Вариант 1

Реализовать программное средство, выполняющее вычисление и проверку электронной цифровой подписи (ЭЦП) текстового файла на базе алгоритма RSA. Для вычисления хеш-образа сообщения использовать функцию 3.2 из методических материалов (стр.22, \mathbf{H}_0 =100). Числа \mathbf{p} и \mathbf{q} , а также закрытый ключ ввести с клавиатуры. Произвести все необходимые проверки для параметров, вводимых с клавиатуры. В отдельное поле вывести полученный хеш сообщения в

- 10 с/сч. ЭЦП вывести как целое число. При проверке ЭЦП предусмотреть возможность выбора файла для проверки. На экран вывести результат проверки:
- 1 сообщение о том верна подпись или нет;
- 2 вычисленные при проверке значения.

Для возведения в степень использовать быстрый алгоритм возведения в степень по модулю.

Вариант 2

Реализовать программное средство, выполняющее вычисление и проверку электронной цифровой подписи (ЭЦП) текстового файла на базе алгоритма DSA. Для вычисления хеш-образа сообщения использовать функцию 3.2 из методических материалов (стр.22, \mathbf{H}_0 =100), вычисления функции необходимо выполнять по модулю числа \mathbf{q} . Числа \mathbf{q} , \mathbf{p} , \mathbf{h} , \mathbf{x} \mathbf{u} \mathbf{k} ввести с клавиатуры. Произвести все необходимые проверки для параметров, вводимых с клавиатуры. В отдельное поле вывести полученный хеш сообщения в 10 с/сч. ЭЦП вывести как два целых числа (Если одно из полученных значений \mathbf{r} или \mathbf{s} будет равно 0, то необходимо повторить вычисления для другого значения \mathbf{k} для чего предложить повторно ввести \mathbf{k} с клавиатуры) При проверке ЭЦП предусмотреть возможность выбора файла для проверки. На экран вывести результат проверки:

- 1 сообщение о том верна подпись или нет;
- 2 вычисленные при проверке значения.

Для возведения в степень использовать быстрый алгоритм возведения в степень по модулю.

При нахождении обратного элемента $s^{-1} mod \ q$ или $k^{-1} \ mod \ q$ использовать малую теорему Ферма в виде: $s^{-1} mod \ q = s^{q-2} mod \ q$