Course Code	CSE 640			
Course Name	Collaborative Filtering			
Credits	4			
Course Offered to	PG			
	Recommender systems have around for sometime. But in recent times with the boom of retail online trade recommendation systems and the hyp			
Course Description	around the NetFlix competition has made recommender systems a major topic in data mining. In this course we will learn about different aspects			
,	recommender systems with particular emphasis on its algorithms.			
	Pre-requisites			
Pre-requisite	i i	1		
(Mandatory)	Pre-requisite (Desirable)			
MTH100 Maths I	MTH100 Maths I	1		
*Please insert more ro	ws if required	•		
	Post Conditi	ons		
CO1	CO2	CO3	CO4	
Students will be able	Students will be able to implement both primitive (neighbourhood	Students will be able to implement		
to demonstrate an	models) and state-of-the-art (latent factor models) algorithms for	advanced projects in this area.		
understanding of	recommender systems.			
concepts of				
recommender				
systems.				
	Weekly Lecture	e Plan		
Week Number	Lecture Topic	COs Met	Assignment/Labs/Tutorial	
	What is a recommender system?			
Week 1	Applications and Motivations	CO1	Reading assignment#1	
	Explicit vs Implicit Ratings – advantages and disadvantages			
Week 2 and 3		CO1, CO2	Reading assignment#2	
	Bias Prediction – predicting user and item biases (statistical and			
Week 4	optimization based methods)	CO1, CO2	Quiz#1: Implementing bias	
TTOOK T			prediction in class	
	Rating Prediction – local / neighbourhood models		I	
Week 5 to 7	(Including review of some machine learning concepts – clustering,	CO1, CO2	Assignment#1: Implement	
	regression, classification)	,	neighbourhood based models	

CO1, CO2, C03

CO1, CO2, CO3

Assignment#2: Implement latent

Assignment#3: Implement hybrid

factor models

model from papers

Rating Prediction – latent factor models / global models (modeling the problem as a matrix completion, theoretical

Rating Prediction – latent factor models / global models

(modeling the problem as a matrix completion, theoretical

guarantees, algorithms and performances)

guarantees, algorithms and performances)

Hybrid models

Week 8 to 10

Week 11 and 12

Week 13	Student Presentations	CO2, CO3	Quiz#3: Based on paper	
			presentation	
Weekly Lab Plan- Not required explicitly				
Week Number	Laboratory Exercise	COs Met	Platform (Hardware/Software)	
*Please insert more rows if required				
	Assessment Plan			
Type of Evaluation	% Contribution in Grade			
Quiz	10			
Assignment	30			
Mid-sem	10			
End-sem	10			
Project	40			
Resource Material				
Туре	Title			
Textbook				

Recommender Systems Handbook, Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (Eds.), Springer,

Sparse and Redundant Representation: From Theory to Practice,

Michael Elad, Springer

Reference

Reference