$\Pi \Lambda H30 - TE\Sigma T19$

ΘΕΜΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

(Άσκηση 1) Ιεραρχήστε τις παρακάτω συναρτήσεις σε αύξουσα σειρά ασυμπτωτικής πολυπλοκότητας:

$$f_1(n) = \log n + \sqrt[\log n]{n}, \ f_2(n) = n^{\log n}, \ f_3(n) = \sqrt{2^{\log n}}$$

(Ασκηση 2) Να λύσετε τις αναδρομές:

$$(1) \quad T(n) = 4T\left(\frac{n}{8}\right) + \sqrt[3]{n^2}$$

(2)
$$T(n) = \begin{cases} T(n-1) + \log^2 n, n > 0 \\ 0, n = 0 \end{cases}$$

Στη συνέχεια, να διαταχθούν οι λύσεις τους κατά αύξουσα τάξη μεγέθους.

Θεώρημα Κυριαρχίας: Έστω η αναδρομική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και f(n) είναι μια ασυμπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις:

- $(1) \ av f(n) = O(n^{\log_b a \varepsilon}), \ για \ κάποια \ σταθερά \ ε>0, \ τότε \ T(n) = \Theta(n^{\log_b a})$
- (2) $\alpha v f(n) = \Theta(n^{\log_b a}), \ \tau \acute{o} \tau \varepsilon \ T(n) = \Theta(n^{\log_b a} \log n)$
- $(3) \ av f(n) = \mathbf{\Omega}(n^{\log_b a + \varepsilon}), \ \gamma ια \ κάποια \ σταθερά \ \varepsilon > 0, \ και \ av \ vπάρχει \ σταθερά \ n_0, \ τέτοια$

ώστε, για κάθε $n \ge n_0$, $af\left(\frac{n}{b}\right) \le cf(n)$ για κάποια σταθερά c < 1, τότε $T(n) = \Theta(f(n))$.

ΘΕΜΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

Άσκηση 1: Κατασκευάστε ΜΠΑ για τις κανονικές εκφράσεις:

$$L_1 = 11(0+1)*111*(0+1)1$$

$$L_2 = (01001)*$$

$$L_3 = (0+1)*101*+00(0+1)*11$$

$$L_4 = (001)*(11)*(010)*(10)*$$

$$L_5 = (0*10*)*$$

Άσκηση 2:

(Α) Βρείτε μια κανονική έκφραση για τη γλώσσα που αναγνωρίζει το αυτόματο του παρακάτω σχήματος.

(Β) Μετατρέψτε το παραπάνω μη ντετερμινιστικό (μη αιτιοκρατικό) αυτόματο με ε κινήσεις σε μη ντετερμινιστικό αυτόματο χωρίς ε κινήσεις.

(Γ) Μετατρέψτε το μη ντετερμινιστικό αυτόματο του ερωτήματος Β σε ντετερμινιστικό.

(Δ) Ελαχιστοποιήστε τις καταστάσεις του αυτομάτου του ερωτήματος Γ και δείξτε ότι δεν υπάρχει άλλο ντετερμινιστικό πεπερασμένο αυτόματο με λιγότερες καταστάσεις που να δέχεται την ίδια γλώσσα, βρίσκοντας ένα κατάλληλο πλήθος συμβολοσειρών ανά δύο διακρινόμενων.

Ορισμός (Διακρινόμενες συμβολοσειρές)

Εστω L μια γλώσσα πάνω σε ένα αλφάβητο Σ . Θα λέμε ότι δύο συμβολοσειρές $x,y,\in \Sigma^*$ διακρίνονται ή είναι διακρινόμενες όσον αφορά την L, αν υπάρχει συμβολοσειρά z, που μπορεί να εξαρτάται από τις x και y, ώστε μία και μόνο μία από τις xz και yz y ανήκει στην L.

Οι x και y είναι μη διακρινόμενες, αν δε συμβαίνει το παραπάνω: για οποιοδήποτε z, οι xz και yz ή και οι δύο ανήκουν στην L ή καμιά τους.

ΘΕΜΑ 4: ΓΛΩΣΣΕΣ ΑΝΕΞΑΡΤΗΤΕΣ ΣΥΜΦΡΑΖΟΜΕΝΩΝ

Άσκηση 1: Δώστε γραμματικές χωρίς συμφραζόμενα για τις γλώσσες:

$$\mathsf{L}_1 = \{b^{2n+1}a^{2n+4} | \ n \geq 0\}$$

$$\mathbf{L}_2 = \{a^m d^{n+2} a^{n+1} d^m | \; n, m \geq 0 \}$$

$$L_3 = \{a^n b^n | n \ge 2\}$$

$$\mathbf{L_4} = \{\, w010w^R \mid w \in \{0,1\}^*\}$$

$$L_5 = \{b^n a^m c^{m+k} b^k a^n | n, m, k \ge 0\}$$

$$L_6 = \{bba^k b^k a^n b^m | n > m, k \ge 0\}$$

$$L_7 = \{a^n b^m | n = 2m + 1 \circ m = 3n + 3\}$$

Άσκηση 2

Δίδονται οι γλώσσες του αλφαβήτου $\{a,b\}$: $L_1=\{a^nb^n\mid n\geq 1\}, \quad L_2=\{a^nb^n\mid n\leq 1\}$ εκ των οποίων η μία είναι κανονική και η άλλη δεν είναι κανονική.

- (Α) Επιλέξτε την γλώσσα που είναι κανονική και αποδείξτε το, δίνοντας ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της.
- (Β) Για την γλώσσα που δεν είναι κανονική: (1) Αποδείξτε με το λήμμα άντλησης ότι δεν είναι κανονική. (2) Δωστε Γραμματική Χωρίς Συμφραζόμενα που παράγει τις συμβολοσειρές της (3) Δώστε Ντετερμινιστικό Αυτόματο Στοίβας που αναγνωρίζει τις συμβολοσειρές της

Το Λήμμα Άντλησης για Κανονικές Γλώσσες:

Έστω L μια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθμός n (μήκος άντλησης) τέτοιος ώστε κάθε $x \in L$ με $|\mathbf{x}| \ge n$ να μπορεί να γραφεί στην μορφή x = uvw όπου για τις συμβολοσειρές u, v και w ισχύει:

- $|uv| \leq n$
- $\triangleright v \neq \varepsilon$
- $ightharpoonup uv^m w \in L$ για κάθε φυσικό $m \geq 0$