Energy	
GIFI drop a bowling ball + a basket ball at the same time	
a basket ball at the same time	')
which hits the ground first?	
□ Energy	
a Conscruation of Energy	
U Kinetic Energy	
Hinetic Energy Dotential Energy	
I Chergy hab [] Journal	
- See bac	K
- Collect Data	
- Excel	
-Form	

| Energy - Potential for Change Potential for work

Units - Joule, J. N.m. Kame Examples - heat - thermal - Movement - Kinetic

- Conservation of Energy.

 For a system, total energy is constant
 - Energy is not created or destrayed Energy only changes form

Kinetic Energy (KE) - energy due 4

Egn. ILE = Imv?

Energy due to Random Amount of Squared

Motion Stuff

Example: Grandom Stuff

Example: Going 5 mph over in a school zone. Mass of a car is \$1,000 kg

20 mph 29m/s => | RE = \frac{1}{2} (\loop \loop \frac{1}{2}) (\loop \frac{1}{2}) (\loo

= 60,500 J

40.500 >60,500 is a 50% increwed

Potential Energy - Energy from how for you can fall. PE = mgh >> How far it can full Amount Falling How hard gravity pulls = 10 m/s z 1stuff' Energy Example: Pickupa car, 4m + 6m

 $4m \Rightarrow PE = mgh = (1,000kg)(10mg)(4m)$ = 40,0005 $6m \Rightarrow PE = mgh = (1,000kg)(10mg)(6m)$ = 60,0005

0

Intentionally

Groal: Compare the initial PE With the final KE.

Setup:

Added mass for some runs.

Velocity @ the

Sonic

Sensor

- Choose + measure the starting height - Choose + measure the car w/ any mass
- Release the cour + record the Udality.

Data KE= = mv2 > height in(M) Data Set #

1 Conclusion - Was the total energy conserved? What evidence do you have?