374 PU M Sc Physics

1 of 100

145 PU_2016_374_E

Given that the Bohr energy of a hydrogen atom is proportional to the reduced mass of the system. Then the ground state energy of the positronium (positron-electron system) is approximately equal to:-

- -13.6 eV
- -6.8 eV
- -27.2 eV
- -3.4 eV

2 of 100

172 PU_2016_374_E

The diameter of nitrogen molecule is 3.2 X 10^{-10} m. The number of molecules at 0 °C and 1 atm. pressure is 2.69 X 10^{25} per m³. The mean free path for nitrogen molecules is:-

- 0.005786 X 10⁻⁷ m
- 0.007785 X 10⁻⁶ m
- [©] 0.001785 X 10⁻⁵ m
- O.008175 X 10⁻⁵ m

3 of 100

211 PU_2016_374_E

If Silicon (Si) is doped with 10¹⁹ trivalent impurity atoms, the position of the Femi level is:-

- Position of the Femi level is below the Conduction band
- Position of the Femi level is above the Conduction band
- Position of the Femi level is below the Valence band
- Position of the Femi level is above the Valence band

4 of 100

204 PU_2016_374_E

Cube roots of unity are:-

$$0^{i,\frac{1\pm i\sqrt{3}}{2}}$$

$$0 \quad i, \frac{-1 \pm i\sqrt{3}}{2}$$

$$0 1, \frac{-1 \pm i\sqrt{3}}{2}$$

$$0 \quad 1, \frac{1 \pm i\sqrt{3}}{2}$$

217 Clip	f 100 PU_2016_374_E oper circuit can be used for:-
0	Removing and Shifting part of a signal
0	Shifting part of a signal
0	Removing and Shifting the complete signal
0	Removing part of a signal
164	f 100 PU_2016_374_E cosity of a gas is directly proportional to:- Temperature
\circ	Density of gas
0	T ²
0	$T^{1/2}$
114	f 100 PU_2016_374_E th the rise of temperature, the velocity of sound:-
0	remains the same
0	is independent of temperature
0	decreases
0	increases
218 Wha	f 100 PU_2016_374_E at are biasing conditions for transistor to be an amplifier:-
0	Emitter junction should be reverse bias and collector junction should be forward bias
0	Both the emitter and collector junctions should be reverse bias
0	Both the emitter and collector junctions should be forward bias
0	Emitter junction should be forward bias and collector junction should be reverse bias
9 of 100 108 PU_2016_374_E A mass M is moving with a constant velocity parallel to x-axis. Its angular momentum with respongin is:-	
0	zero
0	Increasing
0	constant
O	Decreasing

117 PU_2016_374_E

The distance between two successive nodes is:-

- Ο 2λ
- Ω_λ
- [©] λ/2
- λ/4

11 of 100

107 PU_2016_374_E

If the distance between two masses is doubles, gravitational attraction between them is:-

- reduced to quarter
- Tripled
- reduced to half
- Doubled

12 of 100

206 PU_2016_374_E

If $F(t) = t^{-1/2}$, then Laplace transform of F(t) is:-

- $0 = \frac{\pi}{s^{-3/2}}$
- $\circ \sqrt{\frac{s}{\pi}}$
- $\int \frac{\pi}{s}$
- 0 ,

13 of 100

146 PU 2016 374 E

Which of the following conditions would lead to non-stationary interference pattern:-

- Sources have slightly different frequencies
- Sources have different amplitudes
- Sources are partially coherent
- Sources have different polarizations

14 of 100

212 PU_2016_374_E

In p-n junction rectifier, the observed small reverse current at 300 K is due to:-

0	Doping of pentavalent and trivalent impurity atoms
0	Doping of pentavalent impurity atoms
0	Doping of trivalent impurity atoms
0	Increase of temperature above 0 K
191	of 100 PU_2016_374_E =f(x, y) then with usual notations, u _{xy} =u _{yx} if:-
0	u _x is continuous
0	u, u _x , u _y are continuous
0	u _y is continuous
	u is continuous
216 Wh	of 100 PU_2016_374_E at is the working principle of light emitting diode:-
0	light emitting diode works under forward bias with radiative transition
0	light emitting diode works under reverse bias with non-radiative transition
0	light emitting diode works under forward bias with non-radiative transition
0	light emitting diode works under reverse bias with radiative transition
133 Giv	of 100 PU_2016_374_E en that $\Psi(x,t)$ is the wave function of a quantum mechanical particle, α is an arbitrary complex stant and A is the expectation value of a physical quantity. Which of following is the expectation value ne same physical quantity when the new wave function $\alpha \Psi(x,t)$ is used instead of $\Psi(x,t)$?
0	Α / (α α ๋)
0	αΑ
0	A
0	α α Α
120	of 100 PU_2016_374_E en a star is approaches the earth, the lines are shifted towards the end of:- yellow
0	green
0	blue
•	red
19	of 100

173 PU_2016_374_E A Carnot's engine has an efficiency of 30 % when the temperature of the sink is 27 °C. What must be the change in temperature of the source to make its efficiency 50%:-
C 428. 57 K
° 300 K
128.57 K
C 171.43 K
20 of 100 200 PU_2016_374_E
The independent solutions of the equation: $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$ are:
exp(2x) and exp(x)
$1/x$ and x^2
sin(2x) and cos(x)
exp (2x) and exp(-x)
21 of 100 110 PU_2016_374_E
Bernoulli's principle is based on the law of conservation of:-
mass
both mass and momentum
energy
momentum
22 of 100 176 PU_2016_374_E Consider the following processes: The temperatures of two identical gases are increased from the same initial temperature to the same final temperature. Reversible processes are used in both cases. For gas A, the process is carried out at constant volume while for gas B it is carried out at constant pressure. The change in entropy is:
same for A and B
greater for B
greater for A only if the initial temperature is high
greater for A
23 of 100

102 PU_2016_374_E
A moving body is covering the distance directly proportional to the square of the time. The acceleration of

the body is:-

Increasing

0	zero		
0	constant		
\circ	Decreasing		
126 A ci	of 100 PU_2016_374_E rcular r ₀ disc of radius moves, with respect to an observer, at relativistic speed along the direction of a neter of the circle. To the observer, the disc would now appear to be:-		
0	an ellipse with semi-major axis $b = r_0$		
0	a circle of radius 0 r < r ₀		
0	a circle of radius $0 r > r_0$		
0	an ellipse with semi-major axis $a = r_0$		
193	PU_2016_374_E set of positive even numbers, with usual multiplication forms:- an infinite group only a monoid a finite group only a semi group		
185	26 of 100 185 PU_2016_374_E The value of the integral $I = \frac{1}{2\pi i} \oint \frac{e^z}{z-2} dz$, where C is the circle $ z = 3$ is:-		
0			
0			
	$-e^2/2$		
0	$e^2/2$		
177 If A	of 100 PU_2016_374_E is a singular matrix, then A adj(A):-		
0	is an orthogonal matrix		
0	is a zero matrix		
0	is a scalar matrix		
	is an identity matrix		
	of 100 PU_2016_374_E		

Name the following differential equation $\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2\lambda y = 0$, where λ is a constant:
Laguerre Differential Equation
Lagendre's differential equation
Bessel's differential equation
Hermite's differential equation
29 of 100 112 PU_2016_374_E A pendulum of length L supporting mass M swings back and forth with period T . If the mass is doubled, the new period of the pendulum is:-
\circ $\sqrt{2}T$
° _{2T}
\circ _T
30 of 100 118 PU_2016_374_E Two tuning forks A and B vibrating simultaneously produces 15 beats. Frequency of B is 512 Hz. If one arm of A is fixed(filed), then the no. of beats increases. Frequency of A will be:- 507 502 522 517
31 of 100 132 PU_2016_374_E Which of the following functions obey the time-dependent Schrödinger equation for a free particle?
$\bigcirc \exp(i\vec{k}\cdot\vec{r}-i\omega t)$
$\cos(\vec{k}\cdot\vec{r}-\omega t)$
$C = \cos(\vec{k} \cdot \vec{r} - \omega t)$
$\bigcirc \exp(\vec{k}\cdot\vec{r}-\omega t)$
32 of 100 140 PU_2016_374_E A wave function of a quantum mechanical particle obeys the property Ψ (-x) = ± Ψ (x). If the particle can move from $x = -\infty$ to $x = +\infty$, then the expectation value of the position of the particle is equal to:

C _{±∞}

0	0
0	±1
0	∞
127 Give part this	PU_2016_374_E en that the mass and size of a hypothetical particle can be measured only when it is in motion. This icle is assumed to be born with an imaginary rest mass. Which one of the following is NOT true about particle? The particle can travel only at speed greater than that of light. Its observable mass increases as its speed decreases. The energy of the particle decreases as its speed increases. The energy of the particle increases as its mass decreases.
134	of 100 PU_2016_374_E sical quantities in quantum mechanics are represented by Hermitian matrices because:-
0	they are square matrices.
0	their diagonal elements are real.
0	their eigenvalues are real.
0	their determinants are real.
139	PU_2016_374_E hydrogen atom, the energy of the second excited state is equal to:1.51 eV -3.4 eV -13.6 eV -6.8 eV
111 Mer O O	of 100 PU_2016_374_E niscus of mercury in capillary is:- convex plane cylindrical concave
405	DI 2010 071 5

105 PU_2016_374_E A canon after firing recoils due to:-

0	Newton's first law of motion
0	Newton's second law of motion
0	Newton's third law of motion
0	Backward thrust of gases produced
101	of 100 I PU_2016_374_E e vectors A and B are such that A + B = A - B, then the angle between the vectors will be:- 180° 0° 60° 90°
	of 100 2 PU_2016_374_E
	the order and degree of the differential equation are $\frac{d^2y}{dx^2} = \left[4 + \left(\frac{dy}{dx}\right)^2\right]^{3/4}$:
0	2,1
0	2,4
0	4,2
0	1,2
122 If th	of 100 2 PU_2016_374_E ne distance between the sounding body and the observer is doubled, then the intensity of sound comes:- 1/4 1/8 1/10 1/2
167	of 100 7 PU_2016_374_E a cyclic process the change in internal energy is:-
0000	can not be determined
	equal to area of cycle
	infinity
	zero

104 PU_2016_374_E A particle P moving in a circle of radius r with a uniform speed u. C is the center of the circle and AB is a diameter, the angular velocity of P about A and C are in the ratio:-	
C 1:4	
C 4:1	
° 2:1	
° 1:2	
43 of 100 128 PU_2016_374_E A particle at rest with respect to a laboratory frame is represented in a Minknowski's space-time corresponding to the laboratory frame by:-	
a straight line parallel to time-axis.	
a straight line at 45° to the time-axis.	
a point.	
a hyperbola with its vertex at the origin.	
44 of 100 159 PU_2016_374_E Light source of power 1W with wavelength of 500nm will emit:- 6.0 x10 ¹⁸ photons per second 3.0 x10 ¹⁸ photons per second	
6.0 x10 ¹⁵ photons per second	
3.0 x10 ¹⁵ photons per second	
45 of 100 155 PU_2016_374_E Find the distance between two points having a phase difference of 2p for a wave of frequency 1600 Hz travelling with velocity of 400m/s:-	
O.5 m	
4.0 m	
0.25 m	
2.0 m	
46 of 100 203 PU_2016_374_E If F(t) = 1, then Laplace transform of F(t) is:-	
1/s	
0	

0	does not exist
135 Phy	of 100 PU_2016_374_E sical quantities in quantum mechanics are represented by matrices because:- the product of two matrices in general do not give the same result when the order of matrices is ersed.
0	the matrix elements of an operator are all the possible values that the physical quantity can have. the observable value of a physical quantity is the average of the matrix elements. the matrix elements are the probabilities of a particular value of the physical quantity can have
214	Low doping concentration of p type and n type of impurity atoms, absorption of heat and reverse bias High doping concentration of p type and n type of impurity atoms, dissipation of heat and forward
153	PU_2016_374_E ge visibility of interference fringes produced by two interacting light sources does not depends on Linewdith of the sources Distance between the sources if they are emitting plane waves Intensity of the light sources Polarization of the light sources
215	PU_2016_374_E at are reasons to get the constant Zener voltage (Vz), even if there is a change in the line voltage 1):- High doping concentration of p type and n type of impurity atoms and reverse bias Low doping concentration of p type and n type of impurity atoms and dissipation of heat Low doping concentration of p type and n type of impurity atoms and forward bias High doping concentration of p type and n type of impurity atoms and dissipation of heat

116 PU_2016_374_E

Ene	rgy is not carried by:-
0	Stationary waves
0	Transverse progressive waves
0	Longitudinal progressive waves
0	Electromagnetic waves
165	of 100 PU_2016_374_E ch of the following function is path independent:-
0	Internal energy
0	Heat
0	Temperature
0	Work
213 Usir	PU_2016_374_E ng the second approximation, calculate the output voltage and current, through the 10 Kilo Ohms load, the diode circuit having input voltage (Vin) 15V and the voltage drop across the diode is 0.7V:- Output voltage = 13.3V and Output current = 1.34 mA
0	Output voltage = 12.3V and Output current = 1.13 mA
0	Output voltage = 14.3V and Output current = 1.43 mA
	Output voltage = 11.3V and Output current = 1.23 mA
119	PU_2016_374_E an open organ pipe of length I, the wavelength of the fundamental node is:- I/4 2I I I/2
219	of 100 PU_2016_374_E at are orders of size of emitter, base and collector for a transistor design:-
0	Emitter should be moderate size, base should be smallest size and collector should be largest size
0	Emitter should be largest size, base should be smallest size and collector should be moderate size
0	Emitter should be largest size, base should be moderate size and collector should be smallest size
0	Emitter should be moderate size, base should be moderate size and collector should be largest size

109 PU_2016_374_E A spiral spring is stretched by a weight attached to it, the strain is:-	
0	tensile
0	bulk
0	elastic
0	shear
166 A m	of 100 5 PU_2016_374_E nonoatomic ideal gas initially at 17 °C is suddenly compressed to one eighth of its original volume. The sperature after compression is:- 887 °C 136 °C
\circ	17 °C
0	None of above
100 If th	of 100 PU_2016_374_E we sum of all the forces acting on a moving object is zero, the object will:-
0	slow down and stop
0	continue moving with constant velocity
0	accelerate uniformly
0	decelerate uniformly
113	of 100 3 PU_2016_374_E e period of a simple pendulum is doubled when its:-
0	length is doubled
0	length and mass is doubled
0	mass is doubled,
0	length is made four times
103 An pas	of 100 PU_2016_374_E elevator P moving vertically up with an acceleration a, then the force exerted on the floor by a senger of mass M travelling in the elevator is:-
0	Mg
0	M(g-a)
0	Ma
0	M(g+a)

252 A n	of 100 2 PU_2016_374_M on-conducting solid sphere of radius R has a total charge Q with uniform charge distribution. The ential difference between the center of the sphere to its surface is:-
0	Inversely propotional to R ²
0	Inversely propotional to R ³
0	Inversely propotional to R
0	A constant, independent of R
237 A m	of 100 7 PU_2016_374_M nicroscope has an objective of 3.8cm focal length and an eyepiece of 5 cm focal length. If the distance ween the lenses is 16.4 cm, the magnification of the microscope is:11.6 -21.5 -10 -33.2
223	of 100 B PU_2016_374_M mmon collector transistor amplifier has the following properties:- Unit voltage gain, same phase and high in put impedance Low voltage gain, reverse phase and low in put impedance Unit voltage gain, reverse phase and low in put impedance High voltage gain, same phase and high in put impedance
220	of 100 PU_2016_374_M at are orders of impurity doping level of emitter, base and collector for a transistor design:-
0	Emitter should be largest, base should be smallest and collector should be moderate
0	Emitter should be moderate, base should be moderate and collector should be largest
0	Emitter should be largest, base should be moderate and collector should be smallest
0	Emitter should be moderate, base should be smallest and collector should be largest
227	of 100 7 PU_2016_374_M able multivibrator generates:-
0	Sine wave
0	Triangle wave
10	Saw-tooth wave

© Square wave		
66 of 100 231 PU_2016_374_M Operational amplifier has the following properties:-		
Low band width, high voltage gain, high in put high impedance and high output impedance		
High band width, low voltage gain, high in put high impedance and high output impedance		
High band width, high voltage gain, high in put high impedance and low output impedance		
High band width, high voltage gain, low in put high impedance and high output impedance		
67 of 100 246 PU_2016_374_M		
In a certain region, there are a uniform electric field \vec{E} and a uniform magnetic field \vec{B} both directed along the z-axis. A particle of charge Q and mass m enters in this field region at time $t=0$ with initial velocity v_o along the x-axis. Then, the electron will perform a motion		
in the plane with its acceleration in direction.		
Elliptical , xy-plane, z-axis		
Circular , xy-plane, z-axis		
Circular , yz-plane, x-axis		
Circular , xz-plane, y-axis		
68 of 100 234 PU_2016_374_M Fraunhoffer diffraction due to 2 parallel slit having slit width of 0.25mm with 0.5mm separation distance having the following missing order:-		
2, 4, 6, 8.		
[©] 1, 2, 3, 4		
There are no missing orders		
3,6,9,12		
69 of 100 254 PU_2016_374_M Two interfering beams with parallel electric fields are given by		
$E_1 = 2 \cos(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t + \pi/3) \text{ kV/m} \text{ and } E_2 = 2 \cos(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t + \pi/3) \text{ kV/m}.$		
The interference term at a point where their path difference is zero is		
© 33.2kW/m²		
1.28kW/m ²		
5.3kW/m ²		

247 PU_2016_374_M

A metallic ring of cross sectional area A with mean radius R having a relative permeability μ_r is uniformly wound with N turns of wire. If an uniform current I passes through the wire, then, the average magnetization M in the ring is

$$O = \frac{NI}{\pi R^2} (\mu_r \mu_o)$$

$$O = \frac{NI \mu_r}{2\pi R}$$

$$O = \frac{NI}{2\pi R} (\mu_r - 1)$$

$$\frac{NI}{2\pi R}$$

71 of 100

259 PU_2016_374_M

The SI Unit of capacitance is equivalent to:-

U J/C

C/J

C²/J

U V/C

72 of 100

224 PU_2016_374_M

Common base transistor amplifier has the following properties:-

- High voltage gain, low in put impedance and high output impedance
- High voltage gain, high in put impedance and high output impedance
- High voltage gain, high in put impedance and low output impedance
- low voltage gain, High in put impedance and high output impedance

73 of 100

229 PU 2016 374 M

Output (Y) of the two in puts (A & B) of AND gate:-

74 of 100 258 PU_2016_374_M			
SI	SI unit of electric flux density \vec{E} is		
0000	Ampere/m Ampere/m ² C/m ² N / C		
225	PU_2016_374_M d effect transistor (FET) amplifier has the following properties:- Unipolar, high noisy, good thermal stability and high in put impedance Unipolar, high noisy, bad thermal stability and low in put impedance Unipolar, less noisy, good thermal stability and high in put impedance Unipolar, less noisy, bad thermal stability and high in put impedance		
230	PU_2016_374_M erential amplifier has the following properties:- It attenuates the differential inputs and amplifies the common mode signals It amplifies the differential inputs and also the common mode signals It amplifies the differential inputs and attenuates the common mode signals It attenuates the differential inputs and also the common mode signals		
226 Pha	PU_2016_374_M se shift oscillator generates:- Square wave Saw-tooth wave Triangle wave Sine wave		
222	of 100 PU_2016_374_M nmon emitter transistor amplifier has the following properties:- Unit voltage gain, same phase and high in put impedance Low voltage gain, reverse phase and low in put impedance High voltage gain, reverse phase and medium in put impedance		

° ,	High voltage gain, same phase and high in put impedance
If a	f 100 PU_2016_374_M an electric field $ \vec{E} $ is applied to an atom, it gets polarized with polarization $ \vec{P} $. The relation ween P and E is
0	$P = \varepsilon_o \varepsilon_r E$ $P = \varepsilon_o (\varepsilon_r - 1) E^2$
0	$P=rac{1}{4\piarepsilon_o}E$
0	$P = \varepsilon_o (\varepsilon_r - 1) E$
Outpu	f 100 $PU_2016_374_M$ ut (Y) of the two in puts (A & B) of OR gate:- $Y = A + B$ $Y = A \cdot B$ $Y = A \cdot B$
A mo	f 100 PU_2016_374_D bile phone has a mass of 100g. Find its weight if g is 10 N kg ⁻¹ :- 1000 N D N D N D N D N
299 F A ver	f 100 PU_2016_374_D ry small current flow in a reverse biased condition is due to:- Zero charge carrier Majority charge carrier Minority charge carrier Soth majority and minority carriers

298 PU_2016_374_D Color of light emitted by LED depends on:-

0	its reverse bias
0	forward current
\circ	its forward bias
0	semiconductor material
	of 100
	PU_2016_374_D inputs A and B of NAND gate has 0 output when:-
\circ	A = 0, B = 1
0	A = 1, B = 1
0	A = 0, B = 0
0	A = 1, B = 0
	of 100
	PU_2016_374_D Hall effect in a conducting strip is due to the motion of charge carriers
0	perpendicular to the direction of applied magnetic field but parallel to the direction of the current.
0	along the direction of the applied magnetic field
0	perpendicular to the direction of both applied current and the magnetic field.
0	along the direction of the applied current.
284	of 100 PU_2016_374_D
VVNI	ch instrument is used to measure pressure of liquids or gases?
0	Manometer
Ö	Multimeter
0	Barometer
-	Thermometer
87 of 100 293 PU_2016_374_D Heat applied to a piece of metal will cause:-	
0	increase in its mass
	increase in its internal energy
0	increase in its volume
0	increase in its density
	of 100 PU_2016_374_D

	rop of liquid (surface tension=75 dyne/cm) of diameter 2.8mm breaks into 125 identical drops. Tr nge in energy is nearly:-
0	19 erg
0	Zero
0	74 erg
0	46 erg
289	of 100 PU_2016_374_D ases, diffusion occurs because molecules of gases:- move in random motion attract each other that are present in a higher concentration exert a higher pressure repel each other
291	of 100 PU_2016_374_D ar tires are hot, pressure of gas molecules in them would be:- same as before heating may be low or high high low
265	PU_2016_374_D ratio between the thermal and electrical conductivities of all metals is proportional to square of the temperature a constant at all temperature inversely proportional to temperature. proportional to temperature.
292	of 100 PU_2016_374_D adom motion of smoke or gas particles in air is termed as:- Bruneian motion
0	Brownian motion
0	Blackian motion
0	Randomium motion

	86 PU_2016_374_D he presence of impurities in a substance:-		
0	raises its melting point		
0	lowers its boiling point		
0	raises its boiling point		
0	lowers its melting point		
285	of 100 PU_2016_374_D en net force acting on a droplet becomes zero its constant speed is known as:-		
0	Terminal velocity		
0	Friction		
0	Gravity		
	Viscosity		
296	of 100 PU_2016_374_D thickness of base of a transistor is:-		
0	10 ⁻³ m		
0	10 ⁻⁴ m		
0	10 ⁻⁶ m		
	10 ⁻⁵ m		
290 Thre	of 100 PU_2016_374_D ee states of matter depend on:-		
0	potential energy		
0	biomass		
0	temperature		
0	force		
272 She	of 100 PU_2016_374_D ar stress produces a change in:-		
0	Angle of shear		
0	Deforming force		
0	Deforming torque		
0	Shape		

PU_2016_374_D superposition theorem is used when the electric circuit contains which of the following?
Active elements
Single voltage source
Number of voltage sources
Reactive elements
PU_2016_374_D opper wire and steel wire of same diameter and length connected end to end and fore is applied, och stretches their combined length by 1 cm. The wire will have:- Different strain and same strain Different stress and strain Same stress and different strain
Same stress and strain
O of 100 PU_2016_374_D ater molecule is called polar because:-
The electrons tend to clump together more near oxygen than near hydrogen.
The electrons tend to clump together more near hydrogen than near oxygen.
The hydrogen and oxygen atoms from a triangle
The electrons clump together equally near hydrogen and oxygen.

Sr No.	MSc Physics
	Find the missing term in the following series:
	3,10,29,66,127?
Alt1	
Alt2	187
Alt3	216
Alt4	218
2	Choose word from the given options which bears the same relationship to the third word, as the first two bears: Flower: Butterfly:: Dirt:?
Alt1	Rats
Alt2	Fly
Alt3	Bugs
Alt4	Sweeper
	Tiff is to Battle as Frugal is to?
	Sprint
	Vague
	Miserly
Alt4	Vital
4	Select the lettered pair that has the same relationship as the original pair of words: Expend:
	Replenish
Δlt1	Exhort: Encourage
	Formant: Rebellion
	Defect: Rejoin
	Encroachment: Occupy
5	Choose the set that has the same relationship as in the original:
	Bone : Skeleton : Nerve
Alt1	House: Door: Window
Alt2	Spoke: Wheel: Handle
Alt3	Retina: Eye: Pupil
Alt4	Snow: Cloud: Ice
	Spot the defective segment from the following:
	Only with your help
Alt2	I passed the test
	though you helped me
Alt4	at the last minute
	The government proposes to hanging.
	cancel
	nullify
Alt3	invalidate

Alt4	abolish
	The burglar was hit
	on head
	on his head
	on the head
Alt4	in the head
9	Choose the option closest in meaning to the given word:
A 11 d	COGENT
	consistent
	acceptable
	convincing
AIT4	weak
10	
	Choose the antonymous option you consider the best: PROVIDENT
	careful
	worldly
	prodigal
	frugal
ДКТ	il ugai
11	Ravi's brother is 3 years senior to him. His father was 28 years of age when his sister was born while his
	mother was 26 years of age when he was born. If his sister was 4 years of age when his brother was born, what
	was the age of Ravi's father and mother respectively when his brother was born ?
Alt1	32 years, 23 years
	32 years, 29 years
Alt3	35 years, 29 years
Alt4	35 years, 33 years
12	
	In each of the following questions some statements are followed by two conclusions (i) and (ii). Read the
	statements carefully and then decide which of the conclsions follow beyond a reasonable doubt. Mark your
	answer as
	Statement: All my films are copies. I am happy to inform of the source when I copy – a producer
	Conclusions:
	(i) The producer does not make even a single film based on his own idea
	(ii) The producer copies domestic and foreign films
Alia	
Alt1	
Alt2	If only conclusion (ii) follows
	If neither conclusion (i) nor (ii) follows
Alt4	If both the conclusions follow

13	3. What value should come in place of question mark (?) in the following number series?
	14, 28, 46, ?, 94, 124
Alt1	64
Alt2	68
Alt3	72
Alt4	76
14	In a certain code ADVENTURES is written as TDRESAUVEN. How is SURPRISINGwritten in that code?
Alt1	IUIPGSRSNR
Alt2	IUINGSSRRP
Alt3	IUIPGSSRNR
Alt4	IRIPGSSNRR
15	Wax is related to Grease in the same way as Milk is related to
Alt1	Drink
Alt2	Ghee
Alt3	Curd
Alt4	Protein
16	The following information is given: Six persons A, B, C, D, E and F are sitting in two rows, three in each.
	E is not at the end of any row.
	D is second to the left of F.
	C, the neighbour of E, is sitting diagonally opposite to D.
	B is the neighbour of F.
	After interchanging seat with E, who will be the neighbours of D in the new position?
Alt1	C and A
Alt2	F and B
Alt3	Only B
Alt4	Only A
<u> </u>	
17	If 30 students occupy 2/3 of the seats in a classroom, how many students would occupy 4/5 of the seats in the
	classroom?
Alt1	36
Alt2	32
Alt3	40
Alt4	48
18	Mean of the first 10 odd numbers is
Alt1	10
Alt2	
Alt3	
Alt4	
L	
19	Two numbers are in the ratio 2:3, If 4 be subtracted from each, they are in the ratio 3:5, Find the numbers.

Alt1	16,24
Alt2	20,30
Alt3	0.341666667
Alt4	None

20	It takes 30 seconds to cut the woodlock into 3 pieces. How much time does it takes to cut the same block into 4
	pieces?
Alt1	40secs
Alt2	45secs
Alt3	50secs
Alt4	60secs

21	Lissajous' figures obtained by combining $x=a \sin \omega t \& x=a s$	in(ωt – π/4) will be:-
Alt1	ellipse	
Alt2	parabola	
Alt3	straight line	
Alt4	Circle	

22	If Silicon (Si) is doped with 1019 pentavalent impurity atoms, the position of the Femi level is:-
Alt1	Position of the Femi level is below the Valence band
Alt2	Position of the Femi level is above the Valence band
Alt3	Position of the Femi level is above the Conduction band
Alt4	Position of the Femi level is below the Conduction band

23	Which the following is incorrect?
Alt1	$\operatorname{Re}(z) \ge z $
Alt2	$\operatorname{Re}(z) \leq z $
Alt3	$Im(z) \le z $
Alt4	$z\bar{z} = z ^2$

24	A vector is a tensor of rank, and a scalar is a tensor of rank
Alt1	0 and 1
Alt2	1 and 1
Alt3	1 and 0
Alt4	0 and 0

25	Pulse broadening due to material dispersion(21.5ps/km-nm)in optical fiber of length 10 km for light pulse
	centred around 1550 nm and spectral width of 2 nm:-
Alt1	430ps
Alt2	0.33microseconds
Alt3	43ps
Alt4	215ps

	Fresnel number used to differentiate between near field and far field diffraction pattern for aperture having linear dimension of 'a' at a distance 'd' for the incident light of wavelength ' λ ' is given by:-
Alt1	λ/d
Alt2	d/λ
Alt3	$(\lambda d)/a2$
Alt4	a2/(λ d)

	If $x1$ is the distance of the object from the first principal focus F1 and $x2$ is the distance of the image from the second principal focus F2 then (under thin les approximation) the following is true:-	
Alt1	x1 x2 = f2	
Alt2	x1 / x2 = f2	
Alt3	x2 / x1 = f2	
Alt4	x1 x2 = -f2	A N A P

28	The Principle of Equipartition of Energy states that internal energy of a gas is shared equally:-
Alt1	Between translational and vibrational kinetic energy
Alt2	Among the relevant degrees of freedom
Alt3	Between temperature and pressure
Alt4	Among the molecules

29	For the Fourier series which represents $f(x) = x^2$ in the interval $-\pi < x < \pi$, the sum of the series $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots - \cdots$
Alt1	<u>#</u> 8
Alt2	$\frac{\pi^2}{4}$

Alt3	$\frac{\pi}{12}$
Alt4	$\frac{\pi^2}{12}$

30	In producing cooling by adiabatic demagnetization we use:-
Alt1	Paramagnetic substance
Alt2	Diamagnetic substance
Alt3	Insulator
Alt4	Ferromagnetic substance

The order and degree of the differential equation are $\frac{d^2y}{dx^2} + x = \sqrt{y + \frac{dy}{dx}}$:

Alt1 2,1

Alt2 2,1/2

Alt3 1,2

Alt4 2,2

If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ then AA^{T} is:-	
Alt1 Hermitian	
Alt2 Skew-symmetric	
Alt3 Orthogonal	
Alt4 Symmetric	

33	Two sound waves are y=a sin(ωt - kx) and y=a cos(ωt - kx) is the Phase shift between them is:
Alt1	$\pi/4$
Alt2	$\pi/2$
Alt3	π
Alt4	0

34	The band gap (Eg) value of Silicon (Si) at 300 K is:-
Alt1	1.1 eV
Alt2	0.91 eV
Alt3	0.815 eV
Alt4	0.785 eV

atoms with double th	in root mean square velocity v at certain temperature. If we consider another ideal gas of e atomic mass compared to the first one, then under the sametemperature and pressure
conditions, the root root root root root root root roo	nean square velocity of the second ideal gas is equal to:-
Alt2 $\frac{v}{\sqrt{2}}$	
Alt3 $\frac{v}{\sqrt{2}}$	
Alt4 v	
36 The heat energy radi	ted by an object is found to be equal to that of a perfect blackbody only if the
temperature of the o approximately equal	oject is doubled than that of the blackbody. Then the emissivity of the object is
Alt1 0.05	

P	.04
P	.06
	or the light passing through a pinhole along the axis will suffer from:-
P	stigmatism
P	pherical aberration
P	Distortion

38	38 Ultrasonic waves produced in a medium can be detected by a:-	
Alt1	Telephone	
Alt2	Hebbs Method	
Alt3	Quineus tube	
Alt4	Kundt's tube	

Alt4 Coma

39 If <i>r</i>	$\hat{z} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, then ∇r^n is:	
Alt1 $n(n$	$-1)r^{n-2}\vec{r}$	
Alt1	±).	

Alt2	$nr^{n-2}\vec{r}$
Alt3	$nr^{n-1}\vec{r}$
Alt4	$nr^n\vec{r}$
40	The relation between Brewsters angle (θ B) and Critical angle (θ C) corresponding to external and internal reflection is:-
Alt1	$\Theta B = \Theta C$
	θΒ - θC=90°
	$\Theta B + \Theta C = 90^{\circ}$
	θB > θC +90°
7110-7	057 06 130
	Two thin lens of focal length f1 and f2 separated by distance t would have minimum chromatic aberration when:-
Alt1	t = (f1-f2)/2
Alt2	1/t = 1/f1 + 1/f2
Alt3	t = (f1+f2)/2
Alt4	1/t = 1/f1 - 1/f2
42	Superposition of a plane wave and a spherical wave at a finite distance from the point source will result is
	interference pattern which is:-
Alt1	Vertical Straight line fringes
Alt2	Horizontal Straight Line Fringes
Alt3	Hyperboloid shape of Fringes with Straight line parallel along the line joining the two sources
Alt4	Concentric Ring of fringes
43	In a silver atom, the outer most orbit is labelled as 5s1 . If a beam of silver atoms are sent through an
	inhomogeneous magnetic field, then the beam
Alt1	does not split.
	is split into 5 beams
Alt3	is split into 4 beams
Alt4	is split into 2 beams
44	For a given eyepiece having f1 and f2 are focal length of the field lens and eye lens respectively with d as the
	separation distance between them, the condition for minimum chromatic aberration and minimum spherical
	aberration are:-

Alt1 d = (f1-f2) and d = (f1+f2)/2 Alt2 d = (f1-f2)/2 and d = (f1+f2) Alt3 d = (f1+f2)/2 and d = (f1-f2) Alt4 d = (f1+f2) and d = (f1-f2)/2

Two frames of references move with a constant relative velocity. Which of the following quantity changes from one frame to another?

Alt1 The magnetic field.

Alt2 The space-time interval.

Alt3 The rest mass of a particle.

Alt4 The divergence of a magnetic field.

46 The residue of cot z at z = 0 is:-

Alt1 -1

Alt2 1/4

Alt3 π

Alt4 1

47 Use of Fermats principle for tracing the reflected light from the ellipsoidal mirror would require:-

Alt1 The emerging light to travel in maximum amount of time

Alt2 The emerging light to travel in least distance

Alt3 The paths travel by emerging light to be stationary

Alt4 The emerging light to travel in least amount of time

If $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, then $A^2 + B^2 + C^2$ is given by:-

Alt1 3I

Alt2 2I

Alt3 -21

Alt4 -3I

49 A passenger is sitting in a fast moving train. The engine of the train blows a whistle of frequency n. if the apparent frequency of the sound heard by the passenger is n, then:-

Alt1 n' > n

Alt2 n' < n

Alt3 n' = 1/n

Alt4 n' = n

A particle of mass m moves in the +ve x direction in a frame of reference with certain speedrelative to the origin of this frame, where c is the speed of light. This frame itself is moving alongthe same direction with respect to another frame with speed 0.5c. What is the speed of the particlewith respect to the second frame?

Alt1 c

Alt2 0.25c

Alt3 0.8c

Alt4 0.4c

51	If $\left \vec{a} + \vec{b} \right = 60$, $\left \vec{a} - \vec{b} \right = 40$, and $\left \vec{b} \right = 46$ then $\left \vec{a} \right $ is:-
Alt1	18
Alt2	21

Alt3 22 Alt4 11

52	If the degrees of freedom of a gas are 'f' then the ratio of its t	two specific heats Cp/Cv is given by:-
Alt1	1+(2/f)	
Alt2	1-(1/f)	
Alt3	1+(1/f)	
Alt4	1-(2/f)	

53	53 According to kinetic theory of gases the relation between pressure P density ρ and root-mean square velocity C		
	is:-		
Alt1	P=(1/2)ρC		
Alt2	P=(1/3)ρC2		
Alt3	P=(1/3)ρC		
Alt4	P=(1/2)ρC2		

54	At what Celsius temperature will oxygen molecules have the same root mean square velocity as that of	
	hydrogen molecules at -100°C:-	
Alt1	175 °C	
Alt2	100 °C	
Alt3	1495 °C	
Alt4	2495 °C	

55	As an empty vessel is filled with water, its resonant frequency:-
Alt1	decreases
Alt2	constant
Alt3	zero
Alt4	increases

56	Two events are observed with respect to one frame of reference. The same events are observed from another
	frame of reference which is moving at a constant relative velocity with respect to the first frame. If the two
	events are spatial separated and simultaneous in the first frame, then they:-
Alt1	cannot occur at the same spatial point in the second frame.
Alt2	are also simultaneous in the second frame.
Alt3	are separated by a space-time interval in the second frame.

Alt4 necessarily occur at the same spatial point in the second frame

	It is found that the energy density of the radiation spectrum emitted by a black-body reaches its maximum at certain wavelength I at a certain temperature T . At a higher temperature, the energydensity would:-
Alt1	reach its maximum at a lower wavelength
Alt2	reach its maximum at a higher wavelength
Alt3	reach its maximum at the same wavelength.
Alt4	have the same maximum at the same wavelength.

58	In a reversible process, the entropy of the system:-
Alt1	Decreases
Alt2	Remains constant
Alt3	Increases
Alt4	Remains zero

	Let \vec{u}, \vec{v} and \vec{w} be vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{0}$. If $ \vec{u} = 3$, $ \vec{v} = 4$ and $ \vec{w} = 5$ then $\vec{u}.\vec{v} + \vec{v}.\vec{w} + \vec{v}$
	is:-
Alt1	25
Alt2	. 5
Alt3	$\sqrt{5}$

60	If $ \vec{a} = 2$, $ \vec{b} = 7$ and $ \vec{a} \times \vec{b} = 3\vec{i} - 2\vec{j} + 6\vec{k}$ then the angle between \vec{a} and \vec{b} is:-
Alt1	$\frac{\pi}{4}$
Alt2	$\frac{\pi}{3}$
Alt3	$\frac{\pi}{6}$

Alt4 $\frac{\pi}{2}$

61	Internal energy of a real gas depends upon:-
Alt1	Only on pressure of the gas
Alt2	Size of the molecule
Alt3	Only on volume of the gas
Alt4	Only on temperature of the gas

	For a human eye with pupil diameter of 3mm, it would be ab distance of (assume wavelength of 600nm):-	le to resolve the two points at 10m separated by a
Alt1	2mm	
Alt2	5 x 102 m	
Alt3	5 x 104 m	
Alt4	20 microns	

63	The displacement of wave is given as 20 sin (200t-0.01x). The amplitude of the particle velocity is given as (All
	quantities are in SI Units):-
Alt1	4000 m/s
Alt2	40 m/s
Alt3	20 m/s
Alt4	10 m/s

64	If \vec{A} is an orthogonal matrix, then A^T is:-
Alt1	A
Alt2	A-
Alt3	-A-1
Alt4	A-1

65	Which of the following are the Eigen values of the matrix	0 0	1 2 0	4) 6 5)	4 <u></u>
Alt1	1,3,4				
Alt2	1,2,3				
Alt3	2,3,4			•	
Alt4	2,3,5				

66	If $m\vec{i} + 2\vec{j} + \vec{k}$ and	$4\vec{i} - 9\vec{j} + 2\vec{k}$ are	perp en dicular	then m is:-
Alt1	8			
Alt2	-4			
Alt3	4			
Alt4	12			

67	In the Levi-civita tensor $\varepsilon_{\mu\nu\lambda}$, if μ,ν , and λ are odd-permuting, then $\varepsilon_{\mu\nu\lambda}$ is equal to
Alt1	-1
Alt2	1
Alt3	2
Alt4	0

The space craft of mass M moves with velocity v in free space, at first. Then it explodes breaking inti two pieces.

After the explosion, a piece of mass m remains stationary, the other piece of space craft will have a velocity:
Alt1 Mv/(M+m)

Alt2 mv/(M+m)

Alt3 mv/(M-m)

Alt4 Mv/(M-m)

A long straight copper wire of circular cross section of radius R contains N electrons per unit volume, moving at velocity v. If the charge of each electron is q then, the current in the wire is equal to $\begin{array}{c|c} \mathsf{Alt1} & q v \pi R^2 N \\ \\ \mathsf{Alt2} & q v \\ \\ \mathsf{Alt3} & q v N \\ \\ \mathsf{Alt4} & q \pi R^2 N \\ \end{array}$

70	An air-filled parallel plate capacitor has square plates of side L that are separated by distance D . The capacitor is filled with a dielectric slab with relative permittivity ε_r . What is the change in the stored energy of the system due to filling of dielectric, if the plates have a constant charge Q ?
Alt1	$rac{Q^2D}{2arepsilon_o L^2}igg(rac{1}{arepsilon_r}\!-\!1igg)$
Alt2	$rac{Q^2 D}{2arepsilon_o L^2} igg(rac{1}{arepsilon_r}igg)$
Alt3	$rac{Q^2D}{2arepsilon_o L^2}ig(arepsilon_r-1ig)$
Alt4	$rac{Q^2L}{2arepsilon_o D^2} igg(rac{1-arepsilon_r}{arepsilon_r}igg)$

71	A capacitor of capacitance C is connected across a dc battery of potential difference V . How much work must be done in order to double the plate separation with the battery connected?
Alt1	Zero
Alt2	$rac{CV^2}{4}$
Alt3	$rac{CV^2}{2}$
Alt4	$\frac{CV^2}{8}$

72	Two point charges q_1 and q_2 are restricted to move along the x- and the y-axes respectively. At time $t=0$, both charges are at origin, and start with the same uniform speed v. Then, at any time $t>0$ the Lorentz force on q_2 due to the magnetic field of q_1 will be
Alt1	Parallel to z-axis
Alt2	Parallel to x-axis
Alt3	Parallel to y-axis
Alt4	Zero

73	A straight long wire of circular cross-section of radius R carries a uniform current density J . If r be the radial distance (perpendicular distance) measured from the axis of the wire. Then,
Alt1	Magnetic field varies like r for $r < R$.
Alt2	Magnetic field varies like r for $r > R$.
Alt3	Magnetic field varies like r^{-2} for $r < R$.
Alt4	Magnetic field varies like r^{-1} for $r > R$.

74	The total internal reflection for glass-water interface (nair= 1.00, nglass=1.55 and nwater=1.33):-
Alt1	41.8°
Alt2	56.3°
Alt3	62.7°
Alt4	40.6°

	Two Plano-convex lenses each of radius of curvature R1 and R2 are used to observe Newtons ring with their curved surfaces in contact with each other in light of wavelength 'λ'. The radius of the 9th dark ring would be:-
Alt1	{(R1 +R2)/(9 λ R1 R2)}1/2
Alt2	9{(λ R1 R2)/(R1 +R2)}1/2
Alt3	{(λ R1 R2)/ 9(R1 +R2)}1/2
Alt4	{(9 λ R1 R2)/(R1 +R2)}1/2

	A refracting surface separates two medium with refract will focus onto one of the foci of the ellipse if the eccen	ive index of n1 and n2. All the rays parallel to major axis tricity of ellipse is equal to:-
Alt1	(n1/n2)1/2	
Alt2	n1/n2	
Alt3	n1*n2	
Alt4	(n1/n2)2	

The electric potential at a perpendicular distance r from a long straight wire of cross-sectional radius a is given by

$$V(r) = -K \log \frac{r}{a}$$

where K is a constant. Then, the charge per unit length of the wire is

78

Alt1	K
Alt2	2πΚ
Alt3	2πΚεο
Alt4	2πεο

79	A steady current I flows in a circular loop of radius R. The magnitude field at the center of the loop is:-
Alt1	$\mu_0 I/(2\pi R)$
Alt2	$\mu_0 I/(4\pi R)$
Alt3	Zero
Alt4	$\mu_0 I/(2R)$

80	A capacitor of capacitance \mathcal{C} is charged to \mathcal{V} volts using a battery. The battery is then disconnected, and an inductor of inductance \mathcal{L} is connected in series with the capacitor so that the LC oscillations occur. Assuming that the circuit contains no resistance, the maximum current in the coil is
Alt1	$V\sqrt{C/L}$
Alt2	Q/LC
Alt3	$V\sqrt{L/C}$
Alt4	$\sqrt{Q^2/LC}$

81	#######################################
Alt1	10/4
Alt2	10/8
Alt3	10
Alt4	10/2

82	Number of Fresnel zones in a radius of 2cm of zone plate for an object kept at a distance of 10cm has the
	brightest image at 40cm for the incident light of wavelength 500nm:-
Alt1	1000
Alt2	10000
Alt3	2500
Alt4	5000

83	What are the reasons for choosing the smallest size of base and smallest impurity doping level of base for
	designing transistor amplifier:-
Δl+1	To increase the mobility of the carriers entering the base and also to reduce the more recombination of the carriers entering
	Ithe base
ΔI+2	To increase the mobility of the carriers entering the base and also to increase the more recombination of the carriers
	lentering the hase
ΛI+2	To reduce the mobility of the carriers entering the base and also to increase the more recombination of the carriers entering
	Ithe base
Alt4	To reduce the mobility of the carriers entering the base and also to reduce the more recombination of the carriers entering
	the base

84	
	The electric field $ ilde{E}$ at the center of a charged solid cylindrical conductor is
Alt1	Zero
Alt2	$rac{qr}{4\piarepsilon_{ m o}R^3}$
Alt3	Infinite
Alt4	$rac{q}{4\piarepsilon_{\circ}R^{2}}$
85	Let R1 be the resistance of a conductor with length I and cross-sectional area A. Another conductor of same material has length 2I and cross-sectional area 2A. The resistance R2 of the second conductoris related to R1 by:-
Alt1	R1 = 4R2
	R1 = 2R2
Alt3	R2 = 2R1
-	R1 = R2
86	At a given temperature, the ratio of the RMS velocity of hydrogen to the RMS velocity of oxygen is:-
Alt1	1/4
Alt2	8
Alt3	16
Alt4	4
87	A block with mass m and contact area 'a' slides down an inclined plane with friction, covering a distance I in time
	T. How much time does it take another block with the same mass and composition, but contact area '2a', to
	slide down the same length?
Alt1	T3
Alt2	T2
Alt3	T4
Alt4	Т
88	Clouds float in the atmosphere on account of:-
Alt1	Low density
Alt2	Low viscosity
Alt3	Creation of low pressure
	Low temperature
89	The capacitance of a single isolated spherical conductor with conductor with radius R is proportional to:-
Alt1	R

Alt2	1 / R2
Alt3	1 / R
Alt4	R2

electrons per unit volume, and e expression for drift velocity vd o	e is the charge on the electron, then which of the following could be the cor of the electrons?
Alt1 $v_d = \frac{eI}{nA}$	
Alt2 $v_d = \frac{I}{neA}$	
Alt3 $v_d = \frac{LA}{ne}$	00
Alt4 $v_d = \frac{nI}{I}$	

91	The terminal velocity of small sized spherical body of radius r falling in a viscous liquid is:-
Alt1	μr
Alt2	μτ2
Alt3	µ1/r2
Alt4	μ1/r

92	For two objects A and B, if mass of A is same as mass of B and speed of A is twice as much as that of B, which
	one of following statements is correct?
Alt1	Kinetic energy of A = $(1/4)$ x Kinetic energy of B
Alt2	Kinetic energy of A = > Kinetic energy of B
Alt3	Kinetic energy of A = Kinetic energy of B
Alt4	Kinetic energy of A = 4 x Kinetic energy of B

93	Water raises in a capillary tube to a height of 4 cm. If the area of cross section is one-forth, the water will rise to
	a height of:-
Alt1	2 cm
Alt2	8 cm
Alt3	4 cm
Alt4	16 cm

A dielectric slab is slowly inserted between the plates of a parallel plate capacitor, while the potential difference between the plates is held constant by a battery. As it is being inserted

Alt1	No change happens to any physical quantity.
Alt2	the potential difference between the plates increases, while the charge on the positive plate decreases, and the capacitance remains the same.
Alt3	the capacitance, the potential difference between the plates, and the charge on the positive plate will all increase.
Alt4	the capacitance and the charge on the positive plate will increase but the potential difference between the plates will remain the same.
95	An incompressible fluid flows steadily through a cylinder pipe which has radius 2R at a point A and radius R at B further along the flow direction. If the velocity at point A is v, its velocity at point B will be:-
Alt1	4 v
Alt2	v/2
Alt3	
Alt4	V
06	The difference between Type-I and Type-II superconductors is:-
	that the Type-II superconductors are not perfectly diamagnetic in its superconducting state.
	that the Type-II superconductors do not exhibit Meissner effect in its superconducting state.
	the existence of two critical magnetic fields between which the Type-II is partially superconducting
	the existence of two critical temperatures between which the Type-II is partially superconducting
97	Energy stored in a stretched wire is:-
	(1/2) load x extension
	(1/2) stress x strain
	Load x strain
Alt4	Stress x strain
98 Alt1	An electron of wavelength λ undergoes Bragg reflection from one of the atomic planes in a crystal when it approaches the plane at a particular angle. Another crystal leads to the same order of scattered beam for the same angle of incidence only if the momentum of the electron is doubled. If the lattice spacing in the first case is a, then the lattice spacing in the second case is equal to :-
-	
Alt2	a

Alt3	3 λ
Alt4	4 a / 2

99	When the force applied by a person is 2 N and the moment of force is 16 N m, then the distance of pivot from
	effort is:-
Alt1	8 N
Alt2	18 N
Alt3	32 N
Alt4	14 N

100	Two water drops merge to form a large drop in this process:-
Alt1	Energy neither liberated nor absorbed
Alt2	Energy is absorbed
Alt3	Some mass is converted into energy
Alt4	Energy liberated

Examination: M.Sc. Physics

Section 1 - Section 1

Question No.1

4.00

Bookmark |

A solid-state laser emits radiation of wavelength of 6000 Å and the life time, $\tau_{sp} = 10^{-6}$ s. Assume that the refractive index of the medium is one and the co-efficient of stimulated emission is

- ^C 6.6 x 10¹⁹ cm/kg
- ^C 6.6 x 10¹⁹ m/g
- C 1.3 x 10¹⁹ m/kg
- $^{\circ}$ 1.3 x 10¹⁹ m/g

Question No.2

4.00

A simple classical model of the CO_2 molecule would be a linear structure of three masses with the electrical forces between the ions represented by two identical springs of equilibrium length I and force of constant k, as shown in Figure. Assume that only motion along the original equilibrium line is possible, that is, ignore rotations. How many vibrational degrees of freedom does this system have?

- O 4
- 02
- 0.1
- No vibrational degrees of freedom

Question No.3 4.00

Bookmark [

If three real numbers a, b, and c are successive terms of an arithmetic sequence, then what is the value of

 $\frac{\sin(a) + \sin(b) + \sin(c)}{\cos(a) + \cos(b) + \cos(c)}$?

- $\circ \tan(b)$
- cosec (a-b-c)

 $\frac{\sin\left(\frac{b}{2}\right)}{\cos(c-a)}$

 $^{\circ}$ cot (b+a-c)

Question No.4 4.00

Which of the following is used in atomic clocks?

- C Laser
- Quartz
- C Helium
- Maser

Question No.5 4.00

Laplace transform of $\{e^{-2t} - e^{-3t}\}$ is

- C 1/(s+2)
- O 1/(s-2)
- $^{\circ}$ 1/(s²+5s+6)
- $^{\circ}$ 1/(s²+3s+6)

Question No.6 4.00

The Doppler broadening of the emission wavelength takes place in

- Nd:glass laser
- C He-Ne laser
- Nd:YAG laser
- C Ruby laser

Question No.7 4.00

Bookmark

Bookmark [

Bookmark □

Bookmark |

The classical value of molar specific heat is

 \circ R

O 3R/2

O 3R

O R/2

Question No.8 4.00

Bookmark

If $y = 2^{\frac{1}{2+x}}$, find the value of $\frac{dy}{dx}$

$$-\frac{(2+x)^2}{\ln 2}2^{\frac{1}{2+x}}$$

$$-\frac{\ln 2}{(2+x)^2}2^{\frac{1}{2+x}}$$

$$\begin{array}{c}
\frac{x}{2^{\frac{x}{2+x}}} \\
\hline{(2+x)^2}
\end{array}$$

$$\begin{array}{c}
\ln 2 \\
(2+x)^2
\end{array}$$

Question No.9 4.00

Bookmark

In terms of the basic units of mass (M), length (L), time (T) and charge (Q), the dimensions of magnetic permeability of vacuum (μ 0) are

^ℂ ML²T⁻¹Q⁻²

C MLQ-2

C LT-1Q-1

C LTQ-1

Question No.10 4.00

Bookmark |

A coin is placed on a horizontal platform that undergoes vertical simple harmonic motion of angular frequency ω . The amplitude of oscillation is gradually increased. The coin will leave contact with the platform for the first time

C At the mean position of the platform

 $^{\circ}$ At an amplitude of g/ω^2

At an amplitude of g^2/ω^2

C At the highest position of the platform

Question No.11 4.00

Bookmark

Bookmark

Study the following information carefully and answer the question below it (i) There is a group of five persons- A, B, C, D and E (ii) One of them is manual scavenger, one is sweeper, one is watchman, one is human scarecrow and one is grave-digger (iii) Three of them – A, C and grave-digger prefer tea to coffee and two of them – B and the watchman prefer coffee to tea (iv) The human scarecrow and D and A are friends to one another but two of these prefer coffee to tea. (v) The manual scavenger is C's brother Which of the following groups includes a person who likes tea but is not a grave-digger?

O BD

O DE

O BCE

None of the above

Question No.12 4.00

Sunil likes chocolates very much, _____?

O doesn't he?

O does he

isn't it?

C is it?

Question No.13 4.00

Bookmark \square

Evaluate the derivative of the function $f(x) = \sqrt{1 + \sqrt{(x+1)}} = [1 + (x+1)^{\frac{1}{2}}]^{\frac{1}{2}}$ with respect to x at x=0.

0

 $\begin{array}{c}
0 & \frac{1}{4\sqrt{3}}
\end{array}$

 $0 \frac{1}{\sqrt{2}}$

None of the above

The freezing point of water

Question No.14 4.00

Bookmark [

- o increases with increase of pressure
- C decreases with increase of pressure
- O does not depends on pressure

Question No.15

4.00

Bookmark |

If 9 men working 6 hours a day can do a work in 88 days. Then 6 men working 8 hours a day can do it in how many days?

- O 95
- O 97
- O 99
- C 89

Question No.16

4.00

Bookmark |

The operating frequency of a Wien-bridge oscillator is given by

C

$$\frac{1}{4\pi\sqrt{LC}}$$

$$\begin{array}{c}
C & \frac{1}{2\pi RC}
\end{array}$$

O

$$\frac{1}{2\pi\sqrt{LC}}$$

O

$$\frac{1}{2\pi\sqrt{RC}}$$

Question No.17

4.00

Bookmark □

A mono-atomic ideal gas, initially at temperature T_1 , is enclosed in a cylinder fitted with a frictionless piston. The gas is allowed to expand adiabatically to a temperature T_2 by releasing the piston suddenly. If L_1 and L_2 are the lengths of the gas column before and after expansion respectively, then T_1/T_2 is given by

- $C = \frac{L_1}{L}$
- $C \left(\frac{L_1}{L_2}\right)^2$
- $C \left(\frac{L_2}{L_1}\right)^{2/2}$
- $C \frac{L_1}{L_2}$

4.00

Question No.18

Bookmark |

Consider an ideal op-amplifier with infinite voltage gain. Let V_1 and V_2 be the values of independent voltage sources connected to the positive and negative input terminals, respectively, and let V_0 be the output voltage. If $V_1 \neq V_2$, then V_0 will be

- Unpredictable
- o infinite
- C zero
- finite

Question No.19 4.00

Bookmark [

Find the value of

Find the value of ln ln

- $\ln x + \ln(x^{x-1})$ $-\ln(\ln x)$
- $\ln x + \ln(x^{x-1} 1)$ $+\ln(\ln x)$
- $\ln x + \ln(x^{x-1} + 1)$ $+\ln(\ln x)$
- $\ln(x) \ln(x^x + x)$ $+\ln(\ln x)$

Question No.20

Bookmark

Match the following:

Lis	t 1	List 2	
1	One dimensional heat equation	A	$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \alpha^2 \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2}$
2	Two dimensional heat equation	В	$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \alpha^2 \left[\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} \right]$
3	Laplace equation	С	$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = 0$
4	Poisson's equation	D	_2 ρ

$V^2 \varphi = -\frac{1}{2}$
ε ₀
C 1-C;2-D;3-A;4-B
© 1-A ; 2-B ; 3-C ; 4-D © 1-D ; 2-C ; 3-B ; 4-A
© 1-B; 2-A; 3-D; 4-C
Question No.21 4.00 Bookmark □
Fill in the blank with the correct form of the verb.
The International Women's Day with great enthusiasm by our university last month.
C celebrated
○ is celebrated
C was celebrated
C has celebrated
Question No.22 4.00 Bookmark □
The following type of laser can be used for generation of laser pulse
O Nd- YAG laser
C Carbon dioxide laser
 Helium neon laser Ruby laser
C Truby laser
Question No.23
Bookmark \Box The greater the quantum number, the closer the quantum physics approaches classical physics. This principle is known as
© Least action principle
Complementary principle
Correspondence principle
Correspondence principle Uncertainty principle
© Uncertainty principle Question No.24 4.00 Bookmark □
C Uncertainty principle Question No.24 4.00 Bookmark □ Maxwell modified the Biot-Savart's law to
C Uncertainty principle Question No.24 4.00 Bookmark □ Maxwell modified the Biot-Savart's law to C Lenz's law
C Uncertainty principle Question No.24 4.00 Bookmark □ Maxwell modified the Biot-Savart's law to
C Uncertainty principle Question No.24 4.00 Bookmark □ Maxwell modified the Biot-Savart's law to C Lenz's law C Faraday's law
C Uncertainty principle Question No.24 A.00 Bookmark □ Maxwell modified the Biot-Savart's law to C Lenz's law Faraday's law Kirchoff's law Ampere's law
C Uncertainty principle Question No.24 A.00 Bookmark □ Maxwell modified the Biot-Savart's law to C Lenz's law Faraday's law Kirchoff's law
C Uncertainty principle Question No.24 A.00 Bookmark □ Maxwell modified the Biot-Savart's law to C Lenz's law Faraday's law Kirchoff's law Ampere's law Question No.25 4.00
Cuestion No.24 Au Maxwell modified the Biot-Savart's law to Cuerz's law Faraday's law Kirchoff's law Ampere's law Question No.25 4.00 Bookmark □
C Uncertainty principle Question No.24 Maxwell modified the Biot-Savart's law to C Lenz's law C Faraday's law C Kirchoff's law C Ampere's law Question No.25 4.00 Bookmark □ If a²=b³=c⁴=d⁵, then the value of loga (bcd) is C 81/24
C Uncertainty principle Question No.24 Maxwell modified the Biot-Savart's law to C Lenz's law C Faraday's law C Kirchoff's law C Ampere's law Question No.25 4.00 Bookmark □ If a²=b³=c⁴=d⁵, then the value of loga (bcd) is C 81/24
Cuestion No.24 Maxwell modified the Biot-Savart's law to C Lenz's law Faraday's law Kirchoff's law Ampere's law Question No.25 4.00 Bookmark □ Read of the process of the state of loga (bcd) is 81/24 4/3
Cuestion No.24 Maxwell modified the Biot-Savart's law to ○ Lenz's law ○ Faraday's law ○ Kirchoff's law ○ Ampere's law Question No.25 4.00 Bookmark □ ff a²=b³=c⁴=d⁵, then the value of loga (bcd) is ○ 81/24 ○ 4/3 ○ 33
Cuestion No.24 Maxwell modified the Biot-Savart's law to C Lenz's law Faraday's law Kirchoff's law Ampere's law Cuestion No.25 4.00 Bookmark fi a²=b³=c⁴=d⁵, then the value of loga (bcd) is 81 24 4 3 3 33 33 33 30
C Uncertainty principle Question No.24 Maxwell modified the Biot-Savart's law to C Lenz's law C Faraday's law C Kirchoff's law C Ampere's law Question No.25 4.00 Bookmark □ If a²=b³=c⁴=d⁵, then the value of loga (bcd) is C 81/24 C 4/3/3 C 33/20 C 47
Cuestion No.24 Maxwell modified the Biot-Savart's law to C Lenz's law Faraday's law Kirchoff's law Ampere's law Cuestion No.25 4.00 Bookmark fi a²=b³=c⁴=d⁵, then the value of loga (bcd) is 81 24 4 3 3 33 33 33 30
Cuestion No.24 Maxwell modified the Biot-Savart's law to C Lenz's law C Faraday's law C Kirchoff's law C Ampere's law Cuestion No.25 4.00 Bookmark If a²=b³=c⁴=d⁵, then the value of loga (bcd) is C 81 24 C 4 3 C 33 20 C 47 30 Cuestion No.26 4.00 Cuestion No.26
C Uncertainty principle Question No.24 Maxwell modified the Biot-Savart's law to C Lenz's law C Faraday's law C Kirchoff's law C Ampere's law Question No.25 4.00 Bookmark □ If a²=b³=c⁴=d⁵, then the value of loga (bcd) is C 81 24 C 4 3 C 33 20 C 47 30
Cuestion No.24 Maxwell modified the Biot-Savart's law to ○ Lenz's law ○ Faraday's law ○ Kirchoff's law ○ Ampere's law Cuestion No.25 4.00 Bookmark fl a²=b³=c⁴=d⁵, then the value of log _a (bcd) is ○ 81/24 ○ 4/3/3 ○ 33/20 ○ 47/30 Cuestion No.26 A.00 Bookmark

© If only conclusion I follows © If either I or II follows © If either I or II follows Question No.27 4.00 Bookmark □ Consider the two-level system with E₁ = -13.6 eV, E₂ = -3.4 eV and the co-efficient A₂₁ = 6 x 10 ⁸ s ⁻¹ . The frequency of light emitted due to transition from E₂ and E₁ is © 2.5 x10 ¹⁵ Hz © 6.5 x 10 ¹⁴ Hz © 8.2 x 10 ¹⁷ Hz © 4.5 x 10 ¹⁶ Hz
Question No.27 Question No.27 Sookmark Consider the two-level system with E_1 = -13.6 eV, E_2 = -3.4 eV and the co-efficient A_{21} = 6 x 10 ⁸ s ⁻¹ . The frequency of light emitted due to transition from E_2 and E_1 is Co.5 x 10 ¹⁵ Hz Co.5 x 10 ¹⁴ Hz 8.2 x 10 ¹⁷ Hz
Question No.27 4.00 Bookmark Consider the two-level system with E_1 = -13.6 eV, E_2 = -3.4 eV and the co-efficient A_{21} = 6 x 10 ⁸ s ⁻¹ . The frequency of light emitted due to transition from E_2 and E_1 is C 2.5 x10 ¹⁵ Hz C 6.5 x 10 ¹⁴ Hz C 8.2 x 10 ¹⁷ Hz
Bookmark ☐ Consider the two-level system with E ₁ = -13.6 eV, E ₂ = -3.4 eV and the co-efficient A ₂₁ = 6 x 10 ⁸ s ⁻¹ . The frequency of light emitted due to transition from E ₂ and E ₁ is © 2.5 x10 ¹⁵ Hz © 6.5 x 10 ¹⁴ Hz © 8.2 x 10 ¹⁷ Hz
Bookmark ☐ Consider the two-level system with E ₁ = -13.6 eV, E ₂ = -3.4 eV and the co-efficient A ₂₁ = 6 x 10 ⁸ s ⁻¹ . The frequency of light emitted due to transition from E ₂ and E ₁ is © 2.5 x10 ¹⁵ Hz © 6.5 x 10 ¹⁴ Hz © 8.2 x 10 ¹⁷ Hz
Bookmark ☐ Consider the two-level system with E ₁ = -13.6 eV, E ₂ = -3.4 eV and the co-efficient A ₂₁ = 6 x 10 ⁸ s ⁻¹ . The frequency of light emitted due to transition from E ₂ and E ₁ is © 2.5 x10 ¹⁵ Hz © 6.5 x 10 ¹⁴ Hz © 8.2 x 10 ¹⁷ Hz
Bookmark ☐ Consider the two-level system with E ₁ = -13.6 eV, E ₂ = -3.4 eV and the co-efficient A ₂₁ = 6 x 10 ⁸ s ⁻¹ . The frequency of light emitted due to transition from E ₂ and E ₁ is © 2.5 x10 ¹⁵ Hz © 6.5 x 10 ¹⁴ Hz © 8.2 x 10 ¹⁷ Hz
Bookmark ☐ Consider the two-level system with E ₁ = -13.6 eV, E ₂ = -3.4 eV and the co-efficient A ₂₁ = 6 x 10 ⁸ s ⁻¹ . The frequency of light emitted due to transition from E ₂ and E ₁ is © 2.5 x10 ¹⁵ Hz © 6.5 x 10 ¹⁴ Hz © 8.2 x 10 ¹⁷ Hz
Bookmark ☐ Consider the two-level system with E ₁ = -13.6 eV, E ₂ = -3.4 eV and the co-efficient A ₂₁ = 6 x 10 ⁸ s ⁻¹ . The frequency of light emitted due to transition from E ₂ and E ₁ is © 2.5 x10 ¹⁵ Hz © 6.5 x 10 ¹⁴ Hz © 8.2 x 10 ¹⁷ Hz
Consider the two-level system with E_1 = -13.6 eV, E_2 = -3.4 eV and the co-efficient A_{21} = 6 x 10 ⁸ s ⁻¹ . The frequency of light emitted due to transition from E_2 and E_1 is $^{\circ}$ 2.5 x10 ¹⁵ Hz $^{\circ}$ 6.5 x 10 ¹⁴ Hz $^{\circ}$ 8.2 x 10 ¹⁷ Hz
© 2.5 x10 ¹⁵ Hz © 6.5 x 10 ¹⁴ Hz © 8.2 x 10 ¹⁷ Hz
© 8.2 x 10 ¹⁷ Hz
^O 4.5 x 10 ¹⁶ Hz
Question No.28
Bookmark ☐ A transistor has a collector current of 5 mA, when the emitter voltage is 20 mV. At 30 mV. At 30 mV, the current is 30 mA. At 50 mV, it is
C 280 mA
© 80 mA
O 480 mA
O 1080 mA
Question No.29
Bookmark ☐ Calculate the wavelength of the radiative transition from n=3 to n=2 in the hydrogen atom. (where Rydberg constant
R_{H} =1.096778x10 ⁷ m ⁻¹)
○ 536 nm
© 252.5 nm
○ 658 nm
© 658 nm © 656.5 nm Question No.30
© 658 nm © 656.5 nm Question No.30 4.00 Bookmark □
© 658 nm © 656.5 nm Question No.30
Question No.30 Question No.30 A.00 Bookmark Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q1, Q2, Q3, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, Q1: Q2: Q3, is
Question No.30 Question No.30 A.00 Bookmark Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q1, Q2, Q3, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, Q1: Q2: Q3, is O 1:3:5
Question No.30 Question No.30 A.00 Bookmark Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q1, Q2, Q3, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, Q1: Q2: Q3, is
C 658 nm C 656.5 nm Question No.30 4.00 Bookmark □ Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q1, Q2, Q3, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, Q1: Q2: Q3, is C 1:3:5 C 1:8:18
C 658 nm C 656.5 nm Question No.30 4.00 Bookmark □ Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q1, Q2, Q3, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, Q1: Q2: Q3, is C 1:3:5 C 1:8:18 C 1:4:9
Cuestion No.30 Question No.30 A.00 Bookmark □ Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q1, Q2, Q3, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, Q1: Q2: Q3, is □ 1:3:5 □ 1:8:18 □ 1:4:9 □ 1:2:3 Question No.31 4.00 Bookmark □
Cuestion No.30 A.00 Bookmark □ Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q1, Q2, Q3, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, Q1: Q2: Q3, is ○ 1:3:5 ○ 1:8:18 ○ 1:4:9 ○ 1:2:3 Question No.31 4.00 Bookmark □ One of the most efficient engines ever developed operates between 2100 K and 700 K. Its actual efficiency is 40%. Find the
Cuestion No.30 Question No.30 A.00 Bookmark □ Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q1, Q2, Q3, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, Q1: Q2: Q3, is □ 1:3:5 □ 1:8:18 □ 1:4:9 □ 1:2:3 Question No.31 4.00 Bookmark □
Question No.30 Question No.30 A.00 Bookmark □ Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q1, Q2, Q3, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, Q1: Q2: Q3, is □ 1:3:5 □ 1:8:18 □ 1:4:9 □ 1:2:3 Question No.31 4.00 Bookmark □ One of the most efficient engines ever developed operates between 2100 K and 700 K. Its actual efficiency is 40%. Find the ratio of its actual efficiency to its maximum efficiency in percentage. □ 60% □ 55%
C 658 nm C 656.5 nm Question No.30 A.00 Bookmark □ Three concentric metallic spherical shells of radii R, 2R, 3R, are given charges Q1, Q2, Q3, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, Q1: Q2:Q3, is C 1:3:5 C 1:8:18 C 1:4:9 C 1:2:3 Question No.31 4.00 Bookmark □ One of the most efficient engines ever developed operates between 2100 K and 700 K. Its actual efficiency is 40%. Find the ratio of its actual efficiency to its maximum efficiency in percentage. C 60%

Question No.32 Bookmark □ Two charges, one positive and one negative, of same magnitude, Q= 1.1x10 ⁻¹⁰ C, are located 2x 10 ⁶ m apart. A third charge q = 10 ¹⁷ C is located exactly between them. What is the magnitude of the total force acting on charge q? (Coulomb constant, k=8.98 x 10 ⁹ N ² mC ²). 2x10 ⁻¹⁰ N 2x10 ⁻⁵ N 2x10 ⁻⁵ N 2x10 ⁻¹⁰ N
Question No.33 Bookmark □ In the following question, the first two words (given in italics) have a definite relationship. Choose one word out of the given four alternatives which will fill the blank space and showthe same relationship with the third word as between the first two. Latex is to Rubber as Flax is to?
Question No.34 Bookmark ☐ A pipe AB of circular cross section has radii 6 cm and 3 cm at the ends A and B respectively. The water is flowing from A to B. If the water flow rate at A is 0.06 m³/s, what will be the approximate velocity of water at B? 96 m/s 67 m/s 21 m/s 85 m/s
Question No.35 Bookmark □ A cinema theatre has a volume of 750m³. What should be the total absorption in the theatre if the reverberation time of 1.5seconds is to be maintained? ○ 750 open window units ○ 835 open window units ○ 500 open window units ○ 1125 open window units
Question No.36 Bookmark □ The potential energy of system of Na ⁺ and Cl ⁻ ions when they are at 4 Å apart ○ -5.5 eV ○ -8.5 eV ○ -2.5 eV ○ -3.6 eV

Question No.37 4.00

Bookmark |

An object is placed at a distance of 100 cm from a convex mirror; the magnification produced is 1/2. Where the object should be placed to get a magnification of 1/4?

- C 30 cm
- C -300 cm
- C -30 cm
- O 300 cm

Question No.38 4.00

Bookmark [

Two pulses in a stretched string whose centres are initially 8cm apart are moving towards each other as shown in the figure. The speed of each pulse is 2 cm/s. What will be the total energy of the pulses after 2 seconds?

- Zero
- Purely kinetic
- Purely potential
- Both kinetic and potential

Question No.39

Bookmark

A spring stretched by 'x' has a potential energy U. If it is stretched by 2x more, the increase in potential energy due to second stretching is

- C 6U
- O 4 U
- O 8 U
- O 2U

Question No.40 4.00

Bookmark □

A battery of emf E and internal resistance r is used in a circuit with a variable external resistance R. Find the value of R for which the power consumed in R is maximum

O r/2

O 2r

 \circ 0

Question No.41

4.00

Bookmark

When forces F_1 , F_2 , and F_3 are acting on a particle of mass m such that F_2 and F_3 are mutually perpendicular, then the particle remains stationary. If the force F_1 is now removed then the acceleration of the particle is

- $C F_1/m$
- $\circ F_2F_3/mF_1$
- \circ F_2/m
- \circ $(F_2-F_3)/m$

Question No.42 4.00

Bookmark |

Choose the correct meaning of the italicized idiom.

The police cordoned off the area after the explosion.

- $\ensuremath{\mathbb{C}}$ did not allow anyone to leave the area
- o isolated the area
- C checked everyone in the area
- filled the whole area

Question No.43

Bookmark |

The laser action is mainly characterized by

- Spontaneous emission process
- Plasmonic process
- C Stimulated emission process
- Thermionic emission process

Question No.44 4.00

Bookmark

Oxygen is 16 times heavier than hydrogen. Equal volumes of hydrogen and oxygen are mixed. Find out the ratio of speed of sound in the mixture to that in hydrogen.

$$\sqrt{\frac{1}{8}}$$

$$0\sqrt{8.5}$$

$$0 \sqrt{\frac{8.5}{3}}$$

Admission Ag
0 16
$ \begin{array}{c} \sqrt{\frac{16}{8.5}} \end{array} $
¥ 6.5
Question No.45
Bookmark □
The reaction e ⁺ + e ⁻ →γ is forbidden because,
C linear momentum is not conserved
C charge is not conserved
ℂ angular momentum is not conserved
© lepton number is not conserved
Question No.46 4.00
Bookmark
The pressure of a gas contained in a vessel is P. If mass of each molecule is reduced to half and root mean square (RMS) velocity doubled, the pressure will be
O P/4
O P/2
O 2P
O P
Question No.47 4.00
Bookmark □
The most unique property of laser
© speed
○ coherence
O directional
○ wavelength
Question No.48
Bookmark □
Bookmark ☐ For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the
Bookmark ☐ For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level
Bookmark ☐ For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level ○ depends on m _h * but not on m _e *
Bookmark ☐ For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level ○ depends on m _h * but not on m _e * ○ depends on m _e * but not on m _h *
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level ○ depends on m _h * but not on m _e * ○ depends on m _e * but not on m _h * ○ depends neither on m _e * nor on m _h *
Bookmark ☐ For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level ○ depends on m _h * but not on m _e * ○ depends on m _e * but not on m _h *
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level ○ depends on m _h * but not on m _e * ○ depends on m _e * but not on m _h * ○ depends neither on m _e * nor on m _h *
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level ○ depends on m _h * but not on m _e * ○ depends on m _e * but not on m _h * ○ depends neither on m _e * nor on m _h *
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level ○ depends on m _h * but not on m _e * ○ depends on m _e * but not on m _h * ○ depends neither on m _e * nor on m _h *
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level ○ depends on m _h * but not on m _e * ○ depends on m _e * but not on m _h * ○ depends neither on m _e * nor on m _h *
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level ○ depends on m _h * but not on m _e * ○ depends on m _e * but not on m _h * ○ depends neither on m _e * nor on m _h *
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level ○ depends on m _h * but not on m _e * ○ depends on m _e * but not on m _h * ○ depends neither on m _e * nor on m _h *
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level depends on mh* but not on me* depends on me* but not on mh* depends neither on me* nor on mh* depends on both me* and mh*
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level of depends on mh* but not on mh* depends neither on mh* depends on both mh* depends on both mh* depends on both mh*
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level depends on mh* but not on me* depends on me* but not on mh* depends neither on me* nor on mh* depends on both me* and mh*
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level of depends on mh* but not on mh* depends neither on mh* depends on both mh* depends on both mh* depends on both mh*
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level C depends on m _h * but not on m _e * C depends neither on m _e * nor on m _h * C depends on both m _e * and m _h * Depends on both m _e and m _h * Depends on both m _e and m _h *
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level of depends on mh* but not on mh* depends neither on mh* depends on both mh* depends on both mh* depends on both mh*
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level c depends on mh* but not on mh* depends on both me* nor on mh* depends on both me* and mh* Question No.49 4.00 Bookmark
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level C depends on m _h * but not on m _e * C depends neither on m _e * nor on m _h * C depends on both m _e * and m _h * Depends on both m _e and m _h * Depends on both m _e and m _h *
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level c depends on mh* but not on mh* depends on both me* nor on mh* depends on both me* and mh* Question No.49 4.00 Bookmark
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level c depends on mh* but not on mh* depends on both me* nor on mh* depends on both me* and mh* Question No.49 4.00 Bookmark
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level c depends on mh* but not on mh* depends on both me* nor on mh* depends on both me* and mh* Question No.49 4.00 Bookmark
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level C depends on mh* but not on me* C depends on me* but not on mh* C depends neither on me* nor on mh* C depends on both me* and mh* Question No.49 4.00 Bookmark
For an intrinsic semiconductor, me* and mh* are respectively the effective masses of electrons and holes near the corresponding band edges. At a finite temperature the position of the Fermi level c depends on mh* but not on mh* depends on both me* nor on mh* depends on both me* and mh* Question No.49 4.00 Bookmark

Question No.50	4.00
	Bookmark □
A shell is fired upward from a Cannon with a velocity v (m/s) at an angle θ with the horizontection. At the highest point in its path it explodes into two pieces of equal mass. If one pieces retraces its path to the cannon, what will be the speed (in m/s) of the other piece immediately after the explosion?	
$^{\circ}$ (3/2) v cos θ	
$(\sqrt{3/2}) v \cos\theta$	
2 v cosθ3 v cosθ	
Question No.51 What is the approximate optical length of a ring cavity synchronized to a laser of repetition rate of 80 MHz? ○ 7.5 m ○ 3.75 m ○ 0.94 m ○ 1.86 m	4.00 Bookmark □
C Small forward bias exists across it C Small forward current flows through it, irrespective of the bias C Small reverse bias exists across it	4.00 Bookmark <u></u> ☐
Question No.53 The critical magnetic field for aluminium is 7.9 x 10 ³ A/m in which current flow through a long thin superconducting diameter 10 ⁻³ m. The critical current is found to be	4.00 Bookmark ☐ g wire of
C 24.81 A C 34 A C 35.46 A C 15.55 A	
Question No.54 The packing efficiency of diamond cubic unit cell is © 0.52 © 0.68 © 0.34	4.00 Bookmark ⊡
© 0.74 Question No.55	4.00
The work done in the isothermal expansion of an ideal gas from its initial pressure (P4) and volume (V4) to final r	Bookmark Poressure (Po)

and volume (V_2) is

\circ P ₁ V ₁ In (P ₁ / P ₂) \circ P ₂ V ₂ In (V ₁ / V ₂)
○ P ₁ V ₁ In (P ₂ / P ₁) ○ Zero
Question No.56 4.00
Bookmark [
Which number replaces the question mark?
13 9 22 17 5
13 4 ? C 2
O 4 O 3
0.1
Question No.57 4.00 Bookmark □
A wave traveling at 5.0 x 10 ⁴ meters per second has wavelength of 2.5 x 10 meters. What is the frequency of the wave? 5.0 x 10 ³ Hz
© 2.0 x 10 ³ Hz
[©] 1.25 x 10 ⁶ Hz [©] 5.0 x 10 ⁻⁴ Hz
3.0 X 10 FIZ
Question No.58 4.00
Bookmark If the mobility of electrons in metal decreases, the resistivity
○ increases ○ fluctuate
○ decreases
remains constant
Question No.59 4.00 Bookmark
Choose the most appropriate preposition to fill the blank: The mathematics exam will be held between 24pm.
◌ to ◌ from
୍ at ୍ and
⇒ unu
Question No.60 4.00
Bookmark ☐ Coefficient of performance of refrigerator is(Q _c is the heat removed from the refrigerator and Q _h is the heat delivered outside)
$\circ (Q_{h}-Q_{c})/Q_{h}$ $\circ Q_{c}/(Q_{h}-Q_{c})$
○ Q _h / (Q _h -Q _c)
○ (Q _h -Q _c)/Q _c
Question No.61 4.00 Bookmark □

A 3×3 matrix has eigen values 0, 2+1 and 2-1. Which of the following is a correct statement?

- The inverse of the matrix exists
- The matrix is Hermitian
- O det A = 0
- The matrix is unitary

Question No.62 4.0

Bookmark □

If $\varepsilon \le 1$ and $\eta \le 1$ but both of them are positive, then find out the approximate value of $\frac{1+\varepsilon}{1+\eta}$

- 0 1+ε-η
- $\circ \underline{\eta}$
- 1-ε+η
- $\circ \frac{\varepsilon}{\eta}$

Question No.63

Bookmark

Consider a beam of light of wavelength λ incident on a system of a polarizer and an analyzer. The analyzer is oriented at 45° to the polarizer. When an optical component is introduced between them, the output intensity becomes zero. (Light is incident normally on all components). The optical component is

- a half-wave plate
- o a quarter-wave plate
- c a full-wave plate
- o an ordinary glass plate

Question No.64 4.00

Bookmark

Which of the following diagrams represents the magnetic field due to a circular current?

Question No.65

4.00

Bookmark □

Choose the synonym of the italicized word.

Some people are extremely fastidious in their choice of dress.

- fussy
- discriminating
- c careless
- o pompous

Question No.66 4.00

Bookmark □

The variation of potential energy of harmonic oscillator is shown in figure. The force constant of the oscillator is

© 400 N/m © 75 N/m © 150 N/m © 250 N/m
Question No.67 Bookmark □ The coefficient of performance of a refrigerator is 5. If the temperature inside freezer is -20°C, the temperature of the surroundings to which it rejects heat is 31°C 41°C 21°C 11°C
Question No.68 Bookmark □ In photoelectric experiment both sodium (work function = 2.3eV) and tungsten (work function = 4.5eV) metals were illuminated by an ultraviolet light of same wavelength. If the stopping potential for tungsten is measured to be 1.8V, the value of the stopping potential for sodium will be ○ 2.2 V ○ 6.3 V ○ 6.8 V ○ 4 V
Question No.69 The equation of a wave is given by y=a $sin[ω((x/v) -k)]$, where ω is the angular velocity, v is the linear velocity. The dimension of k will be
Question No.70 Bookmark □ Calculate the wavelength of the photon, which will be required to break a Cooper pair in a superconductor like zirconium whose T _c is 0.56 K ○ 7.2 x 10 ⁻³ m ○ 3.8 x 10 ⁻² m ○ 1.5 x 10 ⁻⁴ m ○ 4.3 x 10 ⁻⁵ m
Question No.71 Statement: Be humble even after being victorious. Assumptions: I. Many people are humble after being victorious II. Generally People are not humble

 If both I and II are implicit If only assumption II is implicit
O If only assumption I is implicit
Question No.72 4.00
Bookmark ☐ If black is called white, white is called red, red is called pink, pink is called green, green is called blue, what would be the colour of human blood? ○ Green
© Blue
© Pink © White
Question No.73 4.00
Bookmark ☐ Study the following information carefully and answer the question below it:
Aasha, Bhuvnesh, Charan, Danesh, Ekta, Farhan, Ganesh and Himesh are sitting around a circle, facing the centre. Aasha sits fourth to the right of Himesh while second to the left of Farhan. Charan is not the neighbour of Farhan and Bhuvnesh. Danesh sits third to the right of Charan. Himesh never sits next to Ganesh.
Which is the position of Farhan with respect to Ekta? © Fourth to the right
O Third to the left
© Second to the right © Sixth to the left
Question No.74
Bookmark ☐ A Carnot engine working between 300 K and 400 K has 800 J of useful work. The amount of heat energy supplied to the engine from the source is
C 1200 J C 3600 J C 3200 J C 2400 J
© 3600 J © 3200 J © 2400 J Question No.75
C 3600 J C 3200 J C 2400 J
C 3600 J C 3200 J C 2400 J Question No.75 A.00 Bookmark Bookmark Bookmark 1/3 C 1/3 C 7/8
Cuestion No.75 Question No.75 The half-life of a radioactive nuclear source is 9 days. The fraction of nuclei which are left undecayed after 3 days is 2/3 1/3 7/8 1/2 ^{1/3} Question No.76 4.00
Cuestion No.75 Question No.75 The half-life of a radioactive nuclear source is 9 days. The fraction of nuclei which are left undecayed after 3 days is C 2/3 C 1/3 C 7/8 C 1/2 ^{1/3} Question No.76 A body floats with 1/3 of its volume outside water. The same body floats with 3/4 of its volume inside another liquid. The density of the other liquid is C 2/9 gm/cc
C 3600 J C 3200 J C 2400 J Question No.75 A 0.00 Bookmark The half-life of a radioactive nuclear source is 9 days. The fraction of nuclei which are left undecayed after 3 days is C 2/3 C 1/3 C 7/8 C 1/2 ^{1/3} Question No.76 A body floats with 1/3 of its volume outside water. The same body floats with 3/4 of its volume inside another liquid. The density of the other liquid is

Question No.77	4.00 Bookmark
A combination of two thin convex lenses of equal focal lengths, is kept separated along the optic axes by a distar between them. The combination behaves as a lens system of infinite focal length. If an object is kept at 10 cm fro lens, its image will be formed on the other side at a distance x from the second lens. The value of x is	nce of 20 cm
© 6.67 cm © 20 cm	
© 10 cm © infinite	
Question No.78	4.00 Bookmark □
The method of mining silver varies from place to place,? © is it?	BOOKIIIAI K
O doesn't it?	
O does it? O isn't it?	
Question No.79	4.00
1, 4, 27, 16, ?, 36, 343	Bookmark □
0 132 0 125	~
0.72	
C 25	
Question No.80	4.00 Bookmark □
Suppose the gravitational force varies inversely as the n^{th} power of distance. Then the time period of a planet in of radius R around the sun will be proportional to	circular orbit
of radius K around the suff will be proportional to $R^{\left(\frac{n+1}{2}\right)}$	
$\circ R^n$	
$R^{\left(\frac{n-2}{2}\right)}$	
$C R^{\left(\frac{n-1}{2}\right)}$	
R	
Question No.81	4.00 Bookmark
The output of operational amplifier increases 5 V in 15 μs. The slew rate is	
○ 30 V/µs ○ 5 V/µs	
○ 0.333 V/µs	
© 90 V/ µs	
Question No.82	4.00 Bookmark □
Study the following information carefully and answer the question below it	

Admissi	ion Agl
mether offsha. Deepa is the sister of Vinod and Charan. Nagesh has two children, Gita and Hansa. Emesh is the only grandson in the family. Charan is not married. Radha is the daughter-in-law of Anand.	
Who is married to Radha?	
© Nagesh	
○ Charan ○ Anand	
© Vinod	
	4.00
Question No.83 Bookr	4.00 mark □
If $y = \sqrt{\frac{1}{2} + \sqrt{\frac{1}{2} + \sqrt{\frac{1}{2} + \dots}}}$, then find the value of y	
$\frac{1+\sqrt{3}}{2}$	
$\circ \frac{1+\sqrt{2}}{1+\sqrt{2}}$	
2	
$^{\circ}$ $1-\sqrt{3}$	
$^{\circ}\frac{1-\sqrt{2}}{2}$	
Question No.84	4.00
Bookr For an n-channel silicon FET with channel width of $3x10^{-4}$ cm and the dopant concentration of 10^{15} electrons/cm ³ . The relative dielectric constant of silicon is 12 and the pinch of voltage is © 6.8 V	4.00 mark □
Bookr For an n-channel silicon FET with channel width of 3x10 ⁻⁴ cm and the dopant concentration of 10 ¹⁵ electrons/cm ³ . The relative dielectric constant of silicon is 12 and the pinch of voltage is	
For an n-channel silicon FET with channel width of 3x10 ⁻⁴ cm and the dopant concentration of 10 ¹⁵ electrons/cm ³ . The relative dielectric constant of silicon is 12 and the pinch of voltage is 6.8 V 13.5 V 10 V 15.5 V Question No.85	mark □
For an n-channel silicon FET with channel width of 3x10 ⁻⁴ cm and the dopant concentration of 10 ¹⁵ electrons/cm ³ . The relative dielectric constant of silicon is 12 and the pinch of voltage is 6.8 V 13.5 V 10 V 15.5 V Question No.85	mark 🗆
For an n-channel silicon FET with channel width of 3x10 ⁻⁴ cm and the dopant concentration of 10 ¹⁵ electrons/cm ³ . The relative dielectric constant of silicon is 12 and the pinch of voltage is 6.8 V 13.5 V 10 V 15.5 V Question No.85 Bookr The phase difference between the input and output voltages of a transistor connected in common emitter arrangement is 180° 360° 270°	mark □
For an n-channel silicon FET with channel width of 3x10 ⁻⁴ cm and the dopant concentration of 10 ¹⁵ electrons/cm ³ . The relative dielectric constant of silicon is 12 and the pinch of voltage is 6.8 V 13.5 V 10 V 15.5 V Question No.85 Bookr The phase difference between the input and output voltages of a transistor connected in common emitter arrangement is 180° 360° 270°	mark □
For an n-channel silicon FET with channel width of 3x10 ⁻⁴ cm and the dopant concentration of 10 ¹⁵ electrons/cm ³ . The relative dielectric constant of silicon is 12 and the pinch of voltage is 6.8 V 13.5 V 10 V 15.5 V Question No.85 Bookr The phase difference between the input and output voltages of a transistor connected in common emitter arrangement is 180° 360° 270°	mark □
For an n-channel silicon FET with channel width of 3x10 ⁻⁴ cm and the dopant concentration of 10 ¹⁵ electrons/cm ³ . The relative dielectric constant of silicon is 12 and the pinch of voltage is 6.8 V 13.5 V 10 V 15.5 V Question No.85 Bookr The phase difference between the input and output voltages of a transistor connected in common emitter arrangement is 180° 360° 270°	mark □
For an n-channel silicon FET with channel width of 3x10 ⁻⁴ cm and the dopant concentration of 10 ¹⁵ electrons/cm ³ . The relative dielectric constant of silicon is 12 and the pinch of voltage is	mark □

C 25.14×10³ m/s C 27.9×10³ m/s C 2.79×10³ m/s C 24.1×10³ m/s

Question No.87
Bookmark □
For a given motion, the relationship between time t and distance x is found out to be $t = \alpha x^2 + \beta x$, where α and β are constants. Considering v as velocity, the retardation will be given by,
$\sim 2 \beta^2 \mathrm{v}^3$
$\circ 2\alpha v^3$
$\circ 2\alpha\beta v^3$
$\circ 2\beta v^3$
Question No.88 4.00 Bookmark □
Based on the information given answer the following question. 1. In a family of six persons, there are people from three generations. Each has separate professions and they like different colours. There are two couples. 2. Shyam is an Engineer and his wife is not a doctor and she does not like Red colour.
3. Chartered Accountant likes green colour and his wife is a teacher. 4. Manisha is the mother-in-law of Sunita and she likes orange colour. 5. Vimal is the grand father of Tarun and tarun is the Principal and likes black colour.
6. Nyna is the grand daughter of Manisha and she likes blue colour. Nyna's Mother likes white colour.
Which Colour is liked by the Sunita? O White
o Green
© Black
Cannot be determined
Question No.89 4.00 Bookmark □ Choose the best antonym of the italicized word. The principal deprecated the attitude of some student-leaders. ignored derided appreciated tolerated
Question No.90 4.00
Bookmark ☐ A 200 turn coil having an axial length of 30 mm and a radius of 10mm is pivoted in a magnetic field having a flux density of 0.8 T. If the coil carries a current of 0.5A, the torque acting on the coil will be ○ 0.0048 Nm ○ 0.048 Nm ○ 8 Nm ○ 0.48 Nm
Question No.91
Bookmark □
If $3^{\frac{1}{3}}x - 2^{\frac{1}{2}}y = 0$ and $2^{\frac{1}{3}}x - 3^{\frac{1}{2}}y = 1$, find the value of x and y.

4.00

Bookmark □

The DC current gain a common-base transistor is 0.956 and emitter current is 10 mA. The base current value is $0.38 \text{ mA} = \frac{5}{0.66 \text{ mA}} = \frac{5}{6} = \frac{5}{6} = 0.44 \text{ mA}$

Bookma Solar energy reaches the earth at the rate of about 1.4 kW per square meter of surface perpendicular to the direction of the sun (The mean radius of the earth's orbit is 1.5×10^{11} m). The mass of the sun decrease per second owing to this energy loss

C 0,25 mA

Question No.93 3 3

	Admission Agl
~ 4.4 x IU ky	
[©] 2.0 x 10 ¹⁹ kg	
^C 4.4 x 10 ²⁶ kg	
[©] 2.0 x 10 ³⁰ kg	
Question No.94	4.00 Bookmark □
A uniform metal disc with a small hole at the center is rotating at a constant period around an axis that pass center of mass of the disc. If the disc is heated uniformly, the period of rotation will © decrease	
© increase	
○ remain same	
© first increase then decrease	
Question No.95	4.00
The proton proton chain reaction	Bookmark □
is the runaway reaction that produces the fission of iron during a supernova explosion	
is a three-step process which converts some mass to energy as helium nuclei are formed	
adds protons together until a massive carbon nucleus is produced at the core of the Sun	A /
o produces chains of protons which are then broken apart to produce the Sun's energy	
Question No.96	4.00
The coomic micentury hadraround radiation comes from	Bookmark
The cosmic micorwave background radiation comes from C the solar nebula	
C quasars	
C the Big Bang	
© radio galaxies	
Question No.97	4.00
	Bookmark □
The position vector of a particle is represented as $\vec{r} = (a\cos\omega t)\hat{i} + (a\sin\omega t)\hat{j}$. What is	the
direction of the velocity vector?	
© Parallel to position vector	
C Always directed away from the origin	
© Perpendicular to position vector	
C Always directed towards origin	
Question No.98	4.00
	Bookmark 🗆
The efficiency of a full-wave rectifier is C double the half-wave rectifier	
© one-half of half-wave rectifier	
© one-hair or hair-wave rectifier	
C Same as half-wave rectifier	
Country as hall wave received	
Question No.99	4.00
ou wouldn't tell them what happened,	Bookmark

isn't it?

would you? wouldn't you? won't you?

Question No.100

4.00

Bookmark [

At certain place, the horizontal component of earth's magnetic field is 3.0~G and the angle dip at the place is 30° . The magnetic field of earth at that location

- C 4.5 G
- O 3.5 G
- 6.0 G
- O 5.1 G

