UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE ELÉCTRICA-ELECTRÓNICA

ELECTRÓNICA ANALÓGICA I

TRANSISTOR POLARIZADO POR MEDIO DE UN DIVISOR DE VOLTAJE

Estudiante:

Caballero Burgoa, Carlos Eduardo. Herbas Nava, Adrian.

Carrera:

Ing. Electromecánica.

Docente:

Ing. Alberto Arispe Santander.

Grupo: 2.

Fecha de entrega: 5 de Noviembre del 2024.

Este documento detalla las pruebas que se realizaron sobre un transistor **2N2222A** en un divisor de voltaje con una fuente de CD de 9[V] para cumplir con un conjunto de condiciones definidas, y las resistencias halladas para una aproximación razonable.

1. Introducción

Dado el circuito de la **figura 1** y considerando las siguientes condiciones:

$$V_{\text{CC}} = 9[V]$$

$$V_{\text{CE}} = \frac{V_{\text{CC}}}{2}$$

$$V_{\text{E}} = 0.1 V_{\text{CC}}$$

Figura 1: Circuito de polarización con divisor de voltaje.

Se hallan los valores de las resistencias que cumplan las condiciones establecidas.

2. Análisis exacto

Para el calculo de los valores del circuito se utiliza el análisis exacto, que consta de las siguientes ecuaciones [1]:

$$R_{\rm TH} = \frac{R_1 R_2}{R_1 + R_2}$$

$$V_{\rm TH} = \frac{R_2}{R_1 + R_2} V_{\rm CC}$$

$$I_{\rm B} = \frac{V_{\rm TH} - V_{\rm BE}}{R_{\rm TH} + (\beta + 1) R_{\rm E}}$$

$$V_{\rm CE} = V_{\rm CC} - I_{\rm C} (R_C + R_E)$$

3. Hoja de datos 2N2222A

La hoja de datos del transistor 2N2222A se detalla en el Cuadro 1.

Valores nominales absolutos máximos								
Símbolo	Parámetro	Va	lor	Unidades				
$V_{ m CEO}$	Voltaje en colector-emisor	4	10	V				
V_{CBO}	Voltaje en colector-base	7	75	V				
$V_{ m EBO}$	Voltaje en emisor-base	6	.0	V				
I_{C}	Corriente en el colector	6	00	mA				
$P_{ m D}$	Disipación total del dispositivo	6:	25	mW				
	Características eléctricas (ap	agado)						
Símbolo	Parámetro	Mín.	Máx.	Unidades				
$V_{\mathrm{BR}(\mathrm{CEO})}$	Voltaje de ruptura en colector-emisor	40	_	V				
$V_{\mathrm{BR(CBO)}}$	Voltaje de ruptura en colector-base	75	_	V				
$V_{ m BR(EBO)}$	Voltaje de ruptura en emisor-base	6.0	_	V				
I_{CEX}	Corriente de corte en el colector	_	10	nA				
I_{CBO}	Corriente de corte en la base	_	10	nA				
$I_{ m EBO}$	Corriente de corte en el emisor	- 10		nA				
	Características eléctricas (enc	endido)					
Símbolo	Parámetro	Mín.	Máx.	Unidades				
$h_{ m FE}$	Ganancia de corriente en CD			_				
	$I_C = 0.1 mA, V_{CE} = 10 V$	35	_					
	$I_C = 1.0 mA, V_{CE} = 10 V$	50	_					
	$I_C = 10mA, V_{CE} = 10V$	75	_					
	$I_C = 150mA, V_{CE} = 10V$	100	300					
	$I_C = 500mA, V_{CE} = 10V$	40	_					
$V_{ m CE(sat)}$	Voltaje de saturación en colector-emisor			V				
	$I_C = 150mA, I_B = 15mA$	_	0.3					
	$I_C = 500mA, I_B = 50mA$		1.0					
$V_{ m BE(sat)}$	Voltaje de saturación en base-emisor			V				
	$I_C = 150mA, I_B = 15mA$	_	1.2					
	$I_C = 500mA, I_B = 50mA$		2.0					

Cuadro 1: Hoja de datos parcial 2N2222A.

4. Resistencias disponibles

Se cuenta con una seria de resistencias de $0.5[\mathrm{W}]$ con los valores detallados en el Cuadro 2.

$1[\Omega]$	$10[\Omega]$	$22[\Omega]$	$47[\Omega]$	$100[\Omega]$	$150[\Omega]$	$200[\Omega]$	$220[\Omega]$	$270[\Omega]$	$330[\Omega]$
$470[\Omega]$	$510[\Omega]$	$680[\Omega]$	$1[k\Omega]$	$2[k\Omega]$	$2.2[k\Omega]$	$3.3[k\Omega]$	$4.7[k\Omega]$	$5.1[k\Omega]$	$6.8[k\Omega]$
$10[k\Omega]$	$20[k\Omega]$	$47[k\Omega]$	$51[k\Omega]$	$68[k\Omega]$	$100[k\Omega]$	$220[k\Omega]$	$330[k\Omega]$	$510[k\Omega]$	$1[M\Omega]$

Cuadro 2: Resistencias disponibles para el calculo.

5. Calculo de las resistencias

Haciendo uso del software *Octave* se calculan los valores de resistencias que combinadas cumplen las condiciones establecidas, con el siguiente programa:

```
% polarizacion por divisor de voltaje
Vcc = 9;
                                                                          % [V]
Vce = Vcc / 2;
                                                                           % [V]
Ve = 0.1 * Vcc;
                                                                           % [V]
Vbe = 0.672;
                                                               % [V]
B = 267;
% resistencias disponibles
R = [
               1 ...
              10 22 47 ...
               100 150 200 220 270 330 470 510 680 ...
               1000 2000 2200 3300 4700 5100 6800 ...
               10000 20000 47000 51000 68000 ...
               100000 220000 330000 510000 ...
               1000000
];
 printf('\tR1[ ]\tR2[ ]\tR2[ ]\tVe[V]\tIb[\muA]\tIc[mA]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW]\tP2[mW
for (h = 1:length(R))
               for (i = 1:length(R))
                              for (j = 1:length(R))
                                              for (k = 1:length(R))
                                                            R1 = R(h);
                                                            R2 = R(i);
                                                            RC = R(j);
                                                             RE = R(k);
                                                             % metodo exacto
                                                             Rth = (R1 * R2) / (R1 + R2);
                                                             Vth = (R2 / (R1 + R2)) * Vcc;
                                                             Ib = (Vth - Vbe) / (Rth + ((B + 1) * RE));
                                                             Ic = B * Ib;
                                                             Ie = (B + 1) * Ib;
```

```
_{\text{Vce}} = \text{Vcc} - (\text{Ic} * (\text{RC} + \text{RE}));
                  _{Ve} = Ie * RE;
                 if(
                                                          % 4.3 < Vce < 4.7[V]
                      (abs(_Vce - Vce) < 0.2)\&\&
                      (abs(_Ve - Ve) < 0.1)\&\&
                                                          \% 0.8 < Ve < 1.0[V]
                      (Ic < 600e-3)\&\&
                                                          % Ic < 600[mA]
                      (Ib > 200e-6)
                                                          % Ib > 200[\mu A]
                 )
                      printf(
                           '%d\t%d\t%d\t%d\t->\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\t%.2f\n',
                           count,
                           R(h),
                                                          % R1
                          R(i),
                                                          % R2
                                                          % RC
                          R(j),
                          R(k),
                                                          % RE
                                                          % Vce [V]
                           _Vce,
                                                         % Ve [V]
                          _Ve,
                                                         % Ib [μA]
                          Ib * 1e6,
                          Ic * 1e3,
                                                         % R1 [mA]
                           Ic * Ic * RC * 1e3,
                                                        % Pc [mW]
                           _Ve * Ie * 1e3
                                                         % Pe [mW]
                      );
                      count++;
                  endif
             endfor
         endfor
    endfor
endfor
```

La salida del programa detalla los valores de las cuatro resistencias (R_1, R_2, R_C, R_E) , el voltaje de colector-emisor (V_{CE}) , el voltaje de la resistencia emisor (V_E) , la corriente de base (I_B) , la corriente de colector (I_C) , la potencia en la resistencia colector (P_C) y la potencia en la resistencia emisor (P_E) :

```
R1[] R2[]
                  RC[] RE[]
                                        Vce[V] Ve[V]
                                                         Ib[\mu A] Ic[mA]
                                                                          PC[mW]
                                                                                 PE[mW]
1
    1000
           200
                  100
                         22
                                  ->
                                        4.55
                                                0.81
                                                        136.57 36.47
                                                                          132.97
                                                                                 29.47
2
    10000
           3300
                   47
                         10
                                  ->
                                        4.40
                                                0.81
                                                        302.46 80.76
                                                                          306.53
                                                                                 65.71
3
    20000
           20000
                   47
                         10
                                  ->
                                        4.41
                                                0.81
                                                        301.89 80.61
                                                                          305.37
                                                                                 65.46
4
    47000
           68000
                  100
                         22
                                  ->
                                        4.50
                                                0.81
                                                        138.03 36.85
                                                                          135.81
                                                                                 30.10
5
    47000 100000 100
                         22
                                  ->
                                        4.31
                                                0.85
                                                        143.93 38.43
                                                                          147.68 32.73
                          22
                                        4.43
                                                        140.26 37.45
6
    51000 220000
                  100
                                  ->
                                                0.83
                                                                          140.26 31.09
7
    51000 330000
                  100
                          22
                                        4.37
                                                0.84
                                                        142.27 37.99
                                                                          144.29 31.98
    51000 510000 100
                                        4.32
                                                0.85
                                                        143.70 38.37
                                                                          147.21 32.63
```

6. Simulación

Se utilizó el software *Quite Universal Circuit Simulator*. versión 23.3.1 para simular el circuito, este puede verse en la **Figura 2**.

Figura 2: Simulación del circuito.

Los valores calculados en el simulador pueden verse en el Cuadro 3.

$R_1[\Omega]$	$R_2[\Omega]$	$R_C[\Omega]$	$R_E[\Omega]$	$V_{\rm CE}[V]$	$V_{ m E}[V]$	$I_{\mathrm{B}}[\mu A]$	$I_{\rm C}[mA]$
1k	200	100	22	4.79	0.763	186	34.5
10k	3.3k	47	10	5.41	0.632	350	62.8
20k	20k	47	10	5.70	0.582	319	57.8
47k	68k	100	22	5.66	0.605	145	27.4
47k	100k	100	22	5.54	0.626	150	28.3
51k	220k	100	22	5.65	0.606	145	27.4
51k	330k	100	22	5.61	0.613	147	27.7
51k	510k	100	22	5.59	0.618	148	28.0

Cuadro 3: Valores obtenidos de la simulación.

7. Método experimental

El circuito armado puede verse en la **Figura 3**, alimentado por una fuente estable de 9[V]. En el circuito se fueron variando las resistencias obtenidas en el calculo anterior, y se midieron los valores de voltaje y corriente, estos se muestran en el **Cuadro 4**.

Figura 3: Circuito armado.

$R_1[\Omega]$	$R_2[\Omega]$	$R_C[\Omega]$	$R_E[\Omega]$	$V_{ m CE}[V]$	$V_{ m E}[V]$	$I_{ m B}[\mu A]$	$I_{\mathrm{C}}[mA]$
1k	200	100	22	4.37	0.828	142	37.1
10k	3.3k	47	10	4.00	0.895	302	87.0
20k	20k	47	10	3.25	1.010	358	95.2
47k	68k	100	22	4.56	0.823	138	36.1
47k	100k	100	22	4.32	0.830	145	36.6
51k	220k	100	22	4.42	0.800	141	36.9
51k	330k	100	22	4.40	0.831	143	37.0
51k	510k	100	22	4.30	0.840	145	36.5

Cuadro 4: Valores medidos en la circuito.

8. Conclusiones y recomendaciones

Según las pruebas realizadas los valores que mas se aproximan a las condiciones iniciales son:

$$R_1 = 47[k\Omega]$$
$$R_2 = 68[k\Omega]$$

$$R_C = 100[\Omega]$$

$$R_E = 22[\Omega]$$

Los valores medidos son muy próximos a los calculados con el programa inclusive mas que los de la simulación, esto se debe al uso del valor real de voltaje base-emisor $(V_{\rm BE})$ y la ganancia del transistor $(h_{\rm FE})$ en el calculo.

Referencias

- [1] Boylestad, Robert L. y Nashelsky, Louis. (2009). Electrónica: Teoría de Circuitos y Dispositivos Electrónicos. 10ma Edición. Pearson Educación
- [2] 2N2222A Small Signal Switching Transistor Extraído el 3 de Noviembre del 2024, de: https://web.mit.edu/6.101/www/reference/2N2222A.pdf.