

Diego Amaral, 16 de Outubro de 2015

# PPHV – Para raios Workshop

#### Conteúdo Treinamento – Para raios de Alta Tensão

#### . Overview

- O que é?
- Para que serve?

#### . Portfólio ABB

- Para raios de baixa tensão
- Para raios de média tensão
- Para raios de alta tensão

#### . Aplicações

- Cabos
- Transformadores
- Geradores
- Motores
- Filtros e bancos de capacitores



## Conteúdo Treinamento – Para raios de Alta Tensão

- . Dimensionamento Geral
- Dimensionamento elétrico
- Dimensionamento mecânico
- . Benefícios









O Para-Raio é um dispositivo de proteção projetado para limitar sobretensões à niveis aceitáveis sem ocasionar interrupções do sistema Projetado para proteger outros equipamentos mais caros, sacrificandose de forma segura em sobretensões que excedam os limites de projeto da subestação





Condições normais



Descarga atmosférica





Retorno à condição normal















- 1) Surge arresters for LV systems

+

2) Surge arresters for MV systems

+

3) Surge arresters for HV systems



LV (U<sub>c</sub> up to 1kV)

ABB Poland, Przasnysz Mass market

MV (U<sub>c</sub> 1kV up to 44kV)

HV GIS (U<sub>c</sub> above 114kV)

ABB Switzerland, Wettingen

Mass market and specialities

HV (U<sub>c</sub> above 44kV)

ABB Sweden, Ludvika

Mass market and projects





Products: LOVOS



POLIM, MWD/MWK

Products:



Products: AZ, AZY







Products:





#### Para raios de Baixa Tensão





| Arrester type   | U₅ (effective<br>value) | U <sub>p</sub> at I <sub>n</sub> | I <sub>n</sub> / I <sub>max</sub> | U <sub>p</sub> at I <sub>max</sub> | Energy absorption capability | U <sub>p</sub> at long lasting<br>surge 2000μs |
|-----------------|-------------------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------|------------------------------------------------|
|                 | ٧                       | V                                | kA                                | V                                  | J                            | V                                              |
| LOVOS - 5/280   | 280                     | 1100                             |                                   | 1500                               | 1800                         | 850                                            |
| LOVOS - 5/440   | 440                     | 1800                             |                                   | 2500                               | 3000                         | 1300                                           |
| LOVOS - 5/500   | 500                     | 2000                             | 5/25                              | 2600                               | 3200                         | 1600                                           |
| LOVOS - 5/660   | 660                     | 2500                             |                                   | 3200                               | 4000                         | 1800                                           |
| LOVOS - 5/1000  | 1000                    | 4000                             |                                   | 5200                               | 6400                         | 3200                                           |
| LOVOS - 10/280  | 280                     | 1100                             |                                   | 1700                               | 2200                         | 900                                            |
| LOVOS - 10/440  | 440                     | 1800                             |                                   | 2700                               | 3300                         | 1400                                           |
| LOVOS - 10/500  | 500                     | 2000                             | 10/40                             | 3200                               | 3900                         | 1700                                           |
| LOVOS - 10/660  | 660                     | 2500                             |                                   | 3800                               | 4500                         | 1900                                           |
| LOVOS - 10/1000 | 1000                    | 4000                             |                                   | 5800                               | 7800                         | 3400                                           |



#### Para raios de Média Tensão

|                                              | POLIM-H                              | POLIM-S                             | POLIM-K                                 | POLIM-D                 | POLIM-D.PI             | MWK                     | MWD                     | POLIM-C                 | POLIM-R                     |
|----------------------------------------------|--------------------------------------|-------------------------------------|-----------------------------------------|-------------------------|------------------------|-------------------------|-------------------------|-------------------------|-----------------------------|
|                                              |                                      |                                     |                                         |                         | up to 36 kV            |                         |                         |                         |                             |
|                                              | 13.3 kJ/kV <sub>U</sub> <sub>o</sub> | 9.0 kJ/kV <sub>U</sub> <sub>c</sub> | 5.2 kJ/kV <sub>Uc</sub>                 | 3.6 kJ/kV <sub>Ue</sub> | 2.6 kJ/kV <sub>U</sub> | 5.5 kJ/kV <sub>Ue</sub> | 5.5 kJ/kVU <sub>c</sub> | 5.5 kJ/kVU <sub>c</sub> | up to 24 kJ/kV <sub>U</sub> |
|                                              |                                      |                                     | -(((()))))-                             | - (((((())))))-         |                        | Minimiz-                |                         |                         | Ů                           |
| Medium voltage<br>switchgear                 |                                      |                                     |                                         |                         | •                      | •                       | •                       |                         |                             |
| Generators                                   | •                                    | 0                                   | 101000000000000000000000000000000000000 |                         |                        |                         |                         |                         |                             |
| AC motors                                    |                                      |                                     | 0                                       |                         |                        | •                       | •                       | •                       |                             |
| Power electronics/<br>converter transformers |                                      |                                     |                                         |                         |                        |                         |                         | •                       | •                           |
| Power electronics secondary side             |                                      |                                     |                                         |                         |                        |                         |                         | 0                       | •                           |
| HF block, throttle                           |                                      |                                     |                                         | •                       |                        |                         |                         |                         |                             |

Primary type, recommended according to energy handling requirement



Alternatively applicable for low electrical or mechanical requirements

#### Para raios de Alta Tensão



| Descrição                       | PEXLIM R    | PEXLIM Q    | PEXLIM P    |
|---------------------------------|-------------|-------------|-------------|
| Tensão do Sistema               | 52 – 170 kV | 52 – 420 kV | 52 – 420 kV |
| Tensão Nominal                  | 42 – 162 kV | 42 – 360 kV | 42 – 360 kV |
| Corrente Nominal de<br>Descarga | 10 kA       | 10 kA       | 20 kA       |
| Classe de Descarga              | Classe 2    | Classe 3    | Classe 4    |



#### Para raios de Alta Tensão









| Descrição                       | EXLIM R     | EXLIM Q     | EXLIM P     | EXLIM T      |
|---------------------------------|-------------|-------------|-------------|--------------|
| Tensão do Sistema               | 52 – 170 kV | 52 – 420 kV | 52 – 550 kV | 245 – 800 kV |
| Tensão Nominal                  | 42 – 168 kV | 42 – 420 kV | 42 – 444 kV | 180 – 624 kV |
| Corrente Nominal de<br>Descarga | 10 kA       | 10 kA       | 20 kA       | 20 kA        |
| Classe de Descarga              | Classe 2    | Classe 3    | Classe 4    | Classe 5     |







#### System/arrester parameters





Table 10: Maximum admissible distance a between cable end and transformer according to Figure 33 with b = 0. The cable is connected to a lightning endangered line and protected at both ends with MO arresters (with  $U_c = U_a$ ). The transformer has no additional protection.

| MO arrester with $U_{pl} = 4 \text{ p.u.}$ | at $I_n = 10 \text{ kA}$ |
|--------------------------------------------|--------------------------|
| $Z_{K}$                                    |                          |
| Ω                                          |                          |
| U <sub>s</sub>                             |                          |
| kV                                         |                          |
| 3.6                                        |                          |
| 7.2                                        |                          |
| 12                                         |                          |
| 17.5                                       |                          |
| 24                                         |                          |
| 36                                         |                          |

| Overhead lin | Overhead line with wooden pole |  |  |
|--------------|--------------------------------|--|--|
| 30           | 60                             |  |  |
| <u></u> а    | а                              |  |  |
| m            | m                              |  |  |
| 100          | 100                            |  |  |
|              | 40                             |  |  |
|              | 12                             |  |  |
| 4.5          | 9                              |  |  |
|              | 9                              |  |  |
| 7            | 6                              |  |  |

| Overhead line | Overhead line with earthed crossarms |  |  |
|---------------|--------------------------------------|--|--|
| 30            | 60                                   |  |  |
| <u></u> а     | а                                    |  |  |
| m             | m                                    |  |  |
| 500           | 500                                  |  |  |
|               | 55<br>15                             |  |  |
| 22            | 15                                   |  |  |
| 20            | 13                                   |  |  |
| 18            | 11                                   |  |  |
| 18            | 11                                   |  |  |



F: Lightning endangered overhead line

U: Incoming lightning overvoltage

Cable A1. A2: MO arrester

Length of the connection line a,b:

Maximum voltage at the end of the cable  $U_{\kappa}$ : Maximum voltage at the transformer



#### **Transformadores**





#### Geradores

- Entrada e saída de carga
- Altas sobretensões entre os terminais;
- Baixas tensões residuais exigidas e alta demanda de energia;

$$U_{\rm c} \ge \frac{\delta_{\rm L} \times U_{\rm s}}{{\sf T}}$$



#### **Motores**

- Restrikes decorrentes das múltiplas partidas
- Necessário instalar os para raios diretamente nos terminais ou próximos dos disjuntores;
- Suportabilidade da isolação sensitiva à sobretensões;

$$U_c \ge \frac{U_s}{\sqrt{3}}$$



#### Filtros e bancos de capacitores

- Sobretensões após o chaveamento do banco de capacitores ou filtro;
- Banco em estrela aterrada, o para raios deve promover o descarregamento;
- Banco com neutro isolado, o para raios deve ser capaz deve ser ajustado à potência reativa do banco;

$$W_{\rm c} \ge \frac{S_{\rm K}}{\omega} \times [3 - (U_{\rm c}/U_{\rm s})^2]$$

 $S_K$ : 3-phase reactive power of the capacitor battery

W<sub>o</sub>: The discharge energy taken up by the arrester

| Arrester type         | POLIM-D                | POLIM-K                | POLIM-I                | POLIM-S                | POLIM-H                |
|-----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| $U_c \ge U_s$         |                        |                        | MWK/MWD                |                        |                        |
| <i>W/U</i> ₀ in kJ/kV | 3.6                    | 5.2                    | 5.5                    | 9.0                    | 13.3                   |
| <i>U</i> ₅ in kV      | S <sub>K</sub> in MVAr |
| 3.6                   | 0.67                   | 0.97                   | 1.03                   | 1.69                   | 2.50                   |
| 7.2                   | 1.35                   | 1.95                   | 2.07                   | 3.39                   | 5.01                   |
| 12                    | 2.26                   | 3.27                   | 3.45                   | 5.65                   | 8.35                   |
| 17.5                  | 3.29                   | 4.77                   | 5.03                   | 8.24                   | 12.18                  |
| 24                    | 4.52                   | 6.58                   | 6.90                   | 11.30                  | 16.70                  |
| 36                    | 6.78                   | 9.81                   | 10.36                  | 16.95                  | 25.05                  |







- O dimensionamento de um para raio baseia-se em:
- Dimensionamento elétrico;
- Dimensionamento mecânico;



#### Dimensionamento elétrico





#### Dimensionamento elétrico

- a) Seleção da tensão de operação contínua e tensão nominal
- Parâmetros do sistema:
- Tensão máxima do sistema (Um): Normalmente conhecida
- Sobretensão temporária: Tempo de duração dependente do tipo de sistema trifásico  $TOV = \left(\frac{U_m}{\sqrt{3}}\right) x k_e$ ; onde  $k_e$ é o fator de falta.



Fig. 43
Curves showing relationship between  $R_0/X_1$  and  $X_0/X_1$  for constant earth fault factor  $k_e$  and zero fault resistance (Source: IEC 60071-2)

 $R_0$  = zero sequence resistance  $X_0$  = zero sequence reactance  $X_1$  = positive sequence reactance

|                                             |                        | TOV in p.u. of U <sub>m</sub> /√3 | Fault duration |
|---------------------------------------------|------------------------|-----------------------------------|----------------|
| Directly earthed neutral systems            |                        |                                   |                |
|                                             | $U_m \leq 123 \; kV$   | 1.55                              | 1 s            |
|                                             | $U_m > 123 \text{ kV}$ | 1.5                               | 1 s            |
| Resonant earthed & isolated neutral systems |                        | 1.73                              | 10 s or 2 h    |



#### Dimensionamento elétrico

- a) Seleção da tensão de operação contínua e tensão nominal
- Tensão de operação contínua:
- Tensão de operação contínua: Um (fase-terra). Obs: Sistema com harmônicos (> 10%) sobrestimar em 5%.
- Tensão nominal de operação:
- Processo iterativo que considera o fator de força da sobretensão temporária e a absorção de energia exigida para aquela sobretensão. O processo iterativa deve convergir para valores menores do que o "chute inicial".



#### Dimensionamento elétrico

b) Seleção da corrente de descarga nominal

#### Maximum system voltage (kV)

$$\begin{array}{c} 800 \\ 550 \\ 245 < U_m \leq 420 \\ 36 < U_m \leq 245 \\ \leq 36 \end{array}$$

#### Nominal current (kA)



#### Dimensionamento elétrico

#### c) Seleção da capacidade de absorção de energia

 $W = \left(\frac{U_L - U_{ps}}{Z}\right) x U_{ps} x 2T x n$ , onde W = energia absorvida pelo para raio;  $U_L =$  sobretensão estimada;  $U_{ps} =$  nível de proteção de manobra do para raio; impedância da linha; T = tempo de propagação da onda e n = numero de descargas.





#### Dimensionamento elétrico

d) Verificação dos níveis de proteção

#### Maximum system voltage (kV)

#### Maximum system voltage (kV)

#### Maximum current (kA)

2 1 0.5

#### Nominal current (kA)

20 20 (or 15 as per IEEE) 10 or 20 10 5 or 10



#### Dimensionamento elétrico

#### e) Margens de proteção

 Margem de proteção para impulso atmosférico

$$\% = \left[ \left( \frac{LIWL}{U_{PL}} \right) - 1 \right] x 100$$

 Margem de proteção para impulso de manobra

$$\% = \left[ \left( \frac{SIWL}{U_{PS}} \right) - 1 \right] x 100$$



Fig. 47
Insulation withstand with time for paper and oil insulated power transformers. Ageing reduces insulation withstand of equipment and thus the protection margin.



#### Dimensionamento mecânico





#### Dimensionamento mecânico

a) Seleção da distância de escoamento

| Pollution level | Specific creepage ( mm/kV U <sub>m</sub> ) |
|-----------------|--------------------------------------------|
| Light (L)       | 16                                         |
| Medium (M)      | 20                                         |
| Heavy (H)       | 25                                         |
| Very Heavy (V)  | 31                                         |



#### Dimensionamento mecânico

#### b) Determinação dos esforços fletores



Loads act about different moment arms and are NOT located solely at the terminal



Fig. 50 Example of Estimated Loading Table





# PPHV – Para raios Benefícios



## PPHV – Para raios Beneficios

| Performance                                     | Benefícios                                                                             |
|-------------------------------------------------|----------------------------------------------------------------------------------------|
| Alta capacidade de energia                      | Todos os pára-raios são rotineiramente verificados em relação à capacidade de absorção |
| Envelhecimento estável                          | Garante maior vida útil                                                                |
| Baixo nível de proteção                         | Maior proteção aos demais equipamentos da instalação                                   |
| Alta suportabilidade a sobretensões temporárias | Suporta todos os tipos de TOV da rede                                                  |
| Baixas perdas                                   | Mais estável termicamente, menores custos com perdas                                   |
| Rastreabilidade de todos os blocos              | Controle de Qualidade                                                                  |



# Power and productivity for a better world™

