Statistics for Data Science Hackathon Assignment

Mahika Gupta PES1UG20CS243 Student_44

About the Dataset:

The dataset consists of information about students and the marks obtained by them in 3 different subjects.

Data Dictionary

,					
Column	Description				
Gender	The student's gender (female/male)				
Race	5 groups (group A-group E)				
Parental level of education 5 different types					
Lunch	Standard or Free/Reduced				
Test Preparation Course	None or Completed				
Math Score	Scored for 100 marks, varying ranges				
Reading Score	Scored for 100 marks, varying ranges				
Writing Score	Scored for 100 marks, varying ranges				

Size: (1000,8)

Extracted dataset:

The dataset has been extracted and a data frame df has been created

df.dtypes

```
gender
                                       object
[3]:
                                       object
     race
     parental level of education
                                       object
     lunch
                                       object
                                       object
     test preparation course
     math score
                                      float64
     reading score
                                      float64
     writing score
                                      float64
     dtype: object
```

This checks the datatype of all the attributes

Þ	del df	df['lunch'

[14		gender	race	parental level of education	test preparation course	math score	reading score	writing score
	0	female	group B	bachelor's degree	none	87.0	99.0	88.0
	1	female	group A	some high school	completed	21.0	117.0	102.0
	2	male	group C	some high school	none	105.0	115.0	107.0
	3	male	group A	some college	none	62.0	84.0	58.0
	4	female	group D	some college	none	91.0	105.0	89.0
	•••						27 *** .):	
	995	male	group A	master's degree	none	103.0	119.0	109.0
	996	female	group A	some high school	none	77.0	82.0	69.0
	997	female	group D	associate's degree	none	74.0	98.0	79.0
	998	male	group D	master's degree	none	83.0	105.0	91.0
	999	female	group D	some high school	none	92.0	113.0	100.0

1000 rows × 7 columns

+ Code

+ Markdown

```
df.isnull().sum()
```

```
[4]: gender
    race
    parental level of education
    lunch
    test preparation course
    math score
    reading score
    writing score
    dtype: int64
```

To check the number of null values in the attributes

```
df['math score'].fillna(df['math score'].mean(), inplace=True)
```

[7]:

[8]:

```
df['reading score'].fillna(df['reading score'].mean(), inplace=True)
```

```
df['writing score'].fillna(df['writing score'].mean(), inplace=True)
```

The null values numeric attributes are replaced by the mean of the attributes.

```
df.dropna(inplace=True)
[12]:
        df.isnull().sum()
      gender
[12...
      race
      parental level of education
      lunch
      test preparation course
      math score
      reading score
      writing score
      dtype: int64
```

Categorical null values have been dropped and the data contains no null values

⊨ٍ⊳

df['percentage'] = (df['math score']/120*100 + df['reading score']/120*100 + df['writing score']/120*100)/3

gender race parental level of education lunch test preparation course math score reading score writing score percentage [14... female group B bachelor's degree standard 87.0 99.0 88.0 76.111111 none female group A some high school standard completed 21.0 117.0 102.0 66.666667 105.0 115.0 90.833333 2 male group C some high school standard 107.0 none 56.666667 3 male group A some college standard 62.0 84.0 58.0 none some college standard 91.0 105.0 89.0 79.166667 female group D none ... 995 master's degree standard 103.0 119.0 109.0 91.944444 male group A none 996 female group A some high school free/reduced 77.0 82.0 69.0 63.333333 none 98.0 997 female group D associate's degree free/reduced 74.0 79.0 69.722222 none 998 male group D master's degree standard 83.0 105.0 91.0 77.500000 none

92.0

none

113.0

100.0

84.722222

996 rows × 9 columns

female group D

999

The percentage is calculated and the percentage column is added to the dataset

some high school free/reduced

```
def grading(s):
      if s['percentage']>90 and s['percentage']<100:</pre>
           return 'S'
      elif s['percentage']>80 and s['percentage']<90:</pre>
           return 'A'
      elif s['percentage']>70 and s['percentage']<80:
           return 'B'
      elif s['percentage']>60 and s['percentage']<70:</pre>
           return 'C'
      elif s['percentage']>40 and s['percentage']<60:</pre>
           return 'D'
      else:
           return 'F'
  df['grade'] = df.apply(grading, axis=1)
  df
     gender
               race parental level of education
     female group B
                            bachelor's degree
  0
     female group A
                             some high school
                             some high school
  2
       male group C
  3
       male group A
                                some college
     female group D
                                some college
 •••
995
       male group A
                              master's degree
```

996

997

female group A

female group D

standard

standard

standard

standard

standard

standard

some high school free/reduced

associate's degree free/reduced

lunch test preparation course math score reading score writing score percentage grade

99.0

117.0

115.0

84.0

105.0

119.0

82.0

98.0

88.0

102.0

107.0

58.0

89.0

109.0

69.0

79.0

76.111111

66.666667

90.833333

56.666667

79.166667

91.944444

63.333333

69.722222

В

C

S

D

В

...

S

С

C

87.0

21.0

105.0

62.0

91.0

103.0

77.0

74.0

...

none

none

none

none

none

none

none

completed

```
₽
         import seaborn as sns
         sns.kdeplot(df['reading score'])
      <AxesSubplot:xlabel='reading score', ylabel='Density'>
[21...
         0.025
         0.020
      0.015
0.015
         0.010
         0.005
         0.000
                   20
                                 60
                                        80
                                               100
                                                      120
                                 reading score
```

This resembles a normal distribution curve which is left skewed.

+ Markdown

+ Code

```
[30]:
```

import matplotlib.pyplot as plt
sns.catplot(x='parental level of education', y= 'percentage', hue = 'gender', data = df, kind = 'bar', aspect = 2

[30... <seaborn.axisgrid.FacetGrid at 0x7f1879786710>

Distribution of percentage across parental level of education, for each gender.

from random import sample
sample_size = 100
sample1 = df.sample(sample_size)
sample1

[22		gender	race	parental level of education	lunch	test preparation course	math score	reading score	writing score	percentage	grade
	241	male	group D	some high school	standard	completed	95.0	110.0	97.0	83.888889	Α
	889	male	group A	some college	standard	completed	59.0	78.0	62.0	55.277778	D
	659	female	group D	master's degree	free/reduced	completed	105.0	114.0	99.0	88.333333	Α
	319	female	group D	some high school	standard	none	71.0	92.0	77.0	66.666667	С
	602	female	group D	some high school	standard	none	91.0	20.0	94.0	56.944444	D
										•••	
	352	female	group A	some college	free/reduced	completed	78.0	105.0	94.0	76.944444	В
	589	female	group D	some high school	standard	completed	63.0	93.0	79.0	65.277778	С
	356	female	group A	bachelor's degree	standard	none	78.0	88.0	75.0	66.944444	С
	411	female	group A	some high school	free/reduced	none	99.0	110.0	92.0	83.611111	Α
	923	male	group A	some high school	free/reduced	none	69.0	92.0	79.0	66.666667	С

100 rows × 10 columns

Sample of 100 students created using simple random sampling.

```
def stratified_sample_df(data, col, n_samples):
    n = min(n_samples, data[col].value_counts().min())
    df_ = data.groupby(col).apply(lambda x: x.sample(n))
    df_.index = df_.index.droplevel(0)
    return df_
sample2 = stratified_sample_df(df,'race',100)
```

[39		gender	race	parental level of education	lunch	test preparation course	math score	reading score	writing score	percentage	grade
	908	female	group A	master's degree	standard	completed	82.0	102.0	86.0	75.000000	В
	41	female	group A	associate's degree	standard	none	73.0	100.0	82.0	70.833333	В
	982	male	group A	some high school	standard	completed	94.0	112.0	100.0	85.000000	Α
	865	male	group A	some high school	standard	completed	97.0	109.0	102.0	85.555556	Α
	196	male	group A	bachelor's degree	standard	none	74.0	96.0	79.0	69.166667	С
	698	female	group E	bachelor's degree	free/reduced	completed	72.0	68.0	93.0	64.722222	С
	942	male	group E	some high school	standard	none	96.0	93.0	78.0	74.166667	В
	780	female	group E	high school	free/reduced	completed	61.0	83.0	25.0	46.944444	D
	75	male	group E	some high school	free/reduced	none	59.0	68.0	52.0	49.722222	D
	396	female	group E	master's degree	free/reduced	none	42.0	94.0	77.0	59.166667	D

100 rows × 10 columns

Sample of 100 students created using Stratified random sampling, using race as strata

```
mean1 = sample1['math score'].mean()
mean1

81.32
```

Mean of math score in first sample

```
mean2 = sample2['math score'].mean()
mean2
```

80.20225677031094

Mean of math score in second sample

```
value = sample1['math score']
       zscore = (value-value.mean())/value.std()
       sampling_err1 = zscore*(value.std())/((100)**0.5)
       sampling_err1.mean()
     6.750155989720952e-16
[45...
     Sampling error for first sample
[46]:
       value = sample2['math score']
       zscore = (value-value.mean())/value.std()
       sampling_err2 = zscore*(value.std())/((100)**0.5)
       sampling_err2.mean()
     -5.773159728050814e-16
[46...
```

Sampling error for the second sample is lower.

Sampling error for second sample

Distribution of race compared between the two samples and the population

Distribution of race in sample 1. Here the majority race is group

Distribution of race in sample 2.

Distribution of race in population. Here the majority race is group D.

Boxplot of Race against subject scores:

In race against reading score, group D has the greatest number of outliers.

In race against math score, group A has the greatest number of outliers.

Conclusion

The conclusions drawn from this dataset are:

- students with parents with high school level of education have relatively higher percentage.
- Group A and Group D comprise of the majority of the population of students.
- Students have scored relatively higher in reading, as compared to math and writing.