NASA Technical Memorandum 80064

NASA-TM-80064 19810005448

DEVELOPMENT OF A COMPUTER PROGRAM DATA BASE
OF A NAVIGATIONAL AID ENVIRONMENT FOR SIMULATED
IFR FLIGHT AND LANDING STUDIES

Hugh P. Bergeron, Alix T. Haynie, and James B. McDede

NOVEMBER 1980

ş

PERSONAL COPY

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

1 Report No NASA TM-80064	2 Government Accession No	3 Recipient's Catalog No		
4 Title and Subtitle DEVELOPMENT OF A COMPUTER PROG		5 Report Date November 1980		
NAVIGATIONAL AID ENVIRONMENT F AND LANDING STUDIES	ONAL AID ENVIRONMENT FOR SIMULATED IFR FLIGHT ING STUDIES			
7 Author(s)		8 Performing Organization Report No		
Hugh P. Bergeron, Alix T. Hayr	nie*, and James B. McDede**			
		10 Work Unit No		
9 Performing Organization Name and Address		505-41-73-01		
NASA Langley Research Center Hampton, VA 23665		11 Contract or Grant No		
		13 Type of Report and Period Covered		
12 Sponsoring Agency Name and Address		Technical Memorandum		
National Aeronautics and Space Washington, DC 20546	Administration	14 Sponsoring Agency Code		
15 Supplementary Notes				

16 Abstract

A general aviation single pilot instrument flight rule (SPIFR) simulation capability has been developed for the National Aeronautics and Space Administration. Its purpose is to investigate problems experienced by single-pilots flying in IFR conditions. The simulation requires a 3-D spatial navaid environment of a flight haviqational area.

This project developed a computer simulation of all the navigational aids plus 12 selected airports located in the Washington/Norfolk area. All programmed locations in the list were referenced to a Cartesian coordinate system with the origin located at a specified airport's reference point. All navigational aids with their associated frequencies, call letters, locations, and orientations plus runways and true headings are included in the data base. The simulation included a TV displayed out-the-window visual scene of country and suburban terrain and a scaled-model runway complex. Any of the programmed runways, with all its associated navaids, can be referenced to a runway bn the airport in this visual scene. This allows a simulation of a full mission scenario including breakout and landing.

17 Key Words (Suggested by Author(s))		18 Distribution Statement			
General Aviation Single Pilot Instrument Fl Navigation	Unclassified - Unlimited				
Sımulation			Subje	ect Category 06	
19 Security Classif (of this report) Unclassified	20 Security Classif (of this Unclassified	page)	21 No of Pages 33	22 Price* A03	

^{*}Cooperative Engineering Student, Georgia Institute of Technology **Cooperative Engineering Studient, Embry-Riddle Aeronautical University

DEVELOPMENT OF A COMPUTER PROGRAM DATA BASE OF A NAVIGATIONAL AID ENVIRONMENT FOR SIMULATED IFR FLIGHT AND LANDING STUDIES

Hugh P. Bergeron, Alix T. Haynie*, and James B. McDede**

SUMMARY

A computer program data base has been developed for the simulation of all the navigational aids (navaids) plus 12 selected airports located in the Washington/Norfolk area. This data base was developed for general aviation (GA) single-pilot instrument flight rule (SPIFR) simulation at NASA Langley Research Center (LaRC). The simulation is used to investigate problems experienced by single-pilots flying in IFR conditions. All programmed locations were referenced to a Cartesian coordinate system with the origin located at a specified airport's reference point. All navaid frequencies, call letters, locations, and orientations plus airport runways and their true headings are included in the data base. The simulation included a TV displayed out-the-window visual scene of country and suburban terrain and a scaled-model runway complex. Any of the programmed runways, with all its associated navaids, can be referenced to the airport in this visual scene. This allows a simulation of a full mission scenario including breakout and visual landing.

INTRODUCTION

Simulation plays a major role in aerospace research. Specific conditions can be simulated in which tests may be run a number of time to observe the effects of different variables on subject response. The real world environment may be simulated and unlike the real world, the specific conditions can be repeated an unlimited number of times. This allows a systematic and statistical approach to be used in analyzing particular problem areas.

The NASA LaRC Single Pilot IFR (SPIFR) simulation is used to recreate an environment in which specific conditions in IFR flights can be examined. The SPIFR program is currently engaged in research to reduce workload and increase safety and utility of general aviation IFR flights. The program utilizes a computer generated environment capable of a full mission simulation of IFR flights. The pilot has full use of any navaids or airports in this environment from taxi and takeoff to final landing and taxi, just as in the real world.

^{*} Cooperative Engineering Student, Georgia Institute of Technology

^{**}Cooperative Engineering Student, Embry-Riddle Aeronautical University

This report develops a data base, in computer format, of the relative locations of the navaids and selected airports in a predefined geographic area, extending from north of Washington, DC, to south of Norfolk, VA, (170 nmi by 180 nmi).

ABBREVIATIONS

AFS Flight Standards Service

ARP airport reference point

DOD Department of Defense

DOT Department of Transportation

FAA Federal Aviation Administration

GA general aviation

IFR instrument flight rule

LDA localizer type directional aid

ILS instrument landing system

IM inner marker

LOM locator outer marker

LaRC Langley Research Center

MM middle marker

navaid navigational aid

NDB nondirectional beacon

OM outer marker

PHF Patrick Henry International Airport

SPIFR single-pilot instrument flight rule

VLDS visual landing display scene

VOR very high frequency omnidirectional range

SYMBOLS

delta lat	change in latitude (deg, min, sec)
delta long	change on longitude (deg, min, sec)
3-D	three dimensional
K	constant (364,566 ft)
X	east/west location from PHF ARP (positive east, ft)
Υ	north/south location from PFH ARP (positive north, ft)
Z	altitude above mean sea level (ft)

DESCRIPTION OF DATA BASE

The navaid data base developed in this report can be used for any tests which would require a simulation of the Washington/Norfolk airspace. In addition, the procedure developed in the report can be used on the LaRC real-time computer system to construct and simulate any other navaid airspace that may be desired.

Formatted Data

To simulate the selected area certain information about each station or airport was required (see table 1). The navaid data for this report was obtained from references 1 through 4. The information on airport layouts was obtained from Flight Standards Service, AFS-540, FAA, DOT. Table 2 lists the computer ARP data for the airports selected, table 3 the related fan marker data, table 4 the related runway end point data, and table 5 the VOR, VORTAC, NDB, ILS, LDA, and LOM data. Drawings of the selected airports and their respective approach paths were constructed, figures 1 through 13, for the reference and check out. Figure 1 presents the legend for figures 2 through 13. The program was developed to be used in conjunction with the Visual Landing Display Scene (VLDS) at LaRC such that any runway of any of the selected airports could be presented by a runway on the airport in the VLDS scene.

Lat/Long Conversion

The delta lat and delta long of each location in tables 2 through 5 were determined with respect to the Patrick Henry International Airport (ARP). These values were converted to feet and referenced as x, y, and z coordinates, $\pm x$ implies east/west, respectively; $\pm y$ implies north/south, respectively; and z is the elevation above mean sea level.

The delta lat in feet, which determines the y coordinate was calculated by multiplying by a constant, K, where K=364,566 ft per degree of latitude. Some variation exists due to the nonspherical conformity of the Earth. However, the resultant calculated accuracy of delta lat will be within ± 0.01 percent. In converting longitudinal into feet, (which determines the x coordinate) an additional factor must be considered. The equivalent distance in feet of longitudinal degrees changes as the latitude at which the measurement takes place changes. Unlike the lines of latitude which are parallel, meridians of longitude coverage at the poles. At the equator the relationship between feet and longitudinal degrees is the same as it is with feet and latitude degrees. But approaching the poles, the number of feet per longitudinal degrees decreases. A fairly accurate approximation of delta long was arrived at by following the same procedure as for the delta lat, then multiplying by the cosine of the average value of the angle determined for the latitude of the origin and the latitude of the location being referenced (see fig. 14).

Magnetic Variation

For programming purposes, the basic data was oriented with respect to true north. However, in the real world, aircraft are flown with respect to magnetic north. Therefore, the difference, called magnetic variation, was programmed into the simulation to correspond to the aircraft's location at any point in time. Also, those ground facilities oriented with respect to magnetic north were compensated for the magnetic variation for their specific location. These included the airport facilities (runway, ILS, LDA) and certain other off the airport navaids (VOR, VORTAC). These variation values are listed in table 6. (All facilities in the vicinity of an airport are assumed to have the same magnetic variation of that airport.) The values given in table 6 were determined from the Jeppesen low altitude enroute charts and were linearized for simplicity. The linearization process produced small errors at some of the airports.

After the x and y coordinate and orientation data were collected, they were coded and programmed for the computer.

An initial determination of the accuracy of the relative position of each location was determined by plotting the x and y coordinates on a Cartesian grid set on the same scale as an aerial map of that area. The graph was laid over the map and the locations were checked by matching with the corresponding locations on the map. This enabled an early and rapid check of the relative position of each location. Later, a more extensive, accurate, and operational verification process was carried out using the simulator. In this checkout, the stations were tuned on the simulator hardware and a cross check of the location of each reference position was made using the appropriate readouts in the simulator cockpit.

Drawings of airports were constructed both for checkout and reference (see figs. 1-13). The airport runway lengths, locations, and area VOR's, NDB's, ILS's, and runway approaches were all included on these drawings.

REFERENCES

- 1. D.O.D.: IFR-Supplement United States, November 2, 1978, effective period, eight weeks.
- 2. Anonymous: Airport/Facility Directory, Southeast U.S., November 2, 1978.
- 3. Anonymous: Airport/Facility Directory, Northeast U.S., November 2, 1978.
- 4. Anonymous: Jeppesen Airway Manual, October 14, 1977.

TABLE 1.- AIRPORT AND NAVAID INFORMATION REQUIRED

	Lat.	Long.	Elev.	Orient. and/or runway design.	Freq. and code	Runway length
Airport reference point	Х	Х	х			
Fan marker	Х	Х	Х	х		
Runway end point	Х	Х	Х	х		х
VOR, VORTAC	Х	Х	Х		х	
NDB, LOM	X	Х	Х		х	
ILS, LDA	Х	Х	Х	х	Х	

TABLE 2.- RELATIVE POSITIONS OF AIRPORTS (RELATIVE TO PHF ARP)

	Name of Airport	(East) X (ft)	(North) Y (ft)	Z (ft)
ì	Patrick Henry	0	0	42
1	Norfolk	86,059	-85,872	27
:	Richmond (Byrd)	-239,668	136,197	168
i	Dulles	-276,036	660,854	313
	Washington National	-157,053	627,444	15
	Wallops	297,907	295,587	41
	Elizabeth Cıty	92,970	-317,265	12
	Petersburg	-297,403	19,137	194
	Franklin	-118,608	-157,051	37
	West Point	-76,894	140,657	24
	Wakefield	-147,961	-52,345	113
	Gloucester	-10,877	96,594	78

TABLE 3.- RELATIVE POSITIONS OF FAN MARKERS (RELATIVE TO PHF ARP)

Airport name and markers	(East) X (ft)	(North) Y (ft)	Z (ft)
Patrick Henry		1	
MM 7 OM 7	- 5326 -16468	- 3950 -11025	40 42
Norfolk			
MM 5 OM 5 MM 23	81667 70288 89821	- 90821 -105918 - 80200	20 15 10
Richmond (Byrd)			
MM 6 OM 6 MM 15 OM 15 MM 33 OM 33 Dulles	-244573 -260960 -242158 -263364 -234749 -221047	131283 120843 142588 175875 130917 109408	160 168 160 160 160 168
MM 1L MM1R OM 1R MM 12 OM 12 MM 19L OM 19L MM 19R OM 19R	-277743 -271067 -271668 -289035 -318557 -270740 -269804 -277400 -277144	656410 650132 625727 661864 672804 667536 689144 673915 692546	272 320 240 320 385 300 250 255 235
Washington National			
OM 18 MM 36 OM 36	-179943 -156118 -153800	656309 620661 596054	18 15 18

Table 4.- RELATIVE END LOCATIONS OF RUNWAYS (RELATIVE TO PHF ARP)

Airport Name and Runways	(East) X (ft)	(North) Y (ft)	Z (ft)	Length (ft)	True Heading
Patrick Henry					30.0
2 20 7 25	- 1933 - 805 - 2496 4284	- 2424 2525 - 2222 2031	37 42 37 39	5025 5025 8003 8003	12.9 192.9 57.9 237.9
Norfolk				7400	
5 23 14 32	83692 88292 81659 85507	-88195 -82236 -85367 -88362	22 16 19 23	7499 7499 4876 4876	37.7 217.7 127.9 307.9
Richmond(Byrd)					10.1
2 20 6 24 15 33	-242662 -241165 -241500 -237017 -240853 -236054	134076 140511 133240 136096 140540 132965	159 167 157 161 167 161	6607 6607 5316 5316 8999 8999	13.1 193.1 57.5 237.5 147.5 327.5
Dulles				77507	0.5
1L 19R 1R 19L 11L 29R 12 30 18L S. End 36R W. End	-277597 -277497 -270931 -270831 -282099 -279214 -286482 -277009 -271552 -271569 -271648	659166 670667 653596 665096 659945 658866 660854 657319 664187 660854 655097 658229	287 269 312 294 298 288 311 288 292 302 308 306	11501 11501 11500 11500 3080 3080 10001 10001 3332 3132 3132	0.5 180.5 0.5 180.5 110.5 290.5 110.5 290.5 180.5 0.5
Washington Nat'l					
3 21 15 33 18 36	-157459 -155363 -158329 -155145 -156805 -156242	623846 628281 630979 626838 630777 623931	12 11 15 11 13 12	4905 4905 5212 5212 6869 6869	25.3 205.3 142.4 322.4 175.3 355.3

Table 4.- RELATIVE END LOCATIONS OF RUNWAYS (RELATIVE TO PHF ARP) (concluded)

Airport Name and Runways	(East) X (ft)	(North) Y (ft)	Z (ft)	Length (ft)	True Heading
Wallops 17 35 10 28 4 22	296367 298173 291507 299507 295213 299876	297693 293224 296447 296447 290401 297805	35 36 36 36 36 36 35	4820 4820 8000 8000 8750 8750	158.0 338.0 90.0 270.0 32.2 212.2
Elizabeth City 1 19 10 28	91666 91820 90130 97344	-319790 -315245 -317089 -317366	10 8 12 11	4519 4519 7219 7219	2.3 182.3 92.3 272.2
Petersburg 14 32 5 23	-296871 -293155 -294990 -291648	18530 15184 14885 18530	194 194 194 194	5000 5000 5000 5000	132.0 312.0 42.5 222.5
Franklin 9 27 22 4 14 32	-121496 -116854 -117347 -119779 -121314 -118640	-154737 -154002 -153572 -156226 -154494 -157381	37 37 37 37 37 37	5175 5175 3600 3600 4100 4100	81.0 261.0 222.5 42.5 137.4 317.4
West Point 9 27 3 21	- 80927 - 75943 - 78284 - 76076	141070 141471 137758 142244	24 24 24 24	5000 5000 5000 5000	85.4 265.4 26.2 206.2
Wakefield 2 20	-148243 -147149	- 54456 - 50263	113 113	4331 4331	15.0 195.0
Gloucester 2 20	- 10768 - 10099	96101 99413	78 78	3500 3500	11.6 191.6

TABLE 5(a).- LEGEND: RELATIVE POSITIONS OF VORs, VORTACS, AND NDBs (RELATIVE TO PHF ARP)

Name and Code	Frequency		(East)	X (ft)	(North) Y (ft)	Z	(ft)
CCV			· · - · ·					
Cape Charles (Name of station) (Call letters for Cape Charles)	(Broadcasting frequency of the station) (MHz = Megahertz and KHz = Kilohertz)	i ,	east (+	72.8 te in feet) or west the ori-	Distan north	291.0 ce in feet (+) or (-) of the	Elevabov	vation ve mean level
Relative Positions of ILSs (Name of airport associated with respective sta- tion) Dulles 19L ISCG (Name of runway associated with respective station. 19L designated as 190° heading, left runway.)	110.1 MHz	Heading 187 ⁰ (Heading of ILS flight path)	-270,9	936.6	652,	602.0	2	97

TABLE 5(b).- RELATIVE POSITIONS OF VORS AND VORTACS (RELATIVE TO PHF ARPs)

Name and code	Frequency	(East) X (ft)	(North) Y (ft)	Z (ft)
Cape Charles (CCV)	112.2 MHz	143,173	79,291	10
Salisbury (SBY)	114.5 MHz	283,164	442,623	50
Snowhill (SWL)	112.4 MHz	297,298	337,412	40
Andrews (ADW)	113.1 MHz	-107,012	612 , 6 6 2	280
Armel (AML)	113.5 MHz	279,646	657,521	313
Brooke (BRV)	111.8 MHz	-247,946	439,391	120
Casanova (CSN)	116.3 MHz	-394,976	550,577	445
Cofield (CVI)	114.4 MHz	-110,663	-276,349	70
Washington (DCA)	111.0 MHz	-156,170	630,171	15
Elizabeth City (ECG)	112.5 MHz	92,729	-318,376	12
Flat Rock (FAK)	113.3 MHz	-387,154	144,899	460
Franklin (FKN)	110.6 MHz	-151,388	-151,884	90
Harcum (HCM)	108.8 MHz	-63,404	115,848	10
Hopewell (HPW)	112.0 MHz	-180,221	72,328	70
Lawrenceville (LVL)	112.9 MHz	-410,734	-114,115	100
Martinsburg (MRB)	112.1 MHz	-388,041	821,977	550
Norfolk (ORF)	116.9 MHz	85,142	-87,185	20
Nottingham (OTT)	113.7 MHz	-70,851	574,174	210
Patuxent (PXT)	117.6 MHz	26,671	421,769	20
(Rocky Mt.) Tar River (TYI)	117.8 MHz	-354,584	-420,759	97
Richmond (RIC)	114.1 MHz	-239,912	135,389	160
Front Royal (FRR)	115.3 MHz	-489,779	714,427	760

TABLE 5(b).- CONCLUDED

Name and code	Frequency	(East) X (ft)	(North) Y (ft)	Z (ft)
Gordonsville (GVE)	115.6 MHz	-479,722	321,709	380
Linden (LDN)	114.3 MHz	-492,083	628,252	2440
Baltimore (BAL)	115.1 MHz	- 48,317	743,947	143

TABLE 5(c).- RELATIVE POSITIONS OF NDBs (RELATIVE TO PHF ARP)

Name and code	Frequency	(East) X (ft)	(North) Y (ft)	Z (ft)
Williamston (MCZ)	336 KHz	-199,927	-462,988	50
Roanoke Rapids (RZZ)	407 KHz	-353,522	-252,348	255
Emporia (EMV)	346 KHz	-288,425	-163,329	126
Edenton (EDE)	265 KHz	-21,302	-402,834	19
Weeksville (EKV)	254 KHz	107,608	-328,710	12
Blackstone (BKT)	326 KHz	-405,099	-1,111	428
Petersburg (PTB)	284 KHz	-314,576	3038	194
Happy Hill (HYU)	392 KHz	-278,963	73,821	168
Wakefield (AKQ)	274 KHz	-147,844	-53,860	115
Felker (FAF)	226 KHz	-36,483	3,737	0
Portsmouth (PVG)	241 KHz	14,288	127,334	0
Navy Norfolk (NGU)	282 KHz	58,110	-69,866	15
Cheasapeake (P)	290 KHz	227,035	-82,523	0
Melfa (MFV)	388 KHz	213,041	191,992	o
Gaithersburg (GAI)	385 KHz	-1 83 , 457	742, 832	540
Georgetown (GTN)	323 KHz	-181,298	655,687	10

TABLE 5(d).- RELATIVE POSITIONS OF THE ILSS AND LDA (RELATIVE TO PHF ARP)

Name and code	Frequency	True Heading	(East) X (ft)	(North) Y (ft)	Z (ft)
Dulles					
19L ISCG 19R IDLX 12 IAJU 1L IOSZ IR IIAD	110.1 111.3 109.3 111.3 108.7	180.5 180.5 110.5 0.5 0.6	-270937 -277602 -276161 -277543 -270843	652602 657971 657049 671749 666279	297 271 285 286 313
Washington National					
36 IDCA 18 IASO	109.9 108.5	355.5 136.8	-156963 -152215	631751 630405	13 13
Norfolk					
5 IORF 23 IJZQ	109.1 109.1	37.7 217.9	89083 83041	-81151 -88945	11 18
'Patrick Henry					
7 IPHF	110.1	57.9	5330	2738	38
Richmond (Byrd)					
6 IRIC 33 IBNE 15 IRGJ	110.3 110.7 110.7	57.5 237.5 147.5	-236594 -241122 -235785	136365 140962 132543	156 161 160

TABLE 5(e).- RELATIVE POSITIONS OF LOMS (RELATIVE TO PHF ARP)

Name and Code	Frequency	(East) X (ft)	(North) Y (ft)	Z (ft)
Patrick Henry (PH)	375 KHz	-16468	-11025	42
(Norfolk) Ingle (OR)	329 KHz	70288	-105918	15
Capot (RI)	382 KHz	-260960	120843	168
(Dulles) Chantilly (IA)	346 KHz	-271668	625727	240
Oxon (DC)	332 KHz	-153800	596054	0
Davison (DA)	223 KHz	-177538	558163	250

TABLE 6.- MAGNETIC VARIATION

Airport	Variation
Patrick Henry	7.96°
Norfo1k	8.00°
Richmond (Byrd)	7.39°
Dulles	7.93°
Washington National	8.22°
Wallops	9.15°
Elizabeth City	7.86°
Petersburg	7.05°
Franklin	7.38°
West Point	7.90°
Wakefield	7.43°
Gloucester	8.04°
Navaid	
Cape Charles	8.45°
Salisbury	9.30°
Snowhi11	9.21°
Andrews	8.35°
Arme1	7.93°
Brooke	7.76°
Casanova	7.43°
Cofield	7.26°
Washington	8.22°

TABLE 6.- CONCLUDED

Navaid	Variation
' Elizabeth City	7.86°
Flat Rock	6.91°
Franklin	7.28°
Harcum	7.91°
Hopewel1	7.49°
Lawrenceville	6.56°
Martinsburg	7.77°
Norfolk	8.10°
Nottingham	8.46°
Patuxent	8.55°
Tar River (Rocky Mt.)	6.39°
Richmond	7.39°
Front Royal	7.31°
Gordonsville	6.85°
Linden	7.21°

UNITS AND CONVERSIONS

⁰, deg = degree

KHz = kilohertz

LAT = latitude

LONG = longitude

MHz = megahertz

MIN = minute = 1/60 degree

NMI = nautical miles

SEC = second = 1/360 degree

Foot = .3048 meter

Figure 4.- Richmond Byrd Int'l

Figure 5.- Dulles Int'l Not to scale

Figure 7.- NASA Wallops Flight Center

Not to scale

Figure 8.- Elizabeth City

Figure 9.- Petersburg

Figure 11.- Westpiont

Not to scale

Figure 12.- Wakefield Not to scale

Figure 13.- Gloucester Not to scale

Figure 14.- Schematic illustrating procedure for obtaining relative positions of stations being referenced.

