MIP-IA/ S_1 , S.R. Épreuve d'Analyse 1 Durée : 1 h 30 min

N.B.: Aucun document n'est autorisé et tous les résultats doivent être justifiés

Exercice 1: (Questions de cours) (6 points)

- 1. Énoncer la propriété caractéristique de la borne inférieure d'une partie A non vide et minorée de \mathbb{R} .
- 2. Rappeler la définition d'une suite de Cauchy dans \mathbb{R} et montrer que toute suite de Cauchy dans \mathbb{R} est bornée.
- 3. Rappeler et démontrer le théorème de Cauchy pour les fonctions numériques. 2.5 pts

Exercice 2: (10 points) Les questions suivantes sont indépendantes.

- 1. Soit $A = \left[-\frac{1}{3}, e \right] \cap \mathbb{Q}$. Trouver $\inf(A)$ et $\sup(A)$ (on admet que $e \notin \mathbb{Q}$).
- 2. Soit $x \in \mathbb{R}$. Calculer la limite $\lim_{n \to +\infty} \left(\frac{1}{n^2} \sum_{k=1}^n E(k | x) \right)$. 2,5 pts
- 3. La fonction numérique de la variable réelle x définie par $f(x) = \sin(x^2)$ est-elle uniformément continue sur \mathbb{R} ?
- 4. Étudier la suite récurrente (u_n) définie par :

$$u_0 \in]0, +\infty[$$
 et $(\forall n \in \mathbb{N})$ $u_{n+1} = \frac{1}{2} \left(u_n + \frac{1}{u_n} \right).$

3 pts

1.5 pts

2.5 pts

- 5. Montrer que $0 < \arccos\left(\frac{3}{4}\right) < \frac{\pi}{4}$, puis résoudre dans \mathbb{R} l'équation suivante : $\arccos(x) = 2\arccos\left(\frac{3}{4}\right)$.
- 6. Soit $(x_n)_{n\geqslant 1}$ la suite numérique définie par : $(\forall n\in\mathbb{N}^*)$ $x_n=\ln(n)$. Montrer que $(\forall p\in\mathbb{N})$ $\lim_{n\to+\infty}(x_{n+p}-x_n)=0$ et que cette suite n'est pas de Cauchy.

Exercice 3: (5 points) Soit f une fonction dérivable sur \mathbb{R} telle que

$$(\forall x \in \mathbb{R}) \ \mid f^{'}(x) \mid \leqslant \lambda \ o \grave{u} \ \lambda \in [0,1[\, .$$

- 1. Montrer que f est contractante, c'est-à-dire k-lipschitzienne sur $\mathbb R$ avec $k \in [0,1[$.
- 2. En déduire que f est uniformément continue sur \mathbb{R} .
- 3. Montrer que f admet un unique point fixe α , qui est la limite de la suite (u_n) définie par $u_0 \in \mathbb{R}$ et $(\forall n \in \mathbb{N})$ $u_{n+1} = f(u_n)$.

Bon courage

Solution: 1 Exercice 1:

1. Soit A une partie non vide et majorée de \mathbb{R} et m un nombre réel. Alors :

$$m = inf(A) \Longleftrightarrow \begin{cases} (i) & (\forall x \in A) \ m \leqslant x, \\ (ii) & (\forall \varepsilon > 0) \ (\exists x \in A) : \ x < m + \varepsilon. \end{cases}$$

2. On dit qu'une suite réelle (x_n) est de Cauchy si, et seulement si,

$$(\forall \varepsilon > 0) \ (\exists n_0 \in \mathbb{N}) : (\forall (m, n) \in \mathbb{N}^2) \ (m \geqslant n_0 \ et \ n \geqslant n_0) \Longrightarrow |x_n - x_m| < \varepsilon.$$

Si (x_n) est de Cauchy, alors pour $\varepsilon = 1$, il existe $n_0 \in \mathbb{N}$ tel que:

$$(\forall (m,n) \in \mathbb{N}^2) \ (n \geqslant n_0 \ et \ m \geqslant n_0) \Longrightarrow |x_n - x_m| < 1,$$

d'où pour tout $n \in \mathbb{N}$ tel que $n \geqslant n_0$ on a :

$$|x_n| = |x_n - x_{n_0} + x_{n_0}|$$

 $\leq |x_n - x_{n_0}| + |x_{n_0}|$
 $\leq 1 + |x_{n_0}|.$

Soit $A = max\{ | x_0 |, | x_1 |, ..., | x_{n_0} |, 1+ | x_{n_0} | \}, alors (\forall n \in \mathbb{N}) | x_n | \leqslant A.$

3. (Théorème de Cauchy) : Si f est une fonction numérique continue sur [a,b], où $(a,b) \in \mathbb{R}^2$ tel que a < b, et f(a).f(b) < 0, alors il existe $c \in]a,b[$ tel que f(c) = 0.

Preuve: f(a) f(b) < 0, alors f(a) et f(b) sont de signes contraires, l'un est strictement négatif et l'autre est strictement positif donc 0 est compris entre f(a) et f(b), par le TVI il existe $c \in [a,b]$ tel que f(c) = 0; puisque $f(a) \neq 0$ et $f(b) \neq 0$, alors $c \neq a$ et $c \neq b$ et alors $c \in [a,b]$.

Exercice 2:

1. $A = \left[-\frac{1}{3}, e\right] \cap \mathbb{Q} : \frac{-1}{3} \in A$, d'où A est une partie non vide de \mathbb{R} .

Par ailleurs, pour tout $x \in \mathbb{R}$, on $a: x \in A \Leftrightarrow x \in [\frac{-1}{3}, e] \cap \mathbb{Q}$, alors $\frac{-1}{3} \leq x \leq e$ donc A est majorée par e et minorée par $\frac{-1}{3}$ lequel est un élément de A, donc $\inf(A) = \min(A) = \frac{-1}{3}$.

Montrons que $\sup(A) = e$. On a déjà e est un majorant de A. D'autre part, pour tout $\varepsilon > 0$, si $a = \max(e - \varepsilon, 0)$, il existe $r \in \mathbb{Q}$ tel que a < r < e car \mathbb{Q} est dense dans \mathbb{R} . D'où, il existe $r \in A$ tel que $e - \varepsilon < r < e$; donc $\sup(A) = e$.

2. Posons pour chaque n de \mathbb{N}^* , $x_n = \frac{1}{n^2} \sum_{k=1}^n E(k\sqrt{x})$. Alors pour tout $n \in \mathbb{N}^*$ et pour tout $k \in \{1, ..., n\}$ on a:

$$kx - 1 < E(kx) \le kx$$
,

or

$$kx - 1 < E(kx) \le kx \implies \sum_{k=1}^{n} (kx - 1) < \sum_{k=1}^{n} E(kx) \le \sum_{k=1}^{n} kx$$

$$\implies \frac{n(n+1)}{2}x - n < \sum_{k=1}^{n} E(kx) \le \frac{n(n+1)}{2}x$$

$$\implies \frac{n(n+1)}{2n^2}x - \frac{1}{n} < x_n \le \frac{n(n+1)}{2n^2}x$$

Donc

$$(\forall n \in \mathbb{N}^*) \frac{n(n+1)}{2n^2} x - \frac{1}{n} < x_n \le \frac{n(n+1)}{2n^2} x.$$

 $Or \lim_{n \to +\infty} \frac{n(n+1)}{2n^2} x - \frac{1}{n} = \lim_{n \to +\infty} \frac{n(n+1)}{2n^2} x = \frac{x}{2}, \ d'où \ (x_n)_{n\geqslant 1} \ est \ convergente \ et$ $\lim_{n \to +\infty} x_n = \frac{x}{2}.$

3. La fonction $f: x \mapsto \sin(x^2)$ n'est pas uniformément continue sur \mathbb{R} . **Preuve**: Soient (x_n) et (y_n) les deux suites définies par : $(\forall n \in \mathbb{N}): x_n = \sqrt{2n\pi + 1}$ et $y_n = \sqrt{2n\pi}$. Alors Pour tout $n \in \mathbb{N}$, on a :

$$x_n - y_n = \sqrt{2n\pi + 1} - \sqrt{2n\pi}$$

$$= \frac{1}{\sqrt{2n\pi + 1} + \sqrt{2n\pi + 1}},$$

et

$$f(x_n) - f(y_n) = \sin(2n\pi + 1) - \sin(2n\pi)$$
$$= \sin(1)$$

Donc $x_n - y_n \longrightarrow 0$; mais $f(x_n) - f(y_n) \longrightarrow \sin(1) (\neq 0)$. Donc, d'après 1 de la remarque 5.1 du chapitre 3, f n'est pas uniformément continue sur \mathbb{R} .

4. La suite (u_n) est une suite récurrente associée à la fonction numérique f de la variable réelle x définie par :

$$f\left(x\right) = \frac{1}{2}\left(x + \frac{1}{x}\right).$$

Et comme, pour tout $x \in \mathbb{R}^*$,

$$f(x) = x \iff f(x) - x = 0$$

$$\iff \frac{1 - x^2}{2x}$$

$$\iff 1 - x^2 = 0$$

$$\iff x = 1 \text{ ou } x = -1.$$

D'où f admet deux points fixes $x_1 = 1$ et $x_2 = -1$, et si la suite (u_n) converge, elle converge vers l'un de ces deux points.

Par ailleurs, pour tout $x \in \mathbb{R}^*$ on a:

$$f'(x) = \frac{1}{2} \left(1 - \frac{1}{x^2} \right)$$

= $\frac{1}{2} \left(\frac{x^2 - 1}{x^2} \right)$,

Tableau des variations de f sur $]0, +\infty[$:

		<i>J</i>] / ·	
x	0	1		$+\infty$
f'(x)	_	0	+	
f(x)	$+\infty$	1		+∞

D'où $(\forall x \in]0, +\infty[)$ $f(x) \ge 1$, et par suite $(\forall n \in \mathbb{N}^*)$ $u_n \ge 1$; et le signe de $x \mapsto g(x) = f(x) - x$ sur $]0, +\infty[$ est donné dans le tableau suivant :

x	0	1	$+\infty$
g(x)		+ 0	_

d'où $(\forall n \in \mathbb{N}^*)$ $u_n \geqslant u_{n+1}$; c-à-d $(u_n)_{n\geqslant 1}$ est décroissante; et puisqu'elle est minorée par 1, elle est alors convergente vers 1.

5. Comme $\frac{\sqrt{2}}{2} < \frac{3}{4} < 1$ et la fonction arccos est strictement décroissante sur [-1,1], alors

$$\arccos(1) < \arccos\left(\frac{3}{4}\right) < \arccos\left(\frac{\sqrt{2}}{2}\right)$$

ce qui est équivaut à

$$0 < \arccos\left(\frac{3}{4}\right) < \frac{\pi}{4} \ car \ cos\left(0\right) = 1 \ et \ cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}.$$

Résolution de l'équation :

Soit $x \in [-1,1]$, alors d'après la question précédente $0 < 2\arccos\left(\frac{3}{4}\right) < \frac{\pi}{2}$, d'où $2\arccos\left(\frac{3}{4}\right) \in [0,\pi]$, alors

$$\arccos(x) = 2\arccos\left(\frac{3}{4}\right) \Leftrightarrow x = \cos\left(2\arccos\left(\frac{3}{4}\right)\right)$$

$$\iff x = 2\cos^2\left(\arccos\left(\frac{3}{4}\right)\right) - 1$$

$$\iff x = 2\left(\frac{3}{4}\right)^2 - 1 \quad \left(\cos\frac{3}{4} \in [0, \pi]\right)$$

$$\iff x = \frac{9}{8} - 1$$

$$\iff x = \frac{1}{8}.$$

Donc l'ensemble de solutions de l'équation en question est $S = \left\{\frac{1}{8}\right\}$.

6. Soit $p \in \mathbb{N}$, alors pour tout $n \in \mathbb{N}$, on a:

$$x_{n+p} - x_n = \ln(n+p) - \ln(n)$$
$$= \ln\left(\frac{n+p}{n}\right)$$
$$= \ln\left(1 + \frac{p}{n}\right),$$

or $\lim_{n\to+\infty}\frac{p}{n}=0$, d'où $\lim_{n\to+\infty}\left(1+\frac{p}{n}\right)=1$; et puisque la fonction \ln est continue en 1, alors $\lim_{n\to+\infty}\ln\left(1+\frac{p}{n}\right)=\ln\left(1\right)=0$. Alors $\lim_{n\to+\infty}\left(x_{n+p}-x_n\right)=0$. Donc $(\forall p\in\mathbb{N})$ $\lim_{n\to+\infty}\left(x_{n+p}-x_n\right)=0$. Supposons par l'absunda \mathbb{R}^n

Supposons, par l'absurde, que la suite (x_n) est de Cauchy dans \mathbb{R} , alors (x_n) est convergente dans \mathbb{R} , ce qui est absurde, car $\lim_{n\to+\infty} x_n = \lim_{n\to+\infty} \ln(n) = +\infty$.

Exercice 3:

1. Soit $(x,y) \in \mathbb{R}^2$, alors:

• $Si \ x = y$, |f(x) - f(y)| = 0 et $\lambda |x - y| = 0$; d'où

$$| f(x) - f(y) | \leq \lambda | x - y |$$
.

• $Si \ x \neq y$, $soit \ a = min \ (x,y) \ et \ b = max \ (x,y)$, alors, puisque f est dérivable $sur \ \mathbb{R}$, elle est continue $sur \ [a,b]$ et dérivable $sur \ [a,b[$; et comme $(\forall t \in \mathbb{R}) \ | \ f'(t) | \leqslant \lambda$, alors, selon une des inégalités des accroissements finis,

$$| f(b) - f(a) | \leq \lambda | b - a |,$$

ou encore

$$|f(x) - f(y)| \leq \lambda |x - y|$$
.

Donc

$$(\forall (x,y) \in \mathbb{R}^2) \mid f(x) - f(y) \mid \leq \lambda \mid x - y \mid (*),$$

et puisque $\lambda \in [0,1[$, alors f est contractante.

- 2. Puisque f est contractante, alors elle est Lipschitzienne, donc selon le théorème 5.1 du chapitre 3, f est uniformément continue sur \mathbb{R} .
- 3. Soit $g: x \mapsto f(x) x$. Les fonctions f et $x \mapsto x$ sont continues sur \mathbb{R} donc g également. Montrer que f admet un point fixe est équivaut à montrer que g s'annule.
 - Existence du point fixe : Pour tout réel x, on a

$$|f(x) - f(0)| \leq \lambda |x|$$
 (prendre $y = 0$ dans $(*)$),

donc

$$f(0) - \lambda |x| \leqslant f(x) \leqslant f(0) + \lambda |x|.$$

 $\begin{array}{l} \operatorname{Pour} \operatorname{tout} x > 0, \ \operatorname{on} \ a : g(x) \leqslant f(0) + (\lambda - 1)x. \ \operatorname{Comme} \ \lambda - 1 < 0, \ \operatorname{on} \ \operatorname{en} \ \operatorname{d\'eduit} \ \operatorname{que} \\ \lim_{x \to +\infty} \left(f(0) + (\lambda - 1)x \right) = -\infty \ \operatorname{et} \ \operatorname{donc} \lim_{x \to +\infty} g(x) = -\infty. \ \operatorname{Par} \ \operatorname{ailleurs}, \ \operatorname{pour} \ \operatorname{tout} \\ x < 0, \ \operatorname{on} \ a : g(x) \geqslant f(0) + (\lambda - 1)x, \ \operatorname{et} \ \operatorname{on} \ \operatorname{en} \ \operatorname{d\'eduit} \ \operatorname{que} \lim_{x \to -\infty} \left(f(0) + (\lambda - 1)x \right) = +\infty \\ \operatorname{et} \ \operatorname{donc} \lim_{x \to -\infty} g(x) = +\infty. \end{array}$

Donc pour A=1, il existe B>0 tel que : $(\forall x\in\mathbb{R})\ x>B\Longrightarrow g\left(x\right)<-1$, et il existe C>0 tel que : $(\forall x\in\mathbb{R})\ x<-C\Longrightarrow g\left(x\right)>1$.

Il existe alors b = B + 1 et c = -C - 1 avec c < b tel que g(b) < 0 et g(c) > 0.

Il résulte alors du théorème de Cauchy que g s'annule au moins une fois sur [c,b], donc sur \mathbb{R} . La fonction f admet bien un point fixe α .

• Unicité du point fixe : Supposons par l'absurde que β est un autre point fixe de f ($\alpha \neq \beta$), alors

$$|\alpha - \beta| = |f(\alpha) - f(\beta)|$$

$$\leq \lambda |\alpha - \beta|.$$

Et puisque $|\alpha - \beta| > 0$, alors $1 \leq \lambda$ ce qui contredit les hypothèses. Le point fixe est alors unique.

• Convergence de la suite (u_n) vers le point fixe α : Puisque $f(\alpha) = \alpha$, on a alors pour tout $n \in \mathbb{N}$ l'inégalité: $|f(u_n) - f(\alpha)| \le \lambda |u_n - \alpha|$, c'est-à-dire $|u_{n+1} - \alpha| \le \lambda |u_n - \alpha|$. En posant $(\forall n \in \mathbb{N})$ $v_n = u_n - \alpha$ et puisque $0 \le \lambda < 1$, en utilisant le théorème 5.1 du chapitre 2, on en déduit que la suite (v_n) est convergente vers 0, il en résulte que la suite (u_n) est convergente vers α .