Hospital Appointment Show-No Show Prediction

09/03/2021

Hong Tang

Summary and Recommendation

- Why: No show causes profit loss and resources wasted
- **Findings:** Following features are good indicator of Hospital Show/Noshow (SNS), Right figure
- Randomforest Classifier outperforms other classification methods; final selected model has robust AUC 0.72 for both training and testing set
- Recommendation to improve show prediction
 - Focus on efforts on patients with longer delay time
 - Survey on patients with no show
- Plan Forward:
- Improve feature engineering; Investigate interaction of features; Model tuning

Preliminary Dashboard/Mobile App

Hospital Appointment No Show Prediction Dashboard

ML Process

Feature EDA

Existing numerical features

Model Selection

Simple Logistic regression

Feature EDA

Time Series features

Numerical features

Categorical features

Feature importance:

Three ranking methods

Model Selection

4 Classifier benchmark

Further feature engineering

Finetune RFC

Model Deployment

Model Deployment

Dashboard and web App (ongoing)

Key Features

Feature Explored

- Weekday for schedule
- Weekday for appointment
- Time difference between schedule and appointment day (or "Delay time")
- PatientID
- AppointmentID
- Month of schedule day
- Note: high collinearity between appointmentID and Delay Time, appointmentID is removed from model building, which improve model prediction accuracy

No Show indicators

Age 20-60 "busy working" group Longer delay time January-April and Received message

Feature Selection

- Three methods are used to select features along with correlation matrix
- The time difference between schedule and appointment is the most important feature for SNS

 Location ID and Age are also important for SNS prediction

Model Selection and Hyper Parameter Tuning

Four Classification Methods are used for model selection

- Random Forest
- Logistic Regression
- Naïve Bayes Gaussian
- Decision Tree

RandomForest is selected for prediction

	best_score	best_params
random_forest	0.799116	{'max_features': 'auto', 'min_samples_leaf': 2
logistic_regression	0.796789	{'C': 1}
naive_bayes_gaussian	0.796789	{}
decision_tree	0.720595	{'criterion': 'entropy'}
	logistic_regression naive_bayes_gaussian	logistic_regression 0.796789 naive_bayes_gaussian 0.796789

Grid based search on three most important factors for RFC

- N_estimators
- max_features
- min_sample leaf

