Chapter Eight

Introduction to Graphs

Graphs

- G = (V,E)
- V is the vertex set.
- Vertices are also called nodes and points.
- E is the edge set.
- Each edge connects two different vertices.
- Edges are also called arcs and lines.
- Directed edge has an orientation (u,v).

$$u \longrightarrow v$$

Graphs

Undirected edge has no orientation (u,v).

- Undirected graph => no oriented edge.
- Directed graph => every edge has an orientation.

Undirected Graph

Directed Graph (Digraph)

Applications—Communication Network

• Vertex = city, edge = communication link.

Driving Distance/Time Map

• Vertex = city, edge weight = driving distance/time.

Street Map

• Some streets are one way.

Complete Undirected Graph

Has all possible edges.

Number Of Edges—Undirected Graph

- Each edge is of the form (u,v), u != v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u,v) is the same as edge (v,u), the number of edges in a complete undirected graph is n(n-1)/2.
- Number of edges in an undirected graph is $\langle = n(n-1)/2.$

Number Of Edges— Directed Graph

- Each edge is of the form (u,v), u != v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u,v) is not the same as edge (v,u), the number of edges in a complete directed graph is n(n-1).
- Number of edges in a directed graph is <= n(n-1).

Vertex Degree

Number of edges incident to vertex.

degree(2) = 2, degree(5) = 3, degree(3) = 1

Sum Of Vertex Degrees

Sum of degrees = 2e (e is number of edges)

In-Degree Of A Vertex

in-degree is number of incoming edges

indegree(2) = 1, indegree(8) = 0

Out-Degree Of A Vertex

out-degree is number of outbound edges

outdegree(2) = 1, outdegree(8) = 2

Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex

sum of in-degrees = sum of out-degrees = e, where e is the number of edges in the digraph

Graph Operations And Representation

Sample Graph Problems

- Path problems.
- Connectedness problems.
- Spanning tree problems.

Path Finding

Path between 1 and 8.

Path length is 20.

Another Path Between 1 and 8

Path length is 28.

Example Of No Path

No path between 2 and 9.

Connected Graph

- Undirected graph.
- There is a path between every pair of vertices.

Example Of Not Connected

Connected Graph Example

Connected Components

Connected Component

- A maximal subgraph that is connected.
 - Cannot add vertices and edges from original graph and retain connectedness.
- A connected graph has exactly 1 component.

Not A Component

Communication Network

Each edge is a link that can be constructed (i.e., a feasible link).

Communication Network Problems

- Is the network connected?
 - Can we communicate between every pair of cities?
- Find the components.
- Want to construct smallest number of feasible links so that resulting network is connected.

Cycles And Connectedness

Removal of an edge that is on a cycle does not affect connectedness.

Cycles And Connectedness

Connected subgraph with all vertices and minimum number of edges has no cycles.

- Connected graph that has no cycles.
- n vertex connected graph with n-1 edges.

Spanning Tree

- Subgraph that includes all vertices of the original graph.
- Subgraph is a tree.
 - If original graph has n vertices, the spanning tree has n vertices and n-1 edges.

Minimum Cost Spanning Tree

• Tree cost is sum of edge weights/costs.

A Spanning Tree

Spanning tree cost = 47.

(**Minimum Cost Spanning Tree

Spanning tree cost = 40.

Another MST

Spanning tree cost = 40.

A Wireless Broadcast Tree (** Not an MST **)

Source = 1, weights = needed power.

$$Cost = 4 + 8 + 2 + 5 + 6 + 7 + 4 + 4 + 4 + 3 = 47.$$

Graph Representation

- Adjacency Matrix
- Adjacency Lists
 - Linked Adjacency Lists
 - Array Adjacency Lists

Adjacency Matrix

- 0/1 n x n matrix, where n = # of vertices
- A(i,j) = 1 iff (i,j) is an edge

	1	2	3	4	5
1	0	1	0	1	0
2	1	0	0	0	1
3	0	0	0	0	1
4	1	0	0	0	1
5	0	1	1	1 0 0 0	0

Adjacency Matrix Properties

- •Diagonal entries are zero.
- •Adjacency matrix of an undirected graph is symmetric.
 - -A(i,j) = A(j,i) for all i and j.

Adjacency Matrix (Digraph)

- Diagonal entries are zero.
- •Adjacency matrix of a digraph need not be symmetric.

Adjacency Matrix

- n² bits of space
- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
 - (n-1)n/2 bits
- O(n) time to find vertex degree and/or vertices adjacent to a given vertex.

Adjacency Lists

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.
- An array of n adjacency lists.

$$aList[1] = (2,4)$$

$$aList[2] = (1,5)$$

$$aList[3] = (5)$$

$$aList[4] = (5,1)$$

$$aList[5] = (2,4,3)$$

Linked Adjacency Lists

• Each adjacency list is a chain.

Array Length = n

of chain nodes = 2e (undirected graph)

of chain nodes = e (digraph)

Array Adjacency Lists

• Each adjacency list is an array list.

Array Length = n

of list elements = 2e (undirected graph)

of list elements = e (digraph)

Weighted Graphs

- Cost adjacency matrix.
 - C(i,j) = cost of edge(i,j)
- Adjacency lists => each list element is a pair (adjacent vertex, edge weight)

Number Of C++ Classes Needed

- Graph representations
 - Adjacency Matrix
 - Adjacency Lists
 - Linked Adjacency Lists
 - >Array Adjacency Lists
 - 3 representations
- Graph types
 - Directed and undirected.
 - Weighted and unweighted.
 - $2 \times 2 = 4$ graph types
- $3 \times 4 = 12 \text{ C++ classes}$

Graph Search Methods

• A vertex u is reachable from vertex v iff there is a path from v to u.

Graph Search Methods

 A search method starts at a given vertex v and visits/labels/marks every vertex that is reachable from v.

Graph Search Methods

- Many graph problems solved using a search method.
 - Path from one vertex to another.
 - Is the graph connected?
 - Find a spanning tree.
 - Etc.
- Commonly used search methods:
 - Depth-first search.
 - Breadth-first search.

Depth-First Search

```
DFS(v)
Label vertex v as reached.
for (each unreached vertex u
                     adjacenct from v)
  DFS(u);
```


Start search at vertex 1.

Label vertex 1 and do a depth first search from either 2 or 4.

Suppose that vertex 2 is selected.

Label vertex 2 and do a depth first search from either 3, 5, or 6.

Suppose that vertex 5 is selected.

Label vertex 5 and do a depth first search from either 3, 7, or 9.

Suppose that vertex 9 is selected.

Label vertex 9 and do a depth first search from either 6 or 8.

Suppose that vertex 8 is selected.

Label vertex 8 and return to vertex 9.

From vertex 9 do a DFS(6).

Label vertex 6 and do a depth first search from either 4 or 7.

Suppose that vertex 4 is selected.

Label vertex 4 and return to 6.

From vertex 6 do a DFS(7).

Label vertex 7 and return to 6.

Return to 9.

Label 3 and return to 5.

Return to 2.

Return to 1.

Return to invoking method.

Depth-First Search Property

• All vertices reachable from the start vertex (including the start vertex) are visited.

Path From Vertex v To Vertex u

- Start a depth-first search at vertex v.
- Terminate when vertex u is visited or when DFS ends (whichever occurs first).
- Time
 - $O(n^2)$ when adjacency matrix used
 - O(n+e) when adjacency lists used (e is number of edges)

Is The Graph Connected?

- Start a depth-first search at any vertex of the graph.
- Graph is connected iff all n vertices get visited.
- Time
 - $O(n^2)$ when adjacency matrix used
 - O(n+e) when adjacency lists used (e is number of edges)

Connected Components

- Start a depth-first search at any as yet unvisited vertex of the graph.
- Newly visited vertices (plus edges between them) define a component.
- Repeat until all vertices are visited.

Connected Components

Time Complexity

- O(n²) when adjacency matrix used
- O(n+e) when adjacency lists used (e is number of edges)

Spanning Tree

Depth-first search from vertex 1.

Depth-first spanning tree.

Spanning Tree

- Start a depth-first search at any vertex of the graph.
- If graph is connected, the n-1 edges used to get to unvisited vertices define a spanning tree (depth-first spanning tree).
- Time
 - $O(n^2)$ when adjacency matrix used
 - O(n+e) when adjacency lists used (e is number of edges)

Breadth-First Search

- Visit start vertex and put into a FIFO queue.
- Repeatedly remove a vertex from the queue, visit its unvisited adjacent vertices, put newly visited vertices into the queue.

Start search at vertex 1.

Visit/mark/label start vertex and put in a FIFO queue.

Remove 1 from Q; visit adjacent unvisited vertices; put in Q.

Remove 1 from Q; visit adjacent unvisited vertices; put in Q.

Remove 2 from Q; visit adjacent unvisited vertices; put in Q.

Remove 2 from Q; visit adjacent unvisited vertices; put in Q.

Remove 4 from Q; visit adjacent unvisited vertices; put in Q.

Remove 4 from Q; visit adjacent unvisited vertices; put in Q.

Remove 5 from Q; visit adjacent unvisited vertices; put in Q.

Remove 5 from Q; visit adjacent unvisited vertices; put in Q.

Remove 3 from Q; visit adjacent unvisited vertices; put in Q.

Remove 3 from Q; visit adjacent unvisited vertices; put in Q.

Remove 6 from Q; visit adjacent unvisited vertices; put in Q.

Remove 6 from Q; visit adjacent unvisited vertices; put in Q.

Remove 9 from Q; visit adjacent unvisited vertices; put in Q.

Remove 9 from Q; visit adjacent unvisited vertices; put in Q.

Remove 7 from Q; visit adjacent unvisited vertices; put in Q.

Remove 7 from Q; visit adjacent unvisited vertices; put in Q.

Remove 8 from Q; visit adjacent unvisited vertices; put in Q.

Queue is empty. Search terminates.

Time Complexity

- Each visited vertex is put on (and so removed from) the queue exactly once.
- When a vertex is removed from the queue, we examine its adjacent vertices.
 - O(n) if adjacency matrix used
 - O(vertex degree) if adjacency lists used
- Total time
 - O(mn), where m is number of vertices in the component that is searched (adjacency matrix)

Time Complexity

- O(n + sum of component vertex degrees) (adj. lists)
 - = O(n + number of edges in component)

Breadth-First Search Properties

- Same complexity as DFS.
- Same properties with respect to path finding, connected components, and spanning trees.
- Edges used to reach unlabeled vertices define a depth-first spanning tree when the graph is connected.
- There are problems for which bfs is better than dfs and vice versa.