NOTAÇÕES

 \mathbb{N} : conjunto dos números naturais \mathbb{C} : conjunto dos números complexos

conjunto dos números inteiros

i: unidade imaginária, $i^2 = -1$

conjunto dos números reais

|z|: módulo do número $z \in \mathbb{C}$

conjunto das matrizes reais $m \times n$ $\mathbb{M}_{m\times n}(\mathbb{R})$:

Re z: parte real do número $z \in \mathbb{C}$

 $\det(M)$: determinante da matriz M

 $[a,b]: \{x \in \mathbb{R}; \ a \le x \le b\}$

 M^t : transposta da matriz M

 $[a, b[: \{x \in \mathbb{R}; a \le x < b\}]$

 $A \setminus B : \{x : x \in A \in x \notin B\}$

|a,b|: $\{x \in \mathbb{R}; \ a < x < b\}$

$$\sum_{n=0}^{k} a_n x^n : \quad a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k, \ k \in \mathbb{N}$$

$$\sum_{n=0}^{k} a_n : \quad a_0 + a_1 + a_2 + \dots + a_k, \ k \in \mathbb{N}$$

Arg z: argumento principal de $z \in \mathbb{C} \setminus \{0\}$, Arg $z \in [0, 2\pi]$

 A^C : conjunto (evento) complementar do conjunto (evento) A

 \overline{AB} : segmento de reta unindo os pontos A e B

 \overrightarrow{ABC} : ângulo formado pelos segmentos \overline{AB} e \overline{BC} , com vértice no ponto B.

Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

Questão 01. Sejam $A, B \in C$ subconjuntos de um conjunto universo U. Das afirmações:

I.
$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$$
;

II.
$$(A \cap C) \setminus B = A \cap B^C \cap C$$
;

III.
$$(A \setminus B) \cap (B \setminus C) = (A \setminus B) \setminus C$$
,

é (são) verdadeira(s)

A () apenas I.

B () apenas II.

C () apenas I e II.

D () apenas I e III.

E () todas.

Questão 02. A soma das raízes da equação em \mathbb{C} , $z^8-17z^4+16=0$, tais que z-|z|=0, é

A () 1.

B () 2.

C () 3. D () 4. E () 5.

Questão 03. Considere a equação em \mathbb{C} , $(z-5+3i)^4=1$. Se z_0 é a solução que apresenta o menor argumento principal dentre as quatro soluções, então o valor de $|z_0|$ é

A () $\sqrt{29}$.

B () $\sqrt{41}$.

C () $3\sqrt{5}$.

E () $3\sqrt{6}$.

Questão 04. A soma de todos os números reais x que satisfazem a equação

$$8^{\sqrt{x+1}} + 44\left(2^{\sqrt{x+1}}\right) + 64 = 19\left(4^{\sqrt{x+1}}\right)$$

é igual a

A () 8.

B () 12.

C () 16. D () 18.

E () 20.

Questão 05. Se os números reais $a \in b$ satisfazem, simultaneamente, as equações

$$\sqrt{a\sqrt{b}} = \frac{1}{2}$$
 e $\ln(a^2 + b) + \ln 8 = \ln 5$,

um possível valor de $\frac{a}{b}$ é

A ()
$$\frac{\sqrt{2}}{2}$$
. B () 1. C () $\sqrt{2}$. D () 2. E () $3\sqrt{2}$.

C ()
$$\sqrt{2}$$
.

E ()
$$3\sqrt{2}$$
.

Questão 06. Considere as funções $f \in g$, da variável real x, definidas, respectivamente, por

$$f(x) = e^{x^2 + ax + b}$$
 e $g(x) = \ln\left(\frac{ax}{3b}\right)$,

em que a e b são números reais. Se f(-1)=1=f(-2), então pode-se afirmar sobre a função composta $g \circ f$ que

- A () $g \circ f(1) = \ln 3$.
- B () $\not\equiv g \circ f(0)$.
- C () $g \circ f$ nunca se anula.
- D () $g \circ f$ está definida apenas em $\{x \in \mathbb{R} : x > 0\}$.
- E () $q \circ f$ admite dois zeros reais distintos.

Questão 07. Considere funções $f, g, f + g : \mathbb{R} \to \mathbb{R}$. Das afirmações:

- I. Se f e g são injetoras, f + g é injetora;
- II. Se f e g são sobrejetoras, f + g é sobrejetora;
- III. Se f e g não são injetoras, f + g não é injetora;
- IV. Se f e g não são sobrejetoras, f + g não é sobrejetora,

é (são) verdadeira(s)

Questão 08. Seja n > 6 um inteiro positivo não divisível por 6. Se, na divisão de n^2 por 6, o quociente é um número ímpar, então o resto da divisão de n por 6 é

Questão 09. Considere a equação $\sum_{n=0}^{5} a_n x^n = 0$ em que a soma das raízes é igual a -2 e os coeficientes a_0, a_1, a_2, a_3, a_4 e a_5 formam, nesta ordem, uma progressão geométrica com $a_0=1$. Então $\sum_{n=1}^{5} a_n \text{ \'e igual a}$

B ()
$$-\frac{2}{3}$$
.

A ()
$$-21$$
. B () $-\frac{2}{3}$. C () $\frac{21}{32}$. D () $\frac{63}{32}$. E () 63.

D ()
$$\frac{63}{32}$$

Questão 10. Seja λ solução real da equação $\sqrt{\lambda+9}+\sqrt{2\lambda+17}=12$. Então a soma das soluções z, com Re z > 0, da equação $z^4 = \lambda - 32$, é

A ()
$$\sqrt{2}$$
.

B ()
$$2\sqrt{2}$$
. C () $4\sqrt{2}$. D () 4. E () 16.

C ()
$$4\sqrt{2}$$

Questão 11. Seja p uma probabilidade sobre um espaço amostral finito Ω . Se A e B são eventos de Ω tais que $p(A) = \frac{1}{2}$, $p(B) = \frac{1}{3}$ e $p(A \cap B) = \frac{1}{4}$, as probabilidades dos eventos $A \setminus B$, $A \cup B$ e $A^C \cup B^C$ são, respectivamente,

A ()
$$\frac{1}{4}$$
, $\frac{5}{6} e \frac{1}{4}$.

B ()
$$\frac{1}{6}$$
, $\frac{5}{6}$ e $\frac{1}{4}$.

$$C()\frac{1}{6}, \frac{7}{12} e^{\frac{3}{4}}.$$

D ()
$$\frac{1}{3}$$
, $\frac{5}{6}$ e $\frac{1}{3}$.

$$E() \frac{1}{4}, \frac{7}{12} e^{\frac{3}{4}}.$$

Questão 12. Considere os seguintes resultados relativamente ao lançamento de uma moeda:

- I. Ocorrência de duas caras em dois lançamentos.
- II. Ocorrência de três caras e uma coroa em quatro lançamentos.
- III. Ocorrência de cinco caras e três coroas em oito lançamentos.

Pode-se afirmar que

- A () dos três resultados, I é o mais provável.
- B () dos três resultados, II é o mais provável.
- C () dos três resultados, III é o mais provável.
- D () os resultados I e II são igualmente prováveis.
-) os resultados II e III são igualmente prováveis.

Questão 13. Considere $A \in M_{5x5}(\mathbb{R})$ com $\det(A) = \sqrt{6}$ e $\alpha \in \mathbb{R} \setminus \{0\}$. Se $\det(\alpha A^t A A^t) = \sqrt{6}\alpha^2$, o valor de α é

A ()
$$\frac{1}{6}$$
.

A ()
$$\frac{1}{6}$$
. B () $\frac{\sqrt{6}}{6}$. C () $\frac{\sqrt[3]{36}}{6}$. D () 1. E () $\sqrt{216}$.

C ()
$$\frac{\sqrt[3]{36}}{6}$$

E ()
$$\sqrt{216}$$
 .

Questão 14. Sejam a um número real e n o número de todas as soluções reais e distintas $x \in [0, 2\pi]$ da equação $\cos^8 x - \sin^8 x + 4 \sin^6 x = a$. Das afirmações:

I. Se
$$a = 0$$
, então $n = 0$;

II. Se
$$a = \frac{1}{2}$$
, então $n = 8$;

III. Se
$$a = \overline{1}$$
, então $n = 7$;

IV. Se
$$a=3$$
, então $n=2$,

é (são) verdadeira(s)

Questão 15. Se $\cos 2x = \frac{1}{2}$, então um possível valor de $\frac{\cot x - 1}{\csc(x - \pi) - \sec(\pi - x)}$ é

A ()
$$\frac{\sqrt{3}}{2}$$

A ()
$$\frac{\sqrt{3}}{2}$$
. B () 1. C () $\sqrt{2}$. D () $\sqrt{3}$. E () 2.

D ()
$$\sqrt{3}$$
.

Questão 22. Determine o maior domínio $D \subset \mathbb{R}$ da função

$$f: D \to \mathbb{R}$$
, $f(x) = \log_{x(\frac{\pi}{4} - x)} (4 \operatorname{sen} x \cos x - 1)$.

Questão 23. Considere o polinômio $P(m) = am^2 - 3m - 18$, em que $a \in \mathbb{R}$ é tal que a soma das raízes de P é igual a 3. Determine a raiz m de P tal que duas, e apenas duas, soluções da equação em x, $x^3 + mx^2 + (m+4)x + 5 = 0$, estejam no intervalo]-2, 2[.

Questão 24. Quantos tetraedros regulares de mesma dimensão podemos distinguir usando 4 cores distintas para pintar todas as suas faces? Cada face só pode ser pintada com uma única cor.

Questão 25. Considere o sistema na variável real x:

$$\begin{cases} x^2 - x = \alpha \\ x - x^3 = \beta. \end{cases}$$

- (a) Determine os números reais α e β para que o sistema admita somente soluções reais.
- (b) Para cada valor de β encontrado em (a), determine todas as soluções da equação $x x^3 = \beta$.

Questão 26. Considere o sistema nas variáveis reais $x \in y$:

$$\begin{cases} x \sin \alpha + 3y \cos \alpha = a \\ x \cos \alpha + y \sin \alpha = b, \end{cases}$$

com $\alpha \in [0, \frac{\pi}{2}[$ e $a, b \in \mathbb{R}$. Analise para que valores de α , a e b o sistema é (i) possível determinado, (ii) possível indeterminado ou (iii) impossível, respectivamente. Nos casos (i) e (ii), encontre o respectivo conjunto-solução.

Questão 27. Encontre os pares $(\alpha, \beta) \in]0, \frac{\pi}{2}[\times]0, \frac{\pi}{2}[$ que satisfazem simultaneamente as equações $(\operatorname{tg}\alpha + \operatorname{cotg}\beta) \cos \alpha \, \operatorname{sen}\beta - 2 \cos^2(\alpha - \beta) = -1$ e $\sqrt{3}\operatorname{sen}(\alpha + \beta) + \cos(\alpha + \beta) = \sqrt{3}$.

Questão 28. Determine a área da figura plana situada no primeiro quadrante e delimitada pelas curvas

$$(y-x-2)(y+\frac{x}{2}-2)=0$$
 e $x^2-2x+y^2-8=0$.

Questão 29. Em um triângulo de vértices A, B e C, a altura, a bissetriz e a mediana, relativamente ao vértice C, dividem o ângulo $\stackrel{\wedge}{BCA}$ em quatro ângulos iguais. Se l é a medida do lado oposto ao vértice C, calcule:

- (a) A medida da mediana em função de l.
- (b) Os ângulos $\stackrel{\wedge}{CAB}$, $\stackrel{\wedge}{ABC}$ e $\stackrel{\wedge}{BCA}$.

Questão 30. Seja ABCDEFGH um paralelepípedo de bases retangulares ABCD e EFGH, em que A, B, C e D são, respectivamente, as projeções ortogonais de E, F, G e H. As medidas das arestas distintas AB, AD e AE constituem uma progressão aritmética cuja soma é 12 cm. Sabe-se que o volume da pirâmide ABCF é igual a 10 cm^3 . Calcule:

- (a) As medidas das arestas do paralelepípedo.
- (b) O volume e a área total da superfície do paralelepípedo.