State of the Cups

Alek Westover

February 23, 2020

• Single-Processor, online filler:

Filler: $\Omega(\log n)$ (ignore the touched cup each time, equal water to all others, $\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{1}$) Emptier: $O(\log n)$ (inductive proof)

• Single-Processor, offline filler:

Filler: $\Omega(\log \log n)$ (anchoring???) Emptier: $O(\log \log n)$ (??)

• Multi-Processor, online filler:

Filler: $\Omega(\log n)$ (For $p < n - \sqrt{n}$ see Bills paper that gets $\Omega(\log(n-p))$ which is tight for these small values of p by playing a single processor cup game on n-p+1 cups and anchoring the other p-1 cups. For $p > n - \sqrt{n}$ you build the anchor set, adding n-p cups to it each time, to get $\log n - \log(n-p)$ backlog) Emptier: $O(\log n)$ (Bill's complicated paper, generalizes the inductive proof for single processor case using skewed averages)

• Multi-Processor, offline filler:

Filler: $\Omega(\log\log n)$ (anchoring???, HYPOTHESIS: this is not tight! we should be able to get $\Omega(\log p + \log\log n)$ $Pr[\text{Hypothesis is correct}] \approx 0.5$) Emptier: $O(\log\log n + \log p)$

• Variable-Processor, online filler:

Filler: $\Omega(\text{poly}(p))$ (Amplification Lemma: $f'(p) = \frac{1}{2} \cdot (f(p/2) + f(p/4) + ...)$) Emptier: O(poly(p)) (this is a conjecture, no legit thoughts on how to prove it yet)

• Variable-Processor, offline filler:

Filler: $\Omega(\log p + \log\log n)$ (using the superpower you can get $\Theta(p)$ cups with known constant fill in them. Recursing on these $\log p$ times gives $\log p$ backlog, and we already knew $\Omega(\log\log n)$) CONJECTURE: we can probably do better: $\Omega(2^{\sqrt{\log n}/2})$ in poly(n) moves (via careful use of Chernoff bounds) Emptier: Probably $O(2^{\sqrt{\log n}/2})$ is true (how to prove it? maybe not worth it...)

Current goals:

- Make upper bound and lower bound agree for multi-processor cup game with offline opponent (i.e. randomized)
- Prove bounds on variable-processor cup game against offline and online fillers