Lecture 27: Graph Algorithms

Agenda:

- DFS application: finding biconnected components
- Greedy algorithms: elements & properties
- Minimum spanning tree

Reading:

• Textbook pages 379 - 384, 558 - 579

Biconnected component:

- Definition every pair of vertices are connected by two vertex-disjoint paths
- Cut vertex its removal increases the number of connected components
- Fact: biconnected ←⇒ no cut vertices
- In a DFS tree:
 - root is a cut vertex iff it has ≥ 2 child vertices (Why ???)
 → One simplest implementation (assuming connected):
 - 1. try every vertex v as the start vertex and do the DFS
 - 2. in the DFS tree, if $degree_{DFS}(v) > 1$, decompose the graph accordingly into $degree_{DFS}(v)$ subgraphs sharing one common vertex v
 - 3. repeat on subgraphs until for every subgraph the DFS tree with every possible start vertex has root degree 1

Problem: too time consuming $\Theta(n(n+m))$...

- any other vertex is a cut vertex iff vertices in the child subtrees have no back edges to its proper ancestors
 - \longrightarrow Idea in the improved implementation \longrightarrow $(\Theta(n+m))$: for each vertex v, and each of its child w, keep track of furthest back edge from the w-subtree

DFS application: finding biconnected components

• Idea in the improved implementation — $(\Theta(n+m))$: for each vertex v, and each of its child w, keep track of furthest back edge from the w-subtree

• Details:

- for every vertex v, 1st encounter child w, recur from w
- last encounter w (just before backing up to v), check whether v cuts off the w-subtree (rooted at w)
- maintain dtime[v], b[v], p[v] for v:
 - 1. dtime[v] discovery time
 - 2. b[v] dtime of the furthest ancestor of v to which there is back edge from a descendant w of v
 - (a) updated when the first back edge is encountered
 - (b) updated when last time encounter of v (backing up)
 - 3. p[v] parent of v in the DFS tree
- Reporting biconnected components:
 - recall that biconnected components form a partition of edge set ${\cal E}$
 - when edge e first encountered, push into edge stack
 - when a cut vertex discovered, pop necessary edges

Finding biconnected components — pseudocode:

```
procedure bicomponents(G)
                                         **G = (V, E)
S = \emptyset
                                         **S is the edge stack
time \leftarrow 0
for each v \in V do
    p[v] \leftarrow 0
                                         **unknown yet:
                                                              \mathtt{NIL}
    dtime[v] \leftarrow time
    b[v] \leftarrow n + 1
\quad \text{for each } v \in V \text{ do}
    if dtime[v] = 0 then
         biDFS(v)
procedure biDFS(v)
                                         **discover v
time \leftarrow time +1
dtime[v] \leftarrow time
b[v] \leftarrow \mathtt{dtime}[v]
                                         **no back edge from descendant yet
for each neighbor w of v do **first time encounter w
    if dtime[w] = 0 then
                                         **unknown yet
         push(v, w)
         p[w] \leftarrow v
         biDFS(w)
                                         **recursive call
         if b[w] \geq \text{dtime}[v] then
             print "new biconnected component",
             repeat
                  pop & print
             until (popped edge is (v, w))
         else
             b[v] \leftarrow \min\{b[v], b[w]\}
    else if (\text{dtime}[w] < \text{dtime}[v] and w \neq p[v]) then
                                         **(v,w) is a back edge from v
         push(v, w)
         b[v] \leftarrow \min\{b[v], \text{dtime}[w]\}
```

Lecture 27: Graph Algorithms

Finding biconnected components — example:

Execute biDFS(4) on the following graph, assuming no previous biDFS() calls:

- 1: 2 5 7 8
- 2: 1 8
- 3: 6 7 9
- 4: 7 8
- 5: 1
- 6: 3 9
- 7: 1 3 4
- 8: 1 2 4
- 9: 3 6

Lecture 27: Graph Algorithms Finding biconnected components — answer:

1: 2 5 7 8 D 2: 1 8 3: 6 7 9 4: 7 8 5: 1 6: 3 9 7: 1 3 4 8: 1 2 4 9: 3 6	FS(4) t	ree:	3								
9: 3 6	84)	9							
dtime	3	4	7	1	6	8	2	5	9		
	b[1		<i>b</i> [3]	<i>b</i> [4]	<i>b</i> [5]		<i>b</i> [7]	b[8]	<i>b</i> [9]		
biDFS(4)	10	10	10	1	10	10	10	10	10		
4} biDFS(7)	10	10	10	1	10	10	2	10	10		
4, 7) biDFS(1)	3	10	10	1	10	10	2	10	10		
4, 7, 1} biDFS(2)		4	10	1	10	10	2	10	10		
4, 7, 1, 2 $(2,1)$		1	10	1	10	10	2	_	10		
4, 7, 1, 2} biDFS(8)	3	4 4	10 10	1 1	10 10	10 10	2 2	5 3	10 10		
4, 7, 1, 2, 8} (8,1) 4, 7, 1, 2, 8} (8,2)		4	10	1	10	10	2	3	10		
4, 7, 1, 2, 8} (8,2) 4, 7, 1, 2, 8} (8,4)		4	10	1	10	10	2	1	10		
4, 7, 1, 2, 6, (0,4) 4, 7, 1, 2} biDFS(8)	done 3	1	10	1	10	10	2 2	1	10		
$\{4, 7, 1\}$ biDFS(2) don		1	10	1	10	10	2	1	10		
$\{4, 7, 1\}$ biDFS(2) doi:		1	10	1	6	10	2	1	10		
4, 7, 1, 5} (5,1)	-	_	10	-	Ü	10	_	-	10		
$\{4, 7, 1, 5\} (5, 1)$ 4, 7, 1} biDFS(5) done		new biconnected component: (1, 5)									
4, 7, 1} (1,7)		new breenheeved component. (1, 0)									
4, 7, 1 (1,8)											
4, 7 $\stackrel{\text{biDFS}(1)}{}$ done	1	1	10	1	6	10	1	1	10		
4, 7 biDFS(3)	1	1	7	1	6	10	1	1	10		
4, 7, 3} biDFS(6)	1	1	7	1	6	8	1	1	10		
$4, 7, 3, 6$ $\{6,3\}$											
4, 7, 3, 6 biDFS(9)	1	1	7	1	6	8	1	1	9		
4, 7, 3, 6, 9} (9,3)	1	1	7	1	6	8	1	1	7		
4, 7, 3, 6, 9} (9,6)											
4, 7, 3, 6} biDFS(9)		1	7	1	6	7	1	. 1	7		
$\{4, 7, 3\}$ biDFS(6) don	.e new	biconn	ected	compon	ent:	(9, 3),	(6, 9), (3,	6)		
4, 7, 3 (3,7)											
4, 7, 3) (3,9) 4, 7) biDFS(3) done	200	. hiconn	-a+ad		on+.	(7 2)					
4, 7 bibrs(3) done 4, 7 (7,4)	l new	new biconnected component: (7, 3)									
4, 7; (7,4) 4} biDFS(7) done		new biconnected component: (8, 4), (8, 1), (2, 8),						8)			
i, bibib(i) done	l new	DICOM	0110.	(1, 2),							
biDFS(4) done	1	1	7	1	6	7	1	1	7		

Finding biconnected components — analysis:

- Correctness ???
- Complexity running time and space requirement:
 - running time:

constant for each vertex encounter and each edge encounter \longrightarrow

$$\Theta(c_1 n + c_2 \sum_{v \in V} \text{degree}(v)) = \Theta(n+m)$$

- space:

assume adjacency list representation: space for graph, arrays of size n, edge stack, and runtime stack

- 1. space for graph and arrays $\Theta(m+n)$
- 2. edge stack requires O(m) since every edge pushed
- 3. runtime stack O(n) since at most n biDFS activations each is of constant size
- 4. therefore, $\Theta(n+m)$ in total

Minimum spanning tree (MST) problem:

• Input: edge-weighted (simple, undirected) connected graphs (positive weights)

Notions:

- subgraph, acyclic, tree
- spanning subgraph: subgraph including all the vertices
- spanning tree: spanning subgraph which is a tree acyclic connected subgraph T=(V,E'), where $E'\subset E$
 - e.g., BFS/DFS (on a connected input graph) tree is a spanning tree of the graph
- minimum spanning tree: minimum weight

• The MST Problem:

Find a minimum spanning tree for the input graph.

For example:

• The minimum spanning forest problem:

The given graph is not necessarily connected.

Find an MST for each connected component.

Greedy algorithms and MST problem:

- Greedy algorithms:
 - greedy each step makes the best choice (locally maximum)
 - iterative algorithms
 - optimal substructure
 an optimal solution to the original problem contains within it optimal solutions to subproblems
- Greedy solution may NOT be globally optimum e.g., matrix-chain multiplication: $A_{6\times5}\times A_{5\times2}\times A_{2\times5}\times A_{5\times6}$ Greedy: 50+150+180=380 scalar multiplications Dynamic programming: 60+60+72=192 scalar multiplications
- The MST problem:

Two greedy solutions are globally optimum

- Prim's (Prim + Dijkstra + Boruvka's)
 growing the tree to include more vertices
- Kruskal's (Kruskal + Boruvka's)
 growing the forest to become a tree

Lecture 27: Graph Algorithms Have you understood the lecture contents?

well	ok	not-at-all	topic
			biconnected component & cut vertex
			one simplest implementation via DFS
			the improved DFS implementation
			execution and correctness
			minimum spanning tree
			greedy algorithms in general