Specification_

A METHOD FOR FORMING CRYSTALLINE SEMICONDUCTOR LAYERS, A
METHOD FOR FABRICATING THIN FILM TRANSISTORS, AND A
METHOD FOR FABRICATING SOLAR CELLS AND ACTIVE MATRIX
LIQUID CRYSTAL DEVICES

Field of Technology BL

method for а invention concerns This method for and а crystalline semiconductor layers fabricating thin film transistors, active matrix liquid cells that employ solar devices and crystal crystalline semiconductor layers.

Background Technology Description of The Related Art

Polycrystalline silicon and other semiconductor films are used widely in thin film transistors ("TFT" in the specifications of this application) and solar cells. The performance of these semiconductor devices is strongly dependent on the quality of the semiconductor layer, which wholly constitutes the active portion of the semiconductor Needless to say, if a high-quality semiconductor a semiconductor device be created, can correspondingly high performance can be produced. For example, in a polycrystalline silicon thin film transistor (poly-Si TFT) used in such products as liquid crystal quality of higher the the devices, display polycrystalline silicon (poly-Si) layer, the faster the Likewise, given roughly switching speed of the TFT. similar light absorption efficiency, a solar cell having a semiconductor layer with a higher degree of crystallinity efficiently. energy more will convert therefore, strong demand in many industries for quality crystalline semiconductor layers.

However, the formation of this kind of high quality semiconductor layer is generally difficult to achieve and, moreover, is subject to important limitations. In the field of TFTs, polycrystalline silicon layers having relatively high mobility are formed by fabricating transistors by means of a high temperature

 \mathcal{B}

#009995 03#90E

10

25

30

•

process where maximum process temperatures reach about 1000°C. of this, semiconductor films Because semiconductor formed devices can be only on those resistance properties substrates having thermal enable them to withstand high temperature processing. this reason, all of today's poly-Si TFTs are formed on expensive, small quartz glass substrates. For the same reason, amorphous silicon (a-Si) is normally used for solar cells.

Against this backdrop, various research has been conducted on methods of forming high quality semiconductor layers at the lowest temperature possible. Solid-phase crystallization is known as the first such method. this process, an a-Si film is formed on the substrate and annealing at a temperature subjected to approximately 600°C for a minimum of 10 hours, converting said a-Si film to a poly-Si layer. crystallization is acknowledged to be the second process. In this method, an a-Si film is first deposited and then thereby to laser irradiation, promoting crystallization of the silicon film.

first of the conventional However, the crystallization) (solid phase requires technologies annealing over a long period of time - more than 10 hours and thus suffers from extremely poor throughput. in this process thermal deformation of Moreover, substrate arising from prolonged heating of the entire substrate has become a major problem, meaning essentially that inexpensive, large glass substrates cannot be used. the conventional second of The problem with the crystallization) is technologies (laser crystallization does not progress if the laser irradiation energy is too low, while high energy will damage the Hence, satisfactory, high quality semiconductor film. crystalline films cannot be produced under either of the irradiation conditions. Moreover, extensive nonuniformity in crystallinity is known to occur with each laser The that even if these irradiation. result is

25

30

35

5

semiconductor films are applied in TFTs, for example, good transistor characteristics cannot be obtained.

Accordingly, a third method is being studied, which combines the second of the conventional technologies (laser crystallization) with a variation of the first This is a semiconductor film (furnace annealing). is performed annealing process that after the semiconductor film is crystallized by a laser. In this process the annealing temperature is lower (450°C 550°C) than that used in solid-phase crystallization and annealing time is shorter (one to five Nevertheless, this process, too, has essentially the same problems as those of the first method. That is, even if to about 450°C, annealing temperature were kept throughput would be poor because annealing would required for at least several hours and, moreover, thermal distortion of the substrate could not be ignored.

Therefore, the aim of the present invention is to solve the aforementioned problems. The objective is to provide a method of forming high quality crystalline semiconductor layers with high throughput without subjecting the substrate to excessive thermal stress and, using this method, to provide a method of producing high performance thin film transistors and solar cells.

Summary of THE INVENTION Description of the Invention

To solve the aforementioned problems in a method crystalline semiconductor layers forming on this invention is characterized by a substrate, semiconductor film deposition process in which semiconductor film is deposited on a substrate, a first annealing process in which said semiconductor film crystallized by repeatedly performing a process that melt crystallizes a portion of said semiconductor film, and a second annealing process in which rapid thermal annealing is performed on said crystallized semiconductor film. Here, the annealing temperature in the aforesaid second annealing process is expressed by the absolute temperature

25

30

35

5

10

R

HOOGGG LOWLSON

15

20

25

30

35

5

T [K] and, when the annealing time is t [seconds], annealing temperature T and annealing time t are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

(ϵ = 3.01 [eV], k = 8.617 x 10⁻⁵ [eV/K]: Boltzmann constant)

Or, they are characterized by the fact that the following relationship is satisfied:

10 5 x 10^{-18} [sec] < t • exp (- ϵ/kT).

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

They are also characterized by the fact that when the two equations directly above are satisfied, the substrate is glass and annealing temperature T is below the strain point of said glass substrate. In addition, this invention is characterized by the fact that annealing time t is 300 seconds or less, and is also characterized by the fact that the annealing time t is 180 seconds or less.

In a method of forming crystalline semiconductor layers on a substrate, this invention is also characterized by a semiconductor film deposition process in which a semiconductor film is deposited on a substrate, a first annealing process in which said semiconductor film

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

5

10

25

30

35

(ϵ = 3.01 [eV], k = 8.617 x 10 $^{\text{-5}}$ [eV/K]: Boltzmann constant)

Or, they are characterized by the fact that the following relationship is satisfied:

 $5 \times 10^{-18} [sec] < t \cdot exp (- \epsilon/kT)$.

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

They are also characterized by the fact that when the two equations directly above are satisfied, the substrate is glass, and annealing temperature T is below the strain point of said glass substrate. In addition, this invention is characterized by the fact that the annealing time t is 300 seconds or less, and is also characterized

10

15

20

25

less.

6 by the fact that the annealing time t is 180 seconds or

In addition, in a method of forming crystalline semiconductor layers on a substrate, this invention is characterized by a semiconductor film deposition process in which a semiconductor film is deposited on a substrate, a first annealing process in which said semiconductor film repeatedly exposed to local high energy optical irradiation, and a second annealing process in which rapid thermal annealing is performed on said high irradiated semiconductor film. optically aforementioned second annealing temperature in the annealing process is expressed by the absolute temperature and when the annealing time is t [seconds], and annealing time annealing temperature T characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

 $(\epsilon = 3.01 \text{ [eV]}, k = 8.617 \text{ x } 10^{-5} \text{ [eV/K]}: Boltzmann}$ constant).

Or, they are characterized by the fact that the following relationship is satisfied:

 $5 \times 10^{-18} [sec] < t \cdot exp (- \epsilon/kT)$.

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

 5×10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} 30 [sec].

> Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15}

35 [sec]. Or, they are characterized by the fact that the following relationship is satisfied:

30

35

5

10

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

They are also characterized by the fact that when the two equations directly above are satisfied, the substrate is glass, and annealing temperature T is below the strain point of said glass substrate. In addition, this invention is characterized by the fact that the annealing time t is 300 seconds or less, and is also characterized by the fact that the annealing time t is 180 seconds or less.

In a method of fabricating thin film transistors using a semiconductor film formed on a substrate, this invention is also characterized by having at a minimum a film deposition process in which semiconductor semiconductor film is deposited on a substrate, a first annealing process in which said semiconductor film is crystallized by repeatedly performing a process that melt crystallizes a portion of said semiconductor film, and a second annealing process in which rapid thermal annealing is performed on said crystallized semiconductor Here, the annealing temperature in the aforementioned second annealing process is expressed by the absolute temperature T [K] and, when the annealing time is t [seconds], annealing temperature T and annealing time t the fact that the characterized by relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

(ϵ = 3.01 [eV], k = 8.617 x 10⁻⁵ [eV/K]: Boltzmann constant).

Or, they are characterized by the fact that the following relationship is satisfied:

 $5 \times 10^{-18} [sec] < t \cdot exp (- \epsilon/kT)$.

Or, they are characterized by the fact that the following relationship is satisfied:

 1.72×10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

Or, they are characterized by the fact that the following relationship is satisfied:

5 1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

 $5 \times 10^{-18} [sec] < t • exp <math>(-\epsilon/kT) < 1.09 \times 10^{-15}$ [sec],

They are also characterized by the fact that when the two equations directly above are satisfied, the substrate is glass, and thermal annealing temperature T is below the strain point of said glass substrate. In addition, this invention is characterized by the fact that the annealing time t is 300 seconds or less, and is also characterized by the fact that the annealing time t is 180 seconds or less.

In a method of fabricating thin film transistors using a semiconductor film formed on a substrate, this invention is also characterized by having at a minimum film deposition process semiconductor in which а semiconductor film is deposited on a substrate, a first annealing process in which said semiconductor film is repeatedly exposed to local laser irradiation, second annealing process in which rapid thermal annealing is performed on said laser irradiated semiconductor film. Here, the annealing temperature in the aforementioned second annealing process is expressed by the absolute temperature T [K] and when the annealing time is t [seconds], annealing temperature T and annealing time t characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

(ϵ = 3.01 [eV], k = 8.617 x 10⁻⁵ [eV/K]: Boltzmann constant).

Or, they are characterized by the fact that the following relationship is satisfied:

HODGOGOGO OMHOON

25

30

35

 $5 \times 10^{-18} [sec] < t exp (- \epsilon/kT)$.

5

1009953 03190E

25

30

35

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

They are also characterized by the fact that when the two equations directly above are satisfied, the substrate is glass, and thermal annealing temperature T is below the strain point of said glass substrate. In addition, this invention is characterized by the fact that the annealing time t is 300 seconds or less, and is also characterized by the fact that the annealing time t is 180 seconds or less.

In a method of fabricating thin film transistors using a semiconductor film formed on a substrate, this invention is also characterized by having at a minimum a deposition process semiconductor film in which semiconductor film is deposited on a substrate, a first annealing process in which said semiconductor film is repeatedly exposed local high to energy irradiation, and a second annealing process in which rapid thermal annealing is performed on high energy said optically irradiated semiconductor film. the annealing temperature in the aforementioned annealing process is expressed by the absolute temperature and when the annealing time is t [seconds],

annealing temperature T and annealing time t are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT).

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

They are also characterized by the fact that when the two equations directly above are satisfied, the substrate is glass, and thermal annealing temperature T is below the strain point of said glass substrate. In addition, this invention is characterized by the fact that the annealing time t is 300 seconds or less, and is also characterized by the fact that the annealing time t is 180 seconds or less.

In a method of fabricating solar cells using a semiconductor film formed on a substrate, this invention is also characterized by having at a minimum a semiconductor film deposition process in which a semiconductor film is deposited on a substrate, a first

1009953 OD190E

25

30

annealing process in which said semiconductor film is crystallized by repeatedly performing a process that melt crystallizes a portion of the said semiconductor film, and second annealing process in which rapid annealing is performed on said crystallized semiconductor film. Here, the annealing temperature aforementioned second annealing process is expressed by the absolute temperature T [K] and when the annealing time is t [seconds], annealing temperature T and annealing time t are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

(ϵ = 3.01 [eV], k = 8.617 x 10⁻⁵ [eV/K]: Boltzmann constant).

Or, they are characterized by the fact that the following relationship is satisfied:

 $5 \times 10^{-18} [sec] < t \cdot exp (- \epsilon/kT)$.

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

They are also characterized by the fact that when the two equations directly above are satisfied, the substrate is glass, and thermal annealing temperature T is below the strain point of said glass substrate. In addition, this invention is characterized by the fact that the annealing

COSSSE COSESSE

25

30

35

5

time t is 300 seconds or less, and is also characterized by the fact that the annealing time t is 180 seconds or less.

5

10

10099953 . O31902

25

30

35

In a method of fabricating solar cells using a semiconductor film formed on a substrate, this invention characterized by having minimum at a deposition process in which semiconductor film semiconductor film is deposited on a substrate, a first annealing process in which said semiconductor film is repeatedly exposed to local laser irradiation, second annealing process in which rapid thermal annealing is performed on said laser irradiated semiconductor film. Here, the annealing temperature in the aforementioned second annealing process is expressed by the absolute temperature T [K] and when the annealing time [seconds], annealing temperature T and annealing time t characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

(ϵ = 3.01 [eV], k = 8.617 x 10 $^{\text{-5}}$ [eV/K]: Boltzmann constant).

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT).

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

 1.72×10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

They are also characterized by the fact that when the two equations directly above are satisfied, the substrate is glass, and thermal annealing temperature T is below the strain point of said glass substrate. In addition, this invention is characterized by the fact that the annealing time t is 300 seconds or less, and is also characterized by the fact that the annealing time t is 180 seconds or

less.

5

25

30

In a method of fabricating solar cells using a semiconductor film formed on a substrate, this invention also characterized by having at a minimum semiconductor film deposition process in which semiconductor film is deposited on a substrate, annealing process in which said semiconductor film is repeatedly exposed to local high energy irradiation, and a second annealing process in which rapid annealing is performed on said high optically irradiated semiconductor film. Here, the the annealing temperature in aforementioned second annealing process is expressed by the absolute temperature and when the annealing time [K] is t [seconds], annealing temperature T and annealing time characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

(ϵ = 3.01 [eV], k = 8.617 x 10⁻⁵ [eV/K]: Boltzmann constant).

Or, they are characterized by the fact that the following relationship is satisfied:

 $5 \times 10^{-18} [sec] < t \cdot exp (- \epsilon/kT)$.

Or, they are characterized by the fact that the following relationship is satisfied:

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

 1.72×10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09×10^{-15} [sec].

5

10

25

30

35

Or, they are characterized by the fact that the following relationship is satisfied:

 $5 \times 10^{-18} \text{ [sec]} < t \cdot \exp (-\epsilon/k\text{T}) < 1.09 \times 10^{-15} \text{ [sec]}.$

They are also characterized by the fact that when the two equations directly above are satisfied, the substrate is glass, and thermal annealing temperature T is below the strain point of said glass substrate. In addition, this invention is characterized by the fact that the annealing time t is 300 seconds or less, and is also characterized by the fact that the annealing time t is 180 seconds or less.

In a method of fabricating solar cells using a semiconductor film formed on a substrate, this invention is also characterized by having at a minimum a process in which a first conductive impurity diffusion source formed on a substrate, a semiconductor film deposition process in which a semiconductor film is deposited on said first conductive impurity diffusion source, a process in which a second conductive impurity diffusion source formed on the surface of said semiconductor film, a first annealing process in which said semiconductor film is repeatedly exposed to local laser irradiation, second annealing process in which rapid thermal annealing is performed on said laser irradiated semiconductor film. Here, the annealing temperature in the aforementioned second annealing process is expressed by the absolute and when the annealing time temperature T [K] [seconds], annealing temperature T and annealing time t that the the fact characterized by relationship is satisfied:

1.72 x 10^{-21} [sec] < t exp $(-\epsilon/kT)$

(ϵ = 3.01 [eV], k = 8.617 x 10⁻⁵ [eV/K]: Boltzmann constant).

Or, they are characterized by the fact that the following relationship is satisfied:

5 5 x 10^{-18} [sec] < t • exp (- ϵ/kT).

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following 10 relationship is satisfied:

> 5×10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 $\times 10^{-14}$ [sec].

> Or, they are characterized by the fact that the following relationship is satisfied:

> 1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

> Or, they are characterized by the fact that the following relationship is satisfied:

> 5×10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

In a method of fabricating solar cells using a semiconductor film formed on a substrate, this invention is characterized by having at a minimum a semiconductor film deposition process in which a semiconductor film is deposited, a first annealing process in which said semiconductor film is repeatedly exposed to local laser irradiation, a process in which a second conductive impurity diffusion source is formed on the surface of said irradiated semiconductor film, and а annealing process in which rapid thermal annealing is performed on a semiconductor film on which said second conductive impurity diffusion source is formed. semiconductor film that is deposited in the aforesaid semiconductor film deposition process is characterized by being a layered structure comprised of a first conductive semiconductor film and an essentially intrinsic semiconductor film. Here, the

HODOOGE 20

ΠJ

25

30

1.72 x
$$10^{-21}$$
 [sec] < t • exp (- ϵ/kT)

10

25

30

35

(ϵ = 3.01 [eV], k = 8.617 x 10⁻⁵ [eV/K]: Boltzmann constant).

Or, they are characterized by the fact that the following relationship is satisfied:

 $5 \times 10^{-18} [sec] < t \cdot exp (- \epsilon/kT)$.

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

 1.72×10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Further, in a method of fabricating solar cells using a semiconductor film formed on a substrate, this invention is also characterized by having at a minimum a process in which a first conductive impurity diffusion source is formed on a substrate, a semiconductor film deposition process in which a semiconductor film is deposited on said first conductive impurity diffusion source, a first annealing process in which said semiconductor film is repeatedly exposed to local laser irradiation, a process in which a second conductive impurity diffusion source is formed on the surface of said

laser irradiated semiconductor film and a second annealing process in which rapid thermal annealing is performed on a semiconductor film formed by said second conductive impurity diffusion source. Here, the annealing temperature in the aforementioned second annealing process is expressed by the absolute temperature T [K] and when the annealing time is t [seconds], annealing temperature T and annealing time t are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

5

10

₩ | C20 | HGCL

25

30

35

(ϵ = 3.01 [eV], k = 8.617 x 10⁻⁵ [eV/K]: Boltzmann constant).

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT).

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

 $5 \times 10^{-18} \text{ [sec]} < t \cdot \exp (-\epsilon/k\text{T}) < 1.09 \times 10^{-15} \text{ [sec]}.$

Further, in a method of fabricating solar cells using a semiconductor film formed on a substrate, this invention is also characterized by having at a minimum a semiconductor film deposition process in which a semiconductor film is deposited, a first annealing process in which said semiconductor film is repeatedly exposed to local laser irradiation, a process in which a second

conductive semiconductor film is deposited on the surface of said laser irradiated semiconductor film, and a second annealing process in which rapid thermal annealing is performed on a semiconductor film on which said second conductive semiconductor film is deposited. semiconductor film that is deposited in the aforesaid semiconductor film deposition process further characterized by being a layered structure comprised of a first conductive semiconductor film and an essentially semiconductor film. Here, intrinsic the annealing temperature in the aforementioned second annealing process is expressed by the absolute temperature T [K] and when the annealing time is t [seconds], annealing temperature T and annealing time t are characterized by the fact that the following relationship is satisfied:

5

10

<u>_</u>

ΠJ

25

30

35

_ ____15

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

(ϵ = 3.01 [eV], k = 8.617 x 10 $^{\text{-5}}$ [eV/K]: Boltzmann constant).

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10⁻¹⁸ [sec] < t • exp (- ϵ/kT).

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Further, in a method of fabricating solar cells using a semiconductor film formed on a substrate, this invention is also characterized by having at a minimum a process in which a first conductive impurity diffusion 5 source formed on а substrate, a semiconductor deposition process in which a semiconductor film is deposited on said first conductive impurity diffusion a first annealing process in which semiconductor film is repeatedly exposed to local laser 10 irradiation, a process in which a second conductive semiconductor film is deposited on the surface of said laser irradiated semiconductor film. .and a annealing process in which rapid thermal annealing is performed on the semiconductor film formed by said second conductive semiconductor film. Here, the annealing temperature in the aforementioned second annealing process is expressed by the absolute temperature T [K] and when the annealing time is t [seconds], annealing temperature T and annealing time t are characterized by the fact that the following relationship is satisfied:

Ш

25

30

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT)

 $(\epsilon = 3.01 \text{ [eV]}, k = 8.617 \text{ x } 10^{-5} \text{ [eV/K]}: Boltzmann}$ constant).

Or, they are characterized by the fact that the following relationship is satisfied:

 $5 \times 10^{-18} [sec] < t \cdot exp (- \epsilon/kT)$.

Or, they are characterized by the fact that the following relationship is satisfied:

1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

 5×10^{-18} [sec] < t • exp (- ϵ/kT) < 4.63 x 10^{-14} [sec].

35 Or, they are characterized by the fact that the following relationship is satisfied:

> 1.72 x 10^{-21} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

Or, they are characterized by the fact that the following relationship is satisfied:

5 x 10^{-18} [sec] < t • exp (- ϵ/kT) < 1.09 x 10^{-15} [sec].

5

10

لِيا

25

30

35

Further, in an active matrix liquid crystal device having thin film transistors, this invention is characterized by a substrate manufactured by means of the thin film transistor fabrication method described above.

The fundamental principles and scheme of the present invention are described in detail hereafter, with reference to the drawings.

(1. Fundamental Principles of the Present Invention)

In this invention, after a semiconductor film, typically a silicon film, is deposited on a substrate made material, portion of other a orsemiconductor film, the area of said portion being far smaller than the area of the substrate, is repeatedly exposed to laser light or to high energy light (the first The energy supplied through laser or annealing step). energy beam irradiation causes crystallization of supplied Ιf layer. the energy is semiconductor sufficiently high, after localized melting the irradiated portion of the semiconductor layer, portion of the semiconductor layer crystallizes through (This phenomenon is called melt solidification cooling. crystallization in the present invention disclosure.) Conversely, even if the energy supplied is not sufficient to cause melt crystallization, but is higher than a certain level, crystallization may progress in the solid phase within a very short time, usually less than a few time solid (This very short seconds. crystallization method is called VST-SPC.) In neither crystallization method, however, is the semiconductor perfectly crystalline at the end of crystallization. other words, a large number of amorphous components still remain between grains (incomplete crystallization or a low degree of crystallinity), constitutive semiconductor atoms

within the grains (Si atoms, for example) are slightly displaced from crystal lattice points (high internal stress and dangling bonds are present in the grains), or the boundaries between grains are irregularly ordered irregular grain boundaries). Incomplete crystallization in which the degree of crystallinity is low is basically caused by a lack of sufficient energy and has a tendency to occur in methods such as VST-SPC. in this case an electrically equivalent circuit can be considered as consisting of a crystalline component and an amorphous component connected in series, the electrical characteristics (such as carrier lifetime and mobility) of component govern the amorphous electrical characteristics of the whole. The larger the incidence of closer amorphous components, the the electrical characteristics are to that of an amorphous material, crystalline the product unsatisfactory as a semiconductor layer.

5

10

25

30

35

The second phenomenon, deviation of atoms from their lattice points, tends to occur readily crystallization upon rapid solidification. In normal melt laser irradiation, crystallization achieved by the duration of the solidification cooling process is at most 100 nsec to about 1 μsec. Hence, from about crystallization achieved in such a short period of time, the positions of atoms are fixed even if the atoms have not reached their regular lattice points. In this kind of semiconductor layer, atoms that deviate greatly from regular lattice position have dangling bonds, resulting in the formation of trap states (deep levels) near the middle of the forbidden band in the energy band diagram. other hand, even atoms that deviate only slightly from the regular lattice position become potential dangling bonds and form trap states (shallow levels) in the forbidden the conduction and valence band Consequently, the electrons and holes in this kind of semiconductor layer that are supposed to be free are trapped in these levels so that the actual

(electrons in the conduction band and holes in the valence band) concentration is reduced. Moreover, as a result of scattering by out-of-position atoms, a decrease in characteristics such as mobility is unavoidable.

V C d i a f C p C e f C b b m f d

25

30

35

5

The third phenomenon, irregular grain boundaries, is frequently observed in both melt crystallization and VST-SPC. Polycrystalline film grain boundaries chiefly classified as either irregular boundaries, as coincidence boundaries. described above, or as As indicated by the name, an irregular boundary exhibits absolutely no regularity in the grain boundary and has 3fold coordinated defects (dangling bonds) and coordinated defects (floating bonds) as well as precipitates of impurity elements such as Consequently, both deep levels and shallow levels form easily and in large numbers in irregular boundaries; and, further, the boundary potential is high. In contrast, coincidence boundaries comparatively are boundaries that have two-dimensional periodicity; dangling bonds are rearranged and groups of 5-member rings and 7member rings form the boundaries. (As a result, there are few dangling bonds in the boundary.) For this reason, deeps levels are not formed in the forbidden band; and the boundary potential is low. In polycrystalline materials, therefore, among the unavoidable grain boundaries are both boundaries (coincidence boundaries) boundaries (irregular boundaries). Crystalline layers created by VST-SPC and by melt crystallization employing laser or high energy optical irradiation do not make good films simply because they exhibit to a greater or lesser extent these three problems (incomplete crystallization, deviation from regular lattice points, and irregular grain boundaries). The invention present solves the aforementioned three problems and achieves high quality semiconductor films by employing rapid thermal annealing (RTA) after completion of the first annealing step. is the second annealing step).

10

土

25

30

35

The second annealing step, typically rapid thermal annealing, and the first annealing step, such as laser irradiation, are similar in that the treated area sufficiently small compared to the substrate area (in the first annealing step the area of the region that exposed to laser or high energy optical irradiation less than about 1% of the total substrate area; in the second annealing step the area of the region that exposed to RTA irradiation is less than about 5% of the total substrate area). They are also similar in that the annealing time in both is short, well under a few minutes at most (the length of time that a single point on the semiconductor film is continuously exposed at one time ranges from about 10 nsec to about 10 msec in the first anneal and from about 100 msec to about 300 sec in the The use of such parameters makes second anneal). possible to minimize the thermal stress to which the whole substrate is subjected; and, as a result, allows the use conventional glass substrates. inexpensive of Furthermore, the short period of time required for this process also effectively improves throughput. first annealing step and second annealing step the treated area comprises less than 5% of the substrate area, the distortion of the substrate after two annealings can be limited to a negligible amount, even if the substrate is made of inexpensive conventional glass.

In contrast to the similarities noted above, the second annealing step and first annealing step differ in that the area treated in the second annealing step is larger than the area treated in the first annealing step, the processing time of the second annealing step is longer than the processing time of the first annealing step, and the maximum processing temperature (from approximately 400°C to 1000°C) of the second annealing step is lower temperature (from processing maximum approximately 1000°C to 1500°C or more) of the first second annealing step, In the annealing step. semiconductor film, albeit crystallization of the

10

25

30

35

incomplete, is already finished for the most part. fact, the amorphous components that remain prior to the second annealing step comprise only very small regions that are surrounded by crystal grains. Therefore, of crystallinity can be improved even relatively low temperatures. In addition, the reason that such a long time for crystallization in the solid phase is necessary is that the generation of crystal nuclei is The crystal growth rate itself is comparatively fast. During the second annealing step, the surfaces that surround the amorphous components serve as the crystal growth plane. As this crystal growth plane is able to quickly advance during the second annealing, the problem of incomplete crystallization is solved even without requiring the sort of high temperatures used in annealing step. In order to solve aforementioned problem of deviation from the lattice points that occurs in the cooling process, temperature of the second annealing step needs to be lower than the temperature of the first annealing step. stated above, the problem of internal grain defects and deviation from the regular lattice points (high internal stress) is caused in part by the rapid solidification Therefore, this problem is solved by performing annealing slowly and for a long period of time at a temperature lower than that of the first anneal. that are deviated from regular reason is that atoms lattice points are thermally activated by this kind of heating process and return to the regular lattice points. Further, by processing a larger area during the second anneal than the area processed during the first annealing process, the stresses (large positive and negative values) that differed at each point in the semiconductor film immediately after crystallization are averaged over a wide effectively alleviating area, thereby stress (large positive and negative values become almost zero). Annealing a larger area during the second annealing process than the area annealed during the first annealing

10

25

30

35

process means in effect that local stress at the time of crystallization is uniformly relieved across a broad area. Local stress of this kind can effectively be relieved when the area treated during the second annealing step is about 20 times or more greater than the area treated during the first annealing process. A certain temperature level is necessary to rearrange an irregular boundary and convert it to a coincidence boundary, but the present invention solves this problem by means of a comparatively long In addition, the microcrystalline grains second anneal. that were formed at the time of the first anneal are recrystallized during the second anneal and develop into If the number of microcrystalline grains larger grains. is reduced, the overall total area of grain boundaries is and that alone eliminates the also reduced. effects of the crystalline boundaries. As described, in the present invention, the second anneal, which uses RAT, solves the various problems with crystalline quality the first anneal, and high created in semiconductor films can be obtained.

From the Substrate to Semiconductor Layer Deposition) (2. Essential components of the present invention from substrate and underlevel protection layer to deposition of the semiconductor layer will be explained. For the present invention, substrates including conductive materials such as metals; ceramic materials such silicon carbide (SiC), alumina (Al_2O_3) , and aluminum nitride (AlN); transparent or non-transparent insulating fused quartz and qlass; such as materials semiconductor materials such as silicon wafers or silicon wafers that have been processed into LSI can be used. semiconductor layer is deposited directly on top of the substrate or via an underlevel protection layer or lower Insulating materials such as silicon oxide electrode. $(SiO_x: 0 < x \le 2)$ or silicon nitride $(Si_3N_x: 0 < x \le 4)$ can be given as examples of underlevel protection layers. control of impurity migration into the semiconductor layer 10099953 03190E

25

30

35

5

10

is important, when TFTs other thin as or film semiconductor devices are being formed on top of normal substrates, it is desirable to deposit semiconductor film after the formation of an insulating underlevel protection layer to avoid penetration of mobile ions like sodium (Na), which are contained in the glass substrate, into the semiconductor film. The reasoning also holds when using any type of ceramic material as a substrate. The underlevel protection layer prevents impurities, such as sintering aids added to the from diffusing penetrating ceramics, orinto semiconductor regions. When using conductive materials such as metals as substrates, or when a semiconductor be electrically insulated from must substrate, an underlevel protection layer is absolutely essential to maintain the insulating properties. when forming semiconductor layers on top of semiconductor substrates or LSI elements, interlevel insulator films between transistors or between interconnects also act as underlevel protection layers.

After the substrate has been cleaned using deionized water and organic solvents such as alcohol, an underlevel protection layer is formed on the substrate by a CVD method such as atmospheric pressure chemical vapor deposition (APCVD), low pressure chemical vapor deposition or plasma-enhanced chemical vapor deposition (PECVD); or by a method such as sputtering. When using a silicon oxide film as the underlevel protection layer, it can be deposited by atmospheric pressure chemical vapor deposition using monosilane (SiH4) and oxygen as source gases at a substrate temperature of approximately 250°C to 450°C. With plasma-enhanced chemical vapor deposition and sputtering, the substrate temperatures are between room temperature and approximately 400°C. It is necessary to have a sufficiently thick underlevel protection layer to prevent the diffusion and penetration of impurity elements from the substrate into the semiconductor device, and this thickness is on the order of 1000 angstroms or above as a

Considering variations from lot to lot or from wafer to wafer within a single lot, it is better to have a greater than 2000 angstroms; and, thickness angstroms, the film can 3000 is sufficiently as a protection layer. When the underlevel protection layer also serves as an interlevel insulator layer between IC elements or the interconnects connecting such elements, a thickness of from 4000 to 6000 angstroms If the thickness of the insulating layer is too thick, cracks can appear as a result of stress in the insulating layer. As a result, a maximum film thickness of about 2 μm is desirable. When throughput must be a major consideration, the upper limit of insulator film thickness is about 1 μ m.

5

10

1009955 not 1000

25

30

35

Next, the semiconductor layer will be explained. In addition to being applicable to group IV elemental semiconductor films such as silicon (Si) and germanium (Ge), the present invention is also applicable to the compound semiconductor films: group IV following semiconductor films such as silicon germanium (Si_xGe_{1-x}: 0<x<1), silicon carbide (Si_xC_{1-x} : 0<x<1), and germanium carbide $(Ge_xC_{1-x}: 0< x<1)$; III-V compound semiconductor as gallium arsenide (GaAs), and such films antimonide (InSb); and II-VI compound semiconductor films The present invention such as cadmium selenide (CdSe). may also be applicable to higher compound semiconductor gallium arsenide silicon germanium as films such well as N-type =1) as У + Z + (Si,Ge,Ga,As,: x semiconductor films in which donor elements phosphorous (P), arsenic (As), or antimony (Sb) have been added and P-type semiconductors in which acceptor elements such as boron (B), aluminum (Al), gallium (Ga), and indium These semiconductor layers are (In) have been added. formed by CVD methods such as APCVD, LPCVD, and PECVD or by PVD methods such as sputtering or evaporation. using silicon as the semiconductor layer, deposition by LPCVD at a substrate temperature between approximately 400°C and 700°C using a gas such as disilane (Si_2H_6) as the

source material is possible. With PECVD, deposition with a substrate temperature between approximately 100°C and 500°C using a gas such as monosilane (SiH₄) as the source When using sputtering, possible. substrate temperature is between room temperature approximately 400°C. Although the initial condition (asdeposited condition) of semiconductor films deposited by methods vary among amorphous, mixedthese may microcrystalline, polycrystalline crystallinity, orconditions, because the semiconductor layers crystallized by later steps in the present invention, any of the initial conditions is acceptable. Additionally, in the specifications of the present invention, not only the crystallization of amorphous materials, but also recrystallization of polycrystalline and microcrystalline "crystallization." all called materials are semiconductor layer thickness of between approximately 20 nm and approximately 500 nm is suitable when used for Depending on the type of laser (for example, a short wavelength laser such as KrF at 248 nm or XeCl at 308 nm) used for melt crystallization by laser annealing in the subsequent first annealing, it may be that only a surface layer of the semiconductor film on the order of 100 nm will crystallize. Crystallization over the entire thickness of a 400 nm or thicker semiconductor layer (especially silicon) using relatively even а wavelength laser such as HeNe (632.8 nm) is difficult. the present invention, however, because crystallization of uncrystallized regions can proceed using the annealing process, thick films on the order of 500 nm, or those of a few μm (from approximately one to approximately five μ m) as employed in solar cells, can be used. sense, it can be said that it is possible to completely crystallize thick semiconductor layers (approximately 200 nm or greater) even using a highly conventional short wavelength (having a wavelength less than or equal to the principal Ar line at 514.5 nm) laser.

LOCSUSSUS 20

25

30

35

5

(3. First Annealing Step)

the application of the first annealing process and crystallization method to the semiconductor layer obtained in the previous section will be explained. The exceptionally useful first annealing process in the present invention is performed by a technique such as melt crystallization or VST-SPC of the semiconductor layer with laser or high energy optical irradiation. Here, first the irradiation procedure will be explained using a xenon chloride (XeCl) excimer laser (wavelength of 308 nm) as an The laser pulse width at full-width, maximum intensity (that is, the first annealing process time) is short, from approximately 10 nsec to 500 nsec. Laser irradiation is performed with the substrate between about room temperature (25°C) and about 400°C in air, in vacuum with a background pressure of from approximately approximately 10⁻⁹ Torr, in a to environment containing hydrogen or minute amounts monosilane, or in an inert environment such as helium or A square area of between 5 mm square and 20 mm square (8 mm square, for example) is irradiated during each laser irradiation, and the irradiated region shifted by between about 1% and 99% after each irradiation (for example 50%: 4 mm in the previous example). after scanning is performed in the horizontal direction (Y direction), the substrate is then shifted a suitable amount in the vertical direction (X direction). is then moved a fixed distance in the horizontal direction, where it is again scanned. Thereafter these repeated until the entire surface of are subjected the first has been to substrate For this first laser irradiation, an energy irradiation. density of between 50 mJ/cm² and 600 mJ/cm² is desirable. After the first laser irradiation is completed, a second laser irradiation is performed over the entire surface as When performing the second laser irradiation, necessary. than higher that of the energy density A value between about irradiation is desirable.

25

30

35

5

25

30

35

5

10

 mJ/cm^2 and 1000 mJ/cm^2 is good. The scanning method used for the second irradiation is identical to that used for the first laser irradiation; scanning is performed while shifting the square irradiation area in appropriate increments in the Y and X directions. Additionally, it is possible to further increase the energy density and perform third and fourth laser irradiations as necessary. It is possible to completely eliminate variations caused by the laser beam edges by using such a multi-stage laser Not only for each irradiation in the irradiation method. multi-stage laser irradiation but even in a normal single stage irradiation, all laser irradiations are performed at energy densities that do not damage the semiconductor the method addition to described In effecting crystallization by scanning line-shaped laser light having a width of approximately 100 μm or more and a length of several tens of centimeters is also permissible. In this case, the overlap in the direction of the width of the beam for each irradiation is set to be from about 5% If the beam width is 100 to about 95% of the beam width. μm and the amount of overlap for each beam is 90%, because the beam advances 10 μ m for every individual irradiation, the same spot receives 10 laser irradiations. laser irradiations are usually five or more least uniformly crystallize desirable in order to semiconductor film over the entire substrate, overlap for each irradiation of around 80% or higher is required. In order to definitely produce crystalline polycrystalline films, it is desirable control the amount of overlap to be from around 90% to 97% so that the same spot is irradiated from around 10 to 30 Although up to this point an XeCl excimer laser times. has been described as an example of a laser light source, other lasers, including continuous oscillation lasers, may be used provided the laser irradiation time for the same spot of the semiconductor film is within about 10 msec or less and only a portion of the substrate is irradiated. For example, irradiation may also be performed using an ArF excimer laser, XeF excimer laser, KrF excimer laser, YAG laser, carbon dioxide gas laser, Ar laser, dye laser or other type of laser.

Next, the high energy optical irradiation method will be explained with reference to Figure 9. high energy light does not have uniform phase as in a laser, the optical energy density is increased through The deposited semiconductor layer is focusing by a lens. exposed either consecutively or non-consecutively repetitive high energy light that is scanned to effect melt crystallization or VST-SPC crystallization of the semiconductor layer. High energy optical irradiation unit 50 is composed of light source 51 such as an arc lamp or tungsten lamp, reflector 52 surrounding the light source, and optical system 53 containing a focusing lens or optical shaping lens and an optical scanning system. light produced by light source 51 is primarily shaped by reflector 52, and the energy density is increased to produce singly focused light 55. This singly focused light is further modified to increased energy density by means of optical system 53, and simultaneously becomes light 56 by means of the scanning scanning focused The light irradiates semiconductor layer 61, function. which has been formed on top of substrate 60. processing time for a single point on the semiconductor layer is determined by the length of the irradiation region in the scanning direction and the scanning speed. For example, suppose the irradiation region is rectangular with a length (length in the Y direction) of 50 mm and a width (length in the X direction) of 5 mm, scanning speed in the X direction is 500 mm/sec, processing time is 10 msec. The temperature of irradiation region is determined by the power input to the light source, the condition of the shaped light, and the Depending on the semiconductor layer processing time. material and the film thickness, these values are suitably energy optical irradiation is controlled and high desirable have the performed. Although it is to

25

30

35

5

processing area be approximately 100 mm² or higher in order to increase the throughput, in order to keep the thermal effects to the substrate to a minimum, an area of approximately 500 mm² or less is required. Further, a processing time of less than approximately 10 msec is desirable principally from the point of thermal effects. The result is that only the region on semiconductor layer 61 irradiated by scanned, focus light 56 is locally crystallized. The first annealing step is completed if this process is repeated, and the desired region of the semiconductor layer is scanned.

(4. The Rapid Thermal Annealing Unit used in this Invention)

The semiconductor layer that has been crystallized by the first annealing process (Section 3) is improved to a superior crystalline semiconductor layer by means of the second annealing process. In order to more effectively realize this improvement, the establishment of appropriate processing conditions for the second annealing step is necessary. In order to explain these in an easily understandable manner, the essentials of the rapid thermal annealing unit used in this invention will first be explained in this section.

Figure 2(a) is a schematic cross-sectional diagram of the RTA unit used in this invention. Looking from the up-stream side to the down-stream side of the direction of substrate transport (the direction of arrow X), this machine is composed of a 35 cm long first preheat zone 2, a 35 cm long second preheat zone 3, a 25 cm long third preheat zone 4, an annealing zone 5, and a cleaning zone 6. In the first to third preheat zones 2 to 4, and in cleaning zone 6, heaters are located below the substrate transport plane; and the substrate is heated to the desired temperatures. In annealing zone 5, arc lamps 5A and 5B and reflectors 5C and 5D for converging the arc lamp light are arranged above and below in order to irradiate transported substrate 11 with energetic light.

10

1001953 O11902

25

30

35

The converged arc lamp light takes the shape of a long, narrow band (refer to Figure 2(b)). The energetic light irradiation area on substrate 11 has a width of about 10 mm with respect to the direction of substrate travel. Because substrate 11 is transported at a fixed speed, the RTA processing time is determined in accordance with that transport speed. For example, when substrate 11 travels at 15 mm/sec, the RTA processing time is 0.6667 seconds. invention disclosure, this the expressions processing time" and "second annealing step process time" are used to mean the time interval during which the RTA light (energetic light) is irradiating the substrate. RTA annealing temperature is determined by the set point temperatures of the first to third preheat zones, the output of arc lamps 5A and 5B, and the substrate transport (that is, the RTA processing time). invention disclosure, "RTA processing temperature" "second annealing step temperature" are used to mean the temperature along edge 5F in energetic light irradiation In the RTA unit used in the present invention, region 5E. this temperature is measured by an infrared pyrometer, and annealing step is controlled accordingly. This temperature also corresponds to the highest temperature during the RTA process. The temperature profile of a given point on an actual substrate 11 shows the changes as seen in Figure 2(c). After the substrate being processed passes through the first through third preheat zones 2 to it enters annealing zone 5 the substrate temperature rises rapidly, and the peak temperature P is attained near the exit of annealing zone 5. This maximum temperature is the RTA processing temperature in this invention disclosure. Following this, the substrate enters cleaning zone 6, and the substrate temperature gradually decreases.

Now, using such an RTA unit, the processing area of the second annealing step is sufficiently small compared to the substrate area. For example, assuming a 300 mm \times 300 mm square substrate, because the energetic

light irradiation region is 10 mm \times 300 mm (=3000 mm²). the ratio of the annealing area to the substrate area is For a 550 mm \times 650 mm substrate, the annealing region is 10 mm x 550 mm (=5500 mm²); and the annealing area to substrate area ratio is 1.5%. On the other hand, the processing area of the second annealing step sufficiently large compared to the processing area of the first annealing step. This is because the irradiation area is from about 20 mm² to 400 mm², and the high energy light irradiation area also is from about 100 mm² to 500 mm² as described previously. As a result, the constitution of the present invention described in Section 1 can be realized.

5

10

ħ

25

30

35

In the RTA unit of the present invention, an arc lamp whose light is easily absorbed by the semiconductor layer is used as the light source. On the other hand, naturally essentially such light is unabsorbed transparent substrates. As a result, if RTA processing is performed after deposition of a semiconductor layer on a transparent substrate and patterning of the semiconductor layer, the processing temperature from the RTA processing of the semiconductor layer may differ depending on the density of island-shaped semiconductor layer areas. the present invention, the first and second annealing processes carried out after are deposition semiconductor layers before but patterning of these semiconductor layers. By doing, so а crystalline semiconductor layer having uniform film quality over the entire substrate surface can be obtained.

(5. Thin Film Transistor Fabrication Method)

The first point of the present invention is a fabrication method for crystalline semiconductor layers. Yet, it is most convenient to evaluate the quality of the crystalline semiconductor layers through the electrical characteristics of one type of thin film semiconductor device, TFTs, made by using these semiconductor layers. Consequently, the thin film transistor fabrication method

HOOPSEL CULSCE

5

10

15

20

25

30

35

according to the present invention is outlined in this Section along with Figure 1.

The details pertaining to the substrates underlevel protection layer used. in this invention correspond to the explanation in Section 2. Here, a 300 mm x 300 mm square, conventional non-alkali glass is used as substrate 11. First, insulating underlevel protection layer 12 is formed on top of substrate 11 by a technique such as atmospheric pressure chemical vapor deposition (APCVD), PECVD, or sputtering. Here, an approximately 200 nm silicon oxide layer is deposited by ECR-PECVD at a substrate temperature of 150°C. Next, a semiconductor layer such as intrinsic silicon, which will later become the active layer of the semiconductor device, deposited. Formation of the semiconductor layer also follows the explanation of Section 2. The thickness of the semiconductor layer is about 60 nm. In this example, amorphous silicon layer 13 is deposited at a temperature of 425°C by a high vacuum LPCVD reactor having a 200 sccm flow of disilane (Si₂H₆) as the source gas. multiple substrates (for example, 17) are inserted facedown in the reaction chamber, which is maintained at 250°C, of the high vacuum LPCVD. After the substrates are inserted, the turbomolecular pump is started. After the pump reaches steady-state speed, the temperature of the interior of the reaction chamber is increased from 250°C to a deposition temperature of 425°C over a period of 1 the first For hour. 10 minutes after initiated, no gas is introduced into the reaction chamber and heating is performed in a vacuum. During remaining 50 minutes of the heating period, nitrogen gas having a purity of at least 99.9999% is continuously introduced at the rate of 300 sccm. The equilibrium pressure in the reaction chamber at this time is 3.0×10^{-3} After the deposition temperature is reached, the source gases, Si₂H₆ and 99.9999% pure helium (He) dilution, are introduced at the flow rates of 200 sccm and 1000 sccm, respectively. The pressure immediately after

 $\mathrm{Si}_2\mathrm{H}_6$ and other gases are introduced into the reaction chamber is about 0.85 Torr. As deposition progresses, the reaction chamber pressure gradually rises and the pressure just prior to the completion of deposition is roughly 1.25 Torr. The thickness of silicon film 13 deposited in this way, except for about 7 mm on the periphery of the substrate, varies less than \pm 5% over a 286 mm square region.

Semiconductor layers obtained in such a fashion are next subjected to the first annealing process. details of the first annealing process conform to Section In this example, irradiation is performed using a xenon chloride (XeCl) excimer laser (wavelength: 308 nm). laser pulse width at full-width, half intensity is 45 nsec. Laser irradiation is performed with substrate 11 at room temperature (25°C) in an inert gas environment (99.999% Ar at 1 atmosphere). The irradiation irradiation is an 8 mm square, for each 4 after each is shifted by mm irradiation region irradiation, and the vertical and horizontal scanning is first energy density of the repeated. The Using a similar irradiation irradiation is 160 mJ/cm². method, a second laser irradiation is performed; and the first annealing process is completed. The energy density of the second laser irradiation is 270 mJ/cm^2 .

After the first annealing process is completed, the second annealing process of the semiconductor layer is performed. The second annealing step is carried out using the RTA unit explained in Section 4, and the optimum processing conditions are described in the following sections. In such a fashion, polycrystalline semiconductor layer (polycrystalline silicon layer) 13 is formed on glass substrate 11 (Figure 1(a)).

Next, this semiconductor layer is patterned using photolithography technology; and channel region semiconductor layer 13, which later becomes the active layer of the transistor, is formed. After formation of the semiconductor layer, gate insulator layer 14 is formed

HOOSOSSU 20

5

10

30

25

which will become thin film, a electrode 15, is deposited by a method such as PVD or CVD. Since the same material is usually used for both the gate electrode gate interconnects, and both and the fabricated in the same step, it is desirable to use a material that has low electrical resistance and is stable with respect to thermal processing around 350°C. In this example, a tantalum thin film is deposited to a thickness of sputtering. The substrate 600 nm by means sputtering is 180°C, and temperature during containing 6.7% nitrogen was used as the sputtering gas. The tantalum film obtained under these conditions mostly α -Ta with a resistivity of 40 $\mu\Omega$ -cm. deposition of the thin film for the gate electrode, and then ion implantation into patterning semiconductor layer is employed to form the source and drain regions 16 and the channel region 17 (Figure 1(c)). During this process, the gate electrode acts as a mask for implantation so that the channel is formed only underneath the gate in a self-aligned structure. impurity ion incorporation, both ion doping, in which nonhydrogenated equipment is used and separation impurity species as well as hydrogen are incorporated into the film, and ion implantation, in which mass-separation

ion implanters are used and only the desired impurities

ICOPSSE CSISCE

25

30

35

5

10

15

20

25

30

35

themselves are incorporated into the film, are applicable. Source gases for ion doping use hydrogenated species of the impurity ions such as phosphine (PH3) and diborane (B,H6), which are diluted in hydrogen to concentrations of about 0.1% to 10%. In the case of ion implantation, hydrogen ions (protons or molecular hydrogen ions) following the implantation of the implanted impurity elements by themselves. As mentioned previously, in order to maintain a stable MOS interface and gate insulator layer, it is desirable to keep the temperature below 350°C for both ion doping implantation. On the other hand, in order to reliably carry out the impurity activation at of 350°C or less (referred to low temperature temperature activation in the present disclosure), it is desirable to keep the substrate temperature above 200°C implantation. To ensure low temperature during a activation of impurity ions implanted in the channel to control the transistor threshold voltage or impurity ions implanted in lightly doped regions such as those used to it is necessary to keep form an LDD structure, substrate temperature at orabove 250°C during ion The result is that amorphization of the ion implantation. implanted region can be avoided by performing the implantation at such a high substrate temperature since recrystallization occurs simultaneously with damage to the In other words, the ion implanted semiconductor layer. region remains crystalline following implantation, and the subsequent activation of the implanted ions can still be achieved even using a low activation annealing temperature of less than about 350°C. When fabricating a CMOS TFT, the NMOS or PMOS region is alternately covered by a suitable mask material such as a polyimide, implantation in the appropriate region is performed using In this example, the aim is NMOS the above procedure. Using an ion doping machine, phosphine (PH₃) formation. diluted in hydrogen to a concentration of 5% is implanted an accelerating voltage of keV. The total 100

5

10

15

20

25

30

35

implanted ion concentration including ions such as PH₃+ and H_2^+ is 1 x 10^{-16} cm⁻².

Next, interlevel insulator film 18 is formed by either CVD or PVD. In this example, the interlevel insulator layer is deposited to a thickness of 500 nm at a substrate surface temperature of 300°C using TEOS (Si-(O- $CH_2-CH_3)_4$), oxygen (O_2) and water (H_2O) as source gases and argon as a dilution gas. Following ion implantation and interlevel insulator film formation, ion activation and interlevel insulator film densification are carried out by thermal annealing in a suitable thermal environment at temperatures less than about 350°C for a time ranging from several tens of minutes to a few hours. It is desirable annealing temperature to be greater than this approximately 250°C to ensure activation of the implanted Additionally, for effective densification of the a temperature of 300°C or interlevel insulator film, Normally, the film quality of the higher is preferred. gate insulator layer and the interlevel insulator layer are different. Accordingly, during the opening of contact holes in the two insulator films following interlevel insulator film formation, it is common for the etching rates in the two films to be different. Under such conditions, an inverse taper in which the bottom of the contact hole is wider than the top or the formation of a During electrode formation, these canopy can result. undesirable structures can be causes of poor contact between the electrode and underlying layers in the device leading to so-called "contact failure." The generation of minimized effective contact failure can be by densification of the interlevel insulator film. In this example, annealing was performed for one hour at 300°C in an oxygen environment containing water vapor with a dew point of 80°C. Compared to simple annealing, annealing at the temperature of from about 100Åé to about 400Åé for about 30 minutes to six hours in an oxygen-containing gas concentration of about 25% to oxygen desirable) having a water vapor dew point of from about

Ų

N

30

35

5

10

35°C to about 100°C at a pressure of from roughly 0.5 atmospheres to 1.5 atmospheres promotes improvements in oxide layer (underlevel protection layer, gate insulator layer, interlevel insulator layer, etc.) quality and makes possible highly reliable transistors that operate reliably even under high voltages and high currents. Following formation of the interlevel insulator layer, contact holes 19 are opened above the source and drain regions; and source and drain electrodes 10 and interconnects are formed by PVD or CVD to complete the fabrication of the thin film semiconductor device (Figure 1(d)).

(6. Relationship between Second Annealing Process Conditions and Mobility)

In this section, the optimum processing conditions in the second annealing step for obtaining a superior will be explained through semiconductor layer evaluation (using mobility) of TFTs fabricated by the process described in Section 5. Here, keeping conditions such as the semiconductor layer deposition conditions and the conditions of the first annealing step constant as described earlier, and using only the RTA processing conditions of the second annealing step as parameters, the relationship to the electrical characteristics (mobility) of the semiconductor layer is expressed. The mobilities were obtained from the TFT electrical characteristics using the method of Levinson (J. L. Levinson et al., J. Appl. Phys. <u>53</u>, 1193, (1983)).

When performing the second annealing step, the heater in first preheat zone 2 in the RTA unit (Figure 2, 1) was set to an appropriate temperature between 250°C and 550°C, the heater in the second preheat zone 3 was set to an appropriate temperature between 350°C and 650°C, and the heater in the third preheat zone 4 was set to a suitable temperature between 450°C and 750°C. The transport speed of substrate 11 was varied from 2 mm/sec to 50 mm/sec, which resulted in the RTA processing time varying in the range of 0.2 seconds to 5 seconds.

Additionally, the output power values of the upper arc lamp 5A and the lower arc lamp 5B were independently controlled from 3 W to 21 W. The result was that the RTA processing temperature (substrate temperature measured in annealing zone 5 (the temperature at edge 5F in lamp irradiation region 5E) by an infrared pyrometer) varied from 433°C to 906°C, and the second annealing process of the semiconductor layer was performed under these various processing conditions. Again, TFTs were subsequently fabricated following the method described in the previous section and the mobilities measured. The results are shown in Table 1.

TABLE 1						
Sample	Preheating Condition, °C	Annealing Time, second	Lamp Output W	RTA Temperature, °C	Mobility, cm ² /V-sec	Time Factor, £, second
1	550, 650, 750	0.6667	5, 6	471	48	2.74 x 10 ⁻²¹
2	550, 650, 750	0.6667	8, 8	541	54	1.55 x 10 ⁻¹⁹
3	550, 650, 750	0.6667	10, 11	611	80	4.63 x 10 ⁻¹⁸
4	550, 650, 750	0.6667	13, 13	681	110	8.41 x 10 ⁻¹⁷
5	550, 650, 750	0.6667	16, 16	766	132	1.68 x 10 ⁻¹⁵
6	550, 650 <u>,</u> 750	0.6667	18, 19	836	129	1.40 x 10 ⁻¹⁴
7	550, 650, 750	0.6667	21, 21	906	140	9.09 x 10 ⁻¹⁴
8	550, 650, 750	0.2	11, 12	476	43	1.12 x 10 ⁻²¹
9	250, 350, 450	5.0	3, 3	433	45	1.64 × 10 ⁻²¹
10	550, 650, 750	0.2	20, 20	714	101 ·	8.58 x 10 ⁻¹⁷
11	250, 350, 450	5.0	10, 10	630	104	7.98 x 10 ⁻¹⁷
12	550, 650, 750	1.0	14, 14	829	132	1.72 × 10 ⁻¹⁴

The numbers in the Preheat Conditions column of Table 1 are the heater temperature for the first preheat zone, the heater temperature for the second preheat zone, and the heater temperature for the third preheat zone, respectively. Also, in the Lamp Output column

HOCOOOF, CWYCON 15

5

10

25

30

35

5

10

recorded the lower arc lamp 5B power and the upper arc lamp 5A power, in that order.

As explained in Section 1, the second annealing step has various functions; and all of these can be considered to be microscopic rearrangement of the speed Because the of these semiconductor atoms. rearrangements on the atomic level likely follow Boltzmann statistics, the effects of the second annealing step that appear as macroscopic results can also be expected to be governed by the same statistics. Now, suppose that the speed of the atomic rearrangements resulting from the second annealing process is S and that the rearrangement speed can be expressed according to Boltzmann statistics by the following equation (1).

$$S = S_0 \cdot \exp(-\epsilon/kT) \tag{1}$$

Here, S_0 is the speed factor, ϵ is the activation energy, k is the Boltzmann constant ($K=8.617 \times 10^{-5} \ eV \cdot K^{-1}$), and T is the annealing temperature expressed as absolute temperature (K). According to experimental results, the activation energy ϵ is 3.01 eV. Calling the effect of the second annealing step the "degree of crystallization" C for convenience, the degree of crystallization C can be expressed as the product of the rearrangement speed S and the annealing time t.

$$C = S \bullet t = S_0 \bullet t \bullet \exp(-\epsilon/kT)$$
 (2).

This equation (2) expresses the relationship between the annealing time t and the annealing temperature T for obtaining the desired effect (appropriate C value) from the second annealing step. The annealing time t necessary to produce a given degree of crystallization C when the annealing temperature is T (K) can be calculated from equation (2) as shown below.

$$t = C / (S_0 \cdot \exp(-\epsilon/kT))$$
 (3)

$$= (C / S_0) \bullet \exp (\epsilon/kT)$$
 (4)

$$= \beta \bullet \exp (\epsilon/kT) \tag{5}$$

Here, β (= C / S₀) is a time factor proportional to the effect of the second annealing process. In other words, if the β value is equivalent, it is possible to

obtain an equivalent annealing effect even if there are differences in the annealing temperature T (K) or the time (seconds). Consequently, t processing conditions for the prescribing the annealing step, it is possible to representatively supply a β value rather than completely specifying the particular annealing temperatures and annealing times in detail. This β value can be obtained from experiments using Table 1 gives β values obtained in this equation (5). correspond to the various processing that fashion conditions.

5

10

15

20

25

30

35

(5), choosing to equation Now, according coordinate system with the log of the annealing time on the vertical axis and the reciprocal of the annealing temperature on the horizontal axis, a plot of the effect anneal corresponding to the various second the straight should yield conditions processing corresponding to the β value. Figure 3 is a plot of the results of Table 1 following the method above using the mobility as the effect of the second annealing step. Figure 3, in addition to the results of Table 1 (circles), the results of data obtained using an annealing furnace The numbers shown in (squares) are also shown. interior of Figure 3 are the mobility values obtained for the corresponding processing conditions. Also, the top graduated with the is axis of Figure 3 horizontal annealing temperatures obtained from equation (5) when the annealing time is fixed at 0.6667 seconds. As predicted by equation (5), points showing equivalent mobilities can be connected with straight lines (lines L1 to L4) proving The effect of the the validity of the present theory. second annealing process is determined entirely by the etavalues.

processing investigate to order Next. in conditions that yield remarkable results for the second annealing process, the relation between the value of the time factor eta and the mobility was plotted (refer to the mobilities of the Figure 4, Figure 4). In

semiconductor layers of samples one through seven from Table 1 processed by RTA (circles) and the mobilities of semiconductor layers from samples 13 through 17 from Table 2 in which furnace annealing (squares) was substituted as the means for the second annealing step are plotted together. As can be seen clearly from this figure, second anneal processing becomes effective (a mobility lower limit of 50 cm²/V•sec) for β time factors of around 1.72 x 10^{-21} and above. In other words, semiconductor layers that have electron mobilities of $50 \text{ cm}^2/\text{V}$ •sec and higher can be fabricated if the annealing temperature T and the annealing time t are set such that

5

10

ريا اليا

_ C20 H C C C

25

30

35

 $\beta = t \cdot \exp(-\epsilon/kT) > 1.72 \times 10^{-21} [sec]$ (6) example, when annealing at satisfied. For is temperature of 463°C, an anneal on the order of 0.70 seconds can produce a semiconductor layer with a mobility of approximately 50 cm²/V•sec. The region that satisfies equation (6) corresponds to the region above line L4 in Additionally, according to Table 1 and Figure Figure 3. 4, if the second annealing process is done by RTA at conditions in which β is on the order of 8.58 x 10^{-17} (for example, 20 seconds at 600°C or 0.33 seconds at 700°C) seconds or higher, a semiconductor layer with a mobility of 100 cm²/V•sec or higher can be obtained. which satisfies these conditions corresponds to the region above line L3 in Figure 3.

(7. Relationship between Second Annealing Process Conditions and Mobility Nonuniformity)

There is also a strong relationship between the annealing conditions during the second annealing step and variations in mobility. Table 2 shows the β time factors for samples one through seven from Table 1 and for samples 13 through 17, which were produced using furnace annealing as a substitute for the second annealing step, the average values and standard deviations of mobilities from the crystalline semiconductor layers obtained through these processing routes, the ratio of the standard deviations to

the average values, and converted annealing temperature values corresponding to annealing times of one hour or 0.6667 seconds calculated from the individual β time factors.

5

10

25

30

35

TABLE 2

Sample	Time Factor, ß, second	Mobility, cm ² /V-sec	Standard Deviation, cm ² /V-sec	Ratio of Standard Deviation to Mobility	Reduced Temperature, 1h / 0.6667 sec
1	2.74 x 10 ⁻²¹	48	11.2	23.3 %	356 °C / 471 °C
2	1.55 x 10 ⁻¹⁹	54	11.4	21.1 %	405 °C / 541 °C
3	4.63 x 10 ⁻¹⁸	80	5.9	7.4 %	453 °C / 611 °C
4	8.41 × 10 ⁻¹⁷	110	6.9	6.3 %	499 °C / 681 °C
5	1.68 x 10 ⁻¹⁵	132	8.4	6.4 %	554 °C / 766 °C
6	1.40 × 10 ⁻¹⁴	129	9.1	7.1 %	598 °C / 836 °C
7	9.09 x 10 ⁻¹⁴	140	8.7	6.2 %	641 °C / 906 °C
13	5.13 x 10 ⁻⁴⁸	6.4	4.8	75.0 %	25 °C / 49 °C
14	3.28 x 10 ⁻²⁹	7.5	4.0	53.3 %	200 °C / 262 °C
15	1.28 x 10 ⁻²³	6.0	4.3	71.7 %	300 °C / 394 °C
16	8.88 x 10 ⁻¹⁷	113	8.8	7.8 %	500 °C / 682 °C
17	1.56 x 10 ⁻¹⁴	119	10.3	8.7 %	600 °C / 839 °C

On the other hand, Figure 5 is a plot of β time factors and mobility nonuniformity (ratio of the standard deviation to the average value) from Table 2. It can be clearly seen that the mobility nonuniformity decreases as β increases. Especially in order to reliably suppress the nonuniformity to 10% or less, it can be seen that a β value on the order of 5.00 x 10⁻¹⁸ seconds or above is sufficient.

 $\beta = t \cdot \exp(-\epsilon/kT) > 5.00 \times 10^{-18} \text{ [sec]}$ (7)

In other words, semiconductor layers that have fluctuations in electrical characteristics (for example, mobility) of 10% or less can be obtained with a second annealing process in which the annealing temperature T and the annealing time t are set such that equation (7) is satisfied. Particularly, if the second anneal is carried out by RTA, as done in the present invention, extremely good semiconductor layers with fluctuations of

approximately 7% or less can be realized. This is because the principles of the second annealing process presented in Section 1 hold particularly well when the β time factor is above the value given above. Annealing conditions that correspond to these values of the time factor β appear above line L3 in Figure 3. Specifically, for example, for RTA at 600°C and 1.18 seconds, the average mobility of semiconductor layers obtained under these conditions is as high as 100 cm²/V•sec.

(8. Relationship between Second Annealing Process Conditions and Effects on Substrates)

From the discussion in Sections 6 and 7, it is known that performing the second annealing step with a large time factor β produces good quality semiconductor layers. If the β value is too large, however, cheap conventional glass substrates will deform from thermal stresses or crack, and cannot be used. In this section, RTA processing conditions that allow for the reliable use of conventional glass substrates will be explained using Table 3.

TABLE 3

Sample	Thermal Expansion Coefficient, /°C	Distortion Point, °C	Lamp Output W	Heat Treatment Temp., °C	Time Factor, ß, second	Treatable Time, t _{max} , sec
A	46 x 10 ⁻⁷	593	31	752	1.09 x 10 ⁻¹⁵	347
В	37.8 x 10 ⁻⁷	667	40	879	4.63 x 10 ⁻¹⁵	617
С	47 x 10 ⁻⁷	650	37	836	1.43 × 10 ⁻¹⁵	378
D	37 x 10 ⁻⁷	650	38	854	2.37 x 10 ⁻¹⁵	626

coefficients thermal of Table shows the strain points of conventional expansion and substrates that have recently become common. Table 3 also shows the limiting conditions that can be used without straining each substrate when performing RTA after a first annealing step on semiconductor layers deposited on the The RTA conditions for each substrate were a substrates.

rocossa.car

5

10

25

first preheat zone temperature of 550°C, a second preheat 650°C, of а third preheat temperature temperature of 750°C, and an annealing time of 0.6667 RTA processing was performed under conditions while varying the lamp output. The maximum lamp output (the sum of the power of the upper arc lamp 5A and the power of the lower arc lamp 5B) without inducing the corresponding annealing temperature, values of the corresponding β time factors are shown in Additionally, from the viewpoint of absolutely Table 3. avoiding strain in the substrates, Table 3 also shows the possible processing time (t_{max}) during annealing determined given β time factors at the strain the temperatures for each substrate.

5

10

<u>_</u>

Ш

لِيا

25

30

35

□20

From this table, if the value of the time factor β is kept at 4.63 x 10⁻¹⁴ seconds or less, in other words, if RTA processing is performed with the conditions of annealing temperature T and annealing time satisfy

 $\beta = t \cdot \exp(-\epsilon/kT) < 4.63 \times 10^{-14} \text{ [sec]}$ (8) it can be seen that it is possible at the least to use These conditions correspond to the region substrate B. below line L1 in Figure 3. Also, if the value of the time factor β is kept at 1.09 x 10^{-15} seconds or less, in other words, if RTA processing is performed with the conditions of annealing temperature T and annealing time t set to satisfy

 $\beta = t \cdot \exp(-\epsilon/kT) < 1.09 \times 10^{-15} [sec]$ (9) it is possible to use any of inexpensive glass substrates A to D that are being used in mass production. is likely that improvements in the quality of substrates will advance in the future and the thermal resistance will undoubtedly improve over the substrates presently being used, it is to be expected that if the conditions of equation (9) are satisfied, conventional glass substrates can always be used in the scope of the present invention.

10

25

30

35

Now, when using any type of glass substrates, from the viewpoint of absolutely avoiding strain in the glass substrate, it is desirable to keep the temperature at or below the strain point during annealing. It is possible completely avoid the of deformation the substrates resulting from heat if the temperature is kept at or below the strain point and the time factor is kept at or below the previously mentioned value determined by For example, when using glass substrate C, the strain. there will be no strain if the value of the β time factor is kept at or below approximately 1.43×10^{-14} seconds. order to absolutely completely suppress strain in glass substrate C, it is, however, necessary to perform the second annealing step with an annealing temperature set at or below the strain point of about 650°C and an annealing time less than or equal to the possible processing time (378 seconds) calculated from the strain point temperature In order to apply such consideration to and the β value. substrates and taking into account variations process steps, it can be said that a maximum annealing time of about 300 seconds or less is desirable. For an annealing time of 300 seconds, however, because the RTA beam width is on the order of 10 mm, the substrate speed would be 0.033 mm/sec, with the result being that the processing time for even a relatively small substrate of 235 mm \times 235 mm would become 7050 seconds (roughly two hours). Consequently, a practical maximum annealing time is probably about 180 seconds at most, and more desirably within about 60 seconds.

Thus, if the second annealing step is performed with the β time factor at or above the lower limit determined by equation (6) or equation (7) and at or below the upper limit determined by equation (8) or equation (9), thus not only can glass substrates withstand thermal stress;, but it is also possible to obtain high quality crystalline semiconductor layers with high mobilities and low nonuniformity. In such a fashion, according to the present invention, while using conventional glass

substrates and achieving reductions in cost, the fabrication of thin film transistors with superior operating characteristics and liquid crystal displays employing such transistors or the fabrication of high conversion efficiency solar cells is possible.

As has been explained above, by means of the present invention, high quality crystalline semiconductor layers can be simply produced even using inexpensive conventional glass substrates without subjecting them to large thermal stresses while maintaining high throughput. By adapting this technology, thin film semiconductor devices such as high performance thin film transistors and solar cells can be fabricated.

Brief Explanation of the Figure's

Figures 1 (a) through (d) show cross-sectional views of the steps in the TFT fabrication process of the Figure 2 (a) is a schematic diagram present invention. showing the essential components of the RTA unit used for the second annealing step in the present invention, Figure explains the annealing state during the second annealing step, and Figure 2 (c) shows the temperature profile in the RTA unit. Figure 3 shows the relationship between the angealing temperature, the annealing time, and resulting effect (TFT mobility) for the annealing step in the present invention. Figure 4 shows the relationship between the time factor β during the second amnealing step in the present invention and the (TFT mobility) of the second annealing step. effect . Figure/5 shows the relationship between the time factor β and the resulting effect (variation in TFT mobility) for second annealing step in the present invention. Figures 6 (a) through (d) schematically show in crossprocess steps of one portion section the fábrication procedure for solar cells according to the present Figures 7 (a) through invention. schematically show in cross-section the process steps of one portion of the fabrication procedure for solar cells according to the present invention. Figures 8 (a) through

B3

25

5

10

□ □ 15

ليا

□20

30

(d) schematically show in cross-section the process steps of one portion of the fabrication procedure for solar cells according to the present invention. Figures 9 (a) through (c) are schematic diagrams of the essential components of the annealing unit used in the first annealing step of the present invention. Figures 10 (a) through (d) schematically show in cross-section the process steps of one portion of the fabrication procedure for solar cells according to the present invention.

The Best Systems for Implementing this Invention

This invention is explained in further detail with reference to the accompanying figures.

(9. Solar Cell Fabrication Procedure)

In examples 1 through 4 below, the fabrication procedure for solar cells of this invention are explained. In all the examples, the methods described in sections 1 through 8 can be applied for the semiconductor layer, which forms the active layer of the solar cell.

EXAMPLES

(Example 1)

5

10

rocses "osrace

25

30

35

The explanation for this example will refer to Figure 6. First, after an underlevel protection layer is formed on the surface of conventional glass substrate 20 (the underlevel protection layer is not shown in Figure 6 substrate-side first for simplicity), the electrode (indium tin oxide (ITO) in this example) 21 is formed on top of this underlevel protection layer. This is formed by using photolithography after the deposition of conducting film by a method such as normal sputtering. Because the present example supposes a solar is incident in which the light structure semiconductor layer from the substrate side (the bottom side in Figure 6), transparent glass is used for the substrate and the substrate-side first electrode is also formed from a transparent conducting film. For the opposite structure in which the light incident on the

semiconductor layer comes from the element side (the top side in Figure 6), however, if the element-side second electrode is a transparent conducting film, the materials of the substrate or substrate-side first electrode are not Next, the surface of substrate-side first electrode 21 is exposed to a plasma that uses diborane (B_2H_6) , phosphine (PH_3) orother qas and conductive impurity source 22 for later producing a p-type or n-type semiconductor layer is established. example, because the semiconductor layer in contact with the substrate-side first electrode is to be p-type, the surface of substrate-side electrode 21 is exposed to diborane plasma processing and a p-type impurity diffusion source is established (Figure 6(a)). Specifically, the substrate is immersed in a plasma that contains diborane as one type of source gas and a thin film of boron is formed on the surface of the substrate-side electrode.

Next, essentially intrinsic semiconductor layer 23 Details of the substrate and underlevel is deposited. protection layer and semiconductor layer conform Here, an intrinsic amorphous silicon film is deposited by PECVD. A semiconductor layer thickness of from about 500 nm to 5 μm is suitable, and the thickness in this example is about 800 nm. Because light converted to electric signals within this semiconductor layer, an intrinsic semiconductor layer is desirable; but impurity level of oracceptor approximately 1 x 10^{-18} cm⁻³ is acceptable. In the present example, essentially intrinsic means that the impurity Following semiconductor layer level is on this order. deposition, this semiconductor surface is exposed to a plasma containing impurities of the opposite type of the semiconductor layer in contact with the substrate-side first electrode; and second conductive impurity source 24 In this example, because the second is established. conduction type is to be n-type, the semiconductor surface is exposed to a phosphine plasma and n-type impurity

25

30

35

5

diffusion source 24 is established (Figure 6(b)). The n-type impurity diffusion source is composed of a thin layer of phosphorous. Of course, in contrast to this example, the use of an n-type first conduction type and a p-type second conduction type is also acceptable.

5

10

25

30

35

first annealing explained Next, the step Section 3 is performed. In this example, a multi-stage irradiation using a He-Ne laser (632.8 nm) was performed. For the crystallization of thick semiconductor layers (film thicknesses of about 500 nm to 5 μ m) such as those used in solar cells, lasers that have deep penetration of the laser light into the semiconductor layer are suitable. The energy density for the initial laser irradiation is between approximately 100 mJ • cm⁻² and 150 mJ • cm⁻². Because the absorption coefficient for a He-Ne laser in amorphous silicon is 4.72 x 10⁻³ nm⁻¹, the laser In this first laser penetrates to about 500 nm. irradiation, hydrogen is mainly liberated from the surface The energy density for the of the semiconductor layer. second laser irradiation is between approximately 150 mJ • Although the light penetration cm^{-2} and 200 mJ • cm^{-2} . depth for this second laser irradiation is of the same order of that for the first irradiation, as a result of higher energy density, crystallization semiconductor surface and the liberation of hydrogen from The energy density for the third deeper levels occurs. laser irradiation is between approximately 200 mJ • cm⁻² semiconductor surface mJ cm^{-2} . The 250 crystallized by the second irradiation, and because the He-Ne coefficient for а absorption polycrystalline silicon decreases to 1.21 x $10^{-3}~\text{nm}^{-1}$, the is light from the third irradiation Although 800 nm. approximately penetrate to crystallization of the semiconductor layer proceeds down to a depth of roughly several hundred nm as a result of irradiation, the entire depth third semiconductor layer does not crystallize because of the thick semiconductor layer. Additionally, fourth and fifth

10

□20 ₩

<u>|</u>

25

30

35

irradiations are repeated as necessary; and crystallization gradually proceeds to deeper regions. this process, it is important to select the laser light so absorption coefficient - for polycrystalline silicon is less than that for amorphous silicon. doing, along with the advancement of crystallization, the laser light continues to penetrate to deeper levels. addition to He-Ne lasers, lasers with wavelengths longer than approximately 350 nm satisfy these conditions. example, there are lasers such as XeF lasers (351 nm), He-Cd lasers (441.6 nm), Ar principal line lasers (514.5 nm), and Ar secondary line lasers (488 nm). In this example, the first laser irradiation was performed at 125 mJ • cm⁻², irradiation was performed at laser second mJ • cm⁻², and the third and fourth laser irradiations were performed at 225 mJ • cm⁻² to complete the first annealing the second annealing step conforms Next, step. In this example, the second Sections 4, 6, 7, and 8. was performed with conditions annealing step annealing time of 0.6667 seconds, and an RTA temperature of 681°C (time factor $\beta = 8.41 \times 10^{-17} \text{ seconds}$). the semiconductor layer was thick, it was difficult to crystallize the entire layer by the first annealing step; but the semiconductor layer was completely crystallized by this second annealing step. The result is the production of high quality crystallized semiconductor layer 23 explained in section 1 and, simultaneously, the production a structure having an intrinsic layer between p-type and n-type layers (Figure 6(c)). The first and second annealing steps do not stop at crystallization, but also promote impurity diffusion from the intrinsic into diffusion sources impurity As a result, n-type and p-type semiconductor layer. semiconductor layers are also created.

Following this, crystalline semiconductor layer 23 is patterned, element-side second electrode 26 is formed from aluminum or other conducting layer, interconnects are

fabricated between elements, and the polycrystalline solar cell is completed (Figure 6(d)).

(Example 2)

In Example 1 the formation of the first conductive semiconductor layer and the second conductive semiconductor layer was carried out by impurity diffusion into the intrinsic semiconductor layer, but in this example, impurity containing semiconductor layers are formed by a method such as CVD and solar cells are fabricated (refer to Figure 7).

As in Example 1, after an underlevel protection layer is formed on the surface of conventional Figure 7 as well, the underlevel 30 (in protection layer is not shown for the sake of simplicity), substrate-side first electrode (indium tin oxide (ITO) in this example) 31 is formed on top of this underlevel protection layer (Figure 7(a)). Next, first conductive layer 32, essentially intrinsic semiconductor and second conductive layer 33, semiconductor semiconductor layer 34 are formed in a layered structure on the surface of the substrate-side first electrode by a method such as CVD (Figure 7(b)). In this example, p-type silicon film 32 is deposited to a thickness of about 10 nm by PECVD using diborane and monosilane as source gases to form the first conductive semiconductor layer. interruption, intrinsic semiconductor film 33 is grown to a thickness of about 800 nm. At this point, the diborane supply is stopped; and only monosilane is introduced into the CVD reaction chamber. Again without interruption and without breaking vacuum, second conductive semiconductor layer 34 is deposited to about 20 nm. In this example, this corresponds to an n-type film and phosphine and monosilane are introduced into the CVD reaction chamber. When depositing semiconductor films by LPCVD, using higher silanes such as disilane in place of monosilane allows the semiconductor films at relatively deposition of temperatures.

1009953 031902

5

10

25

30

Finally, after patterning of semiconductor film element-side second electrode 36 is formed from aluminum or other conducting layer, interconnects are fabricated between elements, and the high performance crystalline solar cell is completed. Prior to fabrication of the element-side second electrode, insulating layer 37 is prepared on the edge face of semiconductor layer 35 as needed in order to reliably prevent electrical shorting, which occurs easily with the formation of element-side 36. Further, although the electrode second conductive type is p-type and the second conductive type is n-type in the present example, the opposite case in which the first conductive type is n-type and the second conductive type is p-type is also acceptable.

(Example 3)

while Example 1 showed an example of a solar cell structure in which the light was incident upon the semiconductor layer from the substrate side, this example shows one example of a structure in which the light is incident from the element side (the top side in Figure 8) in contrast to Example 1 (refer to Figure 8).

First, after forming an underlevel protection layer as necessary on the surface of substrate 40, which is inexpensive and has relatively good flatness such as might be found with glass, substrate-side first electrode 41 is formed from a material such as aluminum or platinum. As the material for the substrate-side first electrode, a

+0099955 .03+90;

5

10

25

35

conductive material such as a metal with high light electrical conductivity high reflectivity and There are no special limitations on the desirable. substrate as long as it is stable with respect to thermal processing steps and chemicals in the fabrication of solar Substrate-side first electrode 41 is formed by photolithography following deposition of such suitable conducting films by methods such as PVD. Next, first conductive impurity diffusion source 42 is formed on the surface of the substrate-side first electrode. example, the first conductive type is p-type; and plasma processing using diborane gas is performed. The result is that p-type impurity diffusion source 42 is formed on the surface of the substrate-side first electrode (Figure 8(a)).

5

10

25

30

35

Below, the solar cell is fabricated by exactly the same process as in Example 1. That is, after formation of approximately 800 nm thick essentially intrinsic semiconductor film 43 (amorphous silicon film) using CVD or other method, plasma processing using phosphine gas or other source, second conductive impurity diffusion source is formed on the surface of the semiconductor film (Figure 8(b)). Next, as in Example 1, first and second annealing steps are performed, and semiconductor layer crystallization proceeds along with impurity activation after semiconductor Finally, 8(c)). patterning, the reflective polycrystalline solar cell is fabricated through element interconnection by element-side second electrode 46, which is composed of ITO or other transparent conducting layer (Figure 8(d)).

In the solar cell structure shown in this example, after the light incident from the element side passes through semiconductor layer 43, it is reflected from the substrate-side first electrode and again passes through semiconductor layer 43. As a result, compared to a transparent element, the thickness of the semiconductor layer is effectively doubled. Although the present invention disclosure has demonstrated a crystallization

POOSSES TO SERVICE TO

25

30

35

5

10

method for thick semiconductor layers, it is not the case that crystallization of thick semiconductor layers on the order of $1\mu m$ is extremely simple. This is because the required times for the first and second annealing step becomes long, and it may be easy for the semiconductor layer to peel off. Considering this point, because the structure shown in this example can effectively double the semiconductor layer thickness, it is safe to say that the structure is particularly well-suited for solar cells using crystallized semiconductor layers.

(Example 4)

In the previous examples, an essentially intrinsic semiconductor layer is deposited on the first conductive or first diffusion source conductive semiconductor layer, and first and second annealing is conducted after formation of the second conductive source orsecond conductive diffusion impurity semiconductor layer is formed. In contrast, example, following the deposition of a semiconductor layer least includes at an essentially intrinsic annealing process semiconductor layer, first а performed through repeated local laser exposure of these Subsequently, a second conductive semiconductor layers. impurity diffusion source is formed or a second conductive semiconductor layer is deposited on the surface of the semiconductor layer given the first annealing treatment. Finally, a second annealing process consisting of rapid thermal annealing is performed and the solar cell fabricated.

Specifically, following formation of the substrate-side first electrode, the process moves to the previously mentioned semiconductor layer deposition. Here, the deposited semiconductor layer can be a layered film of the first conductive semiconductor layer and the semiconductor layer essentially intrinsic essentially intrinsic semiconductor layer can be deposited after the first conductive impurity diffusion source is formed on top of the substrate-side first electrode. Crystallization of the semiconductor layer proceeds by means of the first annealing process after such formation of the semiconductor layer. At a minimum, the surface of the semiconductor layer is crystallized by the annealing process; and, depending on the processing conditions, activation of the impurities in the first conductive layer may also occur. Next, the conductive impurity diffusion source can be formed on the semiconductor layer that was subjected to the first annealing process, or the second conductive semiconductor layer is deposited, after which a second annealing process consisting of rapid thermal annealing is carried out. implications of the second annealing process present example are not only those as described in Section 1, but also the activation in the solid state of the impurities in the second conductive semiconductor layer or the activation in the solid state of those elements in the conductive semiconductor layer insufficiently activated by the first annealing process. annealing process in the the first disclosure is either melt crystallization or laser or high energy optical irradiation of the semiconductor layer, the second conductive impurities exist on the surface of essentially intrinsic semiconductor layer, impurity elements can unfortunately diffuse deep into the intrinsic semiconductor layer as a result of the first annealing process. As a result, especially in the case of the second crystallization, because impurity elements can spread throughout the entire molten layer, the thickness of the intrinsic layer that converts light to electrical signals decreases and leads to a decrease in the conversion efficiency of optical energy to In the present example, however, after electrical energy. of the first annealing step, the completion conductive impurities are prepared on the surface of the intrinsic semiconductor layer, and the impurities subsequently activated by the second annealing process.

1009953 03190E

25

30

35

5

Because the temperature of the second annealing process is than that of the first annealing process and, further, film quality is improved in the solid state, the diffusion of the second conductive impurities controlled and a shallow junction is formed. the intrinsic semiconductor layer remains sufficiently thick after the second annealing process so that it is possible to obtain solar cells with high conversion efficiency.

Below, an example is explained with reference to First, after forming underlevel protection layer 71 as necessary on the surface of substrate 70, which is inexpensive and has relatively good flatness such be found with glass, substrate-side electrode 72 is formed from a material such as aluminum or As the material for the substrate-side first electrode, a conductive material such as a metal with high light reflectivity and high electrical conductivity is Substrate-side first electrode 72 is formed by photolithography following deposition of such suitable conducting films by methods such as PVD. Next, conductive impurity diffusion source 73 is formed on the surface of the substrate-side first electrode. place of the formation of the first conductive impurity source, the first conductive semiconductor layer deposited by CVD or other method as shown in Example 2. In this example, the first conductive type is p-type; and plasma processing using diborane gas is performed. The result is that p-type impurity diffusion source 73 formed on the surface of the substrate-side electrode (Figure 10(a)).

Next, essentially intrinsic semiconductor layer 74 (amorphous silicon layer) is formed to a thickness of about 800 nm using a method such as CVD. The first annealing step is then performed using the same conditions as in Example 1 (Figure 10(b)). After completion of the first annealing step, the semiconductor layer is exposed to plasma processing using a gas such as phosphine, and

10099953 OJISOZ

5

10

25

30

the second conductive impurity diffusion source formed on the surface of the semiconductor layer (Figure Here as well, in place of the formation of the second impurity diffusion source, deposition of the second conductive semiconductor layer using CVD or other method is desirable. Next, as in Example 1, the second annealing process is carried out and the semiconductor layer is further crystallized along with activation of impurities. after semiconductor layer Finally, patterning, reflective polycrystalline solar cell is fabricated interconnection by element-side second through element which is composed of electrode 76, ITO orother transparent conducting layer (Figure 10(d)).

(10. Crystalline Semiconductor Layer Formation and Thin Film Transistor Fabrication)

In Example 5, an example of the present invention's method of crystalline semiconductor layer formation and a method of thin film transistor fabrication using such a formation method is explained with reference to Figure 1.

(Example 5)

An example of the present invention's semiconductor layers and the fabrication procedure for thin film transistors using such layers will be explained. The underlevel protection layer and the semiconductor layer are deposited in a parallel plate electrode PECVD reactor operating at industrial frequency (13.56 MHz). after forming an underlevel protection layer, consisting of an insulating material such as a silicon of a substrate, oxide film on at least part semiconductor film is formed on top of this underlevel protection layer.

A 360 mm x 475 mm x 1.1 mm glass substrate (OA-2) 11, which is at room temperature, is set in the PECVD reactor, the lower plate electrode of which is maintained at a temperature of $380\,^{\circ}$ C. The recipe followed once the

10099953 03190Z

25

30

35

5

substrate is in place in the PECVD reaction furnace is as follows.

5	(Preheat 1) Time: Nitrous oxide flow rate: Monosilane flow rate: High frequency power: Pressure: Electrode separation: Lower plate electrode Temperature	t = 60 sec N ₂ O = 7000 SCCM SiH ₄ = 250 SCCM RF = 0 W (no plasma) P = 3.0 Torr S = 23.3 mm : Tsus = 380°C
	•	
15	(Preheat 2) Time: Nitrous oxide flow rate: Monosilane flow rate: High frequency power: Pressure: Electrode separation: Lower plate electrode temperature	t = 30 sec N_2O = 7000 SCCM SiH_4 = 250 SCCM RF = 0 W (no plasma) P = 1.5 Torr S = 23.3 mm : Tsus = 380°C
	(Underlevel Protection Layer Growth)
보 20 보 25 보 25	Time: Nitrous oxide flow rate: Monosilane flow rate: High frequency power: Pressure: Electrode separation: Lower plate electrode temperature	t = 60 sec (growth rate 4.0 nm/sec) $N_2O = 7000$ SCCM $SiH_4 = 250$ SCCM RF = 900 W (0.342 W/cm ²) P = 1.5 Torr S = 23.3 mm
U		
₩ 230 ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	(Vacuum 1) Time: (gases not flowing) High frequency power: Pressure: Electrode separation: Lower plate electrode temperature	t = 20 sec RF = 0 W (no plasma) P = 1 x 10 ⁻⁴ Torr S = 23.3 mm : Tsus = 380°C
□ 35	(Oxygen Plasma Processing 1)	
40	Time: Oxygen flow rate: High frequency power: Pressure: Electrode separation: Lower plate electrode temperature	t = 20 sec O_2 = 3000 SCCM RF = 900 W (0.342 W/cm ²) P = 1.0 Torr S = 23.3 mm : Tsus = 380°C
	(Vacuum 2)	
45	Time: (gases not flowing) High frequency power: Pressure: Electrode separation: Lower plate electrode temperature	t = 20 sec RF = 0 W (no plasma) P = 1 x 10 ⁻⁴ Torr S = 23.3 mm : Tsus = 380°C
50	(Hydrogen Plasma Processing 1) Time: Hydrogen flow rate: Argon flow rate: High frequency power: Pressure:	t = 20 sec H ₂ = 100 SCCM Ar = 1500 SCCM RF = 100 W (0.038 W/cm ²) P = 1.5 Torr
55	Electrode separation: Lower plate electrode temperature	S = 34.3 mm : Tsus = 380°C
	(Preheat 3) Time: Silane flow rate:	t = 30 sec SiH ₄ = 95 SCCM

5	Argon flow rate: High frequency power: Pressure: Electrode separation: Lower plate electrode temperature: Substrate surface temperature:	Ar = 7000 SCCM (source concentration 1.34%) RF = 0 W (no plasma) P = 1.75 Torr S = 36.8 mm Tsus = 380°C Tsub = 349°C
10	(Semiconductor Layer Growth) Time: Silane flow rate: Argon flow rate:	<pre>t = 300 sec (growth rate 0.192 nm/sec) SiH₄ = 95 SCCM Ar = 7000 SCCM (source concentration 1.34%)</pre>
15	High frequency power: Pressure: Electrode separation: Lower plate electrode temperature: Substrate surface temperature:	RF = 600 W (0.228 W/cm ²) P = 1.75 Torr S = 36.8 mm
20 1 1 25	(Hydrogen Plasma Processing 2) Time: Hydrogen flow rate: High frequency power: Pressure: Electrode separation: Lower plate electrode temperature:	t = 20 sec H ₂ = 1000 SCCM RF = 100 W (0.038 W/cm ²) P = 0.2 Torr S = 23.0 mm Tsus = 380°C
부 0 0 2 5 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	(Hydrogen Plasma Processing 3) Time: Hydrogen flow rate: High frequency power: Pressure: Electrode separation: Lower plate electrode temperature:	t = 20 sec H ₂ = 1000 SCCM RF = 100 W (0.038 W/cm ²) P = 0.2 Torr S =48.0 mm Tsus = 380°C
135 135	(Vacuum 3) Time: (gases not flowing) High frequency power: Pressure: Electrode separation: Lower plate electrode temperature:	t = 20 sec RF = 0 W (no plasma) P = 1 x 10 ⁻⁴ Torr S = 23.3 mm Tsus = 380°C
4 0 4 5	(Oxygen Plasma Processing 2) Time: Oxygen flow rate: High frequency power: Pressure: Electrode separation:	t = 20 sec O ₂ = 3000 SCCM RF = 900 W (0.342 W/cm ²) P = 1.0 Torr S = 23.3 mm
50	Lower plate electrode temperature: (Vacuum 4) Time: (gases not flowing) High frequency power: Pressure: Electrode separation: Lower plate electrode temperature:	Tsus = 380°C t = 20 sec RF = 0 W (no plasma) P = 1 x 10 ⁻⁴ Torr S = 23.3 mm
	mh share share occurs so	reacutively in a single

The process above occurs consecutively in a single reaction chamber. In Preheat 1, because the pressure is set somewhat high at 3.0 Torr, the thermal conductivity from the lower plate electrode to the substrate is good;

10

ليا

П

25

30

35

and the total heating time can be shortened to 1 minute and 30 seconds even if room-temperature glass substrates loaded directly into the reaction chamber. thickness of underlevel protection layer 12 is roughly 240 In order to improve the quality of the underlevel protection layer, oxygen and hydrogen plasma processing are sandwiched around a vacuum step. As a result, the adhesion between the underlevel protection layer and the semiconductor layer increases, and it becomes difficult to damage the semiconductor layer in the subsequent first annealing process even if the semiconductor layer subjected to high energies. In other words, because it is possible to carry out the first annealing process at high energy density, it becomes possible to attain a high quality crystallized layer. Under the conditions given above, the semiconductor layer deposition rate is 0.192 nm/sec and the semiconductor film thickness is 57.6 nm. Additionally, the hydrogen concentration in the silicon film is about 2.5 atomic percent as measured by thermal desorption spectroscopy (TDS). Following semiconductor layer deposition, the surface of the semiconductor layer is exposed to hydrogen and oxygen plasma. By so doing, the surface of the semiconductor layer can be passivated; and contamination of the semiconductor layer from the atmosphere can be prevented even after the substrate is removed from the growth chamber. During this process, essential that the hydrogen plasma processing conducted prior to the oxygen plasma processing. because it is possible to keep the incorporation of oxygen into the semiconductor layer to an absolute minimum by first passivating the extremely chemically active dangling bonds through hydrogen plasma processing and then forming a thin, protective oxide layer over the surface of the semiconductor layer through oxygen plasma processing.

Next, thermal treatment prior to the first annealing step is carried out under an argon-hydrogen atmosphere (argon from about 96 to 99%, hydrogen from about 1 to 4%; in this example, argon 97% and hydrogen 3%). By means of

the thermal treatment, lightly bound hydrogen in semiconductor layer is released simultaneously with an increase in the density of the semiconductor layer, which allows the semiconductor layer to be subjected to high energy during the first annealing process in the next In normal thermal processing, there are chemically active dangling bonds (on which impurities can be adsorbed captured easily) remaining after hydrogen liberated from the semiconductor layer. With the thermal processing in a hydrogen-containing atmosphere present example, however, because hydrogen is adsorbed or bound by the extremely chemically active dangling bonds, only chemically inactive dangling bonds remain after thermal processing. This means that the purity of the semiconductor can be improved since both the adsorption of contaminants such as atmospheric dust and moisture and the incorporation of oxygen into a semiconductor thermally processed as in this example is limited.

5

10 .

25

30

35

The first annealing process is performed following Just prior to carrying out the first thermal processing. annealing process, the surface of the semiconductor layer acids and alkaline solutions. with Additionally, the oxide layer formed on the surface of the removed; and a clean semiconductor semiconductor is Because the first annealing step surface is exposed. occurs at extremely high temperatures including a melt impurities would be incorporated semiconductor layer during the first annealing step if such cleaning processing were not performed. Impurity incorporation would result in a low-quality crystalline semiconductor layer as a result of small grain size and the creation of unnecessary states in the forbidden band. In the present invention, the first annealing process is performed immediately after exposing a clean semiconductor Accordingly, the semiconductor layer is a layer surface. high purity, high-quality layer with large grains and few states in the forbidden band. In this example, the first annealing process is performed immediately after the

semiconductor layer surface is cleaned using a mixture of aqueous ammonia (NH $_4$ OH) and hydrogen peroxide (H $_2$ O $_2$) and the oxide layer is removed using buffered hydrofluoric acid (HF $_4$ O).

Crystallization is effected through the annealing process of the semiconductor layer. In this example, multi-step annealing irradiation using a krypton fluoride (KrF) excimer laser (wavelength of 248 nm) was The full width at half maximum intensity (that performed. is, the first annealing process time) of the laser pulse is approximately 33 nsec. Laser irradiation was performed on substrates at room temperature (25°C) under an argon atmosphere containing about 3% hydrogen at atmospheric The partial pressures of gases such as oxygen and water vapor were at or below 10-5 atm. The shape of irradiated by laser region the was approximately 120 μ m wide and about 40 cm long, crystallization was achieved by scanning this laser line. With each irradiation, the overlap in the direction of the width of the beam is about 90% of the beam width. laser irradiation energy density was 180 mJ•cm⁻² for the first scan, 200 mJ•cm⁻² for the second scan, 220 mJ•cm⁻² for the third scan, 240 mJ•cm⁻² for the fourth scan, mJ•cm⁻² for the fifth scan, and 280 mJ•cm⁻² for the sixth Because the ratio of beam overlap is 90% and a 6step irradiation was performed, the same location of the semiconductor is laser irradiated a total of 60 times. this invention, because the incorporation of impurities into the semiconductor layer is limited to a minimum as a result of the strict control of the atmosphere during hydrogen and oxygen plasma treatments and during thermal processing preceding the first annealing step, such a multi-stage irradiation process is possible. result is that a high-quality crystallized film can be obtained.

Next, the second annealing process is carried out using RTA. In this example, the second annealing process was performed using the conditions for sample 5 in Table

10099953 031902

5

10

25

30

The atmosphere during RTA was oxygen at approximately one atmosphere (atmospheric pressure). By so doing, a formed on the surface thin oxide laver is semiconductor layer so that it is possible to prevent contamination of the semiconductor layer by resist and other contaminants during the subsequent patterning of the semiconductor layer. Because this oxide layer contaminant during patterning, it is necessary to remove the layer at the time of gate insulator layer formation. Additionally, by means of the method of this example, acts simultaneously with layer formation principles in Section 1. Because strong stresses act semiconductor normally on films during oxide formation, the principles explained in Section 1 function In this sense, it can be said that more effectively. carrying out the second annealing step in an oxidizing environment is desirable. Semiconductor layer 13 of the present invention is obtained in this fashion (Figure 1(a)).

Next, following patterning of the semiconductor layer, immediately after cleaning of the semiconductor layer surface using ammonia and hydrogen peroxide and removal of the oxide layer using buffered hydrofluoric acid, gate insulator layer 14 is formed by PECVD (Figure 1(b)). gate insulator layer, which is comprised of a silicon oxide film, is deposited to a thickness of 100 nm at a substrate surface temperature of 350°C using TEOS (Si-(O-CH2-CH2)4), oxygen (O2) and water (H2O) as source gases and argon as a dilution gas. After deposition of the gate annealing insulator layer, in an oxygen atmosphere containing water vapor with a dew point of roughly 60°C at almost 300°C and atmospheric pressure for about one hour is performed. This annealing improves the insulator film and a good gate insulator layer is formed.

Then a tantalum (Ta) thin film, which becomes gate electrode 15, is deposited by means of sputtering. The substrate temperature at the time of sputtering is 150°C, and the film thickness is 500 nm. Patterning is carried

5

10

25

30

5

10

out after the tantalum thin film, which is to become the gate electrode, deposited. is This is followed implantation of impurity ions in the semiconductor layer and formation of source and drain regions 10/1 and channel In this example, because CMOS region 108 (Figure 1(c)). TFTs are being formed, NMOS TFTs and PMÓS TFTs are formed The PMOS TPTs are covered with on a single substrate. polyimide during formation of the sources and drains of the NMOS TFTs; conversely, the NMOS TFTs are covered with polyimide during formation of the sources and drains of the PMOS TFTs, thereby making CMOS TFTs. At this time, the gate electrode serves as a mask for ion implantation, and the channel becomes a self-aligned structure that is formed only below the gate electrode. Impurity implantation is carried out using a non-mass separating implanter and phosphine (PH₃) or diborane diluted by hydrogen to a concentration of approximately 5% as the source gas. For NMOS, the total ion implantation dose, including ions such as PH_3^+ and H_2^+ , is 1 x 10^{16} cm⁻² and the phosphorous atom concentration in the source and drain regions is approximately $3 \times 10^{20} \text{ cm}^{-3}$. Similarly, for PMOS, the total ion implantation dose, including ions such as $B_2H_6^+$ and H_2^+ , is also 1 x 10¹⁶ cm⁻² and the boron atom concentration in the source and drain regions is approximately 3 x 10^{20} cm⁻³. The substrate temperature at the time of ion implantation is 250°C.

Next, interlevel insulator layer 109, comprised of a silicon oxide film, is formed by means of PECVD using The substrate surface temperature during interlevel layer deposition is 350°C, and the insulator thickness is 500 nm. After the interlevel insulator layer is formed, thermal annealing is performed for 1 hour at 350°C in an oxygen atmosphere to achieve activation of densification of the interlevel implanted ions and Contact holes are then opened to the insulator layer. source and drain regions, and aluminum (Al) is deposited by means of sputtering. The substrate temperature during sputtering is 150°C, and the film thickness is 500 nm.

25

30

Patterning is carried out on the aluminum thin film source and drain electrodes 110 and interconnects to complete the thin film semiconductor device (Figure 1(d)).

In this example, with the goal of investigating the transistor performance and the nonuniformity within a single substrate, 50 transistors uniformly fabricated over a large substrate and having channel lengths L = 5 μ m and widths W = 5 μ m were measured. The results are as shown below. The on current is defined at $V_{\rm ds}$ = 4 V and $V_{\rm gs}$ = 10 V while the off current is defined at $V_{\rm ds}$ = 4 V and $V_{\rm gs}$ = 0 V

NMOS TFT

 $Vth = -1.02 \pm 0.10 V$

I ON = $(80.5 + 9.7, -7.4) \times 10^{-6} \text{ A}$ I OFF = $(1.54 + 0.58, -0.41) \times 10^{-12} \text{ A}$ $\mu = 134.4 \pm 13.6 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{sec}^{-1}$ Vth = $2.07 \pm 0.16 \text{ V}$ PMOS TFT I ON = $(55.9 + 5.1, -4.4) \times 10^{-6} \text{ A}$ I OFF = $(4.21 + 1.08, -0.87) \times 10^{-13} \text{ A}$ $\mu = 75.1 \pm 6.5 \text{ cm}^2 \cdot \text{V}^{-1} \cdot \text{sec}^{-1}$

As described, this invention enabled the uniform fabrication of extremely good CMOS thin film semiconductor devices having high mobility on large, conventional glass The uniformity of laser crystallization, substrates. whether within a substrate or from lot to lot, has been a very serious problem in the low temperature process of the This invention, however, greatly reduces the nonuniformity of both on currents and off currents. marked improvement in uniformity speaks for the validity of the fundamental principles of the present invention (Section 1). Following such principles, this invention achieves marked improvement even with respect to lot-to-As described, this invention enables lot fluctuations. silicon and other semiconductor films to be crystallized extremely reliably by means of laser or other high energy optical irradiation. Therefore, LCDs employing thin film semiconductor devices of this invention exhibit uniform

Sub By

10

25

30

high picture quality across the entire screen. Moreover, the thin film semiconductor devices of this invention can also easily be used to form not only simple circuits such as shift registers and analog switches but also more complex circuits such as level shifters, digital to analog converter circuits and even clock generator circuits, gamma correction circuits, and timing controller circuits.

(Example 6)

5

10

15

" 口 口 口 口 口 口 几

25

30

35

An active matrix substrate for a color LCD, having 200 x 320 (columns) x 3 (colors) = 192,000 pixel switching elements using NMOS thin film semiconductor devices obtained as described in Example 5 and integrated 6-bit digital data drivers (column drivers) and scanning drivers) drivers (row using CMOS TFTs obtained described in Example 5, was produced. The digital data driver of this example is comprised of a clock signal line and clock generator circuit, shift register circuit, NOR gates, digital video signal lines, latch circuit 1, latch pulse line, latch circuit 2, reset line 1, AND gates, reference voltage line, reset line 2, 6-bit capacitance division D/A converter, CMOS analog switches, voltage line, and a source line reset transistor. The outputs from the CMOS analog switches is connected to the pixel source lines. The capacitance of the D/A converter portion satisfies the relationship $C_0 = C_1/2 - C_2/4 = C_3/8$ $= C_4/16 = C_5/32.$ Digital video signals output from the video random access memory (VRAM) of a computer can be input directly to the digital video signal lines. pixel portion of the active matrix substrate described in this example, the source electrodes, source interconnects, and drain electrode (pixel electrode) are comprised of aluminum, forming a reflective LCD. A liquid crystal produced that employed active panel was an substrate achieved as described for one of the substrates in the substrate pair. A normally-black mode (the display is black when a voltage is not being applied to the liquid crystal) reflective liquid crystal panel was made using a polymer-dispersed liquid crystal (PDLC) with dispersed black pigment for the liquid crystal held between the substrate pair. This liquid crystal panel was connected to external wiring to produce a liquid crystal display. The result was a liquid crystal display device having high display quality: both the on resistance and transistor capacitance of the NMOS and PMOS were equal; moreover, the TFTs offered high performance, while the parasitic capacitance of the transistors was extremely low; and, because the characteristics were uniform over the entire substrate, both 6-bit digital data drivers and scanning drivers operated normally in a wide operating In the pixel region, since the aperture ratio was high, a high display quality liquid crystal device was achieved even with a dispersed black pigment PDLC. addition, because the manufacturing process for the active matrix substrate is reliable, liquid crystal display devices can be manufactured reliably and at low cost.

5

10

15

20

25

30

35

Ū

Using the solar cell obtained in Example 4 as supply, auxiliary power the liquid crystal obtained as explained was installed in the body of a fullcolor portable personal computer (notebook PC). active matrix substrate was equipped with integrated 6-bit digital data drivers and since digital video signals from the computer were input directly to the liquid crystal display device, the circuit configuration was simplified, while power consumption was simultaneously reduced to an The high performance of the liquid extremely low level. crystal thin film semiconductor device gave this notebook PC an extremely attractive display screen and made it a good electronic device. In addition, because this is a display device with liquid crystal reflective aperture ratio, a backlight was unnecessary. The absence of a backlight and the integration of a high conversion efficiency solar cell as an auxiliary power supply made it possible to decrease the size and weight of the batteries while simultaneously extending the length of time they can

be used. Accordingly, an extremely small, light-weight electronic device with a beautiful display screen that has the potential for long-time use was fabricated.

Possible Industrial Applications

As stated above, the method of fabricating crystalline semiconductor layers and the method of fabricating cells film semiconductor devices such as thin film transistors and solar cells using such crystalline semiconductor layers described by this invention enable the manufacture of high performance thin film semiconductor devices using a low temperature process in which inexpensive glass substrates can be used. Therefore, applying this invention to the manufacture of active matrix liquid crystal display devices large-size, high-quality liquid crystal display devices to be manufactured easily and reliably; and, when used in solar cells, high conversion efficiency solar cells can be Moreover, when this invention is applied to fabricated. the manufacture of other electronic circuits, high quality electronic circuits can also be manufactured easily and reliably.

Additionally, because of their low cost and high performance, the thin film semiconductor devices of this invention are perfectly suited as the active matrix substrate of an active matrix liquid crystal display device. They are optimum devices to use as integrated-driver active matrix substrates that demand particularly high performance.

Their low cost and high performance also make the liquid crystal displays of the present invention optimum for full-color notebook PCs and other types of displays.

Finally, because of their low cost and high performance, the electronic devices of this invention will likely gain wide general acceptance.

HOOSYSES TOSE

5

10

25