

## Metody Systemowe i Decyzyjne L

Metoda najmniejszych kwadratów

Piotr Kawa

W4N, K46

sem. letni 2023/24







- 1 Model liniowy
- 2 Uogólniony model liniowy
- 3 Zadanie
  - 4 Eksperyment
  - 5 Pliki do wysłania



## Model liniowy

Przeanalizuj poznany dzisiaj algorytm analityczny do estymacji parametrów modelu liniowego:

$$\widehat{\theta} = (XX^{\mathsf{T}})^{-1}XY^{\mathsf{T}},\tag{1}$$

gdzie 
$$\theta = \begin{bmatrix} a \\ b \end{bmatrix}$$
 (tj. współczynniki funkcji liniowej).





- 1 Model liniowy
- 2 Uogólniony model liniowy
- 3 Zadanie
- 4 Eksperyment
  - 5 Pliki do wysłania



### Uogólniony model liniowy

Powyższy model może być uogólniony tak, aby estymował parametry wielomianu o dowolnym stopniu M. Wtedy parametry modelu  $\theta \in \Re^{M+1}$  i pozwalają na regresję wektora y dla serii x w poniższy sposób:

$$\overline{y} = \sum_{m=0}^{M} \theta_m \phi_m(x) \tag{2}$$

gdzie  $\phi_m$  to tak zwane funkcje bazowe ( $x^0, x^1, ..., x^M$ ).



- 1 Model liniowy
- 2 Uogólniony model liniowy
- 3 Zadanie
- 4 Eksperyment
- 5 Pliki do wysłania



#### Zadanie

Twoim zadaniem jest modyfikacja wzoru (1) tak, aby było możliwe dopasowanie do danych wielomianu o dowolnym stopniu. Zadanie zostało rozwiązane częściowo w pliku lss . py.

#### Wymagana jest implementacja brakujących funkcji!

Jako pomoc wykorzystaj skrypt test\_lss .py, który zawiera testy jednostkowe do funkcji do zaimplementowania.



#### Zadanie

#### Funkcje do zaimplementowania to:

- print\_polynomial rozwija wzór wielomianu o współczynnikach i stopniu zgodnych z  $\theta$  tak, by dało się go wydrukować,
- get\_polynomial\_form dla zadanego M zwraca macierz wykładników funkcji bazowych  $\phi$ ,
- least\_squares\_solution implementuje wzór (1) w uogólnionej postaci (podpowiedź: w ciele funkcji użyj get\_polynomial\_form do modyfikacji macierzy X).



- 1 Model liniowy
- 2 Uogólniony model liniowy
- 3 Zadanie
  - 4 Eksperyment
  - 5 Pliki do wysłania



#### Eksperyment

Po wykonaniu zadania pobaw się algorytmem! Dopasuj do danych modele o coraz większej wartości M. Obserwuj, jak w miarę wzrostu złożoności modelu (rozumianej jako liczba M składających się na niego funkcji bazowych  $\phi_m$ ) zmienia się błąd przybliżenia.

Zastanów się: czy najlepszy model to taki, który popełnia najmniejszy błąd na danych, z użyciem których estymowano jego parametry? Wyciągnij wnioski praktyczne dotyczące wyboru postaci modelu i zapisz je w pliku 'answer.txt'.



- 1 Model liniowy
- 2 Uogólniony model liniowy
- 3 Zadanie
  - 4 Eksperyment
  - 6 Pliki do wysłania



## Pliki do wysłania

Rozwiązane zadanie zawierać powinno następujące pliki:

- 1) Iss . py,
- test\_lss .py,
- 3) answer.txt.



# Powodzenia!

