

// ECB encipher	// ECB decipher
(where each P _i is n-bits)	(where each C _i is n-bits)
Algorithm \mathbf{E}_{K} (P) 100 Partition P into $\mathbf{P}_{1} \cdots \mathbf{P}_{m}$ 101 $\mathbf{for} \ \mathbf{i} \leftarrow 1 \ \mathbf{in} \ [1 \dots m] \ \mathbf{do}$ 102 $\mathbf{C}_{\mathbf{i}} \leftarrow \mathbf{E}_{K} (\mathbf{P}_{\mathbf{i}})$	Algorithm \mathbf{D}_{K} (C) 200 Partition C into $\mathbf{C}_{1} \cdots \mathbf{C}_{m}$ 201 for $i \leftarrow 1$ in $[1m]$ do 202 $\mathbf{P}_{i} \leftarrow \mathbf{E}_{K}^{-1}(\mathbf{C}_{i})$ 203 return $\mathbf{P}_{1} \cdots \mathbf{P}_{m}$

FIG. 2

Algorithm \mathbf{E}_{K} (P)	// CBC encipher
Partition P into P ₁ P _m (where each P _i is n-bits)	
101 $C_0 \leftarrow 0^n$	
102 for $i \leftarrow 1$ to m do	
$C_{i} \leftarrow E_{K} (C_{i-1} \oplus P_{i})$	
104 return $C_1 \cdots C_m$	
Algorithm D_{K} (C)	// CBC decipher
Partition C into $C_1 \cdots C_m$ (where each C_i is n-bits)	
101 $C_0 \leftarrow 0^n$	
102 for $i \in [1m]$ do	
103 $P_i \leftarrow E_K^{-1}(C_{i-1}) \oplus C_{i-1}$	
104 return $P_1 \cdots P_m$	

FIG. 3

FIG. 4

// left shift & xor // left shift **Algorithm** double (S) // assumes |S| = 128 and $P_{128}(x) = x^{128} + x^7 + x^2 + x + 1$ else return (S $\ll 1$) $\oplus 0^{120}100001111$ 100 if firstbit (S) = 0 then return $S \ll 1$ 101

FIG. 5

Alg	Algorithm ${\sf E}_{ m K}$ $({ m P})$	// CMC encipher
100	Partition P into $P_1 \cdots P_m$ (where each P_i is n-bits)	
110	110 $PPP_0 \leftarrow 0^n$	// Encipher
111	for $i \leftarrow 1$ to m do	
112	$PP_i \leftarrow P_i \oplus PPP_{i-1}$	
113	$PPP_{i} \leftarrow E_{K} (PP_{i})$	
		// 3.61.
170	$m \leftarrow 2(III_1 \oplus III_m)$	// IMIUSK
121	for $i \in [1m]$ do $CCC_i \leftarrow PPP_{m+1-i} \oplus M$	
	\$ * ·	,
130	$CCC_0 \leftarrow 0^n$	// Decipher
131	for $i \leftarrow 1$ to m do	
132	$CC_i \leftarrow E_K (CCC_i)$	
133	$C_i \leftarrow CC_i \oplus CCC_{i-1}$	
140	return $C_1 \cdots C_{\mathrm{m}}$	

FIG. 6

 Alg	Algorithm D_{K} (C)	// CMC decipher
 100	Partition C into $C_1 \cdots C_m$ (where each C_i is n-bits)	
 110	$CCC_0 \leftarrow 0^n$	// Encipher
 1112	$CC_{i} \leftarrow C_{i} \oplus CCC_{i-1}$	
113	$CCC_i \leftarrow E_K^{-1}(CC_i)$	
120	$M \leftarrow 2 (CCC_1 \oplus CCC_m)$ for $i \in [1 m]$ do $PPP_i \leftarrow CCC_{m+1} : \oplus M$	// Mask
130	$PPP_0 \leftarrow 0^n$	// Decipher
 131	for $i \leftarrow 1$ to m do $PP_i \leftarrow E_K^{-1} (PPP_i)$	
133	$P_i \leftarrow PP_i \oplus PPP_{i-1}$	
 140	return P ₁ P _m	

FIG. 8

// tweakable CMC encipher n-bits)	// Encipher	// Mask	// Decipher	
P_{m} (where each P_{i} is n-bits)	${}^{p}P_{i-1}$ ${}^{p}P_{i}$	$M \leftarrow 2 \ (\ PPP_1 \oplus PPP_m)$ for $i \in [1 m]$ do $CCC_i \leftarrow PPP_{m+1-i} \oplus M$	CC _i)	
Algorithm $\mathbf{E}_{\mathrm{K} \ \mathrm{K}'}$ (T, P) 100 Partition P into $\mathbf{P}_{\mathrm{1}} \cdots \mathbf{P}_{\mathrm{m}}$ 101 $\mathbf{T} \leftarrow \mathbf{E}_{\mathrm{K}'}(\mathrm{T})$	110 $\operatorname{PPP}_0 \leftarrow T$ 111 $\operatorname{for} : \leftarrow 1 \operatorname{to} : \operatorname{m} \operatorname{do}$ 112 $\operatorname{PP}_i \leftarrow \operatorname{P}_i \oplus \operatorname{PPP}_{i-1}$ 113 $\operatorname{PPP}_i \leftarrow \operatorname{E}_K(\operatorname{PP}_i)$	$M \leftarrow 2 (PPP_1 \oplus PPP_m)$ for $i \in [1 m]$ do CCC_i	$\begin{aligned} & \text{CCC}_0 \leftarrow \textbf{0}^n \\ & \text{for } i \leftarrow 1 \text{ to } m \text{ do} \\ & \text{CC}_i \leftarrow E_K \left(\text{CCC}_i \right) \\ & \text{C}_i \leftarrow \text{CC}_i \oplus \text{CCC}_{i-1} \\ & \text{C}_1 \leftarrow \text{C}_1 \oplus \textbf{\textit{T}} \end{aligned}$	
Alg	110	120	130 131 132 133 133	1

FIG. 11

Alg(Algorithm E $_{\rm K}^{\rm T}({\rm P}_1\cdots {\rm P}_{\rm m})$	// EME encipher
101 102 103	for $i \leftarrow l \in [1 m]$ do $PP_i \leftarrow 2^{i-1} L \oplus P_i$ $PPP_i \leftarrow E_K (PP_i)$	// Encipher
110	$SP \leftarrow PPP_2 \oplus \oplus PPP_m$ $MP \leftarrow PPP_1 \oplus SP \oplus T$	// Mask
112	$MC \leftarrow E_{K}(MP)$ $M \leftarrow MP \oplus MC$	
1115	for $i \in [1 m]$ do $CCC_i \leftarrow PPP_i \oplus 2^{i-1} M$ $SC \leftarrow CCC_2 \oplus \oplus CCC_m$ $CCC_1 \leftarrow MC \oplus SC \oplus T$	
120	$\begin{aligned} & \textbf{for} \ i \in [1 m] \ \textbf{do} \\ & CC_i \leftarrow E_K \left(\ CCC_i \right) \\ & C_i \leftarrow CC_i \ \oplus 2^{\ i-2} \ L \end{aligned}$	// Decipher
130	return $C_1 \cdots C_m$	

Alg. 100	Algorithm D $_{\rm K}^{\rm T}({\rm C_1 \cdots C_m})$	// EME decipher
101 102 103	$\begin{aligned} & \text{for } i \leftarrow l \in [1 m] \text{do} \\ & PP_i \leftarrow 2^{i-1} L \oplus C_i \\ & PPP_i \leftarrow D_K (CC_i) \end{aligned}$	// Encipher
1110 1112 1113	$SC \leftarrow CCC_2 \oplus \oplus CCC_m$ $MC \leftarrow CCC_1 \oplus SC \oplus T$ $MP \leftarrow D_K(MC)$ $M \leftarrow MC \oplus MP$	// Mask
114 115 116 120 121	$\begin{aligned} & \textbf{for} \ i \in [1 m] \ \textbf{do} \ PPP_i \leftarrow CCC_i \ \oplus 2^{i \cdot 1} \ M \\ & SP \leftarrow PPP_2 \oplus \oplus PPP_m \\ & PPP_1 \leftarrow MP \oplus SP \oplus T \\ & \textbf{for} \ i \in [1 m] \ \textbf{do} \\ & PP_i \leftarrow D_K \left(PPP_i \right) \\ & P_i \leftarrow PP_i \oplus 2^{i \cdot 2} L \end{aligned}$	// Decipher
130	$\textbf{return} \; P_1 \cdots P_m$	

