

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 11-092429
(43)Date of publication of application : 06.04.1999

(51)Int.Cl. C07C 69/98
B01J 23/14
C07C 69/06
// C07B 81/00

(21) Application number : 09-256575 (21) Applicant : ASAHI CHEM. IND CO LTD

(22) Date of filing : 16.09.1997 (72) Inventor : TOJO MASAHIRO
ONISHI KAZUHIRO
KOMIYA KYOSUKE

(54) PRODUCTION OF AROMATIC CARBONATES

(57) Abstract

PROBLEM TO BE SOLVED: To stably obtain the subject compound having high purity without requiring a large amount of catalyst by reacting a specific liquid-like material pulled out from the system with a specific reacting substance and recycling a specific material derived from a catalyst into the system.

SOLUTION: (A) A starting substance which is an alkylarylcarbonate of formula I (R1 is a 1-10C alkyl or the like) and/or formula II (R2 is R1; Ar2 is a 5-30C aromatic) is subjected to transesterification with (B) a reacting substance which is an aromatic monohydroxy compound of the formula Ar1 OH (Ar1 is Ar2) and/or an alkylarylcationate of formula III (R3 is R1; Ar3 is Ar2) in the presence of (C) a metal-containing catalyst and a high-boiling point substance (D) pulled out from the system is reacted with a liquid-like material containing the component C and the reacting substance, and a material derived from the component C is separated from a material derived from the component D and the material derived from the component C is recycled into the system to provide the objective compound of formula IV and/or formula V (R is R1 to R3; Ar is Ar1 to Ar3).

LEGAL STATUS

[Date of request for examination] 07.09.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of]

(18)日本特許庁 (JP)

(19) 公開特許公報 (A)

(20)特許出願公開番号

特開平11-92429

(21)公開日 平成11年(1999)4月6日

(50)Int.Cl. ^a	識別記号	P.I
C 07 C 09/96		C 07 C 09/96
B 01 J 23/14		B 01 J 23/14
C 07 C 09/06		C 07 C 09/06
// C 07 B 01/00	300	C 07 B 01/00

審査請求 未審求 索求項の数9 O.L (全 28 頁)

(21)出願番号 特願平9-250575

(71)出願人

旭化成工業株式会社

大阪府大阪市北区豊島浜1丁目2番6号

(22)出願日 平成9年(1997)9月16日

(72)発明者 東條 正弘

岡山県倉敷市瀬道3丁目13番1 旭化成工業株式会社内

(72)発明者 大賀 一広

岡山県倉敷市瀬道3丁目13番1 旭化成工業株式会社内

(72)発明者 小谷 敏介

岡山県倉敷市瀬道3丁目13番1 旭化成工業株式会社内

(54)【発明の名称】 芳香族カーボネート類の製法

(57)【要約】

【課題】 金属含有触媒の存在下にエステル交換反応により芳香族カーボネート類を製造する際に、多量の該触媒を必要とせずに純度の高い芳香族カーボネートを安定して製造する方法を提供することである。

【解決手段】 金属含有触媒の存在下にエステル交換反応により芳香族カーボネート類を製造するに当たり、系内から高沸物質、及び金属含有触媒を含む液状物を抜き出し、作用物質と反応させることによって高沸物質由来物と金属含有触媒由来物を含む反応混合物を得。該反応混合物を主として該高沸物質由来物からなる成分と主として該金属含有触媒由来物からなる成分に分離し、該金属含有触媒由来物を系内へ再循環させる芳香族カーボネート類の製法。

【特許請求の範囲】

【請求項1】 下記化1に示される一般式(1)で表されるジアルキルカーボネート、下記化2に示される一般式(2)で表されるアルキルアリールカーボネート及びそれらの混合物よりなる群から選ばれる出発物質と、下記化3に示される一般式(3)で表される芳香族モノヒドロキシ化合物、下記化4に示される一般式(4)で表されるアルキルアリールカーボネート及びそれらの混合物よりなる群から選ばれる反応物質とを金属含有触媒の存在下にエステル交換反応に付し、出発物質と反応物質とに対応する、下記化5に示される一般式(5)及び6又は下記化6に示される一般式(6)で表される芳香族カーボネート類を製造するに当たり、系内から高沸点物質、及び金属含有触媒を含む液状物を抜き出し、該液状物を作用物質と反応させることによって高沸点物質由来物と金属含有触媒由来物を含む反応混合物を得、該反応混合物を主として該高沸点物質由来物からなる成分と主として該金属含有触媒由来物からなる成分に分離し、該金属含有触媒由来物を系内へ再循環させることを特徴とする芳香族カーボネート類の製法。

【化1】

【化2】

【化3】

【化4】

(式中、一般式(1)～(4)のR¹、R²及びR³の各々は独立に炭素数1～10のアルキル基、炭素数3～10の脂環族基または炭素数6～10のアラールキル基を表し、A_r¹、A_r²、及びA_r³の各々は独立に炭素数5～30の芳香族基を表す。)

【化5】

【化6】

(式中、一般式(5)、(6)のR及びA_rは、それぞ

れ、出発物質及び反応物質に対応してR¹、R²、R³及びA_r¹、A_r²、A_r³から選ばれる。)

【請求項2】 作用物質が酸化剤であり、液状物と作用物質との反応が酸化反応であり、高沸点物質由来物が低沸点酸化生成物であり、金属含有触媒由来物が金属酸化物であり、反応混合物の分離が気～液相分離であることを特徴とする請求項1記載の製法。

【請求項3】 作用物質が沈殿形成剤であり、液状物と作用物質との反応が沈殿形成反応であり、金属含有触媒由来物が反応混合物中に固体として存在する金属含有物であり、反応混合物の分離が固～液分離であることを特徴とする請求項1記載の製法。

【請求項4】 金属含有物が金属炭酸塩、金属水酸化物、金属酸化物、金属硫化物、金属硫酸塩から選ばれた金属化合物であることを特徴とする請求項3記載の製法。

【請求項5】 作用物質が反応性溶媒であり、液状物と作用物質との反応が加溶媒分解反応であり、高沸点物質由来物が低沸点の加溶媒分解生成物であり、反応混合物の分離が蒸留分離であることを特徴とする請求項1記載の製法。

【請求項6】 反応性溶媒が水であり、加溶媒分解反応が加水分解反応であり、加溶媒分解生成物が芳香族モノヒドロキシ化合物であることを特徴とする請求項5記載の製法。

【請求項7】 請求項1、2、3、4、5又は6記載の芳香族カーボネート類の製法が連続的に行われることを特徴とする連続的芳香族カーボネート類の製法。

【請求項8】 出発物質と反応物質とを連続多段蒸留塔内に連続的に供給し、該連続多段蒸留塔内において金属含有触媒の存在下に液相または気～液相で副物質間のエステル交換反応を行わせると同時に、製造される芳香族カーボネートまたは芳香族カーボネート混合物を含む高沸点反応混合物を該蒸留塔の下部から液状で抜き出し、一方生成する副生物を含む低沸点反応混合物を蒸留によって該連続多段蒸留塔の上部からガス状で連続的に抜き出すことを含む請求項7記載の連続的芳香族カーボネート類の製法。

【請求項9】 請求項1、2、3、4、5、6、7及び8に記載の芳香族カーボネート類の製法の何れかで製造された芳香族カーボネート類を用いてエステル交換法により芳香族ポリカーボネートを製造することを特徴とする芳香族ポリカーボネート類の製法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、芳香族カーボネート類の製造法に関するものである。さらに詳しくは、ジアルキルカーボネート、アルキルアリールカーボネート及びそれらの混合物よりなる群から選ばれる出発物質と、芳香族モノヒドロキシ化合物、アルキルアリールカ

一ポネット及びそれらの混合物よりなる群から選ばれる反応物質とを金属含有触媒の存在下にエステル交換反応に付し、純度の高い芳香族カーポネット類を長期間安定に製造することを可能にする方法に関するものである。【0002】

【従来の技術】芳香族カーポネットは、近年エンジニアリングプラスチックとしてその有用途が高まりつつある芳香族ポリカーポネットを、有毒なホスゲンを用いないで製造するための原料等として有用である。芳香族カーポネットの製法については、ジアルキルカーポネット、アルキルアリールカーポネットまたはそれらの混合物を出発物質とし、芳香族モノヒドロキシ化合物、アルキルアリールカーポネットまたはそれらの混合物を反応物質とし、出発物質と反応物質のエステル交換反応を行わせて対応する芳香族カーポネットまたは芳香族カーポネット混合物を製造する方法が知られている。

【0003】しかしながら、これらのエステル交換反応は全て平衡反応であって、しかもその平衡が原系に偏っていることに加えて反応速度が遅いことから、この方法によって芳香族カーポネット類を工業的に製造するのは多大な困難を伴っていた。これを改良するためにいくつかの提案がなされているが、その大部分は、反応速度を高めるための触媒に関するものであり、数多くの金属含有触媒が知られている。ジアルキルアルキルカーポネットと芳香族ヒドロキシ化合物を反応させてアルキルアリールカーポネット、ジアリールカーポネットまたはそれらの混合物を製造する方法では、このような触媒として、例えば、遷移金属ハライド等のルイス酸又はルイス酸を生成させる化合物類（特開昭51-105032号公報、特開昭56-123948号公報、特開昭56-123949号公報（西獨特許公開公報第2528412号、英獨特許第1499530号明細書、米獨特許第4183726号明細書））、有機スズアルコキシドや有機スズオキシド類等のスズ化合物（特開昭54-48733号公報（西獨特許公開公報第2736062号）、特開昭54-63023号公報、特開昭60-169444号公報（米獨特許第4552704号明細書）、特開昭60-169445号公報（米獨特許第4552704号明細書）、特開昭62-277345号公報、特開平1-265063号公報）、アルカリ金属又はアルカリ土類金属の堿類及びアルコキシド類（特開昭57-176932号公報）、鉛化合物類（特開昭57-176932号公報）、銅、鉄、ジルコニアム等の金属の錯体類（特開昭57-183745号公報）、チタン酸エステル類（特開昭58-185536号公報（米獨特許第4410464号明細書））、ルイス酸とプロトン酸の混合物（特開昭60-173016号公報（米獨特許第4609501号明細書））、S_c、M_c、Mn、B₁、T_e等の化合物（特開平1-265064号公報）等が提案されている。

【0004】また、アルキルアリールカーポネットの同一種分子間エ斯特ル交換反応によってジアリールカーポネットとジアリールカーポネットに平均化させてジアリールカーポネットを製造する方法では、このような触媒として、例えば、ルイス酸およびルイフ酸を発生しうる遷移金属化合物（特開昭51-75044号公報（西獨特許公開公報第2552907号、米獨特許第4045464号明細書））、ポリマー性スズ化合物（特開昭60-169444号公報（米獨特許第4554110号明細書））、一般式R-X(-O)_nOH（R中XはS_c及びT_eから選択され、長は1価炭化水素基から選択される。）で表される化合物、（特開昭60-169445号公報（米獨特許第4552704号明細書））、ルイス酸とプロトン酸の混合物（特開昭57-173016号公報（米獨特許第4609501号明細書））、鉛触媒（特開平1-93560号公報）、チタンやジルコニアム化合物（特開平1-265062号公報）、スズ化合物（特開平1-265063号公報）、S_c、M_c、Mn、B₁、T_e等の化合物（特開平1-265064号公報）等が提案されている。

【0005】一方、反応方式を工夫することによって平衡をできるだけ生成系側にずらし、芳香族カーポネット類の収率を向上させる試みもなされている。例えば、ジメチルカーポネットとフェノールの反応において、副生していくメタノールを共沸形成剤とともに共沸によって留去する方法（特開昭54-48733号公報（西獨特許公開公報第736063号、米獨特許第4252737号明細書）、特開昭61-291545号公報）、副生していくメタノールをセレキュラーシープで吸引させて除去する方法（特開昭58-185536号公報（米獨特許第410464号明細書））が提案されている。

【0006】また、反応器の上部に蒸溜塔を設けた装置によって、反応で副生していくアルコール類を反応混合物から留去する方法も知られている（特開昭56-123948号公報（米獨特許第4182726号明細書）の実施例、特開昭56-25138号公報の実施例、特開昭60-169444号公報（米獨特許第4554110号明細書）の実施例、特開昭60-169445号公報（米獨特許第4552704号明細書）の実施例、特開昭60-173016号公報（米獨特許第4609501号明細書）の実施例、特開昭61-172852号公報の実施例、特開昭61-291545号公報の実施例、特開昭62-277345号公報の実施例）。

【0007】さらに好ましい方法として、本出願人はジアルキルカーポネットと芳香族ヒドロキシ化合物を連続的に多段蒸留塔に供給し、該塔内で連続的に反応させ、副生するアルコールを含む低沸点成分を蒸留によって連続的に抜き出すと共に、生成したジアルキルアリールカーポネットを含む成分を塔下部より抜き出す方法（特開平1

—2912う7号公報)、及びアルキルアリールカーボネットを連續的に多段蒸留塔に供給し、該塔内で連續的に反応させ、副生するジアルキルカーボネットを含む低沸成分を蒸留によって連續的に抜き出すと共に、生成したジアリールカーボネットを含む成分を塔下部より抜き出す方法(特開平4-1913う8号公報)等を提案した。これらの方法は、芳香族カーボネット類を効率よく、かつ連續的に製造する方法を初めて開示したものであり、その後本出願人の提案をベースとする同様な連續的製造方法として、カラム型反応器内で接触エステル交換させる方法(特開平6-41022号公報、特開平6-157424号公報、特開平ら-184058号公報)や、複数の反応槽を直列につなぐ方法(特開平6-234707号公報、特開平6-263694号公報)、気泡塔反応器を用いる方法(特開平ら-298700号公報)、継続反応槽を用いる方法(特開平6-345697号公報)等が出願されている。

【0008】これらの方法で芳香族カーボネット類を工業的に製造する場合、長期間安定に運転する方法についても提案されている。特開平6-157410号公報では、ジアルキルカーボネットと芳香族ヒドロキシ化合物から芳香族カーボネット類を製造する際、反応器内の脂肪族アルコール類の濃度を2重量%以下にするように反応槽に繋がった蒸留塔から脂肪族アルコールを抜き出す方法が開示され、安定した連続運転ができる事が記載されている。該公報は、蒸留塔内における触媒析出の問題を生じさせないためのものである。また、特開平9-11049号公報では系内の触媒を含む液状物中において芳香族多価ヒドロキシ化合物およびまたはその残基が触媒の金属成分に対して重量比で2以下に保つことで触媒の析出を防ぎ長期間の安定運転を可能とする方法が開示されている。

【0009】一方、芳香族カーボネットをエステル交換反応で製造する際に、高沸物質が副生することも知られている。例えば、特開6-1-1728う2号公報にはジメチルカーボネットをフェノールでエステル交換してジフェニルカーボネットを製造する際、ジフェニルカーボネットと同程度の沸点を持つ不純物を副生し、この不純物がジフェニルカーボネットに混入することにより、最終目的物、例えはアリカルボネットの着色を起こすことが記載されている。該公報には具体的に記載されていないが、ジアリールカーボネットと同程度の沸点を持つ不純物として、ジアリールカーボネットのフリース転移による異性体であるアリロキシカルボニル(ヒドロキシ)-アレーンが挙げられる。例えばジアリールカーボネットがジフェニルカーボネットの場合には、アリロキシカルボニル(ヒドロキシ)-アレーンに対応する化合物としてサリチル酸フェニルが挙げられる。サリチル酸アエニルはジフェニルカーボネットより沸点が4~5℃高い高沸物質である。

【0010】反応を長時間行うと、上記の高沸物質が次第に系内に蓄積するので、製品である芳香族カーボネットに混入する該高沸物質が増加して製品純度が低下してしまう。また、高沸物質が増加するにしたがい反応液の沸点が上昇するので、高沸物質の副生がさらに加速されるなどの問題があり、芳香族カーボネットを長期間安定して製造することは困難であった。そこで、該高沸物質を含む反応液を系外へ抜き出すことにより該高沸物質の系内での蓄積を防ぐ方法を考えられる。しかしながら、この方法では反応液に溶解しうる触媒を用いる場合、触媒もまた系外に排出せざるを得ない。該触媒と該高沸物質はいずれも反応液に溶解した状態で存在しているので、該触媒と該高沸物質を通常の分離法である蒸留法で分離するためには反応液を高溫で加热しなければならない。しかしながら、その結果、副生物がさらに生成してしまうのである。それゆえ、触媒と高沸物質を分離することは容易ではなかった。したがって、反応を継続させるためには、触媒を反応系に新たに供給しなければならず、その結果、多量の触媒が必要となってしまうという問題点があつた。

【0011】

【発明が解決しようとする課題】本発明は、ジアルキルカーボネット、アルキルアリールカーボネット及びそれらの混合物よりもなる群から選ばれる出発物質と、芳香族モノヒドロキシ化合物、アルキルアリールカーボネット及びそれらの混合物よりもなる群から選ばれる反応物質とを金属含有触媒の存在下にエステル交換反応に付し、芳香族カーボネット類を製造する際、上記した欠点のない、多量の該触媒を必要とせずに純度の高い芳香族カーボネットを安定して製造する方法を提供することにある。

【0012】

【課題を解決するための手段】本発明者らは、ジアルキルカーボネット、アルキルアリールカーボネット及びそれらの混合物よりもなる群から選ばれる出発物質と、芳香族モノヒドロキシ化合物、アルキルアリールカーボネット及びそれらの混合物よりもなる群から選ばれる反応物質とを金属含有触媒の存在下にエステル交換反応に付し、芳香族カーボネット類を製造する際、系内から抜き出した、高沸物質および金属含有触媒を含む液状物を特定の作用物質と反応させることで、該高沸物質に由来する成分と該金属含有触媒に由来する成分が容易に分離でき、該金属含有触媒由来物を系内へ再循環させることで、触媒を新たに供給することなく高沸物質を分離できることを見出し、この知見に基づいて本発明を完成するに至つた。

【0013】すなわち本発明は、(1) 下記化7に示される一級式(1)で表されるジアルキルカーボネット、下記化8に示される一級式(2)で表されるアルキルアリールカーボネット、及びそれらの混合物よりもなる

群から選ばれる出発物質と、下記化1に示される一般式(3)で表される芳香族モノヒドロキシ化合物、下記化10に示される一般式(4)で表されるアルキルアリールカーボネート及びそれらの混合物よりなる群から選ばれる反応物質とを金属含有触媒の存在下にエステル交換反応に付し、出発物質と反応物質とに對応する、下記化11に示される一般式(5)及び化12に示される一般式(6)で表される芳香族カーボネート類を製造するに当たり、系内から高沸物質、及び金属含有触媒を含む液状物を抜き出し、該液状物を作用物質と反応させることによって高沸物質由来物と金属含有触媒由来物を含む反応混合物を得、該反応混合物を主として該高沸物質由来物からなる成分と主として該金属含有触媒由来物からなる成分に分離し、該金属含有触媒由来物を系内へ再循環させることを特徴とする芳香族カーボネート類の製法。

【0014】

【化7】

【0015】

【化8】

【0016】

【化9】

【0017】

【化10】

【0018】(式中、一般式(1)～(4)のR¹、R²及びR³の各々は独立に炭素数1～10のアルキル基、炭素数3～10の脂肪族基または炭素数6～10のアラールキル基を表し、A_r¹、A_r²、及びA_r³の各々は独立に炭素数1～30の芳香族基を表す。)

【0019】

【化11】

【0020】

【化12】

【0021】(式中、一般式(5)、(6)のR及びA_rは、それぞれ、出発物質及び反応物質に対応してR¹、R²、R³及びA_r¹、A_r²、A_r³から選ばれる。)

(2) 作用物質が酸化剤であり、液状物と作用物質との反応が酸化反応であり、高沸物質由来物が低沸点酸化生成物であり、金属含有触媒由来物が金属酸化物であり、反応混合物の分離が第一級相分離であることを特徴とする上記(1)の製法。(3) 作用物質が沈殿形成剤であり、液状物と作用物質との反応が沈殿形形成であり、液状物と作用物質との反応が沈殿形形成であり、金属含有触媒由来物が反応混合物中に懸体として存在する金属含有物であり、反応混合物の分離が第一級分離であることを特徴とする上記(1)の製法。

(4) 金属含有物が金属炭酸塩、金属水酸化物、金属酸化物、金属硫化物、金属硫酸塩から選ばれた金属化合物であることを特徴とする上記(3)の製法。(5) 作用物質が反応性溶媒であり、液状物と作用物質との反応が加溶媒分解反応であり、高沸物質由来物が低沸点の加溶媒分解生成物であり、反応混合物の分離が蒸留分離であることを特徴とする上記(1)の製法。(6) 反応性溶媒が水であり、加溶媒分解反応が加水分解反応であり、加溶媒分解生成物が芳香族モノヒドロキシ化合物であることを特徴とする上記(5)の製法。(7) 上記(1)、(2)、(3)、(4)、(5)又は(6)の芳香族カーボネート類の製法が連續的に行われることを特徴とする連続的芳香族カーボネート類の製法。

(8) 出発物質と反応物質とを連續多段蒸留塔内に連續的に供給し、該連續多段蒸留塔内において金属含有触媒の存在下に液相または気一液相で両物質間のエステル交換反応を行わせると同時に、製造される芳香族カーボネートまたは芳香族カーボネート混合物を含む高沸点反応混合物を該蒸留塔の下部から液状で抜き出し、一方生成する副生物を含む低沸点反応混合物を蒸留によって該連續多段蒸留塔の上部からガス状で連續的に抜き出すことを含包する上記(7)の連續的芳香族カーボネート類の製法。(9) 上記(1)、(2)、(3)、(4)、(5)、(6)、(7)及び(8)の芳香族カーボネート類の製法の例れで製造された芳香族カーボネート類を用いてエステル交換法により芳香族ポリカーボネートを製造することを特徴とする芳香族ポリカーボネート類の製法。を提供するものである。

【0022】本発明では、系内から高沸物質および金属含有触媒を含む液状物を抜き出し、該液状物を作用物質と反応させることによって高沸物質由来物と金属含有触媒由来物を含む反応混合物を得、該反応混合物を主として高沸物質由来物からなる成分と主として金属含有触媒由来物からなる成分に分離し、該金属含有触媒由来物を系内へ再循環させることを特徴としている。

【0023】前記したように、触媒と高沸物質を分離することは容易ではなく、高沸物質を分離した触媒を系内

へ再循環させることは出来できなかった。本発明において高沸物質村より金属含有触媒を含む液状物を特定の作用物質と反応させることで、該高沸物質由来成分と該金属含有触媒由来成分からなる混合物を得、該混合物が該高沸物質由来成分と該金属含有触媒由来成分とに容易に分離できるという斬新な事実が発見されて、初めて、高沸を分離した触媒を循環させることが可能となったのである。

【0024】本発明により、高沸物を系内から分離できるので、系内の高沸物濃度を一定の値以下に保つことが可能となり、純度の高い芳香族カーポネートを製造することができる。また、触媒を循環して使用することができるので、必要な触媒の量が飛躍的に低減でき、かつ、高沸物質の系外への抜き出しを行う場合には必然的に発生する、高沸物質を含む不要な触媒溶液が発生しない。

【0025】以下に本発明について詳細に説明する。本発明で出発物質として用いられているジアルキルカーポネートとは、一般式(1)で表されるものである。

【0026】

【化13】

【0027】ここで、 R^1 は炭素数1～10のアルキル基、炭素数3～10の脂環族基、炭素数6～10のアラールキル基を表す。このような R^1 としては、例えばメチル、エチル、プロピル（各異性体）、アリル、ブチル（各異性体）、ブチニル（各異性体）、ベンチル（各異性体）、ヘキシル（各異性体）、ヘプチル（各異性体）、オクチル（各異性体）、ノニル（各異性体）、デシル（各異性体）、シクロヘキシルメチル等のアルキル基；シクロアロビル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル等の脂環族基；ベンジル、フェニル（各異性体）、フェニルアロビル（各異性体）、フェニルブチル（各異性体）、メチルベンジル（各異性体）等のアラールキル基が挙げられる。なお、これらのアルキル基、脂環族基、アラールキル基において、他の置換基、例えば低級アルキル基、低級アルコキシ基、シアノ基、ハロゲン等で置換されていてもよいし、不飽和結合を有していてもよい。

【0028】このような R^1 を有するジアルキルカーポネートとしては、例えば、ジメチルカーポネート、ジエチルカーポネート、ジブチルカーポネート（各異性体）、ジアリルカーポネート、ジブチニルカーポネート（各異性体）、ジブチルカーポネート（各異性体）、ジベンチルカーポネート（各異性体）、ジヘキシルカーポネート（各異性体）、ジヘプチルカーポネート（各異性体）、ジノニルカーポネート（各異性体）、ジデシルカーポネート（各異性体）、ジ

シクロペンチルカーポネート、シシクロヘキシルカーポネート、ジシクロヘプチルカーポネート、ジベンジルカーポネート、ジフェニルカーポネート（各異性体）、ジ（フェニルブチル）カーポネート（各異性体）、ジ（フェニルブチル）カーポネート（各異性体）、ジ（クロロベンジル）カーポネート（各異性体）、ジ（メトキシベンジル）カーポネート（各異性体）、ジ（メトキシエチル）カーポネート（各異性体）、ジ（クロロエチル）カーポネート（各異性体）、ジ（シアノエチル）カーポネート（各異性体）等が挙げられる。

【0029】これらのジアルキルカーポネートの中で、本発明において好ましく用いられるのは、 R^1 が炭素数4以下のアルキル基からなるジアルキルカーポネートであり、特に好ましいのはジメチルカーポネートである。また、本発明で出発物質として用いられるアルキルアリールカーポネートとは、一般式(2)で表されるものである。

【0030】

【化14】

【0031】ここで R^2 は R^1 と同じでも異なっていてもよく、炭素数1～10のアルキル基、炭素数3～10の脂環族基、炭素数6～10のアラールキル基を表し。 A R^3 は炭素数5～30の芳香族基を表す。このような R^3 としては、前記の R^1 に例示したものと同様な基が挙げられる。また A R^3 としては、例えば、フェニル、トリル（各異性体）、キシリル（各異性体）、トリメチルフェニル（各異性体）、テトラメチルフェニル（各異性体）、エチルフェニル（各異性体）、ブロビルフェニル（各異性体）、ブチルフェニル（各異性体）、ジエチルフェニル（各異性体）、メチルエチルフェニル（各異性体）、ベンチルフェニル（各異性体）、ヘキシルフェニル（各異性体）、シクロヘキシルフェニル（各異性体）等の、フェニル基及び各種アルキルフェニル基類；メトキシフェニル（各異性体）、エトキシフェニル（各異性体）、ブロキシフェニル（各異性体）等の各種アルコキシフェニル基類；フルオロフェニル（各異性体）、クロロフェニル（各異性体）、ブロモフェニル（各異性体）、クロロ（メチル）フェニル（各異性体）、ジクロロフェニル（各異性体）等の各種ハログン化フェニル基類；下記一般式(7)で示される各種置換フェニル基類：

【0032】

【化15】

(7)

【0033】(ただし、 A は単なる結合、-の-、-を

—、—CO—、—SO₂—等の2価の基、下記化16に示されるアルキレン基もしくは置換アルキレン基、または下記化17に示されるシクロアルキレン基を表し、また、芳香環は低級アルキル基、低級アルコキシ基、エチル基、ヒドロキシ基、ニトロ基、ハロゲン、シアノ基等の置換基によって置換されていてもよい。)

【0034】

【化16】

【0035】(ここでR⁴、R⁵、R⁶、R⁷の各々は独立に水素原子、低級アルキル基、シクロアルキル基、アリール基、アラルキル基であって、場合により、ハロゲン原子、アルコキシ基で置換されていてもよい。)

【0036】

【化17】

【0037】(ここでは3～11の整数であって、水素原子は低級アルキル基、アリール基ハロゲン原子等で置換されていてもよい)

ナフチル（各異性体）、メチルナフチル（各異性体）、ジメチルナフチル（各異性体）、クロロナフチル（各異性体）、メトキシナフチル（各異性体）、シアノナフチル（各異性体）等のナフチル基及び各種置換ナフチル基類；ビリジン（各異性体）、クマリル（各異性体）、キノリル（各異性体）、メチルビリジル（各異性体）、クロルビリジル（各異性体）、メチルクマリル（各異性体）、メチルキノリル（各異性体）等の置換及び無置換の各種ヘテロ芳香族基類等が挙げられる。

【0038】このようなR⁸およびR⁹を有するアルキルアリールカーボネートとしては、例えば、メチルフェニルカーボネート、エチルフェニルカーボネート、ブロビルフェニルカーボネート（各異性体）、アリルフェニルカーボネート、ブチルフェニルカーボネート（各異性体）、ベンチルフェニルカーボネート（各異性体）、ヘキシルフェニルカーボネート（各異性体）、ヘプチルフェニルカーボネート（各異性体）、オクサルトリルカーボネート（各異性体）、ノニル（エチルフェニル）カーボネート（各異性体）、デシル（ブチルフェニル）カーボネート（各異性体）、メチルトリルカーボネート（各異性体）、エチルトリルカーボネート（各異性体）、ブロビルトリルカーボネート（各異性体）、ブチルトリルカーボネート（各異性体）、アリルトリルカーボネート（各異性体）、メチルキンシリルカーボネート（各異性体）、メチル（トリメチルフェニル）カーボネート（各異性体）、メチル（クロロフェニル）カーボネ

ート（各異性体）、メチル（ニトロフェニル）カーボネート（各異性体）、メチル（メトキシフェニル）カーボネート（各異性体）、メチルクミルカーボネート（各異性体）、メチル（ナフチル）カーボネート（各異性体）、メチル（ビリジル）カーボネート（各異性体）、エチルクミルカーボネート（各異性体）、メチル（ベンゾイルフェニル）カーボネート（各異性体）、エチルキシリルカーボネート（各異性体）、ベンジルキシリルカーボネート等が挙げられる。

【0039】これらのアルキルアリールカーボネートの中で、R⁸が炭素数1～4のアルキル基であり、A¹¹が炭素数6～10の芳香族基であるものが好ましく用いられ、さらに特に好ましいのはメチルフェニルカーボネートである。本発明の出発物質は、上記一般式（1）で表されるジアルキルカーボネート、一般式（2）で表されるアルキルアリールカーボネート及びこれらの混合物よりもなる群から選ばれる。

【0040】本発明で使用物質として用いられる芳香族モノヒドロキシ化合物とは、下記一般式（3）で表されるものであり、芳香族基に直接ヒドロキシル基が結合しているものであれば、どの様なものであってもよい。

【0041】

【化18】

A¹¹-OH (3)

【0042】ここでA¹¹はA¹²と同じでも異なっていてもよく、炭素数2～3の芳香族基を表す。このようなA¹²としては上記のA¹²に例示したものと同様なものが挙げられる。このようなA¹²を有する芳香族モノヒドロキシ化合物としては、例えば、フェノール、クレゾール（各異性体）、キシレノール（各異性体）、トリメチルフェノール（各異性体）、テトラメチルフェノール（各異性体）、エチルフェノール（各異性体）、プロピルフェノール（各異性体）、ブチルフェノール（各異性体）、ジエチルフェノール（各異性体）、メチルエチルフェノール（各異性体）、メチルブロビルフェノール（各異性体）、ジブロビルフェノール（各異性体）、メチルブチルフェノール（各異性体）、ベンチルフェノール（各異性体）、ヘキシルフェノール（各異性体）、シクロヘキシルフェノール（各異性体）等の各種アルキルフェノール類；メトキシフェノール（各異性体）、エトキシフェノール（各異性体）等の各種アルコキシフェノール類；一般式（3）で表される各種置換フェノール類：

【0043】

【化19】

(略)

【0044】(ここで、A¹²は前記の通りの基である。)ナフトール（各異性体）及び各種置換ナフトール類；ヒ

ドロキシビリジン(各異性体)、ヒドロキシクマリン(各異性体)、ヒドロキシキノリン(各異性体)等のヘテロ芳香族モノヒドロキシ化合物類等が用いられる。これらの芳香族モノヒドロキシ化合物の中でも、本発明において好ましく用いられるのは、Ar¹が炭素数6から10の芳香族基からなる芳香族モノヒドロキシ化合物であり、特に好ましいのはフェノールである。

【0045】また、本発明で反応物質として用いられるアルキルアリールカーボネートとは、下記一般式(4)で表されるものである。

【0046】

【化20】

【0047】ここでR³はR¹、R²と同じでも異なっていてもよく、炭素数1～10のアルキル基、炭素数3～10の脂環族基、炭素数6～10のアラルキル基を表し、Ar²はAr¹、Ar²と同じでも異なっていてもよく、炭素数5～9の芳香族基を表す。このようなR³としては、前記のR¹に例示したものと同様な基が

【0051】(ここで、R¹、R²、R³およびAr¹、Ar²、Ar³は上記に定義した通りである。反応式(E4)において各Arⁱは独立にAr¹またはAr²を示し、各R^jは独立にR¹またはR²を表す。反応式(E4)においてR¹=R³、Ar¹=Ar³の場合、反応は同一種分子間エステル交換反応であって、通常不均化反応とも称される。)

本発明の方法により、反応式(E1)、(E2)、(E3)及び(E4)の各反応を行う場合、出発物質のジアルキルカーボネートおよびアルキルアリールカーボネートは、それぞれ1種でもよいし、2種以上混合して用いてよい。また反応物質の芳香族モノヒドロキシ化合物およびアルキルアリールカーボネートも、それぞれ1種でもよいし、2種以上混合して用いてよい。

【0052】なお、反応式(E4)で表されるエステル交換反応においてR¹=R²=R、Ar¹=Ar²=Ar

挙げられ、またAr³としては、前記のAr¹に例示したものと同様なものが挙げられる。

【0048】このようなR³およびAr³を有するアルキルアリールカーボネートとしては、前記的一般式(2)の場合に例示したものと同様なものが挙げられる。これらのアルキルアリールカーボネートの中でも、R³が炭素数1～6のアルキル基であり、Ar³が炭素数6～10の芳香族基であるものが好ましく用いられる。さらに特に好ましいのはメチルフェニルカーボネートである。

【0049】本発明の反応物質は、上記一般式(3)で表される芳香族モノヒドロキシ化合物、一般式(4)で表されるアルキルアリールカーボネート及びこれらの混合物よりも群から選ばれる。本発明の、金属含有触媒の存在下、出発物質と反応物質とを反応させて、芳香族カーボネートまたは芳香族カーボネート混合物を製造する方法に含まれるエステル交換反応は下記化21に示される反応式(E1)、(E2)、(E3)、(E4)で代表される。

【0050】

【化21】

である場合は、1種類のアルキルアリールカーボネートの同一種分子間エ斯特ル交換反応によりジアリールカーボネートとジアルキルカーボネートが得られることになり、好ましい方法である。さらに、反応式(E1)および反応式(E4)において、R¹=R²=R³=R、Ar¹=Ar²=Ar³=Ar⁴である場合は、反応式(E1)で表される反応と反応式(E4)で表される反応とを組み合わせることによって、下記化22に示される反応式(E5)及び反応式(E6)で表されるようにジアルキルカーボネートと芳香族モノヒドロキシ化合物から、アルキルアリールカーボネートを経由してジアリールカーボネートが得られることになり、本発明の特に好ましい実施態様といえる。

【0053】

【化22】

【0054】反応式(E5)で表される反応で副生してくれるジアルキルカーボネートを反応式(E6)で表される反応の原料として再循環すれば、結果的には1モルのジアルキルカーボネートと2モルの芳香族モノヒドロキシ化合物から、1モルのジアリールカーボネートと2モルの脂肪族アルコールが得られることになる。上記反応式(E6)において、R'=CH₃、A'=-C₆H₅の場合、最も簡単なジアルキルカーボネートであるジメチルカーボネートとフェノールから、ボリカーボネートや、イソシアネットの原料として重要なジフェニルカーボネートが得られるため、特に重要なである。

【0055】本発明で使用される金属含有触媒とは、前記反応式(E1)～反応式(E4)の反応を促進する金属含有触媒であり、例えば下記の化合物から選択される。

＜鉛化合物＞Pb₂O、Pb₂O₃、Pb₂O₅等の酸化鉛類；Pb₂S、Pb₂S等の硫化鉛類；Pb(OH)₂、Pb₂O₂(OH)₂等の水酸化鉛類；Na₂PbO₂、K₂PbO₂、Na₂H₂PbO₂、KHPbO₂等の強かたり酸塩類；Na₂PbO₂、Na₂H₂PbO₂、K₂PbO₂、K₂[Pb(OH)₆]、K₂PbO₄、Ca₂PbO₄、CaPbO₃等の鉛酸塩類；Pb₂CO₃、2Pb₂CO₃·Pb(OH)₂等の鉛の炭酸塩及びその塗基性塩類；Pb(OOCCH₃)₂、Pb(OOCCH₃)₂·Pb(OOCCH₃)₂、Pb₂O₃·3H₂O等の有機酸の鉛塩及びその炭酸塩や塗基性塩類；Bu₂Pb、Ph₂Pb、Pb₂Bu、PbCl₄、Ph₂PbBr、Ph₂Pb(又はPb₂、Pb₂)、Bu₂PbOH、Ph₂PbO等の有機鉛化合物類(Buはブチル基、Phはフェニル基を示す。)；Pb(OOCCH₃)₂、(CH₃O)Pb(OOPh)、Pb(OOPb)₂等のアルコキシ鉛類、アリールオキシ鉛類；Pb-Na、Pb-Ca、Pb-Ba、Pb-Sn、Pb-Sb等の鉛の合金類；ホウエヌ鉛、センアモン鉛等の鉛鉱物類、及びこれらの鉛化合物の水和物；

＜銅鉄金属の化合物＞CuCl₄、CuCl₂、CuBr₂、CuBr₂₂、CuI₂、CuI₂、Cu(OAc)₂、Cu(acac)₂、オレフイン酸銅、Bu₂Cu₂(CH₃O)₂Cu、AgNO₃、AgBr、ピクリン酸銀、Ag₂C₆H₅ClO₄、Ag(ブルバレン)₂NO₃、[AgC≡C-C(CH₃)₃]_n、[Cu(C₆H₅)₂Cl]_n等の銅鉄金属の鹽及び錯体(acac)はアセチルアセトキレート配位子を表

す。)；

＜アルカリ金属の錯体＞Li₂(acac)₂、LiN(C₆H₅)₂等のアルカリ金属の錯体；

＜銀鉄の錯体＞Zn(acac)₂等の銀鉄の錯体；

＜カドミウムの錯体＞Cd(acac)₂等のカドミウムの錯体；

＜鉄族金属の化合物＞Fe(C₁₂H₂₀)₂(CO)₄、Fe(CO)₅、Fe(C₆H₅)₂(CO)₄、Co(\times シチレン)₂(PPh₃)₂、CoC₆H₅(CO)₄、Ni— π -C₆H₅NO、フェロセン等の鉄族金属の錯体；

＜ジルコニウム錯体＞Zr(acac)₄、ジルコノセン等のジルコニウムの錯体；

＜ルイス酸類化合物＞AlX₃、TiX₃、TiX₄、VOX₃、VX₃、ZnX₂、FeX₃、SnX₄(ここでXはハロゲン、アセトキシ基、アルコキシ基、アリールオキシ基である。)等のルイス酸及びルイス酸を発生する遷移金属化合物；

＜有機スズ化合物＞(C₂H₅)₂SnOCOCH₃、(C₂H₅)₂SnOCOC₂H₅、Bu₂SnOCOCH₃、Ph₂SnOCOCH₃、Bu₂Sn(OCOC₂H₅)₂、Bu₂Sn(OCOC₂H₅)₂、Pb₂SnOCH₃、(C₂H₅)₂SnOPh、Bu₂Sn(OCH₃)₂、Bu₂Sn(OC₂H₅)₂、Bu₂Sn(OPh)₂、Ph₂Sn(OCH₃)₂、(C₂H₅)₂SnOH、Pb₂SnOH、Bu₂SnO、(C₂H₅)₂SnO、Bu₂SnCl₂、BaSnO(OH)等の有機スズ化合物；

等が用いられる。

【0056】もちろん、これらの触媒成分が反応系中に存在する有機化合物、例えば、脂肪族アルコール類、芳香族モノヒドロキシ化合物類、アルキルアリールカーボネート類、ジアリールカーボネート類、ジアルキルカーボネート類等と反応したものであっても良いし、反応に先立って原料や生成物で加熱処理されたものであってもよい。

【0057】これらの金属含有触媒は、反応条件において反応液への溶解度の高いものであることが好ましい、好ましい金属含有触媒としては、PbO、Pb(OH)₂、Pb(OOPh)₂；TiCl₄、Ti(OOPh)₂；SnCl₄、Sn(OOPh)₂、Bu₂SnO、Bu₂Sn(OOPh)₂；FeCl₃、Fe(OH)₂等、又はこれらをフェノール

又は反応液等で処理したもの等が挙げられる。

【0058】本発明において、エステル交換反応の反応器の形式に特に制限はなく、攪拌槽方式、多段攪拌槽方式、多段蒸留塔を用いる方式、及びこれらを組み合わせた方式等、公知の種々の方法が用いられる。これらの反応器はバッチ式、連続式のいずれでも使用できる。平衡を生成系側に効率的にすらすという点で、多段蒸留塔を用いる方法が好ましく、多段蒸留塔を用いた連続法が特に好ましい。多段蒸留塔とは、蒸留の理論段数が2段以上の多段を有する蒸留塔であって、連続蒸留が可能なものであるならばどのようなものであってもよい。このような多段蒸留塔としては、例えば泡籠トレイ、多孔板トレイ、パルプトレイ、向流トレイ等のトレイを使用した細段塔方式のものや、ラシヒリング、レーナークリーニング、ボールリング、ペルルサドル、インタロックスサドル、ディクソンパッキング、フランパンパッキング、ヘリパック、スルザーパッキング、メラパック等の各種充填物を充填した充填塔方式のものなど、通常多段蒸留塔として用いられるものならばどのようなものでも使用することができる。さらには、細段部分と充填物の充填された部分とをあわせもつ細段一充填混合塔方式のものも好ましく用いられる。多段蒸留塔を用いて連続法を実施する場合、出発物質と反応物質とを連続多段蒸留塔内に連続的に供給し、該蒸留塔内において金属含有触媒の存在下に液相または気-液相で両物質間のエステル交換反応を行わせると同時に、製造される芳香族カーボネットまたは芳香族カーボネット混合物を含む高沸点反応混合物を該蒸留塔の下部から液状で抜き出し、一方生成する細生物を含む低沸点反応混合物を蒸留によって該蒸留塔の上部からガス状で連続的に抜き出すことにより芳香族カーボネット類が製造される。

【0059】本発明で用いる触媒の量は、使用する触媒の種類、原料の種類やその量比、反応温度並びに反応圧力などの反応条件の違いによっても異なるが、原料の合計重量に対する割合で表して、通常0.001～3.0重量%で使用される。本発明で行われるエステル交換反応の反応時間（連続法の場合は器留時間）に、特に制限はなく通常0.001～5.0時間、好ましくは0.01～1.0時間、より好ましくは0.05～0.5時間である。

【0060】反応温度は、用いる原料化合物の種類によって異なるが、通常50～350°C、好ましくは100～280°Cの範囲で行われる。また反応圧力は、用いる原料化合物の種類や反応温度などにより異なるが、減圧、常圧、加圧のいずれであってもよく、通常0.1～2.0×10⁷Paの範囲で行われる。本発明においては、必ずしも反応溶媒を使用する必要はないが、反応操作を容易にする等の目的で適当な不活性溶媒、例えば、エーテル類、脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化芳香族炭化水素類等を反応溶媒として用いることができる。

【0061】本発明では、器内から高沸物質および金属含有触媒を含む液状物を抜き出し、該液状物を作成物質と反応させることによって高沸物質由来物と金属含有触媒由来物を含む反応混合物を得、該反応混合物を主として高沸物質由来物からなる成分と主として金属含有触媒由来物からなる成分に分離し、該金属含有触媒由来物を器内へ再循環させることを特徴としている。

【0062】「器内」とは、反応器、反応器周辺の配管及び機器、触媒回収系の總器及び配管等の内部を示す。本発明の「高沸物質および金属含有触媒を含む液状物」とは、反応器に供給する触媒および高沸物質を含む液や、反応器中の高沸物質と触媒を含む反応液、反応器から排出される触媒と高沸物質を含む反応液、及びその反応液の一部を蒸発させ、触媒および高沸物質の濃度を高めた濃縮液等を意味し、触媒が全て溶解している場合もあり、スラリー状の場合もある。スラリー状の場合には、スラリー中の溶解していない部分も「高沸物質および金属含有触媒を含む液状物」に含まれる。

【0063】本発明で言う高沸物質とは、その沸点が本発明で製造する芳香族カーボネット類の沸点と同じであるかまたは高い有機物質を指し、例えば、芳香族多価ヒドロキシ化合物およびその残基、芳香族カルボキシル化合物およびその残基、キサントン類などが、さらに反応して生成する高分子量の副生物も同様に高沸物質として挙げられる。

【0064】該芳香族多価ヒドロキシ化合物は下記の一般式(9)で表され、

【0065】

【化23】

A_m⁴—(O)n_m (9)

【0066】(式中、A_m⁴はm個の芳香族基を表し、mは2以上の整数を表し、各一枚基はA_m⁴基のいずれの位置に結合していてよい。)

該芳香族多価ヒドロキシ化合物の残基は、下記の一般式(10)で表され。金属含有触媒の金属、ジアルキルカーボネットまたはアルキルアリールカーボネットに由来するアルコキシカルボニル基、アルキルアリールカーボネットまたはジアリールカーボネットに由来するアリールオキシカルボニル基、及びジアルキルカーボネット、アルキルアリールカーボネットまたはジアリールカーボネットに由来するカルボニル基よりなる群から選ばれる少なくとも1種に化学的に結合した状態で存在している。

【0067】

【化24】

—(O)_n—A_m⁴—(O)_n—_{m-n} (10)

【0068】(式中、A_m⁴とは上記した通りであ

り、Yは1～nの整数であって、-O-基および-O-基はそれぞれ1～n基の芳香族環上のいずれかの位置に結合していてもよい。)

一般式(9)と(10)のふたつの例としては、下記の式(11)、(12)、(13)、(14)、(15)で表される芳香族基が挙げられる。

【0069】

【化25】

(11)

(12)

【0070】(式中、Y¹は、単結合、炭素数1～30を有する2価のアルカン基、または-O-、-CO-、-S-、-SO₂-、-SO-および-COO-から選ばれる2価の基を表す。)

【0071】

【化26】

(13)

【0072】(式中、Y¹は上記の通りである。各Y¹は同じでも異なっていてもよい。)

【0073】

【化27】

(14)

【0074】(式中、Zは、炭素数1～30を有する3価のアルカン基、3価の芳香族基等の3価の基を表す。芳香環の一つ以上の水素原子が、他の置換基、例えば、ハロゲン原子、炭素数1～30のアルコキシ基、フェニル基、フェノキシ基、ビニル基、シアノ基、エステル基、アミド基、ヒドロ基等によって置換されていてもかまわない。)

【0075】

【化28】

(15)

【0076】このような、芳香族多価ヒドロキシ化合物の具体例としては、ハイドロキノン、レゾルシン、カチコール、トリヒドロキシベンゼン(各異性体)、ビス-(ヒドロキシフェニル)-1-ブロパン(各異性体)、ビス-(ヒドロキシフェニル)-1-メタン(各異性体)、ビス-(ヒドロキシフェニル)-1-エチル(各異性体)、ビ

ス-(ヒドロキシフェニル)-1-ケトン(各異性体)、ビス-(ヒドロキシフェニル)-1-スルホン(各異性体)、ビス-(ヒドロキシフェニル)-1-スルフィド(各異性体)、ジヒドロキシフェニル(各異性体)、ビス-(ジヒドロキシフェニル)-1-メタン(各異性体)、2-(ヒドロキシフェニル)-1-ヒドロキシプロピルフェノール、ジヒドロキシ-1-(ヒドロキシフェニル)ジフェニル(各異性体)、トリマー(ヒドロキシフェニル)エタノン(各異性体)、トリマー(ヒドロキシフェニル)-1-ベンゼン(各異性体)、ジヒドロキシナフタレン(各異性体)、トリヒドロキシナフタレン(各異性体)等が挙げられる。

【0077】これらの芳香族多価ヒドロキシ化合物及びその残基の中でも、本発明の芳香族カーボネートを製造する際に製造プロセス内に存在しやすいものは特に注意をする必要がある。存在しやすい芳香族多価ヒドロキシ化合物としては、下記の(A)、(B)、および(C)を挙げることができる。

(A) 反応物質としての芳香族モノヒドロキシ化合物の酸化生成物。

(B) 該エステル交換反応で得られるジアリールカーボネートのフリース転位による生成物及びその酸化生成物。

(C) 反応物質としてのフェノールに由来し、下記の一般式(16)で表される芳香族ジヒドロキシ化合物およびその酸化生成物。

【0078】

【化29】

(16)

【0079】(式中、Y¹は前記の通りである。)

上記の、芳香族モノヒドロキシ化合物の酸化生成物(A)の例としては、下記式(17)および(18)で表される化合物を挙げることができる。

【0080】

【化30】

(17)

(18)

【0081】ジアリールカーボネートのフリース転位による生成物(B)の例としては、下記の式(19)、(20)及び(21)で表される化合物を挙げができる。

【0082】

【化31】

(19)

(20)

(21)

【0085】上記の、式(16)によって表される芳香族ジヒドロキシ化合物(C)の例としては、下記式(26)で表される化合物を挙げることができる。

【0086】

【化33】

(26)

【0087】上記の式(26)で表される化合物の酸化生成物の例としては、下記式(27)及び(28)で表される化合物を挙げることができる。

【0088】

【化34】

【0083】上記式(19)で表される化合物の酸化生成物の例としては、下式(22)及び(23)で表される化合物を挙げることができ、また、上記式(20)及び(21)で表される化合物のそれぞれの酸化生成物の例としては、下記式(24)及び(25)で表される化合物を挙げができる。

【0084】

【化32】

(22)

(23)

(24)

(25)

【0089】(式中、Y)は前記の通りである。)

(A)のタイプの芳香族多価ヒドロキシ化合物が、製造プロセス内に存在する原因としては、芳香族カーボネートを製造する際に、系内への微量の酸素の混入により芳香族モノヒドロキシ化合物が酸化されて生成することによって存在する場合や、原料の芳香族モノヒドロキシ化合物中に含まれる不純物として反応系に混入することによって存在する場合等が挙げられる。(A)の芳香族多価ヒドロキシ化合物の代表例としては、ジヒドロキシベンゼン(各異性体)、ジヒドロキシシフェニル(各異性体)等が挙げられる。

【0090】(B)のタイプのジアリールカーボネートのフリース転移による生成物は、ジアリールカーボネートを製造する際に副反応により生成しやすい。(B)の多価ヒドロキシ化合物の例としては、2, 2'-ジヒドロキシベンズフェノン、2, 4'-ジヒドロキシベンズフェノン、4, 4'-シヒドロキシベンズフェノン等が挙げられる。

【0091】(C)のタイプの芳香族ジヒドロキシ化合物は、一般的に芳香族ポリカーボネートのモノマーとして用いられる化合物である。この芳香族ジヒドロキシ化合物とジアリールカーボネートとのエステル交換により芳香族ポリカーボネートを製造することができるが、エステル交換反応の際に芳香族モノヒドロキシ化合物が副生する。副生する芳香族モノヒドロキシ化合物を本発明の反応物質として使用する場合には、(C)のタイプの芳香族ジヒドロキシ化合物が混入しやすい。このような多価ヒドロキシ化合物の代表例としては、2, 2'-ビス-(オーヒドロキシフェニル)-ブロバン等が挙げられる。

【0092】また、2, 2'-ビス-(オーヒドロキシフェニル)-ブロバン中に通常混在する下記のような芳香族多価ヒドロキシ化合物も、本発明の芳香族多価ヒドロキシ化合物に含まれる。

【0093】

【化35】

【0094】本発明でいう高沸物質に含まれる芳香族カルボキシル化合物は下記の一級式(29)で表される。

【0095】

【化3.6】

【0096】(式中、 A_r^{β} は r 個の芳香族基であり、 r は1以上の整数であり、 s は0～ $r-1$ の整数であり、各—O基および—(COOH)基は A_r^{β} 基のいずれの位置に結合していてもよい。)

該芳香族カルボキシル化合物の残基は、下記の一級式(30)で表され、且つ、金属含有触媒の金屬、ジアルキルカーボネートまたはアルキルアリールカーボネートに由来するアルコキシカルボニル基、アルキルアリールカーボネートまたはジアリールカーボネートに由来するアリーロキシカルボニル基、及びジアルキルカーボネート、アルキルアリールカーボネートまたはジアリールカーボネートに由来するカルボニル基よりなる群から選ばれる少なくとも1種に化学的に結合した状態で存在している。

【0097】

【化3.7】

【0098】(式中、 A_r^{β} 、 α および β は上記した通りであり、 s は0～ α の整数であり、 α は0～ $r-s$ の整数であって、—OH基、—(COOH)基、—O—基および—(COO)—基はそれそれぞれ A_r^{β} 基の芳香族環上のいずれの位置に結合していてもよい。)

このような、芳香族カルボキシル化合物およびその残基の異体物としては、安息香酸、テレフタル酸、イソフタル酸、フタル酸等の芳香族カルボン酸類；安息香酸メチル、安息香酸フェニル、テレフタル酸ジメチル等の芳香族カルボン酸エステル類；サリチル酸、p-ヒドロキシ安息香酸、m-ヒドロキシ安息香酸、ジヒドロキシ安息香酸(各異性体)、カルボキシジフェノール(各異性体)、2-(4-ヒドロキシフェニル)-2-(3'-カルボキシ-4'-ヒドロキシフェニル)ブロバン等のヒドロキシ芳香族カルボン酸類；サリチル酸フェニル、p-ヒドロキシ安息香酸フェニル、サリチル酸トリル、p-ヒドロキシ安息香酸トリル、ジヒドロキシ安息香酸フェニル(各異性体)、ジヒドロキシ安息香酸トリル(各異性体)、ジヒドロキシ安息香酸フェニル(各異性体)、フェノキシカルボルジフェノール(各異性体)、2-(4-ヒドロキシフェニル)-2-(3'-

フェノキシカルボニル-4'-(ヒドロキシフェニル)アロバン等のアリ-ロキシカルボニル-(ヒドロキシ)-アレーン類；サリチル酸メチル、 α -ヒドロキシ安息香酸エチル、ジヒドロキシ安息香酸メチル(各異性体)、メトキシカルボニルジフェノール(各異性体)、2-(4-ヒドロキシフェニル)-2-(3'-メトキシカルボニル)-2-(ヒドロキシフェニル)アロバン等のアルコキシカルボニル-(ヒドロキシ)-アレーン類；メトキシ安息香酸フェニル(各異性体)、メトキシ安息香酸トリル(各異性体)、エトキシ安息香酸トリル(各異性体)、ヒドロキシ-メトキシ-安息香酸フェニル(各異性体)、ヒドロキシ-メトキシ-(フェノキシカルボニル)-ジフェニル(各異性体)、2-(4-メトキシフェニル)-2-(3'-フェノキシカルボニル)-2-(ヒドロキシフェニル)アロバン、2-(4-ヒドロキシフェニル)-2-(3'-フェノキシカルボニル)-2-(メトキシフェニル)アロバン等のアリ-ロキシカルボニル-(アルコキシ)-アレーン類；フェノキシ安息香酸フェニル(各異性体)、フェノキシ安息香酸トリル(各異性体)、トリルオキシ安息香酸トリル(各異性体)、ヒドロキシ-フェノキシ-安息香酸フェニル(各異性体)、ヒドロキシ-フェノキシ-(フェノキシカルボニル)-ジフェニル(各異性体)、2-(4-フェノキシフェニル)-2-(3'-フェノキシカルボニル)-2-(ヒドロキシフェニル)アロバン、2-(オ-ヒドロキシフェニル)-2-(3'-フェノキシカルボニル)-2-(ヒドロキシフェニル)アロバン等のアリ-ロキシカルボニル-(アリ-ロキシ)-アレーン類；メトキシ安息香酸メチル(各異性体)、メトキシ安息香酸エチル(各異性体)、エトキシ安息香酸メチル(各異性体)、エトキシ安息香酸エチル(各異性体)、ヒドロキシ-メトキシ-安息香酸メチル(各異性体)、ヒドロキシ-メトキシ-(メトキシカルボニル)-ジフェニル(各異性体)、2-(4-メトキシフェニル)-2-(3'-メトキシカルボニル)-2-(ヒドロキシフェニル)アロバン、2-(オ-ヒドロキシフェニル)-2-(3'-メトキシカルボニル)-2-(ヒドロキシフェニル)アロバン等のアルコキシカルボニル-(アルコキシ)-アレーン類；フェノキシ安息香酸メチル(各異性体)、フェノキシ安息香酸エチル(各異性体)、トリールオキシ安息香酸メチル(各異性体)、トリールオキシ安息香酸エチル(各異性体)、ヒドロキシ-メトキシ-安息香酸フェニル(各異性体)、ヒドロキシ-メトキシ-(フェノキシカルボニル)-ジフェニル(各異性体)、2-(4-メトキシフェニル)-2-(3'-フェノキシカルボニル)-2-(ヒドロキシフェニル)アロバン、2-(オ-ヒドロキシフェニル)-2-(3'-フェノキシカルボニル)-2-(メトキシフェニル)アロバン等のアルコキシカルボニル

ドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3'-メトキシカルボニル)-1-(メトキシカルボニルオキシ)フェニル)プロパン等のアルコキシカルボニル-(アルコキシカルボニルオキシ)-アレーン類などが挙げられる。

【0099】これらの芳香族カルボキシル化合物及びその誘導体の中でも、本発明の芳香族カーボネートを製造する際に製造プロセス内に存在しやすいものは特に注意する必要がある。存在しやすい芳香族カルボキシル化合物としては、下記の(D)および(E)を挙げることができる。

(D) 本発明のエステル交換反応で得られる芳香族カーボネートのフリース転移による生成物およびその加水分解生成物、(E) 芳香族多価ヒドロキシ化合物のエステル交換反応生成物のフリース転移による生成物およびその加水分解生成物、前記したように、本発明の芳香族カーボネート類の製法において、ジメチルカーボネートとフェノールからメチルフェニルカーボネートやジフェニルカーボネートを得る反応が特に重要であるので、この場合を例として上記(D)、(E)の、各芳香族カルボキシル化合物及びその誘導体を以下に例示する。

【0100】(D)の例としては、サリチル酸、p-ヒドロキシ安息香酸、サリチル酸フェニル、p-ヒドロキシ安息香酸フェニル、サリチル酸メチル、p-ヒドロキシ安息香酸メチル、メトキシ安息香酸フェニル(各異性体)、フェノキシ安息香酸フェニル(各異性体)、フェノキシカルボニルオキシ安息香酸フェニル(各異性体)、フェノキシカルボニルオキシ安息香酸メチル(各異性体)、メトキシカルボニルオキシ安息香酸メチル(各異性体)等の化合物を挙げることができる。

【0101】(E)の例としてはジヒドロキシ安息香酸(各異性体)、ジヒドロキシ安息香酸フェニル(各異性体)、フェノキシカルボニルジフェノール(各異性体)、2-(4-ヒドロキシフェニル)-2-(3'-フェノキシカルボニル)-1-(ヒドロキシフェニル)プロパン等の化合物を挙げることができる。本発明の高沸物質に含まれるキサントン類としてはキサントンおよび該キサントンの芳香環に、メチル、エチル、プロピル、イソブロピル、ブチル、イソブチル等のアルキル基；ヒドロキシ基；メトキシ、エトキシ、プロポキシ、イソブロキシ、ブロキシ等のアルコキシ基；フェノキシ、トリルオキシ等のアリールオキシ基；メトキシカルボニルオキシ、エトキシカルボニルオキシ、ブロボキシカルボニルオキシ、ブロキシカルボニルオキシ等のアルコキシカルボニルオキシ基；フェノキシカルボニルオキシ、トリロキシカルボニルオキシ等のアリーロキシカルボニルオキシ基；カルボキシル基；メトキシカルボニル、エトキシカルボニル等のアルコキシカルボニル基；フェノキシカルボニル、トリロキシカルボニル等のアリーロキシカルボニル基；ベンゾイルオキシ、トリルカルボニルオ

キシ等のアリールカルボニルオキシ基などの各種置換基群から選ばれた少なくとも一つの置換基が置換したものが挙げられる。

【0102】本発明で用いる作用物質とは、高沸物質および/または金属含有触媒と反応する物質であり、反応の結果、分離可能な反応混合物を与える物質であればどのような物質でも用いることができる。例えば、酸化剤、還元剤、沈殿形成剤、吸着剤、反応性溶媒などが挙げられる。特に、酸化剤、沈殿形成剤、反応性溶媒などが好ましく用いられる。また、これらの作用物質はそれぞれ単独で用いることもできるし、2種類以上の作用物質を組み合わせて同時にまたは逐次的に用いることもできる。

【0103】本発明で當う高沸物質由来物とは、高沸物質が作用物質と反応して与える反応生成物および/または未反応の高沸物質である。また、金属含有触媒由来物とは、金属含有触媒が作用物質と反応して与える反応生成物および/または未反応の金属含有触媒である。高沸物質由来物と金属含有触媒由来物を含む反応混合物の分離は、該反応混合物を、主として高沸物質由来物からなる成分と、主として金属含有触媒由来物に分離できる方法であれば、どのような分離方法でも用いることができる。例えば、気-液分離、気-固分離、気-固液混相分離等の気-凝聚相分離；沈降分離、遠心分離、渦過分離等の固-液分離；蒸留分離；抽出分離；吸着分離などが挙げられ、好ましくは沈降分離、蒸留分離、吸着分離などが用いられる。また、これらの分離方法はそれぞれ単独で用いることもできるし、2種類以上の中離方法を組み合わせて同時にまたは逐次的に用いることができる。

【0104】該作用物質と該分離の組み合わせは特に限定されないが、本発明を実施する際の好ましい方法としては、以下の方法が挙げられる。

(I) 該作用物質が酸化剤であり、該反応が酸化反応であり、該高沸物質由来物が低沸点酸化生成物であり、該金属含有触媒由来物が金属酸化物であり、該分離が気-凝聚相分離である方法。

(II) 該作用物質が沈殿形成剤であり、該反応が沈殿形成反応であり、該金属含有触媒由来物が該反応混合物中で固体として存在する金属含有物であり、該分離が固-液分離である方法。

(III) 該作用物質が反応性溶媒であり、該反応が加溶媒分解反応であり、該高沸物質由来物が低沸点の加溶媒分解生成物であり、該分離が蒸留分離である方法。

【0105】前記(I)の方法を用いる場合、酸化剤としては、高沸物質を酸化して該高沸物質由来物として低沸点酸化生成物を与え、かつ、該金属含有触媒を酸化して該金属含有触媒由来物として金属酸化物を与える酸化剤が用いられる。そのような酸化剤としては例えば、臭素、分子状酸素、オゾン、過酸化水素、過酸化銀；過酢酸、過双氧水酸、ベンゾイルペーオキサイド。その他も

高沸物質より低沸点の化合物を与えるものであればどのような反応性溶媒でも用いることができる。例えば、水；メタノール、エタノール、プロパノール（各異性体）、ブクノール（各異性体）等の低級アルコール類；グ酸、酢酸、プロピオン酸等の低級カルボン酸類；ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類などが用いられ、水、メタノール、エタノール、酢酸、酢酸メチル、酢酸エチル、ジメチルカーボネート、ジエチルカーボネートなどが好ましく用いられる。さらに好ましくは水が用いられる。

【0114】本発明における加溶媒分解反応とは、反応性溶媒と高沸物質との反応を指し、生成した加溶媒分解生成物が、さらに脱炭酸反応等の加溶媒分解反応とは別種の反応を行っても良い。該低沸点の加溶媒分解生成物とは、高沸物質より低沸点のものであればよく、その種類や構造は、反応性溶媒や高沸物質の種類により異なるが、高沸物質が芳香族カルボキシル化合物の1種であるサリチル酸フェニルの場合を例にとって以下に具体的に説明する。

(1) 反応性溶媒が水である場合：加水分解反応により、フェノールとサリチル酸が生成し、該サリチル酸がさらに脱炭酸反応を行いフェノールと二酸化炭素となる。

(2) 反応性溶媒がアルコールである場合：アルコールにより、サリチル酸アルキルとフェノールが生成する。

(3) 反応性溶媒がカルボン酸である場合：エステル交換反応により、サリチル酸とカルボン酸フェニルエステルが生成し、該サリチル酸がさらに脱炭酸反応を行いフェノールと二酸化炭素となる。

【0119】芳香族カルボキシル化合物として比較的構造の簡単なサリチル酸フェニルを例にとって、上記の説明を行ったが、より複雑な芳香族カルボキシル化合物の場合でも同様な反応が進行し、対応する加溶媒分解生成物として、例えば、芳香族モノヒドロキシ化合物、低級カルボン酸と芳香族モノヒドロキシ化合物のエ斯特ル、芳香族カルボキシル化合物と低級アルコールのエ斯特ル、二酸化炭素などを生成する。特に芳香族モノヒドロキシ化合物は本発明の反応物質であり、再利用できるため、加溶媒分解生成物として好ましい。

【0116】該状物には金属含有触媒が含まれており、該触媒は通常、加溶媒分解反応の触媒としても機能するので、加溶媒分解反応のために特に触媒を用いる必要はないが、反応速度を向上させる等の目的で触媒を用いることもできる。高沸物質と反応性溶媒の反応は反応条件によっても異なるが、通常、液相、固液混相、から選ばれた一つの固状態で行われる。反応温度は反応性溶媒の種類によっても異なるが、通常、-30～400°C、好ましくは-10～30°C、さらに好ましくは0～250°Cである。反応時間は反応性溶媒の種類や反応

温度によっても異なるが通常の、0.01～1.00時間、好ましくは0.1～2.0時間である。反応圧力は通常1.0～1.0³ Paで行われる。該反応はバッチ反応でも連続反応でも実施することができる。

【0117】金属含有触媒は加溶媒分解反応を行っても行わなくとも良い。反応性溶媒として水やアルコール類を用い、高沸物質である芳香族カルボキシル化合物を含む液状物と反応させる場合には、脱炭酸反応も進行するために高沸物質由来物の一つとして二酸化炭素が生成する。したがって、該二酸化炭素が沈殿形成剤として作用して金属含有触媒と反応し、金属炭酸塩等の金属含有物が溶解状態でおよび／または固体として得られることがある。

【0118】前記(1)(1)の場合、反応混合物の分離は蒸留分離であり、高沸物質由来物である低沸点の加溶媒分解生成物が主として馏出物として得られる。金属含有触媒は、蒸留釜残液に含まれる。該蒸留分離の際の温度は、釜部の液温で表現して通常、10～30°C、好ましくはうり～250°Cで行われる。圧力は通常、0.1～1.0×10³ Pa、好ましくは1.0～1.0×10³ Paで行われる。蒸留はバッチでも連続でも実施することができる。

【0119】液状物と作用物質との未反応物を分離して得られた金属含有触媒由来物を系内へ再循環させるに際しては、反応混合物を分離して得た、液体、固体または固液混相状態の金属含有触媒由来物を含む成分をそのまま系内へ再循環させることもできるし、あるいは、該成分に該金属含有触媒由来物以外の成分が含まれている場合には該成分の一部または全部を分離してから、系内へ再循環させることもできる。また、該金属含有触媒由来物を出発物質や反応物質と反応させて得られる反応液またはスラリーを再循環させることもでき、これは該金属含有触媒由来物が固体または固液混相状態である場合に好ましい方法である。

【0120】系内から抜き出す液状物中の高沸物質の濃度については、該高沸物質の種類によっても異なるが、該高沸物質の量を極端に低くすることは抜き出す液状物の量が多くなりすぎる所以好ましくない。また、高沸物質の濃度があまりに高いと導管や約束が増加し、取り扱いが困難となる。従って、抜き出す液状物中の高沸物質濃度は、通常0.01～9.9重量%、好ましくは0.1～9.9重量%、さらに好ましくは1～9.0重量%である。また、高沸物質が芳香族多価ヒドロキシ化合物である場合、反応器や配管における触媒の析出や付着を防ぐためには、該芳香族多価ヒドロキシ化合物の、液状物中の触媒の金属に対する重量比が通常2以下で行われる。

【0121】本発明の好ましい態様として、エ斯特ル交換法芳香族ポリカーボネートに、本発明の方法で精製したシアリールカーボネートを利用することが挙げられる。エ斯特ル交換法で芳香族ポリカーボネートを製造す

るにあたり、本発明の方法で製造されたジアリールカーボネートを用いることにより、高い重合速度で重合することが可能となる。また、芳香族ジヒドロキシ化合物と本発明の方法で精製されたジアリールカーボネートから得られるエスチル交換法芳香族ポリカーボネートは着色がなく高品質である。

【0122】本発明の方法を達成する装置の材質特に制限はないが、通常ステンレススチールやグラスライング等から選ばれる。

【0123】

【発明の実施の形態】次に、本発明を実施例によって具体的に説明する。なお、触媒濃度は1CP(高周波誘導結合型プラズマ発光分析計)を用いて分析した。液中の有機成分濃度は、ガスクロマトグラフを用いて分析した。

【0124】なお、触媒に配置している高沸物質の濃度については、トリフルオロ酢酸で配位子交換した後、ガスクロマトグラフで測定した。液状物中の高沸物質の純濃度は以下のようにして求めた。該液状物を小型蒸留装置で蒸留し、目的とする芳香族カーボネートより高沸点の留分または残液中の有機成分の合計重量を算出し、該合計重量の該液状物重量に対する重量百分率を液状物中の高沸物質の純濃度とした。

【0125】芳香族ポリカーボネートの数平均分子量はゲルバーミエーショングロマトグラフィー(GPC)により測定した。結果は全て重量濃度で表した。

【0126】

【実施例1】

〈触媒の調整〉フェノール(以下、しばしばPヒドロヒドロキシフェノールと称す。)40ヒドロキシ化鉛8kgを180°Cで10時間加熱し、生成する水をフェノールと共に留去することにより触媒Aを調製した。

〈芳香族カーボネートの製造〉図1に示されるような装置を用いた。段数20のシープトレーパを装着した塔高6m塔径6インチの粗段塔からなる連続多段蒸留塔1の塔頂2から0.5mの位置へ、ジメチルカーボネート(以下、しばしばDMCと称す。)、フェノール(フェノール中の多価ヒドロキシ化合物としての4,4'-ジヒドロキシジフェニルの濃度:30ppm)、及び触媒Aからなる混合物を導管3から予熱器4を経て液状で連続的に3.2kg/hで供給し、連続多段蒸留塔1内を流下させることによって反応を行った。上記混合物中のジメチルカーボネートとフェノールの重量比は6.2/3.8であり、触媒Aは、導管13におけるPヒドロヒドロキシ化鉛8kgを導管13上に設けたサンプリングノズル(図示しない)より抜き出した反応混合物を用いて測定することができる。すなわち、連続多段蒸留塔1の塔底には、ジメチルカーボネートを導管7より蒸発器8に導入し、ガス状にしたジメチルカーボネートを導管9より260°C/hで供

給した。連続多段蒸留塔1の塔底温度は203°C、塔頂圧力は7.4×10⁴Paであった。塔頂2より留出するガスを導管10を経て、凝縮器11で凝縮して導管12より2.5kg/hで連続的に抜き出した。塔底から3.4kg/hで連続的に抜き出した、目的生成物であるメチルフェニルカーボネート(以下、しばしばMPGと称す。)、触媒及び、高沸物質を含む反応混合物を導管13を経て蒸発器14へ導入した。蒸発器14のメチルフェニルカーボネートを含む蒸発物を導管21より凝縮器22を経て導管23より3.2、9.5kg/hで抜き出した。一方、蒸発器14中では触媒および高沸物質を含む濃縮液が形成された。この濃縮液の一部を導管15および導管16からリボイラー17に導入し、導管18より蒸発器14に循環した。濃縮液の残りを蒸発器14から導管15、導管19および導管20を経て再び連続多段蒸留塔1へ1kg/hで供給した。導管19からの供給が開始されて以降は、導管3からのジメチルカーボネート、フェノール、及び触媒Aからなる混合物の導入量は必要に応じて調整された。

【0127】蒸発器14で形成された濃縮液の一部を、運転開始後400~5000時間の間、導管30より0.01kg/hで連続的に系外に抜き出し、導管31へ導入した。運転開始後400時間の時点で、導管15に設けられたサンプリングノズル(図示しない)から抜き出したサンプルを分析したところ、触媒の金属成分であるPヒドロヒドロキシ化鉛が1.3重量%、および高沸物質の純濃度が1.7重量%、該高沸物質の成分である4,4'-ジヒドロキシジフェニルが0.7重量%含まれていた。薄膜蒸発器33の蒸発物を0.04kg/hで連続的に導管34から抜き出し、導管49から系内へ循環した。一方、薄膜蒸発器33の底部に設けられた導管34から、触媒及び高沸物質を含む濃縮液を連続的に0.01kg/hで抜き出し、貯槽36へ導入して、該貯槽36で該濃縮液を貯めた。運転開始後400時間の時点で、導管34に設けられたサンプリングノズル(図示しない)から抜き出したサンプルを分析したところ、触媒の金属成分であるPヒドロヒドロキシ化鉛が0.5重量%、および高沸物質の純濃度が0.6重量%、該高沸物質の成分である4,4'-ジヒドロキシジフェニルが0.6重量%含まれていた。反応開始後50時間後、貯槽36に貯めていた濃縮液のうち1kgを導管37から電気炉38へ導入し、導管39から空気を供給しながら昇温を開始し、炉内温度700°Cを8時間保持する事で、大気圧下で該濃縮液の酸化を行った。該濃縮液中の有機物に由来する酸化反応生成物(二酸化炭素、水および低分子有機化合物)が排気管40から排出された。放熱後電気炉38内の酸化反応生成物の一部を取り出し分析したところ、触媒に由来する酸化生成物である一酸化鉛だけが検出された。これは、該濃縮液中の有機物が酸化反応を受け、揮発性の低沸点有機化合物である酸化反応生成物と

なったことを意味している。

【0128】上記電気炉38内の酸化反応生成物(一酸化鉛)0.07kgを、蒸留塔43と熱媒ジャケット(図示しない)を備えた反応釜42へ投入した。さらに、該蓄留釜42へフェノール1.2kgを投入した後、該反応釜42を熱媒温度160°Cで6時間、大気圧下で加熱した。引き続き熱媒温度を200°Cとして、生成した水および未反応のフェノールを蒸留塔43の塔頂に掛けられた導管44から0.277kg抜き出した。該反応釜42内に残存する混合物の一部を抜き取り、分析したところ、シフェノキシ鉛(Pb(OPh)₂)のフェノール溶液であった。上記混合物1kgを導管46から貯槽47へ導入し、該混合物を貯槽47内に貯めた。以後、貯槽46に貯めた濃縮液を100時間ごとに1kgづつ抜き出し、上記処理を行い、得られた混合物を貯槽47へ導入する操作を繰り返した。反応開始後600時間から該貯槽47の内容物を連續的に0.01kg/hrの量で導管48から抜き出し、導管35から導入される混合物と合流し、導管49を経て、系内へ循環した。運転開始後400~600時間の間の導管23からの抜き出し量は32.99kg/hrであった。運転開始後600~5000時間の間の導管23からの抜き出し量は33kg/hrであった。運転開始後400~600時間の間、触媒を導管20からの系外への抜き出し量に見合う量つまり導管13でのPb濃度が0.038重量%に維持できる量を導管3より供給した。運転は5000時間行った。導管49から触媒の循環を開始した。運転開始600時間以降においては、新たな触媒を系内に導入する必要は全くなかった。また、系内から抜き出される、触媒と高沸物質を含む液に対して上記の処理を行うことにより、触媒を含む凝液は全く発生しなかった。蒸発器14で形成された触媒および高沸物質を含む濃縮液を導管14'から運転開始後1000時間、2500時間及び5000時間で抜き出し、分析したところ、高沸物質の総濃度がそれぞれ、1.7、1.8、1.8重量%であった。

【0129】また、析出や触媒の付着等のトラブルはなく、各導管の流量、組成共に安定に運転された。導管13に備えたサンプリングノズルから連続多段蒸留塔1から抜き出される反応混合物のサンプルを取り出した。3000時間経過した時点の導管13中の反応混合物の組成は、PhOH:3.1重量%、MPC:9重量%、DPC:0.5重量%、アニソール(以下、しばしばANSと称す。):0.1重量%、Pわく:0.038重量%であった。導管23から抜き出される液から高沸物質は検出できなかった。運転を停止した後、系内の開放点検を行った結果、連続多段蒸留塔1、蒸発器14、リボイラー17や周辺の配管等のいずれにも触媒の付着は認められなかった。

【0130】

【比較例1】蒸発器14で形成された触媒および高沸物質を含む濃縮液の導管20からの系外への抜き出しを行なわず、かつ、反応開始400時間以降触媒の供給を行わないこと以外は、実施例1と全く同様に反応を行った。導管15'に掛けた上記サンプリングノズルから、運転開始1000時間、2500時間および5000時間で抜き出した濃縮液中の高沸物質の純濃度は、5.2、1.4、6.32.0重量%であった。運転開始3000時間後の導管15'の組成は、PhOH:3.3重量%、MPC:6.5重量%、DPC:0.2重量%、ANS:0.1重量%、Pb:0.038重量%であった。導管23から抜き出される液には高沸物質が総濃度で表して1.5%含まれていた。反応開始5000時間後反応を停止し、系内の開放点検を行った結果、連続多段蒸留塔1、蒸発器14、及び周辺の配管の一部に触媒の付着が認められた。

【0131】

【比較例2】蒸発器14で形成された触媒および高沸物質を含む濃縮液の導管20からの系外への抜き出しを行なった後、薄膜蒸発器39の底部抜き出し液を貯槽36へ導入せずに触媒廃液貯槽(閉封せず)へ導入し、貯槽47から系内への触媒の再循環を行わず、かつ、運転開始600時間以降も、触媒を導管20からの系外への抜き出し量に見合う量つまり導管13でのPb濃度が0.038重量%に維持できる量を導管3より供給したこと以外は、実施例1と全く同様に反応を行った。5000時間反応を行った。運転開始600~5000時間の間の導管3からの供給触媒は金属鉛に換算して2.8kg/mを必要であった。また、運転開始600~5000時間の間に触媒廃液貯槽に貯まった、触媒および高沸物質を含む濃縮液の量は4.4tまであった。

【0132】

【実施例2】実施例1で得た触媒みを用い、段数20のシートトレーを装着した塔高16m塔径4インチの懸滴塔からなる連続多段蒸留塔1よりなる図2に示した装置を用いて、メチルフェニルカーボネートからシフェニルカーボネート(以下しばしばDPC)を製造した。

【0133】連続多段蒸留塔1の塔頂2から2.0mの位置へメチルフェニルカーボネート及び触媒導入からなる混合物を導管3から予熱器4及び導管5を経て液状で連続的に8kg/hrで供給し、連続多段蒸留塔1内で流下させて反応を行った。触媒は導管13におけるPb濃度が0.19重量%になるような量を用いた。(上記Pb濃度は導管13上に設けたサンプリングノズル(図示しない)より抜き出した反応混合物を用いて測定することができる。)。連続多段蒸留塔1の塔底温度は199°C、塔頂圧力は2.5×10³Paであった。塔頂2より放出するガスは導管25を経て凝縮器26で凝縮されて一部は導管27および導管28より塔頂2に再循環し、残りの凝縮液を導管27および導管29より

2, 4 kg/hrで連続的に抜き出した。連続多段蒸留塔1の塔底からの反応混合物の一部を、導管30からリボイラー31及び導管32を経て塔底6に再循環し、残りの反応混合物は導管13から7, 6 kPa/hrで蒸発器14へ供給した。蒸発器14のジフェニルカーボネートを含む系溶液を導管21より凝縮器22を経て導管23より1, 6 kg/hrで抜き出した。一方、蒸発器14中では触媒および高沸物質を含む濃縮液が形成された。この濃縮液の一部を導管14および導管18を経て蒸発器14に循環した。濃縮液の残りを導管14から導管19および導管3を経て再び連続多段蒸留塔1へ2 kg/hrで供給した。導管14からの供給が開始されて以降は、導管3からのメチルフェニルカーボネート及び触媒からなる混合物の導入量は必要に応じて調整された。

【0134】蒸発器14で形成された上記の濃縮液の一部を運転開始後400～500時間の間、導管20より0, 05 kg/hrで連続的に系外に抜き出し、薄膜蒸留器33へ導入した。運転開始後1000時間の時点で、導管15'に設けられたサンプリングノズル(図示しない)から抜き出したサンプルを分析したところ、触媒の金属成分であるPdが0, 7重量%、および高沸物質の純濃度が9, 0重量%、該高沸物質の成分であるサリチル酸フェニルが0, 25重量%含まれていた。薄膜蒸発器33の蒸発物を0, 04 kg/hrで連続的に導管34から抜き出し、導管49から系内へ循環した。一方、薄膜蒸発器33の底部に設けられた導管34から、触媒及び高沸物質を含む濃縮液を連続的に0, 01 kg/hrで抜き出し、貯槽36へ導入して、該貯槽36で該濃縮液を貯めた。運転開始後1000時間の時点で、導管34に設けられたサンプリングノズル(図示しない)から抜き出したサンプルを分析したところ、触媒の金属成分であるPdが9, 5重量%、および高沸物質の純濃度が24, 8重量%、該高沸物質の成分であるサリチル酸フェニルが1, 3重量%含まれていた。

【0135】反応開始後10時間後、貯槽36に貯めていた濃縮液のうち1 kgを導管37から導管38と熱線ジャケット(図示しない)および攪拌器を備えた容器10リットルの反応釜50へ投入した。ジャケット温度180°Cで加熱した該反応釜50へニ酸化炭素を3, 9 Nl/hrの流量で、同時に水を3, 1 g/hrの流量で、それぞれ2時間供給して、該反応釜50内で攪拌を行なうことで、該反応釜内に硫酸鉛を含む混合物が形成された。該反応は大気圧下で実施された。攪拌を停止し、該混合物中の生成した硫酸鉛を含む固体を沈降させた。沈降後、該混合物の上澄み液を導管39から抜き出した。該上澄み液中の鉛の濃度は400 ppmであった。次に、該反応釜50にフェノール1, 021 kgを投入し、大気圧下、ジャケット温度180°Cで攪拌した。その際、フェノールを該反応釜50の蒸留塔4を

経て導管50から0, 1 kg/hrの流量で留出させた。該反応釜50内では炭酸鉛とフェノールが反応してジフェニルカーボネートと二酸化炭素および水が生成する反応が進行した。生成した水と炭酸ガスは前記の、留出フェノールとともに系外へ抜き出された。上記の操作を2時間続けて得られた混合物を、反応釜50から導管41を経て貯槽47へ導入し、該混合物を貯槽47内に貯めた。【0136】以後、貯槽36に貯めた濃縮液を100時間ごとに1 kgづつ抜き出し、上記処理を行い、得られた混合物を貯槽47へ導入する操作を繰り返した。反応開始後600時間から該貯槽47の内容物を連続的に0, 01 kg/hrの量で導管48から抜き出し、導管39から導入される混合物と合流し、導管49を経て、系内へ循環した。運転開始後400～600時間の間の導管23からの抜き出し量は9, 5 kg/hrであった。運転開始後600～5000時間の間の導管23からの抜き出し量は9, 6 kg/hrであった。運転開始400～600時間の間、触媒を導管20からの系外への抜き出し量に見合う量つまり導管13でのPdの濃度が0, 19重量%に維持できる量を導管15より供給した。

【0137】運転は5000時間行った。導管49から触媒の循環を開始した。運転開始600時間以前においては、導管3から系内に導入する触媒量はPd重量で表現して0, 0033 g/hrにすぎなかった。また、この導管3から導入する触媒を製造する際に必要な鉛化合物として、導管3から抜き出した前記の上澄み液を焼却して得られた酸化鉛を用いることができたので、結局、新たな触媒を系内に導入することは全くなかった。また、上記のように、該上澄み液を焼成して鉛化合物を回収したので、触媒を含む副液は全く発生しなかった。蒸発器14で形成された触媒および高沸物質を含む濃縮液を導管15'から運転開始後1000時間、2500時間及び5000時間で抜き出し、分析したところ、高沸物質の純濃度がそれぞれ、3, 0, 5, 1, 9, 1重量%であった。また該高沸物質の成分であるサリチル酸フェニルの濃度がそれぞれ0, 25, 0, 25, 0, 26重量%であった。

【0138】また、析出を触媒の付着等のトラブルはなく、各導管の流量、組成共に安定に運転された。導管13に備えたサンプリングノズルから連続多段蒸留塔1から抜き出される反応混合物のサンプルを取り出した。5000時間経過した時点の導管13中の反応混合物の組成は、MPC: 23, 8重量%, DPC: 74, 6重量%, Pb: 0, 19重量%であった。導管23から抜き出される液から高沸物質は検出できなかった。運転を停止した後、系内の開放点検を行った結果、連続多段蒸留塔1、蒸発器14、リボイラー17や周辺の配管等のいずれにも触媒の付着は認められなかった。

【0139】

【比較例3】蒸発器14で形成された触媒および高沸物

質を含む濃縮液の導管20からの系外への抜き出しを行なった後、薄膜蒸発器33の底部抜き出し液を貯槽36へ導入せずに、触媒発送貯槽(図示せず)へ導入し、貯槽47から系内への触媒の再循環を行わず。かつ、運転開始後600時間以降も、触媒を導管20からの系外への抜き出し量に見合う量つまり導管13でのPb濃度が0.19重量%に維持できる量を導管3より供給したこと以外は、実施例2と全く同様に反応を行なった。

【0140】5000時間反応を行なった。運転開始600~5000時間の間に導管3からの供給触媒は金属性鉛に換算して1.54kg必要であった。また、運転開始600~5000時間の間に触媒発送貯槽に貯まつた、触媒および高沸物質を含む濃縮液の量は4.4kgであった。

【0141】

【実施例3】実施例1で得た触媒Aを用い、図3に示した装置を用いて、ジフェニルカーボネットを製造した。段数40のシートレーを装着した塔高1.2m塔径8インチの精餾塔からなる連続多段蒸留塔1の塔頂2から0.5mの位置へジメチルカーボネット、フェノール(フェノール中の芳香族多価ヒドロキシ化合物としての4.4%ジヒドロキシフェニルの濃度:200重量ppm)、及びメチルフェニルカーボネットからなる混合物を導管3から予熱器4及び導管5を経て液状で連続的に1.1kg/hで供給し、連続多段蒸留塔1内を流下させることによって反応を行なった。上記混合物の各成分は、運転時の導管5における液(導管5の液は、蒸発器14から回収される導管19の液と、連続多段蒸留塔101から回収される導管129の液、導管3から導入する上記混合物が集合して形成される)の組成が、ジメチルカーボネット49.9重量%、フェノール44.7重量%、メチルフェニルカーボネット4.9重量%になるような量を用いた。連続多段蒸留塔1の塔底6には、ジメチルカーボネットを導管7より蒸発器8に導入してガス状にしたジメチルカーボネットを導管9を経て1.1kg/hで供給した。なお触媒Aは、導管13におけるPb濃度が0.042重量%になるような量を触媒導入の為の導管224より供給した(上記Pb濃度は導管13上に設けたサンプリングノズル(図示しない)より抜き出した反応混合物を用いて測定することができた)。

導管2より導出するガスを導管10を経て凝縮器126で凝縮させて、一部は導管128より塔頂102にリサイクルさせ、残りの凝縮液は導管127及び導管129より予熱器4、導管5を経て、連続多段蒸留塔1に再循環させた。導管129から、連続多段蒸留塔1へのリサイクルを開始させてからは、導管5の液組成が上述の組成になるように、導管3からフェノールを新たに供給した。新たに供給するフェノール中に芳香族多価ヒドロキシ化合物として、4.4%ジヒドロキシフェニルが200重量ppm含まれていた。連続多段蒸留塔の塔底106の反応混合物の一潮を、導管130からリボイラー131及び導管132を経て塔底106に再循環させ、残りの反応混合物を導管113から8.8kg/hで蒸発器114へ供給させた。蒸発器114では触媒、及び高沸物質を含む濃縮液が形成された。この濃縮液の一部を導管115及び導管116からリボイラー117及び導管118を経て蒸発器114に導入させた。濃縮液の発りを、蒸発器114から導管115、導管119及び導管105を経て残りの連続多段蒸留塔101へ2.1kg/hで供給させた。蒸発器114で形成された上記の濃縮液の一部は、運転開始後400~500時間の間、導管120より0.05kg/hで連続的に系外に抜き出し、導管20から抜き出し液と合流させて、導管20'を経て薄膜蒸留器33へ導入した。運転開始後1000時間の時点で、導管20'に設

管16からリボイラー17及び導管18を経て蒸発器14に循環した。濃縮液の残りを、蒸発器14から導管15、導管19及び導管3を経て再び連続多段蒸留塔1へ1kg/hで供給した。蒸発器14で形成された上記の濃縮液の一部は、運転開始後400~500時間の間、導管20より0.05kg/hで連続的に系外に抜き出し、薄膜蒸留器33へ導入した。

【0142】触媒Aを、導管20からの系外への抜き出し量に見合う量、つまり導管13でのPb濃度が0.042重量%に維持できる量を、導管224より供給した。一方、蒸発器14の蒸発物を導管21を経て、段数20のシートレーを装着した塔高6m塔径10インチの精餾塔からなる連続多段蒸留塔101に、塔頂102から2.10mの位置に供給し、連続多段蒸留塔101内で反応を行なった。導管105の混合物(導管105の混合物は、導管21の蒸発物と蒸発器114から回収される導管119の液が集合して形成される。)の組成は、DMC:43、1重量%、PhOH:24、5重量%、MPC:27、1重量%、DPC:4、5重量%であった。なお触媒は、導管113におけるPb濃度が0.16重量%になるような量を導管124より供給した。

(上記Pb濃度は導管113上に設けたサンプリングノズル(図示しない)より抜き出した反応混合物を用いて測定することができる。)連続多段蒸留塔101の塔底温度は19.8°C、塔頂圧力は3.7×10⁴Paであった。塔頂102より留出するガスを導管125を経て凝縮器126で凝縮させて、一部は導管128より塔頂102にリサイクルさせ、残りの凝縮液は導管127及び導管129より予熱器4、導管5を経て、連続多段蒸留塔1に再循環させた。導管129から、連続多段蒸留塔1へのリサイクルを開始させてからは、導管5の液組成が上述の組成になるように、導管3からフェノールを新たに供給した。新たに供給するフェノール中に芳香族多価ヒドロキシ化合物として、4.4%ジヒドロキシフェニルが200重量ppm含まれていた。連続多段蒸留塔の塔底106の反応混合物の一潮を、導管130からリボイラー131及び導管132を経て塔底106に再循環させ、残りの反応混合物を導管113から8.8kg/hで蒸発器114へ供給させた。蒸発器114では触媒、及び高沸物質を含む濃縮液が形成された。この濃縮液の一部を導管115及び導管116からリボイラー117及び導管118を経て蒸発器114に導入させた。濃縮液の発りを、蒸発器114から導管115、導管119及び導管105を経て残りの連続多段蒸留塔101へ2.1kg/hで供給させた。蒸発器114で形成された上記の濃縮液の一部は、運転開始後400~500時間の間、導管120より0.05kg/hで連続的に系外に抜き出し、導管20から抜き出し液と合流させて、導管20'を経て薄膜蒸留器33へ導入した。運転開始後1000時間の時点で、導管20'に設

けられたサンプリングノズル（図示しない）から抜き出したサンプルを分析したところ、触媒の金属成分であるPbが1.0重量%、および高沸物質の総濃度が3.3重量%、該高沸物質の成分である、4, 4'-ジヒドロキシジフェニルが1.8重量%、およびサリチル酸フェニルが0.13重量%含まれていた。薄膜蒸発器33の蒸発物を0.09kg/hで連続的に導管31から抜き出し、導管149から系内へ循環した。一方、薄膜蒸発器33の底部に設けられた導管34から、触媒及び高沸物質を含む濃縮液を連続的に0.01kg/hで抜き出し、貯槽36へ導入して。該貯槽36で該濃縮液を貯めた。運転開始後1000時間の時点で、導管34に設けられたサンプリングノズル（図示しない）から抜き出したサンプルを分析したところ、触媒の金属成分であるPbが9.9重量%、および高沸物質の総濃度が33.4重量%、該高沸物質の成分であるサリチル酸フェニルが1.3重量%含まれていた。

【0143】反応開始後550時間後、貯槽36に貯めていた濃縮液のうち1kgを導管37から蒸留塔54と熱媒ジャケット（図示しない）および攪拌器を備えた容積10リットルの反応釜50へ投入した。ジャケット温度180°Cで加熱した該蒸留釜50へ二酸化炭素を1.1N1/L/hの流量で、同時に水を8.7kg/hの流量で、それぞれ2時間供給して、該反応釜50内で反応を行うことで、該反応器内に炭酸鉛を含む混合物が形成された。該反応は大気圧下で実施された。攪拌を停止し、該混合物中の生成した炭酸鉛を含む固体を沈降させた。沈降後、該混合物の上澄み液を導管33から抜き出した。該上澄み液中の鉛の濃度は400ppmであった。

【0144】次に、該反応釜50にフェノール0.620kgを投入し、大気圧下、ジャケット温度180°Cで攪拌した。その間、フェノールを該反応釜50の蒸留塔54を経て導管33から、1kg/hの流量で抽出させた。実施例2と同様に、該反応釜50内では炭酸鉛とフェノールが反応してジフェノキシ鉛と二酸化炭素および水が生成する反応が進行した。生成した水と炭酸ガスは前記の抽出フェノールとともに系外へ放出された。上記の操作を2時間続けて得られた混合物を、導管33から導管46を経て貯槽47へ導入し、該混合物を貯槽47内に貯めた。以後、貯槽36に貯めた濃縮液を100時間ごとに1kgづつ抜き出し、上記処理を行い、得られた混合物を貯槽47へ導入する操作を繰り返した。

【0145】反応開始後600時間から、該貯槽47の内容物を連続的に0.01kg/hの量で導管48から抜き出し、一部を導管49から0.0065kg/hで系内へ循環し、残りを導管45から0.0095kg/hで抜き出し、導管33から導入される還台物と合流し、導管149を経て、系内へ循環した。運転開始400～600時間の間、触媒を導管20及び導管

120からの系外への抜き取り量に見合う量、つまり導管13におけるPb濃度が0.042重量%に維持できる量を導管24から供給し、導管113におけるPb濃度が0.16重量%に維持できる量を導管124から供給した。蒸発器114の蒸発物を導管121を経て、段数20のシートトレイを装着した塔頂6m塔径6インチの粗粒塔からなる連続多段蒸留塔201に、塔頂202から2.0mの位置に供給し、連続多段蒸留塔201でジフェニルカーボネートを分離した。連続多段蒸留塔201の塔底温度は184°C、塔頂圧力は2×10⁵Paであった。塔頂202より留出するガスを導管225を経て凝縮器226で凝縮させて、一部は導管228より塔頂202にリサイクルさせ、残りの凝縮液は導管227及び導管229より、連続多段蒸留塔101に再循環させた。塔頂202から4mの位置に設けられた導管233から抜き出されたガスを凝縮器234で凝縮させ、得られた液を導管235から6.7kg/hで抜き出した。導管235の液組成は99.99%以上がジフェニルカーボネートであった。

【0146】運転は500時間行なった。導管49および導管149から触媒の循環を開始した。運転開始600時間以降においては、導管124及び224から系内に導入する触媒量はPb重量で表現して0.0032kg/hにすぎなかった。また、この導管33から導入する触媒を製造する際に必要な鉛化合物として、導管53から抜き出した前記の上澄み液を焼却して得られた鉛化鉛を用いることができたので、結局、新たに触媒を系内に導入することは全くくなかった。また、上記のように、該上澄み液を焼成して鉛化合物を回収したので、触媒を含む廃液は全く発生しなかった。

【0147】蒸発器14で形成された触媒および高沸物質を含む濃縮液を導管151から運転開始後1000時間、2500時間及び5000時間で抜き出し、分析したところ、高沸物質の総濃度がそれぞれ、2.2、2.3、2.3重量%であった。蒸発器114で形成された触媒および高沸物質を含む濃縮液を導管1151から運転開始後1000時間、2500時間及び5000時間で抜き出し、分析したところ、高沸物質の総濃度がそれぞれ、5.0、5.1、5.1重量%であった。サリチル酸フェニルの濃度がそれぞれ、2.5、0.26、0.26重量%であった。また、析出や触媒の付着等のトラブルはなく、各導管の流量、組成共に安定に運転された。3000時間経過した時点の導管235の液を分析したところ、ジフェニルカーボネート以外の物質は検出できなかった。運転を停止した後、系内の開放点検を行った結果、連続多段蒸留塔1、蒸発器14、リボイラー17や周辺の配管等のいずれにも触媒の付着は認められなかった。

【0148】

【比較例4】蒸発器14及び蒸発器114で形成された

触媒および高沸物質を含む濃縮液の導管2りおよび導管120からの系外への抜き出しを行なわず、かつ、反応開始400時間以降触媒の供給を行わないこと以外は、実施例3と全く同様に反応を行った。導管1-15'に設けた上記サンプリングノズルから、運転開始1000時間、2500時間および5000時間で抜き出した濃縮液中の高沸物質の総濃度は、1.3、1.9、3.0、4.5、2.7、3重量%であった。またサリチル酸フェニルの濃度がそれぞれ、6.2、1.7、2.7、9重量%であった。
3000時間経過した時点の導管23の液を分析したところ、サリチル酸フェニルが1.2 ppm検出された。また、高沸物質は総濃度で表して0.06%含まれていた。反応開始5000時間後反応を停止し、系内の開放点検を行った結果、連続多段蒸留塔1、蒸発器1-4、及び周辺の配管の一部に触媒の付着が認められた。

【0149】

【実施例4】貯槽3より液状物を抜き出す導管37以後、触媒由来物を貯槽47へ循環させる導管46までが図4に示した装置である他は、実施例2と同様に運転を行った。蒸発器1-4で形成された濃縮液の一部を運転開始後400～5000時間の間、導管20よりも0.05km/hで連続的に系外に抜き出し、薄膜蒸留器33へ導入した。運転開始後1000時間の時点で、導管1-15'に設けられたサンプリングノズル(図示しない)から抜き出したサンプルを分析したところ、触媒の金属成分であるPtが0.7重量%、および高沸物質の総濃度が4.0重量%、該高沸物質の成分であるサリチル酸フェニルが0.15重量%含まれていた。薄膜蒸発器33の蒸発物を0.04kg/hで連続的に導管39から抜き出し、導管49から系内へ循環した。一方、薄膜蒸発器33の底部に設けられた導管34から、触媒及び高沸物質を含む濃縮液を連続的に0.01kg/hで抜き出し、貯槽36へ導入して、該貯槽36で該濃縮液を貯めた。運転開始後1000時間の時点で、導管34に設けられたサンプリングノズル(図示しない)から抜き出したサンプルを分析したところ、触媒の金属成分であるPtが0.9重量%、および高沸物質の総濃度が1.9、8重量%、該高沸物質の成分であるサリチル酸フェニルが0.7重量%含まれていた。

【0150】反応開始後5000時間後、貯槽36に貯めていた濃縮液のうち1kgを導管37から蒸留塔1-3と熱交換器(図示しない)および攪拌器を備えた密閉10lの反応釜1-1へ導入した。該蒸留塔1-3へ水を1kg導入した後、ジャケット温度を200℃まで昇温し、ジャケット温度200℃で攪拌を続けた。反応釜1-1内の圧力は3.0×10³Paまで上昇した。4時間後、攪拌を停止した。ジャケット温度を110℃とし、1時間放置した。反応釜1-1内のガスを導管63から放出することで該反応釜の内圧を大気圧まで低下させた。反応釜1-1内の液相を導管68から貯槽59へ抜き出し

たところ、反応釜1-1内には白色の沈殿が生成していた。分析の結果、主として炭酸鉛からなる固体であった。貯槽59へ抜き出された液相を室温まで冷却したところ、2つの液相に分離した。上層の組成は、水93.5重量%、フェノール6.5重量%であり、高沸物質は検出されなかった。下層はフェノール7.3重量%、高沸物質14.3重量%、鉛10.0g/mを含んでおり、サリチル酸フェニルは全く検出されなかった。導管60から抜き出した下層の重量は60.3gであった。反応釜にフェノールを導管59から導管1-1を経由して導入し、ジャケット温度を180℃に保って攪拌し、生成した水と炭酸ガスをフェノールとともに系外へ抜き出すことで、実施例2と同様に反応釜内の炭酸鉛をジフェノキシン鉛へ鉛化させた。上記の操作を2時間続けて得られた混合物1kgを、導管46を経て貯槽47へ導入し、該混合物を貯槽47内に貯めた。

【0151】以後、貯槽36に貯めた濃縮液を100時間ごとに1kgづつ抜き出し、上記処理を行い、得られた混合物を貯槽47へ導入する操作を繰り返した。なお、2回目の処理では、5kgの水を導入する代わりに、貯槽59内の前記上層に必要量の水を加えて導入した。反応開始後600時間から該貯槽47の内容物を連続的に0.01kg/hの量で導管48から抜き出し、導管39から導入される混合物と合流し、導管49を経て、系内へ循環した。運転開始後400～600時間の間の導管23からの抜き出し量は、5kgはもれずであった。運転開始後600～900時間の間の導管23からの抜き出し量は、6kg/hであった。運転開始400～600時間の間、触媒を導管2りから系外への抜き出し量に見合う量つまり導管1-3でのPt濃度が0.19重量%に維持できる量を導管3より供給した。

【0152】運転は5000時間行った。導管49から触媒の循環を開始した。運転開始600時間以後においては、導管3から系内に導入する触媒量はPt重量で表現しており、0.016g/hにすぎなかった。また、この導管3から導入する触媒を製造する際に必要な鉛化合物として、導管60から抜き出した前記の液を撹拌して得られた酸化鉛を用いることができたので、結局、新たな触媒を系内に導入することは全くなかった。また、上記のように、導管60から抜き出した液を撹拌して鉛化合物を回収したので、触媒を含む溶液は全く発生しなかった。蒸発器1-4で形成された触媒および高沸物質を含む濃縮液を導管1-1から運転開始後1000時間、2500時間及び5000時間で抜き出し、分析したところ、高沸物質の総濃度がそれぞれ、4.6、4.1、4.1重量%であった。

【0153】また、析出や触媒の付着等のトラブルはなく、各導管の流量、組成共に安定に運転された。導管1-3に備えたサンプリングノズルから連続多段蒸留塔1か

ら抜き出される反応混合物のサンプルを取り出した。3000時間経過した時点の導管1・3中の反応混合物の組成は、MPC: 23, 9重量%, DPC: 74, 8重量%, PIB: 4, 1.9重量%であった。導管2・3から抜き出される液から高沸物質は検出できなかった。運転を停止した後、系内の開放点検を行った結果、連続多段蒸留塔1、蒸発器1・4、リボイラー1・7や周辺の導管等のいずれにも触媒の付着は認められなかった。

【0154】

【実施例5】

＜触媒の調製＞フェノール30kg、メチルフェニルカーボネート10kg、及びジブチル鈍オキシド各1kgを180°Cで10時間加熱し、生成する水をフェノールと共に留去した。その後残存するフェノールやメチルフェニルカーボネートの大部分を減圧で留去し、窒素封閉気下で放冷することにより触媒Bを調製した。

＜芳香族カーボネートの製造＞塔高1m塔径4インチの蒸留塔24（ディクソンパッキング（6mmφ）を充填したもの）と、攪拌機を備えた200リットルの反応釜10よりなる図5に示した装置を用いて芳香族カーボネートの製造を行った。

【0155】ジメチルカーボネート、フェノール、及び触媒Bからなる混合物を反応釜100に導管3から液状で連続的に20kg/hで供給し、反応を行った。上記混合物中のジメチルカーボネートとフェノールの重量比は5.0/5.0であり、触媒Bは、導管1・3におけるS_n濃度が0.4重量%になるような量を用いた（上記S_n濃度は導管1・3上に設けたサンプリングノズル（図示しない）より抜き出した反応混合物を用いて測定することができる）。反応釜の温度は204°C、蒸留塔24の塔頂圧力は7.5×10⁵Paであった。反応釜100において形成されたメタノール及びジメチルカーボネートを含むガスを導管3より蒸留塔24に導入した。蒸留塔24から、ジメチルカーボネートを導管32を経て反応釜100に還流した一方、蒸留塔24の塔頂より留出するメタノールとジメチルカーボネートを含むガスを導管29を経て、凝縮器26にて凝縮させた。得られた凝縮物の一部を還流比0.0で導管27及び導管28より還流させ、残りを導管29より2.5kg/hで連続的に抜き出した。目的生成物であるメチルフェニルカーボネート、触媒及び、高沸物質を含む反応混合物を、導管1・3から1・7、7kg/hで連続的に抜き出し蒸発器1・4へ導入した。蒸発器1・4のメチルフェニルカーボネートを含む蒸発物を導管21より凝縮器22を経て導管23より1・6、7kg/hで抜き出した。一方、蒸発器1・4中で触媒、及び高沸物質を含む濃縮液が形成された。この濃縮液の一部を導管1・9及び導管1・6からリボイラー1・7に導入し、導管1・8より蒸発器1・4に導入した。濃縮液の残りを、蒸発器1・4から導管1・5、導管1・9及び導管26を経て再び反応釜100へ1kg/h

で供給した。蒸発器1・4で形成された上記の濃縮液の一部を、運転開始後400～2000時間の間、導管20より0.02kg/hで連続的に系外に抜き出し、容積10リットルの貯槽3もへ導入して、該貯槽3で該濃縮液を貯めた。運転開始後1000時間の時点で、導管1・5に設けられたサンプリングノズル（図示しない）から抜き出したサンプルを分析したところ、触媒の金属成分であるS_nが0.7重量%、および高沸物質の総濃度が2.2重量%、該高沸物質の成分であるサリチル酸フェニルが0.7重量%含まれていた。

【0156】反応開始500時間後、導管36に貯めていた濃縮液のうち2kgを導管37から蒸留塔6と熱媒ジャケット（図示しない）および攪拌器を備えた容積10リットルの反応釜5へ導入した。該蒸留釜5から導管51からジメチルカーボネートを4kg導入した。後、ジャケット温度を200°Cまで昇温し、ジャケット温度200°Cで攪拌を続けた。反応釜5内の圧力は7.5×10⁵Paまで上昇した。4時間後、ジャケット温度を80°Cまで低下させた。反応釜5内の反応液にサリチル酸フェニルは全く含まれておらず、代わりに該サリチル酸フェニルがジメチルカーボネートと反応して生成したと考えられるサリチル酸メチルが存在していた。大気圧下、ジャケット温度を200°Cまで昇温することで、蒸留を開始し、導管63から留出液を得た。該反応釜5の内圧を大気圧から徐々に低下させて蒸留を継続した。導管63から得られた留出液の合計が4.32kgとなった時点で蒸留を停止し、窒素ガスを導入することで該反応釜5内を大気圧とし、導管51からフェノールを導入することで、反応釜5内の内容物の量を2kgとした。反応釜5内の内容物を導管51から内容積10リットルの貯槽47へ導入し、該内容物を貯槽47内に貯めた。該内容物にはサリチル酸フェニルは全く含まれていなかった。また、高沸物質の総濃度は0.8重量%と減少していた。

【0157】以後、導管36に貯めた濃縮液を40時間ごとに2kgづつ抜き出し、上記処理を行い、得られた混合物を貯槽47へ導入する操作を繰り返した。反応開始後600時間から該貯槽47の内容物を連続的に0.05kg/hで導管49から抜き出し、系内へ導入した。運転開始後400～600時間の間の導管23からの抜き出し量は16.65kg/hであった。運転開始後600～2000時間の間の導管23からの抜き出し量は16.7kg/hであった。運転開始400～600時間の間、触媒を導管20からの系外への抜き出し量に見合う量つまり導管1・5でのS_n濃度が0.4重量%に維持できる量を導管3より供給した。

【0158】運転は2000時間行った。導管49から触媒の循環を開始した。運転開始600時間以降においては、新たな触媒を系内に導入することなくなった。また、触媒を含む堆積は全く発生しなかった。蒸発

器14で形成された触媒および高沸物質を含む濃縮液を導管15'から運転開始後1000時間、1500時間、及び2000時間で抜き出し、分析したところ、高沸物質の絶対濃度がそれぞれ、2.2、2.2、2.2重量%であった。その間、触媒析出や触媒の付着等のトラブルはなく、各導管の流量、組成共安定に運転された。運転開始2000時間経過した時点の導管13中の、反応混合物の組成は、PhOH：5.1重量%、MPC：6重量%、DPC：0.4重量%、ANS：0.6重量%、Sn：0.4重量%であった。導管23から抜き出される液から高沸物質は検出できなかった。運転を停止した後、系内の開放点検を行った結果、反応釜100、蒸発器14、リボイラー17や周辺の配管等のいずれにも触媒の付着は認められなかつた。

【0159】

【実施例6】

<触媒の調製>フェノール40kg、及び四塩化チタン8kgを酸素流速下5.0°Cで10時間加熱し、生成する塩化水素を除去した。その後残存するフェノールの大部分を減圧で留めし、窒素雰囲気下で放冷することにより触媒Cを調製した。

<芳香族カーボネートの製造>触媒として触媒Cを導管13におけるT1濃度が0.2重量%になるような量用いる以外は、実施例5と実質的に同様にして反応を行つた。運転は2000時間行なつた。その間触媒析出や触媒の付着等のトラブルはなく、各導管の流量、組成共安定に運転された。運転開始1000時間、1500時間、2000時間の各時間の経過した時点での蒸発器14で形成された触媒および高沸物質を含む濃縮液を導管15'から抜き出し、分析したところ、高沸物質の絶対濃度がそれぞれ、2.8、2.9、2.9重量%であった。その間触媒析出や触媒の付着等のトラブルはなく、各導管の流量、組成共安定に運転された。また、運転開始2000時間経過した時点の導管13中の、反応混合物の各組成は、PhOH：5.1重量%、MPC：6重量%、DPC：0.4重量%、ANS：0.4重量%、T1：0.2重量%であった。導管23から抜き出される液から高沸物質は検出できなかつた。運転を停止した後、系内の開放点検を行つた結果、反応釜100、蒸発器14、リボイラー17や周辺の配管等のいずれにも触媒の付着は認められなかつた。

【0160】

【実施例7】実施例5で得たジフェニルカーボネート235gとビスフェノールA228gを攪拌装置を備えた真空反応装置に入れ、密閉ガスで温換しながら180°Cから220°Cまで徐々に温度を上げながら攪拌した。ついで密閉し、100 rpmで攪拌しながら8000Pa

で30分間、4000Paまで90分間重合させた。その後、270°Cまで昇温し、70Paで1時間重合させた。得られた芳香族ポリカーボネートのカラーは無色透明で良好であり、数平均分子量は10200であった。

【0161】

【比較例5】比較例4で得たジフェニルカーボネートを用いる他の実施例7と全く同様に芳香族ポリカーボネートを製造した。得られた芳香族ポリカーボネートは黄色着色しており、数平均分子量は8800であった。

【0162】

【発明の効果】本発明の方法により、高純度のジアリールカーボネートを、多量の触媒を必要としないで長期間安定に製造することが可能となった。また、本発明の方法によれば、高沸物質を含む触媒溶液が発生せず、得られたジアリールカーボネートはエステル交換法芳香族ポリカーボネートの原料として好ましく用いられるところから、産業上、大いに有用である。

【図面の簡単な説明】

【図1】本発明を実施するプロセスの一例である。

【図2】本発明を実施するプロセスの一例である。

【図3】本発明を実施するプロセスの一例である。

【図4】本発明を実施するプロセスの一例である。

【図5】本発明を実施するプロセスの一例である。

【符号の説明】

- 1、101、201 連続多段蒸留塔
- 2、102、202 連続多段蒸留塔の塔頂部
- 3、5、7、9、10、12、13、15、15'、16、18、19、20、30'、21、23、25、27、28、29、30、32、34、35、37、39、40、41、44、45、46、48、48'、49、51、53、55、56、57、58、60、61、63、105、113、115、115'、116、118、119、120、121、124、125、127、128、129、130、132、149、224、225、227、228、229、230、332、333、235 導管
- 4 予熱器
- 6、106、206 連続多段蒸留塔の塔底
- 8 蒸発器
- 11、22、26、127、226、234 減圧器
- 14、114 蒸発釜
- 17、31、117、231 リボイラー
- 24、43、54、62 蒸留塔
- 33 蒸留蒸発器
- 36、47、59 貯槽
- 38 電気炉
- 42、50、55、100 反応釜

三

109

