CÁLCULO NUMÉRICO UERJ

Interpolação Polinomial - Forma de Newton

Rodrigo Madureira rodrigo.madureira@ime.uerj.br IME-UERJ

Sumário

- Forma de Newton
 - Operador diferença dividida
 - Construção da tabela
- Erro de interpolação
 - Estimativa do erro para f(x) conhecido
 - Limitante superior do erro de interpolação
 - Estimativa do erro para f(x) desconhecido
- Bibliografia

Forma de Lagrange

Vimos anteriormente que a forma de Lagrange é dada por

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \ldots + y_n L_n(x),$$

onde definimos $y_k = f(x_k)$ e as funções base $L_k(x)$, para k = 0, 1, ..., n, por:

$$L_k(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_0)(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)} = \prod_{i=0,i\neq k}^n \frac{x-x_i}{x_k-x_i},$$

onde

$$L_k(x_i) = \begin{cases} 0 & \text{se } i \neq k, \\ 1 & \text{se } i = k. \end{cases}$$

Desvantagem: ao adicionar novos pontos de interpolação, deveremos recalcular os polinômios $L_k(x)$.

Forma de Lagrange

Vimos anteriormente que a forma de Lagrange é dada por

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \ldots + y_n L_n(x),$$

onde definimos $y_k = f(x_k)$ e as funções base $L_k(x)$, para k = 0, 1, ..., n, por:

$$L_k(x) = \frac{(x-x_0)(x-x_1)\dots(x-x_{k-1})(x-x_{k+1})\dots(x-x_n)}{(x_k-x_0)(x_k-x_1)\dots(x_k-x_{k-1})(x_k-x_{k+1})\dots(x_k-x_n)} = \prod_{i=0,i\neq k}^n \frac{x-x_i}{x_k-x_i},$$

onde

$$L_k(x_i) = \begin{cases} 0 & \text{se } i \neq k, \\ 1 & \text{se } i = k. \end{cases}$$

Desvantagem: ao adicionar novos pontos de interpolação, deveremos recalcular os polinômios $L_k(x)$.

Dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
$\overline{f(x)}$	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Lagrange.

O exercício pede para achar uma aproximação $f(0.2749) \approx P_2(0.2749)$.

Devemos escolher três pontos da tabela x_0 , x_1 , x_2 tais que x_0 esteja mais próximo de 0.2749 e seja menor que 0.2749.

Neste exemplo, $x_0 = 0.2$, $x_1 = 0.3$, $x_2 = 0.4$.

Dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Lagrange.

O exercício pede para achar uma aproximação $f(0.2749) \approx P_2(0.2749)$.

Devemos escolher três pontos da tabela x_0 , x_1 , x_2 tais que x_0 esteja mais próximo de 0.2749 e seja menor que 0.2749.

Neste exemplo, $x_0 = 0.2$, $x_1 = 0.3$, $x_2 = 0.4$.

A base de Lagrange será formada pelos seguintes polinômios de grau 2:

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} = \frac{(x - 0.3)(x - 0.4)}{(0.2 - 0.3)(0.2 - 0.4)}$$

$$\Rightarrow L_0(0.2749) = \frac{(0.2749 - 0.3)(0.2749 - 0.4)}{(0.2 - 0.3)(0.2 - 0.4)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} = \frac{(x - 0.2)(x - 0.4)}{(0.3 - 0.2)(0.3 - 0.4)}$$

$$\Rightarrow L_1(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.4)}{(0.3 - 0.2)(0.3 - 0.4)}$$

$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} = \frac{(x - 0.2)(x - 0.3)}{(0.4 - 0.2)(0.4 - 0.3)}$$

$$\Rightarrow L_2(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)}{(0.4 - 0.2)(0.4 - 0.3)}$$

Assim, obtemos:

$$P_2(0.2749) = L_0(0.2749)f(0.2) + L_1(0.2749)f(0.3) + L_2(0.2749)f(0.4)$$

 $P_2(0.2749) = 1.3164.$

Mas, e para obter, por exemplo, f(0.2749) usando **interpolação cúbica**?

Adicionamos o nó $x_3 = 0.5$ ao conjunto de nós de interpolação e obtemos: $x_0 = 0.2$, $x_1 = 0.3$, $x_2 = 0.4$, $x_3 = 0.5$.

Porém, não poderemos mais reaproveitar $L_0(x)$, $L_1(x)$, $L_2(x)$ calculados na interpolação quadrática, pois são **polinômios de grau** 2.

Assim, obtemos:

$$P_2(0.2749) = L_0(0.2749)f(0.2) + L_1(0.2749)f(0.3) + L_2(0.2749)f(0.4)$$

 $P_2(0.2749) = 1.3164.$

Mas, e para obter, por exemplo, f(0.2749) usando **interpolação cúbica**?

Adicionamos o nó $x_3 = 0.5$ ao conjunto de nós de interpolação e obtemos: $x_0 = 0.2$, $x_1 = 0.3$, $x_2 = 0.4$, $x_3 = 0.5$.

Porém, não poderemos mais reaproveitar $L_0(x)$, $L_1(x)$, $L_2(x)$ calculados na interpolação quadrática, pois são **polinômios de grau** 2.

Agora, deveremos recalcular os polinômios da base, que são de grau 3:

$$L_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)} = \frac{(x - 0.3)(x - 0.4)(x - 0.5)}{(0.2 - 0.3)(0.2 - 0.4)(0.2 - 0.5)}$$

$$\Rightarrow L_0(0.2749) = \frac{(0.2749 - 0.3)(0.2749 - 0.4)(0.2749 - 0.5)}{(0.2 - 0.3)(0.2 - 0.4)(0.2 - 0.5)}$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)} = \frac{(x - 0.2)(x - 0.4)(x - 0.5)}{(0.3 - 0.2)(0.3 - 0.4)(0.3 - 0.5)}$$

$$\Rightarrow L_1(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.4)(0.2749 - 0.5)}{(0.3 - 0.2)(0.3 - 0.4)(0.3 - 0.5)}$$

Agora, deveremos recalcular os polinômios da base, que são de **grau** 3:

$$L_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} = \frac{(x - 0.2)(x - 0.3)(x - 0.5)}{(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$

$$\Rightarrow \textit{L}_{2}(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.5)}{(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$

$$L_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} = \frac{(x - 0.2)(x - 0.3)(x - 0.4)}{(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}$$

$$\Rightarrow L_2(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.4)}{(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}$$

Assim, obtemos:

$$P_3(0.2749) = L_0(0.2749)f(0.2) + L_1(0.2749)f(0.3) + L_2(0.2749)f(0.4) + L_3(0.2749)f(0.5) = 1.3164$$

A vantagem da próxima forma de interpolação, **Forma de Newton**, é que podemos adicionar novos pontos de dados ao polinômio interpolador sem a necessidade de recalcular todo o polinômio.

Agora, deveremos recalcular os polinômios da base, que são de **grau** 3:

$$L_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)} = \frac{(x - 0.2)(x - 0.3)(x - 0.5)}{(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$

$$\Rightarrow L_2(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.5)}{(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$

$$L_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)} = \frac{(x - 0.2)(x - 0.3)(x - 0.4)}{(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}$$

$$\Rightarrow L_2(0.2749) = \frac{(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.4)}{(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}$$

Assim, obtemos:

$$P_3(0.2749) = L_0(0.2749)f(0.2) + L_1(0.2749)f(0.3) + L_2(0.2749)f(0.4) + L_3(0.2749)f(0.5) = 1.3164$$

A vantagem da próxima forma de interpolação, **Forma de Newton**, é que podemos adicionar novos pontos de dados ao polinômio interpolador sem a necessidade de recalcular todo o polinômio.

A forma de Newton para um polinômio de grau n que interpola uma função f(x) em n+1 pontos distintos $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$ é dada por:

$$P_n(x) = d_0 N_0(x) + d_1 N_1(x) + d_2 N_2(x) + ... + d_n N_n(x),$$

onde as funções bases são dadas por:

$$N_1(x) = x - x_0;$$

 $N_2(x) = (x - x_0)(x - x_1);$
 $N_3(x) = (x - x_0)(x - x_1)(x - x_2);$
...
 $N_n(x) = (x - x_0)(x - x_1)(x - x_2)...(x - x_{n-1})$
e os coeficientes d_k , para $k = 0, 1, ..., n$, são as

diferenças divididas de ordem k.

 $N_0(x) = 1$;

Os coeficientes d_k são calculados usando o **operador diferenças divididas**, definido por:

$$d_0 = f[x_0] = f(x_0)$$
 (Ordem zero)

$$d_1 = f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 (Ordem 1)

$$d_2 = f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$
(Ordem 2)

$$d_3 = f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$
 (Ordem 3)

. . .

$$d_n = f[x_0, x_1, x_2, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, x_2, \dots, x_{n-1}]}{x_n - x_0} \text{ (Ordem n)}$$

A melhor maneira de calcular as diferenças divididas d_0, d_1, \dots, d_n é construindo a seguinte tabela:

	Ordem 0	Ordem 1	Ordem 2		Ordem n
-X ₀	$f[x_0]$				
		$f[x_0,x_1]$			
<i>X</i> ₁	$f[x_1]$		$f[x_0,x_1,x_2]$		
	<i>(</i> []	$f[x_1,x_2]$			
<i>X</i> ₂	$f[x_2]$	fly v l	$f[x_1,x_2,x_3]$	()	fly y y l
<i>X</i> ₃	$f[x_3]$	$f[x_2,x_3]$	$f[x_2, x_3, x_4]$	()	$f[x_0,x_1,x_n]$
^ 3	, [v3]	$f[x_3, x_4]$	7[2, 3, 4]		
		, [,,3,,,4]			
			$f[x_{n-2}, x_{n-1}, x_n]$		
		$f[x_{n-1},x_n]$			
Xn	$f[x_n]$				

X	Ordem 0	Ordem 1	Ordem 2		Ordem n
<i>x</i> ₀	$f[x_0]=d_0$				
<i>X</i> ₁	$f[x_1]$	$f[x_0, x_1] = d_1$	$f[x_0,x_1,x_2]=d_2$		
<i>X</i> ₂	$f[x_2]$	$f[x_1, x_2]$ $f[x_2, x_3]$	$f[x_1,x_2,x_3]$	()	$f[x_0, x_1, x_n] = d_n$
<i>X</i> ₃	$f[x_3]$	$f[x_2, x_3]$ $f[x_3, x_4]$	$f[x_2,x_3,x_4]$	()	$I[\lambda_0,\lambda_1,\lambda_n] = u_n$
			$f[x_{n-2}, x_{n-1}, x_n]$		
		$f[x_{n-1},x_n]$. [211-2, 211-1, 211]		
Xn	$f[x_n]$				

$$P_n(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1) + d_3(x - x_0)(x - x_1)(x - x_2) + \dots + d_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

X	Ordem 0	Ordem 1	Ordem 2		Ordem n
<i>X</i> ₀	$f[x_0]=d_0$				
<i>X</i> ₁	$f[x_1]$	$f[x_0,x_1]=d_1$	$f[x_0,x_1,x_2]=d_2$		
<i>X</i> ₂	$f[x_2]$	$f[x_1,x_2]$	$f[x_1,x_2,x_3]$		
<i>X</i> ₃	$f[x_3]$	$f[x_2,x_3]$	$f[x_2, x_3, x_4]$	()	$f[x_0,x_1,x_n]=d_n$
		$f[x_3, x_4]$			•••
		$f[x_{n-1},x_n]$	$f[x_{n-2},x_{n-1},x_n]$		
X _n	$f[x_n]$	' [^n-1, ^n]			

$$P_n(x) = \frac{d_0}{d_1} + \frac{d_1}{d_1}(x - x_0) + \frac{d_2}{d_2}(x - x_0)(x - x_1) + \frac{d_3}{d_3}(x - x_0)(x - x_1)(x - x_2) + \dots + \frac{d_n}{d_n}(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

Vamos construir a seguinte tabela de diferenças divididas

0 1

0.1 1.1052

0.2 1.2214

0.3 1.3499

0.4 1.4918

0.5 1.6487

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

didas:

Vamos construir a seguinte tabela de diferenças div								
X	Ordem 0	Ordem 1	Ordem 2	Ordem 3				
0	1							
0.1	1.1052							
0.2	1.2214							
0.3	1.3499							

0.4 1.4918

0.5 1.6487

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

Vamos construir a seguinte tabela de diferenças divididas:

varrio	o constiun a	a seguinte t	abela de dil	ereriças divic
X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052			
0.2	1.2214			
0.3	1.3499			
0.4	1.4918			

0.5

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

Vamos construir a seguinte tabela de diferenças divididas:

				o. o gao a
X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052			
		1.1620		
0.2	1.2214			
0.3	1.3499			
0.4	1.4918			

0.5

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

Vamos construir a seguinte tabela de diferenças divididas:

		a oogamic t	a	or orrigate arri
X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052			
		1.1620		
0.2	1.2214			
		1.2850		
0.3	1.3499			
0.4	1.4918			

1.6487

0.5

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1		0.00	
		1.0520		
0.1	1.1052			
		1.1620		
0.2	1.2214			
0.0	4.0400	1.2850		
0.3	1.3499	1 4100		
0.4	1.4918	1.4190		
0.4	1.4310			
0.5	1.6487			

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052			
		1.1620		
0.2	1.2214			
		1.2850		
0.3	1.3499			
		1.4190		
0.4	1.4918			
		1.5690		
0.5	1 6487			

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052		0,5500	
		1.1620		
0.2	1.2214			
		1.2850		
0.3	1.3499			
		1.4190		
0.4	1.4918			
		1.5690		
0.5	1 6487			

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

				<u> </u>
X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052		0,5500	
		1.1620		
0.2	1.2214		0.6150	
		1.2850		
0.3	1.3499			
		1.4190		
0.4	1.4918			
		1.5690		
0.5	1.6487			

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

				3
Χ	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052		0,5500	
		1.1620		
0.2	1.2214		0.6150	
		1.2850		
0.3	1.3499		0.6700	
		1.4190		
0.4	1.4918			
		1.5690		
0.5	1.6487			

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

				3
Χ	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052		0,5500	
		1.1620		
0.2	1.2214		0.6150	
		1.2850		
0.3	1.3499		0.6700	
		1.4190		
0.4	1.4918		0.7500	
		1.5690		
0.5	1.6487			

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

Χ	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052		0,5500	
		1.1620		0.2167
0.2	1.2214		0.6150	
		1.2850		
0.3	1.3499		0.6700	
		1.4190		
0.4	1.4918		0.7500	
		1.5690		
0.5	1.6487			

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

				3
X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052		0,5500	
		1.1620		0.2167
0.2	1.2214		0.6150	
		1.2850		0.1833
0.3	1.3499		0.6700	
		1.4190		
0.4	1.4918		0.7500	
		1.5690		
0.5	1.6487			

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter f(0.2749) usando interpolação quadrática de Newton.

				3
X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052		0,5500	
		1.1620		0.2167
0.2	1.2214		0.6150	
		1.2850		0.1833
0.3	1.3499		0.6700	
		1.4190		0.2667
0.4	1.4918		0.7500	
		1.5690		
0.5	1.6487			

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

Note que 0.2749 está entre os nós de interpolação $x_0 = 0.2$ e $x_1 = 0.3$. Logo, os nós de interpolação escolhidos são: $x_0 = 0.2$, $x_1 = 0.3$, $x_2 = 0.4$.

O 7				· -
X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052		0,5500	
		1.1620	,	0.2167
$x_0 = 0.2$	$d_0 = 1.2214$		0.6150	
→ 0.2749		$d_1 = 1.2850$		0.1833
$x_1 = 0.3$	1.3499		$d_2 = 0.6700$	
		1.4190		0.2667
$x_2 = 0.4$	1.4918		0.7500	
_		1.5690		
0.5	1.6487			

Forma de	Newton
----------	--------------------------

I Office ac	, I 40 W LOTT			
X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052		0,5500	
		1.1620	,	0.2167
$x_0 = 0.2$	$d_0 = 1.2214$		0.6150	
→ 0.2749		$d_1 = 1.2850$		0.1833
$x_1 = 0.3$	1.3499		$d_2 = 0.6700$	
		1.4190		0.2667
$x_2 = 0.4$	1.4918		0.7500	
		1.5690		
0.5	1.6487			

Logo, o polinômio de grau 2 na Forma de Newton é dado por:

$$P_2(x) = d_0 + d_1(x - x_0) + d_2(x - x_0)(x - x_1)$$

$$\Rightarrow f(0.2749) \approx P_2(0.2749) = 1.2214 + 1.2850(0.2749 - 0.2)$$

$$+ 0.6700(0.2749 - 0.2)(0.2749 - 0.3)$$

$$\approx 1.3164$$

Erro de Interpolação

Teorema (Erro de interpolação para polinômio de grau n, $P_n(x)$)

Sejam $x_0 < x_1 < x_2 < ... < x_n$, (n+1) pontos.

Seja f(x) com derivadas até ordem (n+1) para todo $x \in [x_0, x_n]$

O erro em qualquer ponto $x \in [x_0, x_n]$ é dado por

$$E_n(x) = f(x) - P_n(x) = (x - x_0)(x - x_1)(x - x_2)...(x - x_n)\frac{f^{n+1}(\xi_x)}{(n+1)!},$$

onde $\xi_x \in (x_0, x_n)$.

Erro de Interpolação

Corolário: Limitante superior para o erro de interpolação de $P_n(x)$

$$|E_n(x)| = |f(x) - P_n(x)| \le |(x - x_0)(x - x_1)(x - x_2)...(x - x_n)| \frac{M_{n+1}}{(n+1)!},$$

onde
$$M_{n+1} = \max_{x \in [x_0, x_n]} |f^{n+1}(x)|$$

Erro de Interpolação

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
$f(x) = e^x$	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter o limitante superior do erro da aproximação

$$f(0.2749) \approx P_2(0.2749).$$

O limitante superior do erro de interpolação para um polinômio de grau 2 é dado por:

$$|E_2(x)| = |f(x) - P_2(x)| \le |(x - x_0)(x - x_1)(x - x_2)| \frac{M_2}{3!}$$

onde
$$M_2 = \max_{x \in [x_0, x_2]} |f'''(x)|$$

Erro de Interpolação

Retornando ao exemplo, dada a tabela:

X	0	0.1	0.2	0.3	0.4	0.5
$f(x) = e^x$	1	1.1052	1.2214	1.3499	1.4918	1.6487

Obter o limitante superior do erro da aproximação

$$f(0.2749) \approx P_2(0.2749).$$

O limitante superior do erro de interpolação para um polinômio de grau 2 é dado por:

$$|E_2(x)| = |f(x) - P_2(x)| \le |(x - x_0)(x - x_1)(x - x_2)| \frac{M_2}{3!},$$

onde
$$M_2 = \max_{x \in [x_0, x_2]} |f'''(x)|$$

Erro de Interpolação

Exemplo:

X	0	0.1	0.2	↓ 0.2749	0.3	0.4	0.5
$f(x) = e^x$	1	1.1052	1.2214		1.3499	1.4918	1.6487

Obter o limitante superior do erro da aproximação

 $f(0.2749) \approx P_2(0.2749).$

Logo,

$$\begin{aligned} |E_2(0.2749)| &= |f(0.2749) - P_2(0.2749)| \\ &\leq |(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.4)| \frac{M_2}{3!}, \end{aligned}$$

onde

$$M_2 = \max_{x \in [0.2, 0.3]} |f'''(x)| = \max_{x \in [0.2, 0.3]} |e^x| = \max\{|e^{0.2}|, |e^{0.3}|\} \approx 1.3499$$

Erro de Interpolação

Exemplo:

X	0	0.1	0.2	↓ 0.2749	0.3	0.4	0.5
$f(x) = e^x$	1	1.1052	1.2214		1.3499	1.4918	1.6487

Obter o limitante superior do erro da aproximação

$$f(0.2749) \approx P_2(0.2749).$$

Logo,

$$|E_2(0.2749)| \le |(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.4)| \frac{1.3499}{6}$$

 $\le 5.2913 \times 10^{-5}.$

Erro de Interpolação - Forma de Newton

Estimativa para o erro

Na maioria das vezes, a função f(x) é dada somente na forma de tabela.

Imagine que no exemplo anterior, não soubéssemos que $f(x) = e^x$. Como vamos calcular o erro de interpolação sem essa informação?

Na forma de Newton, é feita a aproximação:

$$\frac{M_{n+1}}{(n+1)!} \approx \max \mid \text{diferenças divididas de ordem } (n+1) \mid$$

no intervalo $[x_0, x_n]$

Estimativa de erro de interpolação para $P_n(x)$ - Forma de Newton

 $|E_n(x)| \approx |(x-x_0)(x-x_1)\dots(x-x_n)|$ (máx|diferenças divididas de ordem n+1|

Erro de Interpolação - Forma de Newton

Estimativa para o erro

Na maioria das vezes, a função f(x) é dada somente na forma de tabela.

Imagine que no exemplo anterior, não soubéssemos que $f(x) = e^x$. Como vamos calcular o erro de interpolação sem essa informação?

Na forma de Newton, é feita a aproximação:

$$\frac{M_{n+1}}{(n+1)!} \approx \max \mid \text{diferenças divididas de ordem } (n+1) \mid$$

no intervalo $[x_0, x_n]$.

Estimativa de erro de interpolação para $P_n(x)$ - Forma de Newton

 $|E_n(x)| \approx |(x-x_0)(x-x_1)\dots(x-x_n)|$ (máx|diferenças divididas de ordem n+1)

Erro de Interpolação - Forma de Newton

Estimativa para o erro

Na maioria das vezes, a função f(x) é dada somente na forma de tabela.

Imagine que no exemplo anterior, não soubéssemos que $f(x) = e^x$. Como vamos calcular o erro de interpolação sem essa informação?

Na forma de Newton, é feita a aproximação:

$$\frac{M_{n+1}}{(n+1)!} \approx \max \mid \text{diferenças divididas de ordem } (n+1) \mid$$

no intervalo $[x_0, x_n]$.

Estimativa de erro de interpolação para $P_n(x)$ - Forma de Newton

 $|E_n(x)| \approx |(x-x_0)(x-x_1)\dots(x-x_n)|$ (máx|diferenças divididas de ordem n+1)

Forma de Newton

Retornando ao exemplo:

Queremos encontrar a estimativa de erro $E_2(0.2749)$.

~~~				-2(01.0)
X	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0	1			
		1.0520		
0.1	1.1052		0,5500	
		1.1620		0.2167
0.2	1.2214		0.6150	
		1.2850		0.1833
0.3	1.3499		0.6700	
		1.4190		0.2667
0.4	1.4918		0.7500	
		1.5690		
0.5	1.6487			

Logo,

$$|E_2(x)| \approx |(x-x_0)(x-x_1)(x-x_2)|$$
 (máx|diferenças divididas de ordem 3|)

$$\Rightarrow |E_2(0.2749)| \approx |(0.2749 - 0.2)(0.2749 - 0.3)(0.2749 - 0.4)||0.2667||$$

 $\approx 6.2716\times 10^{-5}$ 

**Condição:** *f* tem que ser uma função bijetiva. Ou seja, *f* possui inversa.

$$y = f(x) \Rightarrow x = f^{-1}(y) = g(y)$$

Ou seja, fazemos 
$$x = g(y) = P_n(y)$$

No exemplo que vimos, achamos uma aproximação para  $f(0.2749) \approx P_2(0.2749)$ .

X	0	0.1		0.2749			0.5
f(x)	1	1.1052	1.2214	1.3164	1.3499	1.4918	1.6487
				↑ f(0.2749)			

Poderia ter sido pedida uma aproximação para x tal que  $f(x) \approx 1.3164$ . Basta trocar as linhas da tabela acima:

**Condição:** *f* tem que ser uma função bijetiva. Ou seja, *f* possui inversa.

$$y = f(x) \Rightarrow x = f^{-1}(y) = g(y)$$

Ou seja, fazemos 
$$x = g(y) = P_n(y)$$

No exemplo que vimos, achamos uma aproximação para  $f(0.2749) \approx P_2(0.2749)$ .

X	0	0.1	$x_0 = 0.2$	0.2749	$x_1 = 0.3$	$x_2 = 0.4$	0.5
f(x)	1	1.1052	1.2214	1.3164	1.3499	1.4918	1.6487
				↑ f(0.2749)			

Poderia ter sido pedida uma aproximação para x tal que  $f(x) \approx 1.3164$ . Basta trocar as linhas da tabela acima:

У	1	1.1052		1.3164		
x = g(y)	0	0.1	0.2		0.3	0.4

**Condição:** *f* tem que ser uma função bijetiva. Ou seja, *f* possui inversa.

$$y = f(x) \Rightarrow x = f^{-1}(y) = g(y)$$

Ou seja, fazemos 
$$x = g(y) = P_n(y)$$

No exemplo que vimos, achamos uma aproximação para  $f(0.2749) \approx P_2(0.2749)$ .

X	0	0.1	$x_0 = 0.2$	0.2749	$x_1 = 0.3$	$x_2 = 0.4$	0.5
f(x)	1	1.1052	1.2214	1.3164	1.3499	1.4918	1.6487
				$\uparrow f(0.2749)$			

Poderia ter sido pedida uma aproximação para x tal que  $f(x) \approx 1.3164$ . Basta trocar as linhas da tabela acima:

У	1	1.1052	$y_0 = 1.2214$	1.3164	$y_1 = 1.3499$	$y_2 = 1.4918$
x = g(y)	0	0.1	0.2	?	0.3	0.4

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ からで

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
1.1052	0.1			
1.2214	0.2			
1.3499	0.3			
1.4918	0.4			
1.6487	0.5			

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1			
1 001 1	0.0			
1.2214	0.2			
1.3499	0.3			
1.5433	0.5			
1.4918	0.4			
	<b>V</b> . 1			
1.6487	0.5			

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1	0.0000		
1.2214	0.2	0.8606		
1.2214	0.2			
1.3499	0.3			
1.0.00	0.0			
1.4918	0.4			
1.6487	0.5			

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1	0.0000		
1.2214	0.2	0.8606		
1.2214	0.2	0.7782		
1.3499	0.3	• • • • • • • • • • • • • • • • • • • •		
1.4918	0.4			
1.6487	0.5			

Ordem 0	Ordem 1	Ordem 2	Ordem 3
0			
	0.9506		
0.1			
	0.8606		
0.2	0.7700		
0.2	0.7782		
0.3	0.7047		
0.4	0.7047		
0.4			
0.5			
	0 0.1 0.2 0.3 0.4	0 0.9506 0.1 0.8606 0.2 0.7782 0.3 0.7047	0 0.9506 0.1 0.8606 0.2 0.7782 0.3 0.7047

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1			
4 004 4	0.0	0.8606		
1.2214	0.2	0.7700		
1.3499	0.3	0.7782		
1.3499	0.5	0.7047		
1.4918	0.4	0.7047		
1.1010	<b>0.</b> ¬	0.6373		
1.6487	0.5	2.20.0		

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4064	
		0.8606		
1.2214	0.2	. ==		
4 0 400	0.0	0.7782		
1.3499	0.3	0.7047		
4 4040	0.4	0.7047		
1.4918	0.4	0.0070		
1 6407	0.5	0.6373		
1.6487	0.5			

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4064	
		0.8606		
1.2214	0.2		-0.3366	
		0.7782		
1.3499	0.3			
		0.7047		
1.4918	0.4			
		0.6373		
1.6487	0.5			

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4064	
		0.8606		
1.2214	0.2		-0.3366	
		0.7782		
1.3499	0.3		-0.2718	
		0.7047		
1.4918	0.4			
		0.6373		
1.6487	0.5			

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4064	
		0.8606		
1.2214	0.2		-0.3366	
		0.7782		
1.3499	0.3		-0.2718	
		0.7047		
1.4918	0.4		-0.2255	
		0.6373		
1.6487	0.5			

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4064	
		0.8606		0.1995
1.2214	0.2		-0.3366	
		0.7782		
1.3499	0.3		-0.2718	
		0.7047		
1.4918	0.4		-0.2255	
		0.6373		
1.6487	0.5			

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4064	
		0.8606		0.1995
1.2214	0.2		-0.3366	
		0.7782		0.1678
1.3499	0.3		-0.2718	
		0.7047		
1.4918	0.4		-0.2255	
		0.6373		
1.6487	0.5			

y	Ordem 0	Ordem 1	Ordem 2	Ordem 3
1	0			
		0.9506		
1.1052	0.1		-0.4064	
		0.8606		0.1995
1.2214	0.2		-0.3366	
		0.7782		0.1678
1.3499	0.3		-0.2718	
		0.7047		0.1084
1.4918	0.4		-0.2255	
		0.6373		
1.6487	0.5			

intorpolaga	Ordem 0	Ordem 1	Ordem 2	Ordem 3
y	Ordenio	Ordeni	Orden 2	Oldelli 3
1	0			
		0.9506		
1.1052	0.1		-0.4064	
		0.8606		0.1995
$y_0 = 1.2214$	$d_0 = 0.2$		-0.3366	
→ <b>1.3164</b>		$d_1 = 0.7782$		0.1678
$y_1 = 1.3499$	0.3		$d_2 = -0.2718$	
		0.7047		0.1084
$y_2 = 1.4918$	0.4		-0.2255	
		0.6373		
1.6487	0.5			

Logo, o polinômio de grau 2 na Forma de Newton é dado por:

$$x = P_2(y) = d_0 + d_1(y - y_0) + d_2(y - y_0)(y - y_1)$$

$$\Rightarrow P_2(1.3164) = 0.2 + 0.7782(1.3164 - 1.2214)$$

$$- 0.2718(1.3164 - 1.2214)(1.3164 - 1.3499)$$

$$\approx 0.2748$$

y	Ordem 0	Ordem 1	em 1 Ordem 2	
1	0			
		0.9506		
1.1052	0.1		-0.4064	
		0.8606		0.1995
$y_0 = 1.2214$	$d_0 = 0.2$		-0.3366	
→ 1.3164		$d_1 = 0.7782$		0.1678
$y_1 = 1.3499$	0.3		$d_2 = -0.2718$	
		0.7047		0.1084
$y_2 = 1.4918$	0.4		-0.2255	
		0.6373		
1.6487	0.5			

A estimativa de erro é dada por:

$$|E_2(1.3164)| = |(1.3164 - 1.2214)(1.3164 - 1.3499)(1.3164 - 1.4918)||0.1995|$$
  
 $\approx 1.1135 \times 10^{-4}$ 



#### Forma de Newton

#### Exercício:

Dada a tabela:

Χ	0	0.1	0.2	0.3	0.4	0.5
f(x)	1	1.1052	1.2214	1.3499	1.4918	1.6487

- (a) Obtenha uma aproximação para f(0.2749) usando **interpolação cúbica de Newton**. Ou seja, calcule  $P_3(0.2749)$ .
- (b) Obtenha uma estimativa para  $E_3(0.2749)$ .

#### Referências I





