Analysis Qualifying Exam August 2003

Instructions: Write your name legibly on each sheet of paper. Write only on one side of each sheet of paper. Try to answer all questions. Prove all your claims. Questions 1-8 are worth 10 points each and question 9 is worth 20 points.

Terminology: Measurability and integrability on \mathbb{R}^n $(n \in \mathbb{N})$ or interval, or product of intervals will always refer to the Lebesgue measure except if otherwise specified. Lebesgue measure will be denoted by λ , dx or dy depending on the context.

- a. Prove that if (X, Σ, μ) is a measure space and $A_n \subseteq X$ for all $n \in \mathbb{N}$ with $\sum_{n} \mu(A_n) < \infty$ then $\mu(\limsup_{n} A_n) = 0$. b. For every $x \in (0, 1]$ write the dyadic expression of x,

$$x = \sum_{n=1}^{\infty} \frac{d_n(x)}{2^n} = .d_1(x)d_2(x)...,$$

each $d_n(x)$ being 0 or 1; if a number has two dyadic expressions we choose the one that terminates with ones (e.g. we write $\frac{1}{2^2} + \frac{1}{2^3} + \cdots$ rather than $\frac{1}{2}$). For every $n \in \mathbb{N}$ we define the function $\ell_n : (0,1] \to \mathbb{N}$ by $\ell_n(x) = 0$ if and only if $d_n(x) = 1$; $\ell_n(x) = k \ge 1$ if and only if $d_n(x) = d_{n+1}(x) = \cdots = d_{n+k-1}(x) = 0$ and $d_{n+k}(x) = 1$ (i.e. $\ell_n(x)$ is a finite number and is equal to the number of consequtive zeros in the dyadic expression of x starting counting from the n^{th} decimal). Compute

$$\lambda(\limsup_{n} \{x \in (0,1] : \ell_n(x) \ge 2\log_2 n\}).$$

(Recall that if X is a set and $A_n \subseteq X$ for all $n \in \mathbb{N}$ then we define $\limsup_n A_n =$ $\cap_{n=1}^{\infty} \cup_{m=n}^{\infty} A_m).$

- 2. Prove that every Borel subset of $\mathbb R$ is Lebesgue measurable.
- 3. State Lebesgue' Dominated Convergence Theorem (LDCT) and Egoroff's theorem. Prove LDCT for spaces of finite measure using Egoroff's theorem.
- 4. Suppose that f is a non-negative measurable function on a σ -finite measure space X, Σ, μ). Prove that $\{(x,y) \in X \times \mathbb{R} : 0 \le y \le f(x)\}$ is $\mu \times \lambda$ measurable and that $\int_X f d\mu = (\mu \times \lambda) \{ (x, y) \in X \times \mathbb{R} : 0 \le y \le f(x) \}.$
- **5.** Let $f:[0,1]\to\mathbb{R}$ be a function of bounded variation and let $v:[0,1]\to\mathbb{R}$ defined by $v(x) = T_a^x(f)$ (the total variation of f from 0 to x).
 - a. Prove that if v is absolutely continuous then f is absolutely continuous.
 - **b.** Prove that if $T_0^1(f) = \int_0^1 |f'| d\lambda$ then f is absolutely continuous. (The fact that if $g:[a,b]\to\mathbb{R}$ is a function of bounded variation then $T_a^b(g)\geq\int_a^b|g'|d\lambda$ can be used without proof if needed).
- 6. Let $\gamma(t) = 1 + e^{it}$ for $0 \le t \le 2\pi$. Compute

$$\int_{\gamma} \left(\frac{z}{z-1} \right)^n dz$$

for all positive integers n.

7. Let Ω be a region in \mathbb{C} and $f,g:\Omega\to\mathbb{C}$ be analytic functions such that f(z)g(z)=0for all $z \in \Omega$. Then prove that $f \equiv 0$ or $g \equiv 0$ (i.e. f(z) = 0 for all $z \in \Omega$ or g(z) = 0for all $z \in \Omega$).

2

$$\int_0^\infty \frac{x^2}{x^4 + x^2 + 1} dx.$$

9. True or False. Prove or disprove, whichever is appropriate, in order to obtain credit. a.) If (X, Σ, μ) is a finite measure space, $1 \le r \le s < \infty$ and $f: X \to \mathbb{R}$ is a measurable function then

$$||f||_r \le ||f||_s \mu(X)^{\frac{1}{r} - \frac{1}{s}}.$$

(Recall $||f||_r = (\int_X |f|^r d\mu)^{\frac{1}{r}}$). b. There exists a measurable set $A \subseteq [0,1] \times [0,1]$ such that $\lambda(A_x) = 0$ λ -a.e. and $\lambda(A^y) > 0$ λ -a.e. (Recall that we denote $A_x = \{y \in [0,1] : (x,y) \in A\}$ and $A^{y} = \{x \in [0,1] : (x,y) \in A\}.$

c. The function $f(z) = z \sin \frac{1}{z}$ has a pole at 0.

- d. There exists a region Ω of $\mathbb C$ which is mapped in a one-to-one way onto $\{z\in$ $\mathbb{C}\setminus\{0\}:|z|<1\}$ through the exponential map.
- e. There exists an analytic function $f:\{z\in\mathbb{C}:|z|<1\}\to\mathbb{C}$ such that $f(\{z\in\mathbb{C}:|z|<1\})\to\mathbb{C}$ $\mathbb{C}:|z|<1$) is exactly a line segment.