Résumé 07: Intégrales généralisées

Dans tout ce chapitre, \mathbb{K} sera le corps \mathbb{R} ou \mathbb{C} .

1 Intégrales généralisées

§ 1. Convergence d'une intégrale impropre. — Dans cette section, f sera ici indifféremment à valeurs dans $\mathbb R$ ou $\mathbb C$.

Définition 1.1

Soient a < b deux éléments de $\overline{\mathbb{R}}$.

▶ Si $a \in \mathbb{R}$ et si f est une application continue par morceaux sur [a,b[, l'intégrale $\int_a^b f(t)dt$ est dite convergente lorsque $\int_a^x f(t)dt$ a une limite finie ℓ quand x tend vers b^- . Dans ce cas, on pose

$$\int_{a}^{b} f(t)dt = \lim_{x \to b^{-}} \int_{a}^{x} f(t)dt.$$

▶ Si $b \in \mathbb{R}$ et si f est une application continue par morceaux sur]a,b], l'intégrale $\int_a^b f(t)dt$ est dite convergente lorsque $\int_x^b f(t)dt$ a une limite finie ℓ quand x tend vers a^+ . Dans ce cas, on pose

$$\int_{a}^{b} f(t)dt = \lim_{x \to a^{+}} \int_{x}^{b} f(t)dt.$$

▶ Si f est une application continue par morceaux sur]a,b[, l'intégrale $\int_a^b f(t)dt$ est dite convergente lorsque pour au moins un réel $c \in]a,b[$ (et dans ce cas en fait tout réel $c \in]a,b[$), $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ convergent. Dans ce cas, on pose

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt \, dt.$$

Ce type d'intégrale est dite généralisée, ou impropre. Lorsqu'une de ces intégrales ne converge pas, on dit qu'elle est divergente.

- l'intégrale de (i.e divergence oiu convergence) dépend que du comportement local de f en b.
- 2. Ainsi, si f est une fonction continue sur [a, b[, elle admet au moins une primitive F. Alors, l'intégrale f(t)dt est convergente si et seulement si F admet une limite finie en b^- . Dans ce cas, $\int f =$

- Intégrales de Riemann
 - $\int_{1}^{+\infty} \frac{dx}{x^{\alpha}}$ converge $\iff \alpha > 1$.
 - Si a < b, $\int_a^b \frac{dx}{(x-a)^{\alpha}}$ converge $\iff \alpha < 1$.
 - $\int_0^{+\infty} \frac{dx}{x^{\alpha}}$ diverge toujours.
- $\int_0^1 \ln ext{converge.}$ $\int_0^{+\infty} e^{\alpha x} dx ext{ converge} \Longleftrightarrow lpha < 0.$ $\int_{\mathbb{R}} rac{\mathrm{d}t}{1+t^2} ext{ converge.}$
- § 2. **Quelques propriétés.** de l'intégrale généralisée.

Propriétés 1.2

L'ensemble E des fonctions f continues par morceaux sur un intervalle [a,b[et telles que $\int_{-\infty}^{\infty} f$ converge est un sous-espace vectoriel de $\mathscr{C}^0_m([a,b[,\mathbb{K}).$ De plus,

- ▶ $f \in E \longmapsto \int_a^b f \in \mathbb{K}$ est une forme linéaire sur E.
- ightharpoonup Cette forme linéaire, dans le cas où $\mathbb{K} = \mathbb{R}$, est positive.

Proposition 1.3

Si f est continue sur [a, b], et si l'intégrale $\int_a^b f$ converge, alors

- $ightharpoonup F: x \longmapsto \int_{r}^{b} f(t)dt$ est de classe \mathscr{C}^{1} sur [a,b[.
- § 3. Intégrabilité.— On introduit ici une hypothèse plus forte sur f que la seule convergence de son intégrale.

Définition 1.4

Une fonction $f \in \mathscr{C}^0([a,b[,\mathbb{K}) \text{ est dite intégrable sur } [a,b[\text{ lorsque } \int_a^b |f| \text{ converge. On notera})$ $\mathscr{L}^1(I,\mathbb{K})$ l'ensemble de ces fonctions. On dit aussi dans ce cas que l'intégrale $\int_a^b f$ converge abso-

lument.

Comme dans le cas des séries, la convergence absolue est une condition suffisante de convergence :

Théorème 1.5

Si $f \in \mathscr{C}^0([a,b[,E)$ est intégrable, alors $\int_a^b f$ converge.

REMARQUES:

Il n'y a pas d'équivalent de la divergence grossière ici, i.e qu'une fonction peut être intégrable sur \mathbb{R}_+ et ne pas tendre vers 0 en $+\infty$. En revanche, si elle admet une limite finie en $+\infty$, celle-ci est nulle.

2 Cas des fonctions positives

Evidemment, l'intégrale d'une fonction positive converge si et seulement si elle est intégrable.

Théorème 2.1

Si f est continue par morceaux sur [a, b] et **POSITIVE**,

$$\int_a^b f \text{ converge } \iff x \longmapsto \int_a^x f(t)dt \text{ est major\'ee.}$$

$$\iff f \text{ est int\'egrable.}$$

$$\iff \lim_{n \to +\infty} \int_a^{b_n} f \text{ existe et est r\'eelle quand } b_n \to b$$

$$\iff \left\{ \int_a^b f, \text{ où } [a,b] \subset I \right\} \text{ est major\'e.}$$

Dans ce cas, on a

$$\int_{a}^{b} f = \lim_{x \to b^{-}} \int_{a}^{x} f(t)dt$$

$$= \lim_{n \to +\infty} \int_{a}^{b_{n}} f(t)dt$$

$$= \sup \left\{ \int_{a}^{b} f, \text{ où } [a, b] \subset I \right\}.$$

Commençons par le cas où l'intégrale est faussement généralisée :

Proposition 2.2 (Cas des fonctions prolongeables par continuité)

Si $f:[a,b]\to\mathbb{C}$ est une fonction continue qui admet une limite finie en b^- , alors $\int_a^b f$ converge.

Enonçons quelques théorèmes de comparaisons. Vous remarquerez un fait essentiel : la fonction de référence est toujours positive.

Proposition 2.3

Soit $g:[a,b[\to \mathbb{R} \ continue \ par \ morceaux\ {\bf \grave{a}}\ valeurs\ positives,\ et\ f:[a,b] \to \mathbb{C}\ continue\ par\ morceaux.$

▶ $Si\ 0 \le f \le g$ et $si\ \int_a^b g$ converge, alors $\int_a^b f$ converge.

- ► Si $f = \mathcal{O}_b(g)$ et si $\int_a^b g$ converge, alors $\int_a^b f$ converge. ► Si $b = +\infty$ et s'il existe $\alpha > 1$ tel que $x^{\alpha} f(x) \xrightarrow[x \to +\infty]{} O$, alors $\int_{-\infty}^{+\infty} f$ converge.
- ▶ Si f est à valeurs réelles, et si $f \sim_b g$, alors $\int_a^b g$ converge $\iff \int_a^b f$ converge.

§ 1. Deux outils essentiels. — Ils permettent de transformer une intégrale donnée en intégrale plus simple.

Proposition 2.4

Si f et g sont de classe \mathscr{C}^1 sur [a,b] à valeurs dans \mathbb{K} , alors

$$\int_a^b f'(t)g(t)dt = \left[f(t)g(t)\right]_a^b - \int_a^b f(t)g'(t)dt.$$

EXEMPLES:

On se souviendra de la preuve de la convergence de $\int_{\mathbb{R}_+} \frac{\sin t}{t} dt$, et de celle de la divergence de $\int_{\mathbb{R}_+} \frac{|\sin t|}{t} dt$.

D'une manière générale (mais ce n'est pas une régle absolue), on sera bien inspiré pour prouver la convergence d'un intégrale semi-convergente, d'effectuer une intégration par parties afin d'obtenir une nouvelle intégrale, mais cette fois-ci d'une fonction absolument convergente.

Proposition 2.5 (Changement de variable)

Soit f continue de]a,b[dans \mathbb{K} , et $\varphi:]\alpha,\beta[\to]a,b[$ bijective, strictement croissante, et de classe \mathscr{C}^1 . Les intégrales $\int_a^b f(t)dt$ et $\int_a^\beta f \circ \varphi(s) \varphi'(s) ds$ sont de même nature, et égales en cas de convergence.

On appliquera ce théorème sans justifier lorsque φ est affine, exponentielle, puissance ou logarithme.

- § 2. Intégration des relations de comparaison.— On se fixe une fonction $f \in \mathscr{C}^0([a,b[,\mathbb{R})$ positive, et $g \in \mathscr{C}^0([a,b[,\mathbb{R}).$
 - ▶ Cas de divergence On suppose ici que $\int_a^b f$ diverge, i.e que $\int_a^x f(t)dt \xrightarrow[x \to b]{} +\infty$. Alors
 - 1. Si $g(x) = \mathcal{O}(f(x))$ en b^- , alors $\int_a^x g(t)dt = \mathcal{O}(\int_a^x f(t)dt)$ quand $x \to b^-$.
 - 2. Si g(x) = o(f(x)) en b^- , alors $\int_a^x g(t)dt = o(\int_a^x f(t)dt)$ quand $x \to b^-$.
 - 3. Si $g(x) \sim f(x)$ en b^- , alors $\int_a^x g(t)dt \sim \int_a^x f(t)dt$ quand $x \to b^-$.
 - ▶ Cas de convergence On suppose ici que $\int_a^b f$ converge, i.e que $x \longmapsto \int_a^x f(t)dt$ est bornée sur [a, b]. Alors
 - 1. Si $g(x) = \mathscr{O}(f(x))$ en b^- , alors $\int_x^b g(t)dt = \mathscr{O}\left(\int_x^b f(t)dt\right)$ quand $x \to b^-$.
 - 2. Si g(x) = o(f(x)) en b^- , alors $\int_x^b g(t)dt = o(\int_x^b f(t)dt)$ quand $x \to b^-$.

3. Si $g(x) \sim f(x)$ en b^- , alors $\int_x^b g(t) dt \sim \int_x^b f(t) dt$ quand $x \to b^-$.

__ ANNEXE _

LES PREUVES À CONNAITRE...

- ightharpoonup L'intégrale $\int_0^{+\infty} \frac{\sin t}{t} dt$ est semi-convergente.

QUELQUES EXERCICES CLASSIQUES

EXERCICES:

- La fonction x → e^{-x}/√(x² 4) est-elle intégrable sur]2, +∞[?
 Soit a un réel strictement positif.
 La fonction x → ln x / √(1 + x^{2a}) est-elle intégrable sur]0, +∞[?