

Обзор Hadoop 3.0, HDFS 3.0 (высшая математика included)

Драль Алексей, study@bigdatateam.org CEO at BigData Team, https://bigdatateam.org https://www.facebook.com/bigdatateam

Release	Date	Released?
3.0.0-alpha1	2016-09-03	✓
3.0.0-alpha2	2017-01-25	1
3.0.0-alpha3	2017-05-26	1
3.0.0-alpha4	2017-07-07	1
3.0.0-beta1	2017-10-03	1
3.0.0 GA	2017-12-13	1

Улучшена интеграция с облаками (Microsoft, Alibaba, AWS, ...)

- Улучшена интеграция с облаками (Microsoft, Alibaba, AWS, ...)
- YARN:
 - Spot Instances Opportunistic Containers

- Улучшена интеграция с облаками (Microsoft, Alibaba, AWS, ...)
- YARN:
 - Spot Instances Opportunistic Containers
 - ▶ GPU, лицензии и другие ресурсы

- Улучшена интеграция с облаками (Microsoft, Alibaba, AWS, ...)
- YARN:
 - Spot Instances Opportunistic Containers
 - ▶ GPU, лицензии и другие ресурсы
 - 30% ускорение для shuffle-нагруженных MR-задач

- Улучшена интеграция с облаками (Microsoft, Alibaba, AWS, ...)
- > YARN:
 - Spot Instances Opportunistic Containers
 - GPU, лицензии и другие ресурсы
 - 30% ускорение для shuffle-нагруженных MR-задач
- HDFS:
 - ▶ возможность иметь 2+ StandBy Namenode

- Улучшена интеграция с облаками (Microsoft, Alibaba, AWS, ...)
- YARN:
 - Spot Instances Opportunistic Containers
 - GPU, лицензии и другие ресурсы
 - 30% ускорение для shuffle-нагруженных MR-задач
- HDFS:
 - ▶ возможность иметь 2+ StandBy Namenode
 - intra- datanode balancer

- Улучшена интеграция с облаками (Microsoft, Alibaba, AWS, ...)
- YARN:
 - Spot Instances Opportunistic Containers
 - GPU, лицензии и другие ресурсы
 - 30% ускорение для shuffle-нагруженных MR-задач
- HDFS:
 - ▶ возможность иметь 2+ StandBy Namenode
 - intra- datanode balancer
 - ▶ HDFS Federation → HDFS Router-Based Federation

- Улучшена интеграция с облаками (Microsoft, Alibaba, AWS, ...)
- YARN:
 - Spot Instances Opportunistic Containers
 - GPU, лицензии и другие ресурсы
 - 30% ускорение для shuffle-нагруженных MR-задач
- HDFS:
 - ▶ возможность иметь 2+ StandBy Namenode
 - intra- datanode balancer
 - ▶ HDFS Federation → HDFS Router-Based Federation
 - HDFS Erasure Coding (избыточное кодирование в HDFS)

Распределенные вычисления

Fail-Recovery + Fair-Loss Link + Asynchronous

Условия:

- 100 вычислительных узлов
- до 5% узлов вышли единовременно из строя

Политика реплицирования и гарантии доступности данных:

1 реплика: доступность данных - 95%

Условия:

- 100 вычислительных узлов
- до 5% узлов вышли единовременно из строя

- 1 реплика: доступность данных 95%
- 2 реплики: доступность данных 99.75%

Условия:

- 100 вычислительных узлов
- до 5% узлов вышли единовременно из строя

- 1 реплика: доступность данных 95%
- 2 реплики: доступность данных 99.75% (overhead 100%)

Условия:

- 100 вычислительных узлов
- до 5% узлов вышли единовременно из строя

- 1 реплика: доступность данных 95%
- 2 реплики: доступность данных 99.75% (overhead 100%)
- З реплики: доступность данных 99.9875% (overhead 200%)

Немного математики

HDFS Erasure Coding

Erasure coding policies. To accommodate heterogeneous workloads, we allow files and directories in an HDFS cluster to have different replication and erasure coding policies. The erasure coding policy encapsulates how to encode/decode a file. Each policy is defined by the following pieces of information:

- The EC schema: This includes the numbers of data and parity blocks in an EC group (e.g., 6+3), as well as the codec algorithm (e.g., Reed-Solomon, XOR).
- The size of a striping cell. This determines the granularity of striped reads and writes, including buffer sizes and encoding work.

Policies are named codec-num data blocks-num parity blocks-cell size. Currently, six built-in policies are supported: RS-3-2-1024k, RS-6-3-1024k, RS-10-4-1024k, RS-LEGACY-6-3-1024k, XOR-2-1-1024k and REPLICATION.

https://hadoop.apache.org/docs/r3.0.0/.../hadoop-hdfs/HDFSErasureCoding.html

Α

B

C

1	0	0		
0	1	0		А
0	0	1	*	В
X ₄₁	X ₄₂	X ₄₃		С
X ₅₁	X ₅₂	X ₅₃		

1	0	0				Α
0	1	0		Α		В
0	0	1	*	В	=	С
X ₄₁	X ₄₂	X ₄₃		С		RS_0
X ₅₁					,	RS ₁

Y ₁₁	Y ₁₂	Y ₁₃	
Y ₂₁	Y ₂₂	Y ₂₃	*
Y ₃₁	Y ₃₂	Y ₃₃	

	0	0	1
*	X ₄₁	X ₄₂	X ₄₃
	X ₅₁	X ₅₂	X ₅₃

 RS_0

Представление целых чисел

Число	Бинарное представление
2 ⁿ -1	011111
• • •	• • •
2	000010
1	000001
0	000000
-0	100000
-1	100001
-2	100010
	• • •
-(2 ⁿ -1)	111111

Представление вещественных чисел

Одинарная точность (float, 4 байта)

		Зна	K																													
Порядок (8 бит)								Мантисса (23+1 бита)																								
0	0	0	0	0	0	0	0	0	1,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8.	3	30						23		22	2																					0

Двойная точность (double, 8 байт)

	Знак	
	Порядок	Мантисса
	(11 бит)	(52+1 бит)
0	0 0 0 0 0 0 0 0 0 0 0	1, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	62 52	0

источник

Готовимся к погружению в математику

Конечное поле Галуа

GS(2ⁿ) (сокращение от Galois Field)

Конечное поле Галуа

GS(2ⁿ) (сокращение от Galois Field)

Q&A

Операция сложения в GS(2³)

Операция сложения

А	В	C = A ⊕ B
0	0	0
0	1	1
1	0	1
1	1	0

Галуа и умножение

Эвари́ст Галуа́ (фр. Évariste Galois; 1811-1832)

В 18 лет придумал поля* Галуа (1830)

А что сделал ты, когда тебе было 18?

*см. уточнения например <u>здесь</u> и <u>здесь</u>

ightharpoonup Порождающий многочлен (generator polynomial): $g(x) = x^3 + x + 1$

ightharpoonup Порождающий многочлен (generator polynomial): $g(x) = x^3 + x + 1$

1	001	1
X	010	2
x + 1	011	3
x ²	100	4
$x^2 + 1$	101	5
$x^2 + x$	110	6
$x^2 + x + 1$	111	7

▶ Порождающий многочлен (generator polynomial): $g(x) = x^3 + x + 1$

1	001	1
X	010	2
x + 1	011	3
x ²	100	4
$x^2 + 1$	101	5
$x^2 + x$	110	6
$x^2 + x + 1$	111	7

умножение:

$$\rightarrow$$
 3 = (x + 1), 5 = (x² + 1)

►
$$3*5 = (x+1)*(x^2+1) = x^3+x+x^2+1 = (x^3+x+1)+x^2=x^2=4$$

пример работы с коэффициентами (XOR):

►
$$5 + 6 = (x^2 + 1) + (x^2 + x) = (x^2 + x^2) + x + 1 = x + 1 = 3$$

Таблица умножения в $GF(2^3)$

			1	2	3	4	5	6	7
1	001	1	1	2	3	4	5	6	7
X	010	2	2	4	6	3	1	7	5
x + 1	011	3	3	6	5	7	4	1	2
X ²	100	4	4	3	7	6	2	5	1
$x^2 + 1$	101	5	5	1	4	2	7	3	6
$x^2 + x$	110	6	6	7	1	5	3	2	4
$x^2 + x + 1$	111	7	7	5	2	1	6	4	3

Таблица умножения в $GF(2^3)$

			1	2	3	4	5	6	7
1	001	1	1	2	3	4	5	6	7
X	010	2	2	4	6	3	1	7	5
x + 1	011	3	3	6	5	7	4	1	2
x ²	100	4	4	3	7	6	2	5	1
$x^2 + 1$	101	5	5	1	4	2	7	3	6
$x^2 + x$	110	6	6	7	1	5	3	2	4
$x^2 + x + 1$	111	7	7	5	2	1	6	4	3

Магия степеней в $GF(2^n)$

Порождающий элемент
(primitive element,
generator): 2

Χ

 x^2

x + 1

 $x^2 + 1$

 $x^2 + x$

 $x^2 + x + 1$

001

010

011

100

101

110

111

-	степени									
	0	1	2	3	4	5	6	7		
1	1	1	1	1	1	1	1	1		
2	1	2	4	3	6	7	5	1		
3	1	3	5	4	7	2	6	1		
4	1	4	6	5	2	3	7	1		
5	1	5	7	6	3	4	2	1		
6	1	6	2	7	4	5	3	1		
7	1	7	3	2	5	6	4	1		

Магия степеней в GF(2ⁿ)

► Порождающий элемент (primitive element, generator): 2

			степени							
			0	1	2	3	4	5	6	7
1	001	1	1	1	1	1	1	1	1	1
х	010	2	1	2	4	3	6	7	5	1
x + 1	011	3	1	3	5	4	7	2	6	1
x²	100	4	1	4	6	5	2	3	7	1
x ² + 1	101	5	1	5	7	6	3	4	2	1
x ² + x	110	6	1	6	2	7	4	5	3	1
x ² + x + 1	111	7	1	7	3	2	5	6	4	1

умножение:

$$\rightarrow$$
 3 = 2³, 5 = 2⁶

деление:

$$> 7/2 = 2^5/2^1 = 2^5 = 2^4 = 6$$

возведение в степень:

$$\blacktriangleright$$
 3⁵ = (2³)⁵ = 2^(15 mod 7) = 2¹ = 2

Как выбирать X, чтобы получить Y?

Y ₁₁	Y ₁₂	Y ₁₃		0	
Y ₂₁	Y ₂₂	Y ₂₃	*	X ₄₁	>
Y ₃₁	Y ₃₂	Y ₃₃		X ₅₁	>

 RS_0

Как выбирать X, чтобы получить Y

Y ₁₁	Y ₁₂	Y ₁₃		0	0
Y ₂₁	Y ₂₂	Y ₂₃	*	X ₄₁	X ₄₂
Y ₃₁	Y ₃₂	Y ₃₃		X ₅₁	X ₅₂

$$V_m = \begin{bmatrix} 1 & X_1 & X_1^2 & \dots & X_1^{m-1} \\ 1 & X_2 & X_2^2 & \dots & X_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & X_m & X_m^2 & \dots & X_m^{m-1} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} & \dots & \frac{1}{a_1 + b_n} \\ \frac{1}{a_2 + b_1} & \frac{1}{a_2 + b_2} & \dots & \frac{1}{a_2 + b_n} \\ \dots & \dots & \dots & \dots \\ \frac{1}{a_n + b_1} & \frac{1}{a_n + b_2} & \dots & \frac{1}{a_n + b_n} \end{bmatrix}$$

$$V_m = \begin{bmatrix} 1 & X_1 & X_1^2 & \dots & X_1^{m-1} \\ 1 & X_2 & X_2^2 & \dots & X_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & X_m & X_m^2 & \dots & X_m^{m-1} \end{bmatrix} \qquad \begin{bmatrix} \frac{1}{a_1+b_1} & \frac{1}{a_1+b_2} & \dots & \frac{1}{a_1+b_s} \\ \frac{1}{a_2+b_1} & \frac{1}{a_2+b_2} & \dots & \frac{1}{a_2+b_s} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{1}{a_2+b_1} & \frac{1}{a_2+b_2} & \dots & \frac{1}{a_2+b_s} \end{bmatrix} \qquad H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \end{bmatrix}.$$
 матрица Вандермонда матрица Коши матрица Гильберта

матрица Гильберта

Условия:

- 100 вычислительных узлов
- до 5% узлов вышли единовременно из строя

- 1 реплика: доступность данных 95%
- 2 реплики: доступность данных 99.75% (overhead 100%)
- З реплики: доступность данных 99.9875% (overhead 200%)
- RS-3-2-1024k: доступность данных ??% (overhead 67%)

Условия:

- 100 вычислительных узлов
- до 5% узлов вышли единовременно из строя

- 1 реплика: доступность данных 95%
- 2 реплики: доступность данных 99.75% (overhead 100%)
- З реплики: доступность данных 99.9875% (overhead 200%)
- RS-3-2-1024k: доступность данных 99.94% (overhead 67%)

Q&A

Какие минусы у RS-10-4-1024k?

Стандартные подходы

Список литературы на лето

HDFS Erasure Coding in Production

https://blog.cloudera.com/hdfs-erasure-coding-in-production/

- Было круто, повторим?
- ► Hive 3+
- ► Spark 3+
- ...