

# Multiobjective optimization

"max" or "min"  $\{f_1(x), f_2(x), ..., f_M(x)\}$ subject to  $x \in X$ 

where x is the solution vector and X is the feasible solution space

Nur Evin Özdemirel - IE 505 Heuristic Search

#### Multiobjective optimization (cont.) $f_2$ # A dominates B (better in both $f_1$ and $f_2$ ) $\blacksquare$ A dominates C (same in $f_1$ but better in $f_2$ ) ■ A does not dominate D ■ A and D are in the "pareto B optimal frontier" (or efficient frontier or set) # Frontier need not be $f_1$ and $f_2$ are to be maximized concave (or convex), E is also nondominated Nur Evin Özdemirel - IE 505 Heuristic Search



# Pareto optimal frontier

- In the absence of weights for objectives, one of the pareto optimal (nondominated) solutions cannot be said to be better than the other; therefore it is desirable to find all
- ★ With a population of solutions, GAs seem to be well-suited for approximating the pareto optimal frontier in a single run

Nur Evin Özdemirel - IE 505 Heuristic Search

5

# Desirable MOEA features # Convergence to pareto optimal frontier # Diversity (representation of the entire pareto optimal frontier) $f_1$ $f_1$ and $f_2$ are to be minimized

# Main MOEA design issues

- Solution representation, crossover and mutation are problem dependent, but are not affected by multiple objectives
- ★ Main decisions in the presence of multiple objectives are:
  - Fitness assignment (major issue)
  - Parent selection, and
  - Replacement (forming population for next generation)

Nur Evin Özdemirel - IE 505 Heuristic Search

#### Nondominated sorting in MOEA Fitness assignment: **Solutions** in the first nondominated front have third the highest fitness (they front are all ranked 1) second **Solutions** in the same front front have the same fitness front (they all have the same rank) $f_1$ and $f_2$ are to be minimized Nur Evin Özdemirel - IE 505 Heuristic Search

#### Criticism of NSGA

- **♯** Nondominated sorting used in NSGA is expensive
  - Compare each solution in population with every other to find the first nondominated front
  - Temporarily leave out the solutions in the first front and repeat the comparison to find the second front, and then the third front, and so on
  - Runs in  $O(MN^3)$  where M is the number of objectives and N is the population size (third N is for the maximum number of fronts)

Nur Evin Özdemirel - IE 505 Heuristic Search

\_

### Criticism of NSGA (cont.)

- $\blacksquare$  Specifying the "sharing" parameter  $\sigma_{\text{share}}$  for ensuring diversity is difficult (nonparametric diversity preservation is desirable)
- If the distance between two solutions (measured by a metric)  $< \sigma_{\text{share}}$  then they share each other's fitness (used to reduce the chance of keeping two close solutions in the next population)
- **★** NSGA lacks elitism, which can speed up the performance and prevent loss of good solutions

Nur Evin Özdemirel - IE 505 Heuristic Search

#### **NSGA II features:**

#### Fast nondominated sorting

- 1. For each solution p in population, find  $n_p$ : number of solutions that dominate p  $S_p$ : set of solutions that p dominates
- 2. Place all p with  $n_p = 0$  in set  $F_1$ , the first front  $(R_p = 1)$
- 3. For each  $p \in F_1$ , visit each  $q \in S_p$  and reduce  $n_q$  by one. In doing this, if  $n_q$  becomes 0 then place q in set  $F_2$  (q belongs to the second front,  $R_q$ =2)
- 4. Repeat Step 3 with each member of  $F_2$  to find the third front, and so on

Runs in  $O(MN^2)$ 

Nur Evin Özdemirel - IE 505 Heuristic Search

1

#### **NSGA II features:**

#### Diversity preservation

- # "Sharing" is replaced with "crowded comparison"
- "Crowding distance" of solution *i* in a front is the average side length of the cuboid



 $f_1$  and  $f_2$  are to be minimized

Nur Evin Özdemirel - IE 505 Heuristic Search



Diversity preservation

1. Sort all l solutions in a front in ascending order of  $f_m$  and compute

 $CD_{im} = \frac{f_m(x_{i+1}) - f_m(x_{i-1})}{f_m(x_{\text{max}}) - f_m(x_{\text{min}})}, i = 2, ... l - 1$ 

2. Repeat Step 1 for each objective and find the crowding distance of solution *i* as

$$CD_i = \sum_{m=1}^{M} CD_{im}$$

Runs in  $O(MN \log N)$ 

Nur Evin Özdemirel - IE 505 Heuristic Search

1

#### **NSGA II features:**

Crowded comparison operator

- **♯** Given two solutions i and j, solution i is preferred to solution j if  $R_i$ < $R_i$  or  $(R_i$ = $R_i$  and  $CD_i$ > $CD_i$ )
- Between two solutions with different nondomination ranks, the one with the lower (better) rank is preferred
- When two solutions have the same nondomination rank (belong to the same front), the one located in a less crowded region of the front is preferred

Nur Evin Özdemirel - IE 505 Heuristic Search

# NSGA II algorithm

For minimization and in generation t:

- 1. Using binary tournament selection and problem dependent crossover and mutation operators, generate child population  $Q_t$  from parent population  $P_t$
- 2. Let  $R_t = P_t \cup Q_t$  and sort  $R_t$  based on nondomination (selection from combined parent and child population ensures elitism)
- 3. From 2N solutions in  $R_t$ , select N best solutions by using the crowded comparison operator to form  $P_{t+1}$

Nur Evin Özdemirel - IE 505 Heuristic Search

# NSGA II algorithm (cont.)

- **■** If  $|F_1| < N$  then solutions from  $F_2$  and then  $F_3$  and so on are selected to form  $P_{t+1}$
- $\blacksquare$  Only for the last front included in  $P_{t+1}$ , selection is based on the crowding distance
- $\blacksquare$  Overall complexity is O( $MN^2$ ), which is governed by nondominated sorting

Nur Evin Özdemirel - IE 505 Heuristic Search

## Comparable MOEAs

- **♯** SPEA (Zitzler and Thiele 1998)
  - Keeps all nondominated (elite) solutions discovered so far and lets them participate in all genetic operators in every generation
  - Fitness is based on the number of dominated solutions (a dominated solution has lower fitness than the worst nondominated solution)
  - Uses clustering of similar solutions to preserve diversity
  - Runs in  $O(MN^3)$ , can be reduced to  $O(MN^2)$

Nur Evin Özdemirel - IE 505 Heuristic Search

11

# Comparable MOEAs (cont.)

- **♯** PAES (Knowles and Corne 1999)
  - Single parent, single offspring EA
  - If offspring dominates parent, accept offspring as the next parent
  - If parent dominates offspring, discard offspring and generate a new offspring
  - If neither dominate, compare them with best solutions in archive in terms of domination and nearness
  - Accept offspring and put it in archive if it is in a less crowded region of solution space (far from others)
  - Runs in  $O(MN^2)$

Nur Evin Özdemirel - IE 505 Heuristic Search



- **♯** Elitist MOEA (Rudolph 1999)
  - Compares all nondominated offspring with all parents to form an overall nondominated population for the next generation
  - Convergence to pareto optimal frontier is proved with this strategy
  - Has no explicit diversity preservation mechanism
  - Runs in  $O(MN^2)$
  - Not used for comparison but inspired the elitism in NSGA II

Nur Evin Özdemirel - IE 505 Heuristic Search

10

# Operators and parameter settings

- Single point crossover and bit mutation for binary coded SPEA, PAES and NSGA II
- **■** Population size is 100
- **■** Run for maximum 250 generations
- **■** 25,000 function evaluations for all algorithms
- **♯** Run for 500 generations works better

Nur Evin Özdemirel - IE 505 Heuristic Search

| (All | st problems functions are to be minimized) |        |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                      |  |  |  |
|------|--------------------------------------------|--------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|--|--|--|
|      | 1.11                                       |        | 1000                                                        | Objective                                                                                                                                                                                                                                                                                                                                                                                                                 | Optimal                                             | Comments                             |  |  |  |
|      | SCII                                       | n<br>1 | Variable<br>bounds<br>[-10 <sup>3</sup> , 10 <sup>3</sup> ] | Objective functions $f_1(x) = x^2$ $f_2(x) = (x - 2)^2$                                                                                                                                                                                                                                                                                                                                                                   | solutions<br>$x \in [0, 2]$                         | convex                               |  |  |  |
|      | FON                                        | 3      | [-4, 4]                                                     | $f_1(\mathbf{x}) = 1 - \exp \left(-\sum_{i=1}^{3} \left(x_i - \frac{1}{\sqrt{3}}\right)^2\right)$<br>$f_2(\mathbf{x}) = 1 - \exp \left(-\sum_{i=1}^{3} \left(x_i + \frac{1}{\sqrt{3}}\right)^2\right)$                                                                                                                                                                                                                    | $x_1 - x_2 = x_3$<br>$\in [1/\sqrt{3}, 1/\sqrt{3}]$ | nonconvex                            |  |  |  |
|      | POL                                        | 2      | $[-\pi,\pi]$                                                | $\begin{split} f_2(\mathbf{x}) &= 1 - \exp\left(-\sum_{i=1}^{L} (x_i + \frac{i}{\sqrt{g}})\right) \\ f_3(\mathbf{x}) &= \left[1 + (A_1 - B_1)^2 + (A_2 - B_2)^2\right] \\ f_2(\mathbf{x}) &= \left[(x_1 + 3)^2 + (x_2 + 1)^2 - 1.5\cos 2\right] \\ A_1 &= 0.5\sin 1 - 2\cos 1 + \sin 2 - 0.5\cos 2 \\ B_1 &= 0.5\sin 1 - \cos 1 + 2\sin 2 - 0.5\cos 2 \\ B_2 &= 0.5\sin 1 - \cos 2 + 2\sin x_2 - 0.5\cos x_2 \end{split}$ | (refer [1])                                         | nonconvex,<br>disconnected           |  |  |  |
|      | KUR                                        | 3      | [-5, 5]                                                     | $\begin{split} f_1(\mathbf{x}) &= \sum_{i=1}^{n-1} \left( -10 \exp \left( -0.2 \sqrt{x_i^2 + x_{i+1}^2} \right) \right) \\ f_2(\mathbf{x}) &= \sum_{i=1}^{n} \left(  x_i ^{0.8} + 5 \sin x_i^3 \right) \end{split}$                                                                                                                                                                                                       | (refer [1])                                         | nonconwex                            |  |  |  |
|      | ZDT1                                       | 30     | [0, 1]                                                      | $f_1(\mathbf{x}) = x_1$<br>$f_2(\mathbf{x}) = g(\mathbf{x}) \left[ 1 - \sqrt{x_1/g(\mathbf{x})} \right]$<br>$g(\mathbf{x}) = 1 + 9 \left( \sum_{i=2}^{n} x_i \right) / (n-1)$                                                                                                                                                                                                                                             | $x_1 \in [0, 1]$<br>$x_i = 0,$<br>i = 2,, n         | convex                               |  |  |  |
|      | ZDT2                                       | 30     | [0, 1]                                                      | $f_1(\mathbf{x}) = x_1$<br>$f_2(\mathbf{x}) = g(\mathbf{x}) \left[ 1 - (x_1/g(\mathbf{x}))^2 \right]$<br>$g(\mathbf{x}) = 1 + 9 \left( \sum_{k=2}^{n} x_k \right) / (n-1)$                                                                                                                                                                                                                                                | $x_1 \in [0, 1]$<br>$x_i = 0,$<br>i = 2,, n         | nonconvex                            |  |  |  |
|      | XDT3                                       | 30     | [0, 1]                                                      | $\begin{aligned} f_1(\mathbf{x}) &= x_1 \\ f_2(\mathbf{x}) &= g(\mathbf{x}) \left[ 1 - \sqrt{x_1/g(\mathbf{x})} - \frac{g_1}{g(\mathbf{x})} \sin(10\pi x_1) \right] \\ g(\mathbf{x}) &= 1 + 9 \left( \sum_{i=2}^n x_i \right) / (n-1) \end{aligned}$                                                                                                                                                                      | $x_1 \in [0, 1]$<br>$x_i = 0,$<br>i = 2,, n         | convex,<br>disconnected              |  |  |  |
|      | ZDT4                                       | 10     | $x_1 \in [0, 1]$<br>$x_i \in [-5, 5],$<br>i = 2,, n         | 1                                                                                                                                                                                                                                                                                                                                                                                                                         | $x_1 \in [0, 1]$<br>$x_i = 0,$<br>i = 2,, n         | nonconvex                            |  |  |  |
|      | ZDT6                                       | 10     | [0, 1]                                                      | $f_1(\mathbf{x}) = 1 - \exp(-4x_1) \sin^6(6\pi x_1)$ $f_2(\mathbf{x}) = g(\mathbf{x}) \left[1 - (f_1(\mathbf{x})/g(\mathbf{x}))^2\right]$ $g(\mathbf{x}) = 1 + 9 \left[\left(\sum_{i=2}^n x_i\right)/(n-1)\right]^{0.25}$                                                                                                                                                                                                 | $x_i \in [0, 1]$<br>$x_i = 0,$<br>i = 2,, n         | nonconvex,<br>nonuniformly<br>spaced |  |  |  |







|              |            | sity      |          |                 |          |           |           |          |          |
|--------------|------------|-----------|----------|-----------------|----------|-----------|-----------|----------|----------|
|              |            |           |          | Table           | III      |           |           |          |          |
| M            | ean (first | rowe) a   | nd varia | nce (sec        | ond row  | s) of the | diversity | v metric |          |
|              | can (msi   | . 10ws) a |          |                 |          | s) of the | urversit  | y meure  |          |
|              |            |           | (s       | maller is       | better)  |           |           |          |          |
| Algorithm    | I SCH      | FON       | POL      | KUR             | ZDT1     | ZDT2      | ZDT3      | 7DT4     | ZDT6     |
| NSGA2R       | 0.477899   | 0.378065  | 0.452150 | 0.411477        | 0.390307 | 0.430776  | 0.738540  | 0.702612 | 0.668025 |
| Real-coded   | 0.003471   | 0.000639  | 0.002868 | 1 1 1 1 1 1 1 1 | 0.001876 | 0.004721  | 0.019706  | 0.064648 |          |
| NSGA-II      | 0.449265   | 0.395131  | 0.503721 | 0.442195        | 0.463292 | 0.435112  | 0.575606  | 0.479475 | 0.644477 |
| Binary-coded | 0.002062   | 0.001314  | 0.004656 | 0.001498        | 0.041622 | 0.024607  | 0.005078  | 0.009841 | 0.035042 |
| SPEA         | 1.021110   | 0.792352  | 0.972783 | 0.852990        | 0.784525 | 0.755148  | 0.672938  | 0.798463 | 0.849389 |
|              | 0.004372   | 0.005546  | 0.008475 | 0.002619        | 0.004440 | 0.004521  | 0.003587  | 0.014616 | 0.002713 |
| PAES         | 1.063288   | 1.162528  | 1.020007 | 1.079838        | 1.229794 | 1.165942  | 0.789920  | 0.870458 | 1.153052 |
|              | 0.002868   | 0.008945  | 0        | 0.013772        | 0.004839 | 0.007682  | 0.001653  | 0.101399 | 0.003916 |







# Constrained optimization

When two offspring are generated from two parents:

- **■** If both are infeasible, choose the one with smaller overall constraint violation

Nur Evin Özdemirel - IE 505 Heuristic Search



