Métodos Computacionais 2 Lista 1 Alexandre Campos DRE: 115152457

Questão 1.

Solução 1.

a) Houve uma melhora considerável entre o método de Euler simples para os outros dois: Euler-Cromer e Runge-Kutta. Pode-se dizer que foi uma melhora pois para um pêndulo sem amortecimento, espera-se que o movimento esteja confinado num intervalo, isto é, com uma amplitude fixa. Claramente para o primeiro método, a amplitude do movimento aumenta sem que qualquer força externa tenha sido aplicada. Esse problema é minimizado nos dois outros métodos, onde não é possível ver nenhuma variação na amplitude - olhando apenas para esses dois gráficos.

Figura 1: Gráficos de $\theta \times t$ para os métodos de Euler simples, Euler-Crome e Runge-Kutta, respectivamente da esquerda para direita.

b) Para o gráfico de $\omega \times t$, pode-se confirmar que o método de Euler simples mostra que pêndulo fica mais rápido a cada período, enfatizando o argumento do item (a). Já os outros dois métodos continuam não mostrando diferença aparente entre si e parecem reproduzir o movimento esperado.

Figura 2: Gráficos de $\omega \times t$ para os métodos de Euler simples, Euler-Crome e Runge-Kutta, respectivamente da esquerda para direita.

c) Os graficos abaixo mostra as sobreposições da energia cinética, potencial e total; onde fica clara a diferença entre cada um dos métodos, principalmente nos dois últimos.

Figura 3: Gráficos das energias cinética, potencial e total em função do tempo para os métodos de Euler simples, Euler-Crome e Runge-Kutta, respectivamente da esquerda para direita.

d) A partir do item (c) pode-se ver que o método de Euler simples não conserva a energia do sistema. Esta vai aumentando rapidamente. Já no método de Euler-Cromer, há uma melhora significativa que só pôde ser observada neste gráfico de energia. Embora a energia mecânica não esteja se conservando, ela está mudando com um comportamento oscilatório. Ou seja, a diferença nos gráficos de $\theta \times t$ e $\omega \times t$ é muito sútil. O impressionante deste método é que a única mudança em relação ao anterior, é que o θ é calculado com um passo a mais do ω . O método de Runge-Kutta se mostra superior aos dois anteriores pois a energia total do sistema parece se conservar.

Questão 2.

Solução 2.

- a) O método usado foi o de Runge-Kutta por sue superioridade em relação aos outro dois métodos, como mostrado na questão anterior. O passo utilizado foi de 0.01, um pouco menor do que utilizado anteriormente, com o objetivo de tentar aumentar um pouco a precisão, já que esta mudança não afeta o tempo de execução do programa. Outra mudança em relação à questão 1 foi o tempo de execução de 5 período para 15 para se ver mais pontos na seção de Poincaré.
- b) Os gráficos das trajetórias no espaço de fase são:

Figura 4: Órbita no espaço de fase para valores de $\alpha=0.5$ (figura da esquerda) e $\alpha=1.2$ (figura da direita) produzidos com o método de Runge-Kutta.

c) As seções de Poincaré com a configuração da questão estão nos gráficos abaixo.

Figura 5: Seções de Poincaré para valores de $\Omega_D = 2/3$ e $\alpha = 0.5$ (figura da esquerda) e $\alpha = 1.2$ (figura da direita) produzidos com o método de Runge-Kutta.

d) As seções de Poincaré com a $\Omega_D = \frac{4}{3}$ para aparecerem mais ponto na seção.

Figura 6: Seções de Poincaré para valores de $\Omega_D = 4/3$ e $\alpha = 0.5$ (figura da esquerda) e $\alpha = 1.2$ (figura da direita) produzidos com o método de Runge-Kutta.

e) As seções de Poincaré fornecem uma maneira mais "simples" de se estudar o espaço de fase. Mudando um espaço complicado como do item (b) para um espaço com menos ponto como o do item (c). Além disso, pode-se ver quando um movimento converge ou está em um movimento caótico. Abaixo colocarei os gráficos de $\theta \times t$ das seções de Poincaré com $\alpha = 1.2$ mas com $\Omega_D = 2./3$ pro gráfico a esquerda e $\Omega_D = 4./3$ pro gráfico á direita. Pode-se ver nas seções de Poincaré que a órbita do item (c) (gráfico à direita) parece convergir, com valores de θ muito próximos a cada período. Já a órbita do item (b) parece estar menos ordenada.

Figura 7: Gráfico de $\theta \times t$ para as seções de Poincaré para valores de $\alpha = 1.2$ e $\Omega_D = 2/3$ (figura da esquerda) e $\Omega_D = 4/3$ (figura da direita) produzidos com o método de Runge-Kutta.

Questão 3.

Solução 3.

a) O gráficos ficaram bem parecidos com o da primeira questão para $\alpha=1$, o que era de se esperar, já que o movimento da questão 1 se dá à pequenos ângulos, pode-se aproxima-lo por um oscilador harmônico. Como exemplo, temos o gráfico de $\theta \times t$ e da energias do sistema.

Figura 8: Gráfico de $\theta \times t$ (à esquerda) e Energia em função do tempo (à direita) para o oscilador harmônico simples com $\alpha = 1$.

Nesse caso, o k tem dimensão de $\frac{1}{[s]^2}$.

