Aljabar Linier

[KOMS120301] - 2023/2024

5.2 - Sifat determinan matriks

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 5 (Oktober 2023)

Tujuan Pembelajaran

Setelah kuliah ini, Anda diharapkan mampu:

- mengimplementasikan sifat-sifat determinan dalam penyelesaian masalah penghitungan determinan;
- menghitung determinan matriks menggunakan ekspansi kofaktor;
- memecahkan sistem persamaan linier menggunakan aturan Cramer;
- menjelaskan prosedur menghitung determinan matriks blok diagonal.

Good math skills are developed by doing lots of problems.

Bagian 5: Sifat-sifat determinan

Determinan dari transpos matriks

Teorema

$$\det(A^T) = \det(A)$$

Q: Bisakah Anda menjelaskan mengapa? Periksa matriks 2×2 dan matriks 3×3 .

Implikasi:

Teorema apapun tentang determinan matriks A yang menyangkut <u>baris</u> dari A akan memiliki teorema analog dengan menggunakan <u>kolom</u> dari A.

Sifat dasar determinan

Teorema

Misalkan A adalah matriks persegi.

- Jika A memiliki baris (kolom) nol, maka |A| = 0.
- ② Jika A memiliki dua baris (kolom) yang identik, maka |A| = 0.
- Jika A adalah matriks segitiga, maka |A| diperoleh dari hasil perkalian elemen-elemen diagonal:

$$|A|=\prod_{i=1}^n a_{ii}$$

Khususnya, untuk matriks identitas I, kita memiliki |I| = 1.

Q: Berikan argumen yang menjelaskan mengapa sifat-sifat tersebut berlaku!

Operasi dasar dan determinan

Teorema

Misalkan matriks B diperoleh dari matriks A dengan melakukan operasi baris (kolom) elementer.

- Jika dua baris (kolom) dari A dipertukarkan, maka |B| = -|A|.
- ② Jika sebuah baris (kolom) dari A dikalikan dengan skalar k, maka |B| = k|A|.
- 3 Jika kelipatan baris (kolom) A ditambahkan ke baris (kolom) lain dari A, maka |B| = |A|.

Q: Berikan argumen yang menjelaskan mengapa sifat-sifat tersebut berlaku!

Determinan perkalian matriks

Teorema

Diberikan dua matriks persegi A dan B dengan orde yang sama. Maka:

$$\det(AB) = \det(A) \cdot \det(B)$$

Q: Berikan argumen yang menjelaskan mengapa teorema tersebut berlaku!

Matriks elementer E_n adalah matriks yang berbeda dari matriks identitas I_n oleh satu operasi baris elementer tunggal.

Korolari

Jika E adalah matriks dasar berukuran n, dan A adalah matriks persegi $n \times n$. Maka det(EA) = det(E) det(A).

Latihan: determinan perkalian dua matriks

Diberikan:

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 3 \\ 5 & 8 \end{bmatrix}$$

- Tentukan AB
- ② Tentukan det(A), det(B), dan det(AB).
- **3** Apakah benar bahwa $det(A) \cdot det(B) = det(AB)$?

Latihan: determinan perkalian dua matriks

Diberikan:

$$A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 3 \\ 5 & 8 \end{bmatrix}$$

Tentukan AB

$$AB = \begin{bmatrix} 2 & 17 \\ 3 & 14 \end{bmatrix}$$

2 Tentukan det(A), det(B), dan det(AB).

$$det(A) = 1, \ det(B) = -23, \ det(AB) = -23$$

3 Apakah benar bahwa $det(A) \cdot det(B) = det(AB)$?

Bagian 6: Menghitung determinan dengan ekspansi kofaktor (pendekatan algoritmik)

Minor dan kofaktor

Misalkan $A = [a_{ii}]$ adalah matriks persegi n.

Misalkan M_{ii} adalah matriks persegi dengan ordo (n-1) yang diperoleh dari A dengan menghapus baris ke-i dan kolom ke-j dari A.

Minor dari elemen aji dari A didefinisikan sebagai:

$$minor(A) = det(M_{ij})$$

Kofaktor dari aji didefinisikan sebagai minor bertanda (signed minor) dari aii, dan dilambangkan dengan:

$$A_{ij} = (-1)^{i+j} |M_{ij}|$$

Pola elemen minor bertanda pada A dapat dituliskan sebagai:

Contoh: minor dan kofaktor

Diberikan matriks

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Temukan minor dan kofaktor dari elemen a_{32} !

Solusi:

Elemen a₃₂ adalah 8.

$$M_{32} = \begin{bmatrix} 1 & 3 \\ 4 & 6 \end{bmatrix}$$

Jadi, minor dari a_{32} adalah $det(M_{32}) = 1(6) - 4(3) = 6 - 12 - 6$.

Kofaktor dari a_{32} adalah $(-1)^{3+2} \cdot 6 = -6$.

Ekspansi Laplace untuk menghitung determinan

Determinan dari matriks $A = [a_{ij}]$ sama dengan jumlah perkalian yang diperoleh dengan mengalikan elemen dari setiap baris (kolom) dengan kofaktornya masing-masing:

$$|A| = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in} = \sum_{i=1}^{n} a_{ij}A_{ij} \rightarrow row$$
 $|A| = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj} = \sum_{j=1}^{n} a_{ij}A_{ij} \rightarrow column$

Rumusnya disebut Ekspansi Laplace dari determinan A pada baris ke-i dan kolom ke-j.

Menghitung determinan

Algoritma: (Metode reduksi orde determinan)

Input: Matriks persegi n bukan nol $A = [a_{ij}]$ dengan n > 1

- ① Pilih elemen $a_{ij} = 1$, atau jika tidak ada, $a_{ij} \neq 0$;
- Menggunakan a_{ij} sebagai pivot, terapkan operasi baris dasar* untuk menempatkan 0 di semua posisi lain di kolom[†] yang berisi a_{ij};
- **③** Perluas determinan dengan kolom[‡] yang berisi a_{ij} .

Catatan:

- Algoritma biasanya digunakan untuk kasus $n \ge 4$.
- Eliminasi Gauss dapat diimplementasikan untuk mengubah matriks adalah matriks segitiga bawah (upper-triangular). Selanjutnya determinan dihitung sebagai perkalian diagonalnya.

Tetapi kita perlu melacak operasi dasar yang dilakukan (karena masing-masing akan mengubah tanda determinan).

^{*}dapat juga menggunakan operasi kolom dasar

[†]atau baris, jika menggunakan operasi kolom dasar

[‡]atau baris, jika menggunakan operasi kolom dasar 🗆 🗸 🗸 🗦 🔻 💈 🔊 🔾

Contoh: menghitung determinan menggunakan kofaktor

Terapkan algoritma penghitungan determinan dengan kofaktor untuk menghitung determinan dari matriks berikut:

$$A = \begin{bmatrix} 5 & 4 & 2 & 1 \\ 2 & 3 & 1 & -2 \\ -5 & -7 & -3 & 9 \\ 1 & -2 & -1 & 4 \end{bmatrix}$$

Contoh: menghitung determinan menggunakan kofaktor

Gunakan $a_{23} = 1$ sebagai pivot, dan terapkan operasi baris dasar, lalu ekspansi determinannya.

$$|A| = \begin{vmatrix} 5 & 4 & 2 & 1 \\ 2 & 3 & 1 & -2 \\ -5 & -7 & -3 & 9 \\ 1 & -2 & -1 & 4 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 5 \\ 2 & 3 & 1 & -2 \\ 1 & 2 & 0 & 3 \\ 3 & 1 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 0 & 5 \\ 2 & 3 & 1 & -2 \\ 1 & 2 & 0 & 3 \\ 3 & 1 & 0 & 2 \end{vmatrix}$$

Sehingga,

$$|A| = (-1)^{2+3} \begin{vmatrix} 1 & -2 & 5 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{vmatrix} = - \begin{vmatrix} 7 & 0 & 9 \\ -5 & 0 & -1 \\ 3 & 1 & 2 \end{vmatrix}$$
$$= -(-1)^{3+2} \begin{vmatrix} 7 & 9 \\ -5 & -1 \end{vmatrix}$$
$$= -7 + 45 = 38$$

Peninjauan determinan matriks 2×2 dan 3×3

Mari kita turunkan rumus determinan dari matriks (2×2) menggunakan algoritma.

Diberikan
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \begin{vmatrix} 1 & \frac{a_{12}}{a_{11}} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \begin{vmatrix} 1 & \frac{a_{12}}{a_{11}} \\ 0 & a_{22} - \frac{a_{21}a_{12}}{a_{11}} \end{vmatrix}$$

Sehingga,

$$A = a_{11} \left(a_{22} - \frac{a_{21}a_{12}}{a_{11}} \right) = a_{11} \left(\frac{a_{11}a_{22} - a_{21}a_{12}}{a_{11}} \right) = a_{11}a_{22} - a_{21}a_{12}$$

Peninjauan determinan matriks 2×2 dan 3×3

Coba turunkan rumus untuk menghitung determinan matriks (3×3) berikut:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{32} \end{bmatrix}$$

Apakah rumus yang Anda dapatkan sama dengan rumus dari metode permutasi?

Bagian 7: Aplikasi pada sistem persamaan linear: *Aturan Cramer* (lanjutan)

Aturan Cramer (lanjutan)

Diberikan sistem persamaan linier: AX = B, dengan $A = [a_{ij}]$ adalah matriks persegi dan $B = [b_i]$ adalah vektor kolom.

Misalkan A_i : matriks yang diperoleh dari A dengan mengganti kolom ke-i dari A dengan vektor kolom dari B.

Misalkan:

$$D = \det(A), \quad N_1 = \det(A_1), \quad N_2 = \det(A_2), \quad \dots, \quad N_n = \det(A_n)$$

Teorema (Aturan Cramer)

Sebuah sistem persegi AX = B memiliki solusi jika $D \neq 0$, dimana solusinya diberikan oleh:

$$x_1 = \frac{N_1}{D}, \quad x_2 = \frac{N_2}{D}, \quad \dots, \quad x_n = \frac{N_n}{D}$$

Q: Berikan argumen yang menjelaskan mengapa teorema tersebut berlaku!

Catatan tentang aturan Cramer

- Sistem harus persegi (memiliki jumlah persamaan dan variabel yang sama);
- Solusinya hanya ada jika $D \neq 0$;
- Jika D = 0, kita tidak tahu apakah sistem memiliki solusi atau tidak.

Untuk sistem homogen persegi:

Teorema

Sistem homogen persegi AX=0 memiliki solusi tak-nol jika dan hanya jika D=|A|=0.

Contoh

Terapkan aturan Cramer untuk menyelesaikan sistem berikut:

$$\begin{cases} x + y + z = 5 \\ x - 2y - 3z = -1 \\ 2x + y - z = 3 \end{cases}$$

Solusi: Matriks koefisien SPL: $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & -3 \\ 2 & 1 & -1 \end{bmatrix}$ memiliki determinan

$$D = 2 - 6 + 1 + 4 + 3 + 1 = 5$$

Contoh

Terapkan aturan Cramer untuk menyelesaikan sistem berikut:

$$\begin{cases} x + y + z = 5 \\ x - 2y - 3z = -1 \\ 2x + y - z = 3 \end{cases}$$

Solusi: Matriks koefisien SPL: $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -2 & -3 \\ 2 & 1 & -1 \end{vmatrix}$ memiliki determinan

$$D = 2 - 6 + 1 + 4 + 3 + 1 = 5$$

Karena $D \neq 0$, maka sistem memiliki solusi tunggal. Selanjutnya:

$$\textit{N}_x = \begin{vmatrix} 5 & 1 & 1 \\ -1 & -2 & -3 \\ 3 & 1 & -1 \end{vmatrix}, \quad \textit{N}_y = \begin{vmatrix} 1 & 5 & 1 \\ 1 & -1 & -3 \\ 2 & 3 & -1 \end{vmatrix}, \quad \textit{N}_z = \begin{vmatrix} 1 & 1 & 5 \\ 1 & -2 & -1 \\ 2 & 1 & 3 \end{vmatrix}$$

Sehingga: $N_x = 20$, $N_v = -10$, dan $N_z = 15$.

Bagian 8: Matriks blok untuk menghitung determinan

Matriks blok dan determinan

Teorema

Misalkan M adalah matriks blok segitiga atas (bawah) dengan blok diagonal:

$$A_1, A_2, \ldots, A_n$$

Maka:

$$\det(M) = \det(A_1) \det(A_2) \cdots \det(A_n)$$

Contoh

Diberikan sebuah matriks blok segitiga atas:

$$M = \left(\begin{array}{c|cccc} 2 & 3 & 4 & 7 & 8 \\ -1 & 5 & 3 & 2 & 1 \\ \hline 0 & 0 & 2 & 1 & 5 \\ 0 & 0 & 3 & -1 & 4 \\ 0 & 0 & 5 & 2 & 6 \end{array}\right)$$

Evaluasi determinan setiap blok diagonal:

$$\begin{vmatrix} 2 & 3 \\ -1 & 5 \end{vmatrix} = 13 \qquad \begin{vmatrix} 2 & 1 & 5 \\ 3 & -1 & 4 \\ 5 & 2 & 6 \end{vmatrix} = 29$$

Maka: $|M| = 13 \cdot 29 = 377$.

Catatan. Misalkan $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ dimana A, B, C, D adalah matriks persegi.

Maka **umumnya tidak benar** bahwa |M| = |A||D| - |B||C|.

Latihan

Latihan akan diberikan di kelas...