Seat No.:	Enrolment No.

BE - SEMESTER-VI (NEW) EXAMINATION - WINTER 2018

Subject Code:2161003	Date:20/11/2018
545,1000 004012101000	24001201111201

Subject Name: Antenna & Wave Propagation

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	Define Following Terms: 1 Room Solid angle 2 Rediction pattern 3 Rediction density	03
	(b)	1.Beam Solid angle 2 Radiation pattern 3.Radiation density Define and explain radiation intensity with necessary equations.	04
	(c)	Explain radio Communication link between transmitting antenna and receiving antenna.	07
Q.2	(a)	Define antenna list the function of antenna.	03
	(b)	The radiation resistance of antenna is 80Ω and loss resistance is 10Ω calculate the antenna efficiency.	04
	(c)	Derive the expression of friss transmission formula.	07
		OR	
	(c)	Derive the expression for radiation resistance for half wave dipole.	07
Q.3	(a)	What is the effective area of half wave dipole operating at 500MHz?	03
	(b)	Explain normal mode of radiation of helical antenna.	04
	(c)	Explain broadside and end-fire array considering linear array of four isotropic sources.	07
		OR	
Q.3	(a)	Find the radiation resistance of a hertizian dipole of length $\lambda/60$.	03
	(b)	Define and explain axial ratio for helical antenna.	04
	(c)	Explain principal of pattern multiplication for array of point sources. Also give two examples of short dipoles.	07
Q.4	(a)	Explain reflector lens antenna.	03
	(b)	Explain FNBW and HPBW of a parabolic reflector.	04
	(c)	Explain frequency scanning arrays with necessary details. OR	07
Q.4	(a)	Explain rumsey's principle.	03
	(b)	List the advantages and disadvantages of parabolic reflector.	04
	(c)	Explain smart antenna with necessary details.	07
Q.5	(a)	Explain the working of artificial lens antenna.	03
	(b)	List the feeding methods of microstrip patch antenna. Explain microstrip line feed in detail.	04
	(c)	Explain the following	07
	(•)	1) Skip distance 2) Virtual height	0.
		OR	
Q.5	(a)	Explain two antenna gain measurement method in detail.	03
	(b)	Explain ultra wide band antenna.	04
	(c)	Explain different modes of propagation with its practical significance.	07

Sea	at No	.: Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-VI (NEW) - EXAMINATION - SUMMER 2018	
Su	ıhiec	et Code:2161003 Date:01/05/201	8
	•	et Name: Antenna & Wave Propagation	.0
	_		- 0
		10:30 AM to 01:00 PM Total Marks:	/0
Ins	struct		
		Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
	٥.	rightes to the right market.	
Q.1	(a)	Define: (1) Beam area (2) Beam efficiency (3) Radiation intensity	03
	(b)	Define: (1) Directivity (2) Gain of the antenna	04
		(3) Effective length of antenna (4) Effective aperture	
	(c)	Write a short note on types of antennas with necessary figures.	07
Q.2	(a)	Define: (1) Half Power Beam width (2) First Null Beam Width	03
		(3) Side Lobe Level	
	(b)	Explain the polarization of wave and describe linear polarization.	04
	(c)	Derive and explain Friss transmission formula.	07
		OR	
	(c)	Write the advantages and disadvantages of:	07
		(1) Vertical polarization	
0.4	()	(2) Horizontal polarization	0.2
Q.3	(a)	With figure explain the working principle of Slot antenna.	03
	(b)	Explain the normal mode of radiation of helical antenna in detail.	04
	(c)	With necessary figure and derivations explain N element array of equal	07
		amplitude and spacing. Write the equation for array Factor. OR	
Q.3	(a)	Explain the working principle of small loop antenna.	03
Q.S	(b)	Write a short note on binomial array.	04
	(c)	Describe the properties of Endfire array.	07
Q.4	(a)	With figure explain the principle of Folded dipole	03
	(b)	Explain axial mode of radiation of helical antenna.	04
	(c)	With figure explain the concept of pattern multiplication.	07
	. ,	OR	
Q.4	(a)	Explain Cassegrain feed with figure.	03
	(b)	Explain the working principle of paraboloidal Reflector antenna.	04
	(c)	With figure explain the working principle of Three element Yagi-Uda	07
		antenna. Explain how improvement in basic Yagi-Uda antenna can be	
		made. Also write the applications of Yagi-Uda antenna.	
Q.5	(a)	Describe surface wave propagation briefly.	03
	(b)	Describe various types of basic horns with figure.	04
	(c)	With figure explain Babinet's principle.	07
		OR	
Q.5	(a)	Explain multihop propagation briefly.	03
	(b)	With figure describe the ionization layers.	04
	(c)	Explain the principle of operation of microstrip antenna. What are the	07
		advantages and limitations of microstrip antenna?	

Seat No.:	Enrolment No.
-----------	---------------

BE - SEMESTER- VI (New) EXAMINATION - WINTER 2019

Subject Code: 2161003 Date: 06/12/2019

Subject Name: Antenna & Wave Propagation

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	ĕ	03
		(i) Radiation Intensity	
		(ii) Antenna Gain	
	(1.)	(iii) Antenna Resolution	0.4
	(b)	What is radiation resistance? Derive equation of radiation resistance in terms of antenna length and wavelength.	04
	(c)	Derive an equation of E and H field of an Electric dipole	07
Q.2	(a)	Define a concept of polarization for an antenna.	03
	(b)	Enlist different functions of antennas.	04
	(c)	Describe pattern multiplication in brief and explain Dolph- Tschebyscheff arrays in detail.	07
		OR	
	(c)	Describe various methods to feed antennas.	07
Q.3	(a)	Explain parabolic reflector antenna	03
	(b)	If electric field strength of plane wave is 2 V/m, what is the strength of a magnetic field H in free space?	04
	(c)	State and explain Babinet's principle and explain its application to any one antenna design.	07
		OR	
Q.3	(a)	Explain log periodic antenna	03
	(b)	Calculate the radiation resistance of current element whose overall length is $\lambda/50$.	04
	(c)	Briefly explain different modes of propagation of helical antenna	07
		and compare its performance in terms of geometry of that helix.	
Q.4	(a)		03
		MHz operating frequency and 0.2λ inter element spacing.	
	(b)	1 11 10 11	04
	(c)	Explain about different types of radio wave propagation in detail OR	07
Q.4	(a)	Estimate the diameter of a paraboloidal reflector required to	03
		produce a beamwidth of 15° and 1.5 GHz operating frequency.	
	(b)	Explain about ultra wideband antenna.	04
	(c)	Elaborate the methods for Gain and Phase measurement.	07

Q.5	(a)	Write a short note on smart antenna	03
	(b)	Enlist advantages, disadvantages and application areas of microstrip antennas.	04
	(c)	Derive an equation of radiation resistance for small loop antenna structure	07
		OR	
Q.5	(a)	Explain about reflector lens antenna	03
	(b)	Describe about application of reciprocity theorem in antenna.	04
	(c)	Explain about antenna for terrestrial mobile communication systems.	07

Seat No.:	Enrolment No.

BE - SEMESTER-VI(NEW) – EXAMINATION – SUMMER 2019 Subject Code:2161003 Date:14/05/2019

Subject Name: Antenna & Wave Propagation

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.

Q.1	(a)	Define terms with respect to Antenna systems: 1) Antenna 2) Beam efficiency 3) Radiation intensity 4) Directivity 5) Gain of the antenna 6) Effective length of antenna 7) Effective aperture.	07
	(b)	Define terms Polarization and modes of propagating waves. With appropriate figures describe different polarizations of an EM wave while its propagation.	07
Q.2	(a)	List out various types of Antenna systems.	03
C	(b)	"Radiation resistance of a quadrature wavelength monopole antenna	04
	(c)	is 36.5 Ω ". Justify your answer with necessary calculations for it. Explain in detail about Hertzian Dipole antenna systems. Also calculate radiation resistance value of a Hertzian dipole antenna of having length	07
		$\lambda/40$, $\lambda/60$ and $\lambda/80$ respectively.	
	(c)	Obtain the ratio of E_{θ} and H_{Φ} field components of a current element at a distance point in free space with necessary derivations using Maxwell's equation.	07
Q.3	(a)	Enlist different atmospheric layers with their approximate height, to be considered while wave propagation.	03
	(b)	Describe the principle of pattern multiplication in the working of Array antennas.	04
	(c)	State Babinet's principle and discuss its usability in the slot antennas and complementary antennas. "Log periodic antenna offers wide band width operations." Justify your answer.	07
Q.3	(a)	OR Draw field pattern of an array of 4 isotropic point sources. separated by half wave length distance.	03
	(b)	Enlist and discuss about various antenna field radiation zones briefly.	04
	(c)	Prove that during wave propagation phenomenon MUF= $fc/Cos(\Theta)$. Also derive equations of gain of parabolic disc antenna.	07
Q.4	(a)	· · · · · · · · · · · · · · · · · · ·	03
	(b)	Enlist different feeding methods for antenna systems and describe any one of them in detail.	04
	(c)	List out all antenna Gain measurement methods and describe any two	07
		of them in detail.	
0.4	(2)	OR Evaluin about loop entanne with pagessary details	Λ2
Q.4	(a) (b)	Explain about loop antenna with necessary details. Describe lens antenna in detail.	03 04
	(U)	Describe tems antenna in detain.	v-T

	(c)	Describe phase measurement method used in antenna system in detail.	07
Q.5	(a)	Describe Ultra-Wide Band (UWB) antenna in brief.	03
	(b)	Draw five elements Yagi-Uda antenna system. Suggest ways to improve working performance of basic Yagi-Uda antenna.	04
	(c)	Explain terms with reference to Wave propagation phenomenon: (i) Duct propagation (ii) Virtual height (iii) MUF (iv) Skip distance OR	07
Q.5	(a)	Describe Smart antennas briefly.	03
Ų.J	(a) (b)	Differentiate End fire and Broadside array antennas.	03
	(c)	Describe Micro strip antenna in detail. Also enlist advantages and dis advantages related to them.	07

Seat No.:	Enrolment No.

BE- SEMESTER-VI (NEW) EXAMINATION – WINTER 2020

Subject Code:2161003 Date:22/01/2021

Subject Name:Antenna & Wave Propagation

Time:02:00 PM TO 04:00 PM Total Marks: 56

Instructions:

- 1. Attempt any FOUR questions out of EIGHT questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1	(a)	What are the functions of antenna?	03
	(b)	Define: (1) Directivity (2) Resolution	04
		(3) Beam Area (4) Radiation Pattern	
	(c)	Write a short note on types of antennas with necessary figures.	07
Q.2	(a)	Find the radiation resistance of a hertizian dipole of length $\lambda/10$.	03
	(b)	Using reciprocity theorem to antenna show that effective lengths of	04
		transmitting and receiving antennas are the same.	0=
	(c)	Explain and derive Friss Transmission Formula	07
Q.3	(a)	Explain Principle of Pattern Multiplication.	03
	(b)	Explain Dolph-Tchebysheff distribution for linear arrays.	04
	(c)	Derive the far field components and the radiation resistance of a small circular loop with radius 'a' and with a uniform phase current.	07
Q.4	(a)	Explain Application of Babinet's Principle.	03
	(b)	Explain Yagi-Uda Antenna.	04
	(c)	Find out the length L ,width W and Half flare angles θ_E and θ_H of a pyramidal horn antenna for which the mouth height h=10 λ . The horn is fed by a rectangular waveguide with TE_{10} mode. (Given: $\delta = 0.20\lambda$ in E plane, $\delta = 0.375\lambda$ in H plane)	07
Q.5	(a)	Explain Broadband antenna.	03
Q.C	(b)	Explain Cassegrain feed System with figure.	04
	(c)	Draw the Geometry of a helical antenna and explain its physical parameters.	07
Q.6	(a)	Explain log Periodic antenna.	03
	(b)	Explain different feeding techniques of Microstrip antenna with	04
	(c)	figure. With neat sketches briefly explain reflector lens antennas. Also write	07
	(C)	its applications.	07
Q.7	(a)	Calculate the range of space wave propagation with heights of	03
		transmitting and receiving antennas equal to 100 meters each.	
	(b)	Explain Plasma antenna.	04
	(c)	Explain gain and phase measurement methods.	07
Q.8	(a)	Explain UWB Antenna.	03

(b)	With figu	04	
(c)	Explain Following:		07
	(i)	Duct Propagation	
	(ii)	OWF	
	(iii)	Multi hop Propagation	
	(iv)	Skip Distance	

Seat No.:	E 1 4 NI -
Sear NO:	Enrolment No.
scat 110	Linding 110.

BE - SEMESTER- VI EXAMINATION - SUMMER 2020

Subject Code: 2161003 Date:27/10/2)20		
Subje	ect Na	ame: ANTENNA & WAVE PROPAGATION			
_	Time: 10:30 AM TO 01:00 PM Total Marks				
Instru					
	2. N	Attempt all questions. Make suitable assumptions wherever necessary. Sigures to the right indicate full marks.			
Q.1		Explain the polarization of waves and describe elliptical polarization. Discuss the antenna field zone.	03 04		
	(c)	Define Antenna and enlist its functions. Compare it with transmission line.	07		
Q.2	(a)	Determine the distance from short dipole operating at 1MHz at which radiation filed is 4 times the induction field.	03		
	(b)	How does the Friis transmission theory help to determine loss between the two antennas located in free space? Explain with necessary formula and theory.	04		
	(c)	 if any) i) Front-to-back ratio ii) Resolution iii) Antenna apertures-physical and effective apertures iv) Beam efficiency, stray factor 	07		
		v) Radiation resistance			
		OR			
	(c)	Starting from retarded current, derive an expressions for electric and magnetic components of a short dipole antenna if the spherical system is defined in r, θ and ϕ .	07		
Q.3	(a)	Estimate directivity of an antenna with θ_{HP} =2° and ϕ_{HP} =1°. Find gain of this antenna if efficiency factor k=0.5.	03		
	(b) (c)	Explain the experimental setup for the measurement of Gain of antenna. Enlist various types of horn antennas. Describe their functioning. Explain corrugated horn antenna. OR	04 07		
Q.3	(a)	Explain the principle of Folded dipole antenna with clean and neat figure.	03		
	(b) (c)		04 07		
Q.4	(a)	Explain reflector- lens antenna.	03		
	(b)	Explain practical design consideration for the helical antenna.	04		
	(c)	Describe the working principle, design and applications of microstrip patch antenna. Explain the physical significance of fringing field. OR	07		
Q.4	(a) (b)	Explain Cassegrain feed with necessary figure. Compare the far field equations of small loop with short dipole.	03 04		

	(c)	What do you mean by non-resonance antenna? Explain the design of rhombic antenna and enlist its advantages and disadvantages.	07
Q.5	(a)	Explain multihop propagation briefly.	03
	(b)	Explain babinet's principal.	04
	(c)	Explain the Different modes of Radio wave propagation.	07
		OR	
Q.5	(a)	Explain the features of Yagi Uda antenna	03
	(b)	Define the following terms.(draw necessary figures) (i) Maximum usable frequency (ii) Skip distance	04
	(c)	Explain the different layers of atmosphere.	07