

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Code of Federal Regulations 47 Part 15 – Radio Frequency Devices

Subpart C – Intentional Radiators **Section 15.247** Operation within the bands 902 - 928 MHz,

2400 - 2483.5 MHz, 5725 - 5875 MHz, and 24.0 - 24.25 GHz.

THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION

Formal Name: Avenger Station 5.7GHz Radio

Kind of Equipment: Point-to-Point or Point-to-Multipoint Digital Transmission Transceiver

Frequency Range: 5740 to 5835 MHz (20 MHz bandwidth)

5750 to 5825 MHz (40 MHz bandwidth)

Test Configuration: Stand-alone

Integrated model: C050900P032A Model Number(s):

Connectorized model: C050900C032A

Model(s) Tested: Integrated model: C050900P032A

Connectorized model: C050900C032A

Serial Number(s): Integrated: 000456C00042

Connectorized: 000456C0000C

May 29th to June 5th, 2013 Date of Tests:

Test Conducted For: Cambium Networks

3800 Golf Road, Suite 360

Rolling Meadows, IL 60008, USA

NOTICE: "This test report relates only to the items tested and must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Description of Test Sample" page listed inside of this report.

© Copyright 1983 – 2013, D.L.S. Electronic Systems, Inc.

COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.

166 South Carter, Genoa City, WI 53128

Company: Cambium Networks Model Tested: C050900C032A & C

DLS Project:

Model Tested: C050900C032A & C050900P032A Report Number: 19075

19075 5942

SIGNATURE PAGE

Tested By:

James Ochoa Test Engineer

Jame R. Ochoc

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager

Cambium Networks

C050900C032A & C050900P032A

Company: Model Tested: Report Number: DLS Project: 19075 5942

166 South Carter, Genoa City, WI 53128

Table of Contents

1. Cover Page	
ii. Signature Page	
iii. Table of Contents	
iv. NVLAP Certificate of Accreditation	
1.0 Summary of Test Report	
2.0 Introduction	
3.0 Test Facilities	
4.0 Description of Test Sample	
5.0 Test Equipment	
6.0 Test Arrangements	10
7.0 Test Conditions	10
8.0 Modifications Made To EUT for Compliance	11
9.0 Additional Descriptions	
10.0 Results	
11.0 Conclusion	
Appendix A – Test Photos	
Appendix B – Measurement Data	
B1.0 DTS Bandwidth – 6 dB bandwidth - Conducted B1.0a - 20MHz Channel Bandwidth	
B1.0b - 40MHz Channel Bandwidth	
B2.0 Fundamental Emission Output Power - Conducted	
B2.0a - Point-to-Point with 20MHz Bandwidth	
B2.0b - Point-to-Point with 40MHz Bandwidth	
B2.0c - Point-to-Multipoint with 20MHz Bandwidth	
B2.0d - Point-to-Multipoint with 40MHz Bandwidth	
B3.0 Maximum Power Spectral Density – Conducted	55
B3.0a - 20MHz Channel Bandwidth	5 <i>6</i>
B3.0b - 40MHz Channel Bandwidth	
B4.0 Maximum Unwanted Emission Levels – Conducted	
B4.0a - 20MHz Bandwidth, Channel 0	
B4.0b - 20MHz Bandwidth, Channel 1	
B4.0c - 40MHz Bandwidth, Channel 0	
B4.0d - 40MHz Bandwidth, Channel 1	
B5.0 Band-Edge Measurements - Radiated	
B5.0a - 20MHz Channel Bandwidth	
B5.0b - 40MHz Channel Bandwidth	

Cambium Networks

C050900C032A & C050900P032A

Company: Model Tested: Report Number: DLS Project: 19075 5942

166 South Carter, Genoa City, WI 53128

B6.0	Maximum Unwanted Emission Levels into Restricted Frequency Bands - Radiated	150
	- 30 to 1000MHz	
B6.0b	- 1 to 18GHz - 20MHz Bandwidth	157
B6.0c	- 1 to 18GHz - 40MHz Bandwidth	163
B6.0d	- 18 to 40GHz	169
B7.0	Duty Cycle of Test Unit	175
	AC Line Conducted Emissions	

166 South Carter, Genoa City, WI 53128

National Institute of Standards and Technology United States Department of Commerce

Company: **Cambium Networks**

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009). is accredited by the National Voluntary Laboratory Accreditation Program for specific services, D.L.S. Electronic Systems, Inc. listed on the Scope of Accreditation, for: Wheeling, IL

2012-10-01 through 2013-09-30

NVLAP LAB CODE: 100276-0

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

1.0 Summary of Test Report

It was determined that the Cambium Networks Avenger Station 5.7GHz Radio, Integrated model: C050900C00P032A, and Connectorized model: C050900C032A, complies with the requirements of CFR 47 Part 15 Subpart C Section 15.247.

Applicable Technical Requirements Tested:

Section	Description	Procedure	Note	Compliant?
FCC 15.247(a)(2)	6 dB Emission Bandwidth -	FCC Publication	1	Yes
	Conducted	KDB 558074 D01 DTS		
		Meas Guidance v03r01		
		Section 8.1 Option 1		
FCC 15.247(b)(3)	Fundamental Emission Output	FCC Publication	1	Yes
	Power – Conducted	KDB 558074 D01 DTS		
		Meas Guidance v03r01		
		Section 9.2.3.1-AVGPM		
FCC 15.247(e)	Maximum Power Spectral	FCC Publication	1	Yes
	Density - Conducted	KDB 558074 D01 DTS		
		Meas Guidance v03r01		
		Section 10.3-AVGPSD-1		
FCC 15.247(d)	Maximum Unwanted Emission	FCC Publication	1	Yes
	Levels – Conducted	KDB 558074 D01 DTS		
		Meas Guidance v03r01		
		Sections 11.0, 11.2, 11.3		
FCC 15.247(d)	Band Edge Measurements -	FCC Publication	2	Yes
	Radiated	KDB 558074 D01 DTS		
		Meas Guidance v03r01		
		Section 11.0		
FCC 15.247(d),	Restricted Band Measurements -	FCC Publication	2	Yes
FCC 15.205	Radiated	KDB 558074 D01 DTS		
		Meas Guidance v03r01		
		Section 12.0 & 12.1		
FCC 15.35(c)	Duty Cycle of Test Unit	ANSI C63.10-2009	1	NA
		Section 7.5		
FCC 15.207(a)	AC Line Conducted Emissions	ANSI C63.10-2009	3	Yes
		Section 6.2		

Note 1: RF conducted measurement.

Note 2: Radiated emission measurement.

Note 3: AC line conducted measurement.

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

2.0 Introduction

From May 29th through June 5th Avenger Station 5.7GHz Radio, Models C050900C00P032A & C050900C032A, as provided from Cambium Networks, was tested to the requirements of CFR 47 Part 15 Subpart C Section 15.247. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S Electronic Systems, Inc.

3.0 Test Facilities

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI.

Wisconsin Test Facility:

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128

Wheeling Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

4.0 Description of Test Sample

Description:

Point-to-Point or Point-to-Multipoint 5.7GHz 802.11 fixed outdoor transceiver with either 20 MHz or 40 MHz channel bandwidth. OFDM modulation. This is a software defined radio.

Type of Equipment

Stand-Alone

Frequency Range:

5740 to 5835 MHz (20 MHz bandwidth) 5750 to 5825 MHz (40 MHz bandwidth)

Physical Dimensions of Equipment Under Test:

Length: 4 in. Width: 2 in. Height: 10 in.

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Power Source:

29 VDC (Power Over Ethernet to Radio) 120 Vac, 60 Hz using Phihong power supply model: 15R (for AC Line Conducted)

Internal Frequencies:

940 - 1000 kHz (Switching Power Supply Frequency) 40 MHz, 25 MHz, 4 MHz

Transmit Frequencies Used For Test Purpose:

20 MHz Channel Bandwidth: Low channel: 5740 MHz

Middle channel: 5775 MHz High channel: 5835 MHz

40 MHz Channel Bandwidth: Low channel: 5750 MHz

Middle channel: 5785 MHz High channel: 5825 MHz

Power Settings noted on the test data

Type of Modulations:

OFDM: 802.11n

Description of Circuit Board(s) / Part Number:

SM PC Board	84009653001
Antenna PC Board	P005135

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

5.0 Test Equipment

A list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

D.L.S. Wisconsin

Description	Manufacturer	Model Number	Serial Number	Frequency Range	Cal Dates	Cal Due Dates
Receiver	Rohde & Schwarz	ESI 40	837808/005	20 Hz – 40 GHz	7-23-12	7-23-13
LISN	Solar	9252-50-R- 24-BNC	961019	9 kHz – 30 MHz	5-24-13	5-24-14
Filter- High- Pass	SOLAR	7930-120	090702	120 kHz – 30 MHz	1-7-13	1-7-14
Limiter	Electro-Metrics	EM-7600	706	9 kHz – 30 MHz	1-7-13	1-7-14
Preamp	Miteq	AMF-7D- 01001800-22- 10P	1809602	1GHz-18GHz	5-29-13	5-29-14
Horn Antenna	EMCO	3115	9502-4451	1-18GHz	3-18-13	3-18-15
Filter- High- Pass	Q-Microwave	100462	2	4.2GHz-18GHz	5-28-13	5-28-14
Preamp	Miteq	AMF-8B- 180265-40- 10P-H/S	438727	18GHz-26GHz	8-13-12	8-13-13
Horn Antenna	ETS Lindgren	3116	00062917	18 – 40GHz	10-4-11	9-23-13
High Pass Filter	Planar	CL22500- 9000-CD-SS	PF1229/0728	15-40 GHz	8-13-12	8-13-13
20 dB attenuator	Aeroflex/weinschel	75A-20-12	1071	DC – 40 GHz	8-13-12	8-13-13
10 dB attenuator	narda	4768-10	0702	DC – 40 GHz	8-13-12	8-13-13
Receiver	Rohde & Schwarz	ESI 26	837491/010	20 Hz – 26 GHz	1-3-13	1-3-14
Preamplifier	Rohde & Schwarz	TS-PR10	032001/005	9 kHz – 1 GHz	1-10-13	1-10-14
Antenna	EMCO	3104C	97014785	20 MHz – 200 MHz	8-22-12	8-22-14
Antenna	EMCO	3146	97024895	200 MHz – 1 GHz	9-6-12	9-6-14

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

6.0 Test Arrangements

Radiated Emissions Measurement Arrangement:

All radiated emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to FCC KDB 558074 D01 DTS Meas Guidance v03r01 and ANSI C63.10-2009, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for photos of the test set up.

Unless otherwise noted, the bandwidth of the measuring receiver / analyzer used during testing is shown below.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

RF Conducted Emissions Measurement Arrangement:

All RF conducted emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 and ANSI C63.10-2009, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for photos of the test set up.

7.0 Test Conditions

Normal Test Conditions:

Temperature and Humidity:

67°F at 56% RH (or as noted)

Supply Voltage:

29 VDC (Power Over Ethernet to Radio)

120 Vac, 60 Hz using Phihong power supply model: 15R (for AC Line Conducted)

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

8.0 Modifications Made To EUT for Compliance

None noted at time of test.

9.0 Additional Descriptions

Testing was performed at low, mid, and high channels over 2 modulation bandwidths (20MHz & 40MHz). The antenna ports were tested (Channel 0 & 1) using both an integrated & connectorized model. Worst case emissions were recorded. AC line conducted tested in transmit mode.

Emission Designators: 20M0x1D, 40M0x1D

Power Settings noted on the test data.

10.0 Results

Measurements were performed in accordance with FCC Publication KDB 558074 D01 DTS Meas Guidance v03r01 and ANSI C63.10-2009. Graphical and tabular data can be found in Appendix B at the end of this report.

11.0 Conclusion

The Avenger Station 5.7GHz Radio, Models C050900P032A & C050900C032A, as provided from Cambium Networks tested from May 29th to June 5th **meets** the requirements of CFR 47 Part 15 Subpart C Section 15.247.

166 South Carter, Genoa City, WI 53128

Company: Cambium Networks

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

Appendix A – Test Photos

Photo Information and Test Setup:

Item0: Avenger Station 5.7GHz Radio, Model C050900P032A or C050900C032A

Item1: Phihong Power Supply Model 15R

Item2: Unshielded Ethernet Cable - 2 meters long

Radiated - Below 1 GHz

Appendix A – Test Photos

166 South Carter, Genoa City, WI 53128

Cambium Networks

C050900C032A & C050900P032A

Company: Model Tested: Report Number: DLS Project: 19075 5942

Appendix A – Test Photos

166 South Carter, Genoa City, WI 53128

Cambium Networks

C050900C032A & C050900P032A

Company: Model Tested: Report Number: DLS Project: 19075 5942

Radiated - Above 18 GHz

166 South Carter, Genoa City, WI 53128

Cambium Networks

C050900C032A & C050900P032A

Company: Model Tested: Report Number: DLS Project: 19075 5942

Appendix A – Test Photos

RF Conducted

Appendix A – Test Photos

166 South Carter, Genoa City, WI 53128

Cambium Networks C050900C032A & C050900P032A

Company: Model Tested: Report Number: DLS Project: 19075 5942

Page **16** of **181**

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128 Appendix B – Measurement Data

B1.0 DTS Bandwidth - 6 dB bandwidth - Conducted

Rule Section: Section 15.247(a)(2)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v03r01 – Guidance for Performing

Compliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

Section 8.0 DTS Bandwidth

8.1 Option 1

Description: RBW = 100kHz $VBW \ge 3 \times RBW$

Detector = Peak Trace mode = Max Hold

Sweep = Auto Couple

Allow the trace to stabilize. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Measure the maximum width of the emission between the lower and upper frequencies that measure 6 dB below the maximum level of the in-band emission.

Measurements were taken for an OFDM modulation over a 20MHz and 40MHz modulation bandwidth at the low, mid and high channels of operation. EUT was set to transmit continuously over various frequencies and power settings.

Limit: DTS Bandwidth shall be at least 500 kHz

Results: Passed

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz VBW = 300 kHzLow Channel: Transmit = 5.740 GHz 20MHz BW Output power setting: 20 Channel 0

6dB BW > 500 kHz

 $6 \text{ dB} \left(\frac{\text{D1}}{\text{D1}} \right)$ DTS Bandwidth = 17.86MHz

Date: 30.MAY.2013 12:31:38

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz VBW = 300 kHz Mid Channel: Transmit = 5.775 GHz 20MHz BW Output power setting: 20 Channel 0

6dB BW > 500 kHz

 $6 \text{ dB} \left(\frac{\text{D1}}{\text{D1}} \right) \text{ DTS Bandwidth} = 17.74 \text{MHz}$

Date: 30.MAY.2013 12:41:09

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz

High Channel: Transmit = 5.835 GHz

Output power setting: 20

VBW = 300 kHz

20MHz BW

Channel 0

6dB BW > 500 kHz

 $6 \text{ dB} \left(\frac{\text{D1}}{\text{D1}} \right) \text{ DTS Bandwidth} = 17.92 \text{MHz}$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz VBW = 300 kHzLow Channel: Transmit = 5.740 GHz 20MHz BW Output power setting: 20 Channel 1

6dB BW > 500 kHz

6 dB (D1) DTS Bandwidth = 17.74MHz

Date: 30.MAY.2013 12:34:46

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz VBW = 300 kHz Mid Channel: Transmit = 5.775 GHz 20MHz BW Output power setting: 20 Channel 1

6dB BW > 500 kHz

 $6 \text{ dB} \left(\frac{\text{D1}}{\text{D1}} \right) \text{ DTS Bandwidth} = 17.74 \text{MHz}$

Date: 30.MAY.2013 12:38:45

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz High Channel: Transmit = 5.835 GHz Output power setting: 20 VBW = 300 kHz 20 MHz BW Channel 1

6dB BW > 500 kHz

 $6 \text{ dB} \left(\frac{\text{D1}}{\text{D1}} \right) \text{ DTS Bandwidth} = 17.80 \text{MHz}$

Date: 30.MAY.2013 12:52:07

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz VBW = 300 kHzLow Channel: Transmit = 5.750 GHz 40MHz BW Output power setting: 20 Channel 0

6dB BW > 500 kHz

 $6 \text{ dB} \left(\frac{\text{D1}}{\text{D1}} \right)$ DTS Bandwidth = 36.31 MHz

Date: 30.MAY.2013 11:24:57

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz VBW = 300 kHz Mid Channel: Transmit = 5.785 GHz 40MHz BW Output power setting: 20 Channel 0

6dB BW > 500 kHz

6 dB (D1) DTS Bandwidth = 36.43 MHz

Date: 30.MAY.2013 11:35:14

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz VBW = 300 kHz High Channel: Transmit = 5.825 GHz 40 MHz BW 0 utput power setting: 20 Channel 0

6dB BW > 500 kHz

6 dB (D1) DTS Bandwidth = 36.55 MHz

Date: 30.MAY.2013 11:40:56

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz VBW = 300 kHz Low Channel: Transmit = 5.750 GHz 40 MHz BW Output power setting: 20 Channel 1

6dB BW > 500kHz

6 dB (D1) DTS Bandwidth = 36.67 MHz

Date: 30.MAY.2013 11:13:37

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz

Mid Channel: Transmit = 5.785 GHz

Output power setting: 20

VBW = 300 kHz

40MHz BW

Channel 1

6dB BW > 500 kHz

6 dB (D1) DTS Bandwidth = 36.43MHz

Date: 30.MAY.2013 11:31:25

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-30-2013

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM
Test: DTS Bandwidth (6 dB) - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

8.0 DTS Bandwidth: Section 8.1 Option 1

RBW = 100 kHz VBW = 300 kHz High Channel: Transmit = 5.825 GHz 40 MHz BW 0 Channel 1

6dB BW > 500 kHz

6 dB (D1) DTS Bandwidth = 36.67 MHz

Date: 30.MAY.2013 11:39:09

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128 Appendix B – Measurement Data

B2.0 Fundamental Emission Output Power - Conducted

Rule Section: Section 15.247(b)(3)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v03r01 – Guidance for Performing

Compliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

Section 9.2.3.1 – AVGPM (Measurement using an RF average power

meter with a thermocouple detector)

Description: As an alternative to spectrum analyzer or EMI receiver measurements,

measurements may be performed using a wideband RF power meter with

a thermocouple detector or equivalent..

Measurements were taken for an OFDM modulation over a 20MHz and 40MHz modulation bandwidth at the low, mid and high channels of operation. EUT was set to transmit continuously over various frequencies and power settings. A duty cycle measurement of greater than 98% was

confirmed.

Limit: 1 Watt (30dBm) for Point-to-Point mode

1 Watt (30dBm); 20dBm for Point-to-Multipoint mode. (see note below)

Results: Passed

Notes: Antenna gain is 16dBi. Therefore, the RF conducted power limit was reduced by

10 dB to 20dBm (the amount by which the antenna gain exceeds 6dBi) for Point-

to-Multipoint mode.

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; Low Channel Frequency: 5.740 GHz

Output power setting: 17; Modulation BW: 20MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 20dBm + 3 dB (MIMO) = 23.0dBm = 199.5**mW**

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; Mid Channel Frequency: 5.775 GHz

Output power setting: 20dBm Modulation BW: 20MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add 10 log (N) dB, where N is the number of outputs. $= 10 \log (2) = 3 \text{ dB}$

Fundamental Emission AVERAGE Output Power = 19.96dBm + 3 dB (MIMO) = 22.96dBm = 197.7**mW**

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; High Channel Frequency: 5.835 GHz

Output power setting: 20dBm Modulation BW: 20MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 19.93dBm + 3 dB (MIMO) = 22.93dBm = 196.3**mW**

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; Low Channel Frequency: 5.740 GHz

Output power setting: 17; Modulation BW: 20MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add 10 log (N) dB, where N is the number of outputs. $= 10 \log (2) = 3 \text{ dB}$

Fundamental Emission AVERAGE Output Power = 19.85dBm + 3 dB (MIMO) = 22.85dBm = 192.8**mW**

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; Mid Channel Frequency: 5.775 GHz

Output power setting: 20dBm Modulation BW: 20MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 19.99dBm + 3 dB (MIMO) = 22.99dBm = 199.1**mW**

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; High Channel Frequency: 5.835 GHz

Output power setting: 20dBm Modulation BW: 20MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Fundamental Emission AVERAGE Output Power = 19.97dBm + 3 dB (MIMO) = 22.97dBm = 198.2**mW**

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0 Low Channel Frequency: 5.750 GHz

Output power setting: 20dBm Modulation BW: 40MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add 10 log (N) dB, where N is the number of outputs. $= 10 \log (2) = 3 \text{ dB}$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; Mid Channel Frequency: 5.785 GHz

Output power setting: 20dBm Modulation BW: 40MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; High Channel Frequency: 5.825 GHz

Output power setting: 20dBm Modulation BW: 40MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1 Low Channel Frequency: 5.750 GHz

Output power setting: 20dBm Modulation BW: 40MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add 10 log (N) dB, where N is the number of outputs. $= 10 \log (2) = 3 \text{ dB}$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; Mid Channel Frequency: 5.785 GHz

Output power setting: 20dBm Modulation BW: 40MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 6-03-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; High Channel Frequency: 5.825 GHz

Output power setting: 20dBm Modulation BW: 40MHz
Operating Mode: Point-to-Point Antenna Gain = 16dBi

Limit: [15.247]: 30dBm (1 Watt) conducted

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add 10 log (N) dB, where N is the number of outputs. $= 10 \log (2) = 3 \text{ dB}$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; Low Channel Frequency: 5.740 GHz

Output power setting: 17; Modulation BW: 20MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; Mid Channel Frequency: 5.775 GHz

Output power setting: 17; Modulation BW: 20MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-29-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; High Channel Frequency: 5.835 GHz

Output power setting: 17; Modulation BW: 20MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; Low Channel Frequency: 5.740 GHz

Output power setting: 17; Modulation BW: 20MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; Mid Channel Frequency: 5.775 GHz

Output power setting: 17; Modulation BW: 20MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-29-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; High Channel Frequency: 5.835 GHz

Output power setting: 17; Modulation BW: 20MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add 10 log (N) dB, where N is the number of outputs. $= 10 \log (2) = 3 \text{ dB}$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C

Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; Low Channel Frequency: 5.750 GHz

Output power setting: 17; Modulation BW: 40MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; Mid Channel Frequency: 5.785 GHz

Output power setting: 17; Modulation BW: 40MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 0; High Channel Frequency: 5.825 GHz

Output power setting: 17; Modulation BW: 40MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; Low Channel Frequency: 5.750 GHz

Output power setting: 17; Modulation BW: 40MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; Mid Channel Frequency: 5.785 GHz

Output power setting: 17; Modulation BW: 40MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add 10 log (N) dB, where N is the number of outputs. $= 10 \log (2) = 3 \text{ dB}$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-31-2013

Company: Cambium Networks

EUT: Avenger Station 5.7 GHz OFDM ESN: 000456C0000C
Test: AVERAGE Fundamental Emission Output Power – Conducted

Procedure: FCC KDB D01 DTS Meas Guidance v03r01

Section 9.2.3.1 – AVGPM (Measurement using an RF average power meter with

a thermocouple detector)

Operator: Jim O

Comments: Output port: Channel 1; High Channel Frequency: 5.825 GHz

Output power setting: 17; Modulation BW: 40MHz
Operating Mode: Point-to-Multipoint Antenna Gain = 16dBi

Limit: [15.247(b)(3)]: 30 dBm (1 Watt) – 10 dB (antenna gain is 10 dB greater than the 6 dB

allowed) = 20dBm conducted.

MIMO MATRIX A: Measure-and-sum technique for MIMO with Cross-Polarized antenna: Measure and add $10 \log (N) dB$, where N is the number of outputs. $= 10 \log (2) = 3 dB$

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128 Appendix B – Measurement Data

B3.0 Maximum Power Spectral Density – Conducted

Rule Section: Section 15.247(e)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v03r01 – Guidance for Performing

Compliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

10.3 Method AVGPSD-1 (trace averaging with EUT transmitting at

full (power throughout each sweep)

Description: Set instrument center frequency to DTS channel center frequency.

Set span to at least 1.5 times the OBW. Set RBW to: 3 kHz < RBW < 100 kHz.

Set VBW $\geq 3 \times RBW$.

Detector = power averaging (RMS) or sample detector (when RMS not available). Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.

Sweep time = auto couple.

Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum amplitude level.

Measurements were taken for an OFDM modulation over a 20MHz and 40MHz modulation bandwidth at the low, mid and high channels of operation. EUT was set to transmit continuously over various frequencies and power settings. A duty cycle measurement of greater than 98% was

confirmed.

Limit: 8 dBm in any 3 kHz band segment within the fundamental EBW during any time

interval of continuous transmission.

Results: Passed

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

Low Channel: Frequency = 5.740GHz

 $TX \ Output \ Power \ Setting = 20dBm$ $RBW = 100 \ kHz$ $Span = 1.5 \ x \ EBW$ $Sweep = Auto \ Couple$ $20MHz \ BW$ $VBW = 300 \ kHz$ Detector = RMS $Trace = Max \ Hold$

Channel 0 Limit: +8 dBm PSD = 4.05dBm = Pass

Date: 30.MAY.2013 09:24:28

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

Mid Channel: Frequency = 5.775GHz

 $TX \ Output \ Power \ Setting = 20dBm$ $RBW = 100 \ kHz$ $Span = 1.5 \ x \ EBW$ $Sweep = Auto \ Couple$ $20MHz \ BW$ $VBW = 300 \ kHz$ Detector = RMS $Trace = Max \ Hold$

Channel 0 Limit: +8 dBm PSD = 5.63dBm = Pass

Date: 30.MAY.2013 09:43:47

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

High Channel: Frequency = 5.835GHz

 $TX \ Output \ Power \ Setting = 20dBm$ $RBW = 100 \ kHz$ $Span = 1.5 \ x \ EBW$ $Sweep = Auto \ Couple$ $20MHz \ BW$ $VBW = 300 \ kHz$ Detector = RMS $Trace = Max \ Hold$

Channel 0 Limit: +8 dBm PSD = 3.16dBm = Pass

Date: 30.MAY.2013 09:52:31

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

Low Channel: Frequency = 5.740GHz

Channel 1 Limit: +8 dBm PSD = 3.06dBm = Pass

Date: 30.MAY.2013 09:34:52

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

Mid Channel: Frequency = 5.775GHz

Channel 1 Limit: +8 dBm PSD = 4.98dBm = Pass

Date: 30.MAY.2013 09:41:30

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

High Channel: Frequency = 5.835GHz

 $TX \ Output \ Power \ Setting = 20dBm$ $RBW = 100 \ kHz$ $Span = 1.5 \ x \ EBW$ $Sweep = Auto \ Couple$ $20MHz \ BW$ $VBW = 300 \ kHz$ Detector = RMS $Trace = Max \ Hold$

Channel 1 Limit: +8 dBm PSD = 4.42dBm = Pass

Date: 30.MAY.2013 09:49:48

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

Low Channel: Frequency = 5.750GHz

TX Output Power Setting = 20 dBmRBW = 100 kHzSpan = 1.5 x EBWSweep = Auto Couple

Channel 0 40 MHz BWVBW = 300 kHzDetector = RMS

Trace = Max Hold

Limit: +8 dBm

PSD = 1.11dBm = Pass

Date: 30.MAY.2013 10:24:43

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

Mid Channel: Frequency = 5.785GHz

PSD = 1.32dBm = Pass

Date: 30.MAY.2013 10:18:41

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

High Channel: Frequency = 5.825GHz

TX Output Power Setting = 20 dBmRBW = 100 kHzSpan = 1.5 x EBWSweep = Auto Couple

Channel 0 40 MHz BWVBW = 300 kHzDetector = RMS

Trace = Max Hold

Limit: +8 dBm

PSD = -2.17dBm = Pass

Date: 30.MAY.2013 10:06:58

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

Low Channel: Frequency = 5.750GHz

PSD = 2.33dBm = Pass

Date: 30.MAY.2013 10:29:18

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

Mid Channel: Frequency = 5.785GHz

TX Output Power Setting = 20dBm 40MHz BW VBW = 300 kHz Span = 1.5 x EBW Detector = RMS Sweep = Auto Couple Trace = Max Hold Channel 1 Limit: <math>+8 dBm

PSD = 1.82dBm = Pass

Date: 30.MAY.2013 10:14:53

Company: Cambium Networks

EUT: Avenger Station 5.7GHz OFDM

Test: Maximum Power Spectral Density - Conducted

Operator: Jim O

Comment: FCC DTS operating under 15.247 – OET 4/9/2013

10.3 Method AVGPSD-1

High Channel: Frequency = 5.825GHz

TX Output Power Setting = 20dBm 40MHz BW VBW = 300 kHz Span = 1.5 x EBW Detector = RMS Sweep = Auto Couple Trace = Max Hold Channel 1 Limit: <math>+8 dBm

PSD = -0.22dBm = Pass

Date: 30.MAY.2013 10:10:23

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128 Appendix B — Measurement Data

B4.0 Maximum Unwanted Emission Levels – Conducted

Rule Section: Section 15.247(d)

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v03r01 – Guidance for Performing

Compliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

11.0 - Emissions in non-restricted frequency bands

11.2 - Reference level measurement11.3 - Emission level measurement

Description: RBW = 100 kHz

 $VBW \ge 300 \text{ kHz}$

Span to ≥ 1.5 times the *DTS bandwidth* (Reference Level)

Set the center frequency and span to encompass frequency range to be

measured. (Emission Level)

Detector = peak Sweep = auto couple Trace mode = max hold

Measurements were taken for an OFDM modulation over a 20MHz and 40MHz modulation bandwidth at the low, mid and high channels of operation. EUT was set to transmit continuously over various frequencies and power settings.

Limit: 30 dB below maximum in-band average PSD level (maximum level in any 100

kHz band). Average output power procedure was used to measure the

fundamental emission power

Results: Passed

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output power setting 20dBm 20MHz BW

Channel 0

Reference Level measurement

Limit = 4.62 dBm - 30 dB = -25.38 dBm

Date: 30.MAY.2013 14:16:25

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 30M-1GHz **Emission Level Measurement**

Limit = -25.38dBm

Date: 31.MAY.2013 15:25:11

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 1-10GHz **Emission Level Measurement**

Limit = -25.38dBm

Date: 31.MAY.2013 15:27:28

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 10-20GHz **Emission Level Measurement**

Limit = -25.38dBm

Date: 31.MAY.2013 15:29:07

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 20-30GHz **Emission Level Measurement**

Limit = -25.38dBm

Date: 31.MAY.2013 15:30:43

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 30-40GHz **Emission Level Measurement**

Limit = -25.38dBm

Date: 31.MAY.2013 15:32:26

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output power setting 20dBm 20MHz BW

Channel 0

Reference Level measurement

Limit = 6.01 dBm - 30 dB = -23.99 dBm

Date: 30.MAY.2013 14:23:27

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 30M-1GHz **Emission Level Measurement**

Date: 3.JUN.2013 09:19:48

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 1-10GHz **Emission Level Measurement**

Date: 3.JUN.2013 09:22:23

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 10-20GHz **Emission Level Measurement**

Date: 3.JUN.2013 09:23:48

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 20-30GHz **Emission Level Measurement**

Date: 3.JUN.2013 09:25:10

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 30-40GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.2 Reference Level Measurement

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output power setting 20dBm 20MHz BW

Channel 0

Reference Level measurement

Limit = 4.09dBm - 30 dB = -25.91dBm

Date: 30.MAY.2013 14:25:26

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 30M-1GHz **Emission Level Measurement**

Date: 3.JUN.2013 09:36:31

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 1-10GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 10-20GHz **Emission Level Measurement**

Date: 3.JUN.2013 09:33:07

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 20-30GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output Power Setting 20dBm 20 MHz BW

Channel 0

Frequency Range 30-40GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output power setting 20dBm 20MHz BW

Channel 1

Reference Level measurement

Limit = 6.99 dBm - 30 dB = -23.01 dBm

Date: 30.MAY.2013 14:10:04

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 30M-1GHz **Emission Level Measurement**

Date: 31.MAY.2013 15:42:01

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 1-10GHz **Emission Level Measurement**

Date: 31.MAY.2013 15:40:03

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 10-20GHz **Emission Level Measurement**

Date: 31.MAY.2013 15:38:37

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 20-30GHz **Emission Level Measurement**

Date: 31.MAY.2013 15:37:14

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.740GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 30-40GHz **Emission Level Measurement**

Date: 31.MAY.2013 15:35:42

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output power setting 20dBm 20MHz BW

Channel 1

Reference Level measurement

Limit = 6.76dBm - 30 dB = -23.24dBm

Date: 30.MAY.2013 14:22:17

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 30M-1GHz **Emission Level Measurement**

Limit = -23.24dBm

Date: 3.JUN.2013 09:17:17

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 1-10GHz **Emission Level Measurement**

Limit = -23.24dBm

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 10-20GHz **Emission Level Measurement**

Limit = -23.24dBm

Date: 3.JUN.2013 09:11:21

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 20-30GHz **Emission Level Measurement**

Limit = -23.24dBm

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.775GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 30-40GHz **Emission Level Measurement**

Limit = -23.24dBm

Date: 3.JUN.2013 09:15:35

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output power setting 20dBm 20MHz BW

Channel 1

Reference Level measurement

Limit = 5.38dBm - 30 dB = -24.62dBm

Date: 30.MAY.2013 14:27:12

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 30M-1GHz **Emission Level Measurement**

Date: 3.JUN.2013 09:39:12

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 1-10GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 10-20GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 20-30GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output Power Setting 20dBm 20 MHz BW

Channel 1

Frequency Range 30-40GHz **Emission Level Measurement**

Date: 3.JUN.2013 09:45:50

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output power setting 20dBm 40MHz BW

Channel 0

Reference Level measurement

Limit = 4.49dBm - 30 dB = -25.51dBm

Date: 30.MAY.2013 14:43:42

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 30M-1GHz **Emission Level Measurement**

Date: 31.MAY.2013 15:20:46

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 1-10GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 10-20GHz **Emission Level Measurement**

Date: 30.MAY.2013 15:17:09

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 20-30GHz **Emission Level Measurement**

Limit = -25.51dBm

Date: 30.MAY.2013 15:18:24

Test Date: 6-18-13

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 30-40GHz **Emission Level Measurement**

Date: 18.JUN.2013 14:12:22

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output power setting 20dBm 40MHz BW

Channel 0

Reference Level measurement

Limit = 3.02dBm - 30 dB = -26.98dBm

Date: 30.MAY.2013 14:42:16

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 30MHz-1GHz **Emission Level Measurement**

Date: 31.MAY.2013 14:32:11

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 1-10GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 10-20GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 20-30GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 30-40GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output power setting 20dBm 40MHz BW

Channel 0

Reference Level measurement

Limit = 1.54dBm - 30 dB = -28.46dBm

Date: 30.MAY.2013 14:31:55

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.825GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 30MHz-1GHz Emission Level Measurement

Date: 31.MAY.2013 15:07:44

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.825GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 1-10GHz Emissione Level Measurement

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.825GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 10-20GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.825GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 20-30GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.825GHz

Output Power Setting 20dBm 40 MHz BW

Channel 0

Frequency Range 30-40GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output power setting 20dBm 40MHz BW

Channel 1

Reference Level measurement

Limit = 4.32dBm - 30 dB = -25.68dBm

Date: 30.MAY.2013 14:45:55

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 30M-1GHz **Emission Level Measurement**

Limit = -25.68dBm

Date: 30.MAY.2013 15:00:42

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 1-10GHz **Emission Level Measurement**

Date: 30.MAY.2013 15:06:31

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 10-20GHz **Emission Level Measurement**

Date: 30.MAY.2013 15:15:11

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 20-30GHz **Emission Level Measurement**

Date: 30.MAY.2013 15:12:25

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Low Channel Transmit = 5.750GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 30-40GHz **Emission Level Measurement**

Date: 30.MAY.2013 15:13:55

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output power setting 20dBm 40MHz BW

Channel 1

Reference Level measurement

Limit = 4.86dBm - 30 dB = -25.14dBm

Date: 30.MAY.2013 14:40:28

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 30MHz-1GHz **Emission Level Measurement**

Date: 31.MAY.2013 14:37:06

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 1-10GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 10-20GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 20-30GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz Detector = Peak $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold Mid Channel Transmit = 5.785GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 30-40GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station (5.7GHz: OFDM)

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: RBW = 100 kHz $VBW \ge 300 \text{ kHz}$

Detector = Peak Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.835GHz

Output power setting 20dBm 40MHz BW

Channel 1

Reference Level measurement

Limit = 1.18dBm - 30 dB = -28.82dBm

Date: 30.MAY.2013 14:30:34

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.825GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 30MHz-1GHz **Emission Level Measurement**

Date: 31.MAY.2013 15:03:44

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.825GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 1-10GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.825GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 10-20GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.825GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 20-30GHz **Emission Level Measurement**

Company: Cambium Networks

EUT: Avenger Station 5.7GHz: OFDM

Test: Maximum Unwanted Emission Levels - Conducted

Operator: Jim O

Comment: 11.3 Emission Level Measurements

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Sweep = Auto Couple

Trace = Max Hold High Channel Transmit = 5.825GHz

Output Power Setting 20dBm 40 MHz BW

Channel 1

Frequency Range 30-40GHz **Emission Level Measurement**

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128 Appendix B – Measurement Data

B5.0 Band-Edge Measurements - Radiated

Rule Section: Section 15.247(d)

FCC KDB 558074 D01 DTS Meas Guidance v03r01 – Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

11.0 Emissions in non-restricted frequency bands

Test Procedure: RBW = 100 kHz

 $VBW \ge 300 \text{ kHz}$

Span = spectrum to be examined

Detector = peak Sweep = auto couple Trace mode = max hold

Measurements were taken for an OFDM modulation over a 20MHz and 40MHz modulation bandwidth at the low and high channels and on outputs of CH0 and CH1 of operation. EUT was set to transmit continuously over various low and high channel frequencies and maximum power settings.

Limit: 30 dB below maximum in-band average PSD level (maximum level in any 100

kHz band). Average output power procedure was used to measure the

fundamental emission power.

Results: Passed

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-29-2013

Company: Cambium Networks

EUT: Avenger Station (5.7 GHz: OFDM)
Test: Band-Edge Measurements - Radiated

Operator: Jim O

Comment: Peak Delta Method

RBW = 100 kHzVBW $\geq 300 \text{ kHz}$ Detector = Peak Trace = Max Hold

Low Channel Transmit = 5.740GHz

20MHz BW

Marker Delta Limit > 30dB

Polarization = Vertical Output power setting: 20 Band-edge (F1) = 5.725GHz Measurement: 35.81dB = Pass

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-29-2013

Company: Cambium Networks

EUT: Avenger Station (5.7 GHz: OFDM)
Test: Band-Edge Measurements - Radiated

Operator: Jim O

Comment: Peak Delta Method

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Detector = PeakTrace = Max Hold

Low Channel Transmit = 5.740GHz

20MHz BW

Marker Delta Limit > 30dB

Polarization = Horizontal Output power setting: 20 Band-edge (F1) = 5.725GHz Measurement: 40.44dB = Pass

Page 143 of 181

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-29-2013

Company: Cambium Networks

EUT: Avenger Station (5.7 GHz: OFDM)
Test: Band-Edge Measurements - Radiated

Operator: Jim O

Comment: Peak Delta Method

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Detector = PeakTrace = Max Hold

High Channel Transmit = 5.835GHz

20MHz BW

Marker Delta Limit > 30dB

Vertical

Output power setting: 20 Band-edge (F1) = 5.850GHz Measurement: 39.44dB = Pass

Date: 29.MAY.2013 10:41:48

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-29-2013

Company: Cambium Networks

EUT: Avenger Station (5.7 GHz: OFDM)
Test: Band-Edge Measurements - Conducted

Operator: Jim O

Comment: Peak Delta Method

RBW = 100 kHz $VBW \ge 300 \text{ kHz}$ Detector = PeakTrace = Max Hold

High Channel Transmit = 5.835GHz

20MHz BW

Marker Delta Limit > 30dB

Horizontal

Output power setting: 20 Band-edge (F1) = 5.850GHz Measurement: 40.90dB = Pass

Date: 29.MAY.2013 10:48:02

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-29-2013

Company: Cambium Networks

EUT: Avenger Station (5.7 GHz: OFDM)
Test: Band-Edge Measurements - Radiated

Operator: Jim O

Comment: Peak Delta Method

VBW ≥ 300 kHz Trace = Max Hold

Low Channel Transmit = 5.750GHz

40MHz BW

Marker Delta Limit > 30dB

RBW = 100 kHz Detector = Peak Polarization = Vertical Output power setting: 20

Band-edge (F1) = 5.725GHz Measurement: 32.54dB = Pass

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-29-2013

Company: Cambium Networks

EUT: Avenger Station (5.7 GHz: OFDM)
Test: Band-Edge Measurements - Radiated

Operator: Jim O

Comment: Peak Delta Method

VBW ≥ 300 kHz Trace = Max Hold

Low Channel Transmit = 5.750GHz

40MHz BW

Marker Delta Limit > 30dB

RBW = 100 kHz Detector = Peak

Polarization = Horizontal Output power setting: 20 Band-edge (F1) = 5.725GHz

Measurement: 34.29dB = Pass

Date: 29.MAY.2013 15:00:32

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-29-2013

Company: Cambium Networks

EUT: Avenger Station (5.7 GHz: OFDM)
Test: Band-Edge Measurements - Radiated

Operator: Jim O

Comment: Peak Delta Method

VBW ≥ 300 kHz Trace = Max Hold

High Channel Transmit = 5.825GHz

40MHz BW

Marker Delta Limit > 30dB

RBW = 100 kHz Detector = Peak

Polarization = Vertical Output power setting: 20 Band-edge (F1) = 5.850GHz Measurement: 33.09dB = Pass

Date: 29.MAY.2013 15:11:48

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Test Date: 05-29-2013

Company: Cambium Networks

EUT: Avenger Station (5.7 GHz: OFDM)
Test: Band-Edge Measurements - Radiated

Operator: Jim O

Comment: Peak Delta Method

VBW ≥ 300 kHz Trace = Max Hold

High Channel Transmit = 5.825GHz

40MHz BW

Marker Delta Limit > 30dB

RBW = 100 kHz Detector = Peak

Polarization = Horizontal Output power setting: 20 Band-edge (F1) = 5.850GHz Measurement: 34.97dB = Pass

Date: 29.MAY.2013 15:08:22

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128 Appendix B – Measurement Data

B6.0 Maximum Unwanted Emission Levels into Restricted Frequency Bands - Radiated

Rule Section: Section 15.247(d)

Section 15.205

Test Procedure: FCC KDB 558074 D01 DTS Meas Guidance v03r01 – Guidance for Performing

Compliance Measurements on Digital Transmission Systems (DTS) Operating

Under §15.247

ANSI C63.10:2009 - Sections 6.5 and 6.6

12.0 Emissions in restricted frequency bands

12.1 Radiated emission measurements

Description: This test applies to harmonics/spurs that fall in the restricted bands listed in

Section 15.205.

Measurements were taken for an OFDM modulation over a 20MHz and 40MHz modulation bandwidth at the low, mid and high channels. EUT was set to transmit continuously at their maximum power settings. Radiated measurements were taken both vertically and horizontally. All other

restricted band emissions were at least 20 dB under the limit. No emissions were

found between 26GHz and 40GHz.

Limit: FCC Part 15.209

Results: Passed

Results: Passed

Electric Field Strength

EUT: Avenger Station 5.7GHz

Manufacturer: Cambium Networks
Operating Condition: 67 deg. F; 56% R.H.
Test Site: DLS O.F. Site 3

Operator: Jim O

Test Specification: 120V 60Hz POE
Comment: Continuous TX
Date: 06-05-2013

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A605d_F1H_Final"

6/5/2013	6/5/2013 10:34AM										
Freque	ency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
			Factor	Loss	Level			Ant.	Angle	Detector	
	MHz	dΒμV	dBµV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
026 060		15 40	00.40	10.0	10 1	46.0	06.0	0 00	0	OTTAGE DEAT	
836.060		15.49	22.42	-18.8	19.1	46.0	26.9	2.00	0	QUASI-PEAK	NF
712.940	000	15.68	20.96	-19.4	17.2	46.0	28.8	2.00	0	QUASI-PEAK	NF
57.960	000	24.37	10.61	-23.9	11.0	40.0	29.0	1.00	0	QUASI-PEAK	NF
111.540	000	23.19	12.46	-23.0	12.6	43.5	30.9	1.00	350	QUASI-PEAK	None
201.920	000	22.49	12.18	-22.2	12.4	43.5	31.1	2.00	90	QUASI-PEAK	None
190.980	000	16.84	17.40	-22.3	12.0	43.5	31.5	1.00	0	QUASI-PEAK	NF
975.440	000	14.80	24.11	-17.2	21.7	54.0	32.3	2.00	0	QUASI-PEAK	NF
428.000	000	17.58	16.58	-20.9	13.2	46.0	32.8	2.00	200	QUASI-PEAK	None
232.340	000	21.68	11.59	-21.9	11.4	46.0	34.6	2.00	170	QUASI-PEAK	None
341.840	000	15.70	14.90	-21.3	9.3	46.0	36.7	2.00	0	QUASI-PEAK	NF

Electric Field Strength

EUT: Avenger Station 5.7GHz

Manufacturer: Cambium Networks
Operating Condition: 67 deg. F; 56% R.H.
Test Site: DLS O.F. Site 3

Operator: Jim O

Test Specification: 120V 60Hz POE
Comment: Continuous TX
Date: 06-05-2013

Date: 06-05-2013

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "A605d_F1V_Final"

6/5/2013 1	10:23AM									
Frequenc	cy Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
ME	Hz dBμV	dBμV/m	dВ	dBμV/m	dBμV/m	dB	m	deg		
108.12000	00 35.87	12.09	-23.1	24.9	43.5	18.6	1.00	350	OUASI-PEAK	None
									~ -	
374.96000	26.69	15.30	-21.2	20.8	46.0	25.2	1.00	0	QUASI-PEAK	NF
207.74000	28.10	11.89	-22.2	17.8	43.5	25.7	1.00	0	QUASI-PEAK	NF
830.78000	15.56	22.32	-19.0	18.9	46.0	27.1	1.00	0	QUASI-PEAK	NF
722.30000	16.52	21.20	-19.2	18.5	46.0	27.5	1.00	0	QUASI-PEAK	NF
218.30000	26.79	11.53	-22.0	16.3	46.0	29.7	1.00	180	QUASI-PEAK	None
189.24000	18.38	17.42	-22.3	13.5	43.5	30.0	1.00	0	QUASI-PEAK	NF
999.98000	00 14.96	24.70	-17.0	22.7	54.0	31.3	1.00	0	QUASI-PEAK	NF
122.88000	21.58	13.01	-22.9	11.7	43.5	31.8	1.00	0	QUASI-PEAK	NF
364.04000	00 17.91	15.06	-21.2	11.7	46.0	34.3	1.00	0	QUASI-PEAK	NF

Electric Field Strength

EUT: Avenger Station (5.7GHz OFDM)

Manufacturer: Cambium Networks Operating Condition: 68 deg C 27% R.H.

Test Site: DLS O.F. G1 Operator: Jim O

Test Specification: Continuous TX : 20MHz BW Comment: Low, Mid and High Channel

Date: 06-03-2013

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Sample Equations: Total Level $(dB\mu V/m) = Level(dB\mu V) + System Loss(dB) + Antenna Factor(dB\mu V/m)$

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)

MEASUREMENT RESULT: "A6031_sh_final"

PM									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	dBμV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
47.10	38.78	-53.4	32.4	54.0	21.6	1.00	0	AVERAGE	20M MCH 2nd NF
46.34	38.91	-53.5	31.8	54.0	22.2	1.00	0	AVERAGE	20M HCH 2nd NF
46.45	38.67	-53.7	31.5	54.0	22.5	1.00	0	AVERAGE	20M LCH 2nd NF
59.96	38.78	-53.4	45.3	74.0	28.7	1.00	0	MAX PEAK	20M MCH 2nd NF
59.18	38.91	-53.5	44.6	74.0	29.4	1.00	0	MAX PEAK	20M HCH 2nd NF
59.31	38.67	-53.7	44.3	74.0	29.7	1.00	0	MAX PEAK	20M LCH 2nd NF
	dBμV 47.10 46.34 46.45 59.96 59.18	Level Antenna Factor dBμV dBμV/m 47.10 38.78 46.34 38.91 46.45 38.67 59.96 38.78 59.18 38.91	LevelAntenna Factor dBμVSystem Loss dBμV/m47.1038.78-53.446.3438.91-53.546.4538.67-53.759.9638.78-53.459.1838.91-53.5	Level dBμVAntenna Factor dBμV/mSystem Loss dB dBμV/mTotal Level dB μV/m47.1038.78-53.432.446.3438.91-53.531.846.4538.67-53.731.559.9638.78-53.445.359.1838.91-53.544.6	Level dBμVAntenna Factor dBμV/mSystem 	Level 	Level Antenna factor dBμV m System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Ant. dBμV/m 47.10 38.78 -53.4 32.4 54.0 21.6 1.00 46.34 38.91 -53.5 31.8 54.0 22.2 1.00 46.45 38.67 -53.7 31.5 54.0 22.5 1.00 59.96 38.78 -53.4 45.3 74.0 28.7 1.00 59.18 38.91 -53.5 44.6 74.0 29.4 1.00	Level Antenna factor dBμV System Loss Level dBμV/m Loss dBμV/m Level dBμV/m Margin dBμV/m Height Ant. Angle dBμV/m EuT Ant. Angle dBμV/m 47.10 38.78 -53.4 32.4 54.0 21.6 1.00 0 46.34 38.91 -53.5 31.8 54.0 22.2 1.00 0 46.45 38.67 -53.7 31.5 54.0 22.5 1.00 0 59.96 38.78 -53.4 45.3 74.0 28.7 1.00 0 59.18 38.91 -53.5 44.6 74.0 29.4 1.00 0	Level Antenna factor dBμV System Loss Level dBμV/m Loss Level dBμV/m Limit dBμV/m Margin dB dBμV/m Height Ant. Angle deg EuT Final Angle deg 47.10 38.78 -53.4 32.4 54.0 21.6 1.00 0 AVERAGE 46.34 38.91 -53.5 31.8 54.0 22.2 1.00 0 AVERAGE 46.45 38.67 -53.7 31.5 54.0 22.5 1.00 0 AVERAGE 59.96 38.78 -53.4 45.3 74.0 28.7 1.00 0 MAX PEAK 59.18 38.91 -53.5 44.6 74.0 29.4 1.00 0 MAX PEAK

Electric Field Strength

EUT: Avenger Station (5.7GHz OFDM)

Manufacturer: Cambium Networks Operating Condition: 68 deg C 27% R.H.

Test Site: DLS O.F. G1 Operator: Jim O

Test Specification: Continuous TX : 20MHz BW Comment: Low, Mid and High Channel

Date: 06-03-2013

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)

MEASUREMENT RESULT: "A6031_sv_final"

PM .									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	dBµV/m	dB	${\tt dB}\mu{\tt V/m}$	${\tt dB}\mu {\tt V/m}$	dB	m	deg		
17 26	20 70	_E2_/	22 6	E4 0	21 /	1 00	0	717ED7CE	20MHz MCH 2nd
							U		
46.43	38.91	-53.5	31.9	54.0	22.1	1.00	0	AVERAGE	20M HCH 2nd NF
46.54	38.67	-53.7	31.5	54.0	22.5	1.70	0	AVERAGE	20MHz Lch 2nd
60.87	38.78	-53.4	46.2	74.0	27.8	1.00	0	MAX PEAK	20MHz MCH 2nd
59.96	38.67	-53.7	45.0	74.0	29.0	1.70	0	MAX PEAK	20MHz Lch 2nd
59.44	38.91	-53.5	44.9	74.0	29.1	1.00	0	MAX PEAK	20M HCH 2nd NF
	Level dBμV 47.26 46.43 46.54 60.87 59.96	Level Antenna Factor dBμV dBμV/m 47.26 38.78 46.43 38.91 46.54 38.67 60.87 38.78 59.96 38.67	LevelAntenna Factor dBμVSystem Loss dBμV/m47.2638.78-53.446.4338.91-53.546.5438.67-53.760.8738.78-53.459.9638.67-53.7	LevelAntenna Factor dBμVSystem Loss dBμV/mTotal Level dB μV/m47.2638.78-53.432.646.4338.91-53.531.946.5438.67-53.731.560.8738.78-53.446.259.9638.67-53.745.0	Level 	Level 	Level Antenna factor dBμV m System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Ant. dBμV/m 47.26 38.78 -53.4 32.6 54.0 21.4 1.00 46.43 38.91 -53.5 31.9 54.0 22.1 1.00 46.54 38.67 -53.7 31.5 54.0 22.5 1.70 60.87 38.78 -53.4 46.2 74.0 27.8 1.00 59.96 38.67 -53.7 45.0 74.0 29.0 1.70	Level Antenna Factor dBμV System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle dBμV/m EuT Ant. Angle dBμV/m 47.26 38.78 -53.4 32.6 54.0 21.4 1.00 0 46.43 38.91 -53.5 31.9 54.0 22.1 1.00 0 46.54 38.67 -53.7 31.5 54.0 22.5 1.70 0 60.87 38.78 -53.4 46.2 74.0 27.8 1.00 0 59.96 38.67 -53.7 45.0 74.0 29.0 1.70 0	Level Antenna Factor dBμV System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle deg EuT Final Angle deg 47.26 38.78 -53.4 32.6 54.0 21.4 1.00 0 AVERAGE AVERAGE 46.43 38.91 -53.5 31.9 54.0 22.1 1.00 0 AVERAGE AVERAGE 46.54 38.67 -53.7 31.5 54.0 22.5 1.70 0 AVERAGE 60.87 38.78 -53.4 46.2 74.0 27.8 1.00 0 MAX PEAK 59.96 38.67 -53.7 45.0 74.0 29.0 1.70 0 MAX PEAK

Electric Field Strength

EUT: Avenger Station (5.7GHz OFDM)

Manufacturer: Cambium Networks Operating Condition: 68 deg C 27% R.H.

Test Site: DLS O.F. G1 Operator: Jim O

Test Specification: Continuous TX : 40MHz BW Comment: Low, Mid and High Channel

Date: 06-03-2013

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Sample Equations: Total Level $(dB\mu V/m) = Level(dB\mu V) + System Loss(dB) + Antenna Factor(dB\mu V/m)$

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)

MEASUREMENT RESULT: "A603p_sh_final"

6/3/2013 3:16	PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dВ	dBµV/m	dBμV/m	dB	m	deg		
11570.140000	46.65	38.80	-53.3	32.1	54.0	21.9	1.00	0	AVERAGE	40M MCH 2nd NF
11500.080000	46.58	38.71	-53.7	31.6	54.0	22.4	1.00	0	AVERAGE	40M LCH 2nd NF
11649.590000	46.05	38.89	-53.4	31.5	54.0	22.5	1.00	0	AVERAGE	40M HCH 2nd NF
11649.590000	46.03	38.89	-53.4	31.5	54.0	22.5	1.00	0	AVERAGE	40M MCH 2nd NF
11570.140000	59.57	38.80	-53.3	45.0	74.0	29.0	1.00	0	MAX PEAK	40M MCH 2nd NF
11500.080000	59.57	38.71	-53.7	44.6	74.0	29.4	1.00	0	MAX PEAK	40M LCH 2nd NF
11649.590000	58.92	38.89	-53.4	44.4	74.0	29.6	1.00	0	MAX PEAK	40M HCH 2nd NF
11649.590000	58.92	38.89	-53.4	44.4	74.0	29.6	1.00	0	MAX PEAK	40M MCH 2nd NF

Electric Field Strength

EUT: Avenger Station (5.7GHz OFDM)

Manufacturer: Cambium Networks Operating Condition: 68 deg C 27% R.H.

Test Site: DLS O.F. G1 Operator: Jim O

Test Specification: Continuous TX : 40MHz BW Comment: Low, Mid and High Channel

Date: 06-03-2013

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

- Background Scan Peak Detector (Optional)

- Background Scan Average Detector (Optional)

MEASUREMENT RESULT: "A603p_sv_Final"

6/3/2013 3:05F	PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
11569.600000	46.86	38.80	-53.4	32.3	54.0	21.7	1.00	0	AVERAGE	40M MCH 2nd NF
11479.960000	46.80	38.67	-53.7	31.8	54.0	22.2	1.00	0	AVERAGE	40M LCH 2nd NF
11649.890000	46.12	38.89	-53.4	31.6	54.0	22.4	1.00	0	AVERAGE	None
11479.960000	60.22	38.67	-53.7	45.2	74.0	28.8	1.00	0	MAX PEAK	40M LCH 2nd NF
11569.600000	59.57	38.80	-53.4	45.0	74.0	29.0	1.00	0	MAX PEAK	40M MCH 2nd NF
11649.890000	58.92	38.89	-53.4	44.4	74.0	29.6	1.00	0	MAX PEAK	40M HCH 2nd NF

Electric Field Strength

EUT: Avenger Station: 5.7GHz: OFDM

Manufacturer: Cambium Networks Operating Condition: 75 deg F; 46% R.H.

Test Site: DLS Site G1

Operator: Jim O

Test Specification: 20 & 40MHz Bandwidths

Comment:

Date: 6-04-2013

TEXT: "Horz 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with HORIZONTAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

Radiated emissions testing was performed up to 40GHz. The only emissions found in this range are recorded here.

MEASUREMENT RESULT: "A604c_sh_final"

6/4/2013 10:5	8AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dВ	${\tt dB}\mu{\tt V/m}$	${\tt dB}\mu{\tt V/m}$	dB	m	deg		
22960.200000	31.30	46.79	-45.6	32.5	63.5	31.0	1.00	0	AVERAGE	20M LO CH 4th N
23000.200000	31.16	46.81	-45.5	32.5	63.5	31.1	1.00	0	AVERAGE	40M LO CH 4th N
22960.200000	43.03	46.79	-45.6	44.2	83.5	39.3	1.00	0	MAX PEAK	20M LO CH 4th N
23000.200000	42.75	46.81	-45.5	44.1	83.5	39.5	1.00	0	MAX PEAK	40M LO CH 4th N

Electric Field Strength

EUT: Avenger Station: 5.7GHz: OFDM

Manufacturer: Cambium Networks Operating Condition: 75 deg F; 46% R.H.

Test Site: DLS Site G1

Operator: Jim O

Test Specification: 20 & 40MHz Bandwidths

Comment:

Date: 6-04-2013

TEXT: "Vert 1 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 1 Meters with VERTICAL Antenna Polarization

Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

Radiated emissions testing was performed up to 40GHz. The only emissions found in this range are recorded here.

MEASUREMENT RESULT: "A604c_sv_final"

6/4/2013 10:39	9AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level		_	Ant.	Angle	Detector	
MHz	dBuV	dBuV/m	dВ	dBuV/m	dBuV/m	dВ	m	deq		
MIIZ	αБμν	αυμν/ιιι	QD	ασμν/ιιι	ασμν/ιιι	aв	ш	aeg		
22938.400000	50.96	46.78	-45.6	52.1	63.5	11.4	1.00	0	AVERAGE	20M LO ch 4th N
								U		
23008.800000	50.76	46.82	-45.5	52.1	63.5	11.5	1.00	0	AVERAGE	40M LO ch 4th N
23086.600000	50.80	46.85	-45.6	52.0	63.5	11.5	1.00	0	AVERAGE	20M Mid ch 4th
23008.800000	64.47	46.82	-45.5	65.8	83.5	17.8	1.00	0	MAX PEAK	40M LO ch 4th N
23086.600000	63.94	46.85	-45.6	65.2	83.5	18.4	1.00	0	MAX PEAK	20M Mid ch 4th
22938.400000	63.67	46.78	-45.6	64.8	83.5	18.7	1.00	0	MAX PEAK	20M LO ch 4th N

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128Appendix B – Measurement Data

B7.0 Duty Cycle of Test Unit

Rule Part: FCC Section 15.35(c)

Test Procedure: 6.0 Duty cycle, transmission duration

ANSI C63.10-2009 Section 7.5

Limits: Informative

Results: EUT is continuously transmitting (duty cycle > 98%).

Sample Equations: None

Notes: No Duty cycle correction factor was applied to measurements for this

device.

The EUT was transmitting above the minimum duty cycle of 98%.

Model Tested: C050900C032A & C050900P032A

Report Number: 19075 DLS Project: 5942

166 South Carter, Genoa City, WI 53128

Appendix B – Measurement Data

B8.0 AC Line Conducted Emissions

Rule Part: FCC Part 15.207

Test Procedure: ANSI C63.10-2009

Section 6.2

Limit: FCC Part 15.207(a)

Results: Compliant

Notes: This was an AC Conducted emissions measurement.

The EUT was powered from a representative AC Adapter with an input of

120 VAC 60 Hz.

FCC Part 15.207

Voltage Mains Test

EUT: Avenger Station Radio 5.7GHz

Cambium Manufacturer:

Operating Condition: 70 deg. F, 34% R.H. DLS O.F. Screen Room Test Site:

Operator: Jim O Test Specification: 120V, 60Hz

Comment: Continious TX; Line 1

6-04-2013

SCAN TABLE: "Line Cond SR Final"

Line Conducted Emissions Short Description:

Start Step Detector Meas. IF Transducer Stop Time Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 5.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "604k FCC L1_fin"

6/4/2013 2 Frequence		Transd	Limit	Marqin	Detector
MH	•	dB	dΒμV	dB	Deceetor
0.15800	53.40	13.6	66	12.2	QP
0.18700	49.50	12.9	64	14.7	QP
0.25400	38.70	12.1	62	22.9	QP
0.29800	38.00	11.9	60	22.3	QP
0.30800	39.20	11.8	60	20.8	QP
0.31100	39.40	11.8	60	20.5	QP
0.72000	35.40	10.8	56	20.6	QP
1.03000	34.80	10.7	56	21.2	QP
1.20000	35.50	10.6	56	20.5	QP
2.01000	35.20	10.6	56	20.8	QP
3.08000	37.50	10.7	56	18.5	QP
3.41000	36.50	10.7	56	19.5	QP
27.15500	41.70	11.5	60	18.3	QP
27.89000	41.70	11.6	60	18.3	QP
27.95000	40.50	11.6	60	19.5	QP
28.56500	39.80	11.7	60	20.2	QP
28.62500	39.60	11.7	60	20.4	QP
28.68500	43.00	11.7	60	17.0	QP

MEASUREMENT RESULT: "604k FCC L1_fin2"

6/4/2013 2:23	PM				
Frequency	Level	Transd	Limit	Margin	Detector
MHz	dΒμV	dВ	dΒμV	dВ	
0.158000	40.20	13.6	56	15.4	CAV
0.185000	36.70	12.9	54	17.6	CAV
0.315000	32.90	11.8	50	16.9	CAV
0.369000	37.70	11.5	49	10.8	CAV
0.411000	31.10	11.4	48	16.5	CAV
0.476000	27.80	11.3	46	18.6	CAV
0.720000	29.30	10.8	46	16.7	CAV
0.980000	29.20	10.7	46	16.8	CAV
1.240000	30.00	10.6	46	16.0	CAV
1.770000	29.90	10.6	46	16.1	CAV
3.270000	31.00	10.7	46	15.0	CAV
3.410000	30.00	10.7	46	16.0	CAV
27.155000	40.60	11.5	50	9.4	CAV
27.890000	39.30	11.6	50	10.7	CAV
27.950000	38.10	11.6	50	11.9	CAV
28.565000	37.50	11.7	50	12.5	CAV
28.625000	36.70	11.7	50	13.3	CAV
28.685000	41.00	11.7	50	9.0	CAV

FCC Part 15.207

Voltage Mains Test

EUT: Avenger Station Radio 5.7GHz

Cambium Manufacturer:

Operating Condition: 70 deg. F, 34% R.H. DLS O.F. Screen Room Test Site:

Operator: Jim O Test Specification: 120V, 60Hz

Comment: Continious TX; Line 2

6-04-2013

SCAN TABLE: "Line Cond SR Final"

Line Conducted Emissions Short Description:

Start Step Detector Meas. IF Transducer Stop Bandw.

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.0 kHz Time QuasiPeak 5.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "604k FCC L2_fin"

6/4/2013	2:12PI	M				
Freque	ncy	Level	Transd	Limit	Margin	Detector
	MHz	dΒμV	dВ	dΒμV	dВ	
0.160	000	55.70	13.5	66	9.8	QP
0.185	000	53.10	12.9	64	11.2	QP
0.227	000	46.10	12.4	63	16.5	QP
0.306	000	39.20	11.8	60	20.9	QP
0.395	000	41.00	11.4	58	17.0	QP
0.411	000	37.20	11.4	58	20.4	QP
0.680	000	34.70	10.8	56	21.3	QP
1.030	000	33.50	10.7	56	22.5	QP
1.180	000	34.20	10.6	56	21.8	QP
1.850	000	34.30	10.6	56	21.7	QP
3.280	000	37.00	10.7	56	19.0	QP
3.480	000	35.20	10.7	56	20.8	QP
27.155	000	42.70	11.5	60	17.3	QP
27.890	000	42.50	11.6	60	17.5	QP
27.950	000	41.30	11.6	60	18.7	QP
28.565	000	40.80	11.7	60	19.2	QP
28.625	000	40.40	11.7	60	19.6	QP
28.685	000	43.90	11.7	60	16.1	QP

MEASUREMENT RESULT: "604k FCC L2_fin2"

6/4/2013 2:12	PM				
Frequency	Level	Transd	Limit	Margin	Detector
MHz	dΒμV	dВ	dΒμV	dВ	
0.179000	40.30	13.0	55	14.2	CAV
0.184000	39.30	12.9	54	15.0	CAV
0.310000	30.80	11.8	50	19.2	CAV
0.378000	35.80	11.5	48	12.5	CAV
0.410000	30.90	11.4	48	16.7	CAV
0.476000	27.30	11.3	46	19.1	CAV
0.690000	28.50	10.8	46	17.5	CAV
0.960000	28.30	10.7	46	17.7	CAV
1.210000	28.90	10.6	46	17.1	CAV
1.790000	28.70	10.6	46	17.3	CAV
3.280000	29.90	10.7	46	16.1	CAV
3.450000	28.90	10.7	46	17.1	CAV
27.155000	40.00	11.5	50	10.0	CAV
27.890000	39.20	11.6	50	10.8	CAV
27.950000	37.90	11.6	50	12.1	CAV
28.565000	36.90	11.7	50	13.1	CAV
28.625000	36.20	11.7	50	13.8	CAV
28.685000	40.20	11.7	50	9.8	CAV

166 South Carter, Genoa City, WI 53128

Cambium Networks

C050900C032A & C050900P032A

Company: Model Tested: Report Number: 19075 DLS Project: 5942

END OF REPORT

Revision #	Date	Comments	By
1.0	06-18-2013	Preliminary Release	JS
1.1	06-19-2013	Edits pgs 6, 30, 141, 150, 175	JS