Linear Modeling Summary Sheet Compiled by: Shravan Vasishth (vasishth@uni-potsdam.de) Version dated: January 23, 2013

Note: Everything is in matrix form unless a lower case letter with a subscript (such as x_i) is used.

Background

Some key distributional results

Basic facts

$$y = X\beta + \epsilon \tag{1}$$

$$\begin{split} E(y) &= X\beta = \mu &\quad E(\epsilon) = 0 \\ Var(y) &= \sigma^2 I_n &\quad Var(\epsilon) = \sigma^2 I_n \end{split}$$

$$y = X\hat{\beta} + e$$

Results for
$$\hat{\beta}$$
 Results for e
$$E(\hat{\beta}) = \beta$$

$$Var(\hat{\beta}) = \sigma^2(X^TX)^{-1} = \frac{\sigma^2}{S_{xx}}$$

$$Var(e) = \sigma^2M$$

$$\hat{\beta} \sim N_p(\beta, \sigma^2(X^TX)^{-1})$$

$$Var(e_i) = \sigma^2m_{ii}$$

$$E(e_i^2) = \sigma^2m_{ii}$$

$$E(e_i^2) = \sigma^2m_{ii}$$

$$E(\varphi_i^2) = \sigma^2(n-p)$$

Sum of Squares:

$$S(\hat{\beta}) = \sum_{i} e_i^2 = e^T e = (y - X\hat{\beta})^T (y - X\hat{\beta}) = y^T y - y^T X\hat{\beta} = S_T$$
(3)

Estimation of error variance: e = My

$$e = y - X\hat{\beta} = y - X(X^TX)^{-1}X^Ty = My$$
 (4)

where

$$M = I_n - X(X^T X)^{-1} X^T$$
 M is symmetric, idempotent $n \times n$

Note that MX = 0, which means that

$$E(e) = E(My) = ME(y) = MX\beta = 0$$
(6)

Also, $Var(e) = Var(My) = MVar(y)M^T = \sigma^2 I_n M$.

Important properties of M:

- M is singular because every idempotent matrix except I_n is singular.
- trace(M) = rank(M) = n p.

Residual mean square:

$$\hat{\sigma}^2 = \frac{\sum e_i^2}{n-p} \quad E(\hat{\sigma}^2) = \sigma^2 \tag{7}$$

The square root of $\hat{\sigma}^2$, $\hat{\sigma}$ is the **residual standard error**.

Some short-cuts for hand-calculations

$$S_{xx} = \sum (x_i - \bar{x})^2 = \sum x_i^2 - n\bar{x}^2$$

$$S_{yy} = \sum (y_i - \bar{y})^2 = \sum y_i^2 - n\bar{y}^2$$

$$S_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - n\bar{x}\bar{y}$$

$$\hat{\beta} = (X^T X)^{-1} X^T y = \begin{pmatrix} \bar{y} - \bar{x} \frac{S_{xy}}{S_{xx}} \\ \frac{S_{xy}}{S_{xx}} \end{pmatrix}$$

See [1, 25] for a full exposition.

Gauss-Markov conditions

This imposes distributional assumptions on $\epsilon = y - X\beta$. $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2 I_n$,

Gauss-Markov theorem

Let a be any $p \times 1$ vector and suppose that X has rank p. Of all estimators of $\theta = a^T \beta$ that are unbiased and linear functions of y, the estimator $\hat{\theta} = a^T \hat{\beta}$ has minimum variance. Note that θ is a scalar.

Note: no normality assumption required! But if $\epsilon \sim N(0, \sigma^2)$, $\hat{\beta}$ have smaller variances than any other estimators.

Coefficient of determination

$$S_{TOTAL} = (y - \bar{y})^T (y - \bar{y}) = y^T y - n\bar{y}^2$$

$$S_{REG} = (X\hat{\beta} - \bar{y})^T (X\hat{\beta} - \bar{y})$$

$$S_r = \sum e_i^2 = (y - X\hat{\beta})^T (y - X\hat{\beta})$$

$$S_{TOTAL} = S_{REG} + S_r$$
(9)

$$R^2 = \frac{S_{TOTAL} - S_r}{S_{TOTAL}} = \frac{S_{REG}}{S_{TOTAL}} \tag{10}$$

For $y = 1_n \beta_0 + \epsilon$, then $R^2 = \frac{S_{REG}}{S_{TOTAL}} = 0$ because $X\hat{\beta} = \bar{y}$. So $S_{REG} = (X\hat{\beta} - \bar{y})^T (X\hat{\beta} - \bar{y}) = 0$.

In simple linear regression, $R^2 = r^2$. R^2 is a generalization of r^2 .

Adjusted
$$R^2 = R_{Adj}^2$$
. $R_{Adj}^2 = 1 - \frac{S_r/(n-p)}{S_{TOTAL}/(n-1)}$

 R^2 increases with increasing numbers of explanatory variables, therefore R^2_{Adi} is better.

Hypothesis testing

Some theoretical background

Multivariate normal:

Let $X^T = \langle X_1, \dots, X_p \rangle$, where X_i are univariate random variables.

X has a multivariate normal distribution if and only if every component of X has a univariate normal distribution.

Linear transformations:

Let A, b be constants. Then, $Ax + b \sim N_q(A\mu + b, A\Sigma A^T)$. Standardization:

Note that Σ is positive definite (it's a variance covariance matrix), so $\Sigma = CC^T$. C is like a square root (not necessarily unique).

It follows "immediately" that

$$C^{-1}(X - \mu) \sim N_n(0_n, I_n)$$
 (11)

If Σ is a diagonal matrix, then X_1, \ldots, X_n are independent and uncorrelated.

Quadratic forms:

Recall distributional result: If we have n independent standard normal random variables, their sum of squares is χ_n^2 .

Lt $z = C^{-1}(X - \mu)$, and $\Sigma = CC^T$. The sum of squares z^Tz is:

$$z^{T}z = [C^{-1}(X - \mu)]^{T}[C^{-1}(X - \mu)]$$

= $(X - \mu)^{T}[C^{-1}]^{T}[C^{-1}](X - \mu) \dots (AB)^{T} = B^{T}A^{T}$
(12)

Note that $[C^{-1}]^T = [C^T]^{-1}$. Therefore,

$$[C^{-1}]^T[C^{-1}] = [C^T]^{-1}[C^{-1}]$$

$$= (C^TC)^{-1}$$

$$= (CC^T)^{-1}$$

$$= \Sigma^{-1}$$
(13)

Therefore: $z^Tz = (X - \mu)^T \Sigma^{-1} (X - \mu) \sim \chi_p^2$, where p is the number of parameters.

Quadratic expressions involving idempotent matrices Given a matrix K that is idempotent, symmetric. Then:

$$x^T K x = x^T K^2 x = x^T K^T K x \tag{14}$$

Let $x \sim N_n(\mu, \sigma^2 I_n)$, and let K be a symmetric, idempotent $n \times n$ matrix such that $K\mu = 0$. Let r be the rank or trace of K. Then we have the **sum of squares property**:

$$x^T K x \sim \sigma^2 \chi_r^2 \tag{15}$$

The above generalizes the fact that if we have n independent standard normal random variables, their sum of squares is χ_n^2 . Two points about the sum of squares property:

• Recall that the expectation of a chi-squared random variable is its degrees of freedom. It follows that:

$$E(x^T K x) = \sigma^2 r \tag{16}$$

If $K\mu \neq 0$, $E(x^T Kx) = \sigma^2 r + \mu^T K\mu$.

• If K is idempotent, so is I - K. This allows us to split $x^T x$ into two components sums of squares:

$$x^T x = x^T K x + x^T (I - K) x \tag{17}$$

Partition sum of squares:

Let K_1, K_2, \ldots, K_q be symmetric idempotent $n \times n$ matrices such that $\sum K_i = I_n$ and $K_i K_j = 0$, for all $i \neq j$. Let $x \sim N_n(\mu, \sigma^2)$. Then we have the following partitioning into independent sums of squares:

$$x^T x = \sum x^T K_i x \tag{18}$$

(11) If $K_i \mu = 0$, then $x^T K_i x \sim \sigma^2 \chi_{r_i}^2$, where r_i is the rank of K_i .

Confidence intervals for $\hat{\beta}$

Note that $\hat{\beta} \sim N_p(\beta, \sigma^2(X^TX)^{-1})$, and that $\frac{\hat{\sigma}^2}{\sigma^2} \sim \frac{\chi_{n-p}^2}{n-n}$. From distributional theory we know that $T = \frac{X}{\sqrt{Y/v}}$, when $X \sim N(0,1)$ and $Y \sim \chi_v^2$.

Let x_i be a column vector containing the values of the explanatory/regressor variables for a new observation i. Then if we define:

$$X = \frac{x_i^T \hat{\beta} - x_i^T \beta}{\sqrt{\sigma^2 x_i^T (X^T X)^{-1} x_i}} \sim N(0, 1)$$
 (19)

and

$$Y = \frac{\hat{\sigma}^2}{\sigma^2} \sim \frac{\chi_{n-p}^2}{n-p} \tag{20}$$

It follows that $T = \frac{X}{\sqrt{Y/v}}$:

$$T = \frac{x_i^T \hat{\beta} - x_i^T \beta}{\sqrt{\hat{\sigma}^2 x_i^T (X^T X)^{-1} x_i}} = \frac{\frac{x_i^T \hat{\beta} - x_i^T \beta}{\sqrt{\sigma^2 x_i^T (X^T X)^{-1} x_i}}}{\sqrt{\frac{\hat{\sigma}^2}{\sigma^2}}} \sim t_{n-p} \quad (21)$$

I.e., a 95% CI:

$$x_i^T \hat{\beta} \pm t_{n-p,1-\alpha/2} \sqrt{\hat{\sigma}^2 x_i^T (X^T X)^{-1} x_i}$$
 (22)

Cf. a prediction interval:

$$x_i^T \hat{\beta} \pm t_{n-p,1-\alpha/2} \sqrt{\hat{\sigma}^2 (1 + x_i^T (X^T X)^{-1} x_i)}$$
 (23)

Note that a prediction interval will be wider about the edges.

Distributions of estimators and residuals

 $\operatorname{Covar}(\hat{\beta}, e) = 0$:

$$\operatorname{Var}\begin{pmatrix} \hat{\beta} \\ e \end{pmatrix} = \begin{pmatrix} Var(\hat{\beta}) & 0 \\ 0 & Var(e) \end{pmatrix} = \begin{pmatrix} \sigma^2(X^TX)^{-1} & 0 \\ 0 & \sigma^2M \end{pmatrix}.$$

Confidence intervals for components of β

Let $G = (X^T X)^{-1}$, and q_{ii} the *i*-th diagonal element.

$$\hat{\beta}_i \sim N(\beta_i, \sigma^2 g_{ii}) \tag{24}$$

Since $\hat{\beta}$ and S_r are independent, we have:

$$\frac{\hat{\beta}_i - \beta_i}{\hat{\sigma}_{\gamma}/q_{ii}} \sim t_{n-p} \tag{2}$$

The 95% CI:

$$\hat{\beta}_i \pm t_{n-p,(1-\alpha)/2} \hat{\sigma} \sqrt{g_{ii}} \tag{26}$$

Maximum likelihood estimators

to-do

Hypothesis testing

A general format for specifying null hypotheses: $H_0: C\beta = c$, where C is a $q \times p$ matrix and c is a $q \times 1$ vector of known constants. The matrix C effectively asserts specific values for qlinear functions of β . In other words, it asserts q null hypotheses stated in terms of (components of) the parameter vector β . E.g., given:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i \tag{27}$$

we can test $H_0: \beta_1 = 1, \beta_2 = 2$ by setting

$$C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } c = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

The alternative is usually the negation of the null, i.e., $H_1: C\beta \neq c$, which means that at least one of the q linear functions does not take its hypothesized value.

Constructing a test:

$$C\hat{\beta} \sim N_q(c, \sigma^2 C(X^T X)^{-1} C^T)$$
(28)

So, if H_0 is true, by sum of squares property:

$$(C\hat{\beta} - c)^T C(X^T X)^{-1} C^T (C\hat{\beta} - c) \sim \sigma^2 \chi_q^2$$
 (29)

In other words:

$$\frac{(C\hat{\beta} - c)^T C(X^T X)^{-1} C^T (C\hat{\beta} - c)}{\sigma^2} \sim \chi_q^2 \tag{30}$$

Note that $\hat{\beta}$ is independent of $\hat{\sigma}^2$, and recall that

$$\frac{\hat{\sigma}^2}{\sigma^2} \sim \frac{\chi_{n-p}^2}{n-p} \Leftrightarrow \frac{\hat{\sigma}^2(n-p)}{\sigma^2} \sim \chi_{n-p}^2$$
 (31)

Recall distributional result: if $X \sim \chi_v^2, Y \sim \chi_w^2$ and X, Y

independent then $\frac{X/v}{Y/w} \sim F, v, w$. It follows that if H_0 is true, and setting $X = \frac{(C\hat{\beta} - c)^T C(X^T X)^{-1} C^T (C\hat{\beta} - c)}{\sigma^2}, Y = \frac{\hat{\sigma}^2 (n-p)}{\sigma^2}$, and setting the degrees of freedom to v = q and w = n - p:

$$\frac{X/v}{Y/w} = \frac{\frac{(C\hat{\beta} - c)^T C(X^T X)^{-1} C^T (C\hat{\beta} - c)}{\sigma^2} / q}{\frac{\hat{\sigma}^2 (n - p)}{\sigma^2} / (n - p)}$$
(32)

Simplifying

$$\frac{(C\hat{\beta} - c)^T C(X^T X)^{-1} C^T (C\hat{\beta} - c)}{q\hat{\sigma}^2} \sim F_{q,n-p} \qquad (33)$$

This is a **one-sided test** even though the original alternative was two-sided.

Special cases of hypothesis tests:

When q is 1, we have only one hypothesis to test, the i-th element of β . Given:

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i \tag{34}$$

we can test $H_0: \beta_1 = 0$ by setting

$$C = (0 \ 1 \ 0) \text{ and } c = 0.$$

Using the fact that $X \sim t(v) \Leftrightarrow X^2 \sim F(1, v)$, we have

$$\frac{\hat{\beta}_i - c_i}{\hat{\sigma}\sqrt{g_{ii}}} \sim t_{n-p} \tag{35}$$

Sum of squares

Recall:

If K is idempotent, so is I-K. This allows us to split x^Tx into two components sums of squares:

$$x^T x = x^T K x + x^T (I - K) x \tag{36}$$

Let K_1, K_2, \ldots, K_q be symmetric idempotent $n \times n$ matrices such that $\sum K_i = I_n$ and $K_i K_i = 0$, for all $i \neq j$. Let $x \sim N_n(\mu, \overline{\sigma^2})$. Then we have the following partitioning into independent sums of squares:

$$x^T x = \sum x^T K_i x \tag{37}$$

If $K_i \mu = 0$, then $x^T K_i x \sim \sigma^2 \chi_{r_i}^2$, where r_i is the rank of K_i .

We can use the sum of squares property just in case K is idempotent, and $K\mu=0$. Below, K=M and $\mu = E(y) = X\beta.$

Consider the sum of squares partition:

$$y^{T}y = \underline{y^{T}My} + \underline{y^{T}(I - M)y}$$

$$S_{r} = e^{T} e^{T} \hat{\beta}^{T} (X^{T}X)\hat{\beta}$$
(38)

Note that the preconditions for sums of squares partitioning are satisfied:

- 1. M is idempotent (and symmetric), rank=trace=n-p.
- 2. I-M is idempotent (and symmetric), rank=trace=p.
- 3. ME(u) = 0 because $ME(u) = MX\beta$ and MX = 0.

We can therefore partition the sum of squares into two independent sums of squares:

$$y^{T}y = \underline{y^{T}My} + \underline{y^{T}(I-M)y}$$

$$e^{T}e^{-\alpha^{2}}\chi_{n-p}^{2} \qquad \sim \sigma^{2}\chi_{p}^{2} \text{ iff } \chi_{\beta=0,i.e.,\beta=0}^{\uparrow}$$

$$(39)$$

So, iff we have $H_0: \beta = 0$, we can partition sum of squares as above. Saying that $\beta = 0$ is equivalent to saying that X has rank p and $X\beta = 0$.

Testing the effect of a subset of regressor variables

Let:

$$C = (0_{p-q}I_q)$$
 $c = 0$, and $\beta = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ (40)

Here, $\beta_{1,2}$ are vectors (sub-vectors?), not components of the β vector. Then, $C \times \beta = \beta_2$ and $H_0: \beta_2 = 0$. Note that order of elements in β is arbitrary; i.e., any subset of β can be tested. Since $C \times \beta = \beta_2$ and c = 0, we can construct a sum of squares:

$$(C\hat{\beta} - c)^T C(X^T X)^{-1} C^T (C\hat{\beta} - c) \sim \sigma^2 \chi_q^2$$
 (41)

This becomes (since $C\beta = \hat{\beta}_2$):

$$\hat{\beta}_2^T C(X^T X)^{-1} C^T \hat{\beta}_2 \sim \sigma^2 \chi_q^2 \tag{42}$$

We can rewrite this as: $\hat{\beta}_2^T G_{qq} \hat{\beta}_2$, where $G_{qq} = C(X^TX)^{-1}C^T$ (G_{qq} should not be confused with g_{ii}) is a $q \times q$ submatrix of $G = (X^TX)^{-1}$.

Note that $\hat{\beta}$ is independent of $\hat{\sigma}^2$, and recall that

 $\frac{\hat{\sigma}^2(n-p)}{\sigma^2} \sim \chi^2_{n-p}.$ We can now construct the F-test as before:

$$\frac{\hat{\beta}_{2}^{T}C(X^{T}X)^{-1}C^{T}\hat{\beta}_{2}}{q\hat{\sigma}^{2}} = \frac{\hat{\beta}_{2}^{T}G\hat{\beta}_{2}}{q\hat{\sigma}^{2}} \sim F_{q,n-p}$$
(43)

Sums of squares:

We can construct three idempotent matrices:

- $M = I_n X(X^T X)^{-1} X^T$
- $M_1 = X(X^TX)^{-1}X^T [X(X^TX)^{-1}C^T][\underline{C(X^TX)^{-1}C^T}]^{-1}[C(X^TX)^{-1}X^T]$ • (that is: $M_1 = X(X^TX)^{-1}X^T - M_2$)

•
$$M_2 = [X(X^T X)^{-1}C^T][\underline{C(X^T X)^{-1}C^T}]^{-1}[C(X^T X)^{-1}X^T]$$

Note that $M+M_1+M_2=I_n$ and $MM_1=MM_2=M_1M_2=0$. I.e., sum of squares partition property applies. We have three independent sums of squares:

- 1. $S_r = y^T M y$
- 2. $S_1 = y^T M_1 y = \hat{\beta}^T X^T X \hat{\beta} \hat{\beta}_2^T G_{qq}^{-1} \hat{\beta}_2$

3.
$$S_2 = y^T M_2 y = \hat{\beta}_2^T G_{qq}^{-1} \hat{\beta}_2$$

So: $y^T y = S_r + S_1 + S_2$. Then:

- It is unconditionally true that $S_r \sim \sigma^2 \chi_{n-p}^2$.
- If $H_0: \beta = 0$ is true, then $E(\hat{\beta}_2) = \beta_2 = 0$. It follows from the sum of squares property that $S_2 \sim \sigma^2 \chi_g^2$.
- Regarding S_1 : We can prove that $M_1 = X_1(X_1^TX_1)^{-1}X_1^T$, where X_1 contains the first p-q columns of X. It follows that: $S_1 = y^TM_1y = y^TX_1(X_1^TX_1)^{-1}X_1^Ty$ Note that $X_1(X_1^TX_1)^{-1}X_1^T$ is idempotent. If $\beta = 0$, i.e., if $E(y) = X\beta = 0$, we can use the sum of squares

$$S_1 \sim \sigma^2 \chi_{p-q}^2$$

property and conclude that

The degrees of freedom are p-q because the rank=trace of $X_1(X_1^TX_1)^{-1}X_1^T$ is n-p.

Thus, S_1 is testing $\beta_1 = 0$ but under the assumption that $\beta_2 = 0$.

Analysis of variance

Sources	SS	df	MS	MS ratio
of variation				
Due to X_1	S_1	p-q	$S_1/(p-q)$	F_1
if $\beta_2 = 0$ d				$F_{p-q,n-p}$
Due to X_2	S_2	q	S_2/q	F_2
				$F_{q,n-p}$
Residuals	S_r	n-p	$\hat{\sigma}^2$	
Total	y^Ty	n		

Note:

- 1. The ANOVA tests are **performed in order**: First we test $H_0: \beta_2 = 0$. Then, if this test does not reject the null, we test $H_0: \beta_1 = 0$ on the assumption (which may or may not be true) that $\beta_2 = 0$.
- 2. What happens if we reject the first hypothesis?

The null or minimal model (constant term)

We can set $C=I_p$ and c=0. This tests whether all coefficients are zero. But this states that E(y)=0, whereas it should have a non-zero value (e.g., reading times). We include the constant term to accommodate this desire to have $E(y)=\mu\neq 0$. In matrix format: let β be the parameter vector; then, $\beta_1=\mu$ is the first, constant, term, and the rest of the parameters are the vector β_2 $(p-1\times 1)$. The first column of X will be $X_1=1_n$.

- 1. $S_1 = y^T (X_1^T X_1)^{-1} X_1^T y = (\sum y)^2 / n = n\bar{y}^2$
- 2. $S_r = y^T y \hat{\beta}^T X^T X \hat{\beta}$

3.
$$S_2 = y^T y - S_1 - S_r = \hat{\beta}^T X^T X \hat{\beta} - n\bar{y}^2$$

It is normal to omit the row in the ANOVA table corresponding to the constant term.

Testing whether all predictors (besides the constant term) are zero

To test whether p predictor variables have any effect on y, we set q = p - 1, and our anova table looks like this:

Sources	SS	df	MS	MS
of variation				ratio
Due	S_2	p-1	$\frac{S_2}{(p-1)}$	F_2
to regressors			,	$F_{p-1,n-p}$
Residuals	S_r	n-p	$\hat{\sigma}^2$	
Total	$S_{yy} =$	n-1		
(adjusted)	$ \begin{vmatrix} S_{yy} = \\ (y - \bar{y})^T (y - \bar{y}) \\ = y^T y - n\bar{y}^2 \end{vmatrix} $			
	$ = y^T y - n\bar{y}^2$			

Note that $S_{yy} = \sum (y_i - \bar{y})^2$ is the residual sum of squares that we get after fitting the constant $\hat{\mu} = \bar{y}$.

Testing a subset of predictors β_2

Sources	SS	df	MS	MS			
of variation				ratio			
Due to X_1	S_1	p-q-1	$\frac{S_1}{(p-q-1)}$	(F_1)			
if $\beta_2 = 0$,	$F_{p-q-1,n-p}$			
(test of β_1)							
Due	S_2	q	$\frac{S_2}{q}$	F_2			
to X_2			4	$F_{q,n-p}$			
(test of β_2)							
Residuals	S_r	n-p	$\hat{\sigma}^2$				
Total	S_{yy}	n-1					

Note: the lecture notes have total SS as $y^T y$ but I think that's a typo.

References

 Norman R. Draper and Harry Smith. Applied Regression Analysis. Wiley, New York, 1998.

Cheat sheet template taken from Winston Chang: http://www.stdout.org/~winston/latex/