MP 3 Document

Following the page table.H design, I implemented the below:

- Page table constructor
- init paging
- load
- enable paging
- handle fault

Page_table constructor

- Get 1 frame to be PD with page size
- Init PD with not present bit
- Set up page tables for shared region
 - Calculate the number of page tables
 - Create page tables
 - Map for shared region directly
 - Init page tables with present bit

init_paging

- Initialize kernel memory pool
- Initialize process memory pool
- Initialize the size of shared region (4MB)

load

- Set the current page table as active
- Load PD into CR3

enable_paging

- Set PG bit to turn on paging
- Set local paging enable to be 1

handle fault

- Check fault address first
 - o If fault address is within shared region, this should not happen, just return
- Calculate PD and PT index with shifting
- Handle two types of scenarios
 - Missing PT
 - Get an new frame for the new PT
 - Init all entries to be not present
 - Update PD entry

- Missing page
 - Get an new frame from process memory pool
 - Update PT entry to map the new frame

Memory Layout

- Uses 4KB pages (PAGE_SIZE)
- 1024 entries per page table/directory (ENTRIES_PER_PAGE)
- Two-level paging structure:
 - $\circ \quad \mathsf{Page} \; \mathsf{Directory} \to \mathsf{Page} \; \mathsf{Tables} \to \mathsf{Physical} \; \mathsf{Pages}$
- Virtual address split: 10 bits (dir) + 10 bits (table) + 12 bits (offset)

Others

- 0x2: Supervisor, Read/Write, Not Present
- 0x3: Supervisor, Read/Write, Present