Linguagens Formais e Compiladores – Lista 2

Ranieri S. Althoff – 13100773

May 23, 2017

- 1. Construa um autômato finito M tal que:
 - (a) $T(M) = \{x \mid x \in a^n(b,c)^* \land n \geq 0 \land |x| \text{ seja ímpar } \land x \text{ não possui } bb \land x \text{ não possui } cc\}$

(b) $T(M) = \{x \mid x \in (0,1)^+ \land x \text{ seja um binário divisível por 6} \}$

(c) $T(M) = \{x \mid x \in (1,2,3)^* \land \text{o somatório dos elementos de } x \text{ seja múltiplo de } 4\}$

(d) $T(M) = \{a^n y c^k x a^m \mid n, m, k \ge 1 \land x, y \in (a, b)^* \land \#a's \text{ em } y \ge n \land \#a's \text{ em } x \ge m\}$

(e) $T(M) = \{x \mid x \in (0,1)^* \land x \text{ seja um número binário cujo decimal correspondente seja par e não divisível por 3}$

(f) $T(M) = \{(a,b)^*(c,d)^* \mid \#a's + \#c's \text{ \'e par} \land \#b's + \#d's \text{ \'e impar}\}$

- 2. Construa a G.R. correspondente a 2 AFs obtidos no item anterior.
 - (a) Para o autômato 1a:

$$S
ightarrow aA \mid bB \mid cC \mid a \mid b \mid c$$
 $A
ightarrow aS \mid bD \mid cE$
 $B
ightarrow cE$
 $C
ightarrow bD$
 $D
ightarrow cC \mid c$
 $E
ightarrow bB \mid b$

(b) Para o autômato 1b:

$$S' o 0S \mid 1A \mid 0 \mid \varepsilon$$
 $S o 0S \mid 1A \mid 0$
 $A o 0B \mid 1C$
 $B o 0D \mid 1E$
 $C o 0A \mid 1S \mid 0$
 $D o 0B \mid 1C$
 $E o 0D \mid 1E$

- 3. Seja $T(M) = \{x \mid x \in (a,b)^* \land o \text{ n-ésimo símbolo da direita para a esquerda de x seja b}$. Pede-se: Qual o número de estados (em função de n) de M caso ele seja não determinístico? E se ele for determinístico? Exemplifique.
 - Um AF não-determinístico para este problema requer n+1 estados. Para n=2:

Para n=3.

E assim sucessivamente, adicionando um estado (como o novo q2) a cada incremento de n, com as transições apropriadas.

• Um AF determinístico para este problema requer 2^n estados. Os exemplos abaixo foram obtivos determinizando e minimizando os exemplos acima.

Para n=2:

Para n = 3:

- 4. Construa um AFD Mínimo $M \mid T(M) = L(G)$ e determine T(M), onde G é definida por:

Tabela de transições:

δ	a	b
$\rightarrow \star q0$	q2, q4, q5	q1, q3, q5
q1	q2, q5	q1
q2	q1	q2, q5
q3	q4	q3, q5
q4	q3, q5	q4
* q5	_	

Transformando em AF determinístico:

δ	a	b
$\rightarrow \star [q0]$	[q2, q4, q5]	[q1, q3, q5]
$\star [q2, q4, q5]$	[q1, q3, q5]	[q2, q4, q5]
$\star [q1, q3, q5]$	[q2, q4, q5]	[q1, q3, q5]

Classes de equivalência:

- $F = \{[q0], [q2, q4, q5], [q1, q3, q5]\}$
- $K F = \emptyset$

Há somente 1 classe de equivalência, e não há como formar uma nova. O autômato finito determinístico mínimo resultante é:

Nota-se que as produções de S e S' são as mesmas, sendo que a segunda foi criada para evitar derivação com ε , e serão consideradas como um só terminal.

Tabela de transições:

δ	a	b	c
$\rightarrow \star q0$	q1	q1, q2	q2
q1	_	q0, q5	q3, q5
q2 q3	q4, q5	q0, q5	
q3	q1	q1, q2	_
q4	_	q1, q2	q2
⋆ q5	_	_	_

Transformando em AF determinístico, renomeando estados:

δ	a	b	c	nome
$\rightarrow \star [q0]$	[q1]	[q1, q2]	[q2]	q0
[q1]		[q0, q5]	[q3, q5]	q1
[q1, q2]	[q4, q5]	[q0, q5]	[q3, q5]	q2
[q2]	[q4, q5]	[q0, q5]	_	q3
\star [q0, q5]	[q1]	[q1, q2]	[q2]	q4
\star [q3, q5]	[q1]	[q1, q2]	_	q5
\star [q4, q5]	_	[q1, q2]	[q2]	q6

Classes de equivalência:

- $F = \{q0, q4, q5, q6\}$
- $K F = \{q1, q2, q3\}$

$$\begin{aligned} \{q0,\, q4,\, q5,\, q6\}_0 \{q1,\, q2,\, q3\}_1 \\ \{q0,\, q4,\, q5,\, q6\}_0 \{q1,\, q2,\, q3\}_1 \end{aligned}$$