

System-on-Chip Architecture **Dynamically Reconfigurable Logic** A Novel Service-Based **Using On-Chip Networks** with Smart Packets and

Wim Vanderbauwhede

Overview

- On-Chip Networks
- Smart Packets
- Self-Reconfigurable Logic
- Service-based SoC

1. On-Chip Networks	8	
Outcome	Novelty	Benefit
Novel architecture for very large Integrated Circuits	 Network-type interconnections Open up full potential of Self-routing network today's LSI technology 	Open up full potential of today's LSI technology

Current:

Conventional interconnect

Proposal:

On-chip network

Applications:

- Network processors
- Electronic assistive technology

On-Chip Networks Self-Routing Networks

- Self-routing networks:
- Packets can reach their destination without perhop routing table lookup
 - In principle, a regular topology is required
- But in many cases, an irregular physical topology can be mapped onto a regular virtual topology
- Advantage: simplified routing

On-Chip Networks Self-Routing Networks

On-chip network topology

Virtual topology

2. Smart Packets		
Outcome	Novelty	Benefit
Novel organisation and management of communication networks	Self-organisingRouters require no intelligence	No central managementSimpler, cheaper network infrastructure

Current:

Managed network

Proposal:

Self-organising network

Applications:

- Wireless Internet
- Simpler office networks

Smart Packet Networks

- Smart Packets and Self-aware Networks
- Packets carry executable content
- programs, network is completely self-organising Network organisation is determined by packet
- Advantages: Reduces hardware, configuration and management resources to a minimum.

Ad-Hoc Networks

- Ad-hoc and self-organising networks
- Networks without centralised management (e.g. wireless LAN with laptops and without servers)
- Peer-to-peer rather than client-server
- Routing information is distributed amongst the nodes
- Advantages:
- Reduces cost of management and configuration
- → Ease of use for the end user

3. Self-Reconfigurabl	ole Logic	
Outcome	Novelty	Benefit
Novel architecture for multifunctional self- reconfigurable Integrated Circuits	 Self-reconfigurable, no external agent Packet-based reconfiguration 	Smaller, multifunctional products with lower power consumption

Current:

Reconfigurable logic

Proposal:

Packet-based self-

Applications:

PDAs

Mobile technologies

reconfigurable logic

Self-Reconfigurable Logic

- Reconfigurable logic: e.g. FPGA
- Dynamic Reconfiguration: whilst the circuit is operating
- Self-reconfiguration: without external agent
- Examples:
- → On-the-fly protocol conversion
- → Image manipulation

Smart Packets and self-reconfigurable logic

- Packet program can be executed at different levels
- Use the packet program to configure a custom circuit
- Circuit performs all necessary operations on the packet (e.g. Switching)
- Simplified, the network node is reduced to a dynamically reconfigurable FPGA

→ Service-Based S ₁	ystem-on-Chip Architecture	ture
Outcome	Novelty	Benefits
 Novel System-on-Chip architecture Prototypes of design tools 	 Perform tasks by combining services Synergy of on-chip smart packet networks and self-reconfigurable logic 	 Larger and more complex designs Flexible, fast and area-efficient

1. On-chip network

2. Self-organising network

3. Self-reconfigurable logic

- Service-based System-on-a-Chip with on-Chip Network
- Uses the concept of services as used in IP networking
- System-on-a-Chip with packet routing
- Uses a self-routing network
- physical topology onto a regular virtual topology Self-routing requires mapping of the irregular

- Apply smart packets concept to SoC design
- Results in a completely new way of organising a SoC
- Smart packets carry both the information to be processed and the information to create the processing unit
- Requires very advanced FPGA or ASIC with embedded FPGA

Conclusion

Proposal for a Novel Service-Based System-on-Chip Architecture:

