Guía pre-certamen 2 INF-155

Ayudante R.B 2024-2

November 8, 2024

1 Problemas "tipo"

- 1. El problema DOUBLE SAT da una fórmula lógica $\phi(x_1, x_2, ..., x_n)$ y pregunta si hay al menos dos asignaciones distintas de valores a las variables que le hacen la verdadera. Demuestre que DOUBLE SAT es NP-Completo.
- 2. Considere dos problemas de decisión X e Y. Si sabemos que X se reduce polinomialmente a Y, ¿cuáles de las siguientes podemos concluir? Justifique sus respuestas.
 - a) Si Y está en NP, entonces X es **NP-completo**.
 - b) Si X es **NP-completo**, entonces Y es **NP-completo**.
 - c) Si X e Y están en NP, son **NP-completos**.
 - d) Si X es **NP-completo**, entonces Y es **NP-duro**.
- 3. ¿Cuáles de los siguientes problemas son decidibles? ¿Por qué?
 - a Dada la TM y la entrada $|\sigma|$, ¿escribe M el símbolo # en su cinta al procesar $|\sigma|$?
 - b Dada la CFG sobre Σ , ¿genera G todas las palabras Σ^* de largo hasta 2030?
 - c Dada la TM M, ¿hay infinitias TM que aceptan $\mathcal{L}(M)$?
 - d Dadas las TM M_1, M_2 jes $L(M_1) = L(M_2)$?
- 4. El problema Quadratic Knapsack da un conjunto de ítem i, donde el ítem i tiene peso entero $w_i > 0$, valores enteros $v_i > 0$, $a_{ij} \geq 0$ (acá i, j son ítem), una mochila de capacidad entera C > 0, y una meta V > 0. Defina $x_i = 1$ si se agrega i a la mochila, $x_i = 0$ en caso contrario. Se busca determinar si hay valores x_i tales que:

$$\sum_{i} x_i v_i + \sum_{i,j} a_{ij} x_i x_j \ge V$$

sujeto a no sobrepasar la capacidad de la mochila:

$$\sum_{i} x_i w_i \le C$$

El problema **Knapsack** clásico es similar, con todos los $a_{ij} = 0$. Se sabe que **Knapsack** es NP-completo.

Critique la siguiente demostración:

Proposición. Quadratic Knapsack es NP-completo.

Demostración. Reducimos **Quadratic Knapsack** a **Knapsack**, notando que **Knapsack** es el caso particular de **Quadratic Knapsack** en que los $a_{ij} = 0$.

- 5. Defina formalmente:
 - a) Lenguaje recursivamente enumerable
 - b) Problema en NP
 - c) Problema NP-Completo
 - d) Reducción polinomial de un problema a otro