1 Régression linéaire simple

Postulats

 \mathbf{H}_1 Linéarité : $E[\varepsilon_i] = 0$

 \mathbf{H}_2 Homoscédasticité : $Var(\varepsilon_i) = \sigma^2$

 \mathbf{H}_3 Indépendance : $Cov(\varepsilon_i, \varepsilon_j) = 0$

H₄ Normalité : $\varepsilon_i \sim N(0, \sigma^2)$

Modèle

$$E[Y_i|x_i] = \beta_0 + \beta_1 x_i$$

$$Var(Y_i|x_i) = \sigma^2$$

$$Y_i|x_i \stackrel{\mathbf{H}_4}{\sim} N(\beta_0 + \beta_1 x_i, \sigma^2)$$

Estimation des paramètres

$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} x_{i} Y_{i} - \bar{Y} \sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \bar{x} \sum_{i=1}^{n} x_{i}} = \frac{S_{XY}}{S_{XX}}$$

Estimation de σ^2

$$\hat{\sigma^2} = s^2 = \frac{\sum_{i=1}^n \hat{\varepsilon_i}^2}{n - p'} = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n - 2}$$

Propriété des estimateurs

$$E\left[\hat{\beta}_{1}\right] = \beta_{1} \quad ,Var(\hat{\beta}_{1}) = \frac{\sigma^{2}}{S_{XX}}$$

$$\hat{\beta}_{1} \stackrel{H_{4}}{\sim} N(\beta_{1}, \frac{\sigma^{2}}{S_{XX}})$$

$$E\left[\hat{\beta}_{0}\right] = \beta_{0} \quad ,Var(\hat{\beta}_{0}) = \sigma^{2}\left(\frac{1}{n} + \frac{\bar{X}^{2}}{S_{XX}}\right)$$

$$\hat{\beta}_{0} \stackrel{H_{4}}{\sim} N(\beta_{0}, \sigma^{2}\left(\frac{1}{n} + \frac{\bar{X}^{2}}{S_{XX}}\right)$$

$$Cov(\hat{\beta}_{0}, \hat{\beta}_{1}) = -\frac{\bar{X}\sigma^{2}}{S_{XX}}$$

Tests d'hypothèse sur les paramètres

$$H_0: \hat{eta} = heta_0$$
, $H_1: \hat{eta}
eq heta_0$

$$t_{obs} = \frac{\hat{\beta} - \theta_0}{\sqrt{\hat{Var}(\hat{\beta})}} \sim T_{n-2}$$

On Rejette H_0 si $t_{obs} > |t_{n-2}(1 - \frac{\alpha}{2})|$

Intervalle de confiance

Pour la droite de régression $(E[Y_0|x_0])$

Sachant que $E[Y_0|x_0] = \beta_0 + \beta_1 x_0$, on a l'IC suivant

$$\hat{Y}_0 \pm t_{n-2} \left(\frac{\alpha}{2}\right) \sqrt{s^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)}$$

Pour la prévision de Y₀

Sachant que $Y_0 = \beta_0 + \beta_1 x_0 + \varepsilon$, on a l'IC suivant

$$\hat{Y}_0 \pm t_{n-2} \left(\frac{\alpha}{2}\right) \sqrt{s^2 \left(1 + \frac{1}{m} + \frac{(x_0 - \bar{x})^2}{S_{XX}}\right)}$$

Analyse de la variance (ANOVA)

Source	dl	Sum of squares	Mean squares	f
Model	p=1	$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$	$MSR = \frac{SSR}{dl_1}$	$F = \frac{MSR}{MSE}$
Residual	n-2	$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$	$MSE = \frac{SSE}{dl_2}$	
error			2	
Total	n-2+p	$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})i)^2$		

Test F de Fisher pour la validité globale de la régression

 H_0 : La régression n'est pas pertinente (i.e. $\beta_1 = 0$)

 H_1 : La régression est pertinente

$$F_{obs} = \frac{MSR}{MSE} \sim F_{1,n-2}$$

On rejette H_0 si $F_{obs} > F_{1,n-2}\left(\frac{\alpha}{2}\right)$

Distribution d'un résidu arepsilon

$$E\left[\hat{\epsilon}_i\right]=0$$
 , $Var\left(\hat{\epsilon}_i\right)=\sigma^2(1-h_{ii})$ où $h_{ii}=rac{1}{n}+rac{(ar{x}-x_i)^2}{S_{vx}}$.

2 Régression linéaire multiple