САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Алгоритмической математики

Лабораторная работа 3
"Численное дифференцирование"

Санкт-Петербург

Содержание

1	Задание	2
2	Явные формулы и значения $f'(x_0), f''(x_0)$	2
3	Первая конечно-разностная производная 1-го порядка точности	2
4	Первая конечно разностная производная 2-го порядка точности	4
5	Первая конечно разностна производная 4-го порядка точности	5
6	Вторая конечно разностна производная 2-го порядка точности	7
7	Вторая конечно разностна производная 4-го порядка точности	8
8	Листинг функций и сценариев	10
	8.1 f.m	10
	8.2 df.m	10
	8.3 df1.m	10
	8.4 df2.m	
	8.5 df4.m	
	8.6 ddf.m	
	8.7 ddf1.m	
	8.8 ddf4.m	
	8.9 ww1.m	
	8.10 ww2.m	
	8.11 ww4.m	
	8.12 ww21.m	
	8.13 ww24.m	-13

1 Задание

Сравнить точные значения $f'(x_0), f''(x_0)$ с конечно-разностными первыми производными 1-го, 2-го и 4-го порядков точности и конечно-разностными вторыми производными 2-го и 4-го порядков точности, вычисляемыми по последовательно уменьшающимся вдвое значениям шага, если $f(x) = \frac{2000}{(x^2 - 3x + 92)}, \ x = 1$

2 Явные формулы и значения $f'(x_0), f''(x_0)$

$$f'(x)\frac{(2000(3-2x))}{(x^2-3x+92)^2}, \ f'(x_0)=0.24691$$

$$f''(x) = \frac{4000 (3x^2 - 9x - 83)}{(x^2 - 3x + 92)^3}, \ f''(x_0) = -0.48834$$

3 Первая конечно-разностная производная 1-го порядка точности

Таблица 1. Погрешности первой производной первого порядка точности.

k	h_k	r_k
17	1.5259e-05	3.7258e-06
18	7.6294e-06	1.8627e-06
19	3.8147e-06	9.3135e-07
20	1.9073e-06	4.6568e-07
21	9.5367e-07	2.3285e-07
22	4.7684e-07	1.1737e-07
23	2.3842e-07	5.7765e-08
24	1.1921e-07	2.7963e-08
25	5.9605e-08	-3.1642e-08
26	2.9802e-08	2.7963e-08
27	1.4901e-08	-9.1247e-08
28	7.4506e-09	-3.2967e-07
29	3.7253e-09	-3.2967e-07

30	1.8626e-09	-3.2967e-07
31	9.3132e-10	-3.2967e-07
32	4.6566e-10	-4.1444e-06
33	2.3283e-10	-4.1444e-06
34	1.1642e-10	-4.1444e-06
35	5.8208e-11	-3.4662e-05
36	2.9104e-11	-3.4662e-05

df1 - O(h)

Рисунок 1. График погрешностей

$$r_{min} = 2.7963 \cdot 10^{-8}, \,\,$$
при $k = 24, h_k = 1.1921 \cdot 10^{-7}$

4 Первая конечно разностная производная 2-го порядка точности

Таблица 2. Погрешности первой производной второго порядка точности.

k	h_k	r_k
13	0.00024414	3.2859e-10
14	0.00012207	8.1203e-11
15	6.1035e-05	2.2996e-11
16	3.0518e-05	-3.5212e-11
17	1.5259e-05	2.2996e-11
18	7.6294e-06	2.2996e-11
19	3.8147e-06	2.2996e-11
20	1.9073e-06	2.2996e-11
21	9.5367e-07	2.2996e-11
22	4.7684e-07	1.8856e-09
23	2.3842e-07	-1.8396e-09
24	1.1921e-07	-1.8396e-09
25	5.9605e-08	-1.8396e-09
26	2.9802e-08	2.7963e-08
27	1.4901e-08	2.7963e-08
28	7.4506e-09	-9.1247e-08
29	3.7253e-09	1.4717e-07
30	1.8626e-09	-3.2967e-07
31	9.3132e-10	-3.2967e-07
32	4.6566e-10	-3.2967e-07
33	2.3283e-10	-4.1444e-06
34	1.1642e-10	-4.1444e-06

Рисунок 2. График погрешностей

$$r_{min} = -2.2996 \cdot 10^{-11}$$
, при $k = 15, h_k = 6.1035 \cdot 10^{-5}$

5 Первая конечно разностна производная 4-го порядка точности

Таблица 3. Погрешности первой производной четвёртого порядка точности.

k	h_k	r_k
1	1	0.00033548
2	0.5	2.2119e-05
3	0.25	1.4014e-06
4	0.125	8.7886e-08
5	0.0625	5.4976e-09
6	0.03125	3.4374e-10
7	0.015625	2.1347e-11
8	0.0078125	1.6225e-12
9	0.0039062	-1.2071e-13

10 0.0019531 8.6456e-13 11 0.00097656 2.5824e-13 12 0.00048828 -1.2576e-12 13 0.00024414 8.4437e-12 14 0.00012207 -8.5335e-12			
12 0.00048828 -1.2576e-12 13 0.00024414 8.4437e-12	10	0.0019531	8.6456e-13
13 0.00024414 8.4437e-12	11	0.00097656	2.5824e-13
19 0.00021111 0.11010 12	12	0.00048828	-1.2576e-12
14 0.00012207 -8.5335e-12	13	0.00024414	8.4437e-12
	14	0.00012207	-8.5335e-12
15 6.1035e-05 -1.2576e-12	15	6.1035e-05	-1.2576e-12
16 3.0518e-05 -4.4913e-11	16	3.0518e-05	-4.4913e-11
17 1.5259e-05 6.1801e-11	17	1.5259e-05	6.1801e-11
18 7.6294e-06 -1.3222e-10	18	7.6294e-06	-1.3222e-10
19 3.8147e-06 -1.3222e-10	19	3.8147e-06	-1.3222e-10

df4 - O(h4)

Рисунок 3. График погрешностей

$$r_{min} = -1.2071 \cdot 10^{-13}, \ \text{при} \ k = 9, h_k = 0.0039062$$

6 Вторая конечно разностна производная 2-го порядка точности

Таблица 4. Погрешности второй производной второго порядка точности.

k	h_k	r_k
1	1	-0.0052484
2	0.5	-0.0013226
3	0.25	-0.00033132
4	0.125	-8.2873e-05
5	0.0625	-2.0721e-05
6	0.03125	-5.1804e-06
7	0.015625	-1.2951e-06
8	0.0078125	-3.2379e-07
9	0.0039062	-8.106e-08
10	0.0019531	-2.0059e-08
11	0.00097656	-7.9514e-09
12	0.00048828	-7.9514e-09
13	0.00024414	-5.2655e-08
14	0.00012207	-2.9107e-07
15	6.1035e-05	1.8576e-07
16	3.0518e-05	-1.7216e-06
17	1.5259e-05	2.0931e-06
18	7.6294e-06	-5.8942e-05
19	3.8147e-06	-5.8942e-05
20	1.9073e-06	-5.8942e-05
21	9.5367e-07	-5.8942e-05

Рисунок 4. График погрешностей

$$r_{min} = -7.9514 \cdot 10^{-9}, \text{ при } k = 11, h_k = 0.00097656$$

7 Вторая конечно разностна производная 4-го порядка точности

Таблица 5. Погрешности второй производной четвертого порядка точности.

k	h_k	r_k
1	1	-0.0002162
2	0.5	-1.4048e-05
3	0.25	-8.8674e-07
4	0.125	-5.5559e-08
5	0.0625	-3.4751e-09
6	0.03125	-2.1946e-10
7	0.015625	-3.6345e-11
8	0.0078125	-5.4535e-11
9	0.0039062	-3.2617e-10

10	0.0019531	2.7531e-10
11	0.00097656	-7.0201e-09
12	0.00048828	-2.2853e-08
13	0.00024414	-1.1226e-07
14	0.00012207	-3.5068e-07
15	6.1035e-05	-5.2655e-08
16	3.0518e-05	-3.311e-06
17	1.5259e-05	-1.0623e-05
18	7.6294e-06	-0.00011998

ddf4 - O(h⁴)

Рисунок 5. График погрешностей

$$r_{min} = -3.6345 \cdot 10^{-11}, \ \text{при } k = 7, h_k = 0.015625$$

8 Листинг функций и сценариев

```
8.1 f.m
1 function y=f(x)
    y=2000/(x^2-3*x+92);
  8.2 df.m
1 function y = df(x)
  y = (2000*(3-2*x))/(x^2-3*x+92)^2;
  8.3 	 df1.m
1 function y = df1(x,h)
    y = (f(x+h)-f(x))/h;
    endfunction
  8.4 df2.m
1 function y = df2(x,h)
   y = (f(x+h)-f(x-h))/(2*h);
  8.5 df4.m
1 function y = df4(x,h)
    y = (-f(x+2*h)+8*f(x+h)-8*f(x-h)+f(x-2*h))/(12*h);
  8.6 ddf.m
1 function y = ddf(x)
  y = (4000*(3*x^2-9*x-83))/(x^2-3*x+92)^3;
  8.7 ddf1.m
1 function y = ddf1(x,h)
  y = (f(x+h)-2*f(x)+f(x-h))/(h^2);
```

8.8 ddf4.m

```
1 function y = ddf4(x,h)
     y = (-f(x+2*h)+16*f(x+h)-30*f(x)+16*f(x-h)-f(x-2*h))/(12*h^2);
   8.9 ww1.m
1 x=1
2 \text{ kk} = []; \text{ hh} = []; \text{rr} = [];
3 h=1;
4 for k = 1:50
5
     kk = [kk, k];
     hh = [hh, h];
 6
     r = df(x)-df1(x,h);
 7
     rr = [rr, r];
8
     h = h/2;
9
10 end
   format short g
12 \text{ res} 11 = [kk', hh', rr', zz']
13 semilogy (kk, abs (rr)+2e-15)
14 grid on
15 title ('df1 - O(h)')
   8.10
         ww2.m
1 x=1
2 \text{ kk} = []; \text{ hh} = []; \text{rr} = [];
3 h=1;
4 for k = 1:50
     kk = [kk, k];
 5
     hh = [hh, h];
 6
     r = df(x)-df2(x,h);
 7
     rr = [rr, r];
8
     h = h/2;
9
```

```
10 end
   format short g
   res11 = [kk', hh', rr']
   semilogy(kk, abs(rr)+1e-15)
13
   grid on
14
   title ('df2 - O(h^2)')
15
          ww4.m
   8.11
1 x=1
2 \text{ kk} = []; \text{ hh} = []; \text{rr} = [];
3 h=1;
4 \text{ for } k = 1:50
      kk = [kk, k];
      hh = [hh, h];
 6
      r = df(x)-df4(x,h);
7
      rr = [rr, r];
8
      h = h/2;
9
10 end
   format short g
11
12 \text{ res} 11 = [kk', hh', rr']
   semilogy(kk, abs(rr)+1e-15)
14 grid on
15 title ('df4 - O(h^4)')
          ww21.m
   8.12
1 x=1
2 \text{ kk} = []; \text{ hh} = []; \text{rr} = [];
3 h=1;
4 \text{ for } k = 1:25
      kk = [kk, k];
5
      hh = [hh, h];
6
      r = ddf(x) - ddf1(x,h);
7
```

```
rr = [rr, r];
8
9
     h = h/2;
10 end
   format short g
11
  res11 = [kk', hh', rr']
12
   semilogy(kk, abs(rr)+1e-15)
13
14
   grid on
  title ('ddf2 - O(h^2)')
   8.13
         ww24.m
1 x=1
2 \text{ kk} = []; \text{ hh} = []; \text{rr} = [];
3 h=1;
4 for k = 1:25
     kk = [kk, k];
5
     hh = [hh, h];
 6
     r = ddf(x) - ddf4(x,h);
7
     rr = [rr, r];
8
     h = h/2;
9
10 end
   format short g
12 \text{ res} 11 = [kk', hh', rr']
13 semilogy (kk, abs (rr)+1e-15)
14 grid on
15 title ('ddf4 - O(h^4)')
```