

Mark Scheme (Results)

January 2022

Pearson Edexcel International A Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022

Question Paper Log Number P66652A

Publications Code WST01_01_2201_MS

All the material in this publication is copyright

© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

1. (a)	$P(C') = \frac{103}{120}$ oe awrt 0.858	B1 (1)
(b)	$P(A \cap B \cap C') = 0$	B1 (1)
(c)	$P(A \cup B \cup C') = \frac{9+3+2+5+1+93}{120}$ or $P(A \cup B \cup C') = 1 - \frac{7}{120}$	M1
	$= \frac{113}{120} \text{ oe} \qquad \text{awrt } 0.942$	A1 (2)
(d)	P(At most 1) = P(0 or 1) = $\frac{93+9+7+1}{120}$ or $\frac{120-2-5-3}{120}$	M1
	$= \frac{110}{120} \text{ oe} $ awrt 0.917	A1 (2)
(e)	$P(A \mid \text{At most 1}) = \frac{9/120}{"110/"}$	M1
	$=\frac{9}{110}$ oe awrt 0.0818	A1 (2)
(f)	$P(X=0) = \frac{93}{120} \qquad P(X=1) = \frac{17}{120} P(X=2) = \frac{8}{120} P(X=3) = \frac{2}{120}$	M1
	$E(X) = \left[\frac{93}{120} \times 0\right] + \frac{17}{120} \times 1 + \frac{8}{120} \times 2 + \frac{2}{120} \times 3$	M1
	$=\frac{13}{40}$ or 0.325 oe	A1 (3)
	Notes	[11]
(a)	B1 (allow awrt 0.858)	1
(b)	B1 cao condone $0/120$ but do not allow other denominators M1 for either correct expression for $P(A \cup B \cup C')$	
(c)	A1 o.e. (allow awrt 0.942)	
(d)	M1 correct expression	
	A1 $\frac{11}{12}$ o.e. (allow awrt 0.917)	
(e)	M1 follow through their part (d) if num < denom eg $\frac{m/120}{"110/120"}$ or if the fraction in (d) has	
	denominator of 120 $\frac{m}{\text{"their } 110\text{"}}$ where $0 < m < \text{their } 110 \text{ Allow } \frac{n}{120 - 3 - 2 - 5} \text{ or } \frac{n}{110}$	where
	0 < n < 110 A1 o.e. (allow awrt 0.0818)	
(f)	· · · · · · · · · · · · · · · · · · ·	
	2 nd M1 correct follow through expression for E(X) ft their probabilities and X values A1 Dep on both previous method marks being awarded. Working must be checked. A correct answer with no working scores 3/3	
	SC $P(X = 17) = 17/120$ (awrt 0.14) $P(X = 8) = 8/120$ (awrt 0.067) $P(X = 14) = 14/120$ (a leading to awrt 4.58 or $183/40$ gains M0M1A0	wrt 0.12)
	Leading to awit 7.50 of 1057 to gains working	

Question	Scheme	Monks
Number	Scheme	Marks

2. (a)	$S_{dp} = 5240.8 - \frac{1029 \times 50.8}{10} [= 13.48]$	M1	
	$r = \frac{13.48}{\sqrt{344.9 \times 0.576}}$	M1	
	= 0.9563834526 awrt 0.956	A1	(3)
(b)(i)	w = 50 - p	B1	
(ii)	-1	B1	
			(2)
(c)	-0.956	B1ft	
			(1)
		[6]	
	Notes		
(a)	$1^{\rm st}{ m M1}$ correct expression for ${ m S}_{dp}$		
	2^{nd} M1 valid attempt at r with their S_{dp} not equal to 5240.8 and the correct denominato	r	
	A1 awrt 0.956		
(b)(i)	B1 allow equivalent rearrangements		
(ii)	B1-1 cao		
(c)	B1ft follow through $-1 \times \text{their}(a)$ providing $-1 < \text{their}(a) < 1$		

3. (a)	lower quartile = 116 upper quartile = "125" + 1.5 × ("125" – "116") or "125"	125 + 1.5 × (0)	B1
		1.3 ^ (9)	M1
	Outlier is greater than 138.5, so $c = 9*$		A1*cso
(b)	$\overline{x} = \frac{-96}{24} [= -4]$	$\sum_{\bar{d}} d = 125 \times 24 - 96[= 2904]$ $\bar{d} = \frac{"2904"}{24}$	M1
	$\overline{x} = \frac{-96}{24} [= -4]$ $\overline{d} = '\overline{x}' + 125$	$\bar{d} = \frac{"2904"}{24}$	M1
		$\overline{d} = 121$	A1 (3
(c)	$\left[\sigma_{x}=\sigma_{d}\right]=\sqrt{\frac{1306}{24}}$		M1
	V 24	$[\sigma_d] = 7.3767$ awrt <u>7.38</u>	A1 (2
(d)	$[P(D>118 X<0)] = \frac{P(118 < D < 125)}{P(D<125)}$	or $\frac{P(-7 < X < 0)}{P(X < 0)}$ or $\frac{\frac{5}{24}}{\frac{14}{24}}$	M1
	$=\frac{5}{14}$		A1
			[10]
			1 1 1 1 1 1 1
		Notes	[10]
(a)	B1 both values correct. Both values m	Notes ust be seen either in the calculation or separately	1 - 1
(a)	B1 both values correct. Both values m implied by the IQR = 9		1
(a)	implied by the IQR = 9 M1 use of $Q_3 + 1.5 \times IQR$ with their v		y. They are no
(a)	implied by the IQR = 9 M1 use of $Q_3 + 1.5 \times IQR$ with their v	ust be seen either in the calculation or separately values. May be implied by 138.5 if B1 awarded	y. They are no
(a) (b)	implied by the IQR = 9 M1 use of $Q_3 + 1.5 \times IQR$ with their v A1*cso for 138.5 and conclusion $c = 9$	ust be seen either in the calculation or separately values. May be implied by 138.5 if B1 awarded	y. They are no
` ` `	implied by the IQR = 9 M1 use of $Q_3 + 1.5 \times IQR$ with their v A1*cso for 138.5 and conclusion $c = 9$ working must be shown. 1st M1 for correct expression for \overline{x}	ust be seen either in the calculation or separately alues. May be implied by 138.5 if B1 awarded $O(do not accept c = 139)$ with no errors. Answer	y. They are not r is given so
` ` `	implied by the IQR = 9 M1 use of $Q_3 + 1.5 \times IQR$ with their v A1*cso for 138.5 and conclusion $c = 9$ working must be shown.	ust be seen either in the calculation or separately alues. May be implied by 138.5 if B1 awarded (do not accept $c = 139$) with no errors. Answer 1^{st} M1 for correct expression for Σ	y. They are not r is given so
` ` `	implied by the IQR = 9 M1 use of $Q_3 + 1.5 \times IQR$ with their v A1*cso for 138.5 and conclusion $c = 9$ working must be shown. 1st M1 for correct expression for \overline{x}	ust be seen either in the calculation or separately alues. May be implied by 138.5 if B1 awarded O (do not accept $c = 139$) with no errors. Answer	y. They are not r is given so
` ` `	implied by the IQR = 9 M1 use of Q ₃ + 1.5 × IQR with their v A1*cso for 138.5 and conclusion $c = 9$ working must be shown. 1st M1 for correct expression for \overline{x} 2nd M1 use of $\overline{d} = '\overline{x}' + 125$	ust be seen either in the calculation or separately alues. May be implied by 138.5 if B1 awarded O (do not accept $c = 139$) with no errors. Answer	y. They are not r is given so
` ` `	implied by the IQR = 9 M1 use of Q ₃ + 1.5 × IQR with their v A1*cso for 138.5 and conclusion $c = 9$ working must be shown. 1st M1 for correct expression for \overline{x} 2nd M1 use of $\overline{d} = '\overline{x}' + 125$ A1 121	ust be seen either in the calculation or separately alues. May be implied by 138.5 if B1 awarded O (do not accept $c = 139$) with no errors. Answer	y. They are not r is given so
(b)	implied by the IQR = 9 M1 use of Q ₃ + 1.5 × IQR with their v A1*cso for 138.5 and conclusion $c = 9$ working must be shown. 1st M1 for correct expression for \overline{x} 2nd M1 use of $\overline{d} = '\overline{x}' + 125$ A1 121 NB condone no labelling or incorrect lateral materials of $\overline{d} = 1306$	ust be seen either in the calculation or separately alues. May be implied by 138.5 if B1 awarded O (do not accept $c = 139$) with no errors. Answer	y. They are not r is given so
(b)	implied by the IQR = 9 M1 use of Q ₃ + 1.5 × IQR with their v A1*cso for 138.5 and conclusion $c = 9$ working must be shown. 1st M1 for correct expression for \overline{x} 2nd M1 use of $\overline{d} = '\overline{x}' + 125$ A1 121 NB condone no labelling or incorrect la M1 correct expression $\sqrt{\frac{1306}{24}}$ A1 awrt 7.38 final answer	ust be seen either in the calculation or separately alues. May be implied by 138.5 if B1 awarded O (do not accept $c = 139$) with no errors. Answer	y. They are not ris given so

Question Number	Scheme	Marks	
4. (a)	$\frac{2}{5}$	B1	
	5	(1)	
(b)	E(W) = 3	B1	
	E(5-2W) = 5-2E(W)	M1	
	E(X) = -1	A1 (3)	
(c)	$P(X < W) = P(5 - 2W < W) = P(W > \frac{5}{3}) \text{ or } P(W \ge 2)$	M1	
	$=\frac{4}{5}$	A1	
	5	(2)	
(d)(i)		B1	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
(ii)	$E(Y) = \frac{1}{5} \left(1 + \frac{1}{2} + \frac{1}{5} \right) \text{ or } \frac{1}{5} + \frac{1}{10} + \frac{1}{15} + \frac{1}{20} + \frac{1}{25} \left[= \frac{137}{300} = 0.4566 \right]$	M1	
	$E(Y^{2}) = \frac{1}{5} \left(1^{2} + \left(\frac{1}{2} \right)^{2} + \dots + \left(\frac{1}{5} \right)^{2} \right) \text{ or } \frac{1}{5} + \frac{1}{20} + \frac{1}{45} + \frac{1}{80} + \frac{1}{125} \left[= \frac{5269}{18000} = 0.2927 \right]$	M1	
	$Var(Y) = '0.2927' - ('0.4566')^2$ awrt <u>0.0842</u>	M1 A1 (5)	
(e)	$Var(2-3Y) = (-3)^2 Var(Y)$ awrt <u>0.758</u>	M1 A1ft (2)	
	Notes	[13]	
(a)	B1 oe		
(b)	B1 sight of $E(W) = 3$ or the x values 3, 1, -1, -3, -5 (they may be added)		
	M1 use of $E(5-2W) = 5-2E(W)$ or $\frac{1}{5}(3+1++5)$ Condone use of X instead of	W	
	A1 cao and labelled $E(X)$		
(c)	M1 for identifying $W > \frac{5}{3}$ or $W \ge 2$ eg $1 - P(W = 1) \ge 2$ or $1 - P(W \le 1) \ge 2$		
	Al oe		
(d)(i) (ii)	B1 Correct distribution (probabilities may be implied by correct use). May be seen in any part		
	M1 attempt at expression for $E(Y^2)$ using their values of y and p (at least 2 terms seen) (0.2885 if have 0.3 rather than 1/3) Condone incorrect labelling	or awrt 0.293	
	M1 For use of " $E(Y^2)$ " – (" $E(Y)$ ") ² ft their values for $E(Y^2)$ and $E(Y)$		
	A1 awrt 0.0842 or $\frac{947}{11250}$		
(e)	M1 for use of $(-3)^2 \text{Var}(Y)$ with their $\text{Var}(Y) > 0$ condone $(3)^2 \text{Var}(Y)$		
	A1ft $\frac{947}{1250}$ or $9 \times$ "their part (d) > 0" evaluated correctly to 3sf or exact fraction		

Question Number	Scheme	Marks	
5. (a)	$P(X < 37) = P\left(Z < \frac{37 - 40}{2.4}\right) = P(Z < -1.25)$	M1	
	= 1 - 0.8944 ; $= 0.105649$ awrt <u>0.106</u>	M1; A1 (3)	
(b)	P(one value is greater than 32) = $\sqrt{0.16}$ [=0.4]	M1	
	$\frac{32-m}{2.4} = 0.2533$	M1 B1	
	m = 31.392 awrt <u>31.4</u>	A1 (4)	
(c)	$P(Y<0) = P\left(Z<\frac{0-4}{8}\right) = P\left(Z<-0.5\right) [=0.3085]$	M1	
	Let X be the number of negative values		
	$P(X \ge 1) = 1 - P(X = 0)$ oe	M1	
	$= 1 - (0.6915)^5$ = 0.84188 awrt 0.842	M1	
	– 0.84188 awn 0.842	A1 (4) [11]	
	Notes		
(a)	1 st M1 standardising 37 (or 43) with 40 and 2.4 (allow \pm) 2 nd M1 for $1-p$ (where $0.88) Implied by correct answer.A1 for awrt 0.106 (calc. 0.105649)$		
(b)	1 st M1 correct expression for one value > 32 (may be implied by sight of 0.2533 Allow between 0.25 and 0.26 inclusive)	v any value	
	2^{nd} M1 standardising 32 with m and 2.4 and setting equal to z value $0.2 < z < 0.3$		
	B1 for $z = \pm 0.2533$ or better (calc gives 0.2533470931) used in a linear equation for m		
	A1 awrt 31.4 or better		
	SC [using 0.16]Allow M0M1 B0 A0 for $\frac{32-m}{2.4} = z$ where $0.99 \le z < 1.04$		
(c)	1 st M1 standardising 0 with 4 and 8 (allow \pm) or seeing 0.3085 or 0.6915 2 nd M1 realising they need to find $1 - P(X = 0)$ ie writing or using $1 - P(\text{no negative value} May be implied by 1 - p^5 0 $	es)oe	
	3 rd M1 use of $1 - p^5$ where p is $1 - \text{"their P}\left(Z < \frac{0 - 4}{8}\right)$ "		
	A1 awrt 0.842 (tables: 0.8418894 calculator: 0.84193233)		
	NB If they use Binomial and get 0.842 full marks. and get 0.125 then award M1M1M0A0 otherwise send to Review		

Question Number		Scheme	Marks
6. (a)	$\overline{f} = 10.8 + 0.748 \overline{p} = 10.8 + 0.748(62)$.4) awrt <u>57.5</u>	M1 A1 (2)
(b)	For each additional <u>mark</u> scored on the <u>pre-test</u> , the average <u>mark</u> on the <u>final exam</u> increases by 0.748		B1 (1)
(c)	The statement is not reliable as there is	no data below 19 (extrapolation).	B1 (1)
(d)	76		B1 (1)
(e)	p < 10.8 + 0.748 p		M1
	0.252 p < 10.8		M1
		p < awrt 42.9	2 A1 (3)
(f)	[No change to] $S_{pp} = 15 573.76$		
	$\sum pf = 133486 - 2842 + 9016$ [= 139660]	$\sum pf$ increases by $98(92-29)[=6174]$	M1
	$\sum f = "57.47" \times 34 + (92 - 29)$ or	$\sum_{x \in S} (x) = 2120(92 - 29)$	
	$\frac{133486 - 11648.35}{2120} \times 34 + (92 - 29)$	$\frac{\sum_{p}\sum_{f} f}{\text{increases by }} \frac{2120(92-29)}{34}$	M1
	2120	[= 3928.235]	1.11
	$[=1954+92-29\approx 2017]$		
	$S_{pf} = "139660" - \frac{2120 \times "2017"}{34}$		
	$S_{pf} = 139000 - \frac{34}{34}$	S _{pf} increases by '6174' -'3928.235'	dM1
	[=	[=2245.764]	GIVII
	13894]	11640 25 - 112245 76411	
	$b = \frac{"13894"}{15573.76} = [= 0.89]$	$b = \frac{11648.35 + "2245.764"}{15573.76}$	M1
	155/3./6	155/3./6 awrt 0. 9) A1 (5)
		Notes	A1 (5) [13]
(a)	M1 for substituting 62.4 into the regres	ssion equation. Allow answer between 57 and 58	[20]
	A1 awrt 57.5		
(b)	B1 must include context and reference to 0.748 Needs to refer to each mark being 0.748 or a multiple of eg 10 marks is 7.48 Allow equivalent words eg score/ point for mark, pre or test for pre-test, exam or final for final exam		
(c)		g reason eg it (10.8)is an outlier, outside the range	
(d)	B1 76 cao		
(e)		ly or for drawing the line $f = p$ on the graph. May be	
	by $p < n$ (ignore any lower lim	it) where $40 \le n \le 46$ (allow incorrect inequality s	ign or =)
	Allow trial and improvement.		
	2^{nd} M1 rearranging to the form $ap < b$ v	with correct inequality sign. Allow $(1-0.748)p$ <	10.8
	May be implied by $p < n$ (ignormal)	re any lower limit) where $42 < n < 44$	
	A1 p < awrt 42.9 (ignore any lower line)		
(f)	1^{st} M1 Correct method to find new \sum_{i}	pf or change in $\sum pf$	
		$\sum_{f} f$ or change in $\frac{\sum_{p} \sum_{f} f}{n}$ Allow 2018 or 2017	
	3 rd dM1 dep on both previous method i	marks being awarded. Correct method to find new	S_{pf} with
	their changed $\sum pf$ and $\sum f$ or change in S_{pf}		
	4 th M1 expression for $b = \frac{'S_{pf}'}{15573.76}$ with their changed S_{pf} and unchanged S_{pp}		
	A1 awrt 0.9 (from correct working)		
	A1 awit 0.9 (Holli collect working)		

Question Number	Scheme	Marks	
7. (a)	$P(X=3) = F(3) - F(2) = \frac{1}{38}$	M1	
	$P(X=3) = \frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2}$	M1	
	$\frac{7}{n} \times \frac{6}{n-1} \times \frac{5}{n-2} = \frac{1}{38} \to n(n-1)(n-2) = 7980 $ (*)	M1 A1cso	
(b)	$21 \times 20 \times 19 = 7980$	B1cso (4)	
(6)	21/(20/1) 7900		
	P(0) P(V 0) 14 13 12	(1)	
(c)	$a = F(0) = P(X=0) = \frac{14}{21} \times \frac{13}{20} \times \frac{12}{19}$	M1	
	$a = \frac{26}{95}$	A1	
	$P(X=1) \ \ 3 \times \frac{14}{21} \times \frac{13}{20} \times \frac{7}{19} \left[= \frac{91}{190} \right] \text{ or } P(X=2) \ \ 3 \times \frac{7}{21} \times \frac{6}{20} \times \frac{14}{19} \left[= \frac{21}{95} \right]$	M1 M1	
	$b = F(1) = P(X=0) + P(X=1) = \frac{26}{95} + \frac{91}{190} \text{ or } b = \frac{37}{38} - \frac{21}{95}$	dM1	
	$b = \frac{143}{190}$	A1	
		(6) [11]	
	Notes		
(a)	1st M1 for use of F(3) – F(2) Accept $\frac{1}{38}$		
	2^{nd} M1 product of 3 probabilities where the denominators are n , $(n-1)$ and $(n-2)$ and the numerators are decreasing k , $(k-1)$ and $(k-2)$ This may be seen as a single term in a longer expression. 3^{rd} M1 setting up equation for $P(X=3)$ = product of correct 3 probabilities without replacement A1cso fully correct solution with no errors seen		
(b)	B1cso correctly evaluated product. Allow 21($21 - 1$)($21 - 2$) = 7980		
(c)	1st M1 product of 3 probabilities for $P(X = 0)$ The three probabilities can be in any arrangement May		
(3)	be implied by $\frac{26}{95}$		
	1 st A1 $a = \frac{26}{95}$ oe must be clear this is the value for a		
	2^{nd} M1 product of 3 probabilities for P(X=1) or P (X=2) or $\frac{91}{190}$ or $\frac{91}{570}$ or $\frac{21}{95}$ or $\frac{7}{95}$ oe seen.		
	Condone incorrect labelling. The three probabilities can be in any arrangement		
	3^{rd} M1 × 3 or adding the 3 sets of the 3 fractions or $\frac{91}{190}$ or $\frac{21}{95}$ Condone incorrect labelling		
	4 th dM1 their $P(X=0)$ + their $P(X=1)$ or $F(2) - P(X=2)$ (dep on 2 nd M1 being scored)		
	$2^{\text{nd}} \text{ A1} b = \frac{143}{190}$ oe must be clear this is the value for b		
	NB if $a = 0.273$ and $b = 0.7526$ implies the method marks.		