CS-341 Lecture 5

February 16, 2001 Dr. Vickery

Compression Concepts

- · Saves disk space
- Reduces demands on bandwith.
 - Capacity of a channel, such as a network connection.
 - Measured in <u>bits per second</u>. (Transmission rate)
- Lossless (Zip)
 - Eliminate redundant information.
 - Sequence of identical values replaced by the value and a repeat count
 - Record differences between successive frames instead of entire frames.
- Lossy (MP3)
 - Reduce bits per sample, and/or sampling rate.

Encoding Numbers

- Fixed Point
 - Integers
 - Unsigned
 - Signed
 - Fractions
- Floating Point
 - IEEE-754

Fixed Point

• Integer is a special case, where the binary point is at the right end. But there can be fractions.

$$\dots + 2^3b_3 + 2^2b_2 + 2^1b_1 + 2^0b_0 + 2^{-1}b_{-1} + 2^{-2}b_{-2} + 2^{-3}b_{-3} + \dots$$

- $-0101.1010 = 2^2 + 2^0 + 2^{-1} + 2^{-3}$
- $-\ Equals\ 4 + 1 + 0.5 + 0.125$
- $Equals \ 5 + 5/8$
- Equals 5 + 10/16

Integers

- Unsigned piece of cake
 - Values from 0 to 2^{n} -1 for n-bit numbers.
- Four Ways to Encode Signed Values
 - 1. Sign-magnitude
 - Easy for people, rotten for logic circuits
 - 2. Biased
 - Good for comparing values
 - Used for floating-point exponents
 - 3. One's Complement
 - Two zeros
 - Requires end-around carry step for addition
 - Stepping stone to two's complement
 - 4. Two's Complement ...

Assigning Numeric Values to 4-bit Numbers

Binary	Unsigned	Sign-Magnitude	Biased (8)	One's Complement	Two's Complement
0000	0	+0	-8	+0	0
0001	1	+1	-7	+1	+1
0010	2	+2	-6	+2	+2
0011	3	+3	-5	+3	+3
0100	4	+4	4	+4	+4
0101	5	+5	-3	+5	+5
0110	6	+6	-2	+6	+6
0111	7	+7	-1	+7	+7
1000	8	-0	0	-7	-8
1001	9	-1	+1	-6	-7
1010	10	-2	+2	-5	-6
1011	11	-3	+3	4	-5
1100	12	4	+4	-3	4
1101	13	-5	+5	-2	-3
1110	14	-6	+6	-1	-2
1111	15	-7	+7	-0	-1

Homework Due Feb. 23

• Exercises 1-14 at the end of Appendix A