Cohomologie de de Rham -2-

Abdelhak Abouqateb

Université Cadi Ayyad Faculté des sciences et Techniques Marrakech

Rencontre du GGTM Géométrie, Topologie et systèmes dynamiques Casablanca, du 26-28 octobre 2011 ightharpoonup Définition : Pour toute variété V de dimension n, on définit l'espace vectoriel gradué

$$\mathsf{H}^*(V) = \mathsf{H}^0(V) \oplus \mathsf{H}^1(V) \oplus \cdots \oplus \mathsf{H}^n(V)$$

ightharpoonup Définition : Pour toute variété V de dimension n, on définit l'espace vectoriel gradué

$$\mathsf{H}^*(V) = \mathsf{H}^0(V) \oplus \mathsf{H}^1(V) \oplus \cdots \oplus \mathsf{H}^n(V)$$

▶ <u>Propriétés</u> : En plus de l'invariance par homotopie et du Lemme de Mayer-Vietoris. Dualité de Poincaré ightharpoonup Définition : Pour toute variété V de dimension n, on définit l'espace vectoriel gradué

$$\mathsf{H}^*(V) = \mathsf{H}^0(V) \oplus \mathsf{H}^1(V) \oplus \cdots \oplus \mathsf{H}^n(V)$$

- ► <u>Propriétés</u> : En plus de l'invariance par homotopie et du Lemme de Mayer-Vietoris. Dualité de Poincaré
- ▶ <u>Un théorème</u> : Cohomologie des formes invariantes. (Cohomologie d'un groupe de Lie compact connexe)

Soit V une variété différentielle de dimension n.

Soit V une variété différentielle de dimension n. Soit $p \in \{1, \dots, n\}$.

Soit V une variété différentielle de dimension n. Soit $p \in \{1, \ldots, n\}$. Une p-forme différentielle ω sur V est :

Soit V une variété différentielle de dimension n. Soit $p \in \{1, \ldots, n\}$. Une p-forme différentielle ω sur V est :

 \triangleright La donnée en tout point $x \in V$ d'une p-forme multilinéaire alternée ω_x sur l'espace tangent T_xV , telle pour toute famille X^1, \ldots, X^p de champs de vecteurs sur V, l'application :

$$\omega(X^1,\cdots,X^p): x\mapsto \omega_x(X^1_x,\cdots,X^p_x)$$

soit différentiable

Soit V une variété différentielle de dimension n. Soit $p \in \{1, \dots, n\}$. Une p-forme différentielle ω sur V est :

 \triangleright La donnée en tout point $x \in V$ d'une p-forme multilinéaire alternée ω_x sur l'espace tangent T_xV , telle pour toute famille X^1, \ldots, X^p de champs de vecteurs sur V, l'application :

$$\omega(X^1,\cdots,X^p): x\mapsto \omega_x(X^1_x,\cdots,X^p_x)$$

soit différentiable

 \diamond Ecriture locale : Si $(U,(x_1,\cdots,x_p))$ est un système de coordonnées locales, l'expression de ω sur U est donnée par :

$$\omega_U = \sum_{I} f_I dx_I$$

où
$$I = (i_1 < \ldots < i_p)$$
, $f_I \in C^{\infty}(V)$ et $dx_I = dx_{i_1} \wedge \cdots \wedge dx_{i_p}$

Par recollement:

Si on part d'un recouvrement de V par des ouverts (U_{α}) et que l'on se donne sur une famille de p-formes différentielles ω_{α} telle que sur les intersections non vides $U_{\alpha} \cap U_{\beta}$ on a $\omega_{\alpha} = \omega_{\beta}$, alors il existe une forme différentielle globale ω sur V dont la restriction à chaque U_{α} coı̈ncide avec U_{α} .

Par recollement:

Si on part d'un recouvrement de V par des ouverts (U_{α}) et que l'on se donne sur une famille de p-formes différentielles ω_{α} telle que sur les intersections non vides $U_{\alpha} \cap U_{\beta}$ on a $\omega_{\alpha} = \omega_{\beta}$, alors il existe une forme différentielle globale ω sur V dont la restriction à chaque U_{α} coı̈ncide avec U_{α} .

On pose $\Omega^0(V)=C^\infty(V)$ et on désignera par $\Omega^p(V)$ l'espace des p-formes différentielles sur V, et $\Omega^*(V)$ l'espace vectoriel gradué :

$$\bigoplus_{p=0}^{n} \Omega^{p}(V)$$

Image réciproque :

Soit $\psi: V \to W$. On définit

$$\psi^*:\Omega^p(W)\to\Omega^p(V)$$

par la formule :

$$\psi^*(\omega)(X^1,\ldots,X^p)(x)=\omega_x(T_x\psi(X^1),\ldots,T_x\psi(X^p))$$

Et pour p = 0, on pose $\psi^*(f) = f \circ \psi$.

Image réciproque :

Soit $\psi: V \to W$. On définit

$$\psi^*:\Omega^p(W)\to\Omega^p(V)$$

par la formule :

$$\psi^*(\omega)(X^1,\ldots,X^p)(x)=\omega_x(T_x\psi(X^1),\ldots,T_x\psi(X^p))$$

Et pour p = 0, on pose $\psi^*(f) = f \circ \psi$.

On a:

$$(\psi \circ \phi)^* = \phi^* \circ \psi^*$$

Différentielle extérieure :

C'est l'opérateur linéaire

$$d:\Omega^p(V) o\Omega^{p+1}(V)$$

donné par :

$$d\omega(X^{0},\ldots,X^{p}) = \sum_{i=0}^{p} (-1)^{i} X^{i} (\omega(X^{0},\cdots,\widehat{X^{i}},\cdots,X^{p})) + \sum_{i < j} (-1)^{i+j} \omega([X^{i},X^{j}],X^{0},\cdots,\widehat{X^{i}},\cdots,X^{p})$$

Différentielle extérieure :

C'est l'opérateur linéaire

$$d:\Omega^p(V)\to\Omega^{p+1}(V)$$

donné par :

$$d\omega(X^{0},\ldots,X^{p}) = \sum_{i=0}^{p} (-1)^{i} X^{i} (\omega(X^{0},\cdots,\widehat{X^{i}},\cdots,X^{p})) + \sum_{i < i} (-1)^{i+j} \omega([X^{i},X^{j}],X^{0},\cdots,\widehat{X^{i}},\cdots,X^{p})$$

Expression locale:

$$d(fdx_I) = \sum_{k} \frac{\partial f}{\partial x_k} dx_k \wedge dx_I$$

Cohomologie:

On a la propriété :

$$d \circ d = 0$$

Cohomologie:

On a la propriété :

$$d \circ d = 0$$

On appellera p ième espace de cohomologie de de Rham de V le quotient :

$$H^p(V) = rac{\ker(d:\Omega^p(V) o \Omega^{p+1}(V))}{\operatorname{im}(d:\Omega^{p-1}(V) o \Omega^p(V))}$$

Cohomologie:

On a la propriété :

$$d \circ d = 0$$

On appellera p ième espace de cohomologie de de Rham de V le quotient :

$$H^p(V) = rac{\ker(d:\Omega^p(V) o\Omega^{p+1}(V))}{\operatorname{im}(d:\Omega^{p-1}(V) o\Omega^p(V))}$$

La cohomologie de de Rham de V est l'espace vectoriel gradué

$$H^*(V) = \bigoplus_{p=0}^n H^p(V)$$

Pour $\psi:V\to W$, on a

$$\psi^* \circ d = d \circ \psi^*$$

Pour $\psi:V\to W$, on a

$$\psi^* \circ d = d \circ \psi^*$$

Ce qui permet d'obtenir

$$H^*(\psi): H^*(W) \rightarrow H^*(V)$$

Pour $\psi: V \to W$, on a

$$\psi^* \circ d = d \circ \psi^*$$

Ce qui permet d'obtenir

$$H^*(\psi): H^*(W) \to H^*(V)$$

On a:

$$H^*(\phi \circ \psi) = H^*(\phi) \circ H^*(\psi)$$

Invariance par homotopie:

Définition Soit $\iota:W\hookrightarrow V$ une sous-variété plongée. On dira que W est un retract par déformation de V s'il existe une application différentiable $r:V\to W$ (rétraction) telle que :

- **2** $\iota \circ r$ est homotope à Id_V .

Invariance par homotopie:

Définition Soit $\iota:W\hookrightarrow V$ une sous-variété plongée. On dira que W est un retract par déformation de V s'il existe une application différentiable $r:V\to W$ (rétraction) telle que :

- \bullet $r \circ \iota = Id_W$,
- ② $\iota \circ r$ est homotope à Id_V .

Théorème Si W est un retract par déformation de V, alors : W et V ont mêmes espaces de cohomologie de de Rham.

Invariance par homotopie:

Définition Soit $\iota:W\hookrightarrow V$ une sous-variété plongée. On dira que W est un retract par déformation de V s'il existe une application différentiable $r:V\to W$ (rétraction) telle que :

- \circ $\iota \circ r$ est homotope à Id_V .

Théorème Si W est un retract par déformation de V, alors : W et V ont mêmes espaces de cohomologie de de Rham.

Exemple. Pour tout disque épointé $\dot{D} \subset \mathbb{R}^{n+1}$, on a :

$$H^*(\dot{D}) = H^*(\mathbb{R}^{n+1} \setminus \{0\}) = H^*(S^n)$$

Lemme de Mayer-Vietoris :

Théorème Pour tout recouvrement de V par deux ouverts $\{U_1, U_2\}$, il existe une suite exacte longue (naturelle) de cohomologie :

$$\cdots \longrightarrow H^{p}(V) \longrightarrow H^{p}(U_{1}) \oplus H^{p}(U_{2}) \longrightarrow$$

$$H^{p}(U_{1} \cap U_{2}) \stackrel{\delta}{\longrightarrow} H^{p+1}(V) \longrightarrow \cdots$$

où δ est l'opérateur connectant.

Dualité de Poincaré :

Soit V une variété différentiable orientée de dimension n. Pour tout p, on définit une application linéaire :

$$D_V: H^p(V) \rightarrow (H^{n-p}_c(V))^*$$

en posant :

$$< D_V([\alpha]), [\beta] > = \int_V \alpha \wedge \beta$$

Dualité de Poincaré :

Soit V une variété différentiable orientée de dimension n. Pour tout p, on définit une application linéaire :

$$D_V: H^p(V) \rightarrow (H^{n-p}_c(V))^*$$

en posant :

$$< D_V([\alpha]), [\beta] > = \int_V \alpha \wedge \beta$$

Théorème L'application D_V est un isomorphisme linéaire.

En intégrant les n-formes à support compact sur V nous obtenons un isomorphisme canonique

$$\int_V: H_c^n(V) \stackrel{\cong}{\longrightarrow} \mathbb{R}$$

L'élément $\theta_{\mathbf{V}} \in \mathbf{H}_{\mathbf{c}}^{\mathbf{n}}(\mathbf{V})$ tel que $\int_{V} \theta_{V} = 1$ est appelé classe fondamentale de V et noté [V].

En intégrant les n-formes à support compact sur V nous obtenons un isomorphisme canonique

$$\int_{V}: H_{c}^{n}(V) \stackrel{\cong}{\longrightarrow} \mathbb{R}$$

L'élément $\theta_{\mathbf{V}} \in \mathbf{H}^{\mathbf{n}}_{\mathbf{c}}(\mathbf{V})$ tel que $\int_{V} \theta_{V} = 1$ est appelé classe fondamentale de V et noté [V].

2) Si V est compacte connexe orientée.

En intégrant les n-formes à support compact sur V nous obtenons un isomorphisme canonique

$$\int_{V}: H_{c}^{n}(V) \stackrel{\cong}{\longrightarrow} \mathbb{R}$$

L'élément $\theta_{\mathbf{V}} \in \mathbf{H}^{\mathbf{n}}_{\mathbf{c}}(\mathbf{V})$ tel que $\int_{V} \theta_{V} = 1$ est appelé classe fondamentale de V et noté [V].

2) Si V est compacte connexe orientée.

Les nombres de Betti, définis par $\mathbf{b_p} = \dim(\mathbf{H^p(V)})$, satisfont les relations $b_p = b_{n-p}$.

En intégrant les n-formes à support compact sur V nous obtenons un isomorphisme canonique

$$\int_{V}: H_c^n(V) \stackrel{\cong}{\longrightarrow} \mathbb{R}$$

L'élément $\theta_{\mathbf{V}} \in \mathbf{H}^{\mathbf{n}}_{\mathbf{c}}(\mathbf{V})$ tel que $\int_{V} \theta_{V} = 1$ est appelé classe fondamentale de V et noté [V].

2) Si V est compacte connexe orientée.

Les nombres de Betti, définis par $\mathbf{b_p} = \dim(\mathbf{H^p(V)})$, satisfont les relations $b_p = b_{n-p}$. En particulier

$$\chi(V) = \sum (-1)^p b_p = (-1)^n \sum (-1)^{n-p} b_{n-p} = (-1)^n \chi(V)$$

En intégrant les n-formes à support compact sur V nous obtenons un isomorphisme canonique

$$\int_V: H_c^n(V) \stackrel{\cong}{\longrightarrow} \mathbb{R}$$

L'élément $\theta_{\mathbf{V}} \in \mathbf{H}^{\mathbf{n}}_{\mathbf{c}}(\mathbf{V})$ tel que $\int_{V} \theta_{V} = 1$ est appelé classe fondamentale de V et noté [V].

2) Si V est compacte connexe orientée.

Les nombres de Betti, définis par $\mathbf{b_p} = \dim(\mathbf{H^p(V)})$, satisfont les relations $b_p = b_{n-p}$. En particulier

$$\chi(V) = \sum (-1)^p b_p = (-1)^n \sum (-1)^{n-p} b_{n-p} = (-1)^n \chi(V)$$

Il en résulte que $\chi(V) = 0$ dès que dim(V) est impaire.

Soit V une variété différentiable sur laquelle opère différentiablement (à droite) un groupe de Lie G.

Soit V une variété différentiable sur laquelle opère différentiablement (à droite) un groupe de Lie G. Pour tout $g \in G$ et $\alpha \in \Omega^*(V)$ on pose

$$g.\alpha = R_g^*(\alpha)$$

Soit V une variété différentiable sur laquelle opère différentiablement (à droite) un groupe de Lie G. Pour tout $g \in G$ et $\alpha \in \Omega^*(V)$ on pose

$$g.\alpha = R_g^*(\alpha)$$

Nous obtenons ainsi une action de G sur $\Omega^*(V)$.

Soit V une variété différentiable sur laquelle opère différentiablement (à droite) un groupe de Lie G. Pour tout $g \in G$ et $\alpha \in \Omega^*(V)$ on pose

$$g.\alpha = R_g^*(\alpha)$$

Nous obtenons ainsi une action de G sur $\Omega^*(V)$. Cette action passe à la cohomologie et induit une action de G sur l'espace de cohomologie $H^*(V)$.

G est connexe

Remarque. Si G est connexe alors pour tout p on a

$$(H^p(V))^G = H^p(V)$$

.

G est connexe

Remarque. Si G est connexe alors pour tout p on a

$$(H^p(V))^G = H^p(V)$$

.

Autrement dit, l'action de G sur la cohomologie est triviale

G est connexe

Remarque. Si G est connexe alors pour tout p on a

$$(H^p(V))^G = H^p(V)$$

.

Autrement dit, l'action de G sur la cohomologie est triviale ; la raison est que pour tout $g \in G$ le difféomorphisme R_g est homotope à l'identité de V (il suffit de considérer $\gamma:[0,1] \to G$ un chemin dans G reliant e et g et définir ensuite l'homotopie $H(t,x)=R_{\gamma(t)}(x)$).

Théorème. si G est compact alors l'inclusion $\iota: (\Omega^*(V))^G \hookrightarrow \Omega^*(V)$ induit en cohomologie un isomorphisme de $H^*((\Omega^*(V))^G)$ sur $(H^*(V))^G$.

Théorème. si G est compact alors l'inclusion $\iota: (\Omega^*(V))^G \hookrightarrow \Omega^*(V)$ induit en cohomologie un isomorphisme de $H^*((\Omega^*(V))^G)$ sur $(H^*(V))^G$.

Puisque G est compact, il existe une unique r-forme $\mu_G \in \Omega^r(G)$ (où r désigne la dimension de G), bi-invariante, normalisée par la condition $\int_G \mu_G = 1$.

Théorème. si G est compact alors l'inclusion $\iota: (\Omega^*(V))^G \hookrightarrow \Omega^*(V)$ induit en cohomologie un isomorphisme de $H^*((\Omega^*(V))^G)$ sur $(H^*(V))^G$.

Puisque G est compact, il existe une unique r-forme $\mu_G \in \Omega^r(G)$ (où r désigne la dimension de G), bi-invariante, normalisée par la condition $\int_G \mu_G = 1$. Notons $F: V \times G \to V$ l'action (supposée à droite) de G sur V.

Théorème. si G est compact alors l'inclusion $\iota: (\Omega^*(V))^G \hookrightarrow \Omega^*(V)$ induit en cohomologie un isomorphisme de $H^*((\Omega^*(V))^G)$ sur $(H^*(V))^G$.

Puisque G est compact, il existe une unique r-forme $\mu_G \in \Omega^r(G)$ (où r désigne la dimension de G), bi-invariante, normalisée par la condition $\int_G \mu_G = 1$. Notons $F: V \times G \to V$ l'action (supposée à droite) de G sur V. Nous allons définir une rétraction $m: \Omega^*(V) \to [\Omega^*(V)]^G$.

Théorème. si G est compact alors l'inclusion $\iota: (\Omega^*(V))^G \hookrightarrow \Omega^*(V)$ induit en cohomologie un isomorphisme de $H^*((\Omega^*(V))^G)$ sur $(H^*(V))^G$.

Puisque G est compact, il existe une unique r-forme $\mu_G \in \Omega^r(G)$ (où r désigne la dimension de G), bi-invariante, normalisée par la condition $\int_G \mu_G = 1$. Notons $F: V \times G \to V$ l'action (supposée à droite) de G sur V. Nous allons définir une rétraction $m: \Omega^*(V) \to [\Omega^*(V)]^G$. On prend, pour $\alpha \in \Omega^*(V)$, la "moyenne" $m(\alpha)$ de tous les éléments $(R_g)^*\alpha$.

m est définie par la formule

$$m(\alpha) = \int_G F^*(\alpha) \wedge (p_2)^*(\mu_G),$$

 $f_G: \Omega^*(V \times G) \to \Omega^*(V)$ désignant l'intégration le long de la fibre G de la première projection $p_1: \Omega^*(V \times G) \to V$, $p_2: \Omega^*(V \times G) \to G$ désignant la deuxième projection.

m est définie par la formule

$$m(\alpha) = \int_G F^*(\alpha) \wedge (p_2)^*(\mu_G),$$

 $f_G: \Omega^*(V \times G) \to \Omega^*(V)$ désignant l'intégration le long de la fibre G de la première projection $p_1: \Omega^*(V \times G) \to V$, $p_2: \Omega^*(V \times G) \to G$ désignant la deuxième projection. La valeur de $m(\alpha)$ en un point x de V est alors donnée par l'intégrale

$$(m(\alpha))_{x} = \int_{\mathbb{R}} ((R_{g})^{*}(\alpha))_{x} \mu_{G},$$

m est définie par la formule

$$m(\alpha) = \int_G F^*(\alpha) \wedge (p_2)^*(\mu_G),$$

 $f_G: \Omega^*(V \times G) \to \Omega^*(V)$ désignant l'intégration le long de la fibre G de la première projection $p_1: \Omega^*(V \times G) \to V$, $p_2: \Omega^*(V \times G) \to G$ désignant la deuxième projection. La valeur de $m(\alpha)$ en un point x de V est alors donnée par l'intégrale

$$(m(\alpha))_{x} = \int ((R_{g})^{*}(\alpha))_{x} \mu_{G},$$

ou encore

$$m(\alpha)_{x}(X^{1},...,X^{k}) = \int_{G} \alpha_{g^{-1}x}(g_{*}^{-1}X_{x}^{1},...,g_{*}^{-1}X_{x}^{k})\mu_{G}$$

.

Il en résulte que m passe à la cohomologie.

Il en résulte que m passe à la cohomologie. Donc $m^* \circ \iota^*$ est l'identité dans $H^*([\Omega^*(W)]^G)$.

Il en résulte que m passe à la cohomologie. Donc $m^* \circ \iota^*$ est l'identité dans $H^*([\Omega^*(W)]^G)$. L'application ι^* est donc injective (et m^* surjective).

Il en résulte que m passe à la cohomologie. Donc $m^* \circ \iota^*$ est l'identité dans $H^*([\Omega^*(W)]^G)$. L'application ι^* est donc injective (et m^* surjective). Pour la surjectivité, on montre que si la classe de cohomologie d'une forme fermée α est invariante par G, alors α et $m(\alpha)$ sont cohomologues

Il en résulte que m passe à la cohomologie. Donc $m^* \circ \iota^*$ est l'identité dans $H^*([\Omega^*(W)]^G)$. L'application ι^* est donc injective (et m^* surjective). Pour la surjectivité, on montre que si la classe de cohomologie d'une forme fermée α est invariante par G, alors α et $m(\alpha)$ sont cohomologues (On utilise le théorème de de Rham : si c est un cycle sur W de même dimension que α , on montre que $\int_C (m(\alpha) - \alpha) = 0$.)

Exemple 1. [Cohomologie de l'espace projectif réel \mathbb{RP}^n]

Exemple 1.[Cohomologie de l'espace projectif réel \mathbb{RP}^n] L'espace projectif réel \mathbb{RP}^n est l'espace des orbites de l'action du groupe $\mathbb{Z}_2 := \{-1, +1\}$ sur la sphère S^n (le difféomorphisme de S^n associé à -1 étant l'involution $\nu: x \mapsto -x$).

55

Exemple 1.[Cohomologie de l'espace projectif réel \mathbb{RP}^n] L'espace projectif réel \mathbb{RP}^n est l'espace des orbites de l'action du groupe $\mathbb{Z}_2 := \{-1, +1\}$ sur la sphère S^n (le difféomorphisme de S^n associé à -1 étant l'involution $\nu: x \mapsto -x$). La projection canonique $\pi: S^n \to \mathbb{RP}^n$ permet d'identifier les formes sur \mathbb{RP}^n aux formes sur S^n qui sont \mathbb{Z}_2 -invariantes,

Exemple 1.[Cohomologie de l'espace projectif réel \mathbb{RP}^n] L'espace projectif réel \mathbb{RP}^n est l'espace des orbites de l'action du groupe $\mathbb{Z}_2 := \{-1, +1\}$ sur la sphère S^n (le difféomorphisme de S^n associé à -1 étant l'involution $\nu: x \mapsto -x$). La projection canonique $\pi: S^n \to \mathbb{RP}^n$ permet d'identifier les formes sur \mathbb{RP}^n aux formes sur S^n qui sont \mathbb{Z}_2 -invariantes, et par application du théorème nous obtenons :

$$H^p(\mathbb{RP}^n)\cong (H^p(S^n))^{\mathbb{Z}_2}$$

Par conséquent : $H^p(\mathbb{RP}^n)=0$ pour tout $p=1,\cdots,n-1$.

Par conséquent : $H^p(\mathbb{RP}^n) = 0$ pour tout $p = 1, \dots, n-1$. Pour p = n, nous avons $H^n(S^n)$ est la droite vectorielle engendrée par la forme volume

$$\omega = \sum_{i=1}^{n} (-1)^{n} x_{i} dx_{1} \wedge \cdots \wedge \widehat{dx_{i}} \wedge \cdots \wedge dx_{n+1}$$

Par conséquent : $H^p(\mathbb{RP}^n) = 0$ pour tout $p = 1, \dots, n-1$. Pour p = n, nous avons $H^n(S^n)$ est la droite vectorielle engendrée par la forme volume

$$\omega = \sum_{i=1}^{n} (-1)^{n} x_{i} dx_{1} \wedge \cdots \wedge \widehat{dx_{i}} \wedge \cdots \wedge dx_{n+1}$$

Et puisque $\nu^*(\omega) = (-1)^{n+1}\omega$, nous obtenons : $H^n(\mathbb{RP}^n) = 0$ si n est paire et $H^n(\mathbb{RP}^n) = Vect\{\overline{\omega}\}$ si n est impaire (où $\overline{\omega}$ est la n-forme sur \mathbb{RP}^n telle que $\pi^*(\omega) = \overline{\omega}$).

Par conséquent : $H^p(\mathbb{RP}^n) = 0$ pour tout $p = 1, \dots, n-1$. Pour p = n, nous avons $H^n(S^n)$ est la droite vectorielle engendrée par la forme volume

$$\omega = \sum_{i=1}^{n} (-1)^{n} x_{i} dx_{1} \wedge \cdots \wedge \widehat{dx_{i}} \wedge \cdots \wedge dx_{n+1}$$

Et puisque $\nu^*(\omega) = (-1)^{n+1}\omega$, nous obtenons : $H^n(\mathbb{RP}^n) = 0$ si n est paire et $H^n(\mathbb{RP}^n) = Vect\{\overline{\omega}\}$ si n est impaire (où $\overline{\omega}$ est la n-forme sur \mathbb{RP}^n telle que $\pi^*(\omega) = \overline{\omega}$).

Notons aussi que si n est impaire, la forme $\overline{\omega}$ est une forme volume sur \mathbb{RP}^n qui est alors orientable. L'espace projectif n'est pas orientable dans le cas paire.

Exemple 2. [Cohomologie de l'espace projectif compelxe.]

Exemple 2. [Cohomologie de l'espace projectif compelxe.] L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibration de Hopf) :

$$\pi: S^{2n+1} \to \mathbb{CP}^n$$

Exemple 2. [Cohomologie de l'espace projectif compelxe.] L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibration de Hopf) :

$$\pi: \mathcal{S}^{2n+1} \to \mathbb{CP}^n$$

Désignons par A un champ de vecteurs fondamental associé à l'action de S^1 sur S^{2n+1} .

Exemple 2. [Cohomologie de l'espace projectif compelxe.] L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibration de Hopf) :

$$\pi: \mathcal{S}^{2n+1} \to \mathbb{CP}^n$$

Désignons par A un champ de vecteurs fondamental associé à l'action de S^1 sur S^{2n+1} . On dira qu'une forme différentielle α sur S^{2n+1} est basique si elle est à la fois S^1 -invariante et verticale : $i_A\alpha=0$.

Exemple 2. [Cohomologie de l'espace projectif compelxe.] L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibration de Hopf) :

$$\pi: \mathcal{S}^{2n+1} \to \mathbb{CP}^n$$

Désignons par A un champ de vecteurs fondamental associé à l'action de S^1 sur S^{2n+1} . On dira qu'une forme différentielle α sur S^{2n+1} est basique si elle est à la fois S^1 -invariante et verticale : $i_A\alpha=0$. Il est facile de montrer que l'ensemble des formes basiques $\Omega_b^*(S^{2n+1})$ est un sous-complexe du complexe de Rham

Exemple 2. [Cohomologie de l'espace projectif compelxe.] L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibration de Hopf) :

$$\pi: \mathcal{S}^{2n+1} \to \mathbb{CP}^n$$

Désignons par A un champ de vecteurs fondamental associé à l'action de S^1 sur S^{2n+1} . On dira qu'une forme différentielle α sur S^{2n+1} est basique si elle est à la fois S^1 -invariante et verticale : $i_A\alpha=0$. Il est facile de montrer que l'ensemble des formes basiques $\Omega_b^*(S^{2n+1})$ est un sous-complexe du complexe de Rham et que l'injection $\pi^*:\Omega^*(\mathbb{CP}^n)\hookrightarrow\Omega^*(S^{2n+1})$ définit un isomorphisme de $\Omega^*(\mathbb{CP}^n)$ sur $\Omega_b^*(S^{2n+1})$.

Exemple 2. [Cohomologie de l'espace projectif compelxe.] L'espace projectif complexe \mathbb{CP}^n est la base du S^1 -fibré principal (fibration de Hopf) :

$$\pi: \mathcal{S}^{2n+1} \to \mathbb{CP}^n$$

Désignons par A un champ de vecteurs fondamental associé à l'action de S^1 sur S^{2n+1} . On dira qu'une forme différentielle α sur S^{2n+1} est basique si elle est à la fois S^1 -invariante et verticale : $i_A\alpha=0$. Il est facile de montrer que l'ensemble des formes basiques $\Omega_b^*(S^{2n+1})$ est un sous-complexe du complexe de de Rham et que l'injection $\pi^*:\Omega^*(\mathbb{CP}^n)\hookrightarrow\Omega^*(S^{2n+1})$ définit un isomorphisme de $\Omega^*(\mathbb{CP}^n)$ sur $\Omega_b^*(S^{2n+1})$. Ainsi le calcul de $H^*(\mathbb{CP}^n)$ est ramené au calcul de la cohomologie de $\Omega_b^*(S^{2n+1})$.

Pour cela, on montre (exercice) que nous avons une suite axacte courte :

$$0 \longrightarrow \Omega_b^*(S^{2n+1}) \stackrel{\iota}{\longrightarrow} (\Omega^*(S^{2n+1}))^{S^1} \stackrel{i_A}{\longrightarrow} \Omega_b^{*-1}(S^{2n+1}) \to 0$$

où le complexe du milieu est celui des formes S^1 -invariantes.

Pour cela, on montre (exercice) que nous avons une suite axacte courte :

$$0 \longrightarrow \Omega_b^*(S^{2n+1}) \stackrel{\iota}{\longrightarrow} (\Omega^*(S^{2n+1}))^{S^1} \stackrel{i_A}{\longrightarrow} \Omega_b^{*-1}(S^{2n+1}) \to 0$$

où le complexe du milieu est celui des formes S^1 -invariantes. En écrivant la suite exacte longue de cohomologie associée, nous obtenons que pour tout $j=1,\cdots,n$ on a

$$H^{2j}(\mathbb{CP}^n) = \mathbb{R}$$
 et $H^{2j+1}(\mathbb{CP}^n) = 0$.

Formes bi-invariantes:

Désignons par $(\Omega^*(G))^{LR}$ l'espace des formes bi-invariantes sur G groupe de Lie compact connexe. On a :

$$H^p \cong (\Omega^p(G))^{LR}$$
.

Formes bi-invariantes:

Désignons par $(\Omega^*(G))^{LR}$ l'espace des formes bi-invariantes sur G groupe de Lie compact connexe. On a :

$$H^p \cong (\Omega^p(G))^{LR}$$
.

L'application $\omega \mapsto \omega_e$ définit un isomorphisme de $(\Omega^p(G))^L$ sur $\bigwedge^p \mathcal{G}^*$;

72

Formes bi-invariantes:

Désignons par $(\Omega^*(G))^{LR}$ l'espace des formes bi-invariantes sur G groupe de Lie compact connexe. On a :

$$H^p \cong (\Omega^p(G))^{LR}$$
.

L'application $\omega \mapsto \omega_e$ définit un isomorphisme de $(\Omega^p(G))^L$ sur $\bigwedge^p \mathcal{G}^*$; celle-ci va aussi induire par restriction un isomorphisme de $(\Omega^*(G))^{LR}$ sur l'espace $(\bigwedge^p \mathcal{G}^*)^{Ad}$ des p-formes alternées sur $\mathcal G$ qui sont invariante par la représentation adjointe du groupe G,

Formes bi-invariantes:

Désignons par $(\Omega^*(G))^{LR}$ l'espace des formes bi-invariantes sur G groupe de Lie compact connexe. On a :

$$H^p \cong (\Omega^p(G))^{LR}$$
.

L'application $\omega \mapsto \omega_e$ définit un isomorphisme de $(\Omega^p(G))^L$ sur $\bigwedge^p \mathcal{G}^*$; celle-ci va aussi induire par restriction un isomorphisme de $(\Omega^*(G))^{LR}$ sur l'espace $(\bigwedge^p \mathcal{G}^*)^{Ad}$ des p-formes alternées sur \mathcal{G} qui sont invariante par la représentation adjointe du groupe G, i.e. les formes ω_e telles que pour tout $g \in G$ on a :

$$\omega_e(X_1,\cdots,X_p)=\omega_e(Ad_g(X_1),\cdots,Ad_g(X_p))$$

Et grace à la connexité de G nous obtenons une identification entre $(\Omega^p(G))^{LR}$ et l'espace $(\bigwedge^p \mathcal{G}^*)^{ad}$ des p-formes alternées sur \mathcal{G} qui sont invariante par la représentation adjointe de l'algèbre de Lie \mathcal{G} ,

Et grace à la connexité de G nous obtenons une identification entre $(\Omega^p(G))^{LR}$ et l'espace $(\bigwedge^p \mathcal{G}^*)^{ad}$ des p-formes alternées sur \mathcal{G} qui sont invariante par la représentation adjointe de l'algèbre de Lie \mathcal{G} , c'est-à-dire les formes ω_e telles que pour tout $Y \in \mathcal{G}$ on a :

$$\sum_{k=0}^{p} \omega_{e}(X_{1}, \cdots, X_{k-1}, [Y, X_{k}], X_{k+1}, \cdots, X_{p}) = 0$$

Nous venons d'établir :

Théorème.

Pour tout groupe de Lie compact connexe G:

$$H^p(G)\cong (\bigwedge^p\mathcal{G}^*)^{ad}$$

Nous venons d'établir :

Théorème.

Pour tout groupe de Lie compact connexe G:

$$H^p(G)\cong (\bigwedge^p\mathcal{G}^*)^{ad}$$

Corollaire.

Pour tout groupe de Lie compact connexe G, $H^1(G)$ est isomorphe au dual de $\mathcal{G}/[\mathcal{G},\mathcal{G}]$.

En particulier on a l'équivalence :

$$H^1(G) = 0 \Leftrightarrow [\mathcal{G}, \mathcal{G}] = \mathcal{G}$$

Le groupe G étant compact, on peut alors munir l'espace $\mathcal G$ d'un produit scalaire <,> invariant par la représentation adjointe de G

Le groupe G étant compact, on peut alors munir l'espace G d'un produit scalaire <,> invariant par la représentation adjointe de G; c'est-à-dire :

$$<[Y, X_1], X_2> = - < X_1, [Y, X_2] >$$

pour tous $Y, X_1, X_2 \in \mathcal{G}$.

Le groupe G étant compact, on peut alors munir l'espace G d'un produit scalaire <,> invariant par la représentation adjointe de G; c'est-à-dire :

$$<[Y, X_1], X_2> = - < X_1, [Y, X_2] >$$

pour tous $Y, X_1, X_2 \in \mathcal{G}$.

On peut ainsi définir $\omega_e \in (\bigwedge^3 \mathcal{G})^*$:

$$\omega_{e}(X_1, X_2, X_3) = \langle [X_1, X_2], X_3 \rangle$$
.

Si on suppose maintenant que dim $G \ge 3$ et que $[\mathcal{G}, \mathcal{G}] = \mathcal{G}$, nous déduisons que $\omega_e \ne 0$ et par suite $H^3(G) \ne 0$.

Si on suppose maintenant que dim $G \ge 3$ et que $[\mathcal{G}, \mathcal{G}] = \mathcal{G}$, nous déduisons que $\omega_e \ne 0$ et par suite $H^3(G) \ne 0$.

Corollaire Soit G un groupe de Lie compact connexe de dimension $dimG \ge 3$. Si $H^1(G) = 0$, alors $H^3(G) \ne 0$

Si on suppose maintenant que dim $G \ge 3$ et que $[\mathcal{G}, \mathcal{G}] = \mathcal{G}$, nous déduisons que $\omega_e \ne 0$ et par suite $H^3(G) \ne 0$.

Corollaire Soit G un groupe de Lie compact connexe de dimension $dimG \ge 3$. Si $H^1(G) = 0$, alors $H^3(G) \ne 0$

Corollaire

Les seules sphères qui sont des groupes de Lie sont S^0 , S^1 et S^3 .

Théorème de de Rham

Le théorème de de Rham établit une identification entre la cohomologie de de Rham et la cohomologie singulière réelle.

Théorème de de Rham

Le théorème de de Rham établit une identification entre la cohomologie de de Rham et la cohomologie singulière réelle. Pour tout entier $p \geq 1$, le p-simplexe standard dans \mathbb{R}^p est le compact \triangle_p défini par :

$$\triangle_p = \{(x_1, \cdots, x_p) \in \mathbb{R}^p / \sum_{i=1}^p x_i \leq 1, \text{ et } x_i \geq 0 \text{ pour tout } i\}.$$

Pour
$$p = 0$$
 on pose $\triangle_0 = \{0\}$.

Théorème de de Rham

Le théorème de de Rham établit une identification entre la cohomologie de de Rham et la cohomologie singulière réelle. Pour tout entier $p \geq 1$, le p-simplexe standard dans \mathbb{R}^p est le compact \triangle_p défini par :

$$\triangle_p = \{(x_1, \cdots, x_p) \in \mathbb{R}^p / \sum_{i=1}^p x_i \leq 1, \ \mathsf{et} \ x_i \geq 0 \ \mathsf{pour} \ \mathsf{tout} \ i\}.$$

Pour p=0 on pose $\triangle_0=\{0\}$. On définit, pour tous $p\geq 0$ et $0\leq i\leq p+1$, l'application $k_i^p:\triangle_p\to\triangle_{p+1}$ en posant :

- $k_i^p(x_1, \dots, x_p) = (x_1, \dots, x_{i-1}, 0, x_i, \dots, x_p)$ si 1 < i < p+1 et p > 1.
- $k_i^p(x_1, \dots, x_p) = (1 \sum_{i=1}^p x_i, x_1, \dots, x_p)$ si i = 0 et p > 1
- $k_i^p(x_1, \dots, x_n) = 1$ si i = 0 et p = 0
- $k_i^p(x_1, \dots, x_p) = 0$ si i = 1 et p = 0.

Soit V une variété différentiable. Un p-simplexe singulier sur V est la donnée d'une application $\sigma: \triangle_p \to V$.

Soit V une variété différentiable. Un p-simplexe singulier sur V est la donnée d'une application $\sigma: \triangle_p \to V$. On appelle p-chaine singulière réelle toute combinaison linéaire finie $c = \sum_{\sigma} a_{\sigma} \sigma$ à coefficients réels $(a_{\sigma} \in \mathbb{R})$ de p-simplexes singuliers \triangle_p .

Soit V une variété différentiable. Un p-simplexe singulier sur V est la donnée d'une application $\sigma: \triangle_p \to V$. On appelle p-chaine singulière réelle toute combinaison linéaire finie $c = \sum_{\sigma} a_{\sigma} \sigma$ à coefficients réels $(a_{\sigma} \in \mathbb{R})$ de p-simplexes singuliers \triangle_p . L'ensemble $C_p(V; \mathbb{R})$ de telles p-chaines singulières est un \mathbb{R} -espace vectoriel.

A tout *p*-simplexe σ sur V ($p \ge 1$), et pour tout $i \in \{0, 1, \cdots, p\}$ on peut définir le (p-1)-simplexe $\partial_i \sigma = \sigma \circ k_i^{p-1}$.

A tout p-simplexe σ sur V $(p \ge 1)$, et pour tout $i \in \{0,1,\cdots,p\}$ on peut définir le (p-1)-simplexe $\partial_i \sigma = \sigma \circ k_i^{p-1}$. En effectuant la somme alternée : $\sum_{i=0}^p (-1)^i \partial_i \sigma$, nous obtenons une (p-1)-chaine qu'on notera $\partial \sigma$.

A tout p-simplexe σ sur V $(p \ge 1)$, et pour tout $i \in \{0,1,\cdots,p\}$ on peut définir le (p-1)-simplexe $\partial_i \sigma = \sigma \circ k_i^{p-1}$. En effectuant la somme alternée : $\sum_{i=0}^p (-1)^i \partial_i \sigma$, nous obtenons une (p-1)-chaine qu'on notera $\partial \sigma$. Nous pouvons ainsi définir un opérateur linéaire

$$\partial: C_p(V; \mathbb{R}) \to C_{p-1}(V; \mathbb{R})$$

A tout p-simplexe σ sur V $(p \ge 1)$, et pour tout $i \in \{0,1,\cdots,p\}$ on peut définir le (p-1)-simplexe $\partial_i \sigma = \sigma \circ k_i^{p-1}$. En effectuant la somme alternée : $\sum_{i=0}^p (-1)^i \partial_i \sigma$, nous obtenons une (p-1)-chaine qu'on notera $\partial \sigma$. Nous pouvons ainsi définir un opérateur linéaire

$$\partial: C_p(V; \mathbb{R}) \to C_{p-1}(V; \mathbb{R})$$

Lemme $C_*(V; \mathbb{R})$ est un compexe différentiel : $\partial \circ \partial = 0$.

L'espace vectoriel dual $C^*(V; \mathbb{R}) = Hom(C_*(V; \mathbb{R}), \mathbb{R})$ muni de la différentielle transposée ∂' , donnée par $<\partial' T, c> = < T, \partial c>$, est aussi un complexe différentiel.

L'espace vectoriel dual $C^*(V;\mathbb{R}) = Hom(C_*(V;\mathbb{R}),\mathbb{R})$ muni de la différentielle transposée ∂' , donnée par $<\partial' T,c>=< T,\partial c>$, est aussi un complexe différentiel. Les éléments de $C^*(V;\mathbb{R})$ sont appelés cochaînes sur V. La cohomologie du complexe $(C^*(V;\mathbb{R}),\partial')$ est appelée cohomologie singulière réelle de V; et notée $H^*(V,\mathbb{R})$.

$$I_V(\omega)(c) = \int_c \omega.$$

$$I_{V}(\omega)(c) = \int_{c} \omega.$$

Nous obtenons ainsi une application linéaire :

$$I_V: \Omega^*(V) \to C^*(V; \mathbb{R}).$$

appelé homomorphisme de de Rham.

$$I_V(\omega)(c) = \int_c \omega.$$

Nous obtenons ainsi une application linéaire :

$$I_V: \Omega^*(V) \to C^*(V; \mathbb{R}).$$

appelé homomorphisme de de Rham.

Lemme L'opérateur I_V commute aux différentielles et induit donc par passage à la cohomologie un homomorphisme : $H^*(I_V): H^*_{DR}(V) \to H^*(V; \mathbb{R}).$

$$I_V(\omega)(c) = \int_c \omega.$$

Nous obtenons ainsi une application linéaire :

$$I_V: \Omega^*(V) \to C^*(V; \mathbb{R}).$$

appelé homomorphisme de de Rham.

Lemme L'opérateur I_V commute aux différentielles et induit donc par passage à la cohomologie un homomorphisme : $H^*(I_V): H^*_{DR}(V) \to H^*(V; \mathbb{R}).$

Théorème Pour toute variété différentiable, l'homomorphisme $H^*(I_V)$ est un isomorphisme d'espaces vectoriels gradués.

$$I_{V}(\omega)(c) = \int_{c} \omega.$$

Nous obtenons ainsi une application linéaire :

$$I_V: \Omega^*(V) \to C^*(V; \mathbb{R}).$$

appelé homomorphisme de de Rham.

Lemme L'opérateur I_V commute aux différentielles et induit donc par passage à la cohomologie un homomorphisme : $H^*(I_V): H^*_{DR}(V) \to H^*(V; \mathbb{R}).$

Théorème Pour toute variété différentiable, l'homomorphisme $H^*(I_V)$ est un isomorphisme d'espaces vectoriels gradués.

corollaire Soit $\omega \in \Omega^p(V)$ une forme différentielle fermée telle que $\int_c \omega = 0$ pour tout cycle $c \in C_p(V; \mathbb{R})$, alors ω est exacte.

Degré:

Soit $f:V\to W$ une application C^∞ entre variétés différentielles connexes compactes orientées et de même dimension n. On appelle degré de f et on note $\deg f$ le nombre réel tel que

$$H^n(f)\theta_W = \deg(f)\theta_V$$

Autrement dit, pour tout $\omega \in \Omega^n(W)$, on a $\int_V f^*(\omega) = \deg(f) \int_W \omega$.

Degré :

Soit $f:V\to W$ une application C^∞ entre variétés différentielles connexes compactes orientées et de même dimension n. On appelle degré de f et on note deg f le nombre réel tel que

$$H^n(f)\theta_W = \deg(f)\theta_V$$

Autrement dit, pour tout $\omega \in \Omega^n(W)$, on a $\int_V f^*(\omega) = \deg(f) \int_W \omega$.

Proposition

- **①** Si $f, g : V \to W$ sont homotopes alors deg(f) = deg(g).
- **3** Si $deg(f) \neq 0$ alors f est surjective.
- 4 Si f est un difféomorphisme, alors deg(f) = +1 si f préserve l'orientation et deg(f) = -1 sinon.

Exercice Soit V une variété différentiable compacte connexe orientée et $f: S^n \to V$ une application C^{∞} . Montrer que si $\deg(f) \neq 0$, alors $H^p(V) = 0$ pour tout $1 \leq p \leq n-1$.

Exercice Soit V une variété différentiable compacte connexe orientée et $f: S^n \to V$ une application C^{∞} . Montrer que si $\deg(f) \neq 0$, alors $H^p(V) = 0$ pour tout $1 \leq p \leq n-1$.

Le degré est un entier relatif : L'argument se base sur une propriété importante des valeurs régulières. Soit $f:V\to W$ une application C^∞ entre variétés différentiables (non nécessairement de même dimension) ; on dira que $y\in W$ est une valeur régulière de f si pour tout $x\in f^{-1}(y)$ l'application linéaire tangente $T_xf:T_xV\to T_yW$ est sujective. En particulier, tout point y qui n'est pas dans l'image f(V) est une valeur régulière.

Revenons maintenant au cas où $\dim(V) = \dim(W) = n$ et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(y)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x.

Revenons maintenant au cas où $\dim(V) = \dim(W) = n$ et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(y)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x. En particulier les éléments de $f^{-1}(y)$ sont des points isolés. La compacité de V implique alors que $f^{-1}(y)$ est un ensemble fini $\{m_1, \dots, m_k\}$.

Revenons maintenant au cas où $\dim(V) = \dim(W) = n$ et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(y)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x. En particulier les éléments de $f^{-1}(y)$ sont des points isolés. La compacité de V implique alors que $f^{-1}(y)$ est un ensemble fini $\{m_1, \cdots, m_k\}$. Il existe des voisinages ouverts disjoints D_i de m_i et un voisinage ouvert U de Y tels que $f^{-1}(U) = \bigcup_{i=1}^k D_i$ et la restriction de f à D_i soit un difféomorphisme sur U.

Revenons maintenant au cas où $\dim(V) = \dim(W) = n$ et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(y)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x. En particulier les éléments de $f^{-1}(y)$ sont des points isolés. La compacité de V implique alors que $f^{-1}(y)$ est un ensemble fini $\{m_1, \dots, m_k\}$. Il existe des voisinages ouverts disjoints D_i de m_i et un voisinage ouvert U de y tels que $f^{-1}(U) = \bigcup_{i=1}^k D_i$ et la restriction de f à D_i soit un difféomorphisme sur U. Soit $\omega \in \Omega_c^n(U)$ telle que $\int_{\mathcal{M}} \omega = 1$,

Revenons maintenant au cas où dim(V) = dim(W) = n et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(v)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x. En particulier les éléments de $f^{-1}(y)$ sont des points isolés. La compacité de V implique alors que $f^{-1}(y)$ est un ensemble fini $\{m_1, \dots, m_k\}$. Il existe des voisinages ouverts disjoints D_i de m_i et un voisinage ouvert U de y tels que $f^{-1}(U) = \bigcup_{i=1}^k D_i$ et la restriction de f à D_i soit un difféomorphisme sur U. Soit $\omega \in \Omega_c^n(U)$ telle que $\int_{\omega} \omega = 1$, nous obtenons ainsi que $f^*(\omega) = \sum_{i=1}^k \omega_i$ avec ω_i est l'image réciproque de ω par le difféomorphisme $f_{|D|}$.

Revenons maintenant au cas où $\dim(V) = \dim(W) = n$ et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(y)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x. En particulier les éléments de $f^{-1}(y)$ sont des points isolés. La compacité de V implique alors que $f^{-1}(y)$ est un ensemble fini $\{m_1, \dots, m_k\}$. Il existe des voisinages ouverts disjoints D_i de m_i et un voisinage ouvert U de y tels que $f^{-1}(U) = \bigcup_{i=1}^k D_i$ et la restriction de fà D_i soit un difféomorphisme sur U. Soit $\omega \in \Omega_c^n(U)$ telle que $\int_{W} \omega = 1$, nous obtenons ainsi que $f^*(\omega) = \sum_{i=1}^k \omega_i$ avec ω_i est l'image réciproque de ω par le difféomorphisme $f_{|D|}$. Il en découle :

$$\int_V f^*(\omega) = \sum_{x \in f^{-1}(y)} \pm 1$$