АНАЛИЗ НА АЛГОРИТМИ

ПРИМЕРНО КОНТРОЛНО № 1 ПО "ДИЗАЙН И АНАЛИЗ НА АЛГОРИТМИ" ЗА СПЕЦИАЛНОСТ "КОМПЮТЪРНИ НАУКИ", 2. КУРС, 1. ПОТОК (СУ, ФМИ, ЛЕТЕН СЕМЕСТЪР НА 2019/2020 УЧ. Г.)

ВАРИАНТ № 1

Задача 1. Какво връща алгоритъмът ALG_1? Обосновете се с инварианта.

Задача 2. Намерете времевата сложност на алгоритьма ALG 2.

$$ALG_2(A[1...n])$$

if n < 158

return

for i ← 1 to n do
 for j ← 1 to n do
 print A[i] + j
p ← n / 3
for k ← 1 to 9 do
 ALG 2(A[k...p])

 $p \leftarrow p + 1$

Задача 3. Намерете времевата сложност на алгоритъма ALG_3.

return

Задача 4. Сравнете по времева сложност алгоритмите ALG 2 и ALG 3.

АНАЛИЗ НА АЛГОРИТМИ ПРИМЕРНО КОНТРОЛНО № 1 ПО "ДИЗАЙН И АНАЛИЗ НА АЛГОРИТМИ" ЗА СПЕЦИАЛНОСТ "КОМПЮТЪРНИ НАУКИ", 2. КУРС, 1. ПОТОК (СУ, ФМИ, ЛЕТЕН СЕМЕСТЪР НА 2019/2020 УЧ. Г.)

ВАРИАНТ № 2

Задача 1. Какво връща алгоритъмът ALG_1? Обосновете се с инварианта.

Задача 2. Намерете времевата сложност на алгоритьма ALG_2.

$$ALG_2(A[1...n])$$

if n < 54

return

Задача 3. Намерете времевата сложност на алгоритъма ALG 3.

return

Задача 4. Сравнете по времева сложност алгоритмите ALG_2 и ALG_3.

АНАЛИЗ НА АЛГОРИТМИ

ПРИМЕРНО КОНТРОЛНО № 1 ПО "ДИЗАЙН И АНАЛИЗ НА АЛГОРИТМИ" ЗА СПЕЦИАЛНОСТ "КОМПЮТЪРНИ НАУКИ", 2. КУРС, 1. ПОТОК (СУ, ФМИ, ЛЕТЕН СЕМЕСТЪР НА 2019/2020 УЧ. Г.)

ВАРИАНТ № 3

Задача 1. Какво връща алгоритъмът ALG_1? Обосновете се с инварианта.

Задача 2. Намерете времевата сложност на алгоритъма ALG_2.

 $p \leftarrow p + 1$

Задача 3. Намерете времевата сложност на алгоритъма ALG_3.

Задача 4. Сравнете по времева сложност алгоритмите ALG 2 и ALG 3.

АНАЛИЗ НА АЛГОРИТМИ

ПРИМЕРНО КОНТРОЛНО № 1 ПО "ДИЗАЙН И АНАЛИЗ НА АЛГОРИТМИ" ЗА СПЕЦИАЛНОСТ "КОМПЮТЪРНИ НАУКИ", 2. КУРС, 1. ПОТОК (СУ, ФМИ, ЛЕТЕН СЕМЕСТЪР НА 2019/2020 УЧ. Г.)

ВАРИАНТ № 4

Задача 1. Какво прави алгоритъмът ALG_1? Обосновете се с инварианта.

ALG_1(A[1...n])
for
$$k \leftarrow 1$$
 to n do
 $A[k] \leftarrow -A[k]$

Задача 2. Намерете времевата сложност на алгоритъма ALG 2.

return

for
$$i \leftarrow 1$$
 to n do

 $s \leftarrow 1$
 $p \leftarrow 1$

while $p \le n$ do

 $s \leftarrow s + 1$
 $p \leftarrow s \times s$

print $A[p - s]$

ALG 2(A[1...n-1])

Задача 3. Намерете времевата сложност на алгоритъма ALG 3.

Задача 4. Сравнете по времева сложност алгоритмите ALG_2 и ALG_3.

РЕШЕНИЯ

ВАРИАНТ № 1

Задача 1.

Алгоритъмът ALG_1 връща сбора от абсолютните стойности на отрицателните числа в дадения масив.

Инварианта:

Стойността на s е сборът от абсолютните стойности на отрицателните числа в подмасива A[1...k-1].

Залача 2.

Рекурентно уравнение: $T(n) = 9 T(n/3) + \Theta(n^2)$.

От втория случай на мастър-теоремата намираме решението: $T(n) = \Theta(n^2 \log n).$

Задача 3.

Рекурентно уравнение:

$$T(n) = 2T(n-1) + \Theta(n).$$

С характеристично уравнение намираме решението:

$$T(n) = \Theta(2^n).$$

Задача 4. Алгоритъмът ALG_2 е по-бърз от ALG_3. Сравняването на сложностите им се извършва най-лесно чрез логаритмуване.

ВАРИАНТ № 2

Задача 1.

Алгоритъмът ALG_1 връща утроения брой на положителните числа в дадения масив.

Инварианта:

Стойността на s е равна на утроения брой на положителните числа в подмасива A[1...k-1].

Задача 2.

Рекурентно уравнение: $T(n) = T(n-1) + \Theta(n^2).$

С характеристично уравнение или с помощта на развиване намираме решението:

$$T(n) = \Theta(n^3).$$

Задача 3.

Рекурентно уравнение: $T(n) = 10 T(n / 100) + \Theta(n)$.

От третия случай на мастър-теоремата намираме решението:

$$T(n) = \Theta(n)$$
.

Задача 4. Алгоритъмът ALG_3 е по-бърз от ALG_2. Сложностите им се сравняват, като се пресметне границата на тяхното частно. Логаритмуването не е приложимо тук.

ВАРИАНТ № 3

Задача 1.

Алгоритъмът ALG_1 връща броя на елементите, които са по-големи от предходния елемент.

Инварианта:

s =броя на елементите в подмасива A[2...k-1], които са по-големи от предходния елемент.

Залача 2.

Рекурентно уравнение: $T(n) = 7 T(n/7) + \Theta(n^2).$

От третия случай на мастър-теоремата намираме решението:

$$T(n) = \Theta(n^2).$$

Залача 3.

Рекурентно уравнение:

$$T(n) = T(n-1) + 2T(n-2) + \Theta(n)$$
.

С характеристично уравнение намираме решението:

$$T(n) = \Theta(2^n).$$

Задача 4. Алгоритъмът ALG_2 е по-бърз от ALG_3. Сравняването на сложностите им се извършва най-лесно чрез логаритмуване.

ВАРИАНТ № 4

Задача 1.

Алгоритъмът ALG_1 сменя знаците на числата в дадения масив A[1...n].

Инварианта:

Алгоритъмът ALG_1 е сменил знаците на числата в подмасива A[1...k-1].

Задача 2.

Рекурентно уравнение: $T(n) = T(n-1) + \Theta(n^{3/2}).$

 $\Gamma(n) = \Gamma(n-1) + \Theta(n-1)$

С помощта на развиване намираме решението:

$$T(n) = \Theta(n^{5/2}).$$

Тук не може да се използва характеристично уравнение, тъй като свободният член е от дробна степен.

Задача 3.

Рекурентно уравнение:

 $T(n) = 100 T(n / 10) + \Theta(n).$

От първия случай на мастър-теоремата намираме решението:

$$T(n) = \Theta(n^2).$$

Задача 4. Алгоритьмът ALG_3 е по-бърз от ALG_2. Сложностите им се сравняват, като се пресметне границата на тяхното частно. Логаритмуването не е приложимо тук.

СХЕМА ЗА ТОЧКУВАНЕ

Всяка задача носи по 5 точки, а цялото контролно — най-много 20 точки.

Задача 1. Дава се по една точка за всяка от следните стъпки:

- формулиране на вярна и използваема инварианта;
- доказателство на базата на инвариантата;
- индуктивна стъпка (поддръжка на инвариантата);
- доказателство, че алгоритьмът ще завърши;
- извод за върнатата стойност.

Ако не е формулирана вярна и използваема инварианта, не се дават точки по тази задача.

Задача 2 и задача 3. Петте точки се разпределят по следния начин:

- за съставяне на рекурентно уравнение: 2 точки;
- за решаване на рекурентното уравнение: 3 точки.

Ако уравнението е грешно съставено, не се дават точки, независимо дали и как е решено.

Задача 4. Ако асимптотичното сравнение се прави чрез граници,

се дават 4 точки за пресмятане на границата и 1 точка за отговора.

Ако асимптотичното сравнение се извършва чрез логаритмуване,

се дават 2 точки за логаритмуването, 2 точки за границата и 1 точка за отговора.

Тези правила се прилагат, ако е избран най-рационалният начин за решаване на задачата. В противен случай се отнема 1 точка.

Тъй като отговорът може да бъде предположен с помощта на асимптотичния ред, то при грешен отговор не се дават никакви точки за другите етапи от решението.

Ако отговорът е верен, но недостатъчно обоснован, не се дават точки за отговора, а само за преодолените етапи от обосновката.

Точки по задача 4 се дават само ако са правилно пресметнати времевите сложности на алгоритмите ALG_2 и ALG_3. За сравняване на една или две погрешни сложности не се дават точки.