AE 483 Homework 3 Solution

Question 1

Part a

Given that A > 0, we should know by definition that

$$\begin{cases} \psi(x) > 0, & \text{if } x \neq 0 \\ \psi(x) = 0, & \text{if } x = 0 \end{cases}$$

Hence, there exists a unique minimizer $x^* = 0$, and the minimum value is $\psi(x^*) = 0$.

Part b

Similar to Part a, since L > 0, we should know by definition that

$$\begin{cases} \phi(x) > s, & \text{if } x \neq r \\ \phi(x) = s, & \text{if } x = r \end{cases}$$

Hence, there exists a unique minimizer $x^* = r$, and the minimum value is $\phi(x^*) = s$.

Part c

We shall start with the form as shown in Part b,

$$\gamma(x) = \frac{1}{2}(x - r)^{\top} L(x - r) + s$$

$$= \frac{1}{2}x^{\top} Lx - r^{\top} Lx + \frac{1}{2}r^{\top} Lr + s$$

$$= \frac{1}{2}x^{\top} Fx + g^{\top} x + h$$

Now, we could easily find the following:

$$L = F, r = -F^{-1}g, s = h - \frac{1}{2}g^{\mathsf{T}}F^{-1}g$$

According to Part b, we know that there exists a unique minimizer $x^* = -F^{-1}g$, and the minimum value is $\gamma(x^*) = h - \frac{1}{2}g^{\top}F^{-1}g$.

Part d

If h is changed, x^* will not be affected, but $\gamma(x^*)$ will be changed accordingly.

Part e

1. If $F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then F is positive definite. There exists a unique minimizer

$$x^* = \begin{bmatrix} -1\\2 \end{bmatrix}$$

and the minimum value is $\gamma(x^*) = 2.5$.

2. If $F = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, then F is only positive semidefinite. Consider the following:

$$\gamma(x) = \frac{1}{2} \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 5$$
$$= \frac{1}{2} x_1^2 + x_1 - 2x_2 + 5$$

and clearly $\gamma(x)$ can become arbitrarily small along x_2 direction. Hence, there does not exist a minimum value.

- 3. If $F = \begin{bmatrix} 2 & 4 \\ 4 & 2 \end{bmatrix}$, then F is not even definite, and there does not exist a minimum value.
- 4. If $F = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$, then F is positive definite. There exists a unique minimizer

$$x^* = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

and the minimum value is $\gamma(x^*) = 4$.

Question 2

Some notations are changed here just for convenience, and they should be clear from the statement. We want to solve the following problem:

$$\min_{u(0),\dots,u(N-1)} \frac{1}{2} x(N)^{\top} Q_f x(N) + \frac{1}{2} \sum_{k=0}^{N-1} x(k)^{\top} Q x(k) + u(k)^{\top} R u(k)$$
s.t.
$$x(k+1) = A x(k) + B u(k), \ \forall k = 0, \dots, N-1$$

$$x(0) = x_0$$

where $Q_f > 0, Q > 0, R > 0$.

Part a

Define the value function $v: \mathbb{N} \times \mathbb{R}^n \to \mathbb{R}$ by

$$v(i,z) = \min_{u(i),\dots,u(N-1)} \frac{1}{2} x(N)^{\top} Q_f x(N) + \frac{1}{2} \sum_{k=i}^{N-1} x(k)^{\top} Q_i x(k) + u(k)^{\top} R u(k)$$
s.t.
$$x(k+1) = A x(k) + B u(k), \ \forall k = i, \dots, N-1$$

$$x(i) = z$$

It gives the minimum cost-to-go value, starting from a state value z at the time step i.

Part b

Consider the following equation:

$$v(i, z) = \min_{w} \{ \frac{1}{2} z^{\top} Q z + \frac{1}{2} w^{\top} R w + v(i + 1, Az + Bw) \}$$

First note that $\frac{1}{2}z^{\top}Qz + \frac{1}{2}w^{\top}Rw$ is the cost incurred at the time step i if u(i) = w. Then from the dynamics, v(i+1, Az + Bw) is the minimum cost-to-go value, starting from where it lands at the time step i+1.

Part c

By definition of the value function in Part a, we have $v(N, x(N)) = \frac{1}{2}x(N)^{\top}Q_fx(N)$, and it implies that $P(N) = Q_f > 0$.

Part d

First note that the cost v(N, x(N)) has the desired quadratic form. To evaluate at N-1, consider the following:

$$v(N-1,z) = \min_{w} \{ \frac{1}{2} z^{\top} Q z + \frac{1}{2} w^{\top} R w + v(N, Az + Bw) \}$$

$$= \min_{w} \{ \frac{1}{2} z^{\top} Q z + \frac{1}{2} w^{\top} R w + \frac{1}{2} (Az + Bw)^{\top} P(N) (Az + Bw) \}$$

$$= \min_{w} \{ \frac{1}{2} w^{\top} \underbrace{(R + B^{\top} P(N)B)}_{F} w + \underbrace{z^{\top} A^{\top} P(N)B}_{g^{\top}} w + \underbrace{\frac{1}{2} z^{\top} (Q + A^{\top} P(N)A) z}_{h} \}$$

Given R > 0, P(N) > 0, it is easy to verify that F > 0. If we slightly change the notation here, according to Question 1(c), the unique minimizer and the minimum value are:

$$u(N-1) = w^* = -F^{-1}g$$

$$= -\underbrace{(R+B^{\top}P(N)B)^{-1}B^{\top}P(N)A}_{K(N-1)}x(N-1)$$

$$v(N-1,x(N-1)) = h - \frac{1}{2}g^{\top}F^{-1}g$$

$$= \frac{1}{2}x(N-1)^{\top}\underbrace{[Q+A^{\top}P(N)A-A^{\top}P(N)B(R+B^{\top}P(N)B)^{-1}B^{\top}P(N)A]}_{P(N-1)}x(N-1)$$

Analogously, we could express P(i) and K(i) by:

$$P(i) = Q + A^{\top} P(i+1)A - A^{\top} P(i+1)B(R+B^{\top} P(i+1)B)^{-1}B^{\top} P(i+1)A$$

$$K(i) = (R+B^{\top} P(i+1)B)^{-1}B^{\top} P(i+1)A$$

In addition, if Q, R, P(i+1) > 0, we could verify that P(i) > 0 as well.

Question 3

Part a-b

Figure 1: Comparison of $K_d(i)$ and K_{ss}

As i is getting small, $K_d(i)$ converges to 4.962×10^{-2} .

Part c

If we use the function dlqr in MATLAB, the control gain is 4.962×10^{-2} as well.

Part d

Use the expression derived in Question 2(d), and let $P(i+1) = P(i) = P_{ss}$, we can write

$$P_{ss} = Q + A^{\top} P_{ss} A - A^{\top} P_{ss} B (R + B^{\top} P_{ss} B)^{-1} B^{\top} P_{ss} A$$

To solve the above equation for P_{ss} , we could find that

$$P_{ss} = -19754.1$$
 or 50.1263

Using the positive value of P_{ss} , we could find the corresponding value of K_d , and it is

$$K_{ss} = (R + B^{\mathsf{T}} P_{ss} B)^{-1} B^{\mathsf{T}} P_{ss} A = 4.962 \times 10^{-2}$$

which is the same as what we found in Part b and c.

Part e

If we used the control law $u_d(i) = -K_{ss}x_d(i)$ at each time step $i = 0, \dots, n-1$, then trajectories of x_d and u_d are plotted below, and the state x_d converges to the origin.

Figure 2: Trajectories of x_d and u_d , with $Q_d = 1, R_d = 1$

Part f

In this part, we will change the values of Q_d and R_d , compute K_d using the function dlqr in MATLAB, and compare trajectories of x_d and u_d to those shown in Figure 2 (corresponding to $Q_d = R_d = 1$).

- 1. If we increase (or decrease) Q_d and R_d , but keeping their ration the same, then trajectories of x_d and u_d would be the same as well.
- 2. If we use $Q_d = 100, R_d = 1$, then trajectories are shown in Figure 3 below:

Figure 3: Trajectories of x_d and u_d , with $Q_d = 100, R_d = 1$

We could find that x_d converges faster, at the cost of using a much larger u_d , especially at the beginning of the simulation.

3. If we use $Q_d = 1$, $R_d = 100$, then trajectories are shown in Figure 4 below:

Figure 4: Trajectories of x_d and u_d , with $Q_d=1, R_d=100$

It describes that we could use a very small u_d to stabilize the system state x_d , with almost the same convergence rate (only slightly slower).