How climate change may influence stormwater runoff

Insights from the Puget Sound Stormwater Heatmap

Christian Nilsen September 10, 2020

Geosyntec consultants

The Puget Sound Stormwater Heatmap Goals and motivation

Geosyntec consultants

- Get the best science and tools in the hands of decision makers
- Lower the costs for effective decision making and planning
- Improve Puget Sound water quality and recover ecosystem health

Components and products

- Downscaled from GFDL CM3. RCP 8.5 (High emissions) "High-High"
- Hourly precipitation developed through application of regional weather model (Weather Research and Forecasting WRF, Skamarock et al. 2005)

Mauger, G.S., J.S. Won, K. Hegewisch, C. Lynch, R. Lorente Plazas, E. P. Salathé Jr., 2018. New Projections of Changing Heavy Precipitation in King County. Report prepared for the King County Department of Natural Resources. Climate Impacts Group, University of Washington, Seattle.

HYDROLOGIC RESPONSE UNITS

30 HRUs – Precalibrated factors

Geosyntec consultants

Western Washington Hydrology Model

Runoff Simulation Workflow

Runoff Simulation Workflow

Verification against WWHM Madsen Creek Watershed, King County

Client Libraries

Sign up:

https://groups.google.com/d/forum/stormwaterheatmap/join

Geosyntec consultants

Annual Runoff – All Locations

SQL QueryNo model required!

```
SELECT
SUM(mm_hr)
FROM
'tnc-data-v1.hydrology.gfdl_longformat'
WHERE
comp IN ('suro',
'ifwo')
GROUP BY
hru,
grid,
year
```


Monthly Runoff – all Locations

Monthly Runoff

Flow Percentile per Year

90th Flow Percentile, Issaquah, WA

Till, Moderate Slope

90th Flow Percentile, Issaquah, WA

2050

Till, Moderate Slope

2000

0.15

0.10

0.05

0.05

year

2000

2050

2100

2100

99th Flow Percentile, Issaquah, WA

99th Flow Percentile, Issaquah, WA

99.9th Flow Percentile, Issaquah, WA

Till, Moderate Slope

Simulated Flow Percentiles, Issaquah, WA

Till Soil, Moderate Slope

Hypothetical Development Historic Precipitation

<u>Scenario</u>		
Landcover	Acres	
Forest	14	
Grass	16	
Impervious	10	

Hypothetical Development 2080 Precipitation

<u>Scenario</u>		
Landcover	Acres	
Forest	40	
Grass	0	
Impervious	0	

Hypothetical Development 2080 Precipitation

<u>Scenario</u>		
Landcover	Acres	
Forest	24	
Grass	16	
Impervious	0	

Our Challenge

% Time flow equalled or exceeded Tacoma, WA

Conclusions

What we can say about potential climate change effects

- All the caveats everybody has already mentioned
- Different responses based on soil type, and land cover
- Somewhat consistent responses across Puget Sound
 - Pervious land uses more affected by smaller storms
 - Impervious land uses more affected by larger storms
 - Saturated and Till soils show largest responses
- Current flow control standards may not be protective under future climate scenarios

Thank you

Geosyntec^D consultants

Christian Nilsen cnilsen@geosyntec.com

Collaborators

Funding and in-kind support from:

github.com/stormwaterheatmap