Streaming

02807 Computational Tools for Data Science

Today

- The streaming model
- Computing the majority element of a stream
- Simple random sampling in a stream

The streaming model

- Elements of the stream arrive one at a time
- Stream is infinite
- Stream processor updates a data structure
- Queries are sent to data structure

The streaming model (cont.)

- The data structure must use limited space
 - We cannot store all elements we see!
- The processor has limited time to update the data structure
 - Typically, we want to update x<<k places, where k is the size of the data structure
- We allow approximate answers from the data structure
 - "How many distinct elements have we seen?"
 - "What are the most frequent elements seen?"
 - "Did element **x** occur in the stream so far?"

Examples of streaming

- Internet traffic
- Sensor data
- Social media feeds
- Search queries
- Bank transactions
- Reading large files

Computing the majority element of a stream

Problem

 Process a stream and maintain a data structure that can answer if some element occurred more times than total number of elements seen so far in the stream. If such an element exists, report it.

Example

Stream: abacbccbcbabaaaabababacaaaaabaaa

Query answer: a occurred more than half of the time

Simple algorithm

Data structure

- Maintain a cd
- Maintain a c

Processing an

- Increment counter to: a
- Increment total counter

Query

Find highest counter and report corresponding element if counter > total/2

Streaming algorithm

Data structure

Maintain one counter/element pair, initialized to (c, e) = (0,)

Processing an element a

- If c == 0 then set (c, e) = (1, a)
- Else if e == a, then increment c by 1, else decrement c by one

Query

Report e if c > 0, else report none

If there is a majority element, it is e! But the algorithm could be wrong.

Simple random sample

A subset of (exactly) k elements selected at random from a larger population.

Main property: Each subset of k elements has the same probability of being selected.

Simple random sample

Given the numbers 1 to 20, what is the probability of getting each of the following samples with Simple Random Sampling for k=5?

- 1,5,9,13,17
- 1,2,3,4,5
- 5,2,13,8,20
- 3,5,6,10,11,19

Sampling in a stream

Problem

 Process a stream and maintain a sample of size k such that at any point in time the main property is satisfied.

Why sampling?

- Insights into data
- Entire stream can't be stored
- Arbitrary queries to data (requires representative sample)

Offline simple random sampling

Algorithm 1: Randomly permute your data and select the first k elements.

Algorithm 2: Let i = 0. For each element j = 1...n, select element j with probability (k-i)/(n-j+1). If element j is selected, then increment i by 1.

Reservoir sampling

Data structure

- Maintain list of k elements
- Populate the list with the first k elements of the stream

Processing the i-th element

- We keep the element with probability k/i
- If we keep the element, replace it with an element selected uniformly at random

Reservoir sampling (cont.)

Analysis

- Each element has the same probability of being in the sample
- The probability of an element being selected decreases with the number of elements we see
- The probability of being evicted from the sample increases over time
- Things balance: if you are selected early, your probability of staying is small

Reservoir sampling (cont.)

Analysis

• i is in S if i is selected and i is not evicted in round j = i+1..m

$$P[i \in S] = P[i \text{ is selected}] \cdot \prod_{i=i+1}^{m} P[i \text{ is not evicted in round } j]$$

$$P[i \in S] = \frac{k}{i} \cdot \prod_{j=i+1}^{m} ((P[j \text{ is selected}] \cdot P[i \text{ is not evicted}]) + P[j \text{ is not selected}])$$

$$P[i \in S] = rac{k}{i} \cdot \prod_{j=i+1}^m (rac{k}{i} \cdot rac{k-1}{k} + (1-rac{k}{i})) = rac{k}{m}$$