Lecture 13: Comparing types of convergence

Ciaran Evans

Recap: Convergence in probability

Definition: A sequence of random variables $X_1, X_2, ...$ converges in probability to a random variable X if, for every $\varepsilon > 0$,

$$\lim_{n\to\infty} P(|X_n-X|\geq \varepsilon)=0$$

We write $X_n \stackrel{p}{\to} X$.

Convergence in distribution

Definition: A sequence of random variables $X_1, X_2, ...$ converges in distribution to a random variable X if

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$$

at all points where $F_X(x)$ is continuous. We write $X_n \stackrel{d}{\to} X$.

Example

Suppose that $X \sim N(0,1)$, and let $X_n = -X$ for n = 1, 2, 3, ...

Claim: $X_n \stackrel{d}{\to} X$, but X_n does *not* converge in probability to X

Relationships between types of convergence

(a) If $X_n \stackrel{d}{\to} c$, where c is a constant, then $X_n \stackrel{p}{\to} c$ (b) If $X_n \stackrel{p}{\to} X$, then $X_n \stackrel{d}{\to} X$