Deep Generative Models

Lecture 2

Roman Isachenko

2024, Summer

Recap of previous lecture

We are given i.i.d. samples $\{\mathbf{x}_i\}_{i=1}^n \in \mathbb{R}^m$ from unknown distribution $\pi(\mathbf{x})$.

Goal

We would like to learn a distribution $\pi(\mathbf{x})$ for

- evaluating $\pi(\mathbf{x})$ for new samples (how likely to get object \mathbf{x} ?);
- ▶ sampling from $\pi(\mathbf{x})$ (to get new objects $\mathbf{x} \sim \pi(\mathbf{x})$).

Instead of searching true $\pi(\mathbf{x})$ over all probability distributions, learn function approximation $p(\mathbf{x}|\theta) \approx \pi(\mathbf{x})$.

Divergence

- ▶ $D(\pi||p) \ge 0$ for all $\pi, p \in \mathcal{P}$;
- ▶ $D(\pi||p) = 0$ if and only if $\pi \equiv p$.

Divergence minimization task

$$\min_{\boldsymbol{\theta}} D(\pi||p).$$

Recap of previous lecture

Forward KL

$$\mathit{KL}(\pi||p) = \int \pi(\mathbf{x}) \log rac{\pi(\mathbf{x})}{p(\mathbf{x}|m{ heta})} d\mathbf{x}
ightarrow \min_{m{ heta}}$$

Reverse KI

$$\mathit{KL}(p||\pi) = \int p(\mathbf{x}|\boldsymbol{\theta}) \log \frac{p(\mathbf{x}|\boldsymbol{\theta})}{\pi(\mathbf{x})} d\mathbf{x} \to \min_{\boldsymbol{\theta}}$$

Maximum likelihood estimation (MLE)

$$m{ heta}^* = rg \max_{m{ heta}} \prod_{i=1}^n p(\mathbf{x}_i | m{ heta}) = rg \max_{m{ heta}} \sum_{i=1}^n \log p(\mathbf{x}_i | m{ heta}).$$

Maximum likelihood estimation is equivalent to minimization of the Monte-Carlo estimate of forward KL.

Recap of previous lecture

Likelihood as product of conditionals

Let $\mathbf{x} = (x_1, \dots, x_m)$, $\mathbf{x}_{1:j} = (x_1, \dots, x_j)$. Then

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1}, \boldsymbol{\theta}); \quad \log p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{j=1}^{m} \log p(x_j|\mathbf{x}_{1:j-1}, \boldsymbol{\theta}).$$

MLE problem for autoregressive model

$$\boldsymbol{\theta}^* = \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^m \sum_{j=1}^m \log p(x_{ij}|\mathbf{x}_{i,1:j-1}\boldsymbol{\theta}).$$

Sampling

$$\hat{\mathbf{x}}_1 \sim p(\mathbf{x}_1|\boldsymbol{\theta}), \quad \hat{\mathbf{x}}_2 \sim p(\mathbf{x}_2|\hat{\mathbf{x}}_1, \boldsymbol{\theta}), \quad \dots, \quad \hat{\mathbf{x}}_m \sim p(\mathbf{x}_m|\hat{\mathbf{x}}_{1:m-1}, \boldsymbol{\theta})$$

New generated object is $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_m)$.

- 1. Autoregressive models (continued)
- 2. Normalizing flows (NF)
- 3. Forward and Reverse KL for NF
- 4. NF examples
 Linear normalizing flows
 Gaussian autoregressive NF

- 1. Autoregressive models (continued)
- 2. Normalizing flows (NF)
- 3. Forward and Reverse KL for NF
- 4. NF examples
 Linear normalizing flows
 Gaussian autoregressive NF

Autoregressive models: MLP

For large j the conditional distribution $p(x_j|\mathbf{x}_{1:j-1}, \boldsymbol{\theta})$ could be infeasible. Moreover, the history $\mathbf{x}_{1:j-1}$ has non-fixed length.

Markov assumption

$$p(x_j|\mathbf{x}_{1:j-1}, \theta) = p(x_j|\mathbf{x}_{j-d:j-1}, \theta), d$$
 is a fixed model parameter.

Example

- ightharpoonup d = 2;
- $x_j \in \{0, 255\};$
- $h_j = MLP_{\theta}(x_{j-1}, x_{j-2});$
- $\qquad \qquad \boldsymbol{\pi}_j = \operatorname{softmax}(\mathbf{h}_j);$
- $p(x_j|x_{j-1},x_{j-2},\boldsymbol{\theta}) =$ Categorical $(\boldsymbol{\pi}_j)$.

Is it possible to model continuous distributions instead of discrete one?

Autoregressive models: PixelCNN

Goal

Model a distribution $\pi(\mathbf{x})$ of natural images.

Solution

Autoregressive model on 2D pixels

$$p(\mathbf{x}|oldsymbol{ heta}) = \prod_{j=1}^{\mathsf{width} imes \mathsf{height}} p(x_j|\mathbf{x}_{1:j-1},oldsymbol{ heta}).$$

- ▶ We need to introduce the ordering of image pixels.
- ▶ The convolution should be **masked** to make them causal.
- ▶ The image has RGB channels, these dependencies could be addressed.

Autoregressive models: PixelCNN

Raster ordering

Dependencies between pixels

Mask for the convolution kernel

PixelCNN

- 1. Autoregressive models (continued)
- 2. Normalizing flows (NF)
- Forward and Reverse KL for NF
- 4. NF examples
 Linear normalizing flows
 Gaussian autoregressive NF

Generative models zoo

Normalizing flows prerequisites

Jacobian matrix

Let $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ be a differentiable function.

$$\mathbf{z} = \mathbf{f}(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \cdots & \cdots & \cdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of variable theorem (CoV)

Let \mathbf{x} be a random variable with density function $p(\mathbf{x})$ and $\mathbf{f}: \mathbb{R}^m \to \mathbb{R}^m$ is a differentiable, **invertible** function. If $\mathbf{z} = \mathbf{f}(\mathbf{x})$, $\mathbf{x} = \mathbf{f}^{-1}(\mathbf{z}) = \mathbf{g}(\mathbf{z})$, then

$$\begin{aligned} & \rho(\mathbf{x}) = \rho(\mathbf{z}) |\det(\mathbf{J_f})| = \rho(\mathbf{z}) \left| \det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) \right| = \rho(\mathbf{f}(\mathbf{x})) \left| \det\left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\right) \right| \\ & \rho(\mathbf{z}) = \rho(\mathbf{x}) |\det(\mathbf{J_g})| = \rho(\mathbf{x}) \left| \det\left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\right) \right| = \rho(\mathbf{g}(\mathbf{z})) \left| \det\left(\frac{\partial \mathbf{g}(\mathbf{z})}{\partial \mathbf{z}}\right) \right|. \end{aligned}$$

Jacobian determinant

Inverse function theorem

If function \mathbf{f} is invertible and Jacobian matrix is continuous and non-singular, then

$$\mathbf{J_{f^{-1}}} = \mathbf{J_g} = \mathbf{J_f^{-1}}; \quad |\det(\mathbf{J_{f^{-1}}})| = |\det(\mathbf{J_g})| = \frac{1}{|\det(\mathbf{J_f})|}.$$

- ightharpoonup x and z have the same dimensionality (\mathbb{R}^m) .
- $\mathbf{f}_{\theta}(\mathbf{x})$ could be parametric function.
- Determinant of Jacobian matrix $\mathbf{J} = \frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}}$ shows how the volume changes under the transformation.

Fitting normalizing flows

MLE problem

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$
$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})| \to \max_{\boldsymbol{\theta}}$$

Composition of normalizing flows

Theorem

If $\{\mathbf{f}_k\}_{k=1}^K$ satisfy conditions of the change of variable theorem, then $\mathbf{z} = \mathbf{f}(\mathbf{x}) = \mathbf{f}_K \circ \cdots \circ \mathbf{f}_1(\mathbf{x})$ also satisfies it.

$$\begin{aligned} \rho(\mathbf{x}) &= \rho(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \rho(\mathbf{f}(\mathbf{x})) \left| \det \left(\frac{\partial \mathbf{f}_K}{\partial \mathbf{f}_{K-1}} \dots \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}} \right) \right| = \\ &= \rho(\mathbf{f}(\mathbf{x})) \prod_{k=1}^K \left| \det \left(\frac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}} \right) \right| = \rho(\mathbf{f}(\mathbf{x})) \prod_{k=1}^K \left| \det(\mathbf{J}_{f_k}) \right| \end{aligned}$$

Normalizing flows (NF)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

Definition

Normalizing flow is a *differentiable, invertible* mapping from data \mathbf{x} to the noise \mathbf{z} .

- Normalizing means that NF takes samples from $\pi(\mathbf{x})$ and normalizes them into samples from the density $p(\mathbf{z})$.
- **Flow** refers to the trajectory followed by samples from p(z) as they are transformed by the sequence of transformations

$$\textbf{z} = \textbf{f}_{\mathcal{K}} \circ \cdots \circ \textbf{f}_{1}(\textbf{x}); \quad \textbf{x} = \textbf{f}_{1}^{-1} \circ \cdots \circ \textbf{f}_{\mathcal{K}}^{-1}(\textbf{z}) = \textbf{g}_{1} \circ \cdots \circ \textbf{g}_{\mathcal{K}}(\textbf{z})$$

Log likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{K} \circ \cdots \circ \mathbf{f}_{1}(\mathbf{x})) + \sum_{k=1}^{K} \log |\det(\mathbf{J}_{\mathbf{f}_{k}})|,$$

where $\mathbf{J}_{\mathbf{f}_k} = \frac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}}$.

Note: Here we consider only **continuous** random variables.

Normalizing flows

Example of a 4-step NF

NF log likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|$$

What is the complexity of the determinant computation?

What do we need?

- efficient computation of the Jacobian matrix $\mathbf{J_f} = \frac{\partial \mathbf{f_{\theta}(x)}}{\partial \mathbf{x}}$;
- \triangleright efficient inversion of $\mathbf{f}_{\theta}(\mathbf{x})$.

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

- 1. Autoregressive models (continued)
- 2. Normalizing flows (NF)
- 3. Forward and Reverse KL for NF
- 4. NF examples
 Linear normalizing flows
 Gaussian autoregressive NF

Forward KL vs Reverse KL

Forward KL ≡ MLE

$$KL(\pi||p) = \int \pi(\mathbf{x}) \log \frac{\pi(\mathbf{x})}{p(\mathbf{x}|\theta)} d\mathbf{x}$$

= $-\mathbb{E}_{\pi(\mathbf{x})} \log p(\mathbf{x}|\theta) + \text{const} \to \min_{\theta}$

Forward KI for NF model

$$\begin{split} \log p(\mathbf{x}|\theta) &= \log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J_f})| \\ \mathcal{K} \textit{L}(\pi||p) &= -\mathbb{E}_{\pi(\mathbf{x})} \left[\log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J_f})| \right] + \text{const} \end{split}$$

- ▶ We need to be able to compute $f_{\theta}(x)$ and its Jacobian.
- ▶ We need to be able to compute the density p(z).
- We don't need to think about computing the function $\mathbf{g}_{\theta}(\mathbf{z}) = \mathbf{f}_{\theta}^{-1}(\mathbf{z})$ until we want to sample from the NF.

Forward KL vs Reverse KL

Reverse KL

$$KL(p||\pi) = \int p(\mathbf{x}|\theta) \log \frac{p(\mathbf{x}|\theta)}{\pi(\mathbf{x})} d\mathbf{x}$$
$$= \mathbb{E}_{p(\mathbf{x}|\theta)} [\log p(\mathbf{x}|\theta) - \log \pi(\mathbf{x})] \to \min_{\theta}$$

Reverse KL for NF model (LOTUS trick)

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log p(\mathbf{z}) + \log |\det(\mathbf{J_f})| = \log p(\mathbf{z}) - \log |\det(\mathbf{J_g})| \\ & \mathcal{K}L(p||\pi) = \mathbb{E}_{p(\mathbf{z})} \left[\log p(\mathbf{z}) - \log |\det(\mathbf{J_g})| - \log \pi(\mathbf{g_{\theta}}(\mathbf{z})) \right] \end{split}$$

- ▶ We need to be able to compute $\mathbf{g}_{\theta}(\mathbf{z})$ and its Jacobian.
- We need to be able to sample from the density $p(\mathbf{z})$ (do not need to evaluate it) and to evaluate(!) $\pi(\mathbf{x})$.
- We don't need to think about computing the function $\mathbf{f}_{\theta}(\mathbf{x})$.

Normalizing flows KL duality

Theorem

Fitting NF model $p(\mathbf{x}|\boldsymbol{\theta})$ to the target distribution $\pi(\mathbf{x})$ using forward KL (MLE) is equivalent to fitting the induced distribution $p(\mathbf{z}|\boldsymbol{\theta})$ to the base $p(\mathbf{z})$ using reverse KL:

$$\mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z})).$$

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

Normalizing flows KL duality

Theorem

$$\mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z})).$$

Proof

- ightharpoonup $z \sim p(z)$, $x = g_{\theta}(z)$, $x \sim p(x|\theta)$;
- $ightharpoonup \mathbf{x} \sim \pi(\mathbf{x}), \ \mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}), \ \mathbf{z} \sim p(\mathbf{z}|\boldsymbol{\theta});$

$$\log p(\mathbf{z}|\boldsymbol{\theta}) = \log \pi(\mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z})) + \log |\det(\mathbf{J}_{\mathbf{g}})|;$$

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|.$$

$$\begin{split} \mathit{KL}\left(\rho(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z})\right) &= \mathbb{E}_{p(\mathbf{z}|\boldsymbol{\theta})} \big[\log p(\mathbf{z}|\boldsymbol{\theta}) - \log p(\mathbf{z})\big] = \\ &= \mathbb{E}_{p(\mathbf{z}|\boldsymbol{\theta})} \left[\log \pi(\mathbf{g}_{\boldsymbol{\theta}}(\mathbf{z})) + \log |\det(\mathbf{J}_{\mathbf{g}})| - \log p(\mathbf{z})\right] = \\ &= \mathbb{E}_{\pi(\mathbf{x})} \left[\log \pi(\mathbf{x}) - \log |\det(\mathbf{J}_{\mathbf{f}})| - \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}))\right] = \\ &= \mathbb{E}_{\pi(\mathbf{x})} \big[\log \pi(\mathbf{x}) - \log p(\mathbf{x}|\boldsymbol{\theta})\big] = \mathit{KL}(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})). \end{split}$$

- 1. Autoregressive models (continued)
- 2. Normalizing flows (NF)
- Forward and Reverse KL for NF
- 4. NF examples
 Linear normalizing flows
 Gaussian autoregressive NF

- 1. Autoregressive models (continued)
- 2. Normalizing flows (NF)
- Forward and Reverse KL for NF
- 4. NF examples
 Linear normalizing flows
 Gaussian autoregressive NF

Jacobian structure

Normalizing flows log-likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})) + \log \left| \det \left(\frac{\partial \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x})}{\partial \mathbf{x}} \right) \right|$$

The main challenge is a determinant of the Jacobian matrix.

What is the $det(\mathbf{J})$ in the following cases?

Consider a linear layer $\mathbf{z} = \mathbf{W}\mathbf{x}$, $\mathbf{W} \in \mathbb{R}^{m \times m}$.

- 1. Let z be a permutation of x.
- 2. Let z_j depend only on x_j .

$$\log \left| \det \left(\frac{\partial \mathbf{f}_{\theta}(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = \log \left| \prod_{j=1}^{m} \frac{\partial f_{j,\theta}(x_{j})}{\partial x_{j}} \right| = \sum_{j=1}^{m} \log \left| \frac{\partial f_{j,\theta}(x_{j})}{\partial x_{j}} \right|.$$

3. Let z_j depend only on $\mathbf{x}_{1:j}$ (autoregressive dependency).

Linear normalizing flows

$$z = f_{\theta}(x) = Wx$$
, $W \in \mathbb{R}^{m \times m}$, $\theta = W$, $J_f = W^T$

In general, we need $O(m^3)$ to invert matrix.

Invertibility

- ▶ Diagonal matrix O(m).
- ▶ Triangular matrix $O(m^2)$.
- It is impossible to parametrize all invertible matrices.

Invertible 1x1 conv

 $\mathbf{W} \in \mathbb{R}^{c \times c}$ – kernel of 1x1 convolution with c input and c output channels. The computational complexity of computing or differentiating $\det(\mathbf{W})$ is $O(c^3)$. Cost to compute $\det(\mathbf{W})$ is $O(c^3)$. It should be invertible.

Linear normalizing flows

$$\mathbf{z} = \mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{W}\mathbf{x}, \quad \mathbf{W} \in \mathbb{R}^{m \times m}, \quad \boldsymbol{\theta} = \mathbf{W}, \quad \mathbf{J}_{\mathbf{f}} = \mathbf{W}^{T}$$

Matrix decompositions

LU-decomposition

$$W = PLU$$
,

where **P** is a permutation matrix, **L** is lower triangular with positive diagonal, **U** is upper triangular with positive diagonal.

QR-decomposition

$$W = QR$$

where \mathbf{Q} is an orthogonal matrix, \mathbf{R} is an upper triangular matrix with positive diagonal.

Decomposition should be done only once in the beggining. Next, we fit decomposed matrices (P/L/U or Q/R).

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1x1 Convolutions, 2018

Hoogeboom E., et al. Emerging convolutions for generative normalizing flows, 2019

- 1. Autoregressive models (continued)
- 2. Normalizing flows (NF)
- Forward and Reverse KL for NF
- 4. NF examples
 Linear normalizing flows
 Gaussian autoregressive NF

Gaussian autoregressive model

Consider an autoregressive model

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{i=1}^{m} p(x_i|\mathbf{x}_{1:j-1},\boldsymbol{\theta}), \quad p(x_i|\mathbf{x}_{1:j-1},\boldsymbol{\theta}) = \mathcal{N}\left(\mu_j(\mathbf{x}_{1:j-1}), \sigma_j^2(\mathbf{x}_{1:j-1})\right).$$

Sampling

$$x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1}), \quad z_j \sim \mathcal{N}(0,1).$$

Inverse transform

$$z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}.$$

- We have an **invertible** and **differentiable** transformation from $p(\mathbf{z})$ to $p(\mathbf{x}|\theta)$.
- ▶ It is an autoregressive (AR) NF with the base distribution $p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I})!$
- Jacobian of such transformation is triangular!

Gaussian autoregressive NF

$$\mathbf{x} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_i(\mathbf{x}_{1:j-1})}.$$

Generation function $\mathbf{g}_{\theta}(\mathbf{z})$ is **sequential**. Inference function $\mathbf{f}_{\theta}(\mathbf{x})$ is **not sequential**.

Forward KL for NF

$$\mathit{KL}(\pi||p) = -\mathbb{E}_{\pi(\mathbf{x})}\left[\log p(\mathbf{f}_{\theta}(\mathbf{x})) + \log |\det(\mathbf{J}_{\mathbf{f}})|\right] + \mathrm{const}$$

- ▶ We need to be able to compute $f_{\theta}(x)$ and its Jacobian.
- ▶ We need to be able to compute the density p(z).
- We don't need to think about computing the function $\mathbf{g}_{\theta}(\mathbf{z}) = \mathbf{f}_{\theta}^{-1}(\mathbf{z})$ until we want to sample from the model.

Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

Gaussian autoregressive NF

$$\mathbf{x} = \mathbf{g}_{\theta}(\mathbf{z}) \quad \Rightarrow \quad x_{j} = \sigma_{j}(\mathbf{x}_{1:j-1}) \cdot z_{j} + \mu_{j}(\mathbf{x}_{1:j-1}).$$

$$\mathbf{z} = \mathbf{f}_{\theta}(\mathbf{x}) \quad \Rightarrow \quad z_{j} = (x_{j} - \mu_{j}(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_{j}(\mathbf{x}_{1:j-1})}.$$

- ▶ Sampling is sequential, density estimation is parallel.
- Forward KL is a natural loss.

Forward transform: $\mathbf{f}_{\theta}(\mathbf{x})$

$$z_j = (x_j - \mu_j(\mathbf{x}_{1:j-1})) \cdot \frac{1}{\sigma_j(\mathbf{x}_{1:j-1})}$$

Inverse transform: $\mathbf{g}_{\theta}(\mathbf{z})$

$$x_j = \sigma_j(\mathbf{x}_{1:j-1}) \cdot z_j + \mu_j(\mathbf{x}_{1:j-1})$$

Summary

- PixelCNN model use masked causal convolutions (1D or 2D) to get autoregressive model.
- ► Change of variable theorem allows to get the density function of the random variable under the invertible transformation.
- Normalizing flows transform a simple base distribution to a complex one via a sequence of invertible transformations with tractable Jacobian.
- Normalizing flows have a tractable likelihood that is given by the change of variable theorem.
- We fit normalizing flows using forward or reverse KL minimization.
- Linear NF try to parametrize set of invertible matrices via matrix decompositions.
- ► Gaussian autoregressive NF is an autoregressive model with triangular Jacobian. It has fast inference function and slow generation function. Forward KL is a natural loss function.