Shukai Du Curriculum Vitae

Visiting Assistant Professor Email: shukaidu@udel.edu
Department of Mathematics Website: https://shukaidu.github.io

University of Wisconsin-Madison

RESEARCH INTERESTS

- Finite element and discontinuous Galerkin methods
- Numerical simulation of atmospheric dynamics and radiative transfer
- Elastic/viscoelastic and electromagnetic waves
- Inverse and ill-posed problems

EDUCATION

University of Delaware

• Ph.D in Applied Mathematics

May 2020

Advisor: Dr. Francisco-Javier Sayas

Thesis: Generalized projection-based error analysis of hybridizable discontinuous Galerkin methods

Wuhan University

• M.S. in Computational Mathematics

2015

• B.S. in Pure Mathematics

2012

PUBLICATIONS

Submitted

- 1. **S. Du**, and S. N. Stechmann. A universal predictor-corrector approach for minimizing artifacts due to mesh refinement.
- 2. **S. Du**, and S. N. Stechmann. Fast, low-memory numerical methods for radiative transfer via hp-adaptive mesh refinement.

Peer-reviewed articles

1. M. A. Sánchez, **S. Du**, B. Cockburn, N.-C. Nguyen, J. Peraire. Symplectic Hamiltonian finite element methods for electromagnetics. *Comput. Methods Appl. Mech. Engrg.* 396 (2022), appeared online.

DOI: 10.1016/j.cma.2022.114969

2. B. Cockburn, M. A. Sánchez, **S. Du**. Discontinuous Galerkin methods with time-operators in their numerical traces for time-dependent electromagnetics. *Comput. Meth. Appl. Math. (2022), appeared online.*

DOI: 10.1515/cmam-2021-0215

3. **S. Du**, and F.-J. Sayas. A note on devising HDG+ projections on polyhedral elements. *Math. Comp. 90 (2021), 65-79*.

DOI: 10.1090/mcom/3573

4. **S. Du**. HDG methods for Stokes equation based on strong symmetric stress formulations. *J. Sci. Comput.* 85, 8 (2020).

DOI: 10.1007/s10915-020-01309-7

5. **S. Du**, and F.-J. Sayas. A unified error analysis of hybridizable discontinuous Galerkin methods for the static Maxwell equations. *SIAM J. Numer. Anal.* 58 (2020), no. 2, 1367–1391.

DOI: 10.1137/19M1290966

6. **S. Du**, and F.-J. Sayas. New analytical tools for HDG in elasticity, with applications to elastodynamics. *Math. Comp. 89* (2020), 1745-1782.

DOI: 10.1090/mcom/3499

7. **S. Du**, and N. Du. A factorization of least-squares projection schemes for ill-posed problems. *Comput. Meth. Appl. Math. 20 (2020), no. 4, 783-798.*

DOI: 10.1515/cmam-2019-0173

8. T.S. Brown, **S. Du**, H. Eruslu, and F.-J. Sayas. Analysis of models for viscoelastic wave propagation. *Appl. Math. Nonlin. Sci. 3 (2018)*, no. 1, 55-96. DOI: 10.21042/AMNS.2018.1.00006

Books

1. **S. Du**, and F.-J. Sayas. An invitation to the theory of the Hybridizable Discontinuous Galerkin Method. *SpringerBriefs in Mathematics* (2019).

DOI: 10.1007/978-3-030-27230-2

PRESENTATIONS

Talks

iains		
1.	Three-dimensional radiative transfer: fast, low-memory numerical method	S
	Collective Madison Meeting, USA	Aug 2022
2.	Unified analysis of HDG methods for the static Maxwell equations	
	CILAMCE-PANACM 2021, Brazil	Nov 2021
3.	Generalized projection-based error analysis of hybridizable discontinuous	s Galerkin
	(HDG) methods	
	CEDYA2021, Spain	June 2021
4.	Projection-based analysis of hybridizable discontinuous Galerkin (HDG) methods	
	Wenbo Li Prize Talk, U of Delaware	Feb 2020
5.	Unified analysis of HDG methods for the static Maxwell equations	
	SIAM CSE2021, Virtual Meeting	Mar 2021
6.	New analysis techniques of HDG+ method	
	SIAM Sectional Meeting, Iowa State U	Oct 2019
7.	Uniform-in-time optimal convergent HDG method for	
	transient elastic waves with strong symmetric stress formulation	
	WAVES2019, TU Wien, Vienna	Aug 2019
8.	Hybridizable Discontinuous Galerkin schemes for elastic waves	
	ICIAM2019, Valencia	July 2019
9.	HDG for transient elastic waves	
	WONAPDE2019, U of Concepcion	Jan 2019
10.	Projection-based analysis of HDG methods with reduced stabilization	
	DelMar Num Day 2019, U of Maryland	May 2019
11.	Projection-based error analysis of HDG methods for transient elastic waves	3
	FEM Circus, U of Delaware	Nov 2018
12.	Devising a tailored projection for a new HDG method in linear elasticity	
	FEM Circus, U of Tennessee	Mar 2018

13. A new HDG projection and its applications *Mid-Atlantic Numerical Analysis Day, Temple U*

Nov 2017

Poster presentation

1. Hybridizable Discontinuous Galerkin methods in transient elastodynamics *FACM2018, New Jersey Institute of Technology* Aug 2018

2. Building a computational code for 3D viscoelastic wave simulation *Mid-Atlantic Numerical Analysis Day, Temple U*

Nov 2016

REFERRED JOURNAL

Journal of Scientific Computing • SIAM Multiscale Modelling and Simulation • Frontiers in Applied Mathematics and Statistics

AWARDS AND HONORS

Wenbo Li Prize	2020
University Doctoral Fellowship Award at the University of Delaware	2019
ICIAM2019 travel grant	2019
Graduate Enrichment Fellowship at the University of Delaware	2018
GEMS project fund at the University of Delaware	Summer 2016
National Scholarship for Graduate Students of China	2013
People's Scholarship of Wuhan University	2011
Outstanding Student of Wuhan University	2009-2011

TEACHING

Teaching Assistant

Review of Advanced Mathematical Problems

 (summer courses offered to incoming graduate students)
 Analytic Geometry and Calculus C (Math243)
 Analytic Geometry and Calculus B (Math242)

 Calculus I (Math221)
 2018 Spring

International Teaching Assistant (ITA) training program

• Graduated with the highest category of scores (category I) Summer 2015

Graduate mentor

• GEMS summer research project

Fall 2016

CODING PROJECTS

Fast, low-memory methods for radiative transfer

2020 - current

- Build a cell-based structured adaptive mesh refinement (AMR) data structure
- Implement discontinuous Galerkin (DG) methods with hp-adaptivity for the full radiative transfer equation

Hybridizable Discontinuous Galerkin (HDG) methods (based on HDG3D library)

2016 - 2020

• Build Matlab codes of high order HDG methods on computing cluster for transient elastic/viscoelastic waves and Maxwell equations

• Write documentations with detailed implementation procedures for HDG methods for Maxwell equations

Finite Element Method (FEM)

2016

(based on Team Pancho FEM library)

• Build Matlab codes of high order FEM methods on computing cluster for simulation of viscoelastic waves.

Multiscale modeling

2013 - 2015

• Implement algorithms to calculate Cauchy stress tensor based on micro-scale molecular dynamics information

COMPUTER SKILLS

Theory

Data Structures • Algorithm • Object Oriented Programming

Languages & Software

Matlab • Python • C • C++ • Fortran • openMPI • LISP • Linux Shell

Last update: September 18, 2022