(Q1) Special subgraphs of a chess grid govern hyperbolicity in Helly graphs

Our Contribution

Theorem [4]: We show that for Helly graphs and any integer k,

• $hb(G) \le k$ if and only if G has neither isometric H_1^{k+1} nor H_2^k

hb(G) is an integer

• $hb(G) \le k+1/2$ if and only if G has neither isometric H_1^{k+1} nor H_3^k

hb(G) is a half-integer

Example: forbidden isometric subgraphs for 1-hyperbolic Helly graphs.

Example: forbidden isometric subgraphs for 1/2-hyperbolic Helly graphs.

(Q2) How big is H(G) with respect to G?

Every graph G can be isometrically embedded into the smallest Helly graph H(G), called the injective hull of G.

Our Contribution

Theorem [5]: There are some graph classes for which H(G) ...

contains at most 2n vertices.

- Interval graphs
- Helly graphs
- Distance hereditary graphs

- can contain at least 2^n vertices.
- Chordal bipartite graphs
- Chordal graphs
- Cocomparability graphs

