L14: Orthogonal Matching Pursuit & Lasso and Compressed Sensing

Jeff M. Phillips

February 26, 2020

Mad Term

o No computers, calculators, planes

o No (cheat sheat" (both sides)

Dunderstand vore de-lizaitions

3 Grestron (subparts)

o Clostering

- 1500, men 1 - 1005-0

- 1460

Similarity

Distance

Midhashiran

Soccourd

Ridge & Lasso Regrossion lapet X, y X E 12nxd G E 12n X = [1;x] Gan! TR: $V_s = argmin \left\{ \left(y_i - \langle x_i, \alpha \rangle \right)^2 + s ||\alpha||_2^2 \right\}$ $Lasso: V_s = argmin \left\{ \left(y_i - \langle x_i, \alpha \rangle \right)^2 + s ||\alpha||_2^2 \right\}$ $Lasso: V_s = argmin \left\{ \left(y_i - \langle x_i, \alpha \rangle \right)^2 + s ||\alpha||_2^2 \right\}$ i = 1equivalent f choces $S \rightarrow f$ $SO \times S = X_{\ell}$ (RR)

Let $f = ||x||^2$ $SO \times S = X_{\ell}$ (Lasso)

Find $\alpha^* = \arg\min_{\alpha \in \mathbb{R}^d} \|X\alpha - y\|_2 + s\|\alpha\|_1$

Matching Pursuit (MP)

Find $\alpha^* = \arg\min_{\alpha \in \mathbb{R}^d} \|X\alpha - y\|_2 + \Im \alpha \|_1$ Forward Subset Selection:

Matching Pursuit

Set
$$r = y$$
, $\alpha = 0$.

for
$$i = 1$$
 to t do

Set
$$X_j = \operatorname{arg\,max}_{X_{j'} \in X} |\langle r, X_{j'} \rangle|_{\mathcal{X}}$$

Set
$$X_j = \arg\max_{X_{j'} \in X} |\langle r, X_{j'} \rangle|$$
.
Set $\alpha_j = \arg\min_{\alpha} ||r - X_j \alpha|| + s|\alpha|$.

Set
$$r = r - X_j \alpha_j$$
.

Return α .

Orthogonal Matching Pursuit (OMP)

```
Find \alpha^* = \arg\min_{\alpha \in \mathbb{R}^d} \|X\alpha - y\|_2 + s\|\alpha\|_2^2
Forward Subset Selection:
                                                              Ridge
```

Orthogonal Matching Pursuit

```
Coly in sections
Set r = y; \alpha = \mathbf{0}.
for i = 1 to t do
   Set X_j = \arg\max_{X_{j'} \in X} |\langle r, X_{j'} \rangle|.
   Set \alpha = \arg\min_{\alpha} \|r - [X_1; X_2; \dots; X_i] \alpha \| + s \|\alpha\|_2^2
   Set r = r - X_i \alpha_i. (Update using other \alpha_{i'} for j' < j)
```

Return α .

Lasso Illustration

Least Ande Regression

Sparse Sensing

12 / 2 / > N

Matching Pursuit (OMP)

Matching Pursuit

```
Set r=y. for i=1 to t do  \text{Set } X_j = \arg\max_{X_{j'} \in X} |\langle r, X_{j'} \rangle|.  Set \gamma_j = \arg\min_{\gamma} \|r - X_j \gamma\|.  Set r=r-X_j \gamma_j.  Return \hat{S} where \hat{s}_j = \gamma_j (or 0).
```

OMP Example