Deep Learning

Paolo Bettelini

Contents

1	\mathbf{Typ}	pes of neurons	2
	1.1	Brain neurons	2
	1.2	Linear neurons	2
	1.3	Binary threshold neurons	2
	1.4	Rectified Linear Neurons or Linear threshold neurons	2
	1.5	Sigmoid neurons	3

1 Types of neurons

1.1 Brain neurons

1.2 Linear neurons

A linear neuron is very simple and computationally limited in what it can do.

$$y = b + \sum_{i} x_i w_i$$

The output y is given by the bias b plus the sum of all the input connections x_i multiplied by their weight w_i .

1.3 Binary threshold neurons

Binary threshold neurons output a 1 or a 0 depending on its weighted value.

Given a threshold $\theta = -b$

$$z = b + \sum_{i} x_{i} w_{i}$$
$$y = \begin{cases} 1 \text{ if } z \ge 0\\ 0 \text{ otherwise} \end{cases}$$

1.4 Rectified Linear Neurons or Linear threshold neurons

They compute a linear weighted sum of their inputs.

The output is a non-linear function of the total input.

Given a threshold $\theta = -b$

$$z = b + \sum_{i} x_i w_i$$
$$y = \begin{cases} z \text{ if } z > 0\\ 0 \text{ otherwise} \end{cases}$$

1.5 Sigmoid neurons

They give a real-valued output that is a smooth and bounded function of their total input.

The logistic function is often used.

Given a threshold $\theta = -b$

$$z = b + \sum_{i} x_i w_i$$
$$y = \frac{1}{1 + e^{-z}}$$

This function has smooth derivatives that change continuously. This characteristic makes the learning process easier.