Review Session – Statistical Inference

Instructor: Yanlin Qi

Institute of Transportation Studies

Department of Statistics

University of California, Davis

General definition

- **Point estimation** is used to consider a distribution $f(x; \theta)$ with known type f but unknown parameter value θ .
- A **point estimator** $\hat{\theta}$ of θ is any (reasonable) statistic that is used to estimate θ .

Def 0.2. A point estimator $\hat{\theta}$ of θ is said to be <u>unbiased</u> if

$$E(\hat{\theta}) = \theta.$$

- It does not systematically overestimate or underestimate the true value
- \diamond Otherwise, it is <u>biased</u> and the <u>bias of θ </u> is defined as

$$B(\hat{\theta}) = E(\hat{\theta}) - \theta.$$

- •• Given a random sample $X_1, ..., X_n$ from a population with unknown variance σ^2 ,
- The sample mean

$$\bar{X} = \frac{1}{n} \sum X_i$$

is an unbiased estimator used for μ

The sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

• is the most common unbiased estimator used for σ^2

- Between two unbiased estimators (of some parameter), the one with <u>smaller variance</u> is <u>better</u>.
- **Def 0.3.** The <u>unbiased estimator $\hat{\theta}^*$ of $\underline{\theta}$ that has the <u>smallest</u> variance is called <u>a minimum variance unbiased estimator (MVUE)</u>.</u>

* Theorem 0.2. For normal populations, \bar{X} is a MVUE for μ .

Confidence Intervals

Confidence intervals – unknown μ , known σ

Confidence intervals – unknown μ , known σ

*Theorem 0.1. Assume $X_1, \ldots, X_n \stackrel{iid}{\sim} N (\mu, \sigma^2)$ where μ is unknown, but σ^2 is known.

For any given $0 < \alpha < 1$, we have

Margin of error:
$$m = z\alpha_{/2} \frac{\sigma}{\sqrt{n}}$$

❖The confidence interval at the confidence level 1− α for μ

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Figure 7-3 Finding $z_{\alpha/2}$ for a 95% Confidence Level

Confidence intervals – unknown μ , known σ

- **Example 0.2** (Continuation of the brown egg example).
- Another sample from the same population
 - Same mean $\bar{x} = 65.5$ but a larger size n = 48
 - ❖ A 95% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{48}} = 65.5 \pm 0.55.$$

❖ How large should the sample size be in order for the margin of error to be 0.2 (at level 95%)?

$$n = \left(z_{\alpha/2} \frac{\sigma}{m}\right)^2 = \left(1.96 \cdot \frac{2}{0.2}\right)^2 = 384.2.$$

The smallest sample size thus is 385.

Confidence intervals – unknown μ , unknown σ

Confidence intervals – unknown μ , unknown σ

*Assuming a normal population $N(\mu, \sigma^2)$, with both μ, σ^2 unknown, we can still construct a $1 - \alpha$ confidence intervals for

$$\mu: \quad \bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}.$$

Student's t-distribution

$$\sigma^2: \quad \left(\frac{(n-1)s^2}{\chi^2_{\alpha/2, n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2, n-1}}\right)$$

chi-squared (χ^2) distribution

One-Sided Confidence Bounds

One-Sided Confidence Bounds

Compare 1-sided CI with 2-sided CI

One-Sided Confidence Bounds for σ^2

- Assuming a random sample $X_1, X_2, X_3, ..., X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ with unknown μ but known σ^2 . Then
- $A 1 \alpha$ lower confidence bound for μ is

$$\mu > \bar{x} - c_{\alpha} \frac{\sigma}{\sqrt{n}}$$

 $A 1 - \alpha$ upper confidence bound for μ is

$$\mu < \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

Remark. For each confidence bound $m=z_{\alpha}\frac{\sigma}{\sqrt{n}}$

One-Sided Confidence Bounds

Similarly, the one-sided confidence intervals for σ^2 are

A $1-\alpha$ lower confidence bound for σ^2 is

$$\sigma^2 > \frac{(n-1)s^2}{\chi^2_{\alpha,n-1}}$$

A 1 – α upper confidence bound for σ^2 is

$$0 < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha,n-1}}$$

When σ^2 is *known*, a level α test for μ is

•
$$H_0: \mu = \mu_0$$
 vs $H_1: \mu \neq \mu_0$: Two-sided test

Reject
$$H_0$$
 if and only if $|\bar{x} - \mu_0| > z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

•
$$H_0: \mu = \mu_0$$
 vs $H_1: \mu < \mu_0$: One-sided test

Reject
$$H_0$$
 if and only if $\bar{x} - \mu_0 < -z_\alpha \frac{\sigma}{\sqrt{n}}$

•
$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu > \mu_0$$
:

One-sided test

Reject
$$H_0$$
 if and only if $\bar{x} - \mu_0 > z_\alpha \frac{\sigma}{\sqrt{n}}$

Test errors

There are two kinds of test errors depending on whether H_0 is true or not.

	Decision	
	Retain H ₀	Reject H ₀
H_0	Correct decision Type II error	Type I error Correct decision

Type I error: Rejecting the null hypothesis H_0 when it is true

type II error: Failing to reject the null hypothesis H_0 when it is false

- ❖ Because our decision is based on RVs, we can associate probabilities with the type I and type II errors
 - \diamond The probability of making a type I error is denoted by α
 - \clubsuit The probability of making a type II error is denoted by β

Hypothesis Test - Two-Sided Test

Two-sided Type I & II Error

Remark. For a two-sided test such as

$$H_0: \mu = \mu_0$$
 vs $H_a: \mu \neq \mu_0$

with corresponding decision rule

$$|\bar{x} - \mu_0| > c$$

the two equations (for determining n, c) become

$$\alpha = P \text{ (Reject H}_0 \mid H_0 \text{ true}) = P (|\overline{X} - \mu_0| > c \mid \mu = \mu_0)$$

 $\beta = P \text{ (Fail to reject H}_0 \mid H_0 \text{ false}) = P (|\overline{X} - \mu_0| < c \mid \mu = \mu')$

Two-sided Type I Error - Example

Refer to the in-class example notes

1. Decision Rule:
$$|\overline{x}-b5|>1$$

2. Hypothesis: Ho= $\lambda = 65$, Hz= $\lambda + 65$

3. Calculate standard deviation of $\overline{X} \sim N(65, (\frac{1}{10})^2)$
 $6\overline{X} = \frac{1}{10} = \sqrt{\frac{1}{3}}$

4. Convert the decision rule to the Standard $N(0,1)$
 $|\overline{X}-65|>1 \Rightarrow |\frac{\overline{X}-65}{\sqrt{\frac{1}{3}}}|> \frac{1}{\sqrt{\frac{1}{3}}}|> \sqrt{\frac{1}{3}}$
 $Z=\frac{X-M}{8}$
 $Z=-\sqrt{3}$ and $Z>\sqrt{3}$
 $Z=-\sqrt{3}$ and $Z>\sqrt{3}$
 $Z=-\sqrt{3}$
 $Z=-\sqrt{3}$

Two-sided Type II Error - Example

Refer to the in-class example notes

| Ho:
$$M=65$$
 | Hz: $M \neq 65$ | Decision Rule | $\overline{3} - \underline{M} | \overline{C}$ | $\overline{A} = 0.00$ | Type I error:

| P($M=64$) = P($\overline{3} - \underline{5} | \overline{C}| \underline{M} = 64$) = The probability that we writingly accept to [$\overline{R} - \underline{5} | \overline{C}|$ | $M = 64$) | when the is false ($M = 64$) = P($M = 64$) | $M = 64$ | $M = 64$

Standar dization:
=
$$P(\frac{65-c-64}{\sqrt{3}} < \frac{\sqrt{3}}{\sqrt{3}} < \frac{65+c-64}{\sqrt{3}} | M=64)$$

= $P(\sqrt{3}(1-c) < Z < \sqrt{3}(1+c))$
= $\Phi(\sqrt{3}(1+c)) - \Phi(\sqrt{3}(1-c))$

Hypothesis Test - 1-Sided Test

1-sided Type-I error

1-sided Type-I error

❖
$$H_0$$
: $μ = μ_0$ vs H_a : $μ < μ_0$

$$\alpha = P(\text{Reject } H_0 \mid H_0 \text{ true})$$

$$= P(\bar{X} < \mu_0 - c \mid \mu = \mu_0)$$

$$= P\left(\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} < -\frac{c}{\sigma/\sqrt{n}} \mid \mu = \mu_0\right)$$

$$= P\left(Z < -\frac{c}{\sigma/\sqrt{n}}\right) \longrightarrow \frac{c}{\sigma/\sqrt{n}} = z_{\alpha}$$

$$\bar{x} < \mu_0 - z_\alpha \frac{\sigma}{\sqrt{n}}$$
, or equivalently, $\frac{x - \mu_0}{\sigma / \sqrt{n}} < -z_\alpha$

1-sided Type-II error

❖Find n for 1-sided Type-II error

$$H_0: \mu = \mu_0$$
 vs $H_a: \mu < \mu_0$

Choose sample size n to achieve type-II error probability β at an alternative value $\mu = \mu'$:

$$\beta = P(\text{Fail to reject } H_0 \mid H_0 \text{ false})$$

$$= P(\bar{X} > \mu_0 - c \mid \mu = \mu')$$

$$= P\left(\frac{\bar{X} - \mu'}{\sigma/\sqrt{n}} > \frac{\mu_0 - c - \mu'}{\sigma/\sqrt{n}} \mid \mu = \mu'\right)$$

$$= P\left(Z > -z_\alpha + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}\right)$$

This yields that

$$z_{\beta} = -z_{\alpha} + \frac{\mu_0 - \mu'}{\sigma/\sqrt{n}}$$
, and thus, $n = \left(\frac{\sigma(z_{\alpha} + z_{\beta})}{\mu_0 - \mu'}\right)^2$.

1-sided Type-II error

Decision rule: $\bar{x} < 65 - c$

Finding the sample size for given α and β

When $\alpha \leftarrow \text{typically } 5\% \text{ and } \beta(\mu') \leftarrow \text{typically } 20\% \text{ is given:}$

To achieve a type-II error probability of β at an alternative value μ' , the required sample size is

• for the two-sided test $(H_0: \mu = \mu_0 \text{ vs } H_a: \mu \neq \mu_0)$:

$$n \approx \left(\frac{\sigma(z_{\alpha/2} + z_{\beta})}{\mu_0 - \mu'}\right)^2$$

• for both one-sided tests $(H_0: \mu = \mu_0 \text{ vs } H_a: \mu < \mu_0)$:

$$n = \left(\frac{\sigma(z_{\alpha} + z_{\beta})}{\mu_0 - \mu'}\right)^2$$

Other examples by HW problems

