硬币机

对于题目给定的权值 a, b, 由于 b 必须在获得 a 后才能获得。我们可以发现设计 a, a+b 两种权值可以分离"b 必须在获得 a 后才能获得"的这种顺序,同时还能满足原题所需要的条件。

文章查重

测试点 $1\sim 3$

任意的暴力应该都能过。

测试点 $4\sim5$

因为只有字符 0,所以出现次数只与 S 和 T_i 的长度有关,为 $\mid T_i \mid - \mid S \mid +1$,维护 T_i 的长度即可。

测试点 $6\sim10$

由于 $k_i = 1$ 考虑建出所有串的 Trie 树。

在Trie 跑S 的KMP,暴力跑KMP匹配即可。

测试点 $11\sim14$

是否有优秀的 O(nlogn) 做法?

测试点 $15\sim 20$

和测试点 $6 \sim 10$ 的区别在于 k_i 不一定等于 1。

除了需要处理在后面接上字符串 D,还需要处理两个 T_i 串衔接部分造成的额外贡献。

由于 $|T_0|>|S_0|$,所以每一个衔接处的后半部分是确定的,所以它的前缀是 S_0 的后缀集合是固定的,可以通过找到 T_0 前缀的最长 S_0 后缀,来求出前半部分是 S_0 的某个前缀时对于答案的贡献。

实时处理 T_i 的最长的是 S_0 前缀的后缀,这个也就是 KMP 维护的信息。

时间复杂度 $O(|S| + \sum |T| + \sum |D_i|)$ 。

酒杯

笪法—

设 $f_{i,j}$ 表示前i层放了j个AC的方案数,转移枚举第i+1层放了 $k\geqslant 1$ 个。复杂度 $O\left(nm^2\right)$ 。

算法二

考虑子集反演。设 f_S 表示至少S对应的层为空的方案数, g_S 表示恰好。那么有 $f_S=($ 所有层的大小之和-在集合S中的层的大小之和 $)^m$,我们发现它就等于 $((2^n-1)-S)^m$ 。记p(i)为i二进制下1的个数,所求即为 $g_\emptyset=\sum_S (-1)^{|S|}f_S=\sum_{i=0}^{2^n-1} (-1)^{n-p(i)}i^m$ 。复杂度 $O(2^n\log m)$ 。

算法三

对上述式子求解。记 $f_{i,j}$ 为 $\sum_{x=0}^{2^i-1}(-1)^{n-p(x)}x^j$ 的值。讨论第i位为0/1,为1就乘上-1的系数,再根据二项式定理转移。复杂度 $O\left(nm^2\right)$

算法四

我们发现每一位的取值只有0/1,并且互不影响,于是将逐位转移用倍增优化。复杂度 $O\left(m^2\log n\right)$,可以通过。

第K大MEX

希望没有被爆标。

希望暴力没有拿不该拿的分。

测试点1

没有操作。

测试点 $2\sim5$

离散化然后暴力。

测试点 $6\sim7$

可以莫队,直接 $O(n\sqrt{n}\log n)$ 应该可以过;当然也可以值域分块做到 $O(n\sqrt{n})$ 。

更有启发性的做法是建立主席树,每个位置维护 $p_{i,v}$ 表示 $1\sim i$ 中 v 最后出现的位置,查询可以主席树上二分第一个 < l 的 $p_{i,v}$ 。

测试点 $8\sim11$

不会,但是莫队 $O(n\sqrt{n})/O(n\sqrt{n}\log n)$ 应该都能过。

测试点 $12\sim21$

不会。

测试点 $22\sim25$

考虑修改操作:分块,对于每一个块维护出值为 v 的任意一个位置 $pt_{i,v}$,全局维护一个并查集表示同一连通块中的权值相同,即 $a_i=a_{rt_i}$,这样对于一个整块的修改操作即为将 $pt_{i,x}$ 在并查集上的父亲设为 $pt_{i,y}$;对于散块可以直接暴力;这样修改操作就可以做到 $O(B+\frac{n}{B})$ (忽略并查集)。

在 $6\sim 7$ 中我们有一个 $O(\log n)$ 查询 \max 的方法,考虑扩展这个方法:首先,由于修改主席树是不可能的,而且难以扩展到 k>1 的情况,所以考虑更暴力的维护方式。

注意到 \max 信息以及 $p_{i,v}$ 是难以合并的,所以舍弃线段树等需要信息合并的数据结构,考虑分块。

类似在线莫队,维护 $O(\frac{n}{B})$ 个关键点,每个关键点对应前缀信息 $p_{i,v}$,每次查询将 r 前面最后一个关键点到 r 之间的信息再加入 $p_{i,v}$,这样可以维护 $p_{r,v}$ 。

对于 k>1 的 kthmex 查询,如果使用普通的二分答案,要解决的问题是 $p_{r,v}< l,v\leq mid$ 二维偏序,基本不可能维护,所以选择更加契合分块结构的值域分块来做查询,即维护 [kT+1,kT+T] 的 $p_{r,v}$ 的前/后缀信息,支持单点修改,可以用树状数组等结构维护,然后查询时时间复杂度为 $O(\frac{V}{T}\log n+T)$,离散化后为 $O(\frac{n}{T}\log n+T)$ 。

总结一下,修改操作使用分块维护 a_i 信息,同时处理出每一个关键点前缀对应 $p_{i,v}$ 的变化情况,只会变化 $p_{i,x}$ 与 $p_{i,y}$ 且是可维护的,用树状数组修改 $p_{i,x}/p_{i,y}$ 的值,时间复杂度为 $O(\frac{n}{B}\log n + B)$ 。

查询操作,找到 r 前最后一个关键点 p,如果 p>l,则直接暴力将 [l,r] 中的点加入值域分块,这一部分的时间复杂度为 $O(B+T+\frac{n}{T})$;否则 $p\leq l$,直接使用 p 所维护的 $p_{p,v}$ 信息,将 [p+1,r] 中的权值设置为一定出现,然后遍历值域分块,对于每一个块查询 $\geq l$ 的 $p_{p,v}$ 数量,注意要加入 [p+1,r] 的情况,这样可以得到答案所对应的值域块;遍历这个小值域块,再查询 $p_{p,v}$ 与 l 的大小关系,最终得到答案,这一部分时间复杂度为 $O(B+\frac{n}{T}\log n+T)$ 。

取
$$B = T = \sqrt{n \log n}$$
,总的时间复杂度为 $O(n \sqrt{n \log n})$ 。

关于空间: 如果要做到严格 $O(n\sqrt{\frac{n}{\log n}})$ 的空间复杂度,需要将树状数组改为平衡树,这样可以保证 c 个点的空间消耗为 O(c),但是这样实现常数会非常大,而且查询的 $\frac{n}{T}\log n$ 与修改的 $\frac{n}{B}\log n$,都比另一部分查询 T 与修改 B 慢很多很多,出题人实现的这个做法跑的很慢, $n=m=10^5$,修改操作基本会修改的数据下大概要跑 6s (本机) ,洛谷 5s 很勉强,详见 $\mathrm{std}1$ 。

本来平衡树实现版本是以前的 ${\rm std}$,但是由于跑的太慢了,所以当时把数据调小到了 8×10^4 ,仍然需要跑 $2\sim 3s$ 。

但是其实查询的 T 以及修改的 B 部分跑的很快,将 T/B 设置到 $30\sim60$ 左右会变快,而且此时可以用树状数组替换平衡树维护 $p_{r,v}$,空间复杂度虽然是 $O(n\sqrt{n\log n})$ 但是实际空间消耗比原来小,因为树状数组只有一个数组,而且这个数组可以只开 unsigned short,详见 $\mathrm{std}2$,所以可以跑 $n=m=10^5$ 的数据,本机 2.5s,洛谷上 1.5s,所以时限是 3.5s。