BFACON ESP32-WROVER-IB__16MB_ +3V3 +3V3 +3V3 PWR_FLAG +3V3 GND_1 SDO **X** ← O H1 MountingHole_Pad 22 2 23 ESP_TD0 SD1 VDD33 ESP_EN 3 FN 1015 R1 X—O H2 MountingHole_Pad 102 24 IR_LED_CAM SENSOR_VP 22uF 100nF O TestPoint GND PWR_FLAG BTN_2 25_ESP_I00_B SENSOR_VN × H3 MountingHole_Pad 100 VL53L1X_IRQ IR_LED_CAM_MID 1034 104 TestPoint BATT_SENSE NC_1 27 × 28 × 20 × 1035 × H4 MountingHole_Pad \rightarrow VL53L1X_EN 1032 GND GND IR_LED_EN 29 ′ SPI_DS1302_CE 1033 105 × H5 MountingHole_Pad J2 +3V3 IR_LED_MAX 10 _SPI_SCLK TestPoint TP1 O-1025 1018 J1 J12 IR_LED_MID IR_LED_CAM_MAX 11 31 -O TestPoint TestPoint TP2 ()-1026 1019 × H6 MountingHole_Pad UART JTAG USB NC_3 32 × 12 1 ESP_TDI 2 ESP_TCK 3 ESP_TMS 4 ESP_TDO 1 2 ESP_TXD0 3 ESP_RXD0 1 +5V_USB_IN 2 USB_DM 3 USB_DP 4 GND TestPoint TP3 O-1027 ESP_TMS_13 I2C_SDA 1021 1014 RXD0 34 ESP_RXD0 ESP_TDI_14 1012 TXD0 35 ESP_TXD0 15 GND_2 ESP_TCK_16 36 | I2C_SCL 1013 1022 ×17 37 SPI_IO SD2 1023 GND_3 38 SD3 GND_4 39 ×19 CMD ×20 CLK Sheet: peripherals ESP_IOO_BD ESP_IOO_B ESP_END ESP_EN +3V3 ← □+3V3 GND Sheet: regulator_3V3 SPI_DS1302_CEDSPI_DS1302_CE BTN_1D BTN_1D BTN_2D $+V_SYS \longleftrightarrow +V_SYS$ SPI_IO SPI_IO +3V3D→ +3V3 SPI_SCLK Sheet: battery_charger File: regulator_3V3.sch I2C_SDA J3 +5V_USB ← +5V_USB +V_SYSD > +V_SYS 12C_SCL 12C_SCL USB_C_Receptacle_USB2.0 PWR_FLAG PWR_FLAG +5V_USB B540C-13-F +5V_USB_IN USB_DP USB_DP VL53L1X_EN_VL53L1X_EN VL53L1X_IRQDVL53L1X_IRQ +BATT♦→ +BATT USB_DM<mark>♦USB_DM</mark> File: peripherals.sch В5 File: battery_charger.sch CC2= USB_DM B7 🖣 R30 R31 5.1k 5.1k Sheet: regulator_V_LED Sheet: led_driver Α6 +V_SYS +V_LEDD +V_LED USB_DP +V_LED +V_LED IR_LED_ENDIR_LED_EN +3V3 ← → +3V3 GG0402052R542P GG0402052R542P IR_LED_DIR_LED IR_LED_MID_DIR_LED_MID IR_LED_MAX_DIR_LED_MAX \rightarrow \rightarrow File: regulator_V_LED.sch 88 × GND GND Sheet: programmer SBU2= IR_LED_CAM_IR_LED_CAM IR_LED_CAM_MID_IR_LED_CAM_MID IR_LED_CAM_MAX ESP_EN ESP_EN +5V_USB ← →+5V_USB Sheet: battery ESP_IOO_BD ESP_IOO_B +BATT BATT_SENSEDBATT_SENSE USB_DP USB_DP File: battery.sch File: led driver.sch ESP_TXDOD ESP_TXDO USB_DM<mark>♦USB_DM</mark> GND ESP_RXD0 ESP_TCK ESP_TDI ESP_TDO CESP_TDO ESP_TMS File: programmer.sch Sheet: / File: sync_module.sch Title: Size: A4 Date: Rev: KiCad E.D.A. kicad (5.1.5)-3 ld: 1/8

BATTERY CHARGER

RVSET< $18k\Omega$ (short to GND) = 8.2 V RVSET= $39k\Omega$ (± 102) = 8.8 V RVSET= $75k\Omega$ (± 102) = 8.7 V RVSET> $150k\Omega$ (floating) = 8.4 V Linmax = 1110 / R_illim measure Lin = $(1110 \text{ * V_illim}) \text{ / (R_illim * 0.8)}$ Lchg = R_ichgset / 3810 V_REGN = 4.8 V (20mA)

Sheet: /battery_charger/ File: battery_charger.sch

Title:

 Size: A4
 Date:
 Rev:

 KiCad E.D.A. kicad (5.1.5)-3
 Id: 2/8

V_LED REGULATOR

switching frequency = ($4.503 * 10^11 / R$) ^ (1/1.26) R = $4.503 * 10^11 * f^-1.26$

 $\begin{array}{l} \text{Vfb} = 1.26\text{V} \\ \text{Rf2} = (1.26 \, {}^{*} \, \text{Rf1}) \, / \, (\text{Vout} - 1.26) \\ \text{Vout} = (1.26 \, {}^{*} \, \text{Rf1}) \, / \, \text{Rf2} \, + 1.26 \\ (\text{Vout} - \text{Rf1} - \text{Vfb} - \text{Rf2} - \text{GND}) \end{array}$

Sheet: /regulator_V_LED/ File: regulator_V_LED.sch

Title:

 Size: A4
 Date:
 Rev:

 KiCad E.D.A. kicad (5.1.5) – 3
 Id: 4/8

