#### **Linear Method for Classification**

#### **Linear Regression**

- Linear approach to model the relationship between a scalar response, (y) (or dependent variable) and one or more predictor variables, (x or x) (or independent variables)
- The response is going to be the linear function of input (one or more independent variables)
- Optimal coefficient vector w is given by

$$\hat{\mathbf{w}} = \left(\mathbf{X}^{\mathsf{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$



#### **Linear Method for Classification**

- The boundary that separates the region of classes is linear
- Separating surface is linear i.e. hyperplane
- A hyperplane that best fit the region of separation between the classes
- Discriminant function: Function that indicate the boundary between the classes





Discriminant function in 2-dimensional space:

$$\mathbf{x}_n = [x_{n1}, x_{n2}]^\mathsf{T}$$

$$\mathbf{x}_{n} = [x_{n1}, x_{n2}]^{\mathsf{T}} \qquad f(\mathbf{x}_{n}, w_{1}, w_{2}, w_{0}) = w_{1} x_{n1} + w_{2} x_{n2} + w_{0}$$

#### **Linear Method for Classification**

- The boundary that separates the region of classes is linear
- Separating surface is linear i.e. hyperplane
- A hyperplane that best fit the region of separation between the classes
- Discriminant function: Function that indicate the boundary between the classes





Discriminant function in 2-dimensional space:

$$\mathbf{x}_n = [x_{n1}, x_{n2}]^\mathsf{T}$$

$$\mathbf{x}_n = [x_{n1}, x_{n2}]^\mathsf{T} \qquad f(\mathbf{x}_n, w_1, w_2, w_0) = w_1 \ x_{n1} + w_2 \ x_{n2} + w_0 = 0$$

#### **Linear Method for Classification**

- The boundary that separates the region of classes is linear
- Separating surface is linear i.e. hyperplane
- A hyperplane that best fit the region of separation between the classes
- Discriminant function: Function that indicate the boundary between the classes





Discriminant function in 2-dimensional space:

$$\mathbf{x}_n = [x_{n1}, x_{n2}]^\mathsf{T}$$

$$x_{n2} = \left(-\frac{w_1}{w_2}\right) x_{n1} \left(-\frac{w_0}{w_2}\right) = mx_{n1} + \frac{w_0}{w_2} = mx_{n2} + \frac{w_0}{w_2} =$$

#### **Linear Method for Classification**

- The boundary that separates the region of classes is linear
- Separating surface is linear i.e. hyperplane
- A hyperplane that best fit the region of separation between the classes
- Discriminant function: Function that indicate the boundary between the classes





Discriminant function in *d*-dimensional space :

$$\mathbf{x}_n = [x_{n1}, x_{n2}, \ldots, x_{nd}]$$

$$\mathbf{x}_n = [x_{n1}, x_{n2}, \dots, x_{nd}]^\mathsf{T} \qquad f(\mathbf{x}_n, \mathbf{w}) = \mathbf{w}^\mathsf{T} \mathbf{x}_n + w_0 = \sum_{i=0}^d w_i x_i$$

#### Two classes of Approaches for Linear Classification

- 1. Modeling a discriminating function:
  - For each class, a linear discriminant function  $f_i(\mathbf{x}, \mathbf{w}_i)$  is defined
  - Let  $C_1$ ,  $C_2$ , ...,  $C_i$ , ...,  $C_M$  be the M classes
  - Let  $f_i(\mathbf{x}, \mathbf{w}_i)$  be the linear discriminant function for  $i^{\text{th}}$  class

Class label for  $\mathbf{x} = \underset{i}{\operatorname{argmax}} f_i(\mathbf{x}, \mathbf{w}_i)$  i = 1, 2, ..., M

- Discriminant function is defined independent of the classes
- Linear regression can be used to learn linear discriminant function
  - Do the linear regression by considering dependent variable as indicator variable (categorical variable)
- Logistic regression

7

#### Two classes of Approaches for Linear Classification

- 2. Directly learn a discriminant function (hyperplane):
  - Classic method: Discriminant function between the classes is learnt





- Perceptron (linear discriminant function is learnt)
- Support vector machine (SVM) (linear discriminant function is learnt)
- Neural networks (when the discriminant function is nonlinear)

#### **Classification Using Linear Regression**

- Given:-Training data:  $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } \mathbf{y}_n \in \mathbb{R}^M$ 
  - $-\mathbf{x}_n$  is input vector (d dependent variable)
  - There are  ${\cal M}$  classes, represented by  ${\cal M}$  indicator variables
  - $-\mathbf{y}_n$  is response vector (dependent variables) which is M-dimensional binary vector i.e. one of the M values is 1
- Illustration: Iris (Flower) Data 3 classes

| X            |             |              |             | Y      |        |        |
|--------------|-------------|--------------|-------------|--------|--------|--------|
| Sepal-Length | Sepal_Width | Petal_Length | Petal_Width | Class1 | Class2 | Class3 |
| 5.1          | 3.5         | 1.4          | 0.2         | 1      | 0      | 0      |
| 4.9          | 3.0         | 1.4          | 0.2         | 1      | 0      | 0      |
| 7.0          | 3.2         | 4.7          | 1.4         | 0      | 1      | 0      |
| 6.4          | 3.2         | 4.5          | 1.5         | 0      | 1      | 0      |
| 6.3          | 3.3         | 6.0          | 2.5         | 0      | 0      | 1      |
| 5.8          | 2.7         | 5.1          | 1.9         | 0      | 0      | 1      |
|              |             |              |             |        |        | _      |

#### **Classification Using Linear Regression**

- Given:-Training data:  $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \ \text{and} \ \mathbf{y}_n \in \mathbb{R}^M$ 
  - $-\mathbf{x}_n$  is input vector (d dependent variable)
  - There are  ${\cal M}$  classes, represented by  ${\cal M}$  indicator variables
  - $-\mathbf{y}_n$  is response vector (dependent variables) which is M-dimensional binary vector i.e. one of the M values is 1
  - For N examples,  $\mathbf X$  is data matrix of size N x (d+1) and  $\mathbf Y$  is response matrix of size N x M
- Linear regression on response vector:  $\hat{\mathbf{W}} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{Y}$ 
  - $\hat{\mathbf{W}}$  is of the size  $(d+1) \times M$  $\hat{\mathbf{W}} = [\hat{\mathbf{w}}_1, \hat{\mathbf{w}}_2, ..., \hat{\mathbf{w}}_M]$
  - Each column of  $\hat{\mathbf{W}}$  is (d+1) coefficients corresponding to a class

#### **Classification Using Linear Regression**

 For any test example x, the discriminant value for class i is:

$$f_i(\mathbf{x}, \hat{\mathbf{w}}_i) = \hat{\mathbf{w}}_i^{\mathsf{T}} \mathbf{x} = \sum_{j=0}^d \hat{w}_{ij} x_i$$

Class label for 
$$\mathbf{x} = \underset{i}{\operatorname{argmax}} f_i(\mathbf{x}, \hat{\mathbf{w}}_i)$$
  $i = 1, 2, ..., M$ 

11

12

#### Illustration of Classification using Linear Regression

| Uninha | Weight | Class |    |  |
|--------|--------|-------|----|--|
| neight | weight | y1    | y2 |  |
| 90     | 21.5   | 1     | 0  |  |
| 95     | 23.67  | 1     | 0  |  |
| 100    | 32.45  | 1     | 0  |  |
| 116    | 38.21  | 1     | 0  |  |
| 98     | 28.43  | 1     | 0  |  |
| 108    | 36.32  | 1     | 0  |  |
| 104    | 27.38  | 1     | 0  |  |
| 112    | 39.28  | 1     | 0  |  |
| 121    | 35.8   | 1     | 0  |  |
| 92     | 23.56  | 1     | 0  |  |
| 152    | 46.8   | 0     | 1  |  |
| 178    | 78.9   | 0     | 1  |  |
| 163    | 67.45  | 0     | 1  |  |
| 173    | 82.9   | 0     | 1  |  |
| 154    | 52.6   | 0     | 1  |  |
| 168    | 66.2   | 0     | 1  |  |
| 183    | 90     | 0     | 1  |  |
| 172    | 82     | 0     | 1  |  |
| 156    | 45.3   | 0     | 1  |  |
| 161    | 59     | 0     | 1  |  |

- Number of training examples (N) = 20
- Dimension of a training example = 2
- Number of classes: 2
- Each output variable is a 2-dimensional binary vector
- Class: Child (C1) Adult (C2)



## Illustration of Classification using Linear Regression

| Uninha | Weight | Class |    |  |  |
|--------|--------|-------|----|--|--|
| neight | weight | y1    | y2 |  |  |
| 90     | 21.5   | 1     | 0  |  |  |
| 95     | 23.67  | 1     | 0  |  |  |
| 100    | 32.45  | 1     | 0  |  |  |
| 116    | 38.21  | 1     | 0  |  |  |
| 98     | 28.43  | 1     | 0  |  |  |
| 108    | 36.32  | 1     | 0  |  |  |
| 104    | 27.38  | 1     | 0  |  |  |
| 112    | 39.28  | 1     | 0  |  |  |
| 121    | 35.8   | 1     | 0  |  |  |
| 92     | 23.56  | 1     | 0  |  |  |
| 152    | 46.8   | 0     | 1  |  |  |
| 178    | 78.9   | 0     | 1  |  |  |
| 163    | 67.45  | 0     | 1  |  |  |
| 173    | 82.9   | 0     | 1  |  |  |
| 154    | 52.6   | 0     | 1  |  |  |
| 168    | 66.2   | 0     | 1  |  |  |
| 183    | 90     | 0     | 1  |  |  |
| 172    | 82     | 0     | 1  |  |  |
| 156    | 45.3   | 0     | 1  |  |  |
| 161    | 59     | 0     | 1  |  |  |

- Training:  $\hat{\mathbf{W}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{Y}$
- X is data matrix of size 20 x 3
- Y is response matrix of size 20 x 2

$$\hat{\mathbf{W}} = \begin{bmatrix} \hat{\mathbf{w}}_1 & \hat{\mathbf{w}}_2 \end{bmatrix} = \begin{bmatrix} 2.8897 & -1.8897 \\ -0.0222 & 0.0222 \\ 0.0122 & -0.0122 \end{bmatrix}$$



## Illustration of Classification using Linear Regression

| Uninha | Weight | Class |    |  |
|--------|--------|-------|----|--|
| neight | weight | y1    | y2 |  |
| 90     | 21.5   | 1     | 0  |  |
| 95     | 23.67  | 1     | 0  |  |
| 100    | 32.45  | 1     | 0  |  |
| 116    | 38.21  | 1     | 0  |  |
| 98     | 28.43  | 1     | 0  |  |
| 108    | 36.32  | 1     | 0  |  |
| 104    | 27.38  | 1     | 0  |  |
| 112    | 39.28  | 1     | 0  |  |
| 121    | 35.8   | 1     | 0  |  |
| 92     | 23.56  | 1     | 0  |  |
| 152    | 46.8   | 0     | 1  |  |
| 178    | 78.9   | 0     | 1  |  |
| 163    | 67.45  | 0     | 1  |  |
| 173    | 82.9   | 0     | 1  |  |
| 154    | 52.6   | 0     | 1  |  |
| 168    | 66.2   | 0     | 1  |  |
| 183    | 90     | 0     | 1  |  |
| 172    | 82     | 0     | 1  |  |
| 156    | 45.3   | 0     | 1  |  |
| 161    | 59     | 0     | 1  |  |
|        |        |       |    |  |



 $f_1(\mathbf{x}, \hat{\mathbf{w}}_1) = 0.1842$ 

Class: Adult (C2)

|                   | Illustration of Classification using |       |    |                                                                                               |  |  |  |
|-------------------|--------------------------------------|-------|----|-----------------------------------------------------------------------------------------------|--|--|--|
| Linear Regression |                                      |       |    |                                                                                               |  |  |  |
| Uninha            | Weight                               | Class |    | <b>Test Example:</b> 135 46.29                                                                |  |  |  |
| neight            | weight                               | y1    | y2 | •                                                                                             |  |  |  |
| 90                | 21.5                                 | 1     | 0  | 100                                                                                           |  |  |  |
| 95                | 23.67                                | 1     | 0  | 100                                                                                           |  |  |  |
| 100               | 32.45                                | 1     | 0  | / / <b>/</b>                                                                                  |  |  |  |
| 116               | 38.21                                | 1     | 0  | $f_1(\mathbf{x}, \hat{\mathbf{w}}_1) / f_1(\mathbf{x}, \hat{\mathbf{w}}_1)$                   |  |  |  |
| 98                | 28.43                                | 1     | 0  |                                                                                               |  |  |  |
| 108               | 36.32                                | 1     | 0  | Weight / / •/                                                                                 |  |  |  |
| 104               | 27.38                                | 1     | 0  | in Kg 60                                                                                      |  |  |  |
| 112               | 39.28                                | 1     | 0  | $/ \int f_2(\mathbf{x}, \hat{\mathbf{w}}_2)$                                                  |  |  |  |
| 121               | 35.8                                 | 1     | 0  | 40                                                                                            |  |  |  |
| 92                | 23.56                                | 1     | 0  | 40 / /                                                                                        |  |  |  |
| 152               | 46.8                                 | 0     | 1  | //////                                                                                        |  |  |  |
| 178               | 78.9                                 | 0     | 1  | 20                                                                                            |  |  |  |
| 163               | 67.45                                | 0     | 1  | 80 100 120 140 160 180 200<br>Height in cm                                                    |  |  |  |
| 173               | 82.9                                 | 0     | 1  | rieight in chi                                                                                |  |  |  |
| 154               | 52.6                                 | 0     | 1  | $f_1(\mathbf{x}, \hat{\mathbf{w}}_1) = 0.4639$ $f_2(\mathbf{x}, \hat{\mathbf{w}}_2) = 0.5361$ |  |  |  |
| 168               | 66.2                                 | 0     | 1  | $J_1(\mathbf{x}, \mathbf{x}_1) = 0.1035$ $J_2(\mathbf{x}, \mathbf{x}_2) = 0.0301$             |  |  |  |
| 183               | 90                                   | 0     | 1  |                                                                                               |  |  |  |
| 172               | 82                                   | 0     | 1  | <ul> <li>Class: Adult (C2)</li> </ul>                                                         |  |  |  |
| 156               | 45.3                                 | 0     | 1  |                                                                                               |  |  |  |
| 161               | 59                                   | 0     | 1  | 15                                                                                            |  |  |  |

#### **Classification Using Linear Regression**

- Dependent variable is categorical (indicator variable)
- · Output is multiple outputs (multiple dependent variables)
- If the input  $\mathbf{x}$  belongs to  $C_i$ , then  $y_i$  is 1
- The expected output for x should be close to 1
- · During linear regression for classification, we are trying to predict the expected output value
- · In other way, we are trying to predict probability of class

 $E[y_i \mid \mathbf{x}] = P(y_i = C_i \mid \mathbf{x})$ 

- · This is the ideal situation
- Linear regression gives the hope of getting this
- The notion of predicting probability of class is given nicely by logistic regression

#### **Logistic Regression**

• Requirement: The discriminant function  $f_i(\mathbf{x}, \mathbf{w}_i)$  should give the probability of class  $C_i$ 

$$E[y_i \mid \mathbf{x}] = P(y_i = C_i \mid \mathbf{x})$$

- Look for some kind of transformation of probability and fit that
- Logit transformation:  $\log \frac{P(\mathbf{x})}{1 P(\mathbf{x})}$
- 2-class classification:
  - Class label: 0 or 1
  - $-P(\mathbf{x})$  is  $P(C_i=1|\mathbf{x})$  i.e. probability that output is 1 given input (probability of success)
  - $-1-P(\mathbf{x})$  is  $P(C_i=0|\mathbf{x})$  i.e. probability that output is 0 given input (probability of failure)

- · Logit function: Log of odds function
- Odds function:  $P(\mathbf{x})$   $1 P(\mathbf{x})$ 
  - Probability of success divided by the probability of failure
- Fit a linear model to logit function:

$$\log \left( \frac{P(\mathbf{x})}{1 - P(\mathbf{x})} \right) = w_0 + w_1 x_1 + \dots + w_d x_d = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}}$$

where 
$$\mathbf{w} = [w_0, w_1, ..., w_d]^T$$
 and  $\hat{\mathbf{x}} = [1, x_1, ..., x_d]^T$ 

– For 1-dimensional (d=1) space, x

$$\log\left(\frac{P(x)}{1 - P(x)}\right) = w_0 + w_1 x \qquad \frac{P(x)}{1 - P(x)} = e^{(w_0 + w_1 x)}$$

19

#### **Logistic Regression**

- · Logit function: Log of odds function
- Odds function:  $\frac{P(\mathbf{x})}{1 P(\mathbf{x})}$ 
  - Probability of success divided by the probability of failure
- Fit a linear model to logit function:

$$\log \left( \frac{P(\mathbf{x})}{1 - P(\mathbf{x})} \right) = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}} \quad \text{where } \mathbf{w} = [w_0, w_1, ..., w_d]^{\mathsf{T}}$$
and  $\hat{\mathbf{x}} = [1, x_1, ..., x_d]^{\mathsf{T}}$ 

– For 1-dimensional (d=1) space, x

$$\frac{P(x)}{1 - P(x)} = e^{(w_0 + w_1 x)}$$

$$P(x) = \frac{e^{(w_0 + w_1 x)}}{1 + e^{(w_0 + w_1 x)}} = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

$$P(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

- This function is a sigmoidal function, specifically called as logistic function
- Logistic function:

$$P(x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

$$P(x) = \frac{1}{1 + e^{-(\beta x)}}$$



21

#### **Logistic Regression**

· Logit function: Log of odds function

• Odds function:  $\frac{P(\mathbf{x})}{1 - P(\mathbf{x})}$ 

Probability of success divided by the probability of failure

• Fit a linear model to logit function:  $\log \left( \frac{P(\mathbf{x})}{1 - P(\mathbf{x})} \right) = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}}$ 

– For d-dimensional space,  $\mathbf{x} = [x_1, x_2, ..., x_d]^\mathsf{T}$ 

$$\log \left( \frac{P(\mathbf{x})}{1 - P(\mathbf{x})} \right) = w_0 + w_1 x_1 + \dots + w_d x_d = \mathbf{w}^\mathsf{T} \hat{\mathbf{x}} \quad \text{where } \mathbf{w} = [w_0, w_1, \dots, w_d]^\mathsf{T}$$

$$\frac{P(\mathbf{x})}{1 - P(\mathbf{x})} = e^{(\mathbf{w}^\mathsf{T} \hat{\mathbf{x}})}$$

- · Logit function: Log of odds function
- Odds function:
  - Probability of success divided by the probability of failure
- Fit a linear model to logit function:  $\left| log \left( \frac{P(\mathbf{x})}{1 P(\mathbf{x})} \right) \right| = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}}$ 
  - For  $d\text{-dimensional space, }\mathbf{x}{=}[x_1,x_2,...,x_d]^\mathsf{T}$

- For 
$$d$$
-dimensional space,  $\mathbf{x} = [x_1, x_2, ..., x_d]^{\mathsf{T}}$  
$$\frac{P(\mathbf{x})}{1 - P(\mathbf{x})} = e^{(\mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}})} \quad \text{where } \mathbf{w} = [w_0, w_1, ..., w_d]^{\mathsf{T}}$$
 and  $\hat{\mathbf{x}} = [1, x_1, ..., x_d]^{\mathsf{T}}$  
$$P(\mathbf{x}) = \frac{e^{(\mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}})}}{1 + e^{(\mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}})}} \quad \text{What about the classifier learning here?}$$
 It is still a linear classifier – Boundary is linear surface i.e. hyperplane

$$P(\mathbf{x}) = \frac{e^{(\mathbf{w}^{\mathsf{T}}\hat{\mathbf{x}})}}{1 + e_{1}^{(\mathbf{w}^{\mathsf{T}}\hat{\mathbf{x}})}}$$

#### **Logistic Regression**

- · Logit function: Log of odds function
- $P(\mathbf{x})$  Odds function:  $1 - P(\mathbf{x})$ 
  - Probability of success divided by the probability of failure
- Fit a linear model to logit function:  $\log \left( \frac{P(\mathbf{x})}{1 P(\mathbf{x})} \right) = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}}$

$$\frac{P(\mathbf{x})}{1 - P(\mathbf{x})} = e^{(\mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}})} \qquad \text{where } \mathbf{w} = [w_0, w_1, ..., w_d]^{\mathsf{T}}$$
and  $\hat{\mathbf{x}} = [1, x_1, ..., x_d]^{\mathsf{T}}$ 

$$P(\mathbf{x}) = \frac{e^{(\mathbf{w}^{\top} \hat{\mathbf{x}})}}{1 + e^{(\mathbf{w}^{\top} \hat{\mathbf{x}})}}$$
 For any test example  $\mathbf{x}$ 

- For 
$$d$$
-dimensional space,  $\mathbf{x} = [x_1, x_2, ..., x_d]^\mathsf{T}$  
$$\frac{P(\mathbf{x})}{1 - P(\mathbf{x})} = e^{(\mathbf{w}^\mathsf{T} \hat{\mathbf{x}})} \quad \text{where } \mathbf{w} = [w_0, w_1, ..., w_d]^\mathsf{T}$$
 and  $\hat{\mathbf{x}} = [1, x_1, ..., x_d]^\mathsf{T}$  
$$P(\mathbf{x}) = \frac{e^{(\mathbf{w}^\mathsf{T} \hat{\mathbf{x}})}}{1 + e^{(\mathbf{w}^\mathsf{T} \hat{\mathbf{x}})}} \quad \text{For any test example } \mathbf{x} :$$
 
$$P(\mathbf{x}) = \frac{1}{1 + e^{-(\mathbf{w}^\mathsf{T} \hat{\mathbf{x}})}} \quad \text{If } P(\mathbf{x}) \ge 0.5 \text{ then } \mathbf{x} \text{ is assigned with label } 1$$
 If  $P(\mathbf{x}) < 0.5 \text{ then } \mathbf{x} \text{ is assigned with label } 0$ 

#### Estimation of Parameter in Logistic Regression

- Criterion considered is different than linear regression to estimate the parameter
- · Optimize the likelihood of data
- As that goal is to model the probability of class, we are maximizing the likelihood of data
- Maximum likelihood (ML) method of parameter estimation
- Given:- Training data:  $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{1,0\}$
- Data of a class is represented by parameter vector:  $\mathbf{w} = [w_0, w_1, ..., w_d]^\mathsf{T}$  (parameter of linear function)
- Unknown: w
- Likelihood of  $\mathbf{x}_n$ :  $P(\mathbf{x}_n \mid \mathbf{w}) = P(\mathbf{x}_n)^{y_n} (1 P(\mathbf{x}_n))^{(1 y_n)}$ Probability that  $\mathbf{x}$ has label 1
  has label 0

25

### **Estimation of Parameter in Logistic Regression**

- Different criterion than linear regression to estimate the parameter
- · Optimize the likelihood of data
- As that goal is to model the probability of class, we are maximizing the likelihood of data
- Maximum likelihood (ML) method of parameter estimation
- Given:- Training data:  $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{1,0\}$
- Data of a class is represented by parameter vector:  $\mathbf{w} = [w_0, w_1, ..., w_d]^\mathsf{T}$  (parameter of linear function)
- Unknown: w
   Binomial distribution (Bernoulli Distribution)
- Likelihood of  $\mathbf{x}_n$ :  $P(\mathbf{x}_n \mid \mathbf{w}) = P(\mathbf{x}_n)^{y_n} (1 P(\mathbf{x}_n))^{(1-y_n)}$
- Total data likelihood:  $P(\mathcal{D} \mid \mathbf{w}) = \prod_{n=1}^{N} P(\mathbf{x}_n \mid \mathbf{w})$

#### Estimation of Parameter in Logistic Regression

- Different criterion than linear regression to estimate the parameter
- · Optimize the likelihood of data
- As that goal is to model the probability of class, we are maximizing the likelihood of data
- Maximum likelihood (ML) method of parameter estimation
- Given:- Training data:  $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{1,0\}$
- Data of a class is represented by parameter vector:  $\mathbf{w} = [w_0, w_1, ..., w_d]^\mathsf{T}$  (parameter of linear function)
- Unknown: w
- Likelihood of  $\mathbf{x}_n$ :  $P(\mathbf{x}_n \mid \mathbf{w}) = P(\mathbf{x}_n)^{y_n} (1 P(\mathbf{x}_n))^{(1-y_n)}$
- Total data likelihood:  $P(\mathcal{D} \mid \mathbf{w}) = \prod_{n=1}^{N} P(\mathbf{x}_n)^{y_n} (1 P(\mathbf{x}_n))^{(1-y_n)}$

27

### **Estimation of Parameter in Logistic Regression**

· Total data log likelihood:

$$l(\mathbf{w}) = \ln(P(\mathcal{D} \mid \mathbf{w}))$$
  
$$l(\mathbf{w}) = \sum_{n=1}^{N} y_n \ln(P(\mathbf{x}_n)) + (1 - y_n) \ln(1 - P(\mathbf{x}_n))$$

 Choose the parameters for which the total data log likelihood is maximum:

$$\mathbf{w}_{\mathrm{ML}} = \arg\max_{\mathbf{w}} l(\mathbf{w})$$

Cost function for optimization:

$$l(\mathbf{w}) = \sum_{n=1}^{N} y_n \ln(P(\mathbf{x}_n)) + (1 - y_n) \ln(1 - P(\mathbf{x}_n))$$

- Conditions for optimality:  $\frac{\partial l(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{0}$
- Unfortunately, solving this, no closed form expression for w is obtained
- Solution: Gradient accent method

#### Estimation of Parameter in Logistic Regression

- · Gradient accent method
- It is an iterative procedure
- We start with an initial value for  $\mathbf{w}$
- · At each iteration:
  - Estimate change in w
  - The change in  $\mathbf{w}$  ( $\Delta \mathbf{w}$ ) is proportional to the slope (gradient) of the likelihood surface



Weight,  $\mathbf{w}$   $\Delta \mathbf{w} \propto -\frac{\partial l(\mathbf{w})}{\partial \mathbf{w}} \quad \Delta \mathbf{w} = -\eta \frac{\partial l(\mathbf{w})}{\partial \mathbf{w}}$ 

where  $0 \le \eta \le 1$  is proportionality constant

- Then, the w is updated using  $\Delta w$
- This indicate, we move in the positive slope of the likelihood surface, likelihood is maximum in each iteration

29

### Estimation of Parameter in Logistic Regression – Gradient Accent Method

- Given a training dataset, the goal is to maximize the likelihood function with respect to the parameters of linear function
  - 1. Initialize the w
    - Evaluate the initial value of the log likelihood,  $l(\mathbf{w})$
  - 2. Determine the change in  $\mathbf{w}$  ( $\Delta \mathbf{w}$ ):  $\Delta \mathbf{w} = -\eta \frac{\partial l(\mathbf{w})}{\partial \mathbf{w}}$
  - 3. Update the w:  $\mathbf{w} = \mathbf{w} + \Delta \mathbf{w}$
  - 4. Evaluate the log likelihood and check for convergence of the log likelihood
    - If the convergence criterion is not satisfied repeat from steps 2 to 4
- Convergence criterion: Difference between log likelihoods of successive iterations fall below a threshold (E.g. threshold=10<sup>-3</sup>)

#### Illustration of Classification using **Logistic Regression** Number of training examples (N) = 20 Height Weight Class 21.5 Dimension of a training example = 20 95 23.67 0 Class label attribute is 3<sup>rd</sup> dimension 100 32.45 38.21 0 116 Class: 28.43 0 - Child (0) 108 36.32 0 104 27.38 0 - Adult (1) 112 39.28 0 0 121 35.8 90 92 23.56 0 152 46.8 1 78.9 178 163 67.45 Weight in Kg 60 82.9 173 154 52.6 168 66.2 40 90 1 30 172 82 1 156 45.3 161 Height in cm 31







- · Logistic regression is a linear classifier
- Logistic regression looks simple, but yields a very powerful classifier
- It is used not just building classifier, but also used in sensitivity analysis
- Logistic regression is used to identify how each attribute contribute to output
  - How much each attribute is important for predicting class label
- Perform logistic regression and observe w
- The value of each element of **w** indicate how much each attribute is contributing to the output

35

Illustration of Sensitivity Analysis using **Logistic Regression** Height Weight Class • Training: [-378.2085<sup>-</sup>  $w_0$ 90 21.5 23.67 0 2.2065  $W_1$ 32.45 0 100 1.8818 38.21 0 116 0 98 28.43 100 36.32 0 108 104 27.38 80 39.28 112 0 121 35.8 Weight 60 23.56 0 92 in Kg 46.8 152 78.9 178 163 67.45 1 40 173 82.9 1 154 52.6 1 20 168 66.2 1 140 183 90 1 Height in cm 172 82 Both the attributes are equally 156 45.3 important 161

## Discriminative Learning Methods for Classification

#### Two classes of Approaches for Linear Classification

- 1. Modeling a discriminating function:
  - · Linear regression and Logistic regression
- 2. Directly learn a discriminant function (hyperplane):
  - Classic method: Discriminant function between the classes is learnt





- Perceptron (linear discriminant function is learnt)
- Neural networks (when the discriminant function is nonlinear)

#### **Discriminative Learning Methods**

- Learn the surface that better separates the region of classes
- Learning discriminant function: Learns a function that maps input data to output
- Linear discriminant function: Function that indicate the boundary between the classes which is linear



39

#### **Linear Discriminant Function**

- Regions of two classes are separable by a linear surface (line, plane or hyperplane)
- 2-dimensional space: The decision boundary is a line specified by

$$w_1 x_1 + w_2 x_2 + w_0 = 0$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{w_0}{w_2}$$

 d-dimensional space: The decision surface is a hyperplane specified by



$$w_d x_d + \dots + w_2 x_2 + w_1 x_1 + w_0 = \sum_{i=0}^d w_i x_i = \mathbf{w}^{\mathsf{T}} \hat{\mathbf{x}} = 0$$

where  $\mathbf{w} = [w_0, w_1, ..., w_d]^T$  and  $\hat{\mathbf{x}} = [1, x_1, ..., x_d]^T$ 

#### **Discriminant Function of a Hyperplane**

• The discriminant function of a hyperplane:

$$g(\mathbf{x}) = \sum_{i=1}^{d} w_i x_i + w_0 = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0$$

· For any point the lies on the hyperplane

$$g(\mathbf{x}) = \sum_{i=1}^{d} w_i x_i + w_0 = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0 = 0$$

- Example:
  - Consider a straight line with its equation as  $x_2+x_1-1=0$
  - Discriminant function of the straight line is  $g(\mathbf{x}) = x_2 + x_1 1$
  - For points (1,0) and (0,1) that lie on this straight line  $g(\mathbf{x})=0$
  - For the point (0,0),  $g(\mathbf{x})$ =-1 i.e. the value of  $g(\mathbf{x})$  is negative
  - For the point (1,1),  $g(\mathbf{x})=+1$  i.e. the value of  $g(\mathbf{x})$  is positive



41

#### **Discriminant Function of a Hyperplane**



- A hyperplane has a positive side and a negative side
  - For any point on the positive side, the value of discriminant function,  $g(\mathbf{x})$ , is positive
  - For any point on the negative side, the value of discriminant function,  $g(\mathbf{x})$ , is negative

#### **Perceptron Learning**

- Given training data:  $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{+1, -1\}$
- Goal: To estimate parameter vector  $\mathbf{w} = [w_0, w_1, ..., w_d]^T$ 
  - such that linear function (hyperplane) is places between the training data of two classes so that training error (classification error) is minimum



#### **Perceptron Learning**

- Given training data:  $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \ \text{and} \ y_n \in \{+1, -1\}$ 
  - 1. Initialize the w with random values
  - 2. Choose a training example  $\mathbf{x}_n$
  - Update the  $\mathbf{w}$ , if  $\mathbf{x}_{n}$  is misclassified 3.  $\mathbf{w} = \mathbf{w} + \eta \mathbf{x}_n$ , for  $\mathbf{w}^\mathsf{T} \mathbf{x}_n + w_0 \le 0$  and  $\mathbf{x}_n \in \text{class with label} + 1$ 
    - $\mathbf{w} = \mathbf{w} \eta \mathbf{x}_n$ , for  $\mathbf{w}^\mathsf{T} \mathbf{x}_n + w_0 > 0$  and  $\mathbf{x}_n \in \text{class with label} 1$  Here  $0 < \eta < 1$  is a positive, learning rate parameter

    - Increment the misclassification count by 1
  - 4. Repeat steps 2 and 3 till all the training examples are presented
  - 5. Repeat steps 2 to 4 by setting misclassification count to 0, till the convergence criterion is satisfied
- Convergence criterion:
  - Total misclassification count is 0
  - Total misclassification count is minimum (falls below threshold)

#### **Perceptron Learning**

• Training:



- Test phase:
- Classification of a test pattern x using the weights w obtained by training the model:
  - If  $\mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0 > 0$  then  $\mathbf{x}$  is assigned to class with label +1  $(C_2)$
  - If  $\mathbf{w}^\mathsf{T}\mathbf{x} + w_0 \leq 0$  then  $\mathbf{x}$  is assigned to class with label -1  $(C_1)$

15

## Discriminative Learning Methods for Classification:

#### **Neural Networks**



#### **Biological Neural Networks**



 Several neurons are connected to one another to form a neural network or a layer of a neural network

#### **Neuron with Threshold Logic Activation Function**



- McCulloch-Pitts Neuron [1]
- Suitable for **2-class classification problem**

[1] W.S.McCulloch and W.Pitts. A logival calculus of the ideas imminent in nervous activity. 1943.

## Linearly Separable Classes – Perceptron Model

- Regions of two classes are separable by a linear surface (line, plane or hyperplane)
- Perceptron model that uses a single MuCulloch-Pitts neuron can be trained using the perceptron learning algorithm [2]

Decision surface in a 2-dimensional space is a line:

$$w_1 x_1 + w_2 x_2 + w_0 = 0$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{w_0}{w_2}$$

Decision surface in a *d*-dimensional space is a hyperplane:

$$\sum_{i=0}^{d} w_i x_i = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0 = 0$$



[2] A.G. Ivakhnenko and V.G. Lapa. Cybernetic predicting devices. 1965.

#### **Perceptron Learning - Training Phase**

- Given training data:  $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \{+1, -1\}$ 
  - 1. Initialize the w
  - Choose a training example  $\mathbf{x}_n$ 2.
  - 3. Update the  $\mathbf{w}$ , if  $\mathbf{x}_n$  is misclassified  $\mathbf{w} = \mathbf{w} + \eta \; \mathbf{x}_n$ , for  $\mathbf{w}^\mathsf{T} \mathbf{x}_n + w_0 \leq 0$  and  $\mathbf{x}_n \in C_2(+1)$

 $\mathbf{w} = \mathbf{w} - \eta \; \mathbf{x}_n$ , for  $\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + w_0 > 0$  and  $\mathbf{x}_n \in C_1(-1)$  – Here  $\eta$  is a positive, learning rate parameter

- Increment the misclassification count by 1
- 4. Repeat steps 2 and 3 till all the training examples are presented
- 5. Repeat steps 2 to 4 by setting misclassification count to 0, till the convergence criterion is not satisfied
- Convergence criterion:
  - Total misclassification count is 0 **OR**
  - Total misclassification count is minimum (falls below

#### **Perceptron Learning**

Training:



- **Test phase:**
- Classification of a test pattern x using the weights w obtained by training the model:
  - If  $\mathbf{w}^\mathsf{T}\mathbf{x} + w_0 > 0$  then  $\mathbf{x}$  is assigned to  $C_2$
  - If  $\mathbf{w}^\mathsf{T}\mathbf{x} + w_0 \le 0$  then  $\mathbf{x}$  is assigned to  $C_1$





#### **Sigmoidal Activation Functions**

#### Logistic function:

$$f(a) = \frac{1}{1 + e^{-\beta a}} \qquad f(a) = \frac{1}{1 + e^{-\beta a}}$$

$$\frac{df(a)}{da} = \beta f(a) (1 - f(a))$$



Hyperbolic tangent function:

$$f(a) = \tanh(\beta a)$$

$$\frac{df(a)}{da} = \beta (1 - f^2(a))$$



Neuron with Sigmoidal Activation Function



- Given training data:  $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \ \text{and}$  $y_n \in \{0,1\}$  if logistic activation function, or  $y_{n}\in\left\{ +1,-1\right\} \text{if tan hyperbolic activation function}$  Instantaneous error for the  $n^{\text{th}}$  sample is given as,

$$E_n = \frac{1}{2}(y_n - s)^2$$

Parameter (w) learning is done by minimizing the error using Gradient descent method

### Neuron with Sigmoidal Activation Function: Parameter Learning – Gradient Descent Method

- Given training data:  $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N$ ,  $\mathbf{x}_n \in \mathbb{R}^d$  and  $y_n \in \{0, 1\}$  or  $y_n \in \{+1, -1\}$ 
  - 1. Initialize the w with random values
  - 2. Choose a training example  $\mathbf{x}_n$
  - 3.
  - Choose a training example  $\mathbf{x}_n$ Compute output of the neuron:

     Here  $a_n = \mathbf{w}^\mathsf{T} \mathbf{x}_n + w_0$ Compute instantaneous error:  $E_n = \frac{1}{1 + e^{-\beta a}} \mathbf{or}$   $s = f(a) = \frac{1}{1 + e^{-\beta a}} \mathbf{or}$   $s = f(a) = \tanh(\beta a)$ 4.
  - Change in weight ( $\Delta \mathbf{w}$ ):  $\Delta \mathbf{w} = -\eta \frac{\partial E_n}{\partial \mathbf{w}} \qquad \Delta \mathbf{w} = \eta \delta^o s_n \qquad \text{where } \delta^o = (y_n s_n) \frac{df(a_n)}{da_n}$ where  $0 \le \eta \le 1$  is proportionality constant
  - 6. update the weight (w):  $w = w + \Delta w$
  - 7. Repeat steps 2 and 6 till all the training examples are presented once (Epoch)
  - Compute the average error:  $E_{av} = \frac{1}{2N} \sum_{n=1}^{N} E_n$ 8.
  - 9. Repeat steps 2 to 8 till the convergence criterion is

### Neuron with Sigmoidal Activation Function: Parameter Learning – Gradient Descent Method

- · Convergence criterion:
  - A fixed number of epoch is reached
  - Difference between average error of successive epochs fall below a threshold (E.g. threshold=10<sup>-3</sup>)

Gradient descent method:



### **Neuron with Sigmoidal Activation Function: Test Phase**

- Test phase:
- For a test example  ${\bf x}$  compute the output of the neuron using the weights  ${\bf w}$  and  $w_0$  obtained by training the model:  $s=f(a)=\frac{1}{1+e^{-\beta a}} {\bf or} \ s=f(a)=\tanh(\beta a)$ 
  - Here  $a = \mathbf{w}^\mathsf{T} \mathbf{x} + w_0$
- If s > 0.5 (Logistic activation) or s > 0 (Tan hyperbolic activation) then x is assigned to class with label 1 or +1
- If  $s \le 0.5$  (Logistic activation) or  $s \le 0$  (Tan hyperbolic activation) then x is assigned to class with label 0 or -1







### Multi-class Pattern Classification using Single Neuron Model

• Multi-class pattern classification for M classes is solved using a combination of several binary (2-class) classifiers and a decision strategy



- Approaches to multi-class pattern classification using single neuron models:
  - One-against-the-rest approach
  - One-against-one approach

63

#### **One-against-the-rest Approach**



- A single neuron model is built for each class to form a boundary between the region of the class and the regions of the other classes
  - It consider class label 1 or +1 for the examples of a class and 0 or -1 for the examples of rest of the classes
- Let M=4 be the total number of classes. Then, number of single neuron models is L=4
- A test pattern  $\mathbf{x}$  is classified by using winner-takes-all strategy







# **Nonlinear Method for Classification**

#### **Hard Problems**

- Nonlinearly separable classes x2
- Activation function:
  - (Threshold Linear logic function)
  - Sigmoidal function
  - Gaussian function
  - Rectifier function
  - Spiking function



- · Single neuron based classifier is not sufficient
- · A network of neurons (neural network) is used that approximates a nonlinear boundary by stitching the boundary from each neuron

#### **Artificial Neural Networks**

- Learning method:
  - Error correction learning (Backpropagation algorithm [3])
- Structure of network:
  - Feedforward neural networks
    - · Fully Connected Neural Network (FCNN),
    - Auto Encoders
    - Convolutional Neural Networks (CNN)
  - Feedback neural networks
    - Recurrent Neural Networks (RNN)
    - Long Short Term Memory (LSTM)
  - Feedforward and feedback neural networks
    - · Bidirectional LSTM
    - Self Organizing Maps (SOM)

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, pages 318-362. MIT Press, 1986.

#### Neural Networks: Feedforward Neural Networks (Fully Connected Network)

71

72

### Multilayer Feedforward Neural Network (MLFFNN)

- Architecture of an MLFFNN
  - Input layer: Linear neurons
  - Hidden layers (1 or 2 or more): Sigmoidal neurons
  - Output layer:
    - Linear neurons (for function approximation (regression) task)
    - Sigmoidal neurons (for pattern classification task)



### Multilayer Feedforward Neural Network Architecture of an MLFFNN

- - Input layer: Linear neurons
  - Hidden layers (1 or 2 or more): Sigmoidal neurons
  - Output layer:
    - Linear neurons (for function approximation (regression) task)
    - Sigmoidal neurons (for pattern classification task)



- Number of neurons in input layer (d): Dimension of the data vector
- Number of neurons in the output layer (K): Number of classes in classification or number of output variable in function approximation (regression)
- Number of neurons in the hidden layer is decided experimentally

## Multilayer Feedforward Neural Network (MLFFNN): Classification





- $f_k^o(.)$  : Activation  $s_k^{\circ} = f_k^{\circ}(a_k^{\circ})$ function of  $k^{\text{th}}$ output neuron

$$s_k^{o} = f_k^{o} \left[ \sum_{j=1}^{J} w_{jk}^{o} f_j^{h} \left( \sum_{i=1}^{d} w_{ji}^{h} x_i + w_{0j}^{h} \right) + w_{0k}^{o} \right]$$

#### **Backpropagation Learning [3]**

- · Gradient descent method
- · Error backpropagation algorithm
- · Forward computation:
  - Innerproduct computation
  - Activation function computation
- Backward operation:
  - Error calculation and propagation
  - Modification of weights

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, pages 318-362. MIT Press, 1986.

#### **Backpropagation Learning**

- Given training data:  $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d$ 
  - $\mathbf{x}_n$  is  $\mathit{n}^{\text{th}}$  training example and  $\mathbf{y}_n$  is corresponding label vector

$$\mathbf{y}_{n} = [y_{n1}, y_{n2}, ..., y_{nk}, ..., y_{nK}]^{\mathsf{T}}$$

- If activation function is hyperbolic tangent function:
  - $\mathbf{y}_n$  is a  $\mathit{K}$ -dimensional vector with only one element is 1 and rest are -1
- If activation function is logistic function:
  - $\mathbf{y}_n$  is a K-dimensional binary vector where only one element is 1 and rest are 0
- Instantaneous error for the nth example is given as,

$$E_n = \frac{1}{2} \sum_{k=1}^{K} (y_{nk} - s_k^{o})^2$$

#### **Mode of Presentation of Patterns**

- Stochastic Gradient Descent Method
- Pattern Mode:
  - At  $m^{\rm th}$  epoch: Weights are updated after the presentation of each pattern

$$\Delta w_{jk}(m) = -\eta \frac{\partial E(m)}{\partial w_{jk}} \qquad w_{jk}(m+1) = w_{jk}(m) + \Delta w_{jk}(m)$$

- Epoch: Presentation of all the patterns once (all training examples)
- Batch Mode:
  - Weights are updated after the presentation of all the patterns once – weights are updated using average error

$$\Delta w_{jk}(m) = -\eta \frac{\partial E_{av}}{\partial w_{ik}} \qquad w_{jk}(m+1) = w_{jk}(m) + \Delta w_{jk}(m)$$

where 
$$E_{av} = \frac{1}{2N} \sum_{l=1}^{N} \sum_{k=1}^{K} (y_{nk} - s_{nk}^{o})^{2}$$

77

## MLFFNN: Parameter Learning (Pattern Mode) – Backpropagation Learning

- Given training data:  $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N, \mathbf{x}_n \in \mathbb{R}^d \text{ and } \mathbf{y}_n \in \mathbb{R}^K$
- Architecture:
  - Input layer: d neurons (nodes)
  - One hidden layer: J neurons
  - Output layer: K neurons
- Target: Estimate parameters W<sup>h</sup> and W<sup>o</sup> of MLFFNN
  - $\mathbf{W}^h$  is the weight matrix of size  $d \times J$ :
    - Indicate the weights  $w_{ij}^h$  in the connections between input and hidden layers
    - $w_{ij}^h$  is the weight from  $i^{th}$  input neuron to  $j^{th}$  neuron in the hidden layer
  - $\mathbf{W}^o$  is the weight matrix of size  $J \times K$ :
    - Indicate the weights  $w_{jk}^{o}$  in the connections between hidden and output layers
    - $w_{jk}^o$  is the weight from  $j^{\rm th}$  hidden neuron to  $k^{\rm th}$  neuron in the output layer

#### **MLFFNN: Parameter Learning (Pattern** Mode) - Backpropagation Learning

- $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^K$  Given - training data:
  - 1. Initialize the  $\mathbf{W}^h$  and  $\mathbf{W}^o$  with random values
  - Choose a training example  $\mathbf{x}_n$
  - 3. Forward computation:
    - Compute output of all output neurons  $(k=1,2,\ldots K)$ :  $S_{nk}^o$  [Refer slide 73]
  - 4. Backward operation:

j=1, 2, ... J:

· Compute instantaneous error:

$$E_n = \frac{1}{2} \sum_{k=1}^{K} (y_{nk} - s_{nk}^{\circ})^2$$

 Update weights between hidden and output layer (j=1, 2, ..., J) and k=1, 2, ... K:  $\Delta w_{jk}^o = -\eta \frac{\partial E_n}{\partial w_{jk}^o} \qquad w_{jk}^o = w_{jk}^o + \Delta w_{jk}^o$ 

Update weights between input and hidden layer (i=1, 2, ... d and



 $0 \le \eta \le 1$  is proportion ality constant

$$\Delta w_{ij}^h = -\eta \frac{\partial E_n}{\partial w_{ij}^h} \qquad w_{ij}^h = w_{ij}^h + \Delta w_{ij}^h$$

## MLFFNN: Parameter Learning (Pattern Mode) - Backpropagation Learning

- Given training data:  $\mathcal{D} = \{\mathbf{x}_n, \mathbf{y}_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^K$ 
  - 1. Initialize the  $\mathbf{W}^h$  and  $\mathbf{W}^o$  with random values
    - Choose a training example  $x_n$
- Forward computation: 
   Compute output of all output neurons ( $k=1,2,\ldots K$ ):  $S_{nk}^{o}$  [Refer slide 73]
  - Backward operation:
    - Compute instantaneous error:  $E_n = \frac{1}{2} \sum_{i=1}^{K} (y_{nk} s_{nk}^{\circ})^2$
    - Update weights between hidden and output layer (j=1,2,...J and k=1,2,...K):  $\Delta w^o_{jk} = -\eta \frac{\partial E_n}{\partial w^o_{jk}} \quad w^o_{jk} = w^o_{jk} + \Delta w^o_{jk}$
    - Update weights between input and hidden layer ( $i=1,2,\ldots d$  and  $j=1,2,\ldots J$ ):  $\Delta w_{ij}^h = -\eta \frac{\partial E_n}{\partial w_{ij}^h} \quad w_{ij}^h = w_{ij}^h + \Delta w_{ij}^h$

 $0 \le \eta \le 1$  is proportionality constant

- Repeat steps 2 and 4 till all the training examples are presented 5. once (Epoch)
- Compute the average error:  $E_{av} = \frac{1}{2N} \sum_{n=1}^{N} E_n$ 6.
- 7. Repeat steps 2 to 6 till the convergence criterion is satisfied

## MLFFNN: Parameter Learning (Pattern Mode) – Backpropagation Learning

- · Convergence criterion:
  - A fixed number of epoch is reached
  - Difference between average error of successive epochs fall below a threshold (E.g. threshold=10<sup>-3</sup>)
- Gradient descent method:



#### **MLFFNN: Test Phase**

- Test phase:
- For a test example  ${\bf x}$  compute the output of each of the neurons in output layer ( $S_k^o$ , k=1,2,... K) using the weights obtained by training the model:

Class label for 
$$\mathbf{x} = \underset{k}{\operatorname{arg\,max}} s_k^o \qquad k = 1, 2, ..., K$$





#### **Practical Considerations**

- Stopping Criterion:
  - Threshold on average error
  - Threshold on average gradient
- · Number of Weights:
  - Depends on number of input nodes, output nodes, hidden nodes and hidden layers
- Number of Hidden Nodes
  - Cross-validation method Experimentally determined
- Data Requirements
  - Large when the number of weights are large
- Limitations:
  - Slow convergence
  - Local minima problem

85

Neural Networks: Feedforward Neural Networks (Fully Connected Network)

Regression

### Neural Networks for Regression (Function Approximation)

- Given:- Training data:  $\mathcal{D} = \{\mathbf{x}_n, y_n\}_{n=1}^N, \ \mathbf{x}_n \in \mathbb{R}^d \text{ and } y_n \in \mathbb{R}^1$
- Function governing the relationship between input and output governed by some function f(.):

$$y_n = f(\mathbf{x}_n, \mathbf{W})$$



 $y = f(\mathbf{x}_n, \mathbf{W})$  $\mathbf{x} = [x_1, x_2]^\mathsf{T}$ 

Fitting a surface

- The coefficient matrix W are the parameters of curve or surface (regression coefficients) - Unknown
- Neural networks approximates the function  $f(\mathbf{x}_n, \mathbf{W})$  and is a nonlinear function of coefficients  $\mathbf{W}$ 
  - Nonlinear regression

model

for

87

#### Regression using Multilayer Feedforward Neural Network (MLFFNN)

 Neural network learns (approximates) the complex underlying function between a dependent variable (one or more) and one or more independent variables



- Single independent variable (x)
  Single dependent variable (y)
- $\begin{array}{c} X \\ \hline \end{array}$ 
  - Multiple independent variable  $(\mathbf{x} \in \mathbb{R}^d)$
  - Single dependent variable (y)



- Multiple independent variable  $(x \in \mathbb{R}^d)$
- Multiple dependent variable  $(y \in \mathbb{R}^K)$

QQ

#### **Regression using MLFFNN**

- · Architecture of an MLFFNN
  - Input layer: Linear neurons
  - Hidden layers (1 or 2 or more): Sigmoidal neurons
  - Output layer:
    - Linear neurons (if the dependent variable is not normalized)
    - Sigmoidal neurons (if the dependent variable is normalized)



- Number of neurons in input layer (d): Number of independent variables
- Number of neurons in the output layer (K): Number of dependent variables
- Number of hidden layers and neurons in the hidden layer are decided experimentally

89

#### **Backpropagation Learning [3]**

- · Gradient descent method
- Error backpropagation algorithm
- Forward computation:
  - Innerproduct computation
  - Activation function computation
- · Backward operation:
  - Error calculation and propagation
  - Modification of weights

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, volume 1, pages 318{362. MIT Press, 1986.





#### **Feedforward Neural Networks: Summary**

- Perceptrons, with threshold logic function as activation function, are suitable for pattern classification tasks that involve linearly separable classes
- Multilayer feedforward neural networks, with sigmoidal function as activation function, are suitable for nonlinearly separable classes
  - Complexity of the model depends on
    - · Dimension of the input pattern vector
    - Number of classes
    - · Shapes of the decision surfaces to be formed
  - Architecture of the model is empirically determined
  - Large number of training examples are required when the complexity of the model is high
  - Local minima problem
- Multilayer feedforward neural network models are suitable for regression (function approximation) tasks also
- Multilayer feedforward neural network with one or two hidden layers is now called a shallow network

02

#### **Text Books**

- J. Han and M. Kamber, *Data Mining: Concepts and Techniques*, Third Edition, Morgan Kaufmann Publishers, 2011.
- 2. S. Theodoridis and K. Koutroumbas, *Pattern Recognition*, Academic Press, 2009.
- 3. C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006.
- 4. B. Yegnanarayana, Artificial Neural Networks, Prentice-Hall of India, 1999.
- 5. Satish Kumar, Neural Networks A Class Room Approach, Second Edition, Tata McGraw-Hill, 2013.
- 6. S. Haykin, Neural Networks and Learning Machines, Prentice Hall of India, 2010.

)4