0.1 摄动法

摄动法的原理

- (1) 证明矩阵问题对非异阵成立.
- (2) 对任意的 n 阶矩阵 A, 由上例可知, 存在一列有理数 $t_k \to 0$, 使得 $t_k I_n + A$ 都是非异阵. 验证 $t_k I_n + A$ 仍满足矩阵问题的条件, 从而该问题对 $t_k I_n + A$ 成立.
 - (3) 若矩阵问题关于 t_k 连续,则可取极限令 $t_k \to 0$,从而得到该问题对一般的矩阵 A 也成立.

注

- 1. 矩阵问题对非异阵成立以及矩阵问题关于 t_k 连续, 这两个要求缺一不可, 否则将不能使用摄动法进行证明.
- 2. 验证摄动矩阵仍然满足矩阵问题的条件是必要的. 例如, 若矩阵问题中有 AB = -BA 这一条, 但 $(t_k I_n + A)B \neq -B(t_k I_n + A)$, 因此便不能使用摄动法.
- 3. 根据实际问题的需要, 也可以使用其他非异阵来替代 I_n 对 A 进行摄动.
- 室 笔记 关于伴随矩阵的问题中经常会使用摄动法.

命题 0.1

设 A 是一个 n 阶方阵, 求证: 存在一个正数 a, 使得对任意的 0 < t < a, 矩阵 $tI_n + A$ 都是非异阵.

 $\stackrel{\circ}{\Sigma}$ 笔记 这个命题告诉我们对任意的 n 阶矩阵 A, 经过微小的一维摄动之后, $tI_n + A$ 总能成为一个非异阵. 证明 通过简单的计算可得

$$|tI_n + A| = t^n + a_1 t^{n-1} + \dots + a_{n-1} t + a_n,$$

这是一个关于未定元 t 的 n 次多项式. 由多项式根的有限性可知上述多项式至多只有 n 个不同的根. 若上述多项式的根都是零,则不妨取 a=1; 若上述多项式有非零根,则令 a 为 $|tI_n+A|$ 所有非零根的模长的最小值. 因此对任意的 $0 < t_0 < a$, t_0 都不是 $|tI_n+A|$ 的根,即 $|t_0I_n+A| \neq 0$,从而 t_0I_n+A 是非异阵.

推论 0.1

设 A 是一个 n 阶方阵,P 是一个 n 阶可逆方阵, 求证: 存在一个正数 a, 使得对任意的 0 < t < a, 矩阵 tP + A 都是非异阵.

证明 由命题 0.1知, 存在一个正数 a, 使得对 $\forall t \in (0,a)$, 都有 $tI_n + P^{-1}A$ 是非异阵. 于是

$$|tP + A| = |P||tI_n + P^{-1}A| \neq 0.$$

故对 $\forall t \in (0, a), |tP + A|$ 都是非异阵.

例题 **0.1** 设 $A, B, C, D \neq n$ 阶矩阵 AC = CA, 求证:

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD - CB|.$$

拿 筆记 本题也给出了例题??的摄动法证明。

证明 若 A 为非异阵,则由降阶公式,再结合条件 AC = CA 可得

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A| |D - CA^{-1}B| = |AD - ACA^{-1}B| = |AD - CB|.$$

对于一般的方阵 A, 由命题 0.1可知, 存在一列有理数 $t_k \to 0$, 使得 $t_k I_n + A$ 是非异阵, 并且条件 $(t_k I_n + A)C = C(t_k I_n + A)$ 仍然成立. 于是

$$\begin{vmatrix} t_k I_n + A & B \\ C & D \end{vmatrix} = |(t_k I_n + A)D - CB|.$$

1

上式两边都是行列式, 其值都是 t_k 的多项式, 从而都关于 t_k 连续. 上式两边同时令 $t_k \to 0$, 即有 $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD - CB|$ 成立.

例题 **0.2** 设 A, B, C, D 为 n 阶矩阵, 且 $CD^T = DC^T$, 证明:

$$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD^T - BC^T).$$

证明 (i) 若 D 可逆,则由 $CD^T = DC^T$ 可知

$$D^{-1}CD^T = C^T.$$

于是

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} A & B \\ O & D - CA^{-1}B \end{vmatrix} = |D| |A - BD^{-1}C|$$
$$= |A - BD^{-1}C| |D^T| = |AD^T - BD^{-1}CD^T|$$
$$= |AD^T - BC^T|.$$

(ii) 若 D 不可逆,则设 $\mathbf{r}(C) = r$,则存在可逆阵 P,Q,使得

$$PCQ = \begin{pmatrix} E_r & O \\ O & O \end{pmatrix}.$$

由推论 0.1知, 存在 a>0, 使得对 $\forall t\in(0,a)$, 都有 $tP^{-1}Q^T+D$ 是可逆阵. 注意到

$$\begin{split} C\left(tP^{-1}Q^T+D\right)^T &= tCQ\left(P^{-1}\right)^T + CD^T = tP^{-1}\begin{pmatrix} E_r & O\\ O & O \end{pmatrix}\left(P^{-1}\right)^T + CD^T;\\ \left(tP^{-1}Q^T+D\right)C^T &= tP^{-1}Q^TC^T + DC^T = tP^{-1}\begin{pmatrix} E_r & O\\ O & O \end{pmatrix}^T\left(P^{-1}\right)^T + CD^T. \end{split}$$

故 $C\left(tP^{-1}Q^T+D\right)^T=\left(tP^{-1}Q^T+D\right)C^T$. 因此由 (i) 同理可得

$$\begin{vmatrix} A & B \\ C & tP^{-1}Q^T + D \end{vmatrix} = \left| A \left(tP^{-1}Q^T + D \right)^T - BC^T \right|, \quad \forall t \in (0, a).$$

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD^T - BC^T|.$$