Modelación Estadística I

Iván Vega Gutiérrez

9 de agosto de 2021

1 Contesta correctamente las siguientes preguntas.

- 1. Una persona lanza una moneda al aire. ¿Águila y sol son eventos mutuamente excluyentes? Si, no, porqué.
 - **Solución.** Son mutuamente excluyentes ya que el resultado de uno no depende del otro.
- 2. ¿Cómo se le llama al valor promedio de un conjunto de datos?
 - Solución. Esperanza.
- 3. Es la desviación estándar al cuadrado
 - Solución. Varianza
- 4. Menciona cinco tipos de distribuciones estadísticas.

Solución.

- Distribución normal.
- Distribución geométrica.
- Distribución hipergeométrica.
- Distribución binomial.
- Distribución de Poisson.
- 5. La ciencia que nos ayuda a analizar e interpretar datos para luego tomar decisiones es:
 - (a) Probabilidad
 - (b) Estadística
 - (c) Computación
 - (d) Informática

Solución. Estadística.

2 Resuelve correctamente el siguiente ejercicio

$$\int_0^\infty x[\lambda e^{-\lambda x}]dx \text{ para } \lambda > 0.$$

Solución.

Sea $u = \lambda x$, luego,

$$\int_{0}^{\infty} x[\lambda e^{-\lambda x}] dx = \lim_{n \to \infty} \int_{0}^{n} x[\lambda e^{-\lambda x}] dx$$

$$= \frac{1}{\lambda} \lim_{n \to \infty} \int_{0}^{n} u e^{-u} du.$$
(1)

Por el teorema de integración por partes se tiene que

$$\frac{1}{\lambda} \lim_{n \to \infty} \int_0^n u e^{-u} du = \frac{1}{\lambda} \lim_{n \to \infty} \left(u e^{-u} \Big|_0^n + \int_0^n e^{-u} du \right)
= \frac{1}{\lambda} \lim_{n \to \infty} \frac{n}{e^n} + \frac{1}{\lambda} \lim_{n \to \infty} -e^{-u} \Big|_0^n
= -\frac{1}{\lambda} \lim_{n \to \infty} \left(\frac{1}{e^n} - 1 \right)
= \frac{1}{\lambda}.$$
(2)

Por (1) y (2) se concluye que

$$\int_0^\infty x[\lambda e^{-\lambda x}]dx = \frac{1}{\lambda}.$$

- 3 Demuestre o proporcione un contraejemplo para las siguientes proposiciones. En cada caso dibuje un diagrama de Venn para ilustrar cada situación.
 - 1. $A \cap B \subseteq A \subseteq A \cup B$.

Demostración:

Sea $x \in A \cap B$, luego $x \in A$ y $x \in B$. Por lo tanto $x \in A$. Más aún $x \in A \cup B$.

2. Si $A \cap B = \emptyset$ entonces $A \subseteq B^c$.

Demostración:

Supongamos que $A \cap B = \emptyset$. Sea $x \in A$, luego $x \notin B$, por tanto $x \in B^c$.

3. Si $A \subseteq B$ entonces $B^c \subseteq A^c$.

Demostración:

Supongamos que $x \in B^c$ y $x \notin A^c$, en consecuencia $x \in A$ y $x \notin B$, pero por hipótesis tenemos que si $x \in A$ entonces $x \in B$, con lo cual llegamos a una contradicción, esto por suponer que $x \in A$, por lo tanto $x \in A^c$.

4. Si $A \cap B = \emptyset$ entonces $A \cup B^c = B^c$.

Demostración:

Supongamos que $A \cap B = \emptyset$.

Sea $x \in A \cup B^c$, por el inciso 2. se tiene que $A \subseteq B^c$, por tanto $A \cup B^c \subset B^c$. Por el inciso 1. se tiene que $B^c \subset A \cup B^c$. Con lo anterior se tiene que $A \cup B^c = B^c$.

5. Si $A \subseteq B$ entonces $A \cup (B - A) = B$.

Demostración:

Supongamos que $A \subseteq B$.

$$A \cup (B - A) = A \cup (B \cap A^c)$$
$$= (A \cup B) \cap (A \cup A^c)$$
$$= A \cup B$$
$$= B.$$