ВВЕДЕНИЕ В МАШИННОЕ ОБУЧЕНИЕ И НЕЙРОННЫЕ СЕТИ

Краткое содержание лекции

- Понятие машинного обучения
- Сравнение работы искусственной нейронной сети с биологической нейронной сетью
- Виды нейронных сетей
- Этапы построения моделей интеллектуального анализа данных

Понятие машинного обучения

Основные виды машинного обучения

Задачи классификации и регрессии

 Цель: определить форму функциональной зависимости

Зависимая переменная КОЛИЧЕСТВЕННАЯ

 $\mathbf{\Psi}$

Модели регрессии

 $\mathbf{\Lambda}$

ПРОГНОЗ значений зависимой переменной по значениям независимых

Зависимая переменная КАТЕГОРИАЛЬНАЯ

 $oldsymbol{\Psi}$

Модели классификации

 \downarrow

КЛАССИФИКАЦИЯ значений зависимой переменной по значениям независимых

Биологическая модель нейрона

Основные принципы работы мозга

Понятие искусственной нейронной сети

Архитектура нейронных сетей

Виды нейронных сетей

Жизненный цикл модели ИАД

Области применения нейронных сетей

Преимущества и недостатки нейронных сетей

Могут моделировать сложные зависимости

Не требуют предположений о характере распределения данных

Могут адаптироваться при поступлении новых данных

Требуют большого объёма данных для обучения

Человеку сложно интерпретировать нейросетевые модели

Обучение нейронной сети требует понимания и опыта от исследователя

Вопросы по теме

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ИСКУССТВЕННОГО НЕЙРОНА

Краткое содержание лекции

- Общая математическая модель нейрона
- Основные элементы математического нейрона
- Основные функции активации
- Нейронные сети для решения задачи регрессии
- Нейронные сети для решения задачи классификации

Математическая модель нейрона

Сравнение биологической и искусственной нейронной сети

Биологическая нейронная сеть	Искусственная нейронная сеть
Дендриты	Входы
Сила синаптической связи	Beca
Сложность активации нейрона	Смещение
Суммарное возбуждение нейрона	Значение сумматора
Реакция тела нейрона на суммарное возбуждение	Функция активации
Аксон	Выход

Виды функций активации

Требования к функции активации

- Общие требования:
 - должна быть неубывающей
 - должна быть гладкой (почти везде)
- Требования для скрытых слоёв:
 - нелинейность
 - ограниченная область выходных значений
- Требования для выходных слоёв:
 - для задач регрессии должна быть непрерывной
 - для задач классификации может быть как дискретной, так и непрерывной

Униполярная пороговая функция активации

Значения функции:

$$y = f_u(s) = \begin{cases} 0, & s < 0; \\ 1, & s \ge 0. \end{cases}$$

Входы: $x_1 = 1, x_2 = 0$

График функции:

$$s = w_1x_1 + w_2x_2 + w_0$$

 y $w_1 = 1$
 $w_2 = -1$
 $w_0 = -0.5$

Сумматор:
$$s = w_1x_1 + w_2x_2 + w_0 = 1 \cdot 1 + (-1) \cdot 0 + (-0.5) = 0.5$$

Выход:
$$y = f(s) = f(0.5) = 1$$

Биполярная пороговая функция активации

Значения функции:

$$f_b(s) = \begin{cases} -1, & s < 0; \\ 1, & s \ge 0. \end{cases}$$

Входы: $x_1 = -1$, $x_2 = 1$

График функции:

Сумматор:
$$s = w_1 x_1 + w_2 x_2 + w_0 = 1 \cdot (-1) + (-1) \cdot 1 + (-0.5) = -2.5$$

Выход: y = f(s) = f(-2.5) = -1

Решение задачи классификации с помощью модели нейрона

• Нейрон с двумя входами x_1 и x_2 и пороговой функцией активации

Проблема линейной неразделимости в задачах классификации

 Не существует прямой, которая бы разделила эти 4 точки:

Решение проблемы линейной неразделимости

Например, для левой сети:

x_1	x_2	Нейрон $m{A}$ $y_A = m{f}(x_1 - x_2 - 0.5)$	Нейрон $m{B}$ $y_B = f(-x_1 + x_2 - 0.5)$	Нейрон $oldsymbol{C}$ $oldsymbol{y}_{\mathcal{C}} = f(y_A + y_B - 0.5)$
0	0	f(0-0-0.5) = f(-0.5) = 0	f(-0+0-0.5) = f(-0.5) = 0	f(0+0-0.5) = f(-0.5) = 0
0	1	f(0-1-0.5) = f(-1.5) = 0	f(-0+1-0.5) = f(0.5) = 1	f(0+1-0.5) = f(0.5) = 1
1	0	f(1 - 0 - 0.5) = f(0.5) = 1	f(-1+0-0.5) = f(-1.5) = 0	f(1+0-0.5) = f(0.5) = 1
1	1	f(1-1-0.5) = f(-0.5) = 0	f(-1+1-0.5) = f(-0.5) = 0	f(0+0-0.5) = f(-0.5) = 0

Сравнение униполярной и биполярной функции активации

Частота повторения булевых функций (%)

Функция	Булева функция															
активации	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Униполярн ая	27	2,	4, 2	4, 1	4, 2	4, 2	0	4, 1	4, 2	0	4, 3	4, 2	4, 2	4, 1	2, 1	27
Биполярна я	8, 3	6, 3	6, 3	8, 3	6, 2	8, 3	0	6, 2	6, 2	0	8, 4	6, 3	8, 3	6, 3	6, 2	8, 2

Сигмоидальная функция активации

$$f_{sigmoid}(s) = \frac{1}{1 + e^{-\alpha s}}$$

Гиперболический тангенс

$$f_{th}(s) = th\left(\frac{\alpha s}{2}\right) = \frac{1 - e^{-\alpha s}}{1 + e^{-\alpha s}} = 2f_{sigmoid}(s) - 1$$

$$\propto = 1$$

$$0.5$$

$$-6 - 4 - 2$$

$$2 - 4 - 6$$

Линейная функция активации

Кусочно-линейные функции активации

Функция ReLU

(Rectified Linear Unit)

$$f_{RL}(s) = \begin{cases} 0, & s < 0 \\ s, & s \ge 0 \end{cases}$$

$$f_{PL}(s) = \begin{cases} -1, & s < -1 \\ s, & -1 \le s \le 1 \\ 1, & s > 1 \end{cases}$$

Архитектура нейросетей для задач регрессии

Архитектура нейросетей для задач классификации

- Выходы сети рассматриваются как вероятности принадлежности объекта к определённому классу
- Проблемы при использовании сигмоиды в выходном слое:
 - сумма выходов нейронной сети $\neq 1$
 - медленное обучение для некоторых ситуаций

Функция активации софтмакс

k — индекс нейрона

m – число нейронов софтмакс слоя (число классов) s_k сумматор каждого нейрона

 $f_{sm}(s_k)$ – функция активации софтмакс

Теперь Вы знаете

- Как устроена математическая модель нейрона
- Какие функции активации применяются при построении нейронной сети
- Как решаются задачи классификации и регрессии нейронной сетью

Вопросы по теме

©Центр Статистического Анализа, www.statmethods.ru