Questions de cours.

- **1.** Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites convergeant vers des limites réelles respectives u_∞ et v_∞ . Montrer que $u_nv_n\xrightarrow[n\to+\infty]{}u_\infty v_\infty$.
- 2. Énoncer et démontrer le théorème de la limite monotone.
- 3. Énoncer et démontrer le théorème des suites adjacentes.

1 Suites numériques

Exercice 1.1 (*). Montrer que la suite $(\sin n)_{n\in\mathbb{N}}$ diverge.

Exercice 1.2 (Moyenne arithmético-géométrique, \star).

1. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2$, $2\sqrt{ab} \leqslant a+b$.

On définit deux suites de réels positifs $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ par $u_0=a,\ v_0=b$ et :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n v_n} \ \text{et} \ v_{n+1} = \frac{1}{2} (u_n + v_n).$$

- **2.** Montrer que, pour tout $n \in \mathbb{N}^*$, $u_n \leqslant v_n$, $u_n \leqslant u_{n+1}$ et $v_{n+1} \leqslant v_n$.
- **3.** Montrer que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent vers une même limite, appelée moyenne arithméticogéométrique de a et b et notée M(a,b).
- **4.** Calculer M(a, a) et M(a, 0) pour $a \in \mathbb{R}_+$.
- **5.** Exprimer $M(\lambda a, \lambda b)$ en fonction de M(a, b) pour $(a, b) \in (\mathbb{R}_+)^2$ et $\lambda \in \mathbb{R}_+$.

Exercice 1.3 (Théorème de Cesàro, \star). Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. Pour $n\in\mathbb{N}$, on pose :

$$c_n = \frac{1}{n+1} \sum_{k=0}^n u_k.$$

- **1.** Si $u_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}$, montrer que $c_n \xrightarrow[n \to +\infty]{} \ell$.
- **2.** On souhaite étudier la réciproque. On suppose donc que $c_n \xrightarrow[n \to +\infty]{} \ell \in \mathbb{R}$.
 - **a.** Donner un exemple montrant que $(u_n)_{n\in\mathbb{N}}$ n'est pas nécessairement convergeante.
 - **b.** En supposant de plus $(u_n)_{n\in\mathbb{N}}$ monotone, montrer que $u_n \xrightarrow[n\to+\infty]{} \ell$.

Soit maintenant $(\alpha_n)_{n\in\mathbb{N}}$ une suite de réels positifs avec $\alpha_0 > 0$. On définit :

$$\hat{c}_n = \frac{\sum_{k=0}^n \alpha_k u_k}{\sum_{k=0}^n \alpha_k}.$$

3. Donner une CNS sur la suite $(\alpha_n)_{n\in\mathbb{N}}$ pour que, pour toute suite $(u_n)_{n\in\mathbb{N}}$ convergeant vers $\ell\in\mathbb{R}$, la suite $(\hat{c}_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Exercice 1.4 (Suites de Cauchy, \star). Une suite réelle $(u_n)_{n\in\mathbb{N}}$ est dite de Cauchy lorsque :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p, q \geqslant N, |u_p - u_q| \leqslant \varepsilon.$$

- 1. Montrer que toute suite convergeante est de Cauchy.
- **2.** On se donne $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Le but est de montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
 - **a.** Montrer que $(u_n)_{n\in\mathbb{N}}$ est bornée.
 - **b.** Etudier les suites $(\alpha_p)_{p\in\mathbb{N}}$ et $(\beta_p)_{p\in\mathbb{N}}$ définies par $\alpha_p = \inf_{n\geqslant p} u_n$ et $\beta_p = \sup_{n\geqslant p} u_n$.
 - **c.** Conclure.

Exercice 1.5 (*). Pour $n \in \mathbb{N}^*$, on définit $g_n : x \in \mathbb{R}_+^* \longmapsto nx \ln x - 1$.

- **1.** Pour $n \in \mathbb{N}^*$, montrer qu'il existe un unique $\pi_n \in \mathbb{R}_+^*$ t.q. $g_n(\pi_n) = 0$.
- **2.** La suite $(\pi_n)_{n\in\mathbb{N}^*}$ converge-t-elle? Si oui, quelle est sa limite?
- **3.** On note $\ell = \lim_{n \to +\infty} \pi_n$. Déterminer $\lim_{n \to +\infty} n (\pi_n \ell)$.

Exercice 1.6 (*). Pour $n \in \mathbb{N}^*$, on définit $f_n : x \in \mathbb{R}_+ \longmapsto x^{n+1} + x^n + 2x - 1$.

- **1.** Pour $n \in \mathbb{N}^*$, montrer qu'il existe un unique $u_n \in \mathbb{R}_+$ t.q. $f_n(u_n) = 0$.
- **2.** Étudier la suite $(u_n)_{n\in\mathbb{N}^*}$.

Exercice 1.7 (*). Étudier la suite $(z_n)_{n\in\mathbb{N}}$ définie par $z_0\in\mathbb{C}$ et $\forall n\in\mathbb{N},\ z_{n+1}=\frac{1}{2}(z_n+|z_n|)$.

Exercice 1.8 (*). Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $\forall n\in\mathbb{N},\ u_{n+1}=u_n+\frac{1}{u_n}$.

- **1.** Montrer que $(u_n)_{n\in\mathbb{N}}$ diverge.
- **2.** Montrer que $\frac{u_n}{\sqrt{2n}} \xrightarrow[n \to +\infty]{} 1$.

Exercice 1.9 (*). Soit $(r_n)_{n\in\mathbb{N}}\in\mathbb{Q}^{\mathbb{N}}$. On suppose que $r_n\xrightarrow[n\to+\infty]{}\ell\in\mathbb{R}\setminus\mathbb{Q}$ et on note $r_n=\frac{p_n}{q_n}$, avec $(p_n,q_n)\in\mathbb{Z}\times\mathbb{N}^*$ et $p_n\wedge q_n=1$ pour $n\in\mathbb{N}$. Montrer que $q_n\xrightarrow[n\to+\infty]{}+\infty$.

Exercice 1.10 (*). Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites d'éléments de [0,1]. On suppose que $u_nv_n\xrightarrow[n\to+\infty]{}1$.

Montrer que $u_n\xrightarrow[n\to+\infty]{}1$ et $v_n\xrightarrow[n\to+\infty]{}1$.

Exercice 1.11 (*). Soit $f: \mathbb{N}^* \to \mathbb{N}^*$ une bijection. Montrer que si la suite $\left(\frac{f(n)}{n}\right)_{n \in \mathbb{N}^*}$ converge vers $\ell \in \mathbb{R}$, alors $\ell = 1$.

Exercice 1.12 (*). Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle bornée. On note :

$$\limsup_{n \to +\infty} u_n = \lim_{p \to +\infty} \left(\sup_{n \ge p} u_n \right) = \inf_{p \in \mathbb{N}} \left(\sup_{n \ge p} u_n \right).$$

- **1.** Montrer que $\limsup_{n\to+\infty} u_n$ est la plus grande valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$. Proposer une définition analogue de $\liminf_{n\to+\infty} u_n$ de telle sorte que $\liminf_{n\to+\infty} u_n$ soit la plus petite valeur d'adhérence de $(u_n)_{n\in\mathbb{N}}$.
- **2.** Pour $\ell \in \mathbb{R}$, montrer que $\ell = \limsup_{n \to +\infty} u_n$ ssi pour tout $a > \ell$, l'ensemble $\{n \in \mathbb{N}, u_n \geqslant a\}$ est fini et pour tout $a < \ell$, l'ensemble $\{n \in \mathbb{N}, u_n \geqslant a\}$ est infini.

Exercice 1.13 (*). Soit $a \in \mathbb{R}_+^*$. Déterminer si elle existe la limite de la suite $(\lfloor a^n \rfloor^{1/n})_{n \in \mathbb{N}^*}$.

Exercice 1.14 (*). Pour $n \in \mathbb{N}^*$, on appelle u_n le dernier chiffre de l'écriture en base 10 de n^n . Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est périodique et donner une période de $(u_n)_{n\in\mathbb{N}^*}$.

Exercice 1.15 (Centrale '16, \star). Pour $n \in \mathbb{N}^*$, on note $P_n : x \in \mathbb{R}_+ \longmapsto \sum_{k=1}^n \frac{x^k}{k}$.

- **1.** Pour $n \in \mathbb{N}^*$, montrer qu'il existe un unique $x_n \in \mathbb{R}_+$ t.q. $P_n(x_n) = 1$.
- **2.** Étudier $(x_n)_{n\in\mathbb{N}^*}$.