

An Introduction to the Classical Theory of Computation 2

Dr. Hugo García Tecocoatzi

Instituto Tecnológico y de Estudios Superiores de Monterrey

August $18^{\rm th}$ 2025

Discussion: Transition Functions in Turing Machines

Questions

- Do we define one transition function for all steps, or a new one for each pair of states?
- Is it necessary to explicitly write all transitions that end in the reject state?

Discussion: Transition Functions in Turing Machines

Questions

- Do we define one transition function for all steps, or a new one for each pair of states?
- Is it necessary to explicitly write all transitions that end in the reject state?

Clarifications

- **Single function:** The transition function δ is one global function. We list its rules $(q, a) \mapsto (q', b, D)$ separately for clarity, but together they form δ .
- **Rejection:** Not every rejecting transition needs to be written. Often we write only the key rules, and assume all undefined cases go to q_{reject} .
- Both approaches are acceptable:
 - Explicitly list all transitions, or
 - State "all other transitions $o q_{
 m reiect}$ ".

Discussion: Transition Functions in Turing Machines

Questions

- Do we define one transition function for all steps, or a new one for each pair of states?
- Is it necessary to explicitly write all transitions that end in the reject state?

Clarifications

- **Single function:** The transition function δ is one global function. We list its rules $(q, a) \mapsto (q', b, D)$ separately for clarity, but together they form δ .
- **Rejection:** Not every rejecting transition needs to be written. Often we write only the key rules, and assume all undefined cases go to q_{reject} .
- Both approaches are acceptable:
 - Explicitly list all transitions, or
 - State "all other transitions $o q_{\text{reiect}}$ ".
- ightarrow The important thing is that the machine's behavior is unambiguous.

Solution: TM for $L = 0.1^{n}0$

Algorithm:

- Verify the first symbol is 0, move right.
- Enter a loop scanning one or more 1's.
- Oheck that the next symbol is a single 0.
- Accept if the tape ends after this final 0.

Formal definition:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$$

- $\bullet \ \ Q = \{q_0, q_1, q_2, q_{\mathsf{accept}}, q_{\mathsf{reject}}\}$
- $\Sigma = \{0, 1\}, \quad \Gamma = \{0, 1, _\}$
- δ:
- $(q_0,0) \rightarrow (q_1,0,R)$ (first symbol must be 0)
- \bullet $(q_1,1) \rightarrow (q_1,1,R)$ (scan over 1's)
- $(q_1,0) \rightarrow (q_2,0,R)$ (check final 0)
- $(q_2, _) \rightarrow (q_{\mathsf{accept}}, _, R)$ (end of input)
- Otherwise $o q_{\mathsf{reject}}$

TM State Diagram and Examples

Tests:

• Accept: 010, 0110, 011110

• Reject: 0, 0010, 011, 1010

Turing machine importance

- Formalizes the concept of an algorithm
- Limits: Some problems are *not* solvable by any Turing Machine.
- Theoretical foundation for:
 - Complexity theory.
 - Programming languages.
 - Modern computer architecture.
- Universality: Any computation can be expressed as a Turing Machine.

Outline

- 2.2 Universal Turing Machine
- 2.3 Gate-Based Universal Model of Computation

2.2 Universal Turing Machine

The Universal Turing Machine (UTM): A single machine capable of simulating any other Turing Machine.

It's a foundational concept in computer science that demonstrates the universality of computation

Why Universal Turing Machines?

- A normal Turing machine is built for a specific task (e.g., recognizing) a language).
- But: Can we build a machine that can run the description of any other Turing Machine?
- Alan Turing answered: Yes! The Universal Turing Machine (UTM).
- Conceptual precursor to modern programmable computers.

How the UTM Works

The UTM takes as input:

- The description of a Turing Machine (its rules, states, alphabet).
- The input string for that machine.

Then:

- Interprets the machine description.
- Simulates step-by-step execution.
- Produces the same output that the original Turing Machine would.

The UTM is like a "machine interpreter".

Why the UTM Matters

- Universality: One machine can compute anything computable.
- Basis for Programmability: Modern computers are essentially Universal Turing Machines.
- Theoretical Importance:
 - Demonstrates the idea of "software" (machine descriptions).
 - Leads to study of undecidability (e.g., the Halting Problem).
- Philosophical impact: Foundation of the Church-Turing Thesis.

"It states that a function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine"

Universal Turing Machine: Simulation

- A Universal Turing Machine (UTM) can simulate any other Turing Machine.
- Input to the UTM consists of:
 - lacktriangledown The **description** (encoded transition rules) of a Turing Machine M.
 - ② The **input string** for *M*.
- The UTM processes both and reproduces exactly the computation of M.

UTM and Modern Computers

- Programs = Encoded Turing Machines.
- Data = Input to the program.
- Universal Turing Machine = Abstract model of a general-purpose computer.

The Idea

Instead of building a new machine for each task, one universal machine can run *any program*.

UTM and Programming Languages

- The Universal Turing Machine (UTM) is an abstract model of a programmable computer.
- In modern terms:
 - The **encoded Turing Machine** corresponds to a *program* (e.g., in C++, Java).
 - The input string corresponds to the program input.
 - The UTM corresponds to the computer/CPU that executes any program.
- This is the foundation of the stored-program architecture in real computers.

Analogy with Real Computers

Universal Turing Machine:

- Machine description = Encoded Turing Machine.
- Input string = Tape data.
- Output = Simulated result.

Modern Computer:

- Program = C++, Java, Python code.
- Data = Program input.
- Output = Program result.

Key Connection

A universal machine (abstract) \longleftrightarrow a programmable computer (real).

Universal Turing Machine vs Modern Computers

- A Universal Turing Machine simulates any other Turing Machine.
- Programs are encoded as part of the input.
- This is analogous to how modern computers use:
 - A program (C++, Java, Python).
 - Data (user input).
 - Output (result of computation).

Shows that the concept of programmability was already present in Turing's model.

2.3 Gate-Based Universal Model of Classical Computation

Computation as transformations of bits using logic gates

Logic Gates as the Building Blocks of Computation

- A bit can be either 0 or 1.
- Computation can be modeled as applying transformations (rules) to bits.
- Logic gates are the basic building blocks:
 - AND
 - OR
 - NOT
- More complex circuits and computations can be built from these.

Fundamental Logic Gates

AND Gate: Output is 1 if both inputs are 1.

$A \wedge B$

OR Gate: Output is 1 if at least one input is 1.

$A \vee B$

NOT Gate: Inverts the input.

 $\neg A$

Extensions

- NAND: Inverse of AND.
- NOR: Inverse of OR.
- XOR (Exclusive OR): Output is 1 if inputs are different.
- XNOR (Exclusive NOR):
 Output is 1 if inputs are the same.

Truth Tables: AND, OR, NOT

Α	NI	D (G	a	t	е

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

<u> </u>				
Α	В	A OR B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

NOT Cata

146	Ji Gate
Α	NOT A
0	1
1	0

Truth Tables: NAND, NOR

NAND Gate		
Α	В	A NAND B
0	0	1
0	1	1
1	0	1
_		

NIAND Cata

NOR Gate				
A	В	A NOR B		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

Truth Tables: XOR, XNOR

XO	R	Gate

71011 0410				
Α	В	A XOR B		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

XNOR Gate

ANOR Gate				
Α	В	A XNOR B		
0	0	1		
0	1	0		
1	0	0		
1	1	1		
	0	A B 0 0 1		

Example: Simple Circuit

Problem: Compute $f(A, B) = (A \lor B) \land \neg A$.

- Step 1: OR gate computes $A \vee B$.
- Step 2: NOT gate computes $\neg A$.
- Step 3: AND gate combines results: $(A \lor B) \land \neg A$.

This illustrates how combining simple gates produces more complex logical functions.

Evaluate

- F(0,0)
- F(1,0)
- F(0,1)
- F(1,1)

Universality of Logic Gates

- Any classical computation can be expressed with AND, OR, and NOT gates.
- Other universal sets exist (e.g., NAND or NOR alone).
- Logic gates are the foundation of:
 - Digital circuits.
 - Classical computer processors.
 - Modern computation theory.