Министерство образования Российской Федерации ФГБОУ ВО Курский государственный университет

Кафедра алгебры, геометрии и теории обучения математике

Вычислительная математика

учебно-методического обеспечение для самостоятельной работы обучающихся по направлению 02.03.03 Математическое обеспечение и администрирование информационных систем

Составители: Селиванова И.В.

Самостоятельная работа по данной дисциплине состоит в разработке алгоритма решения оставленной задачи и его программной реализации, подготовке ответов на контрольные вопросы

ЛАБОРАТОРНЫЕ РАБОТЫ

Лабораторная работа №1

Решение нелинейного уравнения методом половинного деления

Цель: Изучение особенностей применения метода половинного делания к решению нелинейного уравнения.

Задание:

- 1. Для данного уравнения с помощью Excel определить интервал изоляции корня (если их несколько, то выбрать один).
- 2. Разработать алгоритм и программу уточнения корня методом половинного деления.
- 3. Реализовать программу на любом языке программирования, визуализировав результат.

Номер варианта	Уравнение
1	$4x + e^x = 0$
2	$\lg x = 6 - 2x$
3	$x-1,2\cos\frac{x}{3}=0$
4	$(0,2x)^3 = \cos x$
5	$\ln x - \frac{1}{1 + x^2} = 0$
6	$\arccos x^2 - x = 0$

7	$arctg\left(\frac{1}{x}\right) - x^2 = 0$
8	$x - arctg\left(\frac{1}{x}\right) = 0$
9	$2 - x = \ln x$
10	$x + \lg x = 0,5$

Контрольные вопросы:

- 1. Условие применимости метода половинного деления.
- 2. Погрешность метода половинного деления. Методы ее вычисления.

Литература:

Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах: учеб. пособие - СПб.: Лань, 2008.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. - Численные методы: учеб. пособие для вузов, рек. МО РФ - М.: БИНОМ. Лаборатория знаний, 2011.

Вержбицкий В.М. - Численные методы: Линейная алгебра и нелинейные уравнения: Учеб. пособие для вузов. - М.: Высш. шк., 2000.

Демидович Б.П., Марон И.А., Шувалова Э.З. - Численные методы анализа: приближение функций, дифференциальные и интегральные уравнения: учеб. пособие - СПб.: Лань, 2008.

Волков Е.А. - Численные методы: учеб. пособие - СПб.: Лань, 2008.

Ращиков В. И. - Численные методы. Компьютерный практикум - Москва: МИФИ, 2010.

Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. - Численные методы - Кемерово: Кемеровский государственный университет, 2011.

Пименов В. Г., Ложников А. Б. - Численные методы - Екатеринбург: Издательство Уральского университета, 2014.

Балабко Л. В., Томилова А. В. - Численные методы - Архангельск: $CA\Phi Y,\ 2014.$

Орешкова М. Н. - Численные методы: теория и алгоритмы - Архангельск: $CA\Phi Y$, 2015.

Лабораторная работа №2

Решение нелинейного уравнения методами хорд, касательных и комбинированным методом

Цель: Изучение особенностей применения методов хорд, касательных и комбинированного метода к решению нелинейного уравнения.

Задание:

- 1. Разработать алгоритм и программу уточнения корня методом хорд.
- 2. Разработать алгоритм и программу уточнения корня методом Ньютона.
- 3. Разработать алгоритм и программу уточнения корня комбинированным методом.
- 4. Сравнить результаты вычислений.

Номер варианта	Уравнение
1	$4x + e^x = 0$
2	$\lg x = 6 - 2x$
3	$x-1,2\cos\frac{x}{3}=0$
4	$(0,2x)^3 = \cos x$
5	$\ln x - \frac{1}{1 + x^2} = 0$
6	$\arccos x^2 - x = 0$
7	$arctg\left(\frac{1}{x}\right) - x^2 = 0$
8	$x - arctg\left(\frac{1}{x}\right) = 0$
9	$2 - x = \ln x$

10	$x + \lg x = 0,5$

Контрольные вопросы:

- 1. Каковы условия применимости методов Ньютона и метода хорд?
- 2. В чем суть метода Ньютона?
- 3. В чем суть метода хорд?
- 4. В чем суть комбинированного метода?
- 5. Из какого конца следует проводить касательную в методе Ньютона?
- 6. Какой метод обычно дает самую быструю сходимость?

Литература:

Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах: учеб. пособие - СПб.: Лань, 2008.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. - Численные методы: учеб. пособие для вузов, рек. МО РФ - М.: БИНОМ. Лаборатория знаний, 2011.

Вержбицкий В.М. - Численные методы: Линейная алгебра и нелинейные уравнения: Учеб. пособие для вузов. - М.: Высш. шк., 2000.

Демидович Б.П., Марон И.А., Шувалова Э.З. - Численные методы анализа: приближение функций, дифференциальные и интегральные уравнения: учеб. пособие - СПб.: Лань, 2008.

Волков Е.А. - Численные методы: учеб. пособие - СПб.: Лань, 2008.

Ращиков В. И. - Численные методы. Компьютерный практикум - Москва: МИФИ, 2010.

Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. - Численные методы - Кемерово: Кемеровский государственный университет, 2011.

Пименов В. Г., Ложников А. Б. - Численные методы - Екатеринбург: Издательство Уральского университета, 2014.

Балабко Л. В., Томилова А. В. - Численные методы - Архангельск: $CA\Phi Y$, 2014.

Орешкова М. Н. - Численные методы: теория и алгоритмы - Архангельск: $CA\Phi Y$, 2015.

Лабораторная работа №3

Решение систем линейных уравнений методом Гаусса

Цель: Изучение алгоритма численного решения систем методом Гаусса.

Задание:

1. Разработать алгоритм и программу решения систем методом Гаусса.

Варианты заданий.

№	Система уравнений
745	**
	$4,003 \cdot x_1 + 0,207 \cdot x_2 + 0,519 \cdot x_3 + 0,281 \cdot x_4 = 0,425$
1	$0.416 \cdot x_1 + 3.273 \cdot x_2 + 0.326 \cdot x_3 + 0.375 \cdot x_4 = 0.021$
	$0.297 \cdot x_1 + 0.351 \cdot x_2 + 2.997 \cdot x_3 + 0.429 \cdot x_4 = 0.213$
	$0.412 \cdot x_1 + 0.194 \cdot x_2 + 0.215 \cdot x_3 + 3.628 \cdot x_4 = 0.946.$
	$2,591 \cdot x_1 + 0,512 \cdot x_2 + 0,128 \cdot x_3 + 0,195 \cdot x_4 = 0,159$
2	$0,203 \cdot x_1 + 3,469 \cdot x_2 + 0,572 \cdot x_3 + 0,162 \cdot x_4 = 0,280$
-	$0.256 \cdot x_1 + 0.273 \cdot x_2 + 2.994 \cdot x_3 + 0.501 \cdot x_4 = 0.134$
	$0.381 \cdot x_1 + 0.219 \cdot x_2 + 0.176 \cdot x_3 + 5.903 \cdot x_4 = 0.864.$
	$2,979 \cdot x_1 + 0,427 \cdot x_2 + 0,406 \cdot x_3 + 0,348 \cdot x_4 = 0,341$
	$0.273 \cdot x_1 + 3.951 \cdot x_2 + 0.217 \cdot x_3 + 0.327 \cdot x_4 = 0.844$
3	$0.318 \cdot x_1 + 0.197 \cdot x_2 + 2.875 \cdot x_3 + 0.166 \cdot x_4 = 0.131$
	$0.219 \cdot x_1 + 0.231 \cdot x_2 + 0.187 \cdot x_3 + 3.276 \cdot x_4 = 0.381.$
	$3,738 \cdot x_1 + 0,195 \cdot x_2 + 0,275 \cdot x_3 + 0,136 \cdot x_4 = 0,815$
4	$0.519 \cdot x_1 + 5.002 \cdot x_2 + 0.405 \cdot x_3 + 0.283 \cdot x_4 = 0.191$
7	$0.306 \cdot x_1 + 0.381 \cdot x_2 + 4.812 \cdot x_3 + 0.418 \cdot x_4 = 0.423$
	$0,272 \cdot x_1 + 0,142 \cdot x_2 + 0,314 \cdot x_3 + 3,935 \cdot x_4 = 0,352.$
	$4,855 \cdot x_1 + 1,239 \cdot x_2 + 0,272 \cdot x_3 + 0,258 \cdot x_4 = 1,192$
5	$1,491 \cdot x_1 + 4,954 \cdot x_2 + 0,124 \cdot x_3 + 0,236 \cdot x_4 = 0,256$
	$0,456 \cdot x_1 + 0,285 \cdot x_2 + 4,354 \cdot x_3 + 0,254 \cdot x_4 = 0,852$
	$0.412 \cdot x_1 + 0.335 \cdot x_2 + 0.158 \cdot x_3 + 2.874 \cdot x_4 = 0.862.$
	$5,401 \cdot x_1 + 0,519 \cdot x_2 + 0,364 \cdot x_3 + 0,283 \cdot x_4 = 0,243$
6	$0.295 \cdot x_1 + 4.830 \cdot x_2 + 0.421 \cdot x_3 + 0.278 \cdot x_4 = 0.231$
	$0.524 \cdot x_1 + 0.397 \cdot x_2 + 4.723 \cdot x_3 + 0.389 \cdot x_4 = 0.721$
	$0.503 \cdot x_1 + 0.264 \cdot x_2 + 0.248 \cdot x_3 + 4.286 \cdot x_4 = 0.220.$ $3.857 \cdot x_1 + 0.239 \cdot x_3 + 0.272 \cdot x_3 + 0.258 \cdot x_4 = 0.190$
	$0.491 \cdot x_1 + 3.941 \cdot x_2 + 0.131 \cdot x_1 + 0.178 \cdot x_4 = 0.179$
7	$0.436 \cdot x_1 + 0.281 \cdot x_2 + 4.189 \cdot x_1 + 0.416 \cdot x_2 = 0.753$
	$0.317 \cdot x_1 + 0.229 \cdot x_2 + 0.326 \cdot x_3 + 2.971 \cdot x_4 = 0.860.$
	$4,238 \cdot x_1 + 0,329 \cdot x_2 + 0,256 \cdot x_1 + 0,425 \cdot x_4 = 0,560$
	$0,249 \cdot x_1 + 2,964 \cdot x_2 + 0,351 \cdot x_3 + 0,127 \cdot x_4 = 0,380$
8	$0.365 \cdot x_1 + 0.217 \cdot x_2 + 2.897 \cdot x_3 + 0.168 \cdot x_4 = 0.778$
	$0.178 \cdot x_1 + 0.294 \cdot x_2 + 0.432 \cdot x_3 + 3.701 \cdot x_4 = 0.749$
	$389 \cdot x_1 + 0.273 \cdot x_2 + 0.126 \cdot x_3 + 0.418 \cdot x_4 = 0.144$
0	$0.329 \cdot x_1 + 2.796 \cdot x_2 + 0.179 \cdot x_3 + 0.278 \cdot x_4 = 0.297$
9	$0.186 \cdot x_1 + 0.275 \cdot x_2 + 2.987 \cdot x_3 + 0.316 \cdot x_4 = 0.529$
	$0.197 \cdot x_1 + 0.219 \cdot x_2 + 0.274 \cdot x_3 + 3.127 \cdot x_4 = 0.869.$
	$2,958 \cdot x_1 + 0,147 \cdot x_2 + 0,354 \cdot x_3 + 0,238 \cdot x_4 = 0,651$
10	$0.127 \cdot x_1 + 2.395 \cdot x_2 + 0.256 \cdot x_3 + 0.273 \cdot x_4 = 0.898$
10	$0,403 \cdot x_1 + 0,184 \cdot x_2 + 3,815 \cdot x_3 + 0,416 \cdot x_4 = 0,595$
	$0,259 \cdot x_1 + 0,361 \cdot x_2 + 0,281 \cdot x_3 + 3,736 \cdot x_4 = 0,389.$

Контрольные вопросы:

- 1. Условия применимости численных методов решения систем.
- 2. Как используя алгоритм метода Гаусса вычислять определители?
- 3. Можно ли численно решать системы по правилу Крамера?
- 4. Какова погрешность при решении систем методом Гаусса?

Литература:

Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах: учеб. пособие - СПб.: Лань, 2008.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. - Численные методы: учеб. пособие для вузов, рек. МО РФ - М.: БИНОМ. Лаборатория знаний, 2011.

Вержбицкий В.М. - Численные методы: Линейная алгебра и нелинейные уравнения: Учеб. пособие для вузов. - М.: Высш. шк., 2000.

Демидович Б.П., Марон И.А., Шувалова Э.З. - Численные методы анализа: приближение функций, дифференциальные и интегральные уравнения: учеб. пособие - СПб.: Лань, 2008.

Волков Е.А. - Численные методы: учеб. пособие - СПб.: Лань, 2008.

Ращиков В. И. - Численные методы. Компьютерный практикум - Москва: МИФИ, 2010.

Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. - Численные методы - Кемерово: Кемеровский государственный университет, 2011.

Пименов В. Г., Ложников А. Б. - Численные методы - Екатеринбург: Издательство Уральского университета, 2014.

Балабко Л. В., Томилова А. В. - Численные методы - Архангельск: $CA\Phi Y$, 2014.

Орешкова М. Н. - Численные методы: теория и алгоритмы - Архангельск: $CA\Phi V$, 2015.

Лабораторная работа №4

Решение систем линейных уравнений методом Халецкого

Цель: Изучение алгоритма численного решения систем методом Халенкого.

Задание:

1. Разработать алгоритм и программу решения систем методом Халецкого (метод квадратных корней).

Варианты заданий.

1.
$$A = \begin{pmatrix} 2,5 & -3,0 & 4,6 \\ -3,5 & 2,6 & 1,5 \\ -6,5 & -3,5 & 7,3 \end{pmatrix}$$
, $b = \begin{pmatrix} -1,05 \\ -14,46 \\ -17,735 \end{pmatrix}$.
2. $A = \begin{pmatrix} 2,0 & -4,0 & -3,25 & 1,0 \\ 3,0 & -3,0 & -4,3 & 8,0 \\ 1,0 & -5,0 & 3,3 & -20,0 \\ 2,5 & -4,0 & 2,0 & -3,0 \end{pmatrix}$, $b = \begin{pmatrix} 4,84 \\ 8,89 \\ -14,01 \\ -20,29 \end{pmatrix}$.
3. $A = \begin{pmatrix} 2 & -1 & 4 & -3 & 1 \\ -1 & 1 & 2 & 1 & 3 \\ 4 & 2 & 3 & 3 & -1 \\ -3 & 1 & 3 & 2 & 4 \\ 1 & 3 & -1 & 4 & 4 \end{pmatrix}$, $b = \begin{pmatrix} 11 \\ 14 \\ 4 \\ 16 \\ 18 \end{pmatrix}$.

Контрольные вопросы:

- 1. Условия применимости численных методов решения систем методом Халецкого.
- 2. Какова погрешность при решении систем методом Халецкого?

Литература:

Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах: учеб. пособие - СПб.: Лань, 2008.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. - Численные методы: учеб. пособие для вузов, рек. МО РФ - М.: БИНОМ. Лаборатория знаний, 2011.

Вержбицкий В.М. - Численные методы: Линейная алгебра и нелинейные уравнения: Учеб. пособие для вузов. - М.: Высш. шк., 2000.

Демидович Б.П., Марон И.А., Шувалова Э.З. - Численные методы анализа: приближение функций, дифференциальные и интегральные уравнения: учеб. пособие - СПб.: Лань, 2008.

Волков Е.А. - Численные методы: учеб. пособие - СПб.: Лань, 2008.

Ращиков В. И. - Численные методы. Компьютерный практикум - Москва: МИФИ, 2010.

Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. - Численные методы - Кемерово: Кемеровский государственный университет, 2011.

Пименов В. Г., Ложников А. Б. - Численные методы - Екатеринбург: Издательство Уральского университета, 2014.

Балабко Л. В., Томилова А. В. - Численные методы - Архангельск: $CA\Phi Y$. 2014.

Орешкова М. Н. - Численные методы: теория и алгоритмы - Архангельск: $CA\Phi V$, 2015.

Лабораторная работа №5

Интерполяционный многочлен Лагранжа

Цель: Изучение интерполяционного многочлена Лагранжа.

Задание:

1. Разработать алгоритм и программу вычисления значения функции в промежуточной точке по экспериментальным данным для не равноотстоящих узлов.

Вариант	Исходнь	ие данные	Вариант	Исходнь	ие данные
1	x ₀ =0,35	y ₀ =1,419	6	x ₀ =0,38	y ₀ =1,462
1	x ₁ =0,48	$y_1 = 1,616$		x ₁ =0,49	y ₁ =1,632
1	x ₂ =0,97	$y_2 = 2,637$		x ₂ =0,99	y ₂ =2,691
1	x ₃ =1,08	$y_3 = 2,944$		x ₃ =1,09	y ₃ =2,974
1	x ₄ =1,18	$y_4 = 3,254$		x ₄ =1,19	$y_4=3,287$
1	x ₅ =1,40	$y_5 = 4,055$		x ₅ =1,40	y ₅ =4,055
1	x ₆ =1,71	$y_6 = 5,528$		x ₆ =1,71	y ₆ =5,528
1	x ₇ =1,74	$y_7 = 5,697$		x ₇ =1,72	y ₇ =5,584
1	x ₈ =2,09	$y_8 = 8,084$		x ₈ =2,04	y ₈ =7,690
I	$x_9 = 2,46$	$y_9 = 11,704$		x ₉ =2,38	y ₉ =10,804
	$x_{10}=2,69$	$y_{10}=14,731$		x ₁₀ =2,53	$y_{10}=12,553$
	x=0,58			x=.	2,95

			v		
2	x ₀ =0,32	$y_0=1,377$	7	x ₀ =0,14	y ₀ =1,419
l .	x ₁ =0,73	y ₁ =2,075		x ₁ =0,28	y ₁ =1,419
l .	x ₂ =0,97	$y_2=2,637$	l .	x ₂ =0,57	y ₂ =1,419
l .	x ₃ =1,13	y ₃ =3,095	l .	x3=1,00	y ₃ =1,419
l	x ₄ =1,52	$y_4 = 4,572$	l .	x ₄ =1,22	y ₄ =1,419
l	x ₅ =1,57	y ₅ =4,806	l .	x ₅ =1,36	y ₅ =1,419
l	x ₆ =2,02	y ₆ =7,538	l .	x ₆ =1,73	y ₆ =1,419
l .	x=2,52	$y_1=12,428$		x ₇ =1,74	y;=1,419
l	x ₈ =2,96	ys=19,297	l .	x ₈ =2,11	y ₈ =1,419
l	x ₉ =3,40	y ₉ =29,964		x ₉ =2,49	y ₉ =1,419
	x ₁₀ =3,79	y ₁₀ =44,256		x ₁₀ =2,74	y ₁₀ =1,419
	χ=	1,96		χ=	0,80
3	x ₀ =0,32	v ₀ =1,377	8	x ₀ =0,38	v ₀ =1,462
	x ₁ =0.48	y ₁ =1,616		x ₁ =0,40	y ₁ =1,491
l	x2=0.97	y ₂ =2,637	l .	x2=0.81	y ₂ =2,247
I	x ₃ =1,11	y ₃ =3,034	l	x ₃ =1,25	y ₃ =3,490
I	x ₄ =1,25	y ₄ =3,490	l	x ₄ =1,59	y ₄ =4,903
I	x ₅ =1,53	y ₅ =4,618	l	x ₅ =1,86	y ₅ =6,423
l	x ₆ =1,94	$y_6 = 6.958$		x ₆ =1,98	y ₆ =7,242
l	x2=2,14	y ₇ =8,499		x ₂ =2,36	y ₁ =10,590
l	x _s =2,25	y ₈ =9,487		xs=2,37	y _s =10,697
l	x ₉ =2,56	y ₀ =12,935		x ₉ =2,76	y ₉ =15,799
l	x10=2,97	y ₁₀ =19,491		x ₁₀ =3,16	y ₁₀ =23,570
i .	χ=	1,34	1	X=	1,72
4	x ₀ =0,09	y ₀ =1,094	9	x ₀ =0,18	y ₀ =1,197
	x ₁ =0,41	y ₁ =1,506		x ₁ =0,65	y ₁ =1,915
l	x2=0,83	y ₂ -2,293		x2=0,80	y ₂ =2,225
l	x=1.06	y ₃ =2,886	l .	x ₃ =0,92	y ₃ =2,509
l	x ₄ =1,22	$y_4 = 3,387$		x ₄ =1,20	$y_4 = 3,320$
l	x ₅ =1,61	y ₅ =5,002		x ₅ =1,59	ys=4,903
l	x ₆ =1,65	$y_6 = 5,206$		x ₆ =1,77	$y_6 = 5,870$
l	x ₇ =2,08	y ₇ =8,004		x ₇ =1,83	y ₇ =6,233
l	x ₈ =2,56	y ₆ =12,935		x ₈ =2,07	y ₈ =7,924
l	x ₉ =2,96	y ₉ =19,297		x ₉ =2,38	y ₉ =10,804
	x ₁₀ =3,35	y ₁₀ =28,502		x ₁₀ =2,43	$y_{10}=11,358$
	χ=	1,75		χ=	2,14
5	x ₀ =0,17	y ₀ =1,185	10	x ₀ =0,40	y ₀ =1,491
	x ₁ =0,64	$y_1 = 1,896$		x ₁ =0,66	y ₁ =1,934
I	x2=0,78	$y_2=2,181$	l	x2=0,83	y ₂ =2,293
I	x3=0.89	y ₃ =2,435	l	x ₃ =1,27	y ₃ =3,560
I	x ₄ =1,14	$y_4 = 3,126$	l	x ₄ =1,37	y ₄ =3,935
I	x ₅ -1,50	y ₅ -4,481	l	x ₅ =1,40	y ₅ -4,055
I	x ₆ =1,62	y ₆ =5,053	l	x ₆ =1,54	y ₆ =4,664
I	x ₇ =2,10	y-8,166	l	x ₇ =1,71	y ₇ =5,528
I	x ₈ =2,19	y ₈ =8,935	l	x ₈ =2,02	y ₈ =7,538
I	x ₉ =2,25	y ₉ =9,487	l	x ₉ =2,50	y ₉ =12,182
I	x ₁₀ =2,41	y ₁₀ =11,133	l	x ₁₀ =2,79	y ₁₀ =16,281
	χ=	1.35	1	X=	1.61

Контрольные вопросы.

- 1. Условия применимости интерполяционного многочлена Лагранжа.
- 2. Вывести формулу для вычисления интерполяционного многочлена Лагранжа.
- 3. Какова погрешность вычисления при решении поставленной задачи?

Литература:

Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах: учеб. пособие - СПб.: Лань, 2008.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. - Численные методы: учеб. пособие для вузов, рек. МО РФ - М.: БИНОМ. Лаборатория знаний, 2011.

Вержбицкий В.М. - Численные методы: Линейная алгебра и нелинейные уравнения: Учеб. пособие для вузов. - М.: Высш. шк., 2000.

Демидович Б.П., Марон И.А., Шувалова Э.З. - Численные методы анализа: приближение функций, дифференциальные и интегральные уравнения: учеб. пособие - СПб.: Лань, 2008.

Волков Е.А. - Численные методы: учеб. пособие - СПб.: Лань, 2008.

Ращиков В. И. - Численные методы. Компьютерный практикум - Москва: МИФИ, 2010.

Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. - Численные методы - Кемерово: Кемеровский государственный университет, 2011.

Пименов В. Г., Ложников А. Б. - Численные методы - Екатеринбург: Издательство Уральского университета, 2014.

Балабко Л. В., Томилова А. В. - Численные методы - Архангельск: $CA\Phi Y, 2014.$

Орешкова М. Н. - Численные методы: теория и алгоритмы - Архангельск: $CA\Phi V$, 2015.

Лабораторная работа №6

Интерполяционный многочлен Ньютона

Цель: Изучение интерполяционного многочлена Ньютона для равноотстоящих узлов.

Задание:

1. Разработать алгоритм и программу вычисления значения функции в промежуточной точке по экспериментальным данным для равноотстоящих узлов.

Варианты заданий.

В таблице представлены значения функции, вычисленные на [1, 2] с шагом 0,1.

Вариант	Исходиме двиные		Вариант	Исходиы	остания э
1	y ₀ =0,322	y ₀ =6,850	- 6	y _e =-0,417	y ₀ =24,901
	y ₁ =0,284	y ₁ =5,539	l	$y_1 = -0.751$	y ₁ =26,244
	$y_2 = 0.241$	y ₂ =4,601	l .	y ₂ =-0,966	y ₂ =27,541
	y ₃ =0,193	y ₃ =3,902	l .	yy==-0,972	y ₃ =28,790
	y ₄ =0,135	y ₄ =3,363	l	y ₄ ==0,713	y ₄ =29,992
	y ₃ =0,063	ys=2,937	l .	y ₃ ==0,211	ys=31,144
	y ₆ =-0,031	y ₆ =2,594	l .	y ₆ =0,396	y ₆ =32,251
	y₁=-0,164	yy=2,313	l .	y₁=0,876	yy=33,313
	y ₉ =-0,369	y ₀ =2,079	l .	y _s =0,980	y ₀ =34,334
	y ₀ =-0,741	y ₀ =1,882	l	y ₀ =0,592	y ₀ =35,320
	y ₁₀ =-1,664	y ₁₀ =1,715		y ₁₀ =-0,146	y ₁₀ =36,275
	x=0,98	x=1,32		x=2,01	x=1,45
2	y ₀ =0,070	y ₀ =0,614	7	y ₆ =-2,186	y ₆ =0,794
	y ₁ =-0,134	$y_1 = 0.614$	l	y ₁ =-1,710	y₁=0,773
	y ₂ =-0,343	y ₂ =0,640	l	y ₂ =-1,374	y ₂ =0,723
	yy=-0,544	y ₀ =0,685	l	yy=-1,120	y ₃ =0,662
	y4=-0,724	$y_3 = 0.741$	l	y ₄ =-0,917	y4-0,600
	y ₅ =-0,870	$y_3 = 0.801$	l	y ₃ =-0,748	y ₃ =0,543
	y ₆ =-0,966	$y_6 = 0.856$	l	y ₆ =-0,602	y ₆ =0,494
	y₁=-1,000	$y_7 = 0.902$	l	y ₁ =-0,473	y₁=0,450
	ys=-0,962	ys=0,936	l	y ₀ =-0,356	y ₆ =0,412
	y ₀ =-0,846	y ₀ =0,956	l	y ₉ =-0,247	y ₉ =0,380
	y ₃₀ =-0,654	y ₁₀ =0,970	Į.	y ₁₀ =-0,143	y ₁₀ =0,351
	x=0,96	x=1,71		x=2,03	x=1,05
3	y ₀ =5,430	y ₁ =21,779	8	y _i =108,240	y ₀ =4,860
	y ₁ =5,816	y_1 =25,505	l	y ₁ =104,312	y ₁ =4,462
	y ₂ =6,211	y ₂ =29,577	l	y ₂ =99,184	y ₂ =3,906
	y ₃ =6,620	y ₃ =34,017	l	y ₅ -93,097	y ₃ =3,169
	y ₄ =7,051	y ₄ =38,852	l	y ₄ =86,314	y ₄ -2,222
	y ₃ =7,509	y ₂ =44,109	l	y ₅ =79,108	y ₃ =1,027
	y ₆ =8,001 y ₇ =8,535	y ₁ =49,822	l	y ₆ =71,733	y ₄ =-0,475 y ₂ =-2,363
	y ₂ =9,119	y ₇ =56,027 y ₈ =62,768	l	y ₂ =64,418 y ₈ =57,353	y ₁ =-4,755
	y ₀ =9,762	y ₁ =70,091	l	y ₀ =50,683	y ₀ =-7,829
	y ₁₀ =10,475	y ₁₈ =78,052	l	y ₁₀ =44,510	y ₁₀ =-11,870
	x=1,46	x=1,67	1	x=1,95	x=1,44
4	y ₀ =1,257	y ₀ =3,981	0	y ₀ =6,492	y ₀ =6,462
1	y ₀ =1,257 y ₁ =1,524	y ₀ =3,981 y ₁ =3,837	,	y ₀ =6,879	y ₀ =0,402 y ₁ =7,567
	y ₂ =1,728	y ₂ =3,648	l	y ₂ =7,340	y ₂ =8,808
	y ₃ -1,849	y ₃ =3,424	l	y ₁ -7,889	y ₃ -10,256
	y ₄ =1,867	y ₄ =3,175	l	y ₄ =8,547	y ₆ =11,966
	v ₂ =1.768	y ₃ =2,910	l	y ₂ =9,339	y ₃ =14,009
	y ₀ =1,547	y ₄ =2,638	l	y ₀ =10,300	y ₀ =16,481
	y ₁ =1,215	y ₇ =2,369	l	y=11,479	y=19,514
	y ₈ =0,798	y ₈ =2,109	l	y ₀ =12,939	y ₂ =23,291
	y ₀ =0,339	y ₀ =1,864	l	y ₀ =14,777	y ₀ =28,076
	y ₁₀ =-0,104	y ₁₀ =1,637	l	y ₁₀ =17,127	y ₁₀ =34,255
	x=1,02	x=1,63	1	x=1.92	x=1,55
- 5	vo=1,449	vo=1,000	10	yo=0,909	ve=2,718
,	y ₁ =1,161	$y_0 = 1,000$ $y_1 = 1,215$	1.0	y ₁ =0,660	y ₁ =3,004
	v=0.805	vs=1,465		y ₂ =0,258	y ₂ =3,320
1	y ₃ =0,396	y ₅ =1,754		vy=-0.237	y ₃ =3,669
1	y ₄ =-0,045	y ₄ =2,088		v ₄ =-0.703	y ₄ =4,055
1	ys=-0.488	vs=2,473		$y_0 = -0.978$	y ₄ =4,481
1	$y_0 = -0.894$	y ₆ =2,915		$y_0 = -0.919$	y _c =4,953
1	$y_7 = 1,225$	yy=3,423		yr=-0,483	y ₁ =5,473
1	y ₈ =-1,438	ys=4,005		y _k =0,195	y ₈ =6,049
1	y ₉ 1,505	y ₉ -4,673		y ₉ =0,805	y ₉ =6,685
1	y ₁₀ =-1,411	y ₁₀ =5,436		y 10-0,989	y ₁₀ =7,389
	x=1,15	x=1,51		x=1,13	x=1,42

Контрольные вопросы.

- 1. Условия применимости интерполяционного многочлена Ньютона.
- 2. Вывести формулу для вычисления интерполяционного многочлена Ньютона при вычислении значений функции, расположенных ближе к левому концу интервала.
- 3. Вывести формулу для вычисления интерполяционного многочлена Ньютона при вычислении значений функции, расположенных ближе к правому концу интервала.
- 4. Чем отличаются первая и вторая интерполяционные формулы Ньютона?

5. Какова погрешность вычисления при решении поставленной задачи?

Литература:

Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах: учеб. пособие - СПб.: Лань, 2008.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. - Численные методы: учеб. пособие для вузов, рек. МО РФ - М.: БИНОМ. Лаборатория знаний, 2011.

Вержбицкий В.М. - Численные методы: Линейная алгебра и нелинейные уравнения: Учеб. пособие для вузов. - М.: Высш. шк., 2000.

Демидович Б.П., Марон И.А., Шувалова Э.З. - Численные методы анализа: приближение функций, дифференциальные и интегральные уравнения: учеб. пособие - СПб.: Лань, 2008.

Волков Е.А. - Численные методы: учеб. пособие - СПб.: Лань, 2008.

Ращиков В. И. - Численные методы. Компьютерный практикум - Москва: МИФИ, 2010.

Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. - Численные методы - Кемерово: Кемеровский государственный университет, 2011.

Пименов В. Г., Ложников А. Б. - Численные методы - Екатеринбург: Издательство Уральского университета, 2014.

Балабко Л. В., Томилова А. В. - Численные методы - Архангельск: $CA\Phi Y$, 2014.

Орешкова М. Н. - Численные методы: теория и алгоритмы - Архангельск: $CA\Phi Y$, 2015.

Лабораторная работа №7

Итерационные методы решения уравнений и систем

Цель: Изучение особенностей решения уравнений и систем с применением итерационных методов.

Задание:

- 1. С помощью метода простой итерации решить уравнение.
- 2. С помощью метода простой итерации решить систему линейных уравнений.
- 3. С помощью метода Зейделя решить систему линейных уравнений.
- 4. Визуализировать решение.

Варианты заданий.

Варианты заданий соответствуют вариантам к лабораторным работам 1-3.

Контрольные вопросы:

- 1. Какие существуют способы приведения уравнения к виду, пригодному для применения метода итераций?
- 2. Сравните скорость сходимости итеративного метода решения уравнений с другими.

- 3. Вычислите погрешность.
- 4. Методы приведения систем уравнений к виду, пригодному для применения метода итераций?
- 5. Особенность метода Зэйделя для решения систем уравнений.
- 6. Сравните сходимость решения систем методом Зейделя и простой итерации. Сделайте вывод.

Литература:

Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах: учеб. пособие - СПб.: Лань, 2008.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. - Численные методы: учеб. пособие для вузов, рек. МО РФ - М.: БИНОМ. Лаборатория знаний, 2011.

Вержбицкий В.М. - Численные методы: Линейная алгебра и нелинейные уравнения: Учеб. пособие для вузов. - М.: Высш. шк., 2000.

Демидович Б.П., Марон И.А., Шувалова Э.З. - Численные методы анализа: приближение функций, дифференциальные и интегральные уравнения: учеб. пособие - СПб.: Лань, 2008.

Волков Е.А. - Численные методы: учеб. пособие - СПб.: Лань, 2008.

Ращиков В. И. - Численные методы. Компьютерный практикум - Москва: МИФИ, 2010.

Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. - Численные методы - Кемерово: Кемеровский государственный университет, 2011.

Пименов В. Г., Ложников А. Б. - Численные методы - Екатеринбург: Издательство Уральского университета, 2014.

Балабко Л. В., Томилова А. В. - Численные методы - Архангельск: $CA\Phi Y,\ 2014.$

Орешкова М. Н. - Численные методы: теория и алгоритмы - Архангельск: $CA\Phi Y$, 2015.

Лабораторная работа №8

Метод наименьших квадратов

Цель: Изучение особенностей применения методов аппроксимации.

Задание:

- 1. С помощью метода наименьших квадратов вычислить значение функции в указанной точке.
- 2. По исходной таблице данных рассчитать параметры следующих функций:
 - линейной;
 - степенной;
 - показательной.
- 3. Построить в Excel графики функций с полученными значениями и по точкам.

Варианты заданий.

Вариант	Исходны	е данные	Вариант	Исходны	е данные
1	x	У	6	x	У
l	61,10	49,10	İ	60,80	49,40
l .	60,80	48,60		60,00	49,80
l .	60,18	50,10		58,60	53,40
l .	59,20	52,20		57,30	55,20
l .	58,10	53,60		56,10	56,20
l .	55,20	58,10		50,40	59,9
	49,10	69,10		46,80	67,4
2	x	у	7	x	у
	61,8	49,0		60,8	50,8
l .	60,0	49,3		59,1	53,3
l .	58,7	52,8		57,9	54,3
l .	56,1	55,2		55,7	57,6
l .	54,2	57,5		54,3	60,7
l .	50,6	63,1		52,6	64,1
	47,1	68,2		49,1	67,7
3	x	у	8	x	у
l	60,1	49,0		63,1	49,8
l .	59,2	52,1		61,9	49,3
l .	58,6	53,2		59,6	53,3
l .	55,4	56,6		57,2	56,1
l .	53,1	59,5		57,1	57,3
l .	52,0	66,6		50,9	64,1
	49,9	67,8		47,1	66,6
4	x	у	9	x	у
l .	60,3	49,9		61,7	49,8
l .	59,1	54,8		60,4	51,1
l .	58,7	56,9		58,1	53,2
l .	58,1	57,1		57,2	57,3
l .	54,5	62,3		53,4	61,5
l .	50,3	66,1		49,4	66,4
	47,1	67,3		45,9	68,8
5	x	у	10	х	у
ı	59,2	49,7		58,1	49,1
I	59,0	50,5		57,5	51,2
l	54,2	51,9		56,4	53,0
I	55,6	54,4		55,1	54,6
I	53,1	57,3		53,4	57,6
I	57,8	64,8		50,2	60,1
	60,9	49,0		46,1	61,8

Контрольные вопросы:

- 1. Вывести формулы решения задачи аппроксимации для линейной функции.
- 2. Вывести формулы решения задачи аппроксимации для степенной функции.
- 3. Вывести формулы решения задачи аппроксимации для показательной функции.
- 4. Согласно построенным графикам определить какая из данных функций наиболее подходит к экспериментальным данным.

Литература:

Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах: учеб. пособие - СПб.: Лань, 2008.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. - Численные методы: учеб. пособие для вузов, рек. МО РФ - М.: БИНОМ. Лаборатория знаний, 2011.

Вержбицкий В.М. - Численные методы: Линейная алгебра и нелинейные уравнения: Учеб. пособие для вузов. - М.: Высш. шк., 2000.

Демидович Б.П., Марон И.А., Шувалова Э.З. - Численные методы анализа: приближение функций, дифференциальные и интегральные уравнения: учеб. пособие - СПб.: Лань, 2008.

Волков Е.А. - Численные методы: учеб. пособие - СПб.: Лань, 2008.

Ращиков В. И. - Численные методы. Компьютерный практикум - Москва: МИФИ, 2010.

Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. - Численные методы - Кемерово: Кемеровский государственный университет, 2011.

Пименов В. Г., Ложников А. Б. - Численные методы - Екатеринбург: Издательство Уральского университета, 2014.

Балабко Л. В., Томилова А. В. - Численные методы - Архангельск: $CA\Phi Y$, 2014.

Орешкова М. Н. - Численные методы: теория и алгоритмы - Архангельск: $CA\Phi V$, 2015.

Лабораторная работа №9

Численное интегрирование

Цель: Изучение особенностей применения численных методов к решению определенных интегралов.

Задание:

- 1. Разработать алгоритм и программно его реализовать для численного вычисления определенных интегралов.
- 2. Проверить аналитически правильность полученного результата.
- 3. Определить погрешность вычисления.

№ п/п	Прямоугольников	Трапеций	Симпсона
1.	$\int\limits_{0}^{1}\sqrt{e^{x}+1}dx$	$\int_{0}^{1} \frac{dx}{e^{x} + 1}$	$\int_{0}^{\frac{\pi}{2}} e^{\cos x} \sin x dx$
2.	$\int_{0}^{1} \frac{2+x}{2-x} dx$	$\int_{0}^{1} \cos(x^{2}) dx$	$\int_{0}^{\frac{\pi}{2}} \ln(2 + \cos x) dx$
3.	$\int_{0}^{1} \frac{xe^{x}}{\left(1+x\right)^{2}} dx$	$\int_{0}^{1} \frac{x dx}{1+x}$	$\int_{0}^{2} \frac{2xdx}{1+x^2}$
4.	$\int_{0}^{1} \frac{2x+1}{\sqrt{x^2+1}} dx$	$\int_{0}^{\frac{\pi}{2}} \frac{x dx}{1 + \cos x}$	$\int\limits_{0}^{2}\sqrt{4-x^{2}}dx$
5.	$\int_{0}^{1} \frac{1}{\sqrt{2+x}} dx$	$\int_{0}^{\pi} (\cos x)^{2} \cos(2x) dx$	$\int_{0}^{1} (x+1)(x+2) dx$
6.	$\int_{-1}^{1} \frac{1+x^2}{1+x^4} dx$	$\int_{0}^{\frac{\pi}{2}} \frac{x dx}{1 + \sin x}$	$\int_{1}^{2} (\ln x + x) dx$
7.	$\int_{-1}^{1} \frac{x}{1+x+x^2} dx$	$\int_{0}^{\frac{\pi}{2}} \ln(1+2\cos x)^2 dx$	$\int_{1}^{2} \frac{\ln x}{\sqrt{x}} dx$

8.	$\int_{1}^{e} (x \ln(x))^{2} dx$	$\int_{1}^{2} \frac{2+x}{5+x} dx$	$\int_{1}^{2} \frac{\mathrm{d}x}{1+x}$
9.	$\int_{0}^{\pi} \frac{\sin^{2} x}{1 + \cos x} dx$	$\int_{1}^{3} \sqrt{6x - 5} dx$	$\int_{1}^{3} \sqrt{x+4} dx$
10.	$\int_{0}^{2} \frac{\mathrm{d}x}{\sqrt{x+1} + \sqrt{\left(x+1\right)^{3}}}$	$\int_{1}^{3} \frac{x dx}{\sqrt{8x - 2}}$	$\int_{1}^{3} \sin \sqrt{x^3 + 1} dx$

Контрольные вопросы:

- 1. Вывести формулы вычисления определенных интегралов по правилу прямоугольников.
- 2. Вывести формулы вычисления определенных интегралов по методу трапеций.
- 3. Вывести формулы вычисления определенных интегралов по методу Симпсона.

Литература:

Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах: учеб. пособие - СПб.: Лань, 2008.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. - Численные методы: учеб. пособие для вузов, рек. МО РФ - М.: БИНОМ. Лаборатория знаний, 2011.

Вержбицкий В.М. - Численные методы: Линейная алгебра и нелинейные уравнения: Учеб. пособие для вузов. - М.: Высш. шк., 2000.

Демидович Б.П., Марон И.А., Шувалова Э.З. - Численные методы анализа: приближение функций, дифференциальные и интегральные уравнения: учеб. пособие - СПб.: Лань, 2008.

Волков Е.А. - Численные методы: учеб. пособие - СПб.: Лань, 2008.

Ращиков В. И. - Численные методы. Компьютерный практикум - Москва: МИФИ, 2010.

Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. - Численные методы - Кемерово: Кемеровский государственный университет, 2011.

Пименов В. Г., Ложников А. Б. - Численные методы - Екатеринбург: Издательство Уральского университета, 2014.

Балабко Л. В., Томилова А. В. - Численные методы - Архангельск: $CA\Phi Y,\ 2014.$

Орешкова М. Н. - Численные методы: теория и алгоритмы - Архангельск: $CA\Phi Y$, 2015.

Лабораторная работа №10

Численные методы решения ОДУ

Цель: Изучение численных методов решения ОДУ.

Задание:

- 1. Найти шаг интегрирования для решения задачи методом Рунге–Кутта с заданной точностью.
- 2. Построить приближенную интегральную кривую.
- 3. Найти шаг интегрирования для решения задачи методом Эйлера с заданной точностью.
- 4. Найти точное решение задачи Коши. Сравнить точное решение с приближенным. Найти максимум модуля отклонений в узловых точках приближенного решения от точного.
- 5. В Excel заполнить таблицу с указанием точного и приближенного значения.

Варианты заданий.

N2	Задача Коши
1	$y'+xy = 0.5(x-1)e^x y^2$, $y(0) = 2$; $a = 0$, $b = 2$.
2	$y'-ytgx = -2/3y^4 \sin x$, $y(0) = 1$; $a = 0$, $b = 1,2$.
3	$y'+y^2=x$, $y(0)=1$; $a=0$, $b=2$.
4	$xy'+y=y^3e^{-x}$, $y(1)=1$; $a=1$, $b=2$.
5	$y'+xy = 0.5(x+1)e^x y^2$, $y(0) = 1$; $a = 0$; $b = 2$.
6	$xy'-y = -y^2(2\ln x + \ln^2 x), \ y(1) = 2; \ a = 1, \ b = 2.$
7	$y'+4x^3y = 4y^2e^{4x}(1-x^3), \ y(1) = 1; \ a = 1, \ b = 2,8.$
8	$2y'+3y\cos x = e^{2x}(2+3\cos x)/y$, $y(1) = 2$; $a = 1$, $b = 1,6$.
9	$y'+2xy = 2x^3y^3$, $y(0) = 1$; $a = 0$, $b = 1$.
10	$xy'+y=y^2\ln x$, $y(1)=0.5$; $a=1$, $b=5$.

Контрольные вопросы:

- 1. Особенность решения ОДУ методом Рунге-Кута.
- 2. Особенность решения ОДУ методом Эйлера.
- 3. Определить погрешность вычислений.

Литература:

Копченова Н.В., Марон И.А. - Вычислительная математика в примерах и задачах: учеб. пособие - СПб.: Лань, 2008.

Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. - Численные методы: учеб. пособие для вузов, рек. МО РФ - М.: БИНОМ. Лаборатория знаний, 2011.

Вержбицкий В.М. - Численные методы: Линейная алгебра и нелинейные уравнения: Учеб. пособие для вузов. - М.: Высш. шк., 2000.

Демидович Б.П., Марон И.А., Шувалова Э.З. - Численные методы анализа: приближение функций, дифференциальные и интегральные уравнения: учеб. пособие - СПб.: Лань, 2008.

Волков Е.А. - Численные методы: учеб. пособие - СПб.: Лань, 2008.

Ращиков В. И. - Численные методы. Компьютерный практикум - Москва: МИФИ, 2010.

Гавришина О. Н., Захаров Ю. Н., Фомина Л. Н. - Численные методы - Кемерово: Кемеровский государственный университет, 2011.

Пименов В. Г., Ложников А. Б. - Численные методы - Екатеринбург: Издательство Уральского университета, 2014.

Балабко Л. В., Томилова А. В. - Численные методы - Архангельск: $CA\Phi Y, 2014.$

Орешкова М. Н. - Численные методы: теория и алгоритмы - Архангельск: $CA\Phi V$, 2015.

Критерии оценивания самостоятельных работ

Показатель оценивания - умение реализовывать численные методы. **Шкала оценивания** – «зачтено», «не зачтено».

Оценка «зачтено» выставляется студенту, выполнившему правильно задание к лабораторной работе и продемонстрировавшему знание теоретического материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющемуся с выполнением практических заданий, предусмотренных программой.

Оценка «не зачтено» выставляется студенту не выполнившему лабораторной работы или не знающему теоретический материал.