Séries Temporais - Trabalho Final

Mateus Lee Yu (RA: 236235)

Introdução

O banco Itaú Unibanco é um dos maiores bancos da América Latina, essa instituição financeira desempenha um papel significativo na economia brasileira. As ações da Itaú são amplamente negociadas na bolsa de valores por investidores individuais e institucionais.

A volatilidade de ações é uma métrica do risco associado a um ativo financeiro, ela é utilizada por investidores para a tomada de decisões de compra ou venda com o objetivo de maximizar o lucro e minimizar o prejuízo. A volatilidade depende de diversos fatores, como eventos econômicas e políticas dos países, e até de mudanças internas da empresa.

Nesse trabalho vamos modelar a volatilidade do banco Itaú Unibanco Holding S.A. (ITUB4.SA) por um modelo ARMA-GARCH, utilizado dados disponibilizados pelo *Yahoo! Finance* a partir do dia 01 de Janeiro de 2000 até 16 de Junho de 2023. Logo após a modelagem, colocaremos o modelo em produção com o auxílio do *GitHub Actions*. E ao final iremos realizar uma breve discussão dos resultados obtidos.

Análise dos Dados

Para a modelagem dos dados precisamos carregar dois pacotes disponíveis no R, o yfR que auxilia na coleta de dados, e rugarch para a modelagem.

```
library(yfR)
library(rugarch)
```

Utilizando a função yf_get do pacote yfR, vamos armazenar todos os dados necessários para a nossa modelagem, além disso vamos guardar os preços das ações e os retornos em vetores separados.

Primeiramente, vamos analisar os gráficos dos preços e dos retornos das ações.

ts.plot(precos)

Podemos notar nitidamente que o valor do preço possui tendência estocástica, no início os preços são menores do que 5 reais, porém com o passar do tempo ela foi aumentando até se estabilizar próximo de 10 reais, mas perto do final do gráfico os preços aumentam de forma drástica com bastante flutuações.

ts.plot(retornos)

Já no gráfico dos retornos conseguimos observar a presença de flutuações na volatilidade, ou seja, podemos tentar modelar os nossos dados assumindo que a variância é condicional nas observações passadas.

Como estamos trabalhando com modelos GARCH, precisamos verificar os gráficos de autocorrelação dos retornos e dos retornos ao quadrado.

```
op <- par(mfrow = c(1, 2))
acf(na.omit(retornos))
acf((na.omit(retornos))^2)</pre>
```

Series na.omit(retornos) Series (na.omit(retornos))^{*}


```
par(op)
```

Perceba que os retornos são não correlacionados, pois as maioria das autocorrelações estão dentro do intervalo de confiança e decaem para zero como uma função trigonométrica. Já o gráfico dos retornos ao quadrado, podemos notar claramente uma correlação entre os dados por conta da quantidade de autocorrelações fora da banda de confiança.

Para obter indicações formais de que a série de retornos apresenta heterocedasticidade condicional, vamos realizar o teste de Ljung-Box.

```
Box.test(retornos^2, type = "Ljung-Box", lag = 10)
Box-Ljung test
data: retornos^2
X-squared = 1808, df = 10, p-value < 2.2e-16</pre>
```

Obtemos um p-valor muito pequeno, logo rejeitamos a hipótese nula de que os retornos ao quadrado possuem autocorrelações nulas a favor da hipótese alternativa de que a série apresenta autocorrelação.

Modelagem dos Dados

Identificado a necessidade de modelar a variância condicional, iremos indentificar os parâmetros do componente ARMA da série, para isso precisamos do gráfico de autocorrelações e de autocorrelações parciais.

```
op <- par(mfrow = c(1, 2))
acf(retornos)
pacf(retornos)</pre>
```

Series retornos

Series retornos

par(op)

Novamente o gráfico do autocorrelações do retorno decai como uma função trigonométrica, indicando que o componente MA é igual a zero, porém ao olharmos para as autocorrelações parciais notamos que há 2 faixas que se destacam e outras 3 faixas foras, porém pertos da banda de confiança, então a parte AR do modelo pode ser um valor de 1 até 5.

Já a parte GARCH do modelo, foi escolhida os parâmetros mais simples possível, ou seja, utilizaremos o sGARCH(1, 1). Portanto, todos os modelos a serem testados são:

- ARMA(1, 0) GARCH(1, 1);
- ARMA(2, 0) GARCH(1, 1);
- ARMA(3, 0) GARCH(1, 1);
- ARMA(4, 0) GARCH(1, 1);
- ARMA(5, 0) GARCH(1, 1).

Além disso, através do conhecimento adquirido na sala de aula, é mais vantajoso modelar a volatilidade com a distribuição t no nosso contexto.

Utilizando o pacote rugarch, especificamos os parâmetros do nosso modelo com a função ugarchspec e ajustamos o nosso modelo com ugarchfit.

```
variance.model = list(model = "sGARCH",
                                              garchOrder = c(1, 1)),
                      distribution = "std")
fit_2 <- ugarchfit(spec_2, retornos, solver = "hybrid")</pre>
spec_3 <- ugarchspec(mean.model = list(armaOrder = c(3, 0),</pre>
                                         include.mean = FALSE),
                      variance.model = list(model = "sGARCH",
                                              garchOrder = c(1, 1)),
                      distribution = "std")
fit_3 <- ugarchfit(spec_3, retornos, solver = "hybrid")</pre>
spec_4 <- ugarchspec(mean.model = list(armaOrder = c(4, 0),</pre>
                                         include.mean = FALSE),
                      variance.model = list(model = "sGARCH",
                                              garchOrder = c(1, 1)),
                      distribution = "std")
fit_4 <- ugarchfit(spec_4, retornos, solver = "hybrid")</pre>
spec_5 <- ugarchspec(mean.model = list(armaOrder = c(5, 0),</pre>
                                         include.mean = FALSE),
                      variance.model = list(model = "sGARCH",
                                              garchOrder = c(1, 1)),
                      distribution = "std")
fit_5 <- ugarchfit(spec_5, retornos, solver = "hybrid")</pre>
```

Para selecionar o modelo mais adequado será utilizada a validação cruzada do tipo *rolling* window, e o critério de decisão será o erro quadrático médio, a implementação da função está disponível abaixo.

```
erro_quadratico_medio <- erro_quadratico_medio/n_observacoes_teste
return(erro_quadratico_medio)
}</pre>
```

Aplicando a função validação_cruzada com 30 dias de teste para cada um dos modelos, obtemos os seguinte valores.

```
validacao_cruzada(fit_1, 30)

[1] 0.0001761546

validacao_cruzada(fit_2, 30)

[1] 0.000180056

validacao_cruzada(fit_3, 30)

[1] 0.0001839475

validacao_cruzada(fit_4, 30)

[1] 0.0001815668

validacao_cruzada(fit_5, 30)
```

[1] 0.0001833483

O modelo que possui o menor erro quadrático médio é o ARMA(1, 0) - GARCH(1, 1), logo utilizaremos ele para as previsões no nosso modelo em produção.

Mas antes, precisamos realizar o diagnóstico desse modelo. Vamos analisar o gráfico QQ Plot dos resíduos, autocorrelações dos resíduos e autocorrelações dos resíduos ao quadrado.

```
plot(fit_1, which = 9)
```


Podemos notar que praticamente todos os resíduos estão em cima da linha, com a exceção de dois pontos presentes no canto inferior esquerdo.

```
e_hat = fit_1@fit$residuals/fit_1@fit$sigma
op = par(mfrow = c(1,2))
acf(e_hat)
acf(e_hat^2)
```


par(op)

Nos gráficos acima podemos observar que as autocorrelação dos resíduos e dos resíduos ao quadrados estão todas dentro do intervalo de confiança.

Portanto, podemos concluir que o modelo ARMA(1, 0) - GARCH(1, 1) é adequado.

Colocando o Modelo em Produção

A plataforma escolhida para colocar o modelo em produção foi o GitHub, com o auxílio da ferramenta Actions foi possível a execução diária do script abaixo.

```
library(scales)
library(yfR)
library(rugarch)
data_hoje <- Sys.Date()</pre>
dados <- yf_get(tickers = "ITUB4.SA",</pre>
                 first_date = "2000-01-01",
                 last_date = data_hoje)
retornos <- as.ts(dados$ret_adjusted_prices)[-1]
spec_1 <- ugarchspec(mean.model = list(armaOrder = c(1, 0),</pre>
                                         include.mean = FALSE),
                      variance.model = list(model = "sGARCH",
                                              garchOrder = c(1, 1)),
                      distribution = "std")
fit_1 <- ugarchfit(spec_1, retornos, solver = "hybrid")</pre>
retorno_amanha <- ugarchforecast(fit_1, n.ahead = 1)@forecast[["seriesFor"]][1]
retorno_hoje <- tail(yf_get(tickers = "ITUB4.SA",</pre>
                             first_date = data_hoje-7,
                              last_date = data_hoje)$ret_adjusted_prices,
                      n = 1
linha <- data.frame(data_hoje, retorno_hoje, retorno_amanha)</pre>
write.table(linha,
             file = "retornos.csv",
             append = TRUE,
             sep = ", ",
            row.names = FALSE,
             col.names = FALSE)
```

E o arquivo .yml com as instruções do workflow utilizado está logo abaixo.

name: automatizacao

```
on:
  schedule:
    - cron: "0 15 * * *"
jobs:
  scrape:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - uses: r-lib/actions/setup-r@v2
      - name: instala pacotes
        run: |
          sudo apt install libcurl4-openssl-dev
          R -e 'install.packages("scales")'
          R -e 'install.packages("yfR")'
          R -e 'install.packages("rugarch")'
      - name: executa script
        run: Rscript main.R
      - name: commit
        run:
          git config --local user.name github-actions
          git config --local user.email "actions@github.com"
          git add --all
          git commit -am "retornos.csv atualizado"
          git push
        env:
          REPO_KEY: ${{secrets.GITHUB_TOKEN}}
          username: github-actions
```

Conclusão

O valor dos retornos previstos estão na tabela abaixo.

data_hoje	retorno_hoje	retorno_amanha
2023-06-21	0.0136126137094483	0.0002120896239206
2023-06-22	0.00973576788654973	0.000151654580909666
2023-06-23	-0.0096418966190801	-0.000148934686993502
2023-06-24	-0.00312935159498051	-4.84573672603491e-05
2023-06-25	-0.00312935159498051	-4.84396150845952e-05

data_hoje	retorno_hoje	retorno_amanha
2023-06-26	-0.00312935159498051	-4.84474101619013e-05
2023-06-27	-0.00139521853578295	$-2.1610363540446\mathrm{e}\text{-}05$

Podemos notar que o modelo não conseguiu prever corretamente os valores com uma margem pequena, porém foi possível identificar se a volatilidade sobe ou desce no dia seguinte.

Para uma análise futura poderíamos tentar outras combinações do modelo ARMA-GARCH, além disso seria interessante utilizar variantes do modelo GARCH, como iGARCH ou tGARCH.