Dinámica de Sistemas Diseño de un modelo epidemiológico

Víctor García

24 de abril de 2025

Introducción: Motivación y Enfoque

Se desarrolla un modelo SEIRD
 (Susceptible-Expuesto-Infectado-Recuperado-Decedido) para simular
 la dinámica de una enfermedad.

Estructura del Modelo SEIRD

La población total (N) se divide en cinco compartimentos:

- **S** (Susceptible): Individuos sanos que pueden contraer la enfermedad.
- E (Exposed): Individuos infectados pero aún no infecciosos (en período de incubación).
- I (Infected): Individuos capaces de transmitir la enfermedad.
- R (Recovered): Individuos que han superado la enfermedad y adquirido inmunidad (asumida).
- **D** (**Dead**): Individuos que han fallecido a causa de la enfermedad.

La población total se asume constante:

$$N = S(t) + E(t) + I(t) + R(t) + D(t).$$

Ecuaciones Diferenciales del Modelo

La dinámica entre compartimentos se describe mediante:

$$S'(t) = -\frac{\beta S(t)I(t)}{N} \tag{1}$$

$$E'(t) = \frac{\beta S(t)I(t)}{N} - \alpha E(t)$$
 (2)

$$I'(t) = \alpha E(t) - \gamma I(t) \tag{3}$$

$$R'(t) = \gamma(1 - \mu)I(t) \tag{4}$$

$$D'(t) = \gamma \mu I(t) \tag{5}$$

Donde X'(t) representa la tasa de variación (primera derivada) del compartimento X en el tiempo t.

Parámetros del Modelo (I)

Los parámetros principales que gobiernan las transiciones son:

- β (Tasa de Transmisión): Frecuencia de transmisión efectiva. Puede depender de 'contactsday' \times 'infectivity'.
- α (Tasa de Latencia): Tasa a la que los expuestos se vuelven infecciosos. Inversa del período medio de incubación $(1/\alpha)$.
- γ (Tasa de Remoción): Tasa a la que los infecciosos se recuperan o fallecen. Inversa del período medio infeccioso $(1/\gamma)$.
- μ (Tasa de Mortalidad): Fracción de individuos infecciosos removidos que fallecen.
- N (Población Total): Tamaño total de la población bajo estudio.
- **Supuestos:** α , γ , N se consideran constantes. Se asume población inicialmente susceptible ($S_0 \approx N$).

Parámetros del Modelo (II) y Enfoque de Calibración

Parámetro de Contención:

φ (Factor de Contención): Cuantifica el efecto de las medidas de mitigación (confinamiento, etc.) sobre la transmisión. Modifica la tasa de transmisión efectiva.

Variables Foco para Calibración:

- 1. Retraso temporal en la publicación de datos.
- 2. Grado de subregistro de nuevos infectados.
- 3. Temporización de las políticas de contención.
- 4. Factor de contención (ρ).
- 5. (Implícitamente, la **tasa de transmisión** β también es clave).

Número Reproductivo: Promedio de personas que contagia un infectado

- R_0 (Básico): $\approx \beta/\gamma$ (en ausencia de medidas y sin inmunidad).
- R_{eff} (Efectivo): $R_{eff} = \rho R_0 = \frac{\rho \beta}{\gamma}$.

Parámetros Preliminares para Validación

Valores usados para comparar codificaciones (Tabla 1):

	•		
Parámetro	Valor		
contactsday	7.42		
infectivity	0.42		
infectiousPeriod	14.39 días		
incubation Period	6.38 días		
fatalityRate (μ)	0.85 %		

Valores Derivados:

- $\beta = \text{contactsday} \times \text{infectivity} = 7,42 \times 0,42 = 3,1164$
- $\alpha = 1/\text{incubationPeriod} = 1/6,38 \approx 0,1567 \text{ día}^{-1}$
- $\gamma = 1/\text{infectiousPeriod} = 1/14,39 \approx 0,0695 \text{ día}^{-1}$
- $\mu = 0.85/100 = 0.0085$

Estos valores permiten validar y comparar diferentes implementaciones del modelo.

Insight Maker SEIRD model

8 / 15

SEIRD con confinamiento - SEIRDQ (I)

- I_c : Umbral de Infectados (I) para activar el confinamiento.
- r_c : Tasa de confinamiento (proporción de Susceptibles (S) que entran en C por unidad de tiempo, cuando $I > I_c$).

SEIRDQ (II)

SEIRS-DQ (con confinamiento y reinfección)

 ω : Factor de retorno, inverso del periodo de inmunidad.

SEIRS-DQ (con variantes, tasa de transmisión variable)

Comparativa de variantes del COVID-19

Variante	Origen	Aparición	RTF	IFR (%)
Wuhan (original)	China	Dic 2019	$1 \times$	≈0,68
Alpha (B.1.1.7)	Reino Unido	Sep 2020	pprox1,5 $ imes$	≈0,68
Delta (B.1.617.2)	India	Oct 2020	$\approx 2 \times$	≈0,65
Omicron (B.1.1.529)	Sudáfrica/Botsuana	Nov 2021	\approx 4 \times	≈0,15

Cuadro: Principales variantes del SARS-CoV-2: factor de transmisibilidad relativo (RTF) y mortalidad (IFR) estimadas

¿Qué es Insight Maker?

- Plataforma web para modelado y simulación de sistemas.
- Basada en dinámica de sistemas y redes causales.
- Permite compartir y colaborar en línea.
- https://insightmaker.com para documentación y tutoriales.

Componentes Básicos

- **Stocks:** Acumulaciones o depósitos que representan el estado de recursos (p. ej., población, inventario).
- **Flows:** Tasas de cambio que alimentan o vacían los stocks (p. ej., nacimientos, ventas).
- Variables: Parámetros o datos de entrada constantes que controlan dinámicas del modelo.
- Links: Enlaces causales que indican dependencias y dirección de influencia entre elementos.
- **Converters:** Cálculos o transformaciones intermedias que definen relaciones algebraicas sin acumular estado.

15 / 15