

davidcorzo@ufm.edu (Sign Out)

Home

My Assignments

Grades

Communication

Calendar

My eBooks

6.1 & Aacute; rea entre Curvas (Homework)

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score https://www.webassign.net/web/Student/Assignment-Responses/last?dep=21548009

1. 3/3 points Previous Answers SCalcET8 6.1.001.

My Notes

Ask Your Teacher

Find the area of the shaded region.

2. 3/3 points Previous Answers SCalcET8 6.1.003.

My Notes

Ask Your Teacher

Find the area of the shaded region.

Need Help?

Watch It

Talk to a Tutor

3. 3/3 points Previous Answers SCalcET8 6.1.005.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle.

$$y = e^{x}$$
, $y = x^{2} - 1$, $x = -1$, $x = 1$

Find the area of the region.

4. 3/3 points Previous Answers

SCalcET8 6.1.011.MI.SA.

My Notes

Ask Your Teacher

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle. Find the area of the region.

$$x = 54 - 6y^2$$
, $x = 6y^2 - 54$

Step 1

Sketch the region.

Step 2

We will find this area by integrating with respect to y.

The integrand is obtained by taking the right-hand function minus the left-hand function, or

$$(54 - 6y^2 - ($$
 $$$6y2-54$
 $\checkmark [6y^2 - 54])).$

Step 3

The limits on the integral are the *y*-values where the curves intersect.

Equating $54 - 6y^2 = 6y^2 - 54$, we find that the two solutions are $y_1 = -3$ and $y_2 = \boxed{3}$ \checkmark

Step 4

Now, the area is given by

$$\int_{-3}^{3} \left[(54 - 6y^2) - (6y^2 - 54) \right] dy = \int_{-3}^{3} \left[(54 - 6y^2) - (6y^2 - 54) \right] dy$$

Step 5

We have

$$\int_{-3}^{3} (108 - 12y^{2}) dy = \begin{bmatrix} \\ \$\$108y - 4y3 \end{bmatrix}^{3}$$

$$108y - 4y^{3}$$

Performing this operation and simplifying fully gives us the exact area of the region, $\boxed{432}$ \checkmark \checkmark 132 . You have now completed the Master It.

5. 3/3 points Previous Answers SCalcET8 6.1.027.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves.

$$y = 4/x$$
, $y = 16x$, $y = \frac{1}{4}x$, $x > 0$

Find its area.

4(In(4)-In(12))

6. 3/3 points Previous Answers SCalcET8 6.1.AE.005.

Ask Your Teacher

EXAMPLE 5 Find the area of the region bounded by the curves $y = \sin(x)$, $y = \cos(x)$, x = 0, and $x = \pi/2$.

SOLUTION The points of intersection occur when sin(x) = cos(x), that is, when

(since $0 \le x \le \pi/2$). The region is sketched in the

figure. Observe that $cos(x) \ge sin(x)$ when \checkmark

 $sin(x) \ge cos(x)$ when \checkmark .

Therefore the required area is

but

In this particular example we could have saved some work by noticing that the region is symmetric about $x = \pi/4$ and so

$$A = 2A_1 = 2\int_0^{\pi/4} (\cos(x) - \sin(x)) \ dx.$$

Submit Assignment

Save Assignment Progress

<u>Home</u> <u>My Assignments</u>

Copyright 2019 Cengage Learning, Inc. All Rights Reserved