MP Programme de colle n° 16

Cours:

Chapitre 10

Variables aléatoires discrètes

6. Fonction génératrice

Chapitre 11

Fonctions vectorielles

- 1. Dérivée en un point
- 2. Opérations sur les fonctions dérivables
- **3.** Fonctions de classe C^k
- 4. Intégration sur un segment
- 5. Particularités des fonctions à valeurs réelles (§ 5.1 à 5.4)

Les démos à connaître (en rouge les plus conséquentes ou délicates)

Chapitre 10

6.1

Propriété préliminaire Soit X une variable aléatoire à valeurs dans $\mathbb N$.

Soit la série entière $\sum P(X=n)t^n$.

- \blacksquare Son rayon de convergence vérifie $R \geqslant 1$.
- \blacksquare Elle converge normalement sur [-1,1].
- $\begin{tabular}{ll} \clubsuit Sa somme G_X est continue sur $[-1,1]$ et si $R>1$ sur $]-R,R[$. \end{tabular}$
- lacksquare $\forall t \in]-R,R[\ \cup [-1,1]\,,\ t^X$ est d'espérance finie et $\boxed{G_X(t)=E(t^X)}$

6.2

Loi de X	Notation	Fonction génératrice	Rayon
de Bernoulli	$\mathcal{B}(p)$	$G_{\scriptscriptstyle X}(t)=q+pt$	$+\infty$
Binomiale	$\mathcal{B}(n,p)$	$G_{X}(t) = (q + pt)^{n}$	$+\infty$
Géométrique	$\mathcal{G}(p)$	$G_{\scriptscriptstyle X}(t) = \frac{pt}{1-qt}$	$\frac{1}{q}$
de Poisson	$\mathcal{P}(\lambda)$	$G_{\!\scriptscriptstyle X}(t)=e^{\lambda(t-1)}$	$+\infty$

Chapitre 11

2.2

Proposition 2:

Soit $f: I \to F$ une fonction dérivable en a et $L \in \mathcal{L}(F, G)$ où F et G sont deux espaces vectoriels de dimension finie.

Alors $L \circ f$ est dérivable en a et $(L \circ f)'(a) = L(f'(a))$

2.3

Proposition 4:

Soit $B: F \times G \to H$ une application bilinéaire où F, G et H sont des \mathbb{R} -espaces vectoriels de dimension finie. Soient $f: I \to F$ et $g: I \to G$, dérivables toutes deux en a.

Alors l'application $B(f,g): I \to H$ définie par $t \to B(f(t),g(t))$ est dérivable en a et B(f,g)'(a) = B(f'(a),g(a)) + B(f(a),g'(a)).

2.5

<u>Proposition 5</u>: Soit $f: I \to J$ une fonction dérivable en a et $g: J \to F$ une fonction dérivable en b = f(a) où I et J sont deux intervalles de $\mathbb R$. Alors $g \circ f$ est dérivable en a et $(g \circ f)'(a) = f'(a).g'(f(a))$.

3.3

Proposition 6:

$$\mathrm{Si}\ (f,g)\in\mathcal{C}^n(I,\mathbb{K})^2\ \mathrm{alors}\ f\times g\in\mathcal{C}^n(I,\mathbb{K})\ \mathrm{et}\ \boxed{(f\times g)^{(n)}=\sum_{k=0}^n\binom{n}{k}f^{(n-k)}\times g^{(k)}}.$$

5.3

Théorème : Soit
$$f \in \mathcal{C}([a,b],\mathbb{R}) \cap \mathcal{D}(]a,b[,\mathbb{R})$$
.
Alors $\exists c \in]a,b[/f(b)-f(a)=f'(c)(b-a)$.

• En supposant acquis le théorème de Rolle

5.4

Lemme: Soit
$$f \in \mathcal{C}(I,\mathbb{R}) \cap \mathcal{D}(I - \{a\},\mathbb{R})$$
.
Si $\lim_{x \to a} f'(x)$ existe dans $\overline{\mathbb{R}}$ et est notée ℓ
alors $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ existe et vaut ℓ .

Théorème 1 : Soit
$$f \in \mathcal{C}(I,\mathbb{R}) \cap \mathcal{D}(I - \{a\},\mathbb{R})$$
.
Si $\lim_{x \to a} f'(x)$ existe dans \mathbb{R} : f est dérivable en a et $f'(a) = \lim_{x \to a} f'(x)$
Si $\lim_{x \to a} f'(x) = \pm \infty$: f n'est pas dérivable en a .

• La démonstration du théorème comprend la démonstration du lemme