

只要求掌握集成运放在线性区的应用

当信号从 $U_$ 进来时

如何引入? \longleftarrow 工作在负反馈状态 \longrightarrow 做法: R_f 接在 U_{-} 和 U_{0} 之间

反馈: 利用反馈元件把输出的一部分返送回输入端去影响输入

注意1: u_0 必须在[- U_{om} , + U_{om}]才能正常运算;

注意2: R₂是用于保证输入端差动电路的对称性;

平衡电阻R2=另一个输入端除源后的等效电阻

$$u_o = -\frac{R_f}{R_l} u_i$$
 反馈 路径

$$R_2 = R_1 / / R_f$$

只要求掌握集成运放在线性区的应用 无论信号从 U_{-} 或 U_{+} 进

如何引入? \longleftarrow 工作在负反馈状态 \longrightarrow 做法: R_f 接在 U_{\bullet} 和 U_{\circ} 之间

利用反馈元件把输出的一部分返送回输入端去影响输入

$$u_{+} = u_{i}$$

$$u_{o} = (1 + \frac{R_{f}}{R_{1}})u_{i}$$

$$\mathbf{R}_{2} = \mathbf{R}_{1}//\mathbf{R}_{0}$$

思考:如何实现 $u_0=u_i$?

半衡电阻
$$R_2 = R_1 / R_f$$

同相输入的 通用表达式 $u_o = (1 + \frac{R_f}{R_1})u_+$

 u_+ 与 u_i 的关系要看具体电路

方法2: 两节点电压公式

当输入个数更多时,用方法二更好

$$U_{O} = \left(1 + \frac{R_{f}}{R_{1}}\right) \frac{\frac{U_{I1}}{R_{2}} + \frac{U_{I2}}{R_{3}} + \frac{U_{I3}}{R_{4}}}{\frac{1}{R_{2}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}}}$$

$$U_{+} = \frac{\sum \frac{U_{S}}{R}}{\sum \frac{1}{R}} = \frac{\frac{U_{I1}}{R_{2}} + \frac{U_{I2}}{R_{3}} + \frac{U_{I3}}{R_{4}}}{\frac{1}{R_{2}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}}}$$

思考: 同相加法运算的缺点?

U_+ 与各个输入信号的关系较为复杂

$$R_1 / / R_f = R_2 / / R_3 / / R_4 / / R_5$$
 电阻相互影响

缺点: 无法灵活的调整比例关系

还有什么方法可以实现同相加法?

办法:用反相加法+反相比例的组合电路实现同相加法运算。

通用公式

$$u_o = (1 + \frac{R_f}{R_1})u_+$$

方法2: 两节点电压公式

当输入个数更多时,用方法二更好

∵虚断/,=0

$$\therefore$$
 KCL: $I_1+I_2=I_f$

$$∵$$
 虚短 $\rightarrow U_{-}=U_{+}=I_{+}R_{3}=0$ 4

$$\frac{U_{I1} - U_{-}}{R_{1}} + \frac{U_{I2} - U_{-}}{R_{2}} = \frac{U_{-} - U_{O1}}{R_{f1}}$$

叠加原理
$$\leftarrow U_{O1} = \left(-\frac{R_{f1}}{R_1}U_{I1}\right) + \left(-\frac{R_{f1}}{R_2}U_{I2}\right)$$

集成芯片中通常集成多个运放,组合电路并不会增加成本。

注意: 四个集成运放可以共用驱动芯片的正负直流电源

特点: 信号从不同输入端进来

 U_{I1} : R_f 引入电压并联负反馈

 U_{I2} : R_f 引入电压串联负反馈

$$U_{O}$$
 $U_{O} = (1 + \frac{R_{f}}{R_{1}}) \frac{R_{3}}{R_{2} + R_{3}} U_{I2} - \frac{R_{f}}{R_{1}} U_{I1}$

输入端电阻平衡条件: $R_1 / R_f = R_2 / R_3$

$$U_{O} = \frac{R_{f}}{R_{1}} (U_{I2} - U_{I1}) \longleftrightarrow \frac{R_{2} = R_{1}}{R_{3} = R_{f}} \longrightarrow U_{O} = (\frac{R_{1} + R_{f}}{R_{1}}) \frac{R_{3}}{R_{2} + R_{3}} U_{I2} - \frac{R_{f}}{R_{1}} U_{I1}$$

原理: R_1 R_2 U_+ R_3 U_0 , U_0 , U_0 , U_0 $U_$

$$R_1$$
 R_2
 R_3
 U_{I2}
 U_0
 U_0
 U_0
 U_0
 U_0
 U_0
 U_0

集成运放在线性区的应用

特点: R_f 接在 U_{-} 和 U_{0} 之间——负反馈状态

运算电路: 反相比例运算、同相比例运算、

反相加法运算、同相加法运算、减法运算

反相比例运算电路

同相比例运算电路

如何区分? 如何计算?

集成运放在线性区的应用

特点: R_f 接在 U_{-} 和 U_{0} 之间——负反馈状态

运算电路: 反相比例运算、同相比例运算、

反相加法运算、同相加法运算、减法运算

区分方法: 看输入信号

单一信号

从 U_{-} 输入 \longrightarrow 反相比例运算

从 U_+ 输入 \longrightarrow 同相比例运算

输入信号

多个信号

全部从 U_{-} 输入 \longrightarrow 反相加法运算

全部从 U_+ 输入 \longrightarrow 同相加法运算

部分从 U_{-} 输入;部分从 U_{+} 输入 \longrightarrow_{i}^{U}

