Fermat-Toricelli Problem: SDP formulation

Hon Leung Lee

May 21, 2013

1 Problem formulation

We describe here the idea of SDP formulation in [1]. Our problem is to minimize over $x \in \mathbb{R}^2$, $F(x) = \sum_{j=1}^n \eta_j ||x - a_j||$ where all η_j is positive and $a_j \in \mathbb{R}^2$. Let x and a_j have coordinates (x, y) and (a_j, b_j) respectively (some abuse of notation here). Then the objective function becomes

$$F(x,y) = \sum_{j=1}^{n} \eta_j \sqrt{(x - a_j)^2 + (y - b_j)^2}.$$

Let the minimization problem be (\mathcal{P}) .

Introduce slack variables $d_j = \sqrt{(x-a_j)^2 + (y-b_j)^2}$ for all j. Then $d_j^2 = (x-a_j)^2 + (y-b_j)^2$. One can use this to show that:

Theorem 1. The problem (P) is equivalent to the semidefinite program (SDP) (P_2) :

minimize
$$F(x) = \sum_{j=1}^{n} \eta_j d_j$$
 subject to $\begin{bmatrix} d_j + x - a_j & y - b_j \\ y - b_j & d_j - x + a_j \end{bmatrix} \succeq 0$ for all $j = 1, \dots, n$

(Here $A \succeq 0$ means the matrix A is positive semidefinite; Notice the decision variables of (\mathcal{P}_2) are d_1, \dots, d_n, x, y).

Proof. For each
$$j$$
 let $A_j = \begin{bmatrix} d_j + x - a_j & y - b_j \\ y - b_j & d_j - x + a_j \end{bmatrix}$. If $d_j = \sqrt{(x - a_j)^2 + (y - b_j)^2}$ then all principal minors of A_j are nonnegative:

 $d_j \geq |x - a_j|$ and $\det(A) = d_j^2 - (x - a_j)^2 - (y - b_j)^2 = 0$. Thus $A_j \succeq 0$. So feasibility of (\mathcal{P}) implies the feasibility of (\mathcal{P}_2) , hence the minimum value in (\mathcal{P}_2) cannot exceed that of (\mathcal{P}) . On the other hand if $A_j \succeq 0$, then all the eigenvalues of A_j are nonnegative. By assessing the eigenvalues using quadratic formula one sees $d_j \geq \sqrt{(x - a_j)^2 + (y - b_j)^2} \geq$ the minimum value of (\mathcal{P}) . This completes the other direction that the minimum value of (\mathcal{P}) is at most that of (\mathcal{P}_2) , and so the conclusion follows.

The above SDP (\mathcal{P}_2) can be implemented using the SDP solver in cvxopt package in Python.

2 Discussion

We already implemented the following baby example using the cvxopt package.

Example 2. If
$$(a_0, b_0) = (0, 0)$$
, $(a_1, b_1) = (1, 0)$ and $(a_2, b_2) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

then the Fermat point has to be the centroid $\left(\frac{1}{2}, \frac{1}{2\sqrt{3}}\right)$, whence the minimum distance is $\sqrt{3}$.

The solver provided more information which we are also interested. For the above example it takes 6 iterations. The CPU time is 6.73 ms per loop. Also the convergence looks superlinear. This is nice.

3 Next step

- 1. Implement the SDP for general n points in \mathbb{R}^2 and general weights.
- 2. Perform numerical experiments through simple sampling. Fix n=5 (or any nice integer). Generate 5 points in \mathbb{R}^2 using Gaussian distribution, and generate 500 such data. Run the algorithm and analyze the results.

References

[1] NIE, J., PARRILO, P. A. STURMFELS, B.: Semidefinite Representation of the k-Ellipse. In Algorithms in Algebraic Geometry. Springer New York (2008), 117-132.