Math 4B: Differential Equations

Lecture 07: Euler's Method

- Approximating Solutions to IVPs,
- Euler's Method,
- Different Time Steps, & More!

© 2021 Peter M. Garfield Please do not distribute outside of this course.

The Big Picture:

What can we say about the solutions of first order IVPs?

$$\begin{cases} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

- If f and $\partial f/\partial y$ are continuous, then solutions exist and are unique (locally).
- We can draw direction fields and sketch approximate solution curves.
- Many solutions can't be found, even with "easy" ODEs:

•
$$y' = e^{-t^2}$$
 • $y' = \frac{1}{1+t^3}$ • $y' = \cos(t^4)$

• So we need another approach

How 'bout a Tangent Line?

Here's an IVP we can solve:

$$\begin{cases} y' = y(1-y) \\ y(0) = 0.5 \end{cases}$$

Suppose I couldn't solve this. We could approximate this with a tangent line at t = 0. We know y(0) = 0.5, y'(0) = 0.5(1 - 0.5) = 0.25.

Formula: y = y(0) + y'(0)(t - 0) or y = 0.5 + 0.25(t - 0).

Better Than a Tangent Line

The tangent line is a really good approximation near t = 0, but really bad far away from t = 0.

So what to do?

Plan: Change to the tangent line at t = 1 to continue on! Then keep going!!

Formalization

To approximate the solution to

$$\begin{cases} y'(t) = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

we use the iteration

$$y_1 = y_0 + f_0(t_1 - t_0)$$
 where $f_0 = f(t_0, y_0), t_1 = t_0 + h$
 $y_2 = y_1 + f_1 \cdot h$ where $f_1 = f(t_1, y_1)$
 $y_3 = y_2 + f_2 \cdot h$ where $f_2 = f(t_2, y_2)$
 \vdots
 $y_{n+1} = y_n + f_n \cdot h$ where $f_n = f(t_n, y_n)$

Idea: If $y = \phi(t)$ is a solution to the IVP above, then $\phi(t_n) \approx y_n$.

Questions: How good are these approximations?

Can we find error bounds? (See Chapter 8.)

Example 1

Solve the IVP

$$\begin{cases} y' = 5 - 2t - y\\ y(0) = 1 \end{cases}$$

Solve the IVP

$$\begin{cases} y' = 5 - 2t - y \\ y(0) = 1 \end{cases}$$

n	t_n	y_n	$f_n = f(t_n, y_n)$	$y_{n+1} = y_n + f_n \cdot h$
0	0	1	4	5
1	1	5	-2	3
2	2	3	- 2	1
3	3	1	-2	-1
4	4	- 1	- 2	- 3
5	5	- 3	- 2	- 5

Solve the IVP

$$\begin{cases} y' = 5 - 2t - y\\ y(0) = 1 \end{cases}$$

Example 1 (continued more!)

Solve the IVP

$$\begin{cases} y' = 5 - 2t - y \\ y(0) = 1 \end{cases}$$

Solve the IVP

$$\begin{cases} y' = 5 - 2t - y \\ y(0) = 1 \end{cases}$$

n	t_n	y_n	$f_n = f(t_n, y_n)$	$y_{n+1} = y_n + f_n \cdot h$
0 1	0.0.5	1. 3.	4. 1.	3. 3.5
2 3	$\frac{1}{1.5}$	$\frac{3.5}{3.25}$	$-0.5 \\ -1.25$	$3.25 \\ 2.625$
4 5	2. 2.5	2.625 1.8125	-1.625 -1.8125	1.8125 0.90625
6 7	3. 3.5	$0.90625 \\ -0.046875$	-1.90625 -1.95313	-0.046875 -1.02344
8 9	$\frac{4}{4.5}$	$-1.02344 \\ -2.01172$	-1.97656 -1.98828	$-2.01172 \\ -3.00586$
10 11	5. 5.5	-3.00586 -4.00293	-1.99414 -1.99707	-4.00293 -5.00146

Solve the IVP

$$\begin{cases} y' = 5 - 2t - y \\ y(0) = 1 \end{cases}$$

using Euler's method with a step of h = 0.5 Now h = 0.1

Example 2

Solve the IVP

$$\begin{cases} y' = 5 - 2t + y \\ y(0) = 1 \end{cases}$$

Solve the IVP

$$\begin{cases} y' = 5 - 2t + y \\ y(0) = 1 \end{cases}$$

n	t_n	y_n	$f_n = f(t_n, y_n)$	$y_{n+1} = y_n + f_n \cdot h$
0	0.0.5	1.	6.	4.
1		4.	8.	8.
2	1.	8.	11.	13.5
3	1.5	13.5	15.5	21.25
4 5	2. 2.5	$21.25 \\ 32.375$	22.25 32.375	32.375 48.5625
6	3.	48.5625	47.5625	72.3438
7	3.5	72.3438	70.3438	107.516
8	4.	107.516	104.516	159.773
9	4.5	159.773	155.773	237.66
10	5.	237.66	232.66	353.99
11	5.5	353.99	347.99	527.985

Solve the IVP

$$\begin{cases} y' = 5 - 2t + y \\ y(0) = 1 \end{cases}$$

using Euler's method with a step of h = 0.5 Now h = 0.1

Lecture 07: Euler's Method 2 3 Peter Garfield, UCSB Mathematics