TREINAMENTO DE REDE MLP PARA CLASSIFICAÇÃO DE RISCO DE BURNOUT NO TRABALHO

Anderson Luis Marchi

Instituto Federal Catarinense

andersonlmarchi@gmail.com

1. Introdução

O presente estudo utiliza o dataset *Mental Health & Burnout in the Workplace*, disponibilizado originalmente no Kaggle (2025). Esse conjunto de dados contém respostas de profissionais do setor de tecnologia a um questionário relacionado à saúde mental no ambiente de trabalho. O objetivo principal é investigar fatores associados à presença de transtornos mentais, ao suporte organizacional e às barreiras percebidas para buscar tratamento.

Esse dataset pode ser utilizado em pesquisas de aprendizado de máquina, pois combina variáveis demográficas, comportamentais e de percepção subjetiva, o que permite a construção de modelos preditivos voltados à análise de saúde mental e risco de burnout em contextos corporativos.

2. Desenvolvimento da solução

O dataset contém 3000 registros de indivíduos e um conjunto de variáveis categóricas e numéricas. Entre os principais grupos de atributos, destacam-se:

- Variáveis demográficas: idade, gênero, país de residência.
- Variáveis profissionais: tipo de empresa (startup, grande porte), número de funcionários, regime de trabalho remoto ou presencial.
- Variáveis sobre saúde mental: histórico de doença mental, diagnóstico precoce, percepção do impacto da saúde mental no trabalho.
- Variáveis sobre suporte organizacional: existência de políticas de apoio, abertura da empresa para discutir saúde mental, facilidade para solicitar afastamento.
- Variáveis de percepção social: estigma percebido, reação de colegas e gestores, disposição em falar sobre saúde mental com superiores.

De modo geral, o dataset possui um caráter misto, conforme visualizado na Figura 1 a seguir, com dados qualitativos (nominais e ordinais) e quantitativos sendo um modelo perfeito para ser usado em MLP.

	A	В	С	D	E	F	G	Н	1	J	K
1	EmployeeID /		Gender	Country	JobRole	Department	YearsAtCompany	WorkHoursPerWeek		BurnoutLevel	JobSatisfaction
2	1001	50	Male	<u>UK</u>	Sales Associate	HR	14	47	7 No	3.37	5.06
3	1002		6 Male	Germany	Software Engineer	<u>U</u>	1		Hybrid	7.39	2.0
4	1003	29	Non-binary	India	IT Admin	<u>II</u>	13		Hybrid	7.1	7.17
5	1004		2 Male	Australia	HR Specialist	<u>II</u>	15		l Yes	4.18	3.76
6	1005	40	Male	Brazil	Customer Support	Support	6		4 Yes	8.28	2.34
7	1006	44	Prefer not to say	Germany	Project Manager	Support	3		3 Hybrid	3.12	4.81
8	1007	32	Prefer not to say	USA		Engineering	17		Hybrid	5.15	9.68
9	1008	32	2 Male	Canada		Marketing	4		9 No	5.25	4.7
10	1009	45	Prefer not to say	Canada	Marketing Manager	Sales	5		Hybrid	4.07	4.13
11	1010	57	Prefer not to say	Brazil		Engineering	6		Hybrid	9.59	5.0
12	1011		Male	Germany	Sales Associate	Sales	14		Yes	7.27	1.11
13	1012		1 Non-binary	Brazil	Data Scientist	Marketing	0		4 Hybrid	5.85	2.2
14	1013		3 Male	Canada	HR Specialist	Support	3	47	7 Hybrid	5.59	8.65
15	1014	23	Prefer not to say	India	IT Admin	Sales	0		Yes	2.43	9.8
16	1015	45	Non-binary	Germany	Marketing Manager		10		No	4.35	2.42
17	1016	51	I Female	<u>UK</u>	Marketing Manager	规	17		1 Yes	7.05	5.82
18	1017		Non-binary	India	Project Manager	Support	13		Yes	9.32	9.7
9	1018		Prefer not to say	India		Ţ	10		7 Hybrid	8.35	2.41
20	1019		Non-binary	India	Project Manager	<u>II</u>	9		6 Hybrid	3.7	2.68
21	1020		¹ Male	ŲΚ	Data Scientist	Marketing	16		l No	4.91	9.34
22_	1021	33	3 Female	USA	Customer Support	Support	3		Hybrid	1.75	7.35
23	1022	43	3 Female	Australia	Data Scientist	HR	14		No	1.92	2.37
24	1023	46	Female	Brazil	Customer Support	Engineering	15		9 No	5.23	4.54
25	1024		Prefer not to say	Canada	Project Manager	Ţ	20		6 No	5.77	1.51
26	1025		Prefer not to say	Brazil	HR Specialist	Ţ	12		l No	3.38	4.89
27	1026		7 Female	Germany	Data Scientist	Sales	8		Hybrid	6.79	8.0
8	1027		Non-binary	USA	Project Manager	Marketing	10		Yes	7.33	5.99
29	1028	24	⁴ Female	Germany	Software Engineer	Engineering	10		Yes Yes	3.69	6.83
30	1029		Non-binary	Brazil	Project Manager	Engineering	5		Hybrid	7.83	3.94
31	1030	28	Non-binary	Canada	Project Manager	Sales	0	33	3 Hybrid	2.85	2.45

Figura 1: Amostra do dataset aberto em software de planilha

Nele podemos utilizar diferentes tarefas de aprendizado supervisionado, como:

- **Classificação binária**: prever se um indivíduo possui histórico de doença mental ou se pode ter um burnout (*yes/no*).
- Classificação multiclasse: prever a abertura da empresa para discutir saúde mental (aberta, parcialmente aberta, fechada).
- **Predição de suporte organizacional**: identificar empresas com maior ou menor probabilidade de oferecer políticas de saúde mental.

Para este fim, uma rede neural do tipo MLP é adequada, pois consegue capturar relações não lineares entre múltiplas variáveis categóricas e numéricas. O processo típico de modelagem inclui:

- Pré-processamento: limpeza de dados, codificação de variáveis categóricas e normalização.
- 2. **Divisão em treino e teste**: usado na proporção 70/30.
- 3. **Treinamento da MLP**: composta por uma camada de entrada (features), uma ou mais camadas ocultas (com funções de ativação como *ReLU*), e uma camada de saída (sigmóide para classificação binária ou softmax para multiclasse).
- 4. **Avaliação do modelo**: métricas como *accuracy*, *precision*, *recall* e *F1-score*.

Nos treinamentos foram utilizadas várias configurações distintas para termos uma amostra de qual delas teríamos a melhor acurácia e aplicação do F1-score para

definir a melhor delas. Abaixo temos o trecho do código onde definimos as configurações:

Figura 2: Configurações usadas no treinamento da MLP

Nota-se que foi usado a configuração de Dropout para o treinamento da rede. Esse dropout é uma técnica de regularização usada em redes neurais para evitar o overfitting, que em resumo desliga a porcentagem de neurônios durante o processo de treinamento para que ela possua várias arquiteturas ligeiramente diferentes, evitando que ela "decore" os dados de treino e melhora a generalização para novos dados .

4. Resultados

O modelo de classificação foi treinado utilizando três abordagens distintas, variando hiperparâmetros e estratégias de regularização. Em cada experimento, avaliamos o desempenho por meio da acurácia e da perda durante as épocas de treinamento e validação, permitindo identificar possíveis sinais de overfitting. Para complementar a avaliação, foram geradas as matrizes de confusão de cada treinamento, possibilitando observar não apenas a taxa de acertos globais, mas também como o modelo se comportou em cada classe individualmente.

Figura 3: Matriz de confusão da configuração 1

Figura 4: Matriz de confusão da configuração 2

Figura 5: Matriz de confusão da configuração 3

Esse recurso foi essencial para identificar classes em que o modelo apresentou maior dificuldade, destacando assimetrias na classificação que não seriam visíveis apenas pela métrica de acurácia. Por fim, os gráficos de perda e acurácia ao longo das épocas foram incluídos para cada versão do treinamento, porém, no gráfico representado pela Figura 6 a seguir, trouxe apenas os dados do treinamento com a melhor configuração (por F1 da classe 1) que foi o MLP-1 com 0.9713 seguido de 0.9697 do MLP-3 e por último o MLP-2 com 0.9662.

Figura 6: Tela de listagem de tickets do UVdesk

Esses gráficos permitem verificar a consistência entre treino e validação, bem como avaliar o ponto de saturação do modelo. Em conjunto com as matrizes de confusão, eles fornecem uma visão mais completa do desempenho alcançado em cada cenário, servindo de base para selecionar a configuração mais adequada e orientar ajustes futuros.

5. Referências

KAGGLE. **Mental Health & Burnout in the Workplace**. Disponível em: https://www.kaggle.com/datasets/khushikyad001/mental-health-and-burnout-in-the-workplace. Acesso em: 27 ago. 2025.