Math 8, Winter 2005

Scott Pauls

Dartmouth College, Department of Mathematics 2/25/05

With Acroread, CTRL-L switch between full screen and window mode

A function of two variables, f, is a rule that assigns to each vector $\langle x,y \rangle \in D \subset \mathbb{R}^2$ a real number denoted by f(x,y). The set D is called the domain of f and its range is the set of values that f takes on, i.e. $\{t\}$ where f(x,y)=t for some $\langle x,y \rangle \in D$.

Examples:

- $f(x,y) = x^2 + y^2$
- $f(x,y) = \sin(xy)$
- $f(x,y) = \sqrt{1 x^2 y^2}$

2/25/05 Version 1.0 Scott Pauls

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

• For k > 0

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

• For k < 0

$$x^2 + y^2 = k$$

has no solutions.

• For k=0

$$x^2 + y^2 = 0$$

consists of the single point (0,0).

2/25/05 Version 1.0 Scott Pauls

contour plots

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

$$x^2 + y^2 = k$$

has no solutions.

• For
$$k=0$$

$$x^2 + y^2 = 0$$

consists of the single point (0,0).

contour plots

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

$$x^2 + y^2 = k$$

has no solutions.

• For
$$k=0$$

$$x^2 + y^2 = 0$$

consists of the single point (0,0).

contour plots

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

$$x^2 + y^2 = k$$

has no solutions.

• For
$$k=0$$

$$x^2 + y^2 = 0$$

consists of the single point (0,0).

contour plots

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

$$x^2 + y^2 = k$$

has no solutions.

• For k=0

$$x^2 + y^2 = 0$$

contour plots

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

• For k > 0

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

• For k < 0

$$x^2 + y^2 = k$$

has no solutions.

• For k=0

$$x^2 + y^2 = 0$$

contour plots

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

• For k > 0

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

• For k < 0

$$x^2 + y^2 = k$$

has no solutions.

• For k=0

$$x^2 + y^2 = 0$$

consists of the single point (0,0).

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

• For k > 0

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

• For k < 0

$$x^2 + y^2 = k$$

has no solutions.

• For k=0

$$x^2 + y^2 = 0$$

contour plots

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

$$x^2 + y^2 = k$$

has no solutions.

• For k=0

$$x^2 + y^2 = 0$$

contour plots

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

• For k < 0

$$x^2 + y^2 = k$$

has no solutions.

• For k=0

$$x^2 + y^2 = 0$$

contour plots

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

$$x^2 + y^2 = k$$

has no solutions.

• For k=0

$$x^2 + y^2 = 0$$

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

• For k > 0

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

• For k < 0

$$x^2 + y^2 = k$$

has no solutions.

• For k=0

$$x^2 + y^2 = 0$$

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

$$x^2 + y^2 = k$$

has no solutions.

• For
$$k = 0$$

$$x^2 + y^2 = 0$$

contour plots

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

$$x^2 + y^2 = k$$

has no solutions.

• For k = 0

$$x^2 + y^2 = 0$$

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

$$x^2 + y^2 = k$$

has no solutions.

• For k = 0

$$x^2 + y^2 = 0$$

consists of the single point (0,0).

For f(x, y) graph f(x, y) = k for different values of k and put together in a graph.

Example: $f(x, y) = x^{2} + y^{2}$

• For k > 0

$$x^2 + y^2 = k$$

is a circle of radius \sqrt{k} .

• For k < 0

$$x^2 + y^2 = k$$

has no solutions.

• For k=0

$$x^2 + y^2 = 0$$

Limits in more than one variable are much harder than in a single variable.

Let f be a function of two variables. Then,

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

if, given an $\varepsilon > 0$ there is a $\delta > 0$ so that if the distance between (x,y) and (x_0,y_0) is less than δ then

$$|f(x,y) - L| < \varepsilon$$

2/25/05 Version 1.0 Scott Pauls Proving a limit exists is difficult, but sometimes showing one does not exists is easier.

- Look at the function restricted to different lines through (x_0, y_0) .
- If the limit along one line is different from the limit along a different line, then the limit does not exist.
- Example:

$$f(x,y) = \frac{xy^2}{x^2 + y^2}$$

2/25/05 Version 1.0 Scott Pauls A function of two variable f is *continuous* at (x_0, y_0) if

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

Examples:

- Polynomials
- Rational functions: discontinuities when the denomenator is zero

