Theorem: Yoneda Lemma

The **Yoneda Lemma** is a fundamental result in Category theory that relates Functors to representable functors. It states that an object is completely determined by its relationships to all other objects.

Statement

Let \mathcal{C} be a category and $F:\mathcal{C}\to\mathbf{Set}$ be a functor. For any object $A\in\mathcal{C}$, there is a natural bijection:

$$Nat(Hom(A, -), F) \cong F(A)$$

where: - $\operatorname{Hom}(A,-):\mathcal{C}\to\operatorname{\mathbf{Set}}$ is the representable functor - $\operatorname{Nat}(\operatorname{Hom}(A,-),F)$ is the set of Natural Transformations

The Bijection

Forward Direction

Given a natural transformation $\alpha: \operatorname{Hom}(A, -) \Rightarrow F$, we get an element of F(A) by:

$$\alpha \mapsto \alpha_{A}(\mathrm{id}_{A}) \in F(A)$$

Reverse Direction

Given an element $x \in F(A)$, we define a natural transformation α by:

$$\alpha_B(f) = F(f)(x)$$
 for $f: A \to B$

Yoneda Embedding

The Yoneda Lemma gives rise to the **Yoneda embedding**:

$$\mathcal{Y}:\mathcal{C}
ightarrow [\mathcal{C}^{\mathrm{op}},\mathbf{Set}]$$

$$A \mapsto \operatorname{Hom}(-, A)$$

This embedding is: - Full: Every natural transformation between representables comes from a morphism - Faithful: Different morphisms give different natural transformations

Corollaries

1. Yoneda Principle

Objects A and B are isomorphic if and only if $\operatorname{Hom}(-,A) \cong \operatorname{Hom}(-,B)$ as functors.

2. Representability

A functor F is representable if and only if it is naturally isomorphic to some Hom(A, -).

Proof Sketch

- 1. Show that the assignment $\alpha \mapsto \alpha_A(\mathrm{id}_A)$ is well-defined
- 2. Verify that the reverse construction gives a natural transformation
- 3. Check that these constructions are mutual inverses
- 4. Prove naturality in both A and F

Examples and Applications

Universal Properties

The Yoneda Lemma provides a systematic way to understand universal properties: an object with a universal property represents a particular functor.

Limits and Colimits

The limit of a functor F represents the functor $Hom(-, \lim F)$.

Algebraic Topology

In the category of topological spaces, the functor $\pi_n(-)$ (n-th homotopy group) is represented by the n-sphere S^n .

Philosophical Significance

The Yoneda Lemma embodies the idea that: > "An object is completely determined by its relationships to all other objects"

This perspective shifts focus from internal structure to external relationships, a key insight of category theory.

Variations

- Contravariant Yoneda: For contravariant functors $F: \mathcal{C}^{\mathrm{op}} \to \mathbf{Set}$
- Enriched Yoneda: Generalizes to enriched categories
- 2-Yoneda: Version for 2-categories

Dependency Graph

Local dependency graph