STA303 Midterm2 复习讲义

陈漂亮

Savvy 2020

0. 考试纪要	1
1. 我们目前学过的 Model 一览	2
1.1 Linear Mixed Model (LMM)	2
1.2 Generalized Linear Mixed Model (GLMM)	3
1.3 Case-Control Study	4
2. 考题类型	5
2.1 Write down the model: see above	5
2.2 How good/bad is this model: Model assessment	5
2.3 Tests	5
2.4 Model result interpretation: read R code and R output	5
0. 考试纪要	
考试时间: 占比 20%.	
目前学过的内容 (不一定都考的 hhh): Week 4-5:	
1. linear mixed model(LMM 概论)	
2. LMM 的 loglike function 及 profile loglike function;	
3. Cholesky Decomposition;	
4. Woodbury Matrix Identity;	
5. Restricted Maximum Likelihood (REML)	
6. Fixed effect vs Random effect Model	
7. Random Slope Model, Contrast model, multi level LMM	
8. GLMM & ZIP	
Week 6:	
1. Case-Control Study	
R code 的分析(重中之重)	
如何写一篇 statistica report	

1. 我们目前学过的 Model 一览

1.1 Linear Mixed Model (LMM)

$$Y_{ij}|U_i \stackrel{iid}{\sim} N(\mu_{ij}, \tau^2)$$

$$\mu_{ij} = X_{ij}\beta + U_i$$

$$[U_1, \cdots, U_M]^T \sim MVN(0, \Sigma) \text{(where } \Sigma = \sigma I\text{)}$$

$$\iff U_i \sim N(0, \sigma^2), i = 1, ..., M$$

Where, $\bullet Y_{ij}$ is the jth obs in the ith group, $j = 1, ..., J_i$

- U_i is the individual's random effect, i = 1, ..., M
- $X_{ij}\beta$ is the fixed effect

1.1.1 Fixed Effect Model

Fixed:
$$Y_{ij} = X_{ij}\beta + \theta_i + Z_{ij}, Z_{ij} \sim N(0, \tau^2)$$

 $\Longrightarrow \hat{\theta} = \arg\max_{\theta_i}(P(Y_{ij}; \theta_i))$, which can be considered as intercept
Random: $Y_{ij} = X_{ij}\beta + U_i + Z_{ij}, U_i \sim N(0, \sigma^2), Z_{ij} \sim N(0, \tau^2)$
 $\Longrightarrow \hat{U}_i = E(U_i | \mathbf{Y})$

1.1.2 Constrast Model

$$E(Y_{ij}) = \begin{cases} \theta_j, & diet_i = barley \\ \theta_j + \alpha_1 + \beta_1 t_j + (\beta_1' t_j^2), & diet_i = lupins \\ \theta_j + \alpha_2 + \beta_2 t_j + (\beta_2' t_j^2), & diet_i = mixed \end{cases}$$

$$\iff E(Y_{ij}) = \mu_{ij} = \theta_j + I_{lupins} \times \alpha_1 + I_{mixed} \times \alpha_2$$

$$+ (I_{lupins} \times \beta_1 + I_{mixed} \times \beta_2)t_j + (I_{lupins} \times \beta_1 + I_{mixed} \times \beta_2)t_j^2$$

1.1.3 Multi-level models

$$Y_{ijkm}|B,C,D \sim N(\mu_{ijkm},\tau^2)$$

$$\mu_{ijkm} = X_{ijkm}\beta + B_i + C_{ij} + D_{ijk}$$
where, $B_i \sim N(0,\sigma_B^2)$

$$B_i \sim N(0,\sigma_B^2)$$

$$C_{ij} \sim N(0,\sigma_C^2)$$

$$D_{ijk} \sim N(0,\sigma_D^2)$$

1.1.4 Random Slope Model

$$Y_{ij}|\mathbf{U} \sim N(\mu_{ij}, \tau^2)$$

where, $\mu_{ij} = \mathbf{X}_{ij}\beta + U_{i1} + U_{i2}W_{ij};$
$$\begin{pmatrix} U_{i1} & (\text{random intercept}) \\ U_{i2} & (\text{random slope}) \end{pmatrix} \sim MVN(0, \Gamma)$$

 X_{ijp}, W_{ij} are all covariates, but the coef on W_{ij} is different for each subject

1.2 Generalized Linear Mixed Model (GLMM)

$$Y_{ij}|U \stackrel{\perp}{\sim} G(\mu_{ij}, \theta)$$
, for some distribution G
$$h(\mu_{ij}) = X_{ij}\beta + U_i$$
, where h() is the link function
$$U \sim MVN(0, \Sigma)$$

Patrick's definition:

knitr::include_graphics("1.png")

$$\begin{split} Y_i \sim & \pi(\lambda_i; \theta) \\ \lambda_i = & h(\eta_i) \\ \eta_i = & \mu + W_i \beta + U_i \\ U \sim & \text{MVN[0, } \Sigma(\theta)] \end{split}$$

- The bacteria model has
 - $\theta = \sigma$
 - $\Sigma(\theta) = \sigma^2 I$
 - $h(x) = \log(x)$
 - $\pi(\eta_i; \theta) = \mathsf{Bernoulli}(\lambda_i)$
- The dimension of U and sometimes β is very large,
- Whereas typically the number of elements in θ is small.

1.2.1 Binomial GLMM

$$Y_{it} \stackrel{\perp}{\sim} Bernoulli(\rho_{it})$$

 $logit(\rho_{it}) = \mu + X_{it}\beta + U_i$
 $U_i \stackrel{\perp}{\sim} N(0, \sigma^2)$

where, $\bullet Y_{ij}$ is 1 if the ith individual is infected at time t

- X_{it} has indicator variable for week and treatment type
- \bullet U_i is the individual level random effect

 $U_i > 0$ if the ith individual is more likely to be infected than the average, allowing for within-ind dependence

- $\bullet \sigma$ is the extra-Bernoulli variation, or over dispersion
- $\bullet \rho_{it}$ is the prob of the ith individual being infected at time t

1.2.2 Gamma GLMM

$$Y_{ij} \sim Gamma(\frac{\mu_{ij}}{v}, v)$$
$$\log(\mu_{ij}) = \beta_0 + t_{ij}\beta_1 + U_i$$
$$U_i \sim N(0, \sigma^2)$$

where, $\bullet Y_{ij}$ is the weight of pig i at time t_{ij}

- $\exp(\beta_0)$ is the pop average weight at birth
- $\exp(\beta_1)$ is the average porportion weight gain, per year
- U_i is the pig i's weight deviation from the pop average

1.2.3 Zero Inflated Poisson

$$Y_i|U \sim ZIP(O_i\lambda_i, \rho)$$

$$\log(\lambda_i) = X_i\beta + U_i$$

$$U_i \sim N(0, \sigma^2)$$
where, $\bullet Y_i = \begin{cases} 1, \text{ with prob } 1 - \theta \\ 0, \text{ with prob } \theta \end{cases}$

- \bullet O_i is the offset term for the ith level
- X_i is the covariate of the ith level
- \bullet U_i is the i-th level random effect
- $\bullet \sigma$ is the extra-Poisson variation, or overdispersion
- $\bullet \rho$ is the porportion of couples which are infertile

1.3 Case-Control Study

Want: $P(Y_i|X_i), Y_i \sim Binom(N_i, \mu_i)$

Have: $P(Y_i|X_i,Z_i)$

Where, $\bullet Y_i = 1$ is the case; = 0 is the control;

- X_i are the covariates, e.g. conditions/enviornment when case/control occurs;
- Z_i is "in-the-study" indicator, = 1 if the data is observed

Assumption:

$$P(Z_i|Y_i,X_i) = P(Z_i|Y_i)$$

i.e., Inclusion in the study does not depend on covariate.

Critiques of this assumption:

- (a) Control are hard to recruit: man tend not to report light accident than woman.
 - Underestiamte the covariate/case effect, e.g. sex/fatal-accident effect...
- (b) Controls are easy to recruit: healthy smokers tend to worry about cancer if have a family histroy of lung cancer.
 - Overestimate the covariate/case effect, e.g. smoking/cancer effect...

2. 考题类型

2.1 Write down the model: see above

2.2 How good/bad is this model: Model assessment

- Anova: normality, independence, homoskedasticity
- LMM vs OLM: whether we should include the random effect
- GLMM: model adequacy (whether the data follows the distribution the model assumes); should/Not include random effect
- Other: Histogram, or see the nature of the question

2.3 Tests

- Likelihood Ratio Test;
- What to look at for a test? p-value

2.4 Model result interpretation: read R code and R output

2.4.1 LMM

```
#'install.packages("Pmisc",

# 'repos='http://r-forge.r-project.org')

#+

cUrl = 'https://www.fueleconomy.gov/feg/epadata/vehicles.csv.zip'

cFile = file.path(tempdir(), basename(cUrl))

download.file(cUrl, cFile)

cFile2 = unzip(cFile, exdir=tempdir())

x = read.table(cFile2, sep=',', header=TRUE, stringsAsFactors=FALSE)

#'
```

• Fit the LMM model, using makeFac as the random effect. There are 2 ways to fit the LMM models, and the way they restore the data is quite different.

```
##
                             MLE Std.Error
                                               DF
                                                      t-value
                                                                    p-value
## (Intercept)
                                                   122.248641 0.000000e+00
                      23.3363393 0.19089242 41547
## cylFac2
                      -5.8542655 0.43748620 41547
                                                   -13.381600 9.409591e-41
## cylFac3
                      9.7958373 0.19525174 41547
                                                    50.170295 0.000000e+00
## cylFac5
                      -3.7580231 0.12857605 41547
                                                   -29.228017 6.569783e-186
## cylFac6
                      -5.6040722 0.03920337 41547 -142.948745 0.000000e+00
## cylFac8
                      -8.5333559 0.04867933 41547 -175.297302
                                                               0.000000e+00
## cylFac10
                     -10.2526438 0.26084048 41547
                                                   -39.306183
                                                               0.000000e+00
## cylFac12
                     -10.3261759 0.15494310 41547
                                                   -66.644955
                                                               0.000000e+00
## cylFac16
                     -14.6612041 2.04593093
                                              129
                                                    -7.166031 5.294830e-11
## decade
                       1.2036653 0.01537899 41547
                                                   78.266884 0.000000e+00
```

```
## transmissionManual 0.5003242 0.03537212 41547
                                                     14.144591 2.570305e-45
## $\\sigma$
                        1.8184385
                                          NA
                                                            NA
                                                                           NA
## $\\tau$
                        3.0440381
                                          NA
                                                NA
                                                             NA
                                                                           NA
nlme::intervals(myFitMake)$sigma
##
      lower
                est.
                        upper
## 3.023411 3.044038 3.064805
## attr(,"label")
## [1] "Within-group standard error:"
nlme::intervals(myFitMake)$reStruct$makeFac
##
                      lower
                                est.
                                        upper
## sd((Intercept)) 1.529923 1.818438 2.161362
#'
#+ lme4
myFitMake2 = lme4::lmer(comb08 ~ cylFac +
                  decade + transmission +
                  (1 | makeFac),
                data=xSub)
summary(myFitMake2)$coef
##
                         Estimate Std. Error
                                                 t value
## (Intercept)
                       23.3363393 0.19089242 122.248643
## cylFac2
                       -5.8542655 0.43748620
                                              -13.381600
## cylFac3
                       9.7958373 0.19525174
                                               50.170295
## cylFac5
                       -3.7580231 0.12857605
                                              -29.228017
## cylFac6
                       -5.6040722 0.03920337 -142.948745
## cylFac8
                       -8.5333559 0.04867933 -175.297302
## cylFac10
                      -10.2526438 0.26084048
                                              -39.306183
## cylFac12
                      -10.3261760 0.15494310
                                              -66.644955
## cylFac16
                      -14.6612041 2.04593091
                                              -7.166031
## decade
                        1.2036653 0.01537899
                                               78.266884
## transmissionManual 0.5003242 0.03537212
                                               14.144591
summary(myFitMake2)$varcor
## Groups
                         Std.Dev.
             Name
## makeFac (Intercept) 1.8184
## Residual
                         3.0440
```

```
# plot the random effect for the lme4::lmer model, using lme4::ranef
myFitRandom = lme4::ranef(myFitMake2, condVar=TRUE)
lattice::dotplot(myFitRandom)
```

\$makeFac

makeFac

• A fancier random effect plot: what can you tell about the random effect of auto-maker on the combined MPG from the 2 plots?

```
x = data.frame(
    make = rownames(myFitRandom$makeFac),
    est = myFitRandom$makeFac[[1]],
    se = drop(attributes(myFitRandom$makeFac)$postVar),
    stringsAsFactors = FALSE
    )

x$lower = x$est - 2*x$se

x$upper = x$est + 2*x$se

x = x[x$se < 2, ]

x = x[order(x$est), ]</pre>
```

```
x$index = rank(x$est)
xaccurate = rank(x$se) < 40
x$col= rep_len(RColorBrewer::brewer.pal(8, 'Set2'), nrow(x))
x$colTrans = paste0(x$col, '40')
x$colLine = x$col
x[!x$accurate, 'colLine'] = x[!x$accurate, 'colTrans']
x$cex = -log(x$se)
x$cex = x$cex - min(x$cex)
x$cex = 3*x$cex / max(x$cex)
x$textpos = rep_len(c(4,2), nrow(x))
x[!x\$accurate \& x\$est > 0, 'textpos'] = 4
x[!x\$accurate \& x\$est < 0, 'textpos'] = 2
x$textloc = x$est
x$textCex = c(0.5, 0.9)[1+x$accurate]
par(mar=c(4,0,0,0), bty='n')
plot(x$est, x$index, yaxt='n', xlim = range(x$est),
    \#xlim = range(x[,c('lower','upper')]),
    xlab='mpg', ylab='', pch=15, col=x$colTrans , cex=x$cex)
x[!x$accurate & x$est > 0, 'textloc'] = par('usr')[1]
x[!x$accurate & x$est < 0, 'textloc'] = par('usr')[2]</pre>
abline(v=0, col='grey')
segments(x$lower, x$index, x$upper, x$index, pch=15, col=x$colLine)
text(
   x$textloc,
   x$index, x$make,
   pos = x$textpos,
   col=x$col,
   cex=x$textCex, offset=1)
```


图 1: Fuel efficiency of auto manufacturers adjusted for engine type

```
# '
```

2.4.2 GLMM

2.4.2.1 Gamma

• Fit the GLMM models, in 2 ways: lme4::glmer, or glmmTMB.

```
install.packages("Pmisc", repos='http://r-forge.r-project.org')
## package 'Pmisc' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\maxch\AppData\Local\Temp\RtmpSOxaKu\downloaded_packages
#+
cUrl = 'https://www.fueleconomy.gov/feg/epadata/vehicles.csv.zip'
cFile = file.path(tempdir(), basename(cUrl))
download.file(cUrl, cFile)
cFile2 = unzip(cFile, exdir=tempdir())
x = read.table(cFile2, sep=',', header=TRUE, stringsAsFactors=FALSE)
#'
#' https://www.fueleconomy.gov/feg/ws/index.shtml#vehicle
xSub = x[grep("Electricity|CNG",
              x$fuelType, invert=TRUE), ]
#'
#+ makeFac
xSub$decade = (xSub$year - 2000)/10
makeTable = sort(table(xSub$make), decreasing=TRUE)
xSub$makeFac = factor(xSub$make, levels=names(makeTable))
xSub$cylFac = relevel(factor(xSub$cylinders), '4')
levels(xSub$cylFac)
## [1] "4" "2" "3" "5" "6" "8" "10" "12" "16"
xSub = xSub[!is.na(xSub$cylFac), ]
xSub$transmission = factor(
 grepl("Manual", xSub$trany), levels=c(FALSE,TRUE),
```

```
labels = c('Automatic', 'Manual'))#'
#'
#' Gaussian
#+ lme4
myFitMakeL = lme4::lmer(comb08 ~ cylFac +
                  decade + transmission +
                  (1 | makeFac),
                data=xSub)
summary(myFitMakeL)$coef
##
                         Estimate Std. Error
                                                 t value
## (Intercept)
                       23.3363393 0.19089242 122.248643
## cylFac2
                       -5.8542655 0.43748620
                                              -13.381600
## cylFac3
                       9.7958373 0.19525174
                                               50.170295
## cylFac5
                       -3.7580231 0.12857605
                                              -29.228017
## cylFac6
                      -5.6040722 0.03920337 -142.948745
## cylFac8
                       -8.5333559 0.04867933 -175.297302
## cylFac10
                      -10.2526438 0.26084048
                                              -39.306183
## cylFac12
                      -10.3261760 0.15494310
                                              -66.644955
## cylFac16
                     -14.6612041 2.04593091
                                               -7.166031
## decade
                        1.2036653 0.01537899
                                              78.266884
## transmissionManual 0.5003242 0.03537212
                                               14.144591
summary(myFitMakeL)$varcor
## Groups
             Name
                         Std.Dev.
## makeFac (Intercept) 1.8184
## Residual
                         3.0440
myFitRandom = lme4::ranef(myFitMakeL, condVar=TRUE)
```

```
## $makeFac
```

lattice::dotplot(myFitRandom)

makeFac


```
Estimate Std. Error
                                                             Pr(>|z|)
##
                                                 t value
## (Intercept)
                       2.97165005 0.027586421 107.721478 0.000000e+00
## cylFac2
                      -0.29215655 0.034658380 -8.429608 3.468260e-17
## cylFac3
                       0.39827430 0.020500037 19.427980 4.476373e-84
## cylFac5
                     -0.15961619 0.020017246 -7.973934 1.537019e-15
## cylFac6
                      -0.27817975 0.004562385 -60.972442 0.000000e+00
## cylFac8
                      -0.44116104 0.005071318 -86.991399 0.000000e+00
## cylFac12
                      -0.56073390 0.042503870 -13.192538 9.686864e-40
```

```
## transmissionManual 0.06051229 0.003426021 17.662557 8.146435e-70 ## decade -0.04083182 0.009327289 -4.377673 1.199531e-05
```

lme4::VarCorr(myFitMakeG)

```
## Groups Name Std.Dev.
## makeFac (Intercept) 0.08659
## Residual 0.14899
```

```
lattice::dotplot(lme4::ranef(myFitMakeG, condVar=TRUE))
```

\$makeFac

makeFac


```
#'

#'

#+ glmmTMB

myFitMakeTmb = glmmTMB::glmmTMB(comb08 ~ cylFac+transmission +
```


2.4.2.2 ZIP

- What you predicted is number of event happen in a given time interval (e.g. annual birth rate = number of children born to a mother in one year);
- Why sd is from 0 to infinity? Uncorrected LR test failed here, as the the distribution assumption is false.

			-					
				=	est	2.5 %	97.5 %	
	est	2.5 %	97.5 %	ethnicity				
baseline				indian	0.98	0.94	1.02	
fijian:yes:suva:0to15	0.24	0.23	0.26	european	0.79	0.57	1.10	
literacy				partEuropean	0.99	0.86	1.13	
no	1.05	0.96	1.15	pacificIslander	1.13	1.02	1.27	
residence				routman	0.93	0.72	1.21	
otherUrban	1.11	1.04	1.17	chinese	0.76	0.58	0.99	
rural	1.20	1.14	1.26	other	1.86	1.10	3.14	
literacy:residence				ageMarried				
no:otherUrban	0.98	0.87	1.10	15to18	1.11	1.06	1.16	
no:rural	0.93	0.85	1.03	18to20	1.16	1.11	1.22	
sd				20to22	1.14	1.08	1.21	
subject	0.00	0.00	Inf	22to25	1.14	1.07	1.22	
zero inf				25to30	1.20	1.08	1.33	
prob	0.02	0.02	0.03	30toInf	1.30	1.07	1.59	

- right numbers are significance levels
- Red lines are corresponding quantiles of the LR distribution
- 99% CI for σ is (0, 0.062)

2.4.2.3 Binomial + Multi-level random effect

• Describe the model used here.

```
Pmisc::mdTable(Pmisc::coefTable(+schoolGlmm)$table,guessGroup=F,dec=2)
knitr::include_graphics("3.png")
```

	est	2.5 %	97.5 %
ref prob			
f:l	0.76	0.71	0.81
gender			
m	0.99	0.90	1.09
socialClass			
II .	1.00	0.74	1.36
IIIn	0.75	0.55	1.04
IIIm	0.63	0.47	0.84
IV	0.66	0.48	0.91
V	0.51	0.37	0.71
longUnemp	0.58	0.41	0.82
currUnemp	0.52	0.33	0.82
absent	0.59	0.44	0.80
sd			
student:(class:school)	0.74	0.71	0.78
class:school	0.28	0.22	0.37
school	0.00	0.00	Inf

• Compare individual/student-level effect and class-level effect

```
Pmisc::ranefPlot(schoolGlmm,grpvar ="class:school")
Pmisc::ranefPlot(schoolGlmm,grpvar ="student:(class:school)")
```

```
knitr::include_graphics("4.png")
```


• What happened to the school-level effect?

Effective sample size is too small for the school level variation, because we have too few schools in our data set. E.g. suppose we have 2 schools, each school has 15 classes and each class has 60 students. Then the effective sample size for individual/student-level effect is $2 \times 15 \times 60$, for class-level effect is 30, and for school-level effect is only 2. The smaller the effective sample size, the larger the SD for the estiamtor $\sigma'_i s$, and thus the wider the CI.

2.4.3 Case-Control Study

GLM: pedestrian

```
#+ pedestrianData, eval=FALSE

pedestrainFile = Pmisc::downloadIfOld(
   'http://pbrown.ca/teaching/303/data/pedestrians.rds')

pedestrians = readRDS(pedestrainFile)
```

```
pedestrians = pedestrians[!is.na(pedestrians$time), ]
pedestrians$y = pedestrians$Casualty_Severity == 'Fatal'
# '
#'
# '
#+ showPedestrians
dim(pedestrians)
## [1] 1159371
                     7
pedestrians[1:3,]
##
                              age sex Casualty_Severity
                     time
## 54 1979-01-01 22:40:00 26 - 35 Male
                                                   Slight
## 65 1979-01-02 10:40:00 26 - 35 Male
                                                   Slight
## 79 1979-01-02 14:25:00 46 - 55 Male
                                                   Slight
           Light_Conditions
##
                               Weather_Conditions
                                                       У
## 54 Darkness - lights lit Snowing no high winds FALSE
## 65
                   Daylight Raining no high winds FALSE
## 79
                   Daylight Raining no high winds FALSE
table(pedestrians$Casualty_Severity, pedestrians$sex)
##
##
              Male Female
     Slight 637919 481811
##
##
     Fatal
             24429 15212
range(pedestrians$time)
## [1] "1979-01-01 01:00:00 EST" "2015-12-31 23:35:00 EST"
table(pedestrians$age, pedestrians$Casualty_Severity)
##
##
             Slight Fatal
     26 - 35 118457
##
                      3083
##
     0 - 5
              84233
                      1608
     6 - 10 168054
                      1976
##
     11 - 15 197505
                      2219
##
```

```
16 - 20 128073
                      2551
##
##
     21 - 25
             86776
                      2104
     36 - 45 86247
                      2989
##
     46 - 55 69942
                      3138
##
     56 - 65 62342
##
                      4011
##
     66 - 75 59699
                      6235
     Over 75 58402
                      9727
##
# '
# '
#+ pedGlm
theGlm = glm(y ~ sex + age + Light_Conditions + Weather_Conditions, data=pedestrians,
  family=binomial(link="logit") )
theTable = as.data.frame(summary(theGlm)$coef)
theTable
##
                                                   Estimate Std. Error
## (Intercept)
                                                -4.17701178 0.02048265
## sexFemale
                                                -0.27468850 0.01113694
## age0 - 5
                                                 0.18571678 0.03184733
## age6 - 10
                                                -0.35712560 0.02968724
## age11 - 15
                                                -0.50420038 0.02853721
## age16 - 20
                                                -0.33807211 0.02748975
## age21 - 25
                                                -0.15867913 0.02907749
## age36 - 45
                                                 0.32447065 0.02656711
## age46 - 55
                                                 0.65995081 0.02636673
## age56 - 65
                                                 1.13797354 0.02509062
## age66 - 75
                                                 1.75962977 0.02338872
## ageOver 75
                                                 2.32777540 0.02231760
## Light_ConditionsDarkness - lights lit
                                                 0.99467431 0.01224661
## Light_ConditionsDarkness - lights unlit
                                                 1.17557865 0.05244657
## Light_ConditionsDarkness - no lighting
                                                 2.76545143 0.02106167
## Light_ConditionsDarkness - lighting unknown 0.25940010 0.06847541
## Weather_ConditionsRaining no high winds
                                                -0.21426159 0.01653660
## Weather_ConditionsSnowing no high winds
                                                -0.75145427 0.09235823
## Weather_ConditionsFine + high winds
                                                 0.17495735 0.03664924
## Weather_ConditionsRaining + high winds
                                                -0.06591513 0.03999709
## Weather ConditionsSnowing + high winds
                                                -0.54970673 0.17213835
## Weather_ConditionsFog or mist
                                                 0.06850742 0.06926016
##
                                                                  Pr(>|z|)
                                                     z value
```

```
-203.9292454 0.000000e+00
## (Intercept)
## sexFemale
                                                -24.6646232 2.564554e-134
## age0 - 5
                                                  5.8314718 5.494058e-09
## age6 - 10
                                                -12.0296000 2.483611e-33
## age11 - 15
                                                -17.6681741 7.374545e-70
## age16 - 20
                                                -12.2981159 9.271148e-35
## age21 - 25
                                                 -5.4571129 4.839387e-08
## age36 - 45
                                                 12.2132473 2.641326e-34
## age46 - 55
                                                 25.0296758 2.906540e-138
                                                 45.3545452 0.000000e+00
## age56 - 65
## age66 - 75
                                                 75.2341309 0.000000e+00
## ageOver 75
                                                104.3022110 0.000000e+00
## Light_ConditionsDarkness - lights lit
                                                 81.2203565 0.000000e+00
                                                 22.4147881 2.823821e-111
## Light_ConditionsDarkness - lights unlit
## Light_ConditionsDarkness - no lighting
                                                131.3025425 0.000000e+00
## Light_ConditionsDarkness - lighting unknown
                                                  3.7882226 1.517289e-04
## Weather_ConditionsRaining no high winds
                                                -12.9568106 2.150027e-38
## Weather_ConditionsSnowing no high winds
                                                 -8.1362997 4.075424e-16
## Weather_ConditionsFine + high winds
                                                  4.7738334 1.807520e-06
## Weather_ConditionsRaining + high winds
                                                 -1.6479982 9.935303e-02
## Weather_ConditionsSnowing + high winds
                                                 -3.1934007 1.406077e-03
## Weather_ConditionsFog or mist
                                                  0.9891318 3.225986e-01
#'
#'
#+ ci95
theTable$low = theTable$Estimate - 2*theTable$'Std. Error'
theTable$high = theTable$Estimate + 2*theTable$'Std. Error'
exp(theTable[,c('Estimate','low','high')])
```

```
##
                                                  Estimate
                                                                   low
## (Intercept)
                                                0.01534429 0.01472841
## sexFemale
                                                0.75980876 0.74307196
## age0 - 5
                                                1.20408119 1.12977910
## age6 - 10
                                                0.69968461 0.65935047
## age11 - 15
                                                0.60398834 0.57048135
## age16 - 20
                                                0.71314386 0.67499391
## age21 - 25
                                                0.85327010 0.80506351
## age36 - 45
                                                1.38329820 1.31171630
## age46 - 55
                                                1.93469717 1.83531723
```

```
## age56 - 65
                                                 3.12043850 2.96771502
## age66 - 75
                                                 5.81028586 5.54475446
## ageOver 75
                                               10.25510260 9.80742929
## Light_ConditionsDarkness - lights lit
                                                2.70384358 2.63842219
## Light_ConditionsDarkness - lights unlit
                                                3.24001725 2.91737875
## Light_ConditionsDarkness - no lighting
                                                15.88620985 15.23092771
## Light_ConditionsDarkness - lighting unknown
                                                1.29615229
                                                            1.13026179
## Weather_ConditionsRaining no high winds
                                                 0.80713722 0.78087922
## Weather_ConditionsSnowing no high winds
                                                 0.47168010 0.39212652
## Weather ConditionsFine + high winds
                                                 1.19119541 1.10700578
## Weather_ConditionsRaining + high winds
                                                 0.93621032 0.86423608
## Weather_ConditionsSnowing + high winds
                                                 0.57711904 0.40902319
## Weather_ConditionsFog or mist
                                                 1.07090858 0.93238180
##
                                                      high
                                                0.01598593
## (Intercept)
## sexFemale
                                                 0.77692255
## age0 - 5
                                                 1.28326990
## age6 - 10
                                                 0.74248611
## age11 - 15
                                                0.63946335
## age16 - 20
                                                0.75345000
## age21 - 25
                                                0.90436327
## age36 - 45
                                                 1.45878641
## age46 - 55
                                                 2.03945840
## age56 - 65
                                                 3.28102139
## age66 - 75
                                                 6.08853324
## ageOver 75
                                               10.72321056
## Light_ConditionsDarkness - lights lit
                                                2.77088714
## Light_ConditionsDarkness - lights unlit
                                                3.59833697
## Light_ConditionsDarkness - no lighting
                                               16.56968427
## Light_ConditionsDarkness - lighting unknown
                                                1.48639083
## Weather_ConditionsRaining no high winds
                                                 0.83427818
## Weather_ConditionsSnowing no high winds
                                                 0.56737331
## Weather_ConditionsFine + high winds
                                                 1.28178780
## Weather_ConditionsRaining + high winds
                                                 1.01417862
## Weather_ConditionsSnowing + high winds
                                                 0.81429707
## Weather_ConditionsFog or mist
                                                 1.23001669
#'
```

```
#'
#+ newdata
```

```
newData = expand.grid(
    age = levels(pedestrians$age),
    sex = c('Male', 'Female'),
   Light_Conditions = levels(pedestrians$Light_Conditions)[1],
   Weather_Conditions = levels(pedestrians$Weather_Conditions)[1])
newData
##
                sex Light_Conditions Weather_Conditions
          age
## 1
     26 - 35
                Male
                             Daylight Fine no high winds
## 2
       0 - 5
                Male
                             Daylight Fine no high winds
## 3
      6 - 10
                Male
                             Daylight Fine no high winds
## 4 11 - 15
                Male
                             Daylight Fine no high winds
## 5 16 - 20
                Male
                             Daylight Fine no high winds
## 6 21 - 25
                Male
                             Daylight Fine no high winds
## 7
     36 - 45
               Male
                             Daylight Fine no high winds
## 8 46 - 55
                Male
                             Daylight Fine no high winds
## 9 56 - 65
               Male
                             Daylight Fine no high winds
## 10 66 - 75
                Male
                             Daylight Fine no high winds
## 11 Over 75
               Male
                             Daylight Fine no high winds
## 12 26 - 35 Female
                             Daylight Fine no high winds
## 13 0 - 5 Female
                             Daylight Fine no high winds
## 14 6 - 10 Female
                             Daylight Fine no high winds
## 15 11 - 15 Female
                             Daylight Fine no high winds
## 16 16 - 20 Female
                             Daylight Fine no high winds
## 17 21 - 25 Female
                             Daylight Fine no high winds
## 18 36 - 45 Female
                             Daylight Fine no high winds
## 19 46 - 55 Female
                             Daylight Fine no high winds
## 20 56 - 65 Female
                             Daylight Fine no high winds
## 21 66 - 75 Female
                             Daylight Fine no high winds
## 22 Over 75 Female
                             Daylight Fine no high winds
#+ pred
thePred = predict(theGlm, newData, se.fit=TRUE)
thePred2 = do.call(cbind, thePred[1:2])
thePred3 = thePred2 %*% Pmisc::ciMat(0.99)
# '
#+ simplePlot
```

newData\$ageInt= as.numeric(gsub("[[:punct:]].*|[[:alpha:]]", "", newData\$age))

```
matplot(newData$ageInt, thePred3, pch = c(16,1,1), col='black')
theMales = newData$sex == 'Male'
matpoints(newData[theMales, 'ageInt'], thePred3[theMales,], pch=c(16,1,1), col='red')
legend('topleft', fill=c('red','black'), legend=c('Male','Female'),bty='n')
```


#'

GLMM: killed when armed

```
# reshape the data into long format
dTable =reshape2::dcast(deaths,raceethnicity~armed, fun.aggregate=length)
```

• Does race affect the probability ofbeing killed while unarmed?

```
Sgender =c("Male","Female")
Srace =c("White","Black","Hispanic/Latino")
Sarmed =c("Firearm","Non-lethal firearm","No")
deathsSub =deaths[deaths$raceethnicity %in% Srace & deaths$armed %in% Sarmed & deaths$gender %in%
deathsSub$raceethnicity =factor(deathsSub$raceethnicity,levels =Srace)
deathsSub$gender =factor(deathsSub$gender,levels =Sgender)
deathsSub$unarmed =as.numeric(deathsSub$armed=="No")

dTable$odds = dTable$No / dTable$Firearm
knitr::kable(dTable[,c('raceethnicity', 'Firearm','No', 'odds')])
```

raceethnicity	Firearm	No	odds
Arab-American	2	2	1.0000000
Asian/Pacific Islander	14	5	0.3571429
Black	283	121	0.4275618
Hispanic/Latino	161	67	0.4161491
Native American	17	6	0.3529412
Other	1	0	0.0000000
Unknown	18	3	0.1666667
White	564	201	0.3563830

est	2.5 %	97.5 %
0.22	0.18	0.25
1.27	0.97	1.68
1.19	0.83	1.69
3.00	1.86	4.83
0.32	0.18	0.56
	0.22 1.27 1.19 3.00	0.22 0.18 1.27 0.97 1.19 0.83 3.00 1.86

• Case: killed while armed;

• Control: killed while unarmed.

- Problem with this model: The control group over-represents whites, in order to be killed while armed, one must have a gun, guns are more common in rural areas, and rural areas are more white
- Add the State as random effect (gun ownership vary by states, and we assume it doesn't vary within states)!

表 2: {#tbl:unnamed-chunk-18}

	variable	level	est	2.5~%	97.5 %
(Intercept)	ref prob	White:Male	0.22	0.18	0.25
race ethnicity Black	race ethnicity	Black	1.27	0.97	1.68
raceethnicityHispanic/Latino	race ethnicity	Hispanic/Latino	1.19	0.83	1.69
genderFemale	gender	Female	3.00	1.86	4.83
state.SD	sd	state	0.32	0.18	0.56

Conclusion: - biased against black;

- woman are biased due to gun ownership...