Reikalavimai projekto Nr. 1 ataskaitai

- 1. Ataskaitoje turi būti pateikti algoritmų teoriniai įvertinimai jei jie egzistuoja literatūroje. Nurodyti iš kur paimti.
- 2. Suskaičiuotas algoritmo sudėtingumas, remiantis programos išeities tekstu. Pvz.:

Atliekant įvertinimus su duomenų struktūromis ir objektais reikia atkreipti dėmesį, kad tiek klasių metodus tiek savybes reikia laikyti kaip procedūras ir jas įvertinti iš anksto. BubbleSort naudoja MyDataArray klasės Length, operaciją[] ir Swap.

```
class MyDataArray
                                                                        Kaina
                                                                                 Kartai
        protected int length;
        public int Length
            {
                get
                {
                    return length;
                                                                           c_1
                                                                                 1
                }
            }
        double[] data;
        public MyDataArray(int n)
            data = new double[n];
            length = n;
            Random rand = new Random();
            for (int i = 0; i < length; i++)</pre>
                 data[i] = rand.NextDouble();
            }
        }
        public double this[int index]
            get { return data[index]; }
                                                                                 1
                                                                           c_2
        }
        public void Swap(int j, double a, double b)
            data[j - 1] = a;
                                                                                 1
                                                                           c_3
            data[j] = b;
        }
    }
}
```

MyDataArray klasės atributo/savybės Length get įvertinimas $T_L(obj_MyDataArray) = c_1$, atributo pagal nutylėjimą $T_I(obj_MyDataArray,j) = c_2$, o metodo Swap sudėtingumas $T_S(obj_MyDataArray,j) = 2c_3$.

```
static void BubbleSort(MyDataArray items)
    double prevdata, currentdata;
                                                                                      1
    for (int i = items.Length - 1; i >= 0; i--)
                                                                        T_L(items)
                                                                                     items. Length +1
         currentdata = items[0];
                                                                  c_4 + T_I(items, 0)
                                                                                      items. Length +1
                                                                                     \sum_{i=0}^{items.Length} \sum_{j=1}^{i+1} 1
         for (int j = 1; j <= i; j++)
             prevdata = currentdata;
             currentdata = items[j];
                                                                   c_4 + T_I(items, j)
             if (prevdata > currentdata)
             {
                                                                                     items.Swap(j, currentdata, prevdata);
                                                                  c_4 + T_S(items, j)
                  currentdata = prevdata;
             }
         }
    }
}
```

Raskime tarpines sumas:

$$\sum_{i=0}^{ems.Length} \sum_{j=1}^{i+1} 1 = \sum_{i=0}^{items.Length} (i+1) = \frac{items.Length(items.Length+1)}{2} + items.Length+1$$

$$= \frac{items.Length(items.Length+3)}{2} + 1$$

$$\sum_{i=0}^{items.Length} \sum_{j=1}^{i} 1 = \sum_{i=0}^{items.Length} i = \frac{items.Length(items.Length+1)}{2}$$

$$0 \le \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j \le \sum_{i=0}^{items.Length} \sum_{j=1}^{i} 1 = \frac{items.Length(items.Length+1)}{2}$$

$$= 1 \text{ iei salvga previdata} > \text{current data, tenki nama, o, kitu, atveju, } t_i = 0$$

čia $t_i = 1$, jei sąlyga prevdata > currentdata tenkinama, o kitu atveju $t_i = 0$.

Tokiu atveju

$$T_{Bubble}(obj_MyDataArray) = c_4 + T_L(obj_MyDataArray) + c_5(items.Length + 1) \\ + (c_4 + T_I(items, 0))(items.Length + 1) + c_5 \frac{items.Length(items.Length + 3)}{2} \\ + c_7 \frac{items.Length(items.Length + 1)}{2} \\ + (c_4 + T_I(items, j)) \frac{items.Length(items.Length + 1)}{2} \\ + c_6 \frac{items.Length(items.Length + 1)}{2} + (c_4 + T_S(items, j)) \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j \\ + c_7 \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j \\ = c_4 + c_1 + c_5(items.Length + 1) + (c_4 + c_2)(items.Length + 1) \\ + c_5 \frac{items.Length(items.Length + 3)}{2} + c_5 + c_7 \frac{items.Length(items.Length + 1)}{2} \\ + (c_4 + c_2) \frac{items.Length(items.Length + 1)}{2} + c_5 \frac{items.Length(items.Length + 1)}{2} \\ + (c_4 + 2c_3) \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j + c_7 \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j \\ + (c_4 + 2c_3) \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j + c_7 \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j \\ + (c_4 + 2c_3) \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j + c_7 \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j \\ + (c_4 + 2c_3) \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j + c_7 \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j \\ + (c_4 + 2c_3) \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j + c_7 \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j \\ + (c_4 + 2c_3) \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j + c_7 \sum_{i=0}^{items.Length} \sum_{j=1}^{i} t_j \\ + (c_4 + 2c_5 + c_6 + c_7 + c_7$$

 $+c_1+c_2+2c_4+c_5=\Theta(items.Length^2)$ nes nekeičia svariausio dėmes eilės sumos $\sum_{i=0}^{items.Length}\sum_{j=1}^{i}t_j$ įvertinimas tiek iš viršaus tiek iš apačios. Kadangi MyDataArray klasės konstruktorius turi parametrą n, kuris nusako generuojamų duomenų kiekį, t. y. Length=n, tai $T_{Bubble}(obj_{MyDataArray})=\Theta(n^2)$.

 Pateikti viename iš pasirinktų algoritmų panaudotos duomenų struktūros realizacijos išorinėje atmintyje struktūrinę diagramą ir programos kodo fragmentą realizuojantį elemento nuskaitymą iš šios struktūros.

Pvz. Sąrašo duomenų struktūros realizavimo išorinėje atmintyje diagrama:

mydatalist.dat

```
public override double Next()
{
    Byte[] data = new Byte[12];
    fs.Seek(nextNode, SeekOrigin.Begin);
    fs.Read(data, 0, 12);
    prevNode = currentNode;
    currentNode = nextNode;
    double result = BitConverter.ToDouble(data, 0);
    nextNode = BitConverter.ToInt32(data, 8);
    return result;
}
```

4. Privaloma aprašyti atliktus eksperimentus, o gautus rezultatus pavaizduoti lentelėmis bei grafikais.

>4. Analysis Bubble Sort								
FILE ARRAY								
	N	Run Time	Op	M C	ount	Op	D C	ount
	100	00:00:00.0193955		22	536		7	586
	200	00:00:00.0705861		89	552		29	652
	400	00:00:00.2964233		359	834		120	034
	800	00:00:01.1320283	1	441	785		482	185
1	600	00:00:04.4384097	5	765	413	1	926	213
3	200	00:00:17.7471006	23	044	685	7	686	285
6	400	00:01:10.1451380	92	215	239	30	778	439
FILE	E LIST							
	N	Run Time	Οp	м С	ount	Op	D C	ount
	100	00:00:00.0248130		22	536		10	222
	200	00:00:00.0896343		89	552		39	404
	400	00:00:00.3733662		359	834		160	268
	800	00:00:01.5027709	1	441	785		644	770
1	600	00:00:05.8692352	5	765	413	2	573	226
3	200	00:00:23.3155017	23	044	685	10	254	170
6	400	00:01:35.1427537	92	215	239	41	080	078

5. Braižant grafiką, horizontalioje ašyje atidedamos duomenų imtys, o vertikalioje – skaičiavimo laikai ar atliktų operacijų kiekis. Taškų padėtys turi atitikti skaitines koordinačių vertes (parinkit teisingą grafiko tipą "x y scatter"). Kiekvienas eksperimentas turi trukti nemažiau kelių sekundžių. Grafiką turi sudaryti nemažiau 7 taškų, didinant imtį vienodu koeficientu.

- 6. Ataskaitos gale turi būti pateikiamos prasmingos išvados, atitinkančios ataskaitos turinį.
- 7. Programų išeities tekstai, pateikiami priede.

Ataskaitos turinys

- 1. Užduotis.
- 2. Pasirinktos duomenų struktūros realizuotos išorinėje atmintyje struktūrinė diagrama.
- 3. Pirmojo rikiavimo algoritmo analizės rezultatai.

Teorinis bei suskaičiuotas algoritmo sudėtingumas, eksperimentiniai rezultatai pavaizduoti lentelėmis bei grafikais.

4. Antrojo rikiavimo algoritmo analizės rezultatai.

Teorinis bei suskaičiuotas algoritmo sudėtingumas, eksperimentiniai rezultatai pavaizduoti lentelėmis bei grafikais.

5. Paieškos algoritmo analizės rezultatai.

Teorinis bei suskaičiuotas algoritmo sudėtingumas, eksperimentiniai rezultatai pavaizduoti lentelėmis bei grafikais.

- 6. Išvados
- 7. Priedai

Programų išeities tekstai