Proof. Sei $x \in \mathbb{R}$ mit $x \neq 0$ und $\epsilon > 0$ gegeben. Wir müssen ein $\delta > 0$ finden, so dass für alle y mit $0 < |y - x| < \delta$ gilt, dass $\left| \frac{1}{y} - \frac{1}{x} \right| < \epsilon$.

Setze $\delta = \min\left(\frac{\epsilon|x|^2}{2}, \frac{|x|}{2}\right)$.

• Da $\epsilon > 0$ und |x| > 0, ist $\delta > 0$.

Sei nun y mit $y \neq 0$ und $|y - x| < \delta$ gegeben.

• Zuerst zeigen wir, dass $\left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{y-x}{xy} \right|$:

$$\left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{y - x}{xy} \right|$$
$$= \frac{|y - x|}{|x||y|}$$

• Da $|y-x| < \delta \le \frac{|x|}{2}$, folgt $|y| > \frac{|x|}{2}$:

$$|y| = |x + (y - x)|$$

$$\geq |x| - |y - x|$$

$$> |x| - \frac{|x|}{2}$$

$$= \frac{|x|}{2}$$

• Da $\delta \leq \frac{\epsilon |x|^2}{2}$, folgt:

$$\begin{aligned} \frac{|x-y|}{|x||y|} &< \frac{\delta}{|x| \cdot \frac{|x|}{2}} \\ &= \frac{\delta}{\frac{|x|^2}{2}} \\ &\leq \frac{\frac{\epsilon|x|^2}{2}}{\frac{|x|^2}{2}} \\ &= \epsilon \end{aligned}$$

Somit haben wir gezeigt, dass für alle y mit $y \neq 0$ und $|y-x| < \delta$ gilt, dass $\left|\frac{1}{y} - \frac{1}{x}\right| < \epsilon$. Daher ist f stetig an x.