Università degli Studi di Padova

DIPARTIMENTO DI MATEMATICA

Corso di Laurea in Informatica

Sviluppo di un modulo in Alfresco, sistema di gestione della conoscenza

Tesi di laurea triennale

Relat	ore
Prof.	Gaggi Ombretta

Laureando Trevisan Davide

Anno Accademico 2016-2017

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

— Oscar Wilde

Dedicato a \dots

Abstract

Scopo di questa tesi di laurea è esporre il lavoro svolto dal laureando Trevisan Davide durante lo stage di trecentoventi ore presso l'azienda Ennova Research SRL con sede in Venezia-Mestre. Il progetto di stage si è incentrato sullo sviluppo di alcune funzionalità connesse al sistema di gestione della conoscenza che l'azienda utilizza per gestire la documentazione relativa ai progetti assegnati dalle aziende clienti e monitorare l'operato dei dipendenti. Il sistema si basa sulla piattaforma Alfresco, un noto e molto utilizzato KMS, la quale offre una SDK (che verrà descritta estensivamente ed esaustivamente in seguito) lanciabile in maniera autonoma tramite Maven che consente lo sviluppo di moduli per personalizzare e ottimizzare la piattaforma a proprio piacimento. Nella realizzazione del progetto è stato possibile, pertanto, approfondire le potenzialità, i difetti e le caratteristiche della piattaforma Alfresco nonché le fasi che hanno portato alla realizzazione di moduli per aggiungere ad Alfresco nuove funzionalità e una maggiore customizzazione del suo aspetto. Tutte le fasi, le problematiche e quanto prodotto durante il progetto sarà accuratamente esposto nei capitoli che compongono la presente tesi.

$\hbox{``Life is really simple,}\\$	$but\ we$	insist on	$making\ it$	complicated "
				— Confucius

Ringraziamenti

Innanzitutto, vorrei esprimere la mia gratitudine al Prof. NomeDelProfessore, relatore della mia tesi, per l'aiuto e il sostegno fornitomi durante la stesura del lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno, il grande aiuto e per essermi stati vicini in ogni momento durante gli anni di studio.

Ho desiderio di ringraziare poi i miei amici per tutti i bellissimi anni passati insieme e le mille avventure vissute.

Padova, Aprile 2017

Trevisan Davide

Indice

1		roduzione	1
	1.1	L'azienda	1
	1.2	Lo stage	1
	1.3	Organizzazione del testo	1
2	Pro	cessi e metodologie	3
	2.1	Processo sviluppo prodotto	3
3	Des	scrizione dello stage	5
	3.1	Introduzione al progetto	5
	3.2	Analisi preventiva dei rischi	5
	3.3	Requisiti e obiettivi	5
	3.4	Pianificazione	5
4	Ana	alisi dei requisiti	7
	4.1	Casi d'uso	7
	4.2	Tracciamento dei requisiti	8
5	Pro	gettazione e codifica	11
	5.1	Tecnologie e strumenti	11
	5.2	Ciclo di vita del software	11
	5.3	Progettazione	11
	5.4	Design Pattern utilizzati	11
	5.5	Codifica	11
6	Ver	ifica e validazione	13
7	Cor	nclusioni	15
	7.1	Consuntivo finale	15
	7.2	Raggiungimento degli obiettivi	15
	7.3	Conoscenze acquisite	15
	7.4	Valutazione personale	15
\mathbf{A}	App	pendice ${f A}$	17
Gl	.ossa	ry	19
	ronv		21

Bibliografia 23

Elenco delle figure

Elenco delle tabelle

4.1	Tabella del tracciamento dei requisti funzionali	9
4.2	Tabella del tracciamento dei requisiti qualitativi	9
4.3	Tabella del tracciamento dei requisiti di vincolo	9

Introduzione

In questo capitolo verrà brevemente esposto il contesto in cui si è svolto lo stage, descrivendo le motivazioni che hanno spinto l'azienda a proporre questo stage

1.1 L'azienda

Ennova Research srl è un'azienda che opera nel settore ICT e realizza soluzioni informatiche altamente tecnologiche ed affidabili, che le permettono di agire con successo in settori di business come quello della Pubblica Amministrazione, delle grandi Corporazioni Bancarie, delle Multinazionali ICT e della Grande Distribuzione. È partner di grandi attori del mercato nazionale e internazionale quali Engineering, Toshiba, EMC, HP, Novell, Nvidia, ed altri . Ennova Research si distingue ance nel campo delle tecnologie open source utilizzate per la realizzazione di soluzioni multimediali avanzate destinate ai mercati B2C e B2B e di applicativi software destinati al settore del mobile, ad esempio Slash, che sfrutta le Application Program Interface di Twitter. L'azienda inoltre investe molto in ricerca e sviluppo ed è sempre pronta ad esplorare nuove tecnologie.

1.2 Lo stage

Descrizione dell'attività di stage

1.3 Organizzazione del testo

Il secondo capitolo descrive ...

Il terzo capitolo approfondisce ...

Il quarto capitolo approfondisce ...

Il quinto capitolo approfondisce ...

Il sesto capitolo approfondisce ...

Nel settimo capitolo descrive ...

Riguardo la stesura del testo, relativamente al documento sono state adottate le seguenti convenzioni tipografiche:

- * gli acronimi, le abbreviazioni e i termini ambigui o di uso non comune menzionati vengono definiti nel glossario, situato alla fine del presente documento;
- *per la prima occorrenza dei termini riportati nel glossario viene utilizzata la seguente nomenclatura: $parola^{[\mathrm{g}]};$
- $\ast\,$ i termini in lingua straniera o facenti parti del gergo tecnico sono evidenziati con il carattere corsivo.

Processi e metodologie

Brevissima introduzione al capitolo

2.1 Processo sviluppo prodotto

Descrizione dello stage

Breve introduzione al capitolo

3.1 Introduzione al progetto

3.2 Analisi preventiva dei rischi

Durante la fase di analisi iniziale sono stati individuati alcuni possibili rischi a cui si potrà andare incontro. Si è quindi proceduto a elaborare delle possibili soluzioni per far fronte a tali rischi.

1. Performance del simulatore hardware

Descrizione: le performance del simulatore hardware e la comunicazione con questo potrebbero risultare lenti o non abbastanza buoni da causare il fallimento dei test. **Soluzione:** coinvolgimento del responsabile a capo del progetto relativo il simulatore hardware.

3.3 Requisiti e obiettivi

3.4 Pianificazione

Analisi dei requisiti

Breve introduzione al capitolo

4.1 Casi d'uso

Per lo studio dei casi di utilizzo del prodotto sono stati creati dei diagrammi. I diagrammi dei casi d'uso (in inglese *Use Case Diagram*) sono diagrammi di tipo uml dedicati alla descrizione delle funzioni o servizi offerti da un sistema, così come sono percepiti e utilizzati dagli attori che interagiscono col sistema stesso. Essendo il progetto finalizzato alla creazione di un tool per l'automazione di un processo, le interazioni da parte dell'utilizzatore devono essere ovviamente ridotte allo stretto necessario. Per questo motivo i diagrammi d'uso risultano semplici e in numero ridotto.

figura 4.1: Use Case - UC0: Scenario principale

UC0: Scenario principale

Attori Principali: Sviluppatore applicativi.

Precondizioni: Lo sviluppatore è entrato nel plug-in di simulazione all'interno dell'I-

DE.

Descrizione: La finestra di simulazione mette a disposizione i comandi per configurare, registrare o eseguire un test.

Postcondizioni: Il sistema è pronto per permettere una nuova interazione.

4.2 Tracciamento dei requisiti

Da un'attenta analisi dei requisiti e degli use case effettuata sul progetto è stata stilata la tabella che traccia i requisiti in rapporto agli use case.

Sono stati individuati diversi tipi di requisiti e si è quindi fatto utilizzo di un codice identificativo per distinguerli.

Il codice dei requisiti è così strutturato R(F/Q/V)(N/D/O) dove:

R = requisito

F = funzionale

Q = qualitativo

 $V=\,\mathrm{di}\,\,\mathrm{vincolo}$

N = obbligatorio (necessario)

D = desiderabile

Z = opzionale

Nelle tabelle 4.1, 4.2 e 4.3 sono riassunti i requisiti e il loro tracciamento con gli use case delineati in fase di analisi.

tabella 4.1: Tabella del tracciamento dei requisti funzionali

Requisito	Descrizione	Use Case
RFN-1	L'interfaccia permette di configurare il tipo di sonde del	UC1
	test	

tabella 4.2: Tabella del tracciamento dei requisiti qualitativi

Requisito	Descrizione	Use Case
RQD-1	Le prestazioni del simulatore hardware deve garantire la	-
	giusta esecuzione dei test e non la generazione di falsi negativi	

tabella 4.3: Tabella del tracciamento dei requisiti di vincolo

Requisito	Descrizione	Use Case
RVO-1	La libreria per l'esecuzione dei test automatici deve essere	-
	riutilizzabile	

Progettazione e codifica

Breve introduzione al capitolo

5.1 Tecnologie e strumenti

Di seguito viene data una panoramica delle tecnologie e strumenti utilizzati.

Tecnologia 1

Descrizione Tecnologia 1.

Tecnologia 2

Descrizione Tecnologia 2

5.2 Ciclo di vita del software

5.3 Progettazione

Namespace 1

Descrizione namespace 1.

Classe 1: Descrizione classe 1

Classe 2: Descrizione classe 2

5.4 Design Pattern utilizzati

5.5 Codifica

Verifica e validazione

Conclusioni

- 7.1 Consuntivo finale
- 7.2 Raggiungimento degli obiettivi
- 7.3 Conoscenze acquisite
- 7.4 Valutazione personale

Appendice A

Appendice A

Citazione

Autore della citazione

Glossario

- API in informatica con il termine Application Programming Interface API (ing. interfaccia di programmazione di un'applicazione) si indica ogni insieme di procedure disponibili al programmatore, di solito raggruppate a formare un set di strumenti specifici per l'espletamento di un determinato compito all'interno di un certo programma. La finalità è ottenere un'astrazione, di solito tra l'hardware e il programmatore o tra software a basso e quello ad alto livello semplificando così il lavoro di programmazione. 1
- **B2B** Business-to-business, spesso indicato con l'acronimo *B2B*, in italiano commercio interaziendale, è una locuzione utilizzata per descrivere le transazioni commerciali elettroniche tra imprese, distinguendole da quelle che intercorrono tra le imprese e altri gruppi, come quelle oppure quelle tra una impresa e il governo. 1
- **B2C** Con Business to Consumer, spesso abbreviato in B2C, si indicano le relazioni che un'impresa commerciale detiene con i suoi clienti per le attività di vendita e/o di assistenza. 1
- ICT Information and communication tecnology:

Le tecnologie dell'informazione e della comunicazione (in inglese Information and Communications Technology, in acronimo ICT), sono l'insieme dei metodi e delle tecnologie che realizzano i sistemi di trasmissione, ricezione ed elaborazione di informazioni (tecnologie digitali comprese). 1

KMS Knowledge management system:

I Knowledge management system sono sistemi software che supportano le fasi del ciclo dell'informazione e la comunicazione all'interno di una comunità di pratica (ad esempio un'azienda) o di apprendimento (ad esempio una classe "virtuale") anche disperse nello spazio. Dovrebbero assistere le persone ad esplicitare la conoscenza tacita, a reperirla, a condividerla, supportando in particolare le seguenti funzioni:

- * Cattura delle competenze collettive
- * Controllo per realizzare obiettivi comuni
- * Integrazione delle conoscenze frammentate

. v

Acronimi

```
API Application Program Interface. 19
B2B Business-to-business. 19
B2C Business-to-Business. 19
ICT Information and Communication Tecnology. 19
KMS Knowledge Managment System. 19
```

Bibliografia

Riferimenti bibliografici

James P. Womack, Daniel T. Jones. Lean Thinking, Second Editon. Simon & Schuster, Inc., 2010.

Siti Web consultati

Manifesto Agile. URL: http://agilemanifesto.org/iso/it/.