Spontaneous R-symmetry breaking in O'Raifeartaigh models David Shih.

JHEP 02 (2008) 091, arXiv:hep-th/0703196.

安倍研 M1 宮根一樹

2024 6/20 (木)

読んだ動機など

「現在行っているモジュライ固定の研究に、R 対称性の観点から何か言えるかもしれない」というお話があった。

これは、1994年に Nelson と Seiberg が主張したこと [2] で以下の通り:

「R 対称性が自発的に破れている」 \Longrightarrow 「超対称が自発的に破れている」

Nuclear Physics B416 (1994) 46-62 North-Holland NUCLEAR PHYSICS B

R-symmetry breaking versus supersymmetry breaking

Ann E. Nelson

Department of Physics 0319, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0319, USA

Nathan Seiberg

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849, USA

Received 24 September 1993 Accepted for publication 19 November 1993

(安倍研の Activity で紹介したものです。)

「R 対称性の破れ」 ⇒ 「超対称の破れ」

先ほど紹介した論文に関連して、以下の論文を読む[1]。

Spontaneous R-symmetry breaking in O'Raifeartaigh models		
David Shih (Harvard U., Phys. Dept.) Mar, 2007		
19 pages Published in: JHEP 02 (2008) 091 e-Print: hep-th/0703196 (hep-th) DOI: 10.1088/1126-6708/2008/02/091 View in: AMS MathSciNet, ADS Abstract Service		
⚠ pdf	reference search	→ 185 citations

論文の概要

- Nelson & Seiberg によれば、SUSY を破るためには、(R 対称性を理論がもっているなら) それを破らなくてはならない。
- この論文では、モデルの摂動ダイナミクス自体 (ループ補正) で R 対称性を破ることを考える。
- また、R 電荷に条件がつくことが分かる。

自発的対称性の破れ

n 個の場 $\Phi_i(x)$ が作るポテンシャル $V(\Phi_1,\cdots,\Phi_n)$ の極小値に興味がある。 その極小な点 (準安定点) を**真空** $\langle \Phi_i \rangle$ といい、その真空からの揺らぎ $\tilde{\Phi}_i$ を考える。

$$\Phi_i = \langle \Phi_i \rangle + \tilde{\Phi}_i$$

超対称性の自発的破れ

カイラル多重項 $\Phi=\phi,\psi,F$ 。この多重項に含まれている粒子の間を

$$Q\phi = \cdots$$

のように変換するのが、(無限小) <mark>超対称変換</mark>。この変換で不変な理論のことを超対称な理論と言う。

本論

 m_X^2 の計算

まとめ

その他

A. 目次

イントロダクション

本論

まとめ

付録

目次

参考文献

参考文献

- $[1] \quad D. \ Shih, \textit{Spontaneous R-symmetry breaking in O'Raifeartaigh models}, \ \textbf{JHEP 02} \ (2008) \ 091, \ \ arXiv: hep-th/0703196.$
- [2] A. E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B 416 (1994) 46–62, arXiv:hep-ph/9309299.