

ДЕТЕКЦИЯ ЛЮДЕЙ, ПОТЕРЯВШИХСЯ В ЛЕСОПОСАДКАХ

ПОСТАНОВКА ЗАДАЧИ

Дано: 1000 изображений людей, потерявшихся в лесопосадках. Каждое такое изображение сделано беспилотным летательным аппаратом и имеет разрешение 5472 на 3078 пикселей.

Требуется:

- 1. разработать алгоритм детекции людей на данных изображениях
- 2. разработать приложение с графическим интерфейсом для взаимодействия с алгоритмом детекции

ПОЧЕМУ МЫ ВЫБРАЛИ СВЕРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ

ПОДГОТОВКА ТРЕНИРОВОЧНОГО ДАТАСЕТА

Обучающая выборка составила 737 изображений (74%), валидационная – 160 (16%), тестовая – 103 (10%).

Правильно

Неправильно

YOLOV5

Модель обучена на уменьшенных изображениях разрешения 480 на 480 пикселей, размер батча был равен 2, а количество эпох 30.

В результате 30 минут обучения precision модели стал 72%, а mAP50-95 – 22%

RETINANET

Модель обучена на уменьшенных изображениях разрешения 480 на 480 пикселей, размер батча был равен 2, а количество эпох 30.

В результате 10 часов обучения precision модели стал 64%, а mAP50-95 – 20%

ЛЮДИ НА АЭРОФОТОСНИМКАХ СЛИШКОМ МАЛЕНЬКИЕ

ОБЩАЯ СХЕМА АЛГОРИТМА

- Разбить изображение на равные квадратные фрагменты
- 2. Для каждого фрагмента получить результаты детекции
- 3. Объединить фрагменты с полученными результатами детекции

НАГЛЯДНАЯ РАБОТА АЛГОРИТМА

ДЕМОНСТРАЦИЯ РАБОТЫ

МЕТРИКИ ОБУЧЕННОЙ МОДЕЛИ YOLOV5

- **1.train/box_loss** ошибка предсказания координат ограничивающих прямоугольников на тренировочных данных. Значение на графике убывает, значит модель определяет местоположение объектов точнее.
- **2.train/cls_loss** ошибка классификации объектов на тренировочных данных. Значение на графике убывает, значит модель лучше различает классы объектов.
- **3.val/box_loss** ошибка предсказания координат ограничивающих прямоугольников на валидационных данных. Значение на графике убывает, значит модель хорошо обобщает на новых данных.
- **4.val/cls_loss** ошибка классификации объектов на валидационных данных. Значение на графике убывает, значит модель корректно классифицирует объекты на данных, не участвовавших в обучении.

МЕТРИКИ ОБУЧЕННОЙ МОДЕЛИ YOLOV5

- **1.Precision** показывает, насколько модель "точна" в своих предсказаниях. Было получено значение 0.95.
- 2.Recall отражает способность модели находить все объекты. Было получено значение 0.97.
- **3.mAP50** средняя точность по всем классам, где объект считается правильно обнаруженным. Было получено значение 0.98.
- **4.mAP50-95** более строгая метрика по сравнению с mAP50, учитывающая качество локализации объектов. Было получено значение 0.75.

МЕТРИКИ ОБУЧЕННОЙ МОДЕЛИ YOLOV5

На левом графике показана плотность расположений людей на тренировочной и валидационной выборке. На правом графике отражено соотношение ширины и длины человека на изображениях. Как можно видеть, оно имеет линейную зависимость.

СРАВНЕНИЕ С ДРУГИМИ РЕШЕНИЯМИ

Название	Precision	mAP50-95
YOLO5 640px с разбиением на фрагменты	0.95	0.75
YOLO5 640px	0.86	0.36
YOLO5 480px	0.72	0.22
YOLO11 480px	0.70	0.22
RetinaNet 480px	0.64	0.20

ЧТО СДЕЛАЛИ МЫ, А ЧТО БИБЛИОТЕКИ?

Что сделала команда	Что сделали использованные инструменты	
Подбор и разметка данных	Label Studio – преобразование размеченных изображений в нужный формат	
Написание кода для кадрирования изображений	PIL – склеивание изображений	
	OpenCV — чтение и сохранение фото	
Подбор параметров для обучения нейронной сети	Yolo — обучение, возврат лучших весов обученной нейронной сети, отображение, получившихся метрик качества	
	RetinaNet — обучение, возврат лучших весов обученной нейронной сети, отображение, получившихся метрик качества	
	Pytorch — предоставление инструментов для обучения нейронных сетей	
Написание кода для приложения с пользовательским интерфейсом	Flask — разворачивание сервера с работающим веб-приложением	

ВЫВОДЫ

образом был разработан алгоритм детекции людей лесопосадках с показателем precision равным 95% и mAP 75%. При не наблюдается переобучения, что показывает детекция на данных. Разработано приложение отложенных тестовых пользовательским интерфейсом для взаимодействия с алгоритмом. Представленный механизм детекции имеет перспективы улучшения (уменьшение времени обработки изображений и времени обучения). Кроме того, в разработанное приложение могут быть добавлены новые функции (загрузка новых размеченных данных, изменение параметров детекции и многое другое).