Abgabe Hausübung im Fach Mathematik 0

Abgabe von:

Ruben Deisenroth (Mat.: 9876543), Max Mustermann (Mat.: 1234567), Peter Peterson (Mat.: 0000000) Übungsblatt Nummer: 01 Übungsgruppe Nummer: 69 Übungsgruppenleiter: Senpai Yoda Semester: WiSe 2020/21

Datum: 29. Mai 2021 Fachbereich: Informatik

H1: Systematisches Testen von Methoden

8 Punkte

a) Was ist 1+1? im Fach Mathe 0 gehen wir mit Zahlen wie Folgt um: $1+1=-1-(-3)=\sqrt{4}=\frac{2}{3}$

b) Was ist 2-1?

$$2 - 1 = 42 - 41 = \sqrt{\left(\frac{2e^{42}}{\pi}\right)^0} = \underline{\underline{1}}$$

H2: UwU0w0 2 Punkte

LwL

Mathe O Abgabe von: Ruben Deisenroth, Max Mustermann und Peter Peterson

H3: Alternativer style

5 Punkte

Such pretty much wow

3 a) Ganzzahladdition auf $\ensuremath{\mathbb{N}}$

3 Punkte

Was ist 69+420?

Lösung:

Die Antwort auf Alles ist 42. Die Antwort auf diese Frage ist jedoch 489.

3 b) Irgend son Graph

2 Punkte

Gegeben: $f(x) = 0, 5(x+1)^2 - 2$ **Zu berechnen:** Nullstellen von f(x)

Lösung:

$$0,5(x+1)^{2}-2=0$$

$$0,5 \cdot (x^{2}+2 \cdot x \cdot 1+1^{2})-2=0$$

$$0,5 \cdot x^{2}+x+0,5-2=0$$

$$0,5 \cdot x^{2}+x-1,5=0$$

$$\frac{-(1) \pm \sqrt{1^{2}-(4 \cdot 0,5 \cdot (-1,5))}}{2 \cdot 0,5} = x_{1/2}$$

$$\frac{-1 \pm \sqrt{1-(-3)}}{1} = x_{1/2}$$

$$\frac{-1 \pm \sqrt{4}}{1} = x_{1/2}$$

$$-1 \pm 2 = x_{1/2} \Rightarrow \underline{x_{1}=1, x_{2}=-3}$$

|Klammer auflösen

|Ausmultiplizieren

|Mitternachtsformel mit a=0,5;b=1;c=-1,5

Antwort: Die Funktion hat zwei Nullstellen, bei $x_1 = 1$ und bei $x_2 = -1$.

 $\textit{ABCDEFGHIJKLMNOPQRSTUVWXYZ} \ \varphi, \psi \ \textit{ABCD} \\$

-Testcode-

 $tl: \{3 = \{a\} = 3, b\} = 2, c\} = \{1 = 2, 2 = 3\}\}, 4 = \{a\} = 3\}, a = 3, 5 = \{2 = \{c\} = 9, \}, d\} = \{5 = 8, \}, \}, d = \{a\} =$

Mathe O Abgabe von: Ruben Deisenroth, Max Mustermann und Peter Peterson

H4: Weitere Macros 2 Punkte

asdfgg Boxed/framed environments

Definition — Mitternachtsformel Für eine Polynom zweiten Grades in der Form $a \cdot x^2 + b \cdot x + c$ gilt für $a, b, c \in \mathbb{R}$ immer:

(1)
$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a}$$

Definition test

 0.1. -- 0.2. ()MBbdI|

 asdf
 hi

Mathe O Abgabe von: Ruben Deisenroth, Max Mustermann und Peter Peterson

H5: Punktetabellen (WIP)

• H1: 8 Punkte

• H2: 2 Punkte

• H3: Gesamt 5 Punkte

-3a) = 3

-3b) = 2

• H4: 2 Punkte

Aufgabe	Н1	H2	Н3	Н4	Σ
Punkte (max)	8	2	5	2	17
Punkte (erreicht)					

Punktetabelle, Design 2

Aufgabe	möglich	erreicht
H1	8	
H2	2	
нз	5	
a)	3	
b)	2	
H4	2	
Gesamt	17	

Punktetabelle, Design 3