Calculus I

Tougaloo College

Calculating Limits Using the Limit Laws

Limit Laws

Suppose that c is a constant and the limits

$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$

exist. Then

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \rightarrow a} [f(x) - g(x)] = \lim_{x \rightarrow a} f(x) - \lim_{x \rightarrow a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} [f(x)]$$

4.
$$\lim_{x\to a} [f(x)g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$$

5.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

6. Power Law

$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x) \right]^n,$$

Limit Laws (ii)

where n is a positive number.

7. Root Law

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)},$$

where n is a positive integer. If n is even we assume that f(x) > 0.

- 8. $\lim_{x \to a} c = c$
- 9. $\lim_{x\to a} x = a$
- 10. $\lim_{x\to a} x^n = a^n$, where n is a positive integer.
- 11. $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$, where n is a positive integer.

Limit Laws (iii)

2.
$$\lim_{x\to -2} \frac{x^3+2x^2-1}{5-3x}$$

$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{\lim_{x \to -2} x^3 + 2x^2 - 1}{\lim_{x \to -2} (5 - 3x)} \text{ by law (5)}$$

$$= \frac{\lim_{x \to -2} x^3 + \lim_{x \to -2} 2x^2 - \lim_{x \to -2} 1}{\lim_{x \to -2} 5 - \lim_{x \to -2} 3x} \text{ by laws (1) and (2)}$$

$$= \frac{\lim_{x \to -2} x^3 + \lim_{x \to -2} 2x^2 - 1}{5 - \lim_{x \to -2} 3x} \text{ by law (8)}$$

$$= \frac{\lim_{x \to -2} x^3 + 2\lim_{x \to -2} x^2 - 1}{5 - 3\lim_{x \to -2} x} \text{ by law (3)}$$

$$= \frac{(-2)^3 + 2(-2)^2 - 1}{5 - 3(-2)}$$

$$= \frac{-8 + 8 - 1}{5 + 6} = -\frac{1}{11}$$

Evaluating Limits by Direct Substitution

Direct Substitution Property

If f is a polynomial or a rational function and a is in the domain f, then

$$\lim_{x \to a} f(x) = f(a)$$

Example: Find $\lim_{x\to 1} \frac{x^2-1}{x-1}$.

You cannot just substitute the value x = 1.

For $x \neq 1$.

$$\lim_{x \to 1} \frac{(x+1)(x-1)}{x-1} = \lim_{x \to 1} (x+1) = 2$$

Evaluating Limits by Direct Substitution (ii)

If f(x) = g(x) when $x \neq a$, then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$, provided that the limits exists.

Example: Find $\lim_{x\to 1} g(x)$, where

$$g(x) = \begin{cases} x+1 & \text{if } x \neq 1 \\ \pi & \text{if } x = 1 \end{cases}$$

Define a function f(x) = x + 1. Then f(x) = g(x) when $x \neq 1$.

Then

$$\lim_{x\to 1}g(x)=\lim_{x\to 1}f(x)=\lim_{x\to 1}x+1=2$$

Evaluating Limits by Direct Substitution (iii)

Example Evaluate $\lim_{h\to 0} \frac{(3+h)^2-9}{h}$.

$$\lim_{h \to 0} \frac{(3+h)^2 - 9}{h} = \lim_{h \to 0} \frac{\mathscr{Y} + 6\mathscr{K} + h^{\mathscr{Z}} - \mathscr{Y}}{\mathscr{K}}$$
$$= \lim_{h \to 0} 6 + h$$
$$= 6$$

Evaluating Limits by Direct Substitution (iv)

Example: Find $\lim_{t\to 0} \frac{\sqrt{t^2+9}-3}{t^2}$.

$$\lim_{t \to 0} \frac{\sqrt{t^2 + 9} - 3}{t^2} \cdot \frac{\sqrt{t^2 + 9} + 3}{\sqrt{t^2 + 9} + 3} = \lim_{t \to 0} \frac{t^2 + 9 - 9}{t^2 \sqrt{t^2 + 9} + 3t^2}$$
$$= \lim_{t \to 0} \frac{1}{\sqrt{t^2 + 9} + 3}$$
$$= \frac{1}{\sqrt{9} + 3} = \frac{1}{6}$$

Using one-sided limits

Theorem 1.

$$\lim_{x\to a} f(x) = L \text{ if and only if } \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = L$$

Example: Show that $\lim_{x\to 0} |x| = 0$.

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Take $\lim_{x\to 0^-} |x| = \lim_{x\to 0} (-x) = 0$. Then $\lim_{x\to 0^+} |x| = \lim_{x\to 0^+} x = 0$. Then limit is exist and 0.

Using one-sided limits (ii)

Example: Prove that $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

Using one-sided limits (iii)

Example: If

$$f(x) = \begin{cases} \sqrt{x-4} & \text{if } x > 4\\ 8-2x & \text{if } x < 4 \end{cases}$$

determine whether $\lim_{x\to 4} f(x)$ exists.