- 1. (1 point) Which of the following is true about support vectors
 - a. Support vectors are the data points that lie closest to the decision surface.
 - b. Support vectors have direct bearing on the optimum location of the decision surface.
 - A. Only a is True.
 - B. Only b is True.
 - C. Both are True.
 - D. Both are False.

Answer: C

(Common data for Q2, Q3) Consider the following data set and the labels.

Data Points	Labels
(2,1)	-1
(2,-1)	-1
(0,2)	-1
(4,0)	1
(5,1)	1
(6,2)	1
(-1,0)	-1
(5,-1)	1

Using SVM algorithm, find the weight w and bias b for the hyper-plane.

- 2. (1 point) Select the correct weight vector from the following.
 - A. w = (1,0)
 - B. w=(2,1)
 - C. w = (2,4)
 - D. w = (2,0)

Answer: A

- 3. (1 point) Select the correct bias value from the following.
 - A. b=-2
 - B. b=-3
 - C. b=-4
 - D. b=-5

Answer: B

Solution:

By looking at the data, the support vectors are-

$$s_1 = (2,1), s_2 = (2,-1), s_3 = (4,0)$$

For vector representation we have to add augmented bias

$$\tilde{s}_1 = (2, 1, 1) \ \tilde{s}_2 = (2, -1, 1) \ \tilde{s}_3 = (4, 0, 1)$$

Now we have to solve the following system of equation:

$$\alpha_1 \tilde{s}_1 \cdot \tilde{s}_1 + \alpha_2 \tilde{s}_1 \cdot \tilde{s}_2 + \alpha_3 \tilde{s}_1 \cdot \tilde{s}_3 = -1 \tag{1}$$

$$\alpha_1 \tilde{s}_2 . \tilde{s}_1 + \alpha_2 \tilde{s}_2 . \tilde{s}_2 + \alpha_3 \tilde{s}_2 . \tilde{s}_3 = -1 \tag{2}$$

$$\alpha_1 \tilde{s}_3 \tilde{s}_1 + \alpha_2 \tilde{s}_3 \tilde{s}_2 + \alpha_3 \tilde{s}_3 \tilde{s}_3 = 1 \tag{3}$$

We will get,

$$\alpha_1 = -3.25\alpha_2 = -3..25\alpha_3 = 3.5$$

Hence W=
$$\sum \alpha_i \tilde{s}_i = (1, 0, -3)$$

$$w = (1,0)$$
 and $b = -3$

(Common data for Q4, Q5) Consider the following data set and the labels.

Data Points	Labels
(2,2)	1
(2,-2)	1
(-2,2)	1
(-2,-2)	1
(1,1)	-1
(1,-1)	-1
(-1,1)	-1
(-1,-1)	-1

Since the data-points are not linearly seperable, use the following transformation and then using SVM algorithm, find the weight w and bias b for the hyper-plane.

$$f(x_1, x_2) = \begin{cases} (4 - x_2 + |x_1 - x_2|, 4 - x_1 + |x_1 - x_2|), & \sqrt{x_1^2 + x_2^2} > 2\\ (x_1, x_2), & \text{otherwise} \end{cases}$$

4. (1 point) Select the correct weight vector from the following.

A.
$$w=(2,2)$$

- B. w = (3,1)
- C. w = (1,1)
- D. w=(2,3)

Answer: C

- 5. (1 point) Select the correct bias value from the following.
 - A. b = -2
 - B. b=-3
 - C. b = -4
 - D. b = -5

Answer: B

Solution:

After transformation, the new points will be

Data Points	Labels
(2,2)	1
(10,6)	1
(6,10)	1
(6,6)	1
(1,1)	-1
(1,-1)	-1
(-1,1)	-1
(-1,-1)	-1

By looking at the data, the support vectors are- $s_1 = (2, 2), s_2 = (1, 1)$

For vector representation we have to add augmented bias

$$\tilde{s}_1 = (2, 2, 1) \ \tilde{s}_2 = (1, 1, 1)$$

Now we have to solve the following system of equation:

$$\alpha_1 \tilde{s}_1 \cdot \tilde{s}_1 + \alpha_2 \tilde{s}_1 \cdot \tilde{s}_2 = 1 \tag{4}$$

$$\alpha_1 \tilde{s}_2 . \tilde{s}_1 + \alpha_2 \tilde{s}_2 . \tilde{s}_2 = -1 \tag{5}$$

We will get,

$$\alpha_1 = -7\alpha_2 = 4$$

Hence W=
$$\sum \alpha_i \tilde{s}_i = (1, 1, -3)$$

$$w=(1,1)$$
 and $b=-3$

6. (1 point) Suppose we have eight data points along with their labels as shown in the table. Plot these data points and identify the support vectors.

Index	Data Points	Labels
A	(3,1)	1
В	(3,-1)	1
С	(6,1)	1
D	(6,-1)	1
E	(1,0)	-1
F	(0,1)	-1
G	(0,-1)	-1
Н	(-1,0)	-1

- A. A,B,D
- B. A,B,E
- C. B, C, D
- D. A,B,E
- E. C,G,H
- F. B,E,H

Answer: D

Solution

After plotting these points, we find that there are three support vectors namely,

$$S_1 = (1,0), S_2 = (3,1), S_3 = (3,-1)$$

(Common data Q7,Q8) Use Lagrange Multipliers to find the global maximum and minimum values of $f(x,y) = x^2 + 2y^2 - 4y$ on the unit circle.

7. (1 point) What is the global maximum value?

Answer: 2.25

range 2,3

8. (1 point) What is the global minimum value?

Answer: 0

Solution

$$g(x,y) = x^2 + y^2$$

Then solving the equation

 $\Delta f(x,y) = \lambda \Delta g(x,y)$ along with the constraint, we get the following system of equation-

$$2x + 1 = \lambda 2x$$

$$4y = \lambda 2y$$

$$x^2 + y^2 = 1$$

Solving (2) we get 2 solution y=0 or $\lambda = 2$

For
$$y=0$$
, $x=\pm 1$

For
$$\lambda = 2$$

$$x = \frac{1}{2}$$
 and $y = \pm \frac{\sqrt{3}}{2}$

Now evaluating the function at these 4 points we find that, the global maximum is $\frac{9}{4}$, which occurs at two points $(\frac{1}{2}, \pm \frac{\sqrt{3}}{2})$, and the global minimum is 0, which occurs at (-1, 0).

- 9. (1 point) Let K(x,y) and K'(x,y) be kernels then which of the following will also be a kernel.
 - A. K+K'
 - B. $\alpha K : \alpha \in \mathbb{R}$
 - C. $\alpha K : \alpha > 0$
 - D. $\alpha_1 K + \alpha_2 K' : \alpha_i > 0$

Answer: A,C,D

10. (1 point) Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$f(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

Let
$$x = (1, 2)$$
 and $y = (-2, 3)$

Use a suitable kernel to find $\langle f(x), f(y) \rangle$.

Which of the following is the correct answer?

- A. 10
- B. 6
- C. 16
- D. 3

Answer: C

Solution 16

Kernel used : $(\langle x, y \rangle)^2$

11. (1 point) Let $f: \mathbb{R}^3 \to \mathbb{R}^9$ be defined by

$$f(x_1, x_2, x_3) = (x_1 x_1, x_1 x_2, x_1 x_3, x_2 x_1, x_2 x_2, x_2 x_3, x_3 x_1, x_3 x_2, x_3 x_3)$$

Let
$$x = (5, 6, 7)$$
 and $y = (2, 3, 4)$

Use a suitable kernel to find $\langle f(x), f(y) \rangle$. Enter the correct answer.

Answer: 3136

solution 3136