

Northeastern University, Khoury College of Computer Science

CS 6220 Data Mining | Assignment 2

Due: February 25, 2023(100 points)

Yichen Sun https://github.com/LAnselet/cs6220-datamining

Frequent Itemsets

Question 1

$$F_{k-1} \times F_1 = F_3 \times F_1 = \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \{1, 2, 4, 5\}, \{1, 3, 4, 5\}, \{2, 3, 4, 5\}$$

Question 2

$$F_{k-1} \times F_{k} - 1 = F_3 \times F_3 = \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \{1, 2, 4, 5\}, \{2, 3, 4, 5\}$$

Question 3

 C_4 after prune = $\{1, 2, 3, 4\}$

Association Rules

Question 4

a.
$$R = 3^n - 2^{n+1} + 1 = 3^7 - 2^8 + 1 = 1932$$

b.
$$\frac{2}{1} = 0.5$$

b.
$$\frac{2}{4} = 0.5$$

c. $\frac{2}{10} = 0.2$

Question 5

True. As Apriori principle illustrated. If {a, b, c} if a frequent itemset, then all subsets of this item set are frequent.

Question 6

False. {a, b, c} may not even exist.

Question 7

False. The support of {b} could be 50 without overlapping.

Question 8

False. The maximum can potentially generate up to 2^k-1 frequent itemsets which will be 2^5-1 itemsets.

Question 9

