

Universidade Federal Rural de Pernambuco Pró-Reitoria de Pesquisa e Pós-Graduação Programa de Pós-Graduação em Informática Aplicada

Computação Evolutiva

AULA 01 - APRESENTAÇÃO DA DISCIPLINA

Roteiro

Apresentação

Programa da disciplina

Metodologia de ensino e aprendizagem

Cronograma de aulas

Bibliografia recomendada

Apresentação

Quem sou eu?

Quem são vocês?

Expectativas?

Programa da disciplina

Identificação

• Código: PPGIA 7303

Créditos: 4

• Carga horária: total: 60h; semanal: 4h (2h teóricas e 2h práticas)

Ementa

- Visão global da computação bio-inspirada, em particular com a introdução dos conceitos básicos e avançados no ramo da computação evolutiva.
- Apresentação e modelagem dos principais algoritmos evolutivos. Metáforas: Evolução, Genética e Seleção Natural.
- Revisão de Conceitos de Busca e Otimização. Algoritmos Evolutivos (AEs): Dialetos, Componentes e Propriedades.
- Aspectos Teóricos: Convergência, Teoria dos Esquemas, Hipótese dos Blocos Construtivos, Epistasia e Decepção.
- Algoritmos Genéticos: Aspectos Populacionais, Representação das Soluções, Meta-parâmetros, Função de Avaliação, Operadores Genéticos. Introdução à Programação Genética, Estratégias Evolutivas e Programação Evolucionária.
- Tópicos Adicionais: AEs para Aprendizado de Máquina, Otimização Restrita, Otimização Multiobjetivo, Hibridização e Paralelismo. Tópicos Avançados.

Metodologia de ensino e aprendizagem

Aulas expositivas com projetor e quadro branco

Prática em laboratório usando frameworks para computação evolucionária

Checkpoints para avaliação consolidada dos conceitos de AEs

Projeto para aplicação de AEs em um problema selecionado por cada aluno, preferencialmente relacionado com seu tema de dissertação

Cronograma de aulas

#Aula	Data	СНА	Assunto
1	23/03/18	2	Apresentação da disciplina
2	28/03/18	4	Introdução aos problemas de otimização e inspiração biológica
-	30/03/18	-	Sexta feira santa
3	04/04/18	6	Componentes de um algoritmo evolucionário. Exemplos de aplicações
4	06/04/18	8	Representação e operadores de cruzamento e mutação
-	11/04/18	-	Aula cancelada por fortes chuvas
5	13/04/18	10	Aptidão, seleção e gerenciamento da população
6	18/04/18	12	Variantes de AEs: algoritmos genéticos
7	20/04/18	14	Variantes de AEs: estratégias de evolução e programação evolucionária
8	25/04/18	16	Variantes de AEs: programação genética
9	27/04/18	18	Variantes de AEs: evolução diferencial e outros

Cronograma de aulas

#Aula	Data	СНА	Assunto
10	02/05/18	20	Checkpoint de aprendizagem consolidada 1
11	04/05/18	22	Parâmetros e ajuste paramétrico.
12	09/05/18	24	Exemplos práticos de variação paramétrica
13	11/05/18	26	Métricas para avaliação de desempenho de EAs e problemas para testes
14	16/05/18	28	Hibridização com outras técnicas
15	18/05/18	30	AEs multiobjectivos: problemas e conceito de dominância
16	23/05/18	32	AEs multiobjectivos: abordagens e exemplos
17	25/05/18	34	Tratamento de restrições
18	30/05/18	36	Coevolução
-	01/06/18	-	Aula imprenssada
19	06/06/18	38	Aspectos teóricos e outros tópicos avançados

Cronograma de aulas

#Aula	Data	СНА	Assunto
20	08/06/18	40	Checkpoint de aprendizagem consolidada 2.
21	13/06/18	42	Definição de problemas que serão tratados pelos alunos.
22	15/06/18	44	Prática em EAs: modelagem do problema e variante de EA adotada
23	20/06/18	46	Prática em EAs: representação, cruzamento e mutação
24	22/06/18	48	Prática em EAs: aptidão, seleção e população
25	27/06/18	50	Seminários com resultados parciais de AEs aplicados aos problemas dos alunos
26	29/06/18	52	Prática em EAs: análise de convergência e ajuste paramétrico
27	04/07/18	54	Prática em EAs: definição de versão MO ou uso de outro conceito avançado
28	06/07/18	56	Prática em EAs: avaliação de versão MO ou de outro conceito avançado
29	11/07/18	58	Seminários com resultados finais de AEs aplicados aos problemas dos alunos
30	13/07/18	60	Checkpoint de aprendizagem consolidada 3.

Bibliografia recomendada

EIBEN, A. E.; SMITH, J. E. Introduction to evolutionary computing (natural computing series). 2008.

Resultados do google scholar...

Citado por 4520

[LIVRO] Introduction to evolutionary computing

AE Eiben, JE Smith - 2003 - Springer

This is the second edition of our 2003 book. It is primary and graduate and undergraduate students. To this graduate are a thorough introduction to evolutionary computing (FC) — Descriptions of popular evolutionary algorithm (EA) variants, Citado por 4520 Artigos relacionados Todas as 34 versões Citar Salvar

Introduction to evolutionary computing (natural computing series)

AE Eiben, JE Smith - 2008 - citeulike.org

Abstract< P> Evolutionary Computing is the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. These techniques are being increasingly widely applied to a variety of Citado por 80 Artigos relacionados Todas as 2 versões Citar Salvar Mais

Bibliografia recomendada

Referências básicas relacionadas no programa da disciplina

EIBEN, A. E.; SMITH, J. E. Introduction to Evolutionary Computing. Springer, 2000.

GROSAN, C.; ABRAHAN, A.; ISHIBUCHI, H. Hybrid Evolutionary Algorithms. Springer, 2007

Bibliografia recomendada

Referências complementares relacionadas no programa da disciplina

BÄCK,T; FOGEL, D; MICHALEWICZ, Z., Handbook of Evolutionary Algorithms, Oxford Press, 1997.

FOGEL, B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3a. Ed., IEEE Press, 2005.

MICHALEWICZ, Z. Genetic Algorithms + Data Structures = Evolution Programs, Springer, 3rd. Ed, 1996.

BANZHAF, W.; NORDIN, P.; KELLER, R.; FRANCONE, F. Genetic Programming? An Introduction, Morgan Kaufmann, 1998.

CANTÚ-PAZ, E. Efficient and Accurate Parallel Genetic Algorithms, Kluwer, 2000.

DEB, K. Multi-objective Optimization using Evolutionary Algorithms, Wiley, 2001.

BARTZ-BEIELSTEIN, T. Experimental Research in Evolutionary Computation: The New Experimentalism. Springer, 2006

KALLEL, L.; NAUDTS, B.; ROGERS, A. Theoretical Aspects of Evolutionary Computing. Springer, 2001

ACADEMIC SEARCH PREMIER, Evolutionary Computation. • IEEE, IEEE Transactions on Evolutionary Computation.

Universidade Federal Rural de Pernambuco Pró-Reitoria de Pesquisa e Pós-Graduação Programa de Pós-Graduação em Informática Aplicada

Computação Evolutiva

AULA 01 - APRESENTAÇÃO DA DISCIPLINA