Functional Analysis-Spring 2024

 $\begin{array}{c} {\rm Paul~Carmody} \\ {\rm Assignment~\#7-~May~16,~2024} \end{array}$

- p. 290 #6, 7
- 6. Let X and Y be Banach spaces and $T: X \to Y$ an injective bounded linear operator. Show that $T^{-1}: \mathcal{R}(T) \to X$ is bounded if and only if $\mathcal{R}(T)$ is closed in Y.
 - (\Rightarrow) $T^{-1}: \mathcal{R}(T) \to X$ is bounded. $||T^{-1}y|| = ||T^{-1}|| ||y||$. Given any Cauchy sequence $(y_n) \subset \mathcal{R}(T)$ must converge and let y be such that $y_n \to y$.
 - $(\Leftarrow) \mathcal{R}(T)$ is closed.
- 7. Let $T: X \to Y$ be a bounded linear operator, where X and Y are Banach spaces. If T is bijective, show that there are positive real numbers a and b such that $a ||x|| \le ||Tx|| \le b ||x||$ for all $x \in X$.

- p. 296 # 8, 9, 10
- 8. Let X and Y be normed spaces and let $T: X \to Y$ be a closed linear operator.
 - (a) Show that the image A of a compact subset $C \subset X$ is closed in Y.
 - (b) Show that the inverse image B of a compact subset $K \subset Y$ is closed in X. (Cf. Def. 2.5-1)
- 9. If $T: X \to Y$ is a closed linear opearator, where X and Y are normed spaces and Y is compact, show that T is bounded.
- 10. Let X and Y be normed spaces and X compact. If $T: X \to Y$ is a bijective closed linear operator, show that T^{-1} is bounded.

- p. 246 # 2, 3, 4
- 2. Give a simpler proof of Lemma 4.6-7 for the case tha tX is a Hilbert space.
- 3. If a normed space X is reflexive, show that X' is reflexive.
- 4. Show that a Banach space X is reflexive if and only if its dual space X' is reflexive. (*Hint.* It can be shown that a closed subspace fo a reflexive Banach space is reflexive. Use this fact, without proving it.)

- p. 268 #4, 7
- 4. Show that weak convergence in footnote 6 implies weak* convergence. Shwo that the converse holds if X is reflecive.
- 7. Let $T_n \in B(X,Y)$, where X is a Banach space. If (T_n) is strongly operator convergent, show that $(\|T_n\|)$ is bounded.