Monitoring First-Order Properties of Real-Valued Signals

Alexey Bakhirkin¹, Thomas Ferrère², Thomas A. Henzinger², and Dejan Nickovic³

 1 VERIMAG – University of Grenoble, CNRS, and INPG 2 IST Austria 3 AIT Austrian Institute of Technology

Property-based monitoring is a pragmatic, yet rigorous approach to reason about complex systems, combining formal specifications with the analysis of individual system behaviors. Signal temporal logic (STL) [3] is a specification formalism for expressing real-time temporal properties of real-valued signals. The bounded stabilization requirement is a typical example of a temporal specification than can be expressed in STL. Given a Boolean signal b and a real-valued signal f, the bounded stabilization requirement is formulated as follows: "Whenever the control signal b is on its rising edge, the absolute value of f must go inside the interval [4.5, 5.5] within 10 time units and continuously remain within that same interval for at least 8 time units". This informal requirement, illustrated in Figure 1-(a), is expressed as the following STL specification.

$$\varphi \equiv \Box(\uparrow b \rightarrow \Diamond_{[0,10]} \Box_{[0,8]}(|f-5| \leq 0.5)$$

The expressiveness of STL has nevertheless some limitations. For instance, the bounded stabilization property requires a priori knowledge of thresholds and timing bounds. In real-life applications, these bounds may not be known or may even change dynamically. A more general formulation of the bounded stabilization property requires the signal f to stabilize around some value of r, which can vary during the execution of the system as shown in Figure 1-(b). This is a common property that cannot be expressed in STL nor by any other logic-based formalism for monitoring real-valued signals in the litterature. The general bounded stabilization requirement could be formulated in STL extended with quantification over the threshold value as follows.

$$\psi \equiv \Box(\uparrow b \to \exists r : \Diamond_{[0,10]} \,\Box_{[0,8]}(|f-r| \le 0.5)$$

Fig. 1. Bounded stabilization (a) with fixed threshold r=5; (b) with variable threshold r.

This form of quantification is slight generalization of the logic of [2], which provides STL with a restricted form of quantification called *value-freezing*. By convention, we use r for value variables and s for time variables with t the special free variable standing for absolute time. Remark that when using *time* parameters, temporal logic operators become unnecessary because the quantification over time implicit in temporal operators is then made explicit in syntax. In particular, by using first-order quantification, the modality $\Diamond_{[s,s]}$, where s is a free variable, can express all other forms of temporal operators. Motivated by the lack of a clean specification language that is sufficiently expressive to capture rich temporal properties, we propose signal $first-order\ logic\ (SFO)$ as a powerful declarative formalism for expressing real-valued signal requirements. SFO consist in first-order formulas based on linear arithmetic predicates over real variables and uninterpreted function symbols, standing for real-valued signals.

The bounded stabilization property is expressed in SFO as follows.

$$\psi' \equiv \uparrow b \to \exists r : \exists s_1 \in [0, 10] : \forall s_2 \in [0, 8] : |f(t + s_1 + s_2) - r| \le 0.5$$

where $\uparrow b \equiv b(t) = 1 \land \exists s_1 \in (0,1) : \forall s_2 \in (0,s_1) : b(t-s_2) = 0$. We can also express the control property that whenever f_1 is stable then f_2 becomes stable around the same value, as follows.

```
\gamma \equiv \forall r : (\forall s_1 \in [0, 10] : |f_1(t + s_1) - r| \le 1) \to (\forall s_2 \in [5, 10] : |f_2(t + s_2) - r| \le 2)
```

In more details, formula γ requires that if f_1 stays within 1.0 of some value r for 10 time units then f_2 stays within 2.0 of r within 5 time units.

Since SFO easily encode STL and other expressive logics, automated reasonning on SFO specification is not possible in general.

Theorem 1. The satisfiability of SFO is undecidable.

However we are only interested in using SFO for offline monitoring, defined as follows.

Definition 1. The satisfaction signal of formula φ relative to trace w is the Boolean signal denoted w_{φ} such that $w_{\varphi}(t) = 1$ iff $(w, t) \models \varphi$ for all $t \in \mathbb{T}$. The offline monitoring problem is the task of computing, given a temporal formula φ and a signal w, the satisfaction signal of φ relative to w.

We restrict our attention to piecewise-linear traces over a bounded time domain. The interpretation of every term and every formula can then be represented as a set of convex polyhedra. Our monitoring procedure of piecewise-linear signals for SFO over linear real arithmetic is based on this principle.

Functions Every function f is represented as a union of convex polyhedra \mathcal{P}_f with two free variables: t_f denoting time and v_f denoting the value of f at the given time point.

Terms A term θ is represented as a union of convex polyhedra \mathcal{P}_{θ} , with variables corresponding to free variables of the term and a fresh variable v_{θ} that corresponds to the value of the term.

```
- For \theta \equiv \tau for some time linear expression \tau, \mathcal{P}_{\theta} = \{v_{\theta} = \tau\};

- For \theta \equiv \rho for some space linear expression \rho, \mathcal{P}_{\theta} = \{v_{\theta} = \rho\};

- For \theta \equiv n for some constant n, \mathcal{P}_{\theta} = \{v_{\theta} = n\};

- For \theta \equiv f(\tau), \mathcal{P}_{\theta} = \mathcal{P}_f[t_f \mapsto \tau, v_f \mapsto v_{\theta}];

- For \theta \equiv \theta_1 \pm \theta_2, \mathcal{P}_{\theta} = eliminate(v_{\theta_1}, v_{\theta_2}, \{v_{\theta} = v_{\theta_1} \pm v_{\theta_2}\} \cap \mathcal{P}_{\theta_1} \cap \mathcal{P}_{\theta_2}).
```

Formulas A formula φ is seen as a function from the values of its free variables to a Boolean value and thus can represented as a union of polyhedra \mathcal{P}_{φ} , with variables corresponding to free variables of the formula.

```
 \begin{split} &-\text{ For }\varphi\equiv\theta_1<\theta_2,\,\mathcal{P}_{\varphi}=eliminate(v_{\theta_1},v_{\theta_2},\{v_{\theta_1}< v_{\theta_2}\}\cap\mathcal{P}_{\theta_1}\cap\mathcal{P}_{\theta_2});\\ &-\text{ For }\varphi\equiv\neg\varphi',\,\mathcal{P}_{\varphi}=complement(\mathcal{P}_{\varphi'});\\ &-\text{ For }\varphi\equiv\varphi_1\vee\varphi_2,\,\mathcal{P}_{\varphi}=\mathcal{P}_{\varphi_1}\cup\mathcal{P}_{\varphi_2};\\ &-\text{ For }\varphi\equiv\exists r:\varphi',\,\mathcal{P}_{\varphi}=eliminate(r,\mathcal{P}_{\varphi'});\\ &-\text{ For }\varphi\equiv\exists t\in I:\varphi',\,\mathcal{P}_{\varphi}=eliminate(t,\{t\in I\}\cap\mathcal{P}_{\varphi'}). \end{split}
```

Theorem 2. The monitoring of SFO can be solved in time $2^{(m+n)^{2^{O(k+l)}}}$ over an n-long signal and m-long formula with k quantifiers and l function symbol occurrences, and in time $n2^{(m+j)^{2^{O(k+l)}}}$ when the formula is a bounded-response property and the signal has variability j.

Most practical specifications belong to the bounded-time fragment. Specifications are typically concise, while traces are typically large, hence we believe that monitoring SFO is tractable in practice.

We implemented this algorithm using PPLite, an open-source polyhedra library based on PPL [1]. Preliminary experiments confirm the linear-time monitoring for the bounded-response fragment. In the future, we plan to release this implementation and compare it against monitoring tools for STL and variants.

References

- 1. Roberto Bagnara, Patricia M Hill, and Enea Zaffanella. The parma polyhedra library: Toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. *Science of Computer Programming*, 72(1-2):3–21, 2008.
- 2. Lubos Brim, P Dluhoš, D Šafránek, and Tomas Vejpustek. STL*: Extending signal temporal logic with signal-value freezing operator. *Information and Computation*, 236:52–67, 2014.
- 3. Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems (FORMATS/FTRTFT), pages 152–166, 2004.