Chapter 2

Boolean Algebra and Logic Gates

ITI1100

Topics

- → Boolean Algebra (Analysis Tools)
 - → Boolean Expressions: functions
 - → Truth Tables
 - → Boolean Identities
 - → Standard Forms: Sum of products (SOP) and Product of sums (POS)
- → Logic Gates (Hardware)
 - → Basic: AND, OR, NOT gates and Binary signals
 - → Other gates: NOR, NAND, XOR, XNOR
 - → Implementation of Boolean expressions
- → Examples
 - → Half-Adder, Full-Adder, Deriving SOP/POS from Truth Tables, Simplifying SOP/POS with Boolean Algebra

Binary Logic

- Binary logic deals with
- 1 Variables that can take on two discrete values
 - → Values can be called **True**, **False**, **yes**, **no**, etc.
- 2 Operations that assume LOGICAL Meaning
- → Binary logic is equivalent to **Boolean algebra**

Boolean Algebra

- •Basic mathematics required for the description of digital circuits
- Used to describe the different interconnections of digital circuits
- the variable used in the Boolean algebra are called Boolean variables
- → We will study two-valued Boolean algebra and functions with simplifications using basic Boolean Identities

Two-valued Boolean Algebra

• It consists of

1- Boolean Variables

- Designated by letters of the alphabet such as A, B, C, x, y, z etc.
- Each variable can have two and only two distinct values: 1 and 0 (True, False)
- Can be a Function of some other Boolean variables (F=ABC)

2- Boolean Operations

-There are three Basic logical operations:

AND, OR, and NOT ITI1100

Basic Boolean Operations- AND operation

• AND operator is a dot or by the absence of an operator

Example:
$$x \cdot y = or \quad xy = z$$

read:
$$x \ AND \ y \ is equal to \ z$$

Interpretation:
$$z = 1$$
 if and only if $x = 1$ *AND* $y = 1$

Otherwise
$$z = 0$$

Don't confuse this with binary multiplication operation

Truth table:

×	У	ху
0	0	0
0	1	0
1	0	0
1	1	1

Truth table gives the value of xy (i.e. $x \cdot y$) for all possible values of x and y

Basic Boolean Operations- OR operation

• OR Operator is a plus sign (+)

Example:
$$x + y = z$$

read:
$$x OR y is equal to z$$

Interpretation:
$$z = 1$$
 if $x = 1$ or if $y = 1$ or if both $x = 1$ and $y = 1$. $z = 0$ if $x = 0$ and $y = 0$

<u>Don't confuse this with</u> <u>binary addition operation</u>

Truth table:

X	У	х+у
0	0	0
0	1	1
1	0	1
1	1	1

Truth table gives the value of x+y for all possible values for x and y

Basic Boolean Operations- NOT operation

• Represented by a prime or an overbar (also called complement)

Example:
$$x'=z$$
 (or $\bar{x}=z$)

read: Not x is equal to z

Interpretation: z = "what x is not"

$$x=1$$
 then $z=0$; $x=0$ then $z=1$

Truth table:

×	x'
0	1
1	0

Truth table gives the value of x' for all possible values for x

Binary Logic and Binary Signals

• For simplicity, we often still write digits instead:

- 1 is true
- 0 is false

• We will use this interpretation along with special operations to *design functions* and *logic circuits* for doing arbitrary computations.

Logic Gates

- Logic gates are electronic circuits that operate on one or more input signal to produce an output signal
- •Basic operations can be implemented in hardware using a Basic logic gate.
 - —Symbols for each of the logic gates are shown below.
 - —These gates output the product, sum or complement of their inputs

Logic Operation:	AND (product) of two inputs	OR (sum) of two inputs	NOT (complement) With one input
Representation:	x.y, or xy	x + y	x'

Logic gate:

Gates with Multiple Inputs

• AND and OR Gates may have more than 2 input signals

(a) Three-input AND gate

(b) Four-input OR gate

Binary Signals

- •Computers use voltages to represent information.
- •Two voltage levels are used to represent a binary value "1" and "0"
- Some digital systems for example may define that:
 - Binary '0" is equal to 0 Volt
 - Binary "1" is equal to 5 Volt

→ It's convenient for us to translate these voltages into values 1 and 0.

Binary Logic and Binary Signals

- •It's also possible to think of voltages as representing two *logical* values, *true* and *false*.
- → These logical values are called Boolean values

Logic Gates - Signals

Logic Gates - Signals

Timing Diagram –Input and output signals

Fig. 1-5 Input-output signals for gates

Boolean expressions (functions)

 We can use the basic operations to form more complex expressions:

$$f(x,y,z) = x y' + z x'$$

- Some terminology and notation:
 - $-\mathbf{f}$ is the name of the function.
 - **Term** is an implementation with a gate (e.g. AND term, OR term): in this example f has two AND terms x y' and z x'
 - -(x,y,z) are the *input variables*, each representing 1 or 0.
 - A *literal* is any occurrence of an input variable or its complement. The function above has four literals: x, y', z, and x'.

Precedence for Evaluation of Boolean Expression

- Precedence are important.
 - Parentheses first (if any) then

NOT has the highest precedence, followed by AND, and then OR.

$$\rightarrow f(x,y,z) = (x + y')z + x'$$

-Fully parenthesized, the function above would be kind of messy:

$$f(x,y,z) = (((x + (y'))z) + x')$$

Truth Table

- •A truth table shows all possible inputs and outputs of a function. Each input variable represents either 1 or 0.
- •A function with n variables has 2 power n possible combinations of inputs.
- •Inputs are listed in binary order-example, from 000 to 111.

×	У	Z	f(x,y,z)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

ITI1100

Boolean Expression and Logic Circuits

- A Boolean expression (function) can be converted into a circuit by *combining* basic gates.
- Example:
 - The diagram below shows the inputs and outputs of each gate.
 - The precedences are explicit in a circuit.

•Expressions may be obtained from:

- English language description
- Truth table;
- Logic circuit.

• The Boolean expression (un-simplified) can be obtained from the truth table: Consider the following arbitrary Truth Table

	A	В	С	F_1			
-				1		We can also write the function a	s:
	0	0	0	0		$F_{I}(A,B,C) = A'BC'+A'BC+AB'C'+$	
	0	0	1	0		AB'C+ABC'+ABC	
	0	1	0	1	A'BC'		
	0	1	1	1	A'BC		
	1	0	0	1	AB'C'		
	1	0	1	1	AB'C		
	1	1	0	1	ABC'		
	1	1	1	1	ABC		
						ITI1100 22	

Using the false terms in the truth table

- •Sometimes it is easier to work with the terms that describe when the function is false.
- •For example, if a function has four variables then there are sixteen possible states.
- →If for instance thirteen out of sixteen were true, then only three out of sixteen are false. Fewer terms makes it easier
- In our example, two out of eight are false.

 The Boolean expression (un-simplified) can be obtained from the truth table using false terms

A	В	C	F_1	So we
0	0	0	0	A'B'C'
0	0	1	0	A'B'C
0	1	0	1	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	1	
1	1	1	1	

So we can also write the function **NOT** F_1 as:

$$F_1'(A, B, C) = A'B'C' + A'B'C$$

Boolean Identities

- Boolean algebra is used in digital design to reduce any logical function (expression) to its simplest form
- → the minimization of the number of literals and the number of terms
 - → a circuit with less equipment
- It is a hard problem (no specific rules to follow)

Boolean Identities

1.
$$x + 0 = x$$

$$2. \quad \mathbf{x} \cdot \mathbf{1} = \mathbf{x}$$

3.
$$x + x' = 1$$

4.
$$\mathbf{x} \cdot \mathbf{x'} = 0$$

5.
$$x + x = x$$

6.
$$x \cdot x = x$$

7.
$$x + 1 = 1$$

8.
$$x \cdot 0 = 0$$

9.
$$(x')' = x$$

10.
$$x + y = y + x$$

11.
$$xy = yx$$

12.
$$x + (y + z) = (x + y) + z$$

13.
$$x(yz) = (xy)z$$

14.
$$x(y + z) = xy + xz$$

15.
$$x + yz = (x+y)(x+z)$$

16.
$$(x + y)' = x'y'$$

17.
$$(xy)' = x' + y'$$

18.
$$x + xy = x$$

19.
$$x(x + y) = x$$

Basic to Boolean algebra

Verifying Boolean Identities-Examples

Theorem : x+x=x

$$x+x = (x+x) 1$$

$$= (x+x) (x+x')$$

$$= x+xx'$$

$$= x+0$$

$$= x$$

Theorem : x x = x

$$xx = x x + 0$$

$$= xx + xx'$$

$$= x (x + x')$$

$$= x 1$$

$$= x$$

$$x \cdot 1 = x$$

$$x + x' = 1$$

$$x + yz = (x + y)(x + z)$$

$$x \cdot x' = 0$$

$$x + 0 = x$$

27

Verifying Boolean Identities-Examples

DeMorgan's Theorems

By means of truth table

X	у	x+y	(x+y)'	x '	y'	x'y'
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Verifying Boolean Identities-Examples

• Theorem x + xy = x

By means of truth table

X	У	xy	x + xy
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Simplifying Boolean Expressions

→ Use the Rules of Boolean Algebra

We can simply the function as:

$$F_{1}(A,B,C) = A'BC'+A'BC+AB'C'+AB'C+ABC'+ABC'$$

$$= A'B(C'+C) + AB'(C+C') + AB(C'+C)$$

$$= A'B + AB'+AB$$

$$= A'B + A(B'+B)$$

$$= A+A'B$$

Simplifying Boolean Expressions

Function with four variables

• Giving the following function:

$$F_{2a}(A,B,C,D) = (AB' (C + BD) + A'B') C$$

 $= (AB'C + AB'BD + A'B') C$
 $= (AB'C + A0D + A'B') C$
 $= (AB'C + 0 + A'B') C$
 $= (AB'C + A'B') C$
 $= AB'CC + A'B'C$
 $= AB'CC + A'B'C$

- → the two expressions are equivalent!
- \rightarrow F_{2a} requires more logic gates than F_{2b}

Basic and Other Logic gates

Basic Logic gate

- •AND
- •OR •NOT

These are called "fundamental logic gates" as all other gates and digital Circuits can be created from these gates.

Other Logic gates

These are called "Universal logic gates" as any digital circuit can be designed by just using these gates

- •XOR
- •XNOR

32 ITI1100

The NAND & NOR Gates

- We can use a NAND and NOR gates to implement all three of the *basic operations* (AND,OR,NOT).
- → They are said to be **functionally complete**
- → Both NAND and NOR gates are very valuable as any design can be realized using either one.
- •It is easier to build digital circuits using all NAND or NOR gates than to combine AND,OR, and NOT gates.
- •NAND/NOR gates are typically faster and cheaper to produce.

The NAND Gate

- •The NAND gate is a combination of an AND gate followed by an inverter (NOT gate).
- •We can use a NAND gate to implement all three of the *basic operations* (AND,OR,NOT).
- •Such a gate is said to be functionally complete.

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

The NAND Gate

→ a NAND gate with both of its inputs driven by the same signal is equivalent to a NOT gate

→a NAND gate whose output is complemented is equivalent to an

AND Gate

The NAND Gate

•a NAND gate with complemented inputs acts as an OR gate.

Universality of NAND

The NOR Gate

- •This is a NOR gate. It is a combination of an OR gate followed by an inverter.
- •like the NAND gate, the NOR gate is **functionally complete** → any logic function can be implemented using just NOR gates.

A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

NOR Gate Equivalence

• NOR Symbol, Equivalent Circuit, Truth Table

NOR Gates-functionally complete

Universality of NOR gate

 Equivalent representations of the AND, OR, and NOT gates

$$(A+A)' = A'A' = A'$$

$$((A+B)' + (A+B)')' = (A+B)''(A+B)'' = (A'B')'(A'B')'$$

$$= (A''+B'')(A''+B'') = (A+B)(A+B) = (A+B)$$

The XOR Gate (Exclusive-OR)

- This is a XOR gate.
- XOR gates assert their output when exactly one of the inputs is asserted, hence the name.
- The operator symbol for this operation is \oplus

$$1 \oplus 1 = 0$$
 and $1 \oplus 0 = 1$.

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

The XNOR Gate

- This functions as an exclusive-NOR gate, or simply the complement of the XOR gate.
- The symbol for this operation is •

$$1 \odot 1 = 1 \text{ and } 1 \odot 0 = 0.$$

$$F = \overline{A \oplus B} = (AB) + (\overline{A} \cdot \overline{B}) = AB + A'B'$$

A	В	F
0	0	1
0	1	0
1	0	0
1	1	1

Standard Forms

- We have seen how to interpret truth tables, obtain Boolean expressions (functions) then build logic circuits.
- We have simplified Boolean expressions using Boolean algebra.
- → There is a "standard" way of writing Boolean expressions (Functions):
 - The standard Sum of Products (SOP)
 - The standard Product of Sums (POS)

The standard Sum of Product-Minterms

- A Minterm is one in which all variables appear (only) once.
- Each Minterm represents exactly one combination (row) in truth table.
- n variables give 2ⁿ Minterms.

Truth Table

Decimalvalue	A	В	C	F	Minterm	
0	0	0	0	0	$\mathbf{m_0}$	
1	0	0	1	0	$\mathbf{m_{1}}$	
2	0	1	0	1	$\mathbf{m_2}$	
3	0	1	1	1	m_3	
4	1	0	0	1	\mathbf{m}_4	
5	1	0	1	1	m ₅	
6	1	1	0	1	\mathbf{m}_{6}	
7	1	1	1	1	m ₇	
				ITI	100	45

The standard Sum of Products-Function

• SOP are expressions of the form:

$$F(A,B,C,...) = (...) + (...) + (...) + ...$$

• Brackets can contain single or multiple variables

• Such expressions can be implemented using:

$$F(A,B,C,...) = (AND's) OR (AND's) OR (AND's) OR ...$$

The standard Sum of Product-Function

• SOP form not unique, and doesn't necessarily contain all variables, for example:

$$F(A,B,C) = A'B'C' + A'BC + C'A'B + C'AB' + BAC + BAC$$

and
$$F(A,B,C) = B + B'C'$$

are both valid SOP expressions.

The standard Sum of Product-Function

• We Can obtain SOP from truth table (below)

$$F(A,B,C) = A'BC' + A'BC + AB'C' + AB'C' + ABC' + ABC'$$

A simpler notation is to write as

$$F(A,B,C) = m_2 + m_3 + m_4 + m_5 + m_6 + m_7$$

$$=\sum m_i(2,3,4,5,6,7)$$

Decimal value	A	В	C	F	Minterm	
0	0	0	0	0	m ₀	A'B'C'
1	0	0	1	0	m ₁	A'B'C
2	0	1	0	1	\mathbf{m}_{2}^{1}	A'BC'
3	0	1	1	1	m ₃	A'BC
4	1	0	0	1	m ₄	AB'C'
5	1	0	1	1	m ₅	AB'C
6	1	1	0	1	m ₆	ABC'
7	1	1	1	1	m ₇	ABC
				l ITI	100	

Product of Sums: Function

•From truth table we have

$$F'(A,B,C) = (A'B'C' + A'B'C)$$

•Therefore we obtain F from \overline{F} :

$$F(A,B,C) = [F'(A,B,C)]' = (A'B'C' + A'B'C)'$$

$$= (A'' + B'' + C'') \cdot (A'' + B'' + C') = (A + B + C) \cdot (A + B + C')$$
Form Compact $F = M_0 \cdot M_1 = \prod Mi \ (0, 1)$

Truth Table

Decimal value	A	В	C	F	Minterm	Maxterm	$M_{\rm i}=\overline{m}_{\rm i}$	
0	0	0	0	0	m_0	\mathbf{M}_{0}	A+B+C	
1	0	0	1	0	m_1	$\mathbf{M}_{\!1}$	A+B+C'	
2	0	1	0	1	m_2	\mathbf{M}_2	A+B'+C	
3	0	1	1	1	m_3	M_3	A+B'+C'	
4	1	0	0	1	m_4	M_4	A'+B+C	
5	1	0	1	1	m_5	\mathbf{M}_{5}	A'+B+C'	
6	1	1	0	1	m_6	M_6	A'+B'+C	
7	1	1	1	1	m_7	M_7	A'+B'+C'	
					ITI1100			49

Obtain SOP and POS from a given expression

- Given an arbitrary Boolean expression
- Work out number of terms (2ⁿ) for n inputs.
- Generate truth table and identify terms for which the function is true the Minterms.
- Write function as:

$$F = \sum_{i=0}^{n-1} m_i \quad \text{where } m_i \text{ is } 1$$

- Alternatively, identify terms for which the function is false and use a Maxterm description.
- Write function: $F = \prod_{j=0}^{n-1} M_j \quad j \neq i \text{ (i.e. } M_j = 0)$

SOP & POS Implementation using AND and OR

• Two-level implementation

• Multi-level implementation

51

Truth Table

A	В	С		Co	S
0	0	0		0	0
0	0	1		0	1
0	1	0		0	1
0	1	1		1	0
1	0	0		0	1
1	0	1		1	0
1	1	0		1	0
1	1	1		1	1
			•		

$$C_0 = m_3 + m_5 + m_6 + m_7$$

$$= A'BC + AB'C + ABC' + ABC$$

$$= M_0 M_1 M_2 M_4$$

$$= (A + B + C)(A + B + C')(A + B' + C)(A' + B + C)$$

$$S = m_1 + m_2 + m_4 + m_7$$

$$= (A'B'C) + (A'BC') + (AB'C') + (ABC)$$

$$= M_0 M_3 M_5 M_6$$

$$= (A + B + C)(A + B' + C')(A' + B + C')(A' + B' + C)$$

Examples

- 1- Half Adder
- 2- Full Adder
- 3- Deriving SOP and POS from a truth table
- 4- Simplifying SOP & POS using Boolean identities

Half Adder

→ The half-adder accepts two binary digits on its inputs and produces two binary digits on its outputs: a sum bit and a carry bit.

Truth	Table				_
A B	C S		Α		-s
0 0	0 0		В	1/2 Adder	\Box
0 1	0 1	4	ъ —		
1 0	0 1	1			
1 1	1 0	1			
	'	10			
		C	S		
			ITI1100		

54

Half-Adder

Truth Table

A	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Logic Function

$$S = A'B + AB'$$

$$S = A \oplus B$$

$$C = A \cdot B$$

Full Adder

Truth Table								
A	В	С	C	S				
0	0	0	0	0				
0	0	1	0	1				
0	1	0	0	1				
0	1	1	1	0				
1	0	0	0	1				
1	0	1	1	0				

- → The Full-adder accepts two input bits and an input carry and generates a sum output and an output carry
- → Basic difference between a full and a half adder is that the full adder accepts an input carry

56

Full-Adder

Logic FUNCTION

Truth Table C_o S ABC 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 1 0

Full Adder

Two bit parallel adder

Carry bit from second column becomes a sum bit

Two bit parallel adder

$$A_{2}A_{1}$$
+ $B_{2}B_{1}$
 $S_{3}S_{2}S_{1}$

ITI1100

Four bit parallel adder

Overflow Examples (review from chapter 1)

• In a 6-bit register

$$+ 17 = 010001$$

 $+ 16 = +010000$
 $= 100001 \rightarrow \text{Overflow}$

- 100001 = 2's: $(111111) = -(31)_{10}$ instead of + $(33)_{10}$
- Same with a 7-bit register

$$+17 = 0.010001$$

 $+16 = +0.010000$
 $= 0.100001$
 $= 0.100001 = +33 \text{ No Overflow}$

Four bit parallel adder

Fig. 4-13 4-Bit Adder Subtractor

Four bit parallel adder

Fig. 4-13 4-Bit Adder Subtractor

Four bit parallel adder: more examples

Overflow

Fig. 4-13 4-Bit Adder Subtractor

Four bit parallel adder: more examples

NO Overflow

Fig. 4-13 4-Bit Adder Subtractor

SOP & POS Standard Forms- Example

From an arbitrary Truth table (next slide)

Part one

- 1- obtain SOP representation for F
- 2- obtain the two level implementation for F without simplification
- 3- simplify F using Boolean identities
- 4- obtain two level-implementation for F
- 5- compare the design obtained in question 4 with the one of question 2

Part two

Repeat part one using POS

Deriving SOP and POS from a truth table

Consider the following arbitrary Truth Table

i)	SOP	i	A	В	C	F	Minterms
ii)	POS	0	0	0	0	0	
		1	0	0	1	0	
		2	0	1	0	1	\rightarrow m ₂ = A'BC'
		3	0	1	1	1	\rightarrow m ₃ = A'BC
		4	1	0	0	0	
		5	1	0	1	1	\rightarrow m ₅ = AB'C
		6	1	1	0	0	
		7	1	1	1	1	\rightarrow m7 = ABC
				IT)	[1100		68

Deriving SOP from a truth table

1- Expression sum of products

a)
$$F = m2 + m3 + m5 + m7$$

= $A'BC' + A'BC + AB'C + ABC$

b) Implementation with logic gates (unsimplified)

Two level-Implementation

Simplifying SOP using Boolean identities

c) Simplification

Using the Boolean identity absorption xy + xy' = x

We can simplify m₂ with m₃ and m₅ with m₇

$$m_2 + m_3 = (A'B) C' + (A'B) C = A'B$$

$$m_5 + m_7 = (AC)B' + (AC)B = AC$$

Therefore F = A'B + AC

Deriving POS from a truth table

2- Expression Product of sums

i	A	В	С	F	Maxterms
0	0	0	0	0	\rightarrow M ₀ = A+B+C
1	0	0	1	0	\rightarrow M ₁ = A+B+C'
2	0	1	0	1	
3	0	1	1	1	
4	1	0	0	0	\rightarrow M ₄ = A'+B+C
5	1	0	1	1	
6	1	1	0	0	\rightarrow M ₆ =A'+B'+C
7	1	1	1	1	
				ITI1100	

Deriving SOP from a truth table

a) Function

$$F = M_0$$
 . M_1 . M_4 . M_6
$$= (A+B+C) (A+B+C')(A'+B+C)(A'+B'+C)$$

Two level-Implementation

TTI1100 72

Simplifying POS using Boolean identities

b) Simplification

Using
$$(X + Y)(X + Y') = X$$
 Verification

 X
 Y
 Y'
 X + Y
 X + Y'
 $(X + Y)(X + Y')$

 0
 0
 1
 0
 1
 0

 0
 1
 0
 1
 0

 1
 0
 1
 1
 1

 1
 1
 0
 1
 1

 1
 1
 0
 1
 1

$$M0 \cdot M1 = [(A+B) + C] [(A+B) + C'] = A+B$$
 $M4 \cdot M6 = [A' + C) + B] [(A'+C) + B'] = A'+C$
 $F = (A+B)(A'+C)$

Simplifying POS using Boolean identities

C) Two level Implementation

Obtaining The Truth Table - Example

Design a digital circuit that will be used to control an Alarm bell. This Alarm bell is to be installed in a room to protect it from unauthorized entry.

Sensor devices provide the following logic signals

- C = 1 The control system is active
- $\mathbf{D} = \mathbf{1}$ The room door is closed
- M = 1 There is a motion in the room
- Q = 1 The room is open to the public
 - i) Obtain the truth table
 - ii) derive the Boolean expression using true terms

Truth table

C	D	M	Q	Alarm
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Alarm= CD'M'Q' + CD'MQ' + CDMQ'

Door should not be open

room is closed to the public → door open + motion

room is closed to the public + door closed → motion