- > Object Detection Models
- ✓ Object Recognition Models

age-gender-recognition-retail-0013

head-pose-estimation-adas-0001

license-plate-recognitionbarrier-0001

vehicle-attributes-recognitionbarrier-0039

vehicle-attributes-recognitionbarrier-0042

emotions-recognition-retail-0003

landmarks-regression-retail-0009

facial-landmarks-35-adas-0002

person-attributes-recognitioncrossroad-0230

gaze-estimation-adas-0002

- > Reidentification Models
- > Semantic Segmentation Models

gaze-estimation-adas-0002

Use Case and High-Level Description

This is a custom VGG-like convolutional neural network for gaze direction estimation $_{
m Validation\ Dataset}$

Example and Gaze Vector Definition

IN THIS DOCUMENT

Use Case and High-Level Description

Example and Gaze Vector Definition

Specification

Validation Results

Performance

Inputs

Outputs

Legal Information

- > Object Detection Models
- ✓ Object Recognition Models

age-gender-recognition-retail-0013

head-pose-estimation-adas-0001

license-plate-recognitionbarrier-0001

vehicle-attributes-recognition-barrier-0039

vehicle-attributes-recognitionbarrier-0042

emotions-recognition-retail-0003

landmarks-regression-retail-0009

facial-landmarks-35-adas-0002

person-attributes-recognition-crossroad-0230

gaze-estimation-adas-0002

- > Reidentification Models
- > Semantic Segmentation Models

IN THIS DOCUMENT

Use Case and High-Level Description

Example and Gaze Vector Definition

Specification

Validation Dataset

Validation Results

Performance

Inputs

Outputs

Legal Information

The network takes three inputs: square crop of left eye image, square crop of right eye image, and three head pose angles – (yaw, pitch, and roll) (see figure). The network outputs 3-D vector corresponding to the direction of a person's gaze in a Cartesian coordinate system in which z-axis is directed from person's eyes (mid-point between left and right eyes' centers) to the camera center, y-axis is vertical, and x-axis is orthogonal to both z,y axes so that (x,y,z) constitute a right-handed coordinate system.

Specification

METRIC	VALUE
GFlops	0.139
MParams	1.8
Source framework	Cafin THIS DOCUMENT
	Use Case and High-Level Description
	Example and Gaze Vector Definition
	Specification
Validation Dataset	Validation Dataset

valluation Dataset

Two random held out inviduals from an internal dataset containing images of 60 pecperformance directions. Inputs Outputs Legal Information

Validation Results

Validation Results

The accuracy of gaze direction prediction is evaluated through the use of MAE of angle (in degrees) between the ground truth and predicted gaze direction.

DATASET	MAE, DEGREES	STANDARD DEVIATION OF AE, DEGREES
Internal dataset	6.95	3.58

> Object Detection Models

✓ Object Recognition Models

age-gender-recognition-retail-0013

head-pose-estimation-adas-0001

license-plate-recognitionbarrier-0001

vehicle-attributes-recognitionbarrier-0039

vehicle-attributes-recognitionbarrier-0042

emotions-recognition-retail-0003

landmarks-regression-retail-0009

facial-landmarks-35-adas-0002

person-attributes-recognitioncrossroad-0230

gaze-estimation-adas-0002

- > Reidentification Models
- > Semantic Segmentation Models

Performance

- > Object Detection Models
- Object Recognition Models

age-gender-recognition-retail-0013

head-pose-estimation-adas-0001

license-plate-recognitionbarrier-0001

vehicle-attributes-recognition-barrier-0039

vehicle-attributes-recognitionbarrier-0042

emotions-recognition-retail-0003

landmarks-regression-retail-0009

facial-landmarks-35-adas-0002

person-attributes-recognition-crossroad-0230

gaze-estimation-adas-0002

- > Reidentification Models
- > Semantic Segmentation Models

Inputs

- Blob in the format [BxCxHxW] where:
 - B batch size
 - C number of channels
 - H image height
 - W image width

with the name left_eye_image and the shape [1x3x60x60].

- Blob in the format [BxCxHxW] where:
 - o B batch size
 - o C number of channels
 - H image height
 - W image width

with the name right_eye_image and the shape [1x3x60x60].

- Blob in the format [BxC] where:
 - B batch size
 - o C number of channels

IN THIS DOCUMENT

Use Case and High-Level Description

Example and Gaze Vector Definition

Specification

Validation Dataset

Validation Results

Performance

Inputs

Outputs

Legal Information

with the name head_pose_angles and the shape [1x3].

- > Object Detection Models
- ✓ Object Recognition Models

age-gender-recognition-retail-0013

head-pose-estimation-adas-0001

license-plate-recognitionbarrier-0001

vehicle-attributes-recognitionbarrier-0039

vehicle-attributes-recognitionbarrier-0042

emotions-recognition-retail-0003

landmarks-regression-retail-0009

facial-landmarks-35-adas-0002

person-attributes-recognitioncrossroad-0230

gaze-estimation-adas-0002

> Reidentification Models

Outputs

The net outputs a blob with the shape: [1, 3], containing Cartesian coordinates of gaz that the output vector is not normalizes and has non-unit length.

Output layer name in Inference Engine format:

gaze_vector

Output layer name in Caffe2 format:

gaze_vector

Inputs

Outputs

Legal Information

Legal Information

[*] Other names and brands may be claimed as the property of others.

IN THIS DOCUMENT

Use Case and High-Level Description

Example and Gaze Vector Definition

Specification

Validation Dataset

Validation Results

Performance

- > Object Detection Models
- Object Recognition Models

age-gender-recognition-retail-0013

head-pose-estimation-adas-0001

license-plate-recognitionbarrier-0001

vehicle-attributes-recognition-barrier-0039

vehicle-attributes-recognition-barrier-0042

emotions-recognition-retail-0003

landmarks-regression-retail-0009

facial-landmarks-35-adas-0002

person-attributes-recognition-crossroad-0230

gaze-estimation-adas-0002

- > Reidentification Models
- > Semantic Segmentation Models

IN THIS DOCUMENT

Use Case and High-Level Description

Example and Gaze Vector Definition

Specification

Validation Dataset

Validation Results

Performance

Inputs

Outputs

Legal Information