

Group Theory

Homework Assignment 10

Spring, 2020

- 1. Simplify the following permutations into the product of cycles without any common object.
 - (a) $(1 \ 2)(2 \ 3)(1 \ 2)$.
 - (b) $(1 \ 2 \ 3)(1 \ 3 \ 4)(3 \ 2 \ 1)$.
 - (c) $(1 \ 2 \ 3 \ 4)^{-1}$.
 - (d) $(1 \ 2 \ 4 \ 5)(4 \ 3 \ 2 \ 6)$.
 - (e) $(1 \ 2 \ 3)(4 \ 2 \ 6)(3 \ 4 \ 5 \ 6)$.
- 2. Write down all the Young patterns of the permutation group S_6 from the largest to the smallest.
- 3. Using the hook rule, calculate the number $d_{[3,2,1,1]}(S_7)$ of the standard Young tableaux for the Young pattern [3,2,1,1] of the permutation group S_7 .
- 4. Write down the Young operator corresponding to the following Young tableau.

1	2
3	4

5. Write down the permutation R_{12} transforming the Young tableau \mathcal{Y}_2 to the Young tableau \mathcal{Y}_1 .

$$\mathcal{Y}_1$$
: $\begin{bmatrix} 1 & 2 & 3 \\ 4 & & & \end{bmatrix}$ \mathcal{Y}_2 : $\begin{bmatrix} 1 & 2 & 4 \\ 3 & & & \end{bmatrix}$

Show that $\mathcal{P}_1 R_{12} = R_{12} \mathcal{P}_2$, $\mathcal{Q}_1 R_{12} = R_{12} \mathcal{Q}_2$, and $\mathcal{Y}_1 R_{12} = R_{12} \mathcal{Y}_2$.