Corrigé de E3A 2018 PC math 2

Corrigé écrit par Nathalie Mercier (nathalie.mercier@prepas.org) et Claude Morin (claude.morin@prepas.org)

Partie I. Étude de l'équation (E_a) : $\ln(x) = ax$

1. Étudions la fonction définie pour x > 0 par $g(x) = \frac{\ln(x)}{x}$. Son tableau de variations se construit en calculant $g'(x) = \frac{1 - \ln(x)}{x^2}$ ainsi que $\lim_{x \to 0^+} \frac{1}{x} \ln(x) = -\infty$ et $\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$:

x	0		1		e		$+\infty$
g'(x)		+	1	+	0	_	
g(x)	$-\infty$, O		e^{-1}		0

Puisque g est continue et strictement monotone sur les intervalles [0,e] et $[e,+\infty[$, on lit sur son tableau de variations le nombre de solutions de l'équation (E_a) qui s'écrit g(x) = a:

Si $a \le 0$ il y a une unique solution $\alpha \in]0,1]$ avec $\alpha = 1$ quand a = 0.

Si $a \in]0, e^{-1}[$ il y a exactement deux solutions, $\alpha \in]1, e[$ et $\beta \in]e, +\infty[$. Si $a = e^{-1}$ il y a une unique solution $\alpha = e$. Si $a > e^{-1}$ il n'y a pas de solution.

2. Voici quatre graphiques correspondant aux cas $a=-\frac{1}{3}$, $a=\frac{1}{3}$, $a=\frac{1}{e}$ et $a=\frac{2}{3}$:

Partie II. Étude d'une équation fonctionnelle

Notons S l'ensemble des solutions de (R):

$$\mathcal{S} = \left\{ \varphi \in \mathcal{C}^0(\mathbb{R}, \mathbb{R}) / \forall (x, y) \in \mathbb{R}^2, \varphi(x + y) = \varphi(x)\varphi(y) \right\}$$

1. Soit $\lambda \in \mathbb{R}$, notons $\tilde{\lambda}$ la fonction constante sur \mathbb{R} valant λ .

$$\tilde{\lambda} \in \mathcal{S} \iff \lambda = \lambda^2 \iff (\lambda = 0 \text{ ou } \lambda = 1).$$

Il existe donc exactement deux fonctions constantes sur \mathbb{R} solutions de $(R): \tilde{0}$ et $\tilde{1}$.

- **2.** Soit φ une solution de (R).
 - Supposons $\varphi(0) = 0$. En appliquant (R) au couple (x,0), on obtient : $\forall x \in \mathbb{R}, \ \varphi(x+0) = \varphi(x)\varphi(0), \ d$ 'où : $\forall x \in \mathbb{R}, \varphi(x) = 0. \quad \varphi \text{ est la fonction identiquement nulle.}$
 - La réciproque est évidente.

Conclusion:
$$\varphi(0) = 0 \iff \forall x \in \mathbb{R}, \ \varphi(x) = 0$$

- **3.** Soit φ une solution de (R) vérifiant $\varphi(0) \neq 0$.
 - (a) On déduit de (R) appliquée à (0,0) que : $\varphi(0) = \varphi(0)^2$.

Comme on a supposé $\varphi(0) \neq 0$, on obtient $|\varphi(0) = 1|$

- En appliquant (R) à (x/2, x/2), on obtient : $\varphi(x) = [\varphi(x/2)]^2$, d'où $\varphi(x) \ge 0$.
- En appliquant (R) à (x, -x), on obtient : $\varphi(0) = \varphi(x)\varphi(-x) = 1$, d'où $\varphi(x) \neq 0$.

Finalement $\forall x \in \mathbb{R}, \varphi(x) > 0$

- (b) Soit $x \in \mathbb{R}$.
 - Pour $n \in \mathbb{N}$, montrons par récurrence $\mathcal{H}_n : \ll \varphi(nx) = (\varphi(x))^n \gg$.
 - * Comme $\varphi(0) = 1$, \mathcal{H}_0 est vérifiée.
 - * Supposons \mathcal{H}_n . En appliquant (R) à (nx,x), on obtient $\varphi(nx+x) = \varphi(nx)\varphi(x)$ et en utilisant $\mathcal{H}_n, \, \varphi((n+1)x) = (\varphi(x))^{n+1} : \mathcal{H}_{n+1} \text{ est v\'erifi\'ee.}$

On a montré : $\forall n \in \mathbb{N}, \ \varphi(nx) = (\varphi(x))^n$

• Soit $n \in \mathbb{Z}_-$. En appliquant (R) à (nx, -nx), on obtient : $\varphi(nx)\varphi(-nx) = 1$.

On en déduit, en utilisant la relation obtenue pour -n entier naturel,

$$\varphi(nx) = \frac{1}{\varphi(-nx)} = \frac{1}{(\varphi(x))^{-n}} = (\varphi(x))^n.$$
 Finalement $\forall n \in \mathbb{Z}, \ \forall x \in \mathbb{R}, \varphi(nx) = (\varphi(x))^n$

(c) Soit $m \in \mathbb{N}^*$. Appliquons la relation ci-dessus à n = m et x = 1/m: $\varphi\left(m, \frac{1}{m}\right) = \left(\varphi\left(\frac{1}{m}\right)\right)^m$.

$$\forall m \in \mathbb{N}^*, \ \varphi(1) = \left(\varphi\left(\frac{1}{m}\right)\right)^m.$$

(d) Soit $(n,m) \in \mathbb{Z} \times \mathbb{N}^*$. On déduit des questions précédentes, en se rappelant que $\varphi > 0$:

$$\varphi\left(n.\frac{1}{m}\right) = \left(\varphi\left(\frac{1}{m}\right)\right)^n = \left(\varphi(1)^{\frac{1}{m}}\right)^n = (\varphi(1))^{\frac{n}{m}}$$

$$\forall (n,m) \in \mathbb{Z} \times \mathbb{N}^*, \ \varphi\left(\frac{n}{m}\right) = (\varphi(1))^{\frac{n}{m}}.$$

(e) Soit $x \in \mathbb{R}$. La suite (x_n) représente le développement décimal de x. On peut écrire :

$$|x - x_n| = |10^{-n} \cdot 10^n x - \lfloor 10^n x \rfloor \cdot 10^{-n}| = 10^{-n} |10^n x - \lfloor 10^n x \rfloor| \le 10^{-n}$$

On déduit du théorème d'encadrement et de $\lim_{n\to+\infty} 10^{-n} = 0$ que $\lim_{n\to+\infty} x_n = x$.

(f) Soit $x \in \mathbb{R}$. Pour $n \in \mathbb{N}, x_n = \frac{\lfloor 10^n x \rfloor}{10^n}$. Comme $(\lfloor 10^n x \rfloor, 10^n) \in \mathbb{Z} \times \mathbb{N}^*$, on déduit de (d) que $\varphi(x_n) = (\varphi(1))^{x_n}.$

On déduit de la continuité de φ sur \mathbb{R} et de $\lim_{n \to +\infty} x_n = x$ que $\lim_{n \to +\infty} \varphi(x_n) = \varphi(x)$. Par ailleurs, la fonction $y \mapsto (\varphi(1))^y$ est continue sur \mathbb{R} , donc $\lim_{n \to +\infty} (\varphi(1))^{x_n} = (\varphi(1))^x$.

Finalement, par unicité de la limite, $\forall x \in \mathbb{R}, \varphi(x) = (\varphi(1))^x$

Partie III. Étude d'une suite de polynômes

1. (a) De la relation définissant
$$P_n$$
, on obtient : $P_1 = X$ et $P_2 = \frac{1}{2}X(X+2)$

(b) De même,
$$P_0(0) = 1$$
 et $\forall n \in \mathbb{N}^*, P_n(0) = 0$

2. Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$.

 \star Les polynômes étant dérivables sur $\mathbb{R},$ on obtient :

$$P'_n(x) = \frac{1}{n!}(x+n)^{n-2}[(x+n) + (n-1)x] = \frac{1}{n!}(x+n)^{n-2}n(x+1) = \frac{1}{(n-1)!}(x+1)(x+n)^{n-2}.$$

En effet on peut écrire
$$\frac{n}{n!} = \frac{1}{(n-1)!}$$
 car $n \neq 0$.
* Par ailleurs, $P_{n-1}(x+1) = \frac{1}{(n-1)!}(x+1)[(x+1)+(n-1)]^{n-2} = \frac{1}{(n-1)!}(x+1)(x+n)^{n-2}$.

Finalement $\forall n \in \mathbb{N}^*, \ \forall x \in \mathbb{R}, P'_n(x) = P_{n-1}(x+1).$

3. Montrons par récurrence sur $n \in \mathbb{N}$ l'hypothèse $\mathcal{K}_n : \ll \forall (x,y) \in \mathbb{R}^2, \ P_n(x+y) = \sum_{n=1}^{\infty} P_k(x) P_{n-k}(y) \gg$.

* $P_0 = 1 \implies \forall (x,y) \in \mathbb{R}^2$, $P_0(x+y) = P_0(x)P_0(y)$: \mathcal{K}_0 est vérifiée. * Supposons \mathcal{K}_n . Soit $(x,y) \in \mathbb{R}^2$. Calculons $P_{n+1}(x+y)$ en utilisant le théorème fondamental de l'analyse appliqué à la fonction $y\mapsto P_{n+1}(x+y)$ qui est bien de classe \mathcal{C}^1 sur \mathbb{R} :

$$P_{n+1}(x+y) = P_{n+1}(x+0) + \int_{0}^{y} P'_{n+1}(x+t)dt$$

$$= P_{n+1}(x) + \int_{0}^{y} P_{n}(x+t+1)dt$$

$$= P_{n+1}(x) + \int_{0}^{y} \sum_{k=0}^{n} P_{k}(x)P_{n-k}(t+1)dt$$

$$= P_{n+1}(x) + \int_{0}^{y} \sum_{k=0}^{n} P_{k}(x)P'_{n-k+1}(t)dt \quad (\text{car } n-k+1>0)$$

$$= P_{n+1}(x) + \sum_{k=0}^{n} \int_{0}^{y} P_{k}(x)P'_{n-k+1}(t)dt \quad (\text{somme finie})$$

$$= P_{n+1}(x) + \sum_{k=0}^{n} P_{k}(x) \int_{0}^{y} P'_{n-k+1}(t)dt$$

$$= P_{n+1}(x) + \sum_{k=0}^{n} P_{k}(x) [P_{n-k+1}(y) - P_{n-k+1}(0)]$$

$$= P_{n+1}(x) + \sum_{k=0}^{n} P_{k}(x) [P_{n-k+1}(y) - P_{n-k+1}(0)]$$

$$= \sum_{k=0}^{n+1} P_{k}(x)P_{n+1-k}(y)$$

$$= \sum_{k=0}^{n+1} P_{k}(x)P_{n+1-k}(y)$$

 \mathcal{K}_{n+1} est bien vérifiée.

Finalement, $\forall n \in \mathbb{N}, \ \forall (x,y) \in \mathbb{R}^2, \ P_n(x+y) = \sum_{k=1}^n P_k(x) P_{n-k}(y).$

Partie IV. Retour sur l'équation (E_a)

1.(a) Quand
$$n$$
 tend vers $+\infty$ on peut écrire $\left(\frac{x+n}{n}\right)^{n-1} = \exp\left((n-1)\ln\left(1+\frac{x}{n}\right)\right)$ pour $n > -x$.
Pour $x \neq 0$: $(n-1)\ln\left(1+\frac{x}{n}\right) \underset{n \to +\infty}{\sim} (n-1)\frac{x}{n} \underset{n \to +\infty}{\sim} x$ donc $\lim_{n \to +\infty} (n-1)\ln\left(1+\frac{x}{n}\right) = x$.
Par continuité de la fonction exp on en déduit $\lim_{n \to +\infty} \left(\frac{x+n}{n}\right)^{n-1} = e^x$. C'est vrai aussi pour $x = 0$.

On a bien démontré que
$$(x+n)^{n-1} \underset{n\to+\infty}{\sim} e^x n^{n-1}$$
.

1.(b) La formule de Stirling s'écrit : $n! \sim n^n e^{-n} \sqrt{2\pi n}$

Pour
$$ax \neq 0$$
 on a $|P_n(x)a^n| = \frac{|x||x+n|^{n-1}|a|^n}{n!} \sim \frac{|x|e^x n^{n-1}|a|^n}{n^n e^{-n} \sqrt{2\pi n}} \sim \frac{|x|e^x}{\sqrt{2\pi}} \frac{|ea|^n}{n^{3/2}}.$
Si $|a| \leqslant \frac{1}{e}$ on a $\frac{|ea|^n}{n^{3/2}} \leqslant \frac{1}{n^{3/2}}$ terms général d'une série convergente puisque $\frac{3}{2} > 1$.
Si $|a| > \frac{1}{e}$ on a $\lim_{n \to +\infty} \frac{|ea|^n}{n^{3/2}} = +\infty$ donc la série diverge grossièrement.

Si
$$|a| \leqslant \frac{1}{e}$$
 on a $\frac{|ea|^n}{n^{3/2}} \leqslant \frac{1}{n^{3/2}}$ terme général d'une série convergente puisque $\frac{3}{2} > 1$.

Si
$$|a| > \frac{1}{e}$$
 on a $\lim_{n \to +\infty} \frac{|ea|^n}{n^{3/2}} = +\infty$ donc la série diverge grossièrement

La série de terme général $P_n(x)a^n$ converge donc absolument si et seulement si $|a| \leqslant \frac{1}{e}$

2.(a) Soit $a \in \left[-\frac{1}{e}, \frac{1}{e}\right]$. Pour montrer la continuité de la fonction définie par $F_a(x) = \sum_{n=0}^{+\infty} P_n(x) a^n$ nous allons appliquer le théorème de continuité à la série de fonctions de terme général $u_n(x) = P_n(x)a^n$.

Théorème : si pour tout n la fonction u_n est continue sur \mathbb{R} et si la série de fonctions $(\sum u_n)$ converge

normalement sur tout segment
$$[-A, A]$$
 alors la fonction $F_a = \sum_{n=0}^{+\infty} u_n$ est continue sur \mathbb{R} .

La fonction
$$u_n$$
 est bien continue sur \mathbb{R} puisque P_n est un polynôme.
Pour $x \in [-A, A]$ avec $A > 0$ et $|a| \leq \frac{1}{e}$ on a $|P_n(x)a^n| \leq \frac{|x||x+n|^{n-1}}{n!} \frac{1}{e^n} \leq \frac{A(A+n)^{n-1}}{n!} \frac{1}{e^n} = w_n$.

 $w_n \sim \frac{Ae^A}{\sqrt{2\pi}} \frac{1}{n^{3/2}}$ est le terme général d'une série convergente donc la série de fonctions $(\sum u_n(x))$

converge normalement sur tout segment [-A,A]. On en déduit que F_a est continue sur $\mathbb R$

2.(b) Théorème du produit de Cauchy pour deux séries absolument convergentes de termes généraux a_n et

la série de terme général $c_n = \sum_{k=0}^n a_k b_{n-k}$ est absolument convergente et de plus $\sum_{n=0}^{+\infty} c_n = \sum_{n=0}^{+\infty} a_n \sum_{n=0}^{+\infty} b_n$.

2.(c) Posons $a_n = P_n(x)a^n$ et $b_n = P_n(y)a^n$. Pour $|a| \le \frac{1}{e}$ les séries $(\sum a_n)$ et $(\sum b_n)$ sont absolument convergentes. Par suite la série produit de Cauchy $(\sum c_n)$ est aussi absolument convergente avec $c_n = \frac{1}{e}$

$$\sum_{k=0}^{n} P_k(x) a^k P_{n-k}(y) a^{n-k} = P_n(x+y) a^n \text{ en utilisant le résultat de la question III 3.}$$

On en déduit que $F_a(x)F_a(y) = F_a(x+y)$ et comme de plus F_a est continue, elle est bien solution de

On calcule $F_a(0) = 1$ puisque $P_n(0) = 0$ pour $n \ge 1$ (III 1.(b)) et $P_0 = 1$.

On peut donc appliquer le résultat du II 3.(f) et obtenir $|F_a(x) = (F_a(1))^x$

2.(d) Pour montrer que la fonction F_a est de classe C^1 sur \mathbb{R} quand $|a|\leqslant e^{-1}$ nous allons appliquer le théorème de dérivation à la série de fonctions de terme général $u_n(x) = P_n(x)a^n$.

Théorème : si pour tout n la fonction u_n est de classe C^1 sur \mathbb{R} , si la série de fonctions $(\sum u_n)$ converge simplement sur \mathbb{R} et si la série de fonctions $(\sum u'_n)$ converge normalement sur tout segment alors la

fonction
$$F_a = \sum_{n=0}^{+\infty} u_n$$
 est de classe C^1 sur \mathbb{R} et $F_a' = \sum_{n=0}^{+\infty} u_n$.

La fonction u_n est bien de classe C^1 sur \mathbb{R} puisque P_n est un polynôme. Nous avons déjà démontré que la série de fonctions $(\sum u_n)$ de variable x converge normalement sur tout

4

segment [-A, A] quand $|a| \leq \frac{1}{e}$ donc elle converge simplement sur \mathbb{R} . D'après la question III 2. on a, pour $n \ge 1$, $u'_n(x) = P'_n(x)a^n = P_{n-1}(x+1)a^n = au_{n-1}(x+1)$. Nous avons montré que $(\sum u_n)$ converge normalement sur tout segment [-A,A] donc $(\sum u'_n)$ converge normalement sur tout segment [-A-1,A-1]. On en déduit que F_a est de classe C^1 sur \mathbb{R} quand $|a| \le \frac{1}{e} \text{ avec } F'_a(x) = \sum_{n=1}^{+\infty} P'_n(x)a^n = \sum_{n=1}^{+\infty} P_{n-1}(x+1)a^n = a \sum_{n'=0}^{+\infty} P_{n'}(x+1)a^{n'} \text{ en posant } n = n'+1.$ Donc $F'_a(x) = aF_a(x+1)$

- **2.(e)** Avec le IV 2.(c) on a $F_a(x) = \exp(x \ln(F_a(1)))$ d'où $F'_a(x) = \ln(F_a(1)) \exp(x \ln(F_a(1)))$ et $F'_a(0) = \exp(x \ln(x))$ Avec le IV 2.(d) on a $F'_a(x) = aF_a(x+1)$ d'où $F'_a(0) = aF_a(1)$. On en déduit que $\ln(F_a(1)) = aF_a(1)$ donc $F_a(1)$ est solution de (E_a)
- **3.(a)** $G(a) = F_a(1) = \sum_{n=0}^{\infty} P_n(1)a^n$ est la somme d'une série entière de variable a. D'après le IV 1.(b) il y a convergence absolue si et seulement si $|a| \le \frac{1}{e}$, donc le rayon de convergence est égal à $\frac{1}{e}$. Comme il y a convergence normale sur $\left[-\frac{1}{e}, \frac{1}{e}\right]$ la fonction G est continue sur $\left[-\frac{1}{e}, \frac{1}{e}\right]$. D'après les propriétés des séries entières elle est de classe C^{∞} sur $\left[-\frac{1}{e}, \frac{1}{e}\right]$, donc de classe C^{1} . Comme $P_n(1) = \frac{(n+1)^{n-1}}{n!} > 0$ on a $G'(a) = \sum_{n=1}^{+\infty} P_n(1)na^{n-1} > 0$ sur $\left[0, \frac{1}{e}\right]$. Donc G est strictement croissante sur $\left|0, \frac{1}{e}\right|$
- **3.(b)** Puisque G est strictement croissante et continue sur $\left[0,\frac{1}{e}\right]$, $G\left(\left[0,\frac{1}{e}\right]\right) = \left[G(0),G\left(\frac{1}{e}\right)\right] = \left[F_0(1),F_{1/e}(1)\right]$. On a donc $G\left(\left|0,\frac{1}{e}\right|\right) = [1,e]$ puisque l'équation $(E_{1/e})$ a une unique solution égale à e (I 1.(c))
- **3.(c)** Si $a \in \left[-\frac{1}{e}, 0\right]$ l'équation (E_a) a une unique solution α_a donc on a bien $F_a(1) = \alpha_a$. Si $a \in \left[0, \frac{1}{e}\right]$ l'équation (E_a) a deux solutions : $\alpha_a \in]1, e[$ et $\beta > e.$ Comme $F_a(1) = G(a) \in [1, e]$ on a Si $a = \frac{1}{e}$ l'équation (E_a) a une unique solution $\alpha_a = e$ donc on a bien $F_a(1) = \alpha_a$. Dans tous les cas on a bien $F_a(1) = \alpha_a$
- Pour y > 0 et $1 \le C \le e^{1/e}$ on a $y^y = C \Leftrightarrow y \ln(y) = \ln(C) \Leftrightarrow \ln \frac{1}{y} = (-\ln(C)) \frac{1}{y}$. C'est donc équivalent à $\frac{1}{y}$ solution de $(E_{-\ln(C)})$. Comme $-\ln(C) \in \left[-\frac{1}{e}, 0\right]$ l'équation $y^y = C$ a une unique solution y_0 telle que $\frac{1}{y_0} = F_{-\ln(C)}(1)$. Avec la propriété $F_a(1)F_a(-1) = F_a(0) = 1$ on déduit :

Avec la propriete
$$F_a(1)F_a(-1) = F_a(0) = 1$$
 on deduit:
$$y_0 = F_{-\ln(C)}(-1) = \sum_{n=0}^{+\infty} P_n(-1)(-\ln(C))^n = 1 + \ln(C) + \sum_{n=2}^{+\infty} (-1)^{n+1} \frac{(n-1)^{n-1}}{n!} (\ln(C))^n.$$