Exercise 2.5.

 (\Rightarrow) **X**,**Y** に対応する流れをそれぞれ φ_t, ψ_t とする. 流れの定義より,

$$\dot{\varphi}_t(\mathbf{x}) = \mathbf{X}(\varphi_t(\mathbf{x})), \quad \dot{\psi}_t(\mathbf{x}) = \mathbf{Y}(\psi_t(\mathbf{x}))$$
 (1)

を満たす. 微分同相写像 Φ についてこれらの流れが共役, つまり $\Phi \circ \varphi_t(x) = \psi_t \circ \Phi(x)$ と仮定する. この式の両辺を t で微分すると,

$$[D\mathbf{\Phi}(\varphi_t(\mathbf{x}))] \dot{\varphi}_t(\mathbf{x}) = \dot{\psi}_t \circ \mathbf{\Phi}(\mathbf{x})$$

$$\Leftrightarrow [D\mathbf{\Phi}(\varphi_t(\mathbf{x}))] \mathbf{X}(\varphi_t(\mathbf{x})) = \mathbf{Y}(\psi_t \circ \mathbf{\Phi}(\mathbf{x}))$$
(2)

t=0 を代入すると、 φ_0, ψ_0 は恒等写像なので、

$$D_x \mathbf{\Phi} \cdot \mathbf{X}(x) = \mathbf{Y}(\mathbf{\Phi}(x)) \tag{3}$$

 (\Leftarrow) 式 (3) を満たす微分同相写像について、 $y(t) = \Phi \circ \varphi_t(x)$ とする. このとき

$$\dot{\boldsymbol{y}}(t) = D\boldsymbol{\Phi}(\varphi_t(\boldsymbol{x}))\mathbf{X}(\varphi_t(\boldsymbol{x})) = \mathbf{Y} \circ \boldsymbol{\Phi} \circ \varphi_t(\boldsymbol{x}) \quad (\because \text{ eq. (3)})$$
$$= \mathbf{Y}(\boldsymbol{y}(t)) \tag{4}$$

したがって y(t) は $\Phi(x)$ を初期条件とし、Y をベクトル場とする微分方程式の時刻 t における解である. つまり $y(t)=\psi_t\circ\Phi(x)$ である.