Congratulations! You passed!

Grade received 100% To pass 80% or higher

Go to next item

1. The orientation of a frame $\{d\}$ relative to a frame $\{c\}$ can be represented by a unit rotation axis $\hat{\omega}$ and the distance θ rotated about the axis. If we rotate the frame $\{c\}$ by θ about the axis $\hat{\omega}$ expressed in the $\{c\}$ frame, we end up at $\{d\}$. The vector $\hat{\omega}$ has 3 numbers and θ is 1 number, but we only need 3 numbers, the exponential coordinates $\hat{\omega}\theta$, to represent $\{d\}$ relative to $\{c\}$, because

1/1 point

- **(a)** though we use 3 numbers to represent $\hat{\omega}$, $\hat{\omega}$ actually only represents a point in a 2-dimensional space, the 2-dimensional sphere of unit 3-vectors.
- O the choice of θ is not independent of $\hat{\omega}$.

2. One reason we use 3x3 rotation matrices (an implicit representation) to represent orientation is because it is a good global representation: there is a unique orientation for each rotation matrix, and vice-versa, and there are no singularities in the representation. In what way does the 3-vector of exponential coordinates fail these conditions? Select all that apply.

1/1 point

There could be more than one set of exponential coordinates representing the same orientation.

If $\hat{\omega}\theta$ is a representation of the orientation, then we could change θ by any integral multiple of 2π and get a different set of exponential coordinates representing the same orientation. If we restrict the exponential coordinate vector to have a magnitude of π or less (a solid sphere in 3-space), then

- 1. The orientation of a frame $\{c\}$ by θ about the axis exponential coordinates $\hat{\omega}\theta$
 - (a) though we use 3 number
 - \bigcirc the choice of θ is not in

- 1. The orientation of a frame {c frame {c} by θ about the axis exponential coordinates $\hat{\omega}\theta$
 - (a) though we use 3 number
 - O the choice of θ is not in

- 2. One reason we use 3x3 rotat orientation for each rotatior coordinates fail these conditions.
 - ▼ There could be more th

✓ Correct

If $\hat{\omega}\theta$ is a representati representing the same