1. Solve the following recurrences:

$$T(n) = 2 \cdot T(n/4) + T(n/2) + n^{1/3}$$

$$T(n) = T(n^{1/2}) + \lg_2 n$$

$$T(n) = 2 \cdot T(n/2) + n \cdot \lg_2 n$$
(8%)

2. Validate the following non-asymptotically tight bounds:

$$n^2/\lg_2 n = o(n^2)$$
 and $n^{0.9999} \cdot \lg_2 n = \omega(n)$ (6%)

3. Merge sort follows the divide-and-conquer approach and involves a key procedure, as follows. Fill the missing statements to complete the procedure. (12%)

MERGE
$$(A, p, q, r)$$
 $n_1 = q - p + 1$
 $n_2 = r - q$

let $L[1...n_1 + 1]$ and $R[1...n_2 + 1]$ be new arrays

for $i = 1$ to n_1
 $L[i] = A[p + i - 1]$

for $j = 1$ to n_2
 $R[j] = A[q + j]$
 $L[n_1 + 1] = \infty$
 $R[n_2 + 1] = \infty$
 $i = 1$
 $j = 1$

for $k = p$ to r

if $L[i] \le R[j]$

else

4. The Master Method aims to solve $T(n) = a \cdot T(n/b) + f(n)$ with constants $a \ge 1$ and n being an exact power of $b \ge 1$. Show by the recursion tree technique that T(n) equals (14%)

$$\Theta(n^{\log_b a}) + \sum_{j=0}^{\log_b n - 1} a^j \cdot f(n/b^j)$$

5. A hash function realized by the <u>division method</u> takes the form of $h(k) = k \mod m$, where m is the number of table entries.

In general, what is a good choice for m, and in particular, what is a good m for the table to yield its load factor ≤ 0.5 when holding 120 distinct keys? (6%)

- 6. The utilization efficiency of a hash table depends heavily on its hashing function(s) employed. Describe with a diagram to illustrate how a multiplication method of hashing works on a machine with the word size of w bits for a hash table with 2^p entries, p < w. (16%)
- 7. Prove that for an open-address hash table with load factor α (< 1), the expected number of probes in unsuccessful search under uniform hashing is at most $1/(1-\alpha)$. (Hint: consider the probability of *i* probes to learn key absence.) (10%)

Good Luck!