חישוביות וסיבוכיות תרגול מס' 7

RE I R

- תזכורת להרצאה:
- . סגורה תחת איחוד, חיתוך, שרשור, * קליני ומשלים R ightharpoonup
- RE ▶ סגורה תחת איחוד, חיתוך, שרשור, * קליני ואינה סגורה תחת משלים.
 - ? \bar{L} לאן שייך L \in RE אם

תזכורת

$$RE = \{L \subseteq \Sigma^* | there \ exists \ a \ TM \ that \ recognizes \ L \}$$
 $R = \{L \subseteq \Sigma^* | there \ exists \ a \ TM \ that \ decides \ L \}$

$$CO_RE = \{L \subseteq \Sigma^* | \overline{L} \in RE \}$$

$$L(U) = L_{acc} = \{ < M >, < w >: w \in L(M) \}$$

$$L_{halt} = \{ < M >, < w > \notin L(M) \}$$

$$L_d = \{ < M >: < M > \notin L(M) \}$$

$$L_{\Sigma^*} = \{ < M >: L(M) = \Sigma^* \}$$

תזכורת

תרגיל

הוכיחו או הפריכו את הטענות הבאות:

$$L_1 \setminus L_2 \in R$$
 אזי $L_1 \in R$ וגם $L_1 \in R$ אם (א

$$L_1 \setminus L_2 \in RE$$
 אזי $L_1 \in RE$ ב) אם $L_1 \in RE$ אם (ב

$$L_1 \setminus L_2 \in RE$$
 אזי $L_1 \in R$ וגם $L_1 \in R$ אם (ג

'פתרון א

$$L_1 \setminus L_2 \in R$$
 אזי $L_1 \in R$ וגם $L_1 \in R$ אם (א

- נכון.
- . A \ B = A \cap $ar{B}$ נזכור ש R סגורה תחת חיתוך ומשלים ונעזר בזהות

 $L_1\setminus L_2=L_1\cap \overline L_2$. אם R אז $L_2\in R$ אז $L_2\in R$ אז $L_2\in R$ אז $L_2\in R$ אז $L_1\cap \overline L_2\in R$ אז $L_1\cap \overline L_2\in R$ אז $L_1\setminus L_2\in R$ לכן $L_1\setminus L_2\in R$

'פתרון ב

 $\mathsf{L_1}\setminus\mathsf{L_2}=\mathsf{L_1}\cap L_2$. אם R בי $\overline{L}_2\in\mathsf{R}$ אז אז $\mathsf{L2}\in\mathsf{R}$ אם L2 או

- נכון.
- . A \ B = A \cap $ar{B}$ נזכור ש R סגורה תחת חיתוך ומשלים ונעזר בזהות
 - $L \in RE$ מתקיים $L \in R$

 $L_1\setminus L_2=L_1\cap \overline L_2$. אם R אז $L_2\in R$ אז $L_2\in R$ אז $L_2\in R$ אז $L_2\in R$ אם R אם $L_2\in R$ אז $L_2\in R$

'פתרון ג

$$L_1 \setminus L_2 \in RE$$
 אזי $L_1 \in R$ וגם $L_1 \in R$ אם (ג

- . לא נכון
- דוגמה נגדית:
- $L_2 = L_{acc}$, $L_1 = \Sigma^*$:

L1 \ L2 =
$$\Sigma^*$$
 \ Lacc = $\overline{Lacc} \notin RE$

$$\overline{Lacc} \in \mathsf{CO}\text{-RE}$$

תרגיל 2

 $L_1 \cap L_2 \in R$ אז $L_2 \in CO$ -RE אם $L_1 \in RE$

פתרון

- $L_1 \cap L_2 \in R$ אם $L_2 \in CO$ -RE וגם $L_1 \in RE$
 - לא נכון.
 - דוגמה נגדית:
- $L_2 = L_d \in CO$ -RE ו $L_1 = \Sigma^* \in RE$ נבחר
 - $L_1 \cap L_2 = L_d \notin R$ אבל

תרגיל 3

. $L_2\in RE$ או $L_1\in RE$ אזי אזי , $L_2\setminus L_1\in RE$ אם , $L_1\subset L_2$ -ש כך כך או L_2 -ו או לכל שתי שפות לכל שתי שפות אור , $L_1\subset L_2$ -שר

פתרון

. $L_1\in RE$ או $L_1\in RE$ אזי , $L_2\setminus L_1\in RE$ אם , $L_1\subset L_2$ -ש כך בר L_1 וים שפות לכל שתי שפות לכל

7.3 (cil: 612m) (78.v
L2= L5* U{ε}, L1= L5*
L,CL2, L2\L, = { } ERE: 's/c
DIOD UNDID, LA RE: Sole
PANENT M'S SIC DAISY C'N P'7 Ne 3 LZERE AZI
CHCILE SI CE. Jeliv R.D. Dell PT.