Kapitel 14

Parameterschätzung

Modell

Es sei $\{P_{\theta}|\theta\in\Theta\}$, $\Theta\subset\mathbb{R}^m$ eine Familie von Verteilungen auf χ (sog. Stichprobenraum), $x=(x_1,\ldots,x_n)$ sei eine Realisierung der Zufallsstichprobe $X=(X_1,\ldots,X_n)$ zu einer Verteilung $P\in\{P_{\theta}|\theta\in\Theta\}$, wobei der wahre Parameter θ unbekannt ist.

Problem

Schätze unbekanntes θ aus der konkreten Realisierung von X.

Definition 14.1

Seien X_1, \ldots, X_n unabhängig und identisch verteilte Zufallsvariablen mit Verteilung P.

Dann heißt der Zufallsvektor (X_1, \ldots, X_n) Zufallsstichprobe zur Verteilung P. Eine Realisierung (x_1, \ldots, x_n) von (X_1, \ldots, X_n) nennt man Stichprobe.

Beispiel 14.1

Gegeben sei ein Würfel, den wir n-mal werfen dürfen. Aus der Beobachtung ist die Wahrscheinlichkeit zu schätzen eine 6 zu würfeln.

Modell: $\chi=\{0,1\}$: 0 $\hat{=}$ keine 6 gewürftelt, 1 $\hat{=}$ 6 gewürfelt. $P_{\theta}=B(1,\theta),\,\Theta=[0,1]$

Definition 14.2 Eine messbare Abbildug $T: \chi^n \to \tilde{\Theta}, \ \tilde{\Theta} \supset \Theta, \ heißt$ **Schätzer** für θ .

Beispiel 14.2 a) Die Statistik $\overline{X} = \frac{1}{n}(X_1 + \cdots + X_n)$ heißt **Stichprobenmittel**

b) Die Statistik $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ heißt **Stichprobenvarianz**

Beispiel 14.3 (Schätzung eines Fischbestandes)

Teich enthält unbekannte Zahl $N=\theta$ von Fischen

r Fische werden gefangen, (rot) markiert und wieder ausgesetzt.

In einem zweiten Zug werden m Fische gefangen x davon seien markiert.

Wie groß ist N?

Modell

Urne mit $N = \theta$ Kugeln, r rot, N - r =: s schwarz

m Kugeln werden ohne Zurücklegen gezogen. Die Zufallsvariable X beschreibe die Anzalh der roten unter den gezogenen Kugeln.

Also

$$\chi = \mathbb{N}_0, P_{\theta} \sim \text{Hypergeom.}(\theta, r, m), \Theta = \mathbb{N}. \text{ Beachte: } n = 1$$

14.1 Maximum-Likelihood-Methode

Idee:

Wir wählen für θ den Wert, unter dem die Wahrscheinlichkeit, dass die konkrete Stichprobe vorliegt maximiert wird.

Im folgenden sei P_{θ} diskret mit Zähldichte $p(x;\theta)$ oder stetig mit Dichte $f(x;\theta)$

Definition 14.3

Gegeben sei eine Stichprobe $x = (x_1, \ldots, x_n)$. Dann heißt die Funktion

$$L_x(\theta) := f(x_1; \theta) \cdot \dots \cdot f(x_n; \theta)$$
 bzw. $L_x(\theta) := \underbrace{p(x_1; \theta) \cdot \dots \cdot p(x_n; \theta)}_{P_{\theta}(X_1, \dots, X_n) = (x_1, \dots, x_n)}$

die Likelihood-Funktion der Stichprobe.

Eine Funktion $\hat{\theta}_{ML}(x)$ heißt **Maximum-Likelihood Schätzer (MLS)**, falls

$$L_x(\hat{\theta}_{ML}(x)) = \sup_{\theta \in \Theta} L_x(\theta)$$

Bemerkung 14.1

a) Ist P_{θ} diskret, so gilt:

$$L_X(\theta) = p(x_1; \theta) \cdots p(x_n; \theta) = P_{\theta}(X_1 = x_1) \cdots P_{\theta}(X_n = x_n) \stackrel{X \text{ unabhängig}}{=} P_{\theta}(X = x)$$

b) Der MLS $\hat{\theta}_{\mathrm{ML}}(x)$ ist nicht immer eindeutig.

Beispiel 14.4 (vgl. Beispiel 14.3)

n = 1

Likelihood-Funktion:
$$L_x(\theta) = \frac{\binom{r}{x}\binom{\theta-r}{k-x}}{\binom{\theta}{k}}$$

Für welches θ ist $L_x(\theta)$ maximal?

Betrachte:

$$\frac{L_x(\theta)}{L_x(\theta-1)} = \frac{\binom{r}{x}\binom{\theta-r}{m-x}\binom{\theta-1}{m}}{\binom{\theta}{m}\binom{r}{x}\binom{\theta-1-r}{m-x}} = \frac{(\theta-r)(\theta-m)}{\theta(\theta-r-m+x)}$$

$$L_x(\theta) > L_x(\theta - 1) \Leftrightarrow (\theta - r)(\theta - m) > \theta(\theta - r - m + x) \Leftrightarrow mr > \theta x \Leftrightarrow \theta < \frac{mr}{x}$$

Also ist $L_x(\theta)$ maximal für $\hat{\theta}(x) = \lfloor \frac{mr}{x} \rfloor$

$$\hat{\theta}(x)$$
 ist eindeutig, falls $\frac{mr}{x} \notin \mathbb{N}$
Falls $\frac{mr}{x} \in \mathbb{N}$ sind $\hat{\theta}_1(x) = \frac{mr}{x}$ und $\hat{\theta}_2(x) = \frac{mr}{x} - 1$ MLS

Beispiel 14.5 (Schätzung einer Erfolgswahrscheinlichkeit)

Aus n Bernoulli-Experimenten liegen x Erfolge vor, gesucht ist die Erfolgswahrscheinlichkeit:

Modell: $\chi = \mathbb{N}, n = 1, P_{\theta} = B(m, \theta), \Theta = (0, 1).$

Likelihood-Funktion:
$$L_x(\theta) = \binom{m}{x} \theta^x (1-\theta)^{m-x}$$
 , $\theta \in [0,1]$

Statt $L_x(\theta)$ ist es oft einfacher, $\log(L_x(\theta))$ zu maximieren, die sogenannte **Log-Likelihoodfunktion**

$$\log(L_x(\theta)) = \log\binom{m}{x} + x \log \theta + (m - x) \log(1 - \theta)$$

$$\frac{\partial}{\partial \theta} \log(L_x(\theta)) = \frac{x}{\theta} - \frac{(m-x)}{1-\theta} = 0 \quad \Leftrightarrow \quad \theta = \frac{x}{m}$$

 θ ist tatsächlich Maximum-Stelle, dass heißt $\hat{\theta}_{\mathrm{ML}}(x) = \frac{x}{m}$

14.2 Momentenmethode

Idee:

Die ersten Momente von P_{θ} sollten mit den empirischen Momenten übereinstimmen. Aus diesen Gleichungssystemen bestimmen wir den Schätzer.

Es sei $X \sim P_{\theta}$. Dann ist das k-te Moment

$$\mu_k = \mu_k(\theta) = E_{\theta} X^k$$
 , $k = 1, 2, ...$

Wir betrachten nun die **empirischen Momente** zur Stichprobe $x = (x_1, \dots, x_n)$.

$$\overline{x_k} := \frac{1}{n} \sum_{i=1}^n x_i^k$$

Es soll nun gelten: $\mu_k(\theta) = \overline{x_k} \quad k = 1, 2, \dots, m$. Aufgelöst nach θ ergibt sich dann der Momentenschätzer $\hat{\theta}_{\text{MM}}(x) \in \Theta$.

Beispiel 14.6

$$P_{\theta} = N(\mu, \sigma^2), \ \theta = (\mu, \sigma^2), \ m = 2$$

(1)
$$\mu_1 = \mu = E_{\theta}X = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

(2)
$$\mu_2 = E_\theta X^2 = \operatorname{Var}_\theta(X) + (E_\theta X)^2 = \sigma^2 + \mu^2 = \frac{1}{n} \sum_{i=1}^n x_i^2$$

Aus (1) folgt:
$$\hat{\mu}(x) = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

Aus (2) folgt: $\hat{\sigma}^2(x) = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - (\overline{x})^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$

14.3 Wünschenswerte Eigenschaften von Punktschätzern

Im folgenden sei $X = (X_1, ..., X_n)$ eine Zufallsstichprobe zur Verteilung P_{θ} und $T : \chi \to \tilde{\Theta}$ ein Schätzer von θ . Mit E_{θ} bezeichnen wir den Erwartungswert bezüglich P_{θ} .

Definition 14.4

a) Der Schätzer T heißt erwartungstreu (unbiased), falls

$$E_{\theta}T(X_1,\ldots,X_n) = \theta \quad \forall \, \theta \in \Theta$$

b) $b_T(\theta) := E_{\theta}T(X_1, \dots, X_n) - \theta$ heißt **Verzerrung** (Bias) des Schätzers T. Ein erwartungstreuer Schätzer ist unverzerrt.

Beispiel 14.7 (vgl. Bsp.14.6)

- $T(x) = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ ist ein erwartungstreuer Schätzer für $\theta = E_{\theta}X_i$, denn $E_{\theta}(T(X)) = E_{\theta}\left(\frac{1}{n}\sum_{i=1}^{n} X_i\right) = \frac{1}{n}\sum_{i=1}^{n} E_{\theta}X_i = \theta$
- Ein erwartungstreuer Schätzer für $\theta = \text{Var}_{\theta}(X_i)$ ist $[S^2(x) = \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x})^2]$

Definition 14.5

Sei T ein Schätzer für θ Dann heißt

$$\mathbf{MSE}(\mathbf{T}) := E_{\theta}[(T(X_1, \dots, X_n) - \theta)^2]$$

(mittlerer) quadratischer Fehler ("mean-squared-error")

Beispiel 14.8

Sei $P_{\theta} = U(0, \theta)$, $\Theta = \mathbb{R}$, $\chi = \mathbb{R}_+$ und $X = (X_1, \dots, X_n)$ eine Zufallsstichprobe zur Verteilung $U(0, \theta)$

Momentenmethode: $\overline{x} = E_{\theta} X_i = \frac{\theta}{2} \Rightarrow \hat{\theta}_{\text{MM}} = 2 \cdot \overline{x}$

Maximum-Likelihood-Methode:

$$f(x,\theta) = \begin{cases} \frac{1}{\theta}, & 0 \le x \le \theta \\ 0, & \text{sonst} \end{cases}$$

$$\Rightarrow L_x(\theta) = L_{(x_1, \dots, x_n)}(\theta) = f(x_1; \theta) \cdot \dots \cdot f(x_n; \theta) = \begin{cases} \frac{1}{\theta^n}, & 0 \le x_1, \dots, x_n \le \theta \\ 0, & \text{sonst} \end{cases}$$

Maximiere $L_x(\theta)$ in θ : $\hat{\theta}_{\text{ML}}(x) = \max(x_1, \dots, x_n)$ Welcher Schätzer ist besser?

$$E_{\theta}[\hat{\theta}_{\mathrm{MM}}(X)] = 2E_{\theta}\overline{X} = \theta$$
, also ist $\hat{\theta}_{\mathrm{MM}}$ erwartungstreu

Verteilungsfunktion von $\hat{\theta}_{\mathrm{ML}}(X)$ ist

$$F_{\theta}(x) = P_{\theta}(\max(X_1, \dots, X_n) \le x) = P_{\theta}(X_1 \le x, \dots, X_n \le x)$$

$$=P_{\theta}(X_1 \leq x) \cdot \dots \cdot P_{\theta}(X_n \leq x) = \left(\frac{x}{\theta}\right)^n$$
, falls $0 \leq x \leq \theta$

Also Dichte von $\hat{\theta}_{\mathrm{ML}}(X)$:

$$f_{\hat{\theta}_{\mathrm{ML}}}(x) = \begin{cases} \frac{n}{\theta} (\frac{x}{\theta})^{n-1} &, \text{ falls } 0 \leq x \leq \theta \\ 0 &, \text{ sonst} \end{cases}$$

und

$$E_{\theta}[\hat{\theta}_{\mathrm{ML}}(X)] = \int_{0}^{\theta} x f_{\hat{\theta}_{\mathrm{ML}}}(x) \, dx = \int_{0}^{\theta} n \left(\frac{x}{\theta}\right)^{n} \, dx = \frac{n}{n+1} \theta$$

also <u>nicht</u> erwartungstreu.

Aber:

$$\begin{aligned} \operatorname{MSE}(\hat{\theta}_{\operatorname{MM}}(X)) &= E_{\theta} \left([2\frac{1}{n} \sum_{i=1}^{n} X_{i} - \theta]^{2} \right) = \frac{\theta^{2}}{3n} \\ \operatorname{MSE}(\hat{\theta}_{\operatorname{ML}}(X)) &= E_{\theta} ([\max(X_{1}, \dots, X_{n}) - \theta]^{2}) = \frac{2\theta^{2}}{(n+2)(n+1)} \\ \frac{\operatorname{MSE}(\hat{\theta}_{\operatorname{MM}}(X))}{\operatorname{MSE}(\hat{\theta}_{\operatorname{ML}}(X))} &= \frac{2}{3} \frac{n}{(n+2)(n+1)} \end{aligned} \quad \textbf{relative Effizienz}$$

Bei großem n ist $MSE(\hat{\theta}_{ML}(X))$ kleiner als $MSE(\hat{\theta}_{MM}(X))$.

Bemerkung 14.2

Falls T erwartungstreu ist, gilt $MSE(T) = Var_{\theta}(T)$

Für $Var_{\theta}(T)$ kann man die folgende untere Abschätzung angeben.

Satz 14.1 (Ungleichung von Rao-Cramér)

Sei $X = (X_1, ..., X_n)$ eine Zufallsstichprobe zur Verteilung P_{θ} . T sei ein Schätzer für θ . Dann gilt:

$$\operatorname{Var}_{\theta}(T(X)) \ge \frac{(1 + \frac{\partial}{\partial \theta} b_T(\theta))^2}{E_{\theta}[(\frac{\partial}{\partial \theta} \log L_X(\theta))^2]}$$

Bemerkung 14.3

- (i) $I(\theta) := E_{\theta}[(\frac{\partial}{\partial \theta} \log L_X(\theta))^2]$ heißt **Fisher-Information**
- (ii) Ist T erwartungstreu, so ist $b_T(\theta) = 0$ und $\operatorname{Var}_{\theta}(T(X)) \geq \frac{1}{I(\theta)}$

Beweis

Wir nehmen an, dass $L_x(\theta) > 0 \ \forall x \in \chi^n \ \forall \theta \in \Theta$, Θ sei ein offenes Intervall in \mathbb{R} und P_{θ} sei diskret. Es gilt:

$$\frac{\partial}{\partial \theta} \log L_x(\theta) = \frac{L_x'(\theta)}{L_x(\theta)}$$

Weiter gilt:

(1)
$$\sum_{x \in \mathcal{Y}^n} L_x(\theta) = \sum_{x \in \mathcal{Y}^n} P_{\theta}(X = x) = 1$$

(2)
$$\theta + b_T(\theta) = E_{\theta}T(X) = \sum_{x \in \chi^n} T(x) \cdot L_x(\theta)$$

Wir differenzieren (1) und (2) nach θ , und nehmen an, dass wir $\frac{\partial}{\partial \theta}$ und \sum vertauschen könne.

(1')

$$0 = \sum_{x \in Y^n} L_x'(\theta) = \sum_{x \in Y^n} \frac{\partial}{\partial \theta} \log(L_x(\theta)) \cdot L_x(\theta) = E_{\theta} \left[\frac{\partial}{\partial \theta} \log L_X(\theta) \right]$$

(2')

$$1 + b_T'(\theta) = \sum_{x \in \chi^n} T(x) L_x'(\theta)$$

$$\sum_{x \in \mathcal{X}^n} T(x) \frac{\partial}{\partial \theta} \log(L_x(\theta)) \cdot L_x(\theta) = E_{\theta} \left[T(X) \cdot \frac{\partial}{\partial \theta} \log L_X(\theta) \right]$$

(2') - (1')
$$E_{\theta}T(X)$$

$$1 + b_T'(\theta) = E_{\theta}[(T(X) - E_{\theta}T(X))\frac{\partial}{\partial \theta}\log L_X(\theta)]$$

Mit der Ungleichung von Cauchy-Schwarz folgt:

$$(1 + b_T'(\theta))^2 = \left(E_{\theta}[(T(X) - E_{\theta}T(X)) \frac{\partial}{\partial \theta} \log L_X(\theta)] \right)^2$$

$$\leq E_{\theta}[(T(X) - E_{\theta}T(X))^2] \cdot E_{\theta} \left[\frac{\partial}{\partial \theta} \log L_X(\theta)^2 \right] = \operatorname{Var}_{\theta}T \cdot I(\theta)$$