Introduction à la normalisation relationnelle

Abdelkrim LAHLOU

Contact. Lahloukarim@gmail.fr

Plan

- I. Introduction
- II. Dépendance fonctionnelle
- III. Formes normales (1FN 2FN 3FN)
- IV. Algorithmes de normalisation
- V. Conclusion

I – Introduction

- La théorie de la normalisation permet de définir une méthode de conception de « bonnes » tables, c'est-à-dire sans redondance et sans perte d'information
- Exemple :

Nu	mPropriétaire	Nom	Ville	<u>NumVéhicule</u>	Marque	Date
	1000	AAAA	PARIS	90FE75	PEUGEOT	10-sep-89
	1500	BBBBB	NANTES	43XY97	RENAULT	02-fev-96
	1000	AAAA	PARIS	56GT98	FIAT	06-mar-91
	1350	CCCC	NICE	43ZT88	RENAULT	28-dec-87
	1500	BBBBB	NANTES	57TG92	PEUGEOT	26-jui-91

• *Redondance*: on dit 2 fois que le propriétaire N°1500 a pour nom BBBBB et habite à Nantes

Pourquoi la normalisation?

- pour éliminer les redondances
- pour mieux comprendre les relations sémantiques entre les données
- pour éviter les incohérences de mise à jour
- pour éviter, autant que possible, les valeurs nulles Insertion d'une personne sans voiture ⇒ introduction de valeurs nulles
- Pour éviter la perte d'information

Suppression de la dernière voiture possédée par une personne ⇒ perte d'information

Relation COURS

Nomprof	Ville	Département	Nometud	Age	Nomcours	Note
Dupont Dupont Martin Martin Dupont Charles	Lille Lille Arras Arras Lille Lille	59 59 62 62 59	Alfred Arthur Alfred Pierre Pierre Pierre	22 25 22 23 23 23 23	Math Math Anglais Anglais Anglais Anglais	12 05 18 11 13 12

- des données redondantes : Dupont à Lille (59)
- des risques d'incohérence : déménagement de Dupont à Marseille
- des valeurs nulles : représenter un prof qui n'a pas d'étudiant entraînent des anomalies à l'interrogation
 - Problème du choix des relations

Comment normaliser un schéma relationnel?

• Approche par décomposition :

- on part d'une table contenant tous les attributs
- et on décompose jusqu'à ce qu'il n'y ait plus de redondances

Approche par synthèse :

- à partir de l'ensemble des attributs
- et des dépendances fonctionnelles
- on constitue les tables

Exemple de table non normalisée

NumPropriéta	aire Nom	Ville	NumVéhicule	Marque	Date
1000	AAAA	PARIS	90FE75	PEUGEOT	10-sep-89
1500	BBBBB	NANTES	43XY97	RENAULT	02-fev-96
1000	AAAA	PARIS	56GT98	FIAT	06-mar-91
1350	CCCC	NICE	43ZT88	RENAULT	28-dec-87
1500	BBBBB	NANTES	57 TG 92	PEUGEOT	26-jui-91

Exemple de normalisation par décomposition en utilisant les Dépendances Fonctionnelles

* <u>N</u>	umPropriétaire	ı	Nom	Ville		NumVéhicule	Marque
	1000	Α	AAA	PARIS	/	90FE75	PEUGEOT
	1500	BI	BBBB	NANTES		43XY97	RENAULT
	1350	_	CCC	NICE		56GT98	FIAT
	1550	٦		NICL		43ZT88	RENAULT
	─ <u>NumPropriéta</u>	ire	Num	Véhicule	Date	57TG92	PEUGEOT
	1000		90)FE75	10-sep-89		
	1500		43	XY97	02-fev-96		
	1000		56	GT98	06-mar-91		
	1350		43	ZT88	28-dec-87		
	1500		57	TG92	26-jui-91		

Décomposition sans perte

Jointure

Soient R (A1, A2, ..., An) et S (B1, B2, ..., Bp) deux relations

La jointure de R et S est la relation T qui a pour attributs l'union des attributs de R et S et pour tuples l'ensemble des tuples construits à partir de R et S sur les valeurs identiques des attributs communs

On note
$$T = R \bowtie S$$

Exemple

R	Nom	Salaire
	Dupond	10000
	Durand	5400
	Martin	12000

S	Nom	Adresse
	Dupond	Issy
1	Durand	Sète
	Martin	Sète

Т	Nom	Salaire	Adresse
	Dupond	10000	Issy
	Durand	5400	Sète
	Martin	12000	Sète

Définition

La décomposition de R en R1, R2, ..., Rn est sans perte si, pour toute extension de R, on a :

$$R_1 \bowtie R_2 \bowtie \ldots R_n = R$$

7

II – Dépendance fonctionnelle

- Soient
 - $-R_1(A_1, ..., A_n)$ un schéma relationnel
 - X et Y sont deux sous-ensembles de $\{A_1, ..., A_n\}$
- On dit que:
 - Y dépend fonctionnellement de X ou bien X détermine Y, on note
 X → Y), si quelle que soit l'instance de R, pour tout tuples T₁, T₂ de R, on a :

$$T_1[X] = T_2[X] \implies T_1[Y] = T_2[Y]$$

avec T_i [X] la valeur de X pour le tuple T_i .

- NumPropriétaire → Nom
- NumPropriétaire → Ville
- NumVéhicule → Marque
- NumPropriétaire, NumVéhicule → Date

Remarques :

- Une DF s'applique sur toutes les instances possibles
- Une DF doit être déclarée.

Axiomes d'Armstrong

Propriétés des dépendances fonctionnelles

- 1. Réflexivité $Y \subseteq X \Rightarrow X \rightarrow Y$
- 2. Augmentation $X \rightarrow Y => X,Z \rightarrow Y,Z$
- 3. Transitivité $X \rightarrow Y$ et $Y \rightarrow Z => X \rightarrow Z$

. . .

Conséquences

- 4. Union $X \rightarrow Y$ et $X \rightarrow Z => X \rightarrow Y,Z$
- 5. Pseudo-transitivité $X \rightarrow Y$ et $W,Y \rightarrow Z => W,X \rightarrow Z$
- 6. Décomposition $X \rightarrow Y$ et $Z \subseteq Y => X \rightarrow Z$

Dépendance fonctionnelle élémentaire

• Dépendance fonctionnelle élémentaire

```
X \rightarrow A telle que
```

- 1) A est un attribut unique
- 2) A ∉ X
- 3) Il n'existe pas $X' \subseteq X$ tel que $X' \rightarrow A$
- Dans la recherche des DF, on peut se limiter sans restriction aux DFs élémentaires

Table COURS (NOMPROF, VILLE, DEPARTEMENT, NOMETUDIANT, AGE, COURS, NOTE)

Dépendances fonctionnelles valides :

Dépendances fonctionnelles invalides :

NOMPROF VILLE NOMPROF NOMETUDIANT VILLE NOMETUDIANT AGE

AGE NOMETUD

Dépendances fonctionnelles élémentaires

NOMPROF • VILLE

VILLE
DEPARTEMENT

NOMPROF

DEPARTEMENT

NOMETUD 3 AGE

NOMETUD NOMCOURS 3 NOTE

NOMCOURS

NOMPROF

Autres définitions

Autres définitions

• Fermeture d'un ensemble F de DFs :

 Ensemble F' de DFs obtenu par applications successives des axiomes d'inférence

• Fermeture transitive d'un ensemble F de DFs :

 Ensemble F⁺ de DFs élémentaires obtenues par application des axiomes de transitivité et de pseudo-transitivite

• Couverture minimale d'un ensemble F de DFs :

 Plus petit ensemble de DFs permettant d'obtenir, par applications successives des axiomes d'inférence, la fermeture transitive de F

```
Exemple: Relation COURS
```

(NOMPROF, VILLE, DEPARTEMENT, NOMETUDIANT, AGE, COURS, NOTE)

- 1. NOMPROF \rightarrow VILLE
- 2. VILLE → DEPARTEMENT
- NOMPROF → DEPARTEMENT
- 4. NOMETUDIANT → AGE
- 5. NOMETUDIANT, COURS \rightarrow NOTE
- 6. COURS → NOMPROF

n'est pas minimal car 3 est redondante

- {1, 2, 4, 5, 6} est une couverture minimale
- {1, 3, 4, 5} n'est pas une couverture

Graphe de dépendance

Dépendance fonctionnelle et Clé

Soient :

$$R(A1, A2, \ldots, An)$$

$$X \subseteq \{A1, A2, \dots, An\}$$

On dit que X est une clé candidate de R ssi :

R (NumPropriétaire, NumVéhicule, Nom, Ville, Marque, Date)

- NumPropriétaire → Nom
- NumPropriétaire → Ville
- NumVéhicule → Marque
- NumPropriétaire, NumVéhicule → Date

{NumPropriétaire, NumVéhicule} est la seule clé pour R

Les Formes Normales

- 1ère Forme Normale (1FN)
- 2ème Forme Normale (2FN)
- 3ème Forme Normale (3FN)
- Etc,

Première forme normale (1FN)

• Une relation est en lère Forme Normale (1FN) si et seulement si tous ses attributs sont atomiques (non composés et mono-valués)

Contre-exemples:

- 1. PERSONNE (NOM, PRENOMS)Mise en 1FN: PERSONNE1 (NOM, PRENOM1, PRENOM2)
- 2. PERSONNE (NOM, PRENOM, ADRESSE)
 Mise en 1FN: PERSONNE2 (NOM, PRENOM, N°RUE, RUE, CODEPOSTAL, VILLE)

ETUDIANT (Matricule,	Nom	,,	DIPLOMES)
	01	A		{Bac, BTS}
	02	В		{Bac, Deug}
	03	C		{Bac}

ETUDIANT n'est pas en 1FN

ETUDIANT (N	Iatricule,	Nom	,,	DIPLOME)
	01	Α		Bac
	01	A		BTS
	02	В		Bac
	02	В		Deug Bac
	03	С		Bac

ETUDIANT est en 1FN

Deuxième forme normale (2FN)

- Une relation est en deuxième forme normale (2FN) si :
 - 1. elle est en 1 FN
 - 2. tout attribut n'appartenant pas à la clé dépend uniquement de la totalité de la clé
- Exemple:

 $R(\underline{A}, \underline{B}, C, D)$ en 1FN et $A \rightarrow C \Rightarrow R$ n 'est pas en 2FN

Exemples de relations non 2FN

R (NumPropriétaire, NumVéhicule, Nom, Ville, Marque, Date

 $NumPropriétaire \rightarrow Nom$

 $NumPropriétaire \rightarrow Ville$

 $NumVéhicule \rightarrow Marque$

NumPropriétaire, NumVéhicule → Date

R n'est pas en 2FN

Exemple: COURS (NOMPROF, VILLE, DEPARTEMENT, NOMETUD, AGE, NOMCOURS, NOTE)

1 seule clé (NOMETUD, NOMCOURS)

4. NOMETUD, NOMCOURS ♣ NOTE

2. VILLE → DEPARTEMENT 5. NOMCOURS → NOMPROF

3. NOMETUD
AGE

Problème pour les attributs NOMPROF, VILLE, DEPARTEMENT et AGE

COURS (NOMETUD NOMCOURS NOTE) R1 (NOMCOURS NOMPROF VILLE DEPARTEMENT) R2 (NOMETUD AGE)

sont en 2 FN

Exemple 2FN par décomposition

Troisième forme normale (3FN)

- Une relation est en troisième forme normale (3FN) si:
 - 1. elle est en 2FN
 - 2. tout attribut n'appartenant pas à une clé ne dépend pas d'un attribut non clé (pas de dépendance fonctionnelle entre attributs non clés)
- Exemple :

 $R(\underline{A}, C, D)$ en 2FN et $C \rightarrow D \Rightarrow R$ n'est pas en 3FN

PRODUIT (NunProduit, Désignation, CodeTVA, TauxTVA)

 $CodeTVA \rightarrow TauxTVA$

PRODUIT (NunProduit, Désignation, CodeTVA)

TVA (CodeTVA, TauxTVA)

Algorithme de mise sous 3 FN

- 0FN \Rightarrow 1FN : mise sous forme atomique des attributs
- 1FN ⇒ 2FN : pour chaque partie X de clé déterminant des attributs non clés Y1, ..., Yn
 - 1. on crée une relation supplémentaire avec X pour clé et Y1, ..., Yn comme attributs non clés
 - 2. on retire Y1, ..., Yn de la relation initiale
- $2FN \Rightarrow 3FN$: pour chaque attribut non clé Y déterminant des attributs non clés Z1, ..., Zn
 - 1. on crée une relation R' supplémentaire avec Y comme clé et Z1, ..., Zn comme attributs non clés
 - 2. on retire Z1, ..., Zn de la relation initiale

R' n'est pas nécessairement en 3 FN. Si c'est le cas, réitérer le processus sur R'.

Propriétés

• Dans une décomposition d'une relation en plusieurs autres, on dit que la décomposition préserve une dépendance fonctionnelle s'il reste, après décomposition, une relation contenant tous les attributs de la DF

• Propriété:

Toute relation a au moins une décomposition en 3 FN qui :

- préserve une couverture minimale de DF
- est sans perte

Autre algorithme de normalisation

Etapes de l'Algorithme de Synthèse

- 1. Regroupement des dépendances de même partie gauche
- 2. Construction d'une relation pour chaque ensemble
 - Chacune des relation a pour clé le groupe d'attributs en partie gauche

Application de l'étape 1 de l'algorithme

Application de l'étape 2 de l'algorithme

Comparaison des 2 algorithmes

- Algorithme de décomposition :
 - préserve le contenu
 - Conduit à des relations en au moins 3FN

- Algorithme de synthèse
 - préserve les DFs
 - conduit à des relations en 3FN

 NB: une décomposition de R en R1, R2, ...Rn préserve le contenu ssi la jointure des relations de R1, R2, ...Rn est égale à la relation R

CONCLUSION

- La normalisation permet de :
 - Construire des tables sans redondance
 - Vérifier la bonne conception des tables issues de la modélisation conceptuelle
 - Restructurer une base existante