Applicants: Andrew C. Harvey et al. Attorney Docket No.: 05918-071004 / 3782 (DIV2)

Serial No.: 10/720,739

Filed: November 24, 2003

Page : 2 of 7

AMENDMENTS TO THE CLAIMS:

This listing of claims replaces all prior versions and listings of claims in the application: Listing of Claims:

60. (Previously Presented) An abrasive sheet product comprising a sheet-form base having an array of fastener elements integrally molded with the base on a first side thereof, and abrasive particles extending from a substrate laminated to a second side thereof, the product formed by a process comprising

providing an apparatus including

a cylindrical mold roll rotatable about an axis and defining fastener elementshaped mold cavities at a peripheral surface thereof,

a cylindrical pressure roll having a resilient, conformable surface arranged to engage said mold roll at a nip and to form a mold gap at said nip for forming said base web, the pressure roll constructed to apply operating pressure to force the resin into said cavities, and an extruder die to introduce molten resin to said nip,

passing a substrate having extending abrasive particles through the nip with the molten resin such that the resilient surface of the pressure roll conforms in the vicinity of the abrasive particles to protect the abrasive particles as they pass through the nip, thereby forming fastener elements integral with a base web on a broad side of the substrate.

- 61. (New) The abrasive sheet product of claim 60, wherein the substrate is paper.
- 62. (New) The abrasive sheet product of claim 60, wherein the abrasive particles comprise grains of sand.
- 63. (New) The abrasive sheet product of claim 62, wherein the grains of sand are from about grade 30 to about grade 600.

Applicants: Andrew C. Harvey et al. Attorney Docket No.: 05918-071004 / 3782 (DIV2)

Serial No.: 10/720,739

Filed: November 24, 2003

Page : 3 of 7

64. (New) The abrasive sheet product of claim 60, wherein the resilient, conformable surface is

formed of an elastomer having a durometer of between about 60 and 70.

65. (New) The method of claim 60, wherein the cavities are shaped to form hooks.

66. (New) The method of claim 60, wherein the mold roll comprises an axially arranged stack

of disks, some having mold cavities at their peripheral surfaces.

67. (New) The method of claim 60, wherein the cavities extend into the mold roll to a depth of

between about 0.004 inch and 0.035 inch.

68. (New) A method of forming a fastener product that includes a plurality of fastener elements

integral with a base layer, the method comprising:

providing a rotatable mold roll having an outer surface and a plurality of inwardly

extending cavities shaped to form at least stem portions of the fastener elements;

depositing molten resin on the outer surface of the mold roll with an applicator; and

by rotation of the mold roll, carrying the molten resin on the mold roll a distance from a

point at which the resin is deposited, into a pressure region in which pressure fills the inwardly

extending cavities with some of the resin, other of the resin forming the base layer on the outer

surface of the mold roll.

69. (New) The method of claim 68, wherein the mold roll is cooled.

70. (New) The method of claim 68, wherein the applicator generates sufficient pressure to

partially fill the cavities.

Applicants: Andrew C. Harvey et al. Attorney Docket No.: 05918-071004 / 3782 (DIV2)

Serial No.: 10/720,739

Filed: November 24, 2003

Page : 4 of 7

71. (New) The method of claim 68, wherein the resin is under substantially atmospheric pressure conditions as it is carried from the applicator toward the pressure region.

- 72. (New) The method of claim 68, wherein the cavities are shaped to form hooks.
- 73. (New) The method of claim 68, wherein pressure in the pressure region is from about 1000 to about 1600 pounds per lineal inch along the mold roll.
- 74. (New) The method of claim 68, wherein the mold roll comprises an axially arranged stack of disks, some having mold cavities at their peripheral surfaces.
- 75. (New) The method of claim 68, wherein the cavities extend into the mold roll to a depth of between about 0.004 inch and 0.035 inch.