Определение энергии активации

Шмаков Владимир Б04-105 Апрель 2022, МФТИ

Цель работы

Вычисление вязкости глицерина по закону Стокса и определение энергии активации.

Оборудование

- Термостат
- Стальные и стеклянные шарики
- Высокий сосуд, наполненный глицерином
- Микроскоп
- Пинцет
- Секундомер
- Линейка
- Стеклянная палочка

Теоретические сведения

Энергия активации жидкости

Жидкость по своей структуре похожа как на газы, так и на твёрдые тела. Говорят, что *в жидкости* присутствует ближний, но отстуствует дальний порядок. Тоесть при рассмотрении большого объёма можно заметить неоднородности в структуре жидкости.

Вследствие существования этих неоднородностей молекулы жидкости могут передвигаться в более энергетически выгодные состояния. Если какая-то молекула передвинулась, то она *освободила* своё место - образовалась *дырка*. *Свободную дырку* может занаять другая молекула... Таким образом молекулы приходят в движение.

Энергия активации - энергия, которую должна иметь молекула, чтобы *преодолеть* разность потенциалов электрического поля, создаваемого соседними молекулами. То есть при большей энергии активации, меньшее количество молекул приходят в движение.

Связь вязкости и энергии активации

Больцман предположил как связана энергия активации и вязкость жидкости:

$$\eta \sim A e^{W/kT}$$

Данная формула проверена эксперементально и она хорошо описывает зависимость вязкости от температуры.

Постоив график зависимости $ln(\eta)$ от обратной температуры, и по МНК вычислив угол наклона наилучшей кривой можно вычислить значение энергии активации жидкости:

$$W = \alpha \cdot K$$

Рассчёт вязкости жидкости - формула Стокса

Формула Стокса выражает силу сопротивления жидкости через множество параметров - вязкость, геометрическую форму, и тд...

$$F = A \eta^x r^y
ho_x^z v^{lpha}$$

Пользуясь формулой Стокса найдём зависимость вязкости от установившейся скорости При небольших числах Re можно принять $\alpha=x=y=1$, z=0. Тогда

$$F = Am$$

По 23.Н.

$$Vg\left(
ho-
ho_{_{rak K}}
ight)-6\pi\eta rv=V
horac{dv}{dt}$$

Решая это уравнение приходим к

$$v_{ ext{yct}} = rac{Vg\left(
ho -
ho_{ ext{ iny K}}
ight)}{6\pi \eta r} = rac{2}{9}gr^2rac{\left(
ho -
ho_{ ext{ iny K}}
ight)}{\eta}$$

Таким образом

$$\eta = rac{2gr^2(
ho -
ho_{\scriptscriptstyle \mathcal{H}\!c})}{9v_{\scriptscriptstyle \mathcal{VCM}}}$$

Эксперементальная установка

Для вычисления вязкости жидкости использовали метод Стокса. Для вычисления установившейся скорости необходимо знать время и расстояние. Считаем, что скорость успевает установиться до пересечения шариком второй метки сосуда. Поэтому будем запускать секундомер именно при прохождении шариком второй отметки. Остановим секундомер при прохождении шариком третьей метки. То есть путь, пройденный шариком равный расстоянию между второй и третьей меткой.

Описанные ранее эксперементы будем проводить при температурах в диапазоне от $25\,^{\circ}C$ до $50\,^{\circ}C$. Так сможем найти зависимость вязкости от температуры.

Результаты эксперемента

В результате опыта получены данные

Диаметр мм	Температура [°С]	$t_1 c $	$t_2 c $
2.10	25.4	21.5	43.8
0.80	25.5	27.6	55.6
0.75	25.8	26.8	53.9
2.10	31.0	17.2	33.6
2.05	31.0	15.6	31.1
0.80	31.0	22.2	44.0
0.85	31.0	16.3	33.4
2.10	35.9	11.1	22.2
2.10	35.9	11.4	22.4
0.70	35.9	19.3	38.7
0.85	35.9	12.4	24.6
2.00	40.9	7.60	15.3
2.00	40.9	7.45	15.1
0.80	40.9	9.60	19.4
2.00	46.0	6.60	12.9
2.00	46.0	6.30	12.2
0.85	46.0	6.10	12.4
0.80	46.0	8.30	16.5
2.05	50.9	5.00	9.20
2.10	50.8	5.00	9.00
0.90	50.7	4.45	9.00
0.75	50.7	6.00	12.00
5.10	5511	5.00	

Обработка результатов экспериментов

Вычисление вязкости

Считаем, что скорость шарика успевает установиться к моменту прохождения второй метки. Расстояние между второй и третьей меткой измерим линейкой и получим $l=10\pm0.1$ см. Таким образом, скорость шарика вычисляется по формуле:

$$V_{ycm}=rac{t_2-t_1}{l}$$

Теперь, можем вычислить вязкость:

$$\eta = rac{2}{9} g r^2 rac{
ho -
ho_{st}}{v_{ycr}}$$

Методом частных производных вычислим погрешность измерения вязкости. Получим следующие **промежуточные**(без округления) данные:

	Вязкость [Па⋅с]	Погрешность [Па⋅с]	Температура [К]
0	0.638723	0.0798403	298.5
1	0.543333	0.0701788	298.8
2	0.497291	0.0656972	304
3	0.44036	0.0607673	304
4	0.338822	0.0485279	308.9
5	0.314175	0.0485199	308.9
6	0.223553	0.0383234	313.9
7	0.162238	0.0337731	319
8	0.187054	0.0346735	319
9	0.131362	0.032616	323.7
10	0.120295	0.0264649	323.7
11	0.664602	0.0667511	298.4
12	0.488766	0.05461	304
13	0.440208	0.0504801	304
14	0.330811	0.0437036	308.9
15	0.327831	0.0434979	308.9

	Вязкость [Па⋅с]	Погрешность [Па⋅с]	Температура [K]
16	0.208146	0.0334926	313.9
17	0.206795	0.033398	313.9
18	0.170302	0.0308435	319
19	0.159489	0.0300866	319
20	0.119282	0.0281719	323.9
21	0.119211	0.0290932	323.8

Вычисление энергии активации

Постоив график зависимости $ln(\eta)$ от обратной температуры, и по МНК вычислив угол наклона наилучшей кривой можно вычислить значение энергии активации жидкости:

$$W = \alpha \cdot k$$

Построим два графика для металлических и стеклянных шариков.

Данные при использовании стеклянных шариков

	$1/T \left[K^{-1} ight]$	D[M]	Время падения[с]	$ln(\eta)$
0	0.00335121	0.0021	22.3	-0.408567
1	0.00328947	0.0021	16.4	-0.715872
2	0.00328947	0.00205	15.5	-0.820509
3	0.00323729	0.0021	11.1	-1.10621
4	0.00323729	0.0021	11	-1.11526
5	0.00318573	0.002	7.7	-1.56951
6	0.00318573	0.002	7.65	-1.57603
7	0.0031348	0.002	6.3	-1.77018
8	0.0031348	0.002	5.9	-1.83578
9	0.00308737	0.00205	4.2	-2.12626
10	0.00308833	0.0021	4	-2.12686

Данные при использовании металлических шариков

	$1/T \left[K^{-1} ight]$	D[M]	Время падения[с]	$ln(\eta)$
0	0.00335008	0.0008	28	-0.448285
1	0.00334672	0.00075	27.1	-0.610033
2	0.00328947	0.0008	21.8	-0.69858
3	0.00328947	0.00085	17.1	-0.820162
4	0.00323729	0.0007	19.4	-1.08228
5	0.00323729	0.00085	12.2	-1.1578
6	0.00318573	0.0008	9.8	-1.49811
7	0.0031348	0.00085	6.3	-1.81869
8	0.0031348	0.0008	8.2	-1.67636
9	0.00308928	0.0009	4.55	-2.0298
10	0.00308928	0.00075	6	-2.11781

Домножим коэффициенты наклона на постоянную Больцмана, получим значение энергии активации глицерина:

$$W = 8.4 \pm 0.4 \ [10^{-20}$$
Дж $]$

Вычисление числа Рейнольдса

Оценим значение числа Рейнольдса и времени релаксации:

Промежуточные данные оценки числа Re

Про	промежуточные данные оценки числа Re					
	Тепмература [K]	Число Рейнольдса	Погрешность измерения	Время релаксации [с]	Погрешность измерения времени[с]	
0	298.5	0.281812	0.0112725	0.0004342	0.000162825	
1	298.8	0.320898	0.0128359	0.00044862	0.000177577	
2	304	0.464904	0.0185962	0.000557688	0.000213098	
3	304	0.71114	0.0284456	0.000710971	0.000265397	
4	308.9	0.670911	0.0268364	0.00062668	0.000268808	
5	308.9	1.3971	0.055884	0.000996525	0.000388376	
6	313.9	2.30051	0.0920204	0.00124057	0.000522812	
7	319	5.23922	0.209569	0.00192978	0.000855787	
8	319	3.28586	0.131434	0.00148263	0.000645488	
9	323.7	9.48639	0.379456	0.002672	0.00125721	
10	323.7	6.5464	0.261856	0.00202627	0.000986116	
11	298.4	0.892675	0.035707	0.000921604	0.000180336	
12	304	1.6505	0.06602	0.00125316	0.000259364	
13	304	1.8928	0.0757121	0.00132592	0.000281406	
14	308.9	3.60294	0.144118	0.00185151	0.000420939	
15	308.9	3.66875	0.14675	0.00186834	0.000425837	
16	313.9	7.8616	0.314464	0.00266906	0.000696382	
17	313.9	7.9647	0.318588	0.00268651	0.00070253	

	Тепмература [K]	Число Рейнольдса	Погрешность измерения	Время релаксации [с]	Погрешность измерения времени[с]
18	319	11.7439	0.469755	0.00326219	0.000917037
19	319	13.3902	0.53561	0.00348335	0.00100545
20	323.9	25.7792	1.03117	0.00489328	0.00163308
21	323.8	27.7449	1.1098	0.00513794	0.00174323

Вывод

- 1. Удалось вычислить энергию активации глицерина с точностью $\sim 5\%$. Сравним значение с табличным. Согласно источнику <u>pandia</u> значение энергии активации глицерина $W=7.5\pm0.7~[10^{-20}\mbox{Джc}]$. Таким образом, эксперементальное значение совпало с табличным.
- 2. По промежуточным данным вычисления вязкости понимаем, что вязкость уменьшается с ростом температуры. Это объясняется тем, что при увеличении температуры, система начинает быть более хаотичной, и силы притяжения между молекулами становятся меньше.
- 3. При использовании формулы Стокса полагали, что характер обтекания шариков будет ламинарным (Re < 10). Однако в экспериментах при температуре выше $45\,^{\circ}C$ число Рейнольдса превысило данное значение. Таким образом, для получения более точных результатов нужно изменить рабочий диапазон температур.