

Numerical Simulation of Transport and Extrusion Processes of PVC Paste Flows

Universida_{de}Vigo

Elena Martín Ortega ¹ Pablo Pasarín ² Gonzalo Veiga ³

⁴Department of Fluid Mechanics

Herschel-Bulkley Laminar Flow Equations in Pipes

An analytical solution exists:

$$\begin{cases} u_1 = \left(\frac{G}{2k}\right)^{\frac{1}{n}} \left(\frac{n}{n+1}\right) \left[\left(R - \frac{2\tau_y}{G}\right)^{\frac{n+1}{n}}\right] \left(0 \le r \le r_p\right) \\ u_2(r) = \left(\frac{G}{2k}\right)^{\frac{1}{n}} \left(\frac{n}{n+1}\right) \left[\left(R - \frac{2\tau_y}{G}\right)^{\frac{n+1}{n}} - \left(r - \frac{2\tau_y}{G}\right)^{\frac{n+1}{n}}\right] \left(r_p \le r \le R\right) \end{cases}$$

Where G is the pressure gradient, k is the consistency index, n is the flow behavior index for the Herschel-Bulkley model, τ_y is the yield stress, and $r_p = 2\tau_y/G$ is the radius within which the fluid behaves as a solid.

Herschel-Bulkley Constitutive Equation

There is a discontinuity in viscosity:

$$\nu = \begin{cases} \nu_0, & |\dot{\gamma}| \le \dot{\gamma}_0 \\ k\dot{\gamma}^{n-1} + \tau_0\dot{\gamma}^{-1}, & |\dot{\gamma}| \ge \dot{\gamma}_0 \end{cases}$$

It can be "regularized" and expressed as a continuous function:

$$\nu = k\dot{\gamma}^{n-1} + \tau_0\dot{\gamma}^{-1} \left(1 - e^{-m\cdot\frac{\dot{\gamma}}{\dot{\gamma}_0}}\right)$$

This model is known as the Herschel-Bulkley Papanastasiou (HBP).

Bingham Flow Benchmark

The relative error for the $\overline{\mathsf{HBP}}$ model implemented in OpenFOAM is 1.4%, while for the $\overline{\mathsf{HB}}$ model in OpenFOAM it is 3.2%. The imposed conditions are shown in the following table:

In the following graph, the velocity profiles for HB, HBP, and the Analytical model are compared.

Figure 1. Velocity profiles for G=-22.4 [kPa/m]

Mesh Independence (HB)

The relative deviation of the numerical flow rate Q for different cell sizes remains below 1%. Additionally, the relative deviation of the **numerical** Q compared to the **analytical** Q is 2.2%. It can be observed that the **convergence time** increases exponentially as the mesh size decreases.

Figure 2. Mesh Sensitivity.

Parameterization (HBP)

By parameterizing G, k, and τ_y , it is deduced that there is a direct proportional relationship between G and τ_w (wall shear stress), and an approximately linear relationship between G and Q (flow rate).

G [kPa/m]	$Q [m^3/s]$	k [Pa·s]	$ au_y$ [Pa]	$ au_w$ [Pa]	t CPU [s]
-22.4	0.0146	0.8	350	0.494	2146
-22.4	0.00978	1.2	350	0.494	1632
-22.4	0.000361	0.8	550	0.503	143
-22.4	0.000299	1.2	550	0.503	123
-33.6	0.0458	0.8	350	0.742	7414
-33.6	0.0305	1.2	350	0.742	4936
-33.6	0.0188	0.8	550	0.742	2802
-33.6	0.0126	1.2	550	0.742	1979
-44.8	0.0791	0.8	350	0.989	13024
-44.8	0.0527	1.2	350	0.989	9020
-44.8	0.0490	0.8	550	0.989	7650
-44.8	0.0327	1.2	550	0.989	5180
-56	0.113	0.8	350	1.237	19222
-56	0.0754	1.2	350	1.237	

Table 2. Parameterization Results

