

G8_1ºRelatório_Lab_LEI_02_2020 LEI 2019/2020

Grupo №8 2103795, Ricardo Gonçalves.

Docente: Prof. Sérgio Ferreira

1.1 - Objetivo

O objetivo deste trabalho é familiarizar o aluno para a prática da codificação de fluxogramas usando uma Máquina Fixa. Este trabalho conta para avaliação.

1.2 – Implementação

Utilizando um fluxograma com as características a definir, realize um circuito que controle a rega da horta na quinta dos avós de modo a fazer um "brilharete" junto dos mesmos.: "Foi o meu netinho que fez..."

1.3 – Esquema da Horta e Dispositivos a controlar

1.4 -Funcionamento:

O sistema faz a rega sempre que Sh1 estiver desligado e apenas a partir da água do depósito. Uma das tarefas do controlador será manter o depósito cheio. A existência de dois sensores S1 e S2 é para poupar o funcionamento do Motor: S2 a 0.20 metros de S1; S2 a uma altura no depósito que permite dizer que existe água suficiente para uma sessão de rega completa. Supõe-se que quando a Válvula é aberta, Sh2 é activado após alguns instantes - verifica-se assim o bom funcionamento da válvula. Existem três Leds de Status no painel de modo a poder ser visualizado um código de erro (ver descrição das saídas).

Entradas: S1, S2 – Sensores de água no depósito (activos a "1") SC – Sensor de Chuva (activo a "1") Sh1, Sh2 – Sensores de Humidade (activos a "1"). Sh2 vai a "1" se correr água no tubo Quando Sh1 = "1" - a horta está regada. MCA – Motor com água no Furo (pode trabalhar)

Saídas: M – Motor de tirar a água para o depósito (activo a "1") a partir do furo V – válvula – a "1" abre a torneira para regar ST2, ST1, ST0 – Status segundo a tabela seguinte:

ST2	ST1	ST0	Função:
0	0	0	StandBy (Não está a fazer nada)
0	0	1	A regar com Motor desligado
0	1	0	A regar com Motor ligado
0	1	1	Motor ligado sem estar a regar
1	0	0	Sistema parado, Motor não pode ligar devido a falta de água no furo
1	0	1	Avaria da Válvula
1	1	0	Não usado
1	1	1	Falha grave – Necessita intervenção

1.5 – Projecto

Comece por perceber bem o funcionamento do sistema. Poderão surgir certas questões mais pertinentes que terão de ser avaliadas antes de implementar. Seguidamente desenhe um fluxograma com o mínimo de estados possível de modo a minimizar o hardware/software. Defina as E/S da Máquina Fixa, faça a codificação no LogiSim e respectiva simulação.

2.1 – Considerações

Não se sabe quanto tempo é que a água demora a chegar a SH2.

Deposito fechado com capacidade limitada a S1, portanto também assume-se que o depósito não enche quando chove.

A velocidade com que o deposito enche é bastante inferior à velocidade com que a água é gasta para a rega, portanto não ocorre overflow durante a rega em sincronia com o enchimento do depósito.

Quando chove não é executado qualquer processo.

2.2 – Adições ao design original

Implementação de uma entrada solve de modo a continuar o a máquina fixa.

Dois leds que dão flags a erros específicos F2: Água na válvula, mas não no tanque. F1: Água em S1 mas não em S2.

3.1 - Fluxograma

3.2 - Conteúdo das ROMs

END	ES0	ES1	TST	OUT
0	1	0	2	0
1	2	0	3	0
2	4	3	0	0
3	5	8	1	80
4	6	19	1	0
5	5	2 7	6	27
6	С	7	4	0
7	7	2	6	45
8	8	19	7	8
9	D	В	5	89
Α	Α	19	6	8D
В	В	13	1	9A
С	E	F	5 7	80
D	D	9	7	9
Е	Е	С	7	4
F	F	10	0	93
10	10	18	7	18
11	11	10	6	85
12	13	12	1	9A
13	14	15	3	0
14	14	14	XX	7
15	15	16	0	93
16	17	0	1	80
17	17	16	6	87
18	12	11	4	1A
19	9	А	XX	9

3.3 – Máquina fixa

3.4 – Conteúdo da máquina fixa

Material	Quantidade
Clock	1
Display Hexadecimal	8
Registrador de 8 bits	1
ROM 8*16 BITS	1
ROM 8*3 BITS	1
ROM 8*8 BITS	1
LED	10
MUX 1*8	1
MUX 1*3	1
Contador 8 BITS	1
Spliter 3*3 BITS	2
Spliter 2*8 BITS	3
Spliter 2*16 BITS	1

4 – Conclusão

Elaboração de uma máquina fixa eficiente capaz de controlar um sistema de rega de forma automática, que tem a capacidade de regar e encher o depósito em simultâneo, que em caso de erro identifica-o e alerta os proprietários.