Programación Funcional en Haskell

Paradigmas de Lenguajes de Programación

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

22 de agosto de 2017

Hoy presentamos...

- Esquemas de recursión sobre listas
 - Map
 - Filter
- Polds sobre listas
 - FoldR
 - FoldL
- 3 Otros esquemas de recursión sobre listas
- Tipos algebraicos
- 5 Recursión estructural en tipos algebraicos

Esquemas de recursión sobre listas: Map

La función map nos permite procesar todos los elementos de una lista mediante una transformación.

map :: (a -> b) -> [a] -> [b]

La función map nos permite procesar todos los elementos de una lista mediante una transformación.

- O, hablando en francés, la función map
 - Toma una función que sabe como convertir un tipo a en otro b,
 - Y nos devuelve una función que sabe como convertir listas de a en listas de b.

La función map nos permite procesar todos los elementos de una lista mediante una transformación.

- O, hablando en francés, la función map
 - Toma una función que sabe como convertir un tipo a en otro b,
 - Y nos devuelve una función que sabe como convertir listas de a en listas de b.

```
map f [] = []
map f (x:xs) = (f x):(map f xs)
```

Esquemas de recursión sobre listas: Map

```
map :: (a -> b) -> [a] -> [b]
```

La función map nos permite procesar todos los elementos de una lista mediante una transformación.

O, hablando en francés, la función map

- Toma una función que sabe como convertir un tipo a en otro b.
- Y nos devuelve una función que sabe como convertir listas de a en listas de b.

```
map f [] = []
\operatorname{map} f(x:xs) = (f x):(\operatorname{map} f xs)
```

Definir utilizando map

- longitudes :: [[a]] -> [Int]
- losIesimos :: [Int] -> [[a] -> a] que devuelve una lista con las funciones que toman los iésimos de una lista.
- shuffle :: [Int] -> [a] -> [a] que, dada una lista de índices $[i_1, ..., i_n]$ y una lista I, devuelve la lista $[I_{i_1}, ..., I_{i_n}]$

```
filter :: (a -> Bool) -> [a] -> [a]
```

La función filter nos permite obtener los elementos de una lista que cumplen cierta condición.

filter :: (a -> Bool) -> [a] -> [a]

La función filter nos permite obtener los elementos de una lista que cumplen cierta condición.

- O, hablando en francés, la función filter
 - Toma una función que nos dice si un elemento cumple una condicón,
 - Y nos devuelve una función que sabe como convertir listas de elementos cualquiera en listas cuyos elementos cumplen la condición deseada.

```
filter :: (a -> Bool) -> [a] -> [a]
```

La función filter nos permite obtener los elementos de una lista que cumplen cierta condición.

- O, hablando en francés, la función filter
 - Toma una función que nos dice si un elemento cumple una condicón,
 - Y nos devuelve una función que sabe como convertir listas de elementos cualquiera en listas cuyos elementos cumplen la condición deseada.

```
filter p [] = []
filter p (x:xs) = if p x then x:(filter xs) else filter xs
```

filter :: (a -> Bool) -> [a] -> [a]

La función filter nos permite obtener los elementos de una lista que cumplen cierta condición.

- O, hablando en francés, la función filter
 - Toma una función que nos dice si un elemento cumple una condicón,
 - Y nos devuelve una función que sabe como convertir listas de elementos cualquiera en listas cuyos elementos cumplen la condición deseada.

```
filter p [] = []
filter p (x:xs) = if p x then x:(filter xs) else filter xs
```

Definir utilizando filter

- deLongitudN :: Int -> [[a]] -> [[a]]
- soloPuntosFijos :: [Int -> Int] -> Int -> [Int -> Int] que toma una lista de funciones y un número n. En el resultado, deja las funciones que al aplicarlas a n dan n.
- quickSort :: Ord a => [a] -> [a]

foldr :: (a -> b -> b) -> b -> [a] -> b

La función foldr nos permite realizar recursión estructural sobre una lista.

La función foldr nos permite realizar recursión estructural sobre una lista.

- O, hablando en francés, la función foldr
 - Toma una función que representa el paso recursivo y un valor que representa el caso base,
 - Y nos devuelve una función que sabe como reducir listas de a a un valor b.

La función foldr nos permite realizar recursión estructural sobre una lista.

- O, hablando en francés, la función foldr
 - Toma una función que representa el paso recursivo y un valor que representa el caso base.
 - Y nos devuelve una función que sabe como reducir listas de a a un valor b.

```
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

```
foldr :: (a -> b -> b) -> b -> [a] -> b
```

La función foldr nos permite realizar recursión estructural sobre una lista.

- O, hablando en francés, la función foldr
 - Toma una función que representa el paso recursivo y un valor que representa el caso base.
 - Y nos devuelve una función que sabe como reducir listas de a a un valor b.

```
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

Definir utilizando foldr

- longitud :: [a] -> Int
- concatenar :: [[a]] -> [a]
- suma :: [Int] -> Int

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

¿Cómo funciona?

suma [1,2,3]

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

```
suma [1,2,3]
---> foldr (+) 0 [1,2,3]
---> 1 + (foldr (+) 0 [2,3])
```

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

```
suma [1,2,3]
---> foldr (+) 0 [1,2,3]
---> 1 + (foldr (+) 0 [2,3])
---> 1 + (2 + (foldr (+) 0 [3]))
```

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

```
suma [1,2,3]
---> foldr (+) 0 [1,2,3]
---> 1 + (foldr (+) 0 [2,3])
---> 1 + (2 + (foldr (+) 0 [3]))
---> 1 + (2 + (3 + (foldr (+) 0 )))
```

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

```
suma [1,2,3]
---> foldr (+) 0 [1,2,3]
---> 1 + (foldr (+) 0 [2,3])
---> 1 + (2 + (foldr (+) 0 [3]))
---> 1 + (2 + (3 + (foldr (+) 0 )))
---> 1 + (2 + (3 + 0))
```

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

```
suma [1,2,3]
---> foldr (+) 0 [1,2,3]
---> 1 + (foldr (+) 0 [2,3])
---> 1 + (2 + (foldr (+) 0 [3]))
---> 1 + (2 + (3 + (foldr (+) 0 )))
---> 1 + (2 + (3 + 0))
---> 1 + (2 + 3)
```

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

```
suma [1,2,3]
---> foldr (+) 0 [1,2,3]
---> 1 + (foldr (+) 0 [2,3])
---> 1 + (2 + (foldr (+) 0 [3]))
---> 1 + (2 + (3 + (foldr (+) 0 )))
---> 1 + (2 + (3 + 0))
---> 1 + (2 + 3)
---> 1 + 5
```

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

```
suma [1,2,3]
---> foldr (+) 0 [1,2,3]
---> 1 + (foldr (+) 0 [2,3])
---> 1 + (2 + (foldr (+) 0 [3]))
---> 1 + (2 + (3 + (foldr (+) 0 )))
---> 1 + (2 + (3 + 0))
---> 1 + (2 + 3)
---> 1 + 5
---> 6
```

FoldR

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

¿Cómo funciona?

```
suma [1,2,3]
---> foldr (+) 0 [1,2,3]
---> 1 + (foldr (+) 0 [2,3])
---> 1 + (2 + (foldr (+) 0 [3]))
---> 1 + (2 + (3 + (foldr (+) 0 )))
---> 1 + (2 + (3 + 0))
---> 1 + (2 + 3)
---> 1 + 5
---> 6
```

Notar que el primer (+) que se puede resolver es entre el último elemento de la lista y el caso base del foldr. Por esta razón decimos que el foldr acumula el resultado desde la derecha.

La función foldl es muy similar a foldr pero acumula desde la izquierda. Se define de la siguiente forma:

La función foldl es muy similar a foldr pero acumula desde la izquierda. Se define de la siguiente forma:

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs
```

La función <u>foldl</u> es muy similar a <u>foldr</u> pero *acumula* desde la **izquierda**. Se define de la siguiente forma:

FoldL

```
foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x : xs) = foldl f (f z x) xs
```

Definir utilizando foldl

■ reverso :: [a] -> [a]
■ suma :: [Int] -> Int

30 / 61

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs
```

¿Cómo funciona?

suma [1,2,3]

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs
```

```
suma [1,2,3]
---> foldl (+) 0 [1,2,3]
```

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs
```

```
suma [1,2,3]
---> foldl (+) 0 [1,2,3]
---> foldl (+) (0 + 1) [2,3]
```

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs
```

¿Cómo funciona?

suma [1,2,3]

---> fold1 (+) ((0 + 1) + 2) [3]

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z [] = z
foldl f z (x : xs) = foldl f (f z x) xs
```

¿Cómo funciona?

suma [1,2,3]

```
---> foldl (+) 0 [1,2,3]
---> foldl (+) (0 + 1) [2,3]
---> fold1 (+) ((0 + 1) + 2) [3]
---> fold1 (+) (((0 + 1) + 2) + 3) []
```

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z (x : xs) = foldl f (f z x) xs
```

¿Cómo funciona?

suma [1,2,3]

```
---> foldl (+) 0 [1,2,3]
---> foldl (+) (0 + 1) [2,3]
---> fold1 (+) ((0 + 1) + 2) [3]
---> foldl (+) (((0 + 1) + 2) + 3) []
---> (((0 + 1) + 2) + 3)
```

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z (x : xs) = foldl f (f z x) xs
```

¿Cómo funciona?

suma [1,2,3]

```
---> foldl (+) 0 [1,2,3]
---> foldl (+) (0 + 1) [2,3]
---> fold1 (+) ((0 + 1) + 2) [3]
---> foldl (+) (((0 + 1) + 2) + 3) []
---> (((0 + 1) + 2) + 3)
---> ((1 + 2) + 3)
```

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z (x : xs) = foldl f (f z x) xs
```

¿Cómo funciona?

```
suma [1,2,3]
---> foldl (+) 0 [1,2,3]
---> foldl (+) (0 + 1) [2,3]
---> fold1 (+) ((0 + 1) + 2) [3]
---> foldl (+) (((0 + 1) + 2) + 3) []
---> (((0 + 1) + 2) + 3)
---> ((1 + 2) + 3)
---> (3 + 3)
```

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z (x : xs) = foldl f (f z x) xs
```

¿Cómo funciona?

---> (3 + 3)---> 6

```
suma [1,2,3]
---> foldl (+) 0 [1,2,3]
---> foldl (+) (0 + 1) [2,3]
---> fold1 (+) ((0 + 1) + 2) [3]
---> foldl (+) (((0 + 1) + 2) + 3) []
---> (((0 + 1) + 2) + 3)
---> ((1 + 2) + 3)
```

Esquemas de recursión sobre listas: FoldL

FoldL

```
fold1 :: (b -> a -> b) -> b -> [a] -> b
foldl f z (x : xs) = foldl f (f z x) xs
```

¿Cómo funciona?

```
suma [1,2,3]
---> foldl (+) 0 [1.2.3]
---> foldl (+) (0 + 1) [2,3]
---> fold1 (+) ((0 + 1) + 2) [3]
---> foldl (+) (((0 + 1) + 2) + 3) []
---> (((0 + 1) + 2) + 3)
---> ((1 + 2) + 3)
---> (3 + 3)
---> 6
```

Notar que el primer (+) que se puede resolver es entre el primer elemento de la lista y el caso base del foldl.

¿Qué sucede con las listas infinitas al usar foldr o foldl?

Usando foldr

suma [1..]

Usando foldl

suma [1..]

Esquemas de recursión sobre listas: FoldR, FoldL y las listas infinitas

¿Qué sucede con las listas infinitas al usar foldr o foldl?

Usando foldr

```
suma [1..]
---> foldr (+) 0 [1..]
```

```
suma [1..]
---> foldl (+) 0 [1..]
```

Esquemas de recursión sobre listas: FoldR, FoldL y las listas infinitas

¿Qué sucede con las listas infinitas al usar foldr o foldl?

Usando foldr

```
suma [1..]
---> foldr (+) 0 [1..]
---> 1 + (foldr (+) 0 [2..])
```

```
suma [1..]
---> foldl (+) 0 [1..]
---> foldl (+) (0 + 1) [2...]
```

Esquemas de recursión sobre listas: FoldR, FoldL y las listas infinitas

¿ Qué sucede con las listas infinitas al usar foldr o foldl?

Usando foldr

```
suma [1..]
---> foldr (+) 0 [1..]
---> 1 + (foldr (+) 0 [2..])
---> 1 + (2 + (foldr (+) 0 [3..]))
```

```
suma [1..]
---> fold1 (+) 0 [1..]
---> fold1 (+) (0 + 1) [2..]
---> fold1 (+) ((0 + 1) + 2) [3..]
```

¿Qué sucede con las listas infinitas al usar foldr o foldl?

Usando foldr

```
suma [1..]
---> foldr (+) 0 [1..]
---> 1 + (foldr (+) 0 [2..])
---> 1 + (2 + (foldr (+) 0 [3..]))
---> 1 + (2 + (3 + (foldr (+) 0 [4..])))
```

```
suma [1..]
---> foldl (+) 0 [1..]
---> foldl (+) (0 + 1) [2..]
---> foldl (+) ((0 + 1) + 2) [3..]
---> fold1 (+) (((0 + 1) + 2) + 3) [4..]
```

Esquemas de recursión sobre listas: FoldR1 y FoldL1

Para situaciones en las cuales no hay un caso base claro (ej: no existe el neutro), tenemos las funciones: foldr1 y foldl1. Permiten hacer recursión estructural sobre listas sin definir un caso base:

- foldr1 toma como caso base el último elemento de la lista.
- foldl1 toma como caso base el primer elemento de la lista.

Para ambas, la lista no debe ser vacía.

Esquemas de recursión sobre listas: FoldR1 y FoldL1

Para situaciones en las cuales no hay un caso base claro (ej: no existe el neutro), tenemos las funciones: foldr1 y foldl1. Permiten hacer recursión estructural sobre listas sin definir un caso base:

- foldr1 toma como caso base el último elemento de la lista.
- foldl1 toma como caso base el primer elemento de la lista.

Para ambas, la lista no debe ser vacía.

Definir las siguientes funciones

```
■ ultimo :: [a] -> a
```

■ maximum :: Ord a => [a] -> a

Esquemas de recursión sobre listas: FoldR1 y FoldL1

Para situaciones en las cuales no hay un caso base claro (ej: no existe el neutro), tenemos las funciones: foldr1 y foldl1. Permiten hacer recursión estructural sobre listas sin definir un caso base:

- foldr1 toma como caso base el último elemento de la lista.
- fold11 toma como caso base el primer elemento de la lista.

Para ambas, la lista no debe ser vacía.

Definir las siguientes funciones

```
■ ultimo :: [a] -> a
```

■ maximum :: Ord a => [a] -> a

¿Qué computan estas funciones?

```
■ f1 :: [Bool] -> Bool
f1 = foldr (&&) True
```

Calentando motores... (no vale recursión explícita)

```
pertenece :: Eq a => a -> [a] -> Bool
pertenece e = foldr ...
```

¡Las difíciles!

Calentando motores... (no vale recursión explícita)

```
pertenece :: Eq a => a -> [a] -> Bool
pertenece e = foldr ...
```

Definir la función take, ¿cuál es la diferencia?

```
take :: Int -> [a] -> [a]
take n = foldr ...
```

Break

Otros esquemas de recursión sobre listas: Divide & Conquer

La técnica de Divide & Conquer consiste en dividir un problema en problemas más fáciles de resolver y luego combinando los resultados parciales, lograr obtener un resultado general.

Para generalizar la técnica, crearemos el tipo DivideConquer definido como:

type DivideConquer a b	
= (a -> Bool)	– determina si es o no el caso trivial
-> (a -> b)	– resuelve el caso trivial
-> (a -> [a])	 parte el problema en sub-problemas
-> ([b] -> b)	 combina resultados
-> a	– input
-> b	– resultado

Otros esquemas de recursión sobre listas: Divide & Conquer

La técnica de Divide & Conquer consiste en dividir un problema en problemas más fáciles de resolver y luego combinando los resultados parciales, lograr obtener un resultado general.

Para generalizar la técnica, crearemos el tipo DivideConquer definido como:

```
type DivideConquer a b

= (a -> Bool) - determina si es o no el caso trivial

-> (a -> b) - resuelve el caso trivial

-> (a -> [a]) - parte el problema en sub-problemas

-> ([b] -> b) - combina resultados

-> input

-> b - resultado
```

Definir las siguientes funciones

```
dc :: DivideConquer a b
dc esTrivial resolver repartir combinar x = ...

mergeSort :: Ord a => [a] -> [a]
mergeSort = dc ...
```

Tipos algebraicos y su definición en Haskell

Tipos algebraicos

- definidos como combinación de otros tipos
- están formados por uno o más constructores
- cada constructor puede o no tener argumentos
- los argumentos de los constructores pueden ser recursivos
- se inspeccionan usando pattern matching
- se definen mediante la cláusula data

Algunos ejemplos

```
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
```

Tipos algebraicos y su definición en Haskell

Tipos algebraicos

- definidos como combinación de otros tipos
- están formados por uno o más constructores
- cada constructor puede o no tener argumentos
- los argumentos de los constructores pueden ser recursivos
- se inspeccionan usando pattern matching
- se definen mediante la cláusula data

Algunos ejemplos

Folds sobre estructuras nuevas

¿Cómo hacemos?

Recordemos el tipo de foldr, el esquema de recursión estructural para listas.

¿Cómo hacemos?

Recordemos el tipo de foldr, el esquema de recursión estructural para listas.

```
foldr :: (a -> b -> b) -> b -> [a] -> b
¿Por qué tiene ese tipo?
(Pista: pensar en cuáles son los constructores del tipo [a]).
```

Un esquema de recursión estructural espera recibir un argumento por cada constructor (para saber qué devolver en cada caso), y además la estructura que va a recorrer.

El tipo de cada argumento va a depender de lo que reciba el constructor correspondiente. (¡Y todos van a devolver lo mismo!)

Si el constructor es recursivo, el argumento correspondiente del fold va a recibir el resultado de cada llamada recursiva.

Folds sobre estructuras nuevas

Definir el esquema de recursión estructural para el siguiente tipo:

```
data Formula = Proposicion String | No Formula | Y Formula Formula | O Formula Formula | Imp Formula Formula
```

Folds sobre estructuras nuevas

Definir el esquema de recursión estructural para el siguiente tipo:

```
data Formula = Proposicion String | No Formula | Y Formula Formula | O Formula Formula | Imp Formula Formula
```

Ejercicio

Usando el esquema definido, escribir las funciones:

- proposiciones :: Formula -> [String]
- quitarImplicaciones :: Formula -> Formula que convierte todas las formulas de la pinta $(p \implies q)$ a $(\neg p \lor q)$
- evaluar :: [(Proposicion, Bool)] -> Formula -> Bool que dada una formula y los valores de verdad asignados a cada una de sus proposiciones, nos devuelve el resultado de evaluar la fórmula lógica.

Fin (por ahora)