

CS 115 Functional Programming

Lecture 14:

The Monad Laws

Today

- The monad laws
- The Maybe monad
- Deriving the Maybe monad

The Monad type class is defined as:

```
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
  return :: a -> m a
  (>>) :: m a -> m b -> m b
```

 Monad is a constructor class, since Monad instances are type constructors (m)


```
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
  return :: a -> m a
  (>>) :: m a -> m b -> m b
```

 The two fundamental Monad operations are return and >>=


```
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
  return :: a -> m a
  (>>) :: m a -> m b -> m b
```

- >>= is monadic application: a monadic function (type a -> m b) is applied to a monadic value (type m a) to get a monadic value (type m b)
- return "lifts" a regular value into a monadic value
 - i.e. a computation "returning" that value


```
class Monad m where
  (>>=) :: m a -> (a -> m b) -> m b
  return :: a -> m a
  (>>) :: m a -> m b -> m b
```

- >> is monadic sequencing: two monadic values ("actions") are "run" one after the other in sequence
- The first monadic action normally has the type m ()
- The return value of >> is the return value of the second monadic action

- As far as Haskell is concerned, any type constructor that implements the Monad methods is a valid instance of the Monad type class
- But for a type constructor to truly "be" a monad, more is required!

The three laws of monadics

- Many interesting natural laws come in groups of three:
 - Newton's three laws of motion
 - The three laws of thermodynamics
 - Kepler's three laws of planetary motion
 - Asimov's three laws of robotics
- Monads also have three associated laws
- Of course, the "three laws of monadics" are far more important than any of those other laws ☺

The three laws of monadics

- Recall the whole point of monads:
 - to take computations with extra effects
 - and to be able to compose them as naturally as we can compose regular functions
- It's worth looking at normal function composition to see what laws it obeys, then see if there are any monadic versions of those laws that monadic function composition must also obey

Function composition

Function composition is written in Haskell using the
 (.) operator and is defined as:

```
(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)
g . f = \x \rightarrow g (f x)
```

 Or if you prefer, use the (>.>) operator and write the arguments in a different order:

```
(>.>) :: (a -> b) -> (b -> c) -> (a -> c)

f >.> g = \x -> g (f x)

-- or: (>.>) = flip (.)
```


Identity laws

 There is an identity function id that takes a value and returns it unchanged, defined as:

```
id :: a -> a
id x = x
```

- What is the relationship between id and function composition?
- Composing an arbitrary function f with id should give...?
 - the original function f back!

Identity laws

 Specifically, we can define two "laws" that function composition with id must obey:

```
id . f = f
f . id = f
```

- In algebra, we say that id is a "left identity" of function composition (law 1) and a "right identity" of function composition (law 2)
- Any notion of function composition coupled with some kind of identity function should obey laws like these in order to behave in a "reasonable" way

Associativity law

- Function composition also has to be associative
- Consider three functions f, g, and h
- This must be true:

```
(f \cdot g) \cdot h = f \cdot (g \cdot h)
```

- In words: there is only one way to compose three functions f, g, and h together
- Which of the functions gets composed first doesn't matter; the end result is the same
- Again: this must be true for any "reasonable" notion of function composition

Laws and more laws

- Since any "reasonable" notion of function composition has to uphold three laws:
 - left identity with the identity function
 - right identity with the identity function
 - associativity
- ... we should expect that if monadic function composition is "reasonable", it should uphold three laws like this too
- In fact, this is the case

Monadic function composition

Recall the monadic function composition operator:

```
(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
```

- Defined in the Control. Monad module
- This is analogous to the (>.>) operator we defined for normal functions
- There is also another form with the arguments reversed:

```
(<=<) :: (b -> m c) -> (a -> m b) -> (a -> m c)
```

Also defined in Control. Monad

Monadic function composition

 Recall that monadic function composition can be defined in terms of monadic application:

```
(>=>) :: (a \rightarrow m b) \rightarrow (b \rightarrow m c) \rightarrow (a \rightarrow m c)

f >=> g = \x -> f x >>= g
```

 The reversed form can be defined even more simply:

```
(<=<) :: (b -> m c) -> (a -> m b) -> (a -> m c) (<=<) = flip (>=>)
```


Monadic identity function

The return function has this type signature:

```
return :: a -> m a
```

 Viewed as a function-with-effects, you could write return's type signature schematically as:

```
[m]
```

```
return :: a ----> a
```

- where [m] represents the effects embodied in a particular monad
- Thus, return seems to be kind of like an identity function for monads

Monad laws: the nice version

 If we consider return to be a monadic identity function and use the monadic composition operator >=>, the three monad laws have this form:

```
1) return >=> f === f
2) f >=> return === f
3) (f >=> g) >=> h === f >=> (g >=> h)
```

 These are identical in form to the corresponding laws for function composition, except instead of using (.) and id we use (>=>) and return!

Monad laws: the nice version

- In words, the monad laws state that:
- 1. monadic function composition is associative
- return is a left- and right-identity for monadic function composition
- These laws, if they hold, guarantee that monadic function composition "behaves normally" *i.e.* it behaves in the way you expect function composition to behave, modulo the monadic effects

Monad laws: the ugly version

- Most Haskell literature presents the monad laws not in terms of the >=> operator but in terms of the >>= operator
- This gives rise to much less intuitive monad laws, but the translation between them is straightforward (though a bit grungy)
- Here, we simply present the ugly form and leave the derivations as an exercise

Monad laws: the ugly version

- The ugly version of the monad laws:
- 1. return $x \gg f = f x$
- 2. mx >>= return == mx -- mx is a monadic value
- 3. $(mx >>= f) >>= g == mx >>= (\x -> (f x >>= g))$
- Advantages of the ugly version:
 - Can use to simplify code: when you see patterns like (return x >>= f), replace with just (f x)
 - Can use to constrain definitions of return and >>= when defining new monads (very useful!)

Enforcing monad laws

- The problem with monad laws:
 - Haskell cannot enforce them!
 - (Similar to case of laws for Functor type class)
- Haskell is not powerful enough to use to prove theorems about whether particular instances of the type class Monad have definitions of >>= and return which obey the monad laws
- Haskell will even accept versions which do not obey these laws, as long as their types are correct!

Enforcing monad laws

- Therefore, it's up to the programmer who writes the Monad instance definition for a particular monad to make sure that the definitions of >>= and return obey the monad laws
- Usually, the definition of >>= follows directly from what the monad is trying to achieve
- The definition of return for a monad is often much less obvious
- We can use the monad laws to tell us what the "right" definition of return has to be

Enforcing monad laws

 We also must check that the "natural" definition of the >>= operator for a given monad obeys the monad laws in conjunction with the definition of return

We have already seen the Maybe type constructor:

```
data Maybe a =
    Nothing
    | Just a
```

- A Maybe type can be used as the return value of a function when that function may or may not be able to generate a value of that type
- Such functions have the general type:
- a -> Maybe b

- We have said that the purpose of monads is to represent "notions of computation" that are different from the standard notion of computation (pure functions)
- One such "notion of computation" is "a computation that may fail"
- Such a computation will naturally have the type
 a -> Maybe b
- Therefore, it's not unreasonable to expect that
 Maybe might be a monad

Aside: the Maybe monad

- There is nothing "non-functional" about a function with a type of a -> Maybe b
- You can think of this as either
 - a pure function whose return type happens to be Maybe b
 - a function from type a to type b which can fail
- The second interpretation gives rise to the monad
- Both interpretations are purely functional

- The purpose of the Maybe monad is to enable us to easily compose functions that may fail
- We'll use a trivial contrived example:

```
f :: Integer -> Maybe Integer
f x = if x `mod` 2 == 0 then Nothing else Just (2 * x)
g :: Integer -> Maybe Integer
g x = if x `mod` 3 == 0 then Nothing else Just (3 * x)
h :: Integer -> Maybe Integer
h x = if x `mod` 5 == 0 then Nothing else Just (5 * x)
```


- We would like to compose f, g, and h to get a final function k
- k will take an Integer, and will multiply it by 2, then 3, then 5 (total 30) unless it's divisible by 2 or 3 or 5, in which case it will return Nothing
- We can't use normal function composition to define
 k in terms of f, g, and h, because the output types
 of these functions (Maybe Integer) aren't the
 same as their input types (Integer)

 Defining k in terms of f, g, and h is nevertheless straightforward in Haskell:

- Problem: the code is repetitive and grungy
 - The Nothing -> Nothing line is repeated twice!
- If more functions were to be composed, the nesting would get even deeper
- We will use monads to clean this code up
- Unlike the case with the IO monad, monads are not "essential" in order to write code using the Maybe type constructor
- However, monads make working with Maybe much more convenient

- Let's start by defining the >>= (monadic application)
 operator for the Maybe type constructor
- It will have the (specialized) type signature:

```
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
```

- Usually, the definition of >>= can be obtained by understanding what monadic application is trying to achieve
- That will be the case here
 - (Still have to check it using the monad laws!)


```
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= f = ???
Just x >>= f = ???
```

Need to fill in the ??? parts


```
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= f = ???
Just x >>= f = ???
```

 If the previous computation failed (returned Nothing), what would that computation composed with f do?


```
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= f = ???
Just x >>= f = ???
```

- If the previous computation failed (returned Nothing), what would that computation composed with f do?
 - Fail!
 - i.e. it would also return Nothing
 - i.e. first equation is Nothing >>= f = Nothing


```
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= f = Nothing
Just x >>= f = ???
```

 If the previous computation returned Just x, how would we "unpack" a value of type a to pass to f?

Maybe: definition of >>=

```
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= f = Nothing
Just x >>= f = ???
```

- If the previous computation returned Just x, how would we "unpack" a value of type a to pass to f?
 - Just use x!
 - Second equation is Just x >>= f = f x

Maybe: definition of >>=

```
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
Nothing >>= f = Nothing
Just x >>= f = f x
```

- This is the "plausible" definition of >>= for the Maybe monad
- We still have to verify it using the monad laws!
- Before that, though, we have to define return:

```
return :: a -> Maybe a
return x = ???
```



```
return :: a -> Maybe a
return x = ???
```

- Since the definition has to work for any type a, there aren't many choices
- The two "obvious" choices are:
- 1. return x = Nothing
- 2. return x = Just x

It should seem plausible that

```
return x = Nothing
```

- is not the best candidate
- This does not look like an identity function!
- Let's demonstrate that this won't work, using the previous definition of >>= and the monad laws

Given

```
return x = Nothing
```

let's check monad law 1 (ugly form):

```
return x >>= f == f x
```

Doing some substitutions:

```
return x >>= f
```

- = Nothing >>= f
- = Nothing -- definition of >>=
- which cannot in general be equal to f x for all fs and xs

So this definition

```
return x = Nothing
```

violates monad law 1, so the correct definition is:

```
return x = Just x
```

 We still have to check this and the definition of >>= against the monad laws!

Monad law 1 (ugly form):

```
return x >>= f == f x
```

With our definition, we have:

```
return x >>= f
= Just x >>= f
= f x -- definition of >>=
```

So monad law 1 holds

Monad law 2 (ugly form):

```
mx >>= return == mx
```

- mx can be either Nothing or Just x
- If mx is Nothing, we have:

```
Nothing >>= return
```

- = Nothing -- definition of >>=
- = mx

Monad law 2 (ugly form):

```
mx >>= return == mx
```

- mx can be either Nothing or Just x
- If mx is Just x, we have:

```
Just x >>= return
```

- = return x -- definition of >>=
- = Just x -- definition of return
- = mx
- So monad law 2 holds

Monad law 3 (ugly form):

```
(mx >>= f) >>= g == mx >>= (\x -> (f x >>= g))
• Case 1: mx is Nothing
(Nothing >>= f) >>= g -- LHS
= Nothing >>= g -- definition of >>=
= Nothing -- definition of >>=
Nothing >>= (\x -> (f x >>= g)) -- RHS
= Nothing -- definition of >>=
```

OK, so case 1 checks out

Monad law 3 (ugly form):

```
(mx >>= f) >>= g == mx >>= (\x -> (f x >>= g))
• Case 2: mx is Just v

(Just v >>= f) >>= g -- LHS
= f v >>= g -- definition of >>=
Just v >>= (\x -> (f x >>= g)) -- RHS
= (\x -> (f x >>= g)) v -- definition of >>=
= f v >>= g -- function application
```

Case 2 checks out, so monad law 3 holds

Maybe: Final form

Maybe instance of Monad type class:

```
instance Monad Maybe where
return x = Just x
Nothing >>= f = Nothing
Just x >>= f = f x
```

- We proved that this instance definition is consistent with the monad laws
- So: Maybe is in fact a monad!
- Monadic composition with Maybe monadic functions "behaves in a sensible fashion"

Maybe: Final form

Maybe instance of Monad type class:

```
instance Monad Maybe where
  return x = Just x
  Nothing >>= f = Nothing
  Just x >>= f = f x
```

- >> definition is equivalent to the default
- The Maybe monad is also an instance of the MonadFail type class, with this definition:

```
fail _ = Nothing
```


Maybe: Final form

- Let's return to our example with f, g, h, and k
- We can now define k monadically as:

```
k :: Integer -> Maybe Integer
k = f >=> g >=> h
```

- This is much simpler than the explicit definition with nested case statements!
- Monads have allowed us to remove all the "boilerplate" code dealing with Nothing values and focus on the overall structure of the computation

The point

- Aside from special cases like the IO monad, where monads are the only way to achieve the result we want...
- ...the main use of monads in Haskell is to allow us to write computations without a lot of trivial boilerplate code that only serves to obscure what's really going on
- We will see many examples of this in the upcoming lectures

The point

- Monad laws may seem very "theoretical", but they guide us when we are implementing new monads
 - A Monad instance that obeys the monad laws will behave "reasonably" with respect to monadic function composition
 - We can use the monad laws to give us a "reasonable" definition of the return function given a plausible definition of the >>= operator

The point

- From now on, we will use the monad laws with each new monad we discuss
 - to derive the correct return definition
 - to verify the "plausible" >>= definition

Coming up next

The list monad

