Оглавление

1	Функциональные последовательности и ряды			2
	1.1	Равномерно сходящиеся комплексные функциональные ряды		
		1.1.1	Критерий Коши	2
		1.1.2	Признак Вейерштрасса	2
	1.2	Компа	лексные степенные ряды	3
		1.2.1	Радиус сходимости и круг сходимости	4
		1.2.2	Свойства круга сходимости	4

Глава 1

Функциональные последовательности и ряды

1.1. Равномерно сходящиеся комплексные функциональные ряды

Определение 1. E — метрическое пространство, $\{\gamma_n(x)\}_{n=1}^{\infty}, \gamma E \to \mathbb{C}$ Комплексным функциональным рядом называется символ

$$\sum_{n=1}^{\infty} \gamma_n(x) \tag{1.1}$$

Частичной суммой называется $w_n(x) := \gamma_1(x) + \cdots + \gamma_n(x)$ Говорят, что ряд равномерно сходится на множестве E, если

$$\exists w : E \to \mathbb{C} : w_n(x) \xrightarrow[n \to \infty]{x \in E} w(x)$$

1.1.1. Критерий Коши

Теорема 1. Для того чтобы ряд (1.1) равномерно сходился на E, необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \quad \exists N: \quad \forall m > n > N \quad \forall x \in E \quad |\gamma_{n+1}(x) + \dots + \gamma_m(x)| < \varepsilon$$

Определение 2. МОжно применить критерий Коши для комплексной функциональной последовательности

1.1.2. Признак Вейерштрасса

Теорема 2.

$$\{a_n\}_{n=1}^{\infty}, \quad a_n > 0: \quad |\gamma_n(x)| \le a_n \quad \forall n \quad \forall x \in E$$
 (1.2)

Ряд a_n сходится

$$\sum_{n=1}^{\infty} a_n < \infty \tag{1.3}$$

 \implies (1.1) сходится равномерно

Доказательство. Возьмём $\forall \varepsilon > 0$

$$(1.3) \implies \exists N: \quad \forall m > n > N \quad a_{n+1} + \dots + a_n < \varepsilon$$

$$|\gamma_{n+1}(x) + \dots + \gamma_n(x)| \le |\gamma_{n+1}(x)| + \dots + |\gamma_m(x)| \le a_n > 0 \quad a_{n+1} + \dots + a_m < \varepsilon$$
(1.4)

По критерию Коши получаем равномерную сходимость

1.2. Комплексные степенные ряды

 $E = \mathbb{C}$

$$\{c_n\}_{n=0}^{\infty}, c_n \in \mathbb{C}$$

 $z_0 \in \mathbb{C}$

Положим $\gamma_0(z)\coloneqq c_0,\quad \gamma_n(z)\coloneqq c_n(z-z_0)^n$

$$c_0 + \sum_{n=1}^{\infty} c_n (z - z_0)^n \tag{1.5}$$

Такое выражение будем называть комплексным степенным рядом с центром z_0 (рядом по степеням $(z-z_0)$)

Замечание. $\{c_n\}_{n=1}^{\infty}, \qquad c_n \to c \in \mathbb{C}$

$$\implies \exists M: |c_n| \leq M \quad \forall n$$

Доказательство. Положим $c_n=a_n+ib_n,\quad c=a+ib$

$$a_n \to a, \qquad b_n \to b$$

Дальше применяем теорему из первого семестра

Замечание (необходимый признак сходимости комплексных числовых рядов).

$$\sum_{n=1}^{\infty} \text{ cx. } \Longrightarrow \gamma_n \xrightarrow[n \to \infty]{} 0$$

Доказательство. $c_n = \gamma_1 + ... + \gamma_n$

$$c_n \to c \\ c_{n-1} \to c$$
 $\Longrightarrow \underbrace{c_n - c_{n-1}}_{\gamma_n} \to c - c = 0$

Следствие.

$$\exists M: |\gamma_n| \leq M \quad \forall n$$

Лемма 1 (Абеля).

$$\exists z_1 \neq z_0$$
: (1.5) сходится при z_1

Обозначим $R \coloneqq |z_1 - z_0|$

$$\implies (1.5) \text{ cx.} \quad \forall z : |z - z_0| < R \tag{1.6}$$

$$\implies \forall 0 < r < R \quad (1.5)$$
 равн. сх. при $|z - z_0| \le r$ (1.7)

Доказательство. Докажем (1.7):

Обозначим $0 < q \coloneqq \frac{r}{R} < 1$

Сходимость при z_1 , по первому замечанию, означает, что

$$c_n(z_1 - z_0)^n \xrightarrow[n \to \infty]{} 0 \tag{1.8}$$

Тогда, по следствию,

$$\exists M: |c_n(z_1 - z_0)^n| \le M \tag{1.9}$$

$$\iff |c_n| \cdot |z_1 - z_0| \le M \stackrel{\text{def } R}{\iff} |c_n| \le \frac{M}{R^n}$$
(1.10)

$$|c_n(z-z_0)^n| = |c_n| \cdot |z-z_0|^n \le \frac{M}{R^n} \cdot r^n = Mq^n$$
 (1.11)

$$\sum_{n=1}^{\infty} Mq^n = \frac{Mq}{1-q}$$

Можно применить признак Вейерштрасса, тем самым доказывая (1.7)

$$(1.7) \implies (1.5)$$
 сх. абс. при $|z - z_0| < R$

1.2.1. Радиус сходимости и круг сходимости

Определение 3. 1. Пусть (1.5) сходится только при $z=z_0$ Будем полагать радиус сходимости R:=0, круг сходимости $B:=\emptyset$

2. (1.5) сходится при всех z Полагаем $R:=+\infty$, $\mathtt{B}:=\mathbb{C}$

3. $\exists z_1 \neq z_0$: (1.5) сх. в z_1 , $\exists z_2$: (1.5) расх. в z_2

$$R \coloneqq \sup \{ r \mid r = |z_* - z_0|, \quad (1.5) \text{ cx. B } z_* \}, \qquad \mathtt{B} \coloneqq \{ z_0 \mid |z - z_0| < R \}$$

Положим $r_1 := |z_1 - z_0|, \quad r_2 := |z_2 - z_1|$

По определению R

$$R \ge r_1 > 0$$

Возьмём $z_3: \quad r_3 \coloneqq |z_3 - z_0| > r_2$

Если бы (1.5) сходился при z_3 , можно было бы применить к z_3 лемму Абеля. Тогда бы (1.5) сходился в z_2 — $\frac{1}{2}$

То есть, в z_3 ряд расходится

Значит, $R \le r_2$, $r_1 < r_2$

1.2.2. Свойства круга сходимости

Рассматриваем только случай, когда $0 < R < \infty$

Теорема 3.

$$(1.5) \text{ cx.} \quad \forall z \in \mathbf{B} \tag{1.12}$$

$$(1.5) pacx. \quad \forall z_2 \in \mathbb{C} \setminus \overline{B}$$

$$(1.13)$$

Доказательство.

• Докажем (1.12):

Возьмём $r \coloneqq |z - z_0| < R$

По определению R

$$\exists z_*: |z_* - z_0| > R, \quad (1.5) \text{ cx. B } z_*$$

По лемме Абеля (1.5) сх. в z

• Докажем (1.13):

Возьмём $\rho \coloneqq |\widehat{z} - z_0| > R$

Если ряд сходится, то ρ больше супремума, что невозможно

Определение 4. Определим

$$t := \overline{\lim} \, n \to \infty \, \sqrt[n]{c_n} \tag{1.14}$$

4

Теорема 4.

1. R=0, если $t=+\infty$

2. $R = +\infty$, если t = 0

3. $R = \frac{1}{t}$ иначе

Доказательство. Будем рассматривать только последний случай Определим $R_0 \coloneqq \frac{1}{t}$

ullet Возьмём $z_2: |z_2-z_0|>R_0$ Обозначим $arepsilon:=|z_2-z_0|-R_0>0$ Определим

$$\delta \coloneqq \frac{\varepsilon t^2}{1 + \varepsilon t}$$

По определению верхнего предела

$$\exists \left\{ n_k \right\}_{k=1}^{\infty} : \quad \sqrt[n_k]{c_{n_k}} > t - \delta \tag{1.15}$$

$$\iff |c_{n_k}| > (t - \varepsilon)^{n_k}$$

$$\implies |c_{n_k}(z_2 - z_0)^{n_k}| = |c_{n_k}| \cdot |z_2 - z_0|^{n_k} > (t - \delta)^{n_k} \cdot (R_0 + \varepsilon)^{n_k} = \left((t - \delta)(R_0 + \varepsilon)\right)^{n_k}$$

$$(t - \delta)(R_0 + \varepsilon) = \left(t - \frac{\varepsilon t^2}{1 + \varepsilon t}\right) \left(\frac{1}{t} + \varepsilon\right) = \frac{t + \varepsilon t^2 - \varepsilon t^2}{1 + \varepsilon t} \cdot \frac{1 + \varepsilon t}{t} = 1$$

$$\implies |c_{n_k}(z_2 - z_0)^{n_k}| \ge 1$$

$$(1.16)$$

По второму замечанию ряд в z_2 расходится

• Возьмём $z_1: |z_1 - z_0| < R_0$ Пусть

$$\varepsilon_0 \coloneqq R_0 - |z_1 - z_0|, \quad \delta_0 \coloneqq \frac{1}{2} \cdot \frac{\varepsilon_0 t^2}{1 - \varepsilon_0 t}$$

По свойствам верхнего предела

$$\exists N: \quad \forall n > N \quad \sqrt[n]{|c_n|} < t + \delta_0$$

$$\iff |c_n| < (t + \delta_0)^n$$

$$\implies \forall n > N \quad |c_n(z_1 - z_0)^n| = |c_n| \cdot |z_1 - z_0|^n < (t + \delta_0)^n \cdot (R_0 - \varepsilon_0)^n = \left((t - \delta_0)(R_0 - \varepsilon_0) \right)^n$$

$$(t + \delta_0)(R_0 - \varepsilon_0) \stackrel{\text{def } \delta}{=} \left(t + \frac{1}{2} \cdot \frac{\varepsilon_0 t^2}{1 - \varepsilon_0 t} \right) \left(\frac{1}{t} - \varepsilon_0 \right) = \frac{t - \varepsilon_0 t^2 + \frac{1}{2}\varepsilon_0 t^2}{1 - \varepsilon_0 t} \cdot \frac{1 - \varepsilon_0 t}{t} = 1 - \frac{1}{2}\varepsilon_0 t$$

$$0 < q := 1 - \frac{1}{2}\varepsilon_0 t < 1$$

$$\implies |c_n(z_1 - z_0)^n| < q^n < 1$$

Значит, ряд сходится при z_1

Теорема 5. $c_n \neq 0 \quad \forall n, \qquad \exists \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|}$

Тогда этот предел и равен радиусу сходимости