Paul Gustafson

Texas A&M University - Math 608

Instructor: Grigoris Paouris

HW 7

4.43 For $x \in [0,1)$, let $\sum_{1}^{\infty} a_n(x) 2^{-n}$ be the binary expansion of x. (If x is a dyadic rational, choose the expansion such that $a_n(x) = 0$ for n large.) Then the sequence $(a_n) \in \{0,1\}^{[0,1)}$ has no pointwise convergent sequence.

Proof. Suppose not. Then there exists a convergent subsequence (a_{n_k}) . Let $x \in [0,1)$ be defined by letting $x_{n_k} = -1 + (-1)^k$ and $x_n = 0$ otherwise. Then $a_{n_k}(x)$ does not converge.

52 The one-point compactification of \mathbb{R}^n is homeomorphic to the *n*-sphere $\{x \in \mathbb{R}^{n+1} : |x| = 1\}.$

Proof. The homeomorphism is the usual stereographic projection sending the north pole to ∞ . It is easy to see that this map is a bijection and a local homeomorphism away from the north pole.

Note that if any closed subset of S^n does not contain the north pole then it has a positive distance to the north pole. Hence the subset maps to a bounded and closed, hence compact, set. Thus, by taking complements, the inverse map is continuous at the north pole. Moreover, the preimage of a compact set in \mathbb{R}^n under the map is compact and does not contain the north pole, so by taking complements the map is continuous at ∞ . Hence the map is a homeomorphism.

60 The product of countably many sequentially compact spaces is sequentially compact.

Proof. Let $(X_n)_{n=1}^{\infty}$ be sequentially compact. Let $(x_n) \subset \prod_n X_n$. Pick $N_1 \subset \mathbb{N}$ such that $(\pi_1(x_n))_{n \in N_1}$ converges. Pick $N_2 \subset N_1$ such that $(\pi_2(x_n))_{n \in N_2}$ converges, and so on. Let (n_k) be defined by picking $n_1 \in N_1$, $n_2 > n_1$ with $n_2 \in N_2$, and so on. Then $\pi_i(x_{n_k})$ converges for all i. Hence (x_{n_k}) converges. \square

69 Let A be a nonempty set, and let $X = [0,1]^A$. The algebra generated by the coordinate maps $\pi_{\alpha} : X \to [0,1]$ for $\alpha \in A$ and the constant function 1 is dense in C(X).

Proof. By Stone-Weierstrauss it suffices to show that this algebra separates points. This is obvious. \Box

- **74** Consider \mathbb{N} as a subset of its Stone-Cech compactification $\beta\mathbb{N}$.
- a. If A and B are disjoint subsets of N, their closures in β N are disjoint. (Hint: $\chi_A \in C(\mathbb{N}, I)$.)
- b. No sequence in \mathbb{N} converges in $\beta \mathbb{N}$ unless it is eventually constant.

Proof. For part (a), since $\mathbb N$ is discrete, $\chi_A:\mathbb N\to I$ is continuous, and so is χ_B . Therefore they have unique continuous extensions to $\beta\mathbb N$, f and g respectively. Suppose $x\in\overline A\cap\overline B\subset\beta\mathbb N$. Then f(x)=1=g(x).

2