Stochastic Variational Inference

MPRI — Cours 2.40 "Probabilistic Programming Languages"

Xavier Rival

INRIA, ENS, CNRS

Jan, 25th. 2024

Probabilistic Programming Languages Inference

Inference

Evaluation of the posterior probability distribution

Caveats:

- exact inference either impossible or not tractable in general
- many techniques for approximate inference several of them discussed in the previous classes

Today's plan: stochastic variational inference (SVI)

- intuition and definition how to formalize the semantics of SVI
- issues: it may not work, unless some conditions are satisfied questions: how to characterize these conditions, how to check them?

We consider **Pyro**, a probabilistic programming language implemented over Python with support for SVI, available at https://pyro.ai. Formalisation with a subset of the course language

Outline

- Introduction
- 2 Basic Intuition Underlying SVI
- Semantics for SVI
- 4 SVI
- **(5)** Ensuring correctness of SVI
- Conclusion

Evaluation of probabilistic programs

What does it mean to evaluate a probabilstic program ? How to do that ?

Enumeration:

- run all the executions and compute the probability of each of them
- only works in the discrete case...

Importance weighting:

- compute a family of executions together with their probability
- executions are chosen at random (hopefully well)

Rejection sampling:

- compute a family of executions
- reject unlikely executions, accumulate those with high probability

Variational inference:

- search for a simpler program that is close enough
- ... more on this today...

A first, very basic model

We build a model step by step, to construct an example for SVI.

Model Pyro code:

```
def model():
    x = pyro.sample("v", Normal(0., 5.))
```

Meaning:

- sample: draws a value based on a distribution in this case, normal distribution, mean 0, standard deviation 5
- i.e., values of variable random v (python variable x) distributed around 0 with some imprecision

Distribution over executions based on the final value of x:

A second, more interesting model

Model Pyro code:

```
def model():
    x = pyro.sample("v", Normal(0., 5.))
    if (x > 0):
        pyro.sample("obs", Normal(1., 1.), obs=x)
    else:
        pyro.sample("obs", Normal(-2., 1.), obs=x)
```

Meaning:

- sample without obs=...: sampling, as before
- sample with obs=...: conditioning determined by observation

Distribution on random variable v:

Distribution defined by the model

Model Pyro code:

```
def model():
    x = pyro.sample("v", Normal(0., 5.))
    if (x > 0):
        pyro.sample("obs", Normal(1., 1.), obs=x)
    else:
        pyro.sample("obs", Normal(-2., 1.), obs=x)
```

Prior on random variable v, before observation taken into account: *i.e.*, when observations on the value of obs are ignored

Distribution defined by the model

Model Pyro code:

```
def model():
    x = pyro.sample("v", Normal(0., 5.))
    if (x > 0):
        pyro.sample("obs", Normal(1., 1.), obs=x)
    else:
        pyro.sample("obs", Normal(-2., 1.), obs=x)
```

Posterior distribution on random variable v, after observations on observations and compared with the prior:

Distribution defined by the model

Model Pyro code:

```
def model():
    x = pyro.sample("v", Normal(0., 5.))
    if (x > 0):
        pyro.sample("obs", Normal(1., 1.), obs=x)
    else:
        pyro.sample("obs", Normal(-2., 1.), obs=x)
```

Posterior distribution on random variable v, after observations on observations and compared with the prior:

Can we discover a simpler, accurate enough approximation of the posterior, as a program ?

Model approximation with a parameterized "guide"

SVI main Idea:

specify a template for a family of candidate functions to approximate the posterior, then choose among them the most suitable one

Guide

Companion program with randomized parameter, aimed at approximating the posterior distribution defined in the model

In our example: sampling the parameter from a normal distribution

```
def guide():
 xtheta = pyro.param("theta", 3.)
 x = pyro.sample("v", Normal(xtheta, 1.))
```

One instance of the guide, with a positive θ (expected outcome)

Objective of variational inference

SVI first question

How to define the optimization objective? How to define the best guide?

Data: probablistic program *P* called **model** samples variables *X*, observes variables *Z*

- We fix the family of guides programs with special variables identified as parameters
- Probabilistic programs denote posterior probability distributions
 - \triangleright p(X|Z) for model
 - $ightharpoonup q_{\theta}(X)$ for guide instance θ
- We fix a **distance over distributions** *d* in general, KL divergence

Objective: guide parameter θ_{opt} instance that minimizes distance

Stochastic computation of an approximation of the objective

SVI second question

How to solve the optimization problem in practice ?

Gradient descent algorithm:

- Pick initial parameter θ_0
- **3** Estimate the gradient ∇_{θ} of the distance at point θ_0 and make a step in that direction, to compute θ_1
- **3** Repeat to compute θ_2, \ldots and stop after K steps

Stochastic approximation of the gradient at θ :

- Sample N runs, based on the guide
- Compute an estimate gradient based on the average variation

Convergence: based on properties of the optimization problem

Outline

- Semantics for SVI
 - Measure semantics
 - Density semantics

Towards a stochastic approximation of the distance

Main step of the gradient descent algorithm:

⇒ estimation of the distance between distributions

High-level overview of a single step of gradient descent (full algorithm shown later):

- sample a number of executions (stochastic)
- for each sampled execution, compute probability density (for short, density)
- produce a gradient approximation based on the executions and their densities

How to compute the probability density of an expression?

In the following, we propose a density semantics that answers the question:

- first, we recall the kernel semantics:
 maps a state into a probability distribution over outcomes
- then, we construct a new semantics called **density semantics**, that produces not only output states but also probability density

Implementation: an evaluator following this density semantics (instrumented runtime)...

A basic imperative probabilistic programming language

We define a minimalistic form of ByoPPL.

A few assumptions:

- imperative control structures (while language),
- real numbers (not floating point)
- only normal distributions in the minimalistic syntax below though examples may use other distributions as well
- countable set of random variables, represented with string names

Basic syntax:

```
E,B,S real, boolean, string expressions C::= commands | skip | C_0; C_1 | x:=E | if B\{C\} else \{C\} | while B\{C\} | x:= sample_{\mathcal{N}}(k,E_0,E_1) | k: random variable name, E_0: mean, E_1: standard dev. | observe_{\mathcal{N}}(E_0,E_1,E_2) | E_0: observed value, E_1: mean, E_2: standard dev.
```

Towards two semantics

Common characteristics:

- executions record all random choices random choices are stored in a dictionary binding names to values
- states comprise a memory and a random dictionary

Example:

$$x := \operatorname{sample}_{\mathcal{N}}(\mathfrak{s0}, 0, 1);$$

$$y := \operatorname{sample}_{\mathcal{N}}(\mathfrak{s1}, 2, 1);$$

```
initial state: (s2 \mapsto 2), (x \mapsto 8, y \mapsto 9)
final state: (s0 \mapsto 0.5, s1 \mapsto 1.5, s2 \mapsto 2), (x \mapsto 0.5, y \mapsto 1.5)
```

- consequence 1: a given random variable is sampled at most once
- consequence 2: initially present unsampled variables remain in the dictionary
- consequence 3: sampling from a variable already in the dictionary is blocking

Our two semantics:

- Wernel semantics: maps states into probability distributions over states
- Oensity semantics: maps states into states with a probability density

Notations

We fix the following definitions:

- X: set of program variables
- V: set of scalar values (we assume real numbers, not floating point)
- $\mathbb{M} = [\mathbb{X} \to \mathbb{V}]$: set of **memory states** (notation: $\mu \in \mathbb{M}$)
- K: set of random variables, corresponding to strings
- $\mathbb{P} = [\mathbb{K} \to \mathbb{V}]$: set of **random databases** (or random dictionaries) (notation: $\rho \in \mathbb{P}$)
- $\mathbb{S} = \mathbb{M} \times \mathbb{P}$: set of states (notation: $\sigma \in \mathbb{S}$)
- given a measurable set \mathbb{A} , we note $\mathcal{M}(\mathbb{A})$ for the set of measurable subsets of \mathbb{A}

Assumptions

We fix the following definitions: **Assumptions**:

- ullet usual structure of measurable space structures over \mathbb{M} , \mathbb{P} , and \mathbb{S}
- notion of probability kernel over A and measurable set A': function from A to probability distributions over A' (previous lecture)
 - ▶ probability kernel: total measure is 1, noted $\mathcal{K}(\mathbb{A}, \mathbb{A}')$
 - ▶ sub-probability kernel: total measure ≤ 1 , noted $\mathcal{K}(\mathbb{A}, \mathbb{A}')_{\mathsf{sub}}$

Semantics:

 we assume a semantics of expressions: for all express E:

$$\llbracket E
rbracket : \mathbb{M} \to \mathbb{V}$$

(random variables not used)

Semantics of commands:

$$\llbracket \mathcal{C}
rbracket_{\mathcal{M}} \in \mathcal{K}(\mathbb{S}, \mathbb{S} imes \mathbb{R}^+)_{\mathsf{sub}}$$

Or equivalently:

$$\llbracket \mathcal{C}
rbracket_{\mathcal{M}} : \mathbb{S} o (\mathcal{M}(\mathbb{S} imes \mathbb{R}^+) o_{\mathcal{M}} [0,1]) \equiv (\mathbb{M} imes \mathbb{P}) o \mathcal{M}(\mathbb{M} imes \mathbb{P} imes \mathbb{R}^+) o_{\mathcal{M}} [0,1]$$

$$\llbracket \mathcal{C}
rbracket_{\mathcal{M}} : \mathbb{S} o (\mathcal{M}(\mathbb{S} imes \mathbb{R}^+) o_{\mathcal{M}} [0,1]) \equiv (\mathbb{M} imes \mathbb{P}) o \mathcal{M}(\mathbb{M} imes \mathbb{P} imes \mathbb{R}^+) o_{\mathcal{M}} [0,1]$$

Assignment statement x := E

$$\llbracket x := E \rrbracket_{\mathcal{M}}(\mu, \rho)(S) \triangleq \mathbb{1}_{\llbracket ((\mu[x \mapsto \llbracket E \rrbracket(\mu)], \rho), 1) \in S \rrbracket}$$

- weight is not modified
- variable x is updated in the store
- note: expressions should not read random variables directly

$$\llbracket \mathcal{C}
rbracket_{\mathcal{M}} : \mathbb{S} o (\mathcal{M}(\mathbb{S} imes \mathbb{R}^+) o_{\mathcal{M}} \llbracket 0, 1
bracket) \equiv (\mathbb{M} imes \mathbb{P}) o \mathcal{M}(\mathbb{M} imes \mathbb{P} imes \mathbb{R}^+) o_{\mathcal{M}} \llbracket 0, 1
bracket$$

Assignment statement x := E

Sample statement sample_{\mathcal{N}} (s, E_0, E_1)

$$\begin{split} \llbracket x := \operatorname{sample}_{\mathcal{N}}(k, E_1, E_2) \rrbracket_{\mathcal{M}}(\mu, \rho)(S) &\triangleq \\ \mathbb{1}_{[k \notin \operatorname{Dom}(\rho)]} \cdot \mathbb{1}_{\llbracket E_2 \rrbracket(\mu) \in \mathbb{R}^{+*} \rrbracket} \\ \cdot \int \operatorname{d}v \left(\operatorname{pdf}_{\mathcal{N}}(v; \llbracket E_1 \rrbracket(\mu), \llbracket E_2 \rrbracket(\mu)) \cdot \mathbb{1}_{\llbracket (\mu[x \mapsto v], \rho[k \mapsto v], 1) \in S} \right) \end{split}$$

- crashes when sampling from a rand. var. not in the random database
- crashes when standard deviation is negative
- otherwise updates the states and rdb with the new sample, integrate over the density of the sampled distribution and do this for all possible samples (hence the sum)

Notation: $pdf_{\mathcal{N}}(v; m, d)$: **probability density** at v of the normal distribution of mean m and standard deviation s

$$\llbracket \mathcal{C}
rbracket_{\mathcal{M}} : \mathbb{S} o (\mathcal{M}(\mathbb{S} imes \mathbb{R}^+) o_{\mathcal{M}} \llbracket [0,1]) \equiv (\mathbb{M} imes \mathbb{P}) o \mathcal{M}(\mathbb{M} imes \mathbb{P} imes \mathbb{R}^+) o_{\mathcal{M}} \llbracket [0,1]
bracket$$

Assignment statement x := E

Sample statement sample $\mathcal{N}(s, E_0, E_1)$

Score statement observe $_{\mathcal{N}}(E_0, E_1, E_2)$

$$\begin{aligned} & [\![\mathrm{observe}_{\mathcal{N}} (E_0, E_1, E_2)]\!]_{\mathcal{M}} (\mu, \rho)(S) \triangleq \\ & 1\!I_{[\![E_2]\!] (\mu) \in \mathbb{R}^{+*}]} \cdot 1\!I_{[((\mu, \rho), \mathsf{pdf}_{\mathcal{N}} ([\![E_0]\!] (\mu); [\![E_1]\!] (\mu), [\![E_2]\!] (\mu))) \in S]} \end{aligned}$$

- crashes when standard deviation is negative
- otherwise state left unmodified score the density of the distribution for the observed value

$$\llbracket C
rbracket_{\mathcal{M}} : \mathbb{S} o (\mathcal{M}(\mathbb{S} imes \mathbb{R}^+) o_{\mathcal{M}} [0,1]) \equiv (\mathbb{M} imes \mathbb{P}) o \mathcal{M}(\mathbb{M} imes \mathbb{P} imes \mathbb{R}^+) o_{\mathcal{M}} [0,1]$$

Assignment statement x := E

Sample statement sample $\mathcal{N}(s, E_0, E_1)$

Score statement observe $\mathcal{N}(E_0, E_1, E_2)$

For all command C, $[C]_M$ is measurable and defines a sub-probability kernel from \mathbb{S} to $\mathbb{S} \times \mathbb{R}^+$

Measure semantics (or kernel semantics)

```
[skip]_{\mathcal{M}}(\mu,\rho)(S)
             \triangleq \mathbb{1}_{[((\mu,\rho),1)\in S]}
[x := E]_{\mathcal{M}}(\mu, \rho)(S)
             \triangleq \mathbb{1}_{[((\mu[x\mapsto \llbracket E\rrbracket(\mu)],\rho),1)\in S]}
[C_0; C_1]_{\mathcal{M}}(\mu, \rho)(S)
             \triangleq \int [\![C_0]\!]_{\mathcal{M}}(\mu,\rho)(\mathrm{d}(\sigma_0,w_0)) \int [\![C_1]\!]_{\mathcal{M}}(\sigma_0)(\mathrm{d}(\sigma_1,w_1)) \mathbb{1}_{[(\sigma_1,w_0w_1)\in S]}
[if B \{ C_0 \} else\{ C_1 \} ] _{\mathcal{M}}(\mu, \rho)(S)
             \triangleq \mathbb{1}_{\lceil \llbracket B \rrbracket(\mu) = \mathsf{true} \rceil} \cdot \llbracket C_0 \rrbracket_{\mathcal{M}}(\mu, \rho)(S) + \mathbb{1}_{\lceil \llbracket B \rrbracket(\mu) = \mathsf{false} \rceil} \cdot \llbracket C_1 \rrbracket_{\mathcal{M}}(\mu, \rho)(S)
while B\{C\} M(\mu, \rho)(S)
             \triangleq (\text{Fix}F)(\mu, \rho)(S)
      where F(\phi)(\mu, \rho)(S) = \mathbb{1}_{[[B]](\mu) = false]} \cdot \mathbb{1}_{[((\mu, \rho), 1) \in S]}
                    +1_{[[B](\mu)=\text{true}]} \cdot \int [[C]_{\mathcal{M}}(\mu,\rho)(d(\sigma_0,w_0)) \int \phi(\sigma_0)(d(\sigma_1,w_1))1_{[(\sigma_1,w_0w_1)\in S]}
[x := \operatorname{sample}_{\mathcal{N}}(k, E_1, E_2)]_{\mathcal{M}}(\mu, \rho)(S)
             \triangleq \mathbb{1}_{[k \notin \mathrm{Dom}(\rho)]} \cdot \mathbb{1}_{[\llbracket E_2 \rrbracket(\mu) \in \mathbb{R}^{+*}]}
                                 \cdot \int d\mathbf{v}' \left( \mathsf{pdf}_{\mathcal{N}}(\mathbf{v}; [E_1][\mu), [E_2][\mu) \right) \cdot \mathbb{1}_{[(\mu[\mathsf{x}\mapsto \mathsf{v}], \rho[\mathsf{k}\mapsto \mathsf{v}], 1) \in S]} \right)
[observe_{\mathcal{N}}(E_0, E_1, E_2)]_{\mathcal{M}}(\mu, \rho)(S)
             \triangleq \mathbb{1}_{\lceil \llbracket E_2 \rrbracket(\mu) \in \mathbb{R}^{+*} \rceil} \cdot \mathbb{1}_{\lceil ((\mu,\rho),\mathsf{pdf}_{\mathcal{N}}(\llbracket E_0 \rrbracket(\mu); \llbracket E_1 \rrbracket(\mu), \llbracket E_2 \rrbracket(\mu))) \in S \rceil}
```

A basic example

We consider the program: $C \triangleq \begin{cases} x := \text{sample}(a, 0, 5); \\ \text{observe}(x, 3, 1); \end{cases}$

- prior: x close to 0, low confidence
- posterior: noisy observation that x is close to 3

Measure semantics, starting from $\mu_I = \{x \mapsto ?\}$ and $\rho_I = \emptyset$,

(i.e. other ountut state density pairs do not count)

(i.e., other ouptut state, density pairs do not count)

Cumulated measure, *i.e.*, over $\{(\{x \mapsto v\}, \{a \mapsto v\}, pdf_{\mathcal{N}}(3; v, 1)) \mid v \leq \alpha\}$

$$\int_{-\infty}^{\alpha} \llbracket C \rrbracket_{\mathcal{M}}(\mu_{I}, \rho_{I}) (\{(\{x \mapsto v\}, \{a \mapsto v\}, \mathsf{pdf}_{\mathcal{N}}(3; v, 1)) \mid v \in \mathbb{R}\}) \mathrm{d}v$$

 $[C]_{\mathcal{M}}(\mu_{I}, \rho_{I})(S) = [C]_{\mathcal{M}}(\mu_{I}, \rho_{I})(S \cap \{(\{x \mapsto v\}, \{a \mapsto v\}, pdf_{\mathcal{M}}(3; v, 1)) \mid v \in \mathbb{R}\})$

Issue: per execution weight and probability over executions remain separate

Outline

- Introduction
- Basic Intuition Underlying SV
- Semantics for SVI
 - Measure semantics
 - Density semantics
- 4 SVI
- 5 Ensuring correctness of SVI
- 6 Conclusion

Towards a density semantics

For the **definition of SVI**, the measure semantics has several **limitations**:

- the weight of executions (observe commands) and the measure over output configurations are computed separately
- as mentioned earlier, we look for a way to compute the probability density of each execution together with its output

Important notes:

- as we seek for a semantics that maps an initial state to an output configuration, we need to assume random samples fixed beforehand and are consumed during the execution
 - i.e., the ρ input collects values to be sampled, each sample pops a value note this is the converse of the measure semantics convention
- we also expect this semantics to be **deterministic**, i.e., for any given initial state, the execution of a command should produce a single output configuration
- executions may not terminate or may crash so a special output configuration is needed i.e., \perp denotes executions that either fail or do not terminate

Density semantics basic definition

We recall the form of the measure semantics:

$$\llbracket C
rbracket_{\mathcal{M}} : \mathbb{S} o (\mathcal{M}(\mathbb{S} imes \mathbb{R}^+) o_{\mathcal{M}} [0,1])$$

Signature of the density semantics

$$\llbracket C \rrbracket_{\mathcal{D}} : \mathbb{S} \to_{\mathcal{M}} \mathbb{S} \times \mathbb{R}^+ \times \mathbb{R}^+ \uplus \{\bot\}$$

When $[\![C]\!]_{\mathcal{D}}(\mu, \rho) = (\mu', \rho', w', p')$:

- \bullet μ' denotes the new memory
- \bullet ρ' denotes the remaining part of the random dictionary
- w' denotes the execution weight (scoring)
- p' denotes its probability density

Definition of the semantics: exercise!

Density semantics of the skip command

Signature of the density semantics

$$[\![C]\!]_{\mathcal{D}}:\mathbb{S}\to_{\mathcal{M}}\mathbb{S}\times\mathbb{R}^+\times\mathbb{R}^+\uplus\{\bot\}$$

Command C:

skip

Measure semantics:

$$[\![\operatorname{skip}]\!]_{\mathcal{M}}(\mu,\rho)(S) = \mathbb{1}_{[((\mu,\rho),1)\in S]}$$

Exercise

1 Propose a definition for $[\![.]\!]_{\mathcal{D}}$

Density semantics of assignment commands

Signature of the density semantics

$$[\![C]\!]_{\mathcal{D}}: \mathbb{S} \to_{\mathcal{M}} \mathbb{S} \times \mathbb{R}^+ \times \mathbb{R}^+ \uplus \{\bot\}$$

Command C:

$$x := E$$

Measure semantics:

$$[x := E]_{\mathcal{M}}(\mu, \rho)(S) = \mathbb{1}_{[((\mu[x \mapsto [E](\mu)], \rho), 1) \in S]}$$

- **9** Propose a definition for $[\![.]\!]_{\mathcal{D}}$ under the assumption that expressions never crash
- 2 What would happen if we assume expressions may crash

Density semantics of sequences

Signature of the density semantics

$$\llbracket C \rrbracket_{\mathcal{D}} : \mathbb{S} \to_{\mathcal{M}} \mathbb{S} \times \mathbb{R}^+ \times \mathbb{R}^+ \uplus \{\bot\}$$

Command C:

$$C_0; C_1$$

Measure semantics:

$$[\![C_0; C_1]\!]_{\mathcal{M}}(\mu, \rho)(S) = \int [\![C_0]\!]_{\mathcal{M}}(\mu, \rho)(\mathrm{d}(\sigma_0, w_0)) \int [\![C_1]\!]_{\mathcal{M}}(\sigma_0)(\mathrm{d}(\sigma_1, w_1)) \mathbb{1}_{[(\sigma_1, w_0 w_1) \in S]}$$

- **1** Propose a definition for $[\![.]\!]_{\mathcal{D}}$
- ② What happens with composition ? Try to imagine a "lift" operator that makes $[\![.]\!]_{\mathcal{D}}$ easier to compose and update the definition for $[\![.]\!]_{\mathcal{D}}$ accordingly

Density semantics of condition tests

Signature of the density semantics

$$\llbracket C \rrbracket_{\mathcal{D}} : \mathbb{S} \to_{\mathcal{M}} \mathbb{S} \times \mathbb{R}^+ \times \mathbb{R}^+ \uplus \{\bot\}$$

Command C:

$$\mathrm{if}\; B\left\{ \mathit{C}_{0}\right\} \mathrm{else}\left\{ \mathit{C}_{1}\right\} \\$$

Measure semantics:

$$\begin{split} & [\text{if } B \left\{ C_0 \right\} \text{else} \left\{ C_1 \right\}] \!]_{\mathcal{M}}(\mu, \rho)(S) = \\ & \mathbb{1}_{[\llbracket B \rrbracket(\mu) = \mathsf{true}]} \cdot \llbracket C_0 \rrbracket_{\mathcal{M}}(\mu, \rho)(S) + \mathbb{1}_{[\llbracket B \rrbracket(\mu) = \mathsf{false}]} \cdot \llbracket C_1 \rrbracket_{\mathcal{M}}(\mu, \rho)(S) \end{aligned}$$

Exercise

1 Propose a definition for $[\![.]\!]_{\mathcal{D}}$

Density semantics of loop commands

Signature of the density semantics

$$[\![C]\!]_{\mathcal{D}}: \mathbb{S} \to_{\mathcal{M}} \mathbb{S} \times \mathbb{R}^+ \times \mathbb{R}^+ \uplus \{\bot\}$$

Command C:

while
$$B\{C\}$$

Measure semantics:

$$\begin{split} & [\![\text{while } B \ \{C\}]\!]_{\mathcal{M}}(\mu,\rho)(S) = (\mathsf{Fix}F)(\mu,\rho)(S) \\ & \text{where} \\ & F(\phi)(\mu,\rho)(S) = \mathbbm{1}_{[\![B]\!](\mu) = \mathsf{false}]} \cdot \mathbbm{1}_{[((\mu,\rho),1) \in S]} \\ & + \mathbbm{1}_{[\![B]\!](\mu) = \mathsf{true}]} \cdot \int \!\![C \!\!]_{\mathcal{M}}(\mu,\rho) (\mathrm{d}(\sigma_0,w_0)) \int \phi(\sigma_0) (\mathrm{d}(\sigma_1,w_1)) \mathbbm{1}_{[(\sigma_1,w_0w_1) \in S]} \\ \end{aligned}$$

- $\textbf{9} \ \, \textbf{Propose a definition for} \ \, \llbracket.\rrbracket_{\mathcal{D}}$
- Explain the assumptions required for the definition

Density semantics of sample commands

Signature of the density semantics

$$\llbracket C \rrbracket_{\mathcal{D}} : \mathbb{S} \to_{\mathcal{M}} \mathbb{S} \times \mathbb{R}^+ \times \mathbb{R}^+ \uplus \{\bot\}$$

Command C:

$$x:=\operatorname{sample}_{\mathcal{N}}(k,E_1,E_2)$$

Measure semantics:

$$\begin{split} [\![x := \mathrm{sample}_{\mathcal{N}}(k, E_1, E_2)]\!]_{\mathcal{M}}(\mu, \rho)(S) &= \\ \mathbb{1}_{[k \not\in \mathrm{Dom}(\rho)]} \cdot \mathbb{1}_{[\![E_2]\!](\mu) \in \mathbb{R}^{+*}]} \\ &\cdot \int \mathrm{d}v \left(\mathsf{pdf}_{\mathcal{N}}(v; [\![E_1]\!](\mu), [\![E_2]\!](\mu)) \cdot \mathbb{1}_{[\![(\mu[x \mapsto v], \rho[k \mapsto v], 1) \in S]} \right) \end{aligned}$$

- $\textbf{ 9 Propose a definition for } \llbracket.\rrbracket_{\mathcal{D}}$
- Comment on error cases

Density semantics of observe commands

Signature of the density semantics

$$\llbracket C \rrbracket_{\mathcal{D}} : \mathbb{S} \to_{\mathcal{M}} \mathbb{S} \times \mathbb{R}^+ \times \mathbb{R}^+ \uplus \{\bot\}$$

Command C:

$$\operatorname{observe}_{\mathcal{N}}(E_0,E_1,E_2)$$

Measure semantics:

- **1** Propose a definition for $[\![.]\!]_{\mathcal{D}}$
- Comment on error cases

Density semantics

Lifting of semantic function $g: \mathbb{M} \times \mathbb{P} \to_{\mathcal{M}} \mathbb{M} \times \mathbb{P} \times \mathbb{R}^+ \times \mathbb{R}^+ \uplus \{\bot\}$, for composition:

$$\begin{array}{rcl} g^{\bullet}(\bot) & = & \bot \\ g^{\bullet}(\mu,\rho,w,p) & = & \left\{ \begin{array}{ll} \bot & \text{if } g(\mu,\rho) = \bot \\ (\mu',\rho',w\cdot w',p\cdot p') & \text{if} g(\mu,\rho) = (\mu',\rho',w',p') \end{array} \right. \end{array}$$

Semantics:

Density of an execution and example

Definition: execution probability density

When $[\![C]\!]_{\mathcal{D}}(\mu_I, \rho_I) = (\mu, \emptyset, w, p)$, we let:

$$\mathcal{D}[\![C]\!](\mu_I,\rho_I) = \mathbf{w} \cdot \mathbf{p}$$

We consider again the program: $C \triangleq \begin{cases} x := \text{sample}(a, 0, 5); \\ \text{observe}(x, 3, 1); \end{cases}$

- prior: x close to 0, low confidence
- posterior: noisy observation that x is close to 3

Semantics derived by simple calculation, starting from $\mu_I = \{x \mapsto ?\}$ and $\rho_I(v) = \{a \mapsto v\}$,

$$\llbracket C \rrbracket_{\mathcal{D}}((\mu_{I},\rho_{I}),1,1) = ((\lbrace x \mapsto v \rbrace,\emptyset),\mathsf{pdf}_{\mathcal{N}}(3;v,1),\mathsf{pdf}_{\mathcal{N}}(v;0,5))$$

Overall weighted density: $v \mapsto \mathcal{D}[\![C]\!](\mu_i, \rho_i(v)) = \mathsf{pdf}_{\mathcal{N}}(3; v, 1) \cdot \mathsf{pdf}_{\mathcal{N}}(v; 0, 5)$

Density of an execution and example

Definition: execution probability density

When $[C]_{\mathcal{D}}(\mu_I, \rho_I) = (\mu, \emptyset, w, p)$, we let:

$$\mathcal{D}[\![C]\!](\mu_I,\rho_I) = \mathbf{w} \cdot \mathbf{p}$$

We consider again the program: $C \triangleq \begin{cases} x := \text{sample}(a, 0, 5); \\ \text{observe}(x, 3, 1): \end{cases}$

- prior: x close to 0, low confidence
- posterior: noisy observation that x is close to 3

Semantics derived by simple calculation, starting from $\mu_I = \{x \mapsto ?\}$ and $\rho_I(v) = \{a \mapsto v\}.$

$$\llbracket C \rrbracket_{\mathcal{D}}((\mu_I, \rho_I), 1, 1) = ((\lbrace x \mapsto v \rbrace, \emptyset), \mathsf{pdf}_{\mathcal{N}}(3; v, 1), \mathsf{pdf}_{\mathcal{N}}(v; 0, 5))$$

Cumulated weighted density: $v \mapsto \int_{-\infty}^{v} \mathcal{D}[\![C]\!](\mu_i, \rho_i(x)) dx$

Definition of density: when
$$[\![C]\!]_{\mathcal{D}}(\mu_I, \rho_I) = (\mu, \emptyset, w, p)$$
, we have $\mathcal{D}[\![C]\!](\mu_I, \rho_I) = w \cdot p$

Theorem

Given a set of random dictonaries $P \subset \mathbb{P}$, we can measure the probability to evaluate exactly a $\rho \in P$ with either semantics, in an equivalent manner:

$$\mathcal{M}(C, P) \triangleq \int (\mathbb{1}_{[\rho \in P]} \cdot |\mathrm{d}\rho| \cdot \mathcal{D}[C](\mu_I, \rho))$$
$$= \int [C]_{\mathcal{M}}(\mu_I, \emptyset) (\mathrm{d}(\mu, \rho, w)) \cdot (w \cdot \mathbb{1}_{[\rho \in P]})$$

Proof: exercise!

Outline

- Introduction
- Basic Intuition Underlying SV
- Semantics for SVI
- 4 SVI
- 5 Ensuring correctness of SVI
- Conclusion

KL divergence

Status so far:

- given model P and parameterized guide Q_{θ} , we have defined the distributions p and q_{θ} that they induce over random data-bases
- we next need to establish a **measure of dissimilarity** between p and q_{θ} , to be able to define the optimization objective of SVI

Definition: KL divergence (Kullback-Leibler divergence)

Given two probability distributions p_0, p_1 over the same measurable set \mathcal{X} , their **KL divergence** writes down as:

$$\mathbf{D}_{\mathrm{KL}}(p_0||p_1) = \mathbb{E}_{p_0}\left(\log\frac{p_0}{p_1}\right) = \int_{\mathcal{X}} p_0(x)\log\frac{p_0(x)}{p_1(x)}\mathrm{d}x$$

In the discrete case:

$$\mathbf{D}_{\mathrm{KL}}(p_0||p_1) = \sum_{\mathbf{x} \in \mathcal{X}} p_0(\mathbf{x}) \log \frac{p_0(\mathbf{x})}{p_1(\mathbf{x})}$$

Some properties of KL divergence

Main properties, for a given measurable space with measure |.|:

- ① it is **positive**: for all p, q, $\mathbf{D}_{\mathrm{KL}}(p||q) \geq 0$
- **2** it is null if and only if its arguments are equal almost everywhere:

$$\mathbf{D}_{\mathrm{KL}}(p||q) = 0 \iff |x| \neq 0 \Longrightarrow p(x) = q(x)$$

- **3** it is **not symmetric**, which means that in general $\mathbf{D}_{\mathrm{KL}}(p||q) \neq \mathbf{D}_{\mathrm{KL}}(q||p)$
- **3** it does not satisfy the triangular inequality, which means that, in general, the inequality $\mathbf{D}_{\mathrm{KL}}(p_0||p_2) \leq \mathbf{D}_{\mathrm{KL}}(p_0||p_1) + \mathbf{D}_{\mathrm{KL}}(p_1||p_2)$ does not hold

Due to the last two points it is called *divergence*, and not **distance**

Examples, over $X = \{0, 1\}$:

- p_0 defined by $p_0(0) = \frac{1}{2}$ and $p_0(1) = \frac{1}{2}$
- p_1 defined by $p_1(0) = \frac{1}{5}$ and $p_1(1) = \frac{4}{5}$
- p_2 defined by $p_2(0) = \frac{1}{10}$ and $p_2(1) = \frac{9}{10}$

Then:

- $\mathbf{D}_{\mathrm{KL}}(p_0||p_1) \approx 0.22 \text{ but } \mathbf{D}_{\mathrm{KL}}(p_1||p_0) \approx 0.19$
- $\mathbf{D}_{\mathrm{KL}}(p_0||p_2) \approx 0.51$ but $\mathbf{D}_{\mathrm{KL}}(p_0||p_1) + \mathbf{D}_{\mathrm{KL}}(p_1||p_2) \approx 0.27$

SVI objective

Setup:

- model P; defines a probability distribution over sampled and observed random variables noted p(z, x) where:
 - z: sampled random variables (represented in ρ)
 - x: observed random variables (though not represented in ρ
- guide Q, with a set of variables identified as parameters and noted t; given a value assignment $t \mapsto \theta$, defines a probability distribution $q_{\theta}(z)$ over sampled random variables

We defined: $\mathcal{M}(p, S) = \int \rho(\mathrm{d}\rho) \left(\mathbb{1}_{[\rho \in S]} \cdot \mathcal{D}[\![p]\!](\mu_I, \rho)\right)$

It can be normalized into a probability measure iff $\mathcal{M}(p,\mathbb{P}) \in \mathbb{R}^{+*}$

Objective:

- ullet beforehand, fix the family of programs $q_{ heta}$ as potential approximants of C
 - **9** with $\mathcal{M}(q_{\theta}, \mathbb{P}) = 1$, which is ensured if q_{θ} always terminates
 - 2 with density 1, which is ensured if it contains no occurrence of observe
- ullet compute optimal heta to minimize

$$\mathbf{D}_{\mathrm{KL}}(\mathcal{D}[\![q_{\theta}]\!](\mu_{I},\rho),\mathcal{D}[\![C]\!](\mu_{I},\rho))$$

SVI optimization objective

Inference goal

Compute an ideal value of θ that makes q_{θ} as close to p as possible, using an optimization algorithm

Application to the **inference problem** two distributions over sampled variables *z*:

- p(z|x):
 posterior probability distribution over
 z defined by the model
 (with the observation x)
- $q_{\theta}(z)$: guide probability distribution (parameterized by θ)

Plot of D_{**KL**} $(q_{\theta}(z), p(z|x))$ as a function of θ :

Optimization objective: $\operatorname{argmin}_{\theta} \mathbf{D_{KL}}(q_{\theta}(z), p(z|x))$

Next step: achieve a stochastic approximation of the gradient of $D_{\rm KL}$

Definition of the optimization objective

We seek for θ so as to minimize:

$$\begin{aligned} &\mathbf{D}_{\mathrm{KL}}(q_{\theta}(z), p(z|x)) \\ &= \int_{\mathcal{Z}} q_{\theta}(z) \log \frac{q_{\theta}(z)}{p(z|x)} \mathrm{d}z \\ &= \int_{\mathcal{Z}} q_{\theta}(z) \log \frac{q_{\theta}(z)p(x)}{p(z,x)} \mathrm{d}z \qquad \qquad \text{by independence of } x, z \\ &= \int_{\mathcal{Z}} q_{\theta}(z) \log p(x) \mathrm{d}z + \int_{\mathcal{Z}} q_{\theta}(z) \log \frac{q_{\theta}(z)}{p(z,x)} \mathrm{d}z \\ &= \log p(x) \cdot \int_{\mathcal{Z}} q_{\theta}(z) \mathrm{d}z + \int_{\mathcal{Z}} q_{\theta}(z) \log \frac{q_{\theta}(z)}{p(z,x)} \mathrm{d}z \\ &= \log p(x) \cdot 1 + \int_{\mathcal{Z}} q_{\theta}(z) \log \frac{q_{\theta}(z)}{p(z,x)} \mathrm{d}z \qquad \qquad \text{as } q_{\theta} \text{ is a probability} \\ &= \log p(x) - \mathcal{L}(\theta) \end{aligned}$$

where $\mathcal{L}(\theta)$ is called the ELBO:

Evidence Lower Bound (ELBO)

The **ELBO** is defined as $\mathcal{L}(\theta) = \int_{\mathcal{Z}} q_{\theta}(z) \log \frac{p(z,x)}{q_{\theta}(z)} dz$.

Since $\mathbf{D}_{\mathrm{KL}}(q_{\theta}(z), p(z|x)) + \mathcal{L}(\theta) = \log p(x)$ and $\log p(x)$ does not depend in θ ,

Minimizing $D_{KL}(q_{\theta}(z), p(z|x))$ is equivalent to maximizing $\mathcal{L}(\theta)$

Gradient of the ELBO... (1)

To perform **gradient ascent** in order to **maximize ELBO**, we first need to evaluate this gradient, and formulate it **as an expectation**:

$$\begin{split} & \nabla_{\theta} \mathcal{L}(\theta) \\ & = \int_{\mathcal{Z}} \nabla_{\theta} \left[q_{\theta}(z) \log \frac{p(z,x)}{q_{\theta}(z)} \mathrm{d}z \right] \qquad \text{under assumption (later)} \\ & = \int_{\mathcal{Z}} \left(\nabla_{\theta} q_{\theta}(z) \right) \log \frac{p(z,x)}{q_{\theta}(z)} \mathrm{d}z + \int_{\mathcal{Z}} q_{\theta}(z) \nabla_{\theta} \left(\log \frac{p(z,x)}{q_{\theta}(z)} \right) \mathrm{d}z \end{split}$$

Let us study the second term more:

$$\begin{split} &\int_{\mathcal{Z}} q_{\theta}(z) \nabla_{\theta} \left(\log \frac{\rho(z,x)}{q_{\theta}(z)} \right) \mathrm{d}z \\ &= \int_{\mathcal{Z}} q_{\theta}(z) \nabla_{\theta} \left(\log p(z,x) - \log q_{\theta}(z) \right) \mathrm{d}z \\ &= \int_{\mathcal{Z}} q_{\theta}(z) \nabla_{\theta} \left(\log p(z,x) \right) \mathrm{d}z - \int_{\mathcal{Z}} q_{\theta}(z) \nabla_{\theta} \left(\log q_{\theta}(z) \right) \mathrm{d}z \\ &= -\int_{\mathcal{Z}} q_{\theta}(z) \nabla_{\theta} \left(\log q_{\theta}(z) \right) \mathrm{d}z \qquad \text{(the gradient of a constant is null)} \\ &= -\int_{\mathcal{Z}} q_{\theta}(z) \frac{\nabla_{\theta} q_{\theta}(z)}{q_{\theta}(z)} \mathrm{d}z \\ &= -\int_{\mathcal{Z}} \nabla_{\theta} q_{\theta}(z) \mathrm{d}z \\ &= -\nabla_{\theta} [\int_{\mathcal{Z}} q_{\theta}(z) \mathrm{d}z] \\ &= -\nabla_{\theta} 1 \qquad \text{(since } q_{\theta} \text{ defines a probability distr)} \end{split}$$

Gradient of the ELBO... (2)

We have shown:

$$abla_{ heta}\mathcal{L}(heta) = \int_{\mathcal{Z}} \left(
abla_{ heta} q_{ heta}(z) \right) \log rac{p(z,x)}{q_{ heta}(z)} \mathrm{d}z$$

We remark that $\nabla_{\theta} \log q_{\theta}(z) = \frac{\nabla_{\theta} q_{\theta}(z)}{q_{\theta}(z)}$

Thus, we can substitute $\nabla_{\theta} q_{\theta}(z) = q_{\theta}(z) \cdot \nabla_{\theta} \log q_{\theta}(z)$:

$$\begin{array}{rcl} \nabla_{\theta} \mathcal{L}(\theta) & = & \int_{\mathcal{Z}} \left(\nabla_{\theta} q_{\theta}(z) \right) \log \frac{p(z,x)}{q_{\theta}(z)} \mathrm{d}z \\ & = & \int_{\mathcal{Z}} q_{\theta}(z) \cdot \nabla_{\theta} \log q_{\theta}(z) \log \frac{p(z,x)}{q_{\theta}(z)} \mathrm{d}z \\ & = & \mathbb{E}_{q_{\theta}(z)} \left(\nabla_{\theta} \log q_{\theta}(z) \log \frac{p(z,x)}{q_{\theta}(z)} \right) \end{array}$$

This form, **as an expectation** is adapted to **stochastic approximation** *i.e.*, estimation based on a number of samples...

Stochastic approximation of the gradient of the ELBO

Based on $\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{q_{\theta}(z)} \left(\nabla_{\theta} \log q_{\theta}(z) \log \frac{p(z,x)}{q_{\theta}(z)} \right)$ we may generate a sample ρ_0 from q_{θ} and produce

$$\mathsf{GrEst}_{\theta}(\rho_0) = (\nabla_{\theta} \log \mathcal{D}[\![q_{\theta}]\!](\mu_I, \rho_0)) \cdot \log \frac{\mathcal{D}[\![q_{\theta}]\!](\mu_I, \rho)}{\mathcal{D}[\![p]\!](\mu_I, \rho_0)}$$

Stochastic estimation repeats with many samples:

Stochastic approximant of gradient expectation formula

Using N samples from $\rho_0, \ldots, \rho_{N-1}$ from distribution q_θ :

$$\underline{\mathsf{GrEst}}_{\theta}(\rho) = \tfrac{1}{N} \sum_{i=0}^{N-1} \mathsf{GrEst}_{\theta}(\rho_i) = \tfrac{1}{N} \sum_{i=0}^{N-1} \left(\nabla_{\theta} \log \mathcal{D}[\![q_{\theta}]\!] (\mu_I, \rho_i) \right) \cdot \log \tfrac{\mathcal{D}[\![q_{\theta}]\!] (\mu_I, \rho_i)}{\mathcal{D}[\![p]\!] (\mu_I, \rho_i)}$$

Implementation:

- sampling executions from q_{θ} , e.g., by rejection sampling
- computation of $\mathcal{D}[\![q_{\theta}]\!]$ and $\mathcal{D}[\![p]\!]$ using **density semantics** based **instrumented implementation**; similarly, also accumulate $\nabla_{\theta}(\log pdf)$ (table for classical distributions)
- usually sum log pdf rather than multiplying pdf

SVI algorithm based on gradient optimization

Fixed parameters:

- N number of samples per iterate for stochastic estimation
- λ : learning rate, typically small, e.g., $\lambda = 0.01$
- θ_{init} : initial value of the guide parameter (typically a rough guess)

Algorithm:

$$\begin{cases} \text{ select } \theta_0 := \theta_{\text{init}} \\ \text{ repeat } \mathcal{K} \text{ times} \\ \text{ sample } r_0, \dots, r_{N-1} \\ \theta_{k+1} \leftarrow \theta_k - \lambda \cdot \frac{1}{N} \cdot \sum_{i=0}^{N-1} \text{GrEst}_{\theta_k}(r_i) \\ \text{produce } \theta_{\mathcal{K}} \end{cases}$$

Properties (under assumptions discussed shortly)

- $\frac{1}{N} \cdot \sum_{i=0}^{N-1} \mathbf{GrEst}_{\theta_k}(\rho_i)$ provides an **unbiased** estimate of the gradient at θ_k
- the algorithm converges to a local maximum θ of \mathcal{L} , i.e., a local minimum of $\mathbf{D}_{\mathrm{KL},\ldots}$

Outline

- Ensuring correctness of SVI
 - Behavior of SVI when assumptions do not hold
 - Discharging SVI assumptions using static analysis

Another model-guide pair

Model:

```
def model (...):
  sigma = pyro.sample("sigma", Uniform(0., 10.))
  pyro.sample("obs", Normal(..., sigma), obs = ...)
```

Guide:

```
def guide (...):
  loc = pyro.param("sigma_loc", 1., constraint=constraints.positive)
 sigma = pyro.sample("sigma", Normal(loc, 0.05))
```

Issue:

- domain of sigma in the model: [0, 10]
- ullet domain of sigma in the guide: \mathbb{R}
- thus, KL-divergence is undefined

(Example taken from the Pyro webpage examples...)

Issues possibly leading to undefinedness of KL-divergence

Absolute continuity requirement:

definition of KL-divergence:

$$\mathbf{D}_{\mathrm{KL}}(q_{ heta},p) = \mathbb{E}_{q_{ heta}}\left(\log rac{q_{ heta}}{p}
ight) = \int_{\mathcal{X}} q_{ heta}(\mathrm{d}x)\log rac{q_{ heta}(\mathrm{d}x)}{p(\mathrm{d}x)}$$

- absolute continuity requirement: model distribution p and guide distribution g should have the same zero probability regions otherwise: KL divergence is undefined
- domain in model [0, 10], in guide \mathbb{R} leads to the violation of absolute continuity assumption e.g., and KL divergence is undefined

Anther possible issue: integrability

- $q_{\theta}(\mathrm{d}x)\log\frac{q_{\theta}(\mathrm{d}x)}{p(\mathrm{d}x)}$ may not be integrable ... even when absolute continuity holds
- Our goal: define semantics to let static analysis provide guarantees

Informal overview of potential SVI issues

Several assumptions are necessary:

- KL-divergence must be defined, not ∞ : otherwise: undefined optimization objective
- KL-divergence must be differentiable: otherwise: incorrect gradient descent
- the stochastic estimate of $\nabla D_{KL}(q_{\theta}, p)$ should be well-defined, and unhiased:
 - otherwise: incorrect computation of gradient descent approximation

Practical consequences are difficult to troubleshoot, e.g.,

- crashes or divergence of the inference engine
- incoherent / invalid optimization results may be very difficult to even notice

Unbiasedness conditions

Sufficient conditions (unbiasedness may hold in some cases where assumptions are violated, especially if locally so):

Theorem: unbiasedness of gradient estimate of KL divergence

If:

- **absolute continuity:** $\mathcal{D}[\![D_{\theta}]\!](\mu_I)(\rho) \Longrightarrow \mathcal{D}[\![C]\!](\mu_I)(\rho)$
- \bullet differentiability: $\theta \mapsto \mathcal{D}[\![D_{\theta}]\!](\mu_I)(\rho)$ differentiable wrt all components
- boundnedness of KL divergence
- differentiability of KL divergence wrt all its arguments
- integral permutation conditions on KL divergence and guide density $\int \nabla \ldots = \nabla \int \ldots$

Then:

$$\mathbb{E}(\nabla_{\theta} \mathbf{D}_{\mathrm{KL}}(\mathcal{D}[\![D_{\theta}]\!](\mu_{I}), \mathcal{D}[\![C]\!](\mu_{I}))) \equiv \frac{1}{N} \cdot \sum_{i=0}^{N-1} \mathbf{GrEst}_{\theta_{k}}(\rho_{i})$$

Full version:

Towards Verified Stochastic Variational Inference for Probabilistic Programs Wonyeol Lee, Hangyeol Yu, Xavier Rival and Hongseok Yang POPL'20

Outline

- Ensuring correctness of SVI
 - Behavior of SVI when assumptions do not hold
 - Discharging SVI assumptions using static analysis

Abstract interpretation primer: state abstraction

Static analysis: interpretation using an abstract domain

Abstract domains (Cousot & Cousot, 1977)

- Families of abstract predicates adapted to static analysis
- Compact and efficient representations
- Operations for the static analysis of concrete operations
- \bullet Mapping from abstract to concrete: concretization function γ

Ex., numeric abstractions: abstraction of sets of pairs of integers

Abstract states **over-approximate** sets of concrete states

Abstract interpretation primer: analysis of post-conditions

Computing sound abstract transformer

- Conservative analysis of concrete execution steps in the abstract e.g., assignments, condition tests...
- May lose precision, will never forget any behavior
- Balance between cost and precision

Example: analysis of a translation with octagons (exact!)

abstract transformation

Soundness: all concrete behaviors are taken into account

Abstract interpretation primer: analysis of post-conditions

Computing sound abstract transformer

- Conservative analysis of concrete execution steps in the abstract e.g., assignments, condition tests...
- May lose precision, will never forget any behavior
- Balance between cost and precision

Example: analysis of a 40 deg. rotation with octagons (approximate!)

Soundness: all concrete behaviors are taken into account

Abstract interpretation primer: analysis of loops

Computing invariants about infinite executions with widening ∇

- Widening ∇ over-approximates U: soundness guarantee
- Widening ∇ guarantees the termination of the analyses
- Typical choice of ∇: remove unstable constraints

Example: iteration of the translation (2,1), with octagons

Soundness: all concrete behaviors are taken into account

A generic static analysis

We set up a static analysis, parameterized by an abstract domain: Logical predicates + representation + algorithms

Abstract domain

An abstract domain comprises a set of abstract predicates \mathbb{D}^{\sharp} and:

- $\bullet \ \ \text{concretization function} \ \gamma: \mathbb{D}^{\sharp} \to \mathbb{D} \ \ \text{where} \ \mathbb{D} = \mathbb{S} \to \mathbb{S} \times \mathbb{R}^{+} \times \mathbb{R}^{+} \uplus \{\bot\}$
- least element \bot with $\gamma(\bot) = \emptyset$
- widening operator $\nabla: \mathbb{D}^{\sharp} \times \mathbb{D}^{\sharp} \longrightarrow \mathbb{D}^{\sharp}$ over-approximating \cup and enforcing termination on all sequences of abstract iterates
- abstract composition $comp^{\sharp}: \mathbb{D}^{\sharp} \times \mathbb{D}^{\sharp} \longrightarrow \mathbb{D}^{\sharp}$ soundness: $\forall g_0 \in \gamma(d_0^{\sharp}), \forall g_1 \in \gamma(d_1^{\sharp}), \ (g_0 \circ g_1) \in \gamma(comp^{\sharp}(d_0^{\sharp}, d_1^{\sharp}))$
- abstract conditions, assignment, sample and score operations satisfying similar soundness conditions

Abstract interpreter

The definition of the abstract interpreter follows by induction over the syntax:

The abstract interpreter

Exercise: provide the soundness condition for each of the operations

Soundness

The abstract semantics is sound in the sense that it over-approximates the effect of program concrete executions, in the sense of the density semantics:

Theorem: static analysis soundness

For all command C:

$$\llbracket C \rrbracket_{\mathcal{D}} \in \gamma(\llbracket C \rrbracket^{\sharp})$$

Proof: exercise!

The abstract semantics is not complete, and may not return the most precise abstraction for a given program...

First instance: static analysis for model/guide support match

Goal: discharge model/guide support equality (absolute continuity)

Abstraction

We define \mathbb{D}^{\sharp} and γ by $\mathbb{D}^{\sharp} = \{ \perp^{\sharp}, \top^{\sharp} \} \uplus \mathcal{P}(\mathbb{K})$ and:

$$\begin{array}{cccc} \gamma: & \perp^{\sharp} & \longmapsto & \lambda((\mu,\rho),w,p) \cdot \bot \\ & \top^{\sharp} & \longmapsto & \mathbb{D} \\ & \mathcal{K}(\subseteq \mathbb{K}) & \longmapsto & \{g \in \mathbb{D} \mid \\ & & [\forall ((\mu,\rho),w,p),\mu',w',p' \\ & & & g((\mu,\rho),w,p) = (\mu',\emptyset,w',p') \Longrightarrow \mathrm{Dom}(\rho) = \mathcal{K}] \} \end{array}$$

A few transfer functions:

$$\begin{array}{rcl} comp^{\sharp}(\bot^{\sharp},d^{\sharp}) = comp^{\sharp}(d^{\sharp},\bot^{\sharp}) & = & \bot^{\sharp} \\ comp^{\sharp}(\top^{\sharp},d^{\sharp}) = comp^{\sharp}(d^{\sharp},\top^{\sharp}) & = & \top^{\sharp} \\ & comp^{\sharp}(K_{0},K_{1}) & = & \begin{cases} K_{0} \uplus K_{1} & \text{if } K_{0} \cap K_{1} = \emptyset \\ \top^{\sharp} & \text{otherwise} \end{cases} \\ sample^{\sharp}(x,k,E_{0},E_{1}) & = & \{k\} \\ score^{\sharp}(x,E_{0},E_{1},E_{2}) & = & \emptyset \end{array}$$

First instance: static analysis for model/guide support match

Goal: discharge model/guide support equality (absolute continuity)

Abstraction

```
We define \mathbb{D}^{\sharp} and \gamma by \mathbb{D}^{\sharp} = \{ \perp^{\sharp}, \top^{\sharp} \} \uplus \mathcal{P}(\mathbb{K}) and:
```

$$\gamma: \quad \bot^{\sharp} \quad \longmapsto \quad \lambda((\mu, \rho), w, p) \cdot \bot
\qquad \top^{\sharp} \quad \longmapsto \quad \mathbb{D}
\qquad K(\subseteq \mathbb{K}) \quad \longmapsto \quad \{g \in \mathbb{D} \mid
\qquad \qquad [\forall ((\mu, \rho), w, p), \mu', w', p'
\qquad \qquad g((\mu, \rho), w, p) = (\mu', \emptyset, w', p') \Longrightarrow \mathrm{Dom}(\rho) = K]\}$$

Example analysis:

Xavier Rival (INRIA, ENS. CNRS)

```
def model():
 x = pyro.sample("v", Normal(0., 5.))
  if (x > 0):
    pyro.sample("obs", Normal(1., 1.), obs=x)
  else:
    pyro.sample("obs", Normal(-2., 1.), obs=x)
```

Then:

 $[model]^{\sharp} = \{v\}$

First instance: static analysis for model/guide support match

Goal: discharge model/guide support equality (absolute continuity)

Abstraction

We define \mathbb{D}^{\sharp} and γ by $\mathbb{D}^{\sharp} = \{\bot^{\sharp}, \top^{\sharp}\} \uplus \mathcal{P}(\mathbb{K})$ and:

$$\begin{array}{cccc} \gamma: & \perp^{\sharp} & \longmapsto & \lambda((\mu,\rho),w,p) \cdot \bot \\ & \top^{\sharp} & \longmapsto & \mathbb{D} \\ & \mathcal{K}(\subseteq \mathbb{K}) & \longmapsto & \{g \in \mathbb{D} \mid \\ & & [\forall ((\mu,\rho),w,p),\mu',w',p' \\ & & g((\mu,\rho),w,p) = (\mu',\emptyset,w',p') \Longrightarrow \mathrm{Dom}(\rho) = \mathcal{K}] \} \end{array}$$

Generalization: case where we consider many distributions (and not only normal distributions)

- the basic abstraction will not work: sampling k from a normal distribution and sampling k from a Bernoulli distribution yield distinct supports
- new abstraction: $\mathbb{K} \to \mathbf{Distributions} \uplus \{\bot, \top\}$

Second instance: static analysis for guide differentiability

Goal: discharge differentiability properties

Exercise:

- abstraction choice
- transfer functions

Outline

- Introduction
- Basic Intuition Underlying SV
- Semantics for SVI
- 4 SV
- 5 Ensuring correctness of SVI
- 6 Conclusion

Conclusion

Main ideas to remember from this lecture:

- SVI turns an inference problem into an optimization problem, to select an (possibly) optimal program in a parameterized family
- optimization only works when a series of assumptions hold

A few suggestions for **reading**:

- on probabilistic semantics:
 - Dexter Kozen,
 - Semantics of Probabilistic Programs.
 - Journal of Computing Systems Science(1981)
- on SVI, among other inference techniques:
 Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, Frank Wood,
 An Introduction to Probabilistic Programming.
 (2018)
- on correctness of SVI:
 - Wonyeol Lee, Hangyeol Yu, Xavier Rival, Hongseok Yang, Towards verified stochastic variational inference for probabilistic programs, PACM-POPL (2020)