

PROCESO DE GESTIÓN DE FORMACIÓN PROFESIONAL INTEGRAL ANEXO COMPONENTE FORMATIVO

FORMULARIO DE MUESTREO

MUESTREO ALEATORIO SIMPLE EN POBLACIONES INFINITAS.

	VARIABLES NUMÉRICAS	VARIABLES DICOTÓMICAS
ESTIMADOR	$-y = \frac{1}{n} \left[\frac{n}{2} \right] y_i$	$\vec{p} = \frac{1}{n} \underbrace{\vec{?}}_{i=1}^{n} y_{i}, \qquad y_{i} = 0, 1$
VARIANZA MUESTRAL (apenas se utiliza en muestreo)	$s^{2} = \frac{1}{2} \left(y_{i} \otimes y \right)^{2} = \left[2 \times y_{i} \otimes y \right]^{2} = \left[2$	$S_{2} = \prod_{i \in I} \left(y \ \mathbb{Z} \ y \right) = pq$ $n = \prod_{i \in I} \left(y \ \mathbb{Z} \ y \right) = pq$
CUASIVARIANZA MUESTRAL	$S^{2} = \frac{1}{n \ 21} \sum_{i=1}^{n} \left(y \ 2 \ y \right)^{2} = \frac{1}{i=1} \sum_{i=1}^{n} \frac{1}{n} \frac{1}{n} $	$S^{2} = \frac{1}{n \ 21} \left[y_{i} \ y \right] = \frac{npq}{n \ 21}$
VARIANZA DEL ESTIMADOR	$V(y) = \frac{S^2}{n}$	$V(p) = \frac{pq}{n 21}$
B LIMITE DEL ERROR DE ESTIMACIÓN	$B_{\square} = z V(y) = z S N$	$B_{p} = z_{c} V(p) = z_{c} pq$ $n 21$
INTERVALO DE CONFIANZA		$ \begin{pmatrix} p \mathbb{I} B_p & , & p + B_p \end{pmatrix} $
TAMAÑO MUESTRAL	$n = \frac{\mathbb{Z}^{2}}{B_{\mathbb{Z}}^{2}} = \frac{\mathbb{Z}^{2}}{D} \qquad D = \frac{B^{2}}{\mathbb{Z}^{2}_{c}}$ $\mathbb{Z}^{2} = S^{2} \qquad \mathbb{Z}^{2} = \mathbb{Z}^{2} = \mathbb{Z}^{2} \qquad \mathbb{Z}^{2} = $	$n = \frac{pq}{B^2} = \frac{pq}{D} \qquad D = \frac{B^2}{z_c^2}$ $p \text{ se estima con } p$

MUESTREO ALEATORIO SIMPLE EN POBLACIONES FINITAS.

	VARIABLES NUMÉRICAS	VARIABLES DICOTÓMICAS
ESTIMADOR	$-\frac{1}{y} = \frac{1}{n} \underbrace{\stackrel{n}{[2]}}_{i=1} y_{i}$	$ \vec{p} = \frac{1}{n} \left[\vec{p} \right] y_i \qquad y_i = 0, 1 $ $ \vec{p} = \frac{1}{n} \left[\vec{p} \right] y_i \qquad y_i = 0, 1 $
VARIANZA DEL ESTIMADOR	$V(\overline{y}) = \frac{S^2 N \ \square \ n}{n}$ $V(\overline{y}) = N \ V(\overline{y}) = N(N \ \square \ n) \ \frac{S^2}{n}$	$V(p) = \frac{pq}{n \square 1} \frac{N \square n}{N}$ $V(\square) = N^2 V(p) = N(N \square n) \frac{pq}{n \square 1}$
B LIMITE DEL ERROR DE ESTIMACIÓN	$B_{\mathbb{B}} = z_{c} \sqrt{V(\overline{y})}$ $B_{\mathbb{B}} = z_{c} \sqrt{V(\overline{y})} = NB_{\mathbb{B}}$	$B_{p} = z_{c} \sqrt{V(p)}$ $B_{0} = z_{c} \sqrt{V(1)} = NB_{p}$
INTERVALO DE CONFIANZA	$ \left(y \overline{B}_{\overline{B}}, \overline{y} + B_{\overline{B}} \right) $ $ \left(\overline{B}_{\overline{B}}, \overline{y} + B_{\overline{B}} \right) = N \left(\overline{y} \overline{B}_{\overline{B}}, \overline{y} + B_{\overline{B}} \right) $	$\left(p \mathbb{I} B_p , p + B_p\right)$ $\left(\mathbb{I} \mathbb{I} B_{\mathbb{I}} , \mathbb{I} + B_{\mathbb{I}}\right) = N\left(p \mathbb{I} B_p , p + B_p\right)$
TAMAÑO MUESTRAL	$n = \frac{N^{2}}{(N \ 21)D + 2^{2}}$ $D = \frac{B_{2}^{2}}{z_{c}^{2}} (media)$ $D = \frac{B_{2}^{2}}{z_{c}^{2}N^{2}} (total)$ $2^{2} = S^{2} , 2^{2} = 2 R^{2} 2^{2}$	$n = \frac{Npq}{(N \ \square 1)D + pq}$ $D = \frac{B_p^2}{Z_c^2} (proporcion)$ $D = \frac{B_{\square}^2}{Z_c^2 N^2} (total)$ $p \text{ se estima con } p$

MUESTREO ALEATORIO ESTRATIFICADO: ESTIMACIÓN.

	VARIABLES NUMÉRICAS	VARIABLES DICOTÓMICAS
ESTIMADOR	$-y_{st} = \frac{1}{N} \sum_{i=1}^{L} N_i \overline{y}_i = \underbrace{\mathbb{P}}_{i=1}^{L} \underbrace{N_i}_{N} \overline{y}_i^{-}$ $\mathbb{P}^{\square}_{st} = \overline{N} \underline{y}_{st} = \underbrace{\mathbb{P}}_{i=1}^{L} N \underline{y}_i^{-}$	$ \begin{array}{cccc} & 1 & L & \square & L & N_i & \square \\ & p_{st} & = & \boxed{?} & N_i & p_i & = & \boxed{?} & N_i & \square \\ & & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow $
VARIANZA DEL ESTIMADOR	$V(y_{st}) = \frac{1}{N^2} \stackrel{L}{\boxed{?}} N_i V(y_i) = \frac{1}{N^2} \frac{1}{i=1} N_i^2 \frac{S_i^2 N_i \mathbb{I} n_i}{N_i} = \frac{1}{N^2} \stackrel{L}{\boxed{?}} N_i \mathbb{I}^2 S_i^2 N \mathbb{I} n = \frac{1}{N_i} \stackrel{L}{\boxed{?}} N_i \mathbb{I}^2 S_i^2 N \mathbb{I} n = \frac{1}{N_i} \stackrel{L}{\boxed{?}} N_i \mathbb{I}^2 \mathbb{I} \frac{i}{\boxed{?}} \frac{i}{N_i} \stackrel{i}{\boxed{N}} \frac{i}{\boxed{?}} \frac{i}{N_i} \stackrel{i}{\boxed{N}} \frac{i}{\boxed{?}} N_i$ $= \stackrel{R}{\boxed{?}} \stackrel{L}{\boxed{?}} \stackrel{R}{\boxed{?}} \stackrel{I}{\boxed{?}} \frac{i}{\boxed{?}} \frac{i}{N_i} \stackrel{I}{\boxed{N}} \frac{i}{\boxed{?}} \frac{i}{N_i} $ $= n \text{ poblaciones infinitas}$	$V(p_{st}) = \frac{1}{N^{2}} \stackrel{?}{?} N_{i} V(p_{i}) = \frac{1}{N^{2}} \stackrel{?}{?} N_{i} \stackrel{?}{V}(p_{i}) = \frac{1}{N^{2}} \stackrel{?}{?} N_{i} \stackrel{?}{V}(p_{i}) = \frac{1}{N^{2}} \stackrel{?}{?} N_{i} \stackrel{?}{V}(p_{i}) = \frac{1}{N^{2}} \stackrel{?}{N_{i}} \stackrel{?}{N_{i}}$
	$(\widehat{\mathbb{I}}_{st}) = N V^{2}(\widehat{y}) = \mathbb{P} N V^{2}(y$	$\overline{V}(\overline{S}_{st}) = N^2 \overline{V}(p) = \overline{P}_{t} = \overline{P}_{t} \frac{p_i \overline{q}_i}{n_i \overline{P}_t} \frac{\overline{N}_i}{\overline{N}_i} \overline{N}_i$

MUESTREO ALEATORIO ESTRATIFICADO: ASIGNACIÓN MUESTRAL. POBLACIONES FINITAS.

	VARIABLES NUMÉRICAS	VARIABLES DICOTÓMICAS
	(error fijo B)	(error fijo B)
	$n = \stackrel{L}{\overset{i=1}{\longrightarrow}} N_i \mathbb{Z}_i \sqrt{c_i} \stackrel{L}{\overset{i=1}{\longrightarrow}} \frac{N_i \mathbb{Z}_i}{\sqrt{c_i}}$ $N^2 D + \underbrace{\mathbb{Z}}_i N \mathbb{Z}_i^2 \stackrel{L}{\underset{i=1}{\longrightarrow}} $	$n = \frac{\sum_{i=1}^{L} N_i \sqrt{\frac{p_i q_i c_i}{c_i}}}{N^2 D + \left[\sum_{i=1}^{L} N_i p_i q_i \right]} \sqrt{\frac{p_i q_i}{c_i}}$
ASIGNACIÓN ÓPTIMA	$(coste\ fijo\ C) \qquad n = \frac{C \left[\sum_{i=1}^{L} \frac{i}{\sqrt{C_i}} \right]}{\left[\sum_{i=1}^{L} N_i \right]_i \sqrt{C_i}}$	$(coste fijo C) \qquad n = \sum_{i=1}^{L} \sqrt{\frac{p_{i}q_{i}}{c_{i}}}$ $\sum_{i=1}^{L} N_{i} \sqrt{\frac{p_{i}q_{i}c_{i}}{p_{i}q_{i}c_{i}}}$
		$ \boxed{2}_{j} = \frac{N_{j} \sqrt{\frac{p_{j}q_{j}}{c_{j}}}}{\frac{L}{\boxed{2}} N_{i} \sqrt{\frac{p_{i}q_{i}}{c_{i}}}} $
	$\binom{L}{N}$ \mathbb{Z} $\binom{L}{2}$	$\begin{pmatrix} L & N & pq \end{pmatrix}_2$
ASIGNACIÓN DE	$n = \frac{\sum_{i=1}^{i} \sum_{j=1}^{i} N \left[\frac{2}{i} \right]_{i=1}^{2}}{N^{2}D + \left[\frac{2}{i} \right]_{i=1}^{2}}$	$n = \frac{\sum_{i=1}^{i=1} \sum_{j=1}^{L} N_{i} p_{i} q_{j}}{N^{2}D + \left[\sum_{i=1}^{L} N_{i} p_{i} q_{i}\right]}$
NEYMAN (error fijo B)	$ \begin{array}{ccc} ? & = & \frac{N_{j}??_{j}}{L} \\ ?? & N_{i}??_{i} \end{array} $	
ASIGNACIÓN PROPORCIONAL (error fijo B)	$n = \frac{\sum_{i=1}^{L} N \left(\frac{1}{i} \right)^{2}}{ND + \frac{1}{N} \left(\frac{1}{i} \right)^{2} N \left(\frac{1}{i} \right)^{2}}$	$n = \frac{\sum_{i=1}^{L} N_{i} p_{i} q_{i}}{ND + \frac{1}{N} \sum_{i=1}^{L} N_{i} p_{i} q_{i}}$
(Error Jijo B)	$\mathbb{Z}_{j} = \frac{N_{j}}{N}$	$\square_{j} = \frac{N_{j}}{N}$
	$D = \frac{R_{\mathbb{S}}^2}{z_c^2} (media)$	$D = \frac{B_p^2}{Z_c^2} (proporcion)$
	$D = \frac{B_{\mathbb{B}}^2}{z^2 N^2} (total)$	$D = \frac{B_{\square}^2}{z_c^2 N^2} (total)$
	$\mathbb{Z}_{i}^{2} = S_{i}^{2} , \mathbb{Z}_{i}^{2} = \frac{\mathbb{Z}_{i}^{2}}{\mathbb{Z}_{i}^{2}} + \frac{\mathbb{Z}_{i}^{2}}{\mathbb{Z}_{i}^{2}}$	p_{i} se estima con p_{i}

MUESTREO ALEATORIO ESTRATIFICADO: ASIGNACIÓN MUESTRAL. POBLACIONES INFINITAS. Pesos de los estratos conocidos: W_i (\mathbb{Z} N_i / N)

	VARIABLES NUMÉRICAS	VARIABLES DICOTÓMICAS
	(error fijo B)	(error fijo B)
	$n = \stackrel{L}{=} W_i \overline{\mathbb{Q}}_i \sqrt{c_i} \stackrel{L}{=} W_i \frac{\overline{\mathbb{Q}}_i}{\sqrt{c_i}}$ D	$n = \frac{\sum_{i=1}^{L} W_i \sqrt{p_i q_i c_i}}{D} \sqrt{\frac{p_i q_i}{c_i}}$
ASIGNACIÓN ÓPTIMA	$(coste\ fijo\ C) \qquad n = \frac{C \stackrel{i}{\text{?!}} W_i}{\frac{\text{?!}}{\text{I}}} \frac{\stackrel{\text{?!}}{\text{I}}}{\sqrt{c_i}} \\ \stackrel{\text{?!}}{\text{?!}} W_i \stackrel{\text{?!}}{\text{I}}_i \sqrt{c_i}$	(coste fijo C) $n = \frac{C W_{i} \sqrt{\frac{p_{i}q_{i}}{c_{i}}}}{\sum_{i=1}^{L} W_{i} \sqrt{p_{i}q_{i}c_{i}}}$
	$ \mathbb{Z}_{j} = \frac{W_{j} \frac{\mathbb{Z}_{j}}{\sqrt{c_{j}}}}{\frac{\mathbb{Z}_{i}}{\sqrt{c_{i}}}} $	$ \mathbf{P}_{j} = \frac{W_{j} \sqrt{\frac{p_{j}q_{j}}{c_{j}}}}{\sum_{i=1}^{L} W_{i} \sqrt{\frac{p_{i}q}{c_{i}}}} $
ASIGNACIÓN DE	$n = \frac{\binom{L}{W_i \ \square_i}}{D}$	$n = \frac{\binom{L}{W_i} \frac{p_i q_i}{\sqrt{1}}}{D}$
NEYMAN (error fijo B)		$ \boxed{2}_{j} = \frac{W_{j} \sqrt{p_{j}q_{j}}}{\sum_{i=1}^{L} W_{i} \sqrt{p_{i}q_{i}}} $
ASIGNACIÓN PROPORCIONAL	$n = \frac{\sum_{i=1}^{L} W ?_{i}^{2}}{D}$	$n = \frac{\sum_{i=1}^{L} W_i \ p_i q_i}{D}$
(error fijo B)	$2_j = W_j$	$\mathbb{Z}_j = W_j$
	$D = \frac{R_0^2}{z_c^2} (media)$ $\mathbb{T}_i^2 = S_i^2 , \mathbb{T}_i^2 = \mathbb{T}_i^2 \mathbb{T}_i^2$	$D = \frac{B_p^2}{z_c^2} (proporcion)$
	$2 \frac{1}{i} = S_{i}^{2}$, $2 \frac{1}{i} = \frac{10}{2} \frac{R_{i}}{4}$	p_{i} se estima con p_{i}

ESTIMACIÓN DE RAZÓN.

	RAZÓN	MEDIA TOTAL
ESTIMADOR	$r = \frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} x_i} = \frac{y}{\overline{x}}$	$\Box_{y} = r \Box_{x}$ $\Box_{y} = r \Box_{x}$
VARIANZA RESIDUAL	$S_r^2 = \frac{1}{n \mathbb{I} 1} \mathbb{P} \left(y_i \mathbb{I} r x_i \right)^2 = \frac{1}{n \mathbb{I} 1}$	$ \frac{1}{1} \underbrace{ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{y_{i} + r}_{i=1}^{2} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{ \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$
VARIANZA DEL ESTIMADOR	$V(r) = \frac{1}{2} \frac{N \ 2 \ n \ S^2}{N \ n} \ \frac{1}{2} \frac{N \ 2 \ n \ S^2}{N \ n}$	$V(\mathbb{T}_{y}) = \mathbb{T}_{x}V(r) = \frac{N \mathbb{T} n S_{r}^{2}}{N n}$ $V(\mathbb{T}_{y}) = \mathbb{T}^{2}V(r) = N^{2} \frac{N \mathbb{T} n S}{N n}$ $V(\mathbb{T}_{y}) = \mathbb{T}^{2}V(r) = N^{2} \frac{N \mathbb{T} n S}{n}$ $V(\mathbb{T}_{y}) \mathbb{T} \frac{\mathbb{T}^{2}S_{r}^{2}}{2} en \ poblaciones \ infinites$
TAMAÑO MUESTRAL	$n = \frac{N\mathbb{Z}^{2}}{ND + \mathbb{Z}^{2}}$ $n = \frac{\mathbb{Z}^{2}}{D} en \ poblaciones \ infinitas$ $D = \frac{B_{R}^{2}\mathbb{Z}^{2}}{z_{c}^{2}} (para \ estimar \ R)$ $D = \frac{B_{\mathbb{Z}}^{2}}{z_{c}^{2}} (para \ estimar \ \mathbb{Z}_{y})$ $D = \frac{B_{\mathbb{Z}}^{2}}{z_{c}^{2}N^{2}} (para \ estimar \ \mathbb{Z}_{y})$	

	MEDIA TOTAL
VARIANZA, COVARIANZA Y COEF. DE CORRELACIÓN MUESTRALES	$s_{x}^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(x_{i} \otimes x\right)^{2} = \left[\frac{1}{2} - \frac{n}{2} x_{i}\right]^{2} \times \frac{2}{n} = \frac{2}{n} - \frac{n}{2} \left[\frac{1}{2} x_{i}\right]^{2} \times \frac{2}{n} = \frac{n}{n} = \frac{n}{2} + \frac{n}{2} \left[\frac{1}{2} - \frac{n}{2} x_{i}\right] = \frac{n}{2} + \frac{n}{2$
ESTIMADOR	$\Box_{yL} = \overline{y} + b(\Box_x \overline{z} \overline{x}) \qquad b = \frac{s_{xy}}{s_x^2}$ $\Box_{yL} = N\Box_{yL}$
VARIANZA RESIDUAL	$S_{L}^{2} = \frac{1}{n \mathbb{Z} 2} \frac{n}{\mathbb{Z}} \left(y \mathbb{Z} \left(y + b(x \mathbb{Z} x) \right) \right)^{2} = \frac{n}{n \mathbb{Z} 2} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} = \frac{n}{n \mathbb{Z} 2} \mathbb{Z} \mathbb{Z} \mathbb{Z} \mathbb{Z} = \frac{n}{n \mathbb{Z} 2} \mathbb{Z} $
VARIANZA DEL ESTIMADOR	$ \vec{V}(\vec{x}_{yL}) = \frac{N \cdot 2 \cdot n \cdot S_L^2}{N \cdot n} $ $ \vec{V}(\vec{x}_{yL}) = N^2 \vec{V}(\vec{x}_{yL}) $
TAMAÑO MUESTRAL	$n = \frac{L_{2}}{ND + 2}$ $n = \frac{D^{2}_{L}}{D} en poblaciones infinitas$ $D = \frac{B_{0}^{2}}{z_{c}^{2}} \qquad (para estimar y)$ $D = \frac{B_{0}^{2}}{z_{c}^{2}N^{2}} \qquad (para estimar y)$

ESTIMACIÓN DE DIFERENCIA.

	MEDIA TOTAL	
ESTIMADOR	$\overline{d} = \overline{y} + (\overline{x} \times \overline{x}) = \overline{x} + d^{-}$ $\overline{d} = \overline{y} \times \overline{x} = \frac{1}{\overline{x}} \cdot \overline{d}$ $n_{i=1}$ $d_{i} = y_{i} \times x_{i}$	
	$ ^{\square}_{yD} = N^{\square}_{yD} $	
VARIANZA RESIDUAL	$S_{D}^{2} = \frac{1}{n \boxed{2}} \left[y_{i} \boxed{(x_{i} + d)} \right]^{2} = \frac{1}{n \boxed{2}} \left[d_{i} \boxed{d} \right]^{2} = \frac{1}{n \boxed{2}} \left[d_{i} \boxed{d} \right]^{2} = \frac{1}{n \boxed{2}} \frac{1}{n \boxed{2}}$	
VARIANZA DEL ESTIMADOR	$ \vec{V}(\vec{x}_{yD}) = \frac{N \cdot \vec{x} \cdot n \cdot S_D^2}{N \cdot n} $ $ \vec{V}(\vec{x}_{yD}) = N^2 \vec{V}(\vec{x}_{yD}) $	
TAMAÑO MUESTRAL	$n = \frac{N^{\square}}{ND + \mathbb{Z}} \frac{2}{D}$ $n = \frac{\mathbb{Z}^{2}}{D} en \ poblaciones \ infinitas$ $D = \frac{B^{2}}{Z_{c}^{2}} \qquad (para \ estimar \ \mathbb{Z}_{y})$ $D = \frac{B^{2}}{Z_{c}^{2}N^{2}} \qquad (para \ estimar \ \mathbb{Z}_{y})$	

MUESTREO POR CONGLOMERADOS.

	MEDIA o PROPORCIÓN TOTAL (M conocido)	TOTAL
ESTIMADOR	$\Box = \overline{y} = \frac{\prod_{i=1}^{n} y_{i}}{\prod_{i=1}^{n} m_{i}}$ $\Box = M \overline{y}$	$ \begin{array}{ccc} $
VARIANZA DEL ESTIMADOR	$(y) = \frac{1 N \mathbb{I} n S^{2} V_{c}}{M^{2} N n}$ $V(\mathbb{I}) = M V(y) = N(N \mathbb{I} n) \frac{s^{2}}{n}$	$V(\mathbb{Q}_t) = N V(\overline{y_t}) = N(N \mathbb{Q}_n) \frac{S^2}{n}$
	$S = \underbrace{y_{i} y_{m_{i}}}_{y_{i}} = \underbrace{y_{i} y_{m_{i}}}_{y_{i}}$ $= \frac{1}{n} \underbrace{y_{i}^{n} y_{i}^{2} + y_{i}^{2}}_{i} m^{2} \underbrace{0}_{i} \underbrace{2y_{i}^{n} - m_{i}}_{i} \underbrace{y_{i}^{n} \cdot y_{i}^{2}}_{i} \underbrace{0}_{i}$	$S_{t}^{2} = \frac{1}{n 21} \int_{i=1}^{n} \left(y_{i} y_{t} \right)^{2} = \frac{1}{n 21} \int_{i=1}^{n} y^{2} \frac{1}{2} \frac{1}{i=1} \frac{1}{n} $ $n = \frac{N 2^{2}}{ND + 2^{2}}$
TAMAÑO MUESTRAL	$n = \frac{N^{2}}{ND + 2^{2}}$ $n = \frac{\mathbb{D}^{2}}{D} en \text{ poblaciones infinitas}$ $\mathbb{D}^{2} = S^{2} de \text{ una muestra previa}$ $D = \frac{B^{2} \overline{M}^{2}}{z_{c}^{2}} (media)$ $D = \frac{B^{2}}{\overline{z_{c}^{2} N^{2}}} (total)$	$n = \frac{N^{2}}{ND + 2^{2}}$ $n = \frac{D^{2}}{D}$ n

NOTACIÓN:

N = conglomerados en la población (habitualmente conocido)

n = conglomerados en la muestra

 m_i = elementos en el conglomerado i

 y_i = suma de las observaciones del conglomerado i

 $M = \bigcap_{i=1}^{n} m_i = elementos \ en \ la \ población$ (habitualmente desconocido)

 $m = \bigcap_{i=1}^{n} m_i = elementos en la muestra$

 $\overline{M} = \frac{1}{N} \underbrace{\frac{N}{2}}_{i=1}^{N} m_i = \frac{M}{N} = tama\~no medio de los conglomerados de la poblaci\'on (habitualmente desconocido)$

 $\frac{-}{m} = \frac{1}{n}\Big|_{i=1}^{n} m_{i} = \frac{m}{n} = tamaño \ medio \ de \ los \ conglomerados \ de \ la \ muestra \ . \ Este \ valor \ \overline{m} \ se \ usa \ para \ estimar \ el \ anterior, \ \overline{M} \ .$

ESTIMACIÓN DEL TAMAÑO DE LA POBLACIÓN

	MUESTREO DIRECTO	MUESTREO INVERSO
NOTACIÓN	t = elementos marcados $n = total de elementos en la muestra de recaptura$ $s = elementos marcados en la muestra de recaptura$	а
ESTIMADOR	$N = \frac{t}{p} = \frac{nt}{s}$	$N = \frac{t}{p} = \frac{nt}{s}$
PROPIEDADES DEL ESTIMADOR	$E(N) = N + \frac{N(N \cdot 1)}{nt}$ $V(N) = \frac{t \cdot p(n \cdot 1)}{s^3}$	$E(N) = N$ $V(N) = \underbrace{t^2 \hat{n}(n \ 2 \ s)}_{s \ (s+1)}$

ESTIMACIÓN DEL TAMAÑO DE LA POBLACIÓN

MUESTREO POR CUADROS		
	DENSIDAD	TOTAL
NOTACIÓN	A = área total $a = $ área de cada cuadro $n = $ número de cuadros en la muestra $ m = $ número medio de elementos por cuadro en la mue	estra
ESTIMADOR	$ = \frac{\overline{m}}{a} $	$M = {}^{\square}A$
VARIANZA DEL ESTIMADOR	$\overline{V}(\Box) = \frac{\Box}{an} = \frac{m}{a^2n}$	$\vec{V}(\vec{M}) = A^2 \vec{V}(\vec{D}) = \frac{A^2 \vec{D}}{an} = \frac{A^2 \vec{m}}{a^2 n}$
TAMAÑO MUESTRAL	$n = \frac{\Box}{aD}$ $D = \frac{B_{\Box}^{2}}{z_{c}^{2}} (para\ estimar\ \Box)$ $\lambda \ debe\ estimarse\ con\ un$	$D = \frac{B_M^2}{z_c^2 A^2} (para \ estimar \ M)$

CUADROS CARGADOS		
	DENSIDAD	TOTAL
NOTACIÓN	A = área total $a = área de cada cuadro$ $n = número de cuadros en la muestra$ $y = número total de cuadros no cargados en la muestra$	
ESTIMADOR		$M = A^{\square} = \mathbb{Z} \frac{A}{\ln} \mathbb{Z} \frac{y}{n}$
VARIANZA DEL ESTIMADOR	$\vec{V}(\vec{x}) = \frac{1^2 n \vec{x} y}{a ny}$	$V(M) = A V(1) = A^{\frac{2}{n}} \frac{N}{ny}$

MUESTREO CON PROBABILIDADES DESIGUALES.

	MEDIA, PROPORCIÓN y TOTAL
PROBABILIDADES DE INCLUSIÓN	$\mathbb{D}_{i} = \mathbb{P}_{s\mathbb{D}_{i}} p(s) \qquad \qquad \mathbb{D}_{ij} = \mathbb{P}_{s\mathbb{D}_{i} \& j} p(s)$
PESOS MUESTRALES	$d_i = \frac{1}{\overline{\mathbb{Z}}_i}$
PROBABILIDADES DE INCLUSIÓN EN UN DISEÑO PPT	
PROBABILIDADES DE INCLUSIÓN EN M. A. SIMPLE	$ \boxed{2}_{i} = \frac{n}{N} \qquad \qquad \boxed{2}_{ij} = \frac{n n \ \boxed{2}}{N N \boxed{2}} $
PROBABILIDADES DE INCLUSIÓN EN M. A. ESTRATIFICADO	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\frac{n-k}{N_h}$ si el individuo <i>i</i> pertenece al estrato <i>h</i> , y el individuo <i>j</i> al estrato <i>k</i>
ESTIMA DOD DE TIDO	$-y_{HT} = \frac{1}{N} \underbrace{ \begin{bmatrix} y_i \\ y_i \end{bmatrix}}_{i=1} \underbrace{ \begin{bmatrix} y_i \\ y_i \end{bmatrix}}_{i}$ $p_{HT} = \frac{1}{N} \underbrace{ \begin{bmatrix} y_i \\ y_i \end{bmatrix}}_{i=1} \underbrace{ \begin{bmatrix} y_i \\ y_i \end{bmatrix}}_{i}$ $y_i = 0 o y_i = 1$
ESTIMADOR DE TIPO HORVITZ-THOMPSON	$p_{HT} = \bigvee_{i=1}^{n} \overline{\mathbb{Z}_{i}} \qquad y_{i} = 0 o y_{i} = 1$
	$ \begin{bmatrix} \overline{H}_T N y \\ \overline{H}_T \end{bmatrix} = N p_{HT} = \begin{bmatrix} \overline{I}_T \\ \overline{I}_T \end{bmatrix} $
VARIANZA DEL	$ \hat{V}_{HT}(\overline{y}_{HT}) = \frac{1}{N^2} \underbrace{\begin{bmatrix} 1 & 2 \\ i & 1 \end{bmatrix}}_{i=1}^{n} \underbrace{\begin{bmatrix} y_i \\ y_i \\ i & 2 \end{bmatrix}}_{i} \underbrace{\begin{bmatrix} y_i \\ y_i \\ y_i \end{bmatrix}}_{i=1}^{n} \underbrace{\begin{bmatrix} y_i \\ y_i \end{bmatrix}}_{i} \underbrace{\begin{bmatrix} y_$
	$\hat{V}_{SYG} = \left(Y_{HT} \right) = \frac{1}{N^2} \frac{1}{[2]} \frac{1}{[$
ESTIMADOR DE HORVITZ-THOMPSON	$ \hat{V} = N^{2} \hat{Y}_{T} \qquad \hat{Y}_{$
	SYG HT SYG HT \vdots ij $?$ i j $?$
ESTIMADOR DE TIPO HÁJEK	$\mathcal{Y}_{H} = \frac{1}{N} \underbrace{\stackrel{n}{[2]}}_{i=1} \underbrace{\stackrel{y_{i}}{\mathbb{D}_{i}}}_{i} \qquad \qquad N = \underbrace{\stackrel{n}{[2]}}_{i=1} \underbrace{\stackrel{1}{\mathbb{D}_{i}}}_{i}$
	$p_{H} = \frac{1}{N} \boxed{2}^{n} \underbrace{y_{i}}_{i} \qquad y_{i} = 0 o y_{i} = 1$
	$\mathbb{I}_{H} = N \mathcal{L}_{H} = \frac{N}{N} \mathbb{I} \frac{\mathcal{L}_{i}}{\mathbb{I}}$

VARIANZA DEL ESTIMADOR DE HÁJEK	$ \hat{V}_{J} \left(y_{H} \right) = \frac{N \left[\begin{array}{c} n & n \left[\begin{array}{c} 1 \\ \end{array} \right] \\ N & n \end{array} \right] \left[\begin{array}{c} \left(y_{H(i)} \left[\begin{array}{c} 2 & y_{H} \end{array} \right) \right]^{2} \\ -y_{H(i)} & = \frac{1}{N_{(i)}} \left[\begin{array}{c} y_{j} \\ \end{array} \right] \left[\begin{array}{c} y_{j} \\ \end{array} \right] , N_{(i)} = \left[\begin{array}{c} 1 \\ \vdots \\ \vdots \\ \end{array} \right] \left[\begin{array}{c} y_{H(i)} \left[\begin{array}{c} 2 & y_{H} \end{array} \right] \right] $
	$\hat{V}_{J} \begin{pmatrix} \hat{\mathbb{Z}}_{H} \end{pmatrix} = N \hat{V}_{J} \begin{pmatrix} y_{H} \end{pmatrix} = \frac{N \mathbb{Z} n n \mathbb{Z} 1}{N} \frac{n}{n} \frac{\mathbb{Z}}{[n]} \begin{pmatrix} \hat{\mathbb{Z}}_{H(i)} & \hat{\mathbb{Z}}_{H(i)} \end{pmatrix}^{2}$ $\mathbb{Z}_{H(i)} = \frac{N}{\hat{N}_{(i)}} \frac{y_{j}}{j \mathbb{Z}_{s, j \mathbb{Z} i}} \frac{y_{j}}{\mathbb{Z}_{j}} , \hat{N}_{(i)} = \frac{\mathbb{Z}}{[n]} \frac{1}{\mathbb{Z}_{j}}$
VARIANZA DE UN ESTIMADOR 2 USANDO BOOTSTRAP	$ \stackrel{\widehat{V}_{B}}{V_{B}} \left(\widehat{\mathbb{E}} \right) = \frac{1}{B} \left(\widehat{\mathbb{E}} \right) \left(\widehat{\mathbb{E}} \right)^{2} \qquad ; \qquad \stackrel{\mathbb{E}}{\mathbb{E}} = \frac{1}{B} \left(\widehat{\mathbb{E}} \right) \left(\mathbb$