

TEXAS TECH UNIVERSITY SYSTEM[®]

1. Overview

Dimensionality reduction is an important technique in ML when we are dealing with high-dimensional data. It aims to preserve as much relevant information possible While reducing the number of features and dimension

Reasons for Reducing Dimensionality:

- Curse of dimensionality
- Feature extraction
- Data visualization
- Computational efficiency

Methods:

- Principal Component Analysis (PCA)
- Kernel-PCA
- Multidimensional Scaling (MDS)
- Isometric Feature Mapping (ISOMAP)
- Etc.

2. Principal Component Analysis (PCA)

- PCA is an **orthogonal projection** of data onto a lower dimensional linear space known as the principal subspace, aiming to **maximize the variance** of the **projected data**.
 - **Eigenvalues** represent the amount of variance carried in each principal component
 - Eigenvectors define the directions of maximum variance
- Resulting components are **uncorrelated**, meaning that new features (principal components) provide independent information.
 - Covariance between any pair of components is zero
- Important to note that PCA might not be effective if the data exhibits **non-linear** relationships.
 - Data may lie on complex manifolds

3. How does PCA work?

1. Calculate Mean:

$$\mu_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$

2. Calculate Covariance Matrix

$$s = \begin{bmatrix} cov(x_1, x_1) & cov(x_1, x_2) \\ cov(x_2, x_1) & cov(x_2, x_2) \end{bmatrix}$$

$$cov(x_1, x_1) = \frac{1}{N-1} \sum_{k=1}^{N} (x_{ij} - \mu_j)^T (x_{ij} - \mu_j)$$

3. Find Eigenvalues

 $0 = \det(s - \lambda I)$, where I is the identity matrix

4. Find Eigenvectors

$$u = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} = (S - \lambda I)u$$

$$e_1 = \begin{bmatrix} \frac{u_1}{\|u\|} \\ u_2 \end{bmatrix}$$

$$\frac{u_1}{\|u\|}$$

5. Compute the PCA component

$$e_1^T \begin{bmatrix} x_{1k} - \mu_1 \\ x_{2k} - \mu_2 \end{bmatrix}$$

Reduce l from 2 to 1

Features	X1	X2	X3	X4
X_1	4	8	13	7
<i>X</i> ₂	11	4	5	14

$$\mu_1 = 8$$
, $\mu_2 = 8.5$

$$cov(x_1, x_2) = \frac{1}{3} ((4-8)^2 + (8-8)^2 + (13-8)^2 + (7-8)^2) = 14$$

$$S = \begin{bmatrix} 14 & -11 \\ -11 & 23 \end{bmatrix}, \quad 0 = det[S - \lambda I], \quad 0 = det \begin{bmatrix} 14 - \lambda & -11 \\ -11 & 23 - \lambda \end{bmatrix}$$

$$0 = \lambda^2 - 37\lambda + 201$$
, $\lambda_1, \lambda_2 = 30.38, 6.62$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} (14 - \lambda)u_1 - 11u_2 \\ -11u_1 + (23 - \lambda)u_2 \end{bmatrix}$$

$$(14 - \lambda)u_1 = 11u_2$$
, $\frac{u_1}{11} = \frac{u_2}{14 - \lambda} = t$, $u_1 = 11t$, $u_2 = (14 - \lambda)t$

$$u = \begin{bmatrix} 11 \\ 14 - \lambda \end{bmatrix}$$
, $\lambda_1 = 30.38$, $||u|| = 19.7348$

$$e_1 = \begin{bmatrix} \frac{11}{19.7348} \\ \frac{14 - 30.38}{19.7348} \end{bmatrix} = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$

4. How does PCA work?

$$e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix}$$

$$e_1 = \begin{bmatrix} 0.5574 \\ -0.8303 \end{bmatrix} \qquad \qquad e_1^T \begin{bmatrix} x_{1k} - \mu_1 \\ x_{2k} - \mu_2 \end{bmatrix}$$

$$[0.5574 \quad -0.8303] \begin{bmatrix} x_{11} - 8 \\ x_{21} - 8.5 \end{bmatrix}$$

$$0.5574(4-8) - 0.8303(11-8.5) = -4.30535$$

Reduce l from 2 to 1

Features	X1	X2	X3	X4
X_1	4	8	13	7
<i>X</i> ₂	11	4	5	14
PC	-4.30535	3.7351	5.6928	-5.2238

5. Kernel PCA: Extension of PCA!

Extension of Traditional PCA:

• Adapts PCA for data with nonlinear relationships.

Utilizes Kernel Methods:

 Projects data into a higherdimensional feature space using a kernel function, allowing linear analysis techniques in this new space.

• Enhanced Capability:

• Capable of uncovering complex patterns in data that are not apparent in the original space.

• Nonlinear Dimensionality Reduction:

• Effectively reduces dimensions while preserving nonlinear structures in the data.

6. Kernel PCA

- Implicit Mapping to RKHS: Data x is mapped into a higher-dimensional space H without direct computation using $x \mapsto \phi(x)$. $k(x_i, x_j) = \exp(-\gamma ||x_i x_j||2)$.
- Use feature transformations to "linearize" the data
 - Via some specific choice of basis functions $\phi(X_n)$
 - Do PCA in this space

$$S = \frac{1}{N} \sum_{n=1}^{N} \mathbf{X}_n \mathbf{X}_n^T \qquad R = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{\phi}(\mathbf{x}_n) \boldsymbol{\phi}(\mathbf{x}_n)^T$$

- Gram Matrix K is central, computed as $K_{ij}=k(x_i,x_j)$ and used as a proxy for R.
 - $K\alpha = n\lambda\alpha$
- Normalize eigenvectors to ensure orthonormality in H. $\alpha^T K \alpha = n$

• Then project the data points onto the kernel PCA components
$$y(k) = \sum_{i=1}^{N} a_k(i)K(x, x_i)$$

7. Kernel-PCA Steps

Select Kernel Function:

• Choose a kernel based on data characteristics, commonly used kernels include polynomial, radial basis functions, and Gaussian.

• Compute Kernel Matrix *K*:

- Calculate the Gram matrix $K(i,j) = K(x_i,x_j)$ for all pairs i,j from 1 to n
- Use kernel approximations for large datasets

Eigenvalue Decomposition:

- Compute the *m* dominant eigenvalues λ_k and eigenvectors \boldsymbol{a}_k for $\mathbf{k} = 1, 2, ..., m$ of the kernel matrix K
- Perform the required normalization of the eigenvectors to ensure they form a proper basis in the feature space.

• Projection:

• Compute the m projections of the data onto each one of the dominant eigenvectors to achieve dimensionality reduction.

• Kernel Trick Explanation:

• Mapping data into a higher-dimensional space to make nonlinear features linearly separable, allow linear methods like PCA to be effective in this transformed space.

8. Kernel-PCA Steps

•
$$x_1 = (1,2)$$

•
$$x_2 = (2,3)$$

•
$$x_3 = (3,5)$$

$$K(x,y) = (1 + x^T y)^2$$

•
$$K(x_1, x_1) = (1 + [1, 2] \cdot [1, 2])^2 = (1 + 1 + 4)^2 = 36$$

•
$$K(x_1, x_2) = (1 + [1, 2] \cdot [2, 3])^2 = (1 + 2 + 6)^2 = 81$$

•
$$K(x_1, x_3) = (1 + [1, 2] \cdot [3, 5])^2 = (1 + 3 + 10)^2 = 196$$

•
$$K(x_2, x_2) = (1 + [2, 3] \cdot [2, 3])^2 = (1 + 4 + 9)^2 = 196$$

•
$$K(x_2, x_3) = (1 + [2, 3] \cdot [3, 5])^2 = (1 + 6 + 15)^2 = 484$$

•
$$K(x_3, x_3) = (1 + [3, 5] \cdot [3, 5])^2 = (1 + 9 + 25)^2 = 1225$$

kernel matrix K is:

$$K = egin{bmatrix} 36 & 81 & 196 \ 81 & 196 & 484 \ 196 & 484 & 1225 \end{bmatrix}$$

To center the kernel matrix in the feature space:

$$\tilde{K} = K - 1_n K - K 1_n + 1_n K 1_n$$

where 1_n is an n imes n matrix with all entries equal to $rac{1}{n}$ (in this case, $rac{1}{3}$).

$$ilde{K} = egin{bmatrix} 158.33 & 54.00 & -212.33 \ 54.00 & 19.67 & -73.67 \ -212.33 & -73.67 & 286.00 \end{bmatrix}$$

- Eigenvalues: $[462.72, 1.28, -1.52 \times 10^{-13}]$
- Eigenvectors:

$$\begin{bmatrix} -0.584 & -0.570 & -0.577 \\ -0.202 & 0.791 & -0.577 \\ 0.786 & -0.221 & -0.577 \end{bmatrix}$$

Projections:

$$\begin{bmatrix} -270.32 & -0.73 \\ -93.43 & 1.02 \\ 363.74 & -0.28 \end{bmatrix}$$

9. Comparison Between Kernel PCA and PCA

Objective:

Both aim to find principal components and reduce dimensionality.

• Data Handling:

- PCA: Works directly on raw data, best for linearly separable data.
- Kernel PCA: Transforms data into a higher-dimensional space, suited for nonlinear data.

Mathematical Approach:

- PCA: Involves eigendecomposition of the covariance matrix of the original data.
- Kernel PCA: Involves eigendecomposition of the kernel matrix, representing data in an implicitly defined feature space.

• Application:

- PCA: Effective for visualizing and understanding linear relationships.
- Kernel PCA: Preferable for complex datasets where linear methods fail to reveal inherent structures.

10. How does MDS work?

Primary Goal:

• Project high-dimensional data into a lower-dimensional space while preserving the pairwise distances between data points.

• Methodology:

- Involves computing a distance matrix representing the pairwise distances between all data points.
- Perform eigendecomposition of this distance matrix to identify the principal components.

Relation to PCA:

- When distances are Euclidean, MDS yields results equivalent to PCA, making it suitable for linear reductions.
- MDS provides a more flexible framework as it can work with any form of distance metric, enhancing its applicability to diverse datasets.

11. MDS Methodology

• Gram Matrix Construction:

• Construct the matrix *K*, which encapsulates either the squared Euclidean distances or the inner products between data points.

• Preserve Euclidean Distances:

- Optionally, MDS can be formulated specifically to preserve Euclidean distances among points, rather than just inner products.
- Useful when maintaining the directionality of data.

• Eigendecomposition:

- Perform eigendecomposition on the distance matrix to extract the principal components.
- This involves calculating the eigenvalues and eigenvectors of *K*.

12. Comparison Between MDS and PCA

Objective Comparison:

- MDS: Aims to preserve the distance relationships between data points in a lower-dimensional space.
- PCA: Focuses on maximizing variance and identifying directions of highest variance in the data.

• Methodological Approach:

- MDS: Works with a distance matrix that represents the dissimilarities (distances) among data points.
- PCA: Operates on a covariance matrix that reflects variances and correlations among features.

• Matrix Comparisons:

PCA: Utilizes the Correlation Matrix:

$$R_{\mathcal{X}} = \frac{1}{n} \sum X_k X_k^T = \frac{1}{n} X_k X_k^T$$

MDS: Uses the Gram Matrix:

$$K = XX^T$$

• Both matrices, R_x and K, share the same rank and eigenvalues, though their eigenvectors differ but are related.

13. Extension of MDS!

Overview of ISOMAP:

• An extension of Multidimensional Scaling (MDS) that aims to maintain the geodesic distances between points when projecting them into a lower-dimensional space.

Geodesic Distances:

- Euclidean distances fail to capture the intrinsic geometry when data resides on curved manifolds.
- Unlike traditional MDS that considers Euclidean distances, ISOMAP uses geodesic distances measured along the data's manifold.
- Example: For points on a circle, the geodesic distance is the arc length around the circle, not the straight-line chord distance.

14. ISOMAP Visualization

Figure 3: Spiral showcasing difference between Euclidean and Geodesic distances [2]

- Observing Euclidean distances, the points of closer distance is the circle and star shown by the green line compared to the purple line.
- However, if constrained to following the path of the spiral, the geodesic distance determines closeness.
- The star and the square are now closer in distance compared to that of the star and the circle shown by the red and orange lines, respectively.

15. ISOMAP Algorithm

Neighborhood Construction:

• Determine the nearest neighbors of each point, either by finding the *K* nearest neighbors or a radius-based approach.

• Graph Construction:

- Construct a graph by linking each data point to its neighbors.
- Label the edges with the Euclidean distances as weights between connected points.

Geodesic Distance Calculation:

• Compute shortest paths between all pairs of points in the neighborhood graph, typically using algorithms like Floyd-Warshall or Dijkstra's.

• Dimensionality Reduction:

• Apply classical MDS to the matrix of geodesic distances to project the data into a lower-dimensional space while preserving geodesic distances.

Conclusion

16. Overview of Techniques

- Kernel PCA (K-PCA):
 - Enhances traditional PCA by using kernel methods to reveal non-linear patterns, making it ideal for complex datasets where linear relationships are insufficient.
- Multidimensional Scaling (MDS):
 - Preserves the pairwise distances between data points during dimensionality reduction, suitable for visualizing and exploring data structure in a lower-dimensional space.
- Isometric Feature Mapping (ISOMAP):
 - Extends MDS by approximating geodesic distances on a manifold, perfect for data embedded on curved surfaces, maintaining global geometries effectively.
- Together, these techniques simplify high-dimensional data analysis by retaining crucial structural information, aiding in the insightful exploration of data across various applications.

References

- 1. Bishop, C. M. (2009). Pattern Recognition and Machine Learning. Springer.
- 2. Theodoridis, S., & Koutroumbas, K. (2009). *Pattern Recognition, 4th Edition*. Academic Press.

Questions?