STAT1005 Data Analysis Condensed Cheat Sheet

Lisa Luff

5/28/2020

Qualitative/Numerical Data

Discrete Random Variables

Sample Analysis

- Mean : $(\bar{x}) = \frac{1}{n} \sum_{i=1}^{n} x_i$ $E[X] = \mu_X = \sum_{x} x.p(x) = E[h(x)] =$
 - Linearity of expectations
 - * E(aX + b) = aE(X) + b
- In R:
 - Mean function
 - \rightarrow mean(x)
 - Equivalent function for E[X]
 - \rightarrow weighted.mean(y, p)
- Standard Deviation: • Sample $\sqrt{\frac{1}{n-1}\sum^{n}(x_i-\bar{x})^2}$
- Standard Deviation: $s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2}$
- $Var(X) = \sum_{x} [(x \mu)^2 . p(x)] = E[(X \mu)^2] = E[X^2] E[X]^2$
 - *Linearity of expectations
 - $-Var(aX+b) = |a|\sigma_x$
- In R:
 - Standard Deviation function
 - $\rightarrow sd(x)$
 - Variance function
 - $\rightarrow var(x)$

Sample Probability Analysis

- Probability Mass Function (pmf): p(x) =P(X=x)
- Cumulative Density Function (cdf): F(x) = $P(X \le x) = \sum p(y)$ $\to P(a \le x \le b) = F(b) - F(a-1)$
- Confidence Interval: $\mu \pm Z * (\frac{s}{\sqrt{n}})$
 - -90% CI Z* = 1.645
 - -95% CI Z* = 1.96
 - -99% CI Z* = 2.576

Continuous Random Variables

Sample Analysis

- Mean: $\bar{x} = E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$
- - Mean function \rightarrow mean(x)
- Standard Deviation: $\sigma = \sqrt{Var(X)}$ $Var(X) = \int_{-\infty}^{\infty} (x \mu)^2 . f(x) dx$
- In R:
 - Standard deviation function
 - $\rightarrow sd(x)$
 - Variance function
 - $\rightarrow var(x)$

Sample Probability Analysis

- Probability Density Function (pdf): f(x) = $\int_a^b f(x)dx$
- Cumulative Density Function (cdf): F(x) = $P(X \le x) = \int_{-\infty}^{\infty} f(x) dx$ $\rightarrow P(a \le X \le b) = F(a) - F(b)$
- Percentiles of a Continuous Distribution: $F[\eta(p)] = \int_{-\infty}^{\eta(p)} f(y) dy$
- In R:
 - Find the nth percentile \rightarrow quantile(x, $n^{th}p$)
- Confidence Interval: $\mu \pm Z * (\frac{\sigma}{\sqrt{n}})$
 - -90% CI Z* = 1.645
 - -95% CI Z* = 1.96
 - -99% CI Z* = 2.576

Transforming Variables

- Transforming variables is when you rearrange the formula to find the value of a random variable X based on its probability.
 - Need to use the cdf, so find the cdf if given a pdf
 - 2. Rearrange the cdf so that you have an equation that uses the value of F(X)/y to give X
 - 3. Enter the value into your new equation and now you know which random variable X will give you that value for

Probability Estimations Using Distributions

Central Limit Theorum

• As sample size increases (number of trials), the distribution of sample means will move towards a Normal shape, regardless of the distribution of the actual observations

Normal Distribution

• Used when we know σ , otherwise use t distribution

When np and n(1-p) > 10

• $z = \frac{x - \bar{\mu}}{5}$

 \rightarrow or if you don't know μ and σ use \bar{x} and s

- The standard normal distribution has a mean of 0 and sd of 1
- In R:
 - Find p (probability)

 \rightarrow pnorm(z) Or \rightarrow pnorm(x, mean = a, sd = b)

- Find the z score \rightarrow gnorm(p)

T Distribution

- Used when we don't know σ
- Find t statistic: $T_{n-1} \sim t = \frac{\bar{x} \mu_0}{s/\sqrt{n}}$
 - With n 1 degrees of freedom (df)
- In R:
 - Find the probability
 - $\rightarrow pt(x, df)$
 - Find t
 - $\rightarrow qt(p, df)$
- In R:
 - Find p (probability) \rightarrow pt(x, df)
 - Find t
 - $\rightarrow qt(p, df)$

Bernoulli Random Variable

• A random variable whose possible values are 0

 $P(x;a) = \begin{cases} 1 & a \\ 0 & (1-a) \end{cases}$

• Basis of the other distributions

Continuous Random Variables

Probability Estimations Using Distributions

Standard Normal Distribution

• To calculate $P(a \leq X \leq b)$ when $X \sim$

- Cdf denoted as: ϕ
- In R:
 - Find p (probability)
 - \rightarrow pnorm(z) OR \rightarrow pnorm(x, mean = a, sd = b
 - Find the z score
 - \rightarrow qnorm(p)

Uniform Distribution

- When $f(x; A, B) = \begin{cases} \frac{1}{A B}, & A \le x \le B \\ 0, & otherwise \end{cases}$
- $E[X] = \frac{A+B}{2}$ $Var(X) = \frac{(B-A)^2}{12}$
- - Find p (probability)
 - \rightarrow punif(x, min = a, max = b)
 - Find x for a given p
 - \rightarrow qunif(p, min = a, max = b)

Log Normal Distribution

- If $ln(X) = N(\mu, \sigma)$
- In R:
 - Find p (probability)
 - \rightarrow plnorm(x, meanlog = a, sdlog = b)
 - Find x for a given p
 - \rightarrow glnorm(p, meanlog = a, sdlog = b)

Gamma Distribution

- Generalised exponential function
- If $\alpha=1$ and $\beta=\frac{1}{\lambda}$ see exponential distribution Exponential function results from $\alpha=1$ and $\beta = \frac{1}{\lambda}$
- pdf: $f(x; \alpha, \beta) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha 1} e^{\frac{-x}{\beta}}, x > 0$
 - $-\Gamma(\alpha)$ is the Gamma function
 - $-\alpha > 0$, and $\beta > 0$, if $\beta = 1$ it is a standard Gamma distribution *Gamma function – $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$

 - $-\Gamma(\frac{1}{2})=\pi$
- In R:
 - Find p (probability)
 - \rightarrow pgamma(x, alpha, rate = beta, scale = 1/beta
 - Find x for a given p
 - \rightarrow qgamma(p, alpha, rate = beta, scale
 - = 1/beta

Probability Estimations Using Distributions Continued

Binomial

- If you have S success or F failure
- Fixed n number of independent trials
- How many successes in n number of trials?
- Exact for with replacement, approximate for without
- See hypergeometric if without replacement
- If n > 50 and np > 5 see Poisson

• pmf:
$$b(x; n, p) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 0, 1, ..., n \\ 0 & otherwise \end{cases}$$

• cdf: $B(x; n, p) = P(X \le x) = \sum_{y=0}^{x} b(y; n, p),$

- x = 1, 2, ..., n
- E[X] = np
- Var(X) = np(1-p) = npq, where q = 1-p
- - Find p (probability)
 - \rightarrow pbinom(x, n, p)
 - Find x for a given p \rightarrow qbinom(p, n, p)

Negative Binomial

- If you have S success or F failure
- Fixed r number of successes
- How many trials will it take to reach r successes?
- If the $r^t h$ success occurs on the $x^t h$ trial, there must be (r - 1) successes in the first (x - 1)trials
- If r = 1, see geometric

• pmf:
$$nb(x; r, p) =$$

$$\begin{cases} \binom{x-1}{r-1} p^r (1-p)^{x-r}, & x=r, r^{r+1}, \dots \\ 0 & otherwise \end{cases}$$

- $E[X] = \frac{r}{p}$
- $Var(X) = \frac{r(1-p)}{p^2}$
- - Find p (probability) \rightarrow pnbinom(x, n, p, mu)
 - Find x for a given p \rightarrow qbinom(p)

Continuous Random Variables

Probability Estimations Using Distributions Continued

Exponential Disribution

- Inter-arrival times in a poisson process with a rate of λ events per unit time
- pdf: $f(x; \lambda) = \lambda e^{-\lambda x}, x > 0$
- cdf: $1 e^{-\lambda x}$, x > 0
- $E[X] = \frac{1}{\lambda}$
- $Var(X) = \frac{1}{\lambda^2}$
- In R:
 - Find p (probability)
 - $\rightarrow \text{pexp}(x, \text{lambda})$
 - Find x for a given p $\rightarrow \text{qexp}(p, \text{lambda})$

Probability Estimations Using Distributions Continued

Geometric

- Negative binomial where r=1
- pmf: $nb(x; 1, p) = (1 p)^{x-1}p, x = 1, 2...$
- If we redfine x as the number of failures:
 - $nb(x; 1, p) = (1 p)^{x}p, x = 0, 1, ...$
- $E[X] = \frac{1}{p}$
- $Var(X) = \frac{1-p}{p^2}$
- In R:
 - Find p (probability)
 - \rightarrow pgeom(x, p)
 - Find x for a given p
 - $\rightarrow qgeom(p)$

Hypergeometric

- Binomial without replacement
- N is finite population to be sampled
- M is number of successes in the population
- pmf: $P(X = x) = h(x; n, M, N) = \frac{\binom{m}{x} \binom{N-M}{n-x}}{\binom{N}{n}}$
- $\begin{array}{ll} \bullet & E[X] = n\frac{M}{N} \\ \bullet & Var(X) = \frac{N-n}{N-1} n\frac{M}{N} (1 \frac{M}{N}) \end{array}$
- - Find p (probability)
 - \rightarrow phyper(x, m, n, k)
 - Find x for a given p
 - \rightarrow qhyper(p)

Poisson

- Number of successes without a time period
- It is poisson if:
 - Events occur randomly in time
 - Independently and at a uniform rate
- Can be used as an approximation for a binomial if n > 50 and np > 5
 - The E[X] of the binomial is used for the
- value of lambda• pmf: $p(x; \lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$, x = 0, 1, ...• $E[X] = Var(X) = \lambda$
- In R:
 - Find p (probability)
 - \rightarrow ppois(x, lambda)
 - Find x for a given p
 - \rightarrow qpois(p)

Discrete and Continuous Random Variables

Hypothesis Testing

• Set up hypotheses:

$$\rightarrow H_0 = \mu = \mu_0$$

$$\rightarrow H_A = \mu \neq \mu_0$$

- Find the p-value:
 - $H_A: \mu \le \mu_0 = P(T \le t)$
 - $-H_A: \mu \ge \mu_0 = P(T \ge t)$
 - $-H_A: \mu \neq \mu_0 = 2P(T \geq |t|)$
- In R:
 - Find p-value

$$\rightarrow \operatorname{pt}(t^*\,,\,\mathrm{d} f=(\text{n-1}))$$

- Or you can find the t statistic, p-value and confidence interval in R
 - $\rightarrow \text{t.test(Vector, } \mu_0, \text{ alternative } =$ "less" "greater" "two.sided", conf.level =

Comparing Population Means

- Sample populations must be independent
- They must be Normally distributed (or similar shape with no significant outliers)
 - Moderate skewness: $n_1 + n_2 \ge 15$
 - Strong skewness: $n_1 + n_2 \ge 40$
- Two-sample t statistic: $t = \frac{(\bar{x}_1 \bar{x}_2)(\mu_1 \mu_2)}{\sqrt{\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}}}$ If you don't brown is:
- If you don't know μ , just use \bar{x}
- Two-Sample Confidence Interval: $(\bar{x}_1 \bar{x}_2) \pm$ $t*\sqrt{\frac{S_1^2}{N_1}+\frac{S_2^2}{N_2}}$ • Think of it as a hypothesis test, where $H_0=$
- $\bar{x}_1 \bar{x}_2 = 0$, and, $H_A = \bar{x}_1 \bar{x}_2 \neq 0$
- Both in R:
 - Find two sample t statistic and confidence interval
 - t.test(SampleVector, ComparisonVector, mu = 0, alternative = "less" "greater" "two.sided", conf.level =X.XX)

Joint Probability Distribution

Sample Probability Functions

- Joint Probability Mass Function (pmf): p(x,y) = P(X = x, Y = y) $- \rightarrow$ Created by p(x)p(y) for each square
- In R:
 - Joint pmf $\rightarrow ioint(X, Y)$
- Marginal Probability Mass Function (marginal
- → Marginal pmf of x: $p_x(x) = \sum_y P(x,y)$ → Marginal pmg of y: $P_y(y) = \sum_x P(x,y)$ Joint Cumulative Density Function (cdf):
- $F(x,y) = P(x \leq x, Y \leq y) =$ $\sum_{u < x, v < y} p(u, v)$ for all x, y

Independence of Random Variables

• X and Y are independent if: $\rightarrow P(x,y) = P_x(x).P_y(y)$, for all values of x and y

Continuous Random Variables

Joint Probability Distribution

Sample Probability Functions

- Joint Probability Mass Function (pmf): $f(x,y) = P(a \le X \le b, c \le Y \le d) =$ $\int_a^b \int_c^d f(x,y) dx dy$ • Calculate double integrals by:
- - 1. Inner integral: hold x constant, integrate over y
 - 2. Outer integral: Hold y constant, integrate over x
 - Doesn't matter which step is integrating for x or y
- Marginal Probability Mass Function (marginal
 - \rightarrow Marginal pmf of x: $p_x(x) = \int_{-\infty}^{\infty} f(x,y) dy$, for $-\infty \le X \le \infty \to \text{Marginal pmf of y:}$ $P_y(y) = \int_{-\infty}^{\infty} f(x,y) dx$, for $-\infty \le Y \le \infty$
- Joint Cumulative Density Function (cdf): $F(x,y) = P(x \le x, Y)$ $\sum_{u \le x, v \le y} p(u, v)$ for all x, y

Independence of Random Variables

- Independence of Random Variables
 - X and Y are independent if:
 - $\rightarrow P(x,y) = P_x(x).P_y(y)$, for all values of x and v
 - AND the region of postive density has side parallel to the axis

Joint Probability Distribution Continued

Sample Probability Analysis

- • $\mu_{h(x,y)}=E[h(x,y)]=\sum_x\sum_y h(x,y).p(x,y)$ Covariance: $Cov(X,Y)=E[(X-\mu_x)(Y-\mu_y)]$ $\begin{array}{l} - \rightarrow = \sum_{x} \sum_{y} (X - \mu_{x})(Y - \mu_{y})p(x, y) \\ - \rightarrow = E[X, Y] - E[X]E[Y] \end{array}$
- If X and Y move together, covariance will be positive
- If x and Y move away, covariance will be nega-
- If X and Y don't have a strong relation, covariance will near 0
- In R:
 - Covariance
 - \rightarrow cov(table or dataframe of X, Y)
- Correlation: $Corr(X, Y) = \frac{Cov(X, Y)}{2}$
- Correlation is a linear measure of the strength of the relationship between -1 and 1
 - Not being correlated doesn't mean there isn't a relationship, it might be non-linear
- In R:
 - Correlation
 - \rightarrow cor(table or dataframe of X, Y)

Continuous Random Variables

Joint Probability Distribution Continued

Sample Probability Analysis

- $\mu_{h(x,y)} = E[I]$ $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y).f(x,y)dxdy$ Linearity of expectation: E[h(x,y)]=

$$- E[a_1h_1(X,Y) + a_2h_2(X,Y) + b] = a_1E[h_1(X,Y)] + a_2E[h_2(X,Y)] + b$$

• If X and Y are independent:

$$- E[h(X,Y)] = E[f_x(X)f_y(Y)] = E[f_x(X)f_y(Y)]$$

- Covariance: $Cov(X,Y) = E[(X \mu_x)(Y \mu_y)]$ $\rightarrow = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (X \mu_x)(Y \mu_y)$ $\mu_y)f(X,Y)dxdy$
 - $\rightarrow = E[X, Y] E[X]E[Y]$
- Properties of Covariance:
 - $-\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$
 - $-\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
 - For any random variable Z:

$$* \to Cov(aX + bY + c, Z) = aCov(X, Z) + bCov(Y, Z)$$

• Correlation: $Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_{-}\sigma_{-}}$

Joint Probability Distribution Continued

Matched Pair Design

- Compare two populations in an experiment where they are paired
 - Case-control clinical trials
- Reduces two-sample t-test to a 1 sample
- More powerful (sensitive) test
- Pearson Correlation Coefficient
 - Covariance test for matched pair data
 - Strongly effected by outliers

- Where:

Where:
*
$$\to \bar{x} \sim \mu_x = n^{-1} \sum_{\substack{i=1 \ i=1}}^{i=n} x_i$$

* $\to \bar{y} \sim \mu_y = n^{-1} \sum_{\substack{i=1 \ i=1}}^{i=n} y_i$
* $\to S_{X,Y} \sim Cov(X,Y)$
= $\sum_{i=1}^{n} (X_i - \bar{x})(y_i - \bar{y})$
· $\to = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}$
* $\to S_{X,X} \sim \sigma_x^2 = \sum_{i=1}^{n} (X_i - \bar{x})^2$
· $\to = \sum_{i=1}^{n} x_i - n\bar{x}^2$
* $\to S_{Y,Y} \sim \sigma_y^2 = \sum_{i=1}^{n} (y_i - \bar{y})^2$
· $\to = \sum_{i=1}^{n} y_i - n\bar{y}^2$

- In R:
 - \rightarrow cov(table or dataframe of X, Y, paired = TRUE, method = 'pearson')
- Spearman's Correlation Coefficient
 - Based purely on the ranks of the data * From smallest to largest
 - Collected as numbers, then arranged in

$$\to r_s = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2 - 1)}$$

- the ranks of each category per variable
- In R:
 - \rightarrow cov(table or dataframe of X, Y, paired = TRUE, method = 'spearman')

Joint Probability Distribution Continued

Goodness-of-Fit Testing

- Tests is a probability model is an appropriate measure of the data collected, "close enough" to what we would expect to observe
- Chi-Squared Distribution: χ^2
 - Special case of Gamma distribution
 - * When the degrees of freedom is ν , then $\alpha = \frac{\nu}{2}$, and $\beta = 2$
 - - * o_i is the observed frequency
 - * e_i is the expected frequency * $n = \sum_{i=1}^{k} n_i$

 - * k 1 degrees of freedom
- The size of the discrepency indicates how good a fit, to assess the size:
 - Find p-value
 - OR Compare to a critical value of α for χ^2_{α}
- In R:
 - Find p for χ^2 \rightarrow pchisq(χ_i^2 , k-1)
 - Find the critical value of α
 - \rightarrow qchisq(α , k-1)
 - OR chisq.test(Vector)

Continuous Random Variables

Joint Probability Distribution Continued

Goodness-of-Fit Testing

- See Goodness-of-Fit Discrete for more details

- Find p-value or use χ^2_{α} , where the critical variable is found using $1 - \alpha$ (We want to find the top α percent)
- In R:
 - Find p for $\chi^2 \to \text{pchisq}(\chi_i^2, \text{k-1(df)})$
 - Find the critical value of $\alpha \to \text{pchisq}(\alpha,$ k-1(df)
 - OR chisq.test(Vector)

Discrete and Continuous Random Variables

Two-Way Contingency Tables

- For when there are multiple rows for multiple columns of information
- Multiple rows per column of information
 - I rows (I \leq 2)
 - J columns

Testing for Independence

- Use χ^2 distribution
 - $-\chi^2 = \sum \frac{\text{(observed count expected count)}^2}{\text{expected count}} \sim \chi^2_{(I-1)(J-1)}$ $-\text{ Where: } \rightarrow \text{expected cell count} = \frac{\text{row total x column total}}{\text{expected count}}$
- In R:
 - Run the test
 - * chisq.test(table or dataframe of X, Y)

Categorical/Qualitative

Nominal and Ordinal

Sample Analysis

- Sample Proportion: $\hat{p} \sim p$
- Standard Error: $\sqrt{p(1-p)/n}$

Calculating Sample Proportion

Defintions

- Ordered Order of the outcomes matter. (DOG and GOD are different)
- Unordered Order of the outcomes doesn't matter. (DOG and GOD are equivalent)
- With replacement Even if chosen previously, equally likely to be chosen again
- Without replacement Once chosen unable to be chosen again

Naive Definition of Probability

- · All outcomes equally likely to occur
- $\hat{p} = P(A) = \frac{|A|}{|S|}$
- In R:
 - Find P(A) $\rightarrow \text{Prob}(A)$

General Product Rule

- Based on naive definition
- Ordered outcomes
- With replacement
- n^k

Permutation

- Based on naive definition
- Ordered outcomes
- Without replacement
- $\hat{p} = P_{k,n} = \frac{n!}{(n-k)!}$
- In R:
 - \rightarrow permutations(n, r)

Combination

- Based on naive definition
- Unordered outcomes
- Without replacement $\hat{p} = \binom{n}{k} = \frac{P_{k,n}}{n!} = \frac{n!}{(n-k)!k!}$
- - \rightarrow choose(n, r)

Non-Naive Definition of Probability

- Probability of an event is P(A)
- $P(S) = \sum_{i=1} P(a_i) = 1$

Operations in Set Theory

- Based on Non-Naive Definition
- In R:
 - Union
 - \rightarrow union(a, b)
 - Intersection
 - \rightarrow intersect(a, b)

De Morgan's Laws

- $(A \cup B)^c = A^c \cap B^c$
- $(A \cap B)^c = A^c \cup B^c$

Additional Properties of Probability

- $P(A^c) = 1 P(A)$
- If $A \subseteq B$, then $P(A) \le P(B)$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Property 1.

$$- P(S) = P(A \cup A^c) = P(A) + P(A^c) = 1$$

- Property 2.
 - If $A \subseteq B$, then
 - $\rightarrow P(B) = P(A \cup (B \cap A^c)) = P(A) +$ $P(B \cap A^c)$
 - $\to P(B) \ge P(A)$
- Property 3.
 - $-P(B \cap A^c) = P(B) P(A \cap B)$

Independence

- Two events are independent if
- $\rightarrow P(A \cap B) = P(A).P(B)$
- In R:
 - Test for independence
 - \rightarrow independent(X, Y)

Conditional Probability

• In R:

- Find
$$P(A|B)$$

 $\rightarrow \operatorname{prob}(A, \text{ given} = B)$

Continuation of Set Theory

• $P(A|B) = \frac{P(A \cap B)}{P(B)}$

Independence

• If P(B|A) = P(B), the two are independent.

Multiplication Rule

• $P(A \cap B) = P(A|B).P(B)$

•
$$P(A \cap B \cap C) = P(C|A \cap B).P(A \cap B)$$

• OR $P(A \cap B \cap C) = P(C|A \cap B).P(B|A).P(A)$

The Law of Total Probability • $P(B) = \sum_{i=1}^{k} P(B|A_i).P(A_i)$

Bayes Theorum

• When $A_1, ..., A_k$ and mutually exclusive and

exhaustive events $P(A_i|B) = \frac{P(B|A_i).(A_i)}{\sum_{i=1}^k P(B|A_i).P(A_i)}$

Statistical Inference

Law of Large Numbers

• As sample size increases, the mean observed will get closer and closer to the true mean.

Normal Distribution

• Can be used as an estimate when np and n(1-

• N = $(p, \frac{p(1-p)}{n})$

• In R:

Find p (proportion)

 \rightarrow pnorm(z, \hat{p} , se)

- Find the z score

 \rightarrow qnorm(p)

Confidence Interval

• $\hat{p} = z * \sqrt{\hat{p}(1-\hat{p})/n}$

-90% CI - Z* = 1.645

-95% CI - Z* = 1.96

-99% CI - Z* = 2.576

Margin of Error

• $\mathbf{m} = z * \sqrt{\hat{p}(1-\hat{p})/n}$

• Find n for a required margin of error

• $\rightarrow n = \frac{z*}{m} \cdot p * (1 - p*)$ • Where p* is a guessed Value for the sample proportion

> - Margin of error will always $\leq m$ if p* =0.5 (round up)

Hypothesis Testing

• Set up hypotheses:

 $\rightarrow H_0 = p = p_0$

- If h_0 is correct $\hat{p} \sim N(p, \frac{p(1-p)}{p}) \to H_A =$

• Find z statistic: $z = \frac{(\hat{p}-p_0)}{\sqrt{p_0(1-p_0)/n}}$

• Find p-value:

 $- H_A : p < p_0 = P(Z \le z)$

 $- H_A: p > p_0 = P(Z \ge z)$

 $-H_A: p \neq p_0 = 2P(Z \geq |z|)$

• Find p-value in R:

 $- \operatorname{pnorm}(\mathbf{Z}^*)$

Further Analysis

• If you treat the data as discrete, or utilise the data as a table, you can use the same analysis as for discrete variables for two-way contingency tables