

Направленные микрофоны

В случае если в выделенном помещении открыта (приоткрыта) форточка или фрамуга, для прослушивания ведущихся в нем разговоров могут использоваться направленные микрофоны. Разведка может вестись из соседних зданий или автомашин, находящихся на автостоянках, прилегающих к зданию.

В основном используются три вида направленных микрофонов: параболические (рефлекторные), трубчатые (интерференционные) и плоские микрофонные решетки.

Параболический микрофон (рис. 1) [1] имеет параболический отражатель, в фокусе которого размещается микрофонный капсюль с ненаправленной или однонаправленной характеристикой направленности (XH). Такие микрофоны иногда называют рефлекторными.

Звуковые волны, пришедшие с осевого направления параболы, отражаются от отражателя и благодаря свойствам параболы после отражения концентрируются в фазе в ее фокусе, где расположен микрофонный капсюль. Звуковые волны, приходящие под углом к оси параболы, рассеиваются рефлектором, не попадая на микрофон. В рефлекторной системе XH сильно зависит от частоты и изменяется от практически ненаправленной на низких частотах (при диаметре рефлектора меньше длины звуковой волны) до узкого лепестка на высоких частотах. Частотная характеристика чувствительности таких микрофонов имеет подъем в сторону высоких частот с крутизной порядка 6 дБ на октаву, который обычно компенсируется или электронным

методом (например, эквалайзером), или специальной конструкцией капсюля [1, 2].

Внешний вид некоторых параболических микрофонов представлен на фото 1-3, а основные характеристики — в табл. 1-3 [5-7, 9, 15, 17].

Наиболее простым по конструкции является направленный микрофон «Супер Ухо -100» (ϕ omo 1) [5].

Параболический отражатель выполнен из пластика. В фокусе отражателя помещен электретный микрофон, подключенный к входу малошумящего усилителя низкой частоты. Встроенный 8-кратный бинокль позволяет точно навести микрофон на цель.

Микрофон имеет размеры $290\times150\times90$ мм и массу 1,2 кг. Питание микрофона осуществляется от батарейки типа «крона». Время работы от внутренней батарейки — до 60 ч.

Прослушивание перехватываемых разговоров осуществляется с использованием наушников. Микрофон имеет встроенный диктофон, позволяющий осуществлять запись перехваченных разговоров.

Диаграмма направленности микрофона — 10° , коэффициент усиления — 70 дБ, что обеспечивает перехват разговоров на открытой местности при низком уровне шума до 100 м. Частотный диапазон микрофона от 100 до 14 000 Гц. Качество направленного микрофона оценивается коэффициентом выигрыша в отношении «сигнал-помеха» за счет пространственной селекции $K_{\text{им}}$ дБ.

Для параболического микрофона данный коэффициент

Puc. 1. Схема параболического направленного микрофона

Фото 1. Направленный микрофон «Супер Ухо – 100»

 K_{nM} дБ, рассчитывается по формуле:

$$K_{nm} \approx 10 lg(1, 2 \times 10^{-4} \times S_{omp} \times f^2), \tag{1}$$

где S_{omp} – площадь отражателя микрофона, м²; f – частота сигнала, Γ ц.

Как видно из формулы (1), чем больше площадь отражателя, тем больше значение коэффициента $K_{\scriptscriptstyle \mathrm{DM}}$.

Следовательно, дальность перехвата разговоров во многом зависит от диаметра отражателя. Например, для одних и тех же условий при диаметре отражателя 60 см (микрофон РКІ 2915) дальность перехвата разговора составляет 100 м, а при диаметре 85 см (микрофон РКІ 2920) — 150 м. Параболические микрофоны чаще всего маскируются под антенны спутникового телевидения и устанавливаются на балконах домов.

Микрофоны «бегущей волны» (интерференционные), часто называемые трубчатыми микрофонами, состоят из трубки с отверстиями или прорезями, на заднем торце которой расположен ненаправленный или однонаправленный микрофонный капсюль (рис. 2) [1].

Отверстия (прорези) в трубке закрыты тканью или пористым материалом, акустическое сопротивление которого

возрастает по мере приближения к капсюлю. Обострение ХН достигается из-за интерференции парциальных звуковых волн, проходящих через отверстия трубки. При движении фронта звука параллельно оси трубки все парциальные волны приходят к подвижному элементу одновременно, в фазе. При распространении звука под углом к оси эти волны доходят до капсюля с различной задержкой, определяемой расстоянием от соответствующего отверстия до капсюля, при этом происходит частичная или полная компенсация давления, действующего на подвижный элемент. Заметное обострение ХН в таких микрофонах начинается с частоты, где длина трубки больше половины длины звуковой волны. С увеличением частоты ХН еще больше обостряется. Поэтому даже при значительной длине таких микрофонов, которая может достигать метра и даже более, ХН на частотах ниже 150 - 200 Гц определяется только капсюлем и обычно близка к кардиоиде или суперкардиоиде.

Трубчатые направленные микрофоны по сравнению с параболическими более компактные и используются в основном в случаях, когда необходимо обеспечить скрытность прослушивания разговоров. С использованием таких мик-

Таблица 1. Основные характеристики направленных параболических микрофонов PKI 2915 и PKI 2920

	Тип микрофона		
Характеристика	PKI 2915	PKI 2920	
Диаметр отражателя, м	0,60	0,85	
Масса, кг	0,38	0,40	
Дальность перехвата разговоров, м	100	150	
Питание	встроенный аккумулятор 9 В		

Таблица 2. Основные характеристики параболических микрофонов Super Sound Zoom и PR-1000

	Тип микрофона		
Характеристика	Super Sound Zoom	PR-1000	
Размеры, мм	290×150×90	500×500×400	
Диапазон частот, кГц	0,5 - 14	0,2 - 14	
Чувствительность, мВ/Па	4	20	
Масса, кг	1,2	1,5	

Фото 2. Внешний вид параболических направленных микрофонов

Фото 3. Внешний вид параболических направленных микрофонов

рофонов разведку можно вести как из автомобиля, так и из окна расположенного напротив здания.

Внешний вид некоторых трубчатых микрофонов представлен на ϕ omo 4-7, а основные характеристики — в maбл. 4, 5 [6, 9, 16, 17].

К типовым трубчатым микрофонам относится направленный микрофон РКІ 2925 (ϕ omo 4) [6]. Общая длина микрофона с трубкой 35 см составляет 85 см, масса - 525 г. Питание микрофона осуществляется от аккумуляторной батареи напряжением питания 3,6 В. Микрофон имеет встроенные фильтры высоких и низких частот.

Для ведения разведки используются и сверхминиатюрные микрофоны. Например, микрофон UEM-88 (фото 7) имеет размеры 229×25×13 мм и массу всего 65 г [9].

Для трубчатого микрофона коэффициент выигрыша в отношении «сигнал-помеха» за счет пространственной селек-

ции $K_{m_{M'}}$ дБ, рассчитывается по формуле:

$$K_{mM} >> 10lg(6, 1 \times 10^{-3} \times l \times f),$$
 (2)

где 1 – длина трубки, м.

Предельная максимальная дальность действия трубчатых микрофонов несколько меньше, чем параболических. Но в условиях города их возможности практически одинаковы. Так называемые «плоские» направленные микрофоны появились сравнительно недавно и представляют собой акустическую микрофонную решетку, включающую несколько десятков микрофонных капсюлей. Плоские микрофонные решетки также выпускаются в камуфлированном виде. Наиболее часто они камуфлируются под атташе-кейс, жилет или пояс.

Внешний вид некоторых плоских микрофонов представлен на ϕ ото 8-10, а их основные характеристики — в mабл. 6 [11, 14].

Рис. 2. Схема трубчатого (интерференционного) микрофона

Рис. 3. Простейший вариант схемы построения ЛАСР

Таблица 3. Основные характеристики параболических микрофонов Spectra G50 и Big Ears BE3K

	Тип микрофона		
Характеристика	Spectra G50	Big Ears BE3K	
Размеры, мм	500×500×400	750×750×400	
Диапазон частот, кГц	0,1 - 15	0,1 – 15	
Чувствительность, мВ/Па	31	50	
Масса, кг	2	2,5	

Таблица 4. Характеристики направленных трубчатых микрофонов

Характеристика	Тип микрофона		
	YKN	AT-89	UEM-88
Частотный диапазон, Гц	500 - 10 000	60 - 12 000	200 — 15 000
Максимальный коэффициент усиления, дБ	66	93	50
Чувствительность, мВ/Па	20	70	
Размеры, мм	310×30	355×70	229×25×13
Масса, г	130	473	65
Напряжение питания, В	3	9	1×AAA
Время работы от аккумулятора, ч	30	4-6	100
Дальность перехвата разговоров, м	100	100	

Фото 4. Внешний вид трубчатого направленного микрофона РКІ 2925

Фото 5. Внешний вид трубчатого направленного микрофона YKN

Рис. 4. Вариант схемы построения ЛАСР с использованием сплиттера (делителя) пучка

Фото 6. Внешний вид трубчатого направленного микрофона Sennheiser MKH 70 P48

Фото 7. Миниатюрный направленный микрофон UEM-88

Фото 9. Плоский направленный микрофон 40ТА

Коэффициент выигрыша в отношении «сигнал-помеха» за счет пространственной селекции для микрофонных решеток $K_{\scriptscriptstyle \mathit{ПЛМ}}$, дБ, рассчитывается по формуле, аналогичной (2)

$$K_{\text{\tiny PMM}} >> 10 lg(1, 2 \times 10^{-4} \times S_a \times f^2),$$
 (3)

где S_a – площадь приемной апертуры микрофона, м². Максимальная дальность действия направленных микрофонов в условиях города не превышает 100 - 150 м, за городом при низком уровне шумов дальность разведки может составлять до 500 м и более.

Лазерные акустические системы разведки

Если окна и форточки в выделенном помещении будут закрыты, прослушать разговоры, ведущиеся в нем, с использованием направленных микрофонов невозможно. Одна-

ко в этом случае возможно прослушивание разговоров с использованием лазерных акустических систем разведки (ЛАСР), иногда называемых «лазерными микрофонами». Существуют несколько схем построения ЛАСР [3, 13].

На puc. 3 изображен простейший вариант подобной системы. Луч лазера падает на стекло окна под некоторым углом. На границе стекло - воздух происходит модуляция луча звуковыми колебаниями. Отраженный луч улавливается фотодетектором, расположенном на оси отраженного луча, и осуществляется амплитудная демодуляция отраженного излучения. Система довольно простая, но требует тщательной юстировки и на практике используется довольно редко.

Второй способ, использующий сплиттер (делитель) пучка, несколько сложнее, но он позволяет совместить лазер и де-

Таблица 5. Характеристики трубчатых микрофонов

Характеристика	Тип микрофона			
Aupukiepheinku	AT4071A	MKH 70 P48	KMR 82i	MFC800
Диапазон частот, кГц	0,03 - 20	0,05 - 20	0,02 - 20	0,02 - 20
Чувствительность, мВ/Па	89,1	50	21	18
Размеры, мм	395×21×21	410×25×25	395×21×21	500×25×250
Масса, г	155	180	250	350

a

Таблица 6. Основные характеристики микрофонных решеток

Характеристика	Тип микрофона		
	40TA	SPS-980	
Количество микрофонов	64	36	
Диапазон частот, кГц	0,05 - 6,6	0,02 - 20	
Чувствительность, мВ/Па	50 (4)	50	
Динамический диапазон, дБА	32 (40) - 134 (174)	30 - 128	
Размеры решетки, мм	175×175	Ø1000	

Фото 11. Лазерная акустическая система разведки SIM-LAMIC: а – упакованная в кейсе; б – в развернутом состоянии

тектор (puc. 4). Отпадает необходимость в тщательной юстировке системы. Применение сплиттера позволяет свести падающий и отраженный луч в одну точку.

В целях повышения чувствительности используется интерференционная схема, представленная на *puc. 5a.* Интерферометр, представленный на этом рисунке, имеет плечи равной длины и называется «Dual Beam LASER Mic».

Главный принцип этой схемы — дифференциальный метод измерения акустической вибрации. Участок оконного стекла, с которого снимается вибрация, имеет малый размер, следовательно, резко ослабляется синфазная помеха,

вызываемая низкочастотными колебаниями стекла, например, из-за ветра или уличных шумов.

Приемник излучения может иметь свою оптическую систему, как показано на puc. 5б.

Принцип работы ЛАСР для систем с разделением луча (Single Split beam) можно представить следующим образом: когерентный луч лазера расщепляется разделительным стеклом (особое стекло со специальным покрытием толщиной в десятки нанометров пропускает 50% и отражает 50% света определенной длины волны) на 2 части: опорный луч и излучаемый. При отражении излучаемого луча от оконного

Фото 10. Микрофонная решетка BSWA-TECH SPS-980

Фото 12. Лазерная акустическая система разведки Laser-3500

Фото 13. Лазерная акустическая система разведки PKI 3100 (приемо-передающий блок)

Таблица 8. Основные характеристики лазерных акустических систем разведки

Характеристика	Тип системы			
	LASR-2000	Laser-3500	MR-7800	
Лазерный передатчик				
Тип лазера		полупроводниковый		
Длина волны, мкм	0,75 – 0,84	1,75 — 1,84	0,77 - 0,84	
Мощность излучения, мВт	5	5	25	
Фокусное расстояние объектива, мм	135	135	135	
Питание, В	8×1,5 (AA)	8×1,5 (AA)	8×1,5 (AA)	
Время работы, ч	50	40	40	
Приемник лазерного излучения				
Тип приемника	малошумящий PIN-диод; ближний ИК			
Фокусное расстояние объектива, мм	500	500	500	
Питание, В	9	12	12	
Время работы, ч.	15 – 30	15 – 50	40 - 60	
Примечание	камуфлируется под стандартную зеркальную камеру; габариты 470×380×220 мм; масса 10,5 кг без батарей и треног			

Таблица 7. Основные характеристики лазерных акустических систем разведки

	Тип системы		
Характеристика	SIM-LAMIC	Laser-3000 (PKI 3100)	
Лазерный передатчик			
Тип лазера		Полупроводниковый	
Длина волны, мкм	0,82	0,88	
Мощность излучения, мВт	5	10	
Рассходимость луча, мрад		0,5	
Фокусное расстояние объектива, мм	135	135	
Питание, В	8×1,5 (AA)	4×1,5 (AA)	
Время работы, ч	50	50	
	Приемник лазерного излу	чения	
Тип приемника	M	алошумящий PIN-диод	
Длина волны, мкм		ближний ИК	
Фокусное расстояние объектива, мм	500	135 (1:2,8)	
Питание, В	12	4×1,5 (AA)	
Время работы, ч.	50 – 100	50	
Примечание	камуфлируется под стан- дартную зеркальную ка- меру; передатчик и прием- ник устанавливаются на треноге; не требует юсти- ровки	размеры приемо-передающего блока $130\times220\times60$ мм; масса 1,6 кг; усилительный блок (коэффициент усиления: 100 дБ; эквалайзер: 300 , 600 , 1200 , 2400 , 4800 Гц; диапазон регулировки ±10 дБ; размеры $250\times280\times50$ мм; масса $8,2$ кг)	

стекла или триппель-призмы, установленной на нем, происходит его модуляция звуковой частотой. Отраженный промодулированный луч направляется на фоторезистор, где интерферирует с опорным лучом. Сигнал с фоторезистора после специальной обработки усиливается и подается для прослушивания на головные телефоны или записывается на цифровой диктофон. Применение последних интерференционных схем возможно только в том случае, если луч лазера отражается в направлении его источника. А это возможно, если ЛАСР и облучаемое окно находятся на одной высоте и оконное стекло расположено перпендикулярно лучу лазера или на оконном стекле установлена триппель-призма. Во всех остальных случаях в направлении на детектор отражается

незначительное количество диффузно рассеянного излучения и дальность ведения разведки резко снижается.

В целях обеспечения скрытности работы в Λ ACP используются лазеры, работающие в ближнем инфракрасном, не видимом глазу диапазоне длин волн (0,75 — 1,1 мкм).

Внешний вид некоторых ЛАСР приведен на ϕ omo 11 — 13, а их характеристики — в maбл. 7, δ [6, δ — 10, δ 16 — 18].

К типовой лазерной акустической системе разведки относится система SIM-LAMIC (фото 11), которая состоит из передатчика, на основе полупроводникового лазера мощностью 5 мВт, работающего в диапазоне 0,82 мкм (фокусное расстояние объектива 135 мм), и приемника лазерного излучения на основе малошумящего PIN-диода (фокусное расстояние объектива 500 мм), закамуфлированного под стандартную зеркальную камеру. Передатчик и приемник устанавливаются на специальных треногах. При переноске вся система размещается в обычном кейсе [17]. Аналогичная система, но работающая в диапазоне длин волн от 1,75 — 1,84 мкм, представлена на фото 12 [12].

В системе РКІ 3100 [6, 10] в отличие от SIM-LAMIC лазер и приемник оптического излучения размещены в одном приемо-передающем блоке (модуле) (ϕ omo 13). Мощность лазера 10 мВт, длина излучения 0,88 мкм, расходимость луча лазера 0,5 мрад. При такой расходимости размер пятна лазерного излучения на расстоянии 100 м составит 5 см.

Дальность действия лазерных акустических систем развед-

Широкий спектр услуг по защите информации

125319, Россия, Москва, Часовая ул., д. 6/2 Тел.: +7-495-708-15-52/53, Факс:+7-495-708-15-68 info@ooovarus.ru http://www.ooovarus.ru

ки при приеме диффузно отраженного излучения не превышает нескольких десятков метров. При приеме зеркально отраженного луча дальность разведки может составлять несколько сот метров, а при использовании триппель-призм она может превышать 500 м.

Литература

- 1. Вахитов Ш. Современные микрофоны и их применение/ М.: Paguo, 1998, № 11 и 12 [Электронный ресурс]. Режим доступа: http://chipinfo.ru/literature/radio/199811/p16_18.html.
- 2. Каторин Ю.Ф., Куренков Е.В., Лысов А.В., Остапенко А.Н. Большая энциклопедия промышленного шпионажа. Спб.: OOO «Издательство Полигон», 2000. 856 с.
- 3. Лазерный микрофон. Опубликовано: 12.07.2001. [Электронный ресурс]. Режим доступа: http://daily.sec.ru.
- 4. Лысов А.В. Лазерные микрофоны универсальное средство разведки или очередное поветрие моды? Опубликовано 19.07.2000. [Электронный ресурс]. Режим доступа: http://daily.sec.ru.
- 5. Микрофон направленного действия с биноклем «Супер Ухо—100». [Электронный ресурс].— Режим доступа: http://www.se.455.ru/index.php.
- 6. Anti terror equipment: catalog. Germany: PKI Electronic Intelligence, 2008. 116 р. + [Электронный ресурс]. Режим gocmyna:http://www.pki-electronic.com/index.php?Catalogue.
- 7. Audio spy microphones [Электронный ресурс]. Режим gocmyna: http://www.gia-servizi.com/prodotti/indexen.htm.
- 8. Audio Surveillance [Электронный ресурс]. Режим доступа: http://www.gcomtech.com/default.aspx.
- 9. Audio Surveillance [Электронный ресурс]. Режим gocmyna: http://www.brickhousesecurity.com/covert-audio-surveillance. html.
- 10. Audio surveillance [Электронный ресурс]. Режим gocmyna: http://www.pki-electronic.com/index.php?Audio_ Surveillance.
- 11. BSWA Technology: product Catalogue. China, BSWA Technology Co., Ltd, 2008. 29 р. + [Электронный ресурс]. Режим gocmyna: http://www.bswa-tech.com.
- 12. Laser-3500 Laser Room Monitoring System [Электронный ресурс]. Режим gocmyna: http://www.spyzones.com/laser. html.
- 13. Laser microphone [Электронный ресурс]. Режим доступа: http://cxem.net/ik/ik2.php.
- 14. Microphone array [Электронный ресурс]. Режим gocmyna: http://www.gras.dk/redir/?Id=252&lang=uk.
- 15. Parabolic-microphones SME PR-1000 [Электронный ресурс]. Режим gocmyna: http://mineroff-nature.com
- 16. Ricevitori e Mini Registratori Audio [Электронный ресурс]. Режим gocmyna: http://www.selavio.com/prodotti/ricevitori-audio.
- 17. Special Equipment. Germany: SIM Security & Electronic System gmbh, 2006. 65 p.
- 18. Spy equipment [электронный ресурс]. Режим gocmyna: http://www.brickhousesecurity.com/spy-gear.html.