ARMA-X Analysis

Contents

D	ata	2
	Load Base Data	2
	Volatility	2
	Number of Posts	3
	Dummy for Social Media Post	4
	Number of Tweets Mentioning Tariffs	4
	Number of Tweets Mentioning Trade	4
	Merge	4
\mathbf{A}	RMA-X Models	
	Find Number of Lags	5
	Tweet Count on Volatility by hour	7
	Tweet Dummy on Volatility by hour	8
	Tariff Mention on Volatility by hour	8
	Trade Mention on Volatility by hour	9

Data

Load Base Data

```
# 1. Load Political Social Media
#contains posts from Twitter & TruthSocial
social <- read.csv(here("data/mothership", "social.csv"))</pre>
social_hourly <- read.csv(here("data/mothership", "socialhourly.csv"))</pre>
# 2. Load Financial
#S&P500
SPY <- read.csv(here("data/mothership", "SPY.csv"))</pre>
#STOXX50
VGK <- read.csv(here("data/mothership", "VGK.csv"))</pre>
#CSI 300 (China)
ASHR <- read.csv(here("data/mothership", "ASHR.CSV"))
#make posixct
SPY$timestamp = as.POSIXct(SPY$timestamp,format = "%Y-%m-%d %H:%M:%S")
VGK$timestamp = as.POSIXct(VGK$timestamp,format = "%Y-%m-%d %H:%M:%S")
ASHR$timestamp = as.POSIXct(ASHR$timestamp,format = "%Y-%m-%d %H:%M:%S")
social$timestamp = as.POSIXct(social$timestamp,format = "%Y-%m-%d %H:%M:%S")
social hourly$timestamp = as.POSIXct(social hourly$timestamp,format = "%Y-%m-%d %H:%M:%S")
```

Volatility

Number of Posts

```
#find count
tweetcount_alltime = dplyr::select(social_hourly,timestamp,N)
#select time period
tweetcount = filter(tweetcount_alltime,
                  between (timestamp,
                          as.Date('2025-01-01'),
                          as.Date('2025-04-10')))
#plot
ggplot(tweetcount_alltime, aes(x = timestamp, y = N)) +
    geom_point(color = "#253494", size = 1) +
   scale_x_datetime(date_labels = "%b %Y", date_breaks = "9 month") +
   labs(title = "Trump Social Media Count",
         x = NULL,
         y = "number of tweets/truths") +
   theme_minimal(base_size = 14) +
   theme(axis.text.x = element_text(angle = 45, hjust = 1),
          plot.title = element_text(face = "bold", hjust = 0.5))
```

Warning: Removed 1172 rows containing missing values or values outside the scale range
(`geom_point()`).

Trump Social Media Count

Dummy for Social Media Post

Number of Tweets Mentioning Tariffs

Number of Tweets Mentioning Trade

Merge

```
#merge our dependant and independant vars
armax_data = left_join(SPY_volatility, tweetcount, by="timestamp")
armax_data = left_join(armax_data, tweetdummy, by="timestamp")
armax_data = left_join(armax_data, tariff, by="timestamp")
armax_data = left_join(armax_data, trade, by="timestamp")

#convert NA to zeroes
armax_data$N[is.na(armax_data$N)] = 0
armax_data$dummy[is.na(armax_data$dummy)] = 0
armax_data$total_tariff[is.na(armax_data$total_tariff)] = 0
armax_data$total_trade[is.na(armax_data$total_trade)] = 0
```

ARMA-X Models

Find Number of Lags

```
nb.lags \leftarrow 3 #r
count_lags <- embed(armax_data$N, nb.lags + 1)</pre>
dummy_lags <- embed(armax_data$dummy, nb.lags + 1)</pre>
tariff_lags <- embed(armax_data$total_tariff, nb.lags + 1)</pre>
trade_lags <- embed(armax_data$total_trade, nb.lags + 1)</pre>
#colnames(count_lags) <- pasteO("Lag_", O:nb.lags)</pre>
#align volatility to match count rows (for lag)
vol aligned <- tail(armax data$r vol h, nrow(count lags))</pre>
#choosing how many lags
# fit an ARMA(0,0,0) model with lm (with r set above)
eq <- lm(vol aligned ~ count lags)
eq2 <- lm(vol_aligned ~ dummy_lags)
eq3 <- lm(vol_aligned ~ tariff_lags)
eq4 <- lm(vol_aligned ~ trade_lags)
#compute Newey-West HAC standard errors for count
var.cov.mat1 <- NeweyWest(eq, lag = 7, prewhite = FALSE)</pre>
robust_se1 <- sqrt(diag(var.cov.mat1))</pre>
#for dummy
var.cov.mat2 <- NeweyWest(eq2, lag = 7, prewhite = FALSE)</pre>
robust_se2 <- sqrt(diag(var.cov.mat2))</pre>
var.cov.mat3 <- NeweyWest(eq3, lag = 7, prewhite = FALSE)</pre>
robust se3 <- sqrt(diag(var.cov.mat3))</pre>
#for trade
var.cov.mat4 <- NeweyWest(eq4, lag = 7, prewhite = FALSE)</pre>
robust_se4 <- sqrt(diag(var.cov.mat4))</pre>
#output table; significant lags are how many we choose
stargazer(eq, eq, type = "latex",
          column.labels = c("(no HAC)", "(HAC)"), keep.stat = "n",
          se = list(NULL, robust_se1), no.space = TRUE)
```

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Thu, May 01, 2025 - 17:57:34

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Thu, May 01, 2025 - 17:57:34

Table 1:

	$Dependent\ variable:$	
	vol aligned	
	(no HAC)	(HAC)
	(1)	(2)
count_lags1	0.008	0.008
	(0.016)	(0.009)
$count_lags2$	-0.001	-0.001
	(0.016)	(0.007)
$count_lags3$	0.019	0.019
_	(0.016)	(0.019)
count_lags4	0.008	0.008
	(0.016)	(0.006)
Constant	0.104***	0.104***
	(0.033)	(0.029)
Observations	466	466

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 2:

	Depender	nt variable:
	vol_aligned	
	(no HAC)	(HAC)
	(1)	(2)
dummy_lags1	0.048	0.048
	(0.048)	(0.057)
$dummy_lags2$	-0.016	-0.016
	(0.048)	(0.029)
$dummy_lags3$	0.071	0.071
	(0.048)	(0.053)
$dummy_lags4$	0.042	0.042
	(0.048)	(0.045)
Constant	0.073^{*}	0.073***
	(0.044)	(0.017)
Observations	466	466

Note:

*p<0.1; **p<0.05; ***p<0.01

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Thu, May 01, 2025 - 17:57:34

Table 3:

	Dependent variable:	
	vol_aligned	
	(no HAC)	(HAC)
	(1)	(2)
tariff_lags1	0.012	0.012
	(0.128)	(0.031)
$tariff_lags2$	0.037	0.037
	(0.128)	(0.059)
tariff_lags3	0.027	0.027
	(0.128)	(0.045)
tariff_lags4	$0.065^{'}$	0.065^{*}
	(0.128)	(0.039)
Constant	0.125***	0.125***
	(0.024)	(0.037)
Observations	466	466
Note:	*n<0.1. **n<0	0.05. *** n < 0.01

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Thu, May 01, 2025 - 17:57:34

Tweet Count on Volatility by hour

Table 4:

vol_ (no HAC)	aligned (HAC)
,	(HAC)
(1)	
()	(2)
0.064	0.064
(0.228)	(0.090)
0.139	0.139
(0.228)	(0.179)
0.071	0.071
(0.228)	(0.105)
0.153	0.153^{*}
(0.228)	(0.089)
0.125^{***}	0.125^{***}
(0.024)	(0.035)
466	466
	(0.024)

Note: *p<0.1; **p<0.05; ***p<0.01

```
## ## sigma^2 = 0.2254: log likelihood = -314.66 ## AIC=637.32 AICc=637.4 BIC=653.92
```

Tweet Dummy on Volatility by hour

```
#find best armax model and fit
auto.arima(armax_data$r_vol_h, xreg=armax_data$dummy,
                      max.p = 5, max.q = 5, max.d = 0, ic = "aic")
## Series: armax_data$r_vol_h
## Regression with ARIMA(1,0,0) errors
## Coefficients:
          ar1 intercept
                           xreg
                   0.1227 0.0157
        0.3450
##
                   0.0371 0.0427
## s.e. 0.0434
##
## sigma^2 = 0.2253: log likelihood = -314.6
## AIC=637.19 AICc=637.28 BIC=653.79
```

Tariff Mention on Volatility by hour

```
## Series: armax_data$r_vol_h
## Regression with ARIMA(1,0,0) errors
##
## Coefficients:
## ar1 intercept xreg
## 0.3469 0.1297 -0.0431
## s.e. 0.0433 0.0335 0.1122
##
## sigma^2 = 0.2253: log likelihood = -314.59
## AIC=637.18 AICc=637.27 BIC=653.78
```

Trade Mention on Volatility by hour