作业六

NoflowerzzkNoflowerzzk

2025.3.31

1

取
$$M = \begin{pmatrix} \lambda E_m & A \\ B & E_n \end{pmatrix}$$
. 則 $\det M = \det \lambda E_m \cdot \det(E_n - B(\lambda E)) = \lambda^{m-n} \det(\lambda E_n - BA)$. 而 $\det M = \det(\lambda E_m - AB)$. 故 $\det(\lambda E_m - AB) = \lambda^{m-n} \det(\lambda E_n - BA)$.

 $\mathbf{2}$

(1) 由于
$$\det AA^T = \prod_{k=1}^n \sigma_k^2$$
,而 $\det A = \det A^T$,有 $|\det A| = \prod_{k=1}^n \sigma_k$.

(2) 显然 P, P^T 都是正交阵,且 D 为对角阵. 又显然 D 由 A 的特征值构成,不妨为从大到小排列,则 $D = \operatorname{diag}(\sigma_1^2, \cdots, \sigma_n^2)$. 因此其为 QR 分解.

3

存在一组单位正交向量 v_1, \cdots, v_n , 其为特征值 $\lambda_i = s_i^2$ 的特征向量. 任取其中一个 v, 有 $T^TTv = s^2v$. 因此 $v^TT^TTv = |Tv|^2 = s^2v^Tv = s^2$, 故 |Tv| = s.

4

$$mathrme^{P_1} + e^{P_2} = \begin{pmatrix} \frac{e^4 + 2e}{3} & \frac{e^4 - e}{3} & \frac{e^4 - e}{3} \\ \frac{e^4 - e}{3} & \frac{e^4 + 2e}{3} & \frac{e^4 - e}{3} \\ \frac{e^4 - e}{3} & \frac{e^4 - e}{3} & \frac{e^4 + 2e}{3} \end{pmatrix}.$$

(2) 特征多项式为
$$(\lambda - 1)(\lambda - 2)(\lambda - 4)$$
,重数均为 1. $\lambda = 1$ 时, $v_1 = \frac{1}{\sqrt{3}}(-1, 1, -1)^T$, $\lambda = 2$, $v_2 = \frac{1}{\sqrt{2}}(1, 0, -1)^T$, $\lambda = 4$, $v_3 = \frac{1}{\sqrt{6}}(1, 2, 1)^T$. 故 A 的谱分解为 $v_1v_1^T + 2v_2v_2^T + 4v_3v_3^T = 0$

作业六 2025.3.31

$$P_1 + 2P_2 + 4P_3. e^A = \begin{pmatrix} \frac{e^2}{2} + \frac{e}{3} + \frac{e^4}{6} & -\frac{e}{3} + \frac{e^4}{3} & -\frac{e^2}{2} + \frac{e}{3} + \frac{e^4}{6} \\ -\frac{e}{3} + \frac{e^4}{3} & \frac{e}{3} + \frac{2e^4}{3} & -\frac{e}{3} + \frac{e^4}{3} \\ -\frac{e^2}{2} + \frac{e}{3} + \frac{e^4}{6} & -\frac{e}{3} + \frac{e^4}{3} & \frac{e^2}{2} + \frac{e}{3} + \frac{e^4}{6} \end{pmatrix}$$

5

- (1) 计算得其奇异值为 $\sigma_1 = 3, \sigma_2 = 2$. 对应单位特征向量 $v_1 = \frac{1}{\sqrt{10}} (1,3)^T, v_2 = \frac{1}{\sqrt{5}} (-3,1)^T$. 计算得 $U = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & -3 \\ 3 & 1 \end{pmatrix}$ $A = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}$
- (2) 计算得其奇异值为 $\sigma_1 = 3, \sigma_2 = 2$. 对应单位特征向量 $v_1 = \frac{1}{\sqrt{5}}(1, 2)^T, v_2 = \frac{1}{\sqrt{5}}(-2, 1)^T$. 计算得 $U = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ $B = U = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$
- (3) 计算得其奇异值为 $\sigma_1 = 3\sqrt{10}, \sigma_2 = \sqrt{10}.$ 计算得 $U = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 & 1 & 0 \\ 0 & 0 & \sqrt{10} \\ 1 & -3 & 0 \end{bmatrix}.$ 故 $C = \frac{1}{\sqrt{10}} \begin{bmatrix} 3 & 1 & 0 \\ 0 & 0 & \sqrt{10} \\ 1 & -3 & 0 \end{bmatrix}, \begin{bmatrix} 3\sqrt{10} & 0 \\ 0 & \sqrt{10} \\ 0 & 0 \end{bmatrix}, \frac{1}{\sqrt{5}} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$
- (4) 计算得其奇异值为 $\sigma_1 = 5, \sigma_2 = 3, \sigma_3 = 2$. 对应单位特征向量 $v_1 = \frac{1}{\sqrt{6}}(1, 2, 1)^T, v_2 = \frac{1}{\sqrt{2}}(1, 0, -1)^T, v_3 = \frac{1}{\sqrt{3}}(-1, 1, 1)^T$. 计算得 $U = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$. $D = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}$