$^{8}/_{10}$

I2 Capacitor Networks

- I2.1 Calculate the capacitance of each of the following combinations:
 - a) A 3.0 μ F capacitor connected in parallel with a 2.0 μ F capacitor.
 - b) A 3.0 μ F capacitor connected in series with a 2.0 μ F capacitor.
 - c) A 6.0 μF capacitor is connected in parallel with a 4.0 μF capacitor. The combination is then connected in series with a 20 μF capacitor.
 - d) A 220 nF capacitor is connected in series with a 440 nF capacitor. The combination is connected in parallel with a 1.0 μ F capacitor.
 - e) A 1.0 nF, 2.0 nF and 3.0 nF capacitor, all connected in parallel.
 - f) A 1.0 nF, 2.0 nF and 3.0 nF capacitor, all connected in series.
- I2.2 A 200 μ F capacitor is in series with a 2200 μ F capacitor and they are charged until the 200 μ F capacitor stores 30 μ C. What is the charge on the other capacitor?
- I2.3 A 200 μ F capacitor is in series with a 2200 μ F capacitor. The capacitors are charged until the 200 μ F capacitance has a voltage of 12 V across it. What is the voltage across the 2200 μ F capacitor?
- I2.4 A 470 μ F capacitor is charged using a 10 V battery. It is then disconnected, and connected to an uncharged 220 μ F capacitor. Calculate the voltage across the capacitors once the current has stopped flowing. (Hint: capacitors are effectively in parallel, and total charge has not changed.)
- I2.5 A 6.0 nF capacitor is in parallel with a 10 nF capacitor. The voltage across the 6.0 nF capacitor is 36 V. What is the voltage across the other capacitor?