Machine Learning Models &

IBM Watson

Introduction:

The project involves training a machine learning model using IBM Cloud Watson Studio and deploying it as a web service. The goal is to become proficient in predictive analytics by creating a model that can predict outcomes in real-time. The project encompasses defining the predictive use case, selecting a suitable dataset, training a machine learning model, deploying the model as a web service, and integrating it into applications.

Machine Learning Models &

IBM Watson

Tasks you can perform:

Steps:

- 1. **Predictive Use Case:** Define a use case for predictive analytics, such as predicting customer churn or product demand.
- 2. **Dataset Selection:** Choose a relevant dataset to train the machine learning model.
- 3. **Model Training:** Select a suitable machine learning algorithm and train the model using IBM Cloud Watson Studio.
- 4. **Model Deployment:** Deploy the trained model as a web service using IBM Cloud Watson Studio's deployment capabilities.
- 5. **Integration:** Integrate the deployed model into applications or systems to make realtime predictions.

Method:

Watson Studio Local supports the following machine learning model types:

- Spark ML
- PMML with online scoring
- Custom models with batch scoring
- scikit-learn 0.19.1 (Python 2.7 and Python 3.5) 0.19.1 (GPU-Python 3.5) with pickle or joblib format
- XGBoost 0.7.post3 (Python 2.7 and 3.5) 0.71 (GPU-Python 3.5)
- Keras 2.1.3 (Python 2.7 and Python 3.5) 2.1.5 (GPU-Python 3.5)
- TensorFlow 1.5.0 (Python 2.7 and Python 3.5) 1.4.1 (GPU-Python 3.5)
- WML

Machine Learning Models &

IBM Watson

Predictive Use Case:

Predictive analytics can be used for a wide range of tasks, such as: Customer segmentation: dividing customers into groups based on characteristics like demographics, behavior, and buying habits. Churn prediction: identifying which customers are likely to cancel a service or stop using a product.

Dataset Selection:

If the training data is smaller or if the dataset has a fewer number of observations and a higher number of features like genetics or textual data, choose algorithms with high bias/low variance like Linear regression, Naïve Bayes, Linear SVM.

Model Training:

Watson Machine Learning supports popular frameworks, including: **TensorFlow, Scikit-Learn, and PyTorch** to build and deploy models. For a list of supported frameworks, refer to Supported frameworks. To build and train a model: Use one of the tools that are listed in Analyzing data and building models.

Machine Learning Models &

IBM Watson

Model Deployment:

- Using IBM Watson Machine Learning, you can deploy models, scripts, and functions, manage your deployments, and prepare your assets to put into production to generate predictions and insights.
- This graphic illustrates a typical process for a machine learning model. After you build and train a machine learning model, use Watson Machine Learning to deploy the model, manage the input data, and put your machine learning assets to use.

Integration:

Data Preparation:

- Cleaning the data and removing any data points that aren't relevant or are duplicate.
- Converting the data and transforming it into a format the deployed model can consume.
- Structuring the data and organizing it so the deployed model can easily access and use it.

Define your project goals What do you want to find out?	Prepare the data Refine the data	Choose Pick the tool that matches your data and	Train your model Train the model with the data you supply	Deploy your model
Do you have the data to analyze?	Add the data as a project asset or in a data repository	Choose between an automated process, a graphical editor, or code your own model	Let a model building tool choose estimators and optimizers or choose your own r	Make your model Available in production Retrain as needed

THANK YOU