Table 1. Hypotheses for covariates affecting landings. S_t is quarter 3 (July-September) catch in the current season, S_{t-1} is quarter 3 catch in the previous season. N_t is the post-monsoon October-March catch in the current season and N_{t-1} is the October-March catch in the prior season. Because the fishing season is July-June, N_t spans two calendar years. DD = hypotheses related to effects of past abundance (landings) on current abundance. S = hypotheses related to spawning. L = hypotheses related to larval and juvenile growth and survival. A = hypotheses affecting all ages.

Hypothesis	Resp.	Covariates
DD1. S_t is dominated by mature age 2+ fish, thus abundance of the 1-yr and 2-yr ages in the prior season (Oct-Mar catch) should be correlated with the abundance of mature fish this year.	S_t	N_{t-1}
DD2. Abundance of 1-yr and 2-yr fish should be correlated with strength of the cohorts from the previous two seasons. The quarter 3 catch, dominated by mature fish, in the prior two years is expected to be correlated with post-monsoon catch.	N_t	S_{t-1} and S_{t-2}
DD3. Because age 2 fish appear in the post-monsoon catch, we also expect the post-monsoon catch (dominated by age 1 and 2) in the previous season to be correlated with the post-monsoon catch in the current season. Post-monsoon catch two seasons prior should be minimally correlated with current post-monsoon catch.	N_t	N_{t-1}
S1. The onset of monsoon precipitation triggers movement of adults from offshore to spawning areas due to changes in salinity, turbulence or noise. Spent adults migrate inshore and are exposed to the fishery. Strong spawning affects post-monsoon catch in current and future seasons.	S_t	Jun-Jul precipitation in year t
S2. The level of precipitation in pre-monsoon months predicts spawning strength.	S_t	$\begin{array}{c} \text{Apr-May} \\ \text{precipitation in} \\ \text{year } t \end{array}$
S3. Precipitation initiates and supports spawning. Spawning affects post-monsoon catch in current and future seasons.	N_t	Apr-May and Jun-Jul precipitation in year t and $t-1$
S4. Extremely high upwelling brings poorly oxygenated water and very low temperatures to the surface causing mature fish to avoid nearshore areas where they would be exposed to the fishery.	S_t	Jun-Sep upwelling index in year t
S5. Extreme heat events in the pre-spawning months cause mature fish to move offshore away from productive feeding areas leading to poor spawning condition. Poor recruitment leads to few 0-age in current season catch and 1-age fish in next season's catch.	N_t	Nearshore Mar-May SST in year t and $t-1$

Table 1. Continued.

Hypothesis	Resp.	Covariates
L1. The prior year post-monsoon larval survival and	N_t	Nearshore SST
growth is associated with higher future biomass. Larval	and S_t	during Oct-Dec in
growth and survival is highest in an intermediate		year t-1
temperature window. Low SST at this time is also		
indicative of strong upwelling which advects larvae into		
offshore waters where productivity is lower.		
L2. Upwelling is associated with higher productivity	N_t	Jun-Sep upwelling
and higher density of zooplankton, which leads to better	and S_t	index in year $t-1$
larval and juvenile growth and survival. The strength of		and t (for N_t)
summer upwelling should be associated with higher		
biomass in future years and the appearance of 0-age fish		
in post-monsoon catch. However, extremely strong		
upwelling brings poorly oxygenated water to the surface		
causing larval mortality and advects larvae offshore.		
L3. Chlorophyll blooms are signatures of high	N_t	Chl-a density
productivity from nutrient influx either due to	and S_t	Jun-Sep in year
upwelling or coastal inputs. The monsoon bloom		$t-1$ and t (for N_t)
intensity should be associated with 0-year fish		
abundance in year t and future sardine biomass.		
A1. The changes brought about by the El Niño	N_t	ONI in year t-1
Southern Oscillation (ENSO) cycle have a variety of	and S_t	
effects on environmental parameters (precipitation, SST,		
thermal fronts, Wind) which impacts spawning and		
early survival. This in turn impacts the overall		
abundance.		