

OLED BREAKOUT BOARD

CFA10105

Revision A0
Datasheet Release: 2020-01-16

Compatible with: CFAL12856A0-0151 CFAL12864D-0154M (-W and -Y)

Crystalfontz America, Inc.

12412 East Saltese Avenue Spokane Valley, WA 99216-0357 Phone: 888-206-9720 Fax: 509-892-1203

Email: support@crystalfontz.com URL: www.crystalfontz.com

Table of Contents

1. GENERAL INFORMATION	3
2. INTRODUCTION	4
3. KEY FEATURES	4
4. HEADER AND JUMPER LOCATIONS AND FUNCTIONS	5
4.1. HOST – MAIN HEADER 4.2. INTERFACE SELECTION – BS1 AND BS2 4.3. SDA=SDA 4.4. SA0=1 4.5. VOLED	5 6
5. DIMENSIONS	9
6. SCHEMATICS	10
7. CFA-10105 - QUICK START GUIDE	11
7.1. What You Need	11

1. General Information

Datasheet Revision History

Datasheet Release: 2020-01-16

Datasheet for the CFA10105 breakout board

Product Change Notifications

You can check for or subscribe to Part Change Notices for this display module on our website.

Variations

Slight variations between lots are normal (e.g., contrast, color, or intensity).

Volatility

This display module has volatile memory.

Disclaimer

Certain applications using Crystalfontz America, Inc. products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications"). CRYSTALFONTZ AMERICA, INC. PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of Crystalfontz America, Inc. products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with customer applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazard. Please contact us if you have any questions concerning potential risk applications.

Crystalfontz America, Inc. assumes no liability for applications assistance, customer product design, software performance, or infringements of patents or services described herein. Nor does Crystalfontz America, Inc. warrant or represent that any license, either express or implied, is granted under any patent right, copyright, or other intellectual property right of Crystalfontz America, Inc. covering or relating to any combination, machine, or process in which our products or services might be or are used.

All specifications in datasheets on our website are, to the best of our knowledge, accurate but not guaranteed. Corrections to specifications are made as any inaccuracies are discovered.

Company and product names mentioned in this publication are trademarks or registered trademarks of their respective owners.

Copyright © 2020 by Crystalfontz America, Inc.,12412 East Saltese Avenue, Spokane Valley, WA 99216 U.S.A.

2. Introduction

This adapter board simplifies the process of bringing up some of our OLED displays including the <u>transparent OLED</u> and the 1.54" <u>OLED in white</u> and <u>yellow</u>. With this adapter board, these OLEDs can be powered and run by a 3.3v microprocessor without a separate backlight power supply. That means all you need is this board and a <u>Seeeduino</u> to run the displays - no extra components, no extra power supply. This board provides easy to use 0.1-in header pins ideal for testing, prototyping and use in projects of all kinds.

This board supports interfacing with the display using SPI, I2C, 6800, and 8080. Two jumpers on the board control the interface. They ship open for communication using SPI but can easily be closed with solder or external wires.

There are two options for mounting an OLED to this board, and tape is included on the board for whichever option you choose. The first option is to mount the display on the goal posts - this is a score for the transparent so you don't lose any of its wow-factor. The other option is piggyback the board onto the display. This makes a nice small form factor, but unfortunately, the board itself isn't transparent, so we recommend this option for the non-transparent OLEDs only.

The back of the board is printed with a quick guide and handy for the different interfaces.

Example source-code and datasheets for the OLEDs are available on their product pages:

www.crystalfontz.com/product/cfal12864d0154mw-128x64-white-graphic-oled

www.crystalfontz.com/product/cfal12864d0154my-128x64-yellow-graphic-oled-154

www.crystalfontz.com/product/cfal12856a00151b-128x56-transparent-oled-screen

www.crystalfontz.com/product/CFA-10105

www.crystalfontz.com/controllers/SolomonSystech/SSD1309/

3. Key Features

- Single 3.3v required to power the OLED, both logic and backlight
 - o Includes a voltage regulator for the 12.5v rail
- On-board jumpers control the interface: parallel / SPI / I2C
- two mounting options
 - Mounting tape included
- Silkscreen connection guide

4. Header and Jumper Locations and Functions

4.1. HOST - Main header

HOST is the main header on the left of the breakout board. This header provides 16 pins to connect the breakout board (and thus the display) to a microcontroller, such as a Seeeduino (an Arduino Uno clone that switches to 3.3v). Please note that connecting the board to 5v may permanently damage both the display and the board.

HOST Connection					
Pin	Symbol	Function			
1	3V3	3V power			
2	D0	SPI – SCK, clock I2C – SCL, clock 8080 and 6800 – D0			
3	GND	Ground			
4	D1	SPI – MOSI, Master Out Slave In I2C – SDA, tie to D2 using jumper 8080 and 6800 – D1			
5	CS	Chip Select			
6	D2	SPI – No connection I2C – SDA, tie to D1 using jumper 8080 and 6800 – D2			
7	D/C	SPI, 6800, and 8080 - Data/Command I2C – SA0			
8	D3	SPI and I2C – Tie LOW 8080 and 6800 – D3			
9	RST	Reset			
10	D4	SPI and I2C – Tie LOW 8080 and 6800 – D4			
11	VEN	V _{OLED} Enable – No Connection (see <u>VOLED</u>)			
12	D5	SPI and I2C – Tie LOW 8080 and 6800 – D5			
13	E	SPI and I2C – Tie LOW 6800 – Enable 8080 – Write – active low			
14	D6	SPI and I2C – Tie LOW 8080 and 6800 – D6			
15	R/W	SPI and I2C – Tie LOW 6800 – Read/Write - Read high, write low 8080 – Read – active low			
16	D7	SPI and I2C – Tie LOW 8080 and 6800 – D7			

4.2. Interface Selection - BS1 and BS2

BS1 and BS2 allow for changing between the different available interface modes per the table below.

BS2	BS1	Interface	D7-D3*	D2	D1	D0	E(RD)	R/W(RW)	cs	D/C
0	0	4-Wire SPI	Tie Low	NC	MOSI	SCK	Tie	Low	CS	D/C
0	1	I2C*	Tie Low	SDA=SDA		SCL	Tie Low		SA0	
1	0	8-bit Par (E, W/R)	D7-D3	D2	D1	D0	Е	R/ W	CS	D/C
1	1	8-bit Par (RD, WR)	D7-D3	D2	D1	D0	WR	RD	CS	D/C

BS1, BS2, \overline{CS} , D/ \overline{C} , R/ \overline{W} (\overline{WR}), E (\overline{RD}), and D7-D3 have 100k Ω pull down resistors.

In I2C, SDA and SCL need external pull up resistors.

4.3. SDA=SDA

This jumper is for operating in I2C, and ties D1 and D2 together. By closing this jumper on the chip, an external wire jumper can be avoided.

4.4. SA0=1

Slave address bit, this allows control of two displays on the same I2C bus.

SA	Write	Read	R/W
0	0x78	0x70	0x3C
1	0x7A	9x7B	0x3D

4.5. VOLED

This jumper is shipped closed, tying V_{OLED} high and thus enabled. To manually control V_{OLED} Enable, open this jumper. Once open, Pin 11, VEN, on HOST will control V_{OLED} Enable.

5. Dimensions

CFA-10105

000

PCB10105

0v0

7. CFA-10105 - Quick Start Guide

7.1. What You Need

- CFA-10105
- Your **OLED** display either the <u>transparent</u>, the <u>white</u>, or the <u>yellow</u>
- Seeeduino v4.2 board (3.3/5v switchable Arduino Clone 3.3v is necessary)
- USB cable WR-USB-27
- Jumper cables such as WR-JMP-Y40 or WR-JMP-41
- Headers such as <u>CFAPN01855</u>
- Some **code**! You can use our demo code available on the product pages.

7.2. Quick Start

In this guide, we'll be showing how to bring up the transparent display in SPI. Connection information for other interfaces is available in the full datasheet for the CFA-10105 available on the product page.

Step 2 - Wire it up! Using the table below, connect the CFA-10105 to the Seeeduino using the headers and jumper cables. All the jumpers on the board should be left open.

CFA-10105	Color	Arduino	Function
3.3V	Red	3V3	Power
GND	Black	GND	Ground
CS	Purple	D8	Chip Select
D/C	Brown	A0	Data/Command
RST	Grey	D9	Reset
D0	Green	D13	SCK, clock
D1	Blue	D11	MOSI, Data
D2, VEN, E, R/W	N/A	NC	Not connected
D3-D7	Not shown	Pull High	

Step 3 - Connect the Seeeduino to your computer using a USB cable, and load your code to the Seeeduino.

7.3. Further Information

See the Crystalfontz website for further information including full product datasheets and programming examples:

www.crystalfontz.com/product/cfal12864d0154mw-128x64-white-graphic-oled

www.crystalfontz.com/product/cfal12864d0154my-128x64-yellow-graphic-oled-154

www.crystalfontz.com/product/cfal12856a00151b-128x56-transparent-oled-screen

www.crystalfontz.com/product/CFA-10105

We're here to help! Email your questions to support@crystalfontz.com

We'd love to hear about your project! Tag us on Facebook, Instagram, LinkedIn, Twitter, or YouTube, or send us a link to your project on the web!

Crystalfontz America, Inc.

12412 East Saltese Avenue Spokane Valley, WA 99216-0357 Phone: 888-206-9720 Fax: 509-892-1203

Email: support@crystalfontz.com
URL: www.crystalfontz.com