1 Terminology

Directed tree: A directed graph that would be a tree if we ingored the directions of the edges.

Arborescence: A directed tree with a "root" such that every node of it has a unique path to it from the root. There's always exactly one root.

Spanning subgraph of G = (V, E): Just a subgraph (V, B) of G such that $B \subseteq E$.

Branching system of G = (V, E) with k specified root nodes: A collection of edge-disjoint arborescences rooted at the k root nodes, with each arborescence being a spanning subgraph of $(V \setminus R, E)$ with R containing all roots that are not part of the arborescence. By "edge-disjoint" we mean that none of these arborescences share any edges. Also, every node has at most k incoming edges (at most one from each arborescence).

Optimal branching system of a weighted digraph with k specified root nodes: the branching system with the lowest total weight.

2 Algorithm

To find an OBS we need to find a min-cost set of edges which is both a basis of matroid M_1 and of M_2 :

- $M_1=(E,J_1)$ in which $j \in J_1$ has no edges entering any root nodes, and at most k edges entering each other node of the graph.
- $M_2=(E,J_2)$ in which $j \in J_2$ can be partitioned into at most k forests.

If $\mathcal{B}(M_1)$ is the set of all bases of M_1 and $\mathcal{B}(M_2)$ is the set of all bases of M_2 , then the optimal branching system will be the least-cost element in $\mathcal{B}(M_1) \cap \mathcal{B}(M_2)$.

3 Examples:

3.1 3-nodes

3.1.1 1 root

The branching systems are:

$$\mathcal{B}_1 = \{A, C\} \tag{3.1}$$

$$\mathscr{B}_2 = \{A, B\} \tag{3.2}$$

We also have:

$$J_1 = \{ P(\mathcal{B}_1) \cup P(\mathcal{B}_2) \} \tag{3.3}$$

$$= \{\emptyset, \{A\}, \{C\}, \{A, C\}, \{B\}, \{A, B\}\}$$
(3.4)

(3.5)

$$J_2 = \{ P(\mathcal{B}_1) \cup P(\mathcal{B}_2) \cup P(\{B, C\}) \}$$
(3.6)

$$= \{\emptyset, \{A\}, \{C\}, \{A, C\}, \{B\}, \{A, B\}, \{B, C\}\}\}. \tag{3.7}$$

The bases of M_1 and M_2 (which are associated with J_1 and J_2 resepctively) are:

$$\mathcal{B}(M_1) = \{\mathscr{B}_1, \mathscr{B}_2\} \tag{3.8}$$

$$\mathcal{B}(M_2) = \{\mathscr{B}_1, \mathscr{B}_2, \{B, C\}\} \tag{3.9}$$

So we have that:

$$\mathcal{B}(M_1) \cap \mathcal{B}(M_2) = \{\mathscr{B}_1, \mathscr{B}_2\},\tag{3.10}$$

which are precisely the branching systems that we found by brute force!

3.1.2 2 roots

There's no branching systems because it's impossible for an arborescence rooted at r_2 to be a spanning subgraph of the original graph (no arborescence rooted at r_2 can contain all of the original graph's vertices).

We also have:

$$J_1 = \{\emptyset, \{A\}\} \tag{3.11}$$

$$J_2 = P(\{A, B; C\}) \tag{3.12}$$

$$= \{A, B, C, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\}. \tag{3.13}$$

The bases of M_1 and M_2 (which are associated with J_1 and J_2 resepctively) are:

$$\mathcal{B}(M_1) = \{ \{A\} \} \tag{3.14}$$

$$\mathcal{B}(M_2) = \{ \{A, B, C\} \}. \tag{3.15}$$

So we have that:

$$\mathcal{B}(M_1) \cap \mathcal{B}(M_2) = \emptyset. \tag{3.16}$$

meaning that no branching systems exist, which is exactly what we said at the beginning!

3.2 4-nodes:

3.2.1 1 root

The branching systems are:

$$\mathcal{B}_1 = \{E, A, B\},\tag{3.17}$$

$$\mathscr{B}_2 = \{C, E, A\},\tag{3.18}$$

$$\mathcal{B}_3 = \{C, D, A\}. \tag{3.19}$$

We also have that:

$$b(J_1) = \{ \mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3, \{A, B, D\} \}$$
(3.20)

$$b(J_2) = \{ \mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3, \{A, B, C\}, \{B, C, E\}, \{B, D, C\}, \{B, D, E\}, \{A, D, E\} \}.$$

$$(3.21)$$

So we find that:

$$b(J_1) \cap b(J_2) = \{\mathscr{B}_1, \mathscr{B}_2, \mathscr{B}_3\}.$$
 (3.22)

3.2.2 2 roots

There is only one branching system:

$$\mathscr{B} = \{E, B, D, C\}. \tag{3.23}$$

We also have that:

$$b(J_1) = \{\mathscr{B}\}\tag{3.24}$$

$$b(J_2) = \{A, B, C, D, E\}, \tag{3.25}$$

$$b(J_1) \cap b(J_2) = \emptyset \tag{3.26}$$

So we need to remove A (which is going into a root). By doing that we have:

$$b(J_2) = b(J_1), (3.27)$$

$$b(J_2) \cap b(J_2) = \mathscr{B}. \tag{3.28}$$

3.3 5-nodes:

3.3.1 2 roots

The branching systems are:

$$\mathcal{B}_1 = \{A, H, E; B, C, D\}, \tag{3.29}$$

$$\mathcal{B}_2 = \{ E, I, H; B, C, D \}, \tag{3.30}$$

$$\mathcal{B}_3 = \{A, H, E; C, D, I\}. \tag{3.31}$$

$$b(J_1) = \{\mathscr{B}_1, \mathscr{B}_2, \mathscr{B}_2\} \tag{3.32}$$

$$b(J_2) = \{B, A, I, D; C, H, E\}$$
(3.33)

No overlap between $b(J_1)$ and $b(J_2)$