This report presents a supervised learning analysis of EEG-derived quantum potential and p-adic entropy features. We built and compared five classifiers—Random Forest, Logistic Regression, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Gradient Boosting—to distinguish between two subject groups (subset_1 vs. subset_2) in dataset. Performance was assessed via test accuracy, 5-fold cross-validation, confusion matrices, and ROC/AUC curves.

Data Overview

- **Samples:** 131
- Features (4):
 - o quantum_rest
 - o padic_entropy_rest
 - o quantum task
 - o padic_entropy_task
- **Target:** subset (binary: subset_1, subset_2)
- **Identifier:** subject (dropped before modeling)
- Missing values: None

The classes are reasonably balanced (about 57% vs. 43%), so no special balancing techniques were applied.

Preprocessing & Methodology

1. **Label Encoding:** Converted subset to 0/1.

- 2. Train/Test Split: 80% train, 20% test (27 samples held out).
- 3. **Scaling:** Features standardized via StandardScaler.
- 4. Models Trained:
 - o Random Forest (100 trees)
 - Logistic Regression (L2 penalty)
 - o SVM (RBF kernel)
 - KNN (k=5)
 - o Gradient Boosting (default scikit-learn settings)
- 5. Evaluation Metrics:
 - o Test accuracy & classification report
 - o 5-fold cross-validation accuracy
 - Confusion matrix
 - ROC curves & AUC

Random Forest Baseline

Classificatio	n Report:				
	precision	recall	f1-score	support	
0	0.94	0.94	0.94	16	
1	0.91	0.91	0.91	11	
266117261			a 02	27	
accuracy			0.93	27	
macro avg	0.92	0.92	0.92	27	
weighted avg	0.93	0.93	0.93	27	

Test Accuracy: 92.6%

• 5-Fold CV Accuracy: 90.1%

• Precision / Recall / F1:

Class 0: 0.94 / 0.94 / 0.94Class 1: 0.91 / 0.91 / 0.91

Key Insights:

- quantum_task is the dominant predictor ($\approx 48\%$).
- padic_entropy_rest (23%) and quantum_rest (17%) also contribute meaningfully.
- padic_entropy_task has the smallest, but non-negligible, importance (10%).

Multi-Model Comparison

Confusion Matrices

- Logistic Regression and Gradient Boosting both achieved 96.3% test accuracy, each misclassifying only 1 out of 27 samples.
- Random Forest and KNN each misclassified 2 samples; SVM misclassified 3.

Cross-Validation & AUC

• AUC Scores:

Random Forest: 0.96
Gradient Boosting: 0.95
Logistic Regression: 0.94

KNN: 0.91SVM: 0.85

• CV Accuracy:

o RF & LR: $\approx 90.1\%$

- \circ GB & KNN: $\approx 87.0\%$
- \circ SVM: $\approx 86.3\%$

Conclusions & Recommendations

1. Top Models:

- o **Logistic Regression** offers the best balance of simplicity and performance (96.3% test accuracy, 90.2% CV).
- \circ **Random Forest** and **Gradient Boosting** are close runners-up—both highly robust (AUC ≈ 0.95 –0.96).

2. Feature Insights:

- o **quantum_task** is the single most informative feature, warranting deeper neurophysiological investigation.
- o The rest/rest vs. task feature split suggests state-dependent EEG dynamics are key discriminators.