On model-checking trees generated by higher-order recursion schemes

C.-H. L. Ong*
Oxford University Computing Laboratory

Abstract

We prove that the modal mu-calculus model-checking problem for (ranked and ordered) node-labelled trees that are generated by order-n recursion schemes (whether safe or not, and whether homogeneously typed or not) is n-EXPTIME complete, for every $n \geq 0$. It follows that the monadic second-order theories of these trees are decidable.

There are three major ingredients. The first is a certain transference principle from the tree generated by the scheme - the value tree - to an auxiliary computation tree, which is itself a tree generated by a related order-0 recursion scheme (equivalently, a regular tree). Using innocent game semantics in the sense of Hyland and Ong, we establish a strong correspondence between paths in the value tree and traversals in the computation tree. This allows us to prove that a given alternating parity tree automaton (APT) has an (accepting) run-tree over the value tree iff it has an (accepting) traversal-tree over the computation tree. The second ingredient is the simulation of an (accepting) traversal-tree by a certain set of annotated paths over the computation tree; we introduce traversal-simulating APT as a recognising device for the latter. Finally, for the complexity result, we prove that traversal-simulating APT enjoy a succinctness property: for deciding acceptance, it is enough to consider run-trees that have a reduced branching factor. The desired bound is then obtained by analysing the complexity of solving an associated (finite) acceptance parity game.

1. Introduction

What classes of finitely-presentable infinite-state systems have decidable monadic second-order (MSO) theories? This is a basic problem in Computer-Aided Verification that is important to practice because standard temporal logics such as LTL, CTL and CTL* are embeddable in MSO logic. One of the best known examples of such a class are the *regular trees* as studied by Rabin in 1969. A notable advance occurred some fifteen years later, when Muller and

Shupp [13] proved that the configuration graphs of pushdown systems have decidable MSO theories. In the 90's, as finite-state technologies matured, researchers embraced the challenges of software verification. A highlight from this period was Caucal's result [5] that prefix-recognizable graphs have decidable MSO theories. In 2002 a flurry of discoveries significantly extended and unified earlier developments. In a FOSSACS'02 paper [11], Knapik, Niwiński and Urzyczyn studied the infinite hierarchy of term-trees generated by higher-order recursion schemes that are homogeneously typed and satisfy a syntactic constraint called safety. They showed that for every $n \geq 0$, trees generated by order-n safe schemes are exactly those that are accepted by order-n pushdown automata; further they have decidable MSO theories. Later in the year at MFCS'02 [6], Caucal introduced a tree hierarchy and a graph hierarchy that are defined by mutual recursion, using a pair of powerful transformations that preserve decidability of MSO theories. Caucal's tree hierarchy coincides with the hierarchy of trees generated by higher-order pushdown automata.

Knapik *et al.* [11] have asked if the safety assumption is really necessary for their MSO decidability result. A partial answer has recently been obtained by Aehlig, de Miranda and Ong; they showed at TLCA'05 [2] that all trees up to order 2, whether safe or not, have decidable MSO theories. Independently, Knapik, Niwiński, Urzyczyn and Walukiewicz obtained a sharper result: they proved at ICALP'05 [12] that the modal mu-calculus model-checking problem for trees generated by order-2 recursion schemes (whether safe or not) is 2-EXPTIME complete. In this paper we give a complete answer to the question:

Theorem 1. The modal mu-calculus model-checking problem for trees generated by order-n recursion schemes (whether safe or not, and whether homogeneously typed or not) is n-EXPTIME complete, for every $n \geq 0$. Thus these trees have decidable MSO theories.

Our approach is to transfer the algorithmic analysis from the tree generated by a recursion scheme, which we call value tree, to an auxiliary computation tree, which is itself a tree generated by a related order-0 recursion scheme (equivalently, a regular tree). The computation tree recovers useful intensional information about the computational

^{*}users.comlab.ox.ac.uk/luke.ong/index.html

process behind the construction of the value tree. Using innocent game semantics [9], we then establish a strong correspondence (Theorem 3) between *paths* in the value tree and (what we call) *traversals* over the computation tree. In the language of game semantics, paths in the value tree correspond exactly to plays in the strategy-denotation of the recursion scheme; a traversal is then (a representation of) the *uncovering* of such a play. The path-traversal correspondence allows us to prove that a given alternating parity tree automaton (APT) has an accepting run-tree over the value tree if and only if it has an accepting *traversal-tree* over the computation tree (Corollary 4).

Our problem is then reduced to finding an effective way of recognising a set of infinite traversals (over a given computation tree) that satisfy the parity condition. This requires a new idea as a traversal is most unlike a path; it can jump all over the tree and may even visit certain nodes infinitely often. Our solution exploits the game-semantic connection. It is a property of traversals that their *P-views* are paths (in the computation tree). This allows us to simulate a traversal over a computation tree by (the P-views of its prefixes, which are) annotated paths of a certain kind in the same tree. The simulation is made precise in the notion of traversalsimulating APT. We establish the correctness of the simulation by proving that a given property¹ APT has an accepting traversal-tree over the computation tree if and only if the associated traversal-simulating APT has an accepting run-tree over the computation tree (Theorem 5). Note that decidability of the modal mu-calculus model-checking problem for trees generated by recursion schemes follows at once since computation trees are regular, and the APT acceptance problem for regular trees is decidable.

To prove n-EXPTIME completeness of the decision problem, we first establish a certain *succinctness property* (Proposition 6) for traversal-simulating APT: if a traversal-simulating APT $\mathcal C$ has an accepting run-tree, then it has one with a reduced branching factor. The desired time bound is then obtained by analysing the complexity of solving an associated (finite) acceptance parity game, which is an appropriate product of the traversal-simulating APT and a finite deterministic graph that unfolds to the computation tree in question.

Using a novel finitary semantics of the lambda calculus, Aehlig [3] has shown that model-checking trees generated by recursion schemes (whether safe or not) against all properties expressible by non-deterministic tree automata with the trivial acceptance condition is decidable (i.e. acceptance simply means that the automaton has a run-tree).

This paper is an extended abstract. The reader is directed to the preprint [14] for further details, including proofs.

2. Preliminaries

Types are generated from the base type o using the arrow constructor \rightarrow . Every type A can be written uniquely as $A_1 \rightarrow \cdots \rightarrow A_n \rightarrow o$ (arrows associate to the right), for some $n \geq 0$ which is called its arity; we shall often write A simply as (A_1, \cdots, A_n, o) . We define the arity order of a type by: $arith{ord}(o) = a$ and $arith{ord}(A \rightarrow B) = \max(arith{ord}(A) + 1, arith{ord}(B))$. Let $arith{ord}(B) = a$ which determines its type $arith{ord}(a, o, o, o)$. Further we shall assume that

each symbol $f \in \Sigma$ is assigned a finite set $\mathrm{Dir}(f)$ of exactly ar(f) directions, and we define $\mathrm{Dir}(\Sigma) = \bigcup_{f \in \Sigma} \mathrm{Dir}(f)$. Let D be a set of directions; a D-tree is just a prefix-closed subset of D^* , the free monoid of D. A Σ -labelled tree is a function $t: \mathrm{Dom}(t) \longrightarrow \Sigma$ such that $\mathrm{Dom}(t)$ is a $\mathrm{Dir}(\Sigma)$ -tree, and for every node $\alpha \in \mathrm{Dom}(t)$, the Σ -symbol $t(\alpha)$ has arity k if and only if α has exactly k children and the set of its children is $\{\alpha i: i \in \mathrm{Dir}(t(\alpha))\}$ i.e. t is a t-ranked alphabet t-contains a distinguished nullary symbol t-which will be used exclusively to label "undefined" nodes.

Note. We write [m] as a shorthand for $\{1,\cdots,m\}$. Henceforth we fix a ranked alphabet Σ for the rest of the paper, and set $\mathrm{Dir}(f)=[ar(f)]$ for each $f\in\Sigma$; hence we have $\mathrm{Dir}(\Sigma)=[ar(\Sigma)]$, writing $ar(\Sigma)$ to mean $\max\{ar(f):f\in\Sigma\}$.

$$F \, \xi_1 \, \cdots \, \xi_n \, \to \, e$$

where each ξ_i is in Var^{A_i} , and e is an *applicative term*³ of type o constructed from elements of $\Sigma \cup \mathcal{N} \cup \{\xi_1, \dots, \xi_n\}$. The *order* of a recursion scheme is the highest order of its non-terminals.

We use recursion schemes as generators of Σ -labelled trees. The *value tree* of (or the tree *generated* by) a recursion scheme G is a possibly infinite applicative term, but viewed as a Σ -labelled tree, *constructed from the terminals*

¹Property APT because the APT corresponds to the property described by a given modal mu-calculus formula.

²In the sequel, we shall have occasions to consider unordered trees whose nodes are labelled by symbols of an *unranked* alphabet Γ. To avoid confusion, we shall call these trees Γ-*labelled unranked trees*.

³Applicative terms are terms constructed from the generators using the application rule: if $d:A\to B$ and e:A then (de):B. Standardly we identify finite Σ-labelled trees with applicative terms of type o generated from Σ-symbols endowed with 1st-order types as given by their arities.

in Σ , that is obtained by unfolding the rewrite rules of G ad infinitum, replacing formal by actual parameters each time, starting from the start symbol S.

Example 2.1 (Running). [The simple recursion scheme defined here will be used to illustrate various concepts throughout the paper.] Let G be the order-2 (unsafe) recursion scheme with rewrite rules:

$$\begin{array}{ccc} S & \rightarrow & H\,a \\ H\,z^o & \rightarrow & F\,(g\,z) \\ F\,\varphi^{(o,o)} & \rightarrow & \varphi\,(\varphi\,(F\,h)) \end{array}$$

where the arities of the terminals g,h,a are 2,1,0 respectively. The value tree $[\![G]\!]$ is the Σ -labelled tree defined by the infinite term g a (g a (h (h (h $(h \cdots)))):$

The only infinite *path* in the tree is the node-sequence $\epsilon \cdot 2 \cdot 22 \cdot 221 \cdot 2211 \cdots$ (with the corresponding *trace* $gghhhh\cdots \in \Sigma^{\omega}$).

This paper is concerned with the decision problem: Given a modal mu-calculus formula φ and an order-n recursion scheme G, does $[\![G]\!]$ satisfy φ (at ϵ)? The problem is equivalent $[\![T]\!]$ to deciding whether a given alternating parity tree automaton $\mathcal B$ has an accepting run-tree over $[\![G]\!]$. To fix notation, an alternating parity tree automaton (or APT for short) over Σ -labelled trees is a tuple $\langle \Sigma, Q, \delta, q_0, \Omega \rangle$ where Σ is the input ranked alphabet, Q is a finite state-set, $q_0 \in Q$ is the initial state, $\delta: Q \times \Sigma \longrightarrow \mathsf{B}^+(\mathsf{Dir}(\Sigma) \times Q)$ is the transition function whereby for each $f \in \Sigma$ and $g \in Q$, we have $\delta(q,f) \in \mathsf{B}^+(\mathsf{Dir}(f) \times Q)$ where $\mathsf{B}^+(X)$ is the set of positive boolean formulas over elements of X, and $\Omega: Q \longrightarrow \mathbb{N}$ is the priority function.

3. Computation trees and traversals

The *long transform*, \overline{G} , of a recursion scheme G is an order-0 recursion scheme. Its rules are obtained from those of G by applying the following four-stage transformation in turn. For each G-rule:

- 1. Expand the RHS to its η -long form: We hereditarily η -expand every subterm even if it is of ground type so that e:o expands to $\lambda.e$ provided it is the *operand* of an occurrence of the application operator.
- 2. Insert long-apply symbols $@_A$: Replace each ground-type subterm $D e_1 \cdots e_n$ by $@_A D e_1 \cdots e_n$ where $A = ((A_1, \dots, A_n, o), A_1, \dots, A_n, o)$.

- 3. Curry the rewrite rule. I.e. transform the rule $F \varphi_1 \cdots \varphi_n \to e$ to $F \to \lambda \varphi_1 \cdots \varphi_n.e$.
- 4. Rename bound variables afresh.

G is an order-0 recursion scheme with respect to an enlarged ranked alphabet Λ_G , which is Σ augmented by certain variables and lambdas (of the form $\lambda \bar{\xi}$ which is a short hand for $\lambda \xi_1 \cdots \xi_n$ where $n \geq 0$) but regarded as terminals. The alphabet Λ_G is a finite subset of the set

$$\underbrace{\Sigma \ \cup \ Var \ \cup \ \{ \ @_A : A \in ATypes \}}_{\textbf{Non-lambdas}} \ \cup \underbrace{\{ \ \boldsymbol{\lambda}\overline{\xi} : \overline{\xi} \subseteq Var \}}_{\textbf{Lambdas}}$$

where ATypes is the set of types of the shape $((A_1,\cdots,A_n,o),A_1,\cdots,A_n,o)$ with $n\geq 1$. Symbols in Λ_G are ranked as follows. A symbol $\varphi:(A_1,\cdots,A_n,o)$ from Var has arity n. The long-apply $@_A$ where $A=((A_1,\cdots,A_n,o),A_1,\cdots,A_n,o)$ has arity n+1. Lambdas $\lambda \xi$ have arity 1. Further, for $f\in \Lambda_G$, we define

$$\mathsf{Dir}(f) \; = \; \left\{ \begin{array}{ll} \left[ar(@_A) - 1 \right] \cup \left\{ \, 0 \, \right\} & \text{if } f = @_A \\ \left[ar(f) \right] & \text{otherwise} \end{array} \right.$$

For technical convenience, the leftmost child of an @-node is its 0-child, but for all other nodes, the leftmost child is the 1-child. The *non-terminals* of \overline{G} are exactly those of G, except that they are all of type o. We can now define the *computation tree*⁴ $\lambda(G)$ to be $[\![\overline{G}]\!]$. Thus $\lambda(G)$ is the Λ_G -labelled (ranked and ordered) tree that is obtained by unfolding the \overline{G} -rules *ad infinitum* (note that no " β -redex" is contracted in the process).

Example 3.1. Let G be as defined in Example 2.1. We present its long transform \overline{G} as follows and the computation tree $\lambda(G)$ in Figure 1.

$$\overline{G} \,:\: \left\{ \begin{array}{lcl} S & \rightarrow & \pmb{\lambda}.@\ H\ (\pmb{\lambda}.a) \\ H & \rightarrow & \pmb{\lambda}z.@\ F\ (\pmb{\lambda}y.g\ (\pmb{\lambda}.z)\ (\pmb{\lambda}.y)) \\ F & \rightarrow & \pmb{\lambda}\varphi.\varphi\ (\pmb{\lambda}.\varphi\ (\pmb{\lambda}.@\ F\ (\pmb{\lambda}x.h\ (\pmb{\lambda}.x)))) \end{array} \right.$$

In Figure 1, for ease of reference, we give nodes of $\lambda(G)$ numeric names (in square-brackets).

We define a family of binary relations \vdash_i , where $i \in \mathsf{Dir}(\Lambda_G)$, between nodes of a computation tree $\lambda(G)$, called *enabling*, as follows:

- Every lambda-labelled node β , that is the *i*-child of its parent node α , is *i*-enabled by α .
- A variable node β (labelled ξ_i , say) is *i-enabled* by its *binder*, which is defined to be the largest prefix of β that is labelled by a lambda $\lambda \overline{\xi}$, for some list $\overline{\xi} = \xi_1 \cdots \xi_n$ in which ξ_i occurs as the *i-element*.

⁴In recent work on deciding higher-order matching [15], Colin Stirling has introduced *property checking game* over a kind of trees determined by lambda terms. His trees are exactly the same as our computation trees.

Figure 1. An order-2 computation tree.

We say that β is *enabled* by α just if β is *i*-enabled by α , for some (necessarily unique) i. A node of $\lambda(G)$ is *initial* if it is not enabled by any node. The initial nodes of a computation tree are the root node and all nodes labelled by a long-apply or Σ -symbol. A *justified sequence* over $\lambda(G)$ is a possibly infinite, lambda / non-lambda alternating sequence of nodes that satisfies the *pointer condition*: Each non-initial node that occurs in it has a pointer to some earlier occurrence of the node that enables it.

Notation \cdots n_0 \cdots n \cdots means that n points to n_0 and n is j-enabled by n_0 . We say that n is j-justified by n_0 in the justified sequence.

The notion of *view* (of a justified sequence) and the condition of *Visibility* were first introduced in game semantics [9]. Intuitively the *P-view* of a justified sequence is a certain subsequence consisting of moves which player P considers relevant for determining his next move in the play. In the setting here, the lambda nodes are the O-moves, and the non-lambda moves are the P-moves.

The **P-view**, $\lceil t \rceil$, of a justified sequence t is a subsequence defined by recursion as follows: we let n range over

non-lambda nodes

In the second clause above, suppose the non-lambda node n points to some node-occurrence l (say) in t; if l appears

in $\lceil t \rceil$, then n in $\lceil t \rceil$ n $\lambda \overline{\xi}$ is defined to point to l; otherwise n has no pointer; similarly for the third clause. We say that a justified sequence t satisfies P-visibility just in case every non-initial non-lambda node that occurs in the sequence points to some (necessarily lambda) node that appears in the P-view at that point.

Definition 3.2. *Traversals* over a computation tree $\lambda(G)$ are justified sequences defined by induction over the following rules. In the following, we refer to nodes of $\lambda(G)$ by their labels, and we let n range over non-lambda nodes.

(**Root**) The singleton sequence, comprising the root node of $\lambda(G)$, is a traversal.

(**App**) If
$$t @$$
 is a traversal, so is $t @ \lambda \overline{\xi}$.

(Sig) If tf is a traversal, so is tf λ for each $1 \le i \le ar(f)$ with $f \in \Sigma$

(Var) If
$$t n \lambda \overline{\xi} \cdots \xi$$
 is a traversal, so is $t n \lambda \overline{\xi} \cdots \xi \lambda \overline{\eta}$.

(Lam) If $t\lambda \overline{\xi}$ is a traversal and $\lceil t\lambda \overline{\xi} \ n \rceil$ is a path in $\lambda(G)$, then $t\lambda \overline{\xi} \ n$ is a traversal.

Thus the way that a traversal can grow is deterministic (and determined by $\lambda(G)$), except when the last node in the justified sequence is a Σ -symbol f of arity k>1, in which case, the traversal can grow in one of k possible directions in the next step.

Lemma 2. Traversals are well-defined justified sequences that satisfy P-visibility (and O-visibility). Further, the P-view of a traversal is a path in the computation tree.

Example 3.3. The following are maximal traversals (pointers omitted) over the computation tree shown in Figure 1:

$$\begin{array}{l} 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 19 \cdot 20 \\ 0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 13 \cdot 14 \cdot 17 \cdot 18 \cdot 6 \cdot 7 \cdot 13 \cdot 14 \cdot 15 \cdot 16 \cdot 19 \cdot 20 \end{array}$$

The preceding traversals have the same P-view, namely, $0 \cdot 1 \cdot 19 \cdot 20$. The P-view of $0 \cdot \cdot \cdot 16$ (i.e. the prefix of the 2nd traversal above that ends in 16) is $0 \cdot 1 \cdot 2 \cdot 3 \cdot 13 \cdot 14 \cdot 15 \cdot 16$.

We state an important result that underpins our approach.

Theorem 3. Let G be a recursion scheme. There is a one-one correspondence, $p\mapsto t_p$, between maximal paths p in the value tree $\llbracket G \rrbracket$ and maximal traversals t_p over the computation tree $\lambda(G)$. Further for every maximal path p in $\llbracket G \rrbracket$, we have $t_p \upharpoonright \Sigma^- = p \upharpoonright \Sigma^-$, where $s \upharpoonright \Sigma^-$ denotes the subsequence of s consisting of only Σ^- -symbols with $\Sigma^- = \Sigma \setminus \{\bot\}$.

Using the language of game semantics, we are claiming (in the Theorem) that the traversal t_p is (a representation of) the *uncovering* of the path p viewed as a play. The proof is by innocent game semantics [9].

Example 3.4. To illustrate Theorem 3, consider the computation tree in Figure 1. The two (maximal) traversals over $\lambda(G)$ given in Example 3.3 correspond respectively to the (maximal) paths $g \cdot a$ and $g \cdot g \cdot a$ in $\llbracket G \rrbracket$. The traversal $0 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 13 \cdot 14 \cdot 17 \cdot 18 \cdot 6 \cdot 7 \cdot 13 \cdot 14 \cdot 17 \cdot 18 \cdot 8 \cdot 9 \cdot 10 \cdot 21 \cdot 11 \cdot 12$ corresponds to the path $g \cdot g \cdot h$.

Relative to a property APT $\mathcal{B}=\langle \Sigma,Q,\delta,q_0,\Omega \rangle$ over Σ -labelled trees, an (accepting) traversal-tree of \mathcal{B} over $\lambda(G)$ plays the same rôle as an (accepting) run-tree of \mathcal{B} over $\llbracket G \rrbracket$. A path in a traversal-tree is a traversal in which each node is annotated by an element of Q. Formally, we have:

Definition 3.5. A *traversal-tree* of a property APT \mathcal{B} over a Λ_G -labelled tree $\lambda(G)$ is a $(\mathsf{Dom}(\lambda(G)) \times Q)$ -labelled unranked tree $t : \mathsf{Dom}(t) \longrightarrow \mathsf{Dom}(\lambda(G)) \times Q$, satisfying $t(\varepsilon) = (\varepsilon, q_0)$, and for every $\beta \in \mathsf{Dom}(t)$ with $t(\beta) = (\alpha, q)$:

- If $\lambda(G)(\alpha)$ is an @, then $t(\beta 1) = (\alpha 0, q)$.
- If $\lambda(G)(\alpha)$ is a Σ -symbol f, then there is some $S\subseteq [ar(f)]\times Q$ such that S satisfies $\delta(q,f)$ and we pick the smallest such S; and for each $(i,q')\in S$, there is some $1\leq j\leq ar(\Sigma)\times |Q|$, such that $t(\beta\,j)=(\alpha\,i,q')$.
- If $\lambda(G)(\alpha)$ is a variable, and α is i-justified by α_1 with $t(\beta_1 \ 1) = (\alpha_1, q_1)$ for some β_1 and q_1 , then $t(\beta \ 1) = (\gamma \ i, q)$ where $t(\beta_1) = (\gamma, q_1)$.

Note that γi is a lambda node that is *i*-justified by γ which is labelled by either an @-symbol or a variable.

• If $\lambda(G)(\alpha)$ is a lambda, then $t(\beta 1) = (\alpha 1, q)$.

Figure 2. A traversal-tree of an APT over $\lambda(G)$.

A traversal-tree t is **accepting** if all infinite traces $(\alpha_0, q_0) (\alpha_1, q_{i_1}) (\alpha_2, q_{i_2}) \cdots$ through it satisfy the parity condition, namely, $\limsup \langle \Omega(q_{i_i}) : j \geq 0 \rangle$ is even.

It follows from the definition that (the element-wise first-projection of) every trace of a traversal-tree is a traversal over the computation tree.

Example 3.6. Take G as defined in Example 2.1. Consider an APT $\mathcal B$ over Σ -labelled trees with state-set $Q=\{1,2\}$ where 1 is the initial state, and states 1 and 2 have priorities 1 and 2 respectively. The transition map $\delta: Q \times \Sigma \longrightarrow \mathsf{B}^+([ar(\Sigma)] \times Q)$ is defined as follows:

$$\delta \;:\; \left\{ \begin{array}{ccc} (1,g) & \mapsto & ((1,1) \wedge (2,1)) \ \vee \ ((1,2) \wedge (2,1)) \\ (1,a) & \mapsto & \mathsf{true} \\ (2,a) & \mapsto & \mathsf{true} \end{array} \right.$$

In Figure 2, we present a traversal-tree of \mathcal{B} over $\lambda(G)$.

We state a straightforward consequence of Theorem 3:

Corollary 4. There is a one-one correspondence between

- (i) accepting run-trees of \mathcal{B} over $\llbracket G \rrbracket$
- (ii) accepting traversal-trees of \mathcal{B} over $\lambda(G)$.

Our task is therefore reduced to that of effectively recognising accepting traversal-trees.

4. The traversal-simulating APT

An informal explanation

We want to find a device that can recognise accepting traversal-trees of a property APT $\mathcal B$ over a computation tree. This is far from trivial since a traversal can jump all over the tree and may even visit some nodes infinitely often. Our idea is to exploit Lemma 2: The P-view of a traversal is a path. Thus a maximal traversal can be simulated by the set of P-views of all its finite prefixes. The challenge is then to define an alternating parity automaton (which we will call traversal-simulating in order to distinguish it from the property APT) that recognises precisely the set of paths of the computation tree that simulate an accepting traversal-tree of $\mathcal B$.

Fix a property APT $\mathcal{B}=\langle \Sigma,Q,\delta,q_0,\Omega\rangle$ with p priorities. Suppose a traversal jumps from a node labelled φ with simulating state $q_1\in Q$ to a subtree (denoting the actual parameter of that formal parameter φ) rooted at a node labelled λy_1y_2 ; suppose it subsequently exits the subtree through y_1 with simulating state q_2 , and rejoins the original subtree through the first λ -child of the φ -labelled node, as follows:

We simulate the traversal by *paths* in the computation tree, making appropriate *guesses*, which will need to be verified subsequently:

- When reading the node φ with simulating state q_1 , the automaton, having *guessed* that the jump to $\lambda y_1 y_2$ will eventually return to the 1-child of the node φ with simulating state q_2 , descends in direction 1.
- In order to verify the guess, an automaton is *spawn* to read the root of the subtree that denotes the actual parameter of φ (i.e. the node labelled by $\lambda y_1 y_2$).

At a node α that is labelled by @, in addition to the main simulating automaton that descends in the direction of the leftmost child labelled by $\lambda \xi_1 \cdots \xi_n$ (say), we *guess*, for each variable $\xi_i : A_i$ in the list of formal parameters $\xi_1 \cdots \xi_n$, a number of quadruples of the shape (ξ_i, q, m, c) , which we call *profiles* for ξ_i , where

- $q \in Q$ is the state that is simulated when a ξ_i -labelled node (a descendent of α) is encountered by the descending automaton, simulating the traversal
- $m \in [p]$ is the maximal priority that will have been seen at that point, since reading the node labelled by $\lambda \xi_1 \cdots \xi_n$
- The interface c, which is a subset of $\bigcup_{i=1}^n \mathbf{VP}_G^{\mathcal{B}}(A_i)$, where $\mathbf{VP}_G^{\mathcal{B}}(A)$ is the set of profiles of variables of type A occurring in $\lambda(G)$ with respect to the property APT \mathcal{B} , captures the manner in which the traversal, which now jumps to a neighbouring subtree denoting the actual parameter of ξ_i , will eventually return to the children of the ξ_i -labelled node (i.e. with what simulating state, and through which child of ξ_i).

Formal definition

Henceforth we fix a recursion scheme G and its associated computation tree $\lambda(G)$, and fix a *property* APT

$$\mathcal{B} = \langle Q, \Sigma, \delta : Q \times \Sigma \longrightarrow \mathsf{B}^+([ar(\Sigma)] \times Q), q_0, \Omega \rangle$$

with p priorities, over Σ -labelled trees. Let Var_G^A be the (finite) set of variables of type A that occur as labels in $\lambda(G)$.

Definition 4.1. (i) The set $\mathbf{VP}_G^{\mathcal{B}}(A)$ of *profiles* for variables of type A in $\lambda(G)$ relative to \mathcal{B} are defined as follows:

$$\mathbf{VP}_{G}^{\mathcal{B}}(A_{1},\cdots,A_{n},o) = Var_{G}^{A} \times Q \times [p] \times \mathcal{P}(\bigcup_{i=1}^{n} \mathbf{VP}_{G}^{\mathcal{B}}(A_{i}))$$

If n=0, we have $\mathbf{VP}_G^{\mathcal{B}}(o)=Var_G^o\times Q\times [p]\times \mathcal{P}(\varnothing)$. For every variable $\xi:A$ that occurs as a label in $\lambda(G)$, we write $\mathbf{VP}_G^{\mathcal{B}}(\xi:A)$ for the set of profiles for ξ . Take any $(\xi,q,m,c)\in \mathbf{VP}_G^{\mathcal{B}}(\xi:A)$; we shall refer to m as the *priority* and c the *interface* of the profile respectively.

(ii) An *active profile* is a pair θ^b where θ is a profile and $b \in \{t, f\}$. The boolean value b is the answer to the question:

"Is the highest priority seen thus far (since the creation of the active profile) equal to m?" An *environment* is a set of active profiles for variables that occur as labels in $\lambda(G)$.

Notations. Take an active profile $(\xi, q, m, c)^b$. For any priority $l \le p$, we define an *update* function of b:

$$(\xi,q,m,c)^b \uparrow l = \left\{ \begin{array}{ll} (\xi,q,m,c)^{b\vee \lceil l=m \rceil} & \text{if } l \leq m \\ \text{undefined} & \text{otherwise} \end{array} \right.$$

where [l=m] denotes the Boolean value of the equality test "l=m". For any profile θ , we define $\theta \uparrow m$ (by abuse of notation) to be $\theta^f \uparrow l$. Let ρ be an environment. We define $\rho \uparrow l$ by point-wise extension i.e. we say that $\rho \uparrow l$ is defined just if $\theta^b \uparrow l$ is defined for all active profiles $\theta^b \in \rho$, and is equal to $\{\theta^b \uparrow l : \theta^b \in \rho\}$.

Definition 4.2. The auxiliary *traversal-simulating alternating parity automaton* (w.r.t. \mathcal{B}) over Λ_G -labelled trees is given by $\mathcal{C} = \langle \Lambda_G, Q_{\mathcal{C}}, \delta_{\mathcal{C}}, q_0 \varnothing, \Omega_{\mathcal{C}} \rangle$ where $Q_{\mathcal{C}}$ consists of pairs $q \rho$ and triples $q \rho \theta$ such that $q \in Q$ is the \mathcal{B} -state being simulated – called the *simulating state*, ρ is an environment, and θ is a variable profile; the pair $q_0 \varnothing$ is the initial state. The priority of a \mathcal{C} -state, or \mathcal{C} -priority, is defined by cases:

$$\Omega_{\mathcal{C}} : \left\{ \begin{array}{ccc} q \, \rho & \mapsto & \Omega(q) \\ q \, \rho \, \theta & \mapsto & m, \end{array} \right. \text{ where } m \text{ is the priority of } \theta.$$

Given a C-state $d = q \rho$ or $q \rho \theta$, we say that its \mathcal{B} -priority is $\Omega(q)$.

Definition of the transition function $\delta_{\mathcal{C}}$

The automaton starts by reading the root node ε of $\lambda(G)$ with the initial state $q_0 \varnothing$. Rather than giving the positive Boolean formula $\delta_{\mathcal{C}}(d,l)$ for each $d \in Q_{\mathcal{C}}$ and $l \in \Lambda_G$, we describe the action of the automaton with state $d = q \rho$ or $q \rho \theta$ reading a node α of the computation tree, by a case analysis of $l = \lambda(G)(\alpha)$.

Cases of the label l:

Case 1: l is a Σ -symbol f of arity $r \geq 0$, and $d = q \rho$.

If $\delta(q, f) \in \mathsf{B}^+([ar(f)] \times Q)$ is not satisfiable, the automaton aborts; otherwise, guess a satisfying set, say

$$S = \{(i_1, q_{j_1}), \cdots, (i_k, q_{j_k})\}$$

where $k \geq 0$ (with k = 0 iff $S = \emptyset$), and guess environments ρ_1, \dots, ρ_k , such that

$$\bigcup_{i=1}^{k} \rho_i = \rho. \tag{1}$$

Spawn k automata with states

$$q_{j_1} \rho_1 \uparrow \Omega(q_{j_1}), \quad \cdots, \quad q_{j_k} \rho_k \uparrow \Omega(q_{j_k})$$

in directions i_1, \dots, i_k respectively provided $\rho_i \uparrow \Omega(q_{j_i})$ is defined for all i, otherwise the automaton aborts.

Note. In case the arity r=0, since $\delta(q,f) \in \mathsf{B}^+([0] \times Q)$ and $[0]=\varnothing$, we have $\delta(q,f)$ is either true or false. If the former, note that true is satisfied by the every set in $\mathcal{P}([0] \times Q)$, namely \varnothing ; it follows that equation (1) can only be satisfied provided $\rho=\varnothing$.

Case 2: l is a variable $\varphi: (A_1, \dots, A_n, o)$ where $n \geq 0$, and $d = q \rho \theta$.

We check that θ has the shape (φ, q, m, c) for some interface c and $m \leq p$ such that $(\varphi, q, m, c)^{\mathsf{t}} \in \rho$; otherwise the automaton aborts. Suppose

$$c = \{\underbrace{(\xi_{i_j}, q_{l_j}, m_j, c_j)}_{\theta_i} \mid 1 \le j \le r \}$$

for some $r \geq 0$ (with $c = \emptyset$ iff r = 0). (In case φ is order 2 or higher, we may assume that $\xi_j : A_j$ so that we have $1 \leq i_j \leq n$.)

Guess ρ' to be one of ρ or $\rho \setminus \{ (\varphi, q, m, c)^t \}$. For each $1 \leq j \leq r$, guess distinct environments $\rho_{j1}, \dots, \rho_{jr_j}$ with $r_j \geq 1$, such that

$$\bigcup_{j=1}^{r} \bigcup_{k=1}^{r_j} \rho_{jk} = \rho'. \tag{2}$$

For each $1 \leq j \leq r$ and each $1 \leq k \leq r_j$, spawn an automaton with \mathcal{C} -state

$$q_{l_i} \quad (\rho_{ik} \uparrow m_i) \cup (c_i \uparrow \Omega(q_{l_i})) \quad \theta_i$$

in direction i_j , provided $(\rho_{jk} \uparrow m_j) \cup (c_j \uparrow \Omega(q_{l_j}))$ is defined for all j and k, otherwise the automaton aborts.

Note. If φ is order 0, the interface c in θ is necessarily empty (i.e. r=0). Thus, for equation (2) to hold, we must have $\rho'=\varnothing$; it follows that we must have $\rho=\{(\varphi,q,m,\varnothing)\}.$

Case 3: l is @ of type $((A_1, \dots, A_n, o), A_1, \dots, A_n, o)$ where $n \ge 1$, and $d = q \rho$.

Guess a set of profiles $c\subseteq\bigcup_{i=1}^n\mathbf{VP}_G^\mathcal{B}(\xi_i:A_i)$ and spawn an automaton with state q $c\uparrow\Omega(q)$ in direction 0, with

$$c = \{\underbrace{(\xi_{i_j}, q_{l_j}, m_j, c_j)}_{\theta_j} : 1 \le j \le r \}$$

(say) where $r \geq 0$ (with r = 0 iff $c = \emptyset$). Note that $1 \leq i_j \leq n$. For each $1 \leq j \leq r$, guess distinct environments $\rho_{j1}, \dots, \rho_{jr_j}$ with $r_k \geq 1$ such that

$$\bigcup_{j=1}^{r} \bigcup_{k=1}^{r_j} \rho_{jk} = \rho. \tag{3}$$

For each $1 \le j \le r$ and $1 \le k \le r_j$, spawn an automaton with C-state

$$q_{l_j} \quad (\rho_{jk} \uparrow m_j) \cup (c_j \uparrow \Omega(q_{l_j})) \quad \theta_j$$

in direction i_j , provided $(\rho_{jk} \uparrow m_j) \cup (c_j \uparrow \Omega(q_{l_j}))$ is defined for all j and k, otherwise the automaton aborts.

Case 4: l is a lambda, with state $d = q \rho$ or $q \rho \theta$.

Spawn an automaton in direction 1 with C-state e where $e = q \rho \tau$ for some $\tau^b \in \rho$ if the guess is that the label of the child node is a variable, otherwise $e = q \rho$.

Example 4.3. Take the computation tree $\lambda(G)$ and the property APT \mathcal{B} as defined in Example 3.6. In Table 1 we give an initial part of an (accepting) run-tree of the corresponding traversal-simulating APT \mathcal{C} . We shall see in the sequel that the run-tree is a simulation (in the sense of Theorem 5) of the traversal-tree in Figure 2.

5. Correctness of the simulation

For the rest of the paper, we shall fix a recursion scheme G and an associated computation tree $\lambda(G)$. We shall also fix a property APT $\mathcal{B} = \langle \Sigma, Q, \delta, q_0, \Omega \rangle$ over Σ -labelled trees, and write \mathcal{C} as the associated traversal-simulating APT over Λ_G -labelled trees. Our notion of simulation is correct, in the following sense:

Theorem 5. *The following are equivalent:*

- (i) There is an accepting traversal-tree of \mathcal{B} over $\lambda(G)$.
- (ii) There is an accepting run-tree of C over $\lambda(G)$.

Since $\lambda(G)$ is a regular tree, an immediate corollary of the Theorem is that the modal mu-calculus model-checking problem for trees generated by arbitrary recursion schemes is decidable. In this Section we briefly sketch a proof of the Theorem.

From traversal-trees of ${\mathcal B}$ to run-trees of ${\mathcal C}$

Suppose there is an accepting traversal-tree ${\bf t}$ of the property APT ${\cal B}$ over $\lambda(G)$. Recall that ${\bf t}$ is a $({\sf Dom}(\lambda(G)) \times Q)$ -labelled unranked tree. We first perform a succession of annotation operations on ${\bf t}$, transforming it eventually to a $({\sf Dom}(\lambda(G)) \times Q_{\cal C})$ -labelled unranked tree $\widehat{{\bf t}}$, which has the same underlying tree as ${\bf t}$ i.e. ${\sf Dom}(\widehat{{\bf t}}) = {\sf Dom}({\bf t})$. We then show that the set of P-views of traces of $\widehat{{\bf t}}$ gives an accepting run-tree of the traversal-simulating APT ${\cal C}$.

Run-trees of a traversal-simulating APT can have a rather large (though necessarily bounded) branching factor. Fortunately we can prove a kind of *succinctness result*: We show that if a traversal-simulating APT has an accepting run-tree, then it has a "narrow" accepting run-tree in the sense that it has a reduced branching factor.

Definition 5.1. A *narrow run-tree* of a traversal-simulating APT \mathcal{C} is a run-tree satisfying the rules of Definition 4.2 except that in (2) of Case 2, for each $1 \leq j \leq r$, we guess exactly one environment $\rho_j = \rho_{j1}$ (so that $r_j = 1$) such that $\bigcup_{j=1}^r \rho_j = \rho$; similarly in (3) of Case 3. (Note that a narrow run-tree of \mathcal{C} is *a fortiori* a run-tree of \mathcal{C} in the sense of Definition 4.2.)

Proposition 6. If the traversal-simulating APT C has an accepting run-tree then it has one that is narrow. The branching factor of a narrow run-tree is bounded above by the number of distinct variable profiles.

From run-trees of C to traversal-trees of B

Take an accepting run-tree \mathbf{r} of $\mathcal C$ over $\lambda(G)$. We first construct an annotated traversal-tree \mathbf{t} , which is a $(\mathsf{Dom}(\lambda(G)) \times Q_{\mathcal C})$ -labelled unranked tree. Let \mathbf{t}^- be the $(\mathsf{Dom}(\lambda(G)) \times Q)$ -labelled unranked tree that is obtained from \mathbf{t} by replacing the $\mathcal C$ -state that annotates each node by the $\mathcal B$ -state that is simulated. It is straightforward to show that \mathbf{t}^- is a traversal-tree of $\mathcal B$ over $\lambda(G)$; the tricky part is to prove that \mathbf{t}^- is accepting, which follows from:

Proposition 7. Every infinite path w in the traversal-tree \mathbf{t}^- determines an infinite path p_w in the accepting run-tree \mathbf{r} such that the highest \mathcal{B} -priority that occurs infinitely often in the former coincides with the highest \mathcal{C} -priority that occurs infinitely often in the latter.

To prove the Proposition, we first need to construct p_w from a given w. Note that an infinite path w in \mathbf{t} is just an infinite (\mathcal{C} -state annotated) traversal in $\lambda(G)$. We define a binary relation \preccurlyeq over prefixes of a traversal w, called **view order**, as follows. Let $u, v \leq w$. We say that $u \preccurlyeq v$ just in case u is a prefix of v, and $\mathbf{l}(u)$ – the last node of u – and hence every node in the P-view of u, appear in the P-view of v. (Note that the last clause implies, but is not implied by, $\lceil u \rceil < \lceil v \rceil$.)

An infinite strictly-increasing (w.r.t. prefix ordering) sequence of prefixes of w, namely $u_1 < u_2 < u_3 < \cdots$, is called a *spinal decomposition* of w just if

- (i) $u_1 \preccurlyeq u_2 \preccurlyeq u_3 \preccurlyeq \cdots$, and
- (ii) $|\lceil u_1 \rceil| < |\lceil u_2 \rceil| < |\lceil u_3 \rceil| < \cdots$ (|...| means length)

We set p_w in the above Proposition to be the infinite path in $\lambda(G)$ defined by the infinite strictly-increasing sequence $\lceil u_1 \rceil < \lceil u_2 \rceil < \lceil u_3 \rceil < \cdots$, which we call the (associated) *spine* of the spinal decomposition. (Note that neither (i) nor (ii) above is a consequence of the other.)

- **Lemma 8.** (i) The highest \mathcal{B} -priority that occurs infinitely often in w coincides with the highest \mathcal{C} -priority that occurs infinitely often in p_w .
- (ii) Every infinite traversal w has a spinal decomposition.

Shorthand notation: $\theta = (\varphi, 1, 1, \{\theta_0\})$ $\theta_0 = (y, 1, 1, \emptyset)$ $\theta_1 = (z, 1, 1, \emptyset)$ $\theta_2 = (z, 2, 2, \emptyset)$.

Table 1. A run-tree of the traversal-simulating APT associated with the property APT in Example 3.6.

6. Complexity analysis

We briefly sketch a proof that the modal mu-calculus model-checking problem for trees generated by order-n recursion scheme is n-EXPTIME complete. The n-EXPTIME hardness of the problem follows from Cachat's result [4] that the (sub)problem of model-checking trees generated by safe order-n recursion schemes is n-EXPTIME hard. We prove n-EXPTIME decidability by analysing the complexity of solving an associated acceptance parity game $\mathbf{G}(\mathrm{Gr}(G),\mathcal{C})$, which is an appropriate product of the traversal-simulating APT $\mathcal{C}=\langle \Lambda_G, Q_\mathcal{C}, \delta_\mathcal{C}, q_0, \Omega_\mathcal{C} \rangle$ and a (finite) Λ_G -labelled deterministic directed graph

$$Gr(G) = \langle V, \rightarrow \subseteq V \times V, \lambda_G : V \longrightarrow \Lambda_G, v_0 \in V \rangle$$

which unfolds to the Λ_G -labelled computation tree $\lambda(G)$. The graph $\operatorname{Gr}(G)$ has root v_0 , and λ_G is the vertex-labelling function; it is ranked in the sense that the edge-set $\to = \bigcup_{i\in\operatorname{Dir}(\Lambda_G)}\to_i$, where each $\to_i\subseteq V\times V$ is a partial function such that $\to_i(v)$ is well-defined for each $v\in V$ and $i\in\operatorname{Dir}(\lambda_G(v))$.

For each $v \in V$ and $P \subseteq \mathsf{Dir}(\lambda_G(v)) \times Q_{\mathcal{C}}$, we write $[P]_v = \{\,(u,q): (i,q) \in P \,\wedge\, \to_i (v) = u\,\}.$

Definition 6.1. The underlying digraph of the *acceptance parity game* $\mathbf{G}(\mathrm{Gr}(G),\mathcal{C})$ has two kinds of vertices. *A-Vertices* (A for Abelard) are sets of the form $[P]_v$, with $v \in V$ and $P \subseteq \mathrm{Dir}(\lambda_G(v)) \times Q_{\mathcal{C}}$; and *E-Vertices* (E for Eloise) are pairs of the form (v,q) with $v \in V$ and $q \in Q_{\mathcal{C}}$. The *source vertex* is the E-vertex (v_0,q_0) . The edges are defined as follows.

- For each A-vertex $[P]_v$, and for each $(u,q) \in [P]_v$, there is an edge from $[P]_v$ to (u,q).
- For each E-vertex (v,q), and for each $P \subseteq \mathsf{Dir}(\lambda_G(v)) \times Q_{\mathcal{C}}$ such that P satisfies $\delta_{\mathcal{C}}(q,\lambda_G(v))$, there is an edge from (v,q) to $[P]_v$.

The priority map $\Omega_{\mathbf{G}}$ is defined by cases as follows:

$$\Omega_{\mathbf{G}} \ = \ \left\{ \begin{array}{ccc} (v,q) & \mapsto & \Omega_{\mathcal{C}}(q) \\ \left[P\right]_v & \mapsto & \min \{ \, \Omega_{\mathcal{C}}(q) : (u,q) \in [P]_v \, \}. \end{array} \right.$$

A play is a (possibly infinite) path in $\mathbf{G}(\mathrm{Gr}(G),\mathcal{C})$ of the form $(v_0,q_0)\cdot [P_0]_{v_0}\cdot (v_1,q_1)\cdot [P_1]_{v_1}\cdot \cdots$. (For ease of reading, we use \cdot as item separator in the sequence.)

Eloise resolves the E-vertices, and Abelard the A-vertices. If the play is finite and the last vertex is an A-vertex (respectively E-vertex) which is terminal, Eloise (re-

spectively Abelard) is said to win the play. If the play is infinite, Eloise wins just if the maximum that occurs infinitely often in the following numeric sequence is even.

$$\Omega_{\mathbf{G}}(v_0, q_0) \cdot \Omega_{\mathbf{G}}([P_0]_{v_0}) \cdot \Omega_{\mathbf{G}}(v_1, q_1) \cdot \Omega_{\mathbf{G}}([P_1]_{v_1}) \cdot \cdots$$

Proposition 9. Eloise has a (history-free) winning strategy in the acceptance parity game $\mathbf{G}(Gr(G), \mathcal{C})$ iff the traversal-simulating APT C accepts the Λ_G -labelled computation tree $\lambda(G)$, which is the unfolding of Gr(G).

Let G be an order-n recursion scheme and take a property APT \mathcal{B} as before. For i < n we define $\mathbf{VP}_G^{\mathcal{B}}(i)$ to be the union of sets of the form $\mathbf{VP}_G^{\mathcal{B}}(A)$, as A ranges over order-i types that occur in \overline{G} . It follows from the definition of variable profiles that $|\mathbf{VP}_G^{\mathcal{B}}(i)| = \exp_i O(|G| \cdot |Q| \cdot p)$ where |G| is a measure of the recursion scheme G, |Q| is the number of elements of Q, and exp_i is the tower-of-exponentials function of height i. Next we set $\mathbf{VP}_G^{\mathcal{B}} = \bigcup_{i=0}^{n-1} \mathbf{VP}_G^{\mathcal{B}}(i)$ and $Env_G^{\mathcal{B}} = \mathcal{P}(\mathbf{VP}_G^{\mathcal{B}})$. It follows that $|\mathbf{VP}_G^{\mathcal{B}}| =$ $\exp_{n-1}O(|G|\cdot|Q|\cdot p) \text{ and } |Env_G^{\mathcal{B}}| = \exp_nO(|G|\cdot|Q|\cdot p).$ Finally, as $Q_{\mathcal{C}} = (Q \times Env_G^{\mathcal{B}}) \cup (Q \times Env_G^{\mathcal{B}} \times \mathbf{VP}_G^{\mathcal{B}})$, we have $|Q_{\mathcal{C}}| = \exp_n O(|G| \cdot |Q| \cdot p)$.

We appeal to a result due to Jurdziński [10]:

Theorem 10 (Jurdziński). The winning region of Eloise and her winning strategy in a parity game with |V| vertices and |E| edges and $p \ge 2$ priorities can be computed in time

$$O\left(p \cdot |E| \cdot \left(\frac{|V|}{\lfloor p/2 \rfloor}\right)^{\lfloor p/2 \rfloor}\right)$$

Suppose the parity acceptance game $\mathbf{G}(Gr(G), \mathcal{C})$ has vertex-set V and edge-set E. The A-vertices of the game are sets of the form $[P]_v$, where $P \subseteq \mathsf{Dir}(l(v)) \times Q_{\mathcal{C}}$ and v ranges over nodes of Gr(G). Thanks to the narrowing transform (see Proposition 6), it is enough to restrict P to subsets of $Dir(l(v)) \times Q_{\mathcal{C}}$ that have size at most $|\mathbf{VP}_G^{\mathcal{B}}|$. This gives a tighter upper bound on the number of A-vertices of the game, namely, $(|\mathsf{Dir}(\Lambda_G)| \times$ $|Q_{\mathcal{C}}|^{|\mathbf{VP}_{G}^{\mathcal{B}}|} = \exp_{n} O(|G| \cdot |Q| \cdot p)$. It follows that |V| = $\exp_n O(|G| \cdot |Q| \cdot p)$. Since |E| is at most $|V|^2$, time complexity for solving $\mathbf{G}(\mathrm{Gr}(G),\mathcal{C})$ is $O\left(p\cdot (|V|)^{\lfloor p/2\rfloor+2}\right)=$ $\exp_n O(|G| \cdot |Q| \cdot p)$. Thus⁵ we have:

Theorem 11. The acceptance parity game $\mathbf{G}(Gr(G), \mathcal{C})$ can be solved in time $\exp_n O(|G| \cdot |Q| \cdot p)$.

Further directions

Does safety constrain expressiveness? This is the most pressing open problem. Despite [1], we conjecture that there are inherently unsafe trees. I.e.

Conjecture 12. There is an unsafe recursion scheme whose value tree is not the value tree of any safe recursion scheme.

Higher-order pushdown automata (PDA) characterize safe term-trees. A variant class of higher-order PDA with links (in the sense of [1]), which we call collapsible PDA, characterize trees generated by arbitrary higher-order recursion schemes. This work will be reported elsewhere.

What is the corresponding hierarchy of graphs generated by high-order recursion schemes? Are their MSO theories decidable?

We would like to develop further the pleasing mix of Semantics (games) and Verification (games) in the paper. A specific project, pace [3], is to give a denotational semantics of the lambda calculus "relative to an APT". More generally, construct a cartesian closed category, parameterized by APTs, whose maps are witnessed by the *variable profiles* (or "guesses" in Definition 4.1).

References

- [1] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction at level 2 for string languages. In Proc. FOS-SACS'05, pp. 490-501, 2005. LNCS 3411
- [2] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. The monadic second order theory of trees given by arbitrary level two recursion schemes is decidable. In Proc. TLCA'05, pp. 39-54, 2005. LNCS 3461
- [3] K. Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata. Submitted. 2006
- [4] T. Cachat. Higher order pushdown automata, the Caucal hierarchy of graphs and parity games. In Proc. ICALP'03, p. 556–569, 2003. LNCS 2719
- [5] D. Caucal. On infinite transition graphs having a decidable monadic theory. In Proc. ICALP'96, pp. 194-205. 1996.
- [6] D. Caucal. On infinite terms having a decidable monadic theory. In *Proc. MFCS* '02, pp. 165–176, 2002. LNCS 2420
- [7] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In *Proc. FOCS'91*, pp. 368–377, 1991. [8] E. A. Emerson and C. Lei. Efficient model checking in
- fragments of propositional mu-calculus. In Proc. LICS'86, pp. 267–278, 1986. [9] J. M. E. Hyland and C.-H. L. Ong. On Full Abstraction for
- PCF: I, II & III. *Info. & Comp.*, 163:285–408, 2000. [10] M. Jurdziński. Small progress measures for solving parity
- games. In *Proc. STACS*, pp. 290–301, 2000. LNCS 1770 [11] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-order pushdown trees are easy. In Proc. FOSSACS'02, pp. 205-222, 2002. LNCS Vol. 2303
- [12] T. Knapik, D. Niwiński, P. Urzyczyn, and I. Walukiewicz. Unsafe grammars and panic automata. In Proc. ICALP'05, pp. 1450-1461. 2005. LNCS 3580
- [13] D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and second-order logic. TCS, 37:51-75, 1985.
- [14] C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. Preprint, 42 pp. 2006. http://users.comlab.ox.ac.uk/luke.ong/
- publications/ntrees.ps
 [15] C. Stirling. A game-theoretic approach to deciding higherorder matching. In Proc. ICALP06, LNCS, 2006. To appear.

⁵Though (as far as we know) Jurdziński's bound is the sharpest to date, a relatively coarse time complexity of $|V|^{O(p)}$ (based on an early result of Emerson and Lei [8]) is all that we need to prove Theorem 11.