

CELLULE ELECTRIQUE

ARDUINO: SÉANCE 2

Presentée par: Ayoub cheggari Ayoub.cheggari@gmail.com

o Plan:

- L'afficheur LCD.
- Les sorties analogiques PWM.
- Les servos moteurs.
- Les moteurs DC.
- Le shield driver motor(adafruit).
- Le module bluetooth.
- Le capteur ultrason.

L'afficheur LCD:

L'afficheur LCD(types):

L'afficheur LCD(types de communication):

- La communication parallèle.
- La communication série.
- La liaison I2C.

L'afficheur LCD(brochage parallèle):

L'afficheur LCD(brochage semi_para):

L'afficheur LCD(les fonctions): https://www.arduino.cc/en/Refe rence/LiquidCrystal

Les sorties analogiques PWM:

Les sorties analogiques PWM(exemple):

Les sorties analogiques PWM(exemple):

```
#define potentiometre 0
#define LED 5
void setup()
  pinMode(LED, OUTPUT);
void loop()
  int luminosite = analogRead(potentiometre);
    // Lecture du potentiomètre
  luminosite = map(luminosite, 0, 1023, 0, 255);
    // Conversion dans la plage 0 - 255
  analogWrite(LED, luminosite);
    // Définition du signal PWM
```

Comment obtenir une tension continue?

Les sorties analogiques PWM: Filtre passe_bas:

Les servomoteurs:

Les servomoteurs(principe):

Les servomoteurs(principe):

Règles:

- La masse doit être liée à celle de l'arduino.
- La tension ne doit pas être prélevée de +5v de l'arduino.

Les servomoteurs(principe):

Les servomoteurs (fonctions):

https://www.arduino.cc/en/Reference/Servo

Les moteurs à courant continu: Alimentation à un sens:

Les moteurs à courant continu(rotation dans 2 sens):

Les moteurs à courant continu(rotation dans 2 sens):

Enable 1	Input 1	Input 2	Fonction
High	Low	High	Tourne dans le sens horlogique
High	High	Low	tourne dans le sens anti-horlogique
High	Low	Low	Stop
High	High	High	Stop
Low	Non applicable	Non applicable	Stop

Les moteurs à courant continu(rotation dans 2 sens):

Les shields

Driver motor shield:

• Driver motor shield:

- How many motors can I use with this shield?
 You can use 2 DC hobby servos that run on 5V and up to 4 DC motors or 2 stepper motors (or 1 stepper and up to 2 DC motors) that run on 5-1 2VDC.
- What Arduinos is this shield compatible with?
 It is tested to work with Duemilanove, Diecimila, Uno (all revisions), Leonardo and Mega/ADK R3
 and higher.
- I'm trying to build this robot and it doesn't seem to run on a 9V battery....
 You cannot power motors from a 9V battery. You must use

AA batteries or a lead acid battery

for motors.

Driver motor shield(fonctions):

- #include <AFMotor.h>
- AF_DCMotor motor(4, MOTOR34_64KHZ);
- motor.setSpeed(0);
- motor.run(FORWARD);
- motor.run(BACKWARD);
- motor.run(RELEASE);

⁶ Module bluetooth:

Module Bluetooth(application):

Module Bluetooth(application):

```
hc06_led
    #include <SoftwareSerial.h>
 1
 2
    void setup()
 4 🖃 {
        Serial.begin(9600);
        pinMode(11, OUTPUT);
    void loop()
10 🖃 {
11 🖃
        if (Serial.available() > 0) {
12
             char ch = Serial.read();
1.3
             Serial.print("Received: ");
1.4
             Serial.println(ch);
             if (ch == 'a') {
1.5 EI
                 digitalWrite(11, HIGH);
1.6
17
             else if(ch=='b'){
18 🖃
19
                 digitalWrite(11, LOW);
2.0
21
22
    1
```

Module Bluetooth(application):

Le capteur ultrasonic:

Le capteur ultrasonic(fonctionnement):

Le capteur ultrasonic(fonctionnement):

Le capteur ultrasonic(fonctionnement):

Le capteur ultrasonic(code):

```
/* Utilisation du capteur Ultrason HC-SR04 */
// définition des broches utilisées
int trig = 12;
int echo = 11;
long lecture_echo;
long cm;
void setup()
 pinMode(trig, OUTPUT);
 digitalWrite(trig, LOW);
 pinMode(echo, INPUT);
 Serial.begin(9600);
void loop()
 digitalWrite(trig, HIGH);
 delayMicroseconds(10);
 digitalWrite(trig, LOW);
 lecture_echo = pulseIn(echo, HIGH);
 cm = lecture_echo / 58;
 Serial.print("Distancem: ");
 Serial.println(cm);
 delay(1000);
```

Le capteur ultrasonic(code):

$$V(m/s) = D(m)/T(s)$$

$$D(m) = V(m/s) \times T(s)$$

$$D(m) = 340(m/s) \times T(s)$$

$$D(m) = 340(m/s)xTAR(s)/2$$

$$D(cm) = 0.0340(cm/s) \times TAR(s)/2$$

$$D(cm) = TAR(s)/58.8(s/cm)$$

Merci pour votre attention!!!

Des questions???