

Winning Space Race with Data Science

Jeff Barlow-Spady September 2024

Outline

Executive Summary

Accurate landing predictions can lead to cost savings by enabling the reuse of rocket stages, impacting competitive bidding for launches.

Logistic Regression and SVM models show promising accuracy, enhancing prediction reliability.

Introduction

Project background and context

• Space X advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because Space X can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against space X for a rocket launch. This goal of the project is to create a machine learning pipeline to predict if the first stage will land successfully.

Problems you want to find answers

- What factors determine if the rocket will land successfully?
- The interaction amongst various features that determine the success rate of a successful landing.
- What operating conditions needs to be in place to ensure a successful landing program.

Methodology

Executive Summary

Data collection methodology

Perform data wrangling

Perform exploratory data analysis (EDA) using visualization and SQL

Perform interactive visual analytics using Folium and Plotly Dash

Perform predictive analysis using classification models

Data Collection – SpaceX API

Data was sourced from SpaceX's API, focusing on rocket launch metrics such as payload mass and landing outcomes

https://github.com/Jeff-Barlow-Spady/notebooks/blob/master/final/files /ipynb/jupyter-labs-spacex-datacollection-api%20(1).ipynb

Data Collection - Scraping

Data was sourced from SpaceX's wikipedia, focusing on rocket launch metrics such as payload mass and landing outcomes

https://github.com/Jeff-Barlow-Spady/notebooks/blob/master/final/files /ipynb/jupyter-labs-spacex-datacollection-api%20(1).ipynb

Data Wrangling

Utilized pandas for cleaning and preparing the data by handling missing values and transforming features

https://github.com/Jeff-Barlow-Spady/notebooks/blob/master/final/files/ipynb/labs-jupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

EDA with SQL

```
[Task 1: Retrieve Unique Launch Sites];
[Task 2: Filter Launch Sites by Prefix];
[Task 3: Calculate Payload Mass for NASA];
[Task 4: Average Payload Mass for Booster v1.1];
[Task 5: First Successful Ground Landing Date];
[Task 6: Select Boosters with Criteria];
[Task 7: Successful vs Failed Missions];
[Task 8: Max Payload Mass Boosters];
[Task 9: Filter 2015 Failures by Month];
[Task 10: Rank Landing Outcomes];
                                      https://github.com/Jeff-Barlow-
                                      Spady/notebooks/blob/master/final/files/ipynb/jupyter-labs-
                                      eda-sql-coursera sqllite.ipynb
                                                                               11
```

Build an Interactive – Map with Folium

- Functions from the Folium libraries are used to visualize the data through interactive maps.
- The Folium library is used to:
 - Mark all launch sites on a map
 - Mark the succeeded launches and failed launches for each site on the map
 - Mark the distances between a launch site to its proximities such as the nearest city, railway, or highway

Build a Dashboard with Plotly Dash

Created an interactive, styled dashboard to communicate insights

Pie Chart With Success Rate For Launch Sites

Scatter chart showing the relationship with Outcome and Payload Mass (Kg) for the different booster version.

Predictive Analysis (Classification)

https://github.com/Jeff-Barlow-Spady/DS-NB/blob/master/notebooks/final/dash/spacex_dash_app%20(1).py

Results

EXPLORATORY DATA ANALYSIS RESULTS

INTERACTIVE ANALYTICS DEMO IN SCREENSHOTS

PREDICTIVE ANALYSIS RESULTS

Flight Number vs. Launch Site

Payload vs. Launch Site

Relationship between launch site and payload size

Success Rate vs. Orbit Type

ES-L1, GEO, ISS and SSO had the heightest success rate

Flight Number vs. Orbit Type

Success rate by orbit type

Payload vs. Orbit Type Payload mass vs orbit type

Launch Success Yearly Trend

All Launch Site Names

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'											
-	%%sql SELECT * FROM SPACEXTABLE WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5; Python										
* <u>sqlite://</u> Done.	<u>/my_data1.d</u>	<u>lb</u>								nc	
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome		
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)		
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)	P	
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt		
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt		
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt		

Total Payload Mass

```
Display the total payload mass carried by boosters launched by NASA (CRS)
    %%sql
    SELECT SUM(PAYLOAD_MASS__KG_) AS TOTAL_PAYLOAD_MASS FROM SPACEXTABLE WHERE CUSTOMER = 'NASA (CRS)';
 * sqlite:///my_data1.db
 Done.
  TOTAL_PAYLOAD_MASS
                45596
```

Average Payload Mass by F9 v1.1

First Successful Ground Landing Date

List the date when the first successful landing outcome in ground pad was acheived. Hint:Use min function %%sql SELECT MIN(DATE) AS FIRST SUCCESSFUL LANDING DATE FROM SPACEXTABLE WHERE Landing_Outcome = 'Success (ground pad)'; Python * sqlite:///my_data1.db Done. FIRST SUCCESSFUL LANDING DATE 2015-12-22

Successful Drone Ship Landing with Payload between 4000 and 6000

```
Click to add a breakpoint

SELECT SUDSIT(DATE, 6, 2) AS MONTH, LANDING_OUTCOME, BOOSTER_VERSION, LAUNCH_SITE FROM SPACEXTABLE WHERE LANDING_OUTCOME =

'Failure (drone ship)' AND substr(DATE, 0, 5) = '2015';

* sqlite://my_datal.db

Done.

MONTH Landing_Outcome Booster_Version Launch_Site

01 Failure (drone ship) F9 v1.1 B1012 CCAFS LC-40

04 Failure (drone ship) F9 v1.1 B1015 CCAFS LC-40
```

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

2015 Launch Records

```
Click to add a breakpoint

SELECT SUDSTRUBTE, 6, 2) AS MONTH, LANDING_OUTCOME, BOOSTER_VERSION, LAUNCH_SITE FROM SPACEXTABLE WHERE LANDING_OUTCOME =

'Failure (drone ship)' AND substr(DATE, 0, 5) = '2015';

* sqlite://my_datal.db

Done.

MONTH Landing_Outcome Booster_Version Launch_Site

01 Failure (drone ship) F9 v1.1 B1012 CCAFS LC-40

04 Failure (drone ship) F9 v1.1 B1015 CCAFS LC-40
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Wide View Showing marker clusters

link to file

Outcome Class as Coloured Marker

link to file

Example of folium annotations

<u>link to file</u>

Launch Sites

dash script

Highest Success Ratio

dash script

Payload vs Launch Outcome

dash script

Classification Accuracy

notebook link

Confusion Matrix

Logistic Regression, SVM and KNN had the same scores

Model	Score	Accuracy Score	F1 Score
Logistic Regression	0.833333	0.833333	0.888889
SVM	0.833333	0.833333	0.888889
Decision Tree	0.833333	0.722222	0.800000
KNN	0.833333	0.833333	0.888889

Conclusions

The models achieved high accuracy in predicting Falcon 9 landings, showcasing the effectiveness of data-driven approaches in aerospace.

Accurate predictions can significantly reduce launch costs, enhancing SpaceX's competitive edge and enabling informed decision-making.

Hyperparameter tuning optimized model performance, underscoring the value of rigorous model development processes.

Future enhancements could involve advanced techniques and feature enrichment to further improve predictions and practical applications.

