Exercise Sheet 5 Linear Algebra (AAI)

Exercise 5.1 (H)

Prove Lemma II.4.3.(iv)-(v).

Exercise 5.2 (H)

- a) Show Remark II.4.4.(i).
- b) Let V and W be K-vector spaces, and let $F: V \to W$ be linear. Moreover, let $v_1, v_2 \in V$ such that $v_1 \neq v_2$ and $F(v_1) = F(v_2) \neq 0$. Show that (v_1, v_2) is linearly independent.

Hint: Consider $\lambda_1 v_1 + \lambda_2 v_2 = 0$, apply F to both sides of the equation, and use Lemma II.1.4.(iii).

Exercise 5.3 (H)

a) Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be linear. Show that there exists a unique matrix $A \in \mathbb{R}^{m \times n}$ such that F(x) = Ax for all $x \in \mathbb{R}^n$.

Hint: According to Proposition II.4.7 a linear map is uniquely determined by the image of a basis. Use the standard basis (e_1, \ldots, e_n) in \mathbb{R}^n to obtain A. Then show that A satisfies F(x) = Ax for all $x \in \mathbb{R}^n$.

b) Determine the matrix $A \in \mathbb{R}^{3\times 3}$ from part a) for the following choices of F:

i)
$$F((1,0,0)^{\top}) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $F((0,1,0)^{\top}) = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$, $F((0,0,1)^{\top}) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.

ii)
$$F((1,0,0)^{\top}) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, F((1,0,1)^{\top}) = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, F((0,1,1)^{\top}) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Hint: Note that the j-th column $a_j \in \mathbb{R}^3$ of the matrix A satisfies $a_j = Ae_j$.

Exercise 5.4 (H)

- a) Let U, V, and W be K-vector spaces, and let $F: V \to W$ and $G: U \to V$ be linear. Show that $F \circ G$ is linear.
- b) Consider the situation from Exercise 5.3.
 - i) Determine the matrix $B \in \mathbb{R}^{3\times 3}$ that represents the linear map $F \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$F((1,0,0)^{\top}) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad F((0,1,0)^{\top}) = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad F((0,0,1)^{\top}) = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

- ii) Compute B^{-1} using the algorithm from Exercise 4.3 b).
- iii) Compute $B^{-1}v_i$ for $i \in \{1, 2, 3\}$ and

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \quad v_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$$

iv) Let $A \in \mathbb{R}^{3\times3}$ be the matrix from Exercise 5.3 b).i). Compute AB^{-1} and compare the result with the matrix from Exercise 5.3 b).ii).