Low Temperature Physics (E/A) - physics731

Course	Low Temperature Physics (E/A)
Course No.	physics731

		Teaching			
Category	Type	Language	hours	\mathbf{CP}	Semester
Elective	Lecture with exercises	English	3+1	6	WT/ST

Requirements for Participation:

Preparation: Elementary thermodynamics; principles of quantum mechanics; introductory lecture on solid state physics

Form of Testing and Examination: Requirements for the examination (written or oral): successful work with the exercises

Length of Course: 1 semester

Aims of the Course: Experimental methods at low (down to micro Kelvin) temperatures; methods of refrigeration; thermometry; solid state physics at low temperatures

Contents of the Course: Thermodynamics of different refrigeration processes, liquefaction of gases; methods to reach low (< 1 Kelvin) temperatures: evaporation cooling, He-3-He-4 dilution cooling, Pomeranchuk effect, adiabatic demagnetisation of atoms and nuclei; thermometry at low temperatures (e.g. helium, magnetic thermometry, noise thermometry, thermometry using radioactive nuclei); principles for the construction of cryostats for low temperatures

Recommended Literature:

- O.V. Lounasmaa; Experimental Principles and Methods Below 1K (Academic Press, London 1974)
- R.C. Richardson, E.N. Smith; Experimental Techniques in Condensed Matter Physics at Low Temperatures (Addison-Wesley 1988)
- F. Pobell, Matter and Methods at Low Temperatures (Springer-Verlag, Heidelberg 2. Aufl. 1996)

PDF version of this page.