ENG1456 - Algoritmos Genéticos - Trabalho 1

Aluno: Matheus Carneiro Nogueira - 1810764

Professora: Karla Figueiredo

Sumário

1	Reproduzindo Resultados	2
2	GAP ideal	4
3	Taxas Crossover e Mutação	5
4	Tamanho da População	6
5	Convergência	7
6	Crossover	9
7	Normalização Linear	11
8	Gerais	12
9	Comentários Finais	13

Resumo

Este documento consiste no relatório do trabalho 1 do módulo de Algoritmos Genéticos da disciplina ENG1456 da PUC-Rio. O objetivo deste trabalho é estudar diferentes modelos de Algoritmos Genéticos para a tentativa de otimização da função F6 apresentada em sala. Foi utilizado o programa GADEMO para gerar os modelos pedidos nos enunciados. Em todas as figuras do GADEMO em que há mais de uma curva plotada, as configurações são referentes apenas à última curva. Foram consultados os materiais de aula, o livro [1] e outros materiais devidamente referenciados. Todas as seções começam com o enunciado retirado arquivo do trabalho.

1 Reproduzindo Resultados

Enunciado: Variando os parâmetros, execute Algoritmos Genéticos de modo a obter resultados semelhantes aos apresentados no livro texto. Os parâmetros usados no livro se encontram na tabela abaixo. Compare as curvas referentes à média de 20 rodadas de cada GA. Incluir dois gráficos: um com GA1-1, GA2-1 e GA2-2 e outro com GA 2 -3 e GA2-4. Utilizar somente one-point-crossover.

GA	População	Total.Ind.	Crossover	Mutação	Nor mLinear	Elitismo	Stead-State
1-1	100	4000	65%	0.8%	NÃO	NÃO	NÃO
2-1	100	4000	65%	0.8%	Max=100/Min=1	NÃO	NÃO
2-2	100	4000	65%	0.8%	Max=100/Min=1	SIM	NÃO
2-3	100	4000	65%	0.8%	Max=100/Min=1	NÃO	C/Duplicados
2-4	100	4000	65%	0.8%	Max=100/Min=1	NÃO	S/Duplicados

Figura 1: Tabela com as especificações dos modelos

As duas imagens abaixo exibem os 5 GA's solicitados no enunciado. Em ambas as figuras também foi plotada a curva da busca aleatória para fins de comparação.

Figura 2: Experimento 1: GA=1-1, Norm. Linear: GA=2-1, Elitismo: GA=2-2

Figura 3: Steady State 1: GA=2-3, SS s/duplicados: GA=2-4

Podemos, facilmente, perceber alguns detalhes imporantes. Primeiramente, o GA 1-1 da figura 2 se mostrou pior que a busca aleatória. Isso não é surpresa, uma vez que esse modelo não usufrui de nenhum operador além do crossover e mutação. Ao analisar as demais curvas que utilizam esses recursos, é de se esperar que o resultado seja melhor que uma busca aleatória, senão não haveria motivo para utilizar um algoritmo genético.

Uma simples normalização linear já foi suficiente para que o GA 2-1 apresentasse melhor resultado que a busca aleatória.

A utilização do elitismo é importante por garantir que, durante a evolução, o melhor indivíduo de t+1 seja sempre melhor ou igual ao melhor de t. Isso se percebe pelo fato da curva cinza da figura 2 ser monotônica, isto é, sempre crescente. Esse fato é suficiente para explicar o melhor desempenho desse modelo em relação aos anteriores.

Ambos os Steady States foram utilizados com GAP=80%, o que quer dizer que 80% dos indivíduos de uma geração serão trocados para a próxima geração e os melhores 20% serão mantidos. A análise do GAP ideal será realizada na seção seguinte. A opção sem duplicados quer dizer que, a cada geração, será verificado se algum filho gerado é igual a algum indivíduo da parte que foi mantida e, se for, um novo filho será gerado. Isso, em teoria, aumenta a diversidade da população. Para os testes executados e expressos na figura 3, nota-se que essas opções geraram resultados muito similares.

Comparando as duas figuras, podemos perceber que, dentre os 5 GA's apresentados e a busca aleatória, aquele que utiliza elitismo junto com normalização linear (GA2-2) apresenta o melhor resultado, seguidos daqueles que implementam o Steady State.

2 GAP ideal

Enunciado: Para os GAs que utilizam steady-state, determine o GAP (número de indivíduos substituídos a cada ciclo) ideal. Para isso, use um incremento de 5 indivíduos a cada tentativa, começando com um GAP=5. Não entregue os gráficos referentes aos testes de GAP.

O melhor resultado para cada GAP é exibido nas tabelas as seguir.

GAP	5	10	15	20	25	30	35	40
Num de 9's	2.6	2.1	2.5	2.5	3.4	2.3	2.45	2.5
GAP	45	50	55	60	65	70	75	80
Num de 9's	2.25	2.2	3.7	3.5	1.95	2.0	2.6	3.05
GAP	85	90	95	100				
Num de 9's	2.6	2.9	2.85	1.75				

Tabela 1: Tabela com melhor resultado para cada GAP Steady State com duplicados

GAP	5	10	15	20	25	30	35	40
Num de 9's	3.0	2.2	3.15	2.85	3.45	3.7	3.45	3.15
GAP	45	50	55	60	65	70	75	80
Num de 9's	1.9	2.3	2.0	2.4	2.1	3.0	3.55	4.35
GAP	85	90	95	100				
Num de 9's	3.9	2.6	1.9	1.6				

Tabela 2: Tabela com melhor resultado para cada GAP Steady State sem duplicados

Figura 4: Linha preta = Com Duplicados; Linha vermelha = Sem Duplicados

Como explicado na seção anterior, GAP significa a porcentagem da população que será trocada. Logo, um GAP de 0% significaria que nenhuma parcela da população seria trocada, ou seja, a evolução ficaria congelada. Por outro lado, um GAP de 100% seria equivalente a não haver Steady State. Sendo assim é necessário um equilíbrio entre o número de indivíduos mantidos e trocados. Se mantivermos indivíduos demais, a evolução pode se tornar lenta e estagnada, pois haverá pouca geração de novos indivíduos. Caso contrário, vamos regredir ao modelo sem Steady State, pois nenhum indivíduo será mantido e teremos a geração normal de filhos.

Como imaginado, os melhores resultados não são os valores limites do GAP, como visto na figura 4. No entanto, percebe-se uma evolução distinta entre os casos com e sem duplicados. Para o primeiro, os melhores valores foram próximos de 80%, enquanto que, para o caso sem duplicado, próximo de 55%. Podemos notar que, para GAP de 100%, ambos os modelos apresentam melhor valor próximo do melhor valor do modelo apenas com normalização linear, o que também era esperado.

Conclusões acerca da evolução da qualidade com o aumento do GAP e do perfil de cada curva da figura 4 mais aprofundadas são difíceis de serem realizadas com base apenas nesses dados.

3 Taxas Crossover e Mutação

Enunciado: Verifique o que acontece quando se roda o GA2-1 20 vezes com taxa de crossover muito baixa (pouca recombinação em torno de 10%) e alta taxa de mutação (muitas mudanças aleatórias em torno de 80%). Imprima o resultado (um gráfico), compare com o resultado do GA2-1 obtido no item 1 e explique brevemente o que acontece.

A figura 5 abaixo exibe o GA com as taxas pedidas.

Sabemos que a altas taxas de mutação aumentam a aleatoriedade do processo de evolução e que baixas taxas de crossover tornam a busca pela seleção ótima mais lenta, uma vez que há menor combinação dos progenitores.

Ao analisar a figura 5 podemos perceber uma alta volatilidade na qualidade da solução, isto é, grande variação entre picos e vales. Esse fato é resultado da alta taxa de mutação, uma vez que ela atrapalha a evolução normal do algoritmo ao adicionar aleatoriedade. A baixa taxa de crossover, por sua vez, é percebida de forma mais sutil pela falta de caráter crescente da curva. Como são feitos poucos cruzamentos, utiliza-se pouco os bons progenitores para gerar bons filhos, o que diminui a qualidade da evolução da solução.

Figura 5: GA2-1 com taxas de crossover 10% e mutação 80%

4 Tamanho da População

Enunciado: Analise o efeito do tamanho da população, obtendo as curvas de desempenho do GA2-2 (20 rodadas) para vários tamanhos de população (ex: 20, 50, 100, 150) e sempre com o mesmo número de gerações (total de indivíduos variável). Imprima as curvas para e tire conclusões sobre o efeito do tamanho da população no desempenho do algoritmo genético.

Antes de partirmos para a avaliação dos diferentes GA's, devemos lembrar como definir o tamanho da população em relação do número de gerações e do número total de indivíduos (avaliações).

Esses parâmetros relacionam-se de acordo com a seguinte expressão:

 $avaliacoes = num_geracoes \times tamanho_populacao$

A partir dessa relação e dos valores solicitados pelo enuncido para os tamanhos de população, mantendo o número de gerações igual a 40, chegamos aos seguintes valores:

tam_pop	20	50	100	150
avaliações	800	2000	4000	6000

A figura abaixo exibe os resultados para esses valores de população.

Figura 6: Elitismo $(0) = \tan_pop=20$; Elitismo $(1) = \tan_pop=50$; Elitismo $(2) = \tan_pop=100$; Elitismo $(3) = \tan_pop=150$;

Podemos, a partir da análise da imagem, concluir que uma população de 20 indivíduos com 40 gerações é pouco para a evolução do algoritmo. O que nos indica esse fato é a curva amarela da figura 6, que representa a população de 50, ser praticamente a mesma da curva azul, população de 20, até o número de avaliações existentes na curva azul. Isso nos indica que, se houver mais do que 20 indivíduos por população, o algoritmo seria capaz de evoluir mais em direção à solução ótima.

Por outro lado, para as populações de 50, 100 e 150, o resultado final da solução é muito similar, ficando em torno de 2.1 noves. Isso nos revela que aumentar o número de indivíduos da população mantendo a mesma quantidade de gerações não infere, necessariamente, na melhora da solução. Podemos justificar isso da seguinte maneira: mais indivíduos por população aumenta o paralelismo da busca, mas, em dado momento, o algoritmo já possui indivíduos suficientes buscando a solução ótima e precisaria, apenas, de mais tempo (gerações) para encontrá-la.

5 Convergência

Enunciado: Repita o GA2-1 e o GA2-2 (20 rodadas cada) modificando apenas o total de indivíduos criados para o 10000. Imprima as curvas em dois um gráficos separados, um para o GA2-1 e outro para o GA2-2, e verifique se é vantajoso todo esse esforço computacional, em outras palavras, determine o número de indivíduos para o qual cada algoritmo converge.

A figura abaixo exibe os resultados dos GA's solicitados no enunciado.

Figura 7: GA 2-1 com avaliações de 4000 (azul) e 10000 (amarelo)

Figura 8: GA 2-2 com avaliações de 4000 (azul) e 10000 (amarelo)

A análise de convergência dos GA's fornece conclusões distintas para o caso com e sem

elitismo. Comecemos pelo GA 2-1, com normalização linear e sem elitismo.

Nesse caso, percebe-se pela figura 7 que não há uma convergência para o mesmo valor de avaliação, isto é, o algoritmo com mais avaliações (curva amarela) apresentou um desempenho melhor que o com menos (curva azul). Isso pode ser explicado pelo fato de, sem elitismo, não garantirmos que a curva de avaliação será sempre crescente. Sendo assim, precisamos de mais tempo, ou seja, mais avaliações e gerações, para chegar a um resultado mais próximo do ótimo, o que é evidenciado pela diferença entre as curvas.

Para o GA 2-2, com elitismo e normalização linear, a conclusão é outra. Com a utilização do elitismo, percebemos convergência para o mesmo valor de número de noves. Note que a curva amarela, após alcançar o valor mais alto da curva azul (2.6), permanece praticamente constante. Com esse operador, geramos uma curva monotônica e convergimos para um valor bom mais rapidamente. Isso nos mostra que aumentar a população de um GA com elitismo não gera melhores resultados, uma vez que esse operador já é suficiente para produzir uma solução boa. Aumentar o esforço computacional, nesse caso, é desncessário e, dito isso, não recomendável.

6 Crossover

Enunciado: Compare o efeito dos 3 tipos de crossover disponíveis na ferramenta, executando o GA2-1 (s/ elitismo) e o GA2-2 (c/elitismo) com apenas 2500 indivíduos (20 rodadas) para cada tipo de crossover, usando taxa de crossover 80%. Imprima as curvas em dois um gráficos separados, um para o GA2-1 e outro para o GA2-2, e tire conclusões a respeito da característica conservadora/destrutiva de cada crossover.

As figuras abaixo exibem os gráficos para os 3 tipos de crossover para os GA's 2-1 e 2-2.

A grande diferença e, possivelmente, vantagem, dos crossovers de 2 pontos e uniforme é a maior capacidade de combinação entre os padrões dos genitores. Essa característica, por sua vez, aumenta a diversidade dos filhos gerados, uma vez que mais padrões podem ser construídos. No caso do GA com elitismo, figura 10, pouca diferença é notada na evolução do algoritmo com os diferentes tipos de cruzamento. No entanto, os últimos indivíduos revelam um salto de qualidade para o crossover uniforme que não é percebido nos demais. É possível que esse bom desenvolvimento final possua relação com o tipo de crossover, mas a relação não é auto evidente.

Para o GA sem elitismo, mas apenas com normalização linear, o crossover uniforme foi, claramente, o pior operador entre os três. Isso se deve ao fato dele aumentar a recombinação de genes dos genitores o que, de certo modo, aumenta a aleatoriedade do processo de evolução que, sem o elitismo para garantir uma curva sempre crescente, mostra-se prejudicial para a evolução do problema. Os outros dois crossovers, de 1 e 2 pontos, fornecem resultados muito similares, mas com uma diferença: a opção de 2 pontos apresenta curva de evolução quase sempre crescente. Para averiguar se isso é devido ao crossover ou não, deveríamos treinar mais GA com essas características. Faremos isso na última seção.

Figura 9: GA 2-1; Norm Linear (0) = crossover de um ponto ; Norm Linear (1) = crossover de dois pontos ; Norm Linear (2) = crossover uniforme

Figura 10: GA 2-2; Elitismo (0) = crossover de um ponto ; Elitismo (1) = crossover de dois pontos ; Elitismo (2) = crossover uniforme

7 Normalização Linear

Enunciado: Repita o GA2-3COM gap = 75 para vários valores de máximo. Verifique o que acontece quando o valor de máximo aumenta e diminui (avalie para os valores 10, 50, 100, 200, 300). Imprima as curvas em apenas um gráfico e tire breves conclusões.

Sabemos que a normalização linear trabalha com aptidão A_i definida como se segue:

$$A_i = min + \frac{max - min}{pop_size - 1} \times (i - 1)$$

Dito isso, quanto maior o valor de *máximo*, maior o valor dado à aptidão do indivíduo, o que, por sua vez, aumenta a pressão seletiva sobre os melhores indivíduos. É de se esperar, portanto, que tanto valores pequenos demais quanto grandes demais não se mostrem interessantes para fins de otimização, pois pouca pressão fará com que indivíduos ruins se reproduzam e pressão demais fará com que poucos indivíduos sejam selecionados para reprodução. A figura 11 exibe os resultados para valores de máximo de 10, 50, 100, 200, 300.

Figura 11: Steady State $(0) = \max 10$; Steady State $(1) = \max 50$; Steady State $(2) = \max 100$; Steady State $(3) = \max 200$; Steady State $(4) = \max 300$;

Pela análise da figura, percebemos algo similar ao previsto. Os valores 10 e 300 para máximo, que são o menor e o maior de nossa lista de valores, apresentaram os piores resultados. O motivo é, justamente, o que foi comentado acima: pressão demais ou pressão de menos não é vantajoso para a evolução da solução, uma vez que o primeiro gera filhos inadequados e o último exerce pressão demais. Seguindo esse raciocínio, é

trivial entender porque os melhores valores de máximo, de acordo com a figura, foram os valores 50 e 100.

8 Gerais

Enunciado: Fazendo variações nos parâmetros e técnicas disponíveis no GADEMO, estude livremente o efeito de cada umdestes no desempenho de algoritmos genéticos. Destaque e explique uma importante constatação.

Novos testes com crossover de 2 pontos e GA 2-1 O intuito desses testes é verificar se o comportamento quase monotônico da curva de avaliações apresentada para o GA 2-1 com crossover de 2 pontos é coincidência ou fruto dos parâmetros do algoritmo. A figura abaixo exibe os resultados.

Figura 12: GA 2-1 com crossover de 2 pontos

Dada a figura 12, podemos perceber que o perfil monotônico anterior foi apenas fruto do acaso e uma especificidade daquele processo de evolução. Para outros 6 algoritmos com mesmos parâmetros, esse comportamento não foi observado.

GAP = 1%

Anteriormente comentei que GAP's muito pequenos tornariam a evolução do algoritmo lenta e estagnada. Para verificar se isso, de fato, ocorre foram gerados 6 GA's 2-3 com GAP=1%, o menor valor possível no GADEMO. A imagem abaixo exibe os resultados.

Figura 13: GA 2-3 com GAP=1%

Podemos notar que a suposição anterior não se mantém frente a esses resultados. Embora a evolução seja mais irregular, pois vemos vários degraus nas curvas da figura 13, ela é, obviamente, não constante e, na verdade, quase sempre crescente. A presença dos degraus pode ser explicada da seguinte maneira: com um GAP pequeno, muitos indivíduos são mantidos e apenas alguns novos são gerados. Com isso, as curvas apresentarão maiores porções horizontais, uma vez que de uma geração para outra pouca coisa será alterada.

9 Comentários Finais

O intuito das discussões realizadas em cada seção era estudar a implicação de cada parâmetro e operador na qualidade do Algoritmo Genético, comparando previsões e suposições teóricas com resultados reais. Embora muitos resultados tenham coincidido com a teoria, alguns não o fizeram, o que pode ser explicado pela característica estocástica do GA. Importante ressaltar que um GA não é um algoritmo puramente aleatório, mas existem aleatoriedades em sua evolução. Além disso, alguns resultados podem estar diferentes da teoria pois seria necessário executar diversos GA's com os mesmos parâmetros para perceber o comportamento médio do algoritmo.

Referências

[1] L. Davis. *Handbook of Genetic Algorithms*. VNR Computer Library VNR Computer Library. Van Nostrand Reinhold, 1991.