Free Body Diagrams

System

- any isolated part or portion of a machine or structure

- Used to identify and isolate both internal and external toads on a design element (system)

- Defines coordinate system (5)

- Defins all Known and unknown

loads linewhere

SF: at

Wenton's Second Law EM = dH nome

Euler's Equation of Motion

Equilibrium

Statue Equilibrium
La object is at rest

Find the Internal Loads at B-B

$$\sum F = 0$$

$$\sum F_{x} = R_{x} = 0$$

$$\sum F_{y} = R_{y} - P = 0$$

$$\sum F_{y} = R_{y} - P = 0$$

$$\sum F_{y} = P$$

$$\sum F_{y} = R_{y} = 0$$

$$\sum F_{y} = 0$$

$$\sum F_{y$$

Bending Stresses
Omax = Mc Second was moment of area
Centroid
Normal Strass P A
Torsional Stress Torsional Stress The roulius of outer surface The roulius of outer surface
Torsional Stress Tradius of outer surface Thux = Tr Tradius of outer surface polar second moment of area

Second Moment Of area * polar moment of area

Table A-18 in the book
provides area moments of inertia.

Wikipedia offers the same thing!

http://en.wikipedia.org/wiki/ List_of_area_moment_of_inertia

neded to find the How many FBBs are internal loads at estate cross sections?

C. 5

Fix this at all the joints.

Is beam A-B in:

A. Tension

B. Compression

C. Compression + bending

D. Tension + bending

compression /tension

If only pin joints and forces at pins, there is No way to put the member into bending (ignoring buckling loads).