Implosive Edge Hypothesis (IEH) and the Change Measure Δ – concept note (open for expert review)

A concise framework and what it claims

What this text presents (purpose)

This note proposes a compact, testable way to describe cosmic evolution without relying on the labels "past-present-future," and an alternative explanation for why the universe's "edge" is not observable. It has two coupled parts:

- Pillar A (Δ): replace "time" with an orientation-free change measure Δ that increases whether the universe expands or implodes.
- Pillar B (IEH): explain the invisibility of the "edge" not merely by superluminal metric recession, but by implosion dominating at the edge, which prevents outward signals from emerging coherently.
- Addition: near the edge, apparent expansion can persist due to observational inertia—signals still look expansion-like even while implosion is already overlaying the process.

Together, these parts give a stable "age of change" even if the global direction of cosmic evolution flips, and they account for why the edge remains unseen while still looking expansion-like for a time.

Starting axiom

"People do not measure time; they only measure the course of their existence." Clocks do not measure the passage of time—they count cycles of diverse processes (e.g., Cs-133 hyperfine transition, optical Sr/Yb clocks, quartz resonators, Earth rotation UT1, Earth's orbital period, millisecond pulsars). In cosmology, the natural quantity to track is how much change has occurred, not which side of "past/present/future" we name it.

Pillar A - Change replaces "time"

Define Δ to monotonically accumulate change regardless of orientation: $\Delta_a = \int |d \ln a|;$ $\Delta_T = \int |d \ln T_CMB|$

 Δ a counts how many e-folds the scale changed (up or down).

 Δ_{T} counts how much the CMB temperature changed in relative (log) terms (down in expansion, up in implosion).

CMB temperature (T_CMB)

Cosmic Microwave Background temperature (\approx 2.725 K today). In standard expansion T_CMB decreases (\propto 1/a); under implosion the trend reverses (increases). It enters Δ_T via $\Delta_T = \int |d \ln T_CMB|$.

Operational age (fixed linear combination)

$$Age_\Delta = w_a \cdot \Delta_a + w_T \cdot \Delta_T$$

with w_a, w_T calibrated once to reference epochs (e.g., BBN). Age_ Δ always increases, even if χ flips from +1 to -1. This avoids the breakdown of "age in years" when the Hubble rate changes sign.

Pillar B - Implosive Edge Hypothesis (IEH)

Claim. We do not fail to see the universe's "edge" solely because of superluminal metric recession. We fail because the edge is a region where implosion dominates and the two opposite flows—expansion and implosion—mix.

Operationally, at Σ :

- Outgoing light does not achieve net divergence (outward bundles have non-positive expansion), so energy does not propagate outward carrying coherent, far-field information.
- Wave phases decohere due to mixing of counter-propagating components; whatever nominally "exits" loses readable structure.

Apparent expansion (observational inertia near Σ)

Even after implosion becomes the true global orientation, lines of sight that traverse Σ can still look expansion-like for some time.

Effective expansion along a sightline:

 $H_{eff} = \mu \cdot H_{+} + (1 - \mu) \cdot H_{-}; \quad H_{+} > 0, \quad H_{-} < 0$

For large μ , H_eff > 0 despite ongoing implosion on the same boundary—this is apparent expansion.

Orientation lag (observational inertia)

 $d\chi_obs/d\lambda = (\chi_true - \chi_obs) / \tau_inertia$

 χ _obs can remain "+" while χ _true = -1. Observables exhibit a delayed flip.

Why the pillars must be coupled

- 1) If χ flips (expansion \rightarrow implosion), descriptions that tie "age" to H(z) or a forward arrow become ill-posed (H changes sign).
- 2) Δ sidesteps this: it counts how much change occurred; χ is just the sign of direction. You retain a continuous "age of change" through the flip.
- 3) IEH explains the data limitation: an implosion-dominated Σ cannot be "looked beyond," while μ and τ_{-} inertia explain why observations can still look expansion-like in the transition.

State of the universe in practice

(Δ , χ _true, μ , τ _inertia), with χ _obs inferred and allowed to lag.

Minimal measurement protocol

- 1) Zero point: pick today (a_0, T_0) and set Age_ Δ (today) = 0.
- 2) Accumulate Δ from observables:

```
\Delta_a = |\ln(a/a_0)| = |\ln((1+z_0)/(1+z))|; \quad \Delta_T = |\ln(T_CMB/T_0)|
```

- 3) Infer χ and inertia parameters:
- χ _obs from the sign of the redshift drift \dot{z} and the trend of T_CMB (\downarrow expansion, \uparrow implosion).
- \bullet μ via joint fits of $\dot{z}\text{, }Hubble\text{-}diagram$ curvature, and phase-coherence metrics (EM/GW) along each sightline.
- \bullet t_inertia from the delay between the \dot{z} sign flip and the T_CMB trend reversal.
- 4) Report Age_ Δ = w_a · Δ _a + w_T · Δ _T (monotone), χ _obs, and the estimated (μ , τ _inertia); infer χ _true.

Unified Symbols & Terms (Unicode)

 χ \in {+1, -1} - global orientation of change (+1 expansion, -1 implosion).

 $\mu \in [0,\,1]$ — line-of-sight expansion fraction through the mixing zone Σ (1- μ samples implosion).

 $\tau_{inertia} > 0$ — observational inertia timescale (lag for observables to flip after χ changes).

a - scale factor. T_CMB - CMB temperature (≈ 2.725 K today).

 Δ — orientation-free change measure. Δ_a = \int |d ln a|; Δ_T = \int |d ln T_CMB|.

Age_ Δ - operational age of change: Age_ Δ = w_a · Δ _a + w_T · Δ _T. z - cosmological redshift (1 + z = a_0 / a). ż - redshift drift: ż = dz/dt_obs.

 Σ — mixing zone ("edge"): outward radiation fails to develop net divergence and phase information is lost; explains the lack of direct view and transient apparent expansion.

H_eff – effective rate along a sightline through Σ : H_eff = μ · H_+ + (1 - μ) · H_-.

 $H_+ - local$ expansion contribution $(H_+ > 0)$. $H_- - local$ implosion contribution $(H_- < 0)$.

 $d\chi_obs/d\lambda = (\chi_true - \chi_obs) / \tau_inertia - first-order relaxation of <math>\chi_obs$ toward χ_true .

 χ _obs - observed orientation (appearance in data; typically in [-1, +1]). χ _true - true orientation.

Distinct predictions (falsifiable, concise)

- Redshift-drift sign reversal when χ _true flips; during inertia, mixed signs across directions due to varying μ (n-hat).
- CMB trend reversal: T_CMB stops decreasing and starts increasing (with possible delay set by t_i).
- Phase decoherence at Σ : no sharp boundary at the highest redshifts; increasing phase dispersion (EM/GW).
- Hysteresis between Δ_T and Δ_a : a loop appears during the transition, reflecting inertia; temporary divergence in rates inferred from scale vs. background temperature.

Contrast with the standard picture

- Standard: the edge is unseen because recession is superluminal relative to light signals.
- IEH (+ inertia): the edge is unseen because implosion at Σ prevents coherent outward transmission, and for a time apparent expansion persists (high μ , finite τ _inertia). Metric superluminality is not a necessary cause.

Bottom line

Use Δ to quantify how much change has occurred and χ to label which way it goes. Augment IEH with μ (how much of a sightline still samples expansion) and τ_{-} inertia (how fast observables catch up). Then the universe has a well-defined Age_ Δ even if it later implodes, and the invisibility—and temporarily apparent continuation—of the "edge" follows from implosion-dominated mixing plus observational inertia at Σ .

```
***
© 2025 Mariusz Włodarczyk
mariusz.wlodarczyk@hotmail.com
www.linkedin.com/in/mariusz-włodarczyk-7bb61027
***
This work is licensed under the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License.
(CC BY 4.0) Version 1.0_2025
***
```