CS578 – Interactive and Transparent Machine Learning

TOPIC: REGRESSION

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

MOTIVATION

- So far, we talked about classification, where the target variable is discrete
- If the target is continuous, the task is called regression
- Examples
 - Recommendations (ratings)
 - Economics and finance (credit score, oil price, stock prices, consumption, etc.)
 - Weather forecasting (temperature, humidity, wind speed, etc.)
 - and more ...

REPRESENTATION

- *x*: the input vector, the object
- r: the true value of the regression
- \circ f(x): the true underlying function
- \circ g(x): the estimated underlying function
- \circ ϵ : the noise
- \circ p(r|x): the conditional distribution of r and x
- \circ D: the dataset that consists of $\langle x, r \rangle$ pairs

REGRESSION FUNCTION

- $\circ r = f(x) + \epsilon$
- \circ ϵ is the noise (i.e., what the model cannot capture)
- Noise can exist due to several reasons
 - The input variables are insufficient to capture everything there is to capture
 - o similar to uncertainty and probabilistic reasoning
 - Noisy sensors
- \circ ϵ is typically assumed to be a zero mean Gaussian with constant variance σ^2
 - $\epsilon \sim \mathcal{N}(0, \sigma^2)$

4

How To Learn f(x)

- One typical approach is to
 - Assume a parametric form
 - Formulate an objective function
 - Maximize or minimize it

THUMBTACK TOSSES

- Imagine we have a thumbtack
- Flip it, and it comes as heads or tails

heads

tails

- $P(Heads) = \theta$, $P(Tails) = 1 \theta$
- Assume we flip it 100 times and it comes head 30 times
- What is θ ?

THUMBTACK TOSSES

- Assume we have a set of thumbtack tosses
 - $\mathcal{D} = \{d_1, ..., d_{\mathcal{M}}\}$
- Also assume each toss, \mathcal{A}_i , is IID
- \circ We define a hypothesis space Θ
 - Θ is the set of all parameters $\theta \in [0, 1]$
- We formulate an objective function
 - The objective function tells us how good a given hypothesis (in this case θ) is

LIKELIHOOD

- What is the probability, or *likelihood*, of seeing the sequence H, T, T, H, H?
 - $\theta * (1 \theta) * (1 \theta) * \theta * \theta = \theta^3 (1 \theta)^2$

When is $L(\theta:\mathcal{D})$ maximum?

8

LIKELIHOOD/LOG-LIKELIHOOD

- Number of heads = h, number of tails = t
- Likelihood: $L(\theta:\mathcal{D}) = \theta^h(1-\theta)^t$
- Log-likelihood: $l(\theta:\mathcal{D}) = h \ln \theta + t \ln(1-\theta)$
- o Find θ that maximizes the log-likelihood
- Take derivate of $l(\theta;\mathcal{D})$ with respect to θ and set it to zero

MAXIMIZE CONDITIONAL LOG-LIKELIHOOD FOR REGRESSION

- Assuming $\epsilon \sim \mathcal{N}(0, \sigma^2)$, then
 - $p(r|x) \sim \mathcal{N}(g(x|w), \sigma^2)$
- Given the dataset *D* that has *N* instances and the parameter vector *w*, the conditional log-likelihood
 - CLL = $\sum_{i=1}^{N} \ln \left(p(r^{(i)}|x^{(i)}) \right)$
 - CLL = $\sum_{i=1}^{N} \ln \left(\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{\left(r^{(i)} g(x^{(i)}|w)\right)^2}{2\sigma^2}} \right)$
 - CLL = $-N \ln(\sqrt{2\pi}\sigma) \frac{1}{2\sigma^2} \sum_{i=1}^{N} (r^{(i)} g(x^{(i)}|w))^2$

MAXIMIZE CLL = MINIMIZE SQUARED LOSS

- \circ argmax $CLL = \theta$
- o argmax $-N \ln(\sqrt{2\pi}\sigma) \frac{1}{2\sigma^2} \sum_{i=1}^{N} (r^{(i)} g(x^{(i)}|w))^2$
- $\underset{w}{\operatorname{argmin}} \sum_{i=1}^{N} (r^{(i)} g(x^{(i)}|w))^{2}$

g(x|w)

- o So far, we did not specify what g(x|w) is
- One popular approach is to assume a linear function
- Assume in each instance *x* has *k* features
 - $x = \langle x_1, x_2, \cdots, x_k \rangle$
- Then, a polynomial of degree one linear regression is
 - $g(x|w) = w_0 + \sum_{i=0}^k w_i x_i$

GRADIENT OF THE SQUARED LOSS

• See OneNote

POLYNOMIAL REGRESSION – ARBITRARY DEGREE

- Simply change the input representation by adding new features that correspond to powers and products
- See http://scikit-learn.org/stable/modules/generated/sklearn.prepr
 ocessing.PolynomialFeatures.html#sklearn.prepr
 ocessing.PolynomialFeatures

REGULARIZATION

- L₂ regularization
 - Minimize squared-loss + L₂ penalty
 - Also called Ridge regression
- \circ L₁ regularization
 - Minimize squared-loss + L₁ penalty
 - Also called Lasso regression
- See OneNote for derivation

RSE

$$\circ RSE = \frac{\sum (r-g)^2}{\sum (r-\bar{r})^2}$$

- RSE = closer to 1, if our prediction is as good/bad as predicting the mean all the time
- RSE = closer to 0 means we have a better fit
- Coefficient of determination
 - $R^2 = 1 RSE$

TRANSPARENCY

- Generate a synthetic dataset using Hugin
- Analyze the weights with
 - No regularization
 - L2 regularization
 - L1 regularization
- How do the following impact weights?
 - Regularization
 - Feature scaling
 - Feature correlation

OTHER REGRESSION APPROACHES

- There are other approaches besides linear regression, such as
 - Decision tree regression
 - Support vector regression

SCIKIT-LEARN

Least squares

- http://scikit-learn.org/stable/modules/linear_model.html#ordinary-least-squares
- http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegre ssion.html#sklearn.linear_model.LinearRegression

• Ridge

- http://scikit-learn.org/stable/modules/linear_model.html#ridge-regression
- http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge

Lasso

- http://scikit-learn.org/stable/modules/linear_model.html#lasso
- http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html# sklearn.linear_model.Lasso