Auditing an XGBoost Automated Decision System (ADS) for Stroke Prediction Data

Jon Dinh, Yash Jha

Background of Automated Decision System

Dataset: https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset

ADS: https://www.kaggle.com/code/tanmay111999/stroke-prediction-effect-of-data-leakage-smote/notebook

Purpose of the ADS: According to the World Health Organization, roughly 15 million people per year suffer a stroke globally. Of those 15 million, ½ or 5 million die. Another ½ are permanently disabled (WHO). The goal of this ADS is a binary classification problem, to classify whether a patient is will suffer a stroke from provided features.

Data Information

Rows: 5110 observations

Columns: 10 features, 1 target feature

Source: confidential source for education purposes

Feature Names:

- Categorical: gender, hypertension, heart disease, residence type, work type, smoking status, marital status
- **Numerical**: age, average glucose level, BMI

Missing values: only 201 missing values for BMI

Output: binary variable indicating stroke prediction (1), no stroke (0)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5110 entries, 0 to 5109
Data columns (total 12 columns):
                        Non-Null Count
     Column
                                        Dtype
                        5110 non-null
                                        int64
     gender
                        5110 non-null
                                        object
                        5110 non-null
                                        float64
     hypertension
                        5110 non-null
                                        int64
     heart disease
                        5110 non-null
                                        int64
     ever married
                                        object
                        5110 non-null
     work type
                                        object
                        5110 non-null
     Residence type
                                        object
                        5110 non-null
     avg glucose level 5110 non-null
                                        float64
     bmi
                        4909 non-null
                                        float64
     smoking status
                        5110 non-null
                                        object
    stroke
                        5110 non-null
                                        int64
dtypes: float64(3), int64(4), object(5)
 emory usage: 479.2+ KB
```

Distributions

350

300

age distribution

avg glucose level distribution

800

1200

1000

bmi distribution

Implementation and Validation

- Class imbalance SMOTE
- Features dropped: smoking_status, heart_disease, hypertension, BMI
- Missing value imputation mean

Stroke -

Count of Strokes vs No Strokes

Stroke Events (%)

95.1%

Stroke Suffered

Implementation and Validation cont.

- ADS: XGBoost
 - learning_rate = .01
 - $max_depth = 3$
 - n estimators = 1000
- Cross val score: 91.82%

Outcome: Performance

- Accuracy: .839, FNR = .12
 - Consistent across gender groups
- Precision, Recall, F1
 - Assess ability to classify positive samples correctly

rigure 7, overail model performance metrics

Outcome:	Fairness

FNRP	equalized_odds_ratio	demo_parity_dif f	demo_parity_ratio
0.569	0.493	0.218	0.644

- Fairness across gender groups:
 - differing selection rates
 - bias with **FNR** and **FPR**
- Other fairness metrics: FNRP, EOR, DPR; relatively low

Interpretability of ADS

Feature Importance (all data):

- (1) SHAP
- (2) XGBoostClassifier

Interpretability of ADS cont.

Local Explanation of Features (LIME):

- Observation # 1
 - Actual: 0
 - Predicted: 0
 - Gender: Male
- Observation # 2
 - Actual: 1
 - Predicted: 1
 - Gender: Female

ADS Discussion

- Accuracy: .839, FNR = .12
 - Accurate, yet **FNR** is skewed by synthetic class distribution
- Stakeholders:
 - **Patients**: interested in fairness with respect to gender, should not bias stroke prediction. Interested in overall precision, recall and f1-score.
 - Care-Givers, Staffing: interested in accuracy, particularly FNR (can't miss positive cases)
 - Third parties: interested in both for marketing (fairness) and reliability (accuracy
 - e.g. hospital boards, equity firms, etc.
 - can't be liable for misclassification
- Optimization:
 - Accuracy: FNR, F1
 - **Fairness:** FNPR, DPR, EOR

e. rticularly FNR (can't miss positive cases) fairness) and reliability (accuracy)				
False Negative Rate Parity Ratio	0.569			
Equalized Odds Ratio	0.493			
Demographic Parity Ratio	0.644			
Accuracy Ratio	0.973			
Selection Rate Ratio	0.644			

True Neg

39.89%

False Neg

6.02%

- 300

- 250

- 200

- 150

- 100

False Pos 75

10.04%

True Pos 329

44.04%

1

Deployment?

Modifications: (0) original ADS, (1) ADASYN, (2) SMOTE-Tomek, (3) SMOTE-ENN, (4) correlation remover, (5) hyperparameter tuning, (6) threshold optimizer

Would we feel comfortable deploying the model?

- **Publicly:** good starting point
- **Industry:** not really
 - Very vulnerable to new data
 - High **FNR** too risky

Focus: Higher EOR and DPR than the original ADS (idx 0)

Simple modifications to system process

- significant 10% increase in acc and f1 score
- significant increase in FNRP
- significant increase in DPR
- either same tight range or increase in EOR

Conclusion

- Solid ADS:

- Data was appropriate
- Good accuracy, great FNR/FPR for synthetic class distribution

- Weaknesses:

- Not robust to new data; real world will have imbalanced class distribution
- Fairness with respect to gender

- Improvements

- Our fairness modifications (other SMOTE techniques, correlation remover, threshold opt)
- Our accuracy modifications (hyperparameter tuning)
- Potentially better feature space in the dataset that can more easily pick out positives
- Stronger decision-tree ADS capable of finding thresholds