Prova 2

Test: 3

User ID:

Timestamp:

1. Considere a função f definida como:

$$f(x) = mx - 1 + \frac{1}{x}.$$

Se for imposta a condição que m seja o menor valor possível tal que $f(x) \ge 0$ para todo x > 0, com relação a tal m pode ser afirmado que:

- (a) Não existe tal m.
- (b) m = 1.
- (c) O valor de tal m deve ser negativo.
- (d) 4m = 1.
- (e) 2m = 1.
- (f) Nenhuma das afirmações anteriores é correta.

2. Com relação aos pontos críticos da função

$$f(x) = \frac{\sqrt{1 - \sin x}}{\sqrt{1 - \cos x}}$$

pode ser afirmado que:

- (a) Satisfazem a condição $\cos x = 1$.
- (b) São da forma $(2k+1)\pi/2$ para todo $k \in \mathbb{Z}$.
- (c) Satisfazem a condição sen x = 1.
- (d) Não existe nenhum de tais pontos críticos.
- (e) São da forma $2k\pi$ para todo $k \in \mathbb{Z}$.
- (f) Nenhuma das afirmações anteriores é correta.

3. Seja f a função definida como:

$$f(x) = \begin{cases} x^3 \operatorname{sen}\left(\frac{1}{x}\right), & \operatorname{se} x \neq 0\\ 0, & \operatorname{se} x = 0 \end{cases}$$

e seja $g(x) = 1 - \cos x$. Com relação ao limite $\lim_{x\to 0} \frac{f(x)}{g(x)}$ pode ser afirmado que:

- (a) A regra de L'Hôpital não pode ser aplicada.
- (b) Existe e vale $\lim_{x\to 0} \frac{f''(x)}{g''(x)}$.

- (c) Não existe.
- (d) Existe e vale $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$.
- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.
- 4. Com relação à função f definida como

$$f(x) = \cos x + i \sin x$$

pode ser afirmado que seus pontos críticos estão determinados pela condição:

- (a) $\cos^2 x + \sin^2 x = 0$.
- (b) $\cos x = \sin x$.
- (c) $\sin x = \sqrt{2}$.
- (d) $\cos x = \sqrt{2}$.
- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.
- **5.** Usando uma aproximação polinomial adequada para a função exponencial, uma solução positiva da equação

$$e^{-2x} = 3x^2$$

pode ser expressada aproximadamente como:

- (a) $-1 + 2 \cdot 2^{-1/2}$.
- (b) $1 2^{-1/2}$.
- (c) $-1+2^{1/2}$.
- (d) $-1 + 2 \cdot 2^{1/2}$.
- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.
- 6. Um artigo disponível no link http://vixra.org/pdf/1606.0315v1.pdf apresenta, entre outros resultados, a irracionalidade de π usando polinômios de Taylor. Com relação ao argumento apresentado em tal artigo pode ser afirmado que:
 - (a) A expressão destacada em cor de rosa na página 8 é correta.
 - (b) A prova da página 9 é correta na sua totalidade.
 - (c) A afirmação destacada em cor de rosa na página 9 é falsa.
 - (d) A expressão destacada em cor verde na página 8 é incorreta.
 - (e) Duas ou mais das afirmações anteriores são corretas.
 - (f) Nenhuma das afirmações anteriores é correta.

7. Dados $n \in \mathbb{N}$ e a = 0, com relação à função f definida como:

$$f(x) = \frac{x - \sin x}{x^2}$$

pode ser afirmado que:

(a)
$$P_{2n+1,a,f}(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{(2k+3)!}$$
.

(b)
$$P_{2n,a,f}(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{(2k+2)!}$$
.

(c)
$$f^{(n)}(0) = \frac{(-1)^k}{(n+1)(n+2)}$$
 quando $n = 2k$ é par.

(d)
$$f^{(n)}(0) = \frac{(-1)^k}{n+1}$$
 quando $n = 2k+1$ é ímpar.

- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.

8. Considere a função cosh definida como:

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

Considerando o polinômio de Taylor $P_n(\alpha)$ e resto $R_n(\alpha)$ de ordem n de tal função no caso $\alpha = \sqrt{2}$ pode ser afirmado que:

- (a) $(2n)! 2^{-n} R_n(\alpha)$ é um número natural para n suficientemente grande.
- (b) O limite $\lim_{n\to\infty} P_n(\alpha)$ não existe.
- (c) O limite $\lim_{n\to\infty} P_n(\alpha)$ existe e é racional.
- (d) $(2n)! 2^{-n} P_n(\alpha)$ é um número natural para todo n natural.
- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.

9. Dados $n \in \mathbb{N}$ e a = 0, com relação à função f definida como:

$$f(x) = \frac{1}{2} \log \frac{1+x}{1-x}$$

pode ser afirmado que:

(a)
$$f^{(n)}(x) = \frac{(n-1)!}{2} \frac{(1+x)^n + (1-x)^n}{(1-x^2)^n}$$
.

(b)
$$P_{2n+1,a,f}(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k+1}}{2k+1}$$
.

(c)
$$f^{(n)}(x) = \frac{(n-1)!}{2} \frac{(x+1)^n - (x-1)^n}{(1-x^2)^n}$$
.

(d)
$$P_{2n,a,f}(x) = \sum_{k=0}^{n} (-1)^k \frac{x^{2k}}{2k}$$
.

- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.

10. O polinômio P definido como:

$$P(x) = \sum_{k=2}^{n} (-1)^k \frac{x^k}{k(k-1)}$$

é o polinômio de Taylor de ordem n no ponto a=0 da função f dada por:

(a)
$$f(x) = (1-x)\log(1-x) + x$$
.

(b)
$$f(x) = (1+x)\log(1+x) - x$$
.

(c)
$$f(x) = (1-x)\log(1-x) - (1+x)$$
.

(d)
$$f(x) = (1+x)\log(1+x) + (1-x)$$
.

- (e) Duas ou mais das afirmações anteriores são corretas.
- (f) Nenhuma das afirmações anteriores é correta.