Started on	Friday, 17 November 2023, 7:25 AM
State	Finished
Completed on	Sunday, 19 November 2023, 9:19 PM
Time taken	2 days 13 hours
Grade	9.00 out of 10.00 (90 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
Flag question	
PDF of amplitude	a of Rayleigh fading channel is
Select one:	
$2ae^{-a^2}$, $-\infty$	$< a < \infty$
$ 2ae^{-a^2}, a \ge 0 $	
$ae^{-a^2}, a \geq 0$	
$ ae^{-a^2}, -\infty < e^{-a^2}$	$a < \infty$
Your answer is corre	
The correct answer	is: $2ae^{-a^2}$, $a \ge 0$
Question 2	
Correct	
Mark 1.00 out of 1.00	
	a^2
The integral $\int_{-\infty}^{\infty} a^2$	$e^{-rac{a^2}{2\sigma^2}}da$ evaluates to
Select one:	
O 0	
$\sqrt{2\pi}\sigma^3$	
\bigcirc 2 σ^2	
σ^3	
σ	
Your answer is corre	
The correct answer	is: $\sqrt{2\pi}\sigma^3$
Question 3	
Correct	
Mark 1.00 out of 1.00	
♥ Flag question	

Select one:

	BER of the wireless channel $\propto e^{-\frac{\lambda}{2}SN}$	^R while that of the wireline channel \propto
	1	
	CMD	

- BER of the wireline and wirelesss channel $\propto e^{-\frac{1}{2}SNR}$
- BER of the wireline and wirelesss channel $\propto \frac{1}{SNR}$
- BER of the wireline channel $\propto e^{-\frac{1}{2}SNR}$ while that of the wireless channel $\propto \frac{1}{SNR}$

Your answer is correct.

The correct answer is: $\frac{\text{BER of the wireline channel}}{\frac{1}{SNR}} \propto e^{-\frac{1}{2}SNR} \text{ while that of the wireless channel} \propto$

Question **4**

Correct

Mark 1.00 out of 1.00

SER of M -ary QAM for $SNR = \rho$ is

Select one:

$$\bigcirc \quad 4\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{\rho}{(M-1)}}\right)$$

$$\bigcirc \quad \left(1 - \frac{1}{\sqrt{M}}\right) Q\left(\sqrt{\frac{3\rho}{(M-1)}}\right)$$

$$\bigcirc \quad 4\left(1-\frac{1}{M}\right)Q\left(\sqrt{\frac{3\rho}{\left(\sqrt{M}-1\right)}}\right)$$

Your answer is correct.

The correct answer is: $4\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3\rho}{(M-1)}}\right)$

Question **5**

Correct

Mark 1.00 out of 1.00

♥ Flag question

Consider the random signal detection problem described in class. The optimal detector for this problem is given as choose \mathcal{H}_1 if

Select one:

$$\bar{\mathbf{s}}^T \bar{\mathbf{y}} \leq \gamma$$

Your answer is correct.

The correct answer is: $\|\bar{\mathbf{y}}\|^2 > \gamma$

The PDF of χ_N^2 -Central chi-squared RV with N degrees of freedom is

Select one:

$$\frac{1}{2^{\frac{N}{2}-1}\Gamma(\frac{N}{2})} x^{\frac{N}{2}} e^{-\frac{1}{2}x}, \ x \ge 0$$

$$\frac{1}{\frac{N}{2^{\frac{N}{2}}\Gamma(N)}} x^{\frac{N}{2}-1} e^{-x}, \ x \ge 0$$

The correct answer is:	$\frac{1}{\frac{N}{2^{\frac{N}{2}}\Gamma(\frac{N}{2})}}x^{\frac{N}{2}-1}e^{-\frac{1}{2}x}, \ x \ge 0$
------------------------	---

Question **9**

Incorrect

Mark 0.00 out of 1.00

The P_{FA} for the random signal detection problem is

Select one:

- $Q\left(\frac{\gamma}{\sigma^2}\right)$
- $Q_{\chi_N^2} \left(\frac{2\gamma}{\sigma^2} \right)$

Your answer is incorrect.

The correct answer is: $\frac{\Gamma(\frac{N}{2}, \frac{\gamma}{2\sigma^2})}{\Gamma(\frac{N}{2})}$

Question 10

Correct

Mark 1.00 out of 1.00

 $\ensuremath{\mathbb{V}}$ Flag question

The P_D for the random signal detection problem is

Select one:

- $Q_{\chi_N^2} \left(\frac{\gamma}{\sigma^2 + \sigma_s^2} \right) \quad \checkmark$ $Q\left(\frac{\gamma}{\sigma^2 + \sigma_s^2} \right)$

Your answer is correct.

The correct answer is: $Q_{\chi_N^2}\left(\frac{\gamma}{\sigma^2+\sigma_s^2}\right)$

Finish review