B38DB: Digital Design and Programming Combinational Logic Design – Karnaugh Maps

Mustafa Suphi Erden

Heriot-Watt University
School of Engineering & Physical Sciences
Electrical, Electronic and Computer Engineering

Room: EM 2.01

Phone: 0131-4514159

E-mail: m.s.erden@hw.ac.uk

Simplification of Boolean Functions with Karnaugh Maps

- <u>Karnaugh maps</u> → a powerful graphical method of logic simplification that will always give the simplest sum-of-products form.
- Transfer logic values from a Boolean statement or a truth table into a Karnaugh map
- The *arrangement of 0's and 1's* within the Karnaugh map leads directly to a simplified Boolean statement

Plotting Karnaugh Maps From Logic Expressions

- Cells in the Karnaugh map are the equivalent of a truth table
- Each cell corresponds to a **minterm** (or a state from the function's truth table)
- A **minterm** is a product term that includes all the function's variables exactly once, in either true or complemented form

$$a = w'x'y'z' + w'x'yz' + w'x'yz + w'xy'z + w'xyz' + w'xyz + wx'y'z' + wx'y'z$$

- The adjacent areas of Karnaugh maps must always be neighbouring each other
 - Each axis must be labelled using **Gray code** and cannot be extended to more than two variables.

2-D Kaunaugh maps allow expressions with up to 4 variables; **3-D Karnaugh maps** have to be used for 5 or 6 variables (but cumbersome).

Two variable Karnaugh map

Three variable Karnaugh map

Four variable Karnaugh map

Example: Three Variables Karnaugh Map (2/7)

- Remember → A product term in which all the variables appear is called a minterm of the function
- Every function can be written as **a sum of minterms**, which is a special kind of sum of products (SOP) form.

$$F(a,b,c) = \sum m(1,2,3,5,6) = \overline{a}\overline{b}c + \overline{a}b\overline{c} + \overline{a}bc + a\overline{b}c + a\overline{b}\overline{c}$$

$$m(0) = \overline{a}\overline{b}\overline{c} \qquad m(4) = a\overline{b}\overline{c}$$

$$m(1) = \overline{a}\overline{b}c \qquad m(5) = a\overline{b}c$$

$$m(2) = \overline{a}\overline{b}\overline{c} \qquad m(6) = a\overline{b}\overline{c}$$

$$m(3) = \overline{a}\overline{b}c \qquad m(7) = a\overline{b}c$$

Plotting Karnaugh Maps From Truth Table

- Plotting a Karnaugh map from a truth table for a function
 - plotting a '1' in the map of a particular minterm,
 - a '1' is plotted for each map square where the output is 1 (G=1)
 - squares containing logic 0 terms are left blank

A	В	C	G	AH				
0	0	0	0	c \	00	01	11	10
0	0	1	0				4	
0	1	0	1	0			1	
0	1	1	1					
1	0	0	0	,		1	1	
1	0	1	0	1		1	1	
1	1	0	1					
1	1	1	1					

Simplification of Boolean Function Using Karnaugh Maps -Terminology-

- An **implicant** is a product term that may include fewer than all the function's variables, but is a term that evaluates to 1 only if the function should evaluate to 1.
- Graphically, it is any **legal-sized circle** including 1's in a Karnaugh map. Legal-sized circles in a Karnaugh map are one, two, four, eight, sixteen, or 2^k adjacent cells.

BC\A	0	1
00		
01		
11		
10		1

 \rightarrow 7 implicants

Prime Implicant of a Boolean Function

- A **prime implicant** of a function is an implicant with the property that if any variable were eliminated from the implicant, the result would be a term covering a minterm not in the function's on-set.
- Graphically, it is any **maximal circle** that covers 1's in a Karnaugh map.

BC\A	0	1
00		
01	1	
11		
10		1

Essential Prime Implicant of a Boolean Function

- An **essential prime implicant** is a prime implicant that is the *only* prime implicant that covers a particular minterm in a function's on-set.
- Graphically, it is the only circle (the largest possible, of course, since the circle must represent a prime implicant) that covers a particular 1.

BC\A	0	1
00		
01	1	
11	1	1
10		1

Minimal Cover of a Boolean Function

- A minimal cover of a function is a (there may be more than one) smallest set of prime implicants.
- Graphically, it is a **smallest set of circles** that cover all 1's in a Karnaugh map.

BC\A	0	1
00		
01	1	
11	1	
10)	1

Guidelines for Simplifying Functions

- Each cell on a K-map of *n* variables has *n* logically adjacent cells (i.e. differing in exactly one variable).
- When combining cells (with a circle), always group them in **powers of** $2^m (m=0,1,2,...)!$
- In general, grouping 2^m cells eliminates m variables.
- Group as many cells as possible.
- Make as few groups as possible. Each group represents a separate product term.
- You must cover each minterm at least once. However, it may be covered more than once.

K-Map Simplification Procedure

- **Step1**: Plot the K-map
- Step2: Circle <u>all</u> prime implicants on the K-map
- Step3: Identify and select all essential prime implicants for the cover
- **Step4**: Select a minimum subset of the remaining prime implicants to complete the cover
- Step 5: Read the K-map

Example 1: Three Variables Karnaugh Map (3/7)

- Every function can be written as **a sum of minterms**, which is a special kind of sum of products (SOP) form.
- Step 1: Plot the K-map

$$F(a,b,c) = \sum m(1,2,3,5,6) = \overline{a}\overline{b}c + \overline{a}b\overline{c} + \overline{a}bc + a\overline{b}c + a\overline{b}\overline{c}$$

ab c	00	01	11	10
0		1	1	
1	1	1		1

Example 1: Three Variables Karnaugh Map (4/7)

• Step 2: Circle <u>ALL</u> Prime Implicants

$$F(a,b,c) = \sum m(1,2,3,5,6)$$

Example 1: Three Variables Karnaugh Map (5/7)

Step 3: Identify Essential Prime Implicants

$$F(a,b,c) = \sum m(1,2,3,5,6)$$

Example 1: Three Variables Karnaugh Map (6/7)

 Step 4: Select a minimum subset of remaining prime implicants to complete the cover

$$F(a,b,c) = \sum m(1,2,3,5,6)$$

Example 1: Three Variables Karnaugh Map (7/7)

Step 5: Read the map

$$F(a,b,c) = \sum m(1,2,3,5,6)$$

$$F(a,b,c) = \overline{ab} + \overline{bc} + \overline{bc}$$

K-Map Simplification Procedure for POS Functions

- The above method is to simplify the Boolean expression into minimal sum of products (SOP).
- If we want to get the minimal product of sums (POS):
 - **Step1**: Plot the K-Map for the function $\overline{\mathbf{F}}$
 - **Step2**: Circle <u>all</u> prime implicants on the K-Map
 - Step3: Identify and select all essential prime implicants for the cover
 - **Step4**: Select a minimum subset of the remaining prime implicants to complete the cover
 - **Step5**: Read the K-Map
 - Step6: Use DeMorgan's theorem to convert \overline{F} to \overline{F} in POS form

Maxterms

- A maxterm is a sum term that contains all the variables in complemented or un-complemented form.
- As before, if there are n variables, then there are 2^n maxterms.

$$F(a,b,c) = \prod M(1,2,3,5,6)$$

$$M(0) = a+b+c;$$

$$M(1) = a+b+\overline{c};$$

$$M(5) = \overline{a}+b+\overline{c};$$

$$M(6) = \overline{a}+\overline{b}+c;$$

$$M(3) = a+\overline{b}+\overline{c};$$

$$M(7) = \overline{a}+\overline{b}+\overline{c};$$

According to the **DeMorgan's theorem**,

$$F(a,b,c) = \prod M(1,2,3,5,6)$$
$$= \sum m(0,4,7)$$

Example

Use a K-Map to simplify the following Boolean expression into a minimal product of sums (POS):

$$F(a,b,c) = \prod M(1,2,3,5,6)$$

- Please finish it by yourself.
- Solution:

$$\overline{F} = \overline{ab} + b\overline{c} + \overline{bc}$$

$$F = \overline{ab} + b\overline{c} + \overline{bc}$$

$$= (a + \overline{b})(\overline{b} + c)(b + \overline{c})$$

