CS331: Homework #1

Due on February 1, 2013 at 11:59pm $Professor\ Zhang\ 9{:}00am$

Josh Davis

Show that for any integer $k \geq 2$, $\sqrt[k]{2}$ is an irrational number.

Proof. To prove by contradiction, suppose that $\sqrt[k]{2}$ is rational. Then

$$\sqrt[k]{2} = \frac{p}{q}$$

where p and q are integers and co-prime. If we are to raise both sides to k then we get

$$2 = \left(\frac{p}{q}\right)^k$$

Which we can write as

$$2 = \frac{p^k}{q^k}$$

We multiply each side by q^k and get

$$2q^k = p^k$$

Thus p is even because any number times 2 is even. Let p=2j for $j\in\mathbb{Z}$. Then

$$2q^k = (2j)^k$$
$$= 2^k j^k$$

dividing both sides by 2 yields

$$q^k = 2^{k-1}j^k$$

 $q^k = 2(2^{k-2}j^k)$

since $k \ge 1$, q is even because any number multiplied by 2 is even. This is a contradiction because earlier p and q were co-prime meaning there were no numbers that could be divided into both of them. Thus p and q can't both be even.

Show that for every $n \ge 0$ a depth n perfect binary tree has $2^{n+1} - 1$ nodes.

Proof. We will do a proof by induction to prove that for every $n \ge 0$ a perfect binary tree of has $2^{n+1}-1$ nodes.

Base For the base case, we have a perfect binary tree of height = 0. Then

$$2^{n+1} - 1 = 2^{0+1} - 1 = 1$$
 node

which is true because a tree of height 0 is a single root node.

Induction Step We will prove that for every $n \ge 0$ a perfect binary tree of height n + 1 has $2^{(n+1)+1} - 1$ nodes.

Consider a tree, T with height h. To create a perfect binary tree of height h + 1, we can take two of T and connect it to a single root node. Thus

$$nodes = T + T + 1$$
$$= 2T + 1$$

By the induction hypothesis

$$nodes = 2(2^{n+1} - 1) + 1$$

$$= 2 \times 2^{n+1} - 2 + 1$$

$$= 2 \times 2^{n+1} - 1$$

$$= 2^{n+2} - 1$$

$$= 2^{(n+1)+1} - 1$$

Thus we have concluded our proof by showing that a perfect binary tree of height n+1 has $2^{(n+1)+1}-1$ nodes.

Proof. We will use proof by induction to show that for any truth assignment M and M' such that $M \leq M'$ and any positive propositional formula φ , if $M \models \varphi$, then $M' \models \varphi$.

Base For the base case, we will consier the propositional formula φ with just one variable, $\varphi = p$, and two truth assignments, M and M' such that $M \leq M'$.

We know that $M(p) \leq M'(p)$, therefore we have the following possibilities:

M(p)	M'(p)
0	0
0	1
1	1

If $M \models \varphi$, then M(p) must be equal to 1, which according to the truth table, M'(p) is also equal to 1. Therefore $M' \models \varphi$. This concludes the base step.

Induction Step Given the positive propositional formula φ_0 and two truth assignments, M and M' such that $M \leq M'$. We will show that for any positive propositional formula φ , if $M \models \varphi$, then $M' \models \varphi$.

Taking φ_0 , we can do one of two things to extend the propositional formula because it is positive. We can conjunct or disjunct it with any other propositional variable.

Case 1 Let φ be the conjunction of the propositional variable p to it, $\varphi = (\varphi_0 \wedge p)$.

By assuming the induction hypothesis, we can assume that $M \models \varphi_0$. Then we know that M is true under φ_0 making it equal to 1.

Since $M \leq M'$, we have three values to represent like the table in the base step. We can represent it like so:

φ_0	M(p)	M'(p)	$\varphi_0 \wedge M(p)$	$\varphi_0 \wedge M'(p)$
1	0	0	0	0
1	0	1	0	0
1	1	1	1	1

We can see that the only time M is true over φ ($M \models \varphi$) is also when M' is true over φ ($M' \models \varphi$). Therefore we have proven that for conjunction, $M' \models \varphi$.

Case 2 Let φ be the disjunction of the propositional variable p to it, $\varphi = (\varphi_0 \vee p)$.

By assuming the induction hypothesis, we can assume that $M \models \varphi_0$. Then we know that M is true under φ_0 making it equal to 1.

Since $M \leq M'$, we have three values to represent like the table in the base step. We can represent it like so:

φ_0	M(p)	M'(p)	$\varphi_0 \vee M(p)$	$\varphi_0 \vee M'(p)$
1	0	0	1	1
1	0	1	1	1
1	1	1	1	1

We can see that the disjunction of any value with φ_0 will result in the truth assignment being true over φ . Therefore we have proven that for disjunction, $M' \models \varphi$.

We have concluded both cases therefore our proof is finished.

Problem 4

Let $\Sigma = \{0,1\}$. What language is defined by the following regular expression? Define it in one or two sentences.

- 1. $\Sigma^* 0 \Sigma^* 1 \Sigma^*$
 - The language is the set of all words that have at least one 0 and one 1 in them and the 0 comes before the 1.
- 2. 00*1*

The language is the set of all words that begin with a zero. The word also ends with any number of zeroes (including none) followed by any number of ones (including none).

Problem 5

Let $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ and $B = \langle Q, \Sigma, q_0, F' \rangle$ be two nondeterministic finite automata such that $F' = Q \setminus F$. Prove or disprove: The language of L(B) is the complement of the language L(A).

Figure 1: Automata A

Figure 2: Automata B

As a counterexample, consider the automata A and B pictured in Figure 1 and Figure 2 respectively.

The only difference between the two automata is that the final state set of B, F' is just $F' = Q \setminus F$ where Q is the set of states in A and F is the set of final states in A.

This is a counterexample because the word $\omega = 1$ is accepted by both automata. Thus $\omega \in L(A)$ and $\omega \in L(B)$ therefore L(A) is not the complement of L(B).