Analysis of Air Quality in the United States

DS 5110 Spring 2020 Term Project 14 April, 2020 Carson Cook Erin Keough Paola Reyes Aditya Samaroo Priyank Shelat

Where does the data come from?

- Air Quality System (AQS) DataMart from the EPA
- Measurements of criteria pollutants
 - Ambient air pollution measurements from thousands of state and local monitoring locations
 - Particulate matter, sulfur dioxide, carbon
 monoxide, nitrogen dioxide, ozone, air toxics, lead
 - ► Hourly, 8-hour, daily, and annual concentrations
- Used by research, regulatory, and healthcare research communities
 - ► Clean Air Act compliance

Where does the data come from?

CENTERS FOR DISEASE CONTROL AND PREVENTION

https://www.cdc.go

- National Environmental Public Health Data tracking program from the CDC
- Data from a network of partners
 - National organizations, federal agencies, and fellowship participants
- Health and environmental data from city, state, and national sources
 - Air pollutant concentrations at county- and state-level resolutions
 - Prevalence of health conditions at county- and statelevel resolutions
- Data available from 1999 2016

A look at the EPA data

- 1.6 million rows of annual summary data
- Data can be roughly broken into:
 - Station information
 - Parameter information
 - Observation information

How is the EPA data collected?

- 5624 air monitoring locations in the contiguous US
- 1052 distinct parameters measured and recorded
- Air monitoring locations can measure one or more parameters

https://www.mdaqmd.ca.gov/permitting/compliance

Observations from raw EPA data

Figure 1. Number of Air Quality Stations per state does not seem to be dependent on population nor square mileage

Observations from raw EPA data

PM2.5 Air Quality Stations

Figure 2. Initial analysis of the AQS dataset from the EPA.

Data Pre-Processing

Selection Preprocessing **Transformation** Tidy dataset: Filtered out Imputed missing pivoted variables. variables with more values. than 50% missing Merged datasets: values. Log-transformed EPA + CDC both target and Removed explanatory Partition Dataset: variables. duplicates. 80% training 20% testing

Exploratory Data Analysis - PM_{2.5}

Figure 3. Comparison of particulate matter concentrations by county in 2000 and 2016.

Exploratory Data Analysis - PM_{2.5}

Table 1. Average, minimum, and maximum concentrations for each of the top 5 counties.

CountyID	Average	Maximum	Minimum
Riverside, California	20.53750	31.0	13.4
Kern, California	20.41667	26.2	14.7
Tulare, California	18.79444	27.6	13.6
San Bernardino, California	17.67222	26.5	9.1
Fresno, California	17.43333	27.7	13.4

Figure 4. PM_{2.5} concentrations in the areas with the highest overall concentrations from 1999 to 2016.

Exploratory Data Analysis - PM_{2.5} and Ozone

Figure 5. States with the most days above $PM_{2.5}$ and Ozone regulation in 2000 and 2016.

Exploratory Data Analysis - PM_{2.5}

Reduction Percent of PM 2.5

Table 2. PM_{2.5} Mortality Benefit Table.

Deaths Avoided by 5% Reduction in PM 2.5

Figure 7. Top states impacted by reducing $PM_{2.5}$ concentrations.

Figure 8. Benefits of reducing PM_{2,5} concentrations by state.

The Benefits of PM 2.5 are Decreasing Over Time

Figure 9. Mortality benefits of decreasing PM_{25} over time.

Exploratory Data Analysis - Asthma

 $\textbf{Figure 10.} \ \, \textbf{Asthma Prevalence by Age Group and Year.}$

Exploratory Data Analysis - Asthma

 $\textbf{Figure 11.} \ \, \textbf{Asthma Prevalence by State and Age Group from 2007 - 2008}.$

Modeling

Objective

Model Asthma and COPD health outcomes based on air quality and weather data and identify which of these variables are most important for predicting:

- Asthma Emergency Department Visits
- COPD Hospitalizations
- COPD Mortality

Modeling - Missing Value Imputation

Density Plot of Observed (blue) vs Imputed (red) values.

Missing values were imputed using Conditional Multiple Imputation with the MICE package.

Here blue represents the observed data and red shows the imputed data.

Figure 12. Observed versus imputed values for predictor variables.

Modeling - Variable Importance

Variable Importance for Asthma ER Visits

We used Boruta package to rank all variables by importance.

Boruta is a feature ranking and selection algorithm based on a random forests algorithm.

Figure 13. Importance of each predictor variable.

Modeling - Asthma ER Visits

Variable Importance Using Stepwise Backward Selection

Figure 14. Importance of variables using stepwise backward selection.

Figure 15. Cross-validated RMSE as number of predictors increases.

RMSE	R-squared	MAE
1.3387169	0.4079990	1.237774

Modeling - COPD Hospitalizations

Variable Importance Using Stepwise Backward Selection

Figure 16. Importance of variables using stepwise backward selection.

Figure 17. Cross-validated RMSE as number of predictors increases.

RMSE	R-squared	MAE
1.6968100	0.3275164	1.488146

Modeling - COPD Mortality

Variable Importance Using Stepwise Backward Selection

Figure 16. Importance of variables using stepwise backward selection.

Figure 17. Cross-validated RMSE as number of predictors increases.

RMSE	R-squared	MAE
1.2450260	0.2021450	1.185401

Results & Conclusions

Top 3 Most Important Variables After Adjusting for State and Normalized RMSE

Asthma ER Visits	RMSE	Rsquared
1. Ambient Pressure 50th 2. Ozone SD 3. Ambient Temperature SD	1.3387	0.4079
COPD Hospitalizations	RMSE	Rsquared
1. PM2.5 Local Conditions 50th 2. Mean Ambient Pressure 3. Ozone SD	1.6968	0.3275
COPD Mortality		
	RMSE	Rsquared
1. Ambient Pressure 50th 2. Mean Ozone 3. Mean Temperature		0.2021

Questions?

Thank you!

References

Environmental Public Health Data Tracking Network, by the Center for Disease Control:

Link to data: https://ephtracking.cdc.gov/DataExplorer/#/

Link to background information: https://www.cdc.gov/nceh/tracking/about.htm

Historical Air Quality Data from the Air Quality System, by the Environmental Protection Agency:

Link to data: https://www.kaggle.com/epa/epa-historical-air-quality

Link to background information: https://ags.epa.gov/agsweb/documents/About_ags_data.html