

Malak Gaballa - 900201683 Masa Tantawy - 900201312

CSCE 4604 - Advanced Machine Learning
Dr. Moustafa Youssef

Table of contents

01

Introduction

Baseline

Model

02

Methodology & Results

03

Discussion & Conclusion

Problem Statement: Facial Expressions Recognition (FER)

Given images of human faces showing different expressions, the model should be able to **categorise each image into one of 7 categories, each representing a facial expression**. These are: 0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral).

- Model input: image vector of pixels for a 48x48 pixel grayscale image
- Model output: Number from 0 to 6 which indicates the facial expression illustrated in the image

To evaluate the model effectiveness, we opt for the **weighted accuracy metric**, which accounts for class imbalance in the data.

Datasets

Selected Dataset **FER2013**

- 35,887 facial grayscale images (48x48 pixels), 63 MBs
- 7 categories (highly imbalanced)
- Has a test-train split.

Other Datasets

Overview of selected most relevant/ suitable datasets

AffectNet

- 12,809 images, 5 GBs
- 8 categories
- Slightly balanced

ExpW

Expression in-the-Wild Dataset

- 91,793 images, 8 GBs
- 7 categories

Baseline Model - VGGNet

- Training: FER2013 dataset achieving an accuracy of 73.28%
- Research Paper: Facial Emotion Recognition: State of the Art Performance on FER2013
- Repository: <u>Github link</u>
- Frameworks: PyTorch

A classical CNN consisting of 4 convolutional stages and 3 fully connected layers.

- Each convolutional stage: 2 convolutional blocks & a max-pooling layer.
- Convolution block: consists of a convolutional layer, a ReLU activation, and a batch normalization layer.
- The first 3 fully connected layers are followed by a ReLU activation. The 3rd fully connected layer is for classification.

Baseline Model - Performance

PyTorch

Original model; hyperparameters cannot be modified.

• Epochs = 350

Top-1 Accuracy: 73.27%

Top-2 Accuracy : 86.45%

Keras TensorFlow

Epochs = 180 instead of 350 due to GPU limit

Top-1 Accuracy : 65.76%Top-2 Accuracy : 79.91%

o Top-3 Accuracy: 88.49%

Methodology & Results

Methodology

Hyperparameters Tuning

Different regularizers & optimizers with varying learning rates were experimented with in addition to early stopping.

Final modifications:

- ADAM LEARNING RATE = 0.0001 instead of 0.001
- EARLY STOPPING with patience = 10

Data Imbalance Handling

- Oversampling: ROS & SMOTE
- Undersampling: RUS & Tomeklinks (deep models require large datasets)
- SMOTE + TOMEK & Smote + ENN (reversed the imbalance)
- \rightarrow Before being added to the model, each dataset was split using sklearn in the same ratio as the original data (80% train ,10% test ,10% validation)

Data imbalance

Balanced Data

ROS and SMOTE A total of 62,923 images

Balanced Data

SmoteTomek A total of 62,675 images

Methodology

Data Augmentation

A random balanced subset of the dataset has undergone different combinations (none, one, or multiple) of HORIZONTAL FLIPPING, ROTATION, GAUSSIAN NOISE ADDITION with different ratios from given set ranges.

Auxiliary Data

The AFFECTNET DATASET was used. It originally contained 8 categories of 96x96 coloured images.

 \rightarrow Before being added to the model, only the common 7 categories were selected, images were converted to grayscale and resized to 48x48.

Results - Hyperparameters Tuning

Training process stopped after 54 epochs

Top-1 Accuracy: 66.15%

Top-2 Accuracy: 82.22%

Top-3 Accuracy: 90.89%

Note: All extra training to follow was done on the hyper tuned model.

Results - Extra training on balanced data

(ROS)

Top-1 Accuracy: 85.97%

Top-2 Accuracy: 92.71%

Top-3 Accuracy: 96.49%

SMOTE

Top-1 Accuracy: 87.18%

Top-2 Accuracy: 93.88%

Top-3 Accuracy: 96.84%

SmoteTomek

o Top-1 Accuracy: 82.88%

Top-2 Accuracy: 91.82%

Top-3 Accuracy: 95.64%

Results - Extra training on augmented data

Random Oversampling

(ROS)

Top-1 Accuracy: 59.74%

Top-2 Accuracy: 79.91%

o Top-3 Accuracy: 88.63%

SMOTE

Top-1 Accuracy: 60.88%

Top-2 Accuracy: 78.99%

Top-3 Accuracy: 89.22%

SmoteTomek

Top-1 Accuracy: 58.29%

o Top-2 Accuracy: 77.46%

o Top-3 Accuracy: 86.77%

Results - Extra training on auxiliary data

Random Oversampling

(ROS)

- Top-1 Accuracy: 29.51%
- Top-2 Accuracy: 45.33%
- o Top-3 Accuracy: 53.41%

SMOTE

- Top-1 Accuracy: 30.31%
- Top-2 Accuracy: 44.58%
- Top-3 Accuracy: 54.25%

SmoteTomek

- o Top-1 Accuracy: 29.17%
- Top-2 Accuracy: 42.71%
- Top-3 Accuracy: 51.96%

Note: The model zoo for each model has been saved for future use.

Discussion & Conclusion

Discussion

Ensemble

Final Output = average output of 3 distinct VGGNet models → ROS, SMOTE, SmoteTomek (augmented and auxiliary data excluded as they deteriorated the model)

Top-1 Accuracy: 97.18%

o Top-2 Accuracy: 99.58%

Top-3 Accuracy: 99.72%

Baseline Model

Top-1 Accuracy : 65.76%

Top-2 Accuracy: 79.91%

Top-3 Accuracy : 88.49%

Discussion

Real Time App

Model demo

Conclusion

Lessons Learnt

- Data imbalance handling significantly enhances the performance of the model.
- Constructing an ensemble model using multiple VGGNet models trained on balanced datasets further optimized performance.
- It is also concluded that extra training on auxiliary or augmented data may lead to worse performance of the model instead of enhancing it.
- The confusion matrix highlights *Angry, Fear,* and *Neutral* as the most challenging expressions to classify. This difficulty may arise from subtle facial differences or dataset imbalances.

Future recommendations

- It is suggested to train the model on a more diverse and generalized database of facial expressions, such as Exp-W which posed a challenge due to GPU limitations and the dataset size.
- Considering the inclusion of an 8th category of facial expression, such as contempt as seen in the AffectNet Dataset, could enhance model comprehensiveness.
- Lastly, transitioning from grayscale to RGB images for input might yield better results.

Thanks!

Facial Expression Recognition Final Milestone

Malak Gaballa - 900201683 Masa Tantawy - 900201312

Malak

- Model Ensemble
- Website

Masa

- App
- Poster

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**