# Course name: Growth and Characterization of Nanoelectronic Materials (EE728)

**Instructor: Apurba Laha** 

**Department of Electrical Engineering, IIT Bombay** 

Contact: Tel: 022-2576 9408, email: laha@ee.iitb.ac.in



#### **Epitaxy and modern technology!**



**The system-on-a-chip of the future?** The ability to integrate new technologies with CMOS or BiCMOS is important

Silicon integration platform

## **New challenges**

- ➤ Growth of low dimensional structures of various complexity with high degree of control and reproducibility
- ➤ It demands materials engineering at the atomic level despite lattice mismatch, chemical incompatibility, structural dissimilarity and/or differences in thermal expansion
- ➤ We have to overcome also thermodynamical limitations by using sophisticated techniques and methods

P

Demands new epitaxial concepts, combination of different epitaxial growth methods and integration of other semiconductor technologies

#### **Nanotechnology**

- > Semiconductor nanostructure science and technology develops very rapidly and many present-day devices directly based on quantum mechanics.
- Future quantum devices may play important roles in information technology and multi-disciplinary nanotechnology.
- ➤ Nanotechnology is already present, e.g. the "present-day Si transistor", and will be much bigger in the future, that is at least after the "end-of-roadmap Si transistor"!

This development has strong impact on epitaxy!

# **Epitaxy**

- επι (epi) Position
- ταξιs(taxis ordered
- Orderly positioning of individual atoms
- > Order is predetermined by a crystalline substrate (host lattice)
- Requires a certain consistency in crystal structure and symmetry (matching)
- > Epitaxy is the growth of crystalline layers

# **Defining epitaxy**

```
■ Substrate:
    Homoepitaxy (= layer-substrate material)
    Heteroepitaxy (another layer of material)?
  Phase equilibrium:
    Solid phase epitaxy (SPE)
    Liquid phase epitaxy (LPE)
    Vapor phase epitaxy (MBE, VPE CVD)?
■ Nature of the source material:
   Gas source MBE (GSMBE)
   Solid source MBE (SSMBE)
   Metal-organic chemical vapor deposition (MOCVD)
```

# **Epitaxy-Fundamental**

In equilibrium surface process such as condensation and re-evaporatio <u>decay and</u> <u>formation</u> of 2D cluster must obey *detailed balance*. Therefore, in equilibrium, <u>there is no net growth of a film and so crystal growth must clearly be a nonequilibrium kinetic process</u>

#### Three principle modes of growth:

- 1. Layer by layer grwoth (Frank-van der Merve, FM)
- 2. Island growth (Vollmer-Weber, VW)
- 3. Layer plus-island (Stransky-Krantanov, SK)
- 1. FM: The interaction between the substrate and layer atoms is stronger than that between neighboring layer atoms. Each layer starts to grow only when the last one has been complete.
- 2. VW: The interaction between the neighboring film atoms exceeds the overlayer substrate interaction. In this case an island deposit always means a multilayer multilayer conglomerate of adsorbed atoms.
- 3. SK: Layer followed by island formation. Many factors account for this mixed growth mode.

# **Heterostructures: Epitaxy**



**Epitaxial growth: well defined interface:** 

**→** interface engineering possible

Form a virtual crystalline substrate 
heterostructures

# **Milestone on Semiconductor Epitaxy**

| 1957 | First Epitaxy (CVD) of Ge and Si            | N.N. Sheftal                                | Joffe, UdSSR                    |
|------|---------------------------------------------|---------------------------------------------|---------------------------------|
| 1960 | Ge/GaAs Heteroepitaxy                       | J.C. Marinace                               | IBM, USA                        |
| 1960 | Si-Epi with controlled thickness and doping | H.C. Theuerer                               | Bell Labs,<br>USA               |
| 1963 | Heterojunction Laser                        | H. Kroemer<br>Zh.I. Alferov, R.F. Kazarinov | RCA, USA<br>Joffe, UdSSR        |
| 1967 | First Heterojunction Laser                  | Zh.I. Alferov                               | Joffe, UdSSR                    |
| 1969 | MOCVD of GaAs                               | H.M. Manasevit, W.I.<br>Simpson             | USA                             |
| 1969 | Surface lattice theory                      | L. Esaki und R. Tsu                         | IBM, USA                        |
| 1970 | GaAs/GaAsP                                  | A.E. Blakeslee, C.F. Aiotta                 | IBM, USA                        |
| 1971 | Molecular Beam Epitaxy                      | A.Y. Cho                                    | Bell Labs,<br>USA               |
| 1972 | GaAs/AlGaAs                                 | R. Tsu, L. Esaki                            | IBM, USA                        |
| 1974 | Resonant Tunnel diode                       | L.L. Chang, L. Esaki, R. Tsu                | IBM, USA                        |
| 1980 | HEMT                                        | T. Mimura                                   | Fujitsu, Japan                  |
| 1982 | Fractional Hall Effect                      | D.C. Tsui, H.L. Störmer,<br>A.C. Gossard    | Lawr. Liverm.<br>Nat. Lab., USA |

# **Homo- und Heteroepitaxy**

Heteroepitaxy Homoepitaxy Epi-Layer Substrate **Different Material** Similar Material as Overgrown layer is Substrate and different from overgrown layer Substrate

# **Epitaxy: Necessary conditions**

- ➤ Matching of Symmetry
- Matching of lattice parameters
- Surface free energy difference ???

#### Layer by layer growth (Mode) 2-Dimensional growth

#### perfect wetting:

$$\gamma_s > \gamma_f + \gamma_{IF}$$
  $\gamma = Surface energy$   
 $s = Substrate$   
 $f = Film, IF = interface$ 

→ Flat layer

→ called Frank-van-der Merwe (FM) or 2D-Grwoth mode







#### Layer growth (Mode) 3-Dimensional growth

#### No wetting:

$$\gamma_s < \gamma_f + \gamma_{IF}$$
  $\gamma =$ Surface energy  $s =$ Substrate  $f =$ Film, IF= interface

- → Island formation
- → called Volmer-Weber (VW) or 3D-Grwoth mode



#### Layer growth (Mode) 2 - 3-Dimensional growth

#### Mixed growth:

$$\gamma_s \sim \gamma_f + \gamma_{IF}$$
  $\gamma$  = Surface energy  
s = Substrate  
f = Film, IF= interface

- → Flat starting layer
- > Followed by Island formation
- → called Stranski-Krastanov (SK)-growth mode



#### Different growth modes

Van der Merwe layer growth (VM)



Volmer-Weber layer growth(VW)



Stranski-Krastanow layer growth(SK)



Flat layer 2D - Layer 3D –Island formation,

Quantum dots

2D-3D Layer; Island on 2D layer

# **Example: CVD of Si - Epitaxy**

- ➤ When SiH<sub>4</sub> gas is used in a CVD reactor, a Si layer is deposited on the wafer surface. The size of the crystallites depends on the deposition temperature.
- At high enough temperature, the ad-atoms have enough kinetic energy to move on the surface and align themselves with the underlying Si.
- ➤ This is an epitaxial layer, and the process is called Epitaxy instead of CVD---Homoepitaxy
- ➤ At lower deposition temperatures, the layer is poly-crystalline Si (consisting of small crystallites)

# Si epitaxy – controlling doping profiles



**Epitaxy is definitely needed** if a *doping profile* is required where the *resistivity in regions near the surface is larger than in the bulk.* By diffusion, you can always lower the resistivity and even change the doping type, but *increasing the resistivity by diffusion* is not realistically possible.

## **Homo- und Heteroepitaxy**

Homoepitaxy

Heteroepitaxy

Epi-Layer

Substrate





Same materials as substrate

Different Material from Substrat

#### **Molecular Beam Epitaxy laboratory at IIT Bombay**





3" Molecular Beam Epitaxy System for III-Nitride

III-V semiconductors GaN,  $AI_xGa_{(1-x)}N$ , AIN,  $In_xGa_{(1-x)}N$ , InN and InAIN

1" Molecular Beam Epitaxy System for group IV and oxide

**Group IV semiconductors Si, Ge, Sn and oxides** 

# Example: Epitaxial Gd<sub>2</sub>O<sub>3</sub>/Ge/Gd<sub>2</sub>O<sub>3</sub>-Si Heterostructure



A. Laha, MBE @ IITB A. Laha, Nanotechnology 20, (2009) 475604

# **Step/Terraces on Si(001)**



# Homoepitaxy of Si on Si(111)



# Transition from the Frank-van der Merwe growth to the step flow during the growth of Cu on W (111)



# Van der Merwe layer growth

2D - Layer growth



**Nucleation** 

Transport from higher to lower levels

(Step-Flow)



Simultaneous growth

# Heteroepitaxy



#### References

#### CVD:

- Hugh O. Pierson, Handbook of chemical vapor deposition (CVD): principles, technology and applications, Noyes Pub., 1992.
- Langmuir,"The vapor pressure of metallic Tungsten", Physical Review,
   November 1913.
- S. Sivaram, "Chemical Vapor Deposition: thermal and plasma deposition of electronic materials", Van Nostrand Reinhold, 1995.
- Ohshita et al., Thin Solid Films, 1 March 2002, pp. 215.
- Sears and Salinger, "Thermodynamics, Kinetic Theory and Statistical Thermodynamics", Third Ed. Narosa Pub. House, : 1975.
- http://encyclopedia.airliquide.com
- J. D. Plummer, M. D. Deal, and P. B. Griffin, "Silicon VLSI technology: fundamentals, practice and modeling", Prentice-Hall, 2000.