Rapport du projet UAL

Réaliser par : Rabii Bouhlel & Mohamed el Hedi ben Yedder

INDP1-C, Groupe1

INTRODUCTION:

Le projet consiste à une Unité arithmétique et logique implémentée sur la carte FPGA 5CGXFC5C6F27C7.

Cette unité arithmétique et logique réalisent les 8 opérations suivantes :

- **Les opérations arithmétiques
 - *l'addition
 - *La soustraction
 - *La multiplication
- **Les opérations logiques :
 - *XOR (ou exclusif)
 - *OR (ou logique)
 - *AND (et logique)
 - *Décalage droit
 - *décalage gauche

L'unité prend comme entrées deux mots binaires que chacun comporte 4 bits et retourne les résultats de ces opérations sur 8bits

L'affichage sera au même temps sur les LEDs (diodes rouge et vertes) et aussi sur les 4 afficheurs 7-segments.

Ce projet est décomposé en sous-partie ou bien sou-bloc que chacun est responsable d'une opération ou bien une fonctionnalité :

- **Bloc XOR
- **Bloc OR
- **Bloc AND
- **Bloc ADDITION
- **Bloc SOUSTRACTION (soustraction et rectification du mot binaire s'il est négatif avant de l'afficher sur 7-segment)
 - **Bloc Multiplication
 - ** Bloc décalage (réalise le décalage à droit et à gauche)

**Partie Sélection:

- *sélectionner l'opération (à travers 8 MUX8 vers1)
- *séparer la sélection et le calcul (utiliser les bits du mots binaire B comme des bits de sélection ou bien pour le calcul)
- *afficher la lettre C sur 7-segment en mode sélection et utiliser ce même afficheur pour le calcul en mode calcul, il est à noter que les résultats pour les opérations arithmétiques seront affichés sous la base hexadécimal.
 - **Partie affichage:

Le schéma global :

A- La partie de sélection :

A-1) la séparation de la partie sélection et partie de calcul (utiliser les bits du mots binaire B comme des bits de sélection ou bien pour le calcul)

L'utilité de cette idée :

Vu que la carte FPGA disponible comporte que 10 switchers (de SW0→SW9) et que notre projet nécessite théoriquement 11 entrées (4 bits pour chaque mots binaires et 3 bits pour la sélection)

L'idée consiste à utiliser réserver un bit (un switcher) pour sélectionner si on est au mode calcul ou bien au mode sélection. En effet, au mode sélection quelques bits du mot binaire B seront considérés comme des entrées de sélection et au mode calcul reprennent leur rôle comme étant des bits du mot B.

La réalisation de l'idée est faite à travers un registre :

*si on est au mode sélection on lit les quelques bits de mot B comme de bits de sélection et sauvegarde cette valeur dans un registre et on sélectionne l'opération.

* si on est au mode calcul on va considérer tous les bits du mot B comme entrées d'opération et va appliquer l'opération déjà enregistrée dans le registre à la phase de sélection.

SEL_OR_CAL	MODE
0	On peut utiliser tous les
	interrupteurs du FPGA pour la
	Sélection
Front montant	Passage du code d'opération à
	travers le registre vers les
	multiplexeurs.
	On peut utiliser tous les
	interrupteurs du FPGA pour le
	calcul.

Voici le circuit utilisé : registre 74273

A-2) La sélection de l'opération :

La sélection de l'opération est faite à travers huit MUX8vers1 :

Les sorties seront les entrées du transcodeur avant le 7 segment ou bien assignés au LEDs directement ou vers un bloc qui gère l'affichage A-3) La distinction entre le mode sélection et calcul à travers l'affichage :

Si on est en mode sélection on va afficher C (C la première lettre du mot « Choix « on n'a pas utilisé la lettre S du mot « Sélection » pour ne pas confondre le résultat 5 et la lettre S sur l'afficheur 7-segment.

Si on est au mode calcul l'afficheur 7(segment va afficher le résultat cette fonctionnalité est réalisée par un bloc nommé « choice_4 »

L'afficheur 7-segment est à anode commune chaque LED de l'afficheur nécessite comme entrée un 0 logique pour qu'elle soit allumée et 1 logique pour qu'elle soit éteinte.

SEL_OR_CAL C1	Etat de diode de l'afficheur 7-segement C2	Une entrée venant du transcodeur	La sortie finale C4
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Pour afficher la lettre C, on doit allumer les LEDs A, F, E et D et on doit éteindre B , C et G.

L'équation est :C4= $\overline{C1}$.C2+C1.C3

Pour une LED allumée (C2=0): C4=C1.C3

Pour une LED éteinte (C2=1) : C4= $\overline{C1}$.C2+C1.C3= $\overline{C1}$ +C3

D'où le diagramme suivant du bloc Choice_4:

A-4) La table de sélection :

s3	s2_ou_B4	s1_ou_B3	Operation
0	0	0	Addition
0	0	1	Subtraction
0	1	0	Xor function
0	1	1	Or function
1	0	0	And function
1	0	1	multiplication
1	1	0	Shift right
1	1	1	Shift left

A-5) le processus de sélection :

- **Premièrement choisir le mode sélection : le switcher associé à l'entrée SEL_OR_CAL=0 (vérifier qu'on est au mode sélection à travers l'affichage de la lettre C(« Choix ») sur l'afficheur 7-segment HEXO)
- **Deuxièmement choisir l'opération à réaliser à travers les entrées de sélection en se référant à la table de sélection.
- **Troisièmement passer au mode calcul le switcher associé à l'entrée SEL_OR_CAL=1

(Vérifier qu'on est au mode sélection à travers disparition de la lettre C de l'afficheur 7-segment HEXO set afficheur sera utilisé pour afficher les résultats)

**Quatrièmement entrer les mots binaire A et B sur lesquelles on va appliquer l'opération désirée.

B- Le bloc XOR:

Le bloc XOR est réalisé à travers 4 portes logiques XOR il est nommé « XOR_4 ».

Voici le symbole de ce bloc et son diagramme :

C- Le bloc AND :

Le bloc AND est réalisé à travers 4 portes logiques AND il est nommé « AND_4 ».

Voici le symbole de ce bloc et son diagramme :

D-Le bloc OR:

Le bloc OR est réalisé à travers 4 portes logiques OR il est nommé « OR_4 ».

Voici le symbole de ce bloc et son diagramme :

E- Le bloc ADDITION :

Le bloc addition qu'on a utilisé est déjà prédéfinie c'est le circuit TTL7483 qui prend comme entrées les deux mots binaire A et B et 0 (GND) en retenue CO.

F- Le bloc SOUSTRACTION :

Ce bloc est réalisée à a base des additionneurs TTL 7483 et des portes logique NON(Not négation) et les portes logiques OU exclusif (XOR). Il est nommé SUB_4.

Ce bloc réalise l'opération A-B:

Si le résultat est positif il retourne un bit de signe égale à 1 et retourne le résultat

Si le résultat est négatif il retourne un bit de signe égale à 0 et fait la correction du résultat en appliquant le complément à 2 et après il retourne le résultat.

Le bit de signe va être retourner comme sortie (LED verte)

Voici le symbole de ce bloc et son diagramme :

**Le symbole:

**Le diagramme:

G-Le bloc MULTIPLICATION:

Ce bloc est réalisé à a base des additionneurs TTL 7483 et des portes logiques. Il est nommé MUL_4. Il réalisé l'opération A*B et retourne le résultat sur 8 bits.

Voici le symbole de ce bloc et son diagramme :

**Le symbole:

**Le diagramme:

H-Le bloc Décalage:

Ce bloc est réalisé à a base du registre 74194 et des portes logiques il réalise le décalage à droite et à gauche selon la sélection en se référant à la table de sélection.

Il prend comme mot initial le mot binaire A et décale le B0 le premier bit du mot B.

I- La partie affichage :

Les deux mots binaires A et B seront affichés en hexadécimal sur les afficheurs HEX3 et HEX2 respectivement.

Les résultats seront affichés sur les autres afficheurs 7-segments en base hexadécimal HEX1 et HEX0 et aussi au même temps sur les LEDs.

Les mots en résultats ne peut pas dépasser 8bits (c'est-à-dire deux afficheurs 7-segments sont suffisants).

Pour la soustraction, il faut se rendre compte à la LED verte qui va indiquer le signe du résultat.

L'afficheur 7-segment HEXO va afficher en mode sélection la lettre « C » et mode de calcul il va être réservé à l'affichage du mot binaire de résultat.

Pour réaliser l'affichage sur 7-segment on a utilisé le transcodeur TTL7447 (Il est à indiquer que les afficheurs 7-segments de cette carte FPGA sont à anodes communes)

Voici la table d'entrée sortie/sortie :

Les entrées	Les sorties
A1 PIN_AE10	o1 PIN_F6
A2 PIN_AD13	o2 PIN_G6
A3 PIN_AC8	o3 PIN_G7
A4 PIN_W11	o4 PIN_J8
B1 PIN_AB10	o5 PIN_J7
B2 PIN_V10	o6 PIN_K10
s1_ou_B3 PIN_AC10	o7 PIN_K8
s2_ou_B4 PIN_Y11	o8 PIN_H7
s3_and_get PIN_AE19	sa0 PIN_V19
SEL_OR_CALC PIN_AC9	sa1 PIN_AA18
SHIFT PIN_Y16	sa2 PIN_AD7
	sa3 PIN_Y24
	sb0 PIN_V18
	sb1 PIN_AD26
	sb2 PIN_AD6
	sb3 PIN_Y23
	sc0 PIN_V17
	sc1 PIN_AB19
	sc2 PIN_U20
	sc3 PIN_AA23
	sd0 PIN_W18
	sd1 PIN_AE26
	sd2 PIN_V22
	sd3 PIN_AA22
	se0 PIN_Y20
	se1 PIN_AE25
	se2 PIN_V20
	se3 PIN_AC24
	sf0 PIN_Y19
	sf1 PIN_AC19
	sf2 PIN_W21
	sf3 PIN_AC23
	sg0 PIN_Y18
	sg1 PIN_AF24
	sg2 PIN_W20
	sg3 PIN_AC22
	signe PIN_L7

D'où le symbole de l'unité arithmétique et logique UAL suivant :

Remarque : un fichier image qui comporte le diagramme de l'UAL en détails. Merci