

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

**INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)**

(51) Internationale Patentklassifikation 5 : C07D 295/185, C07K 5/06 C07K 5/08, C07D 211/60 C07D 211/62, A61K 31/445 A61K 31/195, C07D 295/205 C07D 217/26, 215/50 C07C 311/19		A1	(11) Internationale Veröffentlichungsnummer: WO 92/08709 (43) Internationales Veröffentlichungsdatum: 29. Mai 1992 (29.05.92)
(21) Internationales Aktenzeichen: PCT/CH91/00235		(74) Anwalt: BRAUN, André; Murtengasse 5, Ch-4051 Basel (CH).	
(22) Internationales Anmeldedatum: 15. November 1991 (15.11.91)		(81) Bestimmungsstaaten: AT, AT (europäisches Patent), AU, BB, BE (europäisches Patent), BF (OAPI Patent), BG, BJ (OAPI Patent), BR, CA, CF (OAPI Patent), CG (OAPI Patent), CH, CH (europäisches Patent), CI (OAPI Patent), CM (OAPI Patent), CS, DE, DE (europäisches Patent), DK, DK (europäisches Patent), ES, ES (europäisches Patent), FI, FR (europäisches Patent), GA (OAPI Patent), GB, GB (europäisches Patent), GN (OAPI Patent), GR (europäisches Patent), HU, IT (europäisches Patent), JP, KP, KR, LK, LU, LU (europäisches Patent), MC, MG, ML (OAPI Patent), MN, MR (OAPI Patent), MW, NL, NL (europäisches Patent), NO, PL, RO, SD, SE, SE (europäisches Patent), SN (OAPI Patent), SU ⁺ , TD (OAPI Patent), TG (OAPI Patent), US.	
(30) Prioritätsdaten: 3634/90-8 15. November 1990 (15.11.90) CH 0171/91-8 22. Januar 1991 (22.01.91) CH 0797/91-6 15. März 1991 (15.03.91) CH 1424/91-5 13. Mai 1991 (13.05.91) CH		(71) Anmelder (für alle Bestimmungsstaaten ausser US): PENTA-PHARM AG [CH/CH]; Engelgasse 109, CH-4052 Basel (CH).	
(72) Erfinder; und (75) Erfinder/Anmelder (nur für US) : STÜRZEBECHER, Jörg [DE/DE]; Hubertusstr. 38, D-5089 Erfurt-Rhoda (DE). VIEWEG, Helmut [DE/DE]; In den Grundmatten 36, D-7888 Rheinfelden 3 (DE). WIKSTROEM, Peter [SE/CH]; Stallennattstr. 49, CH-4104 Oberwil (CH).		Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>	
(54) Title: META-SUBSTITUTED PHENYL ALANINE DERIVATIVES			
(54) Bezeichnung: META-SUBSTITUIERTE PHENYLALANIN-DERIVATE			
(57) Abstract <p>D, L-, L- and D-phenyl alanine derivatives of formula (I) defined in claim 1 in which R₁ is an amidino-, guanidino-, oxamidino-, aminomethyl- or amino group have been discovered which effectively prevent blood coagulation or thrombosis. The antithrombotically active compounds have low toxicity and may be administered by mouth, subcutaneously or intravenously.</p>			
(57) Zusammenfassung <p>D,L-, L- und D-Phenylalanin-Derivate der im Patentanspruch 1 definierten Formel (I), in denen R₁ für eine Amidino-, Guanidino-, Oxamidino-, Aminomethyl- oder Aminogruppe steht, wurden gefunden, die blutgerinnungshemmend resp. antithrombotisch wirksam sind. Die antithrombotisch wirksamen Verbindungen weisen eine geringe Toxizität auf und können peroral, subkutan oder intravenös verabreicht werden.</p>			

+ BENENNUNGEN VON "SU"

Es ist noch nicht bekannt, für welche Staaten der früheren Sowjetunion eine Benennung der Sowjetunion gilt.

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	ES	Spanien	ML	Mali
AU	Australien	FI	Finnland	MN	Mongolci
BB	Barbados	FR	Frankreich	MR	Mauritanien
BE	Belgien	GA	Gabon	MW	Malawi
BF	Burkina Faso	GB	Vereinigtes Königreich	NL	Niederlande
BC	Bulgarien	GN	Guinea	NO	Norwegen
BJ	Benin	GR	Griechenland	PL	Polen
BR	Brasilien	HU	Ungarn	RO	Rumänien
CA	Kanada	IT	Italien	SD	Sudan
CF	Zentrale Afrikanische Republik	JP	Japan	SE	Schweden
CC	Kongo	KP	Demokratische Volksrepublik Korea	SN	Senegal
CH	Schweiz	KR	Republik Korea	SU+	Soviet Union
CI	Côte d'Ivoire	LI	Liechtenstein	TD	Tschad
CM	Kamerun	LK	Sri Lanka	TC	Togo
CS	Tschechoslowakei	LU	Luxemburg	US	Vereinigte Staaten von Amerika
DE	Deutschland	MC	Monaco		
DK	Dänemark	MG	Madagaskar		

Meta-substituierte Phenylalanin-Derivate

Die vorliegende Erfindung betrifft neue Proteinasen-Inhibitoren, die ein am Phenylrest substituiertes Phenylalanin enthalten. Insbesondere durch Variation des Substituenten am Phenylrest und Einführung von hydrophob substituierten sekundären Aminosäuren wurden Inhibitoren mit verbesserter Bioverfügbarkeit gefunden.

Proteinase-Inhibitoren sind potentielle Arzneimittel, die zur Steuerung physiologischer Prozesse, welche durch Proteinasen ausgelöst und unterhalten werden, verwendet werden können. Für zahlreiche endogene bzw. natürlich vorkommende Hemmstoffe ist gezeigt worden, dass sie *in vivo* die Aktivität von Proteinasen beeinflussen und hyperproteolytische Zustände dämpfen können [Siehe Hörl, W.H. In: Design of Enzyme Inhibitors as Drugs, S. 573-581, (Sandler, M. and Smith, H.J., Eds.) Oxford, New York, Tokyo: Oxford University Press, 1989]. Der therapeutische Einsatz dieser relativ hochmolekularen Hemmstoffe ist allerdings wegen ihrer besonderen Proteinstruktur begrenzt. Da diese Hemmstoffe einerseits nach oraler Verabreichung im Darm nicht resorbierbar sind und andererseits eine antigene Aktivität ausüben, wurde nach synthetischen kleinmolekularen Enzym-Inhibitoren Ausschau gehalten.

- 2 -

Die vier Klassen von Enzymen, die für Proteinase-abhängige Prozesse verantwortlich sind, umfassen die Serin-, Thiol-, Metallo-, und Aspartat-Proteinasen. Serin-Proteinasen sind proteolytische Enzyme, die einen reaktiven Serin-Rest im aktiven Zentrum besitzen. Zur Trypsin-Familie der Serin-Proteinasen gehören Enzyme, die wie Trypsin als solches C-terminale Peptidbindungen der basischen Aminosäuren Arginin und Lysin spalten. In dieser Gruppe sind diejenigen Enzyme von besonderer physiologischer Bedeutung, welche an den Abwehrsystemen des Blutes beteiligt sind. Das sind insbesondere die Enzyme des Gerinnungssystems, daneben aber auch solche, die die Fibrinolyse auslösen, Kinin freisetzen und die Komplement-Aktivierung bewirken oder solche, die selber Komponenten der genannten Enzymsysteme sind.

Die Blutgerinnung wird über zwei unterschiedliche Wege durch Zymogen-Aktivierung ausgelöst. Der erste, endogene Weg, führt über eine durch Blutkomponenten vermittelte Reaktionskette zur Blutgerinnung. Der zweite, exogene Weg führt über eine kürzere, auf einer Wechselwirkung zwischen Blut- und Gewebekomponenten beruhenden Reaktionskette zur Gerinnung. Beide Wege bewirken die Aktivierung des Zymogens Faktor X zur Serin-Proteinase Faktor X_a , welche ihrerseits die Aktivierung des Prothrombins zur Fibrinogen-koagulierenden Serin-Proteinase Thrombin katalysiert. Als gemeinsames Produkt sowohl des endogenen als auch des exogenen Aktivierungsablaufs erscheint Faktor X_a als ein bevorzugtes Zielenzym für hemmende Eingriffe in den Blutgerinnungsvorgang.

Zur Entwicklung von synthetischen Inhibitoren für trypsinähnliche Serin-Proteinasen sind Derivate des Benzamidins vielfach untersucht worden (J. Stürzebecher et al., Acta Biol. Med. Germ. 35, 1665-1676, 1976). Dabei haben sich Aminosäure-Derivate mit Benzamidin-Struktur als besonders günstige Grundstrukturen erwiesen (G. Wagner et al., Pharmazie 36, 597 - 603, 1981 und J. Stürzebecher et al., ibid, 639-641; UK Patent Application 2 007 663 A).

- 3 -

Unter diesen Verbindungen sind Derivate des Phenylalanins mit meta-ständiger Amidinogruppe selektive Faktor X_a -Inhibitoren, während analoge Verbindungen mit para-ständiger Amidinogruppe Grundstrukturen für die Entwicklung von selektiven Thrombin-Inhibitoren sind.

Als selektiv Faktor X_a -hemmendes Aminosäure-Derivat mit Benzamidinstruktur und meta-ständiger Amidinogruppe wurde $\text{Na-Tosylglycyl-3-amidinophenylalanin-methylester}$ (TAPAM; $K_i = 8,4 \times 10^{-7} \text{ mol/l}$) vorgeschlagen (J. Stürzebecher et al., Thromb. Res. 54, 245 - 252, 1989). Der wirksamste Thrombin-Hemmstoff ist das Phenylalanin-Derivat $\text{Na-(2-Naphthyl-sulfonyl)-glycyl-4-amidinophenylalanin-piperidid}$ ($K_i = 6 \times 10^{-9} \text{ mol/l}$) mit para-ständiger Amidinogruppe, das als NAPAP bezeichnet wird (J. Stürzebecher et al., Thromb. Res. 29, 635-642, 1983).

Es sind noch weitere Typen von Inhibitoren bekannt, die Faktor X_a bzw. Thrombin ebenfalls selektiv hemmen: Eine erste Gruppe beinhaltet Peptidyl-arginin-chlormethylketone, z.B. Ile-Glu-Gly-Arg- CH_2Cl , welches Faktor X_a hemmt (C. Kettner et al., Thromb. Res. 22, 645-652, 1981) bzw. H-D-Phe-Pro-Arg- CH_2Cl , welches Thrombin selektiv hemmt (C. Kettner et al., Thromb. Res. 14, 969-973, 1979). Eine zweite Gruppe beinhaltet Peptidylargininaldehyde, z.B. Ile-Glu-Gly-Arg-H (S. Bajusz, Folia Haematol. 109, 16-21, 1982) und H-D-Phe-Pro-Arg-H (S. Bajusz, Int. J. Peptide Protein Res. 12, 217-221, 1978), welche Faktor X_a bzw. Thrombin hemmen. Diese Inhibitoren sind jedoch relativ instabil und können wegen ihrer Reaktionsfähigkeit unerwünschte Nebenreaktionen verursachen. Als weitere selektive Thrombininhibitoren sind (2R,4R)-4-Methyl-1-[$\text{Na-(3-methyl-1,2,3,5-tetrahydro-8-chinolinsulfonyl)-L-arginin}$]-2-pipercolin-carbonsäure (R. Kikumoto et al., Biochemistry 23, 85-90, 1984) und das Boronsäurederivat BOC-D-Phe-Pro-Boro-Arg- $\text{C}_{10}\text{H}_{16}$ (s. Europ. Patentanmeldung No. 0 293 881) beschrieben worden.

Als therapeutisch verwendbare, nicht-selektive Inhibitoren von Thrombin und der Plasmagerinnungsfaktoren X_a

- 4 -

und XII_a sowie von Kallikreinen, enzymatischen Komplementfaktoren und Trypsin sind das Methansulfonsäure-salz des 4-(6-Guanidino-hexanoyloxy)-benzoësäure-ethyl-esters (M. Muramatu et al., Biochim. Biophys. Acta 268, 221-224, 1972) und das Dimethansulfonsäuresalz der 6-Amino-2-naphthyl-p-guanidinobenzoësäure (s. US Patent Nr. 4 454 338) beschrieben.

Die gerinnungshemmende und antithrombotische Wirksamkeit ist *in vivo* für alle der genannten Inhibitoren gezeigt worden. Dagegen wurde eine Resorbierbarkeit nach oraler Verabreichung bisher nur für den Aldehyd N-Methyl-D-Phe-Pro-Arg-H (Bagdy et al., Thromb. Haemostas. 62, 535, 1989) und das Boronsäurederivat BOC-D-Phe-Pro-Boro-Arg-C₁₀H₁₆ (s. Europ. Patentanmeldung No. 0 293 881) beobachtet.

Alle bisher geprüften Thrombin-Hemmstoffe vom Benazimidin-Typ besitzen für eine therapeutische Anwendung ungünstige pharmakodynamische und pharmakokinetische Eigenschaften. Mit einer LD₅₀ zwischen 10 - 50 mg/kg ist ihre Toxizität relativ hoch (B. Kaiser et al., Pharmazie 42, 119 - 121, 1987). Die Verbindungen werden schneller aus der Zirkulation eliminiert als z. B. das Argininderivat (2R,4R)-4-Methyl-1-[Na-(3-methyl-1,2,3,5-tetrahydro-8-chinolinsulfonyl)-L-arginin]-2-pipecolin-carbonsäure bzw. das Boronsäurederivat BOC-D-Phe-Pro-Boro-Arg-C₁₀H₁₆ (J. Hauptmann et al., Pharmazie 46, 57-58, 1991). Bei oraler Applikation werden sie nicht im Darm resorbiert (B. Kaiser et al., Biomed. Biochim. Acta 44, 1201-1210, 1985). Verantwortlich für die unzureichenden pharmakologischen Eigenschaften ist wahrscheinlich die durch die stark basische Amidinofunktion herabgesetzte Hydrophobizität (B. Kaiser et al., Pharmazie 42, 119-121, 1987). Versuche, die stark basische Amidinofunktion in hochwirksamen Inhibitoren durch schwächer basische Gruppen zu ersetzen, schlugen fehl; solche Veränderungen hatten einen bedeutenden Verlust an Wirkungsstärke zur Folge (J. Stürzebecher et al., Pharmazie 43, 782-783, 1988).

- 5 -

Es wurde versucht, therapeutisch verwendbare Inhibitoren von Gerinnungsfaktoren mit guten pharmakologischen Eigenschaften zu konzipieren. Dazu wurde von Phenylalaninderivaten mit meta-ständiger Amidinogruppe ausgegangen, die sich als selektive Faktor X_a -Inhibitoren erwiesen hatten (J. Stürzebecher et al., Thromb. Res. 54, 245 - 252, 1989). Ausgehend von der Erkenntnis, dass eine Erhöhung der Hydrophobizität eine Veränderung der pharmakologischen Eigenschaften bewirken könnte, sollten bei Erhalt der Anti-Faktor X_a -Aktivität neue Inhibitor-Grundstrukturen gefunden werden. Dazu wurden die basische Amidino-Gruppe verändert bzw. hydrophob substituierte sekundäre Aminosäuren eingeführt. In diesem Rahmen wurde beispielsweise die Verbindung Na-2-Naphthylsulfonyl-3-amidinophenylalanyl-prolin hergestellt. Es wurde nun gefunden, dass diese Verbindung nicht wie erwartet Faktor X_a selektiv hemmt, sondern überraschenderweise Thrombin. Es wurde ferner festgestellt, dass diese Verbindung ausgezeichnete pharmakokinetische Eigenschaften besitzt. Nach subkutaner Applikation an Ratten wird ein relativ hoher Blutspiegel erhalten, der über einen längeren Zeitraum in wirksamer, blutgerinnungshemmender Konzentration verfügbar bleibt. Nach peroraler Verabreichung an Ratten wird die Verbindung durch den Darm resorbiert. Dies trifft auch für analoge Verbindungen zu, in denen die Amidino-Gruppe verändert wurde, beispielsweise bei Derivaten mit einer Oxamidino-Gruppe. Die neuen Derivate zeichnen sich auch durch eine verminderte Toxizität aus.

Damit sind derartige direkt wirksame Inhibitoren geeignet, als Antikoagulantien bei verschiedenartiger Applikationsart eingesetzt zu werden.

- 6 -

Die vorliegende Erfindung betrifft neue Proteinase-hemmende D,L-, L- und D-Phenylalanin-Derivate der Formel

in welcher

R^1 eine basische Gruppe der Formel

darstellt, wobei R^5 und R^6 in den Formeln (a) und (b) je Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkylrest bezeichnen,

R^2 (f) OH, O-Alkyl, O-Cycloalkyl, O-Aralkyl, n=0 sein kann,
(g) eine Gruppe der Formel

darstellt, in welcher R^7 Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkylrest und R^8 einen geradkettigen oder verzweigten niedrigen Alkylrest, einen 1- oder 2-Hydroxyethylrest, einen Methylmercaptoethylrest, einen Aminobutylrest, einen Guanidinopropylrest, einen Carboxy(niedrigen)alkylrest, einen Carboxamido(niedrigen)alkylrest, einen

- 7 -

Phenyl(niedrigen)alkylrest, dessen Ring gegebenenfalls mit OH, Halogen, niedrig-Alkyl oder Methoxy substituiert ist, einen Cyclohexyl- oder Cyclohexylmethylrest, dessen Ring gegebenenfalls mit OH, Halogen, niedrig-Alkyl oder Methoxy substituiert ist, oder einen N-Heteroaryl(niedrigen)alkylrest mit 3 bis 8 Kohlenstoffatomen im Heteroaryl, z.B. Imidazolylmethyl oder Indolylmethyl, bezeichnen, wobei die Gruppe (e) racemisch oder D- bzw. L-konfiguriert sein kann,

(h) eine Gruppe der Formel

darstellt, in welcher m die Zahl 1 oder 2 bezeichnet, und in welcher eine der Methylengruppen gegebenenfalls mit einem Hydroxyl-, Carboxyl-, niederen Alkyl- oder Aralkyl-rest substituiert ist, wobei die Gruppe (h) racemisch oder D- bzw. L-konfiguriert sein kann,

(i) eine Gruppe der Formel

darstellt, in welcher $p = r = 1$, $p = 1$ und $r = 2$ oder $p = 2$ und $r = 1$ sind und in welcher eine der Methylengruppen gegebenenfalls mit einem Hydroxyl-, Carboxyl-, niederen Alkyl- oder Aralkyl-rest substituiert ist,

(k) eine Piperidylgruppe darstellt, die gegebenenfalls in einer der Stellungen 2, 3 und 4 mit einem niederen Alkyl- oder Hydroxyl-rest substituiert ist,

wobei an die heterocycloaliphatischen Ringe der Formeln (h), (i), (k) ein weiterer aromatischer oder cycloaliphatischer Ring, vorzugsweise Phenyl oder Cyclohexyl, in 2,3 oder 3,4 Stellung, bezogen auf das Heteroatom, ankondensiert sein kann,

- 8 -

(l) eine Piperazylgruppe, die gegebenenfalls in p-Stellung mit einem niederen Alkylrest, einem Arylrest oder einem Alkoxy carbonylrest substituiert ist,

(m) eine Gruppe der Formel

darstellt, in welcher n' die Zahlen 1 bis 6 und R¹⁰ Wasserstoff oder den Methyl- oder Cyclohexylrest bezeichnen,

(n) eine Gruppe der Formel

darstellt, wobei R⁹ in den Formeln (g), (h), (i), (l), (m) und (n) eine Hydroxyl-, geradkettige oder verzweigte niedrige Alkoxy- oder eine Benzyloxy-Gruppe bezeichnet,

oder

(o) eine Kombination von 2 bis 20, vorzugsweise 2 bis 5, insbesondere 2 oder 3, der von den unter (g), (h), (i), (k), (l), (m) und (n) definierten Gruppen abgeleiteten, durch Amidbindungen verknüpften Resten (R⁹ = Einfachbindung) darstellt, wobei der C-terminale Rest gegebenenfalls mit einem Rest R⁹ verknüpft ist,

R³ Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkyl- oder einen 1- oder 2-Hydroxyethyl-Rest darstellt, wobei n die Zahl 0 oder 1 bezeichnet,

und

R⁴ einen Arylrest, z.B. Phenyl, Methylphenyl, α- oder β-Naphthyl oder 5-(Dimethylamino)-naphthyl, oder einen Heteroarylrest, z.B. Chinolyl, darstellt, wobei niedrig 1-4 Kohlenstoffatome bedeutet,

und deren Salze mit Mineralsäuren oder organischen Säuren.

Von den in den allgemeinen Ansprüchen definierten Phenylalanin-Derivaten sind Verbindungen, bei denen

R¹ eine basische Gruppe der Formel (a) = Amidino, (b) = Guanidino, (c) = Oxamidino, (d) = Aminomethyl oder (e)

- 9 -

= Amino darstellt,
 R^2 O-Alkyl, O-Cycloalkyl oder Aralkyl und n=0 sein kann,
einen heterocycloaliphatischen Rest, der in den
Formeln (h), (i), (k) und (l) näher erläutert ist und
bei dem R^9 in den Formeln (h) und (i) eine Hydroxyl-,
geradkettige oder verzweigte niedrige Alkoxy-, Cyclo-
alkoxy- oder Aralkoxy-Gruppe sein kann, darstellt,
 R^4 einen Aryl- oder Heteroarylrest, vorzugsweise β -
Naphthyl, bezeichnet und
n die Zahl 0 darstellt,
von besonderer Bedeutung.

- 10 -

Die Verbindungen der allgemeinen Formel I mit R¹ = Amidino (a) können nach den nachfolgend beschriebenen, an sich bekannten Methoden hergestellt werden.

3-Cyanbenzyl-acylamino-malonsäurediester der allgemeinen Formel II,

in welcher Alk vorzugsweise - CH₃ oder - C₂H₅ bedeutet, werden in einer Mischung von 3 N HCl und Eisessig durch rückfliessendes Erhitzen zu 3-Cyanphenylalanin III

umgesetzt.

Durch Sulfonylierung der Verbindungen III mit einem Aryl- bzw. Heteroarylsulfonylchlorid oder Acylierung mit einem sulfonylierten Aminosäurehalogenid in Gegenwart einer Base werden die Verbindungen der allgemeinen Formel IV,

in welcher n = 0 oder 1 ist und R³ und R⁴ die in der allgemeinen Formel I beschriebenen Bedeutungen besitzen, erhalten.

Die Verbindungen der allgemeinen Formel V,

in welcher R² die in der allgemeinen Formel I unter (g), (h), (i), (k), (l), (m), (n) und (o) sowie R³ und R⁴ die in dieser Formel genannten Bedeutungen besitzen und R⁹ eine geradkettige oder verzweigte Alkoxy- bzw. Benzyloxy-Gruppe

- 11 -

darstellt, werden gemäss einer ersten Methodenvariante durch Umsetzung der Verbindungen IV mit einem entsprechenden Aminosäureester nach dem Mischanhydridverfahren dargestellt, indem die Verbindungen der Struktur IV mit vorzugsweise Chlorameissäureisobutylester in Gegenwart einer geeigneten tertiären Base, z.B. 4-Methylmorpholin, bei -15° bis -20°C in einem aprotischen Lösungsmittel zur Reaktion gebracht und anschliessend mit einem Aminosäureester oder Amin umgesetzt werden.

Gemäss einer zweiten Methodenvariante werden die Verbindungen der allgemeinen Formel IV nach dem DCC-Verfahren mit entsprechenden Aminosäureestern umgesetzt, indem die Verbindungen IV in einem geeigneten aprotischen Lösungsmittel mit Dicyclohexylcarbodiimid in Gegenwart von 1-Hydroxybenzotriazol zur Reaktion gebracht und mit den genannten Aminosäureestern oder Aminen zu V umgesetzt werden.

Gemäss einer dritten Methodenvariante werden die Verbindungen der Struktur IV nach Überführung in aktive Ester mit beispielsweise N-Hydroxysuccinimid, 2,3,4,5,6,-Pentafluorphenol oder p-Nitrophenol in Gegenwart von Dicyclohexylcarbodiimid isoliert bzw. ohne zwischenzeitliche Isolierung mit entsprechenden Aminosäureestern oder Aminen zu Verbindungen der allgemeinen Formel V umgesetzt.

Gemäss einer vierten Methodenvariante werden Verbindungen der Struktur IV, bei denen n = 0 ist, mit beispielsweise Thionylchlorid in Säurechloride übergeführt, die anschliessend mit entsprechenden Aminosäureestern oder Aminen zu Verbindungen der allgemeinen Formel V umgesetzt werden.

Durch milde alkalische oder saure Hydrolyse mit beispielsweise verdünnter NaOH oder Trifluoressigsäure von Verbindungen der Struktur V werden die Verbindungen mit Carbonsäurestruktur der allgemeinen Formel V, wobei R², R³ und R⁴ die in der allgemeinen Formel I genannten Bedeutungen besitzen und das in R² definierte R⁹ = OH ist.

- 12 -

Ausgehend von den Verbindungen mit Carbonsäurestruktur V können nach den vorher beschriebenen Verfahren weitere Aminosäuren gekoppelt werden.

Durch Addition von H_2S an V mit Carbonsäure- oder Carbonsäureesterstruktur in Pyridin in Gegenwart von Triethylamin werden die Thioamide der allgemeinen Formel VI

erhalten, wobei die Bedeutungen der Substituenten R^2 , R^3 und R^4 denen der allgemeinen Formel I entsprechen.

Durch Umsetzung der Verbindungen VI mit einem Alkylhalogenid, vorzugsweise Methyliodid, werden die Thioimid-säureesterhalogenide VII

erhalten. Die Bedeutungen von n und R^2 bis R^4 entspricht denen der allgemeinen Formel I, Alk stellt niedrig Alkyl, vorzugsweise $-\text{CH}_3$, dar und X bedeutet Halogen, im allgemeinen Iod.

Ausserdem können die Verbindungen V mit einem niederen Alkohol, gegebenenfalls in Anwesenheit eines Lösungsmittels wie beispielsweise Dioxan oder Chloroform, in Gegenwart von wasserfreiem Halogenwasserstoff in Imidsäureesterhalogenide VIII

- 13 -

übergeführt werden, wobei Verbindungen mit freier $-\text{COOH}$ -Gruppe gleichzeitig mit dem verwendeten Alkohol verestert werden. Die Bedeutungen von n und R^2 bis R^4 entsprechen denen der allgemeinen Formel I, Alk stellt niedrig Alkyl, vorzugsweise $-\text{CH}_3$ oder $-\text{C}_2\text{H}_5$, dar und X bedeutet Halogen, im allgemeinen Chlor.

Zur Darstellung der Zielverbindungen IX,

mit $n = 0$ oder 1 und den Bedeutungen der Substituenten R^1 bis R^6 analog denen der allgemeinen Formel I und X = Halogen, werden die Thioimidsäureestersalze VII in alkoholischer Lösung mit Ammoniumacetat bzw. einem Alkylammoniumacetat oder die Imidsäureestersalze VIII in alkoholischer Ammoniaklösung zu IX umgesetzt.

Verbindungen IX mit einem t-Butoxy-Rest (R^9) im Substituenten R^2 können anschliessend durch Hydrolyse mit Trifluoressigsäure in Verbindungen IX mit Carbonsäurestruktur ($\text{R}^9 = \text{OH}$) übergeführt werden.

Verbindungen IX mit einer OH-Gruppe (R^2 oder R^9) können anschliessend mit vorzugsweise niederen aliphatischen ($\text{C}_1\text{-C}_8$), cycloaliphatischen oder araliphatischen Alkoholen, in Gegenwart von Chlorwasserstoff oder p-Toluolsulfonsäure in Verbindungen IX mit Carbonsäureesterstruktur ($\text{R}^2, \text{R}^9 = \text{O-Alkyl, O-Cycloalkyl, O-Aralkyl}$) übergeführt werden.

Die Verbindungen der allgemeinen Formel I mit $\text{R}^1 =$

- 14 -

Oxamidino (c) werden auf dem gleichen Syntheseweg wie die Verbindungen mit R¹ = Amidino (a), über die Zwischenprodukte der Formeln II bis VII, dargestellt. Im letzten Syntheseschritt werden die Thioimidsäureestersalze VII mit Hydroxylammoniumacetat zu Verbindungen der allgemeinen Formel I umgesetzt, wobei R¹ die Oxamidino-Gruppe (c) darstellt.

Die Verbindungen der allgemeinen Formel I mit R¹ = Aminomethyl (d) werden ebenfalls auf diese Weise über die Zwischenprodukte der Formeln II bis V dargestellt. Um zu den Zielverbindungen der allgemeinen Formel I mit R¹ = - CH₂ - NH₂ zu gelangen, werden die Cyanverbindungen V katalytisch, beispielsweise mit Raney-Nickel/Wasserstoff in alkoholischer Lösung in Gegenwart von Ammoniak, zu den Aminomethylverbindungen reduziert. Die erhaltenen freien Basen werden in geeigneter Weise in Salze, vorzugsweise Hydrochloride, übergeführt.

Die Verbindungen der allgemeinen Formel I mit R¹ = Guanidino (b) können prinzipiell nach dem gleichen Syntheschema wie die mit Amidinostruktur (a) dargestellt werden.

Dazu werden 3-Nitrobenzyl-acylamino-malonsäurediester der allgemeinen Formel X,

in welcher Alk vorzugsweise - CH₃ oder - C₂H₅ bedeutet, durch rückfliessendes Erhitzen in einer Mischung von 3 N HCl und Eisessig zu 3-Nitrophenylalanin XI

umgesetzt.

Die Verbindungen XII und XIII

- 15 -

werden auf die gleiche Weise erhalten wie die entsprechenden Cyanverbindungen IV und V, wobei auch die Bedeutungen von n, R², R³ und R⁴ entsprechend sind.

Durch katalytische Hydrierung mittels beispielsweise Raney-Nickel/Wasserstoff in einem geeigneten Lösungsmittel werden aus XIII die Aminoverbindungen der allgemeinen Formel XIV

erhalten, die mittels eines geeigneten Guanylierungsreagenses, beispielsweise 1-Amidino-3,5-dimethyl-pyrazol-nitrat, zu den Guanidinoverbindungen der allgemeinen Formel I mit R¹ = Guanidino (b) umgesetzt werden.

Verbindungen mit der allgemeinen Formel I mit R¹ = Guanidino (b), Oxamidino (c), Aminomethyl (d) bzw. Amino (e) und einem t-Butoxy-Rest (R⁹) im Substituenten R² können durch Hydrolyse mit Trifluoressigsäure in Verbindungen mit Carbonsäurestruktur (R⁹ = OH) übergeführt werden, die anschliessend durch Veresterung mit niederen Alkoholen, vorzugsweise Methanol, in Gegenwart von Chlorwasserstoff oder p-Toluolsulfonsäure zu Verbindungen mit Carbonsäure-esterstruktur (R⁹ = Alkoxy) umgesetzt werden können.

- 16 -

Die biologische Aktivität der erfindungsgemässen Verbindungen wurde sowohl in vitro als auch in vivo bestimmt. Zur Charakterisierung der Inhibitoraktivität in vitro wurden die Dissoziationskonstanten K_i für die Hemmung von Trypsin bzw. der verwandten Enzyme Thrombin, Plasmin, Faktor X_a , tPA, glanduläres Kallikrein, Faktor XII_a und Plasmakallikrein nach der Formel

$$K_i = \frac{[E] \cdot [I]}{[EI]}$$

in welcher [E] die Konzentration an freiem Enzym, [I] die Konzentration an freiem Inhibitor und [EI] die Konzentration an Enzym-Inhibitor-Komplex bezeichnen, gemessen (Dixon, Biochem. J. 55, 170-173, 1953). Je kleiner der K_i -Wert für ein geprüftes Enzym ist, desto grösser ist die Affinität des Inhibitors für das Enzym und desto kleiner ist die zur Hemmung des Enzyms, z.B. Thrombin, benötigte Menge Inhibitor.

In vitro wurden verschiedene Gerinnungstests benutzt, um die Wirksamkeit der Hemmstoffe gegenüber der durch Thrombin ausgelösten Gerinnung seines natürlichen Substrates Fibrinogen zu bestimmen. Dazu wurde in Human-Plasma die Thrombinzeit (TT), die aktivierte partielle Thromboplastinzeit (aPTT) und die Prothrombinzeit (PT, Quickwert) bestimmt.

Die Toxizität der erfindungsgemässen Verbindungen wurde durch Bestimmung der LD₅₀ (= Dosis, die bei 50% der Versuchstiere während einer Beobachtungsdauer von einer Woche zum Tode führt) an der Maus nach intravenöser bzw. peroraler Verabreichung ermittelt.

Zur pharmakokinetischen Charakterisierung wurde die Plasmakonzentration ausgewählter Derivate nach intravenöser (i.v.), subkutaner (s.c.) und peroraler (p.o.) Applikation an Ratten nach folgendem dreistufigem Verfahren bestimmt:

1. Eine Lösung der zu prüfenden Substanz in physiolo-

- 17 -

gischer Kochsalzlösung wurde der Flüssigkeits-Hochdruckchromatographie (HPLC = high pressure liquid chromatography) unterworfen, um den für die zu prüfende Substanz charakteristischen Peak bei der unter den gewählten Versuchsbedingungen substanzspezifischen Retentionszeit zu ermitteln.

2. Die zu prüfende Substanz wurde *in vitro* in Rattenplasma gelöst. Diese Lösung wurde ebenfalls der HPLC unterworfen, um festzustellen, ob der für die Substanz charakteristische Peak bei der substanzspezifischen Retentionszeit erneut erscheinen würde.

3. Die zu prüfende Substanz wurde in physiologischer Kochsalzlösung gelöst und in einer Dosis von 1, 5 bzw. 100 mg pro kg Körpergewicht i.v., s.c. bzw. p.o. an Ratten verabreicht. In Zeitintervallen von 15 Minuten wurden Blutproben entnommen, aus denen durch Zentrifugation Plasmaproben hergestellt wurden, welche ihrerseits der HPLC unterworfen wurden, um festzustellen, ob der für die Substanz charakteristische Peak bei der substanzspezifischen Retentionszeit wiederum in Erscheinung treten würde.

Zum Nachweis der pharmakologischen Wirksamkeit wurde die zu prüfende Substanz in physiologischer Kochsalzlösung gelöst und in einer Dosis von 1, 5 bzw. 100 mg pro kg Körpergewicht i.v., s.c. bzw. p.o. an Ratten verabreicht. In Zeitintervallen von 15 Minuten wurden Blutproben entnommen, aus denen durch Zentrifugation Plasmaproben hergestellt und im Gerinnungstest (Thrombin-induzierte Plasma-Gerinnung) geprüft wurden.

- 18 --

Als Beispiele der allgemeinen Formel I mit meta-ständiger basischer Gruppierung sind zu nennen:

Verbindungen mit R¹ = Amidino (a):

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin-n-hexyl-, -cyclohexyl- und -n-octyl-ester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin-4-hydroxypiperidid

N- α -(2-Naphthylsulfonyl)-3-amidino-(D)-phenylalanyl-(D)-prolin und -methylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(L)-prolin und -methylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D)-phenylalanyl-(L)-prolin und -methylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-prolin und -methylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(L)-4-hydroxyprolin und -methylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-prolyl-4-aminobuttersäure und -methylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(L)-pipecolinsäuremethylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-pipecolinsäuremethylester

- 19 -

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolinsäureethyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-4-aminobuttersäure

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-6-aminocapronsäure

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycyl-glycin

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycyl-(D,L)-pipecolinsäure

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycyl-glycyl-(D,L)-pipecolinsäure

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-6-aminocaproyl-(D,L)-pipecolinsäure

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-nipecotinsäureethyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-isonipecotinsäureethyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-4-aminobuttersäure und -methylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-6-aminocapronsäure und -methylester

- 20 -

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-cyclohexyl- β -alanin und -methylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-4-aminomethyl-cyclohexancarbonsäure und -methylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-3-carboxy-(D,L)-phenylalanin

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-3-methoxycarbonyl-(D,L)-phenylalaninmethylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-homophenylalanin und -methylester

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-4-aminobutyryl-glycin und -methylester

Verbindungen mit R¹ = Guanidino (b):

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanin-methyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanin-4-methylpiperidid

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanin-N-methylpiperazid

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanin-N-phenylpiperazid

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanin-N-ethoxycarbonylpiperazid

- 21 -

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-(D,L)-prolin und -methylester

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-(D,L)-pipecolinsäure, - methyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-isonipecotinsäure, - methyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-4-methyl-(D,L)-pipecolinsäure, - methyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-2-methyl-nipecotinsäure, - methyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäure und -methyl-ester

N- α -(2-Naphthylsulfonyl)-3-guanidino-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure und -methylester

Verbindungen mit R¹ = Oxamidino (c):

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanin-methyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanin-N-methylpiperazid

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanin-N-phenylpiperazid

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanin-N-ethoxycarbonylpiperazid

- 22 -

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-(D,L)-prolin und -methylester

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-(D,L)-pipecolinsäuremethyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-isonipecotinsäuremethyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-4-methyl-(D,L)-pipecolinsäure, - methyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-2-methyl-nipecotinsäure, - methyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäuremethylester

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure und -methylester

Verbindungen mit R¹ = Aminomethyl (d):

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanin-methyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanin-N-methylpiperazid

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanin-N-phenylpiperazid

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanin-N-ethoxycarbonylpiperazid

- 23 -

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-(D,L)-prolin und -methylester

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-(D,L)-pipecolinsäure-n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-isonipecotinsäure-n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-4-methyl-(D,L)-pipecolinsäure, - methyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-2-methyl-nipecotinsäure, - methyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäure und -methyl-ester

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure und -methylester

Verbindungen mit R¹ = Amino (e):

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanin-methyl-, -n-butyl-, -n-hexyl- und -cyclohexyl-ester

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanin-N-methylpiperazid

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanin-N-phenylpiperazid

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanin-N-ethoxycarbonylpiperazid

- 24 -

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-(D,L)-prolin und -methylester

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-(D,L)-pipecolinsäuremethyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-isonipecotinsäuremethyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-4-methyl-(D,L)-pipecolinsäure, - methyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-2-methyl-nipecotinsäure, - methyl- und -n-butyl-ester

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäuremethyleneester

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure und -methylester

Die als Racemate angegebenen Verbindungen können gegebenenfalls nach entsprechender Trennung als reine Enantiomere bzw. Diastereomere vorliegen.

In den folgenden Beispielen wird die Erfindung näher erläutert. Zum besseren Verständnis der Beispiele wird auf die nachstehende Legende verwiesen.

- 25 -

LEGENDE ZU TABELLEN 1 - 18 UND ZUSAMMENSTELLUNG

NR	- Nummer der Verbindung
AV	- Ausgangsverbindung
R ¹ , R ² , R ⁴ ,	- Substituenten in Formel I
n	- n in Formel I
AB(%)	- Ausbeute in %
Smp. (°C)	- Schmelzpunkt in °C
Z.	- Zersetzung
Rg	- Reinigungsoperation, entweder durch Umkristallisation (UK) oder Säulenchromatographie (SC)
HX	- Salzform, entweder Hydrochlorid (HCl) oder Hydroiodid (HI)
V	- Verfahren, entweder A oder B
DC	- Dünnschichtchromatographie
LS	- Lösungsmittelsystem (siehe unten)
R _f	- Retentionsfaktor, bei Angabe von 2 R _f -Werten, Doppelfleckbildung durch Isomerie

Zur Durchführung der dünnschichtchromatographischen Untersuchungen wurden MERCK-Dünnschicht-Fertigplatten mit Kieselgel 60, F 254, als Beschichtung und die folgenden Lösungsmittelsysteme (LS) verwendet:

LS 1: organische Phase von Ethylacetat/Essigsäure/Wasser
(4/1/2)

LS 2: Chloroform/Methanol (19/1)

LS 3: Chloroform/Methanol/Essigsäure (40/4/1)

LS 4: Toluol/Aceton/Methanol (7/2/1)

Sprühreagenzien: Ninhydrin - für primäre und sekundäre
aliphatische Aminogruppen

4-Dimethylaminobenzaldehyd - für primäre aromatische Amino-
gruppen

Sakaguchi - für Guanidinogruppen

- 26 -

Zur Durchführung der Säulenchromatographie zwecks Reinigung der Rohprodukte wurde Kieselgel 60 mit einer Korngrösse von 0,035 - 0,070 mm verwendet.

ABKÜRZUNGEN in Beispielen 1 - 18

TEA	- Triethylamin
HOBT	- 1-Hydroxybenzotriazol
DCC	- Dicyclohexylcarbodiimid
IBCF	- Isobutylchloroformat
NMM	- 4-Methylmorpholin
DMF	- Dimethylformamid
THF	- Tetrahydrofuran
TFA	- Trifluoressigsäure
Pd/C	- Palladium auf Aktivkohle
dc	- dünnssichtchromatographisch

- 27 -

Beispiel 1

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin und
-ester (6-11, Tabelle 1)

(3-Cyanbenzyl)-acetamino-malonsäure-diethylester (1)

10,0 g 3-Cyanbenzylbromid und 11,0 g Acetamino-malonsäure-diethylester wurden in 100 ml abs. Dioxan gelöst. Zu dieser Lösung wurde unter Röhren eine Lösung von 1,15 g Natrium in 50 ml abs. Ethanol gegeben. Der Ansatz wurde 5 Stunden auf dem siedenden Wasserbad erhitzt. Anschliessend wurde das Lösungsmittel im Vakuum weitestgehend abdestilliert, worauf der Rückstand in Chloroform aufgenommen und die Lösung mit verdünnter NaOH, HCl und anschliessend mit Wasser gewaschen wurde. Die organische Phase wurde über $MgSO_4$ getrocknet. Das Lösungsmittel wurde abdestilliert und der Rückstand aus Methanol/Wasser umkristallisiert. Ausbeute: 80%, Smp. 143-145°C.

3-Cyan-(D,L)-phenylalanin (2)

12,0 g der Verbindung 1 wurden in einer Mischung aus 32 ml Eisessig und 64 ml 3 N HCl 6 Stunden unter Rückfluss erhitzt. Anschliessend wurde das Lösungsmittel im Vakuum abdestilliert und der Rückstand getrocknet. Das erhaltene Produkt wurde in 80 ml 20%igem Methanol gelöst. Das pH der Lösung wurde durch Zugabe von 1 N NaOH auf 6,8 bis 7,0 eingestellt, wobei Verbindung 1 auskristallisierte. Ausbeute: 55%, Smp. 220-235°C.

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanin (3)

19,0 g der Verbindung 2 wurden in 230 ml 1 N KOH gelöst. Eine Lösung von 25,0 g 2-Naphthylsulfonylchlorid in 200 ml Ether wurde zugegeben und die Mischung 16 Stunden bei Raumtemperatur gerührt, wobei nach etwa 1 $\frac{1}{2}$ Stunden das

- 28 -

Kaliumsalz des gewünschten Produktes auszukristallisieren begann. Anschliessend wurde der Niederschlag abgesaugt, mit Ether gewaschen, unter Erwärmung in Wasser gelöst und mit 3 N HCl angesäuert, wobei die Verbindung 3 auskristallisierte. Es wurde abgesaugt und aus Essigsäure/Wasser umkristallisiert. Ausbeute: 58%, Smp. 101-103°C.

N- α -(2-Naphthylsulfonyl)-3-thiocarboxamido-(D,L)-phenylalanin (4)

1,5 g der Verbindung 3 wurden in 20 ml Pyridin und 1,5 ml TEA gelöst, in die Lösung 10 Minuten H₂S eingeleitet und der Ansatz 20 Stunden bei Raumtemperatur stehengelassen. Anschliessend wurde das Lösungsmittel abdestilliert, der Rückstand in Ethylacetat aufgenommen und mit 1 N HCl ausgeschüttelt. Die organische Phase wurde 1X mit Wasser gewaschen, über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Gelbes, amorphes Produkt. Ausbeute: 92%.

N- α -(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanin-hydroiodid (5)

1,5 g der Verbindung 4 wurden in 25 ml Aceton gelöst, die Lösung mit 2,5 g Methyliodid versetzt und der Ansatz 15 Minuten im Wasserbad unter Rückfluss erhitzt. Nach dem Erkalten wurde Verbindung 5 durch Zusatz von Ether ausgefällt. Gelbliches, amorphes Pulver. Ausbeute: 93%.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin (6)

1,86 g der Verbindung 5 wurden in 25 ml Methanol gelöst, die Lösung mit 0,4 g Ammoniumacetat versetzt und der Ansatz 3 Stunden bei 60°C im Wasserbad erwärmt, wobei die Verbindung 6 (Betain) bereits auszukristallisieren begann. Nach 24-stündigem Stehen wurde abgesaugt, mit Methanol gewaschen und getrocknet. Ausbeute: 71%, Smp. 274-275°C.

- 29 -

Zur Überführung in das Hydrochlorid wurden 0,5 g Betain in 5 ml Methanol suspendiert, die Suspension tropfenweise mit 2 N Ethylacetat/HCl bis zur klaren Lösung versetzt und das gebildete Hydrochlorid mit Ether ausgefällt. Ausbeute: 92%, amorphes Produkt.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalaninester-hydrochloride (7-11, Tabelle 1)

Jeweils 0,5 g des Betains 6 wurden in 5 ml des entsprechenden Alkohols suspendiert, die Suspensionen mit 0,36 g p-Toluolsulfonsäure versetzt und die erhaltenen Lösungen bis zur vollständigen Veresterung (dc Kontrolle) im siedenden Wasserbad erhitzt. Nach dem Erkalten wurden die Tosylate der gebildeten Ester durch Zugabe von Ether vollständig ausgefällt.

Zur Überführung in die Hydrochloride wurden die ölichen Tosylate in Wasser gelöst, mit 0,5 N NaOH alkalisiert und die freigesetzten Basen mit Ethylacetat extrahiert. Nach Trocknen der Ethylacetatlösungen über Na_2SO_4 wurde das Lösungsmittel bis zu einem Rest von etwa 5 ml abdestilliert, mit 2 N Ethylacetat/HCl angesäuert und die Verbindungen 7-11 durch Zugabe von Ether ausgefällt.

TABELLE 1N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalaninesterhydrochloride

NR	AV	R ¹	R ²	R ⁴	n	AB(%)	Smp. (°C)
7	6	Amidino	-OCH ₃		0	76	ab 137
8	6	Amidino	-OCH(CH ₃) ₂	"	0	79	amorph
9	6	Amidino	-n-OC ₄ H ₉	"	0	71	amorph
10	6	Amidino	-OCH ₂ C ₆ H ₅	"	0	72	amorph
11	6	Amidino	-OCH ₂ CH ₂ C ₆ H ₅	"	0	65	amorph

- 31 -

Beispiel 2

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin-piperidid- bzw. piperazidsalze (32-38, Tabelle 5)

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanin-piperide bzw. -piperazide (12-18, Tabelle 2)

Jeweils 5,5 mmol 2-, 3- und 4-Methylpiperidin sowie N-Methyl-, N-Phenyl-, N-Ethoxycarbonyl- und N-t-Butoxycarbonylpiperazin (AV, Tabelle 2) wurden in 5 ml abs. Dioxan gelöst. Nach Zugabe von 5 mmol NMM wurde eine Lösung des aus Verbindung 3 und Thionylchlorid erhaltenen Säurechlorids in 10 ml abs. Dioxan zugetropft und der Ansatz 2 Stunden bei Raumtemperatur gerührt, wobei die Verbindungen 14 und 15 bereits zum Teil auskristallisierten. Anschließend wurde das Lösungsmittel abdestilliert und nach Zugabe von 25 ml Methanol zur Kristallisation stehengelassen. Die erhaltenen Produkte wurden abgesaugt und zur Reinigung umkristallisiert.

Thioamide (19-24, Tabelle 3)

1,0 g der Verbindungen 12-14 und 16-18 wurden in je 20 ml Pyridin und 1,5 ml TEA gelöst, in die Lösungen 10 Minuten H₂S eingeleitet und die Ansätze 20 Stunden bei Raumtemperatur aufbewahrt. Nach Abdestillieren des Lösungsmittels wurde der Rückstand in Ethylacetat aufgenommen, mit 1 N HCl ausgeschüttelt, die organische Phase 1X mit Wasser gewaschen und das Lösungsmittel abdestilliert. Die Verbindungen 21 und 22 kristallisierten beim Anreiben mit Methanol.

Thioimid- bzw. Imidsäureestersalze (25-31, Tabelle 4)

- 32 -

Thioimidsäuremethylester-hydroiodide (25-27, 30, 31,
Tabelle 4)

0,7 g der Verbindungen 19-21 sowie 23 und 24 wurden in jeweils 20 ml Aceton und 5 ml Methanol gelöst, die Lösungen mit der 5-molaren Menge Methyliodid versetzt und die Ansätze 15 Minuten im Wasserbad unter Rückfluss erhitzt. Anschliessend wurde das Lösungsmittel abdestilliert und mit Ethanol angerieben, wobei die Verbindungen 25-27 und 30 kristallisierten. Verbindung 31 konnte nach Auflösen des Rückstandes in wenig abs. Ethanol mit Ether ausgefällt werden.

Imidsäuremethylesterhydrochloride (28, 29, Tabelle 4)

Jeweils 1,0 g der Verbindungen 15 und 16 wurden in einer Mischung aus 10 ml abs. Dioxan und 10 ml abs. Methanol suspendiert, in die Suspensionen 4 g getrocknetes HCl-Gas eingeleitet und die erhaltenen Lösungen 5 Tage im Kühlschrank aufbewahrt, wobei die Verbindungen 28 und 29 auskristallisierten. Die ausgefallenen Produkte wurden abgesaugt, mit Ether gewaschen und im Vakuum-Exsikkator ($\text{KOH}/\text{H}_2\text{SO}_4$) getrocknet.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin-piperidid- bzw. -piperazid-salze (32-38, Tabelle 5)

Verbindungen 32-34, 37, 38

0,6 g der Thioimidsäuremethylester-hydroiodide 25-27 sowie 30 und 31 wurden in 15 ml Methanol gelöst bzw. suspendiert, die Ansätze mit der 1,5-molaren Menge Ammoniumacetat versetzt und 3 Stunden bei 60°C im Wasserbad erwärmt. Anschliessend wurde die Hälfte des Lösungsmittels abdestilliert und die Amidinhydroiodide 32-34, 37 und 38 durch Zugabe von Ether ausgefällt.

- 33 -

Verbindungen 35 und 36

0,5 g der Imidsäuremethylester-hydrochloride 28 und 29 wurden in je 10 ml abs. Ethanol suspendiert, die Suspensionen mit ethanolischer NH₃-Lösung versetzt, bis der Geruch nach NH₃ deutlich wahrnehmbar blieb und die Ansätze 3 Stunden im Wasserbad bei 60°C erwärmt, wobei schon nach kurzer Zeit klare Lösungen erhalten wurden. Anschliessend wurde filtriert und die Verbindungen 35 und 36 durch Zusatz von Ether ausgefällt.

- 34 -

TABELLE 2
 N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanin-piperidide bzw. -piperazine

NR	AV	R ¹	R ²	R ⁴	n	AB(%)	(°C)	Smp. Rg
12	HN CH ₃	-CN	-N CH ₃		0	78	192	UK
13	HN CH ₃	-CN	-N CH ₃		"	0	78	190
14	HN CH ₃	-CN	-N CH ₃		"	0	81	196
15	HN N-CH ₃	-CN	-N CH ₃		"	0	80	181-190
16	HN N-C ₆ H ₅	-CN	-N CH ₃		"	0	75	174-175
17	HN N-COOC ₂ H ₅	-CN	-N CH ₃		"	0	71	162-163
18	HN N-COOC(CH ₃) ₃	-CN	-N CH ₃		"	0	85	165-166

- 35 -

TABLE II 3
Thioamide

NR	AV	R ¹	R ²	R ⁴	n	AB (%)	Smp. (°C)
19	12	$\text{S}=\text{C}-\text{NH}_2$			0	70	amorph
20	13	"		"	0	76	amorph
21	14	"		"	0	90	175-176
22	16	"		"	0	92	208-212
23	17	"		"	0	99	amorph
24	18	"		"	0	94	amorph

- 36 -

TABELLE 4
Thioimid- bzw. Imid-säureestersalze

NR	AV	R ¹	R ²	R ⁴	HX	n	AB(%)	Smp. (°C)
25	19	$-\text{C}(\text{SCH}_3)=\text{NH}$	CH_3 $-\text{N}(\text{CH}_3)\text{CH}_2$		HI	0	68	147-150
26	20	"	CH_3 $-\text{N}(\text{CH}_3)\text{CH}_2$	"	HI	0	72	135-138
27	21	"	CH_3 $-\text{N}(\text{CH}_3)\text{CH}_2$	"	HI	0	73	202-204
28	15	$-\text{C}(\text{OCH}_3)=\text{NH}$	$-\text{N}(\text{CH}_3)\text{CH}_2$	"	2 HCl	0	78	ab 168
29	16	"	$-\text{N}(\text{CH}_3)\text{CH}_2\text{C}_6\text{H}_5$	"	HCl	0	75	ab 142
30	23	$-\text{C}(\text{SCH}_3)=\text{NH}$	$-\text{N}(\text{CH}_3)\text{CH}_2\text{COOC}_2\text{H}_5$	"	HI	0	89	188-192
31	24	"	$-\text{N}(\text{CH}_3)\text{CH}_2\text{COOC}(\text{CH}_3)_3$	"	HI	0	81	amorph

N- α -2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanin-piperidid bzw. -piperazid-salze

TABELLE 5

NR	AV	R ¹	R ²	R ⁴	HX	n	AB (%)	Smp. (°C)
32	25	Amidino			HI	0	69	248-251
33	26	Amidino		"	HI	0	70	226-228
34	27	Amidino		"	HI	0	77	246-248
35	28	Amidino		"	2 HCl	0	79	ab 130
36	29	Amidino		"	HCl	0	78	232-244
37	30	Amidino		"	HI	0	67	225-227
38	31	Amidino		"	HI	0	69	196-198

- 38 -

Beispiel 3

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-piperidin-carbonsäuren (83-93, Tabelle 10)

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäureester (39-49, Tabelle 6)

Die Darstellung der Verbindungen erfolgte nach Verfahren A und B.

Verfahren A: 10 mmol des entsprechenden Piperidincarbonsäureesters (AV, Tabelle 6) wurden in 10 ml DMF gelöst, mit 11 mmol HOBT versetzt und auf 0° abgekühlt. Eine Lösung von 9 mmol der Verbindung 3 in 20 ml THF und 11 mmol DCC wurden zugegeben und über Nacht gerührt. Man filtrierte das gebildete Harnstoffderivat ab und destillierte das Lösungsmittel ab. Der Rückstand wurde in Ethylacetat gelöst, die Lösung mit Wasser, 10%iger Zitronensäure, gesättigter NaHCO₃-Lösung und gesättigter NaCl-Lösung gewaschen und anschliessend über MgSO₄ getrocknet. Nach Abdestillieren des Lösungsmittels wurden die Rohprodukte durch Umkristallisation bzw. Säulenchromatographie gereinigt.

Verfahren B: 5,5 mmol des entsprechenden Piperidincarbonsäureesters (AV, Tabelle 6) und 5 mmol NMM wurden in 10 ml Ethylacetat gelöst, eine Lösung von 5 mmol des aus Verbindung 3 und Thionylchlorid erhaltenen Säurechlorids in 20 ml Ethylacetat zugetropft und der Ansatz 2 Stunden bei Raumtemperatur gerührt. Anschliessend wurde das Lösungsmittel abdestilliert, der Rückstand in Ethylacetat aufgenommen, mit 1 N HCl, 10%iger Na₂CO₃-Lösung und Wasser ausgeschüttelt, die organische Phase über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Nach Zugabe von 20 ml Methanol wurde zur Kristallisation stehengelassen. Die Reinigung erfolgte durch Umkristallisation aus Methanol/Wasser bzw. säulenchromatographisch.

- 39 -

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäuren (50-60, Tabelle 7)

2 mmol der Verbindungen 39-49 wurden in 20 ml Methanol gelöst bzw. suspendiert, 10 ml 1 N NaOH zugefügt und die erhaltenen Lösungen bei Raumtemperatur gerührt bis vollständige Verseifung erfolgt war (dc Kontrolle). Danach wurden 100 ml Wasser zugesetzt, mit 1 N HCl angesäuert, die ausgefallenen Produkte isoliert und gegebenenfalls durch Umkristallisation oder säulenchromatographisch gereinigt.

Thioamide (61-71, Tabelle 8)

Je 1,0 g der Verbindungen 50-60 wurden in 20 ml Pyridin und 1,5 ml TEA gelöst, in die Lösungen 10 Minuten H₂S eingeleitet und die Ansätze 20 Stunden bei Raumtemperatur aufbewahrt. Anschliessend wurde das Lösungsmittel abdestilliert, die Rückstände in Ethylacetat aufgenommen und mit 1 N HCl ausgeschüttelt. Die organische Phase wurde 1X mit Wasser gewaschen, über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Die Verbindungen 61-71 wurden in der erhaltenen Form weiterverarbeitet.

Thioimidsäureesterhydroiodide (72-82, Tabelle 9)

Je 1,0 g der Thioamide 61-71 wurden in 25 ml Aceton gelöst, die Lösungen mit der 15-molaren Menge Methyliodid versetzt und die Ansätze 20 Stunden bei Raumtemperatur unter Lichtschutz aufbewahrt. Anschliessend wurden die Verbindungen 72-82 mit Ether ausgefällt und in der erhaltenen Form umgesetzt.

- 40 -

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-
(D,L)-piperidincarbonsäure-hydrochloride (83-93, Tabelle
10)

0,5 g der Thioimidsäureesterhydroiodide 72-82 wurden in jeweils 10 ml Methanol gelöst, die Lösungen mit der 1,5-molaren Menge Ammoniumacetat versetzt und die Ansätze 3 Stunden bei 60°C im Wasserbad erwärmt. Anschliessend wurde noch 24 Stunden im Kühlschrank aufbewahrt, die auskristallisierten Betaine 83-93 abgesaugt, mit Methanol und Ether gewaschen und getrocknet.

Zur Überführung in die entsprechenden Hydrochloride wurden jeweils 0,2 g Betain in 3 ml Methanol suspendiert, die Suspension tropfenweise mit 2 N Ethylacetat/HCl bis zur klaren Lösung versetzt und die gebildete Salze mit Ether vollständig ausgefällt.

- 41 -

TABELLE 6
 N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-(D,L)-piperidin-
 carbonsäureester

NR	AV	R ¹	R ²	R ⁴	n	V	AB(%)	(°C)	Smp.	Rg
39	HN COOC ₂ H ₅	-CN		0	A/B	78	138-140		UK	
40	HN COOC ₂ H ₅	-CN		"	0	B	60	182-183	UK	
41	HN COOC ₂ H ₅	-CN		"	0	A/B	68	150-151	UK	
42	HN COOCH ₃	-CN		"	0	A	46	170-172	UK	

- 42 -

TABELLE 6 (Fortsetzung)

NR	AV	R ¹	R ²	R ⁴	n	V	AB(%)	(°C)	Smp. (°C)	Rg
43	HNC ₂ H ₅	-CN	COOCH ₃	-N(C ₂ H ₅) ₂	0	A	53	158-159	UK	SC
44	HNC(CH ₃) ₃	-CN	COOCH ₃	-N(C(CH ₃) ₃) ₂	"	0	A	51	102-104	SC
45	HN	-CN	COOCH ₃ CH ₃	-N(C ₂ H ₅) ₂	"	0	A	34	188-190	SC
46	CH ₃	-CN	COOCH ₃	-N(C ₂ H ₅) ₂	"	0	B	45	195-197	SC

- 43 -

TABELLE 6 (Fortsetzung)

NR	AV	R ¹	R ²	R ⁴	n	V	AB (%)	Smp. (°C)	Rg
47	HN CH ₃	COOCH ₃	-CN		0	B	38	152-156	UK
48	HN	CH ₃	COOC ₂ H ₅		"	0	B	47	167-168
49	HN	COOCH ₃	COOCH ₃		"	0	A	42	amorph SC

- 44 -

TABELLE 7
N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäuren

NR	AV	R ¹	R ²	R ⁴	n	AB(%)	(°C)	Smp.	Rg
50	39	-CN			0	78	177-181	SC	
51	40	-CN		"	0	88	204-205		
52	41	-CN		"	0	89	188-189	UK	
53	42	-CN		"	0	79	amorph	-	

- 45 -

TABELLE 7 (Fortsetzung)

NR	AV	R ¹	R ²	R ⁴	n	AB(%)	(°C)	Smp. Rg
54	43	-CN		0	69	ab 165	SC	
55	44	-CN		"	0	73	ab 110	SC
56	45	-CN		"	0	91	amorph	-
57	46	-CN		"	0	90	181-185	-

- 46 -

TABELLE 7 (Fortsetzung)

NR	AV	R ¹	R ²	R ⁴	n	AB(%)	(°C)	Smp. Rg
58	47	-CN			0	93	amorph	-
59	48	-CN		"	0	91	97-103	-
60	49	-CN		"	0	77	118-123	SC

WO 92/08709

- - 47 -

TABELLE 8

Thioamide

NR	AV	R ¹	R ² , R ⁴ , n	AB(%)	Smp. (°C)
61	50		wie 50	96	amorph
62	51	"	wie 51	93	amorph
63	52	"	wie 52	87	ab 126
64	53	"	wie 53	95	amorph
65	54	"	wie 54	96	amorph
66	55	"	wie 55	94	amorph
67	56	"	wie 56	98	amorph
68	57	"	wie 57	94	amorph
69	58	"	wie 58	90	amorph
70	59	"	wie 59	97	amorph
71	60	"	wie 60	94	amorph

- 48 -

TABELLE 9

Thioimidsäureesterhydroiodide

NR	AV	R ¹	R ² , R ⁴ , n	AB(%)	Smp. (°C)
72	61		wie 50	52	192-194 (z.)
73	62	"	wie 51	67	ab 140 (z.)
74	63	"	wie 52	65	ab 185 (z.)
75	64	"	wie 53	85	amorph
76	65	"	wie 54	73	amorph
77	66	"	wie 55	61	amorph
78	67	"	wie 56	79	amorph
79	68	"	wie 57	90	amorph
80	69	"	wie 58	58	158-162 (z.)
81	70	"	wie 59	94	ab 130 (z.)
82	71	"	wie 60	88	amorph

- 49 -

TABELLE 10

Na-(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäure-hydrochloride

NR	AV	R ¹	R ² , R ⁴ , n	AB(%)	Smp.(C°) Betain	Smp.(°C) Hydro- chlorid
83	72	Amidino	wie 50	92	208-212	ab 155
84	73	Amidino	wie 51	80	242-245	ab 148
85	74	Amidino	wie 52	86	247-248	ab 155
86	75	Amidino	wie 53	64	208-212	ab 145
87	76	Amidino	wie 54	53	225-227	ab 140
88	77	Amidino	wie 55	50	226-228	ab 155
89	78	Amidino	wie 56	86	214-218	ab 150
90	79	Amidino	wie 57	68	225-228	ab 153
91	80	Amidino	wie 58	66	204-210	ab 158
92	81	Amidino	wie 59	76	ab 245	ab 145
93	82	Amidino	wie 60	30	275-278	ab 110

- 50 -

Beispiel 4

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-piperidincarbonsäuremethylester-hydrochloride (94-101, Tabelle 11)

0,2 g der Betaine 83-87, 89, 90 und 92 wurden in jeweils 5 ml abs. Methanol suspendiert, die Suspension mit 1-2 ml 2 M Ethylacetat/HCl versetzt und die dabei erhaltenen Lösungen bis zur vollständigen Veresterung (dc Kontrolle) bei Raumtemperatur stehengelassen. Anschliessend wurden die Hydrochloride 94-101 (Tabelle 11) durch Zugabe von Ether ausgefällt.

- 51 -

TABELLE 11
N α -(2-Naphthylsulfonyl)-(D,L)-3-amidino-phenylalanyl-(D,L)-piperidincarbonsäuremethylester-hydrochloride

NR	AV	R ¹	R ²	R ⁴	n	AB(%)	Smp. (°C)
94	83	Amidino			0	62	ab 135
95	84	Amidino		"	0	73	ab 130
96	85	Amidino		"	0	76	ab 140
97	86	Amidino		"	0	88	ab 125

- 52 -

TABELLE 11 (Fortsetzung)

NR	AV	R ¹	R ²	R ⁴	n	AB(%)	Smp. (°C)
98	87	Amidino	-N(C ₂ H ₅) ₂ -		0	92	amorph
99	89	Amidino	-N(C ₂ H ₅) ₂ -	"	0	83	ab 130
100	90	Amidino	-N(C ₂ H ₅) ₂ -	CH ₃	"	0	84 amorph
101	92	Amidino	-N(C ₂ H ₅) ₂ -	CH ₃	coOCH ₃	"	0 97 ab 150

- 53 -

Beispiel 5

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-isonipecotyl-4-aminobuttersäure und - 6-aminocapron-säure (110, 111, Tabelle 12)

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-iso-nipecotyl-4-aminobuttersäureethylester und - 6-aminocapronsäuremethylester (102, 103, Tabelle 12)

Je 9 mmol der Verbindung 52 (Beispiel 3) und 10 mmol 4-Aminobuttersäureethylester sowie 6-Aminocapronsäure-methylester wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform (für 102) und Chloroform/Methanol 98:2 (für 103) als Eluierungsmittel.

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-iso-nipecotyl-4-aminobuttersäure und - 6-aminocapronsäure (104, 105, Tabelle 12)

2 mmol der Verbindungen 102 und 103 wurden nach der in Beispiel 3 (50-60) angegebenen Vorschrift verseift. Verbindung 104 wurde aus Ethylacetat umkristallisiert. Die Reinigung von 105 erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 95:5 als Eluierungsmittel.

Thioamide (106, 107, Tabelle 12)

Jeweils 1,0 g der Verbindungen 104 und 105 wurden analog Beispiel 3 (61-71) umgesetzt und aufgearbeitet.

- 54 -

Thioimidsäuremethylester-hydroiodide (108, 109; Tabelle 12)

0,7 g der Verbindungen 106 und 107 wurden in jeweils 20 ml Aceton gelöst, die Lösungen mit der 5-molaren Menge Methyl-iodid versetzt und die Ansätze 15 Minuten im Wasserbad unter Rückfluss erhitzt. Anschliessend wurde das Lösungsmittel abdestilliert, die Rückstände mit 2 ml abs. Ethanol versetzt und zur Kristallisation stehengelassen. Die kristallinen Produkte 108 und 109 wurden abgesaugt, mit Ether gewaschen und getrocknet.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-isonipeptyl-4-aminobuttersäure und - 6-aminocapron-säure-hydroiodid (110, 111; Tabelle 12)

0,5 g der Thioimidsäuremethylester-hydroiodide 108 und 109 wurden in je 10ml Methanol gelöst, die Lösungen mit der 1,5-molaren Menge Ammoniumacetat versetzt und die Ansätze 3 Stunden bei 60°C im Wasserbad erwärmt. Nach dem Erkalten wurden die Verbindungen 110 und 111 durch Zugabe von Ether ausgefällt. Zur Reinigung wurde aus Ethanol/Ether umgefällt.

- 55 -

TABELLE 12

NR	AV	R¹	R²	AB (%)	Smp. (°C)
102	52	-CN	-NH(CH ₂) ₃ -COOC ₂ H ₅	62	110-112
103	52	-CN	-NH(CH ₂) ₅ -COOCH ₃	60	130-135
104	102	-CN	-NH(CH ₂) ₃ -COOH	91	183-185
105	103	-CN	-NH(CH ₂) ₅ -COOH	63	amorph
106	104		-NH(CH ₂) ₃ -COOH	97	amorph
107	105	"	-NH(CH ₂) ₅ -COOH	93	amorph
108	106		-NH(CH ₂) ₃ -COOH	85	174-178
109	107	"	-NH(CH ₂) ₅ -COOH	66	160-162
110	108		-NH(CH ₂) ₃ -COOH	79	ab 152
111	109	"	-NH(CH ₂) ₅ -COOH	81	ab 110

- 56 -

Beispiel 6

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin und -methylester (116, 117)

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin-t-butylester (112)

9 mmol der Verbindung 50 und 10 mmol Glycin-t-butylester wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung von 112 erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel. Ausbeute: 70%, Smp. 121-125°C.

N- α -(2-Naphthylsulfonyl)-3-thiocarboxamido-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin-t-butylester (113)

1,3 g der Verbindung 112 wurden analog Beispiel 3 (61-71) umgesetzt. Amorphes Produkt. Ausbeute: 95%.

N- α -(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin-t-butylester-hydroiodid (114)

1,3 g der Verbindung 113 wurden in 35 ml Aceton gelöst, die Lösung mit 4,3 g Methyl iodid versetzt und der Ansatz 20 Stunden bei Raumtemperatur unter Lichtschutz aufbewahrt. Verbindung 104 wurde anschliessend durch Zugabe von Ether ausgefällt. Amorphes Produkt. Ausbeute: 76%.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin-t-butylester-hydroiodid (115)

1,2 g der Verbindung 114 wurden analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet. Ausbeute: 96%, Smp. ab 90°C.

- 57 -

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin-hydrochlorid (116)

0,95 g der Verbindung 115 wurden in die freie Base übergeführt, indem die Substanz in 250 ml Ethylacetat suspendiert und mit 30 ml 0,2 N NaOH ausgeschüttelt wurde. Die organische Phase wurde mit Wasser gewaschen, über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Der Rückstand (0,77 g) wurde in 6 ml TFA gelöst, die Lösung 2 Stunden bei Raumtemperatur gerührt und danach das Lösungsmittel abdestilliert. Der Rückstand wurde in 8 ml Methanol gelöst, die Lösung mit 2 ml 2 N Ethylacetat/HCl versetzt und 116 mit Ether ausgefällt. Ausbeute: 68%, Smp. ab 155°C.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-(D,L)-pipecolyl-glycin-methylester-hydrochlorid (117)

0,2 g der Verbindung 116 wurden analog Beispiel 4 umgesetzt. Ausbeute: 86%, Smp. ab 145°C.

Beispiel 7

N- α -(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-prolin- und -methylester (123, 124)

N- α -(2-Naphthylsulfonyl)-3-cyan-(D)-phenylalanyl-(D)-prolin-t-butylester und N- α -(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanyl-(D)-prolin-t-butylester (118, 119)

11 mmol der Verbindung 3 und 12 mmol (D)-Prolin-t-butylester wurden analog Verfahren A (Beispiel 3) umgesetzt. Es wurden 4,9 g eines Gemisches der Verbindungen 118 und 119 erhalten. Durch säulenchromatographische Trennung über Kieselgel 60 mit Chloroform als Eluierungsmittel wurden erhalten:
einerseits

- 58 -

N- α -(2-Naphthylsulfonyl)-3-cyan-(D)-phenylalanyl-(D)-prolin-t-butylester (118). Ausbeute: 28%, amorph, $[\alpha]_D^{20}$ +39° (1% in Methanol), und andererseits farblose Kristalle von N- α -(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanyl-(D)-prolin-t-butylester (119). Ausbeute: 33%, Smp. 139-141°C; $[\alpha]_D^{20}$ +35° (1% in Methanol).

N- α -(2-Naphthylsulfonyl)-3-thiocarboxamido-(L)-phenylalanyl-(D)-prolin-t-butylester (120)

1,0 g der Verbindung 119 wurde analog Beispiel 3 (61-71) umgesetzt und aufgearbeitet. Amorphes Produkt. Ausbeute: 92%.

N- α -(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(L)-phenylalanyl-(D)-prolin-t-butylester-hydroiodid (121)

0,95 g der Verbindung 120 wurden in 30 ml Aceton, analog Beispiel 2 (25-31) umgesetzt und aufgearbeitet, wobei man ein kristallines Produkt erhielt. Ausbeute: 92%, Smp. ab 160°C.

N- α -(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-prolin-t-butylester-hydroiodid (122)

1,0 g des Thioimidsäuremethylester-hydroiodids (121) wurde in 10 ml Methanol analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet. Ausbeute: 96%, Smp. ab 130°C.

N- α -(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-prolin-hydrochlorid (123)

0,75 g der Verbindung 122 wurden in einer Mischung aus 5 ml TFA und 5 ml Isopropanol gelöst. Durch HPLC-Kontrolle wurde auf Vollständigkeit der Esterhydrolyse geprüft.

- 59 -

Anschliessend wurde das Lösungsmittel abdestilliert. Man löste den ölichen Rückstand in 10 ml Methanol und setzte der Lösung unter pH-Kontrolle ethanolische Ammoniaklösung zu, bis der pH-Wert 7,4 erreicht war. Das ausgefallene Betain wurde nach 2 Stunden abgesaugt und getrocknet. Ausbeute: 56%, Smp. 215-223°C.

Zur Überführung in das Hydrochlorid löste man das erhaltene Betain in methanolischer Salzsäure und gab der Lösung Ether zu. Das ausgefallene Hydrochlorid wurde abgesaugt, mit Ether gewaschen und getrocknet. Ausbeute: 85%, Smp. ab 145°C.

N- α -(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-prolin-methylester-hydrochlorid (124)

0,22 g Betain 123 wurden analog Beispiel 4 umgesetzt und aufgearbeitet. Ausbeute: 74%, Smp. ab 150°C.

Zum Strukturbeweis wurde darüber hinaus ausgehend von 3-Cyan-(D,L)-phenylalaninmethylester durch Chymotrypsin-spaltung 3-Cyan-(L)-phenylalanin (125) dargestellt, das mit 2-Naphthylsulfonylchlorid in Na^+ -(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanin (126) übergeführt wurde. Die Umsetzung von 126 mit (D)-Prolin-t-butylester nach dem DCC-Verfahren führte zu Na^+ -(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanyl-(D)-prolin-t-butylester (127), aus dem nach dem für die Verbindungen 120-123 beschriebenen Verfahren Na^+ -(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanyl-(D)-prolin gewonnen wurde. Die dabei erhaltenen Zwischenprodukte sowie das Endprodukt waren dünnenschicht-chromatographisch mit den Verbindungen 120-123 identisch. Die ermittelten Schmelzpunkte, Drehwerte sowie die K_i -Werte stimmten überein.

- 60 -

3-Cyan-(L)-phenylalanin-hydrochlorid (125)

4,8 g des aus Verbindung 2 durch Veresterung mit Methanol in Gegenwart von p-Toluolsulfonsäure erhaltenen 3-Cyan-(D,L)-phenylalaninmethylesters wurden in 25 ml Toluol gelöst, eine Lösung von 0,2 g Chymotrypsin in 25 ml Wasser zugegeben und die Mischung 1 Stunde bei Raumtemperatur gerührt, wobei ein Niederschlag ausfiel, der abgesaugt, mit Wasser gewaschen und getrocknet wurde. Man suspendierte das trockene Produkt in 10 ml Methanol und säuerte die Suspension mit 2 N Ethylacetat/HCl an. Nach Filtration und Versetzen des Filtrats mit reichlich Ether konnten 0,55 g 125 erhalten werden. Das als Filtrat zurückbleibende Reaktionssystem Toluol/Wasser wurde 3X mit Ethylacetat ausgeschüttelt. Nach Phasentrennung wurde die wässrige Phase im Vakuum zur Trockne gebracht und der Rückstand in der oben beschriebenen Weise behandelt. Es wurden zusätzlich 1,8 g 125 erhalten. Gesamtausbeute: 88%, Smp. 211-212°C. $[\alpha]_D^{20} -10.3^\circ$ (3% in Methanol).

Aus der nach Extraktion des Reaktionssystems Toluol/Wasser erhaltenen Ethylacetatlösung konnte 3-Cyan-(D)-phenylalaninmethylester in öliger Form gewonnen werden, dessen saure Hydrolyse (25 ml 0,5 N HCl, 6 Stunden Rückfluss) zu 3-Cyan-(D)-phenylalanin-hydrochlorid führte. Ausbeute: 72%, Smp. 210-212°C, $[\alpha]_D^{20} +10.0^\circ$ (3% in Methanol).

N- α -(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanin (126)

2,2 g der Verbindung 125 wurden in einer Mischung aus 10,4 ml 1 N KOH und 1,0 g NaHCO₃ in 12 ml Wasser gelöst, eine Lösung von 2,64 g 2-Naphthylsulfonylchlorid in 30 ml Ether zugefügt und 16 Stunden bei Raumtemperatur gerührt. Anschliessend wurde das ausgefallene Kaliumsalz von 126 abgesaugt und mit Ether gewaschen. Zur Überführung in die freie Säure wurde das Kaliumsalz in 50 ml Wasser suspendiert, die Suspension mit 1 N HCl angesäuert und mit

- 61 -

Ethylacetat ausgeschüttelt. Die organische Phase wurde 1X mit Wasser gewaschen, über $MgSO_4$ getrocknet und das Lösungsmittel abdestilliert. Amorphes Produkt. Ausbeute: 62%. $[\alpha]_D^{20} +8.2^\circ$ (5% in Methanol).

N- α -(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanyl-(D)-prolin-t-butylester (127)

0,5 g der Verbindung 126 wurden in der für die Verbindungen 118, 119 beschriebenen Weise (Verfahren A, Beispiel 3) mit (D)-prolin-t-butylester umgesetzt und aufgearbeitet. Nach säulenchromatographischer Reinigung über Kieselgel 60 mit Chloroform als Eluierungsmittel wurden farblose Kristalle der Verbindung 127 erhalten. Ausbeute: 80%, Smp. 139-141°C, $[\alpha]_D^{20} +35^\circ$ (1% in Methanol).

Beispiel 8

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-1,2,-3,4-tetrahydroisochinolin-3-carbonsäure und -methylester (134, 135)

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäuremethylester (128, Tabelle 13)

11 mmol 1,2,3,4-Tetrahydroisochinolin-3-carbonsäuremethylester und 10 mmol des aus Verbindung 3 und Thionylchlorid erhaltenen Säurechlorids wurden analog Verfahren B (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte durch Umkristallisation aus Methanol.

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäure (129, Tabelle 13)

2 mmol der Verbindung 128 wurden nach der in Beispiel 3 (50-60) angegebenen Vorschrift verseift. 129 wurde in der

- 62 -

erhaltenen Form weiterverarbeitet.

Thioamide (130, 131, Tabelle 13)

Je 1,0 g der Verbindungen 128 und 129 wurden analog Beispiel 3 (61-71) umgesetzt und aufgearbeitet.

Thioimidsäuremethylester-hydroiodide (132, 133, Tabelle 13)

Je 1,0 g der Verbindungen 130 und 131 wurden analog Beispiel 3 (72-82) umgesetzt und aufgearbeitet.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-1,2,-3,4-tetrahydroisochinolin-3-carbonsäure und -methyl-ester-hydroiodide (134, 135, Tabelle 13)

Je 0,5 g der Thioimidsäuremethylester-hydroiodide 132 und 133 wurden analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet.

- 63 -

Tabelle 13

NR	AV	R ¹	R ²	AB (%)	Smp. (°C)
128	3	-CN	-COOCH ₃	75	182-183
129	128	-CN	-COOH	92	218-220
130	129	$\begin{array}{c} \text{S} \\ \diagdown \\ -\text{C} \\ \diagup \\ \text{NH}_2 \end{array}$	-COOH	94	amorph
131	128	$\begin{array}{c} \text{S} \\ \diagdown \\ -\text{C} \\ \diagup \\ \text{NH}_2 \end{array}$	-COOCH ₃	88	amorph
132	130	$\begin{array}{c} \text{SCH}_3 \\ \diagdown \\ -\text{C} \\ \diagup \\ \text{NH} \end{array}$ •HI	-COOH	86	amorph
133	131	$\begin{array}{c} \text{SCH}_3 \\ \diagdown \\ -\text{C} \\ \diagup \\ \text{NH} \end{array}$ •HI	-COOCH ₃	70	amorph
134	132	$\begin{array}{c} \text{NH}_2 \\ \diagdown \\ -\text{C} \\ \diagup \\ \text{NH} \end{array}$ •HI	-COOH	73	ab 168
135	133	$\begin{array}{c} \text{NH}_2 \\ \diagdown \\ -\text{C} \\ \diagup \\ \text{NH} \end{array}$ •HI	-COOCH ₃	76	ab 133

- 64 -

Beispiel 9

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-sarcosin und -methylester (140, 141)

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-sarcosin-t-butylester (136)

9 mmol der Verbindung 3 und 10 mmol Sarcosin-t-butylester wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel. Ausbeute: 82%; Smp. 141-142°C.

N- α -(2-Naphthylsulfonyl)-3-thiocarboxamido-(D,L)-phenyl-alanyl-sarcosin-t-butylester (137)

2,0 g der Verbindung 136 wurden analog Beispiel 3 (61-71) umgesetzt und aufgearbeitet. Ausbeute: 89%, Smp. 162-164°C.

N- α -(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanyl-sarcosin-t-butylester (138)

1,8 g der Verbindung 137 wurden in 40 ml Aceton analog Beispiel 3 (72-82) umgesetzt und aufgearbeitet. Ausbeute: 92%, Smp. ab 105°C.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-sarcosin-t-butylester-hydroiodid (139)

2,0 g der Verbindung 138 wurden in 20 ml Methanol analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet. Ausbeute: 74%, Smp. ab 103°C.

- 65 -

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-sarcosin-hydrochlorid (140)

0,57 g der Base von 139, die man wie in Beispiel 6 (116) beschrieben erhielt, wurden in 7 ml TFA gelöst, die Lösung 3 Stunden bei Raumtemperatur gerührt und danach das Lösungsmittel abdestilliert. Der Rückstand wurde in 5 ml Methanol gelöst, die Lösung mit 2 ml 2 N Ethylacetat/HCl versetzt und Verbindung 140 mit Ether ausgefällt. Ausbeute: 70%, Smp. ab 130°C.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-sarcosin-methylester-hydrochlorid (141)

0,2 g der Verbindung 140 wurden analog Beispiel 4 umgesetzt. Ausbeute: 75%, Smp. 125-135°C.

Beispiel 10

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure (146)

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäuremethylester (142)

5,5 mmol Decahydrochinolin-4-carbonsäuremethylester und 5 mmol des aus Verbindung 3 und Thionylchlorid erhaltenen Säurechlorids wurden analog Verfahren B (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel. Ausbeute: 28%, Smp. 193-195°C.

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure (143)

1,0 g der Verbindung 142 wurde analog Beispiel 3 (50-60) verseift. Die Reinigung erfolgte säulenchromatographisch

- 66 -

über Kieselgel 60 mit Chloroform als Eluierungsmittel.
Ausbeute: 83%, Smp. 263-266°C.

N- α -(2-Naphthylsulfonyl)-3-thiocarboxamido-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure (144)

0,95 g der Verbindung 143 wurden analog Beispiel 3 (61-71) umgesetzt und aufgearbeitet. Amorphes Produkt. Ausbeute: 87%.

N- α -(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure-hydroiodid (145)

0,87 g der Verbindung 144 wurden in 20 ml Aceton gelöst, die Lösung mit 3 g Methyliodid versetzt und der Ansatz 20 Stunden bei Raumtemperatur aufbewahrt, wobei Verbindung 145 auskristallisierte. Der Niederschlag wurde abgesaugt, mit Aceton/Ether 1:1 gewaschen und getrocknet. Ausbeute: 65%, Smp. 153-157°C.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-decahydrochinolin-4-carbonsäure-hydroiodid (146)

0,68 g der Verbindung 145 wurden analog Beispiel 3 (83-93) umgesetzt, wobei das Amidin-hydroiodid 146 auskristallisierte. Ausbeute: 54%, Smp. 188-192°C.

Beispiel 11

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-decahydroisochinolin-3-carbonsäure (151)

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-decahydroisochinolin-3-carbonsäuremethylester (147)

- 67 -

10 mmol Decahydroisochinolin-3-carbonsäuremethylester und 9 mmol der Verbindung 3 wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel. Amorphes Produkt. Ausbeute: 29%.

N- α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalanyl-decahydroisochinolin-3-carbonsäure (148)

0,77 g der Verbindung 147 wurden nach der in Beispiel 3 (50-60) angegebenen Vorschrift verseift. Die Reinigung erfolgte über Kieselgel 60 mit Chloroform/Methanol 90:10 als Eluierungsmittel. Ausbeute: 83%, Smp. ab 145°C.

N- α -(2-Naphthylsulfonyl)-3-thiocarboxamido-(D,L)-phenylalanyl-decahydroisochinolin-3-carbonsäure (149)

0,52 g der Verbindung 148 wurden analog Beispiel 2 (19-24) umgesetzt und aufgearbeitet. Amorphes Produkt. Ausbeute: 91%.

N- α -(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(D,L)-phenylalanyl-decahydroisochinolin-3-carbonsäure (150)

0,5 g der Verbindung 149 wurden in 20 ml Aceton gelöst, die Lösung mit 2,0 g Methyliodid versetzt und der Ansatz 20 Stunden bei Raumtemperatur unter Lichtschutz aufbewahrt. Anschliessend wurde die Verbindung 150 mit Ether ausgefällt. Amorphes Produkt. Ausbeute: 69%.

N- α -(2-Naphthylsulfonyl)-3-amidino-(D,L)-phenylalanyl-decahydroisochinolin-3-carbonsäure-hydrochlorid (151)

0,4 g Thioimidsäuremethylester-hydroiodid 150 wurden analog Beispiel 3 (83-93) umgesetzt, wobei das entsprechende Betain erhalten wurde. Ausbeute: 64%, Smp. 214-218°C.

Zur Überführung in das Hydrochlorid wurde in der dort

- 68 -

beschriebenen Weise verfahren. Ausbeute: 92%, Smp. ab 168°C.

Beispiel 12

N- α -(2-Naphthylsulfonyl)-glycyl-3-amidino-(D,L)-phenylalanin-4-methylpiperidid (156)

N- α -(2-Naphthylsulfonyl)-glycyl-3-cyan-(D,L)-phenylalanin (152)

20 mmol der Verbindung 3 wurden in 42 ml 1 N NaOH gelöst, eine Lösung von 22 mmol 2-Naphthylsulfonyl-glycylchlorid in 60 ml Ethylacetat zugegeben und der Ansatz 16 Stunden gerührt. Anschliessend wurde eine geringe Menge schwerlösliches Nebenprodukt abgesaugt, die wässrige Phase abgetrennt, mit 1 N HCl angesäuert und mit Ethylacetat ausgeschüttelt. Die organische Phase wurde 1X mit Wasser gewaschen, über MgSO₄ getrocknet und das Lösungsmittel abdestilliert. Der amorphe Rückstand kristallisierte beim Durcharbeiten mit Ether. Zur Reinigung wurde aus verdünnter Essigsäure umkristallisiert. Ausbeute: 72%, Smp. 157-158°C.

N- α -(2-Naphthylsulfonyl)-glycyl-3-cyan-(D,L)-phenylalanin-4-methyl-piperidid (153)

10 mmol der Verbindung 152 und 12 mmol 4-Methylpiperidin wurden nach Vefahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Choroform/Methanol 90:10 als Eluierungsmittel. Ausbeute: 94%, Smp. 170-172°C.

N- α -(2-Naphthylsulfonyl)-glycyl-3-thiocarboxamido-(D,L)-phenylalanin-4-methylpiperidid (154)

2,6 g der Verbindung 153 wurden in 25 ml Pyridin und 1,5 ml TEA analog Beispiel 2 (19-24) umgesetzt. Nach Abdestil-

- 69 -

lieren des Lösungsmittels wurde der feste Rückstand mit 60 ml Methanol und 10 ml 1 N HCl durchgearbeitet, abgesaugt, mit Methanol gewaschen und getrocknet. Ausbeute: 96%, Smp. 190-192°C.

N- α -(2-Naphthylsulfonyl)-glycyl-3-S-methyliminothiocarbonyl-(D,L)-phenylalanin-4-methylpiperidid-hydroiodid (155)

1,0 g der Verbindung 154 wurde unter Erwärmen in 2 ml DMF gelöst, die Lösung mit 40 ml Aceton und 3,5 g Methyliodid versetzt und 4 Stunden bei Raumtemperatur gerührt, wobei die Verbindung 155 auskristallisierte. Anschliessend wurde abgesaugt, mit Ether gewaschen und getrocknet. Ausbeute: 83%, Smp. 185-188°C (z.).

N- α -(2-Naphthylsulfonyl)-glycyl-3-amidino-(D,L)-phenylalanin-4-methylpiperidid-hydroiodid (156)

0,8 g des Thioimidsäuremethylester-hydroiodids 155 wurden in einer Mischung aus 18 ml DMF und 9 ml Methanol gelöst, die Lösung mit 0,2 g Ammoniumacetat versetzt und der Ansatz 3 Stunden bei 60°C im Wasserbad erwärmt. Anschliessend wurde das Lösungsmittel abdestilliert, der Rückstand in Ethanol gelöst und Verbindung 156 mit Ether ausgefällt. Ausbeute: 78%, Smp. ab 125°C.

Beispiel 13

N- α -(2-Naphthylsulfonyl)-glycyl-3-amidino-(D,L)-phenylalanyl-piperidincarbonsäuren (165,166, Tabelle 14)

N- α -(2-Naphthylsulfonyl)-glycyl-3-cyan-(D,L)-phenylalanyl-piperidincarbonsäureethylester (157,158, Tabelle 14)

Je 10 mmol der Verbindung 152 und 15 mmol des entsprechenden Piperidincarbonsäureethylesters wurden analog Verfahren

- 70 -

A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel.

N- α -(2-Naphthylsulfonyl)-glycyl-3-cyan-(D,L)-phenylalanyl-piperidincarbonsäuren (159, 160, Tabelle 14)

Je 4 mmol der Verbindungen 157 und 158 wurden nach der im Beispiel 3 (50-60) angegebenen Vorschrift verseift. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 90:10 als Eluierungsmittel.

Thioamide (161, 162, Tabelle 14)

Jeweils 0,8 g der Verbindungen 159 und 160 wurden analog Beispiel 2 (19-24) in die Thioamide 161 und 162 übergeführt.

Thioimidsäuremethylester-hydroiodide (163, 164, Tabelle 14)

Je 0,7 g der Thioamide 161 und 162 wurden analog Beispiel 3 (72-82) zu den Verbindungen 163 und 164 umgesetzt.

N- α -(2-Naphthylsulfonyl)-glycyl-3-amidino-(D,L)-phenylalanyl-piperidincarbonsäure-hydroiodide (165, 166, Tabelle 14)

Je 0,6 g der Thioimidsäuremethylester-hydroiodide 163 und 164 wurden analog Beispiel 2 (32-34) in die Amidin-hydroiodide 165 und 166 übergeführt.

- 71 -

Tabelle 14

NR	AV	R ¹	R ²	Stellung		Smp. (°C)
				R ²	AB (%)	
157	152	-CN	-COOC ₂ H ₅	2	72	amorph
158	152	-CN	-COOC ₂ H ₅	4	74	146-147
159	157	-CN	-COOH	2	53	ab 103
160	158	-CN	-COOH	4	60	194-198
161	159		-COOH	2	94	amorph
162	160	"	-COOH	4	85	amorph
163	161		-COOH	2	58	amorph
164	162	"	-COOH	4	68	amorph
165	163		-COOH	2	83	ab 123
166	164	"	-COOH	4	74	ab 112

- 72 -

Beispiel 14

N- α -(8-Chinolylsulfonyl)-3-amidino-(D,L)-phenylalanin-4-methylpiperidid (171)

N- α -(8-Chinolylsulfonyl)-3-cyan-(D,L)-phenylalanin (167)

10 mmol der Verbindung 3 wurden in 22 ml 1 N KOH gelöst, eine Lösung von 11 mmol Chinolyl-8-sulfochlorid in einer Mischung aus 27 ml Ether/DMF 2:1 zugefügt und 16 Stunden gerührt. Anschliessend wurde die Wasserphase abgetrennt, mit 10%iger Zitronensäurelösung angesäuert und mit Ethylacetat ausgeschüttelt. Die organische Phase wurde 1X mit Wasser gewaschen, über $MgSO_4$ getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wurde aus Ethylacetat umkristallisiert. Ausbeute: 53%, Smp. 187-189°C.

N- α -(8-Chinolylsulfonyl)-3-cyan-(D,L)-phenylalanin-4-methylpiperidid (168)

5 mmol der Verbindung 167 und 7,5 mmol 4-Methylpiperidin wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel. Amorphes Produkt. Ausbeute: 61%.

N- α -(8-Chinolylsulfonyl)-3-thiocarboxamido-(D,L)-phenylalanin-4-methylpiperidid (169)

1,4 g der Verbindung 168 wurden analog Beispiel 3 (61-71) umgesetzt. Anstelle von 1 N HCl wurde bei der Aufarbeitung 10%ige Zitronensäurelösung verwendet. Amorphes Produkt. Ausbeute: 62%.

- 73 -

N- α -(8-Chinolylsulfonyl)-3-S-methyliminothiocarbonyl-
(D,L)-phenylalanin-4-methylpiperidid (170)

0,9 g des Thioamids 169 wurden in 20 ml Aceton gelöst, die Lösung mit 1,3 g Methyliodid versetzt und der Ansatz 15 Minuten im Wasserbad unter Rückfluss erhitzt. Anschliessend wurde Verbindung 170 mit Ether ausgefällt. Amorphes Produkt. Ausbeute: 81%.

N- α -(8-Chinolylsulfonyl)-3-amidino-(D,L)-phenylalanin-4-
methylpiperidid-hydroiodid (171)

0,9 g des Thioimidsäuremethylesters 170 wurden analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet. Ausbeute: 81%, Smp. ab 135°C.

Beispiel 15

N- α -(8-Chinolylsulfonyl)-3-amidino-(D,L)-phenylalanyl-
piperidin-carbonsäuren (180, 181, Tabelle 15)

N- α -(8-Chinolylsulfonyl)-3-cyan-(D,L)-phenylalanyl-pipe-
ridin-carbonsäureethylester (172, 173, Tabelle 15)

Jeweils 5 mmol der Verbindung 167 und 7,5 mmol des entsprechenden Piperidincarbonsäureesters wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung der Verbindungen 172 und 173 erfolgte säulen-chromatographisch auf Kieselgel 60 mit Chloroform als Eluierungsmittel.

N- α -(8-Chinolylsulfonyl)-3-cyan-(D,L)-phenylalanyl-pipe-
ridin-carbonsäuren (174, 175, Tabelle 15)

Je 4 mmol der Carbonsäureester 172 und 173 wurden nach der im Beispiel 3 (50-60) angegebenen Vorschrift verseift. Zur Aufarbeitung wurden die Ansätze mit 10%iger Zitronensäure-

- 74 -

lösung auf pH4 gebracht, einige Stunden im Kühlschrank aufbewahrt und die gebildeten Niederschläge abgesaugt. Die Reinigung der Carbonsäuren 174 und 175 erfolgte säulen-chromatographisch über Kieselgel 60 mit Chloroform/Methanol 90:10 als Eluierungsmittel.

Thioamide (176, 177, Tabelle 15)

Je 1,0 g der Verbindungen 174 und 175 wurden analog Beispiel 2 (19-24) umgesetzt und aufgearbeitet.

Thioimidsäuremethylester-hydroiodide (178, 179, Tabelle 15)

Zur Darstellung der Verbindungen 178 und 179 wurden jeweils 0,8 g der Thioamide 176 und 177 analog Beispiel 3 (72-82) umgesetzt und aufgearbeitet.

N- α -(8-Chinolylsulfonyl)-3-amidino-(D,L)-phenylalanyl-piperidin-carbonsäure-hydroiodide (180, 181, Tabelle 15)

Je 0,5 g der Thioimidsäuremethylester-hydroiodide 178 und 179 wurden analog Beispiel 2 (32-34) umgesetzt und aufgearbeitet.

- 75 -

Tabelle 15

NR	AV	R ¹	R ²	Stellung		Smp. (°C)
				R ²	AB(%)	
172	167	-CN	-COOC ₂ H ₅	2	79	amorph
173	167	-CN	-COOC ₂ H ₅	4	70	amorph
174	172	-CN	-COOH	2	73	ab 128
175	173	-CN	-COOH	4	60	ab 142
176	174	$\begin{array}{c} \text{S} \\ \diagdown \\ \text{-C} \\ \diagup \\ \text{NH}_2 \end{array}$	-COOH	2	86	amorph
177	175	"	-COOH	4	86	amorph
178	176	$\begin{array}{c} \text{SCH}_3 \\ \diagdown \\ \text{-C} \\ \diagup \\ \text{NH} \end{array}$ · HI	-COOH	2	57	amorph
179	177	"	-COOH	4	66	amorph
180	178	$\begin{array}{c} \text{NH} \\ \diagdown \\ \text{-C} \\ \diagup \\ \text{NH}_2 \end{array}$ · HI	-COOH	2	75	ab 168
181	179	"	-COOH	4	72	ab 175

- 76 -

Beispiel 16

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-4-methylpiperidid (182),
(D,L)-pipecolinsäure (185) und - ethylester (183),
isonipecotinsäure (186) und - ethylester (184) (Tabelle 16)

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-4-methylpiperidid, - (D,L)-pipecolinsäure - und - isonipecotinsäureethylester als Hydrochloride (182-184, Tabelle 16)

2,0 g der Verbindungen 14, 39 und 41 wurden in jeweils 40 ml einer Mischung Dioxan/Methanol 1:1 unter Erwärmen gelöst, die Lösungen mit 5 g Raney-Nickel-Katalysator und 10 ml 1 N ethanolischer Ammoniaklösung versetzt und unter Normalbedingungen hydriert, wobei die berechnete Wasserstoffmenge nach etwa 45 Minuten aufgenommen war. Anschliessend wurde vom Katalysator abfiltriert, mit 100 ml Methanol gewaschen und das Lösungsmittel abdestilliert. Die ölichen Rückstände wurden in 5 ml Methanol gelöst, mit 2 N Ethylacetat/HCl angesäuert und die Hydrochloride 182, 183 und 184 mit Ether ausgefällt.

N- α -(2-Naphthylsulfonyl)-3-aminomethyl-(D,L)-phenylalanyl-(D,L)-pipecolinsäure - und - isonipecotinsäure -hydrochlorid (185, 186, Tabelle 16)

0,8 g der Carbonsäureethylester-hydrochloride 183 und 184 wurden in je 20 ml 0,36 N methanolischer Kalilauge gelöst und die Lösungen bis zur vollständigen Verseifung (dc Kontrolle) bei Raumtemperatur gerührt. Anschliessend wurde mit 2 N Ethylacetat/HCl angesäuert, 20 ml Ether zugefügt und ausgefallenes Kaliumchlorid abfiltriert. Die Verbindungen 185 und 186 wurden aus den Filtraten durch Zugabe von reichlich Ether ausgefällt.

- 77 -

Tabelle 16

NR	AV	R	Stellung		Smp. (°C)
			R	AB (%)	
182	14	-CH ₃	4	52	273-275
183	39	-COOC ₂ H ₅	2	59	ab 105
184	41	-COOC ₂ H ₅	4	86	204-208
185	183	-COOH	2	76	ab 115
186	184	-COOH	4	76	155-162

- 78 -

Beispiel 17Verbindungen mit Oxamidinstruktur (187-190, Tabelle 17)

1,0 g der Verbindungen 27, 72, 74 und 132 wurden in jeweils 20 ml Methanol gelöst bzw. suspendiert, die Ansätze mit der 1,3-molaren Menge Hydroxylammoniumacetat versetzt und 2 Stunden bei Raumtemperatur gerührt. Anschliessend wurde filtriert, das Lösungsmittel abdestilliert, die Rückstände in 3-4 ml abs. Ethanol gelöst und die Oxamidin-hydroiodide 187-190 mit Ether ausgefällt.

Tabelle 17

NR	AV	R	AB (%)	Smp. (°C)
187	27	-N(CH ₃) ₂	59	ab 105
188	72	-N(CH ₃) ₂ COOH	73	ab 122
189	74	-N(CH ₃) ₂ COOH	71	ab 126
190	132	-N(CH ₃) ₂ C(=O)C ₆ H ₅	83	ab 112

- 79 -

Auf diese Weise wurden dargestellt:

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanin-4-methylpiperidid-hydroiodid (187),

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-(D,L)-pipecolinsäure-hydroiodid (188),

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-isonipeptinsäure-hydroiodid (189),

N- α -(2-Naphthylsulfonyl)-3-oxamidino-(D,L)-phenylalanyl-1,2,3,4-tetrahydroisochinolin-3-carbonsäure-hydroiodid (190).

Beispiel 18

N- α -(2-Naphthylsulfonyl)-3-amino-(D,L)-phenylalanyl-piperidid (202), -4-methylpiperid (203), -(D,L)-pipecolinsäure (204), -isonipeptinsäure (205) und -1,2,3,4-tetrahydroisochinolin -3-carbonsäure (206)

(3-Nitrobenzyl)-acetamino-malonsäure-diethylester (191)

11,0 g 3-Nitrobenzylbromid und 11,0 g Acetaminomalonsäure-diethylester wurden in 80 ml abs. Dioxan gelöst. Zu dieser Lösung wurde unter Röhren eine Lösung von 1,15 g Natrium in 20 ml abs. Ethanol gegeben. Das Gemisch wurde 4 Stunden auf dem siedenden Wasserbad erhitzt, nach dem Erkalten 500 ml Wasser zugesetzt, der gebildete Niederschlag abgesaugt, mit Wasser gewaschen und aus Methanol/Wasser umkristallisiert. Ausbeute: 80%, Smp. 153-154°C.

- 80 -

3-Nitro-(D,L)-phenylalanin-hydrochlorid (192)

14 g der Verbindung 191 wurden in einer Mischung aus 26 ml Eisessig und 26 ml 6 N HCl 4 Stunden unter Rückfluss erhitzt. Beim Erkalten kristallisierte der grösste Teil der Verbindung 192 aus. Die Kristalle wurden abfiltriert und getrocknet. Das Filtrat wurde im Vakuum eingeengt, wobei eine zusätzliche Menge der Verbindung 192 anfiel. Man löste die beiden erhaltenen Fraktionen in Methanol und fällte die Verbindung 192 mit Ether aus. Der gebildete Niederschlag wurde abgesaugt, mit Ether gewaschen und getrocknet. Ausbeute: 75%, Smp. 247-248°C.

N- α -(2-Naphthylsulfonyl)-3-nitro-(D,L)-phenylalanin (193)

19,8 g der Verbindung 192 wurden in 252 ml 1 N KOH gelöst und mit einer Lösung von 20 g 2-Naphthylsulfonylchlorid in 240 ml Ether analog Beispiel 1 (3) umgesetzt und aufgearbeitet. Die Umkristallisation erfolgte aus Methanol/Wasser. Ausbeute: 71%, Smp. 173-174°C.

N- α -(2-Naphthylsulfonyl)-3-nitro-(D,L)-phenylalanyl-verbindungen (194-201)

N- α -(2-Naphthylsulfonyl)-3-nitro-(D,L)-phenylalanin-piperidide (194, 195)

7,5 mmol Piperidin bzw. 4-Methylpiperidin und 5 mmol NMM wurden in 10 ml abs. Dioxan gelöst, eine Lösung von 5 mmol des aus Verbindung 193 und Thionylchlorid erhaltenen Säurechlorids in 10 ml abs. Dioxan zugetropft und der Ansatz 2 Stunden bei Raumtemperatur gerührt, wobei die Verbindungen 194 und 195 ausfielen. Anschliessend wurde abgesaugt, mit 50%igem Methanol gewaschen und getrocknet.

- 81 -

N- α -(2-Naphthylsulfonyl)-3-nitro-(D,L)-phenylalanyl-carbonsäureester (196-198)

Je 5 mmol der Verbindung 193 und 6 mmol (D,L)-Piperolin-säureethylester, Isonipeptinsäureethylester sowie 1,2,3,4-Tetrahydroisochinolin-3-carbonsäuremethylester wurden analog Verfahren A (Beispiel 3) umgesetzt und aufgearbeitet. Die Reinigung erfolgte säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel.

N- α -(2-Naphthylsulfonyl)-3-nitro-(D,L)-phenylalanyl-carbonsäuren (199-201)

5 mmol der Verbindungen 196-198 wurden analog Beispiel 3 (50-60) verseift. Die isolierten Produkte wurden in der erhaltenen Form zur Reduktion eingesetzt.

Aminoverbindungen (202-206)

Je 3 mmol der Nitroverbindungen 194, 195, 199-201 wurden in der zum Lösen notwendigen Menge DMF gelöst, die Lösungen mit einer Suspension von 0,4 g Pd/C (10%) in 10 ml Ethanol und 0,5 ml Essigsäure versetzt und unter Normalbedingungen hydriert, bis die berechnete Wasserstoffmenge aufgenommen war. Anschliessend wurde der Katalysator abfiltriert, das Lösungsmittel abdestilliert und die erhaltenen Rohprodukte säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 90:10 als Eluierungsmittel gereinigt.

Die zu stärkerer Verfärbung neigenden Aminoverbindungen 204 und 205 wurden in der unter Beispiel 3 (83-93) beschriebenen Weise in Hydrochloride übergeführt.

- 82 -

Tabelle 18

NR	AV	R ¹	R ²	AB (%)	Smp. (°C)
194	193	NO ₂	-N(CH ₂) ₆	85	238-240
195	193	NO ₂	-N(CH ₂) ₅ CH ₃	95	182-184
196	193	NO ₂	-N(CH ₂) ₄ COOC ₂ H ₅	60	172-176
197	193	NO ₂	-N(CH ₂) ₃ COOC ₂ H ₅	93	161-163
198	193	NO ₂	-N(CH ₂) ₂ Ph-COOCH ₃	67	121-127

- 83 -

Tabelle 18 (Fortsetzung)

NR	AV	R ¹	R ²	AB(%)	Smp. (°C)
199	196	NO ₂		82	amorph
200	197	NO ₂		98	amorph
201	198	NO ₂		92	amorph
202	194	NH ₂		59	148-150
203	195	NH ₂		72	amorph
204	199	NH ₂ ·HCl		65	ab 153
205	200	NH ₂ ·HCl		82	112-115
206	201	NH ₂		72	ab 150

- 84 -

Beispiel 19

Verbindungen mit Guanidinstruktur (207, 208)

N- α -(2-Naphthylsulfonyl)-3-quanidino-(D,L)-phenylalanin-piperidid-hydrochlorid (207)

Eine Lösung von 1,09 g der Verbindung 202, 0,83 ml NMM und 0,51 g 1-Amidino-3,5-dimethyl-pyrazol-nitrat in 20 ml THF wurde 30 Stunden unter Rückfluss erhitzt. Nach Abdestillieren des Lösungsmittels wurde das erhaltene Rohprodukt säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 95:5 als Eluierungsmittel gereinigt. Ausbeute: 28%, Smp. ab 122°C.

Zur Überführung in das Hydrochlorid wurde in der im Beispiel 3 (83-93) angegebenen Weise verfahren. Ausbeute: 83%, Smp. ab 110°C.

N- α -(2-Naphthylsulfonyl)-3-quanidino-(D,L)-phenylalanin-(D,L)-pipecolinsäure-hydrochlorid (208)

0,69 g der freien Aminoverbindung 204 wurden in 12 ml THF gelöst, die Lösung mit 0,47 ml NMM und 0,44 g 1-Amidino-3,5-dimethyl-pyrazol-nitrat versetzt und der Ansatz 50 Stunden unter Rückfluss erhitzt. Nach Abdestillieren des Lösungsmittels wurde das erhaltene Rohprodukt säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 75:25 gereinigt. Die isolierte Guanidinverbindung wurde analog Beispiel 3 (83-93) in das Hydrochlorid 208 übergeführt. Ausbeute: 40%, Smp. ab 100°C.

- 85 -

ZUSAMMENSTELLUNG VONELEMENTARANALYSEN- und DC-DATEN

<u>NR</u>	<u>FORMEL</u>	<u>M.G.</u>		<u>C</u>	<u>H</u>	<u>N</u>	<u>S</u>	<u>DC</u> <u>R_f(LS)</u>
1	$C_{17}H_{20}N_2O_5$	332.361	Ber. Gef.	61.44 61.72	6.07 6.11	8.43 8.34	- -	0.40(4)
2	$C_{10}H_{10}N_2O_2$	190.204	Ber. Gef.	63.15 63.34	5.30 5.47	14.73 14.52	- -	0.31(1)
3	$C_{20}H_{16}N_2O_4S$	380.426	Ber. Gef.	63.15 63.40	4.24 4.48	7.36 7.66	8.43 8.30	0.32(3)
6	$C_{20}H_{19}N_3O_4S \cdot HCl$	433.918	Ber. Gef.	55.36 54.89	4.65 5.09	9.68 9.32	7.39 7.42	0.36(1)
7	$C_{21}H_{21}N_3O_4S \cdot HCl$	447.945	Ber. Gef.	56.31 55.98	4.95 5.10	9.38 9.22	7.16 7.65	0.53(3)
8	$C_{23}H_{25}N_3O_4S \cdot HCl$	475.999	Ber. Gef.	58.04 57.63	5.51 5.61	8.83 8.84	6.74 6.72	0.55(1)
9	$C_{24}H_{27}N_3O_4S \cdot HCl$	490.026	Ber. Gef.	58.83 58.89	5.76 5.92	8.58 8.58	6.54 6.70	0.55(1)
10	$C_{27}H_{25}N_3O_4S \cdot HCl \cdot 0.5H_2O$	533.051	Ber. Gef.	60.83 60.54	5.11 5.60	7.88 8.17	6.02 6.22	0.63(1)
11	$C_{28}H_{27}N_3O_4S \cdot HCl \cdot 0.5H_2O$	547.078	Ber. Gef.	61.47 61.66	5.34 5.16	7.68 7.81	5.86 5.71	0.64(1)
12	$C_{26}H_{27}N_3O_3S$	461.587	Ber. Gef.	67.65 67.58	5.90 5.75	9.10 9.22	6.95 6.72	0.76(3)
13	$C_{26}H_{27}N_3O_3S$	461.587	Ber. Gef.	67.65 67.82	5.90 5.91	9.10 9.08	6.95 6.85	0.76(3)
14	$C_{26}H_{27}N_3O_3S$	461.587	Ber. Gef.	67.65 67.73	5.90 5.91	9.10 9.13	6.95 7.03	0.76(3)
15	$C_{25}H_{26}N_4O_3S$	462.575	Ber. Gef.	64.91 65.08	5.67 5.70	12.11 12.11	6.93 6.98	0.21(2)
16	$C_{30}H_{28}N_4O_3S$	524.646	Ber. Gef.	68.68 68.38	5.38 5.70	10.68 10.70	6.11 6.34	0.58(2)
17	$C_{27}H_{28}N_4O_5S$	520.613	Ber. Gef.	62.29 62.78	5.42 5.73	10.76 10.38	6.16 6.28	0.69(3)
18	$C_{29}H_{32}N_4O_5S$	548.667	Ber. Gef.	63.48 63.71	5.88 5.88	10.21 10.33	5.84 5.82	0.88(3)

- 86 -

NR	FORMEL	M.G.		C	H	N	S	<u>DC</u> <u>R_f(LS)</u>
32	C ₂₆ H ₃₀ N ₄ O ₃ S·HI	606.531	Ber. Gef.	51.49 51.63	5.15 5.23	9.24 9.16	5.29 5.16	0.54(1)
33	C ₂₆ H ₃₀ N ₄ O ₃ S·HI	606.531	Ber. Gef.	51.49 51.32	5.15 5.31	9.24 9.32	5.29 5.32	0.54(1)
34	C ₂₆ H ₃₀ N ₄ O ₃ S·HI	606.531	Ber. Gef.	51.49 51.40	5.15 5.05	9.24 9.30	5.29 5.40	0.46(1)
35	C ₂₅ H ₂₉ N ₅ O ₃ S·2HCl	552.528	Ber. Gef.	54.35 54.73	5.66 5.52	12.68 12.58	5.80 5.93	0.08(1)
36	C ₃₀ H ₃₁ N ₅ O ₃ S·HCl	578.138	Ber. Gef.	62.33 62.21	5.58 5.61	12.11 11.87	5.55 5.70	0.44(1)
37	C ₂₇ H ₃₁ N ₅ O ₅ S·HI	665.557	Ber. Gef.	48.73 48.18	4.85 4.99	10.52 10.12	4.82 4.93	0.36(1)
38	C ₂₉ H ₃₅ N ₅ O ₅ S·HI	693.611	Ber. Gef.	50.22 49.97	5.23 5.14	10.10 10.08	4.62 4.92	0.45(1)
39	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.70	5.63 5.66	8.09 8.11	6.17 6.16	0.88(3)
40	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.30	5.63 5.66	8.09 8.37	6.17 6.32	0.86(3)
41	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.70	5.63 5.66	8.09 8.08	6.17 6.30	0.86(3)
42	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.37	5.63 5.32	8.09 7.82	6.17 6.30	0.83(3)
43	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.	65.27 65.20	5.86 5.92	7.87 8.01	6.01 6.32	0.39(4)
44	C ₃₁ H ₃₅ N ₃ O ₅ S	561.706	Ber. Gef.	66.29 66.70	6.28 6.53	7.48 7.59	5.71 5.81	0.82(3)
45	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.94	5.63 5.48	8.09 8.12	6.17 6.32	0.89(3)
46	C ₂₈ H ₂₉ N ₃ O ₅ S	519.625	Ber. Gef.	64.72 64.60	5.63 5.50	8.09 8.24	6.17 6.48	0.84(3)
47	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.	65.27 65.51	5.86 5.75	7.87 8.16	6.01 6.19	0.79(3)
48	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.	65.27 65.13	5.86 5.25	7.87 8.00	6.01 6.18	0.77(3)

- 87 -

<u>NR</u>	<u>FORMEL</u>	<u>M.G.</u>		<u>C</u>	<u>H</u>	<u>N</u>	<u>S</u>	<u><u>DC</u></u> <u>R_F(LS)</u>
49	$C_{29}H_{29}N_3O_7S$	563.636	Ber. Gef.	61.80 62.39	5.19 5.14	7.46 7.77	5.69 5.75	0.78(3)
50	$C_{26}H_{25}N_3O_5S$	491.571	Ber. Gef.	63.53 63.22	5.13 5.15	8.55 8.39	6.52 6.56	0.58(3) 0.54
51	$C_{26}H_{25}N_3O_5S$	491.571	Ber. Gef.	63.53 63.26	5.13 5.20	8.55 8.34	6.52 6.55	0.58(3)
52	$C_{26}H_{25}N_3O_5S$	491.571	Ber. Gef.	63.53 62.98	5.13 5.27	8.55 8.56	6.52 6.28	0.58(3)
53	$C_{27}H_{27}N_3O_5S \cdot 2H_2O$	541.630	Ber. Gef.	59.87 59.93	5.77 5.75	7.76 7.88	5.92 5.98	0.52(3) 0.48
54	$C_{28}H_{29}N_3O_5S$	519.625	Ber. Gef.	64.72 64.58	5.63 5.39	8.09 8.36	6.17 6.23	0.54(3) 0.51
55	$C_{30}H_{33}N_3O_5S$	547.679	Ber. Gef.	65.79 65.69	6.07 6.13	7.67 7.52	5.85 5.53	0.52(3) 0.48
56	$C_{27}H_{27}N_3O_5S$	505.598	Ber. Gef.	64.14 64.32	5.38 5.52	8.31 8.33	6.34 6.68	0.68(3) 0.65
57	$C_{27}H_{27}N_3O_5S$	505.598	Ber. Gef.	64.14 63.52	5.38 5.72	8.31 7.98	6.34 6.18	0.58(3)
58	$C_{28}H_{29}N_3O_5S$	519.625	Ber. Gef.	64.72 64.97	5.63 5.77	8.09 8.23	6.17 6.60	0.50(3)
59	$C_{27}H_{27}N_3O_5S$	505.598	Ber. Gef.	64.14 63.91	5.38 5.30	8.31 8.21	6.34 6.61	0.60(3)
60	$C_{27}H_{25}N_3O_7S \cdot H_2O$	553.598	Ber. Gef.	58.58 58.81	4.92 4.62	7.59 8.03	5.79 6.12	0.23(3)
83	$C_{26}H_{28}N_4O_5S \cdot HCl \cdot H_2O$	563.079	Ber. Gef.	55.46 55.96	5.55 5.90	9.95 9.71	5.69 5.36	0.42(1) 0.37
84	$C_{26}H_{28}N_4O_5S \cdot HCl$	545.063	Ber. Gef.	57.29 56.89	5.36 5.56	10.28 10.01	5.88 6.17	0.38(1)
85	$C_{26}H_{28}N_4O_5S \cdot HCl$	545.063	Ber. Gef.	57.29 56.85	5.36 5.60	10.28 10.02	5.88 6.38	0.35(1)
86	$C_{27}H_{30}N_4O_5S \cdot HCl$	559.090	Ber. Gef.	58.00 58.72	5.59 5.86	10.02 9.85	5.74 5.82	0.41(1) 0.35
87	$C_{28}H_{32}N_4O_5S \cdot HCl$	573.117	Ber. Gef.	58.68 58.77	5.80 6.01	9.78 9.68	5.59 5.88	0.44(1)
88	$C_{30}H_{36}N_4O_5S \cdot HCl$	601.171	Ber. Gef.	59.94 59.61	6.20 6.37	9.32 9.28	5.33 5.68	0.50(1) 0.45

- 88 -

NR	FORMEL	M.G.		C	H	N	S	<u>DC</u> <u>R_f(LS)</u>
89	C ₂₇ H ₃₀ N ₄ O ₅ S·HCl ·H ₂ O	577.106	Ber. Gef.	56.19 56.22	5.76 5.66	9.71 9.80	5.56 5.81	0.57(1) 0.53
90	C ₂₇ H ₃₀ N ₄ O ₅ S·HCl ·H ₂ O	577.106	Ber. Gef.	56.19 56.18	5.76 5.67	9.71 9.62	5.56 5.52	0.41(1)
91	C ₂₈ H ₃₂ N ₄ O ₅ S·HCl	573.117	Ber. Gef.	58.68 58.49	5.80 5.78	9.78 9.57	5.59 6.03	0.49(1)
92	C ₂₇ H ₃₀ N ₄ O ₅ S·HCl ·H ₂ O	577.106	Ber. Gef.	56.19 55.96	5.76 5.50	9.71 9.52	5.56 5.36	0.48(1)
93	C ₂₇ H ₂₈ N ₄ O ₇ S·HCl ·0.5H ₂ O	598.082	Ber. Gef.	54.22 54.00	5.06 4.96	9.37 9.44	5.36 5.77	0.34(1)
94	C ₂₇ H ₃₀ N ₄ O ₅ S·HCl ·H ₂ O	577.106	Ber. Gef.	56.19 55.96	5.76 5.90	9.71 9.71	5.56 5.36	0.47(1)
95	C ₂₇ H ₃₀ N ₄ O ₅ S·HCl	559.090	Ber. Gef.	58.00 57.58	5.59 5.63	10.02 9.87	5.74 5.97	0.43(1)
96	C ₂₇ H ₃₀ N ₄ O ₅ S·HCl	559.090	Ber. Gef.	58.00 57.54	5.59 5.58	10.02 9.79	5.74 5.48	0.40(1)
97	C ₂₈ H ₃₂ N ₄ O ₅ S·HCl	573.117	Ber. Gef.	58.68 58.72	5.80 5.86	9.78 9.54	5.59 5.58	0.55(1)
98	C ₂₉ H ₃₄ N ₄ O ₅ S·HCl	587.144	Ber. Gef.	59.32 59.23	6.01 6.23	9.54 9.61	5.46 5.56	0.53(1)
99	C ₂₈ H ₃₂ N ₄ O ₅ S·HCl ·H ₂ O	591.133	Ber. Gef.	56.89 56.72	5.97 5.53	9.48 9.58	5.42 5.70	0.59(1)
100	C ₂₈ H ₃₂ N ₄ O ₅ S·HCl ·H ₂ O	591.133	Ber. Gef.	56.89 56.60	5.97 5.82	9.48 9.14	5.42 5.19	0.48(1)
101	C ₂₈ H ₃₂ N ₄ O ₅ S·HCl ·H ₂ O	591.133	Ber. Gef.	56.89 56.87	5.97 5.83	9.48 9.45	5.42 5.30	0.55(1)
102	C ₃₂ H ₃₆ N ₄ O ₆ S	604.732	Ber. Gef.	63.56 63.66	6.00 6.14	9.26 9.39	5.30 5.54	0.60(3)
103	C ₃₃ H ₃₈ N ₄ O ₆ S	618.759	Ber. Gef.	64.06 64.13	6.19 6.21	9.05 9.16	5.18 5.45	0.34(3)
104	C ₃₀ H ₃₂ N ₄ O ₆ S	576.678	Ber. Gef.	62.48 62.13	5.59 5.73	9.72 9.63	5.56 5.72	0.28(3)
105	C ₃₂ H ₃₆ N ₄ O ₆ S·H ₂ O	622.748	Ber. Gef.	61.72 61.23	6.15 6.62	9.00 8.83	5.15 5.18	0.15(3)
110	C ₃₀ H ₃₅ N ₅ O ₆ S·HI	721.622	Ber. Gef.	49.93 50.14	5.03 5.20	9.71 9.79	4.44 4.62	0.32(1)

- 89 -

NR	FORMEL	M.G.		C	H	N	S	<u>DC</u> <u>R_f(LS)</u>
111	C ₃₂ H ₃₉ N ₅ O ₆ S·HI	749.676	Ber. Gef.	51.27 51.59	5.38 5.35	9.34 9.64	4.28 4.30	0.30(1)
112	C ₃₂ H ₃₆ N ₄ O ₆ S	604.732	Ber. Gef.	63.56 63.25	6.00 6.58	9.26 9.74	5.30 4.92	0.79(3)
115	C ₃₂ H ₃₉ N ₅ O ₆ S·HI ·1.5H ₂ O	776.700	Ber. Gef.	49.49 49.08	5.58 5.36	9.02 9.17	4.13 4.36	0.51(1)
116	C ₂₈ H ₃₁ N ₅ O ₆ S·HCl ·0.5H ₂ O	611.124	Ber. Gef.	55.03 55.04	5.44 5.78	11.46 10.89	5.25 5.11	0.29(1)
117	C ₂₉ H ₃₃ N ₅ O ₆ S·HCl ·H ₂ O	634.159	Ber. Gef.	54.93 54.77	5.72 5.58	11.04 10.88	5.06 5.15	0.33(1)
118	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.	65.27 65.29	5.86 5.81	7.87 7.89	6.01 6.54	0.68(2)
119	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.	65.27 65.39	5.86 6.17	7.87 8.21	6.01 5.83	0.58(2)
123	C ₂₅ H ₂₆ N ₄ O ₅ S (Betain)	512.591	Ber. Gef.	58.58 58.42	5.51 5.97	10.93 10.50	6.26 5.98	0.30(1)
124	C ₂₆ H ₂₈ N ₄ O ₅ S·HCl ·H ₂ O	563.080	Ber. Gef.	55.46 55.62	5.55 5.75	9.95 9.74	5.69 5.83	0.38(1)
125	C ₁₀ H ₁₀ N ₂ O ₂ ·HCl	226.665	Ber. Gef.	52.99 53.03	4.89 5.04	12.36 12.13	- -	0.31(1)
126	C ₂₀ H ₁₆ N ₂ O ₄ S ·0.5 H ₂ O	389.434	Ber. Gef.	61.68 61.39	4.40 4.31	7.19 6.94	8.23 8.57	0.33(3)
127	C ₂₉ H ₃₁ N ₃ O ₅ S	533.652	Ber. Gef.	65.27 65.49	5.86 6.03	7.87 8.15	6.01 5.92	0.58(2)
128	C ₃₁ H ₂₇ N ₃ O ₅ S	553.642	Ber. Gef.	67.25 67.25	4.92 5.33	7.59 7.39	5.79 5.49	0.88(3)
129	C ₃₀ H ₂₅ N ₃ O ₅ S	539.615	Ber. Gef.	66.78 66.78	4.67 4.67	7.79 7.58	5.94 5.94	0.61(3)
134	C ₃₀ H ₂₈ N ₄ O ₅ S·HI	684.559	Ber. Gef.	52.64 52.94	4.27 4.53	8.18 8.62	4.68 4.82	0.42(1) 0.39
135	C ₃₁ H ₃₀ N ₄ O ₅ S·HI	698.586	Ber. Gef.	53.30 53.53	4.47 4.77	8.02 7.70	4.59 5.04	0.54(1)
136	C ₂₇ H ₂₉ N ₃ O ₅ S	507.614	Ber. Gef.	63.89 64.07	5.76 5.62	8.28 8.33	6.32 6.65	0.84(3)
139	C ₂₇ H ₃₂ N ₄ O ₅ S·HI	652.558	Ber. Gef.	49.70 49.28	5.10 5.16	8.59 8.50	4.91 5.11	0.55(1)

- 90 -

<u>NR</u>	<u>FORMEL</u>	<u>M.G.</u>		<u>C</u>	<u>H</u>	<u>N</u>	<u>S</u>	<u><u>DC</u></u> <u>R_f(LS)</u>
140	$C_{23}H_{24}N_4O_5S \cdot HCl \cdot H_2O$	523.014	Ber. Gef.	52.82 53.44	5.20 4.92	10.71 10.27	6.13 6.01	0.31(1)
141	$C_{24}H_{26}N_4O_5S \cdot HCl \cdot 0.5 H_2O$	528.033	Ber. Gef.	54.59 54.96	5.35 5.41	10.61 10.20	6.07 5.96	0.44(1)
142	$C_{31}H_{33}N_3O_5S$	559.690	Ber. Gef.	66.53 66.09	5.94 5.74	7.51 7.30	5.73 5.93	0.83(3)
143	$C_{30}H_{31}N_3O_5S$	545.663	Ber. Gef.	66.04 66.42	5.73 5.28	7.70 8.12	5.88 5.76	0.65(3) 0.62
146	$C_{30}H_{34}N_4O_5S \cdot HI$	690.607	Ber. Gef.	52.18 52.43	5.11 5.25	8.11 8.21	4.64 5.06	0.45(1)
147	$C_{31}H_{33}N_3O_5S$	559.690	Ber. Gef.	66.53 66.74	5.94 6.05	7.51 7.44	5.73 5.51	0.84(3)
148	$C_{30}H_{31}N_3O_5S$	545.663	Ber. Gef.	66.04 65.83	5.73 5.43	7.70 7.49	5.88 5.54	0.56(3) 0.49
151	$C_{30}H_{32}N_4O_5S \cdot HCl$	599.155	Ber. Gef.	60.14 60.43	5.89 5.53	9.35 9.63	5.35 5.70	0.48(1) 0.40
152	$C_{22}H_{19}N_3O_5S$	437.479	Ber. Gef.	60.40 60.12	4.38 4.18	9.61 9.23	7.33 7.37	0.17(3)
153	$C_{28}H_{30}N_4O_4S$	518.640	Ber. Gef.	64.84 64.72	5.83 5.85	10.80 11.17	6.18 6.22	0.79(3)
156	$C_{28}H_{33}N_5O_4S \cdot HI$	663.584	Ber. Gef.	50.68 51.12	5.16 4.98	10.55 10.15	4.83 4.71	0.46(1)
157	$C_{30}H_{32}N_4O_6S$	576.678	Ber. Gef.	62.48 62.49	5.59 5.61	9.72 9.64	5.56 5.62	0.83(3)
158	$C_{30}H_{32}N_4O_6S$	576.678	Ber. Gef.	62.48 62.94	5.59 5.16	9.72 9.52	5.56 5.71	0.76(3)
159	$C_{28}H_{28}N_4O_6S$	548.624	Ber. Gef.	61.30 61.78	5.14 4.72	10.21 10.53	5.84 5.49	0.57(3) 0.40
160	$C_{28}H_{28}N_4O_6S$	548.624	Ber. Gef.	61.30 61.52	5.14 4.87	10.21 10.43	5.84 5.97	0.53(3)
165	$C_{28}H_{31}N_5O_6S \cdot HI$	693.568	Ber. Gef.	48.49 48.12	4.65 5.10	10.10 10.41	4.62 4.73	0.35(1) 0.28
166	$C_{28}H_{31}N_5O_6S \cdot HI$	693.568	Ber. Gef.	48.49 48.93	4.65 5.12	10.10 9.73	4.62 4.31	0.31(1)
167	$C_{19}H_{15}N_3O_4S$	381.414	Ber. Gef.	59.83 59.68	3.96 4.44	11.02 11.26	8.41 8.68	0.28(3)

- 91 -

NR	FORMEL	M.G.		C	H	N	S	<u>DC</u> R _f (LS)
168	C ₂₅ H ₂₆ N ₄ O ₃ S	462.575	Ber. Gef.	64.91 64.59	5.67 5.82	12.11 12.30	6.93 6.73	0.90(3)
171	C ₂₅ H ₂₉ N ₅ O ₃ S·HI	607.519	Ber. Gef.	49.43 49.66	4.98 5.17	11.53 11.43	5.28 5.61	0.32(1)
172	C ₂₇ H ₂₈ N ₄ O ₅ S	520.613	Ber. Gef.	62.29 61.85	5.42 5.56	10.76 10.90	6.16 6.40	0.77(3)
173	C ₂₇ H ₂₈ N ₄ O ₅ S	520.613	Ber. Gef.	62.29 61.58	5.42 5.36	10.76 10.68	6.16 6.38	0.83(3)
174	C ₂₅ H ₂₄ N ₄ O ₅ S	492.559	Ber. Gef.	60.96 61.58	4.91 5.36	11.37 11.17	6.51 6.66	0.51(3) 0.47
175	C ₂₅ H ₂₄ N ₄ O ₅ S	492.559	Ber. Gef.	60.96 60.47	4.91 5.19	11.37 11.30	6.51 6.21	0.57(3)
180	C ₂₅ H ₂₇ N ₅ O ₅ S·HI	637.503	Ber. Gef.	47.10 47.58	4.43 4.28	10.99 11.31	5.03 5.38	0.40(1) 0.34
181	C ₂₅ H ₂₇ N ₅ O ₅ S·HI	637.503	Ber. Gef.	47.10 47.53	4.43 4.78	10.99 11.72	5.03 5.43	0.20(1)
182	C ₂₆ H ₃₁ N ₃ O ₃ S·HCl	502.080	Ber. Gef.	62.20 62.64	6.42 6.01	8.37 8.78	6.39 6.07	0.43(1)
183	C ₂₈ H ₃₃ N ₃ O ₅ S·HCl	560.118	Ber. Gef.	60.04 59.94	6.12 6.43	7.50 7.12	5.72 5.97	0.56(1)
184	C ₂₈ H ₃₃ N ₃ O ₅ S·HCl	560.118	Ber. Gef.	60.04 59.80	6.12 6.25	7.50 7.87	5.72 5.38	0.41(1)
185	C ₂₆ H ₂₉ N ₃ O ₅ S·HCl	532.064	Ber. Gef.	58.69 58.22	5.68 5.99	7.90 7.61	6.03 6.34	0.50(1)
186	C ₂₆ H ₂₉ N ₃ O ₅ S·HCl	532.064	Ber. Gef.	58.69 59.12	5.68 5.43	7.90 7.64	6.03 6.17	0.32(1)
187	C ₂₆ H ₃₀ N ₄ O ₄ S·HI	622.531	Ber. Gef.	50.16 50.65	5.02 5.19	9.00 9.08	5.15 5.37	0.92(1)
188	C ₂₆ H ₂₈ N ₄ O ₆ S·HI	652.515	Ber. Gef.	47.86 48.16	4.48 4.83	8.59 8.51	4.91 4.95	0.61(1)
189	C ₂₆ H ₂₈ N ₄ O ₆ S·HI	652.515	Ber. Gef.	47.86 48.24	4.48 4.67	8.59 9.01	4.91 5.23	0.72(1)
190	C ₃₀ H ₂₈ N ₄ O ₆ S·HI	700.559	Ber. Gef.	51.43 50.99	4.17 4.65	8.00 8.21	4.58 4.93	0.71(1)
191	C ₁₆ H ₂₀ N ₂ O ₇	352.350	Ber. Gef.	54.54 54.31	5.72 5.52	7.95 7.92	- -	0.52(4)

- 92 -

NR	FORMEL	M.G.		C	H	N	S	<u>DC</u> <u>R_f(LS)</u>
192	C ₉ H ₁₀ N ₂ O ₄ ·HCl	246.654	Ber. Gef.	43.83 43.91	4.50 4.52	11.36 11.28	- -	0.25(1)
193	C ₁₉ H ₁₆ N ₂ O ₆ S	400.415	Ber. Gef.	56.99 57.17	4.03 4.28	7.00 6.97	8.00 8.32	0.28(3)
194	C ₂₄ H ₂₅ N ₃ O ₅ S	467.549	Ber. Gef.	61.65 61.54	5.39 5.49	8.99 8.90	6.86 6.91	0.67(3)
195	C ₂₅ H ₂₇ N ₃ O ₅ S	481.576	Ber. Gef.	62.35 62.77	5.65 6.04	8.73 9.01	6.66 6.35	0.73(3)
196	C ₂₇ H ₂₉ N ₃ O ₇ S	539.614	Ber. Gef.	60.10 60.03	5.42 5.22	7.79 7.84	5.94 5.90	0.83(3)
197	C ₂₇ H ₂₉ N ₃ O ₇ S	539.614	Ber. Gef.	60.10 60.07	5.42 5.43	7.79 7.97	5.94 6.20	0.85(3)
198	C ₃₀ H ₂₇ N ₃ O ₇ S	573.631	Ber. Gef.	62.82 62.65	4.74 4.36	7.33 7.46	5.59 5.23	0.85(3)
199	C ₂₅ H ₂₅ N ₃ O ₇ S	511.560	Ber. Gef.	58.70 59.05	4.93 4.63	8.21 8.02	6.27 6.10	0.59(3) 0.57
200	C ₂₅ H ₂₅ N ₃ O ₇ S	511.560	Ber. Gef.	58.70 58.80	4.93 4.94	8.21 8.31	6.27 6.51	0.61(3)
201	C ₂₉ H ₂₅ N ₃ O ₇ S·H ₂ O	577.620	Ber. Gef.	60.30 60.45	4.71 4.46	7.28 7.65	5.55 6.03	0.59(3) 0.56
202	C ₂₄ H ₂₇ N ₃ O ₃ S	437.565	Ber. Gef.	65.88 65.44	6.22 5.98	9.60 9.82	7.33 7.71	0.28(2)
203	C ₂₅ H ₂₉ N ₃ O ₃ S	451.592	Ber. Gef.	66.49 66.52	6.47 6.38	9.31 9.52	7.10 7.38	0.54(3)
204	C ₂₅ H ₂₇ N ₃ O ₅ S·HCl·1.5 H ₂ O	545.061	Ber. Gef.	55.09 55.34	5.73 5.91	7.71 8.31	5.88 5.88	0.34(3) 0.30
205	C ₂₅ H ₂₇ N ₃ O ₅ S·HCl·0.5 H ₂ O	527.045	Ber. Gef.	56.97 56.42	5.55 5.88	7.97 7.62	6.08 5.99	0.30(3)
206	C ₂₉ H ₂₇ N ₃ O ₅ S·2.5H ₂ O	574.660	Ber. Gef.	60.61 60.32	5.61 5.23	7.31 7.45	5.58 5.05	0.25(3)
207	C ₂₅ H ₂₉ N ₅ O ₃ S·HCl	516.067	Ber. Gef.	58.19 58.02	5.86 6.21	13.57 13.79	6.21 6.02	0.46(1)
208	C ₂₆ H ₂₉ N ₅ O ₅ S·HCl·2 H ₂ O	596.110	Ber. Gef.	52.39 52.41	5.75 5.48	11.75 11.69	5.38 5.34	0.43(1) 0.36

- 93 -

Im folgenden sind die biologischen Eigenschaften von repräsentativen erfindungsgemäßen Verbindungen aufgeführt:

In Tabelle 19 - 25 ist die Hemmung der Gerinnungsenzyme Thrombin und Faktor X_a anhand der Dissoziationskonstante K_i (ausgedrückt in $\mu\text{mol/l}$) durch die genannten Verbindungen angegeben. Alle untersuchten Verbindungen hemmen die durch beide Enzyme bewirkte Substratspaltung kompetitiv. Unter den in Tabelle 19 aufgeführten Derivaten des 3-Amidinophenylalanins finden sich eine Reihe von Verbindungen mit hoher Antithrombinaktivität, d. h. mit K_i -Werten unter 1 $\mu\text{mol/l}$. Die Thrombinhemmung ist vergleichsweise stärker als die Hemmung von Faktor X_a . Die K_i -Werte für die Hemmung von Faktor X_a liegen gewöhnlich 2 Größenordnungen höher als die für die Thrombinhemmung.

Die Verbindungen, die sich vom 3-Guanidinophenylalanin (Tabelle 20), 3-Oxamidinophenylalanin (Tabelle 21), 3-Aminophenylalanin (Tabelle 22) und 3-Aminomethylphenylalanin (Tabelle 23) ableiten, bewirken geringere Antithrombin-Aktivität, einige von ihnen haben aber brauchbare K_i -Werte für die Thrombin-Hemmung im micromolaren Bereich.

Auch bei Austausch der 2-Naphthylsulfonyl-Schutzgruppe durch einen Chinolylsulfonyl-Rest (Tabelle 24) bzw. einen 2-Naphthylsulfonyl-Glycyl-Rest (Tabelle 25) werden Verbindungen mit einer Antithrombin-Aktivität im mikromolaren Bereich gefunden.

- 94 -

Tabelle 19

Hemmung von Thrombin und Faktor X_a durch Derivate des
 N- α -(2-Naphthylsulfonyl)-3-amidinophenylalanins
 R¹ = Amidino, n = 0, R⁴ = 2-Naphthyl

Verbindung	R ²	K _i in $\mu\text{mol/l}$	
		Thrombin	Faktor X _a
NAPAP		0,006	7,9
TAPAM		66	0,84
7	OMe	0,28	2,5
123	Pro-OH	0,68	220
124	Pro-OMe	0,27	1,04
83	Pip-OH	0,26	38
94	Pip-OMe	0,07	46
116	Pip-Gly-OH	1,3	110
117	Pip-Gly-OMe	0,88	38
84	Nip-OH	1,1	44
95	Nip-OMe	0,15	18
85	iNip-OH	0,57	43
96	iNip-OMe	0,017	43
32	Ppd(2-Me)	0,13	74
33	Ppd(3-Me)	0,13	32
34	Ppd(4-Me)	0,0086	41
86	Pip(4-Me)-OH	0,12	96
97	Pip(4-Me)-OMe	0,096	58
35	Pzd(4-Me)	0,036	30
134	THICH-3-COOH	0,018	42
151	DHICH-3-COOH	0,12	54

Pro-OH = Prolin, Pip-OH = Pipecolinsäure, Nip-OH = Nipecotinsäure, iNip-OH = Isonipecotinsäure, Ppd = Piperidid, Pzd = Piperazid, Gly = Glycin, OMe = Methylester, THICH-3-COOH = Tetrahydroisochinolin-3-carbonsäure, DHICH-3-COOH = Decahydroisochinolin-3-carbonsäure

- 95 -

Tabelle 20

Hemmung von Thrombin und Faktor X_a durch Derivate des
 N- α -(2-Naphthylsulfonyl)-3-guanidinophenylalanins
 R^1 = Guanidino, $n = 0$, R^4 = 2-Naphthyl

Verbindung	R^2	K_i in $\mu\text{mol/l}$	
		Thrombin	Faktor X_a
208	Pip-OH	29	82
207	Ppd	0,40	107

Tabelle 21

Hemmung von Thrombin und Faktor X_a durch Derivate des
 N- α -(2-Naphthylsulfonyl)-3-oxamidinophenylalanins
 R^1 = Oxamidino, $n = 0$, R^4 = 2-Naphthyl

Verbindung	R^2	K_i in $\mu\text{mol/l}$	
		Thrombin	Faktor X_a
188	Pip-OH	330	410
189	iNip-OH	270	670
187	Ppd(4-Me)	2,8	>1000
190	THICH-3-COOH	2,4	130

- 96 -

Tabelle 22

Hemmung von Thrombin und Faktor X_a durch Derivate des
 N- α -(2-Naphthylsulfonyl)-3-aminophenylalanins
 $R^1 = \text{Amino}$, $n = 0$, $R^4 = 2\text{-Naphthyl}$

Verbindung	R^2	K_i in $\mu\text{mol/l}$	
		Thrombin	Faktor X_a
204	Pip-OH	130	450
205	iNip-OH	720	720
203	Ppd(4-Me)	8,9	210

Tabelle 23

Hemmung von Thrombin und Faktor X_a durch Derivate des
 N- α -(2-Naphthylsulfonyl)-3-aminomethylphenylalanins
 $R^1 = \text{Aminomethyl}$, $n = 0$, $R^4 = 2\text{-Naphthyl}$

Verbindung	R^2	K_i in $\mu\text{mol/l}$	
		Thrombin	Faktor X_a
185	Pip-OH	50	140
186	iNip-OH	0,5	230
182	Ppd(4-Me)	1,9	500

- 97 -

Tabelle 24Hemmung von Thrombin und Faktor X_a durch Derivate desN- α -(8-Chinolylsulfonyl)-3-amidinophenylalaninsR¹ = Amidino, n = 0, R⁴ = 8-Chinolyl

Verbindung	R ²	K _i in $\mu\text{mol}/\text{l}$	
		Thrombin	Faktor X _a
180	Pip-OH	16	380
181	iNip-OH	127	260
171	Ppd(4-Me)	0,34	180

Tabelle 25Hemmung von Thrombin und Faktor X_a durch Derivate desN- α -(2-Naphthylsulfonyl)-glycyl-3-amidinophenylalaninsR¹ = Amidino, n = 1, R³ = H, R⁴ = 2-Naphthyl

Verbindung	R ²	K _i in $\mu\text{mol}/\text{l}$	
		Thrombin	Faktor X _a
165	Pip-OH	61	48
166	iNip-OH	46	97
156	Ppd(4-Me)	3,6	25

- 98 -

In Tabelle 26 sind für einige repräsentative, erfundungsgemäße Verbindungen auch ihre Hemmwirkung gegenüber Trypsin, Plasmin, Faktor XII_a, Plasmakallikrein, tPA und glandulärem Kallikrein dargestellt. Gewöhnlich wird Trypsin schwächer gehemmt, die K_i-Werte sind eine Größenordnung höher. Wesentlich schwächer wirksam sind die Verbindungen gegenüber Plasmin, Plasmakallikrein und Faktor X_a (K_i 2 Größenordnungen grösser). Praktisch unwirksam sind die Derivate gegenüber Faktor XII_a, tPA und glandulärem Kallikrein. Für die Mehrzahl der Verbindungen kann man daher von selektiven Thrombinhemmstoffen sprechen.

Zum Vergleich dazu werden die entsprechenden Werte für die zum Stand der Technik gehörenden NAPAP und TAPAM dagegegengehalten.

Tabelle 26
Hemmung von Thrombin, Trypsin, Plasmin, Faktor Xa, Faktor XIIa, tPA, glandulärem und Plasmakallikrein durch ausgewählte erfindungsgemäße Derivate (K_1 in $\mu\text{mol}/1$)

Verbindung	R ¹	R ²	R ⁴	n	Thrombin	Trypsin	Plasmin	Xa	XIIa	Faktor	Faktor	gland.	Plasma
												Kallikrein	
NAPAP					0,006	0,69	30	7,9	500	70	93	5,6	
TAPAM					66	16	160	0,84	180	27	890	15	
7 Am OMe	Am	OMe		Na	0	0,28	2,5	5,2	2,5	190	120	210	18
123 Am Pro-OH	Am	Pro-OH		Na	0	0,68	0,96	95	220	> 1000	300	> 1000	59
124 Am Pro-OME	Am	Pro-OME		Na	0	0,27	3,4	11	104	600	225	> 1000	29
83 Am Pip-OH	Am	Pip-OH		Na	0	0,26	0,63	34	38	> 1000	205	≈ 1000	32
94 Am Pip-OME	Am	Pip-OME		Na	0	0,07	1,9	10,5	46	500	220	> 1000	35
34 Am Ppd(4-Me)	Am	Ppd(4-Me)		Na	0	0,0086	0,14	4,0	41	> 1000	460	> 1000	16
86 Am Pip(4-Me)-OH	Am	Pip(4-Me)-OH		Na	0	0,12	1,2	42	96	> 1000	470	> 1000	84
35 Am Pzd(4-Me)	Am	Pzd(4-Me)		Na	0	0,036	1,3	31	30	> 1000	430	> 1000	85
134 Am THICH-3-COOH	Am	THICH-3-COOH		Na	0	0,018	0,13	0,67	42	> 1000	> 1000	390	1,5
207 Gu Ppd	Gu	Ppd		Na	0	0,40	4,1	17	107	> 1000	> 1000	> 1000	> 1000
190 Ox THICH-3-COOH	Ox	THICH-3-COOH		Na	0	2,4	27	120	130	460	> 1000	> 1000	> 1000
203 A Ppd(4-Me)	A	Ppd(4-Me)		Na	0	8,9	>1000	>1000	210	270	> 1000	> 1000	> 1000
182 AMe Ppd(4-Me)	AMe	Ppd(4-Me)		Na	0	1,9	3,4	27	500	< 1000	> 1000	76	> 1000
171 Am Ppd(4-Me)	Am	Ppd(4-Me)		Ch	0	0,34	3,6	100	180	780	> 1000	260	> 1000
156 Am Ppd(4-Me)	Am	Ppd(4-Me)		Na	1	3,6	46	46	25	350	340	> 1000	68

Am = Amidino, Gu = Guanidino, Ox = Guanidino, A = Amino, AMe = Aminomethyl, Na = 2-Naphthyl, Ch = 8-Chinolyl

- 100 -

In Tabelle 27 sind die an der Maus bestimmten Toxizitätswerte von repräsentativen erfindungsgemässen Verbindungen und zum Vergleich NAPAP und TAPAM zusammengestellt.

Tabelle 27
Approximative LD₅₀ an der Maus

Verbindung	R ¹	R ²	LD ₅₀ p.o. mg/kg KG	LD ₅₀ i.v. mg/kg KG
NAPAP			> 800	54
TAPAM			> 1000	103
123	Am	Pro-OH	> 3000	188
124	Am	Pro-OMe	> 3000	80
83	Am	Pip-OH	> 3000	272
85	Am	iNip-OH	> 3000	43
134	Am	THICH-3-COOH	> 3000	29
190	Ox	THICH-3-COOH	> 3000	> 150
208	Gu	Pip-OH	> 1000	> 50
186	AMe	iNip-OH	> 3000	100

Im Vergleich zu früher geprüften Derivaten von Benzimidin-enthaltenden Aminosäuren (LD₅₀ 10 - 50 mg/kg nach i.v.-Applikation) ist die Toxizität bei einer Reihe von erfindungsmässigen Verbindungen deutlich geringer, d.h. es werden Werte für die LD₅₀ nach i.v.-Gabe von > 50 mg/kg gefunden. Das wird besonders deutlich bei dem Vergleich von NAPAP mit solchen Verbindungen, die auch verbesserte pharmakokinetische Daten zeigen (123, 83, 186 und 190).

In Tabelle 28 - 30 sind die Ergebnisse von Untersuchungen zur Pharmakokinetik von repräsentativen, erfindungsgemässen Verbindungen und als Vergleich dazu die Werte mit NAPAP zusammengestellt. Die zu prüfenden Verbindungen wurden intravenös (Tabelle 28), subcutan (Tabelle 29) bzw. peroral (Tabelle 30) an Ratten verabreicht. Nach der Verabreichung wurde den Versuchstieren in Zeitabständen von

- 101 -

2 bis maximal 360 Minuten Blutproben entnommen, in welchen der Blutspiegel der zu prüfenden Verbindungen mittels HPLC bestimmt wurde.

Tabelle 28

Konzentration (ng/ml) ausgewählter Verbindungen im Plasma von Ratten nach intravenöser Verabreichung von 1 mg/kg

Zeit (min)	Verbindung						
	NAPAP	123	83	85	134	190	186
2	4028	2330	1903	2348	4441	3262	1840
5	2111	1180	928	1238	1680	1606	1256
10	1307	660	496	526	775	806	653
15	933	440	243	334	621	496	426
30	413	260	150	240	79	477	225
45	106	185	115	176	78	134	205
60	78	160	85	99	10	0	193
90	-	68	45	52	0	-	53
120	0	32	0	28	-	-	228
180	-	22	0	-	-	-	-
240	-	0	0	14	-	-	-

- 102 -

Tabelle 29

Konzentration (ng/ml) ausgewählter Verbindungen im Plasma
von Ratten nach subkutaner Verabreichung von 5 mg/kg

Zeit (min)	Verbindung						
	NAPAP	123	83	85	134	190	186
15	294	792	402	1330	0	340	251
30	375	1340	620	1027	35	330	368
45	324	1381	626	860	72	374	444
60	361	-	568	834	79	492	558
90	330	1781	467	913	92	354	629
120	327	1603	415	977	145	270	534
180	230	1135	314	815	285	165	533
240	173	927	297	676	268	152	669
300	-	-	-	550	248	138	455
360	-	-	-	-	-	126	340

Tabelle 30

Konzentration (ng/ml) ausgewählter Verbindungen im Plasma
von Ratten nach oraler Verabreichung von 100 mg/kg

Zeit (min)	Verbindung						
	NAPAP	123	83	85	134	190	186
15	0	230	133	870	188	481	996
30	0	170	79	541	260	1113	800
45	0	-	-	345	297	796	769
60	0	100	50	120	260	574	1246
90	0	133	37	-	-	-	877
120	0	-	38	103	234	542	619
180	0	96	25	104	236	217	357
240	-	67	23	0	210	113	328
300	-	-	-	-	157	50	370
360	-	-	-	-	86	-	326

Im Vergleich zu NAPAP zeigen die geprüften Derivate ein verbessertes pharmakokinetisches Verhalten. Zwar werden die Verbindungen nach intravenöser Gabe mit vergleichbarer Geschwindigkeit eliminiert (Abb. 1), nach subkutaner Verabreichung werden aber relativ hohe, lang andauernde Blutspiegel gefunden (Abb. 2). Nach oraler Gabe kann NAPAP nicht im Plasma nachgewiesen werden, während einige der beispielhaft geprüften erfindungsmässigen Verbindungen verhältnismässig hohe Konzentrationen erreichen (Abb. 3). In vitro sind eine Reihe von repräsentativen erfindungsmässigen Verbindungen gerinnungshemmend wirksam. In allen Fällen wurde die Thrombinzeit (TT) am effektivsten verlängert. Dies entspricht der Selektivität dieser Inhibitoren, die unter den Gerinnungsfaktoren Thrombin am stärksten hemmen. Eine Verlängerung der aktivierten partiellen Thromboplastinzeit (aPTT), bei der neben Thrombin auch die an der Frühphase der Gerinnung beteiligten Enzyme zum Tragen kommen, wird durch höhere Konzentrationen der Inhibitoren erreicht. Das gilt auch für die Beeinflussung der Prothrombinzeit (PT), die den extrinsischen Gerinnungsweg repräsentiert. Beispielhaft ist das für Verbindung 34 in Abb. 4 gezeigt.

Der gerinnungshemmende Effekt der Verbindungen lässt sich auch *in vivo* nachweisen. Nach i.v.-, s.c.- und p.o.-Verabreichung der zu prüfenden Verbindungen wurde im Plasma der Versuchstiere der gerinnungshemmende Effekt bestimmt. Beispielhaft ist das für die Verbindung 123 in Abb. 5 gezeigt. Ganz entsprechend dem mittels HPLC bestimmten Konzentrationsverlauf im Plasma ist die Antithrombinwirkung im Gerinnungstest nachzuweisen.

Zweckmässig werden die nach einer der erfindungsmässigen Verfahren hergestellten Phenylalanin-Derivate als solche oder als Salze mit einer physiologisch verträglichen anorganischen oder organischen Säure unter Verwendung geeigneter pharmazeutischer Hilfstoffe in geeignete

- 104 -

Applikationsformen überführt. Entsprechend dem pharmakokinetischen Verhalten sind das insbesondere transdermale Therapie-Systeme wie Pflaster, aber auch Tabletten, Dragees, Kapseln, Suppositorien, Lösungen usf.

Die Dosierung hängt ab von der Antithrombinaktivität, der Toxizität, den möglichen Blutspiegelwerten, der Bioverfügbarkeit und der Applikationsart der verwendeten erfindungsgemäßen Verbindung sowie ganz allgemein von den Blutwerten, dem Gewicht und dem Allgemeinzustand des Patienten, so dass die Dosierung letztlich vom praktizierenden Arzt bestimmt werden muss. Im Prinzip entspricht die Dosierung derjenigen bekannter thrombinhemmender Verbindungen und liegt zwischen ungefähr 0,2 mg/kg und ungefähr 20 mg/kg Körpergewicht, wobei gegebenenfalls auch höhere Dosen verabreicht werden können. Bei einem erwachsenen Patienten ergeben sich somit tägliche Dosierungen einer erfindungsgemäßen Verbindung von ungefähr 50 mg bis ungefähr 1600 mg oder mehr.

Anhand von Verbindung 186 soll beispielhaft die Überführung in 5 pharmazeutische Darreichungsformen gezeigt werden.

Beispiel 1

Tabletten mit 50 mg der Verbindung 186 als Wirkstoff
Zusammensetzung:

1 Tablette enthält 50 mg Wirkstoff, 40 mg Lactose, 30 mg Maisstärke, 4 mg PVP und 1 mg Magnesiumstearat.

Herstellungsverfahren

Der mit Lactose und Maisstärke vermischte Wirkstoff wird mit einer 20%igen ethanolischen Lösung von Polyvinylpyrrolidon gleichmäßig durchfeuchtet, durch ein Sieb der Maschenweite 1,5 mm gedrückt und bei 40°C getrocknet. Das so erhaltene Granulat wird mit Magnesiumstearat vermischt und zu Tabletten verpresst.

- 105 -

Beispiel 2

Dragees mit 25 mg der Verbindung 186 als Wirkstoff

Zusammensetzung:

1 Dragee enthält 25 mg Wirkstoff, 20 mg Lactose und 15 mg Maisstärke.

Herstellungsverfahren

Der mit Lactose und Maisstärke vermischt Wirkstoff wird in der unter Beispiel 1 beschriebenen Weise granuliert und zu ovalen Tablettenkernen verpresst, die anschliessend drapiert werden. Für den Dragiervorgang wird eine Zuckermischung, bestehend aus 36,09 % Puderzucker, 13,54 % Gummi arabicum, 36,09 % Weizenstärke und 3,00% g Magnesiumstearat sowie als Bindemittel 11,28 % einer Mischung aus gleichen Teilen Mucilago Gummi arabici und Wasser verwendet.

Beispiel 3

Kapseln mit 50 mg der Verbindung 186 als Wirkstoff

Zusammensetzung:

1 Kapsel enthält 50 mg Wirkstoff und 100 mg Lactose.

Herstellungsverfahren

Der fein gepulverte Wirkstoff wird anteilweise mit Lactose verrieben und die Mischung in Stärkekapseln, die paarweise ineinanderschiebbare, einseitig verschlossene Zylinder darstellen, in der angegebenen Dosierung eingebracht.

Beispiel 4

Suppositorien (Zäpfchen) mit 50 mg der Verbindung 186 als Wirkstoff

Zusammensetzung:

1 Zäpfchen enthält 50 mg Wirkstoff und 0,95 g Cetylphthalat als Grundlage.

Herstellungsverfahren

Der feinst gepulverte Wirkstoff wird mit der doppelten Menge der verflüssigten Grundlage verrieben. Die Verreibung wird mit dem Rest der verflüssigten Grundlage anteilweise gemischt und bis zur gleichmässigen Beschaffenheit bearbeitet. Nahe der Grenze der Giessbarkeit wird die Mischung

- 106 -

in eine geeignete Form gegossen und bis zum Erkalten stehengelassen.

Beispiel 5

Injektions- bzw. Infusionslösung mit 5 mg/ml der Verbindung 186 als Wirkstoff

Herstellungsverfahren

Der Wirkstoff wird in 100 ml Aqua ad injectionem gelöst, die Lösung filtriert und gegebenenfalls in Ampullen zu je 2 ml abgefüllt. Die mit der Wirkstofflösung gefüllten und verschlossenen Gefäße (Infusionsflaschen, Ampullen) werden der Dampfsterilisation bei 121 bis 124°C unterzogen.

Patentansprüche

1. D,L-, L- und D-Phenylalanin-Derivate der Formel

in welcher

 R^1 eine basische Gruppe der Formel

darstellt, wobei R^5 und R^6 in den Formeln (a) und (b) je Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkylrest bezeichnen,

R^2 (f) OH, O-Alkyl, O-Cycloalkyl oder O-Aralkyl darstellt, wobei $n=0$ ist,

(g) eine Gruppe der Formel

darstellt, in welcher R^7 Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkylrest und R^8 einen geradkettigen oder verzweigten niedrigen Alkylrest, einen 1- oder 2-Hydroxyethylrest, einen Methylmercaptoethylrest, einen Aminobutylrest, einen

Guanidinopropylrest, einen Carboxy(niedrigen)alkylrest, einen Carboxamido(niedrigen)alkylrest, einen Phenyl(niedrigen)alkylrest, dessen Ring gegebenenfalls mit OH, Halogen, niedrig-Alkyl oder Methoxy substituiert ist, einen Cyclohexyl- oder Cyclohexylmethylrest, dessen Ring gegebenenfalls mit OH, Halogen, niedrig-Alkyl oder Methoxy substituiert ist, oder einen N-Heteroaryl(niedrigen)alkylrest mit 3 bis 8 Kohlenstoffatomen im Heteroaryl, z.B. Imidazolylmethyl oder Indolylmethyl, bezeichnen, wobei die Gruppe (g) racemisch oder D- bzw. L-konfiguriert sein kann,

(h) eine Gruppe der Formel

darstellt, in welcher m die Zahl 1 oder 2 bezeichnet, und in welcher eine der Methylengruppen gegebenenfalls mit einem Hydroxyl-, Carboxyl-, niederen Alkyl- oder Aralkyl-rest substituiert ist, wobei die Gruppe (h) racemisch oder D- bzw. L-konfiguriert sein kann,

(i) eine Gruppe der Formel

darstellt, in welcher p = r = 1, p = 1 und r = 2 oder p = 2 und r = 1 sind und in welcher eine der Methylengruppen gegebenenfalls mit einem Hydroxyl-, Carboxyl-, niederen Alkyl- oder Aralkyl-rest substituiert ist,

(k) eine Piperidylgruppe darstellt, die gegebenenfalls in einer der Stellungen 2, 3 und 4 mit einem niederen Alkyl- oder Hydroxyl-rest substituiert ist, wobei an die heterocycloaliphatischen Ringe der Formeln (h), (i), (k) gegebenenfalls ein weiterer aromatischer oder cycloaliphatischer Ring, vorzugsweise Phenyl oder Cyclohexyl, in 2,3 oder 3,4 Stellung,

bezogen auf das Heteroatom, ankondensiert ist,

(l) eine Piperazylgruppe, die gegebenenfalls in p-Stellung mit einem niederen Alkylrest, einem Arylrest oder einem Alkoxy carbonylrest substituiert ist,

(m) eine Gruppe der Formel

darstellt, in welcher n' die Zahlen 1 bis 6 und R¹⁰ Wasserstoff oder den Methyl- oder Cyclohexylrest bezeichnen,

(n) eine Gruppe der Formel

darstellt, wobei R⁹ in den Formeln (g), (h), (i), (l), (m) und (n) eine Hydroxyl-, geradkettige oder verzweigte niedrige Alkoxy- oder eine Benzyloxy-Gruppe bezeichnet,

oder

(o) eine Kombination von 2 bis 20, vorzugsweise 2 bis 5, insbesondere 2 oder 3, der von den unter (g), (h), (i), (k), (l), (m) und (n) definierten Gruppen abgeleiteten, durch Amidbindungen verknüpften Resten (R⁹ = Einfachbindung) darstellt, wobei der C-terminale Rest gegebenenfalls mit einem Rest R⁹ verknüpft ist,

R³ Wasserstoff oder einen geradkettigen oder verzweigten niedrigen Alkyl- oder einen 1- oder 2-Hydroxyethyl-Rest darstellt, wobei n die Zahl 0 oder 1 bezeichnet,

und

R⁴ einen Arylrest, z.B. Phenyl, Methylphenyl, α- oder β-Naphthyl oder 5-(Dimethylamino)-naphthyl, oder einen Heteroarylrest, z.B. Chinolyl, darstellt,
wobei niedrig 1-4 Kohlenstoffatome bedeutet,
und deren Salze mit Mineralsäuren oder organischen Säuren.

2. Phenylalanin-Derivate nach Patentanspruch 1, in welchen

R¹ eine basische Gruppe der Formel (a) = Amidino, (b) = Guanidino, (c) = Oxamidino, (d) = Aminomethyl oder (e) = Amino,

R² O-Alkyl, O-Cycloalkyl oder Aralkyl oder einen heterocycloaliphatischen Rest der Formeln (h), (i), (k) und (l), wobei R⁹ in den Formeln (h) und (i) eine Hydroxyl-, geradkettige oder verzweigte niedrige Alkoxy-, Cycloalkoxy- oder Aralkoxy-Gruppe sein kann,

R⁴ einen Aryl- oder Heteroarylrest, vorzugsweise 8-Naphthyl, und

n die Zahl 0 darstellt.

3. Verwendung der Phenylalanin-Derivate nach Patentanspruch 1 oder 2 zur Herstellung von oral, subkutan, oder intravenös verabreichbaren antithrombotisch wirksamen Arzneimitteln.

4. Oral, subkutan oder intravenös verabreichbares antithrombotisches Arzneimittel, gekennzeichnet durch eine wirksame Menge mindestens eines Phenylalanin-Derivates nach Patentanspruch 1 oder 2 und geeignete pharmazeutische Hilfsstoffe.

5. Antithrombotisch wirksames Arzneimittel nach Patentanspruch 4, in Form von Tabletten, Dragees, Kapseln, Pellets, Suppositorien, Lösungen oder transdermalen Systemen, wie Pflaster.

6. Verfahren zur Blutgerinnungs- resp. Thrombinhemmung bei Lebewesen, insbesondere bei Menschen, durch Verabreichung einer wirksamen Menge mindestens einer Verbindung nach einem der Patentansprüche 1 oder 2 resp. eines Arzneimittels nach einem der Patentansprüche 4 oder 5.

1/5

Abbildung 2
Plasmaspiegel von NAPAP, 85, 186 und 190
nach s.c.-Gabe von 5 mg/kg bei Ratten

Abbildung 1
Plasmaspiegel von NAPAP, 85, 186 und 190
nach i.v.-Gabe von 1 mg/kg bei Ratten

Abbildung 3
Plasmaspiegel von NAPAP, 85, 186 und 190
nach p.o.-Gabe von 100 mg/kg bei Ratten

4/5

Abbildung 4
Verlängerung der Gerinnungszeiten durch
Verbindung 34 in vitro

5/5

Abbildung 5
**Ex vivo Thrombin-Zeiten nach i.v.-,
s.c.- und p.o.-Gabe von Verbindung 123**

INTERNATIONAL SEARCH REPORT

International Application No PCT/CH91/00235

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

Int.Cl.5 C07D 295/185 C07K 5/06 C07K 5/08 C07D 211/60 C07D 211/62
A61K 31/445 A61K 31/195 C07D 295/205 C07D 217/26 C07D /215/50 C07C311/19

II. FIELDS SEARCHED

Minimum Documentation Searched ?

Classification System	Classification Symbols			
Int.Cl.5	C07D 295/00	C07K 5/00	C07D 211/00	C07D 295/00
	C07C 311/00	C07D 217/00	C07D 215/00	C07D 401/00

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT*

Category *	Citation of Document, ¹¹ with Indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
X	GB, A, 2007663 (V.E.B. ARZNEIMITTELWERK) 23 May 1979, see the whole document, in particular claims 1,10-16,30-34(cited in the application)	1-6
X	Die Pharmazie, Vol. 36, Brochure 9, September 1981, Berlin (DD), G. Wagner et al.: "Synthese antiproteolytisch wirksamer Nalpha-arylsulfonylierter Amidinophenylalaninamide", pages 597-603, see the whole article (cited in the application)	1-6
X	Die Pharmazie, Vol. 36, Brochure 9, September 1981, Berlin (DD), J. Stürzebecher et al: "Synthetische Inhibitoren der Serinproteininasen" pages 639-641, see the whole article (cited in the application)	1-6
X	Thrombosis Research, Vol. 54, No. 3, 1 May 1989 Pergamon Press, New York (US), J. Stürzebecher et al: "Synthetic inhibitors of bovine factor Xalpha and thrombin comparison of their anticoagulant efficiency", pages 245-252, see the whole article (cited in the application)	1-6

* Special categories of cited documents: ¹⁰

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the International filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search
7 February 1992 (07.02.92)

Date of Mailing of this International Search Report
27 February 1992 (27.02.92)

International Searching Authority
European Patent Office

Signature of Authorized Officer

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
X	Die Pharmazie, Vol. 42, Brochure 4, April 1987, Berlin(DD), H. Vieweg et al: "Synthese von N-alpha (Arylsulfonylglycyl)-3-amidinophenylalanine stern als aktive und relativ spezifische Inhibitoren von Faktor Xal", page 268, see the whole artical ---	1,3-6
X	Thrombosis and Haemostasis, Vol. 63, No. 2, 12. April 1990, R.K. Schattauer Verlagsgesellschaft mbH, Stuttgart (DE), J. Hauptmann et al: "Comparison of the anticoagulant and antithrombotic effects of synthetic thrombin and factor Xa inhibitors", pages 220-223, see the whole artical ---	1-6
X	Chemical Abstracts, Vol. 107, No. 5, 3 August 1987, (Columbus, Ohio US), see page 758, abstract 40333v, & DD, A, 242404 (KARL-MARX -UNIVERSITÄT LEIPZIG) 28 January 1987 ---	1,3-6
X	Chemical Abstracts, Vol. 98, Nr. 13, 28 March 1983, Columbus, (US), see page 645, abstract 107770b, & DD, A, 155954 (WAGNER et al) 21 July 1982 ---	1,3-6
A	US, A, 4125604 (OKAMOTO et al.) 14 November 1978 see examples; claims ---	1-6
A	GB, A, 2153825 (MITSUBISHI) 29 August 1985 see examples, claims -----	1-6

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET**V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE¹**

This International search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers _____, because they relate to subject matter not required to be searched by this Authority, namely:

Note: Although Claim 6 relates to a method of treating the human or animal body, the search was carried out and was based on the indicated effects the compounds.

2. Claim numbers _____, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful International search can be carried out, specifically:

3. Claim numbers....., because they are dependent claims and are not drafted in accordance with the second and third sentences of PCT Rule 6.4(e).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING²

This International Searching Authority found multiple inventions in this International application as follows:

1. As all required additional search fees were timely paid by the applicant, this International search report covers all searchable claims of the International application.

2. As only some of the required additional search fees were timely paid by the applicant, this International search report covers only those claims of the International application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this International search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

CH 9100235

SA 53111

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 18/02/92. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
GB-A- 2007663	23-05-79	DE-A-	2845941	10-05-79
		FR-A, B	2407915	01-06-79
		JP-A-	54106448	21-08-79
		SE-A-	7811454	08-05-79
US-A- 4125604	14-11-78	JP-C-	1167853	08-09-83
		JP-A-	51105046	17-09-76
		JP-B-	57047990	13-10-82
		JP-C-	1165631	26-08-83
		JP-A-	51105047	17-09-76
		JP-B-	57047991	13-10-82
		JP-C-	1052091	30-06-81
		JP-A-	51125052	01-11-76
		JP-B-	55042981	04-11-80
		JP-C-	1052092	30-06-81
		JP-A-	51125053	01-11-76
		JP-B-	55042982	04-11-80
		JP-C-	1047480	28-05-81
		JP-A-	51125051	01-11-76
		JP-B-	55037992	01-10-80
		JP-C-	1067772	23-10-81
		JP-A-	51125260	01-11-76
		JP-B-	56008832	25-02-81
		CA-A-	1073914	18-03-80
		DE-A-	2550088	20-05-76
		FR-A, B	2290193	04-06-76
		GB-A-	1516668	05-07-78
		NL-A-	7512637	11-05-76
		SE-B-	431204	23-01-84
		SE-A-	7512530	10-05-76
		US-A-	4055636	25-10-77
		US-A-	4055651	25-10-77
		US-A-	4041156	09-08-77
		US-A-	4046876	06-09-77
		US-A-	4070457	24-01-78
		US-A-	4062963	13-12-77
		US-A-	4066758	03-01-78
		US-A-	4049645	20-09-77
		US-A-	4069323	17-01-78

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

CH 9100235

SA 53111

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 18/02/92. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A- 4125604		US-A- 4073914 US-A- 4096255 US-A- 4104392 US-A- 4072744 US-A- 4066759 US-A- 4072757 US-A- 4108986 US-A- 4073891 US-A- 4073913 US-A- 4093712 US-A- 4125619 US-A- 4097472 US-A- 4069317 US-A- 4073916 US-A- 4069318 US-A- 4073892	14-02-78 20-06-78 01-08-78 07-02-78 03-01-78 07-02-78 22-08-78 14-02-78 14-02-78 06-06-78 14-11-78 27-06-78 17-01-78 14-02-78 17-01-78 14-02-78
GB-A- 2153825	29-08-85	JP-A- 60163855 DE-A- 3503846 FR-A,B 2559151 US-A- 4764618	26-08-85 08-08-85 09-08-85 16-08-88

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/CH 91/00235

I. KLASSEFIKATION DES ANMELDUNGSGEGENSTANDS (bei mehreren Klassifikationsymbolen sind alle anzugeben)⁹

Nach der internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC			
Int.C1.5	C 07 D 295/185	C 07 K 5/06	C 07 K 5/08
C 07 D 211/60	C 07 D 211/62	A 61 K 31/445	A 61 K 31/195
C 07 D 295/205	C 07 D 217/26	C 07 D 215/50	C 07 C 311/19

II. RECHERCHIERTE SACHGEBIETE

Recherchierte Mindestprüfstoff⁷

Klassifikationssystem	Klassifikationsymbole		
Int.C1.5	C 07 D 295/00	C 07 K 5/00	C 07 D 211/00
	C 07 D 295/00	C 07 C 311/00	C 07 D 217/00
	C 07 D 215/00	C 07 D 401/00	

Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen⁸

III. EINSCHLAGIGE VERÖFFENTLICHUNGEN⁹

Art. ¹⁰	Kennzeichnung der Veröffentlichung ¹¹ , soweit erforderlich unter Angabe der maßgeblichen Teile ¹²	Betr. Anspruch Nr. ¹³
X	GB,A,2007663 (V.E.B. ARZNEIMITTELWERK) 23. Mai 1979, siehe das ganze Dokument, insb. Ansprüche 1,10-16,30-40 (In der Anmeldung erwähnt)	1-6
X	Die Pharmazie, Band 36, Heft 9, September 1981, Berlin (DD), G. Wagner et al.: "Synthese antiproteolytisch wirksamer Nalpha-arylsulfonylierter Amidinophenylalaninamide", Seiten 597-603, siehe den ganzen Artikel (In der Anmeldung erwähnt)	1-6
X	Die Pharmazie, Band 36, Heft 9, September 1981, Berlin (DD), J. Stürzebecher et al.: "Synthetische Inhibitoren der Serinproteinasen", >Seiten 639-641, siehe den ganzen Artikel (In der Anmeldung erwähnt)	1-6

* Besondere Kategorien von angegebenen Veröffentlichungen¹⁰:

- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nabeliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

IV. BESCHEINIGUNG

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Rechercheberichts
07-02-1992	27 FEB 1992
Internationale Recherchenbehörde EUROPAISCHES PATENTAMT	Unterschrift des bevollmächtigten Belegeres MICHAEL T. T. LAIAK

III. EINSCHLAGIGE VEROFFENTLICHUNGEN (Fortsetzung von Blatt 2)

Anr.	Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile	Betr. Anspruch Nr.
X	Thrombosis Research, Band 54, Nr. 3, 1. Mai 1989, Pergamon Press, New York (US), J. Stürzebecher et al.: "Synthetic inhibitors of bovine factor Xalpha and thrombin comparison of their anticoagulant efficiency", Seiten 245-252, siehe den ganzen Artikel (In der Anmeldung erwähnt) ---	1-6
X	Die Pharmazie, Band 42, Heft 4, April 1987, Berlin (DD), H. Vieweg et al.: "Synthese von N-alpha(Arylsulfonylglycyl)-3-amidinophenylalanine stern als aktive und relativ spezifische Inhibitoren von Faktor Xa", Seite 268, siehe den ganzen Artikel ---	1,3-6
X	Thrombosis and Haemostasis, Band 63, Nr. 2, 12. April 1990, R.K. Schattauer Verlagsgesellschaft mbH, Stuttgart (DE), J. Hauptmann et al.: "Comparison of the anticoagulant and antithrombotic effects of synthetic thrombin and factor Xa inhibitors", Seiten 220-223, siehe den ganzen Artikel ---	1-6
X	Chemical Abstracts, Band 107, Nr. 5, 3. August 1987, (Columbus, Ohio US), siehe Seite 758, Zusammenfassung 40333v, & DD, A, 242404 (KARL-MARX -UNIVERSITÄT LEIPZIG) 28. Januar 1987 ---	1,3-6
X	Chemical Abstracts, Band 98, Nr. 13, 28. März 1983, Columbus, (US), siehe Seite 645, Zusammenfassung 107770b, & DD, A, 155954 (WAGNER et al.) 21. Juli 1982 ---	1,3-6
A	US,A,4125604 (OKAMOTO et al.) 14. November 1978, siehe Beispiele; Ansprüche ----	1-6
A	GB,A,2153825 (MITSUBISHI) 29. August 1985, siehe Beispiele; Ansprüche -----	1-6

WEITERE ANGABEN ZU BLATT 2

REMERKUNGEN ZU DEN ANSPRÜCHEN, DIE SICH ALS NICHT RECHERCHIERBAR ERWIESEN HABEN

Gemäß Artikel 17 Absatz 2 Buchstabe a sind bestimmte Ansprüche aus folgenden Gründen nicht Gegenstand der internationalen Recherche gewesen:

1. Ansprüche Nr. verpflichtet ist, nämlich:
Bemerkung: Obwohl Anspruch 6 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen würde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindungen.

weil sie sich auf Gegenstände beziehen, die zu recherchieren die Bedürfe nicht

2. Ansprüche Nr. vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich:
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den

3. Ansprüche Nr. nach § 6.4(a) PCT abgefaßt sind.
weil sie abhängige Ansprüche und nicht entsprechend Satz 2 und 3 der

REMERKUNGEN BEI MANGELNDER EINHEITLICHKEIT DER ERFINDUNG

VII. BEMERKUNGEN BEI MÄRKTLICHKEIT: daß diese internationale Anmeldung mehrere Erfindungen enthält.

- Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entricht hat, erstreckt sich der Internationale Recherchenbericht auf alle recherchierbaren Ansprüche der Internationalen Anmeldung.
- Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entricht hat, erstreckt sich der Internationale Recherchenbericht nur auf die Ansprüche der Internationalen Anmeldung, für die Gebühren gezahlt worden sind, nämlich:
- Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der Internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; sie ist in folgenden Ansprüchen erfaßt:
- Da für alle recherchierbaren Ansprüche eine Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr veranlaßt, hat die Internationale Recherchenbehörde eine solche Gebühr nicht verlangt.

Recherchengebühr gerechtfertigt hatte, hat die Bemerkung hinsichtlich eines Widerspruchs

Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
 Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch.

**ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT
ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.**

CH 9100235
SA 53111

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.

Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 18/02/92.
Diese Angaben dienen nur zur Orientierung und erfolgen ohne Gewähr.

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
GB-A- 2007663	23-05-79	DE-A-	2845941	10-05-79
		FR-A, B	2407915	01-06-79
		JP-A-	54106448	21-08-79
		SE-A-	7811454	08-05-79
US-A- 4125604	14-11-78	JP-C-	1167853	08-09-83
		JP-A-	51105046	17-09-76
		JP-B-	57047990	13-10-82
		JP-C-	1165631	26-08-83
		JP-A-	51105047	17-09-76
		JP-B-	57047991	13-10-82
		JP-C-	1052091	30-06-81
		JP-A-	51125052	01-11-76
		JP-B-	55042981	04-11-80
		JP-C-	1052092	30-06-81
		JP-A-	51125053	01-11-76
		JP-B-	55042982	04-11-80
		JP-C-	1047480	28-05-81
		JP-A-	51125051	01-11-76
		JP-B-	55037992	01-10-80
		JP-C-	1067772	23-10-81
		JP-A-	51125260	01-11-76
		JP-B-	56008832	25-02-81
		CA-A-	1073914	18-03-80
		DE-A-	2550088	20-05-76
		FR-A, B	2290193	04-06-76
		GB-A-	1516668	05-07-78
		NL-A-	7512637	11-05-76
		SE-B-	431204	23-01-84
		SE-A-	7512530	10-05-76
		US-A-	4055636	25-10-77
		US-A-	4055651	25-10-77
		US-A-	4041156	09-08-77
		US-A-	4046876	06-09-77
		US-A-	4070457	24-01-78
		US-A-	4062963	13-12-77
		US-A-	4066758	03-01-78
		US-A-	4049645	20-09-77
		US-A-	4069323	17-01-78

**ANHANG ZUM INTERNATIONALEN RECHERCHENBERICHT
ÜBER DIE INTERNATIONALE PATENTANMELDUNG NR.**

CH 9100235
SA 53111

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am 18/02/92.
Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US-A- 4125604		US-A- 4073914 US-A- 4096255 US-A- 4104392 US-A- 4072744 US-A- 4066759 US-A- 4072757 US-A- 4108986 US-A- 4073891 US-A- 4073913 US-A- 4093712 US-A- 4125619 US-A- 4097472 US-A- 4069317 US-A- 4073916 US-A- 4069318 US-A- 4073892	14-02-78 20-06-78 01-08-78 07-02-78 03-01-78 07-02-78 22-08-78 14-02-78 14-02-78 06-06-78 14-11-78 27-06-78 17-01-78 14-02-78 17-01-78 14-02-78
GB-A- 2153825	29-08-85	JP-A- 60163855 DE-A- 3503846 FR-A, B 2559151 US-A- 4764618	- 26-08-85 08-08-85 09-08-85 16-08-88