九州大学大学院数理学府 平成 29 年度修士課程入学試験 基礎科目問題

- 注意 問題 [1][2][3][4] のすべてに解答せよ.
 - ●以下 $\mathbb{N} = \{1,2,3,\ldots\}$ は自然数の全体, \mathbb{Z} は整数の全体, \mathbb{Q} は有理数の全体, \mathbb{R} は実数の全体, \mathbb{C} は複素数の全体を表す.

[1] 定数 $a, b \in \mathbb{R}$ に対して 4 次正方行列 A を

$$A = \begin{pmatrix} a & b & 1 & b \\ 1 & a & b & b \\ b & b & a & 1 \\ b & 1 & b & a \end{pmatrix}$$

とする. 以下の問に答えよ.

- (1) A の各行(および各列)の成分の和が等しいことに注意し,A の行列式を求めよ. また A が正則であるための必要十分条件を a, b を用いて表せ.
- (2) T_A を A によって定まる \mathbb{R}^4 の線形変換,つまり, $T_A(\boldsymbol{x}) = A\boldsymbol{x}$ $(\boldsymbol{x} \in \mathbb{R}^4)$ とする。a=1 のとき, T_A の核 $\operatorname{Ker}(T_A)$ の次元と一組の基底を求めよ.

[2] 実数列全体を

$$V = \{ \boldsymbol{x} = (x_1, x_2, \dots, x_k, \dots) : x_1, x_2, \dots, x_k, \dots \in \mathbb{R} \}$$

とする. V の元 $\boldsymbol{x}=(x_1,x_2,\ldots,x_k,\ldots),\; \boldsymbol{y}=(y_1,y_2,\ldots,y_k,\ldots)$ と $c\in\mathbb{R}$ に対し、和 $\boldsymbol{x}+\boldsymbol{y}$ とスカラー倍 $c\boldsymbol{x}$ を

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_k + y_k, \dots)$$
$$c\mathbf{x} = (cx_1, cx_2, \dots, cx_k, \dots)$$

と定めて、V にベクトル空間の構造を入れる.

 $a_1, a_2, a_3 \in \mathbb{R}$ に対し、漸化式

(*)
$$x_{n+3} + a_1 x_{n+2} + a_2 x_{n+1} + a_3 x_n = 0 \quad (n = 1, 2, ...)$$

を満たす実数列 $\mathbf{x} = (x_1, x_2, \dots, x_k, \dots)$ 全体を W とする. 以下の問に答えよ.

- (1) W は V の部分空間であることを示せ.
- $(2) \ x^1, x^2, x^3 \in W \ z$

$$x^1 = (1, 0, 0, \dots)$$

 $x^2 = (0, 1, 0, \dots)$

$$\boldsymbol{x}^3 = (0, 0, 1, \ldots)$$

とするとき、 x^1, x^2, x^3 は W の基底であることを示せ.

(3) 線形変換 $T: W \to W$ を

$$T(x_1, x_2, \dots, x_k, x_{k+1}, \dots) = (x_2, x_3, \dots, x_{k+1}, x_{k+2}, \dots)$$

によって定めるとき、基底 x^1 , x^2 , x^3 に関する T の表現行列を求めよ.

(4) 実数 λ が T の固有値であるとき、 λ に対する固有空間を λ を用いて表せ.

- [3] $\binom{m}{k}$ は二項係数 $_{m}C_{k}$ を表すものとする. n を自然数とする. 以下の問に答えよ.
 - (1) 広義積分 $\int_0^\infty \frac{dx}{(x^2+1)^{n+1}}$ は収束することを示せ.

$$\int_0^\infty \frac{dx}{(x^2+1)^{n+1}} = \frac{2n-1}{2n} \int_0^\infty \frac{dx}{(x^2+1)^n}$$
 を示せ、また
$$\binom{2n}{n} = \frac{2^{2n+1}}{\pi} \int_0^\infty \frac{dx}{(x^2+1)^{n+1}}$$

を示せ.

- (3) 任意の $x \in \left[0, \frac{\pi}{2}\right]$ に対し $e^{\frac{1}{2}x^2}\cos x \le 1$ を示せ. また $\cos^{2n}x \le e^{-nx^2}$ を示せ.
- (4) 次の不等式

$$\binom{2n}{n} \le \frac{4^n}{\sqrt{\pi n}}$$

を示せ. 必要ならば $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ を用いてよい.

[4] \mathbb{R}^3 の点 P が集合 $S=\{(x,y,z)\in\mathbb{R}^3: x^2+2yz=1\}$ を動くとき、点 P と点 (-2,1,1) との距離の最小値を求めよ.