Kraków
7 marca 2016

THEORETIC.
OMPUTE
S C I E N C
Jagiellonian Univer

Zadanie E1: Przepływ

Znajdź wartość maksymalnego przepływu pomiędzy źródłem a ujściem w zadanej sieci przepływowej.

Wejście

Pierwsza linia wejścia zawiera liczbę całkowitą z ($1 \le z \le 2*10^9$) – liczbę zestawów danych, których opisy wystepują kolejno po sobie. Opis jednego zestawu jest następujący:

W pierwszej linii zestawu znajdują się cztery liczby całkowite $2\leqslant n\leqslant 100$; $0\leqslant m\leqslant 1000$; $1\leqslant s\neq t\leqslant n$, oznaczające odpowiednio liczbę wierzchołków, liczbę krawędzi, numer wierzchołka będącego źródłem oraz numer wierzchołka będącego ujściem. Kolejne m linii zawiera opisy krawędzi. Opis krawędzi składa się z trzech liczb całkowitych $1\leqslant a\neq b\leqslant n$; $0\leqslant c\leqslant 10^9$, oznaczających, że krawędź ta prowadzi z wierzchołka a do wierzchołka b, a jej przepustowość wynosi c.

Wyjście

Dla każdego zestawu danych wypisz w pojedynczej linii wartość maksymalnego przepływu w zadanej sieci przepływowej.

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:	
1	7	
4 7 1 4		
1 2 3		
1 3 5		
2 3 2		
3 2 3		
2 4 2		
3 4 1		
2 4 5		

Zadanie E1: Przepływ 1/1