Handout

Tabitha K. Peter

2023-04-12

Collaborative health science research begins with a research question

Menu overview: what are the steps in conducting dental research?

- 1. Write down a research question that articulates what you want to learn
- 2. Identify what type of study you need to answer your question
- 3. Determine the type(s) of data you need to collect
- 4. Consult a biostatistican to write a statistical analysis plan
- 5. Collect the data
- 6. Analyze the data according to your statistical analysis plan
- 7. Draw an inference based on the evidence in the data

Identifying a study type

Observational v. experimental

- Observational studies collect data from an existing system without intentionally interfering with that system
- Experimental studies involve the investigator(s) deliberately setting one or more factors in a system to a specific level

Surveying common types of data in dental research

Data type is usually determined by the outcome

Consider your research question:

- which element is the outcome (dependent variable)?
- which element is the explanatory (independent) variable of greatest interest?
- are there any factor(s) for which you want to control?

How long until (some event of interest) happens?

- Addressing this kind of question requires time-to-event (survival) data
- Outcome: time until the event happens
- Dates are the key data to collect for this outcome

Examples of time-to-event research questions

- How long do crown margin repairs usually last for patients treated at CoD?
- How long until dentures need to be refitted?

What happens to (some unit of study) over time?

- Addressing this kind of question requires longitudinal data.
- This kind of data involves repeatedly measuring the study units at several points in time.

Examples of longitudinal research questions

- How does fluoride exposure impact dental caries over the course of childhood?
- Is nonsurgical periodontal treatment associated with improved kidney function over time?

Are the (units of study) in group A different than those in group B?

• This kind of study is typically a **case-control** study, where the two groups you want to compare are the "case" group and the "control" group.

Examples of case-control research questions

- Do mice born with nonsyndromic orofacial clefts have more (or fewer) dental anomalies compared to mice with no orofacial birth defects?
- How (if at all) does the oral microbiome of patient with oral cancer differ from the oral microbiome of a patient with no oral disease?

What do people in this specific group think/experience/learn/have access to?

- Addressing this type of question often calls for a survey.
- Survey studies are most commonly observational

Examples of survey research questions

- Do patients living in skilled nursing facilities who demonstrate evidence of a cognitive impairment face increased challenges in maintaining oral hygiene practices?
- Are patients who demonstrate a basic knowledge of their periodontal healthcare needs more satisfied with their treatment compared to patients who do not demonstrate such knowledge?

What generalization can we make about the literature in this specific area?

- A study that studies other studies is a **meta-analysis**. Specifically, the aim of a meta-analysis is to aggregate results from the literature in a particular field and make a generalization.
- As more journals are requiring investigators to publish their data along with their results, aggregating data sets across multiple studies and analyzing this mega data is becoming a more popular approach. This is called **mega-analysis**.

Examples of meta-analysis research questions

- Surveying the literature on the oral microbiome in patients diagnosed with COVID-19, what generalization can we make about the patterns of dysbiosis observed in such patients?
- Does the dental materials literature demonstrate a consensus regarding the impact of resin-modified glass ionomer (GI), instead of regular GI?