Bioinformatik Stefanie Hartmann

Wintersemester 2019 / 2020, Universität Potsdam

Database searches Nov 15, 2019

bioinf WS19 • lec5 • S.Hartmann

Today's topics gene - gene homology, alignment overview pairwise genome - genome procedure database search evaluation of results exercise sequence alignment (next week) (mis)matches multiple alignment scoring gaps bioinf WS19 · lec5 · S.Hartmann

heute!

10h: 3 Computer Pools (1a, 1b, 2a)

11: 2 Computer Pools (1a, 2a)

bioinf WS19 · lec5 · S.Hartmann

Analysis & comparison of sequences

sequence data: abundant & relevant for many disciplines!

- database searching (pairwise alignments)
 - identify / collect homologous sequences or domains
- multiple sequence alignment
 - study conservation & variability of homologous sequences
- phylogenetic analysis
 - infer evolutionary history of homologous sequences
- genome alignment and assembly
- structure analysis & prediction

• ..

the comparison & relative arrangement of sequences by • searching for similarities between their characters (amino acids or nucleotides) and • possibly inserting gaps in each sequence pairwise sequence alignment multiple sequence alignment | MY | TENGRIDE | STERLIDD | S

Database search

very frequent problem

- I have a starting (query) sequence
- I want to compare it to homologous sequences
- ...but which other sequences are homologous to it?
- solution: database search!
 - compare query to a collection of sequences
 - identify / collect homologs for further analysis

BLAST results

- 1. Header
- 2. Other reports: Search Summary

Taxonomy reports
Distance tree of results
Multiple alignment

- 3. Conserved Domains
- 4. Graphic Summary
- 5. Summary table of alignments
- 6. Alignments

Database search using BLAST

BLAST

 compute & score pairwise alignments between a starting (query) sequence and sequences in a database

- statistically evaluate the alignments, return the best alignments
- YOU → decide if the similarity is the result of homology (shared ancestry) or of chance

Database search using BLAST

considerations & challenges:

- score similarities?
- efficiently search the database?
 - query: 1 sequence, 500-1000 bp or aa
 - GenBank: 209,656,636 sequences, 279,668,290,132 bases
- statistically evaluate if the similarity could be due to chance?

MYITENGMDEENNPKVSLERALDDSNR

Scoring an alignment

seq 1 MYITENGMDEYNNPKVSLERALDDSNR

seq 2 MYITENGRDEASTGKIDLK----DSER

bioinf WS19 · lec5 · S.Hartmann

Scoring an alignment

matches

mismatches

- gaps
- a scoring matrix is used for matches, mismatches,
- gap penalties are used for opening / extending gaps
- alignment score: sum of scores at each alignment position, $S = \sum s_{ij}$
- · goal: identify the optimal alignment

Scoring an alignment

bioinf WS19 · lec5 · S.Hartmann

BLOSUM matrices

- BLOcks amino acid SUbstitution Matrices
- based on local alignments of divergent sequences
- different BLOSUM matrices are based on observed alignments with different degrees of similarity
 - BLOSUM60 matrix:
 - derived from and best used for sequences that are 60% identical

for proteins of

BLOSUM45 45% identity **BLOSUM60** 60% BLOSUM90 90%

bioinf WS19 · lec5 · S.Hartmann

Scoring an alignment

very similar homologous sequences

more divergent homologous sequences

Substitution matrices

which amino acids occur together in the alignment columns more often than expected by chance?

trusted alignment of homologous sequences

$$s(a,b) = \log\left(\frac{p_{ab}}{q_a q_b}\right)$$

observed frequency of residues a and b aligned pab:

qa, qb: frequencies of residues a and b

0.01

0.1 1:

 $s(M, L) = log(\frac{0.002}{0.01*0.1}) = +1$

ML: 0.002

Scoring matrices

identity matrices

- easy to understand and implement
- · biologically not very realistic

matrices based on physico-chemical aa properties

- better than identity scores
- different divergence times same scores!

BLOSUM matrices

 evolutionary perspective: sequences accumulate changes over time

(many other matrices exist, some are very specific)

Pairwise alignment approaches

exhaustive search

- compare every position of the query with every position of every database sequence
- not practical

MELPTRD GCMFA GCMFA GCMFA

SRGCMFAAIAAL
GCMFA
GCMFA
GCMFA
GCMFA
GCMFA
GCMFA
GCMFA
GCMFA

PPTVKNSN

GCMFA

GCMFA

GCMFA

heuristics

- most popular approach: BLAST
- · exclude unpromising regions from the search

bioinf WS19 . lec5 . S.Hartmann

Seeding & extension

- the locations of short, high scoring hits are identified
- these are used as alignment seeds
- seeds are extended into longer alignments (→"hits")
- for each hit, an "E(xpect)-value" is computed
- · hits are ranked by their E-values and reported

Main steps of BLAST

- pre-processing of the database to be searched
- seeding
 - homologous sequences contain (at least) short stretches of identical or high-scoring amino acids

- these will be identified and used as seeds
- · extension to a good longer alignment
- evaluation of statistical significance
- · ranking & presentation of alignments

bioinf WS19 . lec5 . S.Hartmann

Evaluating alignments

alignment raw score: $S = \sum s_{ij}$

- any two sequences (even if they are unrelated!)
 will have a "best" alignment score
- how high of a score can we expect from random (unrelated) sequences? is our current score better?
- statistics!
 - substitutions, aa distribution, seg lengths, etc
 - based on Gumbel extreme value distribution

BLAST results

- pairwise alignments query-database sequence
 - overview table, ranked by E-value

		Score	E
Sequences producing significant alignments:			Value
TOC75_ORYSJ	Full=Protein TOC75, chloroplastic; AltName:	1048	0.0
TC754_ARATH	Full=Protein TOC75-4, chloroplastic; AltNam	493	e-139
MATK_LEPPR	Full=Maturase K; AltName: Full=Intron maturase;	35	0.14
PDI MEDSA	Full=Protein disulfide-isomerase; Short=PDI;	30	2.8

- alignments, ranked by E-value

Score = 1048 bits (2709), Expect = 0.0, Method: Compositional matrix adjust. Identities = 487/695 (70%), Positives = 579/695 (83%), Gaps = 4/695 (0%)

Query: 119 FMSRILSARALIAPERSEMOSHELPADITVLIGALGERKKKYKISOLIFERMYKKKYKE 178
FMSRI S A ADE S DMD H LPA-I V + +LGK K-YKISS+FFRR

Sbjct: 123 FWSRIFSGGAHADEKSSGDMOPHGLPAMINVPMTKLSGLKRYKISELKFFDRAAGGGGA 182

- information about the query and the database
- information about statistical parameters
- different presentation online and in the terminal
- · additional information & analysis options online

		online	termina
Header		Х	Х
Other reports:	Search Summary	X *	
	Taxonomy reports	Х	
	Distance tree of results	Х	
	Multiple alignment	X	
Graphic Su	mmary		
Conserved Domains		X	
Graphical Overv	iew of Hits		
Descriptions		Х	Х
Alignments		Х	Х
Footer			v *

BLAST programs

query	database	program
nucleotide	nucleotide	blastn
nucleotide (translated)	nucleotide (translated)	tblastx
nucleotide (translated)	peptide	blastx
peptide	peptide	blastp
peptide	nucleotide (translated)	tblastn

bioinf WS19 · lec5 · S.Hartmann

Today's exercise

query: human beta globin

database: Medicago truncatula genes

- 1. download the human beta globin in fasta format from NCBI
 - one file each: protein sequence, DNA sequence
- 2. download medicago DNA and protein sequences from Moodle
 - one file each: protein sequences, DNA sequences
- 3. convert the medicago sequences into a BLAST database
- 4. search if the human globin is similar to a medicago sequence
 - protein-protein (blastp)
 - DNA-DNA (blastn)

BLAST search in practice

- call the appropriate BLAST program
- select parameters for search
- · select database to be searched
- select and submit query sequence

bioinf WS19 · lec5 · S.Hartmann

bioinf WS19 · lec5 · S.Hartmann

convert a fasta file into a database

Key terms and concepts

- homology, similarity
- alignment
 - local, global
- BLOSUM substitution matrices:
 - what are they, how were they derived, how are they used in sequence alignment
- heuristics
- database searching / BLAST
 - principle, steps
 - evaluation of results
 - definition and interpretation of "E-value"

bioinf WS19 · lec5 · S.Hartmann

heute!

10h: 3 Computer Pools (1a, 1b, 2a)

11: 2 Computer Pools (1a, 2a)