STAGE 1-7

真理値と条件分岐

「もしそうなら」を定義する

► この STAGE の目標

- > 新たな型「真理値」の演算を知る
 - > 条件分岐の代表例を知る

真理値

2種類の値 true か false しかとらない型

bool型と呼ばれる

```
コード
int main(void) {
 bool yes = true;

bool no = false;
}
```

しん-り-ち

真理値

boolean

2種類の値 true か false しかとらない型

bool型と呼ばれる

```
int main(void) {
  bool yes = true;
  printf("true = %d", yes);
  bool no = false;
  printf("false = %d", no);
}
```

```
出力
true = 1
false = 0

printfで "%d" で表示できるが
数字になってしまう

true は 1、false は 0 に変換される
```

ろんりえんざん 論理演算

NOT や AND に代表される、条件が正しいか判断する演算プログラミングでは「~と等しい」「~より大きい」 も含む

基本的に2つの数を **論理演算子** (論理演算に使う記号) の前後に書く

```
コード
int main(void) {
  printf( "true ANÐ false = %d", true & false );
  return 0;
  ↑ 論理演算子
}
```

るんりえんざん

NOT や AND に代表される、条件が正しいか判断する演算 プログラミングでは「~と等しい」「~より大きい」も含む

比較演算子

コード内の書き方	説明	例			
==	値が等しい	1 == 1	= true	1 == 2	= false
!=	値が異なる	6 != 9	= true	1 != 1	= false
>	前の値が後の値 よりも大きい	12 > 7	= true	1 > 2	= false
<	前の値が後の値 よりも小さい	3 < 8	= true	1 < 1	= false
>=	前の値が後の値 以上である	1 >= 1	= true	1 >= 2	= false
<=	前の値が後の値 以下である	3.1 <= 3.1	= true	9 <= -2	= false

ろんりえんざん 論理演算

NOT や AND に代表される、条件が正しいか判断する演算 プログラミングでは「~と等しい」「~より大きい」 も含む

真理値どうしで演算することもできる

論
理
演
算
子

名称	コード内の書き方	説明	例		
AND	&	どちらも true のとき true を返す	true & true true & false = true = false		
AND	&& アンパサンド2つ		ANÐの代わり (少し仕様が異なる)		
OR	1	1つ以上 true のとき true を返す	true false		
OR	11	絶対値2つ	ORの代わり (少し仕様が異なる)		
NOT	!	直後の真理値を 反転する	!false !true = false		

Python などで使える AND や OR などのキーワードは C++ では使えないので注意

ろんりえんざん 論理演算

NOT や AND に代表される、条件が正しいか判断する演算 プログラミングでは「~と等しい」「~より大きい」 も含む

真理値どうしで演算することもできる

論
理
演
算
子

名称	コード内の書き方	説明	例
AND	&	どちらも true のとき true を返す	true & true true & false = true = false
AND	&&	アンパサンド2つ	ANÐの代わり (少し仕様が異なる)
OR	1	1つ以上 true のとき true を返す	true false
OR	11	絶対値2つ	ORの代わり (少し仕様が異なる)
NOT	!	直後の真理値を 反転する	!false !true = false

Python などで使える AND や OR などのキーワードは C++ では使えないので注意

if 文を使うと、値に応じてプログラムの流れを変更できる

```
if (bool型/論理式)
{ // 波かっこで開始
    /*
    bool型/論理式が
    true のときに
    実行される
    コードを書く
    */
} // 波かっこで終了
```

```
コード
int main(void) {
 int valueX = 5;
 int valueY = 1;
 if ( valueX > valueY ) { // valueX > valueY が true なら実行
   printf("X=%dはY=%dより大きいです", valueX, valueY);
 if (!( valueX > valueY ) ) { // ! (NOT) で、↑がfalseなら実行
   printf("X=%dはY=%dより大きくありません", valueX, valueY);
 return 0;
```

```
出力
X=5はY=1より大きいです
```

if 文を使うと、値に応じてプログラムの流れを変更できる

```
コード
if (bool型/論理式)
{ // 波かっこで開始
    /*
    bool型/論理式が
    true のときに
    実行される
    コードを書く
    */
} // 波かっこで終了
```

```
コード
int main(void) {
 int valueX = -100; // 変更
 int valueY = 3; // 変更
 if ( valueX > valueY ) { // valueX > valueY が true なら実行
   printf("X=%dはY=%dより大きいです", valueX, valueY);
 if (!( valueX > valueY )){ //!(NOT)を使い、↑がfalseなら実行
   printf("X=%dはY=%dより大きくありません", valueX, valueY);
 return 0;
```

```
出 カ
X=-100はY=3より大きくありません
```

if 文の閉じかっこの直後に else を入れると否定の条件を書かなくていい

```
コード
if ( bool型/論理式 )
// bool型/論理式が
// true のときに
// 実行される
} else {
// bool型/論理式が
// false のときに
// 実行される
```

```
コード
int main(void) {
 int valueX = -100;
 int valueY = 3;
 if ( valueX > valueY ) { // valueX > valueY が true なら実行
   printf("X=%dはY=%dより大きいです", valueX, valueY);
 } else { //(!( valueX > valueY ) ) と同等
   printf("X=%dはY=%dより大きくありません", valueX, valueY);
 return 0;
```

```
出力
X=-100はY=3より大きくありません
```

if 文の閉じかっこの直後に else if を入れると、「そうでないとき」が書ける

```
コード
if (bool型/論理式① ) {
 // bool型/論理式① が
 // true のとき実行される
} else if ( bool型/論理式② ) {
 // bool型/論理式①がfalseで
 // bool型/論理式② が
 // true のとき実行される
} else {
 // ここまですべて(①と②) が
 // false のとき
 // ここが実行される
```

```
コード
int main(void) {
 int valueX = -100;
 int valueY = 3;
 if ( valueX > valueY ) {
   printf("X=%dはY=%dより大きいです", valueX, valueY);
 } else if ( valueX == valueY ) {
   printf("X=%dはY=%dと等しいです", valueX, valueY);
 } else { // valueX > valueY でなく valueX == valueY でない
   printf("X=%dはY=%dより小さいです", valueX, valueY);
 return 0;
              出力
               X=-100はY=3より大きくありません
```

この STAGE のまとめ

| bool 型は true か false だけ格納できる

論理演算・比較の結果は bool 型

((1 > 3) == true) // 結果は true

if~elseで分岐できる

```
if ( bool型/論理式 ) {
    // bool型/論理式が true のとき実行されるコード
} else { // else 以降は省略可能
    // bool型/論理式が false のとき実行されるコード
}
```

- ▶ この STAGE の目標
- ✓ 新たな型「真理値」の演算を知る
 - ✓ 条件分岐の代表例を知る

できるようになったこと

値の内容によって 結果が変わるプログラムが書ける 論理演算ができる

連進値 しん-り-ち 2種類の値 true か false しかとらない型

```
int main(void) {
  bool yes = 1;
  printf("true = %d", yes);
  bool no = "no";
  printf("false = %s", no);
}
```

```
コンソール
Code.cpp(5,12): warning C4305: '初期化中':
'int' から 'bool' へ切り詰めます。
```

true false 以外も代入できるが「切り詰め」の警告が表示される

ゼロ以外の値は、すべて true 厳密にゼロなら、 false