数学(80分)

【コース1(基本, Basic)・コース2(上級, Advanced)】

※ どちらかのコースを一つだけ選んで解答してください。

I 試験全体に関する注意

- 1. 係員の許可なしに、部屋の外に出ることはできません。
- 2. この問題冊子を持ち帰ることはできません。

II 問題冊子に関する注意

- 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
- 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
- 3. 3 3 + 3 + 4 = 13 + 4 =
- 4. 足りないページがあったら、手をあげて知らせてください。
- 5. メモや計算などを書く場合は、問題冊子に書いてください。

III 解答方法に関する注意

- 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
- 2. 問題文中のA, B, C,…には、それぞれ-(マイナスの符号), または, 0から9までの数が一つずつ入ります。あてはまるものを選び、解答用紙 (マークシート)の対応する解答欄にマークしてください。
- 3. 同一の問題文中に **A , BC** などが繰り返し現れる場合, 2 度目以降 は**, A , BC** のように表しています。

解答に関する記入上の注意

- (1) 根号 ($\sqrt{}$) の中に現れる自然数が最小となる形で答えてください。 (例: $\sqrt{32}$ のときは, $2\sqrt{8}$ ではなく $4\sqrt{2}$ と答えます。)
- (2) 分数を答えるときは、符号は分子につけ、既約分数(reduced fraction) にして答えてください。

(例: $\frac{2}{6}$ は $\frac{1}{3}$, $-\frac{2}{\sqrt{6}}$ は $\frac{-2\sqrt{6}}{6}$ と分母を有理化してから約分し, $\frac{-\sqrt{6}}{3}$ と答えます。)

- (3) $\boxed{ A \sqrt{B} }$ に $\frac{-\sqrt{3}}{4}$ と答える場合は、下のようにマークしてください。
- (4) $\boxed{\textbf{DE}} x = -x$ と答える場合は、 $\boxed{\textbf{D}} x = -x$ と答える。

【解答用紙】

Α		0	1	2	3	4	6	6	0	8	9	
В	θ	0	1	2		4	6	6	Ø	8	9	
С	Θ	0	1	2	3	•	6	6	0	8	9	
D		0	1	2	3	4	9	6	0	8	9	
E	Φ	0	•	2	3	4	9	6	0	8	9	

- 4. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*			*			
名 前							

数学 コース 2

(上級コース)

「解答コース」記入方法

解答コースには「コース1」と「コース2」がありますので、どちらかのコースを<u>一つだけ</u>選んで解答してください。「コース2」を解答する場合は、右のように、解答用紙の「解答コース」の「コース2」を 〇 で囲み、その下のマーク欄をマークしてください。

選択したコースを正しくマークしないと、採点されません。

数学-16

_		_
1		
1	_ T	
1		
1		
1		

問1 2次関数

$$y = -x^2 - ax + 3 \qquad \cdots \qquad \boxed{1}$$

について考える。

- (1) a>0 であって,関数 ① の最大値が 7 であるならば,a= **A** である。このとき,この関数のグラフの軸の方程式は x= **BC** であり,また,このグラフと x 軸との交点の x 座標は **DE** $\pm \sqrt{\mathbf{F}}$ である。
- (2) 関数 ① のグラフを x 軸方向に 2, y 軸方向に -3 だけ平行移動して得られる曲線が (-3,-5) を通るならば, a= **G** である。

問2 設問 (1) の $lackbrackbrackbrackbrackbrackbrackbrackbr$
適するものを選びなさい。
また,設問 (3) の $lackbrackbrackbrackbrackbrackbrackbrackbr$
実数 x , y について次の条件 p , q , r を考える。
$p: x,y$ が等式 $(x+y)^2=a(x^2+y^2)+bxy$ を満たしている。 ただし、 a,b は実数で定数とする。
q: $x=0$ かつ $y=0$ である。
r: x=0 または $y=0$ である。
(1) 条件 p において、 $a=b=1$ とする。このとき、 p は q であるための $\fbox{\textbf{H}}$ 。また、 p は r であるための $\fbox{\textbf{I}}$ 。
(2) 条件 p において, $a=b=2$ とする。このとき, p は q であるための $oldsymbol{K}$ 。 また, p は r であるための $oldsymbol{K}$ 。
(3) 条件 p において、 $a=2$ とすると、 p の式は
$\left(x + \frac{b - \boxed{\texttt{L}}}{\boxed{\texttt{M}}}y\right)^2 + \left(\boxed{\boxed{\texttt{N}}} - \frac{\left(b - \boxed{\texttt{O}}\right)^2}{\boxed{\texttt{P}}}\right)y^2 = 0$
レ変形できる したがって n が a であるための以亜十分条件レカスのけ

を満たすときに限る。

- ① 必要十分条件である
- ① 必要条件であるが、十分条件ではない
- ② 十分条件であるが、必要条件ではない
- ③ 必要条件でも十分条件でもない

lacksquare Q < b < lacksquare R

 $oxed{I}$ の問題はこれで終わりです。 $oxed{I}$ の解答欄 $oxed{S}$ \sim $oxed{Z}$ はマークしないでください。

II

数列 $\{a_n\}$ $(n=1,2,3,\cdots)$ は等差数列で

$$a_2 = 2$$
, $a_6 = 3a_3$

を満たしている。このとき,級数 $\sum_{n=1}^{\infty} \frac{3^n}{r^{a_n}}$ を考える。ただし,r は正の実数である。

(1) 数列 $\{a_n\}$ の初項を a, 公差を d とおくと

$$a = lacksquare$$
 , $d = lacksquare$

である。

(2) 級数 $\sum_{n=1}^{\infty} \frac{3^n}{r^{a_n}}$ は、初項が $\boxed{\mathbf{D}}$ $r^{\boxed{\mathbf{E}}}$ 、公比が $\boxed{\mathbf{F}}$ の無限等比級数である。 したがって、この級数は

のとき収束し、その和Sは

$$S = \frac{\mathbf{J} r^{\mathbf{K}}}{r^{\mathbf{L}} - \mathbf{M}}$$

である。

(3) 和 S が最小となるのは

$$r = \boxed{ N }$$

のときである。

公比:common ratio,無限等比級数:infinite geometric series

注)等差数列: arithmetic progression, 級数: series, 公差: common difference,

 $oxed{II}$ の問題はこれで終わりです。 $oxed{II}$ の解答欄 $oxed{f P}$ \sim $oxed{f Z}$ はマークしないでください。

数学-22

$$-\frac{\pi}{3} \le x \le \frac{\pi}{3}$$
 の範囲において,関数

$$f(x) = \sin 2x - 3(\sin x + \cos x)$$

を考える。

(1) $t = \sin x + \cos x$ とおく。t のとり得る値の範囲は

$$\begin{array}{c|c} \hline \textbf{A} & -\sqrt{} \\ \hline \hline \hline \textbf{C} & & \leq t \leq \sqrt{} \\ \hline \end{array}$$

である。

(2)
$$f(x)$$
 は、最小値 **E** $-$ **F** $\sqrt{$ **G** $}$ を $x = \frac{$ **H** π でとる。

 $oxed{III}$ の問題はこれで終わりです。 $oxed{III}$ の解答欄 $oxed{oxed}$ $oxed{oxed}$ はマークしないでください。

問 1 文中の A \sim I には、下の 0 \sim 9 の中から適するものを選びなさい。

関数 $f(x)=rac{\log x}{x}$ の性質を用いて、 a^{a+1} と $(a+1)^a$ の大小関係を調べよう。 ただし, a > 0 とする。

f(x) の導関数を求めると

$$f'(x) = \frac{\boxed{\mathbf{A} - \log x}}{x^{\boxed{\mathbf{B}}}}$$

であるから, f(x) が単調増加である x の変域は $\boxed{\mathbf{C}}$ $< x \leq \boxed{\mathbf{D}}$ であり, 単調減少である x の変域は \blacksquare $\leq x$ である。

(2) $p = a^{a+1}$, $q = (a+1)^a$ とおくと

$$\log p - \log q = \left(a^{\boxed{\mathbf{F}}} + a\right) \Big\{ f(a) - f\left(a + \boxed{\mathbf{G}}\right) \Big\}$$

である。よって

ことが分かる。

- (4) e (5) e+1 (6) $\frac{1}{e}$

問 2 0 < a < 1 とする。曲線 $y = xe^{2x}$ および x 軸と直線 x = a - 1 で囲まれる部分の面積と、曲線 $y = xe^{2x}$ および x 軸と直線 x = a で囲まれる部分の面積の和を S(a) とする。このとき、S(a) を最小とする a の値を求めよう。

 xe^{2x} の不定積分は

$$oxed{oxed}$$
 ($oxed{oxed}$ $(oxed{oxed} L$ $x-1$) $e^{2x}+C$ (C は積分定数)

である。

 xe^{2x} の値は, x<0 のとき $xe^{2x}<0$ であり, $x\geqq0$ のとき $xe^{2x}\geqq0$ である。したがって, S(a) の値は

$$S(a) = \frac{\mathbf{M}}{\mathbf{N}} \left\{ \mathbf{O} + (\mathbf{P} a - \mathbf{Q}) e^{2(a-1)} + (\mathbf{R} a - 1) e^{2a} \right\}$$

である。また

$$S'(a) = (a - \boxed{\mathbf{S}})e^{2(a-1)} + ae^{2a}$$

であるから, S(a) を最小とする a の値は $a=\frac{{\bf T}}{e^2+{\bf U}}$ である。これは 0< a< 1 を満たしている。

注) 積分定数: constant of integration

[IV] の問題はこれで終わりです。 [IV] の解答欄 [V] ~ [V] はマークしないでください。 コース [V] はマークしないでください。 [V] はマークしないでください。

解答用紙の解答コース欄に「コース 2」が正しくマークしてあるか、 もう一度確かめてください。

この問題冊子を持ち帰ることはできません。

〈数 学〉

		コース1	
	問	解答欄	正解
		Α	4
	問1	ВС	-2
		DEF	-27
		G	4
I		H	1
		1	0
	問2	J	0
	1012	K	2
		LMNOP	22124
		QR	04
		A A	8
	884	BCD	112
	問1 -	EF	29
		GHI	389
		J	1
π		KL	13
I		M	6
	880	N	7
	問2	OP	36
		Q	4
		R	5
		ST	64
		ABCD	2421
		EF	-7
Ш		G	3
		HIJ	-15
		K	3
		ABCD	1574
		A E	6
π 7		FG	49
N		HIJK	2536
		LMNOP	25748
		QR	56

		コース 2	
ı	問	解答欄	正解
		A	4
	問1	ВС	-2
		DEF	-27
		G	4
I		H	1
		1	0
	問2	J	0
	In15	K	2
		LMNOP	22124
		QR	04
		AB	-2
		C	4
		DE	32
I		FG	34
		HI	14
		JKLM	3643
		NO	31
		ABC	132
Ш		D	2
ш.		EFG	132
		HI	14
		AB	12
	問1	CD	04
		E	4
		FG	21
N		Н	9
TA			7
		JKL	142
	問の	MNOPQR	142232
	問2	S	1
		TU	11