Глава 2

Интегрално смятане на функции на няколко променливи

2.1 Мярка на Пеано-Жордан

Нашата първа стъпка към дефинирането на Римановия интеграл в равнината, както и в произволно крайномерно Евклидово пространство, ще бъде да въведем мярка в такива пространства: т.нар. мярка на Пеано-Жордан. За да използваме геометричната интуиция, ние ще работим главно в случая на равнината \mathbb{R}^2 , отбелязвайки какво е необходимо да се промени в случая на пространства с размерност по-голяма от 2. Трябва да се отбележи, че ако разликата между едномерния и двумерния случай е доста съществена (както читателят ще се убеди по-долу), то между размерност 2 и размерности 3,4,...,1000,.. такава почти няма, и всички определения и доказателства се пренасят почти без изменения.

Дефиниция на мярката на Пеано - Жордан. Нашата цел ще бъде да определим мярката, или лицето, на равнинна фигура. Ще тръгнем от две естествени правила:

• Лицето на правоъгълник е равно на произведението на страните му, и

• По-голямата фигура има и по-голямо лице, т.е. ако \mathbf{D} , \mathbf{D}' са фигури в равнината и $\mathbf{D} \subset \mathbf{D}'$, то лицето на \mathbf{D} не надминава лицето на \mathbf{D}' .

Така, нашата основна "тухличка" при изграждането на мярката в равнината ще бъдат затворените правоъгълници, т.е. множества от вида

$$\Delta = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], y \in [c, d] \}.$$

За всеки правоъгълник ще въведем мярка (или лице): $\mu(\Delta) = (b-a)(d-c).$

Нека подчертаем, че тук разглеждаме не какви да е правоъгълници, а само правоъгълници със страни, успоредни на координатните оси. Освен това, разглеждаме затворени правоъгълници; тяхната вътрешност се състои от произведението на съответните отворени интервали:

$$\Delta^o = (a, b) \times (c, d),$$

а контурът им се състои от четири отсечки.

В случая на пространство с размерност 3 и повече, навсякъде по-долу вместо "правоъгълник" трябва да се чете "правоъгълен паралелепипед", като отново се разглеждат паралелепипеди със страни, успоредни на координатните оси. Под правоъгълен паралелепипед в \mathbb{R}^n ще разбираме множество от вида

$$\Delta = \{(x_1, \dots, x_n) : x_1 \in [a_1, b_1], \dots, x_n \in [a_n, b_n]\},\$$

което обикновено се записва във вида

$$\Delta = [a_1, b_1] \times \ldots \times [a_n, b_n].$$

Мярката отново се определя като произведение на страните:

$$\mu(\Delta) = (b_1 - a_1) \dots (b_n - a_n).$$

Дефиниция. Казваме, че множеството $E \subset \mathbb{R}^2$ е елементарно, ако то може да се представи като обединение на краен брой затворени правотгълници.

159

Ще отбележим, че обединение, сечение и разлика на елементарни множества е също елементарно множество.

Лема 1. Всяко елементарно множество **E** може да се представи като обединение на краен брой правоъгълници с непресичащи се вътрешности (за краткост ще ги наричаме непресичащи се правоъгълници).

Доказателство. Да продължим отсечките, ограничаващи всеки от правоъгълниците, и да разсечем останалите правоъгълници по така получените прави. Полученото разбиване на множеството **E** очевидно удовлетворява изискванията на лемата. (На чертежа е представен случая, когато **E** е обединение на два правоъгълника.)

Дефиниция. Нека Е

е елементарно множество, представено като обединение на непресичащи се правоъгълници:

$$\mathbf{E} = \bigcup_{i=1}^{n} \Delta_i,$$

$$\Delta_i^o \cap \Delta_j^o = \emptyset$$
 sa $i \neq j$.

Ще определим мяр- $\kappa ama~\mu(\mathbf{E})~\kappa amo$

Представяне на елементарно множество като обединение на непресичащи се правоъгълници.

$$\mu(\mathbf{E}) = \sum_{i=1}^{n} \mu(\Delta_i).$$

Разбира се, трябва да докажем, че определение-

то е коректно, т.е. не зависи от начина на представяне на **E** като обединение на непресичащи се правоъгълници. Нека най-напред **E** е право-

ъгълник, представен като обединение на други правоъгълници; тогава

твърдението е очевидно (и става още по-очевидно, ако направим допълнителни разрези както в предната лема). В общия случай, нека

$$\mathbf{E} = \bigcup_{i=1}^{n} \Delta_i = \bigcup_{j=1}^{m} \widetilde{\Delta}_j$$

са две различни представяния на ${\bf E}$ като обединение на непресичащи се правоъгълници. За всяко i от 1 до n имаме $\Delta_i = \cup_{j=1}^m \left(\Delta_i \cap \widetilde{\Delta}_j\right)$, което дава представяне на правоъгълника Δ_i като обединение на непресичащи се правоъгълници, и според отбелязаното по-горе $\mu\left(\Delta_i\right) = \sum_{j=1}^m \mu\left(\Delta_i \cap \widetilde{\Delta}_j\right)$. Следователно

$$\sum_{i=1}^{n} \mu\left(\Delta_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} \mu\left(\Delta_{i} \cap \widetilde{\Delta}_{j}\right)$$

и по същият начин

$$\sum_{j=1}^{m} \mu\left(\widetilde{\Delta}_{j}\right) = \sum_{j=1}^{m} \sum_{i=1}^{m} \mu\left(\Delta_{i} \cap \widetilde{\Delta}_{j}\right),\,$$

с което коректността на дефиницията е доказана.

Следващата стъпка е да се опитаме да апроксимираме произволна фигура в равнината чрез елементарни множества. Това може да стане по различни начини. За илюстрация, нека си представим, че имаме фигура, нарисувана върху милиметрова хартия, и искаме да пресметнем приблизително нейното лице. Единият начин е да сумираме лицата на квадратчета, които имат обши точки с фигурата; така ще получим оценка отгоре за лицето и. Другият начин е да броим само онези квадратчета, които се съдържат вътре във фигурата; така получаваме оценка отдолу. Другояче казано, ние апроксимираме отвън и отвътре нашата фигура с множества, съставени от квадратчета, т.е. с елементарни множества. Така се стига до понятията горна и долна мярка на множество:

Дефиниция. Нека \mathbf{A} е ограничено подмножество на \mathbb{R}^2 . Ще определим горна мярка на множеството \mathbf{A} (c означение $\mu^*(\mathbf{A})$) като

горен индекс *

точната долна граница на мерките на всички елементарни множества, съдържащи **A**:

$$\longrightarrow \mu_*(\mathbf{A}) = \inf \left\{ \mu(\mathbf{E}) : \mathbf{E} - \mathit{елементарно}, \, \mathbf{A} \subset \mathbf{E} \right\}.$$

Аналогично, определяме долна мярка на **A** с формулата

$$\mu_*(\mathbf{A}) = \sup \{ \mu(\mathbf{E}) : \mathbf{E} - \text{елементарно}, \mathbf{E} \subset \mathbf{A} \}.$$

Забележка. Понякога ще е удобно да налагаме малко по-силни условия: да искаме $\mathbf{A} \subset \mathbf{E}^o$ в дефиницията на горна мярка, и $\mathbf{E} \subset \mathbf{A}^o$ дефиницията на долна мярка. (Ще напомним, че \mathbf{A}^o осначава вътрешността на множеството \mathbf{A} , т.е. всички точки, които влизат в \mathbf{A} заедно с някаква своя кръгова околност - виж §1.2). Лесно се вижда, че това не променя тяхните стойности.

Очевидно за всяко множество ${\bf A}$ имаме $\mu_*({\bf A}) \leq \mu^*({\bf A})$. За някои множества обаче тези две числа може да се различават. Например, да вземем множеството от всички точки в квадрата, които имат рационални координати:

$$\mathbf{A} = \{(x, y) \in [0, 1] \times [0, 1] : x, y \in \mathbb{Q}\}.$$

Лесно се вижда, че $\mu^*(\mathbf{A}) = 1$, но $\mu_*(\mathbf{A}) = 0$ (множеството \mathbf{A} не съдържа неизродени правоъгълници). Поради това ние ще определим мярката само върху някои множества в \mathbb{R}^2 - т. нар. измерими множества:

Дефиниция. Ограниченото множество $\mathbf{A} \subset \mathbb{R}^2$ се нарича <u>измеримо</u>, ако неговата горна и долна мярки съвпадат. Общата им стойност се бележи с $\mu(\mathbf{A})$ и се нарича <u>мярка на Пеано-Жордан</u> на множеството \mathbf{A} .

Оставяме на читателя докаже следното твърдение, което представлява лека модификация на горната дефиниция:

Лема 2. Множеството \mathbf{A} е измеримо тогава и само тогава, когато за всяко $\varepsilon > 0$ съществуват елементарни множества \mathbf{E}_1 , \mathbf{E}_2 , така че $\mathbf{E}_2 \subset \mathbf{A} \subset \mathbf{E}_1$ и $\mu\left(\mathbf{E}_1\right) - \mu\left(\mathbf{E}_2\right) < \varepsilon$.

Горна и долна мярка на множество.

Забележка. Горното определение на понятията "измеримо множество" и "мярка" има един сериозен недостатък — то използва фиксирана координатна система в равнината (съотв. в \mathbb{R}^n). Доказателството, че мярката не зависи от координатната система, ще бъде отложено до $\S 6$ (то се получава като следствие от теоремата за смяна на променливите при многократните интеграли).

Нека дадем някакво описание на измеримите множества в равнината и операциите, които могат да се извършват с тях.

Дефиниция. Множесството се нарича <u>пренебрежимо</u> по Пеано-Жордан, ако $\mu^*(\mathbf{A})=0$ (от тук, разбира се, следва, че то е и измеримо).

Лема 3. Всяко подмножество на пренебрежимо множество е пренебрежимо. Обединение на краен брой пренебрежими множества също е пренебрежимо.

Доказателство. Първото твърдение е очевидно. За второто, достатъчно е да докаже твърдението за случая на две множества.

Наистина, нека $\mu^*(\mathbf{A}_1) = \mu^*(\mathbf{A}_2) = 0$. Да изберем произволно $\varepsilon > 0$. Тогава според дефиницията на μ^* можем да намерим елементарни множества \mathbf{E}_1 , \mathbf{E}_2 , така че $\mu(\mathbf{E}_1)$, $\mu(\mathbf{E}_2) < \varepsilon/2$, $\mathbf{A}_1 \subset \mathbf{E}_1$, $\mathbf{A}_2 \subset \mathbf{E}_2$. Множеството $\mathbf{E} = \mathbf{E}_1 \cup \mathbf{E}_2$ е също елементарно, при което $\mathbf{A}_1 \cup \mathbf{A}_2 \subset \mathbf{E}$, и $\mu(\mathbf{E}) < \varepsilon$, т.е. $\mu^*(\mathbf{A}_1 \cup \mathbf{A}_2) = 0$.

Сега можем да формулираме необходимо и достатъчно условие за измеримост на множество. За тази цел ще използваме понятието контур на множество, въведено в §1.2.

Теорема 4 (критерий за измеримост). Едно ограничено множество A е измеримо тогава и само тогава, когато неговият контур bA е пренебрежимо множество.

Доказателство. Нека е измеримо множество, т.е. $\mu_*(\mathbf{A}) = \mu^*(\mathbf{A}) = \mu(\mathbf{A})$. Да изберем произволно $\varepsilon > 0$. От дефиницията на горна и долна мярка следва съществуването на елементарно множество \mathbf{E}_1 такова, че $\mathbf{A} \subset E_1^o$ и $\mu(\mathbf{E}_1) < \mu(\mathbf{A}) + \varepsilon/2$, и на елементарно множество \mathbf{E}_2 такова, че $\mathbf{E}_2 \subset \mathbf{A}^o$ и $\mu(\mathbf{E}_2) > \mu(\mathbf{A}) - \varepsilon/2$. Очевидно $\mathbf{E}_2 \subset \mathbf{E}_1$. Да означим $\mathbf{E} = \mathbf{E}_1 \setminus \mathbf{E}_2$; тогава $\mu(\mathbf{E}) = \mu(\mathbf{E}_1) - \mu(\mathbf{E}_2) < \varepsilon$ и контурът $b\mathbf{A}$ на множеството \mathbf{A} се съдържа в \mathbf{E} , откъдето следва, че $b\mathbf{A}$ е пренебрежимо множество.

Обратно, да предположим, че $b{\bf A}$ е пренебрежимо, и да го включим във вътрешността на елементарното множество ${\bf E}$, за което $\mu({\bf E})<\varepsilon$. Тогава контурът $b{\bf E}$ на ${\bf E}$ не съдържа контурни точки на ${\bf A}$ и следователно може да се представи във вида $b{\bf E}={\bf C}_1\cup{\bf C}_2$, където ${\bf C}_1$ се състои само от външни точки на ${\bf A}$, а ${\bf C}_2$ - само от външни. Да положим ${\bf E}_1={\bf E}\cup{\bf A}^o$ и ${\bf E}_2={\bf E}_1\setminus{\bf E}$. Тогава имаме $b\left({\bf E}_1\right)={\bf C}_1$ и $b\left({\bf E}_2\right)={\bf C}_2$. Тъй като контурите на ${\bf E}_1$ и ${\bf E}_2$ се състоят от отсечки, успоредни на координатните оси, то те са елементарни множества. Освен това, лесно се вижда, че ${\bf E}_2\subset{\bf A}\subset{\bf E}_1$ и $\mu\left({\bf E}_1\right)-\mu\left({\bf E}_2\right)=\mu\left({\bf E}\right)<\varepsilon$, което показва, че ${\bf A}$ е измеримо множество.

Следствие. Обединението, сечението и разликата на две измерими множества е също измеримо.

Доказателство. Нека ${\bf A}$ и ${\bf B}$ да са измерими множества, и нека множеството ${\bf C}$ да е равно или на тяхното обединение ${\bf A} \cup {\bf B}$, или на тяхното сечение ${\bf A} \cap {\bf B}$, или на разликата ${\bf B} \setminus {\bf A}$. Във всеки от тези три

криволинеен трапец

случая имаме

$$b\mathbf{C} \subset b\mathbf{A} \cup b\mathbf{B}$$

(докажете!). Тъй като b**A** и b**B** са пренебрежими, то от направената по-горе забележка следва, че и b**C** е пренебрежимо, т.е. множеството **C** е измеримо.

Ще напомним един начин на аналитично описание на фигурите в равнината (виж I, §4.5):

Дефиниция. Нека в интервала [a,b] са зададени непрекъснатите функции g(x) и f(x), като навсякъде е изпълнено $g(x) \leq f(x)$. Тогава криволинеен трапец, определен от функциите g и f, наричаме фигурата \mathbf{D} , съставена от всички точки $(x,y) \in \mathbb{R}^2$, удовлетворяващи неравенствата

$$a \le x \le b$$
 , $g(x) \le y \le f(x)$.

Всички фигури, срещани в елементарната геометрия, могат да бъдат представени или като криволинеен трапец, или като обединение на краен брой криволинейни трапци. Следващата теорема показва, че ка-

165

тегорията на измеримите множества е достатъчно широка и обхваща почти всички множества, срещани в анализа:

Теорема 5. Всеки криволинеен трапец е измеримо множество. Доказателство. Да означим с Γ контура на областта \mathbf{D} . Очевидно Γ се състои от четири части, които ще означим с Γ_1 , Γ_2 , Γ_3 , Γ_4 , където;

 Γ_1 е графиката на непрекъсната функция f(x) в интервала [a,b].

 Γ_2 е вертикалната отсечка, свързваща точката (b, f(b)) с (b, g(b)).

 Γ_3 е графиката на g(x) в интервала [a,b].

 Γ_4 е вертикалната отсечка, свързваща точката (a, f(a)) с (a, g(a)).

Оставяме на читателя да докаже, че отсечките Γ_2 и Γ_4 са пренебрежими множества. Тогава теоремата следва от критерия за измеримост и от следната лема, приложена за g(x) и f(x):

Измеримост на графиката на непрекъсната функция (лема 6)

Лема 6. Ако f(x) е непрекосната функция в интервала [a,b], нейната графика

$$\Gamma_f = \{(x, y) : x \in [a, b], y = f(x)\}$$

е пренебрежимо множество.

Доказателство на лемата. Да разделим интервала [a,b] на подинтервали с помощта на делящите точки $a=x_0<\ldots< x_n=b,$ и нека m_i и M_i да означават съответно минималната и максималната стойности на f(x) в интервала $[x_{i-1},x_i],\ i=1,\ldots,n.$ Функцията f(x) е непрекъсната в компактния интервал [a,b] и следователно равномерно непрекъсната в него. Тогава за всяко дадено $\varepsilon>0$ можем да намерим разбиване такова, че $M_i-m_i<\varepsilon$ за всяко i от 1 до n. Да означим с Δ_i правоъгълника

$$\Delta_i = [x_{i-1}, x_i] \times [m_i, M_i], \quad i = 1, \dots n.$$

Нека положим $\mathbf{E} = \bigcup_{i=1}^n \Delta_i$. Очевидно $\Gamma_f \subset \mathbf{E}$. От друга страна

$$\mu(\mathbf{E}) = \sum_{i=1}^{n} \mu(\Delta_i) = \sum_{i=1}^{n} (x_i - x_{i-1}) (M_i - m_i) < \varepsilon \sum_{i=1}^{n} (x_i - x_{i-1}) = \varepsilon (b-a)$$

и може да бъде направено колкото си искаме малко. С това лема 6, а с нея и теорема 5, са доказани.

Забележка. Трябва да се отбележи, че за параметрично зададените криви в равнината ситуацията е съвсем различна: множеството от точките на една параметрично зададена чрез непрекъснати функции крива линия може и да не бъде пренебрежимо множество. Един пример за това се дава от т. нар. крива на Пеано: може да се покаже, че съществува непрекъснато изображение на интервала $\mathbf{I} = [0,1]$ върху квадрата $\mathbf{I} \times \mathbf{I}$ (виж задача 3). С други думи, множеството от точките на тази непрекъсната крива съвпада с квадрата, който не е пренебрежимо множество.

За да докажем пренебрежимост на кривата, трябва да наложим по-силно условие. Ще напомним, че една крива се нарича *ректифици-руема*, ако нейната дължина е крайна (виж I, §4.4). Изпълнена е:

Теорема 7. Множеството на точките, лежащи на една непрекъсната ректифицируема крива, е пренебрежимо по Пеано-Жордан.

Доказателство. Нека Γ е ректифицируема крива и l е нейната дължина. Разполагайки последователни точки P_0, \ldots, P_n върху кривата, ние можем да я разделим на n части $\Gamma_1, \ldots, \Gamma_n$ с равна дължина, т.е. дължината на всяка от кривите Γ_i с краища P_{i-1}, P_i ще е равна

на $\frac{l}{n}$. Нека Δ_i е квадрат с център точката P_i и дължина на всяка от страните $\frac{2l}{n}$. Тъй като за всяка точка $P \in \Gamma_i$ разстоянието $\varrho\left(P,P_i\right)$ не надминава дължината на Γ_i , очевидно имаме $\Gamma_i \subset \Delta_i$ и $\Gamma \subset \bigcup_{i=1}^n \Delta_i$. От друга страна, мярката

$$\mu\left(\bigcup_{i=1}^{n} \Delta_{i}\right) \leq \sum_{i=1}^{n} \mu\left(\Delta_{i}\right) = n \cdot \frac{4l^{2}}{n^{2}} = \frac{4l^{2}}{n}$$

и може да бъде направена колкото си искаме малка чрез увеличаване на n.

Адитивност на мярката на Пеано - Жордан. Ще докажем основното свойство на мярката:

Теорема 8. Нека **A** и **B** са измерими множества с непресичащи се вътрешности и нека $\mathbf{C} = \mathbf{A} \cup \mathbf{B}$. Тогава

$$\mu(\mathbf{C}) = \mu(\mathbf{A}) + \mu(\mathbf{B})$$
.

Можем да си представим ситуацията и по следния начин: с помощта на някаква крива линия или друго пренебрежимо множество измеримото множество \mathbf{C} е разделено на две части; ще покажем, че при това общата мярка се запазва.

Доказателство. Да изберем елементарни множества \mathbf{E}_1 и \mathbf{E}_2 такива, че $\mathbf{A} \subset \mathbf{E}_1$, $\mathbf{E}_2 \subset \mathbf{A}^o$ и $\mu(\mathbf{E}_1) < \mu(\mathbf{A}) + \varepsilon/2$, $\mu(\mathbf{E}_2) > \mu(\mathbf{A}) - \varepsilon/2$. По същия начин можем да намерим елементарни множества \mathbf{F}_1 и \mathbf{F}_2 такива, че $\mathbf{B} \subset \mathbf{F}_1$, $\mathbf{F}_2 \subset \mathbf{B}^o$ и $\mu(\mathbf{F}_1) < \mu(\mathbf{B}) + \varepsilon/2$, $\mu(\mathbf{F}_2) > \mu(\mathbf{B}) - \varepsilon/2$. Тогава $\mathbf{C} \subset \mathbf{E}_1 \cup \mathbf{F}_1$ и следователно

$$\mu(\mathbf{C}) \le \mu(\mathbf{E}_1) + \mu(\mathbf{F}_1) < \mu(\mathbf{A}) + \mu(\mathbf{B}) + \varepsilon,$$

откъдето следва, че $\mu(\mathbf{C}) \leq \mu(\mathbf{A}) + \mu(\mathbf{B})$.

За доказателство на обратното неравенство да отбележим, че \mathbf{E}_2 и \mathbf{F}_2 не се пресичат (тук използваме, че $\mathbf{A}^o \cap \mathbf{B}^o = \emptyset$) и следователно $\mu(\mathbf{E}_2 \cup \mathbf{F}_2) = \mu(\mathbf{E}_2) + \mu(\mathbf{F}_2)$. Тъй като $\mathbf{E}_2 \cup \mathbf{F}_2 \subset \mathbf{C}$, то

$$\mu(\mathbf{C}) \ge \mu(\mathbf{E}_2) + \mu(\mathbf{F}_2) > \mu(\mathbf{A}) + \mu(\mathbf{B}) - \varepsilon.$$

Tъй като ε е произволно, от тук следва теоремата.

Чрез индукция по броя на събираемите лесно се доказва следното

Следствие. Ако $\mathbf{A}_1,\dots,\mathbf{A}_k$ са измерими множества, като $\mathbf{A}_i^o\cap\mathbf{A}_i^o=\emptyset$ при $i\neq j,$ то

$$\mu\left(\mathbf{A}_{1}\cup\ldots\cup\mathbf{A}_{k}\right)=\sum_{i=1}^{k}\mu\left(\mathbf{A}_{i}\right).$$

Упражнения.

1. Множество на Кантор. Ще конструираме едно интересно подмножество на интервала [0,1]. Да разделим този интервал на три равни подинтервала, и нека \mathbf{E}_0 е средният от тях - отвореният интервал (1/3,2/3). Да разделим всеки от останалите два интервала отново на три равни части, и нека \mathbf{E}_1 е обединението на средните подинтервали, т.е. $\mathbf{E}_1 = (1/9,2/9) \cup (7/9,8/9)$. Аналогично $\mathbf{E}_2 = (1/27,2/27) \cup (7/27,8/27) \cup (19/27,20/27) \cup (25/27,26/27)$ и т.н. Нека $\mathbf{K}_n = [0,1] \setminus \mathbf{E}_n$, $\mathbf{E} = \bigcup_{n=0}^{\infty} \mathbf{E}_n$, $\mathbf{K} = \bigcap_{n=1}^{\infty} \mathbf{K}_n = [0,1] \setminus \mathbf{E}$. Множеството \mathbf{K} се нарича канторово множество и притежава редица интересни свойства.

За да опишем множеството на Кантор, е удобно да представяме числата от [0,1] като (крайни или безкрайни) троични дроби. Ако са дадени троичните цифри a_1,\ldots,a_n (т.е. всяка от тях е равна на 0,1, или 2), то с $3\overline{0.a_1\ldots a_n}$ ще означаваме числото $\sum_{k=1}^n a_k/3^k$. Аналогично ще означаваме и безкрайните троични дроби.

1 а/. Докажете, че множеството \mathbf{E}_n се състои от 2^n непресичащи се отворени интервали с дължина $1/3^{n+1}$. Всеки от тях има вида

$$(3\overline{0.a_1\ldots a_n}\ 1\ ,\ 3\overline{0.a_1\ldots a_n}\ 2)$$

където всяко от числата a_1, \ldots, a_n е равно на нула или две. Ние ще означим с \mathbf{K}_0 множеството от крайните точки на описаните по-горе интервали; тогава \mathbf{K}_0 е изброимо подмножество на \mathbf{K} .

1 б/. Докажете, че множеството $\mathbf{K} \setminus \mathbf{K}_0$ се състои от всички троично ирационални* точки от [0,1], които не съдържат единицата в раз-

^{*}под троично ирационални числа разбираме такива, които не се представят като крайна троична дроб, т.е. не могат да се представят като дроб, в която в знаменателя стои степен на тройката.