Universidad Tecnológica Nacional Facultad Regional Villa María

Ingeniería Mecánica - Materiales Metálicos

Trabajo Práctico 3-04

Grupo DEL RÍO:

- Abregú, Iván.
- Antico, Rodrigo.
- Brussa, Julián.
- Cabral, Franco.
- Cárdenas, Felipe.
- Cardozo, Martín.
- Córdoba, Nathan.
- Cucco, Ramiro.
- del Río, Juan.
- Guerini, Nazareno.
- Medina, Ivo.
- Ortiz, Gastón.
- Picos, Elías.
- \blacksquare Quinteros, Lautaro.

Docentes:

- Dr. Lucioni, Eldo José.
- Ing. Victorio Vallaro, Juan Manuel.

16 de agosto de 2025

1

1

1

Índice

1.]	Propósito y Fundamento	del Ensayo.
------	------------------------	-------------

- 2. Características a Observar y Zonas de la Chispa.
- 3. Clasificación por Elementos de Aleación.

Resumen

A partir de la bibliografía listada a continuación, analice e investigue el contenido relacionado con el ensayo de chispas en acero (Cap. XX) a fin de adquirir efectuar una demostración práctica de sus conocimientos.

Apraiz Barreiro, J. Aceros Especiales y Otras Aleaciones. Dossat. 5ta Edición.
Madrid, 1975. Cap. XX Ensayo de Chispas (pp. 509-520) {MM-CAD-0.0.0}

1. Propósito y Fundamento del Ensayo.

El ensayo de chispa es un método de clasificación de aceros por su composición que se realiza de forma sencilla y económica. No se utiliza para un análisis químico detallado, sino como una herramienta complementaria y de control para diferenciar y separar materiales en talleres y almacenes.

El fundamento del ensayo es la observación de las chispas que se generan al frotar el material contra una muela de esmeril a gran velocidad. El calentamiento brusco de las partículas de acero desprendidas provoca su incandescencia y la oxidación de sus elementos con el oxígeno del aire. Estas oxidaciones, especialmente las del carbono, causan explosiones en las partículas, lo que origina las figuras luminosas que se observan.

2. Características a Observar y Zonas de la Chispa.

Para llevar a cabo el ensayo, se recomienda trabajar en un lugar con poca iluminación y utilizar una muela de grano y dureza media. Una chispa se divide en tres zonas principales:

- 1. La más cercana a la muela, compuesta por rayos rectilíneos con el color característico del acero.
- 2. Zona intermedia donde los rayos se bifurcan y ya aparecen algunas explosiones.
- 3. La zona final, donde ocurren la mayor parte de las explosiones.

Las características clave para la identificación son la figura y el color. Se deben observar con detalle la longitud, el trazo (continuo, punteado, abultado) y la forma de las explosiones, que pueden ser estrellas, gotas, lenguas o flores.

3. Clasificación por Elementos de Aleación.

La forma y la intensidad de la chispa dependen de la composición del acero.

• Aceros al Carbono: el grosor de los rayos, la luminosidad y la profusión de las explosiones aumentan a medida que se incrementa el porcentaje de carbono.

- Aceros con Molibdeno: Tienen una característica muy distintiva. En la extremidad de los rayos aparece una prolongación incandescente completamente separada, llamada "spear point", de color rojo anaranjado.
- Aceros con Wolframio: Dan una chispa con rayos de color rojo oscuro, mucho menos luminosos que los de otras clases de aceros. En los aceros de alta velocidad (18 % de wolframio), los rayos son punteados y muy poco luminosos.
- Fundiciones: Las chispas de la fundición blanca, gris y maleable tienen características propias que permiten distinguirlas.

4. Limitaciones del Ensayo.

El documento señala que el estado del material (templado o recocido) tiene poca influencia en la figura de la chispa, aunque puede afectar la facilidad con la que saltan y su brillo. Sin embargo, el estado superficial del material, como la cementación o la descarburación, puede falsear los resultados.

También, se destaca que el ensayo de chispa **no es útil para determinar la presencia de níquel** en los aceros, ya que este elemento no se manifiesta con ninguna característica particular en la chispa. Para el níquel, se debe recurrir a un ensayo químico complementario.