Statistical Relational Models as Polyadic Measure Algebras

Paulius Dilkas

1st March 2020

1 Propositional Logic and Boolean Algebras

1.1 Preliminaries

Definition 1. A Boolean algebra is a tuple $(\mathbf{B}, \wedge, \vee, \neg, 0, 1)$ of a set **B** with operations \wedge, \vee, \neg and elements $0, 1 \in \mathbf{B}$ such that the following axioms hold for all $a, b, \in \mathbf{B}$:

- both \wedge and \vee are associative and commutative;
- $a \lor (a \land b) = a$, and $a \land (a \lor b) = a$;
- 0 is the identity of \vee , and 1 is the identity of \wedge ;
- \vee distributes over \wedge and vice versa;
- $a \vee \neg a = 1$, and $a \wedge \neg a = 0$.

Let $a, b \in \mathbf{B}$ be arbitrary. Let \leq be a partial order on \mathbf{B} defined by $a \leq b$ if $a = b \wedge a$ (or, equivalently, $a \vee b = b$), and let a < b denote $a \leq b$ and $a \neq b$.

Definition 2 ([5]). An element $a \neq 0$ of a Boolean algebra **B** is an *atom* if there is no $x \in \mathbf{B}$ such that 0 < x < a. A Boolean algebra is *atomic* if for every $a \in \mathbf{B} \setminus \{0\}$, there is an atom x such that $x \leq a$.

Lemma 1 ([2]). For any two distinct atoms a, b in a Boolean algebra, $a \wedge b = 0$.

Lemma 2 ([3]). All finite Boolean algebras are atomic.

Theorem 1 ([2]). Let **B** be a finite Boolean algebra. Then every $a \in \mathbf{B} \setminus \{0\}$ can be uniquely expressed as $a = \bigvee_{i \in I} m_i$ for some set of atoms $\{m_i\}_{i \in I}$.

Definition 3 ([1]). A (strictly positive) measure on a Boolean algebra **B** is a function $m : \mathbf{B} \to [0,1]$ such that:

- 1. m(1) = 1, and m(x) > 0 for $x \neq 0$;
- 2. $m(x \lor y) = m(x) + m(y)$ for all $x, y \in \mathbf{B}$ whenever $x \land y = 0$.

1.2 New Results

Definition 4. Let **B** be a finite Boolean algebra, let L be a subset of **B** such that every atom m can be uniquely expressed as $m = \bigwedge_{i \in I} l_i$ for some $\{l_i\}_{i \in I} \subseteq L$, and let $w : L \to \mathbb{R}_{>0}$ be arbitrary. The weighted model count WMC: $\mathbf{B} \to \mathbb{R}_{\geq 0}$ is defined as

$$WMC(a) = \begin{cases} 0 & \text{if } a = 0\\ \prod_{i \in I} w(l_i) & \text{if } M \ni a = \bigwedge_{i \in I} l_i\\ \sum_{i \in I} WMC(m_i) & \text{if } \mathbf{B} \setminus (M \cup \{0\}) \ni a = \bigvee_{i \in I} m_i \end{cases}$$

for any $a \in \mathbf{B}$. Furthermore, we define the normalised weighted model count nWMC : $\mathbf{B} \to [0,1]$ as $\mathrm{nWMC}(a) = \frac{\mathrm{WMC}(a)}{\mathrm{WMC}(1)}$ for all $a \in \mathbf{B}$.

Proposition 1. nWMC is a measure for any finite Boolean algebra **B**.

Proof. First, note that Property 1 of Definition 3 is satisfied by the definition of nWMC. Next, in order to prove Property 2, let $x, y \in \mathbf{B}$ be such that $x \wedge y = 0$. We want to show that

$$nWMC(x \vee y) = nWMC(x) + nWMC(y)$$

which is equivalent to

$$WMC(x \lor y) = WMC(x) + WMC(y). \tag{1}$$

If, say, x = 0, then Eq. (1) becomes

$$WMC(y) = WMC(0) + WMC(y) = WMC(y)$$

(and likewise for y=0). Thus we can assume that $x\neq 0\neq y$ and use Theorem 1 to write

$$x = \bigvee_{i \in I} x_i$$
 and $y = \bigvee_{j \in J} y_j$

for some sequences of atoms $(x_i)_{i\in I}$ and $(y_j)_{j\in J}$. If $x_{i'}=y_{j'}$ for some $i'\in I$ and $j'\in J$, then

$$x \wedge y = \bigvee_{i \in I} \bigvee_{j \in J} x_i \wedge y_j = x_{i'} \wedge y_{j'} \neq 0,$$

contradicting the assumption. This is enough to show that

$$WMC(x \vee y) = WMC\left(\left(\bigvee_{i \in I} x_i\right) \vee \left(\bigvee_{j \in J} y_j\right)\right) = \sum_{i \in I} WMC(x_i) + \sum_{j \in J} WMC(y_j)$$
$$= WMC(x) + WMC(y),$$

finishing the proof.

2 First-Order Logic and Polyadic Algebras

2.1 Preliminaries

What follows is a summary of [4].

Let **B** be a Boolean algebra (of propositions). Let X be the (non-empty) domain of discourse. Let I be an index set, elements of which can be interpreted as variables. The elements of X^I are functions from I to X. For any $x \in X^I$ and $i \in I$, we write x_i to represent $x(i) \in X$. Let \mathbf{A}^* be the set of all functions $X^I \to \mathbf{B}$, and note that it forms a Boolean algebra with operations defined pointwise.

Let T be the semigroup of all $I \to I$ transformations. For any $\tau \in T$, let $\tau_* : X^I \to X^I$ be defined by

$$(\tau_* x)_i = x_{\tau i}$$

for all $x \in X^I$ and $i \in I$. We can then define **S** to be a map from T to Boolean endomorphisms of \mathbf{A}^* defined by

$$\mathbf{S}(\tau)p(x) = p(\tau_*x)$$

for all $x \in X^I$ and $p \in \mathbf{A}^*$.

For any $J \subseteq I$, let J_* be the relation on X_I defined by

$$xJ_*y \iff x_i = y_i \text{ for all } i \in I \setminus J$$

for all $x, y \in X^I$. For any $J \subseteq I$, we then define $\exists (J)$ to be a transformation $\mathbf{A}^* \to \mathbf{A}^*$ defined by

$$\exists (J) p(x) = \bigvee_{\substack{y \in X^I, \\ xJ_*y}} p(y)$$

for all $p \in \mathbf{A}^*$, provided this supremum exists for all $x \in X^{I1}$.

Finally, a functional polyadic (Boolean) algebra² is a subalgebra \mathbf{A} of \mathbf{A}^* such that:

- $\mathbf{S}(\tau)p \in \mathbf{A}$ for all $p \in \mathbf{A}$ and $\tau \in T$;
- $\exists (J)p \in \mathbf{A} \text{ for all } p \in \mathbf{A} \text{ and } J \subseteq I.$

Definition 5. Similarly to \exists , a *constant* c is a mapping from $\mathcal{P}(I)$ to Boolean endomorphisms of \mathbf{A} such that:

- $c(\emptyset) = \mathrm{id}_{\mathbf{A}};$
- $c(J \cup K) = c(J)c(K)$;
- $c(J)\exists (K) = \exists (K)c(J \setminus K);$
- $\exists (J)c(K) = c(K)\exists (J \setminus K);$
- $c(J)\mathbf{S}(\tau) = \mathbf{S}(\tau)c(\tau^{-1}J)$

for all $J, K \in \mathcal{P}(I)$ and $\tau \in T$. If J is a singleton set $\{i\}$, we will simply write c(i) instead of c(J).

2.2 New Results

Proposition 2. Let **B** be a finite Boolean algebra with a measure $m: \mathbf{B} \to [0,1]$. Let **A** be a **B**-valued functional polyadic algebra with domain X and variables I. For any $p \in \mathbf{A}$, let $\sup(p) = \bigvee_{x \in X^I} p(x)$. Let $m^*: \mathbf{A} \to [0,1]$ be defined by

$$m^*(p) = \sum_{\substack{atom \ y \in \mathbf{B}: \\ y \le \sup(p)}} m(y)$$

for all $p \in \mathbf{A}$. Then m^* is a measure on \mathbf{A} .

Remark. While defining m^* as $m^*(p) = m(\sup(p))$ might look tempting, this definition is not additive.

Proof. First, since $1 \in \mathbf{A}$ is a function $1: X^I \to \mathbf{B}$ defined as 1(x) = 1, we have that $m^*(1) = m(1) = 1$. If $m^*(p) = 0$ for some $p \in \mathbf{A}$, then it must be the case that

$$\bigvee_{x \in X^I} p(x) = 0$$

which means that for all $x \in X^I$, p(x) = 0, which is equivalent to saying that p = 0. Thus, $m^*(p) > 0$ for $p \in \mathbf{A} \setminus \{0\}$.

¹The universal quantifier $\forall (J)$ is then defined as $\forall (J)p = \neg (\exists (J)\neg p)$ for all $p \in \mathbf{A}^*$.

²To be more explicit, a **B**-valued functional polyadic algebra with domain X and variables I.

References

- [1] Haim Gaifman. Concerning measures on Boolean algebras. *Pacific Journal of Mathematics*, 14(1):61–73, 1964.
- [2] M. Ganesh. Introduction to fuzzy sets and fuzzy logic. PHI Learning Pvt. Ltd., 2006.
- [3] Steven Givant and Paul R. Halmos. *Introduction to Boolean algebras*. Springer Science & Business Media, 2008.
- [4] Paul R. Halmos. Algebraic logic. Courier Dover Publications, 2016.
- [5] Thomas Jech. Set theory, Second Edition. Perspectives in Mathematical Logic. Springer, 1997.