Математическая логика *КТ ИТМО, осень 2023 года*

Что такое «правильное рассуждение»?

Логика. Аристотель: 384-322 гг. до н.э.

Математический анализ

Формализация матанализа

▶ Ньютон, Лейбниц — неформальная идея

▶ Коши — последовательности вместо бесконечно-малых, пределы

Вейерштрасс — вещественные числа

Кантор — теория множеств

Наивная теория множеств

Парадокс брадобрея (Рассела)

- ▶ На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

то что можно сказать про

$$X \in X$$

- ▶ Пусть $X \in X$. Тогда $X : X \notin X$
 - ightharpoonup Пусть X
 otin X. Тогда X должен принадлежать X
- ightharpoonup Не совсем парадокс: откуда мы знаем, что X существует? А откуда мы знаем, что вещественные числа существуют?

Программа Гильберта

Высказывание

Высказывание — это строка, сформированная по следующим правилам.

- ightharpoonup Атомарное высказывание пропозициональная переменная: A, B', C_{1234}
- lacktriangle Составное высказывание: если lpha и eta высказывания, то высказываниями являются:
 - **▶** Отрицание: (¬α)
 - **У** Конъюнкция: $(\alpha \& \beta)$ или $(\alpha \land \beta)$
 - ightharpoonup Дизъюнкция: $(\alpha \lor \beta)$
 - ▶ Импликация: $(\alpha \to \beta)$ или $(\alpha \supset \beta)$

Пример:

$$(((A \rightarrow B) \lor (B \rightarrow C)) \lor (C \rightarrow A))$$

Соглашения о записи (метаязык)

Метапеременные:

$$\alpha, \beta, \gamma, \dots$$

Если α — высказывание, то $(\neg \alpha)$ — высказывание

▶ Метапеременные для пропозициональных переменных:

$$X, Y_n, Z'$$

Пусть дана пропозициональная переменная X, тогда $(X \& (\neg X))$ — высказывание

Способы упростить запись

- Приоритет связок: отрицание, конъюнкция, дизъюнкция, импликация
- Ассоциативность: левая для конъюнкции и дизъюнкции, правая для импликации

Пример:

$$((((A \rightarrow B) \& Q) \lor (((\neg B) \rightarrow B) \rightarrow C)) \lor (C \rightarrow (C \rightarrow A)))$$

можем записать так:

$$(A \rightarrow B) \& Q \lor ((\neg B \rightarrow B) \rightarrow C) \lor (C \rightarrow C \rightarrow A)$$

Теория моделей

Оценка высказываний: как их понимать?

Неформальный пример: (A o B) o (B o A)

Давайте попробуем оценить высказывание (A o B) o (B o A).

Если из A следует B, то из B следует A.

Наверное, в общем случае это неверно. Например, пусть:

- $1. \ A$ означает «у меня есть кот»;
- 2. B означает «у меня есть животное».

Тогда:

- 1. $A \rightarrow B$ выполнена всегда;
- 2. B o A может не выполняться: скажем, у меня есть собака, но нет кота.

Оценка высказываний

Высказывание (A o B) o (B o A) ложно, если, например:

- ▶ A «у меня есть кот»;
- ▶ B «у меня есть животное»;
- у меня есть собака, но нет кота.

Иначе: А ложно, В истинно, тогда высказывание ложно.

Чтобы задать оценку высказываний:

- lacktriangle Зафиксируем множество истинностных значений $V=\{\mathcal{U},\mathcal{J}\}$
- ▶ Определим функцию оценки переменных (интерпретацию) $f:P \to V$ (Р множество пропозициональных переменных).

Если
$$[\![A]\!]=\mathcal{J}$$
 и $[\![B]\!]=\mathcal{U}$, то $[\![(A o B) o (B o A)]\!]=\mathcal{J}$

Указание функции оценки (метаязык)

▶ Синтаксис для указания функции оценки переменных

$$\llbracket \alpha \rrbracket^{X_1:=v_1, \dots, X_n:=v_n}$$

▶ Это всё метаязык — потому полагаемся на здравый смысл

$$[A \& B \& (C \to C)]^{A:=\mathcal{U}, B:=[\neg A]}$$

Оценим высказывания рекурсивно

$$[X] = f(X) \qquad [X]^{X:=a} = a$$

Отрицание

$$\llbracket
eg lpha
\rrbracket = \left\{ egin{array}{ll} \mathcal{N}, & \textit{если } \llbracket lpha
\rrbracket = \mathcal{N} \\ \mathcal{N}, & \textit{иначе} \end{array}
ight.$$

Конъюнкция

$$\llbracket \alpha \& \beta \rrbracket = \left\{ egin{array}{ll} \mathcal{U}, & \mathit{если} \ \llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = \mathcal{U} \\ \mathcal{J}, & \mathit{иначe} \end{array} \right.$$

Дизъюнкция

|изъюнкция
$$[\![lphaeeeta]\!]=egin{cases} J, & \mathit{если} \ [\![lpha]\!]=[\![eta]\!]=J, \ U, & \mathit{иначе} \end{cases}$$

Импликация

$$\llbracket lpha
ightarrow eta
rbracket = \left\{ egin{array}{ll} alpha, & ext{если } \llbracket lpha
rbracket = arphi, & \llbracket eta
rbracket = arphi \ arphi, & ext{иначе} \end{array}
ight.$$

Тавтологии

Если α истинна при любой оценке переменных, то она *общезначима* (является *тавтологией*):

$$\models \alpha$$

Выражение $A \to A$ — тавтология. Переберём все возможные значения единственной переменной A:

$$[A \to A]^{A:=\mathcal{N}} = \mathcal{N}$$
$$[A \to A]^{A:=\mathcal{I}} = \mathcal{N}$$

Выражение $A \to \neg A$ тавтологией не является:

$$[\![A \to \neg A]\!]^{A:=\mathcal{U}} = \mathcal{J}$$

Ещё определения

Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \ldots, \gamma_n$, будем говорить, что α — *следствие* этих высказываний:

$$\gamma_1,\ldots,\gamma_n\models\alpha$$

- Истинна при какой-нибудь оценке выполнима.
- ▶ Не истинна ни при какой оценке невыполнима.
- ▶ Не истинна при какой-нибудь оценке опровержима.

Теория доказательств

- ▶ Из чего состоит доказательство (неформально):
 - 1. Аксиомы утверждения, от которых отталкиваемся.
 - 2. Правила вывода способы делать умозаключения, переходить от одних утверждений к другим.
- Давайте определим формально, что такое аксиомы и правила вывода, и затем дадим формальное определение доказательству как таковому.

Схемы высказываний: определение

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием — вместо пропозициональных переменных можно указывать маленькие греческие буквы.

По-простому: схемы высказываний — высказывания с метапеременными

Пример

- $\blacktriangleright (A \to \alpha) \lor (\beta \to B)$
- $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$
- ► A ∨ B & A

Схемы высказываний: определение

Определение

Будем говорить, что высказывание σ строится (иначе: задаётся) по схеме Ш, если существует такая замена метапеременных $u_1, u_2, ..., u_n$ в высказывании на какие-либо выражения $\varphi_1, \varphi_2, ..., \varphi_n$, что после её проведения получается высказывание σ :

$$\sigma = \coprod [\mathsf{u}_1 := \varphi_1][\mathsf{u}_2 := \varphi_2]...[\mathsf{u}_n := \varphi_n]$$

Заметьте, здесь ч_і — мета-метапеременные для метапеременных, а Ш — мета-метапеременная для схем.

Схемы высказываний: примеры

Схема

$$A \rightarrow \alpha \lor B \lor \alpha$$

задаёт, к примеру, следующие высказывания:

- $ightharpoonup A
 ightarrow X \lor B \lor X$, при $\alpha := X$.
- ▶ $A \rightarrow (M \rightarrow N) \lor B \lor (M \rightarrow N)$, при $\alpha := M \rightarrow N$.

и НЕ задаёт следующие высказывания:

- $ightharpoonup A
 ightharpoonup X \lor B \lor Y$ все вхождения lpha должны заменяться одинаково во всём выражении.
- ▶ $(A \to (M \to N) \lor B \lor M) \to N$ структура скобок должна сохраняться.

Аксиомы исчисления высказываний

Определение

Назовём следующие схемы высказываний схемами аксиом исчисления высказываний:

(1)
$$\alpha \to \beta \to \alpha$$

(2)
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

(3)
$$\alpha \rightarrow \beta \rightarrow \alpha \& \beta$$

(4)
$$\alpha \& \beta \rightarrow \alpha$$

(5)
$$\alpha \& \beta \rightarrow \beta$$

(6)
$$\alpha \rightarrow \alpha \vee \beta$$

(7)
$$\beta \rightarrow \alpha \vee \beta$$

(8)
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$$

$$(9) \quad (\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

(10)
$$\neg \neg \alpha \rightarrow \alpha$$

Все высказывания, которые задаются схемами аксиом, назовём аксиомами исчисления высказываний.

Правило вывода Modus Ponens

Первый, упомянувший правило — Теофраст (древнегреческий философ, IV-III век до н.э.).

Переход по следствию: «сейчас сентябрь; если сейчас сентябрь, то сейчас осень; следовательно, сейчас осень».

Если имеет место α и $\alpha \to \beta$, то имеет место β .

$$\frac{\alpha \quad \alpha \to \beta}{\beta}$$

Доказательство

Определение (доказательство в исчислении высказываний)

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$, причём каждое δ_i либо:

- ightharpoonup является аксиомой существует замена метапеременных для какой-либо схемы аксиом, позволяющая получить формулу δ_i , либо
- lacktriangleright получается из $\delta_1,\ldots,\delta_{i-1}$ по правилу Modus Ponens существуют такие индексы j< i и k< i, что $\delta_k\equiv \delta_j \to \delta_i$.

Пример:

$$A \rightarrow (A \rightarrow A),$$

 $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A),$
 $(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A),$
 $A \rightarrow ((A \rightarrow A) \rightarrow A),$
 $A \rightarrow A$

Доказательство подробнее

Почему это доказательство? То же подробнее:

(1)
$$A \to (A \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha, \beta := A]$

(2)
$$(A \to (A \to A)) \to (A \to ((A \to A) \to A)) \to (A \to A)$$
 Cx. akc. 2 $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ $[\alpha, \gamma := A; \beta := A \to A]$

(3)
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$$
 M.P. 1,2
 $A \rightarrow (A \rightarrow A) \quad (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$
 $(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$

(4)
$$A \to ((A \to A) \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha := A, \beta := A \to A]$

(5)
$$A \rightarrow A$$
 M.P. 4,3 $A \rightarrow ((A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$ M.P. 4,3 $A \rightarrow A$

Дополнительные определения

Определение (доказательство формулы α)

— такое доказательство (вывод) $\delta_1, \delta_2, \dots, \delta_n$, что $\alpha \equiv \delta_n$. Формула α доказуема (выводима), если существует её доказательство. Обозначение:

 $\vdash \alpha$

Определение (вывод формулы lpha из гипотез γ_1,\ldots,γ_k)

- такая последовательность $\delta_1, \ldots, \delta_n$, причём каждое δ_i либо:
 - является аксиомой;
 - либо получается по правилу Modus Ponens из предыдущих;
 - lacktriangle либо является одной из гипотез: существует $t:\delta_i\equiv\gamma_t.$

Формула α выводима из гипотез γ_1,\dots,γ_k , если существует её вывод. Обозначение:

$$\gamma_1,\ldots,\gamma_k\vdash\alpha$$

Корректность и полнота

Определение (корректность теории)

Теория корректна, если любое доказуемое в ней утверждение общезначимо. То есть, $\vdash \alpha$ влечёт $\models \alpha$.

Определение (полнота теории)

Теория полна, если любое общезначимое в ней утверждение доказуемо. То есть, $\models \alpha$ влечёт $\vdash \alpha$.

Корректность исчисления высказываний

Лемма (корректность)

Если $\vdash \alpha$, то $\models \alpha$

Доказательство.

Индукция по длине вывода n. Для каждого высказывания δ_n из вывода разбор случаев:

- 1. Аксиома убедиться, что все аксиомы общезначимы.
- 2. Modus Ponens j, k убедиться, что если $\models \delta_j$ и $\models \delta_j \rightarrow \delta_n$, то $\models \delta_n$.

Общезначимость схемы аксиом №9

Общезначимость схемы аксиом — истинность каждой аксиомы, задаваемой данной схемой, при любой оценке:

$$[\![(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha]\!] = \mathsf{M}$$

Построим таблицу истинности формулы в зависимости от оценки α и β :

$\llbracket \alpha \rrbracket$	$\llbracket\beta\rrbracket$	$[\neg \alpha]$	$\llbracket \alpha \to \beta \rrbracket$	$[\![\alpha \to \neg \beta]\!]$	$\llbracket (\alpha \to \neg \beta) \to \neg \alpha \rrbracket$	$\llbracket (\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha \rrbracket$
Л	Л	И	И	И	И	И
Л	И	И	И	И	И	И
И	Л	Л	Л	И	Л	И
И	И	Л	И	Л	И	И

Общезначимость заключения правила Modus Ponens

Пусть в выводе есть формулы δ_j , $\delta_k = \delta_j \to \delta_n$, δ_n (причём j < n и k < n).

Фиксируем какую-нибудь оценку. По индукционному предположению, δ_j и $\delta_j \to \delta_n$ общезначимы. Поэтому при данной оценке $[\![\delta_j]\!] = \mathsf{N}$ и $[\![\delta_j \to \delta_n]\!] = \mathsf{N}$.

Построим таблицу истинности для импликации:

$[\![\delta_j]\!]$	$\llbracket \delta_{\boldsymbol{n}} \rrbracket$	$\llbracket \delta_j \to \delta_n rbracket$
Л	Л	И
Л	И	И
И	Л	Л
И	И	И

Из таблицы видно, что $[\![\delta_n]\!]=\Pi$ только если $[\![\delta_j\to\delta_n]\!]=\Pi$ или $[\![\delta_j]\!]=\Pi$. Значит, это невозможно, и $[\![\delta_n]\!]=\mathsf{И}$