

问题描述

- MIMO 检测问题: 在给定接受信号y和信道矩阵H的基础上恢复发送比特数据bits
 - 调制: x = modem(bits)
 - 传输: y = x * H + n
 - $\overline{\text{MW}} = \overline{\text{detector}}(y, H)$
- 基于量子退火启发算法实现解码器

问题示例

QAIA一般解决流程 (arXiv:2105.10535)

- 将接收信号 y 与信道矩阵 H 平坦化
- 转为 Ising 模型中的耦合系数矩阵 J 与外场向量 h
- 用任意模拟退火方法求解该 Ising 模型
 - SimCIM
 - NMFA
 - SB (Simulated Bifurcation)
 - LDA
 - •

$$\tilde{\mathbf{H}} = \begin{bmatrix} Re(\mathbf{H}) & -Im(\mathbf{H}) \\ Im(\mathbf{H}) & Re(\mathbf{H}) \end{bmatrix}, \tilde{\mathbf{y}} = \begin{bmatrix} Re(\mathbf{y}) \\ Im(\mathbf{y}) \end{bmatrix}$$
(2)

$$T = \begin{bmatrix} 2^{r_b - 1} \mathcal{I}_N & 2^{r_b - 2} \mathcal{I}_N & \dots & \mathcal{I}_N \end{bmatrix}$$

$$z = \tilde{y} - \tilde{H} T \bar{1}_{N * r_b} + (\sqrt{M} - 1) \tilde{H} \bar{1}_N$$

$$J = -zero Diag(T^T \tilde{H}^T \tilde{H} T)$$

$$h = 2 * z^T \tilde{H} T$$
(3)

复现 DU-LM-SB 论文 (arXiv:2306.16264)

- 用模拟分叉(SB)方法求解该 Ising 模型
 - 辛几何欧拉方法 (symplectic Euler method)
 - 迭代求解关于系统哈密顿量 H_{SB} 的偏微分方程组
- 在 Ising 模型转换中引入正则项 U_λ (LM)
 - $U_{\lambda} = (HH^T + \lambda I)^{-1}$
- 使用深度展开(DU)技术来自动化调参
 - 正则项U_λ中的系数 λ
 - SB算法中的步长参数 Δ_k 和 c_0 的系数 η
 - 其思想近似于QAOA

$$\frac{\partial H_{SB}}{\partial y_i} = a_0 y_i$$

$$\frac{\partial H_{SB}}{\partial x_i} = -[a_0 - a(t)]x_i + c_0 \left(\sum_{j=1}^N J_{i,j} x_j + h_j\right)$$
(4)

$$\begin{split} J &= -zeroDiag(\mathbf{T}^T\tilde{\mathbf{H}}^T\tilde{\mathbf{H}}\mathbf{T}) \\ h &= 2*z^T\tilde{\mathbf{H}}\mathbf{T} \end{split}$$

$$\begin{aligned} \mathbf{U}_{\lambda} &= (\mathbf{H}\mathbf{H}^T + \lambda I)^{-1} \\ J &= -zeroDiag(\mathbf{T}^T \tilde{\mathbf{H}}^T \mathbf{U}_{\lambda} \tilde{\mathbf{H}} \mathbf{T}) \\ h &= 2 * z^T \mathbf{U}_{\lambda} \tilde{\mathbf{H}} \mathbf{T} \end{aligned}$$

$$\mathbf{U}_{\lambda} = (\mathbf{H}\mathbf{H}^T + \lambda I)^{-1}/\lambda$$

提出 pReg-LM-SB 系列方法

- · 基于 DU-LM-SB, 进一步扩展正则项的可学习程度
 - $U_{\lambda} = (HH^T + \lambda I)^{-1}/\lambda$
- pReg-LM-SB: $U_{\lambda} = (HH^T + AA^T)^{-1}/\lambda$
- ppReg-LM-SB: $U_{\lambda} = A$

运行效率优化

- 借助深度展开技术,极大降低SB算法所需迭代轮数(n_iter=6)
- 在SB算法中使用batch_size=1,即仅使用一组自旋向量
- 使用稠密矩阵表示,而非稀疏矩阵运算库scipy.sparse,因为信道矩阵H并不稀疏
- 缓存频繁访问的中间结果和辅助数据
- 借助矩阵乘法结合律,精心调整矩阵运算的顺序以最小化计算量
- 使用近似运算求矩阵的逆

诺伊曼级数

华罗庚公式: $\sum_{k} A^{k} = A(A ... (A + I) ... + I)$

二分快速幂.....?

递归近似: f(A) = A(A + I), $\sum_{k} A^{k} \approx f^{m}(A)$

(需要m=5项)

(需要k=24项

实验结果

表 1: 基于传统方法的对比算法 表 2: 基于量子退火启发的对比算法

算法	比特错误率↓	算法	比特错误率↓	
linear-zf-maxlog	0.41121	NMFA	0.38561	
linear-zf-app	0.40605	SimCIM [2]	0.23271	
linear-mf-maxlog	0.34104	CAC	0.31591	
linear-mf-app	0.33401	CFC	0.23801	
linear-lmmse-maxlog	0.20779	SFC	0.23796	
linear-lmmse-app	0.20721	ASB	0.34054	
kbest-k=64	0.26206	DSB	0.28741	
ep-iter=10	0.16872	BSB [3]	0.21584	
mmse-iter=8	0.15738	LQA	0.20627	
		LM-bSB-λ=25 [1] 0.18591	
		DU-LM-SB-T=30	[1] 0.19497	

表 3 我们优化后的算法实验结果

方法	比特错误率↓	运行时间↓	本地估分↑	提交评分↑	算法参数配置
LM-SB	0.18656	36.39	5.2332	4.9567	B=10, n_iter=100
LM-SB	0.21345	2.72	67.5861	92.4872	B=1, n_iter=10
DU-LM-SB	0.19932	2.73	68.5260	89.3023	B=1, n_iter=10
DU-LM-SB	0.20696	2.65	70.0280	-	B=1, n_iter=6
DU-LM-SB	0.21805	1.37	133.5814	105.2462	B=1, n_iter=6, approx
pReg-LM-SB	0.19940	2.77	67.6817	92.9875	B=1, n_iter=10
ppReg-LM-SB	0.15490	1.26	156.9497	137.3652	B=1, n_iter=10, overfit

(a) SB 算法基线

(b) 我们的最优算法设置

总结: 我们的工作

- 复现 DU-LM-SB 论文
 - 难点:将 SB 算法和 ber 损失改造为可微函数
- 提出 pReg-LM-SB 系列方法
 - 思想: 扩展正则项 U_{λ} 的可学习程度
- 运行效率优化
 - 矩阵运算重排
 - 近似矩阵逆

谢谢观看

基于深度展开模拟分叉算法求解多收发信号检测问题 队名: Quiscus