

考试科目: 开课单位: 高等数学(下) A

考试时长: 150 分钟 命题教师: 王融 等

题 号	1	2	3	4	5	6	7	8	9	10
分 值	9分	9分	12 分	7分	7分	8 分	8 分	8 分	8 分	8 分
题 号	11	12								
分值	8分	8 分								

本试卷共 12 大题, 满分 100 分. (考试结束后请将试卷、答题本、草稿纸一起交给监考老师)

注意: 本试卷里的中文为直译(即完全按英文字面意思直接翻译), 所有数学词汇的定义请参 照教材(Thomas' Calculus, 13th Edition)中的定义。如果其中有些数学词汇的定义不同于中文书 籍(比方说同济大学的高等数学教材)里的定义,以教材(Thomas' Calculus,13th Edition)中的 定义为准。

- 1. (9 pts) Determine whether the following statements are true or false? No justification is necessary.
 - (1) Equation $r = 2\sin(\theta)$ ($0 \le \theta \le \pi$) in polar form is a circle of radius 1 centered at (0,1).
 - (2) If $f(x,y) = \sin x + \sin y$, then for any direction **u**, the directional derivative of f(x,y)satisfies $-\sqrt{2} \le D_{\mathbf{u}} f(x,y) \le \sqrt{2}$.
 - (3) If $\mathbf{u} \neq 0$, and if $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ and $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
- 2. (9 pts) Multiple Choice Questions: (only one correct answer for each of the following questions.)

(1) Let
$$\mathbf{R}: (x-1)^2 + y^2 \le 1$$
, then the integral $\iint_{\mathbf{R}} f(x,y) dA$ is **not equal to**

(A)
$$\int_0^2 \int_{-\sqrt{2x-x^2}}^{\sqrt{2x-x^2}} f(x,y) \, dy dx$$
.

(B)
$$\int_{-1}^{1} \int_{1-\sqrt{1-v^2}}^{1+\sqrt{1-y^2}} f(x,y) dxdy$$

(C)
$$\int_{0}^{2\pi} \int_{0}^{1} f(1+r\cos\theta, r\sin\theta) \cdot rdrd\theta.$$

(A)
$$\int_{0}^{2} \int_{-\sqrt{2x-x^{2}}}^{\sqrt{2x-x^{2}}} f(x,y) \, dy dx$$
. (B) $\int_{-1}^{1} \int_{1-\sqrt{1-y^{2}}}^{1+\sqrt{1-y^{2}}} f(x,y) \, dx dy$. (C) $\int_{0}^{2\pi} \int_{0}^{1} f(1+r\cos\theta, r\sin\theta) \cdot r dr d\theta$. (D) $\int_{0}^{2\pi} \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) \cdot r dr d\theta$.

(2) Which formula satisfies the conditions that function f(x,y) has both partial derivatives at (0,0) when f(0,0) = 0?

(A)
$$\frac{xy}{x^2+y^2}$$
.

(B)
$$\frac{x^2 - y^2}{x^2 + y^2}$$
.
(D) $\frac{x^4 + y^2}{x^2 + y^2}$.

(C)
$$\sqrt{x^2 + y^2} \sin \frac{1}{x^2 + y^2}$$
.

(D)
$$\frac{x^4+y^2}{x^2+y^2}$$
.

- (3) If $f(x,y) = 3x + 4y ax^2 2ay^2 2bxy$ has only local maxima, then
 - (A) $2a^2 > b^2$, and a < 0.
- (B) $2a^2 > b^2$, and a > 0.
- (C) $2a^2 < b^2$, and a < 0.

- (D) $2a^2 < b^2$, and a > 0.
- 3. (12 pts) Please fill in the blank for the questions below.
 - (1) If a plane is tangent to the surface $x^2 2y^2 + z^2 = 2$, and parallel to x y + 2z = 0, then the equation of the plane is ______.
 - (2) Let $f(x, y, z) = \left(\frac{x}{y}\right)^{\frac{1}{z}}$, then $df(1, 1, 1) = \underline{\hspace{1cm}}$.
 - (3) The equation of the plane through the line x = -1 + 2t, y = 3 + t, z = -t and parallel to the line x = -2t, y = t, z = 1 t is ______.
 - (4) The circulation of the field $\mathbf{F} = \nabla (xy^2z^3)$ around the ellipse

$$C: \mathbf{r}(t) = (\cos t)\mathbf{i} + (4\sin t)\mathbf{j}, \quad 0 \le t \le 2\pi,$$

is _____

4. (7 pts) Find the area of region that lies inside the circle $r = 3 \sin \theta$ and outside the cardioid $r = 1 + \sin \theta$.

5. (7 pts) Find the points on the curve

$$\mathbf{r}(t) = (12\sin t)\mathbf{i} - (12\cos t)\mathbf{j} + 5t\mathbf{k}$$

at a distance 26π units along the curve from the point (0, -12, 0).

- 6. (8 pts) Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^n}{\ln(n+2)} x^n.$
- 7. (8 pts) Find the real numbers $a, b (b \neq 0)$, which satisfy

$$\lim_{x \to 0} \frac{\cos(\sin x) - \sqrt{1 - x^2}}{x^a} = b.$$

8. (8 pts) Find the absolute maximum and minimum values of $f(x,y) = e^{-x^2-y^2}(x^2+2y^2)$ on the close disk $x^2+y^2 \le 4$.

- 9. (8 pts) Evaluate the integral $\iiint_D z\sqrt{x^2+y^2+z^2}\,dV$, where D is the solid bounded above by z=1 and below by $z=\sqrt{x^2+y^2}$.
- 10. (8 pts) Calculate the line integral $\int_L \sin 2x \, dx + 2(x^2 1)y \, dy$, here L is the curve $y = \sin x$, from (0,0) to $(\pi,0)$.
- 11. (8 pts) Use the Stokes' Theorem to calculate the circulation of the field \mathbf{F} around the curve C in the indicated direction, here $\mathbf{F} = y\mathbf{i} + xz\mathbf{j} + x^2\mathbf{k}$, and C is the boundary of the triangle cut from the plane x + y + z = 1 by the first octant, counterclockwise when viewed from above.
- 12. (8 pts) Use the Divergence Theorem to find the outward flux of ${\bf F}$ across the boundary of the region D, here ${\bf F}=x^2\,{\bf i}+y^2\,{\bf j}+z^2\,{\bf k}$; and D is the region cut from the solid cylinder $x^2+y^2\leq 4$ by the planes z=0, and z=1.

(9分) 判断题:

- (1) 极坐标方程 $r = 2\sin(\theta)$ ($0 \le \theta \le \pi$) 在 xy-平面所对应的图形是以 (0,1) 为圆心、半径 为 1 的圆.
- (2) 设 $f(x,y) = \sin x + \sin y$, 则对任意方向 u, 函数 f(x,y) 的方向导数满足 $-\sqrt{2} \le$ $D_{\mathbf{u}}f(x,y) \leq \sqrt{2}.$
- (3) 若 $\mathbf{u} \neq 0$, 且满足 $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$ 以及 $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$, 则必有 $\mathbf{v} = \mathbf{w}$.

(9分) 单项选择题:

(1) 设 $\mathbf{R}: (x-1)^2 + y^2 \le 1$, 则积分 $\iint_{\mathbf{R}} f(x,y) dA$ 不等于

(A)
$$\int_0^2 \int_{-\sqrt{2x-x^2}}^{\sqrt{2x-x^2}} f(x,y) \, dy dx$$
.

(B)
$$\int_{-1}^{1} \int_{1-\sqrt{1-y^2}}^{1+\sqrt{1-y^2}} f(x,y) dxdy$$
.

(C)
$$\int_0^{2\pi} \int_0^1 f(1 + r\cos\theta, r\sin\theta) \cdot r dr d\theta.$$

(A)
$$\int_{0}^{2} \int_{-\sqrt{2x-x^{2}}}^{\sqrt{2x-x^{2}}} f(x,y) \, dy dx$$
. (B) $\int_{-1}^{1} \int_{1-\sqrt{1-y^{2}}}^{1+\sqrt{1-y^{2}}} f(x,y) \, dx dy$. (C) $\int_{0}^{2\pi} \int_{0}^{1} f(1+r\cos\theta, r\sin\theta) \cdot r dr d\theta$. (D) $\int_{0}^{2\pi} \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) \cdot r dr d\theta$.

(2) 设 f(0,0) = 0, 当 $(x,y) \neq (0,0)$ 时,f(x,y) 为如下四式之一,则 f(x,y) 在点 (0,0) 处 两个偏导数都存在的是

(A)
$$\frac{xy}{x^2+y^2}$$
.

(B)
$$\frac{x^2 - y^2}{x^2 + y^2}$$
.

(C)
$$\sqrt{x^2 + y^2} \sin \frac{1}{x^2 + y^2}$$
.

(B)
$$\frac{x^2 - y^2}{x^2 + y^2}$$
.
(D) $\frac{x^4 + y^2}{x^2 + y^2}$.

(3) 若 $f(x,y) = 3x + 4y - ax^2 - 2ay^2 - 2bxy$ 只有局部极大值, 则

(A)
$$2a^2 > b^2$$
, \mathbb{H} $a < 0$.

(B)
$$2a^2 > b^2$$
, $\mathbb{H} \ a > 0$.

(C)
$$2a^2 < b^2$$
, \mathbb{H} $a < 0$.

(D)
$$2a^2 < b^2$$
, $\mathbb{H} \ a > 0$.

(12分) 填空题: 三、

(1) 与曲面 $x^2 - 2y^2 + z^2 = 2$ 相切, 且与平面 x - y + 2z = 0 平行的平面方程为

(2) **设** $f(x, y, z) = \left(\frac{x}{y}\right)^{\frac{1}{z}}$, **则** $df(1, 1, 1) = \underline{\hspace{1cm}}$.

(3) 过直线 x = -1 + 2t, y = 3 + t, z = -t 且平行于直线 x = -2t, y = t, z = 1 - t 的平面方 程为

(4) 向量场 $\mathbf{F} = \nabla (xy^2z^3)$ 绕椭圆

$$C: \mathbf{r}(t) = (\cos t)\mathbf{i} + (4\sin t)\mathbf{j}, \quad 0 \le t \le 2\pi,$$

的环量为 _______.

(7分) 设 D 是(如下图所示)在圆 $r = 3\sin\theta$ 的内部,而不在心形线 $r = 1 + \sin\theta$ 的内部, 四、 的区域, 求区域 D 的面积,

五、 (7分) 求在曲线

$$\mathbf{r}(t) = (12\sin t)\mathbf{i} - (12\cos t)\mathbf{j} + 5t\mathbf{k}$$

上且距离点 (0,-12,0) 的弧长为 26π 的点的坐标.

六、 (8分)求幂级数 $\sum_{n=0}^{\infty} \frac{2^n}{\ln(n+2)} x^n$ 的收敛域.

七、 (8分) 若

$$\lim_{x \to 0} \frac{\cos(\sin x) - \sqrt{1 - x^2}}{x^a} = b,$$

这里 a 、b 为实常数, 且 $b \neq 0$, 求 a 和 b 的值.

八、 (8分)求函数 $f(x,y)=e^{-x^2-y^2}(x^2+2y^2)$ 在闭圆盘 $x^2+y^2\leq 4$ 上的最大值和最小值(即全局极大值和全局极小值).

九、 (8分)计算积分 $\iiint_D z\sqrt{x^2+y^2+z^2}\,dV$,这里 D 是夹在平面 z=1 和曲面 $z=\sqrt{x^2+y^2}$ 之间的区域.

十、 (8分)计算曲线积分 $\int_L \sin 2x \, dx + 2(x^2-1)y \, dy$,其中 L 是曲线 $y=\sin x$ 上从点 (0,0) 到点 $(\pi,0)$ 的一段.

十一、(8分)用Stokes' 定理计算向量场 **F** 绕有向闭曲线 C 的环量,这里 **F** = y **i** + xz **j** + x^2 **k** , 而闭曲线 C 是平面 x+y+z=1 在第一卦限的区域边界,当从上方往下看时,C 是逆时针方向.

十二、 (8分) 用散度定理计算向量场 **F** 通过区域 *D* 的边界从内向外的通量, 这里 **F** = x^2 **i** + y^2 **j** + z^2 **k** ; 区域 *D* 是圆柱体 $x^2 + y^2 \le 4$ 夹在平面 z = 0 和 z = 1 之间的部分.