Esercizi Termologia - Principio di Archimede - Gas

- 2) Un recipiente colmo d'acqua è posto su una bilancia come in figura. La bilancia è in equilibrio. Cosa bisogna mettere sul piatto a destra per mantenere l'equilibrio se nel recipiente si mette:
 - a) $10\,cm^3$ di ottone ($\rho=8,4\,\frac{g}{cm^3}$), $\left[74\,g\right]$
 - b) un pezzo di legno ($\rho=0,7\frac{g}{cm^3}$) di volume $10\,cm^3$?

3) Una bottiglia di 20 litri contiene aria compressa alla pressione di 100bar e alla temperatura di $20^{\circ}C$. Si lascia uscire dell'aria finché la pressione nella bombola scende a 65bar. Che volume occupa l'aria uscita alle condizioni normali $(1,013bar;0^{\circ}C)$?

- 4) In una scatola di volume $2{,}00\,dm^3$, munita di un piccolo foro verso l'esterno, è contenuta dell'aria alla temperatura di $10{,}0^{\circ}C$ e alla densità di $\rho=1{,}24\frac{g}{dm^3}$. Calcolare:
 - a) la densità dell'aria a $25,0^{\circ}C$ e alla stessa pressione ambiente;

 $\left[1,18\frac{g}{dm^3}\right]$

b) di quanto varia la massa d'aria nella scatola se essa viene riscaldata fino a $25,0^{\circ}C$.

 $\begin{bmatrix} -125 mg \end{bmatrix}$

5) Un cilindro di vetro provvisto di pistone mobile è immerso in una bacinella di mercurio. Il cilindro racchiude una colonna d'aria alta $h=20,0\,cm$; il livello del mercurio al suo interno è lo stesso di quello all'esterno. Si innalza ora il pistone di $a=5,0\,cm$. La pressione esterna è di $975\,mbar$. (trascurare l'abbassamento di livello nella bacinella). Di quanto si sposta il livello del mercurio all'interno del cilindro?

[3,9cm]

6) Un pistone mobile, senza attrito, divide in due parti di lunghezza l_1 rispettivamente l_2 un cilindretto di vetro di sezione A. Inizialmente si ha la stessa temperatura ϑ_0 dappertutto. La temperatura dell'aria a sinistra viene poi portata al valore ϑ_1 . Calcolare algebricamente di quanto si sposta il pistone.

7) Un recipiente di volume 6 litri contiene O_2 (massa molecolare 32 uma) alla pressione di 950mbar e alla temperatura di $15,0^{\circ}C$. Si applica una pompa che fa diminuire la pressione fino a 100mbar, mentre la temperatura rimane costante. Si chiede la massa di ossigeno estratta.