

Metody Selekcji Zmiennych w modelach scoringowych.

Sebastian Zając Adiunkt @SGH w Warszawie

Prosty przykład

ZAŁOŻENIA: Wysyłamy wszystkim ○ 20 tvs. Klientów Przychody: 28 000 000 Koszty: 35 000 000 348 kampanii marketingowych Zvsk: -7 000 000 rocznie Całkowicie nieopłacalne ○~7 mln decvzji – wysłać czy nie? Reguly eksperckie Koszt iednostkowy: 5 Przychody: 15 895 139 Zarobek przy zakupie: 800 Koszty: 12 250 000 Zvsk: 3 645 139 Średnia szansa zakupu: 0,5% Zauważalne zvski Występują zauważalne zyski, ale czy można je poprawić?

Wyniki Finansowe

Prosty przykład

Wyniki Finansowe

Prosty przykład

Aurelien Geron

"Z gipsu tortu nie ulepisz".

System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę **istotnych cech** i niezaśmieconych nadmiarem cech nieistotnych.

Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)."

Składa się on z:

• dobór cech (feature selection)

Aurelien Geron

"Z gipsu tortu nie ulepisz".

System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę **istotnych cech** i niezaśmieconych nadmiarem cech nieistotnych.

Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)."

Składa się on z:

- dobór cech (feature selection)
- odkrywanie cech (feature extraction)

Aurelien Geron

"Z gipsu tortu nie ulepisz".

System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę **istotnych cech** i niezaśmieconych nadmiarem cech nieistotnych.

Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)."

Składa się on z:

- dobór cech (feature selection)
- odkrywanie cech (feature extraction)
- nowe cechy z nowych danych

Aurelien Geron

"Z gipsu tortu nie ulepisz".

System zawsze uczy się jedynie za pomocą danych zawierających wystarczającą liczbę **istotnych cech** i niezaśmieconych nadmiarem cech nieistotnych.

Elementem krytycznym jest wybór dobrego zbioru cech uczących (feature enginering)."

Składa się on z:

- dobór cech (feature selection)
- odkrywanie cech (feature extraction)
- nowe cechy z nowych danych

o czym nie będzie ? feature extraction / streaming feature selection

PCA oraz autoencondery czyli liniowe i nieliniowe kombinacje zmiennych. wybieranie zmiennych w czasie rzeczywistym

Przygotowanie danych

Wygenerowane dane przedstawiają informacje zbierane podczas procesu udzielania kredytów w bankach. Modele zbudowane na ich podstawie prognozują zajście zdarzenia default – wejścia w opóźnienia więcej niż 3 raty (inaczej więcej niż 90 dni opóźnień) od punktu obserwacji w ciągu następnych 12 miesięcy.

Zmienna celu jest zależna od predyktorów w sposób silnie nieliniowy.

Szczegółowy opis algorytmu zamieszczono w książce K. Przanowski Credit Scoring w Erze Big Data.

Zbiór	L. obserwacji	L. dobrych	L. złych	L. nieok.	P. dobrych [%]	P. złych [%]	P. nieok. [%]
ABT BEH	52 841	31 010	15 378	6 453	58,7	29,1	12,2

(Pre)Selekcja

Random

(Pre)Selekcja

- Random
- Gini, Information Value

(Pre)Selekcja

- Random
- Gini, Information Value

Metody rekurencyjne

Forward, Backward (RFE)

(Pre)Selekcja

- Random
- Gini, Information Value

Metody rekurencyjne

Forward, Backward (RFE)

Metody modelowe

Lasso, Ridge

(Pre)Selekcja

- Random
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE)

Metody modelowe

- Lasso, Ridge
- drzewa decyzyjne, lasy losowe

(Pre)Selekcja

- Random
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE)

Metody modelowe

- Lasso, Ridge
- drzewa decyzyjne, lasy losowe
- Xgboost, sieci neuronowe, SGDClassifier

(Pre)Selekcja

- Random
- Gini, Information Value

Metody rekurencyjne

• Forward, Backward (RFE)

Metody modelowe

- Lasso, Ridge
- drzewa decyzyjne, lasy losowe
- Xgboost, sieci neuronowe, SGDClassifier

Metody zaawansowane

Branch and bound w SAS

Podejście klasyczne do modelowania scoringowego

- Preselekcja usuwanie dużej korelacji, niski Gini, duże deltaGini, małe IV
- Dyskretyzacja zmiennych
- Transformacja zmiennych do WOE
- Selekcja zmiennych
- Diagnostyka współliniowości
- Finalny model regresji logistycznej

Selekcja zmiennych - porównanie

Selekcja zmiennych - współliniowość

Metody AI/ML

Metody AI/ML

Podsumowanie

Dziękujemy za uwagę! kprzan@sgh.waw.pl, sebastian.zajac@sgh.waw.pl