

High or Low, What Will & Interest Rate Be?

An End-to-End Predictive and Prescriptive Profit Optimization Approach

Shaleenraj Kaur | Sara Darwish

Problem Statement

Predict: Which customers will default based on their historical data?

Prescribe: Which interest rate should we give to each cluster of customers to maximize our bank's profit?

Optimize Considering Real-World Constraints: How can we do that while considering next year's cut in budget?

Explatory Data Analysis

Methodology

PREDICT LOAN DEAULT

OCT Gave More Interpretable Results than CART

CART only showed 1 leaf predicting default while OCT gave a highly interpretable general clustering of customers (below)

PRESCRIBE OPTIMAL INTEREST RATE TO MAXIMIZE PROFIT

Policy Trees proved to be a better and more flexible approach for this problem

Deep-dive on the Policy Tree Methodology

Inputs: Sparse Features (more interpretable results) | Treatment = 3 Interest Rate Brackets Reward Matrix Calculation: Calculating the profit or loss based on the probability of default under each interest rate (using threshold of 0.5). Manipulating the matrix to include a no loan category for very risky customers gives a flexible edge over the prescriptive trees as the bank can now give no loan instead of giving a high interest loan.

Customer	No Loan	Low	Medium	High		Customer	No Loan	Low	Medium	High
1	0	0.10	0.39	0.56		1	0	1614.72	-15639	-21007.5
2	0	0.15	0.21	0.50		2	0	1983.51	7750.27	-24120.6
3	0	0.53	0.56	0.57		3	0	-3484.42	-4691.83	-6302.25
Probability of Default Matrix						Profit Reward Matrix				
Medium Annual Income < 76K Medium term < 4 Annual Income < 100K										
Medium			Low			Low				

OPTIMIZE - Simulate Real-Life Constraints

To develop a comprehensive methodology, an optimization model is formulated to maximize profit using the optimal prescriptions obtained from the previous step while simulating real-life budget and maximum # of customers constraints.

Input Parameters:

n: current number of customers m: maximum number of customers to be credited b: budget / total loan amount that can be credited

 λ : penalizes customers based on their risk of default r_i : risk of default for each customer i (from reward matrix) s_i t_i : term of loan for each customer i

int_i: interest rate prescribed by OPT for each customer i lmax_i: maximum loan amount for each customer i

Decision Variables:

 l_i : loan amount credited to customer i z_i : whether the bank credits customer i or not

 $\sum l_i \leq b$

 $l_i \leq z_i * lmax_i \quad \forall i \in \{1, ... n\}$ $z_i \in \{0,1\} \quad \forall i \in \{1, ... n\}$

RESULTS & CONCLUSIONS

