Zadania z Matematyki Dyskretnej – Relacje

- 1. Niech $A = \{a, b, c, d, e\}$. Relację R zdefiniujmy jako: $R = \{(a, a), (a, b), (b, c), e\}$ (b,d),(a,d),(c,d),(e,e),(a,c),(e,d). Narysuj graf tej relacji. Czy relacja jest zwrotna, symetryczna, przechodnia, antysymetryczna, przeciwzwrotna? Jak należałoby uzupełnić relację, lub które pary z niej usunąć, żeby miała wcześniej wymienione własności?
- 2. Zaznacz w tabeli, które z wymienionych relacji są zwrotne, symetryczne, przechodnie, antysymetryczne i przeciwzwrotne:

	zwrotna	symetryczna	przechodnia	antysymetryczna	przeciwzwrotna
=					
\neq					
<					
\leq					
\subseteq					
<u> </u>					
S					
P					
K					
Ø					
F					
A					
B					
C					
M					
D					
E					

Gdzie:

```
=, \neq, <, \leq określone są na zbiorze \mathbb N i zdefiniowane zgodnie z przyjętym znaczeniem
\subseteq oznacza zawieranie w zbiorze podzbiorów zbioru \mathbb N
| oznacza relację podzielności na zbiorze \mathbb{N} - \{0\}
⊥ i ∥ oznaczają prostopadłość i równoległość prostych na płaszczyźnie
Ø oznacza relację pustą
F oznacza relację pełną
```

 $xSy \Leftrightarrow x$ jest synem y

 $xPy \Leftrightarrow x \text{ jest potomkiem } y$

 $xKy \Leftrightarrow x$ i y mają wspólną babkę

 $xAy \Leftrightarrow 2|x+y \text{ gdzie } x,y \in \mathbb{Z},$

 $xBy \Leftrightarrow 3|x+y \text{ gdzie } x,y \in \mathbb{Z}$

 $xCy \Leftrightarrow 3|x-y \text{ gdzie } x,y \in \mathbb{Z}$

 $xMy \Leftrightarrow m|x-y \text{ gdzie } x,y \in \mathbb{Z}, m \in \mathbb{N} - \text{ustalone}$

 $xDy \Leftrightarrow xy = 4 \text{ gdzie } x, y \in \mathbb{R}$

 $xEy \Leftrightarrow |x| = |y| \text{ gdzie } x, y \in \mathbb{N}$

- 3. Które z relacji z tabelki są relacjami równoważności? Znajdź klasy abstrakcji.
- 4. Podać przykłady relacji:
 - (a) która jest przeciwzwrotna i symetryczna, ale nie jest przechodnia,
 - (b) która jest przechodnia i symetryczna, ale nie jest zwrotna,
 - (c) która jest przechodnia i zwrotna, ale nie jest antysymetryczna.
- 5. Niech relacje R_1 i R_2 będą relacjami równoważności. Czy relacjami równoważności bedą również: $R_1 \cap R_2$, $R_1 \setminus R_2$, $R_1 \cup R_2$, $R_1 \oplus R_2$, R_1^c .
- 6. Płaszczyznę \mathbb{R}^2 dzielimy na okręgi o środku w punkcie 0. Zapisz relację równoważności, której klasami są te okręgi.