PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 99/09199 (11) International Publication Number: C12P 21/02, C07K 14/00, 16/00, C12N A2 (43) International Publication Date: 25 February 1999 (25.02.99) 15/11, 1/11, 1/15, 1/19, 1/21, 15/63 PCT/US98/17272 (81) Designated States: AU, CA, JP, US, European patent (AT, BE, (21) International Application Number: CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, 20 August 1998 (20.08.98) NL, PT, SE). (22) International Filing Date: (30) Priority Data: Published 20 August 1997 (20.08.97) Without international search report and to be republished US 08/914,999 upon receipt of that report. (63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application 08/914,999 (CIP) US 20 August 1997 (20.08.97) Filed on (71) Applicant (for all designated States except US): UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY [US/US]; 30 Bergen Street, Newark, NJ 07107-3000 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): RYAZANOV, Alexey G. [RU/US]; 82 Gulick Road, Princeton, NJ 08540 (US). HAIT, William, N. [US/US]; 61 Overbrook Drive, Princeton, NJ 08540 (US). PAVUR, Karen, S. [US/US]; Apartment C, 68 1/2 Woodbridge Avenue, Highland Park, NJ 08904 (US).

(54) Title: ELONGATION FACTOR-2 KINASE (EF-2 KINASE) AND METHODS OF USE THEREFOR

(74) Agents: COHEN, Mark, S. et al.; Klauber & Jackson, 411 Hackensack Avenue, Hackensack, NJ 07601 (US).

(57) Abstract

A new superfamily of protein kinases has been discovered that centers around eukaryotic elongation factor-2 kinase (eEF-2 kinase). The proetin kinases of this new superfamily have the following characteristics: 1) sequence similarity to eEF-2 kinase; 2) no sequence similarity to the protein kinases of either the serine/threonine/tyrosine kinase or histidine kinase superfamily; and, 3) specifically phosphorylates α -helical regions of proteins as opposed to β -turns, as seen in all other protein kinases. Assays have been developed utilizing eEF-2 kinase and a phosphorylation target consisting of a novel α -helical 16-amino acid peptide sequence to facilitate high-throughput screening for compounds that can specifically inhibit this protein kinase that has been implicated tumor growth and other hyperproliferative disorders. Additionally, the disclosed invention includes assessing eEF-2 kinase levels for diagnostic purposes, and therapeutic formulations to inhibit eEG-2 kinase activity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/09199

5

10

15

20

25

30

ELONGATION FACTOR-2 KINASE (EF-2 KINASE) AND METHODS OF USE THEREFOR

FIELD OF THE INVENTION

This invention relates generally to the identification of a new superfamily of eukaryotic protein kinases and the use of one member of this superfamily, elongation factor-2 kinase (eEF-2 kinase), in assays to screen for specific inhibitors. Specifically, this invention provides an isolated nucleic acid encoding a heart protein kinase, a melanoma protein kinase and a ch4 protein kinase. Specific inhibitors of the eEF-2 kinase may be potent therapeutics for amelioration of malignant transformation. Additionally, sequences complementary to eEF-2 kinase may have therapeutic efficacy as antisense drugs or be used in gene therapy. Specifically, the invention relates to assays developed using the recombinant eEF-2 kinase to screen for inhibitors of phosphorylation of a peptide derived from the myosin heavy chain (MHC) protein.

BACKGROUND OF THE INVENTION

Protein phosphorylation plays a critical role in many cellular processes (Krebs (1994) *Trends Biochem. Sci.* 19:439; Hanks and Hunter, (1996) *FASEB J.* 9:576-596; Hardie and Hanks, (1995) *The Protein Kinase Facts Book* (Academic, London)). There are two well-characterized superfamilies of protein kinases, with most of the protein kinases belonging to the serine/threonine/tyrosine kinase superfamily (Hanks and Hunter, (1996); Hardie and Hanks, (1995)). The characterization of several hundred members of this superfamily revealed that they all share a similar structural organization of their catalytic domains which consist of twelve conserved subdomains (Hanks and Hunter, (1996); Hardie and Hanks, (1995)). The other superfamily is referred to as the histidine kinase superfamily and is involved in the prokaryotic two-component signal transduction system, acting as sensor components (Stock et al., (1989) *Microbiol. Rev.* 53:450-490; Parkinson and Kofoid, (1992) *Annu. Rev. Genet.* 26:71-112; Swanson, et al., (1994) *Trends Biochem. Sci.* 19:485-490). Recently, eukaryotic members of this superfamily have also been described (Chang et al., (1993) *Science* 263:539-544; Ota and Varshavsky, (1993) *Science* 262:566-569; Maeda et al.,

15

20

30

(1994) *Nature* 369:242-245). Mitochondrial protein kinases have also recently been described that show structural homology to the histidine kinases, but phosphorylate their substrates on serine (Popov et al., (1992) *J. Biol. Chem.* 267:13127-13130; Popov et al., (1993) *J. Biol. Chem.* 268:26602-22606). Finally, several new protein kinases have been reported that show a lack of homology with either of the kinase superfamilies (Maru and Witte, (1991) *Cell* 67:459-468; Beeler et al., (1994) *Mol. Cell. Biol.* 14:982-988; Dikstein et al., (1996) *Cell* 84:781-790; Futey et al., (1995) *J. Biol. Chem.* 270:523-529; Eichenger et al., (1996) *EMBO J.* 15:5547-5556). However, these protein kinases are viewed as an exception to the general rule as they have yet to be fully characterized.

The cloning and sequencing of the extensively characterized eukaryotic elongation factor-2 kinase (eEF-2 kinase) from a variety of eukaryotic organisms has now revealed the existence of a novel class of protein kinases (Ryazanov et al., (1997) Proc. Natl. Acad. Sci., USA 94:4884-4889). eEF-2 kinase, previously known as Ca²⁺/calmodulindependent protein kinase III, is highly specific for phosphorylation of elongation factor-2 (eEF-2), an abundant cytoplasmic protein that catalyzes the movement of the ribosome along mRNA during translation in eukaryotic cells (reviewed in Ryazanov and Spirin, (1993) In Translational Regulation of Gene Expression (Plenum, New York) Vol. 2, pp. 433-455; Nairn and Palfrey, (1996) In Translational Control (CSHL Press, New York) pp. 295-318). All mammalian tissues, and various invertebrate organisms, exhibit eEF-2 kinase activity (Abdelmajid et al., (1993) Int. J. Dev. Biol. 37:279-290). eEF-2 kinase catalyzes the phosphorylation of eEF-2 at two highly conserved threonine residues located within a GTP-binding domain (Ryazanov and Spirin, (1993) In Translational Regulation of Gene Expression (Plenum, New York) Vol. 2, pp. 433-455: Nairn and Palfrey. (1996) In Translational Control (CSHL Press, New York) pp. 295-318). When eEF-2 is phosphorylated, it becomes inactive with respect to protein synthesis (Ryazanov et al., (1988) Nature 334:170-173). Since eEF-2 phosphorylation is dependent on Ca²⁺ and calmodulin, eEF-2 kinase plays a pivotal role in modulating the protein synthesis rate in response to changes in intracellular calcium concentration. Phosphorylation of eEF-2 has also been linked to the regulation of cell cycle progression. For example, transient phosphorylation of eEF 2 occurs during the mitogenic stimulation of quiescent cells (Palfrey et al., (1987) *J. Biol. Chem.* 262:9785-9792) and during mitosis (Celis et al., (1990) *Proc. Natl. Acad. Sci., USA* 87:4231-4235). In addition, changes in the level of eEF-2 kinase activity is associated with a host of cellular processes such as cellular differentiation (End et al., (1982) *J. Biol. Chem.* 257:9223-9225; Koizumi et al., (1989) *FEBS Lett.* 253:55-58; Brady et al., (1990) *J. Neurochem.* 54:1034-1039), oogenesis (Severinov et al., (1990) *New Biol.* 2: 887-893), and malignant transformation (Bagaglio et al., (1993) *Cancer Res.* 53:2260-2264).

The sequence eEF-2 kinase appears to have no homology to either the Ca²⁺/calmodulin-dependent protein kinases or to any members of the known protein kinase superfamilies (Ryazanov et al., (1997) *Proc. Natl. Acad. Sci., USA* 94:4884-4889). However, the recently described myosin heavy chain kinase A (MHCK A) from Dictyostelium (Futey et al., (1995) *J. Biol. Chem.* 270:523-529) shows a great deal of homology with eEF-2 kinase. These two kinases define a novel class of protein kinases that may represent a new superfamily.

Evidence for MHCK and eEF-2 kinase forming the core of a new superfamily is as follows. MHCK A from *Dictyostelium*, has a demonstrated role in the regulation of myosin assembly (Futey et al., (1995) *J. Biol. Chem.* 270:523-529; Côté et al., (1997) *J. Biol. Chem.* 272:6846-6849). eEF-2 kinase is a ubiquitous Ca²⁺/calmodulin-dependant protein kinase involved in the regulation of protein synthesis by Ca²⁺ (Redpath et al., (1996) *J. Biol. Chem* 271:17547-17554; Ryazanov et al., (1997) *Proc. Natl. Acad. Sci., USA* 94:4884-4889). Both MHCK A and eEF-2 kinase display no homology to any of the known protein kinases, but are strikingly similar to each other; amino acid sequences of their catalytic domains are 40% identical. Another protein kinase homologous to MHCK A and eEF-2 kinase has recently been identified in *Dictyostelium* (Clancy et al., (1997) *J. Biol. Chem.* 272:11812-11815), and an

10

15

20

25

30

expressed sequence tag (EST) sequence, with a high degree of similarity to the catalytic domain common to both MHCK A and eEF-2 kinase, has been deposited in GenBank (clone FC-AN09/accession #C22986). An amino acid sequence alignment of the catalytic domains of these new protein kinases is shown in Figure 1A. These kinases have a catalytic domain of approximately 200 amino acids which can be subdivided into seven conserved subdomains. Subdomains V, VI, and VII have a predicted β-sheet structure and are presumably involved in ATP-binding, while subdomains I through IV may be involved in substrate binding and catalysis. These new protein kinases have no homology to the members of the eukaryotic serine/threonine/tyrosine protein kinase superfamily with the exception of the GXGXXG motif in subdomain VI which is present in many ATP-binding proteins. Thus, MHCK A, eEF-2 kinase, and related protein kinases may represent a new superfamily. Evolutionary analysis of these new kinases (Figure 1B) reveals that they can be subdivided into 2 families: the eEF-2 kinase family which includes eEF-2 kinases from different organisms, and the MHCK family which includes MHCK A, MHCK B and FC-AN09. These two families appear to have split more than a billion years ago.

An interesting question is why does nature employ these unusual kinases to phosphorylate eEF-2 and myosin heavy chains? Perhaps the answer is related to the secondary structure of the phosphorylation sites. As was originally reported by Small et al., (1977), *Biochim. Biophys. Res. Comm.* 79:341-346), phosphorylation sites are usually located at predicted β -turns. Subsequent studies, including X-ray crystallographic data, demonstrated that phosphoacceptor sites in substrates of conventional protein kinases are often located in turns or loops and usually have flexible extended conformation (Knighton et al., (1991) *Science* 253:414-420; Pinna and Ruzzene (1996) *Biochim. Biophys. Acta* 1314:191-225). In contrast to this, the existing evidence suggests that the peptides around phosphorylation sites for eEF-2 kinases and MHCK A have an α -helical conformation. The two major phosphorylation sites for MHCK A are located in a region which has a coiled-coil α -helical structure (Vaillancourt et al., (1988) *J. Biol. Chem.* 253:10082-10087). The major

phosphorylation site in eEF-2, threonine 56, is located within a sequence which is homologous among all translational elongation factors. In the crystal structure of the prokaryotic elongation factor EF-Tu, this sequence has an α -helical conformation (Polekhina *et al.*, (1996) *Structure* 4:1141-1151; Abel et al., (1996) *Structure* 4:1153-1159). These facts suggest that eEF-2 kinase and MHCK A differ from conventional protein kinases in that they phosphorylate amino acids located within α -helices.

Thus, in addition to the two well-characterized superfamily of eukaryotic protein kinases, which phosphorylate amino acids located in loops and turns, there appears to be a third superfamily of α -helix-directed kinases.

SUMMARY OF THE INVENTION

In accordance with the present invention, a new superfamily of protein kinases and corresponding methods for assaying their phosphorylation activity are disclosed. The protein kinases of this new superfamily have the following characteristics: 1) No significant sequence homology to protein kinases of either the serine/threonine/tyrosine kinase or histidine kinase super families; 2) moderate to high (≥40%) to eEF-2 kinases from any organism; and, 3) phosphorylates an amino acid within an α-helical domain.

The present invention also relates to a recombinant DNA molecule or cloned gene, or a degenerate variant thereof, which encodes eEF-2 kinase; preferably a nucleic acid molecule, in particular a recombinant DNA molecule or cloned gene, encoding the eEF-2 kinase has a nucleotide sequence or is complementary to a DNA sequence shown in Figure 5 (SEQ ID NO: 1, 3, and 9).

25

15

The present invention also relates to an isolated nucleic acid molecule which encodes a heart protein kinase. The present invention also relates to an isolated nucleic acid molecule which encodes a melanoma protein kinase. The present invention also relates to an isolated nucleic acid molecule which encodes a ch4 protein kinase.

The human and murine DNA sequences of the eEF-2 kinase gene of the present invention or portions thereof, may be prepared as probes to screen for complementary sequences and genomic clones in the same or alternate species. The present invention extends to probes so prepared that may be provided for screening cDNA and genomic libraries for the eEF-2 kinase gene.

The present invention also includes eEF-2 kinase proteins having the activities noted herein, and that display the amino acid sequences set forth and described above and selected from SEQ ID NO: 2, 4, and 10.

10

15

5

The invention includes an assay system for screening of potential drugs effective at attenuating eEF-2 kinase activity of target mammalian cells by interrupting or potentiating the phosphorylation of eEF-2. It is a further object of the present invention to provide antibodies to the phosphorylated eEF-2 kinase target, and methods for their preparation, including recombinant means.

It is a further object of the present invention to provide a method for detecting eEF-2 kinase activity in mammals in which invasive, spontaneous, or idiopathic pathological states are suspected to be present.

20

It is a still further object of the present invention to provide a method for the treatment of mammals to control the amount or activity of eEF-2 kinase, so as to alter the adverse consequences of such presence or activity, or where beneficial, to enhance such activity.

25

It is a still further object of the present invention to provide a method for the treatment of mammals to control the amount or activity of eEF-2 kinase, so as to treat or avert the adverse consequences of invasive, spontaneous or idiopathic pathological states.

10

15

20

It is a still further object of the present invention to provide pharmaceutical compositions for use in therapeutic methods which comprise or are based upon a sequence complementary to that of the eEF-2 kinase mRNA, which would form the basis for an antisense therapeutic that can reduce expression, and thus activity, of eEF-2 kinase.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A-1B.

(A) Sequence alignment of the catalytic domains of human eEF-2 kinase. *C. elegans* eEF-2 kinase, MHCK A, MHCK B and clone FC-ANO9. Identical amino acids (bold) and conserved hydrophobic amino acids (") are noted. (B), Phylogenetic tree of sequences shown in (A), with the addition of mouse and rat eEF-2 kinases. Tree was obtained using the J. Hein method with PAM250 residue weight table. The following accession numbers were used for the sequences: U93846-U93850, 1495779, 1170675, 1903458, C22986.

Figure 2. Expression of recombinant eEF-2 kinase *in vitro*. Plasmid DNA from clones *Cefk-1*, *Cefk-2*, as well as mouse and human eEF-2 kinase cDNA were used in the TNT wheat germ extract coupled transcription/translation system (Promega). [35S]Methionine-labeled products were then analyzed by SDS/PAGE.

Figure 3. Activity of recombinant eEF-2 kinase *in vutro*. A large scale (0.5 ml) reaction using a mixture of *Cefk-1* and *Cefk-2* plasmids was run as in Figure 2, with the omission of labeled methionine. In the control experiment, the reaction was run with a plasmid containing a luciferase gene. (A) The reaction mixtures were separated by chromatography on a Mono Q column as described. (B) eEF-2 kinase activity in fractions was measured as the ability to phosphorylate purified rabbit eEF-2 in the

presence of $[\gamma^{-32}P]$ ATP. Purified rabbit reticulocyte eEF-2 kinase was used in the (+) control experiments. (C) Ca²⁺/calmodulin-dependency of recombinant *C. elegans* eEF-2 kinase. Mono Q fraction 25 was assayed in a standard eEF-2 kinase assay in the presence and absence of Ca²⁺ and calmodulin and 20 μ M trifluoperazine (TFP) or *N*-(6 aminohexyl)-5-chloro-1-napthalene-sulfonamide (W7). (D) Ca²⁺/calmodulin-dependency of recombinant human eEF-2 kinase. Human eEF-2 kinase cDNA was expressed in a coupled transcription/translation system as described above and eEF-2 kinase activity was assayed without further purification.

10

15

20

Figure 4.

Figure 5.

5

Northern blot analysis of tissue distribution of mouse eEF-2 kinase mRNA. Northern blots of mouse tissue containing 2 μ g of polyadenylated RNA per lane were probed with the random-primed ³²P-labeled mouse eEF-2 kinase cDNA (31). The major transcript appeared at 3.1 kb and minor transcripts at 6.1 and 2.5 kb were also apparent (exposure time, 5 days). The same blots were stripped and rehybridized with a human eEF-2 cDNA (exposure time, 4 days).

Sequence alignment of *C. elegans*, mouse, human eEF-2 kinase, and the catalytic domain of *Dictyostelium discoideum* MHCK A. Identical amino acids are indicated by dark blue boxed regions and chemically conserved amino acids are indicated by light blue shaded regions. Amino acids in the human sequence that are identical to the mouse sequence are represented by dots. Amino acids underlined in black correspond to the six regions that match peptides obtained from the sequencing of purified rabbit reticulocyte eEF-2 kinase. The GXGXXG nucleotide-binding motif is underlined in red. The blue dashed line over residues 625-632 in *C. elegans* eEF-2 kinases designates the amino acids corresponding to exon 4, which is missing in *Cefk-2*.

25

30

10

15

20

25

Figure 8.

Figure 6. Substrate specificity of eEF-2 kinase and MHCK A. Phosphorylation assays containing eEF-2 kinase ($^{\circ}50$ ng) or MHCK A ($^{\circ}0.2$ μ g) and either 0.5 μ g rabbit reticulocyte eEF-2 or 0.1 μ g *Dictyostelium* myosin were performed under standard conditions except that incubation time was extended to 10 min.

Figure 7. Schematic representation of the structure of mammalian and *C. elegans* eEF-2 kinases and MHCK A. The homologous regions are represented by dark shading. The regions of weak similarity are represented by light shading. The position of the GXGXXG motif is indicated by vertical arrows.

Assay for eEF-2 kinase activity. Recombinant eEF-2 kinase (2 μ g) was incubated with increasing concentrations of a peptide phosphorylation target (RKKGESEKTKTKEFL) in a buffer consisting of 12.5 mM Hepes-KOH (pH 7.4), 2.5 mM magnesium acetate, 1.25 mM DTT, 25 μ M CaCl₂, 0.5 μ g calmodulin, 100 μ M ATP, and 0.5 μ Ci [γ -33P]ATP in a total volume of 50 μ l. Samples were incubated at 30°C and aliquots were withdrawn at various time points, and the reaction was terminated by incubation in an ice water bath. The aliquots were then spotted onto phosphocellulose paper (2 cm x 2 cm) and washed (4 x 4 min) with 75 mM phosphoric acid. The papers were then rinsed with 100% ethanol, dried, and then counted in a scintillation counter.

Figure 9. Sequence alignment of *C. elegans*, mouse, human eEF-2 kinase, and the catalytic domain of *Dictyostelium discoideum* MHCK A, heart kinase, melanoma kinase and ch4 kinase. Identical amino acids are indicated by dark blue boxed regions and chemically conserved amino acids are indicated by light blue shaded regions.

- Figure 10. pH-dependence of eEF-2 kinase activity: eEF-2 kinase activity was assayed by phosphorylation of the peptide substrate, MH-I at 0.2 pH unit intervals from pH 6.0-8.0.
- 5 Figure 11. Dependence of protein synthesis on intracellular pH: Protein synthesis was measured bu 3[H]-Leu-pulse incorporation in GH3 cells at various pH. Actual intracellular pH was determined by fluorimetric analysis.
- Figure 12. Cytotoxicity assays of clones overexpressing eEF-2 kinase. MTT assays were done in quadruplicate and the results are presented as mean of values obtained.
- Figure 13 Enzymatic activity of recombinant forms of human eEF-2 kinase expressed in *E. coli*. Autoradiograph of kinase assays with recombinant 6xHis-tagged eEF-2 kinase (lanes 1-4)- and GST-tagged-eEF-2 kinase (lanes 5-8). Reactions were done with and without eEF-2 (0.5 μg), and with and without calmodulin (0.5 μg). In autophosphorylation assays with 6xHis-eEF-2 kinase, 5 μg of eEF-2 kinase were used.
- 20 Figure 14 Enzymatic activity of eEF-2 kinase deletion mutants. Autoradiograph of eEF-2 kinase assay using total bacterial lysates of eEF-2 kinase deletion mutants. eEF-2 kinase assay was performed as described in text using 1 μg of total protein, and reactions were analyzed by 8% SDS-PAGE. Labels above lanes designate which amino acids are deleted in the mutant being assayed. Deletion of amino acids 51-335 causes loss of autophosphorylation activity, and a loss of eEF-2 kinase activity. Deletion of amino acids 521-725 also causes a loss of eEF-2 kinase activity.
- 30 Figure 15 Schematic representation of wild-type and mutant eEF-2 kinases.

 Hatched areas represent the putative catalytic domain. Black-shaded

areas represent regions conserved between various eEF-2 kinases. White-shaded areas represent nonconserved regions. Numbers at the top of the schematic represent the amino acids at the boundaries of each of these regions. eEF-2 kinase activity and autophosphorylation activity of each mutant are summarized on the right with (+) representing presence of activity and (-) representing absence of activity. n/d = not determined

Figures 16A-16B

10

5

(A) Phosphorylation of synthetic peptides by eEF-2 kinase. See text for experimental details. X-axis = time in minutes. Y-axis = ³³P incorporation into peptides in counts per minute. (B) Sequences of peptides corresponding to phosphorylation site in *Dictyostelium* myosin heavy chains (MHC, MH-1) and eEF-2. Phosphoacceptor threonines are designated by an asterisk. Helical wheel representation of both peptides is also shown. Phosphoacceptor threonines are circled.

15

20

25

30

DETAILED DESCRIPTION

Novel protein kinase inhibitors have the potential to form the basis for pharmaceutical compositions that can ameliorate malignant transformation. In order to find these inhibitors, libraries of chemical compounds are routinely screened using an automated protein kinase assay. The drawback to this approach is that most protein kinases have a very similar structure, thus making it difficult to specific inhibitors which act solely on a particular protein kinase. It was determined the primary structure of eEF-2 kinase, a ubiquitous enzyme which is involved in the regulation of protein synthesis and the cell cycle. Unexpectedly, it was found that eEF-2 kinase has a unique structure. It has no homology to any other mammalian protein kinase. This feature makes eEF-2 kinase an ideal target in the search for a specific protein kinase inhibitor. Since preliminary evidence suggests that eEF-2 kinase is upregulated in human cancers, including, but not limited to, breast cancer, identification of specific inhibitors of eEF-2 kinase can eventually lead to the development of novel anticancer drugs. In order be

15

20

25

30

able to perform a high throughput screen for an eEF-2 kinase inhibitor, it is first necessary to develop a simple assay which is amenable to automation. The existing assay involves incubation of partially purified eEF-2 kinase along with purified eEF-2 and $[\gamma - {}^{32}P]ATP$ as substrates in the presence of increasing concentrations of candidate inhibitors. Results are then obtained by electrophoretic separation of the reaction mixtures, followed by autoradiography. Results are then quantified by either densitometry or scintillation counting of excised bands from the gel containing 32P-eEF-2. Clearly, this assay, as it stands, is time-consuming, expensive, and not amenable to automation. Furthermore, it is difficult to purify large amounts of native eEF-2 required to perform multiple assays, and attempts to overexpress a recombinant form of eEF-2 were unsuccessful as its overexpression was toxic to host strains (personal communication from James Bodley. University of Minnesota, Minneapolis). Therefore, new methodologies for determining eEF-2 kinase activity were developed, which involves the use of a specific peptide substrate; easily and economically manufactured in large scale. These methods are relatively inexpensive, fast, and can be fully automated.

In the first attempt to use a peptide as an eEF-2 kinase substrate, peptides centered around the phosphorylation site of eEF-2 were generated. This strategy did not yield a peptide that was functional in phosphorylation assays. Surprisingly, it was found that a 16'mer peptide (RKKFGESEKTKTKEFL (SEQ ID NO: 20)), based on the phosphorylation site of *Dictyostelium discoideum* MHC, was an acceptable substrate for use with eEF 2 kinase in phosphorylation assays. It is interesting to note that while eEF-2 kinase can phosphorylate a peptide derived from MHC, it is not able to phosphorylate native MHC (Ryazanov et al., (1997) *Proc. Natl. Acad. Sci., USA* 94:4884-4889).

In accordance with the present invention, a new superfamily of protein kinases and corresponding methods for assaying their phosphorylation activity are disclosed. The protein kinases of this new superfamily have the following characteristics: 1) No

significant sequence homology to protein kinases of either the serine/threonine/tyrosine kinase or histidine kinase super families; 2) moderate to high ($\pm 40\%$) to eEF-2 kinases from any organism; and, 3) phosphorylates an amino acid within an α -helical domain.

The present invention also relates to a recombinant DNA molecule or cloned gene, or a degenerate variant thereof, which encodes eEF-2 kinase; preferably a nucleic acid molecule, in particular a recombinant DNA molecule or cloned gene, encoding the eEF-2 kinase has a nucleotide sequence or is complementary to a DNA sequence shown in Figure 5 (SEQ ID NO: 1, 3, and 9).

10

15

20

25

30

The human and murine DNA sequences of the eEF-2 kinase gene of the present invention or portions thereof, may be prepared as probes to screen for complementary sequences and genomic clones in the same or alternate species. The present invention extends to probes so prepared that may be provided for screening cDNA and genomic libraries for the eEF-2 kinase gene. For example, the probes may be prepared with a variety of known vectors, such as the phage λ vector. The present invention also includes the preparation of plasmids including such vectors, and the use of the DNA sequences to construct vectors expressing antisense RNA or ribozymes which would attack the mRNAs of any or all of the DNA sequences set forth in FIGURES 5 (SEQ ID NO: 1, 3, and 9). Correspondingly, the preparation of antisense RNA and ribozymes are included herein.

The present invention also includes eEF-2 kinase proteins having the activities noted herein, and that display the amino acid sequences set forth and described above and selected from SEQ ID NO: 2, 4, and 10.

This invention provides an isolated nucleic acid which encodes a heart protein kinase, including analogs, fragments, variants, and mutants, thereof. In one embodiment the nucleic acid has a nucleotide sequence having at least 90% similarity with the nucleic acid coding sequence as shown in Figure 9.In one embodiment the nucleic acid has a

nucleotide sequence having at least 85% similarity with the nucleic acid coding sequence as shown in Figure 9.In one embodiment the nucleic acid has a nucleotide sequence having at least 80% similarity with the nucleic acid coding sequence as shown in Figure 9. In another embodiment the nucleic acid has the following sequence:

CACTTGACTGCAGGGATAAAGAAGAAAATTCTATCCAGGGTCGC AGCCCTGAGACTGAGGCTGGAGGAAAAAGGAAAATTCGAGGAAG A A CTCC A TCGTGA A GA A GA C A CCTA A GTTTGA A A GGTCCTTA TC CCGCACTGATGAGAAAAGAGACCCCAAAAGGGCCCCTTGCAAA GCTGAAGGGAAAGCTCCAGTATTGCTGAAGAGGATCCAGGCCGA GATGGCTCCGAGCACTCCGGAAATATAAAGTTGAGCTGCCAGTTT TCAGA 10 AATCCATGAAGACTCTACCGTCTGCTGGACAAAAGATTCCAAGTCGATAG ${\tt CCCAGGCCAAGAAAGCGCAGGGGACAACTCCAGTGTTTCCTTGGCCATC}$ GTCCAAGCTGGTCAGAAGGACCAGGGCCTGTATTACTGCTGCCTCAAGAA CAGTTATGGAAAAGTCACTGCTGAGTTTAACCTCACAGCTGAAGTTCTCAA ACAGCTTTCAAGTCACCAGAATACTAGAGGATGTGAAGAGATTGAATTCA 15 GCCAGCTCATCTTCAAAGAAGATGTTTTCAATGACAGCTACTTCGGGGGAC CACCTACGTGGCCAGATCTCCACGGAGGAGCTTCACTTTGGCGAAGGGGT GCACCGCAAAGCTTTCCGGAGCAAGGTGATGCAGGGCCTCATGCCGGTCT TCCAGCCGGCCACGCATGCGTACTCAAGGTGCACAATGCCGTCGCCCAT GGGACCAGAACAATGACGAACTTGTGCAGAGGAACTACAAACTGGCTG 20 CCCAGGAATGCTACGTGCAGAATACTGCCAGATACTACGCCAAGATCTAC GCCGCTGAAGCACAGCCTCTGGAAGGCTTCGGAGAGGTGCCGGAGATCAT TCCTATTTCCTTATCCATCGGCCCGAGAACAACATCCCATATGCCACAGT GGAAGAAGAGCTGATTGGAGAATTCGTGAAGTATTCCATCCGGGACGGGA AGGAAATCAACTTCCTCAGACGAGATTCAGAGGCTGGCCAGAAATGTTGC 25 ACCTTCCAGCACTGGGTATACCAGAAAACAAGTGGCTGTCTCCTGGTSAC GGACATGCAGGGTGTGGGAATGAAGTTAACTGACGTTGGCATAGCAACAC TAGCTAGAGGGTACAAAGGATTTAAGGGCAACTGTTCCATGACCTTCATT GATCAGTTCAGAGCGCTGCATCAGTGTAACAAGTACTGTAAAATGCTGGG GCTGAAATCCCTTCAAAACAACAGCCAGAAGCCCAGGAAGCCCATCGTCG 30

30

- 15 This invention provides a heart protein kinase which has the amino acid sequence as follows:
 - HLTAGIKKKILSRVAALRLRLEEKENSRKNSIVKKTPKFERSLSRTDEKRDPKR APCKAEGKAPVLLKRIQAEMAPEHSGNIKLSCQFSEIHEDSTVCWTKDSKSIA QAKKSAGDNSSVSLAIVQAGQKDQGLYYCCLKNSYGKVTAEFNLTAEVLKQ LSSHQNTRGCEEIEFSQLIFKEDVFNDSYFGDHLRGQISTEELHFGEGVHRKAF RSKVMQGLMPVFQPGHACVLKVHNAVAHGTRNNDELVQRNYKLAAQECY VQNTARYYAKIYAAEAQPLEGFGEVPEHPIFLIHRPENNIPYATVEEELIGEFV KYSIRDGKEINFLRRDSEAGQKCCTFQHWVYQKTSGCLLVTDMQGVGMKLT

DVGIATLARGYKGFKGNCSMTFIDQFRALHQCNKYCKMLGLKSLQNNSQKP

25 RKPIVGKGRVPTNATQVKTPESETPPAERKT

This invention provides an isolated nucleic acid which encodes a melanoma protein kinase, including analogs, fragments, variants, and mutants, thereof. In one embodiment the nucleic acid has a nucleotide sequence having at least 90% similarity with the nucleic acid coding sequence as shown in Figure 9.In one embodiment the nucleic acid has a

WO 99/09199

nucleotide sequence having at least 85% similarity with the nucleic acid coding sequence as shown in Figure 9.In one embodiment the nucleic acid has a nucleotide sequence having at least 80% similarity with the nucleic acid coding sequence as shown in Figure 9. On another embodiment the melnoma kinase has the following sequence: 5 $\tt CTGATGAGGTTGTCACAGAGTATTCCCTTCGTTCCTGTACCTCCACGAGGCG$ GCCTGTCACAGTGTCCCGTCTGGAGGAGAGTTCTCCCAGTATACTGAATA ACAGCATGTCTTCATGGTCTCAGCTAGGCCTCTGTGCCAAAATTGAGTTTT TAAGTAAAGAGGAAATGGGAGGCGGTTTACGAAGAGCAGTCAAAGTGCT 10 GTGTACCTGGTCAGAGCACGATATCCTGAAGTCAGGGCATCTCTATATCAT TAAGTCATTTCTTCCTGAGGTGATAAACACATGGTCAAGCATTTATAAAGA AGATACGGTTCTACATCTCTGTCTCAGAGAAATACAACAACAGAGAGCAG CACAAAAGCTCACATTTGCCTTTAATCAGATGAAACCCAAATCCATACCA TATTCTCCAAGG FTCCTTGAAGTTTTCCTGTTGTACTGCCATTCAGCAGGG CAGTGGTTCGCTGTAGAAGAGTGCATGACTGGTGAATTTAGAAAATACAA 15 CAACAATAATGGTGATGAAATCATTCCTACAAATACTCTAGAAGAGATCA **FIGCTAGCCTTTAGCCACTGGACCTATGAATATACCAGAGGGGAGTTACTG** GTACTTGACTTACAAGGAGTGGGAGAAAACTTGACTGACCCATCTGTAAT AAAAGCTGAAGAAAAAGATCCTGTGACATGGTTTTTGGCCCTGCCAATC TAGGAGAAGATGCAATAAAAAACTTCAGAGCCAAACATCACTGTAATTCT 20 TGCTGTCGAAAGCTTAAACTTCCAGATTTGAAGAGGAATGACTACACGCC TGATAAAATTATATTTCCTCAGGATGAGTCATCAGATTTGAATCTTCAATC TGGAAATTCCACCAAAGAATCAGAAGCAACAAATTCTGTTCGTCTGATGTTA

This invention provides a melanoma kinase protein which has the sequence as follows:

GTSSSTYYYYSAVERNNLMRLSQSIPFVPVPPRGEPVTVSRLEESSPSILNNSM
SSWSQLGLCAKIEFLSKEEMGGGLRRAVKVLCTWSEHDILKSGHLYIIKSFLPE
VINTWSSIYKEDTVLHLCLREIQQQRAAQKLTFAFNQMKPKSIPYSPRFLEVFL
LYCHSAGQWFAVEECMTGEFRKYNNNNGDEIIPTNTLEEIMLAFSHWTYEYT

RGELLVLDLQGVGENLTDPSVIKAEEKRSCDMVFGPANLGEDAIKNFRAKHHC

NSCCRKLKLPDLKRNDYTPDKIIFPQDESSDLNLQSGNSTKESEATNSVRLML

This invention provides an isolated nucleic acid which encodes a ch4 protein kinase. including analogs, fragments, variants, and mutants, thereof. In one embodiment the nucleic acid has a nucleotide sequence having at least 90% similarity with the nucleic acid coding sequence as shown in Figure 9.1n one embodiment the nucleic acid has a nucleotide sequence having at least 85% similarity with the nucleic acid coding sequence as shown in Figure 9.1n one embodiment the nucleic acid has a nucleotide sequence having at least 80% similarity with the nucleic acid coding sequence as shown in Figure 9. In another embodiment the ch 4 kinase has a nucleic acid which encodes the following 10 amino acid sequence: MCRKRTRARTSAAEASLRASILARDCAAAAAIVFLVDRFLYGLDVSGKLLQV KGLHKLQPATPIAPQVVIRQARISVNSGKLLKAEYILSSLISNNGATGTWLYRN ESDKVLVOSVCIQIRGQILQKLGMWYEAAELIWASIVGYLALPQPDKKGLSTS LGILADIFVSMSKNDYEKFKNNPQINLLSLLKEFDHHLLSAAEACKLAAAFSA 15 YTPLFVLTAVNIRGTCLLSYSSSNDCPPELKNLHLCEAKEAFEIGLLTKRDDEP VTGKOELHSFVKAAFGLTTVHRRLHGETGTVHAASQLCKEAMGKLYNFSTSSR SODREALSOEVMSVIAQVKEHLQVQSFSNVDDRSYVPESFECRLDKLILHGQGDF OKILDTYSQHHTSVCEVFESDCGNNKNEQKDAKTGVCITALKTEIKNIDTVST TOEKPHCORDTGISSSLMGKNVQRELRRGGRRNWTHSDAFRVSLDQDVETET 20 EPSDYSNGEGAVFNKSLSGSQTSSAWSNLSGFSSSASWEEVNYHVDDRSARK EPGKEHLVDTQCSTALSEELENDREGRAMHSLHSQLHDLSLQEPNNDNLEPS ONOPOOOMPLTPFSPHNTPGIFLAPGAGLLEGAPEGIQEVRNMGPRNTSAHSR PSYRSASWSSDSGRPKNMGTHPSVQKEEAFEIIVEFPETNCDVKDRQGKEQGE EISERGAGPTFKASPSWVDPEGETAESTEDAPLDFHRVLHNSLGNISMLPCSSF 25 TPNWPVONPDSRKSGGPVAEQGIDPDASTVDEEGQLLDSMDVPCTNGHGSH RLCILRQPPGQRAETPNSSVSGNILFPVLSEDCTTTEEGNQPGNMLNCSQNSSS SSVWWLKSPAFSSGSSEGDSPWSYLNSSGSSWVSLPGKMRKEILEARTLQPD

DFEKLLAGVRHDWLFQRLENTGVFKPSQLHRAHSLLLKYSKKSELWTAQETI VYLGDYLTVKKKGRQRNAFWVHHLHQEEILGRYVGKDYKEQKGLWHHFTD

30

VERQMTAQHYVTEFNKRLYEQNIPTQIFYIPSTILLILEDKTIKGCISVEPYILGE FVKLSNNTKVVKTEYKATEYGLAYGHFSYEFSNHRDVVVDLQGWVTGNGK GLIYLTDPQIHSVDQKVFTTNFGKRGIFYFFNNQHVECNEICHRLSLTRPSMEKPX

In a further embodiment of the invention, the full DNA sequence of the recombinant DNA molecule or cloned gene so determined may be operatively linked to an expression control sequence which may be introduced into an appropriate host. The invention accordingly extends to unicellular hosts transformed with the cloned gene or recombinant DNA molecule comprising a DNA sequence encoding eEF-2 kinase, and more particularly, the complete DNA sequence determined from the sequences set forth above and in SEQ ID NO: 1, 3, and 9.

According to other preferred features of certain preferred embodiments of the present invention, a recombinant expression system is provided to produce biologically active animal or human eEF-2 kinase.

The present invention naturally contemplates several means for preparation of eEF-2 kinase, including as illustrated herein known recombinant techniques, and the invention is accordingly intended to cover such synthetic preparations within its scope. The isolation of the cDNA and amino acid sequences disclosed herein facilitates the production of eEF-2 kinase by such recombinant techniques, and accordingly, the invention extends to expression vectors prepared from the disclosed DNA sequences for expression in host systems by recombinant DNA techniques, and to the resulting transformed hosts.

25

30

15

20

The invention includes an assay system for screening of potential drugs effective at attenuating eEF-2 kinase activity of target mammalian cells by interrupting or potentiating the phosphorylation of eEF-2. In one instance, the test drug could be administered to a cellular sample along with ATP carrying a detectable label on its γ -phosphate that gets transferred to eEF 2, or a peptide substrate, by eEF-2 kinase.

WO 99/09199

10

15

20

Quantification of the labeled eEF-2 or peptide substrate is diagnostic of the candidate drug's efficacy. A further embodiment would provide for the assay to be performed using a purely *in vitro* system comprised of eEF-2 kinase, ATP or labeled ATP, eEF-2 or peptide analog of a portion of eEF-2 or MHC, appropriate buffer, and detection reagents and/or instrumentation to detect and quantify the extent of eEF-2 kinase-directed phosphorylation activity..

The assay system could more importantly be adapted to identify drugs or other entities that are capable of binding to the eEF-2 kinase and/or its cognate phosphorylation target (e.g. eEF-2), either in the cytoplasm or in the nucleus, thereby inhibiting or potentiating eEF-2 kinase activity and its resultant phenotypic outcome. Such an assay would be useful in the development of drugs that would be specific against particular cellular activity, or that would potentiate such activity, in time or in level of activity. For example, such drugs might be used to treat various carcinomas or other hyperproliferitive pathologies.

The present invention likewise extends to antibodies against specifically phosphorylated eEF-2 kinase targets (e.g. eEF-2 or peptide), including naturally raised and recombinantly prepared antibodies. These antibodies and there labeled counterparts are included within the scope of the present invention for their particular ability in detecting eEF-2 kinase activity *via* detection of the phosphorylated product by ELISA or any other immunoassay known to the skilled artisan.

In the instance where a radioactive label, such as the isotopes ³H, ¹⁴C, ³²P, ³³P, ³⁵S.

25 ³⁶Cl, ⁵¹Cr, ⁵⁷Co, ⁵⁸Co, ⁵⁹Fe, ⁹⁰Y, ¹²⁵I, ¹³¹I, and ¹⁸⁶Re are used, known currently available counting procedures may be utilized. In the instance where the label is an enzyme, detection may be accomplished by any of the presently utilized colorimetric, spectrophotometric, fluorospectrophotometric, amperometric or gasometric techniques known in the art.

15

20

In a further embodiment, the present invention contemplates antagonists of the activity of eEF-2 kinase. In particular, an agent or molecule that inhibits phosphorylation of eEF-2. In a specific embodiment, the antagonist can be a peptide comprising sequences, or sequence variants adjacent to, and including, the phosphorylation site in either eEF-2 or MHC. It is anticipated that these peptides would be competitive inhibitors of eEF-2 kinase's cognate target.

In still a further embodiment, the invention contemplates antisense drugs such that sequences complementary to the eEF-2 kinase mRNA inhibit production of functional eEF-2 kinase. In a specific embodiment, the antisense drug may be a complementary oligonucleotide (DNA, RNA, or hybrid thereof), which may or may not be modified so as to have the following characteristics: 1) enhanced hybridization kinetics; 2) tighter binding to complementary sequence than its unmodified counterpart; and/or, 3) resistance to nucleases. In another specific embodiment, the antisense drug may be a complementary oligonucleotide (DNA, RNA, or hybrid thereof), that has the ability to cleave its target sequence either by ribozyme, or ribozyme-like, activity, or by nuclease activity imparted on the antisense drug by physical attachment to anyone of a number of nucleases.

More specifically, the therapeutic method generally referred to herein could include the method for the treatment of various pathologies or other cellular dysfunctions and derangements by the administration of pharmaceutical compositions that may comprise effective inhibitors of eEF-2 kinase activity, or other equally effective drugs developed for instance by a drug screening assay prepared and used in accordance with a further aspect of the present invention.

25

Accordingly, it is a principal object of the present invention to provide a method and an associated assay system for screening potential inhibitors of eEF-2 kinase activity.

It is a further object of the present invention to provide antibodies to the phosphorylated eEF-2 kinase target, and methods for their preparation, including recombinant means.

PCT/US98/17272

It is a further object of the present invention to provide a method for detecting eEF-2 kinase activity in mammals in which invasive, spontaneous, or idiopathic pathological states are suspected to be present.

- It is a still further object of the present invention to provide a method for the treatment of mammals to control the amount or activity of eEF-2 kinase, so as to alter the adverse consequences of such presence or activity, or where beneficial, to enhance such activity.
- 10 It is a still further object of the present invention to provide a method for the treatment of mammals to control the amount or activity of eEF-2 kinase, so as to treat or avert the adverse consequences of invasive, spontaneous or idiopathic pathological states.
- It is a still further object of the present invention to provide pharmaceutical compositions for use in therapeutic methods which comprise or are based upon a sequence complementary to that of the eEF-2 kinase mRNA, which would form the basis for an antisense therapeutic that can reduce expression, and thus activity, of eEF-2 kinase.
- It is yet another object of the invention to provide pharmaceutical compositions for use in therapeutic methods which comprise or are based upon peptide analogs of eEF-2 phosphorylation target amino acid sequences. It is anticipated that certain peptide analogs may act as efficacious competitive inhibitors of eEF-2 phosphorylation.
- In accordance with the present invention there may be employed conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art. Such techniques are explained fully in the literature. Sec, e.g., Sambrook et al, "Molecular Cloning: A Laboratory Manual" (1989); "Current Protocols in Molecular Biology" Volumes I-III [Ausubel, R. M., ed. (1994)]; "Cell Biology: A Laboratory Handbook"
 Volumes I-III [J. E. Celis, ed. (1994))]; "Current Protocols in Immunology" Volumes I-

III [Coligan, J. E., ed. (1994)]: "Oligonucleotide Synthesis" (M.J. Gait ed. 1984); "Nucleic Acid Hybridization" [B.D. Hames & S.J. Higgins eds. (1985)]: "Transcription And Translation" [B.D. Hames & S.J. Higgins, eds. (1984)]; "Animal Cell Culture" [R.I. Freshney, ed. (1986)]: "Immobilized Cells And Enzymes" [IRL Press. (1986)]; B. Perbal, "A Practical Guide To Molecular Cloning" (1984).

Therefore, if appearing herein, the following terms shall have the definitions set out below.

10 The terms "elongation factor-2 kinase", "eEF-2 kinase", "EF-2 kinase", "Cefk", and any variants not specifically listed, may be used herein interchangeably, and as used throughout the present application and claims refer to proteinaceous material including single or multiple proteins, and extends to those proteins having the amino acid sequence data described herein and presented in FIGURES 1 and 5 (SEQ 1D NO: 2, 4, 6, 8, 10, 12, abd 14), and the profile of activities set forth herein and in the Claims. Accordingly, 15 proteins displaying substantially equivalent or altered activity are likewise contemplated. These modifications may be deliberate, for example, such as modifications obtained through site-directed mutagenesis, or may be accidental, such as those obtained through mutations in hosts that are producers of the complex or its named subunits. Also, the terms elongation factor-2 kinase", "eEF-2 kinase", "EF-2 kinase", and "Cefk" are 20 intended to include within their scope proteins specifically recited herein as well as all substantially homologous analogs and allelic variations.

The amino acid residues described herein are preferred to be in the "L" isomeric form.

However, residues in the "D" isomeric form can be substituted for any L-amino acid residue, as long as the desired fractional property of immunoglobulin-binding is retained by the polypeptide. NH₂ refers to the free amino group present at the amino terminus of a polypeptide. COOH refers to the free carboxy group present at the carboxy terminus of a polypeptide. In keeping with standard polypeptide nomenclature, *J. Biol. Chem.*,

243 3552-59 (1969), abbreviations for amino acid residues are shown in the following Table of Correspondence:

TABLE OF CORRESPONDENCE

5	<u>SYMBOL</u>		AMINO ACID
	1-Letter	3-Letter	
	Y	Tyr	tyrosine
	G	Gly	glycine
	F	Phe	phenylalanine
10	N1	Met	methionine
	Α	Ala	alanine
	S	Ser	serine
	l	Ile	isoleucine
	L.	Leu	leucine
15	Γ	Thr	threonine
	V	Val	valine
	P	Pro	proline
	K	Lys	lysine
	1-1	His	histidine
20	Q	Gln	glutamine
	E	Glu	glutamic acid
	W	Trp	tryptophan
	R	Arg	arginine
	D	Asp	aspartic acid
25	N	Asn	asparagine
	C	Cys	cysteine

It should be noted that all amino-acid residue sequences are represented herein by formulae whose left and right orientation is in the conventional direction of amino-30 terminus to carboxy-terminus. Furthermore, it should be noted that a dash at the

20

beginning or end of an amino acid residue sequence indicates a peptide bond to a further sequence of one or more amino-acid residues. The above Table is presented to correlate the three-letter and one-letter notations which may appear alternately herein.

5 A "replicon" is any genetic element (e.g., plasmid, chromosome, virus) that functions as an autonomous unit of DNA replication *in vivo*; *i.e.*, capable of replication under its own control.

A "vector" is a replicon, such as plasmid, phage or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "DNA molecule" refers to the polymeric form of deoxyribonucleotides (adenine, guanine, thymine, or cytosine) in its either single stranded form, or a double-stranded helix. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, *inter alia*, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences may be described herein according to the normal convention of giving only the sequence in the 5' to 3' direction along the nontranscribed strand of DNA (*i.e.*, the strand having a sequence homologous to the mRNA).

An "origin of replication" refers to those DNA sequences that participate in DNA synthesis.

- 25 A DNA "coding sequence" is a double-stranded DNA sequence which is transcribed and translated into a polypeptide *in vivo* when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxyl) terminus. A coding sequence can include, but is not limited to, prokaryotic sequences.
- 30 cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic (e.g.,

mammalian) DNA, and even synthetic DNA sequences. A polyadenylation signal and transcription termination sequence will usually be located 3' to the coding sequence.

Transcriptional and translational control sequences are DNA regulatory sequences, such as promoters, enhancers, polyadenylation signals, terminators, and the like, that provide for the expression of a coding sequence in a host cell.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined by mapping with nuclease \$1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Prokaryotic promoters contain Shine-Dalgarno sequences in addition to the -10 and -35 consensus sequences.

20 An "expression control sequence" is a DNA sequence that controls and regulates the transcription and translation of another DNA sequence. A coding sequence is "under the control" of transcriptional and translational control sequences in a cell when RNA polymerase transcribes the coding sequence into mRNA, which is then translated into the protein encoded by the coding sequence.

25

10

15

A "signal sequence" can be included before the coding sequence. This sequence encodes a signal peptide. N-terminal to the polypeptide, that communicates to the host cell to direct the polypeptide to the cell surface or secrete the polypeptide into the media, and this signal peptide is clipped off by the host cell before the protein leaves the cell. Signal

15

20

25

sequences can be found associated with a variety of proteins native to prokaryotes and eukaryotes.

The term "oligonucleotide," as used herein in referring to the probe of the present invention, is defined as a molecule comprised of two or more ribonucleotides, preferably more than three. Its exact size will depend upon many factors which, in turn, depend upon the ultimate function and use of the oligonucleotide.

The term "primer" as used herein refers to an oligonucleotide, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand, is induced, i.e., in the presence of nucleotides and an inducing agent such as a DNA polymerase and at a suitable temperature and pH. The primer may be either single-stranded or double-stranded and must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon many factors, including temperature, source of primer and use of the method. For example, for diagnostic applications, depending on the complexity of the target sequence, the oligonucleotide primer typically contains 15-25 or more nucleotides, although it may contain fewer nucleotides.

The primers herein are selected to be "substantially" complementary to different strands of a particular target DNA sequence. This means that the primers must be sufficiently complementary to hybridize with their respective strands. Therefore, the primer sequence need not reflect the exact sequence of the template. For example, a non-complementary nucleotide fragment may be attached to the 5' end of the primer, with the remainder of the primer sequence being complementary to the strand. Alternatively, non-complementary bases or longer sequences can be interspersed into the primer, provided that the primer sequence has sufficient complementarity with the sequence of the strand

to hybridize therewith and thereby form the template for the synthesis of the extension product.

As used herein, the terms "restriction endonucleases" and "restriction enzymes" refer to bacterial enzymes, each of which cut double-stranded DNA at or near a specific nucleotide sequence.

A cell has been "transformed" by exogenous or heterologous DNA when such DNA has been introduced inside the cell. The transforming DNA may or may not be integrated (covalently linked) into chromosomal DNA making up the genome of the cell. In prokaryotes, yeast, and mammalian cells for example, the transforming DNA may be maintained on an episomal element such as a plasmid. With respect to eukaryotic cells, a stably transformed cell is one in which the transforming DNA has become integrated into a chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cells containing the transforming DNA. A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth *in vitro* for many generations.

20

25

10

15

Two DNA sequences are "substantially homologous" when at least about 75% (preferably at least about 80%, and most preferably at least about 90 or 95%) of the nucleotides match over the defined length of the DNA sequences. Sequences that are substantially homologous can be identified by comparing the sequences using standard software available in sequence data banks, or in a Southern hybridization experiment under, for example, stringent conditions as defined for that particular system. Defining appropriate hybridization conditions is within the skill of the art. See, e.g., Maniatis et al., *supra*; DNA Cloning, Vols. I & II, *supra*; Nucleic Acid Hybridization, *supra*.

It should be appreciated that also within the scope of the present invention are DNA sequences encoding eEF-2 kinase which code for a protein having the same amino acid sequence as SEQ ID NO: 2, 4, and 10, but which are degenerate to SEQ ID NO: 1, 3, and 9. By "degenerate to" is meant that a different three-letter codon is used to specify a particular amino acid. It is well known in the art that the following codons can be used interchangeably to code for each specific amino acid:

	Phenylalanine (Phe or F)	UUU or UUC		
	Leucine (Leu or L)	UUA or UUG or CUU or CUC or CUA or CUG		
10	Isoleucine (Ile or I)	AUU or AUC or AUA		
	Methionine (Met or M)	AUG		
	Valine (Val or V)	GUU or GUC of GUA or GUG		
	Serine (Ser or S)	UCU or UCC or UCA or UCG or AGU or AGC		
	Proline (Pro or P)	CCU or CCC or CCA or CCG		
15	Threonine (Thr or T)	ACU or ACC or ACA or ACG		
	Alanine (Ala or A)	GCU or GCG or GCA or GCG		
	Tyrosine (Tyr or Y)	UAU or UAC		
	Histidine (His or H)	CAU or CAC		
	Glutamine (Gln or Q) CAA	or CAG		
20	Asparagine (Asn or N)	AAU or AAC		
	Lysine (Lys or K)	AAA or AAG		
	Aspartic Acid (Asp or D)	GAU or GAC		
	Glutamic Acid (Glu or E)	GAA or GAG		
25	Cysteine (Cys or C)	UGU or UGC		
	Arginine (Arg or R)	CGU or CGC or CGA or CGG or AGA or AGG		
	Glycine (Gly or G)	GGU or GGC or GGA or GGG		
	Tryptophan (Trp or W)	UGG		
	Termination codon	UAA (ochre) or UAG (amber) or UGA (opal)		

PCT/US98/17272

It should be understood that the codons specified above are for RNA sequences. The corresponding codons for DNA have a T substituted for U.

29

Mutations can be made in SEQ ID NO: 1.3, and 9 such that a particular codon is changed to a codon which codes for a different amino acid. Such a mutation is generally made by making the fewest nucleotide changes possible. A substitution mutation of this sort can be made to change an amino acid in the resulting protein in a non-conservative manner (*i.e.*, by changing the codon from an amino acid belonging to a grouping of amino acids having a particular size or characteristic to an amino acid belonging to another grouping) or in a conservative manner (*i.e.*, by changing the codon from an amino acid belonging to a grouping of amino acids having a particular size or characteristic to an amino acid belonging to the same grouping). Such a conservative change generally leads to less change in the structure and function of the resulting protein. A non-conservative change is more likely to alter the structure, activity or function of the resulting protein. The present invention should be considered to include sequences containing conservative changes which do not significantly alter the activity or binding characteristics of the resulting protein.

The following is one example of various groupings of amino acids:

20

10

15

Amino acids with nonpolar R groups

Alanine

Valine

25 Leucine

Isoleucine

Proline

Phenylalanine

Tryptophan

30 Methionine

Amino acids with uncharged polar R groups

Glycine

Serine

5 Threonine

Cysteine

Tyrosine

Asparagine

Glutamine

10

Amino acids with charged polar R groups (negatively charged at pH 6.0)

Aspartic acid

Glutamic acid

15

Basic amino acids (positively charged at pH 6.0)

Lysine

Arginine

20 Histidine (at pH 6.0)

Another grouping may be those amino acids with phenyl groups:

Phenylalanine

25 Tryptophan

Tyrosine

Another grouping may be according to molecular weight (i.e., size of R groups):

30 Glycine

30

	Alanine		80
	Serine		105
	Proline		115
	Valine		117
5	Threonine		119
	Cysteine		121
	Leucine		131
	Isoleucine		131
	Asparagine		132
10	Aspartic acid		133
	Glutamine		146
	Lysine	146	
	Glutamic acid		147
	Methionine		149
15	Histidine (at pH 6.0)		155
	Phenylalanine		165
	Arginine		174
	Tyrosine		181
	Tryptophan		204

Particularly preferred substitutions are:

- Lys for Arg and vice versa such that a positive charge may be maintained:
- Glu for Asp and vice versa such that a negative charge may be maintained:
- Ser for Thr such that a free -OH can be maintained; and
- 25 Gln for Asn such that a free NH₂ can be maintained.

Amino acid substitutions may also be introduced to substitute an amino acid with a particularly preferable property. For example, a Cys may be introduced a potential site for disulfide bridges with another Cys. A His may be introduced as a particularly "catalytic" site (i.e., His can act as an acid or base and is the most common amino acid

in biochemical catalysis). Pro may be introduced because of its particularly planar structure, which induces β -turns in the protein's structure.

Two amino acid sequences are "substantially homologous" when at least about 70% of the amino acid residues (preferably at least about 80%, and most preferably at least about 90 or 95%) are identical, or represent conservative substitutions.

A "heterologous" region of the DNA construct is an identifiable segment of DNA within a larger DNA molecule that is not found in association with the larger molecule in nature.

Thus, when the heterologous region encodes a mammalian gene, the gene will usually be flanked by DNA that does not flank the mammalian genomic DNA in the genome of the source organism. Another example of a heterologous coding sequence is a construct where the coding sequence itself is not found in nature (e.g., a cDNA where the genomic coding sequence contains introns, or synthetic sequences having codons different than the native gene). Allelic variations or naturally-occurring mutational events do not give rise to a heterologous region of DNA as defined herein.

An "antibody" is any immunoglobulin, including antibodies and fragments thereof, that binds a specific epitope. The term encompasses polyclonal, monoclonal, and chimeric antibodies, the last mentioned described in further detail in U.S. Patent Nos. 4,816,397 and 4,816,567.

An "antibody combining site" is that structural portion of an antibody molecule comprised of heavy and light chain variable and hypervariable regions that specifically binds antigen.

The phrase "antibody molecule" in its various grammatical forms as used herein contemplates both an intact immunoglobulin molecule and an immunologically active portion of an immunoglobulin molecule.

20

25

Exemplary antibody molecules are intact immunoglobulin molecules, substantially intact immunoglobulin molecules and those portions of an immunoglobulin molecule that contains the paratope, including those portions known in the art as Fab, Fab', $F(ab')_2$ and F(y), which portions are preferred for use in the therapeutic methods described herein.

5

10

Fab and $F(ab')_2$ portions of antibody molecules are prepared by the proteolytic reaction of papain and pepsin, respectively, on substantially intact antibody molecules by methods that are well-known. See for example, U.S. Patent No. 4.342,566 to Theofilopolous et al. Fab' antibody molecule portions are also well-known and are produced from $F(ab')_2$ portions followed by reduction of the disulfide bonds linking the two heavy chain portions as with mercaptoethanol, and followed by alkylation of the resulting protein mercaptan with a reagent such as iodoacetamide. An antibody containing intact antibody molecules is preferred herein.

15

The phrase "monoclonal antibody" in its various grammatical forms refers to an antibody having only one species of antibody combining site capable of immunoreacting with a particular antigen. A monoclonal antibody thus typically displays a single binding affinity for any antigen with which it immunoreacts. A monoclonal antibody may therefore contain an antibody molecule having a plurality of antibody combining sites, each immunospecific for a different antigen; e.g., a bispecific (chimeric) monoclonal antibody.

20

The phrase "pharmaceutically acceptable" refers to molecular entities and compositions that are physiologically tolerable and do not typically produce an allergic or similar untoward reaction, such as gastric upset, dizziness and the like, when administered to a human.

30

25

The phrase "therapeutically effective amount" is used herein to mean an amount sufficient to prevent, and preferably reduce by at least about 30 percent, more preferably by at least 50 percent, most preferably by at least 90 percent, a clinically significant

change in the S phase activity of a target cellular mass, or other feature of pathology such as for example, elevated blood pressure, fever or white cell count as may attend its presence and activity.

5 A DNA sequence is "operatively linked" to an expression control sequence when the expression control sequence controls and regulates the transcription and translation of that DNA sequence. The term "operatively linked" includes having an appropriate start signal (e.g., ATG) in front of the DNA sequence to be expressed and maintaining the correct reading frame to permit expression of the DNA sequence under the control of the expression control sequence and production of the desired product encoded by the DNA sequence. If a gene that one desires to insert into a recombinant DNA molecule does not contain an appropriate start signal, such a start signal can be inserted in front of the gene.

The term "standard hybridization conditions" refers to salt and temperature conditions substantially equivalent to 5 x SSC and 65°C for both hybridization and wash. However, one skilled in the art will appreciate that such "standard hybridization conditions" are dependent on particular conditions including the concentration of sodium and magnesium in the buffer, nucleotide sequence length and concentration, percent mismatch, percent formamide, and the like. Also important in the determination of "standard hybridization conditions" is whether the two sequences hybridizing are RNA-RNA. DNA-DNA or RNA-DNA. Such standard hybridization conditions are easily determined by one skilled in the art according to well known formulae, wherein hybridization is typically 10-20°C below the predicted or determined T_m with washes of higher stringency, if desired.

25

15

20

In one aspect, the present invention relates to the identification of a new superfamily of protein kinases centered around eEF-2 kinase. Accordingly, it includes the DNA sequences coding for these family members. In addition, the invention also contemplates that each member of this new protein kinase superfamily has its own cognate

phosphorylation target. As specified *supra*, two of these targets are eEF-2 and MHC, which are phosphorylated by eEF-2 kinase and MHCK A, respectively.

In a particular embodiment, the present invention relates to phosphorylation target analogs, which are short peptide sequences derived from phosphorylation targets of this new superfamily of protein kinases centered around eEF-2 kinase. Specifically, it is contemplated that these peptide analogs will be instrumental in the development of high throughput screening assays to identify inhibitors of members of this new superfamily.

10 As overexpression of eEF-2 kinase has been associated with a variety of cancers and other hyperproliferitive pathologies (discussed *supra*), the invention also includes assay systems for the screening of potential drugs effective at inhibiting eEF-2 kinase activity. It is contemplated that any of the recited assays can be automated using technology that is standard to the skilled artisan.

15

20

As stated above, the present invention also relates to a recombinant DNA molecule or cloned gene, or a degenerate variant thereof, which encodes a eEF-2 kinase, or a fragment thereof, that possesses a molecular weight of about 100 kD and an amino acid sequence set forth in Figure 5 (SEQ ID NO: 2, 4, and 10); preferably a nucleic acid molecule, in particular a recombinant DNA molecule or cloned gene, encoding the 100 kD eEF-2 kinase has a nucleotide sequence or is complementary to a DNA sequence shown in Figure 5 (SEQ ID NO: 1, 3, and 9).

Therapeutic possibilities are raised by the knowledge of the eEF-2 kinase sequence and the existence of peptide analogs that can act as phosphorylation targets for the kinase. Accordingly, it is contemplated that sequences that are derived from the complement to the eEF-2 kinase mRNA sequence, and various modifications thereof, can act as potent antisense drugs that either inhibit expression in a competitive fashion, or, more effectively, by nuclease activity associated with the antisense drug that cleaves the eEF-2 kinase mRNA sequence, thus rendering it irreversibly inactive. Alternative therapeutics

are also contemplated that concern the use of peptides and peptide analogs representing portions of phosphorylation target amino acid sequences. It is envisioned that such peptide-based drugs would inhibit eEF-2 kinase activity on its native target, thus bypassing the cascade of events that would lead to malignant transformation.

5

10

The antisense or peptide-based drugs may be prepared in pharmaceutical compositions, with a suitable carrier and at a strength effective for administration by various means to a patient experiencing an adverse medical condition associated with specific malignancies for the treatment thereof. A variety of administrative techniques may be utilized, among them parenteral techniques such as subcutaneous, intravenous and intraperitoneal injections, catheterizations and the like. Average quantities of the antisense or peptide-based drugs may vary and in particular should be based upon the recommendations and prescription of a qualified physician or veterinarian.

15

20

Also, antibodies including both polyclonal and monoclonal antibodies, and drugs that modulate the production or activity of eEF-2 kinase may possess certain diagnostic applications and may, for example, be utilized for the purpose of detecting and/or measuring levels of eEF-2 kinase. It is anticipated that further experimentation will reveal a prognostic correlation between eEF-2 kinase levels and the prediction and or progression of certain malignancies associated with carcinoma. For example, eEF-2 kinase may be used to produce both polyclonal and monoclonal antibodies to themselves in a variety of cellular media, by known techniques such as the hybridoma technique utilizing, for example, fused mouse spleen lymphocytes and myeloma cells. Likewise, small molecules that mimic or antagonize the activity of eEF-2 kinase of the invention may be discovered or synthesized, and may be used in diagnostic and/or therapeutic protocols.

25

30

The general methodology for making monoclonal antibodies by hybridomas is well known. Immortal, antibody-producing cell lines can also be created by techniques other than fusion, such as direct transformation of B lymphocytes with oncogenic DNA, or

10

15

transfection with Epstein-Barr virus. See, e.g., M. Schreier et al., "Hybridoma Techniques" (1980): Hammerling et al., "Monoclonal Antibodies And T-cell Hybridomas" (1981): Kennett et al., "Monoclonal Antibodies" (1980): see also U.S. Patent Nos. 4,341,761: 4,399,121: 4,427,783: 4,444,887: 4,451,570: 4,466,917: 4,472,500; 4,491,632: 4,493,890.

Panels of monoclonal antibodies produced against eEF-2 kinase peptides can be screened for various properties: *i.e.*, isotype, epitope, affinity, etc. Of particular interest are monoclonal antibodies that neutralize the activity of eEF-2 kinase. Such monoclonals can be readily identified in eEF-2 kinase activity assays. High affinity antibodies are also useful when immunoaffinity purification of native or recombinant eEF-2 kinase is desired.

Preferably, the anti-eEF-2 kinase antibody used in the diagnostic methods of this invention is an affinity purified polyclonal antibody. More preferably, the antibody is a monoclonal antibody (mAb). In addition, it is preferable for the anti-eEF-2 kinase antibody molecules used herein be in the form of Fab, Fab', F(ab')₂ or F(v) portions of whole antibody molecules.

As suggested earlier, the diagnostic method of the present invention comprises examining a cellular sample or medium by means of an assay including an effective amount of an antagonist to eEF-2 kinase, such as an anti-eEF-2 kinase antibody, preferably an affinity-purified polyclonal antibody, and more preferably a mAb. In addition, it is preferable for the anti-eEF-2 kinase antibody molecules used herein be in the form of Fab, Fab', F(ab')₂ or F(v) portions or whole antibody molecules. As previously discussed, patients capable of benefiting from this method include those suffering from cancer, a pre-cancerous lesion, a viral infection or other like pathological derangement. Methods for isolating the eEF-2 kinase and inducing anti-eEF-2 kinase antibodies and for determining and optimizing the ability of anti-eEF-2 kinase antibodies to assist in the examination of the target cells are all well-known in the art.

10

15

25

30

Methods for producing polyclonal anti-polypeptide antibodies are well-known in the art. See U.S. Patent No. 4,493,795 to Nestor et al. A monoclonal antibody, typically containing Fab and/or F(ab'), portions of useful antibody molecules, can be prepared using the hybridoma technology described in Antibodies - A Laboratory Manual. Harlow and Lane, eds., Cold Spring Harbor Laboratory, New York (1988), which is incorporated herein by reference.

Splenocytes are typically fused with myeloma cells using polyethylene glycol (PEG) 6000. Fused hybrids are selected by their sensitivity to HAT. Hybridomas producing a monoclonal antibody useful in practicing this invention are identified by their ability to immunoreact with the present eEF-2 kinase and their ability to inhibit specified eEF-2 kinase activity in target cells.

A monoclonal antibody useful in practicing the present invention can be produced by initiating a monoclonal hybridoma culture comprising a nutrient medium containing a hybridoma that secretes antibody molecules of the appropriate antigen specificity. The culture is maintained under conditions and for a time period sufficient for the hybridoma to secrete the antibody molecules into the medium. The antibody-containing medium is then collected. The antibody molecules can then be further isolated by well-known 20 techniques.

Media useful for the preparation of these compositions are both well-known in the art and commercially available and include synthetic culture media, inbred mice and the like. An exemplary synthetic medium is Dulbecco's minimal essential medium (DMEM; Dulbecco et al., Virol. 8:396 (1959)) supplemented with 4.5 gm/l glucose, 20mM glutamine, and 20% fetal calf serum. An exemplary inbred mouse strain is the Balb/c.

Methods for producing monoclonal anti-eEF-2 kinase antibodies are also well-known in the art. See Niman et al., Proc. Natl. Acad. Sci. USA, 80:4949-4953 (1983). Typically, the present eEF-2 kinase or a peptide analog is used either alone or conjugated to an

PCT/US98/17272

immunogenic carrier, as the immunogen in the before described procedure for producing anti-eEF-2 kianse monoclonal antibodies. The hybridomas are screened for the ability to produce an antibody that immunoreacts with the eEF-2 kinase peptide analog and the present eEF-2 kinase.

5

The present invention further contemplates therapeutic compositions useful in practicing the therapeutic methods of this invention. A subject therapeutic composition includes, in admixture, a pharmaceutically acceptable excipient (carrier) and one or more of an anti-eEF-2 kinase antibody, peptide analog capable of competing for phosphorylation of eEF-2 by eEF-2 kinase, antisense drug against eEF-2 kinase mRNA, or any other compound that is found to inhibit eEF-2 kinase activity. In a preferred embodiment, the composition comprises an antigen capable of modulating the activity of eEF-2 kinase within a target cell.

The preparation of therapeutic compositions which contain polypeptides, analogs or active fragments as active ingredients is well understood in the art. Typically, such compositions are prepared as injectables, either as liquid solutions or suspensions, however, solid forms suitable for solution in, or suspension in, liquid prior to injection can also be prepared. The preparation can also be emulsified. The active therapeutic ingredient is often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof. In addition, if desired, the composition can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents which enhance the effectiveness of the active ingredient.

A polypeptide, analog or active fragment can be formulated into the therapeutic composition as neutralized pharmaceutically acceptable salt forms. Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the polypeptide or antibody molecule) and which are formed with inorganic acids such as.

for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed from the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.

The therapeutic polypeptide-, analog- or active fragment-containing compositions are conventionally administered intravenously, as by injection of a unit dose, for example. The term "unit dose" when used in reference to a therapeutic composition of the present invention refers to physically discrete units suitable as unitary dosage for humans, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; *i.e.*, carrier, or vehicle.

The compositions are administered in a manner compatible with the dosage formulation, and in a therapeutically effective amount. The quantity to be administered depends on the subject to be treated, capacity of the subject's immune system to utilize the active ingredient, and degree of inhibition or neutralization of eEF-2 kinase activity desired. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are peculiar to each individual. However, suitable dosages may range from about 0.1 to 20, preferably about 0.5 to about 10, and more preferably one to several, milligrams of active ingredient per kilogram body weight of individual per day and depend on the route of administration. Suitable regimes for initial administration and booster shots are also variable, but are typified by an initial administration followed by repeated doses at one or more hour intervals by a subsequent injection or other administration. Alternatively, continuous intravenous infusion sufficient to maintain concentrations of ten nanomolar to ten micromolar in the blood are contemplated.

Formulations

30 Intravenous Formulation I

5

10

15

20

mg/ml

10.0 45.0

3.2

0.1

	Ingredient	mg/ml
	cefotaxime	250.0
	antibody, peptide, antisense drug, or other compound	10.0
	dextrose USP	45.0
5	sodium bisulfite USP	3.2
	edetate disodium USP	0.1
	water for injection q.s.a.d.	1.0 ml
	Intravenous Formulation II	
10	Ingredient	mg/ml
	ampicillin	250.0
	antibody, peptide, antisense drug, or other compound	10.0
	sodium bisulfite USP	3.2
	disodium edetate USP	0.1
15	water for injection q.s.a.d.	1.0 ml
	Intravenous Formulation III	
	Ingredient	mg/ml
	gentamicin (charged as sulfate)	40.0
20	antibody, peptide, antisense drug, or other compound	10.0
	sodium bisulfite USP	3.2
	disodium edetate USP	0.1
	water for injection q.s.a.d.	1.0 ml

Intravenous Formulation IV

antibody, peptide, antisense drug, or other compound

Ingredient

dextrose USP

sodium bisulfite USP

edetate disodium USP

BNSDOCID: <WO_ 9909199A2_!_>

25

10

water for injection q.s.a.d.

1.0 ml

As used herein, "pg" means picogram, "ng" means nanogram, "ug" or "µg" mean microgram, "mg" means milligram, "ul" or "µl" mean microliter, "ml" means milliliter, "l" means liter.

Another feature of this invention is the expression of the DNA sequences disclosed herein. As is well known in the art, DNA sequences may be expressed by operatively linking them to an expression control sequence in an appropriate expression vector and employing that expression vector to transform an appropriate unicellular host.

Such operative linking of a DNA sequence of this invention to an expression control sequence, of course, includes, if not already part of the DNA sequence, the provision of an initiation codon, ATG, in the correct reading frame upstream of the DNA sequence.

15

20

25

30

A wide variety of host/expression vector combinations may be employed in expressing the DNA sequences of this invention. Useful expression vectors, for example, may consist of segments of chromosomal, non-chromosomal and synthetic DNA sequences. Suitable vectors include derivatives of SV40 and known bacterial plasmids, e.g., *E. coli* plasmids col El. pCR1, pBR322, pMB9 and their derivatives, plasmids such as RP4: phage DNAS, e.g., the numerous derivatives of phage λ , e.g., NM989, and other phage DNA, e.g., M13 and filamentous single stranded phage DNA; yeast plasmids such as the 2μ plasmid or derivatives thereof; vectors useful in eukaryotic cells, such as vectors useful in insect or mammalian cells: vectors derived from combinations of plasmids and phage DNAs, such as plasmids that have been modified to employ phage DNA or other expression control sequences: and the like.

Any of a wide variety of expression control sequences -- sequences that control the expression of a DNA sequence operatively linked to it -- may be used in these vectors to express the DNA sequences of this invention. Such useful expression control sequences

include, for example, the early or late promoters of SV40, CMV, vaccinia, polyoma or adenovirus, the *lac* system, the *trp* system, the *TAC* system, the *TRC* system, the *LTR* system, the major operator and promoter regions of phage λ , the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase or other glycolytic enzymes, the promoters of acid phosphatase (e.g., Pho5), the promoters of the yeast α -mating factors, and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells or their viruses, and various combinations thereof.

A wide variety of unicellular host cells are also useful in expressing the DNA sequences of this invention. These hosts may include well known eukaryotic and prokaryotic hosts, such as strains of *E. coli*, *Pseudomonas*, *Bacillus*, *Streptomyces*, fungi such as yeasts, and animal cells, such as CHO, Rl.I, B-W and L-M cells. African Green Monkey kidney cells (e.g., COS 1, COS 7, BSC1, BSC40, and BMT10), insect cells (e.g., Sf9), and human cells and plant cells in tissue culture.

15

20

10

It will be understood that not all vectors, expression control sequences and hosts will function equally well to express the DNA sequences of this invention. Neither will all hosts function equally well with the same expression system. However, one skilled in the art will be able to select the proper vectors, expression control sequences, and hosts without undue experimentation to accomplish the desired expression without departing from the scope of this invention. For example, in selecting a vector, the host must be considered because the vector must function in it. The vector's copy number, the ability to control that copy number, and the expression of any other proteins encoded by the vector, such as antibiotic markers, will also be considered.

25

30

In selecting an expression control sequence, a variety of factors will normally be considered. These include, for example, the relative strength of the system, its controllability, and its compatibility with the particular DNA sequence or gene to be expressed, particularly as regards potential secondary structures. Suitable unicellular hosts will be selected by consideration of, e.g., their compatibility with the chosen vector.

their secretion characteristics, their ability to fold proteins correctly, and their fermentation requirements, as well as the toxicity to the host of the product encoded by the DNA sequences to be expressed, and the ease of purification of the expression products.

5

Considering these and other factors, a person skilled in the art will be able to construct a variety of vector/expression control sequence/host combinations that will express the DNA sequences of this invention on fermentation or in large scale animal culture.

10 The present invention extends to the preparation of antisense oligonucleotides and ribozymes that may be used to interfere with the expression of the eEF-2 kinase gene at the translational level. This approach utilizes antisense nucleic acid and ribozymes to block translation of a specific mRNA, either by masking that mRNA with an antisense nucleic acid or cleaving it with a ribozyme.

15

20

25

30

Antisense nucleic acids are DNA or RNA molecules that are complementary to at least a portion of a specific mRNA molecule. (See Weintraub, 1990: Marcus-Sekura, 1988.) In the cell, they hybridize to that mRNA, forming a double stranded molecule. The cell does not translate an mRNA in this double-stranded form. Therefore, antisense nucleic acids interfere with the expression of mRNA into protein. Oligomers of about fifteen nucleotides and molecules that hybridize to the AUG initiation codon will be particularly efficient, since they are easy to synthesize and are likely to pose fewer problems than larger molecules when introducing them into eEF-2 kinase-producing cells. Antisense methods have been used to inhibit the expression of many genes *in vitro* (Marcus-Sekura, 1988; Hambor et al., 1988).

Ribozymes are RNA molecules possessing the ability to specifically cleave other single stranded RNA molecules in a manner somewhat analogous to DNA restriction endonucleases. Ribozymes were discovered from the observation that certain mRNAs have the ability to excise their own introns. By modifying the nucleotide sequence of

these RNAs, researchers have been able to engineer molecules that recognize specific nucleotide sequences in an RNA molecule and cleave it (Cech. 1988.). Because they are sequence-specific, only mRNAs with particular sequences are inactivated.

Investigators have identified two types of ribozymes, *Tetrahymena*-type and "hammerhead"-type. (Hasselhoff and Gerlach. 1988) *Tetrahymena*-type ribozymes recognize four-base sequences, while "hammerhead"-type recognize eleven- to eighteen-base sequences. The longer the recognition sequence, the more likely it is to occur exclusively in the target mRNA species. Therefore, hammerhead-type ribozymes are preferable to *Tetrahymena*-type ribozymes for inactivating a specific mRNA species. and eighteen base recognition sequences are preferable to shorter recognition sequences.

The DNA sequences described herein may thus be used to prepare antisense molecules against, and ribozymes that cleave mRNAs for eEF-2 kinase.

15

20

25

30

The present invention also relates to a variety of diagnostic applications, including methods for detecting and quantifying the levels of eEF-2 kinase. As mentioned earlier, eEF-2 kinase can be used to produce antibodies to itself by a variety of known techniques, and such antibodies could then be isolated and utilized as in tests for the presence and levels of eEF-2 kinase activity in suspect target cells.

As described in detail above, antibody(ies) to eEF-2 kinase can be produced and isolated by standard methods including the well known hybridoma techniques. For convenience, the antibody(ies) to eEF-2 kinase will be referred to herein as Δb_1 and antibody(ies) raised in another species as Δb_2 .

The presence and levels of eEF-2 kinase in cells can be ascertained by the usual immunological procedures applicable to such determinations. A number of useful procedures are known. Three such procedures which are especially useful, utilize either eEF-2 kinase labeled with a detectable label, antibody Ab₁ labeled with a detectable label.

or antibody Ab₂ labeled with a detectable label. The procedures may be summarized by the following equations wherein the asterisk indicates that the particle is labeled, and "~" stands for eEF-2 kinase:

$$A_{1} \sim^{*} \pm Ab_{1} = \sim^{*} Ab_{1}$$

5 B.
$$\sim + Ab^* = \sim Ab_1^*$$

$$C_{1} \sim + Ab_{1} + Ab_{2} + - - Ab_{1}Ab_{2}$$

The procedures and their application are all familiar to those skilled in the art and accordingly may be utilized within the scope of the present invention. The "competitive" procedure, Procedure A, is described in U.S. Patent Nos. 3,654,090 and 3,850,752. Procedure C, the "sandwich" procedure, is described in U.S. Patent Nos. RE 31,006 and 4,016,043. Still other procedures are known such as the "double antibody," or "DASP" procedure.

- In each instance, eEF-2 kinase forms complexes with one or more antibody(ies) or binding partners and one member of the complex is labeled with a detectable label. The fact that a complex has formed and, if desired, the amount thereof, can be determined by known methods applicable to the detection of labels.
- 20 It will be seen from the above, that a characteristic property of Ab₂ is that it will react with Ab₁. This is because Ab₁ raised in one mammalian species has been used in another species as an antigen to raise the antibody Ab₂. For example, Ab₂ may be raised in goats using rabbit antibodies as antigens. Ab₂ therefore would be anti-rabbit antibody raised in goats. For purposes of this description and claims, Ab₁ will be referred to as a primary or anti-eEF-2 kinase antibody, and Ab₂ will be referred to as a secondary or anti-Ab₁ antibody.

The labels most commonly employed for these studies are radioactive elements, enzymes, chemicals which fluoresce when exposed to ultraviolet light, and others.

A number of fluorescent materials are known and can be utilized as labels. These include, for example, fluorescein, rhodamine, auramine, Texas Red, AMCA blue and Lucifer Yellow. A particular detecting material is anti-rabbit antibody prepared in goats and conjugated with fluorescein through an isothiocyanate.

5

eEF-2 kinase can also be labeled with a radioactive element or with an enzyme. The radioactive label can be detected by any of the currently available counting procedures. The preferred isotope may be selected from ³H, ¹⁴C, ³²P, ³³P, ³⁵S, ³⁶Cl, ⁵¹Cr, ⁵⁷Co, ⁵⁸Co, ⁵⁹Fe, ⁹⁰Y, ¹²⁵I, ¹³¹I, and ¹⁸⁶Re.

10

15

Enzyme labels are likewise useful, and can be detected by any of the presently utilized colorimetric, spectrophotometric, fluorospectrophotometric, amperometric or gasometric techniques. The enzyme is conjugated to the selected particle by reaction with bridging molecules such as carbodiimides, diisocyanates, glutaraldehyde and the like. Many enzymes which can be used in these procedures are known and can be utilized. The preferred are peroxidase, β-glucuronidase, β-D-glucosidase, β-D-galactosidase, urease, glucose oxidase plus peroxidase and alkaline phosphatase. U.S. Patent Nos. 3,654,090; 3,850,752; and 4,016.043 are referred to by way of example for their disclosure of alternate labeling material and methods.

20

25

30

A particular assay system developed and utilized in accordance with the present invention, is known as a receptor assay. In a receptor assay, the material to be assayed is appropriately labeled and then certain cellular test colonies are inoculated with a quantity of both the labeled and unlabeled material after which binding studies are conducted to determine the extent to which the labeled material binds to the cell receptors. In this way, differences in affinity between materials can be ascertained.

Accordingly, a purified quantity of the eEF-2 kinase may be radiolabeled and combined, for example, with antibodies or other inhibitors thereto, after which binding studies would be carried out. Solutions would then be prepared that contain various quantities

of labeled and unlabeled uncombined eEF-2 kinase, and cell samples would then be inoculated and thereafter incubated. The resulting cell monolayers are then washed, solubilized and then counted in a gamma counter for a length of time sufficient to yield a standard error of <5%. These data are then subjected to Scatchard analysis after which observations and conclusions regarding material activity can be drawn. While the foregoing is exemplary, it illustrates the manner in which a receptor assay may be performed and utilized, in the instance where the cellular binding ability of the assayed material may serve as a distinguishing characteristic.

In accordance with the above, an assay system for screening potential drugs effective to modulate the activity of eEF-2 kinase may be prepared. The eEF-2 kinase may be introduced into a test system, and the prospective drug may also be introduced into the resulting cell culture, and the culture thereafter examined to observe any changes in the eEF-2 kinase activity of the cells, due either to the addition of the prospective drug alone, or due to the effect of added quantities of the known eEF-2 kinase. Alternatively, these assays can be carried out in a purely *in vitro* fashion as discussed below.

The following examples are presented in order to more fully illustrate the preferred embodiments of the invention. They should in no way be construed, however, as limiting the broad scope of the invention.

EXPERIMENTAL DETAILS SECTION

EXAMPLE 1

Peptide Sequencing. eEF-2 kinase from rabbit reticulocyte lysate was purified as described (Hait et al., (1996) FEBS Lett. 397:55-60). Peptides were generated from the nitrocellulose-bound 103-kDa eEF-2 kinase protein by in situ tryptic digestion (Erdjument-Bromage et al., (1994) Protein Sci. 3:2435-2446) and fractionated by reverse-phase HPLC (Elicone et al., (1994) J. Chromatogr. 676:121-137) using a 1.0 mm Reliasil
 C18 column. Selected peak fraction were then analyzed by a combination of automated

Edman sequencing and matrix-assisted laser-desorption time-of-flight mass spectrometry (Erdjument-Bromage et al., (1994)). The peptide sequences provided an essential lead into the cloning of eEF-2 kinase from human, mouse, rat, and *Caenorhabditis elegans*.

5 EXAMPLE 2

Molecular Cloning of cDNAs Encoding *C. elegans*, Mouse, Rat, and Human eEF-2 Kinases. To clone the cDNA for *C. elegans* eEF-2 kinase, oligonucleotide primers were designed based on the amino and carboxy termini of the predicted gene product from F42A10.4. Reverse transcriptase-PCR (RT-PCR) was performed using these primers and total RNA from *C. elegans* (a gift form Monica Driscoll, Rutgers University). A single PCR product of ~2.3 kb was obtained and gel-purified using a gel extraction kit (Qiagen, Chatsworth, CA). The fragment was ligated into vector pCR2.1 using the TA cloning kit (Invitrogen, Sorrento Valley, CA), and then transformed into *Escherichia coli*. Plasmid DNA was purified, and restriction analysis used to verify the orientation of the coding sequence with respect to the T7 promoter. Two clones (*Cefk-1 and Cefk-2*, *C. elegans* eEF-2 kinase isoforms 1 and 2) were chosen and sequenced using a Li-Cor (Lincoln, NE) Long Read IR model 400L Automated DNA Sequencer. Analysis revealed that the two clones were identical except for a deletion of 24 bp in *Cefk-2* which corresponds to exon 4 and probably represents an alternatively spliced form.

20

10

15

To clone the mouse eEF-2 kinase, degenerate primers were designed based on the amino acid sequence of two peptides from rabbit cEF-2 kinase (LTPQAFSHFTFER (SEQ ID LANXYYEKAE (SEO NO: NO: ID 22)): CA(G/A)GC(C/G/T/A)TT(C/T)(T/A)(C/G)(T/CCA(C/T)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/G/T/A)TT(C/T)AC(C/T)AC(C/G/T/A)TT(C/T)AC(C/T)25 T)GA(G/A(C/A)G(SEO ID NO: 23); and primer TC(C/G/T/A)GC(C/F)TT(C/T)TC(G/A)TA(G/A)TA(C/T)TT(G/A)TT(C/G/A/T)GC(SEO ID NO: 24). RT-PCR was performed using primers A and B and poly(A)^r RNA from mouse spleen (CLONTECH). A single PCR product (~1.6 kb) was cloned into pCR2.1 (Invitrogen) and sequenced. Using sequence information form these mouse eEF-2 kinase cDNA fragments, new primers were designed for 5' rapid amplification of 30

cDNA ends (RACE) and 3' RACE to obtain full-length mouse eEF-2 kinase cDNA. 5' RACE and 3' RACE were performed using Marathon-Ready mouse spleen cDNA (CLONTECH). This was carried out according to the manufacturer's instructions using the primers AP1 and C (TACAATCAGCTGATGACCAGAACGCTC) (SEQ ID NO: 25) 5' antisense, or D (GGATTTGGACTGGACAAGAACCCCC) (SEQ ID NO: 19) 3' sense.

To clone rat eEF-2 kinases. PCR was performed on a rat PC12 cDNA library cloned in λ GT10 (CLONTECH) using primer B and vector primers. A 700-bp fragment was specifically amplified. The fragment was cloned into pCR2.1 (Invitrogen) and sequenced. This 700-bp fragments was radiolabeled and used to probe the same PC12 cDNA library (600.000 plaques). Fourteen positives were obtained in the initial screening. Five plaques were chosen for further analysis and sequencing based on insert sizes that ranged from 1.4 to 2.0 kb.

15

20

25

30

10

Recently, eEF-2 kinase from rabbit reticulocyte lysate was purified to near homogeneity (Hait et al., (1996)). This enabled determination of its partial amino acid sequence (see EXAMPLE 1). Two peptide sequences (LTPQAFSHFTFER and LANXYYEKAE) were compared with entries in a nonredundant database using the National Center for Biotechnology Information BLAST program (Altschul et al., (1990) *J. Mol. Biol* 215:403-410). Matches were found with a *C. elegans* hypothetical protein (F42A10.4; GenBank accession number U10414). This sequence was obtained from the *C. elegans* genome sequencing project and is located on chromosome III (Wilson et al., (1994) *Nature* 368:32-38). The 100% identity between the sequenced peptides and the *C. elegans* protein, as well as the fact that the predicted molecular weight of the *C. elegans* protein is similar to that of eEF-2 kinase, suggested that this gene encoded eEF-2 kinase. The full-length cDNA by RT-PCR using *C. elegans* total RNA was cloned. Several clones were isolated and sequenced. *Cefk-1* has six of the predicted exons and encodes 768 amino acids. *Cefk-2* represents an alternatively spliced form that has five exons; it is missing amino acids 625-632 that correspond to exon four.

As is demonstrated in EXAMPLE 3. *Cefk-1* and *Cefk-2* have eEF-2 kinase activity when expressed in cell-free system using a wheat germ extract coupled transcription/translation system.

- To determine the amino acid sequence of mammalian eEF-2 kinase, the cDNA of mouse eEF-2 kinase was cloned and sequenced. Since the sequenced peptides from rabbit eEF-2 were 100% identical to *C. elegans* eEF-2 kinase, then the two peptides should also match the sequence of mouse eEF-2 kinase. Degenerate primers were designed based on the amino acid sequence of the peptides and were used to perform RT-PCR on mouse spleen poly(A)⁺ mRNA. A single PCR product of ~1.6 kb was obtained and sequenced. To obtain the full-length cDNA, 5' RACE and 3' RACE were performed using mouse spleen cDNA. The full-length cDNA, which encodes 724 amino acids, was expressed in a cell-free coupled transcription/translation system. A single translation product with an apparent molecular weight of 100 kDa was obtained (Figure 2).
 - cDNA for rat eEF-2 kinase using a fragment of mouse eEF-2 kinase cDNA to probe a PC12 cDNA library was cloned and sequenced. However, after this work was completed, a paper describing the cloning of eEF-2 from rat skeletal muscle was published (Redpath et al., (1996) *J. Biol. Chem.* 271:17547-17554) and the reported sequence appears to be identical to the eEF-2 kinase sequence from PC12 cells. Like the mouse eEF-2 kinase, the rat eEF-2 kinase cDNA encodes a 724-amino acid protein.
- The human eEF-2 kinase cDNA was cloned and sequenced. RT-PCR was performed on poly(A)⁺ mRNA from the human glioma cell line T98G using 20'mer primers corresponding to the 5' and 3' ends of the mouse eEF-2 kinase coding region. The human eEF-2 kinase cDNA encodes a 725 amino acid protein.

10

15

EXAMPLE 3

Expression of eEF-2 Kinase From *C. elegans*, Mouse, Rat, and Human in a Cell-Free System. Plasmid DNA from clones Cefk-1, Cefk-2, as well as mouse and human eEF-2 kinase cDNA were used in the TNT wheat germ extract coupled transcription/translation system (Promega). [35S]Methionine-labeled products were then analyzed by SDS/PAGE. The reaction mixture (50 μ l total volume) contained 1 μ g of plasmid DNA and 26 μ Ci of [35S]methionine (specific activity = 1175.0 Ci/mmol: 1 Ci = 37 GBq). Other components were added to the reaction mixture according to the manufacturer's protocol. The reaction mixture was incubated for 1.5 h at 30°C and terminated by incubation on ice. A 10 μ l aliquot of the reaction mixture was mixed with 2 μ l of 5X Laemmli buffer and boiled for 5 min. Samples were analyzed by SDS/PAGE on 8% gels and autoradiography.

The remainder of the transcription/translation reaction was diluted 4-fold with buffer A (20 mM Tris-HCl, pH 7.4/1 mM MgCl₂/10% glycerol/7 mM 2-mercaptoethanol) and applied to a HR5/5 Mono Q column (Pharmacia) equilibrated with buffer A. The column was developed with 20 column volumes of a 50-600 mM KCl linear gradient to buffer A.

To assay for eEF-2 kinase activity, 5 μl from each fraction was added to a reaction mixture (40 μl) containing 50 mM Hepes-KOH (ph. 7.4) 10 mM magnesium acetate, 0.1 mM CaCl₂, 5 mM dithiothreitol, 50 μM ATP, 2 μCi [γ-³²P]ATP, 0.6 μg calmodulin, and 0.5 μg rabbit reticulocyte eEF-2. Reactions were incubated at 30°C for 2 min and were terminated by adding 20 μl of 3X Laemmli sample buffer. Samples were boiled for 5 min and proteins separated by SDS/PAGE on 8% gels. Phosphoproteins were analyzed by autoradiography.

To determine whether Cefk-1 and Cefk-2 have eEF-2 kinase activity, cell-free coupled transcription/translation system were expressed. Translation of *Cefk-1* and *Cefk-2* produced products with an apparent molecular weight of 100 kDa (Figure 2), which is

slightly larger than the computer-predicted molecular weight of the protein but is identical to the molecular weight of a rabbit reticulocyte eEF-2 kinase as determined by SDS/PAGE. The translation products of the mixture of *Cefk-1* and *Cefk-2* are able to phosphorylate eEF-2 (Figure 3) and elute from a Mono Q column at the same position as endogenous *C. elegans* eEF-2 kinase (Figure 3A). The eEF-2 phosphorylation activity of the recombinant protein is Ca²⁺/calmodulin-dependant (Figure 3C). The differences in the catalytic properties Cefk-1 and Cefk-2 isoforms are under current investigation.

10 Mouse and human eEF-2 kinase cDNAs were expressed in a coupled transcription/translation system and a product of `100 kDa was obtained (Figure 2). As shown in Figure 3, the recombinant human eEF-2 kinase activity was strictly Ca²⁺/calmodulin-dependant. The kinase activity was completely inhibited by the calmodulin antagonists trifluoperazine and *N*-(6-aminohexyl)-5-chloro-1-napthalene-sulfonamide. Human eEF-2 kinase in bacteria as a glutathione S-transferase fusion protein was expressed and demonstrated that the ability of the recombinant enzyme to phosphorylate eEF-2 and to undergo autophosphorylation are strictly calmodulin-dependent.

20 EXAMPLE 4

Analysis of Mouse eEF-2 Kinase mRNA Expression in Various Tissues. eEF-2 kinase and eEF-2 hybridizations were performed using a 1.6 kb *Eco*RI mouse cDNA fragment and a 2.6 kb *Eco*RI human cDNA fragment, respectively. cDNAs were labeled with [³²P]dCTP using the random-primed DNA labeling method (Feinberg and Vogelstein (1983) *Anal. Biochem.* 132:6-13). A multiple tissue Northern blot (CLONETECH) was prehybridized at 42°C for 16 h in a 50% formamide solution containing 10X Denhardt's, 5X SSPE. 2% SDS, and 100 μg/ml salmon sperm DNA. Hybridizations were completed in the same solution containing the ³²P-labeled probe (1 X 10° cpm/ml; specific activity. ~1 X 10° dpm/μg DNA) and 10% dextran sulfate at 42°C for 16 h. Blots were washed twice at room temperature (15 min) in 2X SSPE, 0.05%

SDS, and once at 50° C (15 min) in 0.5X SSPE, 0.5% SDS. RNA/cDNA hybrids were visualized by autoradiography.

Northern blot analysis shows that eEF-2 kinase is ubiquitously expressed in mouse tissues and is particularly abundant in skeletal muscle and heart (Figure 4). The abundance of eEF-2 kinase mRNA in muscle tissues may indicate that phosphorylation of eEF-2 is particularly important in muscle, or that there are additional substrates of eEF-2 kinase which are muscle-specific.

10

15

20

25

30

EXAMPLE 5

Lack of Homology of eEF-2 Kinase to Members of Eukaryotic Protein Kinase Superfamily. The alignment of the amino acid sequences of *C. elegans* and mammalian eEF-2 kinases is shown in Figure 5. Rat and mouse eEF-2 kinase are very similar being 97% identical and differing by only 23 amino acids. Human eEF-2 kinase is 90% identical to mouse and rat eEF-2 kinase. In contrast, *C. elegans* eEF-2 kinase is found to be only 40% identical to mammalian eEF-2 kinase.

According to the current classification, eEF-2 kinase belongs to the family of closely related calmodulin-dependent protein kinases. Surprisingly, upon analyzing eEF-2 kinase sequences, any homology to the other calmodulin-dependent kinases or to any other members of the protein kinase super-family was not found. The only motif which it shares with all other protein kinases is the GXGXXG motif (279-284 in *C. elegans* eEF-2 kinases; 295-300 in mouse eEF-2 kinase) which forms a glycine-rich loop and is part of the ATP-binding site. Comparison of mammalian and *C. elegans* eEF-2 kinase revealed only one extended region of homology that spans ~200 amino acids upstream of the GXGXXG motif. The high degree of similarity and the proximity to the nucleotide-binding site suggests that these 200 amino acids represent the catalytic domain. This region has a high degree of similarity and a portion of this region (amino acids 251-300 in mouse eEF-2 kinase) displays 75% identity to the catalytic domain of

10

15

MHCKA (see below), which also suggests that this is the catalytic domain. In the recently published rat eEF-2 kinase sequence [Redpath *et al.*, *J. Biol. Chem.* **271**: 17547-17554 (1996)], the catalytic domain was predicted to reside between amino acids 288 and 554 based on the homology with the catalytic domain of cAMP-dependant protein kinase (PKA). The results demonstrate that their prediction cannot be correct for several reasons. First, the homology of this region with PKA is not statistically significant. Second, this region is the least conserved between mammalian and *C. elegans* eEF-2 kinase. Finally, according to secondary structure predictions [made by Alexei V. Finkelstein, Institute of Protein Research, Russia using the ALB-GLOBULE program [Ptitsyn and Finkelstein, *Biopolymers* **22**:15-25 (1983)]], this region most likely has a distorted structure and contains almost no α-helices or β-strands, which are characteristic of a catalytic domain.

Because eEF-2 kinase is CA^{2+} /calmodulin-dependant, it should contain a calmodulin-binding domain, which is usually represented by an amphipathic α -helix. There are several regions that could possibly assume an amphipathic α -helical conformation. Further biochemical analysis is required to determine which of these is the calmodulin-binding domain.

In the C-terminal region, there is a short stretch of 22 amino acids which is 86% identical between mammalian and *C. elegans* eEF-2 kinase and is preceded by a longer region of weak homology. One of the possibilities is that it is that it is involved in oligomerization of the kinase. It was thought previously that eEF-2 kinase was an elongated monomer because it migrated during gel filtration as an ~150-kDa protein and migrated on SDS gels as a 105-kDa polypeptide [Ryazanov and Spirin, *Translational Regulation of Gene Expression*, Pienum, NY, Vol 2, pp 433-455 (1993); Abdelnajid *et al.*, *Int. J. Dev. Biol.*, 37:279-290 (1993)]. However, the molecular weight of a monomer of mammalian eEF-2 kinase based on the predicted sequence is just 82 kDa. Thus, it is possible that eEF-2 kinase is not a monomer but a responsible for dimerization. Interestingly, according to computer prediction using the COIL

15

program, this conserved region can form a coiled-coil. Formation of coiled-coil is often responsible for dimerization [Lupas, *Trends Biochem. Sci.*, **21**:375-382 (1996)].

5 EXAMPLE 6

Striking Homology Between eEF-2 Kinase and MHCK A from *Dictyostelium*. It was found that eEF-2 kinases is homologous to the central portion of the recently described MHCKA from *Dictyostelium* [Futey et al., J. Biol., Chem. 270:523-529 (1995) see Figure 5]. The kinase was biochemically identified as a 130-kDa protein and has a demonstrated role in myosin assembly, both *in vitro* and *in vivo* [Futey et al., 1995, supra]. As with eEF-2 kinase, MHCKA displays no region with detectable similarity to the conserved catalytic domains found in known eukaryotic protein kinases. Primary structure analysis of MHCKA revealed an amino-terminal domain with a probable coiled-coil structure, a central nonrepetitive domain, and a C-terminal domain consisting of seven WD repeats [Futey et al., 1995, supra]. A fragment of the central nonrepetitive domain of MHCKA containing amino acids 552-841 was recently shown to represent the catalytic domain [Cote et al., J. Biol. Chem. 272:6846-6849 (1997)].

Because the catalytic domain of MHCKA and eEF-2 kinase have a high degree of similarity, the substrate specificity of these two kinases was assayed. Figure 6 shows that MHCK A cannot phosphorylate eEF-2, and likewise, rabbit eEF-2 kinase cannot use myosin heavy chains as a substrate. This demonstrated that each of these kinases is specific for their respective substrates.

25

30

EXAMPLE 7

eEF-2 Kinase and MHCK A Define a New Class of Protein Kinases. Members of the eukaryotic protein kinase superfamily are characterized by a conserved catalytic domain containing approximately 260 amino acids and is divided into twelve

20

25

30

subdomains [Hanks and Hunter, FASEB J., 9:576-596 (1996); Hardie and Hanks, The Protein Kinase Facts Book, Academic, London (1995), Taylor et al., Annu. Rev. Cell Biol. 8:429-462 (1992) Johnson et al., Cell. 85: 149-158 (1996)]. The threedimensional structure of several protein kinases revealed that the catalytic domain consists of two lobes. The smaller N-terminal lobe, which has a twisted β-sheet structure, represents the ATP-binding domain. The larger C-terminal lobe, which is predominantly α -helical is involved in substrate binding. At the primary structure level, the only motif similar between eEF-2 kinase, MHCK A, and other protein kinases is the GXGXXG motif which forms the loop interacting directly with the phosphates of ATP [Hanks and Hunter, 1996, supra; Hardie and Hanks 1995, supra; Taylor et al., supra. In eukaryotic protein kinases, this motif is located at the very N terminus of the ATP-binding lobe of the catalytic domain. In contrast, in a eEF-2 kinase and MHCK A, this motif is close to the C terminus of the catalytic domain (see Figure 7). However, the overall topology of the ATP-binding subdomain of eEF-2 kinase and MHCK A can be similar to other protein kinases because the region upstream of the GXGXXG motif is strongly predicted to contain four or five β-strands and thus can form a twisted β -sheet.

However, the mechanism of ATP-binding to eEF-2 kinase is probably quite different in comparison to other conventional members of the eukaryotic protein kinase superfamily. In protein kinases, there is a conserved lysine residue, corresponding to Lys-72 in cAMP-dependant protein kinases which binds to the β- and γ-phosphates of ATP and is located at about 20 amino acids downstream of the GXGXXG motif. Analysis of eEF-2 kinase and MHCK A sequences revealed that there are no conserved lysine residues in the vicinity of the GXGXXG motif. There is another atypical protein kinase, BCR-ABLE, which does not contain this conserved lysine and it is proposed that it interacts with ATP *via* two cysteine residues [Maro and Witte, *Cell*, 67:459-468 (1991)]. Interestingly, eEF-2 kinase and MHCK-A contain two conserved cysteine residues (Cys-313 and Cys-317 in mouse eEF-2 kinase) which are located near the GXGXXG motif and therefore might be involved in ATP binding. Thus the

WO 99/09199

15

20

mechanism of ATP-binding of eEF-2 kinase and MHCK A is different from other members of the protein kinase superfamily, but may be similar to that of the BCR-ABLE protein kinase.

The overall catalytic mechanism of eEF-2 kinase and MHCKA is probably also very different from other eukaryotic protein kinases. All members of the eukaryotic protein kinase superfamily contain a DXXXN motif in the catalytic loop and a DFG motif in the activation segment [Hanks and Hunter, 1996; *supra*, Hardie and Hanks 1995, *supra*; Taylor *et al.*, *supra*; Johnson *et al.*, 1996, *supra*]. These two motifs, which are directly involved in the catalysis of the protein phosphorylation reaction, are absent from the eEF-2 kinase and MHCK A catalytic domain.

It is not known whether there are other protein kinases which are structurally similar to eEF-2 kinase and MHCK A. An extensive search of the entire nonrestricted database of the National Center for Biotechnology Information using the BLAST program did not reveal any protein with a significant homology to the catalytic domain of eEF-2 kinase and MHCKA. A search of the Expressed Sequence Tag (EST) database revealed several ESTs from *C. elegans*, mouse and human which are essentially identical to portions of eEF-2 kinase cDNA sequences reported here. Interestingly, a search of the recently completed genome database of *Saccharomyces cerevisiae* did not reveal any protein with homology to eEF-2 kinase despite the fact that eEF-2 phosphorylation was reported in yeast (41).

Conclusion. Since the catalytic domains of eEF-2 kinase and MHCK A do not share homology with other known protein kinases, these two protein kinases establish the presence of a novel and widespread superfamily of eukaryotic protein kinases. Although the existence of several unusual protein kinases have been reported, to the knowledge, it was demonstrated for the first time the existence of a biochemically well-characterized and ubiquitous protein kinase that is structurally unrelated to other serine/threonine/tyrosine kinases. Contrary to the widely accepted belief that all

20

25

30

eukaryotic protein kinases evolved from a single ancestor, the results suggest that eukaryotic protein kinases appeared at least twice during the course of evolution. This also suggests that, in addition to the relatively well-characterized catalytic mechanism employed by members of eukaryotic serine/threonine/tyrosine protein kinase superfamily, there exists another mechanism of protein kinase superfamily, there exists another mechanism of protein phosphorylation. Further studies will reveal the molecular details of this mechanism and whether there are other protein kinases that phosphorylate their substrates using this mechanism.

10 EXAMPLE 8

Preparation of recombinant eEF-2 kinase fusion proteins with GST, 6xHis, and thioredoxin. Human eEF-2 kinase cDNA was cloned into three different expression vectors: pGEX-2T (Pharmacia Biotech, Piscataway, NJ); pRSET A (Invitrogen, Sorrento Valley, CA): and, pThioHisB (Invitrogen). After transformation into Escherichia coli strain BL21(DE3), transformants were cultured in LB broth containing 50 µg/ml ampicillin. When the cultured reached an A_{600} value of 0.7, isopropyl- β thiogalactopyranoside (IPTG) was added to the bacterial cultures to a final concentration of 0.5 µM to induce expression. After three hours, the cultures were harvested by centrifugation, and the cells were then sonicated. After extract preparation and analysis by SDS-PAGE, it was found that all of the expressed tag forms of the eEF-2 kinase were in inclusion bodies. Inclusion bodies were precipitated, dissolved in 8.0 M urea, and dialyzed overnight against 20 mM Tris-HCl (ph. 7.0) buffer containing 100 mM NaCl and 4 mM β-mercaptoethanol. The refolded protein was analyzed by SDS-PAGE and assayed for the ability to phosphorylate eEF-2. All of the fusion eEF-2 kinase preparations were able to efficiently phosphorylate eEF-2.

EXAMPLE 9

eEF-2 Kinase Activity Assay Using a 16-Amino Acid Peptide Derived from Myosin Heavy Chain as the Phosphorylation Target. It was found that 16'mer peptide, RKKFGESEKTKTKEFL, can serve as a good substrate for eEF-2 kinase. (Note: circular

dichroism measurements indicated that this peptide is in an α -helical structure, and that amidation of the peptide further stabilizes the α -helical structure, resulting in stronger phosphoacceptor activity.) Since recombinant eEF-2 is impossible to overexpress, as discussed *supra*, and large amounts of the protein are required to for large scale screening assays, the discovery of a peptide (easily synthesized on a large scale) that exhibits the same phosphoacceptor activity as eEF-2 was the critical breakthrough that allows for the development of a variety of automated high throughput screening assays for screening drug candidates.

- 10 The basic assay is as follows: 0.2-10.0 μg of recombinant eEF-2 kinase (produced as described in EXAMPLE 6) is incubated with the 16'mer peptide (described above) in a buffer consisting of 12.5 mM Hepes-KOII (ph. 7.4), 2.5 mM magnesium acetate, 1.25 mM DTT, 25 μM CaCl₂, 0.05-2.5 μg calmodulin, 100 μM ATP, and 0.5 μCi [γ-³³P]ATP in a total volume of 5-250 μl. Samples are incubated at 30°C and aliquots can be 15 withdrawn at various time points or at a single end point, and the reaction terminated by lowering the temperature ($\leq 4^{\circ}$ C). The aliquots are then spotted onto phosphocellulose paper (2 cm x 2 cm) and washed (4 x 4 min) with 75 mM phosphoric acid. The papers are then rinsed with 100% ethanol, dried, and then counted in a scintillation counter. The assay can be performed at various peptide concentrations, as was done in the experiment 20 illustrated in Figure 8. Clearly for a high throughput drug screening assay, that would be amenable to automation, the assays would most likely be performed using one peptide concentration with increasing amounts of different drug (inhibitor) candidates, and the data collected at a single time point. The assay can be performed in any one of the following formats:
 - with [γ-³²P]ATP or [γ-³³P]ATP and then detected using either standard scintillation counting, or detected in the format of a homogeneous assay using a Scintillation Proximity Assay, described in detail in both the Amersham Product Catalog (1997), pp. 252-258, and U.S. patent number 4,568,649:

2. in any of a number of standard immunoassay formats using antibodies that are specific for the phosphorylated form of the 16'mer peptide. Detection would then be, as described in more detail *supra*, through the use of either isotopically- or nonisotopically-labeled antibodies, secondary antibodies, or 16'mer peptide.

EXAMPLE 10

Cancer cell killing by chemotherapeutic drugs requires protein synthesis, and can be blocked by cycloheximide

10

15

20

5

It has been well established that protein synthesis is required for apoptotic cell death induced by a variety of stimuli, including anticancer drugs. Inhibition of protein synthesis by cycloheximide prevent apoptotic cell death, and protects cancer cells from treatment with anticancer drugs. The exact molecular mechanism by which protein synthesis modulates cell death is unclear. The results demonstrated herein demonstrate that translational elongation factor-2 kinase (eEF-2 kinase) can be activated by a slight decrease in pH. Activation of this kinase leads to commonly observed during apoptotic cell death, activation of this kinase, and hence inhibition of protein synthesis during apoptosis, is expected to be anti-apoptotic. Because of the possible anti-apoptotic function of eEF-2 kinase, inhibition of eEF-2 kinase is expected to sensitize tumors to apoptotic cell death and anticancer drugs. Specifically, activation of eEF-2 kinase in hypoxic solid tumors (a low pH environment) is anti-apoptotic. Consequently, the specific inhibition of eEF-2 kinase can sensitize hypoxic solid tumors in apoptotic cell death and to the cytotoxic action of anticancer drugs.

25

30

One of the major obstacles in cancer therapy is the resistance of cancer cells to chemotherapeutic drugs. Of the many types of drug resistance, the most commonly addressed is multidrug resistance. Multidrug resistance is a particular phenotype which is characterized by an unusual resistance of cells to a variety of anticancer drugs with unrelated chemical structures. Among various mechanisms of multidrug resistance, the

most important and intensively studied is the multidrug resistance conferred by P-glycoprotein. According to the current model, P-glycoprotein protects cells by actively pumping drugs out of cells.

- Recent evidence suggests that there is another type of drug resistance that involves inhibition of programmed cell death, or apoptosis. Due to intensive research in the past several years, it has become well established that anticancer drugs kill cells by inducing apoptosis. Apoptosis is an active process that is accompanied by activation of specific signal transduction pathways, and requires expression of specific proteins. Although there are a few exceptions, in most cases, it has been observed that inhibition of protein synthesis by cycloheximide can block cell death induced by anticancer drugs. Table 1 provides a list of examples where it was demonstrated that cycloheximde can prevent cytotoxicity of anticancer drugs.
- 15 Table 1: Examples where cycloheximide was shown to protect cells and tissues from cell death caused by anticancer drugs.

	Drug	Cell Type	Reference	
	Topolsomerase I inhibitors			
20	Camptothecin	HL-60 (human promyelocyte)	5. Gong et al. (1993) J. Cell Physiol. 157:263-270.	
	Camptothecin	Mouse thymocytes	6. Onishi et al., (1993) Biochem. Biphys. Acta 1175: 147-154.	
	CPT-11	PLC (human hepatoma)	7. Suzuki & Kato (1996) Exp. Cell Res. 227:154-159.	
	Topolsomerase II inhibitors			
	Doxorubicin (adriamycin)	V79 (rodent fibroblasts()	8. Bonner & Lawrence (1989) Int. J. Radiat. Oncol. Biol. Phys. 16:1209-1212.	

	Doxorubicin (adriamycm)	P388 (mouse leukemia); mice	9. Furusawa et al. (1995) Biol. Pharm. Bull. 18:1367- 1372.	
	Doxorubicin (adriamycin)	murine intestinal tract: mouse thymocytes	10 Thakkar & Potten (1992) Biochem. Pharm 43:1683- 1691.	
	Etoposide	Balb/C 3T3 (mouse fibroblasts); CCRF-CEM (human lymphoblast cells); L1012 (mouse leukemia cells)	11 Chow et al. (1988) Biochem. Pharm 371117- 1122.	
	Etoposide	mouse thymocytes	12 Sun et al. (1994) Biochem. Pharm. 47: 187 195.	
5	Microtubule drugs			
	Taxol	KB (human epidermoid carcinoma);	13 Ling et al. (1998) Int. J. Cancer 75:925-932	
		A549 (human lung adenocarcinoma) MCF-7 (human breast)	14 Liebman et al. (1994) Anticancer Drugs 5:287-292	
	Vincristine	Ksu (human osteosarcoma)	15 Sakai et al. (1989) Cancer Res. 49:1193-1196.	
	Vincristine	CHO strain AA8	16 Kung et al. (1990) Cancer Res. 50:7307-7317.	
0	Colchicine	Ksu	15 Sakai et al. (1989) Cancer Res. 49:1193-1196	
	Other drugs			
	Ara-C	rat intestine	17. Verbin et al. (1973) Cancer Res. 33:2086-2093.	
	Nitrogen mustard	rat intestine	18 Lieberman et al. (1970) Cancer Res. 30:942-951.	
	5-AZT	mouse thymocytes	19 Kizaki et al. (1993) Immunopharm. 25:19-27.	

20

25

Cisplatin	СНО	20. Barry et al. (1990) Biochem. Pharm.40:2353-2362
Methotrexate	mice	21. Panasci et al. (1982) Cancer Lett. 15:81-86.

While most of these studies were performed on cells in culture, there is also evidence that protein synthesis is required for the cytotoxic action of anticancer drugs *in vivo*. It was demonstrated by Furusawa et al. (9) that, in mice, the toxicity of doxurbicin as well as its antitumor effects, can be effectively counteracted by injection of cycloheximide. In another study (21) it was found that injection of cycloheximide can significantly reduce the toxicity of methotrexate. Thus, inhibition of protein synthesis may be considered a mechanism that confers resistance to anticancer drugs.

Cellular mechanism of protein synthesis inhibition: elongation factor-2 phosphorylation: It appears that, although eEF-2 kinase is strictly Ca²+/calmodulin-dependant, it requires very low concentrations of Ca²+/calmoduline for activity, and physiolgically relevant changes of intracellular Ca²+ are unlikely to cause a strong effect on eEF-2 kinase activity. On the other hand, it appears that changes in pH can drastically modulate eEF-2 kinase (see Preliminary Results). At pH≥7.4, eEF-2 kinase activity is very low, and increased dramatically 10 to 20-fold upon a slight decrease in pH to 6.6. Thus, eEF-2 kinase appears to be a proton-activated protein kinase. It was also found that the pH-dependance of eEF-2 kinase activity closely correlated with pH dependance of protein synthesis inhibition. This observation suggests that eEF-2 kinase may be responsible for protein synthesis inhibition during acidification of the cytoplasm. Since significant acidification occurs during apoptosis, this acidification may result in the inhibition of protein synthesis due to activation of eEF-2 kinase and phosphorylation of eEF-2. Activation of eEF-2 kinase by acidic pH may explain the previously reported strong increase in eEF-2 phosphorylation seen in brain tissue from

15

20

30

Alzheimer's patients, as well as that seen in neurons after treatment with glutamate (35, 36).

The role of eEF-2 kinase in drug resistance: Activation of eEF-2 kinase by an acidic pH suggests that it may play an important role in regulation of protein synthesis during apoptosis. It is now well established that a significant decrease in intracellular pH is part of the apoptotic process. A drop in pH by 0.5-1 pH unit is universally observed during apoptosis induced by various agents, including anticancer drugs (37-43). It was found that at an intracellular pH of 6.5-6.8, eEF-2 becomes strongly phosphorylated. This phosphorylation of eEF-2 at an acidic pH may explain the inhibition of protein synthesis that was observed during apoptosis (44, 45).

Since apoptosis requires ongoing protein synthesis, phosphorylation of eEF-2, and the resulting inhibition of translation, may be an anti-apoptotic mechanism. Thus, it is suggested that eEF-2 phosphorylation is a cellular mechanism that can protect cells from apoptosis. To test this hypothesis, the effect of overexpression of eEF-2 kinase on drug resistance of mouse fibroblasts was tested. As is shown, overexpression of eEF-2 kinase increases approximately 10-fold the resistance of cells to different cytotoxic drugs, namely campotethicin and teniposide. This result suggests that eEF-2 kinase may be involved in modulation of drug resistance. Thus, inhibition of protein synthesis mediated by eEF-2 phosphorylation can protect cells from apoptotic cell death by various mechanisms that include up-and downregulation of expression of many genes.

The pH-dependant increase in eEF-2 phosphorylation may also explain the previously observed dramatic increase in malignant cell resistance at low pH. It was demonstrated that at pH 6.5-6.8, different cell lines became more resistant to mitoxantrone, paclitaxel, and topotecan (46, 47).

Drug resistance related to activation of eEF-2 kinase can be particularly important in the hypoxic interior of solid tumors, which are characterized by acidic pH (48, 49). In fact, it was recently demonstrated that eEF-2 kinase activity is drastically

upregulated in tumor cell lines (161) and in invasive breast cancer specimens obtained from patients (162). Thus, eEF-2 kinase can be an important mechanism contributing to drug resistance of cancer cells.

5

10

Accordingly, specific inhibition of eEF-2 kinase can sensitize cancer cells to apoptitic cell death and to the cytotoxic action of anticancer drugs.

The results demonstrate that eEF-2 kinase was dramatically activated by a decease in pH within the range that occurs during apoptosis and that the pH-dependence of eEF-2 kinase activation correlated with protein synthesis inhibition *in vivo* and that overexpression of eEF-2 kinase in mouse fibroblasts increased their resistance to cytotoxic drugs. Using deletion mutagenesis, it was determined the tentative location of the various functional domains of eEF-2 kinase.

15

20

Activation of eEF-2 kinase by low pH: eEF-2 kinase is a Ca²⁺/calmodulin-dependant enzyme whose only known substrate is eEF-2. Initially, it was suggested that the function of eEF-2 kinase was to phosphorylate eEF-2, and arrest protein synthesis in response to an elevation of Ca²⁺ levels in the cytoplasm. However, in a recent detailed study of the relationship between intracellular Ca²⁺ levels, eEF-2 phosphorylation, and protein synthesis in GH3 cells, it was shown that a superphysiological increase in Ca²⁺ levels in the cytoplasm produced only an insignificant increase in eEF-2 phosphorylation that did not affect translation (34).

Analysis of the pH dependence of recombinant GST-eEF-2 kinase demonstrated that both autophosphorylation activity and eEF-2 phosphorylation activity were markedly pH-dependent. The pH-dependence of eEF-2 kinase activity was quantitatively analyzed using a synthetic 16mer peptide substrate (MH-1; RKKFGESEKTKTKEFL-amide. MH-1 corresponds to the MHCK A phosphorylation site in *Dictyostelium* myosin heavy chains. It was found it to be an efficient substrate for eEF-2 kinase.

15

20

25

30

Activity of GST-eEF-2 kinase was assayed as follows: Purified GST-eEF-2 kinase was incubated with MH-1 (100 μ M final) in a buffer consisting of 25 mM Hepes-KOH (pH varying), 5 mM magnesium acetate, 2.5 mM DTT, 50 μ M CaCl₂, 0.5 μ g calmodulin, 100 μ M ATP, and 0.5 μ Ci [γ -³³P]-ATP (specific activity = 2000 Ci/mmol). The total volume of the reaction was 50 μ l. The reaction was run at 30°C for various periods of time, and was terminated by incubation in an ice-water bath. An aliquot of each reaction was spotted onto a 2cm x 2 cm square of phosphocellulose paper and then washed 4 x 4 minutes in 75 mM phosphoric acid. After a 30 second rinse in 100% ethanol, the filter papers were dried, and then counted in a scintillation counter. To assay for autophosphorylation activity, kinase assays were run as above except that the peptide was omitted from the reaction mixture.

Figure 10 shows that phosphorylation of the peptide is very ineffective at pH \geq 7.4, but when the pH drops to 6.6, eEF-2 kinase becomes dramatically activated. It was also analyzed how calmodulin activates eEF-2 kinase at different pH. eEF-2 kinase assays were done as described above, but with different concentrations of calmudulin at pH 6.6 and at pH 7.4. It appears that at pH 6.6, the K_a for calmoduline is about 10^9 M, while at pH 7.4, the K_a is approximately 10^7 . These results suggest that changes in intracellular Ca²⁻ at physiological pH-will not significantly affect eEF-2 kinase activity, which is consistent with recently reported results on GH3 cells (34).

To determine how specific this pH effect is for eEF-2 kinase, the pattern of protein phosphorylation at different pH in extracts from rat heart tissue was analyzed. A heart was dissected from a freshly killed rat and frozen in liquid nitrogen. The frozen tissue was homogenized in a buffer containing 25 mM Hepes-KOH (pH 7.4), 100 mM NaCl, 3mM EDTA, 2mM EGTA, 40 µg/ml soybean trypsin inhibitor, 0.5 mM PMSF, 20 mM Na pyrophophatase. The homogenate was clarified by centrifugation for 20 min. at 16,000 xg at 4°C. In order to assay for eEF-2 kinase activity, 10 µl of the homogenate was added to a reaction mixture containing 50 mM Hepes-KOH (at various pH), 10 mM magnesium acetate, 5 mM DTT, 100 µM CaCl₂, 0.5 µg calmodulin, 60

 μ M ATP, and 2 μ Ci [γ^{33} P]-ATP (specific activity = 2000 Ci/mmol). The total volume of the reaction was 40μ l. The reaction was run at 30°C for 5 minutes, and was terminated by incubation in an ice-water bath. Laemmli sample buffer was added, and the reaction mixture was boiled for 5 minutes. Samples were analyzed by 8% SDS-PAGE and autoradiography. As can be seen from Figure 3, eEF-2 was the only protein whose phosphorylation increased in response to a decrease in pH.

Next whether a decrease in pH_i of cells in culture resulted in inhibition of protein synthesis, and whether it correlated with activation of eEF-2 kinase were analyzed.

10 Protein synthesis was measured in GH3 cells by [³H]-Leu pulse-incorporation. GH3 cells were pre-incubated for 30 minutes in Ham's F-10 medium at 0.2 pH unit intervals from pH 6.0 to 8.0. Leucine pulse-incorporation was measured as described in Brostrom et al. (115). 1 mM Ca²+ and 100 μM [³H]-Leu were added to the medium for a 15 minute incorporation period. Cells were harvested by centrifugation, washed, and lysed. Unincorporated label was removed by TCA precipitation, and Leu incorporation was measured by scintillation counting.

The actual intracellular pH was verified by incorporating BCECF/AM into GH3 cells in balanced salt solution buffered at pH 7.4 for 30 minutes. One set of cells was washed and re-suspended in normal balanced salt solutions at 0.2 pH unit intervals between 6.0 and 7.8. The other set of cells was re-suspended in high-K + buffer containing nigericin. A ratio of excitation of 485nm/440nm with emission at 530 nm was determined for each sample and pH_i was calculated as described by Thomas et al. (116).

25

30

20

The results of these experiments are shown in Figure 11. A decrease in the intracellular pH produced a strong inhibition of protein synthesis, which indeed correlated with the pH-dependence of eEF-2 kinase activity. These results demonstrate that eEF-2 phosphorylation may be a mechanism responsible for inhibiting protein synthesis at a low intracellular pH. Since the decrease in intracellular pH to the level

that strongly activates eEF-2 kinase is universally observed during apoptosis (37-43), this provides evidence that eEF-2 phosphorylation may be responsible for protein synthesis inhibition during apoptosis.

5 Effect of overexpression of eEF-2 kinase on the cellular resistance to anticancer drugs: Cell lines overexpressing eEF-2 kinase by stably transfecting N1H/3T3 cells with full length murine eEF-2 kinase cDNA were created. Murine eEF-2 kinase cDNA was cloned into pCMV-SPORT2 (GIBCO/BRL) under the control of a CMV promoter. N1H/3T3 cells were co-transfected with pCMV-SPORT2-EF2K and pSV2neo, using Lipofectamine (GIBCO/BRL). Stable transformants were selected with G₄₁₈ (0.5 mg/ml), and were further maintained in medium containing G₄₁₈. A control cell line (C13) was produced by co-transfection of N1H/3T3 cells with empty pCMV-SPORT2/pSV2neo. The expression of eEF-2 kinase mRNA in the selectants was assayed by Northern blot analysis. Two cloned cell lines, designated as E8 and E9 were found to overexpress significantly eEF-2 kinase mRNA, with E9 giving the maximal level of expression.

In order to verify that overexpression of eEF-2 kinase mRNA in E8 and E9 produced an increase in eEF-2 kinase activity, cell lysates were assayed for the ability to phosphorylate eEF-2. eEF-2 kinase assays were performed as described above. E8 and E9 indeed showed greatly increased eEF-2 kinase activity in comparison to control cells. Overexpression of eEF-2 kinase did not have any effect on the growth parameters of cells. Cell cycle distribution of exponenentially growing or quiescent cells, as well as growth rates, were the same for clones 8, 9 and control clones.

25

30

20

To answer the question whether eEF-2 kinase plays a role in resistance, clone E9 overexpressing eEF-2 kinase was incubated with two cytotoxic drugs, and assessed cell survival by MTT cytotoxicity assay. E9 and C13 were plated in 96-well plates at 3000 cells per well. Cells were grown in DMEM with 10% FCS for 1 day, and then incubated with different concentrations of camptothecin (CPT) or teniposide (VM26)

15

20

25

for 4 days, and MTT assays were performed (Figure 12). E9 showed significantly increased resistance to these drugs.

EXAMPLE 11

5 Expression and mutagenesis of recombinant human eEF2 kinase.

Methods for efficient expression of recombinant eEF-2 kinase in bacteria, as well as generated and analyzed thirteen deletion mutants were developed. Expression of wild-type 6xHis-tagged and GST-tagged human eEF-2 kinase in *E. coli*. Initially, human eEF-2 kinase was expressed as a fusion protein with 6xHis or glutathione-S-transferase (GST). Human eEF-2 kinase cDNA was cloned into two different expression vectors: pRSET (Invitrogen), and pGEX-2T (Pharmacia). After the resulting vectors were transformed into *E. coli* strain JM109(DE3), the transformants were cultured in LB broth containing 50 mg/ml ampicillin. At log phase growth, isopropyl-b-thiogalactopyranoside (IPTG) was added to the bacterial cultures to a final concentration of 0.5 mM. After three hours, the cultures were harvested and the cells were sonicated.

Both 6xHis-tagged and GST-tagged eEF-2 kinase were efficiently expressed as judged by the appearance of one major band on Coomassie-stained gels after SDS-PAGE analysis of crude lysates. Therefore, eEF-2 kinase activity was analyzed directly in the crude lysates. In order to assay for eEF-2 kinase activity, bacterial lysates were incubated with purified rabbit reticulocyte eEF-2 (0.5 mg) in a buffer consisting of 50 mM Hepes-KOH (pH 7.4), 10 mM magnesium acetate, 5 mM DTT, 100 mM CaCl₂, 0.5 mg calmodulin, 60 mM ATP, and 2 mCi [g-³³P]-ATP (specific activity = 2000 Ci/mmol). The total volume of the reaction was 40 ml. The reaction was run at 30_iC for 10 minutes, and was terminated by incubation in an ice-water bath. Laemmli sample buffer was added, and the reaction mixture was boiled for 5 minutes. Samples were analyzed by 8% SDS-PAGE. The gel was dried and exposed to film overnight.

As can be seen in Figure 13, recombinant eEF-2 kinase expressed in *E. coli* undergoes autophosphorylation upon incubation with [g-³P]-ATP and can efficiently phosphorylate eEF-2. The ability of eEF-2 kinase to undergo autophosphorylation was previously reported for the enzyme purified from rabbit reticulocyte lysate (139). Autophosphorylated eEF-2 kinase was represented by two or three distinct bands, showing that autophosphorylation of eEF-2 kinase occurs at multiple sites, and slightly affects its mobility in the gel. Both the ability of eEF-2 kinase to autophosphorylate and phosphorylate eEF-2 were strictly calmodulin-dependent (see Figure 13).

- 10 Localization of eEF-2 kinase functional domains by *in vitro* mutagenesis: Using *in vitro* mutagenesis, thirteen mutants of eEF-2 kinase were obtained with deletions ranging from 36 to 76 amino acids that systematically span the entire
- eEF-2 kinase molecule: *In vitro* mutagenesis was done with the Muta-Gene Phagemid *In Vitro* Mutagenesis kit from Bio-Rad which is based on a method developed by Kunkel
 (117). Human eEF-2 kinase cDNA was cloned into pCR2.1 (Invitrogen). This plasmid
 has an f1 ori so that it can exist as single-stranded, as well as double-stranded DNA. It
 also carries the genes for ampicillin and kanamycin resistance. Thus, this plasmid was
 found to be suitable for use with the Muta-Gene kit

20

25

30

The construct was transformed into *E. coli* strain CJ236, a *dut ung* strain. The enzymes dUTPase and uracil-N-glycosylase have been mutated and are non-functional, thus allowing for a large pool of uracil to be maintained in the cell as well as to allow uracil to be incorporated into the replicated plasmid. Bacteria carrying the plasmid were selected by growth in medium containing ampicillin. In order to produce single-stranded DNA, cultures of CJ236 were infected with helper phage M13K07. Replication of the M13K07 genome has been partly disabled and, thus, the low copy number of the M13K07 genome allows for more packaging of the plasmid instead of helper phage. This minimizes contamination of the harvested single-stranded DNA with M13K07 DNA. There is a kanamycin resistance marker in the M13K07 genome which allows for

10

selection of infected bacteria by growing them in the presence of kanamycin. After purification from the helper phage, the single-stranded DNA was mutagenized. 30-mer oligonucleotides were synthesized which were complementary to a stretch of fifteen nucleotides on each side of the region to be deleted. Annealing of the oligo to single-stranded DNA caused the region to be deleted to loop out. The oligo acted as a primer for second-strand synthesis by T7 DNA polymerase. Synthesis was done in the presence of thymidine so that the resulting double-stranded construct was a hybrid of a uracil-containing strand and a thymidine-containing strand. The mutant plasmid was then transformed into *E. coli* strain DH5a. This strain has a functional uracil-N-glycosylase which inactivates the uracil-containing strand and allows the thymidine-containing strand to be replicated. After purification, the mutant plasmid was sequenced to verify that the proper deletion was made. Initially, the resulting thirteen mutants were expressed in vitro in a coupled transcription/translation system and assayed for eEF-2 kinase activity.

- 15 Although using an *in vitro* transcription/translation system is fast and efficient, there are two disadvantages. First, it is not quantitative. Second, the amount of protein expressed *in vitro* is very low. To overcome this problem, the thirteen mutants were cloned into pGEX-2T (Pharmacia), and expressed as GST fusion proteins in *E. coli*.
- Expression of GST-eEF-2 kinase deletion mutants in bacteria and purification. All thirteen mutants were expressed in *E. coli* BL21(DE3) as GST-tagged proteins. Expression of GST-tagged human eEF-2 kinase was done as follows: the cDNA for the mutant forms human eEF-2 kinase was cloned into pGEX-2T, and transformed into *E. coli* BL21(DE3). Cultures were grown at 37°C, and at log phase growth, protein expression was induced with IPTG added to a final concentration of 0.5 mM. After a 3 hour incubation at 37°C with IPTG, cells were harvested by centrifugation.

Since wild-type and mutant eEF-2 kinase were found to be highly insoluble, the proteins were purified from inclusion bodies. Bacterial cells were re-suspended in sonication buffer (phosphate-buffered saline, 1 mg/ml lysozyme, 3 mM EDTA, 40 mg/ml soybean

10

trypsin inhibitor. 0.5 mM PMSF. 20 mM Na pyrophosphate) and sonicated. Lysate was centrifuged at 16.000xg for 30 minutes at 4°C to pellet inclusion bodies. Pellet was resuspended in a buffer containing 20 mM Tris-HCl (pH 7.0), 100 mM NaCl, 7 mM b-mercaptoethanol, 6 M urea and incubated on ice for 20 minutes. Lysate was dialyzed overnight at 4°C against buffer consisting of 20 mM Tris-HCl (pH 7.0), 100 mM NaCl, and 7 mM b-mercaptoethanol. Dialyzed material was centrifuged at 16,000 xg for 20 min. at 4°C to remove any remaining insoluble material.

Glutathione-agarose (Sigma) was added to the dialysate (bed volume = 1/2000 of culture volume), and incubated at 4°C for 2 hours with gentle shaking. Glutathione agarose was pelleted by centrifugation and washed 3x with PBS (10x bed volume). Bound GST-EF-2 kinase was eluted with 50 mM Tris-HCl (pH 8.0) containing 25 mM reduced glutathione (Volume of elution buffer = bed volume). Elution was done on ice for 20 minutes.

15 Analysis of activity of deletion mutants: The thirteen deletion mutants were assayed for the ability to phosphorylate eEF-2 and to undergo autophosphorylation. eEF-2 (Figure 14)kinase assays were performed as described above using purified rabbit reticulocyte eEF-2 as a substrate, and the pH of the reaction was 6.4. Mutants with deletions between amino acids 51-335 were neither able to phosphorylate eEF-2 nor to undergo autophosphorylation. On the other hand, deletions between amino acids 521-725 caused a loss of eEF-2 kinase activity, but not a loss of autophosphorylation activity. This demonstrates that the catalytic domain is located between amino acids 51-335 while the region between amino acids 521-725 is important for eEF-2 recognition. The region between amino acids 336-520 probably serves as a hinge between two domains.

25

30

A summary of the results of mutational analysis of human eEF-2 kinase is shown in Figure 14. Mutational analysis reveals that eEF-2 kinase can be subdivided into two domains connected by a hinge region. The N-terminal domain represents the catalytic domain, and the C-terminal domain represents the eEF-2 targeting domain. This is consistent with the location of the catalytic domain as predicted by comparison of eEF-2

kinases from different species (27). As was discussed in the Background and Significance section, the amino acid sequence of this region displays no homology to the catalytic domains of the conventional protein kinases, but appears to be highly similar to the catalytic domains of the recently described myosin heavy chain kinases from *Dictyostelium*. Further experiments will define more precisely the location of the functional domains.

The results clearly demonstrate that the location of the catalytic domain of rat eEF-2 kinase suggested by Redpath *et al.* (140) in between amino acids 288-554 is incorrect.

10

15

20

25

30

5

Location of calmodulin-binding domain: In all mutants able to undergo autophosphorylation, this phosphorylation was strictly calcium/ calmodulin-dependent, suggesting that the calmodulin-binding region is located within amino acids 51 to 335. To locate the calmodulin-binding domain more precisely, five mutants were analyzed with deletions between amino acids 51 to 355 for their ability to bind calmodulinagarose. The only mutant of eEF-2 kinase not able to bind calmodulinagarose contains a deletion of amino acids 51-96. The actual calmodulin-binding site is probably within amino acids 81 to 94 (FKEAWKHAIQKAKH), which are predicted to form an amphipathic α-helix. The homologous sequence from *C. elegans* eEF-2 kinase (LMETWRKAARRART) is also predicted to form an amphipathic α-helix.

Expression of correctly-folded eEF-2 kinase: Although GST- and 6xHis-eEF-2 kinase expressed in bacteria was enzymatically active, the majority of recombinant protein ended up in inclusion bodies. The inclusion bodies were precipitated, dissolved in 8M urea, and dialyzed overnight against 20 mM Tris buffer (pH 7.0) containing 100 mM NaCl and 4 mM b-mercaptoethanol. The refolded protein was analyzed by SDS-PAGE and assayed for the ability to undergo autophosphorylation and to phosphorylate eEF-2. Preparations of refolded GST-eEF-2 kinase and 6xHis-eEF-2 kinase contained predominantly one band corresponding to eEF-2 kinase. In the case of GST-tagged eEF-

2 kinase, the protein was further purified using glutathione-Sepharose. Gel filtration analysis of recombinant eEF-2 kinase on Superdex-200 revealed that both 6xHis- and GST-eEF-2 kinase cluted predominantly in the void volume, indicating that it was aggregated. This aggregated kinase was enzymatically inactive. eEF-2 kinase activity eluted in the fractions corresponding to a Stokes radius of 52. Approximately 4% of the refolded eEF-2 kinase eluted in this area. The specific activity of eEF-2 kinase was 5 mmoles/min/mg, which is slightly higher than the specific activity of eEF-2 kinase purified from rabbit reticulocytes. The extremely low yield of active eEF-2 kinase prompted to search for alternative methods for expression of recombinant kinase.

10

15

20

eEF-2 kinase was expressed as fusion with thioredoxin in order to obtain a soluble protein because it was reported that thioredoxin can prevent accumulation of recombinant proteins in inclusion bodies (149). Human eEF-2 kinase cDNA was cloned into the expression vector pThioHis (Invitrogen). The thioredoxin expressed from this vector has additional histidine residues so it can also function as a His tag. Tthioredoxin-eEF-2 kinase was found to remain soluble and was enzymatically active. Moreover, its elution profile on Mono Q and Superdex-200 was very similar to eEF-2 kinase purified from rabbit reticulocytes, which shows that it was correctly folded. This His-thioredoxin-tagged kinase can be efficiently and easily purified from total lysates by immobilized metal affinity chromatography (IMAC) or by ThioBond resin (Invitrogen). This fusion protein also contains an enterokinase cleavage site, which allows for removal of the Histhioredoxin tag. Thus, a method to express active and, most likely correctly folded, eEF-2 kinase which will facilitate the studies was demonstrated.

25 Phosphorylation of synthetic peptides by eEF-2 kinase: Redpath *et al.* (118) were able to detect some [g-32P]-ATP incorporation into a synthetic peptide corresponding to residues 49-60 of eEF-2 (RAGETRFTDTRK), which encompasses the phosphorylation site of eEF-2. The rate of phosphorylation was low, and the K_m was very high (>>2.5 mM). A larger peptide corresponding to amino acids 48-66 of eEF-2

(ARAGETRFTDTRKDEQERC), was synthesized and was unable to detect any phosphorylation after incubation with [g = ³³P]-ATP and recombinant eEF-2 kinase.

As can be seen in Figure 15, eEF-2 kinase can efficiently phosphorylate MH-1. The $K_{\rm m}$ of this reaction was approximately 150 mM, which is similar to the $K_{\rm m}$ of the phosphorylation of MH-1 by MHCK A (105 mM; 119). If an a-helical conformation is necessary for recognition of MH-1 by eEF-2 kinase, then removal of the C-terminal amide from MH-1 should reduce the a-helical propensity of the peptide, and thus, make it a less efficient substrate for eEF-2 kinase. As can be seen in Figure 11a, this is the case. An uncapped version of the peptide (called MH-U) can serve as a substrate for eEF-2 kinase, although a significantly less efficient one. The reduction of phosphorylation efficiency is due entirely to a change in $K_{\rm m}$, which for MH-U is approximately 400 mM.

15 It is interesting that the sequence of MH-1 is quite different from the sequence surrounding the phosphorylation site in eEF-2 (see Figure 15B). When looking at the primary structure, the threonines that undergo phosphorylation are surrounded in these two peptides by very different amino acids. But when the same sequences are folded into a-helices, the surrounding environment of those phosphoacceptor threonines is very similar, as can be seen in Figure 15B: in both cases, there is a basic amino acid to the left and a glutamate followed by a basic amino acid on the right. This pattern may represent the consensus sequence for recognition by eEF-2 kinase and the related protein kinases. Thus, as demonstrated herein eEF-2 kinase phosphorylates amino acids located within a-helices.

25

30

WO 99/09199

10

While the invention has been described and illustrated herein by references to various specific material, procedures and examples, it is understood that the invention is not restricted to the particular material combinations of material, and procedures selected for that purpose. Numerous variations of such details can be implied as will be appreciated by those skilled in the art.

WHAT IS CLAIMED IS:

- 1 1. A protein kinase which is a member of a superfamily, said protein kinase
- 2 being characterized by:
- A. greater than 40% sequence similarity with eEF-2 kinase from
- 4 any organism; and,
- 5 B. phosphorylates an amino acid within an alpha helical domain
- 6 of its target protein.
- 1 2. A protein kinase of Claim 1 which phosphorylates eukaryotic elongation
- 2 factor-2 (eEF-2), and is designated as eukaryotic elongation factor-2 kinase (eEF-2
- 3 kinase).
- 1 3. A protein kinase of Claim 1 which phosphorylates eukaryotic myosin heavy
- 2 chain (MHC), and is designated as myosin heavy chain kinase (MHCK).
- 1 4. A protein kinase of Claim 1 that phosphorylates a peptide sequence derived
- 2 from the phosphorylation site of a target protein.
- 1 5. A peptide sequence having SEQ ID NO: 20.
- 1 6. A protein kinase of Claim 1 which is a polypeptide having an amino acid
- 2 sequence selected from the group consisting of SEQ ID NO: 2, SEQ ID NO: 4, and
- 3 SEQ ID NO: 10, and fragments thereof.
- 1 7. A protein kinase of Claim 1 which is derived from mammalian cells.
- 1 8. A protein kinase of Claim 1 labeled with a detectable label.

- 1 9. A protein kinase of Claim 8 wherein the label is selected from enzymes,
- 2 chemicals which fluoresce, and radioactive elements.
- 1 10. An antibody to the protein kinase of Claim 1.
- 1 11. An antibody to the phosphorylated form of the target protein of Claim 1.
 - 12. An antibody to the phosphorylated form of the peptide of Claim 5.
- 1 13. The antibody of Claim 10, 11 or 12 which is a polyclonal antibody.
- 1 14. The antibody of Claim 10, 11 or 12 which is a monoclonal antibody.
- 1 15. An immortal cell line that produces a monoclonal antibody according to
- 2 Claim 14.
- 1 16. The antibody of Claim 10, 11 or 12 labeled with a detectable label.
- 1 17. The antibody of Claim 10, 11 or 12 wherein the label is selected from
- 2 enzymes, chemicals which fluoresce and radioactive elements.
- 1 18. A DNA sequence which encodes eEF-2 kinase, or a fragment thereof,
- 2 selected from the group consisting of:
- 3 (A) the DNA sequences of Figure 5 (SEQ ID NO: 1);
- 4 (B) the DNA sequences of Figure 5 (SEQ ID NO: 3);
- 5 (C) the DNA sequences of Figure 5 (SEQ ID NO: 9);
- 6 (D) DNA sequences that hybridize to any of the foregoing DNA
- 7 sequences under standard hybridization conditions;
- 8 (E) DNA sequences that code for expression of an amino acid sequence
- 9 encoded by any of the foregoing DNA sequences.

- (F) degenerate variants thereof;
- (G) alleles thereof; and,
- 12 (H) hybridizable fragments thereof.
- 1 19. A recombinant DNA molecule comprising a DNA sequence which encodes
- 2 eEF-2 kinase, or a fragment thereof, selected from the group consisting of:
- 3 (A) the DNA sequences of Figure 5 (SEQ ID NO: 1);
- 4 (B) the DNA sequences of Figure 5 (SEQ ID NO: 3);
- 5 (C) the DNA sequences of Figure 5 (SEQ ID NO: 9);
- 6 (D) DNA sequences that hybridize to any of the foregoing DNA
- 7 sequences under standard hybridization conditions;
- 8 (E) DNA sequences that code for expression of an amino acid sequence
- 9 encoded by any of the foregoing DNA sequences.
- 1() (F) degenerate variants thereof;
- (G) alleles thereof; and,
- 12 (H) hybridizable fragments thereof.
 - 1 20. The recombinant DNA molecule of either of Claims 18 or 19, wherein said
- 2 DNA sequence is operatively linked to an expression control sequence.
- 1 21. The recombinant DNA molecule of Claim 20, wherein said expression
- 2 control sequence is selected from the group consisting of the early or late promoters
- 3 of SV40 or adenovirus, the *lac* system, the *trp* system, the *TAC* system, the *TRC*
- 4 system, the major operator and promoter regions of phage λ , the control regions of
- 5 fd coat protein, the promoter for 3-phosphoglycerate kinase, the promoters of acid
- 6 phosphatase and the promoters of the yeast α -mating factors.
- 1 22. A probe capable of screening for eEF-2 kinase in alternate species prepared
- 2 from the DNA sequence of Claim 18.

1 23. A probe capable of screening for members of the protein kinase superfamily

- 2 of Claim 1 prepared from the DNA sequence of Claim 18.
- 1 24. A unicellular host transformed with a recombinant DNA molecule
- 2 comprising a DNA sequence or degenerate variant thereof, which encodes a protein
- 3 kinase, or a fragment thereof, selected from the group consisting of:
- 4 (A) the DNA sequences of Figure 5 (SEQ ID NO: 1);
- 5 (B) the DNA sequences of Figure 5 (SEQ ID NO: 3);
- the DNA sequences of Figure 5 (SEQ ID NO: 9);
- 7 (D) DNA sequences that hybridize to any of the foregoing DNA
- 8 sequences under standard hybridization conditions; and
- 9 (E) DNA sequences that code on expression for an amino acid sequence
- 10 encoded by any of the foregoing DNA sequences;
- wherein said DNA sequence is operatively linked to an expression control
- 12 sequence.
- 1 25. The unicellular host of Claim 24 wherein the unicellular host is selected from
- 2 the group consisting of E. coli, Pseudomonas, Bacillus, Streptomyces, yeasts, CHO,
- 3 R1.1, B-W, L-M, COS 1, COS 7, BSC1, BSC40, and BMT10 cells, plant cells,
- 4 insect cells, and human cells in tissue culture.
- 1 26. A method for detecting eEF-2 kinase and assessing eEF-2 kinase levels by:
- A. contacting a biological sample from a mammal in which the
- 3 presence or activity of said eEF-2 kinase is suspected with a binding partner of said
- 4 eEF-2 kinase under conditions that allow binding of said eEF-2 kinase to said
- 5 binding partner to occur; and,
- 6 B. detecting whether binding has occurred, and to what degree,
- 7 between said eEF-2 kinase from said sample and the binding partner;

- 8 wherein the detection of binding indicates that presence or activity of said
- 9 eEF-2 kinase in said sample, and indicates a level of said eEF-2 kinase in the
- 10 sample.
- 1 27. An assay system for screening drugs and other agents for ability to modulate
- 2 eEF-2 kinase activity, comprising a predetermined amount of eEF-2 kinase mixed
- 3 with varying amounts of drug or agent, along with target protein and ATP; wherein
- 4 detection is via either a detectable label on the γ -phosphate of ATP, or on an
- 5 antibody directed against the phosphorylated target protein...
- 1 28. The assay system of Claim 27 wherein the label on the γ -phosphate of ATP
- 2 comprises one of the following:
- 3 A. 32 P;
- 4 B. ^{33}P
- 5 C. 35 S
- D. a biotinylated phosphate moiety; or,
- 7 E. a fluorescent phosphate moiety.
- 1 29. The assay system of Claim 27 wherein the label on the antibody comprises
- 2 one of the following:
- A. an enzyme detectable with colorimetric, fluorescent, or
- 4 chemiluminescent substrates, such as alkaline phosphatase or horseradish
- 5 peroxidase;
- B. a biotin moiety;
- 7 C. a fluorescent moiety; or,
- D. a radioactive moiety chosen from the following group of
- 9 isotopes: ³H, ¹⁴C, ³²P, ³³P, ³⁵S, ³⁶Cl, ⁵¹Cr, ⁵⁷Co, ⁵⁸Co, ⁵⁹Fe, ⁹⁰Y, ¹²⁵I, ¹³¹I, and ¹⁸⁶Re.
- 1 30. An assay system for screening drugs and other agents for ability to modulate
- 2 eEF-2 kinase activity, comprising:

- culturing an observable cellular test colony inoculated with a 3 Α. 4 drug or agent; 5 В. harvesting a supernatant from said cellular test colony; and, C. examining said supernatant for the presence of said eEF-2 6 kinase activity wherein an increase or a decrease in a level of said eEF-2 kinase 7 activity indicates the ability of a drug to modulate the activity of said eEF-2 kinase. 8 A test kit for assessing the level of eEF-2 kinase activity in a eukaryotic 31. 1 cellular sample, comprising: 2 A. a predetermined amount of a detectably labelled specific binding 3 partner of eEF-2 kinase. 4 B. other reagents; and. 5 C. directions for use of said kit. 6 The test kit of Claim 31 wherein said labeled immunochemically reactive 1 31. component is selected from the group consisting of polyclonal antibodies to eEF-2 2 kinase, monoclonal antibodies to eEF-2 kinase, fragments thereof, and mixtures 3 thereof. 4 A method of preventing and/or treating cellular debilitations, derangements 1 32. and/or dysfunctions and/or other disease states in mammals, comprising 2 administering to a mammal a therapeutically effective amount of a material selected 3 from the following group: 4 peptides that inhibit eEF-2 kinase; 5 Α. antibodies against eEF-2 kinase; and, В. 6 other drugs or agents that specifically inhibit eEF-2 kinase. C. 7
- 1 33. A pharmaceutical composition for the treatment of cellular debilitation,
- 2 derangement and/or dysfunction in mammals, comprising:

A. a therapeutically effective amount of a material selected from the

- 4 group consisting of: peptides that inhibit eEF-2 kinase; antibodies against eEF-2
- 5 kinase; and, other drugs or agents that specifically inhibit eEF-2 kinase; and,
- B. a pharmaceutically acceptable carrier.
- 1 34. A recombinant virus transformed with the DNA molecule, or a derivative or
- 2 fragment thereof, in accordance with Claim 18.
- 1 35. A recombinant virus transformed with the DNA molecule, or a derivative or
- 2 fragment thereof, in accordance with Claim 19.
- 1 36. The recombinant DNA molecule of Claim 20 comprising plasmid pGEX-3X,
- 2 clone E3 or plasmid pGEX-3X, clone E4.
- 1 37. An antisense nucleic acid against eEF-2 kinase mRNA comprising a nucleic
- 2 acid sequence hybridizing to said mRNA.
- 1 38. The antisense nucleic acid of Claim 37 which is RNA.
- 1 39. The antisense nucleic acid of Claim 37 which is DNA.
- 1 40. The antisense nucleic acid of Claim 37 which binds to the initiation codon of
- 2 any of said mRNAs.
- 1 41. A recombinant DNA molecule having a DNA sequence which, on
- 2 transcription, produces an antisense ribonucleic acid against eEF-2 kinase mRNA,
- 3 said antisense ribonucleic acid comprising an nucleic acid sequence capable of
- 4 hybridizing to said mRNA.

- 1 42. A eEF-2 kinase-producing cell line transfected with the recombinant DNA
- 2 molecule of Claim 41.
- 1 43. A method for creating a cell line which exhibits reduced expression of eEF-
- 2 kinase, comprising transfecting a eEF-2 kinase-producing cell line with a
- 3 recombinant DNA molecule of claim 41.
- 1 44. A ribozyme that cleaves eEF-2 kinase mRNA.
- 1 45. The ribozyme of Claim 44 which is a *Tetrahymena*-type ribozyme.
- 1 46. The ribozyme of Claim 44 which is a Hammerhead-type ribozyme.
- 1 47. A recombinant DNA molecule having a DNA sequence which, upon
- 2 transcription, produces the ribozyme of claim 44.
- 1 48. A eEF-2 kinase-producing cell line transfected with the recombinant DNA
- 2 molecule of claim 47.
- 1 49. A method for creating a cell line which exhibits reduced expression of eEF-2
- 2 kinase, comprising transfecting a eEF-2 kinase-producing cell line with the
- 3 recombinant DNA molecule of claim 44.
- 1 50. An isolated nucleic acid encoding a protein kinase which is a member of a
- 2 superfamily, said protein kinase being characterized by: A. greater than 40%
- 3 sequence similarity with eEF-2 kinase from any organism; and,B.phosphorylates an
- 4 amino acid within an alpha helical domain of its target protein.

- 1 51. The isolated nucleic acid of claim 50, wherein the nucleic acid encodes eEF-
- 2 2 kinase protein, heart protein kinase, melanoma protein protein, or ch4 protien
- 3 kinase.

ಡ

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

6 / 16

FIGURE 6

FIGURE 7

	THE TOTAL WINDSTRANCE OF THE TOTAL CONTROLL OF THE TOTAL CONTROL ON THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL CONTROL ON THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL CONTROL ON THE TOTAL CONTROL OF THE TOTAL CONTROL ON THE	PPR. V. IM. LIELEN C. L. L.E. YI. G. Y. KYN. N. G. V. NOCH. PPR. I. IV. VIEMING C. C. L.E. PILGE F. K. N. N. G. V. N. C. C. E. P. C. F. F. F. F. N. N. G. V. N. C. C. F. F. F. K. N. N. G. V. N. C. C. F. F. K. N. N. G. V. N. C. C. C. F. F. K. N. N. G. V. N. C. C. C. F. F. K. N. N. G. V. N. C.	VIII LYTDPQIATA
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	PPR. V. IN CLIED. PPR. I. IV. CVERALIS PPR. I. PL. S. VLEFUL STATE PPR. I. S. VLEFUL STATE PPR. I	
mari(124 TENNELL MONGER OF URBOTE TO THE TENNELL OF THE TENELL OF THE TENNELL OF THE TENELL OF THE TENNELL OF THE TENELL OF THE TENNELL OF THE TEN	III VYF DV. LQ. A. W. E.N. VLE. DV. LQ. A. W. EN LYF DV. NQ. A. W. FN EV. TYP DV. Q. A. T. FN EV. T.	VI CONSTRUCTOR SERVICE SERVIC
	124 77 110 77 132 73 132 73 148 148 748 748 748 748 748 748 748 748 748 7		252 235 235 734 735 1155 123 123 123 123 123 123 123 123 123 123
	H. EF2K 1 C.e. EF2K 1 MHCK A MHCK B 1 MHCK C heart K 1 melano K ch 4 K 11 consensus	H. EF2K 178 C.e. EF2K 162 MHCK A 653 MHCK B 177 MHCK C 89 heart K 249 melano K 108 ch 4 K 1173 consensus	H.EF2K 2 C.e.EF2K 2 MHCK A 7 MHCK B 2 MHCK C 1 heart K 3 ch 4 K 12 consensus

FIGURE 9

FIGURE 10

FIGURE 11

SUBSTITUTE SHEET (RULE 26)

13 / 16

FIGURE 13

FIGURE 14

FIGURE 15

*
RKKFGESEKTKTKEFL - MHC
SARAGETRFTDTRKDE - EF2

E

мнс

R

E

G

ĸ

K

ĸ

FIGURE 16

-1-

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (1) APPLICANT: Ryazanov, Alexey G.
 Hait, William N.
 Pavur, Karen S.
- (ii) TITLE OF INVENTION: ELONGATION FACTOR-2 KINASE (EF-2 KINASE) AND METHODS OF USE THEREFOR
- (iii) NUMBER OF SEQUENCES: 25
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: David A. Jackson, Esq.
 - (B) STREET: 411 Hackensack Ave, Continental Plaza, 4th Floor
 - (C) CITY: Hackensack
 - (D) STATE: New Jersey
 - (E) COUNTRY: USA
 - (F) ZIP: 07601
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Jackson Esq., David A.
 - (B) REGISTRATION NUMBER: 26,742
 - (C) REFERENCE/DOCKET NUMBER: 601-1-078
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 201-487-5800
 - (B) TELEFAX: 201-343-1684
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2178 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATGGCAGACG	AAGACCTCAT	CTTCCGCCTG	GAAGGTGTTG	ATGGCGGCCA	GTCCCCCGA	60
GCTGGCCATG	ATGGTGATTC	TGATGGGGAC	AGCGACGATG	AGGAAGGTTA	CTTCATCTGC	120
CCCATCACGG	ATGACCCAAG	CTCGAACCAG	AATGTCAATT	CCAAGGTTAA	TAAGTACTAC	180
AGCAACCTAA	CAAAAAGTGA	GCGGTATAGC	TCCAGCGGGT	CCCCGGCAAA	CTCCTTCCAC	240
TTCAAGGAAG	CCTGGAAGCA	CGCAATCCAG	AAGGCCAAGC	ACATGCCCGA	CCCCTGGGCT	300
GAGTTCCACC	TGGAAGATAT	TGCCACCGAA	CGTGCTACTC	GACACAGGTA	CAACGCCGTC	360
ACCGGGGAAT	GGCTGGATGA	TGAAGTTCTG	ATCAAGATGG	CATCTCAGCC	CTTCGGCCGA	420
GGAGCAATGA	GGGAGTGCTT	CCGGACGAAG	AAGCTCTCCA	ACTTCTTGCA	TGCCCAGCAG	480
TGGAAGGGCG	CCTCCAACTA	CGTGGCGAAG	CGCTACATCG	AGCCCGTAGA	CCGGGATGTG	540
TACTTTGAGG	ACGTGCGTCT	ACAGATGGAG	GCCAAGITCT	GGGGGGAGGA	GTATAATCGG	600
CACAAGCCCC	CCAAGCAGGT	GGACATCATG	CAGATGTGCA	TCATCGAGCT	GAAGGACAGA	660
CCGGGCAAGC	CCCTCTTCCA	CCTGGAGCAC	TACATCGAGG	GCAAGTACAT	CAAGTACAAC	720
TCCAACTCTG	GCTTTGTCCG	TGATGACAAC	ATCCGACTGA	CGCCGCAGGC	CTTCAGCCAC	780
TTCACTTTTG	AGCGTTCCGG	CCATCAGCTG	ATAGTGGTGG	ACATCCAGGG	AGTTGGGGAT	840
CTCTACACTG	ACCCACAGAT	CCACACGGAG	ACGGGCACTG	ACTTTGGAGA	CGGCAACCTA	900
GGTGTCCGCG	GGATGGCGCT	CTTCTTCTAC	TCTCATGCCT	GCAACCGGAT	TTGCGAGAGC	960
ATGGGCCTTG	CTCCCTTTGA	CCTCTCGCCC	CGGGAGAGGG	ATGCAGTGAA	TCAGAACACC	1020
AAGCTGCTGC	AATCAGCCAA	GACCATCTTG	AGAGGAACAG	AGGAAAATG	TGGGAGCCCC	1080
CGAGTAAGGA	CCCTCTCTGG	GAGCCGGCCA	CCCCTGCTCC	GTCCCCTTTC	AGAGAACTCT	1140
GGAGACGAGA	ACATGAGCGA	CGTGACCTTC	GACTCTCTCC	CTTCTTCCCC	ATCTTCGGCC	1200

ACACCACACA	GCCAGAAGCT	AGACCACCTC	CATTGGCCAG	TGTTCAGTGA	CCTCGATAAC	1260
ATGGCATCCA	GAGACCATGA	TCATCTAGAC	AACCACCGGG	AGTCTGAGAA	TAGTGGGGAC	1320
AGCGGATACC	CCAGTGAGAA	GCGGGGTGAG	CTGGATGACC	CTGAGCCCCG	AGAACATGGC	1380
CACTCATACA	GTAATCGGAA	GTACGAGTCT	GACGAAGACA	GCCTGGGCAG	CTCTGGACGG	1440
GTATGTGTAG	AGAAGTGGAA	TCTCCTCAAC	TCCTCCCGCC	TCCACCTGCC	GAGGGCTTCG	1500
GCCGTGGCCC	TGGAAGTGCA	AAGGCTTAAT	GCTCTGGACC	TCGAAAAGAA	AATCGGGAAG	1560
TCCATTTTGG	GGAAGGTCCA	TCTGGCCATG	GTGCGCTACC	ACGAGGGTGG	GCGCTTCTGC	1620
GAGAAGGCG	AGGAGTGGGA	CCAGGAGTCG	GCTGTCTTCC	ACCTGGAGCA	CGCAGCCAAC	1680
CTGGGCGAGC	TGGAGGCCAT	CGTGGGCCTG	GGACTCATGT	ACTCGCAGTT	GCCTCATCAC	1740
ATCCTAGCCG	ATGTCTCTCT	GAAGGAGACA	GAAGAGAACA	AAACCAAAGG	ATTTGATTAC	1800
TTACTAAAGG	CCGCTGAAGC	TGGCGACAGG	CAGTCCATGA	TCCTAGTGGC	GCGAGCTTTT	1860
GACTCTGGCC	AGAACCTCAG	CCCGGACAGG	TGCCAAGACT	GGCTAGAGGC	CCTGCACTGG	1920
TACAACACTG	CCCTGGAGAT	GACGGACTGT	GATGAGGGCG	GTGAGTACGA	CGGAATGCAG	1980
GACGAGCCCC	GGTACATGAT	GTTGGCCAGG	GAGGCAGAGA	TGCTGTTCAC	AGGAGGCTAC	2040
GGGCTGGAGA	AGGACCCGCA	GAGATCAGGG	GACTTGTATA	CCCAGGCAGC	AGAGGCAGCG	2100
ATGGAAGCCA	TGAAGGCCG	ACTGGCCAAC	CAGTACTACC	AAAAGGCTGA	AGAGGCCTGG	2160
GCCCAGATGG	AGGAATAA					2178

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 725 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY. linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

-4-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ala Asp Glu Asp Leu Ile Phe Ard Leu Glu Gly Val Asp Gly Gly

1 10 15

Gln Ser Pro Arg Ala Gly His Asp Gly Asp Ser Asp Gly Asp Ser Asp

Asp Glu Glu Gly Tyr Phe Ile Cys Pro Ile Thr Asp Asp Pro Ser Ser 35 40 45

Asn Gln Asn Val Asn Ser Lys Val Asn Lys Tyr Tyr Ser Asn Leu Thr 50 55 60

Lys Ser Glu Arg Tyr Ser Ser Ser Gly Ser Pro Ala Asn Ser Phe His 65 70 75 80

Phe Lys Glu Ala Trp Lys His Ala Ile Gln Lys Ala Lys His Met Pro 85 90 95

Asp Pro Trp Ala Glu Phe His Leu Glu Asp Ile Ala Thr Glu Arg Ala 100 105 110

Thr Arg His Arg Tyr Asn Ala Val Thr Gly Glu Trp Leu Asp Asp Glu
115 120 125

Val Leu Ile Lys Met Ala Ser Gln Pro Phe Gly Arg Gly Ala Met Arg 130 135 140

Glu Cys Phe Arg Thr Lys Lys Leu Ser Asn Phe Leu His Ala Gln Gln 145 150 155 160

Trp Lys Gly Ala Ser Asn Tyr Val Ala Lys Arg Tyr Ile Glu Pro Val 165 170 175

Asp Arg Asp Val Tyr Phe Glu Asp Val Arg Leu Gln Met Glu Ala Lys
180 185 190

Leu Trp Gly Glu Glu Tyr Asn Arg His Lys Pro Pro Lys Gln Val Asp 195 200 205

Ile Met Gln Met Cys Ile Ile Glu Leu Lys Asp Arg Pro Gly Lys Pro 210 215 220

Leu Phe His Leu Glu His Tyr Ile Glu Gly Lys Tyr Ile Lys Tyr Asn 225 230 235 240

Ser Asn Ser Gly Phe Val Arg Asp Asp Asn Ile Arg Leu Thr Pro Gln 245 250 255

Ala Phe Ser His Phe Thr Phe Glu Arg Ser Gly His Gln Leu Ile Val

-5-

			260					265					270		
Val	Asp	Ile 275	Gln	Gly	Val	Gly	Asp 280	Leu	Tyr	Thr	Asp	Pro 285	Gln	Ile	His
Thr	Glu 290	Thr	Gly	Thr	Asp	Phe 295	Gly	Asp	Gly	Asn	Leu 300	Gly	Val	Arg	Gly
Met 305	Ala	Leu	Phe	Phe	Tyr 310	Ser	His	Ala	Cys	Asn 315	Arg	Ile	Cys	Glu	Ser 320
Met	Gly	Leu	Ala	Pro 325	Phe	Asp	Leu	Ser	Pro 330	Arg	Glu	Arg	Asp	Ala 335	Val
Asn	Gln	Asn	Thr 340	Lys	Leu	Leu	Gln	Ser 345	Ala	Lys	Thr	Ile	Leu 350	Arg	Gly
Thr	Glu	Glu 355	Lys	Cys	Gly	Ser	Pro 360	Arg	Val	Arg	Thr	Leu 365	Ser	Gly	Ser
Arg	Pro 370	Pro	Leu	Leu	Arg	Pro 375	Leu	Ser	Glu	Asn	Ser 380	Gly	Asp	Glu	Asn
Met 385	Ser	Asp	Val	Thir	Phe 390	Asp	Ser	Leu	Pro	Ser 395	Ser	Pro	Ser	Ser	Ala 400
Thr	Pro	His	Ser	Gln 405	Lys	Leu	Asp	His	Leu 410	His	Trp	Pro	Val	Phe 415	Ser
Asp	Leu	Asp	Asn 420	Met	Ala	Ser	Arg	Asp 425	His	Asp	His	Leu	Asp 430	Asn	His
Arg	Glu	Ser 435	Glu	Asn	Ser	Gly	Asp 440	Ser	Gly	Tyr	Pro	Ser 445	Glu	Lys	Arg
Gly	Glu 450	Leu	Asp	Asp	Pro	Glu 455	Pro	Arg	Glu	His	Gly 460	His	Ser	Tyr	Ser
Asn 465	Arg	Lys	Tyr	Glu	Ser 470	Asp	Glu	Asp	Ser	Leu 475	Gly	Ser	Ser	Gly	Arg 480
Val	Cys	Val	Glu	Lys 485	Trp	Asn	Leu	Leu	Asn 490	Ser	Ser	Arg	Leu	His 495	Leu
Pro	Arg	Ala	Ser 500	Ala	Val	Ala	Leu	Glu 505	Val	Gln	Arg	Leu	Asn 510	Ala	Leu
Asp	Leu	Glu 515	Lys	Lys	Ile	Gly	Lys 520	Ser	Ile	Leu	Gly	Lys 525	Val	His	Leu
Ala	Met	Val	Arg	Tyr	His	Glu	Gly	Gly	Arg	Phe	Cys	Glu	Lys	Gly	Glu

-()-

	530					535					540				
Glu 545	Trp	Asp	Gln	Glu	Ser 5 5 0	Ala	Val	Phe	His	Leu 555	Glu	His	Ala	Ala	Asn 560
Leu	Gly	Glu	Leu	Glu 565	Ala	Ile	Val	Gly	Leu 570	Gly	Leu	Met	Tyr	Ser 575	Gln
Leu	Pro	His	His 580	Ile	Leu	Ala	Asp	Val 585	Ser	Leu	Lys	Glu	Thr 590	Glu	Glu
Asn	Lys	Thr 595	Lys	Gly	Phe	Asp	Туг 600	Leu	Leu	Lys	Ala	Ala 605	Glu	Ala	Gly
Asp	Arg 610	Gln	Ser	Met	Ile	Leu 615	Val	Ala	Arg	Ala	Phe 620	Asp	Ser	Gly	Gln
Asn 625	Leu	Ser	Pro	Asp	Arg 630	Cys	Gln	Asp	Trp	Leu 635	Glu	Ala	Leu	His	Trp 640
Tyr	Asn	Thr	Ala	L∈u 645	Glu	Met	Thr	Аср	Cys 650	Asp	Glu	Gly	Gly	Glu 655	Tyr
Asp	Gly	Met	Gln 660	Asp	Glu	Pro	Arg	Tyr 665	Met	Met	Leu	Ala	Arg 670	Glu	Ala
Glu	Met	Leu 675	Phe	Thr	Gly	Gly	Tyr 680	Gly	Leu	Glu	Lys	Asp 685	Pro	Gln	Arg
Ser	Gly 690	Asp	Leu	Туr	Thr	Gln 695	Ala	Ala	Glu	Ala	Ala 700	Met	Glu	Ala	Met
Lys 705	Gly	Arg	Leu	Ala	Asn 710	Gln	Tyr	Tyr	Gln	Lys 715	Ala	Glu	Glu	Ala	Trp 720
Ala	Gln	Met	Glu	Glu 725											

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2175 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY linear
- (ii) MOLECULE TYPE. cDNA
- (iii) HYPOTHETICAL: NO
- (v1) ORIGINAL SOURCE:

-7-

(A) ORGANISM: Mus musculus

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATGGCAGACG	AAGACCTCAT	CTTCTGCCTG	GAAGGTGTTG	ACGGTGGCAG	GTGCTCCCGA	60
GCTGGCCACA	ATGCGGACTC	TGACACAGAC	AGTGACGATG	ATGAGGGCTA	TTTCATCTGC	120
CCCATCACTG	ATGACCACAT	GTCCAATCAG	AATGTCAGCT	CCAAAGTCCA	GAGCTACTAT	180
AGCAACCTAA	CAAAAACAGA	GTGCGGCTCC	ACAGGGTCAC	CAGCCAGCTC	CTTCCACTTC	240
AAGGAAGCCT	GGAAGCATGC	GATCGAGAAA	GCCAAGCACA	TGCCTGACCC	CTGGGCTGAA	300
TTCCATCTCG	AGGACATCGC	CACAGAACAT	GCTACTCGGC	ACAGGTACAA	CGCTGTCACC	36 C
GGGGAATGGC	TGAAAGACGA	GGTTCTGATC	AAGATGGCGT	CTCAGCCCTT	CGGCCGTGGA	420
GCAATGAGGG	AGTGCTTCAG	GACGAAGAAA	CTCTCCAACT	TCTTGCACGC	CCAGCAATGG	480
AAGGGGGCCT	CCAACTACGT	GGCCAAGCGC	TACATCGAGC	CGGTGGACAG	GAGCGTGTAC	540
TTTGAGGATG	TGCAGCTCCA	GATGGAGGCG	AAGCTCTGGG	GGGAGGATTA	CAATCGGCAC	600
AAGCCCCCCA	AGCAGGTGGA	TATCATGCAG	ATGTGCATCA	TTGAGCTAAA	GGACAGACCA	660
GGCCAGCCCC	TCTTCCACTT	GGAGCACTAC	ATTGAGGGCA	AGTACATCAA	GTACAATTCC	720
AACTCAGGCT	TTGTCCGTGA	TGACAACATC	CGACTAACCC	CACAGGCCTT	CAGCCATTTC	780
ACATTTGAGC	GTTCTGGTCA	TCAGCTGATT	GTAGTGGACA	TCCAGGGTGT	GGGTGACCTT	84 (i
TATACCGACC	CACAGATCCA	CACTGAGAAA	GGCACTGACT	TTGGAGATGG	TAACCTTGGT	900
GTCCGGGGAA	TGGCTCTCTT	CTTCTACTCT	CATGCCTGCA	ACCGGATTTG	TCAGAGCATG	960
GGCCTTACGC	CCTTTGACCT	CTCCCCACGG	GAACAGGATG	CGGTGAATCA	GAGCACCAGG	1020
CTATTGCAAT	CAGCCAAGAC	CATCTTGAGG	GGGACAGAGG	AGAAGTGTGG	GAGTCCCCGC	1080
ATAAGGACAC	TCTCTAGCAG	CCGGCCCCCT	TTGCTCCTTC	GCCTGTCAGA	GAACTCCGGG	1140
GATGAGAACA	TGAGTGACGT	GACCTTTGAC	TCTCTGCCTT	CCTCCCCGTC	TTCAGCTACA	1200
CCACACAGCC	AGAAACTGGA	CCACCTCCAT	TGGCCAGTGT	TTGGTGACCT	CGATAACATG	1260
GGCCCTAGAG	ACCATGACCG	TATGGACAAT	CACCGGGACT	CTGAGAATAG	TGGGGACAGT	1320
GGGTATCCAA	GCGAGAAGCG	AAGTGACCTG	GATGATCCTG	AGCCCCGAGA	ACACGGCCAC	1380

TCCAACGGCA	ACCGAAGGCA	TGAATCTGAC	GAGGATAGCC	TGGGCAGCTC	TGGACGGGTC	1440
TGTGTGGAGA	CGTGGAACCT	GCTCAATCCC	TCCCGCCTGC	ACCTGCCGAG	GCCCTCGGCC	1500
GTGGCCCTAG	AAGTGCAGAG	GCTAAATGCC	CTGGACCTTG	GAAGGAAAAT	CGGGAAGTCT	1560
GTTTTGGGGA	AAGTCCATTT	GGCCATGGTG	CGATACCACG	AGGGCGGGCG	CTTCTGCGAG	1620
AAGGATGAGG	AGTGGGATCG	AGAGTCAGCC	ATCTTCCATC	TGGAGCATGC	AGCTGACCTG	1680
GGAGAACTGG	AGGCCATCGT	GGGCCTAGGC	CTCATGTACT	CTCAGCTGCC	CCACCACATC	1740
CTGGCTGATG	TCTCTCTGAA	GGAGACAGAG	GAGAACAAGA	CAAAAGGCTT	TGATTACTTA	1800
CTGAAGGCGG	CAGAAGCTGG	TGACAGGCAT	TCCATGATTT	TAGTGGCCCG	AGCTTTTGAC	1860
ACTGGCCTGA	ACCTCAGCCC	AGACAGGTGT	CAAGACTGGT	CGGAAGCCTT	GCACTGGTAC	1920
AACACAGCCC	TGGAGACAAC	AGACTGCGAT	GAAGGCGGGG	AGTACGATGG	GATACAGGAC	1980
GAGCCCCAGT	ACGCACTGCT	GGCCAGGGAG	GCGGAGATGC	TGCTCACCGG	GGGATTTGGA	2040
CTGGACAAGA	ACCCCCAAAG	ATCAGGAGAT	TTGTACACCC	AGGCAGCTGA	GGCAGCAATG	2100
GAAGCCATGA	AGGGCCGGCT	AGCCAACCAG	TACTACGAGA	AGGCGGAAGA	GGCCTGGGCC	2160
CAGATGGAGG	AATAA					2175

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 724 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mus musculus
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ala Asp Glu Asp Leu Ile Phe Cys Leu Glu Gly Val Asp Gly Gly 1 5 10 15

Arg Cys Ser Arg Ala Gly His Asn Ala Asp Ser Asp Thr Asp Ser Asp

-9-

			20					25					30		
Asp	Asp	Glu 35	Gly	Tyr	Phe	Ile	Cys 40	Pro	Ile	Thr	Asp	Asp 45	His	Met	Ser
Asn	Gln 50	Asn	Vāl	Ser	Ser	Lys 55	Val	Gln	Ser	Tyr	Tyr 60	Ser	Asn	Leu	Thr
Lys 65	Thr	Glu	Cys	Gly	Ser 70	Thr	Gly	Ser	Pro	Ala 75	Ser	Ser	Phe	His	Phe 80
Lys	Glu	Ala	Trp	Lys 85	His	Ala	Ile	Glu	Lys 90	Ala	Lys	His	Met	Pro 95	Asp
Pro	Trp	Ala	Glu 100	Phe	His	Leu	Glu	Asp 105	Ile	Ala	Thr	Glu	His 110	Ala	Thr
Arg	His	Arg 115	туr	Asn	Ala	Val	Thr 120	Gly	Glu	Trp	Leu	Lys 125	Asp	Glu	Val
Leu	Ile 130	Lys	Met	Ala	Ser	Gln 135	Pro	Phe	Gly	Arg	Gly 140	Ala	Met	Arg	Glu
Cys 145	Phe	Arg	Thr	Lys	Lys 150	Leu	Ser	Asn	Phe	Leu 155	His	Ala	Gln	Gln	Trp 160
Lys	Gly	Ala	Ser	Asn 165	Tyr	Val	Ala	Lys	Arg 170	Tyr	Ile	Glu	Pro	Val 175	Asp
Arg	Ser	Val	Tyr 180	Phe	Glu	Asp	Val	Gln 185	Leu	Gln	Met	Glu	Ala 190	Lys	Leu
Trp	Gly	Glu 195	Asp	Tyr	Asn	Arg	His 200	Lys	Pro	Pro	Lys	Gln 205	Val	Asp	Ile
Met	Gln 210	Met	Cys	Ile	Ile	Glu 215	Leu	Lys	Asp	Arg	Pro 220	Gly	Gln	Pro	Leu
Phe 225	His	Leu	Glu	His	Tyr 230	Ile	Glu	Gly	Lys	Tyr 235	Ile	Lys	Tyr	Asn	Ser 240
Asn	Ser	Gly	Phe	Val 245	Arg	Asp	Asp	Asn	Ile 250	Arg	Leu	Thr	Pro	Gln 255	Ala
Phe	Ser	His	Phe 260	Thr	Phe	Glu	Arg	Ser 265	Gly	His	Gln	Leu	Ile 270	Val	Val
Asp	Ile	Gln 275	Gly	Val	Gly	Asp	Leu 280	Tyr	Thr	Asp	Pro	Gln 285	Ile	His	Thr
Glu	Lys	Gly	Thr	Asp	Phe	Gly	Asp	Gly	Asn	Leu	Gly	Val	Arg	Gly	Met

PCT/US98/17272

-1()-

	290					295					300				
Ala 305	Leu	Phe	Phe	Tyr	Ser 310	His	Ala	Cys	Asn	Arg 315	Ile	Cys	Gln	Ser	Met 320
Gly	Leu	Thr	Pro	Phe 325	Asp	Leu	Ser	Pro	Arg 330	Glu	Gln	Asp	Ala	Val 335	Asn
Gln	Ser	Thr	Arg 340	Leu	Leu	Gln	Ser	Ala 345	Lys	Thr	Ile	Leu	Arg 350	Gly	Thr
Glu	Glu	Lys 355	Cys	Gly	Ser	Pro	Arg 360	Ile	Arg	Thr	Leu	Ser 365	Ser	Ser	Arg
Pro	Pro 370	Leu	Leu	Leu	Arg	Leu 375	Ser	Glu	Asn	Ser	Gly 380	Asp	Glu	Asn	Met
Ser 385	Asp	Val	Thr	Phe	Asp 390	Ser	Leu	Pro	Ser	Ser 395	Pro	Ser	Ser	Ala	Thr 400
Pro	His	Ser	Gln	Lys 405	Leu	Asp	His	Leu	His 410	Trp	Pro	Val	Phe	Gly 415	Asp
Leu	Asp	Asn	Met 420	Gly	Pro	Arg	Asp	His 425	Asp	Arg	Met	Asp	Asn 430	His	Arg
Asp	Ser	Glu 435	Asn	Ser	Glу	Asp	Ser 440	Gly	Tyr	Pro	Ser	Glu 445	Lys	Arg	Ser
Asp	Leu 450	Asp	Asp	Pro	Glu	Pro 455	Arg	Glu	His	Gly	His 460	Ser	Asn	Gly	Asn
Arg 465	Arg	His	Glu	Ser	Asp 470	Glu	Asp	Ser	Leu	Gly 475	Ser	Ser	Gly	Arg	Val 480
Cys	Val	Glu	Thr	Trp 485	Asn	Leu	Leu	Asn	Pro 490	Ser	Arg	Leu	His	Leu 495	Pro
Arg	Pro	Ser	Ala 500	Val	Ala	Leu	Glu	Val 505	Gln	Arg	Leu	Asn	Ala 510	Leu	Asp
Leu	Gly	Arg 515	Lys	Ile	Gly	Lys	Ser 520	Val	Leu	Gly	Lys	Val 525	His	Leu	Ala
Met	Val 530	Arg	Tyr	His	Glu	Gly 535	Gly	Arg	Phe	Cys	Glu 540	Lys	Asp	Glu	Glu
Trp 545	Asp	Arg	Glu	Ser	Ala 550		Phe	His	Leu	Glu 555	His	Ala	Ala	Asp	Leu 560
Gly	Glu	Leu	Glu	Ala	lle	Val	Gly	Leu	Gly	Leu	Met	Tyr	Ser	Gln	Leu

-11-

Fro His His Ile Leu Ala Asp Val Ser Leu Lys Glu Thr Glu Glu Asn 580 585 590

Lys Thr Lys Gly Phe Asp Tyr Leu Leu Lys Ala Ala Glu Ala Gly Asp 595 600 605

Arg His Ser Met Ile Leu Val Ala Arg Ala Phe Asp Thr Gly Leu Asn 610 615 620

Leu Ser Pro Asp Arg Cys Gln Asp Trp Ser Glu Ala Leu His Trp Tyr 625 630 635 640

Asn Thr Ala Leu Glu Thr Thr Asp Cys Asp Glu Gly Glu Tyr Asp 645 650 655

Gly Ile Gln Asp Glu Pro Gln Tyr Ala Leu Leu Ala Arg Glu Ala Glu 660 665 670

Met Leu Leu Thr Gly Gly Phe Gly Leu Asp Lys Asn Pro Gln Arg Ser 675 680 685

Gly Asp Leu Tyr Thr Gln Ala Ala Glu Ala Ala Met Glu Ala Met Lys 690 695 700

Gly Arg Leu Ala Asn Gln Tyr Tyr Glu Lys Ala Glu Glu Ala Trp Ala 705 710 715 720

Gln Met Glu Glu

WO 99/09199

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3465 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Dictyostelium discoideum
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATGTTTAATA TAAAAAAGAG	AAAAGAGAGT	ATAACAGGTA	TACCACCAAT	AAATGTTAAT	60
AGTCCACAAT CAGTTCCATT	GAGTGGAACA	TTGCAATCAC	CATTGATTAC	ACCAAATTCA	120
CCAAATTTTG TTTCACGTCA	ATGTCCATTC	AAAAAGTTTG	GATGTAGTAG	TTTTTTAGTT	180
TCAAAGGCAG AGTTTGATAA	TCACTTAAAG	GATGACGCAC	AATTTCATTT	ACAATTGGCA	240
GTGGAGAAAT TTGATCATCA	ATTTGATTTA	CACACACAAT	TGATGGCACA	TTTTACTGAG	300
CAAATGGAGG ATCAATTAGA	GAAAACAATG	AAGGTCGTAC	GTAATCATAC	AGATAGTTTA	360
GGCGGTAATG TTCAAACCAA	ATTGGATGAA	GGCATTGAAA	AATGTATGGC	TTTTGCTAAA	420
AAGGTTGAAC AACAACAACA	ACAATTGGCC	AAAAGATTAA	TCACTCAACA	AATTCAAGAG	480
AAGAAATCAA CCTCTTCACC	TTTAGTTAAA	GGTGGTATTA	GTGGTGGTGG	TGGTAGTGGT	540
GGCGATGATT CTTTTGATGG	CGCAAATATA	TCATCAATGT	CAACTAGTAA	ACAAGAATTA	600
CAACAAGAAT TACAATCATT	ATCAATTAAA	ATGAAAAAAG	AATTGACAGA	ATTATCCGAT	660
GAACTATCAC AAAAATTAGA	ACGTTCAACA	GGTAATATAG	TAAAATTATA	AAAGAGAATC	720
GAAGGTGAAG TTAATGAAAA	GATTGATAAA	CGTCAATTGG	TCTCTACGAT	CGATGATTCA	780
ATTGGAAAGA AAACAGATTC	CATCGGTTAT	ACATTGGAGA	GTTCAATCAT	TAAAAAGGTT	840
GAAGAGAAA AGAAAAAGAA	ATCCGAACAA	AATCAACTTC	TCTTTGATTC	AAAGATTGAA	900
TCCTTAAAAG ATAAGATTAA	AATCATTGAA	ACTCAACAAT	TGGATACTTC	ATCAGAGGTT	960
AGAAAATTGA AATTAGAAAG	TACAAGTAGT	GGAAATTTAA	TGGCAGGTCT	TAATGGTACC	1020
TCTGGTAGAC CTTCATCATC	TTCTCACTTT	ATTCCATCCT	CTGTTTCTGC	CGCTGCTAAC	1080
AATATCAACA AGAATGAAAT	CATGGAAGAG	TTAAAAAGG	TAGAAGAGAA	ACTTCAAAAG	1140
AAAATTCGTG AAGAGATTGA	TAATACAAAA	GCTGAACTCT	CAAAGGTTGA	ACGTTCCGTT	1200
AAAGATAATC GTAGTGAAAT	TGAAGGTTTG	GAAAAGATT	GTAAGAATCA	ATTCGATAAA	1260
CAAGACAATA AGATCAAACA	AGTTGAGGAT	GATTTGAAAA	AGAGTGATTC	ATTACTTTTG	1320
TTAATGCAAA ATAACCTCAA	GAAATATAAT	GAATTTGTTG	ATAGAGAACG	TGATCGTGAA	1380
AGTGAACGTT TGAAACTTCA	AGATTCTATC	AAACGTTTAG	AACAAAATCA	AAAGAAAATC	1440
GAAGCTGAAA TTCAAGAAGG	TAATGAACAA	GTTGAACGTG	TTTTACGTGA	GGAAGCTTCA	1500
ATCTCACCAA TTAGTTCAGT	TCCAAAATCA	JCAATCACAA	CCAAACGTTC	ATCGATTATT	1560

-12-

-13-

			-1,1-			
TTAAATTCAC	CACCAATGAC	TTCACAACAA	TCATCACCAA	AGATTCAAGA	TCTTCTCA	1620
AGTAGTGGTA	GTAGTAGTGT	TAGTGGTATA	AATATTTCCT	CTGAAACCGG	TGAAATGGGT	1680
ATTCTTTGGG	AATTTGATCC	AATCATTAAC	AAATGGATTA	GATTATCAAT	GAAGCTAAAG	1740
GTAGAAAGAA	AACCATTTGC	AGAGGGTGCT	CTTAGAGAGG	CTTATCATAC	CGTTTCATTG	1800
GGTGTTGGAA	CCGATGAAAA	TTATCCATTA	GGTACAACCA	CCAAATTATT	CCCACCAATT	18€0
GAAATGATTT	CACCAATTTC	AAAGAATAAT	GAGGCAATGA	CTCAATTGAA	GAATGGTACA	1920
AAATTTGTTT	TGAAACTCTA	CAAAAAGGAA	GCTGAACAAC	AAGCTAGCAG	AGAATTATAC	1980
TTTGAAGATG	TTAAAATGCA	AATGGTCTGT	AGAGATTGGG	GTAATAAATT	CAATCAAAAG	2040
AAACCACCAA	AGAAAATTGA	ATTCCTTATG	TCTTGGGTTG	TAGAGTTAAT	CGATAGATCT	2100
CCTTCTTCCA	ATGGTCAACC	AATACTTTGT	TCCATTGAAC	CATTATTGGT	TGGTGAATTC	2160
AAAAAGAATA	ATTCAAATTA	TGGTGCAGTT	TTAACCAATC	GTTCAACTCC	ACAAGCATTC	2220
TCTCATTTCA	CCTATGAACT	СТСАААТААА	CAAATGATCG	TTGTCGATAT	TCAAGGTGTT	2280
GATGATCTTT	ACACTGATCC	TCAAATTCAT	ACACCCGATG	GTAAAGGATT	TGGTCTTGGT	2340
AATCTTGGTA	AAGCAGGTAT	CAATAAATTC	ATCACCACTC	ACAAATGTAA	TGCTGTTTGT	2400
GCTCTTTTAG	ATTTAGATGT	TAAATTGGGT	GGTGTACTAT	CTGGAAATAA	TAAGAAACAA	2460
CTTCAACAAG	GTACTATGGT	TATGCCAGAT	ATTCTCCCAG	AACTTATGCC	ATCTGATAAC	2520
ACCATTAAAG	TGGGTGCAAA	ACAACTTCCA	AAAGCTGAAT	TCTCAAAGAA	AGATCTCAAA	2580
TGTGTTAGCA	CCATTCAAAG	TTTCCGTGAA	CGTGTTAACT	CGATCGCATT	CTTTGATAAT	2640
CAAAAGTTAT	TATGCGCTGG	TTATGGTGAT	GGTACCTATA	GAGTTTTCGA	TGTCAATGAC	2700
AATTGGAAAT	GTTTATACAC	TGTCAATGGT	CATAGAAAAT	CAATTGAAAG	TATCGCTTGT	2760
AATAGTAATT	ACATTTTCAC	TTCATCACCT	GATAACACCA	TCAAAGTTCA	TATCATTCGT	2820
AGTGGTAACA	CCAAATGTAT	AGAGACATTG	GTTGGTCACA	CTGGTGAAGT	TAATTGTGTC	2880
GTGGCCAATG	AAAAATATCT	TTTCAGTTGT	AGTTATGATA	AAACTATCAA	GGTTTGGGAT	2940
TTGTCAACCT	TTAAAGAAAT	TAAATCATTT	GAGGGTGTTC	ATACAAAGTA	CATTAAAACA	3000
TTGGCTTTGA	GTGGACGTTA	TCTTTTTAGT	GGTGGTAACG	ATCAAATCAT	TTACGTTTGG	3060

GATACTGAAA CACTTAGTAT GCTTTTCAAT ATGCAAGGTC ATGAAGATTG GGTACTCTCT 3120

CTTCATTGTA	CCGCTAGTTA	TCTTTTCTCA	ACCTCAAAAG	ATAATGTCAT	CAAGATTTGG	3180
GATCTCTCAA	ATTTCAGTTG	TATCGATACT	CTAAAAGGTC	ATTGGAATTC	TGTCTCAAGT	3240
TGTGTCGTAA	AAGATCGTTA	TCTATACAGT	GGTTCTGAAG	ATAATTCAAT	CAAAGTTTGG	3300
GATCTCGATA	CACTTGAATG	TGTTTACACC	ATTCCAAAAT	CTCATTCTTT	GGGTGTAAAA	3360
TGTTTAATGG	TTTTCAATAA	TCAAATCATT	TCTGCTGCTT	TCGATGGTTC	AATTAAAGTT	3420
TGGGAATGGC	AATCGAAATA	ATCTTTGTAA	ATTTTTGTTA	AAAAA		3465

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1146 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Dictyostelium discoideum
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Phe Asn Ile Lys Lys Arg Lys Glu Ser Ile Thr Gly Ile Pro Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ile Asn Val Asn Ser Pro Gln Ser Val Pro Leu Ser Gly Thr Leu Gln 20 25 30

Ser Pro Leu Ile Thr Pro Asn Ser Pro Asn Phe Val Ser Arg Gln Cys 35 40 45

Pro Phe Lys Lys Phe Gly Cys Ser Ser Phe Leu Val Ser Lys Ala Glu 50 55 60

Phe Asp Asn His Leu Lys Asp Asp Ala Gln Phe His Leu Gln Leu Ala 65 70 75 80

Val Glu Lys Phe Asp His Gln Phe Asp Leu His Thr Gln Leu Met Ala 85 90 95

His Phe Thr Glu Gln Met Glu Asp Gln Leu Glu Lys Thr Met Lys Val 100 \$100\$

Val	Arg	Asn 115	His	Thr	Asp	Ser	Leu 120	Gly	Gly	Asn	Val	Gln 125	Thr	Lys	Leu
Asp	Glu 130	Gly	Ile	Glu	Lys	Cys 135	Met	Ala	Phe	Ala	Lys 140	Lys	Val	Glu	Gln
Gln 145	Gln	Gln	Gln	L∈u	Ala 150	Lys	Arg	Leu	Ile	Thr 155	Gln	Gln	Ile	Gln	Glu 160
Lys	Lys	Ser	T'hr	Ser 165	Ser	Pro	Leu	Val	Lys 170	Gly	Gly	Ile	Ser	Gly 175	Gly
Gly	Gly	Ser	Gly 180	Glу	Asp	Asp	Ser	Phe 185	Asp	Gly	Ala	Asn	Ile 190	Ser	Ser
Met	Ser	Thr 195	Ser	Lys	Gln	Glu	Leu 200	Gln	Gln	Glu	Leu	Gln 205	Ser	Leu	Ser
Ile	Lys 210	Met	Lys	Lys	Glu	Leu 215	Thr	Glu	Leu	Ser	Asp 220	Glu	Leu	Ser	Gln
Lys 225	Leu	Glu	Arg	Ser	Thr 230	Gly	Asn	Ile	Asp	Ile 235	Lys	Ile	Lys	Arg	Ile 240
Glu	Gly	Glu	Val	Asn 245	Glu	Lys	Ile	Asp	Lys 250	Arg	Gln	Leu	Val	Ser 255	Thr
Ile	Asp	Asp	Ser 260	Ile	Gly	Lys	Lys	Thr 265	Asp	Sen	Ile	Gly	Туг 270	Thr	Leu
Glu	Ser	Ser 275	Ile	Ile	Lys	Lys	Val 280	Glu	Glu	Lys	Glu	Lys 285	Lys	Lys	Ser
Glu	Gln 290	Asn	Gln	Leu	Leu	Phe 295	Asp	Ser	Lys	Ile	Glu 300	Ser	Leu	Lys	Asp
Lys 305	Ile	Lys	Ile	Ile	Glu 310	Thr	Gln	Gln	Leu	Asp 315	Thr	Ser	Ser	Glu	Val 320
Arg	Lys	Leu	Lys	Leu 325	Glu	Ser	Thr	Ser	Ser 330	Gly	Asn	Leu	Met	Ala 335	Gly
Leu	Asn	Gly	Thr 340	Ser	Gly	Arg	Pro	Ser 345	Ser	Ser	Ser	His	Phe 350	Ile	Pro
Ser	Ser	Val 355	Ser	Ala	Ala	Ala	Asn 360	Asn	Ile	Asn	Lys	Asn 365	Glu	Ile	Met
Glu	Glu 370	Val	Lys	Lys	Val	Glu 375	Glu	Lys	Leu	Gln	Lys 380	Lys	Ile	Arg	Glu

Glu 385	Ile	Asp	Asn	Thr	Lys 390	Ala	Glu	Leu	Ser	Lys 395	Val	Glu	Arg	Ser	Val 400
Lys	Asp	Asn	Arg	Ser 405	Glu	Ile	Glu	Gly	Leu 410	Glu	Lys	Asp	Cys	Lys 415	Asn
Gln	Phe	Asp	Lys 420	Gln	Asp	Asn	Lys	Ile 425	Lys	Gln	Val	Glu	Asp 430	Asp	Leu
Lys	Lys	Ser 435	Asp	Ser	Leu	Leu	Leu 440	Leu	Met	Gln	Asn	Asn 445	Leu	Lys	Lys
Tyr	Asn 450	Glu	Phe	Val	Asp	Arg 455	Glu	Arg	Asp	Arg	Glu 460	Ser	Glu	Arg	Leu
Ly's 465	Leu	Gln	Asp	Ser	11e 470	Lys	Arg	Leu	Glu	Gln 475	Asn	Gln	Lys	Lys	Ile 480
Glu	Ala	Glu	Ile	Gln 485	Glu	Gly	Asn	Glu	Gln 490	Val	Glu	Arg	Val	Leu 495	Arg
Glu	Glu	Ala	Ser 500	Ile	Ser	Pro	Ile	Ser 505	Ser	Val	Pro	Lys	Ser 510	Pro	Ile
Thr	Thr	Lys 515	Arg	Ser	Ser	Ile	Ile 520	Leu	Asn	Ser	Pro	Pro 525	Met	Thr	Ser
Gln	Gln 530	Ser	Ser	Pro	Lys	Ile 535	Gln	Asp	Leu	Leu	Ser 540	Ser	Ser	Gly	Ser
Ser 545	Ser	Val	Ser	Gly	Ile 5 5 0	Asn	Ile	Ser	Ser	Glu 555	Thr	Gly	Glu	Met	Gly 560
Ile	Leu	Trp	Glu	Phe 565	Asp	Pro	Ile	Ile	Asn 570	Lys	Trp	Ile	Arg	Leu 575	Ser
Met	Lys	Leu	Lys 580	Val	Glu	Arg	Lys	Pro 585	Phe	Ala	Glu	Gly	Ala 590	Leu	Arg
Glu	Ala	Tyr 595	His	Thr	Val	Ser	Leu 600	Gly	Val	Gly	Thr	Asp 605	Glu	Asn	Tyr
Pro	Leu 610	Gly	Thr	Thr	Thr	Lys 615	Leu	Phe	Pro	Pro	Ile 620	Glu	Met	Ile	Ser
Pro 625	Ile	Ser	Lys	Asn	Asn 630		Ala	Met	Thr	Gln 635	Leu	Lys	Asn	Gly	Thr 640
Lys	Phe	Val	Leu	Lys 645	Leu	Tyr	Lys	Lys	Glu 650		Glu	Gln	Gln	Ala 655	Ser

Arg	Glu	Leu	Tyr 660	Phe	Glu	Asp	Val	Lys 665	Met	Gln	Met	Val	Cys 670	Arg	Asp
Trp	Gly	Asn 675	Lys	Phe	Asn	Gln	Lys 680	Lys	Prc	Pro	Lys	Lys 685	Ile	Glu	Phe
Leu	Met 690	Ser	Trp	Val	Val	Glu 695	Leu	Ile	Asp	Arg	Ser 700	Pro	Ser	Ser	Asn
Gly 705	Gln	Pro	Ile	Leu	Cys 710	Ser	Ile	Glu	Pro	Leu 715	Leu	Val	Gly	Glu	Phe 720
Lys	Lys	Asn	Asn	Ser 725	Asn	Tyr	Gly	Ala	Val 730	Leu	Thr	Asn	Arg	Ser 735	Thr
Pro	Gln	Ala	Phe 740	Ser	His	Phe	Thr	Tyr 745	Glu	Leu	Ser	Asn	Lys 750	Gln	Met
Ile	Val	Val 755	Asp	Ile	Gln	Gly	Val 760	Asp	Asp	Leu	Tyr	Thr 765	Asp	Pro	Gln
Ile	His 770	Thr	Pro	Asp	Gly	Lys 775	Gly	Phe	Gly	Leu	Gly 780	Asn	Leu	Gly	Lys
Ala 785	Gly	Ile	Asn	Lys	Phe 790	Ile	Thr	Thr	His	Lys 795	Cys	Asn	Ala	Val	Cys 800
Ala	Leu	Leu	Asp	Leu 805	Asp	Val	Lys	Leu	Gly 810	Gly	Val	Leu	Ser	Gly 815	Asn
Asn	Lys	Lys	Gln 820	Leu	Gln	Gln	Gly	Thr 825	Met	Val	Met	Pro	Asp 830	Ile	Leu
Pro	Glu	Leu 835	Met	Pro	Ser	Asp	Asn 840	Thr	Ile	Lys	Val	Gly 845	Ala	Lys	Gln
Leu	Pro 850	Lys	Ala	Glu	Phe	Ser 855	Lys	Lys	Asp	Leu	Lys 860	Cys	Val	Ser	Thr
Ile 865	Gln	Ser	Phe	Arg	Glu 870	Arg	Val	Asn	Ser	Ile 875	Ala	Phe	Phe	Asp	Asn 880
Gln	Lys	Leu	Leu	Cys 885	Ala	Gly	Tyr	Gly	Asp 890	Gly	Thr	Tyr	Arg	Val 895	Phe
Asp	Val	Asn	Asp 900	Asn	Trp	Lys	Cys	Leu 905	Tyr	Thr	Val	Asn	Gly 910	His	Arg
Lys	Ser	1le 915		Ser	Ile	Ala	Cys 920	Asn	Ser	Asn	Tyr	Ile 925	Phe	Thr	Ser

-18-

Ser Pro Asp Asn Thr Ile Lys Val Hic Ile Ile Arg Ser Gly Asn Thr 935 Lys Cys Ile Glu Thr Leu Val Gly His Thr Gly Glu Val Asn Cys Val 950 Val Ala Asr. Glu Lys Tyr Leu Phe Ser Cys Ser Tyr Asp Lys Thr Ile 965 970 Lys Val Trp Asp Leu Ser Thr Phe Lys Glu Ile Lys Ser Phe Glu Gly 980 985 Val His Thr Lys Tyr Ile Lys Thr Leu Ala Leu Ser Gly Arg Tyr Leu 1000 Phe Ser Gly Gly Asn Asp Gln Ile Iie Tyr Val Trp Asp Thr Glu Thr 1015 1020 Leu Ser Met Leu Phe Asn Met Gln Gly His Glu Asp Trp Val Leu Ser 1030 1035 1025 Leu His Cys Thr Ala Ser Tyr Leu Phe Ser Thr Ser Lys Asp Asn Val 1045 1050 Ile Lys Ile Trp Asp Leu Ser Asn Phe Ser Cys Ile Asp Thr Leu Lys 1060 1065 Gly His Trp Asn Ser Val Ser Ser Cys Val Val Lys Asp Arg Tyr Leu 1080 Tyr Ser Gly Ser Glu Asp Asn Ser Ile Lys Val Trp Asp Leu Asp Thr 1090 1095 1100 Leu Glu Cys Val Tyr Thr Ile Pro Lys Ser His Ser Leu Gly Val Lys 1110 1105 Cys Leu Met Val Phe Asn Asn Gln Ile Ile Ser Ala Ala Phe Asp Gly 1125 1130

Ser Ile Lys Val Trp Glu Trp Gln Ser Lys

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2237 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: CDNA

-19-

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Dictyostelium discoideum

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATAAGAAGAT	AGAAGATGAT	ATTTAAAGTT	TGGTTTTCAT	ATGAAGATGA	GGAAGTGGAA	60
CTATCAGAAT	TAACAAATGA	TACAACAGTG	TCAGCAATTA	GAAAGATCTT	ACATGAAGGT	120
AAAATATTTA	GATTTCCATA	TGGTACATCT	CAAACAGACT	TGCAAATTGG	AAAGATGTTA	180
CCATCTGGTA	GTGGTGGAGG	TGCAACTGCA	GACAGCAAAT	TTGAGAAGTT	TAAAGCACGT	240
AATACATTAG	CAGATATTCA	ATATAAAGTT	GGTGATACAT	TATATGTTAG	AGTTAAAAAA	300
AGTAAACCAA	CAAATGATTC	ATTATTACCA	ACATTAAATA	TAGCATTTTT	AGATGGATCA	360
GAACGTGCAA	TTAAATGGGA	ATATGACCCA	TATACTACAA	CTGCTCAATG	GACCTGTACA	420
GCAACATTAG	TCAAAGTTGA	ACCAGTACCA	TTTGCTGAAG	GTGCATTTAG	GAAAGCTTAT	480
CATACATTGG	ATTTAAGTAA	ATCTGGTGCA	AGTGGAAGAT	ATGTATCAAA	GATTGGTAAA	540
AAACCAACAC	CAAGACCATC	ATATTTTGAA	GATGTAAAGA	TGCAAATGAT	AGCAAAGAAA	600
TGGGCAGATA	AATATAATTC	ATTTAAACCT	CCAAAAAAGA	TTGAATTTTT	ACAATCATGC	660
GTTTTAGAGT	TTGTAGATAG	AACATCATCA	GATTTAATTT	GTGGAGCAGA	ACCATATGTA	720
GAAGGACAAT	ATAGAAAGTA	TAATAATAAT	AGTGGATTCG	TTAGTAATGA	TGAAAGAAAT	780
ACACCACAAT	CATTCTCTCA	TTTCACATAT	GAACATTCAA	ATCATCAATT	ATTGATTATA	840
GATATTCAAG	GTGTTGGTGA	TCACTATACA	GACCCACAAA	TTCATACCTA	TGATGGTGTT	900
GGTTTTGGTA	TTGGTAATTT	GGGTCAAAAA	GGTTTTGAAA	AGTTTTTAGA	TACTCATAAA	960
TGTAATGCAA	TTTGCCAATA	ATTTAAATTTA	CAATCAATTA	ATCCAAAATC	TGAAAAAAGT	1020
GATTGTGGTA	CTGTACCAAG	ACCAGATTTA	ATTTTCCCTG	ATACATCTGA	AAGAGATAAT	1080
ATAATAA	ATAATAATAA	TAATAATAAT	ATAATAATA	ATAATAATAA	TAATAGTAAT	1140
ATAATAA	ATAACAATAG	TAGTATTTCA	AAATCATTAG	TTGAAATTTC	AAGTGGTAGT	1200
AAAGAAAGAA	ATGATAGAGA	TTCGCCAAGT	AGACAATTAT	TTGTTTCAAA	TGATGGTAAT	1260

ACATTAAATA	CAAATAAAGA	GAGATCAAAA	TCAAAATCAA	TAGATTTAGA	AAAACCAGAA	1320
ATTTTAATAA	ATAATAAGAA	AAAAGAGAGT	ATALATTTGG	AAACGATAAA	ATTAATTGAA	1380
ACTATTAAAG	GATATCATGT	TACAAGTCAT	TTATGTATTT	GTGATAATTT	ATTATTTACA	1440
GGATGTTCAG	ATAATTCAAT	TAGAGTGTAT	GATTATAAGA	GTCAAAATAT	GGAATGTGTT	1500
CAAACCTTGA	AAGGTCATGA	AGGTCCAGTT	GAATCAATTT	GTTATAATGA	TCAATATTTG	1560
TTTAGTGGTT	CATCAGATCA	TTCAATTAAA	GTTTGGGATT	TAAAGAAATT	AAGATGTATT	1620
TTTACTTTGG	AGGGTCATGA	TAAACCTGTC	CATACGGTTC	TATTGAATGA	TAAATATTTG	1680
TTTAGTGGTT	CCTCTGACAA	AACTATCAAA	GTTTGGGATT	TGAAAACTTT	GGAATGTAAA	1740
TATACCCTTG	AAAGTCATGC	CAGAGCCGTC	AAAACACTTT	GTATATCTGG	TCAATATTTA	1800
TTTAGTGGTT	CAAATGATAA	AACTATCAAG	GTTTGGGATT	TGAAAACTTT	TCGTTGTAAC	1860
TACACTCTAA	AAGGTCATAC	TAAATGGGTC	ACCACTATCT	GTATATTAGG	TACCAATCTC	1920
TACAGTGGCT	CCTATGATAA	AACTATAAGA	GTTTGGAATT	TAAAGAGTTT	AGAATGTTCC	1980
GCTACTTTAA	GAGGCCATGA	TAGATGGGTT	GAACATATGG	TAATTTGTGA	TAAATTATTA	2040
TTTACTGCTA	GTGACGATAA	TACAATTAAA	ATTTGGGATT	TAGAAACATT	AAGATGTAAT	2100
ACAACTTTGG	AAGGACATAA	TGCAACCGTT	CAATGTTTAG	CAGTTTGGGA	AGATAAAAAA	2160
TGTGTTATTA	GTTGTAGTCA	TGATCAAAGT	ATTAGAGTTT	GGGGTTGGAA	TTAATTTAAA	2220
AAAAAATA	AAAACAT					2237

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 732 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Dictyostelium discoideum

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Ile Phe Lys Val Trp Phe Ser Tyr Glu Asp Glu Glu Val Glu Leu 1 5 10 15

Ser Glu Leu Thr Asn Asp Thr Thr Val Ser Ala Ile Arg Lys Ile Leu 20 25 30

His Glu Gly Lys Ile Phe Arg Phe Pro Tyr Gly Thr Ser Gln Thr Asp 35 40 45

Leu Gln Ile Gly Lys Met Leu Pro Ser Gly Ser Gly Gly Gly Ala Thr 50 55 60

Ala Asp Ser Lys Phe Glu Lys Phe Lys Ala Arg Asn Thr Leu Ala Asp 65 70 75 80

Ile Gln Tyr Lys Val Gly Asp Thr Leu Tyr Val Arg Val Lys Lys Ser 85 90 95

Lys Pro Thr Asn Asp Ser Leu Leu Pro Thr Leu Asn Ile Ala Phe Leu 100 105 110

Asp Gly Ser Glu Arg Ala Ile Lys Trp Glu Tyr Asp Pro Tyr Thr Thr 115 120 125

Thr Ala Gln Trp Thr Cys Thr Ala Thr Leu Val Lys Val Glu Pro Val 130 135 140

Pro Phe Ala Glu Gly Ala Phe Arg Lys Ala Tyr His Thr Leu Asp Leu 145 150 155 160

Ser Lys Ser Gly Ala Ser Gly Arg Tyr Val Ser Lys Ile Gly Lys Lys 165 170 175

Pro Thr Pro Arg Pro Ser Tyr Phe Glu Asp Val Lys Met Gln Met Ile 180 185 190

Ala Lys Lys Trp Ala Asp Lys Tyr Asn Ser Phe Lys Pro Pro Lys Lys
195 200 205

Ile Glu Phe Leu Gln Ser Cys Val Leu Glu Phe Val Asp Arg Thr Ser 210 215 220

Ser Asp Leu Ile Cys Gly Ala Glu Pro Tyr Val Glu Gly Gln Tyr Arg 225 230 235 240

Lys Tyr Asn Asn Asn Ser Gly Phe Val Ser Asn Asp Glu Arg Asn Thr

Pro Gln Ser Phe Ser His Phe Thr Tyr Glu His Ser Asn His Gln Leu

-22-

			2€0					265					270		
Leu	Ile	11e 275	Asp	Ile	Gln	Gly	Val 280	Gly	Asp	His	Tyr	Thr 285	Asp	Pro	Gln
Ile	His 290	Thr	Тут	Asp	Gly	Val 295	Gly	Phe	Gly	Ile	Gly 300	Asn	Leu	Gly	Gln
Lys 305	Gly	Phe	Glu	Lys	Phe 310	Leu	Asp	Thr	His	Lys 315	Cys	Asn	Ala	Ile	Cys 320
Gln	Tyr	Leu	Asn	Leu 325	Gln	Ser	Ile	Asn	Pro 330	Lys	Ser	Glu	Lys	Ser 335	Asp
Cys	Gly	Thr	Val 340	Pro	Arg	Pro	Asp	Leu 345	Ile	Phe	Pro	Asp	Thr 350	Ser	Glu
Arg	Asp	Asn 355	Asn	Asn	Asn	Asn	Asn 360	Asn	Asn	Asn	Asn	Asn 365	Asn	Asn	Asn
Asn	Asn 370	Asn	Asn	Asn	Ser	Asn 375	Asn	Asn	Asn	Asn	Asn 380	Asn	Ser	Ser	Ile
Ser 385	Lys	Ser	Leu	Val	Glu 390	Ile	Ser	Ser	Gly	Ser 395	Lys	Glu	Arg	Asn	Asp 400
Arg	Asp	Ser	Pro	Ser 405	Arg	Gln	Leu	Phe	Val 410	Ser	Asn	Asp	Gly	Asn 415	Thr
Leu	Asn	Thr	Asn 420	Lys	Glu	Arg	Ser	Lys 425	Ser	Lys	Ser	Ile	Asp 430	Leu	Glu
Lys	Pro	Glu 435	Ile	Leu	Ile	Asn	Asn 440	Lys	Lys	Lys	Glu	Ser 445	lle	Asn	Leu
Glu	Thr 450	Ile	Lys	L÷u	Ile	Glu 455	Thr	Ile	Lys	Gly	Tyr 460	His	Val	Thr	Ser
His 465	Leu	Cys	Ile	Cys	Asp 470	Asn	Leu	Leu	Phe	Thr 475	Gly	Cys	Ser	Asp	Asn 480
Ser	Ile	Arg	Val	Tyr 485	Asp	Tyr	Lys	Ser	Gln 490	Asn	Met	Glu	Cys	Val 495	Gln
Thr	Leu	Lys	Gly 500	His	Glu	Gly	Pro	Val 505	Glu	Ser	Ile	Cys	Tyr 510	Asn	Asp
Gln	Tyr	Leu 515	Phe	Ser	Gly	Ser	Ser 520	Asp	His	Ser	Ile	Lys 525	Val	Trp	Asp
Leu	Lys	Lys	Leu	Arg	Cys	Ile	Phe	Thr	Leu	Glu	Gly	His	Asp	Lys	Pro

-23-

535 540 530 Val His Thr Val Lou Lou Asn Asp Lys Tyr Lou Phe Ser Gly Ser Ser 555 Asp Lys Thr Ile Lys Val Trp Asp Leu Lys Thr Leu Glu Cys Lys Tyr 570 565 Thr Leu Glu Ser His Ala Arg Ala Val Lys Thr Leu Cys Ile Ser Gly Gln Tyr Leu Phe Ser Gly Ser Asn Asp Lys Thr Ile Lys Val Trp Asp 595 600 Leu Lys Thr Phe Arg Cys Asn Tyr Thr Leu Lys Gly His Thr Lys Trp 615 610 Val Thr Thr Ile Cys Ile Leu Gly Thr Asn Leu Tyr Ser Gly Ser Tyr Asp Lys Thr Ile Arg Val Trp Asn Leu Lys Ser Leu Glu Cys Ser Ala Thr Leu Arg Gly His Asp Arg Trp Val Glu His Met Val Ile Cys Asp Lys Leu Leu Phe Thr Ala Ser Asp Asp Asn Thr Ile Lys Ile Trp Asp 675 680 Leu Glu Thr Leu Arg Cys Asn Thr Thr Leu Glu Gly His Asn Ala Thr 695 Val Gln Cys Leu Ala Val Trp Glu Asp Lys Lys Cys Val Ile Ser Cys 710 715 Ser His Asp Gln Ser Ile Arg Val Trp Gly Trp Asn

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2307 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE CDNA
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:

(A) ORGANISM: C. elegans

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATGACGATCG	ACACAACAAA	TGAGAGCGAC	AATAGTCCAA	CTAACTCACC	AGGATTGGAG	60
GCCTCGGCTC	GGACATTCTC	GCTCAATGCG	TCAAAAATGG	TTCGGATAAC	CGACGACTAC	120
GCAGATGAAG	TGTTCATTGA	ACAGAATGAT	GTCGTTATCG	AGAAGCCTCG	TATGGATCCT	180
CTCCACGTTA	GAAAACTTAT	GGAGACATGG	CGCAAGGCTG	CTCGCCGAGC	AAGAACAAAC	240
TATATAGATC	CATGGGATGA	GTTCAACATC	CACGAGTATC	CAGTACAACG	AGCTAAACGA	300
TATAGGTATT	CTGCAATCAG	AAAGCAATGG	ACAGAGGATA	TAGTCGATGT	GAGACTTCAT	360
CCGGACAGTT	TTGCACGTGG	AGCCATGCGA	GAATGCTACC	GACTCAAAAA	GTGCTCCAAG	420
CACGGAACAA	GTCAAGATTG	GAGCAGCAAC	TATGTCGCAA	AAAGATACAT	TTGTCAAGTC	480
GATCGTAGAG	TTCTTTTCGA	TGATGTCAGA	CTTCAGATGG	ATGCCAAATT	ATGGGCTGAA	540
GAATATAATC	GGTATAATCC	ACCGAAGAAA	ATTGATATTG	TTCAAATGTG	TGTCATTGAG	600
ATGATTGATG	TAAAAGGTTC	TCCACTCTAT	CATTTGGAGC	ATTTCATCGA	GGGAAAATAT	660
ATAAAATACA	ATTCAAACTC	AGGATTTGTA	TCAAATGCAG	CTCGTCTTAC	ACCACAAGCA	720
TTTTCTCACT	TCACCTTCGA	ACGTTC'IGGT	CATCAAATGA	TGGTTGTCGA	TATTCAAGGA	780
GTTGGTGATC	TTTACACAGA	TCCTCAGATT	CATACAGTTG	TGGGAACTGA	TTATGGAGAT	840
GGAAACCTCG	GAACTCGTGG	AATGGCTCTT	TTCTTCCATT	CACACAGATG	TAACGATATT	900
TGTGAGACAA	TGGATCTATC	AAATTTCGAA	CTTTCGCCAC	CTGAAATCGA	GGCTACCGAA	960
GTTGCGATGG	AAGTAGCTGC	AAAGCAGAAA	AAGTCATGCA	TAGTTCCTCC	AACTGTGTTC	1020
GAAGCAAGAA	GAAATCGAAT	TTCAAGTGAA	TGTGTACATG	TCGAGCATGG	TATTTCGATG	1080
GATCAATTGA	GAAAAAGGAA	GACGTTGAAT	CAATCGTCAA	CCGATTTGTC	AGCAAAGAGT	1140
CACAACGAAG	ACTGTGTATG	TCCTGAGTGT	ATTCCAGTTG	TTGAGCAACT	CTGTGAGCCT	1200
TGCTCCGAAG	ATGAAGAGGA	CGAAGAAGAA	GACTATCCAA	GAAGTGAAAA	AAGTGGAAAT	1260
AGTCAGAAAA	GTCGACGTAG	TAGAATGAGC	ATTTCAACGA	GATCTTCTGG	CGATGAATCA	1320
GCATCTCGTC	CTAGAAAATG	CGGATTTGTA	GATTTAAACT	CACTTCGTCA	GAGACATGAT	1380

AGCTTCAGAA	GTTCTGTTGG	GACATATTCT	ATGAATAGTT	CTAGACAAAC	CAGAGACACT	1440
GAAAAGGATG	AATTCTGGAA	GGTTCTTCGA	AAACAATCAG	TTCCAGCAAA	CATTCTATCA	1500
CTTCAACTTC	AACAAATGGC	TGCTAACCTG	GAAAATGATG	AAGACGTACC	ACAAGTCACC	1560
GGGCATCAGT	TCTCTGTCCT	CGGTCAGATT	CATATTGATC	TCTCACGATA	TCATGAGCTC	1620
GGGCGGTTCG	TAGAAGTTGA	TTCAGAACAT	AAGGAAATGC	TTGAGGGAAG	TGAAAATGAC	1680
GCTCGTGTAC	СААТСАААТА	CGACAAGCAG	TCTGCAATTT	TCCATTTGGA	TATCGCTCGG	1740
AAGTGTGGAA	TCCTTGAGGC	TGTGCTAACA	TCGGCTCATA	TTGTTCTCGG	ATTACCACAT	1800
GAATTGTTGA	AAGAAGTCAC	CGTTGATGAT	CTGTTTCCTA	ATGGGTTTGG	AGAACAGGAA	1860
AATGGAATTC	GAGCTGATAA	AGGACAAAAA	CCTTGTGACC	TAGAAGAGTT	CGGCTCCGAT	1920
CTGATGGAAA	TTGCTGCAGA	GATGGGTGAT	AAGGGTGCAA	TGCTGTACAT	GGCACACGCT	1980
TATGAAACTG	GTCAGCATCT	CGGACCGAAT	CGAAGAACGG	ATTATAAGAA	ATCGATTGAT	2040
TGGTATCAAC	GCGTCGTTGG	ATTCCAAGAA	GAAGAAGAAC	TTGACTCTGA	TTGTGGAAAA	2100
ACGACATTCT	CCTCATTTGC	TCCACTGACT	CGTCACGAGA	TTCTAGCCAA	AATGGCTGAA	2160
ATGTACAAAG	AGGGAGGTTA	TGGCCTGAAT	CAAGACTTCG	AACGAGCATA	TGGTCTATTC	2220
AATGAAGCTG	CTGAAGCAGC	AATGGAAGCA	ATGAATGGAA	AGCTCGCAAA	TAAATACTAT	2280
GAAAAAGCGG	AAATGTGTGG	AGAATGA				2307

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 768 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: C. elegans
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Thr Ile Asp Thr Thr Asn Glu Ser Asp Asn Ser Pro Thr Asn Ser 10 Pro Gly Leu Glu Ala Ser Ala Arg Thr Phe Ser Leu Asn Ala Ser Lys Met Val Arg Ile Thr Asp Asp Tyr Ala Asp Glu Val Phe Ile Glu Gln 40 Asr. Asp Val Val Ile Glu Lys Pro Arg Met Asp Pro Leu His Val Arg Lys Leu Met Glu Thr Trp Arg Lys Ala Ala Arg Arg Ala Arg Thr Asn Tyr Ile Asp Pro Trp Asp Glu Phe Asn Ile His Glu Tyr Pro Val Gln 85 90 Arg Ala Lys Arg Tyr Arg Tyr Ser Ala Ile Arg Lys Gln Trp Thr Glu Asp Ile Val Asp Val Arg Leu His Pro Asp Ser Phe Ala Arg Gly Ala Met Arg Glu Cys Tyr Arg Leu Lys Lys Cys Ser Lys His Gly Thr Ser 135 Gln Asp Trp Ser Ser Asn Tyr Val Ala Lys Arg Tyr Ile Cys Gln Val Asp Arg Arg Val Leu Phe Asp Asp Val Arg Leu Gln Met Asp Ala Lys Leu Trp Ala Glu Glu Tyr Asn Arg Tyr Asn Pro Pro Lys Lys Ile Asp Ile Val Gln Met Cys Val Ile Glu Met Ile Asp Val Lys Gly Ser Pro 195 200 Leu Tyr His Leu Glu His Phe Ile Glu Gly Lys Tyr Ile Lys Tyr Asn 215 Ser Asn Ser Gly Phe Val Ser Asn Ala Ala Arg Leu Thr Pro Gln Ala 235 Phe Ser His Phe Thr Phe Glu Arg Ser Gly His Gln Met Met Val Val 245 250 Asp Ile Gln Gly Val Gly Asp Leu Tyr Thr Asp Pro Gln Ile His Thr 265 260

Glu 545	Val	Asp	Ser	Glu	His 550	Lys	Glu	Met	Leu	Glu 555	Gly	Ser	Glu	Asn	Asp 560
Ala	Arg	Val	Pro	11e 565	Lys	Tyr	Asp	Lys	Gln 570	Ser	Ala	Ile	Phe	His 575	Leu
Asp	Ile	Ala	Arg 580	Lys	Cys	Gly	Ile	Leu 585	Glu	Ala	Val.	Leu	Thr 590	Ser	Ala
His	Ile	Val 595	Leu	Gly	Leu	Pro	His 600	Glu	Leu	Leu	Lys	Glu 605	Val	Thr	Val
Asp	Asp 610	Leu	Phe	Pro	Asn	Gly 615	Phe	Gly	Glu	Gln	Glu 620	Asn	Gly	Ile	Arg
Ala 625	Asp	Lys	Gly	Gln	Lys 630	Pro	Cys	Asp	Leu	Glu 635	Glu	Phe	Gly	Ser	Asp 640
Leu	Met	Glu	Ile	Ala 645	Ala	Glu	Met	Gly	Asp 650	Lys	Gly	Ala	Met	Leu 655	Tyr
Met	Ala	His	Ala 660	Tyr	Glu	Thr	Gly	Gln 665	His	Leu	Gly	Pro	Asn 670	Arg	Arg
Thr	Asp	Tyr 675	Lys	Lys	Ser	Ile	Asp 680	Trp	Tyr	Gln	Arg	Val 685	Val	Gly	Phe
Gln	Glu 690	Glu	Glu	Glu	Leu	Asp 695	Ser	Asp	Cys	Gly	Lys 700	Thr	Thr	Phe	Ser
Ser 705	Phe	Ala	Pro	Leu	Thr 710	Arg	His	Glu	Ile	Leu 7 1 5	Ala	Lys	Met	Ala	Glu 720
Met	Tyr	Lys	Glu	Gly 725	Gly	Tyr	Gly	Leu	Asn 730	Gln	Asp	Phe	Glu	Arg 735	Ala
Tyr	Gly	Leu	Phe 740	Asn	Glu	Ala	Ala	Glu 745	Ala	Ala	Met.	Glu	Ala 750	Met	Asn
Gly	Lys	Leu 755	Ala	Asn	Lys	Tyr	Tyr 760	Glu	Lys	Ala	Glu	Met 765	Cys	Gly	Glu

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2283 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

-29-

- (11) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:

(A) ORGANISM: C. elegans

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATGACGATCG ACACAACAAA	TGAGAGCGAC	AATAGTCCAA	CTAACTCACC	AGGATTGGAG	60
GCCTCGGCTC GGACATTCTC	GCTCAATGCG	TCAAAAATGG	TTCGGATAAC	CGACGACTAC	120
GCAGATGAAG TGTTCATTGA	ACAGAATGAT	GTCGTTATCG	AGAAGCCTCG	TATGGATCCT	180
CTCCACGTTA GAAAACTTAT	GGAGACATGG	CGCAAGGCTG	CTCGCCGAGC	AAGAACAAAC	240
TATATAGATC CATGGGATGA	GTTCAACATC	CACGAGTATC	CAGTACAACG	AGCTAAACGA	300
TATAGGTATT CTGCAATCAG	AAAGCAATGG	ACAGAGGATA	TAGTCGATGT	GAGACTTCAT	360
CCGGACAGTT TTGCACGTGG	AGCCATGCGA	GAATGCTACC	GACTCAAAAA	GTGCTCCAAG	420
CACGGAACAA GTCAAGATTG	GAGCAGCAAC	TATGTCGCAA	AAAGATACAT	TTGTCAAGTC	480
GATCGTAGAG TTCTTTTCGA	TGATGTCAGA	CTTCAGATGG	ATGCCAAATT	ATGGGCTGAA	540
GAATATAATC GGTATAATCC	ACCGAAGAAA	ATTGATATTG	TTCAAATGTG	TGTCATTGAG	600
ATGATTGATG TAAAAGGTTC	TCCACTCTAT	CATTTGGAGC	ATTTCATCGA	GGGAAAATAT	660
ATAAAATACA ATTCAAACTC	AGGATTTGTA	TCAAATGCAG	CTCGTCTTAC	ACCACAAGCA	720
TTTTCTCACT TCACCTTCGA	ACGTTCTGGT	CATCAAATGA	TGGTTGTCGA	TATTCAAGGA	780
GTTGGTGATC TTTACACAGA	TCCTCAGATT	CATACAGTTG	TGGGAACTGA	TTATGGAGAT	840
GGAAACCTCG GAACTCGTGG	AATGGCTCTT	TTCTTCCATT	CACACAGATG	TAACGATATT	900
TGTGAGACAA TGGATCTATC	AAATTTCGAA	CTTTCGCCAC	CTGAAATCGA	GGCTACCGAA	960
GTTGCGATGG AAGTAGCTGC	AAAGCAGAAA	AAGTCATGCA	TAGTTCCTCC	AACTGTGTTC	1020
GAAGCAAGAA GAAATCGAAT	TTCAAGTGAA	TGTGTACATG	TCGAGCATGG	TATTTCGATG	1080
GATCAATTGA GAAAAAGGAA	GACGTTGAAT	CAATCGTCAA	CCGATTTGTC	AGCAAAGAGT	1140
CACAACGAAG ACTGTGTATG	TCCTGAGTGT	ATTCCAGTTG	TTGAGCAACT	CTGTGAGCCT	1200

TGCTCCGAAG	ATGAAGAGGA	CGAAGAAGAA	GACTATCCAA	GAAGTGAAAA	AAGTGGAAAT	1260
AGTCAGAAAA	GTCGACGTAG	TAGAATGAGC	ATTTCAACGA	GATCTTCTGG	CGATGAATCA	1320
GCATCTCGTC	CTAGAAAATG	CGGATTTGTA	GATTTAAACT	CACTTCGTCA	GAGACATGAT	1380
AGCTTCAGAA	GTTCTGTTGG	GACATATTCT	ATGAATAGTT	CTAGACAAAC	CAGAGACACT	1440
GAAAAGGATG	AATTCTGGAA	GGTTCTTCGA	AAACAATCAG	TTCCAGCAAA	CATTCTATCA	1500
CTTCAACTTC	AACAAATGGC	TGCTAACCTG	GAAAATGATG	AAGACGTACC	ACAAGTCACC	1560
GGGCATCAGT	TCTCTGTCCT	CEGTCAGATT	CATATTGATC	TCTCACGATA	TCATGAGCTC	1620
GGGCGGTTCG	TAGAAGTTGA	TTCAGAACAT	AAGGAAATGI	TTGAGGGAAG	TGAAAATGAC	1680
GCTCGTGTAC	CAATCAAATA	CGACAAGCAG	TCTGCAATTT	TCCATTTGGA	TATCGCTCGG	1740
AAGTGTGGAA	TCCTTGAGGC	T-STGCTAACA	TCGGCTCATA	TTGTTCTCGG	ATTACCACAT	1800
GAATTGTTGA	DADTEAAEAA	CETTGATGAT	CTGTTTCCTA	ATGGGTTTGG	AGAACAGGAA	1860
AATGGAATTC	GAGACCTAGA	AGAGTTCGGC	TCCGATCTGA	TGGAAATTGC	TGCAGAGATG	1920
GGTGATAAGG	GTGCAATGCT	GTACATGGCA	CACGCTTATG	AAACTGGTCA	GCATCTCGGA	1980
CCGAATCGAA	GAACGGATTA	TAAGAAATCG	ATTGATTGGT	ATCAACGCGT	CGTTGGATTC	2040
CAAGAAGAAG	AAGAACTTGA	CTCTGATTGT	GGAAAAACGA	CATTCTCCTC	ATTTGCTCCA	2100
CTGACTCGTC	ACGAGATTCT	AGCCAAAATG	GCTGAAATGT	ACAAAGAGGG	AGGTTATGGC	2160
CTGAATCAAG	ACTTCGAACG	AGCATATGGT	CTATTCAATG	AAGCTGCTGA	AGCAGCAATG	2220
GAAGCAATGA	ATGGAAAGCT	CGCAAATAAA	TACTATGAAA	AAGCGGAAAT	GTGTGGAGAA	2280
TGA						2283

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 760 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:

WO 99/09199

(A) CRGANISM: C. elegans

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: Met Thr Ile Asp Thr Thr Asn Glu Ser Asp Asn Ser Pro Thr Asn Ser 10 Pro Gly Leu Glu Ala Ser Ala Arg Thr Phe Ser Leu Asn Ala Ser Lys Met Val Arg Ile Thr Asp Asp Tyr Ala Asp Glu Val Phe Ile Glu Gln 4.0 Asn Asp Val Val Ile Glu Lys Pro Arg Met Asp Pro Leu His Val Arg Lys Leu Met Glu Thr Trp Arg Lys Ala Ala Arg Arg Ala Arg Thr Asn Tyr Ile Asp Pro Trp Asp Glu Phe Asn Ile His Glu Tyr Pro Val Gln 85 Arg Ala Lys Arg Tyr Arg Tyr Ser Ala Ile Arg Lys Gln Trp Thr Glu Asp Ile Val Asp Val Arg Leu His Pro Asp Ser Phe Ala Arg Gly Ala Met Arg Glu Cys Tyr Arg Leu Lys Lys Cys Ser Lys His Gly Thr Ser 135 130 Gln Asp Trp Ser Ser Asn Tyr Val Ala Lys Arg Tyr Ile Cys Gln Val 150 Asp Arg Arg Val Leu Phe Asp Asp Val Arg Leu Gln Met Asp Ala Lys 165 Leu Trp Ala Glu Glu Tyr Asn Arg Tyr Asn Pro Pro Lys Lys Ile Asp 185 Ile Val Gln Mct Cys Val Ile Glu Met Ile Asp Val Lys Gly Ser Pro Leu Tyr His Leu Glu His Phe Ile Glu Gly Lys Tyr Ile Lys Tyr Asn 215 Ser Asn Ser Gly Phe Val Ser Asn Ala Ala Arg Leu Thr Pro Gln Ala

235

230

Phe	Ser	His	Phe	Thr 245	Phe	Glu	Arg	Ser	Gly 250	Hıs	Gln	Met	Met	Val 255	Val
Asp	Ile	Gln	Gly 260	Val	Gly	Asp	Leu	Tyr 265	Thr	Asp	Pro	Gln	Ile 270	His	Thr
Val	Val	Gly 275	Thr	Asp	Tyr	Gly	Asp 280	Gly	Asn	Leu	Gly	Thr 285	Arg	Gly	Met
Ala	Leu 290	Phe	Phe	His	Ser	His 295	Arg	Cys	Asn	Asp	Ile 300	Cys	Glu	Thr	Met
Asp 305	Leu	Ser	Asn	Phe	Glu 310	Leu	Ser	Pro	Pro	Glu 315	Ile	Glu	Ala	Thr	Glu 320
Val	Ala	Met	Glu	Val 325	Ala	Ala	Lys	Gln	Lys 330	Lys	Ser	Cys	Ile	Val 335	Pro
Pro	Thr	Val	Phe 340	Glu	Ala	Arg	Arg	Asn 345	Arg	Ile	Ser	Ser	Glu 350	Cys	Val
His	Val	Glu 355	His	Gly	Ile	Ser	Met 360	Asp	Gln	Leu	Arg	Lys 365	Arg	Lys	Thr
Leu	Asn 370	Gln	Ser	Ser	Thr	Asp 375	Leu	Ser	Ala	Lys	Ser 380	His	Asn	Glu	Asp
Cys 385	Val	Cys	Pro	Glu	Cys 390	Ile	Pro	Val	Val	Glu 395	Gln	Leu	Cys	Glu	Pro 400
Cys	Ser	Glu	Asp	Glu 405	Glu	Asp	Glu	Glu	Glu 410	Asp	Tyr	Pro	Arg	Ser 415	Glu
Lys	Ser	Gly	Asn 420	Ser	Gln	Lys	Ser	Arg 425	Arg	Ser	Arg	Met	Ser 430	Ile	Ser
Thr	Arg	Ser 435	Ser	Gly	Asp	Glu	Ser 440	Ala	Ser	Arg	Pro	Arg 445	Lys	Cys	Gly
Phe	Val 450	Asp	Leu	Asn	Ser	Leu 455	Arg	Gln	Arg	His	Asp 460	Ser	Phe	Arg	Ser
Ser 465	Val	Gly	Thr	Tyr	Ser 470	Met	Asn	Ser	Ser	Arg 475	Gln	Thr	Arg	Asp	Thr 480
Glu	Lys	Asp	Glu	Phe 485	Trp	Lys	Val	Leu	Arg 490	Lys	Gln	Ser	Val	Pro 495	Ala
Asn	Ile	Leu	Ser 500	Leu	Gln	Leu	Gln	Gln 505	Met	Ala	Ala	Asn	Leu 510	Glu	Asn

-33-

Asr	Glu	Asp 515	Val	Pro	Gln	Val	Thr 520	Gly	His	Gln	Phe	Ser 525	Val	Leu	Gly
Glr.	Ile 530	His	Ile	Asp	Leu	Ser 535	Arg	тут	His	Glu	Leu 540	Gly	Arg	Phe	Val
Glu 545	Val	Asp	Ser	Glu	His 550	Lys	Glu	Met	Leu	Glu 555	Gly	Ser	Glu	Asn	Asp 560
Ala	Arg	Val	Pro	Ile 565	Lys	Tyr	Asp	Lys	Gln 570	Ser	Ala	Ile	Phe	His 575	Leu
Asp	Ile	Ala	Arg 580	Lys	Cys	Gly	Ile	Leu 585	Glu	Ala	Val	Leu	Thr 590	Ser	Ala
His	Ile	Val 595	Leu	Gly	Leu	Pro	His 600	Glu	Leu	Leu	Lys	Glu 605	Val	Thr	Val
Asp	Asp 610	Leu	Phe	Pro	Asn	Gly 615	Phe	Gly	Glu	Gln	Glu 620	Asn	Gly	Ile	Arg
Asp 625	Leu	Glu	Glu	Phe	Gly 630	Ser	Asp	Leu	Met	Glu 635	Ile	Ala	Ala	Glu	Met 640
Glγ	Asp	Lys	Glγ	Ala 645	Met	Leu	Tyr	Met	Ala 650	His	Ala	Tyr	Glu	Thr 655	Gly
Gln	His	Leu	Gly 660	Pro	Asn	Arg	Arg	Thr 665	Asp	Tyr	Lys	Lys	Ser 670	Ile	Asp
Trp	Tyr	Gln 675	Arg	Val	Val	Gly	Phe 680	Gln	Glu	Glu	Glu	Glu 685	Leu	Asp	Ser
Asp	Cys 690	Gly	Lys	Thr	Thr	Phe 695	Ser	Ser	Phe	Ala	Pro 700	Leu	Thr	Arg	His
Glu 705	Ile	Leu	Ala	Lys	Met 710	Ala	Glu	Met	Tyr	Lys 715	Glu	Gly	Gly	Tyr	Gly 720
Leu	Asn	Gln	Asp	Phe 725	Glu	Arg	Ala	Tyr	Gly 730	Leu	Phe	Asn	Glu	Ala 735	Ala
Glu	Ala	Ala	Met 740	Glu	Ala	Met	Asn	Gly 745	Lys	Leu	Ala	Asn	Lys 750	Tyr	Tyr
Glu	Lys	Ala 755	Glu	Met	Cys	Gly	Glu 760								

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:

(A)	LENGTH:	628	base	pairs
-----	---------	-----	------	-------

- (B) TYPE nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY. linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Dictyostelium discoideum
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GTATTGTATG	TGTTTCAATT	GAGAAGACTC	CATTTGCAAA	GGGTAGTTGT	AGAACAGCAC	60
AAATTAAATA	GGATTGGAGT	CAACCAGATC	AAGGATTAGT	TGGTAAATTT	TCAACCAATA	120
AAAAGACGAC	AAGAGATTCA	TACTTTACAG	ATGTATTGAT	GCAAACATTT	TGTGCTAAAT	180
GGGCAGAGAA	ATTCAATGAA	GCGAAACCAC	CAAAACCAAT	TACATTCTTA	CCATCATACG	240
TTTACGAATT	GATTGATCAT	CCACCACCTT	ATCCAGTTTG	TGGTGGTGAA	CCATTCATTG	300
AGGGAGATTA	CAAGAAACAT	AACAACAACA	GTGGTTACGT	TAGTAGTGAT	GCTAGAAATA	360
CACCACAATC	ATTCTCTCAT	TTCTCATACG	AACTCTCCAA	TCATGAATTG	TTGATCGTTG	420
ATATCCAAGG	TGTCAACGAT	TTCTACACTG	ATCCTCAAAT	TCATACGAAA	TCAGGCGAGG	480
GCTTTGGCGA	GGGTAATTTG	GGCGAGACGG	GTTTCCACAA	ATTCCTTCAA	ACACACAAGT	540
GTAATCCAGT	TTGTGACTTT	TTAAAGTTGA	AACCAATCAA	TCAATCAAAG	AAAGCCCTCC	600
TAAGAGGTAC	ATTACCCGTC	GTACAATT				628

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 209 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:

-35-

(A) ORGANISM: Dictyostelium discoideum

(xi)	SEQU	JENCE	E DES	CRIE	TION	J: SE	EQ II) ИО:	14:						
Ile 1	Val	Cys	Val	Ser 5	Ile	Glu	Lys	Thr	Pro 10	Phe	Ala	Lys	Gly	Ser 15	Cys
Arg	Thr	Ala	His 20	Lys	Leu	Lys	Asp	Trp 25	Ser	Gln	Pro	Asp	Gln 30	Gly	Leu
Val	Gly	Lys 35	Phe	Ser	Thr	Asn	Lys 40	Lys	Thr	Thr	Arg	Asp 45	Ser	Tyr	Phe
Thr	Asp 50	Val	Leu	Met	Gln	Thr 55	Phe	Cys	Ala	Lys	Trp 60	Ala	Glu	Lys	Phe
Asn 65	Glu	Ala	Lys	Pro	Pro 70	Lys	Pro	Ile	Thr	Phe 75	Leu	Pro	Ser	Tyr	Val 80
Tyr	Glu	Leu	Ile	Asp 85	His	Pro	Pro	Pro	Tyr 90	Pro	Val	Cys	Gly	Gly 95	Glu
Pro	Phe	Ile	Glu 100	Gly	Asp	Tyr	Lys	Lys 105	His	Asn	Asn	Asn	Ser 110	Gly	Tyr
Val	Ser	Ser 115	Asp	Ala	Arg	Asn	Thr 120	Pro	Gln	Ser	Phe	Ser 125	His	Phe	Ser
Tyr	Glu 130	Leu	Ser	Asn	His	Glu 135	Leu	Leu	Ile	Val	Asp 140	Ile	Gln	Gly	Val
Asn 145	Asp	Phe	Tyr	Thr	Asp 150	Pro	Gln	Ile	His	Thr 155	Lys	Ser	Gly	Glu	Gly 160
Phe	Gly	Glu	Gly	Asn 165	Leu	Gly	Glu	Thr	Gly 170	Phe	His	Lys	Phe	Leu 175	Gln
Thr	His	Lys	Cys 180	Asn	Pro	Val	Cys	Asp 185	Phe	Leu	Lys	Leu	Lys 190	Pro	Ile
Asn	Gln	Ser 195	Lys	Lys	Ala	Leu	Leu 200	Arg	Gly	Thr	Leu	Pro 205	Val	Val	Gln

Leu

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

-36-

- (A) LENGTH: 238 amino acids
- (B) TYPE, amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (iii) HYFOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
- Gly Glu Trp Leu Asp Asp Glu Val Leu Ile Lys Met Ala Ser Gln Pro 1 10 15
- Phe \exists ly Arg Gly Ala Met Arg Glu Cys Phe Arg Thr Lys Lys Leu Ser 20 25 30
- Asn Phe Leu His Ala Gln Gln Trp Lys Gly Ala Ser Asn Tyr Val Ala 35 40 45
- Lys Arg Tyr Ile Glu Pro Val Asp Arg Asp Val Tyr Phe Glu Asp Val 50 55 60
- Arg Leu Gln Met Glu Ala Lys Leu Trp Gly Glu Glu Tyr Asn Arg His 65 70 75 80
- Lys Pro Pro Lys Gln Val Asp Ile Met Gln Met Cys Ile Ile Glu Leu 85 90 95
- Lys Asp Arg Pro Gly Lys Pro Leu Phe His Leu Glu His Tyr Ile Glu 100 105 110
- Gly Lys Tyr Ile Lys Tyr Asn Ser Asn Ser Gly Phe Val Arg Asp Asp 115 120 125
- Asn Ile Arg Leu Thr Pro Gln Ala Phe Ser His Phe Thr Phe Glu Arg 130 135 140
- Ser Gly His Gln Leu Ile Val Val Asp Ile Gln Gly Val Gly Asp Leu 145 150 155 160
- Tyr Thr Asp Pro Gln Ile His Thr Glu Thr Gly Thr Asp Phe Gly Asp 165 170 175
- Gly Asn Leu Gly Val Arg Gly Met Ala Leu Phe Phe Tyr Ser His Ala 180 185 190

-37-

Cys Asn Arg Ile Cys Glu Ser Met Gly Leu Ala Pro Phe Asp Leu Ser 195 200 205

Pro Arg Glu Arg Asp Ala Val Asn Gln Asn Thr Lys Leu Leu Gln Ser 210 215 220

Ala Lys Thr Ile Leu Arg Gly Thr Glu Glu Lys Cys Gly Ser 225 230 235

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 258 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: D. discoideum
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Asn Lys Trp Ile Arg Leu Ser Met Lys Leu Lys Val Glu Arg Lys Pro 1 5 10 15

Phe Ala Glu Gly Ala Leu Arg Glu Ala Tyr His Thr Val Ser Leu Gly 20 25 30

Val Gly Thr Asp Glu Asn Tyr Pro Leu Gly Thr Thr Thr Lys Leu Phe 35 40 45

Pro Pro Ile Glu Met Ile Ser Pro Ile Ser Lys Asn Asn Glu Ala Met 50 55 60

Thi Glin Leu Lys Asn Gly Thr Lys Phe Val Leu Lys Leu Tyr Lys Lys 65 70 75 80

Glu Ala Glu Gln Gln Ala Ser Arg Glu Leu Tyr Phe Glu Asp Val Lys 85 90 95

Met Gln Met Val Cys Arg Asp Trp Gly Asn Lys Phe Asn Gln Lys Lys
100 105 110

Pro Pro Lys Lys Ile Glu Phe Leu Met Ser Trp Val Val Glu Leu Ile 115 120 125

-38-

Asp Arg Ser Pro Ser Ser Asn Gly Gln Pro Ile Leu Cys Ser Ile Glu 130

Pro Leu Leu Val Gly Glu Phe Lys Lys Asn Asn Ser Asn Tyr Gly Ala 160

Val Leu Thr Asn Arg Ser Thr Pro Gln Ala Phe Ser His Phe Thr Tyr 175

Glu Leu Ser Asn Lys Gln Met Ile Val 185

Asp Leu Tyr Thr Asp Pro Gln Ile His Thr Pro Asp Gly Lys Gly Phe 195

Gly Leu Gly Asn Leu Gly Lys Ala Gly Ile Asn Lys Phe Ile Thr Thr 210

Gly Leu Gly Asn Ala Val Cys Ala Leu Leu Asp Leu Asp Val Lys Leu 240

Gly Gly Val Leu Ser Gly Asn Asn Lys Lys Gln Leu Gln Gln Gly Thr 255

Met Val

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: D. discoideum
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Ala Gln Trp Thr Cys Thr Ala Thr Leu Val Lys Val Glu Pro Val Pro 1 5 10 15

Phe Ala Glu Gly Ala Phe Arg Lys Ala Tyr His Thr Leu Asp Leu Ser 20 25 30

-39-

- Lys Ser Gly Ala Ser Gly Arg Tyr Val Ser Lys Ile Gly Lys Lys Pro 35 40 45
- Thr Pro Arg Pro Ser Tyr Phe Glu Asp Val Lys Met Gln Met Ile Ala 50 60
- Lys Lys Trp Ala Asp Lys Tyr Asn Ser Phe Lys Pro Pro Lys Lys Ile 70 75 80
- Glu Phe Leu Gln Ser Cys Val Leu Glu Phe Val Asp Arg Thr Ser Ser 85 90 95
- Asp Leu Ile Cys Gly Ala Glu Pro Tyr Val Glu Gly Gln Tyr Arg Lys 100 105 110
- Tyr Asn Asn Asn Ser Gly Phe Val Ser Asn Asp Glu Arg Asn Thr Pro 115 120 125
- Gln Ser Phe Ser His Phe Thr Tyr Glu His Ser Asn His Gln Leu Leu 130 135 140
- Ile Ile Asp Ile Gln Gly Val Gly Asp His Tyr Thr Asp Pro Gln Ile 145 150 155 160
- His Thr Tyr Asp Gly Val Gly Phe Gly Ile Gly Asn Leu Gly Gln Lys
 165 170 175
- Gly Phe Glu Lys Phe Leu Asp Thr His Lys Cys Asn Ala Ile Cys Gln 180 185 190
- Tyr Leu Asn Leu Gln Ser Ile Asn Pro Lys Ser Glu Lys Ser Asp Cys 195 200 205
- Gly Thr Val Pro 210
- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 233 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: C. elegans

-4()-

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
- Lys Gln Trp Thr Glu Asp Ile Val Asp Val Arg Leu His Pro Asp Ser
 1 10 15
- Phe Ala Arg Gly Ala Met Arg Glu Cys Tyr Arg Leu Lys Lys Cys Ser 20 25 30
- Lys His Gly Thr Ser Gln Asp Trp Ser Ser Asn Tyr Val Ala Lys Arg 35 40 45
- Tyr Ile Cys Gln Val Asp Arg Arg Val Leu Phe Asp Asp Val Arg Leu 50 55 60
- Gln Met Asp Ala Lys Leu Trp Ala Glu Glu Tyr Asn Arg Tyr Asn Pro 65 70 75 80
- Pro Lys Lys Ile Asp Ile Val Gln Met Cys Val Ile Glu Met Ile Asp 85 90 95
- Val Lys Gly Ser Pro Leu Tyr His Leu Glu His Phe Ile Glu Gly Lys
 100 105 110
- Tyr Ile Lys Tyr Asn Ser Asn Ser Gly Phe Val Ser Asn Ala Ala Arg 115 120 125
- Leu Thr Pro Gln Ala Phe Ser His Phe Thr Phe Glu Arg Ser Gly His
 130 135 140
- Gln Met Met Val Val Asp Ile Gln Gly Val Gly Asp Leu Tyr Thr Asp 145 150 155 160
- Pro Gln Ile His Thr Val Val Gly Thr Asp Tyr Gly Asp Gly Asn Leu 165 170 175
- Gly Thr Arg Gly Met Ala Leu Phe Phe His Ser His Arg Cys Asn Asp 180 185 190
- Ile Cys Glu Thr Met Asp Leu Ser Asn Phe Glu Leu Ser Pro Pro Glu 195 200 205
- Ile Glu Ala Thr Glu Val Ala Met Glu Val Ala Ala Lys Gln Lys Lys 210 215 220
- Ser Cys Ile Val Pro Pro Thr Val Phe 225 230
- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:

-41-

- (A) LENGTH: 25 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Oligonucleotide Primer D"
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GGATTTGGAC TGGACAAGAA CCCCC

25

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Arg Lys Lys Phe Gly Glu Ser Glu Lys Thr Lys Thr Lys Glu Phe Leu 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO

(xi)	SEQUENCE	DESCRIPTION:	SEQ	$_{ m ID}$	NO:21:
------	----------	--------------	-----	------------	--------

Leu Thr Pro Gln Ala Phe Ser His Phe Thr Phe Glu Arg
1 5 10

- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Leu Ala Asn Xaa Tyr Tyr Glu Lys Ala Glu 1 5 10

- (2) INFORMATION FOR SEQ ID NO:23:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY. linear
 - (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Oligonucleotides"
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

CANGENTINN NNCANTINAE NTINGANNG

29

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs
 - (B) TYPE: nucleic acid

(C)	STRANDEDNESS:	single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Oligonucleotides"

-43-

- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

TCNGCNTTNT CNTANTANTT NTTNGC

26

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "Oligonucleotides"
- (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

TACAATCAGC TGATGACCAG AACGCTC

27

自己の1000年の大阪は100年とこの10年とととととととととととととととととととととの1000年の500年の50人は1000元の100元であるのでではなっている時に関い

100

MERCE A

CONSERE US

PC-AMOS

POPOTE BY

buman 6228

13.0 ALWEST STORY STORY STORY SATISTICS SALES SANDAL STORY SANDAL SANDA

 252_interespensive secular contradiction designations and an anticensistance of the secular se 235 NO TRACE PORTER AND CONTRACTOR DESCRIPTION OF THE CONTRACTOR OF THE CONTRACTOR OF THE LANGEST SERVICE SERV 734 RATEGLES WATER SECTIONAL GOVERNATION DE REPORTED COMMONGENER FOTTES ENGNOALED - SVELD - - - -

>

INDOUGHERMENTALEGEETHEREETHEREETHEREETHEREETHEREETHEREETHEREETHEREETHEREETHEREETHEREETHEREETHEREETHEREETHEREET 177 - 219894YPOVYMINADARAKINALKKINSFRPPIKLEBKQBCVLBF7DRISSI----KLCGABPVEGQYFKUMRGFPVGDG-- YOUR SEEDMINESTEEDE THE ROOM AND THE TEACHER THANKS FOR A COOKER TO SEED THE SEED THE SEED AND THE SEED AND

--- ATHAND NICHTANDE CETHENGING (KRANK LER LASANNELIDAS PSSKOG PILOS IRBOLINGER KANKAN KAN LI

£33 162

MONTH IN

Princen EF2E

G. &. M735

\$

PC-34609

COURSONSUIZ

118 RITEGSF8SERSYRIAKELLIVOÍQOVIDOVYDBQIRRSSBSSPRASKARJORIGESSBSSTAKTORFILLAKEL

254 mittgerflytherryllinigavobitidegibtegischerorgesischer francesischer sylltheriorgesischer -----

SECTION OF THE PROPERTY OF THE STR STRING STRINGS STREET STREET 10世紀には14世紀の11人の11世紀20世代の17年である。 11日本 030 ------SK9ZK9ZK2C----086 194 Trans crum C. 4. EP2E CONSENSAL 80NX-11 **克克斯**

₫

FIGURE 1

THE PERSON

C. e. EPZ

MAKCE A

■n.000 8000

PC-24909

FIGURE 2

FIGURE 3

FIGURE 4

SUBSTITUTE SHEET (RULE 26)

FIGURE 5

SUBSTITUTE SHEET (RULE 28)

SUBSTITUTE SHEET (RULE 26)

FIGURE 7

	NACHALANDA NACHARANA NACHARANANA NACHARANANANANANANANANANANANANANANANANANANA	
124 CONSULTABLE (FEROMONIC FEROMONIC) 572 CONSULTABLE (FEROMONIC FEROMONIC) 573 CONSULTABLE (FEROMONIC) 574 CONSULTABLE (FEROMONIC) 575 CONSULTABLE (FEROMONIC) 576 CONSULTABLE (FEROMONIC) 577 CONSULTABLE (FEROMONIC) 578 CONSULTABLE (FEROMONIC) 578 CONSULTABLE (FEROMONIC) 579 CONSULTABLE (FEROMONIC) 570 CONSUL	III 178 STANDERSWING CHARLESTING TREGRAMMAN CHEERING TO THE SIGNAR ALGERINGS OF STAND TO THE STANDERS OF STAN	VIII 222 VICTORABER BROSCHELLENDER
	MATCHEST CONTROL MATCHE	The control of the
100 (100 (100 (100 (100 (100 (100 (100	TA STREET OF THE CONTRACT OF	AHIOGRAFIA THE CONTROL THE CO
124 CONSTITUTE (TENGENDRATE CONTINUED TO THE STATE OF THE	T. SCHOOL MEETING. DUTING STORY DUTING ST	VI CONTROL PROPERTY OF THE PR
	ERFOR 178 TOWNERDWING CALUMENTATION CO.S. BROK 163 TOWNERDWING CALUMENTATION CO.S. BROK 163 TOWNERDWING CALUMENTATION CALUMENT CO.S. BROK 3 TOWNERDWING CALUMENT CALUMEN	SECTIONS CONTROL OF THE PROPERTY OF THE PROPER
	1138 653 653 771 245 2653 2773	# # # # # # # # # # # # # # # # # # #
E EFTH C 4 FFTH MYCH B MCCK C MAKEN B MCCK C MAKEN C MACHAN R Ch 4 F 1 COMSAMEUS	E EFTX C.S. BFTX KECK A KECK B NHCK O heart K Nelect K CO 4 K CONSEDERE	S. EFSX C. C. EFSX RECC. A MCCC. S NFCC. C Desty C Cob 4 R CODSEDSUS

FIGURE 9

FIGURE 10

FIGURE 11

BUBSTITUTE SHEET (RULE 28)

FIGURE 13

FIGURE 14

SUBSTITUTE SHEET (RULE 26)

FIGURE 15

16/16

*
RKKFGESEKTKTKEFL - MHC
SARAGETRFTDTRKDE - EF2

FIGURE 16

-] -

SEQUENCE LISTING

(1) CENERAL INFORMATION:

- (i) APPLICANT: Ryazanov, Alexey G.
 Hmit, William N.
 Pavur, Karen S.
- (ii) TITLE OF INVENTION: RUCHCATION FACTOR 2 KINASE (EF-2 KINASE) and methods of use therefor
- [iiii] NUMBER OF SEQUENCES: 25
 - (iv) CORRESPONDENCE ADDRESS:
 - [A] ADDRESSEE: David A. Jockson, Esq.
 - (B) STREET: 411 Dackenback Ave. Continental Plaza, 4th Floor
 - (C) CITY: Backensack
 - (D) STATE: New Jersey
 - (B) COUNTRY: USA
 - (R) ALP: 07601
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Ploppy disk
 - (B) COMPUTER: IBM PC compatible
 - (c) OPERATING SYSTEM: PC-IXOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (wibi) ATTORNEY/AGENT INFURMATION:
 - (A) NAME: Jackson Req., David A.
 - (P) REGISTRATION NUMBER: 26,742
 - (C) REFERENCE/COCKET NUMBER: GOL-1-078
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 201-487 5800
 - (R) TELEPAX: 201-343-1684
- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2178 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: Linear

- (11) MOLECULE TYPE: CONA
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo mapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ATGGCAGACC	ТАЭТЭЭАӨАД	CTICCGCCTG	GAAGGTCTTG	ATGGCGGCCA	A CODEYODD DE B	60
GCTGGCCATC	этинтытте	TGATGGGGAC	AGCGACGATG	AGGAAGGTTA	DEFENTABLES	1.20
CCCATCACGG	ATGACCCAAG	CTCGAACCAG	AATGTCAATT	CCAAGGTTAA	TANGTACTAC	180
AGCAACCTAA	CAMARAGINA	GCCCTATAGC	TOURGONGET	CCCCGGCAAA	стесттесле	240
TTCAACKIAAG	CCTGGAAGÜA	DADOTAKOUD	DDAADODDAA	ACATGCCCGA	CCCCTGGGCT	300
GAGTTCCACC	TGGARGATAT	AADOUADDUT	CYPGCTACTY	GACACAGGTA	CAACGUCGTC	03E
ACCEPTEDAT	GECTGUATUA	TCAACTTCTC	ATCAAGATGG	CATUTCAGCU	CTTCGGCCGA	420
GGAGCAATGA	GGGAUTGCTT	ĐẠẠĐỢẠĐƠN	ABCTCTCCA	ACTICITGCA	hadacagaga	480
TGENNEGGEG	CCTCCAACTA	раартирутро	CHCTTACATYM	AGCCCCTAGA	ОСООВЕТСТВИТЕ	540
TACTTTGAGG	ACCTOCCTOT	ACAGATGGAG	GCCAAGCTCT	СОСТОВНОВНОВ	ORDITALITATE	600
CACAAGCCCC	TORACICAGOU	GGACATCATG	CNGATGTGCA	TCNTCGAGCT	GNAGGNCAGN	660
CCGGGCAACC	CCCTCTTCCA	CCTGGAGCAC	TACATCGNGG	GCANGTACAT	CAAGTACAAC	720
РЕПРОЛАСТИТ	#CTTTGTCCG	TGATGACAAC	ATCCCACTCA	CGCCGCAGGC	UTTICAGCUAC	780
TTCLACTTTTG	AGCGTTCCGG	CCATCACCTC	atactestes	ACATUCAGGG	AGTTGGGGAT	840
CTCTACACTG	ACCCACAGAT	CCACACGGGAG	ACCOCACUC	achtiticasaga	COCCAACCTA	900
GGTGTCCGCG	GGATGGCGC'I'	CHTCTTCTAC	титс <mark>а</mark> тисст	CCAACCCCAT	TTGCCAGAGC	960
ATGGGGCTTG	CTCCUTTINGA	######################################	CCCCACACCC	atgcagtgaa	TCAGAACACC	1020
ODTORYDRAG	AMTERGCCAA	CACCATCTTC	DACDAACDAD	OPAAAAADO	TOUGACCCCC	1080
CGNGTANGGA	СССТСТСТВЯ	RAGCCGGCCA	כמטמדאמיינת	GTCCKICTTTC	АНАПААСТСТ	.1140
GENGACGAEA	ACATGAGGGA	CCTGACCTTC	GNETETETE	CTTYTTCCCC	ATCTTCGGCC	1200

АСИСКУЛСКО	GCCAGAAGCT	AGACCACCTC	CATTGGCCAR	TOPPLACTEA	CCTCGATAAC	1260
ATGGCATCCA	GAGACCATGA	TCATCTAGAC	AACCACCGGG	AGTCTMAGEA	TAGTGGGGAC	1320
NGCGGATAEC	CCAGTGASAA	GCGGGGTGAG	CTGGATGACC	ООООООАРТО	AGAACATGGC	1380
CACTUATACA	GTAATCGG/JA	GTACEAGTCT	GNCGAAGACA	GCCTCGCCAG	CTCTGEACGG	1440
GTATGTGTAG	MGANGTOGAA	TCTCUTCAAC	TCCTCCCGCC	TCCACCTGCC	CACCGCTTCC	1500
GCCGTGGCCU	ADØCDKADDT	AAGGCTTAAT	GCTCTGGACC	TCGNANAGAA	AATCCCCLAAG	1580
CENTERTAGE	GUAACCTCCA	тстинсседти	GTCCCCTACC	ACCAGGGTGG	GCGCTTCTRC	1620
GAGAAGGGCG	AGGACTGGGA	ОСАЗЗАЗТОВ	COTOTOTOTO	ACCINGAGCA	CGCNGCCAAC	1680
CYGGGCGAGC	TEGACCCCAT	CONSSIGNOTS	CCACTUATOT	ACTCGCAGTT	GCCTCATYAC	1740
ATCCTAGCCG	ATGTCTCTCT	CAAGCAGACA	CARGACAACA	AAACCAAAGG	ATTIGATUAC	1800
TTACTAAAGO	COCCTHAMEC	TGGCGACAGG	ፈንፖርዳርነርነ ጥ ቡዲህ	TCCTAGTGGC	GCGAGCTTTT	1860
НАСТСТИКСС	AGAACCTCAG	CCCGGACAGG	TGCCAAGACT	GGCTAGACCC	CUTGUACTEG	1920
TACAACACTG	CCCTGGAGAT	GACGGACTGT	GATGAGGGCG	GTGAGTACYA	OCCAATCCAC	1980
GACGAGGGGG	GGTACATGAT	GCTGGCCAGG	GAGGCAGAGA	TGCTGTTCAC	DATEDEDOARDDA	2040
почестинами	AGGACCCGCA	GAGATCAGGG	GACTIGTATA	CCCNGGCAGG	ACIAGGCIAGCC	2100
ATYHDAAHCYJA	TGAAGGGCCG	ACTGGCCAAC	CAGTACTACC	ANNAGGCTGA	рытээррара	2560
GCCCAGATGG	<i>N</i> GGARTAR					2178

[2] INFORMATION FOR SPO JD NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 725 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- [jiji] RYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Humo dapiena

- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Ala Asp Glu Asp Leu 1le Fhe Arg Leu Glu Gly Val Asp Gly Gly 1 5 J.0 15
- Gln Ser Pro Arg Ala Gly His Asp Gly Asp Ser Asp GLy Asp Sor Asp 20 25 30
- Amp Gin Glu Gly Tyr Phe lle Cys Pro lie Thr Amp Amp Pro Ser Ser 35 40 45
- Ash Gln Ash Val Ash Ser Lys Val Ash Lys Tyr Tyr Ser Ash Lett Thu 50 55
- Tays Som Giu Ary Tyr Ser Ser Ser Gly Ser Pro Ala Asa Ser Phe His 65 70 75 80
- The Lys Clu Ala Trp Lyc Hic Ala Ilo Cln Lys Ala Lys His Met Pro 85 90 95
- Amp Pro Trp Ala Glu Pho Him Leu Glu Amp Ile Ala Thr Glu Arg Ala 100 105 110
- The Arg 85: Arg Tyr Aen Ala Val The Gly Clo Tep Leu Asp Asp Glu 115 120 125
- Val Leu 11c Lyo Met Ale Ser Olm Pro Pho Cly Arg Cly Ala Met Arg 130 135 140
- Glu Cye Phe Arg Thr Lys Lys Lou Sor Ash Phe Leu His Ala Gln Gln 145 150 155
- Tro Lyn Gly Ala Ser Asm Tyr Val Ala Dys Arg Tyr Ile Glu Pro Val. 165 170 175
- Asp Arg Asp Val Tyr Phe Glu Asp Val Arg Lou Glu Met Glu Ala Lya 180 185 190
- Len Trp Gly Glu Glu Tyr Asn Arg His Lys Pro Pro Lys Gln Val Asp 195 200 205
- Jim Met Gin Met Cys Ile Ile Glu Leu Lyn Amp Amp Dim Gly Lys Umo 210 215 220
- Leu Phe His Leu Glu His Tyr The Glu Gly Lys Tyr 1le Lys Tyr Asn 225 230 235 240
- Ser Aum Ser Gly Phe Val Arg Amp Amp Amp Ile Arg Leu Thr Pro GLo 245 250 255
- Ala Pho Ser His Phe Thr Phe Glu Ang Ser Gly His Clu Lou Ilo Val

	260	36	5	270
Vəl Asp ilc 275	Cln Cly Val	Cly Asp te	-	Pro Cln lle His 285
Thr Glu Thr 290	Gly Thr Asp	Phe Gly As 295	р «Ту А;µ7 Leu (300	Gly Val Arg Gly
Mot Ala Tubo 305	Phe Phe Tyr 310	Ser His Al	a Cys Asn Arg : 315	Ile Cys Gio Son 320
Met Gly Lou	Ale Pro Pho 325	Asp Len Se	r Pro Arg Glu 2 330	Arg Asp Ala Val 335
Asm Gln hen	Thr Lys Leu 340	Leu Gln Se 34		lle Leu Arg Gly 350
Thr Clu Glu 355	Tys Cys Cly	Ser Pro Ar 360		Len Ser Oly Sor 365
Arg Pro Pro 370	Len Len Arg	Pro Leu Se 375	r 610 Asn 6er 6 380	Cly Asp Glu Asn
Mel: Ser Asp 385	Val Thr Phe 390	Asp Ser Le	u Pro 8om 8om : 395	Pro Ser Ser Ala 400
Thr Pro His	8ex Clm liys 405	bow Asp Hi	s Lew His Trp : 410	Pro Val Phe Ser 415
Amp Leu Amp	Aso Met Ala 420	Ser Arg As 42		Leu Asp Asm His 430
Arg Clu Sec 435	Glu Aen Ser	Gly Amp Sec 440		Sor Glu Lys Arg 945
Cly Clu Lev 450	Апр Апр Рхо	Giu Pro Ar 455	ŋ Clu His Cly I 460	His Ser Tyr Ser
Am Arg Lys 465	Tyr Glu Ser 470	-	p Ser Leb Gly: 475	Ser Ser Gly Arg 480
Val Cys Val	Clu Lys Trp 405	Asu Leu Le	u Aan Ser Ser : 490	Arg Leu His Leu 495
Pro Arg Ala	Ser Ala Val 500	Ala Leu Gl 50		Leu Aon Ala Leu 510
Adp Led Glu 515		Gly Lys Se 520	-	Lyd Val Bin Lou 525
Ala Met Val	Arg Tyr His	ern era er	у Ату Рію Сув	Glu Lys Gly Glu

~(j~

530 535 540 Glu Trp Asp Glo Glo Ser Ala Val Pho His Lou Glu His Ala Ala Asa 555 Leu Gly Glu Leu Glu Ala ile Val Gly Leu Gly Leu Met Tyr Ser Glm 565 570 Led Pro Bis Die lle Leu Ala Asp Val Ser Leu Lyc Glu Thr Clu Clu Ash Lys Thr Lyc Gly Phe Acp Tyr Leo Leo Lys Ala Ala Glu Ala Gly Asp Arg Gln Ser Met lle Leu Val Ala Arg Ala Phe Asp Ser Gly Gin 615 And Low Ser Pro Asp Arg Cys Glu Asp Trp Leu Glu Alm Low Bis Trp Tyr Asn The Ala Leu Gio Met The Asp Cys Asp Clu Cly Gly Glu Tyr Amp Gly Met Glm Amp Glu Pro Arg Tyr Met Met Len Ala Arg Glu Ala GG 5 Glu Mot Lan Phe Thr Gly Gly Tyr Gly Leu Glu Lys Asp Pro Gla Arg 675 Ser Gly Asp Leo Tyr Thr Gin Ala Ala Glu Ala Ala Met Glu Ala Met 695 Lys Gly Arg Leo Ala Asn Cln Tyr Tyr Gln Lys Ala Glu Glu Ala Trp 705

Ala Clm Med. Glu Glu 725

(2) INFORMATION FOR 6RQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2175 base pairs
 - (R) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (iii) HYPOTHRTICAL: NO
- (vi) ORIGINAL SOURCE:

(A) ORGANISM: Mue musculus

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

NTGGCAGACG AAGACCTCAT	CTTCTCCCTC	GAAC: FIGTTG	ACGGTGGCAG	ARDDOTTO TE	60
GCTGGCCNCA ATGUGGACTY	TOACACAGAC	AGTGACGATG	ATGAGGGCTA	TTTYLATYMAG	1,20
CCCATCACTG ATGACCACAT	CTCCAATCAG	AATGTCAGCT	CCMARICCA	GARCTACTAT	180
MSCAACCTAA UAAAAACAGA	птопавстае	ACACCOTCAC	CAGCCAGCTC	CTTCCACTTC	240
AAGGAAGCUT GGAACCATRC	ААА ВАРИТАН	ADADDA4ADDD	TGCCJGACCC	CTGGGCTENA	300
TICCATCICG AGGACATORC	TÆጋፉፉĐÆጋፋጋ	GCTACTCCCC	ACACCTACAA	CUCTGTCACC	360
GGUGAATGCC TCAAAGACGA	GGTTCTGATC	ТООННТАПА	CTCAGCCCTT	CGGCCGTGGA	420
GUAATGAGGU AUTGUTTCAG	GACGAAGAAA	CTCTCCAACT	TOTACOCACOO	CCAGCAATGG	480
ANDOCOURGOT COARCENCET	GGCCANGCGC	THEATEGAGE	СССТОВАСАС	GAGCGTGTAC	540
TTTGAGGATG TGCAGCTCCA	GATGGAGGCG	AAGCTCTGGG	GGGAGGATTA	CNATCGGCA(!	600
ANGCCCCCCA AGCAGGTGGA	TATICATOCAC	ATCTOCATCA	TTGAGCTAAA	GGACAGACCA	660
GSCCAGCCCC TCTTCCAC'F'	CCACCACTAC	ATIGACCGUA	AGTAUATUAA	GTACAATTCC	720
AACTCAGGCT TTGTCCGTGA	TUACAACATC	CCACTAACCC	CACAGGCCTT	CAGCCATTTC	780
ACATTTGAGC GTTCTGGTCA	TYACCTYATT	CTAGTEGACA	TUCAGEGTET	GUGTGACCTT	840
TATACCGACC CAUAGATCCA	CACERARIA	<mark>ብብረአርተ</mark> የ፩ልርማ	TTCCACATCC	TAACCTTGGT	900
GTCCGGGGAA TGCCCTCTT	CTTCTACTCT	ADEPTODEPTAD	ACCOMPTTTO	TCACAGCAGO	960
GGCCTTACGC CCTTTGACCT	CTCCCCACGG	GAACAGGATG	COGTHAATCA	СОДСОДСТВИН	1.020
CTATTGCAAT CACCCAAGAC	CATCTTGAGG	GGGACAGAGG	AGAAGTGTGG	DAGTCY:CCCC!	180x
ATAAUGACAC TOTOTAGCAG	CCGGCCCCCT	TTGCTCCTTC:	GCCTGTCAGA	DDDDDTDAAD	1140
GATCAGAACA TMAGTGACGT	GACCTTTGAC	TCTCTGCCTT	CCTCCCCG3C	TTCAGCTACA	1200
ADDITOKKADA DIDDAIJADAKY	CCACCTCCAT	TGGCCAGTGT	TTGGTGACCT	CGATAACATG	1260
GGCCCTAGAG ACCATGAUCG	TANGGAGAAT	CACCEBBACT	CTGAGAATAG	TGGGGACAGT	1320
GGGTATCCAN GCGAGAACCC	AACTGACCTG	CATCATCCTC	ACCCCCCACA	ACACGUCCAC	1380

TODANOGGUA ACCGAÃCON	A 'MUAATU'DAC	GAGGATAGCC	TGGGCAGCTC	TGGACMRGTC	1440
TGTGTGGAGA CGTGGAACC	n Countaatedd	TCCCGCCTGC	ACCTGCCGAG	весетанная	1500
GTGGCCCTAG AAGTGCAGA	COCCEARTOR C	CTGGAUCTTG	GAAGGAANNT	CGGGAAGTCT	1560
CTTTTXSGGA AAGTXCATT	г аваситвета	COAUDATADOACO	AGGBCGGGCG	CTTCTGCGAG	1620
AACHATHAGA AGTGGGATC	3 AGAGTCAGCC	ATCTTCCAT(TOGALGEATUC	AGCTGACCTG	1680
GGAGAACTGG AGGCUATUS	r GGGCCTAGGC	CTCATGTACT	CTCAGCTACC	CYPCCACATO	1740
CINGCIBATG TOTOTORSA	A GGAGACAGAG	GAGNACAAGA	CAMMEGICIT	ALLOYLING	1800
CICARAGECEA CAGARCIE	G TGACAGGCAT	TCCATGATTT	талтисирсс	ACCTITICAC	1860
ACTROCCIVA ACCIVAGCO	C AGACAGGTGT	CAMBACTGGT	CGGRAGCCTT	CCACIGGTAC	1330
AACACAGCCC TGGAGACAA	C AGACTGCGAT	GANGGCGGGG	EXTREDICTE	CATACACCAC	1980
GAGCCCCAGT ACCCACTOO	DECEMBED TO	CCCGAGATCC	TGUTCAUCGG	GGGATTTGG4A	2040
CTGGACAAGA ACCCCCAAA	тарарьарта в	ምምብንልር <u>ነ</u> ልርተር	AGCCAGCTGA	GGCAGCAATG	2100
GAAGCCAYGA ACCCCCGGC	PARCHARCARA T	ТАСТАННАСА	ACCCCCAACA	GGCCTGGGCC	2160
CAGATGGAGG AATAA					2175

(2) INFORMATION FOR SEC ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 724 wmine acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- [3.33] HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: NOB moscolus
- (x5) REQUENCE DESCRIPTION: SEQ ID NO:4:

Met Ala Asp Glu Asp Lou 11e Phe tys Leu Glu Gly Val Asp Gly Gly 1 $^{\circ}$ 5 $^{\circ}$ 10 $^{\circ}$ 15

Arg Cys Ser Arg Ala Gly His Asn Ala Asp Ser App The Asp Ser Asp

			20					25					30		
Asp i	Asp	Clu 35	01 y	ጥуг	Phr	Ile	Сув 40	Pro	Ile	Thr	չեր	Дыр» 45	His	Mpt.	8or
λευ (Gln 50	Aen	val	Ser	Ser	Lys 55	Val	Gln	Ser	Туг	ፓንነ- 60	8cr	Aen	Leu	Thr
Tayra 1 6 5	Thu	GT n	Cye	Glγ	Ser 70	Thr	ИλΆ	Ser	Pro	Ala 75	Ser	Ser	Phe	Nie	Pl\e 80
Lys	Glu	Ala	Тхр	Б у Б 85	Нів	Ala	ГĴе	Glu	90 Lye	λla	Lyn	ніп	Mel.	Ртъ 95	Asp
Pro '	gyT	Mla	Glu Inn	Phe	His	Leu	Glu	ле р 105	Ile	AJы	Thir	Clu	Кія 110	Ala	Thr
Arg 1	His	A rg 115	Tyr	Vsπ	λla	Val	Thr 120	Gly	Clu	ТТР	Leu	ப்ys 125	Asp	Glu	Val
Leu :	130	Ъув	Met	Ala	Sor	Gln 135	ארס	Phe	Gly	ሊፕረያ	Gly 140	Ala	Mel.	Arg	θΣια
Сув . 145	Phe	Λrg	Thr	Lув	Lys 150	Leu	Ser	λen	Plue	Iжо 155	His	λlα	Cln	Cln	ТТР 160
Lys	σΣу	A I⊗	Ser	Acn 165	Tyr	Vel	Aža	Lyn	Атч 170	Туг	IJe	Glu	Pro	Val 175	Лвр
λrg .	Ser	Val	180	Pho	Clu	Asp	Val	Gln 185	Leu	GJn	Met	Glu	лlа 190	Lув	Leu
TTD	Űlγ	@1 и 1 <i>9</i> 5	Дар	Туг	уви	λτα	ніе 200	Lyn	Exo	I,1.13	Toyta	G1 n 205	Val	Asp	Ile

mot Glm Mct Cy: The Tie Giu Leu Lyn Asp Arg Pro Cly Glm Pro Leu

Phe His Leu Glu His tyr Ho Glu Gly Lys Tyr Ile Lys Tyr Asn Ser

Asm Ser Gly Phe Val Arg Asp Asp Ash He Arg heu Thr Pro Cln Ala

Phe Ser His Phe Thr Pho Clu Arg Ser Gly His Gln Leu Ile Val Val 200 265 270

Amp lie Gin Gly Val Gly Amp Leu Tyr Thr Amp Pro Gin Lie Him Thi-

23.5

250

Glu Lyn Gly Thr Asp Phe Gly Asp Gly Asn beu Gly Val Ang Gly Mot

215

230

245

-10-

290					295					300				
Ala Leu 305	Phe	Phe	Тут	Ser 3)0	Die	λla	Cyn	Acm	Ang 315	Tles	Сув	Cln	Eor	Met. 320
Gly Leu	тит		I th in 325	Asp	læu	ger	Pro	93D 93D	Glu	Gln	Авр	Λla	val 335	yan
Gln Ser		Arg 340	L•€-u	Leu	Gln	Ser	Ala 345	Ъув	Thr.	Ile	Leu	Arg 350	СТЪ	Thr
010 MTu	1.yn 355	Сув	Gly	Ser	PYO	Arg 260	I⊥∉	Jung	Tlır	دائجم آ	Яют 365	6 co z	Scr.	улá
Pro Pro 370	Leu	Leu	Lett	Arg	Lea 375	Sor	Glu	Asn	Ser	Gly 380	qsA	Glu	Asn	Met
6er Ac ₁) 385	Val	Thr	Phe	390	Ser	Leu	Pro	Ser	Ser 395	Pro	Ser	Ser	ЖIН	Thr 400
Pro Bis	Ser'	Glu	Lys 405	Leu	ysb	Nie	Leu	1116 410	Tru	Pro	Val	Phe	И1у 415	Anp
Leu Asp	Asn	Mel. 420	Glly	Рги	Arg	Aog	н.i s. 425	Анр	Атц	Mot	Asp	Аэхі 430	His	Arg
Amp Ser	G1u 435	Nen	Ser	Gly	Asp	Ser 440	Gly	туг	Pro	Ser	Glu 445	Lув	λrg	Ser
Asp Leu 450	dsv	Arapo	Parcs	ΗT IT	Pro 455	Дrg	GLI	Him	A1 y	Hi;; 460	Ser	Asn	σπу	Арл
Ary Arg 465	Nis	Glu	SCI	Дэр 470	Glu	Aap	8cr	Lou	Gly 475	Sor	೮ ೧೯	Cly	Arg	Val 480
Cys. Val	GLu	Thr	Trp 485	Авл	Leu	Leu	Asn	Pro 490	Ser	Arg	Leu	His	Leu 495	Pro
Arg Pro	Ser	Ala 500	Va 1	Ala	Ti iz iz	(3.15	ម្ ខា 505	(४),७)	Άгч	Leo	App	Alm 510	Lev	qeA
ьен GIA	Arg 515	Lys	Ile	ĞÌУ	Lys	520	Val	Leu	GЈУ	Lys	Val 525	Ki <i>a</i>	Læu	Ala
Mot. Val. 530	Αrg	туг][is	Glu	Gly 535	Gly	уrg	Phe	СУS	Glu 540	гув	увр	Glu	Glu
Trp Asp 545	Arg	ЭLи	Ser	714 550	Ile	Plie	HIS	Leu	555 61 ii	His	Ala	Ala	Анр	160 560
ara ara	Leu	Glu	Ala	ıle	Val	Gly	Leu	Gly	Leu	Met	lyr	Ser	Gln	Leu

575

-11-

565 570

 $_{\rm PTO}$ Him Him lie Leu Ala Asp Val Ser Leu Lys Giu Thr Glo Clu Asm 580 585 590

Lya Thr Joyn Gly Phe Amp Tyr Leu Leu Lyn Aln Alb Glu Ala Gly Amp 595 600 605

Arg His Ser Met Ilo Lou Val Ala Arg Ala Phe Asp Thr Gly Leu Asn 610 615 620

Lett Ser Pro Asp Arg Cys Glin Asp Trp Ser Glin Ala Lett His Trp Tyr 625 630 635 635

hen Thr Ala Lou Cho Thr Thr Amp Cym Amp Glu Gly Gly Glu Tyr Amp 645 650 655

Guy He Gin Asp Glu Pro Cin Tyr Ala Leu Leu Ala Arg Glu Ala Glu 660 651 670

Mot Don Len Thr Gly Gly Phe Gly Len Asp Lys Asm Pro Gin Arg Sec 685

Gly Asp Leo Tyr The Gin Ala Ala Giu Ala Ala Met Glo Ala Met Lya 690 695 700

Ciy Ary Leu Ala Asm Clm Tyr Clm Lye Ala Clm Clm Ala Trp Ala 705 710 715

Gln Most Glu Gla

(2) INFORMATION FOR SRQ TO NO:5:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3465 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (iii) HYPOTHETICAL: NO
 - (vi) OXIGINAL SOURCE:
 - (A) ORCANISM: Dictyostelium discoideum
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

ATAATTIDTA	DNDAAULLAAT	NUMBAGAGT	ATBACARRE	TACCACCAAT	TANTETTAKA	GO
AGTCCACAAT	CAGTTCCATT	<i>ಠು</i> , ರಾತ್ರಕ್ಕೆ ಕ್ರಾಮಿಕ್ಕೆ ಕ್ರಮಿಕ್ಕೆ ಕ್ರಾಮಿಕ್ಕೆ ಕ್ರಮಿಕ್ಕೆ ಕ್ರಾಮಿಕ್ಕೆ ಕ್ರಮಿಕ್ಕೆ ಕ್ರಮಿಕೆ ಕ್ರಮಿಕ್ಕೆ ಕ್ರಮ	TTGCAATCAC	CATTGATTAC	AUCAAATTCA	120
CCAAATTTTG	TTTCACGTCA	ATGTCCATTC	PTTTDAAAA	CATCATCITAC	TTPATTUTTAGTT	100
TCAAAGGCAG	AGTTTGATAA	TCACTTAMAG	GATGACHCAC	ካ ምፐୟ!ነዋዋም <u>ል</u> ል	ACAATTOGCA	240
GTGGAGAAAT	TTGATCATCA	ATTIASTTTA	САСАСАСЛЛТ	TGATGGCACA	TTTTACTCAC	300
CAAATGGAGG	ATCAATTACA	CRAAAACAATG	AAGGTCGTAC	GTANTCATAC	AGATAGTTTA	360
ОПССТАВТО	ттоавасова	атгооратова	GCCAPPECAAA	AATUTATGGC	TTTTGCTAAA	420
AACCTTODAAC	ADAADAADAA	DDDOTTAADA	<u>AATTAOAATAA</u>	TCACTUAACA	AATTCAMGAG	480
AACAAATCAA	CCTCTTCACC	ጥጥጥል፭ናጥልឯል	CCTCCTATTA	DETENTOUR	TGGTAGTGGT	540
TTAUTADDDD	СТТТПАТИИ	CHCAAATATA	ጥርንዶፕናርጵዲያ ናርም	CAACTAGTAA	АСАЛБЛАТТА	600
СААСААПААТ	TACAATCATT	ЛТСЛЛТТЛАХ	АТСААЛАЗАМ	ል <mark>ን</mark> ዶየንዶየንዶሞ <mark>ል</mark> ሬ	ATTATCCGAT	860
GARCINICAC	ANNANTTAGA	ACGTTCAACA	GGTAATATAG	ATATTAAAAT	YIKKUKBAKA	720
GANGGTGANG	TTAATGAAAA	GATTGATAAA	CGTCAATTGG	TCTCTACGAT	ADTTANTADD	780
NTTGGNUNGN	AAACAGATIC	CATCGGTTAT	ACATTGGAGA	GTTCAATCAT	TAAAAAGHTT	840
GANGNENNAG	agraarda	ATCCGAACAA	AATCAACTTC	TCTTTGATTC	AARTTKDAKK	900
TCCTTALAAAG	ATRAGATTAA	aatcatigaa	ACTCAACAAT	TGUATACTTC	ATCAGAGGTT	96 0
agraaattga	aattacaaag	ТАСІАВОТАВТ	GGAAATTIVAA	TUTDDBAODBE	TAATGGTACC	1020
TUTOCTACAC	(!TTCATCATY!	TTCTCACTTT	ATTECATEET	$G_{\mathbf{L}}(G_{\mathbf{L}}, \mathbf{L}_{\mathbf{L}}, \mathbf{L}_{\mathbf{L}})$	CCCTCCTAAC	1080
ANATORACA	ТАЛАПТАРНА	CATEGAAGAG	HIMAAAAATTD	тапаацастар	ACTTUAAAAG	1140
AAAATICOTU	AAGAGATTGA	TAATACAAAA	ОСТИВАСТОТ	ADTTODA4AU	ACCTTCCCTT	1200
aaagataatc	GTAGTGAAAT	TGAAGGTTTG	ПАЛЛАККАТТ	OTAACAATCA	ATTCGATAAA	1260
(!AAGACAATA	AGATCAMACA	AGTIGAGGAT	Gatttga aa a	AGAGTGATTC	ATTROTTTO	1320
ΤΤΆΑΤΘ СΆ ΑΑ	ATANCCTCAA	GAAATATAAT	GAATTTGTTG	ATAGAGAACG	TGATCGTGAA	1380
AGTGAACGTT	TGAAACTIVA	AGATTCTATC	AAACGITTAG	AACAAAATCA	አለ አፍስእአአስፕር	144D
GANGCTGAAA	TTCAAGAAGG	TARTGAACAA	GITGAACGIG	13TTACGTGA	GGAAGCTTEN	1500
ATCTCACCAA	TTAGTTCACT	TUCABABTUA	CCAATCACAA	CCAAAUGTTC	ATCGATTATT	1560

ፓዊአዲልጥጥርአር	CACCANTGAC	TTCNCNACAN	TCATCACCAA	AGATICAAGA	TUTTUTUTUA	1630
AGTAGTGGTA	GTAGTAGTGT	TAGTGGTATA	AATATTTCCT	CTGAAACCGG	TODAATGGGT	1680
ATTCTTTGGG	AATTTGATCC	DAATTADTAA	AAATGGATTA	GATTATCAAT	рааатрраар	3740
GTAGAAAGAA	AACCATTTCC	ŢŊŞŶŦŊŊŊĸŊĸ	CTTAGAGAGAGG	CTTATCATAC	CGTTTCATTG	0080
GGTGTTGGAA	CECATOAAAA	ጥኮልጥርርልጥታል	OCTACAAUCA	CCAARTINIT	CCCACCAATT	1860
GAAATGATTI	CACCAATTTC	ТААПАЛЬАСА	GACCCAATCA	CTCAATTGAA	GAATGGTACA	1920
AAATTTGTJ'I'	2/ਫ਼ੋਨਨੋਨੈਨਿਆਨ	EARNGEAG EL	DAADAARTOD	AAGUTAGCAG	AGAATTATAC	1900
TSTCARCATC	ттававатсск	MIGGICIGI	AGAGATTGGG	<mark>ነገኒዿ</mark> ዿፈጥፈፈፒክ	CAATCAAAAG	2040
AADDADDAAA	ASTITAUMAZIA	ATTCCTTATG	TCTTGGGTTG	ТАНАСТТААТ	CCATACATCT	2100
CCTTCTTCCA	NTGGTCAACC	AATACTTTGT	TCCATTGAAC	CATTATTGGT	ЭМПЛЯВАТТС	2160
ATARDAGASS	АТТСАЛАТТА	TGGTGCAGTT	TTAACCAATC	GTTCAACTCC	ንምምልጋይል ፈ ጋል	3550
TYPTCATTIVA	CCTATGAACT	CTCAAATAAA	CAAATGMTCG	TTGTCGATAT	ጥ ተየሃዋክየንፋልጋዊ	2280
TTTDTANTAB	ACACTGATCC	TCAAATTCAT	ACACCCGATG	GTAAAGGATT	TGGTCTTGGT	2340
AATCTTGGTA	MGCAGGTAT	CAATAAATTX	DTOADDADTA	ACAAATGTAA	TGCTGTTTGT	2400
GCTCTTTTMG	ATTTAGATOT	ТАХВТТСКИТ	CCTCTACTAT	CIGGAAATAA	ፐጹጓਫጹአጓሮጹእ	2160
CTTCAACAAG	GTACTATCCT	TARRESTRIKT	ATTUTUÇÇAÇ	AACTTATGCC	ATCTGATAAC	2520
лесатталад	TEGETYCAAA	ACARCTICCA	፲ ልል(ንፐግክልልፓ	TCTCARAGAA	AGATUTCARA	2580
TGTGTTAGUA	DESENTABLE	AADTENDTFT	ССТОТТААСТ	CCATCCCATT	CTTTCATAAT	2640
CAAAAGTTAT	TATROCOCTOG	TTATEGTGAT	GGTACCTATA	CONTEMPAR	TOTOMADOAC	2700
aatuggaari'	CTTTATACAC	TGTCAATGGT	CATAGAAAAT	CAATTGAAAG	татексттет	2760
ТТААТРАТА	ACATTITCAC	TTCATCACCT	GATAACACCA	TCAMAGTTCA	TATCATTCGT	2820
АПТЯНТААСА	CCMANTGTAT	AGAGACATTG	GITGGTCACA	CTGGTGXAGT	TAATTGTGTC	2880
OTOGOCCARTG	TUTATALAAA	TTTCAGTUGT	AGTPATGATA	АЛАСТЛТСЛЛ	GGTTT@GGAT	294D
TTOTCARCCT	TTAAAGAAAT	TAAATCATTT	GAUGGTGTTU	ATACAAAGTA	CATTAANACA	300D
TTGGCTTTGA	GTGGACGTTA	TCTTTTTACT	GCTYXTAACC	AUCAAATCAT	TTACGTTTGG	3060
GNTACTGAMA	CACTTAGTAT	CCTTTTCAAT	ATGCAACCTC	ATCAAGATTG	GGTACTCTCT	3120

CHTCATTGTA	CCGCTAGTTA	TCTTTTCTCA	ACCTCARANG	ATANTGTCAT	СААВАТТТОО	3180
GATCTCTCAA	ATTICAGUIG	TDATKEATACT	CTARARGUTC	ATTEGRATTC	TGTCTCAAAT	3240
TGTGTCGTAA	лмелтсстта	TUTATACAGT	GGTTCTGAAG	ATAMTICAAT	CARACTTYM	3300
GATCTCGATA	CACTTGAATU	TGTTTACACC	ATTCCAAAAT	CTCATTCTTT	GGGTGTAAAA	3360
PETTTAATEG	TITTCAATAA	<u>ምርያል</u> ልልጥር ልጥጥ	ŢĊŢŖĊŢŖĊŢŢ	TWEATGETTE	AATTAMAGTT	3420
COUTABUSET	ataaafkn'aa	ATCTTTGTAN	ATTTTTTTA	AAAA		3465

(2) ENFORMATION FOR SEQ ID NO:6:

- (i) BROURNIE CHARACTERISTICS:
 - (A) LENGIB: 1146 amino acids
 - (P) TYPE: amino acid
 - {C} STRANDEDNESS: single
 - (b) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (111) HYPOTHETICAL: NO
- (vi) DRIGINAL SOURCE:
 - (A) ORGANISM: Dictyostelium discoideum
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Mot Phe Ach Ile Lys Lys Arg Lys Glu Ser Ile Thr Gly Ile Pro Pro 1 5 10 15
- the Asm Vol Ann Ser Pro Gin Ser Val Pro Leu Ser Gly Thr Leu Glu $20\,$
- Ser Pro Leu Ilo Thr Pro Aso Ser Pro Aso Dhe Val Ser Ang Gin Cys 35 40 45
- Pro Pho Lys Lys Phe Gly Cys Ser Ser Phe Len Val Ser Lys Ala Glu 50 60
- Phe Asp Asm Wim Leu Lys Asp Asp Ala Gln Phe His Leu Gln Len Ala 65 70 75 60
- Val Glu Lya Phe Asp Ris Gln Phe Asp Leu His Thr Gln Leu Mel Ala 85 90 95
- Rin Phe Thr Glu Glu Met Glu Asp Cln Leu Glu Lys Thr Met Lys Val 100 105 110

Val	¥тÄ	Дэп 115	Нів	ፐ ት፣ ተ	Asp	Ser	Leu 120	Gly	Gly	Vev	Val	@1π 125	Thr	Lys	Leu
Лер	Glu 3.30	Gly	Ile	Glu	Lys	Сув 1.35	Met	УГя	Phe	Ala	Ъув 140	ъув	Val	Glu	Gln
(1) 1 195	GIn	СТЛ	GJ17	Leu	Ala 150	Lyıs	Þтц	Leu	ıle	Thr 155	Gln	Gln	IIe	αln	63u 160
Loyas	1.yzi	Ser	Thr	165 Ser.	Section	P±.©	Leu	Val	Lув 170	Gly	Gly	Ile	Ser	(11 y 175	СІУ
Gly	Gly	Ser	Gly 180	Gly	Aep	Авр	Ser	Phe 185	Anp	ВJУ	Alα	Asn	11e 190	Ser	Ser
लिह्ना.	Ser	Thr 195	Ser	Lye	GŁ'n	Glu	1 20 0	βJπ	Cln	Glu	Leu	Gln 205	Ser	L∉u	Ser
Ile	Ъу <i>в</i> 210	Met.	Ьγε	Гув	Clu	Leu 215	Thr	Glu	Leu	Ser	A 6p 220	G.I u	Leu	ger	afb
ьуя 225	Lev	Glu	Λrg	Ser	Thr 230	Gly	λen	Ilm	Assp	T313 235	Tays	11c	Lув	Arg	11e 240
Glu	CIY	Gl u	Val	A:::n 245	G1.13	Гую	ټ ر ړ	Asp	Ьув 250	Arg	Gln	Len	Val	Ser 255	Thr
Ile	Asp	Asp	ජල7 260	T.J.C:	Gly	ràs	Lys	Thr 265	лер	Ser	Ile	GЈЪ	Тул 270	Thr.	Tæv
атл	Ser	Ser 275	Ile	Ile	Lys	ГÀВ	Val 280	Glu	GLia	Lyn	61 u	Lys 285	J.y.s).ya	ser
Glu	Gln 290	Дэπ	B) ti	Lem	Len	Pho 295	Asp	Ser	ГÀЗ	rle	Glu 300	Ser	Leu	Lys	γεμ
Ъув 305	Ile	Lys	Ile	Ile	Glu 310	Thr	Gln	c lo	Leu	Лер 305	Tite	Ser	Ser	(H)	Val 320
Ary	Lyc	Leu	Lye	Deu 325	Glu	Ser	Thr	Sec	330 8#£	ĠΊУ	Aran	Leu	Met	Ala 335	вĵА
Leu	Aøn	СЭγ	∏bπ 340	Ser	GH Y	Агд	Pro	80r 345	Ser	Ser	ser	HiB	Phe 350	Ile	Prů
Ser	Ser	Val 355		Ala	Ala	Ala	Asn 360	Nen	Ile	Agn	Lус	A an 365	ΩГ⊓	31 to	Mot
Clu	0λα 370	Va 1.	Lyn	ьуя	leV	G1 ii 375	Пlu	Ьур	I_{iCiQ}	Cln	Ի γՁ 300	Ъув	lje	Arg	Glu

Gla 305	IJс	Aup	Ann	Thu	Бу в 390	Ala	ցլո	Letu	Ser	Lya 395	Val	Gl u	Arg	Ser	Val 400
Lys	Asp	Aen	Ұхч	8ст 405	(131)	Tip	स्राफ	Cly	Leu 410	Glu	Lye	двр	Сув	ьус 415	Am
GID	Phe	Лвр	Lye 420	Gln	Авр	ABD	ГÀВ	Tle 425	Lys	Gln	Va 1	ផាច	App 430	Anp	Lou
Lys	Saya	8er 435	qaA	Ser	Leu	Len	Leu 44◊	Len	Mel.	a LD	Ann	Asn 445	Lou	ГАЗ	ГÀВ
Tyr	Asn 450	Glu	Phos	Vall	Анр	Ang 455	ឲាស	Àт'n	Asp	Arg	Glu 460	Ser	Glu	ухд	Leu
Lys 465	Leu	Gln	Авр	Ser	11c 470	Lys	Arg	Leu	Glu	Gln 475	Aeo	Gln	ГÀв	Lyn	11e 480
લીપ	Alo	(ŧ)	Ile	Gln 485	Glu	GЈЪ	Acn	GТи	G1n 490	VaT	ឲាធ	Ard	Val	Leu 195	Arg
Glu	Glu	Ala	೮೧. 500	По	გლთ	Pro	TJ @	80r 505	ser	Val	rro	ъув	Ser Slo	Pro	Ile
ינינים.	Tlıı'	Lye 515	λrg	Ser	Ser	Ile	11e 520	Leu	Asn	Ser	Pro	Pro 525	Met	Thr	Ser
Gln	Gln 530	೮೦೯	Ser	Pro	гав	11e 535	Gln	Anp	Len	Len	Ser 540	Ser	Ser	βDy	8007
8er 545	Ser	val	Ser	Gly	11c 550	Аэл	Tie	Sor	Ser	Մ1 ւ 555	Thr	Gly	Glu	Met	61 y
116	Lev	ጥታኒን	Glu	Phe 565	Авр	Pro	Ile	Ile	Asn 570	Lув	Τχp	Iĵe	ħrg	Leu 575	Ser
Met	Ьyя	Jegni	280 T ^A 6	Val	Glu	улā	Lys	Pro 585	Plie	λla	Glu	Gly	Ala 590	Ъėп	Arg
СТП	Ala	Tyr 595	Hig	Ί'n፫	Val	6¢r	1 թև 600	ĠΙγ	Val	σιχ	בתני	Asp 605	៤ 1 រ	Asn	Туг
Pro	Lou 610	937	Tlir	Tlor	Thr	ъув 63.5		Phe	Pro	Pro	6\$0	Glu	Met	lle	Ser
Pro 625	Ile	Ser	Lyrs	Анээ	Agn 630	Glu	P Je	MeL	Thr	635 81 n	Ьeп	Ly	Amn	«ту	ጥነյ- 64 D
1.ye	Phe	Val	Leu	Ьув 645		Туг	Ľγs	Įψs	01.u 650	Ala	Glu	Cln	Gln	Ala 655	ser

Arg	ែាធ	Lev	Τ'γτ' δΒΟ	Phy	ហាម	Авр	V ⊗1).γa 665	Mat	Gln	Met	val	Сув 670	Arg	увр
Trp	Gly	Aen 675	Lye	Phe	Asn	Gln	Lys 680	Lye	Pro	Pro	ГЭS	₽ 95	Ile	Glu	Phe
fæu	М ев 690	Ser	Trp	Val	Val	Glu 695	Leu	Ile	увр	Ary	Ser 700	Pres	Ser	유누ㅜ	Àpn
(Лу 7 0 5	G.Ln	Pro	Ile	Leu	Cys 71¢	Ser	Il∈	Gju	Pro	њеш 715	Letu	V» J.	U1.A	G1 io	Phe 720
Гуs	Ъув	neA	ABD	Scr 725	asn	JÀI	Gly	Ala	Val 730	Leu	במיני	Aen	Arg	5er 735	Thr
Pτα	Glu	Ala	Phe 740	Ser	N12	Phe	Tlor	Tyr 745	ĞТп	Leu	2#3	Ann	Бу 6 750	ti.l.E)	Met:
Ile	Vસl	γ ₀ 1 755	Aup	Jle	Gilar	G.I y	760	Анр	Aispi	Tiens	J,AL	ԿԴ ւր 765	Asp	FLO	Glπ
Il€	His 770	Thr	Pro	Asp	G1 Y	1.ys	€1 Y	Pho	СІУ	Lou	С1 у 780	Asn	Len	Gly	гув
Ala 785	Cly	T.1e	asn	Lys	Phe 790	Ile	rdT	T'nr](រន	л 92 т Ав	Сув	Aen	Ala	Val	800 800
Ala	Leu	Leu	Asp	ьси 805	qeA	Va1	ГАЭ	Лои	Cly	CJ.y	Val	Leu	Sor	Cly 015	Asn
Дзуті	Lyn	Lye	820 Gln	Len	Gln	Gln	Gly	Thr 825	Met	Val	Met	Pro	930 930	Ile	Гел
	Clu	835					B40					B45			
Leu	Pro 850	Ŀув	Ala	Olu	Dhe	855 855	Liysi	Lys	Aup	Leu	860 Lyn	Cys	Val	Sex	Thu.
J1e 865	Gla	Ser	Phe	Arg	61u 870	Arg	Val	asa	Ser	11e 975	Ala	Ppe.	Phe	Asp	ABD BBO
Cln	Ъуs	Tæu	Læu	882 CA6	λla	GJλ	Тух	GJy	ле р	Gly	Thr	Туг	yxd	Val 895	Phe
Лвр	Val	Двл	Aap 900	Asn	ጥተታን	liyn	Cyn	1.em 905	Туз∙	Thr	Va 1	Ailn	910	H.i :=	Агц
ГАг	801	7.l.e 915		Ser	Ile	λla	920 920		Ser	Дел	Туг	11e 925	Phe	Thr	Ser

1135

ਲੋਹਾ:	Pro 930	Ausp	Aen	ndT	Ile	Бул 935	Val	His	1J6	lle	Arg 940	Ser	Gly	Анп	ፓ የነታ
ьув 945	Cys	TJ &	ខារ	ጥኮ ተ	hen 950	Vis 1	al y	His	Thr	gly 955	Glu	API	ΑιιΑ	Clym	Va] 960
Val	Λla	Авр	Glu	Ъув 965	Tyr	Leu	Phe	Ser	Сув 970	Ser.	ሞቃተ	ĄeĄ	гув	Thr 975	Ile
Lyp	Verit	ጔኈኯ	980 Vah	Lev	Ser	Thr	Phe	Lys 985	ĢΊν	IJ¢	ГАв	Ser	Phe 990	Glv	Gly
Val	His	Mi- 995	Lys	Тух	ЛJе	Lyn	ጥክጽ 1000		Ala	Len	Ser	Gly 1009	_	Тул:	ներյ
Pb€	Ser 101	-	Gly	Asn	Asp	Gln 1.01!		lle	Туг	УыΙ	Ti-j>		Thr	Glu	'rhx
Leu	Sor	Met.	læu	Phe	Azm	Mel.	Glu	61 v	Wie	223.55	n a m	TYD	ו ביני	T.em	Ser
102					1030			••••	71.13	1035	_	111	101	TE	1040
102					1030 Sex	.				1035	5				1040 Val
102: Leu	5	Cys	'ולו'	A].a 1049 Asp	1030 Ser	y Yy x	Len	rhe	Ser 1050 Ser	1035 Thr	Ser	Lye	увр	Assi 1055 Lou	1040 Val
1029 Leu Ile	5 Nis	('ys	Thr Trp 1066	A].a 1049 Asp	1030 Ser Leu	Yyr Ser	Leu Asn	Phe Phe Loss Cyn	Ser 1050 Ser	Thr Thr Cyn	Ser Il+	Lye Aup	Map The 1070	Assi 1055 Lieu D	TO40 Val i Lya
leu leu lle Cly	S Bis Lye	Cys Ile Trp 1079	Thr Trp 1066 Acn 5	Ala 104: Asp J	Ser Ser Leu Val	Tyr Ser Ser	Lou Asn Ser 1080	Phe Losi Cyn	Ser 1050 Ser Vol	Thr Thr Cyn	Ser II+ Lys	Lye Asp 108! Asp	Mep Thr 1071 Arg	Asm 1059 Lieu Tyr	1040 Val b Lys Leu
leu leu Ile Cly	His Lye His Ser 109	Cys Ile Trp 1079 Gly	Thr Trp 1066 Acm 5	Ala 1049 Asp Ser Ser	Ser Leu Val	Yyr Ser Ser Aan 109!	Lon ABn Ser 1080 Ser	Phe Insi Cyn Cyn	Ser 1050 Ser Vol	Thr Thr Cy:: Val	Ser Ile Lys Trp 1106	Lye Amp Asp 108! Acp	Asp The 1070 Arg Leu	Ann 1059 Leu Tyr Anp	Thr

1130

Ser lle Lys Val Trp Clu Trp Cln Scr Lys 4:40 1145

1125

(2) INFORMATION FOR SEQ ID NO:7:

- [4] SROURNCE CHARACTERISTICS:
 - (A) LENCTH: 2237 bane pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: EDNA

(111) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: Dictyostelium discoideum

(xi) SEQUENCE DESCRIPTION: SRQ ID NO: V:

ATMAGAAGAT AGAACATGAT ATTTAAAGTT TGGTTTTTCAT ATGAACATGA GGAAGTGAAA 60 CTATCAGAAT TAACAAATAA TACAACAATA TYAGCAATTA CAAACATUTT ACATGAAGGT 120 AMAINTATTA GATTTCCATA TCXTACATCT CAAACACT TCCAAATTGG AAAGATGTTA 180 CONTCIGGIA GIGGINGACO TOCANCIGGA CACACGARRO INGAGARTO INAAGCACGI 240 ANTACATTAG CACATATYCA ATATAAAGTT GGTGATACAT TATATGTTAG ACTTAAAAAA 300 ACCARACIA TETETAGERA ACCARTACA ACCATACAS TETACASAS ACCARACAS 360 GRACGTGURA TTRRATGGGR ATATGACCUA TATACTACAA CTGCTCARTG GRACCTGTACA 420 GCARCATTAG TCARAGITGA RECRETACEN ITTGCTGRAG GIGCATTTAG GARAGETPAT 480 CATACATTOG ATTTARGTAR ATCTGGTGCA AGTGGAAGAT ATGTATCAAA GATTGGTAAA 540 ARACCARCAC CARGACCATC ATATTITGAR GATGIAAAGA TGCAAATGAI AGCAAAGAAA 600 TOCKACAGA AATATATTC ATTTAAACUT TUUAAAAAAATTTT ACAATCATC 660 ATTTAGART TIGTAGATA AACATCAC ANTACCACA CATAGACTT TAGACATTTO 720 TAAANAAANT ARTAATRAT DOTTABERDA TAATAATAAT ANDAARATA TAADAAR 780 ACACCACAAT CATTUTUTCA TTTCACATAT HAACATTCAA ATCATCAATT ATTGATTATA 840 GATATTCARG GIGITAGUA TORCTATACA GACCOACAA TYCATACCIA TURTOCTOIT 900 GETTTTGGT ATGGTAATTH HOHT!AAAAA GGATTTTDA ATGGTATAAA 960 TGTANTGEAN TTTCCCANTA TTTAARTITA CARTCARTTA ATCCARARY: TGARARAST 1020 GATTUTGETA (MCTACCAME ACCAGATTIA ATTITCCCTG ATACATCIGA AAGAGATAAT 7080 ΑΝΤΑΑΤΑΑΙΆ ΑΤΑΑΤΑΑΤΑΛ ΤΛΛΤΛΛΤΛΑΤ ΛΑΤΑΑΤΑΑΤΑ ΑΤΑΛΤΛΑΤΑΛ ΤΛΛΤΛΟΤΛΑΤ 1140 ATTATAMA ATTACABLE DATTATATA ADITATAL ANTIGETA ANTAGENA ANTAGENA 1200 AAAGAABGAA ATGATAGAGA TTCGCCAAGT AGACAATTAT TTGTTTCAAA TGATGGTAAT 1260

ACATTAAATA CAAATAAAGA GAGATCAAAA TCAAAATAA TAGATTTAGA AAAAXXAAAA 1320 1380 ACTATTARAG GATATVATGT TAGAAGTCAT TTATGTATTT GTGATAATTT ATTATTTACA 144D TTOTOTAGO TATABABATTO BATETÇEN TATETERE TAGETTAGIA CASSTES CAS 1500 CTTATAAYT ACTAGTES TTTAACTAAR TIBACCTAAAYA ACTAGAAAAYTAAAYA 1560 TIPERTY CATCAGACT TIREDRITTE AAGTTAAL TIPERTY TAGACAAT TAGACTATI 16ZU TIPACYTTOO AGGOTCATGA TAAACCTGTC CATACGGTTC TATGAATGA TAAAYAYETU 1680 TITEGENET CYTCHEACAN AACTATCAAA GTTTGGGAT TGAAAACHTY CYAAGAAA -1740 TATACMMITTG AAAGTCATGC CAGAGCCGTC AAAACACTTT GTATATCTGG TYAATATTTA 1800 TYPAGTGGTT CANATGATAA AACTATCAAG GTTTGGGATT TGAAAACTTT TCGTTGTAAC 1860 TACACTCTAA AAGGTCATAC TAAATGGGTU ACCACTATCT GTATATTAGG TACCAATCTC 1920 TACAGTEGET CETATGATAA AACTATAAGA GTTTGGAATT TAAAGAGTTT AGAATGTTEC 1980 GCTACTTTAN GAGGCCATGA TAGATGGGTT GAACATATGG TAATTTGTGA TAMATTATTA 2040 TTTACTGCTA GTGACGATAA TACAATTAAA ATTTGGGATT TAGAAACATT AAGATGTAAT 2100 ACANCTITES RAGGAUATA TOCCARCOTT CARTOTTAC CACTITUDES AGAIAAAAAA 2160 TGTGTTATTA GTTGTAGTCA THATCAAAHT ATTAHAGTTT CKIGGTTHGAA TTAATTTAAA 2220 2237 TARABABABA BABBARATA

(2) INFORMATION FOR SEQ ID NO:B:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENCTH: 732 amino acida:
 - (B) TYPE: amino acid
 - (C) STRANDFINESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (Add) HYPOTHETICAL: NO
 - (v1) ORIGINAL SOURCE:
 - (A) ORGANISM: Dictyostelium discoideum

-21-

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:B:
- Met Ile Phe Lys Val Trp Phe Ber Tyr Glu Asp Giu Glu Val Glu Lou 1 5 10 15
- Epr 610 Lea Thr Aso Asp Thr Thr Val Sor Ala lile Arg Lys Ile Len 20 25 30
- His Glu Cly Lyn Lie Phe Ang Phe Pro Tyn Gly Thr Ser Glu Thr Asp 35 40 45
- Leu Gln Ile Gly Lys Met Leu Pro Ser Gly Ser Gly Gly Ala Thr 50 55 60
- Ala Asp Ser Toy: Phe Glu Lys Phe Lys Ala Ary Arm Thr Lew Ala Asp 65 70 75 80
- The Gln Tyr Lys Val Cly Asp Thr Lou Tyr Val Arg Val Lys Eys Ser 85 90 95
- Type Pro Thr Ash Asp Ser Leu Leu Pro Thr Leu Ash Ile Ala Phe Leu 100 100 100
- Asp Cly Ser Glu Arg Ala Ile Lys Trp Glu Tyr Acp Pro Tyr Thr Thr 115 3.20 125
- Thr Ala Gln Trp Thr Cys Thr Ala Thr Leu Val Lys Val Glu Pro Val 130 135 140
- Pro Pho Alm Glu Gly Ala Phe Arg Lys Ala Tyr Nis Thr Leu Asp Leu 145 150 155 160
- Ser Lys Sor (Hy Ala Ser Gly Arg Tyr Val Ser Lys Ile Gly Lys Lys 165 170 175
- Pro Thr Pro Arg Pro Sor Typ Phe Gito Amp Vall Lys Met Glin Met Ile 180 185 190
- Ala Lys Lys Trp Ala Asp Lys Tyr Asn Ser Phe Lys Pro Pro Lys Lys 195 200 205
- The Glu Phe Leu Clu Ser Cyc Val Leu Glu Phe Vak Amp Ang Thr Ser 210 220
- ser Asp Lem 11e Cys Cly Ala Cla Pro Tyr Vol Clu Cly Cln Tyr Arg 225 230 235
- Lys Tyr Agn Agn Ash Ser Gly Phe Val Ser Ash Asp Glu Arg Ash Thr 245 250 255
- Pro Gin Ser Phe Sor His Phe Thr Tyr Glo His Sor Asn Bis Cln Lou

-22-

s	260	265		270
Leu Ile Ile 7 275	Nep Ile Gln (Gly V 41 Gly 280	Asp His Tyr Thr 285	Asp Pro Glin
llo His Thr 1 290		Val «ly քեր 2 95	Cly Ile Gly Asm	Leu Gly Glm
Lys Gly Phe (Glu Lys Phe 3 310	Leu Aep Thr	nie Lyd Cyd Am 315	ила Ilo Сув 320
Gla Tyr Leu A	Adm Leu Gio . 325	Ser Ile Agn	Pro Lys Ser Glu 330	Lyв Ser Авр 335
	Val Pro Arg . 340	Pro Asp Leu 345	Ile Phe Pro Asp	Thr Set (1)v 350
Arg Asp Asn 7 355	Aen Aen Aen .	van van van O9£	Add And Add Agri 365	Asn Asn Asn
Aso Aso Aso 1 370		Aun Aun Au n 375	nsa dsa dsa Ose	Ser Ser Ile
Ser Lys Ser 1 385	Lew Val Glu 390	lle Ser Ser	Gly Ser Lys Glu 395	Ary Acn Acn 400
Ary Amp Ser 1	Pro Ser Arg 405	Glo Leu Phe	Val Ser Amn Asp 410	Gly Asso The 415
	Amn Lye Glu . 420	Arg Ser Lya 425	Ser Lyn Ser lle	Asp Jack Glu 430
Lys Pro Glu : 435	lle Leu ila	Asn Asn Lys 440	Lys Lys Glu Ser 445	Ile Abn Leu
Clu Thr Jie 1 450	=	Glu Thr Ile 455	Lys Gly Tyr Dis 460	Val The Sea
His Lew Cys . 465	11d (lyn A up - 47 0	Adu Leu Leu	Pha Thr (By Cys 475	Sor Amp Amn 160
Ser Ile Arg	Val Tyr Asp 485	Tyr Lys Ser	Gln Asn Met Glu 490	Cys Val Gln 495
•	Aly His Giu 500	Gly Pro Val 505	Glo Sen Lie Cys	Tyr Ast Asp 510
Glu Tyr Leu . 515	Pho Sor Gly	8en 6en Aug 520	Жів Bor llo Lya 525	Val Trp Asp
reo ras ras	Leu Arg Cys	ile Phe Thr	Len Glu Gly His	Asp Lye Pro

-23-

	530					535					540				
Val 545	llis	Thr	Val	L¢u	Lou 550	Aan	qeA	гав	Tyr	Leu 555	Phe	Sec	स्म ४	Ser	Я ф т 560
App	Light	Thr	Ile	Lye 565	Val	Trp	Двр	Len	Ly:: 570	ጥ ት፣ τ	1.60	Glu	Суя	Lye 575	Tyr
udr	Lou	ម៉ូ1 ប	Ser 580	ніс	λla	yrd	RIA	585 585	T.YS.	Thr	Նես	Сув	11e 590	Ser	Gly
Gln	тух	Leu 595	Pho	Sor	Oy	Ser	A9n 600	Аэр	Lys	Thr	Ile	1ув 605	Val	Trp	Ącp
Leu	Ъуэ 610	ጥ ት፣ ድ	Phe	Arg	Суе	Դեր 615	Tyr	Thr	Lena	Layes	രി 9 62 D	ң,і ,9	Thr	Lys	ттр
Val 625	ΣάΤ	Thr	Ile	Сув	63 0	Leu	Gly	Thr	ABD	Leu 635	тух	Ser	Gly	Ser	Туг 640
Atapa	liye	Thr	Il€	Arg 645	Val	.Ltb	Aen	Leu	650 650	Ser	Leu	G1 n	Сув	Sen 655	λ1 :9
Thr	Lou	Αтч	6 60 G1y	nie	лер	λΥ <u>ς</u>	Trp	Val 665	ខាប	H.i ss	Med.	Val	11 ፡ 670	Сув	Asp
Ьув	Leu	Leu 675	Phe	ngr	Ala	801-	джд 080	qaA	Asn	Thr	lle	605 605	ıl€	ттр	Asp
Lou	01 u 650	ብ ነንድ	Leu	Λrg	Сув	Asn 695	Thr	Tlox	Leu	Glu	Gly 700	Nie	уви	λla	Thr
Val 705	Gln	Cyts	læu	Ala	Val 710	Trp	Glu	лер	ьув	Бус 715	Сув	Val	Ile	Ser	Пун 720
Ser	llis	Asp	Cln	8ст 725	T1e.	Àгij	Val	Фrrp	αιγ 730	دا بی	Арр				

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2307 base pairs
 - (P) TYPE: nucleic acid
 - {C} STRANDRDNRSS: double
 - {D} TOPOLOGY: linear
- (3)) MOLECULE TYPE: CONA
- (i.i.) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:

-24-

(A) ORGANISM: C. elegans

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

60	ህ <mark>ፈርን</mark> ፥ንተተፉክክል	כזאאכזכאכנ	AATAGTCCAA	CARCHARIANT	ACACARCARA	SOTADO GOTA
120	CGNCGACTAC	TJUUGATAAC	DOTALLAND	GCTCAATGCG	GGACATTCTC	ርርርርጥርናያጸሮጥር
LRO	TATGGATCCT	AGAAGCUTCG	GTCGTTATCS	ACAGAATGAT	ASCTACATION.	ОДАНТАНАСН
240	ААБАЛСАААС	CTCCCCGAGC	CGCAAGGCTC	GGAGACATGG	TATTOAAAAD	CTYCCACGTTA
300	AGCTAAACGA	CACTACAACG	CACGAGTATO	GTTCAACATC	CATGGGATGA	ምልምልሟልሟልዋና!
360	GAGACTTCAT	TACTCGATGT	АСАСАСИАТА	MAGCAATGG	CTGCAATCAG	ттапынатат
120	CPCCPCCAAG	AAAAAAAA	GANTGCTACC	AGCCATGCGA	TTGCACGTGG	CCGGACAGTT
480	ттотоваего	ТАПАТАВЛАЛ	татетсесла	GAGCACCAAC	GTCAAGATTG	CVCGGVYCVV
540	ATGGGGTGAA	ЛТСССАВАТТ	CTTCAGATGG	TGATGTCAGA	TTCTTTTCGA	GATCGTAGAG
600	TGTCATTGAG	TTCNANTGTG	ATIVATATTG	AUCCRACRAA	GGTATAATCC	GAATATAATU
660	GGGNARATAT	ATTTCATCGA	CATTTGGAGU	ጥርሮዶርጥ ርጥዶ ፓ	TAAAACGTTC	ATGATTGATG
720	ACCACAAGCA	CTCGTCTTAC	PCARATOCAG	ATESTITADHA	DTOKKKYTTK	ATAAAATACA
780	TATTCAAGGA	ASSTERTEN	ሊያን፻ፍፋፋ፤ንፐፋር	ACGTICTERN	'J'CACCTTY'84A	TTTTCTCACT
840	TANGGAGAT	тевналстел	EMEDICALIZATION	TOCTONGATE	тттасасава	GTTGGTGATC
900	TAACCATATT	СЕСТАНАНАТИ	TTCTTCCATT	ANTGGCTCTT	GAACTCGTGG	GGAAACCTCC
960	GECTACOGA	CTGAAATCGA	CTTTCGCCAC	AAATTTCQAA	TGGATCTATC	AADARARTENT
7 080	STITSTISTIC	TAGTTCCTCC	ANGTONTGON	AAAGCAGAAA	AAGTAGCTGC	В ЕУТА ЕХЭПТТВ
:1 080	TATTTCGATG	TCGAGCATGG	TETETACATE	TTCAAGTGAA	GNANTCGAAT	GAAGCAAGAA
.1,140	ТПАРМАЛАПО	CCGATTTGTC	CAATCGTCAA	GACGTTGAAT	GAMAAGGAA	GATCAATTGA
1200	TODDARTOTO	TTGAGCAACT	ATTCCMSTTG	TCUTGAGTGT	ACTGTGTATG	CACAACGAAG
1.260	AAGTGGAAAT	GANGTGAVAA	GACTATCCAA	CGAAGAAGAA	ntgangagga	тистпесалс
1320	CGATGAATCA	GATUTTUTGG	AUCCAACGA	ያርንፋይሞልፋየነፋጥ	GTCGACCTAG	AGTCAGAAAA
1380	GAGACATGAT	CACTICCTCA	ЭДИТТИВАСТ	CGGATTTGTA	CTACAAAATG	GCATUTCGIC

AGCTICAGAA GIRCICITOS CACATATICI ATCAATACIT CIAGACAAAC CAGAGACACI 1440 ADTATOTERD ARADUADUED DADTAADAAA ARDEEDTRIR AAGGEOTAAA DEGEGOAAAAG 1500 CTIVAACTIC AACAAATCKC THITTAACCHI GAAAATGATO AAGAUGTAUU ACAAGTUACU 1560 RESCATCAST TOTOTOTOT COSTOAGATT CATATTOATO TOTOAGGATA TOATGAGGTO 1620 COCCOTTOS DAGADOS TADALACIAS TADALACIAS ARTERALOS COTTOCCOCO 1580 COMPONENTAL CAATCAAATA CGACAAGCAG TOTGCAATTT TOCATTYGGA TATGCCCCGG 1740 PARTYITGGAA TOOTTGAGGO TGTGCTAACA TCGGCTCATA TTGYTCTCGG ATTACCACAT 1800 CHATTRITICA AAGAAGTCAC CGTTGATGAT CTGTTTCCTA ATGGGTTTGG AGAACAGQAA 1860 ANTONIO TAGALITATA AGGACAMAN COTTGTGACC TAGAAGAGTT CGGCTXICIAT 1920 CTHATHMAAA TIGGIGENGA GAIGGGIGAI AAGGGIGEAA IGCIGIACAI GGCACACGKI 1.980 INTENANCIE GICAGCATCI CUSACCEAT CEGAGGAGUE ATTATAGGA ATTENTIGAT 2040 TESTATORAC SCRIPT SATIONALIA CARCARO TICACTURA CARCARARA 2100 ACCACATTOT COTCATTICC TOCACTUACT COTCACCAGA TYCTAGCCAA AATCGCCAA 216U ATGTACARAG ACEGORATA TOPICATION ALAGACTE ALEGORATA TOPICATA TOPICATORIAL ACEGORATA ACEGO 2220 TATOATAAAT AAAGEOTOGA AARRTAARTA ADRABOTAA OOAGGAARO STOGAAGTAA 2280 2307 GAAAAAGCGG AAATGTCTCC AGAATGA

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS
 - (A) LENGIE: 768 units askids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPCLOGY: linear
- (ii) MODECULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: C. elegans
- $(\times i)$ SEQUENCE DESCRIPTION: SEQ ID NO:10:

WO 99/09199

- Met Thr Ile App The The Ash Clu Ser Asp Ash Ser Pro Thr Ash Ser 1 5 10 15
- Pro Gly Leu Glu Ala Ser Ala Arg Thr Phe Ser Laso Ann Ala Ser Lys 20 25 30
- Met Val Arg Ile 1hr Asp Asp Tyr Ala Amp Gho Val Pha Ile Glu Gho 35 40 45
- Apr. Amp. Val. Val. The Glu Lyo Pro Arg Mot Asp. Pro Leu His Val. Arg. 50 55 60
- Lys Leu Met Glu Thr Trp Arg Lys Ala Ala Arg Arg Ala Arg Thr Amn 65 70 75 80
- Type The Adp Pro Trp Asp Glo Phe Adm Illo His Glo Tyr Pro Val Glo 85 90 95
- Arg Ala Ivo Arg Tyr Arg Tyr Ser Ala 11c Arg Lys Gln Trp Thr Giu 100 105 310
- Asp lle Val Asp Val Arg Lou His Pro Asp Ser Phe Ala Arg Gly Ala 115 120 125
- Mot Arg Glo Cys Tyr Arg Leo Lys Lys Cys Ser Lys Ris Cly Thr Ser 130 135 140
- Gln Asp Trp Sor Son Asm Tyn Vol Ala Lys Arg Tyr Ile Cys Gln Val 145 150 155 160
- Asp Arg Arg Val Lou Pho Asp Asp Val Arg Leu Gln Met Asp Ala Lys 165 170 175
- Lou Trp Ale Glu Glu Tyr Asn Arg Tyr Asn Pro Pro Lys Lys Flo Asp 180 185 190
- The Val Glm Met Cys Vol The Clu Met The Asp Val Lys Gly Ser Pro 3.95 200 205
- Two Tyr His Leo Glu His Phe Ile Glu Gly Lys Tyr Ile Lys Tyr Asm 210 215 220
- Ser Asn Ser Mily Phe Val Ser Asn Ain Ain Ang Leu Thr Pro Gln Ala 225 230 235 240
- Phe Ser His Phe Thr Phe Olu Arg Ser Gly His Glu Met Met Val Val 245 250 250
- Amp lie Gln Gly Val Gly Amp Len Tyr Thr Amp Pro Gln lle Hid Thr 260 265 270

Val	Val	Gly 275	Thr	лер	туг	Gly	Asp 280	СТУ	asA	Len	Gly	265 265	Ътg	ØΊγ	Met
Ala	1.00 290	Phe	Ehe	ніы	Ser	иін 255	Arg	Cya	Aen	yeb	Ile 300	Cyn	ß1 v	Thr	Met
Aep 305	Leu	Ser	Asn	Pho	Glu 310	Leu	Ser	Pro	Pro	G10 315	Llg	Cl u	Ala	Thr	320 320
Val	Λla	Met	Glu	Val 325	Ala	Ala	Lye	Gli	Lys 330	Lyp	Scr	Сув	Ile	Val 335	Pro
Dema	ТІлт.	Va1	Phe 340	Glи	Ala	Ary	Àrçş	Ann 345	Arg	lle	Ser	Ser	G1 n 350	САВ	Val
His	Val	Glu 355	нiв	Gly	ГĴБ	Ser	Met 360	Aep	Glis	Leu	Arg	1.y.s 365	Arg	Гув	Thr
Iæn	A:-n 370	GIV	Ser	Ser	Thr	Авр 375	Leu	Внт	Άlα	гув	Ser 380	His	yen	GLıı	Апр
Сув 305	Val	Cys	Pres	G1. ល	Сув 390	Ιtμ	Pro	Val	Val	Glu 395	aln	Leu	Cya	មាល	I'ro 400
CAs	Ser	Glu	Аэр	Clu 405	Clu	Asp	Glu	Glu	Glu 410	Λερ	туг	Pru	Агд	8cr 415	Clu
Түр	Sor	GI y	A2n 420	Ser	Gln	Lys	Ser	Arg 425	ÞтЧ	Ser	Arg	Met	Ser 430	Ile	Ser
Thr	Arg	Ser 4 35	Ser	Ů1.у	Asp	Glu	8er 440	Ala	Ser	Arg	Pro	hrg 445	Lys	Cyn	βlγ
Phe	Val 450	Лsp	Leu	Αεπ	Ser	Leu 455	Arg	Gln	λια	нів	Аср 460	Ser	Phe	yrd	Ser
Ser 465	Val.	Gly	Thr	Туг	Ser 470	Met	Ven	Ser	Ser	Ang 475	G.l ru	Thi	Arg	Asp	Thr 4RO
Glu	Lys	уsb	Glu	Pho 485	TŢ	Lys	Val	Leu	Arg 490	rys	Gln	Ser	Val	1490 495	Ala
Äsn	I1c	Leu	Ser 500	Leu	Gln	Leu	GIn	Gil.n 505	Mot.	Ala	Ala	asa	Len 510	Glu	Ув17
Asp	Glu	Дэ р 515	Va1	Pao	GTn	Val	Thi- 520	ΟΊУ	Ніз	G1n	Phe	8er 525	Val	Leu	Gly
Gln	1 le 530	нiв	Lle	Asp	Ting	8cr 535	Ътд	туг	His	Glu	Leu 540	Gly	Arg	Pìre	Va.l

GL0 545	Val.	Аир	Ser	Glu	иі;; 550	I.ys	Clu	Mot	Leu	Glu 555	Gly	Sera:	Olu	Asn	A8P 560
Ala	Arg	val	PYC	11e 565	гàв	Tyr	λер	Lys	GLn 570	Ser	Alα	lle	Fhe	Nie 575	Leu
уер	Ile	лlа	Arg 580	Lye	Сув	Gly	Iie	585 [##II	81u	Ala	۷al	Leu	Thr 590	Ser	KIA
ніц	I.I m	V≈1 595	Len	ΠLγ	Len	טאנן	Rás 600	Ølu	Leu	Leu	Lys	Glu 605	Val	The	Va1
Лер	Asp 618	Leu	Phe	Pro	Aen	e12	Phe	Gly	Glu	GT12	สาก 620	naA	Cly	Tle	Arg
A1a 625	λερ	րհե	Gly	Gln	630 630	Pro	Сув	Анр	Tæn	(Ho 835	G]u	Pbe	Gly	Ser	лер 640
Lapiz	Mist.	611. u	I J.ee	AL 11 645	Ala	(I) II	Met	оту	Авр 650	Гув	Gly	Ala	Met	Lei2 655	Туг
Met	Alæ	Ris	Ala 660	Туг	Glu	Ί'nτ	Gly	Glm 665	Nie	Leu	Gly	Pro	A:::0 670	ŖтĄ	Arg
ፓ ትነተ	Анр	Tyr 675	Гус	Lyc	Ser	Ile	Апр 680	Τττ	ባንተ	Cln	Arg	Val GBS	Val	Gly	Ph∈
Gln	Glu GSD	Glu	Glu	Մ Հ ա	Leu	Aap 695	Ser	Asp	Сув	Gly	Lys 700	Thr	Thr	Phe	Ser
Ser 705	Phe	Mlа	Pro	Leu	Thr 710	Arg	His	Glu	Ile	Len 716	νla	Ъув	M∉l.	Ala	616 720
Mct	Тух	Lyp	αΓιτ	01y 025	GIY	туг	G.Ly	Lieiz	A(in 730	Glη	Авр	lipe	Clu	Arg 735	Ala
Tyr	Gly	Leu	Phs 740	asa	Glu	Ala	Ala	Glu 745	Ala	Ala	Met	Glu	лla 750	Met	Aco
લા ૪	Lyn	Leu 755		λen	rys	Tyr	Тут 76()	Glo	Ъув	Ala	GLu	Mel. 765	CAR	СГУ	Glu

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENUE CHARACTRRISTICS:
 - (A) LENGTO: 2203 base paire
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: Linear

- (ii) MOLECULE TYPE: cDNA
- [i.i.x] SYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:

(A) OMGANISM: C. clogans

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATGACGATUG ACACAACAAA	TGAGAGCCAC	aacotuartaa	CTAACTCACC	ЭДОВРТАЮВА	60
GCCTCGGCTC GGACATTCTC	BODITAATHOS	тсаанаатче	TTCGGATAAC	CGACGACTA(!	120
GUAGATUANG TUTTCATTGA	ТАПТААЗАЭЛ	GTCGTTATCC	AGAAGCCTCG	TATGGATCCT	081
CTCCACCUTTA GAAAACTTAT	GGAGACATGG	ntondakodo	CTCCCCCAAGC	DARADRADRA	240
тататапатт сатебеател	GTTCNACATC	CACGAGTATC	COMACCATOR	ACCTAAACGA	300
TATAGREATT CTGCANTCAG	DETAACUAAN	ACAGAGGATA	THERESTRAT	GAGACTTCAT	360
CCCGACACTT TIGCACGIGG	AGCCATGCGA	GAATGCTACC	GACTCAAAAA	GTGCTCCAAG	420
CACCGAACAA GTCAAGATAG	GAGCAGCAAC	TATCTOCCAN	ANAGATACAT	TTGTCAAGTN!	480
GATOGIAGAG TICITITOGA	TCATCTCAGA	CPTCAGATGG	ATGCCAAATT	ATGGGCTGAA	540
GAATATAATC GGTATAATCC	ACCGAAGAAA	ATTGATATTG	TTCNANTGTG	TGTCATTGAG	600
ATGATTGATG TAAAAGUTYC	TOTACTOTAT	CATTICSAGC	ATTTCATCGA	GGGNAANTAT	029
лталатаса аттеааасте	ልጥይ ጥጥጥፈክክል	TURRATUCAG	CTCGTCTTAC	ACCACAAGCA	72 D
TTTTCTCACT TCACCTTCCA	<u></u> አር፡፡በፕፕሮፕዌብፕ	СЪТСАВЪТСА	TGGTTGTCGA	TATTCAAGGA	780
GTTGGTGATC TTTACACACA	TEADACYECT	САТАСАВТТО	TGCRIAACTGA	TTATGGAGAT	840
GGAAACCTCG GAACUCUTGG	AATGGCTCTT	TTCTTCCATT	CACACACAYG	TAAUGATATT	900
TGTGAGACAA TGGATCTATC	AMATTTCGMA	CTTTCGCCA(ACCTAAARTT	CCCTACCGAA	960
CHICKGATUC AARTAGCTGC	NAKONDONUN	ANGTONTGCA	TARTTCCTYC	ААСТОТОТОТТО	1020
(НАПСАВИТАЛЬН СВИТСЕЛНИКИ)	TTCARGTGAA	TUTGTACNTG	TOGRECATES	TATTTCGATG	1080
MATCAATTGA GAAAAAGGAA	CACCTICAAT	CAATCCTCAA	CUGATTTGTC	AGCNAAGAGT	1140
CACAACGAAG ACTGTGTATG	TOTTCACTOR	ATTCCAGTTC	TTGAGCAACT	CTGTGAGCCT	1200

TECTCCGAAC	addaggacyta	<u>ፈ</u> ፋፀፈፋፀፈውን	AACCYLATOA B	GAAGTGANAN	MAGTGGAAAT	1260
actcacabār	CTYCCACCTAG	тадаатдадес	Αፓ ፕጥርΆሕር <mark>ርር</mark> ጂ	CATCTTCTGG	CGATGAATCA	1330
OFFICEROUS	EVTAGAGATO	ССЕДІТТІПТА	ሞጋልፋልፕጥፔልክ	CACTTOSTCA	GAGACATGAT	1380
АПОТТСАПЛА	GTTCTGTTGG	GACATATTCT	TERATRADIA	CTACACAAAC	CAGAGACACT	1490
GAAAAGGATG	AATTCTGGAA	GGTTCTTCGA	AAACAATCAG	TTCCAGCAAA	САТТСТАТСА	1500
CTTCAACTIC	AACAAATGGC	TOSTABOSTO	DTADYRAGAGO	AAGACGTACC	ACAAGTCACC	1560
GGGCMTCAGT	TCTCTGTCCT	CGGTCAGATT	CATATIGATO	TCTCACGATA	TCATGAGCTC	1,620
GGGCGGTT C G	TNGNNGTTGA	TTUAGAACAT	AAGGAAATGC	TTGNGGGNAG	TGAAAATMAC) 680
GCTCGTGTAC	CAATCAAATA	CCACAACCAC	TCTCCAATTT	TCCATTTGGA	TATOGOTOGG	1740
AASTUTSKA	TUCTTURKKE	ፓርተብርምልልረጋ	ተረያብርርጥር! <mark>ች</mark> ሞ <mark>ች</mark>	TTCTTCTCGG	AUTACCACAT	1800
autryttaau	ОДУТНАДНАД	CGTTGATGAT	CTGTTTCCTA	PXYTTTDBEYTA	acaacacgaa	1860
<mark>ልልፓፀፀልል፻ፕ</mark> ሮ	ADATODANA D	NGNGTTCGGC	TCCGATCTGA	TEGRAATTGC	TGCAGAGATC	1920
CCTCATAACC	GTUCAATGET	GTACATGGCA	CACGCTTATG	ALACTGGTYLA	GCATYTTOCKIA	1980
CCCAATCCAA	ATTADESSAD	TANGANATCG	ATTGATTGGT	ATCAACGCGT	OTTANEATERS	2040
CARCARGARC	ARRARCTTGA	CTCTGATTGT	GENTANACCA	CATTCTCCTC	ATTTGCTCCA	23.00
CTHACITCGTC	ACGAGATTCT	AGCUAAAATG	GCTGAAATGT	DEFORBARANA	AGGTTATGGC	2160
CTGAATCAAG	ACTTCGAACG	agcatatcct	CTATTCAATC	Aagchgchga	AGCAGCAATG	2220
GNAGCANTGA	ATGGAAAGCT	AAATAAASSO	TACTATGAAA	AACCCCAAAT	C'IVI'CGAG AA	2280
TGA						2283

(2) IMPORMATION FOR SEQ 1D NO:32:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 760 amino acids
 - (B) TYPR: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECILE TYPE: protein
- Iiii) EVPOTRETICAL: NO
- (vi) ORIGINAL SOURCE:

-31-

(A) ORGANISM: C. elegano

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: Met Thr lle Asp Thr Thr Asp Glu Ser Asp Asp Ser Pro Thr Asp Ser Pro Gly Leu Glu Ala Ser Ala Arg Thr Pho Sor Leu Asn Ala Ser Lys Mot Val Arg He Thr Ace Asp Tyr Ala Asp Glu Val Phe Hie Gio Gio Asn Asp Val Val Tie Glu bys Pro Arg Met Asp Pro Leu His Val Arg Lyo Lea Met Glu Thr Trp Arg Lyo Alm Alm Arg Arg Ala Arg Thr Asm Tyr Ile Asp Pro Trp Asp Clu Phe Asm Ile His Glu Tyr Pro Val Glin Ang Ala Lys Arg Tyr Arg Tyr Ser Ala Ile Arg Lys Gin Trp Tbr Clu Asp The Val Asp Val Arg Lew His Pro Asp Ser Phe Ala Arg Gly Ala 120 Met Arg Glu Cys Tyr Arg Lou Lys Lys Cys Ser Lys His Gly Thr Ser 130 Gin Amp Trp Ser Ser Ash Tyr Val Ala Lyc Arg Tyr IIe Cym Gin Val 150 Asp Arg Arg Val Leu Phe Asp Asp Val Arg Leo Glo Met Asp Alo Lys 3.65 Leu Trp Ale Clu Glu Tyr Asm Arg Tyr Asm Pro Pro Lys Lys Ile Asp 185 Ile Val Gin Met Cys Val Ile Glu Met The Asp Val Lys Gly Ser Pro 200 Len Tyr Bis Len Gla His Phe Die Clu Cly Lys Tyr Ilo Lys Tyr Asn 210 315 Ser Ash Ser Gly Pho Val Ser Ash Ala Ala Arg Len Thr Pro Gln Ala

235

230

- Aun Glu Amp Val Pro Glm Val Thr Gly Him Chn Phe Ser Val Leu Gly Glm llc Bio The App New Ser Arg Tyr His Glu Lew Gly Arg Phe Val 535 Glu Val Asp Ser Blu His Two Clu Met Leu Glu Gly Ber Glu Aco Aco Ala Arg Val Pro Ile Lys Tyr Asp Lys Gln Ser Ala Ile Pho His Leu 570 Amp Ile Alm Arg Lyo Cyn Gly Ile Leo Clo Ala Val Len Thr Ser Ala 585 His Ile Val Leu Gly Leu Pro His Glu Leu Leu Lys Glu Val Thr Val Amp Amp Leu Phe Pro Amn Gly Phe Gly Glu Glu Glu Amn Rly Ilo Arg Asp Lou Clu Glo Phe Gly Ser Asp Neo Mot Clu Ile Ala Ala Glu Met 635 630 Gly Asp Lye Gly Ala Met Leu Tyr Met Ala His Ala Tyr Glu Thr Gly Clm Ris Leu Cly Pro Asn Arg Arg Thr Asp Tyr Lyc Lyc Ser Ile Asp 665 Trp Tyr Gln Arg Val Val Cly Phe Gln Glu Clu Clu Clu Leu Asp Ser Amp Cyc Gly Lys Thr Thr Phe Ser Ser Phe Ala Pro Leu Thr Arg His 695 Clu The Lett Ala Lys Met Ala Glu Met Tyr Lys Glu Gly Gly Tyr 917 710 Leu Asn Glm Asp Pho Glm Arg Alm Tyr Cly Lou Pho Asn Glm Ala Ala (Nim Ala Ala Met Glu Ala Met Asn Gly Lys Leu Ala Asn Lys Tyr Tyr 745 Glu Lys Ala Clu Met Cyn Gly Glu
- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:

(Λ)	LENGTH: 638 base pair
(B)	TYPE: nucleic acid
(C)	STRANDEDMESS: double
([2])	TOPOLOGY: linear

- (ii) MOJECULE TYPE: CDWA
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Dictyostelium discoineum
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GUM	PEATOYL	TYATTTAADTT	GAGAAGACTC	CATTTGCAAA	ПОСТРАСТВЕ	DADDADAABA	60
ATA	<u>ፋፋና</u> ነግንፏሏ	GHATTGGAGT	CAACCAGATC	anggnttagt	ТСКАТЕНОТ	ጥር አ <u>ልር</u> ር ኢት ፕል	120
дда	раврафа	ANGNGATTCA	TACTTTACAG	ATGTATTGAT	GCNANCATTT	TGTGCTAAAT	180
age	CNGAGAA	лттсаатуаа	CCARACCAC	CAAAACCAAT	TACATTCTTA	CCATCATACG	240
TTI	TTAKECA	GATTGATCAT	ФТОДАОДАОД	PETEDACONA	AASTESTUST	CCATTCATTG	300
AGC	GAGATTA	caagaaaca'i	AACAACAACA	GTGGTTACKST	TASTBATBAT	GCTAGAAATA	360
CAC	CCACANTC	ATTUTOTOAT	TTCTCATACS	AACTOTOCAA	TCATCAATTG	etteotaett	420
AT/	\TCC\\MGG	TGTUAACCAT	PTOTACACTO	ATCCTCAAAT	ጥር/ልጥኦ(!ርአ ጾጱ	TCACCCCACC	480
GCI	TTGGCGA	GGGYAATTTG	GGCGYGYGGG	GTTTCCACAA	AADTTD://ETA	ACACACAAGT	540
GT?	TOADOTAA	тткітслсттт	TTAAAGTTGA	AACCAATCAA	TCAATCAAAG	ANAGCCCTCC	б о D
ም ልያ	DATENDADA	ATTACCCGTC	GTACAATT				628

- (2) INFORMATION FOR SEQ 1D NO:14:
 - (6) SRQUENCE CHARACTERISTICS:
 - (A) LENGTH: 209 amino acide
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:

(A) DREANISM: Dictyostelium discoideum

(xi) SEQUENCE DESCRIPTION: SEQ ID WO: L4:

The Val Cys Val Ser The Glu Lys Thr Pro Phe Ala Lys Gly Sor Cys
1 5 10 15

Arg The Ala His Lys Leu Lys hap Trp Ser Gin Fro Asp Cin Gly Leu 20 25 30

Val Gly Lya Phe Ser Thr Asn Lys Lys Thr Thr Arg Asp Ser Tyr Phe 35 40 45

Thr App Val Lea Met. Clin Thr Phe Cys Ala Lys Trp Ala Clu Lys Phe 50 88 60

Ash Glu Aka Lyo Pro Pro Lys Pro He Thr Phe Leo Pro Sar Tyr Val 65 70 75 80

Tyr Glu Lew Ile Asp His Pro Pro Pro Tyr Pro Val Cys Gly Glu 85 90 95

Pro Phe Ile Glo Gly App Tyr Lys Lys Ris Am Am Am Ser Gly Tyr 100 105 110

Val Ser Ser Amp Ala Arg Amn Thr Pro Cln Bor Phm Ser Him Phe Ser 135 120 125

Tyr Gla Leu Ser Asn His Glu Leu Leu 11e Val Asp Yle Gln Gly Val 130 135 140

Asn Asp Pho Tyr Thr Asp Pro Gln Ile Nie Thr Lys Ser Gly Gln Gly 145 150 150

Phe Gly Glu Gly Asn Lou Gly Glu 7br Gly Pho His Lys Pho Lou Gln 165 170 175

The His Lys Cys Asn Pro Val Cys Asp Fhe Leu Lys Leu Lys Pro Ile 189

ABD Glm Scr Tyn. Lys Ala Leu Leu Arg Gly Thr Leu Pro Val Val Glo 195 200 205

Len

(2) INFORMATION FOR SEC ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 238 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: eingle
- (D) TOPOLOGY: Linear
- (ii) MOLECUUR TYPE: protein
- (iii) HYROTRETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORCAWISM: Bomo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
- Gly Glu Trp Jan Amp Amp Glu Val Leu Ile Lys Met Ala Ser Gin Pro 1 5 10 15
- Phe Gly Arg Gly Ala Mot Arg Glu Cys Pbc Arg Thr Lys Lys Lou Bor 20 25 30
- A₅₇₁ Phe Leu His Ala Gln Gln Trp Lys Gl**y** Ala Ser Asn Tyr Val Ala 35 40 45
- Lys Arg Tyr lle Glu Pro Val Asp Arg Asp Val Tyr Phe Glu Asp Val 50 60
- Arg Leo Gln Met Glu Ala Lys Leo Trp Cly Clo Glo Tyr Ass Arg Bis 65 70 75 80
- Lys Pro Pro Lyn Gln Val Asp Ile Met Gln Met Cys Ile Ile Glu Lew 85 90 95
- Lys Asp Arg Pro Gly Lys Pro Leu Phe His Leu Glu His Tyr Ile Glu 100 - 105 - 110
- Gly Lys Tyr 11c Lys Tyr Asso Sec Asso Ser Gly Phe Val Arg Asp Asp 135 120 125
- Asn lls Ary Leu Thr Pro Gln Ala Phe Ser His Phs Thr Pho Glu Arg 130 135 140
- Ser Gly His Gln Lou Ille Val Val Amp He Gin Gly Val Gly Amp Leu 145 150 150 155 160
- Tyr Thr Asp Pro Gln the His The Glo The Gly The Asp Phe Gly Asp 165 170 170
- Cly April Lea Gly Val Arg Gly Met Ala Len Pho Pho Pro Sor His Ala 180 185 190

-37-

Cys Asn Arg The Cys Oliu Sem Met. Gly Lou Ala Pro Phe Asp Leu Ser 195 200 205

Pro Arg Glu Arg Asp Ala Val Asm Oln Asm Thr Lys Leu Leu Glm Ser 210 225 220

Alm Lye Thr lle Leu Arg Gly Thr Glu Glu Lye Cye Gly Ser 225 230 235

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SPOUENCE CHARACTERISTICS:
 - (A) LENGTH: 258 amino voids
 - (R) TYPE: emino acid
 - (C) STRANDELNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLEGULE TYPE: protein
- (iii) HYPOTHETICAL: NO
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: D. discoideum
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

ABO 1.75 Trp lie Arg Len Ser Met Lys Leu Lys Val Glu Arg Lys Pro 1 5 10 15

Phe Ala Clu Gly Ala Leu Arg Glu Ala Tyr Bis Thr Val Ser Leu Gly 20 25 30

Val Gly Thr Asp Clu Asn Tyr Pro len Gly Thr Thr Thr Lys Len Phe 35 40 45

Pro Pro Ile Giu Met Ile Ser Pro Ile Ser Lyb Abn Abn Glu Ala Met 50 55 60

Thr Glo Leu Lys App Gly Thr Lys Phe Val Leu Lys Leu Tyr Lys E9 70 75 80

Glu Ala Glu Glu Glu Ala Ber Arg Clu Leo Tyr Pho Clu Asp Val Lys 85 90 95

Met Gln Mot Vai Cye Arg Asp Trp Gly Asn Lys Phe Asn Gln Lys Lys 100 105 :10

Pino Pro Lys Lys 11c Clu Phe Leo Mel. Sen Trp Val Val Glu Leo Ile 17.5 120 125

-38-

Asp Arg Ser Pro Sem Ser Ach Gly Glm Pro Ile Nou Cys Ser Ile Glu
130 135 140

Pro Leu Leu Val Gly Glu Phe Lys Lys Ann Ash Ser Ash Tyr Gly Ala
145 150 155 160

Val Leu Thr Ash Arg Ser Thr I'vo Gln Ale Phe Ser His Phe Thr Tyr
165 170 175

Glu Lou Ser Asn Lys Gln Met Ile Val Val Asp Ile Gln Gly Val Amp 180 7.85 190

hep Leu Tyr Thr Asp Pro Glo Lie His Thr Pro Asp Cly Lys Gly Phe 195 200 205

MTy Let Gly Ash Let Gly Lys Ala Gly 11s Ash Lys Phe 11e Thr Thr 210 215 220

His Lya Cym Acn Ala Val Cys Ala Leu Leu Aep Leu Asp Val Lym Leu 225 - 230 - 235 - 240

Gly Gly Val Leu Ser Gly Ass Ass Lys Gls Lou Gls Gls Gly Thr 245 250 255

Met Val

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 212 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: Gingle
 - ((i) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (i.ii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SCURCE: (A) ORGANISM: D. discoideum
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Ala Clm Trp Thr Cys Thr Ala Thr Len Val Lys Val Clu Pro Val Pro 1 5 10 15

Phe Ala Glu Cly Ala Phe Arg Lys Ala Tyr His Thr Leu Asp Leu Ser 20 25 30

- Dys Ser Gly Ala Ser Gly Arg Tyr Val Ser Lys Jlo Gly Lys Lys Pro 35 40 45
- Thr Pro Arg Pro Scr Tyr Pho Glu Asp Val Lys Met Gln Met Ile Ala 50 55 60
- Joys ligh Trp Ala Aep Lye Tyr Aen Ser Phe Lyn Pro Pro Joys Joys Illo 65 70 75 80
- Glu Pho Leo Gin Ser Cys Val Leo Gio Phe Val Asp Arg Thr Sor Ser 85 90 95
- Mep Leu 11c Cys Cly Ala Clu Pro Tyr Val Glu Gly Gln Tyr Arg Lys 100 105 110
- Tyr Asn Asn Ser Gly Phe Val Ser Asn Asp Glu Arg Asn Thr Pro 115 120 125
- Glm Ser Phe Son His The Thr Tyr Clu His Sor Ash His Glm Leu Leu 130 135 140
- He He hap The Glm Cly Val Cly Asp His Tyr Thr Asp Pro Glm He 145 150 155 160
- His The Tyr Asp Gly Val Gly Phe Gly He Gly Asp Leu Gly Gla Lys 165 170 175
- Gly Phe Glu Lya Phe Lou Asp Thr His Lya Cys Asn Ala Ilo Cys Gln 180 180 190
- Tyr Leu Asn Leu Gln Ser Ile Asn Pro Lys Ser Glu Lys Ser Asp Cys 195 200 205
- Gly Thr Val Pro
- (2) INFORMATION FOR SEQ ID NO:18:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 233 amino acide
 - (B) TYPE: amino ಕಥ್ಮಿಕ
 - (!) STRANDEDNESS: single
 - (n) TOPOLOGY: linear
 - (ii) MOLEXALE TYPE protein
 - (iii) HYPOTHETICAL: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: C. elegano

- (x1) SEQUENCE DESCRIPTION: 6RQ ID NO:18:
- Lys Glo Trp The Gla Adp He Val Adp Val Ang Leo His Pro Asp Sort 1 5 10 15
- Phe Ala Arg Cly Ala Met Arg Gla Cya Tyr Arg Low Mys Lys Cys Ser 20 25 30
- Lys Win Gly Thr Ser Glo Amp Trp Ser Smr Amn Tyr Val Ala Lym Arg
- Tyr lle Cys Glm Val Asp Ang Ang Val Lou Pho Asp Asp Val Ang Lou 50 55 60
- Cln Met. Asp Ala Lys Leu Trp Ala Glu Glu Tyr Asn Arg Tyr Asn Pro 65 70 75 80
- Pro Lys Tym Ile Asp Ile Val Gln Met Cys Val Ile Glu Met Ile Asp 85 90 95
- Val Lye Gly Ser Pro Lou Tyr His Leu Mlu His Pho Ille Clu Cly Lys 100 105 110
- Tyr llo Toy: Tyr Asn Ser Asn Ser Gly Phe Val Ser Asn Ala Ala Alg
- Lew Thr Pro Gla Ala Phe Ser His Phe Thr Phe Glu Arg Ser Gly His
- Gln Met Met Val Val Asp Ile Gln Gly Val Gly Asp Leu Tyr Thr Asp 145 150 155 160
- Pro Glm Tie His Thr Val Val Gly Thr Asp Tyr Gly Asp Gly Asn Leu 165 170 175
- Gly Thr Arg (Ty Mel. Ale Leu Phe Phe His Ser His Arg Cys Ash Asp 180 185 190
- The Cyc Glu Thr Mot Asp Lou Ser Asm Pho Glo Lou Ser Pro Pro Glu 195 200 205
- 110 Clu Ala Thr Glu Val Ala Met Glu Val Ala Ala Lys Gln Lys Lys 210 215 220
- Ser Cys Ile Val Pro Pro Thr Val Phe 225 230
- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SECUENCE CHARACTERISTICS:

-41-

- (A) LENGTH: 25 base pairs
- (B) TYPE: mucloic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: Linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /dosc = "Oligonnolectide Primer D"
- (iii) HYPOTHETICAL: NO
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

GRATTIGGAC IGGACAAGAA CCCCC

25

- (2) INFORMATION FOR SEQ ID NO: 20:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino ខេចរំថ
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: Jinear
 - (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO.
 - (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

Arg Lys Dye Gly Glu Ser Glu Lys Thr Lys Thr Lys Glu Phe Leu 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:21:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acida
 - (8) TYPR: amino acid
 - (C) STRANDELNHSS: Single
 - (b) TOPOLOGY: linear
 - (ii) MOIRCULE TYPE: peptide
 - (iii) BYPOTHETICAL: NO

 $\{x_i\}$) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Let Thr Pro Gln Ala Phe Ser His Phe Thr Phe Glu Arg 1 $$\rm ^{5}$

- (2) INFORMATION FOR SEQ ID NO:22:
 - (1) SEQUENCE CHARACIBRISTICS:
 - (A) LENGTH: 10 amino acids
 - {B} TYPE: amino ecid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: poptide
 - (iii) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Leu Ala Asn Xaa Tyr Tyr Glu Lys Ala Glu 1 5 10

- (2) INFORMATION FOR SEQ ID NO:23:
 - {i} sequence characteristics:
 - (A) J.FNWTH: 29 base pairs
 - (B) TYPE: nucleic beid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: other nucleic seid
 - (A) DESCRIPTION: /desc = "Oligonucleotides"
 - (j.5 i) HYPOTHETICAL: NO
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

CANGCRITAN NACANTINAC NITAGANAG

29

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENCTH: 26 Dame pairs
 - (B) TYPE: nucleic acid

-43-

(C) STRANDEDNESS:	gingle
-------------------	--------

- (13) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 (A) DESCRIPTION: /desc = "Oligonucleotides"
- (iii) HYPOTHETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

TENGENTENT CHTANTANTT NTINGE

26

(2) INFORMATION FOR SEC ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (j)) TOPOLOGY: linear
- (iii) BYPOTRETICAL: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID ND:25:

TACAATCAGC TGATGACCAG AACGCTC

27

PCT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: WO 99/09199 (11) International Publication Number: **A3** C12P 21/02, C07K 14/00, 16/00, C12N 25 February 1999 (25.02.99) (43) International Publication Date: 15/11, 1/11, 1/15, 1/19, 1/21, 15/63 PCT/US98/17272 (81) Designated States: AU, CA, JP, US, European patent (AT, BE, (21) International Application Number: CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, 20 August 1998 (20.08.98) NL, PT, SE). (22) International Filing Date: Published (30) Priority Data: 20 August 1997 (20.08.97) US With international search report. 08/914,999 Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. (63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application (88) Date of publication of the international search report: 08/914,999 (CIP) US 3 June 1999 (03.06.99) Filed on 20 August 1997 (20.08.97) (71) Applicant (for all designated States except US): UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY [US/US]; 30 Bergen Street, Newark, NJ 07107-3000 (US). (72) Inventors: and (75) Inventors/Applicants (for US only): RYAZANOV, Alexey G. [RU/US]; 82 Gulick Road, Princeton, NJ 08540 (US). HAIT, William, N. [US/US]; 61 Overbrook Drive, Princeton, NJ 08540 (US). PAVUR, Karen, S. [US/US]; Apartment C, 68 1/2 Woodbridge Avenue, Highland Park, NJ 08904 (US). (74) Agents: COHEN, Mark, S. et al.; Klauber & Jackson, 411 Hackensack Avenue, Hackensack, NJ 07601 (US).

(54) Title: ELONGATION FACTOR-2 KINASE (EF-2 KINASE) AND METHODS OF USE THEREFOR

(57) Abstract

A new superfamily of protein kinases has been discovered that centers around eukaryotic elongation factor-2 kinase (eEF-2 kinase). The proetin kinases of this new superfamily have the following characteristics: 1) sequence similarity to eEF-2 kinase; 2) no sequence similarity to the protein kinases of either the serine/threonine/tyrosine kinase or histidine kinase superfamily; and, 3) specifically phosphorylates α -helical regions of proteins as opposed to β -turns, as seen in all other protein kinases. Assays have been developed utilizing eEF-2 kinase and a phosphorylation target consisting of a novel α -helical 16-amino acid peptide sequence to facilitate high-throughput screening for compounds that can specifically inhibit this protein kinase that has been implicated tumor growth and other hyperproliferative disorders. Additionally, the disclosed invention includes assessing eEF-2 kinase levels for diagnostic purposes, and therapeutic formulations to inhibit eEG-2 kinase activity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

A. CLASSIF IPC 6	C12P21/02 C12N1/15	C07K14/00 C12N1/19	C07K16/00 C12N1/21	C12N15/1 C12N15/6	.1 C12N1,	/11
According to	International Patent Cla	ssification (IPC) or to bot	h national classification	and IPC		
	SEARCHED					
Minimum do IPC 6		ciassification system folio CO7K	wed by classification s	/mbols)		
Documentat	ion searched other than	minimum documentation	to the extent that such	documents are includ	ded in the fields sea	rched
Electronic d	ata base consulted durin	g the international searc	h (name of data base a	nd, where practical,	search terms used)	
C. DOCUM	ENTS CONSIDERED TO	BE RELEVANT				
Category °	Citation of document,	with indication, where ap	propriate, of the releval	nt passages		Relevant to claim No.
X	kinase: im existence FEBS LETTE vol. 397,	AL.: "Elong mmunological e of tissue spe ERS, 1996, pages 5 whole article	evidence for ecific forms' 55-60, XP0020	the		1-51
X	protein ki Dictyostel A" JOURNAL OF vol. 272, XP00209768	ET AL.: "Mar nase catalyti ium myosin II BIOLOGICAL (no. 11, 1997 36 whole article	c domain of I heavy chair CHEMISTRY, , pages 6846	n kinase -6849,		1-51
	1					
X Furt	her documents are listed	I in the continuation of be	ox C.	Patent family	members are listed ii	n annex.
"A" docum consk "E" earlier filing "L" docum which crtatic "O" docum other	dered to be of particular adocument but published date ent which may throw dout is cited to establish the or other special reasonent referring to an oral dimeans	state of the art which is relevance on or after the internation obts on priority claim(s) opublication date of anothin (as specified) isclosure, use, exhibition anternational filing date	nal "X r er "Y	cited to understan invention document of partici cannot be conside involve an invention document of partici cannot be conside document is comb	d not in conflict with to the principle or the ular relevance, the clired novel or cannot to estep when the docular relevance; the ct tired to involve an invitined with one or mot prination being obvious.	he application but only underlying the airmed invention be considered to uniment is taken alone airmed invention entive step when the re other such docusto a person skilled
Date of the	actual completion of the	international search		Date of mailing of	the international sea	rch report
2	24 March 1999			20/04/1	999	
Name and	mailing address of the IS European Patent C NL - 2280 HV Rijs	ffice, PB 5818 Patentla	an 2	Authorized officer		
		2040, Tx. 31 651 epo ni,		Marie,	Α	

2

1	rr. ∠na	Application No
	PCT/US	98/17272

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.	
_ategory *	Citation of document, with indication, where appropriate, of the relevant passages	nelevant to claim No.	
X	S. RAVID ET AL.: "Membrane bound Dictyostelium myosin heavy chain kinase: a developmentally regulated substrate specific member of the protein kinase C family" PNAS, vol. 89, 1992, pages 5877-5881, XP002097687 *see the whole article*	1-51	
X	L.M. FUTEY ET AL.: "Structural analysis of myosin heavy chain kinase A" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 270, no. 2, 1995, pages 523-529, XP002097688 *see the whole article*	1-51	
X	C.E. CLANCY ET AL.: "Identification of a protein kinase from Dictyostelium with homology to the novel catalytic domain of myosin heavy chain kinase A" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, no. 18, 1997, pages 11812-11815, XP002097689 *see the whole article*	1-51	
X	Proceedings of the 88th annual meeting of the american association for cancer research.1997, 38, abstract 2806 XP002097696 *see the whole abstract*	1-51	
X	Proceedings of the 88th annual meeting of the american assoication for cancer research, 1997, 38, abstract 3762 XP002097697 *see the whole abstract*	1-51	
X	Proceedings of the 88th annual meeting of the american association foir cancer research, 1997, 38, abstract 3761 XP002097698 *see the whole abstract*	1-51	
X	N.T. REDPATH ET AL.: "Cloning and expression of cDNA encoding protein synthesis leongation factor-2 kinase" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 271, no. 29, 1996, pages 17547-17554, XP002097690 *see the whole article*	1-51	
		I	

		<u> </u>	
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X	A.G. RYAZANOV ET AL.: "Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase" PNAS, vol. 94, 1997, pages 4884-4889, XP002097691 *see the whole article*	1-51	
X	K. MITSUI ET AL.: "Purification and characterization of calmodulin dependent protein kinase III fron rabbit reticulocytes and rat pancreas" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, no. 18, 1993, pages 13422-13433, XP002097692 *see the whole article*	1-51	
X	N.T. REDPATH ET AL.: "Purification and phosphorylation of elongation factor-2 kinase from rabbit reticulocytes" EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 212, 1993, pages 511-520, XP002097693 *see the whole article*	1-51	
X	A. GAJKO ET AL.: "Purification and characterization of the protein kinase eEF-2 isolated from rat liver cells" ACTA BIOCHIMICA POLONICA, vol. 41, no. 4, 1994, pages 421-427, XP002097694 *see the whole article*	1-51	
X	A.C. NAIRN ET AL.: "Calcium/calmodulin dependent protein kinases" CANCER BIOLOGY, vol. 5, 1994, pages 295-303, XP002097695 *see the whole article*	1-51	

