Résultats 1c

11. Combien y a-t-il des protons, de neutrons et d'électrons dans les « espèces » suivantes? fluor (F): 9p, 9e, 10n / or (Au): 79p, 79e, 118n / Iode-131 (I): 53p, 53e, 78n /

cobalt-60 (Co):<u>27p, 27e, 33n</u> / potassium-43 (K): <u>19p, 19e, 24n</u> / Fe³⁺: <u>26p, 23e, 30n</u> /

(Te-126)²: <u>52p, 54^e, 74n</u>.

12. Calculer les pourcentages massiques des atomes dans l'oxyde de diazote, N₂O (protoxyde d'azote).

 $m \text{ de N}_2\text{O} = (14,007 \text{ x 2}) + 15,999 = 44,013$ $\omega_N = (14,007 \text{ x 2}) / 44,013 = 0,636$ (=63,6% d'azote) $\omega_O = 15,999 / 44,013 = 0,364$ (=36,4% d'oxygène)

- 13. Calculer le nombre de grammes de fer qu'il y a dans 2000g d'oxyde de fer(III), Fe₂O₃ (la rouille). m de Fe₂O₃= 159,691 $\omega_{\text{Fe}} = (55,847 \text{ x 2})/159,691 = 0,699 \ (=69,9 \%) \ 0,699 \text{ x 2000 g} = 1398 \text{ g Fe}$
- 14. Combien y a-t-il d'électrons dans les ions suivants?

 $K^{+} = 18 e^{-}$, $I^{-} = 54 e^{-}$, $N^{3-} = 10 e^{-}$, $Ti^{4+} = 18 e^{-}$, $Ag^{+} = 46 e^{-}$, $Se^{2-} = 36 e^{-}$.

15. Donner trois ions qui sont isoélectroniques avec:

a. Ca²⁺: <u>18 e⁻</u>: <u>K⁺</u>, <u>Cl⁻</u>, <u>S²⁻</u>, b. N³⁻: <u>10e-</u>: <u>O²⁻</u>, <u>F⁻</u>, <u>Na⁺</u>.

16. Le lithium naturel est composé de deux isotopes: Li-6 (6,0169 uma) et Li-7 (7,0182 uma). La masse atomique est 6,941 uma. Calculer les abondances naturelles du ⁶Li et du ⁷Li dans le lithium en pourcentages.

x = 7.71

$$m_{\text{Li}} = m_{\text{Li-6}}$$
 (abondance % /100 %) + $m_{\text{Li-7}}$ (abondance % / 100%)
si x = %_{Li-6} il s'ensuit que 100 – x = %_{Li-7}
 $m_{\text{Li}} = 6.0169 \frac{x}{100} + 7.0182 \frac{100 - x}{100}$
 $6.941 \cdot 100 = 6.0169 x + 701.82 - 7.0182 x$
 $694.1 - 701.82 = -1.0013x$

-7.72 = -1.0013 x

Exercice 17

formule moléculaire M₂O₃

masse d'oxygène: 1.683 g - 1.443 g = 0.24 g oxygène

pourcentage massique d'oxygène: $\frac{100 \cdot 0.24}{1.683} = 14.26\%$

$$\left(\frac{3.15.999}{M \text{ M}_2\text{O}_3}\right) \times 100\% = 14.26\%$$

$$M \text{ de } M_2O_3 = \frac{47.997}{14.26} \cdot 100 = 336.58 \text{ g}$$

$$M \text{ de } M_2$$
: 336.58 - 47.997 = 288.583 g

$$M \text{ de M: } \frac{288.583}{2} = 144.29 \text{ g} \frac{\text{Nd (n\'eodyme)}}{2}$$