Лабораторная работа №2

по курсу информатики, 2 семестр

Варианты заданий

1. Постановка задачи

Написать на языке C++ реализацию полиморфного абстрактного типа данных – с помощью нескольких уровней абстракции. На нижем уровне реализуются структуры для организации данных в памяти – динамический массив и связанный список. Уровнем выше располагается абстракция ($ATД^1$ последовательность), обеспечивающая возможности унифицированной работы со всеми структурами нижнего уровня. Целевой ATД, реализация которого и является конечной целью задания, располагается на самом верхнем уровне и использует ATД последовательность для реализации большинства операций, см. схему на рис. ниже.

Следует предусмотреть средства для оценки производительности полученной реализации.

Минимальные требования к программе. В составе лабораторной работы должны быть реализованы:

¹ Абстрактный Тип Данных

- АТД динамический массив,
- АТД линейный связанный список,
- АТД последовательность,
- целевой АТД, указанный в варианте задания.

Для реализации необходимо использовать возможности ООП и шаблонов C++ (templates) – классов и функций. Во всех реализованных функциях необходимо обрабатывать случаи некорректных значений входных параметров – как правило, в таких случаях следует выбрасывать исключения.

Все реализованные классы и основные алгоритмы необходимо покрыть (модульными) тестами. Реализацию следует оснастить пользовательским интерфейсом (консольным) для проверки корректности реализации.

Дополнительные требования к программе (на повышение оценки).

- Перегрузка операторов (например, оператора [] для обращения/задания значения элемента по индексу).
- Для векторов, матриц и многочленов реализовать основные операции с помощью map-reduce (и zip-unzip).
- Реализовать функцию Split, которая данную последовательность элементов разобьет на отдельные фрагменты. Границы между фрагментами это элементы, удовлетворяющие условию, которое передается как параметр.

2. Требования к структурам данных

2.1. Класс DynamicArray

2.1. Khace DynamicArray		
template <class t=""> class DynamicArray</class>		
Создание объекта		
DynamicArray(T* items, int count);	Копировать элементы из переданного массива	
DynamicArray(int size);	Создать массив заданной длины	
DynamicArray(DynamicArray <t> & dynamicArray const);</t>	Копирующий конструктор	
Декомпозиция		
T Get(int index); Может выбрасывать исключения: — IndexOutOfRange (если индекс отрицательный, больше/равен числу элементов или указывает на не заданный элемент)	Получить элемент по индексу.	
int GetSize();	Получить размер массива	
Операции		
void Set(int index, T value);	Задать элемент по индексу	

	Может выбросить IndexOutOfRange
void Resize(int newSize);	Изменить размер массива. Если размер увеличивается, все элементы копируются в начало новой памяти. Если уменьшается — элементы, которые не помещаются, отбрасываются.

2.2. Класс LinkedList

template <class t=""> class LinkedList</class>	
Создание объекта	
LinkedList (T* items, int count);	Копировать элементы из переданного массива
LinkedList ();	Создать пустой список
LinkedList (LinkedList <t> & list const);</t>	Копирующий конструктор
Декомпозиция	
T GetFirst(); Может выбрасывать исключения: — IndexOutOfRange (если список пуст)	Получить первый элемент в списке
T GetLast(); Может выбрасывать исключения: — IndexOutOfRange (если список пуст)	Получить последний элемент в списке
T Get(int index); Может выбрасывать исключения: — IndexOutOfRange (если индекс отрицательный или больше/равен числу элементов)	Получить элемент по индексу.
LinkedList <t>* GetSubList(int startIndex, int endIndex); Может выбрасывать исключения: — IndexOutOfRange (если хотя бы один из индексов отрицательный или больше/равен числу элементов)</t>	Получить список из всех элементов, начиная с startindex и заканчивая endindex.
int GetLength();	Получить длину списка

Операции	
void Append(T item);	Добавляет элемент в конец списка
void Prepend(T item);	Добавляет элемент в начало списка
void InsertAt(T item, int index); Может выбрасывать исключения: — IndexOutOfRange (если индекс отрицательный или больше/равен числу элементов)	Вставляет элемент в заданную позицию
LinkedList <t>* Concat(LinkedList<t> *list);</t></t>	Сцепляет два списка

2.3. Класс Sequence

2.5. Khace Sequence		
template <class t=""> class Sequence template <class t=""> class ArraySequence : Sequence<t></t></class></class>		
template <class t=""> class LinkedListSequence : Sequence<t></t></class>		
Создание объекта		
ArraySequence (T* items, int count);	Копировать элементы из	
LinkedListSequence (T* items, int count);	переданного массива	
ArraySequence ();		
LinkedListSequence ();		
ArraySequence (LinkedList <t> & list const); Копирующий конструктор</t>		
LinkedListSequence (LinkedList <t> & list const);</t>		
Декомпозиция		
T GetFirst();	Получить первый элемент в	
Может выбрасывать исключения:	списке	
— IndexOutOfRange (если список пуст)		
T GetLast();		
Может выбрасывать исключения:	списке	
— IndexOutOfRange (если список пуст)		
T Get(int index);	Получить элемент по индексу.	

Может выбрасывать исключения:	
Тиожет выорасывать исключения.	
 IndexOutOfRange (если индекс отрицательный или больше/равен числу элементов) 	
Sequence <t>* GetSubsequence(int startIndex, int endIndex);</t>	Получить список из всех элементов, начиная с startIndex и
Может выбрасывать исключения:	заканчивая endIndex.
 IndexOutOfRange (если хотя бы один из индексов отрицательный или больше/равен числу элементов) 	
int GetLength();	Получить длину списка
Операции	
void Append(T item);	Добавляет элемент в конец списка
void Prepend(T item);	Добавляет элемент в начало списка
void InsertAt(T item, int index);	Вставляет элемент в заданную
Может выбрасывать исключения:	позицию
 IndexOutOfRange (если индекс отрицательный или больше/равен числу элементов) 	
Sequence <t>* Concat(Sequence <t> *list);</t></t>	Сцепляет два списка

Кроме того, здесь же оптимально реализовывать операции из серии map-reduce: map, reduce, zip, unzip, where (и др.).

Примерная схема реализации – на примере класса ArraySequence:

```
// Упрощенная реализация, без «умного» управления буфером.

template <class T>

class ArraySequence : Sequence<T>
{

  private:
    DynamicArray<T>* items;
    //...

public:
    //...
    int GetLength()
    {

       return this->items->GetSize();
    }

    //...

void Append(T item)
    {
```

```
this->items->Resize(this->items->GetSize()+1);
this->items->Set(this->items->GetSize()-1, item);
};
```

T.e. для реализации используется инкапсуляция DynamicArray и делегирование ему большей части работы.

3. Содержание вариантов

Таблица 1. Список целевых АТД			
№ варианта	Тип коллекции	Типы хранимых элементов	Дополнительные операции
1.	Очередь	Элементы: —Целые числа —Вещественные числа —Комплексные числа —Строки/символы	-map, where, reduce ¹⁾ -Конкатенация -Извлечение подпоследовательности (по заданным индексам)
2.	Очередь с приоритетами	$-$ Функции $^{2)}$ $-$ Студенты $^{3)}$ $-$ Преподаватели $^{3)}$	Поиск на вхождение подпоследовательности Сцепление Разделение на 2 очереди (по заданному признаку)
3.	Стек		 - тар, where, reduce - Конкатенация - Извлечение подпоследовательности (по заданным индексам) - Поиск на вхождение подпоследовательности
4.	Дек		-Сортировка -тар, where, reduce -Конкатенация -Извлечение
5.	Пагинированный дек (Дек с сегментированным буфером)		подпоследовательности (по заданным индексам) -Поиск на вхождение подпоследовательности -Слияние
6.	Вектор	Коэффициенты: -Целые числа -Вещественные числа -Комплексные числа	Сложение, умножение на скаляр, вычисление нормы, скалярное произведение
7.	Квадратная матрица		Сложение, умножение на скаляр, вычисление нормы, элементарные преобразования строк/столбцов

8.	Прямоугольная		Сложение, умножение на
0.	матрица		скаляр, вычисление
	матрица		нормы, элементарные
			преобразования
			строк/столбцов
9.	Треугольная матрица		Сложение, умножение на
10.	Диагональная		скаляр, вычисление
100	матрица $^{4)}$		нормы
11.	Разреженная матрица		Сложение, умножение,
			умножение на скаляр,
			вычисление нормы
12.	Многочлен ⁵⁾	Коэффициенты:	Сложение, умножение,
12.	Willow Bleif	-Целые числа	умножение на скаляр,
		-Вещественные числа	вычисление значения для
		-Комплексные числа	заданного значения
		Комплекеные числаКвадратные матрицы	аргумента, композиция
13.	«Линейная форма» ⁶⁾	Коэффициенты:	Сложение (и вычитание),
13.	«линсиная форма»	-Целые числа	умножение (и вычитание), умножение на скаляр,
		•	вычисление значения при
		-Вещественные числа	заданных значениях
		-Комплексные числа	аргументов
14.	Поток (stream) данных	Элементы:	-map, where, reduce
1	Tiorok (stream) gamilla	–Целые числа	–Извлечение
		-Вещественные числа	подпоследовательности
		-Комплексные числа	(по заданным индексам)
		-Комплекеные числа -Строки/символы	-Поиск на вхождение
		-Строки/символы -Функции	подпоследовательности
		1	-Слияние
		-Студенты	-Разделение (по
		Преподаватели	заданному признаку)
1.5	Management	–Пары объектов	• • • • • • • • • • • • • • • • • • • •
15.	Множество	Элементы:	-map, where
		–Целые числа	–объединение
		-Вещественные числа	-пересечение
		-Комплексные числа	–вычитание
		-Строки/символы	-проверка на включение
		–Функции	подмножества
		-Студенты -	-проверка на вхождение
		-Преподаватели	элемента
		–Пары объектов	-сравнение (равенство)
	. 7	70 11	двух множеств
16.	Кусочная функция ⁷⁾	Коэффициенты:	–Доопределение или
		–Целые числа	переопределение на
		-Вещественные числа	отрезке
		-Комплексные числа	–Проверка на
			монотонность
			–Проверка на
			непрерывность
			–Вычисление значения в
		1	

			точке
17.	«Функциональный	-	_
	список»		

 $^{^{1)}}$ Если $l=[a_1,\ldots,a_n]$ – некоторый список элементов типа T, а $f\colon\! T\to T,$ то:

$$map(f, l) \mapsto [f(a_1), \dots, f(a_n)]$$

Если, при тех же соглашениях, $h: T \to \text{Bool}$ — некоторая функция, возвращающая булево значение, то результатом where (h, l) будет новый список l', такой что: $a'_i \in l' \Leftrightarrow h(a'_i) = \text{true}$. Т.е. where фильтрует значения из списка l с помощью функции-фильтра h.

Функция reduce работает несколько иначе: «сворачивает» список в одно значение по заданному правилу $f: T \times T \to T$:

reduce
$$(f, l, c) \mapsto f\left(a_n, \left(f\left(a_{n-1}, \left(\dots f\left(a_2, \left(f(a_1c)\right)\right)\right)\right)\right)\right)$$

где c – константа, «стартовое» значение. Например, $l=[1,2,3], f(x_1,x_2)=2x_1+3x_2$, тогда:

reduce
$$(f, [1,2,3], 4) = f(3, f(2, f(1,4))) =$$

= $2 \cdot 3 + 3(2 \cdot 2 + 3(2 \cdot 1 + 3 \cdot 4)) =$
= $2 \cdot 3 + 3(2 \cdot 2 + 3 \cdot 14) = 2 \cdot 3 + 3 \cdot 42 = 132$

²⁾ Точнее, указатели на функции. Ниже – минимальный пример, как создать «список функций»:

³⁾ Точнее, описывающие их структуры. Персона характеризуется набором атрибутов, таких ФИО, дата рождения, некоторый идентификатор (в роли которого может выступать: номер в некотором списке, номер зачетки/табельный номер, номер паспорта, и др.). Пример структуры, описывающей персону:

```
class Person {
private:
    PersonID id;
    char* firstName;
    char* middleName;
    char* lastName;
    time_t 8erson8te;
public:
    PersonID GetID();
```

```
char* GetFirstName();
...
}
```

Тип PersonID предназначен для идентификации персоны и может быть объявлен различным образом, в зависимости от выбранного способа идентификации человека. Если для этих целей используется, скажем, номер паспорта, можно предложить, по крайней мере, два различных определения:

```
первое:
```

```
#typedef Person_ID char* // null-terminated string<sup>2</sup> вида "0982 123243"

BTopoe:

#typedef Person_ID struct { // можно и в виде класса
    int series; // как вариант, char*
    int number; // как вариант, char*
```

Для получения значения атрибутов предусматривают соответствующие методы, например:

```
char* name = person->getName(); // = "Иван"
char* fullName = person->getFullName(); // = "Иван Иванович Иванов",
вычислимый атрибут
```

⁴⁾ Диагональной называется матрица, у которого лишь элементы на главной диагонали отличны от 0. Также рассматривают трехдиагональные матрицы, которых все отличные от 0 элементы расположены на главной диагонали, а также на двух смежных с ней: верхней и нижней:

$$\begin{pmatrix} * & * & 0 & \dots & 0 \\ * & * & * & \dots & 0 \\ 0 & * & \ddots & & \vdots \\ \vdots & & \ddots & * & * \\ 0 & \dots & 0 & * & * \end{pmatrix}$$

Аналогично можно рассматривать 5-диагональные, 2k + 1-диагональные матрицы, и т.д.

- ⁵⁾ Многочлен степени n записывается в виде: $P_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ и может быть однозначно задан списком своих коэффициентов a_0, \dots, a_n . Многочлен является функцией, на множестве функций определена ассоциативная операция композиция \circ : $(f \circ g)(x) = f(g(x))$.
- ⁶⁾ Подразумевается многочлен первой степени от n переменных: $F_n(x_1, ..., x_n) = a_0 + a_1 x_1 + ... + a_n x_n$.
- ⁷⁾ Пусть есть полное упорядочение³ (<, R). Тогда на отрезке $[a,b] \subseteq R$ может быть определена функция $f: R \to D$ (D область значений, произвольное множество, желательно, хотя бы частично упорядоченное). Пусть имеется $\xi_0(=a) < \xi_1 < \cdots < \xi_n < \xi_{n+1}(=b) \in R$ разбиение отрезка [a,b]; тогда кусочно-заданная функция это система функций: $f_i: [\xi_{i-1}, \xi_i] \to D$, причем неоднозначность в точках ξ_i устраняется за счет, что берется

 $^{^2}$ См. например: https://en.wikipedia.org/wiki/Null-terminated_string. Идея такая, что конец строки определяется по наличию символа с кодом 0.

³ Total ordering

значение из (i+1)-го сегмента (кроме последней точки): $f(\xi_i)=f_{i+1}(\xi_i), i\in\overline{1,n-1}$ и $f(\xi_n)=f_n(\xi_n).$

(Задание должно включать пункты общей «стоимостью» не менее 9 баллов.)

	Таблица 2. Содержа	ние вариантов заданий	
	Задача	Пояснения	Баллы
Б-1.	Связанный список		
Б-2.	Динамический массив		
Б-3.	Последовательность		
Б-3.1.	ListSequence		
Б-3.2.	ArraySequence		
Б-3.3.	AdaptiveSequence		3
C-1.	Очередь	_	3
C-2.	Очередь с приоритетами	_	4
C-3.	Стек	_	3
C-4.	Дек	_	3
C-5.	Дек с сегментированным буфером	-	10
C-6.	Вектор	_	5
C-7.	Матрица		
C-7.1.	Хранение элементов	_	
C-7.1.1.	«Обычная» матрица	_	5
C-7.1.2.	Разреженная	_	5
C-7.1.3.	С автоматическим	_	7
	переключением		
C-7.2.	Разновидность	_	
C-7.2.1.	Квадратная матрица		5
C-7.2.2.	Прямоугольная матрица		5
C-7.2.3.	Треугольная матрица		5
C-7.2.4.	Диагональная матрица		4
C-7.2.5.	Ортогональная матрица		
C-8.	Многочлен	_	6
C-9.	«Линейная форма»	_	5
C-10.	Поток (stream) данных	_	
C-10.1.	Специальная реализация для работы с файлами	-	5
C-10.2.	Обобщенный механизм	_	8
C-11.	Множество	_	6
C-12.	Кусочная функция	_	10
C-13.	«Функциональный» список ⁹⁾	_	8
C-14.		_	
M-1.	ICollection <t></t>	Oсновные методы – T Get(size_t) –size_t GetCount() –копирующий конструктор	2
M-2.	Map-Reduce		
M-2.1.	Базовые операции	Map, reduce,	1

M-2.2.	Дополнительные	Zip/unzip, Split, Where, Concat,	2
		Subsequence	
M-3.	Энумератор (IEnumerable + IEnumerator)	_	3
M-4.	Mutable/Immutable	_	3
M-5.	Использовать IGroup/IRing	_	4
M-6.	Перегрузка операторов ⁸⁾		2
M-7.		_	
M-8.		_	
M-9.		_	
Задания п	овышенной сложности		
П-1.	Словарь слов (список)	Построение «именного указатель заданной строки определить входящих в нее слов (возмог исключением некоторых, перечисл заданном словаре), и для каждого найденного слова указать список по исходной строке, в которых оно встро	список жно, за енных в о такого озиций в
П-2.	«Ханойская башня»	Написать программу, решающую с «ханойской башне» ⁴ . Стержни моде стеками, в роли колец могут в произвольные предметы, характериз формой и цветом. Параметрами являются список предметов и номер на котором предметы размещены изн	лировать ыступать ующиеся задачи стержня,
П-3.	Интерпретатор регулярных выражений для полиморфных последовательностей	Исходными являются: символьная последовательность элементов. С	
П-4.	«Сортировочная станция»	±	по типов. образом, и строго исходной илять от края, а Станция путями. возможно Пример. ый вагон и). Тогда

 $^{^4}$ См. https://ru.wikipedia.org/wiki/ханойская_башня или https://habrahabr.ru/post/200758 5 https://ru.wikipedia.org/wiki/perулярное_выражение

		T .
		быть представлен списком: $[(t_2,1)(t_3,2)(t_3,3)(t_1,4)(t_2,5)(t_3,6)(t_2,7)(t_1,3), \\ . В результате работы алгоритма должен получиться состав: [(t_2,1)(t_2,5)(t_2,7)(t_3,2)(t_3,3)(t_3,6)(t_1,4)(t_1,5), \\ .$
П-5.	Строка	Реализовать класс строк CString, включая различные операции: конкатенацию, получение подстроки, поиск вхождений подстроки, разбиение на строки, замена подстроки на другую строку, и др. С помощью наследования и переопределения методов, представить два варианта реализации: на основе связанных списков и на основе динамических массивов. (10-12)
П-6.	Калькулятор полиномов	
П-7.		

 $^{^{8)}}$ Для каждого типа данных свой перечень релевантных операторов. Например, для алгебраических типов — это операторы, представляющие операции (сложение, умножение и т.п.). Коллекции в некоторой степени тоже можно отнести к алгебраическим типам (коллекции, по крайней мере, являются моноидами относительно конкатенации 6).

4. Критерии оценки

1.	Качество программного кода:	 стиль (в т.ч.: имена, отступы и проч.) (0-2) структурированность (напр. декомпозиция сложных функций на более простые) (0-2) качество основных и второстепенных алгоритмов (напр. обработка граничных случаев и некорректных исходных данных и т.п.) (0-3) 	<mark>0-6</mark> <mark>баллов</mark>
2.	Качество пользовательского интерфейса:	 предоставляемые им возможности (0-2) наличие ручного/автоматического ввода исходных данных (0-2) настройка параметров для автоматического режима отображение исходных данных и промежуточных и конечных результатов и др. (0-2) 	<mark>0-6</mark> <mark>баллов</mark>

6

3.	Качество тестов	степень покрытия	0-5
J.	Ru leelbo leelob	1	баллов
		– читаемость	оаллов
		 качество проверки (граничные и 	
		некорректные значения, и др.)	
		 полнота и качество представления 	
		результатов тестирования	
4.	Полнота выполнения задания и	Оценивается качество подготовки ТЗ,	0-3
	качество ТЗ	функциональная полнота реализации,	<mark>баллов</mark>
5.	Владение теорией	знание алгоритмов, области их	<mark>0-5</mark>
	-	применимости, умение сравнивать с	<mark>баллов</mark>
		аналогами, оценить сложность,	
		корректность реализации	
6.	Оригинальность реализации	оцениваются отличительные	0-5
		особенности конкретной реализации –	<mark>баллов</mark>
		например, общность структур данных,	
		наличие продвинутых графических	
		средств, средств ввода-вывода,	
		интеграции с внешними системами и др.	
		Итого	0-30
		111010	баллов
7.	Объем выбранного задания	дополнительная работа, выполненная	Junios
'	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	сверх установленного минимума,	
		согласованность выбранных	
		составляющих (например, нескольких	
		взаимосвязанных задач оценивается	
		выше, чем реализация набора	
		независимых задач)	

Для получения зачета за выполнения лабораторной работы необходимо соблюдение всех перечисленных условий:

- оценка за п. 1 должна быть не менее 3 баллов
- оценка за п. 4 должна быть не менее 3 баллов
- оценка за п. 5 должна быть больше 0
- суммарная оценка за работу без учета п. 6 должна быть не менее 17 баллов