Chapter 11 & 2- Simple Linear Regression Model and Correlation

STAT 251

Lecture 36

Inference in the Simple Linear Regression Model Examples

Dr. Lasantha Premarathna

Chapter 11 & 2 - Learning Outcomes

- Scatter plot
- Covariance & Correlation
- Simple linear regression
- Least squares estimates in simple linear regression
- Interpret the parameters in a fitted linear model
- Inference for the slope parameter Confidence interval & hypothesis testing

Simple Linear Regression

•
$$b_1 = \hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = \frac{(\sum_{i=1}^n x_i y_i) - n\bar{x}\bar{y}}{(\sum_{i=1}^n x_i^2) - n\bar{x}^2} = \frac{rs_y}{s_x}$$

•
$$b_0 = \hat{\beta}_0 = \frac{\sum_{i=1}^n y_i - \hat{\beta}_1 \sum_{i=1}^n x_i}{n} = \bar{y} - \hat{\beta}_1 \bar{x}$$

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ・ 夕 Q ○

Inference About the Slope Parameter β_1

Hypothesis testing for β_1

1. In simple linear regression, we wish to test

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

- If no linear relationship exists between the two variables, we would expect the regression line to be horizontal, that is, to have a slope of zero.
- We want to see if there is a linear relationship i.e. we want to see if the slope (β_1) is something other than zero. Thus our alternative hypothesis become $H_1: \beta_1 \neq 0$

Inference About the Slope Parameter β_1

2. Test statistic

$$t = \frac{\hat{\beta}_1 - \beta_1}{s_{\hat{\beta}_1}} \sim t_{n-2}$$

test statistic has a t-distribution with n-2 df

• $s_{\hat{\beta}_1}$ is the estimated standard deviation of $\hat{\beta}_1$ (i.e. $s_{\hat{\beta}_1}$ is the standard error of $\hat{\beta}_1$)

$$s_{\hat{\beta}_1} = \frac{s}{s_x \sqrt{n-1}}$$

where, $s^2 = \frac{SSE}{n-2} = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}$ (s² is the estimate for σ^2)

and
$$s_x = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{(\sum_{i=1}^n x_i^2) - n\bar{x}^2}{n-1}}$$

Inference About the Slope Parameter β_1

Under the Null Hypothesis, $H_0: \beta_1 = 0$

The test statistics is $t_{obs} = \frac{\hat{\beta}_1}{s_{\hat{\beta}_1}}$

- 3. Find the critical value for the significance level α from the t-table with n-2 degrees of freedom.
- 4. Reject H_0 if $|t_{obs}| \geq t_{\frac{\alpha}{2}, (n-2)}$
- 5. Conclusion
- ** you also can use p-value approach instead of critical value approach

Confidence Interval for the Slope β_1

A
$$(1-\alpha)100\%$$
 confidence Interval for β_1 is,

 \Rightarrow point estimate \pm margin of error

$$\Rightarrow \quad \hat{\beta}_1 \ \pm \ \left(t_{\frac{\alpha}{2}, \, (n-2)} \times s_{\hat{\beta}_1} \right)$$

Example (Contd..)

The article "Characterization of Highway Runoff" for a particular location in BC gave following data and summaries

$$x$$
 = rainfall volume (m³)
 and
 y = runoff volume (m³)

 x
 5
 12
 14
 17
 23
 30
 40
 47
 55
 67
 72
 81
 96
 112
 127

 y
 4
 10
 13
 15
 15
 25
 27
 46
 38
 46
 53
 70
 82
 99
 100

$$n = 15 \qquad \sum_{i=1}^{n} x_i = 798 \qquad \sum_{i=1}^{n} x_i^2 = 63,040 \qquad \sum_{i=1}^{n} y_i = 643 \qquad \sum_{i=1}^{n} y_i^2 = 41,999 \qquad \sum_{i=1}^{n} x_i y_i = 51,232$$

- (h) Calculate the point estimate of the standard deviation σ .
- (i) Carry out a hypothesis test to decide whether there is a useful linear relationship between rainfall volume and runoff volume. Use $\alpha=0.05$.
- (j) Calculate 95% confidence interval for the true average change in runoff volume associated with a 1 m^3 increase in rainfall.

(h) Calculate the point estimate of the standard deviation σ .

Point estimate of σ^2 is

$$\hat{\sigma}^2 = s^2 = \frac{SSE}{n-2} = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

$$SST = SSR + SSE$$

$$14436 = 14079 + SSE$$

$$\Rightarrow SSE = 357$$

so,
$$s^2 = \frac{SSE}{n-2} = \frac{357}{15-2} = 27.46$$

point estimate of σ is $s = \sqrt{27.46} = 5.24$

(i) Carry out a hypothesis test to decide whether there is a useful linear relationship between rainfall volume and runoff volume. Use $\alpha=0.05$.

Simple Linear Regression model: $Y = \beta_0 + \beta_1 X + \epsilon$

we test the hypotheses

$$H_0:\beta_1=0$$

$$H_1: \beta_1 \neq 0$$

test statistic

$$t = \frac{\hat{\beta}_1 - 0}{s_{\hat{\beta}_1}} \sim t_{n-2}$$

$$\Rightarrow s_{\hat{\beta}_1} = \frac{s}{s_x \sqrt{n-1}} = \frac{5.24}{38.35 \sqrt{15-1}} = 0.0372$$

where s = 5.34 and $s_x = 38.35$ from part (h) and part (b)

(i) then test statistic is

$$t_{obs} = \frac{\hat{\beta}_1 - 0}{s_{\hat{\beta}_1}} \sim t_{n-2} = t_{13}$$

$$t_{obs} = \frac{0.826}{0.0372} = 22.2$$

$$\alpha = 0.05 \implies \frac{\alpha}{2} = 0.025 \implies t_{0.025, 13} = 2.160$$
Since $|t_{obs}| = 22.2 > t_{0.025, 13} = 2.160$

 $\Rightarrow H_0$ is rejected at $\alpha = 0.05$ (observed test statistic value is in the rejection region. Since this $|t_{obs}|$ value is really large, we have strong evidence to reject H_0 at any usual α value)

<u>Conclusion:</u> We have strong evidence to conclude that there is a useful linear relationship between runoff volume and rainfall volume.

(j) Calculate 95% confidence interval for the true average change in runoff volume associated with a 1 m^3 increase in rainfall.

True average change in rainfall volume associate with a 1 m^3 increase in rainfall volume is β_1

95% confidence Interval for β_1 is,

$$\hat{\beta}_{1} \pm \left(t_{\frac{\alpha}{2}, (n-2)} \times s_{\hat{\beta}_{1}}\right)
\Rightarrow \hat{\beta}_{1} \pm \left(t_{0.025, 13} \times s_{\hat{\beta}_{1}}\right)
\Rightarrow 0.826 \pm 2.160 (0.0372)
\Rightarrow 0.826 \pm 0.080
\Rightarrow (0.746, 0.906)$$

 \Rightarrow 95% confidence that the true slope parameter (β_1 of the simple linear regression model is between 0.746 and 0.906.

End of Chapter 11

Please Complete the

Course/Instructor

Evaluation

Good Luck with your All Exams

All the very Best!