KET / MET

Chyba měření

MOTTO:

Pokud bychom znali pravou hodnotu veličiny, nemusíme ji měřit. Analýza chyb vede k zvyšování přesnosti měření.

Chyba měření

- dříve přesnost vyjadřována pomocí chyby měření
- chyba měření definována jako rozdíl mezi naměřenou a pravou hodnotou měřené veličiny
 - Absolutní chyba měřené veličiny

$$\Delta = X_N - X_S = -K$$

Chyba relativní

$$\delta = \frac{\Delta}{X_S} \qquad [-]$$

$$\delta = \frac{\Delta}{X_S} \cdot 100 \qquad [\%]$$

$$\delta = \frac{\Delta}{X_S} \cdot 10^6 \qquad [ppm]$$

Rozdělení chyb měření

Rozdělení chyb měření

Podle způsobu výskytu:

- Chyby systematické (soustavné)
- Chyby náhodné (nahodilé)

Podle příčiny vzniku:

- 1. Chyba metody (Δ_m, δ_m)
 - systematická chyba
 - vzájemné působení měř. přístroje a měř. Obvodu
 (zapojení přístroje přídavný R, L, C do obvodu,
 měř. přístroj koná práci, tím odebírá energii z měř. Signálu)

Rozdělení chyb měření

2. Chyby rušivými vlivy

- těžko korigovatelné
- např. rušivá napětí, kapacitní a indukční vazby, odpory vodičů apod.

3. Chyby členů měřicího obvodu

- nepřesnost kalibrace a vyrovnání etalonů
- je udána největší dovolená odchylka od jmenovité hodnoty

4. Chyba měřicího přístroje (Δ_p, δ_p)

- Základní zahrnuta ve třídě přesnosti
- Přídavná vzniká při nedodržení provozních podmínek přístrojů, i o několik řádů vyšší než chyba základní

5. Chyba čtení

způsobená pozorovatelem

6. Chyba celková

součet výše popsaných

- Třída přesnosti (TP)- udává maximální dovolenou relativní chybu přístroje δ_p [%] za referenčních podmínek
- Řada tříd přesnosti

$$0,05 - 0,1 - 0,2 - 0,5 - 1 - 1,5 - 2,5 - 5$$

referenční podmínky

o Vztažná frekvence
$$f_n \pm 10\%$$

Pracovní poloha přístroje ± 5°

 $9 = (23 \pm 10) ^{\circ}C$

Výpočet TP a značení

$$TP \ge \delta_{PM} = \frac{\Delta p}{M} \cdot 100$$
 [%] 1,5

$$TP \ge \delta_{PS} = \frac{\Delta p}{S} \cdot 100$$
 [%]

$$TP \ge \delta_{Pl} = \frac{\Delta p}{l} \cdot 100 \qquad [\%]$$

kde M měřicí rozsah

S skutečná hodnota

l délka stupnice

Δp základní chyba přístroje za referenčních podmínek

Chyba číslicových měřicích přístrojů

vyjadřuje se 2 složkami chyb

1. způsob

$$\Delta v \le \left| \frac{\delta_1}{100} \cdot U_x \right| + \left| \frac{\delta_2}{100} \cdot M \right|$$

Kde
$$\pm \delta_1$$
 relativní chyba měřené hodnoty veličiny [%] $\pm \delta_2$ relativní chyba rozsahu [%] U_X změřené napětí M měřicí rozsah (F.S.)

2. způsob

$$\left|\Delta_{v}\right| \leq \left|\frac{\delta_{1}}{100} \cdot U_{X}\right| + \text{počet kvantovacích kroků na posledním rozlišitelném místě (digitů)}$$

Kde $\pm \delta_1$ relativní chyba měřené hodnoty [%] U_x změřené napětí

Vyhodnocování opakovaných měření

Vzájemná shoda výsledků je špatná, výsledky jsou nepřesné

 Výsledky jsou mezi sebou shodné, ale výrazně se liší od pravé hodnoty, jsou shodné ale nepřesné

Vyhodnocování opakovaných měření

Výsledky přesné (správné a shodné současně)

 Výsledek odlehlý (výrazně se liší od ostatních, zatíženo hrubou chybou nebo omylem)

- Postupně zaváděny od 80. let minulého století
- Společně s měřenou veličinou se v měřicím procesu vyskytují i veličiny jiné, které ovlivňují měření
- Jejich působení se projevuje odchylkou mezi naměřenou a skutečnou (pravou) hodnotou
- Výsledek se pohybuje v určitém "tolerančním pásmu" kolem skutečné hodnoty
- Nejistotou měření rozumíme parametr charakterizující rozsah hodnot okolo výsledku měření, který je možné racionálně přiřadit hodnotě měřené veličiny
- V r. 1993 vyšly první příručky pro výpočet nejistot měření
- Existují 2 způsoby řešení A, B

 Každé měření je zatíženo chybami měření a tak hovoříme o nejistotě měření.
 Nejistotu měření způsobuje:

Nejistota řešená způsobem (typ) A - u_A (X)

- Způsobována náhodnými chybami
- Stanovuje se statistickými metodami z opakovaných měření
- Je nutné opakovat celé měření a ne jen odečet hodnot
- Předpokládáme, že měřená veličina ani veličiny ovlivňující měření se nemění
- Mírou nejistoty je výběrová směrodatná odchylka
- Alespoň 10 20 měření, jinak je nutné výsledek upravit na počet opakování měření

Platí následovné vztahy:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\sigma^{2}(X_{i}) = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$\sigma(X_{i}) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$s^{2}(X_{i}) = \frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$s(X_{i}) = \sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$u_{AX} = s(\overline{X}) = \sqrt{\frac{s^{2}(X_{i})}{n}} = \sqrt{\frac{1}{n \cdot (n-1)} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

• Pokud je počet opakování menší než 10, je nutno upravit výsledek nejistoty měření:

$$u_A(X) = k_s \cdot s(\overline{X})$$

Počet měření	9	8	7	6	5	4	3	2
Koeficient k _s	1,2	1,2	1,3	1,3	1,4	1,7	2,3	7

Nejistota řešená způsobem (typ) B - u_B (Z)

- Stanovena analýzou naměřených hodnot vycházející z racionálních úsudků
- Způsobována známými a odhadnutelnými vlivy
- Pro výpočet nejistoty (typu) B je nutné nejprve provést analýzu všech vlivů, které mohou na prováděné měření působit, tzn. zjistit dílčí nejistoty od jednotlivých dílčích zdrojů

Nejistoty B jsou obecně způsobeny nedokonalostmi např.:

- Měřicích prostředků
 (etalony, stabilita přístrojů, dynamické chyby přístrojů, ...)
- Použitých metod měření
 (odvod nebo přestup tepla, interakce s měřeným objektem, vlivy reálných parametrů součástek, ...)
- Okolních podmínek měření a jejich změn
 (působení elektrického a magnetického pole, relativní vlhkost a tlak, ...)
- Vlivů operátora
 (osobní zvyklosti, tepelné vyzařování, ...)
- Vztahů konstant nebo závislostí, které jsou použity při vyhodnocování.

- Obecně se odhad u_{Bi} provádí následujícími kroky:
- odhadne se maximální možná odchylka $\pm \Delta_{z_{i,MAX}}$ od nominální hodnoty veličiny příslušející **zdroji nejistoty** Z_i (měřidlo, obsluha,...)
- posoudí se průběh pravděpodobnostní odchylky v tomto intervalu a najde se nejvhodnější aproximace (koeficient χ)
- **dílčí nejistota** (typu) **B** se určí z maximální změny daného zdroje $\Delta_{\rm Zi.MAX}$:

$$u_{Bi} = \pm \frac{\Delta_{Zi,MAX}}{\chi}$$

Koeficient χ – tabulková hodnota podle typu rozdělení

$$\chi = 2$$
 pro normální rozdělení (P = 95,45 %)

$$\chi = 3$$
 pro normální rozdělení (P = 99,73 %)

$$\chi = \sqrt{3}$$
 pro rovnoměrné rozdělení

 pokud zdroje nejistot typu B tvoří různé fyzikální vlivy, které mají různé veličiny (i různé jednotky), je nutné určit citlivostní koeficienty c_{7i}:

$$u_{Bi} = c_{Zi} \cdot u_{Bzi}$$

v takovém případě se stanoví citlivostní koeficienty ze závislosti:

$$c_{Zi} = \frac{\partial X}{\partial Z_i}$$

• **celková nejistota** (typu) **B** se stanoví z dílčích nezávislých nejistot typu B:

$$u_B(X) = \sqrt{\sum_{i=1}^n c_{Zi}^2 . u_{Bzi}^2} = \sqrt{\sum_{i=1}^n u_{Bi}^2}$$

Pokud je mezi zdroji nejistot (J, K) korelace, pak se u_B stanoví:

$$u_{BX} = \int_{i=1}^{n} c_{XZ}^{2} u_{Zi}^{2} + 2 u_{ZJ} u_{ZK} r (J, K)$$

Kombinovaná nejistota u_c (X)

 Udává interval, ve kterém se s pravděpodobností 68,27 % vyskytuje skutečná hodnota (podmínkou je normální rozdělení):

$$u_C = \sqrt{u_A^2 + u_B^2}$$

Poznámka:

Kdy a proč můžeme předpokládat normální rozdělení?

Rozšířená nejistota U

- definuje interval okolo výsledku měření, v němž se s určitou požadovanou úrovní spolehlivosti nalézá výsledek měření (obvykle volíme 95%-ní).
- násobení kombinované standardní nejistoty a koeficientu rozšíření k, tzn.

$$U = k.u_c$$

- k ... koeficient rozšíření
- $k = 2 \dots$ skutečná hodnota je v daném intervalu s pstí P = 95 %
- k = 3 ... skutečná hodnota je v daném intervalu s pstí P = 99,73%

Matematické vyjádření výsledků měření

 Výsledek měření pro opakovaná měření pak zapisujeme včetně rozšířené nejistoty měření:

$$X = \bar{x} \pm U$$

- s použitím standardní kombinované nejistoty u_c
- s použitím rozšířené nejistoty U

Příklad

– nominální hodnota napětí $\bar{x} = 100V$

$$U = 0.35 \text{mV}$$

- $\bar{x} = 100,02147V$ s U = 0.35 mV
- X = 100,02147 (35) V
- $-X = (100,02147 \pm 0,00035)V$ tento zápis se upřednostňuje pro rozšířenou

posuzování shody

- příklad dolní mez 36 mm, horní mez 40,6 mm, tolerance 4,6 mm
- 1) Naměřená hodnota + nejistota je (38,3 ± 0,3) mm, tj. bod A **Vyhovuje** hodnota i nejistota jsou v tolerančním pásmu
- 2) (36,2 ± 0,3) mm nebo (40,5 ± 0,3) mm Body B - Nevyhovují - hodnota je v tolerančním pásmu, nejistota však hranice tolerančního pásma překračuje
- 3) (35,9 ± 0,3) mm nebo (40,8 ± 0,3) mm Body C - **Nevyhovují** - hodnota je mimo toleranční pásmo, nejistota do tolerančního pásma zasahuje
- 4) (35,5 ± 0,3) mm nebo (41,0 ± 0,3) mm Body D - **Nevyhovují** - hodnota i nejistota jsou mimo toleranční pásmo

Téma cvičení: chyby a nejistoty měření

Děkuji za pozornost