Types and λ -calculus

Problem Sheet 1

- * 1. Which of the following are terms? For those that are terms, write out a proof tree justification.
 - (a) $(\lambda x.((xx)x))$
 - (b) $(\lambda(\lambda x.x))$
 - (c) ((xy)z)
- * 2. Write these terms using the minimum number of parentheses and λ , according to our conventions.
 - (a) $(\lambda y.((yy)(zz)))$
 - (b) $(\lambda y.(((yy)y)y))$
 - (c) $((xy)(\lambda y.(\lambda z.(z(xy)))))$
- * 3. Write the term $(\lambda xyz.xy(xz))(\lambda xy.x)$ with all the parentheses and λ that we will usually omit tediously put back in.
- ** 4. Note that, by the conventions of logic, $A \Rightarrow B \Rightarrow C$ is a shorthand for $A \Rightarrow (B \Rightarrow C)$ and conjunction binds tighter than implication, so $A \land B \Rightarrow C$ means $(A \land B) \Rightarrow C$.

Give proofs of the following.

- (a) $\neg A \Rightarrow A \Rightarrow B$
- (b) $(A \land B \Rightarrow C) \Rightarrow A \Rightarrow B \Rightarrow C$
- (c) $\neg (A \land \neg A)$
- (d) $(A \Rightarrow B) \Rightarrow (B \Rightarrow C) \Rightarrow A \Rightarrow C$
- (e) $\neg A \land \neg B \Rightarrow \neg (A \lor B)$