法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

不定积分于最近道

定义 若函数F(x)的导函数F'(x) = f(x)对于一切的 $x \in (a,b)$ 都成立,则称F(x)是f(x)在(a,b)上的一个**原函数**。对于一个给定的函数,其原函数的一般表达式称为f(x)的**不定积分**,并记为

这里f(x)称为**被积函数**。

(FIX)+()' - fix) (Sinx) = (3x

注:若F(x)是f(x)在(a,b)上的一个原函数,那么对于任意的常数C,函数F(x)+C也是f(x)的一个原函数。**所以原函数不是指一个函数**,

而是一族函数。

基本初等函数的不定积分

- $\int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C \quad (\alpha \neq -1); 特别的, \int dx = x + C$
- $\int cosxdx = sinx + C$; $\int sinxdx = -cosx + C$ $\int sec^2xdx = tanx + C$; $\int cscxdx = -cotx + C$
- $\int \frac{dx}{\sqrt{1-x^2}} = arcsinx + C = -arccosx + C$ $\int \frac{dx}{1+x^2} = arctanx + C = -arccotx + C$
- $\int a^x dx = \frac{1}{\ln a} a^x + C$ (a > 0, a ≠ 1); 特别的, $\int e^x dx = e^x + C$
- $\oint \frac{1}{x} dx = \ln|x| + C$

简单不定积分法则

土 C 可写成定知的原作

$$\int f(x) \pm g(x) dx = \int f(x) dx + \int g(x) dx$$

$$\int Cf(x)dx = C \int f(x)dx$$

不定积分的计算(1)

$$\int (3x^{2} + \sin x + \frac{5}{x}) dx$$

$$= \int 3 x^{2} dx + \int \sin x dx + \int \frac{5}{x} dx$$

$$= 3 \int x^{2} dx + \int \sin x dx + \int \frac{1}{x} dx$$

$$= 3 \int (\frac{1}{3}x^{3} + C_{1}) + (-\cos x + C_{2}) + 5 \int (|n|^{2}| + C_{3})$$

$$= x^{3} - \cos x + \sin |x| + C \qquad (C = \frac{\pi}{4})$$

不定积分的计算(1)

定积分
$$\int (e^{x} + \frac{3x^{2}}{1 + x^{2}}) dx$$

$$= \int e^{x} dx + \int \frac{3x^{k}}{1 + x^{k}} dx$$

$$= e^{x} + C_{1} + 3 \int \frac{x^{k+1-1}}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int (1 - \frac{1}{x^{k+1}}) dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int \frac{1}{x^{k+1}} dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int dx - 3 \int dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int dx - 3 \int dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int dx$$

$$= e^{x} + C_{1} + 3 \int dx - 3 \int dx$$

$$= e^{x} + C_{1} + 3 \int dx$$

$$= e^{x} + C_{$$

不定积分的换元法

不定积分第一换元法 若 $F'(y) = f(y), y = \varphi(x)$ 可导,由复合函数

的微商公式我们可以得到

于是,我们有

$$\frac{d}{dx}F(\varphi(x)) = f(\varphi(x))\varphi'(x)$$

$$\int f(\varphi(x))\varphi'(x)\,dx = F(\varphi(x)) + C$$

上述换元公式也可以写成更简便的形式 千八) * 千八.

$$\int f(\varphi(x)) d\varphi(x) = F(\varphi(x)) + C$$

这就是不定积分的第一换元公式。

$$=\int \frac{1}{1+x^{2}} \frac{dx^{2}}{1+x^{2}}$$

$$=\int \frac{1}{1+x^{2}} \frac{dx^{2}}{1+x^{2}} \frac{dx^{2}}{1+x^{2}}$$

$$=\int \frac{1}{1+x^{2}} \frac{dx^{2}}{1+x^{2}} \frac{dx^{2}}$$

$$\frac{x}{x} \frac{dx}{dx} = \frac{1}{x} \frac{dx}{dx}$$

$$= \frac{1}{x} \arctan^{2} + C$$

$$= \frac{1}{x} \arctan^{2} + C$$

$$= \frac{1}{x} \arctan(x) + C$$

1 = 1.1 a'-x' atx a.x

d. PH)= p'c+1d+

$$\int \frac{1}{a^2 + x^2} dx$$

不定积分的换元法

不定积分第二换元法 将积分变量x作为中间变量,引入 $x = \varphi(t)$,并且假定 $\varphi(t)$ 可导,这时 $dx = \varphi'(t)dt$,被积函数变成t的函数,而t变成新的积分变量:

$$\int f(x) dx = \int f(\varphi(t))\varphi'(t)dt$$

经过这样的变换之后,如果 $f(\varphi(t))\varphi'(t)$ 的原函数已知,比如说是F(t),那么

$$\int f(x) dx = F(t) + C = F(\varphi^{-1}(x)) + C$$

其中 φ^{-1} 为 φ 的反函数,这就是不定积分的第二**换元公式**。

不定积分的计算(3)

不定积分的计算(3)

求不定积分 三角级龙 我了 $I = \int \frac{1}{\sqrt{a^2 + x^2}} dx \quad (a > 0)$ $A = \int \frac{1}{\sqrt{a^2 + x^2}} dx \quad (a > 0)$ = { | | | | - (1) | | + (1) | + (1) | | + (1) | | + (1) | | + (1) | | + (1) | | + (1) | | + (1) | | + (1) | | + (1) | | + (1) | | + (1) | | + (1) | | + (1) | | + (1) - J jeur seit dt seatedt = 5 Latet

不定积分的计算(3)

・ 求不定积分

T:
$$\int \frac{1}{\sqrt{x^2 - a^2}} dx$$
 (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (a > 0)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (b)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (b)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} dx$ (c)

T: $\int \frac{1}{\sqrt{x^2 - a^2}} d$

分部积分法

分部积分法 们有 设u,v都是可微函数,根据函数乘积的求导公式,我

u(x)v'(x) = [u(x)v(x)]' - u'(x)v(x)

对两边同时取不定积分有

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$$

或者写成

$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x)$$

这就是所谓的分部积分公式。

$$= \arctan x \, dx$$

$$= \arctan x \cdot x - \int x \, dx \cot x$$

$$= \arctan x - \int \frac{x}{1+x^2} \, dx$$

$$= \arctan x - \frac{1}{2} \int \frac{d(x^2+1)}{1+x^2}$$

$$= x \arctan x - \frac{1}{2} |n|x^2+1| + C$$

$$\int x^{3} \ln x dx$$

$$= \int \ln x \cdot 4 dx^{4}$$

$$= 4 \int \ln x d$$

東不定积分
$$\int x^{2}e^{x} dx$$

$$- x'e' - \sum x'e' - \sum x'e''$$

$$- x'e' - \sum e'' dx'$$

$$- x'e'' - \sum e'' - \sum e'' dx'$$

$$- x'e'' - \sum e'' - \sum e''$$

有理式积分

所谓x的有理式指的是两个多项式之比,即

$$\frac{P(x)}{Q(x)} \equiv \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

通常我们假定P(x), Q(x)没有公因子, $a_n \neq 0$, $b_m \neq 0$ 。当m>n时,我们称上述有理式为真分式,否则为假分式。由于每一个真分式都可以表示为多项式加上假分式,所以我们只讨论真分式就够了。

有理式的标准形式

结论 任一真分式都可以分解成若干项部分分式之和。

• 所谓部分分式是指下列四种最简单的真分式。

$$\frac{A}{x-a}, \qquad \frac{A}{(x-a)^n}(n>1)$$

$$\frac{Bx+C}{x^2+px+q}, \qquad \frac{Bx+C}{(x^2+px+q)^n}(n>1)$$

部分分式的不定积分

• 对于前两种,其不定积分是显然的: でづく

$$\int \frac{A}{x-a} dx = A \ln|x-a| + C$$

$$\int \frac{A}{(x-a)^n} dx = \frac{A}{1-n} (x-a)^{1-n} + C (n > 1)$$

部分分式的不定积分

对于第三种部分分式的不定积分:

$$\int \frac{Bx + C}{x^2 + px + q} dx$$

P-4920

$$= \frac{B}{2} \int \frac{d(x + \frac{p}{2})^2}{(x + \frac{p}{2})^2 + (q - \frac{p}{4})} + (C - \frac{Bp}{2}) \int \frac{dx}{(x + \frac{p}{2})^2 + (q - \frac{p^2}{4})}$$

$$= \frac{B}{2} \ln|x^2 + px + q| + \frac{C - \frac{Bp}{2}}{\sqrt{q - \frac{p^2}{4}}} \arctan \frac{x + \frac{p}{2}}{\sqrt{q - \frac{p^2}{4}}} + C$$

部分分式的不定积分

对于第四种部分分式的不定积分:

$$\int \frac{Bx + C}{(x^2 + px + q)^n} dx$$

$$= \frac{B}{2} \int \frac{d(x + \frac{p}{2})^2}{[(x + \frac{p}{2})^2 + (q - \frac{p}{4})]^n} + (C - \frac{Bp}{2}) \int \frac{dx}{[(x + \frac{p}{2})^2 + (q - \frac{p^2}{4})]^n}$$

$$= \frac{B}{2(n-1)} [(x + \frac{p}{2})^2 + (q - \frac{p}{4})]^{1-n} + (C - \frac{Bp}{2}) \int \frac{dx}{[(x + \frac{p}{2})^2 + (q - \frac{p}{4})]^n}$$

最后一个积分可以通过换元法求出来

$$Q(x) = x^{2} + 4x dx$$

$$= x (x^{2} + 4)$$

$$= x (x^{2} + 4)$$

$$= x = 1$$

$$= x =$$

$$I = \int \frac{1}{3x + \sqrt[3]{3x + 2}} dx$$

$$J_{3x+1} = \frac{1}{3x + \sqrt[3]{3x + 2}} dx$$

$$J_{3x+1}$$

$$\frac{1}{t} = \int x \sqrt{\frac{x-1}{x+1}} dx$$

$$\frac{t}{t} = \frac{x-1}{x+1} + \frac{1+t}{1-t} + \frac{1+t}{1-t} = \frac{t}{t} + \frac{t}{$$

三角函数有理式的不定积分

定义 所谓三角函数的有理式指的是对三角函数及常数函数进行有限次加减乘除所得到的表达式。例如:

$$\frac{\sin x + \cos x}{2\sin x}$$

一般的求解方法是作万能替换:

$$I = \int \frac{\cot x}{\sin x + \cos x - 1} dx$$

$$I : toxic dx = \frac{2dt}{1+t} Shx = \frac{2t}{1+t}$$

$$Codx = \frac{1-t^2}{1t}$$

$$I : \int \frac{\frac{1-t^2}{1+t^2}}{\frac{2t}{1+t^2}} dt$$

$$= \int \frac{1+t^2}{t} dt$$

$$= \int \frac{1+t^2}{t} dt$$

求不定积分
$$\frac{\cos x}{\sin x + \cos x} dx = \cot x = t$$

$$= \int \frac{1}{\tan t} dx = \int \frac{dt}{\cot t} dt$$

$$= \int \int \frac{1}{\cot t} dt$$

求不定积分
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \cos^2 x \, dx}{1 + \log x} \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sin^4 x \, dx}{1 + \log x} \, dx$$

"可积性"

63

结论 并不是所有的初等函数的原函数都是初等函数。

已经证明下列函数不能用初等函数表示 : 🗘📢 🧚 🥌

$$\int \frac{\sin x}{x} dx, \qquad \int e^{-x^2} dx, \qquad \int \sin x^2 dx$$

$$\int \frac{\cos x}{x} dx, \qquad \int \frac{1}{\ln x} dx, \qquad \int \cos x^2 dx$$

$$\int \frac{dx}{\sqrt{1 - k^2 \sin^2 x}}, \qquad \int \sqrt{1 - k^2 \sin^2 x} dx \quad (0 < k < 1)$$

常用不定积分

- $\int tanx dx = -\ln|cosx| + C$ $\int cotx dx = \ln|sinx| + C$ $\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C \ (a > 0)$ $\int \frac{dx}{x^2 a^2} = \frac{1}{2a} \ln|\frac{x a}{x + a}| + C \ (a > 0)$
- $\int \frac{dx}{\sqrt{a^2 x^2}} = \arcsin \frac{x}{a} + C \quad (a > 0)$ $\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln|x + \sqrt{x^2 \pm a^2}| + C$

要点回顾

我们在这里

□问题答疑:

http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

