Postulates for a Relativistic QM

In seeking a relativistic generalization of QM, Dirac adopted the following features of nonrelativistic QM as postulates for the new theory:

- 1 All physical observables are represented by linear, Hermitian operators. E.g. $p_k \rightarrow (k/i) \partial/\partial q_k$ is the $k^{\underline{+}n}$ comp^t of (Canonical) momentum for coordinate q_k .
- 2 There exists a wavefon $\Psi = \Psi(q, s, t)$ which gives all possible information on the state of the quantum system, $\Psi = time$, q = coordinates (It, p) for the classical degrees of freedom, s = coordinates (spin, parity, etc) for additional degrees of freedom. $|\Psi|^2 = \Psi^*\Psi \gg 0$ is finite, and is proportional to the probability of the system having coordinates q, s at time t.
- 3 The system is in an eigenstate Y_n of an operator Ω if: $\Omega Y_n = W_n Y_n$, where $W_n = anst$ is the $n \stackrel{to}{=} eigenvalue$ of Ω . If Ω is Hermitian, W_n is a real #.
- An arbitrary state Ψ can be expanded as: $\underline{\Psi} = \sum \underline{\Omega} \cdot \underline{\Psi} \cdot \underline{\Psi}$, the $\{\Psi_n\}$ an orthonormal and complete set of eigenfens for the system (as defined by an appropriate set of committing operators Ω_k). The probability that the system will be found in eigenstate Ψ_n is $|\Omega_n|^2$ (when Ψ is normalized: $(\Psi | \Psi) = 1$).
- 5 If $\Psi = \sum_{n=1}^{\infty} a_n \Psi_n$, with $\Omega \Psi_n = \omega_n \Psi_n$, then a <u>measurement</u> of the observable Ω in the state Ψ will result in the eigenvalue ω_n with probability $|a_n|^2$. The <u>average</u> of a large number of measurements of Ω for state Ψ will be: $(\Omega) = \sum_{n=1}^{\infty} dq \Psi^*(q_n s, t) \Omega \Psi(q_n s, t) = \sum_{n=1}^{\infty} \omega_n |a_n|^2$.

[&]quot;Orthonormal" means: \(\frac{2}{5} \) \(\text{dq } \Pm^*(q,s,t) \Pn(q,s,t) = \delta_m.

[&]quot;Complete" means: 24*(q', s',t) 4, (q,s,t) = 8ss; 8(q-q').

Dirac's linewity postulate. Remarks on Eventz notation used here.

[6] The equation of motion for the system's state for Ψ is of form: it $\frac{\partial \Psi}{\partial t} = \frac{46\Psi}{0}$, where the system Hamiltonian H6 is a <u>linear</u>, Elermitain operator. Requiring H6 to be linear preserves a superposition principle for Ψ (see Φ above). And a Hermitian H6 allows conservation of total probability, as...

$$\frac{\partial}{\partial t} \left[\frac{1}{5} \int dq \left[\left(\frac{\partial \psi^*}{\partial t} \right) \psi + \frac{\psi^*}{\partial \psi} \left(\frac{\partial \psi}{\partial t} \right) \right] \right]$$

$$= \frac{i}{\hbar} \sum_{s} \int dq \left[\left(\frac{y_s \psi}{y_s \psi} \right) \psi - \frac{\psi^*}{\partial \psi} \left(\frac{y_s \psi}{y_s \psi} \right) \right] = 0. \quad (2)$$

Dirac's postulates 1-6 contain the essential features of any "reasonable" theory of QM. As we shall see, satisfying #6 is the principal challenge in constructing a relativistic QM theory.

ASIDE Lorentz notation for following notes.

K K'

- 1) For a Lorentz transformation A between cd systems Ka K', i.e.
 - for the position 4-vector $x \rightarrow x' = \Lambda x$, we adopt the following <u>conventions</u>:
 - 1. Greek indices run from 1 to 4; Roman indices from 1 to 3.
 - 2. Contravariant & covariant notation is <u>not</u> used. The 4-vector position is first $x = (x_{\mu}) = (x_1, x_2, x_3, x_4)$, and x^{μ} does <u>not</u> appear in the theory.
 - 3. Sum over repeated indices, i.e. $x_{\mu}^2 = \chi_{\mu} x_{\mu} = \sum_{\mu=1}^{\infty} x_{\mu}^2$.
 - 4. Choose metric $(g_{\mu\nu}) \equiv 1$. Then 4-vectors have <u>imaginary</u> 4th (timelike) components. E.g.: $\chi_{\mu} = (\chi_1, \chi_2, \chi_3, ict)$, $\chi_{\mu}(\chi_1, \chi_2, \chi_3) = ir$, and Minkowski length $\chi_{\mu}^2 = r^2 (ct)^2$. Generally: Apr Bp = Ak Bk |A4||B4|.

These conventions are "old-fashioned" [comp. " Jackson's "Classical Electrodynamics" [Wiley, 2nd ed., 1975], where $(g_{\mu\nu}) = (0^{-1})$, Ap BM = Ao BO- Ak Bk, etc.], but they are the conventions used by Davydov in his Ch. VIII on relativistic QM, and by Sakurai in his text "Advanced QM" (Addison-Wesley, 1967). Saku-

ASIDE Loventz notation (cont'd)

rai is emphatic in pointing out (see p. 6) that "these complications (viz. a metric tensor gar \$ 1, and contra & covariant vector notation) are absolutely unnecessary in the special theory of relativity."

2) Except for the appearance of $i = \sqrt{-1}$, the general properties of Lorentz transforms do <u>not</u> change with the conventions in Eq. (3) above. E.g.

A. Torentz transform is: $x \rightarrow x' = \Lambda x$, i.e. $\frac{\chi_{\mu}}{=} \frac{\Lambda_{\mu\nu} \chi_{\nu}}{=} (\Lambda_{\mu\nu}) = 4x4$ matrix.

B. χ_{μ}^{2} is invariant $\leftrightarrow \underline{\Lambda_{\mu\lambda}}\underline{\Lambda_{\mu\nu}} = \underline{\delta_{\mu\nu}}$; $\underline{\Lambda_{\mu\nu}}$ is an orthogonal matrix.

C. Λ^{-1} (inverse) = $\widetilde{\Lambda}$ (transpose), i.e. $(\Lambda^{-1})_{\mu\nu} = (\widetilde{\Lambda})_{\mu\nu} = \Lambda_{\nu\mu}$.

D. det $\Lambda = \pm 1$. Only det $\Lambda = +1$ "proper" transforms are commonly used.

E. Since $x_k = \Lambda_{k\mu} x_{\mu}$ must be pure real, while $x_4 = \Lambda_{4\mu} x_{\mu}$ is pure imaginary. Then the elements $\Lambda_{\mu} \in \Lambda_{4\mu}$ are real, while $\Lambda_{kq} \in \Lambda_{4k}$ are imaginary.

i.e.
$$\left(\begin{array}{c|c} \Lambda_{ke} & \Lambda_{4k} \\ \hline \Gamma_{eal} & \Gamma_{eal} \end{array}\right) = \Lambda$$
, in general. For velocity boost along $\Lambda = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \gamma & +i\beta\gamma \\ \hline \Gamma_{ke} & \Gamma_{eal} & \Gamma_{eal} & \Gamma_{eal} \end{pmatrix}$. $\Lambda = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \gamma & +i\beta\gamma \\ 0 & 0 & -i\beta\gamma & \gamma \end{pmatrix}$.

F. Any vector Aµ that transforms like Xµ, i.e. Aµ → Aµ = Λµν Aν, is a 4-vector, and it has an invariant length: Aµ = AR - |A4|? As well, the scalar product between two such 4-vectors: AµBµ = AµBµ - |A4||B4| is invariant.

G. The gradient operator $\frac{\partial/\partial x_{\mu} = (\partial/\partial x_{1}, \partial/\partial x_{2}, \partial/\partial x_{3}, -\frac{i}{c}\partial/\partial t)}{\partial x_{\mu}}$ is a 4-vector, since: $\partial/\partial x_{\mu} = (\partial/\partial x_{1}/\partial x_{\mu})\partial x_{\nu} = \Lambda_{\nu\mu}^{-1}\partial/\partial x_{\nu} = \Lambda_{\mu\nu}\partial/\partial x_{\nu}$, transforms properly. The wave operator: $(\partial/\partial x_{\mu})^{2} = \nabla^{2} - \frac{1}{c^{2}}(\partial/\partial t)^{2}$, is Torentz invariant.

Etc. None of the content of special relativity is changed, just the notation is different. We will use this new (old) notation as a diversion. We remark that even Jackson used this notation in the first edition (1962) of his text.

A This rules out space & time inversions (++1-1 or & +>1-)t) carried by A itself.

The Dirac Equation: Derivation & Basic Properties

Precall (from p. fs 16 of notes) that the Klein-Gordon Eqth generated a probability density $\rho = -(t/mc^2) Im [Ψ*(∂Ψ/∂t)]$ which could be either ± ve, and which needed initial values of both Ψ(to) and Ψ(to) to fix its evolution. These difficulties are inevitably connected with using a wave equation like (it ∂/∂t)²Ψ = Y6²Ψ, quadratic in both ∂/∂t and the Hamiltonian Y6. To avoid such difficulties, Device sought to write a wave equation that was linear in both the time & space operators, i.e. a Schrödinger-like form:

(it $\partial/\partial t$) $\psi = y_6 \psi$, w Ho linear in space derivatives $\partial/\partial x_k$. [5] Such an equation determines $\Psi(t)$ from $\Psi(t_0)$ alone $(\Psi(t)=[e^{-\frac{i}{\hbar}(t-t_0)H_0}]\Psi(t_0)$, and also permits a superposition principle similar to that of Schrödinger theory.

On grounds that in a relativistic theory time of space coordinates must occur on an equal footing, the Dirac Ho in Eq. (5) must be linear in the particle's momentum $\beta = (\beta_k) = (-i\hbar \partial/\partial x_k)$. Also, Ho must recover the particle's rest energy mc^2 when $\beta = 0$ (and in absence of external fields). Then for a <u>free</u> <u>particle</u>, Ho must be of the general form...

[$y_6 = c\alpha \cdot p + \beta mc^2 = c\alpha_k p_k + \beta mc^2$, $w_8 = (\alpha_1, \alpha_2, \alpha_3) \notin \beta$, are 4 quantities I independent of $F \notin t$.

(i.e. c2 (pk + (mc)2) = c2 (dkpk + pmc)2.

(7)

Consider Eq. (7) to be an identity and work out details ...

More succinctly, define $d_4 = \beta$, and write Egs. (8) as

$$\frac{\alpha_{\mu}\alpha_{\nu} + \alpha_{\nu}\alpha_{\mu} = 2\delta_{\mu\nu}}{\alpha_{\nu}}, \text{ for } \mu \notin \nu = 1, 2, 3, 4. \tag{9}$$

Since the α_{μ} anti-commute, they must be matrices, at least. And, so that 46 in Eq. (6) be Hermitian (with $\beta=-ih$ \ already so), the α_{μ} must be Hermitian matrices. The anti-commutation rule of Eq. (9) reminds us of the rule for the Pauli matrices for spin 1/2, i.e.

$$\begin{bmatrix}
\sigma_{k}\sigma_{\ell} + \sigma_{\ell}\sigma_{k} = 2\delta_{k\ell}, & \text{for } k \notin \ell = 1, 2, 3; \\
w_{j}\sigma_{j} = (\sigma_{k}) = \{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\}.
\end{cases}$$
(10)

So try: $(\alpha_k, \beta) = (\sigma_k, 1)$. This doesn't work because for $\beta = 1$, we cannot Satisfy $\alpha_k \beta + \beta \alpha_k = 0$ [per Eq.(8)] unless $\alpha_k \equiv 0$. The simplest choice of four independent α_k which obey the rule of Eq.(9) is...

$$\alpha = \begin{pmatrix} 0 & \sigma \\ \sigma & 0 \end{pmatrix}$$
, $\alpha_4 = \beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ $\int \sigma = 2 \times 2$ Pauli matrices, (11) $1 = 2 \times 2$ identity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

This is Dirac's original representation of the or; it is not unique.

3) Among other things, the fact that Dirac's matrices α_{μ} are 4x4 means that Dirac's wavefor Ψ must have 4 components... it is a 4-component "Spinor" $\Psi = (\Psi_1, \Psi_2, \Psi_3, \Psi_4)$, usually written as a column. NOTE: A 4-comp.