Regret Analysis for MEX

BY JACK YANSONG LI University of Illinois Chicago Email: yli340@uic.edu

1 Regret Analysis for Finite Hypothesis Set

Through this note, we denote π^k as the guesses policy of player 2 in episode k and π^* as the true policy of player 2. For each player 2's policy π , the set of all best response policies is denoted as $BR(\pi)$, i.e.,

$$BR(\pi) = \operatorname*{argmax}_{\mu \in \mathcal{U}} V(\mu, \pi),$$

where \mathcal{U} is the set of all possible policies for player 1. The hypothesis set of all possible policies of player 2 is denoted as \mathcal{H} .

1.1 Oracle and Type Number

For any player 2's policy π , we assume the existence of an oracle that can return a best response from $BR(\pi)$.

Definition 1. (Oracle) A best response oracle ψ refers to a function that, upon receiving policies as input, yields a best response as its output, i.e., ψ is a function $\psi: \mathcal{H} \to \mathcal{U}$ such that

$$\psi(\pi) \in BR(\pi)$$
.

With the definition of an oracle, we can categorize policies within a hypothesis set into various types.

Definition 2. (ψ -type) We call two policies π and π' to be of the same type under oracle ψ if for any $\mu = \psi(\pi)$ and $\mu' = \psi(\pi')$ we have

$$V(\mu, \pi) = V(\mu', \pi').$$

The relationship is denoted as $\pi^{\psi}_{\sim}\pi'$. On the contrary, two policies π and π' not of the same type under oracle ψ is denoted as $\pi^{\psi}_{\sim}\pi'$.

Definition 3. We call a set of policies Π be type-independent under oracle ψ if for all $\pi \in \Pi$ and $\pi' \in \Pi$ such that $\pi \neq \pi'$, we have $\pi \not\sim \pi'$.

The ψ -type characterization gives rise to a measurement of quantity for the set of policies \mathcal{H} , denoted by $n^{\psi}(\mathcal{H})$.

Definition 4. Given a hypothesis set \mathcal{H} , the type number $n^{\psi}(\mathcal{H})$ under oracle ψ is defined as the size of a largest type-independent subset of \mathcal{H} , i.e.,

$$n^{\psi}(\mathcal{H}) = \max |\Pi|,$$

where $\Pi \subset \mathcal{H}$ and Π is type-independent under oracle ψ .

1.2 Regret Analysis

In this subsection, we restrict our discussion to cases where the cardinality of the hypothesis set is finite, i.e., $|\mathcal{H}| < \infty$. This condition is emphasized through the notation \mathcal{H}_{fin} . We also assume that the realization assumption holds, i.e., $\pi^* \in \mathcal{H}_{fin}$.

Theorem 5. Given an MDP with generalized eluder coefficient $d_{GEC}(\cdot)$ and a finite hypothesis class \mathcal{H}_{fin} with $\pi^* \in \mathcal{H}_{fin}$, by setting

$$\eta = \sqrt{\frac{d_{\rm GEC}(1/\sqrt{HK})}{\log(Hn^{\psi}(\mathcal{H}_{\rm fin})/\delta) \cdot HK}},$$

the regret of the MEX algorithm applying on \mathcal{H}_{fin} with oracle ψ after K episodes is upper bounded by, with probability at least $1-\delta$,

$$\operatorname{Regret}(K) \lesssim \sqrt{d_{\operatorname{GEC}}(1/\sqrt{HK}) \cdot \log(Hn^{\psi}(\mathcal{H}_{\operatorname{fin}})/\delta) \cdot HK}$$
.

Proof. See Appendix 3.2

The sole term pertaining to the size of the hypothesis set is $n^{\psi}(\mathcal{H}_{\mathrm{fin}})$. Consequently, the magnitude of regret is solely influenced by the type number associated with a hypothesis set, as opposed to the cardinality of the hypothesis set. This phenomenon occurs because policies that are categorized under the same type by policy ψ yield identical rewards when implemented in the MEX algorithm.

The type number $n^{\psi}(\mathcal{H}_{fin})$ depends on the choice of the oracle ψ , which makes it hard to verify when the explicit form of ψ is not given. However, we can introduce a stronger notion of type and verify the upper bound of $n^{\psi}(\mathcal{H}_{fin})$.

Definition 6. (Strong) We call two policies π and π' to be of the same s-type if

$$V(\mu, \pi) = V(\mu, \pi') = V(\mu', \pi) = V(\mu', \pi')$$

for all $\mu \in BR(\pi)$ and $\mu' \in BR(\pi')$. The relationship are denoted as $\pi \stackrel{s}{\sim} \pi'$.

Similar to the definition of type number under oracle ψ , we can define strong type number $n_{\text{stype}}(\mathcal{H})$.

Lemma 7. $n^{\psi}(\mathcal{H}) \leq n_{\text{stype}}(\mathcal{H})$ for all ψ be a best response oracle.

2 Regret Analysis for Infinite Hypothesis Set

In this subsection, we discuss the cases where the cardinality of the hypothesis set is infinite, i.e., $|\mathcal{H}| = \infty$. This condition is emphasized through the notation \mathcal{H}_{inf} . We keep assume that the realization assumption holds, i.e., $\pi^* \in \mathcal{H}_{inf}$.

2.1 Approximate an Infinite Hypothesis Set by a Finite Hypothesis Set

A direct approach to handling an infinite hypothesis set is to approximate it as a finite hypothesis set. First, we outline what makes a good approximation.

Definition 8. (ε_{ψ} -optimal approximation) A finite hypothesis set \mathcal{H}_{fin} is called an ε_{ψ} -optimal approximation of \mathcal{H}_{inf} if

$$\min_{\pi \in \mathcal{H}} |V(\psi(\pi), \pi) - V(\psi(\pi^*), \pi^*)| \le \varepsilon_{\psi}$$

We denote π_{det}^* as ε_{ψ} -optimal policy defined as

$$\pi_{\text{det}}^* \triangleq \underset{\pi \in \mathcal{H}}{\operatorname{argmin}} |V(\psi(\pi), \pi) - V(\psi(\pi^*), \pi^*)|.$$

In the following, we list some examples of the ε_{ψ} -optimal approximation. These examples are established based on the following lemma.

Lemma 9. For any best response oracle ψ , if $\|\pi - \pi^*\| \le \varepsilon$, then

$$|V(\psi(\pi), \pi) - V(\psi(\pi^*), \pi^*)| \le L_{\psi} \varepsilon,$$

where $L_{\psi} > 0$ is a constant.

Example 10. Given a finite hypothesis set \mathcal{H}_{fin} . For $\varepsilon > 0$, Define an infinite hypothesis \mathcal{H}_{inf} as

$$\mathcal{H}_{\inf} \triangleq \{ \pi | \| \pi - \pi' \| \leq \varepsilon, \pi' \in \mathcal{H}_{\operatorname{fin}} \}.$$

For the constructed \mathcal{H}_{inf} , \mathcal{H}_{fin} is an $L_{\psi} \varepsilon$ -optimal approximation of \mathcal{H}_{inf} .

Example 11. Given a specific neural network structure \mathcal{N} , we define \mathcal{H}_{inf} as the set comprising all neural networks characterized by the set all possible parameters Θ that is in accordance with the specified structure, formally represented as,

$$\mathcal{H}_{inf} = \{ \pi | \pi \in \mathcal{N}(\theta), \theta \in \Theta \}.$$

We proceed to create a discretization of Θ , denoted as Θ . The finite approximation set \mathcal{H}_{fin} is defined as

$$\mathcal{H}_{\text{fin}} = \{ \pi | \pi \in \mathcal{N}(\theta), \theta \in \hat{\Theta} \}.$$

By the choice of discretization interval, we can ensure that $\|\pi - \pi^*\| \le \varepsilon$. Consequently, the discretized set \mathcal{H}_{fin} serves as $L_{\psi}\varepsilon$ -optimal approximation of \mathcal{H}_{inf} .

2.2 Regret Analysis

Now, given an infinite hypothesis set \mathcal{H}_{inf} with an ε_{ψ} -optimal approximation set \mathcal{H}_{fin} , we are prepared to execute the MEX algorithm within the confines of \mathcal{H}_{fin} . The regret analysis is given in the following Theorem.

Theorem 12. Given an MDP with generalized eluder coefficient $d_{GEC}(\cdot)$ and an infinite hypothesis class \mathcal{H}_{inf} with $\pi^* \in \mathcal{H}_{inf}$. For any ε_{ψ} -optimal approximation \mathcal{H}_{fin} of \mathcal{H}_{inf} , by setting

$$\eta = \sqrt{\frac{d_{\rm GEC}(1/\sqrt{HK})}{\log(Hn^{\psi}(\mathcal{H}_{\rm fin})/\delta) \cdot HK}},$$

the regret of the MEX algorithm applying on \mathcal{H}_{fin} with oracle ψ after K episodes is upper bounded by, with probability at least $1-\delta$,

$$\operatorname{Regret}(K) \lesssim \sqrt{d_{\operatorname{GEC}}(1/\sqrt{HK}) \cdot \log(Hn^{\psi}(\mathcal{H}_{\operatorname{fin}})/\delta) \cdot HK} + K\varepsilon_{\psi}.$$

Proof. By the choice of π^k , we have

$$V(\psi(\pi_{\text{det}}^*), \pi_{\text{det}}^*) - \eta \sum_{h=1}^{H} L_h^{k-1}(\pi_{\text{det}}^*) \le V(\mu^k, \pi^k) - \eta \sum_{h=1}^{H} L_h^{k-1}(\pi^k)$$

for all $k \in [K]$. By Definition 8,

$$V(\psi(\pi_{\text{det}}^*), \pi_{\text{det}}^*) \ge V(\psi(\pi^*), \pi^*) - \varepsilon_{\psi}.$$

Thus,

$$V(\psi(\pi^*), \pi^*) - V(\mu^k, \pi^k) \le \eta \sum_{h=1}^H L_h^{k-1}(\pi_{\text{det}}^*) - \eta \sum_{h=1}^H L_h^{k-1}(\pi^k) + \varepsilon_{\psi}.$$

Follow the same procedure in the proof of Theorem 5 leads to the proof.

Remark 13. The linear term $K\varepsilon_{\psi}$ cannot be eliminated. Consider the best case where $\pi^k = \pi_{\text{det}}^*$ for all $k \in [K]$. The regret is

$$\begin{split} \operatorname{Regret}(K) &= \sum_{k=1}^{K} V(\psi(\pi_{\operatorname{det}}^*), \pi_{\operatorname{det}}^*) - V(\psi(\pi^*), \pi^*) \\ &= K(V(\psi(\pi_{\operatorname{det}}^*), \pi_{\operatorname{det}}^*) - V(\psi(\pi^*), \pi^*)) \\ &< K\varepsilon_{\psi}. \end{split}$$

3 Appendix

3.1 Lemmas

Lemma 14. With probability at least $1 - \delta$, for any $(h, k) \in [H] \times [K]$, $\mu^s \in BR(\pi^s)$, and $\pi \in \Pi$

$$L_h^{k-1}(\pi^*) - L_h^{k-1}(\pi) \le -2\sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s}[\ell_{\pi^s}(\pi; \xi_h)] + 2\log(H|\Pi|/\delta).$$

Proof. Given $\pi \in \mathcal{H}$, we denote the random variable $X_{h,\pi}^k$ as

$$X_{h,\pi}^{k} = \log \left(\frac{\mathbb{P}_{h,\pi^{*}}(s_{h+1}^{k} | s_{h}^{k}, a_{h}^{k})}{\mathbb{P}_{h,\pi}(s_{h+1}^{k} | s_{h}^{k}, a_{h}^{k})} \right).$$

Now we define a filtration $\{\mathcal{F}_{h,k}\}_{k=1}^K$ as (B.25) in [1]. Thus we have $X_{h,\pi}^k \in \mathcal{F}_{h,k}$. Therefore, by applying Lemma D.1 in [1], we have that with probability at least $1-\delta$, for any $(h,k) \in [H] \times [K]$, and $\pi \in \Pi$, we have

$$-\frac{1}{2}\sum_{s=1}^{k-1} X_{h,\pi}^{s} \le \sum_{s=1}^{k-1} \log \mathbb{E} \left[\exp \left\{ -\frac{1}{2} X_{h,\pi}^{s} \right\} | \mathcal{F}_{h,s-1} \right] + \log(H|\Pi|/\delta). \tag{1}$$

Meanwhile, by (B.27) in [1], for any $\mu^s \in BR(\pi^s)$, the conditional expectation equals to

$$\mathbb{E}\left[\exp\left\{-\frac{1}{2}X_{h,\pi}^{s}\right\} | \mathcal{F}_{h,s-1}\right] = 1 - \mathbb{E}_{(s_{h}^{s}, a_{h}^{s}) \sim \mu^{s}} [D_{H}(\mathbb{P}_{h,\pi^{*}}(\cdot | s_{h}^{s}, a_{h}^{s}) | | \mathbb{P}_{h,\pi}(\cdot | s_{h}^{s}, a_{h}^{s}))]. \tag{2}$$

Denote $\mathbb{E}_{(s_h^s, a_h^s) \sim \mu^s}[D_H(\mathbb{P}_{h, \pi^*}(\cdot | s_h^s, a_h^s) || \mathbb{P}_{h, \pi^s}(\cdot | s_h^s, a_h^s))]$ as $\mathbb{E}_{\xi_h \sim \mu^s}[\ell_{\pi^s}(\pi; \xi_h)]$. Using the fact $\log(x) \leq x - 1$ and substituting (2) into (1) finishes the proof.

3.2 Proof of Theorem 5

Proof. We decompose the regret into two terms,

$$\operatorname{Regret}(K) \triangleq \sum_{k=1}^{K} V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^*)$$

$$= \underbrace{\sum_{k=1}^{K} V(\psi(\pi^*), \pi^*) - V(\psi(\pi^k), \pi^k)}_{\text{Term (i)}} + \underbrace{\sum_{k=1}^{K} V(\psi(\pi^k), \pi^k) - V(\psi(\pi^k), \pi^*)}_{\text{Term (ii)}}.$$

Term (i). By the choice of π^k , we have

$$V(\psi(\pi^*), \pi^*) - \eta \sum_{h=1}^{H} L_h^{k-1}(\pi^*) \le V(\mu^k, \pi^k) - \eta \sum_{h=1}^{H} L_h^{k-1}(\pi^k)$$

for all $k \in [K]$. Thus,

$$V(\psi(\pi^*), \pi^*) - V(\mu^k, \pi^k) \le \eta \sum_{h=1}^H L_h^{k-1}(\pi^*) - \eta \sum_{h=1}^H L_h^{k-1}(\pi^k).$$
 (3)

for any $\pi^k \stackrel{\psi}{\sim} \pi^{k'}$, we have

$$V(\psi(\pi^k), \pi^k) = V(\psi(\pi^{k'}), \pi^{k'}).$$

Thus, an upper bound for $V(\psi(\pi^*), \pi^*) - V(\mu^k, \pi^k)$ is also an upper bound for $V(\psi(\pi^*), \pi^*) - V(\mu^{k'}, \pi^{k'})$. Applying Lemma 14, we have that with probability at least $1 - \delta$, for any $(h, k) \in [H] \times [K]$, $\mu^s = \psi(\pi^s)$ and $\pi^k \in \mathcal{H}_{\text{fin}}$,

$$L_h^{k-1}(\pi^*) - L_h^{k-1}(\pi^k) \le -2\sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s}[\ell_{\pi^s}(\pi; \xi_h)] + 2\log(Hn^{\psi}(\mathcal{H}_{fin})/\delta).$$

Substituting the above equation into (3) gives us that with probability at least $1 - \delta$, for any $k \in [K]$, $\mu^s = \psi(\pi^s)$ and $\pi^k \in \mathcal{H}_{\text{fin}}$

$$V(\psi(\pi^*), \pi^*) - V(\mu^k, \pi^k) \le -2\eta \sum_{h=1}^{H} \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s} [\ell_{\pi^s}(\pi; \xi_h)] + 2H\eta \log(Hn^{\psi}(\mathcal{H}_{fin})/\delta).$$

Summing over [K] gives us

Term (i)
$$\leq -2\eta \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s} [\ell_{\pi^s}(\pi; \xi_h)] + 2\eta K H \log(Hn^{\psi}(\mathcal{H}_{fin})/\delta).$$

Term (ii). Follow the proof of Theorem 4.4 in [1], we have that for all $\mu^s = \psi(\pi^s)$

Term (ii)
$$\leq 2\eta \sum_{h=1}^{K} \sum_{h=1}^{H} \sum_{s=1}^{k-1} \mathbb{E}_{\xi_h \sim \mu^s} [\ell_{\pi^s}(\pi; \xi_h)] + \frac{d_{\text{GEC}}(\varepsilon_{\text{conf}})}{8\eta} + \sqrt{d_{\text{GEC}}(\varepsilon_{\text{conf}})HK} + \varepsilon_{\text{conf}}HK.$$

Combining Term (i) and Term (ii).

$$\begin{split} \text{Regret}(K) &= \text{Term (i)} + \text{Term (ii)} \\ &\leq 2\eta K H \log(H n^{\psi}(\mathcal{H}_{\text{fin}}) / \delta) + \frac{d_{\text{GEC}}(\varepsilon_{\text{conf}})}{8\eta} + \sqrt{d_{\text{GEC}}(\varepsilon_{\text{conf}}) H K} + \varepsilon_{\text{conf}} H K. \end{split}$$

Set $\varepsilon_{\rm conf} = 1/\sqrt{HK}$ and

$$\eta = \sqrt{\frac{d_{\text{GEC}}(1/\sqrt{HK})}{\log(Hn^{\psi}(\mathcal{H}_{\text{fin}})/\delta) \cdot HK}}$$

leads to the proof.

Bibliography

[1] Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang, and Zhaoran Wang. One Objective to Rule Them All: A Maximization Objective Fusing Estimation and Planning for Exploration. may 2023.