FONCTIONS LOGARITHMES, EXPONENTIELLES, PUISSANCES

5.1 RAPPEL SUR LES FONCTIONS POLYNOMIALES

§1 Vocabulaire

Définition 1

Une fonction p définie sur une partie D de $\mathbb R$ et à valeurs réelles est une **fonction polynomiale** lorsqu'il existe un entier $n \geq 0$ et des nombres réels a_0, a_1, \ldots, a_n tels que, pour tout $x \in D$, on ait

$$p(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n.$$

Lorsque $a_n \neq 0$, alors l'entier n est appelé le **degré** de p.

On note souvent $p(x) = \sum_{k=0}^{n} a_k x^k$.

Exemples 2

1. L'application $\mathbb{R} \to \mathbb{R}$ est polynomiale de degré 2. $x \mapsto x^2 - 2x + 5$

2. L'application $\mathbb{R} \to \mathbb{R}$ est polynomiale de degré 3. $x \mapsto x^3 + 5x - 3$

3. L'application $\mathbb{R} \to \mathbb{R}$ est polynomiale de degré 1.

4. Un fonction polynomiale de degré 0 est une fonction constante *non nulle*, c'est-à-dire, il existe $a_0 \neq 0$ tel que

1

$$\forall x \in D, p(x) = a_0.$$

5. Par convention, l'application nulle est aussi polynomiale et on dit que son degré est $-\infty$.

Définition 3

On dit qu'une fonction polynomiale p admet a pour **racine** lorsque p(a) = 0.

Retenez pour l'instant qu'une fonction polynomiale de degré n admet au plus n racines. La démonstration viendra plus tard dans l'année.

§2 Propriétés

Proposition 4

Les fonctions polynomiales sont continues et dérivables (une infinité de fois) sur \mathbb{R} .

Remarquez que la dérivée d'une fonction polynomiale est polynomiale.

Théorème 5

Principe d'identification

Soit I un intervalle véritable, $a_0, \ldots, a_n, b_0, \ldots, b_p$ des nombres réels avec $a_n \neq 0$ et $b_p \neq 0$ tels que

$$\forall x \in I, a_0 + a_1 x + \dots + a_n x^n = b_0 + b_1 x + \dots + b_n x^p.$$

Alors n = p et $a_i = b_i$ pour tout $i \in [0, n]$.

Ce théorème justifie *a posteriori* la définition de degré d'une fonction polynomiale.

§3 Fonctions puissance n où n est entier

Ci-dessous sont représentés les courbes de $x \mapsto x^n$ pour n = 1, 2, 3, 4, 5.

L'allure générale de la courbe de $f: x \mapsto x^n$ dépend de la parité de n. Si n est pair, alors $x \mapsto x^n$ est une fonction paire et sa courbe est comparable à celle de la parabole d'équation $y = x^2$. Si n est impair, alors $x \mapsto x^n$ est une fonction impaire et sa courbe est similaire celle d'équation $y = x^3$ (pour $n \ge 3$).

Toutefois, remarquons que lorsque n augmente, la courbe d'équation $y = x^n$ s'aplatit près de l'origine et croit plus rapidement lorsque $|x| \ge 1$. (Si x est petit, x^2 est plus petite, x^3 encore plus petit, etc...)

§4 Fonctions rationnelles

Définition 6

Une fonction rationnelle est le quotient de deux fonctions polynomiales.

Exemples 7

- 1. $\mathbb{R} \to \mathbb{R}$ est une fonctions rationnelle. $x \mapsto \frac{2x^9 - x^2}{3 + x^8}$
- **2.** Toute fonction polynomiale est *a fortiori* une fonction rationnelle.

Proposition 8

- 1. Soit p et q deux fonctions polynomiales sur \mathbb{R} . La fonction rationnelle $f = \frac{p}{q}$ est définie sur \mathbb{R} privé de l'ensemble des racines de q.
- **2.** Les fonctions rationnelles sont continues et infiniment dérivables sur leur ensemble de définition.
- 3. La dérivée d'une fonction rationnelle est une fonction rationnelle.

Exemple 9

La fonction rationnelle définie par

$$f(x) = \frac{6x^3 - x}{x^2 - 1}$$

est définie et infiniment dérivable sur $\mathbb{R} \setminus \{-1, 1\}$.

5.2 LOGARITHMES, EXPONENTIELLES

Exemple 10

Résolution de l'équation fonctionnelle

$$\forall (x, y) \in \left]0, +\infty\right[^2, f(x \times y) = f(x) + f(y).$$

où $f:]0, +\infty[\to \mathbb{R}$ est une fonction dérivable.

§1 Logarithme népérien

Définition 11

Le **logarithme népérien** (ou logarithme naturel) est l'unique primitive de la fonction $x \mapsto 1/x$ qui s'annule en 1. En d'autre termes

$$\ln : \mathbb{R}_+^{\star} \to \mathbb{R} \\
x \mapsto \int_1^x \frac{\mathrm{d}t}{t}$$

Proposition 12

- 1. Le logarithme est une fonction de classe \mathscr{C}^{∞} .
- **2.** La fonction $x \mapsto \ln|x|$ est une primitive de $x \mapsto x^{-1}$ sur \mathbb{R}^* .

Corollaire 13

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1 \quad ou \; encore \quad \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1.$$

Proposition 14

On a pour tout $(x, y) \in (\mathbb{R}_+^*)^2$,

1.
$$ln(1) = 0$$
.

3.
$$\ln(x/y) = \ln x - \ln y$$
.

2.
$$\ln(xy) = \ln x + \ln y$$
.

4.
$$\ln(1/x) = -\ln x$$
.

Démonstration. Voici une démonstration alternative de la seconde propriété. Celle-ci requiert de savoir faire un changement de variable dans une intégrale (ici u = xt).

Pour x > 0 et y > 0, on a

$$\ln(y) = \int_{1}^{y} \frac{1}{t} dt = \int_{x}^{xy} \frac{x}{u} \frac{1}{x} du = \int_{x}^{xy} \frac{1}{u} du = \ln(xy) - \ln(x).$$

Proposition 15

Pour tout $x \in \mathbb{R}_+^*$ et tout $n \in \mathbb{Z}$, on a

$$\ln\left(x^n\right) = n\ln(x).$$

Proposition 16

La fonction \ln est strictement croissante sur \mathbb{R}_+^* et

$$\lim_{x \to 0+} \ln x = -\infty$$

$$\lim_{x \to +\infty} \ln x = +\infty$$

La fonction ln étant continue, elle réalise donc une bijection de \mathbb{R}_+^\star sur $\mathbb{R}.$

L'axe des ordonnées est donc asymptote à la courbe représentative de ln.

Remarque

L'injectivité du logarithme nous permet d'écrire

$$\forall (x, y) \in \mathbb{R}_+^*, \ln(x) = \ln(y) \iff x = y.$$

Proposition 17

Pour tout $x \in]-1, +\infty[$,

$$\ln\left(1+x\right) \leq x.$$

Proposition 18

La courbe représentative de ln présente une branche parabolique horizontale au voisinage $de +\infty$:

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0.$$

Plus généralement, on a pour tout $\alpha > 0$

$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0.$$

On dit que le logarithme est négligeable par rapport aux puissances au voisinage de $+\infty$.

Ce résultat reste valable, même avec $\alpha \in]0, +\infty[$.

Corollaire 19

$$\lim_{\substack{x \to 0 \\ >}} x \ln(x) = 0.$$

Figure 5.1: Logarithme népérien

§2 Exponentielle népérienne

Définition 20

et proposition

Le logarithme réalise une bijection de \mathbb{R}_+^* sur \mathbb{R} . Sa bijection réciproque est appelée exponentielle et notée

$$\exp: \mathbb{R} \to \mathbb{R}_+^*$$

Ainsi

- 1. $\forall x \in \mathbb{R}, \ln(\exp(x)) = x,$
- 2. $\forall x \in \mathbb{R}_+^*, \exp(\ln x) = x$,
- 3. $\forall (x, y) \in \mathbb{R}^2, \exp(x) = \exp(y) \iff x = y.$

Test 21

Résoudre l'équation $\exp(5 - 3x) = 10$.

Proposition 22

Pour tout $(x, y) \in \mathbb{R}^2$, on a

1.
$$\exp(0) = 1$$
.

$$3. \exp(x - y) = \frac{\exp x}{\exp y}.$$

2.
$$\exp(x + y) = (\exp x)(\exp y)$$
.

4.
$$\exp(-x) = \frac{1}{\exp(x)}$$
.

Proposition 23

L'exponentielle est strictement croissante et dérivable sur \mathbb{R} (et même de classe \mathscr{C}^{∞}) et

$$\forall x \in \mathbb{R}, \exp'(x) = \exp(x).$$

De plus,

$$\lim_{x \to -\infty} \exp x = 0,$$

$$\lim_{x \to +\infty} \exp x = +\infty.$$

L'axe des abscisse est donc asymptote à la courbe représentative de exp au voisinage $de -\infty$:

Proposition 24

Pour tout $x \in \mathbb{R}$,

$$\exp(x) \ge 1 + x$$
.

Proposition 25

La courbe représentative de exp présente une branche parabolique verticale au voisinage $de +\infty$:

$$\lim_{x \to +\infty} \frac{\exp x}{x} = +\infty.$$

Plus généralement, on a pour tout $\alpha > 0$

$$\lim_{x \to +\infty} \frac{\exp x}{x^{\alpha}} = +\infty.$$

On dit que les puissances sont négligeables par rapport à l'exponentielle au voisinage de $+\infty$.

Ce résultat reste valable, même avec $\alpha \in]0, +\infty[$.

Figure 5.2: Exponentielle népériene

Test 26

Donner l'ensemble de définition de la fonction $g: x \mapsto \frac{1}{2} \exp(-x) - 1$. Tracer sa courbe et expliciter son image Im(g).

Test 27

1.
$$\lim_{x \to +\infty} \frac{e^x}{(\ln x)^{2305}} =$$

$$2. \lim_{x \to 0^+} x^x =$$

3.
$$\lim_{x \to +\infty} (\ln x)^3 x^7 e^{-10x} =$$

Exponentielle de base a **§3**

Définition 28

Exponentielle de base a

Pour $a \in \mathbb{R}_+^*$ et $x \in \mathbb{R}$, on pose

$$\begin{array}{cccc} \exp_a: & \mathbb{R} & \to & \mathbb{R} \\ & x & \mapsto & \exp(x \ln a) \end{array}$$

Lemme 29

À ne pas retenir

Pour tout $(a, b) \in (\mathbb{R}_{+}^{*})^{2}$ et tout $(x, y) \in \mathbb{R}^{2}$, on a

1.
$$\exp_a(0) = 1$$
.

$$2. \ \ln(\exp_a(x)) = x \ln a.$$

3.
$$\exp_a(x+y) = \exp_a(x) \exp_a(y)$$
.

4.
$$\exp_a(xy) = \exp_{\exp_a(x)}(y)$$
.

5.
$$\exp_a(-x) = \frac{1}{\exp_a(x)} = \exp_{1/a}(x)$$
.

6.
$$\exp_{ab}(x) = \exp_a(x) \exp_b(x)$$

6.
$$\exp_{ab}(x) = \exp_a(x) \exp_b(x)$$
.
7. $\exp_{a/b}(x) = \frac{\exp_a(x)}{\exp_b(x)}$.

Lemme 30

À ne pas retenir

Si $a \in \mathbb{R}_+^*$ et $n \in \mathbb{Z}$, on $a \exp_a(n) = a^n$.

Ce lemme légitime la notation sous forme de puissance.

Définition 31

Extension de la notation puissance

Pour $a \in \mathbb{R}_+^*$ et $x \in \mathbb{R}$, on note

$$a^x = \exp_a(x) = \exp(x \ln a).$$

Le réel a^x se lit «a puissance x».

Remarque

Sachez que par convention,

$$a^{b^c} = a^{(b^c)}$$

et non $(a^b)^c$.

Le lemme 29 montre que les règles de calcul déjà connues pour des exposants entiers (et même rationnel) s'étendent au cas d'exposants réels.

Proposition 32

Pour tout $(a, b) \in (\mathbb{R}_+^*)^2$ et tout $(x, y) \in \mathbb{R}^2$, on a

1.
$$a^0 = 1$$
.

$$2. \ \ln(a^x) = x \ln a.$$

$$3. \ a^{x+y} = a^x a^y.$$

4.
$$(a^x)^y = a^{xy}$$
.

5.
$$a^{-x} = \frac{1}{a^x} = \left(\frac{1}{a}\right)^x$$
.
6. $(ab)^x = a^x b^x$.

6.
$$(ab)^x = a^x b^x$$

7.
$$\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$
.

Test 33

Résoudre l'équation

$$2^x + 6 \times 2^{-x} = 5. (5.1)$$

Proposition 34

Pour tout $a \in \mathbb{R}_{+}^{\star}$, la fonction $\exp_a : x \mapsto a^x$ est dérivable et on a

$$\exp_a'(x) = \frac{\mathrm{d}a^x}{\mathrm{d}x} = (\ln a)a^x$$

De plus $x \mapsto a^x$ est strictement croissante si a > 1 et strictement décroissante si 0 < a < 1 et on a

$$\lim_{x \to -\infty} a^x = \begin{cases} 0 & a > 1 \\ +\infty & 0 < a < 1 \end{cases} \qquad \lim_{x \to +\infty} a^x = \begin{cases} +\infty & a > 1 \\ 0 & 0 < a < 1 \end{cases}$$

Définition 35

La **constante de Néper** est le réel défini par $e = \exp(1)$ ou de manière équivalente par $\ln e = 1$. On dit encore que e est la base du logarithme népérien. Avec cette définition, on a donc $\exp_e = \exp$ et on peut donc écrire

$$\exp x = e^x$$
.

§4 Logarithme de base *a*

Définition 36

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. Pour tout x > 0, on note

$$\log_a(x) = \frac{\ln x}{\ln a}.$$

L'application \log_a est le **logarithme de base** a.

Exemples 37

- **1.** En particulier $\log_e = \ln$.
- 2. On utilise \log_{10} , appelé logarithme décimal et noté simplement log, en physique et en chimie.
- 3. La fonction log₂ (logarithme en base 2) est très utilisée en informatique.

Proposition 38

Soit $a \in \mathbb{R}_+^* \setminus \{1\}$. Alors \log_a est la bijection réciproque de \exp_a .

On a donc pour tout x > 0 et tout $y \in \mathbb{R}$,

$$a^y = x \iff y \ln a = \ln x \iff y = \frac{\ln x}{\ln a} \iff y = \log_a(x).$$

Test 39

Combien de chiffres comporte l'écriture décimale de 4444 4444 ?

Figure 5.3: Fonctions exponentielles de base a > 1: $x \mapsto a^x$

Figure 5.4: Fonctions exponentielles de base a < 1: $x \mapsto a^x$

x	$-\infty$		0	+∞
$\exp'_a(x)$		_	ln a	_
$\exp_a(x)$	+∞ (1_	0

5.3 FONCTIONS PUISSANCES

Définition 40

Soit $\alpha \in \mathbb{R}$. On appelle **fonction puissance** d'exposant α l'application

$$\varphi_{\alpha}:]0, +\infty[\rightarrow \mathbb{R}$$

$$x \mapsto x^{\alpha} = e^{\alpha \ln(x)}$$

Si $\alpha \in \mathbb{Q}$, on retrouve les fonctions puissances déjà connues.

Théorème 41

Soit $\alpha \in \mathbb{R}$.

1. La fonction $x \mapsto x^{\alpha}$ est définie et dérivable (donc continue) sur \mathbb{R}_{+}^{*} . Sa dérivée est la fonction

$$\varphi'_{\alpha}: x \mapsto \alpha x^{\alpha-1}.$$

2. Limites en 0 et $+\infty$:

$$\lim_{x \to 0+} x^{\alpha} = \begin{cases} 0 & \alpha > 0 \\ 1 & \alpha = 0 \\ +\infty & \alpha < 0 \end{cases} \qquad \lim_{x \to +\infty} x^{\alpha} = \begin{cases} +\infty & \alpha > 0 \\ 1 & \alpha = 0 \\ 0 & \alpha < 0 \end{cases}$$

- 3. Si $\alpha \neq 0$, la fonction $x \mapsto x^{\alpha}$ réalise une bijection de \mathbb{R}_{+}^{\star} sur \mathbb{R}_{+}^{\star} . Sa bijection réciproque est la fonction $x \mapsto x^{\frac{1}{\alpha}}$.
- **4.** Positions relatives. Soient $\alpha, \beta \in \mathbb{R}$ tels que $\alpha \leq \beta$, alors

$$\forall x \in]0,1], x^{\beta} \le x^{\alpha};$$
$$\forall x \in [1, +\infty[, x^{\alpha} \le x^{\beta}.$$

Remarques

- 1. Pour $\alpha > 0$, on peut prolonger la fonction $x \mapsto x^{\alpha}$ en une fonction continue définie sur tout \mathbb{R}_+ en posant $0^{\alpha} = 0$. Mais attention, ce prolongement est dérivable en 0 si et seulement si $\alpha \ge 1$.
- **2.** Le prolongement de la fonction $x \mapsto x^{\frac{1}{n}}$ est généralement notée $\sqrt[n]{*}: x \mapsto \sqrt[n]{x}$. Pour $n \in \mathbb{N}^*$ et $x \ge 0$, on a aussi

$$\sqrt[n]{x} = \sup \{ y \in \mathbb{R} \mid y \ge 0 \text{ et } y^n \le x \}.$$

Les fonctions $\sqrt{*}$, $\sqrt[3]{*}$, $\sqrt[4]{*}$, ... ne sont pas dérivables sur tout \mathbb{R}_+ , mais seulement sur \mathbb{R}_+^* .

Figure 5.5: Fonctions puissances et positions relatives

13

5.4 FONCTIONS HYPERBOLIQUES

§1 Les fonctions ch et sh

Définition 42

On définit les fonctions sinus hyperbolique et cosinus hyperbolique par

sh:
$$\mathbb{R} \to \mathbb{R}$$
 et ch: $\mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{e^x - e^{-x}}{2}$

Proposition 43

1.
$$\forall x \in \mathbb{R}, \operatorname{ch} x \geq 1$$
.

2.
$$\forall x \in \mathbb{R}$$
, $\operatorname{ch} x + \operatorname{sh} x = e^x$ et $\operatorname{ch} x - \operatorname{sh} x = e^{-x}$.

3.
$$\forall x \in \mathbb{R}, \operatorname{sh} x < \frac{e^x}{2} < \operatorname{ch} x.$$

4.
$$\forall x \in \mathbb{R}$$
, $\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$.

Proposition 44

- 1. La fonction sh est impaire et la fonction ch est paire.
- **2.** Les fonctions ch et sh sont dérivables (donc continues) sur \mathbb{R} et

$$sh' = ch$$
 et $ch' = sh$

3.

$$\lim_{-\infty} sh = -\infty \qquad et \qquad \lim_{+\infty} sh = +\infty$$
$$\lim_{-\infty} ch = \lim_{+\infty} ch = +\infty$$

§2 La fonction th

Définition 45

On définit la fonction tangente hyperbolique par

th:
$$\mathbb{R} \rightarrow]-1,1[$$

 $x \mapsto \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

Proposition 46

- 1. La fonction th est impaire.
- **2.** La fonction the est dérivable (donc continue) sur \mathbb{R} , strictement croissante et on a

$$th' = \frac{1}{ch^2} = 1 - th^2$$
.

3.
$$\lim_{-\infty} th = -1 \ et \lim_{+\infty} th = +1.$$

Figure 5.6: Sinus hyperbolique et cosinus hyperbolique

