

Ćwiczenie – Podstawowa konfiguracja OSPFv3 dla pojedynczego obszaru

Topologia

Tabela adresowa

Urządzenie	Interfejs	Adres IP	Maska podsieci
R1	G0/0	2001:DB8:ACAD:A::1/64 FE80::1 link-local	N/A
	S0/0/0 (DCE)	2001:DB8:ACAD:12::1/64 FE80::1 link-local	N/A
	S0/0/1	2001:DB8:ACAD:13::1/64 FE80::1 link-local	N/A
R2	G0/0	2001:DB8:ACAD:B::2/64 FE80::2 link-local	N/A
	S0/0/0	2001:DB8:ACAD:12::2/64 FE80::2 link-local	N/A
	S0/0/1 (DCE)	2001:DB8:ACAD:23::2/64 FE80::2 link-local	N/A
R3	G0/0	2001:DB8:ACAD:C::3/64 FE80::3 link-local	N/A
	S0/0/0 (DCE)	2001:DB8:ACAD:13::3/64 FE80::3 link-local	N/A
	S0/0/1	2001:DB8:ACAD:23::3/64 FE80::3 link-local	N/A
PC-A	NIC	2001:DB8:ACAD:A::A/64	FE80::1
PC-B	NIC	2001:DB8:ACAD:B::B/64	FE80::2
PC-C	NIC	2001:DB8:ACAD:C::C/64	FE80::3

Cele

Część 1: Budowa sieci i konfiguracja podstawowych ustawień sieciowych urządzeń

Część 2: Konfiguracja i weryfikacja routingu OSPFv3

Część 3: Konfiguracja interfejsów pasywnych OSPFv3

Wprowadzenie

OSPF (ang. *Open Shortest Path First*) jest protokołem stanu łącza służącym do trasowania (rutowania). OSPFv2 został opracowany dla sieci IPv4, natomiast OSPFv3 dla sieci IPv6.

W tym ćwiczeniu, studenci skonfigurują topologię sieciową z wykorzystaniem routingu OSPFv2, zmodyfikują ustawienia ID na routerze, skonfigurują interfejsy pasywne, dopasują metryki OSPF oraz użyją szeregu komend CLI, w celu wyświetlenia i zweryfikowania informacji dot. routingu OSPF.

Uwaga: Routery wykorzystywane w laboratoriach CCNA to Cisco 1941 Integrated Services Routers (ISR) z systemem operacyjnym Cisco IOS, Release 15.2(4)M3(universalk9 image). Dopuszczalne jest także użycie innych routerów i przełączników oraz systemów operacyjnych Cisco. Zależnie od modelu oraz systemu operacyjnego, dostępne komendy oraz ich wyniki mogą się różnić od tych pokazanych w niniejszym ćwiczeniu. W tabeli interfejsów routera, na końcu niniejszej instrukcji, znajdują się identyfikatory poszczególnych interfejsów.

Uwaga: Proszę się upewnić, że routery i przełączniki zostały zresetowane i nie posiadają konfiguracji startowych (startup). W razie niepewności należy się skonsultować z prowadzącym.

Wymagane zasoby

- 3 routery (Cisco 1941 z systemem Cisco IOS Release 15.2(4)M3 lub porównywalnym)
- 3 komputery PC (Windows 7, Vista, lub XP z programem do emulacji terminala, np. Tera Term)
- Kable konsolowe do konfiguracji urządzeń Cisco IOS poprzez porty konsolowe
- Kable sieciowe zgodnie z pokazana topologia

Część 1: Budowa sieci i konfiguracja podstawowych ustawień urządzeń sieciowych

W Zadaniu 1. zestawiona zostanie podstawowa topologia sieciowa oraz skonfigurowane zostaną komputery PC i routery.

Krok 1: Podłącz kable sieciowe wg pokazanej topologii.

Krok 2: Zainicjalizuj i przeładuj routery.

Krok 3: Skonfiguruj podstawowe nastawy na każdym z przełączników.

- a. Wyłącz opcję DNSlookup.
- b. Przypisz nazwę do urządzenia, jak pokazano na topologii.
- c. Przypisz class jako hasło dostępu do trybu uprzywilejowanego EXEC.
- d. Przypisz cisco jako hasło dostępu z konsoli oraz połączeń vty.
- e. Skonfiguruj Wiadomość Dnia (MOTD) z ostrzeżeniem, że nieautoryzowany dostęp jest wzbroniony.
- f. Dla połączenia konsolowego ustaw opcję logging synchronous.
- g. Zaszyfruj hasła.
- h. Przypisz adres IPv6 unikastowe oraz lokalne dla łącza (link-local) do każdego z interfejsów, zgodnie z tabela adresów.
- i. Aktywuj routing unikastowy IPv6 na każdym routerze.
- j. Skopiuj konfigurację bieżącą do konfiguracji startowej.

Krok 4: Skonfiguruj komputery PC.

Krok 5: Sprawdź połączenie.

Routery powinny się móc skomunikować ze sobą (komenda ping), również każdy PC powinien być w stanie połączyć się ze swoją bramą. Łączność pomiędzy komputerami PC będzie umożliwiona dopiero, gdy skonfigurowany zostanie routing OSPF. Sprawdź i dokonaj niezbędnych poprawek, jeśli konieczne.

Część 2: Konfiguracja i weryfikacja routingu OSPFv3

W Części 2. Należy skonfigurować routing OSPFv3 na wszystkich routerach i sprawdzić, czy tabele routingu zostały zaktualizowane prawidłowo.

Krok 1: Przypisz ID do routerów.

W OSPFv3 dalej wykorzystywane są 32-bitowe adresy do identyfikacji (ID). Z uwagi na to, że routery nie posiadają takich adresów, będą przypisane ręcznie z wykorzystaniem komendy **router-id**.

a. Wydaj komendę ipv6 router ospf, aby zainicjować proces OSPFv3 na routerze.

R1(config)# ipv6 router ospf 1

Uwaga: ID procesu OSPF jest przechowywany lokalnie na routerze i nie ma znaczenia dla pozostałych routerów w sieci.

b. Przypisz ID 1.1.1.1 routerowi R1.

```
R1(config-rtr)# router-id 1.1.1.1
```

- c. Dokonaj aktywacji routingu OSPFv3 i przypisz ID 2.2.2.2 routerowi R2 oraz 3.3.3.3 routerowi R3.
- d. Wydaj komendę **show ipv6 ospf**, aby sprawdzić ID każdego routera.

```
R2# show ipv6 ospf
```

```
Routing Process "ospfv3 1" with ID 2.2.2.2

Event-log enabled, Maximum number of events: 1000, Mode: cyclic Router is not originating router-LSAs with maximum metric <output omitted>
```

Krok 2: Skonfiguruj OSPFv6 na R1.

Typowym jest dla IPv6 definiowanie wielu adresów na pojedynczym interfejsie. Polecenie **network** zostało wyeliminowane w OSPFv3. Routing OSPFv3 aktywowany jest tu z poziomu interfejsu.

 a. Wydaj komendę ipv6 ospf 1 area 0 dla każdego z interfejsów R1, który będzie uczestniczył w routingu OSPFv3.

```
R1(config)# interface g0/0
R1(config-if)# ipv6 ospf 1 area 0
R1(config-if)# interface s0/0/0
R1(config-if)# ipv6 ospf 1 area 0
R1(config-if)# interface s0/0/1
R1(config-if)# ipv6 ospf 1 area 0
```

Uwaga: ID procesu musi odpowiadać ID procesu użytego w kroku 1a.

b. Przypisz obszar OSPFv3 nr 0 (**area 0**) interfejsom na R2 oraz R3. Po dodaniu interfejsów do obszaru nr 0 powinny się wyświetlić komunikaty o ustanowieniu przyległości.

```
*Mar 19 22:14:43.251: %OSPFv3-5-ADJCHG: Process 1, Nbr 2.2.2.2 on Serial0/0/0 from LOADING to FULL, Loading Done
```

R1#

*Mar 19 22:14:46.763: %OSPFv3-5-ADJCHG: Process 1, Nbr 3.3.3.3 on Serial0/0/1 from LOADING to FULL, Loading Done

Krok 3: Sprawdź sąsiedztwo OSPFv3.

Wydaj komendę **show ipv6 ospf neighbor** w celu sprawdzenia, czy router ustanowił przyległość z routerami sąsiedzkimi. Jeżeli ID routerów sąsiedzkich nie jest wyświetlone lub jeśli stan sąsiadów jest inny niż FULL, routery nie ustanowiły przyległości.

R1# show ipv6 ospf neighbor

```
OSPFv3 Router with ID (1.1.1.1) (Process ID 1)
```

```
        Neighbor ID
        Pri
        State
        Dead Time
        Interface ID
        Interface

        3.3.3.3
        0
        FULL/ -
        00:00:39
        6
        Serial0/0/1

        2.2.2.2
        0
        FULL/ -
        00:00:36
        6
        Serial0/0/0
```

Krok 4: Sprawdź ustawienia protokołu OSPFv3.

Komenda **show ipv6 protocols** jest szybką metodą na sprawdzenia podstawowych informacji konfiguracyjnych OSPFv3, włącznie z ID procesu OSPF, ID routera oraz listą interfejsów z aktywnym protokołem OSPFv3.

```
R1# show ipv6 protocols

IPv6 Routing Protocol is "connected"
```

```
IPv6 Routing Protocol is "ND"
IPv6 Routing Protocol is "ospf 1"
Router ID 1.1.1.1
Number of areas: 1 normal, 0 stub, 0 nssa
Interfaces (Area 0):
    Serial0/0/1
    Serial0/0/0
    GigabitEthernet0/0
Redistribution:
    None
```

Krok 5: Sprawdź interfejsy OSPFv3.

a Wydaj komendę show ipv6 ospf interface, aby wyświetlić szczegółową listę wszystkich interfejsów z aktywnym protokołem OSPFv3.

```
R1# show ipv6 ospf interface
```

```
Serial0/0/1 is up, line protocol is up
 Link Local Address FE80::1, Interface ID 7
 Area 0, Process ID 1, Instance ID 0, Router ID 1.1.1.1
 Network Type POINT_TO_POINT, Cost: 64
 Transmit Delay is 1 sec, State POINT_TO_POINT
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:05
 Graceful restart helper support enabled
  Index 1/3/3, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 1
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
   Adjacent with neighbor 3.3.3.3
  Suppress hello for 0 neighbor(s)
Serial0/0/0 is up, line protocol is up
 Link Local Address FE80::1, Interface ID 6
 Area 0, Process ID 1, Instance ID 0, Router ID 1.1.1.1
 Network Type POINT_TO_POINT, Cost: 64
 Transmit Delay is 1 sec, State POINT_TO_POINT
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
   Hello due in 00:00:00
 Graceful restart helper support enabled
  Index 1/2/2, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 1, maximum is 2
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 2.2.2.2
 Suppress hello for 0 neighbor(s)
GigabitEthernet0/0 is up, line protocol is up
 Link Local Address FE80::1, Interface ID 3
 Area 0, Process ID 1, Instance ID 0, Router ID 1.1.1.1
 Network Type BROADCAST, Cost: 1
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 1.1.1.1, local address FE80::1
 No backup designated router on this network
```

```
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:03
Graceful restart helper support enabled
Index 1/1/1, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)
```

b W celu wyświetlenia podsumowania nt. interfejsów z aktywnym protokołem OSPFv3, wydaj komendę show ipv6 ospf interface brief.

R1# show ipv6 ospf interface brief

Interface	PID	Area	Intf ID	Cost	State	Nbrs F/C
Se0/0/1	1	0	7	64	P2P	1/1
Se0/0/0	1	0	6	64	P2P	1/1
Gi0/0	1	0	3	1	DR	0/0

Krok 6: Sprawdź tabelę routingu IPv6.

Wydaj komendę show ipv6 route, aby sprawdzić czy wszystkie sieci pojawiają się w tablicy routingu.

```
R2# show ipv6 route
IPv6 Routing Table - default - 10 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
      B - BGP, R - RIP, I1 - ISIS L1, I2 - ISIS L2
      IA - ISIS interarea, IS - ISIS summary, D - EIGRP, EX - EIGRP external
      ND - ND Default, NDp - ND Prefix, DCE - Destination, NDr - Redirect
      O - OSPF Intra, OI - OSPF Inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
      ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2
O 2001:DB8:ACAD:A::/64 [110/65]
    via FE80::1, Serial0/0/0
    2001:DB8:ACAD:B::/64 [0/0]
     via GigabitEthernet0/0, directly connected
   2001:DB8:ACAD:B::2/128 [0/0]
    via GigabitEthernet0/0, receive
O 2001:DB8:ACAD:C::/64 [110/65]
    via FE80::3, Serial0/0/1
   2001:DB8:ACAD:12::/64 [0/0]
     via Serial0/0/0, directly connected
    2001:DB8:ACAD:12::2/128 [0/0]
     via Serial0/0/0, receive
O 2001:DB8:ACAD:13::/64 [110/128]
    via FE80::3, Serial0/0/1
    via FE80::1, Serial0/0/0
    2001:DB8:ACAD:23::/64 [0/0]
    via Serial0/0/1, directly connected
   2001:DB8:ACAD:23::2/128 [0/0]
    via Serial0/0/1, receive
   FF00::/8 [0/0]
     via Null0, receive
```

Jaką komendą można podejrzeć jedynie trasy OSPF w tablicy routingu?

Krok 7: Sprawdź połączenie.

Każdy PC powinien być w stanie nawiązać połączenie (komenda **ping**) z każdym innym PC w topologii. Sprawdź i wprowadź niezbędne poprawki, jeśli trzeba.

Część 3: Konfiguracja interfejsów pasywnych OSPFv3

Komenda **passive-interface** zapobiega rozsyłaniu aktualizacji routingowych przez określone interfejsy. Zazwyczaj robi się to w celu zredukowania ruchu w tych sieciach LAN, które nie muszą otrzymywać komunikatów routingowych w sposób dynamiczny. W zadaniu 4 studenci będą używać komendy **passive-interface**, w celu skonfigurowania określonego interfejsu jako pasywnego. OSPFv3 zostanie skonfigurowany jednocześnie w taki sposób, aby wszystkie interfejsy routera były domyślnie ustawione jako pasywne, a następnie dopiero niektóre z nich odblokowane dla routingu OSPFv3.

Krok 1: Skonfiguruj interfejs pasywny.

a Wydaj komendę **show ipv6 ospf interface g0/0** na R1. Zwróć uwagę na licznik wskazujący na spodziewany czas nadejścia następnego pakietu z komunikatem Hello. Pakiety Hello są rozsyłane co 10 sekund i wykorzystywane do sprawdzania, czy routery sąsiedzkie są wciąż aktywne.

```
R1# show ipv6 ospf interface g0/0
```

```
GigabitEthernet0/0 is up, line protocol is up
 Link Local Address FE80::1, Interface ID 3
 Area 0, Process ID 1, Instance ID 0, Router ID 1.1.1.1
 Network Type BROADCAST, Cost: 1
 Transmit Delay is 1 sec, State DR, Priority 1
 Designated Router (ID) 1.1.1.1, local address FE80::1
 No backup designated router on this network
 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
    Hello due in 00:00:05
 Graceful restart helper support enabled
  Index 1/1/1, flood queue length 0
 Next 0x0(0)/0x0(0)/0x0(0)
 Last flood scan length is 0, maximum is 0
 Last flood scan time is 0 msec, maximum is 0 msec
 Neighbor Count is 0, Adjacent neighbor count is 0
  Suppress hello for 0 neighbor(s)
```

b Wydaj komendę **passive-interface**, aby ustawić interfejs G0/0 na R1 jako pasywny.

```
R1(config)# ipv6 router ospf 1
R1(config-rtr)# passive-interface g0/0
```

c Wydaj ponownie komendę show ipv6 ospf interface g0/0, aby sprawdzić, czy G0/0 jest już pasywny.

R1# show ipv6 ospf interface g0/0

```
GigabitEthernet0/0 is up, line protocol is up

Link Local Address FE80::1, Interface ID 3

Area 0, Process ID 1, Instance ID 0, Router ID 1.1.1.1

Network Type BROADCAST, Cost: 1

Transmit Delay is 1 sec, State WAITING, Priority 1

No designated router on this network

No backup designated router on this network

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5

No Hellos (Passive interface)

Wait time before Designated router selection 00:00:34

Graceful restart helper support enabled

Index 1/1/1, flood queue length 0
```

```
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)
```

d Wydaj komendę **show ipv6 route ospf** na R2 i R3, aby sprawdzić, czy ścieżka do sieci 2001:DB8:ACAD:A::/64 jest wciąż dostępna.

Krok 2: Ustaw wszystkie interfejsy routera jako domyślnie pasywne

a Wydaj komendę **passive-interface default** na R2, aby ustawić wszystkie interfejsy OSPF jako pasywne.

```
R2(config)# ipv6 router ospf 1
R2(config-rtr)# passive-interface default
```

b Wydaj komendę **show ipv6 ospf neighbor** na R1. Po wyzerowaniu się licznika, R2 powinien zniknąć z listy sąsiedzkiej OSPF.

```
R1# show ipv6 ospf neighbor
```

```
OSPFv3 Router with ID (1.1.1.1) (Process ID 1)

Neighbor ID Pri State Dead Time Interface ID Interface
3.3.3.3 0 FULL/ - 00:00:37 6 Serial0/0/1
```

c Wydaj komendę **show ipv6 ospf interface S0/0/0** na R2, aby podejrzeć status OSPF interfejsu S0/0/0

```
R2# show ipv6 ospf interface s0/0/0

Serial0/0/0 is up, line protocol is up

Link Local Address FE80::2, Interface ID 6

Area 0, Process ID 1, Instance ID 0, Router ID 2.2.2.2

Network Type POINT_TO_POINT, Cost: 64

Transmit Delay is 1 sec, State POINT_TO_POINT

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5

No Hellos (Passive interface)

Graceful restart helper support enabled

Index 1/2/2, flood queue length 0

Next 0x0(0)/0x0(0)/0x0(0)

Last flood scan length is 2, maximum is 3
```

Last flood scan time is 0 msec, maximum is 0 msec

```
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)
```

- d Jeżeli wszystkie interfejsy na R2 są pasywne, informacja routingowa nie jest rozsyłana. W tym przypadku, R1 i R3 stracą informację o sieci 2001:DB8:ACAD:B::/64. Można to sprawdzić z użyciem komendy **show ipv6 route**.
- e Zmień ustawienie interfejsu S0/0/1 na R2 wydając komendę **no passive-interface**, tak aby mógł otrzymywać i rozsyłać aktualizacje routingowe OSPFv3. Po wpisaniu tej komendy, wyświetlona zostanie wiadomość informująca o ustanowieniu przyległości z R3.

```
R2(config)# ipv6 router ospf 1
R2(config-rtr)# no passive-interface s0/0/1
```

*Apr 8 19:21:57.939: %OSPFv3-5-ADJCHG: Process 1, Nbr 3.3.3.3 on Serial0/0/1 from LOADING to FULL, Loading Done

f Wydaj ponownie komendę **show ipv6 route** i **show ipv6 ospf neighbor** na R1 i R3, a następnie odszukaj trasę do sieci 2001:DB8:ACAD:B::/64.

kiego interfejsu używa , w celu rutowania to sieci 2001:DB8:ACAD:B::/64?
ki jest sumaryczny koszt metryczny na R1 do sieci:DB8:ACAD:B::/64?
y R2 jest wyświetlany jako sąsiad OSPFv3 dla R1?
y R2 jest wyświetlany jako sąsiad OSPFv3 dla R3?
mówi ta informacja?

- g Na R2, wydaj komendę **no passive-interface S0/0/0**, aby umożliwić otrzymywanie i rozsyłanie aktualizacji routingowych OSPFv3 przez ten interfejs.
- h Sprawdź, czy R1 i R2 są już sąsiadami OSPFv3.

Do przemyślenia

1.	Jeśli konfiguracja OSPFv6 dla R1 miała ID procesu równy 1, zaś konfiguracja OSPFv3 na R2 miał ustawiony ID procesu na 2, czy możliwa będzie wymiana informacji pomiędzy tymi routerami? Dlaczego?							
2.	Jaki był powód,	Twoim zdanier	n, usunięcia ko	omendy ne	etwork z pr	otokołu O	SPFv3?	

Tabela interfejsów routera

Interfejsy routera								
Model routera	Interfejs Ethernet #1	Interfejs Ethernet #2	Interfejs Serial #1	Interfejs Serial #2				
1800	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)				
1900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)				
2801	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/1/0 (S0/1/0)	Serial 0/1/1 (S0/1/1)				
2811	Fast Ethernet 0/0 (F0/0)	Fast Ethernet 0/1 (F0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)				
2900	Gigabit Ethernet 0/0 (G0/0)	Gigabit Ethernet 0/1 (G0/1)	Serial 0/0/0 (S0/0/0)	Serial 0/0/1 (S0/0/1)				

Uwaga: Aby dowiedzieć się jak router jest skonfigurowany należy spojrzeć na jego interfejsy i zidentyfikować typ urządzenia oraz liczbę jego interfejsów. Nie ma możliwości wypisania wszystkich kombinacji i konfiguracji dla wszystkich routerów. Powyższa tabela zawiera identyfikatory dla możliwych kombinacji interfejsów szeregowych i ethernetowych w urządzeniu. Tabela nie uwzględnia żadnych innych rodzajów interfejsów, pomimo że podane urządzenia mogą takie posiadać np. interfejs ISDN BRI. Opis w nawiasie (przy nazwie interfejsu) to dopuszczalny w systemie IOS akronim, który można użyć przy wpisywaniu komend.