Выпускная квалификационная работа

Расчет поршня Определение теплового состояния

Граничные условия теплообмена

Конечно-элементная модель

Температурное поле поршня

Свойства материала

Алюминиевый сплав	AK4-1				
Температура, °С	20	150	200	250	300
Модуль упругости E·10 ⁻⁵ , МПа	0,72	0,66	0,63	0,59	0,51
Коэффициент линейного расширения $\alpha_{\text{T}} \cdot 10^6$, 1/°C	19,6	23,1	24,0	8 — 8	-
Коэффициент теплопроводности λ, Вт/(м·°С)	142,4	148,6	150,7	155,0	159,0
Предел прочности σ _{вр} , МПа	450	400	340	240	170
Предел текучести $\sigma_{\scriptscriptstyle T}$, МПа	380	360	300	190	140
δ, %	13,0	12,5	11,0	6,0	8,0

		_			_
Зоно	[α Bm/(m²*K)	T, °C	Зона	$\alpha Bm/(m^2*K)$	Τ, "[
1	450	771	11	500	145
2	650	771	12	0	<i>145</i>
3	750	771	13	11010	145
4	900	771	14	500	<i>145</i>
5	600	771	15	0	140
6	300	600	16	1500	140
7	225	300	17	2000	130
8	600	145	18	80	85
9	0	145	19	1160	100
10	15500	145	_		

Максимальная температура поршня – 304,03 °C

<u>Вывод</u>: Максимальная температура на кромках составила 304 градусов по Цельсию, что не превышает критическую температуру поршня. Температура в районе первого поршневого кольца сотавляет 208 градусов по Цельсию, что обеспечивает хорошую работу синтетического масла и не вызывает его горение.

					Выпускная квалификац	ионная работа			
						/IUM.	Масса	Масштац	
Изм.	Лист	№ докум.	Подп.	Дата					
Разраб.		Рахимгалиев			ТДС поршня			3:1	
Προι	<i>В</i> .	Зенкин			тде поршил				
T.KD	нтр.					/lucm	Лист	nob 1	
						MFTY	им. Н. Э. Е	- Баумана	
Н.контр. Утв.					Двигатель 4ЧН 9,1/9,9	кафедра 32			
						Группа 32–81б			
Копировал Формат А1									