Natural Language Processing (NLP) and Large Language Models (LLMs)
Lecture 2-2: Word2Vec

Chendi Wang (王晨笛) chendi.wang@xmu.edu.cn

WISE @ XMU

2025 年 3 月 4 日

Tutorials

https://www.bilibili.com/video/BV1eHPjeqE3c/

The idea of Word2Vec (Mikolov et al. 2013)

- For each position t in the text, identify a center word (c) and its context words (o).
- Use the similarity between word vectors of c and o to calculate the probability of o given c (or vice versa).
- Updating the vectors to maximize the probability.

An example of a window

- Fix a window size of 2 and consider the sentence
 - I have an adorable cat named Yingjun because he is incredibly handsome.
- For the center word cat, the corresponding context words (with window size 2) are "an adorable" and "named Yingjun".

Two Word2Vec models (Mikolov et al., 2013)

- The CBOW (Continuous bag of words) architecture predicts the center word based on the context
- The Skip-gram predicts context words given the center word.

Figure: An illustration of the CBOW model and the skip-gram model...

Code for 2 models

 Recall the previous Word2Vec model from gensim.models import Word2Vec model = Word2Vec(sentences=tokenized_paragraphs, vector size=100, window=5, min count=1, workers=4)

This is for the CBOW model.

Code for 2 models

Recall the previous Word2Vec model

```
from gensim.models import Word2Vec
model = Word2Vec(sentences=tokenized_paragraphs,
vector_size=100, window=5, min_count=1, workers=4)
```

- This is for the CBOW model.
- For skip-gram, we use
 model = Word2Vec(sentences=tokenized_paragraphs,
 vector size=100, window=5, min count=1, workers=4, sg=2)

Embeddings trained by different models are different

```
Free Embedding for 'professor': [-0.00520926 -0.00628066 -0.00812961 0.00816755 -0.00170414 -0.00753981
    -0.00364565 0.0059722 -0.00326475 -0.00431022 0.00131458 -0.00371828
    -0.00164022 0.00143599 -0.00274969 0.00795382 0.00385163 -0.01032443
     0.00596917 -0.00780076 0.00120682 0.00466636 -0.00487019 -0.00246929
     0.00861683 -0.00448501 -0.0080286
                                      0.00890752 -0.00256834 -0.00496423
     0.00885705 0.00460832 0.004871
                                      0.00848894 -0.008644
     0.00208124 0.00408743 0.00173661 0.0039902 0.00462527 0.00590951
     -0.00350244 -0.0047707 -0.00023781 0.00228568 -0.00353596 0.00572596
     0.0045715
                0.00833482 0.00282669 0.0076673 -0.00139048 0.00815134
     0.00394601 - 0.00773727 - 0.00372471 - 0.00229705 0.00468275 - 0.00039886
    -0.00242086 0.00745917 0.00980032 -0.00154442 -0.00528267 -0.00422345
    -0.00487744 -0.0092963 0.00042248 -0.00352166 0.00222845 0.00596103
    -0.00348641 -0.00959224 0.00182645 -0.0068563
                                                0.00256692 -0.00379669
     0.00108319 -0.00624198 -0.00676784 0.00146691 0.00706652 0.00579118
    -0.00848786 0.00909958 0.00412425 0.00776276 0.0105122 -0.00688115
    -0.00902423 0.00585236 0.00939178 0.00338649]
    Shape of embedding: (100,)
```

The embedding of the word "professor" for the skip-gram model

• For a center word x_t and its context word x_{t+j} , predicting the context word using the center word is to compute the conditional probability $p(x_{t+j} \mid x_t)$.

• For a center word x_t and its context word x_{t+j} , predicting the context word using the center word is to compute the conditional probability $p(x_{t+j} \mid x_t)$.

- For a center word x_t and its context word x_{t+j} , predicting the context word using the center word is to compute the conditional probability $p(x_{t+j} \mid x_t)$.
- Objective: Find p that maximizes the likelihood.

- For a center word x_t and its context word x_{t+j} , predicting the context word using the center word is to compute the conditional probability $p(x_{t+j} \mid x_t)$.
- Objective: Find p that maximizes the likelihood.
- What if our objective is to predict the center word using the context word?

Two Questions

- How to parameterize *p*?
- How to find *p* that maximizes the likelihood?

- Section 1: The Skip-gram Model
- Section 2: (Stochastic) gradient descent (short)
- Section 3: The CBOW model
- Section 4: Approximate training
- **5** Section 5: Co-occurrence of words

- Section 1: The Skip-gram Model
- Section 2: (Stochastic) gradient descent (short)
- Section 3: The CBOW model
- Section 4: Approximate training
- **5** Section 5: Co-occurrence of words

• Each word x_t can be represented by two distinct vectors.

- Each word x_t can be represented by two distinct vectors.
- A center word vector $v_t \in \mathbb{R}^p$ represents x_t when it acts as the center word.

- Each word x_t can be represented by two distinct vectors.
- A center word vector $v_t \in \mathbb{R}^p$ represents x_t when it acts as the center word.
- A context word vector $u_t \in \mathbb{R}^p$ represents x_t when it appears as a context word.

- Each word x_t can be represented by two distinct vectors.
- A center word vector $v_t \in \mathbb{R}^p$ represents x_t when it acts as the center word.
- A context word vector $u_t \in \mathbb{R}^p$ represents x_t when it appears as a context word.
- The final embedding of x_t is usually obtained by averaging u_t and v_t .

Conditional probability

- Consider a center word x_c (with word vector v_c) and a context ("outside") word x_o (with word vector u_o).
- The skip-gram model aims to estimate the conditional probability $p(x_o \mid x_c)$.

Conditional probability

- Consider a center word x_c (with word vector v_c) and a context ("outside") word x_o (with word vector u_o).
- The skip-gram model aims to estimate the conditional probability $p(x_o \mid x_c)$.
- Recall that if the word vectors are normalized (i.e., have unit length), the similarity between x_c and x_o can be measured by the dot product $u_o^T v_c$.

Conditional probability

- Consider a center word x_c (with word vector v_c) and a context ("outside") word x_o (with word vector u_o).
- The skip-gram model aims to estimate the conditional probability $p(x_o \mid x_c)$.
- Recall that if the word vectors are normalized (i.e., have unit length), the similarity between x_c and x_o can be measured by the dot product $u_o^T v_c$.
- We define the conditional probability based on this similarity as

$$p(x_o \mid x_c) = \frac{\exp(u_o^T v_c)}{\sum_{i \in \mathcal{V}} \exp(u_i^T v_c)},$$

where ${\cal V}$ is the vocabulary (the set of all possible words).

SoftMax Function

- The SoftMax function is used to convert a sequence of real numbers into a probability distribution.
- Mathematically, the SoftMax function $\operatorname{SoftMax}: \mathbb{R}^n \to (0,1)^n$ maps any sequence $(a_i)_{i=1}^n \in \mathbb{R}^n$ to a probability distribution $(b_i)_{i=1}^n$ given by

$$b_i = \frac{\exp(a_i)}{\sum_{j=1}^n \exp(a_j)}.$$

SoftMax Function

- The SoftMax function is used to convert a sequence of real numbers into a probability distribution.
- Mathematically, the SoftMax function SoftMax : $\mathbb{R}^n \to (0,1)^n$ maps any sequence $(a_i)_{i=1}^n \in \mathbb{R}^n$ to a probability distribution $(b_i)_{i=1}^n$ given by

$$b_i = \frac{\exp(a_i)}{\sum_{j=1}^n \exp(a_j)}.$$

Soft: The output is a probability distribution.

SoftMax Function

- The SoftMax function is used to convert a sequence of real numbers into a probability distribution.
- Mathematically, the SoftMax function SoftMax : $\mathbb{R}^n \to (0,1)^n$ maps any sequence $(a_i)_{i=1}^n \in \mathbb{R}^n$ to a probability distribution $(b_i)_{i=1}^n$ given by

$$b_i = \frac{\exp(a_i)}{\sum_{j=1}^n \exp(a_j)}.$$

- Soft: The output is a probability distribution.
- Max: It amplifies the probability of the largest a_i relative to the others. (e.g., $exp(6)/(exp(6)+exp(4))\approx 0.88>0.6$)

A probabilistic model for the the whole sequence

• For a sequence $\{x_t\}_{t=1}^T$ of length T, for each center word x_t , we aim to estimate the conditional probabilities

$$p(x_{t+j}|x_t) = \frac{\exp(u_{t+j}^T v_t)}{\sum_{i \in \mathcal{V}} \exp(u_i^T v_t)}$$

for all integer $j \neq 0$ in the range [-M, M].

Here M is the window size.

A probabilistic model for the the whole sequence

• For a sequence $\{x_t\}_{t=1}^T$ of length T, for each center word x_t , we aim to estimate the conditional probabilities

$$p(x_{t+j}|x_t) = \frac{\exp(u_{t+j}^T v_t)}{\sum_{i \in \mathcal{V}} \exp(u_i^T v_t)}$$

for all integer $j \neq 0$ in the range [-M, M].

- Here *M* is the window size.
- In machine learning, to model the probability p, we usually introduce a parameterization of p_{θ} for some parameter $\theta \in \mathbb{R}^d$.
- In this model, the parameter θ consists all vectors u_t and v_t , that is

$$\theta = (u_t, v_t)_{t \in T} \in \mathbb{R}^{2Tp}$$
.

Maximum likelihood estimate for Word2Vec

- To train the parameter θ , we consider a maximum likelihood estimate (MLE) method.
- Consider a sequence of $\{x_t\}_{t=1}^T$ of length T. The likelihood function is given by

$$L(\theta) = \prod_{t=1}^{T} \prod_{-M \le j \le M, j \ne 0} p_{\theta}(x_{t+j} \mid x_t).$$

Maximum likelihood estimate for Word2Vec

- To train the parameter θ , we consider a maximum likelihood estimate (MLE) method.
- Consider a sequence of $\{x_t\}_{t=1}^T$ of length T. The likelihood function is given by

$$L(heta) = \prod_{t=1}^T \prod_{-M \leq j \leq M, j
eq 0} p_{ heta}(x_{t+j} \mid x_t).$$

• The goal of maximum likelihood estimation is to find a parameter $\widehat{\theta}$ that maximize the likelihood function, that is,

$$L(\widehat{\theta}) = \max_{\theta \in \mathbb{R}^d} L(\theta)$$

Maximum likelihood estimate for Word2Vec

- To train the parameter θ , we consider a maximum likelihood estimate (MLE) method.
- Consider a sequence of $\{x_t\}_{t=1}^T$ of length T. The likelihood function is given by

$$L(\theta) = \prod_{t=1}^{T} \prod_{-M \leq j \leq M, j \neq 0} p_{\theta}(x_{t+j} \mid x_t).$$

• The goal of maximum likelihood estimation is to find a parameter $\widehat{\theta}$ that maximize the likelihood function, that is,

$$L(\widehat{\theta}) = \max_{\theta \in \mathbb{R}^d} L(\theta)$$

• The minimizer $\widehat{\theta}$ is not necessarily unique. (Under what conditions is it unique?)

Log-likelihood function

- The product in the likelihood function is computationally challenging to handle directly.
- Converting the product into a summation simplifies the problem significantly. (Why? Because it becomes linear in the gradient, making optimization more efficient.)

Log-likelihood function

- The product in the likelihood function is computationally challenging to handle directly.
- Converting the product into a summation simplifies the problem significantly. (Why? Because it becomes linear in the gradient, making optimization more efficient.)
- To achieve this, we consider the log-likelihood function:

$$\log L(\theta) = \sum_{t=1}^{T} \sum_{-M \leq j \leq M} \log p_{\theta}(x_{t+j} \mid x_t)$$

Objective (Loss) Function

- In optimization, we commonly convert a maximization problem into a minimization problem.
- The objective function (or loss function in machine learning) is defined as:

$$\ell(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-M \leq j \leq M} \log p_{\theta}(x_{t+j} \mid x_t)$$

• $L(\widehat{\theta}) = \max L(\theta) \Leftrightarrow \ell(\widehat{\theta}) = \min \ell(\theta)$.

Summary

- The skip-gram model estimates the conditional probability of a context word given the center word using a softmax function based on word similarity.
- The objective is to maximize the likelihood of the entire sentence, expressed as the product of all
 conditional probabilities.
- This maximization is reformulated as minimizing a corresponding loss function.

- Section 2: (Stochastic) gradient descent (short)
- Section 3: The CBOW model
- Section 4: Approximate training
- **5** Section 5: Co-occurrence of words

Gradient descent (idea)

- We aim to minimize a loss function $\ell(\theta)$.
- Gradient descent (GD) is one of the most widely used optimization methods for minimizing $\ell(\theta)$.
- From a random initialization $\theta=\theta_0$, we update θ by moving in the direction of the negative gradient $-\nabla_{\theta}\ell(\theta)$. (The idea is from 1st-order Taylor's expansion)

Figure: Using GD to minimize a quadratic.

Gradient Descent (Math)

• Starting from a random initialization $\theta^{(0)}$, iterate as follows:

$$\theta^{(k+1)} = \theta^{(k)} - \eta_k \nabla \ell(\theta^{(k)}),$$

where η_k is the stepsize (or learning rate).

Gradient Descent (Math)

• Starting from a random initialization $\theta^{(0)}$, iterate as follows:

$$\theta^{(k+1)} = \theta^{(k)} - \eta_k \nabla \ell(\theta^{(k)}),$$

where η_k is the stepsize (or learning rate).

• When the loss function is (strongly) convex, we have

$$\ell(\theta^{(k+1)}) \le \ell(\theta^{(k)}),$$

and as k increases, the algorithm converges to $\min_{\theta} \ell(\theta)$.

 Life is not always convex, but gradient descent may still work for non-convex loss functions (although we still don' t fully understand why).

Learning rate matters

• The learning rate is (one of) the most critical hyperparameter(s) for ensuring fast convergence in gradient descent.

Figure: An example of using GD to minimize $\ell(\theta)=\theta^2$. (a) uses a learning rate of $\eta_k\equiv 0.05$, while (b) uses a learning rate of $\eta_k\equiv 0.95$.

Train the skip-gram model using GD

Recall the loss function

$$\ell(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-M \leq j \leq M, j \neq 0} \log p_{\theta}(x_{t+j} \mid x_t)$$

for the skip gram-model.

Since the gradient operator is linear, we have

$$\nabla \ell(\theta) = \nabla_{\theta} \left[-\frac{1}{T} \sum_{t=1}^{T} \sum_{-M \leq j \leq M, j \neq 0} \log p_{\theta}(x_{t+j} \mid x_{t}) \right] = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-M \leq j \leq M, j \neq 0} \nabla \log p_{\theta}(x_{t+j} \mid x_{t})$$

Train the skip-gram model using GD

Recall the loss function

$$\ell(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-M \leq j \leq M, j \neq 0} \log \rho_{\theta}(\mathsf{x}_{t+j} \mid \mathsf{x}_{t})$$

for the skip gram-model.

Since the gradient operator is linear, we have

$$\nabla \ell(\theta) = \nabla_{\theta} \left[-\frac{1}{T} \sum_{t=1}^{T} \sum_{-M \leq j \leq M, j \neq 0} \log p_{\theta}(x_{t+j} \mid x_{t}) \right] = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-M \leq j \leq M, j \neq 0} \nabla \log p_{\theta}(x_{t+j} \mid x_{t})$$

• Since $\theta = (u_t, v_t)_{t=1}^T$, we have

$$\nabla \log p_{\theta}(x_{t+j}|x_t) = \left(\frac{\partial \log p_{\theta}(x_{t+j}|x_t)}{\partial u_t}, \frac{\partial \log p_{\theta}(x_{t+j}|x_t)}{\partial v_t}\right)_{t=1}^T.$$

Differentiation (calculate it yourself)

Note that

$$\log p_{\theta}(x_o|x_c) = u_o^T v_c - \log \sum_{i \in \mathcal{V}} \exp(u_i^T v_c).$$

Calculate

$$\frac{\partial \log p_{\theta}(x_o|x_c)}{\partial v_c}.$$

Differentiation (calculate it yourself)

Note that

$$\log p_{\theta}(x_o|x_c) = u_o^T v_c - \log \sum_{i \in \mathcal{V}} \exp(u_i^T v_c).$$

Calculate

$$\frac{\partial \log p_{\theta}(x_o|x_c)}{\partial v_c}.$$

Result:

$$\frac{\partial \log p_{\theta}(x_o|x_c)}{\partial v_c} = u_o - \sum_{j \in \mathcal{V}} p_{\theta}(x_j|x_c)u_j.$$

A more efficient way minimize the loss function

- GD requires calculating the gradient of all windows in each iteration, which is time consuming.
- In each iteration, can we just calculate a small part of all windows?

Stochastic gradient descent (SGD)

Note that the loss function has a special form

$$\ell(\theta) = \frac{1}{T} \sum_{t=1}^{T} f(\theta, z_t),$$
 for some function f .

Here z_t represents a window centered at x_t .

• Rather than using the full gradient $\nabla \frac{1}{T} \sum_{t=1}^{T} f(\theta, z_t)$, we consider the gradient of a small subset of windows $\frac{1}{b} \sum_{z_t \in \mathcal{B}} f(\theta, z_t)$, where $\mathcal{B} \subseteq \{z_t\}_{t=1}^{T}$ of size b < n.

Stochastic gradient descent (SGD)

Note that the loss function has a special form

$$\ell(\theta) = \frac{1}{T} \sum_{t=1}^{T} f(\theta, z_t),$$
 for some function f .

Here z_t represents a window centered at x_t .

- Rather than using the full gradient $\nabla \frac{1}{T} \sum_{t=1}^{T} f(\theta, z_t)$, we consider the gradient of a small subset of windows $\frac{1}{b} \sum_{z_t \in \mathcal{B}} f(\theta, z_t)$, where $\mathcal{B} \subseteq \{z_t\}_{t=1}^{T}$ of size b < n.
- In each iteration, we update

$$\theta^{(k+1)} = \theta^{(k)} - \frac{\eta_k}{b} \sum_{z_t \in \mathcal{B}_k} \nabla \textit{f}(\theta^{(k)}, z_t),$$

with \mathcal{B}_k drawn uniformly at random from $\{z_t\}_{t=1}^T$.

Stochastic gradient descent (SGD)

Note that the loss function has a special form

$$\ell(\theta) = \frac{1}{T} \sum_{t=1}^{T} f(\theta, z_t),$$
 for some function f .

Here z_t represents a window centered at x_t .

- Rather than using the full gradient $\nabla \frac{1}{T} \sum_{t=1}^{T} f(\theta, z_t)$, we consider the gradient of a small subset of windows $\frac{1}{b} \sum_{z_t \in \mathcal{B}} f(\theta, z_t)$, where $\mathcal{B} \subseteq \{z_t\}_{t=1}^{T}$ of size b < n.
- In each iteration, we update

$$\theta^{(k+1)} = \theta^{(k)} - \frac{\eta_k}{b} \sum_{z_t \in \mathcal{B}_k} \nabla f(\theta^{(k)}, z_t),$$

with \mathcal{B}_k drawn uniformly at random from $\{z_t\}_{t=1}^T$.

• It converges to the minimizer (when the loss is convex) since $\frac{1}{b} \sum_{z_t \in \mathcal{B}_k} \nabla f(\theta, z_t)$ is an unbiased estimate of $\nabla \ell(\theta)$.

- Section 1: The Skip-gram Model
- Section 2: (Stochastic) gradient descent (short)
- Section 3: The CBOW model
- Section 4: Approximate training
- 6 Section 5: Co-occurrence of words

CBOW

Recall that the CBOW model is to predict the center word based on the context.

Figure is from Efficient Estimation of Word Representations in Vector Space.

Average the similarity

- Consider a center word x_c (with word vector v_c) and a set of it context words $\mathcal{X}_o = \{x_{o_1}, \cdots, x_{o_{2M}}\}$ (with word vector u_{o_m} for each x_{o_m} , correspondingly).
- The window size is M, so we have 2M context words.

Average the similarity

- Consider a center word x_c (with word vector v_c) and a set of it context words $\mathcal{X}_o = \{x_{o_1}, \dots, x_{o_{2M}}\}$ (with word vector u_{o_m} for each x_{o_m} , correspondingly).
- The window size is M, so we have 2M context words.
- The similarity between x_c and each x_{o_m} is then given by $v_c^T u_{o_m}$.
- We then consider the averaged similarity

$$\frac{1}{2M} \sum_{m=1}^{2M} v_c^T u_{o_m} = v_c^T \left(\frac{1}{2M} \sum_{m=1}^{2M} u_{o_m} \right)$$

Probabilistic model

- Recall the averaged similarity $c_c^T \overline{u}_o$ with $\overline{u}_o = \frac{1}{2M} \sum_{m=1}^{2M} u_{o_m}$.
- Similar to the skip-gram model, we aim to estimate $p(x_c|\mathcal{X}_o) = p(x_c|x_{o_1}, \cdots x_{o_{2M}})$.

Probabilistic model

- Recall the averaged similarity $c_c^T \overline{u}_o$ with $\overline{u}_o = \frac{1}{2M} \sum_{m=1}^{2M} u_{o_m}$.
- Similar to the skip-gram model, we aim to estimate $p(x_c|\mathcal{X}_o) = p(x_c|x_{o_1}, \cdots x_{o_{2M}})$.
- Using the SoftMax function, we model the conditional probability as

$$p(x_c|\mathcal{X}_o) = \frac{\exp(v_c^T \overline{u}_o)}{\sum_i \exp(v_i^T \overline{u}_o)}.$$

Loss function

• The likelihood function for the CBOW model is then given by

$$L(\theta) = \prod_{t=1}^{T} p(x_t | x_{t+j}, -M \le j \le M, j \ne 0).$$

And the loss function is

$$\ell(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \log p\left(x_{t} | x_{t+j}, -M \leq j \leq M, j \neq 0\right).$$

Gradient of the loss function

• To use the gradient descent, we consider each window

$$\log p(x_c|\mathcal{X}_o) = v_c^T \overline{u}_o - \log \left(\sum_j \exp(v_j^T \overline{u}_o) \right).$$

• Calculate the gradient (for each block)

$$\frac{\partial \log p(x_c|\mathcal{X}_o)}{\partial u_{o_m}}$$

Gradient of the loss function

• To use the gradient descent, we consider each window

$$\log p(x_c|\mathcal{X}_o) = v_c^T \overline{u}_o - \log \left(\sum_j \exp(v_j^T \overline{u}_o) \right).$$

Calculate the gradient (for each block)

$$\frac{\partial \log p(x_c|\mathcal{X}_o)}{\partial u_{o_m}}$$

The result is

$$\frac{\partial \log p(x_c|\mathcal{X}_o)}{\partial u_{o_m}} = \frac{1}{2M} \left[v_c - \sum_j p(x_j|\mathcal{X}_o) v_j \right]$$

- Section 1: The Skip-gram Model
- Section 2: (Stochastic) gradient descent (short)
- Section 3: The CBOW model
- Section 4: Approximate training
- **5** Section 5: Co-occurrence of words

Motivation

ullet Both the skip-gram and CBOW models involve a gradient computation that requires summing over the entire vocabulary ${\cal V}$:

$$p(x_o \mid x_c) = \frac{\exp(u_o^T v_c)}{\sum_{i \in \mathcal{V}} \exp(u_i^T v_c)}$$

This summation over a large vocabulary results in significant computational costs during training.

Motivation

ullet Both the skip-gram and CBOW models involve a gradient computation that requires summing over the entire vocabulary ${\cal V}$:

$$p(x_o \mid x_c) = \frac{\exp(u_o^T v_c)}{\sum_{i \in \mathcal{V}} \exp(u_i^T v_c)}$$

- This summation over a large vocabulary results in significant computational costs during training.
- To address this, we introduce approximate training methods for the skip-gram model to reduce computational cost (similar methods apply to the CBOW model).

Negative Sampling (idea)

- We regard "any context word x_o is from the context window with center word x_c " as an event.
- Define a binary random variable $D \in \{0, 1\}$ as follows:
 - The probability x_o and x_c are in the same window is $\mathbb{P}[D=1|x_o,x_c]$.

Negative Sampling (idea)

- We regard "any context word x_o is from the context window with center word x_c " as an event.
- Define a binary random variable $D \in \{0,1\}$ as follows:
 - The probability x_o and x_c are in the same window is $\mathbb{P}[D=1|x_o,x_c]$.
- Parameterization: $\mathbb{P}[D=1|x_o,x_c]=\sigma(u_o^Tv_c)$ for some activation function σ .
- In Word2Vec, the activation function is usually the sigmoid function

$$\sigma(\mathbf{z}) = \frac{1}{1 + \exp(-\mathbf{z})}.$$

Figure: sigmoid function

Negative Sampling

- Let P be a predefined distribution over the vocabulary.
- We randomly sample K words from P that are not in the context window of x_c .
- These sampled words, denoted as $\{x^{(k)}\}_{k=1}^K \sim P$, are called noise words.

Negative Sampling

- Let P be a predefined distribution over the vocabulary.
- We randomly sample K words from P that are not in the context window of x_c .
- These sampled words, denoted as $\{x^{(k)}\}_{k=1}^K \sim P$, are called noise words.
- Let $u^{(k)}$ be the word vector (as a context word) corresponding to $x^{(k)}$.
- Since these words are not in the context of x_o , we consider the probability of an exclusive event:

$$\mathbb{P}[D=0 \mid x_o, x^{(k)}] = 1 - \mathbb{P}[D=1 \mid x_c, x^{(k)}] = 1 - \sigma((u^{(k)})^T v_c).$$

Probabilistic model

• Using negative sampling, the conditional probability is modeled by

$$p(x_o|x_c) = \mathbb{P}[D = 1|x_o, x_c] \cdot \prod_{k=1}^K \mathbb{P}[D = 0|x_c, x^{(k)}]$$

Probabilistic model

• Using negative sampling, the conditional probability is modeled by

$$p(x_o|x_c) = \mathbb{P}[D = 1|x_o, x_c] \cdot \prod_{k=1}^K \mathbb{P}[D = 0|x_c, x^{(k)}]$$

The likelihood function becomes

$$L(\theta) = \prod_{t=1}^{T} \prod_{-M \leq j \leq M, j \neq 0} p(x_{t+j} \mid x_t).$$

Why is negative sampling efficient?

• The loss function can be expressed as (derive it yourself):

$$-\log p(x_{t+j} \mid x_t) = -\log \sigma(u_t^T v_t) - \sum_{k=1}^K \log \sigma(-(u^{(k)})^T v_t).$$

- This formulation involves a summation over only K words instead of the entire vocabulary.
- When K is small, the computational cost is low.

- Section 1: The Skip-gram Model
- Section 2: (Stochastic) gradient descent (short)
- Section 3: The CBOW model
- Section 4: Approximate training
- **5** Section 5: Co-occurrence of words

Co-occurrence Matrix

• Consider the following example corpus:

I love you tons. I love you 3000. I am Iron Man.

• The frequency of co-occurrence (with a window size of 1) can be represented in a (symmetric) co-occurrence matrix W which captures some features of the global corpus.

	- 1	love	you	am	tons	
I	0	2	0	1	0	
love	2	0	2	0	0	
you	0	2	0	0	1	
:	:	:	:	:	:	:

Co-occurrence Matrix (Math)

- Consider a word x_i that may occur multiple times in the corpus.
- Let C_i be a multiset (a set where repeated elements are allowed) that contains all the context words from the window when the center word is x_i .
- For example, $C_i = \{x_i, x_i, x_k, x_k, x_k\}$, where x_k appears three times.

Co-occurrence Matrix (Math)

- Consider a word x_i that may occur multiple times in the corpus.
- Let C_i be a multiset (a set where repeated elements are allowed) that contains all the context words from the window when the center word is x_i .
- For example, $C_i = \{x_i, x_i, x_k, x_k, x_k\}$, where x_k appears three times.
- The co-occurrence matrix $W = (w_{s,t})_{s,t}$ is such that $w_{s,t}$ represents the multiplicity of x_t in the multiset C_s .
- In the example above, we have $w_{ij} = 2$ and $w_{ik} = 3$.

Skip-gram Model with Global Corpus Statistics

• Given the co-occurrence matrix $W = (w_{s,t})_{s,t}$, we can define the loss function for the skip-gram model with global corpus statistics as:

$$-\sum_{i,j\in\mathcal{V}}w_{ij}\log p(x_j\mid x_i)$$

ullet Recall that the skip-gram model involves a summation over the entire vocabulary ${\cal V}$, which is computationally inefficient.

GloVe: Global Vectors for Word Representation

 The GloVe model relates the similarity between words and their co-occurrence by minimizing the least-squares loss:

$$\sum_{i,j} \left(u_j^\mathsf{T} v_i - \log w_{ij} \right)^2$$

GloVe: Global Vectors for Word Representation

 The GloVe model relates the similarity between words and their co-occurrence by minimizing the least-squares loss:

$$\sum_{i,j} \left(u_j^\mathsf{T} v_i - \log w_{ij} \right)^2$$

• Two bias terms (or intercepts) are introduced for the center words (b_i) and the context words (c_j) , resulting in the modified loss:

$$\sum_{i,i} \left(u_j^T v_i + b_i + c_j - \log w_{ij} \right)^2.$$

GloVe: Global Vectors for Word Representation

 The GloVe model relates the similarity between words and their co-occurrence by minimizing the least-squares loss:

$$\sum_{i,j} \left(u_j^T v_i - \log w_{ij} \right)^2$$

• Two bias terms (or intercepts) are introduced for the center words (b_i) and the context words (c_j) , resulting in the modified loss:

$$\sum_{i,j} \left(u_j^T v_i + \mathbf{b}_i + \mathbf{c}_j - \log w_{ij} \right)^2.$$

• A weight function $h(w_{ij})$ is added to the loss, where h is an increasing function, resulting in:

$$\sum_{i,j} \frac{h(w_{ij})}{\left(u_j^T v_i + b_i + c_j - \log w_{ij}\right)^2}.$$

Weight function *h*

• For the weight function, a suggested choice is

$$h(z) = \min\{(z/c)^{\alpha}, 1\}.$$

- For example, c = 100 and $\alpha = 0.75$.
- When $w_{ij} = 0$, we have h(0) = 0

Code for Training a Model Yourself Using SGD

- After we cover deep learning concepts, you can try training a Word2Vec model yourself using PyTorch.
- This may be included in the main course or the tutorial, depending on the available time.

Summary (and what next?)

- We introduced two probabilistic models based on MLE: the skip-gram model, which predicts context words given a center word, and the CBOW model, which predicts a center word from context words.
- Stochastic gradient descent is widely used to minimize loss functions in machine learning.
- The co-occurrence matrix can be incorporated into the loss function to capture the global information of a corpus. For computational efficiency, the GloVe model is a more efficient alternative.
- How to measure the quality of your embeddings? (Tokenizationation part)