Q1.1 ((lambda (x1 y1) (if (> x1 y1) #t #f)) 8 3)-

Assign type variables for every sub expression:

Accigit type variables for every eab expre	001011.
((lambda (x1 y1) (if (> x1 y1) #t #f)) 8 3)	T_0
(lambda (x1 y1) (if (> x1 y1) #t #f))	T ₁
(if (> x1 y1) #t #f)	T ₂
(> x1 y1)	T ₄
#t	T ₅
#f	T ₆
>	T ₇
x1	T ₈
x2	T ₉
8	T ₁₀
3	T ₁₁

Construct type equations:

Construct type equations.	
((lambda (x1 y1) (if (> x1 y1) #t #f)) 8 3)	$T_1 = [T_{10} * T_{11} \to T_0]$
(lambda (x1 y1) (if (> x1 y1) #t #f))	$T_1 = [T_8 * T_9 \rightarrow T_2]$
(if (> x1 y1) #t #f)	$T_2 = T_5$
(> x1 y1)	$T_4 = Boolean$
#t	$T_5 = Boolean$
#f	$T_6 = Boolean$
>	$T_7 = [Number*Number \rightarrow Boolean]$
8	$T_{10} = Number$
3	$T_{11} = Number$

Solving the equations:

Solving the equations:	
$T_{1} = [T_{10} * T_{11} \longrightarrow T_{0}]$	$T_1 = [T_{10} * T_{11} \to T_0]$
$T_1 = [T_8 * T_9 \rightarrow T_2]$	
$T_2 = T_5$	
$T_4 = Boolean$	
$T_5 = Boolean$	
$T_6 = Boolean$	
$T_7 = [Number*Number \rightarrow Boolean]$	
$T_{10} = Number$	
$T_{11} = Number$	

$T_1 = [T_8 * T_9 \rightarrow T_2]$	$T_1 = [T_{10} * T_{11} \rightarrow T_0]$
$T_2 = T_5$	1
T ₄ = Boolean	1
$T_5 = Boolean$	1
T ₆ = Boolean	1
$T_7 = [Number*Number \rightarrow Boolean]$	-
$T_{10} = \text{Number}$	-
$T_{11} = Number$	-
$T_8 = T_{10}$	-
$T_9 = T_{11}$	-
	-
$T_2 = T_0$	
$T_2 = T_5$	$T_1 = [T_{10} * T_{11} \rightarrow T_0]$ $T_2 = T_5$
T ₄ -Boolean	T_4 = Boolean
$T_5 = Boolean$]
$T_6 = Boolean$	
$T_7 = [Number*Number \rightarrow Boolean]$	
$T_{10} = Number$]
$T_{11} = Number$	1
$T_2 = T_0$	1
T ₅ -Boolean	$T_1 = [T_{10} * T_{11} \rightarrow T_0]$
T ₆ -Boolean	T ₂ = Boolean T ₄ = Boolean
$T_7 = [\text{Number*Number} \rightarrow \text{Boolean}]$	T ₅ = Boolean
$T_{10} = \text{Number}$	T ₆ = Boolean
$T_{11} = Number$	-
$T_2 = T_0$	-
12 10	
$T_7 = [Number*Number \rightarrow Boolean]$	$T_1 = [T_{10} * T_{11} \rightarrow T_0]$
	$T_2 = Boolean$
$T_{10} = \text{Number}$	T_4 = Boolean T_5 = Boolean
$T_{11} = Number$	T ₆ = Boolean
$T_2 = T_0$	$T_7 = [Number*Number \rightarrow Boolean]$
m . v . t	m ny 1
T ₁₀ = Number	$T_1 = [\text{Number*Number} \rightarrow T_0]$ $T_2 = \text{Boolean}$
T ₁₁ - Number	$T_4 = Boolean$
$T_2 = T_0$	T_5 = Boolean T_6 = Boolean
	$T_7 = [\text{Number*Number} \rightarrow \text{Boolean}]$
	T_{10} = Number
	$T_{11} = Number$
$T_2 = T_0$	$T_1 = [\text{Number*Number} \rightarrow \text{Boolean}]$
	T_2 = Boolean T_4 = Boolean
	$T_5 = Boolean$
	T_6 = Boolean T_7 = [Number*Number \rightarrow Boolean]
	$T_{10} = \text{Number}$ Number
	$T_{11} = Number$ $T_{12} = Replace$
	$T_0 = Boolean$

 T_0 = Boolean => ((lambda (x1 y1) (if (> x1 y1) #t #f)) 8 3) is of type Boolean.

a. {f:[T1->T2], x: T1} |- (f x): T2

True.

In the given environment; x is from type T1, and f is a function from T1 to T2. Hence, the output of provoking f on x, is from type T2.

b. {f:[T1->T2] ,g: [T2->T3]}, x: T2} |- (f g x): T3

False.

(f g x) is not a valid expression because f accept 1 operand of type T1, hence False

c. {f:[T2->T1],g: [T1->T2], x: T1}|- (f (g x)): T1

True.

In the given environment x is from type T1, and g operates on T1 and output T2 => g(x): T2

f is a function from T2 to T1 => g(x) is in the range of f so the operation is valid, and the output will be from type T1

=> f(g(x))

d. {f:[T2->Number], x: Number}|- (f x x): Number

False.

f doesn't operate on 2 operands, hence the expression is invalid.

3.

4.

(Define f (lambda (x) (values x x x)))

If x:T1 => (values
$$x x x$$
) = ($x * x * x$)

- 5. Write the MGU of the following expressions, or state that there is no such MGU.
 - a. T1, T2 => $\{T1 = T2\}$
 - b. Number , Number => {}
 - c. [T1*[T1->T2]->Number] , [[T3->Number]*[T4->Number]->Number] => {T1=T4=[T3->Number], T2=Number}
 - d. [T1->T1] , [T1->[Number->Number]] =>

{T1 = [Number -> Number]}

There is no unifier that will satisfies those expressions.

Q2.3

```
(define f (number -> (number * number))
  (lambda ((x: number)): (number * number)
        (values x (+ x 1))))

(define g (T -> (string * T))
      (lambda (x: T):(string * T)
        (values "x" x)))
```

Q4.b

The use of promises helps us write a cleaner code, using chained promises. Also we have the ability to handle errors of few promises with one catch.