Soluzioni prova scritta

Ingegneria Informatica 02/02/2023

Esercizio 1

1. Punti Sia $A \in \mathbb{C}^{n \times n}$, n > 1, una matrice per cui esiste ed è unica la fattorizzazione LU. Abbiamo visto che applicare l'algoritmo di eliminazione di Gauss ad A è equivalente a moltiplicare a sinistra per n - 1 matrici; più precisamente:

$$H_{n-1}H_{n-2}\ldots H_1A=U$$

dove le H_j sono matrici con una particolare struttura dette matrici elementari di Gauss ed il prodotto $L=H_1^{-1}\dots H_{n-2}^{-1}H_{n-1}^{-1}$ fornisce il fattore L della fattorizzazione LU. Vale che:

- $\boxed{\hspace{0.1in}}$ Per ogni $j=1,\ldots,n-1,$ il determinante di H_j è uguale a 1.
- \checkmark Per ogni j = 1, ..., n 1, la traccia di H_j è uguale a n.
- \checkmark Per ogni j = 1, ..., n 1, il determinante di H_i^{-1} è uguale a 1.
- $\boxed{\hspace{0.1in}}$ Per ogni $j=1,\ldots,n-1,$ la traccia di H_{j}^{-1} è uguale a n.
- $\overline{\backslash}$ Il determinante di U è uguale al determinante di A.
- \checkmark La matrice U è riducibile.
- 2. 2 Punti Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile con continuità almeno 2 volte, $\alpha \in \mathbb{R}$ tale che $f(\alpha) = 0$ e si consideri il metodo di Newton per l'approssimazione di α . Dire quali delle seguenti deduzioni risulta corretta.
 - $\boxed{\checkmark}$ Se $f'(\alpha) \neq 0$ allora per ogni $x_0 \in \mathbb{R}$ il metodo di Newton converge localmente in modo superlineare ad α .
 - $\sqrt{\ }$ Se $f'(\alpha) \neq 0$ allora il metodo di Newton converge localmente ad α .
 - Se $f'(\alpha) = 0$ allora per ogni $x_0 \neq \alpha$ il metodo non converge ad α .
 - Se f(x) = ax + b per dei parametri $a, b \in \mathbb{R}$, $a \neq 0$, allora per ogni $x_0 \in \mathbb{R}$ il metodo di Newton converge in un solo passo.
 - Se $f(x) = ax^2 + bx + c$ per dei parametri $a, b, c \in \mathbb{R}$, $a \neq 0$, allora per ogni $x_0 \in \mathbb{R}$ il metodo di Newton converge in un solo passo.
 - Nessuna delle precedenti.
- N.B. le soluzioni qui riportate sono in forma schematica e concisa. Quando si compila la prova d'esame è necessario fornire chiare giustificazioni di tutti i passaggi risolutivi degli esercizi che non sono a risposta multipla.

3. 2 Punti Sia $A \in \mathbb{R}^{4\times 4}$ una matrice di numeri reali i cui cerchi di Gershgorin sono riportati nella seguente figura.

Da queste informazioni possiamo dedurre che:

- A è a predominanza diagonale forte.
- $\boxed{\checkmark}$ A ha almeno 1 autovalore reale.
- A è convergente.
- \checkmark La traccia di A è un numero reale.
- Nessuna delle precedenti.
- 4. 2 Punti Sia $f:[a,b] \to \mathbb{R}$ una funzione continua e si consideri il problema dell'interpolazione polinomiale su n punti $\{(x_1,y_1),\ldots,(x_n,y_n)\}$, con $x_1,\ldots,x_n\in[a,b]$.
 - \checkmark Il polinomio di interpolazione esiste ed è unico se e solo se $x_i \neq x_j$ per ogni $i \neq j$.
 - La condizione $x_i \neq x_j$ per ogni $i \neq j$, è necessaria per l'esistenza ed unicità del polinomio d'interpolazione ma non è sufficiente.

\square Se esiste, il polinomio di interpolazione ha grado n .
\checkmark Se esiste, il polinomio di interpolazione ha grado al più n .
Se esiste, il polinomio d'interpolazione ha grado maggiore di 0.
Nessuna delle precedenti.

Esercizio 2

(i) 5 Punti Risolvere, nel senso dei minimi quadrati, il sistema lineare $A_1x = b_1$ con

$$A_1 = \begin{bmatrix} 0 & -2 \\ 2 & 2 \\ -3 & 3 \\ 1 & -3 \end{bmatrix}, \quad b_1 = \begin{bmatrix} -1 \\ -2 \\ -1 \\ 1 \end{bmatrix}.$$

Procedendo con il sistema delle equazioni normali si ha

$$A^T A = \begin{bmatrix} 14 & -8 \\ -8 & 26 \end{bmatrix}, \quad A^T b = \begin{bmatrix} 0 \\ -8 \end{bmatrix}, \quad x = \begin{bmatrix} -\frac{16}{75} \\ -\frac{25}{75} \end{bmatrix}.$$

(ii) 3 Punti Sia $A_2 \in \mathbb{R}^{3 \times 2}$ una matrice rettangolare di rango 2. Dati

$$b_2 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \qquad Q = \begin{bmatrix} 0 & 0 & 1 \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

il vettore $b_2 \in \mathbb{R}^3$ ed il fattore Q, della fattorizzazione QR di A_2 si calcoli il valore ottimo $\theta \in \mathbb{R}$ del problema ai minimi quadrati

$$\theta = \min_{x \in \mathbb{R}^2} ||A_2 x - b_2||_2.$$

Si ha che

$$Q^T b_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 2 \end{bmatrix} \quad \Rightarrow \quad \theta = 2.$$

Esercizio 3

Si consideri l'equazione $x^3 - 2x + 1 = 0$ che ha 3 soluzioni reali distinte: $\alpha_1 < \alpha_2 < \alpha_3$.

(i) 2 Punti Sapendo che $\alpha_3 = 1$, si determinino α_1 ed α_2 .

$$\alpha_1 = \frac{-1 - \sqrt{5}}{2}, \qquad \alpha_2 = \frac{-1 + \sqrt{5}}{2}.$$

(ii) 3 Punti Si dica se l'iterazione di punto fisso $x_{k+1}=g_1(x_k)=(x_k^3+1)/2$ è localmente convergente per α_2 ed α_3 .

Dato l'errore nel testo originale andava bene lo studio della convergenza per due qualunque delle tre radici:

$$|g_1'(\alpha_1)|, |g_1'(\alpha_3)| > 1 \Rightarrow$$
 non è convergente per α_1 e per α_3 .
 $|g_1'(\alpha_2)| < 1 \Rightarrow$ localmente convergente per α_2 .

(iii) 3 Punti Si dica se l'iterazione di punto fisso $x_{k+1} = g_2(x_k) = \sqrt[3]{2x_k - 1}$ è localmente convergente per α_2 ed α_3 .

Dato l'errore nel testo originale andava bene lo studio della convergenza per due qualunque delle tre radici:

$$|g_2'(\alpha_1)|, |g_2'(\alpha_3)| < 1 \Rightarrow$$
 è localmente convergente sia per α_1 , che per α_3 . $|g_2'(\alpha_2)| > 1 \Rightarrow$ non è convergente per α_2 .

Esercizio 4

Sia f(x,y) l'approssimazione con la formula dei trapezi di

$$\int_{x}^{y} 2t^{2}dt.$$

(i) 1 Punto Si scriva l'espressione esplicita di f come funzione di x ed y.

$$f(x,y) = (y - x)(y^2 + x^2).$$

(ii) 5 Punti Si scriva un algoritmo per il calcolo di f(x, y) e si determini l'espressione dell'errore relativo algoritmico in funzione dei vari errori di arrotondamento.

Calcolando f(x,y) mediante i passaggi

$$r_1 \leftarrow x \cdot x$$

$$r_2 \leftarrow y \cdot y$$

$$r_3 \leftarrow y - x$$

$$r_4 \leftarrow r_2 - r_1$$

$$r_5 \leftarrow r_3 \cdot r_4$$

si ottiene come errore relativo algoritmico:

$$\epsilon_a = \frac{x^2}{x^2 + y^2} \epsilon_1 + \frac{y^2}{x^2 + y^2} \epsilon_2 + \epsilon_3 + \epsilon_4 + \epsilon_5,$$

dove ϵ_i rapressenta l'errore di arrotondamento introdotto per il calcolo di $r_i, i=1,\ldots,5$.

(iii) 2 Punti Assumendo l'utilizzo dell'aritmetica floating point e che x, y non sono entrambi nulli, si determini una limitazione superiore dell'errore relativo algoritmico in termini della precisione di macchina u.

Sfruttando che, in floating point, $|\epsilon_i| \le u$ e per ogni $x, y, |\frac{x^2}{x^2 + y^2}|, |\frac{y^2}{x^2 + y^2}| \le 1$ si ottiene $|\epsilon| \le 5u$.