UNIVERSIDAD POLITECNICA ZMG

División Académica de Mecatrónica

ROBOT CATERSIANO

Proyecto

Que para obtener el título de: ${f Ingeniero\ en\ Mecatronica}$

PRESENTA:

Alcala Villagomé Mario.
Becerra Iñiguez Diego Armando.
Martinez Velazquez Lisbeth.
Murguía Chávez Nadia Sarahi.
Ramos Chávez Brayan Oswaldo.

Directores: Ing. Moran Grabito Carlos Enrique Ing. Razo Cerda Rosa María

Robot Cartesiano.

Cinematica de Robots. Ingenieria en Mecatrónica 7A

20 de septiembre de 2019

0.1. Problematica

Dentro las farmaceuticas con alta demanda como los el IMSS (Instituto Méxicano del Seguro Social) y algunas otras de dependencia privada se presenta el almacenamiento de medicamentos, así como una atención al cliente lenta y deficiente, ya que el sutimiento de recetas medicas resulta algo tardado y de tiempo, pues no se tiene un orden correcto.

0.1.1. Objetivo General

Elaboración de un robot cartesiano para la implementación dentro del área de sutimiento de medicamentos

Objetivos del proyecto

- ♦ Modelación matematica de un sistema robotizado.
- ♦ Diseo y simulación de mecanismos.
- ♦ Administración y control de recursos economicos y humanos.
- Selección y elección de sensores y actuadores.

0.1.2. Justificación

La implementación de del robot cartesiano dentro del área farmaceutica sea visto de manera concreta ya que la labor a desempear de este seria el surtimiento de medicamentos y el mejoramiento de la atención al cliente

Buscando mejorar la atención al cliente al momento de ir a surtir sus medicamentos y un mejor desempeo laboral para los farmaceuticos que pierdes horas en buscar los medicamntos en los almacenes.

0.1.3. Delimitación

Dentro de la implementación del robot en una área donde el lugar el reducido, así como su implentacion dentro de un área publica se debe contar con los requisistos y estandares de seguridad que marca el IMSS. Al igual que debe ser facil de operar.

0.2. Cronograma de actividades

0.2.1. Matriz de posibles materiales y costos

Materiales	costo
Servo motores	5,000
Drivers	4,500
Aluminio	7,000
Cables	200
Motor de cremallera	1,000
Total	17,700

0.2.2. Matriz de roles

Signo	Leyenda
Р	Responsabilidad
С	Colabora
I	Suministra información a los demás
MN	Mario Alcala Villagoméz y Nadia Sarahi Murguía Chávez
DB	Diego Armando Becerra Iiguez y Brayan Oswaldo Ramos Chávez
LN	Lisbeth Martinez Velazquez y Nadia Sarahi Murguía Chávez

0.2.3. Diagrama Gantt

Actividades	MN	DB	LN	Fecha
Titulo del proyecto	Р	С	I	16 al 20 septiembre
Planteamiento del problema	I	Р	С	16 al 20 septiembre
Formular el Problema	I	С	Р	16 al 20 septiembre
Objetivo general del proyecto	Р	I	С	16 al 20 septiembre
Objetivos del proyecto	Р	С	I	16 al 20 septiembre
Justificación	С	С	Р	16 al 20 septiembre
Delimitación	С	I	Р	16 al 20 septiembre
Matriz de posibles costos materiales	Р	С	I	16 al 20 septiembre
Matriz de roles	I	С	Р	16 al 20 septiembre
Diagrama de Gantt	Р	I	С	16 al 20 septiembre
Explicación de la aportación de cada materia	С	Р	I	16 al 20 septiembre
Desarroyollo del proyecto	Р	С	ΙP	-
Bibliografía	PI	CI	IP	-
Total P	7	2	6	-
Total C	3	8	3	-
Total I	4	4	6	-

0.3. Relación de materias

Materias de 7to	Detalles de la Aportanción al proyecto	
Ingles VII	Comprención y Ttraduccion de articulos, libros	
	y manuales consultados.	
Termodinamica	Analisis de temperatura en el sistema robotico	
Modelado de sistemas	Modelado matematico para el análisis	
	cinematico del robot, mediante calculos	
Administración y de proyectos	Gestión y organizacion, planeaciones	
	y control de recursos economicos, materiales	
	y humanos.	
Cinematica de robots	Calculo y especificaciones matematicas	
	para la correcta estuturación del robot	
Diseño	Diseño y simulación de la estructura del robot	

0.4. Diseo CAD del robot

Para el diseo CAD se realizo el siguiente bocea a papel, dando una ídea general de como estaria el robot. (ver la Fig. 1), el cual se trata de posicionar en laa estanteria de los medicamentos para que este los tome y elos lleve a un deposito donde el farmaceutico pueda tomarlos facilmente.

Figura 1: Boceto

Realizando las siguentes figuras en el cada empesando por los rieles verticales (50 cm)y horizontales (30 cm).(ver Fig. 2 y Fig. 3)Las cuales haran un movimiento de izquierda a derecha para el dezplazamiento del robot, usando dos barras (30 cm) posicionados en techo y pared para que el robot se pueda mover facilmente por la estanteria.

Figura 2: Barra Vertical

Y se utilizara un motor neva para el movimiento del robot. (ver Fig. 4)

Figura 3: Barra Horizontal

Figura 4: Motor Neva

0.5. Movilidad

DISMEDIC tienen una secuencia de movimientos de acuerdo a las coordenadas establecidas para el abastecimiento de medicamentos dentro de las farmacias. Con el cual se busca reducir el tiempo y el mejoramiento de la atención al cliente al momento de de surtir su receta.

La secuencia de movimientos consta de movimientos verticales y horizontales dentro del eje "x" e "y".

Es decir que las barras paralelas se mueven de izquierda a derecha y viceversa de manera paralela para posicionarse en el espacio solicitado donde se encuentra el medicamento.

En la parte del actuador o surtidor de medicamentos cuenta con dos barras horizontales las cuales se moveran de arriba a bajo y viceverza para tomar tomar el medicamento.

Eje	θ_i	d_{i-1}	α_{i-1}	a_i
1	θ	θ	θ	l_1
2	θ	θ	θ	l_2
3	θ	d_5	θ	l_3
4	θ	d_6	θ	l_4