P1 de Álgebra Linear I – 2009.1

Data: 27 de Março de 2009.

Q	1.a	1.b	1.c	2.a	2.b	2.c	3.a	3.b	3.c	4.a	4.b	soma
\mathbf{V}	1.0	1.0	0.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.5	10.0
N												
\mathbf{R}												

Questão 1)

Considere o vetor $\overrightarrow{v}=(1,2,-1)$ e os pontos $A=(1,2,1),\ B=(2,1,0)$ e C=(0,1,-2) de $\mathbb{R}^3.$

a) Determine, se possível, vetores unitários \overrightarrow{w} e \overrightarrow{u} paralelos ao vetor \overrightarrow{v} tais que

$$\overrightarrow{w} \cdot \overrightarrow{u} = -1.$$

Caso não seja possível escreva: IMPOSSÍVEL.

b) Determine EXPLICITAMENTE pontos D_1 , D_2 e D_3 , diferentes entre si,

$$D_1 \neq D_2 \neq D_3 \neq D_1,$$

tais que os pontos A, B, C, D_i determinem um paralelogramo Δ_i , i = 1, 2, 3.

Critério de correção: somente um ponto correto 0.1 pts., dois pontos corretos 0.5 pts., todos os pontos corretos 1.0 pt.

c) Determine as áreas de TODOS os paralelogramos $\Delta_1, \Delta_2, \Delta_3$ do item anterior.

Critério de correção: todas as áreas corretas 0.5 pts, outros casos nota ZERO.

Respostas:

(a)

(b)

$$D_1 = D_2 = D_3 =$$

(c)

$$\operatorname{área}(\Delta_1) = \operatorname{área}(\Delta_2) = \operatorname{área}(\Delta_3) =$$

Questão 2)

Considere o vetor $\overrightarrow{v}=(1,2,3)$ e os pontos P=(1,2,0) e Q=(2,2,1) de \mathbb{R}^3 . Determine:

- a) O vetor \overrightarrow{w} projeção ortogonal do vetor $\overrightarrow{a} = (1,0,2)$ sobre o vetor \overrightarrow{v} .
- **b)** O valor de α para que a projeção ortogonal do vetor $(\alpha, 1, 0)$ no vetor \overrightarrow{v} seja o vetor $(2, 4, 6) = 2 \overrightarrow{v}$.
- c) Um ponto B da reta

$$r: (1+t, 2-t, 2t), t \in \mathbb{R}$$

tal que a área do triângulo Δ de vértices P,Q e B seja 2.

Respostas:

(a)

(b)

$$\alpha =$$

(c)

$$B =$$

Questão 3)

Considere as retas r_1 e r_2 de \mathbb{R}^3 cujas equações paramétricas são

$$r_1: (1+t, 2t, 1-2t), t \in \mathbb{R},$$

$$r_2$$
: $(-3+2t,7-t,3-2t)$, $t \in \mathbb{R}$,

e as reta r_3 de equação cartesiana

$$r_3$$
:
$$\begin{cases} x + y + z = 3 \\ x - 2y + 2z = 1. \end{cases}$$

Determine:

- a) O ponto P de interseção das retas r_1 e r_2 .
- b) A equação cartesiana do plano ϱ que contém as retas r_1 e r_2 .
- c) Equações paramétricas da reta r_3 .

Respostas:

(a)

$$P =$$

(b)

π :			
Λ.			

(c)

Questão 4)

Considere o plano ρ cuja equação cartesiana é

$$\rho$$
: $x + 2y + 3z = 6$,

os pontos $A=(1,1,1), B=(0,0,2)\in\rho,$ e a reta r de equação paramétrica

$$r: (1+t, 2t, 1-2t), t \in \mathbb{R}.$$

Determine:

- a) O ponto D de interseção da reta r e o plano ρ .
- b) Um ponto C do plano ρ tal que os pontos A, B e C formam um triângulo retângulo isósceles cujos catetos são AB e AC.

Respostas:

(a)

$$D =$$

(b)

$$C =$$