

Redes Comutadas (switching)

Múltiplos Serviços – Múltiplas Redes

INSTITUTO SUPERIO DE TECNOLOGIAS AVANÇADAS

Crescente complexidade das Redes

- O mundo digital mudou e está em constante mudança. A capacidade de aceder à Internet e a redes corporativas não se restringe a escritórios físicos, locais, ou fuso horários;
- Qualquer local de trabalho hoje é globalizado, os utilizadores podem aceder a recursos em qualquer parte do mundo e as informações devem estar disponíveis a qualquer hora, em qualquer dispositivo;
- Estes requisitos impulsionam a necessidade de construir redes de última geração que sejam seguras, confiáveis e altamente disponíveis.

Elementos de uma rede convergente

 Uma única infraestrutura de rede onde fluem todos os tipos de dados

Redes convergentes

O que são?

•São redes que utilizam os protocolos do modelo de comunicação TCP/IP e possuem qualidade de serviço suficiente para permitir que dados, voz e vídeo trafeguem sobre uma plataforma IP. Ou seja, são capazes de transportar satisfatoriamente não apenas dados, mas sinal de voz e de vídeo (televisão).

Redes Convergentes

 A estrutura de uma rede convergente tem as seguintes características:

Rede única para serviços de voz, dados e vídeo;

Rede baseada em comutação de pacotes;

Escalabilidade e flexibilidade para ampliações;

Qualidade de serviço (QoS);

Baixo custo operacional;

Exemplos de utilização de Redes Convergentes

Videoconferência

IPTV

IoT

E@D

VOIP

Cloud Computing

Redes hierárquicas multicamadas

Diretrizes do Projeto de Rede Hierárquica

<u>Hieráquica</u> – Facilita a compreensão da função de cada dispositivo em cada nível, simplifica a operação e a gestão;

<u>Modularidade</u> – Permite a expansão direta da rede e ativação de serviços integrados;

Resiliência – atende as expetativas do utilizador: manter a rede sempre ativa

<u>Fexibilidade</u> – permite o compartilhamento inteligente da carga e do trafego ao utilizar todos os recursos da rede

Projeto de redes hierárquicas multicamadas

<u>A camada de acesso</u> – É responsável por fornecer o acesso à rede para utilizadores;

A camada de distribuição - faz a interface entre a camada de acesso e a camada de núcleo para fornecer diversas funções;

<u>A camada de núcleo</u> – atua como agregador para todos os outros pacotes e nós do campus juntamente com o restante da rede;

Há três domínios distintos de broadcast

Funções das redes comutadas

Qualidade do Serviço Segurança adicional

Suporte para novas tecnologias

Suporte para redes sem fio

As funções das Redes Comutadas evoluíram exponencialmente

Tipos de Switches

Os switches de configuração fixa não suportam recursos oun opções para além daquelas fornecidas originalmente;

Os switches modulares vêm com chassis de tamanhos diferentes a instalação de números de diferentes placas de linha modular;

Os switches de geríveis
(empilháveis ou n/) e que
podem ser interconectados
através de um cabo especial
(série) que fornece
throughput* de alta largura
de banda entre switches;

Os recursos e as opções limitam-se às

definições fornecidas com o switch

Os switches empilháveis conectados a outros switches operam com maior versatilidade

*throughput - refere-se à largura de banda real, medida a uma determinada hora do dia, com o uso de rotas específicas da Internet, enquanto é feito download de um determinado ficheiro.

Recursos de Switches

Custo – O custo de um switch dependerá do número e da velocidade das interfaces, dos recursos suportados e da capacidade de expansão

Confiabilidade – O switch deve fornecer acesso contínuo à rede

Buffers de quadro - A capacidade do switch de armazenar quadros* é importante numa onde pode haver portas congestionadas para servidores ou outras áreas da rede

Energia – é comum ligar os pontos de acesso, telefone IP e até switches compactos utilizando PoE. Para das especificações do PoE, alguns switches suportam fontes de energia redundantes

PoE

Densidade de porta - Os switches de rede devem suportar o número apropriado de dispositivos na rede

Velocidade de porta – A velocidade de conexão da rede é a principal do utilizadores finais

Escalabilidade – O número de utilizadores numa rede normalmente aumenta ao longo do tempo, portanto o switch deve fornecer a oportunidade de crescimento

adadaa adadaa 0 0

*quadros – é um PDU (protocol data unit) da camada 2 do modelo de referência OSI, também denominado de 'frame' e que consiste num bloco de dados criado pelo hardware de comunicação de rede, como as placas de rede (placas NIC) e interfaces de router.

Switiching – Conceito

Um switch toma uma decisão de encaminhamento com base na porta de entrada e endereço de destino

Um switch LAN utiliza uma tabela para determinar como encaminha o trafego através do switch

O único 'raciocínio' do switch LAN tradicional consiste na capacidade de utilizar a tabela para encaminhar o trafego com base na porta de entrada e no endereço de destino da mensagem

Tabela de Portas									
Endereço de destino	Porta								
EE	1								
AA	2								
BA	3								
EA	4								
AC	5								
AB	6								

Switiching – Tabela Mac dos Switches

Os switches utilizam endereços Mac para direcionar as comunicações de rede que passam pelo switch para a porta apropriada rumo ao destino

Um switch é composto por um processador, memórias e software que controlam os caminho dos dados através do switch

Os switches LAN determinam como lidar com quadros de dados de entrada mantendo a tabela de endereços MAC

O método store-and-forward toma uma decisão de encaminhamento de um quadro após receber o quadro inteiro e verificar se este contém erros.

Por outro lado, o método cut-through inicia o processo de encaminhamento após determinar a porta de saída e o endereço Mac de destino.

Um switch store-and forward recebe um quadro inteiro e calcula o CRC*. Se o CRC for válido, o switch irá procurar o endereço de destino que determina a interface de saída. O quadro é então encaminhado através da porta correta.

Um switch cut-through encaminha o quadro antes de recebê-lo totalmente. No mínimo, o endereço de destino do quadro deve ser lido antes do quadro poder ser encaminhado.

*CRC – Ciclyc Redudancy Check – Verificação de Redundância Cíclica, que consiste numa técnica de deteção de erros em redes de computadores. O códigos CRC são códigos polinomiais

Exercício 1

Determine como o switch envia um quadro com base no endereços Mac do switch.

- Q.1- Qual a porta ou quais as portas para onde o switch enviará o quadro de acordo com o cabeçalho do quadro?
- Q.2 Escolha a melhor opção para quando o switch envia o quadro?
 - a. O switch adiciona o endereço Mac origem à tabela Mac?
 - b. O quadro é um quadro de broadcast e será encaminhado a todas as portas?
 - c. O quadro é um quadro unicast e será enviado somente para a porta especifica?
 - d. O quadro é um quadro unicast e será enviado para (inundado) a todas portas?
 - e. O quadro é um quadro unicast, mas será descartado no switch?

Quadro

Dv.03 cm.10	Freambulo	MAC Destino	Mac Origem	Comprimento Tipo	Dados Encapsulados	Fim do Quadro
		0B	0C			

Fal	Fa2	Fa3	Fa4	Fa5	Fa6	Fa7	Fa8	Fa	.9	F10	F11	F12
A0		OB		0C		0D		0E	0F			

Exercício 1

Determine como o switch envia um quadro com base no endereços Mac do switch.

- Q.1- Qual a porta ou quais as portas para onde o switch enviará o quadro de acordo com o cabeçalho do quadro ? Fa3
- Q.2 -Escolha a melhor opção para quando o switch envia o quadro?
 - a. O switch adiciona o endereço Mac origem à tabela Mac?
 - b. O quadro é um quadro de broadcast e será encaminhado a todas as portas?
 - X c. O quadro é um quadro unicast e será enviado somente para a porta especifica?
 - d. O quadro é um quadro unicast e será enviado para (inundado) a todas portas?
 - e. O quadro é um quadro unicast, mas será descartado no switch?

Ouadro

Preâmbulo	MAC Destino	Mac Origem	Comprimento Tipo	Dados Encapsulados	Fim do Quadro
	ОВ	0C			

Fal	Fa2	Fa3	Fa4	Fa5	Fa6	Fa7	Fa8	Fa	.9	F10	F11	F12
A0		OB		0C		0D		0E	0F			

Exercício 1

Determine como o switch envia um quadro com base no endereços Mac do switch.

- Q.1- Qual a porta ou quais as portas para onde o switch enviará o quadro de acordo com o cabeçalho do quadro?
- Q.2 Escolha a melhor opção para quando o switch envia o quadro?
 - a. O switch adiciona o endereço Mac origem à tabela Mac?
 - b. O quadro é um quadro de broadcast e será encaminhado a todas as portas?
 - c. O quadro é um quadro unicast e será enviado somente para a porta especifica?
 - d. O quadro é um quadro unicast e será enviado para a todas portas?
 - e. O quadro é um quadro unicast, mas será descartado no switch?

Quadro

Preâmbulo	MAC Destino	Mac Origem	Comprimento Tipo	Dados Encapsulados	Fim do Quadro
	0E	0C			

Fal	Fa2	Fa3	Fa4	Fa5	Fa6	Fa7	Fa8	Fa	.9	F10	Fll	F12
A0		OB				0D			0F			

Exercício 1

Determine como o switch envia um quadro com base no endereços Mac do switch.

- Q.1- Qual a porta ou quais as portas para onde o switch enviará o quadro de acordo com o cabeçalho do quadro ? All
- Q.2 Escolha a melhor opção para quando o switch envia o quadro:
 - Xa. O switch adiciona o endereço Mac origem à tabela Mac
 - b. O quadro é um quadro de broadcast e será encaminhado a todas as portas
 - c. O quadro é um quadro unicast e será enviado somente para a porta especifica
 - Xd. O quadro é um quadro unicast e será enviado para a todas portas
 - e. O quadro é um quadro unicast, mas será descartado no switch

Quadro

Preâmbulo	MAC Destino	Mac Origem	Comprimento Tipo	Dados Encapsulados	Fim do Quadro
	0E	0C			

Fal	Fa2	Fa3	Fa4	Fa5	Fa6	Fa7	Fa8	Fa	.9	F10	Fll	F12
A0		OB				0D			0F			

Domínios de Colisão

<u>Domínio de colisão</u> – É o segmento onde os dispositivos devem competir para comunicar.

<u>Cada porta de um switch</u> – É um domínio de colisão independente.

<u>Todas as portas de um hub</u> – pertencem ao mesmo domínio de colisão.

Domínios de Broadcast

<u>Domínio de Broadcast</u> – É a extensão da rede onde um quadro de broadcast pode ser escutado.

<u>Todas as portas de um switch</u> – com a configuração padrão pertencem ao mesmo domínio de broadcast.

<u>Um conjunto de switches</u> <u>interconectados</u> formam um único domínio de broadcast.

Se dois ou mais switches estiverem conectados, as portas de todos os switches (exceto a porta que recebeu originalmente o broadcast)

Quanto maior o domínio de broadcast, menor pode ser o desempenho da rede.

Domínios de Broadcast

Quantos domínios de broadcast tem Infraestrutura A? E a infraestrutura B?