Distribuzioni notevoli, introduzione all'inferenza statistica e statistiche campionarie

10 maggio 2017

Distribuzioni utilizzate in statistica

Definizione di distribuzione Gamma

Una v.a. X assolutamente continua è detta avere una densità Gamma di parametri $\alpha>0$ e $\lambda>0$ se ha densità

$$f_X(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} \mathbb{I}_{(0,+\infty)}(x)$$

dove $\Gamma(\cdot)$ è la funzione Gamma di Eulero e rappresenta la costante di normalizzazione che rende l'integrale di f_X su \mathbb{R} uguale a uno. Scriveremo

$$X \sim \Gamma(\alpha, \lambda)$$
.

lpha è detto parametro di forma

 λ è detto parametro di scala.

N.B. Se $\alpha = 1$, allora $\Gamma(1, \lambda) = \mathcal{E}(\lambda)$ (esponenziale di parametro λ)

Densità Gamma

Funzione Gamma di Eulero

Definizione

Per ogni $\alpha > 0$

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx = \int_0^{+\infty} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x} dx \qquad \forall \lambda > 0$$

Proprietà

- $\Gamma(1) = \int_0^{+\infty} e^{-x} dx = 1$;
- Se $\alpha > 1$, integrando per parti

$$\Gamma(\alpha) = -x^{\alpha - 1} e^{-x} \Big|_0^{+\infty} + (\alpha - 1) \int_0^{+\infty} x^{(\alpha - 1) - 1} e^{-x} dx$$
$$= (\alpha - 1) \Gamma(\alpha - 1)$$

• Utilizzando le precedenti per n > 1 intero:

$$\Gamma(n) = (n-1)\Gamma(n-1) = \cdots = (n-1)!$$

Funzione generatrice dei momenti (f.g.m.)

Calcoliamo la f.g.m. di $X \sim \Gamma(\alpha, \lambda)$. Sia $t < \lambda$:

$$m_X(t) := \mathbb{E}(e^{tX}) = \int_0^{+\infty} e^{tx} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x} dx$$

$$= \int_0^{+\infty} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t)x} dx$$

$$= \left(\frac{\lambda}{\lambda - t}\right)^{\alpha} \int_0^{+\infty} \frac{(\lambda - t)^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\lambda-t)x} dx$$

$$= \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}.$$

N.B. Se
$$X \sim \mathcal{E}(\lambda) = \Gamma(1,\lambda) \Rightarrow m_X(t) = \frac{\lambda}{\lambda - t}$$
 se $t < \lambda$.

Calcolo di media e varianza

Sappiamo che la f.g.m. di $X \sim \Gamma(\alpha, \lambda)$ è, per $t < \lambda$,

$$m_X(t) := \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}.$$

Calcoliamo ora la derivata prima e seconda:

$$\begin{split} m_X'(t) &= \frac{d}{dt} \left(\frac{\lambda}{\lambda - t}\right)^{\alpha} = \frac{\alpha \lambda^{\alpha}}{(\lambda - t)^{\alpha + 1}}, \\ m_X''(t) &= \frac{d^2}{(dt)^2} \left(\frac{\lambda}{\lambda - t}\right)^{\alpha} = \frac{d}{dt} \frac{\alpha \lambda^{\alpha}}{(\lambda - t)^{\alpha + 1}} = \frac{\alpha(\alpha + 1)\lambda^{\alpha}}{(\lambda - t)^{\alpha + 2}}. \end{split}$$

Quindi

$$\mathbb{E}(X) = m'_X(0) = \frac{\alpha}{\lambda}$$
 $\mathbb{V}ar(X) = m''_X(0) - (m'_X(0))^2 = \frac{\alpha}{\lambda^2}$

Somma di v.a. Gamma indipendenti

Siano $X_1 \sim \Gamma(\alpha_1, \lambda)$ e $X_2 \sim \Gamma(\alpha_2, \lambda)$ v.a. indipendenti. Vogliamo determinare la distribuzione di $X_1 + X_2$.

Calcoliamo la f.g.m. di $X_1 + X_2$

$$m_{X_1+X_2}(t) = \mathbb{E}(e^{t(X_1+X_2)}) = \mathbb{E}(e^{tX_1})\mathbb{E}(e^{tX_2})$$
$$= \left(\frac{\lambda}{\lambda-t}\right)^{\alpha_1} \left(\frac{\lambda}{\lambda-t}\right)^{\alpha_2}$$
$$= \left(\frac{\lambda}{\lambda-t}\right)^{\alpha_1+\alpha_2}$$

per l'indipendenza di X_1 e X_2 . Quindi la f.g.m di X_1+X_2 coincide con la f.g.m di una distribuzione $\Gamma(\alpha_1+\alpha_2,\lambda)$ e per la corrispondenza biunivoca tra funzioni generatrici dei momenti e distribuzioni possiamo concludere

$$X_1 + X_2 \sim \Gamma(\alpha_1 + \alpha_2, \lambda)$$

Esempi

• Siano X_1, \ldots, X_n i.i.d., $X_i \sim \mathcal{E}(\lambda) = \Gamma(1, \lambda) \Rightarrow$ $Y = X_1 + \cdots + X_n \sim \Gamma(n, \lambda)$ e quindi ha densità

$$f_Y(x) = \frac{\lambda^n}{(n-1)!} x^{n-1} e^{-\lambda x} \mathbb{I}_{(0,+\infty)}(x).$$

• Sia $Z \sim \mathcal{N}(0,1)$, allora Z^2 ha densità

$$f_{Z^{2}}(x) = \frac{1}{\sqrt{2\pi x}} e^{-\frac{x}{2}} \mathbb{I}_{(0,+\infty)}(x)$$

$$= \left(\frac{1}{2}\right)^{1/2} \frac{1}{\Gamma(1/2)} x^{1/2-1} e^{-\frac{x}{2}} \mathbb{I}_{(0,+\infty)}(x)$$

$$\Rightarrow Z^{2} \sim \Gamma(1/2, 1/2).$$

• Siano Z_1, \ldots, Z_n i.i.d., $Z_i \sim \mathcal{N}(0,1) \Rightarrow$ $W = Z_1^2 + \cdots + Z_n^2 \sim \Gamma(n/2, 1/2)$ e quindi ha densità

$$f_W(x) = \frac{\lambda^{n/2}}{\Gamma(n/2)} x^{n/2-1} e^{-\lambda x} \mathbb{I}_{(0,+\infty)}(x).$$

Densità chi quadrato

La densità Gamma di parametri $\alpha=k/2, \lambda=1/2, \ k\geq 1$ intero, è detta densità chi quadrato con k gradi di libertà e si indica con $\chi^2(k)$.

$$\Rightarrow$$
 $Z^2 \sim \chi^2(1)$ se $Z \sim \mathcal{N}(0,1)$

 $\Rightarrow Z_1^2 + \cdots + Z_n^2 \sim \chi^2(n)$ se $Z_i \sim \mathcal{N}(0,1)$ e indipendenti.

...ancora sulle distribuzioni chi quadrato

- Se $X_1 \sim \chi^2(n)$ e $X_2 \sim \chi^2(m)$ e sono indipendenti \Rightarrow $X_1 + X_2 \sim \chi^2(n+m)$
- Se $X \sim \chi^2(n) \Rightarrow$ la sua f.g.m è

$$m_X(t) = \left(\frac{1/2}{1/2 - t}\right)^{n/2} = \left(\frac{1}{1 - 2t}\right)^{n/2} \qquad t < 1/2$$

- $\chi^2(2) = \Gamma(2/2, 1/2) = \mathcal{E}(1/2)$.
- $\mathbb{E}(X) = n \in \mathbb{V}ar(X) = 2n$.

Densità chi quadrato

• Sia $X \sim \chi^2(n)$. Quantile di coda destra di ordine $\alpha \in (0,1)$: è l'unico numero che indichiamo con $\chi^2_{\alpha,n}$ tale che

$$P(X \geq \chi^2_{\alpha,n}) = P(X > \chi^2_{\alpha,n}) = \alpha$$

...ancora sulle distribuzioni utilizzate in statistica

Definizione di distribuzione t di Student

Se Z e χ_n^2 sono v.a. indipendenti con $Z \sim \mathcal{N}(0,1)$ e $\chi_n^2 \sim \chi^2(n)$, allora la distribuzione della v.a.

$$T_n := \frac{Z}{\sqrt{\frac{\chi_n^2}{n}}}$$

è detta t (di Student) con n gradi di libertà e indicheremo

$$T_n \sim t(n)$$
.

Proprietà di $T_n \sim t(n)$

• Le v.a. T_n e $-T_n$ hanno la stessa distribuzione. Infatti $Z \sim \mathcal{N}(0,1)$ e quindi anche $-Z \sim \mathcal{N}(0,1)$ ha la stessa distribuzione. Allora

$$-T_n = \frac{-Z}{\sqrt{\frac{\chi_n^2}{n}}} \sim T_n = \frac{Z}{\sqrt{\frac{\chi_n^2}{n}}}.$$

- Si può dimostrare che T_n è una v.a. assolutamente continua e quindi, la sua densità f_{T_n} è una funzione simmetrica rispetto all'asse delle ordinate.
- Per $n \to +\infty$

$$F_{\mathcal{T}_n}(x) := P(\mathcal{T}_n \leq x) \to \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-u^2/2} du.$$

Quindi, per "n grande" ($n \simeq 100$), si possono usare le tavole della f.d.r. della gaussiana standard.

Grafici di densità t-Student e gaussiana standard

- Se n > 2 si ha $\mathbb{E}(T_n) = 0$ e $\mathbb{V}\operatorname{ar}(T_n) = \frac{n}{n-2}$.
- Quantile di coda destra di ordine $\alpha \in (0,1)$: è l'unico numero che indichiamo con $t_{\alpha,n}$ tale che

$$P(T_n \ge t_{\alpha,n}) = P(T_n > t_{\alpha,n}) = \alpha$$

N.B. Per la simmetria della densità t-Student si ha

$$-t_{\alpha,n}=t_{1-\alpha,n}.$$

Infatti

$$P(T_n \ge -t_{\alpha,n}) = 1 - P(T_n \le -t_{\alpha,n})$$

= 1 - P(T_n \ge t_{\alpha,n}) = 1 - \alpha

Quindi i quantili sono tabulati solo per $\alpha \leq 0.5$.

Quantile di ordine $\alpha = 0.025$ e $1 - \alpha = 0.975$ di una t(7)

...ancora sulle distribuzioni utilizzate in statistica

Definizione di distribuzione F di Fisher

Se χ_n^2 e $\bar{\chi}_m^2$ sono v.a.indipendenti con $\chi_n^2 \sim \chi^2(n)$ e $\bar{\chi}_m^2 \sim \chi^2(m)$, allora la distribuzione della v.a.

$$F_{n,m} := \frac{\chi_n^2/n}{\bar{\chi}_m^2/m}$$

è detta F (di Fisher) con n e m gradi di libertà. Scriveremo

$$F_{n,m} \sim \mathbb{F}(n,m)$$

N.B. È importante l'ordine con cui compaiono n e m. Il primo intero n si riferisce ai gradi di libertà del numeratore, il secondo m a quelli del denominatore.

Grafici di densità F di Fisher

Proprietà di $F_{n,m}$ v.a. di Fisher

- $F_{n,m}$ è una v.a. positiva in quanto quoziente di due v.a. χ^2 .
- Quantile di coda destra di ordine $\alpha \in (0,1)$: è l'unico numero che indichiamo con $f_{\alpha,n,m}$ tale che

$$P(F_{n,m} \geq f_{\alpha,n,m}) = P(F_{n,m} > f_{\alpha,n,m}) = \alpha.$$

N.B. I quantili $f_{\alpha,n,m}$ sono tabulati per diversi valori di m e n e per valori di $\alpha \leq 0.5$. Per gli ordini > 0.5 basta osservare che:

$$1 - \alpha = 1 - P\left(\frac{\chi_n^2/n}{\bar{\chi}_m^2/m} \ge f_{\alpha,n,m}\right)$$
$$= 1 - P\left(\frac{\bar{\chi}_m^2/m}{\chi_n^2/n} < \frac{1}{f_{\alpha,n,m}}\right) = P\left(\frac{\bar{\chi}_m^2/m}{\chi_n^2/n} \ge \frac{1}{f_{\alpha,n,m}}\right)$$

e quindi $f_{1-\alpha,m,n} = \frac{1}{f_{\alpha,n,m}}$.

Quantile di ordine $\alpha = 0.05$ di una $\mathbb{F}(5, 12)$ (distribuzione F di Fisher con 5,12 gradi di libertà)

Il problema dell'inferenza statistica

Abbiamo già detto che la statistica è la scienza che si occupa di trarre conclusioni dai dati sperimentali.

La situazione tipica è quella in cui si studia un insieme molto grande, detto POPOLAZIONE, di oggetti a cui sono associate quantità misurabili.

L'approccio statistico consiste nel selezionare un sottoinsieme ridotto di oggetti detto CAMPIONE e "analizzarlo" per trarre conclusioni valide per la popolazione nel suo insieme (INFERENZA).

Per basare sui dati del campione delle inferenze che riguardino l'intera popolazione è necessario assumere qualche relazione tra il campione e l'intera popolazione.

Un'ipotesi fondamentale - e in molti casi del tutto ragionevole - è che vi sia una distribuzione di probabilità tipica della popolazione, nel senso che da essa si estraggono in modo casuale degli oggetti, e le quantità numeriche loro associate possono essere pensate come valori assunti da v.a. indipendenti e tutte con la stessa distribuzione.

Cioè se osserviamo i valori x_1, \ldots, x_n pensiamo che siano i valori assunti da n v.a. i.i.d. X_1, \ldots, X_n .

Esempio: La popolazione è costituita dagli studenti maschi del Politecnico, X è la v.a. che rappresenta la votazione media degli esami conseguiti $\Rightarrow x_1, \dots, x_n$ la votazione media conseguita da n studenti.

Definizioni

Sia F una funzione di ripartizione su R.

Definizione 1:

Le v.a. X_1, \ldots, X_n sono dette campione casuale di dimensione n estratto da F se sono indipendenti e tutte con la stessa funzione di ripartizione F (i.i.d.).

Definizione 2:

Se osserviamo i valori $X_1 = x_1, \dots, X_n = x_n$ allora (x_1, \dots, x_n) è detta realizzazione del campione. (DATI).

Definizione 3:

Problema di inferenza parametrica: F è nota a meno di uno o più parametri incogniti.

Esempio: Si sa che F è una distribuzione gaussiana, ma non si conoscono la media e la varianza. Oppure F è una distribuzione di Poisson di parametro λ incognito.

Definizione 4:

Problema di inferenza non parametrica: non conosciamo la forma analitica della funzione di ripartizione.

Esempio: Si sa solamente che F è una distribuzione assolutamente continua o discreta.

Statistiche

Sia X_1, \ldots, X_n un campione aleatorio estratto da F.

Definizione: statistica basata sul campione

Una statistica basata sul campione è una funzione nota del campione, i.e.

$$D_n = d_n(X_1, \ldots, X_n)$$

dove d_n è una funzione nota delle n v.a. X_1, \ldots, X_n .

 \Rightarrow una statistica D_n è una v.a..

Esempio: Media campionaria

Sia X_1, \ldots, X_n un campione aleatorio estratto da F. Indichiamo con μ e σ^2 la loro media e la loro varianza, rispettivamente.

 μ e σ^2 sono dette MEDIA E VARIANZA DELLA POPOLAZIONE

Definizione: media campionaria

$$\overline{X}_n := \frac{X_1 + \dots + X_n}{n}$$

per ogni $n = 1, 2, \ldots$

N.B. Per ogni n è una funzione nota del campione:

$$\overline{X}_n = d_n(X_1, \ldots, X_n)$$

con
$$d_n(x_1,\ldots,x_n)=\frac{x_1+\cdots+x_n}{n}$$
.

Proprietà della media campionaria

1 $\mathbb{E}(\overline{X}_n) = \mu$. Infatti:

$$\mathbb{E}(\overline{X}_n) = \mathbb{E}\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{\mathbb{E}(X_1) + \dots + \mathbb{E}(X_n)}{n}$$
$$= \frac{n\mu}{n} = \mu.$$

 $\mathbb{V}\operatorname{ar}(\overline{X}_n) = \frac{\sigma^2}{n}$. Infatti:

$$\operatorname{\mathbb{V}ar}(\overline{X}_n) = \operatorname{\mathbb{V}ar}\left(\frac{X_1 + \dots + X_n}{n}\right) = \frac{\operatorname{\mathbb{V}ar}(X_1) + \dots + \operatorname{\mathbb{V}ar}(X_n)}{n^2}$$
$$= \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}.$$

N.B. La media campionaria è una statistica la cui media coincide con la media μ della popolazione.

La varianza della media campionaria tende a zero per $n \to +\infty$.

3 La Legge debole dei grandi numeri ci dice che: per ogni $\epsilon > 0$

$$P(|\overline{X}_n - \mu| > \epsilon) \to 0$$

per $n \to +\infty$.

Per il Teorema centrale del limite:

$$P\left(\frac{(\overline{X}_n - \mu)\sqrt{n}}{\sigma} \le x\right) \to \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{u^2}{2}} du,$$

cioè per "n grande" $X_n \simeq \mathcal{N}(\mu, \sigma^2/n)$, qualunque sia la distribuzione F comune alle X_i (purché ammetta media e varianza finite).

Esempio: Varianza campionaria

Sia (come sopra) X_1, \ldots, X_n un campione aleatorio estratto da F.

Definizione: varianza campionaria

$$S_n^2 := \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

per ogni $n = 2, 3, \ldots$

Definizione: deviazione standard campionaria

$$S_n := \sqrt{S_n^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2}$$

per ogni $n = 2, 3, \ldots$

N.B. Per ogni n sono funzioni note del campione e quindi sono statistiche.

Proprietà della varianza campionaria

1 $\mathbb{E}(S_n^2) = \sigma^2$. Infatti, osserviamo che:

$$(n-1)S_n^2 = \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \sum_{i=1}^n (X_i^2 + \overline{X}_n^2 - 2X_i \overline{X}_n)$$
$$= \sum_{i=1}^n X_i^2 + n \overline{X}_n^2 - 2n \overline{X}_n^2 = \sum_{i=1}^n X_i^2 - n \overline{X}_n^2.$$

Quindi

$$\mathbb{E}(S_n^2) = \frac{1}{n-1} \left[\mathbb{E}(\sum_{i=1}^n X_i^2) - \mathbb{E}(n\overline{X}_n^2) \right] = \frac{1}{n-1} \left[n\mathbb{E}(X_1^2) - n\mathbb{E}(\overline{X}_n^2) \right]$$
$$= \frac{n}{n-1} \left[\mathbb{V}\operatorname{ar}(X_1) + (\mathbb{E}(X_1))^2 - \mathbb{V}\operatorname{ar}(\overline{X}_n) - (\mathbb{E}(\overline{X}_n))^2 \right]$$
$$= \frac{n}{n-1} \left[\sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 \right] = \sigma^2.$$

Analogamente si dimostra che

2
$$\operatorname{Var}(S_n^2) = \frac{1}{n} \left[\mu_4 - \frac{n-3}{n-1} \sigma^4 \right]$$

dove
$$\mu_4 = \mathbb{E}[(X_1 - \mu)^4] \ e \ \sigma^4 = (\sigma^2)^2$$

N.B. La varianza campionaria è una statistica la cui media coincide con la varianza σ^2 della popolazione.

La varianza della varianza campionaria tende a zero per $n \to +\infty$.

Distribuzione congiunta delle statistiche \overline{X}_n e S_n^2 nel caso di popolazioni gaussiane

Sia X_1, \ldots, X_n un campione aleatorio estratto da una popolazione gaussiana, i.e.

$$X_1, \ldots, X_n$$
 i.i.d. $X_i \sim \mathcal{N}(\mu, \sigma^2)$

Problema: determinare la distribuzione congiunta di

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 e $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$.

Sappiamo che:

• \overline{X}_n è combinazione lineare di v.a. gaussiane indipendenti e quindi è una v.a. gaussiana. La sua media è $\mathbb{E}(\overline{X}_n) = \mu$ e $\mathbb{V}\mathrm{ar}(\overline{X}_n) = \sigma^2/n$.

$$\overline{X}_n \sim \mathcal{N}(\mu, \sigma^2/n) \quad \Longleftrightarrow \quad \frac{(\overline{X}_n - \mu)\sqrt{n}}{\sigma_{\text{toperator}}} \sim \mathcal{N}(0, 1).$$

Proposizione

Se X_1, \ldots, X_n è un campione di dimensione n estratto da una popolazione gaussiana di media μ e varianza σ^2 , allora

$$\overline{X}_n$$
 e S_n^2 sono indipendenti

e tali che

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1) \qquad (n - 1) \frac{S_n^2}{\sigma^2} \sim \chi^2(n - 1)$$

Corollario 1

Se X_1, \ldots, X_n è un campione di dimensione n estratto da una popolazione gaussiana di media μ e varianza σ^2 , allora

$$\frac{\overline{X}_n - \mu}{S_n / \sqrt{n}} \sim t(n-1)$$

dove $S_n = \sqrt{S_n^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2}$ è la deviazione standard campionaria e t(n-1) indica la distribuzione t-Student con n-1 gradi di libertà.

Dimostrazione.

Ricordiamo che se $Z\sim\mathcal{N}(0,1)$ e $\chi_k^2\sim\chi^2(k)$, e Z e χ_k^2 sono indipendenti, allora

$$\frac{Z}{\sqrt{\frac{\chi_k^2}{k}}} \sim t(k).$$

Poiché dalla precedente Proposizione sappiamo che.

$$\frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1) \qquad (n-1)\frac{S_n^2}{\sigma^2} \sim \chi^2(n-1)$$

e sono indipendenti, segue che

$$rac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \Big/ \sqrt{rac{(n-1)S_n^2}{(n-1)\sigma^2}} = rac{\overline{X}_n - \mu}{S_n/\sqrt{n}} \sim t(n-1).$$

Corollario 2

Se X_1,\ldots,X_n è un campione di dimensione n estratto da una popolazione gaussiana di media μ_X e varianza σ_X^2 . Se Y_1,\ldots,Y_m è un campione, indipendente dal precedente, di dimensione m estratto da una popolazione gaussiana di media μ_Y e varianza σ_Y^2 . Indichiamo con S_X^2 e S_Y^2 le rispettive varianze campionarie, cioè

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$
 e $S_Y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \overline{Y}_m)^2$

Allora, se $\sigma_X^2 = \sigma_Y^2$

$$\frac{S_X^2}{S_Y^2} \sim \mathbb{F}(n-1, m-1)$$

dove $\mathbb{F}(n-1, m-1)$ indica la distribuzione di Fisher con n-1, m-1 gradi di libertà.

Dimostrazione.

Ricordiamo che se $\chi^2_k\sim\chi^2(k)$ e $\bar\chi^2_r\sim\chi^2(r)$, e χ^2_k e $\bar\chi^2_r$ sono indipendenti, allora

$$\frac{\chi_k^2}{k} / \frac{\bar{\chi}_r^2}{r} \sim \mathbb{F}(k, r).$$

Poichè dalla precedente Proposizione sappiamo che.

$$(n-1)\frac{S_X^2}{\sigma_X^2} \sim \chi^2(n-1)$$
 $(m-1)\frac{S_Y^2}{\sigma_Y^2} \sim \chi^2(m-1)$

e sono indipendenti, se $\sigma_X^2 = \sigma_Y^2$ segue che

$$\frac{(n-1)S_X^2}{(n-1)\sigma_X^2} / \frac{(m-1)S_Y^2}{(m-1)\sigma_Y^2} = \frac{S_X^2}{S_Y^2} \sim \mathbb{F}(n-1, m-1).$$