WHAT IS CLAIMED IS:

- 1. A semiconductor apparatus comprising a semiconductor device, an electrically insulating layer formed on said semiconductor device, an external connection terminal formed on said electrically insulating layer, and a wiring formed on said electrically insulating layer and provided for electrically connecting said external connection terminal to a circuit electrode of said semiconductor device, wherein a power/ground line and a signal line are different in shape from each other on an inclined portion of said electrically insulating layer.
- 2. A semiconductor apparatus according to Claim

 1, wherein a line width of said power/ground line on

 said inclined portion is larger than a line width of

 said signal line on said inclined portion.
- 3. A semiconductor apparatus according to Claim

 1, wherein an average line width of said power/ground

 line on said inclined portion is larger than an average

 line width of said signal line on said inclined

 portion.
- 4. A semiconductor apparatus comprising a semiconductor device, an electrically insulating layer formed on said semiconductor device, an external connection terminal formed on said electrically insulating layer, and a wiring formed on said electrically insulating layer and provided for electrically connecting said external connection

terminal to a circuit electrode of said semiconductor device, wherein a line width of said wiring is widened at an end portion of said electrically insulating layer.

- 5. A semiconductor apparatus according to Claim 1 or 4, wherein said inclined portion of said electrically insulating layer has an inclination in a range of from about 5% to about 30% with respect to a surface of said semiconductor device.
- 6. A semiconductor apparatus according to Claim 1 or 4, wherein said electrically insulating layer has a thickness in a range of from 35 to 150 micrometers.
- 7. A semiconductor apparatus according to Claim 1 or 4, wherein said electrically insulating layer is formed by printing with use of a mask.
- 8. A semiconductor apparatus according to Claim 1 or 4, wherein said electrically insulating layer contains particles.
- 9. A semiconductor apparatus according to Claim
 1 or 4, wherein a minimum line width of said signal
 line is 25 micrometers when thickness of said
 electrically insulating layer is in a range of from 60
 micrometers to 80 micrometers.
- 10. A semiconductor apparatus according to Claim
 1 or 4, wherein one end portion of said wiring serves
 also as a bump pad.
- A semiconductor apparatus according to Claim
 or 4, wherein said wiring contains a wiring layer

formed by nickel plating and a wiring layer formed by copper plating.

- 12. A semiconductor apparatus comprising a semiconductor device, an electrically insulating layer formed on said semiconductor device and having thickness in a range of from 35 to 150 micrometers, an external connection terminal formed on said electrically insulating layer, and a wiring for electrically connecting said external connection terminal to a circuit electrode of said semiconductor device, wherein said wiring is constituted by a copper wire and a nickel layer formed on said copper wire.
- 13. A semiconductor apparatus comprising a semiconductor device, an electrically insulating layer formed on said semiconductor device and having a flat portion substantially uniform in thickness and an inclined portion, a first external connection terminal formed on said flat portion of said electrically insulating layer, a second external connection terminal formed on said inclined portion of said electrically insulating layer, and a wiring formed on said electrically insulating layer, and a wiring formed on said electrically insulating layer and provided for electrically connecting said first or second external connection terminal to a circuit electrode of said semiconductor device.
- 14. A semiconductor apparatus according to Claim 13, wherein a difference (δ) between height of said first external connection terminal from said

semiconductor device and height of said second external connection terminal from said semiconductor device is not larger than 115 micrometers.

- 15. A semiconductor apparatus according to Claim 13, wherein said inclined portion of said electrically insulating layer has an inclination in a range of from about 5% to about 30% with respect to a surface of said semiconductor device.
- 16. A semiconductor apparatus according to Claim 13, wherein a shape of said first external connection terminal is different from a shape of said second external connection terminal.
- 17. A semiconductor apparatus according to Claim 13, wherein a contact angle α 2 between said first external connection terminal and said electrically insulating layer is smaller than a contact angle α 1 between said second connection terminal and said electrically insulating layer.
- 18. A semiconductor apparatus according to Claim 13, wherein a contact angle β 2 between said first external connection terminal and a mounting circuit board is smaller than a contact angle β 1 between said second connection terminal and said mounting circuit board.
- 19. A semiconductor apparatus according to Claim 13, wherein a portion of said wiring for connecting said second external connection terminal to a circuit electrode of said semiconductor device is used as a

signal line whereas a portion of said wiring for connecting said first external connection terminal to said circuit electrode of said semiconductor device is used as a power/ground line.

- 20. A semiconductor apparatus according to Claim 19, wherein an average line width of said signal line is smaller than an average line width of said power/ground line.
- 21. A semiconductor apparatus according to Claim 13, wherein said electrically insulating layer is formed by printing with use of a mask.
- 22. A semiconductor apparatus according to Claim 13, wherein said electrically insulating layer contains particles.

adaq1>