EARIN Lab3

Task number: 3

Name: Sotaro Suzuki, Chihiro Tomatsu

Number: 317340, K-6929

Introduction

This report presents the optimization of the Bukin function, a complex mathematical function defined as $f(x,y) = 100\sqrt{|y-0.01x^2|} + 0.01|x+10|$. Our objective is to minimize this function within a specified search space. We employ the Evolutionary Strategy $(\mu + \lambda)$, a population-based optimization method inspired by natural evolution, due to its adaptability and robustness. The algorithm works by evolving a population of potential solutions using

selection, crossover, and mutation operations.

We will discuss the Python implementation of the Evolutionary Strategy algorithm and the genetic operators used. Additionally, we will analyze the impact of different algorithm parameters on the optimization process and present the results of various parameter

configurations in terms of solution quality and optimization time.

Algorithm Description

In this section, we briefly describe the key components of the Evolutionary Strategy ($\mu + \lambda$) algorithm used for optimizing the Bukin function. The algorithm involves the following steps:

1) Initialize parameters and create an initial population of μ random individuals within the search space.

2) Iterate through a specified number of generations, performing the following operations in each generation:

- a. Generate λ offspring by applying mutation to the μ parents.
- b. Evaluate the fitness of each offspring using the Bukin function.
- c. Combine the parent population with the offspring population.
- d. Select the top μ individuals based on their fitness values to form the new population.

3) After the termination criterion is met (i.e., the maximum number of generations is reached), return the best solution found.

Experimental Setup

In this section, we outline the experimental setup, including the parameters and their ranges used in the optimization process. We will investigate the impact of various parameter values on the optimization performance. The parameters considered are:

- 1) Population size (μ)
- 2) Offspring size (λ)
- 3) Number of generations
- 4) Search space ranges for x and y
- 5) Mutation strength
- 6) Mutation probability

For each experiment, we will measure the optimization time and the quality of the solution found. Additionally, we will visualize the optimization process to gain insights into the algorithm's behavior and convergence.

Results and Analysis

Here, we present the results of the optimization process for different sets of parameter values. We will analyze the impact of each parameter on the solution quality and optimization time, highlighting the trade-offs and parameter combinations that lead to the best results. We will also discuss any observed trends or patterns in the optimization process and provide recommendations for future work.

No.	mu	lambd	mutation_	mutation_	optimal_s	optimal_s	f	optimiza
1	10	20	0.1	0.5	-6.98474	0.487881	0.421662	1.1799
2		20	0.1	0.9	-11.1374	1.240468	0.763711	1.01832
3		20	0.1	0.99	-13.1649	1.733158	0.29374	1.02330
4		20	0.5	0.5	-11.5144	1.325905	0.985131	1.69907
5	10	20	0.5	0.9	-10.1051	1.02105	0.892737	1.10836
6	10	20	0.5	0.99	-9.93471	0.987198	1.463473	1.34131
7	10	20	1	0.5	-13.1574	1.731291	1.137352	1.29535
8	10	20	1	0.9	-5.63999	0.318015	0.938776	0.75841
9	10	20	1	0.99	-7.75233	0.60062	1.933983	0.69103
10	10	100	0.1	0.5	-8.00579	0.640929	0.146365	3.38772
11	10	100	0.1	0.9	-7.54471	0.56922	0.290358	3.82860
12	10	100	0.1	0.99	-8.72882	0.761913	0.310592	4.94812
13	10	100	0.5	0.5	-6.18561	0.382635	0.451335	3.32674
14	10	100	0.5	0.9	-8.66214	0.750324	0.171579	4.37376
15	10	100	0.5	0.99	-3.89304	0.151561	0.2418	3.83872
16	10	100	1	0.5	-14.9976	2.249251	0.593191	3.84520
17	10	100	1	0.9	-9.98961	0.997816	1.036061	4.12517
18	10	100	1	0.99	-6.47255	0.418945	0.27679	3.01095
19	10	200	0.1	0.5	-5.77313	0.333291	0.065045	7.56543
20	10	200	0.1	0.9	-15.0157	2.254713	0.127647	8.39131
21	10		0.1	0.99	-10.6789	1.140388	0.284447	7.72160
22	10	200	0.5	0.5	-8.82119	0.778136	0.136153	8.74736
23			0.5	0.9	-3.82276			7.78026
24	10		0.5	0.99	-9.998	0.999606		7.49209
25	10		1	0.55	-9.6597	0.933077	0.453538	7.82954
26			1	0.9	-13.9759	1.95325	0.367039	7.13632
27	10		1	0.99	-4.1304	0.170609	0.324159	7.70693
28			0.1	0.55	-6.0342	0.364102	0.410519	2.27138
29			0.1	0.9	-6.67906		0.446813	2.93662
30	50		0.1	0.99	-7.09178	0.502974	0.664133	3.83997
31	50		0.5	0.5	-12.1851	1.484773	0.266039	3.16981
32	50		0.5	0.9	-5.71351	0.326696	1.635231	3.96059
33			0.5	0.99	-11.6617	1.35999		4.79330
			1	0.55	-13.0234	1.696885	2.865066	
34	50		1	0.9	-16.5367	2.73469		2.89872 2.82141
35	50 50		1	0.99	-13.4879	1.818602	0.911235 2.556857	2.35401
36				0.99				
37	50		0.1		-10.6684	1.138145	0.155081	13.0283
38			0.1	0.9	-5.12914	0.263087	0.289335	12.3096
39	50		0.1	0.99	-14.4226	2.080127	0.229197	10.6560
40	50		0.5	0.5	-5.07692	0.25778	0.586335	12.5789
41	50		0.5	0.9	-11.878	1.410867	0.391222	11.6269
42	50		0.5	0.99	-14.7531	2.176557	0.255979	11.2926
43			1	0.5	-6.0403		0.38629	15.3556
44	50		1	0.9	-10.0287	1.005886	1.207882	13.6853
45	50		1	0.99	-8.53101	0.727751	0.568733	12.5834
46			0.1	0.5	-10.0606	1.012165	0.088826	22.0175
47	50		0.1	0.9	-12.2578	1.502536		20.9870
48			0.1	0.99	-8.80487	0.775263	0.224902	22.3976
49	50		0.5	0.5	-12.7648	1.629368		22.5736
50			0.5	0.9	-8.29758	0.688503	0.222646	20.6665
51	50		0.5	0.99	-4.62555	0.213928		23.5958
52	50	200	1	0.5	-12.005	1.441155	0.627169	21.8263
53	50	200	1	0.9	-6.69073	0.44763	0.570539	19.9823
54	50		1	0.99	-13.8561	1.919938		23.719
55	100		0.1	0.5	-4.93973	0.244023		
56	100	20	0.1	0.9	-8.80612	0.77545		3.52899
57	100	20	0.1	0.99	-6.36049	0.40455	0.325063	3.96765
58	100	20	0.5	0.5	-6.80737	0.463364	0.650078	3.76986
59	100	20	0.5	0.9	-12.496	1.561664	1.321865	3.57247
60	100	20	0.5	0.99	-9.87487	0.974829	1.738055	3.83224
61	100	20	1	0.5	-7.98485	0.637251	1.828251	3.42000
62				0.9		1.198444		
63				0.99		0.513949		
64				0.5			0.326439	
65			0.1	0.9		0.863655		19.5070
66				0.99			0.288605	
67				0.5			0.280108	
68					-10.2748			
69			0.5	0.99		0.435596		16.690
70			1	0.5		0.145172		
71				0.9		0.724599		
72					-8.47691		0.848165	
					-8.47691			
73							0.218941	
74				0.9		0.275954		40.7293
75			0.1	0.99	-10.7421		0.130025	
76				0.5			0.086123	
77				0.9			0.375406	
78					-11.4298			44.8826
70	100	200		0.5		0.265138		44.085
79								
80	100	200	1	0.9	-5.39775	0.291347	0.358207	57.8106

Fig. 1 optimization time

Fig. 2 Bukin function f(x, y)

As can be seen from Figure 1, optimization time increased as the parameter offspring size increased. Also, as the parameter population size increased, the difference in optimization time due to the parameter lambda became more pronounced than when the parameter lambda was small.

As can be seen from Figure 2, the impact of the population size parameter on the results was

not significant; the results also increased when the mutation strength and probability parameters were larger than the population and offspring size parameters. The shortest optimization time, with results near zero, was obtained with parameter(population_size, offspring_size, mutation_strength, mutation_probability)=(10, 20, 0.1, 0.99).

Additional Graph

The following graph is the relation between optimization time and f(x,y)

