Линейная Алгебра (Лекции)

Игорь Энгель

10 июня 2020 г.

Содержание

0. Конкспект по лекциям	1
1. Лекция 1	2
2. Лекция 2	8
3. Лекция 3	11
4. Лекция 4	12
5. Лекция 5	15
5.1 Метод Гаусса	16
5.2 Операции над матрицами	17
6. Лекция 6	20
7. Лекция 7	24
8. Лекция 8	28
9. Лекция 9	31
10. Лекция 10	36
11. Лекция 11	38
12. Лекция 12	40

0. Конкспект по лекциям

Это конспект сгруппированный по лекциям, потому-что так его удобнее писать. Ошибки в этой версии конспекта не исправляются. Этот конспект может обновляться чуть раньше основного.

 Глава #0
 1 из 45
 Автор: Игорь Энгель

1. Лекция 1

Замечание.

В \mathbb{R} существуют неприводимые многочлены с $\deg p(x) \geqslant 2$.

Это неудобно.

Хотим найти поле содержащие \mathbb{R} в котором таких многочленов нет.

Определение 1.1. Пусть K, L - поля. K - подкольцо внутри L. Тогда L называется расширением поля K.

Рассмотрим многочлен $x^2 + 1$. Назовём его корень i.

- 1. $i \in L$
- 2. $\mathbb{R} \subset L$
- 3. Тогда $a+bi \in L$ если $a,b \in \mathbb{R}$

Так-же поле L содержит выражения вида $a + bi + ci^2$, но так-как i^2 по определению равен -1. Значит, такие выражения сводятся к a' + bi. Аналогично для больших степений.

Рассмотрим операции поля:

$$(a+bi) + (c+di) = (a+c) + (b+d)i.$$
$$(a+bi)(c+di) = ac + adi + bci + bdi^{2} = (ac-bd) + (ad+bc)i = a' + b'i.$$

Значит, эти выражения задают подкольцо в L.

Возьмём множество пар вещественных чисел \mathbb{R}^2 .

Введём на нём сложение: $\langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle$.

Введём умножения: $\langle a, b \rangle \cdot \langle c, d \rangle = \langle ac - bd, ad + bc \rangle$.

Заметим, что сущетсвует корень многочлена $x^2+1 \in \mathbb{R}^2[x]$: $\langle 0,1 \rangle \cdot \langle 0,1 \rangle = \langle 0-1,0+0 \rangle = \langle -1,0 \rangle$.

Теорема 1.1. \mathbb{R}^2 с этими операциями - кольцо.

Доказательство. \mathbb{R}^2 - абелева группа, как произведение абелевых групп.

TODO:

Дистрибутивность:

Ассоциативность:

Коммутативность:

Единица:

Определение **1.2.** Полем комплексных чисел $\mathbb C$ называется $\langle \mathbb R^2, +, \cdot \rangle$

Элементы $\mathbb C$ записываются как a+bi (соответсвуют элементам вида $\langle a,b \rangle$)

Теорема 1.2. \mathbb{C} - поле

Доказательство. Найдём обратный элемент для a + bi.

$$(a+bi)(a-bi) = a^2 - b^2i^2 = a^2 + b^2.$$

Если $a + bi \neq 0$, то $a^2 + b^2 \neq 0$.

Поделим:

$$\frac{(a+bi)(a-bi)}{a^2+b^2} = 1.$$

Значит, $\frac{a-bi}{a^2+b^2}$ - обратный к a+bi.

Замечание. В $\mathbb C$ любой вещественный многочлен степени 2 раскладывается на линейные множители.

Доказательство. Рассмотрим многочлен $x^2 + bx + c$. $b, c \in \mathbb{R}$.

Тогда его корни имеют вид

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}.$$

Если $D = b^2 - 4c \geqslant 0$, то у него есть вещественный корень.

Если D < 0, то вещественных корней нет.

Тогда $D = -1 \cdot |D|$.

$$x_{1,2} = \frac{-b \pm \sqrt{(-1)|D|}}{2} = \frac{-b \pm \sqrt{|D|}\sqrt{-1}}{2} = \frac{-b \pm |D|i}{2}.$$

Свойства. Пусть $z = a + bi \in \mathbb{C}$.

 $a=\operatorname{Re} z$ - вещественная часть

 $b = \operatorname{Im} z$ - мнимая часть

 $\overline{z}=a-bi$ - комплексно-сопряжённое к z число

$$|z| = \sqrt{a^2 + b^2}$$
 - модуль z

Определение 1.3. R_1, R_2 - кольца. $f: R_1 \to R_2$ называется гомоморфизмом колец, если

- 1. f(a+b) = f(a) + f(b)
- 2. $f(a \cdot b) = f(a) \cdot f(b)$
- 3. f(1) = 1 если кольцо с единицей.

Определение 1.4. Если $f: R_1 \mapsto R_2$ гомоморфизм колец и биекция, то f - изоморфизм колец. **Утверждение 1.3.** Комплексное сопряжения - изоморфзим $\mathbb{C} \mapsto \mathbb{C}$.

Доказательство.

$$\overline{(a+bi) + (c+di)} = \overline{(a+c) + (b+d)i} = (a+c) - (b+d)i.$$

$$\overline{a+bi} + \overline{c+di} = (a-bi) + (c-di) = (a+c) - (b+d)i.$$

$$\overline{(a+bi)(c+di)} = \overline{(ac-bd) + (ad+bc)i} = (ac-bd) - (ad+bc)i.$$

$$\overline{a+bi} \cdot \overline{c+di} = (a-bi)(c-di) = (ac-(-b)(-d)) + (a(-d)+(-b)c)i = (ac-bd) - (ad+bc)i.$$

$$\overline{1+0i} = 1+0i.$$

Лемма. $\psi: R_1 \mapsto R_2$ гомоморфизм колец.

 $g(x) \in R_1[x]$ - многочлен. $\lambda \in R_1$ - корень g(x)

Построим многочлен $\psi(g) = \psi(a_0) + \psi(a_1)x + \dots + \psi(a_n)x^n$

Тогда $\psi(\lambda) \in \mathbb{R}_2$ - корень $\psi(g)$

Доказательство.

$$a_1\lambda + a_2\lambda^2 + \dots + a_n\lambda^n = 0.$$

$$\psi(a_1\lambda + a_2\lambda + \dots + a_n\lambda^n) = \psi(0) = 0.$$

$$\psi(a_1\lambda + a_2\lambda^2 + \dots + a_n\lambda) = \psi(a_1)\psi(\lambda) + \psi(a_2)\psi(\lambda)^2 + \dots + \psi(a_n)\psi(\lambda)^n = \psi(g)(\psi(\lambda)) = 0.$$

Утверждение 1.4. Любой изоморфизм $\varphi:\mathbb{C}\mapsto\mathbb{C}$ такой, что $\left.\varphi\right|_{\mathbb{R}}=\mathrm{id}$ либо $\varphi=\mathrm{id}$, либо φ -комплексное сопряжение.

Доказательство. $\varphi(a+bi) = \varphi(a) + \varphi(b)\varphi(i) = a + b\varphi(i)$.

$$\varphi(x^2+1) = x^2+1.$$

Значит $\varphi(i)$ тоже корень x^2+1 . Значит, либо $\varphi(i)=i$, либо $\varphi(i)=-i$.

Утверждение 1.5. $|z| = \sqrt{z\overline{z}}$

Доказательство. $z\overline{z} = (a+bi)(a-bi) = a^2 + b^2$.

Утверждение 1.6. $|z_1z_2|=|z_1||z_2|$

Доказательство. $|z_1z_2|^2 = z_1z_2 \cdot \overline{z_1z_2} = z_1\overline{z_1}z_2\overline{z_2} = |z_1|^2|z_2|^2$.

Определение 1.5. Аргументом $z = a + bi \neq 0$ называется угол между вещественной прямой и радиус-вектором точки задаваемой этим числом на комплексной плоскости. И обозначается $\operatorname{Arg} z \in \mathbb{R}/(2\pi\mathbb{Z})$.

Утверждение 1.7. $z_1, z_2 \neq 0$. Arg $z_1 z_2 = \text{Arg } z_1 + \text{Arg } z_2$.

Доказательство. Arg $\frac{z_1}{|z_1|}=z_1$, значит можно доказывать только для элементов с |z|=1.

$$|z_1| = |z_2| = 1$$
. Пусть $\varphi = {
m Arg}\, z_1,\, \psi = {
m Arg}\, z_2.$

Тогда $z_1 = \cos \varphi + i \sin \varphi$, $z_2 = \cos \psi + i \sin \psi$.

$$z_1 z_2 = (\cos \varphi \cos \psi - \sin \varphi \sin \psi) + i(\cos \varphi \sin \psi + \cos \psi \sin \varphi) = \cos(\varphi + \psi) + i\sin(\varphi + \psi).$$

Доказательство. Факт: Пусть есть изометрия плоскости у которой ести единственная неподвижная точка, то эта изометрия - поворот.

Введём расстояние между комплексными числами - $\rho(z_1, z_2) = |z_1 - z_2|$. Оно соответсвует обычному расстоянию на плоскости.

$$|z_1| = |z_2| = 1.$$

При $z_1 = 1$ тривиально, предположим что $z_1 \neq 1$.

Глава **#1** 4 из 45 Автор: Игорь Энгель

Рассмотрим отображения $x \mapsto z_1 x$.

Докажем что это изометрия: $|z_1x - z_1y| = |z_1(x - y)| = |z_1||x - y| = |x - y|$.

Заметим, что $z_1 x = x \iff x(z_1 - 1) = 0 \iff x = 0.$

Значит, заданное отображение - поворот вокруг начала координат. При этом, так-как $z_1 \cdot 1 = z_1$, то это поворот на угол $\operatorname{Arg} z_1$. Значит, $\operatorname{Arg} z_1 x = \operatorname{Arg} z_1 + \operatorname{Arg} x \implies \operatorname{Arg} z_1 z_2 = \operatorname{Arg} z_1 + \operatorname{Arg} z_2$.

Определение 1.6. Тригонометрическая форма записи комплексного числа $z \neq 0$ с аргументом $\varphi = \operatorname{Arg} z$:

$$a+bi=z=|z|\frac{z}{|z|}=|z|\left(\cos\varphi+i\sin\varphi\right)=|z|e^{i\varphi}.$$

Свойства. $z_1 = r_1 e^{i\varphi_1}, z_2 = r_2 e^{i\varphi_2}.$

$$z_1 z_2 = r_1 r_2 e^{i\varphi_1} e^{i\varphi_2} = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$$

Замечание.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{j}}{j!} + \dots$$
$$e^{ix} = 1 + ix + \frac{-x}{2!} + \frac{-ix}{3!} + \frac{x}{4!} + \dots$$

При чётных степенях:

$$1 - \frac{x^2}{2} + \frac{x^4}{4!} + \ldots + (-1)^k \frac{x^{2k}}{2k!} = \cos x.$$

При нечётных:

$$ix - \frac{ix^3}{3!} + \dots + (-1)^k \frac{ix^{2k+1}}{(2k+1)!} = i\sin x.$$

 $e^{ix} = \cos x + i\sin x.$

Теорема 1.8. В комплексных числах есть корни уравнения вида $x^n = a$

Доказательство. Если a=0, то сущетсвует единственный корень кратности n - x=0. Предположим что $a\neq 0$.

$$a = re^{i\varphi}$$

$$x = se^{i\varphi}.$$

$$x^n = s^n e^{in\alpha}.$$

$$s^n = r \implies s = \sqrt[n]{r}.$$

$$n\alpha = \varphi + 2\pi k \implies \alpha = \frac{\varphi}{n} + \frac{2\pi}{n}k.$$

$$x_k = \sqrt[n]{r}e^{i\left(\frac{\varphi}{n} + \frac{2\pi}{n}k\right)}.$$

Таких решений n штук, значит это все решения уравнения.

Пример. Рассмотрим уравнение $x^n = 1 = 1 \cdot e^0$.

Тогда $\varepsilon_k = e^{i \cdot \frac{2\pi k}{n}}$.

Определение 1.7. R - кольцо, $x \in R$ удовлетворяющий $x^n = 1$. Тогда x - корнеь степени n из единицы.

Определение 1.8. K - поле, тогда $\varepsilon \in K$ называется первообразным корнем степени n из единицы, если ord $\varepsilon = n$.

Замечание. Все первообразные корни степени n из единицы в $\mathbb C$ имеют вид ε_k , где k взаимнопросто с n.

Теорема 1.9 (Основная теорема алгебры). Любой многочлен $p(x) \in \mathbb{C}[x]$ степени хотя-бы один, имеет хотя-бы один корень в \mathbb{C} .

Без доказательства.

Определение 1.9. Поле K называется алгебраически замкнутым, если у любього многочлена $p(x) \in K[x]$ степени хотя-бы один есть корень в K.

Лемма. K - алгебраически замкнутое поле. Тогда многочлен $p(x) \in K[x]$ имеет ровно $\deg p(x) \geqslant 1$ корней с учётом кратности.

Доказательство. Пусть $n = \deg p$.

Если n = 1, то есть ровно один корень.

Пусть n > 1, так-как K замкнуто, то существует корень λ .

Тогда $p(x) = p'(x)(x - \lambda)$.

По индукции у p'(x) ровно n-1 корень с учётом кратности, и один корень у $x-\lambda$. Итого, n корней.

Замечание. Любой многочлен $f(x) \in \mathbb{C}[x]$ представляется в виде

$$f(x) = c(x - \lambda_1) \dots (x - \lambda_n)$$
.

Лемма. Если $\lambda \in \mathbb{C}$ - корень $p(x) \in \mathbb{R}[x]$, то $\overline{\lambda}$ - тоже корень.

Доказательство. Заметим, что $p(x)=\overline{p}(x)$. Значит, их корни совпадают. Но $\overline{\lambda}$ - корень $\overline{p}(x)$.

Утверждение 1.10. Если $p(x) \in \mathbb{R}[x]$ неприводимый, то либо $p(x) = c(x - \lambda)$, либо $p(x) = x^2 + bx + c$ и $b^2 - 4c < 0$.

Доказательство. То, что эти многочлены неприводимы тривиально.

Предположим что p неприводимо и $\deg p > 2$.

Заметим, что p имеет комплексный корень λ . Тогда $p : (x - \lambda)$ и $p : (x - \overline{\lambda})$.

 $\lambda \neq \overline{\lambda}$, так-как p неприводим.

Тогда
$$p(x) = p'(x)((x - \lambda)(x - \overline{\lambda})) = p'(x)(x^2 - \lambda x - \overline{\lambda}x + \lambda \overline{\lambda}) = p'(x^2 - 2\operatorname{Re}\lambda x + |\lambda|^2).$$

Предположим что $p(x) \not (x - \lambda)(x - \lambda')$ в вещественных.

Тогда они взаимно простые. Тогда

$$a(x)p(x) + b(x)(x - \lambda)(x - \overline{\lambda}) = 1.$$

Но $p(\lambda)=0$ и второе слагаемое тоже равно нулю. Противоречие.

Значит, $p' \in \mathbb{R}[x]$, и p приводим. Противоречие, значит неприводимых многочленов степени больше 2 не существует.

2. Лекция 2

Пример Гомоморфизмы колец.

- 1. $\overline{z}: \mathbb{C} \to \mathbb{C}$
- 2. $id: R \mapsto R$
- 3. $\mathbb{Z} \mapsto \mathbb{Z}/n$
- 4. $\mathbb{Z}/nm \mapsto \mathbb{Z}/n$
- 5. $a \in R$, $\varphi : R[x] \mapsto R$, $\varphi(f) = f(a)$
- 6. $g(x) \in R[x], \varphi : R[x] \mapsto R[x]. \varphi(f) = f(g(x))$
- 7. $g \in C[0,1], \varphi : C[0,1] \mapsto C[0,1], \varphi(f) = f(g(x)).$

Утверждение 2.1.

R, S - кольца.

Тогда,

$$\forall \psi : R \mapsto S \quad \forall \lambda \in S \quad \exists ! \varphi : R[x] \mapsto S \quad \begin{cases} \forall r \in R \quad \varphi(r) = \psi(r) \\ \varphi(x) = \lambda \end{cases}.$$

Доказательство. Пусть есть $\psi:R\mapsto S$. Построим $\varphi:R[x]\mapsto S$, такое, что $\varphi|_R=\psi$ и $\varphi(x)=\lambda$.

$$\varphi(a_0 + a_1x + \ldots + a_nx^n = \varphi(a_0) + \varphi(a_0)\varphi(x) + \ldots + \varphi(a_n)\varphi(x) = \psi(a_0) + \psi(a_1)\lambda + \ldots + \psi(a_n)\lambda^n$$

Значит, такой гомоморфизм единственнен. Существование доказывается проверкой, что это формула - гомоморфизм. Заметим, что формула эквивалентна гомоморфизму подстановки (из примеров).

Утверждение 2.2.

S - кольцо.

$$\exists ! \varphi : Z \mapsto S$$
.

Доказательство.

$$\varphi(1) = 1_S.$$

$$\varphi(n) = \varphi(\underbrace{1 + 1 + \ldots + 1}_{n}) = n \cdot 1_S.$$

Существование проверяется тривиально.

Определение 2.1.

Пусть R - кольцо. Тогда $\exists ! \varphi : \mathbb{Z} \mapsto R$

Тогда $\exists n \in \mathbb{N} \cup \{0\}$ Ker $\varphi = n\mathbb{Z}$.

Число char R := n называется характеристикой кольца R.

Пример.

1. $\operatorname{char} \mathbb{Z} = 0$

- 2. $\forall R \quad \mathbb{Z} \subset R \implies \operatorname{char} R = 0$
- 3. $\operatorname{char} \mathbb{Z}/n = n$
- 4. $\operatorname{char} \mathbb{Z}/n[x] = n$

Теорема 2.3.

R - область целостности.

Тогда, либо char R=0, либо char R - простое.

Доказательство. Пусть char $R = n_1 n_2$.

Тогда $\varphi(n_1)\varphi(n_2)=\varphi(n)=0$, но $n_1 \not\mid n$ и $n_2 \not\mid n$, значит n_1, n_2 - делители нуля.

Определение 2.2.

R - кольцо.

Производной $\frac{d}{dx}:R[x]\mapsto R[x]$ называется

$$\frac{d}{dx}(a_0 + a_1x + \dots + a_nx^n) = a_1 + 2a_2x + \dots + na_nx^n.$$

Свойства.

- $(\lambda \in R)' = 0$
- $\bullet (f+g)' = f' + g'$
- $\bullet (fg)' = f'g + fg'$
- $(f^n)' = nf'f^{n-1}$
- $\bullet \ (f \circ q)' = q'(f' \circ q)$

Доказательство. Сидим и раскрываем скобки. МНЕ ЛЕНЬ.

Теорема 2.4.

Пусть K - поле. $f, q \in K[x]$, $\deg q \geqslant 1$, при этом q неприводим. Пусть $q^{\ell}|f, \ell \geqslant 1$. Тогда $q^{\ell-1}|f'$. Если $\operatorname{char} K = 0$ ил $\operatorname{char} K > \deg f$, то если $q^{\ell+1} \not\mid f$ то $q^{\ell} \not\mid f'$.

Доказательство.

$$f = q^{\ell} \cdot g(x).$$

$$f' = \ell q' g^{\ell-1} g + g' q^{\ell} = q^{\ell-1} (\ell q' g + g' q).$$

Для второго утверждения надо доказать что $(\ell q'g + g'q) \not = q \iff q'g \not = q$.

Заметим, что $\deg q' < \deg q$, так-что если $\ell q' : q$, то $\ell q' = 0$.

Если char K=0, то $\ell_K\neq 0$. Аналогично, мы знаем что $\ell\leqslant \deg f$, иначе f не могло-бы делиться на q^ℓ . Значит $\ell_K\neq 0$.

Мы знаем что q не константа, значит $q' \neq 0$ если char K = 0.

Знаем, что $\deg q \leqslant \deg f < \operatorname{char} K$, значит доп-множители в производной не 0 в K, значит сущесвует ненулвой коэффициент. **TODO:** Почему $s \cdot a_s \neq 0_K$?

Следствие.

Если char K=0 или char $k>\deg f$, то λ корень f кратности $\ell\geqslant 1$ тогда и только тогда, когда λ - корень f' кратности ℓ .

Следствие.

Если char K=0 или char $k>\deg f$, то есть простой алгоритм переводящий $f=p_1^{\alpha_1}\dots p_k^{\alpha_k}$ в $\hat f=p_1\dots p_k.$

Доказательство. Заметим, что $(f, f') = p_k^{\alpha_1 - 1} \dots p_k^{\alpha_k - 1}$, значит $\frac{f}{(f, f')} = p_1 \dots p_k$.

Теорема 2.5 (Метод Ньютона).

Есть $f \in \mathbb{R}[x]$, хотим найти корень x_0 .

Возьмём произвольную точку x_1 , проверим является-ли она корнем. Если нет, то рассмотрим значение аппроксимации многочлена в окретсности x_1 : $\hat{f}(x) = f(x_1) + f'(x_1)(x - x_1)$.

Найдём корень \hat{f} :

$$f(x_1) + f'(x_1)(x - x_1) = 0 \iff x_1 - \frac{f(x_1)}{f'(x_1)}.$$

Возьмём этот корень как новую точку x_2 .

$$x_i = x_{i-1} = -\frac{f(x_{i-1})}{f'(x_{i-1})}.$$

Теорема 2.6.

Пусть $f \in \mathbb{R}[x]$ не имеет кратных корней.

Тогда
$$\exists \delta > 0 \quad \forall x_1 \quad |x_1 - x_0| < \delta \implies \lim_{i \to \infty} x_i = x_0$$

Утверждение 2.7.

Пусть $x_0 \in K$, тогда $\forall f \in K[X] \quad f = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n$.

Если char K=0 или char K>i, то $a_i=\frac{f^{(i)}(x_0)}{i!}$ (условие на хар-ку нужно для обратимости факториала).

Линал * Лекция 3

3. Лекция 3

Прастите. Я задалбался.

4. Лекция 4

Определение 4.1.

Поле рациональных функций: K(x) = Q(K[x]).

Утверждение 4.1.

$$\frac{f}{g} \in K(x)$$
. $\exists ! u, v \in K[x]$ т. ч:

- 1. (u, v) = 1
- 2. старший коэффициент v 1
- 3. $\frac{f}{g} = \frac{u}{v}$

Доказательство. Существование:

Пусть d = (f, g).

Пусть $\hat{u} = \frac{f}{d}$, $\hat{v} = \frac{g}{d}$.

Тогда $(\hat{u}, \hat{v}) = 1$ и $\frac{f}{g} = \frac{\hat{u}}{\hat{v}}$.

Пусть c - старшний коэффицент \hat{v} .

Тогда $v = c^{-1}\hat{v}, u = c^{-1}\hat{u}.$

Единственность:

Пусть $\frac{u_1}{v_1} = \frac{u_2}{v_2}$, при этом $(u_1, v_1) = 1$ и $(u_2, v_2) = 1$.

Тогда $v_2u_1=u_2v_1$. Заметим, что $v_1 \ \vdots \ v_2$ и $v_2 \ \vdots \ v_1$.

Значит, $v_1 = cv_2$.

Так-как старшие коэффициенты равны 1, c = 1 и $v_1 = v_2$, а значит и $u_1 = u_2$.

Лемма.

 $\frac{r_1}{g_1},\,\frac{r_2}{g_2}$ - правильные дробе $(\deg r < \deg g).$

Тогда $\frac{r_1}{g_1} + \frac{r_2}{g_2}$ - правильная дробь.

Доказательство.

$$\frac{r_1g_2 + r_2g_1}{g_1g_2} = \frac{r_3}{g_3}.$$

 $\deg r_3 \leqslant \max(\deg r_1 g_2, \deg r_2 g_1) < \deg g_1 g_2 = \deg g_3.$

Утверждение 4.2.

$$\forall \frac{f}{g} \in K(x) \quad \exists ! h \in K[x], \frac{r}{g_1} \in K(x) \quad \frac{f}{g} = h(x) + \frac{r}{g_1}, \deg r < \deg g_1$$

Доказательство. Существование:

$$f = gh + r.$$

$$f = r$$

$$\frac{f}{g} = h + \frac{r}{g}.$$

Единственность:

Пусть $h_1 + \frac{r_1}{g_1} + h_2 + \frac{r_2}{g_2}$.

Тогда $h_1 - h_2 = \frac{r_2}{g_2} - \frac{r_1}{g_1}$. Значит, $h_1 - h_2$ - правильная дробь. Но единственная прваильная дробь из оригинального кольца многочленов - 0.

.

Определение 4.2 (Простейшая дробь).

Пусть $p \in K[x], p$ - неприводимый.

Простейшей дробью называется $\frac{r}{p^{\alpha}}$, где $\deg r < \deg p, \ \alpha \in \mathbb{N}$.

Лемма (О разложении по основанию).

Пусть $r, p \in K[x], \deg p \geqslant 1.$

Тогда существует разложение $r(x) = a_0(x) + a_1(x)p + \ldots + a_k(x)p^k$, где $\deg a_i < \deg p$.

Доказательство. Заметим, что $r = g \cdot p + a_0$.

Остальные коэффициенты можно получить разложив д:

$$g = a_1 + a_2 p + \dots + a_k p^{k-1}.$$

 $r = a_0 + a_1 p + \dots + a_k p^k.$

Утверждение 4.3.

Пусть $\frac{f}{p^{\alpha}}$ - правильная дробь.

Тогда существует разложение $\frac{f}{p^{\alpha}}=\sum\limits_{j=1}^{k}\frac{r_{j}}{p^{j}},\,\forall j\,\,\,\,\,\,\,\deg r_{j}<\deg p.$

Доказательство.

$$\frac{f}{p^{\alpha}} = \frac{\sum\limits_{j=1}^{k} p^{k-j} r_j}{p^k}.$$

Существование:

Пусть $k = \alpha$.

Тогда r_i - коэффициенты из разложения f по основанию p.

Лемма.

 $\frac{f}{g}$ - правильная дробь, $g=g_1g_2,\,(g_1,g_2)=1.$

Тогда существует единственное разложение $\frac{f}{g} = \frac{h_1}{g_1} + \frac{h_2}{g_2}$ (все дроби правильные).

Доказательство.

$$f = h_1 g_2 + h_2 g_1.$$

Такие уравнения решаются аналогично диофантовым в целых числах.

Пусть нашли какое-то решение $\tilde{h_1}, \tilde{h_2}$. Тогда можем найти другое решение h_2 как остаток от деления $\tilde{h_2}$ на g. Тогда $\deg h_2 < \deg g$.

Найдём соответствующие h_1 :

$$h_1q_2 = h_2q_1 - f$$
.

$$\deg h_1 + \deg g_2 < \deg g_1 + \deg g_2 \implies \deg h_1 < \deg g_1.$$

Все отсальные решения уравнения имеют слишком большую степень.

Теорема 4.4 (О разложении на простейшие).

Пусть
$$\frac{f}{g} \in K(x)$$
. Тогда $\exists !h, p_1, \dots, p_k, r_{ij} \in K[x]$ $\exists !\alpha_1, \dots, \alpha_n$ $1 \leqslant i \leqslant k, 1 \leqslant j \leqslant \alpha_i, \frac{f}{g} = h(x) + \sum \frac{r_{ij}}{p_i^j}, \deg r_{ij} < \deg p_i, p_i$ - неприводимые, старший коэффицент p_i - $1, r_{i\alpha_i} \neq 0$,

Доказательство.

$$\frac{f}{g} = h(x) + \frac{r}{g}.$$
$$g = p_1^{\alpha_1} \dots p_k^{\alpha_k}.$$

Возьмём $g_1=p^{\alpha}$

Предположим, что g имеет старший коэффициент 1, как и все p_i (несложно сделать).

Тогда

$$\frac{r}{g} = \frac{h_1}{p_1^{\alpha_1}} + \frac{h_2}{p_2^{\alpha_2} \dots p_k^{\alpha_k}}.$$

По индукции, всё разложится на дроби.

Разложим дробь по основанию:

$$\frac{r}{g} = \sum_{j=1}^{\alpha_1'} \frac{r_{1j}}{p_1^j} + \frac{h_2}{p_2^{\alpha_2} \dots p_k^{\alpha_k}}.$$

Где α_1' - максимальное число, такое что $r_{1\alpha_1'} \neq 0$.

Раскладывая по индукции, получим нужное разложение.

Единственность h следует из правильности суммы.

Без ограничения общности, пусть $\frac{f}{g}$ - неприводимая дробь, и старший коэффицент g - 1.

Тогда $g=p_1^{\alpha_1'}\dots p_k^{\alpha_k'}.$

ТООО: я запутался

Пример.

Простейшие дроби в $\mathbb C$ - $\frac{c}{(x-\lambda)^{\alpha}},\ c,\lambda\in\mathbb C$

Простейшие дроби в \mathbb{R} - $\frac{c}{x-\lambda}$, $c,\lambda\in\mathbb{R}$, $\frac{Ax+B}{(x^2+ax+b)}$, $A,B,a,b\in\mathbb{R}$, $b^2<4a$.

Разложим $\frac{1}{x^n-1}$:

$$1 = \sum_{i=1}^{n} \frac{x^{n} - 1}{n\varepsilon_{i}^{n-1}(x - \varepsilon_{i})}.$$

$$\frac{1}{x^{n} - 1} = \sum_{i=1}^{n} \frac{1}{n\varepsilon^{n-1}(x - \varepsilon_{i})} = \sum_{i=1}^{n} \frac{\varepsilon_{i}}{n(x - \varepsilon_{i})}.$$

5. Лекция 5

Определение 5.1.

Система линейных (алгебраичех) уравнений - сисетма условий вида

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_n \end{cases}$$

Где $a_{ij}, b_i \in R$, где R - кольцо.

 x_i называются переменными.

Решение системы: $\{(x_1, \dots, x_n) \mid x_i \in R \text{ и выполнены все условия системы} \}$.

Если у нас есть система, можем взять два любых уравнения E_i, E_j из неё, взять два коэффициента $\lambda, \mu \in R$, и получить новое уравнение $\lambda E_i + \mu E_j$. Каждый элемент из решения системы так-же удовлетворяет этому уравнению.

Определение 5.2.

Две системы называются равносильными, если равны (как множества) их решения.

Лемма.

Пусть есть два уравнения из системы E_i, E_j , тогда если заменить E_j на $E_j + \lambda E_i, \lambda \in R$, то новая система будет равносильна.

Доказательство. Добавим в систему уравнение $E_j + \lambda E_i$. Любое решение E_i, E_j является решением этого уравнения. Удалим уравнение E_j , могли появиться новые решениея. Но исчезунть не могли.

Повторим процесс в обратную сторону, заменив $E_j + \lambda E_i$ на $E_j + \lambda E_i - \lambda E_i = E_j$, так-как исчезнуть решения не могли, системы равносильны.

Лемма.

Заменой строк местами можно получить равносильную систему

Лемма.

Если уравнение E_i домножить на $\lambda \in R^*$, получиться равносильная система.

Определение 5.3.

Матрицей с коэффициентами в R размерности $m \times n$ называется таблица из $m \times n$ из элементов R. Их можество обозначается $M_{m \times n}(R)$.

Определение 5.4.

Матрица $m \times n$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots, a_{mn} \end{bmatrix}$$

Называется матрицей системы

торо: расширенная

5.1. Метод Гаусса

Если $a_{11} \neq 0$ (в поле), прибавив первую строку системы к i > 1-й с коэффициентом $-\frac{a_{i1}}{a_{11}}$ можно убрать вхождение x_1 в строку i.

Если $\exists i \ a_{i1} \neq 0$, можно поменять её местами с первой строкой, и применить предыдущее преобразование.

Если $\forall i \quad a_{i1} = 0$, то можно «забыть» про первый столбец матрицы.

Определение 5.5.

Элемент a_{ij} называется главным элементом строки i матрицы A, если он первый ненулевой элемент в этой строке.

Определение 5.6.

Матрица A имеет ступенчатый вид, если $\forall i$ строка i состоит из нулей, либо позиция главного элемента строки i строго больше позиции главного элемента строки i-1.

Теорема 5.1.

Любую матрицу над полем K можно при помощи элементарных преобразований привести к равносильной ей ступенчатой, такой, что главный коэффициент в каждой не нулевой строке равен 1 а над каждым главным элементом стоят нули.

Рассмотрим расширеную матрицу системы (A|b). Привдём её к равносильной ступенчатой методом Гаусса.

Рассмотрим последнее ненулевое уравнение в такой системе. Пусть оно имеет вид $x_s+a_{s+1}x_{s+1}+\ldots+a_mx_m=b \implies x_s=b-\sum_{i=s+1}^m a_ix_i.$

Может быть ситуация, когда главный элемент является частью подматрицы b. Тогда у системы нет решений. В остальных случаях есть.

Определение 5.7.

Зависимые переменные - переменные, которые в приведённой матрице соответствуют главным элементам.

Остальные переменные называются независимыми.

Лемма.

Зависимые переменные однозначно выражается через независимые.

Пример Задача интерполяции.

Хотим найти $f(x) = \lambda_0 + \ldots + \lambda_{n-1} x^{n-1}$, такой, что $f(x_i) = a_i, \lambda_i, x_i, a_i \in K, x_i \neq x_j$.

$$\lambda_0 + \lambda_1 x_1 + \lambda_2 x_1^2 + \ldots + \lambda_{n-1} x_1^{n-1} = a_1$$

:

Её матрица:

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{bmatrix}$$

Решение методом Гаусса - $\mathcal{O}(n^3)$, формулой интерполяции - $\mathcal{O}(n^2)$.

Пример Pagerank.

Пусть есть орграф G символизирующий набор страниц ссылающихся друг на друга.

Хотим каждой вершине сопоставить $w_i = \sum_{j \to i} \frac{1}{\operatorname{outdeg}(j)} w_j$.

 $\forall i \quad w_i = 0$ - точно решение. Есть-ли другие?

5.2. Операции над матрицами

Определение 5.8.

Пусть $A, B \in M_{m \times n}(R)$, то $\exists C \in M_{m \times n}(R) \quad C = A + B$. При этом, $C_{ij} = A_{ij} + B_{ij}$.

Определение 5.9.

Пусть $A \in M_{m \times n}(R)$, $\lambda \in R$. Тогда $\exists \lambda A \in M_{m \times n}(R) \quad (\lambda A)_{ij} = \lambda A_{ij}$.

Свойства.

- 1. $M_{m \times n}(R)$ абелева группа по сложению
- 2. $A, B \in M_{m \times n}(R), \lambda \in R. \lambda(A+B) = \lambda A + \lambda B.$
- 3. $A \in M_{m \times n}(R), \lambda, \mu \in R, (\lambda + \mu)A = \lambda A + \mu A.$
- 4. $A \in M_{m \times n}(R), \lambda, \mu \in R, (\lambda \mu)A = \lambda(\mu A).$
- 5. 1A = A.

Замечание.

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in R^n = M_{n \times 1}(R)$$

$$(a_1,\ldots,a_n)\in M_{1\times n}(R)$$

Определение 5.10.

$$(a_1,\ldots,a_n)$$
 $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = a_1x_1 + \ldots + a_nx_n$

Определение 5.11.

$$\begin{bmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$(Ax)_i = \sum_{i=1}^n A_{ij} x_j$$

Определение 5.12.

Произведение матриц: $\cdot: M_{m \times n}(R) \times M_{n \times k}(R) \mapsto M_{m \times k}(R)$

$$(AB)_{ij} = \sum_{s=1}^k A_{is} B_{sj}.$$

Свойства.

 $A, B, C \in M_{* \times *}(R)$ (размеры любые, но такие, чтобы произведения были определены). $\lambda \in R$

1.
$$(AB)C = A(BC)$$

2.
$$\lambda(AB) = (\lambda A) = A(\lambda B)$$

3.
$$C(A+B) = CA + CB$$

4.
$$0_M = \begin{bmatrix} 0 & \dots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \dots & 0 \end{bmatrix}$$
. $0_M A = A$.

5.
$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$
. $IA = AI = A$.

Следствие.

 $R^n \mapsto R^m$ заданное матрицей $A \in M_{m \times n}(R)$, такое, что $x \to Ax$ является гомоморфизмом групп.

Определение 5.13.

$$Ker A = \{x \in R^n \mid Ax = 0\}.$$

Ядро матрицы - множество решений однородной системы уравнений соответствующей этой матрице.

Следствие.

Если система уравнений Ax = b имеет решение, то есть биекция между множеством её решений и ${\rm Ker}\,A.$

Доказательство. Возьмём такое x_0 , что $Ax_0 = b$.

Пусть x^* такое, что $Ax^* = b$, тогда $x^* - x_0 \in \operatorname{Ker} A$.

Пусть
$$y \in \text{Ker } A$$
, тогда $A(y + x_0) = b$.

Лемма.

Пусть $x \in \text{Ker } A$, $\lambda \in R$. Тогда $\lambda x \in \text{Ker } A$.

Определение 5.14 (Векторное пространство).

Векторным пространством называется четвёрка $\langle V, K, +, \cdot \rangle$, где V называется множеством векторов, K - полем скаляров, $+: V \times V \mapsto V, \cdot: K \times V \mapsto V$. При этом, операции удовлетворяют следующим свойствам:

- 1. $\langle V, + \rangle$ абелева группа
- 2. $\lambda(u+v) = \lambda u + \lambda v$
- 3. $(\lambda + \mu) u = \lambda u + \mu u$
- 4. $\lambda(\mu u) = (\lambda \mu)u$
- 5. 1u = u

Пример.

- 0 {0}
- 1. $\langle K, K, +, \cdot \rangle$
- 2. $\langle K^n, K, +, \cdot \rangle$, $\langle M_{m \times n}(K), K, +, \cdot \rangle$
- 3. X множество. K^X множество функций из X в K.
- 4. $\langle C[0,1], \mathbb{R}, +, \cdot \rangle$

Определение 5.15.

Векторным подпространством U пространства $\langle V, K, +, \cdot \rangle$, $U \subset V$. $u_1, u_2 \in U, \ \lambda \in K$.

$$u_1 + u_2 \in U.$$
$$\lambda u_1 \in U.$$
$$0 \in U.$$

Пример.

Ker A - подпространство в K^n ($A \in M_{m \times n}(K)$).

$$C^{1}[0,1] \leqslant C[0,1]$$

$$C[0,1] \geqslant \{ f \in C[0,1] \mid f(\frac{1}{2}) = 0 \}$$

$$K[x] \geqslant K_{\leq n}[x] = \{ f \in K[x] \mid \deg f \leqslant n \}$$

Пусть
$$v_1, \ldots, v_n \in V, \lambda_1, \ldots, \lambda_n \in K$$
.

Их линейной комбинацией называется $\lambda_1 v_1 + \ldots + \lambda_n v_n$

Определение 5.17.

Пусть $X \subset V$ (подмножество).

Пространством, порождённым X (линейной оболочкой X) называется:

- $1.\,$ наименьшее по включению подпространство содержащие X
- 2. $\langle X \rangle = \{\lambda_1 x_1 + \dots \lambda_n x_n \mid x_i \in X\}$

Определение 5.18.

Если $\langle X \rangle = V,$ то X пораждает V. (элементы X - образующие V)

Определение 5.19.

Пусть есть набор векторов $v_1, \ldots, v_n \in V$.

Набор линейное зависим, если

$$\exists \lambda_1, \ldots, \lambda_n$$
 хотя-бы один из которых не 0 $\lambda_1 v_1 + \ldots + \lambda_n v_n = 0$.

Определение 5.20.

Набор векторов $v_1, \dots, v_n \in V$ называется базисом V, если он образует V и при этом линейно независим.

6. Лекция 6

Утверждение 6.1 (Эквивалентные переформулировки понятия базиса).

Пусть V - векторное пространство над полем K, и набор векторов e_1, \ldots, e_n . Следующие утвержддения эквивалентны:

- $1. e_1, \ldots, e_n$ базис
- $2. \ e_1, \ldots, e_n$ минимальная по включению порождающая система V
- 3. $\forall v \in V \quad \exists! \lambda_1, \dots, \lambda_n \quad v = \lambda_1 e_1 + \dots + \lambda_n e_n$
- 4. e_1, \ldots, e_n максимальная по включению независимая система векторов

Доказательство.

 $1\implies 2$: Предположим что можно выкинуть вектор e_n . Значит, $V=\langle e_1,\dots,e_{n-1}\rangle$. Значит, $\exists \mu_i \quad \mu_1e_1+\dots+\mu_{n-1}e_{n-1}=e_n \implies \mu_1e_1+\dots+\mu_{n-1}e_{n-1}-e_n=0$, значит, начальная система была линейно зависима.

 $2 \implies 3: e_1, \dots, e_n$ - порождающая система, значит такие λ точно существуют. Пусть $\exists v \in V \quad \lambda_1 e_1 + \ldots + \lambda_n e_n = v = \mu_1 e_1 + \ldots + \mu_n e_n$. Пусть $\lambda_1 \neq \mu_1$. Тогда

$$0 = (\lambda_1 - \mu_1)e_1 + \ldots + (\lambda_n - \mu_n)e_n.$$

$$e_1 = \frac{1}{-(\lambda_1 - \mu_1)} \sum_{i=2}^{n} (\lambda_i - \mu_i) e_i.$$

Значит, e_1 можно выкинуть из системы. Противоречие с минимальностью.

 $3 \implies 4$: Пусть $\lambda_1 e_1 + \ldots + \lambda_n e_n = 0$. Так-как разложение вектора 0 единственно, то $\lambda_1 = \ldots = \lambda_n = 0$. Возьмём вектор $v \in V$. Тогда $v = \mu_1 e_1 + \ldots + \mu_n e_n$, значит $\mu_1 e_1 + \ldots + \mu_n e_n - v = 0$, значит эта система максимальная.

 $4 \implies 1$: Построим разложение вектора $v \in V \setminus \{0\}$.

Знаем, что система максимальна, значит $\lambda_1 e_1 + \dots \lambda_n e_n + \lambda_v v = 0$.

Если $\lambda_v \neq 0$, перенесём v направо и разделим на λ_v .

Если $\lambda_v = 0$, то придём к противоречию с независимостью.

Определение 6.1 (Координатная запись).

Пусть $e = \{e_1, \dots, e_n\}$ - базис $V, v \in V$. Тогда координатной записью v в базисе e называется

$$[v]_e = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

При том, что $v = \lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_n e_n$.

Определение 6.2.

Пространство V называется конечномерным, если $\exists v_1,\ldots,v_n \quad \langle v_1,\ldots,v_n \rangle = V.$

Все последующие теоремы доказываются только для конечномерных пространств.

Теорема 6.2 (О существовании базиса).

Пусть V - конечномерное пространство над K. И v_1, \ldots, v_m - порождающая система.

Возьмём линейно независимый набыор e_1, \ldots, e_k . Тогда e_1, \ldots, e_k можно дополнить до базиса, при помощи v_1, \ldots, v_n .

Доказательство.

Индукция по количеству векторов из набора v_1, \ldots, v_n , которые не лежат в $\langle e_1, \ldots, e_k \rangle$:

Если $V = \langle e_1, \dots, e_k \rangle$, то утверждение тривиально.

Пусть $v_i \notin \langle e_1, \ldots, e_k \rangle$. Рассмотрим систему e_1, \ldots, e_k, v_i .

Проверим, что она независима: Пусть зависима, тогда

$$\lambda_1 e_1 + \ldots + \lambda_k e_k + \lambda_v v = 0.$$

Тогда, либо $\lambda_v = 0$, и все $\lambda_i = 0$, либо

$$v = \frac{1}{\lambda_n} \left(\lambda_1 e_1 + \ldots + \lambda_n e_n \right).$$

Что противоречит тому, как мы брали v.

Замечание.

Теорема верна и для бесконечномерных пространств, но доказательство сложнее.

Следствие.

Пусть V - конечномерное пространство. Тогда в нём существует базис.

Доказательство. Возьмём пустое множество как начало для предыдущей теоремы.

Лемма (О линейной зависимости линейных комбинаций).

Пусть есть наборы векторов v_1, \ldots, v_m и e_1, \ldots, e_n . При этом, $v_i \in \langle e_1, \ldots, e_n \rangle$. Если m > n, то v_i линейно зависимые.

Доказательство.

Выпишем разложения для v_i :

$$v_i = \lambda_{i1}e_1 + \dots \lambda_{in}e_n$$
.

Индукция по n:

База:
$$n = 1$$
. $\langle e_1 \rangle = ke_1$. $k_1e_1 + k_2e_1 = 0 \iff k_1 - k_2 = 0$.

Предположим, что $\lambda_{11} \neq 0$ (можно добиться перенумеровкой, и выкидыванием бесполезных e_i). Тогда $u_i = v_i - \frac{\lambda_{i1}}{\lambda_{11}} v_1$, $i \in \{2, \dots, m\}$.

Тогда $u_i \in \langle e_2, \ldots, e_n \rangle$.

По индукции, u_i линейно зависимы.

$$\mu_2 u_2 + \dots \mu_m u_m = 0.$$

$$Cv_1 + \mu_2 v_2 + \dots \mu_m v_m = 0.$$

Значит, v_i линейно зависимы.

Теорема 6.3 (О равномощности базиса).

Пусть V - конечномерное пространство. И e, f - базисы V. Тогда |e| = |f|.

Доказательство. Пусть e конечно.

Предположим что f - бесконечный или |f|>|e|. Тогда там есть хотя-бы n+1 линейно независимый элемент.

То $\forall i \quad f_i \in \langle e \rangle$, значит любой набор из n+1 элементов f линейно зависим. Противоречие.

Если |e| > |f|, то анологичным образом приходим к противоречию.

Замечание.

Теорема верна для произвольного пространства.

Определение 6.3.

Пусть V - векторное пространство. Тогда размерность $\dim V = n$, если в V есть базис мощности n, либо $\dim V = \infty$ если конечного базиса не существует.

Лемма.

Пусть v_1, \ldots, v_k линейно независимо в V, при этом, $\dim V = n$. Тогда $k \leqslant n$, и если k = n, то v_1, \ldots, v_k - базис.

Доказательство. Возьмём наш набор, и дополним до базиса векторами v_{k+1}, \ldots, v_n . Значит, изначально было $k \leq n$, и если k = n, то ничего не добавилось, значит и так базис.

Лемма.

Пусть v_1,\ldots,v_k - пораждающая система V, и $\dim V=n.$ Тогда $k\geqslant n,$ и если k=n, то v_1,\ldots,v_k - базис.

Доказательство. Возьмём \varnothing , дополним до базиса векторами v_i . Выбрали n штук векторов. Значит, было хотя-бы n, и если было ровно n, то взяли все.

Следствие.

Если $U \leqslant V$, и dim V = n, то dim $U \leqslant n$ и если dim U = n, то U = V.

Доказательство. Возьмём базис U: e_1, \ldots, e_k . Он линейно независим в U, значит линейно независим V. Значит, $\dim U = k \leqslant n = \dim V$. Если k = n, то e - базис V, и $U = \langle e \rangle = V$.

Утверждение 6.4.

Пусть $U_1, U_2 \leqslant V$. Тогда $U_1 \cap U_2 \leqslant V$. И $U_1 + U_2 = \{u_1 + u_2 \mid u_1 \in U_1, u_2 \in U_2\} \leqslant V$.

Доказательство.

Пересечение: ТООО:

Сумма: $(u_1 + u_2) + (u'_1 + u'_2) = (u_1 + u'_1) + (u_2 + u'_2)$. $\lambda(u_1 + u_2) = \lambda u_1 + \lambda u_2$. 0 = 0 + 0.

Утверждение 6.5.

Пусть $U_1, U_2 \leq V$. dim $U_1 = \ell$, dim $U_2 = k$.

Тогда $\dim U_1 + \dim U_2 = \dim(U_1 + U_2) + \dim(U_1 \cap U_2)$.

Доказательство. Выберем e_1, \ldots, e_k - базис $U_1 \cap U_2$.

Дополним до базиса в U_1 и U_2 : $e_1, \ldots, e_k, f_1, \ldots, f_n$ - базис $U_1, e_1, \ldots, e_n, g_1, \ldots, g_m$ - базис U_2 .

Тогда $e_1, \ldots, e_k, f_1, \ldots, f_n, g_1, \ldots, g_n$ - порождает $U_1 + U_2$.

Покажем что оно базис:

$$\lambda_1 e_1 + \dots + \lambda_k e_k + \mu_1 f_1 + \dots + \mu_n f_n = \eta g_1 + \dots + \eta_m g_m.$$

Слева вектор из U_1 , справа из U_2 . Значит, он лежит в пересечении. Тогда

$$\eta_1 g_1 + \dots + \eta_m g_m + c_1 e_1 + \dots + c_n e_n = 0.$$

А это базис U_2 , противоречие.

Тогда (k+n)+(k+m)=(k+n+m)+k, что соответствует утверждениям о размерностях. \Box

Определение 6.4.

$$U \leqslant V$$
, dim $V = n$, dim $U = k$, codim $U = n - k$.

7. Лекция 7

Определение 7.1.

Пусть $U_1, U_2 \leqslant V$, то V раскладывается в прямую сумму $(V = U_1 \oplus U_2)$, если

$$\forall v \in V \quad \exists! u_1, u_2 \in U_1, U_2 \quad v = u_1 + u_2.$$

Утверждение 7.1.

Пусть $U_1, U_2 \leqslant V$. Тогда следующие утверждения эквивалентны:

- 1. $V = U_1 \oplus U_2$
- 2. $U_1 \cap U_2 = \{0\}, \dim U_1 + \dim U_2 = \dim V$
- 3. $\forall e_1,\ldots,e_k\in U_1\quad \forall f_1,\ldots f_\ell\in U_2$ (базисы), $e_1,\ldots,e_k,f_1,\ldots,f_\ell$ базис V
- $4. \ \forall \rightarrow \exists$

Доказательство.

 $1 \implies 2$:

Пусть $v \in U_1 \cap U_2$. Тогда v = 0 + v = v + 0. Если $v \neq 0$, то получили два разложения v. Значит, $U_1 \cap U_2 = \{0\}$.

Имеем $V=U_1+U_2$. По формуле Грассмана, $\dim V=\dim U_1+\dim U_2-\dim U_1\cap U_2=\dim U_1+\dim U_2$.

 $2 \implies 3$:

Взяли базисы e_i , f_i .

Покажем независимость в $V: \lambda_1 e_1 + \ldots + \lambda_k e_k = -(\mu f_1 + \ldots \mu_\ell f_\ell)$. Это элемент из пересечения, но пересечение тривиально. Значит по обе стороны нули. Значит, все коэффициенты - 0.

$$k + \ell = \dim V, e_i, f_i \in V$$
, значит, $\langle e, f \rangle = V$.

 $3 \implies 4$ тривиально.

 $4 \implies 1$:

Взяли $v \in V$. Возьмём базисы U_1, U_2 , которые дают базис v. Получили представление.

При этом, v разложился по базису V. А такое разложение единственно.

Определение 7.2 (Линейное отображение).

Пусть V_1, V_2 - векторные пространства над K. Тогда $f:V_1\mapsto V_2$ называется линейным отображением, если

Автор: Игорь Энгель

- 1. $\forall v, u \in V_1$ f(v+u) = f(v) + f(u)
- 2. $\forall \lambda \in K \quad \forall v \in V_1 \quad f(\lambda v) = \lambda f(v)$.

Замечание.

Линейные отображения - гомоморфизмы групп

Пример.

1 id

1' $v \to \lambda v$.

$$V_1 = K^n, V_2 = K^m. A \in M_{m \times n}(K). v \to Av.$$

$$V_1 = V_2 = K[x], f \to f'.$$

4
$$V_1 = C^1[a, b], V_2 = C[a, b], f \to f'.$$

$$5 f \rightarrow \int_{0}^{1} f(x)dx$$

$$6 f \to \int_{0}^{x} f(x)dx.$$

7
$$V_1 = K[x], V_2 = K. \lambda \in K. f \rightarrow f(\lambda).$$

8
$$K[x] \mapsto K[x], f \to f(g(x)).$$

9
$$f(x) \mapsto g(x)f(x)$$

Утверждение 7.2.

Пусть $f, g: V_1 \mapsto V_2, k, h: V_2 \mapsto V_3$ - линейные отображение.

Тогда

- 1. $\lambda_1 f + \lambda_2 g$ линейное отображение.
- $2.\ k\circ f:V_1\mapsto V_3$ линейное отображение
- 3. $\operatorname{Hom}_K(V_1, V_2)$ множество всех линейных отображений $V_1 \mapsto V_2$. $\operatorname{Hom}_K(V_1, V_2)$ векторное пространство относительно поточечного сложения и домножения на скалаяр.

4.
$$(k+h) \circ f = k \circ f + h \circ f$$

5.
$$k \circ (f+g) = k \circ f + k \circ g$$

6. f - инъективно \iff Ker $f = \{0\}$.

Теорема 7.3.

Пусть V_1, V_2 - конечномерные векторные пространства. e_1, \ldots, e_n - базис V_1, u_1, \ldots, u_n - набор элементов (не обязательно базис) V_2 .

Тогда
$$\exists ! f : V_1 \mapsto V_2 \quad f(e_i) = u_i$$
.

Доказательство.

Пусть
$$v \in V_1$$
. $v = \lambda_1 e_1 + \ldots + \lambda_n e_n$.

Тогда
$$f(v) = f(\lambda_1 e_1 + \ldots + \lambda_n e_n) = \lambda_1 f(e_1) + \ldots + \lambda_n f(e_n) = \lambda_1 u_1 + \ldots + \lambda_n u_n$$
.

Покажем линейность: v_1, v_2 раскладываются по e с координатами λ_i, μ_i .

Тогда $f(v_1 + v_2)$ раскладывается по f(e) с координатами $(\lambda_i + \mu_i)$. Аналогично $f(v_1) + f(v_2)$. Домножение на скаляр анологично.

Следствие.

Возьмём
$$f: K^n \mapsto K^m$$
. Тогда $\exists ! A \in M_{m \times n}(K) \quad f(x) = Ax$.

Доказательство.

Возьмём канонический базис K^n , назовём его e_i .

Возьмём $u_i = f(e_i)$.

Тогда, подходящая матрица -

$$\begin{bmatrix} u_1 & \dots & u_n \end{bmatrix} = \begin{bmatrix} u_{11} & \dots & u_{m1} \\ u_{m2} & \dots & u_{m2} \\ \vdots & \vdots & \vdots \\ u_{1n} & \dots & u_{mn} \end{bmatrix}.$$

Определение 7.3.

Векторные пространства V_1 и V_2 называются изоморфными, если $\exists f: V_1 \mapsto V_2$, такое, что f - линейное и биекция. f называется изоморфизмом.

Замечание.

f - изоморфизм $\iff f^{-1}$ - изоморфизм

Следствие.

Пусть $f: V_1 \mapsto V_2$ - линейное отображение. Следующие утверждения эквивалентны:

- 1. L изоморфзим
- $2. \ \forall e_1,\ldots,e_n$ базис V_1 , тогда L(e) базис V_2
- 3. $\forall \rightarrow \exists$

Доказательство.

 $1 \implies 2$:

Заметим, что $\text{Im } f = \langle f(e) \rangle = V_2$. Пусть f(e) линейно зависима. Тогда существуеют два разложения 0. Тогда есть два элемента, которые f переводит в 0, но f биекция. Значит, f(e) линейно независимо.

- $2 \implies 3$ тривиально.
- $3 \implies 1$:

Пусть g - отображение, переводящие базис f(e) в базис e. Тогда $(g \circ f)(e_i) = e_i \ (f \circ g)(f(e_i) = f(e_i)$. Построили обратное \implies биекция.

Следствие.

Пусть V, W - векторные пространства, и $\dim V = \dim W = n$.

Доказательство.

Возьмём базисы, построим по ним.

Следствие.

Пусть V - векторное пространство. $\dim V = n$. Тогда выбор базиса в V задаёт изоморфизм в K^n .

Определение 7.4.

Изоморфизм $V \mapsto K^n$ называется линейное системой координат. Каждая компонента называется координатной функцией.

Глава #7 26 из 45

Автор: Игорь Энгель

Теорема 7.4 (О подходящем выборе базиса).

Пусть $f: V_1 \mapsto V_2$ - линейное отображение, dim $V_1 = n$.

Тогда \exists базис e V_1 , такой, что $f(e_i), i \leqslant k$ - базис $\operatorname{Im} f, e_{k+1}, \dots, e_n$ - базис $\operatorname{Ker} f$.

Доказательство.

TODO:

Следствие Связь размерностей.

Пусть $f:V_1\mapsto V_2$ - линейное.

 $\dim V_1 = \dim \operatorname{Im} f + \dim \operatorname{Ker} f.$

Следствие Принцип Дирихле.

Пусть V, W - векторные пространства, такие, что $\dim V = \dim W$ - конечные.

Тогда, любое линейное отображение $f:V\mapsto W$ сюрьективно тогда и только тогда когда оно инъективно

Доказательство.

$$\dim W = \dim V = \dim \operatorname{Im} f \iff \dim \operatorname{Ker} f = 0.$$

Следствие.

Пусть $A \in M_{n \times n}(K)$. Тогда $\exists ! x \in K^n \quad Ax = 0 \iff \forall b \in K^n \quad \exists x \in K^n \quad Ax = b$

Следствие.

Пусть $A \in M_{m \times n}(K)$. Тогда

 $\forall b \in K^m \quad \exists x \in K^n \quad Ax = b \iff \dim\{x \in K^n \mid Ax = 0\} = n - m.$

8. Лекция 8

Утверждение 8.1.

Пусть $A \in M_{m \times n}(K)$ и ситема уравнений Ax = b.

Если у этой системы есть хоть одно решение, то все её решения описываются $\dim \operatorname{Ker} A$ независимыми переменными.

Доказательство.

Заметим, что приведение матрицы к ступенчатому виду не изменяет множество решений.

Множество решений системы - $\{x_0 + y \mid Ay = 0\} = \{x_0 + y \mid y \in \text{Ker } A\}$

Заметим, что если взять матрицу системы Ax=0, то получиться такое-же количество независимых переменных. Пусть x_{i_1},\ldots,x_{i_s} - независимых переменных. Тогда $x_k=\sum\limits_{j=1}^s C_{kj}x_{i_j}$.

Значит, матрица $C \in M_{n \times s}(K)$ переводит столбец независимых переменных переменных в столбец решений. Причём, это отображение - биекция. Значит, отображение, задаваемое C - изоморфизм. Значит, размерности сохраняются.

Определение 8.1.

Пусть есть $L: V_1 \mapsto V_2$ - линейное отображение. e_i - базис V_1, f_i - базис V_2 .

Тогда матрица линейного отображения $[L]_e^f$ - матрица, в которой i-й столбец равен $[L(e_i)]_f$.

Пример.

1. $V_1 = V_2 = K[x]_{\leqslant n}, \ f(x) \to f(x+a)$. Базисы стандартные. Матрица отображения:

$$\begin{bmatrix} 1 & a & \dots & a^n \\ 0 & 1 & \dots & na^{n-1} \\ 0 & 0 & \dots & n(n-1)a^{n-2} \\ \vdots & \vdots & \vdots & \binom{n}{i}a^{n-i} \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

2. $V_1=V_2=K[x]_{\leqslant n},\ f(x)\to f(x+a).$ Базис V_1 - стандартный. Базис V_2 - $1,(x+a),(x+a)^2,\dots,(x+a)^n.$ Матрица отображения - $E_{n+1}.$

Утверждение 8.2.

Пусть $L:V_1\mapsto V_2$ - линейное отображение, e_i - базис $V_1,\ f_i$ - базис $V_2.$

Тогда $A = [L]_e^f$ - единственная матрица, такая, что $A[v]_e = [u]_f \iff L(v) = u.$

Утверждение 8.3.

Пусть $L_1, L_2: V_1 \mapsto V_2$ - линейные отображения, e_i - базис V_1, f_i - базис V_2 .

Тогда $[L_1 + L_2]_e^f = [L_1]_e^f + [L_2]_e^f$

Пусть $\lambda \in K$. Тогда $[\lambda L_1]_e^f = \lambda [L_1]_e^f$

Доказательство.

Без ограничения общности, докажем совпадение первого столбца.

Заметим, что $(L_1+L_2)(e_1)=L_1(e_1)+L_2(e_1)$, значит, $[(L_1+L_2)(e_1)]_f=[L_1(e_1)+L_2(e_2)]_f=[L_1(e_1)]_f+[L_2(e_1)]_f$. Значит, столбец соответствующий e_1 совпадает.

Второе утверждение аналогично.

Утверждение 8.4.

Пусть есть $L_1:V_1\mapsto V_2,\ L_2:V_2\mapsto V_3,\ e_i,f_i,g_i$ - базисы V_1,V_2,V_3 соответственно.

Тогда

$$[L_2 \circ L_1]_e^g = [L_2]_f^g [L_1]_e^f.$$

Доказательство.

Обозначим $A = [L_1]_e^f, B = [L_2]_f^g$

Рассмотрим вектор $u \in V_1$. $x = [u]_e$.

Тогда $u \to L_1(u), x \to Ax$.

Потом $L_1(u) \to L_2(L_1(u))$. $Ax \to B(Ax) = (BA)x$.

По теореме о единственности матрицы линейного отображения, получили что $[L_2 \circ L_1]_e^g = BA = [L_2]_f^g [L_1]_e^f$.

Утверждение 8.5.

Пусть $L: V_1 \mapsto V_2$ - изоморфизм. e, f - базисы V_1, V_2

Тогда
$$[L^{-1}]_f^e[L]_e^f = E_n = [L]_e^f[L^{-1}]_f^e$$

Определение 8.2.

Матрица $A \in M_n(K)$ назывется обратимой, если $\exists A^{-1} \in M_n(K)$ $AA^{-1} = E_n = A^{-1}A$.

Замечание.

Пусть
$$A = [L]_e^f$$
. Тогда $\exists L^{-1} \iff \exists A^{-1}$

Утверждение 8.6.

Пусть
$$A, B \in M_n(K)$$
, и $AB = E_n$. Тогда $BA = E_n$.

Доказательство.

Перейдём к отображениям, задаваемым этими матрицами. Пусть A задаёт L_1 , B задаёт L_2 .

Знаем, что $L_1 \circ L_2 = \mathrm{id}$. Из этого следует, что L_1 сюръективна. Значит, оно инъективно по принципу Дирихле. Значит, матрица A обратима. Домножим равенство $AB = E_n$ а A^{-1} слева, получим $B = A^{-1}$

Определение 8.3.

Пусть в V выбраны два базиса: e_i , e'_i .

Матрица замены координат из базиса e в базис e' - такая матрица, которая переводит $[u]_e$ в $[u]_{e'}$.

Утверждение 8.7.

Матрица $[id]_e^{e'}$ - матрица замины координат.

Утверждение 8.8.

Матрица замены координат - матрица состоящая из столбцов $[e_i]_{e'}$

Определение 8.4.

Матрица перехода из базиса e в базис e' - такая матрица, что столбцы этой матрицы - $[e'_i]_e$.

Утверждение 8.9.

Матрица замены координат и матрица перехода взаимно обратны.

Доказательство.

Пусть C - матрица замены координат, D - матрица перехода.

Тогда

$$D = [\mathrm{id}]_{e'}^e = ([\mathrm{id}]_e^{e'})^{-1} = C^{-1}.$$

Пример.

Пусть есть пространство K^n . e - стандартный базис, e' - какой-то базис.

Тогда матрица перехода:

$$\begin{bmatrix} e_1' & e_2' & \dots & e_n' \end{bmatrix}$$
.

Замечание.

Пусть e,e' - базисы V. Тогда матрица перехода - $D_e^{e'}.$

Свойства.

Пусть e, f, g - базисы V.

Тогда

$$D_e^g = D_f^g D_e^f.$$

$$D_f^e = (D_e^f)^{-1}.$$

$$D_e^e = E_n$$
.

Теорема 8.10.

Пусть $L:V_1\mapsto V_2$ - линейное отображение. e,e' - базисы $V_1,\,f,f'$ - базисы $V_2.$

Тогда
$$[L]_e^f = D_f^{f'} [L]_{e'}^{f'} (D_e^{e'})^{-1}$$

Определение 8.5.

Пусть $L:V_1\mapsto V_2$. Тогда ранг rk $L=\dim\operatorname{Im} L$

Теорема 8.11.

Пусть $L:V_1\mapsto V_2$. Тогда $\exists e$ - базис V_1 — $\exists f$ - базис V_2 —, такие, что

$$[L]_e^f = \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}$$

Где $r = \operatorname{rk} L$.

Доказательство.

Выберем такой базис e, такой, что первые r векторов - базис образа, остальные - базис ядра. Такой базис существует по теореме о выборе базиса.

Первые r векторов f - $L(e_i)$. Остальные можно выбрать как угодно.

Следствие.

Пусть выбрали такой базис. Тогда $L(e_{r+1}) = \ldots = L(e_n) = 0.$ $i \leqslant r \implies L(e_i) = f_i.$

9. Лекция 9

Теорема 9.1.

Пусть $U \leqslant K^n$, такое, что $\operatorname{codim} U = d \iff \dim U = n - d$.

Тогда U можно задать d уравнениями.

$$\exists A \in M_{d \times n}(K) \quad U = \{x \in K^n \mid Ax = 0\} = \operatorname{Ker} A$$
$$\exists f : K^n \mapsto K^d \quad U = \operatorname{Ker} f$$

Доказательство.

Выберем базис $U - e_{d+1}, \dots, e_n$.

Дополним до базиса K^n с помощью e_1, \ldots, e_d .

Тогда $\forall i > d$ $f(e_i) = 0$. $\forall i \leqslant d$ $f(e_i) = k_i$, где k - стандартный базис K^d .

Включение $U \subset \operatorname{Ker} f$ очевидно.

При этом, $\dim \operatorname{Im} f = d \implies \dim \operatorname{Ker} f = n - d \implies U = \operatorname{Ker} f$.

Теорема 9.2.

Пусть
$$A \in M_{m \times n}(K)$$
, то $\exists D \in M_{m \times m}, C \in M_{n \times n}$ - обратимые $A = D \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} C$.

Доказательство.

Пусть e, f - стандартные базисы K^n, K^m .

Пусть $L:K^n\mapsto K^m$ - такое, что $[L]_e^f=A.$

Возьмём базисы $e' \in K^n, f' \in K^m$, такие, что $[L]_{e'}^{f'} = \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}$

Тогда $C=(D_{e'}^e)^{-1},\, D=D_{f'}^f$

Теорема 9.3 (Ранговое разложение).

Пусть $A \in M_{m \times n}(K)$. rk A = r.

Тогда $\exists B \in M_{m \times r}, C \in M_{r \times m} \quad A = BC$

Доказательство.

Возьмём $V={\rm Im}\,A$. Возьмём v - базис ${\rm Im}\,A$. Возьмём e,f - стандартные базисы K^n,K^m .

Пусть возмьём такие L_1, L_2 , такие, что $(x \to Ax) = L_2 \circ L_1$. Тогда $A = [L_2]_v^f [L_1]_e^v$.

Доказательство.

Предствим A как $D\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}C$.

Заметим, что
$$\begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix}.$$

Тогда
$$A = \begin{pmatrix} D & 1 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} \begin{bmatrix} 1 & \dots & 1 & 0 & \dots & 0 \end{bmatrix} C \end{pmatrix}$$

Утверждение 9.4.

Пусть $L_1: U \mapsto V, L_2V \mapsto W.$

Тогда rk $L_2 \circ L_1 \leqslant \min(\operatorname{rk} L_1, \operatorname{rk} L_2)$.

Доказательство.

$$\operatorname{rk} L_2 \circ L_1 = \dim \operatorname{Im} L_1 \circ L_2 \subset \operatorname{Im} L_2 \implies \operatorname{rk} L_2 \circ L_1 \leqslant \operatorname{rk} L_2.$$
$$\dim \operatorname{Im} L_1 = \operatorname{rk} L_1 \implies \dim L_2(\operatorname{Im} L_1) \leqslant \dim \operatorname{Im} L_1 \implies \operatorname{rk} L_2 \circ L_1 \leqslant \operatorname{rk} L_1. \qquad \square$$

Следствие.

Пусть $T: U' \mapsto U, L: U \mapsto V, S :\mapsto V'$.

Тогда $\operatorname{rk} S \circ L \circ T = \operatorname{rk} L$.

Доказательство.

$$L = S^{-1} \circ S \circ L \circ T \circ T^{-1} \implies \operatorname{rk} L \leqslant \operatorname{rk} S \circ L \circ T.$$

Теорема 9.5.

$$\operatorname{rk} A + B \leqslant \operatorname{rk} A + \operatorname{rk} B.$$

Доказательство.

$$\operatorname{Im} A + B \subset \operatorname{Im} A + \operatorname{Im} B$$
.

Утверждение 9.6.

$$\operatorname{rk} A + B \geqslant |\operatorname{rk} A - \operatorname{rk} B|.$$

Доказательство.

Пусть
$$\mathbb{E}_{m \times n}^r \in M_{m \times n}(K) = \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}$$

Без обграничения общности, $\operatorname{rk} A \geqslant \operatorname{rk} B$. . Выберем такую систему координат, что $B = \mathbb{E}^r_{m \times n}$.

В A есть $\mathrm{rk}\,A$ независимых столбцов. В результате прибавления B изменилось не более $\mathrm{rk}\,B$ столбцов. Уберём их из рассмотрения, точно осталось $\mathrm{rk}\,A-\mathrm{rk}\,B$ независимых столбцов. \square

Определение 9.1.

Пусть $A \in M_{m \times n}$. Тогда $\operatorname{rk}_{row} A = \dim \langle \operatorname{строки} A \rangle$

Определение 9.2.

Пусть $A \in M_{m \times n}$. Тогда транпонированная матрица $A^T \in M_{n \times m}$ - такая матрица, что $A_{ij}^T = A_{ji}$.

 Глава #9
 32 из 45
 Автор: Игорь Энгель

Утверждение 9.7.

$$\operatorname{rk_{row}} A = \operatorname{rk} A^T.$$

Свойства.

1.
$$(A+B)^T = A^T + B^T$$

2.
$$(\lambda A)^T = \lambda A^T$$

3.
$$(AB)^T = B^T A^T$$

4.
$$A$$
 - обратимая. Тогда $(A^T)^{-1} = (A^{-1})^T$

Утверждение 9.8.

$$\operatorname{rk}_{\operatorname{row}} A = \operatorname{rk} A$$
.

Доказательство.

Пусть $A = C\mathbb{E}_{m \times n}^r D$.

Тогда
$$A^T = D^T \mathbb{E}_{n \times m}^r C^T$$
.

Заметим, что
$$\operatorname{rk} A^T = \operatorname{rk} A$$
.

Утверждение 9.9.

Каждое элементарное преобразование можно представить как домножение на матрицу.

Доказательство.

 $E_{ij}(\lambda) = E_n + \lambda e_{ij}$ - к i-й строке прибавить j-ю строку домноженную на λ

 $P_{(ij)} = E_n - e_{ii} - e_{jj} + e_{ij} + e_{ji}$ - поменять местами i-ю и j-ю строки.

 $D_i(\lambda) = E_n - e_{ii} + \lambda e_{ii}$ - Домножение i-й строки на $\lambda \in K^*$

$$E_{ij}(\lambda)^{-1} = E_{ij}(-\lambda), \ P_{(ij)}^{-1} = P_{(ij)}, \ D_i(\lambda)^{-1} = D_i(\lambda^{-1})$$

Замечание.

 $AP_{(ij)}$ - поменять i-й и j-й столбец местами.

 $AD_i(\lambda)$ - домножить i-й столбец на λ .

 $AE_{ij}(\lambda)$ - добавить в j-му столбцу i-й столбец умноженный на λ .

Определение 9.3.

Пусть
$$\sigma \in S_n$$
. Тогда $(P_\sigma)_{ij} = \begin{cases} 0 & \sigma(j) \neq i \\ 1 \end{cases}$

Определение 9.4.

Матрица A называется нижнетреугольной и обозначается $A \in LT_n(K)$, если $\forall i < j \quad A_{ij} = 0$. Матрица A называется верхнетреугольной, $A \in UT_n(K)$, если $\forall i > j \quad A_{ij} = 0$.

Утверждение 9.10.

Пусть $A, B \in LT_n(K)$.

Тогда

- 1. $A + B \in LT_n$
- 2. $\lambda A \in LT_n(K)$

3. $AB \in LT_n(K)$

Доказательство.

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} = \sum_{k=j}^{i} A_{ik} B_{kj} \implies (j > i \implies (AB)_{ij} = 0).$$

4. $A^{-1} \in LT_n(K)$

Доказательство.

Лемма.

 $\forall A \in LT_n$, такая, что A обратима, A раскладывается в виде произведения F_i - элементарные преобразования вида $E_{st}(\lambda),\ s>t$ и $D_s(\lambda)$

Доказательство.

Если матрица обратима, то все элементы на главной диагонали не 0, и переставлять сточки не надо.

Применим метод Гаусса, сначала поскладываем строки, получиться диагональная матрица. Потом можем домножить i-ю строку на $\frac{1}{A_{ii}}$, получим единичную. Все матрицы которые применяли обратимы, значит, разложили в произведение.

Если A обратима, то A - произведение матриц элементарных проеобразований, тогда A^{-1} - произвдение обратных к ним, а они тоже нижнетреугольные.

Доказательство.

Без ограничения общности, на главной диагонали А стоят единицы.

Представим $A = E_n + N$. У N на диагонали и выше нули.

Тогда $N^n=0$ (заметим, что $N(e_1)\in\langle e_2,\ldots,e_n\rangle,\,N(e_2)\in\langle e_3,\ldots,e_n\rangle,\ldots,N(e_n)=0$). Тогда, на кадой итерации мы теряем хотя-бы один вектор. После n шагов везде нули.

Тогда

$$A^{-1} = (E_n + N)^{-1} = E_n - N + N^2 - N^3 + \dots + (-1)^{n-1} N^{n-1}.$$

Теорема 9.11.

Любую обратимую матрицу $A \in M_{n \times n}(K)$ можно разложить как $PA = LU, L \in LT_n(K), M \in UT_n(K), P$ - матрица перестановки.

Доказательство.

TODO:

Следствие.

Обратимая матрица $A \in M_{n \times n}(K)$ имеет LU разложение, когда подматрицы вида

$$A_{i} = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1i} \\ A_{21} & A_{22} & \dots & A_{2i} \\ \vdots & \vdots & \vdots & \vdots \\ A_{i1} & A_{i2} & \dots & A_{ii} \end{bmatrix}.$$

обратимы. Причём, если зафиксировать элементы диагонали L, то такое разложение единственно.

Доказательство.

TODO:

 Π ина π^* Π екция 10

10. Лекция 10

Определение 10.1.

Объём парралелепипида натянутого на вектора $v = v_1, \dots, v_n$: функция $\operatorname{Vol}(v) \in \mathbb{R}$, удовлетворяющая следующим свойствам:

- 0 Vol(e) = 1, где e стандартный базис \mathbb{R}^n
- 1. $\operatorname{Vol}(v_1, \dots, \lambda v_i, \dots, v_n) = |\lambda| \operatorname{Vol}(v_1, \dots, v_n).$
- 2. $Vol(v_1, \ldots, v_i, \ldots, v_i, \ldots, v_n) = 0.$
- 3. $\operatorname{Vol}(v_1, \ldots, v_i, \ldots, v_i + \lambda v_i, \ldots, v_n) = \operatorname{Vol}(v_1, \ldots, v_n).$

Определение 10.2.

Пусть задан набор пространств U_1, \ldots, U_n и W, надо полем K.

Отображение $\omega: U_1 \times \ldots \times U_n \mapsto W$ называется полилинейным, если оно линейнок по каждому входному вектору.

Множество всех полилинейных отображение отображается $\operatorname{Hom}_K(U_1,\ldots,U_n;W)$.

Определение 10.3.

Отображение $\omega \in \operatorname{Hom}_K(U_1, \dots, U_n; K)$ называется полилинейной формой.

Определение 10.4.

Отображение $\omega \in \operatorname{Hom}_K(\underbrace{V \times \ldots \times V};K)$ называется полилинейной формой степени ℓ на V.

Определение 10.5.

Полилинейная форма степени ℓ ω называется симметричной, если $\omega(v_1,\ldots,v_\ell)=\omega(v_{\sigma(1)},\ldots,v_{\sigma(\ell)},\sigma\in S_\ell.$

 ω называется кососимметричной, если $\omega(v_1,\ldots,v_i,\ldots,v_i,\ldots,v_\ell)=0.$

Утверждение 10.1.

Пусть $\omega: V^{\times \ell} \mapsto K$, e - базис V.

Тогда

$$\omega(v_1,\ldots,v_\ell) = \sum_{i_1,\ldots,i_\ell} \omega(e_{i_1},\ldots,e_{i_\ell}) \prod_{j=1}^\ell \lambda_{ji_j}.$$

Где λ_{ji_j} - i_j -я координата v_j в базисе e.

Доказательство.

Разложим по базису, воспользуемся линейностью.

Утверждение 10.2.

Пусть ω - полилинейная форма.

- 1. Если ω кососимметричная, то $\omega(\ldots, v_i, \ldots, v_i, \ldots) = (-1)\omega(\ldots, v_i, \ldots, v_i, \ldots)$.
- 2. Если выполнено условие 1 и char $K \neq 2$, то ω кососимметричная.
- 3. Если ω кососимметричная, то $\omega(v_1,\ldots,v_\ell)=\mathrm{sgn}(\sigma)\omega(v_{\sigma(1)},\ldots,v_{\sigma(\ell)}).$

4. Если ω - кососимметричная, то $\omega\left(v_1,\ldots,v_\ell\right) = \sum_{i_1<\ldots< i_\ell} w(e_{i_1},\ldots e_{i_\ell}) \sum_{\sigma\in S_\ell} \mathrm{sgn}(\sigma) \prod_{j=1}^\ell \lambda_{j\sigma(i_j)}$

Доказательство.

TODO:

Определение 10.6.

Пусть V - векторное пространство размерности n, Тогда $\omega:V^{\times n}\mapsto K$ называется формой объёма, если она является кососимметричной полилинейной формы.

Замечание.

 ω называется невырожденной если $\omega \neq 0$.

Определение 10.7.

Пусть
$$A \in M_n(K)$$
. тогда $\det A = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{j=1}^n A_{\sigma(j)j}$.

Теорема 10.3.

- 1. Определитель форма объёма на пространстве столбцов.
- 2. V пространство размерности n, e базис V. Тогда $\operatorname{Vol}_e: V^{\times n} \mapsto K, \operatorname{Vol}_e(v_1, \dots, v_n) = \det \left[[v_1]_e, \dots, [v_n]_e \right]$ форма объёма.
- 3. Форма объёма единственна с точностью до константы. Если ω форма объёма, то $\omega = \omega(e_1,\ldots,e_n)\operatorname{Vol}_e$.
- 4. Для любой ω невырожденной формы объёма $\omega(v_1,\ldots,v_n)\neq 0\iff v_1,\ldots,v_n$ линейно независимы.

Доказательство.

TODO:

11. Лекция 11

Свойства.

Если $A, B, C \in M_n(K)$.

 $0 \det(A) = \det(A^T)$

1 Определитель не меняется при элементарных преобразованих первого типа (лин. комбинация) для строк/столбцов, меняет знак при свопе строк/столбцов, домножается на λ при домножении строки/столбца на λ .

Доказательство.

Для столбцов прямо следует из свойств определителя, для строк рассмотрим определитель A^T .

 $2 \det(AB) = \det(A) \det(B)$

Доказательство.

Возьмём форму $B \to \det AB$. Она линейна по столбцам B. Чтобы показать это, заметим, что $A(B+X) = AB+AX \implies (B+X) \rightarrow \det A(B+X) = \det AB + \det AX$ (альтернативно: определитель линеен по столбцам произведения, произведение линейно по столбцам $B\ (i$ -й столбец произведения зависит только от i-го столбца B, и зависит линейно).

Если у матрицы B есть одинаковые столбцы, то они есть и у матрицы AB.

Значит, $B \to \det AB$ - форма объёма. Все формы объёма пропорциональны, подставим $B = E_n$, получим, что $B \to \det A \det B \implies \det AB = \det A \det B$.

Альтернативно - найдём комбинацию элементарных преобразований L, такую, что LA = E_n такая комбинация существует, если A невырождена.

Если A вырождена, то $\det A = 0$, AB - вырождена, $\det AB = 0 = 0 \det B$.

Tогда LAB = B.

Тогда $L^{-1}B = AB$.

Если $B = E_n$, то получаем $\det A = \det L^{-1}1 = k$.

По пункту 1, применение этих элементарных преобразований всегда домножает определитель на k, значит $\det L^{-1}B = k \det B = \det A \det B$.

$$3 \det \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} = \det(A) \det(C)$$

Доказательство. Сначала рассмотрим $\det \begin{bmatrix} E_n & B \\ 0 & E_m \end{bmatrix}$. Элементарными преобразованиями первого типа можно получить из неё E_{n+m} , значит определитель 1.

Заметим, что форма $A \to \det \begin{bmatrix} A & B \\ 0 & E_m \end{bmatrix}$ - форма объёма, значит она пропорциональна $\det A$, причём с коэффициентом 1.

Теперь, рассмотрим форму $C \to \det \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$ - это форма объёма по строчкам C. Получаем, что оно пропорционально $\det C$ с коэффициентом $\det A$.

Значит,
$$\det \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} = \det A \det B$$
.

4 Определитель верхнетреугольной или нижнетреугольной матрицы равен произведению диогональных элементов.

Доказательство.

Индукция по размеру.

Пусть $X \in LT_n$.

Разобьём на блоки вида $\begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$. $A = X_{11}$, остальные выводятся из этого. $\det X = \det A \det C = X_{11} \det C = \prod_{i=1}^n X_{ii}$. $C \in LT_{n-1}$.

Если получили матрицу из LT_1 , то определитель равен единственному её элементу. \square

 $5 \det(A^{-1}) = (\det A)^{-1}$

Доказательство.

Заметим, что
$$\det A^{-1}A=1=\det A^{-1}\det A\implies \det A^{-1}=\frac{1}{\det A}.$$

 $6 \det: GL_n(K) \to K^*$ - гомоморфизм групп

Доказательство.

Произведение сохраняется по свойству 2, результат обратим по свойству 5.

Определитель можно вычислить методом Гаусса, привдя матрицы к ступенчатом виду, переменожив элементы на диоганали, и скорректировавшись на эффект преобразований.

Теорема 11.1.

Если есть отображение Vol : $M_n(\mathbb{R}) \to \mathbb{R}$, удовлетворяющие свойствам

- 1. $Vol(E_n) = 1$
- 2. $\operatorname{Vol}(\ldots, u + \lambda v, \ldots, v) = \operatorname{Vol}(\ldots, u, \ldots, v, \ldots)$
- 3. $\operatorname{Vol}(\ldots, \lambda v, \ldots) = |\lambda| \operatorname{Vol}(\ldots, v, \ldots)$

To $Vol = |\det|$

Доказательство.

Рассмотрим случай, когда матрица вырождена.

Тогда существует элемент, который можно выразить как линейную комбинацию других, и можно получить $\mathrm{Vol}(\dots,0,\dots)=0\,\mathrm{Vol}(\dots,v,\dots)=0.$

Если матрица невырождена, то можно привести её к единчному виду. Обе функции меняются одинаокого при элементарных преобразованиях, занчит они совпадут.

12. Лекция 12

Определение 12.1.

Пусть V - векторное пространство над \mathbb{R} . Базисы e_i и f_i называются одинаково ориентированными, если $\det C_{e \to f} > 0$.

Одинаковання ориентированность - отношение эквивалентности.

Определение 12.2.

Ориентация пространства - задание класса эквивалентности базисов.

Пример.

Пространство - \mathbb{R}^n , e_1, \ldots, e_n - стандарнтный базис. Он задаёт стандартную ориентацию.

Нестандартная ориентация: \mathbb{R}^2 , $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Утверждение 12.1.

Пусть e, f - разноориентированные базисы \mathbb{R}^n , то

$$\nexists \quad g: C[0,1] \mapsto GL_n(\mathbb{R}) \quad \begin{cases} g(0) = (e_1, \dots, e_n) \\ g(1) = (f_1, \dots, f_n) \end{cases} .$$

 $(GL_n(\mathbb{R})$ - множество обратимых матриц $n \times n)$

Доказательство.

Предположим, что такое g существует.

Заметим, что $\det: GL_n(\mathbb{R}) \to \mathbb{R}$ непрерывен, как многочлен от компонентов.

Рассмотрим $\det \circ g : [0,1] \mapsto \mathbb{R}$. Заметим, что $\det(g(0)) > 0$, $\det(g(0)) < 0$, значит, $\exists t \in [0,1] \quad \det(g(t))$ $0 \implies g(t) \notin GL_n(\mathbb{R})$. Противоречие.

Определение 12.3.

Пусть V - векторное пространство над K. Тогда, линейный оператор (эндоморфизм) над V - линейное отображение $L:V\mapsto V$.

Определение 12.4.

Матрица линейного оператора в базисе e - $[L]_e = [L]_e^e = [L(e_1), L(e_2), \dots, L(e_n)].$

Определение 12.5.

Определитель оператора L - $\det L = \det[L]_e$ для произвольного базиса e.

Доказательство.

Корректность:

Пусть e, f - базисы v.

Тогда

$$\exists C \in GL_n(K) \quad [L]_e = C[L]_f C^{-1}.$$

$$\det[L]_e = \det C[L]_f C^{-1} = \det C \det[L]_f \det C^{-1} = \det C \det[L]_f (\det C)^{-1} = \det[L]_f.$$

Определение 12.6.

Пусть L - линейный оператор на V. Тогда L сохраянет ориентацию, если $\det L>0$, и меняет ориентацию, если $\det L<0$.

Определение 12.7.

Пусть $A \in M_n(K)$, $I, J \subset \{1, ..., n\}$. Тогда, A_{IJ} - матрица составленная из элементов, которые стоят на позициях с номерами строк из I и столбцов из J.

Замечание.

Если
$$I \subset \{1,\ldots,n\}$$
, то $\overline{I} = \{x \in \{1,\ldots,n\} \mid x \not\in I\}$

Определение 12.8.

Пусть $A \in M_n(K)$, |I| = |J| = k, тогда $\det A_{IJ} = M_{IJ}$ - минор матрицы A размера k.

Определение 12.9.

Пусть $A \in M_n(K)$. Тогда алгебраическим дополнением элемента a_{ij} называется $A^{ij} = (-1)^{i+j} M_{\overline{ij}}$.

Лемма (О разложении определителя по столцу).

Пусть $A \in M_n(K)$, задан j столбец.

Тогда существуют такие коэффициенты c_i , такие, что

$$\det A = \sum_{i=1}^{n} c_i a_{ij}.$$

При этом, $c_i = A^{ij}$.

Доказательство.

Существование коэффициентов следует из полилинейности определителя.

Рассмотрим матрицу A'_{i} , такую, что

$$a'_{i'j'} = \begin{cases} a_{i'j'} & j' \neq j \\ 0 & j' = j, i' \neq i \\ 1 & j' = j, i' = i \end{cases}$$

Тогда $\det A_i' = c_i$.

Передвинем j-й столбец по циклу в начало, знак определителя изменится на $(-1)^{j-1}$.

Передвинем i-ю строку в начало, знак определителя изменится на $(-1)^{i-1}$, вместе с предыдущеим поменялся на $(-1)^{i-1+j-1}=(-1)^{i+j-2}=(-1)^{i+j}$.

Матрица получилась блочной, с блоками 1 и A_{ij} , значит, $c_i=\det A_i'=(-1)^{i+j}\det A_{ij}=(-1)^{i+j}M_{ij}=A^{ij}$.

Лемма (О разложении по строке).

$$\det A = \sum_{j=1}^{n} a_{ij} A^{ij}.$$

Лемма (Формула Крамера).

Если $A \in GL_n(K)$, то решение уравнения Ax = b можно выписать в явном виде:

$$x_i = \frac{\Delta_i}{\Delta}.$$

$$\Delta = \det A$$
.

 Δ_i - определитель матрицы A с i-м столбцом заменённым на b

Доказательство.

Пусть v_i - i-й столбец A

Пусть $b = c_1 v_1 + \ldots +_n v_n$.

Тогда $\Delta_i = \det(v_1, \dots, v_{i-1}, b, v_{i+1}, v_n).$

По линейности, $\Delta_i = c_i \Delta$. **TODO:** ?

Пример.

Найдём обратную матрицу через Крамера:

Для j-го столбца обратной мартицы верно $Ax_{j} = e_{j}$.

i-я координата такого вектора равна $x_{ij} = \frac{A^{ji}}{\Delta}$. (в i-м столбце единица на j-й позиции).

Определение 12.10.

Присоеденённой к A матрицей называется матрица $\operatorname{Adj} A$, такая, что $(\operatorname{Adj} A)_{ij} = A^{ji}$

Теорема 12.2.

$$A \in M_n(K).$$

$$Adj A \cdot A = A \cdot Adj A = \det AE_n.$$

Доказательство.

Если A обратима, то знаем что $A^{-1}=\operatorname{Adj} A,\ AA^{-1}=A^{-1}A=E_n \implies \operatorname{Adj} A\cdot A=A\cdot \operatorname{Adj} A=\Delta E_n.$

Рассмотрим кольца R и S, причём есть гомоморфизм $\varphi: R \mapsto S$.

Заметим, что если тождетсво верно для $A \in M_n(R)$, то верно для $\varphi(A) \in M_n(S)$, так-как можно переписать тождество через многочлены.

Рассмотрим кольцо многочленов $\mathbb{Z}[a_{11}, a_{12}, \dots, a_{nn}]$.

Тогда существует гомоморфизм в произвольное кольцо, такой, что $\varphi(a_{ij}) = b_{ij}$: подстановка.

Тогда, любая матрица является образом матрицы с коэффициентами a_{ij} .

Построим поле частных $Q(\mathbb{Z}[a_{11}, a_{12}, \dots, a_{nn}])$, вложим наше кольцо в него.

Заметим, что в этом поле $\det A = \det A$ как многочлену, а он не 0. Для обратимых матриц в поле знаем что верно, значит верно для всех.

Определение 12.11 (Алгебра).

Алгеброй над полем K называется набор $\langle A,K,+,\cdot,\times \rangle$, удовлетворяющий следующим аксиомам:

- 1. *K* поле
- 2. $\langle A, +, \times \rangle$ кольцо (абсолютно произвольное).
- 3. $\langle A, K, +, \cdot \rangle$ векторное пространство
- 4. $\lambda(a \times b) = (\lambda a) \times b = a \times (\lambda b), \ a, b \in A, \ \lambda \in K.$

Пример.

Поле K - алгебра над собой.

Кольцо матриц $M_n(K)$ и кольцо эндоморфизмов векторных пространств $\operatorname{End}(V)$

Кольцо многочленов $K[x_1,\ldots,x_n]$.

Кольцо верхнетреугольных матриц $LT_n(K)$.

Если поле K - подполе L, то L - алгебра над K.

Определение 12.12.

Пусть R,S - две K-алгебры, то $\varphi:R\mapsto S$ называется гомоморфизм алгебр, если он является линейным гомоморфизмом колец:

$$\varphi(a+b) = \varphi(a) + \varphi(b).$$

$$\varphi(\lambda a) = \lambda \varphi(a).$$

$$\varphi(a \times b) = \varphi(a) \times \varphi(b).$$

С текущего момента, все кольца и алгебры ассоциативны и с единицей, но не обязательно коммутативны.

Пример.

$$M_{\dim V}(K) \cong \operatorname{End}_K(V).$$

Пусть $y \in A$, где A - K-алгебра. Тогда можем посчитать выражение $a_0 + a_1 \cdot y + \ldots + a_n \cdot y^n$, $a_i \in K$. Назовём это многочленом от элемента алгебры.

Утверждение 12.3.

Пусть A - K-алгебра. Тогда

$$\forall y \in A \quad \exists ! \varphi : K[x] \mapsto A$$
 - гомоморфизм $\quad \varphi(x) = y.$

Прчём, этот гомоморфизм имеет вид $\varphi(p(x)) = p(y)$.

Следствие.

Если
$$A \in M_n(K), p, q \in K[x],$$
 то $(pq)(A) = p(A)q(A).$

Теорема 12.4 (Теорема типа-Кэли).

Пусть A - конечномерная алгебра над K, и $\dim_K A = n$.

Тогда A вкладывается в $M_n(K)$.

Доказательство.

Будем доказывать что вкладывается в $\operatorname{End}_K(A)$.

Сопоставим каждому элементу $a \in A$ отображение $x \to a \times x$.

Покажем, что оно гомоморфизм:

$$a \times b \to (x \to (a \times b) \times x) = (x \to a \times (b \times x)).$$

Отображение будет эндоморфзимом, через дистрибутивность и спец. аксиому для алгебр.

Инъективность:
$$a \to (1 \to a \times 1) = a$$
.

Пример.

Вложим алгебру \mathbb{C} в $M_2(\mathbb{R})$:

Возьмём базис $e_1 = 1$, $e_2 = i$.

Пусть $L_z = a + bi$. Тогда $L_z(1) = a + bi$, $L_z(i) = -b + ai$.

Тогда, матрица выглядит как $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$.

Лемма.

Пусть A - конечномерная K-алгебра.

Тогда

$$\forall y \in A \quad \exists p \in K[x] \setminus \{0\} \quad p(y) = 0.$$

Доказательство.

Возьмём $1, y, \dots, y^n, n = \dim A$. Получили n+1 элемент из A.

Значит, они линейно зависимы, значит $\exists a_i \quad a_0 \cdot 1 + \ldots + a_n y^n = 0$, причём есть ненулевой a_i . Получился многочлен.

Определение 12.13.

Пусть $y \in A$, тогда μ_y - многочлен минимальной степени, со старшим коэффициентом 1, такой, что $\mu_y(y) = 0 \in A$ называется минимальным многочленом элемента y.

Определение 12.14.

Аннулятор $y \in A$, где A - конечномерная алгебра - $Ann_y = \{p(y) = 0 \mid p \in K[x]\}$.

Свойство.

 Ann_y - нетривиальный идеал в кольце многочленов.

Доказательство.

$$(p+g)(y) = p(y) + g(y) = 0 + 0 = 0.$$

 $(pg)(y) = p(y)g(y) = 0 \cdot 0 = 0.$
 $0 \in \text{Ann}_y.$

 Ann_{u} нетривиальен, по предыдущей теореме.

Следствие.

Так-как любой идеал в K[x] главный, то $\exists ! \mu_y$ Ann_y = (μ_y) .

Лемма.

Пусть $y \in A$, A - конечномерная алгебра над K.

Тогда либо y - делитель нуля, либо y обратим.

Доказательство.

Возьмём μ_y ,

$$\mu_y(y) = 0 \implies a_n y^n + \ldots + a_0 = 0.$$

Если
$$a_0 \neq 0$$
, то $y(a_n y^{n-1} + \ldots + a_1) = -a_0 \implies y^{-1} = \frac{a_n y^{n-1} + \ldots + a_1}{-a_0}$.

Если $a_0=0$, то $y(a_ny^{n-1}+\ldots+a_1)=0$. Так-как μ_y - минимальный многочлен, то правый множитель не 0, значит y - делитель нуля.

Определение 12.15.

Пусть $L \in \operatorname{End}_K(V)$. Тогда, собственным вектором оператора L называется такой вектор $v \neq 0$, что $\exists \lambda \in K \quad L(v) = \lambda k$. Такое λ называется собственным числом.

Лемма.

 λ является собственным чилслом L тогда и только тогда, когда $\det(L - \lambda \operatorname{id}) = 0$.

Доказательство.

v - собственный вектор L тогда и только тогда $(L-\lambda\operatorname{id})(v)=L(v)-\lambda v=0$. Ненулевой вектор может перейти в 0, тогда и только тогда ядро нетривиально, а ядро нетривиально тогда и только тогда, когда определитель 0.

Определение 12.16.

Характерестический многочлен оператора L - $\chi_L(\lambda) = \det(L - \lambda \operatorname{id})$.