Subgraph Augmentation with Application to Graph Mining

Jiajun Zhou, Jie Shen, Yalu Shan, Qi Xuan, and Guanrong Chen

September 3, 2021

- Introduction
- Subgraph Augmentation
- Data Filtration
- Model Evolution Framework
- Experiment

Notation

- G = (V, E): an undirected and unweighted graph
- $V = \{v_i | i = 1, ..., n\}$: a node set
- $E = \{e_i | i = 1, ..., m\}$: an edge set
- A: the adjacency matrix
- $D = \{(G_i, y_i) | i = 1, ..., t\}$: the dataset

Introduction

Figure 1: The pipeline.

- Introduction
- Subgraph Augmentation
- Data Filtration
- Model Evolution Framework
- Experiment

Motif-Similarity Mapping

Graph motifs are subgraphs that repeat themselves in a specific graph or even among various graphs.

Here, for simplicity, only consider open-triad motifs \wedge_{ij} with chain structures.

Figure 2: Open-triad motif and heuristic edge swapping.

Motif-Similarity Mapping

The candidate set of pairwise nodes is denotes as:

$$E_{add}^{c} = \{(v_i, v_j) | A_{ij} = 0, A_{ij}^2 \neq 0; i \neq j\}$$

Then, we get E_{add} , the set of edges added to G, via weighted random sampling from E^c_{add} . For each \wedge_{ij} involving pairwise nodes (v_i, v_j) in E_{add} , we remove one edge from it via weighted random sampling, and all of these removed edges constitute E_{del} .

Resource Allocation(RA) index

The RA score s_{ij} and addition weight w_{ij}^{add} can be computed as follows:

$$\begin{split} s_{ij} &= \sum_{z \in \Gamma(i) \cap \Gamma(j)} \frac{1}{d_z} \\ S &= \{s_{ij} | \forall (v_i, v_j) \in E^c_{add} \} \\ w^{add}_{ij} &= \frac{s_{ij}}{\sum_{s \in S} s} \\ W_{add} &= \{w^{add}_{ij} | \forall (v_i, v_j) \in E^c_{add} \} \end{split}$$

where $\Gamma(i)$ denotes the neighbors of v_i and d_z denotes the degree of node z.

Resource Allocation(RA) index

Similarly, for edge deletion,

$$w_{ij}^{del} = 1 - \frac{s_{ij}}{\sum_{s \in S} s}$$

$$W_{del} = \{w_{ij}^{del} | \forall (v_i, v_j) \in \land_{ij} \}$$

Motif-Similarity Mapping

Figure 3: An example of subgraph augmentation via motif-similarity mapping; red lines is the candidates and black lines is the modified edges.

- Introduction
- Subgraph Augmentation
- Data Filtration
- Model Evolution Framework
- Experiment

Data Filtration

Each graph G_i in D_{val} will be fed into classifier C to obtain the prediction vector $\mathbf{p}_i \in \mathbb{R}^{|Y|}$, which represents the probability distribution as how likely an input example belongs to each possible class.

$$oldsymbol{q}_k = rac{1}{\Omega_k} \sum_{y_i = k} oldsymbol{p}_i$$

$$\boldsymbol{Q} = [\boldsymbol{q}_1, \boldsymbol{q}_2, \dots, \boldsymbol{q}_{|Y|}]$$

where |Y| is the number of classes for labels. Ω_k is the number of graphs belonging to the k-th class in D_{val} and q_k is the average probability distribution of the k-th class.

Data Filtration

The label reliability of an example (G_i, y_i) is computed as:

$$r_i = \boldsymbol{p}_i^{\top} \boldsymbol{q}_{y_i}$$

The threshold θ is defined as:

$$\theta = \arg\min_{\theta} \sum_{(G_i, y_i) \in D_{val}} \Phi[(\theta - r_i) \cdot g(G_i, y_i)]$$

where $g(G_i, y_i) = 1$ if $C(G_i) = y_i$ and $g(G_i, y_i) = 1$ otherwise, and $\Phi(x) = 1$ if x > 0 and $\Phi(x) = 0$ otherwise.

- Introduction
- Subgraph Augmentation
- Data Filtration
- Model Evolution Framework
- Experiment

Model Evolution Framework

Figure 4: An example of subgraph augmentation via motif-similarity mapping; red lines is the candidates and black lines is the modified edges.

- Introduction
- Subgraph Augmentation
- Data Filtration
- Model Evolution Framework
- Experiment

Experiment

For link prediction, extract the local subgraph of target pairwise nodes, and the labels of subgraphs reflect the link existence. For node classification, extract the local subgraph of target nodes. The subgraph labels are equivalent to the corresponding node labels.

Figure 5: Unify multiple tasks into graph classification.

Results

		Budget			
Dataset	Mapping	0.10	0.15	0.20	Avg. RIMP
MUTAG	DGCNN	0.8447			-
	DGCNN + random	0.8447	0.8533	0.8458	+0.38%
	DGCNN+m-s	0.8450	0.8547	0.8436	+0.36%
PTC_MR	DGCNN	0.5775			-
	DGCNN + random	0.5739	0.5764	0.5860	+0.22%
	DGCNN + m-s	0.5849	0.5962	0.5733	+1.26%

Figure 6: Graph classification results of original and evolutive models.

$$RIMP = \frac{Acc_{en} - Acc_{ori}}{Acc_{ori}}$$

Results

Dataset	Mapping	Budget			
		0.10	0.15	0.20	Avg. RIMP
Router	GAE	0.5130			_
	VGAE	0.4999			_
	DGCNN	0.6721			-
	DGCNN + random	0.6430	0.6512	0.6694	-2.6%
	DGCNN + m-s	0.6858	0.6852	0.6854	+1.7%
Celegans	GAE	0.5256			-
	VGAE	0.5053			-
	DGCNN	0.6323			_
	DGCNN + random	0.6170	0.6125	0.6176	-2.6%
	DGCNN + m-s	0.6353	0.6379	0.6379	+0.7%

Figure 7: Link prediction results in baselines, DGCNN and evolutive models.

Results

Dataset	Mapping	Budget	Budget		
		0.10	0.15	0.20	Avg. RIMP
Blog	GCN	0.7200	0.7200		
	GAT	0.6630	0.6630		
	DGCNN	0.7453	0.7453		
	DGCNN + random	0.7502	0.7493	0.7483	+0.53%
	DGCNN + m-s	0.7589	0.7560	0.7457	+1.10%
Flickr	GCN	0.5460	0.5460		
	GAT	0.3590	0.3590		
	DGCNN	0.4192	0.4192		
	DGCNN + random	0.4471	0.4499	0.4505	+7.15%
	DGCNN + m-s	0.4888	0.4884	0.5014	+17.57%

Figure 8: Node classification results in baselines, DGCNN and evolutive models.