2020 COMP201W2 Data Structures

■ Theory Test I Clash with COMP314 Test	◀	Theory	Test I	Clash	with	COMP314	Test
---	---	--------	--------	-------	------	---------	------

-		
		Practical Test ►
Starte	ed on	Thursday, 5 November 2020, 10:32 AM
		Finished
		Thursday, 5 November 2020, 11:45 AM
		1 hour 13 mins
	1arks	35.00/50.00
G	Grade	70.00 out of 100.00
Question 1 Incorrect		priority of a PriorityQueue cannot be reversed once a PriorityQueue is created.
Mark 0.00 out of		ect one:
0.50		True
		False
	The	correct answer is 'False'.
Question 2 Correct Mark 0.50 out of 0.50		a.util.HashSet implements the java.util.Queue interface. ect one: True
		False
	The	correct answer is 'False'.
Question 3		riorityQueue orders its elements according to their natural ordering using the Comparable
Correct	inte	rface even if a Comparator is specified.
Mark 0.50 out of	Sele	ect one:
0.50		True
		False
	The	correct answer is 'False'.

Question 4 Correct	Methods in the Collections class are static.
Mark 0.50 out of	Select one:
0.50	True
	False
	The correct answer is 'True'.
Question 5 Correct Mark 0.50 out of	The HashSet is more efficient than the TreeSet if you do not want the elements in a set to be sorted.
0.50	
	Select one:
	True
	False
	The correct answer is 'True'.
Question 6 Correct	The dynamic programming approach is the process of solving subproblems and then combining the solutions of the subproblems to obtain an overall solution.
Mark 0.50 out of 0.50	Select one:
0.30	True
	False
	The correct answer is 'True'.
Question 7	A PriorityQueue orders its elements according to the Comparator if a Comparator is specified in the constructor.
Mark 0.50 out of 0.50	Select one:
0.50	True
	False
	The correct answer is 'True'.

The TreeSet is unsorted, but the HashSet is sorted.	
Mark 0.50 out of 0.50 Select one:	
True	
False	
The correct answer is 'False'.	
Question 9 java.util.LinkedHashSet implements the java.util.Queue interface. Incorrect	
Mark 0.00 out of Select one:	
0.50 True	
○ False	
The correct answer is 'False'.	
Question 10 java.util.PriorityQueue implements the java.util.Queue interface.	
Correct Select one:	
Mark 0.50 out of 0.50 True	
○ False	
The correct answer is 'True'.	
Question 11 Which of the following statements is NOT true? Correct	
Mark 1.00 out of Select one:	
a. A Comparator object contains the compare method objects.	I that compares two
 b. The Comparable interface contains the compareTo signature "public int compareTo(Object)". 	method with the
 c. The Comparator interface contains the compareTo is signature "public int compareTo(Object, Object)". 	method with the
d. A Comparable object can compare this object with	the other object.
The correct answer is: The Comparator interface contains the comparsignature "public int compareTo(Object, Object)".	reTo method with the

Question 12	O(1) is
Correct	Select one:
Mark 1.00 out of 1.00	 a. linear time
	 b. logarithmic time
	c. constant time
	○ d. log-linear time
	The correct answer is: constant time
Question 13 Correct	Suppose list list1 is [1, 2, 5] and list list2 is [2, 3, 6]. After list1.addAll(list2), list2 is
Mark 1.00 out of	Select one:
1.00	o a. [1, 5]
	o b. [2]
	o. [1, 2, 2, 3, 5, 6]
	od. [1, 2, 3, 5, 6]
	e. [2, 3, 6]
	The correct answer is: [2, 3, 6]
Question 14 Correct	The worst-time complexity for heap sort is
Mark 1.00 out of	Select one:
1.00	a. O(nlogn)
	○ b. O(n^2)
	o. o. o(n)
	od. O(logn)
	o e. O(1)
	The correct answer is: O(nlogn)

Incorrect

Mark 0.00 out of 1.00

Which of the following is correct to perform the set intersection of two sets s1 and s2?

Select one:

- a. s1.join(s2)
- b. s1.retainAll(s2)
- c. s1.intersect(s2)
- d. s1.intersection(s2)

The correct answer is: s1.retainAll(s2)

Question 16

Correct

Mark 1.00 out of 1.00

```
Analyze the following code.
import java.util.*;
public class Test {
    public static void main(String[] args) throws Exception {
        TreeSet<String> set = new TreeSet<>();
        set.add("Red");
        set.add("Yellow");
        set.add("Green");
        set.add("Blue");
        SortedSet temp = set.headSet("Purple");
        System.out.println(temp.first());
    }
```

Select one:

}

- a. The program displays Blue
- b. The program displays Green
- c. The program displays Red
- d. The program displays Purple
- e. The program displays Yellow

The correct answer is: The program displays Blue

one: a. TreeSet b. HashSet c. LinkedHashSet d. Collection e. Set
a. TreeSet b. HashSet c. LinkedHashSet d. Collection e. Set
b. HashSetc. LinkedHashSetd. Collectione. Set
c. LinkedHashSet d. Collection e. Set
d. Collection e. Set
e. Set
rrect answer is: TreeSet
se set s1 is [1, 2, 5] and set s2 is [2, 3, 6]. After s1.addAll(s2), s2 is
one:
a. [2, 3, 6]
b. [1, 5]
c. [2]
d. [1, 2, 3, 5, 6]
e. [1, 2, 2, 3, 5, 6]
rrect answer is: [2, 3, 6]
is
one:
a. constant time
b. log-linear time
c. logarithmic time
d. linear time
rrect answer is: linear time

Correct

Mark 1.00 out of 1.00

```
Analyze the following code:
import java.util.*;
public class Test {
  public static void main(String[] args) {
     PriorityQueue<Integer> queue = new PriorityQueue<Integer>(Arrays.asList(60, 10, 50,
30, 40, 20));
     for (int i: queue)
     System.out.print(i + " ");
  }
}
Select one:
      a. The program displays 10 20 30 40 50 60
b. There is no guarantee that the program displays 10 20 30 40 50 60
      c. The program displays 60 50 40 30 20 10
      d. The program displays 60 10 50 30 40 20
```

The correct answer is: There is no guarantee that the program displays 10 20 30 40 50 60

Question 21

Correct

Mark 1.00 out of 1.00

Suppose your program frequently tests whether a student is in a soccer team and also need to know the student's information such as phone number, address, and age, what is the best data structure to store the students in a soccer team?

Select one:

- a. HashMap
- b. LinkedList
- c. ArrayList
- d. TreeMap
- e. HashSet

The correct answer is: HashMap

Correct

Mark 1.00 out of 1.00

```
What is the output of the following code?
import java.util.*;
import java.util.*;
public class Test {
  public static void main(String[] args) {
     Set<String> set1 = new HashSet<>();
     set1.add("Atlanta");
     set1.add("Macon");
     set1.add("Savanna");
     Set<String> set2 = new HashSet<>();
     set2.add("Atlanta");
     set2.add("Macon");
     set2.add("Savanna");
     Set<String> set3 = new HashSet<>();
     set3.add("Macon");
     set3.add("Savanna");
     set3.add("Atlanta");
     System.out.println(set1.equals(set2) + " " + set1.equals(set3));
  }
}
Select one:
      a. false false
      b. true true
c. false true
      d. true false
```

The correct answer is: true true

Incorrect

Mark 0.00 out of 1.00

```
Analyze the following code:
public class Test {
    public static void main(String[] args) {
        Map<String, String> map = new HashMap<>>();
        map.put("123", "John Smith");
        map.put("111", "George Smith");
        map.put("123", "Steve Yao");
        map.put("222", "Steve Yao");
    }
}
Select one:
```

- a. After all the four entries are added to the map, "123" is a key that corresponds to the value "John Smith".
- b. A runtime error occurs because two entries with the same key "123" are added to the map.
- c. After all the four entries are added to the map, "123" is a key that corresponds to the value "Steve Yao".
- d. After all the four entries are added to the map, "Steve Yao" is a key that corresponds to the value "222".
- e. After all the four entries are added to the map, "John Smith" is a key that corresponds to the value "123".

The correct answer is: After all the four entries are added to the map, "123" is a key that corresponds to the value "Steve Yao".

Correct

Mark 1.00 out of 1.00

```
What is the output for the following code?
import java.util.*;
public class Test {
     public static void main(String[] args) {
          Set<A> set = new HashSet<>();
          set.add(new A());
          set.add(new A());
          set.add(new A());
          set.add(new A());
          System.out.println(set);
     }
}
class A {
     int r = 1;
     public String toString() {
          return r + "";
     public int hashCode() {
          return r;
     }
}
Select one:
a. [1, 1]
    b. [1, 1, 1]
    c. [1, 1, 1, 1]
d. [1]
```

The correct answer is: [1, 1, 1, 1]

Question 25 Correct Mark 1.00 out of 1.00	Which of the following statements is NOT true? Select one: a. The Collection interface provides the basic operations for adding and
	removing elements in a collection.
	 b. The AbstractCollection class is a convenience class that provides full implementation for the Collection interface.
	 c. The Collection interface is the root interface for manipulating a collection of objects.
	 d. All interfaces and classes in the Collections framework are declared using generic type since JDK 1.5.
	 e. Some of the methods in the Collection interface cannot be implemented in the concrete subclass. In this case, the method would throw java.lang.UnsupportedOperationException, a subclass of RuntimeException.
	The correct answer is: The AbstractCollection class is a convenience class that provides full implementation for the Collection interface.
Question 26	The worst-time complexity for bubble sort is
Correct Mark 1.00 out of	Select one:
1.00	a. O(n)
	o b. O(1)
	o. O(nlogn)
	d. O(n^2)
	e. O(logn)
	The correct answer is: O(n^2)
Question 27 Correct	Suppose your program frequently tests whether a student is in a soccer team, what is the best data structure to store the students in a soccer team?
Mark 1.00 out of	Select one:
1.00	a. LinkedList
	b. ArrayList
	c. Vector
	o d. Vector
	e. HashSet
	The correct answer is: HashSet

Mark 1.00 out of	Select one:
1.00	a. Collection
	○ b. Iterable
	c. Iterator
	od. ArrayList
	The correct answer is: Iterator
Question 29 Correct	Suppose a list is {2, 9, 5, 4, 8, 1}. After the first pass of bubble sort, the list becomes
Mark 1.00 out of	Select one:
1.00	a. 2, 5, 4, 8, 1, 9
	o b. 2, 1, 5, 4, 8, 9
	o. 2, 9, 5, 4, 1, 8
	od. 2, 5, 9, 4, 8, 1
	e. 2, 9, 5, 4, 8, 1
	The correct answer is: 2, 5, 4, 8, 1, 9
Question 30 Correct	Suppose list1 is ["Atlanta", "Macon"] and list2 is ["Atlanta", "Macon", "Savannah"], which of the following returns true?
Mark 1.00 out of 1.00	Select one:
1.00	<pre>a. list1.contains(list2.get(2))</pre>
	b. list1.contains(list2)
	c. list2.contains(list1)
	d. list2.contains(list1.get(0))
	The correct answer is: list2.contains(list1.get(0))

The iterator() method returns an instance of the ______ interface.

Question 28

Correct

Question 31 Incorrect Mark 0.00 out of 1.00	Suppose you write a program that reads numbers and displays the distinct numbers. The order of the number does not matter. The best data structure for storing the numbers in the program is Select one: a. ArrayList b. TreeSet c. LinkedList d. LinkedHashSet e. HashSet
	The correct answer is: HashSet
Question 32 Correct	Which of the following data types does NOT implement the Collection interface?
Mark 1.00 out of	Select one:
1.00	a. Map
	b. LinkedListc. HashSet
	d. TreeSete. ArrayList
	The correct answer is: Map
Question 33 Incorrect	Which method do you use to find the number of elements in a set or list named x?
Mark 0.00 out of	Select one:
1.00	<pre>a. x.length()</pre>
	b. x.size()
	c. x.counts()
	d. x.sizes()
	e. x.count()
	The correct answer is: x.size()

Incorrect

Mark 0.00 out of 1.00

```
What is the output of the following code?

ArrayList<Integer> list = new ArrayList<>();

list.add(1);

list.add(2);

list.add(3);

list.remove(2);

System.out.println(list);

Select one:

a. [2, 3]

b. [1, 2, 3]

c. [1, 2]

d. [1, 3]

e. [1]
```

The correct answer is: [1, 2]

Question 35

Correct

Mark 1.00 out of 1.00

```
Analyze the following code:
import java.util.*;
public class Test {
  public static void main(String[] args) throws Exception {
     Set<String> set = new TreeSet<>();
     set.add("Red");
     set.add("Green");
     set.add("Blue");
     System.out.println(set.first());
  }
}
Select one:
      a. The program displays Green
      b. The program displays Red
      c. The program displays Blue
      d. The program cannot compile, because the first() method is not defined in
Set.
      e. The program may display Red, Blue, or Green.
```

The correct answer is: The program cannot compile, because the first() method is not defined in Set.

Correct order. The best data structure for storing the numbers in the program is	n their input
Mark 1.00 out of Select one:	
a. ArrayList	
b. LinkedList	
c. LinkedHashSet	
o d. TreeSet	
e. HashSet	
The correct answer is: LinkedHashSet	
Question 37 Which of the following is correct to perform the set union of two sets s1 and s2? Incorrect	
Mark 0.00 out of 1.00 Select one: a. s1.add(s2)	
$\begin{array}{c} \text{C. s1 + s2} \\ \text{d. c1. addAll(c2)} \end{array}$	
d. s1.addAll(s2)	
d. s1.addAll(s2)	
d. s1.addAll(s2) The correct answer is: s1.addAll(s2) Question 38 Correct Correct	
d. s1.addAll(s2) The correct answer is: s1.addAll(s2) Question 38 Correct Mark 1.00 out of d. s1.addAll(s2) For an instance of Collection, you can obtain its iterator using	
d. s1.addAll(s2) The correct answer is: s1.addAll(s2) Question 38 Correct Mark 1.00 out of 1.00 a. c.iterable()	
d. s1.addAll(s2) The correct answer is: s1.addAll(s2) Question 38 Correct Mark 1.00 out of 1.00 D. c.iterable() b. c.iterator()	
d. s1.addAll(s2) The correct answer is: s1.addAll(s2) Question 38 Correct Mark 1.00 out of 1.00 b. c.iterator() c. c.getIterator()	
d. s1.addAll(s2) The correct answer is: s1.addAll(s2) Question 38 Correct Mark 1.00 out of 1.00 b. c.iterable() c. c.getIterator()	
d. s1.addAll(s2) The correct answer is: s1.addAll(s2) Question 38 Correct Mark 1.00 out of 1.00 b. c.iterator() c. c.getIterator()	
d. s1.addAll(s2) The correct answer is: s1.addAll(s2) Question 38 Correct Mark 1.00 out of 1.00 B. c.iterable() b. c.iterator() c. c.getIterator() d. c.iterators()	
d. s1.addAll(s2) The correct answer is: s1.addAll(s2) Question 38 Correct Mark 1.00 out of 1.00 B. c.iterable() b. c.iterator() c. c.getIterator() d. c.iterators()	
d. s1.addAll(s2) The correct answer is: s1.addAll(s2) Question 38 Correct Mark 1.00 out of 1.00 B. c.iterable() b. c.iterator() c. c.getIterator() d. c.iterators()	

Correct

Mark 1.00 out of 1.00

Suppose you choose the first element as a pivot in the list {5 2 9 3 8 4 0 1 6 7}. Using the partition algorithm in the book, what is the new list after the partition?

Select one:

- a. 4 2 1 3 0 5 8 9 6 7
- b. 4 2 3 0 1 5 6 7 9 8
- c. 2 3 4 0 1 5 6 7 8 9
- d. 5 2 9 3 8 4 0 1 6 7
- e. 2 3 4 0 1 5 9 8 6 7

The correct answer is: 4 2 1 3 0 5 8 9 6 7

Partially correct Mark 2.00 out of

6.00

Deduce the time complexity of the code snippet in the figure below

$$int \ count = 0;$$

$$for(int \ i = n; i > 0; i /= 2)$$

$$for(int \ j = 0; \ j < i; j ++)$$

$$count + +;$$

a. Supposing that the outer loop runs $k + 1$ times, what is value of k relating	re to n

$\bigcirc n/2$	wrong
----------------	-------

$$\bigcirc log_{10}(n) \qquad \bigcirc log_{2}(n)$$

$$\bigcirc log_2(n)$$

$$\bigcirc n-1$$

Mark 0.00 out of 1.00

The correct answer is: $log_2(n)$

[1]

b. Which of the following is the time complexity function of the above algorithm in terms of k and n?

$$lacksquare T(n) = nc + rac{n}{2}c + rac{n}{2^2}c + rac{n}{2^3}c + \ldots + rac{n}{2^k}c$$
 ok

$$\bigcirc T(n) = c + 2c + 3c + \ldots + (n-k)c$$

$$\bigcirc T(n) = c + rac{1}{2}c + rac{1}{2^2}c + rac{1}{2^3}c + \ldots + rac{1}{2^k}c$$

$$\bigcirc T(n) = c + 2c + 2^2c + 2^3c + \dots 2^kc$$

Mark 2.00 out of 2.00

The correct answer is: $T(n)=nc+rac{n}{2}c+rac{n}{2^2}c+rac{n}{2^3}c+\ldots+rac{n}{2^k}c$

[2]

c. What is your final expression for the time complexity of the algorithm above after substituting k with the value you got from Question (a)?

$$\bigcirc 2c - \frac{1}{n}c$$

$$n(n+1)c$$

$$\bigcirc 2cn - c$$
 $\bigcirc 2nc + c$

$$\bigcirc 2nc + \epsilon$$

Mark 0.00 out of 2.00

The correct answer is: 2cn - c

[2]

d. The algorithm above runs in_____ time.

$$\bigcirc O(nlog(n))$$

$$\bigcirc O(n^2)$$

$$\bigcirc O(log(n))$$
 wrong

$$\bigcirc O(n)$$

Mark 0.00 out of 1.00

The correct answer is: O(n)

Partially correct

Mark 6.00 out of 10.00

a. Study the Merge Sort algorithm given below, and answer the following questions

```
public void mergeSort(E[] list, int first, int last) {
    int mid;
    if(first < last)</pre>
        mid = (first + last) / 2;
        mergeSort(list, first, mid);
        mergeSort(list, mid+1, last);
        merge(list, first, mid, last); // the merge method runs in O(n), where
n is the size of a sub-list
    }
}
```

a. i. What is the time complexity function for the Merge Sort algorithm?

```
\bigcirc T(n) = T(n-1) + O(n)
```

$$\bigcirc T(n) = T(\frac{n}{2}) + O(n)$$

$$\bigcirc T(n) = 2T(\frac{n}{2}) + O(n)$$
 ok

$$\bigcirc T(n) = 2T(n-1) + O(n)$$

$$\bigcirc T(n) = 2T(\frac{n}{2}) + c$$

Mark 1.00 out of 1.00

The correct answer is: $T(n) = 2T(\frac{n}{2}) + O(n)$

[1]

a. ii. The algorithm terminates when there are elements in a sublist

[1]

a. iii. The number of recursive calls at termination in terms of n (the size of the original list) is:

 $\bigcirc log_{10}(n)$

 $\bigcirc n/2$ $\bigcirc log_2(n)$ OK

 $\bigcirc n-1$

Mark 1.00 out of 1.00

The correct answer is: $log_2(n)$

[1]

- b. The divide and conquer algorithm for finding two closest pair of points in a Cartesian plane is given by the formula $T(n)=2T(\frac{n}{2})+nc$, where n is the number of points on the plane. The algorithm terminates when n=1 and T(1)=c . Determine the time complexity of the algorithm.
- **b. i.** What is the time complexity function of the algorithm after 3 recursive calls?

$$\bigcirc T(n) = 2^3 T(\frac{n}{2^3}) + 3nc$$

$$\bigcirc T(n) = 2T(\frac{n}{2^3}) + 2nc + nc$$

Mark 0.	00 out of 2.00				
The cor	ect answer is	$T(n) = 2^3 T$	$T(\frac{n}{2^3}) + 3nc$		
b. ii. Whic recursive o		ollowing equa	tions represen	ts the time complexity fu	ınction after k
$\bigcirc T(n)$ =	$=2^kT(\frac{n}{2^k})+$	$2^{k-1}nc + 2^{k-1}$	-2nc + + 2	2nc+nc wrong	
$\bigcirc T(n)$ =	$=2^kT(\frac{n}{2^k})+$	knc			
○ ⊋ T(n)	= 2T(n}{2^k}) +	- (k-1)nc +	(k-2)nc + +nc	
○ ⊋ T(n)	= 2T(n}{2^k})+	2^{k-1}nc-	+2^{k-2}nc+ +2n	nc+nc
Mark 0.	00 out of 1.00				
The cor	ect answer is	$T(n) = 2^{k}$	$T(\frac{n}{2k}) + knc$		
		relative to n $\bigcirc log_2(n)$	when the algo OK	rithm terminates? $\bigcirc n-1$	$\bigcirc n/2$
$\bigcirc log_{10}(n)$		$\bigcirc log_2(n)$			$\bigcirc n/2$
$\bigcirc log_{10}(n)$ Mark 1.0 The corr b. iv. What	0) 00 out of 1.00 rect answer is	$\bigcirc log_2(n)$: $log_2(n)$	ОК	$\bigcirc n-1$,
Mark 1.4 The corr b. iv. What is the substitution	on out of 1.00 rect answer is at is your final g k with the v	$\bigcirc log_2(n)$ $: log_2(n)$ experssion for alue you got for the second s	OK or the time cor from Question	n-1 mplexity of the algorithm (b. iii)?	,
$Olog_{10}(n)$ Mark 1.0 The corresponds to $Olog_{10}(n)$ b. iv. What substituting $Olog_{10}(n)$	on out of 1.00 rect answer is at is your final g k with the v	$igcirc$ $log_2(n)$: $log_2(n)$ experssion for alue you got for cn^2	OK or the time cor from Question	$\bigcap n-1$ mplexity of the algorithm (b. iii)?	above after
$\log_{10}(n)$ Mark 1.0 The corresponds to n Mark 2.0 Mark 2.0	$c(x)$ 00 out of 1.00 rect answer is at is your final $x \in C(x)$ 0 with the $x \in C(x)$ 0 $c(x)$ 0	$igcirc$ $log_2(n)$: $log_2(n)$ experssion for alue you got for $log_2(n)$	or the time corrow Question c^2+cn	$\bigcap n-1$ mplexity of the algorithm (b. iii)?	above after
$\log_{10}(n)$ Mark 1.0 The corn b. iv. What substitution cn^2 Mark 2.0 The corn b. v. The c	c(x) 00 out of 1.00 The end of 1.00	$\log_2(n)$: $log_2(n)$: $log_2(n)$: experssion for alue you got for cn^2 : $cn + cnlog_2(n)$	OK or the time confrom Question $c+cn$	$\bigcap n-1$ mplexity of the algorithm (b. iii)?	above after
$log_{10}(n)$ Mark 1.4 The corresponding to $log_{10}(n)$ Mark 1.4 The corresponding to $log_{10}(n)$ Mark 2.4 The corresponding to $log_{10}(n)$ The corresponding to $log_{10}(n)$	c(x) 00 out of 1.00 The ect answer is the state of th	$\log_2(n)$ $\log_2(n)$ $\log_2(n)$ $\exp_2(n)$ \exp	OK or the time confrom Question $c+cn$	$n-1$ mplexity of the algorithm (b. iii)? $ cn + cnlog_2(n) $	above after OK in a Cartesian

Return to: General **→**