同调代数

G.Li

目录

第一章	导出函子	7
1.1	上链和正合性	7
1.2	链同伦	10
1.3	映射锥和映射柱	11
1.4	内射消解和投射消解	15
1.5	δ 函子和导出函子 \ldots	15
第二章	Tor 函子和 Ext 函子	17
2.1	R 模同调与 Tor 函子	17
2.2	R 模上同调与 Ext 函子	17
	2.2.1 R 模同调与上同调的转换	17
2.3	特殊链复形和万有系数定理	17
	2.3.1 特殊链复形	17
	2.3.2 万有系数定理	20
	2.3.3 零调模型	21
2.4	双复形和链复形中的乘法对象	22
	2.4.1 双复形和全复形	22
	2.4.2 复形中的乘法对象	24
	2.4.3 同调与上同调	27
2.5	一个例子:	29
第三章	谱序列	31
3.1	滤子和正合对	31
3.2	收敛性	34
3.3	全复形的上同调	36
3.4	Cartan-Eilenberg 预解	38
3.5	Kunneth 谱序列	39
3.6	Grothendieck 谱序列	39
第四章		41
4.1		41

4.2	同伦范畴与导出范畴	45
4.3	三角范畴	47
	4.3.1 同伦范畴	49
	4.3.2 导出范畴	49
	4.3.3 生成元	49
4.4	导出函子	50
4.5	例子	52
		53
5.1	层的基本理论	
	5.1.1 预层与层的基本性质	
	5.1.2 层化	
	5.1.3 底空间变换	
	5.1.4 层范畴及其中的正合性	
5.2	Cech 上同调	64
笛士音	群的同调代数	67
76.1	群的同调和上同调	
0.1	4THJ173 997H173 99	01
第七章	其他类型的同调	7 1
7.1	超上同调	71
7.2	Lie	71
7.3	Hochschild	72
	7.3.1 Cohomology	77
	7.3.2 Hochschild-Kostant-Rosenberg	77
7.4	循环上同调 *	78
7.5	应用:形变与上同调	79
	7.5.1 一阶形变	79
	7.5.2 高阶形变和	81
7.6	函子上同调 *	84
1971 = 1 A	A.1. 1 Homb	~~
	16.4	89
A.1	Abel 范畴	
	A.1.1 Abel 范畴的加性	
	A.1.2 态射的分解	
	A.1.3 例子	
	A.1.4 正合性	
	A.1.5 Abel 范畴中对象的元素和态射	
4 0	A.1.6 Abel 范畴中的特殊对象	
A.2	Abel 范畴间函子	
	A.2.1 Serre subcategory	U5

目录									5
A.3 #	嵌入定理	 	 106						
附录 B 🗵	A_{∞}								107

6 目录

第一章 导出函子

1.1 上链和正合性

定义. 给定加性范畴 A 中的一族对象及态射

$$X^{\bullet}: \cdots \xrightarrow{d^{n-1}} X^n \xrightarrow{d^n} X^{n+1} \xrightarrow{d^{n+1}} \cdots$$

满足 $d^n \circ d^{n-1} = 0$ 对任意 n 都成立,则称 $(X^{\bullet}, d^{\bullet})$ 是 A 中的一个上链 (cochain).

有时为强调,我们也记 $(X^{\bullet}, d^{\bullet})_{\mathbb{Z}}$. 若 $X^i = 0$ 对任意 i < 0 都成立,则记为 $(X^{\bullet}, d^{\bullet})_{\geq 0}$. 根据

定义. 设 $(X^{\bullet}, d^{\bullet})$ 是 A 中的上链,满足 $X^n = 0$ 对所有的 n < 0 都成立. 若有 $\eta : A \to X_0$ 使得 $d^0 \circ \eta = 0$,则称 $(X^{\bullet}, d^{\bullet})$ 是增广的 (augmented). 若还有 $H_n(X^{\bullet}) = 0$ 对所有的 n > 0 都成立,且 η 诱导了同构 $A \cong H_0(X^{\bullet})$,则称 $(X^{\bullet}, d^{\bullet})$ 是 A 的消解 (resolution).

对偶地, 我们也有加性范畴 A 中的 $\hat{\mathbf{u}}$ (chain) 的概念. 我们记

例 1.1. 给定代数 R,若 M 是 R 模,且 P^{\bullet} 和 I^{\bullet} 分别是 M 的投射消解和内射消解,则如下三个横向的序列 是 $R-\mathbf{Mod}$ 中的一个上链

且他们有相同的上同调.

例 1.2. 设 $(X^{\bullet}, d^{\bullet})$ 是 A 中的一个上链,定义上链 $\tau^{\leq 0}(X^{\bullet}, d^{\bullet})$ 为

$$\cdots \xrightarrow{d^{-2}} X^{-1} \xrightarrow{d^{-1}} \operatorname{Ker} d^0 \xrightarrow{0} 0 \to \cdots$$

第一章 导出函子

那么我们可以证明,

$$H^n(\tau^{\leq 0}(X^{\bullet})) = \begin{cases} H^n(X^{\bullet}) & n \leq 0 \\ 0 & n > 0 \end{cases},$$

类似地我们也有构造 $\tau_{\geq 0}(X^{\bullet}, d^{\bullet})$,

$$\cdots \to 0 \to X^0/\text{Im } d^1 \xrightarrow{\bar{d^0}} X^1 \xrightarrow{d^1} X^2 \to \cdots$$

例 1.3. 给定交换环 R 和 (可能非交换的) R 代数 A, M 是 A 双模, 那么可以定义 Chevalley-Eilenberg 映射

$$\delta_n: M \otimes_R \bigwedge_{i=1}^n A \to M \otimes_R \bigwedge_{i=1}^{n-1} A$$

$$m \otimes a_1 \wedge \dots \wedge a_n \mapsto \sum_{i=1}^n (-1)^i [m, a_i] \otimes a_1 \wedge \dots \wedge \hat{a}_i \wedge \dots \wedge a_n$$

$$+ \sum_{1 \leq i < j \leq n}^n (-1)^{i+j-1} m \otimes [a_i, a_j] \wedge a_1 \wedge \dots \wedge \hat{a}_i \wedge \dots \wedge \hat{a}_j \wedge \dots \wedge a_n,$$

我们来验证这给出一个 R 模链复形.

事实上, Chevalley-Eilenberg 同调只依赖于 A 的 Lie 代数结构和 M 的 Lie 代数模结构

定义. 给定 Abel 范畴 A 中上链 $(X^{\bullet}, d^{\bullet})$, .

定理 1.1. 设

$$0 \to X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \to 0$$

是 Abel 范畴 A 中上链的正合列,那么存在上同调的长正合列

$$\cdots \to H^n(X^{\bullet}) \to H^n(Y^{\bullet}) \to H^n(Z^{\bullet}) \to H^{n+1}(X^{\bullet}) \to \cdots$$

证明. 我们将长正合序列具体写出来

于是存在如下交换图,且横向序列由蛇形引理都是正合的:

1.1 上链和正合性 9

其中 \bar{d}_X^n : coker $d_X^{n-1} \to \ker d_X^{n+1}$ 是下图

由 $d_X^n:X^n\to X^{n+1}$ 诱导的 coker $d_X^{n-1}\dashrightarrow$ ker d_X^{n+1} (在 R 模的情形就是选取一个代表元素 X^n /im $d_X^{n-1}\cong$ coker d_X^{n-1} , 然后用 d_X^n 将代表元映到 ker d_X^{n+1} 中). 再次根据蛇形引理,有长正合序列

 $\ker \, \bar{d}_X^n \to \ker \, \bar{d}_Y^n \to \ker \, \bar{d}_Z^n \to \operatorname{coker} \, \bar{d}_X^n \to \operatorname{coker} \, \bar{d}_Y^n \to \operatorname{coker} \, \bar{d}_Z^n.$

但是,

$$\ker \bar{d}_X^n \cong \frac{\ker d_X^n}{\operatorname{im} d_X^{n-1}} = H^n(X^{\bullet})$$

且

$$\operatorname{coker} \, \bar{d}_X^n \cong \frac{\ker \, d_X^{n+1}}{\operatorname{im} \, d_X^n} = H^{n+1}(X^{\bullet}),$$

这样就得到了希望的长正合序列.

在蛇形引理的证明中,态射 ker $\bar{d}_Z^n \to \operatorname{coker} \bar{d}_X^n$ 是困难的,并且在长正合序列中它对应了阶数提升的态射 $H^n(Z^{\bullet}) \to H^{n+1}(X^{\bullet})$. 这里有必要将整个态射详细清楚地描述出来.

特别地, 当 $A \in R$ 模复形时,

对应的连接同态是明确的: 任取 ker \bar{d}_Z^n 中的元素 $\bar{z}\in \operatorname{coker} d_Z^n$,根据 \bar{g} 是满射,存在 $\bar{y}\in \operatorname{coker} d_Y^n$ 使得它在 \bar{g} 下的像是 \bar{z} ,根据证明中的说明, $\bar{d}_Y^n(\bar{y})$ 是将 d_Y^n 作用在 \bar{y} 的任意代表元上得到 ker d_Y^{n+1} 中的元素,根据右 侧的交换性存在 $x\in \ker d_X^{n+1}$ 使得 $f^{n+1}|_{\ker d_X^{n+1}}(x)=\bar{d}_Y^n(\bar{y})$,于是

$$\delta: H^n(Z^{\bullet}) \to H^{n+1}(X^{\bullet})$$

将 $H^n(Z^{\bullet})$ 中以 \bar{z} 代表的元素映到 $H^{n+1}(X^{\bullet})$ 中 x 代表的元素,满足

$$f^{n+1}|_{\ker d_X^{n+1}}(x) = \bar{d}_Y^n(\bar{y}).$$

换句话说, δ^n 的行为基本同于 \bar{d}_v^n .

10 第一章 导出函子

定义.

例 1.4. 给定 Abel 范畴 A 中的短正合序列

$$0 \to X \to Y \to Z \to 0$$
,

那么

和

都是拟同构.

习题 1.1. 给定一族 Abel 范畴 A 中的对象 $\{X_n\}_{n\in\mathbb{N}}$ 和态射

$$d_i^{[n]}: X_n \to X_{n-1}, 0 \le i \le n$$

满足

$$d_i^{[n]}d_j^{[n]} = d_{j-1}^{[n]}d_i^{[n]}$$

对 $0 \le i < j \le n$ 成立,则称 $\{X_n\}_{n \in \mathbb{N}}$ 是预单纯的 (pre-simplicial),且 $d_i^{[n]}$ 是面映射 (face maps). 求证定义

$$\partial_n := \sum_{i=0}^n (-1)^i d_i^{[n]}$$

满足 $\partial_{n-1}\partial_n=0$.

习题 1.2 (Hopf 迹定理). 设 V^{\bullet} , W^{\bullet} 是域 k 上有界($\exists N>0$ 使得当 |n|>N 时 $V^n=0$)上链,且对任意 n, V^n 和 W^n 都是有限维 k 向量空间, $f:V^{\bullet}\to W^{\bullet}$ 是链同态, $f_*:H^n(V^{\bullet})\to H^n(W^{\bullet})$ 是诱导的上同调群同态. 求证

$$\sum_{n\in\mathbb{Z}} (-1)^n \mathrm{Tr}\ f^n = \sum_{n\in\mathbb{Z}} (-1)^n \mathrm{Tr}\ f^n_*.$$

[归纳地构造向量空间合适的基.]

1.2 链同伦

另一方面,我们希望从拓扑的角度解释这样称呼他们的原因,设 $f:X\to Y$ 是拓扑空间的连续函数,那么 f 的映射柱是拓扑空间 $(X\times I)\coprod_f Y$,其中粘合依赖于 $f:X\times\{1\}\to Y$,它在同伦的定义中起到了重要的作用. 回顾拓扑中映射 f,g 的一个同伦是一个连续映射 $H:X\times I\to Y$,满足 $H|_{X\times\{0\}}=f$ 且 $H|_{X\times\{1\}}=g$,用交换图表示即为

1.3 映射锥和映射柱 11

$$X \xrightarrow{i} X \times I \xleftarrow{j} X$$

$$\downarrow^{H} \qquad g$$

其中 $i:X\to X\times I, x\mapsto (x,0)$ 且 $j:X\to X\times I, x\mapsto (x,1)$. 用到拓扑空间中余积是不交并的事实,上图又可以表示为

$$X \coprod X \xrightarrow{i \coprod j} X \times I$$

$$\downarrow_{H}$$

$$Y.$$

注意到 $X \times I$ 恰是 $\mathrm{id}_X : X \to X$ 的映射柱,因而映射同伦的存在性恰由映射柱描述. 这样的事情同样发生在 $\mathrm{Com}^\bullet(\mathcal{A})$ 中,一个上链映射的同伦 $s : f \simeq g$ 可以给出一个 $\mathrm{Com}^\bullet(\mathcal{A})$ 的交换图

习题-将给出验证.

引理 1.1. 任意给定加性函子 $F: A \to B$, 那么 F 将 $Com^{\bullet}(A)$ 中的同伦链映为同伦链.

例 1.5 (加性函子不保拟同构).

习题 1.3. 习题1.1中给了预单纯复形 $h_i^{[n]}: X_n \to X_{n+1}$

$$\begin{split} d_i^{[n+1]}h_j^{[n]} &= h_{j-1}^{[n-1]}d_i^{[n]}, & \forall \ i < j \\ d_i^{[n+1]}h_i^{[n]} &= d_i^{[n+1]}h_{i-1}^{[n]}, & i = j \ \vec{\boxtimes} \ i = j+1 \\ d_i^{[n+1]}h_j^{[n]} &= h_j^{[n-1]}d_{i-1}^{[n]}, & \forall \ i > j+1, \\ d_0h_0 &= f, \ d_{n+1}h_n = g. \end{split}$$

求证 $h := \sum_{i=0}^{n} (-1)h^i$ 给出了链同伦.

1.3 映射锥和映射柱

给定 Abel 范畴 A,且设 $X^{\bullet} = (X^n, d_X^n) \in \text{Com}^{\bullet}(A)$ 是 A 中对象组成的复形,那么我们可以定义一个新的复形 $X[n]^{\bullet}$,满足 $(X[n])^i = X^{n+i}$, $d_{X[n]}^i = (-1)^n d_X^{n+i} : (X[n])^i \to (X[n])^{i+1}$. 若 $f: X^{\bullet} \to Y^{\bullet}$ 是一个链同态,则我们有诱导的链同态 $f[n]: X[n]^{\bullet} \to Y[n]^{\bullet}$,满足 $f[n]^i = f^{n+i}: (X[n])^i \to (Y[n])^i$.

我们称 [1] 为平移函子 (translation by 1 functor),它是拓扑中 $-\times$ [0,1] 的类比. 之后这个函子将给出了????? 上的一个三角结构 (triangulated structure).

定义. 给定 Abel 范畴 \mathcal{A} 的一个链同态 $f: X^{\bullet} \to Y^{\bullet}$, 那么 f 的映射锥 (mapping cone) 是 \mathcal{A} 中对象组成的一个链 Cone(f)^{\bullet} 满足

$$\operatorname{Cone}(f)^i := X[1]^i \oplus Y^i$$

和

$$d^i_{\operatorname{Cone}(f)} := \begin{pmatrix} d^i_{X[1]} & 0 \\ f[1]^i & d^i_Y \end{pmatrix} : \overset{X^{n-1}}{\bigoplus} \overset{X^{n-2}}{\bigoplus} Y^{n-1}.$$

类似地我们可以定义 f 的映射柱 (mapping cylinder),它是 A 中对象组成的一个链 $\mathrm{Cyl}(f)^{\bullet}:=X^{\bullet}\oplus X[1]^{\bullet}\oplus Y^{\bullet}$,其中

$$d_{\text{Cyl}(f)}^i := \begin{pmatrix} d_X^i & -\mathrm{id}_{X[1]} & 0 \\ 0 & d_{X[1]}^i & 0 \\ 0 & f[1]^i & d_Y^i \end{pmatrix}.$$

这样微分映射的定义很明显是合理的,它们都是上链:

$$d_{\mathrm{Cone}(f)}^{i+1} \circ d_{\mathrm{Cone}(f)}^{i} = \begin{pmatrix} d_{X[1]}^{i+1} & 0 \\ f[1]^{i+1} & d_{Y}^{i+1} \end{pmatrix} \begin{pmatrix} d_{X[1]}^{i} & 0 \\ f[1]^{i} & d_{Y}^{i} \end{pmatrix} = \begin{pmatrix} d_{X[1]}^{i+1} \circ d_{X[1]}^{i} & 0 \\ f[1]^{i+1} \circ d_{X[1]}^{i} + d_{Y}^{i+1} \circ f[1]^{i} & d_{Y}^{i+1} \circ d_{X[1]}^{i} \end{pmatrix} = 0,$$

且

$$d_{\text{Cyl}(f)}^{i+1} \circ d_{\text{Cyl}(f)}^{i} = \begin{pmatrix} d_X^{i+1} & -\mathrm{id}_{X[1]} & 0\\ 0 & d_{X[1]}^{i+1} & 0\\ 0 & f[1]^{i+1} & d_Y^{i+1} \end{pmatrix} \begin{pmatrix} d_X^{i} & -\mathrm{id}_{X[1]} & 0\\ 0 & d_{X[1]}^{i} & 0\\ 0 & f[1]^{i} & d_Y^{i} \end{pmatrix}$$

例 1.6. 设 X^{\bullet}, Y^{\bullet} 是单对象上链, $f: X^{\bullet} \to Y^{\bullet}$ 是链映射, 那么由定义

$$\operatorname{Cone}(f) = \cdots \to 0 \to X^0 \xrightarrow{f} Y^0 \to 0 \to \cdots,$$

其中 Y^0 所在的位置是 0 阶位置,且有 $H^0 = \operatorname{coker} f$, $H^{-1} = \ker f$. 这意味着我们可以将 Cone 可以视作 \ker 和 coker 的推广,这在后面三角范畴的讨论中是关键的问题.

对偶地,

引理 1.2. Abel 范畴 \mathcal{A} 的一个链同态 $f: X^{\bullet} \to Y^{\bullet}$ 诱导了同构 $f^*: H^*(X^{\bullet}) \to H^*(Y^{\bullet})$ 当且仅当 $H^*(\operatorname{Cone}(f)) = 0$.

证明, 如下短正合列

$$0 \to Y^{\bullet} \xrightarrow{i} \operatorname{Cone}(f) \xrightarrow{p} X[1]^{\bullet} \to 0$$

(其中 i 是嵌入 p 是投影) 诱导了上同调群的长正合列

$$\cdots \to H^n(\operatorname{Cone}(f)) \to H^n(X[1]) \to H^{n+1}(Y) \to H^{n+1}(\operatorname{Cone}(f)) \to \cdots,$$

1.3 映射锥和映射柱 13

于是 $H^n(X[1]) = H^{n+1}(X) \cong H^{n+1}(X)$ 当且仅当 $H^n(\operatorname{Cone}(f)) = 0$ 对所有 n 成立,于是只要说明诱导长正 合序列的连接态射是由 f 诱导的即可. 考虑??????

命题 1.2. 设 Abel 范畴 A 的一个链同态 $f: X^{\bullet} \to Y^{\bullet}$ 满足 $Cone(f) \simeq 0$, 那么 f 是链同伦等价.

证明. 令 $i: Y^{\bullet} \to \operatorname{Cone}(f)$ 是嵌入 $p: \operatorname{Cone}(f) \to X[1]^{\bullet}$ 是投影.

首先, $i \simeq 0$ 当且仅当 f 有右同伦逆, 即存在链映射 $g: Y^{\bullet} \to X^{\bullet}$ 使得 $fg \simeq \mathrm{id}_{Y^{\bullet}}$. 一方面,若 $i \simeq 0$,那 么存在 $h: Y^{\bullet} \to \mathrm{Cone}(f)[-1]$ 满足

$$d_{\operatorname{Cone}(f)}^{n-1} \circ h^n + h^{n+1} \circ d_Y^n = i,$$

按照直和分解 $\operatorname{Cone}(f) := X[1]^{\bullet} \oplus Y^{\bullet}$,存在 $s: Y^{\bullet} \to Y[-1]^{\bullet}$ 和 $g: Y^{\bullet} \to X^{\bullet}$ 满足 h = s + g,于是上式可以 写为

$$\begin{pmatrix} d_{X[1]}^{n-1} & 0 \\ f[1]^{n-1} & d_Y^{n-1} \end{pmatrix} \begin{pmatrix} g^n \\ s^n \end{pmatrix} + \begin{pmatrix} g^{n+1} \\ s^{n+1} \end{pmatrix} d_Y^n = \begin{pmatrix} 0 \\ \mathrm{id}_Y \end{pmatrix}.$$

这意味着 $g: Y^{\bullet} \to X^{\bullet}$ 是链映射, 且

$$f[1]^{n-1} \circ g^n + d_Y^{n-1} \circ s^n + s^{n+1} \circ d_Y^n = \mathrm{id}_Y,$$

即 g 是右同伦逆. 另一方面,f 有右同伦逆,记为链映射 $g:Y^{\bullet}\to X^{\bullet}$ 和 $s:Y^{\bullet}\to Y[-1]^{\bullet}$,那么之前证明中的矩阵等式成立,于是找到了 h:=s+g 满足 $d^{n-1}_{\operatorname{Cone}(f)}\circ h^n+h^{n+1}\circ d^n_Y=i$,即 $i\simeq 0$.

再来, $p \simeq 0$ 当且仅当 f 有左同伦逆, 即存在链映射 $h: Y^{\bullet} \to X^{\bullet}$ 使得 $hf \simeq id_{Y^{\bullet}}$.

最后,我们回到命题的证明来. $\operatorname{Cone}(f) \simeq 0$ 意味着 $\operatorname{id}_{\operatorname{Cone}(f)} \simeq 0$,于是 $i = \operatorname{id}_{\operatorname{Cone}(f)} \circ i \simeq 0 \circ i = 0$ 并且 $p = p \circ \operatorname{id}_{\operatorname{Cone}(f)} \simeq p \circ 0 = 0$,于是根据前面的讨论,f 同时有左右同伦逆,因此 f 是同伦等价.

拓扑上,考虑

定理 1.3. 任给定 Abel 范畴 A 的一个链同态 $f: X^{\bullet} \to Y^{\bullet}$, 都存在如下 $Com^{\bullet}(A)$ 的正合列:

$$0 \longrightarrow Y^{\bullet} \stackrel{\overline{\pi}}{\longrightarrow} \operatorname{Cone}(f) \stackrel{\pi}{\longrightarrow} X^{\bullet}[1] \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow_{\operatorname{id}}$$

$$0 \longrightarrow X^{\bullet} \stackrel{\overline{f}}{\longrightarrow} \operatorname{Cyl}(f) \stackrel{\pi}{\longrightarrow} \operatorname{Cone}(f) \longrightarrow 0$$

$$\downarrow^{\operatorname{id}} \qquad \downarrow^{\beta}$$

$$X^{\bullet} \stackrel{f}{\longrightarrow} Y^{\bullet}$$

推论 1.3.1.

定义. 给定 Abel 范畴 A, 称 $Com^{\bullet}(A)$ 中的图

$$X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \xrightarrow{h} X^{\bullet}[1]$$

为其中的一个三角 (triangle), 三角间的态射 (morphism) 是如下交换图

$$X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \xrightarrow{h} X^{\bullet}[1]$$

$$\downarrow^{u} \qquad \qquad \downarrow^{v} \qquad \qquad \downarrow^{u[1]}$$

$$K^{\bullet} \xrightarrow{i} L^{\bullet} \xrightarrow{j} M^{\bullet} \xrightarrow{k} K^{\bullet}[1]$$

给定三角, 若存在 f 使得三角同构于

$$X^{\bullet} \xrightarrow{f} \operatorname{Cyl}(f) \xrightarrow{\pi} \operatorname{Cone}(f) \xrightarrow{\delta} X^{\bullet}[1]$$

则称它是特异三角 (distinguished triangle).

如上定义给出的是

其中w

命题 1.4. $\operatorname{Com}^{\bullet}(A)$ 中的任意短正合序列 $0 \to X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \to 0$ 都拟同构于某个特异三角.

证明. 考虑如下交换图

$$0 \longrightarrow X^{\bullet} \xrightarrow{f} Y^{\bullet} \xrightarrow{g} Z^{\bullet} \xrightarrow{h} 0$$

$$\downarrow^{u} \qquad \downarrow^{v} \qquad \downarrow^{w}$$

$$0 \longrightarrow X^{\bullet} \xrightarrow{f} \operatorname{Cyl}(f) \xrightarrow{\pi} \operatorname{Cone}(f) \longrightarrow 0$$

习题 1.4. 设 $\left(X^{\bullet} \oplus Y^{\bullet}, d = \begin{pmatrix} f & g \\ l & k \end{pmatrix}\right)$ 是上链复形, $(Y^{\bullet}, k^{\bullet})$ 可缩且 $h: Y^{\bullet} \to Y^{\bullet}[1]$ 是链同伦,求证 $(\mathrm{id}, -hl): (X^{\bullet}, f - ghl) \hookrightarrow (X^{\bullet} \oplus Y^{\bullet}, d)$

是拟同构.

证明. 首先来验证 $(X^{\bullet}, f - ghl)$ 是链复形. 由于

$$d^{2} = \begin{pmatrix} f^{2} + gl & fg + gk \\ lf + kl & lg + k^{2} \end{pmatrix} = 0,$$

1.4 内射消解和投射消解

因此

$$(f - ghl)^2 = f^2 - fghl - ghlf + (ghl)^2$$

= $f^2 + g(hk + kh)l + ghk^2hl$,

由于 k 是微分映射且 $h: id \simeq 0$ 是收缩同伦,故如上计算 $(f-ghl)^2=0$. 再来验证 (id,-hl) 是链映射,这等价于

1.4 内射消解和投射消解

定义. (augmented)

1.5 δ 函子和导出函子

定义. 给定 Abel 范畴 $A, \mathcal{B}, A \to \mathcal{B}$ 的(协变)δ 函子 (δ-functor) 是一族函子 $\{T^i : A \to \mathcal{B}\}_{i \in \mathbb{N}}, \text{ 和对任}$ 意 A 中的短正合序列

$$0 \to X \to Y \to Z \to 0$$
,

都有态射 $\delta^i_{Z \to X} : T^i(Z) \to T^{i+1}(X)$,满足

- 1. 对任意给定的 A 中的短正合序列 $0 \to X \to Y \to Z \to 0$,都存在长正合列
- 2. 若有 A 中的短正合列交换图那么态射 $\delta_{Z\to X}^i$ 给出了自然的交换图

$$T^{i}(Z_{1}) \xrightarrow{\delta^{i}_{Z_{1} \to X_{1}}} T^{i+1}(X_{1})$$

$$\downarrow \qquad \qquad \downarrow$$

$$T^{i}(Z_{2}) \xrightarrow{\delta^{i}_{Z_{2} \to X_{2}}} T^{i+1}(X_{2}).$$

定义. 给定 Abel 范畴 A, B 和加性函子 $F: A \to B$, 若对任意 A 中的对象 X, 都存在单态射 $i: X \to I$ 使得 F(i) = 0, 则称 F 是 effectable 的. 对偶地,若对于任意任意 A 中的对象 Z, 都存在单态射 $p: P \to Z$ 使得 F(p) = 0, 则称 F 是 coeffectable 的.

定理 1.5. 给定 Abel 范畴 A, \mathcal{B} 和 δ 函子 $(T^i, \delta)_{i \in \mathbb{N}}$,若对于任意 i > 0, T^i 都是有效的函子,那么 $(T^i, \delta)_{i \in \mathbb{N}}$ 在所有 δ 函子中是始对象,即

16 第一章 导出函子

证明.

推论 1.5.1. 右导出函子是有效的,反之也成立.

第二章 Tor 函子和 Ext 函子

2.1 *R* 模同调与 Tor 函子

定义. 给定(右)R 模链复形(C_{\bullet} , ∂_{\bullet})和(左)R 模 N,则以 N 为系数的 C_{\bullet} 的同调 (the homology of C_{\bullet} with coefficient in N) 为

$$H_n(C_{\bullet}; N) := H_n(C_{\bullet} \otimes_R N),$$

其中复形 $C_{\bullet} \otimes_R N$ 是

$$\cdots \to C_{n+1} \otimes_R N \xrightarrow{\partial_{n+1} \otimes_R N} C_n \otimes_R N \xrightarrow{\partial_n \otimes_R N} C_{n+1} \otimes_R N \to \cdots$$

定理 2.1.

推论 2.1.1. 给定 R 模短正合列

$$0 \to M \to N \to P \to 0$$
,

满足 P 是平坦的,那么

- 1. M 是平坦的当且仅当 N 是平坦的,
- 2. 对任意 R 模 Q, $0 \to M \otimes_R Q \to N \otimes_R Q \to P \otimes_R Q \to 0$ 也是正合列.

2.2 *R* 模上同调与 Ext 函子

2.2.1 R 模同调与上同调的转换

2.3 特殊链复形和万有系数定理

2.3.1 特殊链复形

引理 2.1. 设 $(P_{\bullet}, \partial_{\bullet})$ 是投射 R 模链复形, $H_n(P_{\bullet}) = 0$ 对任意 n 成立,且所有的 Im ∂_{n+1} 也都是投射的,则 $P_{\bullet} \simeq 0$.

证明. 令 $Z_n := \text{Ker } \partial_n, B_n := \text{Im } \partial_{n+1}$,那么对所有的整数 n 我们有短正合序列

$$0 \to Z_n \hookrightarrow P_n \xrightarrow{\partial_n} B_{n-1} \to 0.$$

根据投射 R 模的提升性质,存在 $h_{n-1}:B_{n-1}\to P_n$ 使得下图交换:

$$0 \longrightarrow Z_n \hookrightarrow P_n \xrightarrow{\stackrel{h_{n-1}}{\swarrow} \partial_n} B_{n-1} \longrightarrow 0.$$

因此 $P_n = Z_n \oplus h_{n-1}(B_{n-1})$. 由于 $H_n(P_{\bullet}) = 0$, $Z_n = B_n$, 于是复形可以重写为

$$\cdots \to Z_{n+1} \oplus h_n Z_n \xrightarrow{\partial_{n+1}} Z_n \oplus h_{n-1} Z_{n-1} \xrightarrow{\partial_n} Z_{n-1} \oplus h_{n-2} Z_{n-2} \to \cdots,$$

满足 $\partial_n|_{Z_n}=0, \partial_n|_{h_{n-1}Z_{n-1}}=(h_{n-1})^{-1}$,于是

给出了链同伦 id $\simeq 0$.

作为推论,考虑投射 R 模链复形的态射 $f: M_{\bullet} \to N_{\bullet}$ 诱导了同构 $f_*: H_*(M_{\bullet}) \to H_*(N_{\bullet})$,那么 $H_n(\operatorname{Cone}(f)) = 0$ 对任意 n 成立. 但是, $\operatorname{Cone}(f)$ 也是投射 R 模链复形,由刚刚的引理 $\operatorname{Cone}(f) \simeq 0$,于是根据命题1.2的对偶,f 是链同伦. 这样我们证明了

命题 2.2. 若投射 R 模链复形的态射 $f: M_{\bullet} \to N_{\bullet}$ 诱导了同构 $f_*: H_*(M_{\bullet}) \to H_*(N_{\bullet})$,那么 f 是链同伦.

事实上,我们还可以证明更强的结论:如果同调群的同构 $H_*(M_{\bullet}) \cong H_*(N_{\bullet})$ 并不是由特定的态射诱导的话,给定的自由 R 模链复形 M_{\bullet}, N_{\bullet} 依旧依旧是同伦等价的,即:

定理 2.3. 若 $(M_{\bullet}, \partial_{\bullet}^{M}), (N_{\bullet}, \partial_{\bullet}^{N})$ 是自由 R 模链复形,那么 $M_{\bullet} \simeq N_{\bullet}$ 当且仅当 $H_{n}(M_{\bullet}) = H_{n}(N_{\bullet})$ 对任意 n 成立.

为了证明定理2.3,我们需要建立由同调群映射到链复形态射的提升,即

命题 2.4. 给定 R 模链复形 M_{\bullet}, N_{\bullet} 且 M^{\bullet} 是投射链复形,且 $\operatorname{Ker} \partial_{n}^{M}, \operatorname{Im} \partial_{n+1}^{M}$ 都是投射的,则对于任意上同调群的同态 $\varphi_{*}: H_{*}(M_{\bullet}) \to H_{*}(N_{\bullet})$ 都可以找到链复形态射 $f: M_{\bullet} \to N_{\bullet}$,使得 $f_{*} = \varphi_{*}$.

证明. 按照假设 $Z_n^M := \operatorname{Ker} \partial_n, B_n^M := \operatorname{Im} \partial_{n+1}$ 都是投射的,于是存在交换图

$$0 \longrightarrow B_n^M \longrightarrow Z_n^M \xrightarrow{\pi_n^M} H_n^M \longrightarrow 0$$

$$\downarrow \tilde{f}_n|_{B_n^M} \qquad \downarrow \tilde{f}_n \qquad \downarrow \varphi_n$$

$$0 \longrightarrow B_n^N \longrightarrow Z_n^N \xrightarrow{\pi_n^N} H_n^N \longrightarrow 0,$$

其中上下两行的正合性说明, 对任意 $\partial_{n+1}^{M}(m) = b \in B_{n}^{M}$,

$$\pi_n^N \circ \tilde{f}_n(b) = \pi_n^N \circ \tilde{f}_n(\partial_{n+1}(m)) = \varphi_n(\pi_n^M \circ \partial_{n+1}^M(m)) = 0,$$

因此 $\tilde{f}_n(b) \in \text{Ker } \pi_n^N = B_n^N$,这样只需要将 \tilde{f}_n 扩张到 M_n 即可. 考虑2.1中的分解 $M_n = Z_n^M \oplus h_{n-1}(B_{n-1}^M)$,在如下交换图中

$$0 \longrightarrow Z_n^M \longrightarrow M_n \longrightarrow B_{n-1}^M \longrightarrow 0$$

$$\downarrow \tilde{f}_n \qquad \qquad \downarrow \tilde{f}_{n-1} \qquad \qquad \downarrow \tilde{f}_{n|_{B_{n-1}^M}}$$

$$0 \longrightarrow Z_n^N \longrightarrow N_n \longrightarrow B_{n-1}^N \longrightarrow 0,$$

再次根据自由模的投射性质存在 $k_{n-1}: B_{n-1}^M \to N_n$. 于是,定义

$$f_n: M_n \to N_n$$
$$(z, h_{n-1}(b)) \mapsto \tilde{f}_n(z) + k_{n-1}(b),$$

这样只需要验证 f 是链映射且 $f_* = \varphi_*$ 即可. 计算得

$$f_n\partial_{n+1}^M((z,h_n(b))) = f_n(b,0) = \tilde{f}_n(b) = \partial_{n+1}^N \circ k_n(b) = \partial_{n+1}^N (\tilde{f}_{n+1}(z) + k_n(b)) = \partial_{n+1}^N f_{n+1}((z,h_n(b))),$$

于是 f 是链映射,且 $f_*([z]) = [\tilde{f}_n(z)]$, \tilde{f}_n 的定义交换图说明 $\varphi_n \circ \pi_n^M = \pi_n^N \circ \tilde{f}_n$,这样 $[\tilde{f}_n(z)] = \varphi_n([z])$,即 $f_* = \varphi_*$.

结合命题2.2, 此时定理2.3已经完成了证明. 更进一步地, 我们还有

命题 2.5. 给定 R 模扱射链复形 M_{\bullet}, N_{\bullet} ,且 $\operatorname{Ker} \partial_{n}^{M}, \operatorname{Im} \partial_{n+1}^{M}, \operatorname{Ker} \partial_{n}^{N}, \operatorname{Im} \partial_{n+1}^{N}$ 都是投射的,若 $H_{*}(M_{\bullet}), H_{*}(N_{\bullet})$ 也都是投射的,且态射 $f, g: M_{\bullet} \to N_{\bullet}$ 诱导相同的同态 $f_{*} = g_{*}: H_{*}(M_{\bullet}) \to H_{*}(N_{\bullet}),$ 那么 $f \simeq g$.

证明. 令 $Z_n^M := \text{Ker } \partial_n^M, B_n^M := \text{Im } \partial_{n+1}^M, Z_n^N := \text{Ker } \partial_n^N, B_n^N := \text{Im } \partial_{n+1}^N, \text{ 将 } H_*(M_{\bullet})$ 看作(边缘算子为 0 的)链复形,那么显然 $H_*(M_{\bullet}) = H_*(H_*(M_{\bullet}))$ (这里固定一个同构视为相等),根据命题2.4,存在链映射 $j_{\bullet} : M_{\bullet} \to H_*(M_{\bullet})$ 使得 j_* 是同构 $H_*(M_{\bullet}) = H_*(H_*(M_{\bullet}))$. 根据命题2.2, j_{\bullet} 存在同伦逆,记为 j_{\bullet}^{-1} . 类似地,存在链映射 $k_{\bullet} : N_{\bullet} \to H_*(N_{\bullet})$ 使得 k_* 是同构 $H_*(N_{\bullet}) = H_*(H_*(N_{\bullet}))$, k_{\bullet}^{-1} 是同伦逆. 于是

$$f \simeq (k \circ k^{-1}) \circ f \circ (j \circ j^{-1}) = k \circ (k^{-1} \circ f \circ j) \circ j^{-1}.$$

另一方面, 链复形 $H_*(M_{\bullet}), H_*(N_{\bullet})$ 的边缘算子都是 0, 链映射 $H_*(M_{\bullet}) \to H_*(N_{\bullet})$ 和它诱导的 $H_*(H_*(M_{\bullet})) \to H_*(H_*(N_{\bullet}))$ 没有差别,因此

$$k^{-1} \circ f \circ j = (k^{-1} \circ f \circ j)_* = k_*^{-1} \circ f_* \circ j_* = \mathrm{id} \circ f_* \circ \mathrm{id} = f_*,$$

同理 $k^{-1} \circ g \circ j = g_*$,综合起来

$$f \simeq k \circ (k^{-1} \circ f \circ j) \circ j^{-1} = k \circ f_* \circ j^{-1} = k \circ g_* \circ j^{-1} = k \circ (k^{-1} \circ g \circ j) \circ j^{-1} \simeq g.$$

2.3.2 万有系数定理

定理 2.6. 给定环 R 和平坦右 R 模组成的复形 P_{\bullet} ,使得所有的子模 $\operatorname{Im} \partial_{n+1}$ 也都是平坦的,那么对于任意的左 R 模 N 和 $n \in \mathbb{Z}$,都存在正合序列

$$0 \to H_n(P_{\bullet}) \otimes_R N \to H_n(P_{\bullet}; N) \to \operatorname{Tor}_1^R(H_{n-1}(P_{\bullet}), N) \to 0.$$

证明. 首先对任意 $n \in \mathbb{Z}$ 存在正合列

$$0 \to Z_n \hookrightarrow P_n \xrightarrow{\partial_n} B_{n-1} \to 0,$$

根据推论2.1.1, Z_n 也都是平坦的, 且诱导的

$$0 \to Z_n \otimes_R N \to P_n \otimes_R N \to B_{n-1} \otimes_R N \to 0$$

也是正合列. 这样,存在 Abel 群复形的短正合序列

$$0 \to Z_{\bullet} \otimes_R N \to P_{\bullet} \otimes_R N \to B[-1]_{\bullet} \otimes_R N \to 0,$$

并且诱导了长正合序列

$$\cdots \to H_{n+1}(B[-1]_{\bullet} \otimes_R N) \xrightarrow{\delta} H_n(Z_{\bullet} \otimes_R N) \to H_n(P_{\bullet} \otimes_R N) \to H_n(B[-1]_{\bullet} \otimes_R N) \to \cdots$$

注意到 $(Z_{\bullet}, \partial_{\bullet}|_{Z})$ 和 $(B[-1]_{\bullet}, \partial_{\bullet}|_{B})$ 的边缘算子都是 0,故 $H_{n}(Z_{\bullet} \otimes_{R} N) = Z_{n} \otimes_{R} N, H_{n}(B[-1]_{\bullet} \otimes_{R} N) = B_{n-1} \otimes_{R} N$. 这样,之前的长正合序列是

$$\cdots \to B_n \otimes_R N \xrightarrow{\delta_n} Z_n \otimes_R N \to H_n(P_{\bullet} \otimes_R N) \to B_{n-1} \otimes_R N \to \cdots,$$

其中, 映射 $\delta: B_n \otimes_R N \to Z_n \otimes_R N$ 恰好是嵌入 $i_n: B_n \to Z_n$ 在 $-\otimes_R N$ 下的象,这样有正合列

$$0 \to \operatorname{Coker} \delta_n \to H_n(P_{\bullet} \otimes_R N) \to \operatorname{Ker} \delta_{n-1} \to 0.$$

注意到

$$0 \to B_n \to Z_n \to H_n(P_{\bullet}) \to 0$$

是 $H_n(P_{\bullet})$ 的平坦消解, 因此根据 Tor 诱导的长正合序列

$$0 \to \operatorname{Tor}_{1}^{R}(H_{n}(P_{\bullet}), N) \to B_{n} \otimes_{R} N \xrightarrow{\delta_{n}} Z_{n} \otimes_{R} N \to H_{n}(P_{\bullet}) \otimes_{R} N \to 0,$$

代入即可.

对偶地,有上同调的万有系数定理:

定理 2.7. 给定环 R 和投射右 R 模组成的复形 P_{\bullet} ,使得所有的子模 $\operatorname{Im} \partial_{n+1}$ 也都是投射的,那么对于任意的左 R 模 N 和 $n \in \mathbb{Z}$,都存在(非典范的)分裂正合序列

$$0 \to \operatorname{Ext}_R^1(H_{n-1}(P_{\bullet}), N) \to H^n(P_{\bullet}; N) \to \operatorname{Hom}_R(H_n(P_{\bullet}, N)) \to 0.$$

引理 2.2. 给定主理想整环 R 和自由 R 模 M, 则 M 的子模也是自由的.

定义. 设 M^{\bullet} 是 R 模上链复形,若对每一个 $n \in \mathbb{Z}$, M^n 都是自由 R 模,则称 M^{\bullet} 是自由链复形 (free cochain complex).

推论 2.7.1. 若 M_{\bullet} 是主理想整环 R 模的自由链复形,那么存在自然的正合序列

$$0 \to H_n(M_{\bullet}) \otimes_R N \to H_n(M_{\bullet}; N) \to \operatorname{Tor}(H_{n-1}(M_{\bullet}), N) \to 0,$$

对偶地,

例 2.1. 给定一个拓扑空间 X,

2.3.3 零调模型

定理 2.8. 给定环 R 的链复形 $C_{\bullet}, D_{\bullet} \in$,满足 C_{\bullet} 是自由链复形,且 D_{\bullet} 是零调的. 设 $\varphi_0: H_0(C_{\bullet}) \to H_0(D_{\bullet})$ 是同态,则

- 1. 存在链同态 $f: C_{\bullet} \to D_{\bullet}$ 使得 $(f_*)_0 = \varphi_0$,
- 2. 任意满足如上性质的链同态都是同伦的.

2.4 双复形和链复形中的乘法对象

2.4.1 双复形和全复形

定义. 分次模/分次对象

定义. 设 M, N 是分次 R 模,若 R 模态射 $f: M \to N$ 满足存在整数 d,使得对任意 $n \in \mathbb{Z}$ 都有 $f: M_n \to N_{n+k}$,则称 f 是阶数为 k 的分次映射 (graded map of degree k).

命题 2.9. 若 $M \xrightarrow{f} N \xrightarrow{g} P$ 分别是阶数为 k,l 的分次映射,则 $g \circ f$ 是阶数为 k+l 的分次映射.

定义. 一个双分次模 (bigraded module) 是一族有两个指标的 R 模

$$M := \{M^{p,q}\}_{(p,q)\in\mathbb{Z}\times\mathbb{Z}},$$

一般我们记为 $M^{\bullet \bullet}$. 若 M,N 是双分次模,一族映射

$$f = \{f^{p,q} : M^{p,q} \to N^{p+k,q+l}\}_{(p,q) \in \mathbb{Z} \times \mathbb{Z}}$$

若都是 R 模映射,则称 f 是阶数为 (k,l) 的双分次映射.

接下来我们都用上同调的序号记号.

定义. 设 M 是双分次 R 模 $,d_{I},d_{II}$ 是两个阶数分别为 (1,0) 和 (0,1) 的双分次微分映射 (即 $d_{I}^{p+1,q} \circ d_{I}^{p,q} = 0$, $d_{II}^{p,q+1} \circ d_{II}^{p,q} = 0$. 若映射满足

$$d_I^{p,q+1} \circ d_{II}^{p,q} + d_{II}^{p+1,q} \circ d_I^{p,q} = 0,$$

则称 (M, d_I, d_{II}) 是一个双复形 (bicomplex).

例 2.2. 设 M 是双分次 R 模, d_I , δ 是两个阶数分别为 (1,0) 和 (0,1) 的双分次微分映射,使得 M 是一个交换 图 (注意这和双复形差了一个符号!),那么我们可以通过符号变换构造一个双复形. 令 $d_I^{p,q} = (-1)^p \delta^{p,q}$,那么

$$d_{I}^{p,q+1} \circ d_{II}^{p,q} + d_{II}^{p+1,q} \circ d_{I}^{p,q} =$$

定义. 给定环 R 和 $M^{\bullet} \in \text{Com}^{\bullet}(\text{Mod} - R), N^{\bullet} \in \text{Com}^{\bullet}(R - \text{Mod}),$ 定义 $M^{\bullet} \otimes N^{\bullet}$ 是一个 **Ab** 上的双复形

$$M^{\bullet} \otimes N^{\bullet} = (M^{i} \otimes_{R} N^{j}, d_{I}^{i,j} = d_{M}^{i} \otimes_{R} \operatorname{id}_{N^{j}} : M^{i} \otimes_{R} N^{j} \to M^{i+1} \otimes_{R} N^{j}$$
$$d_{II}^{i,j} = (-1)^{i} \operatorname{id}_{M^{i}} \otimes_{R} d_{N}^{j} : M^{i} \otimes_{R} N^{j} \to M^{i} \otimes_{R} N^{j+1})_{(i,j) \in \mathbb{Z} \times \mathbb{Z}},$$

如下图

$$\begin{array}{ccc} M^i \otimes_R N^{j+1} & \xrightarrow{d_I^{i+1,j}} & M^{i+1} \otimes_R N^{j+1} \\ & & \downarrow^{d_{II}^{i,j}} & & \uparrow^{d_{II}^{i,j+1}} \\ M^i \otimes_R N^j & \xrightarrow{d_I^{i,j}} & M^{i+1} \otimes_R N^j. \end{array}$$

注意到

$$(d_I^{i,j+1} \circ d_{II}^{i,j} + d_{II}^{i+1,j} \circ d_I^{i,j})(m \otimes n)$$

$$= (-1)^i (d_M^i \otimes_R \operatorname{id}_{N^{j+1}}) \circ (\operatorname{id}_{M^i} \otimes_R d_N^j)(m \otimes n) + (-1)^{i+1} (\operatorname{id}_{M^i} \otimes_R d_N^{j+1}) \circ (d_M^i \otimes_R \operatorname{id}_{N^j})(m \otimes n)$$

$$= (-1)^i ((d_M^i \otimes_R d_N^j)(m \otimes n) - (d_M^i \otimes_R d_N^j)(m \otimes n))$$

$$= 0,$$

因此 $M^{\bullet} \otimes N^{\bullet}$ 是双复形.

定义. 设 M 是双分次 R 模, 那么

$$\operatorname{Tot}(M)^n := \bigoplus_{p+q=n} M^{p,q}$$

和 $D^n: \operatorname{Tot}(M)^n \to \operatorname{Tot}(M)^{n+1}$,

$$D^n:=\sum_{p+q=n}(d_I^{p,q}+d_{II}^{p,q})$$

称为 M 的全复形 (total complex).

引理 2.3. 若 M 是双复形,则 (Tot(M), D) 是复形.

很多时候,我们关心的上同调问题是某个双复形的全复形的上同调群,而谱序列就是一种计算全复形上 同调群的某种技巧.

例 2.3. 设 M 是双分次 R 模, (M,d_I,d_{II}) 是一个双复形,那么我们可以定义双复形的转置 M^T : 这意味着 $\mathrm{Tot}(M)=\mathrm{Tot}(M^T).$

2.4.2 复形中的乘法对象

定义. 给定 R 模复形 M^{\bullet} 和 N^{\bullet} , 那么它们的张量积 (tensor product) $(M \otimes N)^{\bullet}$ 满足

$$(M\otimes N)^n:=\bigoplus_{i+j=n}M^i\otimes_R N^j,$$

微分映射由

$$d^{n}: (M \otimes N)^{n} \to (M \otimes N)^{n+1}$$
$$x \otimes y \mapsto d_{M}^{n}(x) \otimes y + (-1)^{\deg x} x \otimes d_{N}^{n}(y)$$

扩张给出.

我们来验证如上定义给出了一个上链复形:

如下命题说明这样的定义是自然的:

命题 2.10. 给定 R 模复形 M^{\bullet} 和 N^{\bullet} , 记 $M^{\bullet} \otimes N^{\bullet}$ 是双复形

此处有图

那么

$$\operatorname{Tot}(M^{\bullet} \otimes N^{\bullet}) \simeq (M \otimes N)^{\bullet}.$$

证明.

引理 2.4. 给定 R 模复形同态的同伦 $f_1^{\bullet} \simeq f_2^{\bullet}: M_1^{\bullet} \to M_2^{\bullet}$ 和 $g_1^{\bullet} \simeq g_2^{\bullet}: N_1^{\bullet} \to N_2^{\bullet}$,那么存在链同伦

$$f_1^{\bullet} \otimes g_1^{\bullet} \simeq f_2^{\bullet} \otimes g_2^{\bullet} : (M_1 \otimes N_1)^{\bullet} \to (M_2 \otimes N_2)^{\bullet},$$

特别地若有链同伦等价 $M_1^{\bullet} \simeq M_2^{\bullet}, N_1^{\bullet} \simeq N_2^{\bullet},$ 则有 $(M_1 \otimes N_1)^{\bullet} \simeq (M_2 \otimes N_2)^{\bullet}.$

例 2.4.

$$\mathbb{Z}[m] \otimes \mathbb{Z}[n] = \mathbb{Z}[m+n],$$
$$(\mathbb{Z}/k\mathbb{Z})[m] \otimes \mathbb{Z}[n] = \mathbb{Z}[m] \otimes (\mathbb{Z}/k\mathbb{Z})[n] = (\mathbb{Z}/k\mathbb{Z})[m+n]$$

习题 2.1. 求证上链复形 $(\mathbb{Z}/k\mathbb{Z})[m] \otimes (\mathbb{Z}/l\mathbb{Z})[n]$ 的上同调群是

$$H^q((\mathbb{Z}/k\mathbb{Z})[m]\otimes(\mathbb{Z}/l\mathbb{Z})[n]) = \begin{cases} \mathbb{Z}/\gcd(k,l)\mathbb{Z} & q = m+n, m+n+1\\ 0 & q \neq m+n, m+n+1. \end{cases}$$

命题 2.11. 给定 R 模复形 M^{\bullet} 和 N^{\bullet} , 那么双线性函数

$$M^p \times N^q \to (M \otimes N)^{p+q}$$

 $(x,y) \mapsto x \otimes y$

诱导了上同调之间的映射

$$H^p(M^{\bullet}) \times H^q(N^{\bullet}) \to H^{p+q}((M \otimes N)^{\bullet}).$$

证明. 任取 $(x,y) \in Z^p(M^{\bullet}) \times Z^q(N^{\bullet})$, 按照定义

$$d(x \otimes y) = d_M^p(x) \otimes y + (-1)^{\deg x} x \otimes d_N^q(y) = 0,$$

于是 $-\times -(Z^{\bullet}(M^{\bullet})\times Z^{\bullet}(M^{\bullet}))\subseteq Z^{\bullet}((M\otimes N)^{\bullet})$. 类似地,任意 $(d_{M}^{n-1}(x),y)\in B^{p}(M^{\bullet})\times Z^{q}(N^{\bullet})$ 满足

$$d(x\otimes y)=d_M^{p-1}(x)\otimes y+(-1)^{\deg x}x\otimes d_N^{q-1}(y)=d_M^{p-1}(x)\otimes y,$$

因此 $- \times -(B^{\bullet}(M^{\bullet}) \times Z^{\bullet}(M^{\bullet})) \subseteq B^{\bullet}((M \otimes N)^{\bullet})$,对偶地 $- \times -(Z^{\bullet}(M^{\bullet}) \times B^{\bullet}(M^{\bullet})) \subseteq B^{\bullet}((M \otimes N)^{\bullet})$. 于是诱导的映射

$$H^p(M^{\bullet}) \times H^q(N^{\bullet}) \to H^{p+q}((M \otimes N)^{\bullet})$$

满足 $([z^p],[z^q]) \mapsto [z^p \otimes z^q]$ 是良定义的,线性性是根据定义直接的.

推论 2.11.1. 给定交换环 R 和 R 模上链复形 S^{\bullet} ,对任意指标 p,q 存在双线性映射 $- \smile -: S^p \times S^q \to S^{p+q}$ 满足

$$d(\alpha \smile \beta) = d(\alpha) \smile \beta + (-1)^{\deg \alpha} \alpha \smile d(\beta), \tag{2.1}$$

那么有诱导的"乘法"

$$-\smile -: H^p(S^{\bullet})\times H^q(S^{\bullet})\to H^{p+q}(S^{\bullet}).$$

证明. 根据张量积的泛性质, 存在 R 线性映射 $S^p \otimes_R S^q \longrightarrow S^{p+q}$ (也记为 \smile) 满足交换图

$$S^p \times S^q \xrightarrow{\smile} S^{p+q}$$
 $\otimes \downarrow$
 $S^p \otimes_R S^q$,

于是等式2.1说明诱导的 $\smile: S^p \otimes_R S^q \longrightarrow S^{p+q}$ 是链映射, 因此存在

$$\smile: H^{p+q}((S \otimes S)^{\bullet}) \to H^{p+q}(S^{\bullet}).$$

复合命题2.11给出的上同调之间的映射,这样得到了所希望的 $- \smile -: H^p(S^{\bullet}) \times H^q(S^{\bullet}) \to H^{p+q}(S^{\bullet})$. \square 例 2.5. 给定拓扑空间,那么在 $S^{\bullet}(X)$ 上有定义的乘积

命题 2.12. 上同调的张量积满足:

1. 结合性: 对任意 $x \in H^p(M^{\bullet}), y \in H^q(N^{\bullet}), z \in H^r(L^{\bullet}),$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z),$$

2. 自然性: 任意给定上链映射 $f: M^{\bullet} \to U^{\bullet}$ 和 $q: N^{\bullet} \to V^{\bullet}$, 那么对任意的 $x \in H^{p}(M^{\bullet}), y \in H^{q}(N^{\bullet})$,

$$(f \otimes g)^{p+q}(x \otimes y) = f^p(x) \otimes g^q(y).$$

定理 2.13 (Künneth). 给定环 R 和平坦右 R 模组成的复形 P_{\bullet} 和左 R 模复形 Q_{\bullet} ,使得所有的子模 Im ∂_{n+1} 也都是平坦的,那么对于任意的和 $n \in \mathbb{Z}$,都存在正合序列

$$0 \to \bigoplus_{p+q=n} H_p(P_{\bullet}) \otimes_R H_q(Q_{\bullet}) \to H_n((P \otimes Q)_{\bullet}) \to \bigoplus_{p+q=n-1} \operatorname{Tor}_1^R(H_p(P_{\bullet}), H_q(Q_{\bullet})) \to 0.$$

推论 2.13.1. 给定主理想整环 R 的自由 R 模上链复形 $M_1^{\bullet}, M_2^{\bullet}, N_1^{\bullet}, N_2^{\bullet}$, 满足 $H^n(M_1^{\bullet}) \cong H^n(M_2^{\bullet}), H^n(N_1^{\bullet}) \cong H^n(N_2^{\bullet})$ 对所有的 $n \in \mathbb{Z}$ 成立,那么 $H^n(M_1^{\bullet} \otimes M_2^{\bullet}) \cong H^n(N_1^{\bullet} \otimes N_2^{\bullet})$ 对所有的 $n \in \mathbb{Z}$ 成立.

推论 2.13.2. 给定主理想整环 R 的自由 R 模上链复形 M^{\bullet}, N^{\bullet} , 使得 $H^{n}(N^{\bullet})$ 都是有限生成的自由模, 那么

$$H^*(M^{\bullet} \otimes N^{\bullet}) \cong H^*(M^{\bullet}) \otimes H^*(N^{\bullet}).$$

这一小节的所有内容都可以形式地对偶到链复形的范畴上,得到相同的结果.

2.4.3 同调与上同调

这里我们只讨论上同调由同调给出的情形,另一种情形完全对偶地可以得出. 此时,假定 $(M_{\bullet}, \partial_{\bullet}^{M}), (N_{\bullet}, \partial_{\bullet}^{N})$ 是给定的 R 模链复形, $(M^{\bullet} = \operatorname{Hom}_{R}(M_{\bullet}, R), d_{M}^{\bullet} = \operatorname{Hom}_{R}(\partial_{\bullet}^{M}, R)), (N^{\bullet} = \operatorname{Hom}_{R}(N_{\bullet}, R), d_{N}^{\bullet} = \operatorname{Hom}_{R}(\partial_{\bullet}^{N}, R))$ 是诱导的上链复形.

事实上,如此的设定并不是必须的,在后面的所有构造和证明中,我们真正用到的是给定一个 R 模复形 $(M_{\bullet}, \partial_{\bullet}^{M})$ 和 R 模上链复形 $(M^{\bullet}, d_{M}^{\bullet})$,存在 R 双线性的映射

$$\langle -, - \rangle : M^n \times M_n \to R$$

满足

$$\langle d(f), m \rangle = \langle f, \partial(m) \rangle$$

对任意 $f \in M^n, m \in M_n, n \in \mathbb{Z}$ 都成立. 但是,在本小节我们还是选择最初具体的假定,以帮助理解.

首先,命题2.11的对偶给出了链复形层面的张量积,而它本身给出了上链复形层面的张量积.当上链复形 是由链复形诱导时,张量积同样可以被诱导:

引理 2.5. 双线性函数

$$M^p \times N^q \to (M \otimes N)^{p+q}$$

 $(\alpha, \beta) \mapsto (\alpha \otimes \beta : (m, n) \mapsto \alpha(a)\beta(n))$

诱导了 $(M \otimes N)^{\bullet}$ 的微分映射

$$d^{n}: (M \otimes N)^{n} \to (M \otimes N)^{n+1}$$
$$\alpha \otimes \beta \mapsto d_{M}^{n}(\alpha) \otimes \beta + (-1)^{\deg \alpha} \alpha \otimes d_{N}^{n}(\beta),$$

且给出了上同调类的张量积

$$H^p(M^{\bullet}) \times H^q(N^{\bullet}) \to H^{p+q}((M \otimes N)^{\bullet}).$$

证明. 计算可得

$$\begin{split} \langle d(\alpha \otimes \beta), a \otimes b \rangle &= \langle \alpha \otimes \beta, \partial (a \otimes b) \rangle \\ &= \langle \alpha \otimes \beta, \partial (a) \otimes b + (-1)^{\deg a} a \otimes \partial (b) \rangle \\ &= \langle \alpha, \partial (a) \rangle \langle \beta, b \rangle + (-1)^{\deg a} \langle \alpha, a \rangle \langle \beta, \partial (b) \rangle \\ &= \langle d\alpha, a \rangle \langle \beta, b \rangle + (-1)^{\deg \alpha} \langle \alpha, a \rangle \langle d\beta, b \rangle \\ &= \langle d(\alpha) \otimes \beta + (-1)^{\deg \alpha} \alpha \otimes d(\beta), a \otimes b \rangle, \end{split}$$

于是

此时,同调与上同调存在相互的作用:

命题 2.14. 双线性函数

$$- - : N^q \times (M \otimes N)_{p+q} \to M_p$$
$$(\beta, a \otimes b) \mapsto \beta(b)a$$

对任意 $\beta \in N^q, c \in (M \otimes N)_{p+q}$ 满足

$$\partial(\beta \frown c) = (-1)^p d\beta \frown c + \beta \frown (\partial c),$$

于是诱导了上同调在同调上的乘积

$$H^q(N^{\bullet}) \times H_{n+q}((M \otimes N)^{\bullet}) \to H_n(M_{\bullet}).$$

证明. 设 $c = \sum_{i=0}^{N} a_i \otimes b_i$, 那么

$$\beta \frown (\partial c) = \beta \frown \left(\sum_{i=0}^{N} \partial a_i \otimes b_i + \sum_{i=0}^{N} (-1)^{\deg a_i} a_i \otimes \partial b_i\right)$$

$$= \sum_{i=0}^{N} \beta(b_i) \partial a_i + \sum_{i=0}^{N} (-1)^{\deg c - \deg b_i} \beta(\partial b_i) a_i$$

$$= \partial \sum_{i=0}^{N} \beta(b_i) a_i + \sum_{i=0}^{N} (-1)^{\deg c - \deg \beta - 1} d\beta(b_i) a_i$$

$$= \partial (\beta \frown c) - (-1)^{\deg c - \deg \beta} d\beta \frown c.$$

例 2.6. 给定拓扑空间 X,

命题 2.15. 任意给定 $\alpha \in H^p(M^{\bullet}), \beta \in H^q(N^{\bullet}), \gamma \in H^r(L^{\bullet}), a \in H_{p+q}(M \otimes N), b \in H_{p+q+r}(M \otimes N \otimes L),$ 满足

2.5 一个例子: 29

1. 结合性: $(\beta \otimes \gamma) \frown c = \beta \frown (\gamma \frown c)$,

2. 对偶性: $\langle \alpha \otimes \beta, b \rangle = \langle \alpha, \beta \frown b \rangle$,

3. 自然性: 任意给定上链映射 $f: M_{\bullet} \to U_{\bullet}$ 和 $g: N_{\bullet} \to V_{\bullet}$, 那么对任意的 $x \in H^p(M^{\bullet}), y \in H^q(N^{\bullet})$,

$$f_*((g^*\beta) \frown b) = \beta \frown (f \otimes g)(b),$$

用交换图表示为

$$\begin{array}{cccc}
N^q & \times & (M \otimes N)_{p+q} & \xrightarrow{\frown} & M_p \\
\downarrow g & & & \downarrow f \otimes g & & \downarrow f \\
V^q & \times & (U \otimes V)_{p+q} & \xrightarrow{\frown} & U_p
\end{array}$$

2.5 一个例子:

我们感兴趣的是一类特殊图的极限,被称为 Abel 群组成的塔 (tower of abelian groups),其中指标集 $I=\mathbb{N}^\circ$ 是偏序集

$$\cdots \rightarrow 2 \rightarrow 1 \rightarrow 0$$

用 Ab 中的对象表示就是

$$\cdots \rightarrow A_2 \rightarrow A_1 \rightarrow A_0$$

或者更形式地,这样一个对象就是函子

$$A: \mathbb{N}^{\circ} \to \mathbf{Ab}.$$

它的极限 $\lim_{\leftarrow} A_n$

$$\alpha: \prod_{i\in\mathbb{N}^{\circ}} A_i \to \prod_{i\in\mathbb{N}^{\circ}} A_i$$

定义. 给定一个 Abel 群塔 $\{A_n\}_{n\in\mathbb{N}}$,考虑映射

$$\Delta: \prod_{i\in\mathbb{N}^{\circ}} A_i \to \prod_{i\in\mathbb{N}^{\circ}} A_i,$$

其中 $\Delta = id - \alpha$, 定义

$$\lim_{\leftarrow}^{n} A_{i} := \begin{cases} \lim_{\leftarrow} A_{i} & n = 0 \\ \operatorname{Coker} \Delta & n = 1 \\ 0 & 其他情况. \end{cases}$$

定义. 设一个 Abel 群塔 $\{A_n\}_{n\in\mathbb{N}}$ 若满足对任意 $m\geq 0$,都存在 $n\geq m$ 使得 $i\geq n$ 时,映射

$$A_i \to A_m$$

的像对所有的 i 都相同,则称 $\{A_n\}_{n\in\mathbb{N}}$ 满足 Mittag-Leffler 条件.

定理 2.16. 若 Abel 群塔 $\{A_n\}_{n\in\mathbb{N}}$ 满足 Mittag-Leffler 条件, 那么

$$\lim_{n \to \infty} 1 A_n = 0.$$

证明.

命题 2.17. 设 $\cdots \to A_2 \to A_1 \to A_0$ 是一个正向系,满足任意 A_i 都是零调的 Abel 群上链复形,且所有的 $A_{i+1} \to A_i$ 都是满射,那么 $\lim_{\leftarrow} A_n$ 也是零调的.

第三章 谱序列

同调代数关心了许多基本的问题, 比如给定 R 模 M 的子模 K 同态 $f: K \to N$,

3.1 滤子和正合对

定义. 设 A 是 Abel 范畴,X 是 A 中的对象,则 X 的一个递降滤子 (descending filtration)是一族 X 的 子对象 $\{F_nX\}_{n\in\mathbb{Z}}$ 满足

$$X \supseteq \cdots \supseteq F_n X \supseteq F_{n+1} X \supseteq \cdots 0.$$

对偶地, 若 X 的子对象 $\{F^nX\}_{n\in\mathbb{Z}}$ 满足

$$0 \subseteq \cdots \subseteq F^n X \subseteq F^{n+1} X \subseteq \cdots X$$
,

则称这是递增滤子 (ascending filtration).

如上定义中递增与递降事实上只是对偶的存在,递降滤子用于处理上同调的情形,递增滤子处理同调的情形.略微不同于之前的讨论,谱序列中虽然同调与上同调依然是对偶的,但实际的处理会非常麻烦.因此我们这章选择列出包含对偶的结果,但证明则是完全对称的.

例 3.1.

定义. 设 A 是 Abel 范畴, D,E 是 A 中的对象, f,g,h 是映射, 若

是正合的, 那么称 (D, E, f, g, h) 是正合对 (exact couple).

定理 3.1. 每一个 Abel 范畴 A 中的上链 X^{\bullet} 的滤子 $F_{p}X^{\bullet}$ 都给出一个正合对

32 第三章 谱序列

$$D \xrightarrow{f \ (-1,1)} D$$

$$h \ (1,0) \qquad E,$$

其中映射的度在图中已经标出.

证明. 我们有复形的短正合列

$$0 \to F_{p+1}X^{\bullet} \xrightarrow{i_{p+1}} F_pX^{\bullet} \xrightarrow{\pi_p} F_pX^{\bullet}/F_{p+1}X^{\bullet} \to 0,$$

这诱导了上同调群的长正合序列

$$\cdots \to H^{n}(F_{p+1}X^{\bullet}) \xrightarrow{H^{n}(i_{p+1})} H^{n}(F_{p}X^{\bullet}) \xrightarrow{H^{n}(\pi_{p})} H^{n}(F_{p}X^{\bullet}/F_{p+1}X^{\bullet}) \to$$

$$\xrightarrow{\delta^{n}} H^{n+1}(F_{p+1}X^{\bullet}) \xrightarrow{H^{n+1}(i_{p+1})} H^{n+1}(F_{p}X^{\bullet}) \xrightarrow{H^{n+1}(\pi_{p})} H^{n+1}(F_{p}X^{\bullet}/F_{p+1}X^{\bullet}) \to \cdots$$

我们取 n = p + q, $f = H^{\bullet}(i_{p+1}), g = H^{\bullet}(\pi_p), h = \delta^{\bullet}$, 并且

$$\begin{split} D &= \{D^{p,q} := H^{p+q}(F_p X^{\bullet})\} \\ E &= \{E^{p,q} := H^{p+q}(F_p X^{\bullet}/F_{p+1} X^{\bullet})\} \end{split}$$

代入到长正合序列中即为

$$\cdots \to D^{p+1,q-1} \xrightarrow{f^{p+1,q-1}} D^{p,q} \xrightarrow{g^{p,q}} E^{p,q} \xrightarrow{h^{p,q}} D^{p+1,q} \to \cdots$$

定义. 设 A 是 Abel 范畴,X 是 A 中的双分次对象,d 是双分次映射满足 $d \circ d = 0$,则称 (X,d) 是微分 双分次对象 (differential bigraded object).

若 (X,d) 是微分双分次对象, d 的阶数为 (k,l), 那么定义 (X,d) 的上同调为

$$H(X,d)^{p,q} := \frac{\ker d^{p,q}}{\operatorname{im} d^{p-k,q-l}}.$$

定理3.1于是可以描述为,上链的(递降)滤子给出双分次正合对.

定理 3.2. 若 (D, E, f, g, h) 是 Abel 范畴 A 上的一个正合对,那么 $d := g \circ h : E \to E$ 给出 A 上的一个 微分对象 (E, d),且存在一个新的正合对 $(D_2, E_2, f_2, g_2, h_2)$

$$D_2 \xrightarrow{f_2} D_2$$

$$E_2,$$

满足 $E_2 = H(E,d)$, 称为导出对 (derived couple).

3.1 滤子和正合对 33

证明. 首先我们验证微分. 按照定义, $d \circ d = (g \circ h) \circ (g \circ h) = g \circ (h \circ g) \circ h = g \circ 0 \circ h = 0$. 按照条件定义 E_2 是子商对象 H(E,d),定义 D 的子对象

$$D_2 := \operatorname{im} f \subseteq D,$$

且 $f_2 := f|_{D_2} = f \circ \iota$, 其中 $\iota : D_2 \hookrightarrow D$ 是嵌入.

从证明中可以看出,诱导对中的 D_2 是子对象,诱导的态射 f_2 是限制,而 E_2 是 E 的子商对象. 在 A 是 $R-\mathbf{Mod}$ 时, g_2,h_2 有简单的描述:

1. 任取 $y \in D_2$,因此存在 $x \in D$ 使得 y = f(x),且 g(x) 是上闭链(直接验证 $d(g(x)) = g \circ h(g(x)) = g(h \circ g(x))) = 0$),于是 g_2 可以定义为 g(x) 所代表的 H(E,d) 中的元素,即

$$g_2: D_2 \to E_2$$

 $y = f(x) \mapsto [g(x)].$

2. 任取 $[z] \in E_2$, 其中 $z \in E$ 是上闭链满足 0 = d(z) = g(h(z)), 于是 $h(z) \in \text{Ker } g = \text{Im } f = D_2$, 因而 $h_2([z])$ 可以定义为 h(z), 即

$$h_2: E_2 \to D_2$$

$$[z] \mapsto h(z).$$

二者由于恰是证明中所描述的态射,因而良定义与正合性是已经证明的.

推论 3.2.1. 每一个 Abel 范畴 A 中的上链 X^{\bullet} 的滤子 $F^{p}X^{\bullet}$ 都给出一族正合对

$$D_r \xrightarrow{f_r (1,-1)} D_r$$

$$h_r (-1,2) \qquad \qquad E_r,$$

且满足

- 1. 双分次映射 f_r, g_r, h_r 的度分别为 (1, -1), (1-r, r-1) 和 (-1, 2).
- 2. 微分 d_r 的度为 (), 它由 $hf_{-r+1}g$ 诱导.

证明.

定义. 设 A 是 Abel 范畴,A 上的谱序列 $(E_r, d_r)_{r\geq 0}$ 是一族 A 中的对象和态射的全体 $E = (E_r^{p,q}, d_r^{p,q})$,满足

- 1. 态射 $d_r^{p,q}:E_r^{p,q}\to E_r^{p+r,q-r+1}$ 定义在第 r 页,且是微分映射,即 $d_r^{p+r,q-r+1}\circ d_r^{p,q}=0.$
- 2. 有同构

$$H^{p,q}(E_r):=\frac{\operatorname{Ker}\, d_r^{p,q}}{\operatorname{Im}\, d_r^{p+r,q-r+1}}\cong E_{r+1}^{p,q}.$$

34 第三章 谱序列

推论3.2.1并没有给出第 0 页的描述,但实际上它是存在的,我们将会在后面讨论. 通常谱序列用图来表示更加容易,这里我们画出了第一页第二页

和第三页

的情形. 可以看到, 微分映射的阶数是随着页数的变化而变化的. 如上定义是上同调谱序列的定义, 对偶地还有同调谱序列

习题 3.1. 给定谱序列 $(E_r, d_r)_{r\geq 0}$, p,q 是给定的整数. 求证若

3.2 收敛性

若 $(E_r,d_r)_{r\geq 1}$ 是谱序列,那么 $E_2=H(E_2,d_2)$ 是 E_1 的子商: $E_2:=Z_2/B_2$. 同理我们知道 E_3 是 E_2 的子商,且

$$B_1 \subseteq B_2 \subseteq \cdots \setminus B_r \subseteq \cdots \subseteq Z_r \subseteq Z_2 \subseteq Z_1 \subseteq E_1$$
.

定义. 给定谱序列
$$(E_r,d_r)_{r\geq 1}$$
,定义 $Z_\infty:=\bigcap_{r\geq 1}Z_r$, $B_\infty:=\bigcup_{r\geq 1}B_r$,则谱序列的极限项 (limit term) 为
$$E_\infty^{p,q}:=\frac{Z_\infty^{p,q}}{B_\infty^{p,q}}.$$

借用 MacLane 的描述, Z^r 是出现到第 r 页的对象, B^r 是被第 r 页限制的对象,而 Z^∞ 和 B^∞ 是一直出现和最终被限制的对象.

3.2 收敛性 35

引理 3.1. 设 $(E_r, d_r)_{r>1}$ 是谱序列,那么

- 1. $E_{r+1} = E_r$ 当且仅当 $Z_{r+1} = Z_r, B_{r+1} = B_r$.
- 2. 若存在 s 使得对任意 $r \geq s$ 都有 $E_{r+1} = E_r$, 则 $E_{\infty} = E_s$.

例 3.2.

考虑 \mathcal{A} 中上链 X^{\bullet} 的一个滤子 $F^{p}X^{\bullet}$,于是我们有单同态 $i^{p}: F^{p}X^{\bullet} \to X^{\bullet}$,这诱导了 $H^{n}(i^{p}): H^{n}(F^{p}X^{\bullet}) \to H^{n}(X^{\bullet})$. 由于 $F^{p}X^{\bullet} \subseteq F^{p-1}X^{\bullet}$,我们有 Im $H^{n}(i^{p}) \subseteq \operatorname{Im} H^{n}(i^{p-1}) \subseteq H^{n}(X^{\bullet})$,这意味

$$\Phi^p H^n(X^{\bullet}) := \operatorname{Im} H^n(i^p)$$

是 $H^n(X^{\bullet})$ 的一个滤子,称为 F^pX^{\bullet} 的诱导滤子 (derived filtration).

定义. 设 X^{\bullet} 是 Abel 范畴 A 上的上链, $F^{p}X^{\bullet}$ 是上链的滤子. 若 $\forall n \in \mathbb{Z}$ 都能找到整数 l(n) 和 u(n) 使得 $F^{u(n)}X^{n}=0$ 且 $F^{l(n)}X^{n}=X^{n}$,则称滤子 $F^{p}X^{\bullet}$ 是有界的 (bounded).

定义. 给定 Abel 范畴中的谱序列 $(E_r, d_r)_{r\geq 1}$,若存在分次对象 H^n 和 H^n 的有界滤子 $\Phi^p H^n$ 满足

$$E^{p,q}_{\infty}\cong\frac{\Phi^{p}H^{n}}{\Phi^{p+1}H^{n}},$$

则称谱序列 $(E_r, d_r)_{r>1}$ 收敛到 (converges to) H^n , 记为

$$E_2^{p,q} \Rightarrow_p H^n$$
.

定理 3.3. Abel 范畴 A 中的上链 X^{\bullet} 的滤子 F^pX^{\bullet} 给出的谱序列 $(E_r, d_r)_{r>1}$ 都满足

- 1. 对任意给定的 p,q 都存在 r 使得 $E_r^{p,q} = E_\infty^{p,q}$.
- 2. $E_2^{p,q} \Rightarrow_p H^n(X^{\bullet})$.

证明.

命题 3.4. 设 $X^{\bullet \bullet}$ 是三象限双复形,且设 ${}^{I}E_{r}^{p,q}, {}^{II}E_{r}^{p,q}$ 是 ${\rm Tot}(X^{\bullet \bullet})$ 的第一滤子和第二滤子所诱导的谱序列,那么

36 第三章 谱序列

- 1. 第一滤子和第二滤子都是有界的.
- 2. 对任意 p,q 都存在页数 r=r(p,q) 使得 ${}^{I}E_{\infty}^{p,q}={}^{I}E_{r}^{p,q}, {}^{II}E_{r}^{p,q}={}^{II}E_{\infty}^{p,q}$.
- 3. ${}^IE_2^{p,q} \Rightarrow_p H^n(\mathrm{Tot}(X^{\bullet \bullet})) \ \mathbb{L} \ {}^{II}E_2^{p,q} \Rightarrow_p H^n(\mathrm{Tot}(X^{\bullet \bullet})).$

虽然这个结果看上去很不错,但不论是符号上还是实际计算上这些都并不能够帮助我们.

3.3 全复形的上同调

定义. 设 M 是双分次 R 模, (M,d_I,d_{II}) 是一个双复形, 那么称

$$({}^{I}F^{p}\mathrm{Tot}(M))^{n}:=\bigoplus_{i\geq p}M^{i,n-i}=\cdots\oplus M^{p+2,q-2}\oplus M^{p+1,q-1}\oplus M^{p,q}$$

为 Tot(M) 的第一滤子 (the first filtration), 称

$$(^{II}F^p\mathrm{Tot}(M))^n:=\bigoplus_{j\geq p}M^{n-j,j}=\cdots\oplus M^{p-2,q+2}\oplus M^{p-1,q+1}\oplus M^{p,q}$$

为 Tot(M) 的第二滤子 (the second filtration).

3.3 全复形的上同调 37

定义. 给定 Abel 范畴 \mathcal{A} 中的三象限双复形 $X^{\bullet\bullet}$, 称 $H^p_I(H^q_{II}(X^{\bullet\bullet}))$ 为 $X^{\bullet\bullet}$ 的第一上同调 (the first iterated cohomology),称 $H^p_{II}(H^q_I(X^{\bullet\bullet}))$ 为 $X^{\bullet\bullet}$ 的第二上同调 (the second iterated cohomology).

定理 3.5. 给定 Abel 范畴 A 中的三象限双复形 $X^{\bullet \bullet}$,则

- 1. ${}^{I}E_{1}^{p,q} = H_{II}^{q}(X^{p,\bullet}).$
- 2. ${}^{I}E_{2}^{p,q} = H_{I}^{p}(H_{II}^{q}(X^{\bullet \bullet})) \Rightarrow_{p} H^{n}(\operatorname{Tot}(X^{\bullet \bullet})).$

对偶地,我们同样有

定理 3.6. 给定 Abel 范畴 A 中的三象限双复形 $X^{\bullet \bullet}$,则

- 1. ${}^{II}E_1^{p,q} = H_I^q(X^{\bullet,p}).$
- 2. $^{II}E_2^{p,q} = H_{II}^p(H_I^q(X^{\bullet \bullet})) \Rightarrow_p H^n(\operatorname{Tot}(X^{\bullet \bullet})).$

例 3.3. 给定 R 模范畴中的交换图

$$\begin{array}{ccc} P & \stackrel{g}{\longrightarrow} Q \\ \stackrel{h}{\uparrow} & & \stackrel{k}{\downarrow} \\ M & \stackrel{f}{\longrightarrow} N, \end{array}$$

做适当的变换我们得到一个三象限双复形 $X^{\bullet \bullet}$,我们考虑 N,P 都是 Q 的子模的特殊情形,来计算该双复形的全复形

$$0 \to M \xrightarrow{()} P \oplus N \xrightarrow{g+k} Q$$

的上同调.

定义. 设 $(E_r, d_r)_{r\geq 1}$ 是 Abel 范畴中的谱序列,若 $E_2^{p,q}=0$ 对所有非零的 q 都成立,则称 E_r 落在 p 轴上 (collapses on the p-axis).

命题 3.7. 设 $(E_r, d_r)_{r>1}$ 三象限谱序列,且 $E_2^{p,q} \Rightarrow_p H^n(X^{\bullet})$,若称 E_r 落在任意轴上,则

- 1. $E_2^{p,q} = E_{\infty}^{p,q}$ 对任意 p,q 成立.
- 2. 若 E_r 落在 p 轴上,则 $H^n(X^{\bullet}) = E_2^{n,0}$;若 E_r 落在 q 轴上,则 $H^n(X^{\bullet}) = E_2^{0,n}$.

38 第三章 谱序列

定理 3.8. 给定 Abel 范畴 A 中的三象限谱序列 $(E_r,d_r)_{r\geq 1}$, 且 $E_2^{p,q}\Rightarrow_p H^n(\mathrm{Tot}(X^{\bullet \bullet}))$, 则

- 1. 对任意 n 都存在满同态 $E_2^{n,0} \to E_\infty^{0,n}$ 和单同态 $E_2^{0,n} \to E_\infty^{n,0}$.
- 2. 对任意 n 都存在满同态 $E_{\infty}^{n,0} \to H^n(\mathrm{Tot}(X^{\bullet \bullet}))$ 和单同态 $E_{\infty}^{0,n} \to H^n(\mathrm{Tot}(X^{\bullet \bullet}))$.
- 3. 存在正合序列

$$0 \to E_2^{1,0} \to H^1(\mathrm{Tot}(X^{\bullet \bullet})) \to E_2^{0,1} \xrightarrow{d_2} E_2^{2,0} \to H^2(\mathrm{Tot}(X^{\bullet \bullet}))$$

例 3.4. 给定 Abel 群的上链复形 C^{\bullet} , A^{\bullet} 是 C^{\bullet} 的子复形,考虑如下谱序列,其中第 0 页为

$$C^{0}/A^{0}$$

$$\downarrow$$

$$C^{1}/A^{1} \qquad A^{0}$$

$$\downarrow$$

$$C^{2}/A^{2} \qquad A^{1}$$

$$\downarrow$$

$$C^{3}/A^{3} \qquad A^{2}$$

$$\downarrow$$

$$\vdots \qquad \vdots$$

3.4 Cartan-Eilenberg 预解

定义. 设 X^{\bullet} 是 Abel 范畴 A 上的上链,那么称

$$0 \to Z^n \to X^n \xrightarrow{d^n} B^{n+1} \to 0$$
$$0 \to B^n \hookrightarrow Z^n \to H^n \to 0$$

为 X^{\bullet} 的基本短正合列 (fundamental exact sequence). 若上链复形 X^{\bullet} 的基本短正合列都分裂,则称 X^{\bullet} 分裂 (split).

定义. 设 X^{\bullet} 是 Abel 范畴 A 上的上链,如果

$$0 \to X^{\bullet} \to I^{0,\bullet} \to I^{1,\bullet} \to \cdots$$

3.5 KUNNETH 谱序列 39

是整合列且对每个p以下每个整合列都是A中的内射预解

$$0 \to X^p \to I^{0,p} \to I^{1,p} \to \cdots$$
$$0 \to Z^p(X^{\bullet}) \to Z^{0,p} \to Z^{1,p} \to \cdots$$
$$0 \to B^p(X^{\bullet}) \to B^{0,p} \to B^{1,p} \to \cdots$$
$$0 \to H^p(X^{\bullet}) \to H^{0,p} \to H^{1,p} \to \cdots$$

则称这是 X[•] 的一个 Cartan-Eilenberg 内射预解 (Cartan-Eilenberg injective resolution).

定理 3.9. 若 Abel 范畴 A 中包含有足够多的内射对象,则 $Com^{\bullet}(A)$ 中的每个上链复形都有 Cartan-Eilenberg 内射预解.

3.5 Kunneth 谱序列

3.6 Grothendieck 谱序列

定义. 设 A 是 Abel 范畴,且含有足够多的内射对象,X 是 A 的对象, $F:A \Rightarrow$ **Ab** 是加性函子. 若 $R^pF(X) = 0$ 对于任意 $p \ge 1$ 都成立,则称 X 是右 F 零调的 (right F-acyclic).

定理 3.10 (Grothendieck 谱序列). 设 $F: A \Rightarrow \mathcal{B}, G: A \Rightarrow \mathcal{C}$ 是 Abel 范畴间的协变加性函子,且 \mathcal{B} 中包含足够多的内射对象,F 将 A 中的内射对象映为 \mathcal{B} 中的右 G 零调对象. 那么对任意 A 中的对象 X,存在第一象限的收敛谱序列

$$E_2^{p,q} := (R^p G \circ R^q F)(X) \Rightarrow R^{p+q}(G \circ F)(X).$$

证明. 选取 X 在 A 中的一个内射预解

$$0 \to X \to J^1 \to J^2 \to \cdots$$

于是我们得到 B 中的一个

40 第三章 谱序列

第四章 导出范畴

在之前非常多的情形中,当求得一个上链后,我们只关心它的上同调,对于上同调相同而各项和微分可能不同的上链并不做区别.形式上说,上链之间的同构过分严格,拟同构才是合适的进行分类的等价关系.但是在范畴

$$Com^{\bullet}(\mathcal{A})$$

中,若态射 f^{\bullet} 是拟同构,它很难是同构,这就导致了很多问题,比如函子 $\operatorname{Hom}_{\mathbb{Z}}(M,-)$ 并不将拟同构映成拟同构. 本章我们要建立形式化的语言,用同构的方式处理拟同构,也给导出函子建立更一般的框架.

4.1 范畴的局部化

定理 4.1. 设 C 是一个范畴,U 是其中的一族态射,则存在同构下唯一的范畴 $C[U^{-1}]$ 和函子 $Q:C\to C[U^{-1}]$,使得 U 中所有的态射都被 Q 映到 $C[U^{-1}]$ 中的同构,且满足如下泛性质:对任意范畴 D 和任意 函子 $F:C\to D$,若 F 将 U 中所有的态射映到 D 中的同构,则有唯一的分解

我们称范畴 $C[U^{-1}]$ 为的 C 局部化 (localization).

ヲ题 4.1. 定义范畴 \mathcal{D} 满足 ob $\mathcal{D} = \text{ob } \mathbf{Ab}$, $\text{hom}_{\mathcal{D}}(A,B) := \text{Hom}_{\mathbb{Z}}(A \otimes \mathbb{Q}, B \otimes \mathbb{Q})$. 求证函子

$$\iota: \mathbf{Ab} \to \mathcal{D}$$

$$M \mapsto M$$

$$(f: M \to N) \mapsto (f \otimes \mathrm{id}_{\mathbb{Q}}: M \otimes \mathbb{Q}, N \otimes \mathbb{Q})$$

是局部化.

这里需要注意,因为范畴中的一族态射 U 可以取得非常不理想,因此局部化之后的范畴可能并非再是局部小的. 但这里我们忽略这样的问题,我们假定(虽然并不真实,但相较于主要问题,范畴本身的问题需要在其他的地方讨论)我们还是得到想要的范畴.

42 第四章 导出范畴

定义. 设 U 是范畴 \mathcal{C} 中的一族态射,满足如下条件:

- 1. 对任意 \mathcal{C} 中的对象 A, $\mathrm{id}_A \in U$, 且 U 关于态射的复合封闭,
- 2. (扩张条件) 对任意 \mathcal{C} 中的态射 $f:A\to B$ 和 U 中的态射 $u:C\to B$,存在 \mathcal{C} 中的态射 $g:D\to C$ 和 U 中的态射 $v:D\to A$ 使得

$$D \xrightarrow{g} C$$

$$v \downarrow \qquad \qquad \downarrow u$$

$$A \xrightarrow{f} B.$$

对偶地,对任意 \mathcal{C} 中的态射 $f: B \to A$ 和 U 中的态射 $u: B \to C$,存在 \mathcal{C} 中的态射 $g: C \to D$ 和 U 中的态射 $v: A \to D$ 使得

$$D \xleftarrow{g} C$$

$$v \uparrow \qquad \uparrow u$$

$$A \xleftarrow{f} B,$$

3. 对任意 \mathcal{C} 中的态射 $f,g:A \Rightarrow B$,存在 $u \in U$ 使得 uf = ug 当且仅当存在 $v \in U$ 使得 fv = gv,则称这一族态射 U 是局部的 (localizing).

习题 4.2. 设 A 是 Abel 范畴, B 是 A 的满子范畴, 且 B 对求子对象和商对象封闭. 求证

$$U := \{ f : X \to Y \mid \text{ker } f, \text{coker } f \in \mathcal{B} \}$$

是局部态射族.

我们大费周章地考虑对求逆态射的限制条件,重要的是当态射族 U 满足这些条件时,局部化范畴中的态射时非常容易描述的:

引理 4.1. 设 U 是范畴 C 中的一族局部态射,那么 $C[U^{-1}]$ 可以被如下地描述: $C[U^{-1}]$ 的对象同于 C 中的对象, $A \to B$ 的态射可以被描述为如下的图的等价类:

其中, $u\in U$, $f:D\to B$ 是任意 C 中的态射,记为 $\frac{f}{u}$ 或者 fu^{-1} . 且 $\frac{f}{u}$ 等价于 $\frac{g}{v}$ 当且仅当存在 $\frac{h}{w}$ 使得如下图交换

4.1 范畴的局部化 43

其中图中 $u,v,uw\in U$ (但 w 可能不在 U 中),恒等态射是 $\mathrm{id}_A=\frac{\mathrm{id}_A}{\mathrm{id}_A}$. 最后,根据定义中的扩张条件, $\frac{f}{u}:A\to B$ 与 $\frac{g}{v}:B\to C$ 的复合是

证明. 我们首先验证如上定义了一个等价关系. 自反性是考虑下图

对称性是已知

其中按定义 $vh = uw \in U$, 于是

给出了等价关系. 接下来是传递性,给定 $X \to Y$ 的等价代表元

和 $Y \rightarrow Z$ 的等价代表元

44 第四章 导出范畴

为方便读图,红色表示 U 中的态射,绿色表示复合特定 U 中的态射后是 U 中的态射(例如 w 本身不是 U 中的态射但 uw 是 U 中的态射),于是根据扩张条件可以找到 C_1, C_2 使得交换图

$$C_1 \longrightarrow B_1$$

$$\downarrow^{\mathbf{w_1}} \qquad \downarrow^{\mathbf{v_1}}$$

$$A_1 \stackrel{f_1}{\longrightarrow} Y$$

和

$$C_2 \longrightarrow B_2$$

$$\downarrow^{\mathbf{w_2}} \qquad \downarrow^{\mathbf{v_2}}$$

$$A_2 \stackrel{f_2}{\longrightarrow} Y$$

成立,这是在不同代表元下的复合.我们希望找到对象 P 给出交换图

进而说明复合 $[X \leftarrow C_1 \rightarrow Z]$ 与 $[X \leftarrow C_2 \rightarrow Z]$ 是等价的. 再次根据扩张条件可以找到

$$Q_{1} \longrightarrow C_{1}$$

$$\downarrow u_{1}w_{1}$$

$$M \xrightarrow{u_{1}p} X$$

$$Q_{2} \longrightarrow Q_{1}$$

$$\downarrow u_{1}w_{1}$$

$$N \xrightarrow{u_{1}p} Y$$

$$P \longrightarrow C_{2}$$

$$\downarrow w_{2}$$

$$Q_{2} \xrightarrow{u_{1}p} A_{2}$$

接下来我们要验证态射的复合不依赖于代表元的选取.

最后我们验证这样构造的范畴具有相应的泛性质,因而这个范畴是我们希望的局部化. 首先,存在自然的局部化函子

$$Q: \mathcal{C} \to \mathcal{C}[U^{-1}]$$

$$A \mapsto A$$

$$(f: A \to B) \mapsto \frac{f}{\mathrm{id}_A},$$

这样对于任意的 $F: \mathcal{C} \to \mathcal{D}$, 若 F 将 U 中所有的态射映到 \mathcal{D} 中的同构,可以定义

$$\bar{F}: \mathcal{C}[U^{-1}] \to \mathcal{D}$$

$$A \mapsto F(A)$$

$$\frac{f}{u} \mapsto F(f)F(u)^{-1},$$

(这里的顺序是重要的:)

习题 4.3. 验证证明中给出的 Q 是函子.

定理 4.2. 设 U 是加性范畴 C 中的一族局部态射, 那么 $C[U^{-1}]$ 也是加性范畴.

但是,我们希望研究的情形非常不幸地不满足这些局部的条件:对于 Abel 范畴 A 的上链复形范畴 $Com^{\bullet}(A)$,拟同构不是局部的(习题???). 下一节我们将用合适的方式处理这个问题,使得我们这节建立的理论起到作用. 结束之前,我们引入如下命题,在之后考虑有界复形时它会给我们理想的结果.

命题 4.3. 设 U 是范畴 C 中的一族局部态射,D 是 C 的满子范畴,如果 $U_D := U \cap \text{mor } D$ 是 D 的局部 态射,且如下的条件满足一条

1. 对任意 U 中的态射 $u: C \to D$,若 $D \in \text{ob } \mathcal{D}$,则一定存在 $B \in \text{ob } \mathcal{D}$ 和态射 $f: B \to C$ 使得 $u \circ f \in U$,

2.

那么 $\mathcal{D}[U_{\mathcal{D}}^{-1}] \hookrightarrow \mathcal{C}[U^{-1}]$ 是一个满忠实的嵌入.

本节的最后,我们讨论局部性与 Serre 子范畴之间的关系. 练习

4.2 同伦范畴与导出范畴

46 第四章 导出范畴

引理 4.2. 设 $A \in Abel$ 范畴, $D(A) := \text{Com}^{\bullet}(A)[Qiso^{-1}]$, 且设 $Q : \text{Com}^{\bullet}(A) \to D(A)$ 是局部化函子. 求证若 $f : X^{\bullet} \to X^{\bullet}$ 链同伦与 id_X , 那么在 D(A) 中 $Q(f) = id_X$.

证明. 我们先假定如下事实:

定义. 给定 Abel 范畴 A, 定义 A 的同伦范畴 (homotopy category)K(A) 如下:

- 1. ob $K(\mathcal{A}) = \text{ob } \mathrm{Com}^{\bullet}(\mathcal{A})$,
- 2. 对任意 $X^{\bullet}, Y^{\bullet} \in \text{ob } \text{Com}^{\bullet}(\mathcal{A}), \text{ hom}_{K(\mathcal{A})}(X^{\bullet}, Y^{\bullet}) := \text{hom}_{\text{Com}^{\bullet}(\mathcal{A})}(X^{\bullet}, Y^{\bullet}) / \simeq.$

定理 4.4. 对 Abel 范畴 $A, *=+,-,b,\bullet$, 那么

 $1. f \in \operatorname{Hom}_{D^*(\mathcal{A})}(X^{\bullet}, Y^{\bullet})$ 是同构当且仅当它可以被图

表示,且图中的两个态射都是拟同构.

- $2. f \in \operatorname{Hom}_{K^*(\mathcal{A})}(X^{\bullet}, Y^{\bullet})$ 且 Q(f) = 0,那么 $f^n : H^n(X^{\bullet}) \to H^n(Y^{\bullet}) = 0$ 对任意 $n \in \mathbb{Z}$ 成立.
- 3. 嵌入函子 $[0]: A \to D^*(A)$ 是满忠实的,即存在集合的同构

$$\operatorname{Hom}_{\mathcal{A}}(X,Y) \cong \operatorname{Hom}_{D^*(\mathcal{A})}(X[0],Y[0]).$$

命题 4.5. 若 X^{\bullet} 是 Abel 范畴 A 上的零调复形, I^{\bullet} 是内射复形,那么

$$\operatorname{Hom}_{K(\mathcal{A})}(X^{\bullet}, I^{\bullet}) = 0.$$

命题 4.6. 若 $X^{\bullet} \to Y^{\bullet}$ 是拟同构, I^{\bullet} 是内射复形, 那么

$$\operatorname{Hom}_{K(\mathcal{A})}(Y^{\bullet}, I^{\bullet}) \to \operatorname{Hom}_{K(\mathcal{A})}(X^{\bullet}, I^{\bullet})$$

是同构.

4.3 三角范畴 47

推论 4.6.1.

$$\operatorname{Hom}_{K(\mathcal{A})}(X^{\bullet}, I^{\bullet}) \to \operatorname{Hom}_{D(\mathcal{A})}(X^{\bullet}, I^{\bullet})$$

是同构.

定义.

$$\operatorname{Ext}_{\mathcal{A}}^{i}(X,Y) :=$$

定理 4.7.

4.3 三角范畴

定义. 给定加性范畴 \mathcal{D} , 如果在 \mathcal{D} 上存在如下信息

- 1. 加性自同构 $T: \mathcal{D} \to \mathcal{D}$,它被称为平移函子 (translation functor),通常对于对象 $X \in \mathcal{D}$,记 X[1] := T(X),
- 2. 一族被称为特异三角 (distingushed triangle) 的图

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$

和特异三角间的态射

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$

$$\downarrow f \qquad \qquad \downarrow g \qquad \qquad \downarrow h \qquad \qquad \downarrow f[1]$$

$$A \xrightarrow{j} B \xrightarrow{k} C \xrightarrow{l} A[1],$$

满足以下公理:

- TR 1. (a) $X \xrightarrow{\mathrm{id}_X} X \xrightarrow{0} 0 \xrightarrow{0} X[1]$ 是特异三角;
 - (b) 任意同构于特异三角的图都是特异三角(特异三角在同构下封闭);
 - (c) 任意态射 $X \stackrel{u}{\to} Y$ 都可以扩张为一个特异三角 $X \stackrel{u}{\to} Y \stackrel{v}{\to} Z \stackrel{w}{\to} X$ [1].
- TR 2. 若 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$ 是特异三角,那么 $Y \xrightarrow{v} Z \xrightarrow{w} X[1] \xrightarrow{-u[1]} Y[1]$ 也是特异三角.
- TR 3. 给定两个特异三角 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$ 和 $A \xrightarrow{j} B \xrightarrow{k} C \xrightarrow{l} X[1]$,若存在 $f: X \to A$ 和 $g: Y \to B$ 使得 $g \circ u = j \circ f$,那么存在(不要求唯一)的态射 $h: Z \to C$ 构成特异三角间的态射

48 第四章 导出范畴

则称 \mathcal{D} 是一个三角范畴 (triangulated category). 若只有前三条公理成立,则称 \mathcal{D} 是预三角范畴 (pretriangulated categories).

习题 4.4. 若 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$ 是 \mathcal{D} 中的特异三角,求证 $v \circ u, w \circ v, (-u[1]) \circ w$ 都是零态射. 习题 4.5. 若

是特异三角间的态射,且 f,g 都是同构,求证 h 也是同构.

定义・给定(预)三角范畴 \mathcal{D}, \mathcal{E} ,若函子 $F: \mathcal{D} \to \mathcal{E}$ 和自然态射 $\eta: F(-[1]) \Rightarrow F(-)[1]$ 满足对任意 \mathcal{D} 中的特异三角

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1],$$

都能得到 \mathcal{E} 中的特异三角

$$F(X) \xrightarrow{F(u)} F(Y) \xrightarrow{F(v)} F(Z) \xrightarrow{\eta_X \circ F(w)} F(X)[1],$$

则称函子 F 是正合的 (exact) 或三角的 (triangulated).

定义. 给定(预)三角范畴 \mathcal{D} 和 Abel 范畴 \mathcal{A} ,若加性协变函子 \mathcal{H} 将特异三角

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} X[1]$$

4.3 三角范畴 49

映为 A 中的正合序列

$$H(X) \xrightarrow{H(u)} H(Y) \xrightarrow{H(v)} H(Z) \xrightarrow{H(w)} H(X[1]),$$

则称函子 H 是上同调的 (cohomological). 若加性反变函子 $H: \mathcal{D}^{\circ} \to \mathcal{A}$ 对应的函子 $H^{\circ}: \mathcal{D} \to \mathcal{A}^{\circ}$ 是上同调的,则称 H 是反变同调的.

通常对于上同调函子,记 $H^n(X) := H(X[n])$,于是 $H^0(X) := H(X)$. 于是,TR2 说明给定一个特异三角就可以得到一个 $\mathcal A$ 中的长正合序列.

定义. 给定三角范畴 \mathcal{D} 和 Abel 范畴 \mathcal{A} ,若函子 $G: \mathcal{A} \to \mathcal{D}$ 满足对任意 \mathcal{A} 中的短正合序列

$$0 \to X \to Y \to Z \to 0$$

都存在自然的同构 $\delta_{X\to Y\to Z}$ 使得

$$X \to Y \to Z \xrightarrow{\delta_{X \to Y \to Z}} X[1]$$

是 \mathcal{D} 中的特异三角,则称 G 是 δ 函子 (δ -functor). 自然性意味着短正合序列的态射

给出特异三角的态射

4.3.1 同伦范畴

4.3.2 导出范畴

命题 4.8. 对 Abel 范畴 A, $Com^*(A)$ 中的短正合列

$$0 \to X^{\bullet} \to Y^{\bullet} \to Z^{\bullet} \to 0$$

诱导了 $D^*(A)$ 中的特异三角.

4.3.3 生成元

第四章 导出范畴

定义・给定三角范畴 \mathcal{D} 和对象 E,若 \mathcal{D} 中包含 E 的最小的 saturated 满三角子范畴是 \mathcal{D} ,或者换句话说 $\langle E \rangle = \mathcal{D}$,则称 E 是典型生成元 (classical generator).

定义. 给定三角范畴 \mathcal{D} 和对象 E,

- 1. 若存在正整数 n 使得 $\langle E \rangle_n = \mathcal{D}$, 则称 E 是强生成元 (strong generator).
- 2. 若 $\operatorname{Hom}(E, X[n]) = 0$ 对任意整数 n 都成立意味着 $X \cong 0$,则称 E 是弱生成元 (weak generator).

4.4 导出函子

给定 Abel 范畴间的函子 $F: A \to \mathcal{B}$,它自然诱导了函子 $\mathrm{Com}^{\bullet}(F): \mathrm{Com}^{\bullet}(A) \to \mathrm{Com}^{\bullet}(\mathcal{B})$ 和 $K(F): K(A) \to K(\mathcal{B})$. 由于 F 与平移函子交换,诱导的函子保持范畴上面的三角结构. 自然地我们会希望 F 诱导了导出范畴上的正合函子. 在函子 $F: A \to \mathcal{B}$ 本身是正合函子时,这是没问题的(命题4.9),但一般情形 K(F) 不将拟同构映为拟同构. 不过退一步,当 F 是左正合或右正合时,在适当的情形我们可以找到相应的构造使得有对应诱导的函子.

在先前的章节中我们讨论过这个论题,这里我们用导出范畴的角度来定义导出函子,具体来说,给定一个 Abel 范畴的左 (对应的,右) 正合函子 $F: A \to \mathcal{B}$,在一定的情况下存在一个扩张函子 $RF: D^+(A) \to D^+(\mathcal{B})$ (对应的, $LF: D^-(A) \to D^-(\mathcal{B})$),称为 F 的右导出函子 (right derived functor).

命题 4.9. 设 Abel 范畴间的函子 $F: A \rightarrow B$ 是正合的,那么

- 1. $K^*(F)$ 将拟同构映到拟同构、因此它诱导了函子 $D^*(F): D^*(A) \to D^*(B)$,
- $2. D^*(F)$ 是正合函子,即它将特异三角映到特异三角.

定义. 设 A 是 Abel 范畴, $\mathcal{R} \subseteq \text{Ob } A$ 是一族对象, 对给定的左(右) 正合函子 $F: A \to \mathcal{B}$ 满足

- 1. F 将 $K^+(\mathcal{R})$ $(K^-(\mathcal{R}))$ 中的零调序列映到零调序列,
- 2. A 中的任意对象都是 R 中对象的子对象(商对象),

则称 \mathcal{R} 是适应于 F 的对象族 (adapted to F).

例 4.1. 给定 R 模 M, 对函子 $M \otimes_R -$, 所有的平坦 R 模就是适应于该函子的一族对象.

4.4 导出函子 51

定理 4.10. 设 \mathcal{R} 是 Abel 范畴 A 中适应于左正合函子 $F: A \to \mathcal{B}$ 的对象,令 $U_{\mathcal{R}}$ 为 $K^+(\mathcal{R})$ 中的拟同构,那么 $U_{\mathcal{R}}$ 在 $K^+(\mathcal{R})$ 中是局部的,且自然的函子

$$K^+(\mathcal{R})[U_{\mathcal{R}}^{-1}] \to D^+(\mathcal{A})$$

是范畴的等价.

给定一个左正合函子 $F: \mathcal{A} \to \mathcal{B}$,我们回顾一下经典意义下导出函子的构造,以 $\mathrm{Hom}_{\mathbb{Z}}(M,-)$ 为例: 这是一个左正合函子,为了求得它的右导出函子 $\mathrm{Ext}^n_{\mathbb{Z}}(M,-)$,首先取给定的 Abel 群 N 的内射消解 I^{\bullet}

再用 I^{\bullet} 代替 $\operatorname{Hom}_{\mathbb{Z}}(M,-)$ 中原本的 N,得到上链

$$\cdots \longrightarrow 0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(M, I^0) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(M, I^1) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(M, I^2) \longrightarrow \cdots$$

它在 $D^+(\mathbf{Ab})$ 中的像即是导出函子的像. 这相当于选取一个范畴的同构(后面会说明如同经典情况的构造,不依赖于这个同构的选取)

$$P: D^+(\mathcal{A}) \to K^+(\mathcal{R})[U_{\mathcal{R}}^{-1}],$$

然后

$$R\mathrm{Hom}_{\mathbb{Z}}(M,-) := \mathrm{Hom}_{\mathbb{Z}}(M,P(-))$$

就是要找的导出函子.

定义. 对于左正合函子 $F: A \to B$,存在如下的图

$$K^{+}(\mathcal{A}) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B}) \xrightarrow{Q_{\mathcal{B}}} D^{+}(\mathcal{B})$$

$$D^{+}(\mathcal{A})$$

若有函子 $RF: D^+(A) \to D^+(A)$ 和自然态射 $\eta: Q_{\mathcal{B}} \circ K^+(F) \Rightarrow RF \circ Q_{\mathcal{A}}$

$$K^{+}(\mathcal{A}) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B}) \xrightarrow{Q_{\mathcal{B}}} D^{+}(\mathcal{B})$$

$$\downarrow^{\eta}$$

$$D^{+}(\mathcal{A})$$

使得任意函子 $G:D^+(\mathcal{A})\to D^+(\mathcal{A})$ 和自然态射 $\xi:Q_\mathcal{B}\circ K^+(F)\Rightarrow RF\circ Q_\mathcal{A}$

$$K^{+}(\mathcal{A}) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B}) \xrightarrow{Q_{\mathcal{B}}} D^{+}(\mathcal{B})$$

$$\downarrow \xi \qquad \qquad \downarrow G$$

$$D^{+}(\mathcal{A})$$

都存在唯一的自然变换 δ :

$$K^{+}(\mathcal{A}) \xrightarrow{K^{+}(F)} K^{+}(\mathcal{B}) \xrightarrow{Q_{\mathcal{B}}} D^{+}(\mathcal{B})$$

$$Q_{\mathcal{A}} \xrightarrow{\delta} G$$

$$D^{+}(\mathcal{A}),$$

则称 RF 是 F 的右导出函子 (right derived functor).

以上定义的交换图说明,一个左正合函子的右导出函子是对应图的左 Kan 扩张. 根据 Kan 扩张的唯一性,导出函子若存在则一定唯一,这个事实对下面定理的证明非常关键.

定理 4.11. 假设左正合函子 $F: A \to B$ 有适应于 F 的对象族 R, 那么 RF 存在且同构下唯一.

4.5 例子

给定环 R 和 $M \in \mathbf{Mod} - R$,函子

$$M \otimes_R -: R - \mathbf{Mod} \to \mathbf{Ab}$$

是右正合的,

第五章 层及其上同调

5.1 层的基本理论

在几何中,我们经常遇到从局部性质到整体性质的过渡,例如我们在讲光滑函数时对光滑性的定义是局部的,但光滑性可以是整体的性质;任意一个流形都是局部可定向的,但一个流形并不一定是整体可定向的. 在从局部到整体的过渡中,我们通常使用的方法是局部坐标,当局部坐标满足一定性质时我们可以找到更大的坐标,这个更大的坐标限制到小的坐标上与原来小的坐标有相同的性质. 如果将这样的过程抽象出来就是层的构造.

5.1.1 预层与层的基本性质

定义. 设 X 是一个拓扑空间. 对 X 的每个开集 U,我们赋予其一个 Abel 群 $\mathscr{F}(U)$,并且对任意满足 $V \subseteq U$ 的开集 U, V,存在映射 $\rho_V^U : \mathscr{F}(U) \to \mathscr{F}(V)$,满足如下条件:

- (i) $\mathscr{F}(\emptyset) = 0$;
- (ii) $\rho_U^U = \mathrm{id}_{\mathscr{F}(U)}$;
- (iii) 对所有满足 $W \subseteq V \subseteq U$ 的开集 $U, V, W, \rho_W^V \circ \rho_V^U = \rho_W^U$;

这样的在拓扑空间 X 上的结构 $\mathscr F$ 我们称为**预层** (presheaf), $\mathscr F(U)$ 中的元素称为开集 U 的**截面** (section), 映射 $\rho_V^U:\mathscr F(U)\to\mathscr F(V)$ 称为**限制映射** (restriction map).

例 5.1. 设 X 是一个复流形,从 是如下定义的**亚纯函数层** (sheaf of meromorphic functions)

$$\mathcal{M}(U) := \{ f : U \to \mathbb{C} \mid f \not\in \mathbb{Z} \},$$

且对于任意 $f \in \mathcal{M}(U)$ 和开集 $V \subseteq U$,定义 $\rho_V^U(f)$ 是 f 在 V 上的限制,则 \mathcal{M} 是 X 上的预层.

在上面的例子中,预层 \mathcal{M} 的限制同态确实是函数的限制——但通常而言,限制同态可以是任意的映射. 对于元素 $s \in \mathcal{F}(U)$,我们也用通常的限制记号: $s|_V := \rho_V^U(s)$,然而这一般与真正函数的限制很不同.

注意到任意的拓扑空间 X 可以自然地成为一个范畴 $\mathbf{Open}(X)$,这样每个预层都是一个反变函子 $\mathbf{Open}(X) \to \mathbf{Ab}$,可以想到的是,我们并不需要将函子的值域限定为 \mathbf{Ab} ,其他任意合理的范畴都可以得到有用的预层. 当值域范畴为 \mathbf{Ab} 、 \mathbf{Ring} 、 $R-\mathbf{Mod}$ 时,我们分别称 \mathscr{F} 为 X 上的 Abel 群预层、环预层和 R 模预层.

这种对于预层的理解还有其他的好处——我们可以非常容易地定义预层之间的**态射** (morphism)——个预层的态射就是函子间的自然变换. 如果我们显式地将预层态射 $\varphi: \mathscr{F} \to \mathscr{G}$ 的定义写出来,即是对任意 X 中的开集 $V \subseteq U$,我们有如下交换图

$$\mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U)
\rho_V^U \downarrow \qquad \qquad \downarrow \rho_V^U
\mathcal{F}(V) \xrightarrow{\varphi_V} \mathcal{G}(V),$$

其中 ρ_V^U , θ_V^U 分别是预层 $\mathscr F$ 和 $\mathscr G$ 的限制映射. 这样对于拓扑空间 X,我们得到了一个范畴 **PShAb**(X),其对 象是 X 上的 Abel 群预层,态射是预层的态射.

例 5.2. 设 X 是任意的拓扑空间,M 是任意的 Abel 群,对开集 U 定义 $M_X(U) = M$ 对于满足 $V \subseteq U$ 的开集,限制映射都是恒等映射,则 M_X 是一个预层,称为常预层 (constant sheaf). 如果 N 也是一个 Abel 群, $\varphi: M \to N$ 是群同态,则我们自然地有预层的映射

$$\varphi_X: M_X \to N_X,$$

定义为

$$(\varphi_X)_U := \varphi : M_X(U) \to N_X(U).$$

例 5.3.

例 5.4.

预层的结构中蕴含了空间上"函数"的很多局部信息,对于一个预层我们有专门的结构刻画这样的信息:

定义. 设 \mathscr{F} 是拓扑空间 X 上的预层,那么称

$$\mathscr{F}_x := \varinjlim_{x \in U} \mathscr{F}(U)$$

为 \mathscr{F} 在点 x 处的茎 (stalk), 其中 U 取遍所有包含点 x 的开集,正向系中的态射由限制态射给定.

根据正极限的定义,对于任意包含 x 的开集 U,存在自然的态射 $\rho_x^U: \mathscr{F}(U) \to \mathscr{F}_x$ 使得与正向系相容,即对于满足 $V \subseteq U$ 的开集,

为简化记号,通常对于截面 $s \in \mathcal{F}(U)$,我们记 $s_x := \rho_x^U(s)$. 同样地,余极限的函子性告诉我们,对于任意 X 中的点 x,若 $\varphi : \mathcal{F} \to \mathcal{G}$ 是预层间的态射,那么有诱导的点 x 处茎的态射

$$\varphi_r: \mathscr{F}_r \to \mathscr{G}_r$$

使得对任意开集 U 有如下交换图

5.1 层的基本理论 55

$$\begin{split} \mathscr{F}(U) & \stackrel{\varphi_U}{\longrightarrow} \mathscr{G}(U) \\ (\rho_{\mathscr{F}})_x^U \Big| & & \downarrow (\rho_{\mathscr{G}})_x^U \\ \mathscr{F}_x & \stackrel{\varphi_x}{\longrightarrow} \mathscr{G}_x, \end{split}$$

因此, 我们有 $\varphi_x(s_x) = \varphi_U(s)_x$.

习题 5.1. 证明我们有如下的显式构造:

$$\mathscr{F}_x \cong \left(\prod_{x \in U} \mathscr{F}(U)\right) / \sim,$$

其中,若 $s \in \mathscr{S}(U)$, $t \in \mathscr{S}(V)$ 的等价关系 $s \sim t$ 定义为存在包含于 $U \cap V$ 的 x 的邻域 W 使得 $s|_W = t|_W$. 习题 5.2. 设 U 是 X 中包含点 x 的开集,求证

$$\mathscr{F}_x \cong (\mathscr{F}|_U)_x$$
.

证明. 我们证明 \mathscr{F}_x 满足 $(\mathscr{F}|_U)_x$ 的泛性质,那么根据唯一性二者必然同构.

一方面, U 中任意包含 x 的开集 W 满足

$$\mathscr{F}|_U(W) = \mathscr{F}(W),$$

这自然地继承了与限制态射相容的态射 $\mathscr{F}|_U(W) \to \mathscr{F}_x$. 另一方面,对任意开集 $V \subseteq X$,给定与 $\mathbf{Open}(U)$ 相容的对象 $\{A, \{\lambda_W : \mathscr{F}(W) \to A\}_{\{W \subseteq U\}}\}$,限制态射 $\mathscr{F}(V) \to \mathscr{F}(V \cap U)$ 使得它成为与 $\mathbf{Open}(X)$ 相容的对象,因此根据泛性质存在唯一的态射 $\mathscr{F}_x \to A$ 与 $\mathbf{Open}(X)$ 中的限制态射相容,因而与与 $\mathbf{Open}(U)$ 相容,这 恰是 $(\mathscr{F}|_U)_x$ 的泛性质.

例 5.5. 设 M 是给定的 Abel 群, $x \in X$ 是拓扑空间中的一个点, 定义预层 M(x) 满足

$$M(x)(U) := \begin{cases} M & x \in U \\ 0 & x \notin U, \end{cases}$$

限制态射要么是恒等映射要么是零映射. 如果我们计算 M(x) 在点 y 的茎,

但是,预层并不是我们所希望的定义在拓扑空间上的代数结构.多数情况下我们希望的是从局部的信息中可以得到足够的整体信息,并且整体能够得到的信息一定程度上完全由局部信息得到,于是我们有下面的定义:

定义. 设 \mathscr{F} 是拓扑空间 X 上的预层,如果 \mathscr{F} 满足如下条件:

- (i) (局部性 (locality)) 若 $\{U_i\}_{i\in I}$ 是开集 U 的一族开覆盖, $s,t\in \mathscr{F}(U)$ 满足对于任意 $i\in I$ 都有 $s|_{U_i}=t_{U_i}$ 成立,则 $s=t\in \mathscr{F}(U)$;
- (ii) (粘合条件 (gluing)) 若 $\{U_i\}_{i\in I}$ 是开集 U 的一族开覆盖,一族元素 $s_i \in \mathscr{F}(U_i)$ 满足 $s_i|_{U_i\cap U_j} = s_i|_{U_i\cap U_j}$,那么存在 $s\in \mathscr{F}(U)$ 使得 $s|_{U_i} = s_i$ 成立;

则称 \mathcal{F} 为 X 上的层 (sheaf).

定义的合理性告诉我们并不是所有的预层都是层,对于某些拓扑空间 X,常预层就不是层. 但是,某些定义的预层本身就是层,如下例. 最重要的是层的行为形态非常类似于全体可定义的函数,因此函数的全体必然是层.

例 5.6. 例5.1中的构造是一个层,更一般地,如果 X 是拓扑空间, \mathscr{F} 是定义在 X 上满足某些性质(诸如连续、全纯、光滑等等)的函数预层,且限制映射就是函数的限制,那么这个预层是层.

例 5.7. 若 \mathscr{F} 是拓扑空间 X 上的预层,U 是开集,那么我们可以定义 \mathscr{F} 在 U 上的限制,记为 $\mathscr{F}|_{U}$,它是 U 上的层,对任意 U 中的开集 V,定义

$$\mathscr{F}|_{U}(V) = \mathscr{F}(U \cap V) = \mathscr{F}(V),$$

且对应 $W \subseteq V$ 的限制同态 $\mathscr{F}|_U(V) \to \mathscr{F}|_U(W)$ 定义为限制同态 $\mathscr{F}(V) \to \mathscr{F}(W)$. 明显的事实是, $\mathscr{F}|_U(V) \to \mathscr{F}|_U(W)$ 是预层, 并且如果 \mathscr{F} 是层则 $\mathscr{F}|_U(V) \to \mathscr{F}|_U(W)$ 也是层.

更抽象一些地,我们可以用范畴的语言描述层公理: 若 $\{U_i\}_{i\in I}$ 是开集U的一族开覆盖,那么层公理等价于下图

$$\mathscr{F}(U) \xrightarrow{p} \prod_{i \in I} \mathscr{F}(U_i) \rightrightarrows \prod_{i,j \in I} \mathscr{F}(U_i \cap U_j),$$

是一个等值子 (equalizer), 其中第一个态射由 $\rho_{U_i}^U = \mathscr{F}(U_i \hookrightarrow U)$ 诱导, $f,g: \prod_{i \in I} \mathscr{F}(U_i) \rightrightarrows \prod_{i,j \in I} \mathscr{F}(U_i \cap U_j)$ 分别由 $\rho_{U_i \cap U_j}^{U_i} \circ \pi_i: \prod_{i \in I} \mathscr{F}(U_i) \to \mathscr{F}(U_i \cap U_j)$ 和 $\rho_{U_i \cap U_j}^{U_j} \circ \pi_j: \prod_{i \in I} \mathscr{F}(U_j) \to \mathscr{F}(U_i \cap U_j)$ 诱导. 习题 5.3. 证明上述等价性.

证明. 根据范畴中乘积对象的泛性质, p, f, g 的映射完全由 $\pi_i \circ p, \pi_{i,j} \circ f, \pi_{i,j} \circ g$ 决定.

假设 \mathscr{F} 是层,且我们能找到集合间的映射 $q:A\to\prod_{i\in I}\mathscr{F}(U_i)$ 使得 $f\circ q=g\circ q$,于是对任意 A 中的元素 a, $\pi_{i,j}\circ f\circ q(a)=\pi_{i,j}\circ g\circ q(a)$,这意味着对于 U_i ,我们能找到 $\mathscr{F}(U_i)$ 中的元素 $\pi_i\circ q(a)$ 使得

$$\rho_{U_{i} \cap U_{i}}^{U_{i}}(\pi_{i} \circ q(a)) = \pi_{i,j} \circ f \circ q(a) = \pi_{i,j} \circ g \circ q(a) = \rho_{U_{i} \cap U_{i}}^{U_{j}}(\pi_{i} \circ q(a)),$$

故由层的定义,存在唯一的元素 $\tilde{q}(a) \in \mathcal{F}(U)$ 使得

$$\rho_{U_i}^U(\tilde{q}(a)) = \pi_i \circ q(a),$$

即存在唯一的集合间的映射 $\tilde{q}: A \to \mathcal{F}(U)$ 满足 $q = p \circ \tilde{q}$,故 $\mathcal{F}(U)$ 是等值子.

反过来,设 $\mathscr{F}(U)$ 是 f,g 的等值子,若在每个 $i \in I$, $\mathscr{F}(U_i)$ 中都有元素 s_i 满足 $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$,根据乘积结构的泛性质,这意味着在 $\prod_{i \in I} \mathscr{F}(U_i)$ 中存在元素 $\{s_i\}_{i \in I}$ 满足

$$\pi_{i,j} \circ f(\{s_i\}_{i \in I}) = s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} = \pi_{i,j} \circ g(\{s_i\}_{i \in I}),$$

故 $f(\{s_i\}_{i\in I})=g(\{s_i\}_{i\in I})$. 根据集合范畴中等值子的构造,存在唯一的 $s\in \mathscr{F}(U)$ 使得 $p(s)=\{s_i\}_{i\in I}$,因此

$$s|_{U_i} = \pi_i \circ p(s) = s_i$$

罗 是层.

5.1 层的基本理论 57

层之间的态射与预层之间态射的定义相同,即对于层 \mathscr{F} , \mathscr{G} , φ : $\mathscr{F} \to \mathscr{G}$ 是层态射当且仅当 φ 是预层的态射. 这意味着我们可以定义范畴 $\mathbf{ShAb}(X)$,且它是 $\mathbf{PShAb}(X)$ 的满子范畴. 在之后的内容我们会看到,当我们选取的范畴 \mathcal{A} 是 Abel 范畴时, $\mathbf{PSh}\mathcal{A}(X)$ 也是一个 Abel 范畴.

局部性可以用茎的语言来描述:

命题 5.1. 设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是拓扑空间 X 上层的态射,那么 φ 是同构当且仅当对于任意 $x \in X$,诱导的 $\varphi_x: \mathscr{F}_x \to \mathscr{G}_x$ 都是同构.

对层这种构造的一种理解方式是说,它是弯曲空间上满足一定性质的"函数"的全体,不同性质的选取决定了层结构的不同.

习题 5.4. 设 \mathscr{F} 和 \mathscr{G} 是 X 上的两个预层,验证 $U \mapsto \operatorname{hom}_{\operatorname{PShAb}(X)}(\mathscr{F}|_U,\mathscr{G}|_U)$ 有自然的预层结构,且若 \mathscr{F} 和 \mathscr{G} 还是 X 上的层,则预层 $U \mapsto \operatorname{hom}_{\operatorname{PShAb}(X)}(\mathscr{F}|_U,\mathscr{G}|_U)$ 是层,记为 \mathscr{H} om $(\mathscr{F},\mathscr{G})$,称作 \mathscr{F} 到 \mathscr{G} 的局部 态射层 (sheaf of local morphisms of \mathscr{F} into \mathscr{G}).

习题 5.5. 设 \mathscr{F} 是拓扑空间 X 上的一个预层,则下面的构造给出一个拓扑空间,其中底集 $\mathscr{F} = \coprod_{x \in X} \mathscr{F}_x = \{(x,s_x) \mid x \in X, s_x \in \mathscr{F}_x\}$ 是所有茎的不交并,并对任意给定 X 中的开集 U 和 $s \in \mathscr{F}(U)$ 给定如下一组拓扑基

$$(U,s) := \{(x,s_x) \mid x \in U\}.$$

求证:

- (i) 存在自然的连续映射 $\pi: \bar{\mathscr{F}} \to X$,将点 (x,s_x) 映到 x. 并且,对任意的开集 U 和 $s \in \mathscr{F}(U)$,存在 π 在 U 上的截面 (section) $\sigma: U \to \bar{\mathscr{F}}$ (截面是指连续函数 σ 使得 $\pi \circ \sigma$ 是 U 上的恒等函数). 记对应 \mathscr{F} 的 U 上所有截面为 $\Gamma(U,\mathscr{F})$.
- (ii) 反之, 若 \mathscr{F} 还是层, 求证任意 U 上的截面 σ 都是如上述方式构造的.
- (iii) 由上证明若 \mathscr{F} 是层,则 $\pi:\bar{\mathscr{F}}\to X$ 的连续函数截面层同构于 \mathscr{F} .
- (iv) 若 $\mathscr G$ 也是拓扑空间 X 上的一个预层, $\varphi:\mathscr F\to\mathscr G$ 是预层的态射,证明 φ 诱导了 $\bar{\mathscr F}\to\bar{\mathscr G}$ 的连续映射. 空间 $\bar{\mathscr F}$ 称为预层 $\mathscr F$ 的平展空间 (étale space). 这实际上是 Serre 最初给的层的定义,我们用的是更现代的观点来看,但习题说明了两者是完全相同的.
- Solution. (i) 根据定义, π 显然是连续的. 定义 $\sigma: x \mapsto (x, s_x)$,注意到 $\sigma^{-1}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} \sigma^{-1}(A_i)$,因而为证明 σ 是连续的只需要证明对任意的 X 中的开集 V, $\sigma^{-1}((V,t))$ 也是开集即可. 但是若 t = s 则 $\sigma^{-1}((V,t)) = \sigma^{-1}((V,t)) = V \cap U$,若 $t \neq s$ 则 $\sigma^{-1}((V,t)) = \emptyset$. 故得证.
- (ii) 设 $\sigma: U \to \bar{\mathscr{F}}$ 是 U 上的截面,于是对于任意的 $x \in U$,存在 $s \in \mathscr{F}(U)$ 使得 $\sigma(x) = (x, s_x)$. 若 x, y 是 U 中的两个点, $\sigma(x) = (x, s_x)$ 且 $\sigma(y) = (y, t_y)$. 根据芽的定义,我们可以找到 x, y 的邻域 V, W 使得 $s \in \mathscr{F}(V), t \in \mathscr{F}(W)$. 考虑开集

$$(V,s) = \{(z,s_z) \mid z \in V\}$$

和

$$(W,t) = \{(z,t_z) \mid t \in W\},\$$

根据 σ 的连续性, $\tilde{V}:=\sigma^{-1}((V,s))$ 和 $\tilde{W}:=\sigma^{-1}((W,t))$ 都是 U 中的非空开集,分别包含 x 和 y. 对于任意 $z\in \tilde{V}\cap \tilde{W}$,由 σ 的映射性 $(z,s_z)=\sigma(z)=(z,t_z)$,故存在 z 的一个邻域 $O\subseteq \tilde{V}\cap \tilde{W}$ 使得 $s|_O=t|_O$. 但是 z 是任取的,故 $s|_{\tilde{V}\cap \tilde{W}}=t|_{\tilde{V}\cap \tilde{W}}$. 这样我们就得到了 U 的一个开覆盖,且在开集重合的部分截面是相容的. 根据层公理,存在唯一的 $r\in \mathcal{F}(U)$ 使得 $\sigma(x)=(x,r_x)$.

(iii) 记 \mathscr{F}' 为 $\pi:\bar{\mathscr{F}}\to X$ 的截面层. 定义

$$\theta: \mathscr{F} \to \mathscr{F}'$$

$$\theta_U: \mathscr{F}(U) \to \mathscr{F}'(U)$$

$$s \mapsto \sigma(x \mapsto (x, s_x)),$$

于是我们需要验证对任意的开集 U, θ_U 是群同构, 且对任意满足 $V \subseteq U$ 的开集 U, V 都有图

$$\mathcal{F}(U) \xrightarrow{\theta_U} \mathcal{F}'(U)
\downarrow_{\rho_V^U} \qquad \downarrow_{|V}
\mathcal{F}(V) \xrightarrow{\theta_V} \mathcal{F}'(V),$$

交换, 其中 $|_{V}$ 是 U 上函数在 V 的限制.

对于 $\mathscr{F}'(U)$ 中的截面 $\sigma, \tau, \sigma + \tau$ 的定义是 $\sigma + \tau : x \mapsto (x, s_x + t_x)$, 其中 $\sigma(x) = (x, s_x)$, $\tau(x) = (x, t_x)$. 于是,同态性由正极限的性质保证,再根据前一部分 θ_U 是同构,其中,层公理的局部性对应 θ 的单射性,在局部性的存在下粘合条件等价于满射(充分性由前一部分证明,必要性考虑到截面本质上是映射,是自动满足粘合条件的). 任取 $x \in V$ 和 $s \in \mathscr{F}(U)$,正极限保证 $s_x = (s|_V)_x$,这即是图的交换性.

(iv) 定义

$$\bar{\varphi}: \bar{\mathscr{F}} \to \bar{\mathscr{G}}$$
 $(x, s_x) \mapsto (x, \varphi_x(s_x)),$

于是我们只要证明函数是连续的即可. 对 \mathcal{G} 的任意 X 中的开集 U, 若 t 是 $\mathcal{G}(U)$ 中的截面,则对于 (U,t) 中的任意点 (x,t_x) ,若它在 $\bar{\varphi}$ 的像中,则存在 $(x,s_x)\in\mathcal{F}_x$ 使得 $\varphi_x(s_x)=t_x$. 这意味着,存在 x 的邻域 W 使得 $\varphi_W(s)|_{W\cap U}=t|_{W\cap U}$. 于是,开集基中的元素 $(W\cap U,s|_{W\cap U})$ 包含于 $\bar{\varphi}$ 的原像中,故

$$\varphi^{-1}((U,t)) = \coprod_{W \not\equiv U \neq \text{ bh} , \exists s \in \mathscr{F}(W) \not\equiv \mathsf{k} \subseteq \varphi_W(s) = t|_W} (W,s),$$

按照定义这是一个开集.

习题 5.6. 设 $\varphi_i: \mathscr{F} \to \mathscr{G}$ 是拓扑空间 X 上层的态射,i=1,2,且对于任意 $x \in X$,都有 $(\varphi_1)_x = (\varphi_2)_x$,证 明 $\varphi_1 = \varphi_2$.

5.1.2 层化

对于一个预层 \mathscr{F} 和 X 中的开集 U ,我们可以定义

$$\tilde{\mathscr{F}}(U) := \{s: U \to \coprod_{x \in U} \mathscr{F}_x \mid s$$
满足公理 (i) 和 (ii)}

其中

5.1 层的基本理论 59

- (i) 对每个 U 中的点 x, $s(x) \in \mathcal{F}_x$;
- (ii) 对每个 U 中的点 x,都存在开邻域 $V \subseteq U$ 和截面 $t \in \mathscr{F}(V)$ 使得对于所有的 $y \in V$ 都有 $s(y) = t_y$. 对于 \mathscr{F} 中的任意截面 $s \in \mathscr{F}(U)$,我们都可以定义一个映射 $\tilde{s}: U \to \coprod_{x \in U} \mathscr{F}_x, y \mapsto s_y$. 显然 $\tilde{s} \in \tilde{\mathscr{F}}(U)$,因此我们定义了一个预层的态射 $\zeta: \mathscr{F} \to \tilde{\mathscr{F}}$.

命题 5.2. 若预层 \mathscr{F} 是层,则 $\zeta:\mathscr{F}\to\widetilde{\mathscr{F}}$ 是层的同构.

如果尽可能具体地解释层化,这个构造就是把原本没有的截面加到层的对象当中去,进而形成我们需要的足够多的粘合信息,而我们是局部来完成这个扩充的. 刚刚我们介绍的层化事实上就是用一个点的局部信息(茎)去构造相应的函数,可以说层公理所描述的本质信息就是一定类型的函数. 我们对于层化的定义满足如下的泛性质和函子性:

命题 5.3 (函子性). 设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是预层的态射,那么存在层态射 $\tilde{\varphi}: \tilde{\mathscr{F}} \to \tilde{\mathscr{G}}$ 使得下面的图交换:

$$\begin{array}{ccc} \mathscr{F} & \stackrel{\varphi}{\longrightarrow} \mathscr{G} \\ \zeta_{\mathscr{F}} & & & \downarrow \zeta_{\mathscr{G}} \\ \tilde{\mathscr{F}} & \stackrel{\tilde{\varphi}}{\longrightarrow} \tilde{\mathscr{G}}. \end{array}$$

证明. 对任意 X 中的开集 U, 考虑点 $x \in U$ 和截面 $s \in \tilde{\mathscr{F}}(U)$, 我们定义

$$\tilde{\varphi}_U(s)(x) := \varphi_x(s(x)).$$

我们需要验证定义是层的态射,并验证图的交换性.

推论 5.3.1 (泛性质). 设 $\varphi: \mathscr{S} \to \mathscr{G}$ 是预层的态射, 若 \mathscr{G} 是层, 则存在 Abel 群的同构

$$\hom_{\mathbf{PShAb}(X)}(\mathscr{F},\mathscr{G}) \cong \hom_{\mathbf{ShAb}(X)}(\tilde{\mathscr{F}},\mathscr{G}).$$

事实上,我们并不需要拓扑空间 X 中所有开集 U 所对应的对象 $\mathscr{F}(U)$,如果给定 X 的一组基 \mathscr{B} 中所有所有开集 U 对应的对象 $\mathscr{F}(U)$,并且这些对象满足层公理,那么我们存在唯一的 X 上的层:

定理 5.4 (\mathscr{B} -层). 设 \mathscr{B} 是拓扑空间 X 的一组开集基,对于每个 $U,V\in\mathscr{B}$,存在 Abel 群 $\mathscr{F}(U)$ 和限制 同态 $\rho_V^U:\mathscr{F}(U)\to\mathscr{F}(V)$ 满足预层公理和层公理,那么称 \mathscr{F} 是一个 \mathscr{B} -层 (\mathscr{B} -sheaf). 于是

1. 任意 \mathcal{B} -层都可以唯一地扩张为一个 X 上的 Abel 群层.

2. 给定 X 上的两个 \mathcal{B} -层 \mathcal{F} 和 \mathcal{G} , 且对每个 \mathcal{B} 中的开集 U 都有群态射

$$\varphi_U: \mathscr{F}(U) \to \mathscr{G}(U)$$

与 \mathcal{B} -层的限制态射相容, 那么存在唯一的层态射 $\varphi: \mathcal{F} \to \mathcal{G}$ 是 \mathcal{B} -层的扩张.

证明. 对任意 X 中的开集 V, 定义

$$\mathscr{F}(V) := \varprojlim_{U \in \mathscr{B} \not \exists EU \subseteq V} \mathscr{F}(U),$$

其中逆向系中的态射由限制态射给定. 我们需要证明: (i) 该定义与原定义相容; (ii) 若 $V \subseteq W$,则存在 ρ_V^W : $\mathscr{F}(W) \to \mathscr{F}(V)$ 与原有的限制函数相容,且新构造的限制函数间也相容; (iii) 如此定义的预层构成一个层.

(i) 由极限的定义即可得到,因为若 $V \in \mathcal{B}$,V 就是被 V 包含的 \mathcal{B} 中开集在嵌入映射下的终对象,因此 $\mathcal{F}(V)$ 是始对象.(ii) 可以由极限的函子性推得. 这样我们只要验证这是一个层即可,等价地,我们证明对任意的开覆盖,是一个等值子.

推论 5.4.1 (层的粘合原理). 设 $U = \{U_i\}_{i \in I}$ 是拓扑空间 X 的开覆盖. 若对任意 U 中的开集 U , \mathscr{F}_U 都是 U 上的层,并且

$$\varphi_{U,V}:\mathscr{F}_{U}|_{U\cap V}\to\mathscr{F}_{V}|_{U\cap V}$$

都是同构, 在 $U \cap V \cap W$ 上满足

$$\varphi_{V,W} \circ \varphi_{U,V} = \varphi_{U,W},$$

则存在唯一的 X 上的层 \mathscr{F} 使得有层的同构 $\psi:\mathscr{F}|_{U}\to\mathscr{F}_{U}$ 且满足如下相容性: 对任意 $U,V\in\mathcal{U}$

$$\varphi_{U,V} \circ \psi_U|_{U \cap V} = \psi_V|_{U \cap V} : \mathscr{F}|_{U \cap V} \to \mathscr{F}_V|_{U \cap V}.$$

证明. 我们将验证如下论断: (i) 被 U 中的开集包含的所有的开集构成 X 的一组拓扑基 \mathcal{B} ; (ii) 所给出的粘合条件自然地给出了一个 \mathcal{B} -层,于是根据定理5.4存在性和唯一性都得证.

(i) 这是一个单纯的拓扑问题,我们略过证明.(ii) 对任意 $\mathcal B$ 中的开集 W,我们可以找到 $U \in \mathcal U$ 使得 $W \subseteq \mathcal U$,于是定义

$$\mathscr{F}(W) := \mathscr{F}_U(W),$$

且若 $W_1 \subseteq W_2 \subseteq U$,那么限制态射 $\rho_{W_1}^{W_2}: \mathscr{F}(W_2) \to \mathscr{F}(W_1)$ 定义为层 \mathscr{F}_U 从 W_1 到 W_2 的限制. 这样定义首先出现的问题是,我们对于 $U \in \mathcal{U}$ 的选取可能不是唯一的,因而,首先验证定义是合理的.

假设对于 W, 存在不同的

由于原本的 \mathcal{F}_U 是 U 上的层,根据例5.7,我们这样的定义也是层,于是根据之前的定理,这个层存在且同构下唯一.

事实上,粘合后的层 $\mathscr F$ 是容易描述的: 对任意的开集 W , $\mathscr F(W)$ 是所有 $\{s_U\}_{U\in\mathcal U}$ 的全体,其中 $s_U\in\mathscr F_U(W\cap U)$ 且满足 $\varphi_{U,V}(s_U)$ 在 $U\cap V\cap W$ 上等于 $\varphi_{V,U}(s_V)$.

5.1 层的基本理论 61

引入层化后我们其实有了对于层更进一步的认识——层完全由每点上的茎完全决定,而决定的方式就是寻找连续的截面(习题5.7). 在英语中,sheaf 一词的含义是 "a bundle of stalks",即一捆稻谷,我们想象习题 5.7. 设 $\mathscr S$ 是拓扑空间 X 上的预层. 证明平展空间 $\mathscr S$ 的截面层 $\mathscr S'$ 同构于 $\mathscr S$ 的层化.

证明. 在习题5.5中我们定义了预层的态射

$$\theta: \mathscr{F} \to \mathscr{F}'$$

$$\theta_U: \mathscr{F}(U) \to \mathscr{F}'(U)$$

$$s \mapsto \sigma(x \mapsto (x, s_x)),$$

于是只要证明 \mathscr{F}' 的泛性质就能够说明同构. 设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是预层到层的态射,于是根据习题5.5我们有连续映射 $\bar{\varphi}: \bar{\mathscr{F}} \to \bar{\mathscr{G}}$,进而对于任意的截面 $s: U \to \bar{\mathscr{F}}$, $\bar{\varphi} \circ s$ 也是 U 上的截面,这样我们定义了

$$\varphi': \mathscr{F}' \to \mathscr{G}' \cong \mathscr{G}$$

$$\varphi'_U: \mathscr{F}'(U) \to \mathscr{G}'(U)$$

$$s \mapsto \bar{\varphi} \circ s.$$

 φ'_U 是群同态由由 φ 的预层的态射性保证,而它显然与两个层的限制态射相容,于是我们得到了层的态射. 再证明唯一性. 假设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是预层到层的态射,层态射 $\tilde{\varphi}: \mathscr{F}' \to \mathscr{G}$ 满足

$$\mathscr{F}' \xrightarrow{\tilde{\varphi}} \mathscr{G}$$
 $\theta \uparrow \qquad \qquad \nearrow \varphi$

任取 $\sigma \in \mathscr{F}'(U)$,即截面 $\sigma : U \to \bar{\mathscr{F}}$,对任意 $x \in U$,若 $\sigma(x) = (x, s_x)$,那么任取 σ_x 的代表元 τ ,于是存在 $W \subseteq U$ 使得 $\sigma|_W = \tau|_W$,因此 $\tau(x) = (x, s_x)$,于是可以定义 $\eta_x : (\mathscr{F}')_x \to \mathscr{F}_x$, $\sigma_x \mapsto s_x$.根据截面加法的 定义,这显然是一个群态射.一方面,我们显然有 $\eta_x \circ \theta_x = \mathrm{id}_{\mathscr{F}_x}$.另一方面,仍然假定 $\sigma(x) = (x, s_x)$,那么 由连续性 $V = \sigma^{-1}((U, s))$ 是 U 中的非空开集,这意味着对任意 $y \in V$, $\sigma(y) = (y, s_y)$,于是 $\sigma|_V = \theta(s)|_V$, $\theta_x(s_x) = \sigma_x$. 因此, $\theta_x \circ \eta_x = \mathrm{id}_{(\mathscr{F}')_x}$.再根据习题5.6, $\tilde{\varphi}$ 是唯一确定的.

5.1.3 底空间变换

这一节我们考虑这样的问题,

定义. 设 $f: X \to Y$ 是拓扑空间的连续映射,如果 \mathscr{F} 是 X 上的预层,则如下定义的

$$f_*\mathscr{F}:\mathbf{Open}(Y)\to\mathbf{Ab}$$

$$U\mapsto f_*\mathscr{F}(U):=\mathscr{F}(f^{-1}(U))$$

是一个预层, 称为预层 \mathcal{F} 的**推出** (pushfroward).

对于 Y 中的开集 $V \subseteq U$,我们定义限制同态 $f_*\mathscr{F}(U) \to f_*\mathscr{F}(V)$ 是 $\mathscr{F}(f^{-1}(U))$ 到 $\mathscr{F}(f^{-1}(V))$ 的限制同态,即若 $s \in f_*\mathscr{F}(U)$,则

$$s|_{V} = (s \in \mathscr{F}(f^{-1}(U)))|_{f^{-1}(V)}.$$

引理 5.1. 设 $f: X \to Y$ 是拓扑空间的连续映射, 如果 \mathscr{F} 是 X 上的层,则推出 $f_*\mathscr{F}$ 是 Y 上的层.

证明. 任取 Y 中的开集 V,设 $\mathcal{V} = \{V_i\}_{i \in I}$ 是 V 的开覆盖,那么 $\mathcal{U} = \{U_i := f^{-1}(V_i)\}_{i \in I}$ 是 $\mathcal{U} := f^{-1}(V)$ 的开覆盖. 于是,若给定 $s_i \in f_* \mathscr{F}(V_i) = \mathscr{F}(U_i)$,满足 $s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$,于是 $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$. 由 \mathscr{F} 是层得知存在唯一的 $s \in \mathscr{F}(U)$ 使得 $s|_{U_i} = s_i$. 按照层推出的定义,这个 s 就是 $f_* \mathscr{F}(V)$ 中要找的唯一的元素,故 $f_* \mathscr{F}$ 是层.

如果我们还有一个 X 上的预层态射 $\varphi: \mathscr{F} \to \mathscr{G}$,则对于任意的 Y 中的开集 U,同态映射 $\varphi_{\varphi^{-1}(U)}: \mathscr{F}(\varphi^{-1}(U)) \to \mathscr{G}(\varphi^{-1}(U))$ 和限制映射 $\rho_{\varphi^{-1}(V)}^{\varphi^{-1}(U)}$ 相容,于是 $\varphi_{\varphi^{-1}(U)}: \mathscr{F}(\varphi^{-1}(U)) \to \mathscr{G}(\varphi^{-1}(U))$ 自然地可以 看作 $\varphi_{\varphi^{-1}(U)}: f_*\mathscr{F}(U) \to f_*\mathscr{G}(U)$,这样我们说明了 $f_*\varphi$ 是预层态势 $f_*\mathscr{F} \to f_*\mathscr{G}$. 如果还有 $\psi: \mathscr{G} \to \mathscr{H}$,那 么很明显地有 $f_*(\psi \circ \varphi) = f_*\psi \circ f_*\varphi$. 于是 f_* 是一个函子 $\mathbf{PShAb}(X) \rightrightarrows \mathbf{PShAb}(Y)$.

习题 5.8. 设 $f: X \to Y$ 和 $g: Y \to Z$ 是两个连续映射,那么

$$(g \circ f)_* = g_* \circ f_*.$$

定义. 设 $f: X \to Y$ 是拓扑空间的连续映射, 如果 \mathscr{G} 是 Y 上的预层, 则如下定义的

$$f_{P}\mathscr{G}: \mathbf{Open}(X) \rightrightarrows \mathbf{Ab}$$

$$V \mapsto f_{P}\mathscr{G}(U) := \varinjlim_{\substack{V \in \mathbf{Open}(Y) \\ f(U) \subseteq V}} \mathscr{G}(V)$$

是一个预层,称为预层 \mathcal{G} 的**拉回** (pullback).

引理 5.2. 设 X 和 Y 是拓扑空间, $f: X \to Y$ 是连续映射, 那么下面的同构关于 $\mathscr G$ 和 $\mathscr F$ 是自然的:

$$\hom_{\mathbf{PShAb}(X)}(f_P\mathscr{G},\mathscr{F}) \cong \hom_{\mathbf{PShAb}(Y)}(\mathscr{G}, f_*\mathscr{F}).$$

证明. 我们首先证明同构. 设 $\varphi \in \text{hom}_{PShAb(X)}(f_P\mathcal{G}, \mathcal{F})$,于是任意给定 X 中的开集,按照极限的定义, φ_U : $f_P\mathcal{G}(U) \to \mathcal{F}(U)$ 完全由一族相容的态射

 φ_V :

其中 V 取遍所有包含 f(U) 的开集.

与推出不同的是,即使 \mathcal{G} 是 Y 上的层, $f_P\mathcal{G}$ 也可能并不是一个层,但作为预层,层的拉回也有很好的 函子性质. 我们称 $f_P^{-1}\mathcal{G}$ 的层化为 \mathcal{G} 的**逆象层** (inverse sheaf),记为 $f^{-1}\mathcal{G}$.

5.1 层的基本理论 63

定义. 设 X 是拓扑空间, \mathscr{F} 是 X 上的层

5.1.4 层范畴及其中的正合性

设 $\varphi: \mathscr{F} \to \mathscr{G}$ 是空间 X 上预层的态射,

引理 5.3. 层态射的单态射是范畴意义下的单态射,且层态射的满态射是范畴意义下的满态射.

证明.

给定拓扑空间 X 和上面的层 \mathscr{F} ,若对于任意的 $V\subseteq U$,限制映射 $\mathscr{F}(U)\to\mathscr{F}(V)$ 都是满射,则称 \mathscr{F} 是 flasque.

习题 5.9. 求证层态射单射(满射)的局部性: 给定拓扑空间 X 和开覆盖 $U = \{U_i\}_{i \in I}$ 使得层态射 $\varphi : \mathscr{F} \to \mathscr{G}$ 的限制

$$\varphi_{U_i}:\mathscr{F}_{U_i}\to\mathscr{G}_{U_i}$$

对所有的 $i \in I$ 都是单射 (满射), 那么 φ 本身也是单射 (满射).

证明.

习题 5.10 (层的零扩张). 设 X 是拓扑空间,Z 是 X 的闭集, $i:Z\to X$ 是嵌入映射. 令 U:=X-Z 是 Z 在 X 中的补集, $j:U\to X$ 是嵌入映射.

1. 设 \mathscr{F} 是 Z 上的层,证明

$$(i_*\mathscr{F})_x = \begin{cases} \mathscr{F}_x & x \in Z\\ 0 & x \notin Z. \end{cases}$$

于是我们称 $i_*\mathscr{F}$ 是 \mathscr{F} 在 X 上的零扩张. 证明若 X 上的层 \mathscr{F} 对所有 $x\notin Z$ 满足 $\mathscr{F}_x=0$,那么层的 同态

$$\rho_Z^X:(i_*\mathscr{F})|_Z\to\mathscr{F}$$

是同构, 并且由此推导出对任意 Z 上的层 \mathscr{G} , 存在唯一的 X 上的层 \mathscr{F} 满足对所有 $x \in Z$ 满足 $\mathscr{F}_x = \mathscr{G}_x$, 对所有 $x \notin Z$ 满足 $\mathscr{F}_x = 0$.

2. 设 \mathscr{G} 是 U 上的层,定义 X 上的层 \mathscr{G} 满足对任意 X 中的开集 V,

$$j_! \mathcal{G}(V) := \begin{cases} \mathcal{G}(V) & V \subseteq U \\ 0 & \text{其他情况.} \end{cases}$$

证明

$$(j_! \mathscr{G})_x = \begin{cases} \mathscr{G}_x & x \in U \\ 0 & \text{其他情况,} \end{cases}$$

并且证明 $j_!$ 是满足以上条件且限制在 U 上是 $\mathscr G$ 的唯一一个层.

3. 现在假设 \mathscr{F} 是 X 上的层,证明我们有如下层的正合列:

$$0 \to j_!(\mathscr{F}|_U) \to \mathscr{F} \to i_*(\mathscr{F}|_Z) \to 0.$$

证明. 1. 直接由定义,若 $x \in U$,那么存在 x 在 X 中的邻域 V 使得 $V \cap Z = \emptyset$,此时 $i_* \mathscr{F}(V) = \mathscr{F}(i^{-1}(V)) = \mathscr{F}(\emptyset) = 0$,因此对任意包含 x 的开集 W, $i_* \mathscr{F}(W \cap V) = 0$,即 $(i_* \mathscr{F})_x = 0$. 另一方面,若 $x \in Z$,那么

$$(i_*\mathscr{F})_x = \operatorname{colim}_{W \not\in \mathfrak{Q} \cong x \text{ in } T \not\in X} (i_*\mathscr{F})(W) = \operatorname{colim}_{W \not\in \mathfrak{Q} \cong x \text{ in } T \not\in X} \mathscr{F}(W \cap Z) = \mathscr{F}_x.$$

定义. 给定拓扑空间 X 和 Abel 群层 \mathscr{F} ,若对任意开集 U, $\mathscr{F}(U)$ 是环,并且所有的限制映射都是环同态,则称 \mathscr{F} 是 X 上的环层 (sheaf of rings).

5.2 Cech 上同调

之前的理论中我们建立了层的上同调理论,但我们面临一个相当严重的问题——对于一个给定的层,它的上同调几乎是不可计算的. 虽然任意层的内射都是存在的,但构造过于庞大 Cech 上同调的主要思想是我们考虑拓扑空间中开覆盖所包含的组合信息,

设 X 是拓扑空间, \mathscr{F} 是 X 上的层, $\mathcal{U} = \{U_{\lambda}\}_{{\lambda} \in \Lambda}$ 是 X 的一族开覆盖. 对任意 $q \geq 0$,我们定义 \mathscr{F} (对 于 \mathcal{U}) 的 q 群 (group of q-cochain of \mathscr{F} (relative to \mathcal{U})) 为

$$C^{q}(\mathcal{U},\mathscr{F}) = \prod_{(\lambda_{0},\cdots,\lambda_{q})\in\Lambda^{q+1}} \mathscr{F}(U_{\lambda_{0}}\cap\cdots\cap U_{\lambda_{q}}),$$

进而可以定义上边缘映射

$$d^q: C^q(\mathscr{F}, \mathcal{U}) \to C^{q+1}(\mathscr{F}, \mathcal{U})$$

满足将 $d^q(\{f_{\lambda_0,\dots,\lambda_q}\})$ 的 $(\lambda_0,\dots,\lambda_{q+1})$ 项是

$$\sum_{i=0}^{q} (-1)^i f_{\lambda_0, \dots, \hat{\lambda_i}, \dots, \lambda_{q+1}}.$$

这给出了一个上链,验证如下:

事实上,Cech 上链是这样给出的:给定拓扑空间 X 的开覆盖 $U = \{U_{\lambda}\}_{{\lambda} \in \Lambda}$,存在 U 给出的单纯集 NU,其中的映射都是开集的嵌入

引理 5.4. 对任意拓扑空间 X 和 X 上的层 \mathscr{F} , $U = \{U_{\lambda}\}_{\lambda \in \Lambda}$ 是 X 的一族开覆盖,都有

$$\check{H}^0(\mathscr{F},\mathcal{U}) \cong \Gamma(X,\mathscr{F}).$$

5.2 CECH 上同调 65

命题 5.5. 若 V 是拓扑空间 X 开覆盖 U 的加细,

第六章 群的同调代数

6.1 群的同调和上同调

设 G 是一个群.

定义. 给定 Abel 群 A, 若 G 在 A 上右一个 (左) 作用,则称 A 是一个 G 模 (G-module).

注意到给定 G 模 A 等价于给定 Abel 群 A 和群同态 $G \to \operatorname{Aut}(A)$. 由于 Abel 群等同于 \mathbb{Z} 模,因而 G 模等同于 $\mathbb{Z}[G]$ 模.

定义. 给定 G 模 A, 记

$$A^G := \{a \in A \mid g \cdot a = a$$
对所有 $g \in G$ 成立 $\}$

是 A 中被 G 作用不变的元素的全体.

引理 6.1. 给定 G 模 A 和具有平凡作用的 G 模 \mathbb{Z} , 则

$$A^G \cong \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, A).$$

证明. 任意给定 $\alpha \in \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, A)$,由于 G 在 \mathbb{Z} 上的作用是平凡的, $\alpha(1) = \alpha(g \cdot 1) = g\alpha(1)$,于是映射

$$\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z},A) \to A^G$$

 $\alpha \mapsto \alpha(1)$

是良定义的,这显然是一个 Abel 群同态. 注意到 $\alpha \in \mathrm{Hom}_{\mathbb{Z}[G]}(\mathbb{Z},A)$ 完全由 $\alpha(1)$ 决定,因此这是一个单射;同时该映射是满射,得证.

引理6.1说明给定 G 模的短正合列

$$0 \to A \to B \to C \to 0$$
,

存在诱导的 Abel 群(也是平凡 G 模)正合列

$$0 \to A^G \to B^G \to C^G$$
,

即 $-^G$ 是一个左正合的函子. 因此,只要能够找到一个平凡 G 模 $\mathbb Z$ 的投射消解,那么套用之前的理论可以得到 $\operatorname{Ext}^i_{\mathbb Z[G]}(\mathbb Z,A)$,我们称其为群 G 以 A 为系数的上同调群

例 6.1. 考虑 $G = \mathbb{Z}/n\mathbb{Z} = \langle \sigma \rangle$ 是有限循环群,取

$$N := 1 + \sigma + \dots + \sigma^{n-1} \in \mathbb{Z}[G],$$

那么

$$(1 - \sigma)N = N(1 - \sigma) = 0 \in \mathbb{Z}[G],$$

于是可以验证

$$\xrightarrow{1-\sigma} \mathbb{Z}[G] \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{1-\sigma} \mathbb{Z}[G] \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{\sigma \mapsto 1} \mathbb{Z} \to 0$$

是 $\mathbb Z$ 的消解,于是对于任意 G 模 A,由 $\mathrm{Hom}_{\mathbb Z[G]}(\mathbb Z[G],A)=A$ 我们得到了复形

$$0 \to A$$

定义. 给定群 G, 取

$$F_n := \mathbb{Z}[G] \otimes_{\mathbb{Z}} \mathbb{Z}[G] \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} \mathbb{Z}[G]$$

(共有 n+1 个张量积项), G 在 F_n 上的作用由

$$g \cdot (g_0 \otimes g_1 \otimes \cdots \otimes g_n) := (g \cdot g_0) \otimes g_1 \otimes \cdots \otimes g_n$$

诱导,且有

$$d_i^{[n]}:F_n\to F_{n-1},\ 0\le i\le n$$

满足

$$d_i^{[n]}(1 \otimes g_1 \otimes \cdots \otimes g_n) := \begin{cases} g_1 \cdot (1 \otimes g_2 \otimes \cdots \otimes g_n) & i = 0, \\ (1 \otimes g_1 \otimes \cdots \otimes g_{i-1} \otimes g_i g_{i+1} \otimes \cdots \otimes g_n) & 0 < i < n, \\ 1 \otimes g_1 \otimes \cdots \otimes g_{n-1} & i = n. \end{cases}$$

引理 6.2. 如上定义中,

- 1. F_n 是自由 $\mathbb{Z}[G]$ 模,且它的一组基可选为 $\{1 \otimes g_1 \otimes \cdots \otimes g_n\}_{g_i \in G}$,
- $2. \{d_i^{[n]}\}_{0 \leq i \leq n}$ 扩张为一组 $\mathbb{Z}[G]$ 模同态,满足

$$d_i^{[n]}d_j^{[n]}=d_{j-1}^{[n]}d_i^{[n]}, \quad$$

6.1 群的同调和上同调 69

因此根据习题1.1,

$$\partial_n := \sum_{i=0}^n (-1)^i d_i^{[n]}$$

给出了链复形

$$0 \leftarrow F_0 \stackrel{\partial_1}{\hookleftarrow} F_1 \stackrel{\partial_2}{\hookleftarrow} \cdots \stackrel{\partial_n}{\hookleftarrow} F_n \stackrel{\partial_{n+1}}{\hookleftarrow} \cdots$$

 $\beta.$ $\epsilon: F_0 = \mathbb{Z}[G] \to \mathbb{Z}, \sum_{i=1}^N n_i g_i \mapsto \sum_{i=1}^N n_i$ 给出了增广链复形

$$0 \leftarrow \mathbb{Z} \xleftarrow{\epsilon} F_0 \xleftarrow{\partial_1} F_1 \xleftarrow{\partial_2} \cdots \xleftarrow{\partial_n} F_n \xleftarrow{\partial_{n+1}} \cdots.$$

4.

引理6.2说明构造的 $\{F_n\}$ 给出了平凡 $\mathbb{Z}[G]$ 模 \mathbb{Z} 的一个消解,我们称之为标准消解 (standard resolution) 或 bar 消解 (bar resolution).

习题 6.1. 除了 bar 消解外,

第七章 其他类型的同调

7.1 超上同调

我们考虑这样的问题:设 \mathcal{F} 是拓扑空间 X 上的层

$$\mathscr{F}: \mathbf{Open}(X)^{\circ} \to \mathcal{B},$$

其中 \mathcal{B} 是 Abel 范畴, 此时 \mathscr{F} 是以 \mathcal{B} 中对象为对象的层. 那么可以求 X 关于层 \mathscr{F} 的上同调

$$H^i(\mathscr{F},X),$$

它是 \mathcal{B} 中的对象. 特别地,当 \mathcal{B} 是某个给定 Abel 范畴 \mathcal{A} 的上链复形范畴时,每个上同调都是一个 \mathcal{A} 的上链 复形,此时还可以求上链复形 $H^i(\mathcal{F},X)$ 的上同调

命题 7.1. 设 \mathscr{F}^{\bullet} 是拓扑空间 X 上的层上链复形, $f^{\bullet}:\mathscr{F}^{\bullet}\to\mathscr{G}^{\bullet}$ 是 *injective* 的拟同构. 则对于任意的内射复形 \mathscr{F}^{\bullet} 和复形的态射 $g^{\bullet}:\mathscr{F}^{\bullet}\to\mathscr{F}^{\bullet}$,存在态射 $\tilde{g}^{\bullet}:\mathscr{G}^{\bullet}\to\mathscr{F}^{\bullet}$ 使得

$$g^{\bullet} = \tilde{g}^{\bullet} \circ f^{\bullet}.$$

命题 7.2. 设 $f: C^{\bullet} \to D^{\bullet}$ 是链映射, $C^{\bullet} \to I^{\bullet, \bullet}$ 和 $D^{\bullet} \to J^{\bullet, \bullet}$ 是两个 *Cardan-Eilenburg* 消解,那么存在链映射 $\tilde{f}^{\bullet, \bullet}: I^{\bullet, \bullet} \to J^{\bullet, \bullet}$ 是 f^{\bullet} 上的映射.

给定一个 n 维复流形 X, 那么可以定义其上的 \mathbb{C} 向量空间层的复形

$$0 \to \mathscr{O}_X \to \Omega^1_X \xrightarrow{\partial} \Omega^2_X \xrightarrow{\partial} \cdots \xrightarrow{\partial} \Omega^n_X \to 0,$$

其中 Ω^q_X 是 X 上的全纯 q 形式,那么如上复形是常层 $\mathbb C$ 的消解.

7.2 Lie

定义. 给定 k 上的 Lie 代数 \mathfrak{g} , M 是 \mathfrak{g} 模, 定义如下的

$$C_n^{\mathrm{CE}}(\mathfrak{g}, M) := M \otimes_k \bigwedge_{i=1}^n \mathfrak{g},$$

其中 $\bigwedge_{i=1}^n \mathfrak{g} = \mathfrak{g} \wedge_k \cdots \wedge_k \mathfrak{g}$, 并且有边缘映射

$$\partial_n: M \otimes_k \bigwedge_{i=1}^n \mathfrak{g} \to M \otimes_k \bigwedge_{i=1}^{n-1} \mathfrak{g}$$

$$m \otimes a_1 \wedge \dots \wedge a_n \mapsto \sum_{i=1}^n (-1)^i [m, a_i] \otimes a_1 \wedge \dots \wedge \hat{a}_i \wedge \dots \wedge a_n$$

$$+ \sum_{1 \leq i < j \leq n} (-1)^{i+j-1} m \otimes [a_i, a_j] \wedge a_1 \wedge \dots \wedge \hat{a}_i \wedge \dots \wedge \hat{a}_j \wedge a_n,$$

称复形 $(C_{\bullet}^{\text{CE}}(\mathfrak{g}, M), \partial_{\bullet})$ 为 Lie 代数 \mathfrak{g} 以 M 为系数的 Chevalley-Eilenberg 复形 (Chevalley-Eilenberg). 对 偶地,定义如下的

$$C_{\mathrm{CE}}^{n}(\mathfrak{g},M) := \mathrm{Hom}_{k}\left(\bigwedge_{i=1}^{n} \mathfrak{g},M\right)$$

和微分映射

$$d^n: \operatorname{Hom}_k\left(\bigwedge_{i=1}^n \mathfrak{g}, M\right) \to \operatorname{Hom}_k\left(\bigwedge_{i=1}^{n+1} \mathfrak{g}, M\right)$$

满足

$$d\omega(x_1 \wedge \dots \wedge x_{n+1}) = \sum_{i=1}^{n+1} (-1)^{i+1} x_i \cdot \omega(x_1 \wedge \dots \wedge \hat{x}_i \wedge \dots \wedge x_n)$$

$$+ \sum_{1 \le i < j \le n+1} (-1)^{i+j} \omega([x_i, x_j] \wedge x_1 \wedge \dots \wedge \hat{x}_i \wedge \dots \wedge \hat{x}_j \wedge \dots \wedge x_n),$$

则称 $(C_{CE}^{\bullet}, d^{\bullet})$ 是

7.3 Hochschild

本节中我们都假定 k 是交换环, 理想的情况下它会是域.

定义. 给定交换基代数 k 和 k 代数 A , 若 (对称) k 模 M 同时具有左右 A 模结构,且满足对任意 $a,b\in A,m\in M$ 都有

$$(am)b = a(mb),$$

且 k 在 M 上的左右作用与 A 在 M 上的左右作用相容,则称 M 是一个 A 双模 (A-bimodule). 若 A 还有单位元,则一般要求

$$1m = m = m1.$$

7.3 HOCHSCHILD 73

记 $A^e = A \otimes_k A$, 那么一个 A 双模 M 同时是一个左 A^e 模, 作用由

$$(a \otimes b)m = amb$$

给出. 或者,一个 A 双模 M 同时是一个右 A^e 模,作用由

$$m(a \otimes b) = b^{-1}ma$$

给出.

定义. 给定交换基代数 k 和 k 代数 A, M 是 A 双模, 给定 A 模

$$C_n(A, M) := M \otimes_k A^{\otimes n},$$

其中 $A^{\otimes n} := A \otimes_k \cdots \otimes_k A$,并且有如下 Hochschild 边缘映射

$$\partial_n: C_n(A, M) \to C_{n-1}(A, M)$$

$$m \otimes a_1 \otimes \cdots \otimes a_n \mapsto ma_1 \otimes \cdots \otimes a_n + \sum_{i=1}^{n-1} (-1)^i m \otimes a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n$$

$$+(-1)^n a_n m \otimes a_1 \otimes \cdots \otimes a_{n-1},$$

那么 $(C_{\bullet}(A, M), \partial_{\bullet})$ 称为 Hochschild 复形 (Hochschild complex),对应的同调群称为 A 以 M 为系数的 Hochschild 同调群 (Hochschild homology group of A with coefficients in M),记为 $HH_{\bullet}(A, M)$. 特别地 若 M = A,我们记 $HH_{\bullet}(A)$.

引理 7.1. $(C_{\bullet}(A, M), \partial_{\bullet})$ 是链复形.

证明. 定义

$$d_i^{[n]}: C_n(A, M) \to C_{n-1}(A, M)$$

$$d_0(m \otimes a_1 \otimes \cdots \otimes a_n) := ma_1 \otimes \cdots \otimes a_n$$

$$d_i(m \otimes a_1 \otimes \cdots \otimes a_n) := m \otimes a_1 \otimes \cdots \otimes a_{i-1} \otimes \cdots \otimes a_n$$

$$d_n(m \otimes a_1 \otimes \cdots \otimes a_n) := a_n m \otimes a_1 \otimes \cdots \otimes a_{n-1},$$

于是

$$d_i^{[n]}d_i^{[n]} = d_{i-1}^{[n]}d_i^{[n]}$$

对 $0 \le i < j \le n$ 成立,这样 $C_{\bullet}(A, M)$ 是预单纯的,因此根据习题1.1, $(C_{\bullet}(A, M), \partial_{\bullet})$ 是链复形.

事实上,如上定义的同调群 $HH_{\bullet}(A,M)$ 关于 M 有函子性: 给定一个 A 双模同态 $\psi:M\to N$,那么它

诱导的

$$\psi_{\bullet}: C_{\bullet}(A, M) \to C_{\bullet}(A, N)$$

$$\psi_n: m \otimes a_1 \otimes \cdots \otimes a_n \mapsto \psi(m) \otimes a_1 \otimes \cdots \otimes a_n$$

是一个链映射,因此诱导了 Hochschild 同调群的同态;同时群 $HH_{\bullet}(A,M)$ 关于 A 也有函子性:给定一个 k 代数同态 $\varphi:A\to B$,它诱导的

$$\varphi_{\bullet}: C_{\bullet}(A, M) \to C_{\bullet}(B, M)$$
$$\varphi_n: m \otimes a_1 \otimes \cdots \otimes a_n \mapsto m \otimes \varphi(a_1) \otimes \cdots \otimes \varphi(a_n)$$

是一个链映射, 因此诱导了 Hochschild 同调群的同态.

例 7.1. 首先考虑 $HH_0(A, M)$. 按定义, $HH_0(A, M) = C_0(A, M)/\mathrm{Im}\ \partial_1$,注意到 $\partial_1: a \otimes m \mapsto ma - am$ 的 定义使得 $\mathrm{Im}\ \partial_1$ 中的元素都是形如 ma - am 这样的元素生成的,因此

$$HH_0(A, M) = M/\langle ma - am \rangle =: M/[M, A].$$

特别地, $HH_0(A) = A/[A, A]$.

例 7.2. 当 A=k 时, $C_n(A)=k$ 对于任意 n 都成立,并且 $d_i^{[n]}=\mathrm{id}$ 对任意 $1\leq i\leq n$. 于是,Hochschild 复形是

$$\cdots \rightarrow k \xrightarrow{1} k \xrightarrow{0} \cdots \xrightarrow{1} k \xrightarrow{0} k$$

因此 $HH_*(k) = k[0]$.

习题 7.1. 给定 k 代数 A,记 $Z(A):=\{z\in A\mid az=za\; \forall a\in A\}$ 为 A 的中心,求证 Z(A) 在 $C_{\bullet}(A,M)$ 上的作用

$$z \cdot (m \otimes a_1 \otimes \cdots \otimes a_n) := zm \otimes a_1 \otimes \cdots \otimes a_n$$

和

$$(m \otimes a_1 \otimes \cdots \otimes a_n) \cdot z := mz \otimes a_1 \otimes \cdots \otimes a_n$$

是同伦的. 事实上, 这还是个单纯同伦.

命题 7.3. 若 A 是含幺的交换 k 代数,那么存在自然的同构

$$HH_1(A) \cong \Omega^1_{A/k}$$
.

若 M 还是对称的 A 双模 (即 am = ma 对任意 $a \in A, m \in M$) 都成立, 那么存在自然同构

$$HH_1(A, M) \cong M \otimes_A \Omega^1_{A/k}$$
.

证明. 由于 A 是交换代数,因此 $\partial_1: A \otimes_k A \to A$ (例7.1) 是 0 映射,因此

$$HH_1(A) \cong A \otimes_k A/\langle ab \otimes c - a \otimes bc + ca \otimes b \rangle.$$

7.3 HOCHSCHILD 75

这样对于映射

$$HH_1(A) \to \Omega^1_{A/k}$$

 $a \otimes b \mapsto adb$

是良定义的, 且是 A 模同态. 容易验证这是一个同构.

接下来我们希望用导出函子的语言来描述 Hochschild 同调.

定义. 给定 k 代数 A,记 A° 为 A 的对偶代数(即与 A 具有相同的元素,但乘法定义为 $a^\circ \cdot b^\circ := (ba)^\circ$),令 $A^e := A \otimes_k A^\circ$,那么对于任意的 A 双模 M 都有 A^e 的左作用

$$(a \otimes b)m := amb.$$

那么如下链复形称为 bar 复形 (Bar complex):

$$\bar{C}_{\bullet}:\cdots\xrightarrow{\bar{\partial}_{n+1}}A^{\otimes n+1}\xrightarrow{\bar{\partial}_{n}}A^{\otimes n}\xrightarrow{\bar{\partial}_{n-1}}\cdots\xrightarrow{\bar{\partial}_{1}}A^{\otimes 2}\to 0,$$

其中 $A^{\otimes 2}$ 处于 0 阶位置,且 $\bar{\partial}_n:=\sum_{i=0}^n (-1)^i d_i$ (注意到求和不取到 n+1). 由乘法定义的映射

$$\mu: A \otimes_k A \to A$$

是复形 \bar{C}_{\bullet} 的扩张.

很明显

$$HH_*(A) \cong H_*(M \otimes_{A^e} \bar{C}_{\bullet}),$$

即 Hochschild 同调是 A^e 模链复形 \bar{C}_{\bullet} 以 M 为系数的同调.

命题 7.4. 设 k 代数 A 是含幺的,那么复形 \bar{C}_{\bullet} (附有扩张 $\mu:\bar{C}_{\bullet}\to A$) 是 A^e 模 A 的自由 A^e 模消解,它称为 bar 消解 $(Bar\ resolution)$.

证明. 对于这里的证明我们通过构造新的称为退化映射 (degeneracy may) 的结构,来获得新的信息完成证明. 定义

$$s: A^{\otimes n} \to A^{\otimes n+1}$$

$$a_1 \otimes \cdots \otimes a_n \mapsto 1 \otimes a_1 \otimes \cdots \otimes a_n,$$

那么可以验证 $d_i s = s d_{i-1}$ 对任意 $i = 1, \dots, n-1$ 成立,且 $d_0 s = \mathrm{id}$,于是

$$\bar{\partial}s + s\bar{\partial} = \mathrm{id}$$
.

因此这证明了 \bar{C}_{\bullet} 是消解.

在如上的证明中我们事实用到了 A 有左单位的事实, 当 A 有右单位时, 取

$$s: A^{\otimes n} \to A^{\otimes n+1}$$
$$a_1 \otimes \cdots \otimes a_n \mapsto a_1 \otimes \cdots \otimes a_n \otimes 1$$

即可. 此外, 复形 \bar{C}_{\bullet} 的边缘算子 $\bar{\partial}$ 完全由如下性质决定:

- 1. $\bar{\partial}$ 是左 A 模同态,
- 2. $\bar{\partial}_0 = \mu$,
- 3. $\bar{\partial}s + s\bar{\partial} = \mathrm{id}$,

并且这事实上给出了链同构 $C_{\bullet}(A, A^e) \cong \bar{C}_{\bullet}$.

事实上,我们可以扩充如上的构造使得 $C_{\bullet}(A,M)$ 成为一个单纯对象,因而可以通过商去退化对象得到正规化的 Hochschild 复形,鉴于这些讨论需要其他工具的建立,在此略去.

定理 7.5. 给定 k 代数 A, 若 A 是投射 k 模, 那么对任意 A 双模 M, 存在自然的同构

$$HH_n(A, M) \cong \operatorname{Tor}_n^{A^e}(M, A).$$

证明. 根据假设, $A^{\otimes n}$ 对于任意自然数 n 也是投射 k 模,因此 $A^{\otimes n+2} = A \otimes_k A^{\otimes n} \otimes_k A$ 是投射 A^e 模(其中模结构由 $(a \otimes b)(a_0 \otimes a_1 \otimes \cdots \otimes a_n \otimes a_{n+1}) := aa_0 \otimes a_1 \otimes \cdots \otimes a_n \otimes a_{n+1}b$ 给出). 这是因为,????

于是,注意到
$$M \otimes_{A^e} A^{\otimes n+2} \cong M \otimes_k A^{\otimes n}$$
,定理成立.

例 7.3.

类似于拓扑中的同调理论,对于任意 A 的双边理想 I,短正合列 $0 \to I \to A \to A/I \to 0$ 诱导了同调群的长正合列

$$\cdots \to HH_n(A,I) \to HH_n(A) \to HH_n(A/I) \to HH_{n-1}(A,I) \to \cdots$$

因此可以称 $HH_n(A,I)$ 是相对 Hochschild 同调群. 更一般地,对于任意的 k 代数同态 $A \to B$,它诱导的链映射 $C_{\bullet}(A) \to C_{\bullet}(B)$ 的映射锥给出了诱导的长正合列.

习题 7.2. 给定两个含幺 k 代数,那么存在自然同构

$$HH_*(A \oplus B) \cong HH_*(A) \oplus HH_*(B).$$

习题 7.3. 记 Z(A) 是 A 的中心, $U\subseteq Z(A)$ 是乘性子集且 $1\in U$,对任意左 A 模 M 定义 $M[U^{-1}]:=Z(A)[U^{-1}]\otimes_A M$,那么当 A 是 k 平坦时,存在自然的同构

$$HH_n(A, M)[U^{-1}] \cong HH_n(A, M[U^{-1}]) \cong HH_n(A[U^{-1}], M[U^{-1}]).$$

习题 7.4. 给定一族 k 代数同态 $\{f_i: A_i \to A_{i+1}\}_{i\in\mathbb{N}}$,求证

$$\operatorname{colim}_i HH_n(A_i) \cong HH_n(\operatorname{colim}_i A_i).$$

7.3 HOCHSCHILD 77

习题 7.5. 给定 (离散) 群 G 并记 k[G] 为 G 的群代数, 并且给定 k[G] 双模 M. 设 G 在 M 上的 (右) 作用是

$$m^g := g^{-1} m g,$$

求证存在自然同构

$$HH_*(k[G], M) \cong H_*(G, M),$$

其中 $H_*(G, M)$ 是 M 系数的群同调.

习题 7.6. 给定平坦 A 双模的短正合列 $0 \to M \to N \to P \to 0$, 求证存在长正合列

$$\cdots \to HH_n(A,M) \to HH_n(A,N) \to HH_n(A,P) \to HH_{n-1}(A,M) \to \cdots$$

事实上, 只要 $0 \to M \to N \to P \to 0$ 是 k 分裂的即可.

习题 7.7. 给定 k 代数 A 的双边理想 I,J,尝试定义双相对 Hochschild 同调 $HH_*(A;I,J)$ 使得存在如下长整合列

$$\cdots \to HH_n(A,I) \to HH_n(A;I,J) \to HH_n(A,J) \to HH_{n-1}(A,I) \to \cdots$$

并且证明当 $I \cap J = 0$ 时, $HH_0(A; I, J) = 0$ 且 $HH_1(A; I, J) = I \otimes_{A^e} J$.

7.3.1 Cohomology

$$HH^*(A) \cong H^*(\operatorname{Hom}_{A^e}(\bar{C}_{\bullet}, M)),$$

具体地,对于任意的 $f \in \text{Hom}_{A^e}(\bar{C}_{\bullet}, M)$,

$$df(a_1 \otimes \cdots \otimes a_n) := a_1 f(a_2 \otimes \cdots \otimes a_n) + \sum_{i=1}^{n-1} (-1)^i f(a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n) + (-1)^n f(a_1 \otimes \cdots \otimes a_{n-1}) a_n.$$

例 7.4.

$$HH^0(A,M) = M^A := \{ m \in M \mid ma = am \ \forall a \in A \}$$

$$HH^1(A,M) = \operatorname{Der}(A,M)/\{$$
内微分 $\}$

定理 7.6. 给定带单位元的 k 代数 A 和 A 双模 M, 那么存在自然的双射

$$HH^2(A, M) \cong \mathcal{E}xt(A, M),$$

其中 $\mathcal{E}xt(A,M)$ 是 A 关于 M 的平方零扩张的等价类的全体.

例 7.5. 考虑 $A := k[x_1, \dots, x_n]$ 和任意 A 双模 M (因此 M 可以看作 A^e 模),我们希望计算

$$HH_i(A, M) = \operatorname{Tor}_i^{A^e}(A, M).$$

7.3.2 Hochschild-Kostant-Rosenberg

定理 7.7.

7.4 循环上同调 *

给定 R 代数 A,上一节中我们定义了 A 的 Hochschild 复形 $C_{\bullet}(A|R)$,这一节我们考虑 $\mathbb{Z}/(n+1)\mathbb{Z}$ 在复形上的作用,它诱导了一个新的同调,称为循环同调设 t_n 是 $\mathbb{Z}/(n+1)\mathbb{Z}$ 的一个生成元,定义 $\mathbb{Z}/(n+1)\mathbb{Z}$ 在 $A^{\otimes n+1}$ 上的作用为

$$t_n \cdot (a_0 \otimes a_1 \otimes \cdots \otimes a_n) := (-1)^n (a_n \otimes a_0 \otimes \cdots \otimes a_{n-1}),$$

对其进行先行扩张,并称它为循环算子 (cyclic operator). 定义

$$N := 1 + t + \dots + t^n$$

为 t 对应的范数算子 (norm operator).

引理 7.2. 如上提到的算子满足

$$(1-t)\bar{\partial} = \partial(1-t), \ \bar{\partial}N = N\partial,$$

其中 ∂

证明.

如上引理说明

是一个双复形, 称为循环双复形 (cyclic bicomplex), 记为 $CC_{\bullet,\bullet}(A)$.

定义. 给定?? A, 称

$$HC_n(A) := H_n(\operatorname{Tot}(CC_{\bullet,\bullet}(A)))$$

为 A 的循环同调 (cyclic homology). 在需要时,用 $HC_n(A|R)$ 来强调基环 R.

事实上,循环同调 $HC_*(A|R)$ 关于 A 和 R 都有函子性.

注意到 $\operatorname{Coker}(A^{\otimes n+1} \xrightarrow{1-t} A^{\otimes n+1})$ 是循环群 $\mathbb{Z}/(n+1)\mathbb{Z}$ 下不变的,记 $C_n^{\lambda}(A) := \operatorname{Coker}(A^{\otimes n+1} \xrightarrow{1-t} A^{\otimes n+1})$,引理7.2说明存在如下复形

$$C_{\bullet}^{\lambda}(A) := \cdots \to C_{n}^{\lambda}(A) \xrightarrow{\partial} C_{n-1}^{\lambda}(A) \xrightarrow{\partial} \cdots \xrightarrow{\partial} C_{0}^{\lambda}(A)$$

7.5 应用: 形变与上同调 79

是良定义的, 称为 Connes 复形 (Connes' complex), 记它的同调为 $H_*^{\lambda}(A)$. 此时, 存在自然的映射 p_{\bullet} : $Tot(CC_{\bullet,\bullet}(A)) \to C_{\bullet}^{\lambda}(A)$, 它在第一列上是取商, 在其余列上是 0.

命题 7.8. 若基环 R 包含 $\mathbb Q$ 作为子环, 那么诱导的映射 $p_*:HC_*(A)\to H^{\lambda}(A)$ 是同构.

证明.

7.5 应用:形变与上同调

几何上,

7.5.1 一阶形变

给定 k 代数 A,我们考虑如下问题: A 上的乘法实际上是一个 k 映射 $A \otimes_k A \to A$,在所有的这样映射的全体 $\mathrm{Hom}_k(A \otimes_k A, A)$ 中,并不是所有的元素都可以成为乘法——我们依旧要求乘法满足结合律,但这导致对这样元素的讨论变得困难了许多,因此相应的比较系统的方式考虑"切空间"问题,更准确地说,一阶形变的问题.

于是,考虑从旧的乘法中定义一个新的"乘法"

$$a * b := ab + \epsilon f(a, b),$$

其中 $f \in \text{Hom}_k(A \otimes_k A, A)$, 那么结合律

$$(a*b)*c = a*(b*c)$$

就具体地写为

$$(ab + \epsilon f(a,b))c + \epsilon f(ab + \epsilon f(a,b),c) = a(bc + \epsilon f(b,c)) + \epsilon f(a,bc + \epsilon f(b,c)),$$

根据 f 的双线性性, 上式被化简为

$$abc + \epsilon f(a,b)c + \epsilon f(ab,c) + \epsilon^2 f(f(a,b),c) = abc + \epsilon a f(b,c) + \epsilon f(a,bc) + \epsilon^2 f(a,f(b,c)).$$

注意到这里考虑的是一阶问题(即在环 $k[\epsilon]/(\epsilon^2)$ 上考虑问题),视 $\epsilon^2=0$,因此我们得到关于 f 的条件

$$f(a,b)c + f(ab,c) = af(b,c) + f(a,bc),$$
 (7.1)

它对应于乘法的结合性条件.

另一方面,注意到 $GL_k(A)$ 在 A 上的作用本质上不改变乘法,因此在考虑乘法的时候我们希望去除掉 $GL_k(A)$ 的影响. 假定 $T \in GL_k(A)$ 满足

$$T(a) := a + \epsilon g(a),$$

其中 $g \in \text{Hom}_k(A \otimes_k A, A)$. 这样, T 对乘法 -*- 的拉回为

$$a *_T b := T(T^{-1}(a) * T^{-1}(b)).$$

由于我们是在环 $k[\epsilon]/(\epsilon^2)$ 上考虑问题, $T^{-1} = id - \epsilon g$ (习题7.8). 直接计算得到

$$ab + \epsilon f_{T}(a, b) = a *_{T} b := T(T^{-1}(a) *_{T}^{-1}(b))$$

$$= T(T^{-1}(a)T^{-1}(b) + \epsilon f(T^{-1}(a), T^{-1}(b)))$$

$$= T^{-1}(a)T^{-1}(b) + \epsilon f(T^{-1}(a), T^{-1}(b)) + \epsilon g(T^{-1}(a)T^{-1}(b) + \epsilon f(T^{-1}(a), T^{-1}(b)))$$

$$= (a - \epsilon g(a))(b - \epsilon g(b)) + \epsilon f(a - \epsilon g(a), b - \epsilon g(b))$$

$$+ \epsilon g((a - \epsilon g(a))(b - \epsilon g(b)) + \epsilon f(a - \epsilon g(a), b - \epsilon g(b)))$$

$$= ab - \epsilon (g(a)b + ag(b)) + \epsilon^{2}g(a)g(b) + \epsilon f(a - \epsilon g(a), b - \epsilon g(b))$$

$$+ \epsilon g(ab - \epsilon (g(a)b + ag(b)) + \epsilon^{2}g(a)g(b) + \epsilon f(a - \epsilon g(a), b - \epsilon g(b)))$$

$$= ab - \epsilon (g(a)b + ag(b)) + \epsilon f(a, b) + \epsilon g(ab),$$

这给出了关系

$$f_T(a,b) = f(a,b) - g(a)b - ag(b) + g(ab). (7.2)$$

综上,我们关心的对象是 $\operatorname{Hom}_k(A \otimes_k A, A)$ 中满足7.1式的乘法 f 在7.2式下的等价类. 观察如上的关系,这恰好给出了对应

$$\{环 A$$
的一阶形变等价类 $\} \leftrightarrow HH^2(A)$.

习题 7.8. 依照上面讨论的记号, 求证

$$T^{-1}(a) = a - \epsilon g(a).$$

例 7.6. 考虑 k 代数 $A := k[\mathbb{Z}/2\mathbb{Z}]$,作为 k 向量空间它有一组基 $\{1,\sigma\}$,满足 $\sigma^2 = 1$. 上闭链条件7.1给出关系

$$f(1,1)1 + f(1,1) = 1f(1,1) + f(1,1)$$

$$f(1,1)\sigma + f(1,\sigma) = 1f(1,\sigma) + f(1,\sigma)$$

$$f(1,\sigma)1 + f(\sigma,1) = 1f(\sigma,1) + f(1,\sigma)$$

$$f(1,\sigma)\sigma + f(\sigma,\sigma) = 1f(\sigma,\sigma) + f(1,\sigma^2)$$

$$f(\sigma,1)1 + f(\sigma,1) = \sigma f(1,1) + f(\sigma,1)$$

$$f(\sigma,1)\sigma + f(\sigma,\sigma) = \sigma f(1,\sigma) + f(\sigma,\sigma)$$

$$f(\sigma,\sigma)1 + f(\sigma^2,1) = \sigma f(\sigma,1) + f(\sigma,\sigma)$$

$$f(\sigma,\sigma)\sigma + f(\sigma^2,\sigma) = \sigma f(\sigma,\sigma) + f(\sigma,\sigma^2),$$

去掉平凡等式与重复的等式, (考虑到交换性) 有关系

$$f(1,\sigma) = f(\sigma,1)$$

$$f(1,\sigma) = \sigma f(1,1).$$

于是, f 可由如下定义给出:

$$f(1,1) := c_1 + c_2 \sigma$$

 $f(1,\sigma) := c_2 + c_1 \sigma$
 $f(\sigma,1) := c_2 + c_1 \sigma$
 $f(\sigma,\sigma) := c_3 + c_4 \sigma$

7.5 应用: 形变与上同调 81

其中 $c_1, \dots, c_4 \in k$ 是常数. 另一方面,记

$$g(1) := a_1 + a_2 \sigma$$
$$g(\sigma) := a_3 + a_4 \sigma,$$

那么上边缘给出

$$dg(1,1) = a_1 + a_2\sigma$$

$$dg(1,\sigma) = a_2 + a_1\sigma$$

$$dg(\sigma,1) = a_2 + a_1\sigma$$

$$dg(\sigma,\sigma) = (2a_4 - a_1) + (2a_3 - a_2)\sigma,$$

上面的计算恰好说明每一个上闭链都是上边缘,即 $HH^2(A)=0$.

例 7.7. 考虑 k 代数 $A := k[\epsilon]/(\epsilon^2)$,依照例7.6中的计算方法(不同的是这里 $\epsilon^2 = 0$),可以得到

$$f(1,1) := c_1 + c_2 \epsilon$$

$$f(1,\epsilon) := c_1 \epsilon$$

$$f(\epsilon,1) := c_1 \epsilon$$

$$f(\epsilon,\epsilon) := c_3 + c_4 \epsilon,$$

上边缘给出关系

$$dg(1,1) = a_1 + a_2\epsilon$$
$$dg(1,\epsilon) = a_1\epsilon$$
$$dg(\epsilon,1) = a_1\epsilon$$
$$dg(\epsilon,\epsilon) = a_3\epsilon,$$

这意味着非边缘的上闭链都形如

$$f(\epsilon, \epsilon) = c_3,$$

因此 $HH^2(A) = k$.

7.5.2 高阶形变和

上一节当中我们讨论了一阶形变,对应的同样还有高阶形变,我们首先来讨论所谓的二阶形变.类似之前的定义,记新的乘法为

$$a * b := ab + \epsilon f_1(a, b) + \epsilon^2 f_2(a, b),$$

其中 $f_1, f_2 \in \text{Hom}_k(A \otimes_k A, A)$, 如同上一节对结合律的计算, 我们不仅得到相同的关系式7.1

$$f_1(a,b)c + f_1(ab,c) = af_1(b,c) + f_1(a,bc),$$

还得到新的关系式

$$f_1(f_1(a,b),c) - f_1(a,f_1(b,c)) = f_2(a,b)c + f_2(ab,c) - af_2(b,c) - f_2(a,bc), \tag{7.3}$$

容易观察得到等式的右边恰好是 f_2 在微分映射下的像 $df_2 \in \text{Hom}(A \otimes_k A \otimes_k A, A)$.

定义. 给定域 k 和 k 向量空间的上链复形 $(L^{\bullet}, d^{\bullet})_{\mathbb{Z}}$, 记 $L := \bigoplus_{i \in \mathbb{Z}} L^{i}$, 若还存在双线性映射

$$[-,-]:L\times L\to L$$

满足

1. 映射 [-,-] 是齐次 (homogeneous) 且反对称的 (skew symmetric),即 $[L^i,L^j]\subseteq L^{i+j}$ 对任意 $i,j\in\mathbb{Z}$ 成立,且对任意齐次元素 $x\in L^i,y\in L^j$,

$$[x,y] = (-1)^{\deg x \deg y + 1} [y,x],$$

2. 映射 [-,-] 满足分次 Jacobi 等式,即 $x \in L^i, y \in L^j, z \in L^p$,

$$(-1)^{\deg x \deg z} [x, [y, z]] + (-1)^{\deg y \deg x} [y, [z, x]] + (-1)^{\deg z \deg y} [z, [x, y]] = 0,$$

3. 微分映射 d 满足分次 Leibnitz 恒等式,即 $x \in L^i, y \in L^j$,

$$d[x,y] = [dx,y] + (-1)^{\deg x} [x,dy],$$

则称 $(L^{\bullet}, [-, -], d^{\bullet})$ 是一个微分分次 Lie 代数 (differential graded Lie algebra).

这里奇妙的事情是存在合适的定义方式使得计算 Hochschild 上同调的复形是一个微分分次 Lie 代数.

定义. 给定 $f \in \operatorname{Hom}_k(A^{\otimes m+1}), g \in \operatorname{Hom}_k(A^{\otimes n+1}),$ 对任意 $i = 1, \dots, m+1,$ 定义 $f \circ_i g \in \operatorname{Hom}_k(A^{\otimes n+m+1})$

$$f \circ_i g(a_1 \otimes \cdots \otimes a_{m+n+1}) := f(a_1 \otimes \cdots \otimes a_{i-1} \otimes g(a_i \otimes \cdots \otimes a_{i+n}) \otimes \cdots \otimes a_{m+n+1}).$$

进而可以定义 circle product

$$f \circ g := \sum_{i=1}^{m+1} (-1)^{(i+1)n} f \circ_i g.$$

引理 7.3. 给定 $f \in \text{Hom}_k(A^{\otimes m+1}), g \in \text{Hom}_k(A^{\otimes n+1}), 若定义 cup product$

$$(f \smile g)(a_1 \otimes \cdots \otimes a_{m+n+2}) := f(a_1 \otimes \cdots \otimes a_{m+1})g(a_{m+2} \otimes \cdots \otimes a_{m+n+2}),$$

则

$$d(f \circ g) = f \circ dg + (-1)^n df \circ g + (-1)^{(m+1)(n+1)+n} f \smile g + (-1)^{n+1} g \smile f.$$

7.5 应用:形变与上同调

83

命题 7.9. Gerstenhaber 括号

$$[f,g] := f \circ g - (-1)^{\deg f \deg g} g \circ f$$

和 -d 使得 $(\operatorname{Hom}_k(A^{\otimes \bullet + 1}), [-, -], -d)$ 成为一个微分分次 Lie 代数.

证明.

推论 7.9.1. 若 $f \in \text{Hom}_k(A^{\otimes n+1}, A)$ 是上闭链, 那么 $[f, f] \in \text{Hom}_k(A^{\otimes 2n+1}, A)$ 也是上闭链.

回到原来的问题, 注意到

$$f_1 \circ f_1(a \otimes b \otimes c) = 2f_1(f_1(a \otimes b) \otimes c) - 2f_1(a \otimes f_1(b \otimes c))$$

恰好是等式7.3的左边的两倍,因此7.3式可重新写为

$$\frac{1}{2}[f_1, f_1] = df_2.$$

又由于 f_2 是上闭链,这说明存在二阶形变

$$a * b := ab + \epsilon f_1(a, b) + \epsilon^2 f_2(a, b),$$

是以 f_1 为截断的一阶形变的扩张当且仅当

$$0 = [f_1, f_1] \in HH^3(A),$$

因此称 $[f_1, f_1]$ (的等价类) 为一阶形变 $ab + \epsilon f_1$ 扩张到二阶形变 $ab + \epsilon f_1 + \epsilon^2 f_2$ 的阻碍 (obstruction). 借助如上的工具,记 A 中的乘法为

$$m: A \times A \to A$$

 $(a,b) \mapsto ab,$

那么结合律

$$m(m(a,b),c) = m(a,m(b,c))$$

可以等价地写为

$$[m,m]=0,$$

Leibnitz 法则

$$d(m(a,b)) = m(d(a),b) + m(a,d(b))$$

可写为

$$[d, m] = 0,$$

而 Hochschild 微分

$$d(f) = [m, f]$$

对任意 $f \in \text{Hom}_k(A^{\otimes n+1}, A)$ 都成立.

例 7.8.

对于更一般 n 阶扩张的情形,我们实际上是在考虑系数环 $k[\epsilon]/(\epsilon^{n+1})$ 上的情形,如同之前的计算对比每个 ϵ^k 的系数有方程

$$\sum_{i+j=0}^{k} f_j(a, f_i(b, c)) = \sum_{i+j=0}^{k} f_j(f_i(a, b), c),$$

当 k=0 时这恰好是 A 中的乘法

7.6 函子上同调 *

给定小范畴 \mathcal{C} ,记 \mathcal{C} – **Mod** (对应的,**Mod** – \mathcal{C}) 为所有 \mathcal{C} 到 R – **Mod** 的协变函子(对应的,反变函子) 组成的范畴. 根据例A.3,这也是一个 Abel 范畴. 但为了

定义. 给定幺半小范畴 C,若 C 中的对象与 \mathbb{N} 对应(于是对象被记为 $\{[n]\}_{n\in\mathbb{N}}$),且幺半结构同于自然数的加法结构,即

$$[n] \otimes [m] = [n+m],$$

则称范畴 \mathcal{C} 为一个 PROP.

例 7.9. 记 FinSet* 是具有基点的所有有限集合组成的范畴,即

- 1. **FinSet*** 的对象包括 $\{[n] := \{0,1,\cdots,n\}\}_{n\in\mathbb{N}}$, 其中 $0 \in [n]$ 是集合的基点,
- 2. FinSet_{*} 的态射包括所有保基点的集合映射的全体,
- 3. FinSet* 的幺半结构由楔积给出,即

$$[n] \wedge [m] = [n+m],$$

明显地这是一个 PROP.

引理 7.4. 函子 $R[\hom_{\mathcal{C}}([n], -)]$ 和 $R[\hom_{\mathcal{C}}(-, [n])]$ 都是投射的.

证明. 给定左 \mathcal{C} 模 F,G 和满射 $\tau:F\Rightarrow G$,我们需要证明对任意的态射 $\alpha:R[\hom_{\mathcal{C}}([n],-)]$,都有提升

注意到对任意的左模 $H,K:\mathcal{C} \to R-\mathbf{Mod}$, $\mathrm{Nat}(H,K)$ 也有自然的 k 模结构, 满足

$$(\alpha + \beta)_A := \alpha_A + \beta_A,$$

 $(r\alpha)_A := r\alpha_A.$

7.6 函子上同调* 85

记 $h^n := R[\hom_{\mathcal{C}}([n], -)]$ 是由集合 $\hom_{\mathcal{C}}([n], -)$ 生成的自由 R 模, 因此 Yoneda 引理中的自然同构

$$\Phi : \operatorname{Nat}(h^n, G) \leftrightarrows G([n]) : \Psi$$

$$\alpha \mapsto \alpha_{[n]}(\operatorname{id}_{[n]})$$

$$\eta^m \longleftrightarrow m$$

是 R 模的同构, 其中 η^m 是自然变换

$$\eta^m : \hom_{\mathcal{C}}(A, -) \Rightarrow F$$

$$\eta^m_B : \hom_{\mathcal{C}}(A, B) \to F(B)$$

$$h \mapsto F(h)(m).$$

这意味着在此 Yoneda 对应下, α 对应到 G([n]) 中的某个元素 m, 例A.3说明

$$\tau_{[n]}: F([n]) \to G([n])$$

是满射,因此存在 $\tilde{m} \in F([n])$ 使得 $\tau_{[n]}(\tilde{m}) = m$,记 $\tilde{\alpha}$ 是 \tilde{m} 在 Yoneda 映射下对应的自然变换,Yoneda 的自然性说明了最初图的交换性,得证.

对函子 $R[\hom_{\mathcal{C}}(-,[n])]$ 的证明是相同的.

命题 7.10. 若范畴 $C \in PROP$, 那么 C - Mod 有足够多的投射和内射对象.

证明. 考虑

$$\bigoplus_{\substack{A \in \text{ob } \mathcal{C} \\ a \in F(A)}} h_A \Rightarrow F,$$

其中自然变换 $h_A \Rightarrow F$ 由 Yoneda 引理对应到元素 $a \in F(A)$ 给出

自然地可以构造(双)函子

$$-\otimes_{\mathcal{C}} -: \mathbf{Mod} - \mathcal{C} \times \mathcal{C} - \mathbf{Mod} \to R - \mathbf{Mod}$$

使得

$$G \otimes_{\mathcal{C}} F = \left(\bigoplus_{A \in \text{ob } \mathcal{C}} G(A) \otimes_{k} F(A)\right) / \langle (G(f)(x)) \otimes y - x \otimes (F(f)(y)) \rangle_{\substack{x \in G(A), y \in F(B), \\ A, B \in \text{ob } \mathcal{C}, \\ f \in \text{hom}_{\mathcal{C}}(A, B)}}$$

或者可以表示为

$$F \otimes_{\mathcal{C}} G \cong \operatorname{coeq}(\bigoplus_{f \in \operatorname{hom}_{\mathcal{C}}(A,B)} G(B) \otimes_k F(A) \xrightarrow{f^*} \bigoplus_{f_*} \bigoplus_{A \in \operatorname{ob} \ \mathcal{C}} G(A) \otimes_k F(A)),$$

其中对任意的 $x \in G(A), y \in F(B), f^*(x \otimes y) := x \otimes F(f)(y), f_*(x \otimes y) := G(f)(x)) \otimes y.$ 例 7.10. 记 R 是映到 R 作为 R 模本身的常值函子,那么

$$F \otimes_{\mathcal{C}} R \cong \operatorname{colim}_{\mathcal{C}} F$$
.

这里直接应用了余极限的计算方法.

习题 7.9.

$$F \otimes_{\mathcal{C}} h^n \cong F([n])$$

特别地,对任意 $M \in \mathcal{C} - \mathbf{Mod}$ 和 $N \in \mathbf{Mod} - \mathcal{C}$, $\mathrm{Tor}_{i}^{\mathcal{C}}(M, N)$ 是有意义的.

例 7.11. 考虑 $\mathcal{C} = \mathbf{FinSet}_*$ 的情形(见例7.9),给定交换 k 代数 A 和对称 A - A 双模 M,定义函子

$$L(A, M) : \mathbf{FinSet}_* \to k - \mathbf{Vec}$$

 $[n] \mapsto M \otimes_k A^{\otimes n},$

并且对于任意 $f:[n] \to [m], L(A,M)(f)$ 定义为

$$M \otimes_k A^{\otimes n} \to M \otimes_k A^{\otimes m}$$

 $a_0 \otimes \cdots \otimes a_n \mapsto b_0 \otimes \cdots \otimes b_m,$

其中

$$b_j := \prod_{f(i)=j} a_i, \quad j = 0, \cdots, m.$$

这里有几个技术性的条件:我们要求有限集是带基点的原因在于 $L(A,M)([n])=M\otimes_k A^{\otimes n}$ 中的元素地位并不一样——第 0 项只能是 M 中的元素,不能与其他元素交换位置,但取 M=A 时则不需要有这个要求;在 b_j 的定义中并没有规定乘法中每个 a_i 的位置,这样在 A 是交换代数时如上的定义才没有歧义,T.Pirashvili 在 [1] 中讨论了 A 非交换的情形.

考虑一组有限集及之间的态射

$$(S^{1})_{n} := \{(0, \dots, 0, 1, \dots, 1)\} / \sim, \quad n \in \mathbb{N}$$

$$d_{i}^{[n]} : (S^{1})_{n} \to (S^{1})_{n-1}$$

$$(a_{0}, \dots, a_{n}) \mapsto (a_{0}, \dots, \hat{a}_{i}, \dots, a_{n})$$

其中 $(S^1)_n$ 中的数组共 n+1 项(这里我们将 i 与有 i 个 0 的数组等同起来),等价关系定义为 $(0,\cdots,0)\sim(1,\cdots,1)$. 按照之前的定义,

$$L(A, M)((S^1)_n) = M \otimes_k A^{\otimes n},$$

而 $L(A,M)(d_i^{[n]})$ 是

$$M \otimes_k A^{\otimes n} \to M \otimes_k A^{\otimes n-1}$$

$$a_0 \otimes \cdots \otimes a_n \mapsto \begin{cases} a_0 a_1 \otimes a_2 \otimes \cdots \otimes a_n & i = 0 \\ a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n & i = 1, \cdots, n-1 \\ a_n a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1} & i = n, \end{cases}$$

这恰好是 Hochschild 复形.

在例7.11中我们给 Hochschild 一个新的解释,

例 7.12.

$$\operatorname{Tor}_{i}^{\mathbf{B}G}(k,F) \cong H_{i}(G;k)$$

7.6 函子上同调 * 87

例 7.13. 设 \mathscr{G} 是 \mathbf{Gp} 中所有有限生成自由群组成的满子范畴,于是给定域 k,

$$\lim_k : \mathscr{G} \hookrightarrow \mathbf{Gp} \xrightarrow{\mathrm{ab}} \mathbf{Ab} \xrightarrow{-\otimes_{\mathbb{Z}} k} k - \mathbf{Vec}$$

那么

$$\operatorname{Tor}_{i}^{\mathscr{G}^{\circ}}(k[G], \lim_{k}) \cong H_{i+1}(G; k)$$

其中 $H_{i+1}(G;k)$ 是群 G 以 k 为系数的群同调.

$$h^1(\langle n \rangle) = k[\hom_{\mathscr{G}}(\langle 1 \rangle, \langle n \rangle)] = k[\langle n \rangle]$$

$$h^1 \Rightarrow \lim_k$$

习题 7.10.

$$\operatorname{Ext}_{\mathscr{G}}^{i}(k[G], \operatorname{lin}_{k}) \cong ?H^{i+1}(G; k)$$

附录 A Abel 范畴

一定程度上说,我们构造范畴的目的是抽象出原本一些对象之间的行为,用更一般的方式去理解之前的对象和之间的行为.在代数中,模是一类非常友好的对象,我们希望找到足够抽象的一类对象,他们之间的行为类似于模(或者 Abel 群),这样的范畴就是 Abel 范畴.

同调代数中绝大多数的研究对象是 Abel 范畴中的对象,它们具有许多良好的性质,在这一章中我们将列举绝大部分. 但是,同调代数的学习并不需要知道每一个这样性质的来源和证明,甚至在很多情形下一个 Abel 范畴完全可以看成一个 *R* 模范畴,虽然这并不准确,但足够对同调代数有正确的理解. 这里的建议是大致浏览这一章,知道 Abel 范畴的定义和一些基本性质,然后进入正式的同调代数的学习,在适当并且需要的时候再去了解和分析 Abel 范畴中一些性质的证明.

A.1 Abel 范畴

这一节我们不区分范畴内对象的同构和相等.

定义. 给定范畴 C, 若其中的始对象和终对象都存在, 并且二者相同 (即存在对象既是始对象也是终对象), 则称该对象为零对象 (zero object).

习题 A.1. 给定范畴 \mathcal{C} 和 Abel 范畴 \mathcal{A} , 满足 \mathcal{A} 中存在零对象, 求证范畴 Funct(\mathcal{C}, \mathcal{A}) 也存在零对象.

证明. 我们需要验证 Funct(C, A) 中的零对象是常值零函子,即函子

$$Const_0: \mathcal{C} \to \mathcal{A}$$
$$A \mapsto 0.$$

任意给定函子 $F: \mathcal{C} \to \mathcal{D}$ 和自然变换 $\alpha: F \Rightarrow \text{Const}_0$, 具体写出来对任意 \mathcal{C} 中的对象 A,

$$\alpha_A: F(A) \to 0$$

是 A 中的态射. 但是 0 是 A 中的零对象,因此 $\alpha_A = 0$,这意味着 $Const_0$ 是终对象. 同理它是始对象.

定义. 给定范畴 \mathcal{C} 中的两个单态射 $f_1:A_1\to B, f_2:A_2\to B$,若存在 $h:A_1\hookrightarrow A_2:k$ 使得图

90 附录 A ABEL 范畴

是交换的,则称单态射 $f_1:A_1\to B, f_2:A_2\to B$ 是等价的 (equivalent). 对偶地,给定范畴 $\mathcal C$ 中的两个满态射 $g_1:B\to C_1,g_2:B\to C_2$,若存在 $h:C_1\leftrightarrows C_2:k$ 使得图

是交换的,则称满态射 $f_1:A_1\to B, f_2:A_2\to B$ 是等价的 (equivalent). 称 B 的单态射的等价类为 B 的 子对象 (subobject), B 的满态射的等价类为 B 的商对象 (quotient object).

于是,对任意单态射 $A \hookrightarrow B$,它的等价类是 B 的一个子对象,记为 $A \subseteq B$,同样地,对任意一个满态 射 $B \twoheadrightarrow C$,它的等价类是 B 的一个商对象,记为 $C = B/\sim$.

习题 A.2. 求证若 $f_1: A_1 \to B, f_2: A_2 \to B$ 都是单态射,那么满足交换图

的 $h: A_1 \rightarrow A_2$ 是单射.

若 $A_1 \to B, A_2 \to B$ 分别是某个子对象的代表元,且存在 $A_1 \to A_2$ 使图交换,则称子对象 A_1 被子对象 A_2 包含. 注意到子对象不具有传递性.

定义. 给定范畴 C 中的两个态射 $f,g:X\to Y$,若存在对象 K 和态射 $i:K\to X$ 满足

- 1. $f \circ i = g \circ i$;
- 2. 若对任意满足 $f \circ h = g \circ h$ 态射 $h: Z \to X$ 都存在唯一的分解

$$K \xrightarrow{i} X \xrightarrow{g} Y$$

A.1 ABEL 范畴 91

则称 K 是 f,g 的等值子 (equalizer). 若范畴 $\mathcal C$ 存在零对象,那么称 f 与 0 的等值子为 f 的核 (kernel),记为 ker f.

A.1.1 Abel 范畴的加性

定义. 若范畴 A 满足

- 1. A 中零对象存在;
- 2. 对 A 中任意两个对象 X,Y,它们的和与积都存在;
- 3. 若 $f: X \to Y$ 是 A 中的态射,则 ker f 与 coker f 存在;
- 4. 任意单态射(满足左消去律)都是某个态射的核,任意满态射(满足右消去律)都是某个态射的余核;

则称 A 是 Abel 范畴 (Abelian category).

习题 A.3. 在 Abel 范畴 A 中, 证明

- 1. 单态射 $f: X \to Y$ 的核是 0, 满态射 $g: Y \to Z$ 的余核是 0.
- 2. $0 \to X$ 的余核是 $X \xrightarrow{\mathrm{id}_X} X$, $Y \to 0$ 的核是 $Y \xrightarrow{\mathrm{id}_Y} Y$.

证明. 由于两个部分都有两个互相对偶的命题, 因此都只证一部分.

1. $f:X\to Y$ 是单态射,若 $t:T\to X$ 使得 $f\circ t=0$,那么那么有 $T\to X\to Y=0\to X\to Y$,根据消去律 t=0,这意味着 $T\to X$ 有分解 $T\to 0\to X$.

2. 这是因为对任意
$$k: X \to Z$$
, $0 \to X \to Z = 0$.

给定 Abel 范畴 A 中的对象 X,Y,记它们的和为 X+Y 或 $X\oplus Y$ $(X\coprod Y,X\otimes Y)$,泛性质诱导的映射分别记为

$$X \xrightarrow{\left(1 \quad 0\right)} X + Y$$

和

$$Y \xrightarrow{\left(0 \quad 1\right)} X + Y.$$

对应地,记它们的积为 $X \times Y$ 或者 $X \prod Y$, 泛性质诱导的态射为

$$X \times Y \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} X$$

和

$$X \times Y \xrightarrow{\begin{pmatrix} 0 \\ 1 \end{pmatrix}} Y.$$

进一步地,若给定了 $f:W\to X,g:W\to Y$,根据泛性质存在 $W\to X\times Y$,这个映射记为 $(f,g):W\to X\times Y$;若给定了 $h:X\to Z,k:Y\to Z$,根据泛性质存在 $X+Y\to Z$,这个映射记为 $\begin{pmatrix}h\\k\end{pmatrix}:X+Y\to Z$.我们举例 说明这样的记号使得态射的符合满足矩阵乘法.考虑给定了 $f:W\to X,g:W\to Y$,那么复合

$$W \xrightarrow{\left(f \quad g\right)} X \times Y \xrightarrow{\left(1\atop 0\right)} X$$

用矩阵乘法写出来恰好是 $f:W\to X$, 满足泛性质.

A.1.2 态射的分解

按定义, $\ker f$ 给出了 X 的一个子对象, $\operatorname{coker} f$ 给出了 Y 的一个商对象. 记 $\mathbf{S}X$ 是范畴 \mathcal{C} 中对象 X 的 所有子对象全体, $\mathbf{Q}X$ 是 X 的所有商对象全体,那么 \ker 和 coker 给出了一对映射

$$\ker: \mathbf{Q}X \leftrightarrows \mathbf{S}X : \operatorname{coker},$$

其中 ker 将一个满态射给出它的核, coker 将单态射给出它的余核.

习题 A.4. 验证如上所述的映射是良定义的. 更一般地, 证明 ker 是单态射, coker 是满态射.

证明. 我们需要验证两方面:单态射的 coker 是满态射(对偶地满态射的 ker 是单态射),且 ker 把等价的满态射映到等价的单态射(对偶地 coker 把等价的单态射映到等价的满态射).

给定态射 $f: X \to Y$,我们要验证 $Y \to \operatorname{coker}(X \to Y)$ 有右消去律,即对任意的 $k,l: \operatorname{coker}(X \to Y)$ ⇒ Z,若 $k \circ \operatorname{coker}(X \to Y) = l \circ \operatorname{coker}(X \to Y)$,那么 k = l. 考虑 $k - l: \operatorname{coker}(X \to Y) \to Z$,由于 $k \circ \operatorname{coker}(X \to Y) = l \circ \operatorname{coker}(X \to Y)$, $(k - l) \circ \operatorname{coker}(X \to Y) = 0: Y \to \operatorname{coker}(X \to Y) \to Z$,这意味着复合映 射 $X \to Y \to Z = 0$,按照 coker 的定义,存在唯一的态射 $\operatorname{coker}(X \to Y) \to Z$ 使得 $Y \to \operatorname{coker}(X \to Y) \to Z$ 是 0 的分解;但如同之前所述,k - l 满足分解, $0: \operatorname{coker}(X \to Y) \to Z$ 同样满足分解,因此 k - l = 0,即 k = l.

假设 $X_1 \to Y$ 和 $X_2 \to Y$ 是等价的单态射,那么存在态射 $i: X_1 \hookrightarrow X_2: j$ 使得

是交换的,根据 coker 的函子性存在交换图

A.1 ABEL 范畴 93

因此将等价类映到等价类.

命题 A.1. ker 和 coker 是 Abel 范畴 A 下的互逆映射.

证明. 给定单态射 $f:X\to Y$, 于是它是某个态射 $Y\to Z$ 的核. 取 $C=\operatorname{coker} f$, 于是存在唯一的态射 $C\to Z$ 使下图交换:

注意到复合 $X \to Y \to C = 0$,于是根据核的泛性质存在 $X \dashrightarrow K$ 使得上图是交换的;同理, $K \to Y \to Z = K \to Y \to C \to Z = 0 \to Z = 0$,存在 $K \dashrightarrow X$ 使得图是交换的,于是据定义 $X \xrightarrow{f} Y$ 与 $K \xrightarrow{k} Y$ 是等价的子对象.

注意到, coker 将态射 $f: X \to Y$ 映到 $Y \to C = \operatorname{coker} f$, ker 再将 $Y \to C = \operatorname{coker} f$ 映到 $k: \ker(Y \to C) = K \to Y$, 于是 $f: X \to Y$ 等价于 $\operatorname{coker}(\ker(f))$, 因此 $\operatorname{coker} \circ \ker = \operatorname{id}_{\mathbf{S}X}$. 同理,对偶地可以证明 $\ker \circ \operatorname{coker} = \operatorname{id}_{\mathbf{Q}X}$.

推论 A.1.1. 若 $X_1 \rightarrow Y$ 和 $X_2 \rightarrow Y$ 是等价的单态射, 那 $X_1 \rightarrow Y$ 和 $X_2 \rightarrow Y$ 是同构的.

证明. 设 $C = \operatorname{coker}(X_1 \to Y)$, $K = \ker(Y \to C)$, 于是根据命题 X_1 (因此 X_2) 与 K 是等价的. 考虑交换图

于是

$$K \to X_1 \to K \to Y \to C = K \to X_1 \to Y \to C$$

= $K \to Y \to C = 0$,

但根据核的泛性质,存在唯一的 $\mathrm{id}: K \to K$ 使得上图交换,因此 $f \circ g = \mathrm{id}_K$,即 $X_1 \to Y \cong K \to Y$,这就证明了结论.

推论 A.1.2. 在 Abel 范畴 A 中, $C = \operatorname{coker} f$ 单态射 $f: X \to Y$ 的余核,那么 $f: X \to Y$ 是 $Y \to C$ 的核. 证明. 根据定义, $\operatorname{coker}(X \to Y) = Y \to C$,于是根据之前的命题

$$X \to Y \cong \ker(\operatorname{coker}(X \to Y)) = \ker(Y \to C).$$

定义. 设 A 是 Abel 范畴, X 是 A 的对象, Y 是 X 的子对象, Z 是 Y 的子对象, 则 Y/Z 称为 X 的一个子商 (subquotient).

习题 A.5. 证明 ker 和 coker 是反序的映射.

习题 A.6. 给定 Abel 范畴中的图

$$W \to X \to Y \to Z$$
.

且任意相邻的态射的复合为 0,求证 $X \to Y$ 诱导了相容的

$$C = \operatorname{coker}(W \to X) \dashrightarrow K = \ker(Y \to Z).$$

证明. 考虑

由于 $W \to X \to Y = 0$,按定义存在 $C \dashrightarrow Y$ 与图交换,于是 $X \to C \dashrightarrow Y \to Z = 0$,根据 $X \to C$ 是满态射, $C \dashrightarrow Y \to Z = 0$,再由 K 的泛性质存在 $C \dashrightarrow K$ 与整幅图交换.

定理 A.2. 设 $f: X \to Y$ 是 Abel 范畴中的态射, 且 f 同时是单态射和满态射, 于是 f 是同构.

证明. 由于 $f: X \to Y$ 是满射,0 是 coker $f: Y \xrightarrow{\mathrm{id}_Y} Y$ 是 $Y \to 0$ 的核,且根据前面的命题, $f: X \to Y$ 也是 $Y \to 0$ 的核,因此根据核的泛性质,

设 W, X 是 Abel 范畴 A 中对象 Y 的两个子对象,那么称同时为 W 和 X 的子对象的 Y 的子对象的极大子对象为 W 与 X 的交 (intersection),记为 $W \cap X$.

命题 A.3. Abel 范畴 A 中元素 Y 的任意两个子对象 W, X 都有交.

证明. $\diamondsuit Z = \operatorname{coker}(W \to Y), K = \ker(X \to Y \to Z),$ 于是

A.1 ABEL 范畴 95

$$\begin{array}{ccc} K & \longrightarrow X \\ \downarrow & & \downarrow \\ W & \longrightarrow Y & \longrightarrow Z \end{array}$$

中 $K \to X \to Y \to Z = 0$, 由前面 W 是的 $Y \to Z$ 的核, 因此存在唯一的 $K \dashrightarrow W$ 使得图是交换的.

接下来只要证明对任意 Y 的子对象 S, 若它同时还是 X 和 W 的子对象, 则它是 K 的子对象. 给定交换 图

$$S \xrightarrow{i} X$$

$$\downarrow \downarrow$$

$$W \longrightarrow Y,$$

使得 $i:S\to X$ 和 $j:S\to W$ 都是单态射,那么 $S\to X\to Y\to Z=S\to W\to Y\to Z=(S\to W)\circ 0=0$,于是存在唯一的态射 $S\to K$ 使得 $S\to K\to X=i$. 同时,再根据 W 是的 $Y\to Z$ 的核,存在唯一的 $j:S\to W$ 使得图交换,但 $S\to K\dashrightarrow W$ 也满足该交换图,因此 $S\to K\dashrightarrow W=j$. 这意味着 K 是 W,X 的交.

推论 A.3.1. 设 $f: Y \to X$ 和 $g: Z \to X$ 是 Abel 范畴 A 中的单态射,则存在纤维积 $Y \times_X Z$.

证明. 由于 f,g 都是单态射,存在它们的交,记为 $i:K\to X,j:K\to Y$. 任取 $W\stackrel{h}{\to}Y,W\stackrel{k}{\to}Z$ 满足交换图

$$\begin{array}{ccc} W & \stackrel{h}{\longrightarrow} Y \\ \downarrow & & \downarrow \\ Z & \longrightarrow X, \end{array}$$

令 $C = \operatorname{coker}(Z \to X)$,于是 $W \to Y \to X \to C = W \to Z \to X \to C = W \to 0 = 0$,根据前面的证明,K 是 $Y \to X \to C$ 的核因此存在唯一的 $W \dashrightarrow K$ 使得图(不包括蓝色部分)

是交换的,并且

$$W \xrightarrow{h} Y \to X \to C = W \dashrightarrow K \to Z \to Y \to C = 0,$$

注意到 Z 是 $X \to C$ 的核因此有唯一的分解 $W \to Z \to X \to C$,但是 $h: W \to Z$ 和 $W \dashrightarrow K \to Z$ 都满足分解,因此如上的图是交换的.

我们再来证明这样的 $W \dashrightarrow K$ 是唯一的. 对于任意满足交换图的态射 $g: W \to K$,它必然是 $W \to Y \to X \to C = 0$ 的分解,因此根据 $K = \ker(Y \to X \to C)$ 分解是唯一的.

命题 A.4. 对任意 Abel 范畴 A 中的态射 $f: X \to Y$ 和 $g: X \to Y$, 它们的等值子存在.

证明. 考虑 $X \xrightarrow{\left(1 \quad f\right)} X \times Y$ 和 $X \xrightarrow{\left(1 \quad g\right)} X \times Y$,它们都有左逆因此都是单态射,由前面的命题存在交,记为 K,满足交换图

$$K \xrightarrow{i} X \\ \downarrow \downarrow \\ X \xrightarrow{1} X \times Y,$$

其中 K 是拉回. 再次根据左逆的存在性, i = j, 于是按定义拉回的泛性质说明 K 是 f,g 的等值子.

定理 A.5. 设 $f: Y \to X$ 和 $g: Z \to X$ 是 Abel 范畴 A 中的态射,则存在纤维积 $Y \times_X Z$.

证明. 考虑

$$\begin{array}{ccc}
Y \times Z & \longrightarrow Y \\
\downarrow & & \downarrow \\
Z & \longrightarrow X.
\end{array}$$

它们的等值子满足相应的泛性质, 因此定理成立.

引理 A.1. 设如下 Abel 范畴 A 中的拉回交换图

$$Z \xrightarrow{l} X$$

$$\downarrow_h \qquad \downarrow_f$$

$$Y \xrightarrow{g} U,$$

那么 h 诱导了同构 $\ker l \cong \ker g$,更准确地讲,若 (K,k) 是 l 的核,则 (K,hk) 是 g 的核. (对偶地推出 图诱导了余核的同构,) 由此如果 f 是满态射那么 h 是满态射.

证明. 任取 $w: W \to Y$ 使得 $W \to Y \to U = 0$, 因此

构成了交换图. 由于 Z 是拉回,因此存在 $W \dashrightarrow Z$ 与整幅图交换,这意味着 $W \dashrightarrow Z \to X = 0$,由于 K 是 $Z \to X$ 的核,存在唯一的 $W \to K$ 使得 $W \to K \to Z = W \dashrightarrow Z$. 这样验证了 (K, hk) 是 g 的核的泛性质,因此 h 诱导了同构.

A.1 ABEL 范畴 97

现在假设 f 是满态射,那么由于 Z 是拉回,

$$0 \to Z \xrightarrow{\begin{pmatrix} l & h \end{pmatrix}} X \times Y \xrightarrow{\begin{pmatrix} f \\ g \end{pmatrix}} U$$

是正合的,同时 f 是满态射意味着对任意 $u,v:U\Rightarrow V$,若 $u\begin{pmatrix}f\\g\end{pmatrix}=v\begin{pmatrix}f\\g\end{pmatrix}$ 则 uf=vf,因此 u=v,即

 $\begin{pmatrix} f \\ g \end{pmatrix}$ 是满态射,所以

$$0 \to Z \xrightarrow{\begin{pmatrix} l & h \end{pmatrix}} X \times Y \xrightarrow{\begin{pmatrix} f \\ g \end{pmatrix}} U \to 0$$

是短正合序列. 这样,交换图

$$Z \xrightarrow{l} X$$

$$\downarrow_h \qquad \downarrow_f$$

$$Y \xrightarrow{g} U.$$

同时是推出,因此上段讨论的对偶说明 coker h = coker f = 0,即 h 是满态射.

定义. 给定 Abel 范畴 A 中的态射 $f: X \to Y$, 称

 $\ker \operatorname{coker} f$

为 f 的像 (image), 记为 im f.

命题 A.6. Abel 范畴 A 中的态射 $f: X \to Y$ 的像是使得复合

$$X \to \operatorname{im} f \to Y$$

是 $f: X \to Y$ 的最小的 Y 的子对象.

证明. 首先我们证明, Y 的子对象 $S \hookrightarrow Y$ 使得分解 $X \to S \to Y = X \to Y$ 存在当且仅当 $X \to Y \to \operatorname{coker}(S \hookrightarrow Y) = 0$. 一方面, 若 Y 的子对象 $S \hookrightarrow Y$ 使得分解 $X \to S \to Y = X \to Y$ 存在, 那么 $X \to Y \to \operatorname{coker}(S \to Y) = X \to S \to Y \to \operatorname{coker}(S \to Y) = X \to 0 = 0$; 另一方面, 若 Y 的子对象 $S \hookrightarrow Y$ 使得 $X \to Y \to \operatorname{coker}(S \hookrightarrow Y) = 0$,根据推论??, $S \to Y \not = Y \to \operatorname{coker}(S \hookrightarrow Y)$ 的核,因此存在 $X \dashrightarrow S \to Y = X \to Y$.

根据推论??, $\operatorname{coker}(\operatorname{im} f) = \operatorname{coker}(\ker(\operatorname{coker}(X \to Y))) = \operatorname{coker}(X \to Y)$, 因此 $X \to Y \to \ker(\operatorname{im} f) = 0$, 于是存在分解

$$X \to \operatorname{im} f \to Y = X \to Y.$$

附录 A ABEL 范畴

若还有另一个分解 $X \to J \to Y = X \to Y$,由前一段的讨论, $X \to Y \to \operatorname{coker}(J \to X) = 0$,因此存在 (满) 态射 $\operatorname{coker}(X \to Y) = \operatorname{coker}(\operatorname{im} f) \to \operatorname{coker}(J \to X)$,根据 ker 的函子性这对应了唯一的(单)态射 im $f = \ker(\operatorname{coker}(X \to Y)) \dashrightarrow J = \ker(\operatorname{coker}(J \to X))$,因此是最小的. 此外如图

右侧是交换的, 因此

98

$$j \circ \varphi \circ p = i \circ p$$
$$= j \circ q,$$

由于 j 是单态射,这意味着 $\varphi \circ p = q$,即整幅图是交换的.

对偶地,可以的定义态射 $f: X \to Y$ 的余像 (coimage) 是 coker ker f,那么如上命题对偶地说明余像是使得复合 $X \to \text{coim } f \to Y$ 是 $f: X \to Y$ 的最大的 X 的商对象.

推论 A.6.1. 设 $f: X \to Y$ 是 Abel 范畴 A 中的态射,则

- 1. f 是满态射当且仅当 im f = Y, 当且仅当 coker f = 0;
- 2. f 是单态射当且仅当 ker f=0, 当且仅当 coim f=X.

推论 A.6.2. 给定 Abel 范畴 A 中的态射 $f: X \to Y, X \to \text{im } f$ 是满态射.

证明. 假设 $X \to \text{im } f$ 不是满态射,那么 im $f \neq Y$,取 $J = \text{ker}(\text{im } f \hookrightarrow Y)$,它是严格小于 im f 的子对象,于是 $J \hookrightarrow \text{im } f \hookrightarrow Y$ 是子对象,因此存在交换图

这意味着 $X \to Y \to \operatorname{coker}(J \hookrightarrow Y) = X \to Y \to \operatorname{coker}(\operatorname{im} f \hookrightarrow Y) \to \operatorname{coker}(J \hookrightarrow Y) = 0 \to \operatorname{coker}(J \hookrightarrow Y) = 0$,于是 $X \to J \to Y$ 是一个分解. 同时, $X \to J \to \operatorname{im} f \to Y = X \to J \to Y = X \to \operatorname{im} f \to Y$,且 im $f \to Y$ 是单态射,因此 $X \to J \to \operatorname{im} f = X \to \operatorname{im} f$,即 J 是使得分解成立的更小的子对象. 这与 im f 是满足分解最小的子对象矛盾,因此 $X \to \operatorname{im} f$ 是满态射.

A.1 ABEL 范畴 99

定理 A.7. 设 $f: X \to Y$ 是 Abel 范畴 A 中的态射,则存在唯一的分解

$$X \xrightarrow{p} I \xrightarrow{i} Y$$
,

使得 $p: X \to I$ 是满态射, $i: i \to Y$ 是单态射.

此外,如果 $k: K \to X$ 是 $f: X \to Y$ 的核, $c: Y \to C$ 是 $f: X \to Y$ 的余核,则 $k: K \to X$ 也是 $p: X \to I$ 的核, $c: Y \to C$ 也是 $i: I \to Y$ 的余核,且 $i: I \to Y$ 是 $c: Y \to C$ 的核, $p: X \to I$ 是 $k: K \to X$ 的余核.

证明. 首先我们来证明分解的唯一性. 假设我们有两个不同的对象 I, \bar{I} 满足上述分解,于是我们有如下交换图

其中 $i:I\to Y$ 是 $g:Y\to Z$ 的核. 由核的定义,我们有 $g\circ i=0$,进而 $g\circ \bar{i}\circ \bar{p}=g\circ f=g\circ i\circ p=0$. 但 \bar{p} 是满态射说明 \bar{p} 存在右消去,故 $g\circ \bar{i}=0$. 再根据核的分解,存在唯一的 $\varphi:\bar{I}\to I$ 使得右边三角形交换,即 $i\circ\varphi=\bar{i}$. 故 $i\circ\varphi\circ\bar{p}=\bar{i}\circ\bar{p}=f=i\circ p$. 但 i 是单态射因此存在左消去,于是 $\varphi\circ\bar{p}=p$. 这样就证明了 φ 使整个图交换. 同样地,我们可以构造 $\psi:I\to \bar{I}$ 使整幅图交换,根据抽象无意义 $\varphi\circ\psi=\mathrm{id}_I$ 且 $\psi\circ\varphi=\mathrm{id}_{\bar{I}}$,故 $I\cong\bar{I}$,唯一性得证.

推论?? 说明了 I = im f 是满足条件的的一个分解,因此分解是存在的. 同时 J = coim f 也是一个分解,因此根据刚刚证明的分解的唯一性,im $f \cong \text{coim } f$. 这意味着剩余的论断是成立的.

结合习题A.6的结论,

习题 A.7. 设 $X \xrightarrow{f} Y \xrightarrow{g} Z$ 是 Abel 范畴 A 中的态射,求证 $g \circ f = 0$ 当且仅当 im f 是 ker g 的子对象.

A.1.3 例子

- 例 A.1. 若 A 是 Abel 范畴,则 A° 也是 Abel 范畴.
- 例 A.2. 考虑范畴 R Mod
- 例 A.3. 假定 \mathcal{C} 是小范畴, \mathcal{A} 是给定的 Abel 范畴,考虑范畴 Funct(\mathcal{C},\mathcal{A}),我们希望证明此范畴是 Abel 范畴. 这里需要构造和验证的条目我们依次列出来并进行证明:
 - 1. 根据习题A.1, Funct(C, A) 中的零对象是常值零函子, 即函子

$$Const_0: \mathcal{C} \to \mathcal{A}$$
$$A \mapsto 0.$$

我们也记该函子为 0.

附录 A ABEL 范畴

- 2. 范畴理论说明给定函子 $F,G:\mathcal{C}\to\mathcal{D}$,在范畴 $\mathrm{Funct}(\mathcal{C},\mathcal{D})$ 中, $F\times G$ 和 $F\coprod G$ 都存在,并且都是逐点 定义的. 给定 $F,G:\mathcal{C}\to\mathcal{A}$,由于在 \mathcal{A} 中范畴的有限乘积和余乘积同构,因此 $F\times G\cong F\coprod G$.
- 3. 任意给定 $\alpha: F \Rightarrow G$, 定义

$$\ker(\alpha)(A) := \ker(\alpha_A)$$

和

$$\operatorname{coker}(\alpha)(A) := \operatorname{coker}(\alpha_A),$$

根据 ker 与 coker 的函子性, $\ker(A)$ 与 $\operatorname{coker}(A)$ 也都是函子,并且逐点地可以验证它们分别满足相应的泛性质.

4. 最后要证明单态射是核,满态射是余核. 首先,范畴 Funct(C, A) 中的单态射和满态射都是逐点的单态射和满态射. 由于前一条的核和余核的定义都是逐点的,因此这一条是正确的.

A.1.4 正合性

定理 A.8. 设 $X \xrightarrow{f} Y \xrightarrow{g} Z$ 是 Abel 范畴 A 中的态射,则如下描述等价:

- 1. $\operatorname{im}(X \to Y) = \ker(Y \to Z)$;
- 2. $\operatorname{coker}(X \to Y) = \operatorname{coim}(Y \to Z);$
- 3. $X \to Y \to Z = 0$ \mathbb{R} $\ker(Y \to Z) \to Y \to \operatorname{coker}(X \to Y) = 0$.

证明. 我们来证明 1 与 3 是等价的,这样对偶地可以证明 2 与 3 是等价的.

若 1 是成立的,记 $I := \operatorname{im}(X \to Y) = \ker(Y \to Z)$,于是根据分解 $X \to Y \to Z = X \to I \to Y \to Z = X \to 0 = 0$. 另一方面, $\ker(Y \to Z) = \operatorname{im}(X \to Y) = \ker(\operatorname{coker}(X \to Y))$,因此直接由定义

$$\ker(Y \to Z) \to Y \to \operatorname{coker}(X \to Y) = \ker(\operatorname{coker}(X \to Y)) \to Y \to \operatorname{coker}(X \to Y) = 0.$$

若 3 是成立的,记 $I:=\operatorname{im}(X\to Y)=\operatorname{ker}(\operatorname{coker}(X\to Y))$, $\operatorname{ker}(Y\to Z)\to Y\to\operatorname{coker}(X\to Y)=0$ 意味着存在唯一的 $\operatorname{ker}(Y\to Z)\dashrightarrow I$ 与已知的态射相容,并且它是单态射,于是 $\operatorname{ker}(Y\to Z)\le I$. 同时, $X\to Y\to Z=0$ 蕴含着分解 $X\to\operatorname{ker}(Y\to Z)\to Y\to Z=0$,同时命题A.6说明 $X\to I\to Y$ 是最小的分解,因此存在单态射 $I\to\operatorname{ker}(Y\to Z)$,这样 $\operatorname{ker}(Y\to Z)=I$.

对于满足以上任意条件的态射序列 $X \to Y \to Z$, 称该序列在 Y 处正合 (exact). 特别地, 若序列

$$0 \to X \to Y \to Z \to 0$$

在每处都正合,则称这是个短正合序列 (short exact sequence).

定理 A.9 (Abel 范畴的稳定性). 设 $X \xrightarrow{f} Y \xrightarrow{g} Z$ 是 Abel 范畴 A 中的态射,则如下描述等价:

A.1 ABEL 范畴 101

证明.

A.1.5 Abel 范畴中对象的元素和态射

事实上,我们并不需要完全范畴化地处理 Abel 范畴,公理所保证的性质使我们可以用类似处理元素的方式处理 Abel 范畴中的对象. 我们将详细地构建这样的技术,于是 Abel 范畴事实上与 **Ab** 并没有特别多的区别.

给定 Abel 范畴 \mathcal{A} 中的对象 Y, Y 中的对象 y 是如下等价类 (X,h), 其中 $X \in \text{ob } \mathcal{A}$, $h: X \to Y$, (X_1,h_1) 等价于 (X_2,h_2) 当且仅当

• 存在 $Z \in \text{ob } A$ 和满态射 $u_1: Z \to X_1, u_2: Z \to X_2$ 满足 $h_1u_1 = h_2u_2$,即有交换图

由引理A.1如上所述的关系是等价关系. 一般并没有通常的方法使得集合之间的映射 $\{Y_1$ 中的元素 $\}$ \to $\{Y_2$ 中的元素 $\}$ 对应到 A 中的态射 $Y_1 \to Y_2$,但反过来当给定了态射之后可以构造自然的集合间的映射,并且元素的存在可以帮我们简单地验证正合性:

定理 A.10. 设 $f: Y_1 \to Y_2$ 是 Abel 范畴中的态射, $y \in Y_1$ 的元素, 有代表元 (X,h), 求证 f 给出了集合间的映射

$$f: \{Y_1$$
中的元素 $\} \rightarrow \{Y_2$ 中的元素 $\}$
$$[(X,h)] \mapsto [(X,f \circ h)],$$

并且

- 1. $f: Y_1 \to Y_2$ 是单态射当且仅当 f(y) = 0 意味着 y = 0,
- 2. $f: Y_1 \to Y_2$ 是单态射当且仅当 $f(y_1) = f(y_2)$ 意味着 $y_1 = y_2$,
- $3. f: Y_1 \to Y_2$ 是满态射当且仅当对任意 Y_2 的元素 Z, 存在 Y_1 的元素 Y 使得 f(y) = Z,
- $4. f: Y_1 \rightarrow Y_2$ 是 0 态射当且仅当对任意 Y_1 的元素 y, f(y) = 0,
- 5. 序列 $X \xrightarrow{f} Y \xrightarrow{g} Z$ 在 Y 处正合当且仅当 $g \circ f = 0$ 并且对任意的 $y \in Y$,若 g(y) = 0 则存在 $x \in X$ 使得 f(x) = y,

6.

证明.

推论 A.10.1. 给定 Abel 范畴 A 中的态射 $X \xrightarrow{f} Y \xrightarrow{g} Z$,

- 1. 序列 $0 \to X \xrightarrow{f} Y$ 在 X 处是正合的当且仅当 f 是单态射,
- 2. \overrightarrow{P} \overrightarrow{P}
- 3. 序列 $0 \to X \to Y \to Z \to 0$ 是段正合列当且仅当 $X \xrightarrow{f} Y$ 是单射且 $Y \cong \operatorname{coker} f$,当且仅当 $Y \xrightarrow{g} Z$ 是满射且 $X \cong \ker g$.

证明.

定义. 给定 Abel 范畴 A 中的子对象 $i: X \hookrightarrow Y$,称 coker i 为 Y 关于 X 的商,记为 Y/X.

根据练习A.4, 商在同构的意义下是良定义的.

引理 A.2 (5 引理).

A.1 ABEL 范畴 103

定理 A.11 (蛇形引理). 给定交换图

$$X_{1} \xrightarrow{\alpha_{1}} Y_{1} \xrightarrow{\alpha_{2}} Z_{1} \longrightarrow 0$$

$$\downarrow^{f} \qquad \downarrow^{g} \qquad \downarrow^{h}$$

$$0 \longrightarrow X_{2} \xrightarrow{\beta_{1}} Y_{2} \xrightarrow{\beta_{2}} Z_{2},$$

那么存在长正合序列

 $\ker f \xrightarrow{a_1} \ker g \xrightarrow{a_2} \ker h \xrightarrow{\delta} \operatorname{coker} f \xrightarrow{b_1} \operatorname{coker} g \xrightarrow{b_2} \operatorname{coker} h$

其中 a_1, a_2 和 b_1, b_2 分别由 α_1, α_2 和 β_1, β_2 诱导,连接态射 δ : ker $h \to \operatorname{coker} f$ 是唯一存在的使得对于下图

$$X_{1} \xrightarrow{a_{1}} K = \operatorname{Ker} h \times_{Z_{1}} Y_{1} \xrightarrow{a_{2}} \operatorname{ker} h \longrightarrow 0$$

$$\downarrow k \qquad \downarrow i \qquad \downarrow$$

满足 $b_1 \circ \delta \circ a_2 = c \circ g \circ k$ 的态射.

证明. 根据引理A.1, a_2 是满态射且它的核是 Im a_1 ; 注意到 $c \circ g \circ k \circ a_1 == 0$ 且 $b_2 \circ c \circ g \circ k == 0$, 根据练习A.6, 这样的 δ 存在且唯一.

特别地,当 A 是 R 模范畴时,连接态射 δ 是容易写出来的,

习题 A.8. 假定对 Abel 范畴 A 蛇形引理成立, 求证 5 引理成立.

考虑

A.1.6 Abel 范畴中的特殊对象

定义. 设 P 是 Abel 范畴 A 中的对象,若满足对任意的满态射 $f: X \to Y$ 和任意态射 $g: P \to Y$,都可以找到 $h: P \to X$ 使得 $g = f \circ h$,

$$X \xrightarrow{k} f Y \longrightarrow 0,$$

则称 P 是投射对象 (projective object).

引理 A.3. 给定 Abel 范畴 A 及其中的一族投射对象 $\{P_i\}_{i\in I}$,其中 I 是指标集. 若 $\bigoplus_{i\in I} P_i$ 存在,则其也是投射的.

证明.

定义. 给定 Abel 范畴 A, 若对任意对象 X 都存在 A 中的投射对象 P 和满态射

$$P \rightarrow X \rightarrow 0$$
,

则称范畴 A 中有足够多的投射对象 (sufficiently many projective objects, enough projectives).

习题 A.9. 设 $s:P\to P$ 是 Abel 范畴 $\mathcal A$ 中的态射,(P,s) 是 $\mathcal A/P$ 的投射对象,证明 P 是 $\mathcal A$ 中的投射对象。证明. 任取 $\mathcal A$ 中的满态射 $g:X\to Y$,

A.2 Abel 范畴间函子

定义. 若 \mathcal{C}, \mathcal{D} 加性范畴,协变函子 $F: \mathcal{C} \to \mathcal{D}$ 满足对任意 \mathcal{C} 中的对象 X, Y, 由 F 诱导的映射 $\hom_{\mathcal{C}}(X,Y) \to \hom_{\mathcal{D}}(F(X),F(Y))$ 是群同态,则称 F 是加性函子 (additive functor).

定理 A.12. 设 $A, B \in Abel$ 范畴, $F: A \to B \in Abel$ 是加性函子当且仅当 F 保直和.

A.2 ABEL 范畴间函子 105

命题 A.13. Abel 范畴间的左正合函子是加性的.

定义. 若范畴间协变函子 $F: \mathcal{C} \to \mathcal{D}$ 满足对任意 \mathcal{C} 中的对象 A, B,由 F 诱导的映射 $\hom_{\mathcal{C}}(A, B) \to \hom_{\mathcal{D}}(F(A), F(B))$ 是单射,则称 F 是嵌入 (embedding).

定理 A.14. 设 $A, B \in Abel$ 范畴, $F: A \to B \in B$ 是加性函子,则下列陈述等价

- 1. F 是嵌入.
- 2. F 将非交换图映为非交换图.
- 3. F 将非正合序列映为非正合序列.

A.2.1 Serre subcategory

定义. 给定 Abel 范畴 A, B 是 A 的满子范畴,满足

- 1. \mathcal{B} 的对象关于取子对象和商对象封闭,即对任意 \mathcal{B} 中的对象 Y,若 $0 \to X \to Y \to Z \to 0$ 是 \mathcal{A} 中的短正合列,那么 X, Z 是 \mathcal{B} 中的对象,
- 2. \mathcal{B} 中的对象关于扩张封闭,即对任意 \mathcal{B} 中的对象 X, Z,若 $0 \to X \to Y \to Z \to 0$ 是 \mathcal{A} 中的短正合列,那么 Y 是 \mathcal{B} 中的对象,

则称 \mathcal{B} 是 \mathcal{A} 的 Serre 子范畴 (Serre subcategory).

例 A.4. FinAb 是 Ab 中的 Serre 子范畴

定理 A.15. 任意给定 Abel 范畴 A 和它的 Serre 子范畴 B, 存在 Abel 范畴 A/B 和正合函子 $P:A\to A/B$ 使得 A 中的对象 X 在 B 中当且仅当 P(A)=0,且对任意满足 A 中的对象 X 在 B 中当且仅当 F(A)=0 的正合函子 $F:A\to C$,存在唯一的正合函子 $H:A/B\to C$ 使得图

交换.

证明.

命题 A.16. 给定 Abel 范畴之间的伴随

$$F: \mathcal{A} \leftrightarrows \mathcal{B}: G$$
,

- 1. 若 F 是左伴随的,那么 G 将内射对象映为内射对象,
- 2. 若 G 是左伴随的,那么 F 将投射对象映为投射对象.

A.3 嵌入定理

习题 A.10. 设 k 是域, $k - \mathbf{grMod}$ 是所有 \mathbb{Z} 分次 k 模组成的范畴, 满足

$$\operatorname{Hom}(\bigoplus_{n\in\mathbb{Z}}V_n,\bigoplus_{n\in\mathbb{Z}}W_n):=\bigoplus_{n\in\mathbb{Z}}\operatorname{Hom}(V_n,W_n),$$

A 是所有微分态射为 0 的 k 微分模组成的范畴, 求证

$$F: k-\mathbf{grMod} \to \mathcal{A}$$

$$\bigoplus_{n \in \mathbb{Z}} V_n \mapsto (\bigoplus_{n \in \mathbb{Z}} V_n[n], d=0)$$

是范畴的等价.

定义. 给定 Abel 范畴 A 中的对象 X,若对任意的正向系 I 和分解

$$X = \sum_{i \in I} X_i = \operatorname{colim}_{i \in I} X_i,$$

其中 X_i 是 X 的子对象,都存在 $i_0 \in I$ 使得 $X_{i_0} = X$,则称 X 是有限生成的.

附录 B A_{∞}

这节中我们始终假定 k 是域.

定义. k 上的 A_{∞} 包含

1. \mathbb{Z} 分次的 k 向量空间

$$A:=\bigoplus_{p\in\mathbb{Z}}A^p,$$

2. 齐次 k 线性映射

$$m_n: A^{\otimes n} \to A,$$

满足

- (i) m_n 的阶数为 2-n,并且 m_1 满足 $m_1\circ m_1=0$ (即 A^{ullet},m_1 是上链复形),
- (ii) 对任意 $n \ge 1$, 有关系式

$$\sum_{n=r+s+t} (-1)^{r+st} m_{r+1+t} (\operatorname{id}_A^{\otimes r} \otimes m_s \otimes \operatorname{id}_A^{\otimes t}) = 0.$$

108 附录 B A_{∞}

索引

A^G , 67	子对象, 90
G 模, 67	$A \subseteq B, 90$
Tot(M), 24	层, 55
im f , 97	微分分次 Lie 代数, 82
$\ker f, 91$	JU Á L→ LÆ. 404
$ au^{\leq 0}(X^ullet, d^ullet), 7$	投射对象, 104
$s\mid_V, 53$	拟同构, 8
	核, 91
Abel 范畴, 91	正合, 100
bar 消解, 69	正合对, 31
Dat 有牌, 09	导出对, 32
Künneth 定理, 27	消解, 7
,,	滤子, 31
Serre 子范畴, 105	有界滤子, 35
1.66	诱导滤子, 35
上链,7	零对象, 89
像, 97	预层, 53
全复形, 24	态射, 54
商对象, 90	截面, 53
$C = B/\sim, 90$	茎, 54
子商, 94	限制映射,53

110 索引

参考文献

[1] Teimuraz Pirashvili. On the PROP corresponding to bialgebras. Cah. Topol. Géom. Différ. Catég., 43(3):221–239, 2002.