ISYE6501x Homework 8

Done By: Joel Quek

Question 11.1

Using the crime data set uscrime.txt from Questions 8.2, 9.1, and 10.1, build a regression mode

- 1. Stepwise regression
- 2. Lasso
- 3. Elastic net For Parts 2 and 3, remember to scale the data first otherwise, the regression constraint won't have the desired effect.

For Parts 2 and 3, use the glmnet function in R.

Notes on R: • For the elastic net model, what we called λ in the videos, glmnet calls "alpha"; you by varying alpha from 1 (lasso) to 0 (ridge regression) [and, of course, other values of alpha in k like glmnet(x,y,family="mgaussian",alpha=1) the predictors x need to be in R's matrix format, rat You can convert a data frame to a matrix using as.matrix – for example, x <- as.matrix(data[,1:n a value of T, glmnet returns models for a variety of values of T.

Source (StatQuest): https://www.youtube.com/watch?v=ctmNq7FgbvI (https://www.youtube.com

```
In [1]:
library(caret)
library(glmnet)

Loading required package: ggplot2
Loading required package: lattice
Loading required package: Matrix
Loaded glmnet 4.1-6
```

```
In [2]:
```

crime <- read.table("uscrime.txt", header=TRUE)</pre>

In [3]:

head(crime)

A data.frame: 6 × 16

	M	So	Ed	Po1	Po2	LF	M.F	Pop	NW	U1	U2	Wealth	Ineq	Prob
	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>
1	15.1	1	9.1	5.8	5.6	0.510	95.0	33	30.1	0.108	4.1	3940	26.1	0.084602
2	14.3	0	11.3	10.3	9.5	0.583	101.2	13	10.2	0.096	3.6	5570	19.4	0.029599
3	14.2	1	8.9	4.5	4.4	0.533	96.9	18	21.9	0.094	3.3	3180	25.0	0.083401
4	13.6	0	12.1	14.9	14.1	0.577	99.4	157	8.0	0.102	3.9	6730	16.7	0.015801
5	14.1	0	12.1	10.9	10.1	0.591	98.5	18	3.0	0.091	2.0	5780	17.4	0.041399
6	12.1	0	11.0	11.8	11.5	0.547	96.4	25	4.4	0.084	2.9	6890	12.6	0.034201

Base Model and Step Variable Selection

Source: https://www.youtube.com/watch?v=bgJfXMBEfZc

```
In [33]:
linear_model = lm(Crime~., data=crime)
summary(linear model)
 Call:
 lm(formula = Crime ~ ., data = crime)
 Residuals:
    Min
            1Q Median
                            3Q
                                   Max
 -395.74 -98.09 -6.69 112.99 512.67
 Coefficients:
              Estimate Std. Error t value Pr(>|t|)
 (Intercept) -5.984e+03 1.628e+03 -3.675 0.000893 ***
            8.783e+01 4.171e+01 2.106 0.043443 *
            -3.803e+00 1.488e+02 -0.026 0.979765
            1.883e+02 6.209e+01 3.033 0.004861 **
 Fd
            1.928e+02 1.061e+02 1.817 0.078892 .
 Po1
            -1.094e+02 1.175e+02 -0.931 0.358830
 Po2
 LF
            -6.638e+02 1.470e+03 -0.452 0.654654
            1.741e+01 2.035e+01 0.855 0.398995
 M.F
            -7.330e-01 1.290e+00 -0.568 0.573845
 Pop
            4.204e+00 6.481e+00 0.649 0.521279
 U1
            -5.827e+03 4.210e+03 -1.384 0.176238
            1.678e+02 8.234e+01 2.038 0.050161 .
            9.617e-02 1.037e-01 0.928 0.360754
 Wealth
            7.067e+01 2.272e+01 3.111 0.003983 **
 Prob
            -4.855e+03 2.272e+03 -2.137 0.040627 *
            -3.479e+00 7.165e+00 -0.486 0.630708
 Time
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Residual standard error: 209.1 on 31 degrees of freedom
 Multiple R-squared: 0.8031, Adjusted R-squared: 0.7078
 F-statistic: 8.429 on 15 and 31 DF, p-value: 3.539e-07
```

Observation

- R^2 is 0.8031 which is very good
- F-statistic has p-value which is very small
- This model is a significant model

Now we want to build a smaller model using Step function.

3/9/23, 11:52 AM ISYE6501x Homework 8 - Jupyter Notebook In [34]: model.final=step(linear_model)

```
Start: AIC=514.65
Crime \sim M + So + Ed + Po1 + Po2 + LF + M.F + Pop + NW + U1 +
  U2 + Wealth + Ineq + Prob + Time
       Df Sum of Sq
                     RSS
              29 1354974 512.65
        1
- 50
- LF
       1
             8917 1363862 512.96
- Time 1 10304 1365250 513.00
            14122 1369068 513.14
- Pop
       1
           18395 1373341 513.28
       1
- NW
- M.F 1 31967 1386913 513.74
- Wealth 1 37613 1392558 513.94
- Po2 1
            37919 1392865 513.95
<none>
                  1354946 514.65
            83722 1438668 515.47
- U1 1
       1 144306 1499252 517.41
- Po1
       1 181536 1536482 518.56
       1 193770 1548716 518.93
- M
- Prob 1
           199538 1554484 519.11
- Ed 1 402117 1757063 524.86
- Ineq 1 423031 1777977 525.42
Step: AIC=512.65
Crime \sim M + Ed + Po1 + Po2 + LF + M.F + Pop + NW + U1 + U2 +
   Wealth + Ineq + Prob + Time
       Df Sum of Sq RSS AIC
        1
           10341 1365315 511.01
       1 10878 1365852 511.03
- LF
- Pop 1 14127 1369101 511.14
- NW
       1 21626 1376600 511.39
           32449 1387423 511.76
       1
- M.F
- Po2
        1
           37954 1392929 511.95
- Wealth 1 39223 1394197 511.99
                  1354974 512.65
<none>
       1 96420 1451395 513.88
- U1
           144302 1499277 515.41
- Po1
        1
        1 189859 1544834 516.81
- U2
- M
       1 195084 1550059 516.97
- Prob 1 204463 1559437 517.26
- Ed
      1 403140 1758114 522.89
       1
           488834 1843808 525.13
- Ineq
Step: AIC=511.01
Crime \sim M + Ed + Po1 + Po2 + LF + M.F + Pop + NW + U1 + U2 +
   Wealth + Ineq + Prob
      Df Sum of Sq
                    RSS AIC
       1 10533 1375848 509.37
- NW
       1 15482 1380797 509.54
            21846 1387161 509.75
        1
- Pop
           28932 1394247 509.99
- Po2
        1
- Wealth 1 36070 1401385 510.23
- M.F 1 41784 1407099 510.42
<none>
                  1365315 511.01
      1
            91420 1456735 512.05
- U1
- Po1 1 134137 1499452 513.41
       1 184143 1549458 514.95
       1 186110 1551425 515.01
- M
       1
           237493 1602808 516.54
- Prob
- Ed
        1
            409448 1774763 521.33
- Ineq
        1
            502909 1868224 523.75
```

```
Crime ~ M + Ed + Po1 + Po2 + M.F + Pop + NW + U1 + U2 + Wealth +
   Ineq + Prob
       Df Sum of Sq
                   RSS AIC
       1 11675 1387523 507.77
- Po2 1 21418 1397266 508.09
           27803 1403651 508.31
      1
- Pop
      1 31252 1407100 508.42
- M.F
- Wealth 1 35035 1410883 508.55
<none>
              1375848 509.37
1 123896 1499744 511.42
- Po1
- U2
       1 190746 1566594 513.47
       1 217716 1593564 514.27
- Prob 1 226971 1602819 514.54
           413254 1789103 519.71
       1
- Ineq 1 500944 1876792 521.96
Step: AIC=507.77
Crime \sim M + Ed + Po1 + Po2 + M.F + Pop + U1 + U2 + Wealth + Ineq +
       Df Sum of Sq
                    RSS AIC
- Po2 1 16706 1404229 506.33
           25793 1413315 506.63
- Pop
      1
- M.F
       1 26785 1414308 506.66
- Wealth 1 31551 1419073 506.82
<none>
                 1387523 507.77
- U1 1 83881 1471404 508.52
- Po1 1 118348 1505871 509.61
- U2
       1 201453 1588976 512.14
- Prob 1 216760 1604282 512.59
      1 309214 1696737 515.22
- M
- Ed
       1 402754 1790276 517.74
- Ineq 1 589736 1977259 522.41
Step: AIC=506.33
Crime ~ M + Ed + Po1 + M.F + Pop + U1 + U2 + Wealth + Ineq +
   Prob
       Df Sum of Sq
                   RSS AIC
       1 22345 1426575 505.07
- Wealth 1 32142 1436371 505.39
        1 36808 1441037 505.54
<none>
             1404229 506.33
- U1 1 86373 1490602 507.13
- U2 1 205814 1610043 510.76
- Prob 1 218607 1622836 511.13
      1
           307001 1711230 513.62
- Ed
       1 389502 1793731 515.83
- Ineq 1 608627 2012856 521.25
       1 1050202 2454432 530.57
- Po1
Step: AIC=505.07
Crime ~ M + Ed + Po1 + M.F + U1 + U2 + Wealth + Ineq + Prob
      Df Sum of Sq
                    RSS AIC
- Wealth 1 26493 1453068 503.93
                  1426575 505.07
<none>
       1 84491 1511065 505.77
- M.F
- U1
            99463 1526037 506.24
        1
```

```
- Prob 1
           198571 1625145 509.20
       1 208880 1635455 509.49
       1 320926 1747501 512.61
           386773 1813348 514.35
       1
- Ed
- Inea
        1
            594779 2021354 519.45
       1 1127277 2553852 530.44
- Po1
Step: AIC=503.93
Crime \sim M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob
      Df Sum of Sq RSS AIC
<none>
          1453068 503.93
          103159 1556227 505.16
M. F
           127044 1580112 505.87
           247978 1701046 509.34
- Prob 1
     1 255443 1708511 509.55
       1 296790 1749858 510.67
           445788 1898855 514.51
- Ineq 1
          738244 2191312 521.24
- Po1 1 1672038 3125105 537.93
```

We wish to select, from among the candidate models, the model that minimizes the information with lower AIC scores to minimize information loss.

```
In [37]:
summary(model.final)
 Call:
 lm(formula = Crime ~ M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob,
     data = crime)
 Residuals:
    Min 10 Median 30
  -444.70 -111.07 3.03 122.15 483.30
 Coefficients:
           Estimate Std. Error t value Pr(>|t|)
 (Intercept) -6426.10 1194.61 -5.379 4.04e-06 ***
              93.32 33.50 2.786 0.00828 **
                       52.75 3.414 0.00153 **
             180.12
 Ed
             102.65
                       15.52 6.613 8.26e-08 ***
 Po1
             22.34
                       13.60 1.642 0.10874
           -6086.63 3339.27 -1.823 0.07622 .
                       72.48 2.585 0.01371 *
            187.35
              61.33
                        13.96 4.394 8.63e-05 ***
 Prob
           -3796.03 1490.65 -2.547 0.01505 *
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Residual standard error: 195.5 on 38 degrees of freedom
 Multiple R-squared: 0.7888, Adjusted R-squared: 0.7444
 F-statistic: 17.74 on 8 and 38 DF, p-value: 1.159e-10
```

Observation

- The final model only has 8 predictors as opposed to the original 15
- ullet The final model with the lowest AIC score actually ended up having a reduced R^2 score

- But we observe that all predictors are significant due to the p-values (t test)
- The F-statistic is also significant

Stepwise Regression

Source: https://www.youtube.com/watch?v=vI
Source: https://www.rdocumentation.org/packages/caret/versions/2.27/topics/train
https://www.rdocumentation.org/packages/caret/versions/2.27/topics/train)

```
In [5]:
set.seed(1)
train_rows <- sample(1:nrow(crime),as.integer(0.7*nrow(crime),replace=F))</pre>
train = crime[train rows,]
test = crime[-train_rows,]
train control <- trainControl(method ="cv", number =10)</pre>
stepwise <- train(Crime ~., data = crime , method ="lmStepAIC", trControl = train_control</pre>
stepwise$results
A data.frame: 1 × 7
   parameter RMSE Rsquared MAE
                                        RMSESD RsquaredSD MAESD
                     <dbl>
                               <dbl>
                                                  <dbl>
                                                               <dbl>
   <chr>
              <dbl>
                                        <dbl>
             253.266 0.5832771 216.4972 90.06367
                                                               84.15968
                                                  0.3322636
1 none
```

```
In [6]:
stepwise$finalModel
 lm(formula = .outcome \sim M + Ed + Po1 + M.F + U1 + U2 + Ineq +
    Prob, data = dat)
 Coefficients:
 (Intercept)
                     Μ
                                Ed
                                            Po1
                                                       M.F
                                                                      U1
   -6426.10
                 93.32
                            180.12
                                          102.65
                                                       22.34
                                                                -6086.63
                  Ineq
                               Prob
        U2
     187.35
                  61.33
                            -3796.03
```

In [7]:

summary(stepwise)

```
Call:
  lm(formula = .outcome \sim M + Ed + Po1 + M.F + U1 + U2 + Ineq +
     Prob, data = dat)
  Residuals:
                       3Q
     Min
           1Q Median
  -444.70 -111.07 3.03 122.15 483.30
 Coefficients:
            Estimate Std. Error t value Pr(>|t|)
  (Intercept) -6426.10 1194.61 -5.379 4.04e-06 ***
              93.32 33.50 2.786 0.00828 **
 Μ
                       52.75 3.414 0.00153 **
 Ed
             180.12
 Po1
             102.65
                       15.52 6.613 8.26e-08 ***
                       13.60
                              1.642 0.10874
              22.34
 M.F
           -6086.63 3339.27 -1.823 0.07622 .
 U1
 U2
            187.35 72.48 2.585 0.01371 *
                       13.96 4.394 8.63e-05 ***
             61.33
 Ineq
           -3796.03 1490.65 -2.547 0.01505 *
 Prob
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 Residual standard error: 195.5 on 38 degrees of freedom
 Multiple R-squared: 0.7888,
                            Adjusted R-squared: 0.7444
  F-statistic: 17.74 on 8 and 38 DF, p-value: 1.159e-10
The following line is from StatQuest (https://www.youtube.com/watch?v=ctmNq7FgbvI) 8:56
alpha0 represents RIDGE Regression
In [43]:
alpha0.fit<-cv.glmnet(x_train,y_train, type.measure="mse", alpha=0, family="gaussian")</pre>
alpha0.fit
 Call: cv.glmnet(x = x train, y = y train, type.measure = "mse", alpha = 0,
                                                                       family = "gaussian")
 Measure: Mean-Squared Error
     Lambda Index Measure SE Nonzero
 min 0.1444 90 0.5436 0.1477 15
  1se 1.2274 67 0.6812 0.2150
                                  15
In [44]:
alpha0.predicted<-predict(alpha0.fit, s=alpha0.fit$lambda.1se, newx=x_test)
```

In [45]:

mean((y_test-alpha0.predicted)^2)

0.420748688472113

Observation:

- this method is the same as what I did in the previous section.
- \mathbb{R}^2 is 0.7888 which is good
- 8 significant predictors are selected out of 15
- F- statistic is also significant
- MSE is 0.420748688472113

LASSO

```
In [18]:

x_train<-scale(as.matrix(train)[,-16], center =TRUE, scale =TRUE)

y_train<-scale(as.matrix(train)[,16], center =TRUE, scale =TRUE)

lasso_model <- cv.glmnet(x_train, y_train, family="gaussian", alpha=1)
plot(lasso_model)</pre>
```



```
In [20]:
coef(lasso_model)
 16 x 1 sparse Matrix of class "dgCMatrix"
 (Intercept) 3.403255e-16
             2.245276e-01
 So
              2.054619e-01
 Ed
 Po1
              6.927334e-01
 Po<sub>2</sub>
 LF
             1.415977e-01
 M.F
             5.495775e-02
 Pop
              3.017289e-02
 NW
 U1
 U2
              2.965666e-02
 Wealth
 Ineq
             3.855585e-01
 Prob
             -1.521280e-01
 Time
In [21]:
lambda <- lasso_cv$lambda.min</pre>
cat(lambda)
 0.02195409
In [22]:
best_lasso = glmnet(xtrain, ytrain, family ="gaussian", alpha =1, lambda = lambda)
coef(best_lasso)
 16 x 1 sparse Matrix of class "dgCMatrix"
 (Intercept) 6.048164e-16
              2.305511e-01
 So
              6.425983e-01
 Ed
              7.498446e-01
 Po1
 Po2
 LF
            -7.255044e-02
 M.F
             1.227830e-01
             5.737205e-02
 Pop
             1.713323e-01
 U1
             1.077069e-01
 U2
 Wealth
             7.695443e-02
 Ineq
              8.017996e-01
 Prob
             -1.899131e-01
 Time
```

```
In [23]:
# I need R Square
x_test<-scale(as.matrix(test)[,-16], center =TRUE, scale =TRUE)

y_test<-scale(as.matrix(test)[,16], center =TRUE, scale =TRUE)</pre>
```

The following line is from StatQuest (https://www.youtube.com/watch?v=ctmNq7Fgbvl (<a href="https://www.youtube.com/watch?v=ctmNq7Fgbv

alpha1 represents LASSO Regression

mean((y_test-alpha1.predicted)^2)

0.282616991992711

Observation:

- The best Lambda Value is 0.02195
- The MSE for LASSO is 0.282616991992711 (an improvement)

Elastic Net

```
In [24]:
 train_control <- trainControl(method ="repeatedcv", number =10, repeats =5, search ="rand</pre>
 elastic_model <- train(Crime ~ .,data = as.matrix(scale(train)),method ="glmnet",preProce
  Warning message in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
  "There were missing values in resampled performance measures."
 In [25]:
 elastic_model$bestTune
A data.frame: 1 × 2
    alpha
              lambda
    <dbl>
              <dbl>
 5 0.4507055 0.04054113
The following line is from StatQuest (<a href="https://www.youtube.com/watch?v=ctmNq7FgbvI">https://www.youtube.com/watch?v=ctmNq7FgbvI</a>) 12:59
alpha0.5 represents Elastic Net Regression
In [46]:
 alpha0.5.fit<-cv.glmnet(x_train,y_train,type.measure="mse", alpha=0.5, family="gaussian")</pre>
In [47]:
 alpha0.5.predicted<-predict(alpha0.5.fit, s=alpha0.5.fit$lambda.1se, newx=x_test)
In [48]:
 mean((y_test-alpha0.5.predicted)^2)
0.292458616503691
Observation:
```

- The best alpha value is 0.4507055
- The best Lambda Value is 0.04054
- MSE for Elastic Net is 0.292458616503691 (slightly higher than LASSO)

Preliminary Conclusion and Hyperparameter Tuning

At this point, LASSO is the best model

We still need to try different values of Alpha for Elastic Net

Source (StatQuest): https://www.youtube.com/watch?v=ctmNq7FgbvI (https://www.youtube.com/watch?v=ctmNq7FgbvI (h

- When i=0, then alpha will be 0 and result in Ridge Regression
- When i=1, then alpha will be 0.1
- etc
- When i=10, then alpha=1, which results in Lasso Regression

In [54]:

results

A data.frame: 11 × 3

alpha	mse	fit.name			
<dbl></dbl>	<dbl></dbl>	<chr></chr>			
0.0	0.5048315	alpha0			
0.1	0.5991401	alpha0.1			
0.2	0.4128985	alpha0.2			
0.3	0.2759187	alpha0.3			
0.4	0.3342465	alpha0.4			
0.5	0.3073987	alpha0.5			
0.6	0.4251754	alpha0.6			
0.7	0.3090506	alpha0.7			
0.8	0.3025588	alpha0.8			
0.9	0.2676959	alpha0.9			
1.0	0.2826170	alpha1			

The best fit is when $\alpha=0.9$ where the MSE is 0.2676959