Aula 19 – Hardware de Disco e Relógio

Norton Trevisan Roman Clodoaldo Aparecido de Moraes Lima

25 de novembro de 2014

Hardware de Disco

- Consiste de:
 - Um ou mais pratos metálicos
 - Rodando a 5400, 7200 ou 10800 rpm
 - Um braço mecânico
 - Em cuja extremidade há cabeças para leitura/escrita de dados

multi-platter hard disk

Hardware de Disco

- Cada superfície de cada prato é dividida em trilhas
 - Cada trilha é dividida em setores ou blocos (512 bytes a 32K)
 - Um conjunto de trilhas (com a mesma distância do eixo central) formam um cilindro (versão 3D da trilha)

Hardware de Disco

Tamanho do disco:

• n° cabeças (faces) × n° cilindros $(trilhas) \times n^o setores \times$ tamanho setor

• Geometria:

- A geometria especificada (usada pelo driver) pode diferir da real
- Em discos antigos, o número de setores por trilha era o mesmo para todos os cilindros
- Discos modernos são divididos em zonas
 - Mais setores nas externas que nas

Hardware de Disco – Geometria

- Apresentam uma geometria virtual ao SO
 - Escondem os detalhes de quantos setores há em cada trilha
 - O software age como se houvesse x cilindros, y cabeças e z setores por trilha
 - A controladora do dispositivo mapeia um pedido de (x,y,z) para o cilindro, cabeça e setor reais
 - Discos modernos possuem endereçamento lógico de bloco
 - Setores são numerados consecutivamente, iniciando no 0, sem considerar a geometria do disco

Hardware de Disco – Formatação

- Antes que possa ser usado, recebe uma formatação de baixo nível feita por software
 - Cria série de trilhas concêntricas, contendo um certo número de setores
 - Com um pequeno intervalo entre cada setor
 - O setor é formatado da seguinte maneira:
 - Sendo o tamanho da parte de dados determinado pelo programa de formatação de baixo nível

Formatação de Baixo Nível

- Como precaução adicional, HDs têm um número de setores sobressalentes alocados
 - Usados na substituição de setores com defeito de fabricação
- Como resultado dessa formatação, a capacidade do HD é reduzida
 - Dependendo do tamanho do prâmbulo, do intervalo entre os setores e do ECC (error correction code, ou checksum), bem como do número de setores sobressalentes reservados
 - A redução pode chegar a 20%
 - Muitos fabricantes anunciam com a capacidade pré-formatação

Formatação de Baixo Nível

- A posição do setor 0 de cada trilha é deslocada em relação à trilha anterior
 - Torção cilíndrica (cylinder skew)
 - Aumenta o desempenho
 - Se o que deve ser lido for além do

limite da trilha, não é preciso fazer nova busca para o setor 0 da trilha seguinte. Basta mover o braço e manter o disco rodando – quando a cabeça chegar na trilha seguinte, o setor 0 estará sob ela

Formatação de Baixo Nível

- Ao ser lido, o conteúdo do disco é transferido a um buffer na controladora
 - Quando fica cheio, o buffer é transferido à memória → toma tempo
 - Entre duas transferências do buffer à memória, pode-se passar da posição do dado no disco \rightarrow deve-se esperar nova rotação
 - Solução: numerar os setores de modo entrelaçado durante a formatação
 - Dá algum tempo para que o buffer seja transferido

4 Entrelaçamento simples

Hardware de Disco – Particionamento

- Executado após a formatação de baixo nível
 - Do ponto de vista lógico, cada partição é tratada como um disco separado
- Setor 0 do disco contém o master boot record (MBR)
- Componentes do MBR:
 - Código (programa) de boot primary boot loader
 - Tabela de partições (ao final do MBR), com o setor de início e o tamanho de cada partição

Hardware de Disco – Particionamento

- Tabela de partições:
 - Normalmente, com espaço para 4 partições
 - Uma delas é marcada como ativa na tabela (para que se possa iniciar o computador a partir do HD)
 - Certos bootloaders, como o GRUB, substituem o MBR padrão com seu próprio código

Hardware de Disco – Formatação

- Formatação de alto nível
 - Último passo, feito em cada partição separadamente
 - Define
 - Bloco de boot
 - Lista ou bitmap de blocos livres no disco
 - Diretório raiz (localização)
 - Sistema de arquivos vazio (veremos mais adiante)
 - Altera a tabela de partições
 - Dizendo o sistema de arquivos (Ext-3, NTFS etc) que é usado na partição
 - Partições podem ter sistemas de arquivos independentes

Hardware de Disco – Boot

- Ao ser ligado o computador, a bios (programa) lê e executa o MBR
 - O programa no MBR localiza a partição ativa, olhando a tabela de partições
 - Aqui cabe escolha, no caso de múltiplos SO
 - Ele lê então seu primeiro bloco (bloco de boot), executando-o
 - Este bloco contém um programa bootstrap loader (algumas vezes, o próprio kernel)
 - O bootstrap loader busca no sistema de arquivos o kernel do SO, carregando-o e executando-o
 - Por uniformidade, toda partição terá um bloco de boot em seu início, mesmo não contendo um SO que possa ser inicializado

Hardware de Disco – Drivers de Disco

- Fatores que influenciam tempo para leitura/escrita no disco:
 - Tempo de posicionamento (seek) → tempo para mover o braço para o cilindro correto
 - Atraso rotacional (latência) → tempo necessário para rotar o setor correto sob o cabeçote
 - Tempo de transferência real dos dados
 - ullet $T_{acesso} = T_{posicionamento} + T_{latência} + T_{transferência}$

Hardware de Disco - Drivers de Disco

Hardware de Disco – Drivers de Disco

- Para muitos discos, o tempo de posicionamento domina
 - Bom lugar para reduções
- Quando o disco está muito carregado, é provável que, durante uma busca, outras requisições sejam geradas por outros processos
 - O driver mantém uma tabela de requisições pendentes, indexada pelo número do cilindro
 - Com todas as requisições pendentes em uma lista ligada
 - Cada entrada da tabela tem a lista de requisições para seu cilindro correspondente

- Executado pelo Driver
- First-Come, First-Served (FCFS)
 - O driver aceita uma requisição por vez, e as executa nessa ordem
 - Pouco pode ser feito para otimização
 - Ex:
 - Disco com 37 cilindros
 - Atualmente lendo bloco no cilindro 11
 - Surgem requisições para os cilindros 1,36,16,34,9,12, nesta ordem

Disco com 37 cilindros;

Lendo bloco no cilindro 11;

Requisições: 1,36,16,34,9,12, nesta ordem

FCFS → atendimento: 1,36,16,34,9,12; movimentos do braço (número de cilindros): 10,35,20,18,25,3 = 111;

- Shortest Seek First (SSF)
 - Usando a tabela do driver, sempre atenda a requisição mais próxima da posição atual da cabeça de leitura/gravação
 - Minimiza o tempo de posicionamento

Disco com 37 cilindros; Lendo bloco no cilindro 11; Requisições: 1,36,16,34,9,12, nesta ordem

- Shortest Seek First (SSF) Problemas
 - Se mais requisições forem chegando, a cabeça tenderá a não se mover muito de sua posição original
 - Se o disco estiver carregado, tenderá a ficar no meio a maior parte do tempo
 - Requisições nos extremos do disco demorarão a ser atendidas

Elevador

- O problema de escalonar os andares de um elevador, em um edifício alto, é semelhante ao braço do disco
 - Requisições chegam continuamente e aleatoriamente
- Muitos elevadores tentam conciliar eficiência e justiça
 - Continuam se movendo na mesma direção até não haver mais requisições pendentes naquela direção
 - Então trocam de direção
- No caso do disco, o driver deve manter 1 bit para a direção (up ou down)
 - Quando uma requisição termina, o driver verifica o bit
 - Se for up, o braço é movido à próxima requisição mais alta

Flevador

 Se não houver requisições pendentes nessa direção, o bit é feito down, e o braço se move à próxima requisição mais baixa

Clocks (Timers)

- Componentes do relógio:
 - Hardware (clock hardware) e software (clock driver)
- Hardware:
 - Dispositivo que gera pulsos síncronos
 - Localizados na CPU ou na placa-mãe
 - Sinal utilizado para a execução de instruções
 - Presente em qualquer sistema multiprogramado
 - Fundamental para ambientes TimeSharing
 - Responsável pela sincronização dos vários circuitos do computador

Clocks (Timers) – Hardware

- Frequência de clock
 - Número de vezes que o pulso se repete por segundo (Hz)
- Dois tipos:
 - Básico: usa o sinal da rede elétrica (110/220 V) para fazer contagem (50/60 Hz) → cada oscilação da rede é uma interrupção
 - Raros hoje

Clocks (Timers) – Hardware

- Dois tipos:
 - Com 3 componentes (programável, de alta precisão):
 - Oscilador de cristal (Piezzoelétrico): cristal propriamente cortado e montado sob tensão elétrica – gera sinal periódico
 - Contador
 - Registrador de apoio

Quando o contador chegar a zero, uma interrupção é gerada

Hardware – Clocks Programáveis

- Podem operar de dois modos básicos:
 - One-shot mode (disparo único)
 - Square-wave mode (onda quadrada)
- One-shot mode:

 - A cada pulso do cristal, o contador é decrementado

Hardware – Clocks Programáveis

- One-shot mode:
 - Quando o contador zera, ele gera uma interrupção
 - O clock pára até que seja explicitamente reiniciado pelo software

- Square-wave mode:
 - Após chegar a zero e causar a interrupção, o registrador de apoio é automaticamente copiado para o contador
 - O processo todo é repetido novamente

Hardware – Clocks Programáveis

- Essas interrupções periódicas são chamadas de pulsos (ou tiques) de relógio (clock ticks)
 - Chips de clocks programáveis possuem, em geral, 2 ou mais relógios independentes
- Vantagem:
 - A frequência das interrupções pode ser controlada por software (via registrador)
- Muitos computadores possuem clock de segurança, com bateria (lido assim que o computador é ligado)
 - Evita a perda do horário atual quando o computador é desligado

- O hardware apenas gera interrupções em intervalos conhecidos
 - Todo o resto depende do driver do clock
- Funções do clock driver:
 - Manter a hora do dia
 - Evitar que processos executem por mais tempo que o permitido
 - Contabilizar o uso da CPU
 - Tratar a chamada de sistema alarm (feita pelos processos do usuário)
 - Fornecer temporizadores "guardiões" para o sistema
 - Fazer monitoramento e coletar estatísticas

- Manter a hora do dia:
 - Também chamada de tempo real
 - Hora e data correntes:
 - Checa a CMOS usa baterias para não perder as informações
 - Pergunta ao usuário
 - Checa pela rede em algum host remoto
 - Traduzida para o número de clock ticks:
 - Desde as 12 horas de 1º de janeiro de 1970 (UTC) no UNIX
 - Desde 1º de janeiro de 1980 no Windows
 - De fato, contam segundos, não tiques (mais adiante...)

- Manter a hora do dia:
 - Basta incrementar o contador a cada tick
 - Problema: a 60Hz, um contador de 32 bits chegará em seu limite em pouco mais de 2 anos
 - Solução: três abordagens:
 - Contador com 64 bits
 - Maior custo de incrementar
 - Contar o tempo em segundos, em vez de tiques
 - Usar contador auxiliar para contar os tiques até dar 1s
 - $2^{32} s > 136 anos$

Hora do dia em tiques

- Manter a hora do dia:
 - Contar tiques relativos à hora em que o sistema foi iniciado
 - Armazena o horário de inicialização, a partir do relógio de segurança (backup clock), na memória
 - Toda vez que o sistema precisar, usa esse valor + o conteúdo do contador para calcular a hora

- Controlar a duração da execução de processos
 - Quando um processo inicia, o <u>escalonador</u> inicializa um contador com o valor do quantum em tiques de clock
 - A cada interrupção do clock, o driver do clock decrementa esse contador em 1
 - Quando chega a 0, o driver do clock chama o escalonador (para decidir se troca ou não o processo)
- Contabilizar o uso da CPU
 - Quanto tempo o processo já foi executado?
 - ullet Processo inicia o inicia um segundo clock
 - Processo é parado → esse clock é lido (diz o quanto rodou)
 - Durante interrupções, o valor desse segundo clock é salvo e restaurado depois

Contabilizar o uso da CPU

- Quanto tempo o processo já foi executado?
 - Alternativamente, pode-se manter um ponteiro para a entrada na tabela de processos do processo em execução
 - A cada tique do relógio, um campo nessa entrada é incrementado
 - Abordagem menos precisa: se muitas interrupções ocorrerem durante a execução de um processo, ainda assim será contado um tique completo

Alarmes

- Em alguns sistemas, processos podem solicitar "avisos" após um certo intervalo
 - Ex: rede, caso em que pacotes n\u00e3o confirmados podem ter que ser reenviados

Alarmes

- Avisos podem ser: um sinal, uma interrupção ou uma mensagem
- Se o driver gerenciar clocks suficientes, basta determinar um clock separado para cada requisição
- Se não tiver, terá que simular clocks virtuais múltiplos com um único clock físico:
 - Manter uma lista encadeada com os tempos dos alarmes pendentes, ordenada pelo tempo
 - Cada item na lista diz quantos tiques do clock, após o tique anterior, deve-se esperar antes de se enviar o sinal

Alarmes

• Ex: Sinais esperados em 4203, 4207, 4213, 4215 e 4216

A cada tique, "Próximo sinal" é decrementado (assim como sua entrada na lista).

Quando chega a 0, o sinal correspondendo ao primeiro item da lista é emitido.

Este item é então removido da lista

"Próximo sinal" recebe o valor do começo da lista ightarrow 4

- Temporizadores guardiões (watchdog timer):
 - Partes do SO também precisam de temporizadores
 - Ex: acionador de disco: somente quando o disco está em rotação na velocidade ideal é que as operações de E/S podem ser iniciadas
 - Ao receber uma requisição, o driver do dispositivo inicia o motor, e então define um temporizador guardião para causar uma interrupção após um certo intervalo
 - O mecanismo usado pelo driver de relógio para tratar desse tipo de temporizador é o mesmo usado em alarmes
 - Quando um temporizador dispara, contudo, em vez de causar um sinal, o driver chama um procedimento fornecido pelo requisitante

- Tarefas básicas do driver de relógio (clock driver) durante uma interrupção de relógio:
 - Incrementar o tempo real
 - Decrementar o quantum e comparar com 0 (zero)
 - Contabilizar o uso da CPU
 - Decrementar o contador do alarme
 - Gerenciar o tempo de acionamento de dispositivos de E/S (via temporizadores guardiões)

Referências Adicionais

• http://www.dedoimedo.com/computers/grub.html