EXÁMEN PARCIAL (1) ELECTROMAGNETISMO

Primer curso Ingeniería Informática

6 de Marzo de 2017

- 1) (4 ptos) Se tienen tres cargas eléctricas puntuales situadas de la siguiente manera: una carga q_1 =3nC en el punto (2,0) m , una carga q_2 =2nC en el punto (0,-2) m y una carga q_3 =5nC en el punto (0,0)m.
 - a) Calcular el campo eléctrico en el punto (2,-2).
 - b) Calcular la Fuerza que se ejercería sobre una carga q₄=-7nC en el punto (2,-2)
 - c) Calcular la energía potencial electrostática almacenada en el sistema inicial de tres cargas q₁, q₂, q₃.
 - d) Si a la distribución inicial de cargas inicial le añadimos un plano infinito cargado con densidad de carga σ =+1mC/m² en el plano y=2. Calcular ahora la fuerza sobre q₄
- 2) (2 ptos) Dos bolitas de masa m y carga q se suspenden de un punto común por dos hilos de longitud L y se observa que forman un ángulo θ con la vertical. Se pide:
 - a) El valor de q para que $\theta = 60^{\circ}$.
 - b) La energía potencial electrostática del sistema.
- 3) (4 ptos) Supongamos dos condensadores idénticos (C=10⁻⁹ Faradios) que se conectan en paralelo, cargándose a una diferencia de potencial de 100 V, después de lo cual se aíslan de la batería. A continuación, se introduce en uno de los condensadores un dieléctrico (k=3) que llena completamente el espacio entre las placas. Calcular:
 - a) La carga de cada condensador antes y después de introducir el dieléctrico.
 - b) La diferencia de potencial después de introducir el dieléctrico.
 - c) La energía de cada condensador antes y después de introducir el dieléctrico.
 - d) Razonar la diferencia entre estas energías entre las dos situaciones.