A072 · 02324(通卡)

绝密★启用前

2020年8月高等教育自学考试全国统一命题考试

离散数学

(课程代码 02324)

注意事项:

- 1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
- 2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
- 3. 涂写部分、画图部分必须使用 2B 铅笔,书写部分必须使用黑色字迹签字笔。

第一部分 选择题

- 一、单项选择题:本大题共 15 小题,每小题 1 分,共 15 分。在每小题列出的备选项中 只有一项是最符合题目要求的,请将其选出。
- 1. 设P: 明天下雨,Q: 我去游泳,命题"如果明天不下雨,我就去游泳"符号化为 A. ¬ $P \lor Q$ B. ¬ $P \land Q$ C. ¬ $Q \rightarrow P$ D. ¬ $P \rightarrow Q$
- 2. 下列关系矩阵所对应的关系具有反自反性的是

A.
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 B. $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ C. $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ D. $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

3. 下列图为欧拉图的是

- 4. 如题 4 图所示的格中, 元e的补元是
 - A. a和b
 - C. a和d
- 5. 下列命题公式为重言式的是
 - A. $\neg (P \rightarrow Q) \land Q \lor R$
 - 11. 1(1 / 2)/12 11
 - C. $\neg (P \rightarrow (Q \lor P))$

- B. a和c
- D. a和f
- B. $(P \lor (P \land Q)) \leftrightarrow P$
- D. $\neg (P \rightarrow Q) \land Q$

D.

题 4 图

第二部分 非选择题

- 二、填空题: 本大题共 10 小题,每小题 2 分,共 20 分。
 16. 命题公式 $\neg(P \to Q)$ 的主合取范式中含极大项的个数为_____。
 17. 设集合 $A = \{1,2,\cdots,10\}$,在模 4 相等关系下,等价类[5]为集合____。
 18. 设论域为整数集,命题 $\forall x \exists y (x+y=1)$ 的真值为____。
 19. 设 7 阶连通平面图G有 6 个面,则图G的边数为____。
 20. 设集合 $A = \{1,2,3\}$ 的关系 $R = \{(1,2),(1,3)\}$, $S = \{(1,3),(3,2),(2,2)\}$,则复合关系 $R \circ S^2$ 为____。
 21. 公式 $\forall x F(x) \lor (\exists x G(x) \to \exists x H(x))$ 对应的前束范式为___。
 22. 设具有 7 个顶点的无向简单图G共 10 条边,需要添加____条边才能得到完全图 K_7 。
 23. 设集合 $A = \{1,2\}$,代数系统< $\mathcal{P}(A)$, \cap >的零元为____。
- 24. 设无向树有 2 个度为 4 的分支点, 2 个度为 3 的分支点, 其余为树叶, 则树叶数为 _____。
- 25. 设集合 $A = \{1,2,3\}$, 集合 $B = \{3,6,9\}$, 给定函数 $f = \{(1,3),(2,9),(3,6)\}$, 则逆函数 f^{-1} 为_____。
- 三、简答题:本大题共 7 小题,第 26 ~ 30 小题,每小题 6 分;第 31 ~ 32 小题,每小题 7 分,共 44 分。
- 26. 用真值表法判定命题公式 $(P \land Q) \lor (\neg Q \rightarrow R)$ 是否为非重言式的可满足式。
- 27. 用等值演算法求命题公式 $(P \lor \neg Q) \land (\neg R \to Q)$ 的主合取范式。
- 28. 设集合 $A = \{a, b, c, d\}$ 上的二元关系R的关系图如题 28 图所示,求R,并给出R的关系矩阵 M_R 以及对称闭包的关系矩阵 $M_{s(R)}$ 。

— 题 28 图

29. 利用 Kruskal 算法求题 29 图所示的连通带权图的最小生成树,请给出详细过程,画出最小生成树,并计算权。

题 29 图

- 30. 设有向图G如题 30 图所示,
 - (1) 写出图G的邻接矩阵:
 - (2) 计算图G中长度为 3 的通路数;
 - (3) 计算图 G中长度小于或等于 3 的回路数。

题 30 图

离散数学试题第 3 页(共 4 页)

- 31. 用二叉树表示算术表达式((a-b)*c) / ((d+e)*f), 并给出先序、中序和后序遍历序列。
- 32. 设集合A = {1,2,3,6,9,18}, ≼为整除关系,回答下列问题:
 - (1) 画出(A, ≼)的哈斯图;
 - (2) 求子集 $B = \{3,6,9\}$ 的极大元,极小元,最大元,最小元;
 - (3) 判断该偏序集A是否为格。
- 四、证明题: 本大题共3小题, 每小题7分, 共21分。
- 33. 在整数集**Z**上定义二元运算 \circ : $a \circ b = a + b 1$, $\forall a, b \in \mathbb{Z}$, 证明(**Z**, \circ)构成交换群。
- 34. 用 CP 规则证明下面有效推理。

前提: $R \rightarrow Q$, $Q \rightarrow P$, $\neg P \lor S$

结论: $R \rightarrow S$

35. 设无向简单图 $G = \langle V, E \rangle$, 顶点数|V| = 9, 最大度数 $\Delta(G) = 8$, 最小度数 $\delta(G) = 7$ 。 证明: 图G中至少有 5 个 8 度的顶点或至少有 6 个 7 度的顶点。

2020年8月高等教育自学考试全国统一命题考试

离散数学试题答案及评分参考

(课程代码 02324)

1. D 2. B 3. D 4. A 5. B 6. C 7. B 8. D 9. A 10. C

11.B 12.A 13.D 14.C 15.D

二、填空题:本大题共10小题,每小题2分,共20分。

- 16. 3
- 17. {1,5,9}
- 18. T
- 19. 11
- 20. {\langle 1,2\rangle}
- 21. $\forall x \forall y \exists z (F(x) \lor \neg G(y) \lor H(z))$
- 22. 11
- 23. Ø
- 24. 8
- 25. {\langle 3,1\rangle, \langle 9,2\rangle, \langle 6,3\rangle}
- 三、简答题: 本大题共 7 小题, 第 26~30 小题, 每小题 6 分; 第 31~32 小题, 每小题 7 分, 共 44 分。
 - 26. 解: 命题公式 $(P \land Q) \lor (\neg Q \rightarrow R)$ 的真值表如下

31 • 141-7C		<u> </u>		147 (EE 147)		_
P	Q	R	$P \wedge Q$	$\neg Q \rightarrow R$	$(P \land Q) \lor (\neg Q \to R)$	(1 /
F	F	F	F	F	F	
F	F	Т	F	Т	Т	(1 /
F	Т	F	F	Т	Т	
F	Т	Т	F	Т	Т	(1 /
Т	F	F	F	F	F	
Т	F	Т	F	Т	Т	(1 /
Т	Т	F	Т	Т	Т	
Т	Т	Т	Т	Т	T	(1 3

由上表可知, 命题公式为非重言式的可满足式。

(1分)

27. $\mathbb{M}: (P \vee \neg Q) \wedge (\neg R \rightarrow Q)$

$$\Leftrightarrow (P \lor \neg Q) \land (R \lor Q) \tag{2 }$$

$$\Leftrightarrow (P \vee \neg Q \vee R) \wedge (P \vee \neg Q \vee \neg R) \wedge (P \vee Q \vee R) \wedge (\neg P \vee Q \vee R)$$
 (1 分)
主合取范式为

$$(P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (P \lor \neg Q \lor \neg R) \land (\neg P \lor Q \lor R), \tag{1 }$$

28. 解:集合 $A = \{a, b, c, d\}$ 的二元关系

$$R = \{ \langle a, b \rangle, \langle b, d \rangle, \langle c, a \rangle, \langle c, c \rangle, \langle d, c \rangle \}, \tag{2 }$$

$$R$$
的关系矩阵 $\mathbf{M}_{R} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix},$ (2 分)

对称闭包的关系矩阵
$$\mathbf{M}_{s(R)} = \mathbf{M}_R \vee \mathbf{M}_{R^{-1}} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
。 (2 分)

29. 解:利用 Kruskal 算法,避圈法过程如下,

添加权值为 2 的边(
$$v_1, v_2$$
); 添加权值为 2 的边(v_1, v_4); (1 分)

添加权值为 3 的边(
$$v_3, v_4$$
);添加权值为 3 的边(v_5, v_6); (1 分)

添加权值为 4 的边(
$$v_5, v_7$$
);添加权值为 9 的边(v_4, v_5); (1分)

答 29 图

该最小生成树的权为23。 (1分)

30. 解:

(1) 图
$$G$$
的邻接矩阵为 $\mathbf{M} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ 。 (2 分)

(2) 由于

$$\mathbf{M}^{2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, \tag{1 \%}$$

$$\mathbf{M}^{3} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix}, \tag{1 \%}$$

$$\mathbf{M}^{3} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 0 & 1 & 2 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix}, \tag{1 }$$

离散数学试题答案及评分参考第2页(共4页)

可知,图 G 中长度为 3 的通路数为 20 条。 (1 分)

(3) 由M, M^2 及 M^3 可知,图G中长度小于或等于3的回路数为11。 (1分)

31. 解: 算术表达式(a-b)*c/((d+e)*f)的二叉树如答 31 图所示, (1 分)

先序遍历序列为/(*(-ab)c)(*(+de)f), 即/*-abc*+def; (2分)

中序遍历序列为((a-b)*c)/((d+e)*f), 即a-b*c/d+e*f; (2分)

后序遍历序列为((ab-)c*)((de+)f*)/, 即ab-c*de+f*/。 (2 分)

32. 解:集合 $A = \{1,2,3,6,9,18\},$

(1) 〈A,≼〉的哈斯图如答 32 图所示。 (2 分)

答 32 图

(2) 子集 $B = \{3,6,9\}$ 的极大元为 6 和 9, (1 分)

极小元为 3, (1分)

最大元不存在, (1分)

最小元为 3。 (1 分)

(3) 该偏序集A是格,因为每对元素都有最小上界和最大下界。 (1分)

四、证明题:本大题共3小题,每小题7分,共21分。

33. 证明:

- (1) 满足封闭性: $\forall a, b \in \mathbf{Z}$, 有 $a \circ b = a + b 1 \in \mathbf{Z}$; (1分)
- (2) 满足结合律: $\forall a,b,c \in \mathbf{Z}$, 有

$$(a \circ b) \circ c = a + b + c - 2 = a \circ (b \circ c); \tag{1 \%}$$

- (3) 存在幺元 1: $\forall a \in \mathbb{Z}$, 有 $a \circ 1 = a + 1 1 = a = 1 + a 1 = 1 \circ a$; (1分)
- (4) 每个元素存在逆元: $\forall a \in \mathbb{Z}, a \circ (2-a) = (2-a) \circ a = 1,$

离散数学试题答案及评分参考第3页(共4页)

故a的逆元为2 - a; (2分) (5) 满足交换律: $a \circ b = a + b - 1 = b \circ a$; (1分) 综上, **⟨Z,∘**⟩构成交换群。 (1分)

34. 证明:

(7) S

由此得到推理是正确的。

35. 证明: 反证法。假设G中 7 度顶点个数 n_7 <6 且 8 度顶点个数 n_8 <5。 已知无向简单图 $G = \langle V, E \rangle$, |V| = 9, $\Delta(G) = 8$, $\delta(G) = 7$ 。所以图G中顶点的 度数或者为7或者为8,故

$$n_7 + n_8 = |V| = 9_{\circ} \tag{1 \%}$$

(1分)

再由假设, $有n_7 \le 5 \ \exists n_8 \le 4$, 故必得

T (5) (6)

$$n_7 = 5, \ n_8 = 4,$$
 (2 $\%$)

从而, 度数总和等于 $n_7 \times 7 + n_8 \times 8 = 5 \times 7 + 4 \times 8 = 67$, (2分)

显然, 度数总和67为奇数与握手定理矛盾, 故结论得证。 (1分)