

Project1 Information Exposure Maximization

Phase3-Evolutionary Optimization

- A brief review of information exposure maximization
- A brief review of an estimation method for balanced information exposure
- An evolutionary algorithm for information exposure maximization
- Summary

Brief review of IEM

Given a social network G = (V, E), two initial seed sets I_1 and I_2 , and a budget k.

The IEM is to find two balanced seed sets S_1 and S_2 , where $|S_1| + |S_2| \le k$, and

maximize the balanced information exposure, i.e.,

$$\max \Phi(S_1, S_2) = \max \mathbb{E}[|V \setminus (r_1(I_1 \cup S_1) \triangle r_2(I_2 \cup S_2))|]$$

s.t.
$$|S_1| + |S_2| \le k$$

$$S_1, S_2 \subseteq V$$

Brief review of IEM

Finding an optimal solution of IEM is NP-hard.

Computing the balanced information exposure for a given solution is NP-hard.

- A brief review of information exposure maximization
- A brief review of an estimation method for balanced information exposure
- An evolutionary algorithm for information exposure maximization
- Summary

Brief review of objective function estimation

Monte Carlo simulation

 A computational algorithm that uses repeated random sampling to obtain the likelihood of a range of results of occurring

Estimate balanced

information exposure:

$$\Phi_{g \sim G}(S_1, S_2)
= |V \setminus (r_1(I_1 \cup S_1) \triangle r_2(I_2 \cup S_2))|_g
= |\{1, 2, 5, 8, 9\}| = 5$$

Brief review of objective function estimation

Monte Carlo simulation

 A computational algorithm that uses repeated random sampling to obtain the likelihood of a range of results of occurring

Estimate balanced

information exposure:

$$\max \Phi(S_1, S_2) = \max \mathbb{E}[|V \setminus (r_1(I_1 \cup S_1) \triangle r_2(I_2 \cup S_2))|]$$

$$\widehat{\Phi}(S_1, S_2) = \frac{\sum_{i=1}^{N} \Phi_{g_i}(S_1, S_2)}{N}$$

- A brief review of information exposure maximization
- A brief review of an estimation method for balanced information exposure
- An evolutionary algorithm for information exposure maximization
- Summary

Beyond Classical Search for IEM

Basic issues

- Solution representation
 - e.g. continuous, discrete (binary, integer, permutation, etc.)
- Fitness function
 - differ from the objective function
- Search method
 - e.g., simulated annealing, evolutionary algorithms, etc.

Solution Representation

Binary representation

$$x = \{x_1, x_2, \dots, x_{|V|}, x_{|V|+1}, x_{|V|+2}, \dots, x_{|V|+|V|}\}$$

$$x_i \in \{False, True\}$$

ith node is added into S_1 , $i \in [1, |V|]$

ith node is added into S_2 , $i \in [|V+1|, |V|+|V|]$

Fitness Function

Distinguish between feasible and infeasible solutions

$$fitness(S_1, S_2) = \begin{cases} \widehat{\Phi}(S_1, S_2) & \text{if } |S_1| + |S_2| \le k, \\ -(|S_1| + |S_2|) & \text{otherwise.} \end{cases}$$

Punish infeasible solutions according to the degree of violation

Fitness Function (differs from objective function)

Distinguish between feasible and infeasible solutions

$$fitness(x) = \begin{cases} \widehat{\Phi}(x) & \text{if } \sum x \le k, \\ -\sum x & \text{otherwise.} \end{cases}$$

$$x = \{x_1, x_2, \dots, x_{|V|}, x_{|V|+1}, x_{|V|+2}, \dots, x_{|V|+|V|}\}$$

$$x_i \in \{False, True\}$$

General Evolutionary Optimization Framework

Parent selection

Solution	Fitness	proportion	
Α	8	7%	
В	12	10%	Wheel rotation
С	27	23%	c
D	4	3%	
E	45	39%	В
F	17	15%	D 23%
		Selection po	7% A 15% F

roulette wheel selection

Tournament selection

Crossover

Mutation

Flip bit mutation

Inversion mutation

Swap\Exchange mutation

Scramble mutation

Selection strategy

Elite selection

The larger the fitness, the better

Non-Elite selection

Not entirely dependent on the fitness

An Evolutionary Algorithm for IEM

Generate N new solutions By conducting the two-points crossover and bit-flip mutation on solutions from P_t based on the binary tournament selection

Fitness Evaluation

Sort solutions based on f in descending order and reserve the first N solutions as the next population P_{t+1}

$$\max f(x) = \{ \begin{array}{ll} \widehat{\Phi}(x) & \text{if } \sum x \leq k, \\ -\sum x & \text{otherwise.} \end{array}$$

return the best

Stop?

- A brief review of information exposure maximization
- A brief review of an estimation method for balanced information exposure
- An evolutionary algorithm for information exposure maximization
- Summary

Summary

Information exposure maximization is computationally complex

Monte Carlo simulations for balanced information exposure estimation

Evolutionary optimization to find balanced seed sets

Improvements in solution quality or computing efficiency are encouraged