МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ и систем» Тема: Изучение режимов адресации и формирования исполнительного адреса

Студентка гр. 1383	 Валиев Р.Р.
Преподаватель	 Ефремов М.А

Санкт-Петербург 2022

Цель работы.

Изучить режимы адресации и формирования исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.

- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны

преподавателем и представлены в отчете.

Выполнение работы.

Был занесен набор значений данных в соответствии с 5 вариантом. Осуществлена попытка протранслировать программу lr2_comp.asm, создан файл диагностических сообщений. Были обнаружены следующие ошибки и предупреждения:

- 1. lr2_comp.asm(45): error A2052: Improper operand type. Строка с командой: mov mem3,[bx]. Нельзя одновременно обращаться к памяти и писать информацию в неё.
- 2. lr2_comp.asm(52): warning A4031: Operand types must match. Строка с командой: mov cx,vec2[di]. Размер cx 2 байта, а элемента vec 1 байт.
- 3. lr2_comp.asm(56): warning A4031: Operand types must match. Строка с командой: mov cx,matr[bx][di]. Размер cx 2 байта, а элемента matr 1 байт
- 4. lr2_comp.asm(57): error A2055: Illegal register value. Строка с командой: mov ax,matr[bx*4][di]. Нельзя использовать регистр bx для адресации с масштабированием.
- 5. lr2_comp.asm(76): error A2046: Multiple base registers. Строка с командой: mov ax,matr[bp+bx]. При обращении к операнду нельзя использовать два базовых регистра одновременно.
- 6. lr2_comp.asm(77): error A2047: Multiple index registers. Строка с командой: mov ax,matr[bp+di+si]. При обращении к операнду нельзя использовать два индексных регистра одновременно.
- 7. lr2_comp.asm(84): error A2006: Phase error between passes. Строка с командой: Main ENDP. Ошибка фазирования возникает, когда при первом

проходе адрес, присвоенный метке в таблице символов, оказывается неверным во время второго прохода. Эта ошибка возникает из-за 45 строки. Далее были закомментированы строки с неправильными командами. Уже исправленная программа была протранслирована, скомпонована и запущена в отладчике. Результаты отладки программы представлены в табл. 1 Файлы листинга см. в приложении А.

Таблица 1 – Результаты отладки программы lr2_comp.asm

Адрес	Символический код	1 1	Содержимое регистров и ячеек памяти		
команды	команды	код команды	До выполнения	После выполнения	
0000	PUSH DS	1E	IP = 0000	IP = 0001	
			DS = 19F5	DS = 19F5	
			SP = 0018	SP = 0016	
			Stack	Stack	
			+0 0000	+0 19F5	
			+2 0000	+2 0000	
			+4 0000	+4 0000	
			+6 0000	+6 0000	
0001	SUB AX, AX	2BC0	IP = 0001	IP = 0003	
			AX = 0000	AX = 0000	
0003	PUSH AX	50	IP = 0003	IP = 0004	
			AX = 0000	AX = 0000	
			SP = 0016	SP = 0014	
			Stack	Stack	
			+0 19F5	+0 0000	
			+2 0000	+2 19F5	
			+4 0000	+4 0000	
			+6 0000	+6 0000	
0004	MOV AX, 1A07	B8071A	IP = 0004	IP = 0007	
			AX = 0000	AX = 1A07	
0007	MOV DS, AX	8ED8	IP = 0007	IP = 0009	
			DS = 19F5	DS = 1A07	
			AX = 1A07	AX = 1A07	
0009	MOV AX, 01F4	B8F401	IP = 0009	IP = 000C	

			AX = 1A07	AX = 01F4
000C	MOV CX, AX	8BC8	IP = 000C	IP = 000E
			CX = 00B0	CX = 01F4
			AX = 01F4	AX = 01F4
000E	MOV BL, 24	B324	IP = 000E	IP = 0010
			BL = 00	BL = 24
0010	MOV BH, CE	В7СЕ	IP = 0010	IP = 0012
			BH = 00	BH = CE
0012	MOV [0002], FFCE	C70602000CE	IP = 0012	IP = 0018
		FF	DS:0002 = 00	DS:0002 = CE
			DS:0003 = 00	DS:0003 = FF
0018	MOV BX, 0006	BB0600	IP = 0018	IP = 001B
			BX = CE24	BX = 0006
001B	MOV [0000], AX	A30000	IP = 001B	IP = 001E
			AX = 01F4	AX = 01F4
			DS:0000 = 00	DS:0000 = F4
			DS:0001 = 00	DS:0001 = 01
001E	MOV AL, [BX]	8A07	IP = 001E	IP = 0020
			AL = F4	AL = 0B
			BX = 0006	BX = 0006
			DS:0006 = 0B	DS:0006 = 0B
0020	MOV AL, [BX+03]	8A4703	IP = 0020	IP = 0023
			AL = 0B	AL = 0E
			BX = 0006	BX = 0006
			DS:0009 = 0E	DS:0009 = 0E
0023	MOV CX, [BX+03]	8B4F03	IP = 0023	IP = 0026
			CX = 01F4	CX = 120E
			BX = 0006	BX = 0006
			DS:0009 = 0E	DS:0009 = 0E
			DS:000A = 12	DS:000A = 12
0026	MOV DI, 0002	BF0200	IP= 0026	IP= 0029
			DI = 0000	DI = 0002
0029	MOV AL, [000E+DI]	8A850E00	IP=0029	IP = 002D
			AL = 0E	AL = F6

			DI = 0002	DI = 0002
			DS:0010 = F6	DS:0010 = F6
002D	MOV BX, 0003	BB0300	IP = 002D	IP = 0030
			BX = 0006	BX = 0003
0030	MOV AL,	8A811600	IP = 0030	IP = 0034
	[0016+BX+DI]		DS:001B = 04	DS:001B = 04
			BX = 0003	BX = 0003
			DI = 0002	DI = 0002
			AL = F6	AL = 04
0034	MOV AX, 1A07	B8071A	IP = 0034	IP = 0037
			AX = 0104	AX = 1A07
0037	MOV ES, AX	8EC0	IP = 0037	IP = 0039
			AX = 1A07	AX = 1A07
			ES = 19F5	ES = 1A07
0039	MOV AX, ES:[BX]	268B07	IP = 0039	IP = 003C
			AX = 1A07	AX = 00FF
			ES = 1A07	ES = 1A07
			BX = 0003	BX = 0003
			DS:0003 = FF	DS:0003 = FF
			DS:0004 = 00	DS:0004 = 00
003C	MOV AX, 0000	B80000	IP = 003C	IP = 003F
			AX = 00FF	AX = 0000
003F	MOV ES, AX	8EC0	IP = 003F	IP = 0041
			AX = 0000	AX = 0000
			ES = 1A07	ES = 0000
0041	PUSH DS	1E	IP = 0041	IP = 0042
			DS = 1A07	DS = 1A07
			SP = 0014	SP = 0012
			Stack	Stack
			+0 0000	+0 1A07
			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0042	POP ES	07	IP = 0042	IP = 0043

			EC 0000	EC 1407
			ES = 0000	ES = 1A07
			SP = 0012	SP = 0014
			Stack	Stack
			+0 1A07	+0 0000
			+2 0000	+2 19F5
			+4 19F5	+4 0000
			+6 0000	+6 0000
0043	MOV CX, ES : [BX-	268B4FFF	IP = 0043	IP = 0047
	01]		CX = 120E	CX = FFCE
			ES = 1A07	ES = 1A07
			BX = 0003	BX = 0003
			DS: $0002 = CE$	DS: 0002 = CE
			DS: $0003 = FF$	DS: 0003 = FF
0047	XCHG AX, CX	91	IP = 0047	IP = 0048
			AX = 0000	AX = FFCE
			CX = FFCE	CX = 0000
0048	MOV DI, 0002	BF0200	IP = 0048	IP = 004B
			DI = 0002	DI = 0002
004B	MOV ES:[BX+DI],	268901	IP = 004B	IP = 004E
	AX		ES = 1A07	ES = 1A07
			BX = 0003	BX = 0003
			DI = 0002	DI = 0002
			AX = FFCE	AX = FFCE
			DS: $0005 = 00$	DS: 0005 = CE
			DS: $0006 = 0B$	DS: 0006 = FF
004E	MOV BP, SP	8BEC	IP = 004E	IP = 0050
			BP = 0000	BP = 0014
			SP = 0014	SP = 0014
0050	PUSH [0000]	FF360000	IP = 0050	IP = 0054
			SP = 0014	SP = 0012
			DS:0000 = F4	DS:0000 = F4
			DS:0001 = 01	DS:0001 = 01
			Stack	Stack
			+0 0000	+0 01F4
L	1	1	ı	

			+2 19F5	+2 0000
			+4 0000	+4 19F5
			+6 0000	+6 0000
0054	PUSH [0002]	FF360002	IP = 0054	IP = 0058
			SP = 0012	SP = 0010
			DS:0002 = CE	DS:0002 = CE
			DS:0003 = FF	DS:0003 = FF
			Stack	Stack
			+0 01F4	+0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
0058	MOV BP, SP	8BEC	IP = 0058	IP = 005A
			BP = 0014	BP = 0010
			SP = 0010	SP = 0010
005A	MOV DX, [BP+02]	8B5602	IP = 005A	IP = 005D
			DX = 0000	DX = 01F4
			BP = 0010	BP = 0010
			SS:0012 = 01F4	SS:0012 = 01F4
005D	RET Far 0002	CA0200	IP = 005D	IP = FFCE
			IP = 1A0A	CS = 01F4
			SP = 0010	SP = 0016
			Stack	Stack
			+0 FFCE	+0 19F5
			+2 01F4	+2 0000
			+4 0000	+4 0000
			+6 19F5	+6 0000

Выводы.

Были изучены различные режимы адресации и формирования исполнительного адреса.

ПРИЛОЖЕНИЕ А

Название файла: ERR.LST

```
#Microsoft
                    (R)
                            Macro
                                       Assembler Version
10/29/22 11:58:33
1-1
                                                                     Page
                      ; Программа изучения режимов адресации процессо
                      pa IntelX86
     = 0024
                                      EOL EQU '$'
     = 0002
                                       ind EQU 2
     = 01F4
                                      n1 EQU 500
     =-0032
                                      n2 EQU -50
                      ; Стек программы
     0000
                           AStack SEGMENT STACK
     0000 0000[
                                            DW 12 DUP(?)
        3333
                 1
     0018
                           AStack ENDS
                      ; Данные программы
     0000
                           DATA SEGMENT
                      ; Директивы описания данных
     0000 0000
                                 mem1 DW 0
     0002 0000
                                 mem2 DW 0
     0004 0000
                                 mem3 DW 0
     0006 OB OC OD OE 12 11
                                      vec1 DB 11,12,13,14,18,17,16,15
           10 OF
     000E 0A 14 F6 EC 1E 28
                                      vec2 DB 10,20,-10,-20,30,40,-30,-
40
           E2 D8
     0016 01 02 FC FD 03 04
                                      matr DB 1, 2, -4, -3, 3, 4, -2, -1, 5, 6, -
8, -7, 7
                      , 8, -6, -5
           FE FF 05 06 F8 F9
           07 08 FA FB
     0026
                           DATA ENDS
                      ; Код программы
     0000
                           CODE SEGMENT
                           ASSUME CS:CODE, DS:DATA, SS:AStack
                      ; Головная процедура
     0000
                           Main PROC FAR
     0000
           1E
                                      push DS
     0001
           2B C0
                                            sub AX, AX
     0003
           50
                                       push AX
     0004 B8 ---- R
                                       mov AX, DATA
     0007
           8E D8
                                            mov DS, AX
                      ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
                      ; Регистровая адресация
     0009 B8 01F4
```

mov ax, n1

```
000C 8B C8
                                         mov cx, ax
     000E B3 24
                                         mov bl, EOL
     0010 B7 CE
                                         mov bh, n2
                   ; Прямая адресация
     0012 C7 06 0002 R FFCE
                                         mov mem2, n2
     0018 BB 0006 R
                                   mov bx, OFFSET vec1
     001B A3 0000 R
                                    mov mem1,ax
                    ; Косвенная адресация
     001E 8A 07
                                         mov al, [bx]
                               mov mem3,[bx]
    1r2 comp.ASM(45): error A2052: Improper operand type
    #Microsoft
                  (R) Macro Assembler Version
                                                                5.10
10/29/22 11:58:33
                                                                Page
1 - 2
                    ; Базированная адресация
     0020 8A 47 03
                                         mov al, [bx]+3
     0023 8B 4F 03
                                         mov cx, 3[bx]
                   ; Индексная адресация
     0026 BF 0002
                                         mov di, ind
     0029 8A 85 000E R
                                         mov al, vec2[di]
     002D 8B 8D 000E R
                                         mov cx, vec2[di]
    1r2 comp.ASM(52): warning A4031: Operand types must match
                   ; Адресация с базированием и индексированием
     0031 BB 0003
                                         mov bx, 3
     0034 8A 81 0016 R
                                         mov al, matr[bx][di]
     0038 8B 89 0016 R
                                         mov cx, matr[bx][di]
    1r2 comp.ASM(56): warning A4031: Operand types must match
     003C 8B 85 0022 R
                                        mov ax, matr[bx*4][di]
    1r2 comp.ASM(57): error A2055: Illegal register value
                    ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
                    ; Переопределение сегмента
                    ; ---- вариант 1
     0040 B8 ---- R
                                    mov ax, SEG vec2
     0043 8E CO
                                         mov es, ax
     0045 26: 8B 07
                                    mov ax, es:[bx]
     0048 B8 0000
                                         mov ax, 0
                   ; ---- вариант 2
     004B 8E CO
                                         mov es, ax
     004D 1E
                                    push ds
     004E 07
                                    pop es
     004F 26: 8B 4F FF
                                     mov cx, es:[bx-1]
     0053 91
                                    xchg cx, ax
                   ; ----- вариант 3
     0054 BF 0002
                                         mov di, ind
     0057 26: 89 01
                                    mov es:[bx+di],ax
                    ; ----- вариант 4
     005A 8B EC
                                         mov bp, sp
     005C 3E: 8B 86 0016 R
                                              mov ax,matr[bp+bx]
    1r2 comp.ASM(76): error A2046: Multiple base registers
     0061 3E: 8B 83 0016 R
                                              mov ax,matr[bp+di+si]
    1r2 comp.ASM(77): error A2047: Multiple index registers
                    ; Использование сегмента стека
```

007 007	FF 36 0 E 8B EC 0 8B 56 0 3 CA 0002 6 comp.ASM(8	002 R 2 4): error	Main ENDP A2006: Pl CODE ENDS END 1	ret 2 hase error k	mem2 p,sp x,[bp]+2	sses
	rosoft 11:58:33	(R)	Macro	Assemble	r Vers	sion 5.10
ls-1						Symbo
Segm	ents and G	roups: Name	.	Length	Align	Combine
Class		n a m e		пенден	ALIGH	COMDINE
CODE	CK			0076	PARA STAC PARA NONE PARA NONE	
Symb	ools:					
		N a m e	2	Type Valu	e Att	r
EOL				NUMBE	R 002	4
IND				NUMBE	R 0002	
MAIN = 0076				F PRO	C 0000	CODE Length
MATR MEM1 MEM2					D 0000 D 0002	DATA DATA DATA DATA
				NUMBE NUMBE		
				L BYT L BYT		DATA DATA
@FIL	J JENAME RSION			TEXT TEXT TEXT	lr2_comp	
	86 Source 86 Total 19 Symbol	Lines				

push mem1

0066 FF 36 0000 R

^{47796 + 459464} Bytes symbol space free

Название файла: RIGHT.LST

```
#Microsoft
                    (R)
                             Macro Assembler
                                                       Version
                                                                     5.10
10/29/22 12:04:28
                                                                     Page
1 - 1
                      ; Программа изучения режимов адресации процессо
                      pa IntelX86
                                      EOL EQU '$'
     = 0024
     = 0002
                                       ind EQU 2
     = 01F4
                                      n1 EQU 500
     =-0032
                                      n2 EQU -50
                      ; Стек программы
     0000
                           AStack SEGMENT STACK
     0000 0000[
                                            DW 12 DUP(?)
        3333
                 ]
     0018
                           AStack ENDS
                      ; Данные программы
     0000
                           DATA SEGMENT
                      ; Директивы описания данных
     0000
           0000
                                 mem1 DW 0
     0002
           0000
                                 mem2 DW 0
     0004
           0000
                                 mem3 DW 0
     0006 OB OC OD OE 12 11
                                      vec1 DB 11,12,13,14,18,17,16,15
           10 OF
                                      vec2 DB 10,20,-10,-20,30,40,-30,-
     000E 0A 14 F6 EC 1E 28
40
           E2 D8
     0016
           01 02 FC FD 03 04
                                      matr DB 1, 2, -4, -3, 3, 4, -2, -1, 5, 6, -
8,-7,7
                      ,8,-6,-5
           FE FF 05 06 F8 F9
           07 08 FA FB
     0026
                           DATA ENDS
                      ; Код программы
     0000
                           CODE SEGMENT
                           ASSUME CS:CODE, DS:DATA, SS:AStack
                      ; Головная процедура
     0000
                           Main PROC FAR
                                      push DS
     0000
           1E
     0001
           2B C0
                                            sub AX, AX
     0003
           50
                                      push AX
     0004 B8 ---- R
                                      mov AX, DATA
     0007
           8E D8
                                            mov DS, AX
                      ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
                      ; Регистровая адресация
     0009
           B8 01F4
                                            mov ax, n1
     000C 8B C8
                                            mov cx, ax
     000E B3 24
                                            mov bl, EOL
```

```
0010 B7 CE
                                         mov bh, n2
                    ; Прямая адресация
     0012 C7 06 0002 R FFCE
                                        mov mem2, n2
     0018 BB 0006 R
                                    mov bx, OFFSET vec1
     001B A3 0000 R
                                    mov mem1, ax
                  ; Косвенная адресация
     001E 8A 07
                                         mov al, [bx]
                             ;mov mem3,[bx]
    #Microsoft (R) Macro Assembler Version
                                                                5.10
10/29/22 12:04:28
                                                                 Page
1-2
                    ; Базированная адресация
     0020 8A 47 03
                                         mov al, [bx]+3
                                         mov cx, 3[bx]
     0023 8B 4F 03
                    ; Индексная адресация
     0026 BF 0002
                                         mov di, ind
     0029 8A 85 000E R
                                         mov al, vec2[di]
                              ;mov cx,vec2[di]
                     ; Адресация с базированием и индексированием
     002D BB 0003
                                         mov bx, 3
     0030 8A 81 0016 R
                                         mov al, matr[bx][di]
                               ;mov cx,matr[bx][di]
                               ;mov ax,matr[bx*4][di]
                     ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
                    ; Переопределение сегмента
                    ; ----- вариант 1
     0034 B8 ---- R
                                    mov ax, SEG vec2
     0037 8E CO
                                        mov es, ax
     0039 26: 8B 07
                                    mov ax, es:[bx]
     003C B8 0000
                                        mov ax, 0
                   ; ----- вариант 2
     003F 8E C0
                                         mov es, ax
     0041 1E
                                    push ds
     0042 07
                                    pop es
     0043 26: 8B 4F FF
                                         mov cx, es:[bx-1]
     0047 91
                                    xchq cx, ax
                    ; ---- вариант 3
     0048 BF 0002
                                         mov di, ind
     004B 26: 89 01
                                    mov es:[bx+di],ax
                    ; ----- вариант 4
     004E 8B EC
                                         mov bp, sp
                               ; mov ax, matr[bp+bx]
                              ;mov ax,matr[bp+di+si]
                     ; Использование сегмента стека
     0050 FF 36 0000 R
                                         push mem1
     0054 FF 36 0002 R
                                         push mem2
     0058 8B EC
                                         mov bp, sp
     005A 8B 56 02
                                         mov dx, [bp]+2
     005D CA 0002
                                         ret 2
     0060
                         Main ENDP
                          CODE ENDS
     0060
                               END Main
```

#Microsoft (R) Macro Assembler Version 5.10

10/29/22 12:04:28

Symbo

ls-1

Segments and Groups:

Clas	5S	N a m e	Length Aliq	gn Combine
			0018 PARA 0060 PARA 0026 PARA	NONE
	Symbols:			
		N a m e	Type Value	Attr
	EOL		NUMBER	0024
	IND		NUMBER	0002
= 00	MAIN		F PROC	0000 CODE Length
	MATR		L BYTE L WORD L WORD L WORD	0016 DATA 0000 DATA 0002 DATA 0004 DATA
	N1		NUMBER NUMBER	01F4 -0032
	VEC1 VEC2		L BYTE L BYTE	0006 DATA 000E DATA
	@CPU		TEXT 0101 TEXT 1r2_ TEXT 510	comp

⁸⁶ Source Lines

47792 + 459468 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors

⁸⁶ Total Lines

¹⁹ Symbols

ПРИЛОЖЕНИЕ В

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lr2_com.asm

```
Программа изучения режимов адресации процессора IntelX86
     EOL EQU '$'
     ind EQU 2
     n1 EQU 500
     n2 EQU -50
; Стек программы
AStack SEGMENT STACK
           DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
     mem1 DW 0
     mem2 DW 0
     mem3 DW 0
     vec1 DB 11,12,13,14,18,17,16,15
     vec2 DB 10,20,-10,-20,30,40,-30,-40
     matr DB 1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5
DATA ENDS
; Код программы
CODE SEGMENT
     ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
           push DS
           sub AX, AX
           push AX
           mov AX, DATA
           mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
           mov ax, n1
           mov cx,ax
           mov bl, EOL
           mov bh, n2
; Прямая адресация
           mov mem2, n2
           mov bx, OFFSET vec1
           mov mem1,ax
; Косвенная адресация
           mov al, [bx]
           ; mov mem3, [bx]
; Базированная адресация
           mov al, [bx]+3
           mov cx, 3[bx]
; Индексная адресация
```

```
mov di, ind
           mov al, vec2[di]
           ;mov cx,vec2[di]
; Адресация с базированием и индексированием
           mov bx, 3
           mov al, matr[bx][di]
           ; mov cx, matr[bx] [di]
           ;mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
           mov ax, SEG vec2
           mov es, ax
           mov ax, es:[bx]
           mov ax, 0
; ---- вариант 2
           mov es, ax
           push ds
           pop es
           mov cx, es:[bx-1]
           xchg cx,ax
; ---- вариант 3
           mov di, ind
           mov es:[bx+di],ax
; ---- вариант 4
           mov bp,sp
           ;mov ax,matr[bp+bx]
           ;mov ax,matr[bp+di+si]
; Использование сегмента стека
          push mem1
           push mem2
           mov bp,sp
           mov dx, [bp]+2
           ret 2
Main ENDP
CODE ENDS
           END Main
```