Course Specification

Code: ECE 312 Course: Electronic circuits design Using Computer

A- Affiliation:

Relevant program:	Electronics and Communication Engineering program (ECE)
Department offering the program:	Communications and Computer Engineering Dep.
Department offering the course:	Communications and Computer Engineering Dep.
Date of specifications approval:	2020-2021
Year of regulation approval:	2013

B - BASIC INFORMATION

Course Title: Electronic circuits design using computer			Code: ECE 312	Year/level: Third year
				Semester:2 nd term
Teaching Hours:	Lecture: Ohrs.	Tutorial:0	Practical: 6hrs	Total: 6hrs.

C - Professional Information

1 – Course Learning Objectives:

The main objective of this course is to learn the basics of digital circuit design and implementation through computer-aided design (CAD) tools.

2 - Intended Learning Outcomes (ILOS)

K- Knowledge and understanding:

By the end of the course the student should gain the following knowledge.

- k1- State the basics of Field Programmable Gate Array (FPGA) Technique for circuit design and implementation (K4,K13,K20).
- k2- Illustrate the way in which digital circuits are designed today, using CAD tools (K4,K20,K13).
- k3-State basics of circuit design with VHDL programming language(K4,K13,K20).

I- Intellectual skills:

By the end of the course the student should be able to:

- i1- Analyze, simulate, and Synthesis digital circuits using CAD Software.(I14, I18, I15)
- i2- Develop VHDL Design Programs (I15).

P - Professional and practical skills:

By the end of the course the student should be able to:

- p1- Prepare models and implement digital circuits for certain specific function using relevant laboratory equipment and analyze the results correctly (P13).
- p2-Practice VHDL programming language for the design of digital circuits (P15).
- p3- Use appropriate analysis and design tools (P17).

T - General and transferable skills:

By the end of the course the student should be able to:

t1-Works under pressure (T2).

3 –	Co	nte	nts
ა —	CU	IIILE	1112

Week No.	Торіс	Lecture hours	Tutorial hours	Practical hours
1	IntroductionFPGA structureIntroduction to CAD tools	-	-	6
2	 Fundamental VHDL units Data Types Operators Assignment Statements 	-	-	6
3	Multiplexers	-	-	6
4	DecodersEncoders	-	-	6
5	 Latches Flip Flop Parallel register Shift register 	-	-	6
6	■ Counters	-	-	6
7	 Half Adder, Full Adder, Parallel Adder Half, Full, Parallel subtractor using Parallel Adders 	-	-	6
8	 Introduction to Finite State Machines 	-	-	6
9	Mid Term			
10	Traffic Light Controller example	-	-	6
11	■ FSM as Sequence Detectors	-	-	6
12	■ Timing Simulation, Synthesis, Place and Route	-	_	6
13	■ Pin Assignments, FPGA configuration	-	-	6
14	Oral/Practical	-	-	

15	■ Final Exam	-	-	-
	Total	-	-	72

Course Intended learning		Teaching and Learning Methods										
Outcomes (ILOs)	Lectures/Online Lectures	Presentation	Discussions	Tutorials	Practical and lab. experiments	Problem Solving	Brain Storming	Projects and Team Working	Site Visits	Researches and Reports	Self-Study	Modeling and Simulation
Knowledge & Understanding	√	V	√	V	V		V	V		V		
Intellectual Skills	√	√	√	√	V	V	√	V		V		√
Professional Skills	√	√		√	V	√		V		V	1	V
General Skills		V	√	√	√	√		V		√	√	√

5.Course Contents/ILOS:				
Course Contents	k	i	р	Т
FPGA technique for digital circuit design	k1			
Basics of VHDL language	K3			
Multiplexers	K2,3	i1,2	p1,2,3	t1
Decoder/Encoder	K2,3	i1,2	p1,2,3	t1
Latch, Flip Flop, Parallel register, and Shift Register	K2,3	i1,2	p1,2,3	t1
Counters	K2,3	i1,2	p1,2,3	t1
Half Adder, Full Adder, Parallel Adder	K2,3	i1,2	p1,2,3	t1
Half, Full, Parallel subtractor using Parallel Adders				
Introduction to Finite State Machines	K2	i1	p1,3	t1
Traffic Light Controller example		i1	p1,3	t1
FSM as Sequence Detectors		i1	p1,3	t1
Timing Simulation, Synthesis, Place and Route	k2	i1	p1,3	
Pin Assignments, FPGA configuration	k2	i1	p1,3	

6- Students' Assessment Methods:	
6-1 Tools	
Attendance & Quizzes & reports to measure	Content of k1to k3, i1 to i2, p1 to p3, and t1.
Mid-Term exam to measure	Content of k1to k3, i2, and p2.
Oral / practical exam to measure	Content of k1to k3, i1 to i2, p1 to p3, and t1.
Final exam to measure	Content of k1 to k3, i2, and p2.

6-2, Time schedule:	
Attendance	Weekly
Reports and sheets	Bi-weekly
Quizzes	At the 6th week of 1stsemester
Oral /practical Exam	At the 14 ^h week of 1 st semester
Mid-term exam	At the 9th week of 1stsemester
Final exam	At the 15th week of 1st semester

6.3. Grading system

Teacher Opinion	Quizzes			12 Marks	40 %	
	Mid-term exam	30%	30	18 Marks	60 %	
	Lab Attendance			3 Marks	10%	
Practical &Oral	Lab Reports	30%	30	3 Marks	10%	
	Oral /Practical Exam	30 /0		24 Marks	80 %	
Final Exam		40%		40		
Total		100%	150 Marks			

7- List of references:

7-1 Course notes

7-2 Essential books (text books)

- [1] Z. Navabi, "VHDL Analysis and Modeling Of Digital Systems," New York, N.Y.: McGraw-Hill, 2nd Ed.,1998.
- [2] M. Zwolinski, "Digital System Design With VHDL,", Pearson Education Limited, 2006.
- [3] S. Salivahanan and S. Arivazhagan ,"Digital Circuits& Design,"_Vikas Publishing House Pvt Ltd, 4th ed., 2012.
- [4] S. Rammamurthy and V.P. Kothari, "VHDL Modeling For Digital Design Synthesis," Medtec, 1st ed., 2014.
- [5] M. M. R. Mano and M. D. Ciletti, "Digital Design With an Introduction To The Verilog HDL, VHDL, & System Verilog," Pearson, 6th ed., 2019.
- [6] S. Mazor and P. Langstraat, "Aguide to VHDL," Springer, 2nd ed., 2007.

8- Facilities required for teaching and learning:

- Black or white board
- Overhead projector or Data show
- Disk-top computers and simulation tools

Course coordinator:	Dr.Fatma Elfouly	
Head of the Department:	Prof.Dr.SalahElagouze	
Date:		