Introduction on Information security

Chapter 1 – Overview

Riccardo Spolaor, Ph.D

rspolaor@sdu.edu.cn

Shandong University, School of Computer Science and Technology

Overview

Computer Security:

protection afforded to an automated information system in order to attain the applicable objectives of preserving the integrity, availability and confidentiality of information system resources (includes hardware, software, firmware, information/data, and telecommunications).

Key Security Concepts

Key security concepts (definitions)

- Confidentiality: Preserving authorized restrictions on information access and disclosure, including means for protecting personal privacy and proprietary information
- Integrity: Guarding against improper information modification or destruction, including ensuring information nonrepudiation and authenticity
- Availability: Ensuring timely and reliable access to and use of information

Computer Security Challenges

- > not simple
- must consider potential attacks
- procedures used counter-intuitive
- involve algorithms and secret info
- must decide where to deploy mechanisms
- battle of wits between attacker / admin
- not perceived on benefit until fails
- requires regular/constant monitoring
- too often an after-thought
- regarded as impediment to using system

Levels of Impact

Low

The loss could be expected to have a limited adverse effect on...

Moderate

The loss could be expected to have a serious adverse effect on ...

High

The loss could be expected to have a severe or catastrophic adverse effect on...

... organizational operations, organizational assets, or individuals

Security Terminology

Assets of a Computer System

Vulnerabilities and Attacks

- > system resource: with vulnerabilities may
 - be corrupted (loss of integrity)
 - become leaky (loss of confidentiality)
 - become unavailable (loss of availability)
- attacks are threats carried out and may be
 - passive
 - active
 - insider
 - outsider

Countermeasures

- means used to deal with security attacks
 - prevent
 - detect
 - recover
- may result in new vulnerabilities
- > will have residual vulnerability
- > goal is to minimize risk, given constraints

Threat Consequences

- > unauthorized disclosure
 - exposure, interception, inference, intrusion
- ➤ deception
 - masquerade, falsification, repudiation
- > disruption
 - incapacitation, corruption, obstruction
- usurpation
 - misappropriation, misuse

Scope of Computer Security

Computer and Network Assets, with Examples of Threats

	Availability	Confidentiality	Integrity
Hardware	Equipment is stolen or disabled, thus denying service.	An unencrypted CD-ROM or DVD is stolen.	
Software	Programs are deleted, denying access to users.	An unauthorized copy of software is made.	A working program is modified, either to cause it to fail during execution or to cause it to do some unintended task.
Data	Files are deleted, denying access to users.	An unauthorized read of data is performed. An analysis of statistical data reveals underlying data.	Existing files are modified or new files are fabricated.
Communication Lines and Networks	Messages are destroyed or deleted. Communication lines or networks are rendered unavailable.	Messages are read. The traffic pattern of messages is observed.	Messages are modified, delayed, reordered, or duplicated. False messages are fabricated.

Network Security Attacks

- classify as passive or active
- > passive attacks are eavesdropping
 - release of message contents
 - traffic analysis
 - are hard to detect so aim to prevent
- > active attacks modify/fake data
 - masquerade
 - replay
 - modification
 - denial of service
 - hard to prevent so aim to detect

Security Functional Requirements

- > technical measures:
 - access control; identification & authentication; system & communication protection; system & information integrity
- management controls and procedures
 - awareness & training; audit & accountability; certification, accreditation, & security assessments; contingency planning; maintenance; physical & environmental protection; planning; personnel security; risk assessment; systems & services acquisition
- overlapping technical and management:
 - configuration management; incident response; media protection

Fundamental Security Design Principles

Economy of mechanism

Fail-safe defaults

Complete mediation

Open design

Separation of privilege

Least privilege

Least common mechanism

Psychological acceptability

Isolation

Encapsulation

Modularity

Layering

Least astonishment

Attack surfaces

Consist of the reachable and exploitable vulnerabilities in a system

Examples:

Open ports on outward facing Web and other servers, and code listening on those ports

Services available on the inside of a firewall Code that processes incoming data, email, XML, office documents, and industry-specific custom data exchange formats

Interfaces, SQL, and Web forms

An employee with access to sensitive information vulnerable to a social engineering attack

Attack surfaces Categories

Network Attack Surface

Vulnerabilities over an enterprise network, wide-area network, or the Internet

Network protocol
vulnerabilities: Used by
denial-of-service attack,
disruption of
communications links, and
various forms of intruder
attacks

Software Attack Surface

Vulnerabilities in application, utility, or operating system code

Particular focus is Web server software

Human Attack Surface

Vulnerabilities
created by
personnel or
outsiders, such as
social
engineering,
human error, and
trusted insiders

Attacks example: Online banking

X.800 Security Architecture

- > X.800, Security Architecture for OSI
- systematic way of defining requirements for security and characterizing approaches to satisfying them
- defines:
 - security attacks compromise security
 - security mechanism act to detect, prevent, recover from attack
 - security service counter security attacks

Security Taxonomy

Attack Sophistication vs. Intruder Technical Knowledge

Computer Security Losses

Source: Computer Security Institute/FBI 2006 Computer Crime and Security Survey

Security Technologies Used

Source: Computer Security Institute/FBI 2006 Computer Crime and Security Survey

Computer Security Strategy

- specification/policy
 - what is the security scheme supposed to do?
 - codify in policy and procedures
- > implementation/mechanisms
 - how does it do it?
 - prevention, detection, response, recovery
- > correctness/assurance
 - does it really work?
 - assurance, evaluation

Summary

- > security concepts
- > terminology
- > functional requirements
- > security architecture
- > security trends
- security strategy