Homework 2 Report Problem Set

Professor Pei-Yuan Wu

EE5184 - Machine Learning

Problem 1. (1%) 請簡單描述你實作之logistic regression 以及generative model 於此task 的表現,並試著討論可能原因。

	Public score	Private score
logistic regression	0.81220	0.80700
generative model	0.81200	0.80620

由上表可知logistic regression的表現略勝於generative model,我認為這是因為generative model考慮到一些非實際的情況而影響它的準確度。

generative model是假設於model data是來自於一個機率模型,也就是說它會把model的所有可能情況考慮進模型裡。它會去考慮input feature的所有可能情況,即使該種情況實際上並沒有在training data及test data中,或者該種情況現實上沒可能出現,generative model也會把這些可能性考慮進去,導致它會考慮一些data以外的情況,影響最後得到的model,最終導致model的準確率下降。

Problem 2. (1%) 請試著將input feature 中的gender, education, martial status

等改為one-hot encoding 進行training process,比較其模型準確率及其可能影響原因。

	Public score	Private score
No one-hot encoding	0.80600	0.79720
one-hot encoding	0.81160	0.80660

在原來的數據集中,是透過把gender, education, marital status這幾種特徵數據轉化為有序的數字序列來表示,以方便進行運用及訓練。但是,即使轉化為數字表示後,上述特徵也不能直接用在我們的分類器中。因為,分類器會認為特徵數據是連續的,並且是有序的。

而事實上這些特徵是從透過轉換而得來,並不存在連續性及有序性。經過one-hot encoding後,如果一個特徵有n種不同的值,它會變成了n個二元特徵。並且,這些特徵互斥,因此,數據會變成稀疏的。

所以one-hot encoding替我們解決了分類器不好處理屬性數據的問題,令模型準確率有所提升。

Problem 3. (1%) 請試著討論哪些input features 的影響較大(實驗方法沒有特別限制,但請簡單闡述實驗方法)。

Delete features	Public score	Private score
None	0.81200	0.80620

(train by ALL features)		
LIMIT_BAL	0.81180	0.80540
SEX	0.81140	0.80860
EDUCATION	0.81140	0.80740
MARRIAGE	0.81140	0.80800
AGE	0.81300	0.80780
PAY_0	0.80000	0.79840
PAY_2	0.80980	0.80980
PAY_3	0.81300	0.80640
PAY_4	0.81200	0.80600
PAY_5	0.81140	0.80620
PAY_6	0.81180	0.80620
BILL_AMT1	0.81120	0.80600
BILL_AMT2	0.81200	0.80620
BILL_AMT3	0.81160	0.80600
BILL_AMT4	0.81200	0.80600
BILL_AMT5	0.81180	0.80620
BILL_AMT6	0.81200	0.80620
PAY_AMT1	0.81160	0.80560
PAY_AMT2	0.81200	0.80540
PAY_AMT3	0.81180	0.80600
PAY_AMT4	0.81180	0.80640
PAY_AMT5	0.81180	0.80580
PAY_AMT6	0.81200	0.80580

首先,我是透過generative model進行訓練,並於每次訓練時各刪去一個input features來進行比較,比較基準為若Public score及Private score均比使用所有 features訓練的分數都要低,則認為它是影響較大的features。

即是當Public score/Private score同時低於0.81200/0.80620時,可考慮成該 features的重要性比較高,上表則是所有features的比較結果,紅字標示的部份為 該features被刪去後訓練所得的分數比利用所有features訓練所得的分數都要低。

但是,考慮到" $PAY_0,2^{\sim}6$ "、" $BILL_AMT_1^{\sim}6$ "及" $PAY_AMT_1^{\sim}6$ " 這幾組 features存在著與時間上的連續性,我修正了我的實驗方式如下。

Delete features	Public score	Private score
None	0.81200	0.80620
(train by ALL features)		
LIMIT_BAL	0.81180	0.80540
SEX	0.81140	0.80860
EDUCATION	0.81140	0.80740
MARRIAGE	0.81140	0.80800
AGE	0.81300	0.80780
PAY_0,2-6	0.78060	0.78120
BILL_AMT1-6	0.80920	0.80760
PAY_AMT1-6	0.81080	0.80580

我將我的實驗方式修正成在刪去features時,把" PAY_0,2~6" 、" BILL_AMT_1~6" 及" PAY AMT 1~6" 各視為一組features,一併刪去來進行測試。

結果如上表所示,可看出"LIMIT_BAL"、"PAY_0,2~6"、"BILL_AMT_1~6"及"PAY_AMT_1~6"這4組features在刪去後所得到的分數都有下降,可認為它們的影響較大,當中又以"PAY_0,2-6"下降的幅度最大,影響也應是最大。

Problem 4. (1%) 請實作特徵標準化(feature normalization),並討論其對於模型準確率的影響與可能原因。

	Public score	Private score
--	--------------	---------------

No normalization	0.79960	0.79460
feature normalization	0.81180	0.80800

在資料集中擁有各種的feature,當中不同的feature的可能值的範圍可以很大也可以很小,像"PAY_1~6 "及"BILL_AMT1~6","PAY_1~6 "的可能值的範圍較小,"BILL_AMT1~6"的可能值範圍比較大。

當每個feature乘上各自的weight時,數值比較大的feature對結果的影響明顯會比較大,而因為Model背後是用空間中的距離來做區分,假設某一個特徵過大,該Model的成本函數會被這個特徵所支配。

所以為了避免某些feature的數值太大而影響了model的訓練結果,我們需要把feature的值限定在某個範圍內,在這邊我用了min-max normalization,將feature限定在0~1之間,成功令model準確率有所提高。

Problem 5. (1%)

$$\frac{3}{\sqrt{2}} = \frac{x \cdot \mu}{12 \sigma}$$

$$\frac{dz}{dx} = \frac{1}{\sqrt{2}\sigma} dx$$

$$\frac{dx}{dx} = \sigma \sqrt{2} dz$$

$$\frac{dz}{dx} = \frac{-(x \cdot \mu)^{2}}{2\sigma^{2}} dx$$

$$\frac{dz}{dx} = \frac{-(x \cdot \mu)^{2}}{\sqrt{2}\sigma^{2}} dx$$

$$\frac{dz}{dx} = \frac{-(x \cdot \mu)^{2}}{\sqrt{2}\sigma^{2}} dz$$

考慮 $\int_{\infty}^{\infty} e^{-\frac{x^2}{3}} dz$, 這是一個高斯積分,需要生過雙重積分來考慮 $\left(\int_{\infty}^{\infty} e^{-\frac{x^2}{3}} dx\right)^2$ 。 $\int_{\infty}^{\infty} e^{-\frac{x^2}{3}} dx$ 。 $\int_{\infty}^{\infty} e^{-\frac{x^2}{3}} dx$

Problem 6. (1%)

6. 對於任意的
$$\frac{\partial E}{\partial w}$$
 . 我們可以到用 chain rule 進行旅行

(第出 $\frac{\partial E}{\partial w}$ = $\frac{\partial Z}{\partial w}$. $\frac{\partial E}{\partial z_{j}}$

| 新用 Forward pass : $\frac{\partial Z}{\partial w_{jj}}$ = $\frac{\partial X_{j}}{\partial z_{j}}$. $\frac{\partial E}{\partial z_{k}}$. $\frac{\partial E}{\partial z_{k}}$

對 DE , 我們再利用 Backward pass:

$$=g'(z_k)\cdot\frac{\partial E}{\partial y_k}$$

富中北為cutput · E為error function · 而error function 對於不同的方法都有著它的明確定義 · 所从可以考慮 哥」是明確可算的

a).
$$\frac{\partial E}{\partial z_k} = g'(z_k) \cdot \frac{\partial E}{\partial y_k}$$

b).
$$\frac{\partial E}{\partial z_{i}} = g'(z_{i}) \cdot W_{jk} \cdot \frac{\partial E}{\partial z_{k}} = g'(z_{i}) \cdot W_{jk} \cdot g'(z_{k}) \cdot \frac{\partial E}{\partial y_{k}}$$

c).
$$\frac{\partial E}{\partial w_{ij}} = y_i \cdot \frac{\partial E}{\partial z_j} = y_i \cdot g'(z_j) \cdot w_{jk} \cdot g'(z_k) \cdot \frac{\partial E}{\partial y_k}$$