П

(1) Proof. Consider the function h(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x). Then

$$h(a) = f(b)g(a) - f(a)g(a) - g(b)f(a) + g(a)f(a) = f(b)g(a) - f(a)g(b)$$

and

$$h(b) = f(b)g(b) - f(a)g(b) - g(b)f(b) + g(a)f(b) = f(b)g(a) - f(a)g(b)$$

Since h(a) = h(b), and h is a differentiable function by the Algebraic Differentiability Theorem, then by Rolle's Theorem, there exists $c \in (a, b)$ such that h'(c) = 0. This consequently implies that (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

- (2) Proof. Assume for contradiction that f is not strictly increasing. Then there exists $a, b \in I$ such that a < b, but f(a) > f(b). By the MVT, there exists $c \in (a, b)$ such that f(b) f(a) = f'(c)(b a). But $f(a) > f(b) \implies f(b) f(a) < 0$, and $a < b \implies b a > 0$. Then f'(c) < 0, contradicting that f'(x) > 0 for every $x \in I$. Then f must be strictly increasing.
- (3-1) *Proof.* Suppose f is differentiable on \mathbb{R} , and it is Lipschitz continuous. Then

$$|f'(x)| = \lim_{x \to h} \left| \frac{f(x+h) - f(x)}{h} \right|$$

By Lipschitz continuity of f, we have:

$$\leq \lim_{x \to h} \left| \frac{C|x+h-x|}{h} \right|$$
$$= |C \operatorname{sgn}(h)|$$
$$= C$$

Hence f'(x) is bounded.

(3-2) *Proof.* Suppose f is differentiable on \mathbb{R} , and f' is bounded. Consider any $u, v \in \mathbb{R}$. By the MVT, then there exists $t \in (u, v)$ such that f(u) - f(v) = f'(c)(u - v). Then

$$f'(c) = \frac{f(u) - f(v)}{u - v} \implies |f'(c)| = \frac{|f(u) - f(v)|}{|u - v|}$$

Since f' is bounded by C, then

$$\frac{|f(u) - f(v)|}{|u - v|} = f'(c) \le C \implies |f(u) - f(v)| \le C|u - v|$$

Hence f is Lipschitz continuous.

- (4-1) Proof. Observe that f(0) = 0 and f(-1) = -5. Consider the closed interval $[0,1] \subset \mathbb{R}$. Since f is a polynomial, then it is continuous on \mathbb{R} . Furthermore, [0,1] is a closed and bounded interval so that it is compact. By the IVT, there exists some $c \in [0,1]$ such that f(c) = 0, where f(a) < 0 < f(b). Then there exists a solution to f(x) = 0.
- (4-2) Proof. By (4-1), there exists a point $t \in \mathbb{R}$ such that f(t) = 0. Assume for contradiction that there exists another $s \neq t$ such that f(s) = 0. Since f is a polynomial, then it is continuous on \mathbb{R} . Furthermore, [s,t] is a closed and bounded interval so that it is compact. By Rolle's Theorem, there exists some $c \in [s,t]$ such that f'(c) = 0. Consider $f'(x) = 5x^4 + 3x^2 2x + 5$. By the given hint, we have that $3x^2 2x + 5 > 0$ for all $x \in \mathbb{R}$. Similarly, $5x^4 \geq 0$ for all $x \in \mathbb{R}$. Then f'(x) > 0 for all $x \in \mathbb{R}$, contradicting Rolle's Theorem. Hence, there is no other solution to f(x) = 0 except t.

- (5) The second and third inequalities in the statement utilize all 3 points.
- (6) Proof. Assume for contradiction that f has at least n+1 solutions, say $x_1, x_2, \ldots, x_{n+1}$ such that $x_1 < x_2 < \cdots < x_{n+1}$. Then $f(x_i) = 0$ for every i. By Rolle's Theorem, there then exists points $y_i \in (x_i, x_{i+1})$ for $1 \le i \le n$ such that $f'(y_i) = 0$. But then f' has n solutions, contradicting that it had n-1 solutions at most. Then f has at most n solutions.
- (7-1) *Proof.* Consider the following:
 - Let $f_1(x) = \frac{x}{2}$. Since f_1 is a polynomial, then it is continuous and differentiable everywhere.
 - Let $f_2(x) = x^2$. Since f_2 is a polynomial, then it is continuous and differentiable everywhere.
 - Let $f_3(x) = \sin(x)$ and $f_4(x) = \frac{1}{x}$. Since f_3 is a sine function, it is continuous and differentiable everywhere. Since f_4 is a rational function, it is continuous and differentiable on its domain of $\mathbb{R}\setminus\{0\}$. Then $f_5(x) = f_3(f_4(x))$ is continuous and differentiable on $\mathbb{R}\setminus\{0\}$.
 - Let $f_6(x) = f_2(x)f_5(x)$. Since f_6 is a product of continuous and differentiable functions, then it follows by the Algebraic Differentiability Theorem that it is also continuous and differentiable.
 - Let $f(x) = f_1(x) + f_6$. Since f is a sum of continuous and differentiable functions, then it follows by the Algebraic Differentiability Theorem that f is also continuous and differentiable.

Then by the above, $\frac{x}{2} + x^2 \sin \frac{1}{x}$ is differentiable when $x \neq 0$.

(7-2) *Proof.* Using the definition of the derivative:

$$f'(0) = \lim_{x \to 0} \frac{\frac{x}{2} - x^2 \sin(\frac{1}{x}) - 0}{x - 0}$$
$$= \lim_{x \to 0} \left(\frac{1}{2} - x \sin(\frac{1}{x})\right)$$

Using previous results:

$$=\frac{1}{2} > 0$$

Then f'(0) > 0.

(7-3) *Proof.* Observe that

$$f'(x) = \begin{cases} \frac{1}{2} + 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & x \neq 0\\ \frac{1}{2} & x = 0 \end{cases}$$

Assume for contradiction that there exists an interval around 0 such that $f'(x) \ge 0$. Then there exists $\delta > 0$ such that $(\forall x \in V_{\delta}(0))(f'(x) \ge 0)$. Consider the sequence $(a_n) = \frac{1}{2n\pi}$. Since $a_n \to 0$, there exists N such that $n > N \implies a_n < \delta$. But then

$$f'(a_n) = \frac{1}{2} + \frac{1}{n\pi} \cdot 0 - 1 = -\frac{1}{2} < 0$$

Which means that there exists points in $V_{\delta}(0)$ such that $f'(x) \geq 0$.