Key concepts and/or techniques:

- 1. Distribution of functions of X_1, \dots, X_n , which are independent and normally distributed
- ▶ mgf technique
- first cdf and then pdf

[Theorem 5.5-1]

If X_1,X_2,\cdots,X_n are n independent normal variables with means μ_1,μ_2,\cdots,μ_n and variances $\sigma_1^2,\,\sigma_2^2,\,\cdots,\,\sigma_n^2$, respectively, then $Y=\sum_{i=1}^n a_i X_i$ has the normal distribution

$$Y \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$$

[Corollary 5.5-1]

If X_1, X_2, \dots, X_n is a random sample of size n from the normal distribution $N(\mu, \sigma^2)$, then the sample mean \overline{X} has the following distribution

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Leftrightarrow \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$$

Definition

Let X_1, X_2, \dots, X_n be independent and identically distributed with mean μ and σ^2 . Then the sample variance is defined as

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2,$$

[Theorem 5.5-2]

Let X_1, X_2, \cdots, X_n be random sample of size n from the normal distribution $N(\mu, \sigma^2)$. Then the sample mean $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ and the sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ are independent, and

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$$

[Student's t distribution]

Let

$$T = \frac{Z}{\sqrt{U/r}}$$

where $Z \sim N(0,1)$, $U \sim \chi^2(r)$, and Z and U are independent. Then T has a student's t distribution, i.e., $T \sim t(r)$, where r is called the degrees of freedom. Let

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}, \quad U = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{(n-1)S^2}{\sigma^2}$$

$$T = rac{Z}{\sqrt{U/(n-1)}} = rac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

Let X_1, \dots, X_n be a random sample of size n from a normal distribution $N(\mu, \sigma^2)$. Then we have

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2 \sim \chi^2(n), \quad \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{\sigma} \right)^2 \sim \chi^2(n-1)$$

$$rac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1), \quad rac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n - 1)$$

STA2001 Probability and Statistics I

Lecture 23

Tianshi Chen

The Chinese University of Hong Kong, Shenzhen

Section 5.6 The Central Limit Theorem

Motivation

Let \overline{X} be the sample mean of a random sample X_1, X_2, \cdots, X_n of size n from $N(\mu, \sigma^2)$. Then for any n,

$$rac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1).$$

Motivation

Let \overline{X} be the sample mean of a random sample X_1, X_2, \dots, X_n of size n from $N(\mu, \sigma^2)$. Then for any n,

$$rac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1).$$

The result can be extended to more general random distributions:

as $n o \infty$, the sequence $rac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ converges to N(0,1) in some sense,

which concerns the topic of convergence of sequence of random

variables!

Convergence of Sequence of Numbers

Definition

A sequence of numbers a_1 , a_2 , ... is said to converge to a limit a if

$$\lim_{n\to\infty}a_n=a.$$

That is, for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|a_n - a| < \epsilon$$
, for all $n > N$.

How to define convergence of sequence of random variables?

Convergence of Sequence of Random Variables

Key: How to measure the closeness between two random variables?

Convergence of Sequence of Random Variables

Key: How to measure the closeness between two random variables?

- probability
- mathematical expectation

Convergence in Distribution

Definition

A sequence of random variables Z_1 , Z_2 , ... is said to converge in distribution, or converge weakly, or converge in law to a random variable Z, denoted by $Z_n \stackrel{d}{\to} Z$, if

$$\lim_{n\to\infty}F_n(z)=F(z),$$

for every number $z \in R$ at which F(z) is continuous, where $F_n(z)$ and F(z) are the cdfs of random variables Z_n and Z, respectively.

Remark

For a given z at which F(z) is continuous, let

$$a_n = F_n(z) = P(Z_n \le z)$$
$$a = F(z) = P(Z \le z)$$

The convergence in distribution of sequence of random variables

$$\lim_{n\to\infty} F_n(z) = F(z),$$

can be interpreted as the convergence of sequence of numbers

$$\lim_{n\to\infty}a_n=a,$$

that is, for any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|P(Z_n \le z) - P(Z \le z)| < \epsilon$$
, for all $n > N$.

Example 1

Let $Z_2, Z_3 \cdots$ be a sequence of random variables such that

$$F_{Z_n}(z) = \left\{ egin{array}{ll} 1 - \left(1 - rac{1}{n}
ight)^{nz}, & z > 0 \ \\ 0, & z \leq 0 \end{array}
ight.$$

Then prove that Z_n converges in distribution to exponential distribution with $\theta=1$, whose cdf F(z)=0 for $z\leq 0$ and $F(z)=1-e^{-z}$ for z>0.

Example 1

For
$$z \leq 0$$
, $F_{Z_n}(z) = F(z)$, for $n = 2, \cdots$.

For z > 0, we have

$$\lim_{n\to\infty} F_{Z_n}(z) = 1 - \lim_{n\to\infty} \left(1 - \frac{1}{n}\right)^{nz} = 1 - e^{-z} = F(z)$$

Central Limit Theorem (CLT), page 208

CLT

Let \overline{X} be the sample mean of the random sample of size n, X_1, X_2, \cdots, X_n from a distribution with a finite mean μ and a finite nonzero variance σ^2 , then as $n \to \infty$, the random variable $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$ converges in distribution to N(0,1).

Central Limit Theorem (CLT), page 208

CLT

Let \overline{X} be the sample mean of the random sample of size n, X_1, X_2, \cdots, X_n from a distribution with a finite mean μ and a finite nonzero variance σ^2 , then as $n \to \infty$, the random variable $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$ converges in distribution to N(0,1).

Practical use of CLT: for large n,

- $ightharpoonup \frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ can be approximated by N(0,1).
- ▶ \overline{X} can be approximated by $N(\mu, \frac{\sigma^2}{n})$.
- ► $\sum_{i=1}^{n} X_i$ can be approximated by $N(n\mu, n\sigma^2)$.

Practical Use of CLT

For large n, the probabilities of events of $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$, \overline{X} and $\sum_{i=1}^{n} X_i$ can be calculated approximately by treating them as if they are N(0,1), $N(\mu,\frac{\sigma^2}{n})$, and $N(n\mu,n\sigma^2)$, respectively, and by looking up tables of normal distributions.

Practical Use of CLT

For large n, the probabilities of events of $\frac{X-\mu}{\sigma/\sqrt{n}}$, \overline{X} and $\sum_{i=1}^{n} X_i$ can be calculated approximately by treating them as if they are N(0,1), $N(\mu,\frac{\sigma^2}{n})$, and $N(n\mu,n\sigma^2)$, respectively, and by looking up tables of normal distributions.

Recall that if $Y \sim N(\mu, \sigma^2)$

$$P(a \le Y \le b) = P(\frac{a - \mu}{\sigma} \le \frac{Y - \mu}{\sigma} \le \frac{b - \mu}{\sigma})$$
$$= \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

where $\Phi(\cdot)$ is the cdf of N(0,1)

Question

Let X_1, \dots, X_{25} be a random sample of size n = 25 from a distribution with mean 15 and variance 4.

Q1: Compute $P(14.4 < \overline{X} < 15.6)$ approximately ?

Q1: By CLT, \overline{X} approximately have $N(\mu, \frac{\sigma^2}{n}) = N(15, \frac{4}{25} = 0.4^2)$

$$P(14.4 < \overline{X} < 15.6) = P(\frac{14.4 - 15}{0.4} < \frac{\overline{X} - 15}{0.4} < \frac{15.6 - 15}{0.4})$$

$$= \Phi(1.5) - \Phi(-1.5) = 0.9332 - (1 - 0.9332)$$

$$= 0.8664$$

Let X_1, \dots, X_n be a random sample of size n from the uniform distribution U(0,1).

Recall its pdf, mean and variance are as follows:

$$f(x) = 1$$
, $x \in [0, 1]$. $E(X) = \mu = \frac{1}{2}$, $Var(X) = \sigma^2 = \frac{1}{12}$.

Consider $Y = \sum_{i=1}^{n} X_i$. Our goal is to check the difference between the pdf of Y and the pdf of its approximation $N(n\mu, n\sigma^2)$ from CLT.

- ► check n = 2, pdf of Y, $g(y) = \begin{cases} y, & y \in [0, 1] \\ 2 y, & y \in [1, 2] \end{cases}$ pdf of $N(2 \cdot \frac{1}{2}, 2 \cdot \frac{1}{12}) = N(1, \frac{1}{6})$
- ightharpoonup check n=4.

We sketch the derivation of the pdf of Y for n = 2.

Clearly, the joint pdf of (X_1, X_2) is

$$f(x_1, x_2) = 1, \quad 0 \le x_1 \le 1, \ 0 \le x_2 \le 1.$$

- 1. cdf of Y, $G(y) = P(Y \le y) = P(X_1 + X_2 \le y)$
- 2. pdf of Y, g(y) = G'(y) at which G(y) is differentiable

- 1. cdf of Y, $G(y) = P(Y \le y) = P(X_1 + X_2 \le y)$
 - $y \in [0,1], G(y) = \int_0^y \int_0^{x_1} 1 dx_2 dx_1 = \frac{1}{2}y^2$
 - $y \in [1, 2],$ $G(y) = \int_0^{y-1} \int_0^1 1 dx_2 dx_1 + \int_{y-1}^1 \int_0^{x_1} 1 dx_2 dx_1 = y \frac{1}{2} \frac{1}{2} (y 1)^2$
- 2. pdf of Y, g(y) = G'(y) at which G(y) is differentiable
 - ▶ $y \in [0,1], g(y) = y$
 - $y \in [1,2], g(y) = 2 y$

Section 5.7 Approximations for Discrete Distributions

Motivation

By CLT, we will use normal distributions to approximate the discrete distribution of \overline{X} or $\sum_{i=1}^{n} X_i$, where X_1, \dots, X_n is a random sample of size *n* from discrete distributions, in the sense that the pdf of the normal distribution is close to the histogram of the discrete distribution of \overline{X} or $\sum_{i=1}^{n} X_i$.

Histogram for Discrete Distribution

Consider a discrete RV Y with pmf $f(y): \overline{S} \to (0,1]$ with $\overline{S} = \{0,1,\cdots,n\}$. Then the histogram for Y is

$$h(y) = f(k), y \in (k - \frac{1}{2}, k + \frac{1}{2}), k = 0, 1, \dots, n$$

For $k=0,1,\cdots,n$, P(Y=k)=f(k) corresponds to the area of the rectangle with a height of P(Y=k) and a base of length 1 centered at k.

Approximate Discrete Distribution by Continuous Distribution

Key idea: The area below the histogram corresponds to probability, which make the histogram has similar property as the pdf of continuous distribution.

Approximate Discrete Distribution by Continuous Distribution

Key idea: The area below the histogram corresponds to probability, which make the histogram has similar property as the pdf of continuous distribution.

Key usage: If it is possible to find a continuous distribution with pdf "close" to the histogram of the discrete distribution, then we can compute the probability of discrete distribution approximately by using the continuous distribution.

However, there is a catch, which is called the half-unit correction!