TORtilla con Cebolla

→ The Onion Router & The Deep Web

TORtilla con Cebolla

Marco Fernández Pranno

(Totally me) (github.com/MarFerPra)

Qué os voy a contar?

- → Qué es TOR (Y ¿Por qué existe?)
- → The Tor Foundation (+ EFF)
 - → Free software saves the day
- → Seguridad vs Privacida

- → "Mass Surveillance and Targeted Surveillance"
- → Darknet (Deep Web)

¿ Qué es TOR ?

- Navy → EFF → Tor Project Foundation
- Red distribuida (TCP)
- "Privacy by design" → No logs, no control
- Premio por la Free Software Foundation

 Idea → Intermediarios no conocen el destino ni el origen de los paquetes.

Ámbitos de uso:

- Conflictos políticos
- Restricciones en la difusión y/o acceso a la información
- Comunicaciones confidenciales

¿ Qué es TOR?

- Onion Routing:
 - Nodo de entrada (**Guard**) → Nodo intermedio (**Relay**) → Nodo de Salida (**Exit node**)

WILL WE FIND INTELLIGENT LIFE?

COULD IT BE THIS MAN?

I use TOR so no one can track me.

THE SEARCH CONTINUES

¿ Qué NO es TOR?

• Bulletproof

TOR → Ocultar identidad

VPN's → Privacidad

- No actúa en capas superiores de la comunicación
 Tener en cuenta:
 - Cookies
 - Cabeceras HTTP
 - Peticiones DNS no redireccionadas por TOR
 - Plugins (Flash, Java, etc)

Soluciones

- → Configurar correctamente el cliente
- → No permitir tráfico fuera de TOR
- → Siempre, siempre, SIEMPRE: HTTPS (HTTP + SSL)
- → No permitir plugins

→ Si una aplicación no soporta SOCKS: torify (Linux)

→ En Windows:

Tipos de nodos

- Onion Router (**OR**):
 - Routers y servidores de directorio
 - Entre sí mantienen TLS abiertas
 - Conexiones OR-OR → permanentes

- Onion Proxy (**OP**):
 - Software ejecutado por el usuario
 - Obtiene info de la red → establece caminos aleatorios
 - Canaliza el tráfico TCP a la red TOR
 - Conexiones OP-OR → no permanentes

Servicio de directorio:

Son OR con operadores de confianza/conocidos Mantienen y difunden la BD con la información de los OR Sólo se publican OR aprobados

→ Se monitorizan y aprueban de forma <u>manual</u>

Cuando un nuevo OR se conecta a la red, se define a sí mismo exponiendo su funcionamiento y capacidades:

- → Versión
- → Banda ancha
- → Política de enrutamiento (Si es *exit node*)

Claves OR:

Cada OR tiene una serie de pares de claves pública/privada

- *Identity Key*: firmar información sobre el propio OR, o como servicio de directorios
- Onion Key: cifra peticiones para establecer circuitos y negociar claves DH.
- Connection Key: usada en el handshake TLS. Se cambia cada 24 horas. En el handshake entre OR's se firma la CK con la IK, y se envía junto con la IK autofirmada

Células

• Paquetes de información con los que se comunican los nodos.

- circID: identificador del circuito
- CMD: comando → describe funcionalidad
 - C. de transmisión (relay cell)
 - C. de control (control cell)

Etapas de la comunicación

- Aplicación → SOCKS → Cliente (Onion Proxy) → Red Onion Routers
- Solicitud al servicio de directorio → información sobre la red.
- Elección aleatoria de nodos: entry node, middle relay y exit node.
- Generación del camino de forma sucesiva:
 - Generación de claves → Diffie-Hellman + RSA
- Encapsulamiento *onion* a través del camino → Exit node → Destino

Etapas de la comunicación

Tráfico SOCKS de tráfico TCP
Tráfico bidireccional de células sobre TLS
Tráfico TCP
Tráfico HTTP

Puntos de encuentro

Punto de contacto entre entidades de la red.

Cada extremo de la comunicación envía sus mensajes a un servidor intermediario.

→ El *Rendezvous Point* los redirecciona de forma segura para que establezcan una conexión canónica y se identifiquen.

Hidden services

- Proveedores de servicios sobre la red TOR
- Creación de un hidden service:
 - → Generación de claves RSA (pública/privada)
 - → Envío de clave pública a *introduction points*
- Dirección: "{hash}.onion" → 16 caracteres resultado de aplicar una función hash sobre la clave pública.

Conexión cliente → Hidden Service

Weak points

- Principalmente *Correlation attacks*
- Controlar un gran número de nodos hace posible:
 - → Ataques por estimación de rutas e identificación de usuarios
 - → Denegación de servicio
- Crackeo de claves de cifrad → "posible".

¿ Por qué existe TOR?

Garantizar la libertad de uso y de expresión de internet

Tor Browser

TAILS

Orbot

HTTPS Everywhere

Shadow

Tor-ramdisk

Darknet (Deep web)

- Hidden services
- Difusión de información
- Bitcoin → Mixers
- Mercado negro
- Otras redes cifradas que ofuscan identidad
 - **→** I2P
 - → Freenet

"Seguridad" | | "Privacidad"

¿OPSEC? ¿Eso se come?

- TL; DR:
 - → STFU
 - → No dar a nadie poder sobre uno mismo
 - → Evitar contaminación entre identidades
 - → Paranoia proactiva

¿OPSEC? ¿Eso se come?

Bad OPSEC:

Bad OPSEC:

• Dread Pirate Roberts → Ross Ulbricht

Bad OPSEC:

• Lulz Sec

¿ Qué hacer?

- NO hacer el idiota por la darknet
- Promover la imagen e intención real detrás de TOR
- Mantener un OR en casa (?)

Ó

• Donar a → www.torservers.net

Enlaces de interés y bibliografía

- A message from George Orwell, to everyone on the Internet
- Safety on the TOR network
- How Tor Users Got Caught
- Real time tor metrics
- Real time TOR network's flow
- Traffic Correlation on Tor by Realistic Adversaries
- Deanonymizing Tor
- Raspberry Pi as a Tor Relay and Help Others Browser Anonymously
- Majority of Tor crypto keys could be broken by NSA
- NSA attains the Holy Grail of spying, decodes vast swaths of Internet traffic
- NSA Chief Stakes Out Pro-Encryption Position, in Contrast to FBI
- 70% Of global Internet traffic goes through Northern Virginia

Enlaces de interés y bibliografía

- Design of a blocking-resistant anonymity system Tor Project technical report
- Tor: The Second-Generation Onion Router
- Tor Protocol Specification
- Tor Rendezvous Specification