Will Zong

4.45 According to the table: $P(A_2 \cap L_1) = 0.038$.

However, $P(A_2) \cdot P(L_1) = 0.401 \cdot 0.126 \approx 0.051$

: $P(A_2 \cap L_1) \neq P(A_2) \cdot P(L_1)$: They are not independent events.

4.47 (a) When P(A) = 0: P(A) - P(B) = 0. P(B) = 0

: (A NB) C A : PCANB) < PCA) => PCANB)=0

· P(ANB) = P(A) · P(B) = 0 · They're in dependent.

When P(A)=1: P(A). P(B) = 1. P(B) = P(B)

: A, Ac fums a partition of B : P(B) = P(ANB) + P(ACNB)

: P(A) = 1 :: P(A^c) = 1 - P(A) = 0 => P(A^c \cap B) = 0

 $P(B) = P(A \cap B) = P(A) \cdot P(B) : A, B$ are independent.

(b) Given that A and A are independent event

 $\therefore p(A \cap A) = p(A) \cdot p(A)$

: 05 p(A) <1

.. The only values that satisfies the above condition are: P(A) = 0 or P(A) = 1

4.55 (a) Let A, B be 2 arbitrary events. .: A, B are mutually exclusive

 $A \cap B = \phi \Rightarrow P(A \cap B) = 0$

(b) Let A, B be 2 arbitrary events with positive probability and are independent

 $\therefore p(A \cap B) = p(A) \cdot p(B)$

: P(A) >0 1 P(B) >0 : P(A 1B) >0

·: p(AnB) to .. AnB + & => They're not digjoint.

(C) Suppose there's an experiment: A person draws 2 bulls at a time from a bin with equal number of red and purple bulls. After each draw, the bulls are permenontly removed from the bin.

A = $\{$ drawing at least | red ball $\}$ B = $\{$ Both balls drawn are red $\}$ In this case $A \cap B \neq \emptyset$; A and B are dependent.

4.68 Let $D = \{ \text{ democratic voters } \}$; $R = \{ \text{ Republican voters} \}$; $I = \{ \text{ independent voten} \}$. $F = \{ \text{ voters favoring increased spending to combat terrorism} \}$ $P(D \mid F) = \frac{P(D \cap F)}{P(F)}$ $\therefore D \cup R \cup I = \Omega$

 $P(F) = P(D \cap F) + P(R \cap F) + P(I \cap F)$ $= (0.4 \cdot 0.6) + (0.32 \cdot 0.8) + (0.28 \cdot 0.3) = 0.58$

P(PNF) = 0.4.0.6 = 0.24

 $\therefore p(D|F) = \frac{p(D \cap F)}{p(F)} = \frac{0.24}{0.58} \approx 0.414$

4.72 Let $A = \{ \text{ choose chest } A \}$, $B = \{ \text{ choose chest } B \}$, $B \circ x A : S, G$ $C = \{ \text{ choose chest } C \}$, $D = \{ \text{ choose chest } D \}$, $B \circ x B : S, G$

 $S = \{ \text{ getting silver coin } \}, G = \{ \text{ getting a gold coin } \}$ Box C : S, S

A, B, C, D forms partition of 52

Box D: G, G

 $p(C|S) = \frac{p(C \cap S)}{p(S)} = \frac{p(C \cap S)}{p(A \cap S) + p(B \cap S) + p(C \cap S) + p(C \cap S)}$

 $= \frac{p(c) \cdot p(s|c)}{p(A) \cdot p(s|A) + p(B) \cdot p(s|B) + p(c) \cdot p(s|c) + p(0) + p(s|D)}$

$$p(A) = p(B) = p(C) = p(D) = \frac{1}{4}$$

 $p(S|A) = \frac{1}{2}$; $p(S|B) = \frac{1}{2}$; $p(S|C) = 1$; $p(S|D) = 0$.

$$\frac{1}{4} \cdot \left(\frac{1}{2} + \frac{1}{4} + 1 + 0 \right) = \frac{1}{2}$$

1: 4R, 1 W; 2:1R, 4W

5.14 (a) Suppose there're n values of $x \in IR$, then we can write: $\sum_{x}^{x} p(x=x) = 1$ Divide both sides by n, we get: $Avg = P_x(X=x) = \frac{1}{n}$

In other words, even where the pmf is completely evenly distributed, at most n values of x can satisfy $P_x(x=x)=\frac{1}{n}$. Thus, to achieve the most number of $x \in \mathbb{R}$ that satisfies in equality $P_x(x=x)>\frac{1}{n}$, we must reduce the number of x, x, by 1, which is x-1. Thus, x-1 is the largest number of x for which x-1 is the largest number of x for which x-1 is the largest number of x-1.

(b) Since $n \in \mathbb{N}$, n-1 must be countable. According to (a), there're at most (n-1) $x \in \mathbb{R}$ Such that $P_{x}(x=x) > \frac{1}{n}$, and $\frac{1}{n} \neq 0$. Thus, $\{\bigcup_{x \in \mathbb{R}}^{n} x \in \mathbb{R}^{n}\}$, where x satisfies $P_{x}(x=x) \neq \frac{1}{n}$, must also be countable. Then we can infer that $\{x \in \mathbb{R} : P(X=x) \neq 0\}$ is constable.

(c) If the probability for any specific input x for a PMF $P_{x}(x=x)$ does not equal to zero, then the set of input x is a countable set.

5.24 (a): $|\Omega| = 6^2 = 36$, Let E_i be events where the sum is $\hat{\nu}$.

$$E_{2} = \{(1,1)\}$$

$$E_{3} = \{(1,2), (2,1)\}$$

$$E_{4} = \{(1,3), (3,1), (2,2)\}$$

$$E_{5} = \{(1,5), (5,1), (2,4), (4,2), (3,3)\}$$

$$E_{7} = \{(1,6), (6,1), (2,5), (5,2), (3,4), (4,3)\} p_{x}(x) = \begin{cases} (2,6), (6,1), (5,2), (5,4), (4,4) \end{cases}$$

$$P(x = 4) = \frac{3}{36}$$

$$P(x = 5) = \frac{4}{36}$$

$$P(x = 6) = \frac{5}{36}$$

$$P(x = 7) = \frac{6}{36}$$

$$P(x = 8) = \frac{5}{36}$$

$$P(x = 8) = \frac{5}{36}$$

$$P(x = 9) = \frac{4}{36}$$

 $E_{11} = \left\{ (5, 6), (6,5) \right\}$ $P(x = 11) = \frac{2}{36}$ $P(x = 12) = \frac{1}{36}$

(C)
$$p(win) = \frac{|E_7| + |E_1|}{\Omega} = \frac{6+2}{3b} = \frac{2}{9}$$

(d) $p(loss) = \frac{|E_2| + |E_3| + |E_2|}{\Omega} = \frac{1+2+1}{3b} = \frac{1}{9}$

(e) A is the set of all of the sums. i.e., the set of 36 permutations.