Análise exploratória de dados

Sara Mortara, Andrea Sanchez-Tapia, Diogo S. B. Rocha

aula 05

sobre a aula

- 1. análise exploratória de dados
- 2. estatísticas descritivas
- 3. gráficos
- 4. relações entre variáveis

1. análise exploratória de dados (AED)

a vida sem análise exploratória de dados

Explanatory Data Analysis de John Tukey

conheça seus dados!

1. controlar a qualidade dos dados

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- apoiar a escolha dos procedimentos estatísticos de testes de hipótese

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- apoiar a escolha dos procedimentos estatísticos de testes de hipótese
- 4. avaliar se os dados atendem às premissas dos procedimentos estatísticos escolhidos

- 1. controlar a qualidade dos dados
- 2. sugerir hipóteses para os padrões observados
- apoiar a escolha dos procedimentos estatísticos de testes de hipótese
- 4. avaliar se os dados atendem às premissas dos procedimentos estatísticos escolhidos
- 5. indicar novos estudos e hipóteses

alerta!

análise exploratória não é tortura de dados

"If you don't reveal some insights soon, I'm going to be forced to slice, dice, and drill!"

alerta!

análise exploratória não é tortura de dados

"If you don't reveal some insights soon, I'm going to be forced to slice, dice, and drill!"

assume-se que pesquisador(a) formulou *a priori* **hipóteses** plausíveis amparadas pela **teoria**

dicas

▶ pode levar entre 20 e 50% do tempo das análises

dicas

- ▶ pode levar entre 20 e 50% do tempo das análises
- deve ser iniciada ainda durante a coleta de dados

dicas

- ▶ pode levar entre 20 e 50% do tempo das análises
- deve ser iniciada ainda durante a coleta de dados
- utiliza-se largamente técnicas visuais

importânica do gráfico e quarteto de Anscombe

- criado pelo matemático Francis Ascombe
- ► 4 conjuntos de dados com as mesmas estatísticas descritivas, mas muito diferentes graficamente

os dados de Anscombe

```
# claro que o conjunto já existe dentro do R
data("anscombe")
# média dos dados
apply(anscombe, 2, mean)
##
       x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
# variância dos dados
apply(anscombe, 2, var)
           x2 x3 x4 y1
##
        <del>x</del> 1
                                                           y3
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620
##
       y4
## 4.123249
```

vamos olhar para os dados

	1 2 3 4 5 6 7 8	10 8 13 9 11 14 6 4	10 8 13 9 11 14 6 4	10 8 13 9 11 14 6 4	8 8 8 8 8 8 19	6.95 7.58 8.81 8.33 9.96	9.14 8.14 8.74 8.77 9.26 8.10 6.13 3.10	7.46 6.77 12.74 7.11 7.81 8.84 6.08 5.39	8.47 7.04
		•	-						
	•				_				
## ##	10 11	7 5	7 5	7 5	_	4.82 5.68	– -		7.91 6.89

```
correlação entre x e y
   # correlação
   cor(anscombe$x1, anscombe$y1)
   ## [1] 0.8164205
   cor(anscombe$x2, anscombe$y2)
   ## [1] 0.8162365
   cor(anscombe$x3, anscombe$y3)
   ## [1] 0.8162867
   cor(anscombe$x4, anscombe$y4)
```

[1] 0.8165214

coeficientes da regressão linear de x e y

```
# coeficientes da regressão
coef(lm(anscombe$v1 ~ anscombe$x1))
## (Intercept) anscombe$x1
##
    3.0000909 0.5000909
coef(lm(anscombe$y2 ~ anscombe$x2))
## (Intercept) anscombe$x2
##
     3.000909 0.500000
coef(lm(anscombe$y3 ~ anscombe$x3))
## (Intercept) anscombe$x3
##
    3.0024545 0.4997273
coef(lm(anscombe$y4 ~ anscombe$x4))
## (Intercept) anscombe$x4
##
    3.0017273 0.4999091
```

agora sim vamos olhar para os dados do Anscombe

perguntas que nos devemos fazer

- Onde os dados estão centrados? Como os dados estão distribuídos? Os dados são simétricos, assimétricos, bimodais?
- 2. Existem outliers?
- 3. As variáveis seguem uma distribuição normal?
- 4. Existem relações entre as variáveis? As relações entre variáveis são lineares?
- 5. As variáveis precisam ser transformadas?
- 6. O esforço amostral foi o mesmo para cada observação ou variável?

2. estatísticas descritivas

conferência de dados no R

```
# lendo os dados da idade da população que usa fraldas
fraldas <- read.csv("data/idade_fraldas.csv")</pre>
```

checando os dados

```
# checando os dados
head(fraldas)
```

tail(fraldas)

##		indivíduo	idade
##	95	95	77
##	96	96	79
##	97	97	87
##	98	98	85
##	99	99	91
##	100	100	86

inspecionando os dados

```
str(fraldas)
```

```
## 'data.frame': 100 obs. of 2 variables:
## $ indivíduo: int 1 2 3 4 5 6 7 8 9 10 ...
## $ idade : int 1 NA 2 0 1 0 0 1 0 0 ...
```

summary(fraldas)

```
## indivíduo
                     idade
##
   Min. : 1.00
                  Min. : 0.00
##
   1st Qu.: 25.75 1st Qu.: 0.00
##
   Median: 50.50 Median: 1.00
##
   Mean : 50.50
                  Mean :17.17
##
   3rd Qu.: 75.25
                  3rd Qu.: 3.00
   Max. :100.00
##
                  Max. :99.00
##
                  NA's :2
```


perguntas que devemos fazer aos dados #1

1. existem valores faltantes i.e. (NAs)? Eles são mesmo faltantes?

teste lógico para encontrar NA e zero

is.na(fraldas\$idade)

```
## [1] FALSE TRUE FALSE FALSE
```

onde está NA

```
which(is.na(fraldas$idade))
## [1] 2 17
fraldas[c(2,17),]
      indivíduo idade
##
                    NΑ
## 2
             17
## 17
                    NΑ
vamos substituir NA por 0
fraldas$idade[is.na(fraldas$idade)] <- 0</pre>
```

conferindo se tem NA

```
is.na(fraldas$idade)
```

```
## [1] FALSE FALSE
```

```
sum(is.na(fraldas$idade))
```

```
## [1] O
```


perguntas que devemos fazer aos dados #2

2. existem muitos zeros?

```
fraldas$idade==0
```

```
[1] FALSE TRUE FALSE TRUE FALSE TRUE
                                           TRUE FALSE
                                                     TRUE
                                                                  TRUE.
##
                                                            TRUE
##
    [12]
         TRUE
               TRUE FALSE FALSE TRUE
                                    TRUE FALSE FALSE FALSE
                                                                  TRUE
    Γ231
        TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
##
                                                            TRUE FALSE
    Γ341
        TRUE FALSE TRUE
                          TRUE FALSE TRUE FALSE TRUE FALSE FALSE
                                                                  TRUE.
##
##
    Γ451
         TRUE FALSE TRUE FALSE TRUE FALSE FALSE
                                                 TRUE FALSE
                                                                  TRUE
    ſ561
        FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
##
##
        FALSE
               TRUE FALSE FALSE FALSE FALSE
                                           TRUE FALSE
                                                      TRUE FALSE FALSE
    [78] FALSE
               TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
    [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##
   [100] FALSE
```

quantos?

```
sum(fraldas$idade==0)
```

```
## [1] 36
```


perguntas que devemos fazer aos dados #3 #4 #5

3. onde os dados estão centrados? como estão espalhados? são simétricos? enviesados, bimodais?

perguntas que devemos fazer aos dados #3 #4 #5

- 3. onde os dados estão centrados? como estão espalhados? são simétricos? enviesados, bimodais?
- 4. existem valores extremos (outliers)?

perguntas que devemos fazer aos dados #3 #4 #5

- 3. onde os dados estão centrados? como estão espalhados? são simétricos? enviesados, bimodais?
- 4. existem valores extremos (outliers)?
- 5. qual a distribuição da variável?

summary(fraldas\$idade)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00 0.00 1.00 16.83 3.00 99.00
```

medidas de tendência central

```
# media
mean(fraldas$idade)
## [1] 16.83
# mediana
median(fraldas$idade)
## [1] 1
# valor mais frequente na amostra
freqf <- sort(table(fraldas$idade), decreasing = TRUE)</pre>
freqf[1]
## 36
```

```
medidas de dispersão
```

```
# variancia
var(fraldas$idade)
## [1] 1046.446
# desvio padrão
sd(fraldas$idade)
## [1] 32.34881
# coeficiente de variação
sd(fraldas$idade)/mean(fraldas$idade)*100
## [1] 192.2092
# intervalo
range(fraldas$idade)
## [1] 0 99
diff(range(fraldas$idade))
## [1] 99
```

quantis e intervalo inter-quantil (IIQ)

[1] 3

```
# quantis
quantile(fraldas$idade)
##
    0% 25% 50% 75% 100%
       0 1 3 99
##
# lembrando da saida do summary
summary(fraldas$idade)
     Min. 1st Qu. Median Mean 3rd Qu.
##
                                        Max.
     0.00
            0.00 1.00
                          16.83
##
                                  3.00
                                        99.00
# mudando os quantis
quantile(fraldas$idade, probs=c(0.05, 0.5, 0.95))
## 5% 50% 95%
## 0.0 1.0 87.1
# intervalo inter-quantil
IQR(fraldas$idade)
```

3. gráficos

visualizando os dados em um boxplot

boxplot(fraldas\$idade)

visualizando os dados em um histograma

hist(fraldas\$idade)

Histogram of fraldas\$idade

separando bebês e vovxs

```
bb <- fraldas[fraldas$idade<10,]
vv <- fraldas[fraldas$idade>10,]
```

os novos gráficos: boxplot

```
par(mfrow=c(1,2))
boxplot(bb$idade)
boxplot(vv$idade)
```


par(mfrow=c(1,1))

entendendo o boxplot

entendendo o boxplot

```
par(mfrow=c(1,2))
boxplot(bb$idade)
boxplot(vv$idade)
```


os novos gráficos: histograma

```
par(mfrow=c(1,2))
hist(bb$idade)
hist(vv$idade)
```



```
par(mfrow=c(1,1))
```

tipos de histograma

```
par(mfrow=c(1,2))
hist(bb$idade)
hist(bb$idade, probability = TRUE)
```

Histogram of bb\$idade

8 25 Frequency 20 15 9 2 2 3 bb\$idade

Histogram of bb\$idade

par(mfrow=c(1,1))

classes do histograma

```
par(mfrow=c(1,3))
hist(bb$idade, breaks=seq(0, max(bb$idade), length=3))
hist(bb$idade, breaks=seq(0, max(bb$idade), length=5))
hist(bb$idade)
```



```
par(mfrow=c(1,1))
```

curvas empíricas de densidade probabilística representa a função que descreve a probabilidade de se encontrar determinado valor

```
hist(bb$idade, probability = TRUE )
```

Histogram of bb\$idade

curvas empíricas de densidade probabilística

plot(density(bb\$idade))

distribuição se ajusta aos dados?

distribuição discreta e assimétrica \rightarrow Poisson?

```
# máximo de idade
bb.max <- max(bb$idade)
# lambda
bb.med <- mean(bb$idade)</pre>
```

distribuição Poisson se ajusta aos dados?

```
hist(bb$idade, probability = TRUE)
points(dpois(0:bb.max, bb.med), col=cor[5])
lines(dpois(0:bb.max, bb.med), col=cor[5])
```

Histogram of bb\$idade

(distribuições estatístcas)

distribuição normal ou gaussiana

por que amostragem é importante?

Histogram of a

por que amostragem é importante?

Histogram of a

por que amostragem é importante?

Histogram of a

4. relações entre variáveis

Anderson & Fisher e as espécies de Iris

Iris Versicolor

Iris Setosa

Iris Virginica

Anderson & Fisher e as espécies de Iris

```
# carregando os dados no R
data(iris)
# para saber mais sobre o conjunto de dados consulte
# ?iris
# entendendo iris
summary(iris)
```

```
Sepal.Width Petal.Length Petal.Width
##
    Sepal.Length
##
   Min. :4.300
                Min.
                        :2.000
                                Min.
                                       :1.000
                                               Min.
                                                     :0.100
##
   1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600
                                               1st Qu.:0.300
##
   Median :5.800 Median :3.000
                                Median :4.350
                                               Median :1.300
##
   Mean :5.843 Mean :3.057
                                Mean :3.758
                                               Mean :1.199
   3rd Qu.:6.400 3rd Qu.:3.300
                                3rd Qu.:5.100
                                               3rd Qu.:1.800
##
##
   Max. :7.900
                Max.
                        :4.400
                                Max.
                                       :6.900
                                               Max. :2.500
##
        Species
##
   setosa
            :50
##
   versicolor:50
   virginica:50
##
##
##
##
```

correlação entre as variáveis

```
cor(iris[1:4])
```

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411
## Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259
## Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654
## Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000
```


quando uma correlação é alta? 0.7

GENERAL RULE OF THUMB

correlação entre as variáveis

pairs(iris[1:4])

ou ainda melhor correlação entre as variáveis

pacote GGally com a função ggpairs()

e quais os caminhos para a análise?

sua [HIPÓTESE]

1. entender bem os dados

- 1. entender bem os dados
- 2. variável resposta é normal? \rightarrow lm e outras análises paramétricas

- 1. entender bem os dados
- 2. variável resposta é normal? \rightarrow lm e outras análises paramétricas
- 3. variável resposta tem outra distribuição ightarrow análises não paramétricas, glm

- 1. entender bem os dados
- 2. variável resposta é normal? \rightarrow lm e outras análises paramétricas
- 3. variável resposta tem outra distribuição ightarrow análises não paramétricas, glm
- 4. variáveis preditoras hierarquizadas? \rightarrow (g)lmm

- 1. entender bem os dados
- 2. variável resposta é normal? \rightarrow lm e outras análises paramétricas
- 3. variável resposta tem outra distribuição ightarrow análises não paramétricas, glm
- 4. variáveis preditoras hierarquizadas? \rightarrow (g)lmm
- 5. pseudo-replicação no espaço ou no tempo \rightarrow (g)lmm