Row Projection Algorithms

Wei Deng, Nicole Eikmeier, Nate Veldt, Xiaokai Yuan

Purdue University

April 28, 2016

Problem Setup

We seek solutions to:

$$\mathbf{A}\mathbf{x} = \mathbf{f}$$

- A is large, sparse, and may not be symmetric
- A can undergo a symmetric permutation to become banded

Reverse Cuthill-Mckee

We can perform a symmetric permutation with matrix P:

Figure : A sparse, non-symmetric

Figure : P^TAP (banded)

If Bandwidth Too Large

For some problems the bandwidth could be too large, so instead we could choose P so that:

Figure : A is sparse and non-symmetric

Figure : P^TAP narrow band+low rank

narrow band+low rank

Figure : Breaking up A into a banded matrix plus a low rank matrix

Woodbury Formula

To solve

$$Ax = b \implies x = A^{-1}b$$

we use the following formula:

Woodbury Formula

$$A^{-1} = (B - USV^{T})^{-1}$$
$$= B^{-1} - B^{-1}UTV^{T}B^{-1}$$

where
$$T = (V^T B^{-1} U - S^{-1})^{-1}$$

Wei Deng, Nicole Eikmeier, Nate Veldt, Xiac

Solving Ax = b

Solving system:

$$x = A^{-1}b$$

$$= \mathbf{B}^{-1}\mathbf{b} - B^{-1}UTV^{T}\mathbf{B}^{-1}\mathbf{b}$$

$$= \mathbf{a} - B^{-1}UT(V^{T}\mathbf{a})$$

$$= \mathbf{a} - B^{-1}UT\mathbf{c} \quad (\text{ solve } (V^{T}B^{-1}U - S^{-1})\mathbf{d} = \mathbf{c})$$

$$= \mathbf{a} - B^{-1}U\mathbf{d}$$

$$= \mathbf{a} - B^{-1}\mathbf{h}$$

All systems involving B are relatively easy to solve.

Alternatively, we could just get B and use it as a preconditioned for a Krylov subspace method.

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (*)

Bandwidth after RCM reordering

Let's see the performance after the Reverse Cuthill Mckee

matrix	size	Matlab	PETSc	rcm.cpp
Ins	131	32	× 111	× 113
ac2-db	21,982	545	×	×
bayer01	57,735	× 18,322	×	×
venkat25	62,424	1,515	1,515	1,495
stomach	213,360	1,133	2,216	2,239
atmosmodd	1,270,432	7,772	7,772	7,772

Re-ordering

To make the matrix better for parallelism, we do the following permutation

Figure: A is partitioned into 2 parts with several independent submatrices

Quality of Re-ordering

The test cases show that, 2 partion has the best performance, and with the number of blocks in each partition increasing, the performance goes better.

Reverse Cuthill-Mckee

We can perform a symmetric permutation with matrix P:

Figure : A sparse, non-symmetric

Figure : P^TAP (banded)

If Bandwidth Too Large

For some problems the bandwidth could be too large, so instead we could choose P so that:

Figure : A is sparse and non-symmetric

Figure : P^TAP narrow band + low rank

Bandwidth

		Bandwidth	Bandwidth	Bandwidth
matrix	size	Matlab	PETSc	rcm.cpp
Ins	131	32		113
ac2-db	21,982	545		×
bayer01	57,735			×
venkat25	62,424	1,515		1,495
stomach	213,360	1,133		2,239
atmosmodd	1,270,432	7,732		7,772

Woodbury Formula

To solve

$$Ax = b \implies x = A^{-1}b$$

we use the following formula:

Woodbury Formula

$$A^{-1} = (B - USV^{T})^{-1}$$
$$= B^{-1} - B^{-1}UTV^{T}B^{-1}$$

where
$$T = (V^T B^{-1} U - S^{-1})^{-1}$$

Solving Ax = b

Solving system:

$$x = A^{-1}b$$

$$= \mathbf{B}^{-1}\mathbf{b} - B^{-1}UTV^{T}\mathbf{B}^{-1}\mathbf{b}$$

$$= \mathbf{a} - B^{-1}UT(V^{T}\mathbf{a})$$

$$= \mathbf{a} - B^{-1}UT\mathbf{c} \quad (\text{ solve } (V^{T}B^{-1}U - S^{-1})\mathbf{d} = \mathbf{c})$$

$$= \mathbf{a} - B^{-1}U\mathbf{d}$$

$$= \mathbf{a} - B^{-1}\mathbf{h}$$

All systems involving B are relatively easy to solve.

Alternatively, we could just get B and use it as a preconditioned for a Krylov subspace method.

		•
 		 Wei's Part

Kaczmarz method

Finding a common point of a set of hyperplanes $S_i = \{x : A_i x - b_i = 0\}$ for i = 1, 2, ..., where A_i and b_i are ith row of matrix A and vector b

Figure: 2-Partition Case

So, the classical Kaczmarz method: $x_k = x_k + \overrightarrow{n_k} = x_k + \frac{r_k'}{||A_i||^2} A_i^T$ where $\overrightarrow{n_k} = \triangle x_k cos\theta = \frac{\langle A_i, \triangle x_k \rangle}{||A_i||^2} A_i^T = \frac{b_i - \langle A_i, x_k \rangle}{||A_i||^2} A_i^T = \frac{r_k^i}{||A_i||^2} A_i^T$

Block Gauss-Seidel

$$\begin{cases} AA^T y = f \\ x = A^T y \end{cases} \Rightarrow AA^T = \begin{pmatrix} A_1^T \\ A_2^T \end{pmatrix} (A_1, A_2)$$

From Gauss-Seidel, use $x^{k+1} = (A_1, A_2) \begin{pmatrix} y_1^{k+1} \\ y_2^{k+1} \end{pmatrix}$

$$\begin{pmatrix} A_1^T A_1 & 0 \\ A_2^T A_1 & A_2^T A_2 \end{pmatrix} \begin{pmatrix} y_1^{k+1} \\ y_2^{k+1} \end{pmatrix} = \begin{pmatrix} 0 & -A_1 A_2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_1^k \\ y_2^k \end{pmatrix} + \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}$$

Replace some parameters with projection operator P_i , we can get:

$$\boldsymbol{x}^{k+1} = A_1 y_1^{k+1} + A_2 y_2^{k+1} = Q \boldsymbol{x}_k + \boldsymbol{b}$$
 , where $Q = (I - P_2)(I - P_1)$

Similarly, for symmetrized m-Partition:

$$x^{k+1} = Q_u x^k + f_u = (I - P_m)(I - P_{m-1})...(I - P_1)x^k + f_u$$

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

Symmetrization and Acceleration

However, the spectral radius of Q_u may interfere the convergence speed, and the distribution of eigenvalues could also influence the performance.

To handle this, we can symmetrize Q_u to get an accelerated iteration:

$$x^{k+1} = Q(\omega)x^k + Tf$$

where
$$Q(\omega) = (I - \omega P_1)(I - \omega P_2)...(I - \omega P_m)...(I - \omega P_2)(I - \omega P_1)$$

Since $I-Q(\omega)$ is S.P.D., the Conjugate Gradient method is suitable to accelerate the basic scheme.

Remark: it is also proved that the optimal value of ω is 1.0 and Q(1) has the minimal spectral.

So the problem can be simplified as follows:

$$(I - Q(1))x = Tf$$

Permutation

New System After Permutation

Original non-symmetric system

$$Ax = f$$

A is large, sparse, and non-symmetric

New Symmetric Positive Definite System

$$(I - Q)x = c$$

where

$$Q = (I - P_1)(I - P_2) \cdots (I - P_m) \cdots (I - P_1),$$

$$P_i = A_i (A_i^T A_i)^{-1} A_i^T$$

$$c = A^T (D + L)^{-T} D(D + L)^{-1} f$$

Computing c = Tf

$$A = \begin{bmatrix} A_1^T \\ A_2^T \end{bmatrix}, \ f = \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

Computing c = Tf

$$\mathbf{Tf} = \left[(I + (I - P_2)(I - P_1))(A_1^T)^+ \qquad (I - P_1)(A_2^T)^+ \right] \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = c$$

Solve pseudo-inverse problem:

$$v_i = (A_i^T)^+ f_i$$

Perform least squares computations of the form:

$$(I - P_i)x = y$$

Conjugate Gradient Method (Kamath and Sameh, 1988)

Step 1:
$$x_0 = c$$

Compute $r_0 = Tf - (I - Q)c = Qc$
Set $p_0 = r_0, i = 0$

Step 2: Compute:

$$\alpha_{i} = (r_{i}, r_{i})/(p_{i}, (I - Q)p_{i})$$

$$x_{i+1} = x_{i} + \alpha_{i}p_{i}$$

$$\beta_{i} = (r_{i+1}, r_{i+1})/(r_{i}, r_{i})$$

$$p_{i+1} = r_{i+1} + \beta_{i}p_{i}$$

Step 3: If convergence criterion is satisfied, terminate the iterations; else set i = i + 1 and return to Step 2.

We can take a convergence criterion as:

$$\frac{||r_i||}{||r_0||} \le \epsilon$$

Key Step in the Framework is Least Squares Computations

Step 1:
$$x_0 = c$$

Compute $r_0 = Tf - (I - Q)c = Qc$
Set $p_0 = r_0, i = 0$

Step 2: Compute:

$$\alpha_{i} = (r_{i}, r_{i})/(p_{i}, \lfloor (I - Q)p_{i} \rfloor)$$

$$x_{i+1} = x_{i} + \alpha_{i}p_{i}$$

$$\beta_{i} = (r_{i+1}, r_{i+1})/(r_{i}, r_{i})$$

$$p_{i+1} = r_{i+1} + \beta_{i}p_{i}$$

Step 3: If convergence criterion is satisfied, terminate the iterations; else set i = i + 1 and return to Step 2.

We can take a convergence criterion as :

$$\frac{||r_i||}{||r_0||} \le \epsilon$$

4□ > 4□ > 4 = > 4 = > = 90

Compute $x_k = (I - P_i)x_k$

- It is not stable to form P_i directly since it will double the condition number of A_i , and at the same time will cost time on solving $(A_i^T A_i)^{-1}$.
- Given a vector u obtain $v = (I P_j)u \Leftrightarrow \min_{v} ||u A_j w||_2$.
- Solve $\min_{v} ||u A_j w||_2$ directly: Normal equation is unstable, QR decomposition and SVD decomposition are too slow.
- Petsc: using CG method on normal equation: $A_j^T A_j w = A_j^T u$.
- Parallel step:

$$v = \min_{v} ||u - A_{j}w||_{2} \Leftrightarrow \min_{v_{i}} ||u_{i} - A_{j,i}w_{i}||_{2},$$

$$v^{T} = [v_{1}^{T}, v_{2}^{T}, ..., v_{k}^{T}],$$

$$w^{T} = [w_{1}^{T}, w_{2}^{T}, ..., w_{k}^{T}].$$

QR factorization for Ax = b

- \bullet $A_{m,n}$.
- \bullet A = QR, and $Rx = Q^Tb$.
- QR factorization of A needs: 2mn² flops.
- form $d = Q^T b$ needs: 2mn flops.
- Solve Rx = d by back substitution: n^2 flops.
- for large m, n, the cost is about $2mn^2$.

Cholesky factorization for $A^T Ax = A^T b$

- calculate $C = A^T A : 2n(n+1)(2m-1) \approx mn^2$ flops.
- Cholesky factorization $C = LL^T : \frac{1}{3}n^3$ flops.
- calculate $d = A^T b : 2mn$ flops.
- solve Lz = d by forward substitution : n^2 flops.
- solve $L^T x = z$ by back substitution : n^2 flops.
- cost for large $m, n : mn^2 + \frac{1}{3}n^3$ flops

sensitive of $A p_k$

• $x = ones(m, 1), A_{m,m}, eig(A) \in (0, 1), m = 1000, tolerance = 10^{-8}.$

LSQR and Lanczos process

- LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares, Christopher C.Paige, Michael A. Saunders.
- Step1, $\beta_1 u_1 = b$, $\alpha_1 v_1 = A^T u_1$, $w_1 = v_1$, $x_0 = 0$, $\bar{\phi}_1 = \beta_1$, $\bar{\rho_1} = \alpha_1$. needs 2mn flop.
- Step2, bidiagonalization needs 4mn flop.
- $a.\beta_{i+1}u_{i+1} = Av_i \alpha_i u_i$.
- $b.\alpha_{i+1}v_{i+1} = A^Tu_{i+1} \beta_{i+1}v_i$.

Step3, orthogonal transformation

•
$$a.\rho_i = \sqrt{(\bar{\rho_i^2} + beta_{i+1}^2)}$$
,

- $b.c_i = \bar{\rho}_i/\rho_i$,
- $c.s_i = \beta_{i+1}/\rho_i$,
- $\bullet \quad d.\theta_{i+1} = s_i \alpha_{i+1},$
- $\bullet \quad e.\rho_{i+1} = -c_i \alpha_{i+1},$
- $f.\phi_i = c_i \bar{\phi}_i$,
- $g.\bar{\phi_{i+1}} = s_i\bar{\phi_i}$.
- Step4, Update x, w need 4n flop.
- $a.x_i = x_{i-1} + (\phi_i/\rho_i)w_i$,
- $b.w_{i+1} = v_{i+1} (\theta_{i+1}/\rho_i)w_i$.
- in total needs 6nm flop in each step.

Bandsize after Reverse-Cuthill McKee

matrix	size	band size
Ins	131	32
std1-Jac2-db	21,982	545
bayer01	57,735	18,322
venkat25	62,424	1,515
stomach	213,360	1,133
atmosmodd	1,270,432	7,772

Bottle-neck possibly improved by using the Woodbury Formula

Comparison to ILU Preconditioner

We re-ordered the matrix first using the MC64 software, then called a Krylov Subspace method with ILU pre-conditioner.

matrix	size	Converged?
Ins	131	×
std1-Jac2-db	21,982	×
bayer01	57,735	×
venkat25	62,424	\checkmark
stomach	213,360	\checkmark
atmosmodd	1,270,432	\checkmark

$tol = 10^{-8}$

Results for our Krylov Solver is using 4 MPI Processors.

		Our Parallel	Solver	Krylov	ILU
matrix	size	num-its	time (s)	num-its	time (s)
Ins	131	10	.1	×	×
Jac2-db	21,982	13	.8	×	×
bayer01	57,735	×	×	×	×
venkat25	62,424	12	1.5	374	14.17
stomach	213,360	15	4	16	2.21
atmosmodd	1,270,432	14	21	266	130.72

Runtimes for Smaller Test Cases

Figure : std1_Jac2bd: n = 21982; venkat25: n = 62424, stomach: n = 213360.

Runtimes for largest Test Case

Figure : Runtime in seconds for largest test case (n = 1270432).

References

- [1] Efstratios Gallopoulos, Bernard Philippe, and Ahmed H. Sameh. Pararallelism in Matrix Computations. Springer, 2016.
- [2] Chandrika Kamath and Ahmed Sameh. A projection method for solving nonsymmetric linear systems on multiprocessors. Parallel Computing, 9:291-312, 1988.
- [3] HSL, a collection of Fortran codes for large-scale scientific computation. See http://www.hsl.rl.ac.uk/