Exercises FYS4480, week 38, September 18-22, 2023

Exercise 1

This exercise is a continuation of the exercises from last week on the so-called Lipkin model. We considered a state with all fermions in the lowest single-particle state

$$|\Phi_{J_z=-2}\rangle = a_{1-}^{\dagger} a_{2-}^{\dagger} a_{3-}^{\dagger} a_{4-}^{\dagger} |0\rangle.$$

This state has $J_z = -2$ and belongs to the set of projections for J = 2. We will use the shorthand notation $|J, J_z\rangle$ for states with different spon J and spin projection J_z . The other possible states have $J_z = -1$, $J_z = 0$, $J_z = 1$ and $J_z = 2$.

Use the raising or lowering operators J_+ and J_- in order to construct the states for spin $J_z = -1$ $J_z = 0$, $J_z = 1$ and $J_z = 2$. The action of these two operators on a given state with spin J and projection J_z is given by $(\hbar = 1)$ by $J_+ |J, J_z\rangle = \sqrt{J(J+1) - J_z(J_z+1)} |J, J_z+1\rangle$ and $J_- |J, J_z\rangle = \sqrt{J(J+1) - J_z(J_z-1)} |J, J_z-1\rangle$.

Exercise 2

We define the one-particle operator

$$\hat{T} = \sum_{\alpha\beta} \langle \alpha | t | \beta \rangle \, a_{\alpha}^{\dagger} a_{\beta},$$

and the two-particle operator

$$\hat{V} = \frac{1}{2} \sum_{\alpha\beta\gamma\delta} \langle \alpha\beta | v | \gamma\delta \rangle a_{\alpha}^{\dagger} a_{\beta}^{\dagger} a_{\delta} a_{\gamma}.$$

We have defined a single-particle basis with quantum numbers given by the set of greek letters $\alpha, \beta, \gamma, \dots$

a) Show that the form of these operators remain unchanged under a transformation of the single-particle basis given by

$$|i\rangle = \sum_{\lambda} |\lambda\rangle \langle \lambda|i\rangle \,,$$

with $\lambda \in \{\alpha, \beta, \gamma, \ldots\}$. Show also that $a_i^{\dagger} a_i$ is the number operator for the orbital $|i\rangle$.

b) Find also the expressions for the operators T and V when T is diagonal in the representation i.