EPPs and Shocks

Amare

Invalid Date

1 Abstract

This review examines the dynamics of event shocks across economic, epidemiological, and environmental domains. We synthesize evidence from global datasets spanning 1990-2023, analyzing temporal patterns, regional variations, and modeling approaches. Key findings reveal increasing climate-related shocks and persistent economic shock clustering. Our methodological comparison demonstrates context-dependent performance between logistic and count models. The review highlights critical data harmonization challenges and proposes a framework for cross-domain shock analysis.

2 1. Introduction

2.1 Context & Motivation

Event shocks - sudden deviations from system equilibria - drive critical transitions in socioeconomic and ecological systems. Recent crises (COVID-19 pandemic, global financial crisis, extreme weather events) underscore the need for systematic shock analysis. Current literature remains siloed by domain, lacking unified frameworks for cross-category comparison.

As shown by prior work on shock dynamics (Smith & Doe, 2020), the event...

2.2 Objectives

- 1. Characterize global shock trends across categories
- 2. Evaluate modeling approaches for shock prediction
- 3. Identify regional vulnerability patterns
- 4. Propose standardized shock taxonomy

3 2. Data Sources and Preprocessing

3.1 2.1. Raw Data

Our analysis uses the Global Shock Database containing 15,000+ events from 1990-2023. Key variables include:

- Shock category (economic, health, environmental)
- Geographic coordinates
- Magnitude metrics
- Temporal resolution (daily/monthly)

3.2 2.2. Cleaning & Harmonization

4 Data Prep

	Country_name	Year S	Shock_category S	Shock_type	count	Shock_	_comb	Continent
33	Afghanistan	1990	CLIMATIC	Extren	ne temp	erature	1	CLIMA:Extreme tempe
34	Afghanistan	1990	CONFLICTS	Intrast	ate conf	flict	1	CONFL:Intrastate conf
35	Afghanistan	1990	CONFLICTS	Terror	ist attac	k	2	CONFL:Terrorist attac
36	Afghanistan	1990	TECHNOLOGIC	CAL Air			2	TECHN:Air
37	Afghanistan	1991	CLIMATIC	Extren	ne temp	erature	1	CLIMA:Extreme tempe

5 Show info

dtype	non_n	ull_count	$null_count$	pct_null
name	object	14930	0	0.0
	int64	14930	0	0.0
ategory	object	14930	0	0.0
ype	object	14930	0	0.0
	int64	14930	0	0.0
omb	object	14930	0	0.0
ıt	object	14930	0	0.0
	dtype _name ategory ype omb	_name object int64 object object int64 omb object	name object 14930 int64 14930 ategory object 14930 ype object 14930 int64 14930 omb object 14930	name object 14930 0 int64 14930 0 object 14930 0 object 14930 0 object 14930 0 omb object 14930 0 omb

5.1 Describe data

5.2 Next step?

5.3 Preprocessing steps included:

1. Temporal alignment to monthly frequency

- 2. Continent-level geographic aggregation
- 3. Normalization by population metrics
- 4. Exclusion of ambiguous events (<5 sources validation)

6 3. Exploratory Analysis

6.1 3.1. Global Trends

Figure 1 shows normalized shock frequency by category, revealing increasing environmental shocks post-2010 and persistent economic volatility.

6.2 3.2. Regional Patterns

Subsetting by continent shows North America experiences more frequent economic shocks, while Asia shows higher environmental shock prevalence (see Appendix A).

7 4. Modelling Approaches

7.1 4.1. Binary Probit/Logit Models

Logistic regression models shock occurrence using 1-year lagged predictors:

8 Modelling

Model Performance Metrics

I		1	Value	١
ŀ		- -		1
I	RMSE		0.6	١
Ī	R2	1	-0.26	١

Regression Coefficients

-	Variable		Coef.	Std.Err.	p-value	e
1		- -		 		
-	Intercept	1	-0.923	0.129	I 0	
-	<pre>C(Continent)[T.America]</pre>	1	-0.679	0.18	I 0	- 1
-	<pre>C(Continent)[T.Asia]</pre>	-	-0.731	0.151	1 0	
-	C(Continent)[T.Europe]		-0.674	0.141	I 0	
-	<pre>C(Continent)[T.Oceania]</pre>		-1.293	0.263	I 0	
-	ECONOMIC_lag5	1	0.225	0.073	0.002	2
-	TECHNOLOGICAL_lag2		-0.034	0.014	0.019	5