Host Utilities

Co - Host Utilities

India SMART UTILITY Week 2024

EV CHARGING INFRASTRUCTURE: IMPACTS, CHALLENGES AND SOLUTIONS

Presented By

Dr. MEERA P. S., ASSOCIATE PROFESSOR,
VELLORE INSTITUTE OF TECHNOLOGY, CHENNAI, INDIA

INTRODUCTION

- Net Zero Emission Target by 2070
- 30% EV market share by 2030
- 35,52,804 EV's sold as of January 2024
- 12,146 public EV charging stations as on 02.02.2024
- Roadblocks for the EV industry
 - ➤ Range anxiety
 - Lack of public charging infrastructure

Types of EV CHARGING

Courtesy: https://indiaesa.info/

EV CHARGING INFRASTRUCTURE

Roadblocks for Charging Infrastructure

- Parking space availability
- High capital and installation cost
- Lack of sufficient incentives
- Upgradation of existing power grid components
- Uncertainty of EV charging demand
- Availability of different standards for charging connectors
- Incompatibility between various models and chargers

Impact of EV Charging on Power Distribution Network

Uncontrolled Charging Negative Impacts		Applying Charging/Discharging Methods or Control Strategies		Positive Impacts
Increase in peak demand	\Rightarrow	Delayed charging, controlled charging, V2G, V2B, or V2H	\Rightarrow	Congestion management, valley filling, and peak shaving
Increase voltage deviation	\Rightarrow	Delayed charging, controlled charging, V2G, V2B, or V2H	\Rightarrow	Decrease voltage deviation and improve voltage profile
Increase phase unbalance	\Rightarrow	Controlled charging, or V2G		Decrease phase unbalance
Increase harmonics distortion	\Rightarrow	Proper charger design, control strategy, and charger filter	=	Decrease Harmonics distortion and improve power quality
Overloading of network components	\Rightarrow	Delayed charging, controlled charging, V2G, V2B, or V2H	=	Decrease loading of network components, upgrade deferral, and congestion management
Increase power losses	=	Delayed charging, controlled charging, V2G, V2B, or V2H	\Rightarrow	Decrease power losses

Grid Integration of EVs

- Acts as an energy storage system
- Earn incentives
- Bidirectional meters
- Ancillary services to grid
 - Reactive power support
 - ➤ Voltage and frequency balance
 - ➤ Dealing of uncertainties in renewable power
 - ➤ Valley filling
 - ➤ Peak shaving

Control architecture in EV Charging

Centralized Control

- ➤ Master control engine decision making
- ➤ Optimization problem size is large

Decentralized/Distributed Control

- > EV users directly choose their charging schedules
- No guarantee to reach the global optimal solution

Connected Mobility- VANET and IoV

- VANETs enable sharing messages among vehicles
 - ➤ Alleviates traffic congestion
 - Reduce accident rates, enhance safety, optimize routing etc.
- IoV IOT & V2X communication capabilities
- IoV enables various services and applications
- Real-time data exchange between vehicles, infrastructure, and the grid
- Facilitates smart charging, allowing EVs to identify optimal charging times
- Optimal pricing and routing mechanisms in public charging stations

Challenges and possible solutions

Challenges	Possible Solutions			
Range anxiety Dependence on imported batteries	Increase the number of fast charging stations, mobile charging stations, increase battery capacity			
	Research on battery materials, more manufacturing units for batteries.			
Unstable operation	Optimize location of charging stations, and number of EV chargers			
Waiting time for EV users Meet load generation balance Overloading of grid Uncertainty in EV charging demand	Accurate forecasting of demand due to EV charging			
	Implement Time of Use (ToU) tariffs, real time pricing etc.			
	Charging during availability of solar and wind power			
	Advanced energy management system			
Power quality issues Harmonics Voltage and frequency regulation	PWM based switching methods for converters			
	Coordinated charging			
	Renewable energy based EVCS can be integrated with smart inverters			
Space constraints	Locate charging posts in the middle rather than at the edges			
Land constraints	EV charging set up in existing petrol/diesel pumps, parking lots etc.			

THANK YOU

For discussions/suggestions/queries email: isuw@isuw.in

visit: www.isuw.in

References

- 1) https://evreadyindia.org/ev-sales/
- 2) https://www.pib.gov.in
- 3) https://www.niti.gov.in
- 4) Bhatti, A.R., Salam, Z., Aziz, M.J.B.A. and Yee, K.P., 2016. A critical review of electric vehicle charging using solar photovoltaic. International Journal of Energy Research, 40(4), pp.439-461. Earn incentives.
- 5) https://indiaesa.info/
- 6) Nour, M., Chaves-Ávila, J.P., Magdy, G. and Sánchez-Miralles, Á., 2020. Review of positive and negative impacts of electric vehicles charging on electric power systems. Energies, 13(18), p.4675.
- 7) An, K., Song, K.B. and Hur, K., 2017. Incorporating charging/discharging strategy of electric vehicles into security-constrained optimal power flow to support high renewable penetration. Energies, 10(5), p.729.
- 8) Das, H.S., Rahman, M.M., Li, S. and Tan, C.W., 2020. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renewable and Sustainable Energy Reviews, 120, p.109618.
- 9) Sharma, S. and Kaushik, B., 2019. A survey on internet of vehicles: Applications, security issues & solutions. Vehicular Communications, 20, p.100182.