WHAT IS CLAIMED IS:

1	1. A method for making micromechanical structures having at				
2	least one lateral gap therebetween, the method comprising:				
3	providing a substrate;				
4	surface micromachining the substrate to form a first micromechanical				
5	structure having a first vertical sidewall and a sacrificial spacer layer on the first				
6	vertical sidewall;				
7	forming a second micromechanical structure on the substrate, the				
8	second micromechanical structure including a second vertical sidewall separated				
9	from the first vertical sidewall by the spacer layer; and				
10	removing the spacer layer to form a first lateral gap between the first				
11	and second micromechanical structures.				
1	2. The method as claimed in claim 1 wherein the step of surface				
2	micromachining further forms a third vertical sidewall on the first micromechanical				
3	structure with the sacrificial spacer layer thereon and wherein the method further				
4	comprises forming a third micromechanical structure including a fourth vertical				
5	sidewall separated from the third vertical sidewall by the spacer layer and wherein				
6	the step of removing further forms a second lateral gap between the first and third				
7	micromechanical structures.				
1	3. The method as claimed in claim 1 wherein the second				
2	micromechanical structure includes an electrode.				
1	4. The method as claimed in claim 3 wherein the first				
2	micromechanical structure includes a resonator and wherein the first lateral gap is				
3	an electrode-to-resonator capacitive gap.				
1	5. The method as claimed in claim 1 wherein the step of forming				
2	includes the step of plating metal on the substrate and wherein the second				
3	micromechanical structure is a plated metal electrode.				

1		6.	The method as claimed in claim 5 further comprising		
2	preventing metal from being plated on the first micromechanical structure.				
1		7	The method as claimed in alaim 1 wherein the first leteral gen		
1	1	7.	The method as claimed in claim 1 wherein the first lateral gap		
2	is a submicro	ı gap.			
1		8.	A micromechanical device comprising:		
2		a subst	rate;		
3		a first	micromechanical structure supported on the substrate and		
4	having a first vertical sidewall;				
5		a secon	nd micromechanical structure supported on the substrate and		
6	having a second vertical sidewall; and				
7		a first	submicron lateral gap between the first and second vertical		
8	sidewalls to increase electromechanical coupling of the first and second				
9	micromechanical structures.				
1		9.	The device as claimed in claim 8 wherein the second		
2	micromechanical structure comprises an electrode.				
1		10	The device as element in claim O wherein the electrode is a		
1	4.1 .14	10.	The device as claimed in claim 9 wherein the electrode is a		
2	metal electrod	ie.			
1		11.	The device as claimed in claim 10 wherein the metal electrode		
2	is a plated me	tal eleci	trode.		
	•				
1		12.	The device as claimed in claim 8 wherein the first		
2	micromechanical structure is a lateral resonator.				
1		13.	The device as claimed in claim 8 wherein the first		
2	micromechani	ical stru	acture has a third vertical sidewall and wherein the device		
3	further comprises a third micromechanical structure supported on the substrate and				
4	having a four	th verti	cal sidewall and a second submicron lateral gap between the		

2

5 third and fourth vertical sidewalls to increase electromechanical coupling of the first 6 and third micromechanical structures. 14. The device as claimed in claim 12 wherein the lateral 1 2 resonator is a polysilicon resonator. 1 15. The device as claimed in claim 12 wherein the lateral 2 resonator is a flexural-mode resonator beam. The device as claimed in claim 8 wherein the substrate is a 1 16. 2 semiconductor substrate. 1 17. The device as claimed in claim 16 wherein the semiconductor 2 substrate is a silicon substrate. 18. 1 The device as claimed in claim 8 wherein the first submicron lateral gap is a capacitive gap. 2 19. 1 The device as claimed in claim 13 wherein the second and 2 third micromechanical structures are electrodes. 20. The device as claimed in claim 19 wherein the electrodes are 1 2 metal electrodes. 21. The device as claimed in claim 20 wherein the metal 1 2 electrodes are plated metal electrodes. 22. 1 The device as claimed in claim 13 wherein the first and second 2 submicron lateral gaps are capacitive gaps. 23. The method as claimed in claim 3 wherein the step of forming 1

includes the step of growing the electrode via selective epoxy growth.

1	1 24. The method as of	laimed in claim 3 wherein the step of forming			
2	includes the steps of depositing polysilicon and etching the polysilicon to form the				
3	3 electrode.				
1	1 25. The device as c	laimed in claim 9 wherein the electrode is a			
2	polysilicon electrode.				
1	1 26. The device as c	aimed in claim 9 wherein the electrode is an			
2	SEG-grown electrode.				