Graph simulation results for 1 Qubit with weak measurements

Alon Kochol

September 2025

1 Intro

In this report we will do a data analysis of the probability distribution of entropy production(Q) in a weak measurement quantum system simulation with 1 qubit [1]. we will first show the regimes of Equation 14 [2] given different values of $\theta = T/\tau$ and map them to the behavior of σ_z . we will then plot the histogram of Q, calculated using the simulation, and a plot of the distribution using Equation 14 for the different θ regimes, as well as growing the number of trajectories. and finally we will plot average Q vs θ .

2 Analysis of equation 14

Figure 1: plot of equation 14 for $\theta = 0.1$.

Figure 2: values of σ_z during simulation for $\epsilon=0.01$ and n=1000. σ_z does not reach a critical point and keeps oscillating

Figure 3: plot of equation 14 for $\theta = 1$.

Figure 4: values of σ_z during simulation for $\epsilon=0.01$ and n=10000. σ_z does not reach a critical point and keeps oscillating but has a harder tendency to a pole with some runs converging to a pole.

Figure 5: plot of equation 14 for $\theta = 3$.

Figure 6: values of σ_z during simulation for $\epsilon=0.1$ and n=300. σ_z now tends to converge to a pole in most runs.

Figure 7: plot of equation 14 for $\theta = 5$.

Figure 8: values of σ_z during simulation for $\epsilon=0.1$ and n=500. σ_z convergence now very common and with strong force, sometimes within the first 100 measurements.

Figure 9: plot of equation 14 for $\theta = 10$.

Figure 10: values of σ_z during simulation for $\epsilon=0.1$ and n=1000. σ_z convergence on every run.

We can see that as theta grows the rate of convergence of σ_z increases. a needed improvement would be to define a convergence meter, say when at least the last 10% of σ_z are at a pole we have convergence, so that we can run the simulation with the parameters multiple times and see the statistics of convergence of a given set of parameters.

3 High Parameter limit: number of trajectories

In this section we used the different ϵ and number of measurements(n) as defined for the different regimes in the previous section and calculated Q for very high number of trajectories (N = 10,000). we then show the histogram of Q and the plot of equation 14 with $\theta = n * \epsilon^2$ to see the correlation between them.

Figure 11: Distribution of the entropy production Q for 10000 trajectories with $\epsilon = 0.01$ and n = 1000 (blue histogram). Eq. (14) with $\theta = 0.1$ (red plot).

Figure 12: Distribution of the entropy production Q for 10000 trajectories with $\epsilon = 0.01$ and n = 10000 (blue histogram). Eq. (14) with $\theta = 1$ (red plot).

Figure 13: Distribution of the entropy production Q for 10000 trajectories with $\epsilon=0.1$ and n=300 (blue histogram). Eq. (14) with $\theta=3$ (red plot).

Figure 14: Distribution of the entropy production Q for 10000 trajectories with $\epsilon = 0.1$ and n = 500 (blue histogram). Eq. (14) with $\theta = 5$ (red plot).

Figure 15: Distribution of the entropy production Q for 10000 trajectories with $\epsilon = 0.1$ and n = 1000 (blue histogram). Eq. (14) with $\theta = 10$ (red plot).

The model seems to fit quite well. We have some odd fluctuations with higher θ values and the diverging near zero seems to vanish, and seems like a gaussian distribution.

4 comparison of < Q > to θ

in the final section we go over a set of n and ϵ so that we get a group of theta values:

$$\theta = [0.1 \;,\, 3,\, 5,\, 7,\, 10,\, 13,\, 15,\, 18,\, 20,\, 25]$$

We run the simulation for 10,000 trajectories and calculate the mean Q for each one. Finally we plot them with together.

Figure 16: < Q > as a function of θ for 10000 trajectories.

there seems to be a linear relation between them so lets create a fit

Figure 17: fit of < Q > as a function of θ for 10000 trajectories.

this seems to roughly match equation 5 [2]: $< Q> = 3\theta/2$ although that might not be fully accounting for the fact that this is a no drive scenario.

References

- [1] X. Turkeshi, A. Biella, R. Fazio, M. Dalmonte and M. Schirò, Measure-ment-Induced Entanglement Transitions in the Quantum Ising Chain: From Infinite to Zero Clicks, Phys. Rev. B 103, 224210 (2021).
- [2] J. Dressel, A. Chantasri, A.N. Jordan and A.N. Korotkov *Arrow of Time for Continuous Quantum Measurement*, Phys. Rev. A **96**, 062119 (2017), arXiv:1610.03818.