Оглавление

0.1	критерии коши, существование конечного предела последо-	
	вательности	3
0.2	Подпоследовательности	6
0.3	Верхний и нижний предел последовательности	11
0.4	Свойства верхних и нижних пределов	13

Лекция 5: Продолжение (Часть 1)

05.10.2023

Для того чтобы вывести все слагаемые, мы полагаем, что n>=3, тогда

$$x_n = 2 + \sum_{k=2}^n \frac{1}{k!} (1 - \frac{k-1}{n}) \cdot \dots \cdot (1 - \frac{1}{n})$$
 (5)(1)

Пример. (Пример умножения из предыдущей суммы)

$$(1-\frac{2}{n})\cdot(1-\frac{1}{n})$$

$$x_{n+1} = 2 + \sum_{k=2}^{n} \frac{1}{k!} \left(1 - \frac{k-1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right) + \frac{1}{(n+1)!} \left(1 - \frac{n}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{1}{n+1}\right)\right)$$
(2)

Замечание. Слагаемое из (2) $(1-\frac{n}{n+1})$, также оно же в виде $\frac{1}{(n+1)^{n+1}}$ больше нуля.

Замечание. Если
$$r>0$$
, то $1-\frac{r}{n+1}>1-\frac{r}{n}$
$$\Rightarrow (1-\frac{k-1}{n+1})=(1-\frac{1}{n+1})\cdot\dots\cdot(1-\frac{1}{n+1})>(1-\frac{k-1}{n})\cdot\dots\cdot(1-\frac{1}{n})$$

Замечание. Получается, что в (1) и (2) одинаковое количество слагаемых. При этом, соотвествующе слагаемые относящихся к n+1 будет строго больше чем слагаемые относящихся к n.

Следовательно, равенство (2) больше, чем равенство (1).

Кроме того, в сумме относящийся к n+1 есть ещё n+1 слагаемое, которые положительно.

$$(1),(2) \Rightarrow x_{n+1} > x_n \tag{3}$$

Примем во внимание неравенства для у и неравенства для x_n . Тогда мы будем иметь следующее неравенство:

$$(3)28.9(3)5.10 \Rightarrow x_1 < x_2 < \dots < x_n < y_n < y_{n-1} < \dots < y_1$$

$$(4) \Rightarrow x_n < y_1, y_n > x, \forall n \tag{5}$$

Последовательность x_n строго возрастает и ограниченна сверху. Мы можем применить критерий существования конечного предела у строго монотонной возрастающей последовательности.

$$(5) \Rightarrow \exists \lim_{n \to \infty} x_n = a$$

Если мы посмотрим на последовательность y_n , она ограничена снизу в отношении пять и мы знаем что она строго монотонно убвает. По теореме о предельной последовательности получаем, что:

$$(5) \Rightarrow \exists \lim_{n \to \infty} y_n = b$$

Теперь,

$$b = \lim_{n \to \infty} y_n = \lim_{n \to \infty} (1 + \frac{1}{n})^{n+1} =$$

(Воспользуемся свойством предела произведения пределов)

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right) \cdot \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 1 + \lim_{n \to \infty} x_n = a$$

Таким образом,

$$a = b = e \tag{6}$$

Замечание. Пользуемся свойствами пределов строго монотонной последовательностей.

Последовательность y_n строго убывает, а последовательность x_n строго возрастает поэтому её предел меньше любого y_n

$$(6) \Rightarrow x_n < e < y_n \forall n \tag{7}$$

$$(7) \Rightarrow e > x_1 = 2, e < y_5 < 3$$

$$y_5 = (\frac{6}{5})^6$$

Оглавление 2

Примечание. Нужно посчитать и понять намного ли это меньше 3 или

$$e = 2.718...$$

Замечание. Число е - одно из фундаментальных констант на которой держится вся математика.

Первые две - это 0 и 1. А третья - это π

0.1Критерий Коши, существование конечного предела последовательности

Теорема 1. Пусть имеется некоторая последовательность x_n .

$$x_{n} = 1$$

Для того чтобы $\exists\lim_{\substack{n\to\infty\\n\to\infty}}x_n\in\mathbb{R}$ необходимо и достаточно, чтобы $\forall \varepsilon>0,\exists N$ такой, что $\forall m,\forall n>N$ выполнено

$$|x_m - x_m| < \varepsilon \tag{8}$$

Замечание. Важное обстоятельство содержащееся в формулиров-

В формулировке не сказано чему будет равен этот предел. Какой именно он будет - неизвесто. Известно только то что он существует.

Это так называемая теорема существования.

Доказательства начнём с необходимости.

Примечание. Необходимость означает что предел существует.

Доказательство. Предположим, что

$$\lim_{k \to \infty} x_k = a \in \mathbb{R}$$

Тогда, по определению предела для любого $\varepsilon > 0 \exists N$ такой, что $\forall n>N$ выполнено

$$|x_n - a| < \frac{\varepsilon}{2} \tag{9}$$

Тогда,

$$(9) \Rightarrow \text{при} n > N, m > N$$

$$(9) \Rightarrow \text{при} n > N, m > N$$
$$|x_m - x_n| = |(x_m - a) - (x_n - a)| \le |x_m - a| + |x_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow (8)$$

То-есть, необходимость доказана. Если конечный предел существует, то соотношение 8 выполнено.

Теперь докажем достаточность.

Когда мы будем доказывать достаточность, то мы не знаем, существует предел или нет.

Замечание. Не каждая последователность имеет предел (например, $x_n = -1^n$).

Для доказательства мы будем использовать теорему Дедекинда. Определим сечение множества вещественных чисел.

Нижний класс А - это

$$A = \alpha \in \mathbb{R} : \exists N$$
такое, что $\forall n > Nx_n > \alpha$ (10)

Замечание. Номер n от α зависит.

Каждому α соответствует свой номер n.

Вернхний класс А' - это

$$A' = \mathbb{R} \setminus A \tag{10'}$$

Множества, получившиеся в (10) и (10') - это сечения, и это нужно проверить.

Нужно проверить, что A и A^\prime не пустые и не совпадают с множеством вещественных чисел.

Возьмём

$$\varepsilon = 1$$

Тогда,

 $\exists N_0$ такой, что $\forall m, n > N_0$

$$|x_m - x_n| < 1$$

В частности, при m=N+1 и при n>N+1 имеем

$$|x_n - x_{N+1}| < 1 \Leftrightarrow x_{N+1} - 1 < x_n < x_{N+1} + 1 \tag{11}$$

$$(11) = > x_{N+1} - 1 \in A \tag{12}$$

(по определению)

Пример. Если мы возьмем любой п который > N+1, тогда получается что x_n больше чем число (12)

Оглавление 4

С другой стороны,

$$(11) \Rightarrow x_{N+1} + 1 \notin A, \text{ то-есть}, x_{N+1} + 1 \in A'$$
 (13)

При всех n, начиная с N + 1 x_n будет меньше чем то число. Оно никак не может удовлетворять соотношению (10).

Значит, это не может быть число из А, значит это число из А'.

$$(12), (13) \Rightarrow A \neq \emptyset, A' \neq \emptyset$$

Никакое из них не может быть множеством вещественных чисел. Давайте возьмём $\forall \alpha \in A, \forall \beta inA'$. Нужно доказать, что α всегда меньше β . В этом состоит условие определения сечения.

$$\alpha \in A = (10) > \exists N$$
такой, что $\forall n > Nx_n > \alpha$ (14)

Если бы для любого $\forall n>N$ выполнялось $x_n>\beta,$ то $\beta\in A.$ Однако, это не так, т.к. $\beta\in A'.$

То-есть,

$$\exists n_0 > N$$
такое, что $x_{n_0} \le \beta$ (15)

Примечание. Если бы всё время неравенство было в другую сторону $(x_n > \beta)$, тогда бы по определению (10), мы бы получили, что $\beta \in A$, но мы взяли $\beta \in A'$, то есть $\beta \notin A$, значит свойства выше выполнятся не может и выполняется свойство (15).

$$(14), (15) \Rightarrow \alpha \leq x_{n_0} \leq \beta \Rightarrow \alpha < \beta$$

То-есть, мы действительно получили сечение. Теперь можно применить теорему Дедекинда. По теореме Дедекинда, существует некое число

 $\exists a \in R$ такое, что $\forall \alpha in A, \forall \beta in A'$

$$\alpha \le a \le \beta \tag{16}$$

Возьмём $\forall \varepsilon > 0$

Тогда,

$$(8) = > \exists N$$
такое, что выполнено (8)

m = N + 1

Тогда,

$$(8) \Rightarrow \forall n > N+1$$

$$|x_n - x_{N+1}| < \varepsilon \Leftrightarrow x_n \in (x_{N+1} - \varepsilon, x_{N+1} + \varepsilon)$$
 (17)

Теперь, если посмотреть на соотношение (17),

$$(17) \Leftrightarrow x_n > x_{N+1} - \varepsilon u x_n < x_{N+1} + \varepsilon$$

Примечание. при $\forall n > N+1$, выполнена правая счасть неравенства (17) $x_n > x_{N+1} - \varepsilon$.

Теперь рассмотрим (10) и (18).

$$(10), (18) \Rightarrow x_{N+1} - \varepsilon \in A \tag{19}$$

Теперь обратимся ко второму неравенству в соотношении (18).

Получается, что правая часть неравенства $x_n < x_{N+1}$ принадлежит А', потому что если бы принадлежало А, должно было бы быть другое неравенство в другую сторону/

$$(10), (18) \Rightarrow x_{N+1} + \varepsilon \in A' \tag{20}$$

Возьмём (19) $\Rightarrow x_{N+1} - \varepsilon$ как α ,

a (20) $\Rightarrow x_{N+1} - \varepsilon \text{ как } \beta$,

Тогда, применяем (16), получаем что:

$$(16), (19), (20) \Rightarrow x_{N+1} - \varepsilon \le a \le x_{N+1} + \varepsilon \tag{21}$$

Обратимся к соотношению (17)

$$(17): x_{N+1} < x_n < x_{N+1} + \varepsilon$$

Получаем, что a удовлетворяет этому неравенству и x_n удовлетворяет этому неравенству (лежит на промежутке) при $\forall n > N+1$.

Поэтому, (21) и (17') \Rightarrow

$$|x_n - a| < 2\varepsilon = (x_{N+1} + \varepsilon) - (x_{N+1} - \varepsilon) \tag{22}$$

Примечание. То-есть, если x_n и а лежат на этом промежутке, то длина отрезка между а и x_n меньше чем длина промежутка, на котором они лежат. Длина промежутка равна 2ε

Мы получили, что существует некоторое a такое, что для любого n > N+1 выполняется неравенство (22). А это определение предела. По определению предела,

$$(22) \Rightarrow \lim_{n \to \infty} x_n = a$$

Тем самым, достаточность в критерии доказано. доказать конкретно а мы не смогли, но оно существует.

0.2 Подпоследовательности

Последовательность - это отображение $f: \mathbb{N} \to \mathbb{R}$.

Оглавление 6

Допустим, что у нас имеется некое отображение $g:\mathbb{N}\to\mathbb{N}$ которое не является тождественным.

д не тождественное отображение.

Когда каждому n сопоставляется тоже самое n.

$$\forall n < mg(n) < g(m)$$

Тогда, подпоследовательностью называется суперпозиция этих выражений.

$$f(g): \mathbb{N} \to \mathbb{R}$$
.

Примечание. Классический вид:

$$x_{n} = 1$$

$$g(k) = n_k$$

$$n_1 < n_2 < \dots$$

Тем самым, вместо всей последовательностьи x_n мы рассматриваем только с такими номерами:

$$x_{n_1}, x_{n_2}, \ldots$$

Это только часть первоначальной поледовательности.

Обозначение. Если эти номера определены, то последовательность обозначают

$$x_{n_k} \underset{k=1}{\overset{\infty}{\sim}}$$

Предел последовательности определяется как предел подпоследовательности по нижним индексам.

Если есть такая последовательность, говорят что:

 $A\in\overline{\mathbb{R}}$ является пределом, то-есть $x_{n_k}\to A$, при $k\to\infty$, если $\forall\Omega(A)$ существует такой номер K, что для любого k > K выполнено $x_{n_k}\in\Omega(A)$

Теорема 2. Пусть $x_n \to A$, при $n \to \infty$, где $A \in \overline{\mathbb{R}}$

и пусть мы имеем любой подпоследовательность

 $x_{n_k}{}_{k=1}^{\infty}$ выбранную из этой последовательности. $\Rightarrow x_{n_k} \to A$, при $k \to \infty$

Доказательство. Возьмём любую окрестность А.

$$\forall \Omega(A) \Rightarrow \exists N$$
такое, что $\forall n > N$

будет выполняться

$$x_n \in \Omega(A)$$

Воспользуемся тем, что поледовательность n_k строго возрастает,

$$\rightarrow n_1 \ge 1, n_2 > 1, n_2 \ge 2$$

(Шаг индукции)

$$n_k \ge k \Rightarrow n_{k+1} > n_k \ge k \rightarrow n_{k+1} > k+1$$

То-есть, если мы выберем подпоследовательность, то n_k будет больше или равно k. Начиная с какого-то индекса, будет строго больше.

Возьмём K = N.

Тогда, при
 $\mathbf{k}>\mathbf{N}$ $n_k\geq k>N$

То-есть, при
 $\mathbf{k}>\mathbf{N},\,x_{n_k}\in\Omega(A)$

$$\Rightarrow x_{n_k} \to A$$
, при $k \to \infty$

Лекция 5: Продолжение (Часть 2)

05.10.2023

Теорема 3. (Больцано-Вейерштрасса)

Замечание. Эту теорему обычно называют принципом выбора Больцано-Вейерштрасса.

Пусть имеется некоторая последовательность $x_n,$ которая ограничена.

Примечание. Ограниченность означает ограниченность и сверху и снизу.

$$a \le x_n \le b \forall n \tag{1}$$

$$x_{n} = 1$$

Тогда,

$$\alpha \in [a,b]$$
и $x_{n_k} \underset{k=1}{\overset{\infty}{\sim}}$

Такая, что

$$x_{n_k} \to \alpha$$
при $k \to \infty$ (2)

Замечание. Такое α может быть только одним, если последовательность ограниченна и имеет некоторый предел.

Доказательство. определим последовательность промежутков.

$$I_1 = [a, b]$$

$$I_2' = [a, \frac{a+b}{2}], I_2'' = [\frac{a+b}{2}, b]$$

Примечание. $\frac{a+b}{2}$ - это центр отрезка [a, b]

Оглавление

В последовательности x_n имеется бесконечно ммного номеров (начиная с 1).

Рассмотрим множество номеров в множестве
 п таких, что $x_n' \in I_2'$ и п такие что $x_n \in I_2''$

(Какое-то из них, или оба бесконечны.)

Если бы первое и второе множество n выше было конечно, то мы получили бы что у нас есть конечное множество номеров n.

А в силу соотношения 1 на всем промежутки I_1 лежит вся последовательность.

поэтому, если бы и первое и второе множество было бы конечно, мы бы получили что рассматривам конечно множество номеров x_n , которые лежат на всем отрезке I_1 , а на I_1 лежит вся последовательность.

Пусть I_2 - тот из I_2' , I_2'' , для которого \exists бесконечно n таких что $x_n \in I_2$

Примечание. Это может быть либо I_1' , либо I_2' , либо I_2'' если оба удовлетворяем, то любой возьмем. Произвольно. Можно например всегда брать только I_2' , но по крайней мере для одного, таких номеров будет бесконечно много.

Имеется некоторое множество натуральных чисел, таких что x_n принадлежит I_2

Пусть n_1 - минимаьные n, такие что $x_n \in I_2$ $I_2 = [a_2, b_2]$

Примечание. Снова рассмотрим середину, $\frac{a_2+b_2}{2}$

$$I_3' = [a_2, \frac{a_2 + b_2}{2}]$$

$$I_3'' = \left[\frac{a_2 + b_2}{2}, b_2\right]$$

Нам известно, что множество тех n, таких что лежат на I_2 , множество таких n - бесконечно.

По крайней мере в одном из этих множеств тоже будет находится бесконечное множество номеров ${\bf n}.$

Пусть I_3 - тот из I_3' , I_3'' , для которого \exists бесконечно n таких что $x_n \in I_3$

 n_2 - минимальное n такое, что $x_n \in I_3$, и $n_2 > n_1$.

Примечание. Точка x_n1 , может попасть на этот промежуток I_3 , но посколько для этого промежутка существует бесконечно много n, таких что n пренадлежит промежутку I_3 , то мы можем взять следующую, больше чем n_1 , и называем её n_2

И так далее по индукции. Предположим, что мы уже выбрали промежутки

$$I_1 \supset I_2 \supset \cdots \supset I_m$$
 (3')

При этом мы всё время делим пополам.

 $k+1 \leq m$

длина $I_{k+1}=\frac{1}{2}$ длинны

$$I_k = \frac{b-a}{2^k} \tag{3}$$

$$n_1 < n_2 < \dots n_m < n_{m+1} \tag{4}$$

$$x_{n_1} \in I_2, x_{n_2} \in I_2, \dots x_{n_{m-1}} \in I_m$$
 (5)

Предположим, что по индукции такое построение уже произошло Пусть

$$I_m = [a_m, b_m] \tag{6}$$

Индуктивное предположение (индуктивный шаг)

Существует бесконечно много n, таких что

$$x_n \in I_m \tag{7}$$

Для двух и трёх мы это проделали. Предположим, что это проделано для n и будем выполнять индуктивный шаг.

$$I'_{m+1} = [a_m, \frac{a_m + b_m}{2}]$$

$$I_{m+1}^{"} = \left[\frac{a_m + b_m}{2}, b_m\right]$$

Мы снова взяли и разделили промежуток $[a_m, b_m]$ пополам.

Рассмотрим множество номеров в множестве п таких, что $x_n' \in I_{m+1}'$ и п такие что $x_n \in I_{m+1}''$

(Хотя бы одно из них бесконечно, по той причине что объединение этих множеств это множество тех n таких что x_n принаддлежит I_m ,

потому что вместе они дают на I_m , в силу предположения (7). Если бы и то и другое было бы конечно, то на множестве I_m было бы конечно множество номеров таких что x_n лежит на I_m , а по предположениб индукции их должно быть бесконечно.)

Тогда по определению I_{m+1} - тот ищ $I'_m, I''_m,$ для которого \exists бесконечно много п таких что $x_n \in I_{m+1}$

Пускай n_{m+1} - это наименьшее п такое что $x_{n_m} \in I_{m+1}$ и $n_{m+1} > n_m$

Примечание. Если элемент x_{n_m} лежит на I_{m+1} , то мы вычеркиваем его и рассматриваем минимальный следующий (их бесконечно много).

И так мы получили в итоге этих рассуждений:

$$n_1 < n_2 < \dots < n_m < \dots$$

$$x_{n_m} \in I_{m+1}$$

$$(3) \Rightarrow$$
 длина $I_m \to 0$, при $m \to \infty$ (8)

Примечание. Получается, что это вложенные промежутки.

$$(3')$$
и (8)

По теореме о вложенных пределах:

$$\exists! \alpha$$
 τακοέ чτο $\alpha \in I_m \forall m$ (9)

$$(5) \Rightarrow x_{n_m} \in I_{m+1}$$

Точка α лежит на этом промежутка и точка с номером x_{n_m} лежит на этом же промежутке.

$$(5), (9) \Rightarrow |x_{n_m} - \alpha| \le \frac{b - a}{2^m} \tag{10}$$

 $\begin{array}{l} \forall \varepsilon > 0 \\ k : \frac{b-a}{2^k} < \varepsilon \end{array}$

Возьмём m > K

$$(10), (11) \Rightarrow при m > K$$

выполнено

$$x_{n_m} - \alpha \to \alpha$$
при $m \to \infty$ (12)

Таким образом мы доказали, что существует подпоследовательность у которой есть конечный предел.

 $a \in I_1$

, т.е.

$$a \le \alpha \le e$$

0.3Верхний и нижний предел последовательности

Определение 1. Пусть есть произвольная последовательность x_n .

$$x_{n}_{n=1}^{\infty}, x_n \in \mathbb{R}$$

Если $x_{n}_{n=1}^{\infty}$ не ограничена сверху, то верхний предел $\overline{\lim_{n \ to\infty}} x = +\infty$, по определению.

Если $x_{n}_{n=1}^{\infty}$ ограничена сверху, т.е.

Оглавление

11

$$\exists M \text{ T.y. } x_n \leq M \forall$$
 (1)

$$E_n = a \in \mathbb{R} : a = x_m, m \ge n$$

(множество всех значение последовательности x_n начиная с множества n)

$$g_n = \sup E_n$$

 $(1) \Rightarrow E_n$ ограничена сверху \Rightarrow

$$g_n \le M \forall n \tag{2}$$

Обратим внимание, что

$$E_{n+1} \subset E_n \Rightarrow g_{n+1} \le g_n \tag{3}$$

Потому что может быть они совпадают, но мы рассматриваем элементов на 1 больше.

$$(3) \Rightarrow \exists \lim_{n \to \infty} g_n \ge -\infty \tag{4}$$

$$(2) \Rightarrow \lim_{n \to \infty} g_n \le M \tag{5}$$

$$\overline{\lim_{n \ to \infty}} x_n = \lim_{n \to \infty} g_n$$
по определению

Если мы посмотрим на определение верхнего предела, видно, что верхний предел, в отличии от просто предела существует в нулевой последовательности. Т.к. последовательность либо ограничена сверху, либо не ограничена сверху.

Если $x_{n}_{n=1}^{\infty}$ не ограничена снизу, то

$$\lim_{n \to \infty} x_n$$
по определению равно — ∞

Если $x_{n}_{n=1}^{\infty}$ ограничена снизу, то-есть

$$\exists L, \text{ T.H. } x_n \ge L \forall n$$
 (7)

$$h_n = \inf E_n$$

$$(7) \Rightarrow h_n > -\infty$$

$$h_{n+1} \ge h_n \tag{8}$$

 h_n - это монотонно возрастающая последовательность, а у любой такой последовательности есть предел. Может быть равный $+\infty$

Оглавление

$$(8) \Rightarrow \exists \lim_{n \to \infty} h_n \le +\infty$$

$$\lim_{n \to \infty} x_n$$
по определению равен
$$\lim_{n \to \infty} h_n \tag{9}$$

Таким образом,
если мы рассматриваем любую последовательность x_n , то у неё существуют верхний и нижний предел.

0.4 Свойства верхних и нижних пределов

1.

$$h_n = \inf E_n \le \sup E_n = g_n \tag{10}$$

и последовательность g_n и h_n имеют пределы.

Для всякого n спораведливо это неравенство (10)

$$(10) \Rightarrow \lim_{n \to \infty} h_n \le \lim_{n \to \infty} g_n \tag{11}$$

$$(11): \lim_{\underline{n \to \infty}} x_n \tag{12}$$

Примечание. В отличии от обычных пределов, верхние и нижние пределы существуют у любой последовательности.

Теорема 4. Есть некоторая последовательность, тогда для того чтобы существовал предел

$$\exists \lim_{n \to \infty} x_n = a \in \overline{\mathbb{R}}$$

необходимо и достаточно, чтобы

$$\lim_{n \to \infty} x_n = \overline{\lim}_{n \to \infty} x_n = a \tag{13}$$

Примечание. Здесь нужно рассмотреть все случаи, когда соотвествующие пределы и какой-то из них является символами + или - ∞ , но мы рассмотрим только когда речь идет о когда оба предела это вещественные числа.

Предположим, что существует предел.

Хотим проверить, что верхний предел равен нижнему пределу.

$$\forall \varepsilon > 0 \exists N$$
т.ч. $\forall n > N$

$$a - \varepsilon < x_n < a + \varepsilon \tag{14}$$

Посмотрим на определение g_n и h_n .

$$(14) \Rightarrow \text{ при } n > NE_n \subset (a - \varepsilon, a + \varepsilon) \Rightarrow$$

$$\Rightarrow g_n \le a + \varepsilon, h_n \ge a - \varepsilon \Rightarrow$$

$$\Rightarrow a - \varepsilon \le \underline{\lim} x_n = \overline{\lim} x_n \le a + \varepsilon$$

$$\underline{\lim} x_n \ge a - \varepsilon \Rightarrow$$

$$\Rightarrow 0 \le \lim x_n - \lim x_n \le 2\varepsilon \tag{15}$$

Получается, что некоторое не отрицательное число не превосходит 2ε при любом положительном ε . Это может быть только тогда, когда это число равно 0.

$$(15) \Rightarrow \underline{\lim} x_n = \overline{\lim} x_n = \lim x_n$$

И нижние и верхние пределы на самом деле равны а.

Тогда мы получаем следующие суждения

$$g_n \to a, h_n \to a$$

$$g_n \ge a \forall n$$

$$h_n \le a \forall n$$

$$\forall \varepsilon > 0 \exists N_1$$
т.ч. $a \le g_n < a + \varepsilon$ при $n > N_1$ (16)

И

$$\exists N_2 \text{ т.ч } a - \varepsilon < h_n \le a$$
при $n > N_2$ (17)

$$N = \max(N_1, N_2)n > N$$

$$(16), (17) \Rightarrow a - \varepsilon < \inf E_n \le \sup E_n < a + \varepsilon \tag{18}$$

$$(18) \Rightarrow \forall m \ge n$$
выполнено $a - \varepsilon < x_m < a + \varepsilon$ (19)

В частности,

$$a - \varepsilon < x_n < a + \varepsilon \tag{20}$$

$$(20): \exists \lim_{n \to \infty} x_n = a = \underline{\lim} x_n = \lim x$$

Теорема доказана.