Functional Analysis

David Wiedemann

Table des matières

1	Intr	roduction	3
	1.1	Topological Spaces	3
	1.2	Metric spaces	3
	1.3	Norms, Banach Spaces	6
	1.4	Basis of a normed space	7
	1.5	Scalar products and Hilbert spaces	8
\mathbf{L}	ist	of Theorems	
	1	Definition (Topological space)	3
	2	Definition (Properties)	3
	3	Definition (Sequences)	3
	4	Definition (Continuity)	3
	5	Definition (Metric space)	3
	6	Definition	4
	1	Lemma	4
	7	Definition	4
	2	Proposition	4
	3	Theorem	5
	8	Definition (Normed space)	6
	9	Definition	6
	10	Definition (Banach Space)	6
	4	Proposition	6
	11	Definition	7
	12	Definition (Schauder Basis)	7
	13	Definition (Equivalence of Norms)	7
	5	Lemma	7
	14	Definition	8
	7	Proposition	8
	8	Proposition	8
	15	Definition (Hilbert Space)	9

9	Lemma	Ć
10	Theorem	ç
11	Lemma	10
12	Corollary	10
16	Definition (Orthonormal systemes)	10
13	Lemma	10

1 Introduction

Lecture 1: Introduction

Wed 12 Oct

Main reference is "Functional Analysis" by H.W. Alt.

1.1 Topological Spaces

Definition 1 (Topological space)

Let X be a set, a topology is a subset $\tau \subset P(X)$ is a topology if

- $-\emptyset, X \in \tau$
- any union of opens is open
- Finite intersections of opens are open.

Definition 2 (Properties)

For $A \subset X$, \overline{A} is the smallest closed set containing A and the interior A^o is the biggest open set contained in A.

Finally, the boundary is $\partial A = \overline{A} \setminus A^o$.

X is separable if \exists a dense countable subset

Definition 3 (Sequences)

Let $x : \mathbb{N} \to X, \overline{x} \in X$, $\lim x_k = \overline{x} \iff$ any neighbourhood $U \in T$ of x eventually contains x_k

Definition 4 (Continuity)

A function $f: X \to Y$ is continuous if $\forall U \in \tau_Y, f^{-1}(U)$. This is different from sequential continuity $x_n \to \overline{x} \implies f(x_n) \to f(\overline{x})$

f is continuous at $x \in X$ if $\forall V \in S$ st $f(x) \in V \implies f^{-1}(V) \in \tau_X$

Lecture 2: More recaps

Fri 14 Oct

1.2 Metric spaces

Definition 5 (Metric space)

 $X \text{ a set, } d: X \times X \to [0, \infty) \text{ is a matrix}$

Definition 6

X a set, d_1, d_2 metrics

- 1. d_1 is topologically stronger than d_2 if τ_{d_1} is finer.
- 2. d_1 is uniformly stronger than d_2 if $\exists C > 0$ such that $d_2 \leq Cd_1$
- 3. d_1 is uniformly stronger than d_2 if $\exists C > 0$ such that $\frac{1}{C}d_1 \leq d_2 \leq Cd_1$

Lemma 1

THe following are equivalent

- 1. d_1 is topologically stronger than d_2
- 2. Id: $(X, \tau_{d_1}) \to (X, \tau_{d_2})$ is continuous
- 3. If $x_n \to \overline{x}$ in d_1 then $x_n \to \overline{x}$ in d_2
- 4. $\forall x \in X \forall \epsilon > 0 \exists \delta_{\epsilon,x} > 0 \text{ such that }$

$$d(x,y) \le \delta \implies d_2(x,y) < \epsilon$$

Definition 7

Let (X, d) be a metric space

- 1. $A \subset X$ is bounded if $\exists \overline{x} \in X$ such that $\sup_{y \in A} d(x,y) < \infty$ or $A = \emptyset$
- 2. x_n is Cauchy if

$$\lim_{n \to \infty} \sup_{i,j \ge n} d(x_i, x_j) = 0$$

- 3. X complete if x Cauchy $\implies x$ convergent.
- 4. (Y, e) is a matric, $fX \to Y$ is uniformly continuous if $\forall \epsilon > 0 \exists \delta > 0$ such that $d(x, y) < \delta \implies e(f(x), f(y)) < \epsilon$.

Define $X = \{x : \mathbb{N} \to \mathbb{R} \text{ such that } \exists N \text{ such that } x_i = 0 \text{ eventually } \}.$

This space, with p-norm is not complete, so we construct the completion.

Proposition 2

Let (X,d) a metric space and (Y,e) a complete metric space, $A \subset X, \phi : A \to Y$ uniformly continuous.

Then \exists unique $\psi : \overline{A} \to Y$ such that ψ is uniformly continuous and $\phi = \psi|_A$.

Proof

If $x : \mathbb{N} \to A$ is Cauchy, then $\phi \circ x$ is also cauchy.

To prove this, let $\epsilon>0$ and $\partial_{\epsilon}^{\phi}>0$ be such that $d(x,y)<\delta\implies e(\phi(x),\phi(y))<\epsilon.$

Let $N=N_{\delta}^{x}$ be such that $i,j\geq N \implies d(x_{i},x_{j})<\delta$, then $e(\phi(x_{i}),\phi(x_{j}))<\epsilon$

Now, let $a \in \overline{A}$, then $\exists x_k$ converging to a.

x is d-Cauchy and $\phi \circ x$ is e-cauchy.

 $\exists \ a \ limit \ b^* = \lim \phi(x_k) \ So \ we \ define \ \psi(a) = b^*.$

We now prove continuity/uniform continuity.

Let $a, b \in \overline{A}, x, y : \mathbb{N} \to A \text{ and } x_i \to b, y_j \to b.$

Then

$$e(\psi(a), \psi(b)) = \lim e(\phi(x_i), \phi(y_i))$$

Now, let $\epsilon > 0$, then $\exists \delta > 0$ such that $d(x, y) < \delta$.

Thus $e(\phi(x), \phi(y)) < \epsilon$

If $d(a,b) < \delta \exists N \text{ such that } d(x_i,y_j) < \delta \forall i,j > N$

$$e(\phi(x_i), \phi(y_j)) < \epsilon \implies e(\psi(a), \psi(b) \le \epsilon)$$

Theorem 3

If (X,d) is a metric space, then there exists a complete metric space (Y,e) and an isometry $\phi:X\to Y$ such that $Y=\overline{\phi(X)}$.

Both are unique up to a bijective isometry.

Proof

Define $C_X := \{x : \mathbb{N} \to X, x \; Cauchy \} \; and \; x\tilde{y} \; if \lim_{j \to \infty} d(x_i, y_j) = 0.$

Write $Y = C_X / \sim$.

For $x, y \in Y$, define $e(x, y) = \lim_{i \to \infty} d(x_i, x_i)$.

Is this well defined?

If $j, k \ge N$

$$|d(x_i, y_i) - d(x_k, y_k)| \le d(x_i, x_k) + d(y_i, y_k)$$

And if $x\tilde{x}'$, then

$$\lim d(x_i, y_i) = \lim d(x'_i, y_i)$$

because

$$|d(x_i, y_j) - d(x_j', y_j)| \le d(x_j, x_j') \to 0$$

To show that e is a metric, most properties are obvious.

We show that if e(x,y) = 0 then $\lim d(x_j, y_j) = 0 \implies x\tilde{y} \implies x = y$ Triangular equality holds because

$$e(x, y = \lim d(x_i, y_i) \le \lim \sup d(x_i, z_i) + d(z_i, y_i) = e(x, z) + e(z, y)$$

The isometry $\phi: X \to Y$ simply sends $x \mapsto [x]$.

We now show $[x] \in Y$, $\phi(x_k)$ is a sequence in Y, we want to show that

$$\phi(x_k) \to [x].$$

$$\lim_{k\to\infty}e(\phi(x_k),[x])=\lim_{k\to+\infty}\lim_{j\to\infty}d(x_k,x_j)=0$$

Which shows $Y = \overline{\phi(X)}$ Let y^k Cauchy $\forall k \exists x_k \in X$ such that $e([y^k], \phi(x_k)) < 2^{-k}$.

We claim $[y^k] \to [x]$

$$d(x^k, x^h = e(\phi(x^k, \phi(x^h)))) \le 2^{-k} + 2^{-h + e([y^k], [y^h])}$$

Thus $x \in C_X [x] \in Y$

$$e([y^k], [x]) = \lim d(y_i^k, x_j) \le \lim d(U_i^k, x_k) + d(x_k, x_j) \le 2^{-k}$$

Finally, to show uniqueness, if (Y,e) and (Y',e') are two completions. Let $\psi = \phi \circ (\phi')^{-1} : \phi'(X) \to Y$.

 ψ is an isometry so there is a unique extension $\psi: Y' \to Y$ and this is an isometry.

1.3 Norms, Banach Spaces

Throughout, $K = \mathbb{R}$ or \mathbb{C}

Definition 8 (Normed space)

 $\|\cdot\|: X \to [0,\infty)$ is a norm if

$$- \|x\| = 0 \iff x = 0$$

$$- \|\lambda x\| = |\lambda| \|X\|$$

$$- \|x + y\| \le \|x\| + \|y\|$$

Definition 9

 c_0 is the $space c_0 = \{x : \mathbb{N} \to \mathbb{R} \text{ s.t. } \lim x_k = 0\}$ together with $\|x\|_{c_0} = \sup |x_k|$

For
$$p \in [1,\infty)$$
, $l_p = \{x : \mathbb{N} \to \mathbb{R} \text{ s.t. } \sum_{k \in \mathbb{N}} |x_k|^p < \infty \}$ with $||x||_{l_p} = (\sum |x_k|^p)^{\frac{1}{p}}$

Definition 10 (Banach Space)

A Banach space is a complete normed space.

Proposition 4

Any normed space has a completion which is Banach.

Proof

Let (Y, e) be the completion as above, define

$$[x] + [y] \coloneqq [x+y] \text{ and } \lambda[x] \coloneqq [\lambda x]$$

1.4 Basis of a normed space

Definition 11

Let $A \subset X$.

A is linearly independent if $\forall N \in \mathbb{N}, \forall a_i \in A \forall \lambda_i \in K, \sum_i \lambda_i a_i = 0 \implies \lambda_i = 0.$

We define

$$span(A) = \left\{ \sum_{i} (i) \lambda_i a_i, \lambda_i \text{ as above } \right\}$$

A is a Hamel basis if A is linearly independent and X = spanA

Definition 12 (Schauder Basis)

 $e: \mathbb{N} \to X$ is a Schauder basis if $\forall x \in X$ there is a unique $\lambda: \mathbb{N} \to K$ such that $x = \sum_{i=0}^{\infty} \lambda_i e_i \iff \lim_{i \to \infty} \left\| x - \sum_{i=0}^{N} \lambda_i e_i \right\| = 0$

Lecture 3: Projections onto Hilbert spaces

Wed 19 Oct

Definition 13 (Equivalence of Norms)

Let $\left\| \cdot \right\|_1$ and $\left\| \cdot \right\|_2$ be norms on a vector space X

- 1. $\|\cdot\|_1$ is stronger than $\|\cdot\|_2$ if the induced metrics are topologically stronger
- 2. $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2$ if the induced metrics are equivalent

Lemma 5

- 1. If $\|\cdot\|_1$ is stronger than $\|\cdot\|_2 \implies \exists C > 0$ such that $\|x\|_2 \le C \|x\|_1$
- 2. If $\|\cdot\|_1$ is equivalent to $\|\cdot\|_2 \implies \exists C>0$ such that $\frac{1}{C}\,\|x\|_1 \leq \|x\|_2 \leq C\,\|x\|_1$

Proof

- $$\begin{split} \text{1. If not, } \forall k \in \mathbb{N}, \exists v_k \in X \text{ such that } \|v_k\|_2 > k \, \|v_k\|_1. \\ \text{Let } w_k &= \frac{v_k}{\|v_k\|_2} \text{ then } 1 = \|w_k\|_2 > k \, \|w_k\|_1. \\ \text{Thus } w_k \to 0 \in \|\cdot\|_1, \text{ thus } w_k \to 0 \in \|\cdot\|_2 \text{ which is a contradiction.} \end{split}$$
- 2. Follows from 1.

1.5 Scalar products and Hilbert spaces

Definition 14

Let H be a K-vector space.

A map $b: H \times H \to K$ is a scalar product if it satisfies

$$b(x, \lambda y + \mu z) = \lambda b(x, y) + \mu b(x, z)$$

$$b(\lambda x + \mu y, x) = \overline{\lambda}b(x, z) + \overline{\mu}b(y, z)$$

 $b(x,y) = \overline{b(y,x)}$ and b(x,x) > 0.

(H, b) is a pre-Hilbert space

Example

- 1. K^d with the usual scalar product
- $2. \ell^2(\mathbb{R})$

Proposition 7

- 1. $||x||_H = (x,x)^{\frac{1}{2}}$ is a norm on H
- 2. $Cauchy\text{-}Schwarz: |(x,y)| \le ||x|| \, ||y||$
- 3. $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$

Proof

To show Cauchy-Schwarz, note that $(x + ty, x + ty) \ge 0 \forall t \in K$, thus

$$(x,x) + t((x,y) + (y,x)) + t^2(y,y) \ge 0$$

The middle term is $2t \operatorname{Re}(x,y)$, if the scalar product isn't real, we may rotate y to make it real

Proposition 8

Let $(X, \|\cdot\|)$ be a normed space.

If the parallelogram identity holds, then there is a scalar product b such that $||x|| = b(x,x)^{\frac{1}{2}}$

Proof

Define
$$b(x,y) = \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 \right)$$
.

We want to check $b(x, \lambda y + \mu z) = \lambda b(x, y) + \mu b(x, z)$.

First, check $b(x, y + y') + b(x, y - y') = 2b(x, y)$

$$\frac{1}{4} \left[\|x+y+y'\|^2 - \|x-y-y'\|^2 + \|x+y-y'\|^2 - \|x-y-y'\|^2 \right] = \frac{1}{2} (\|x+y\|^2 - \|x-y\|^2)$$

From the provallal errors identity, we get that the left hand side is

From the parallelogram identity, we get that the left hand side is

$$\frac{1}{4} \left[2 \|x + y\|^2 + 2 \|y'\|^2 - 2 \|x - y\|^2 - 2 \|y'\|^2 \right]$$

and thus the equality above holds.

If $y' = y \implies b(x, 2y) = 2b(x, y)$ and thus

$$y' = ny$$
 $b(x, (n+1)y) = 2b(x, y) - b(x, y - ny)$

and we conclude by induction that b(x, ny) = nb(x, y).

Thus $b(x,qy) = qb(x,y) \forall q \in \mathbb{Q}$ and by continuity, they agree on \mathbb{R} . Pick $v, w \in X$ and $y = \frac{v+w}{2}, y' = \frac{v-w}{2}$ in the above equality, then

$$b(x,v) + b(x,w) = 2b(x, \frac{v+w}{2})$$

and we conclude from linearity.

For complex numbers, consider s(x,y) = b(x,y) - ib(x,iy)

Definition 15 (Hilbert Space)

(H,b) is a Hilbert space if it is a complete pre-Hilbert space.

Lemma 9

Every pre-Hilbert space has a completion, unique up to bijective isometry.

If $M \subset X$, then $p: X \to M$ is a projection if $p^2 = p$ and p(X) = M. M is convex if $x, y \in M, t \in [0, 1]$, then $tx + (1 - t)y \in M$

Theorem 10

Let H be a Hilbert space, $M \subset H$ non-empty, closed, convex, then \exists a unique map $p: H \to M$ such that

$$||x - px|| = d(x, M)$$

Proof

If $x \in M, px = x$.

If $x \notin M$, let d = d(x, M) > 0.

If $y, z \in M$ are minimizers, then

$$\frac{1}{2} \|x - y\|^2 + \frac{1}{2} \|x - z\|^2 = \left\|x - \frac{y + z}{2}\right\| + \left\|\frac{y - z}{2}\right\|^2$$

If $\|x-y\| = \|x-z\| = d$, then $\frac{y+z}{2} \in M \implies \|y-z\| \le 0 \implies y = z \implies uniqueness$.

To show existence, let $d = \inf_{y \in M} ||x - y||$.

There is a sequence $y: \mathbb{N} \to M$ such that $||x - y_k|| \to d$.

Thus

$$\frac{1}{2} \|x - y_h\|^2 + \frac{1}{2} \|x - y_k\|^2 = \left\|x - \frac{y_h + y_k}{2}\right\| + \frac{1}{4} \|y_h - y_k\|^2$$

The LHS goes to d^2 and $||x - \frac{y_h + y_k}{2}|| \ge d^2$.

Lemma 11

Let everything as above,, then $p: H \to M$ is an orthogonal projection $\iff \forall y \in M \forall x \in H, \operatorname{Re}(x - Px, y - px) \leq 0$

Proof

Let
$$f(t) = ||x - (ty + (1-t)px)||^2$$
, thus $f(0) = \min f([0,1])$, thus $f'(0) \ge 0$

$$f(t) = \|x - Px\|^{2} - t \left[(x - px, y - px) + (y - px, x - px) \right] + t^{2} \|y - px\|^{2}$$

Thus
$$f'(0) = -Re(x - px, y - px) \ge 0$$

Corollary 12

If $M \subset H$ is a closed linear subspace, then

$$M^{\perp} = \{x \in H : (x,m) = 0 \forall m \in M\}$$

is a closed linear subspace, $M\cap M^\perp=\{0\}$, $H=M\oplus M^\perp$ and $p:H\to M$ satisfies $x-px\in M^\perp$ and p is linear

Definition 16 (Orthonormal systemes)

Let (X,b) be a pre-Hilbert space, the family $(e_i)_{i\in I}$ of vectors in X are orthonormal if $b(e_i,e_j)=\delta_{ij}$

Lemma 13

If the e_1, \ldots, e_n are orthonormal, then $\forall x$

$$\sum_{i} |(e_i, x)|^2 \le ||x||^2$$

and if $e_1, \ldots, are orthonormal, then <math>\forall x$

$$\sum_{i} |(e_i, x)|^2 \le ||x||^2$$

Let
$$y = \sum_{i} \lambda_i e_i \in spane_i$$

From
$$Let \ y = \sum_{i} \lambda_{i} e_{i} \in spane_{i}$$

$$g(\lambda) \left\| x - \sum_{i} \lambda_{i} e_{i} \right\|^{2} = \left\| x \right\|^{2} - \sum_{i} (\overline{\lambda_{i}}(e_{i}, x) + \lambda_{i}(x, e_{i})) + \sum_{i} \lambda_{i}^{2}$$

$$Set \ g(\lambda) \geq$$