Adjoint Lattice Boltzmann for Optimal Control

Grzegorz Gruszczyński

Łukasz Łaniewski-Wołłk, prof. Jacek Szumbarski

Faculty of Power and Aeronautical Engineering Warsaw University of Technology

April 3, 2017

Table of contents

- Introduction
 - Motivation
 - Problem statement
- 2 Lattice Boltzmann Method
 - Algorithm
 - Validation
- Adjoint for LBM
 - General concept
 - Application to LBM
 - Automatic differentiation
- Summary
 - Results
 - Conclusions
 - Questions?

Motivation

Goal

Framework for solving optimal control problems of a discrete dynamical systems in the CFD area. study case: optimal mixing of fluid

Motivation

Goal

Framework for solving optimal control problems of a discrete dynamical systems in the CFD area. study case: optimal mixing of fluid

Method

- Lattice Boltzmann on GPU
- Adjoint
- Automatic Differentiation

Problem statement

Figure: Flow Domain

Fluid Motion

Incompressible Navier Stokes and continuity equation:

$$\begin{cases} \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \nu \Delta \mathbf{u} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Boundary and Initial Conditions for the fluid:

$$\left. oldsymbol{u} \right|_{\partial\Omega} = oldsymbol{g} \quad ; \quad \left. oldsymbol{g} \cdot oldsymbol{n} \right|_{\partial\Omega} = 0 \quad ; \quad \left. oldsymbol{u} \right|_{t=0} = 0$$

Passive Scalar

Advection - diffusion equation:

$$\partial_t T + \mathbf{u} \cdot \nabla T = \lambda \nabla^2 T$$

Boundary and Initial Conditions for the Passive Scalar:

$$\frac{\partial}{\partial \mathbf{n}} T \Big|_{\partial \Omega} = 0 \quad ; \quad T \Big|_{t=0} = T_0$$

Objective function

Find an extremum of the functional:

$$J[\boldsymbol{u},T] = \underbrace{\int_{\Omega} [T(t_{end}) - \overline{T}]^2 d\boldsymbol{x}}_{I_1 \text{ - mix quality}} + \varepsilon \underbrace{\left[\int_{0}^{t_{end}} \left(\int_{\partial \Omega} 2\nu \boldsymbol{u} \cdot \boldsymbol{D_u} \boldsymbol{n} dS\right) dt\right]^2}_{I_2 \text{ - work needed to impose motion}}$$

where:

$$egin{aligned} oldsymbol{D_u} &= rac{1}{2}(
abla oldsymbol{u} +
abla^T oldsymbol{u}) &- ext{ deformation rate tensor} \ &= rac{1}{|\Omega|}\int_{\Omega} T doldsymbol{x} &- ext{ average value of the passive scalar} \ &= & - ext{ weight coefficient} \end{aligned}$$

The Lattice Boltzmann equation

$$\underbrace{f_i(\mathbf{x} + \mathbf{e}_i \Delta \mathbf{x}, t + \Delta t) - f_i(\mathbf{x}, t)}_{Streaming} = \underbrace{-\frac{1}{\tau}(f_i - f_i^{eq})}_{Collision}$$

- ullet au relaxation parameter, $au=3
 urac{(\Delta x)^2}{\Delta t}+rac{1}{2}$ where u is the kinematic viscosity
- f_i discrete probability distribution function

Figure: D2Q9: Streaming

1 Initialize f_i^{in}

1 Initialize
$$f_i^{in}$$

2 Compute
$$\rho$$
, $\mathbf{u}(\mathbf{x},t)$

$$ho = \sum_{i=0}^8 f_i^{in}(\mathbf{x},t)$$
 and $\mathbf{u}(\mathbf{x},t) = rac{1}{
ho} \sum_{i=0}^8 f_i^{in}(\mathbf{x},t) \mathbf{e}_i$

1 Initialize
$$f_i^{in}$$

2 Compute
$$\rho$$
, $\boldsymbol{u}(\boldsymbol{x},t)$

$$ho = \sum_{i=0}^8 f_i^{in}(\mathbf{x},t)$$
 and $\mathbf{u}(\mathbf{x},t) = rac{1}{
ho} \sum_{i=0}^8 f_i^{in}(\mathbf{x},t) \mathbf{e}_i$

3 Compute
$$f_i^{eq}(\mathbf{x},t)$$

$$f_i^{eq}(\mathbf{x},t) = w_i \rho(\mathbf{x},t) \left[1 + 3 \frac{\mathbf{e}_i \mathbf{u}}{e^2} + \frac{9}{2} \frac{(\mathbf{e}_i \mathbf{u})^2}{e^4} - \frac{3}{2} \frac{\mathbf{u}^2}{e^2} \right]$$

1 Initialize
$$f_i^{in}$$

2 Compute
$$\rho$$
, $\mathbf{u}(\mathbf{x},t)$

$$ho = \sum_{i=0}^8 f_i^{in}(\mathbf{x},t)$$
 and $\mathbf{u}(\mathbf{x},t) = \frac{1}{
ho} \sum_{i=0}^8 f_i^{in}(\mathbf{x},t) \mathbf{e}_i$

3 Compute $f_i^{eq}(x,t)$

$$f_i^{eq}(\mathbf{x},t) = w_i \rho(\mathbf{x},t) \left[1 + 3 \frac{\mathbf{e}_i \mathbf{u}}{e^2} + \frac{9}{2} \frac{(\mathbf{e}_i \mathbf{u})^2}{e^4} - \frac{3}{2} \frac{\mathbf{u}^2}{e^2} \right]$$

4 BGK Collision

$$f_i^{out}(\mathbf{x},t) = f_i^{in}(\mathbf{x},t) - rac{1}{ au_f} \left(f_i^{in}(\mathbf{x},t) - f_i^{eq}(\mathbf{x},t)
ight)$$

1 Initialize f_i^{in}

2 Compute
$$\rho$$
, $\mathbf{u}(\mathbf{x},t)$

$$ho = \sum_{i=0}^8 f_i^{in}(\mathbf{x},t)$$
 and $\mathbf{u}(\mathbf{x},t) = \frac{1}{
ho} \sum_{i=0}^8 f_i^{in}(\mathbf{x},t) \mathbf{e}_i$

3 Compute $f_i^{eq}(\mathbf{x},t)$

$$f_i^{eq}(\mathbf{x},t) = w_i \rho(\mathbf{x},t) \left[1 + 3 \frac{\mathbf{e}_i \mathbf{u}}{e^2} + \frac{9}{2} \frac{(\mathbf{e}_i \mathbf{u})^2}{e^4} - \frac{3}{2} \frac{\mathbf{u}^2}{e^2} \right]$$

4 BGK Collision

$$f_i^{out}(\mathbf{x},t) = f_i^{in}(\mathbf{x},t) - \frac{1}{\tau_c} \left(f_i^{in}(\mathbf{x},t) - f_i^{eq}(\mathbf{x},t) \right)$$

5 Streaming

$$f_i^{in}(\mathbf{x}+\mathbf{e}_i,t+1)=f_i^{out}(\mathbf{x},t)$$

Algorithm: Passive Scalar

Advection - Diffusion of the T is solved on a separate D2Q5 lattice

1 Initialize
$$\theta_i^{in}(\mathbf{x},t)$$

2 Compute T(x, t)

$$T(\mathbf{x},t) = \sum_{i=0}^{4} \theta_{i}^{in}(\mathbf{x},t)$$

3 Compute $\theta_i^{eq}(\mathbf{x},t)$

$$\theta_i^{eq}(\mathbf{x},t) = T(\mathbf{x},t)w_i \left[1 + 3\frac{\mathbf{e}_i \mathbf{u}}{e^2}\right]$$

4 BGK Collision

$$heta_i^{out}(\pmb{x},t) = heta_i^{in}(\pmb{x},t) - rac{1}{ au au}igg(heta_i^{in}(\pmb{x},t) - heta_i^{eq}(\pmb{x},t)igg)$$

5 Streaming

$$\theta_i^{in}(\mathbf{x} + \mathbf{e}_i, t+1) = \theta_i^{out}(\mathbf{x}, t)$$

Validation

- flow frequency of shedding of von Karman vortices
- advection
- diffusion
- passive scalar conservation
- wall shear force Couette flow

Why adjoint?

Primal equation

$$Au = b$$

Find the value of a functional $h \cdot u$

$$h^T u =$$

Why adjoint?

Primal equation

$$Au = b$$

Dual equation

$$A^T v = h$$

Find the value of a functional $h \cdot u$

$$h^T u = (A^T v)^T u = v^T \underbrace{Au}_b = v^T b$$

Discrete dynamical system

$$\begin{bmatrix} u_{n+1} \\ g_{n+1} \end{bmatrix} = H(u_n, \alpha_n)$$

$$\begin{bmatrix} a \\ a_0 \\ u_0 \end{bmatrix}$$

$$\begin{bmatrix} a \\ u_0 \end{bmatrix}$$

Figure: Discrete iterative process (from Łaniewski-Wołłk [1])

Discrete dynamical system

$$\begin{bmatrix} u_{n+1} \\ g_{n+1} \end{bmatrix} = H(u_n, \alpha_n)$$

$$\begin{bmatrix} u_{n+1} \\ g_{n+1} \end{bmatrix} = H(u_n, \alpha_n)$$

$$\begin{bmatrix} u_{n+1} \\ u_{n+1} \end{bmatrix} = H(u_n,$$

Figure: Discrete iterative process (from Łaniewski-Wołłk [1])

Find the derivative of the objective $J = \mathbf{h} \cdot \mathbf{g}$ with respect to a formal differentiation parameter s:

$$\frac{d}{ds}J = \frac{d}{ds}(\mathbf{h} \cdot \mathbf{g}) = \sum_{n=1}^{N} h_n \cdot \frac{\partial g_n}{\partial s}$$

Discrete dynamical system

$$\begin{bmatrix} u_{n+1} \\ g_{n+1} \end{bmatrix} = H(u_n, \alpha_n) \xrightarrow{adjoint} \begin{bmatrix} v_{n-1} \\ \beta_{n-1} \end{bmatrix} = [dH]^T \begin{bmatrix} v_n \\ h_n \end{bmatrix}$$

Figure: Discrete iterative process (from Łaniewski-Wołłk [1])

Find the derivative of the objective $J = \mathbf{h} \cdot \mathbf{g}$ with respect to a formal differentiation parameter s:

$$\frac{d}{ds}J = \frac{d}{ds}(\mathbf{h} \cdot \mathbf{g}) = \sum_{n=1}^{N} h_n \cdot \frac{\partial g_n}{\partial s} \xrightarrow{\text{adjoint}} v_0 \cdot \frac{\partial u_0}{\partial s} + \sum_{n=0}^{N-1} \beta_n \cdot \frac{\partial \alpha_n}{\partial s}$$

The primal \rightarrow adjoint formulation:

Automatic differentiation

To compute the derivatives the automatic differentiation is used. Automatic differentiation is not:

- Symbolic differentiation
- Numerical differentiation (the method of finite differences)

Automatic differentiation

To compute the derivatives the automatic differentiation is used. Automatic differentiation is not:

- Symbolic differentiation
- Numerical differentiation (the method of finite differences)

Figure: Source Code Transformation

Study case - lid driven cavity

Figure: Initial conditions for the passive scalar distribution, fluid is at rest

- ullet Reference control function: $U_{lid}=0.1\,sin(t)$ and $t\in[0,2\pi]$
- Lattice size (with walls): 128×128
- Lattice fluid viscosity : $\nu = 0.1$
- Lattice fluid thermal diffusivity: $\lambda = 0.005$
- ullet passive scalar intensity: half domain $\pm 1 \Rightarrow$ average $\overline{T}=0$

Study case - results

Figure: Initial control

Figure: Optimized control

	mix quality	work	ϵ - work weight	J
initial control	0.032	9536	1E-5	0.127
optimized control	0.025	3873	1E-5	0.064

Pareto Frontier

Feature: Benefits:

Feature:

framework for optimization of discrete dynamical system

Benefits:

applicable to complex CFD problems like optimal control or topology optimization

F	ea	+		ro	
	Ca	L	ш		

framework for optimization of discrete dynamical system

Lattice Boltzmann Method

Benefits:

applicable to complex CFD problems like optimal control or topology optimization

almost ideal scalability on HPC

Feature:

framework for optimization of discrete dynamical system

Lattice Boltzmann Method

adjoint

Benefits:

applicable to complex CFD problems like optimal control or topology optimization

almost ideal scalability on HPC

reduce numerical cost of finding the derivative of the objective depending on many control variables

Benefits:		
applicable to complex CFD problems like optimal control or topology optimization		
almost ideal scalability on HPC		
reduce numerical cost of finding the derivative of the objective depending on many control variables		
exact derivatives, code maintainability		

Questions?

?

References I

Ł. Łaniewski-Wołłk. "Adjoint Lattice Boltzmann for Topology Optimalization and Optimal Control on multi-GPU Architecture". PhD thesis. Warsaw Universisty of Technology, Faculty of Power and Aeronautical Engineering, 2016 (in preparation).

Ł. Łaniewski-Wołłk, M. Dzikowski, et al. *TCLB*. C-CFD Group at Warsaw University of Technology. 2012. URL: https://github.com/CFD-GO/TCLB.