Soluciones a los ejercicios del examen del 26 de noviembre (versión 3)

1. Se trata de calcular el valor del límite

$$\lim_{n\to\infty} \sqrt{n} \, \operatorname{sen}(\sqrt{n+1} - \sqrt{n}) \, .$$

y estudiar entonces el carácter de la serie $\sum_{n=1}^{\infty} \operatorname{sen}(\sqrt{n+1} - \sqrt{n})$.

El límite es 1/2: como $\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}\underset{n\to\infty}{\longrightarrow}0,$ por la equivalencia del seno

$$\sqrt{n} \operatorname{sen}(\sqrt{n+1} - \sqrt{n}) \sim \frac{\sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \xrightarrow[n \to \infty]{} \frac{1}{2}.$$

Por tanto
$$\frac{\operatorname{sen}(\sqrt{n+1}-\sqrt{n})}{1/(2\sqrt{n})} \underset{n\to\infty}{\longrightarrow} 1$$
, es decir $\operatorname{sen}(\sqrt{n+1}-\sqrt{n}) \underset{n\to\infty}{\sim} \frac{1}{2\sqrt{n}}$.

Por el criterio de paso al límite, el carácter de la serie es el mismo que el de $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$. Como $\sqrt{n} = n^{1/2}$ y 1/2 < 1 concluimos que la serie diverge a $+\infty$.

2. Se pregunta sobre la función dada por

$$f(x) = \log(\log x - 1) - 3\log x + 3$$
.

El dominio de f lo forman los puntos x tales que su logaritmo existe y es mayor que 1 (o sea, tales que existe el logaritmo de $(\log x - 1)$). Es decir, el dominio de f es el intervalo $(e, +\infty)$.

$$\lim_{x \to e} f(x) = -\infty, \text{ porque } -3\log x + 3 \to 0 \text{ y } \log(\log x - 1) \to -\infty.$$

El límite en $+\infty$ no es tan directo porque $\log(\log x - 1) \to +\infty$ y $3\log x \to +\infty$, luego tenemos una indeterminación $\infty - \infty$. La resolvemos poniendo

$$f(x) = \log\left(\log x - 1\right) - 3\log x + 3 = \log\frac{\log x - 1}{x^3} + 3 \underset{x \to +\infty}{\longrightarrow} -\infty\,,$$

ya que como sabemos $\frac{\log x-1}{x^3} \underset{x \to +\infty}{\longrightarrow} 0$ (si no lo sabemos aplicamos L'Hospital).

La derivada de f es

$$f'(x) = \frac{1}{x(\log x - 1)} - \frac{3}{x} = \frac{4 - 3\log x}{x(\log x - 1)},$$

y como el denominador es positivo el signo de f' es el de $4-3\log x$: f'(x)>0 si $\log x<4/3$, o sea si $x<e^{4/3}$, y f'(x)<0 si $x>e^{4/3}$, siendo $f'(e^{4/3})=0$.

Deducimos que f es creciente en $(e, e^{4/3}]$ y es decreciente en $[e^{4/3}, +\infty)$, con lo que alcanza su máximo absoluto en $x = e^{4/3}$.

El valor máximo es $f(e^{4/3}) = \log \frac{1}{3} - 1 = -\log 3 - 1 < 0$, luego f es negativa en todo su dominio y la ecuación f(x) = 0 no tiene soluciones.

Por último buscamos los puntos de inflexión, estudiando la derivada segunda:

$$f''(x) = \frac{3(1 - \log x) + (3\log x - 4)\log x}{x^2(\log x - 1)^2} = \frac{3\log^2 x - 7\log x + 3}{x^2(\log x - 1)^2}.$$

El signo de f''(x) es el de $3t^2-7t+3$, donde $t=\log x\in(1,+\infty)$. Dicho polinomio se anula en $t=\frac{7}{6}-\frac{\sqrt{13}}{6}$ y en $t=\frac{7}{6}+\frac{\sqrt{13}}{6}$, es negativo entre ambos valores y es positivo en el resto. Pero el primero de dichos valores es menor que 1, y entonces resulta que f''(x)=0 si y sólo si $x=e^{\frac{7+\sqrt{13}}{6}}$, que es el único punto de inflexión de f (a su izquierda f es cóncava y a su derecha es convexa).

