Assignment 2

COL 352 Introduction to Automata & Theory of Computation

Problem 1

Design DFA for the following languages over $\{0,1\}$

- (a) The set of all strings such that every block of of five consecutive symbols have at least two 0's
- (b) The set of strings with an equal number of 0's and 1's such that each prefix has at most one more 0 than 1's and at most one more 1 than 0's

Solution:

(a) The DFA can be specified as a 5-tuple $\langle Q, \Sigma, s, F, \delta \rangle$. The set of all states Q is

The start state is s. Assuming that all the strings of length less than 5 are accepted, the set of final states

The transition function δ is given in following table

Current state	Next state at input 0	Next state at input 1
s	q_0	q_1
q_0	q_{00}	q_{01}
q_1	q_{10}	q_{11}
q_{00}	q_{000}	q_{001}
q_{01}	q_{010}	q_{011}
q_{10}	q_{100}	q_{101}
q_{11}	q_{110}	q_{111}
q_{000}	q_{0000}	q_{0001}
q_{001}	q_{0010}	q_{0011}
q_{010}	q_{0100}	q_{0101}
q_{011}	q_{0110}	q_{0111}
q_{100}	q_{1000}	q_{1001}
q_{101}	q_{1010}	q_{1011}

q_{110}	q_{1100}	q_{1101}
q_{111}	q_{1110}	q_{1111}
q_{0000}	q_{00000}	q_{00001}
q_{0001}	q_{00010}	q_{00011}
q_{0010}	q_{00100}	q_{00101}
q_{0011}	q_{00110}	q_{00111}
q_{0100}	q_{01000}	q_{01001}
q_{0101}	q_{01010}	q_{01011}
q_{0110}	q_{01100}	q_{01101}
q_{0111}	q_{01110}	q_{01111}
q_{1000}	q_{10000}	q_{10001}
q_{1001}	q_{10010}	q_{10011}
q_{1010}	q_{10100}	q_{10101}
q_{1011}	q_{10110}	q_{10111}
q_{1100}	q_{11000}	q_{11001}
q_{1101}	q_{11010}	q_{11011}
q_{1110}	q_{11100}	q_{11101}
q_{1111}	q_{11110}	q_{11111}
q_{00000}	q_{00000}	q_{00001}
q_{00001}	q ₀₀₀₁₀	q_{00011}
q_{00010}	q_{00100}	q_{00101}
q_{00011}	q ₀₀₁₁₀	q_{00111}
q_{00100}	q ₀₁₀₀₀	q_{01001}
q_{00101}	q_{01010}	q_{01011}
q_{00110}	q_{01100}	q_{01101}
q_{00111}	q_{01110}	q_{01111}
q_{01000}	q_{10000}	q_{10001}
q_{01001}	q_{10010}	q_{10011}
q_{01010}	q_{10100}	q_{10101}
q_{01011}	q_{10110}	q_{10111}
q_{01100}	q_{11000}	q_{11001}
q_{01101}	q_{11010}	q_{11011}
q_{01110}	q_{11100}	q_{11101}
q_{01111}	q_{11110}	q_{11111}
q_{10000}	q_{00000}	q_{00001}
q_{10001}	q_{00010}	q_{00011}
q_{10010}	q_{00100}	q_{00101}
q_{10011}	q_{00110}	q_{00111}
q ₁₀₁₀₀	q_{01000}	q_{01001}
q_{10101}	q_{01010}	q_{01011}
q_{10110}	q ₀₁₁₀₀	q_{01101}
q_{10111}	q ₀₁₁₁₀	q_{01111}
q_{11000}	q_{10000}	q_{10001}
q_{11001}	q_{10010}	q_{10011}
q ₁₁₀₁₀	q_{10100}	q_{10101}
q_{11011}	q_{10110}	q_{10111}
q ₁₁₁₀₀	q_{11000}	q_{11001}
q_{11101}	q_{11010}	q_{11011}
q_{11110}	q_{11100}	q_{11101}
q_{11111}	q_{11110}	q_{11111}
_		1

(b) If there is no explanation of the states/DFA, at most 5/10 will be given.

Problem 2

Design NFA for the following languages

- (a) The set of strings over a,b that have the same value when multiplied from left to right as from left to right. The rules of multiplication are $a \times a = b$, $b \times b = a$, $a \times b = b$, $b \times a = b$. Note that $((a \times b) \times b) = a$ and $(a \times (b \times b)) = b$, i.e. it is not associative
- (b) The set of strings of the form $\{xwx^R \mid x, w \text{ are strings over } 0,1 \text{ of non-zero length}\}$

Solution:

(a) The problem reduces to finding strings of length at least 3 having the same initial and final characters. The NFA can be specified as a 5-tuple $< Q, \Sigma, s, F, \delta >$, with $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8\}, \Sigma = \{0, 1\}$, Start state $s = q_0$ and accepting states $F = \{q_5, q_6\}$

- (b) The following observations capture all possible strings with the following DFA
 - 1. The product is 'a' iff both the inputs are 'b'
 - 2. The parity of the number of b's to the leftmost a's must be equal to number of b's to the rightmost 'a' iff both are non-empty. Let either of them be denoted by L[a] and L[a'] respectively

- 3. If L[a] = 0 or L[a'] = 0, then parity of number of 'b's should be odd on the other side
- 4. If L[a] = 0 and L[a'] = 0, then string is palindromic and gives the same result

Problem 3

Prove or disprove $(r+s)^* = r^* + s^*$, where r, s and t are regular expressions and r=s implies L(r) = L(s)

Solution: Let $\Sigma = \{0,1\}$ and $r = 0^*$, $s = 1^*$

Then, $(r+s)^* = \epsilon \cup \{0,1\} \cup \{0,1\}^2 \cup \dots$

and, $r^* + s^* = \epsilon \cup \{0\} \cup \{0\}^2 \cup \dots \cup \{1\} \cup \{1\}^2 \cup \dots$

Now, consider a string 01.

Clearly, $01 \in \{0,1\}^2 \Rightarrow 01 \in (r+s)^*$, but $01 \notin r^* + s^*$

Hence, $(r+s)^* \neq r^* + s^*$

Problem 4

Which of the following are regular sets

- (a) $\{0^{2^n} | n \ge 1\}$
- (b) $\{xx^Rw | x, w \in (0+1)^+\}$

Solution:

(a) Let L denote the set, then assuming that it is regular, let $n \ge 1$ denote the pumping lemma constant Consider the string $0^{2^n} \in L = 0^p 0^q 0^r$ with $p + q + r \ge n$, $q \ge 1$ and $p + q \le n$.

Now, from pumping lemma, $\forall i \geq 0, 0^p 0^{iq} 0^r \in L$, i.e. $p + iq + r = 2^m$, for some $m \geq 1$.

Setting i=2, gives $p+2q+r=2^m$, and since $p+q+r=2^n\Rightarrow 2^n+q=2^m$, i.e. q is a power of 2.

Specifically, since n, m are integers and $q \ge 1, q = 2^n$.

But this means that q > n, since $n \ge 1$ and so, p + q > n - a contradiction. Thus the L is not a regular set.

(b) Let L denote the set, then assuming that it is regular, let $n \ge 1$ denote the pumping lemma constant Consider the string $0^n 1.10^n.1 \in L = 0^l 0^m 0^{n-m-l} 1.10^n.1$, $1 \le m < n$, 0 < l < n, with $x = 0^l$, $y = 0^m$ Now, from pumping lemma, $\forall i \ge 0$, $xy^iz \in L$, as $|xy| \le n$ and $y \ge 1$

Setting i = 2, gives $xy^2z = 0^{n+m}1.10^n.1 \in L$

But since n+m>n, so $xy^2z\notin L$ - a contradiction. Thus the L is not a regular set.

Also accepted: Solutions that use the Myhill-Nerode theorem correctly

Problem 5

Is the set $\frac{1}{2}(L) = \{x \mid \exists y \text{ such that } |x| = |y|, \ xy \in L\}$ regular?

Solution: Since, L is a regular language, so, let, $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA that accepts L.

Let $L' = \frac{1}{2}L$. We will construct a DFA $M' = (Q', \Sigma, \delta', q'_0, F')$ which accepts L' and hence prove that it is a regular language.

- $Q' = Q \times 2^Q$
- Let $S \in 2^Q$. Define $prev(S) = \{q \in Q \mid \exists a \in \Sigma, q' \in S \text{ s.t. } \delta(q, a) = q'\}$
- $\delta'((q,S),a) = (\delta(q,a), prev(S))$
- $q'_0 = (q_0, F)$
- $F' = \{(q, S), q \in S\}$

 $F_1 = prev(F)$ will give us all the states in M from where we can reach a final state of M on reading a string of length 1. Similarly, $F_n = prev(F_{n-1})$ will give us all the states in M from where we can reach a final state of M on reading a string of length n.

Let $xy \in L$ and |x| = |y| = n. M reaches to a state p after reading x and from p it reaches a final state f on reading y. So, $p \in F_n$. And, on reading x, M' will reach a state (p, F_n) . By definition of F', it is a final state of M'. So, xy will be accepted by M'.

Now, let x be accepted by M' and |x| = n. So, let, M' reaches a state (p, P) where $p \in P$ on reading x. Also, $P = F_n$. So, there exists a string y, reading which we can reach from p to a final state in M. So, xy is accepted by M.

Hence, L' is the language accepted by M'.

Regarding the grading:

- If you have simply specified the DFA with no explanation, you will get at most 5/10.
- You need to prove that any string in $\frac{L}{2}$ will be accepted by the DFA **AND** any string accepted by the DFA will be contained in $\frac{L}{2}$.