Econometrics Cheat Sheet

by Tyler Ransom, University of Oklahoma @tyleransom

Data & Causality

Basics about data types and causality.

Types of data

Experimental	Data from randomized experiment
Observational	Data collected passively
Cross-sectional	Multiple units, one point in time
Time series	Single unit, multiple points in time
ongitudinal (or Pa	ongitudinal (or Panel)Multiple units followed over multiple
	time periods

Experimental data

- Very rare in Social Sciences

Statistics basics

We examine a random sample of data to learn about the population

e Representative of population	Some number describing population	Rule assigning value of θ to sample θ θ as Sample average $\overline{V} = \frac{1}{L} \sum_{i} N_i \cdot V_i$	What the estimator spits out		across all possible samples or $W = E(W) - \theta$	W efficient if $Var(W) < Var(\widetilde{W})$	IN consistent if a v a co N v co
Random sample	Parameter (θ)	Estimator of θ	Estimate of θ	Sampling distribution	Bias of estimator W	Efficiency	Consistance

Hypothesis testing

The way we answer yes/no questions about our population using a sample of data. e.g. "Does increasing public school spending increase student achievement?"

null hypothesis (H_0) alt. hypothesis (H_a) significance level (α)	Typically, $H_0: \theta = 0$ Typically, $H_0: \theta \neq 0$ Tolerance for making Type I
test statistic (T) critical value (c)	(e.g. 10% , 5% , or 1%) Some function of the sample of Value of T such that reject H_0 c depends on α :

of data

error;

Simple Regression Model

Largest α at which fail to reject H_0 ;

p-value

reject H_0 if $p < \alpha$

c depends on if 1- or 2-sided test

Regression is useful because we can estimate a $ceteris\ paribus$ relationship between some variable x and our outcome y

$$y = \beta_0 + \beta_1 x + u$$

We want to estimate $\hat{\beta}_1$, which gives us the effect of x on y.

OLS formulas

To estimate $\hat{\beta}_0$ and $\hat{\beta}_1$, we make two assumptions:

1.
$$E(u) = 0$$

2.
$$E(u|x) = E(u)$$
 for all x

When these hold, we get the following formulas:

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

$$\hat{\beta}_1 = \frac{\widehat{Cov}(y, x)}{\widehat{Var}(x)}$$

residuals (\hat{u}_i) $\hat{u}_i = y_i - \hat{y}_i$. Total Sum of Squares $SST = \sum_{i=1}^N (y_i - \bar{y})^2$. Expl. Sum of Squares $SSE = \sum_{i=1}^N (\hat{y}_i - \bar{y})^2$. Resid. Sum of Squares $SSR = \sum_{i=1}^N (\hat{y}_i - \bar{y})^2$. R-squared (R^2) $R^2 = \frac{SSE}{SST}$: "frac. of var. in y explained by x." $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ fitted values (\hat{y}_i)

Algebraic properties of OLS estimates

 $\sum_{i=1}^{N} x_i \hat{u}_i = 0$ (zero covariance bet. x and resids.) The OLS line (SRF) always passes through $(\overline{x}, \overline{y})$ $\sum_{i=1}^N \hat{u}_i = 0$ (mean & sum of residuals is zero) SSE + SSR = SST $0 \le R^2 \le 1$

Interpretation and functional form

Our model is restricted to be linear in parameters But not linear in x Other functional forms can give more realistic model

Model	DV	RHS	Interpretation of β_1
Level-level	y	x	$\Delta y = \beta_1 \Delta x$
Level-log	y	$\log(x)$	$\Delta y = (\beta_1/100) [1\% \Delta x]$
Log-level	$\log(y)$	x	$\%\Delta y = (100\beta_1) \Delta x$
Log-log	$\log(y)$	$\log(x)$	$\%\Delta y = \beta_1\%\Delta x$
Quadratic	y	$x + x^2$	$\Delta y = (\beta_1 + 2\beta_2 x) \Delta x$

Note: DV = dependent variable; RHS = right hand side

Multiple Regression Model

Multiple regression is more useful than simple regression because we can more plausibly estimate ceteris paribus relationships (i.e. E(u|x) = E(u) is more plausible) if |T| > c;

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

 $\hat{\beta}_1, \dots, \hat{\beta}_k$: partial effect of each of the x's on y

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}_1 - \dots - \hat{\beta}_k \overline{x}_k$$

$$\hat{\beta}_j = \frac{\widehat{Cov}(y, \text{residualized } x_j)}{\widehat{Var}(\text{residualized } x_j)}$$

regression of x_j on all other x's (i.e. $x_1, \ldots, x_{j-1}, x_{j+1}, \ldots x_k$) where "residualized x_j " means the residuals from OLS

Gauss-Markov Assumptions

- 1. y is a linear function of the β 's
- 2. y and x's are randomly sampled from population
- 3. No perfect multicollinearity
- 4. $E(u|x_1,...,x_k) = E(u) = 0$ (Unconfoundedness)
- 5. $Var(u|x_1,...,x_k) = Var(u) = \sigma^2$ (Homoskedasticity)

OLS is unbiased; i.e. $E(\hat{\beta}_j) = \beta_j$ OLS is Best Linear Unbiased Estimator When (1)-(4) hold: When (1)-(5) hold:

Variance of u (a.k.a. "error variance")

$$\hat{\sigma}^{2} = \frac{SSR}{N - K - 1} = \frac{1}{N - K - 1} \sum_{i=1}^{N} \hat{u}_{i}^{2}$$

Variance and Standard Error of \hat{eta}_i

$$Var(\hat{\beta}_{j}) = \frac{\sigma^{2}}{SST_{j}(1 - R_{j}^{2})}, \ j = 1, 2, ..., k$$

$$SST_j = (N-1)Var(x_j) = \sum_{i=1}^{N} (x_{ij} - \overline{x}_j)$$

 $R_i^2 = R^2$ from a regression of x_j on all other x's

 \sqrt{Var} Standard deviation:

Standard error:

$$se(\hat{\beta}_j) = \sqrt{\frac{\hat{\sigma}^2}{SST_j(1 - R_j^2)}}, j = 1, \dots, k$$

Classical Linear Model (CLM)

Add a 6th assumption to Gauss-Markov:

6. u is distributed $N\left(0,\sigma^2\right)$

Otherwise, can't conduct hypothesis tests about the β 's Need this to know what the distribution of $\hat{\beta}_j$ is

Testing Hypotheses about the β 's

Under A (1)-(6), can test hypotheses about the β 's

$H_0:\beta_j=0$ t-test for simple hypotheses To test a simple hypothesis like

use a t-test:

 $H_a: \beta_j \neq 0$

$$t = \frac{\hat{\beta}_j - 0}{se\left(\hat{\beta}_i\right)}$$

where 0 is the null hypothesized value.

Reject H_0 if $p < \alpha$ or if |t| > c (See: Hypothesis testing)