1.5 Exerc.) Q. 1.7[20]. Ex. Time= # x \(\frac{C}{T} \time \) 2.56H2 = 2.5 E109 cycles 3 GH2 = 3 E109 cycles $- P_{1+ine} \left[(0.1) + (0.1) \cdot 2 + (0.5) \cdot 3 + (0.1) \cdot 3 \right] \cdot (0.5) \cdot 10^{9}$ #]=1E6=106 =(10.4 × 10-4) $P_{2} = \left[(0,1) \cdot 2 + (0 \cdot 2) \cdot 2 + (0 \cdot 5) \cdot 2 + (0 \cdot 2) \cdot 2 \right] \cdot \frac{1}{3 \times 109}$ $= 6.66 \times 10^{-4}$ $\Rightarrow \text{Faster}$ $CPI = \frac{T \times CPI}{Clock Robe} = Time$ $CPI_{Pl} = \frac{10.4 \times 10^{-4} \times 2.6 \times 10^{9}}{10^{6}}$ $CPI_{Pl} = \frac{10.4 \times 10^{-4} \times 2.6 \times 10^{9}}{10^{6}}$ $CPI_{Pl} = \frac{6.66 \times 10^{-4} \times 3 \times 10^{9}}{10^{6}} = \frac{2.6}{10^{6}}$ cpp= 6.66 × 10 + × 3 × 109 = (2.00) P₁ = (10⁶ x 0.1 x 1) + (10⁶ x 0.2 x 2) + (10⁶ x 0.5 x 3) + (10⁶ x 0.2 x 3) = (26 x 10⁶) = number extends of p

P2=106 x 2 = 20 x 105 = of R

1.13.4 Cloub Peac CPI #] from Question

Pi > 4 GHz

P2 >> 3 GHz

MFLOPS = #FPT ×
$$10^6$$

MFLOPS = #FPT × 10^6

CHP2)

add 10,18,5+

MIPS Reference Data

1

					9
CORE INSTRUCTI	ON SE				OPCODE
NAME, MNEMO	NIIC	FOR- MAT			/ FUNCT (Hex)
Add	add		R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{bex}
Add Immediate	addi	I	R[rt] = R[rs] + R[rt] R[rt] = R[rs] + SignExtImm	(1,2)	8 hex
Add Imm. Unsigned		_	R[rt] = R[rs] + SignExtImm R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt] $R[rd] = R[rs] + R[rt]$	(2)	0 / 21 hex
And Onsigned And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{bex}
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	C _{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	$\boldsymbol{2}_{\text{hex}}$
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	-	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25_{hex}
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16\text{'b0}\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	23 _{hex}
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)	d_{hex}
Set Less Than	s1t	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		$0 \: / \: 2a_{hex}$
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	:0(2)	a_{hex}
Set Less Than Imm. Unsigned	sltiu	ıI	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	$\boldsymbol{b}_{\text{hex}}$
Set Less Than Unsig	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	$0 \: / \: 2b_{hex}$
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		$0 / 00_{hex}$
Shift Right Logical	srl	R	R[rd] = R[rt] >>> sharnt		0 / 02 _{hex}
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28_{hex}
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; $R[rt] = (atomic) ? 1 : 0$	(2,7)	38_{hex}
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	$29_{_{hex}}$
Store Word	sw	I	M[R[rs] + SignExtImm] = R[rt]	(2)	$2b_{\text{hex}}$
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}
-	(1) M	ay cau	se overflow exception		

				mmediate		
	(5) JumpAd	$dr = \{ PC + 4 \}$	4[31:28], add	dress, 2'b0 }	
	(6) Operand	s considered	unsigned nu	ımbers (vs. 2	2's comp.)
	(Atomic to	est&set pair;	R[rt] = 1 if p	air atomic, (if not atomic
ASIC I	NSTRUCTIO	N FORMA	TS)	C		
R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 4	15 11	10 6	5 0
I	opcode	rs	rt		immediate	2
	31 26	25 21	20 10	5 15		0
			_			

(2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{lb'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } **ARITHMETIC CORE INSTRUCTION SET** OPCODE /FMT/FT FOR-/ FUNCT (Hex) OPERATION NAME, MNEMONIC MAT FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/--Branch On FP True bolt FI if(! FPcond)PC=PC+4+BranchAddr (4) 11/8/0/--Branch On FP False bc1f div R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] 0/--/-1a 0/--/--/1b $\label{eq:divu} \begin{array}{ll} \text{divu} & R & Lo=R[rs]/R[rt]; Hi=R[rs]\%R[rt] \\ \text{add.s} & FR & F[fd]=F[fs]+F[ft] \\ \end{array}$ Divide Unsigned 11/10/--/0 FP Add Single $\texttt{add.d }FR \quad \{F[fd],F[fd+l]\} = \{F[fs],F[fs+l]\} + \{F[fd],F[fd+l]\} + \{F[fd],F[fd],F[fd+l]\} + \{F[fd],F[fd],F[fd+l]\} + \{F[fd],F$ FP Add 11/11/--/0 FP Compare Single c.x.s* FR FPcond = (F[fs] op F[ft])? 1:0

FP Compare 11/10/--/y $c.x.d* FR FPcond = (\{F[fs], F[fs+l]\} op$ FP Compare 11/11/--/y ${F[ft],F[ft+l]}$? 1:0 ble $\{F[tt], F[tt+1]\}\} ? 1 : 0$ * (x is eg, lt, or le) (op is ==, <, or <=) (y is 32, 3c, or 3e) Divide Single div.s FR F[td] = F[fs] / F[ft]Divide div.d FR $\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} / \{F[ft], F[ft+1]\}$ FP Divide Single 11/10/--/3 FP Divide 11/11/--/3 Double ${F[ft],F[ft+l]}$ FP Multiply Single mul.s FR F[fd] = F[fs] * F[ft]11/10/--/2 FP Multiply 11/11/--/2 Double ${F[ft],F[ft+l]}$ FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft] F[ft+1] FP Subtract Double FR F[fd],F[fd+1] = {F[fs],F[fs+1]} - {F[fd],F[fd+1]} = {F[fs],F[fs+1]} - {F[fd],F[fd+1]} - {F[fd], 11/10/--/1 11/11/--/1 $\{F[ft],F[ft+l]\}$ I F[rt]=M[R[rs]+SignExtImm] (2) 31/--/--Load FP Single F[rt]=M[R[rs]+SignExtImm]; F[rt+l]=M[R[rs]+SignExtImm+4] Load FP (2) 35/--/-ldc1 Double 0/--/--/10 R R[rd] = HiMove From Hi mfhi R[rd] = Lo0 /--/--/12 Move From Lo mflo R R R[rd] = CR[rs]10/0/--/0 Move From Control mfc0 0/--/--/18
(6) 0/--/--/19 ${Hi,Lo} = R[rs] * R[rt]$ ${Hi,Lo} = R[rs] * R[rt]$ mult R Multiply Multiply Unsigned multu R 0/--/--/3
$$\begin{split} R[rd] &= R[rt] >> shamt \\ M[R[rs] + SignExtImm] &= F[rt] \\ M[R[rs] + SignExtImm] &= F[rt]; \end{split}$$
Shift Right Arith. sra R (2) 39/--/--Store FP Single swc1 Ι

FLOATING-POINT INSTRUCTION FORMATS

sdcl Ι

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	
	31 26	25 21	20 16	15		0

M[R[rs]+SignExtImm+4] = F[rt+1]

(2) 3d/--/--

PSEUDOINSTRUCTION SET

Store FP

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	if(R[rs]>=R[rt]) PC = Label
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

ISTER IVA	LIVIE, NOIVI	BER, USE, CALL CONVER	111011
NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$kl	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

© 2021 by Elsevier Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 6th ed.

OPCOD	DPCODES, BASE CONVERSION, ASCII SYMBOLS								
MIPS	(1) MIPS	(2) MIPS		Daci	Hexa-	ASCII	Deci-	Hexa-	ASCII
opcode	funct	funct	Binary		deci-	Char-			Char-
31:26)	(5:0)	(5:0)	. ,	mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 000) ()	0	NUL	64	40	@
(-)		sub.f	00 000		1	SOH	65	41	A
i	srl	mul.f	00 001		2	STX	66	42	В
jal	sra	div.f	00 001		3	ETX	67	43	Č
-							_		
beq	sllv	sqrt.f	00 010		4	EOT	68	44	D
bne	_	abs.f	00 010		5	ENQ	69	45	Е
blez	srlv	mov.f	00 0110		6	ACK	70	46	F
bgtz	srav	neg.f	00 011	1 7	7	BEL	71	47	G
addi	jr		00 1000) 8	8	BS	72	48	Н
addiu	jalr		00 100		9	HT	73	49	Ï
siti	movz		00 100		a	LF	74	4a	ĵ
sltiu	movn		00 101		b	VT	75	4b	K
andi	syscall	2 f				FF			
		2,	00 1100		c		76	4c	L
ori	break	trunc.w.f	00 110		d	CR	77	4d	M
xori		ceil.w.f	00 1110		e	SO	78	4e	N
lui	sync	floor.w.f	00 111	1 15	f	SI	79	4f	O
	mfhi		01 0000) 16	10	DLE	80	50	P
(2)	mthi		01 000		11	DC1	81	51	Q
` /	mflo	movz.f	01 000		12	DC1	82	52	R
	mtlo		01 001		13	DC2 DC3	83	53	S
	IIICIO	movn.f							
			01 0100		14	DC4	84	54	T
			01 010		15	NAK	85	55	U
			01 0110) 22	16	SYN	86	56	V
			01 011	1 23	17	ETB	87	57	W
	mult		01 1000		18	CAN	88	58	X
	multu		01 100		19	EM	89	59	Y
	div		01 1010		la	SUB	90	5a	Z.
	divu		01 101		lb	ESC	91	5b	Ĩ
			01 1100		lc	FS	92	5c	1
			01 110		1d	GS	93	5d]
			01 1110		le	RS	94	5e	Λ
			01 111	1 31	1f	US	95	5f	_
lb	add	cvt.s.f	10 0000	32	20	Space	96	60	'
1h	addu	cvt.d.f	10 000	1 33	21	!	97	61	a
lwl	sub	9	10 0010		22	"	98	62	b
lw	subu		100011		23	#	99	63	c
lbu	and	cvt.w.f	10 0100		24	\$	100	64	d
1hu	or	cvc.w.j	10 010		25	%	101	65	
lwr	xor		10 010		26	70 Qr	101	66	e f
T W T	nor					<u>&</u>			
	1101		10 011		27		103	67	g
sb			10 1000		28	(104	68	h
sh			10 100	1 41	29)	105	69	i
swl	slt		10 1010) 42	2a	*	106	6a	j
sw	sltu		10 101		2b	+	107	6b	k
			10 1100		2c	,	108	6c	1
			10 110		2d	-	109	6d	m
swr			10 1110		2e		110	6e	n
cache			10 111		2f	,	111	6f	0
11	tge	c.f.f	11 0000		30	0	112	70	P
lwcl	tgeu		11 000		31	1	113	71	
lwc2	tlt	c.un.f	11 000		32	2	114	72	q
pref	tltu	c.eq.f			33	3			r
PTCT		c.ueq.f	11 001				115	73	S
	teq	c.olt.f	11 0100		34	4	116	74	t
idc1		c.ult.f	11 010	1 53	35	5	117	75	u
ldc2	tne	c.ole.f	11 0110) 54	36	6	118	76	v
		c.ule.f	11 011		37	7	119	77	w
SC			11 1000		38	8	120	78	
swc1		c.sf.f							X
SWC1		c.ngle.f	11 100		39	9	121	79	y
owC∠		c.seq.f	11 1010		3a	:	122	7a	Z
		c.ngl. f	11 101	1 59	3b	;	123	7b	{
		c.lt.f	11 1100) 60	3c	<	124	7c	
sdcl		c.nge.f	11 110		3d	=	125	7d	}
sdc2		c.le.f	11 1110		3e	>	126	7e	~
			11 111			?	127	7f	DEL
		c.ngt.f	11 111	. 03	3 <i>f</i>	:	14/	/1	DEL

(1) opcode) 31:26) == 0

(1) opcode (31:26) == 0(2) opcode $(31:26) == 17_{ten} (11_{hex})$; if fmt(25:21)== $16_{ten} (10_{hex})$ f = s (single); if fmt(25:21)== $17_{ten} (11_{hex})$ f = d (double)

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023

IEEE Single Precision and Double P

IEEE	④ 754 Sym	bols
Exponent	Fraction	Object
0	0	± 0
0	$\neq 0$	± Denorm
1 to MAX - 1	anything	± F1. Pt. Num.
MAX	0	± ∞
MAX	≠ 0	NaN
S.P. $MAX = 2$	255, D.P. N	MAX = 2047

Э	Pre	cision Formats	i	5.1. MAA – 25	3, D.1. WI	- X
	S	Exponent		Fraction		
	31	30 23	22			0
	S	Exponent		Fraction	75	
	63	62.	52.51			0

MEMORY ALLOCAT	ION	STACK FRAME	U
\$sp → 7fff fffc _{hex}	Stack	Argument 6 Argument 5	Higher Memory Addresses
\$gp →1000 8000 _{hex}	Dynamic Data	Saved Registers	Stack Grows
1000 0000 _{hex}	Static Data	Local Variables	↓
pc →0040 0000 _{hex}	Text	\$sp	Lower
0 _{hex}	Reserved		Memory Addresses

DATA ALIGNMENT

	Double Word							
Word Word								
Half	word	ord Halfword			word	Halfword		
Byte	Byte	Byte	Byte	Byte Byte Byte Byte				

Value of three least significant bits of byte address (Big Endian)

,Er	EPTION CONTROL REGISTERS: CAUSE AND STATUS									
	В		Interrupt			Ex	ception			
	D		Mask			(Code			
	31	15		8		6		2		
		Г	Pending				U		Е	I
			Interrupt				M		L	Е
				_					-	

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE = Interrupt Enable

EXCEPTION CODES

•			520			
	Number	Name	Cause of Exception	Numbe	r Name	Cause of Exception
	0	Int	Interrupt (hardware)	9	Вр	Breakpoint Exception
	4	AdEL	Address Error Exception (load or instruction fetch)	10	RI	Reserved Instruction Exception
	5	AdES	Address Error Exception (store)	11	CpU	Coprocessor Unimplemented
	6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
	7	DBE	Bus Error on Load or Store	13	Tr	Trap
	8	Sys	Syscall Exception	15	FPE 1	Floating Point Exception

SIZE PREFIXES

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	s
1000¹	Kilo-	K	210	Kibi-	Ki	1000°	Exa-	Γ
1000²	Mega-	M	220	Mebi-	Mi	10007	Zetta-	Γ
1000³	Giga-	G	230	Gibi-	Gi	1000s	Yotta-	Γ
1000 ⁴	Tera-	T	240	Tebi-	Ti	1000°	Ronna-	Γ
10001	ъ.	-	are.					Г

SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
Ki	1000s	Exa-	E	260	Exbi-	Ei
Mi	10007	Zetta-	Z	270	Zebi-	Zi
Gi	1000s	Yotta-	Y	280	Yobi-	Yi
Ti	1000°	Ronna-	R	290	Robi-	Ri
Pi	100010	Quecca-	Q	2100	Quebi-	Qi

 $\hbox{@ 2021 by Elsevier Inc. All rights reserved. From Patterson and Hennessy, $\it Computer Organization and Design, 6th ed.}\\$

0011

x4=12

Leti=2 = 0010

(285260)16//

=> ; f(rs<rt)(rd=1)
else {rd=0} of (154 constant) (1+=1)

```
2.271
                             i=$t1
result=$ 52
                              odd: $t1,$2ero, 0 -> i=0;
                      Loop: (w $51, o($ 50)) > result to Membray[i]
                                       oddi $50, $50, 4

oddi $21, $t1, 1 == i ++>

= $1+i , $t2, $ $200, LOOP == if ($\frac{1}{2}(100) == \frac{1}{2}=1 == 0 \text{ } \text{200} \text{ } \text{200} \text{ } \text{
                                                  result = 0
                          for (i=0; i<100; i++)}
                                                            result += Men Acrey [i];
```


711111111111

5+127=132=10000100

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent)}$ where Single Precision Bias = 12 Double Precision Bias = 1023

IEEE Single Precision and **Double Precision Formats:**

	Exponent	Fraction	Object		
ıt - Bias)	0	0	± 0		
27.	0	≠ 0	± Denorm		
,	1 to MAX - 1	anything	± F1. Pt. Num		
	MAX	0	± ∞		
	MAX	≠ 0	NaN		
	S.P. $MAX = 2$	255, D.P. N	AX = 2047		
	Post attack				

-		0.0	ion i omiacc	••				
	S		Exponent		Fraction		٦	
	31	30	23	22			0	
	S		Exponent		Fraction	35		
	63	62		52 51			-0	