Metropolis Ising Modell

Michael Vogelpohl

22. Januar 2014

Zusammenfassung

 test

Inhaltsverzeichnis

0.1	Ising-Modell	
	0.1.1 Analytische Lösung für 2D	4
0.2	Metropolis Monte Carlo Simulation	4
0.3	Ergebnisse	4
0.4	Code	4
Abbildungsverzeichnis		ţ
Tabellenverzeichnis		6

0.1 Ising-Modell

Das Ising-Modell beschreibt Magnetismus in Festkörpern. Trotz seiner Einfachheit vermag es Phasenübergänge zu beschreiben.

Das Modell nimmt an, dass die Atome in den Festkörpern auf Gittern sitzen und dabei nur zwei Zustände annehmen können: +1 oder -1.

Die Energie H des System ist dann gegeben durch:

$$H = -\sum_{ij} J_{ij} s_i s_j - \mu B \cdot \sum_{i=1}^{N} s_i \tag{1}$$

Folgende Bezeichnungen wurden benutzt:

 s_i : Spin des Atoms i, wobei $s_i \in \{-1, 1\}$

 J_{ij} : Kopplungskonstante zwischen den Spins der Atome i und jB: Magnetfeld Im Folgenden wird B=0 gesetzt. Weiterhin wird angenommen, dass J konstant für die nächsten Nachbarn des Atoms ist: $J_{ij}=J$ für j ein nächster Nachbar zu i, sonst J=0.

Man erhält:

$$H = -J \cdot \sum_{\langle ij \rangle} s_i s_j \tag{2}$$

< ij>: Diese Notation beschreibt Summation nur über nächste Nachbarn von Atom i.

Eine spezielle Konfiguration von Spins im Gitter hat nach der Boltzmannverteilung die Wahrscheinlichkeit

$$W_i = \frac{e^{-\beta H_i}}{Z},\tag{3}$$

wobei $Z = \sum_i e^{-\beta H_i}$ und $\beta = \frac{1}{k_B T}$.

Wichtige Observablen im Modell sind:

• Ferro- und Antiferro-Magnetisierungen:

$$M_{Ferro} = \frac{1}{N} \sum_{ij} S_{ij} \tag{4}$$

$$M_{AntiFerro} = \frac{1}{N} \sum_{ij} (-1)^{i+j} S_{ij}$$
 (5)

Suszeptibilität

$$\chi = \beta(\langle M^2 \rangle - \langle M \rangle^2) \tag{6}$$

• Spezifische Wärme

$$C_v = \frac{1}{T^2} (\langle H^2 \rangle - \langle H \rangle^2) \tag{7}$$

Dabei wurde folgende Notation für den Erwartungswert einer Observablen benutzt:

$$\langle O \rangle = \frac{1}{N_{iter}} \sum_{i=1}^{N_{iter}} O_i \tag{8}$$

Ausserdem bezeichnet S_{ij} den Spin an der Position (i,j) in einem zweidimensionalen Gitter.

Es werden periodische Randbedingungen verwendet. Für ein quadratisches Gitter der Grösse $n \times n$ gilt dann:

$$s_{n+1,j} = s_{1,j} (9)$$

$$s_{i,n+1} = s_{i,1} (10)$$

$$s_{0,j} = s_{n,j} \tag{11}$$

$$s_{i,0} = s_{i,n} \tag{12}$$

0.1.1 Analytische Lösung für 2D

Die analytische Lösung für den zweidimensionalen Fall wurde von Onsager 1944 gefunden.

Die Magnetisierung beträgt:

$$M = (1 - (\sinh(\log(1 + \sqrt{2})\frac{T_c}{T}))^{-4})^{\frac{1}{8}},$$
(13)

wobei

$$T_c = \frac{2J}{k_B \log(1 + \sqrt{2})}\tag{14}$$

- 0.2 Metropolis Monte Carlo Simulation
- 0.3 Ergebnisse
- 0.4 Code

Abbildungsverzeichnis

Tabellenverzeichnis