1.2	
a Performance via Pipelining	-
6. Dependability via Rodundancy	in the
C. Performance via Prediction	
d. Make the common case fast	
e. Hierarchy of memories	
f. Performance via Parallelism	
J. Design for Moore's Law	
h. Use Abstraction to Simplify Design	
-3 The program is compiled into an assembly	
language program, which is then	
1 The program is compiled into an assembly language program, which is then assembled into an a machine language	
program.	100100
	· · · · · · · · · · · · · · · · · · ·
14a.1024 x1280 = 1310720 pixels	1.4 316
1310720 x 3 = 3932160 bytes / frame	
6. 3932160 by tes X (8bit / byte) / 100 E 6 bits /se	cond
=0.31 seconds.	

P3: 1GHE Pi: 3GHZ 1.5 B: 2.5GHz GPI: 2.2 OPI:1.5 GPI : 1.0 时间= OPI×扩发数×周期 a. OPI× 指金数/频率 频率×15 /CPI = 每龄指令 3GHz/15= 2G = 2x69 Pz: 2.5GH8/10= 2.5G = 2.5X/09 P3: 4GHz/2.2=1.81G =1.8x109 B. 处理器性能最高. 周期=时间×频率 $cycles(P_1) = 10 \times 3 \times 10^9 = 30 \times 10^9$ $=3x/0^{10}$ 110 = 2.5x/d° cycles (P2) =10× 2.5×109 = 25×109 Cycles (P3)=10× 4×/09=40×/09 $=4\times10^{10}$ 指数 - 周期数 / CPI instructions (P1) = 3×10/0/15 = 2×10/0 instructions (P2) = 2.5x/3°/10=2.5x/00 - 5x/3x/3x/3 instructions (P3) = 4x100/2.2 = 1.8 x /010.

 $t = I \times cP1/f$ $0.7t = I \times 1.2cPI/f'$ f'= 쯞f=171f f(Pi)=171 fi=5.14GHz 1/1 f(P2)=1-71f2=4.28GH8 f (P3) = 1.71f3 = 6.75 GHz 1.6 C TR=2.5GHz \$1 fp=39Hz OP] I=1x106 a. (1) (x106x6/x1+ |x106x20/x2+ 1x66x50%x3+ 1x106x20/x3)/(1x6) CDI,=(x66x6/x2 + 1x66x20/x2 + 1x66x502 x2 +1x106x20/x2) = 2

时间-指令×平均指令数 ×周期 周期=1/级年 用钢板=指令× CPI $Cydes P_1 = 1 \times 10^6 \times 2.6 = 2.6 \times 10^6$ cyclosk = 1×106 × 2.0 = 2.0×106 P1: 4GH8 1.12 CP1=09 (1 0PIz=0.75 11 mm 5×10条指令 1×109条指全 T(P1)= 5x109 x 0.9 / (4x109) =1.1255 $T(P_2) = 1 \times 10^9 \times 0.75 / (3 \times 10^9) = 0.255$ $T(P_1) > T(P_2)$ Performance (Pi) < Performance (Pi) Clock Rate (Pi) > Clock Rate (Pz), 多数设备值 1.12.2 T(P1)= 1×109 XD-9 /(4×109)= 0.2255 $N \times 0.75 / (3x/0^9) \Rightarrow N = 9x/0^8$ 1.12.3 MIPS = Clock Pate X10-6/CPI MIPS $(P_1) = 4X/0^9 \times 10^{-6} / 0.9 = 4.44 \times 10^3$ MIPS (P2) = 3x/09x/0-6/0.75 =4x/03

MIPS(P)>MIPS(P2) Performance(P) < performance (P2) MFLOPS=>钛操作的数用/(执行时)可以为b) 1.12.4 MFLOPS (P,) = 0.4x5x/09 × 10-6/1.125 = 1.78 × 103 MFLOPS(P2) = 0.4×/×/09×/0-6/0.25 =1.60×/03 MFLOPS(PI)>MFLOPS(B) performance (Pi) < performance (P2). 1-13 70S:淡钛 程序:250S 855: L/S 45:分支 1-13-1 70×20% = 148 K= 250-14 = 2365 Reduction: 3.6% 250X08 = 2005 1-13-2 Tfp+Tys+ Tbranch = 1655 Tint = 355 Reduction of INJ: XX 58.8%

1.13.3 $-\frac{40}{250} = \frac{16}{3}$ at most NO.