```
In [1]: import pandas as pd
         import csv
         from scipy.stats import trim mean
         from scipy.stats.mstats import mode, gmean, hmean
         from scipy.stats import skew
         from scipy.stats import kurtosis
         from sklearn.model selection import train test split
         from sklearn import linear model
         from scipy.stats import zscore
         import matplotlib.pyplot as plt
         import seaborn as sns
         from scipy import stats
         from scipy.stats import pearsonr
         from sklearn.metrics import mean absolute error
         import matplotlib
         import numpy as np
         import scipy.stats
         %matplotlib inline
         data = pd.read csv(r"D:\\reachout analytics\\case studies\\ipynb files
         \\Bank Data.csv")
         data.head(10)
Out[1]:
            Obs account id cardwdln cardwdlt cashcrn
                                                    cashcrt cashwdn
                                                                    cashwdt bankcolt ban
                        2
             1
                                                    48400.0
                                                                   1001191.0 1537936
         0
              2
                       19
                                0
                                        0
                                                    45800.0
                                                                    762135.7
                                                                             741807
                       25
                                               54 1488172.0
                                                                99 1215437.6
                                                                                  0
                                0
         3
                       37
                                        0
                                                   494494.0
                                                                    375845.2
                                                                                  0
              5
                       38
                                0
                                                    49700.0
                                                                    156679.0
                                                                             256060
          5
              6
                                0
                                        0
                       67
                                                     6800.0
                                                               164 1758719.0 2261205
                       97
                                     13200
                                                   635480.0
                                                                    365494.2
                      103
                                0
                                        0
                                                   867846.0
                                                                90 757291.9
                                                                                  0
```

		Obs	account_id	cardwdln	cardwdlt	cashcrn	cashcrt	cashv	vdn	cashwdt	bankcolt	ban
	8	9	105	0	0	14	252833.0		28	230921.2	0	
	9	10	110	5	14800	32	745897.0		79	515150.4	0	
	10 ו	rows	× 40 column	s								
	4											•
In [2]:	SOI	rted_	RTING THE _data = da _data									
Out[2]:		ound rdwdl	method Da		.sort_v shcrt		01	os a	ccoun	nt_id o	cardwdln	
	0	uwu	1	2	0		0	12	48	3400.0	237	
	1		2	19	0		0	17	45	800.0	143	
	2		3	25	0		0	54	1488	3172.0	99	
	3		4	37	0		0	19	494	494.0	51	
	4		5	38	0		0	14	49	700.0	37	
	5		6	67	0		0	2	6	800.0	164	
	6		7	97	5	132	00	35	635	480.0	81	
	7		8	103	0		0	38	867	846.0	90	
	8		9	105	0		0	14	252	2833.0	28	
	9	1	L 0	110	5	148	00	32	745	897.0	79	
	10	1	1	132	2	75	00	47	1278	3771.0	105	
	11	1	12	173	0		0	95	1314	120.0	176	

12	13	176	0	0	53	1475516.0	102
13	14	226	6	14500	33	484714.0	44
14	15	276	1	3600	1	700.0	28
15	16	290	0	0	100	2092453.0	171
16	17	303	2	5900	33	504360.0	80
17	18	309	0	0	22	426020.0	65
18	19	314	0	0	4	8300.0	98
19	20	319	Θ	0	74	1713632.0	138
20	21	330	Θ	Θ	26	616210.0	73
21	22	339	2	6000	2	4000.0	98
22	23	344	Θ	0	67	939342.0	166
23	24	347	Θ	Θ	89	1990266.0	207
24	25	349	Θ	Θ	32	177709.0	38
25	26	378	0	0	73	1974944.0	114
26	27	426	0	0	89	1560877.0	129
27	28	440	Θ	0	28	435438.0	67
28	29	442	Θ	0	18	427443.0	24
29	30	472	Θ	Θ	2	2400.0	86
652	653	10915	0	0	6	27100.0	49

653	654	10940	0	0	66	1657264.0	205
654	655	10942	0	0	119	3150073.0	179
655	656	10954	16	35000	31	410777.0	69
656	657	10963	0	0	70	1684174.0	146
657	658	10973	0	0	118	3137980.0	239
658	659	11013	11	33100	4	3300.0	225
659	660	11021	0	0	106	2548952.0	241
660	661	11027	0	0	14	69400.0	71
661	662	11042	11	31300	2	4000.0	135
662	663	11054	0	0	31	194900.0	72
663	664	11065	0	0	71	896219.0	214
664	665	11069	0	0	52	1192751.0	139
665	666	11079	4	8000	9	20100.0	145
666	667	11096	0	0	28	636472.0	58
667	668	11111	0	0	121	2816451.0	202
668	669	11135	0	0	70	1066663.0	191
669	670	11138	8	17900	90	2702121.0	162
670	671	11141	5	13200	45	889272.0	68
671	672	11186	2	3700	8	41700.0	159

672	673	11231	Θ	Θ	2	6800.6	76	
673	674	11244	0	0	44	1012868.6	72	
674	675	11265	0	0	97	650086.6	170	
675	676	11271	0	0	17	52300.0	80	
676	677	11317	0	0	36	1124913.0	70	
677	678	11327	0	0	16	315374.0	33	
678	679	11328	0	0	38	690261.6	78	
679	680	11349	0	0	5	14800.0	136	
680	681	11359	22	57400	2	4000.0	148	
681	682	11362	0	0	43	680055.0	103	
ardw 0 0. 1 0. 2 0.	dl \ 1001191.0 00 762135.7 00 1215437.6	bankcolt 1537936 741807 0	bankcoln 70 45 0		bankrtd 259.248 14.799 280.740 150.559		othertd ac 5.0223 4.0965 6.9979 5.0704	3
	00 156679.0	256060	17		209.815	0.033333	4.9124	
5	757291.9	2261205 0 0	50 0 0		313.239 216.126 79.018	0.032595 0.032990	7.1265 5.6085 2 8.3248	2

8 230921.2 0.00	0	0	 13.633	0.029685	4.9308	
9 515150.4 960.00	0	0	 164.780	0.032330	6.4017	2
10 1154757.0 750.00	0	0	 91.745	0.033195	6.7269	3
11 663257.6 0.00	0	0	 319.970	0.032778	4.6250	
12 1259867.0 0.00	Θ	Θ	 171.735	0.033295	6.6069	
13 214448.2 416.67	Θ	Θ	 318.604	0.032544	6.0380	2
14 283509.8 600.00	388932	13	 118.986	0.033505	7.7843	3
15 1611962.0 0.00	Θ	Θ	 245.611	0.032345	6.6470	
16 344350.4 950.00	Θ	Θ	 131.607	0.032621	6.0165	2
17 402199.0 0.00	0	0	 3.091	0.032520	3.7283	
18 909638.0 0.00	1402089	35	 448.711	0.032710	4.4255	
19 1401114.0 0.00	0	0	 207.323	0.032451	7.7115	
20 552032.0	0	0	 54.039	0.032595	5.2111	
21 1147291.0 000.00	1427611	28	 224.399	0.033294	9.9705	3
22 541517.6 0.00	0	0	 189.066	0.032866	5.2193	
23 1773345.8 0.00	0	0	 93.073	0.033080	5.6760	
24 82944.4 0.00	0	0	 139.250	0.033275	2.5040	
25 1614008.8 0.00	0	0	 369.909	0.033632	8.9553	
26 853726.3 0.00	0	0	 368.935	0.032831	3.9606	
27 252377.4	0	Θ	 171.149	0.032476	4.5966	

0.00						
28 269202.8 0.00	0	0	 165.215	0.026521	3.1814	
29 1224322.0 0.00	1402231	26	 192.113	0.032059	7.6954	
652 166004.0 0.00	365882	22	 303.866	0.032164	2.9961	
653 978026.8 0.00	0	0	 327.511	0.032558	6.6163	
654 2390833.0 0.00	0	Θ	 432.812	0.032934	7.1699	
655 330850.4	0	0	 7.403	0.032768	5.4031	2
187.50 656 1537978.6	0	0	 58.441	0.033308	7.6207	
0.00 657 2940206.0	Θ	0	 74.196	0.033157	6.8546	
0.00 658 2161662.0	3210544	70	 443.063	0.032619	7.8582	3
009.09 659 2311770.8	Θ	0	 78.667	0.066023	13.2786	
0.00 660 283005.0	378790	29	 134.273	0.032658	4.3019	
0.00 661 1202778.2	1845737	47	 404.953	0.032821	6.9895	2
845.45 662 286117.0	565896	35	 400.547	0.032895	4.2798	
0.00 663 797634.4	0	0	 33.509	0.032655	4.3646	
0.00 664 1029923.0	0	0	 41.746	0.032875	6.8706	
0.00 665 1863768.8	2039687	38	 85.700	0.033130	10.4943	2
000.00 666 374237.4	Θ	0	 267.330	0.031957	4.6907	
0.00 667 2305464.0 0.00	0	0	 202.829	0.033155	6.9177	
0.00						

668 654712.2 0.00	2 0	0		193.226	0.032495	5.4656	
669 2550009.0 237.50	9 0	Θ		73.008	0.033306	9.4908	2
670 743488.0 640.00	9 0	Θ		65.315	0.031977	7.7208	2
671 1447077.4 850.00	4 2099710	49		412.592	0.032710	8.1499	1
672 788007.8 0.00	3 1116073	23		388.661	0.033141	7.5961	
673 694144.0 0.00	9 0	0		422.212	0.032033	4.8386	
674 367403.0 0.00	5 0	Θ		120.055	0.032614	2.7872	
675 165775.4 0.00	476935	39		289.730	0.032554	2.7717	
676 934000.0 0.00	9 0	0		194.769	0.033457	8.1396	
677 203131.4 0.00	4 0	Θ		86.274	0.031674	7.3376	
678 608247.0 0.00	9 0	Θ		29.733	0.031807	6.2875	
679 1271219.0 0.00	9 1973436	43		525.078	0.032700	5.6572	
680 1105500.0 609.09	5 1499277	51		176.250	0.032861	5.3893	2
681 336301.8 0.00	3 0	0		263.576	0.032368	3.5909	
	4224.43 5329.62 12277.15 7369.51 4234.57	abankcol 21970.51 16484.60 0.00 0.00 15062.35 45224.10 0.00 0.00	aban 6216. 2523. 2674. 1750. 2377. 4142. 1732. 7370.	12 153.1 20 62.0 57 221.4 69 149.1 90 147.3 31 218.6 58 170.0	07 Yes 84 No 32 Yes 29 No 71 Yes 40 Yes 06 Yes		
	8247.19	0.00	7348.				

9	23309.28	6520.89	0.00	2309.50	198.010	Yes
10	27207.89	10997.69	0.00	7370.20	202.647	Yes
11	13832.84	3768.51	0.00	2481.10	141.100	Yes
12	27839.92	12351.64	0.00	1662.02	198.434	Yes
13	14688.30	4873.82	0.00	8974.00	185.532	Yes
14	700.00	10125.35	29917.85	5129.61	232.331	Yes
15	20924.53	9426.68	0.00	2847.55	205.502	Yes
16	15283.64	4304.38	0.00	3656.22	184.438	Yes
17	19364.55	6187.68	0.00	1901.00	114.645	Yes
18	2075.00	9282.02	40059.69	9414.14	135.294	Yes
19	23157.19	10153.00	0.00	1926.79	237.637	Yes
20	23700.38	7562.08	0.00	6908.00	159.876	Yes
21	2000.00	11707.05	50986.11	3253.78	299.471	Yes
22	14020.03	3262.15	0.00	3341.97	158.803	Yes
23	22362.54	8566.89	0.00	7801.20	171.582	No
24	5553.41	2182.75	0.00	4417.33	75.253	Yes
25	27054.03	14157.97	0.00	2598.10	266.270	Yes
26	17537.94	6618.03	0.00	4154.43	120.636	No
27	15551.36	3766.83	0.00	4517.11	141.538	Yes
28	23746.83	11216.78	0.00	5043.00	119.959	No
29	1200.00	14236.30	53931.96	8200.20	240.038	No
652	4516.67	3387.84	16631.00	2734.80	93.150	Yes
653	25110.06	4770.86	0.00	6741.85	203.216	Yes
654	26471.20	13356.61	0.00	8213.59	217.704	Yes
655	13250.87	4794.93	0.00	312.00	164.886	Yes
656	24059.63	10534.10	0.00	3216.70	228.793	Yes
657	26593.05	12302.12	0.00	3216.70	206.730	Yes
658	825.00	9607.39	45864.91	4978.08	240.911	Yes
659	24046.72	9592.41	0.00	7040.70	201.119	No
660	4957.14	3985.99	13061.72	3137.76	131.728	Yes
661	2000.00	8909.47	39271.00	7340.42	212.955	Yes
662	6287.10	3973.85	16168.46	7223.42	130.106	Yes
663	12622.80	3727.26	0.00	1445.00	133.659	Yes
664	22937.52	7409.52	0.00	2482.00	208.995	Yes
665	2233.33	12853.58	53675.97	8191.50	316.763	Yes
666	22731.14	6452.37	0.00	5147.82	146.779	Yes
667	23276.45	11413.19	0.00	4118.83	208.651	Yes
668	15238.04	3427.81	0.00	3964.26	168.200	Yes

```
30023.57 15740.80
                                                    284.956
        669
                                     0.00 3744.70
                                                             Yes
                                                    241.450
        670 19761.60
                       10933.65
                                     0.00
                                          3744.70
                                                             Yes
              5212.50
                                           8584.20
                                                    249.155
        671
                        9101.12
                                 42851.22
                                                             Yes
              3400.00
        672
                       10368.52
                                 48524.91
                                           5504.71
                                                    229.204
                                                             Yes
             23019.73
                        9640.89
                                           9778.98
                                                    151.048
        673
                                     0.00
                                                             Yes
              6701.92
                        2161.20
                                           1790.13
        674
                                     0.00
                                                     85.462
                                                             Yes
        675
              3076.47
                        2072.19
                                 12229.10
                                           2711.69
                                                     85.141
                                                             Yes
        676 31247.58
                       13342.86
                                     0.00
                                           3380.19
                                                    243.283
                                                             Yes
        677 19710.88
                        6155.50
                                     0.00
                                           3177.75
                                                    231.657
                                                             Yes
        678 18164.76
                        7798.04
                                           4674.00
                                                    197,680
                                     0.00
                                                             Yes
                                 45893.86 8967.25
        679
              2960.00
                        9347.20
                                                    173.005
                                                             Yes
              2000.00
                        7469.60
                                 29397.59 2630.19
        680
                                                    164.004 Yes
        681 15815.23
                        3265.07
                                     0.00 1933.99 110.939 Yes
        [682 rows x 40 columns]>
        data.shape
In [3]:
Out[3]: (682, 40)
In [4]: ### DROPPING Obs and account id AS THEY ARE NOT NEEDED ###
        data.drop(['Obs', 'account id'], axis=1, inplace=True)
        print(data.info())
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 682 entries, 0 to 681
        Data columns (total 38 columns):
        cardwdln
                     682 non-null int64
        cardwdlt
                     682 non-null int64
        cashcrn
                     682 non-null int64
        cashcrt
                     682 non-null float64
        cashwdn
                     682 non-null int64
        cashwdt
                     682 non-null float64
                     682 non-null int64
        bankcolt
        bankcoln
                     682 non-null int64
        bankrn
                     682 non-null int64
                     682 non-null float64
        bankrt
                     682 non-null int64
        othcrn
                     682 non-null float64
        othcrt
```

```
days
                      682 non-null int64
                      682 non-null object
        sex
        card
                      682 non-null object
                      682 non-null float64
        age
                      682 non-null object
        second
        frequency
                      682 non-null object
        region
                      682 non-null object
        cardwdlnd
                      682 non-null float64
        cardwdltd
                      682 non-null float64
                      682 non-null float64
        cashcrnd
        cashcrtd
                      682 non-null float64
                      682 non-null float64
        cashwdnd
        cashwdtd
                      682 non-null float64
        bankcoltd
                      682 non-null float64
                      682 non-null float64
        bankcolnd
                      682 non-null float64
        bankrnd
                      682 non-null float64
        bankrtd
        othcrnd
                      682 non-null float64
                      682 non-null float64
        othcrtd
                      682 non-null float64
        acardwdl
                      682 non-null float64
        acashcr
                      682 non-null float64
        acashwd
        abankcol
                      682 non-null float64
                      682 non-null float64
        abankr
                      682 non-null float64
        aothcr
                      682 non-null object
        good
        dtypes: float64(23), int64(9), object(6)
        memory usage: 202.5+ KB
        None
In [5]: data.shape
Out[5]: (682, 38)
        data.describe()
In [6]:
                cardwdln
                            cardwdlt
                                     cashcrn
                                                 cashcrt
                                                         cashwdn
                                                                     cashwdt
                                                                                bankc
```

Out[6]:

	cardwdln	cardwdlt	cashcrn	cashcrt	cashwdn	cashwdt	bankc
count	682.000000	682.000000	682.000000	6.820000e+02	682.000000	6.820000e+02	6.820000e+
mean	1.414956	3640.175953	42.523460	7.964454e+05	116.917889	8.883424e+05	3.833494e+
std	4.098560	10510.752426	33.808959	7.961603e+05	61.467198	6.698405e+05	7.106200e+
min	0.000000	0.000000	1.000000	2.000000e+02	13.000000	3.050220e+04	0.000000e+
25%	0.000000	0.000000	10.000000	4.080000e+04	70.000000	3.545102e+05	0.000000e+
50%	0.000000	0.000000	39.000000	6.276590e+05	99.000000	7.008136e+05	0.000000e+
75%	0.000000	0.000000	63.000000	1.235188e+06	161.000000	1.206393e+06	5.276402e+
max	34.000000	83000.000000	148.000000	3.708832e+06	324.000000	3.392850e+06	3.552197e+
mediar	× 32 column						•
print	(median)						
cardwo cashor cashwo cashwo bankor bankrr bankrr otherr days age cardwo cardwo	dit on din dit 70 dit olit olin dit 19	$egin{array}{c} 0.00000 \\ 0.00000 \\ 39.00000 \\ 27659.00000 \\ 99.00000 \\ 0.00000 \\ 0.00000 \\ 44.50000 \\ 44.50000 \\ 38.00000 \\ 6489.40000 \\ 1070.00000 \\ 41.37440 \\ \hline \end{array}$	0 0 0 0 0 0 0 0 0				

In [7]:

```
cashwdnd
                  0.092975
cashwdtd
                654.120000
bankcoltd
                  0.000000
bankcolnd
                  0.000000
bankrnd
                  0.043400
bankrtd
                182.086000
othcrnd
                  0.032757
othcrtd
                  6.088000
acardwdl
                  0.000000
              15970.000000
acashcr
acashwd
               7518.560000
abankcol
                  0.000000
abankr
               4211.305000
aothcr
                172.742500
```

dtype: float64

In [8]: mode = data.mode() print(mode) ##### In rest of the column all element are mode because they have the same frequency of occurrence.#####

,	cardwdln	cardwdlt	cashcrn	cashcrt	cashwdn	cashwdt	bankcolt
0	0.0	0.0	1.0	400.0	51.0	30502.2	0.0
1	NaN	NaN	NaN	700.0	70.0	41031.4	NaN
2	NaN	NaN	NaN	NaN	NaN	53604.4	NaN
3	NaN	NaN	NaN	NaN	NaN	61319.0	NaN
4	NaN	NaN	NaN	NaN	NaN	61660.6	NaN
5	NaN	NaN	NaN	NaN	NaN	63209.8	NaN
6	NaN	NaN	NaN	NaN	NaN	71059.0	NaN
7	NaN	NaN	NaN	NaN	NaN	71193.2	NaN

8	NaN	NaN	NaN	NaN	NaN	75879.6	NaN
9	NaN	NaN	NaN	NaN	NaN	82944.4	NaN
10	NaN	NaN	NaN	NaN	NaN	83946.0	NaN
11	NaN	NaN	NaN	NaN	NaN	84669.8	NaN
12	NaN	NaN	NaN	NaN	NaN	86975.8	NaN
13	NaN	NaN	NaN	NaN	NaN	91409.8	NaN
14	NaN	NaN	NaN	NaN	NaN	91797.4	NaN
15	NaN	NaN	NaN	NaN	NaN	92950.4	NaN
16	NaN	NaN	NaN	NaN	NaN	93061.8	NaN
17	NaN	NaN	NaN	NaN	NaN	99299.0	NaN
18	NaN	NaN	NaN	NaN	NaN	99752.0	NaN
19	NaN	NaN	NaN	NaN	NaN	102039.8	NaN
20	NaN	NaN	NaN	NaN	NaN	103749.4	NaN
21	NaN	NaN	NaN	NaN	NaN	108023.4	NaN
22	NaN	NaN	NaN	NaN	NaN	108864.4	NaN
23	NaN	NaN	NaN	NaN	NaN	109002.2	NaN
24	NaN	NaN	NaN	NaN	NaN	113677.4	NaN
25	NaN	NaN	NaN	NaN	NaN	114954.8	NaN
26	NaN	NaN	NaN	NaN	NaN	122025.6	NaN
27	NaN	NaN	NaN	NaN	NaN	124793.2	NaN

28	NaN	NaN	NaN	NaN	NaN	125960.6	NaN
29	NaN	NaN	NaN	NaN	NaN	126009.4	NaN
652	NaN	NaN	NaN	NaN	NaN	2330311.0	NaN
653	NaN	NaN	NaN	NaN	NaN	2353230.6	NaN
654	NaN	NaN	NaN	NaN	NaN	2375511.0	NaN
655	NaN	NaN	NaN	NaN	NaN	2377576.4	NaN
656	NaN	NaN	NaN	NaN	NaN	2385261.6	NaN
657	NaN	NaN	NaN	NaN	NaN	2390833.0	NaN
658	NaN	NaN	NaN	NaN	NaN	2409950.4	NaN
659	NaN	NaN	NaN	NaN	NaN	2455890.6	NaN
660	NaN	NaN	NaN	NaN	NaN	2464280.0	NaN
661	NaN	NaN	NaN	NaN	NaN	2487744.6	NaN
662	NaN	NaN	NaN	NaN	NaN	2523352.0	NaN
663	NaN	NaN	NaN	NaN	NaN	2549369.2	NaN
664	NaN	NaN	NaN	NaN	NaN	2550009.0	NaN
665	NaN	NaN	NaN	NaN	NaN	2591834.4	NaN
666	NaN	NaN	NaN	NaN	NaN	2603568.4	NaN
667	NaN	NaN	NaN	NaN	NaN	2635616.0	NaN

668	NaN	NaN	NaN	NaN	NaN	2643	253.0	NaN
669	NaN	NaN	NaN	NaN	NaN	2658	630.4	NaN
670	NaN	NaN	NaN	NaN	NaN	2725	216.0	NaN
671	NaN	NaN	NaN	NaN	NaN	2766	369.4	NaN
672	NaN	NaN	NaN	NaN	NaN	2793	697.6	NaN
673	NaN	NaN	NaN	NaN	NaN	2794	748.4	NaN
674	NaN	NaN	NaN	NaN	NaN	2877	618.2	NaN
675	NaN	NaN	NaN	NaN	NaN	2940	206.0	NaN
676	NaN	NaN	NaN	NaN	NaN	3022	515.8	NaN
677	NaN	NaN	NaN	NaN	NaN	3044	910.2	NaN
678	NaN	NaN	NaN	NaN	NaN	3051	500.0	NaN
679	NaN	NaN	NaN	NaN	NaN	3341	448.2	NaN
680	NaN	NaN	NaN	NaN	NaN	3366	800.0	NaN
681	NaN	NaN	NaN	NaN	NaN	3392	850.2	NaN
bar dl \	ıkcoln	bankrn	bankrt	 bankrtd	oth	crnd	othcrtd	acardw
0.0	0.0	12.0	5580.0	 11.071	0.03	3333	4.4255	
1 aN	NaN	NaN	20185.6	 14.799		NaN	5.4402	N
2 aN	NaN	NaN	20517.0	 33.470		NaN	7.1265	N
3 aN	NaN	NaN	37163.2	 50.839		NaN	NaN	N

aN	
5 NaN NaN 107005.4 174.987 NaN NaN	N
aN 6 NaN NaN 180237.0 186.172 NaN NaN	N
aN 7 NaN NaN 213725.0 209.815 NaN NaN	N
aN 8 NaN NaN 248735.4 259.248 NaN NaN	N
aN 9 NaN NaN 553234.8 280.740 NaN NaN	N
aN 10 NaN NaN NaN 335.485 NaN NaN	N
aN 11 NaN NaN NaN NaN NaN NaN	N
aN 12 NaN NaN NaN NaN NaN NaN	N
aN 13 NaN NaN NaN NaN NaN NaN	N
aN 14 NaN NaN NaN NaN NaN NaN	N
aN 15 NaN NaN NaN NaN NaN NaN	N
aN 16 NaN NaN NaN NaN NaN NaN	N
aN 17 NaN NaN NaN NaN NaN NaN	N
aN 18 NaN NaN NaN NaN NaN NaN	N
aN 19 NaN NaN NaN NaN NaN NaN	N
aN 20 NaN NaN NaN NaN NaN NaN	N
aN 21 NaN NaN NaN NaN NaN NaN	N
aN 22 NaN NaN NaN NaN NaN NaN	N
aN 23 NaN NaN NaN NaN NaN NaN	N

aN							
24	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 25	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 26	NaN	NaN	NaN	NaN	NaN	NaN	N
aN							
27 aN	NaN	NaN	NaN	NaN	NaN	NaN	N
28	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 29 aN	NaN	NaN	NaN	NaN	NaN	NaN	N
652 aN	NaN	NaN	NaN	NaN	NaN	NaN	N
653 aN	NaN	NaN	NaN	NaN	NaN	NaN	N
654	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 655	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 656	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 657	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 658	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 659	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 660	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 661	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 662	NaN	NaN	NaN	NaN	NaN	NaN	N
aN 663	NaN	NaN	NaN	NaN	NaN	NaN	N
aN							

664	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 665	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 666	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 667	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 668	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 669	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 670	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 671	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 672	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 673	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 674	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 675	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 676	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 677	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 678	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 679	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 680	NaN	NaN	NaN		NaN	NaN	NaN	N
aN 681 aN	NaN	NaN	NaN		NaN	NaN	NaN	N
0	acashcr 1100.0	acashwd 850.33	abankcol 0.0	abankr 5353.5	aothcr 117.095	good Yes		

1	NaN	975.25	NaN	NaN	119.959	NaN
2	NaN	1073.09	NaN	NaN	NaN	NaN
2	NaN	1196.33	NaN	NaN	NaN	NaN
3 4	NaN	1218.28	NaN	NaN	NaN	NaN
5	NaN	1347.11	NaN	NaN	NaN	NaN
6	NaN	1347.11	NaN	NaN	NaN	NaN
7	NaN	1354.94	NaN	NaN	NaN	NaN
8	NaN	1376.73	NaN	NaN	NaN	NaN
9	NaN	1401.89	NaN	NaN	NaN	NaN
10	NaN	1414.84	NaN	NaN	NaN	NaN
11	NaN	1459.22	NaN	NaN	NaN	NaN
12	NaN	1551.03	NaN	NaN	NaN	NaN
13	NaN	1556.60	NaN	NaN	NaN	NaN
14	NaN	1578.27	NaN	NaN	NaN	NaN
15	NaN	1610.48	NaN	NaN	NaN	NaN
16	NaN	1694.57	NaN	NaN	NaN	NaN
17	NaN	1703.31	NaN	NaN	NaN	NaN
18	NaN	1708.37	NaN	NaN	NaN	NaN
19	NaN	1711.08	NaN	NaN	NaN	NaN
20	NaN	1733.15	NaN	NaN	NaN	NaN
21	NaN	1759.76	NaN	NaN	NaN	NaN
22	NaN	1761.38	NaN	NaN	NaN	NaN
23	NaN	1804.35	NaN	NaN	NaN	NaN
24	NaN	1813.55	NaN	NaN	NaN	NaN
25	NaN	1859.34	NaN	NaN	NaN	NaN
26	NaN	1882.11	NaN	NaN	NaN	NaN
27	NaN	1883.35	NaN	NaN	NaN	NaN
28	NaN	1890.78	NaN	NaN	NaN	NaN
29	NaN	1908.53	NaN	NaN	NaN	NaN
652	NaN	13342.86	NaN	NaN	NaN	NaN
653	NaN	13356.61	NaN	NaN	NaN	NaN
654	NaN	13403.73	NaN	NaN	NaN	NaN
655	NaN	13534.25	NaN	NaN	NaN	NaN
656	NaN	13555.35	NaN	NaN	NaN	NaN
657	NaN	13581.84	NaN	NaN	NaN	NaN
658	NaN	13583.68	NaN	NaN	NaN	NaN
659	NaN	13651.90	NaN	NaN	NaN	NaN
660	NaN	13679.61	NaN	NaN	NaN	NaN

```
661
                 NaN 13709.23
                                     NaN
                                                             NaN
                                             NaN
                                                      NaN
        662
                     13896.20
                                                             NaN
                 NaN
                                     NaN
                                             NaN
                                                      NaN
                      14070.63
        663
                 NaN
                                     NaN
                                             NaN
                                                      NaN
                                                             NaN
                     14157.97
                                                             NaN
        664
                 NaN
                                     NaN
                                             NaN
                                                      NaN
        665
                      14236.30
                 NaN
                                     NaN
                                             NaN
                                                      NaN
                                                             NaN
        666
                     14330.66
                                                             NaN
                 NaN
                                     NaN
                                             NaN
                                                      NaN
        667
                     14488.41
                                     NaN
                                                             NaN
                 NaN
                                             NaN
                                                      NaN
        668
                 NaN
                     14541.34
                                     NaN
                                             NaN
                                                      NaN
                                                             NaN
                     14567.82
                                                             NaN
        669
                                     NaN
                 NaN
                                             NaN
                                                      NaN
        670
                     14663.72
                                     NaN
                                                             NaN
                 NaN
                                             NaN
                                                      NaN
        671
                 NaN 14856.92
                                     NaN
                                             NaN
                                                      NaN
                                                             NaN
        672
                     15131.87
                 NaN
                                    NaN
                                             NaN
                                                      NaN
                                                             NaN
        673
                 NaN 15539.40
                                     NaN
                                             NaN
                                                      NaN
                                                             NaN
        674
                 NaN 15740.80
                                     NaN
                                             NaN
                                                             NaN
                                                      NaN
        675
                 NaN 15774.42
                                     NaN
                                             NaN
                                                             NaN
                                                      NaN
        676
                 NaN 15933.13
                                                             NaN
                                     NaN
                                             NaN
                                                      NaN
                     15968.89
        677
                 NaN
                                    NaN
                                             NaN
                                                      NaN
                                                             NaN
        678
                 NaN
                     16111.84
                                     NaN
                                             NaN
                                                      NaN
                                                             NaN
        679
                     16301.23
                                     NaN
                                                             NaN
                 NaN
                                             NaN
                                                      NaN
        680
                 NaN
                     16853.59
                                     NaN
                                             NaN
                                                      NaN
                                                             NaN
        681
                 NaN 16958.03
                                     NaN
                                             NaN
                                                      NaN
                                                             NaN
        [682 rows x 38 columns]
        skewness = data.skew(axis = 0, skipna = True)
In [9]:
        print(skewness)
                      4.163910
        cardwdln
                      4.058582
        cardwdlt
                      0.636199
        cashcrn
        cashcrt
                      1.066390
        cashwdn
                      0.731939
        cashwdt
                      1.132872
                      2.029932
        bankcolt
                      1.557739
        bankcoln
        bankrn
                      1.435638
        bankrt
                      1.338442
        othcrn
                      1.628444
        othcrt
                      1.416784
```

```
days
                       0.392476
                      0.005981
         age
         cardwdlnd
                       3.684165
         cardwdltd
                       4.000457
         cashcrnd
                      -0.254937
         cashcrtd
                       0.522146
                      -0.081042
         cashwdnd
                       0.463648
         cashwdtd
         bankcoltd
                      1.369774
                      0.834618
         bankcolnd
                      0.734049
         bankrnd
         bankrtd
                      0.538220
                      2.357087
         othcrnd
                      0.976754
         othcrtd
         acardwdl
                      1.890530
         acashcr
                      -0.135474
                       0.142676
         acashwd
         abankcol
                      1.369148
         abankr
                       0.702417
                      0.064614
         aothcr
         dtype: float64
In [10]: data.kurt()
Out[10]: cardwdln
                       20.123161
         cardwdlt
                      18.624095
                       -0.342262
         cashcrn
         cashcrt
                       0.597204
         cashwdn
                       -0.279915
         cashwdt
                       0.905055
                       3.634594
         bankcolt
         bankcoln
                       1.189602
         bankrn
                       2.074571
         bankrt
                       1.666862
         othcrn
                        3.375370
         othcrt
                       2.443918
         days
                       -1.133008
                       -1.142675
         age
         cardwdlnd
                      15.805437
```

```
cardwdltd
                       20.796351
                       -1.100812
         cashcrnd
         cashcrtd
                       -0.596214
                       -0.026374
         cashwdnd
         cashwdtd
                       -0.496219
         bankcoltd
                       0.404313
         bankcolnd
                       -1.306391
                       -0.296355
         bankrnd
         bankrtd
                       -0.508840
         othcrnd
                       5.145844
                       2.372778
         othcrtd
                       2.770576
         acardwdl
         acashcr
                       -1.563058
                       -0.890314
         acashwd
                       0.399974
         abankcol
         abankr
                       0.072172
         aothcr
                       -0.406529
         dtype: float64
In [11]: variance= np.var(data)
         print(variance)
         cardwdln
                       1.677356e+01
         cardwdlt
                       1.103139e+08
         cashcrn
                       1.141370e+03
                       6.329418e+11
         cashcrt
         cashwdn
                       3.772677e+03
         cashwdt
                       4.480284e+11
         bankcolt
                       5.042403e+11
         bankcoln
                       4.113916e+02
                       2.953844e+03
         bankrn
         bankrt
                       4.218773e+10
         othcrn
                       7.049007e+02
         othcrt
                       2.285248e+07
                       2.701922e+05
         days
                       1.602324e+02
         age
         cardwdlnd
                       8.882872e-06
         cardwdltd
                       6.044290e+01
         cashcrnd
                       4.713879e-04
```

cashcrtd 3.081678e+05 cashwdnd 3.742386e-04 cashwdtd 1.780657e+05 bankcoltd 2.905476e+05 bankcolnd 2.274284e-04 bankrnd 1.238636e-03 bankrtd 1.704554e+04 othcrnd 1.549265e-04 othcrtd 5.462800e+00 acardwdl 1.355304e+06 acashcr 8.699910e+07 acashwd 1.287223e+07 abankcol 2.724186e+08 abankr 5.550360e+06 aothcr 3.060319e+03

dtype: float64

In [12]: data.corr()

Out[12]:

	cardwdln	cardwdlt	cashcrn	cashcrt	cashwdn	cashwdt	bankcolt	bankcoln
cardwdln	1.000000	0.969358	0.051299	0.086964	0.137415	0.156321	0.085416	0.034144
cardwdlt	0.969358	1.000000	0.034949	0.075140	0.141988	0.178193	0.118402	0.060569
cashcrn	0.051299	0.034949	1.000000	0.889803	0.488988	0.381115	-0.579456	-0.600754
cashcrt	0.086964	0.075140	0.889803	1.000000	0.475116	0.585396	-0.521281	-0.560187
cashwdn	0.137415	0.141988	0.488988	0.475116	1.000000	0.765641	0.304794	0.278753
cashwdt	0.156321	0.178193	0.381115	0.585396	0.765641	1.000000	0.346663	0.212979
bankcolt	0.085416	0.118402	-0.579456	-0.521281	0.304794	0.346663	1.000000	0.915954
bankcoln	0.034144	0.060569	-0.600754	-0.560187	0.278753	0.212979	0.915954	1.000000
bankrn	0.095480	0.083838	0.249843	0.112396	0.322926	0.015702	0.089817	0.119874
bankrt	0.052113	0.046947	0.197951	0.146750	0.385476	0.175690	0.291194	0.297311
othcrn	0.111668	0.101166	0.429271	0.342540	0.720813	0.431607	0.126920	0.167526
othcrt	0.265802	0.272592	0.426964	0.475052	0.794735	0.726744	0.263696	0.196004

	cardwdln	cardwdlt	cashcrn	cashcrt	cashwdn	cashwdt	bankcolt	bankcoln
days	0.152418	0.150257	0.553839	0.443112	0.920871	0.582045	0.202935	0.226665
age	-0.062075	-0.061343	-0.026922	-0.035580	-0.047731	-0.060657	-0.017684	0.001724
cardwdlnd	0.938762	0.913378	-0.005114	0.040128	0.024174	0.084803	0.053928	-0.000565
cardwdltd	0.897577	0.938943	-0.022885	0.026522	0.027286	0.106786	0.089416	0.026795
cashcrnd	-0.019091	-0.038094	0.781610	0.726612	0.016557	0.085253	-0.747551	-0.780254
cashcrtd	0.033970	0.021408	0.676002	0.836595	0.109660	0.354265	-0.607322	-0.653441
cashwdnd	0.041342	0.054533	0.130442	0.297087	0.605549	0.689194	0.318418	0.219267
cashwdtd	0.080801	0.109966	0.076729	0.376091	0.278005	0.756205	0.272580	0.104132
bankcoltd	0.037684	0.073718	-0.666353	-0.587557	0.064305	0.194721	0.884568	0.792198
bankcolnd	-0.015402	0.012426	-0.709001	-0.643716	0.021488	0.055826	0.809842	0.879329
bankrnd	0.041023	0.032867	0.016822	-0.069216	-0.075591	-0.235618	-0.006482	0.012172
bankrtd	-0.017307	-0.019139	-0.049842	-0.042088	-0.051679	-0.090665	0.195896	0.181636
othcrnd	-0.015025	-0.025873	0.018920	0.007426	0.082231	0.013170	-0.011232	0.025565
othcrtd	0.221684	0.236971	0.067430	0.240202	0.240377	0.470767	0.187713	0.063053
acardwdl	0.593111	0.648803	-0.006711	0.074050	0.059589	0.194217	0.113608	0.036502
acashcr	0.072294	0.054720	0.617472	0.789791	0.100012	0.275126	-0.641350	-0.692020
acashwd	0.084853	0.118284	0.018733	0.338631	0.093904	0.636173	0.198429	0.039620
abankcol	0.037320	0.073108	-0.666472	-0.587557	0.063344	0.194154	0.883860	0.791403
abankr	-0.084915	-0.069973	-0.065852	0.035748	0.023869	0.176936	0.212530	0.138169
aothcr	0.274723	0.304480	0.016882	0.240308	0.184523	0.521005	0.243795	0.080862
32 rows × 3	2 columns							
1								•
-1-4/	, ,							

In [13]: data.cov()

Out[13]:

	cardwdln	cardwdlt	cashcrn	cashcrt	cashwdn	cash
cardwdln	16.798190	4.175893e+04	7.108459e+00	2.837741e+05	3.461856e+01	4.291605€
cardwdlt	41758.928348	1.104759e+08	1.241932e+04	6.287861e+08	9.173355e+04	1.254574€
cashcrn	7.108459	1.241932e+04	1.143046e+03	2.395113e+07	1.016185e+03	8.630951€
cashcrt	283774.119996	6.287861e+08	2.395113e+07	6.338713e+11	2.325112e+07	3.1219176
cashwdn	34.618557	9.173355e+04	1.016185e+03	2.325112e+07	3.778216e+03	3.152388€
cashwdt	429160.475684	1.254574e+09	8.630951e+06	3.121917e+11	3.152388e+07	4.4868636
bankcolt	248775.049042	8.843629e+08	-1.392162e+07	-2.949235e+11	1.331333e+07	1.650125
bankcoln	2.840480	1.292193e+04	-4.122631e+02	-9.052729e+06	3.477835e+02	2.895702€
bankrn	21.284208	4.792763e+04	4.594216e+02	4.867020e+06	1.079589e+03	5.720579€
bankrt	43902.802841	1.014267e+08	1.375630e+06	2.401536e+10	4.870257e+06	2.418969€
othcrn	12.160218	2.825223e+04	3.856076e+02	7.245943e+06	1.177196e+03	7.681437€
othcrt	5211.641148	1.370668e+07	6.905714e+04	1.809367e+09	2.336958e+05	2.328833€
days	324.953566	8.215301e+05	9.740256e+03	1.835138e+08	2.944405e+04	2.028072€
age	-3.222854	-8.167516e+03	-1.153024e+01	-3.588424e+05	-3.716559e+01	-5.146878€
cardwdlnd	0.011476	2.863384e+01	-5.156414e-04	9.528954e+01	4.431790e-03	1.694243€
cardwdltd	28.621614	7.678288e+04	-6.019662e+00	1.642874e+05	1.304912e+01	5.565153€
cashcrnd	-0.001700	-8.699517e+00	5.741555e-01	1.256929e+04	2.211255e-02	1.240761€
cashcrtd	77.346663	1.250050e+05	1.269674e+04	3.700225e+08	3.744596e+03	1.318293€
cashwdnd	0.003280	1.109649e+01	8.537733e-02	4.579066e+03	7.205856e-01	8.937296€
cashwdtd	139.847624	4.880916e+05	1.095468e+03	1.264453e+08	7.216126e+03	2.139045€
bankcoltd	83.314595	4.179588e+05	-1.215243e+04	-2.523353e+08	2.132153e+03	7.035782€
bankcolnd	-0.000953	1.971100e+00	-3.617593e-01	-7.734561e+03	1.993293e-02	5.643481€
bankrnd	0.005922	1.216697e+01	2.003129e-02	-1.940884e+03	-1.636458e-01	-5.558668€
bankrtd	-9.267697	-2.628331e+04	-2.201681e+02	-4.378091e+06	-4.150346e+02	-7.934777€
othcrnd	-0.000767	-3.387330e+00	7.967644e-03	7.364407e+01	6.295915e-02	1.098880€

	cardwdln	cardwdlt	cashcrn	cashcrt	cashwdn	cash
othcrtd	2.125164	5.825791e+03	5.332245e+00	4.473038e+05	3.455917e+01	7.375710€
acardwdl	2832.071948	7.944807e+06	-2.643237e+02	6.868503e+07	4.267246e+03	1.515641€
acashcr	2765.732730	5.368517e+06	1.948612e+05	5.869329e+09	5.738149e+04	1.720201€
acashwd	1248.661025	4.463812e+06	2.274001e+03	9.679952e+08	2.072403e+04	1.530003€
abankcol	2526.469416	1.269221e+07	-3.721780e+05	-7.726585e+09	6.431118e+04	2.148103€
abankr	-820.528614	-1.733974e+06	-5.249067e+03	6.710194e+07	3.459085e+03	2.794262€
aothcr	62.334566	1.771715e+05	3.159856e+01	1.059181e+07	6.279063e+02	1.932036€

32 rows × 32 columns

```
In [14]: ### VISULAIZATION OF THE DATA ###
         data.plot(kind='box', subplots=True, layout=(16,4), sharex=False, share
         y=False, figsize=(20, 40))
         plt.show()
```



```
In [15]: data.hist(layout=(16,4),figsize=(20, 40))
plt.show()
```


In [16]:

OUTLIERS ARE PRESENT IN: 1)cardwdin 2)cardwdit 3)bankcolt 4) bankrn 5)cardwdind 6)othcrnd 7)acardwdi 8)cashwdt 9) cardwditd

Out[18]:	cardwdln	int64
	cardwdlt	int64
	cashcrn	int64
	cashcrt	float64
	cashwdn	int64
	cashwdt	float64
	bankcolt	int64
	bankcoln	int64
	bankrn	int64
	bankrt	float64
	othcrn	int64
	othcrt	float64
	days	int64
	sex	object
	card	object
	age	float64
	second	object
	frequency	object
	region	object
	cardwdlnd	float64
	cardwdltd	float64
	cashcrnd	float64
	cashcrtd	float64
	cashwdnd	float64
	cashwdtd	float64
	bankcoltd	float64
	bankcolnd	float64
	bankrnd	float64
	bankrtd	float64
	othcrnd	float64
	othcrtd	float64
	acardwdl	float64
	acashcr	float64
	acashwd	float64
	abankcol	float64
	abankr	float64
	aothcr	float64
	good	object
	dtype: objec	t

```
In [19]: X=data.iloc[:,0:37]
          X.head()
Out[19]:
             cardwdln cardwdlt cashcrn
                                       cashcrt cashwdn
                                                       cashwdt bankcolt bankcoln bankrn
          0
                   0
                           0
                                  12
                                       48400.0
                                                  237 1001191.0
                                                               1537936
                                                                            70
                                                                                   89 553
           1
                   0
                           0
                                       45800.0
                                                      762135.7
                                                                741807
                                                                                      20
                                  17
                                                  143
                                                                            45
                                                                                    8
           2
                   0
                           0
                                  54 1488172.0
                                                   99 1215437.6
                                                                    0
                                                                             0
                                                                                   93 248
           3
                   0
                           0
                                                                    0
                                      494494.0
                                                       375845.2
                                                                             0
                                                                                   43
                                                                                      7!
                   0
                           0
                                       49700.0
                                                   37 156679.0
                                                                256060
                                                                            17
                                                                                   45 10
          5 rows × 37 columns
In [20]: X.shape
Out[20]: (682, 37)
In [21]: X.columns
Out[21]: Index(['cardwdln', 'cardwdlt', 'cashcrn', 'cashcrt', 'cashwdn', 'cashwd
          t',
                  'bankcolt', 'bankcoln', 'bankrn', 'bankrt', 'othcrn', 'othcrt',
          'days',
                  'sex', 'card', 'age', 'second', 'frequency', 'region', 'cardwdln
          ď,
                  'cardwdltd', 'cashcrnd', 'cashcrtd', 'cashwdnd', 'cashwdtd',
                  'bankcoltd', 'bankcolnd', 'bankrnd', 'bankrtd', 'othcrnd', 'othc
          rtd',
                  'acardwdl', 'acashcr', 'acashwd', 'abankcol', 'abankr', 'aothc
          r'],
                dtype='object')
          y=data.iloc[:,-1]
In [22]:
          y.head()
```

```
Out[22]: 0
              Yes
               No
              Yes
               No
              Yes
         Name: good, dtype: object
         SINCE WE HAVE CATEGORICAL VARIABLES IN THE DATA i.e., 1)sex
         2)card 3)second 4) frequency 5) region WE ARE CREATING DUMMY
         VARIABLES
In [23]: x = pd.get dummies(X, columns=["sex", "card", "second", "frequency", "r
         egion"], prefix=["sex", "card", "second", "frequency", "region", 1)
In [24]: x.head()
Out[24]:
            cardwdln cardwdlt cashcrn
                                     cashcrt cashwdn
                                                    cashwdt bankcolt bankcoln bankrn
          0
                  0
                          0
                                12
                                     48400.0
                                                237 1001191.0 1537936
                                                                         70
                                                                               89 553
                  0
          1
                          0
                                17
                                     45800.0
                                                143 762135.7
                                                            741807
                                                                         45
                                                                                8 20
                                54 1488172.0
                                                 99 1215437.6
                                                                               93 248
          3
                  0
                          0
                                    494494.0
                                                 51 375845.2
                                                                  0
                                                                          0
                                                                               43 7!
                  0
                          0
                                14
                                     49700.0
                                                 37 156679.0
                                                             256060
                                                                         17
                                                                               45 10
         5 rows × 49 columns
In [25]: x.columns
Out[25]: Index(['cardwdln', 'cardwdlt', 'cashcrn', 'cashcrt', 'cashwdn', 'cashwd
         t',
                 'bankcolt', 'bankcoln', 'bankrn', 'bankrt', 'othcrn', 'othcrt',
          'days',
```

In [26]:	pri	<pre>print(x)</pre>											
	lt	cardwdln \	cardwdlt	cashcrn	cashcrt	cashwdn	cashwdt	bankco					
	0 36	. 0	Θ	12	48400.0	237	1001191.0	15379					
	1 07	0	Θ	17	45800.0	143	762135.7	7418					
	2	0	0	54	1488172.0	99	1215437.6						
	3 0	0	0	19	494494.0	51	375845.2						
	4 60	0	0	14	49700.0	37	156679.0	2560					
	5 05	0	0	2	6800.0	164	1758719.0	22612					
	6 0	5	13200	35	635480.0	81	365494.2						
	7 0	0	0	38	867846.0	90	757291.9						
	8 0	0	0	14	252833.0	28	230921.2						
	9 0	5	14800	32	745897.0	79	515150.4						

10	2	7500	47	1278771.0	105	1154757.0	
0 11	0	0	95	1314120.0	176	663257.6	
0 12	0	Θ	53	1475516.0	102	1259867.0	
0 13	6	14500	33	484714.0	44	214448.2	
0 14	1	3600	1	700.0	28	283509.8	3889
32 15	0	0	100	2092453.0	171	1611962.0	
0 16	2	5900	33	504360.0	80	344350.4	
0 17	0	Θ	22	426020.0	65	402199.0	
0 18	0	0	4	8300.0	98	909638.0	14020
89 19	0	0	74	1713632.0	138	1401114.0	
0 20	0	0	26	616210.0	73	552032.0	
0 21	2	6000	2	4000.0	98	1147291.0	14276
11 22	0	0	67	939342.0	166	541517.6	
0 23	0	0	89	1990266.0	207	1773345.8	
0 24	0	0	32	177709.0	38	82944.4	
0 25	0	0	73	1974944.0	114	1614008.8	
0 26	0	0	89	1560877.0	129	853726.3	
0 27	0	0	28	435438.0	67	252377.4	
0 28	0	0	18	427443.0	24	269202.8	
0 29	Θ	0	2	2400.0	86	1224322.0	14022

31							
652 82	0	Θ	6	27100.0	49	166004.0	3658
653 0	0	0	66	1657264.0	205	978026.8	
654 0	0	0	119	3150073.0	179	2390833.0	
655 0	16	35000	31	410777.0	69	330850.4	
656 0	0	0	70	1684174.0	146	1537978.6	
657 0	0	0	118	3137980.0	239	2940206.0	
658 44	11	33100	4	3300.0	225	2161662.0	32105
659 0	0	0	106	2548952.0	241	2311770.8	
660 90	0	0	14	69400.0	71	283005.0	3787
661 37	11	31300	2	4000.0	135	1202778.2	18457
662 96	0	0	31	194900.0	72	286117.0	5658
663 0	0	0	71	896219.0	214	797634.4	
664 0	0	0	52	1192751.0	139	1029923.0	
665 87	4	8000	9	20100.0	145	1863768.8	20396
666 0	0	0	28	636472.0	58	374237.4	
667 0	0	0	121	2816451.0	202	2305464.0	
668 0	0	0	70	1066663.0	191	654712.2	
669 0	8	17900	90	2702121.0	162	2550009.0	

670	5	1320	0 45	889272.0	68	743488.0	
0 671	2	370	0 8	41700.0	159	1447077.4	20997
10 672 73	0		0 2	6800.0	76	788007.8	11160
673	0		0 44	1012868.0	72	694144.0	
0 674	0		0 97	650086.0	170	367403.6	
0 675	0		0 17	52300.0	80	165775.4	4769
35 676	Θ		0 36	1124913.0	70	934000.0	
0 677	0		0 16	315374.0	33	203131.4	
0 678	0		0 38	690261.0	78	608247.0	
0 679	0		0 5	14800.0	136	1271219.0	19734
36 680	22	5740	0 2	4000.0	148	1105500.6	14992
77 681 0	0		0 43	680055.0	103	336301.8	
1,,	bankcoln	bankrn	bankrt	freque	ency_Month	ly frequen	cy_Week
ly 0	70	89	553234.8			1	
0	45	8	20185.6			1	
0 2	0	93	248735.4			1	
0	0	43	75279.5			1	
0 4	17	45	107005.4			0	
1 5 0	50	116	480508.0			1	

6	0	121	209642.0		1
0 7	0	11	81072.2		1
0 8	0	1	7348.0		1
9	0	64	147808.0		1
0 10	0	12	88442.4		0
0 11	0	240	595464.0		1
0 12	0	90	149581.6		0
1 13	0	24	215376.0		1
0 14	13	9	46166.5		1
0 15	0	160	455608.0		1
0 16	0	32	116999.0		1
0 17	0	1	1901.0		1
0 18	35	51	480121.0		0
0 19	0	126	242775.0		0
1 20	0	6	41448.0		1
0 21 1	28	58	188719.4		0
22 0	0	105	350907.0		1
23	0	22	171626.4		1
0 24	0	18	79512.0		1
0 25	0	127	329959.0		1

0					
26 0	0	165	685481.2		1
27 0	0	28	126479.0		1
28 0	0	21	105903.0		1
29 0	26	19	155803.8		1
				• • •	
652 1	22	76	207844.6		0
653 0	0	94	633734.0		1
654	Θ	88	722796.0		0
1 655	0	21	6552.0		1
0 656	Θ	24	77200.8		1
0 657	Θ	48	154401.6		0
1 658	70	191	950814.0		0
1 659	Θ	22	154895.4		1
0 660	29	38	119234.8		Θ
1 661	47	79	579892.8		1
0 662	35	59	426182.0		Θ
1 663	Θ	49	70805.0		1
0 664	Θ	22	54604.0		1
0 665 0	38	12	98298.0		1

666 0	0	39	200765.0		1	
667 0	Θ	101	416002.0		1	
668 0	0	93	368676.0		1	
669 1	0	24	89872.8		0	
670 1	0	12	44936.4		0	
671 0	49	72	618062.4		1	
672 0	23	49	269731.0		1	
673 0	0	31	303148.5		1	
674 0	0	146	261359.0		1	
675 0	39	128	347096.9		1	
676 0	0	31	104785.8		1	
677 0	Θ	12	38133.0		1	
678 0	Θ	5	23370.0		1	
679 1	43	77	690478.0		0	
680 0	51	104	273539.6		1	
681 0	0	160	309438.0	• • •	1	
0 1 2 3 4	region_Pr	ague re 1 0 0 0	gion_centr	al Bohemia 0 0 0 0	region_east Bo	hemia \ 0 0 0 0 0 0 0
4		U		U		U

5	0	Θ	0
5 6 7 8	0	0	0
7	0	0	1
8	0	0	0
9	0	0	0
10	0 0	0	0
11	0	0	0
12	0	0	0
13	0	0	0
14	0	0	0
15	0	0	0
16	0	0	0
17	0	0	0
18	0	0	0
19	0	0	1
20	0	0	1
21	0	0	1
22	0	0	0
23	0	0	0
24	0	0	0
25	0	0	0
26	1	0	0
27	0	0	0
28	0	0	0
29	0	1	0
652	0	0	0
653	0	Θ	1
654	0	Θ	1
655	0	0	Θ
656	0	0	0
657	0	0	0
658	1	0	0
659	1	0	0
660	0	0	0
661	0	Θ	Θ
662	0	0	Θ
663	0 0 0	1	Θ
664	0	Θ	0

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681	0 0 1 0 0 1 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0 1 0 0	0 0 0 0 0 0 0 0 0 0 0
`	region_north Bohemia	region_north Moravia	region_south Bohemia
0	Θ	Θ	0
1	0	0	1
2	0	1	0
3	0	0	1
4	0	0	1
5	0	0	1
6	0	1	0
7	0	0	0
8	Θ	0	1
9	1	0	0

10	1	0	0
11	0	0	0
12	0	1	0
13	0	1	0
14	1	0	0
15	0	Θ	0
16	0	1	0
17	0	0	1
18	0	0	1
19	0	0	0
20	0	0	0
21	0	0	Θ
22	0	0	0
23	0	0	Θ
24	0	1	Θ
25	0	1	0
26	0	Θ	0
27	0	0	0
28	0	0	0

29	0	0	0
652	0	0	0
653	0	0	0
654	0	0	0
655	0	0	0
656	0	0	1
657	0	0	1
658	0	0	0
659	0	0	0
660	1	0	0
661	0	1	0
662	0	0	0
663	0	0	0
664	1	0	0
665	0	0	1
666	0	0	0
667	0	0	0
668	0	1	0
669	0	1	0

670	0	0	0
671	0	0	0
672	0	0	0
673	1	0	0
674	0	0	1
675	Θ	0	Θ
676	0	0	Θ
677	0	0	Θ
678	0	0	0
679	0	0	0
680	0	Θ	Θ
681	0	1	Θ
0 1 2 3 4 5 6 7 8 9 10	region_south Moravia 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	
11	1	0	

12 13 14 15 16	0 0 0 1 0	0 0 0 0 0
17 18	0 0	0 0
19	0	0
20	0	0
21 22	0	0
23	1 1	0 0
24	0	9
25	0	0
26	0	0 1
27	0	1
28 29	1 0	0 0
652	0	1
653 654	0 0	0
		1
655	0	0 1 0
655 656 657	0 0 0	0 0
655 656 657 658	0 0 0 0	0 0 0
655 656 657 658 659	0 0 0 0	0 0 0 0
655 656 657 658 659 660	0 0 0 0 0	0 0 0 0 0
655 656 657 658 659	0 0 0 0	0 0 0 0 0
655 656 657 658 659 660 661 662 663	0 0 0 0 0 0 1	0 0 0 0 0 0
655 656 657 658 659 660 661 662 663 664	0 0 0 0 0 0 1 0	0 0 0 0 0 0 0
655 656 657 658 659 660 661 662 663 664 665	0 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0
655 656 657 658 659 660 661 662 663 664 665 666	0 0 0 0 0 0 1 0 0	0 0 0 0 0 0 0
655 656 657 658 659 660 661 662 663 664 665 666 667 668	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 1 0
655 656 657 658 659 660 661 662 663 664 665 666 667 668	0 0 0 0 0 0 1 0 0 0 0	0 0 0 0 0 0 0 0 1 0 0
655 656 657 658 659 660 661 662 663 664 665 666 667 668	0 0 0 0 0 0 1 0 0 0	0 0 0 0 0 0 0 0 1 0

```
672
      673
      674
      675
      676
      677
      678
      679
                                       0
      680
                        1
      681
      [682 rows x 49 columns]
In [27]: type(x)
Out[27]: pandas.core.frame.DataFrame
In [28]: x.shape
Out[28]: (682, 49)
In [29]: #Encode the y variable as well
      from sklearn.preprocessing import LabelEncoder
      labelencoder y=LabelEncoder()
      y data final=labelencoder y.fit transform(y)
      y data final
1,
           1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
      1,
           1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
      1,
           1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,
      1,
           1,
```

```
1,
     1,
     1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0,
1,
     1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0,
1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,
     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
1,
     1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
1,
     1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
1,
     1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1,
     0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
0,
     1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,
1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,
     1,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1,
     1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0,
     1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1,
     1,
     1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
1,
```

DOING STEPWISE REGRESSION

```
In [31]: import statsmodels.api as sm
         X = pd.DataFrame(x)
         v =v data final
         def stepwise selection(x, y,
                                initial list=[],
                                threshold in=0.01,
                                threshold out = 0.05,
                                verbose=True):
             """ Perform a forward-backward feature selection
             based on p-value from statsmodels.api.OLS
             Arauments:
                 X - pandas.DataFrame with candidate features
                 y - list-like with the target
                 initial list - list of features to start with (column names of
          X)
                 threshold in - include a feature if its p-value < threshold in
                 threshold out - exclude a feature if its p-value > threshold ou
                 verbose - whether to print the sequence of inclusions and exclu
```

```
sions
    Returns: list of selected features
    Always set threshold in < threshold out to avoid infinite looping.
    See https://en.wikipedia.org/wiki/Stepwise regression for the detai
15
    included = list(initial list)
    while True:
        changed=False
        # forward step
        excluded = list(set(x.columns)-set(included))
        new pval = pd.Series(index=excluded)
        for new column in excluded:
            model = sm.OLS(y, sm.add constant(pd.DataFrame(X[included+[
new column]]))).fit()
            new pval[new column] = model.pvalues[new column]
        best pval = new pval.min()
        if best pval < threshold in:</pre>
            best feature = new pval.argmin()
            included.append(best feature)
            changed=True
            if verbose:
                print('Add {:30} with p-value {:.6}'.format(best featu
re, best pval))
        # backward step
        model = sm.OLS(y, sm.add constant(pd.DataFrame(X[included]))).f
it()
        # use all coefs except intercept
        pvalues = model.pvalues.iloc[1:]
        worst pval = pvalues.max() # null if pvalues is empty
        if worst pval > threshold out:
            changed=True
            worst feature = pvalues.argmax()
            included.remove(worst feature)
            if verbose:
                print('Drop {:30} with p-value {:.6}'.format(worst feat
ure, worst pval))
        if not changed:
```

```
break
             return included
         result = stepwise selection(x, y)
         print('resulting features:')
         print(result)
         C:\Users\srava\AppData\Local\Programs\Python\Python36\Lib\site-packages
         \numpy\core\fromnumeric.py:2389: FutureWarning: Method .ptp is deprecat
         ed and will be removed in a future version. Use numpy.ptp instead.
           return ptp(axis=axis, out=out, **kwarqs)
         C:\Users\srava\Anaconda3\lib\site-packages\ipykernel launcher.py:33: Fu
         tureWarning:
         The current behaviour of 'Series.argmin' is deprecated, use 'idxmin'
         instead.
         The behavior of 'argmin' will be corrected to return the positional
         minimum in the future. For now, use 'series.values.argmin' or
         'np.argmin(np.array(values))' to get the position of the minimum
         row.
         Add aothcr
                                             with p-value 1.26401e-14
         Add cashwdtd
                                             with p-value 5.04348e-21
                                             with p-value 1.66186e-06
         Add acashcr
         Add cashcrtd
                                             with p-value 6.74772e-10
         Add cashern
                                             with p-value 0.000715699
         Add second N
                                             with p-value 0.000992668
         Add second Y
                                             with p-value 9.1181e-40
         Add bankrn
                                             with p-value 0.00158976
         resulting features:
         ['aothcr', 'cashwdtd', 'acashcr', 'cashcrtd', 'cashcrn', 'second N', 's
         econd Y', 'bankrn']
In [32]: ### THESE ARE SIGNIFICANT VARIABLES ###
         cols=(x[['aothcr','cashwdtd','acashcr','cashcrtd','cashcrn','second N',
         'second Y', 'bankrn']])
         x final=cols
         x final.head()
```

```
Out[32]:
             aother cashwdtd
                           acashcr cashcrtd cashcrn second_N second_Y bankrn
         0 153.107
                     469.16
                           4033.33
                                    22.68
                                             12
                                                                    89
                                             17
             62.084
                     558.75
                           2694.12
                                    33.58
                                                              0
                                                                     8
          2 221.432
                    1371.83 27558.74
                                   1679.65
                                             54
                                                              0
                                                                    93
          3 149.129
                     751.69 26026.00
                                    988.99
                                             19
                                                      1
                                                              0
                                                                    43
          4 147.371
                     307.21 3550.00
                                    97.45
                                             14
                                                              0
                                                                    45
In [33]: import statsmodels.api as sm
         logit model=sm.Logit(y,x final)
         result=logit model.fit()
         print(result.summary())
         Warning: Maximum number of iterations has been exceeded.
                  Current function value: 0.168058
                  Iterations: 35
                                    Logit Regression Results
                                                No. Observations:
         Dep. Variable:
             682
         Model:
                                        Logit
                                                Df Residuals:
             674
                                                Df Model:
         Method:
                                           MLE
               7
         Date:
                             Fri, 12 Jun 2020
                                                Pseudo R-squ.:
         0.5192
         Time:
                                      14:48:20
                                                Log-Likelihood:
         -114.62
         converged:
                                         False
                                                LL-Null:
         -238.37
         Covariance Type:
                                    nonrobust
                                                LLR p-value:
                                                                             9.
         438e-50
         ______
                          coef
                                  std err
                                                         P>|z|
                                                                    [0.025
                                                  Z
```

0.975]						
aothcr 0.074	0.0606	0.007	8.622	0.000	0.047	
cashwdtd -0.004	-0.0060	0.001	-6.766	0.000	-0.008	
acashcr -0.000	-0.0003	5.54e-05	-4.954	0.000	-0.000	
cashcrtd 0.007	0.0043	0.001	3.660	0.000	0.002	
cashcrn -0.009	-0.0234	0.007	-3.222	0.001	-0.038	
second_N 0.568	-0.7734	0.684	-1.130	0.258	-2.114	
second_Y 4.39e+05	26.3079	2.24e+05	0.000	1.000	-4.39e+05	
bankrn 0.013	0.0056	0.004	1.500	0.134	-0.002	

======

Possibly complete quasi-separation: A fraction 0.22 of observations can be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identified.

```
C:\Users\srava\Anaconda3\lib\site-packages\statsmodels\base\model.py:51
2: ConvergenceWarning: Maximum Likelihood optimization failed to conver
ge. Check mle_retvals
   "Check mle_retvals", ConvergenceWarning)
```

Logistic Regression Model Fitting

0	a + 1	[2/1	١,
U	u L	[34]	

	aothcr	cashwdtd	acashcr	cashcrtd	cashcrn	second_N	second_Y	bankrn
556	149.053	472.15	16549.16	636.81	81	1	0	101
66	125.773	288.75	15455.61	549.73	61	1	0	140
571	149.172	895.22	22694.02	1078.53	96	1	0	89
299	107.867	170.87	7747.04	317.13	56	0	1	76
355	186.752	463.70	21477.87	745.08	23	1	0	23
626	72.609	148.53	10666.45	574.35	105	1	0	223
247	189.164	537.18	22853.92	878.31	49	1	0	164
624	143.352	123.68	6234.40	315.75	98	1	0	160
529	127.981	276.36	9765.80	561.53	46	0	1	45
609	277.244	2363.51	28540.93	2476.69	42	1	0	3
15	205.502	868.98	20924.53	1128.01	100	1	0	160
233	70.086	196.92	17939.38	295.30	16	1	0	54
215	184.912	722.57	1725.00	6.60	4	0	1	143
6	170.006	376.80	18156.57	655.13	35	0	1	121
268	173.933	887.00	1100.00	3.03	2	1	0	78
71	207.944	1556.60	2000.00	4.84	2	1	0	15
597	177.615	862.85	2625.00	12.98	4	1	0	106
294	115.059	97.93	6170.39	277.32	56	1	0	122
362	264.593	472.22	22829.85	823.37	66	0	1	79
650	188.012	129.55	8531.47	376.71	34	1	0	58
618	181.704	323.50	13448.42	544.37	88	0	1	104
188	195.589	630.46	23219.53	1080.45	53	1	0	82
570	235.717	1156.96	22463.48	1627.40	122	0	1	72
266	240.813	621.16	4225.00	22.56	4	0	1	12
354	62.612	221.78	5856.12	363.19	121	1	0	35

	aothcr	cashwdtd	acashcr	cashcrtd	cashcrn	second_N	second_Y	bankrn
90	157.935	267.77	13577.79	494.21	19	1	0	19
591	217.526	231.73	9957.28	468.37	54	0	1	63
681	110.939	286.46	15815.23	579.26	43	1	0	160
118	162.721	279.19	13073.29	462.11	31	1	0	71
521	130.108	514.59	22434.19	752.51	32	1	0	78
544	160.108	1066.93	23056.28	1200.19	57	0	1	20
639	168.729	538.82	4862.50	52.96	16	1	0	76
265	172.480	1049.54	25305.64	1144.07	42	1	0	12
288	226.704	1272.44	28314.08	1671.32	51	1	0	65
423	204.650	1376.00	27558.74	1679.65	54	1	0	93
147	188.927	549.19	4211.11	62.70	18	1	0	67
177	109.396	627.81	22292.52	702.98	52	1	0	16
99	179.813	432.56	16684.26	678.80	19	1	0	25
448	243.513	1286.83	23587.22	1404.15	114	1	0	48
431	138.989	91.48	5350.03	283.02	31	1	0	20
115	239.710	1122.14	400.00	0.65	1	0	1	32
72	200.380	478.73	20757.43	728.76	60	1	0	76
537	155.760	272.91	13369.96	607.04	40	0	1	106
672	229.204	1135.46	3400.00	9.80	2	1	0	49
174	199.109	509.81	19340.43	696.41	35	1	0	55
87	130.987	355.18	18603.24	685.28	68	1	0	201
551	214.495	836.99	22466.79	1302.57	125	1	0	143
486	139.006	215.99	10866.14	508.74	39	1	0	59
314	157.826	957.09	3200.00	11.48	3	1	0	9

	aothcr	cashwdtd	acashcr	cashcrtd	cashcrn	second_N	second_Y	bankrn
396	143.572	277.90	11003.97	445.18	39	1	0	93
600	204.551	1204.72	25542.77	1286.42	104	0	1	57
472	176.658	914.80	21906.58	1351.56	120	1	0	132
70	80.333	149.27	3920.00	23.44	5	0	1	58
599	216.148	1208.10	24093.28	1359.50	36	0	1	12
277	106.161	152.65	4217.60	216.29	48	1	0	22
9	198.010	574.30	23309.28	831.55	32	1	0	64
359	105.717	162.07	7542.30	307.58	23	1	0	28
192	263.953	1432.00	1950.00	7.65	2	1	0	52
629	234.408	770.06	25493.11	1007.46	46	1	0	25
559	155.088	526.67	16900.69	603.60	18	1	0	3

511 rows × 8 columns

```
In [35]: import statsmodels.api as sm
         logit_model=sm.Logit(ytrain,xtrain)
         result=logit_model.fit()
         print(result.summary())
         Warning: Maximum number of iterations has been exceeded.
                  Current function value: 0.187870
                  Iterations: 35
                                    Logit Regression Results
         Dep. Variable:
                                                  No. Observations:
               511
         Model:
                                                  Df Residuals:
                                         Logit
               503
         Method:
                                           MLE
                                                 Df Model:
```

Date:	Fr	i, 12 Jun 2	2020 Pseudo	R-squ.:					
0.4749 Time:	14:48:20 Log-Likelihood:								
-96.002 converged: -182.83	False LL-Null:								
Covariance 4.269e-34	,		oust LLR p-						
=======									
0.975]	coef	std err	Z 		[0.025				
	0.0526				0.020				
aothcr 0.068	0.0536	0.007	7.391	0.000	0.039				
cashwdtd -0.003	-0.0052	0.001	-5.739	0.000	-0.007				
acashcr -0.000	-0.0003	5.79e-05	-4.481	0.000	-0.000				
cashcrtd 0.006	0.0038	0.001	3.215	0.001	0.001				
cashcrn -0.002	-0.0178	0.008	-2.265	0.023	-0.033				
second_N 0.884	-0.6044	0.759	-0.796	0.426	-2.092				
second_Y 4.97e+07	34.8574	2.54e+07	1.37e-06	1.000	-4.97e+07				
bankrn 0.013	0.0048	0.004	1.197	0.231	-0.003				
========									
Possibly complete quasi-separation: A fraction 0.22 of observations c an be perfectly predicted. This might indicate that there is complete quasi-separation. In this case some parameters will not be identifie d.									

C:\Users\srava\Anaconda3\lib\site-packages\statsmodels\base\model.py:51

```
2: ConvergenceWarning: Maximum Likelihood optimization failed to conver
         ge. Check mle retvals
           "Check mle retvals", ConvergenceWarning)
In [43]: from sklearn.preprocessing import StandardScaler
         sc x = StandardScaler()
         x final train = sc x.fit transform(xtrain)
         x final test = sc x.transform(xtest)
         C:\Users\srava\AppData\Local\Programs\Python\Python36\Lib\site-packages
         \sklearn\preprocessing\data.py:645: DataConversionWarning: Data with in
         put dtype uint8, int64, float64 were all converted to float64 by Standa
         rdScaler.
           return self.partial fit(X, y)
         C:\Users\srava\AppData\Local\Programs\Python\Python36\Lib\site-packages
         \sklearn\base.py:464: DataConversionWarning: Data with input dtype uint
         8, int64, float64 were all converted to float64 by StandardScaler.
           return self.fit(X, **fit params).transform(X)
         C:\Users\srava\Anaconda3\lib\site-packages\ipykernel launcher.py:4: Dat
         aConversionWarning: Data with input dtype uint8, int64, float64 were al
         l converted to float64 by StandardScaler.
           after removing the cwd from sys.path.
In [44]: from sklearn.linear model import LogisticRegression
         classifier = LogisticRegression(random state = 0)
         classifier.fit(xtrain, vtrain)
         C:\Users\srava\AppData\Local\Programs\Python\Python36\Lib\site-packages
         \sklearn\linear model\logistic.py:433: FutureWarning: Default solver wi
         ll be changed to 'lbfgs' in 0.22. Specify a solver to silence this warn
         ina.
           FutureWarning)
Out[44]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=
         True,
                   intercept scaling=1, max iter=100, multi class='warn',
                   n jobs=None, penalty='l2', random state=0, solver='warn',
                   tol=0.0001, verbose=0, warm start=False)
```

```
In [45]: y pred = classifier.predict(xtest)
In [46]: ### CONFUSION MATRIX ###
        from sklearn.metrics import confusion matrix
         cm = confusion matrix(ytest, y pred)
        print ("Confusion Matrix : \n", cm)
        Confusion Matrix :
         [[ 11 6]
         [ 2 15211
        WE HAVE 11+152= 163 CORRECT PRDICTIONS AND 2+6= 8
        INCORRECT PREDICTIONS
In [47]: from sklearn.metrics import accuracy_score
        print ("Accuracy : ", accuracy score(ytest, y pred))
        Accuracy: 0.9532163742690059
In [48]: ### PRECISION, RECALL AND F1-SCORE CALCULATION ###
        from sklearn.metrics import classification report
        print(classification report(ytest, y pred))
                      precision
                                  recall f1-score
                                                     support
                   0
                           0.85
                                    0.65
                                              0.73
                                                         17
                           0.96
                                    0.99
                                              0.97
                   1
                                                        154
                                              0.95
           micro avg
                           0.95
                                    0.95
                                                        171
                                    0.82
                                              0.85
                                                        171
           macro avg
                           0.90
                           0.95
                                    0.95
                                              0.95
                                                        171
        weighted avg
```

ROC CURVE

```
In [49]: from sklearn.metrics import roc_auc score
         from sklearn.metrics import roc curve
         logit roc auc = roc auc score(ytest, classifier.predict(xtest))
         fpr, tpr, thresholds = roc curve(ytest, classifier.predict proba(xtest)
         [:,1]
         plt.figure()
         plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % logit r
         oc auc)
         plt.plot([0, 1], [0, 1], 'r--')
         plt.xlim([0.0, 1.0])
         plt.ylim([0.0, 1.05])
         plt.xlabel('False Positive Rate')
         plt.ylabel('True Positive Rate')
         plt.title('Receiver operating characteristic')
         plt.legend(loc="lower right")
         plt.savefig('Log ROC')
         plt.show()
```

