数电实验硬件测试平台说明文档

一、结构组成

本测试平台使用 verilog 语言编写, 共分为 6 个模块。

1.1 Clock Wizard

时钟管理单元,负责对 FPGA 上的晶振时钟进行分频,得到更高或更低的时钟频率,作为系统时钟。

端口名	方向	位宽	备注
clk	input	1	-
clk_out	output	1	-

1.2 data in mem

存储输入数据的单口 ROM, 卷积题目输入数据共 32 个, LDPC 题目输入数据 最多 8*8 = 64 个, 因此该 ROM 定义为宽度为 32, 深度为 64。

端口名	方向	位宽	备注
clka	input	1	
ena	input	1	高电平有效
addra	input	6	
douta	output	32	

1.3 data out mem

存储结果的单口 ROM, 用来与 MCU 的计算结果进行比对, 卷积题目输出数据共31个, LDPC 题目输出数据共3个, 因此该 ROM 定义宽度为32, 深度为32, 端口定义与1.2一致,不再赘述。

1.4 counter

counter 模块负责计算时钟数,MCU 输出两个高电平有效信号 ready 和 finish,当 ready 拉高时,counter 开始计数,当 finish 拉高时,结束计数,二者相减即可得到 完整过程花费的时钟数。

端口名	方向	位宽	备注
clk	input	1	
rst_n	input	1	低电平复位
en	input	1	高电平有效
cnt	output	16	

1.5 MCU

各位同学自己设计的 MCU,端口名必须与顶层 TOP 文件保持一致。计算开始前将 ready 信号拉高,addr_in 和 addr_out 用来从两块 ROM 中读出数据,计算完成后将 finish 信号拉高,将 MCU 的计算结果 mcu_data_out 与 ROM 中存储的标准结果 data_out 进行比对。

端口名	方向	位宽	备注
clk	input	1	
rst_n	input	1	低电平复位
data_in	input	1	高电平有效

ready	output	1	高电平有效
finish	output	1	高电平有效
addr_in	output	6	
addr_out	output	5	
mcu_data_out	output	32	

1.6 ILA

对 data_out,mcu_data_out,cnt,ready,finish 五路信号进行采样,采样深度为 8192。

二、使用说明

仿真示意结果如图:

ready 信号有效时,输入数据的 ROM 以及计数器的使能端 en_din, en_dout 拉高,开始将数据读入 MCU,同时开始计数,当 finish 信号有效时,输出数据的 ROM 的使能端拉高,计数器使能端拉低,输出数据开始读出,MCU 的计算数据输出,并停止计数。

上板结果示意图如图:

该例程消耗的时钟数为 20460-20336 = 124 个时钟周期,时钟频率为 100 MHz,共花费时间 1240 ns。