1 Подгруппы и моноиды

Определение 1.1:

Подгруппа - многообразие заданное множеством

$$(x*y)*z = x*(y*z)$$

Теорема 1.1. Значение терма не зависит от расстановки скобок (Ассоциативный закон)

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = a_1 a_2 ... a_n$$

Доказательство. Индукция по длине t

Базис: n = 1, нет скобок

Шаг: для n-1 верно, тогда

1. m = n - 1

$$t = t_1 * a_n = (a_1 a_2 ... a_m) * a_n = a_1 a_2 ... a_n$$

2. $1 \le m \le n - 1$

$$t = t_1 * t_2 = (a_1 a_2 ... a_m)(a_{m+1} ... a_n) = (a_1 a_2 ... a_m)(a_{m+1} ... a_{n-1})a_n = (a_1 a_2 ... a_{n-1})a_n = a_1 a_2 ... a_n$$

Определение 1.2:

 e_l называется **нейтральным слева** в подгруппе, если $e_l*a=a$ для всех $a,\,e_r$ называется **нейтральным справа** в подгруппе, если $a*e_r=a$ для всех $a,\,e$ - нейтральный слева и справа

Пример 1.1:

Примеры нейтрального элемента:

Теорема 1.2. Если существуют нейтральный слева и нейтральный справа то они равны

Доказательство.

$$e_l = e_l * e_r = e_r$$

Следствие. Если нейтральный элемент существует, то он единственный.

Определение 1.3:

Моноид - подгруппа с нейтральным элементом

Пример 1.2:

Примеры моноидов:

Определение 1.4:

Свободный моноид - моноид, элементами которого являются конечные последовательности (строки) элементов носителя моноида. Свободный моноид на множестве $A \neq \emptyset$ это $\mathcal{A} = (A^*; \&)$

Теорема 1.3. Любой моноид, порождённый элементами множества, на котором есть свободный моноид, является гомоморфным образом этого моноида

Доказательство. Пусть
$$A \neq \emptyset$$
, $\mathcal{A} = (A^*; \&)$, $\mathcal{B} = (\{t^{\mathcal{B}}(a_1, ..., a_n) : a_1, ..., a_n \in A\}; *)$ и $h : \mathcal{A} \to \mathcal{B}$ - Гомоморфизм

$$h(a_1...a_n) = (a_1, ..., a_n)^{\mathcal{B}}$$
$$h(\varepsilon) = e^{\mathcal{B}}$$

Надо доказать свойство гомоморфизма:

$$h(u\&v) = h(u) * h(v)$$

Пусть $u = a_1...a_n$, $v = a'_1...a'_n$, тогда

$$h(u\&v) = h(uv) = h(a_1...a_na'_1...a'_n) = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

$$h(u) * h(v) = h(a_1...a_n) * h(a'_1...a'_n) = (a_1...a_n)^{\mathcal{B}} * (a'_1...a'_n)^{\mathcal{B}} = (a_1...a_na'_1...a'_n)^{\mathcal{B}}$$

Из этого следует что h(u&v) = h(u) * h(v)

Пример 1.3:

Примеры свободных моноидов и их гомоморфных образов:

Определение 1.5:

Циклический моноид - моноид порождённый одним элементом. < a > - циклический моноид, порождённый элементом a.

$$e,a,a^1,a^2,a^3,\dots$$
 - элементы моноида $< a >$

- 1. $a^i \neq a^j$ при $i \neq j$ $h :< a > \to (\{a\}^*; \&), \ h(a^i) = i$ изоморфизм.
- 2. $a^i = a^j$ при $i \neq j$

$$k = i + (k - i) = i + y(j - i) + r$$
$$r = (k - i)mod(j - i)$$
$$r < j - i$$

тогда

$$a^{k} = a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y} a^{r} = \underbrace{(a^{i}a^{j-i}) \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r}}_{a^{r} = a^{i+j-i} = a^{j} = a^{i})}_{q-1} a^{i} \underbrace{a^{j-i} \dots a^{j-i}}_{y-1} a^{r} = \underbrace{a^{i}a^{r} = a^{i+r}(r < j - i; i + r < j)}_{q-1}$$

Пример 1.4:

Пример циклическокококого моноида: $\langle a \rangle = (\{e, a, ...\}; *)$ Таблица умножения (*) -

	e	a	a^2
e	a	a	a^2
a	a	a^2	a
a^2	a^2	a	a^2