Overparameterization of Realistic Quantum Systems

Matthew Duschenes*, Juan Carrasquilla, and Raymond Laflamme

1. Problem

- ullet Learn time-dependent *experimental parameters* for *precise* control of quantum systems Λ i.e) operator compilation $\Lambda pprox U$, or state preparation $ho_\Lambda pprox
 ho_U$ with trace overlap fidelities
- How do realistic effects (constrained parameters θ , noise γ) affect the optimal system?
- Are learning phenomena such as overparameterization [1] still observed in realistic settings?

3. Hamiltonian Ansatz

- Systems are represented as *channels* $\Lambda_{\theta\gamma} = \mathcal{N}_{\gamma} \circ \mathcal{U}_{\theta}$ with unitary evolution \mathcal{U}_{θ} , and noise \mathcal{N}_{γ}
- Evolution generated by Hamiltonians with localized generators $\{G_{\mu}\}$ (Coloured in circuit \longrightarrow)

$$H_{\theta}^{(\lambda)} = \sum_{\mu} \theta_{\mu}^{(\lambda)} G_{\mu} \quad \to \quad U_{\theta} \approx \prod_{\lambda}^{M} U_{\theta}^{(\lambda)} \quad : \quad U_{\theta}^{(\lambda)} = e^{-i\delta H_{\theta}^{(\lambda)}} \approx \prod_{\mu} e^{-i\delta\theta_{\mu}^{(\lambda)} G_{\mu}} \tag{1}$$

i.e) NMR Hamiltonian with variable transverse fields and constant longitudinal fields [2]

$$H_{\theta}^{(\lambda)} = \sum_{i} \theta_i^{x(\lambda)} X_i + \sum_{i} \theta_i^{y(\lambda)} Y_i + \sum_{i} h_i Z_i + \sum_{i < j} J_{ij} Z_i Z_j$$
 (2)

• Noise generated by constant *Kraus* operators $\{\mathcal{K}_{\gamma_{\alpha}}\}$ i.e) Dephasing $\{\sqrt{1-\gamma}\ I,\ \sqrt{\gamma}\ Z\}$

$$\rho \to \rho_{\Lambda_{\theta\gamma}} = \prod_{\lambda}^{M} \mathcal{N}_{\gamma} \circ \mathcal{U}_{\theta}^{(\lambda)}(\rho) = \prod_{\lambda}^{M} \left[\sum_{\alpha} \mathcal{K}_{\gamma_{\alpha}} \ U_{\theta}^{(\lambda)} \ \rho \ U_{\theta}^{(\lambda)^{\dagger}} \ \mathcal{K}_{\gamma_{\alpha}}^{\dagger} \right]$$
(3)

• Native generators $\{G_{\mu}\}$ form a dynamical Lie algebra \mathcal{G} , with dimensionality $G=|\mathcal{G}|$, that determines the expressibility of an ansatz, depending if the circuit depth $M \leq O(G)$ [3]

2. Variables

- Number of particles $\sim O(1)$
- Number of time steps $\sim O(10^1-10^4)$
- Trotterization time step $\sim O(\mu s)$
- Evolution time $\leq M$, $M\delta \sim O(\text{ms})$
- Constant longitudinal coupling $\sim O({\rm Hz})$
- Constant longitudinal field $\sim O(\mathrm{kHz})$
- Variable transverse field $\sim O(\mathrm{MHz})$
- Noise probability $\sim O(10^{-12}-10^{-1})$

4. Variational Circuit

5. Methods

- Fast JIT compilation and gradient descent
- Analogous gradients of noisy/less channels

6. Constrained Optimization

- Haar random unitary compilation for N=4 qubits, with bounded fields shared across all qubits, and Dirichlet boundary conditions
- Overparameterized regime is reached with constraints for sufficient depth M > O(G) (For universal \mathcal{G}_{NMR} , $G = 2^{2N} 1 = 255$)

- (b) Negligible Relative Change of Parameters
- (c) Fisher Information Rank Saturation at G

7. Noisy Optimization

- ullet Haar random state preparation for N=4 qubits, with independent dephasing noise across qubits
- Training with noise learns about noiseless preparation, up to a critical $\gamma^* \sim O(M^{-1})$, where noise catastrophically accumulates

8. Conclusions

- Overparameterization is robust to constraints, and requires $\sim O(N)$ greater evolution time
- ullet Accumulation of noise induces a critical depth M_{γ} that prevents fidelity convergence
- Non-trivial compromises between numerical and experimental feasibility

9. References

- [1] J. Liu, et al. Phys. Rev. X Quantum 3, 3 (2020).
- [2] J. Peterson, et al. Phys. Rev. Appl. **13**, 5 (2020).
- [3] M. Larocca, et al. arXiv:2109.11676 [quant-ph] (2021).