Total No. of Question	s :8]
------------------------------	-------

P	3	3	1	7
ı	J	J	7	

[5670]-611
B.E.(E/TC)

SEAT No.:			
[Total	No	of Pogos	2

BROAD BAND COMMUNICATION SYSTEMS

(2015 Pattern) (Semester - II) (End Sem)

Time: 2½ Hours] [Max. Marks: 70]
Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Black figures to the right indicate full marks.
- 3) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 4) Assume suitable data, if necessary.
- 5) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6 and Q7 or Q8.
- Q1) a) Compare single mode step index. Multimode step index and graded index fiber. Draw index profile for each fiber type. Also specify approximate core diameter. [7]
 - b) Explain link power budget for point to point optical fiber link. Write expression for power budget. [7]
 - c) Explain FBG & hence explain its usage as optical isolator [6]

OR

- Q2) a) Compare LED & LASER as light source for optical fiber transmission system. Justify usage for laser as light source along with single mode fibers.
 - b) When the mean optical power launched into an 8km length of fiber is 120 µw, the mean optical power at the fiber output is 3µw determine [7]
 - i) The overall signal attenuation or loss in decibels through the fiber assuming there are no connectors or splices
 - ii) The signal attenuation per kilometer for the fiber
 - iii) The overall signal attenuation for a 10km optical link using the same fiber with splices at 1km intervals, each giving an attenuation of 1dB
 - iv) The input/out put power ratio in (iii)
 - c) Draw and explain 2 ×2 coupler. Write formulae to calculate splitting ratio, excess loss, insertion loss and cross talk. [6]

P.T.O.

Q 3)	a)	Compare LEO, MEO, GEO satellite orbits. State applications. Draw
		necessary diagrams. [8]
	b)	The earth rotates once per sidereal day of 23hr 56mins. Calculate radius of GEO.
		Assume Radius of earth = 6400km
		kepler's constant $= \mu = 3.986 \times 10^5 \text{ km}^2 \text{ N/kg}$ Also calculate height of satellite from earth surface. [8]
		OR
Q4)	a)	Explain with diagram the following terms with respect to satellite communication. [8]
		i) Apogee
		ii) Perigee
		iii) Zenith Direction
		(No. 1) Nadeer Direction
	b)	Describe the launch sequence used for satellite launching. [8]
Q 5)	a)	Explain Four types of antenna used for satellite communication. Draw &
		explain typical satellite antenna coverage zones. [8]
	b)	Draw and explain double conversion transponder for 14/11 GHz band.
		Specity frequencies at each block [8]
		OR SANTE
Q6)	a)	Explain with help of block diagram AOCS [8]
QU)	b)	What is reliability & space qualification? Explain with bath tub curve. [8]
07)		Explain the following terms with methametical covations with respect to
Q 7)	a)	Explain the following terms with mathematical equations with respect to satellite communication i) Path loss ii) EIRP iii) C/N Ratio iv) G/T Ratio [8]
		i) Path loss
		ii) EIRP
		iii) C/N Ratio
		iv) G/T Ratio [8]
[567	7 0]-	611 2

b) A C-band earth station has an antenna with a transmit gain of 54dB. The transmitter output power is set to 100W at a frequency of 6.100GHz. The signal is received by a satellite at a distance of 37,500 km by an antenna with a gain of 26dB. The signal is then routed to a transponder with a noise temperature of 500K a band width of 36 MHz and gain of 110.dB.

calculate [10]

- i) The path loss at 6.1 GHz, wavelength is 0.04918m
- ii) The power at the out put port of the satellite antenna in dBW.
- iii) Calculate the noise power at the transponder input, in dBW, in a band width of 36 MHz. Assume Boltzman's constant K = 228.6 dBW.
- iv) Calculate C/N ratio, in dB, in the transponder

OR

- Q8) a) What are different steps required for satellite downlink design? [8]
 - b) An uplink has following parameters as given below. Calculate carrier to noise ratio and flux density at the space craft. [10]

Transmit power = 29.3 dBW

Transmit Waveguide losses = 2dB

Transmit antenna gain = 50.6

Spreading Loss = 162.2 dB

Atmospheric Attenuation = 0.1dB

Free space loss = 200.4

Receive Antenna Gain = 26.3

Receive Waveguide Loss = 0.5

System noise temperature = 26.5 dBK

Boltzmann constant = -228.6 dBW/Hz/K

Band width (25MHz) = 74 dBHz