Review and Preview

Daniela Pamplona

U2IS - ENSTA - IPParis

ecampus moodle: MI210 - Modèles neuro-computationnels de la vision (P4 - 2020-21)

daniela.pamplona@ensta.fr

Date	Туре	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M(remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	All	All above

$$V(t) = \begin{cases} V_{rest} & \text{if } V(t) = v_{th} \\ V_{rest} - \tau \frac{dV}{dt} + RI(t) & \text{o.w.} \end{cases}$$

Date	Туре	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M(remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	All	All above

- 1. The generative model
- 2. The inference process
- 3. The distribution of the MAP estimate

$$p(x \mid d_1 \cdots d_N) \propto p(x) \prod_{i=1}^N p(d_i \mid x)$$

The posterior at time N-1 is the prior at time N

$$= p(x)p(d_N|x)\prod_{i=1}^{N-1}p(d_i|x) \propto p(x|d_1\cdots d_{N-1})p(d_N|x)$$

Date	Type	Topic	Level of description	Methods
23/03	M + TD written and code	Intro to neuro, neurons, BNN and ANN	Implementational + Computational	Dynamical systems, Neural Networks
30/03	M + TD written	Probabilistic interpretation of visual processing	Computational	Probabilistic/ Bayesian Approaches
06/04	3 M(remote)	Vision and efficient coding	Computational + Algorithmic	Statistics
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to artificial vision	Computational + Algorithmic	Statistics +Unsupervised M.L.
04/05	M+TD written	Eye movements	Computational + Algorithmic	Reinforcement Learning
11/05	oral	General vision and brain	A11	All above

Neural Recordings

3.5 Single cell recording

The primate looks alert in the picture, and indeed fully conscious animals are sometimes used (the brain has no pain receptors). However, the animal is usually anaesthetized to achieve complete immobilization. This helps control accurately where the eyes are looking.

Seeing: The computaional Approach to Biological Vision

Receptive Fields as Templates

Receptive Field

Stimulus white is + black is -

Tunning Curve

Retina: structure

Fig. 1.1. A drawing of a section through the human eye with a schematic enlargement of the retina.

https://webvision.med.utah.edu

Structure: What are the areas responsible for visual processing

Hierarchical vs flat hierarchies

What is in here?

General Communication System

Example: Visual System

Information Source: Environment

<u>Transmitter</u>: Eye

Channel: Early visual system

Noise: Unknown

Receiver: Higher areas (MT,TE,MIP,...)

<u>Destination:</u> Other brain areas (PMC,..)

(ultimatly the environment)

What is the message? What are natural images?

Non Natural

Natural

Power Spectrum of Natural Images

Analysis of edges orientations

The distribution of oriented contoursin the real world, Coppola et al

Date	Туре	Topic	Level of description	Methods
23/03	M + TD written and	Intro to neuro, neurons, BNN and	Implementational + Computational	Dynamical systems, Neural Networks
	code	ANN		
30/03	M + TD written	Probabilistic interpretation of	Computational	Probabilistic/ Bayesian Approaches
	Wilteen	visual processing		ripprodefics
06/04	3 M(remote)	Vision and efficient	Computational +	Statistics
		coding	Algorithmic	
13/04	3 M (remote)	Receptive Fields, Retina and V1	Computational + Algorithmic	Unsupervised M.L.
27/04	3 TD (remote)	Applications to	Computational +	Statistics +Unsupervised
		artificial vision	Algorithmic	M.L.
04/05	M+TD written	Eye movements	Computational +	Reinforcement Learning
			Algorithmic	
11/05	oral	General vision and	All	All above
		brain		19

Today

Retinal Ganglion Cells Modeling

 Modeling the Retinal Ganglion Cells RFs considering the eye's imaging

• V1 Simple Cells Modeling