HW5 COMBINATIONAL SYSTEM 1

Handong university

Jong-won Lee

- 1. We are going to design a circuit to compute an odd parity of an n-bit binary number.
 - The odd parity is generated so that the number of 1's in the (n+1)-bit binary number which is including the parity bit is odd.
 - (a) design a circuit to compute an odd parity of one-bit binary number.
 - Use only NAND gates and NOT gates.
 - Complemented input signals can not be used.
 - Input signals: a_i and p_i
 - Output signal: p_{i+1}

- 1. We are going to design a circuit to compute an odd parity of an n-bit binary number.
 - (b) design a circuit to compute an odd parity of a 3-bit binary number, (use the circuit designed in (a)) and verify it's operation by logisim-evolution.

(c) Determine the delay to compute an odd parity of an nbit binary number.

- 2. (a) Design active high 3-to-8 decoder using active high 2-to-4 decoder with enable.
 - Use minimum number of IC's.
 - Can use general gates such as NOT, NAND, and NOR when they are absolutely necessary.
 - Inputs: abc (a: MSB)

EN'	a	b	\mathbf{y}_0	Y ₁	Y ₂	Y 3	
1	X	X	0	0	0	0	
0	0	0	1	0	0	0	
0	0	1	0	1	0	0	
0	1	0	0	0	1	0	
0	1	1	0	0	0	1	

- \square 2. (b) Design a circuit for f and g using active high 3-to-8 decoder designed in the problem 2(a).
 - $\Box f(a,b,c) = \sum m(1, 3, 6), \quad g(a,b,c) = \sum m(0,4,7)$

□ 3. Design a 4-to-2 priority encoder with the following truth table.

A 3	A2	A1	A 0	z1	Z 0
0	X	X	X	1	1
1	0	X	X	1	0
1	1	0	Х	0	1
1	1	1	0	0	0

