#### **Task: Data Visualization**

### **Import libraries**

In [1]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

#### **Load Dataset**

In [2]: df=pd.read\_csv('D:\Intern\Cognifyz Intern\Dataset .csv')

#### **Data characteristics**

In [3]: df.head(3)

Out[3]:

|   | Restaurant<br>ID | Restaurant<br>Name           | Country<br>Code | City                | Address                                                           | Locality                                               | Locality<br>Verbose                                        | Longitud  |
|---|------------------|------------------------------|-----------------|---------------------|-------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|-----------|
| 0 | 6317637          | Le Petit<br>Souffle          | 162             | Makati City         | Third<br>Floor,<br>Century<br>City Mall,<br>Kalayaan<br>Avenu     | Century City<br>Mall,<br>Poblacion,<br>Makati City     | Century City<br>Mall,<br>Poblacion,<br>Makati City,<br>Mak | 121.0275  |
| 1 | 6304287          | Izakaya<br>Kikufuji          | 162             | Makati City         | Little<br>Tokyo,<br>2277<br>Chino<br>Roces<br>Avenue,<br>Legaspi  | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City    | Little Tokyo,<br>Legaspi<br>Village,<br>Makati City,<br>Ma | 121.0141( |
| 2 | 6300002          | Heat -<br>Edsa<br>Shangri-La | 162             | Mandaluyong<br>City | Edsa<br>Shangri-<br>La, 1<br>Garden<br>Way,<br>Ortigas,<br>Mandal | Edsa<br>Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City | Edsa<br>Shangri-La,<br>Ortigas,<br>Mandaluyong<br>City, Ma | 121.0568  |

3 rows × 21 columns

In [4]: df.describe()

Out[4]:

|       | Restaurant<br>ID | Country<br>Code | Longitude   | Latitude    | Average Cost for two | Price range | Aggr   |
|-------|------------------|-----------------|-------------|-------------|----------------------|-------------|--------|
| count | 9.551000e+03     | 9551.000000     | 9551.000000 | 9551.000000 | 9551.000000          | 9551.000000 | 9551.0 |
| mean  | 9.051128e+06     | 18.365616       | 64.126574   | 25.854381   | 1199.210763          | 1.804837    | 2.6    |
| std   | 8.791521e+06     | 56.750546       | 41.467058   | 11.007935   | 16121.183073         | 0.905609    | 1.5    |
| min   | 5.300000e+01     | 1.000000        | -157.948486 | -41.330428  | 0.000000             | 1.000000    | 0.0    |
| 25%   | 3.019625e+05     | 1.000000        | 77.081343   | 28.478713   | 250.000000           | 1.000000    | 2.5    |
| 50%   | 6.004089e+06     | 1.000000        | 77.191964   | 28.570469   | 400.000000           | 2.000000    | 3.2    |
| 75%   | 1.835229e+07     | 1.000000        | 77.282006   | 28.642758   | 700.000000           | 2.000000    | 3.7    |
| max   | 1.850065e+07     | 216.000000      | 174.832089  | 55.976980   | 800000.000000        | 4.000000    | 4.9    |
| 4     |                  |                 |             |             |                      |             |        |

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9551 entries, 0 to 9550
Data columns (total 21 columns):

| #  | Column               | Non-Null Count | Dtype   |
|----|----------------------|----------------|---------|
|    |                      |                |         |
| 0  | Restaurant ID        | 9551 non-null  | int64   |
| 1  | Restaurant Name      | 9551 non-null  | object  |
| 2  | Country Code         | 9551 non-null  | int64   |
| 3  | City                 | 9551 non-null  | object  |
| 4  | Address              | 9551 non-null  | object  |
| 5  | Locality             | 9551 non-null  | object  |
| 6  | Locality Verbose     | 9551 non-null  | object  |
| 7  | Longitude            | 9551 non-null  | float64 |
| 8  | Latitude             | 9551 non-null  | float64 |
| 9  | Cuisines             | 9542 non-null  | object  |
| 10 | Average Cost for two | 9551 non-null  | int64   |
| 11 | Currency             | 9551 non-null  | object  |
| 12 | Has Table booking    | 9551 non-null  | object  |
| 13 | Has Online delivery  | 9551 non-null  | object  |
| 14 | Is delivering now    | 9551 non-null  | object  |
| 15 | Switch to order menu | 9551 non-null  | object  |
| 16 | Price range          | 9551 non-null  | int64   |
| 17 | Aggregate rating     | 9551 non-null  | float64 |
| 18 | Rating color         | 9551 non-null  | object  |
| 19 | Rating text          | 9551 non-null  | object  |
| 20 | Votes                | 9551 non-null  | int64   |
| 44 | C1+C4/3\ :+C4/       | E \            |         |

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB



## Create visualizations to represent the distribution of ratings using different charts (histogram, bar plot)

```
In [9]: plt.figure(figsize=(8, 6))
    plt.hist(df['Rating text'], bins=10, edgecolor='black')
    plt.xlabel('Rating')
    plt.ylabel('Number of Restaurants')
    plt.title('Distribution of Restaurant Ratings (Histogram)')
    plt.grid(axis='y')
    plt.show()
```



```
In [10]: plt.figure(figsize=(8, 6))
    plt.bar(df['Rating text'].value_counts().index, df['Rating text'].value_counts
    plt.xlabel('Rating')
    plt.ylabel('Number of Restaurants')
    plt.title('Distribution of Restaurant Ratings (Bar Plot)')
    plt.grid(axis='y')
    plt.show()
```



```
In [11]: plt.figure(figsize=(8, 6))
    plt.bar(df['Rating text'].value_counts().index, df['Rating text'].value_counts
    plt.xlabel('Rating')
    plt.ylabel('Number of Restaurants')
    plt.title('Distribution of Restaurant Ratings (Bar Plot)')
    plt.grid(axis='y')
    plt.show()
```



```
In [19]: plt.figure(figsize=(10, 6))
plt.scatter(x=['Votes'],y=['Rating text'],data=df)
plt.xlabel('Votes')
plt.ylabel('Rating')
plt.title('Rating vs Votes')
plt.grid()
plt.show()
```

### Compare the average ratings of different cuisines or cities using appropriate visualizations

```
In [23]: avg_rating_cuisine = df.groupby('Cuisines')['Rating text'].value_counts()
         print(avg_rating_cuisine)
         Cuisines
                                                     Rating text
         Afghani
                                                     Not rated
                                                                    3
                                                     Average
                                                                    1
         Afghani, Mughlai, Chinese
                                                     Not rated
         Afghani, North Indian
                                                     Not rated
         Afghani, North Indian, Pakistani, Arabian Not rated
                                                                    1
         Western, Asian, Cafe
                                                     Very Good
                                                                    1
         Western, Fusion, Fast Food
                                                                    1
                                                     Average
         World Cuisine
                                                     Excellent
                                                                    1
         World Cuisine, Mexican, Italian
                                                                    1
                                                     Very Good
                                                                    1
         World Cuisine, Patisserie, Cafe
                                                     Very Good
         Name: count, Length: 2616, dtype: int64
```

```
In [25]: cuisine_labels = avg_rating_cuisine.index.to_series().astype(str)

plt.figure(figsize=(10, 6))
plt.bar(cuisine_labels, avg_rating_cuisine.values)
plt.xlabel('Cuisines')
plt.ylabel('Average Rating')
plt.title('Average Rating of Different Cuisines (Bar Chart)')
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y')
plt.show()
```



```
In [27]:
    sns.boxplot(
        x =df['Cuisines'],
        y = df['Votes'],
        showmeans=True,
    )
    plt.xlabel('Cuisine')
    plt.ylabel('Rating')
    plt.title('Distribution of Ratings by Cuisine (Box Plot)')
    plt.grid()
    plt.show()
```



# Visualize the relationship between various features and the target variable to gain insights

```
In [31]: target_var = 'Rating text'
```

**kedisintetrontil**onal



In [35]: sns.scatterplot(x='Votes', y=target\_var, data=df)

Out[35]: <Axes: xlabel='Votes', ylabel='Rating text'>



| [ ]· |
|------|
|------|