Numerical Methods for Stochastic Ordinary Differential Equations (SODEs)

Josh Buli Graduate Student Seminar

University of California, Riverside

April 1, 2016

• Deterministic ODEs vs. Stochastic Differential Equations

- Deterministic ODEs vs. Stochastic Differential Equations
- Brownian Motion and Wiener Process
 - Definitions, Properties, Examples
 - ② Sample Paths in $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$

- Deterministic ODEs vs. Stochastic Differential Equations
- Brownian Motion and Wiener Process
 - Definitions, Properties, Examples
 - ② Sample Paths in $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$
- Stochastic Calculus
 - 1 Itô and Stratonovich Calculus

- Deterministic ODEs vs. Stochastic Differential Equations
- Brownian Motion and Wiener Process
 - Definitions, Properties, Examples
 - **2** Sample Paths in $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$
- Stochastic Calculus
 - 1 Itô and Stratonovich Calculus
- Geometric Brownian Motion

- Deterministic ODEs vs. Stochastic Differential Equations
- Brownian Motion and Wiener Process
 - Definitions, Properties, Examples
 - **2** Sample Paths in $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$
- Stochastic Calculus
 - 1 Itô and Stratonovich Calculus
- Geometric Brownian Motion
- Euler-Maruyama Method
- Milstein Method
- Monte Carlo Method
 - What is a Monte Carlo Simulation?
 - Approximation of Logistic Equation
 - 3 Approximation of Geometric Brownian Motion

- Deterministic ODEs vs. Stochastic Differential Equations
- Brownian Motion and Wiener Process
 - Definitions, Properties, Examples
 - ② Sample Paths in $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$
- Stochastic Calculus
 - 1 Itô and Stratonovich Calculus
- Geometric Brownian Motion
- Euler-Maruyama Method
- Milstein Method
- Monte Carlo Method
 - What is a Monte Carlo Simulation?
 - 2 Approximation of Logistic Equation
 - Approximation of Geometric Brownian Motion
- Higher Order Taylor and Runge Kutta Methods

Motivation

 We would like to study processes or systems that are driven by noise, or have uncertainty in coefficients.

- We would like to study processes or systems that are driven by noise, or have uncertainty in coefficients.
- SDEs arise in modeling stock prices, thermal fluctuations, mathematical biology, etc.
 - Geometric Brownian motion, Langevin equation, Ornstein-Uhlenbeck process (Fokker-Planck equation), etc.

- We would like to study processes or systems that are driven by noise, or have uncertainty in coefficients.
- SDEs arise in modeling stock prices, thermal fluctuations, mathematical biology, etc.
 - Geometric Brownian motion, Langevin equation,
 Ornstein-Uhlenbeck process (Fokker-Planck equation), etc.
- Stochastic terms also arise in PDEs as well.
 - Laplace, heat, wave equations with white noise forcing, stochastic Burgers' equation, KPZ equation, etc.

- We would like to study processes or systems that are driven by noise, or have uncertainty in coefficients.
- SDEs arise in modeling stock prices, thermal fluctuations, mathematical biology, etc.
 - Geometric Brownian motion, Langevin equation,
 Ornstein-Uhlenbeck process (Fokker-Planck equation), etc.
- Stochastic terms also arise in PDEs as well.
 - Laplace, heat, wave equations with white noise forcing, stochastic Burgers' equation, KPZ equation, etc.
- Applications include population dynamics, neuron activity, option pricing, radio-astronomy, satellite orbit stability, blood clotting, turbulent diffusion, Josephson tunneling in semiconductors, stochastic differential geometry, and many more.

Introduction Defs and DEs occordo Service Serv

Differential Equations

- We would like to study processes or systems that are driven by noise, or have uncertainty in coefficients.
- SDEs arise in modeling stock prices, thermal fluctuations, mathematical biology, etc.
 - Geometric Brownian motion, Langevin equation, Ornstein-Uhlenbeck process (Fokker-Planck equation), etc.
- Stochastic terms also arise in PDEs as well.
 - Laplace, heat, wave equations with white noise forcing, stochastic Burgers' equation, KPZ equation, etc.
- Applications include population dynamics, neuron activity, option pricing, radio-astronomy, satellite orbit stability, blood clotting, turbulent diffusion, Josephson tunneling in semiconductors, stochastic differential geometry, and many more.
- Filtering problems algorithms that use measurements over time that contain "noise", and give estimates for unknown quantities.

Deterministic ODEs

Consider the ordinary differential equation

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(t, \mathbf{x}(t)) & \text{for } t > 0 \\ \mathbf{x}(0) = x_0 & x_0 \in \mathbb{R}^n \end{cases}$$

where **f** is a given smooth vector field, and the solution $\mathbf{x}(t):[0,\infty)\to\mathbb{R}^n$ is the *trajectory*.

Deterministic ODEs

Consider the ordinary differential equation

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(t, \mathbf{x}(t)) & \text{for } t > 0 \\ \mathbf{x}(0) = x_0 & x_0 \in \mathbb{R}^n \end{cases}$$

where \mathbf{f} is a given smooth vector field, and the solution $\mathbf{x}(t):[0,\infty)\to\mathbb{R}^n$ is the *trajectory*. Under some regularity assumptions on the vector field \mathbf{f} , the above ODE has a solution that is uniquely determined by the initial condition x_0 . One example we will see later is the *logistic equation*,

Deterministic ODEs

Consider the ordinary differential equation

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{f}(t, \mathbf{x}(t)) & \text{for } t > 0 \\ \mathbf{x}(0) = x_0 & x_0 \in \mathbb{R}^n \end{cases}$$

where \mathbf{f} is a given smooth vector field, and the solution $\mathbf{x}(t):[0,\infty)\to\mathbb{R}^n$ is the *trajectory*. Under some regularity assumptions on the vector field \mathbf{f} , the above ODE has a solution that is uniquely determined by the initial condition x_0 . One example we will see later is the *logistic equation*,

$$\begin{cases} \dot{x}(t) = x(t)(1 - x(t)) & \text{for } t > 0 \\ x(0) = x_0 & x_0 \in \mathbb{R} \end{cases}$$

which has the exact solution
$$x(t)=\frac{1}{1+\left(\frac{1}{x_0}-1\right)e^{-t}}$$

Stochastic ODEs

How do we introduce *randomness* into the general ODE on the previous slide? First, we need some definitions to make sense of what a solution to a SDE is.

Stochastic ODEs

How do we introduce *randomness* into the general ODE on the previous slide? First, we need some definitions to make sense of what a solution to a SDE is.

Definition

Let Ω be a non-empty set, \mathcal{U} be a σ -algebra of subsets of Ω , and \mathbb{P} be the probability measure on \mathcal{U} . We define a **probability space** to be the triple $(\Omega, \mathcal{U}, \mathbb{P})$.

Stochastic ODEs

How do we introduce *randomness* into the general ODE on the previous slide? First, we need some definitions to make sense of what a solution to a SDE is.

Definition

Let Ω be a non-empty set, $\mathcal U$ be a σ -algebra of subsets of Ω , and $\mathbb P$ be the probability measure on $\mathcal U$. We define a **probability space** to be the triple $(\Omega,\mathcal U,\mathbb P)$.

Definition

Let $(\Omega, \mathcal{U}, \mathbb{P})$ be a probability space and \mathcal{B} be the Borel subsets of \mathbb{R} . Then the mapping

$$X: \Omega \to \mathbb{R} \tag{1}$$

is a **random variable** if for each $B \in \mathcal{B}$, then $X^{-1}(B) \in \mathcal{U}$.

Stochastic ODEs (cont.)

Definition

A collection $\{X_t \mid t \geq 0\}$ of random variables is called a **stochastic process**.

Stochastic ODEs (cont.)

Definition

A collection $\{X_t \mid t \geq 0\}$ of random variables is called a **stochastic process**.

Definition

For each point $\omega \in \Omega$, the mapping $t \mapsto X_t(\omega)$ is the corresponding *sample path*.

Stochastic ODEs (cont.)

Definition

A collection $\{X_t \mid t \geq 0\}$ of random variables is called a **stochastic process**.

Definition |

For each point $\omega \in \Omega$, the mapping $t \mapsto X_t(\omega)$ is the corresponding **sample path**.

Now we can modify the general deterministic ODE that we have seen. Mimicking what we saw for ODEs, we write

$$\begin{cases} \dot{X}_t = f(t, X_t) + F(t, X_t) \xi_t & \text{for } t > 0 \\ X_0 = x_0 & x_0 \in \mathbb{R} \end{cases}$$

Stochastic ODEs (cont.)

Definition

A collection $\{X_t \mid t \geq 0\}$ of random variables is called a **stochastic process**.

Definition |

For each point $\omega \in \Omega$, the mapping $t \mapsto X_t(\omega)$ is the corresponding **sample path**.

Now we can modify the general deterministic ODE that we have seen. Mimicking what we saw for ODEs, we write

$$\begin{cases} \dot{X}_t = f(t, X_t) + F(t, X_t) \xi_t & \text{for } t > 0 \\ X_0 = x_0 & x_0 \in \mathbb{R} \end{cases}$$

where F and f are sufficiently smooth functions, and X_t is a stochastic process. But what is ξ_t ?

White Noise

The term ξ_t is defined to be white noise. If we rewrite the ODE with the white noise a little bit to look like ODEs from undergrad ODE, we have

White Noise

The term ξ_t is defined to be white noise. If we rewrite the ODE with the white noise a little bit to look like ODEs from undergrad ODE, we have

$$\frac{dX_t}{dt} = f(t, X_t) + F(t, X_t) \frac{dW_t}{dt}$$
 (2)

where W_t turns out to be *Brownian motion*, or a *Wiener process*. Symbolically (being careful about what $\frac{d}{dt}$ means!) we write

$$\frac{dW_t}{dt} = \xi_t \tag{3}$$

White Noise

The term ξ_t is defined to be white noise. If we rewrite the ODE with the white noise a little bit to look like ODEs from undergrad ODE, we have

$$\frac{dX_t}{dt} = f(t, X_t) + F(t, X_t) \frac{dW_t}{dt}$$
 (2)

where W_t turns out to be *Brownian motion*, or a *Wiener process*. Symbolically (being careful about what $\frac{d}{dt}$ means!) we write

$$\frac{dW_t}{dt} = \xi_t \tag{3}$$

This seems to say that the time derivative of a Brownian motion is white noise. We will see this is not quite correct (in the usual sense), once we define what Brownian motion is.

White Noise (A more formal definition)

Definition

Let \mathcal{T} be an indexing set, and $X:=\{X_t\}_{t\in\mathcal{T}}$ be a stochastic process. Then X is a **Gaussian random field** (or **Gaussian process** if $\mathcal{T}\subset\mathbb{R}$) if (X_{t_1},\ldots,X_{t_n}) is a Gaussian random vector for all $t_1,\ldots,t_n\in\mathcal{T}$.

White Noise (A more formal definition)

Definition

Let \mathcal{T} be an indexing set, and $X:=\{X_t\}_{t\in\mathcal{T}}$ be a stochastic process. Then X is a **Gaussian random field** (or **Gaussian process** if $\mathcal{T}\subset\mathbb{R}$) if (X_{t_1},\ldots,X_{t_n}) is a Gaussian random vector for all $t_1,\ldots,t_n\in\mathcal{T}$.

Definition

Let $\mathcal{A}:=\mathcal{A}(\mathbb{R}^n)$ denote the collection of all Borel-measurable subsets of \mathbb{R}^n that have finite Lebesgue measure. Then **white noise** on \mathbb{R}^n is a mean-zero, set indexed, Gaussian random field $\{\xi(A)\}_{A\in\mathcal{A}}$, with covariance function

$$E[\xi(A_1)\xi(A_2)] := m(A_1 \cap A_2)$$
 for all $A_1, A_2 \in \mathcal{A}$ (4)

where m denotes Lebesgue measure.

SODE in standard form

Returning back to SODEs, we can write a general SODE in the general differential form

$$\begin{cases} dX_t = f(t, X_t) \ dt + F(t, X_t) \ dW_t & \text{for } t > 0 \\ X_0 = x_0 & x_0 \in \mathbb{R} \end{cases}$$

where the terms dX_t and FdW_t are called *stochastic differentials*.

SODE in standard form

Returning back to SODEs, we can write a general SODE in the general differential form

$$\begin{cases} dX_t = f(t, X_t) \ dt + F(t, X_t) \ dW_t & \text{for } t > 0 \\ X_0 = x_0 & x_0 \in \mathbb{R} \end{cases}$$

where the terms dX_t and FdW_t are called *stochastic differentials*. We say the stochastic process X_t "solves" the SODE provided

$$X_t = x_0 + \int_0^t f(t, X_s) \ ds + \int_0^t F(t, X_s) \ dW_s$$
 for all $t > 0$ (5)

SODE in standard form

Returning back to SODEs, we can write a general SODE in the general differential form

$$\begin{cases} dX_t = f(t, X_t) \ dt + F(t, X_t) \ dW_t & \text{for } t > 0 \\ X_0 = x_0 & x_0 \in \mathbb{R} \end{cases}$$

where the terms dX_t and FdW_t are called *stochastic differentials*. We say the stochastic process X_t "solves" the SODE provided

$$X_t = x_0 + \int_0^t f(t, X_s) \, ds + \int_0^t F(t, X_s) \, dW_s$$
 for all $t > 0$ (5)

For those who have taken 207A, this is similar to the integral form of the deterministic problem we saw earlier

$$x(t) = x_0 + \int_0^t f(s, x(s))ds$$
 (6)

Solution

We stated previously that the stochastic process X_t "solves" the SODE provided

$$X_t = x_0 + \int_0^t f(s, X_s) \ ds + \int_0^t F(s, X_s) \ dW_s$$
 for all $t > 0$ (7)

Solution

We stated previously that the stochastic process X_t "solves" the SODE provided

$$X_t = x_0 + \int_0^t f(s, X_s) \ ds + \int_0^t F(s, X_s) \ dW_s$$
 for all $t > 0$ (7)

Problems

Solution

We stated previously that the stochastic process X_t "solves" the SODE provided

$$X_t = x_0 + \int_0^t f(s, X_s) \ ds + \int_0^t F(s, X_s) \ dW_s$$
 for all $t > 0$ (7)

Problems

- What is Brownian motion W_t ?
- How do we integrate with respect to a Brownian motion?
- Does (7) make sense, and if so, show a solution exists.

Brownian Motion

Brownian Motion and Wiener Process

 Brownian motion can be described as the random motion of particles. Brownian motion is one of the simplest continuous-time stochastic processes.

Brownian Motion and Wiener Process

- Brownian motion can be described as the random motion of particles. Brownian motion is one of the simplest continuous-time stochastic processes.
- In a stochastic process there is randomness, even if the initial condition is known. There are infinitely many directions in which the process may evolve.
- Brownian motion was first observed in 1826 by R. Brown, as the result of pollen particles being moved by water molecules in a container.

Definition

A *Wiener process*, also called *standard Brownian motion* is a continuous-time stochastic process with certain criteria. Specifically, $W_0=0$, $W_t-W_s\sim N(0,t-s)$ for $t\geq s\geq 0$, and W_t has independent increments.

Brownian Motion

Brownian motion Properties

• Brownian motion can be constructed using *Haar functions* and *Schauder functions*. Schauder functions, $s_k(t)$, turn out to be a complete orthonormal basis of $L^2(0,1)$.

Brownian motion Properties

- Brownian motion can be constructed using *Haar functions* and *Schauder functions*. Schauder functions, $s_k(t)$, turn out to be a complete orthonormal basis of $L^2(0,1)$.
- Construction of Brownian motion due to Lèvy, gives Brownian motion as

$$W_t(\omega) = \sum_{k=0}^{\infty} A_k(\omega) s_k(t)$$
 (8)

where $\{A_k(\omega)\}_{k=0}^{\infty}$ are a sequence of independent N(0,1) random variables from the same probability space.

Brownian motion Properties

- Brownian motion can be constructed using *Haar functions* and *Schauder functions*. Schauder functions, $s_k(t)$, turn out to be a complete orthonormal basis of $L^2(0,1)$.
- Construction of Brownian motion due to Lèvy, gives Brownian motion as

$$W_t(\omega) = \sum_{k=0}^{\infty} A_k(\omega) s_k(t)$$
 (8)

where $\{A_k(\omega)\}_{k=0}^{\infty}$ are a sequence of independent N(0,1) random variables from the same probability space.

• Brownian motion sample paths, $t\mapsto W_t(\omega)$ are uniformly Hölder continuous for each exponent $0<\gamma<\frac{1}{2}$.

Brownian motion Properties

- Brownian motion can be constructed using *Haar functions* and *Schauder functions*. Schauder functions, $s_k(t)$, turn out to be a complete orthonormal basis of $L^2(0,1)$.
- Construction of Brownian motion due to Lèvy, gives Brownian motion as

$$W_t(\omega) = \sum_{k=0}^{\infty} A_k(\omega) s_k(t)$$
 (8)

where $\{A_k(\omega)\}_{k=0}^{\infty}$ are a sequence of independent N(0,1) random variables from the same probability space.

- Brownian motion sample paths, $t \mapsto W_t(\omega)$ are uniformly Hölder continuous for each exponent $0 < \gamma < \frac{1}{2}$.
- Brownian motion paths are almost surely nowhere differentiable.

Brownian motion Properties (cont.)

Brownian motion paths are of infinite variation for each time interval.

Brownian motion Properties (cont.)

Brownian motion paths are of infinite variation for each time interval. Brownian motion is a martingale and a Markov process.

Brownian motion paths are of infinite variation for each time interval. Brownian motion is a martingale and a Markov process.

Definition

Let $\{X_t|t\geq 0\}$ be a stochastic process such that $\mathbb{E}(|X_t|)<\infty$ for all $t\geq 0$. If

$$\mathbb{E}(X_t|\mathcal{U}_s) = X_s \quad \text{a.s. for all } t \ge s \ge 0, \tag{9}$$

where \mathcal{U}_s is the σ -algebra generated by random variables up to and including X_s , then $\{X_t|t\geq 0\}$ is a *martingale*.

Brownian motion paths are of infinite variation for each time interval. Brownian motion is a martingale and a Markov process.

Definition

Let $\{X_t|t\geq 0\}$ be a stochastic process such that $\mathbb{E}(|X_t|)<\infty$ for all $t\geq 0$. If

$$\mathbb{E}(X_t|\mathcal{U}_s) = X_s \quad \text{a.s. for all } t \ge s \ge 0, \tag{9}$$

where \mathcal{U}_s is the σ -algebra generated by random variables up to and including X_s , then $\{X_t|t\geq 0\}$ is a *martingale*. If

$$\mathbb{P}(X_t \in B | \mathcal{U}_s) = \mathbb{P}(X_t \in B | X_s)$$
 a.s. for all $0 \le s \le t$ (10)

and Borel sets B of \mathbb{R} , then $\{X_t|t\geq 0\}$ is a *Markov process*.

Theorem

Theorem

Let W_t be a Brownian motion in \mathbb{R}^d . Then,

1) W_t is **point recurrent** in dimension d=1

Theorem

Let W_t be a Brownian motion in \mathbb{R}^d . Then,

1) W_t is **point recurrent** in dimension d=1A Markov process, $\{X_t|t\geq 0\}$, is **point recurrent** if for every $x\in\mathbb{R}^d$, there is a random sequence $t_n\nearrow\infty$ such that $X_{t_n}=x$ for all $n\in\mathbb{N}$ almost surely.

Theorem

- 1) W_t is **point recurrent** in dimension d=1
- A Markov process, $\{X_t|t\geq 0\}$, is **point recurrent** if for every
- $x \in \mathbb{R}^d$, there is a random sequence $t_n \nearrow \infty$ such that $X_{t_n} = x$ for all $n \in \mathbb{N}$ almost surely.
- 2) W_t is neighborhood recurrent, but not point recurrent in dimension d=2

Theorem

- 1) W_t is **point recurrent** in dimension d=1
- A Markov process, $\{X_t|t\geq 0\}$, is **point recurrent** if for every $x\in\mathbb{R}^d$, there is a random sequence $t_n\nearrow\infty$ such that $X_{t_n}=x$ for all $n\in\mathbb{N}$ almost surely.
- 2) W_t is neighborhood recurrent, but not point recurrent in dimension d=2
- A Markov process, $\{X_t|t\geq 0\}$, is **neighborhood recurrent** if for every $x\in\mathbb{R}^d$ and $\epsilon>0$, there is a random sequence $t_n\nearrow\infty$ such that $X_{t_n}=B(x,\epsilon)$ for all $n\in\mathbb{N}$ almost surely.

Theorem

- 1) W_t is **point recurrent** in dimension d=1
- A Markov process, $\{X_t|t\geq 0\}$, is **point recurrent** if for every $x\in\mathbb{R}^d$, there is a random sequence $t_n\nearrow\infty$ such that $X_{t_n}=x$ for all $n\in\mathbb{N}$ almost surely.
- 2) W_t is neighborhood recurrent, but not point recurrent in dimension d=2
- A Markov process, $\{X_t|t\geq 0\}$, is **neighborhood recurrent** if for every $x\in\mathbb{R}^d$ and $\epsilon>0$, there is a random sequence $t_n\nearrow\infty$ such that $X_{t_n}=B(x,\epsilon)$ for all $n\in\mathbb{N}$ almost surely.
- 3) W_t is transient in dimension $d \geq 3$

Theorem

- 1) W_t is **point recurrent** in dimension d=1
- A Markov process, $\{X_t|t\geq 0\}$, is **point recurrent** if for every $x\in\mathbb{R}^d$, there is a random sequence $t_n\nearrow\infty$ such that $X_{t_n}=x$ for all $n\in\mathbb{N}$ almost surely.
- 2) W_t is neighborhood recurrent, but not point recurrent in dimension d=2
- A Markov process, $\{X_t|t\geq 0\}$, is **neighborhood recurrent** if for every $x\in\mathbb{R}^d$ and $\epsilon>0$, there is a random sequence $t_n\nearrow\infty$ such that $X_{t_n}=B(x,\epsilon)$ for all $n\in\mathbb{N}$ almost surely.
- 3) W_t is transient in dimension $d \ge 3$
- A Markov process, $\{X_t|t\geq 0\}$, is **transient** if it converges to infinity almost surely.

Brownian Motion 1D Sample Path

Brownian Motion in \mathbb{R}^2 Sample Path

Brownian Motion in \mathbb{R}^3 Sample Path

Function of a Brownian Motion in 2D

Sample paths of $f(t,W_t)=e^{t+\frac{1}{2}W_t}$ in 2D.

Itô Calculus

Recall the general SODE

$$\begin{cases} dX_t = f(X_t) \ dt + F(X_t) \ dW_t & \text{for } t > 0 \\ X_0 = x_0 & x_0 \in \mathbb{R} \end{cases}$$

Itô Calculus

Recall the general SODE

$$\begin{cases} dX_t = f(X_t) \ dt + F(X_t) \ dW_t & \text{for } t > 0 \\ X_0 = x_0 & x_0 \in \mathbb{R} \end{cases}$$

Recall that Brownian motion W_t is nowhere differentiable.

Itô Calculus

Introduction

Recall the general SODE

$$\begin{cases} dX_t = f(X_t) \ dt + F(X_t) \ dW_t & \text{for } t > 0 \\ X_0 = x_0 & x_0 \in \mathbb{R} \end{cases}$$

Recall that Brownian motion W_t is nowhere differentiable.

Definition

For a smooth function, $f(t, X_t)$, the **Itô integral** of f with respect to standard Brownian motion W_t is given by

$$\int_0^t f_s(s, X_s) dW_s = \lim_{n \to \infty} \sum_{i=1}^{n-1} f(t_{i-1}, X_{t_{i-1}}) (W_{t_i} - W_{t_{i-1}})$$
 (11)

where we evaluate the function f at the left endpoints of some partition $\mathcal{P} = \{0 = t_0 < t_1 < \ldots < t_n = T\}.$

Itô and Stratonovich Calculus

Itô Lemma (Chain Rule)

For a twice differentiable function f(t,x), its Taylor series is

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial x}dx + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}dx^2 + \dots$$
 (12)

Itô Lemma (Chain Rule)

For a twice differentiable function f(t,x), its Taylor series is

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial x}dx + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}dx^2 + \dots$$
 (12)

Assume that $dX_t = \mu_t \ dt + \sigma_t dW_t$. Let $x = X_t$ and $dx = \mu_t dt + \sigma_t dW_t$ for dX_t , we then get

$$df(t, X_t) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} (\mu_t dt + \sigma_t dW_t) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (\mu_t^2 dt^2 + 2\mu_t \sigma_t dt dW_t + \sigma_t^2 dW_t^2) + \dots$$

Itô Lemma (Chain Rule)

For a twice differentiable function f(t,x), its Taylor series is

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial x}dx + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}dx^2 + \dots$$
 (12)

Assume that $dX_t = \mu_t \ dt + \sigma_t dW_t$. Let $x = X_t$ and $dx = \mu_t dt + \sigma_t dW_t$ for dX_t , we then get

$$df(t, X_t) = \frac{\partial f}{\partial t} dt + \frac{\partial f}{\partial x} (\mu_t dt + \sigma_t dW_t) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} (\mu_t^2 dt^2 + 2\mu_t \sigma_t dt dW_t + \sigma_t^2 dW_t^2) + \dots$$

Neglecting "small" high order terms such as $dtdW_t$ and dW_t^2 , we have

$$df(t, X_t) = \left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{\sigma_t^2}{2} \frac{\partial^2 f}{\partial x^2}\right) dt + \sigma_t \frac{\partial f}{\partial x} dW_t$$

This is Itô's chain rule.

Stratonovich Integral

Definition |

For a smooth function, $f(t, X_t)$, the **Stratonovich integral** of f with respect to standard Brownian motion W_t is given by

$$\int_0^T f(t, W_t) \circ dW_t = \lim_{n \to \infty} \sum_{k=0}^{n-1} f(\tau_k, W_{\tau_k}) (W_{t+1} - W_t)$$
 (13)

where
$$au_k = rac{t_k + t_{k+1}}{2}$$
.

Stratonovich Integral

Definition

For a smooth function, $f(t, X_t)$, the **Stratonovich integral** of f with respect to standard Brownian motion W_t is given by

$$\int_0^T f(t, W_t) \circ dW_t = \lim_{n \to \infty} \sum_{k=0}^{n-1} f(\tau_k, W_{\tau_k}) (W_{t+1} - W_t)$$
 (13)

where $\tau_k = \frac{t_k + t_{k+1}}{2}$.

where we evaluate the function f at the *midpoints* of some partition $\mathcal{P} = \{0 = t_0 < t_1 < \ldots < t_n = T\}.$

Itô and Stratonovich Calculus

Example

Using the Itô formulation, we can compute the following simple integral

$$\int_0^T W_t \ dW_t = \frac{W_T^2}{2} - \frac{T}{2} \tag{14}$$

Example

Using the Itô formulation, we can compute the following simple integral

$$\int_0^T W_t \ dW_t = \frac{W_T^2}{2} - \frac{T}{2} \tag{14}$$

Using the Stratonovich formulation, we can compute the same integral

$$\int_0^T W_t \circ dW_t = \frac{W_T^2}{2} \tag{15}$$

Example

Using the Itô formulation, we can compute the following simple integral

$$\int_0^T W_t \ dW_t = \frac{W_T^2}{2} - \frac{T}{2} \tag{14}$$

Using the Stratonovich formulation, we can compute the same integral

$$\int_0^T W_t \circ dW_t = \frac{W_T^2}{2} \tag{15}$$

Notice that we get two different answers for the same integral. The Itô integral requires a "correction term", whereas the Stratonovich integral is what we would normally expect.

Ito-Stratonovich Conversion

The Ito and Stratonovich Conversion is by the following

$$\int_0^T f'(W_t) \circ dW_t = \frac{1}{2} \int_0^T \frac{\partial f}{\partial W}(t, W_t) dt + \int_0^T f'(W_t) dW_t \quad (16)$$

The Ito and Stratonovich Conversion is by the following

$$\int_0^T f'(W_t) \circ dW_t = \frac{1}{2} \int_0^T \frac{\partial f}{\partial W}(t, W_t) dt + \int_0^T f'(W_t) dW_t \quad (16)$$

We can convert from Ito to Stratonovich SODEs or vice versa whenever one is convenient.

Definition

$$\frac{dX_t}{dt} = f(t, X_t) + g(t, X_t) \xi \qquad (Ito) \quad (17)$$

$$\frac{dX_t}{dt} = f(t, X_t) + g(t, X_t) \xi \qquad (Ito) \qquad (17)$$

$$\frac{dX_t}{dt} = (f(t, X_t) - \frac{1}{2}g(t, X_t) \frac{\partial}{\partial X_t}g(t, X_t)) + g(t, X_t) \circ \xi \qquad (18)$$

(Stratonovich)

Geometric Brownian Motion

Geometric Brownian Motion

We will run numerical experiments on a simple SODE that has an exact solution. We consider Geometric Brownian motion

$$dX_t = \alpha X_t \ dt + \beta X_t \ dW_t \tag{19}$$

Geometric Brownian Motion

We will run numerical experiments on a simple SODE that has an exact solution. We consider Geometric Brownian motion

$$dX_t = \alpha X_t \ dt + \beta X_t \ dW_t \tag{19}$$

Example

We seek an exact solution to the above SODE. By computation, we have

We will run numerical experiments on a simple SODE that has an exact solution. We consider Geometric Brownian motion

$$dX_t = \alpha X_t \ dt + \beta X_t \ dW_t \tag{19}$$

Example

We seek an exact solution to the above SODE. By computation, we have

$$\frac{dX_t}{X_t} = \alpha \ dt + \beta \ dW_t$$

$$\int_0^t \frac{dX_s}{X_s} = \alpha \ t + \beta \ W_t$$

$$\int_0^t d(\log(X_s))ds = \alpha \ t + \beta \ W_t$$

Geometric Brownian Motion (cont.)

Example

$$\int_0^t d(\log(X_s))ds = \alpha \ t + \beta \ W_t$$
$$\log(X_t) - \frac{1}{2}\beta^2 t = \alpha \ t + \beta \ W_t$$
$$X_t = x_0 e^{\beta W_t + \left(\alpha - \frac{\beta^2}{2}\right)t}$$

Geometric Brownian Motion (cont.)

Example

$$\int_0^t d(\log(X_s))ds = \alpha \ t + \beta \ W_t$$
$$\log(X_t) - \frac{1}{2}\beta^2 t = \alpha \ t + \beta \ W_t$$
$$X_t = x_0 e^{\beta W_t + \left(\alpha - \frac{\beta^2}{2}\right)t}$$

where we have used a direct application of Itô's chain rule:

$$d(\log(X_s)) = \frac{dX_s}{X_s} - \frac{1}{2} \frac{\beta^2 X_s^2 dt}{X_s^2}.$$
 (20)

- Euler-Maruyama is the stochastic equivalent to the Euler method in the deterministic case.
- $x_{n+1} = x_n + \Delta t f(t_n, x_n)$

- Euler-Maruyama is the stochastic equivalent to the Euler method in the deterministic case.
- $\bullet \ x_{n+1} = x_n + \Delta t f(t_n, x_n)$
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n$

- Euler-Maruyama is the stochastic equivalent to the Euler method in the deterministic case.
- $\bullet \ x_{n+1} = x_n + \Delta t f(t_n, x_n)$
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n$
- The Brownian increment is taken as $\Delta W_n = W_{t_{n+1}} W_{t_n}$.

- Euler-Maruyama is the stochastic equivalent to the Euler method in the deterministic case.
- $\bullet \ x_{n+1} = x_n + \Delta t f(t_n, x_n)$
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n$
- The Brownian increment is taken as $\Delta W_n = W_{t_{n+1}} W_{t_n}$.
- Euler-Maruyama is a *strong* order $\frac{1}{2}$ method, weak order 1 method, i.e. the error in terms of Δt is $\frac{1}{2}$, so $(\Delta t)^{\frac{1}{2}}$.

- Euler-Maruyama is the stochastic equivalent to the Euler method in the deterministic case.
- $\bullet \ x_{n+1} = x_n + \Delta t f(t_n, x_n)$
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n$
- ullet The Brownian increment is taken as $\Delta W_n = W_{t_{n+1}} W_{t_n}$.
- Euler-Maruyama is a *strong* order $\frac{1}{2}$ method, weak order 1 method, i.e. the error in terms of Δt is $\frac{1}{2}$, so $(\Delta t)^{\frac{1}{2}}$.
- A method has a strong order of convergence equal to γ if there exists a constant C such that

$$\mathbb{E}|X_n - X_T| \le C\Delta t^{\gamma} \tag{21}$$

- Euler-Maruyama is the stochastic equivalent to the Euler method in the deterministic case.
- $\bullet \ x_{n+1} = x_n + \Delta t f(t_n, x_n)$
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n$
- ullet The Brownian increment is taken as $\Delta W_n = W_{t_{n+1}} W_{t_n}$.
- Euler-Maruyama is a *strong* order $\frac{1}{2}$ method, weak order 1 method, i.e. the error in terms of Δt is $\frac{1}{2}$, so $(\Delta t)^{\frac{1}{2}}$.
- \bullet A method has a strong order of convergence equal to γ if there exists a constant C such that

$$\mathbb{E}|X_n - X_T| \le C\Delta t^{\gamma} \tag{21}$$

• A method has a *weak order of convergence* equal to γ if there exists a constant C such that

$$|\mathbb{E}p(X_n) - \mathbb{E}p(X_T)| \le C\Delta t^{\gamma} \tag{22}$$

Euler-Maruyama Results

Euler-Maruyama Results (cont.)

Figure : Log-log plot of error for various time steps. Red reference line is slope 1/2.

Euler-Maruyama Results (cont.)

Figure : Log-log plot of error for various time steps. Red reference line is slope 1.

Milstein Method

• Milstein is identical to the Euler-Maruyama method if there is no X_t term in front of the Brownian motion.

- Milstein is identical to the Euler-Maruyama method if there is no X_t term in front of the Brownian motion.
- Milstein is a Taylor method and is a truncation of the stochastic Taylor expansion of the solution that we have seen previously.

- Milstein is identical to the Euler-Maruyama method if there is no X_t term in front of the Brownian motion.
- Milstein is a Taylor method and is a truncation of the stochastic Taylor expansion of the solution that we have seen previously.
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n + \frac{1}{2} \beta^2 X_n ((\Delta W_n)^2 \Delta t)$

- Milstein is identical to the Euler-Maruyama method if there is no X_t term in front of the Brownian motion.
- Milstein is a Taylor method and is a truncation of the stochastic Taylor expansion of the solution that we have seen previously.
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n + \frac{1}{2} \beta^2 X_n ((\Delta W_n)^2 \Delta t)$
- Again, the Brownian increment is taken as $\Delta W_n = W_{t_{n+1}} W_{t_n}.$

- Milstein is identical to the Euler-Maruyama method if there is no X_t term in front of the Brownian motion.
- Milstein is a Taylor method and is a truncation of the stochastic Taylor expansion of the solution that we have seen previously.
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n + \frac{1}{2} \beta^2 X_n ((\Delta W_n)^2 \Delta t)$
- Again, the Brownian increment is taken as $\Delta W_n = W_{t_{n+1}} W_{t_n}.$
- The Milstein method is a strong and weak 1.0 method.

Milstein Method Results

Milstein Method Results (cont.)

Figure : Log-log plot of error for various time steps. Red reference line is slope 1.

Milstein Method Results (cont.)

Figure: Log-log plot of error for various time steps. Red reference line is slope 1.

Monte Carlo Methods

• Monte Carlo methods repeat a process with different input data and then average separate outputs, X_j to find an approximation to the true mean, $\bar{X}_M = (X_1 + \ldots + X_M)/M$. Commonly, the program uses inputs that are produced by a random number generator.

- Monte Carlo methods repeat a process with different input data and then average separate outputs, X_j to find an approximation to the true mean, $\bar{X}_M = (X_1 + \ldots + X_M)/M$. Commonly, the program uses inputs that are produced by a random number generator.
- ullet For a well designed process, the approximation of the mean will converge to the true mean as the number of samples, M, increases.

- Monte Carlo methods repeat a process with different input data and then average separate outputs, X_j to find an approximation to the true mean, $\bar{X}_M = (X_1 + \ldots + X_M)/M$. Commonly, the program uses inputs that are produced by a random number generator.
- ullet For a well designed process, the approximation of the mean will converge to the true mean as the number of samples, M, increases.
- Two implementations of Monte Carlo methods will be given

- Monte Carlo methods repeat a process with different input data and then average separate outputs, X_j to find an approximation to the true mean, $\bar{X}_M = (X_1 + \ldots + X_M)/M$. Commonly, the program uses inputs that are produced by a random number generator.
- ullet For a well designed process, the approximation of the mean will converge to the true mean as the number of samples, M, increases.
- Two implementations of Monte Carlo methods will be given
 - Numerical Approximation of the Logistic Equation with random initial data

- Monte Carlo methods repeat a process with different input data and then average separate outputs, X_j to find an approximation to the true mean, $\bar{X}_M = (X_1 + \ldots + X_M)/M$. Commonly, the program uses inputs that are produced by a random number generator.
- ullet For a well designed process, the approximation of the mean will converge to the true mean as the number of samples, M, increases.
- Two implementations of Monte Carlo methods will be given
 - Numerical Approximation of the Logistic Equation with random initial data
 - 2 Approximation of Geometric Brownian Motion

Convergence Rate

The Monte Carlo Method has convergence rate of $\mathcal{O}(M^{-1/2})$. This convergence rate is emphasized via the root-mean squared (RMS), via the formula

Convergence Rate

The Monte Carlo Method has convergence rate of $\mathcal{O}(M^{-1/2})$. This convergence rate is emphasized via the root-mean squared (RMS), via the formula

$$\sqrt{\mathbb{E}((\mu_M - \mu)^2)} = \frac{\sigma_M}{\sqrt{M}} \tag{23}$$

Convergence Rate

The Monte Carlo Method has convergence rate of $\mathcal{O}(M^{-1/2})$. This convergence rate is emphasized via the root-mean squared (RMS), via the formula

$$\sqrt{\mathbb{E}((\mu_M - \mu)^2)} = \frac{\sigma_M}{\sqrt{M}} \tag{23}$$

where the numerical variance, σ_{M}^{2} can be calculated using the following formula

Convergence Rate

The Monte Carlo Method has convergence rate of $\mathcal{O}(M^{-1/2})$. This convergence rate is emphasized via the root-mean squared (RMS), via the formula

$$\sqrt{\mathbb{E}((\mu_M - \mu)^2)} = \frac{\sigma_M}{\sqrt{M}} \tag{23}$$

where the numerical variance, σ_{M}^{2} can be calculated using the following formula

$$\sigma_M^2 = \frac{1}{M-1} \sum_{j=1}^{M} \left(X_j - \bar{X}_M \right)^2 \tag{24}$$

Approximation of the Logistic Equation

Using the Monte Carlo method we want to numerically approximate the solution to the Logistic Equation with random initial data:

Using the Monte Carlo method we want to numerically approximate the solution to the Logistic Equation with random initial data:

$$\begin{cases} \frac{dy}{dt} = y(t)(1-y(t)) & \quad \text{in } [0,T] \\ y(0) = y_0 \sim U(D) & \quad D = [\frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon] \end{cases}$$

Using the Monte Carlo method we want to numerically approximate the solution to the Logistic Equation with random initial data:

$$\begin{cases} \frac{dy}{dt} = y(t)(1-y(t)) & \quad \text{in } [0,T] \\ y(0) = y_0 \sim U(D) & \quad D = \left[\frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon\right] \end{cases}$$

where we take T=10 and $\epsilon=0.1$. The term U(D) denotes that we will choose y_0 independently from a uniform distribution on the set D, as defined above.

The value of ϵ is chosen to such that some "error" is incurred when measuring the initial data, say for some population.

Example

The mean of the random initial data can be calculated as follows:

$$\bar{y}_0 = \frac{1}{2}(b-a) = \frac{1}{2}\left(\frac{1}{2} - \epsilon + \frac{1}{2} + \epsilon\right) = \frac{1}{2}$$

The true solution of the IVP is known for the mean, \bar{y}_0

$$\bar{y}(t) = \frac{e^t}{e^t + 1}$$

So we take

$$\mathbb{E}\left[y(T)\right] = \frac{e^T}{e^T + 1}$$

Approximation of the Logistic Equation (cont.)

 The forward Euler method is used to solve the IVP, with random initial conditions chosen as discussed previously.

- The forward Euler method is used to solve the IVP, with random initial conditions chosen as discussed previously.
- The error of the method is derived from errors arising from the explicit Euler method and the Monte Carlo error.

- The forward Euler method is used to solve the IVP, with random initial conditions chosen as discussed previously.
- The error of the method is derived from errors arising from the explicit Euler method and the Monte Carlo error.
- The error of the explicit Euler method is first order in Δt and the order of the error of the Monte Carlo sampling is $\mathcal{O}(M^{-1/2})$.

- The forward Euler method is used to solve the IVP, with random initial conditions chosen as discussed previously.
- The error of the method is derived from errors arising from the explicit Euler method and the Monte Carlo error.
- The error of the explicit Euler method is first order in Δt and the order of the error of the Monte Carlo sampling is $\mathcal{O}(M^{-1/2})$.
- To maintain a fixed level of accuracy, $\delta = C\Delta t$, we balance the two errors by holding the quantity $(\Delta t)^2 M$ fixed. This follows from the fact that, in general, the $\mathrm{Var}(y_N(t)) = \sigma^2$ and $K = ||y_N(t)||_{C^2}$ are unknown.

Approximation of the Logistic Equation (cont.)

Figure : The function $\bar{y}(t)$ is given by the black '+' signs, which appear as a bold dark line. The plot also includes 20 uniform random initial conditions and corresponding solutions.

Figure : Forward Euler is used with $(\Delta t)^2 M = \text{constant}$. The blue line is the reference for slope of -1. The red is the approximation of the error which is first order in Δt .

Monte Carlo Methods

Approximation of Geometric Brownian Motion

Using the Monte Carlo method we want to numerically approximate the solution to the Geometric Brownian motion SODE

Approximation of Geometric Brownian Motion

Using the Monte Carlo method we want to numerically approximate the solution to the Geometric Brownian motion SODE

$$\begin{cases} dX_t = \alpha X_t dt + \beta X_t dW_t \\ X_0 = .5 \end{cases}$$

Approximation of Geometric Brownian Motion

Using the Monte Carlo method we want to numerically approximate the solution to the Geometric Brownian motion SODE

$$\begin{cases} dX_t = \alpha X_t dt + \beta X_t dW_t \\ X_0 = .5 \end{cases}$$

where the exact solution to the SODE is given by

$$X_t = X_0 e^{(\alpha - \frac{\beta^2}{2})t + \alpha W_t} \tag{25}$$

Approximation of Geometric Brownian Motion

Using the Monte Carlo method we want to numerically approximate the solution to the Geometric Brownian motion SODE

$$\begin{cases} dX_t = \alpha X_t dt + \beta X_t dW_t \\ X_0 = .5 \end{cases}$$

where the exact solution to the SODE is given by

$$X_t = X_0 e^{(\alpha - \frac{\beta^2}{2})t + \alpha W_t} \tag{25}$$

For simplicity, we take T=1. The parameters will be taken as $\alpha=2,\ \beta=0.1.$

Monte Carlo Methods

Approximation of Geometric Brownian Motion (cont.)

 The Monte Carlo method is used when we want to have a weak approximation of the solution to the SODE. In this case we will follow what was done with the deterministic logistic equation with random initial data.

Approximation of Geometric Brownian Motion (cont.)

- The Monte Carlo method is used when we want to have a weak approximation of the solution to the SODE. In this case we will follow what was done with the deterministic logistic equation with random initial data.
- If we want the *weak approximation* of the solution to the SODE, we must use multiple paths, since the quantity of interest will be $\mathbb{E}[X_T]$.

Definition

A method has $\it weak \ order \ convergence$ of γ if there exists a constant C such that for all functions p in some class

$$|\mathbb{E}[p(X_n)] - \mathbb{E}[p(X_\tau)]| \le C\Delta t^{\gamma} \tag{26}$$

at any fixed $\tau = n\Delta t \in [0,T]$ and Δt sufficiently small.

Approximation of Geometric Brownian Motion (cont.)

Figure : Sample paths for M=500 for the solution to the Geometric Brownian motion. The value of $\mathbb{E}[X_T]=e^{\mu T}=e^2$. The dark line represents the function $y(t)=e^{2t}$.

Approximation of Geometric Brownian Motion (cont.)

Figure: Weak Approximation error for GBM. The red reference line is that of slope 1.

 This is a standard Runge-Kutta method applied to the stochastic differential equation.

 This is a standard Runge-Kutta method applied to the stochastic differential equation.

$$X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n$$

+
$$\frac{1}{2} \beta^2 (\beta (X_n + \beta X_n \sqrt{\Delta t}) - \beta X_n) \frac{((\Delta W_n)^2 - \Delta t)}{\sqrt{\Delta t}}$$

 This is a standard Runge-Kutta method applied to the stochastic differential equation.

$$X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n$$
$$+ \frac{1}{2} \beta^2 (\beta (X_n + \beta X_n \sqrt{\Delta t}) - \beta X_n) \frac{((\Delta W_n)^2 - \Delta t)}{\sqrt{\Delta t}}$$

 \bullet Of course by the name, the method is of strong order 1.0.

Strong 1.0 Order Runge-Kutta Method Results

Strong 1.0 Order Runge-Kutta Method Results

Figure : Log-log plot of error for various time steps. The red reference line is that of slope 1.

Strong 1.5 Order Taylor Method

 This is a Taylor method of higher order, meaning more derivatives are needed.

- This is a Taylor method of higher order, meaning more derivatives are needed.
- When initial conditions are known with accuracy, higher order methods yield better numerical approximations even though they are complex.

- This is a Taylor method of higher order, meaning more derivatives are needed.
- When initial conditions are known with accuracy, higher order methods yield better numerical approximations even though they are complex.
- If initial conditions are chosen from a probability distribution, the advantages of the higher order method are not as beneficial, and computationally expensive.

- This is a Taylor method of higher order, meaning more derivatives are needed.
- When initial conditions are known with accuracy, higher order methods yield better numerical approximations even though they are complex.
- If initial conditions are chosen from a probability distribution, the advantages of the higher order method are not as beneficial, and computationally expensive.
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n + \frac{1}{2} \beta^2 X_n ((\Delta W_n)^2 \Delta t) + \alpha \beta X_n \Delta Z + \frac{1}{2} \alpha^2 X_n (\Delta t)^2 + \alpha \beta X_n (\Delta W_n \Delta t \Delta Z) + \frac{1}{2} \beta^3 X_n (\frac{1}{3} (\Delta W_n)^2 \Delta t) \Delta W_n$

- This is a Taylor method of higher order, meaning more derivatives are needed.
- When initial conditions are known with accuracy, higher order methods yield better numerical approximations even though they are complex.
- If initial conditions are chosen from a probability distribution, the advantages of the higher order method are not as beneficial, and computationally expensive.
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n + \frac{1}{2} \beta^2 X_n ((\Delta W_n)^2 \Delta t) + \alpha \beta X_n \Delta Z + \frac{1}{2} \alpha^2 X_n (\Delta t)^2 + \alpha \beta X_n (\Delta W_n \Delta t \Delta Z) + \frac{1}{2} \beta^3 X_n (\frac{1}{3} (\Delta W_n)^2 \Delta t) \Delta W_n$
- Where $\Delta Z=\frac{1}{2}\Delta t(\Delta W_n+\frac{\Delta V_n}{\sqrt{3}})$, ΔV_n chosen from $\sqrt{\Delta t}N(0,1)$

- This is a Taylor method of higher order, meaning more derivatives are needed.
- When initial conditions are known with accuracy, higher order methods yield better numerical approximations even though they are complex.
- If initial conditions are chosen from a probability distribution, the advantages of the higher order method are not as beneficial, and computationally expensive.
- $X_{n+1} = X_n + \alpha X_n \Delta t + \beta X_n \Delta W_n + \frac{1}{2} \beta^2 X_n ((\Delta W_n)^2 \Delta t) + \alpha \beta X_n \Delta Z + \frac{1}{2} \alpha^2 X_n (\Delta t)^2 + \alpha \beta X_n (\Delta W_n \Delta t \Delta Z) + \frac{1}{2} \beta^3 X_n (\frac{1}{3} (\Delta W_n)^2 \Delta t) \Delta W_n$
- Where $\Delta Z=\frac{1}{2}\Delta t(\Delta W_n+\frac{\Delta V_n}{\sqrt{3}})$, ΔV_n chosen from $\sqrt{\Delta t}N(0,1)$
- Again, by the name, this is a strong order 1.5 method.

Strong 1.5 Order Taylor Method Results

Strong 1.5 Order Taylor Method Results

Figure : Log-log plot of error for various time steps. The red reference line is that of slope 1.5.

Strong 1.5 Order Runge-Kutta Method

 This is a standard Runge-Kutta method applied to the stochastic differential equation. No derivatives are required here.

- This is a standard Runge-Kutta method applied to the stochastic differential equation. No derivatives are required here.
- $X_{n+1} = X_n + \beta X_n \Delta W_n + \frac{1}{2\sqrt{\Delta t}} (\alpha Y_+ \alpha Y_-) \Delta Z + \frac{1}{4} (\alpha Y_+ + 2\alpha X_n + \alpha Y_-) \Delta t + \frac{1}{4\sqrt{\Delta t}} (\beta Y_+ + \beta Y_-) ((\Delta W_n)^2 \Delta t) + \frac{1}{2\Delta t} (\beta Y_+ 2\beta X_n + \beta Y_-) (\Delta W_n \Delta t \Delta Z) + \frac{1}{4\Delta t} (\beta \Phi_+ \beta \Phi_- \beta Y_+ + \beta Y_-) (\frac{1}{3} (\Delta W_n)^2 \Delta t) \Delta W_n$

- This is a standard Runge-Kutta method applied to the stochastic differential equation. No derivatives are required here.
- $X_{n+1} = X_n + \beta X_n \Delta W_n + \frac{1}{2\sqrt{\Delta t}} (\alpha Y_+ \alpha Y_-) \Delta Z + \frac{1}{4} (\alpha Y_+ + 2\alpha X_n + \alpha Y_-) \Delta t + \frac{1}{4\sqrt{\Delta t}} (\beta Y_+ + \beta Y_-) ((\Delta W_n)^2 \Delta t) + \frac{1}{2\Delta t} (\beta Y_+ 2\beta X_n + \beta Y_-) (\Delta W_n \Delta t \Delta Z) + \frac{1}{4\Delta t} (\beta \Phi_+ \beta \Phi_- \beta Y_+ + \beta Y_-) (\frac{1}{3} (\Delta W_n)^2 \Delta t) \Delta W_n$
- Where $Y_{\pm}=X_n+\alpha X_n\Delta t\pm \beta X_n\sqrt{\Delta t},~\Phi_{\pm}=Y_{+}\pm \beta Y_{+}\sqrt{\Delta t},$ and $\Delta Z=\frac{1}{2}\Delta t(\Delta W_n+\frac{\Delta V_n}{\sqrt{3}}),~\Delta V_n$ chosen from $\sqrt{\Delta t}N(0,1)$

- This is a standard Runge-Kutta method applied to the stochastic differential equation. No derivatives are required here.
- $X_{n+1} = X_n + \beta X_n \Delta W_n + \frac{1}{2\sqrt{\Delta t}} (\alpha Y_+ \alpha Y_-) \Delta Z + \frac{1}{4} (\alpha Y_+ + 2\alpha X_n + \alpha Y_-) \Delta t + \frac{1}{4\sqrt{\Delta t}} (\beta Y_+ + \beta Y_-) ((\Delta W_n)^2 \Delta t) + \frac{1}{2\Delta t} (\beta Y_+ 2\beta X_n + \beta Y_-) (\Delta W_n \Delta t \Delta Z) + \frac{1}{4\Delta t} (\beta \Phi_+ \beta \Phi_- \beta Y_+ + \beta Y_-) (\frac{1}{3} (\Delta W_n)^2 \Delta t) \Delta W_n$
- Where $Y_{\pm}=X_n+\alpha X_n\Delta t\pm\beta X_n\sqrt{\Delta t}$, $\Phi_{\pm}=Y_{+}\pm\beta Y_{+}\sqrt{\Delta t}$, and $\Delta Z=\frac{1}{2}\Delta t(\Delta W_n+\frac{\Delta V_n}{\sqrt{3}})$, ΔV_n chosen from $\sqrt{\Delta t}N(0,1)$
- This is a strong order 1.5 method.

Strong 1.5 Order Runge-Kutta Method Results

Strong 1.5 Order Runge-Kutta Method Results

Figure : Log-log plot of error for various time steps. The red reference line is that of slope 1.5.

Conclusion

Numerical Results for all Methods (Strong Order Error)

$Error\;at\;t=T$				
Δt	10^{-1}	10^{-2}	10^{-3}	10^{-4}
Euler	7.8616e-01	2.1330e-01	7.1713e-02	2.0921e-02
Milstein	7.5554e-01	9.1122e-02	9.3412e-03	9.3298e-04
RK 1.0	7.5554e-01	9.1122e-02	9.3412e-03	9.3298e-04
RK 1.5	1.1295e-01	4.0662e-03	1.4553e-04	4.2337e-06
Taylor 1.5	1.2955e-01	5.0419e-03	1.6959e-04	5.1033e-06