3.3 Wilson's theorem

June 16, 2015

1

 $\diamond p$ est le plus petit nombre premier divisant (p-1)! + 1.

On a que si a divise b et b-1, alors a=1, car alors a divise b-(b-1)=1.

Soit alors $p^* < p$ un premier divisant (p-1)!+1. Puisque p^* divise $(p^*-1)!+1$ par Wilson, on a que p^* divise également $(p-1)!+1-((p^*-1)!+1)=(p-1)!-(p^*-1)!=(p^*-1)!((p-1)\cdots(p^*)-1)$.

Or, p^* ne peut pas diviser $(p^* - 1)!$ puisqu'il divise $(p^* - 1)! + 1$, et s'il le fesait il serait alors égal à 1.

Il doit donc diviser $((p-1)\cdots(p^*)-1)$ (**justification**). Mais p^* divise $(p-1)\cdots(p^*)$. Alors divisant $(p-1)\cdots(p^*)-1$, il doit être égal à 1, ce qui est absurde.

Alors p est le plus petit premier divisant (p-1)! + 1.

2

 $\diamond 10 / [(n-1)! + 1]$ pour tout n.

Car SLC. Alors 10k = (n-1)! + 1 pour un certain n > 4. Alors (n-1)! + 1 est pair, car divisble par 2.

Or, (n-1)! est pair pour tout n > 1. Donc (n-1)! + 1 est impair.