Seminar 5 Spații metrice. Serii de funcții

Spații metrice

Definiție 1.1: Fie X o mulțime nevidă. O aplicație $d: X \times X \to \mathbb{R}$ se numește *distanță* (metrică) pe X dacă:

- (a) $d(x,y) \ge 0, \forall x, y \in \mathbb{R}$;
- (b) $d(x, y) = 0 \Leftrightarrow x = y$;
- (c) $d(x, y) = d(y, x), \forall x, y \in X$;
- (d) $d(x,z) \le d(x,y) + d(y,z)$ (inegalitatea triunghiului).

În acest context, perechea (X, d) se numește *spațiu metric*.

Această noțiune vine să generalizeze calculul distanțelor cu ajutorul modulului, cum se procedează în cazul mulțimii numerelor reale, de exemplu. În consecință, avem și următoarele *mulțimi* remarcabile în spații metrice (X, d):

• bila deschisă de centru a și rază r, definită pentru a, $r \in \mathbb{R}$ prin:

$$B(\alpha, r) = \{x \in X \mid d(\alpha, x) < r\};$$

• sfera de centru a și rază r, definită prin:

$$S(a,r) = \{x \in X \mid d(a,x) = r\};$$

• bila închisă de centru a și rază r, definită prin:

$$\overline{B(\alpha,r)} = B(\alpha,r) \cup S(\alpha,r) = \{x \in X \mid d(\alpha,x) \leq r\}.$$

Aceste mulțimi generalizează intervalele de numere reale. Mai general, avem:

Definiție 1.2: Fie X un spațiu metric. O submulțime $D \subseteq X$ se numește *deschisă* dacă $\forall \alpha \in D, \exists r > 0$ astfel încît $B(\alpha, r) \subseteq D$. Cu alte cuvinte, mulțimea conține o bilă deschisă, centrată în orice punct al său

O mulțime se numește *închisă* dacă complementara ei, relativ la spațiul total, este o mulțime deschisă.

Adaptînd noțiunile specifice pentru analiza matematică, precum convergență, limită ș.a.m.d. folosindu-ne de funcția distanță, putem defini construcțiile și conceptele uzuale. În particular, au sens noțiuni precum *șiruri convergente* și *șiruri Cauchy*, definite ca în cazul mulțimii numerelor reale, doar cu ajutorul funcției generale distanță. În plus, avem și următoarea noțiune:

Definiție 1.3: Un spațiu metric (X, d) se numește *complet* dacă noțiunile de "șir Cauchy" și "șir convergent" coincid pentru X.

2 Principiul contracției. Metoda aproximațiilor succesive

Definiție 2.1: Fie (X, d) un spațiu metric și fie $f: X \to X$ o funcție.

Aplicația f se numește *contracție pe* X dacă există $k \in [0,1)$ astfel încît:

$$d(f(x), f(y)) \le k \cdot d(x, y), \forall x, y \in X.$$

Numărul k se numește factor de contracție.

Un rezultat important este următorul:

Teoremă 2.1 (Banach): Fie (X, d) un spațiu metric complet și fie $f: X \to X$ o contracție de factor k. Atunci există un unic punct $\xi \in X$, astfel încît $f(\xi) = \xi$.

În acest context, ξ se numește punct fix pentru f.

Pentru a găsi punctul fix al unei aplicații, se folosește *metoda aproximațiilor succesive*. Se construiește un șir recurent astfel.

Fie $x_0 \in X$, arbitrar și definim șirul recurent $x_{n+1} = f(x_n)$. Se poate demonstra că șirul x_n este convergent, iar limita sa este punctul fix căutat. În plus, eroarea aproximației cu acest șir este dată de:

$$d(x_n,\xi) \leqslant \frac{k^n}{1-k} \cdot d(x_0,x_1), \forall n \in \mathbb{N}.$$

3 Exemplu rezolvat

Aplicațiile interesante pentru această temă sînt date de calculul aproximativ al soluțiilor unor ecuații, definite în spații metrice.

1. Să se aproximeze cu o eroare mai mică decît 10^{-3} soluția reală a ecuației $x^3 + 4x - 1 = 0$.

Soluție: Folosind, eventual, metode de analiză (șirul lui Rolle), se poate arăta că ecuația are o singură soluție reală $\xi \in (0,1)$. Folosim metoda aproximațiilor succesive pentru a o găsi.

Fie X = [0,1] și $f: X \to X$, $f(x) = \frac{1}{x^2+4}$. Pînă la o translație, ecuația dată este echivalentă cu f(x) = x, adică a găsi un punct fix pentru funcția f.

Spațiul metric X este complet. Mai demonstrăm că f este contracție pe X. Derivata este $f'(x) = \frac{-2x}{(x^2+4)^2}$, și avem:

$$\sup_{x \in X} |f'(x)| = -f'(1) = \frac{2}{25} < 1,$$

deci f este o contracție, de factor $k = \frac{2}{25}$.

Şirul aproximaţiilor succesive este dat de:

$$x_0 = 0$$
, $x_{n+1} = f(x_n) = \frac{1}{x_n^2 + 4}$.

Evaluarea erorii:

$$|x_n - \xi| < \frac{k^n}{1-k}|x_0 - x_1| = \frac{1}{3} \left(\frac{2}{25}\right)^n$$
,

de unde rezultă că putem lua $\xi \simeq x_3 = f(\frac{16}{65}) \simeq 0,235$.

Observație 3.1: Alternativ, puteam lucra cu $g(x) = \frac{1}{4}(1-x^3)$, cu $x \in [0,1]$. Se arată că și g este o contracție, de factor $k = \frac{3}{4}$. În acest caz, șirul aproximațiilor succesive converge mai încet și avem $\xi \simeq x_6$.

Similar, puteți rezolva următoarele ecuații, cu eroarea ε:

- (a) $x^3 + 12x 1 = 0$, $\varepsilon = 10^{-3}$;
- (b) $x^5 + x 15 = 0$, $\varepsilon = 10^{-3}$:
- (c) $3x + e^{-x} = 1$, $\varepsilon = 10^{-3}$;
- (d) $x^3 x + 5 = 0$, $\varepsilon = 10^{-2}$;
- (e) $x^5 + 3x 2 = 0$, $\varepsilon = 10^{-3}$.

4 Şiruri de funcții

Definiție 4.1: Fie $(f_n)_n$ un șir de funcții, cu fiecare $f_n:[a,b]\to\mathbb{R}$ și fie o funcție $f:[a,b]\to\mathbb{R}$. Spunem că șirul (f_n) converge punctual pe [a,b] către f pentru $n\to\infty$, scris $f_n\xrightarrow{PC}f$ dacă avem $f_n(x_0)\to f(x_0)$, pentru orice $x\in[a,b]$.

Spunem că șirul (f_n) converge uniform pe [a,b] către f, scris $f_n \xrightarrow{UC} f$, dacă:

$$\forall \epsilon>0, \exists N_\epsilon \in \mathbb{N} \text{ a.i. } \forall n\geqslant N_\epsilon, |f_n(x)-f(x)|<\epsilon, \forall x\in [\alpha,b].$$

În calcule, va fi de folos următorul rezultat:

Teoremă 4.1: Un şir (f_n) de funcții mărginite $f_n:[a,b]\to\mathbb{R}$ este uniform convergent către o funcție f dacă şi numai dacă $\lim_{n\to\infty}\|f_n-f\|=0$.

De asemenea, avem și:

Teoremă 4.2: Orice șir de funcții $f_n : [a,b] \to \mathbb{R}$ uniform convergent pe [a,b] este punctual convergent pe [a,b].

Reciproca acestui rezultat este falsă: fie [a,b] = [0,1] și $f_n(x) = x^n$, $n \ge 1$. Pentru orice $x \in [a,b]$, avem:

$$\lim_{n\to\infty} f_n(x) = \begin{cases} 0, & x \in [0,1) \\ 1, & x = 1 \end{cases}$$

Rezultă că $f_n \xrightarrow{PC} f$, unde funcția f este definită de limita de mai sus. Dar:

$$\begin{split} \|f_{n} - f\| &= \sup_{x \in [0,1)} |f_{n}(x) - f(x)| \\ &= \max(\sup_{x \in [0,1)} (|f_{n}(x) - f(x)|, |f_{n}(1) - f(1)|)) \\ &= \max(\sup_{x \in [0,1)} (x^{n}, 0)) \\ &= 1, \end{split}$$

de unde obținem $\lim_{n\to\infty}\|f_n-f\|=1\neq 0$. Rezultă că (f_n) este punctual convergent, nu uniform convergent pe [0,1).

Pentru caracterizarea convergenței, avem la dispoziție mai multe rezultate, printre care și *criteriul fundamental, al lui Cauchy*. Vom enunța, însă, rezultatele care vor fi utile în special în rezolvarea exercițiilor:

Teoremă 4.3 (Integrare termen cu termen): Fie (f_n) un șir uniform convergent de funcții continue, f_n : $[a,b] \to \mathbb{R}$.

Atunci limita $f = \lim_{n \to \infty} f_n$ este o funcție continuă pe [a, b] și avem:

$$\lim_{n\to\infty}\int_a^b f_n(x)dx = \int_a^b f(x)dx.$$

Cu alte cuvinte, în cazul convergenței uniforme, limita comută cu integrala.

Pentru derivabilitate, avem:

Teoremă 4.4 (Derivare termen cu termen): Fie (f_n) un șir de funcții din $C^1([a,b])$ și f, g funcții mărginite, cu f, g: $[a,b] \to \mathbb{R}$. Dacă $f_n \xrightarrow{PC} f$ și $f'_n \xrightarrow{UC} g$ pe [a,b], atunci f este derivabilă pe [a,b] și f' = g.

Pentru cazul șirurilor monotone de funcții continue, rezultatul următor arată o legătură simplă între convergența punctuală și cea uniformă:

Teoremă 4.5 (U. Dini): Fie (f_n) un șir monoton de funcții continue, $f_n : [a,b] \to \mathbb{R}$, astfel încît $f_n \xrightarrow{PC} f$. Atunci $f_n \xrightarrow{UC} f$.

Următorul rezultat va fi de folos în special în capitolul privitor la serii de puteri:

Teoremă 4.6 (Stone—Weierstrass): *Pentru orice funcție continuă* $f:[a,b] \to \mathbb{R}$, *există un șir* (f_n) de polinoame, *cu* $f_n:[a,b] \to \mathbb{R}$, *astfel încît* $f_n \xrightarrow{UC} f$.

5 Serii de funcții

Trecem acum la studiul seriilor de funcții, făcînd legături similare cu trecerea de la șiruri de numere la serii de numere.

Începem cu o noțiune fundamentală:

Definiție 5.1: Mulțimea valorilor lui x pentru care seria de funcții $\sum_{n\geqslant 1} f_n(x)$ este convergentă se numește *mulțimea de convergență* a seriei, iar funcția $f:[a,b]\to\mathbb{R}$, cu $f(x)=\lim_{n\to\infty}S_n(x)$, unde $S_n(x)$ este șirul sumelor parțiale pentru seria de funcții, se numește *suma seriei*.

Seria $\sum f_n$ se numește *simplu* (*punctual*) *convergentă* către funcția f dacă șirul sumelor parțiale $(S_n(x))_n$ este punctual convergent către f.

Similar, seria se numește *uniform convergentă* către funcția f dacă șirul sumelor parțiale este uniform convergent către f.

Seria se numește *absolut convergentă* dacă seria $\sum |f_n(x)|$ este simplu convergentă.

Regăsim acum, atît noțiunile privitoare la șirurile de funcții, cît și criteriile de convergență pentru serii de numere.

Teoremă 5.1: Fie $\sum f_n$ o serie uniform convergentă de funcții continue, cu $f_n:[a,b]\to\mathbb{R}$ și fie s suma acestei serii. Atunci s este o funcție continuă pe [a,b] și:

$$\int_{a}^{b} s(x)dx = \sum_{n \ge 1} \int_{a}^{b} f_{n}(x)dx.$$

Avem rezultatul corespunzător și pentru derivate:

Teoremă 5.2: Fie $\sum f_n$ o serie punctual convergentă de funcții din $C^1([a,b])$, cu suma s pe [a,b] și astfel încît seria derivatelor $\sum f'_n$ să fie uniform convergentă. Atunci funcția s este derivabilă pe [a,b] și în plus:

$$s'(x) = \sum_{n \geqslant 1} f'_n(x).$$

Teoremă 5.3 (Weierstrass): Fie $\sum f_n$ o serie de funcții, cu f_n : $[a,b] \to \mathbb{R}$ și fie $\sum a_n$ o serie convergentă de numere reale pozitive.

 $Dacă |f_n(x)| \leq a_n$, pentru orice $x \in [a,b]$ și $n \geq N$, cu N fixat, atunci seria de funcții $\sum f_n$ este uniform convergentă pe [a,b].

Teoremă 5.4 (Criteriul lui Abel): Dacă seria de funcții $\sum f_n$ se poate scrie $\sum \alpha_n v_n$, astfel încît seria de funcții $\sum v_n$ să fie uniform convergentă, iar (α_n) să fie un șir monoton de funcții egal mărginite (i.e. mărginite de aceeași constantă), atunci seria inițială este uniform convergentă.

O alternativă:

Teoremă 5.5 (Criteriul lui Dirichlet): Dacă seria de funcții $\sum f_n$ se poate scrie sub forma $\sum \alpha_n \nu_n$, astfel încît șirul sumelor parțiale al seriei $\sum \nu_n$ să fie un șir de funcții egal mărginite, iar șirul (α_n) să fie un șir monoton de funcții, ce converge uniform către 0, atunci ea este uniform convergentă.

6 Formula lui Taylor

Putem asocia oricărei funcții cu anumite proprietăți "bune" un polinom care o aproximează. Este vorba despre *polinomul Taylor*, definit astfel.

Fie $I \subseteq \mathbb{R}$ un interval deschis și fie $f: I \to \mathbb{R}$ o funcție de clasă $C^{\mathfrak{m}}(I)$. Pentru orice $\mathfrak{a} \in I$, definim polinomul Taylor de gradul $\mathfrak{n} \leqslant \mathfrak{m}$ asociat funcției \mathfrak{f} în punctul \mathfrak{a} :

$$T_{n,f,\alpha} = \sum_{k=0}^{n} \frac{f^{(k)}(\alpha)}{k!} (x - \alpha)^{k}.$$

Restul (eroarea aproximării) se definește prin:

$$R_{n,f,a}(x) = f(x) - T_{n,f,a}(x).$$

Următorul rezultat ne arată că polinomul de mai sus poate fi transformat într-o formulă mai exactă:

Teoremă 6.1 (Formula lui Taylor cu resturi Lagrange): Fie $f: I \to \mathbb{R}$ o funcție de clasă $C^{n+1}(I)$ și $a \in I$. Atunci, pentru orice $x \in I$, există $\xi \in (a,x)$ (sau (x,a), după caz), astfel încît:

$$f(x) = T_{n,f,a}(x) + \frac{(x-a)^{n+1}}{(n+1)!} f^{n+1}(\xi).$$

Privitor la restul rezultat din această formulă, avem următoarele:

• forma Peano: $\exists \omega : I \to \mathbb{R}$, cu $\lim_{x \to a} \omega(x) = \omega(a) = 0$:

$$R_{n,f,a}(x) = \frac{(x-a)^n}{n!} \omega(x).$$

• forma integrală:

$$R_{n,f,a}(x) = \frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} dt.$$

•
$$\lim_{x\to a} \frac{R_{n,f,a}(x)}{(x-a)^n} = 0.$$

7 Exerciții

1. Să se studieze convergența simplă și uniformă a șirurilor de funcții:

(a)
$$f_n : [-1, 1] \to \mathbb{R}, f_n(x) = \frac{x}{1 + nx^2}$$
;

(b)
$$f_n : [0,1] \to \mathbb{R}, f_n(x) = x^n(1-x^n);$$

(c)
$$f_n: (-1,1) \to \mathbb{R}, f_n(x) = \frac{1-x^n}{1-x};$$

(d)
$$f_n:[0,1]\to \mathbb{R}, f_n(x)=\frac{2nx}{1+n^2x^2};$$

(e)
$$f_n:[0,\infty)\to\mathbb{R}, f_n(x)=\frac{x+n}{x+n+1};$$

(f)
$$f_n : [0, \infty) \to \mathbb{R}, f_n(x) = \frac{x}{1 + nx^2}$$
;

(g)
$$f_n : \mathbb{R} \to \mathbb{R}$$
, $f_n(x) = \arctan(nx)$;

(h)
$$f_n: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, f_n(x) = n \sin^n x \cos x.$$

2. Să se arate că șirul $f_n:[0,\infty)\to\mathbb{R}$, $f_n(x)=\frac{x}{x+n}$ nu converge uniform pe $[0,\infty)$, dar converge uniform pe orice interval [a,b], cu $0<\alpha< b$.

3. Să se arate că șirul de funcții (f_n) , unde:

$$f_n:(1,\infty)\to\mathbb{R},\quad f_n(x)=\sqrt{(n^2+1)\sin^2\frac{\pi}{n}+nx}-\sqrt{nx}$$

este uniform convergent (la 0).

4. Să se arate că șirul de funcții (f_n) , cu:

$$f_n : \mathbb{R} \to \mathbb{R}, \quad f_n(x) = \frac{1}{n} \arctan x^n$$

converge uniform pe \mathbb{R} , dar:

$$\left(\lim_{n\to\infty}f_n(x)\right)_{x=1}'\neq\lim_{n\to\infty}f_n'(1).$$

Rezultatele diferă deoarece șirul derivatelor nu converge uniform pe R.

5. Să se arate că șirul de funcții (f_n) , cu:

$$f_n: [0,1] \to \mathbb{R}, \quad f_n(x) = nxe^{-nx^2}$$

converge, dar:

$$\lim_{n\to\infty}\int_0^1 f_n(x)dx \neq \int_0^1 \lim_{n\to\infty} f_n(x)dx.$$

Rezultatul se explică prin faptul că șirul nu este uniform convergent. De exemplu, pentru $x_n = \frac{1}{n} \in [0,1]$, avem $f_n(x_n) \to 1$, dar în general, $f_n(x) \to 0$.

6. Studiați convergența simplă și uniformă a șirului de funcții:

$$f_n: \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \quad f_n(x) = n \sin^n x \cos x.$$