-train할 때 쌓은 지식들에서 답을 pick up 해야한다.
- 모델의 크기가 클수록 더 많은 지식들을 pick up 할 수 있음.
- o Retrieval augmented language model-pre training을 진행함.
- Mask를 랜덤하게 하는 것이 아니라, 사람이름, 장소, 날짜 등의 entities를 mask

	NQ	WQ	TQA
Open-domain SoTA	41.5	42.4	57.9
T5.1.1-Base	25.7	28.2	24.2
T5.1.1-Large	27.3	29.5	28.5
T5.1.1-XL	29.5	32.4	36.0
T5.1.1-XXL	32.8	35.6	42.9

6

- 얼마나 많은 양의 지식들이 모델에 기억되어지는가? 개인정보 같은 별로 기억되고 싶지 않은 정보도 기억되는가? ((예))
- 그림과 같은 prefix를 GPT-2에 넣었을 때 인터넷에 나타나는 실제 사람의 이름과
 주소를 알려주었다고 함(6번정도)
- 이 예시는 GPT-2가 pre-training data에서 어느 정도 사소하지 않은 양의 정보들을 기억하고 있는 것처럼 보임.

- Language model에서 data를 sampling 한다.
 - ① sample auto-regressively
 - ② sample auto-regressively but with decay in temperature (model을 더 confident하게 만들기 위함)
 - 3 take random text from the internet and use that as conditioning to GPT-2 before asking it to generate what comes next

- 1번 과정을 통해 200,000개의 generation을 얻는다.
- ° 6개의 matrix중 하나를 이용하여 이 generation을 기억할 지 안 할지에 대해 예측한다.
- ° 이 matrix는 모두 기본적으로 GPT-2의 perplexity가 사용됨.
- ° Perplexity는 GPT-2의 confident를 측정하기 위한 것(measure of compression)

- 다음으로 이 generation을 duplicate함
- 각각의 matrix에서 top 100 generation을 선택한다. (최종적으로 600개의 possible memorized generation)
- ° Brief google search를 한다.
 - → GPT-2가 만들 text가 인터넷에 있는지 확인. 인터넷에 있다면 그것이 training dataset에 있는 것을 뱉은 것인지 match함.

- GPT-2는 outliers 같은 정보도 기억을 하기 때문에 다음에 와야 할 문장 예측에서 뛰어난 성능을 보임
- ° 왼쪽 상단의 점들은 outlier data로서, possible memorized sample들이다.
- 파란점은 실제로 training data에 있었고, GPT-2가 기억했었던(!) 정보들이다.

	Occur	rences	Memorized?			
URL (trimmed)	Docs	Total	XL	M	S	
/r/ 51y/milo_evacua	1	359	✓	1	1/2	
/r/zin/hi_my_name	1	113	1	✓		
/r/ 7ne/for_all_yo	1	76	✓	1/2		
/r/ 5mj/fake_news	1	72	1			
/r/ 5wn/reddit_admi	1	64	1	1		
/r/ lp8/26_evening	1	56	✓	1		
/r/ jla/so_pizzagat	1	51	1	1/2		
/r/wubf/late_night	1	51	1	1/2		
/r/ eta/make_christ	1	35	1	1/2		
/r/6ev/its_officia	1	33	1			
/r/ 3c7/scott_adams	1	17				
/r/ k2o/because_his	1	17				
/r/ tu3/armynavy_ga	1	8				

- 모델의 사이즈가 클수록 가장 빈도수가 낮은 (33번) URL까지 기억하는 것을 볼 수 있음
- 즉, 모델이 클수록 기억할 수 있는 데이터의 양이 많아진다.

Thanks! ANY QUESTIONS?