AD-A239 299

JMENTATION PAGE

form approved OMB NO 0/04-0188

In is estimated to average 1 nour per response, including the time for reviewing instruction, searching existing dara sources eting and reviewing the collection of information. Send comments regarding this purdent estimate or any other aspect of this using this burden to Washington Headquarters Services, Directorate for information Operations and Hepotity, 1215 settlers on and to the Office of Management and audget. Paperwork Reduction Project (0704-0133), Washington, DC 20503.

2	_	REP	OR	T DA	TE
	_	_		^^	

	2. REPORT DATE	3. REPORT TYPE AN	
	12 Oct 90		May - Oct 90
4. TITLE AND SUBTITLE Techno.		dustrial	5. FUNDING NUMBERS
Process Improvement (IP			Contract
Data Base Documentation	Book for MATPFA (UFC	's) book 2 of	4
6. AUTHOR(S)	2008		1
McDonnell Douglas Missi	le Systems Company		
7. PERFORMING ORGANIZATION NA			8. PERFORMING ORGANIZATION
			REPORT NUMBER
McDonnell Douglas Missi			F22600 88 P 0567
St. Louis, Missouri 6	3166	E SEC. S.	F33600-88-D-0567
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)	The Action of the Control of the Con	10. SPONSOBING / MONITORING
3. SPUNSUMING / WICHITCHING AGE	Act in west the house of the		AGENCY REPORT NUMBER
HQ AFLC/LGME	e. e.g		
WPAFB OH 45433	in the second of		F33600-88-D-0567
		職等》(249 (1500年)	
11. SUPPLEMENTARY NOTES	100		
30,7 (2,110,17,111,17,17,17)			
Prepared in cooperation	with SA-ALC & HQ AF	FLC	
12a. DISTRIBUTION / AVAILABILITY S	TATEMENT		126. DISTRIBUTION CODE
Distribution Statement			
13. ABSTRACT (Maximum 200 word			
Technology Insertion (T			
Documentation Book Volument contains	me, for <u>SA-ALC/MAIPPA</u> detailed information a	hout lavouts	equipment and processes
for this RCC.	00001100 111101111011111	/	,
Also includes Simulati	on Modeling info.for t	chis RCC.	
4.			
$\mathbb{R}^{d} \cap \mathcal{R}_{t} = \mathbb{R}^{d}$	1 1039 311.4	· · · · · · · · · · · · · · · · · · ·	
			91-06874
• • •			
91805	045	i t ub ht	i isasi ilak dajik Anior idiyi jasir alat 165;
	· - •		
			15. NUMBER OF PAGES
14. SUBJECT TERMS			477
	12 10 1 1 151	•	16. PRICE CODE
Fuel Controls, Unifi	ed Fuel Control, AFLO		
	18. SECURITY CLASSIFICATION	19. SECURITY CLASS	SIFICATION 20. LIMITATION OF ABST

Unclassified Standard Form 298 (Rev. 2-89) Standard by UNIV. (Id. 7 (N.18) 2 (1-1)

NSN 7540-01-280-5500

OF REPORT

Unclassified

Unclassified

OF THIS PAGE

Unclassified

OF ABSTRACT

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

8.0 SIMULATION

Matpfa Model Validation notes summary

TO 15

August 24,1990

INPUTS

WORK LOAD INFORMATION:

MATPFA performs OCM work on UFCs. The 3 main subcomponents of the UFCs were also modeled - Gas Generators [GG] , Distribution Bodies [DB] and Augmentor Computers [AC]. Distribution Bodies and Augmentor Computers before demating [AC/DB] were also modeled as a subcomponent. AC/DBs are the parent parts of ACs and DBs.

The work load is broken down into subcategories by the amount and type of work that needs to be done. The work load is broken down into three types:

"Super Quick Throughs" [F-15SQT and F-16SQT]- Basically they come in and are run through the SAT test. The UFC passes the test and is finished except for final packageing, paperwork, etc. This currently accounts for approximately <1% of the workload.

"Quick Throughs" [F-15QT and F-16QT]- These also require no or very little overhaul work. They run through tests such as an abbreviated augmentor set-in test, an M & I and an SAT. They pass these tests, or if they fail a part of the test, minor repair work can be done, while the part is still on the test stand, to correct the problem. This accounted for approximately 22% of the workload during the October/November 1989 time frame.

"Slow Throughs" [F-15ST and F-16ST]- These are items that fall-out of a test and may require overhaul and demating, extensive testing, etc. This accounts for remaining 78% of the workload. These items are the ones that produce the subassemblies of the gas generator, the augmentor computer and the distribution body.

The workloads for the F-15s and the F-16s have been adjusted to reflect these categories.

The overall quantities of UFCs inducted into the model was obtained from the G019C report plus the quantity inducted from engines for 4th quarter FY89 through 3rd quarter FY90. The inducted quantities by quarter are:

Q1 Q2 Q3 Q4 292 181 358 282

All UFCs recieved the same priority within the model.

RESOURCE INFORMATION

Weekday staffing levels were derived from manpower staffing sheets provided by production for the period of May 16 to June 16 1990. Numbers were adjusted to represent those people shown on the staffing sheets but not contributing to "touch labor" [such as those with 11 and 12 codes from the Management Indicator report and the Code 11 shredout report]. The UFC area runs three shifts a day.

Weekend staffing levels were obtained from July 1990 staffing levels.

Manpower quantities and overtime have been fairly constant over the past year and the quantities used are considered representative.

Equipment quantities were provided by production plus physical counts were made in some areas.

Equipment downtime failure raw data was obtained from the G011 report and was reviewed and summarized to determine mean time between failures and mean time to repair.

The UFC area has 2 main areas -overhaul and test. The manpower is basically divided between the 2 areas with very little cross-over between the two due to certifications required to operate the various test stands. In the model, there is no sharing between the 2 areas.

In the test area, the manpower grades are fairly divided by what type of test stand they will operate. There are a couple of exceptions, but the supervisors on the floor try to avoid the exceptions. Manpower grades are associated with certain test stands in the model files.

In the overhaul area, all manpower grades will be approximated by a psuedograde called WG00. WG00 will do any overhaul work done.WG05s and WG07s can not perform some operations but the overhaul work is approximated by one operation that accounts for the overhaul manpower time needed.

An artifical code called WGSW was created from the WG00 code to model the personnel that perform the safety wire functions. WGSW have WG00s as alternates.

The test stands are located in 3 different physical areas but are not broken down by separate areas [areas B,D and bldg 347] within the model. When a test needs to be performed on a part, the part is sent to an area that has an available operator [Manpower is in short supply, not the equipment] so the test stands were kept as one group the avoid bias in resource utilization statistic reporting.

OPERATION INFORMATION

An overview of the flow of parts through the shop is shown in the diagram UFC Model Process Flow. Differentiation between UFCs was made to model the different amounts of repair/testing work required. Some require testing and little/no repair while others require testing and moderate to extensive repair work.

F-15 UFCs and F-16 UFCs were modeled separately because currently there is some variation in the process flow between the two - 100% of F-16s require demate while not all of the F-15s require demating.

The OCM aspect of the shop was modeled by occurrence factors on the "WCDs" and by cycling [repeating] some of the work. The occurrence factors were obtained from productions' October and November 1989 logbooks. Supervisors estimates were used when the data was not obtained from the log books.

Some of the operation resource times were taken from productions' October and November 1989 logbooks. These times were reviewed by production supervisors. The rest of the times were obtained from production supervisor estimates.

WCDs were created for the Super-Quick Throughs, Quick Throughs, and SlowThroughs.

The Super-Quick-Throughs [part names F-15SQT and F-16SQT] performed wcd SUPQTHRU.

The Quick-Throughs [part names F-15QT and F-16QT] performed wcd QUIKTHRU.

The F-15 Slow-Throughs [part name F-15ST] performed wcds SLOTHRUI, AWP-G,SLOTHRU0, SLOTHRU1, SLOTHRU2, and SLOTHRU3. The F-16 Slow-Throughs [part name F-16ST] performed wcds SLOTHRUI, AWP-G, SLOTHRU0, SLOTHRU1, and SLOTHRU3.

The AC/DB performs wcd SLOTHRU4 and is created in wcd SLOTHRU2.

The AC performs wcd SLOTHRU5 and is created in wcd SLOTHRU4.

The DB performs wcd SLOTHRU6 and is created in wcd SLOTHRU5.

The F-15ST and the F-16ST disassembles and assembles the AC/DB in wcd SLOTHRU3. The AC/DB disassembles and assembles the AC which disassembles and assembles the DB.

It was indicated that the AC/DBs are not generally worked until the gas generators are finished being worked. Therefore the disassembly for the AC/DB did not occur until after the gas generator work was completed [wcd SLOTHRU2, operation 0600]. To make the AC/DB work in parallel with the gas generator, move the operation to before operation 0100.

MODEL OUTPUT SUMMARY

Historical Data Information - Actual flow times from January to June 1990 were used to calculate an average flowtime. The F-15 average is 129 days and the F-16 average is 123 days. The monthly average flow time has been decreasing with the June average about 90 days. Three main aspects make up the average flow times - the time spent in repair, the time spent awaiting parts and the time as work in process.

Awaiting parts average time was obtained from the April and May UFC production data. 27% of the parts waited an average of 171 total days AWP. This includes items the went into G condition. Items go into G condition when they are AWP greater than 90 days. 78% of the items that went AWP had greater than 90 days in AWP.

Work in process, in this case, represents those items that have been inducted but have their repair delayed, for reasons other than constrained resources or AWP, while other items get worked. The average time for this has been estimated at 60 days.

It should be noted that over the past 6 months production has increased, WIP has decreased [from about 4 months production to about 2 months] and flow days in the shop has decreased. For validation purposes, flowtimes and production comparisons will be made with the data from the same time frame that was modeled.

Output Information - The flowtime and throughput comparisons are shown on the following page. Three different runs were made and the flowtime and throughputs were averaged. The 3 runs are included.

Even though validation occurred over a specific 2 week period, outputs and inputs were examined over the course of the task order. Early model runs were made [starting 4 weeks into the task order] and the inputs/outputs were examined and reviewed. Detail was added after each model run. Approximately 5 major different runs were made, each with an increasing level of detail and correctness.

VALIDATION CRITERIA SUMMARY

MATPFA MODEL DATA COMPARISONS TO HISTORICAL DATA

UFC				Model Flow Time [days]	Historical Flow Time [days]	% Dev
	RUN #1	RUN #2	RUN #3	Average		
F-15	111	110	102	108	129	17%
F-16	116	119	114	116	123	5%
UFC				Model Inductions [units]	Historical Inductions [units]	% Dev
	RUN #1	RUN #2	RUN #3	Average		
F-15	504	513	499	505	524	4%
F-16	578	559	572	570	589	3%

F-15 and F-16 WORK LOAD DATA by CONTROL # by QUARTER

F-15	4th Qtr 89	1st Qtr 90	2nd Qtr 90	3rd Qtr 90
09767A	85	80	137	102
12600A	19	24	39	38
F-16				
12572A	146	31	95	1
13509A	42	46	87	141

MANPOWER STAFFING LEVELS

THE FOLLOWING TABLE SHOWS THE RAW DATA USED TO CALCULATE OVERTIME IN THE UFC AREA

-	1st Shift								
	1-Jul-90	7-Jul-90	8-Jul-90	8-Jul-90 14-Jul-90	21~JuF90	22~Jul-90	28-Jul-90	29~JuF90	Average
TEST									
50002	12	5	12	91	7	9	13	က	=======================================
50004	0	0	0	4	ß	7	ις.	വ	ო
20005	8	9	9	4	4	-	-	_	က
50173	-	-	-	-	ო	-	ო	8	8
OVERHAUL									
WG-10	9	4	2	13	=	7	9	7	∞
WG-09	_	8	8	8	-	- -	-	0	
WG-07	ო	4	က	2	9	4	S.	4	4
WG-05	0	0	-	-	0	0		0	0
60-SD	0	-	- -	0	-	-	-	-	~~

THE FOLLOWING TABLE SHOWS THE RAW DATA USED TO CALCULATE OVERTIME IN THE UFC AREA

2	2nd Shift								
	1-Jul-90	7-Jul-90	8-Jul-90	8-Jul-90 14-Jul-90		21-JuH90 22-JuH90	28-Jul-90 29-Jul-90	29-Jul-90	Average
TEST									
50002	7	o	2	œ	7	œ	4	==	O)
50004	8	8	8	ო	2	က	4	4	ო
50005	4	4	8	8	4	က	က	က	ო
50173	0	0	0	0	ο,	0	0	0	0
OVERHAUL									
WG-10	12	თ	o	ω	13	7	=	=	
WG-09	0	α	8	8	-		Q	8	8
WG-07	-	8	N	8	81	7	8	8	8
WG-05	0	0	0	0	0	0	-	-	0
GS-09	0	-	-	0	-	-	 -	-	-

THE FOLLOWING TABLE SHOWS THE RAW DATA USED TO CALCULATE OVERTIME IN THE UFC AREA

ਲ	ard Shift								
	1-Jul-90	7-Jul-90	8-Jul-90	14-Jul-90	21~Jul-90	22~JuF90	28~Jul-90	29-Jul-90	Average
TEST									
50002	ဖ	2	9	9	5	12	11	9	o
50004	8	-	8	-	-	-	ო	က	8
50005	8	-	a	-	0	~	ო	က	8
50173	-	0	-	0	-	-	-	-	-
OVERHAUL									
WG-10	4	8	4	4	4	2	4	S	4
WG-09	ო	-	4	_	က	ო	4	2	က
WG-07	_	0	0	01	0	0	0	0	0
WG-05	_	0	0	0	0	0	0	0	0
60-S5	-	-	0	0	0	0	-	-	-

Thursday, August 23, 10:18:38

1990

Prints out comments for those operations that have them.

OPERATION

COMMENTS

AWP-G

0050

P

This WCD represents those parts that go into AWP. Since about 28% of all parts go AWP at some time, and only those that are identified as slothrus will go AWP [in the model], the occurrence factor on this WCD was adjusted up to take this into account.

This operation represents the delay before going AWP.

AWP-G

0100

Р

This operation is for those parts that spend less than 90 days AWP and therefore will not be G condition.

AWP-G

0200

0000

P

This operation is for those parts the went AWP and possibly G condition. They spent more than 90 days AWP.

QUIKTHRU

We are assuming that once a crate arrives at Bldg 348, approximately 2 hours will pass before the UFC will be removed and the inital paperwork/inspection/testing will begin. Although it has been stated that there are instances where a UFC can wait in the staging area nearly 3 weeks before operations begin, we are assuming the 2-hour flow as the norm.

QUIKTHRU

0100

P

The constant incoming time for the paperwork/inspects/test operations was obtained from consulting shop personnel on the OCM line and tracker times. Since the operation procedures are fairly stable, a constant figure was used for the operation times.

QUIKTHRU

0200

S

The times given for the RAR plumbing were obtained from the Oct/Nov 89 Log book study. Times were reviewed with production supervisors and compared to the May log book.

QUIKTHRU

0300

ρ

As with RAR plumbing, the times are from the Oct-Nov logbook. Times were reviewed with production supervisors and compared to the May log book.

QUIKTHRU

0400

P

The ASI test times also come from the Oct-Nov logbook. Times were reviewed with production supervisors and compared to the May log book.

QUIKTHRU

0500

Р

Thursday, August 23, 2 1990

Prints out comments for those operations that have them.

OPERATION

COMMENTS

M&I TestAs with the other 50002 tests, the model times were obtained from the October-November logbook.

QUIKTHRU

0600

Р

The SAT times were obtained in the same manner as the other 50002 tests and come from the Oct-Nov logbook. Times were reviewed with production supervisors and compared to the May log book.

QUIKTHRU

0700

P

The electrical check test is performed by a WG11 operator at the 50002 test stand. Time was formulated by shop estimates and tracker data.

QUIKTHRU

P

Since shop supervisory personnel indicate that an equivalent of 2 overhaul personnel on first shift, 1 on second shift, and 1 on third shift are being utilized solely in the safety wire area, we created a separate manpower classification to properly reflect the overhaul situation.

QUIKTHRU

9999

0800

P

The estimate that the UFC will typically wait in the safety wire area for transport for about 4 hours was obtained as an estimate from scheduling. The opinion was that DS personnel were generally good about moving the asset promptly.

SLOTHRU0

0300

P

Comments made about the ASI on the QUIKTHRU wod are applicable here.

SLOTHRU0

0400

P

Comments made concerning the M&I on the QUIKTHRU wcd are applicable here.

SLOTHRU0

0500

Р

Comments about the SAT test on the QUIKTHRU wod are applicable here.

SLOTHRU1

0100

Р

This time represents OCM line work which can be performed on external parts of a UFC without demating. The times were obtained from shop personnel and tracker data.

SLOTHRU1

0200

S

This time represents the plumbing time associated with a complete UFC. The time is the same as given for an RAR plumb. The same comments on the QUIKTHRU wcd are applicable.

SLOTHRU1

0300

0

Thursday, August 23, 1990

Prints out comments for those operations that have them.

OPERATION

COMMENTS

The M&I comments on the QUICKTHRU wcd are applicable here.

SLOTHRU2

0100

The distribution times represented above were obtained through shop personnel discussions and tracker data analysis. Basically determined from a shop operator and tracker what task codes consisted of at least 80% of the work load and if any of these task codes had to be worked in conjunction with others. For example, if task 404 were worked, then task codes 405,417,419, and 441 required work also. I then determined a weighted average based upon a discrete distribution. From the significant task codes, I took the highest number in tracker and the lowest number to form the triangular distribution.

SLOTHRU2

0200

S

This time represents the gas generator 50004 set-up or plumb operations.

SLOTHRU2

0300

Р

The distribution figures again came from the Oct-Nov logbook.

SLOTHRU2

0400

Р

This operation represents the GG recycle work.

SLOTHRU2

0500

S

THIS IS SET -UP FOR THE 50004 STAND AFTER RECYCLE WORK.

SLOTHRU2

0550

Р

GG recycle work - The comments written for operation 0300 apply here.

SLOTHRU3

0100

Р

This operation represents the electrical checks done by the WG11 operator at the 50002 test stand.

SLOTHRU3

0200

P

THIS IS THE SAFETY WIRE AND OTHER FINAL OPERATIONS DONE BY OVERHAUL PERSONNEL IN THE SAFETY WIRE AREA. DISTRIBUTION TIMES WERE TAKEN FROM TRACKER DATA (TASK CODES 92 AND 93).

SLOTHRU3

9999

Р

Mandatory outgoing flow time. The same comments from QUIKTHRU apply here.

SLOTHRU4

0100

P

Thursday, August 23, 4

Prints out comments for those operations that have them.

OPERATION

COMMENTS

This operation represents work on the AC/DB without demating. The times were figured on occurrences of task codes in tracker and from shop personnel information concerning what codes were worked for the AC/DB. The average was derived from a discrete distribution of the task codes while the min and max times were taken from the high times of worked task codes on tracker.

SLOTHRU4

0200

P

This represents the disassembly of the AC and DB. Times were determined from tracker and shop personnel.

SLOTHRU4

0300

P

This operation represents the remating of the AC to the DB. Times were again taken from shop personnel and tracker data.

SLOTHRU4

0400

S

This operation represents set-up time for the ASI test on a 50002 test stand. The times were obtained from both shop supervisory personnel and tracker data.

SLOTHRU4

0500

P

This operation represents test time for the ASI test on a 50002 test stand.

SLOTHRU4

0600

S

This operation represents the ASI set-up on a 50005 test stand. A WG10 operator was utilized on this stand.

SLOTHRU4

0700

This is the ASI on the 50005. The same comments as those on operation 0500 apply here.

SLOTHRU4

0800

Р

P

This operation represents the AC/DB recycle work. The occurrence factor for the rework was determined from the tally sheet filled out by the OCM team.

SLOTHRU4

0900

S

THIS IS THE ASI RE-TEST FOR THE REWORKED PARTS ON THE 50002 TEST STAND.

SLOTHRU4

1000

Р

THIS IS THE ASI RE-TEST FOR THE REWORKED PARTS ON THE 50002 TEST STAND.

SLOTHRU4

1100

S

THIS IS THE ASI FOR REWORKED PARTS ON THE 50005.

5

OPERATION COMMENTS REPORT

Thursday, August 23, 1990

Prints out comments for those operations that have them.

OPERATION

COMMENTS

SLOTHRU4

1200

0100

0300

THIS IS THE ASI FOR REWORKED PARTS ON THE 50005.

SLOTHRU5

P

Work AC

SLOTHRU5

0200

WORK AC

SLOTHRU5

S

This operation represents the set-up time for the PLA bracket, a sub-component of the AC. The shop supervision estimates that every time repair work has to be done on an augmentor, the PLA bracket will need to be tested at least 75% of the time. The set-up times were obtained from shop supervision estimates.

SLOTHRU5

0400

P

This operation represents the PLA bracket test. The times again were taken from shop personnel and supervision estimates. The little tracker data which does exist is low and not representative.

SLOTHRU5

0500

Ρ

In this operation, the PLA bracket is re-installed into the AC. The distribution represents tracker data and shop estimates.

SLOTHRU5

0600

S

This operation represents the set-up time for the AC test. The distribution was determined from shop supervision estimates.

SLOTHRU5

0700

Ρ

This represents the AC test times. Times were taken from shop floor personnel.

SLOTHRU5

0800

P

The situation with the recycle occurrence factor is similar to that of the AC/DB rework.

SLOTHRU5

0900

S

This represents the set-up time for the AC recycle test.

SLOTHRU5

1000

Ρ

The AC test times for the recycle.

080017

Thursday, August 23, 6

Prints out comments for those operations that have them.

OPERATION

COMMENTS

Ρ

Р

SLOTHRU5

1100

This represents the remated time for the AC and the DB. The times were obtained from the tracker codes.

SLOTHRU6

0100

This distribution represents work done on the distribution body. The data was tabulated from tracker data of DB codes.

SLOTHRU6

0200

S

This represents set-up time for the DB on the 50005 test stand. The times are shop floor estimates from supervision.

SLOTHRU6

0300

P

this represents the DB test time on the 50005 test stand. The distribution was determined from shop supervision estimates and tracker data.

SLOTHRU6

0400

P

S

P

Rework necessary on the DB. As with the AC recycle occurrence factor, the same issues apply here.

SLOTHRU6

0500

SET-UP FOR THE RE-TEST ON THE 50005 FOR THE DB.

SLOTHRU6

0600

This represents the actual rework test on the DB.

SLOTHRU7

0010

P

Represents the disaseembly of the Gas Generator.

SLOTHRU7

0020

P

Represents the reassembly of the gas generator.

SLOTHRU7

0050

Р

DEMATE AC/DB. THE TIME IS TAKEN FROM TRACKER DATA. Even though on the shop you cannot demate the gas generator without the AC, they are disassembled separately in the model in order to model the process flow.

SLOTHRU7

0100

ρ

REMATED TO THE AC/DB. THE TIME IS TAKEN FROM TRACKER DATA.

080018

Thursday, August 23, 7

Prints out comments for those operations that have them.

OPERATION

COMMENTS

S

SLOTHRU7

0200

PLUMBING FOR THE M&I TEST. ANY COMMENTS PERTAINING TO PLUMBING TIMES FOR THE UFC ON A 50002 TEST STAND ARE APPLICABLE HERE. THIS INCLUDES SHOP SUPERVISION COMMENTS AND TIME ESTIMATES.

SLOTHRU7

0300

P

M&I TEST.

SLOTHRU7

0400

)

SAT TEST.

SLOTHRUI

0000

P

Incoming delay time. Includes time for scheduling paperwork and routing delays.

SLOTHRUI

0100

Ρ

Incoming inspection.

SLOTHRUI

0200

S

Any comments made for this operation in the QUIKTHRU wcd are equally applicable here. However, for each wcd being utilized in the model, there is an occurrence factor being attributed to it. The occurrence factor represents what percent of the time a UFC can be expected to be processed through this WCD. Occurrence factors were obtained through many resources - the ufc process flow diagram, shop personnel, OCM team, tracker data, and scheduling. Although each one of these sources may disagree to some extent, we attempted to determine a factor which would reasonable taking into account the differences.

SLOTHRUI

0300

Р

RAR - The same comments which were made regarding the QUIKTHRU wcd regarding the RAR are applicable here.

SUPOTHRU

0000

Р

The superquick throughs basically need an SAT test only, and then they are sold. This operation repesents incoming delays

SUPOTHRU

0100

P

INT & SAT INSPITEST

SUPQTHRU

0200

S

PLUMB SAT

Thursday, August 23, 8 1990

Prints out comments for those operations that have them.

OPERATION

COMMENTS

SUPQTHRU

0300

Р

SAT

SUPOTHRU

0350 P

THIS IS THE ELECTRICAL CHECK OPERATION DONE BY A WG11 OPERATOR AT THE 50002 TEST STAND.

SUPQTHRU

0400

THIS IS THE SAFETY WIRE,PW, AND PACK OPERATION DONE BY THE DEDICATED OVERHAUL OPERATORS.

UFC F-15 RAW HISTORICAL FLOWTIME DATA

1-Jan-90	Feb-90	Mar-90	Apr-90	May-90	Jun-90
6	11	13	7	7	3
8	12	13	9	8	5
12	12	13	12	8	6
12	12	20	18	8	7
12	12	20	21	9	10
13	12	21	25	10	10
13	13	25	25	17	10
13	14	27	26	18	11
17	14	28	28	19	11
17	14	29	30	19	11
19	14	29	31	19	11
23	14	30	31	19	12
24	14	30	32	21	12
25	15	31	33	21	12
29	16	31	33	23	12
30	16	33	33	24	13
31	17	34	33	25	13
31	18	34	33	26	13
34	19	35	34	26	13
35	21	35	37	27	13
39	22	39	37	27	13
45	23	41	38	28	13
50	25	47	38	28	13
52	25	47	39	28	13
55	26	49	39	30	13
64	45	49	43	32	14
71	46	55	45	32	14
73	62	59	45	32	15
74	62	63	53	33	15
76	63	66	53	34	16
77	74	80	55	34	17
83	77	93	58	34	17
87	100	94	60	40	18
88	112	115	65	47	18
89	115	125	82	62	19
91	116	133	95	76	20
96	119	150	96	77	20
97	120	150	140	89	21
99	133	151	142	91	24
105	139	153	237	112	25
136	140	177	370	118	27
201	172	237	481	208	28
223	179	428	555	212	28
260	182	502	577	213	29

UFC F-15 RAW HISTORICAL FLOWTIME DATA

1-jan-90	Feb-90	Mar-90	Apr-90	May-90	Jun-90
315	217	544	593	218	32
364	237	648	618	260	34
399	237	671	669	266	38
428	241	693	677	289	38
460	252		879	321	42
525	380			427	43
563	386	•		637	45
577	442				54
643	540				54
690	558				56
805	565				63
71	568				69
	587				70
	635				88
	726				210
	840				294
	873				334
	259				510
					566
					608
					833

UFC F-16 RAW HISTORICAL FLOWTIME DATA

January 1990	Feb-90	Mar-90	Apr-90	May-90	Jun-90
6	9	20	12	15	24
10	20	27	12	24	27
12	35	32	13	27	47
12	37	33	14	28	48
12	38	34	15	28	54
16	39	35	19	33	55
17	40	35	19	34	55
20	44	41	29	35	55
21	45	42	31	36	58
21	50	42	33	36	61
24	51	46	33	40	61
41	55	46	33	40	63
41	57	48	34	40	63
42	64	53	34	42	64
52	80	54	35	43	66
61	81	61	35	45	69
69	84	65	36	45	70
69	86	66	38	45	70
70	103	68	38	45	72
72	108	72	40	46	76
76	115	73	40	46	80
79	144	76	'41	46	90
81	145	77	41	48	90
83	154	85	41	48	90
83	154	86	41	48	94
88	160	90	42	48	101
91	161	94	43	52	104
98	172	97	44	52	111
101	173	106	45	57	113
102	174	114	45	59	147
106	188	119	47	59	188
111	218	127	48	59	217
112	300	135	48	60	217
118	355	137	50	64	222
127	381	140	51	65	230
155	383	144	54	67	254
161	384	145	54	68	263
166	424	147	54	69	269
167	441	156	54	70	314
174	442	192	54	70	322
241	444	192	57	73	
245	460	205	60	77	
255	735	208	61	88	
268	167	208	75	90	

UFC F-16 RAW HISTORICAL FLOWTIME DATA

January 1990	Feb-90	Mar-90	Apr-90	May-90	Jun-90
344		220	84	139	
367		222	102	217	
378		230	154	221	
398		234	161	269	
406		237	175	305	
418		239	314		
679		267	385		
		290	412		
		338	458		
		353			
		449			
		483			
		504			
		509			
		587			

AWP FLOWDAYS RAW DATA FROM FEBRUARY AND MARCH 1990

		Average: Std Deviation	172
50	174	Sid Deviation	102
59 105			
105	168 62		
106	196		
62 50			
59	168		
151	61		
140	321 188		
196			
35	178		
155	196		
35 57	188		
57 155	154		
155 154	155 284		
188	305		
179	283		
154	200		
164			
195			
155			
154		•	
375			
373			
197			
151			
436			
180			
154			
470			
478			
85			
66			
194			
62			
112			
41			
174			
100			
174			
62			
174			
174			

SUMMARY OF AWP DATA

August, 1990

Feb/Mar Data for those UFCs that had to await parts

Interval #	AWP Total Flowdays	Count	
1	0-30	0	
2	30-60	6	
3	60-90	7	
4.	90-120	4	
5	120-150	1	
6	150-180	21	
7	180-210	10	
8	210-240	0	
9	240-270	0	
10	270-300	2	
11	300-330	2	
12	330-360	0	
13	360-390	2	•
14	390-420	0	
15	420-450	1	
16	450-480	2	
17	480-510	0	
18	510-540	0	
19	540-570	0	
20	570-600	0	
	Total # AWP	58	
	Total # UFCs Sold	211	
	% UFCs that went AWP	27	
	Ave Days AWP	172	4128
	St Dev AWP	102	2448

F-15 MODEL PROCESS FLOW

F-16 MODEL PROCESS FLOW

MODEL RUN #1

PAGE: 15:25:12 REPT.ID: VALID TIME: 20-AUG-90 DATE: QUARTER: MATPFA **3**000 Š

RUN PARAMETERS

UDOS

This job was run on SAALC, a little tiny vax.

Ŗ ALC: RCC: MATPFA

REPORT ID: VALID

UFC AREA - VALIDATION VERSION

UFCSPART. DAT

UFC5RES.DAT UFC5OPS.DAT PART FILE: FILE: OPER FILE:

UFCSETC.DAT FILE: ETC

WEEKENDS = Y

NUMBER OF QUARTERS =

WARM UP PERIOD; STATS WILL BE CLEARED AT DAY

270

OF HOLIDAYS

8.000000 HISTORICAL DATA SHIFT FACTOR 24.00000 BACKSHOP DATA SHIFT FACTOR

NEW DATA FORMATS SELECTED

27.00 MINUTES 28.20 MINUTES SIMULATION CPU TIME: SIMULATION LAPSE TIME:

SIMULATION RUN LENGTH: 15216.00 HOURS

CNumber of Resources Number of Items Craumber of WCDs

29786 C.Number of Operations

QUARTER: Coperations completed:
(ALC: SA RCC: MATPFA

4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID

PAGE:

		131 QIR	ZND GIR	SRD OTR	4TH QTR	YTD			
OF ITEM	••	107	111	77	116	411	(MISTR	8	
OF ITEM	••	231	237	166	249	883	(MISTR)	€.	
OF ITEM	••	107	111	77	116	411	(MISTR)	8	
OF ITEM	••	23	23	39	31	116	(MISTR)	જ	
OF ITEM	••		0	-	0	7	(MISTR	8	
	••	80	81	136	109	406	(MISTR)	· @	
INDUCTIONS OF ITEM F-160T	••	41	17	40	; -	129	(MTS/TD)	6	
OF TTEM	•	ļ c	; -	•	; -	3, 0	TOTAL TOTAL	2 6	
7441	•	ָר י	4 6	,	→ •	7 -	MISIN)	₹:	
OF LIE	••	/ bT	90	142	110	458	(MISTR)	2	
INDUCTIONS OF TIEM GG	••	236	232	166	252	886	(MISTR	æ	
TOTAL ITEM INDUCTIONS		973	872	844	1015	3704			
ALC: SA RCC: MATPFA QU	QUARTER: 4	DATE: 20	20-AUG-90	TIME: 15	:25:12	REPT.ID: VA	VALID	PAGE:	m
WCD INDUCTIONS			 		1	 	i ; !		
		1ST OTR	2ND QTR	3RD QTR	4TH OTR	YTD			
INDUCTIONS OF WCD	SLOTHRUS	33	41	26	36	136			
Ç	ST.OTHBILA.	. כ		היי	ני	0 5			
Q	STOTHRIB	, r	777	۳ ,	۲۲,	41.2 2.1			
ģ	OUTKTHRU:	5 6	ى د	ာ တို့	7 F	711			
Ö	SUPOTHRU	} -	;) -	; c	9 6			
Q.	SLOTHRUI:	80	8	136	90	406			
	AWP-G	36	37	200	64	150			
Q.	SLOTHRUO:	99	99	65	Ç 6	287			
INDUCTIONS OF WCD	SLOTHRU1:	16	16	17	24	73			
	SLOTHRU7:	83	80	67	101	331			
INDUCTIONS OF WCD	SLOTHRU7:	9	14	4	10	34			
	SLOTHRU3:	88	101	79	119	388			
INDUCTIONS OF WCD	OUIKTHRU:	41	17	40	÷	129			
INDUCTIONS OF WCD	SUPOTHRU	0	i -	; c	; -	;			
INDUCTIONS OF WCD	SLOTHRUI	147	50	142	110	458			
INDUCTIONS OF WCD	AWP-G	48	4	3.5	46	167			
INDUCTIONS OF WCD	SLOTHRU0:	93	65	9	2 6	335			
Q.	SLOTHRU7:	127	124	06	121	462			
OUCTIONS OF WCD	SLOTHRU7:	20	14	י ער	200	ğ			
Q.	SLOTHRU3:	114	134	9	112	759			
	SLOTHRU2:	112	108	2 6	138	405			
	•		,	;	9)			

NATION PAGE	STATISTICS AVERAGE FLOWER STANDARD FLOWER STANDARD FLOWER F	SA RCC: MATPEA QUARTER: 4 CYCLE TIME STATISTICS HISTORICAL SIMUL FLOWTIME FLOW HOURS HOUR HOURS HOUR HOURS 0.00 3385 DT 0.00 3385 DT 0.00 3385 SA RCC: MATPEA QUARTER: 4 CT LABOR STATISTICS EXPECTED STAND HOURS HOUR A 42.04 SOT 29.40 SA RCC: MATPEA QUARTER: 4 10.19 DT 33.44 SA RCC: MATPEA QUARTER: 4 10.19 DT 29.40 ST 33.44 SA RCC: MATPEA OURRER: 4						
AVERAGE HISTORICAL SINGLATED SINGLATED SINGLATED SINGLATED HOWES DEVIATION HOURS SAMELES INDUCTIONS SAMELE	CYCLE TIME STATISTICS	CYCLE TIME STATISTICS AVER HISTORICAL SIMUL FLOWTIME FLOW HOURS B 0.00 3385 ST SQT SQT SQT SQT SQT CT LABOR STATISTICS TAND HOURS HOURS HOURS A 42.04 SQT SQT SQT SQT SQT SQT SQT SQ		TIME: 15:2	REPT. ID:		PAGE:	4
HISTORICAL STANDARD FLOW TIME FLOW	HISTORICAL FLOWTINE STANDARD FLOW TIME FLOW THE FLOW TIME FL	AVER HISTORICAL SIMUL FLOWTIME FLOW HOURS HOURS HOURS D. 00 0 86 0.00 3385 DT 0.00 3385 DT 0.00 3510 SQT 0.00 3510 SA RCC: MATPFA QUARTER: 4 EXPECTED STAND HOURS HOURS HOURS HOURS HOURS DT 29.40 SQT 29.40 SA RCC: MATPFA QUARTER: 4 110.19 DT 29.40 SQT 29.40 SA RCC: MATPFA QUARTER: 4 33.44 SA RCC: MATPFA QUARTER: 4 33.44						1
STATE STAT	STATE STAT	DT 0.00 86 0.00 117 0.00 117 0.00 117 0.00 127 0.00 13385 0.00 3385 0.00 3385 0.00 3385 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3385 0.00 0.0			σ i		GER OF JCTIONS	
Color Colo	STATE STAT	SQT						
B 0.00 86.77 57.58 2.98 322.53 407 883 27 0.00 16.67 8.43 4.11 26.81 15 411 28 0.00 17.75 7.08 72.44 1196.38 385 406 28 0.00 17.75 7.08 72.44 1196.38 385 406 28 0.00 127.08 67.95 315.18 189.76 2.2 29 0.00 127.08 67.95 315.18 385 406 29 0.00 127.08 67.95 315.18 1896.38 385 406 29 0.00 127.08 67.95 315.18 449 458 29 0.00 28.14 45.86 115.25.12 REPT.ID: VALID PAGE: 5 21 LABOR STATISTICS 21 LABOR STATISTICS 22 0.00 31.85 HOURS HOURS HOURS HOURS HOURS HOURS HOURS 22 0.00 31.85 HOURS HOURS HOURS HOURS HOURS HOURS HOURS 22 0.00 31.85 HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS 22 0.00 31.85 HOURS HOURS HOURS HOURS HOURS HOURS HOURS HOURS 22 0.00 31.85 HOURS HOUR HOURS HOURS HOURS HOURS HOUR HOUR HOUR HOUR HOUR HOUR HOUR HOUR	STATESTICS STA	SQT SQT SQT SQT SQT SQT SQT SQT		7	152.04	133	411	
Column C	Color Colo	SQT			322,53	407	883	
NATION 11.6 15.05 135.72 336.56 117 116	Table Tabl	SQT			26.81	15	411	
SGT 0.00 77.75 7.08 72.74 82.76 2 2 ST 0.00 3385.83 299.95 319.49 11996.38 385 406 SGT 0.00 327.08 67.95 319.49 11996.38 385 406 SGT 0.00 3510.27 2444.91 117.75 12356.20 449 4586 SA RCC: MATERA OVARTER: 4 DATE: 20-AUG-90 TIME: 15.25:12 REFT.ID: VALID PAGE: 5 SIMULATED STANDARD LABOR STANDARD LABOR BAYANDA HOURS HOUR HOUR HOUR HOUR HOUR HOUR HOUR HOUR	SGT 0.00 77.75 7.08 72.74 82.76 2 2 SGT 0.00 3385.83 299.95 319.49 11996.38 385 406 27 0.00 127.08 67.95 35.78 1296.38 385 406 28 SGT 0.00 550.27 2444.91 15.82 105.17 2 2 SGT 0.00 58.14 45.86 11.25 1356.20 449 488 SA RCC: MATPER O.00 58.14 45.86 11.25 1356.20 449 488 SIMILATED STANDARD LABOR STANDARD LABOR HOURS 10.10 0.00 39.85 30.51 26.81 35.34 50.00 107.07 55.20 23.75 83.58 22.35 820 20.55	SQT			336.56	117	116	
STATE 0.00 3385 83 2399.95 319.49 11996.38 385 406	STATE 0.00 3385.83 2399.95 319.49 11996.38 335 406	ST 0.00 3385 SQT 0.00 127 SQT 0.00 3510 SA RCC: MATPFA QUARTER: 4 CT LABOR STATISTICS EXPECTED STAND HOURS HOUR B 42.04 OT 31.41 0 SQT 10.19 0 SQT 29.40 SQT 29.40 SQT 159.30 SA RCC: MATPFA OUARTER: 4 33.44 SA RCC: MATPFA OUARTER: 4			82.76	7	7	
STATE 0.00 127.08 67.95 35.78 427.56 127 129	STATE 0.00 127.08 67.95 35.78 427.56 127 129	SQT SQT SQT SQT SQT SA RCC: MATPFA OUARTER: 4 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 3510 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0		319	11996.38	385	406	
SQT 0.00 60.49 63.18 15.82 105.17 2 489 458 SA RCC: MATPEA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 5 TABOR STATISTICS TABOR STANDARD LABOR LAB	SQT 0.00 60.49 63.18 15.82 105.17 2 488 458 886 88 88.14 0.00 3510.27 2444.91 11.75 1235.20 449 458 888 888 88.14 0.00 3510.27 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 5 TABOR STATISTICS TABOR STATISTICS TABOR STATISTICS HOURS 11.13 16.02 16.02 16.00 30.65 6.63 25.96 35.34 8.14 20.27 59.00 10.00 83.89 44.57 22.58 170.10 30.65 6.63 25.96 35.34 8.37 16.29 170.10 30.65 6.63 25.96 35.34 8.37 16.29 170.10 170.00 83.89 44.57 22.58 170.10 170.1	SQT SA RCC: MATPFA QUARTER: 4 CT LABOR STATISTICS CT LABOR STATISTICS EXPECTED STAND HOURS HOUR 31.41 OT SQT SQT SQT SQT SQT SQT SQT			427.56	127	129	
STATESTICE 0.00 3510.27 2444.91 117.75 12356.20 449 458	ST C: MATPER OUNRER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 5 TABOR STATISTICS TIABOR STANDARD AND AND AND AND AND AND AND AND AND AN	SA RCC: MATPFA QUARTER: 4 CT LABOR STATISTICS CT LABOR STATISTICS EXPECTED STAND HOURS HOUR 31.41 027 22.40 027 22 40 027 22 40 027 23 44 028 23 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56 027 25 83.56			105 17	,		
SA RCC: MATPER QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 5 TLABOR STATISTICS TLABOR STANDARD LABOR STANDARD LABOR	SA RCC: MATPER 0.00 58.14 41.25 12.55:12 REPT.ID: VALID PAGE: 5 5.86 1.25 1	SA RCC: MATPFA QUARTER: 4 CT LABOR STATISTICS HOURS HOURS HOURS B 42.04 OT 83.56			12366 20	104	7 10	
SA RCC: NATPER 0.00 28.14 45.86 1.25 12.51.2 REPT.ID: VALID PAGE: 5 5 5 5 5 5 5 5 5 5	SA RCC: MATPER 0.00	SA RCC: MATPFA QUARTER: 4 CT LABOR STATISTICS EXPECTED STAND HOURS HOUF HOURS HOUF HOURS HOUF 10.19 0 2T 83.56 0 2T 83.56 0 2T 83.56 0 2T 83.44 0 ST SA RCC: MATPFA QUARTER: 4			07.00071	443	0 0	
SA RCC: MATPER QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 5 STRUILATED SIMULATED SIMULATED NINIMUM MAXIMUM NAXIMUM NUMB LABOR STANDARD LABOR LABOR LABOR OF HOURS HOURS HOURS HOURS DEVIATION HOURS SAME ACCOUNTS STATE ACCOUNTS SAME ACCOUNTS STATE ACC	SA RCC: MATPER OURATER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 5 STEMULATED STEMULATED NINIMUM MAXIMUM NUMB NAXIMUM	SA RCC: MATPEA QUARTER: 4 CT LABOR STATISTICS EXPECTED STAND HOURS HOUR HOURS HOUR 10.19 02T 83.56 02T 042.04 02T 83.56 02T 05T 05T 05T 05T 05T 05T 05T 05T 05T 05		1.25	315.18		886	
SIMULATED SIMULATED SIMULATED SIMULATED MINIMUM MAXIMUM MOPE MINIMUM MAXIMUM	SIMULATED SIMULATED SIMULATED SIMULATED MINIMUM MAXIMUM MAXIMU	EXPECTED STAND HOURS HOUR HOURS HOUR ST SOT SOT SOT SOT SOT SOT SOT SOT SOT		TIME: 15	:12 REPT.ID:		PAGE:	ر د
SIMULATED SIMULATED SIMULATED SIMULATED SIMULATED MUMB MAXIMUM	SIMULATED SIMULATED SIMULATED SIMULATED SIMULATED AVERAGE MINIMUM MAXIMUM NUMB MAXIMUM NUMB LABOR LA	EXPECTED STAND HOURS HOUR HOURS HOUR HOUR HOUR HOUR HOUR HOUR HOUR HOUR						
HOURS HOURS HOURS HOURS LABOR LABO	SQT STANDARN LABOR STANDARN LABOR LABOR LABOR OF HOURS HOURS SAMP HOURS HOURS SAMP HOURS HOURS SAMP HOURS HOURS SAMP HOURS SAMP HOURS HOURS SAMP HOURS SAMP HOURS HOURS SAMP SOT S	EXPECTED STAND HOURS HOUR HOURS HOUR B 31.41 0 2T 22.04 0 2T 22.40 0 2T 22.40 0 2T 22.40 0 2T 23.40 0 2T 23.40 0 2T 29.40 0 20.40	SIMUL	ATED AGE	SIMULAT			NUMBER
31.41 0.00 31.85 13.11 8.83 70.10 42.04 0.00 39.85 30.51 2.68 159.50 27 83.56 0.00 76.64 35.82 21.35 207.59 SQT 29.40 0.00 30.65 6.63 25.96 35.34 ST 166.80 0.00 98.04 52.47 8.01 341.05 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 159.30 0.00 14.35 8.37 8.44 20.27 ST 33.44 0.00 34.90 27.95 0.68 152.86 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6	SQT	31.41 0 27 42.04 0 27 10.19 0 20 20 29.40 0 21 29.40 0 21 20 20 0 22 20 0 23 24 0 24 20 0 25 20 0 26 20 0 27 20 0 28 20 0 28 20 0	ı	,	ı	1 ¥	1	OF SAMPLES
B 42.04 0.00 39.85 13.11 8.83 70.10 B 51.41 0.00 39.85 13.11 8.83 70.10 B 51 4.74 1 13.10 B 52 40 0.00 76.64 35.82 21.35 207.59 SQT 29.40 0.00 98.04 52.47 8.01 341.05 SQT 83.56 0.00 83.89 44.57 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 159.30 0.00 107.07 55.20 23.72 423.73 ST 33.44 0.00 34.90 27.95 0.68 152.86 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6	Strain	B 42.04 B 42.04 10.19 2T 83.56 83.56 2T 29.40 2T 83.56 83.56 83.56 83.56 83.56 83.56 83.56 83.56 83.56 83.56 83.56		•	c		,	,
B 42.04 0.00 39.85 30.51 2.68 159.50 159.50 16.10 10.19 0.00 8.51 4.74 1.43 16.02 27.35 207.59 27.35 207.59 25.40 0.00 30.65 6.63 25.96 35.34 27.35 207.59 27.35 207.59 27.35 207.59 27.35 207.59 27.35 207.59 27.35 207.59 27.35 207.59 27.35 207.59 27.37 22.58 279.11 29.40 0.00 14.35 8.37 8.44 20.27 33.44 0.00 34.90 27.95 0.68 152.86 SA RCC: MATPER QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6	SQT 83.56 0.00 8.51 44.57 16.02 16.02 2.08 159.50 16.02 2.03 25.96 159.50 35.34 25.00 80.00 80.04 55.47 8.01 341.05 35.34 20.00 80.00 80.04 55.47 8.01 341.05 35.34 20.27 80.00 80.00 80.04 55.24 8.01 341.05 279.11 29.40 0.00 14.35 80.37 8.44 20.27 423.73 33.44 0.00 34.90 27.95 0.68 152.86 SARCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	B 42.04 0 2T 10.19 0 2T 29.40 0 ST 16.80 0 2T 83.56 0 2T 83.56 0 SQT 29.40 0 ST 159.30 0			œ (•	70.10	133
DT 83.56 0.00 8.51 4.74 1.13 16.02 DT 83.56 0.00 76.64 35.82 21.35 207.59 SQT 29.40 0.00 30.65 6.63 25.96 35.34 ST 83.56 0.00 83.89 44.57 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 33.44 0.00 34.90 27.95 0.68 152.86 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15.25:12 REPT.ID: VALID PAGE: 6	DT 83.56 0.00 8.51 4.74 1.13 16.02 DT 83.56 0.00 76.64 35.82 21.35 207.59 SQT 29.40 0.00 30.65 6.63 25.96 35.34 ST 166.80 0.00 98.04 52.47 8.01 341.05 DT 83.56 0.00 83.89 44.57 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 33.44 0.00 107.07 55.20 23.72 423.73 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6	DT 10.19 0 SQT 29.40 0 ST 16.80 0 QT 83.56 0 SQT 29.40 0 ST 159.30 0 SA RCC: MATPFA OUARTER: 4					59.50	407
DT 83.56 0.00 76.64 35.82 21.35 207.59 SQT 29.40 0.00 30.65 6.63 25.96 35.34 ST 166.80 0.00 98.04 52.47 8.01 341.05 DT 83.56 0.00 83.89 44.57 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 33.44 0.00 107.07 55.20 23.72 423.73 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6	DT 83.56 0.00 76.64 35.82 21.35 207.59 SQT 29.40 0.00 30.65 6.63 25.96 35.34 ST 166.80 0.00 98.04 52.47 8.01 341.05 DT 83.56 0.00 83.89 44.57 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 33.44 0.00 107.07 55.20 23.72 423.73 ST 33.44 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6	2T 83.56 0 SQT 29.40 0 ST 166.80 0 QT 83.56 0 SQT 29.40 0 ST 159.30 0 SA RCC: MATPFA OUARTER: 4					16.02	15
SQT 29.40 0.00 30.65 6.63 25.96 35.34 ST 166.80 0.00 98.04 52.47 8.01 341.05 QT 83.56 0.00 83.89 44.57 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 33.44 0.00 107.07 55.20 23.72 423.73 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6	SQT 29.40 0.00 30.65 6.63 25.96 35.34 ST 166.80 0.00 98.04 52.47 8.01 341.05 QT 83.56 0.00 83.89 44.57 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 159.30 0.00 107.07 55.20 23.72 423.73 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	SQT 29.40 0 ST 166.80 0 QT 83.56 0 SQT 29.40 0 ST 159.30 0 SA RCC: MATPFA OUARTER: 4					07.59	117
ST 166.80 0.00 98.04 52.47 8.01 341.05 2T 83.56 0.00 83.89 44.57 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 159.30 0.00 107.07 55.20 23.72 423.73 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	ST 166.80 0.00 98.04 52.47 8.01 341.05 QT 83.56 0.00 83.89 44.57 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 159.30 0.00 107.07 55.20 23.72 423.73 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	ST 166.80 0 OT 83.56 0 SQT 29.40 0 ST 159.30 0 SA RCC: MATPFA OUARTER: 4					35.34	7
SQT 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 159.30 0.00 107.07 55.20 23.72 423.73 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	SQT 22.58 279.11 SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 159.30 0.00 107.07 55.20 23.72 423.73 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	SQT 83.56 0 SQT 29.40 0 ST 159.30 0 SA RCC: MATPFA OUARTER: 4					41.05	385
SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 159.30 0.00 107.07 55.20 23.72 423.73 33.44 0.00 34.90 27.95 0.68 152.86 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	SQT 29.40 0.00 14.35 8.37 8.44 20.27 ST 159.30 0.00 107.07 55.20 23.72 423.73 33.44 0.00 34.90 27.95 0.68 152.86 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	SQT 29.40 CST 159.30 CST 33.44 CSS RCC: MATPFA CUARTER: 4					79.11	127
ST 159.30 0.00 107.07 55.20 23.72 423.73 34.90 27.95 0.68 152.86 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	ST 159.30 0.00 107.07 55.20 23.72 423.73 33.44 0.00 34.90 27.95 0.68 152.86 SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	SA RCC: MATPFA OUARTER: 4					20.27	~
SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	33.44 0 SA RCC: MATPER OURRIER: 4					23.73	449
SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	SA RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID PAGE: 6 SHOP DWELL SUMMARY	SA RCC: MATPFA OUARTER: 4					52 86 52 86	441
DWELL	DWELL		E: 20-AU	TIME:	REPT. ID:	ALID	PAGE:	
		DWELL	1 1 1 1 1 1 1 1 1			! ! ! ! ! !	; f f f	t !

					•					
	v,	AVERAGE SIMULATED	S	SIMULATED S	SIMULATED	NUMBER				
Aget		BACKSHOP	STANDAD	BACKSHOP	BACKSHOP	OF				
	1	CADON	DEVIALION	HOURS 	E LOCKS	Sparie LES				
P.C		0.00	0.00	0.00	0.00	133				
AC/DB		0.00	0.00	0.00	0.00	407				
DB		0.00	0.00	0.00	0.00	15				
F-150T		0.00	0.00	00.00	0.00	117				
F-15SOT		00.00	00.0	00.0	0.00	8				
F-15ST		2992.00	2342.66	00.00	11452.69	385				
F-160T		00.00	00.00	000	00.0	127				
F-16SOT		00.0	00	00.0	00.0	2				
F-16ST		3094.74	2381.87	00	11886.86	449				
		0.00	0.00	00.00	0.00	441				
ALC: SA	RCC: MATPFA		••	20	TIME:	15:25:12	REPT.ID: VALID	VALID	PAGE:	7
PROCESS TI	TIMES SUMMARY				1 1 1 1 1 1 1 1] 	; 	!
		HISTOR.	SIMULATED	WAITING FOR	FOR					NIMBER
		FLOW	FLOW	RESOURCES	ន្ទ	PROCES	PROCESSING FLOW	BACI	BACKSHOP	OF
ITEM		HOURS	HOURS	HOURS	dР	HOURS	dР	HOURS	dР	SAMPLES
					1	1	1		!	1
AC		0.0	59.1	3.6	6.18	55.5	93.98	0.0	0.08	133
AC/DB			86.8	25.8	29.78	61.0	70.3%	0.0	0.0%	407
DB		0.0	16.7	1.7	10.0%	15.0	90.08	0.0	90.0	15
F-15QT		0.0	117.6	12.7	10.8%	104.9	89.28	0.0	0.0%	117
F-15SQT		0.0	77.8	35.2	45.3%	42.6	54.78	0.0	0.0%	2
F-15ST		0.0	3385.8	104.5	3.18	289.4	8.5%	2992.0	88.4%	385
F-16QT		0.0	127.1	12.9	10.1%	114.2	86.68	0.0	80.0	127
F-16SQT		0.0	60.5	36.6	60.6 %	23.9	39.4%	0.0	90.0	5
F-16ST		0.0	3510.3	124.7	3.6%	•	8.3%	3094.7	88.2%	449
છુ		0.0	58.1	7.6	13.18	50.5	86.98	0.0	90.0	441
ALC: SA	RCC: MATPFA	FA QUARTER:	ER: 4 DATE:	20-AUG-90	TIME:	15:25:12	REPT. ID:	VALID	PAGE:	80
RESOURCE	QUEUE STATISTICS	STICS			f	 - - - - - -			1 1 1	!
O RESOURCE	AVERAGE QUEUE	STANDARD		AVERAGE QUEUE	CURRENT QUEUE					
OBOEUE 08	QUANTITY	DEVIATION	N QUANTITY	WAIT (hrs)	QUANTITY	STATISTIC	STIC			
(

RESOURCE QUEUE

	_				_			
	σ				10			#
	PAGE:				PAGE:	CURRENT QUANTITY WAITING	* * * * * * * * * * * * * * * * * * * *	PAGE:
	VALID				VALID	AVERAGE QUANTITY WAITING	NE WALTED	VALID
0.00 0.00 0.00 0.58 7.42 0.58	REPT.ID:		T CURRENT		REPT.ID:	AVERAGE WAITING TIME	NONE NONE NONE NONE NONE NONE NONE NONE	REPT.ID:
270000000000000000000000000000000000000	15:25:12		QUEUE COUNT .	5.0 11.0 16.0	15:25:12	CURRENT	3 0 1 195 199 4	15:25:12
· · · · · · · · · · · · · · · · · · ·	TIME:		-WAITING QUI E STD.DEV. 1	1.0	TIME:	MAX IMUM	209 7 7 7 7 7 7 7 11	TIME:
0.00 0.00 0.00 1.76 1.52 0.95	20-AUG-90		WAI	2.7	20-AUG-90	MINIMUM WA	136 0 0 148 0	20-AUG-90
27.00 8.00 6.00 3.00 13.00 5.00 50.00	4 DATE:		WAIT (HOURS) AVERAGE	55.9 69.9 73.0	4 DATE:	STD. DEV. P	1.0 1.3 1.3 1.3 1.3 0.1 1.3	4 DATE: 20
0.00 0.01 0.05 0.53 0.83 0.52 0.55	QUARTER:		DELAYED OPERATIONS	145 343 514	QUARTER:	AVERAGE	0.0 1.6 0.0 1.6 0.0 1.9 1.9 1.9	QUARTER: 4
0.00 0.00 0.00 1.95 0.24 0.23	MATPFA	ICS 	TOTAL DINDUCT C	883 406 458	MATPFA	ALLOWABLE QUANTITY		MATPFA
00000000000000000000000000000000000000	RCC:	STATISTICS	ITEM	!	RCC:	PROCESS	1	RCC:
	SA	BLY		_66	SA	N N	FÖHFÖF	SA
50002 50004 50005 50173 WG00 WG10 WG11 WGSW	ALC:		PARENT	AC/DB F-15ST F-16ST	ALC:	WORK	AC AC/DB DB DB F-15QT F-15QT F-16QT F-16QT F-16ST GG GG	VOOSOUCHED

STOCK ITEM	TEM	TOTAL	DELAYED		WAIT (HOURS) AVERAGE	AVERAGE	· · · · · ·	TING QUI	STD.DEV. MAXIMUM CURRENT	RRENT					
ALC: S	SA RCC:	Matera	A QUARTER:	.∺ 4•	DATE:	20-A	20-AUG-90	TIME:	15:25:12	REPT.ID:	VALID	PAGE:	12		
DEDICATED	ED STOCK	STATISTICS	[]	Subcomponent	nents	† 	; ! ! !								
Mant Acons	7	TOTAL	DELAYED		WAIT (HOURS) AVERAGE	AVERAGE	35	LING QUI	-WAITING QUEUE COUNT E STD.DEV. MAXIMUM CURRENT	RRENT					
						1				+					
AC /DB		411		408 878	0.0		0.0	0.0	1.0	- •					
DB 22		411		411	19.1		6.0	6,0	0.9	mc					
ဗ္ဗ		886		882	o. o		o. o	o •	O. 1	>					
<i>:</i> :	SA RCC:	MATPFA	A QUARTER:	R:	DATE:		20-AUG-90	TIME:	15:25:12	REPT. ID:	VALID	PAGE	3: 13		
RESOURCE	ſ	UTILIZATION by	oy SHIFT		! ! ! !	 					<u> </u>				
-	} 		 		1	AVER	AGE NUI	-AVERAGE NUMBER IN	EACH STATE-	(E	!	- !	-BATCHING	1	
			NUMBER		SHIFT			PREV.		OTHER	MIN		MAX	AVG	AV
CODE	DESCRIPTION		SHIFT AVAIL.			IDLE	IN USE	MAINT.	FAILURE	DOWN	SIZE	မျှ မျှ	SIZE	SIZE	Z i
50002	50002	i [1 32.0			0.52	0.43	0.00		0.00					
))		2 32.0		0.39 0	0.58	0.37	0.0		0.00					
			3 32.0			0.59	0.36	0.0	0.05	0.00					
						. 63	0.32	0.0		0.00					
						. 68	0.27	0.0		•					
						. 68	0.27	0.00		00.00					
V OO03	\$000S					. 92.0	0.21	00.00		0.00					
•	•				0.17 0	0.80	0.17	0.0		0.00					
			9.6 6.8			0.89	0.08	0.00	0.03	0.00					
).78	0.19	0.0		0.00					
					0.20	0.78	0.19	0.0		0.00					
						0.82	0.15	0.00		0.00					
30003	2000					75	0.23	00.00		0.00					
coooc (2000					26	0.16	00.0		00.0					
) 8						3.88	0.10	0.0		00.0					
0						7.78	0.20	0.0		0.00					
0 4			ເບ ເບ ໝູ		0.19	0.79	0.19 81.0	96	0.02	0.0					
11)	}	;							

AW.

Note: P amber that the utilizations reflect c / 80% of the workload and the other 20% may not be spread evenly across all resources

20-AUG-90 TIME: 15:25:12 REPT.ID: VALID DATE: QUARTER: 4 RCC: MATPFA SA ALC:

15

PAGE:

ITEM NAME: AC WCD NAME: SLOTHRUS

WCD by OPERATION STATISTIC AVERAGES

		509, 50173	WG09, 50173	200	309, 50173	•	MG00			200	16
OCC FAC	1.00								0.10		
RCC	MATPFA	MATPFA	MATPEA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPEA	MILID
DESC	ASSY	TEST	TEST	ASSY	TEST	TEST	REP	TEST	TEST	ASSY	REPT.ID: V
AVERAGE SIMULATED HRS	5.40	4.02	7.24	9.13	3.26	14.41	14.93	2.53	96.6	5.05	15:25:12 F
AVERAGE SCHEDULED HRS	3.05	2.23	4.14	5.16	2.04	8.08	8.47	1.54	5.77	3.04	NUG-90 TIME:
QUEUED HRS	0.00	8.68	13.09	0.49	8.75	0.00	0.40	00.0	0.00	1.16	DATE: 20-AUG-
D QUEUED QTY	00	24.	'n	12.					•		QUARTER: 4
PROCESSE! QTY	136.	102.	106.	102.	134.	134.	10.	8	14.	134.	MATPFA
POTENTIAL PROCESSED OTY	136.	134.	134.	134.	134.	134.	134.	134.	134.	134.	RCC:
OPER	0100	0300 S	0400	0200	S 0090	0700	0800	S 0060	1000	1100	ALC: SA

ITEM NAME: AC/DB WCD NAME: SLOTHRU4

WCD by OPERATION STATISTIC AVERAGES

			WG00
ည	FAC	!	1.00
	RCC	1 1 1 1 1	
	DESC		REP
AVERAGE SIMULATED	HRS		4.48
AVERAGE SCHEDULED	HRS		2.66
QUEUED	HRS		0.49
	QTY		;
POTENTIAL PROCESSED	OTY		412.
POTENTIAL	QTY		412.
OPER	CODE		0100

WG00, as WG10, 50002 WG10, 50002 WG10, 50005 WG10, 50005 WG10, 50005 17	WG09, 50005	WG00 WG11, 50002
00.00 .35 .35 .00 .00 .00 .00	. FAC 1.00 1.00 0.05 0.05	OCC 11.00 W
ш [Δ,	
MATPEA MATPEA MATPEA MATPEA MATPEA ATPEA MATPEA MATPEA MATPEA	RCC MATPFA MATPFA MATPFA	RCC MATPFA MATPFA MATPFA MATPFA
DSSY ASSY TEST TEST TEST TEST TEST TEST TEST T	DESC REP TEST TEST REP TEST TEST TEST	DESC IN INSP TEST TEST TEST
5.20 6.30 3.75 3.03 3.03 3.94 5.25 58.23 15:25:12	AVERAGE SIMULATED HRS 4.58 2.56 7.67 0.00 1.41 0.00	AVERAGE SIMULATED HRS 2.00 8.70 7.42 24.42 19.39
00 2.53 49 3.60 92 2.73 95 22.04 23 2.39 00 26.28 00 3.17 37 2.80 00 23.14 76 2.73 35 36.25 20-AUG-90 TIME:	AVERAGE D SCHEDULED HRS	AVERAGE SCHEDULED HRS 2.00 5.30 6.39 19.30 15.60 24.15
0.00 56.49 11.92 9.95 13.23 11.37 0.00 32.76 12.35 DATE: 20-A	SLOTH OUEUE HRS 10.00.00.00.00.00.00.00.00.00.00.00.00.0	WCD NAME: QUIKTHRU AGES QUEUED QUEUED QTY HRS 0. 0.00 116. 1.40 66. 19.70 0.00 0.00 0.00
0. 142. 57. 42. 60. 29. 13. 7. 2. QUARTER: 4	AVERAGES D QUEUED OTY 0. 5. 0. 0. 0. 0. 0. 0. 0. 0.	WCD NAME VERAGES QUEUED QTY 0. 116. 66. 0.
411. 411. 129. 147. 261. 258. 41. 121. 121. 31. 31.	PROCESSE QTY 	AME: F-15QT WCD OPERATION STATISTIC AVERAGES POTENTIAL PROCESSED QUEU QTY QTY QTY 116. 116. 0 116. 116. 66 116. 116. 66 117. 33. 0
411. 409. 409. 409. 409. 408. 408. 408.	DB ATION 27TY 15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	TTEM NAME: F-15QT CD by OPERATION S OPER POTENTIAL CODE QTY 0000 116. D100 116. D200 S 116. D300 117.
0200 0300 0400 S 0500 0500 0600 S 0700 0800 0900 S 11000 S	TTEM NAME: WCD by OPER OPER CODE (CODE (C	MCD BY O CODE CODE CODE CODE CODE CODE CODE CO

				2000	20002	
WGSW 19		WG11	50	WG00	WG11, 50002	
1.00 1.00 1.00 1.00		PAC 1.000 1.000 1.000 1.000	PAGE:	900 1.00	0.70 1.00 PAGE:	F
MATPFA MATPFA MATPFA MATPFA VALID		RCC MATPEA MATPEA MATPEA MATPEA MATPEA MATPEA MATPEA	VALID	RCC MATWIP MATPEA MATPEA	MATPFA WIP VALID	
TEST TEST PACK OUT			REPT.ID:	DESC IN INSP	TEST MAT WIP WIP REPT.ID: VALID	
16.06 1.94 3.80 4.00 15:25:12	AVERAGE	SIMULATED HRS 2.00 5.30 6.50 19.46 1.12 4.17	15:25:12	AVERAGE SIMULATED HRS HRS 104.52	27.78 1876.08 15:25:12	
00 13.2 00 1.68 29 2.40 00 4.00 20-AUG-90 TIME:	AVERAGE	P ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	20-AUG-90 TIME:	AVERAGE SCHEDULED HRS 105.12 5.30	21 21.75 00 1875.76 20-AUG-90 TIME:	
0.00 0.00 1.29 0.00 DATE: 20-A	SUPQTHRU	QUEUED HRS HRS 35.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00	ATE:	QUEUED HRS - 0.00 1.84	21.21 0.00 DATE: 20-A	NAME: AWP-G
0. 0. 31. 0. QUARTER: 4	AVER	OUTY OTY 0. 0. 0. 0.	QUARTER: 4 D. WCD NAME: AVERAGES	D QUEUED QTY OT. 181.	50. 0. QUARTER: 4	WCD NAM
117. 117. 117. 117. MATPFA	SQT	L PROCESSED OTY 2. 2. 2. 2. 2.	MATPFA QUARTER: ST WCD STATISTIC AVERAGE	L PROCESSED QTY 406.	284. 404. MATPFA	ST
117. 117. 117. 117. RCC:	RME: F-15	POTENTIAL OTY 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	A RCC: M	POTENTIAL QTY 406.	403. 404. RCC:	ME: F-15
0600 0700 0800 9999 ALC: SA	§ •	OPER P CODE 0000 0100 0200 S 0300 0350 0400	ALC: SA ITEM NAME: WCD by OPER	OPER E CODE 0000		080044

24

PAGE:

DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID

QUARTER: 4

MATPFA

						05 05 05 05					002
						500					, 50
		21				WG11,50002 WG11,50002 WG11,50002	23				WG11,50002
FAC	1.00 0.28 0.72	PAGE:			FAC	0.19	PAGE:			FAC	1.00
RCC	MATPFA AWP G-COND	VALID			RCC	Matpea Matpea Matpea	VALID			RCC	matpea Matpea Matpea
DESC	8DAY AWP GCON	REPT.ID: VALID			DESC	TEST TEST TEST	REPT. ID:			DESC	REP TEST TEST
AVERAGE SIMULATED HRS	168.00 1415.39 4678.84	15:25:12			AVERAGE SIMULATED HRS	27.79 32.31 13.08	15:25:12			AVERAGE SIMULATED HRS	2.60 5.51 32.49
AVERAGE SCHEDULED HRS	168.00 1410.68 4999.50	20-AUG-90 TIME:			AVERAGE SCHEDULED HRS	22.07 24.79 11.01	20-AUG-90 TIME:			AVERAGE SCHEDULED HRS	1.77 4.87 24.64
QUEUED S HRS	0.00	DATE: 20-AU	NAME: SLOTHRUO		QUEUED HRS	27.11 23.84 14.79	DATE: 20-A	NAME: SLOTHRUL		QUEUED HRS	1.67 24.49 0.00
QUEUED	000	QUARTER: 4 D	WCD NAME:	erages	QUEUED	34. 64. 21.	QUARTER: 4	WCD NAME	FRAGES	QUEUED	28. 43. 0.
PROCESSED QTY	152. 35. 122.	matpfa Quai		WCD by OPERATION STATISTIC AVERAGES	POTENTIAL PROCESSED OTY	59. 123. 75.	matpfa qua	T.	WCD by OPERATION STATISTIC AVERAGES	. PROCESSED QTY	73. 73. 53.
POTENTIAL PROCESSED OTY	152. 153. 157.	RCC:	ITEM NAME: F-15ST	PERATION S	POTENTIAL OTY	287. 286. 286.	RCC:	ITEM NAME: F-15ST	OPERATION	POTENTIAL QTY	73.
OPER	0050	ALC: SA	ITEM NA	WCD by C	OPER	0300 0400 0500	ALC: SA	ITEM N	WCD by	OPER	0100 0200 0300

WCD by OPERATION STATISTIC AVERAGES

WCD NAME: SLOTHRU7

				13											sı									
	æ	NR, as	WG00, 50002	WG00, 50002, as	WG11,50002	•		25	!			æ	NR. as	WG00, 50002	WG00, 50002, as	WG11,50002		26	<u> </u>					WG11,50002 WGSW
OCC FAC	1.00			1.00	1.00	1.60	1.00	PAGE:			OCC FAC	1.00				_	1.00	PAGE:	 			00 00 00 00 00 00 00 00 00 00 00 00 00		1.00
RCC	MATPEA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	VALID	; ; ; ; ;		RCC	MATPEA	MATPFA	MATPFA	MATPFA	MATPFA	Matpfa Matpfa	VALID				J		Matpfa Matpfa
DESC	DSSY	ASSY	DSSX	ASSY	TEST	TEST	TEST	REPT. ID:			DESC	DSSY	ASSX	DSSY	ASSY	TEST	TEST TEST	REPT. ID:				C 6		PACK
AVERAGE SIMULATED HRS	00.00	00.0	3.73	5.58	7.53	31.80	17.03	15:25:12			AVERAGE SIMULATED HRS	00.00	0.00	3.90	4.97	6.98	46.57 16.15	15:25:12				AVERAGE SIMULATED HRS		1.83 3.95
AVERAGE SCHEDULED HRS	0.00	0.00	2.38	3.36	6.29	25.54	13.90	20-AUG-90 TIME:			AVERAGE SCHEDULED HRS	00.00	00.00	2.37	3.13	5.95	35.79 13.28	20-AUG-90 TIME:				AVERAGE SCHEDULED HRS		2.62
QUEUED	0.00	51.63	1.30	87.34	23.95	0.00	0.00	DATE: 20-	WCD NAME: SLOTHRU7		QUEUED HRS	00.00	72.77	1.18	106.92	23.30	0.00	DATE: 20-		S: SLOTHRU3		QUEUED		1.20
QUEUED	0.	169.	117.	143.	189.			QUARTER: 4	WCD NAME	VERAGES	QUEUED	0	11.	10.	15.	14.		QUARTER: 4		WCD NAME:	AVERAGES	QUEUED		169.
POTENTIAL PROCESSED QTY QTY	331.	331.	329.	329.	326.	324.	322.	MATPFA QU	: 	by OPERATION STATISTIC AVERAGES	POTENTIAL PROCESSED QTY QTY	34.	34.	34.	35.	35.	34. 34.	MATPFA QU.		H	STATISTIC A	PROCESSED		385. 385.
POTENTIAL QTY	331.	331.	329.	329.	326.	324.	322.	A RCC:	ITEM NAME: F-15ST	PERATION	POTENTIAL QTY	34.	34.	34.	35.	35.	34.	A RCC:	 	ITEM NAME: F-15ST	OPERATION	POTENTIAL OTY		385.
OPER	0010	0000	0020	0010	0200 S	0300	0400	ALC: SA	ITEM NA	WCD by C	OPER	00100	0050	0020		0200 S	0300	ALC: SA	1	ITEM N	WCD by C	OPER	•	0200
																						08	00	46

WCD by OPERATION STATISTIC AVERAGES

									۵.									
	27	•						005	WG11,50002	•					MGSW		28	1
1.00	PAGE:	 				occ FAC	0	1.00	1.00 %	1.00	0.28	1.00	1.00	1.00	1.00	1.00	PAGE:	
MATPFA	VALID					RCC	MATORA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	VALID	
OUT	REPT.ID: VALID	4				DESC	2	INSP	TEST	TEST	TEST	TEST	TEST	TEST	PACK	OUT	REPT. ID:	
6.44	15:25:12				AVERAGE	SIMULATED HRS	00 6	8.70	7.21	24.09	26.65	38.62	17.06	1.84	4.21	4.00	15:25:12	
3.80	TIME:	; ; ; ; ;			NGE	TLED 3	00	30	5.24	.38	. 73	29.36	14.02	1.60	. 60	4.00	TIME:	
	20-AUG-90	 	_		AVERAGE	SCHEDULED HRS		,	•	5	2	56	14	_		•	20-AUG-90	
0.00	DATE: 20-		WCD NAME: QUIKTHRU			QUEUED	000	1.40	22.57	0.00	0.00	0.00	0.00	0.00	1.11	0.00	DATE: 20-	
	4 DA		IAME: (i -										4 DA	
	QUARTER:		WCD N	AVERAGES		QUEUED		129.	99	•	ö	Ö	Ö	ö	36.	Ö	QUARTER:	
385.	MATPFA (Ę	WCD by OPERATION STATISTIC AVERAGES		PROCESSED QTY	129	129.	129.	128.	30.	128.	128.	128.	127.	127.	MATPFA (
385.	RCC:		ITEM NAME: F-16QT	ERATION		POTENTIAL QTY	129	129.	129.	128.	128.	128.	128.	128.	127.	127.	RCC:	
ō.	SA		M NAM	by OF		~	0	0100	s o	0	0	0	0	0	0	6	SA	
6666	ALC:		ITE	£CD		8 8	1 8	010	020	030	040	020	090	070	080	6666	ALC:	1

ITEM NAME: F-16SQT WCD NAME: SUPQTHRU

WCD by OPERATION STATISTIC AVERAGES

		WG11				WGSW		29
OCC FAC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	PAGE:
RCC	MATPFA	VALID						
DESC	I NI	INSP	TEST	TEST	TEST	PACK	OUT	REPT. ID:
AVERAGE SIMULATED HRS	2.00	5.30	3.37	3.17	0.91	5.09	4.00	15:25:12 REPT.ID: VALID
AVERAGE SCHEDULED HRS	2.00	5.30	2.77	2.57	0.31	3.39	4.00	UG-90 TIME:
QUEUED	0.00	71.20	0.00	0.00	0.00	1.04	0.00	DATE: 20-AUG-90
QUEUED	0.	ij		°.	Ö	2.		RTER: 4
OTENTIAL PROCESSED OTY	2.	2.	2.	2.	2.	2.	2.	MATPFA QUA
POTENTIAL QTY	2.	2.	2.	2.	2.	5.	5.	RCC:
OPER I	0000	0100	0200 S	0300	0320	0400	6666	SAIC: SA

32

PAGE:

QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID

MATPFA

302:

SA

080048

STATISTIC AVERAGES
QUEUED
0. 202.
176. 56.
o
QUARTER: 4 DATE:
WCD NAME: AWP-G
OPERATION STATISTIC AVERAGES
QUEUED QUEUED QTY HRS
0.00
QUARTER: 4 DATE:
WCD NAME: SLOTHRUU
OPERATION STATISTIC AVERAGES
QUEUED QUEUED QTY HRS
41. 17.15 65. 24.07 38. 24.11

WCD NAME: SLOTHRUI

ITEM NAME: F-16ST

NR NR, as WGOO, 50002 WGOO, 50002, as	, 50002	81	MG11,50002,as WG11,50002,as 34	
NR NR, as WG00, 5	WG11	NR NR, as	WG00 WG11 34	
OCC FAC 1.00 1.00	1.00 1.00 1.00 PAGE:	00CC FAC 1.00	PAGE: 000	8
RCC MATPEA MATPEA MATPEA	MATPEA MATPEA MATPEA VALID	RCC MATPFA	MATPEA MATPEA MATPEA MATPEA VALID	
DESC DSSY ASSY DSSY ASSY	TEST TEST TEST REPT.ID:	DESC DESC DSSY ASSY	ASSY TEST TEST TEST TEST	
AVERAGE SIMULATED HRS 0.00 0.00 4.23 5.68	7.03 33.37 17.86 15:25:12	AVERAGE SIMULATED HRS 0.00	4.86 5.37 7.72 39.16 16.61 15:25:12	AVERAGE SIMULATED
AVERAGE SCHEDULED HRS HRS 0.00 0.00 2.68 3.43	23 6.02 00 26.33 00 14.58 20-AUG-90 TIME:	AVERAGE SCHEDULED HRS 0.00	3.01 55 3.27 18 6.63 00 28.75 00 13.86 20-AUG-90 TIME:	AVERAGE SCHEDULED
QUEUED HRS 0.00 61.37 1.36	23.23 0.00 0.00 DATE: 20-4	SLO QUE HB	1. 99. 26. 0. 0. 0. SLOTH	QUEUED
AVERAGES QUEUED QTY 0. 235. 168.	279. 0. 0. QUARTER: 4	WCD NAME: AVERAGES QUEUED QTY 0. 26.	19. 24. 31. 0. 0. 0. WCD NAME:	AVERAGES QUEUED
PROCESSEI QTY 462. 462. 462.		STATISTIC PROCESSEI OTY 59.	57. 57. 57. 55. 55.	OPERATION STATISTIC A
POTENTIAL QTY 462. 462. 462.	460. 457. 456. RCC:	F-168 ATION ENTIAL OTY 59.	57. 57. 57. 55. 55. A RCC: M	OPERATION POTENTIAL
MCD by 0 OPER CODE 0010 0020 0050	0200 S 0300 0400 ALC: SA	A - W (3.1	0050 0100 0200 S 0300 0400 5 ALC: SA R	WCD by (
			,	080049

WCD NAME: SLOTHRU7

ITEM NAME: F-16ST

*** NO BACKSHOP ACTIVITY ****

F-15QT

*** NO BACKSHOP ACTIVITY ****

1876.08 323.78 3635.79

WIP AWP G-COND

OF-1580T OF-158T OF-158T OFF-158T

CODE	QTX	QTY	QTY	HRS	HRS	HRS	DESC	RCC	FAC	
0100 0200 9999	451. 449. 449.	451. 449. 449.	243. 200. 0.	24.16 1.28 0.00	1.58 2.47 4.07	1.93 3.78 6.93	TEST	MATPFA MATPFA MATPFA	1:00	WG11,50002 WGSW
ALC: SA	RCC:	MATPFA	QUARTER: 4	DATE: 20-	20-AUG-90 TIME:	15:25:12	REPT.ID: VALID	VALID	PAGE:	35
ITEM NAME: GG	99 :a		WCD NAM	WCD NAME: SLOTHRU2						
WCD by OP!	ERATION	STATISTIC	WCD by OPERATION STATISTIC AVERAGES							
OPER PO	POTENTIAL QTY	PROCESSED QTY	ED QUEUED QTY	QUEUED	AVERAGE SCHEDULED HRS	AVERAGE SIMULATED HRS	DESC	RCC	FAC	,
0100	445.	445.	161.	1.22	3.57	5.69	REP	MATPFA	1.00	WG00
0200 0200 S	443.	443.	235.	13.44	2.90	3.61	TEST	MATPFA	1.00	WG10,50004
0300	443.	443.	9.5	0.00	25.50	36.63	TEST	MATPFA	0.10	C C C
0200	441.	32.	; , i	12.71	3.76	5.37	TEST	MATPEA	0.10	WG10, 50004
0550	441.	48.	ij	4.32	23.36	34.38	TEST	MATPEA	0.10	WG10, 50004
ALC: SA	RCC:	MATPFA	QUARTER: 4	DATE: 20-2	20-AUG-90 TIME:	15:25:12	REPT.ID: VALID	VALID	PAGE:	36
BACKSHOP DWELL		TIMES BY BA	BACKSHOP RCC							
			;							
ITEM		I	RCC	AVERAGE HOURS						
AC		* * *	NO BACKSHOP ACTIVITY	ACTIVITY ****	* *					
AC/DB		* *	NO BACKSHOP ACTIVITY ****	ACTIVITY ***	* *					
DB		*	*** NO BACKSHOP	ACTIVITY ****	* *					

F-16QT	ON ***	BACKSHOP ACT	ACTIVITY ***	- 				
F-16SQT	ON ***	BACKSHOP ACT	ACTIVITY **	***				
F-16ST F-16ST F-16ST	WIP AWP G-COND	OND 3	880.36 356.91 578.28					
99	1 ON ***	BACKSHOP ACT	ACTIVITY **	*******				
ALC: SA RCC:	Matpfa Qua	QUARTER: 4 DA	DATE: 20-	20-AUG-90 TIME:	15:25:12	REPT.ID:	VALID	PAGE: 37
HISTORICAL vs. S	SIMULATED COMP	COMPARISON	i 		; ; ; ; ; ; ; ; ;	7 7 1 1 1	· · · · · · · · · · · · · · · · · · ·	
ITEM	HISTORICAL FLOWTIME STY HOURS DEV	ICAL VALUES STANDARD DEVIATION	SAMPLE	SIMUI FLOWTIME HOURS	SIMULATED VALUES IME STANDARD S DEVIATION	SAMPLE	WORKLOAD WEIGHT	PERCENTAGE DIFFERENCE
				1.				
AC AC/DB	000	000	o c	59.13	26.95 57.58	133	0.00	0.00
DB	0.00	0.00	0	16.67	8.43	15	0.00	0.00
F-150T	0.00	0.00	0	117.60	55.05	117	0.000	0.00
F-15SGT F-15ST	00.0	000	00	3385.83	7.08	385	000	00.0
F-16QT	0.00	00.0	0	_	,	127	0.000	00.0
F-16SQT	0.00	0.00	0	60.49		7	0.000	0.00
F-16ST GG	0.00	0.00	00	3510.27 58.14	2444.91 45.86	449 441	0.000	0.00
ITEM AC	EXCLUDED	FROM	VALIDATION	TEST DUE TO	INSUFFICIENT	r data		
ITEM AC/DB	EXCLUDED	FROM	VALIDATION	TEST DUE TO	INSUFFICIENT	r Data		
ITEM DB	EXCLUDED	FROM	VALIDATION	TEST DUE TO	INSUFFICIENT	r DATA		
ITEM F-15QT	EXCLUDED	FROM	VALIDATION	TEST DUE TO	INSUFFICIENT	r data		
ITEM F-15SQT	EXCLUDED	FROM	VALIDATION	TEST DUE TO	INSUFFICIENT	r DATA		
ITEM F-15ST	EXCLUDED	FROM	VALIDATION	TEST DUE TO	INSUFFICIENT	r data		
$0_{\mathbf{S}}$ item f-160 \mathbf{r}	EXCLUDED	FROM	VALIDATION	TEST DUE TO	INSUFFICIENT	r data		
15005 1	EXCLUDED	DED FROM VALIDATION		TEST DUE TO	INSUFFICIENT	r data		

ITEM	ITEM F-16ST		щ	EXCLUDED 1	FROM	VALIDAT	XCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	E TO IN	SUFFICIENT	DATA		
ITEM GG	99		щ	EXCLUDED 1	FROM	VALIDAT	XCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	E TO IN	SUFFICIENT	DATA		
ALC: SA	ALC: SA RCC: M	RCC:		QUARTER	4	DATE:	RCC: MATPFA QUARTER: 4 DATE: 20-AUG-90 TIME: 15:25:12 REPT.ID: VALID	TIME:	15:25:12	REPT.ID: V	ALID	PAGE
HISTO	HISTORICAL VS. SIM	vs.	, 5, ,	ULATED COMPARISON	Z:		TLATED COMPARISON			*		

NOT ENOUGH ITEMS REMAINING TO CONDUCT VALIDATION TEST

MODEL RUN #2

PAGE:

PAGE: 13:54:05 REPT.ID: VALID 1 21-AUG-90 4 DATE: QUARTER: MATPFA RCC: ល ALC:

RUN PARAMETERS

SEEDA2

This job was run on SAALC, a little tiny vax.

SA ALC: RCC: MATPFA

REPORT ID: VALID

UFC AREA - VALIDATION VERSION

UFCPART.val FILE: PART

UFCOPS.val FILE: OPER FILE: RES

UFCETC. val FILE:

WEEKENDS = Y

NUMBER OF QUARTERS =

WARM UP PERIOD; STATS WILL BE CLEARED AT DAY

270

OF HOLIDAYS

8.000000 HISTORICAL DATA SHIFT FACTOR

24.00000 BACKSHOP DATA SHIFT FACTOR

NEW DATA FORMATS SELECTED

26.89 MINUTES 27.87 MINUTES SIMULATION CPU TIME: SIMULATION LAPSE TIME:

SIMULATION RUN LENGTH: 15216.00 HOURS

Number of Items Number of Resources Number of WCDs

21 76 29695 Onumber of WCDs:

Onumber of Operations:

Operations completed:

OALC: SA RCC: MATPFA

21-AUG-90 TIME: 13:54:05 REPT.ID: VALID DATE: QUARTER:

ITEM INDUCTIONS	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	! ! ! !	 	 	1 1 1 1 1			
		1ST QTR	2ND QTR	3RD QTR	4TH QTR	YTD		
OF ITEM	••	104	112	92	107	415	(MISTR)	
OF ITEM	••	208	218	191	211	828	(MISTR)	
OF ITEM	••	104	112	92	107	415	(MISTR)	
OF ITEM	···	23	23	35 •	E,	116	(MISTR)	
WHILE NO.	:	⊣ ;)	→ ;	O (7	(MISTR)	
OF ITEM	••	80	18	136	109	406	(MISTR)	
OF ITEM	••	41	17	40	31	129	(MISTR)	
OF ITEM	:.	0	-	0 ;	,	7	(MISTR)	
INDUCTIONS OF ITEM F-16ST INDUCTIONS OF ITEM GG	·· ··	147 206	59 220	142 188	110 216	458 830	(MISTR) (MISTR)	
					-			
TOTAL ITEM INDUCTIONS	••	914	843	921	923	3601		
ALC: SA RCC: MATPFA	QUARTER: 4	DATE: 21	-AUG-90	TIME: 13	3:54:05 REPT.	T.ID: VALID	ID PAGE:	m
WCD INDUCTIONS						-		
		1ST OTR	2ND QTR	3RD QTR	4TH OTR	YTD		
INDUCTIONS OF WCD	SLOTHRU5:	30	25	26	32	113		
Ç	ST.OTHRI14	104	112	. 26	108	416		
9	SLOTHRU6:			i m	9	13		
Q.	QUIKTHRU:	23	23	39	31	116		
INDUCTIONS OF WCD	SUPQTHRU:	-	0	-	0	7		
Q	SLOTHRUI:	80	81	136	109	406		
OF.	AWP-G:	33	34	37	29	163		
Q (SLOTHRU0:	17	52	65	8 8 1	271		
INDUCTIONS OF WCD	SLOTHRU1:	7 2	50	7 50	16 9.7	7.7		
	STOTHER ?:	γ. 1 α	000	<u>ς</u> α) C	9.5 9.5		
Ç	SLOTHRU3	118	75	- -	104	39.5		
9 P	OUIKTHRU:	41	17	40	31	129		
Ç	SUPOTHRU	! C	; -	c	; -	`		
g g	SLOTHRUI	147	59	142	110	458		
INDUCTIONS OF WCD	AWP-G:	47.	52	36	19	196		
INDUCTIONS OF WCD	SLOTHRU0:	74	94	.67	87	322		
INDUCTIONS OF WCD	SLOTHRU7:	. 97	131	94	112	434		
INDUCTIONS OF	SLOTHRU7:	10	14	11	7	42		
	SLOTHRU3:	86	131	97	106	432		
INDUCTIONS OF WCD	SLOTHRU2:	115	127	82	103	430		
5								

A RCC: MATPFA QUARTER: CLE TIME STATISTICS HISTORICAL FLOWTIME HOURS 0.00 0.00 0.00 0.00 0.00 0.00	AVERAGE SIMULATED FLOW TIME HOURS HOURS 122.67 81.68 25.69 121.08 49.95 3359.05 132.60 33.59 33.59		TIME: 13:54:05	05 REPT.ID:	VALID	PAGE:	4
CYCLE TIME STATISTICS HISTORICAL FLOWTIME HOURS M HOURS 0.00 OT OT OT OT OT OT OT OT OT	AVERAGE LMULATED LOW TIME HOURS 52.67 81.68 25.69 121.08 49.95 33.59 33.59 33.59	STANDARD DEVIATION					1
0.00 150T 0.00 0.00 150T 0.00 15ST 0.00 0.00	52.67 81.68 25.69 121.08 49.95 3359.05 33.59 33.59	24.81	SIMULATED MINIMUM FLOW TIME HOURS	TED	NUMBER OF SAMPLES	NUMBER OF INDUCTIONS	ļ
TER:	49.29 4 DATE:	23.84 43.23 43.23 2388.07 70.57 20.33 2470.83 40.18	17.95 3.04 5.08 50.8 19.39 115.41 19.21 188.83 1.38 1.38 1.38	170.12 369.00 85.41 362.96 80.52 12151.03 472.63 47.96 11695.40 291.57	116 417 13 118 2 393 130 427 427 428	415 828 415 116 2 406 129 458 830 PAGE:	ا م
DIRECT LABOR STATISTICS EXPECTED STA HOURS	STANDARD	SIMULATED AVERAGE LABOR HOURS	STANDARD DEVIATION	SIMULATED MINIMUM LABOR N HOURS	ATED AGM SS SS	SIMULATED MAXIMUM LABOR HOURS	NUMBER OF SAMPLES
	0.00	29.51	13.27		66.	86.65	116
/DB 42.	0.00	41.18	32.9		2.87	223.06	417
DB 10.19 F-150T 83.56		78.33	34.10		. 88	197.71	118
T 29.	0.00	26.79	20.6		.19	41.38	7
166.	00.0	98.76	53.2		11.75	385.67	393
83.	0.00	90.26	50.2		.73	341.82	130
F-16SQT 29.40	0.00	22.88	15.37		12.01	33.75	7
16ST 1	0.00	106.15	48.37		21.20	314.22	427
QALC: SA RCC: MATPFA QUARTER: 4	0.00 4 DATE:	31.51 21-AUG-90	25.03 TIME: 13:54:0	1 JS REPT.ID	.21 : VALID	139.56 PAGE:	428

٠		OF OF SAMPLES	116 417 13 118 2 393 130 427	
	-			∞
	PAGE:	BACKSHOP RS %	000008800880	PAGE:
	VALID	BACK HOURS	0.0 0.0 0.0 0.0 2974.9 0.0 3243.2	VALID
	REPT.ID: V	PROCESSING FLOW HOURS &	96.88 74.68 97.98 76.38 91.38 90.08	: l
NUMBER OF SAMPLES	116 417 13 118 393 130 427 427 428	PROCESSI HOURS	51.0 60.9 25.2 106.7 38.1 286.6 121.1 33.6 302.1	13:54:05 REP THE BLAKE Y STATISTIC
SIMULATED MAXIMUM BACKSHOP HOURS	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	5 *	25.12.42.42.42.42.42.42.42.42.42.42.42.42.42	CURRENT QUEUE QUANTITY
MULATED S MINIMUM ACKSHOP HOURS	0.00 0.00 0.00 0.00 0.00 0.00 0.00 110 0.00 110 0.00 110	RESOURCES HOURS	1.7 20.8 0.5 14.4 11.9 97.6 10.0 4.6	21-AUG-90 AVERAGE QUEUE WAIT (hrs)
TANDARD	0.00 0.00 0.00 0.00 0.00 2322.38 0.00 2396.09 0.00 1: 4 DATE:	FLOW	52.7 81.7 25.7 121.1 50.0 3359.0 132.6 3653.5 49.3	4 DATE: MAXIMUM QUEUE QUANTITY
AVERAGE SIMULATED BACKSHOP S HOURS DE	0.00 0.00 0.00 0.00 0.00 0.00 3243.21 0.00		0000000000	QUARTER: ICS STANDARD DEVIATION
Sign 1	SUMMARY	!		C: MATPEA UE STATISTICS AVERAGE QUEUE STA QUANTITY DEV
•	TIMES SU			SC OUE
ITEM	AC AC/DB DB F-15QT F-15ST F-16QT F-16SZ F-16SZ GG ALC: SA	ITEM	AC AC/DB DB F-15QT F-15ST F-16QT F-16ST GG	ALC: SA RESOURCE RESOURCE AUEUE
				300

RESOURCE OF THE COLUMN TO THE

	σ			10				#
	PAGE:			PAGE:	CURRENT QUANTITY WAITING	* * * *	* * * * * * *	PAGE:
	VALID	; ; ; ; ; ;		VALID	AVERAGE QUANTITY WAITING	NONE WAITED NONE WAITED NONE WAITED		VALID
23 23 23 24 24 25 23 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	REPT. ID:	T	9 7 0	REPT. ID:	AVERAGE WAITING TIME			REPT. ID:
640040£ã1	13:54:05	QUEUE COUNT	10.0	13:54:05	CURRENT	0 0 0 -	192 192 0 218 5	13:54:05
	TIME:	waiting QUI	0.8	TIME:	MAXIMUM	12 2 2 9	199 7 7 10 10	TIME:
0.00 0.00 1.75 1.39 0.93	21-AUG-90	AVERAGE ST	0.7 3.8 3.5	21-AUG-90	MINIMUM MR	0000	140 140 0 0 165	21-AUG-90 ons
26.00 8.00 7.00 2.00 14.00 3.00 15.00 7.00	4 DATE:	WAIT (HOURS) AVERAGE	51.1 68.8 63.3	4 DATE:	STD. DEV.	0.8	18.2 1.6 0.1 19.7 1.8	4 DATE: 21
0.00 0.00 0.03 2.42 8.44 0.57	QUARTER:	DELAYED OPERATIONS	124 356 490	QUARTER:	AVERAGE	3.9	166.6 1.9 1.9 208.6 2.4	QUARTER: Paralle
0.00 0.00 0.00 0.00 1.88 0.17 0.17	MATPFA	OTAL	828 406 458	Matpfa	ALLOWABLE	66666 66666	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MATPFA
	RCC:	STATISTICS	}	RCC:	PROCESS	!		RCC: STOCK
50002 50004 50005 50173 WG00 WG10 WG11 WG11	ALC: SA	SSEMBLY	AC/DB F-15ST F-16ST	ALC: SA	MORK IN P	AC DB DB F-150T	F-15SQT F-15ST F-16QT F-16SQT F-16ST GG	030058

	· ·			WALT										
STOCK ITEM	¥ !	TOTAL	L DELAYED F OPERATIONS	(HOURS)		AVERAGE ST	STD.DEV.	WAITING QUEUE COUNTAGE STD.DEV. MAXIMUM CUR	CURRENT					
ALC: SA	RCC:	MATPFA	A QUARTER:	4 DATE:		21-AUG-90	TIME:	13:54:05	REPT.I	.ID: VALID	PAGE:	12		
DEDICATED	STC.K	STATISTICS	rics - Subcompone											
STOCK ITEM	Σ	TOTAL	DELAYED COPERATIONS			AGE	કુ.	QUEUE COUNT	IRRENT					
AC AC/DB DB GG	1	415 828 415 415 830	418 8 829 8 415 9 828	0.0	0 0	0.00	0000	3.0 1.0 1.0	0000		•			
ALC: SA	RCC:	MATPFA	A QUARTER:	4 DATE:		21-AUG-90	TIME:	13:54:05	REPT. I	.ID: VALID	PAGE:	13		
RESOURCE	UTILIZATION		by SHIFT			 - - - - - -	 				 	<u> </u>		
CODE D	DESCRIPTION		NUMBER SHIFT AVAIL.		AVERAGE IDLE IN US	RAGE NU	NUMBER IN PREV. SE MAINT.	EACH STATE-OFILURE	CE OTHER DOWN	MIN	BAT	CHING MAX SIZE	AVG	AVK
50002	50002		32.0 32.0 32.0 32.0 32.0	0 0 0 3 4 4 0 0 0 0 3 4 4 0 0 0 0 3 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.58 0.58 0.59 0.68	0.36 0.36 0.37 0.27 0.27	000000	000000	000000		! !	 		i !
50004	50004		166466 999999999999999999999999999999999	0.17 0.15 0.07 0.18 0.18	0.80 0.83 0.79 0.79	0.17 0.15 0.07 0.18 0.17	000000	000000	000000					
§ 0800 5 9	50005		4 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.22 0.18 0.12 0.23 0.18	0.76 0.80 0.86 0.76 0.77	0.22 0.18 0.12 0.22 0.21	000000	0.002000	000000					

					AV		
					AVG SIZE		
				2: 14	-BATCHING MAX SIZE		
				PAGE	MIN SIZE		
				VALID	i 🔀 ixi		
000000	000000 44.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	0.36 0.36 0.36 0.36		REPT.ID:	CTHER DOWN		0.15 0.15 0.15 0.15 0.15
000000	000000	00000 0		13:54:05	EACH STATE FAILURE	000000	000000
200000	000000	00000 0		TIME:	NUMBER IN PREV. SE MAINT.		000000
0.00 0.00 0.00 0.00 0.00	0.09 0.28 0.26 0.18 0.14	55 0.10 55 0.10 44 0.21 54 0.11 RECORDED		-AUG-90	-AVERAGE NU	0.41 0.65 0.80 0.60 0.58 0.71	0.05 0.75 0.08 0.82 0.83
0.99 0.99 0.99 0.99 0.99	0.49 0.30 0.40 0.44 0.33	0000,0	reflect e other ross all	DATE: 21	IDLE	0.44 0.20 0.05 0.25 0.27	0.27 0.11 0.10 0.03 0.01 0.02
0.00000	0.15 0.49 0.45 0.31 0.24 0.43	0.10 0.15 0.32 0.16 NO VALUE:	ŭ e ŭ	4	SHIFT UTIL.	0.48 0.95 0.70 0.70 0.68	0.00 0.00 0.00 0.00 0.00 0.00
16.5 16.5 16.5 16.5	37.0 10.0 9.0 14.0 16.0 8.0	2.5 1.0 1.0 1.0	that the utilizations of the workload and the ot be spread evenly act.	QUARTER: SHIFT	NUMBER AVAIL.	8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	21.0 14.3 11.0 9.0
40m4m6	406460	426400	₹	l w	SHIFT	H C/ E/ 4/ C/	୯ ୪୯୯୯
50173	WGOO	WG09	Remember tha only 80% of 20% may not resources.	RCC: UTILIZA	DESCRIPTION	WG10	WG11
50173	MG00	WG09	Note:	ALC: SA RESOURCE	CODE	wG10	g 080060

٠.					50173	173)				
				o	WG09, 50173 WG09, 50173	WG00 WG09,50173			9		0
	15			WG00					WG00		WGOO
	PAGE:		OCC FAC	1.00	0.75	0.75	1.00	0.10	1.00 PAGE:		OCC FAC 1.00
	VALID		RCC	MATPEA	MATPFA	MATPFA MATPFA	MATPFA	MATPEA	MATPFA VALID		RCC MATPFA
0.43 0.43 43	A. PT.ID: VALID		DESC	ASSY	TEST	ASSY	TEST	TEST			DESC
0000	13:54:05		AVERAGE SIMULATED HRS	4.87	3.81 6.41	6.36 3.53	10.58	4.70	92		AVERAGE SIMULATED HRS
0000	TIME:		Ω	2.76	2.16	3.55 2.12	6.16	2.56	3.27 TIME:		Q 6
0.20 0.22 0.17 0.17 Wed	21-AUG-90	.0	AVERAGE SCHEDULE HRS					•	64 21-AUG-90		AVERAGE SCHEDULE HRS
0.37 0 0.35 0 0.41 0 SS RECORDED SS RECORDED SS RECORDED SS RECORDED	1	SLOTHRU5	QUEUED HRS	0.02	5.65	0.38	0.0	000		SLOTHRU4	QUEUED HRS 0.59
0.35 0.3 0.39 0.3 0.29 0.4 NO VALUES RE NO VALUES RE NO VALUES RE NO VALUES RE Ations reflect and the other	: 4 DATE:	D NAME: S	QUEUED (1. 0.	20. 1.	8. 11.			15. :: 4 DATE:	NAME:	ED .
તા છ	QUARTER:	WC AVERAG	 						QUARTER	WCD	
ă t u	MATPFA Q	STATISTIC	PROCESSED QTY	113.	86. 90.	86. 114.	115.	15.			PROCESSEI QTY 416.
WGSW Remember thonly 80% of 20% may not resources	RCC:	AC ATION	POTENTIAL QTY	113.	114.	114. 114.	115.	115.	115. RCC:	ITEM NAME: AC/DB	1 🛏
wGSW Note:	ALC: SA	TEM N	OPER	0100	0300 S 0400	0500 0600 s	0700 0800	0900 S 1000	1100 ALC: SA	ITEM NA	S S S

WG00, as WG10, 50002 WG10, 50002 WG10, 50005 WG00 WG10, 50002 WG10, 50005 WG10, 50005		WG09, 50005 WG00	18	WG00 WG11, 50002
1.00 1.00 0.35 0.65 0.10 0.03 0.07 PAGE:	OCC FAC	1.00 1.00 1.00 0.05 0.05	PAGE:	FAC 1.00 1.00 1.00 1.00 1.00
MATPFA MATPFA MATPFA MATPFA MATPFA ATPFA MATPFA MATPFA	RCC	MATPFA MATPFA MATPFA MATPFA MATPFA	VALID	RCC MATPFA MATPFA MATPFA MATPFA MATPFA
DSSY ASSY TEST TEST TEST TEST TEST TEST TEST T	DESC	REP TEST TEST TESP TEST	REPT.ID:	DESC IN INSP TEST TEST TEST
5.68 6.07 34.88 3.53 37.28 4.92 3.76 36.29 3.29 31.52 13:54:05	AVERAGE SIMULATED HRS		13:54:05	AVERAGE SIMULATED HRS 2.00 8.70 7.35 25.00 35.39 32.62
00 3.25 49 3.54 93 2.92 57 23.39 77 2.76 89 27.06 93 3.00 20 27.37 46 2.58 82 22.54 81 22.54	AVERAGE SCHEDULED HRS	24.009	21-AUG-90 TIME:	AVERAGE SCHEDULED HRS HRS 5.30 6.41 19.66 28.28 25.62
0.00 50.49 12.93 13.57 10.77 10.89 0.93 13.30 0.00 1.46 9.82 DATE: 21-j	SLC QUE	00000	ER: 4 DATE: 21-7 WCD NAME: QUIKTHRU AGES	OUEUED HRS 0.00 1.40 22.67 0.00 0.00
0. 127. 67. 35. 35. 64. 11. 10. 1.	WCD NAME: AVERAGES OUTY OTY	000000	QUARTER: 4 WCD NAME AVERAGES	QUEUED OTY 0. 116. 67. 67. 0. 0.
416. 415. 155. 142. 279. 281. 39. 134. 7. 28. 23.	STATISTIC	13. 13. 1.	ATPFA	. PROCESSED OTY 116. 116. 116. 116. 26.
# # # # # # # # # # # # # # # # # # #	AME: DB OPERATION : POTENTIAL QTY		A RCC: M AME: F-15QT OPERATION S	POTENTIAL QTY 116. 116. 116. 117.
0200 0300 0400 S 0500 0600 S 0700 0800 0900 S 1100 S 1200 S	ITEM NAME: WCD by OPERA OPER POTE CODE	888888	ALC: SA F	080 080 080 080 080 080 080 080 080 080

0600 0700 0800 9999 ALC: SA	117. 118. 118. 118. 118.	117. 118. 118. 118. MATPFA	0. 0. 40. 0. QUARTER: 4	0.00 0.00 1.23 0.00 DATE: 21-7	00 10.33 00 1.37 23 2.94 00 4.00 21-AUG-90 TIME:	12.58 1.59 4.78 4.00 13:54:05	TEST TEST PACK OUT REPT.ID:	MATPFA MATPFA MATPFA MATPFA VALID	1.00 1.00 1.00 1.00 PAGE:	WGSW 19
ITEM NAME:	ame: F-15sqt	SQT	WCD NAME:	E: SUPQTHRU						
мср ру с	OPERATION	STATISTI	STATISTIC AVERAGES							
OPER	POTENTIAL QTY	L PROCESSED OTY	ED QUEUED OTY	QUEUED HRS	AVERAGE SCHEDULED HRS	AVERAGE SIMULATED HRS	DESC	RCC	OCC FAC	
0000	2.2	2.	0.	0.00	2.00	2.00	INI	MATPFA	1.00	WG1.1
0200 0300 0300	6.0	i	ioc	0.00	6.32	8.12	TEST	MATPEA	888	
0320	: 6:			0.0	4.16	4.77	TEST	MATPFA	1.00	
04 00 9999				0.00	1.02	2.72	PACK	MATPFA MATPFA	0	
ALC: SA	A RCC:	MATPFA	QUARTER: 4	DATE: 21-	21-AUG-90 TIME:	13:54:05	REPT. ID:	VALID	PAGE:	20
ITEM NA	NAME: F-15ST	ST	WCD NAME:	E: SLOTHRUI						
WCD by C	OPERATION	STATISTIC	C AVERAGES							
OPER CODE	POTENTIAL	L PROCESSED QTY	ED QUEUED OTY	QUEUED HRS	AVERAGE SCHEDULED HRS	AVERAGE SIMULATED HRS	DESC	RCC	OCC FAC	
0000	406.	406.	0.	0.00	101.23	100.93	NI	MATWIE	1.00	
0200 0200 S	410.	278.	161.	20.40	5.20	6.06	TEST	MATPFA	0.70	WG11, 50002
0300	411.	293. 411.		17.72	21.13 1779.93	26.49 1799.65	TEST	MATPFA	1.00	WG11,500
ALC: SA	A RCC:	MATPFA	QUARTER: 4	DATE: 21-	21-AUG-90 TIME:	13:54:05	REPT.ID:	VALID	PAGE:	21
90063	AME: F-15ST	ST	WCD NAM	NAME: AWP-G						

PAGE:

						50002 50002 50002					50002
		22				WG11,50002 WG11,50002 WG11,50002	23				WG00 WG11,50002
OCC FAC	1.00	PAGE:	i i i i i		OCC FAC	0.19	PAGE:	; f l l l		OCC FAC	1.00
RCC	MATPFA AWP G-COND	VALID			RCC	MATPFA MATPFA MATPFA	VALID			RCC	MATPEA MATPEA MATPEA
DESC	8DAY AWP GCON	REPT.ID: VALID			DESC	TEST	REPT. ID:	• • • • • • • • • • • • • • • • • • •		DESC	REP TEST TEST
AVERAGE SIMULATED HRS	168.00 1327.52 4675.90	13:54:05			AVERAGE SIMULATED HRS	21.21 31.04 16.99	13:54:05			AVERAGE SIMULATED HRS	1.96 7.85 33.65
AVERAGE SCHEDULED HRS	168.00 1323.08 5148.79	21-AUG-90 TIME:			AVERAGE SCHEDULED HRS	16.97 24.83 13.95	21-AUG-90 TIME:			AVERAGE SCHEDULED HRS	1.39 6.94 26.88
QUEUED HRS	0.00	DATE: 21-4	: SLOTHRU0		QUEUED HRS	13.32 15.10 12.65	DATE: 21-	WCD NAME: SLOTHRU1		QUEUED HRS	1.33 17.59 0.00
QUEUED	000	QUARTER: 4	WCD NAME:	FRAGES	QUEUED	38. 75. 18.	QUARTER: 4	WCD NAME	FRAGES	QUEUED QTY	32. 41. 0.
POTENTIAL PROCESSED QTY QTY	163. 38. 120.	MATPFA QUA	Ę4	WCD by OPERATION STATISTIC AVERAGES	POTENTIAL PROCESSED OTY OTY	51. 140. 76.	MATPFA QUA	F	WCD by OPERATION STATISTIC AVERAGES	POTENTIAL PROCESSED QTY QTY	77. 77. 52.
POTENTIAL QTY	163. 164. 165.	RCC:	ME: F-15ST	PERATION	POTENTIAL QTY	271. 271. 271.	RCC:	ITEM NAME: F-15ST	PERATION	POTENTIAL QTY	77. 77. 75.
OPER	0050 0100 0200	ALC: SA	ITEM NAME:	W CD by C	OPER	0300 0400 0500	ALC: SA	ITEM NA	WCD by C	OPER	0100 0200 S 0300

WCD by OPERATION STATISTIC AVERAGES

WCD NAME: SLOTHRU7

RCC: MATPFA QUARTER: 4 DATE: 21-AUG-90 TIME: 13:54:05 REPT.ID: VALID

 $egin{array}{c} 808 \ 0.000$

OALC: SA

	NR NR, as WGOO, 50002 WGOO, 50002, as	WG11,50002	25
OCC FAC		1.00	PAGE:
RCC	MATPEA MATPEA MATPEA MATPEA	MATPFA MATPFA MATPFA	VALID
DESC	DSSY ASSY DSSY ASSY	TEST TEST TEST	REPT.ID: VALID
AVERAGE SIMULATED HRS	0.00 0.00 4.13 6.11	6.85 34.00 17.28	13:54:05
AVERAGE SCHEDULED HRS	0.00 0.00 3.62 3.65	5.84 27.10 14.41	DATE: 21-AUG-90 TIME:
QUEUED	0.00 51.12 1.34 84.64	19.90)ATE: 21-A
QUEUED QTY	0. 159. 123.	165. 0. 0.	QUARTER: 4 I
PROCESSED QTY	319. 319. 319. 319.	322. 319. 320.	MATPFA QUA
POTENTIAL PI QTY	319. 319. 319.	322. 319. 320.	RCC:
OPER E		0200 S 0300 0400	ALC: SA

WCD by ULERATION STATISTIC AVERAGES

ITEM NAME: F-15ST WCD NAME: SLOTHRU7

WCD by OPERATION STATISTIC AVERAGES

				302	302, as	002			
		Æ	NR, as	WG00, 50002	WG00, 500	WG11, 50(•		56
	OCC FAC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	PAGE:
	_		MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	VALID
	DESC	DSSY	ASSY	DSSY	ASSY	TEST	TEST	TEST	REPT.ID: VALID
	AVERAGE SIMULATED HRS	0.00	0.00	4.20	5.93	8.01	29.62	16.16	13:54:05
	AVERAGE SCHEDULED HRS	0.00	0.00	2.68	3.73	6.83	24.09	13.35	-90 TIME:
	QUEUED SC HRS			1.03					DATE: 21-AUG-90 TIME:
,	QUEUED QTY	i							QUARTER: 4 I
	POTENTIAL PROCESSED OTY	35.	35.	34.	34.	34.	34.	34.	MATPFA QU
	POTENTIAI QTY	35.	35.	34.	34.	34.	34.	34.	RCC:
		00100							ALC: SA

ITEM NAME: F-15ST WCD NAME: SLOTHRU3

WCD by OPERATION STATISTIC AVERAGES

					20	
					WG11,500	WGSW
	;	ပ္ပ	FAC		1.00	1.00
			RCC	1	MATPFA	Matpea
			DESC	!	TEST	PACK
	AVERAGE	SIMOLATED	HRS		1.59	3.86
	AVERAGE	SCHEDOLED	HRS		1.44	2.49
		COECED	HRS		17.44	1.16
!!!!!!!		COECED	QTY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	208.	177.
		POTENTIAL PROCESSED	QTY		395.	393.
		POLENITAL	OTY	1 1 1 1 1 1 1	395.	393.
! ! ! ! !	6)	S CODE	C	00100	65 65

6666	393.	393.			0	0.00	3.8 ₂	6.48	OUT	MATPEA 1.00	1.00	
SA	RCC:	ALC: SA RCC: MATPFA QUA	QUARTER:	4	DATE:	ALC: SA RCC: MATPFA QUARTER: 4 DATE: 21-AUG-90 TIME: 13:54:05 REPT.ID: VALID PAGE: 27	TIME:	13:54:05	REPT. ID:	VALID	PAGE: 27	27
m na	ITEM NAME: F-16QT	50T	WCD	NAM	WCD NAME: QUIKTHRU	THRU						
ю Ха	PERATION	N STATIST	WCD by OPERATION STATISTIC AVERAGES									

		WG00	WG11,50002	•					MCSW		28
OCC FAC	1.00	1.00	1.00	1.00	0.28	1.00	1.00	1.00	1.00	1.00	PAGE:
RCC	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	VALID
	Z	INSP	TEST	TEST	TEST	TEST	TEST	TEST	PACK	OUT	REPT. ID:
AVERAGE SIMULATED HRS	2.00	8.70	5.38	25.81	31.88	43.32	16.96	1.71	3.93	4.00	13:54:05
AVERAGE SCHEDULED HRS	2.00	5.30	4.68	20.96	25.31	34.14	14.07	1,46	2.62	4.00	NUG-90 TIME:
QUEUED HRS	0.00	1.40	19.26	0.00	0.00	0.00	0.00	0.00	1.09	0.00	DATE: 21-AUG-90
QUEUED QTY	0.	129.	.99		•				44.	•	QUARTER: 4
L PROCESSED QTY	129.	129.	129.	129.	34.	129.	129.	130.	130.	130.	•
POTENTIAL F	129.	129.	129.	129.	129.	129.	129.	130.	130.	130.	RCC:
	0000	0100	0200 S	0300	0400	0200	0090	0000	0800	6666	ALC: SA

WCD NAME: SUPQTHRU	
NAME:	
WCD 1	WCD by OPERATION STATISTIC AVERAGES
ITEM NAME: F-16SQT	ON STA
E: F-	ERATI
A NAM	oy opi
ITEN	WCD I

29	PAGE:	VALID	REPT. ID:	13:54:05	TIME:	21-AUG-90 TIME:	DATE: 2	UARTER: 4	MATPFA QUA	RCC:	ALC: SA
	1.00	MATPFA	_	4.00	4.00		0.0		2.	2.	666
	1.00	MATPFA		3.56	1.86		0.0		2.	2.	400
	1.00	MATPFA		0.93	0.93		0.0		2.	2.	350
	1.00	MATPFA		15.80	3.39		0.0		2.	2.	300
	1.00	MATPFA		2.00	1.40		0.0		2.	2.	200 S
	1.00	MATPFA		5.30	5.30		0.0		2.	2.	100
	1.00	MATPFA		2.00	2.00		0.00		2.	2.	0000
	FAC	RCC	DESC	SIMULATED HRS	SCHEDULED SHEET HRS		QUEUED	QUEUED	PROCESSED OTY	OTY OTY	CODE
				AVERAGE	AGE						

	WG00 WG11,50002 WG11,50002										WG11,50002 WG11,50002 WG11,50002	
	WG00 WG11 WG11	30					31	! ! !			WG1 WG1	32
OCC FAC	1.00 0.70 0.70 1.00	PAGE:			OCC FAC	1.00	PAGE:	[]]]]		OCC FAC	0.19	PAGE:
RCC	MATWIP MATPFA MATPFA MATPFA WIP	VALID			RCC	MATPFA AWP G-COND	VALID	1 1 1 1 1 1 1		RCC		VALID
DESC	INSP INSP TEST TEST WIP	REPT.ID:			DESC	8DAY AWP GCON	REPT.ID:			DESC	TEST TEST TEST	REPT.ID:
AVERAGE SIMULATED HRS	101.40 9.02 7.88 24.34 1889.61	13:54:05			AVERAGE SIMULATED HRS	168.00 1418.37 4685.44	13:54:05			AVERAGE SIMULATED HRS	26.42 35.64 18.40	13:54:05
SE CED	99.65 5.30 6.74 19.50	TIME:			35	00 112 88	TIME:			037 38	21.54 28.71 15.10	TIME:
AVERAGE SCHEDULED HRS	99.65 5.30 6.74 19.50 1871.71	21-AUG-90			AVERAGE SCHEDULED HRS	168.00 1466.12 4978.88	21-AUG-90			AVERAGE SCHEDULED HRS		21-AUG-90
ED .	0.00 1.72 17.82 18.92 0.00	21-1	ဖှ		ED	0000	21-1	SLOTHRUO		ED .	15.77 17.66 16.49	21-7
QUEUED HRS	111110	DATE:	WCD NAME: AWP-G		QUEUED HRS		DATE:			QUEUED HRS	15	DATE:
QUEUED QTY	0. 212. 173. 57. 0.	4	NAM	ςς	QUEUED		4	WCD NAME:	ຸນ	QUEUED QTY	44. 82. 20.	4
	172	QUARTER:	WCI	C AVERAGE			QUARTER:	WCI	C AVERAGES		4 8 (4	QUARTER:
PROCESSED QTY	458. 463. 307. 328. 464.	MATPFA	Ę	STATISTIC AVERAGES	PROCESSED QTY	196. 46. 153.	MATPFA	Ęı	STATISTIC	PROCESSED	63. 157. 92.	MATPFA
POTENTIAL QTY	4 4 5 8 8 . 4 6 4 . 4 6 . 4	RCC:	Æ: F-16ST	OPERATION	POTENTIAL QTY	196. 195. 191.	RCC:	Æ: F-16ST	OPERATION	POTENTIAL QTY	322. 322. 319.	RCC:
	s S	SA	ITEM NAME:	до ба			S.A.	ITEM NAME:	ьу ов		000	S.A.
OPER	0000 0300 0400	ALC:	ITEN	WCD I	OPER	0050 0100 0200	ALC:	ITEN	WCD F	OPER	0300	300 67

WCD NAME: SLOTHRUI

WCD by OPERATION STATISTIC AVERAGES

ITEM . E: F-16ST

SLOTHRU7
NAME:
WCD
F-16ST
NAME:
ITEM

(,

				102	02, as	02			
		NR.	NR, as	WG00, 500	WG00, 500	WG11, 500	•		33
	FAC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	PAGE:
	RCC	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	VALID
	DESC	DSSY	ASSY	DSSY	ASSY	TEST	TEST	TEST	REPT.ID: VALID
	AVERAGE SIMULATED HRS	00.00	0.00	3.85	5.95	6.94	34.83	16.34	13:54:05
	AVERAGE SCHEDULED HRS	0.00	0.00	2.46	3.50	5.91	27.29	13.50	DATE: 21-AUG-90 TIME:
	QUEUED HRS	0.00	49.45	1.24	79.22	18.42	0.00	00.0	DATE: 21-A
TIC AVERAGES	QUEUED QTY	٥.	230.	145.	216.	244.		0.	QUARTER: 4
WCD by OPERATION STATESTIC AVERAGES	POTENTIAL PROCESSED QTY QTY	434.	434.	434.	434.	433.	430.	434.	MATPFA QU
	POTENTIAL QTY	434.	434.	434.	434.	433.	430.	434.	RCC:
WCD by Oi	OPER E	0010	0020	0020	0100	0200 S	0300	0400	ALC: SA

WCD NAME: SLOTHRU7 ITEM NAME: F-16ST

WCD by OPERATION STATISTIC AVERAGES

	Æ	NR, as	WG00, 50002	WG00, 50002, as	WG11,50002			34
OCC FAC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	PAGE:
RCC		MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	VALID
DESC			DSSY	. 7	•	•	•	REPT.ID: VALID
AVERAGE SIMULATED HRS	0.00	0.00	3.97	5.65	6.99	30.53	15.64	13:54:05
AVERAGE SCHEDULED HRS	0.00	0.00	2.65	3.58	5.91	24.19	13.33	21-AUG-90 TIME:
QUEUED HRS	0.00	38.04	1.13	75.12	26.89	0.00	0.00	DATE: 21-#
QUEUED QTY		22.	15.	19.	25.			QUARTER: 4
POTENTIAL PROCESSED OIY OTY	42.	42.	41.	41.	41.	41.	41.	MATPFA Q
POTENTIAL QTY	42.	42.	41.	41.	41.	41.	41.	RCC:
OPER E		0020	0020	0100	0200 S	0300	0400	ALC: SA

WCD NAME: SLOTHRU3 ITEM NAME: F-16ST

AVERAGE SIMULATED AVERAGE SCHEDULED QUEUED CD by OPERATION STATISTIC AVERAGES

CO OPER POTENTIAL PROCESSED QUEUED

CO QUEUED

ပ္ပ

	WG11,50002	WGSW		35
FAC	1.00	1.00	1.00	PAGE:
RCC	MATPFA	MATPFA	MATPFA	VALID
DESC	TEST	PACK	OUT	REPT.ID:
HRS	1.77	3.85	6.65	4 DATE: 21-AUG-90 TIME: 13:54:05 REPT.ID: VALID PAGE: 35
HRS	1.58	2.55	3.87	TIME:
				-AUG-90
HRS	20.24	1.16	0.00	ATE: 21
, ,				4
8	235.	189.	0	
QTY	432.	427.	427.	ALC: SA RCC: MATPFA QUARTER:
OTY	432.	427.	427.	RCC:
•	<u> </u>	_	•	SA
CODE	0100	020	9995	ALC:

ITEM NAME: GG WCD NAME: SLOTHRUZ

WCD by OPERATION STATISTIC AVERAGES

	WG00	WG10,50004		WG00	WG10,50004	WG10,50004	36
OCC FAC	1.00	1.00	1.00	0.10	0.10	0.10	PAGE:
RCC	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	VALID
DESC	REP	TEST	TEST	REP	TEST	TEST	REPT.ID: VALID
AVERAGE SIMULATED HRS	5.78	4.03	31.48	5.51	2.65	28.97	13:54:05
AVERAGE SCHEDULED HRS	3.63	3.17	22.56	3.33	2.22	21.07	DATE: 21-AUG-90 TIME:
	1.33	8.98	0.00	0.93	6.01	14.99	DATE: 21-AU
QUEUED	172.	191.	.0	15.	2.	•	4
POTENTIAL PROCESSED QTY	430.	431.	430.	39.	47.	38.	ALC: SA RCC: MATPFA QUARTER:
POTENTIAL QTY	430.	431.	430.	428.	428.	428.	RCC:
OPER F	0100	0200 s	0300	0400	0200 S	0220	ALC: SA

BACKSHOP DWELL TIMES BY BACKSHOP RCC

AVERAGE RCC HOURS	*** NO BACKSHOP ACTIVITY ****	WIP 1799.65 AWP 307.60 G-COND 3400.65				
ITEM	AC	AC/DB	DB	F-15QT	0^{-1550r}	715sr 715sr

F-16QT F-16SQT	X	NO BACKSHOP NO BACKSHOP	D ACTIVITY P ACTIVITY	* *	* *					
F-165T	3	_ ^	_	ļ <u>-</u>						
F-16ST F-16ST	. 4. 0	AWP G-COND	334.59 3753.26	100						
99	Z * * *	NO BACKSHOP	P ACTIVITY	****	*					
ALC: SA RCC:	MATPFA Q	QUARTER:	4 DATE	21	-AUG-90 T	TIME:	13:54:05	REPT.ID:	VALID	PAGE: 37
HISTORICAL vs. S	SIMULATED CO	COMPARISON								
	HIST	HISTORICAL VALUES	LUES		IS	MULATE	SIMULATED VALUES			
ITEM	FLOWTIME HOURS			SAMPLE SIZE	FLOWTIME HOURS	E ST	STANDARD DEVIATION	SAMPLE V	WORKLOAD WEIGHT	Percentage Difference
AC	0.0	0	0.00	0	52.6	7.	24.81	116	000.0	0.00
AC/DB	0.0	0	0.00	0	81.68		56.86	417	0.000	0.00
DB 5-1504	0.0	.	900	>	25.69	ي م	23.84	٤٦٢	0.000	0.00
F-1550T		,		>	121.0	ס ה	43.40	770		9.0
F-15ST	0.0	, 0	0.0	0	3359.05	ō		393	0.00	0.00
F-16QT	0.0	0	0.00	0	132.6	0	70.57	130	0.000	0.00
F-16SQT	0.0	0	0.00	0	33.5	6	20.33	7	0.000	00.0
F-16ST GG	0.00	00	0.00	00	3653.51 49.29	H 6.	2470.83 40.18	4 27 4 28	0.000	0.00
ITEM AC	EXC	EXCLUDED FROM		VALIDATION T	TEST DUE	TO INS	INSUFFICIENT	DATA		
ITEM AC/DB	EXC	EXCLUDED FROM		VALIDATION T	TEST DUE	TO INS	INSUFFICIENT	DATA		
ITEM DB	EXC	EXCLUDED FROM		VALIDATION T	TEST DUE	TO INS	INSUFFICIENT	DATA		
ITEM F-15QT	EXC	EXCLUDED FROM		VALIDATION T	TEST DUE	TO INS	INSUFFICIENT	DATA		
ITEM F-15SQT	EXC	EXCLUDED FROM		VALIDATION T	TEST DUE	TO INS	INSUFFICIENT	DATA		
ITEM F-15ST	EXC	EXCLUDED FROM		VALIDATION T	TEST DUE	TO INS	INSUFFICIENT	DATA		
OUTEM F-16QT	EXC	EXCLUDED FROM		VALIDATION T	TEST DUE	TO INS	INSUFFICIENT	DATA		
GTEM F-16SQT	EXC	EXCLUDED FRO	FROM VALIDATION		TEST DUE	TO INS	INSUFFICIENT	DATA		

ITEM	ITEM F-16ST		-	EXCLUDED FR	Σ	VALIDATI	ON TES	T DUE	ဥ	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	DATA		
ITEM GG	ဗ္ဗ			EXCLUDED FR	ξ	VALIDATI	ON TES	T DUE	ဋ	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	DATA		
ALC:	LC: SA RCC: MAT	RCC:	MATPFA	QUARTER:	₹ .	DATE:	21-AUG	۔ 06–	TIME	ALC: SA RCC: MATPFA QUARTER: 4 DATE: 21-AUG-90 TIME: 13:54:05 REPT.ID: VALID PAGE:	REPT.ID:	VALID	PAGE:
HISTO	RICAL	vs.	SIMULATED	HISTORICAL vs. SIMULATED COMPARISON									

NOT ENOUGH ITEMS REMAINING TO CONDUCT VALIDATION TEST

MODEL RUN #3

PAGE: TIME: 14:42:14 REPT.ID: VALID 22-AUG-90 DATE: 4 QUARTER: MATPFA RCC: SA ALC:

RUN PARAMETERS

SEEDA3

This job was run on SAALC, a little tiny vax.

S ALC: RCC: MATPFA

REPORT ID: VALID

UFC AREA - VALIDATION VERSION

UFCPART. val FILE: FILE: PART 1 RES

UFCRES.val UFCOPS.val UFCETC.val OPER FILE: ETC FILE:

WEEKENDS = Y

NUMBER OF QUARTERS =

270

WARM UP PERIOD; STATS WILL BE CLEARED AT DAY

OF HOLIDAYS

0

8.000000 HISTORICAL DATA SHIFT FACTOR

24.00000 BACKSHOP DATA SHIFT FACTOR

NEW DATA FORMATS SELECTED

27.99 MINUTES 29.78 MINUTES SIMULATION CPU TIME: SIMULATION LAPSE TIME:

SIMULATION RUN LENGTH: 15216.00 HOURS

10 9 21 76 30038 Number of Items:

Quantum of Resources:

Quantum of WCDs:

Quantum of Operations:

Querations completed:

ALC: S. RCC: MATPFA	QUARTER: 4	DATE: 2	22-AUG-90	14	:42:14 REPT	.i.	VALID PAGE:	8
ITEM INDUCTIONS		7071		• • • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	·	‡ 1
		1ST QLR	2ND OTR	3RD QTR	4TH OTR	YTD		
OF ITEM	••	66		88	128	421	(MISTR)	
OF ITEM	••	213	203	191	248	855	(MISTR)	
OF ITEM	••	56		88	128	421	(MISTR)	
OF ITEM	••	23		39	31	116	(MISTR)	
MALI TO	·•	7		-	0	7	(MISTR)	
OF ITEM	••	88	81	136	109	406	(MISTR)	
OF ITEM	••	41		40	31	129	(MISTR)	
OF ITEM		0		0	-	7	(MISTR)	
INDUCTIONS OF ITEM F-16ST	•	147	59	142	110	458	(MISTR)	
	•	507		761	767	/00	(MLSTK)	
TOTAL ITEM INDUCTIONS		912	800	917	1038	3667		
ALC: SA RCC: MATPFA	QUARTER: 4	DATE: 2	2-AUG-90	TIME: 14	:42:14	REPT.ID: VA	VALID PAGE:	ო
WCD INDUCTIONS			! ! ! ! ! !	£		 	· f 1	<u> </u>
		1ST OTR	2ND OTR	3RD QTR	4TH QTR	YTD		
INDUCTIONS OF WCD	SLOTHRU5:	36	29	3.4	39	1 38		
Q	SLOTHRU4:) () ()	106	* 00 0 00	130	423		
Q.	SLOTHRU6:	0	7		3	9 01		
	QUIKTHRU:	23	23	39	31	116		
Q.	SUPQTHRU:	7	0		0	7		
Q	SLOTHRUI:	80	81	136	109	406		
P (AWP-G:	43	18	38	46	145		
INDUCTIONS OF WCD	SLOTHRUO:	75	51	63	70	259		
	SLOTHKUI:	9 10	8 6	27	24	85		
g g	SLOTHRU7:	° °	10	ე თ	1 C L	314 20		
OF.	SLOTHRU3:	103	98	80	111	385		
Q.	QUIKTHRU:	41	17	40	31	129		
Q	SUPQTHRU:	0	н	0	, 1	7		
S.	SLOTHRUI:	147	59	142	110	458		
e G	AWP-G		29	40	43	188		
မှ မြ	SLOTHRUO:	74	16	92	68	319		
5 6	SLOTHRU7:	105	120	ტ -	131	455		
DINDICATIONS OF WCD	SLOTHRU7:	ט ה פ	11	# 5	18	64.		
	ST.OTHRITO.	100	103	& 0	129	447		
5	30011002	C + 1	507	2	T 55 T	40.5		
, for								
•								

ALC: SA RCC: MATPEA QUARTER: FLOW CYCLE TIME STATISTICS HISTORICAL SIR FLOWTIME FLOW HOURS HA AC AC AC BB CO CO CO CO CO CO CO CO C	AVERAGE SIMULATED FLOW TIME HOURS 61.34 89.55 18.89 129.67 62.02 3123.34 124.43 30.60 3487.84 60.25	22-AUG-90 STANDARD DEVIATION	TIME: 14:42:14	14 REPT.ID:	VALID	PAGE:	4
CYCLE TIME STATISTICS HISTORICAL FLOWTIME HOURS 0.00 T O.00 ST O.00 O.00 O.00 ST O.00 O.00 ST O.00 O.00	AVERAGE IMULATED LOW TIME HOURS 61.34 89.55 18.89 129.67 62.02 3123.34 124.43 30.60 3487.84 60.25	STANDARD DEVIATION 26.85 64.47	· 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1	• • • • • • • • • • • • • • • • • • •) 	 	ł
HISTORICAL FLOWTIME HOURS HOURS 0.00 OT SQT SQT SQT SQT SQT SQT SQT SQT SQT CT LABOR STATISTICS	AVERAGE IMULATED LOW TIME HOURS 61.34 89.55 18.89 129.67 62.02 3123.34 124.43 30.60 3487.84 60.25	STANDARD DEVIATION					
B 0.00 OT 0.00 SQT 0.00 ST 0.00 ST 0.00 ST 0.00 ST 0.00 ST 0.00 CT LABOR STATISTICS	61.34 89.55 18.89 129.67 62.02 3123.34 124.43 30.60 3487.84 60.25	26.85 64.47 11.91	SIMULATED MINIMUM FLOW TIME HOURS	SIMULATED MAXIMUM FLOW TIME HOURS S	NUMBER OF SAMPLES	NUMBER OF INDUCTIONS	
LABOR		59.67 28.59 2185.83 55.05 4.12 2497.17 47.28	11.05 1.97 6.63 34.80 41.80 278.74 47.53 27.69 319.39 2.71 TIME: 14:42	153.74 416.18 44.72 313.22 82.23 10853.97 327.75 33.52 13022.61 260.25	137 416 9 115 2 381 129 441 451	421 855 421 116 129 458 857 PAGE:	so
EXPECTED STI	STANDARD HOURS	SIMULATED AVERAGE LABOR HOURS	STANDARD DEVIATION	SIMULATED MINIMUM LABOR HOURS	TED S & S	SIMULATED MAXIMUM LABOR HOURS	NUMBER OF SAMPLES
AC 31.41 AC/DB 42.04 DB 10.19 F-15QT 83.56 F-15SQT 29.40 F-15ST 166.80	000000	31.90 40.14 8.43 82.02 26.51 98.95	12.55 33.38 5.25 38.19 3.22	444	8.45 2.91 2.59 24.23	64.89 218.31 19.72 214.28 28.79	137 416 9 115 115
83.56 83.56 29.40 159.30 33.44 SA RCC: MATPFA QUARTER:	0.00 0.00 0.00 0.00 4 DATE:	80.44 20.65 105.43 35.40 22-AUG-90	TIME: 1	REPT.	25.61 7.39 2.70 D: VALID	190.66 23.91 349.41 174.90 PAGE:	129 129 2 441 451 6

(

THE BLAKE STATISTIC

CURRENT QUEUE QUANTITY

AVERAGE QUEUE WAIT(hrs)

MAXIMUM QUEUE QUANTITY

STANDARD DEVIATION

AVERAGE QUEUE QUANTITY

		NUMBER OF SAMPLES	137 416 115 115 381 129 441	
	7	!		8
	PAGE:	BACKSHOP RS %	88 0.0000.0000.000000000000000000000000	PAGE:
	VALID	BAC HOURS	0.0 0.0 0.0 0.0 2724.6 0.0 0.0 0.0	VALID
	REPT. ID:	PROCESSING FLOW HOURS	99 99 99 99 99 99 99 99 99 99 99 99 99	REPT. ID:
NUMBER OF SAMPLES	137 416 9 115 381 129 129 441 451	PROCESS HOURS	57.1 61.7 17.7 114.0 37.8 283.9 109.3 293.2 51.3	14:42:14
SIMULATED MAXIMUM BACKSHOP HOURS	0.00 0.00 0.00 0.00 0.00 10429.41 0.00 12484.44 0.00 TIME: 1	% % %	36.98 39.02.28 39.02.28 30.08 30.08 30.08 30.08 30.08 30.08	TIME:]
ULATED S INIMUM CKSHOP HOURS	0.00 0.00 0.00 0.00 0.00 0.00 0.00 22-Aug-90	WAITING FOR RESOURCES HOURS &	4.2 27.9 1.2 15.6 24.2 114.9 0.9 126.8 8.9	22-AUG-90
SIM STANDARD BA EVIATION	0.00 0.00 0.00 0.00 146.87 0.00 455.99 0.00	SIMULATED FLOW HOURS	61.3 89.6 18.9 129.7 62.0 3123.3 124.4 30.6 3487.8	4 DATE:
ді	0.00 0.00 0.00 0.00 2724.60 21 0.00 0.00 0.00 0.00 0.00		0000000000	QUARTER:
AVERAGE SIMULATED BACKSHOP HOURS	272, 272, 306,			MATPFA
	RCC:	TIMES SUMMARY		RCC: QUEUE
Z.	BB SQT SSQT SSQT SSQT SSQT SST	1 1 1	DB SQT SST SQT SSQT SSQT SSCT	LC: SA RESOURCE
ITEM	AC AC/DB DB DB F-15QT F-15QT F-15SQT F-16QT F-16ST GG GG ALC: S	PROCESS	AC AC/DB DB F-15QT F-15SQT F-16QT F-16QT F-16SG	ALC:

9200 Ogueue

•							``					
20005	~	O G	0.00	0.00	27.00	0.00		<u>م</u>	0.00			
50004		O G	0.0	0.0	7.00	0.00		<u>-</u>	0.00			
50005		C	000	0 0	6	0						
50173												
100	1	3 9	9.0	9 0	00.4				00.0			
000			1.97	2.73	15.00	L. /5			3.45			
MCOR			0.29	0.69	2.00	2.36			0.68			
WG10		얼	2.23	3.21	19.00	1.52		∞	3.39			
WG11		Æ	7.98	9.75	45.00	0.95		18	7.55			
WGSW		좑		0.58	8.00	0.93			0.22			
ALC:	S.A.	RCC:	MATPFA	QUARTER:	4 DATE:	22-AUG-90	TIME:	14:42:14	REPT. ID:	VALID	PAGE:	თ
> 107200 K		00 TEO TE 4EO		****		701111111111111111111111111111111111111	1			 		
1000	- 1	1011410	3									
			!									
					WATT							
			TOTAL	DET AVEN	(aOrbe)	T WIN	IND THE TANK					
PARE	PARENT ITEM	W		OPERATIONS	AVERAGE	AVERAGE ST		MAXIMUM CI	-			
1		!										
AC/DB	m		855		59.2	1.0	1.1	0.9	-			
F-15ST	ST.		406	368	74.4	3.1	2.3	13.0	1 4			
F-16ST	ST		458	508	74.0	4.3	2.4	13.0	11			
ALC:	SA	RCC:	MATPFA	OUARTER:	4 DATE:	22-AUG-90	TIME	14:42:14	REPT. ID:	VALID	PAGE	10
					-					- 1	· · · · · · · · · · · · · · · · · · ·	:
WORK	IN PE	PROCESS										
i 1 1		 										
									AVERAGE	AVERAGE	CURRENT	
			ALLOWABLE	(c)					WAITING	OUANTITY	OUANTITY	
ITEM			QUANTITY	AVERAGE	STD DEV.	MINIMOM MA	MAXIMUM	CURRENT	TIME	WALTING	WAITING	
, A		!	00000				4	-		THE WATER	***	
AC/DR	~		00000	. 4		9 0	,	4 0				
5 6 6	,				,,	> 0	# ·	n (-	: :	
נ ממ	ļ		66666	0.0	1.0	> (⊣ (.			k :	
10c1-3	Į,		66666	1.7	1.6	9	ထ	4)X **		** O	
F-15SQT	ğ		66666	0.0	0.1	0	-1	0	N **	NONE WAITED	** 0	
F-15ST	ST		66666	161.1	19.0	132	195	187	N **	NONE WAITED	** 0	
F-16QT	ĸ		66666	1.8	1.5	0	9	0	N **	NONE WAITED	** 0	
F-16SQT	SQT		66666	0.0	0.1	0	н	0	N **	NONE WAITED	** Q	
F-16ST	ST		66666	205.7	16.7	162	233	204	** NC	NONE WAITED	** 0	
႘ၟ			66666	3.1	2.2	0	12	9	** NC	NONE WAITED	** 0	
O Arc:	S.	RCC:	MATPFA	QUARTER:	4 DATE:	22-AUG-90	TIME:	14:42:14	REPT. ID:	: VALID	PAGE:	11
8		20000					 	Í 		Ĭ ! ! !	 	1
0	DEDICATED	SICE	STATISTICS	s - Parallel	ol Operations	cons						

ı							ÄVČ	PA	į		
							AVG	SIZE			
	12	ļ			13		<u>9</u> t	63	!		
	PAGE:	i i i i			PAGE:		-BATCHING MAX	SIZE			
	ID: VALID				ID: VALID		MIN	SIZE			
RRENT	REPT. I		RRENT	0040	REPT.I		E OTHER	DOWN	000000	000000	000000
-WAITING QUEUE COUNT	14:42:14		QUEUE COUNT	2.0 1.0 1.0	14:42:14		EACH STATE-	FAILURE	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.03 0.03 0.03 0.03	0.0020000000000000000000000000000000000
ALTING QUI	TIME:		કુ.	10.00	TIME:		NUMBER IN PREV.	MAINT.	000000	00000	000000
AVERAGE ST	22-AUG-90		AVERAGE STD.DEV	0.00.0	22-AUG-90		VERAGE	IN USE	0.43 0.35 0.32 0.27	0.23 0.18 0.17 0.17	0.22 0.17 0.08 0.19 0.19
WAIT (HOURS) AVERAGE	DATE:	nts 	S)	0.0 0.0 0.0	DATE:			IDIE:	000000	3 0.75 3 0.79 3 0.79 3 0.79 7 0.81	0.75 0.90 0.79 0.79 0.79 0.79
	4	pone			4		SHIFT	WIL.	0.46 0.38 0.37 0.33 0.29	0.23 0.18 0.10 0.18 0.17	0.23 0.17 0.09 0.19 0.15
DELAYED OPERATIONS	QUARTER:	Subcomponent	DELAYED OPERATIONS	420 848 421 855	QUARTER:	SHIFT	NUMBER	AVAIL.	32.0 32.0 32.0 32.0		ည္ ကို ကို ကို ကို ထို ထို ထို ထို ထို
TOTAL INDUCT	MATPFA	STATISTICS	TOTAL	421 855 421 857	MATPFA	à		SHIFT	H W W 4 S 9	H G W 4 W 0	H 0 W 4 N 0
4 Z	RCC: MA	STOCK STA	HRI		RCC: MA	UTILIZATION		DESCRIPTION	25	4	25
ITEM	SA R	ı	ITEM		SA RC			DESCI	50002	50004	50005
STOCK	ALC:	DEDICATED	STOCK	AC AC/DB DB GG	ALC:	RESOURCE	1	CODE	50002	50004	§ 080078

							i !	
						AVG SIZE	 	
				PAGE: 14		-BATCHING MAX SIZE		
					·	MIN		
				.ID: VALID				
000000	0.00 0.43 0.00 0.43 0.00 0.00 0.00	0.36 0.36 0.36 0.36		REPT		l g a	0.15 0.15 0.15 0.15 0.15	0.15 0.15 0.15 0.15 0.15
000000	000000	000000		14:42:14		EACH STATE FAILURE	000000	000000
000000	000000	00000		TIME:			000000	000000
0.00 0.00 0.00 0.00 0.00 0.00	0.09 0.29 0.27 0.18 0.15	0.08 0.11 0.23 0.17 ADED 0.33		-AUG-90	9	AGE N US	0.48 0.71 0.82 0.60 0.57 0.68	0.60 0.73 0.74 0.79 0.82 0.81
0.00 0.00 0.00 0.00 0.00 0.00	0.28 0.31 0.33 0.42 0.29	0.57 0.54 0.42 0.47 0.47 0.31	flect other ss all	TE: 22	ļ	1 0	0.37 0.03 0.25 0.28 0.17	0.25 0.12 0.06 0.03 0.03
0.02	0.15 0.51 0.47 0.31 0.26	0.12 0.17 0.35 0.27 NO VALUE 0.51	that the utilizations reflect of the workload and the other ot be spread evenly across al	4 D2		SHIFT UTIL.	0.57 0.83 0.97 0.70 0.67 0.67	0.70 0.86 0.93 0.93 0.95
16.5 16.5 16.5 16.5	37.0 10.0 9.0 14.0 16.0	4.0.1.0 0.0.0 0.00.0	nt the utilizations ro the workload and the be spread evenly acro	QUARTER:	SHIFT	NUMBER TAVAIL.	8.4.0 8.0.0 0.04	21.0 14.3 11.0 9.0 9.0
H G B A D D	H W W W W	୴ୢୄ୷୷୷୷	that the work of the work be spi	MATPFA	1	_	11 4 K 4 K V V	176459
50173	WG00	WG09	Remember thonly 80% of 20% may not resources.	RCC:	CE UTILIZATION b	DESCRIPTION	WG10	WG11
50173	WGOO	WG09	Note:	ALC: SA	RESOURCE	CODE	WG10	[┋] 080079

•								50173	50173		C / TOC		50173	50173							
		15						WG09,50173	WG09,	WG00	W609, 501.75	WG00	WG09,50173	WG09, 50173	₩600 16						
		PAGE:			OCC FAC	1.00	1.00	0.75	0.75	0.75	1.00	0.10	0.10	0.10	1.00 PAGE:				ပ္ပ 8	FAC	
		VALID			RCC	MATPEA	MATPFA	MATPFA	MATPFA	MATPFA	MATPEA	MATPFA	LATPFA	MATPFA	MATERA	! ! ! ! !				RCC	
0.43 0.43 3		REPT.ID: VALID			DESC	ASSY	REP	TEST	TEST	ASSY	TEST	REP	TEST	TEST	ASSY REPT.ID:					DESC	
0000		14:42:14			AVERAGE SIMULATED HRS	5.61	9.84	3.67	7.98	7.16	14.21	60.6	4.63	18.24	5.85	i 			AVERAGE SIMULATED	HRS	
00000		TIME:				.27	5.65	1.98	.39	.16	7.43	.21	90.	8.77	.43 TIME:	; ; ; ; ; ;				}	
0.21 0.22 0.16 DED DED		22-AUG-90			AVERAGE SCHEDULED HRS	3	5	1	4	4 1 (7	S	က	∞ (22-AUG-90	i 1 1			AVERAGE SCHEDULED	HRS	
0.36 0 0.36 0 0.41 0 SS RECORDED	llect other ss all		SLOTHRUS		QUEUED HRS	0.00	0.00	7.37	11.68	0.45	0.00	0.57	14.43	3.99	·	ST.OTHRU4			QUEUED	HRS	
0.37 (0.38 0.28 NO VALUES NO VALUES	ations reflect and the other enly across al	4 DATE:	CD NAME: S	Ø		0.	٥.	28.	4 . (17.	. 0		٦.	.i ;	4. 4 DATE:	NAME: O		ر د			
00000	tilizatior kload and ad evenly	QUARTER:	WCD	AVERAGES	a			8		ΗĊ	ń ¯			•	24 QUARTER:			AVERAGES	O	ł	
பሪጠቀጥው	that the utiliz of the workload oot be spread ev	MATPFA Q		STATISTIC	POTENTIAL PROCESSED QTY QTY	138.	138.	114.	108.	102.	138.	14.	10.	17.	MATPFA Q		i.	STATISTIC	POTENTIAL PROCESSED	QTY	
WGSW	Remember thi only 80% of 20% may not resources	N RCC:	ITEM NAME: AC	OPERATION	POTENTIAL QTY	138.	138.	138.	138.	138.	137.	137.	137.	137.	A RCC:	TTEM NAME: AC/DB		OPERATION	POTENTIAL	OTY	
MGSW	Note:	ALC: SA	LTEM NA	WCD by C	OPER CODE	0100	0200	0300 8	0400	0200	0040 0700	0800	S 0060	1000	ALC: SA	TEM NA	!	WCD by C	OPER	CODE	
ž		Z i	i ^F	Z	i	٠,	_	_	- `	- `		_	_	. • •	. 2	i	-	Ĭ į	0	80	}

8 0002 0005 0005 0005 0002 0002	90005	MG00 WG11,50002
WGOO, as WG10, 50002 WG10, 50002 WG10, 50005 WG10, 50005 WG10, 50002 WG10, 50002	WG09, 50005	į.
1.00 1.00 1.00 0.35 0.65 0.10 0.03 0.07 PAGE:	OCC FAC 1.00 1.00 0.05 0.05	00CC FAC 1.00 1.00 1.00 0.28
MATPFA	RCC	RCC MATPEA MATPEA MATPEA MATPEA
REP DSSX ASSX TEST TEST TEST TEST TEST TEST TEST T	DESC REP TEST TEST REP TEST TEST TEST TEST	DESC INSP TEST TEST
4.54 4.84 6.68 3.26 3.74 3.11 43.13 4.73 14.73	AVERAGE SIMULATED HRS 3.61 6.20 6.11 1.31 14.87 0.00	o
2.71 00 2.76 53 3.90 06 2.48 74 25.22 69 2.87 51 24.05 06 2.11 30 26.21 18 3.61 22-AUG-90 TIME:	AVERAGE D. SCHEDULED HRS 00 2.10 2.10 3.31 00 1.31 00 1.31 00 3.47	\$50 00000n
0.09 0.00 59.53 11.06 13.74 14.69 9.51 1.06 20.08 18.30 14.18 0.00	SLOTHI OUEUE HRS HRS 3.	2 5 0 1 4 0 0
1. 0. 143. 79. 55. 74. 21. 10. 1. 3. OUARTER: 4	AVERAGES AVERAGES QUEUED OTY OTY 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	WCD NAM AVERAGES D QUEUED OTY 0. 116. 69. 0. 0.
423. 421. 137. 137. 148. 270. 270. 38. 113. 14. 28.	PROCESSE OTY 9. 9. 9. 1. 1.	TT STATISTIC STATISTIC OTY OTY 116. 116. 116.
423. 422. 421. 420. 419. 417. 417. 417.	ME: DB PERATION (QTY QTY 9. 9. 9. 9.	DERATION S OPERATION S OTY OTY OTY 116. 116. 116. 116.
0100 0200 0300 0400 S 0500 0700 0900 S 1100 S	D	MCD by OPER OPER CODE CODE CODE CODE CODE CODE CODE CODE

- .							WG00 WG11,50002 WG11,50002		
WGSW 19		WG11	WGSW	20			WG00 WG11 WG11	21	1 1 1 1
1.00 1.00 1.00 1.00 PAGE:	OCC FAC	00000	1.00	PAGE:		OCC FAC	0.10 0.70 0.70 0.70	PAGE:	
MATPEA MATPEA MATPEA MATPEA VALID	RCC	MATPFA MATPFA MATPFA MATPFA	MATPEA MATPEA MATPEA	VALID		RCC	MATWIP MATPEA MATPEA MATPEA	VALID	
TEST TEST TEST PACK OUT REPT.ID:	DESC	INSP TEST TEST	PACK OUT	REPT. ID:		DESC	INSP INSP TEST TEST WIP	REPT. ID:	
38.44 17.86 1.77 4.57 4.00 14:42:14	9	2.00 5.30 6.25 15.00	4.48	14:42:14		AVERAGE SIMULATED HRS	102.31 8.95 7.21 26.58 1797.47	14:42:14	
00 27.5, 00 14.53 00 1.52 16 2.72 00 4.00 22-AUG-90 TIME: HRU	AVERAGE SCHEDULED HRS	2.00 5.30 12.55	2.78 4.00	22-AUG-90 TIME:		AVERAGE SCHEDULED HRS	101.91 5.30 6.21 21.09 1805.37	22-AUG-90 TIME:	
0. 0. 1. 0. SUPQT	QUEUED HRS	47.20 0.00 0.00	1.20	DATE: 22-	E: SLOTHRUI	QUEUED	0.00 1.85 27.77 23.78 0.00	DATE: 22-	NAME: AWP-G
0. 0. 39. 0. QUARTER: 4 DI WCD NAME:	apo	04000		QUARTER: 4	WCD	D QUEUED QTY	185. 174. 45.	QUARTER: 4	WCD NAM
114. 114. 115. 115. MATPFA (PROC		, , ,	MATPFA	ST STATISTIC	L PROCESSED QTY	406. 407. 283. 273. 412.	MATPFA	SI
0500 114. 0600 114. 0700 115. 0800 115. 9999 115. LC: SA RCC: MA ITEM NAME: F-15SQT	POTENTIAL QTY			RCC:	NAME: F-15ST	POTENTIAL QTY	406. 407. 408. 410.	RCC:	WE: F-15ST
0500 0600 0700 9999 ALC: SA ITEM NA	OPER	0000 0100 0200 0300 8	0400 0400 9999	ALC: SA	ITEM NA	OPER	0000 0100 0200 S 0300 0400	ALC: SA	080082

						0000	2000	2000					20003	
		22				WG11,50002	WG11,50002	MOTT'S	23				WG00 WG11,50002	24
occ Fac	1.00	PAGE:	•		OCC FAC		0.46		PAGE:			OCC FAC	1.00	PAGE:
RCC	MATPFA AWP G-COND	VALID			RCC	MATPFA	MATPEA	MATER	VALID			RCC	MATPFA MATPFA MATPFA	VALID
DESC	8DAY AWP GCON	REPT.ID: VALID			DESC	TEST	TEST	TEST	REPT. ID:			DESC	REP TEST TEST	REPT.ID: VALID
AVERAGE SIMULA::ED HRS	168.00 1484.47 4580.06	14:42:14			AVERAGE SIMULATED HRS	21.50	33.74	15.13	14:42:14			AVERAGE SIMULATED HRS	1.91 6.97 35.98	14:42:14
	.00	TIME:			GE	.73	26.45	.49	TIME:			GE TLED	1.27 5.98 27.80	TIME:
AVERAGE SCHEDULED HRS	168.00 1475.70 4945.45	22-AUG-90	6 6 1 1		AVERAGE SCHEDULED HRS	17.	26	12	22-AUG-90			AVERAGE SCHEDULED HRS	2.5	22-AUG-90
QUEUED HRS	00.00	DATE: 22-	: SLOTHRU0		QUEUED HRS	19.00	19.26	25.09	DATE: 22-	NAME: SLOTHRU1		QUEUED HRS	1.48 24.19 0.00	DATE: 22-
AGES	000	マ	WCD NAME:	GES	QUEUED	24.	65.	15.	4	WCD NAME	GES	QUEUED QTY	33. 42. 0.	SR: 4
AVERA	1	QUARTER:	! 3	C AVERAGE		1			QUARTER:	3	C AVERA) 	!	QUARTER
STATISTIC AVERAGES	145. 49.	MATPFA		STATISTIC	PROCESSED	42.	123.	72.	MATPFA	T	STATISTIC AVERAGE	PROCESSED QTY	85. 70.	MATPFA
	145. 142. 145.	RCC:	E: F-15ST	OPERATION	POTENTIAL QTY	259.	258.	259.	RCC:	ITEM NAME: F-15ST	by OPERATION	POTENTIAL QTY	85. 86.	RCC:
WCD by OPERATION OPER POTENTIAL CODE QTY	0050 0100 0200	ALC: SA	ITEM NAME:	WCD by OF	OPER 1	0300	0400	0200	ALC: SA	ITEM NA	WCD by OI	OPER	0100 0200 0300	ALC: SA

OITEM NAME: F-15ST S

WCD NAME: SLOTHRU7

				ø					
	R.	NR, as	WG00, 50002	WG00, 50002, a	WG11,50002			25	
FAC	1.00	1.00	1.00	1.00	1.00	1.00	1.00	PAGE:	
RCC	MATTPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	VALID	
DESC	DSSX	ASSY	DSSY	ASSY	TEST	TEST	TEST	REPT.ID: VALID	
AVERAGE SIMULATED HRS	0.00	0.00	3.68	7.16	7.20	32.90	16.90	14:42:14	
AVERAGE SCHEDULED HRS	00.0	0.00	2.40	4.20	6.20	25.43	13.59	22-AUG-90 TIME:	
QUEUED SO HRS		63.04	1.32	86.71	22.87	0.00	0.00	DATE: 22-AU	
QUEUED QTY	0.	168.	111.	153.	186.	•	ö	QUARTER: 4 DA	
PROCESSED OTY	314.	314.	315.	315.	312.	310.	311.	MATPFA QUAR	
POTENTIAL 1 QTY	314.	314.	315.	315.	312.	310.	311.	RCC:	
:	0010				ເດ			ALC: SA	

WCD by OPERATION STATISTIC AVERAGES

	RCC	MATPFA	VALID						
	DESC	DSSY	ASSY	DSSY	ASSY	TEST	TEST	TEST	REPT.ID: VALID
	AVERAGE SIMULATED HRS	0.00	0.00	3.08	7.07	6.33	36.34	14.43	14:42:14
	AVERAGE SCHEDULED HRS	0.00	0.00	2.04	4.19	5.50	29.51	12.12	DATE: 22-AUG-90 TIME:
	QUEUED	0.00	64.38	1.34	92.65	23.80	0.00	0.00	DATE: 22-P
VERAGES	QUEUED	0.	23.	12.	22.	20.	•	o	QUARTER: 4
ION STATISTIC AVERAGES	PROCESSED QTY	39.	39.	39.	39.	39.	39.	38.	MATPFA QU
PERATION	POTENTIAL QTY	39.	39.	39.	39.	39.	39.	38.	RCC:
WCD by OPERATI	OPER	0010	0020	0020	0010	0200 S	0300	0400	ALC: SA

WCD NAME: SLOTHRU7

ITEM NAME: F-15ST

NR NR, as WG00, 50002 WG11, 50002, as

OCC FAC

26

PAGE:

WCD NAME: SLOTHRU3 WCD by OPERATION STATISTIC AVERAGES ITEM NAME: F-15ST

WG11,50002 1.00 FAC -----DESC ----TEST AVERAGE SIMULATED 1.66 HRS AVERAGE SCHEDULED HRS 1.48 24.35 QUEUED HRS QUEUED OTY 228. POTENTIAL PROCESSED QTY 385. 080084

٠.						7													
32					c	WG11, 50002				:3≥							:		
WGSW	27	! ! !			MGOO	WG1				WGSW	•	78					WGSW	29	
1.00	PAGE:			OCC FAC	1.00	1.00	1.00 2.00	1.00	96	98.68	1.00	PAGE:			OCC.	100000	988	PAGE:	
Matpfa Matpfa	VALID			RCC	MATPFA	MATPFA	MATPEA	MATPFA	MATPFA	MATPFA	MATPFA	VALID			RCC	MATPEA MATPEA MATPEA MATPEA	MATPFA MATPFA MATPFA	VALID	
PACK	REPT.ID:			DESC	NI	TEST	TEST	TEST	TEST	PACK	OUT	REPT. ID:			DESC	INSP	PACK OUT	REPT.ID:	
3.97	14:42:14			AVERAGE SIMULATED HRS	2.00	6.95	31.64	32.33	16.22	4.39	4	14:42:14		90,699,6	SIMULATED HRS	2.00 5.30 2.33 11.40	1.94 2.68 4.00	14:42:14	
2.60 3.95	TIME:			AGE ULED S	2.00	5.99	20.59	24.98	3.40	1.42 2.66	4.00	TIME:		ţ,	OLED S	2.00 5.30 1.13	1.34 2.68 4.00	TIME:	
	22-AUG-90	_		AVERAGE SCHEDULED HRS		(Ñ 6	7	-			22-AUG-90	_	50 KO 37 K	SCHEDULED HRS	1		22-AUG-90	
1.24	DATE: 22-	QUIKTHRU		QUEUED HRS	0.00	19.62	000	0.00	0.0	1.04	o.	DATE: 22-	SUPQTHRU		QUEUED HRS	00000	0.00	DATE: 22-	
171. 0.	4	WCD NAME:	တ္သ	QUEUED	0.0	88.	. 0		٠ د		٥.	4	NAME:	! !	QUEUED QTY	00000	o	4	
	QUARTER:	EKCI.	C AVERAGE		1,71	, w				•		QUARTER:	WCD C AVEREGES					QUARTER	
381. 381.	MATPFA	£	OPERATION STATISTIC AVERAGES	PROCESSED QTY	129.	129.	129.	129.	129.	129.	129.	MATPFA	QT STATISTIC		. PROCESSED QTY	00000	, v, v,	MATPFA	
381. 381.	RCC:	E: F-16QT	ERATION	POTENTIAL QTY	129. 129.	129.	129.	129.	129.	129.	129.	RCC:	F-16S		POTENTIAL QTY	25.5.5		RCC:	
0200 9999	ALC: SA	ITEM NAME:	WCD by OP	K 6	0000	0200 S	0300	0200	0600	0800	6	ALC: SA	ITEM NAME:		OPER P	0000 0100 0200 0300	0400 9999	650 050	0

	05									005 005 005	
	WG00 WG11,50002 WG11,50002	30				31				WG11,50002 WG11,50002 WG11,50002	32
PAC PAC	1.00 1.00 0.70 1.00	PAGE:		OCC FAC	1.00	PAGE:		ξ	FAC	0.19 0.46 0.30	PAGE:
RCC	MATERA MATERA MATERA WIP	VALID		RCC	MATPFA AWP G-COND	VALID			RCC	Matpfa Matpfa Matpfa	VALID
DESC	IN INSP TEST TEST WIP	REPT. ID:		DESC	8DAY AWP GCON	REPT. ID:			DESC	TEST TEST TEST	REPT.ID: VALID
AVERAGE SIMULATED HRS	99.16 9.03 6.75 28.69 1862.67	14:42:14		AVERAGE SIMULATED HRS	168.00 1381.51 4932.42	14:42:14		AVERAGE	HRS	25.01 36.60 17.01	14:42:14
AVERAGE SCHEDULED HRS	100.14 5.30 5.79 22.71 1843.07	22-AUG-90 TIME:		AVERAGE SCHEDULED HRS	168.00 1380.08 5013.41	22-AUG-90 TIME:		AVERAGE	SCHEDULED	20.46 28.33 13.93	22-AUG-90 TIME:
QUEUED HRS	0.00 1.62 25.40 28.35 0.00	DATE: 22-1	NAME: AWP-G	QUEUED HRS	0.00	DATE: 22-	: SLOTHRUO		QUEUED	24.06 20.59 23.32	DATE: 22-
QUEUED	209. 209. 209. 51.	QUARTER: 4	WCD NAME	QUEUED	000	QUARTER: 4	WCD NAME:	/ERAGES	QUEUED	41. 66. 35.	QUARTER: 4
PROCESSED QTY	458. 459. 326. 324. 461.	MATPFA QUA		PROCESSE	188. 47. 134.	MATPFA QUA	E.	ω i	L PROCESSED QTY	56. 143. 89.	Matpfa Qu
POTENTIAL OTY	458. 459. 460. 462.	RCC:	ITEM NAME: F-16ST	POTENTIAL OTY	188. 187. 187.	RCC:	ITEM NAME: F-16ST	OPERATION	POTENTIAL OTY	319. 318. 318.	A RCC:
OPER	0000 0100 0200 0300 0400	ALC: SA	ITEM NA	OPER	0050 0100 0200	ALC: SA	ITEM NA	WCD by o	OPER	0300	8 93 6 0
										08	000 0

WCD NAME: SLOTHRUI

WCD by OPERATION STATISTIC AVERAGES

ITEM NAME: F-16ST

AVERAGE

AVERAGE

SLOTHRU7	
NAME:	
MCD	
F-16ST	
NAME:	
LTEM	

WCD by	OPERATION	WCD by OPERATION STATISTIC AVERAGES	AVERAGES							
OPER	POTENTIAL QTY	POTENTIAL PROCESSED QTY QTY		QUEUED	AVERAGE SCHEDULED HRS	AVERAGE SIMULATED HRS	DESC	RCC	OCC	
0010		455.	0.	0.0	0.00	0.00	DSSY	MATPFA	1.00	NA NA
0020	455.	455.	237.	59.50	0.0	0.00	ASSY	MATPFA	1.00	NR, as
0020	453.	453.	167.	1.33	2.57	3.98	DSSY	MATPFA	1.00	WG00, 50002
0100	453.	453.	222.	91.02	3.76	6.16	ASSY	MATPFA	1.00	WG00, 50002, as
0200	S 449.	449.	256.	26.78	6.07	7.07	TEST	MATPFA	1.00	WG11,50002
0300	447.	447.		0.00	25.89	32.87	TEST	MATPFA	1.00	•
0400	448.	448.		0.00	14.68	18.00	TEST	MATPFA	1.00	
ALC:	SA RCC:	MATPFA Q	QUARTER: 4	DATE: 22-	DATE: 22-AUG-90 TIME: 14:42:14 REPT.ID: VALID	14:42:14	REPT. ID:	VALID	PAGE:	33

WCD NAME: SLOTHRU7 ITEM NAME: F-16ST

AVERAGES	
STATISTIC	
OPERATION	
ģ	į
₩CD	

					1002	1002, as	WG11,50002			
			Æ	NR, as	WG00, 50	WG00, 50	WG11, 5(•		34
	000 543	}	1.00	1.00	1.00	1.00	1.00	1.00	1.00	PAGE:
	S	2	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	VALID
	DESC		DSSX	ASSY	DSSY	ASSY	TEST	TEST	TEST	REPT.ID: VALID
	AVERAGE SIMULATED HRS		0.00	0.00	4.46	6.05	6.65	44.99	18.34	14:42:14
	AVERAGE SCHEDULED HRS		0.00	0.00	2.75	3.78	5.64	34.31	14.82	22-AUG-90 TIME:
	QUEUED	i	0.00							DATE: 22-A
	QUEUED			23.	21.	19.	28.			QUARTER: 4
	POTENTIAL PROCESSED OTY	1	49.	49.	48.	48.	48.	48.	48.	matpfa Qu
***************************************	POTENTIAL OTY		49.	49.	48.	48.	48.	48.	48.	RCC:
	OPER 1		0010	0020	0020	0100	0200 s	0300	0400	ALC: SA

WCD NAME: SLOTHRU3

	WG11,50002 WGSW	35
3 CC	1.00	PAGE: 35
RCC	MATPEA MATPEA MATPEA	VALID
DESC		REPT. ID:
SIMULATED HRS	1.74 3.64 6.54	DATE: 22-AUG-90 TIME: 14:42:14 REPT.ID: VALID
. , [1.52 2.43 3.84	TIME:
SCHEDUL. HRS	351	AUG-90
UEUED HRS	26.73 1.31 0.00	: 22-1
O		
•	245. 209. 0.	JARTER: 4
PROCESSED QTY	447. 442. 442. 442.	ALC: SA RCC: MATPFA QUARTER: 4
rential Oty	447. 442. 442.	ALC: SA RCC: M
አ	, , ,	8
COD	0100	AŭC:

WCD NAME: SLOTHRU2 ITEM NAME: GG

WCD by OPERATION STATISTIC AVERAGES

	WG00	WG10,50004		WG00	WG10,50004		36
FAC	1.00	1.00	1.00	0.10	0.10	0.10	PAGE:
RCC	MATPFA	MATPFA	MATPFA	MATPEA	MATPFA	MATPFA	VALID
DESC	REP	TEST	TEST	REP	TEST	TEST	REPT.ID:
AVERAGE SIMULATED HRS	5.70	3.57	37.55	5.39	3.76	39.03	14:42:14
AVERAGE SCHEDULED HRS	3.58	2.92	25.54	3.20	3.30	26.16	22-AUG-90 TIME:
QUEUED	1.41	15.45	0.00	1.02	32.47	00.00	DATE: 22-4
QUEUED QTY	191.	242.	0	12.	4	0.	QUARTER: 4
POTENTIAL PROCESSED QTY	453.	453.	451.	45.	43.	41.	1
POTENTIAL QTY	453.	453.	451.	451.	451.	451.	RCC:
OPER F	0100	0200 S	0300	0400	0200	0550	ALC: SA

BACKSHOP DWELL TIMES BY BACKSHOP RCC

AVERAGE RCC HOURS	HOP	*** NO BACKSHOP ACTIVITY ****			
ITEM		AC/DB ***	*** BO	F-15QT ***	OF-1580T ***

1797.47

WIP AWP

S300F-158T S90F-158T S30F-158T

	ITY ****	***** XL	.67 .22 .46	TY ****	: 22-AUG-90 TIME: 14:42:14 REPT.ID: VALID PAGE: 37		SIMULATED VALUES SAMPLE FLOWTIME STANDARD SAMPLE WORKLOAD PERCENTAGE SIZE HOURS DEVIATION SIZE WEIGHT DIFFERENCE	. 34	89.55 64.47 416 0.000	18.89 11.91 9 0.000	129.67 59.67 115 0.000	3123.34 2185.83 381 0.000	124.43 55.05 129 0.000	30.60 4.12 2 0.000	0 3487.84 2497.17 441 0.000 0.00 0 60.25 47.28 451 0.000 0.00	VALIDATION TEST DUE TO INSUFFICIENT DATA	ATION TEST DUE TO INSUFFICIENT DATA					
G-COND 3221.8	*** NO BACKSHOP ACTIVITY	*** NO BACKSHOP ACTIVITY	WIP 1862.67 AWP 347.22 G-COND 3534.46	*** NO BACKSHOP ACTIVITY	MATPFA QUARTER: 4 DATE	SIMULATED COMPARISON	HISTORICAL VALUES FLOWTIME STANDARD HOURS DEVIATION	1 				00:00		0	0.00	EXCLUDED FROM VAL	EXCLUDED FROM VALIDATION					
F-15ST	F-16QT	F-16SQT	F-16ST F-16ST F-16ST	છુ	ALC: SA RCC: M	HISTORICAL VS. SIM	ITEM	AC	AC/DB	08	F-15QT E-15SOT	F-15ST	F-16QT	F-16SQT	F-16ST GG	ITEM AC	ITEM AC/DB	ITEM DB	ITEM F-15QT	ITEM F-15SQT	QITEM F-15ST	COITEM F-160T

			38	
			PAGE:	
			VALID	
DATA	DATA	DATA	REPT.ID:	
NSUFFICIENT	NSUFFICIENT	NSUFFICIENT	14:42:14	
5 1 1	70 11	TOI	TIME:	
rest due	TEST DUE	TEST DUE	-AUG-90	
ALIDATION	ALIDATION	ALIDATION	DATE: 22	
EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA		COMPARISON
ы	(L)	ы́	ALC: SA RCC: MATPFA	HISTORICAL VS. SIMULATED C
b	H		RCC:	vs.
F-16S	ITEM F-16ST	ၓၟ	85	RICAL
ITEM F-16SQT	ITEM	ITEM GG	ALC:	HISTO

WORK LOAD FILE

	** AC	SLOTHRU5	4					0.31	S		1A B
,	AC/DB	SLOTHRU4	4					0.50	s		1A B
٠ ٠	DB	SLOTHRU6	4					0.03	S		1A B
	F-15QT	QUIKTHRU	4	23	23	39	31	1.00	3		1A B
	F-15SQT	SUPOTHRU	4	1	0	1	0	1.00		367	1A B
	F-15ST	SLOTHRUI	4	80	81	136	109	1.00			1A B
	F-15ST F-15ST F-15ST F-15ST F-15ST F-16QT F-16SQT	AWP-G SLOTHRU1 SLOTHRU7 SLOTHRU7 SLOTHRU3 QUIKTHRU SUPQTHRU	4	41 0	17	4 0 0	31	0.38 0.70 0.20 0.80 0.10 1.00		367	1A B 1A
	F-16ST	SLOTHRUI	4	147	59	142	110	1.00			B 1A B
	F-16ST F-16ST F-16ST F-16ST F-16ST	AWP-G SLOTHRUO SLOTHRU7 SLOTHRU7 SLOTHRU3						0.38 0.70 1.00 0.10 1.00			
	GG	SLOTHRU2	4					0.50	s		1A B

RESOURCE FILE

```
UFC RESOURCE VALIDATION FILE **
**
               32 32 32 32 32 32 32 32 32 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50002
            2
                 32 32 32 32 32 32 32 32 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50002
                 32 32 32 32 32 32
                                      32 .00 .00 .00 .00 .00 .00 .00 .00
EQ
   50002
EQ
   50002
               32
                 32 32 32 32 32 32 32 .00 .00 .00 .00 .00 .00
                                                                .00 .00 .00
RN
                   50002
BZ
               1
                   1
BF
                  E
                        0.75
TR
                       0.90
EQ
   50004
              10
                 2
EQ 50004
              3
                                                             .00 .00 .00 .00
EQ
   50004
              9
                                9
                                    9
                                      9 .00 .00 .00 .00 .00 .00
                                                                .00 .00 .00
ΕQ
   50004
                   50004
RN
              1
                   1
BZ
BF
                       1.50
                  E
                       1.00
                  Ē
TR
EO 50005
                6
                   6
                     6
                        6
                           6
                              6
                                 6
                                    6
                                       6 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50005
            2
                     6
                        6
                              6
                                 6
                                    6
                                       6
                                         .00 .00 .00 .00 .00 .00 .00 .00
                6
                   6
                           6
            3
                        6
                              6
                                 6
                                    6
                                             .00 .00 .00 .00 .00 .00 .00
EQ 50005
                6
                   6
                     6
                           6
                                       6.00
EQ 50005
                5
                   5
                           5
                                 5
                                       5 .00 .00
                                                 .00 .00 .00 .00 .00 .00
                   50005
RN
BZ
              1
                   1
BF
                   E
                        2.00
TR
                        1.00
EQ 50173
              17 17 17 17 17 17 17 17 17 .00 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50173
              17 17 17 17 17 17 17 17 17 17 .00 .00 .00 .00 .00 .00
                                                                .00 .00 .00
EQ 50173
              16 16 16 16 16 16 16 16 16 .00 .00 .00 .00 .00 .00
                                                                .00 .00 .00
EQ 50173
              16 16 16 16 16 16 16 16 16 .00 .00 .00 .00 .00 .00 .00 .00
RN
                   50173
ΒZ
              1
                   1
                       19.0
BF
                  E
TR
                       0.58
                  E
MP WG00
            1
               37 10
                     9 14 16
                              8
                                 n
                                    O
                                       04.604.604.604.604.600.000.000.00
            2
                     9 14 16
MP WG00
               37 10
                              8
                                 0
                                    0
                                       04.604.604.604.604.600.000.000.00
MP WG00
            3
               37 10
                     9 14 16
                              8
                                 0
                                    0
                                       04.604.604.604.604.600.000.000.00
                     9
                              8
                                 0
                                    0
MP WG00
            4
               37 10
                       14 16
                                       04.604.604.604.604.600.000.000.00
RN
                   WG00
MP WG09
            1
                4
                   2
                     1
                        2
                           0
                              1
                                 0
                                    0
                                       05.475.475.475.475.475.470.000.000.00
                   2
                        2
MP WG09
            2
                4
                     1
                           0
                              1
                                 0
                                    0
                                       05.405.405.405.405.400.000.000.00
            3
MP WG09
                   2
                     1
                        2
                           0
                              1
                                 0
                                    0
                                       04.604.604.604.604.600.000.000.00
                4
                        2
MP WG09
            4
                   4
                     1
                           0
                              1
                                 0
                                    0
                                       05.165.165.165.165.165.160.000.000.00
                4
RN
                   WG09
MP WG10
            1
               9
                   5
                     2
                        6
                           6
                              4
                                 0
                                    0
                                       06.806.806.806.806.800.000.000.00
            2
                9
                   5
                     2
                        6
                           6
                              4
                                 0
                                    0
MP WG10
                                       06.806.806.806.806.800.000.000.00
            3
                     2
                        6
                                 0
                                    0
MP WG10
               8
                   4
                           6
                              4
                                       06.806.806.806.806.806.000.000.00
            4
                9
                     2
                        6
                           6
                              4
                                 0
                                    0
                                       06.806.806.806.806.806.800.000.000.00
MP WG10
                   4
RN
                   WG10
MP
  WG11
            1
               22
                 15 15
                       11
                              9
                                 0
                                       06.806.806.806.806.806.800.000.000.00
            2
                           9
MΡ
  WG11
               22
                 15 15
                       11
                              9
                                 0
                                    0
                                       06.806.806.806.806.806.800.000.000.00
            3
MP
  WG11
              19
                 13 13 11
                           9
                              9
                                 0
                                    0
                                       06.806.806.806.806.800.000.000.00
                              9
MP
  WG11
            4
               21 14 14
                       11
                           9
                                 0
                                    0
                                       06.806.806.806.806.806.800.000.000.00
RN
                        0
                              0
                                 0
                                       04.604.604.600.000.000.000.000.000.00
MΡ
  WGSW
            1
                   1
                     1
                           0
                                    0
            2
                        0
                              0
                                 0
MP
  WGSW
                   1
                     1
                           0
                                    0
                                       04.604.604.600.000.000.000.000.000
            3
                        0
                           0
                              0
MΡ
  WGSW
                  1
                     1
                                 0
                                    0
                                       04.604.604.600.000.000.000.000.000.00
               2
                        0
                           0
                              0
                                 0
                                       04.604.604.600.000.000.000.000.000.00
MP
  WGSW
            4
                  1
                     1
                                    0
RN
                  WGSW
                  WG00
AR
```

OPERATION FILE

	**	****	MATPFA	SAN ANTO	ONIO	AUGUS	T 1990	****
	**	****		OUTKIHK	U ~~~		*****	
	OD		OOTKI	HRU0000		2	1.0	U MATPFA
	MF			C 2	.00			
•	NR					_		^
	OD		QUIKI	HRU0100		P	1.0	0 MATPFA
	MP	wg00			. 30			
- (OD		QUIKI	THRU0200				0 MATPFA
1	MP	WG11				6.00		
	EQ	50002		1S 6	.00	6.00	12.00	
(OD		QUIK	THRU0300				0 MATPFA
1	MP	WG11				21.00		
	EQ	50002				21.00	34.00	
	OD		QUIK	THRU0400	TEST	. B	0.2	8 MATPFA
	MP	WG11	_			22.00	36.00	
	EQ	50002				22.00		
	OD	0000-	OUIKT	HRU0500				0 MATPFA
	MP	WG11				27.00		
	EQ	50002		15				
	OD	30002	OUTE	THRU0600	TEST	סי	1.0	0 MATPFA
	MP	WG11	ZOTI.	1E 14	00	14.00		•
						14.00		
	EQ	50002	OHT WI					0 MATPFA
	OD		COTK	THRU0700			5.00	U MAIPEA
	MP	WG11				1.50	5.00	
	EQ	50002			.50			
	OD		QUIK	THRU0800				0 MATPFA
	MP	WGSW		1E 2	. 60	2.60	6.60	_
•	OD		QUIK	THRU9999		P	1.0	0 MATPFA
	ΜF			1C 4	.00			
	NR							
	**	****	*****	* SLOTHR	UO **	****	****	****
	OD		SLOTI					9 MATPFA
8	MΡ	WG11				22.00	36.00	
	EQ	50002		1S 22	.00	22.00	36.00	
	OD		SLOTI	IRU00400	TEST	P	0.4	6 MATPFA
	MP	WG11		1E 27	.00	27.00	72.00	
	EO	50002			.00			
	EQ OD	50002	SLOTI	1S 27		27.00	72.00	O MATPFA
	OD	• • • • • • • • • • • • • • • • • • • •	SLOTI	1S 27 ERU00500	TEST	27.00	72.00 0.3	0 MATPFA
	OD MP	WG11	SLOTI	1S 27 ERU00500 1E 14	TEST	27.00 P 14.00	72.00 0.3 36.00	0 MATPFA
	OD MP EQ	WG11 50002		1S 27 ERU00500 1E 14 1S 14	TEST .00 .00	27.00 P 14.00 14.00	72.00 0.3 36.00 36.00	
	OD MP EQ	WG11	*****	1S 27 HRU00500 1E 14 1S 14 ** SLOTH	TEST .00 .00 RU1 *	27.00 P 14.00 14.00	72.00 0.3 36.00 36.00	,
	OD MP EQ **	WG11 50002	*****	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100	TEST .00 .00 RU1 *	27.00 P 14.00 14.00	72.00 0.3 36.00 36.00	
	OD MP EQ ** OD MP	WG11 50002	****** SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1	TEST .00 .00 RU1 * REP .50	27.00 P 14.00 14.00 ***********************************	72.00 0.3 36.00 36.00 ******** 1.0 2.90	0 MATPFA
	OD MP EQ ** OD MP OD	WG11 50002 *********************************	****** SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200	TEST .00 .00 RU1 * REP .50	27.00 P 14.00 14.00 ***********************************	72.00 0.3 36.00 36.00 ******* 1.0 2.90	,
	OD MP EQ ** OD MP OD MP	WG11 50002 *********************************	****** SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6	TEST .00 .00 RU1 * REP .50 TEST	27.00 P 14.00 14.00 ******* P 2.00 S 6.00	72.00 0.3 36.00 36.00 ******* 1.0 2.90 1.0	0 MATPFA
	OD MP EQ ** OMP OD MP EQ	WG11 50002 *********************************	SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 1S 6	TEST .00 .00 RU1 * REP .50 TEST .00	27.00 P 14.00 14.00 2.00 S 6.00 6.00	72.00 0.3 36.00 36.00 ******** 2.90 12.00 12.00	0 MATPFA
	OD MP EQ ** OD MP OD MP EQ OD	WG11 50002 *********************************	SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 1S 6 HRU10300	TEST .00 .00 RU1 * REP .50 TEST .00	27.00 P 14.00 14.00 2.00 S 6.00 6.00	72.00 0.3 36.00 36.00 ******* 1.0 2.90 12.00 12.00 0.7	0 MATPFA
	OD MP EQ *** OD MP OD MP EQ OD EQ	WG11 50002 *********************************	SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 1S 6 HRU10300 1E 27	TEST .00 .00 RU1 * REP .50 TEST .00 .00	27.00 P 14.00 14.00 ******* P 2.00 S 6.00 6.00 P 27.00	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 0.7 72.00	0 MATPFA
	OD MP EQ ** OD MP OD MP EQ FQ	WG11 50002 *********************************	SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 1S 6 HRU10300 1E 27 1S 27	TEST .00 .00 RU1 * REP .50 TEST .00 .00	27.00 P 14.00 14.00 ******* P 2.00 S 6.00 6.00 P 27.00 27.00	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00	0 MATPFA
	OD MP EQ ** OD MP OD EQ EQ FQ	WG11 50002 *********************************	SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 1S 27 **** SLO	TEST .00 .00 RU1 * REP .50 TEST .00 .00 TEST .00	27.00 P 14.00 14.00 2.00 S 6.00 6.00 P 27.00 27.00	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00 *******	0 MATPFA 0 MATPFA 5 MATPFA
	OD MP EQ ** OD MP OD EQ FQ **	WG11 50002 *********************************	SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 1S 6 HRU10300 1E 27 1**** SLOTH	TEST .00 .00 RU1 * REP .50 TEST .00 .00 TEST .00 .00	27.00 P 14.00 14.00 2.00 S 6.00 6.00 P 27.00 27.00	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00 *******	0 MATPFA
	OD MP EQ ** OD MP OD EQ OD EQ ** OD MP	WG11 50002 *********************************	SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 1S 27 **** SLOHHU20100 1E 3	TEST .00 .00 RU1 * REP .50 TEST .00 .00 TEST .00 .00 THRU2 REP	27.00 14.00 14.00 14.00 2.00 5 6.00 6.00 27.00 27.00 2 *****	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00 ******* 1.0 5.20	0 MATPFA 0 MATPFA 0 MATPFA
	OD MP EQ ** OD MP EQ ** OD MP OD MP OD	WG11 50002 *********************************	SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 1S 27 **** SLOH HRU20100 1E 3 HRU20200	TEST .00 .00 RU1 * REP .50 TEST .00 .00 TEST .00 .00 THRU2 REP .40	27.00 P 14.00 14.00 2.00 S 6.00 6.00 27.00 27.00 2*****	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00 ******* 1.0 5.20 1.0	0 MATPFA 0 MATPFA 5 MATPFA
	OD MP EQ ** OD MP EQ OD EQ ** OD MP OD MP OD MP	WG11 50002 *********************************	SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 1S 27 **** SLO HRU20100 1E 3 HRU20200 1E 3	TEST .00 .00 RU1 * REP .50 TEST .00 .00 TEST .00 .00 THRU2 REP .40 TEST	27.00 14.00 14.00 12.00 2.00 6.00 27.00 27.00 2****** 9	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00 ******* 1.0 5.20 1.0 1.0	0 MATPFA 0 MATPFA 0 MATPFA
	OD MP EQ +** OD MP OD MP EQ	WG11 50002 *********************************	SLOTI SLOTI SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 1S 27 **** SLO HRU20100 1E 3 HRU20200 1E 3 HRU20200 1E 3	TEST .00 .00 RU1 * REP .50 TEST .00 .00 TEST .00 .00 THRU2 REP .40 TEST .00 .00	27.00 14.00 14.00 14.00 2.00 5 6.00 6.00 27.00 27.00 2 ***** 9 3.40 5 3.00 3.00	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00 ******* 1.0 5.20 1.0 16.00 16.00	0 MATPFA 0 MATPFA 0 MATPFA 0 MATPFA
	OD MP EQ OD EQ *** OD MP EQ OD	WG11 50002 *********************************	SLOTI SLOTI SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 **** SLO HRU20100 1E 3 HRU20200 1E 3 HRU20300	TEST .00 .00 RU1 * REP .50 TEST .00 .00 THRU2 REP .40 TEST .00 .00 TEST	27.00 14.00 14.00 14.00 2.00 5 6.00 6.00 27.00 27.00 2***** P 3.40 3.00 3.00	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00 72.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0 MATPFA 0 MATPFA 0 MATPFA
	OD MP Q ** OD MP OD MP EQ OD MP EQ OD MP	WG11 50002 *********************************	SLOTI SLOTI SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 **** SLO HRU20100 1E 3 HRU20200 1E 3 HRU20300 1E 3 HRU20300 1E 24	TESI .00 .00 RU1 * REP .50 .00 .00 TESI .00 .00 THRU2 REP .40 TESI .00 .00	27.00 14.00 14.00 14.00 2.00 5 6.00 6.00 27.00 27.00 2***** 9 3.40 3.00 3.00 5 9	72.00 0.3 36.00 36.00 ******** 2.90 12.00 12.00 72.00 72.00 72.00 1.00 1.00 1.00 1.00 1.00 1.00	0 MATPFA 0 MATPFA 0 MATPFA 0 MATPFA
	OD MP EQ OD EQ *** OD MP EQ OD	WG11 50002 *********************************	SLOTI SLOTI SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 **** SLO HRU20100 1E 3 HRU20200 1E 3 HRU20300 1E 3 HRU20300 1E 24 1S 24	TEST .00 .00 RU1 * REP .50 TEST .00 .00 THRU2 REP .40 TEST .00 .00 TEST	27.00 14.00 14.00 14.00 1****** 2.00 6.00 27.00 27.00 2***** 3.40 3.00 3.00 24.00	72.00 0.3 36.00 36.00 ******** 2.90 12.00 12.00 72.00 72.00 5.20 1.00 16.00 1.00 70.00 70.00	0 MATPFA 0 MATPFA 0 MATPFA 0 MATPFA 0 MATPFA
	OD MP Q ** OD MP OD MP EQ OD MP EQ OD MP	WG11 50002 *********************************	SLOTI SLOTI SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 **** SLO HRU20100 1E 3 HRU20200 1E 3 HRU20300 1E 3 HRU20300 1E 24	TEST .00 .00 RU1 * REP .50 TEST .00 .00 THRU2 REP .40 TEST .00 .00 TEST	27.00 14.00 14.00 14.00 2.00 5 6.00 6.00 27.00 27.00 2***** 9 3.40 3.00 3.00 5 9	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00 72.00 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0 MATPFA 0 MATPFA 0 MATPFA 0 MATPFA
	OD MP Q ** OMP OD EQ FQ ** OMP EQ OD MP EQ	WG11 50002 *********************************	SLOTI SLOTI SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 **** SLO HRU20100 1E 3 HRU20200 1E 3 HRU20300 1E 3 HRU20300 1E 24 HRU20400	TEST .00 .00 RU1 * REP .50 TEST .00 .00 THRU2 REP .40 TEST .00 .00 TEST	27.00 14.00 14.00 14.00 1****** 2.00 6.00 27.00 27.00 2***** 3.40 3.00 3.00 24.00	72.00 0.3 36.00 36.00 ******** 2.90 12.00 12.00 72.00 72.00 5.20 1.00 16.00 1.00 70.00 70.00	0 MATPFA 0 MATPFA 0 MATPFA 0 MATPFA 0 MATPFA
	OD MP EQ OD MP EQ OD	WG11 50002 *********************************	SLOTI SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 HRU10300 1E 27 **** SLO HRU20100 1E 3 HRU20200 1E 3 HRU20300 1E 3 HRU20300 1E 24 HRU20400	TEST .00 .00 RU1 * REP .50 .00 .00 TEST .00 .00 TEST .00 .00 TEST .00 .00 TEST	27.00 14.00 14.00 14.00 15.00 2.00 2.00 27.00 3.00 3.00 27.00 27.00 3.00 3.00 27.00 27.00	72.00 0.3 36.00 36.00 ******** 2.90 12.00 12.00 72.00 72.00 72.00 16.00 1.00 70.00 70.00 70.00 70.00 5.20	0 MATPFA 0 MATPFA 0 MATPFA 0 MATPFA 0 MATPFA
	OD MP EQ OD MP EQ OD MP COD MP OD	WG11 50002 *********************************	SLOTI SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 1S 6 HRU10300 1E 27 **** SLO HRU20100 1E 3 HRU20200 1E 3 HRU20300 1E 24 HRU20400 1E 3 HRU20500 1E 3 HRU20500	TEST .00 .00 RU1 * REP .50 .00 .00 TEST .00 .00 THRU2 REP .40 TEST .00 .00 TEST	27.00 14.00 14.00 14.00 15.00 16.00 17.00 27.00	72.00 0.3 36.00 36.00 ******** 2.90 12.00 12.00 72.00 72.00 72.00 16.00 1.00 70.00 70.00 70.00 70.00 5.20	MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA
	OD MP EQ DEQ ** OD MP EQ DEQ MP MP	WG11 50002 *********************************	SLOTI SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 1S 6 HRU10300 1E 27 **** SLO HRU20100 1E 3 HRU20200 1E 3 HRU20300 1E 24 HRU20400 1E 3 HRU20500 1E 3 HRU20500	TEST .00 .00 RU1 * REP .50 .00 .00 TEST .00 .00 TEST .00 .00 TEST .00 .00 TEST	27.00 14.00 14.00 14.00 15.00 16.00 17.00 27.00	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00 72.00 16.00 1.0 70.00 70.00 70.00 70.00 70.00 0.1	MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA
	OD MP EQ OD MP EQ OD MP COD MP OD	WG11 50002 *********************************	SLOTI SLOTI SLOTI SLOTI SLOTI SLOTI	1S 27 HRU00500 1E 14 1S 14 ** SLOTH HRU10100 1E 1 HRU10200 1E 6 1S 6 HRU10300 1E 27 **** SLO HRU20100 1E 3 HRU20200 1E 3 HRU20300 1E 24 HRU20400 1E 3 HRU20500 1E 3 HRU20500	TEST .00 .00 RU1 * REP .50 .00 .00 TEST	27.00 14.00 14.00 14.00 14.00 14.00 2.00 6.00 27.00 27.00 27.00 27.00 24.00 24.00 24.00 24.00 24.00 3.00 3.00	72.00 0.3 36.00 36.00 ******** 1.0 2.90 12.00 12.00 72.00 72.00 72.00 16.00 1.0 70.00 70.00 70.00 70.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00	MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA

MP	WG10	1E 24.00 24.00 70.00 1S 24.00 24.00 70.00	
EQ	50004	1S 24.00 24.00 70.00	00
OD MP	WG11	SLOTHRU30100 TEST P 1 1E 1.50 1.50 5.00	.00 MATPFA
EQ	50002	1S 1.50 1.50 5.00	
OD	30002	SIOTHRU30200 PACK P 1	.00 MATPFA
MP	WGSW	SLOTHRU30200 PACK P 1 1E 2.60 2.60 6.60	.00 12111111
OD		SLOTHRU39999 OUT P 1	.00 MATPFA
MP	WGSW	1E 4.00	
	represents p	parts that spend time AWP *******	****
OD		AWP-G 0050 8DAY P 1	.00 MATPFA
MF		1C 168.0	
NIR OD		AWP-G 0100 AWP P 0	28 AWD
BS		1N 1368.0 400.0	. ZU AME
NR		2 200000 10010	
OD		AWP-G 0200 GCON P 0 1N 4896.0 1500.0	.72 G-COND
BS		1N 4896.0 1500.0	
NR			
	*****	***** SLOTHRU4 *************	
OD	77000	SLOTHRU40100 REP P 1 1E 2.70 2.70 14.90	.00 MATPFA
MP OD	WG00	1E 2.70 2.70 14.90	OO MATTERA
MP	WG00	SLOTHRU40200 DSSY P 1 1E 3.10 3.10 6.00	.00 MAIPEA
DS		Y 3.10 3.10 3.10	
DS	DE	B Y	
OD		SLOTHRU40300 ASSY P 1	
MP	WG00	1E 3.60 3.60 4.60	
AS	AC		
AS	DE	Y	
OD	12010	SLOTHRU40400 TEST S 0 1E 2.75 2.75 5.00	.35 MATPFA
MP EQ	WG10 50002		
OD	30002	SLOTHRU40500 TEST P 0	.35 MATPFA
MP	WG10	1E 26.00 26.00 56.00	
EQ	50002	1S 26.00 26.00 56.00	
OD		SLOTHRU40600 TEST S 0 1E 2.75 2.75 5.00 1S 2.75 2.75 5.00	.65 MATPFA
MP	WG10	1E 2.75 2.75 5.00	
EQ	50005	1S 2.75 2.75 5.00	
OD	W01.0	SLOTHRU40700 TEST P 0 1E 26.00 26.00 56.00 1S 26.00 26.00 56.00	.65 MATPFA
MP EQ	WG10 50005	15 26.00 26.00 56.00	
OD	30003	SLOTHRU40800 REP P 0	.10 MATPEA
MP	WG00	1E 2.70 2.70 14.90	
OD		SLOTHRU40900 TEST S 0	.3 MATPFA
MP	WG10	1E 2.75 2.75 5.00	
EQ	50002	1S 2.75 2.75 5.00	
OD			.03 MATPFA
MP	WG10	1E 26.00 26.00 56.00	
EQ OD	50002	1S 26.00 26.00 56.00 SLOTHRU41100 TEST S 0	.07 MATPFA
MP	WG10	1E 2.75 2.75 5.00	.U/ MAIFIA
EQ	50005	1S 2.75 2.75 5.00	
OD		SLOTHRU41200 TEST P 0	.07 MATPFA
MP	WG10	1E 26.00 26.00 56.00	
EQ	50005	1S 26.00 26.00 56.00	
	*****	******* SLOTHRU5 ************	
OD	MCCO		.00 MATPFA
MP OD	WG00	1E 3.10 3.10 6.00 SLOTHRU50200 REP P 1	.00 MATPFA
MP	WG00	1E 5.30 5.30 14.90	
OD			.75 MATPFA
MP	WG09	1E 2.00 2.00 2.50	
EQ	50173	1S 2.00 2.00 2.50	

	OD			SLOTHRU50	400	TEST	P	0.75	MATPFA
	MP	WG09		1E	4.	00	4.00	5.00	
	EQ	50173		18	4.	00	4.00	5.00	
	OD			SLOTHRU50	500	ASSY	P		MATPFA
ς.	MP	WG00		1E			4.50	6.80	
	OD			SLOTHRU50		TEST	S		MATPFA
• •	MP	WG09		1E			2.00		
	ΕQ	50173		18		00	2.00		
	OD			SLOTHRU50					MATPFA
	MP	WG09		1E			8.00		
	ΕQ	50173		15		.00			Ma mora
	OD			SLOTHRU50	800	REP	5.30		MATPFA
	MP	WG00		1E SLOTHRU50				0.10	матора
	OD	****		SLOTHRUSU 1E			2.00		IMILIA
	MP	WG09 50173		15		.00	2.00	2.50	
	EQ	30173		SLOTHRU51					MATPFA
	MP	WG09		1E			8.00		
	EQ	50173		15		.00		12.00	
	OD	30173		SLOTHRU51					MATPFA
	MP	WG00		1E		60	3.60		
	**	****	****		SLO	THRU6			
	OD			SLOTHRU60	100	REP	P		MATPFA
	MP	WG00		1E	3.	.20	3.20	10.10	
	OD			SLOTHRU60					MATPFA
	MP	WG09		1E	2.	. 00	2.00	2.50	
	EQ	50005		1S		. 00		2.50	
	OD			SLOTHRU60					MATPFA
	MP	WG 09		1E	4.	. 50	4.50	16.00	
	EQ	50005		18			4.50		
	QĐ			SLOTHRU60					MATPFA
	MP	WG00		1E		. 20			
	OD			SLOTHRU60	500	TEST	S	0.05	MATPFA
	MP	WG09		1E	2.	.00	2.00	2.50	
	EQ	50005		15	Z.	.00		2.50 0.05	MATTERA
	OD	*****		SLOTHRU60		.50	4.50	16.00	MILLY
	MP	WG09 50005		15 15		. 50 . 50	4.50		
	EQ **	*****	*****	*** ST.OTH	2117 ·	. JU	*****	*****	
	OD			SLOTHRU7	0010	DSSY	P	1.00	MATPFA
	NR			020111107	,,,,	2001	-	2,00	
	DS		GG		,	Y			
	OD		-	SLOTHRU7		_	P	1.00	MATPFA
	NR			••••					
	AS		GG		1	Y			
	OD			SLOTHRU7	050			1.00	MATPFA
	MP	WG00		1E				7.00	
	EQ	50002		18	2	. 50	2.50	7.00	
	DS		AC/DB			Y			
	OD			SLOTHRU7					MATPFA
	MP	WG00		1E		. 60	3.60		
	EQ	50002		15		. 60	3.60	6.00	
	AS		AC/DB	AT A		Y		1 00	MATTORY
	OD			SLOTHRU7					MATPFA
	MP	WG11		1E		.00	6.00		
	EQ	50002		1S SLOTHRU7(.00 TEST	6.00		MATPFA
	OD	83011		SLOTHRU /			27.00		FERTEEN
	MP	WG11 50002		15			27.00		
	EQ	50002		SLOTHRU7					MATPFA
	MP	WG11		1E	14	.00	14.00	36.00	
	EQ	50002		15			14.00		
	OD	30002		SLOTHRUI			P		MATWIP
	MF	WG11		1E	100		-		
	- 44				•	-			

NR			
Œ		SLOTHRUI0100 INSP P	1.00 MATPFA
MP	WG00	1C 5.30	
OD		SLOTHRUIO200 TEST S	0.70 MATPFA
MP	WG11	1E 6.00 6.00	12.00
EQ	50002	1S 6.00 6.00	12.00
OD	••••	SLOTHRUI0300 TEST P	
MP	WG11	1E 21.00 21.00	34.00
EQ	50002	1S 21.00 21.00	
OD	••••	SLOTHRUIO400 WIP P	1.00 WIP
BS		N 1860.0 840.0	
NR			
**	****	******* SUPQTHRU *****	****
OD		SUPOTHRU0000 IN P	1.00 MATPFA
MF		C 2.00	
NR			
OD		SUPQTHRU0100 INSP P	1.00 MATPFA
MP	WG11	1C 5.30	
OD		SUPOTHRU0200 TEST S	1.00 MATPFA
MΡ	WG11	1E 6.00 6.00	12.00
EQ	50002	1S 6.00 6.00	
OD		SUPQTHRU0300 TEST P	
MP	WG11	1E 14.00 14.00	
EQ	50002	1S 14.00 14.00	36.00
Œ		SUPOTHRU0350 TEST P	1.00 MATPFA
MP	WG11	1E 1.50 1.50	
EQ	50002		5.00
OD		SUPQTHRU0400 PACK P	
MP	WGSW	1E 2.60 2.60	
OD		SUPOTHRU9999 OUT P	1.00 MATPFA
MF	WG11	1C 4.00	
•			

ADDITIONAL DOCUMENTATION

UFC MODEL PROCESS FLOW

ENICIN	NEERING	MATER
CINCAL	ALEUNA'S	MALES

EMPLOYEE RANDY HARRIS	DATE 7/2/90 - 7/6/90 PAGE NO
RCC_MATOFA	SUBJECT PATH Collection

THE DATA COLLECTION EFFORT FOR INITIAL MODEL ASSELDATION THAT SEEN NEARLY CONDUCTED FOR THE UFC. OPERATION THAT AND OCCUPRENCE FACTORS FOR ALL DECISION MODES HAVE BEEN ESTOBLISHED AND ARE BEING REFERENCED BY AFFERENT SOURCES. THE MAIN EFFORT NON IS TO DESERTING THE PROPER TO ACCURATELY CAPTURE ALL LORS INJURESTING TURQUENT THE SYSTEM WITH BEGARD TO THE BRANCHING OCCURRING AT THE DECISION MODES. FURTHER STUDY WILL BE WECESARY TO ACCURRING WHAT APPROPRIAL WILL BE OPTIMAL FOR THE PROCESS FLOW.

DISCRETE DISTRIBUTIONS WILL BE USED TO REPRESENTE OPERATIONAL TIMES FOR THE OVERHALL SECTIONS, THE SPECIFIC TASK CODES WAICH ENCIN-NAT AT LEAST 80% OF THE WOCK STPORT HINE DEEN JOENIFIED THEOREM OFFICE INTERVIENT AND ONTO OBTOINGO THROUGH THE TRACKER FILES. SUPPRISINGLY, THE "AVERAGE" TIMES CALCULATED THEOVER PRACKER MO ESTIMATES GIVEN BY SHOP PERSONNEL MAVE BEEN FAIRLY CONSISTENT, THE DISCRETE DIFTERDITION SHOULD ALLOW FOR FLOXIBILITY IN THE PROCESS FLOW, AS MENTIONED MENIOUSLY, THE WHY ISSUE STONED BE LOURESTED CHICEEN. NO MT ONLY BLOGS 347 AND 348 BUT ALSO THE DS KAREHOLIE, THE JUBRIDRY LOUBL IS TO TRULY BE REDUCED, BOTH CREES MIST BE CATILORD IS ONE ENTITY. IT MOUND NOT BE WEST CONFRONT A COST SAVINGS NBUPOINT TO INCRESSE THE THROWNBUT OF THE UR AREA TO SIMPLY LAND THE UPC'S WIT IN THE OS LARGENOUSE. THIS GIS POTICE SCENARIO MIST OF DOCASSED WITH THE CUSTOMER MAD WERECTED TURK A THOUSED SCHEDIUNG SYSTEM. SEVERAL APTIONS (SUCH AS GRAD ALLY OFFICERSING INDICTIONS) SHOULD BE CONSIDERED AS POSSIBILITES.

DDB PAGE NO.

ENGINEE	RING NOTES,
EMPLOYEE RANDY W. HARPIS	DATE /16/90 - 7/20/90 PAGE NO
RCC MATPFA	SUBJECT THUENTORY COSTS, MODEL CHARES

I. MODEL INPUT CHANGES

CHANGE WERE MADE WITH REGARD TO MAMPONER, EQUIPMENT, AND THE OPERATION PROFILES FOR SPECIFIC WOOS. ALTHOUGH THE POSSIBILITY OF SURPLUS MAMPONER WAS OVESTIONED FOR THE ONBRHADL MECHANICS, WE BELIEVE THE FIGURES TO BE CAPIZECT PRIOR TO THE 9/16/90 SHIFT CHANGES, THE FIGURES WAS ALLD SPECIFIC WE CLOSS FOR OVERHADE STATUS BOARD IN TONY POSSESS MEAN AND SPECIFIC WE CLOSS FOR OVERHADE WERE IDENTIFIED MICHORIMAGE STATUS PROPRE TO PRINTIFIED MICHORIMAGE STATUS BORD IN TONY POSSESS MEAN AND SPECIFIC WE CLOSS FOR OVERHADE WERE IDENTIFIED MICHORIMAGE STATUS PROPRE CHANGES IN ADDITION TO SUBREVISORS MOVES OCCURRED DERING THE LAST CHANGE, A CURRENT COUNT WILL BE OSTOLARD FROM TONY ISSUED TO DESERVING THE LASTEST FIGURES AND COMPARE THEM TO OUR MODEL SAME.

A SECOND ISSUE CONCERNING MAMPONER IT TRAT OF AN PLOCATION OF MANDURANT FOR THE SOFETY WARE ARBOY BACK SHIFT IS INDICATING THAT ANYMORDE FROM ONE TO THREE PEOPLE NILL BE NORWING IN THE SAFETY WIRE WILL OF CONCERTING PLATING TO FUNCTIONS, COMPLETING NECESSARY PAPERNORM, AND PERFORMING THE METVAL SAFETY WIRE OPERATIONS. SINCE THESE TIMES ARE REVIEW OUT NOCORDING TO TRUCKSE TASK CODES, THE PURSUA OPERATIONS WILL BE CONGINED AND THE CURRENT OPERATION TIME REDUCED IN THE PROFILE. ELECTRICAL TOTAL THAT MILL OB DISCOURSED SINCE IT DECLIES AT THE SOOD TEST STAND, THEOSPORE, A NEW SKILL CODE WILL OB INVITED FOR THE SAFETY WIRE PERSONNER WITH 3 PEOPLE ASSISTED FIRST SHIFT AND ONE PERSON ASSISTED FOR SHIFT.

DITHOUGH SUIFT CHONES OCCUR BUBRY THO MONTHS, THE WOOD MOBIL

IT FORMATTED FOR THAT BY QUARTER. GIVEN THAT ARMARY CHANGES FOR

THE SHIFTS OCCUR WITH THE SUPERUISORS AND NOT RECESSARILY WITH

WAGE CROPE BROWNEL, TUBRE SUPULD NOT BE SERVINS DIFFICULTIES TO DEAD

WITH THIS SITUATION.

MBN OCCUPRENCE FACTORS WILL BE EXTRELISIED FOR 66/ AC/OB WORK OVER VAIN INFERNATION CURRENTLY BEING CONVICED BY THE OCM PENT ON CHINETED UPCS WITHIN THE LIST THIER WEEKS.

DDB SECTION CODE 70	DDB PAGE NO.	089103
---------------------	--------------	--------

ENGINEERING NOTES

EMPLOYEE PANDY HORRIS DATE 2/16/10 - 1/10/10 PAGE NO. 2

RCC MATPER SUBJECT 1/2/10/27 (057), MORE CLENGES

II. EXAMINATION OF COSTS ASSOCIATED WITH WE INVENTORY

ASOCIATED WITH EITHER WIRK-IN-PROCES DE FINISLED GOODS INTENTIFET;

(1) STORAGE AND HANDLING OSTS; 121 AN TISSERINGE COST; (3) THE

COST OF CAPITAL TIED UP; (4) PROPERTY TAKES; AND (5) OBDRECIATION AND

GROLESCENCE. FOR THE PURPOSES OF THE ALC, ONLY (1) AND (3) HOULD

BE BELLETAT FOR ANY AMPLISTS OF COST SOUNDS DUB TO INVENTORY REDUCTION,

IT WILL BE NELESSARY TO EXAMINE THE ACCOUNTING PROCEOURES OF THE ALE TO

OBTERMADE NOW THE COSTS DEE FORMULATED, MEASURED, AND TRACKED OVER

TIMP.

ANOTHER COST TO CONSIDER HOULD BE THE COST OF RONNING SLATE IR REGIONESS FOR THE AIR FORCE, IF THIS FACTOR CAN SOMBLOW BE QUANTIFIED THEN ON ANALYSIS MIGHT BE APPROPRIATE.

DDB SECTION CODE 8.0 DDB PAGE NO. 083104

ENGINE	ERING NOTES	,
EMPLOYEE RANDY HARRIS	DATE 7/9/90 - 7/13/90 PAGE NO	/
RCC MATPFA	SUBJECT DATA INPUT FOR UNDS	

THERE ARE THREE SIGNIFICANT ISSUES WITH REGARD TO THE MONTHLE WHICH WILL AFFECT THE OUTPUT TO NO MINOR DEGREE. THE ISSUES TONCORN THE CLASSIFICATION OF ONERHALL MECHANICS FOR THE GAS GENERADE, AND DISTRIBUTION BOOK, THE CLASSIFICATION OF TEST STAND OPERATORS, AND THE PETERMINATION OF OCCUPANCE FACTORS FOR THE STATIST LIKELY'S CHAREO FOR DIFFERENT UFC FLOW POSSIBILITIES.

(1). BENERK OUBRHAUL MECHANICS

THE PRIMITY WASE GRADES IN THE OWERHAUL MIEW ARE THE W609 AND THE WOLD LEVELS. FOR ALL PRACTICAL PURPOSES THE LIGHT MAD THE THE BULL, CAMBINATION OF THE LEVELS INTO ONE DESCRIPTOR IS NOT A MAJOR ISSUE. HOWERER, TRAINER LEVELS OF WGOT AND WGOS ARE PRESENT WITHIN EACH OVERHAVE SECTION AND ARE UNITED TO RECEPORATING CENTRIN FUNCTIONS. A WOOT CAN BESTERM APPROXIMATELY 60% OF ALL ASSIBLE WICK TAEKS WITHIN THE SECTION WHILE A WEOS CAN BERFORM ONLY ABOUT 40% OF THE WARK TASKS. IN THE MODEL, ALL CLASSIFIES TONS OF OVERHOUL WORKERS (WGOS, WGOT, WGOT, MO WILD) WERE GROWED THETHER AS ONE (WGOD). THE INITIAL USAGE WENTED A PERCENT UTILIZATION OF 20% AND INDICATES THAT THE COMBINATION OID NOT CREATE A UNIQUE PROBLEMS. IF IT BECOMES LECESTARY ON THE BASIS OF SUBSEQUENT RUNS TO BREAK OUT THE TRAINER LEVELS, THEN A MINE DETAILED STUDY EFFORT LOULD AB NECESSARY TO DETERMINE ACTUAL MERCENTAGE USE OF THE TRAINEES AND ENCORDICATE THAT DATA THE MOTEL.

(2) TEST TIME OF BRATOR ALTERNATES

FOR THE INITIAL MODEL RUN, NO OUTENNESS FOR THE TENT TENT OFFICER (4611, 4610, 4609). SINCE THE STOP MINIMOLY TOTENS!
WELL'S TO BE SPECIFICALLY OFFICIALLY TO SUDDE TEST STORY.

DB SECTION CODE_	<u> </u>	DDB PAGE NO.	$= {\color{red}_{089105}}$
			000-00

RCC MATOFA SUBJECT 12.14 Injut for UDOS

SINCE WOR'S ARB PRIMACILY UTILIZED FOR ASI AND 66 TESTING,
THEY WALL MIT REPRESENTED AS BACK-UP to THE WOLL'S, WOODS WHILE
MEDICATED TO SPECIFICALLY WARLING SOIDS STANDS AND MORLING THE USTRIBUTOR
BOOM ON THE SOODS STAND, WITHOUT GONSINGRING APANCHING PRIS BY THE
MIDBL RUN OID NOT ENCOUNTRY IBRIOUS PRIBLEMS, WHEN FALLOUT POSSING THE
ARB IMPUTION TO THE MODEL, WATINGTON PLANS SHOWL) BE DEVELOPED IF
UTILIZATION OR QUEUR OFFICULTIES OCCUP,

(3) OCCUPRENCE FACTORS FOR NCO'S.

THE FLOW OF UPC INDUCTIONS CAN BE BROADLY CHORACTERIZED AS "QUINTURYS" - RAPIS WHICH REQUIRE UTTLE OR NO ERMEK AND INS ALL TESTS THE FIRST TIME - AND "SLOTHRUS" - ROOTS WHICH FOR A SET AT SOME MINT AND THEN EBOURDE FOIRLY BOTHENSIVE REPAIR TO THAT SUB-CONFINENT. THE QUINTURYS ARE SEMERATED INTO "SUBER QUIN-THRUS" - PARTS COMING FROM THE ENGINE UND WHICH CAN BE DIRECTLY SENT TO THE SUBJECT TEST TOWN FOR THE SAT - AND "BUNKTHRUS" WHICH BO THEN RAR, ASI, MET, MO T, AND SAT TESTING AND MASS THE FIRST TIME. THE "SLOTHRUS" ARE THE UPCS WHICH WHILL GO THROUGH VARIOUS STAGES OF REGAIR SUCH AS THE OLM LINE, "E GIS LEMPSTON BROWNENTS. BUTHOUGH THIS INITIAL DISCUSSED DISTRIBUTION FOR UPC FLOW IS BELIEVED TO BE FAIRLY ACCURATE, THE "LOPBACK" OR FALLOUT OCCURRENCES HAVE NOT BEEN ESTABLISHED FOR FOR THE LOPBACK".

THE MODEL PEUBLIAMBIND PHASE MILL CINTINUE, AND POTA UPDATES WILL BE TNITTED TO THE RESOURCE FILES APPROPRIATELY.

	\bigcirc	
DB SECTION CODE	<u> </u>	DDB PAGE NO.

ENGINEERING NOTES
EMPLOYEE Harris DATE 9 July 90 PAGE NO. 1
RCC MATIFIA SUBJECT CLUMBERS FACTOR for Medel bridge
SUBBR QUICK-TURBURY . 03
77
SLOW THROUGHS QUIR-THROUGH
Quick Thrus 70%
No DEMATE 20 % 5 1300
DEMATE &OTO .56 WORK
3 FINISH 1006
2 7440B 50% Ac 0B 3%

DDB SECTION	CODE	9.	\mathcal{O}

Scott Vroman

ENGINEERING NOTES:

7-6-90

Received a general overview of UFC area and answered specific questions.

The approach to process characterization is to start with a high level approach and go into more detail as we go along. High level flat files will be developed and run through the usage report. This will provide feedback as we go along so that we know we are on the right track [see document " Proposed Process Characterization Methodology " for a more detailed description.]

Met with MLH to explain general approach that will be used with the process characterization.

The top most level to the UFC area is to see if the manpower availability and the number of UFCs completed match up. A usage report was run using the inductions, one manpower code with the number of men available including estimates for overtime. A one operation WCD using 1 mp for 367 hours was created. The usage report showed the mp utilization to be 101%.

DPB Siction 8.0

Scott Vroman

7-9-90

Received more of an overview of the ufc area. There are 3 major areas - incoming inspection, testing, and overhaul. The incoming inspection performs paperwork and assigns an initial routing for the item. As far as modeling is concerned it is a minor area. The overhaul area can be broken down into 4 areas - general overhaul, gas generators [gg], augmented computer [ac], and distribution body [db] areas. The testing area has three sub areas that apparently are not subdivided by function - test stands for various components can be found in all three areas. The areas are D, B and bldg 347.

For the next lower level look at the RCC, it will be broken down into the overhaul area and the test area - those two areas are fairly independent as far as manpower and equipment sharing is concerned. The next lower level will divide into the areas mentioned in the above paragraph although there may some sharing of resources between the areas. Again, the purposes of the subdivisions are:

- to find out how much the resources are used within their respective areas.
- to logically approach the problem of data collection and subdivide it into manageable parts.
 - to show how the parts flow between the areas.
- to find how much level of detail is required for data collection. The objectives of the customer for experimentation and overall goals of the customer for this task order, along with the time frame we are operating within are needed in order to help determine the level of desired.

Discussed with MLH and SS how resources should be handled in the test area. Even though there are 32 5002 test stands, we will subdivide the test stands into the number for within areas B, D and 347. We discussed modeling each individual machine separately, but that would make the resource file unwieldy, increase model execution time, skew equipment utilizations, and not really add any information to the model. [The preventative maintenance data modeling will be a little more fuzzy but the effect of the fuzziness will be minimal.] The same goes for the manpower in the areas.

It seems the manpower is the important resource to model - there are more than enough test stands for the work - the manpower is the resource in short supply.

DOB Section 8.0

Scott Vuonun MATPFA

It does not appear that there is any major equipment worth modeling in the overhaul area - this is not definite though. Modeling the manpower should be enough since people have benches to work at - modeling the work space could be necessary if it proves to be a limitation.

There is one main item from the 80/20 list that will be modeled in the ufc area - ufcs. UFCs are subdivided into 2 models - one for F-15s and one for F-16s. Each of these will have 2 subcomponents - gas generators, augmentor computers/distribution bodies. Each of the augmentor computers/distribution bodies will be broken down into 2 sucomponents augmentor computers and distribution bodies. This means we will have exactly 10 different parts in the model workload file for the ufc area. The naming conventions for them will be as follows:

F-15 UFC for the F-15

F-15GG Subcomponent for the F-15 - Gas Generator

F-15AC/DB Subcomponent for the F-15 - Augmentor

Computer/Distribution body combination.

F-15AC Subcomponent for the F-15AC/DB - Augmentor Computer

F-15DB Subcomponent for the F-15AC/DB - Distribution Body

F-16 UFC for the F-16

F-16GG Subcomponent for the F-16 - Gas Generator

F-16AC/DB Subcomponent for the F-16 - Augmentor

Computer/Distribution body combination.

F-16AC Subcomponent for the F-16AC/DB - Augmentor Computer

F-16DB Subcomponent for the F-16AC/DB - Distribution Body

The inductions that will be used for the model are:

	Q1	Q2	Q3	Q4
F-15	104	104	176	140
F-16	188	77	182	142

It is felt that the induction numbers are accurate. MLH and SS support this. The numbers are from 4 quarter 89 to 3rd quarter 1990.

DOB Section 8.0

Scott Vroman MATPFA

MLH gave us the DPSH for the UFC at 367 hours. She feels that 250 hours are what they could be done in. With a manpower factor to be used in the model of approximately 25%, 250 hours may be the total number that is desired. Standard flow days are about 59, with the actual being over 100

DOB section 8.0

Scott Vroman

7/09/90 - Monday

I have obtained a copy of the <u>Actual Indirect Labor Factor</u> report, A-GO37G-EH1-M1-8EH, which lists both the indirect + leave hours, and the the direct labor hours for the present fiscal year. (Note: The fourth quarter of this report is budgeted hours, not actual). This report should be useful for determining the manpower availability factor for use in the model resource files. The following calculations are applicable:

October '89 -

Total Direct hours charged = 24,522 *Estimated hours available = 28,320

*(based on 177 wage grade personnel assigned, with maximum possible availability 160 hrs. per month per person, assuming straight eight hour day).

Oct. manpower availability factor: 24,522/28,320 x 8 hrs. = 6.93

Similarly, for the following months, the availability factor is calculated as:

Nov6.35	1st. qtr. FY '90 total = 6.06
Dec4.89	
Jan7.29	
Feb6.71	2nd. qtr. FY '90 total = 7.15
Mar7.44	
Apr6.91	
May -6.69	3rd. qtr. FY '90 total = 6.72
June -6 56	

The 4th qtr. FY '90 estimated availability is 6.22 hours.

DOB Section 8.0

	1EERIN		OTEC
-rut sir	TE E E III	K 9 IV	ULES

EMPLOYEE Sight Vroman	DATE 19 July 90 PAGE NO. /	
	SUBJECT Flat File Construction	_

7-10-90 to 7-16-90

Primarily I was involved with preparing a 2nd cut model for the UFC area and running the model. A high level version with branching represented but no rework [or cycling] was created and run on the VAX. Notes on the 2nd cut effort are included for reference.

DDB SECTION CODE	8.0	DDB PAGE NO	11	13

EMPLOYEE Scott Vionan	DATE 14 14 19 90	PAGE NO
RCC MATPFA	SUBJECT FILE FILE	(onst.

UFC

2nd CUT MODEL

A 2nd cut version of the model was prepared. It will provide the basic structure of the WCDs and flow of the parts with estimates for manpower usage and equipment usage. The branching that occurs within the RCC will not be modeled directly but will be approximated through repeating operations and WCDs.

INPUT NOTES:

WORKLOAD NOTES:

The workload is broken down into subcategories by the amount and type of work that needs to be done. The workload is broken down into three types:

"Super Quick Throughs" - Basically they come in and are run through the SAT test, everything checks out fine and they are done after safety wiring. This accounts for approximately 3% of the workload.

"Quick Throughs" - These also require no or very little overhaul work. They run through tests such as an abbreviated augmentor set-in test, an M & I and an SAT. They check out fine and are done. This accounts for approximately 22% of the workload.

"Slow Throughs" - These are items that fall-out of a test and may require overhaul and demating, extensive testing, etcetera. This accounts for 75% of the workload. These items are the ones that produce the subassemblies of the gas generator, the augmentor computer and the distribution body.

The workloads for the F-15s and the F-16s will be adjusted to reflect these categories.

Subcomponents modeled are the gas generator, the AC/DB, the AC and the DB. The gas generator is not called out specifically, but is kept a part of the F-15ST and the F-16ST. The AC/DB produces the parts AC and DB.

These parts are different than what was used in the first cut of the model and reflect the needs of the second cut.

RESOURCE NOTES:

The UFC area has 2 main areas -overhaul and test. The manpower is basically divided between the 2 areas with little cross-over between the two. In the model, there will be no sharing between the 2 areas.

DDB SECTION CODE _	<u>2.0</u>	DDB PAGE NO	
		08011	1

EMPLOYEE Seef Vivinger	DATE 19 54 40 PAGE NO. 3	_
RCC <i>NHTVFH</i>	SUBJECT FIGHT FILE (5 f.	

In the test area, the manpower grades are fairly divided by what test stands they can operate. There are a couple of exceptions, but the supervisors on the floor try to avoid the exceptions. Manpower grades will be associated with certain test stands in the model files.

In the overhaul area, all manpower grades will be approximated by a psuedograde called WG00. WG00 will do any overhaul work done. In reality WG05s and WG07s can not do some operations. However, since the overhaul work will be approximated by one operation, this is not a bad assumption for this cut.

Most of the overtime was performed on the weekends by the testing personnel. All of the overtime in the model files is being performed on the weekends. Given the overtime for the quarter, an equivalent number of weekend people was computed and put into the model resource file. The number of people available was reduced by an appropriate amount to account for disability, leave, etc.

The test stands are not broken down by separate areas [areas B,D and bldg 347]. When a test need to be performed on a part it is sent to any area that has an available operator [Manpower is in short supply, not the equipment]. This assumption is a good one because the work can go to any area.

OPERATION NOTES:

WCDs were created for the Super-Quick Throughs, Quick Throughs, and SlowThroughs.

The Super-Quick-Throughs [part names F-15SQT and F-16SQT] performed wcd SUPQTHRU.

The Quick-Throughs [part names F-15QT and F-16QT] performed wcd QUIKTHRU.

The F-15 Slow-Throughs [part name F-15ST] performed wcds SLOTHRUI, SLOTHRU0, SLOTHRU1, SLOTHRU2, and SLOTHRU3. The F-16 Slow-Throughs [part name F-16ST] performed wcds SLOTHRUI, SLOTHRU0, SLOTHRU1, and SLOTHRU3.

The AC/DB performs wcd SLOTHRU4 and is created in wcd SLOTHRU2.

The AC performs wcd SLOTHRU5 and is created in wcd SLOTHRU4.

The DB performs wcd SLOTHRU6 and is created in wcd SLOTHRU5.

The F-15ST and the F-16ST disassembles and assembles the AC/DB in wcd SLOTHRU3. The AC/DB disassembles and assembles the AC which disassembles and assembles the DB.

DDB SECTION CODE	DDB PAGE NO0 $8\mathfrak{g}$	115
------------------	------------------------------	-----

EMPLOYEE Scott Vioman	DATE 19 Saly 10 PAGE NO	o. <u>4</u>
RCC MATPFA	SUBJECT Flat File Cond.	

It was indicated that the AC/DBs are not generally worked until the Gas generators are finished being worked so the disassembly for the AC/DB did not occur until after the gas generator work was completed [wcd SLOTHRU2, operation 0600]. To make the AC/DB work in parallel with the gas generator, move the operation to before operation 0100.

The input flat files are included as reference.

OUTPUT NOTES:

A copy of the output is included for reference. The flow times for the "Slow Throughs" are too short but may not be as short as first thought - the data on historical flow times will be re-examined. Reasons for the short flow times include the property of the short flow times included in the historical flow times; and all of the recycling, or rework, has not been added to the model yet. This is also reflected in the expected hours calculated by the model.

The flow times for the "Quick Throughs" and the "Superquick Throughs" may be in line with reality. A meeting with ALC personnel is needed to show them the current state of the model and to obtain feedback in areas where the flat files need to be corrected.

14:00 -2

FLAT FILES FOR SELOND CUT.

AC	SLOTHRU5	4					0.50	s		1A B
AC/DB	SLOTHRU4	4					0.50			1A
DB	SLOTHRU6	4					0.03	S	,	B 1A
F-15QT	QUIKTHRU	4	23	23	39	31	0.22 1.00	S		B 1A B
F-15SQT	SUPQTHRU 2508.00 3566.00	4	3 80	3	5	4	0.03 1.00		367	1A B
F-15ST	SLOTHRUI	4	78	78	132	105	1.00			1A B
F-15ST	SLOTHRU0						0.70			_
F-15ST	SLOTHRU1						0.20			
F-15ST	SLOTHRU2						0.80			
F-15ST	SLOTHRU3						1.00			
F-16QT	QUIKTHRU	4	41	17	40	31	0.22 1.00			1A B
F-16SQT	SUPQTHRU 2311.00 2606.00	4	6 67	2	5	4	ans 1.00		367	1A B
F-16ST	SLOTHRUI	4	141	58	136	107	1.00			1A
F-16ST	SLOTHRU0	-		•			0.70			
	2300									В
F-16ST	SLOTHRUG						20 1.00			
F-16ST	SLOTHRU3						1.00			

PART FILE

corrections made to flat
files after prentonts produced.

```
EQ 50002
             EQ 50002
           3
             EQ 50002
             32 32 32 32 32 32 32 32 32 .00 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50002
                 50002
BZ
             1
                  1
                 T
                      0.00
                            0.75 21.00
BF
                      0.90
TR
                 E
             EQ 50004
           1
           2
EQ 50004
             00. 00. 00. 00. 00. 00. 00. 00. 00. 01 01 01 01 01 01 01 01 01 01
EQ 50004
                 9 9
                         9
                           ΕQ
  50004
                       9
                 50004
RN
B2
             1
                  1
                      0.00
                                  22.00
BF
                 Т
                            1.50
                 E
                      1.00
TR
EQ. 50005
                    6
              6
                 6
                       6
                         6
                            6
                               6
                                  6
                                    00. 00. 00. 00. 00. 00. 00. 00. 00
           1
                 6
                            6
                               6
                                  6
EQ 50005
           2
              6
                    6
                       6
                         6
                                    6 .00 .00 .00 .00 .00 .00 .00
           3
              6
                 6
                    6
                       6
                         6
                            6
                               6
                                  6
                                    00.00.00.00.00.00.00.00
                                                                    .00
EQ 50005
                    5
                         5
                            5
                               5
                                  5
EQ 50005
              5
                 5
                       5
                                    5 .00 .00 .00 .00 .00 .00 .00
                 50005
RN
BZ
             1
                  1
                 Т
                      0.00
                            2.00
                                 17.00
BF
TR
                      1.00
EQ 50173
             17 17 17 17 17 17 17 17 17 17 .00 .00 .00 .00 .00 .00 .00 .00
             17 17 17 17 17 17 17 17 17 17 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50173
             17 17 17 17 17 17 17 17 17 17 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50173
             16 16 16 16 16 16 16 16 16 .00 .00 .00 .00 .00 .00 .00
EO
  50173
RN
                 50173
BZ
             1
                  1
                                 97.00
                 T
                      0.00
                          19.00
BF
                      0.58
TR
                 E
             39 11 10
                               0
                                    04.604.604.604.604.600.000.000.00
MP WG00
           1
                      1
           2
             39 11 10
                         1
                            0
                               0
                                 0
                                    04.604.604.604.604.600.000.000.00
MP WG00
                      1
MΡ
  WG00
           3
             39 11
                   10
                      1
                         1
                            0
                               0
                                 0
                                    04.604.604.604.604.600.000.000.00
  WG00
           4
             39 11 10
                      1
                         1
                            0
                               0
                                 0
                                    04.604.604.604.604.604.600.000.000.00
MΡ
                 WG00
RN
                                    05.475.475.470.000.000.000.000.000.00
                       0
                         0
                            0
                               0
                                 0
MΡ
  WG09
           1
                 2
                    1
           2
                 2
                    1
                      0
                         0
                            0
                               0
                                 0
                                    05.405.405.400.000.000.000.000.000.00
MP
  WG09
              4
                      0
                            0
                               0
                                    04.604.604.600.000.000.000.000.000.00
MΡ
  WG09
           3
              4
                 2
                    1
                         0
                                 0
                      0
                         0
                            0
                               0
                                    05.165.165.160.000.000.000.000.000.00
                    1
                                 0
MΡ
  WG09
           4
              4
                 4
                 WG09
RN
              9
                 5
                    2
                       6
                         4
                            2
                             : 0
                                 0
                                    06.806.806.806.806.806.800.000.000.00
           1
MP WG10
           2
                    2
                            2
                               0
                                    06.806.806.806.806.806.800.000.000.00
MP WG10
              9
                 5
                       6
                         4
                                 0
                                    06.806.806.806.806.800.000.000.00
           3
              8
                 4
                    2
                       6
                         4
                            2
                               0
                                 O
MΡ
  WG10
              9
                 4
                    2
                         4
                            2
                               0
                                 n
                                    06.806.806.806.806.806.800.000.000.00
           4
                       6
MP
  WG10
                 WG10
RN
                                    06.806.806.806.806.806.800.000.000.00
             22 15 15 12
                         8
                            8
                               0
                                 0
MΡ
  WG11
          1
           2
             22 15 15 12
                         8
                            8
                               0
                                 0
                                    06.806.806.806.806.806.800.000.000.00
MP
  WG11
             19 13 13 12
                            8
                               0
                                    06.806.806.806.806.806.800.000.000.00
           3
                         8
                                 0
MΡ
  WG11
                            8
                               0
                                 0
                                    06.806.806.806.806.806.800.000.000.00
             21 14 14 12
                         8
MP
  WG11
           4
                 WG11
RN
              4
                 2
                      0
                         0
                            0
                               0
                                    05,475,475,470,000,000,000,000,000,00
MP WGAA
          1
                    1
           2
                 2
                    1
                      0
                         0
                            0
                               0
                                 0
                                    05.405.405.400.000.000.000.000.000.00
MP WGAA
           3
                 2
                    1
                      0
                         0
                            0
                               0
                                 0
                                    04.604.604.600.000.000.000.000.000.00
MP WGAA
                               0
                                 0
                      0
                         0
                            0
                                    05.165.165.160.000.000.000.000.000.00
MP WGAA
           4
              4
                 4
                    1
RN
                 WGAA
                 WG09
AR
```

RESOURCE FILE

OPERATION FILE

OD		QUIKTHRU0000 IN P	1,00 MATPFA
MF	WG11	1C 2.00	
NR			
OD MP	racoo	QUIKTHRU0100 INSP P 1C 5.30	1.00 MATPFA
OD OD	WG00	QUIKTHRU0200 TEST S	1.00 MATPFA
MP	WG11	1T 2.00 6.00	
EQ	50002	1T 2.00 6.00	12.00
OD		QUIKTHRU0300 TEST P	1.00 MATPFA
MP	WG11 50002 ·	1T 2.00 21.00 1T 2.00 21.00	34.00 34.00
EQ OD	30002	QUIKTHRU0400 TEST P	0.28 MATPFA
MP	WG11	1T 6.00 22.00	
EQ	50002	1T 6.00 22.00	36.00
OD	*****	QUIKTHRU0500 TEST P	1.00 MATPFA
MP EQ	WG11 50002	1T 6.00 27.00 1T 6.00 27.00	
OD	30002	QUIKTHRU0600 TEST P	1.00 MATPFA
MP	WG11	1T 2.00 14.00	36.00
EQ	50002	1T 2.00 14.00	36.00
OD		QUIKTHRU0700 PACK P	1.00 MATPFA
MP	WG00	1T 0.90 4.10 QUIKTHRU9999 OUT P	11.40 1.00 MATPFA
OD MF	NR	1C 4.00	1.00 MAIPEA
OD	1111	SLOTHRU00100 TEST S	1.00 MATPFA
MP	WG11	1T 2.00 6.00	12.00
EQ	50002	1T 2.00 6.00	12.00
OD		SLOTHRU00200 TEST P	1.00 MATPFA
MP	WG11 50002	1T 2.00 21.00 1T 2.00 21.00	34.00 34.00
EQ OD	50002	SLOTHRU00300 TEST P	0.19 MATPFA
MP	WG11	1T 6.00 22.00	36 00
EQ	50002	1T 6.00 22.00	
OD		SLOTHRU00400 TEST P	0.46 MATPFA
MP	WG11	1T 6.00 27.00	72.00
EQ OD	50002	1T 6.00 27.00 SLOTHRUJ0500 TEST P	72.00 0.30 MATPFA
MP	WG11	1T 2.00 14.00	
EQ	50002	1T 2.00 14.00	36.00
OD	O)(D)	SLOTHRU10100 REP P	1.00 MATPFA
MP	WG ÖĞ	1T 1.50 2.00	1.00 2.9
OD	******	SLOTHRU102Q0 TEST S 1T 200 6.00	1.00 MATPFA
MP EQ	WG11 50002	1T 2.00 6.00 1T 2.00 6.00	12.00 12.00
OD	30002	SLOTHRU10300 TEST P	0.75 MATPFA
EQ	WG11	1T 6.00 27.00	72.00
EQ	50002	1T 6.00 27.00	72.00
OD	***	SLOTHRU20100 REP P	0.50 MATPFA 5.20
MIP OD	WG00	1T 0.50 3.40 SLOTHRU20200 TEST S	0.50 MATPFA
MP	WG10	1T 2.00 3.00	16.00
EQ	50004	1T 2.00 3.00	16.00
OD		SLOTHRU20300 TEST P	0.50 MATPFA
MP	WG10	1T 6.00 24.00	70.00 70.00
EQ OD	50004	1T 6.00 24.00 SLOTHRU20600 ASSY P	1.00 MATPFA
MP	0 ,⊅ WG G ⊙	1T 2.00 2.50	7.00
DS	AC/DB	Y	
OD	OD.	SLOTHRU20700 ASSY P	1.00 MATPFA
MP	WG99	1T 1.00 3.60	6.00
AS OD	AC/DB	Y SLOTHRU20800 TEST S	1.00 MATPFA
MIP	WG11	1T 2.00 6.00	24.00
EQ	50002	1T 2.00 6.00	24.00

OD		SLOTHRU20900 TEST P	1.00 MATPFA
MP	WG11	1T 6.00 27.00	72.00
EQ	50002	1T 6.00 27.00	72.00
OD	WC1 1	SLOTHRU21000 TEST P	0.75 MATPFA
MP EQ	WG11 50002	1T 2.00 14.00 1T 2.00 14.00	36.00 36.00
OD	30002	SLOTHRU30100 PACK P	1.00 MATPFA
MP	WGOO	1T 0.90 4.10	11.40
OD		SLOTHRU39999 OUT P	1.00 MATPFA
MF		1C 4.00	
NR	y '		
OD	29	SLOTHRU40100 REP P	1.00 MATPFA
MP	WGOG.	1T 1.20 2.70	14.90
OD MIP	<i>\$₽</i> WG 9 0	SLOTHRU40200 ASSY P 1T 2.00 3.10	1.00 MATPFA 6.00
DS	MG60 AC	11 2.00 3.10 Y	6.00
OD	₽ø no	SLOTHRU40300 ASSY P	1 OO MATPEA
МР	wgo6	1T 2.50 3.60	4.60
AS	AC	Y	
OD		SLOTHRU40400 TEST S	1.00 MATPFA
MP	WG10	1T 1.75 2.75	5.00
EQ	50002	1T 1.75 2.75	5.00
OD	E2C1 A	SLOTHRU40500 TEST P 1T 2.00 26.00	1.00 MATPFA
MP EQ	WG10 50002	1T 2.00 26.00 1T 2.00 26.00	
OD	30002	SLOTHRU50100 ASSY P	
MP	WG00	1T 2.00 3.10	
DS	DB	Y	
OD	OO	SLOTHRU50200 REP P	1.00 MATPFA
MP	wg o e/	1T 1.10 5.30	14.90
OD		SLOTHRU50300 TEST S 1T 0.75 2.00	0.75 MATPFA
MP	WG09	1T 0.75 2.00	2.50
EQ	50173	1T 0.75 2.00 SLOTHRU50400 TEST P	
od Mp	WG09	SLOTHRU50400 TEST P 1T 2.00 4.00	0.75 MATPFA
EQ	50173	1T 2.00 4.00	5.00
OD	ØG)	SLOTHRU50500 ASSY P	0.75 MATPFA
MP	wgoe	SLOTHRU50500 ASSY P 1T 1.80 4.50	6.80
OD		SLOTHRU50600 TEST S 1T 0.75 2.00	1.00 MATPFA
MP	WG09	1T 0.75 2.00	2.50
EQ	50173	1T · 0.75 2.00	
od Mp	WG09	SLOTHRU50700 TEST P 1T (4.00 8.00	1.00 MATPFA
EQ	50173		12.00
OD	30273	SLOTHRU50800 ASSY P	1.00 MATPFA
MP	WG00		4.60
AS	DB	Y	
OD		SLOTHRU60100 REP P	1.00 MATPFA
MP	WG00	1T 1.30 3.20	10.10
OD	MCOO	SLOTHRU60200 TEST S 1T 0.75 2.00	1.00 MATPFA 2.50
MP EQ	WG09 50005	1T 0.75 2.00	2.50
OD	30003	SLOTHRU60300 TEST P	1.00 MATPFA
MP	WG09	1T 2.00 4.50	16.00
EQ	50005	1T 2.00 4.50	
OD		SLOTHRUIO000 IN P	1.00 MATPFA
MF	WG11	1C 2.00	
NR OD		CIOTUDIITAIAA TNOD D	1 AA Mampos
MP	WGCO	SLOTHRUI0100 INSP P 1C 5.30	1.00 MATPFA
OD		SUPOTHRU0000 IN P	1.00 MATPFA
MF		C 2.00	
NR	.*		
OD		SUPQTHRU0100 INSP P	1.00 MATPFA

MP	WG11	1C 5.30	
OD		SUPQTHRU0200 TEST S	1.00 MATPFA
MP	WG11	1T 2.00 6.00	12.00
EQ	50002	1T 2.00 6.00	12.00
OD		SUPQTHRU0300 TEST P	1.00 MATPFA
MP	WG11	1T 2.00 14.00	36.00
EQ	50002	1T 2.00 14.00	36.00
OD		SUPQTHRU0400 PACK P	1.00 MATPFA
MP	W 600	1T 0.90 4.10	11.40
OĐ	W600	SUPQTHRU9999 OUT P	1.00 MATPFA
MF	WG11	1C 4.00	
NR	, '		

USABE REPORT

2nd out

NOTE: THAT THE USAGE REPORT DOES NOT TAVE THE OCCURRENCE PACTOR ON WCDS INTO ACCOUNT: WILLZATIONS FOR THE WELL, FOR EXAMPLE, ARE LOWER THAN SHOWN

THIS USAGE REPORT IS FOR RCC: ≠ THIS REPORT PROVIDES THE ESTIMATED USAGE FOR EACH RESOURCE BY PART.

RESOURCE NAME: 50002 RESOURCE NOUN: 50002 NO ALTERNATES FOUND FOR THIS RESOURCE

PART NAME	YEARLY INDUCTIONS	TOTAL HOURS NEEDED
,		,
F-15QT	116.	9171.73
F-15SQT	15.	330.00
F-15ST	393.	51120.12
F-16QT	129.	10199.60
F-16SQT	17.	374.00
F-16ST	442.	34915.05

TOTAL HOURS NEEDED TO PROCESS ALL PARTS: 106110.51

TOTAL HOURS AVAILABLE: 286104.00

PROJECTED UTILIZATION FOR THIS RESOURCE: .37

RESOURCE NAME: 50004 RESOURCE NOUN: 50004

NO ALTERNATES FOUND FOR THIS RESOURCE

PART NAME	YEARLY INDUCTIONS	TOTAL HOURS NEEDED
F-15ST	393.	6615.50
TOTAL HOURS	NEEDED TO PROCESS ALL P.	ARTS: 6615.50
	TOTAL HOURS AVAIL	ABLE: 85176.00
PROJECTED U	TILIZATION FOR THIS RESO	URCE: .08

RESOURCE NAME: 50005
NO ALTERNATES FOUND FOR THIS RESOURCE

PART NAME	YEARLY INDUCTIONS	TOTAL HOURS NEEDED
DB	393.	3094.88
TOTAL HOURS	NEEDED TO PROCESS ALL PART	rs: 3094.88
	TOTAL HOURS AVAILABI	E: 50232.00
PROJECTED U	TILIZATION FOR THIS RESOURCE	Œ: .06

RESOURCE NAME: 50173 RESOURCE NOUN: 50173 NO ALTERNATES FOUND FOR THIS RESOURCE

PART NAME	YEARLY INDUCTIONS	TOTAL HOURS NEEDED
AC	393.	5563.41
TOTAL HOURS	NEEDED TO PROCESS ALL P	ARTS: 5563.41
	TOTAL HOURS AVAIL	ABLE: 146328.00
PROJECTED UT	PILIZATION FOR THIS RESO	URCE: .04

RESOURCE NAME:WG00 R

RESOURCE NOUN: WG00

NO ALTERNATES FOUND FOR THIS RESOURCE

PART NAME	YEARLY INDUCTIONS	TOTAL HOURS NEEDED
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
AC	393.	2744.45
DB	393.	1585.10
F-15QT	116.	1169.67
F-15ST	393.	632.07
F-16QT	129.	1300.75
TOTAL HOURS	NEEDED TO PROCESS ALL PARTS:	7432.04
	TOTAL HOURS AVAILABLE:	72716.81
PROJECTED UT	TILIZATION FOR THIS RESOURCE:	.10

RESOURCE NAME: WG09
NO ALTERNATES FOUND FOR THIS RESOURCE

PART NAME	YEARLY INDUCTIONS	TOTAL HOURS NEEDED
AC DB	393. · 393.	5563.41 3094.88
TOTAL HOURS	NEEDED TO PROCESS ALL	PARTS: 8658.28
	TOTAL HOURS AVA	ILABLE: 10057.45
PROJECTED UT	TILIZATION FOR THIS RE	SOURCE: .86
* 75% PROJE	ECTED UTILIZATION REAC LEASE INVESTIGATE	

RESOURCE NAME: WG10 RESOURCE NOUN: WG10 NO ALTERNATES FOUND FOR THIS RESOURCE

PART YEARLY TOTAL
NAME INDUCTIONS HOURS NEEDED

AC/DB 393. 11773.62 F-15ST 393. 6615.50

TOTAL HOURS NEEDED TO PROCESS ALL PARTS: 18389.12

TOTAL HOURS AVAILABLE: 35448.41

PROJECTED UTILIZATION FOR THIS RESOURCE: .52

RESOURCE NAME: WG11 RESOURCE NOUN: WG11 NO ALTERNATES FOUND FOR THIS RESOURCE

YEARLY	TOTAL
INDUCTIONS	HOURS NEEDED
116.	9171.73
15.	409.50
393.	51120.12
129.	10199.60
17.	464.10
442.	34915.05
	116. 15. 393. 129. 17.

TOTAL HOURS NEEDED TO PROCESS ALL PARTS: 106280.10

TOTAL HOURS AVAILABLE: 107317.60

PROJECTED UTILIZATION FOR THIS RESOURCE: .99

* 75% PROJECTED UTILIZATION REACHED *
** PLEASE INVESTIGATE **

RESOURCE NAME: WGAA RESOURCE NOUN: WGAA

ALTERNATES FOR THIS RESOURCE

WG09

PART YEARLY TOTAL
NAME INDUCTIONS HOURS NEEDED

TOTAL HOURS NEEDED TO PROCESS ALL PARTS: .00

TOTAL HOURS AVAILABLE: 10057.45

PROJECTED UTILIZATION FOR THIS RESOURCE: .00

THIS USAGE REPORT IS FOR RCC: ≠ THIS REPORT PROVIDES THE REQUIREMENTS FOR

EACH PART BY RESOURCE.

PART NAME: AC AIRFRAME:

YEARLY INDUCTIONS: 2.147418E+09

RESOURCE TOTAL

089126

PART	MAME	· F-1	Sem
PAKI	NATE	: 1	LOSI

AIRFRAME:

YEARLY INDUCTIONS:	393.000	
RESOURCE		TOTAL
NAME		HOURS NEEDED
50002		51120 12

50002 51120.12 50004 6615.50 WG00 632.07 WG10 6615.50 WG11 51120.12

TOTAL HOURS NEEDED TO PROCESS THIS PART: 116103.32

PART NAME:F-16QT

AIRFRAME:

YEARLY INDUCTIONS: 129.000

20 200

RESOURCE TOTAL
NAME HOURS NEEDED

 50002
 10199.60

 WG00
 1300.75

 WG11
 10199.60

TOTAL HOURS NEEDED TO PROCESS THIS PART: 21699.95

PART NAME:F-16SQT

AIRFRAME:

YEARLY INDUCTIONS: 17.0000

RESOURCE TOTAL
NAME HOURS NEEDED

50002 374.00 WG11 464.10

TOTAL HOURS NEEDED TO PROCESS THIS PART: 838.10

PART NAME:F-16ST

AIRFRAME:

YEARLY INDUCTIONS: 442.000

RESOURCE TOTAL
NAME HOURS NEEDED

50002 34915.05 WG11 34915.05

TOTAL HOURS NEEDED TO PROCESS THIS PART: 69830.10

*********** ************ IS PART:******** FRAME: TOTAL HOURS NEEDED
FRAME: TOTAL HOURS NEEDED
TOTAL HOURS NEEDED
HOURS NEEDED
HOURS NEEDED
0021025 60
9831935.00 9831935.00
S PART:19663870.00
PRAME:
TOTAL HOURS NEEDED

IS PART: ********
FRAME:
TOTAL HOURS NEEDED
9171.73
1169.67 9171.73
3171.73
IS PART: 19513.13
S PART: 19513.13
TRAME:

TOTAL HOURS NEEDED TO PROCESS THIS PART:

739.50

EMPLOYEE	DATE	PAGE NO.
RCC	SUBJECT	

OUT DUT FRMA ZTO CIT

PAGE: 07:00:12 REPT.ID: UFC 2ND 4 DATE: 18-JUL-90 TIME: QUARTER: MATPFA **RCC:** B

RUN PARAMETERS

UDOS : THIS JOB WAS RAN ON AFTIES, A VAX OF ENPOWERMENT.

ALC: SA

RCC: MATPFA

REPORT ID: UFC 2ND

THIS RUN IS FOR THE HIGH LEVEL 2ND CUT OF THE UFC AREA

FILE: FILE: PART FILE: RES FILE: OPER FILE:

UFC2PART.DAT
UFC2RES.DAT
UFC2OPS.DAT
UFC2ETC.DAT

FILE:

WEEKENDS = Y

NUMBER OF QUARTERS =

WARM UP PERIOD; STATS WILL BE CLEARED AT DAY

16

OF HOLIDAYS

HISTORICAL DATA SHIFT FACTOR

24.00000 BACKSHOP DATA SHIFT FACTOR

8.000000

NEW DATA FORMATS SELECTED

SIMULATION CPU TIME: SIMULATION LAPSE TIME:

18.81 MINUTES 19.20 MINUTES

SIMULATION RUN LENGTH: 10920.00 HOURS

8	! !													m	! ! !											
PAGE:	 		بر ر	ኧ)	ኧ)	ን	'R)	%	R	æ (%	K			PAGE:												
ZND 2	 		(MISTR)	(MISTR	(MISTR	(MISTR	(MISTR	(MISTR	(MISTR)	(MISTR	(MISTR)			2ND												
UFC		Ω !		_	S	9	S.	m	တ	7	7	1	ത	UFC		Ω	ı									
REPT. ID:		YTD	371	721	202	116	15	39	12	17	442		2409	REPT. ID:		YTD	205	371	4	116	15	393	285	76	294	366 129
REP		œ.	66	199	54	ä	7	5	ជ	4.	7		634	REP		Æ	 _	•	_4				.0	~ .		
07:00:12		4TH QTR	0,	15	υ,	,		105	υ,		107		9	07:00:12		4TH OTR	54	66	-	31	4	07	75	5	86	31
03:0		OTR 4	03	195	26	39	S	132	40	S	136		711	02:0		OTR 4	56	က	0	6	S.	7	0	19	9.6	40
TIME:		3RD Q	1	1				7			-		7	TIME:		380 0	5	103		m	S	13	o	Н (χ (40
		QTR	19	122	33	23	ო	78	17	7	28		397			QTR	33	19	7	23	ო	78	64	12	9 6	17
18-JUL-90		2ND												18-JUL-90		2ND										
		QTR	108	205	62	23	m	78	41	9	141		L99			OTR	62	108	7	23	ო	78	26	9	2 62	41
DATE:		1ST												DATE:		1ST										
4			••	••	••	:	••	••	••	••	••		••	4			3U5:	304:	:9n	IRU:	IRU:	ΩI:	300: 300:	: [3]	302:	103: 1RU:
9 9 16 51 18934 QUARTER:						•	•							QUARTER:			SLOTHRUS	SLOTHRU4:	SLOTHRU6	QUIKTHRU:	SUPOTHRU	SLOTHRUI	SLOTHRUO	SLOTHRUI	SLOTHRUZ	QUI KTHRU
				/DB		507	.5SQT	5ST	60T	6SQT	F-16ST															
es : ons : rted : MATPFA			M AC	AC,								1	SNOI	MATPFA			_	_	_	_	_	_	_	•	_ ,	
s irc ple	IONS	•	OF ITEM	OF ITEM	OF ITEM	OF ITEM	OF ITEM	OF ITEM		OF ITEM	OF ITEM		INDUCTIONS	RCC:	ONS		OF WCD	OF WCD	OF WCD	OF WCD						
H & 32 O	INDUCTIONS							_					ITEM I		INDUCTIONS											
ar arti	ITEM II		INDUCTIONS	INDUCTIONS	INDUCTIONS	INDUCTIONS	INDUCTIONS	INDUCTIONS	INDUCTIONS	INDUCTIONS	INDUCTIONS	 	TOTAL I	C: SA			INDUCTIONS	INDUCTIONS	INDUCTIONS	INDUCTIONS						
Numb Numb Numb Oper:	Hi		Z	ZI	Z	Z	Z	ZI	Z	Z	Z	Ì	ğ	ALC:	Ž		Ä	ZI	ZI	ZI	NI	Z	ZI	Z	Z	ZZ
•																										

51080		4	!											S	f 1	NUMBER	OF SAMPLES	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	203
		PAGE:		NUMBER	INDUCTIONS	371	721	205	116	200	129	17	442	PAGE:	 	SIMULATED MAXIMUM	LABOR HOURS	! ! !	44.65
4 239627	- 4	: UFC 2ND		NUMBER	Si	203	369	4	112	747	125	17	415	: UFC 2ND			జ్ స	!	20.24
4 17 7 442 3 316 0 433 5 415	9 3877	REPT. ID:		SIMULATED MAXIMUM TIOM TIME		121.47	311.58	71.42	835.29	1515 65	706.52	114.56	1691.14	REPT. ID:		SIMULATED MINIMUM	LABOR HOURS		20
10 12 12	1059	07:00:12		SI						•	. T	37	44 1	07:00:12			STANDARD DEVIATION		4.66
5 136 94 111 83	1100	TIME:		SIMULATED MINIMUM	HOURS	34.	45.97	23.		17.55	106.	42.37	114.	TIME:			ST		10
2 58 38 63 74	899	18-JUL-90		CHAUNARD	DEVIATION	23.38	53.25	22.17	190.75	325,94	168.32	21.91	312.34	18-JUL-90		SIMULATED AVERAGE	LABOR		31.66
6 141 101 139 133	1050	DATE:		AVERAGE SIMULATED		73.40	141.50	38.44	323.53 70.66	476.77	304.76	67.13	537.46	4 DATE:			STANDARD HOURS		0.00
SUPOTHRU: SLOTHRU: SLOTHRUO: SLOTHRU2: SLOTHRU3:		ER: 4		SIN SIN	₹		-	•	••	7	,		υ,	ER:					يو
Sus Sus Sus Sus Sus Sus Sus Sus Sus Sus		QUART	ics	HISTORICAL FLOWTIME	SS	0.00	9.6	0.00	00.00		0.0	2311.00	0.00	QUART			EXPECTED HOURS		30.6
WCD WCD WCD WCD	LIONS	MATPFA	STATISTICS	HIS	HOURS					•		•		MATPFA	DIRECT LABOR STATISTICS			ŀ	
99999	INDUC	RCC:	TIME											ACC:	OR ST				
INDUCTIONS INDUCTIONS INDUCTIONS INDUCTIONS INDUCTIONS	TOTAL WCD INDUCTIONS	S S	CYCLE		Σ		ti)	į	ğığı Ç	Z LS	i do	SOT	ST	SA	CT LA		Σ		
INDU INDU INDU INDU INDU INDU	TOTA	ALC:	FLOW		ITEM	AC	AC/DB	0.00	F-150T	F-15ST	F-160T	F-16SQT	F-16ST	ALC:	DIRE		ITEM		AC

369 112 155 125 1357 135 125 1357 135					NUMBER OF SAMPLES	203 369
	9			۲	z wi	
74.97 18.65 145.43 47.24 254.03 150.91 46.67	PAGE:			PAGE:	BACKSHOP RS &	0.0%
•	FC 2ND			UFC 2ND	BACI HOURS	0.0
18.38 9.92 20.96 6.75 51.88 23.74	REPT.ID: UFC			REPT.ID: UI	PROCESSING FLOW HOURS &	87.5% 58.7%
11.50 3.58 18.64 7.06 53.10 21.59 7.49	07:00:12	NUMBER OF SAMPLES	203 369 112 15 367 125 125	07:00:12	PROCESS HOURS	64.2 83.0
36 112 130 130 130 14 14 130 130 130 130 130 130 130 130 130 130	TIME:	SIMULATED MAXIMUM BACKSHOP HOURS	000000000	TIME:	S S	12.5% 41.3%
44.36 14.12 95.30 35.19 116.35 93.93 34.44	18-JUL-90	SIMULATED S MINIMUM BACKSHOP HOURS	000000000	18-JUL-90	WAITING FOR RESOURCES # HOURS #	9.2 58.5
00000000	4 DATE:	SI STANDARD I DEVIATION	000000000	4 DATE:	SIMULATED FLOW HOURS	73.4
41.42 11.91 89.15 32.08 143.59 89.15 32.08	QUARTER:	AVERAGE SIMULATED S BACKSHOP S HOURS DE	8888888888	QUARTER:	HISTOR. S FILOW HOURS	00
·	MATPFA	SIN BA		SUMMARY	田年田 1	
	RCC:			TIMES SU		
a ro ror ror ror ror ror	SHOP	5.	e rggrirgi	ALI I	4	~
AC/DB DB F-15QT F-15SQT F-16QT F-16SQT F-16SQT	ALC: SA BACKSHOP	ITEM	AC/DB AC/DB DB F-15QT F-15ST F-16QT F-16ST	ALC: S.	ITEM	AC AC/DB

	80]	σ	`	10	
	PAGE:		PAGE.		PAGE:	
000000	UFC 2ND		UFC 2ND		UFC 2ND	
100.08 45.78 79.98 39.88 78.98	REPT.ID:	THE BLAKE STATISTIC	0.00 0.00 0.00 10.22 1.50 6.44 31.26 0.00	NT CURRENT	3 1 3 REPT. ID:	
38.4 147.8 166.4 150.0 53.0 223.9	07:00:12		14 1 0 0 17 17 3 3 55 0 0	WAITING QUEUE COUNT GE STD.DEV. MAXIMUM CU	7.0 9.0 10.0 07:00:12	
0.08 54.38 20.18 60.28 50.88 58.38	TIME:	CURRENT QUEUE QUANTITY	TIME:	AITING QUI	1.3 1.8 2.1 TIME:	
0.0 175.8 14.2 287.0 154.8 14.2	18-JUL-90	AVERAGE QUEUE WAIT (his)	0.00 0.00 0.00 2.05 2.98 1.84 1.12 0.00	AVERAGE ST	1.7 2.3 3.7 18-JUL-90	
38.4 323.5 70.7 476.8 304.8 67.1	4 DATE:	MAXIMUM QUEUE QUANTITY	52.00 10.00 1.00 5.00 30.00 5.00 21.00 107.00 0.00	WAIT (HOURS) AVERAGE	73.5 138.9 143.4 4 DATE:	
2508.0 0.0 2508.0 0.0 0.0 2311.0	QUARTER:	ICS STANDARD DEVIATION	0.20 0.01 0.00 0.00 5.49 0.82 4.12 28.85 0.00	DELAYED OPERATIONS	205 145 226 QUARTER:	
	MATPFA	STATIST STAGE STAGE SUE NATITY	0.00 0.00 0.00 4.98 0.50 3.49 27.89 0.00	ICS TOTAL INDUCT	721 393 442 MATPFA	
	RCC:	E QUE	RANGE ES C.:	X STATIST	RCC:	
DB F-15QT F-15SQT F-16QT F-16QT F-16SQT	ALC: SA	RESOURCE QUEUE	50002 50004 50005 50173 WG00 WG10 WG11 WGAA	ASSEMBLY STATISTICS ASSEMBLY STATISTICS THEM IN IN	AC/DB F-15ST F-16ST ALC: SA	

AVERAGE AVERAGE WALTING QUANTITY TIME WAITING WALTING WALTING WALTING WALTING WALTING WALTING ** NONE WALTED ** NONE	ALLOWABLE QUANTITY AVERAGE STD.DEV. IN 99999 QT 10.4 31.8 QUARTER: 4 DATE: CATED STOCK STATISTICS - PATALIONS AVERAGE CATED STOCK STATISTICS - Subcomponents CATED STOCK STATISTICS - Subcomponents CATED STOCK STATISTICS - Subcomponents TOTAL DELAYED (HOURS) K ITEM TOTAL DELAYED (HOURS) R ATER TOTAL DELAYED (HOURS) ANAIT ANAIT TOTAL DELAYED (HOURS) ANAIT ANAIT TOTAL DELAYED (HOURS) ANAIT ANAIT ANAIT TOTAL DELAYED (HOURS) ANAIT AN											
Second S	B	ITEM	ALLOWABLI QUANTITY		STD.DEV.	ı	MAXIMUM	CURRENT	AGE		CURRENT QUANTITY WAITING	
SA SCC: MATPER COMPATER: A DATE: A	SQT 99999 6.0 2.9	D.	66666	1.7	1.3		7	3	ı		**	
Color Colo	OT 99999 O.0 O.1 SQT 99999 O.1 O.4 ST 99999 O.1 O.4 ST 99999 O.1 O.4 SQT 99999 O.1 O.4 SQT 99999 O.1 O.4 SQT 99999 O.1 O.4 SQT 99999 O.1 O.4 ST 99999 O.1 O.4 ST SQT 99999 O.1 O.4 ST SQT SP9999 O.1 O.4 ST TOTAL DELAYED (HOURS) K ITEM INDUCT OPERATIONS AVERAGE SA RCC: MATPFA QUARTER: A DATE: SA RCC: MATPFA OPERATIONS AVERAGE SA RCC: MATPFA OPERATIONS SS.8 SA RCC: MATPFA OPERATIONS SS.8 SA RCC: MATPFA OUARTER: A DATE:	AC/DB	66666	9.0	2.9	0	15	9 4				
STATE 99999 4.3 3.1 0.4 0.2 0.5	SQT 99999 4.3 3.1 5.2	B C	66666	0.0	0.1	0	,	* C		-		
SQT 99999 0.1 0.4 0.4 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SQT 99999 0.1 0.4 ST 99999 21.6 13.8 GT 99999 21.6 13.8 GT 99999 21.6 0.4 ST 99999 0.1 0.4 ST 99999 27.2 16.0 SA RCC: MATPFA QUARTER: 4 DATE: CATED STOCK STATISTICS - Parallel Operatio SA RCC: MATPFA QUARTER: 4 DATE: CATED STOCK STATISTICS - Subcomponents CATED STOCK STATISTICS - Subcomponents R ITEM INDUCT OPERATIONS AVERAGE ANALT TOTAL DELAYED (HOURS) K ITEM INDUCT OPERATIONS AVERAGE 371 369 0.0 205 58.8 SA RCC: MATPFA QUARTER: 4 DATE:	?-15QT	66666	4.3			۲,	ט ע		-	c +	
ST 99999 21.6' 13.8 4 51 37 *** NONE WALTED ST 99999 4.5 3.0 0 12 6 *** NONE WALTED ST 99999 77.2 16.0 0 65 42 *** NONE WALTED ST STOCK STATISTICS - Parallel Operations K ITEM INDUCT OPERATIONS K ITEM TOTAL DELAYED (HOURS) CATED STOCK STATISTICS - Subcomponents K ITEM INDUCT OPERATIONS SA RCC: MATPER (HOURS) B 7721 719 0.0 0.0 0.0 1.0 0.0 3 SA RCC: MATPER (HOURS) B 7721 719 0.0 0.0 0.0 1.0 0.0 3 SA RCC: MATPER (HOURS) B 7721 719 0.0 0.0 0.0 1.0 0.0 3 SA RCC: MATPER (HOURER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND CATED STOCK STATISTICS - Subcomponents ANDUCT OPERATIONS AVERAGE STD.DEV. MAXIMUM CURRENT ANDUCT OPERATIONS AVERAGE STD.DEV. MAXIMUM CURRENT SA RCC: MATPER (HOURS) B 7721 719 0.0 0.0 0.0 1.0 0.0 3 SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: ITEC 2ND SA RCC: MATPER (DARTER: 4 DATE: 18-JUL-90 TIME: 07:00:10 TIME: 10:00 TIME: 10:00 TIME: 10:00 TIME: 10:00 TIME: 10:00 TIME: 10:00 TIME:	ST 99999 21.6 13.8 GT 99999 4.5 3.0 SQT 99999 0.1 0.4 ST PER PROCE MATPER QUARTER: 4 DATE: CATED STOCK STATISTICS - Parallel Operation (HOURS) K ITEM INDUCT OPERATIONS AVERAGE CATED STOCK STATISTICS - Subcomponents TOTAL DELAYED (HOURS) K ITEM TOTAL DELAYED (HOURS) R ITEM TOTAL DELAYED (HOURS) SA RCC: MATPER OURTER: 4 DATE: 371 369 0.0 205 58.8 SA RCC: MATPER QUARTER: 4 DATE:	?-15SQT	66666	0.1	4.0) C		-	C 4	
SA RCC: MATPER QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: UPC ZND	SQT 99999 4.5 3.0 SQT 99999 0.1 0.4 ST 99999 0.1 0.4 SA RCC: MATPER QUARTER: 4 DATE: A	7-15ST	66666	21.6	13.8	4	ן נכ	, r		_	: 1	
SA RCC: MATPER QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC ZND CATED STOCK STATISTICS - Parallel Operations K ITEM TOTAL DELAYED (HOURS) CATED STOCK STATISTICS - Subcomponents K ITEM TOTAL DELAYED (HOURS) CATED STOCK STATISTICS - Subcomponents K ITEM TOTAL DELAYED (HOURS) CATED STOCK STATISTICS - Subcomponents K ITEM TOTAL DELAYED (HOURS) CATED STOCK STATISTICS - Subcomponents K ITEM TOTAL DELAYED (HOURS) SA RCC: MATPER QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REFT.ID: UFC ZND CATED STOCK STATISTICS - Subcomponents K ITEM TOTAL DELAYED (HOURS) SA RCC: MATPER QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC ZND CATED STOCK STATISTICS - Subcomponents AND TOTAL DELAYED (HOURS) B 721 719 0.0 0.0 0.0 1.0 0 SA RCC: MATPER QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC ZND SA RCC: MATPER QUARTER: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC ZND SA RCC: MATPER QUARTER: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC ZND	SA RCC: MATPEA QUARTER: 4 DATE: CATED STOCK STATISTICS - Parallel Operatio TOTAL DELAYED (HOURS) K ITEM INDUCT OPERATIONS AVERAGE SA RCC: MATPFA QUARTER: 4 DATE: CATED STOCK STATISTICS - Subcomponents TOTAL DELAYED (HOURS) K ITEM TOTAL DELAYED (HOURS) AMAIT TOTAL DELAYED (HOURS) 371 369 0.0 B 721 721 719 0.0 SA RCC: MATPFA QUARTER: 4 DATE:	7-160T	66666	4.5	3.0	·c		, 4		-	K 4	
SA RCC: MATPEA QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REFT.ID: UFC ZND CATED STOCK STATISTICS - Parallel Operations K ITEM TOTAL DELAYED (HOURS) CATED STOCK STATISTICS - Subcomponents K ITEM TOTAL DELAYED (HOURS) CATED STOCK STATISTICS - Subcomponents K ITEM TOTAL DELAYED (HOURS) R ITEM TOTAL DELAYED (HOURS) AMAIT K ITEM TOTAL DELAYED (HOURS) B 371 369 0.0 0.0 0.0 1.0 0 0 0 0 0 0 0 0 0 0 0 0	SA RCC: MATPEA QUARTER: 4 DATE: CATED STOCK STATISTICS - Parallel Operatio TOTAL DELAYED (HOURS) K ITEM TOTAL DELAYED (HOURS) SA RCC: MATPEA QUARTER: 4 DATE: CATED STOCK STATISTICS - SUDCOMPONENTS K ITEM TOTAL DELAYED (HOURS) K ITEM TOTAL DELAYED (HOURS) 371 369 0.0 205 58.8 SA RCC: MATPEA QUARTER: 4 DATE:	7-16SQT	66666	0.1	4.0	o C	,	o c			K 4	
SA RCC: MATPEA QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC ZND CATED STOCK STATISTICS - Parallel Operations K ITEM TOTAL DELAYED (HOURS) CATED STOCK STATISTICS - Subcomponents K ITEM TOTAL DELAYED (HOURS) CATED STOCK STATISTICS - Subcomponents K ITEM TOTAL DELAYED (HOURS) R ITEM TOTAL DE	CATED STOCK STATISTICS - Parallel Operatio TOTAL DELAYED (HOURS) K ITEM TOTAL DELAYED (HOURS) SA RCC: MATPFA QUARTER: 4 DATE: CATED STOCK STATISTICS - Subcomponents CATED STOCK STATISTICS - Subcomponents TOTAL DELAYED (HOURS) K ITEM INDUCT OPERATIONS AVERAGE 371 369 0.0 205 58.8 SA RCC: MATPFA QUARTER: 4 DATE:	r-16ST	66666	27.2	16.0	0	65	42			: #: : #:	
CATED STOCK STATISTICS - Parallel Operations K ITEM TOTAL DELAYED (HOURS) SA RCC: MATPEA QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC 2ND CATED STOCK STATISTICS - Subcomponents K ITEM TOTAL DELAYED (HOURS) R ITEM TOTAL DELAYED (HOURS) 371 369 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	K ITEM TOTAL DELAYED (HOURS) K ITEM TOTAL DELAYED (HOURS) SA RCC: MATPFA QUARTER: 4 DATE: CATED STOCK STATISTICS - Subcomponents TOTAL DELAYED (HOURS) WAIT TOTAL DELAYED (HOURS) 371 369 0.0 205 205 58.8	S.		QUARTER:		18-JUL-90		07:00:12		UFC 2ND	PAGE:	11
SA RCC: MATPFA QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC 2ND CATED STOCK STATISTICS - Subcomponents TOTAL DELAYED (HOURS) INDUCT OPERATIONS AVERAGE STD.DEV. MAXIMUM CURRENT 371 369 0.0 0.0 0.0 1.0 0 205 205 58.8 1.4 1.2 6.0 3 SA RCC: MATPFA QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC 2ND	CATED STOCK STATISTICS - Subcomponents CATED STOCK STATISTICS - Subcomponents WALT TOTAL DELAYED (HOURS) HINDUCT OPERATIONS AVERAGE 371 369 0.0 205 205 58.8 SA RCC: MATPFA QUARTER: 4 DATE:	STOCK ITEM		DELAYED PERATIONS	WAIT (HOURS) AVERAGE	32	ITING QU	EUE COUNT-	REENT			
CATED STOCK STATISTICS - Subcomponents WAIT TOTAL DELAYED (HOURS) INDUCT OPERATIONS AVERAGE STD.DEV. MAXIMUM CURRENT 371 369 0.0 0.0 0.0 1.0 0 721 719 0.0 0.0 0.0 1.0 0 205 58.8 1.4 1.2 6.0 3 SA RC: MATPER QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: 1FC 2MD	K ITEM TOTAL DELAYED (HOURS) R ITEM 1NDUCT OPERATIONS AVERAGE 371 369 0.0 205 205 58.8 SA RCC: MATPFA QUARTER: 4 DATE:	SA		QUARTER:		18-JUL-90		07:00:12		UFC 2ND	PAGE:	12
TOTAL DELAYED (HOURS)	K ITEM TOTAL DELAYED (HOURS) 1 INDUCT OPERATIONS AVERAGE 371 369 0.0 721 719 0.0 205 205 58.8 SA RCC: MATPFA QUARTER: 4 DATE:		1	1	ponents		8 1 1				-	
371 369 0.0 0.0 0.0 1.0 0 1.0 0 205 205 58.8 1.4 1.2 6.0 3 SA RCC: MATPER QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: 1FC 2ND	371 369 0.0 721 719 0.0 205 205 58.8 SA RCC: MATPFA QUARTER: 4 DATE:	TOCK ITEM		DELAYED PERATIONS	WAIT (HOURS) AVERAGE		ITING QU. TD.DEV. 1	EUE COUNT- MAXIMUM CU	RRENT			
SA RCC: MATPFA QUARTER: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: HFC 2ND	SA RCC: MATPFA QUARTER: 4 DATE:	c/DB B				0.04	0.0	1.0	100m			
		SA		QUARTER:		18-JUL-90	TIME:	07:00:12	REPT.ID: 1	UFC 2ND	PAGE	

RESOURCE	CE UTILIZATION by		SHIFT	 								
(i i i i i	NUMBER	SHIFT	AV	AVERAGE NUMBER IN PREV.	MBER IN PREV.	EACH STA	STATE	MIN	-BATCHING MAX	AVG
COUNT	DESCRIPTION	SHIFT	AVAIL	UTIL.	IDLE	IN USE	MAINT.	FAILURE	DOWN	SIZE	SIZE	SIZE
1											1	
20005	20002	-	32.8	0.49	0.51	0.49	0.00	0.01	0.00			
		7	32.8	•	•	•	•		•			
		m ·	32.8	•	•	•	•	•	•			
		4 1	32.8	•	•	•	•	•	•			
		so v	φ, α	0 (0.76	•	•	•	0.00			
		۵	32.8		•	•	•	•	•			
50004	50004	7	9.8	7	•	•		•				
		7	8.6	ı.	•	•	•					
		m	8.6	٦:		•	•	•	•			
		4	8.6	7	•	•	•	•	•			
		ĸ	8.6	0.16	0.84	0.16	0.00	0.00	0.00			
		9	8.6	٦.	•	•	•	•	•			
30003	3000	•	ď		O							
		4 0	, r.	•	ļσ	•	•	•	•			
		۳ د	, r	•	•	•	•	•	•			
) 4	, ru	•	. 0			•	•			
		· v	, r.	•	. 0		•	•	•			
		9	8.8	0.00	0.99	0.00	0.00	0.01	0.00			
50173	50173	-	16.8			•						
)		ı (\)	16.8									
		m	16.8	0.02	0.98	0.02	0.00	0.00	0.00			
		4	16.8				•					
		ß	16.8		•	•	•	•				
		9	16.8	•	•	•	•	•	•			
WG00	WG00	H	39.0	~	•			•	4			
		0	11.0	ď	• •				7			
		ı m	10.0	7					4			
		4	1.0		0.01	0.57	0.00	00.00	0.43			
		S	1.0	0	0.00	0.57	•					

08	0		PAGE: 14		BATCHING MAX AVG E SIZE SIZE												
	*		UFC 2ND		MIN												
	0.36 0.36 0.36		REPT.ID:		TE OTHER DOWN	† 	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	3.	0.36	0.36
	00.00		07:00:12			 		0.00						000		000	
	00.00		TIME:		5					0.0				000		999	
ORDED	.50 0.15 .46 0.19 .31 0.33 RECORDED RECORDED		18-JUL-90		VERAGE NI IN USE	1				0.70				600		999	
NO VALUES RECORDED	000	ions reflect nd the other ly across all	DATE: 1		_					0.15				4.0		0.00	
	222	ior nd 1y	4		R SHIFT.	1				0.82	0		9 0		•	988	
0.0	0.00 0.00 0.00	that the utilization of the workload and not be spread evenly in	QUARTER:	SHIFT	NUMBER SHIFT AVAIL.	! ! ! !		2.0		2.0				8 8		4.2.	
9	<u>ተ</u> ረ ሠ 4 ቦ ለ	that to of the not be s.	MATPFA	UTILIZATION by			ч с	, m	4	တ လ	1	2 0	J 4	ינטי		H 67	2
	WG09	: Remember that only 80% of 20% may not resources.	SA RCC:	URCE UTILIZA	DESCRIPTION		WG10	•			WG11					WGAA	
	WG09	Note:	ALC:	RESOURCE	CODE		WG10				WG11					WGAA	

NO VALUES RECORDED NO VALUES RECORDED 0.0 9

20% may not be spread evenly across all Remember that the utilizations reflect only 80% of the workload and the other resources Note:

PAGE: 4 DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC 2ND QUARTER: MATPFA RCC: S ALC:

15

WCD NAME: SLOTHRU5 ITEM NAME: AC

WCD by OPERATION STATISTIC AVERAGES

PAGE: MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA MATPFA REPT.ID: UFC 2ND TEST TEST TEST TEST ASSY ASSY REP 6.50 3.37 7.39 9.02 4.24 07:00:12 SIMULATED 16.21 AVERAGE HRS DATE: 18-JUL-90 TIME: 7.13 1.95 4.50 1.97 8.81 3.54 SCHEDULED AVERAGE 14.26 12.56 1.76 QUEUED 7 QUEUED 41. 21. 25. 56. 50. OIX QUARTER: POTENTIAL PROCESSED 205. 205. 155. 154. 204. 204. MATPFA **300** g 205. 205. 205. 204. 204. 204. 204. S 0400 0500 0600 S 0300 S CODE 0100 0700

WG09, 50173 WG09, 50173 WG00, as

16

WG09, 50173 WG09, 50173

1.00

FAC

WG00

0.75 0.75 0.75 1.00 1.00

WCD NAME: SLOTHRU4 ITEM NAME: AC/DB

WCD by OPERATION STATISTIC AVERAGES

WG00 1.00 1 OCC FAC MATPFA DESC REP SIMULATED 11.98 AVERAGE 60.9 SCHEDULED AVERAGE 5.13 QUEUED QUEUED OIY OI POTENTIAL PROCESSED 371. QT. OTY 371. OPER CODE

0	WGOO, as	G10, 50002	WG10,50002	71
1.00	-	1.00 W		PAGE: 17
MATPFA	MATPFA	MATPFA	MATPFA	UFC 2ND
ASSY	ASSY	TEST	TEST	REPT. ID:
7.96	7.22	4.41	51.45	TIME: 07:00:12 REPT.ID: UFC 2ND PAGE: 17
3.67	3.59	3.59	4.34	TIME:
		20.47		DATE: 18-JUL-90 TIME:
0	73	20	16	DATE:
.0	203.	236.	105.	QUARTER: 4
371.	371.	369.	369.	LC: SA RCC: MATPFA QUARTE
371.	371.	369.	369.	RCC:
0200	0300	0400 S	0200	ALC: SA

ITEM NAME: DB WCD NAME: SLOTHRU6

WCD by OPERATION STATISTIC AVERAGES

		18
OCC	1.00	PAGE:
RCC	MATPFA MATPFA MATPFA	UFC 2ND
-	REP TEST TEST	REPT.ID:
AVERAGE SIMULATED HRS	7.64 4.53 26.27	DATE: 18-JUL-90 TIME: 07:00:12 REPT.ID: UFC 2ND
GE	4.24 1.88 9.62	TIME:
AVERAGE SCHEDULED HRS	4.24 1.88 9.62	DATE: 18-JUL-90 TIME:
UED S	888	18-
	 	DATE:
QUEÚÈD QTY	000	4
	000	QUARTER:
POTENTIAL PROCESSED QTY	444	i
OTENTIAL OTY	444	ALC: SA RCC: MATPFA
		&S
OPER	0100 0200 0300	ALC:

ITEM NAME: F-15QT WCD NAME: QUIKTHRU

WCD by OPERATION STATISTIC AVERAGES

					WG00		-:	WG11,50002				
	ပ္ပ	FAC	1	1.00	1.00	1.00	1.00	0.28	1.00	1.00	1.00	1.00
		RCC	!	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA
		DESC				_	_	_	-	_	•	_
		HRS										
AVERAGE		HRS										
	QUEUED	HRS		0.00	1.40	87.38	87.50	81.20	93.17	93.80	14.80	0.00
	QUEUED	QTY		•	116.	86.	42.	13.	43.	31.	.09	
	POTENTIAL PROCESSED	OT?		116.	116.	116.	114.	26.	114.	114.	112.	112.
	POTENTIAL	QTY		116.	116.	116.	114.	114.	114.	114.	112.	112.
	OPER	CODE	1	0000	0100	0200 S	0300	0400	0200	0090	0000	6666

080	0					WG11,50002								
19					WG11	WG11,	WG00	70	 				WG00	21
PAGE:			OCC FAC	1.00	1.00	1.00	1.00	PAGE:	 			OCC FAC	1.00	PAGE:
UFC 2ND	•		RCC	MATPFA	MATPFA	MATPFA	MATPFA MATPFA	UFC 2ND				RCC	MATPFA	UFC 2ND
REPT.ID: UFC 2ND			DESC	NI	INSP	TEST	PACK	REPT. ID:				DESC	INI	REPT.ID: UFC 2ND
07:00:12			AVERAGE SIMULATED HRS	2.00	5.94 9.23	24.30	10.96	07:00:12				AVERAGE SIMULATED HRS	2.00	07:00:12
TIME:			GE	2.00	5.30 7.79	21.50	6.26 4.00	TIME:				GE LED	2.00	TIME:
18-JUL-90			AVERAGE SCHEDULED HRS	5	7 20 1-		0 4	18-JUL-90				AVERAGE SCHEDULED HRS	5 7	18-JUL-90
DATE: 18-	WCD NAME: SUPQTHRU		QUEUED HRS	0.00	0.00	4.49	12.14	DATE: 18-,	THE PROPERTY.			QUEUED HRS	0.00	DATE: 18-
4	NAME	SS	OUEUED OTY	o.			10. 0.	4	SAN CO	Series of the se	ន្ល !	QUEUED OTY	0. 393.	4
QUARTER:	WC	AVERAGI			•		•	QUARTER:	3	3	AVERAGE		m	QUARTER:
MATPFA	ř.	WCD by OPERATION STATISTIC AVERAGES	POTENTIAL PROCESSED QTY QTY	15.		15.	15.	MATPFA	E -	1	STATISTIC AVERAGES	POTENTIAL PROCESSED QTY QTY	393. 393.	MATPFA (
RCC:	ITEM NAME: F-15SQT	ERATION	OTENTIAL	15.	15.	15.	15. 15.	RCC:	TTEM NAME: E-15CT		WCD by OPERATION	OTENTIAL	393. 393.	RCC:
SS.	I NAM	γ. OP	!	! ! ~ :	S	_	. -	S	MAN		ν. Θ [\$
ALC:	ITEM	WCD b	OPER CODE	0000	0200	0300	0400 9999	ALC:	A THE		WCD P	OPER	0000	ALC:

WCD NAME: SLOTHRUO

WCD by OPERATION STATISTIC AVERAGES

ITEM NAME: F-15ST

84

OPER	POTENTIAL OTY	POTENTIAL PROCESSED OTY	·	QUEUED HRS	AVERAGE SCHEDULED HRS	AVERAGE SIMULATED HRS	DESC	RCC	OCC FAC	30
0100 S	285.	285.	213.	91.62	7.81	8.73	TEST	MATPFA	1.00	WG11,50002
0200		281.	105.	102.14		27.19	TEST	MATPFA	1.00	WG11,50002
0300		51.	22.	93.07		30.34	TEST	MATPFA	0.19	WG11,50002
0400		120.	45.	80.54		54.28	TEST	MATPFA	0.46	WG11,50002
0200		. 69	31.	64.25		26.37	TEST	MATPFA	0.30	WG11,50002
ALC: S	SA RCC:	MATPFA Q	QUARTER: 4	DATE: 18-JUL-90	-JUL-90 TIME:	07:00:12	REPT.ID: UFC 2ND	UFC 2ND	PAGE:	22
			•							
ITEM N	ITEM NAME: F-15ST	H	WCD NAM	WCD NAME: SLOTHRUI	T.					
WCD by	WCD by OPERATION STATISTIC AVERAGES	STATISTIC	AVERAGES							

	WG00	WG11,	WG11,	23
PAC	1.00	1.00	0.75	PAGE:
RCC	MATPFA	MATPFA	MATPFA	UFC 2ND
DESC				REPT.ID: UFC 2ND
AVERAGE SIMULATED HRS	1.99	8.92	53.49	07:00:12
GE	.50	.82	8	TIME:
AVERAGE SCHEDULED HRS	H 1	7	42	DATE: 18-JUL-90 TIME:
<u>ន</u> ្ន	.83	.48	49	18-
QUEUED HRS				DATE:
QUEUED		<u>س</u>		4
OUE	m	in.	0	QUARTER: 4
POTENTIAL PROCESSED QIY OTY	76.	76.	20.	MATPFA Q
POTENTIAL QTY	76.	.9/	4.	RCC:
OPER CODE	0010	S 00:	00	ALC: SA
001	5	0	0	AIC

WCD NAME: SLOTHRU2 ITEM NAME: F-15ST

			WG00	WG10,50004	WG10, 50004	WG00
ပ္ပ	FAC	!!!!	0.50	0.50	0.50	1.00
	RCC	1	MATPFA	MATPFA	MATPFA	MATPFA
	DESC	!	REP	TEST	TEST	ASSY
AVERAGE SIMULATED	HRS		4.61	10.67	60.81	6.54
AVERAGE SCHEDULED	HRS		3.02	8.80	40.61	3.91
QUEUED	HRS		13.24	21.40	19.46	14.17
	OTY					
PROCESSED	OTY		150.	158.	151.	293.
POTENTIAL	OTY		294.	293.	293.	293.
OPER	CODE		0010	0200 S	0300	0090

March Marc	WG00, as WG11, 50002 WG11, 50002 WG11, 50002											WG00 WG11 50002	WG11,50002	WG11,50002	WG11,50002			
Second S	WG1 WG1 WG1	24	1 			W G0	25					WGO.	WG1	1 2 3 3 3 3 3 3 3 3 3 3	WG1	WG0	26	
Sample S	1.00	PAGE:			OCC FAC	1.00	PAGE:			OCC FAC	1.00	1.00	1.00	97.0	1.00	1.00	1.00 PAGE:	
S S S S S S S S S S	Matpfa Matpfa Matpfa Matpfa	UFC 2ND			RCC	MATPFA	UFC 2ND			SC .	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA UFC 2ND	
SA PAME: F-15ST MAME: F-15ST MAME: F-16QT MAME: P-16QT MAME: P-16QT MAME: P-16QT MAME: P-16QT MAME: QUEVED SCHEDULED SIMM SIGN	ASSY TEST TEST TEST	REPT. ID:			DESC	PACK				DESC	NH	INSP	TEST	TEST	TEST	PACK		
SA POTENTIAL PROCESSED QUEUED QUEUED SCHEDUL	5.57 15.17 54.76 24.52	07:00:12			AVERAGE SIMULATED HRS	9.95	07:00:12			AVERAGE SIMULATED HRS	2.00	8.40 8.60	27.44	57.05	24.74	9.01	4.00 07:00:12	
SA RC: MATPEA QUARTER: 4 DATE: SA RC: MATPEA QUARTER: 4 DATE: SA RC: MATPEA QUARTER: 4 DATE: By OPERATION STATISTIC AVERAGES OTY QTY QTY QTY HRS OF OPERATION STATISTIC AVERAGES NAME: F-16OT MAME: F-16OT MAME: F-16OT MAME: F-16OT MAME: F-16OT NOTY GTY GTY GTY OTY GTY GTY OTY OTY OTY OTY OTY OTY OTY	3.41 13.43 42.43 21.08				AVERAGE SCHEDULED HRS	5.49				AVERAGE SCHEDULED HRS	2.00	5.30	23.05	42.94	21.07	5.52	4	
SA RCC: MATPFA QUART SA RCC: MATPFA QUART SA RCC: MATPFA QUART BY OPERATION STATISTIC AVER OTY OTY OTY OTY SA RCC: MATPFA QUART M NAME: F-15ST By OPERATION STATISTIC AVER TO S	147.95 97.09 84.12 103.12		SLOTHRU3		QUEUED	13.69		QUIKTHRU		QUEUED HRS	0.00	1.40	76.04	73.10	79.23	11.81		
	147. 206. 113.	₹	WCD NAME:	VERAGES	QUEÚED	195. 0.	4	WCD NAME:	VERAGES	QUEUED QTY	0.	129. 103.	39.	+0. 46.	51.	.09	4	
	289. 291. 283. 206.		ST	STATISTIC A		366. 367.			STATISTIC		129.	129. 129.	129.	128.	126.	124.		
	289. 291. 283. 279.	RCC:		PERATION	POTENTIA	366. 367.	RCC:	Æ: F-16	PERATION	POTENTIA	129.	129. 129.	129.	128.	126.	124.	125. RCC:	
			ITEM NAN		!	0100		ITEM NA			0000			0500	0090	0200	ת	

WCD NAME: SUPOTHRU

WCD by OPERATION STATISTIC AVERAGES

ITEM NAME: F-16SQT

		WG11,50002 WG00		
	WG11	WG11,	27	WG00
OCC FAC	1000	0000	PAGE:	OCC FAC 1.00 1.00
RCC	MATPFA MATPFA MATPFA	MATPFA MATPFA MATPFA	UFC 2ND	RCC MATPFA MATPFA
DESC	I NI INSP	TEST PACK OUT	REPT. ID:	DESC RCC IN MATPEY INSP MATPEY
AVERAGE SIMULATED HRS	2.00 6.01	23.88 8.29 4.00	07:00:12	AVERAGE SIMULATED HRS 2.00 8.71
a G	5.30	20.70 5.22 4.00	TIME:	AGE OULED SS 2.00 5.30
AVERAGE SCHEDULED HRS	950	20 2 4	18-JUL-90	RUI AVERAGE D SCHEDULED HRS
UED S	0.00	5.77 15.24 0.00	18-0	THRUI UED S 0.00 1.40
QUEUED HRS		н	DATE:	AGES QUEUED QUEUED QTY HRS 0.00 442. 1.40 ER: 4 DATE: 18-
QUEUED QTY		11. 0.	₹	MCD NAME AGES OUEUED OTY 0. 442.
			QUARTER:	AVER
OCESSED	17.	17.		CCESSED OTY 442.
L PR(MATPFA	ST STATIS PROCE OTY 442 442 442
POTENTIAL PROCESSED OTY	17. 17.	17.	RCC:	CD by OPERATION STATISTIC OPER POTENTIAL PROCESSED CODE OTY OTY OTY O100 442. 442. 142. 162. SA RCC: MATPFA Q
	i ا		SA	NAME Y OPFI
OPER	0000	0300 0400 9999	ALC:	MCD by OPER CODE CODE CODE CODE CODE CODE CODE CODE

AVERAGE

AVERAGE

WCD NAME: SLOTHRUO

WCD by OPERATION STATISTIC AVERAGES

ITEM NAME: F-16ST

	~~~~				01 01 01			
77T080	WG11,50002 WG11,50002 WG11,50002 WG11,50002	29		WG00 WG10,50004 WG10,50004 WG00	WG11,50002 WG11,50002 WG11,50002	30		
OCC FAC	1.00 1.00 0.19 0.46	PAGE:	occ FAC	0.50	1.00	PAGE:		OCC FAC
RCC	MATPFA MATPFA MATPFA MATPFA MATPFA	UFC 2ND	RCC	MATPFA MATPFA MATPFA MATPFA MATPFA	Matpfa Matpfa Matpfa	UFC 2ND		RCC
DESC	TEST TEST TEST TEST TEST	REPT. ID:	DESC	REP TEST TEST ASSY ASSY	TEST TEST TEST	REPT.ID:		DESC
SIMULATED	8.78 26.56 30.84 58.52 24.39	07:00:12	AVERAGE SIMULATED HRS	4.36 10.77 60.55 6.41 6.48	15.19 55.99 25.24	07:00:12		AVERAGE SIMULATED HRS
SCHEDULED HRS	7.83 22.43 25.19 43.68	18-JUL-90 TIME:	AVERAGE SCHEDULED HRS	2.99 8.69 3.88 3.60	13.47 42.70 21.48	18-JUL-90 TIME:		AVERAGE SCHEDULED HRS
QUEUED	82.15 90.87 74.45 84.65 78.44	DATE: 18-	S: SLOTHRU2 QUEUED HRS	13.32 21.28 19.37 15.26 154.68	85.07 77.76 86.92	DATE: 18-,	s: SLOTHRU3	QUEUED HRS
QUEUED	260. 111. 23. 60.	QUARTER: 4	WCD NAME: VERAGES  QUEUED  QTY	98. 129. 131. 213. 223.	305. 179. 112.	QUARTER: 4	WCD NAME: AVERAGES	QUEUED
PROCESSED OIY	316. 309. 61. 143.	MATPFA QU	STATISTIC AVERAGEŚ	228. 215. 237. 434.	428. 423. 326.	MATPFA QU	TATISTIC	PROCESSED
POTENTIAL OTY	316. 309. 306. 305.	RCC:	F-16S ATION ENTIAL	433. 433. 433. 434.	428. 423. 418.	RCC:	F-168	POTENTIAL QTY
OPER 1	0100 S 0200 0300 0400	ALC: SA	ITEM NAME: WCD by OPER OPER POTI	1	0800 0900 1000	ALC: SA	ITEM NAME:	OPER I

1.00 WG00 1.00	PAGE: 31												PhGE: 32		
Matpfa Matpfa	UFC 2ND												UFC 2ND		
PACK	REPT.ID:												REPT.ID: UFC 2ND		
10.10	07:00:12												07:00:12		SIMULATED VALUES
5.40	TIME:												TIME:		SIMULAT
	18-JUL-90			****	***	****	****	***	***	***	***	*	18-JUL-90		•
14.89	DATE: 18		AVERAGE HOURS									NO BACKSHOP ACTIVITY ****	DATE: 18		**
227. 0.	4	RCC	AVE	SHOP AC	4	8 ¦	VALUES								
<b>~</b>	QUARTER:	CKSHOP	RCC	NO BACKSHOP ACTIVITY	NO BACK	QUARTER:	COMPARISON	HISTORICAL VALUES							
415. 415.	MATPFA	BACKSHOP DWELL TIMES BY BACKSHOP RCC		**	* * *	* *	* *	* *	* *	* *	* *	* *	MATPFA	SIMULATED C	HIS
415. 415.	RCC:	WELL T								•			RCC:	1	
0100 9999	ALC: SA	ACKSHOP D	ITEM	<b>A</b> C	AC/DB	DB	F-15QT	F-15SQT	F-15ST	F-16QT	F-16SQT	F-16ST	ALC: SA	HISTORICAL vs.	

38 203 0.000 0.00 17 4 0.000 0.00 75 112 0.000 0.00 30 15 0.000 97.18 94 367 0.000 0.00 32 125 0.000 0.00 91 17 0.000 0.00	CIENT DATA CIENT DATA CIENT DATA CIENT DATA CIENT DATA CIENT DATA
0 73.40 23. 0 141.50 53. 0 38.44 22. 0 323.53 190. 80 70.66 24. 0 476.77 325. 0 304.76 168. 67 67.13 21.	FROM VALIDATION TEST DUE TO INSUFFICIENT
0.00 0.00 0.00 0.00 0.00 2508.00 0.00 0.00 2311.00 0.00 0.00	EXCLUDED FROM VALIDATION TEST
AC AC/DB DB F-15QT F-15SQT F-16QT F-16SQT F-16SQT	ITEM AC ITEM AC/DB ITEM P-15QT ITEM F-15ST ITEM F-16QT ITEM F-16ST

EMPLOYEE DATE PAGE NO	<u>,                                     </u>
RCCSUBJECT	
WEEK & 7-22 to 7-29-90	
WORKED ON A BRD CUT OF THE UFC area	
model. Some cycling times and occurrences on the	
and the results used bridge to production personned.  The months used bridge to production personned.  The most test that people only have a vigor ration of the third people only have a vigor ration of the third people of one to the the people of the cape to the the people on the the most one of the cape to the the most one of the cape to the the most one of the cape to the the people of the cape of	• .
TCN - a longer approach to mediting and data collection was breatly discussed. Some of the working except approach to mediting for the working except approach some contained in the country of which is a contained to the lay and the the lay are the lay and the lay and the lay are the lay are the lay and the lay are the	
TES - What with Don Consoler and I neared the souly expressed to be taken. Also i sousse a little three trusting southern to come on-line later on the upon.  The term connect: raid time, may be to the log one have an interpretable of the field.  The term connect of the field. Wet outh the log or continued on its log.	



DATE:

**JULY 30, 1990** 

SUBJ:

LAYERED MODELING APPROACH

It is important to get feedback on the data being collected as we go along, not after it is done. In order to do this we need to look at the area from a higher level first, going into more detail as we go along. The following is a suggested plan which is roughly being followed in the UFC area at San Antonio. The method is proving successful. A similar approach was used at Sacramento last year and was successful there also.

- 1. Develop workload profile identify all items, give them names.
  - get induction data by quarters
  - · get standard flow days
  - get historical data even if not good
- get average flow days from some source such as log books that contain real flow days.
  - get names if any of WCDs
  - get standard manhours for a part in a given area
  - · get overall interview manhours for a part in a given area
- 1.5 Hold meeting w/ALC personnel to review the data collected in 1. Make sure everyone can agree to the data collected in 1 [or at least agree to the limitations in the data, such as standard flow days] before going on.

At this point, you have the work defined - you know how many items and WCDs to profile. You have a good picture of how long parts take and about how many manhours are needed to do the work. The information may not be perfect, but you at least have a ballpark figure.

- 2. Develop resource profile
  - identify resources & quantities
  - get p.m. & failure data, other down
  - identify alternates
  - ask about overtime & put into resource file
  - get estimates of resource utilization
- 3. Develop first cut ops profiles -
  - the WCDs have 1 operation standard manhours/item. If you can break standard hours into different manhour categories, good, if not make all manpower resources one type.
  - do the same with "total manhours/part" through interview time.
- 3.1 Produce flat files and run through usage report for both standard and interview times.

The purpose of this is to see if the work can be done - if there even enough hours in a year for the men to produce the parts. If not, then adjust the overall manhours for that part. It may be hard to get people to agree to a defined number of manhours/part. but you at least have an idea if the part requires 5 hours or 150 hours f touch time.

- 3.2 Meet with ALC folks to discuss results and agree upon a set of numbers. This will set the number of manhours/item.
- 4.0 If possible do 3 with the equipment. This could be tough in some areas, but if they have an overall idea of how many hours a part resides on a machine, then use that figure.
- 5.0 Now you have data needed for feedback set manhours/part allows interview times to be compared to it as they are being developed.

  Projected resource utilization will let you know if interview etc. times are close. Use the usage report frequently to get feedback on the data being collected.
- 6.0 Make a Matrix resources on one side, parts on the other. Showing total hours available & total hours used by part along with %'s. Update it as ops profiles are entered. Remember to take into account other time & batching considerations.
  - 7.0 Now the next lower level of detail can be made on ops profile. Divide WCDs into major area or stations, such as Inspect, repair, disassembly, etc. Even if area or station will be broken down into further operations later group into major areas.
    - get overall time by area, for all manpower & equipment, used in that area
    - make each area one operation.

Go through the same method above, producing flat files and running though the usage report. At this point the files can be run through UDOS if desired to see effects that are not shown by the usage report.

7.X Keep going through this method refining the data until an acceptable level of detail is reached. It is important to keep everyone informed of the progress and the current structure of the model. This way, there are no surprises come validation. Everyone is aware of what is going on and have accepted the results along the way.

Note: The resources in the operations can be substituted with a mandatory flow times [obtained from history or what ever] if you just want to get an idea of where the critical path lies. This is particularly useful when an item breaks down into many subcomponents and the flow through a lot of different areas.

The above method are not hard and fast rules that can be applied everywhere - it may not be as useful in TO14 [cleaning line] for example. The general approach of providing feedback to the both the data collector and ALC personnel is useful anywhere.









L



12:57:36 REPT.ID: UFC 3rd 26-JUL-90 TIME: 4 DATE: QUARTER: MATPEA **R**CC: Ş

RUN PARAMETERS

SOGS

THIS JOB WAS RAN ON AFTIES, A VAX OF ENPOWERMENT.

S ALC: RCC: MATPFA

REPORT ID: UFC 3rd

THIS RUN IS FOR THE low LEVEL 3rd CUT OF THE UFC AREA

UFC3PART.DAT PART FILE:

UFC3RES.DAT FILE: OPER FILE:

UFC3OPS.DAT UFC3ETC.DAT ETC FILE:

WEEKENDS = Y

NUMBER OF QUARTERS =

WARM UP PERIOD; STATS WILL BE CLEARED AT DAY

16

# OF HOLIDAYS

0

8.000000 HISTORICAL DATA SHIFT FACTOR

24.00000 BACKSHOP DATA SHIFT FACTOR

NEW DATA FORMATS SELECTED

23.97 MINUTES SIMULATION CPU TIME: SIMULATION LAPSE TIME:

SIMULATION RUN LENGTH: 10920.00 HOURS

Number of Items

Number of Resources

Number of WCDs

Number of Operations

Cr. Operations completed:

22410

STORY CONTINUES   15T QTR   2ND QTR   3TD QTR   4TH QTR   YTD	Inductions   Ind	ALC: S.	RCC:	MATPFA	QUARTER:	4	DATE: 2	26-JUL-90	True 1	12:57:36	REPT. ID:	UFC 3	3rd	PAGE:	7
Use of the property of the p	ONS OF ITEM ACCRETANCE 105 67 100 104 376 (MISSTR CONS OF ITEM ACCRETANCE 105 67 100 104 376 (MISSTR CONS OF ITEM F-15CT 105 67 100 136 136 131 116 (MISSTR CONS OF ITEM F-15CT 105 105 131 116 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CTIONS	10											
CONS OF ITEM ACORS OF STEAM ACORS OF WIGHT ACORS OF WIGH ACORS OF	CONS. OF ITEM AC/ONE CONS. OF ITEM AC/ONE CONS. OF ITEM AC/ONE CONS. OF ITEM AC/ONE CONS. OF ITEM PC-15CT CONS			•			ST	2ND		4TH		•			
ONS OF ITEMS ACORD : 212 138 195 501 746 (WISTR) (ONS OF ITEMS P-15QT : 23 12 13 116 (WISTR) (ONS OF ITEMS P-15QT : 23 12 13 116 (WISTR) (ONS OF ITEMS P-15QT : 1 1 1 1 1 1 1 1 4 (WISTR) (ONS OF ITEMS P-15GT : 1 146 159 130 130 130 143 (WISTR) (ONS OF ITEMS P-15GT : 1 146 159 140 110 145 (WISTR) (ONS OF ITEMS P-15GT : 1 146 159 140 110 145 (WISTR) (ONS OF ITEMS P-15GT : 1 146 159 140 110 145 (WISTR) (ONS OF ITEMS P-15GT : 1 146 159 140 110 145 (WISTR) (ONS OF ITEMS P-15GT : 1 146 159 140 110 145 (WISTR) (ONS OF ITEMS P-15GT : 1 146 159 140 110 145 (WISTR) (ONS OF ITEMS P-15GT : 1 146 159 140 110 145 (WISTR) (ONS OF WICH STANDUCTIONS )	ONS OF ITEM ACADE ONS OF ITEM F-15GT ONS OF ITEM F-	INDUCTIONS	Q.			••	105		100				MISTR	•	
ONS OF ITEMS F-1550T	ONS OF TITEM PISOT  ONS OF TITEM F-15GT  ONS OF TITEM F-16GT  ONS OF WCD  ONTOTIONS OF WCD	INDUCTIONS	Ö			••	212	-	195	8		•	MISTR		
ONS OF ITEM F-15GT : 23 23 39 31 116 (WISTR) (ONS OF ITEM F-15GT : 80 80 80 136 108 404 (WISTR) (ONS OF ITEM F-15GT : 146 80 80 136 108 404 (WISTR) (ONS OF ITEM F-16GT : 146 59 140 110 455 (WISTR) (ONS OF ITEM F-16GT : 146 59 140 110 455 (WISTR) (ONS OF ITEM F-16GT : 208 136 3164 743 (WISTR) (ONS OF ITEM F-16GT : 26 906 836 3164 743 (WISTR) (ONS OF ITEM F-16GT : 26 906 836 3164 743 (WISTR) (ONS OF WICH STORED : 26 906 836 3164 743 (WISTR) (ONS OF WICH STORED : 26 906 836 3164 743 (WISTR) (ONS OF WICH STORED : 26 906 836 3164 743 (WISTR) (ONS OF WICH STORED : 26 906 836 3164 743 (WISTR) (ONS OF WICH STORED : 26 906 836 3164 743 (WISTR) (ONS OF WICH STORED : 26 906 836 3164 743 (WISTR) (ONS OF WICH STORED : 26 906 836 3164 744 744 744 744 744 744 744 744 744 7	CONS OF ITEM F-15GT   1	INDUCTIONS	Ö			••	49		51				MISTR	•	
ONS OF ITEM F-15ST : 80 10 10 10 404 (MISTR)  CONS OF ITEM F-16ST : 80 136 108 404 (MISTR)  CONS OF ITEM F-16ST : 146 59 140 110 455 (MISTR)  CONS OF ITEM F-16ST : 146 59 140 110 455 (MISTR)  CONS OF ITEM F-16ST : 146 59 140 110 455 (MISTR)  CONS OF ITEM F-16ST : 146 59 140 110 455 (MISTR)  CONS OF ITEM F-16ST : 166 556 906 836 3164  CONS OF WIPPEA QUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA QUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA QUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA QUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA QUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WIPPEA GUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 100 F WI	Order   Permane   Perman	INDUCTIONS	Ö			••	23		39			Ī	MISTR		
ONS OF ITEM F-165T  CONS OF WCD  CONSTRUCTIONS  CONS OF WCD  C	CONS. OF ITEM F-165T	INDUCTIONS	Q		Ę	••	-		-1				MISTR	~	
CONS OF ITEM F-16ST   1	CONS OF ITEM F-1.6GT  CONS OF ITEM C-1.6GT  CONS OF ITEM C-1.6GT  CONS OF WCD  CONS O	INDUCTIONS	Q			••	80		136				MISTR		
CONS OF ITEM F-16SOT   1	CONS. OF ITEM F-16SOT   1	INDUCTIONS	Q			••	41		40				MISTR		
CONS OF ITEM F-165T   146   59   140   110   455   (MISTR)	CONS OF ITEM F-165T   146   59   140   110   455   (MISTRE CONS OF ITEM GG   136   136   136   143   (MISTRE CONS OF ITEM GG   136   136   136   1364   136   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   1364   136	INDUCTIONS	Q		E	••	-	-	-	7			MISTR		
CONS. OF ITEM GG	COME OF ITEM GG	INDUCTIONS	Q			•••	146		140				MISTR		
TTEM INDUCTIONS : 866 556 906 836 3164  THEM INDUCTIONS : 866 556 906 836 3164  BUCCTIONS OF WCD SLOTHRUS: 26-JUL-90 TIME: 12:57:36 REPT.ID: UPC 3rd PAGE: 100 TIME 12:57:37 REPT.ID: UPC 3rd PAGE: 100 TIME 12:57:36 REPT.ID: UPC 3rd PAGE: 100 TIME 12:57:37 REPT.ID: UPC 3rd PAGE: UPC 3rd PAGE: 100 TIME 12:57:37 REPT.ID: UPC 3rd PAGE: UPC	TTEM INDUCTIONS : 866 556 906 836 3164  THEM INDUCTIONS : 866 556 906 836 3164  THOUCTIONS CF WCD SLOTHBUG: 26-JUL-90 TIME: 12:57:36 REPT.ID: UPC 3rd 10-10 TIME: 12:57:36 REPT.ID: UPC	INDUCTIONS	OF.			••	208	-	203				MISTR	. —	
STATE   COLUMN   CO	Name		INDUC	CTIONS			998	 	906			1			
IST QTR 2ND QTR 3RD QTR 4TH QTR YTD   IST QTR 2ND QTR 3RD QTR 4TH QTR YTD   IST QTR 2ND QTR 3	Decitions   Deci		RCC:	MATPFA	QUARTER:			6-JUL-90	••	:57:	REPT. ID:		ırd	PAGE:	ო
LST QTR 2ND QTR 3RD QTR 4TH QTR YTD	IST QTR   SID QTR   ATH QTR   YTD   TR   YTD   TR   YTD   TR   YTD   TR   YTD   YT	8	TIONS			!	 	†   		i 		• • • •	 	i   	<u> </u>
LONS OF WCD         SLOTHRUJE:         49         35         51         52         187           LONS OF WCD         SLOTHRUJE:         3         1         0         1         5           LONS OF WCD         SLOTHRUJE:         23         23         39         31         16           LONS OF WCD         SUPQTHRUJ:         80         80         136         404           LONS OF WCD         SLOTHRUJ:         58         52         102         80           LONS OF WCD         SLOTHRUJ:         20         19         26         22         87           LONS OF WCD         SLOTHRUJ:         68         68         88         84         308           LONS OF WCD         SLOTHRUJ:         41         17         40         31         129           LONS OF WCD         SLOTHRUJ:         146         59         140         110         455           LONS OF WCD         SLOTHRUJ:         140         68         115         12         420           LONS OF WCD         SLOTHRUJ:         140         68         116         420           LONS OF WCD         SLOTHRUJ:         120         78         116         420 <t< td=""><td>LONS         OF         SLOTHRUS:         49         35         51         52         187           LONS         OF         WCD         SLOTHRU4:         104         67         103         103         377           LONS         OF         WCD         SLOTHRU6:         23         23         39         31         116           LONS         OF         WCD         SLOTHRU1:         80         80         136         108         404           LONS         OF         WCD         SLOTHRU1:         20         19         26         22         87           LONS         OF         WCD         SLOTHRU1:         20         19         26         22         87           LONS         OF         WCD         SLOTHRU1:         1         1         1         1         4           LONS         OF         WCD         SLOTHRU1:         146         59         140         31         4           LONS         OF         WCD         SLOTHRU1:         101         74         312         10           LONS         OF         WCD         SLOTHRU1:         140         86         116         74         312&lt;</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2ND</td><td>3RD QTR</td><td>4TH</td><td></td><td><b>.</b></td><td></td><td></td><td></td></t<>	LONS         OF         SLOTHRUS:         49         35         51         52         187           LONS         OF         WCD         SLOTHRU4:         104         67         103         103         377           LONS         OF         WCD         SLOTHRU6:         23         23         39         31         116           LONS         OF         WCD         SLOTHRU1:         80         80         136         108         404           LONS         OF         WCD         SLOTHRU1:         20         19         26         22         87           LONS         OF         WCD         SLOTHRU1:         20         19         26         22         87           LONS         OF         WCD         SLOTHRU1:         1         1         1         1         4           LONS         OF         WCD         SLOTHRU1:         146         59         140         31         4           LONS         OF         WCD         SLOTHRU1:         101         74         312         10           LONS         OF         WCD         SLOTHRU1:         140         86         116         74         312<							2ND	3RD QTR	4TH		<b>.</b>			
TONS OF WCD   SLOTHRU4: 104 67 103 103 377	IONS OF WCD   SLOTHRU4: 104 67 103 103 377	INDUCTIONS	O.F.	9	SLOTHRUS			35	51	52	187	1			
LONS OF WCD	CONSTRUCTOR	INDUCTIONS	Q	8	SLOTHRU4	••	104	67	103	103	377				
LONS OF WCD         QUIKTHRU:         23         23         39         31         116           LONS OF WCD         SUPCTHRUI:         1         1         1         4         404           LONS OF WCD         SLOTHRUI:         80         80         136         108         404           LONS OF WCD         SLOTHRUI:         20         19         26         22         87           LONS OF WCD         SLOTHRUI:         41         17         40         31         129           LONS OF WCD         SLOTHRUI:         146         59         140         110         455           LONS OF WCD         SLOTHRUI:         146         59         140         110         455           LONS OF WCD         SLOTHRUI:         146         59         140         110         455           LONS OF WCD         SLOTHRUI:         140         68         115         112         435           LONS OF WCD         SLOTHRUI:         140         86         78         116         420           LONS OF WCD         SLOTHRUI:         208         136         74         31           MCD INDUCTIONS         SLOTHRUI:         40         31	Tokasis of WCD   Coutkthrus   Lambda	INDUCTIONS	Q.	8	SLOTHRU6	::	ო	-1	0	т	S				
Indeed not be well as   Inde	IONS OF WCD         SUPCTHRUI:         1         1         1         4           IONS OF WCD         SLOTHRUI:         80         80         136         108         404           IONS OF WCD         SLOTHRUI:         20         19         26         22         87           IONS OF WCD         SLOTHRUI:         68         68         88         84         308           IONS OF WCD         SLOTHRUI:         41         17         40         31         129           IONS OF WCD         SUCTHRUI:         146         59         140         110         455           IONS OF WCD         SLOTHRUI:         140         68         115         14         420           IONS OF WCD         SLOTHRUI:         140         68         115         116         420           IONS OF WCD         SLOTHRUI:         140         68         115         420           IONS OF WCD         SLOTHRUI:         120         78         116         420           IONS OF WCD         SLOTHRUI:         208         136         78         143           IONS OF WCD         SLOTHRUI:         208         136         78         4634	INDUCTIONS	Ö	8	QUIKTHRU	::	23	23	39	31	116				
IONS OF WCD   SLOTHRUI: 80 80 136 108 404	IONS OF WCD   SLOTHRUI: 80 80 136 108 404	INDUCTIONS	Ģ	8	SUPOTHRU	<b>:</b> :	7	٦	<b>-</b> 1	-	4				
IONS OF WCD   SICTHRU0: 58 52 102 80 292	LONS OF WCD         SLOTHRU0:         58         52         102         80         292           LONS OF WCD         SLOTHRU1:         20         19         26         22         87           LONS OF WCD         SLOTHRU1:         20         19         26         22         87           LONS OF WCD         SLOTHRU1:         41         17         40         31         129           LONS OF WCD         SLOTHRU1:         146         59         140         110         455           LONS OF WCD         SLOTHRU1:         101         36         101         74         312           LONS OF WCD         SLOTHRU1:         140         68         115         112         425           LONS OF WCD         SLOTHRU2:         208         136         203         196         743           LONS OF WCD         SLOTHRU2:         208         136         203         196         743           LONS OF WCD         SLOTHRU2:         208         136         203         196         743           MCD INDUCTIONS         RCC: MATPER         4 DATE:         26-JUL-90         TIME:         12:57:36         REPT.ID: UFC 3rd	INDUCTIONS	Q	8	SLOTHRUI	<u>:</u> :	80	80	136	108	404				
IONS OF WCD   SLOTHRU1: 20   19   26   22   87	LONS OF WCD         SLOTHRU1:         20         19         26         22         87           LONS OF WCD         SLOTHRU7:         68         68         88         84         308           LONS OF WCD         SLOTHRU3:         82         88         80         106         356           LONS OF WCD         SLOTHRU1:         1         1         1         4         31         129           LONS OF WCD         SLOTHRU1:         146         59         140         110         455         10           LONS OF WCD         SLOTHRU1:         140         68         115         112         435           LONS OF WCD         SLOTHRU2:         140         86         78         116         420           LONS OF WCD         SLOTHRU2:         208         136         743         136         743           LONS OF WCD         SLOTHRU2:         208         136         743         136         743           MCD INDUCTIONS         :         1265         837         1304         1228         4634	INDUCTIONS	Q	8	SLOTHRUO	<b>:</b> :	58	25	102	80	292				
IONS OF WCD	IONS OF WCD	INDUCTIONS	Q	8	SLOTHRU1	•••	20	19	56	22	87				
IONS OF WCD	IONS OF WCD	INDUCTIONS	Ö	8	SLOTHRU7		<b>68</b>	89	88	84	308				
IONS OF WCD   QUIKTHRU:	IONS OF WCD	INDUCTIONS	Ö	8	SLOTHRU3	 	82	88	80	106	356				
IONS OF WCD   SUPQTHRU:   1	IONS OF WCD   SUPQTHRU:   1	INDUCTIONS	Ö	8	QUIKTHRU	::	41	17	40	31	129				
IONS OF WCD SLOTHRUI: 146 59 140 110 455  IONS OF WCD SLOTHRU0: 101 74 312  IONS OF WCD SLOTHRU7: 140 68 115 112 435  IONS OF WCD SLOTHRU2: 208 136 203 196 743  WCD INDUCTIONS : 1265 837 1304 1228 4634  SA RCC: MATPER OURRIER: 4 DATE: 26-JIL-90 TIME: 12:57:36 REPT.ID: HFC 3rd	IONS OF WCD SLOTHRUI: 146 59 140 110 455  IONS OF WCD SLOTHRU0: 101 36 101 74 312  IONS OF WCD SLOTHRU7: 140 68 115 112 435  IONS OF WCD SLOTHRU2: 208 136 203 196 743  WCD INDUCTIONS : 1265 837 1304 1228 4634  SA RCC: MATPFA QUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd	INDUCTIONS	9	8	SUPOTHRU	::	ч	1	<b>н</b>	<del></del> 1	7				
IONS OF WCD SLOTHRUD: 101 36 101 74 312  IONS OF WCD SLOTHRUJ: 140 68 115 112 435  IONS OF WCD SLOTHRUZ: 208 1.36 203 1.96 743  MCD INDUCTIONS : 1265 837 1.36 4634  SA RCC: MATPER OURRIER: 4 DATE: 26-JHL-90 TIME: 12:57:36 REPT.ID: HFC 3rd	IONS OF WCD         SLOTHRU0:         101         36         101         74         312           IONS OF WCD         SLOTHRU7:         140         68         115         112         435           IONS OF WCD         SLOTHRU2:         208         1.36         203         196         743           IONS OF WCD         SLOTHRU2:         208         1.36         203         196         743           WCD INDUCTIONS         :         1265         837         1304         1228         4634           SA RCC: MATPEA QUARTER:         4 DATE:         26-JUL-90         TIME:         12:57:36         REPT.ID:         UFC 3rd	INDUCTIONS	g.	8	SLOTHRUI	••	146	59	140	110	455				
IONS OF WCD         SLOTHRU7:         140         68         115         112         435           IONS OF WCD         SLOTHRU2:         140         86         78         116         420           IONS OF WCD         SLOTHRU2:         208         1.36         203         196         743           WCD INDUCTIONS         :         1265         837         1304         1228         4634           SA RCC: MATER         4 DATE: 26-JIII-90         TIME: 12:57:36         REPT:ID: IFC 3rd	IONS OF WCD         SLOTHRU7:         140         68         115         112         435           IONS OF WCD         SLOTHRU2:         140         86         78         116         420           IONS OF WCD         SLOTHRU2:         208         136         203         196         743           WCD INDUCTIONS         :         1265         837         1304         1228         4634           SA RCC: MATPFA QUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd		Q.	8	SLOTHRUO	<b>:</b> :	101	36	101	74	312				
IONS OF WCD         SLOTHRU3:         140         86         78         116         420           IONS OF WCD         SLOTHRU2:         208         1.36         203         196         743           IONS OF WCD         SLOTHRU2:         208         1.36         743           WCD INDUCTIONS         :         1265         837         1304         1228         4634           SA RCC:         MATPEA OUARTER:         4 DATE:         26-JHL-90         TIME:         12:57:36         REPT: ID: HFC 3rd	IONS OF WCD         SLOTHRU3:         140         86         78         116         420           IONS OF WCD         SLOTHRU2:         208         136         203         196         743           WCD INDUCTIONS         :         1265         837         1304         1228         4634           SA RCC:         MATPFA         QUARTER:         4         DATE:         26-JUL-90         TIME:         12:57:36         REPT.ID:         UFC 3rd	INDUCTIONS	Ö	8	SLOTHRU7	:	140	<b>6</b> 8	115	112	435				
IONS OF WCD SLOTHRU2: 208 1.36 203 196 743  WCD INDUCTIONS : 1265 837 1.304 1.228 4634  SA RCC: MATPEA OUARTER: 4 DATE: 26-JII90 TIME: 12:57:36 REPT.ID: IFC 3rd	IONS OF WCD SLOTHRU2: 208 1.36 203 196 743  WCD INDUCTIONS : 1265 837 1.304 1.228 4634  SA RCC: MATPFA QUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd	INDUCTIONS	Q.	8	SLOTHRU3	<b>::</b>	140	98	78	116	420				
WCD INDUCTIONS : 1265 837 1304 1228 4634 SA RCC: MATPEA OUARTER: 4 DATE: 26-JHI-90 TIME: 12:57:36 REPT.ID: HPC 3rd	ACD INDUCTIONS : 1265 837 1304 1228 4634 SA RCC: MATPFA QUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd	INDUCTIONS	OF.	8	SLOTHRU2	••	208	1.36	203	196	743				
SA RCC: MATPFA OUARTER: 4 DATE: 26-JHL-90 TIME: 12:57:36 REPT. ID: HPC 3rd	SA RCC: MATPFA QUARTER: 4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd	g	INDUC	TIONS			1265	837	1304	1228	4634				
			RCC:		QUARTER:	4		6-JUL-90		2:57:36	REPT. ID:		3rd	PAGE:	4

	ا م	NUMBER OF SAMPLES	184 375 102 102 4 120 4 4 4 4 407 664	
NUMBER OF INDUCTIONS	376 746 1187 116 404 129 4 455 743 PAGE:	SIMULATED MAXIMUM LABOR HOURS	59.16 124.37 15.04 149.69 42.75 285.96 147.09 44.33 214.64 113.24 PAGE:	
NUMBER OF SAMPLES	184 375 102 102 4 341 120 407 664 ID: UFC 3rd	SIMULATED MINIMUM LABOR HOURS	21.12 11.13 11.85 47.14 47.14 26.93 9.27 9.27 53.67 21.75 35.99 0.66 ID: UFC 3rd	
SIMULATED MAXIMUM FILOW TIME HOURS	149.59 435.34 69.73 1864.32 105.99 2688.59 1618.32 71.41 2481.64 355.67		REPT.	JER .
SIMULATED MINIMUM FLOW TIME HOURS	34.89 21.26 23.50 89.81 48.18 24.92 24.92 123.22 1007 1009 TIME: 12:57:36	STANDARD DEVIATION	5.84 17.52 1.17 20.12 7.06 46.56 19.45 9.65 36.84 22.10 TIME: 12:57:36	SIMULATED MAXIMUM NUMBER
STANDARD DEVIATION	25.95 74.93 18.96 417.01 25.83 562.82 363.41 15.57 513.14 58.06 26-JUL-90	SIMULATED AVERAGE LABOR HOURS	33.74 45.60 13.64 93.22 32.43 111.61 94.26 30.70 115.46 26-JUL-90	SIMULATED SIM MINIMUM M
AVERAGE SIMULATED FLOW TIME HOURS	80.39 173.41 36.93 499.78 68.00 756.99 465.33 55.30 790.12 76.70	STANDARD HOURS	0.00 0.00 0.00 0.00 0.00 0.00 0.00 DATE:	Ċ)
RICAL IME	0.00 0.00 0.00 0.00 2508.00 0.00 0.00 0.00 0.00	EXPECTED (HOURS	32.27 44.87 12.50 89.22 32.15 129.69 89.22 32.15 121.29 22.13 QUARTER:	Y - AVERAGE SIMULATED
HISTO FLOWT HOURS	MATPFA	STATISTICS	.: MATPEA	DWELL SUMMARY
ITEM	AC AC AC DB DB E-150T F-150T F-160T F-165T GG ALC: SA RCC:	DIRECT LABOR S	AC AC DB DB DB F-15QT F-15QT F-16QT F-16QT F-16SQT F-16SQT GG ALC: SA ALC: SA	BACKSHOP
			0801	101

FLOW CYCLE TIME STATISTICS

		NUMBER OF SAMPLES	184 375 102 102 120 4 407 664	
	-1	z o i		<b>∞</b>
	PAGE:	BACKSHOP RS &		PAGE:
	UFC 3rd	BACI HOURS	0000000000	UFC 3rd
	REPT.ID: U	PROCESSING FLOW HOURS	88.7.29.08.88.89.09.09.09.09.09.09.09.09.09.09.09.09.09	: 1
OF SAMPLES		PROCESS: HOURS	68.7 88.0 24.6 149.5 51.6 152.2 51.1 186.0	THE BLAKE STATIS O. 0. 0.
BACKSHOP	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	86 ap	14.64 49.24 33.34 70.14 77.04 7.64 31.74	CURRENT QUEUE QUANTITY
BACKSHOP B HOURS	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	WAITING FOR RESOURCES HOURS	11.7 85.4 12.3 350.3 16.4 16.4 4.2 604.1	26-JUL-90 AVERAGE QUEUE WAIT (hrs) 0.06 0.00
STANDARD B DEVIATION	0.00 0.00 0.00 0.00 0.00 0.00 0.00	IMULATED FLOW HOURS	80.4 173.4 36.9 499.8 68.0 757.0 465.3 55.3 790.1	MAXIMUM QUEUE QUANTITY 178.00 10.00 2.00
BACKSHOP ST HOURS DEV	0.00 0.00 0.00 0.00 0.00 0.00 0.00 QUARTER:	HISTOR. SI FLOW HOURS	2508.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OUARTER: ICS STANDARD DEVIATION 4.51 0.02
aa i	:: MATPFA	шшп I		C: MATPFA  UE STATISTICS  AVERAGE STA  QUEUE STA  OUNTITY DEV  0.18  0.00
	RCC:			S S S S S S S S S S S S S S S S S S S
ITEM	AC AC/DB DB DB F-15GT F-15ST F-16GT F-16ST GG ALC: SA PROCESS T	ITEM	AC AC/DB DB DB F-15QT F-15QT F-16QT F-16SQT F-16SQT F-16SQT F-16SQT GG	ALC: SA RESOURCE QUEUE COUEUE S 0002 S 50004
				080158

	ه ا			10			<b>#</b>	
	PAGE:			PAGE:	CURRENT QUANTITY WALTING	     * * * * * * * * * * * * * * * * *	PAGE:	
	REPT.ID: UFC 3rd			REPT.ID: UFC 3rd	AVERAGE QUANTITY WALTING	** NONE WAITED	REPT.ID: UFC 3rd	
9.5.4.9.8.4	:36 REPT	T	4.8	}	AVERAGE WAITING F TIME	* * * * * * * * * * * *	ŀ	AT
0 9 4 4 8 6 0 2 2	12:57:	QUEUE COUNT	6.0 14.0 18.0	12:57:36	CURRENT	16 16 16 15 17 18	12:57:36	-WAITING QUEUE COUNT E STD.DEV. MAXIMUM CURRENT
	TIME:	-WALTING QUEV.	1.3	TIME:	MAXIMUM	17 19 19 11 18 18 15	TIME:	AITING QU STD.DEV.
0.00 1.99 3.06 1.92 1.03	26-JUL-90	AVERAGE S	1.7 5.6 7.7	26-JUL-90	MINIMUM M	010000000	26-JUL-90	AVERAGE S
187	4 DATE:	WAIT (HOURS) AVERAGE	80.7 110.7 111.9	4 DATE:	STD. DEV.	23.6 27.5 27.5 28.1 3.1	4 DATE: 26	WAIT (HOURS) AVERAGE
0.00 4.05 0.82 5.09 1.12	QUARTER:	DELAYED OPERATIONS	187 442 598	QUARTER:	LE AVERAGE	3.7.1 3.7.1 3.7.1 4.2.9 8.3.9	QUARTER: 4	DELAYED OPERATIONS
0.00 3.58 0.53 5.63 0.58	MATPFA	TOTAL	746 404 455	MATPFA	ALLOWABLE QUANTITY	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	MATPFA	TOTAL
35555	RCC: MA STATISTICS	ITEM	<b>!</b>	ACC:	PROCESS		RCC:	¥
m	ALC: SA ASSEMBLY	PARENT IT	AC/DB F-15ST F-16ST	S. SA	Zi	AC AC AC DB DB F-150T F-150T F-160T F-160T F-165C	ALC: SA DEDICATED	3159 S150
50173 WG00 WG09 WG10 WG11	ALC: ASSE	PA	ты <b>№</b> Г.	ALC:	WORK	0	80 PEDI   KIC	31 <b>5</b> 9

							AV. Paj	i																				
						ļ	AVG SIZE	1 1 1																				
12	ļ.			13	!	<u></u> 9	•	!																				
PAGE:				PAGE:	! ! ! !	BATCHING	MAX SIZE																					
3rd	! !			3rd			MIN Size																					
UFC	 			UEC 3				•																				
REPT. ID:	; ; ; ;	RENT	0040	REPT.ID:	] 	•	OTHER DOWN		30		0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.6	•	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00
12:57:36	; ; ; ; ; ; ;	-WAITING QUEUE COUNTE E STD.DEV. MAXIMUM CURRENT	1.0	12:57:36	• • • • • • • • • • • • • • • • • • •	EACH STATE	FAILURE		70.0	0.0	0.01	0.00	0.01	0.01	0.01	0.01	0.00	9.6		0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00	00.00
TIME:	1 1 1 1 1	TING QUE	0.0	TIME:	# 1 1 1 1		PREV.	1 8	36	000	00.00	0.00	0.00	0.00	0.00	0.00	0.00	96		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
26-JUL-90	! ! ! ! !	WAI	0.010	26-JUL-90	! ! ! ! !	AVERAGE NUMBER IN	IN USE		0.0	0.39	0.34	0.24	0.21	0.32	0.20	0.12	0.26	9T.0		0.03	0.02	0.01	0.03	0.02	0.02	0.03	0.03	0.02
DATE: 2	its	T RS) AGE	0.0 64.4 0.0	DATE: 2	j 	-	IDLE		; c	0	0	Ö		0		0 (	<b>&gt;</b> (	0.8	•		0	0	0	0	0	0	0.97	ö
4	onen	WAI (HOU AVER		4 D			SHIFT UTIL.	62	0.5	0.39	0.35	0.24	0.21	0.32	0.20	0.12	0.26	9. T	:	0.03	0.02	0.0	0.03	0.02	0.02	0.03	0.03	0.02
QUARTER:	- Subcomponent	DELAYED OPERATIONS	373 744 187 744	QUARTER:	SHIFT		NUMBER AVAIL.		32.0	32.8	32.8	32.8	32.8	9.8	8.6	თ. დ. ი	ο o	ب م م	)	5.8	5.8	8	ۍ . ه	დ. •	8	16.8	16.8	7 <b>0.</b> 0
MATPFA	STATISTICS	TOTAL INDUCT O	376 746 187 743	MATPFA	j	 	SHIFT	-	۱ ۸	ı m	4	വ	9	1	7	•	at n	n w	,	-	7	m	♥ 1	ഗ	9	Н	، 2	ກ
RCC: MA	STOCK	,	<b> </b>	RCC: MA	UTILIZATION by		DESCRIPTION	50002	7000					50004						50005						50173		
ALC: SA	DEDICATED	STOCK ITEM	AC AC/DB DB GG	ALC: SA	RESOURCE	1 1 1 1 1 1	CODE	50002						50004						50005	0	8	<b>G</b> .	1	ઈ(	0173		

4 16.8 5 16.8 6 16.8 6 16.8 7.0 2 10.0 3 9.0		e uti work] pread	UTILIZATION by SHIFT	NUMBER DESCRIPTION SHIFT AVAIL.	WG10 1 8.8 2 4.5 3 2.0 4 6.0 5 4.0 6 2.0	WG11 1 21.0 2 14.3 3 14.3 4 12.0 5 8.0 6 8.0	WGSW 1 2.0 2.0 2 1.0 3 1.0
8 0.00 8 0.00 8 0.00 0 0.26 0 0.56		zations reflections and the other orly across ER: 4 DATE	-	ER SHIFT L. UTIL.	5 0.90 0 0.98 0 0.84 0 0.87	0.93 0.93 0.93 0.95 0.095	0 0.34 0 0.30 0 0.10
1.00 1.00 1.00 0.43 0.25	00 000	7 7 6	AVE	IDLE	1000440	0.12 0.06 0.04 0.03	0.38 0.40 0.52
0.00 0.00 0.00 0.32 0.32	0.57 0.57 0.14 0.18 0.33 0.33	06-	-AVERAGE NUMBER IN	IN USE	0.65 0.76 0.72 0.72 0.74	0.73 0.79 0.81 0.83	0.20 0.17 0.06
0000000	00 000	TIME:	1	PREV.	888888	000000	0000
	000 000	12:57:36	EACH STATE	FAILURE	000000	000000	0.00
0.00 0.00 0.00 0.04 0.43	4.4. www.	REPT.ID: UI	i ! ! ! !	OTHER	00.00 0.15 0.15 0.15 15	0.15 0.15 0.15 0.15 0.15	0.43 0.43
		VEC 3rd PA	1 1	MIN SIZE			
		, PAGE: 14	-BATCHING	MAX SIZE			
				AVG			

AVI PAI

4 0.0 NO VALUES RECORDED 5 0.0 NO VALUES RECORDED 6 0.0 NO VALUES RECORDED

Note: Remember that the utilizations reflect only 80% of the workload and the other 20% may not be spread evenly across all resources

REPT.ID: UFC 3rd 12:57:36 TIME: 26-JUL-90 4 DATE: QUARTER: MATPFA RCC: Š ALC:

PAGE:

ITEM NAME: AC WCD NAME: SLOTHRUS

WCD by OPERATION STATISTIC AVERAGES

	WG00	WG09, 50173	WG09, 50173	MG00	WG09, 50173	WG09, 50173	MG00	WG09, 50173	WG09, 50173	WGOO, as	16
FAC	1.00	0.75	0.75	0.75	1.00	1.00	0.10	0.10	0.10	1.00	PAGE:
RCC	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	UFC 3rd
DESC	ASSY	TEST	TEST	ASSY	TEST	TEST	REP	TEST	TEST	ASSY	REPT. ID:
AVERAGE SIMULATED HRS	6.41	4.50	7.18	8.27	3.54	17.70	12.90	2.45	19.99	6.34	12:57:36
AVERAGE SCHEDULED HRS	3.63	1.99	4.08	4.48	1.99	8.95	7.57	1.96	8.85	3.62	26-JUL-90 TIME:
QUEUED HRS	25.27	11.65	10.88	2.84	11.37	9.33	1.62	3.36	3.88	2.83	DATE: 26-
QUEUED QTY		52.				20.			4.	41.	ARTER
POTENTIAL PROCESSED OFY	187.	131.	131.	148.	188.	187.	20.	21.	19.	184.	MATPFA QU
POTENTIAL QTY	187.	187.	187.	188.	188.	187.	184.	184.	184.	184.	RCC:
OPER	0100	0300 S	0400	0200	S 0090	0000	0800	S 0060	1000	1100	ALC: SA

ITEM NAME: AC/DB WCD NAME: SLOTHRU4

		WG00		WG00, as	WG10, 50002
OCC FAC		1.00	1.00	1.00	0.90
RCC		MATPFA	MATPEA	MATPFA	MATPFA
DESC	1	REP	DSSY	ASSY	TEST
AVERAGE SIMULATED HRS					
AVERAGE SCHEDULED HRS		6.03	3.70	3.58	3.57
QUEUED HRS		4.37	0.00	82.08	36.46
QUEUED		95.		184.	264.
PROCESSED QTY		377.	377.	376.	340.
POTENTIAL QTY	1	377.	377.	376.	373.
OPER CODE	3	0100	0020	0300	2 0400 S

	WG10, 50002 WG10, 50005 WG10, 50005 WG10, 50002 WG10, 50002 WG10, 50005 17			WG00 WG09, 50005	18			WG00 WG11,50002 WG11,50002 WG11,50002 WG11,50002 WG11,50002 WG11,50002
	0.90 0.10 0.10 0.10 0.09 0.01 0.01		FAC	1.00 1.00 0.05 0.05	PAGE:		000 04.	1.000 1.000 1.000 1.000 1.000
	MATPEA MATPEA MATPEA MATPEA MATPEA MATPEA MATPEA		RCC	MATPEA MATPEA MATPEA MATPEA MATPEA	UFC 3rd		RCC	MATPEA MATPEA MATPEA MATPEA MATPEA MATPEA MATPEA
	TEST TEST TEST TEST TEST TEST TEST TEST		DESC	REP TEST TEST REP TEST	REPT. ID:		DESC	INSP INSP IEST IEST IEST IEST IEST PACK
	53.13 6.60 47.27 10.06 47.96 3.72 64.02 12:57:36	AVE RACE	SIMULATED	6.40 13.69 5.44 1.93	12:57:36		AVERAGE SIMULATED HRS	2.00 8.70 8.78 8.78 30.54 3.29 3.28 5.63
	33.86 3.55 31.95 6.01 3.55 32.31 3.72 35.77	AVERAGE	SCHEDULED HRS	4.36 1.99 2.04 1.93 0.00	26-JUL-90 TIME:		AVERAGE SCHEDULED HRS	2.00 5.30 7.88 22.46 25.97 42.53 21.07 3.25
	32.71 43.27 34.61 16.71 41.41 25.42 19.96 74.74 DATE: 26-J	ME: SLOTHRU6	QUEUED	28.33 0.00 0.00 0.00 0.00	DATE: 26-	E: QUIKTHRU	QUEUED HRS	0.00 1.40 152.44 138.03 126.97 140.72 145.94 150.58
	129. 17. 8. 19. 17. 11. 1. 1.	\$	QUEUED QTY	010000	QUARTER: 4	WCD NAME: AVERAGES	QUEUED QTY	116. 33. 36. 36. 54. 54.
	338. 32. 30. 36. 39. 26. 1. 3	AME: DB OPERATION STATISTIC AVERAGES	DROCESSED OTY		MATPFA Q	r Statistic	L PROCESSED QTY	116. 116. 116. 114. 33. 108. 106.
	374. 377. 376. 375. 375. 375. 375.	ME: DB	POTENTIAL QTY	ហ់ហំហំហំហំហំ	RCC:	ame: F-15QT OPERATION S	POTENTIAL QTY	116. 1116. 1114. 110. 108.
•	0500 0600 S 0700 0800 0900 S 1100 S 1200 ALC: SA	ITEM NAME:	OPER CODE	0100 0200 s 0300 0400 0500 s	ALC: SA	ITEM NAME: WCD by OPER	OPER	\$ 0000 0000 0000 0000 0000 0000 0000 00

					2000	0002										
19				WG11	WC11 &	WG11, 50002	WGSW	70				WG00	21			
1.00 PAGE:			OCC FAC	1.00	1.0	1.08	1.00	PAGE:			OCC	1.00	PAGE:			OCC FAC
MATPEA UFC 3rd			RCC	MATPEA	MATPFA	MATPEA	MATPFA MATPFA	UFC 3rd			RCC	MATPFA	UFC 3rd			RCC
OUT REPT.ID:			DESC	INSP	TEST	TEST	PACK	REPT. ID:			DESC	INI	REPT. ID:			DESC
4.00 12:57:36			AVERAGE SIMULATED HRS	2.00	10.12 22 88	2.88	3.50	12:57:36			AVERAGE SIMULATED HRS	2.00	12:57:36			AVERAGE SIMULATED HRS
00 4.00 26-JUL-90 TIME:			AVERAGE SCHEDULED HRS	2.00	8.62 20.48	2.58	2.65 4.00	26-JUL-90 TIME:			AVERAGE SCHEDULED HRS	2.00	26-JUL-90 TIME:			AVERAGE SCHEDULED HRS
0.00 DATE: 26-	WCD NAME: SUPOTHRU		QUEUED HRS	0.00	0.0	2.29	47.48	DATE: 26-	: SLOTHRUI		QUEUED	0.00	DATE: 26-	: SLOTHRUO		QUEUED HRS
0. QUARTER: 4	WCD NAME	AVERAGES	OUEUED OTY	o e		. 2	0	QUARTER: 4	WCD NAME:	AVERAGES	b o	404.	QUARTER: 4	WCD NAME:	AVERAGES	OUEUED OTY
102. MATPFA (	SQT	STATISTIC AVERAGES	L PROCESSED OTY	   4 4   	ক ব		• • ਚ ਚ	MATPFA	27	STATISTIC AVERAGES	L PROCESSED QTY	404.	MATPFA	ST	STATISTIC AVERAGES	POTENTIAL PROCESSED OIY
102. RCC:	E: F-15(	by OPERATION	POTENTIAL OTY	4.4.	4.4	. <del>4.</del>	44	RCC:	E: F-15	by OPERATION	POTENTIAL QTY	404.	RCC:	E: F-13	OPERATION	OTENTIA
9999 ALC: SA	ITEM NAME: F-15SQT	WCD by OP	OPER P	•	0200 S	0320	0400 9999	ALC: SA	ITEM NAME: F-15ST	WCD by OF	OPER P	0000	ALC: SA	ITEM NAME: F-15ST	<b>W</b> CD by	80164

-	WATTON.	SIMITOIL	WCD DY ( .CAILON SIRIISIIC AVERAGES		e.					
	OPER POTENTIAL PROCESSED CODE QTY	PROCESSI QTY	ED QUEUED OTY	QUEUED HRS	AVERAGE SCHEDULED HRS	AVERAGE SIMULATED HRS	DESC	RCC	OCC FAC	
100	356.	356.	281.	142.11			TEST	MATPFA	1.00	WG11.50002
	342.	342.	137.	10.29	9 3.27	5.19	PACK	MATPFA	1.00	WGSW
	341.	341.	0.	0.0			OUT	MATPFA	1.00	
S	RCC:	MATPFA	ALC: SA RCC: MATPFA QUARTER: 4	DATE: 2	6-JUL-90 TIN	4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd	REPT. ID:	UFC 3rd	PAGE:	25

WCD NAME: QUIKTHRU ITEM NAME: F-16QT

WCD by OPERATION STATISTIC AVERAGES

		WG00		WG11,50002							26
OCC FAC	1.00	1.00	1.00	1.00	0.28	1.00	1.00	1.00	1.00	1.00	PAGE:
RCC	MATPEA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	UFC 3rd
DESC	NI	INSP	TEST	TEST	TEST	TEST	TEST	TEST	PACK	OUT	REPT.ID:
AVERAGE SIMULATED HRS	2.00	8.70	8.50	27.18	29.02	57.51	25.03	3.18	6.61	4.00	12:57:36
AVERAGE SCHEDULED HRS	2.00	5.30	7.66	22.88	24.46	42.86	21.38	2.90	3.37	4.00	26-JUL-90 TIME:
QUEUED	0.00	1.40	128.08	110.57	171.75	135.20	122.64	115.79	11.73	0.00	DATE: 26-
D QUEUED QTY	0.	129.	109.	58.	12.	56.	58.	56.	49.	•	QUARTER: 4
OTY OTY	129.	129.	129.	125.	40.	122.	120.	119.	120.	120.	MATPFA
124	1										. !
OPER	0000	0100	0200 S	0300	0400	0200	0090	0000	0800	6666	ALC: SA

WCD NAME: SUPQTHRU ITEM NAME: F-16SQT

		•	!	00	00 WG11		00 WG11,50002
	8	FAC		1.0	1.0	1.0	1.0
		RCC		MATPFA	MATPFA	MATPFA	MATPFA
		DESC		IN	INSP	TEST	TEST
	AVERAGE SIMULATED	HRS		2.00	6.20	6.82	24.32
	AVERAGE 1 SCHEDULED S:	HRS					
	QUEUED	HRS		0.00	2.25	0.00	3.75
	QUEUED	QTY			m [°]	•	2.
***************************************	POTENTIAL PROCESSED	OTY	1	4.	4.	4.	4.
	POTENTIAL	QTY		4.	4.	4.	4.
		CODE 8	0	0000	00100	<b>O</b> 0500 S	0300

•														
WG11, 50002	K COK	27				WG00	28			WG11,50002 WG11,50002 WG11,50002 WG11,50002 WG11,50002	29			
00.1	1.00	PAGE:			OCC FAC	1.00	PAGE:		FAC	1.00 1.00 0.19 0.46	PAGE:			OCC FAC
MATPEA	MATPFA	UFC 3rd			RCC	MATPFA MATPFA	UFC 3rd		RCC	MATPEA MATPEA MATPEA MATPEA	UFC 3rd			RCC
TEST	PACA	REPT. ID:			DESC	INSP	REPT.ID:		DESC	TEST TEST TEST TEST	REPT.ID:			DESC
3.25	4.50 4.00	12:57:36			AVERAGE SIMULATED HRS	2.00	12:57:36		AVERAGE SIMULATED HRS	8.62 26.93 28.76 58.43 25.12	12:57:36			AVERAGE SIMULATED HRS
2.65	4.00 4.00	26-JUL-90 TIME:			AVERAGE SCHEDULED HRS	2.00	26-JUL-90 TIME:		AVERAGE SCHEDULED HRS	7.74 22.81 24.20 43.72 21.25	26-JUL-90 TIME:			AVERAGE SCHEDULED HRS
0.02	0.00	DATE: 26-	: SLOTHRUI		QUEUED	0.00	DATE: 26-	WCD NAME: SLOTHRUO	QUEUED HRS	140.03 129.09 101.01 138.06	DATE: 26-	E: SLOTHRU7		QUEUED HRS
.i (		QUARTER: 4	WCD NAME:	AVERAGES	QUEUED QTY	0. 455.	QUARTER: 4	WCD NAM	QUEUED	268. 127. 24. 46.	QUARTER: 4	WCD NAME:	AVERAGES	QUEUED
ᢏ; .	ਰ ਰ	MATPFA Q	ST	STATISTIC AVERAGES	L PROCESSED QTY	455.	MATPFA	TATISTIC	L PROCESSEC QTY	312. 303. 58. 138. 89.	MATPFA	SST	N STATISTIC AVERAGES	POTENTIAL PROCESSED QTY QTY
	ਹਾਂ ਹਾਂ	RCC:	E: F-16	OPERATION	POTENTIAL QTY	455. 455.	RCC:	AME: F-168	POTENTIAL	312. 303. 300. 300. 296.	RCC:	VE: F-1(	OPERATION	POTENT12 QTY
0380	0400 9999	ALC: SA	ITEM NAME: F-16ST	WCD by OP	OPER P CODE	0000	ALC: SA	ITEM NAME: F-16ST	ER	0100 S 0200 0300 0400 0500	ALC: SA	ITEM NAME: F-16ST	ср ру	등 80167

`.	MR	, as	WG00, 50002	WG00, 50002, as	WG11,50002	WG11, 50002	WG11,50002	30
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	PAGE:
1 1 1 1	MATPFA	MATPEA	MATPFA	MATPFA	MATPFA	MATPFA	MATPFA	UFC 3rd
-	DSSY	ASSY	DSSX	ASSY	TEST	TEST	TEST	REPT.ID: UFC 3rd
	0.00	0.00	7.77	7.08	15.42	57.47	24.30	12:57:36
	0.00	0.00	4.52	4.12	13.42	43.08	20.75	26-JUL-90 TIME:
	0.00	79.27	13.69	48.68	136.47	15.45	21.89	: 26-JUL-
1		•	•	Ĥ	1	ı	H	DATE:
	0.	394.	209.	255.	374.	186.	201.	ALC: SA RCC: MATPFA QUARTER: 4
	435.	435.	439.	440.	442.	431.	420.	MATPFA
1	435.	435.	439.	440.	442.	431.	420.	ACC:
	0	Ö.	ဝွ	0	s 00	2	2	SA
1	001	005	005	010	0200	030	040	ALC:

WCD NAME: SLOTHRU3 ITEM NAME: F-16ST

WCD by OPERATION STATISTIC AVERAGES

	WG11,50002		۳ <u> </u>
0CC FAC	1.00	1.00	PAGE: 31
RCC	MATPEA	MATPFA	PC 3rd
DESC	TEST	OUT	REPT.ID: U
AVERAGE SIMULATED HRS	3.14	4.00	12:57:36
AVERAGE SCHEDULED HRS	2.89	4.00	4 DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE: 31
QUEUED	128.54	0.00	)ATE: 26-
QUEUED QTY	363.	0	ARTER: 4 I
POTENTIAL PROCESSED OTY OTY	420.	407.	ALC: SA RCC: MATPFA QUARTER:
POTENTIAL QTY	420.	407.	RCC:
OPER	0100	6666	ALC: SA

WCD NAME: SLOTHRU2 ITEM NAME: GG

		4	4		4	4	
	WG00	WG10,5000	WG10,5000	WG00	WG10,5000	WG10,50004	32
OCC FAC	0.50	0.50	0.50	0.10	0.10	0.10	PAGE:
RCC	MATPFA	MATPFA	MATPEA	MATPFA	MATPFA	MATPFA	UFC 3rd
DESC	REP	TEST	TEST	REP	TEST	TEST	REPT.ID: UFC 3rd
AVERAGE SIMULATED HRS	4.59	11.37	64.40	4.82	11.83	65.10	12:57:36 REPT.ID: UFC 3rd PAGE: 32
AVERAGE SCHEDULED HRS	3.04	8.88	40.90	3.17	8.37	41.31	DATE: 26-JUL-90 TIME:
QUEUED HRS	8.16	22.09	26.43	16.09	29.45	30.78	ATE: 26-J
QUEUED QTY	147.	285.	221.	33.	44.	27.	ARTER: 4
POTENTIAL PROCESSED OTY	363.	353.	367.	76.	77.	65.	ALC: SA RCC: MATPFA QU
POTENTIAL QTY	743.	742.	743.	744.	743.	745.	RCC: N
	0100				3 0200 S		ALC: SA

RCC CC
BACKSHOP
BY
TIMES
DWELL
BACKSHOP

AVERAGE HOURS	*** NO BACKSHOP ACTIVITY ****	DATE: 26-JUL-90 TIME: 12:57:36 REPT.ID: UFC 3rd PAGE:									
	NO BACKSHOP AC	BACKSHOP AC	BACKSHOP AC	BACKSHOP AC	BACKSHOP AC	BACKSHOP AC	BACKSHOP AC	BACKSHOP AC	BACKSHOP AC	BACKSHOP AC	QUARTER: 4 D
X	- Q	NO *	ON *	NO.	NO *	NO.	NO *	NO.	QN *	Q 2	QUA
	* *	*	*	*	*	*	*	*	*	*	RCC: MATPFA
	i ! ! !										RCC:
	! ! ! !			E.	p	H	<b>€</b>	Þ	ţ+		ALC: SA
ITEM	AC	AC/DB	DB	F-15QT	F-15SQT	F-15ST	F-16QT	F-16SQT	F-16ST	9	ici

	HISTOR	STORICAL VALUES		SIMU	LATED VALUES			
ITEM	FLOWTIME HOURS	STANDARD	SAMPLE SIZE	FLOWTIME HOURS	IME STANDARD S DEVIATION	SAMPLE SIZE	WORKLOAD	PERCENTAGE DIFFERENCE
AC	0.00	0.00	0	80.39	25.95	184	0.000	0.00
AC/DB	0.00	0.00	0	173.41	74.93	375	0000	0.00
DB	0.00	0.00	0	36.93	18.96	S	0.000	0.00
F-150T	0.00	0.00	0	499.78	417.01	102	0.000	0.00
0 F-15SQT	2508.00	3566.00	80	68.00	25.83	4	0.000	97.29
C F-15ST	0.00	0.00	0	756.99	562.82	341	0.000	0.00
CJ F-160T	0.00	0.0	0	465.33	363.41	120	0.000	0.00
F-16SQT	2311.00	2606.00	<b>L9</b>	55.30	15.57	4	0.000	97.61
CS F-16ST	0.00	0.00	0	790.12	513.14	407	0.000	0.00
કુ <b>ુ</b>	0.00	0.00	0	76.70	58.06	664	0.000	00.00

ITEM AC	EXCLUDED	FROM	VALIDATION	TEST	DOE	3	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT	DATA
ITEM AC/DB	EXCLUDED	FROM	VALIDATION	TEST	DOE	2	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	DATA
ITEM DB	EXCLUDED	FROM	VALIDATION	TEST	DOE	2	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	DATA
ITEM F-15QT	EXCLUDED	FROM	VALIDATION	TEST	DOE	ဥ	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	DATA
ITEM F-15ST	EXCLUDED	FROM	VALIDATION	TEST	DOE	ဥ	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	DATA
ITEM F-16QT	EXCLUDED	FROM	VALIDATION	TEST	DUE	ဥ	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT DATA	DATA
ITEM F-16ST	EXCLUDED	FROM	VALIDATION	TEST	DOE	2	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT	DATA
ITEM GG	EXCLUDED	FROM	VALIDATION	TEST	DOE	ဥ	EXCLUDED FROM VALIDATION TEST DUE TO INSUFFICIENT	DATA

	AC	SLOTHRU5	4					0.50			1 <b>A</b>
	•								S		В
	AC/DB	SLOTHRU4	4					0.50			1A
٠.	**								S		В
	``⊃B	SLOTHRU6	4					0.03			1A
•									S		В
	F-15QT	QUIKTHRU	4	23	23	39	31	1.00			1A
											В
	F-15SQT	SUPQTHRU	4	1	1	1	1	1.00		367	1A
		2508.00 3566.00		80							В
	F-15ST	SLOTHRU0	4	80	80	136	108	0.70			1A
											В
	F-15ST	SLOTHRU1						0.20	•		
	F-15ST	SLOTHRU3						1.00			
	F-15ST	SLOTHRU7						0.80			
	F-15ST	SLOTHRUI						1.00			
	F-16QT	QUIKTHRU	4	41	17	40	31	1.00			1A
											В
	F-16SQT	SUPOTHRU	4	1	1	1	1	1.00		367	1A
	_	2311.00 2606.00		67							В
	F-16ST	SLOTHRU0	4	146	59	140	110	0.70			1A
											В
	F-16ST	SLOTHRU3						1.00			
	F-16ST	SLOTHRU7						1.00			
	F-16ST	SLOTHRUI						1.00			
	GG	SLOTHRU2	4					1.00			1A
	~ ~	<del></del>	-						S		В

```
EQ 50002
              .00
           2
              33 33 33 33 33 33 33 .00 .00 .00
                                                       .00 .00 .00 .00 .00
EQ 50002
           3
              EQ 50002
              32 32 32 32 32 32 32 32 32 .00 .00 .00 .00 .00 .00 .00 .00 .00
EQ
  50002
RN
                  50002
BZ
              1
                   1
BF
                  T
                       0.00
                              0.75 21.00
                  E
                       0.90
TR
EQ 50004
              10
                 1
              .00
                                                           .00 .00 .00
EO
  50004
           2
                                                                       .00
EQ 50004
           3
              .00
   50004
               9
                  9
                    9
                          9
                             9
                               9
                                   9
                                      9 .00 .00 .00 .00 .00 .00 .00 .00
EQ
                  50004
RN
BZ
              1
                   1
                  T
                       0.00
                             1.50
                                   22.00
BF
                  E
                       1.00
TR
EQ 50005
               6
                  6
                                6
                                      00.00.00.00.00.00.00.00.00
                     6
                        6
                              6
                                   6
           2
                                        .00 .00 .00
                                                   .00 .00 .00 .00 .00 .00
EQ 50005
               6
                  6
                     6
                        6
                             6
                                6
                                   6
                                      6
                           6
EQ 50005
           3
               6
                  6
                     6
                        6
                             6
                                      6
                                        00.00.00.00.00.00.00.00.00.
                           6
                                6
                                   6
                     5
               5
                  5
                        5
                           5
                                      5 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50005
                  50005
RN
BZ
              1
                   1
                  T
                       0.00
                              2.00
                                   17.00
BF
TR
                  E
                       1.00
EQ 50173
              17 17 17 17 17 17 17 17 17 17 .00 .00 .00 .00 .00 .00 .00 .00 .00
           1
           2
                 17 17 17 17 17 17 17 17 .00 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50173
           3
              17 17 17 17 17 17 17 17 17 17 .00 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50173
                16 16 16 16 16 16 16 16 .00 .00 .00 .00 .00 .00 .00 .00
EQ 50173
           4
                  50173
RN
BZ
              1
                   1
                       0.00
                                   97.00
BF
                  T
                            19.00
                  E
                       0.58
TR
              37
                     9
                                      04.604.604.604.604.604.600.000.000.00
MP WG00
           1
                 10
                        1
                          1
                             0
                                0
                                   0
MP
  WG00
           2
              37
                 10
                     9
                        1
                          1
                             0
                                0
                                   O
                                      04.604.604.604.604.600.000.000.00
           3
              37
                 10
                     9
                        1
                          1
                             0
                                0
                                   0
                                      04.604.604.604.604.600.000.000.00
MP
  WG00
              37 10
                     9
MP
  WG00
           4
                        1
                           1
                             0
                                0
                                   0
                                      04.604.604.604.604.604.600.000.000.00
RN
                  WG00
  WGU9
                        0
                                      05.475.475.470.000.000.000.000.000.00
           1
               4
                  2
                     1
                           0
                             0
                                0
                                   0
MP
MP
  WG09
           2
               4
                  2
                     1
                        0
                           0
                             0
                                0
                                   0
                                      05.405.405.400.000.000.000.000.000.00
           3
MP
  WG09
               4
                  2
                     1
                        0
                           0
                             0
                                0
                                   0
                                      04.604.604.600.000.000.000.000.000.00
MΡ
  WG09
           4
               4
                  4
                     1
                        0
                           0
                             0
                                0
                                   0
                                      05.165.165.160.000.000.000.000.000.00
                  WG09
RN
           1
               9
                  5
                     2
                        6
                                0
                                   0
                                      06.806.806.806.806.806.000.000.00
MP WG10
                           4
           2
               9
                  5
                     2
                        6
                           4
                             2
                                0
                                      06.806.806.806.806.806.800.000.000.00
MP
  WG10
                                   0
MP
  WG10
           3
               8
                  4
                     2
                        6
                           4
                             2
                                0
                                   0
                                      06.806.806.806.806.806.800.000.000.00
               9
                     2
                        6
                             2
                                0
                                      06.806.806.806.806.806.800.000.000.00
MP
  WG10
           4
                  4
                           4
                                   0
                  WG10
RN
                           8
                             8
                                      06.806.806.806.806.806.800.000.000.00
MP WG11
           1
              22 15 15 12
                                0
                                   0
MP
  WG11
           2
              22 15 15
                      12
                          8
                             8
                                0
                                   0
                                      06.806.806.806.806.806.800.000.000.00
           3
              19 13 13
                      12
                           8
                             8
                                      06.806.806.806.806.806.800.000.000.00
MP
  WG11
                                n
                                   O
MP
  WG11
           4
              21 14 14
                       12
                           8
                             8
                                0
                                   0
                                      06.806.806.806.806.806.800.000.000.00
RN
                  WG11
               2
                                      04.604.604.600.000.000.000.000.000.00
MIP WGSW
           1
                  1
                        0
                          0
                             0
                                0
                                   0
                     1
           2
               2
MΡ
  WGSW
                  1
                     1
                        0
                          0
                             0
                                0
                                   0
                                      04.604.604.600.000.000.000.000.000.00
MP
  WGSW
           3
               2
                  1
                     1
                        0
                          0
                             0
                                0
                                   0
                                      04.604.604.600.000.000.000.000.000.00
               2
MΡ
  WGSW
           4
                  1
                     1
                        0
                          0
                             0
                                0
                                   0
                                      04.604.604.600.000.000.000.000.000.00
RN
                  WGSW
                  WG00
AR
```

	OD		QUIKTHRU0000 IN P	1.00	MATPFA
•	MF NR		C 2.00		
	OD		QUIKTHRU0100 INSP P	1.00	MATPFA
	MP	WG00	1C 5.30	1 00	
-	OD	WG11	QUIKTHRU0200 TEST S 1T 2.00 6.00		MATPFA
	MP EQ	50002	1T 2.00 6.00	12.00	
	OD	30002	QUIKTHRU0300 TEST P		MATPFA
	MP	WG11	1T 2.00 21.00	34.00	
	EQ	50002	1T 2.00 21.00 QUIKTHRU0400 TEST P	34.00	MATPFA
	od MP	WG11	1T 6.00 22.00	36.00	PMIELA
	EQ	50002	1T 6.00 22.00	36.00	
	OD		QUIKTHRU0500 TEST P		MATPFA
	MP	WG11	1T 6.00 27.00	72.00	
	EQ OD	50002	1T 6.00 27.00 QUIKTHRU0600 TEST P	72.00	MATPFA
	MP	WG11	1T 2.00 14.00	36.00	
	EQ	50002	1T 2.00 14.00	36.00	
	OD		QUIKTHRU0700 TEST P		MATPFA
	MP	WG11	1T 0.50 1.50 1T 0.50 1.50	5.00 5.00	
	EQ OD	50002	1T 0.50 1.50 QUIKTHRU0800 PACK P		MATPFA
	MP	WGSW	1T 0.60 2.60	6.60	
	OD		QUIKTHRU9999 OUT P	1.00	MATPFA
	MF	NR	1C 4.00	1 00	MA MOSTA
	od MP	WG11	SLOTHRU00100 TEST S 1T 2.00 6.00	12.00	MATPFA
	EQ	50002	1T 2.00 6.00	12.00	
	OD	<b>4</b>	SLOTHRU00200 TEST P		MATPFA
۰.	MP	WG11	1T 2.00 21.00	34.00	
	Ďĩ	50002	1T 2.00 21.00 SLOTHRU00300 TEST P	34.00	MATPFA
`	MP MP	WG11	1T 6.00 22.00	36.00	MILLI
	EQ	50002	1T 6.00 22.00	36.00	
	OD		SLOTHRU00400 TEST P		MATPFA
	MP	WG11	1T 6.00 27.00	72.00 72.00	
	EQ OD	50002	1T 6.00 27.00 SLOTHRU00500 TEST P		MATPFA
	MP	WG11	1T 2.00 14.00	36.00	
	EQ	50002	1T 2.00 14.00	36.00	
	QO		SLOTHRU10100 REP P	1.00	MATPFA
	MP	WG00	1T 1.50 2.00		MATPFA
	od Mp	WG11	SLOTHRU10200 TEST S 1T 2.00 6.00		MAILLA
	EQ	50002	1T 2.00 6.00		
	OD		SLOTHRU10300 TEST P		MATPFA
	EQ	WG11	1T 6.00 27.00		
	EQ	50002	1T 6.00 27.00 SLOTHRU20100 REP P		MATPFA
	od Mp	WG00	1T 0.50 3.40		
	OD		SLOTHRU20200 TEST S	0.50	MATPFA
	MP	WG10	1T 2.00 3.00	16.00	
	EQ	50004	1T 2.00 3.00	16.00	MATREA
	od Mp	WG10	SLOTHRU20300 TEST P 1T 6.00 24.00		MATPFA
	EQ	50004	1T 6.00 24.00	70.00	
	OD		SLOTHRU20400 REP P	0.10	MATPFA
	MP	WG00	1T 0.50 3.40	5.20	MATPFA
į	)D MDP	WG10	SLOTHRU20500 TEST S 1T 2.00 3.00	16.00	MAIRIA
	EQ	50004	1T 2.00 3.00		
	OD		SLOTHRU20550 TEST P		MATPFA

		1	70.00
MP	WG10	1T 6.00 24.00	
EQ	50004	1T 6.00 24.00	
OD		SLOTHRU30100 TEST P	1.00 MATPFA
MP	WG11	1T 0.50 1.50	
EQ	50002		5.00
OD		SLOTHRU30200 PACK P	1.00 MATPFA
MP	WGSW	1T 0.60 2.60	6.60
OD		SLOTHRU39999 OUT P	1.00 MATPFA
MF		1C 4.00	
NR			
		SLOTHRU40100 REP P	1 OO MATPFA
OD	13COO	1T 1.20 2.70	14 90
MP	WG00		1.00 MATPFA
OD		SLOTHRU40200 DSSY P	C 00
MP	WG00	1T 2.00 3.10	6.00
DS	AC	Y	
OD		SLOTHRU40300 ASSY P	1.00 MATPFA
MP	WG00	1T 2.50 3.60	4.60
AS	AC	Y	
OD		SLOTHRU40400 TEST S 1T 1.75 2.75	0.90 MATPFA
MP	WG10	1T 1.75 2.75	5.00
EQ	50002	1T 1.75 2.75	5.00
OD	J0002	SLOTHRU40500 TEST P	0.90 MATPFA
	W01 A	1T 2.00 26.00	
MP	WG10		56.00
EQ	50002		0 10 Mampea
OD		SLOTHRU40600 TEST S	0.10 MATPFA
MP	WG10	1T 1.75 2.75 1T 1.75 2.75	5.00
EQ	50005	1T 1.75 2.75	5.00
OD	•	SLOTHRU40700 TEST P	
MP	WG10	1T 2.00 26.00	
EQ	50005	1T 2.00 26.00	56.00
OD		SLOTHRU40800 REP P	0.10 MATPFA
MP	WG00	1T 1.20 2.70	14.90
OD		SLOTHRU40900 TEST S	0.09 MATPFA
·MP	WG10	1T 1.75 2.75	0.09 MATPFA 5.00
		1T 1.75 2.75	5.00
EQ	50002	SLOTHRU41000 TEST P	0.09 MATPFA
OD			
MP	WG10		
EQ	50002	1T 2.00 26.00	
OD		SLOTHRU41100 TEST S	0.01 MATPFA
MP	WG10	1T 1.75 2.75 17 1.75 2.75	5.00
EQ	50005	17 1.75 2.75	5.00
OD		SLOTHRU41200 TEST P	0.01 MATPFA
MP	WG10	1T 2.00 26.00	56.00
EQ	50005	1T 2.00 26.00	
OD	30003	SLOTHRU50100 ASSY P	1.00 MATPFA
	WG00	1T 2.00 3.10	6.00
MP		Y 2.00 3.10	0.00
DS	DB	SLOTHRU50200 REP P	1.00 MATPFA
OD			
MP	WG00	1T 1.10 5.30	14.90
OD		SLOTHRU50300 TEST S	0.75 MATPFA
MP	WG09	1T 0.75 2.00	2.50
EQ	50173	1T 0.75 2.00	2.50
OD		SLOTHRU50400 TEST P	0.75 MATPFA
MP	WG09	1T 2.00 4.00	5.00
EQ	50173	1T 2.00 4.00	5.00
OD		SLOTHRU50500 ASSY P	0.75 MATPFA
	WG00	1T 1.80 4.50	6.80
MP	#1G00	SLOTHRU50600 TEST S	1.00 MATPFA
OD	WCCO		2.50
MP	WG09		2.50
EQ	50173	1T 0.75 2.00	
OD		SLOTHRU50700 TEST P	1.00 MATPFA
MP	WG09	1T 4.00 8.00	
EQ	50173	1T 4.00 8.00	
OD		SLOTHRU50800 REP P	0.10 MATPFA

		4- 444 - 20	
MP	WG00	1T 1.10 5.30	
· OD		SLOTHRU50900 TEST S	0.10 MATPFA
MP	WG09	1T 0.75 2.00 1T 0.75 2.00	2.50
EQ	50173	1T 0.75 2.00	2.50
OD		SLOTHRU51000 TEST P	
MP	WG09	1T 4.00 8.00	
		17 4.00 6.00	12.00
EQ	50173	1T 4.00 8.00	
OD		SLOTHRU51100 ASSY P	1.00 MATPFA
MP	WG00	1T 2.50 3.60	4.60
AS	DB	Y	
OD		SLOTHRU60100 REP P	1 OO MATDEA
	wc00	1T 1.30 3.20	
MP	WG00		
OD		SLOTHRU60200 TEST S	1.00 MATPFA
MP	WG09	1T 0.75 2.00	2.50
EQ	50005	1T 0.75 2.00	2.50
OD		SLOTHRU60300 TEST P	1.00 MATPFA
MP	WG09	1T 2.00 4.50	
EQ	50005	1T 2.00 4.50	
OD		SLOTHRU60400 REP P	0.05 MATPFA
MP	WG00	1T 1.30 3.20	10.10
OD		SLOTHRU60500 TEST S	
MP	WG09		
	-		2.50
EQ	50005	1T 0.75 2.00	2.50
OD		SLOTHRU60600 TEST P	0.05 MATPFA
MP	WG09	1T 2.00 4.50	16.00
EQ	50005	1T 2.00 4.50	
OD	0000	SLOTHRU70010 DSSY P	1.00 MATPFA
		31011R070010 D331 F	1.00 PAIRIA
NR			
DS	GG	Y	
OD		SLOTHRU70020 ASSY P	1.00 MATPFA
NR			
AS	GG	Y	
$\Delta D$		ם אסטר הפתחוות המכע ה	1 ለበ Μአጥኮሮአ
20	******	SLOTHRU70050 DSSY P	
MP	WG00	1T 2.00 2.50	7.00
	50002	1T 2.00 2.50 1T 2.00 2.50	
MIP EQ	50002	1T 2.00 2.50	7.00
MIP EQ DS		1T 2.00 2.50 1T 2.00 2.50 Y	7.00 7.00
MIP EQ DS OD	50002 AC/DB	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P	7.00 7.00 1.00 MATPFA
MIP EQ DS OD MIP	50002 AC/DB WG00	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60	7.00 7.00 1.00 MATPFA 6.00
MP EQ DS OD MP EQ	50002 AC/DB WG00 50002	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60	7.00 7.00 1.00 MATPFA 6.00
MIP EQ DS OD MIP	50002 AC/DB WG00	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y	7.00 7.00 1.00 MATPFA 6.00 6.00
MIP EQ DS OD MIP EQ AS	50002 AC/DB WG00 50002	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y	7.00 7.00 1.00 MATPFA 6.00 6.00
MP EQ DS OD MP EQ AS OD	50002 AC/DB WG00 50002 AC/DB	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y SLOTHRU70200 TEST S	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA
MP EQ DS OD MP EQ AS OD MP	50002 AC/DB WG00 50002 AC/DB	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y SLOTHRU70200 TEST S 1T 2.00 6.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00
MP EQ DS OD MP EQ AS OD MP EQ	50002 AC/DB WG00 50002 AC/DB	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00
MP EQ DS OD MP EQ AS OD MP EQ OD	50002 AC/DB WG00 50002 AC/DB WG11 50002	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA
MP EQ DS OD MP EQ AS OD MP EQ	50002 AC/DB WG00 50002 AC/DB	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00
MP EQ DS OD MP EQ AS OD MP EQ OD MP	50002 AC/DB WG00 50002 AC/DB WG11 50002	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00
MP EQ DS OD MP EQ AS OD MP EQ MP EQ	50002 WG00 50002 AC/DB WG11 50002 WG11	1T 2.00 2.50 1T 2.00 2.50 Y SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00
MP EQ DS OD MP EQ OD MP OD MP OD	50002 WG00 50002 AC/DB WG11 50002 WG11 50002	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA
MP EQ DS OD MP EQ AS OM EQ OD MP EQ OMP EQ OMP	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00
MP EQ DS OD MP EQ OD MP EQ OD MP EQ OD MP EQ OD MP EQ OD MP EQ OD MP EQ OD EQ OD MP EQ OD MP EQ OD MP EQ OD OD OD OD OD OD OD OD OD OD OD OD OD	50002 WG00 50002 AC/DB WG11 50002 WG11 50002	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00
MP EQ DS OD MP EQ AS OM EQ OD MP EQ OMP EQ OMP	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00
MP EQ DD MP Q	50002 WG00 50002 AC/DB WG11 50002 WG11 50002	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10000 IN P	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00
MP EQS OD P Q OD P Q OD P Q OD P EQ OD	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00
MP EQS OD P Q OD P Q OD P Q OD F R	50002 WG00 50002 AC/DB WG11 50002 WG11 50002	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10000 IN P 1C 2.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA
MP EQS OD P Q OD P Q OD P Q OD F R OD	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002 WG11 50002 WG11	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU101000 IN P 1C 2.00  SLOTHRUI0100 INSP P	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00
MP Q S D P Q D P Q D P Q D P R D P P Q D P R D P R D P P Q D P R D P R D P P P P P P P P P P P P P	50002 WG00 50002 AC/DB WG11 50002 WG11 50002	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10100 IN P 1C 2.00  SLOTHRU10100 INSP P 1C 5.30	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA
MP EQS OD P Q OD P Q OD P Q OD F R OD	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002 WG11 50002 WG11	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10100 IN P 1C 2.00  SLOTHRUI0100 INSP P 1C 5.30 SUPQTHRU0000 IN P	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA
MP Q S D P Q D P Q D P Q D P R D P P Q D P R D P R D P P Q D P R D P R D P P P P P P P P P P P P P	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002 WG11 50002 WG11	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10100 IN P 1C 2.00  SLOTHRU10100 INSP P 1C 5.30	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA
MP Q S D P Q D P Q D P Q D P R D P D P D P D P D P D P D P D P D	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002 WG11 50002 WG11	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10100 IN P 1C 2.00  SLOTHRUI0100 INSP P 1C 5.30 SUPQTHRU0000 IN P	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA
MP Q S D M Q S D M Q D M Q D M K D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M K N D M D M M N D M D M M N D M D M M N D M D M	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002 WG11 50002 WG11	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10000 IN P 1C 2.00  SLOTHRU10100 INSP P 1C 5.30 SUPQTHRU0000 IN P C 2.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA 1.00 MATPFA
MP Q S D P Q S D P Q D P Q D P R D P D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002 WG11 50002 WG11 WG00	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10000 IN P 1C 2.00  SLOTHRU10100 INSP P 1C 5.30 SUPQTHRU0100 INSP P C 2.00	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA
ME QS O ME QS O ME QO ME QO ME KO ME O ME KO ME O ME KO ME O ME KO ME O ME	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002 WG11 50002 WG11	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10000 IN P 1C 2.00  SLOTHRU10100 INSP P 1C 5.30 SUPQTHRU0100 INSP P 1C 5.30 SUPQTHRU0100 INSP P 1C 5.30	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA
MP Q S D P Q S D P Q D P Q D P R D P D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R D P R	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002 WG11 50002 WG11 WG00	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 1T 1.00 6.00 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10000 IN P 1C 2.00  SLOTHRU10100 INSP P 1C 5.30 SUPQTHRU0100 INSP P	7.00 7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA
ME QS O ME QS O ME QO ME QO ME KO ME O ME KO ME O ME KO ME O ME KO ME O ME	MG00 50002 AC/DB WG11 50002 WG11 50002 WG11 50002 WG11 WG00	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 1T 1.00 6.00 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10000 IN P 1C 2.00  SLOTHRU10100 INSP P 1C 5.30 SUPQTHRU0100 INSP P	7.00 7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA
ME OS O ME OS O ME O ME O ME O ME O ME O	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002 WG11 WG00 WG11 WG00	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10000 IN P 1C 2.00  SLOTHRU10100 INSP P 1C 5.30 SUPQTHRU0100 INSP P 1C 5.30	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA
ME OS O ME OS O ME O ME O ME O ME O ME O	MG00 50002 AC/DB WG11 50002 WG11 50002 WG11 50002 WG11 WG00	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10000 IN P 1C 2.00  SLOTHRU10100 INSP P 1C 5.30 SUPQTHRU0100 INSP P 1C 5.30	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA
ME OS O ME OS O ME O ME O ME O ME O ME O	50002 AC/DB WG00 50002 AC/DB WG11 50002 WG11 50002 WG11 WG00 WG11 WG00	1T 2.00 2.50 1T 2.00 2.50 Y  SLOTHRU70100 ASSY P 1T 1.00 3.60 1T 1.00 3.60 Y  SLOTHRU70200 TEST S 1T 2.00 6.00 1T 2.00 6.00 SLOTHRU70300 TEST P 1T 6.00 27.00 SLOTHRU70400 TEST P 1T 2.00 14.00 1T 2.00 14.00 1T 2.00 14.00 SLOTHRU10000 IN P 1C 2.00  SLOTHRU10100 INSP P 1C 5.30 SUPQTHRU0100 INSP P 1C 5.30	7.00 7.00 1.00 MATPFA 6.00 6.00 1.00 MATPFA 24.00 24.00 1.00 MATPFA 72.00 72.00 1.00 MATPFA 36.00 36.00 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA 1.00 MATPFA

EQ	50002	1T 2.00 14.00	36.00
OD		SUPQTHRU0350 TEST P	1.00 MATPFA
MP	WG11	1T 0.50 1.50	5.00
EQ	50002	1T 0.50 1.50	5.00
OD		SUPQTHRU0400 PACK P	1.00 MATPFA
MP	WGSW	1T 0.60 2.60	6.60
OD		SUPQTHRU9999 OUT P	1.00 MATPFA
MF	WG11	1C 4.00	
NR			

THIS USAGE REPORT IS FOR RCC:  ${}^*E^{-}$  THIS REPORT PROVIDES THE ESTIMATED USAGE FOR EACH RESOURCE BY PART.

RESOURCE NAME: 50002 RESOURCE NOUN: 50002 NO ALTERNATES FOUND FOR THIS RESOURCE

YEARLY INDUCTIONS	TOTAL HOURS NEEDED
116.	9394.07
4.	95.67
404.	37090.03
129.	10446.85
4.	95.67
455.	44697.84
	116. 4. 404. 129. 4.

TOTAL HOURS NEEDED TO PROCESS ALL PARTS: *********

TOTAL HOURS AVAILABLE: 286104.00

PROJECTED UTILIZATION FOR THIS RESOURCE: *******

RESOURCE NAME: 50004 RESOURCE NOUN: 50004

NO ALTERNATES FOUND FOR THIS RESOURCE

PART	YEARLY	TOTAL		
NAME	INDUCTIONS	HOURS NEEDED		
	#			
GG	859.	17351.80		

TOTAL HOURS NEEDED TO PROCESS ALL PARTS: 17351.80

TOTAL HOURS AVAILABLE: 85176.00

PROJECTED UTILIZATION FOR THIS RESOURCE: .20

RESOURCE NAME: 50005 RESOURCE NOUN: 50005

NO ALTERNATES FOUND FOR THIS RESOURCE

PART NAME	YEARLY INDUCTIONS	TOTAL HOURS NEEDED
AC/DB DB	859. 859.	1415.38 213.09
TOTAL HOURS	NEEDED TO PROCESS ALL PA	RTS: 1628.47
	TOTAL HOURS AVAILA	BLE: 50232.00
PROJECTED UT	TILIZATION FOR THIS RESOU	RCE: .03

RESOURCE NAME: 50173 RESOURCE NOUN: 50173 NO ALTERNATES FOUND FOR THIS RESOURCE

PART YEARLY TOTAL
NAME INDUCTIONS HOURS NEEDED

AC 859. 6504.24

TOTAL HOURS NEEDED TO PROCESS ALL PARTS: 6504.24

TOTAL HOURS AVAILABLE: 146328.00

PROJECTED UTILIZATION FOR THIS RESOURCE: .04

RESOURCE NAME: WG00 RESOURCE NOUN: WG00

NO ALTERNATES FOUND FOR THIS RESOURCE

PART	YEARLY	TOTAL
NAME	INDUCTIONS	HOURS NEEDED
~~~~~~~		
AC	859.	7356.62
AC/DB	859.	5117.49
DB	859.	109.14
F-15QT	116.	614.80
F-15ST	404.	4484.40
F-16QT	129.	683.70
F-16ST	455.	5475.17
GG	859.	1657.87

TOTAL HOURS NEEDED TO PROCESS ALL PARTS: 25499.18

TOTAL HOURS AVAILABLE: 67932.81

PROJECTED UTILIZATION FOR THIS RESOURCE: .38

RESOURCE NAME: WG09 RESOURCE NOUN: WG09

NO ALTERNATES FOUND FOR THIS RESOURCE

PART NAME	YEARLY INDUCTIONS	TOTAL HOURS NEEDED
AC DB	859. 859.	6504.24 213.09
TOTAL HOURS	NEEDED TO PROCESS ALL	PARTS: 6717.33
	TOTAL HOURS AVAIL	LABLE: 10057.45
PROJECTED UT	LIZATION FOR THIS RES	OURCE: .67

RESOURCE NAME: WG10 RESOURCE NOUN: WG10 NO ALTERNATES FOUND FOR THIS RESOURCE

PART YEARLY TOTAL NAME INDUCTIONS HOURS NEEDED

AC/DB 859. 14153.81 GG 859. 17351.80

TOTAL HOURS NEEDED TO PROCESS ALL PARTS: 31505.61

TOTAL HOURS AVAILABLE: 35448.41

PROJECTED UTILIZATION FOR THIS RESOURCE: .89

** PLEASE INVESTIGATE **

RESOURCE NAME: WG11 RESO

RESOURCE NOUN: WG11

NO ALTERNATES FOUND FOR THIS RESOURCE

PART YEARLY	
INDUCTIONS	HOURS NEEDED
116.	9394.07
4.	116.87
404.	34913.81
129.	10446.85
4.	116.87
455.	41634.17
	116. 4. 404. 129. 4.

TOTAL HOURS NEEDED TO PROCESS ALL PARTS: 96622.63

TOTAL HOURS AVAILABLE: 107317.60

PROJECTED UTILIZATION FOR THIS RESOURCE: .90

RESOURCE NAME: WGSW

RESOURCE NOUN: WGSW

. 68

ALTERNATES FOR THIS RESOURCE

WG00

PART NAME	YEARLY INDUCTIONS	TOTAL HOURS NEEDED
F-15QT	116.	340.27
F-15SQT	4.	11.73
F-15ST	404.	1185.07
F-16QT	129.	378.40
F-16SQT	4.	11.73
F-16ST	455.	1334.67
TOTAL HOURS	NEEDED TO PROCESS ALL I	PARTS: 3261.87
	TOTAL HOURS AVAIL	LABLE: 4784.00

PROJECTED UTILIZATION FOR THIS RESOURCE:

080179

THIS USAGE REPORT IS FOR RCC: *£^ THIS REPORT PROVIDES THE REQUIREMENTS FOR EACH PART BY RESOURCE.

PART NAME: AC

AIRFRAME:

YEARLY INDUCTIONS: 131071.

RESOURCE TOTAL
NAME HOURS NEEDED

50173 992453.24 WG00 1122514.00 WG09 992453.24

TOTAL HOURS NEEDED TO PROCESS THIS PART: 3107420.20

PART NAME: AC/DB

AIRFRAME:

YEARLY INDUCTIONS: 8.081009E+08

RESOURCE TOTAL NAME HOURS NEEDED

TOTAL HOURS NEEDED TO PROCESS THIS PART: *********

PART NAME: DB

AIRFRAME:

YEARLY INDUCTIONS: 131071.

RESOURCE TOTAL
NAME HOURS NEEDED

50005 32513.80 WG00 16652.57 WG09 32513.80

TOTAL HOURS NEEDED TO PROCESS THIS PART: 81680.16

PART NAME: F-15QT

AIRFRAME:

YEARLY INDUCTIONS: 116.000

RESOURCE TOTAL HOURS NEEDED

 50002
 9394.07

 WG00
 614.80

 WG11
 9394.07

 WGSW
 340.27

TOTAL HOURS NEEDED TO PROCESS THIS PART: 19743.20

PART NAME:F-15S	QT		AIRFRA	ME:	
YEARLY INDUCTIO RESOURCE NAME	NS: 4	.00000		но	TOTAL URS NEEDED
					~
5000 WG11 WGSW	2				95.67 116.87 11.73
TOTAL HOURS N	EEDED '	ro proces	S THIS	PART:	224.27
PART NAME:F-15S	r		AIRFRA	ME:	
YEARLY INDUCTION RESOURCE NAME	NS: 40	04.000		HO	TOTAL URS NEEDED
5000 WG00	2				37090.03 4484.40
WG11					34913.81
WGSW					1185.07
TOTAL HOURS N	EEDED 1	O PROCESS	S THIS	PART:	77673.31
PART NAME:F-160	r		AIRFRA	ME:	
YEARLY INDUCTION RESOURCE NAME	NS: 12	9.000		НО	TOTAL URS NEEDED
50002	2				10446.85
WG00 WG11					683.70 10446.85
WGSW					378.40
TOTAL HOURS NE	EDED I	O PROCESS	S THIS	PART:	
PART NAME:F-16SQ	γr		AIRFRAI	ME:	
YEARLY INDUCTION	is: 4.	00000			
RESOURCE NAME				ЮН	TOTAL JRS NEEDED
50002	,				05 67
WG11	•				95.67 116.87
WGSW					11.73
TOTAL HOURS NE	EDED T	O PROCESS	THIS I	PART:	224.27
PART NAME:F-16ST	•		AIRFRAN	Œ:	
EARLY INDUCTION RESOURCE NAME		5.000			TOTAL RS NEEDED

50002	44697.84
WG00	5475.17
WG11	41634.17
WGSW	1334.67

TOTAL HOURS NEEDED TO PROCESS THIS PART: 93141.84

PART NAME:GG

AIRFRAME:

YEARLY INDUCTIONS: 859.000

TOTAL HOURS NEEDED
17351.80
1657.87
17351.80

TOTAL HOURS NEEDED TO PROCESS THIS PART: 36361.47

2.0	ENGINEERING NOTES	
EMPLOYEE Parker	DATE 7/6/90 PAGE	GE NO.
RCC MATPFA	SUBJECT FOULD MCN	1 = 1
	<u> </u>	

7/6/90 - Friday

I called Susan Randolph this morning in regard to the resource data files she is working for us. Ms. Henderson was already with her, as she apparently needs much of the same information for other purposes. I asked that Ms. Henderson bring back any printouts which might be available. When Ms. Henderson arrived at our office, she told me that our initial concerns over the quality of the data was valid, and that Susan will need more time to to clean up the database.

I feel that the data from this database (GO-11) will contain inherent accuracies due to input errors. I do not want to criticize this too much, however, as the data being collected should prove to be very valuable once all the "bugs" are worked out. This particular reporting format is only a year and a half old, and is probably not tracked as well as it will be in the future. The data being collected is fundamentally correct, and represents a significant step forward in tracking machine failures and availability, as well as the associated costs. In fact, many of the "in-house" reports I have seen being used since my arrival on this base should prove invaluable to D MMIS in the form of "feeder" reports. This is an important consideration for the IPI program, as we should be of use in identifying these areas of excellence in reporting, and aiding in distributing this information across division lines.

DDB SECTION CODE	2.0	DDB PAGE NO.	080183
		00011100	

MACHINE 100L AND EQUIPMENT

COUTPMENT DESCRIPTION

EQUEP IDENT: 04440 STOCK NO. NOMENCLATURE: TEST STAND UNIFIED COSERTAL S. 5 - 6:00-01-121-1022**DQ**

- 705**00**020003 MANUFACTURE: HAMILTON STANDARD MODEL NO: PNA50002

MAINTENANCE COSTS AND REPAIRS:

REPAIR		DATE	DOWN	
ORDER NUM	DATE IN	COMPLETED	TIME	PROBLEM
87204-336	7/25/89	7/26/89	1. 0	UPPER PLA PROBLEM
84207-308	7/26/89	7/26/89	(, ()	
89207-319	7/26/89	7/25/89		NO PEN. NO PET PRESSURE
89209-325	7/28/87	7/28/89		HYDRAULIC FLUID
89210-311	//29/89	7/29/89		NO PUMPS
89211-301	7/30/89	7/30/89		NEEDS BURST DISC
89211-302	7/30/89	7/30/89		TEST HAS PUMP PROBLEMS
99212-305	7./31/89	7/31/89		BURST DISC
89212-024	7/31/89	7/31/89	2. 0	PR WON'T GO TO 10
89213-313	87 1789	87 1789	1.0	PF1 TEMP HIGH
89214-330	8/ 5/89	87 2789	1.0	NO PUMPS
97214-333	87 2789	8/ 3/89	3.0	NO PUMPO
59217-307	8/ 5/8 9	8/ 5/89	1.0	LACKS HYD FLUID
8921 9-328	8/ 7/89	8/ 7/89	0.6	FLUID NUT DRAINING
97220-326	8/ 8/8c	37 8789	1.0	RACK PRESSURE
89220-332	87 B189	87 8789	1.0	PLA WONT OF ABOVE 1.15
8F721-30 0	87 9789	87 9787	0. 5	BACK PRESSURE OUT LIMITS
80E-2298	87.10783	8/10/89	1. O	NO PUMP
89024-3t1	8/12/90	8712789	0.2	HYD FLUID
FF226+32 2	5/14/ 59	8/14/87	1.0	PEG. MAKING TOO MUCH HOISE
R722 8-329	8/16/89	8/16/89		PECH REGULATOR
87232-308	8/20/87	8/20/67		BURST DISC INSIDE
8923 3-3 11	8/21/89	0/21/09	1.0	NO FUMPS
89234-337	8722787	8/22/97		COMP LOCKUP
87235-303	8/23/87	8/23/89		PET REGULAP PROBLEM
89938-300	8726789	8725703		AIR NOZZLE
₫ Ⴣჽშშ−3 06	8/27/25	B727789		SERVICE HYD DUL
99240-320	8/28/97	6729789		RP OOL
97240-326	8728787	8/58/85		PUMP SCHEDULER PROB
67242-321	8/30/89	8/36/87		NO PUMPS
69242-334	B/30/89	8730789		HYD FLUID
89243-304	8/31/97	8/31/87		NO PUMPS
8/22/3-313	8/31/89	8/31/89		SMALL POODLE INSIDE TVS
69243-352	8/31/87	8/31/89		T/S / EAR
89054-304	9731789	9/11/89		NO PUMP
	9/13/89	9/13/87		HYD FLUID
89257-322	9/14/89	9714789	1.0	NO PUNKS

PAGE #: 1

ORICAL RECORD

ACQ DATE:

9/ 1/80 210000 DATE INSTALLED :

6/ 1/81

ACQ COST: OWN ORGN: MTPFA

BUILDING NUMBER:

347

LOCATION/CULUMN: 13-2

SKILL		MATERIAL COST	LABOR COST	ACCUM COST
	10 10 10		79. 5 39. 7 39. 7	§ 119. 25
	10		79. 5	
	10		39.7	
	10		39. 7	
	10		39.7	
	10		39. 7	5 397. 50
	10		79. 5	
	10		39. 7	
	10		39. 7	
	10		238. 5	
	10		39. 7	
	10		79. 5 39. 7	
	10 10		39. 7 79. 5	
	10		39. 7	
	10		39. 7	
	10		79. 5	
	10		39. 7	
	10		39.7	5 1272.00
	10		79. 5	0 1351.50
	10		39. 7	
	10		39. 7	
	10		39. 7	
	10		39. 7	
	10		79. 5	
	10		119.2	
	10		119.2	
	10		39.7	
	10 10		119. 2 79. 5	
	10		79. 5 39. 7	
	10		159.0	
	10		39.7	
	10		39. 7	
	10		39. 7	

ENGINEERING NOTES

EMPLOYEE Planker	DATE 78/80 PAGE NO.	/ح
RCC MAT PFA	SUBJECT Resource ava	1. 166.1. 1

7/09/90 - Monday

I have obtained a copy of the <u>Actual Indirect Labor Factor</u> report, A-GO37G-EH1-M1-8EH, which lists both the indirect + leave hours, and the the direct labor hours for the present fiscal year. (Note: The fourth quarter of this report is budgeted hours, not actual). This report should be useful for determining the manpower availability factor for use in the model resource files. The following calculations are applicable:

October '89 -

Total Direct hours charged = 18,134 *Estimated hours available = 24,320

*(based on 152 wage grade personnel available [out of 177 assigned, with maximum possible availability 160 hrs. per month per person, assuming straight eight hour day).

Oct. manpower availability factor: 18,134/24,320 x 8 hrs. = 5.97

Similarly, for the following months, the availability factor is calculated as:

DDB SECTION CODE SOLD DDB PAGE NO.

ENGINE	FRING	NOTES

EMPLOYEE Planker	DATE	90/90 P	AGE NO/_3_	
	SUBJECT -	471 A	esource	avail

The 4th qtr. FY '90 estimated availability is 5.16 hours.

ENGINEERING NOTES

EMPLOYEE Planker	DATE 7/13/50 PAGE NO	14
RCC MATREA	SUBJECT Manforder prof	jes

7/13/90 - Friday

In order to obtain our first model run this afternoon, the following estimations are to be made:

- 1. The number of WG11 test personnel is to be set at 28 men per weekend overtime. These will distributed by shift as 12, eight, and eight respectively per Ms. Henderson's estimates. In order to adjust for the increased manpower availability that Ms. Henderson requested, the number of personnel available was reduced from 65 to 52-49 depending on the quarter involved.
- 2. The number of WG10 were adjusted in a similar manner. The overtime manpower and the manpower availability factors were adjusted per Ms. Henderson's request.
- 3. The WG09 personnel were also adjusted in the above manner.
- 4. The WG00 skill code represent all overhaul personnel. This is due to the joint decision that the model runs at this higher order would be relatively insensitive to these personnel. Given the information provided by both Ms. Henderson and production personnel, the critical path tasks are mainly located in the testing functions. The manpower availability factor is lower than reported actuals per Ms. Henderson's request for this model run.

Adjustments to the manpower availability were made in the following manner:

(5.47 hrs. available)/(6.8 hrs desired) = .80

and similarly,

DDB SECTION CODE	DDB PAGE NO.

ENGINEERING NOTES

RCC	DATE PAGE NO SUBJECT
5.40/6.8 = .79 4.60/6.8 = .68 5.16/6.8 = .76	
In order to determine the number perform the following:	r of personnel to be adjusted to, we
27 WG11 personnel first shift/65	total all three shifts = .42

65 WG11 assigned x .80 x .42 = 22 persons first shift

and the number of personnel to be represented on first shift is

The following attachments show the results of these calculations.

DDB SECTION CODE	8.0	DDB PAGE NO.	080189
------------------	-----	--------------	--------

EMPLOYEE GARDNER	DATE 30 July 90	PAGE NO	
RCC MATPEA	SUBJECT Flow TIME		

Met with Ms

to discuss flowtime + validation in the model.

I explained that while we had historical flowtimes for wells we did not know it any of the time was non-production time, is comministrative delays, AWP time, or time spent awaiting support from other functions.

I gave them the attached sheet to help illustrate what kind of information we were looking for. They agreed to try and provide the best data they could. I asked them to provide averages where possible (even estimated averages), where they had existing databases with this randate in it, I offered to do the available crunching and generate average figures.

If we can get this data it will keep us from comparing "apples to cranges" during validation

DDB SECTION CODE ______ DDB PAGE NO. _____

8.1 **EXPERIMENTATION**

EMPLOYEE	GARDNER	DATE	7 Sept 40 F	PAGE NO	1
RCC MATE	FA	SUBJECT_	TO 16 TAGUEH	ARRAY	416
e,	Shift schodules BASELINE	# New we-105	PLUMBIND By WG-7 only	A515 og	0/7
2	A5 15	φ	AS 15	50005	2%
3	AS 15	φ	V6-75	5/2	2%
4	A3 15	Ø	WG-33	5	AS 15
5	A5 15	+ 14	As 15	5/2	2%
6	AS 15	+ 14	43 13	5	As 15
7	AS 15	+ 14	WG-7	5/2	AS W
8	AS 15	+14	W6-7	5 -	2%
9	Balunced	Ø	As 15	5/2	2%
10	Bulanced	Ø	AS 15	5	As 15
1/	Brlanced	Ø	W6-7	5/2	A3 15
12	Balancod	Ø	we-7	5	28
13	Bolune od	+ 14	As is	5/2	AS 15
14	Bulunced	+ 14	A3 15	5	2%
15	Palanced	+ 14	w6-7	5/2	2%
16	Balanced	+ 14	46-7	_5	As 15
	0.0.01				

EMPLOYEE <u>CARDNER</u>

DATE 28 Sept 90 PAGE NO. /

RCC MATPEA

SUBJECT Determination of # of Seed Runs

MDM3C 13 95% confident that any deviation in mean average floatime that occurs within these limits can be explained by the random devoution In the process + has no statistical significance 3 runs are sufficient.

ST Der drops 2.7 between 2 runs + 3 but only 1.1 between 3 and 4. Extrapolation indicates they a .5 drop between 4 runs and 5. Anything, post 3 runs is diminishing returns.

DDB PAGE NO.

RCC MATIFA SUBJECT SEED RUN DOTA

120.2 115.0 113.2

107.5 107.7 108.0

94.8 100.3

2 RUNS 3 RUNS 4 RUNS

UFC VALIDATION RUNS DETERMINATION OF THE NUMBER OF SEEDS TO RUN 95% CONFIDENCE INTERVAL
LOWER LIMIT MEAN UPPER LIMIT

STDEV

AVERAGE FLOWDAYS

> 1 RUN 2 RUNS 3 RUNS 4 RUNS

114.0 101.0 108.0 109.0

DDB SECTION CODE

2.08.1

DDB PAGE NO.

EXPERIMENT WITHOUT AWP

THREE RUN AVERAGE

S/N St Dev 29

RUN 1									
`PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	88.35	37.99	158	474	AC	86	38	139	455
AC/DB	130.51	85.76	473	928	AC/DB	125	82	456	923
DB	23.89	23.69	7	474	DB	27	21	11	455
F-15QT	627.33	200.27	151	158	F-15QT	529	214	151	158
F-15SQT	330.88	11.65	2	2	F-15SQT	295	92	2	2
F-15ST	2762.85	840.27	348	368	F-15ST	2643	886	347	368
F16QT	633.69	192.09	230	238	F-16QT	532	205	233	238
F-16SQT	417	67.9	2	2	F-16SQT	272	119	2	2
F-16ST	2918.35	942.11	533	552	F-16ST	2747	917	541	552
Œ	68.81	49.59	442	924	GG	67	48	464	919

THREE RUN STANDARD DEVIATION

RUN 2									•	
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	_
AC	82.38	35.2	128	443	AC	3	3	17	17	•
AC/DB	124.25	85.19	448	927	AC/DB	5	6	15	7	
DB	25.65	16.61	8	443	DB	5	4	6	17	
F-15QT	397.48	234.7	154	158	F-15QT	118	18	3	0	
F-15SQT	257.63	185.76	3	2	F-15SQT	37	88	1	0	
F-15ST	2451.93	894.34	354	368	F-15ST	167	42	8	0	
F-16QT	393.74	211.71	236	238	F-16QT	124	11	3	0	
F-16SQT	286.79	290	2	2	F-16SQT	152	152	1	0	
F-16ST	2588.82	920.8	537	552	F-16ST	165	27	11	0	
Œ	64.83	44.84	477	919	GG	2	3	19	6	

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	86.02	40.37	131	447
AC/DB	120.52	75.84	446	915
DB	32.89	22.44	17	447
F-15QT	561.49	205.95	149	158
F-15SQT	297.32	78.33	2	2
F-15ST	2713.09	923.85	339	368
F-16QT	569.86	210.91	234	238
F-16SQT	113.04	0	1	2
F-16ST	2732.86	888.86	554	552
Œ	66.63	50.81	472	913

		Average Flowdays	Monthly Prod
F-15	Run#1	88	42
	Run #2	76	43
	Run #3	85	41
	Average	83	42
	St Dev	6	1
F-16	Run #1	93	64
	Run #2	80	65
	Run #3	87	66
	Average	86	65
	St Dev	6	1
F-15	Run #1	91	106
&	Run #2	78	107
F-16	Run #3	86	107
	Average St Dev	85 6	106 1

MATPFA - CONFIRMATION RUNS

INDUCTIONS AT 110/MONTH

PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	89	38	152	456
AC/DB	108	64	453	902
DB	26	16	13	456
F-15QT	126	56	158	158
F-15SQT	63	26	2	2
F-15ST	3377	2394	345	368
F-16QT	133	58	240	238
F-16SQT	61	14	2	2
F-16ST	3493	2431	535	552
GG	54	36	437	905

AVERAGE FLOWDAYS 100

MONTHLY PRODUCTION 107

INDUCTIONS AT 120/MONTH

PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	78	31	141	485
AC/DB	106	60	483	959
DB	27	21	22	485
F-15QT	135	56	173	172
F-15SQT	69	6	2	2
F-15ST	3371	2509	364	402
F-16QT	133	54	257	260
F-16SQT	30	6	2	2
F-16ST	3470	2502	570	602
GG	56	38	459	957

Average Flowdays 99

MONTHLY PRODUCTION 114

INDUCTIONS AT 130/MONTH

PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	88	37	169	539
AC/DB	111	65	545	1079
DB	26	14	12	539
F-15QT	163	86	181	186
F-15SQT	57	36	2	2
F-15ST	3730	2558	401	436
F-16QT	173	92	272	282
F-16SQT	52	6	2	2
F-16ST	3538	2436	611	652
GG	60	40	539	1082

Average Flowdays 106

MONTHLY PRODUCTION

122

INDUCTIONS AT 140/MONTH

PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	87.04	34.84	182	557
AC/DB	120.28	65.48	561	1136
DB	27.87	14.16	16	557
F-15QT	305.1	246.45	186	200
F-15SQT	125.17	54.97	3	2
F-15ST	3689.44	2457.42	421	470
F-16QT	283.51	234.41	280	304
F-16SQT	250.49	247.05	2	2
F-16ST	3703.28	2413.9	621	702
GG	60.95	37.09	572	1136

Average Flowdays 110

MONTHLY PRODUCTION 126

MATPFA L16 TAGUCHI ARRAY SETUP

factor -> EXP	1 SHIFT SCHEDULES	2 NEW WG-10Ts	4 PLUMBING by WG00	8 ASIs on 50005	15 O/T PERCENTAGE
1 2 3 4	AS IS AS IS AS IS AS IS	0 0 0	AS IS AS IS WG-7s WG-7s	5/2 50005 5/2 50005	AS IS 2% 2% AS IS
5 6 7 8	AS IS AS IS AS IS AS IS	14 14 14 14	AS IS AS IS WG-7 WG-7	5/2 50005 5/2 50005	2% AS IS AS IS 2%
9 10 11 12	BALANCED BALANCED BALANCED BALANCED	0 0 0	AS IS AS IS WG-7 WG-7	5/2 50005 5/2 50005	2% AS IS AS IS 2%
13 14 15 16	BALANCED BALANCED BALANCED BALANCED	14 14 14 14	AS IS AS IS WG-7 WG-7	5/2 50005 5/2 50005	AS IS 2% 2% AS IS

PRODUCTION

••••••	••••••		S/N RESF	ONSE	TABLE			
Factor:		SHIFT	WG10T	•		WG7	-	
' EVEL		396.3	393	•		393.8	-	
EVEL	2	395.3	398.6	-		397.8	•	
Factor:	******	_	_	ASI			_	
LEVEL	1	•	•	395.	9	•		
LEVEL		•	•	395.		•	•	
•••••					• • • • • • • • • •			
Factor:		•	-	•		-	O/T	
LEVEL		•	•	•		-	399.4	
LEVEL	2	-	-	•		-	392.1	
			• • • • • • • • • • • • • • • • • • • •					
		S/N R	ESPONSE	TABLE (A	VERAG	ES)		
Factor:	5	HIFT	WG10T	•	 	WG7	•	
LEVEL		49.5	49.1			49.2	•	
LEVEL		49.4	49.8	•		49.7	•	
•••••							• • • • • • • • • • • • • • • • • • • •	
Factor:		-	-	ASI		•	•	
LEVEL		•	•	49.5		-	•	
LEVEL	2	•	•	49.5		-	-	
Factor:		_					O/T	
LEVEL	1	•	•			•	49.9	
LEVEL			•	•		-	49	
	• • • • • • • • • • • • • • • • • • • •							
		S/N	MAIN EFFE	CTS ANA	ALYSIS		•	
•••••					• • • • • • • • • • • • • • • • • • • •		*************	• • • • • • • • • • • • • • • • • • • •
MATPFA	UDOS EXPER	RIMENTAL	DESIGN					
Quality C	Characteristic	: the t	pigger the better					
0:-	nifiana Feet				1			• • • • • • • • • • • • • • • • • • • •
Sigi	nificant Fact	ors	Optimum S	ettings	Level #	Contribution		
RAI	ANCED WO	SK SHIETS	S vs AS ISAS IS		1	49.5		
	DITION OF NE				'	49.5		
,			+14 WG10	r	2	49.8		
WG	-7 S DO ALL 1	EST STAN	ND PLUMBING	•	-			
			WG7S PLUM	/IB	2	49.7		
ALL	ASIS PERFO	DRMED ON	1 50005 STANDS					
			AS IS		1	49.5		
REC	DUCE OVERT	ME TO 2%	AS IS		1	49.9		
			Tatal On the State of			040.4		
			Total Contribution		ant tactors			
			Average Total for		imum)	49.5		
			Estimate of average	a ieznii (obi	uii) =	50.5		

PRODUCTION

DESCRIPTION OF EXPERIMENT

Title of Experiment:

MATPFA UDOS EXPERIMENTAL DESIGN

.oal/Objective:

REDUCE FLOWTIME AND/OR INCREASE OUTPUT OF UFCS

Comment:

CONDUCTED BY MOMSC IN ACCORDANCE WITH THE TO 16 SOW AND TOP

Standard Orthogonal Array Model Used: L16-2-15

Col. Label	Description of	factor	Level 1	Level 2	Level 3	Level 4
1 SHIFT	BALANCED W	ORK SHIFTS vs AS	SISAS IS	BALANCED		
2 WG10T	ADDITION OF I	NEW WG-10T TRAI	NEES AS IS	+14 WG10T		
3				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
4 WG7	WG-7S DO ALI	. TEST STAND PLU	AS IS	WG7S PLUMB		
5 6						
7						
8 ASI	ALL ASIS PER	FORMED ON 5000	5 STANDS AS IS	50005 ONLY		
9 10						
l 1						
12 13						
1.4		TILE TO OX	40.10	2% OT		
3 O/T		RTIME TO 2%				
	EXPERIM	IENT RESU		[3 Trial		
	Trial #1	Trial #2	Trial #3	,		
	1: 101		104			
Experiment #	2: 84	8 2	88			
Experiment #	3: 91	97	97			
Experiment #		104				••••
Experiment #		96	9.8	•••••	•••••	•••••
•••••		•••••	103	•••••		••••
	*****	108	· - -			•••••
Experiment #	7: 103	106	109			
Experiment #		99	102			
Experiment #		7 7	8 0	•••••	•••••	•••••
Experiment #	10:100	99	98			••••••
_xperiment #	11:103	106	106			••••
Experiment #	12:97	9 5	9 1			•••••
						31009

PROPULTION

Experiment #13:105	107	105	
Experiment #14:98	96	98	
Experiment # 15 : 1 0 6	104	103	
Experiment #16:106	106	108	

ANALYSIS OF VARIATION

Factor	Df	Sums of Squares	Variance	F-Ratio	Pure Sum of Sqs.	P(%)	
SHIFT	1	17.5	17.5	.93	0	0	%
WG10T	1	697.7	697.7	36.88	678.8	21.9	%
WG7	1	357.5	357.5	18.9	338.6	10.92	%
ASI	1	2.5	2.5	.13	0	0	%
O/T	1	1230.2	1230.2	65.03	1211.3	39.07	%
•	4 2	794.5	18.9		871.3	28.11	%
Total	47	3100	••••••			100.00	%

[Note: Insignificant factors are pooled and indicated by parenthesis.]

MATPFA UDOS EXPERIMENTAL DESIGN

Number of experiments = 48

Sum (experiment values) = 4777

Correction Factor = 475411

Sum of sqs (experiment values) = 3100

PRODUCTION

		PKOD	UCTION		
		RESPONSE T	ABLE		
actor:	SHIFT	WG10T -		WG7	-
EVEL 1	2403	2297 -		2323	•
EVEL 2	2374	2480 -		2454	•
actor:		- ASI			•
EVEL 1	•	- 239	4	•	•
VEL 2	•	- 238		•	•
actor:					O/T
EVEL 1	_	_	•	•	2510
EVEL 2	•			•	2267
	RI	ESPONSE TABLE	(AVERAG	ES)	
actor:	SHIFT	WG10T -		WG7	•
EVEL 1	100.1	95.7 -		96.8	-
EVEL 2	98.9	103.3 -		102.3	•
actor:		- ASI			
EVEL 1	_	- 99.8	ł		_
EVEL 2	•	- 99.3		-	•
actor:	•	-		•	O/T
EVEL 1	•			•	104.6
EVEL 2	•	•			94.5
		MAIN EFFECTS A	NALYSIS		
	•••••	ger the better			
Jigiinican		·····	20101 #	•••••	
	D WORK SHIFTS V OF NEW WG-10T T	TRAINEES	1	100.1	
WG-7S DC	ALL TEST STAND	+14 WG10T PLUMBING	2	103.3	
		WG-7S DO ALL TEST ST	AND PLUMBI	NG	
ALL ASIS	PERFORMED ON 5	50005 STANDS	0	0	
ALL AGIG I		ALL ASIS PERFORMED	ON 50005 ST/	ANDS	
			0	0	
REDUCE C	VERTIME TO 2%	REDUCE OVERTIME TO 2	2% 0	0	
•••••		otal Contribution from signifi	cant factors	= 203.4	• • • • • • • • • • • • • • • • • • • •
		versee Total for all results		00.7	

Average Total for all results =

Estimate of average result (optimum) =

99.5

-194.7

S/N	RATIO	TABLE	
Experiment		S/N Ratio (db)	**********
1		49.8	
2		48.1	
3		49.1	
4		5 0	
5		49.6	
6		50	
7		50.1	
8		49.6	
9		47.5	
10		49.5	
11		5 0	
12		4 9	
13		5 0	
14		49.3	
15		49.9	
16		50.1	

MATPFA UDOS EXPERIMENTAL DESIGN

Bigger 15 BeHer

PRODUCTION

			S/N ANALY	SIS OF V	ARIATION			
Factor	Df	Sums of Squares	Variance	F-Ratio	Pure Sum of Sqs.	P(%)		
SHIFT	1	.1	.1	.31	0	0	%	
WG10T	1	2	2	10.12	1.8	21.27	%	
WG7	1	1	1	5.31	.8	10.05	%	
ASI	1	.003	.003	.02	0	0	%	
O/T	1	3.3	3.3	17.12	3.1	37.61	%	
8	1 0	1.9	.2		2.6	31.07	%	
Total	15	8.4			• • • • • • • • • • • • • • • •	100.00	%	

[Note: Insignificant factors are pooled and indicated by parenthesis.]

MATPFA UDOS EXPERIMENTAL DESIGN

Number of experiments = 16 Sum (experiment values) = 791.6 Correction Factor = 39162.4 Sum of sqs (experiment values) = 8.4

DESCRIPTION OF EXPERIMENT

Title of Experiment:

MATPFA UDOS EXPERIMENTAL DESIGN

REDUCE FLOWTIME AND/OR INCREASE OUTPUT OF UFCS

Comment:

CONDUCTED BY MIDMSC IN ACCORDANCE WITH THE TO 16 SOW AND TOP

Standard Orthogonal Array Model Used: L16-2-15

	Label		Description of	of factor	Level 1		Level 3	
1 2	SHIFT WG10			VORK SHIFTS vs AS NEW WG-10T TRAI		BALANCED		
					AS IS	+14 WG10T		
3 4	WG7		WC 78 DO AL	L TEST STAND PLU	MOING			
4	wG/		WG-75 DO AL	T 1691 STAND PLO	AS IS	WG7S PL : MB		
5					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
6								•
7	401		ALL ACIO DEL	DECEMBED ON FOOD	E CTANDO			
8	ASI		ALL ASIS PER	RFORMED ON 5000	AS IS	50005 ONLY		
9					7.5 .5	00000 01121		
10								
11								
12 13								
14								
ે 5	O/T		REDUCE OVE	RTIME TO 2%	AS IS			
	******		EXPERI	MENT RESU	ILTS		l(s) per Experimen	
				Trial #2				
Expe	riment	# 1	: 114	101	108			
Expe	riment	# 2	133	139	145		•••••	
Expe	riment	#3	: 126	117	115		••••••	
Expe	riment	# 4	: 103	103	102		•••••••••••	
Expe	riment	# 5	: 105	113	112		•••••••••••••••••••••••••••••••••••••••	
Expe	riment	# 6	: 103	101	103			
Expe	riment	# 7	104	101	106		••••••••••••	•••••••
			106	108	109			•••••••
-			: 150	135	143	•••••	***************************************	••••••••
			116	110	108			
Expe								
Expe	riment	# 11	: 99	104	102			

FLOUTIME

FLOWTIME

A 1	M A	1 V	9 1	9	O F	V A	D 1	AT	LON	ı
- A I	N A	LT	3		Ur	V A	_		101	

Factor	Ðf	Sums of Squares	Variance	F-Ratio	Pure Sum of Sqs.	P(%)	
SHIFT	1	0	0	0	0	0	%
WG10T	1	1680.3	1680.3	29.51	1623.4	21.15	%
WG7	1	867	867	15.23	810.1	10.56	%
ASI	1	5.3	5.3	.09	0	0	%
O/T	1	2730.1	2730.1	47.95	2673.2	34.83	%
0	42	2391.2	56.9		2567.3	33.45	%
Total	47	7673.9	• • • • • • • • • • • • • • • • • • • •			100.00	%

[Note: Insignificant factors are pooled and indicated by parenthesis.]

MATPFA UDOS EXPERIMENTAL DESIGN

Number of experiments = 48

Sum (experiment values) = 5354

Correction Factor = 597194.1

Sum of sqs (experiment values) = 7673.9

FLOWTIME

		RESPONSE	TABLE			
actor:	SHIFT	WG10T	•	WG7		
SVEL 1	2677	2819	•	2779	•	
¿VEL 2	2677	2535	•	2575	•	
actor:	-	-	ASI	-	-	
EVEL 1	•	•	2685	•	•	
EVEL 2	-	-	2669	-	-	
actor:	-	•		-	O/T	
EVEL 1	. •	•	•	•	2496	
			_		2858	
EAFT 5	•	-	-		2000	
EVEL 2	- R	ESPONSE TA	ABLE (AVER	AGES)		
	SHIFT		ABLE (AVER	A G E S) WG7		
actor:	SHIFT	WG10T	ABLE (AVER			
actor:		WG10T	ABLE (AVER	WG7		
actor: EVEL 1 EVEL 2	SHIFT 111.5	WG10T 117.5	ASI	WG7 115.8	-	
actor: EVEL 1 EVEL 2 actor:	SHIFT 111.5	WG10T 117.5		WG7 115.8	-	
actor: EVEL 1 EVEL 2 actor: EVEL 1	SHIFT 111.5	WG10T 117.5	- - - - -	WG7 115.8		
actor: EVEL 1 EVEL 2 actor: EVEL 1 EVEL 2	SHIFT 111.5	WG10T 117.5	- - - - - ASI 111.9	WG7 115.8	- - - - - -	
EVEL 2 actor: EVEL 1 EVEL 1 EVEL 1 EVEL 2 actor: EVEL 1 EVEL 2	SHIFT 111.5	WG10T 117.5	- - - - - ASI 111.9	WG7 115.8		

MAIN EFFECTS ANALYSIS

MATPFA UDOS EXPERIMENTAL DESIGN

Quality Characteristic: ... the smaller the better ...

Significant Factors	Optimum Settings	Level #	Contribution
BALANCED WORK SHIFTS vs ADDITION OF NEW WG-10T TI		2	111.5
WG-7S DO ALL TEST STAND	+14 WG10T PLUMBING	2	105.6
	WG7S PLUMB	2	0
ALL ASIS PERFORMED ON 50	0005 STANDS		
	50005 ONLY	2	0
REDUCE OVERTIME TO 2%	AS IS	1	0

Total Contribution from significant factors = 217.1

Average Total for all results = 111.5

Estimate of average result (optimum) = -229.1

	S/N RATIO	TABLE
	Experiment	S/N Ratio (db)
~ .	· 1	-40.7
	2	-42.9
	3	-41.5
	4	-40.2
	5	-40.8
	6	-40.2
	7	-40.3
	8	-40.6
	9	-43.1
	10	-40.9
	11	-40.1
	12	-41.2
	13	-40.2
	14	-40.9
	15	-40.6
	16	-40

MATPFA UDOS EXPERIMENTAL DESIGN

Smaller is Better

S/N ANALYSIS OF VARIATION

Factor	Df	Sums of Squares	Variance	F-Ratio	Pure Sum of Sqs.	P(%)	
SHIFT	1	0	0	0	0	0	%
WG10T	1	3	3	10.5	2.7	21.73	%
WG7	1	1.5	1.5	5.26	1.2	9.73	%
ASI	1	.009	.009	.03	0	0	%
O/T	1	5.1	5.1	17.94	4.8	38.74	%
0	10	2.9	.3		3.7	29.8	%
Total	15	12.5	*************	••••••		100.00	%

[Note: Insignificant factors are pooled and indicated by parenthesis.]

MATPFA UDOS EXPERIMENTAL DESIGN

Number of experiments = 16
Sum (experiment values) = -654.5

Correction Factor = 26771.8

Sum of sqs (experiment values) = 12.5

			S/N RES	PONSE	TABLE			
Facto	 F:	SHIFT	WG10T			WG7		
FVE		-327.3	-330.7			-329.7	•	
VE		-327.2	-323.8			-324.8	_	
	_ ~	OL7.L	-020.0			-024.0	-	
Facto	٠.	_	_	ASI		_	_	
LEVE		_	_	-327	4	-	-	
LEVE		_	•	-327		•	-	
		•	•	-321	. 1	•	•	
Facto	••	_			•••••		O/T	
LEVE		•	•	-		•		
LEVE		•	•	•		•	-322.7	
		······································	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•	-331.8	
		S/N I	RESPONSE	TABLE ((A V E R A G	ES)		
Factor	. 	SHIFT	WG10T	_				
LEVE		-40.9		-		- · · - ·	•	
			-41.3	•		-41.2	•	
EVE		-40.9	-40.5	•		-40.6	•	
actor		•	•	ASI	_	-	•	
LEVE		-	•	-40.9		-	•	
.EVEI		•	•	-40.9	9	-	•	
			• • • • • • • • • • • • • • • • • • • •					
actor		-	•	•		-	O/T	
LEVE		•	•	•		•	-40.3	
EVE	. 2	•	•	-		•	-41.5	
		S/N	MAIN EFFE	CTS AN	ALYSIS			
Quality	/ Ch	XOS EXPERIMENTAL aracteristic: the icant Factors	DESIGN smaller the better		Level #	Contribu		
		NCED WORK SHIFT TION OF NEW WG-19	S vs AS ISBALANCE	D	2	-40.9		
•			+14 WG10	T	2	-40.5		
٧	VG-7	S DO ALL TEST STA			-	10.0		
			WG7S PLU	JMB	2	-40.6		
A	LL A	SIS PERFORMED C	N 50005 STANDS					
		_ -	50005 ON	LY	2	-40.9		
F	REDU	CE OVERTIME TO 29			1	-40.3		
			Total Contributio	n from sianifi	cant factors	= -203.2		
			Average Total fo			-40.9		
			Estimate of aver-					

Estimate of average result (optimum) =

-39.6

MATPFA L16 TAGUCHI ARRAY RESULTS

THREE RUN AVERAGES AND STANDARD DEVIATIONS

Experiment #	Flowdays Average	St Dev	S/N St Dev	Monthly Average	Production St Dev
1	108	7	71	103	2
2	139	6	75	85	3
3	119	6	74	95	. 3
4	103	1	71	105	2
5	110	4	71	100	5
6	102	1	69	106	2
7	104	3	71	106	3
8	108	2	70	101	1
ğ	143	7	73	79	2
10	111	4	73	99	1
11	102	2	71	105	2
12	115	3	72	94	3
13	103	4	71	106	1
14	111	2	72	98	1
15	108	3	71	104	2
16	100	3	70	107	1

	FLOW	DAYS	S/N	PRODUCTION	
	AVERAGE	ST DEV	St Dev	AVERAGE	ST DEV
FACTOR 1					
LEVEL 1	112	12	72	100	7
LEVEL 2	112	14	72	99	9
FACTOR 2					
LEVEL 1	118	16	73	96	10
LEVEL 2	106	4	71	104	3
FACTOR 4					
LEVEL 1	116	16	72	97	10
LEVEL 2	107	7	71	102	5
FACTOR 8					
LEVEL 1	112	14	72	100	9
LEVEL 2	111	1 2	72	99	9 7
FACTOR 15					
LEVEL 1	104	4	71	105	3
LEVEL 2	119	14	72	95	9

 IEERING	
JEEGING -	. N

EMPLOYEE <u>GARDNER</u>	DATE 6 Oct 90	PAGE NO.
ACC MATPEA	SUBJECT THAM FEFFE	- CHARTS

The following charts illustrate the main effects produced by changes in the levels of each factor modeled in the L(16) Taguchi orthogonal array. They should the effect on Floutime and production throughput caused by each change.

DDB SECTION CODE 2. / DDB PAGE NO. _____

MINOR EFFECT

FACTOR 1 - BALANCED SHIFTS FIGURE 8.2.1.3-1

MINOR EFFECT

FACTOR 1 - BALANCED SHIFTS FIGURE 8.2.1.3-2

SIGNIFICANT EFFECT

FACTOR 2 - ADDING WG-10Ts FIGURE 8.2.1.3-3

FACTOR 2 - ADDING WG-10Ts FIGURE 8.2.1.3-4

SIGNIFICANT EFFECT

FACTOR 4 - WG-7s PLUMB FIGURE 8.2.1.3-5

SIGNIFICANT EFFECT

FACTOR 4 - WG-7s PLUMB FIGURE 8.2.1.3-6

MINOR EFFECT

FACTOR 8 - AS IS ON 50005s ONLY FIGURE 8.2.1.3-7

MINOR EFFECT

20816

FACTOR 8 - AS IS ON 50005s ONLY FIGURE 8.2.1.3-8

SIGNIFICANT EFFECT

FACTOR 15 - 2% OT CAP FIGURE 8.2.1.3-9

SIGNIFICANT EFFECT

FACTOR 15 - 2% OT CAP FIGURE 8.2.1.3-10

ENGINEERING NOTES

EMPLOYEE GARDNER	DATE 6 OCT 90	PAGE NO.
RCC MATREA	SUBJECT Interaction	chart

The following charts show the effects of interactions between experimental factors at different levels, as included in the L(16) Taguchi Orthogonal array.

An interaction occurs when one factor ments responds differently at different lovels, when the havel of a second factor is changed. For example

PACTOR 1: in a shop with 20 workers, spliting them into 2 shifts may produce a sharp decrease in Flowtime. This would mean that for FACTOR 1 (shift schedules), Level 2 (2 shifts) would produce better results than Level 1 (1 shift).

FACTOR 2-But: when the manpower is loubled (FACTOR 2/Level2)
the effect of going to 2 shifts (FACTOR 1/Level2)
is substantially reduced.

: in This case FACTORS 1 +2 are soid to Internet.

Cruphically, when both factors are graphed at both levels, the an interaction appears as non-parallel lines. Lines which approach parallel (not crossed or crossed at an acute angle) indicate very neak interactions. Lines which are perpendicular or nearly so indicate very pronounced interactions. Normally when the interaction is so weak that the lines do not intersect (within the range of the levels selected) the Factors are said to have no interaction.

DDB SECTION CODE	DDB PAGE NO

1 X 15 FLOW TIME FIGURE 8.2.1.3-11

20789

1 X 15 PRODUCTION FIGURE 8.2.1.3-12

1 X 2 FLOW TIME FIGURE 8.2.1.3-13

MILD INTERACTION

1 X 2 PRODUCTION FIGURE 8.2.1.3-14

MILD INTERACTION

1 X 4 FLOW TIME FIGURE 8.2.1.3-15

MILD INTERACTION

1 X 4 PRODUCTION FIGURE 8.2.1.3-16

STRONG INTERACTION

1 X 8 FLOW TIME FIGURE 8.2.1.3-17

STRONG INTERACTION

20795

1 X 8 PRODUCTION FIGURE 8.2.1.3-18

2 X 15 FLOW TIME FIGURE 8.2.1.3-19

2 X 15 PRODUCTION FIGURE 8.2.1.3-20

2 X 4 FLOW TIME FIGURE 8.2.1.3-21

2 X 4 PRODUCTION FIGURE 8.2.1.3-22

2 X 8 FLOW TIME FIGURE 8.2.1.3-23

2 X 8 PRODUCTION FIGURE 8.2.1.3-24

4 X 15 FLOW TIME FIGURE 8.2.1.3-25

PRODUCTION MONTH

PRODUCTION MONTH

SO

EXPERIMENTAL LEVELS

NO INTERACTION

4 X 15 PRODUCTION FIGURE 8.2.1.3-26

4 X 8 FLOW TIME FIGURE 8.2.1.3-27

4 X 8 PRODUCTION FIGURE 8.2.1.3-28

8 X 15 FLOW TIME FIGURE 8.2.1.3-29

8 X 15 PRODUCTION FIGURE 8.2.1.3-30

EXPERIMENT 1

THREE RUN AVERAGE

.tUN 1									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	87.09	32.96	133	439	AC	88	36	139	445
AC/DB	127.02	77.85	440	890	AC/DB	120	74	444	884
DB	27.48	16.98	20	439	DB	24	15	15	445
F-15QT	357.54	215.1	146	158	F-15QT	270	155	151	158
F-15SQT	241.51	247.63	2	2	F-15SQT	126	89	2	2
F-15ST	3669.73	2305.46	342	368	F-15ST	3620	2363	343	368
F-16QT	361.66	207.86	222	238	F-16QT	277	163	232	238
F-16SQT	217.74	112.5	2	2	F-16SQT	121	58	2	2
F-16ST	3876.14	2531.67	495	552	F-16ST	3651	2431	505	552
GG	67.09	49.56	445	890	GG	65	45	450	883

THREE RUN STANDARD DEVIATION

RUN 2									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	87.67	38.51	135	430	AC	0	3	9	19
AC/DB	113.06	68.71	429	860	AC/DB	7	5	17	22
DB	20.55	11.23	9	430	DB	3	3	6	19
F-15QT	186.36	85.51	156	158	F-15QT	86	65	5	0
F-15SQT	41.93	12.89	2	2	F-15SQT	104	137	0	0
F-15ST	3569	2419.92	347	368	F-15ST	50	57	4	0
F-16QT	188.05	93.93	244	238	F-16QT	87	61	11	0
F-16SQT	108.93	61.3	2	2	F-16SQT	92	56	1	0
-16ST	3420.64	2286.29	502	552	F-16ST	228	129	12	0
GG	61.58	40.15	454	859	GG	3	5	5	21

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	88.04	36.83	150	466
AC/DB	120.04	74.03	463	902
DB	23.81	16.89	15	466
F-15QT	266.49	165.68	151	158
F-15SQT	93.35	6.24	2	2
F-15ST	3621.33	2362.99	339	368
F-16QT	281.84	186.19	231	238
F-16SQT	35.56	0	1	2
F-16ST	3657.44	2475.37	519	552
GG	67.52	46.09	452	900

		Average Flowdays	Monthly Prod
F-15	Run #1	111	41
	Run #2	105	42
	Run #3	107	41
	Average	108	41
	St Dev	3	1
F-16	Run #1	116	60
	Run #2	98	62
	Run #3	109	63
	Average	108	62
	St Dev	· 9	1
F-15	Run #1	114	101
&	Run #2	101	104
F-16	Run #3	108	104
	Average St Dev	108	103

EXPERIMENT 2

THREE RUN AVERAGE

RUN 1									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	112.17	54.37	115	427	AC	109	52	121	429
AC/DB	214.67	141.3	418	822	AC/DB	230	153	414	818
DB	44.33	32.04	12	427	DB	40	28	13	429
F-15QT	797.87	638.43	127	158	F-15QT	1015	593	129	158
F-15SQT	876.24	786.86	2	2	F-15SQT	834	540	2	2
F-15ST	4204.82	2407.89	279	368	F-15ST	4446	2402	279	368
F-16QT	760.04	575.28	196	238	F-16QT	1003	570	203	238
F-16SQT	839.16	921.24	2	2	F-16SQT	538	307	1	2
F-16ST	4457.68	2460.88	399	552	F-16ST	4515	2433	400	552
GG	129.19	92.34	396	825	GG	128	93	409	822

THREE RUN STANDARD DEVIATION

RUN 2									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	111.86	54.19	128	413	AC	5	3	7	17
AC/DB	194.86	115.88	408	798	AC/DB	45	45	5	19
DB	32.28	25.39	11	413	DB	7	3	3	17
F-15QT	1102.86	704.02	126	158	F-15QT	189	140	4	0
F-15SQT	656.68	561.02	3	2	F-15SQT	160	258	1	0
F-15ST	4449.81	2413.99	263	368	F-15ST	240	16	16	0
F-16QT	1070.13	688.01	200	238	F-16QT	218	121	9	0
F-16SQT	335.9	0	1	2	F-16SQT	266	532	1	0
₹-16ST	4485.29	2441.31	392	552	F-16ST	76	33	9	0
GG	109.91	78.04	414	802	GG	18	16	11	19

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	103.12	48.22	120	447
AC/DB	280.12	203.12	416	835
DB	43.71	27.54	17	447
F-15QT	1143.44	435.86	134	158
F-15SQT	968.65	272.25	2	2
F-15ST	4684.26	2384.54	295	368
F-16QT	1179.46	447.07	213	238
F-16SQT	439.5	0	1	2
F-16ST	4601.38	2397.29	410	552
GG	145.98	109.25	417	840

		Average Flowdays	Monthly Prod
F-15	Run #1	130	34
	Run #2	139	33
	Run #3	149	36
	Average	139	34
	St Dev	9	2
F-16	Run #1	135	50
	Run #2	139	49
	Run #3	143	52
	Average	139	50
	St Dev	4	1
F-15	Run #1	133	84
&	Run #2	139	82
F-16	Run #3	145	88
·	Average St Dev	139 6	85 3

EXPERIMENT 3

THREE RUN AVERAGE

RUN 1									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	124.13	47.52	139	432	AC	129	51	128	422
AC/DB	287.49	226.88	419	866	AC/DB	250	175	411	859
DB	33.79	18.2	16	432	DB	42	25	15	422
F-15QT	546.01	428.28	139	158	F-15QT	497	345	144	158
F-15SQT	224.3	271.84	2	2	F-15SQT	191	140	2	2
F-15ST	4243.57	2583.65	313	368	F-15ST	4045	2571	312	368
F-16QT	559.04	450.87	210	238	F-16QT	499	342	219	238
F-16SQT	38 1.7	255.91	2	2	F-16SQT	284	212	2	2
F-16ST	4150.53	2463.75	431	552	F-16ST	3947	2394	463	552
GG	158.05	118.38	433	882	GG	141	98	447	874

THREE RUN STANDARD DEVIATION

RUN 2									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	127.13	54.66	133	415	AC	6	4	14	9
AC/DB	248.4	174.52	407	858	AC/DB	37	52	7	7
DB	48.87	33.66	12	415	DB	8	8	2	9
F-15QT	500.57	269.49	148	158	F-15QT	51	80	5	0
F-15SQT	247.7	77.94	3	2	F-15SQT	78	114	1	0
F-15ST	4051.88	2562.26	314	368	F-15ST	202	11	3	0
F-16QT	473.19	257.3	225	238	F-16QT	52	99	8	0
F-16SQT	388.25	379.3	2	2	F-16SQT	175	193	1	0
F-16ST	3847.43	2390.93	470	552	F-16ST	176	68	29	0
GG	141.37	92.54	469	882	GG	18	18	19	14

RUN 3 PN AC AC/DB DB	FLOW TIME 136.3 214.49 42.36	ST DEV 51.56 122.76 23.99	NUMOUT 113 407 16	NUMIN 419 852 419
F-15QT	444.57	336.23	144	158
F-15SQT	101.92	71.15	2	2
F-15ST	3840.32	2566.36	309	368
F-16QT	465.74	319.25	222	238
F-16SQT	81.07	0	1	2
F-16ST	3842.55	2327.27	488	552
GG	122.45	83.31	440	857

		Average	Monthly
		Flowdays	Prod
F-15	Run #1	129	38
	Run #2	121	39
	Run #3	115	38
	Average	121	38
	3t Dev	7	1
F-16	Run #1	124	54
	Run #2	115	58
	Run #3	116	59
	Average	118	57
	St Dev	5	3
F-15	Run #1	126	91
&	Run #2	117	97
F-16	Run #3	115	97
	Average St Dev	119 6	95 3

THREE RUN AVERAGE

RUN 1									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN_
AC	88.65	37.19	131	450	AC	93	40	136	448
AC/DB	116.88	67.12	449	906	AC/DB	121	70	447	893
DB	21.77	12.36	7	450	DB	27	14	14	448
F-15QT	149.27	62.59	152	158	F-15QT	160	69	156	158
F-15SQT	49.58	10.97	2	2	F-15SQT	57	15	2	2
F-15ST	3543.94	2581.68	355	368	F-15ST	3482	2436	352	368
F-16QT	163.28	73.19	234	238	F-16QT	166	75	239	238
F-16SQT	45.71	15.09	2	2	F-16SQT	62	45	2	2
F-16ST	3505.27	2414.48	511	552	F-16ST	3573	2453	513	552
GG	62.17	41.71	478	902	GG	64	44	451	892

FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	
93.09	40.39	128	434	AC	4	3	11	14	
116.89	67.35	434	858	AC/DB	7	4	12	30	
31.28	22.99	20	434	DB	5	8	7	14	
171.55	80.39	153	158	F-15QT	11	10	6	0	
36.49	5.05	2	2	F-15SQT	24	12	0	0	
3421.96	2329.61	344	368	F-15ST	61	131	7	0	
173.78	81.66	241	238	F-16QT	7	6	5	0	
80.42	80.22	2	2	F-16SQT	17	33	0	0	
3670.26	2545.63	501	552	F-16ST	86	81	13	0	
61.17	41.85	431	860	GG	4	4	24	28	
	93.09 116.89 31.28 171.55 36.49 3421.96 173.78 80.42 3670.26	93.09 40.39 116.89 67.35 31.28 22.99 171.55 80.39 36.49 5.05 3421.96 2329.61 173.78 81.66 80.42 80.22 3670.26 2545.63	93.09 40.39 128 116.89 67.35 434 31.28 22.99 20 171.55 80.39 153 36.49 5.05 2 3421.96 2329.61 344 173.78 81.66 241 80.42 80.22 2 3670.26 2545.63 501	93.09 40.39 128 434 116.89 67.35 434 858 31.28 22.99 20 434 171.55 80.39 153 158 36.49 5.05 2 2 3421.96 2329.61 344 368 173.78 81.66 241 238 80.42 80.22 2 2 3670.26 2545.63 501 552	93.09 40.39 128 434 AC 116.89 67.35 434 858 AC/DB 31.28 22.99 20 434 DB 171.55 80.39 153 158 F-15QT 36.49 5.05 2 2 F-15SQT 3421.96 2329.61 344 368 F-15ST 173.78 81.66 241 238 F-16QT 80.42 80.22 2 2 F-16SQT 3670.26 2545.63 501 552 F-16ST	93.09	93.09	93.09	93.09

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	96.63	42.5	148	461
AC/DB	129.72	74.72	457	914
DB	26.66	7.74	14	461
F-15QT	157.85	64.4	162	158
F-15SQT	83.71	28.04	2	2
F-15ST	3480.09	2396.62	357	368
F-16QT	161.74	70.92	243	238
F-16SQT	59.99	39.04	2	2
F-16ST	3544.56	2397.91	527	552
GG	68.76	48.32	445	913

		Average	Monthly
- 4-	D #4	Flowdays	Prod_
F-15	Run #1	105	42
	Run #2	100	42
	Run #3	101	43
	Average	102	42
	St Dev	2	1
F-16	Run #1	102	62
	Run #2	105	62
	Run #3	103	64
	Average	103	63
	St Dev	2	1
F-15	Run #1	103	105
&	Run #2	103	104
F-16	Run #3	102	108
	Average St Dev	103	105

THREE RUN AVERAGE

RUN 1									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN_
AC	114.62	45.84	138	403	AC	116	50	135	413
AC/DB	205.84	141.45	399	876	AC/DB	262	200	403	853
DB	31.66	27.74	11	403	DB	33	25	12	413
F-15QT	233.18	117.26	152	158	F-15QT	272	156	151	158
F-15SQT	128.24	35.03	2	2	F-15SQT	146	75	2	2
F-15ST	3457.02	2354.82	355	368	F-15ST	3619	2343	321	368
F-16QT	238.45	107.82	238	238	F-16QT	267	142	231	238
F-16SQT	86.21	61.11	2	2	F-16SQT	118	95	2	2
F-16ST	3573.87	2371.62	527	552	F-16ST	3838	2495	496	552
GG	123.82	83.66	438	877	GG	170	121	421	867

RUN 2									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	115.99	55.11	123	413	AC	1	5	11	11
AC/DB	212.27	154.74	415	826	AC/DB	91	91	11	25
DB	37.7	23.66	14	413	DB	4	2	2	11
F-15QT	317.24	230.24	146	158	F-15QT	42	64	5	0
F-15SQT	164.57	143.63	3	2	F-15SQT	18	60	1	0
F-15ST	3760.17	2415.09	310	368	F-15ST	153	79	30	0
F-16QT	298.92	204.58	223	238	F-16QT	30	54	8	0
~ F-16SQT	186.09	223.77	2	2	F-16SQT	59	116	1	0
-16ST	3915.97	2485.23	469	552	F-16ST	235	128	29	0
GG	132.37	92.65	418	838	GG	72	58	15	26

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	117.46	49.09	144	424
AC/DB	366.4	304.61	394	858
DB	30.99	23.97	12	424
F-15QT	265.21	120.86	155	158
F-15SQT	145.16	45.67	2	2
F-15ST	3640.39	2259	298	368
F-16QT	262.23	113.41	233	238
F-16SQT	82.65	0	1	2
F-16ST	4024.2	2627.26	492	552
GG	253.35	187.82	408	886

		Average Flowdays	Monthly Prod
F-15	Run #1	103	42
	Run #2	110	38
	Run #3	103	38
	Average	106	40
	St Dev	4	3
F-16	Run #1	105	64
	Run #2	114	58
	Run #3	117	61
	Average	112	61
	St Dev	6	3
F-15	Run #1	105	106
&	Run #2	113	96
F-16	Run #3	112	98
	Average	110	100
	St Dev	4	5

THREE RUN AVERAGE

RUN 1									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	81.14	35.53	134	457	AC	85	36	133	440
AC/DB	118.8	70.1	449	922	AC/DB	121	72	436	899
DB	25.22	17.29	13	457	DB	27	17	13	440
F-15QT	138.4	61.09	153	158	F-15QT	151	83	156	158
F-15SQT	80.79	0.03	2	2	F-15SQT	73	14	2	2
F-15ST	3485.29	2433.14	353	368	F-15ST	3430	2387	346	368
F-16QT	149.69	69.7	234	238	F-16QT	159	88	239	238
F-16SQT	77.91	74.91	2	2	F-16SQT	68	28	2	2
F-16ST	3543.5	2392.65	527	552	F-16ST	3567	2367	526	552
GG	65.46	46.22	481	924	GG	66	47	463	901

RUN 2										
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	_
AC	84.65	34.6	132	458	AC	4	1	1	31	_
AC/DB	118.75	69.69	454	905	AC/DB	3	3	28	27	
DB	21.91	7.87	13	458	DB	6	8	1	31	
F-15QT	135.83	64.81	156	158	F-15QT	24	34	3	0	
F-15SQT	93.95	26.74	3	2	F-15SQT	26	13	1	0	
F-15ST	3362.86	2267.38	356	368	F-15ST	62	105	15	0	
F-16QT	140.5	59.94	245	238	F-16QT	24	40	6	0	
F-16SQT	85.91	7.68	2	2	F-16SQT	24	41	1	0	
F-16ST	3523.5	2354.53	539	552	F-16ST	59	23	13	0	
GG	69.62	50.9	463	904	GG	3	4	18	25	

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	89.68	37.1	132	404
AC/DB	124.63	75.89	404	870
DB	33.29	24.67	12	404
F-15QT	177.93	122.12	158	158
F-15SQT	44.46	15.72	2	2
F-15ST	3442.79	2460.7	328	368
F-16QT	185.31	132.95	239	238
F-16SQT	40.56	0	1	2
F-16ST	3633.4	2352.48	513	552
GG	63.06	42.96	446	875

		Average Flowdays	Monthly Prod
F-15	Run #1	103	42
	Run #2	99	43
	Run #3	99	41
	Average	100	42
	St Dev	2	1
F-16	Run #1	104	64
	Run #2	103	66
	Run #3	106	63
	Average	104	64
	St Dev	2	1
F-15	Run #1	103	106
&	Run #2	101	108
F-16	Run #3	103	103
	Average St Dev	102	106

THREE RUN AVERAGE

RUN 1					
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	J
AC	96.36	39	150	489	7
AC/DB	123.15	78.43	486	924	-
DB	25.15	12.8	9	489	ı
F-15QT	138.39	59.74	151	158	ı
F-15SQT	62.31	16.69	2	2	1
F-15ST	3665.78	2555.45	338	368	1
F-16QT	137.4	52.6	234	238	1
F-16SQT	82.9	45.52	2	2	ı
F-16ST	3518.6	2472.37	512	552	ı
GG	67.56	46.99	467	927	(

PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	98	40	150	463
AC/DB	125	76	460	915
DB	29	16	8	463
F-15QT	142	63	156	158
F-15SQT	69	12	2	2
F-15ST	3660	2519	353	368
F-16QT	143	62	239	238
F-16SQT	79	33	2	2
F-16ST	3486	2407	523	552
GG	66	45	459	919

RUN 2				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	99.08	45.02	131	433
AC/DB	121.36	73.64	429	904
DB	25.4	12.14	10	433
F-15QT	137.73	57.85	155	158
F-15SQT	42.97	12.17	2	2
F-15ST	3631.17	2501.81	357	368
F-16QT	144.14	66.78	241	238
F-16SQT	89.5	21.21	2	2
F-16ST	3375.05	2378.2	518	552
GG	65.9	45.36	459	908

PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	1	4	19	28
AC/DB	4	2	29	10
DB	6	6	2	28
F-15QT	7	7	6	0
F-15SQT	30	5	0	0
F-15ST	27	32	13	0
F-16QT	6	8	5	0
F-16SQT	12	12	0	0
F-16ST	99	57	15	0
GG	1	3	8	10

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	97.41	37.3	168	468
AC/DB	129.53	75.75	466	918
DB	35.93	22.76	6	468
F-15QT	150.9	70.69	162	158
F-15SQT	101.15	6.62	2	2
F-15ST	3684.22	2499.09	363	368
F-16QT	148.66	65.13	243	238
F-16SQT	65.82	32.44	2	2
F-16ST	3564.63	2369.4	540	552
GG	65.19	42.01	452	922

		Average Flowdays_	Monthly Prod
F-15	Run #1	107	41
	Run #2	107	43
	Run #3	108	44
	Average	107	43
	St Dev	0	2
F-16	Run #1	102	62
	Run #2	98	63
	Run #3	104	65
	Average	101	64
	St Dev	3	2
F-15	Run #1	104	103
&	Run #2	101	106
F-16	Run #3	106	109
	Average St Dev	104	106

THREE RUN AVERAGE

RUN 1						
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIM
AC	140.83	57.44	134	415	AC	131
AC/DB	271.92	174.06	390	873	AC/DB	290
DB	31.89	21.96	12	415	DB	40
F-15QT	201.63	83.62	150	158	F-15QT	200
F-15SQT	59.59	33.56	2	2	F-15SQT	103
F-15ST	3618.96	2396.78	349	368	F-15ST	3645
F-16QT	192.23	75.32	232	238	F-16QT	203
F-16SQT	71.73	62.2	2	2	F-16SQT	97
F-16ST	3612.84	2398.73	488	552	F-16ST	3769
GG	121.95	84.29	428	889	GG	133

PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	131	56	140	428
AC/DB	290	189	412	873
DB	40	26	11	428
F-15QT	200	82	154	158
F-15SQT	103	53	2	2
F-15ST	3645	2411	332	368
F-16QT	203	85	235	238
F-16SQT	97	47	2	2
F-16ST	3769	2475	488	552
GG	133	92	437	892

RUN 2				
PN	FLOW TIME	S" DEV	NUMOUT	NUMIN
AC	126.73	678	128	420
AC/DB	259.63	154.5	413	875
DB	29.58	20.63	6	420
F-15QT	214.31	94.63	152	158
F-15SQT	62.94	4.35	2	2
F-15ST	3594.85	2346.85	320	368
F-16QT	219.55	105.27	235	238
F-16SQT	169.14	77.49	2	2
F-16ST	3869.59	2459.04	482	552
GG	139.98	95.52	442	901

PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	8	7	15	18
AC/DB	43	44	21	2
DB	16	8	5	18
F-15QT	14	14	5	0
F-15SQT	72	61	0	0
F-15ST	68	72	15	0
F-16QT	14	17	3	0
F-16SQT	64	41	1	0
F-16ST	137	85	6	0
GG	10	7	8	8

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	125.98	48.24	157	449
AC/DB	338.89	237.99	432	872
DB	57.69	35.24	16	449
F-15QT	185.45	66.42	159	158
F-15SQT	186.03	122.1	2	2
F-15ST	3722.27	2489.09	328	368
F-16QT	198.18	75.77	237	238
F-16SQT	48.71	0	1	2
F-16ST	3824.31	2566.09	494	552
GG	136.49	97.41	441	886

		Average Flowdays	Monthly Prod
F-15	Run #1	108	42
	Run #2	104	40
	Run #3	107	41
	Average	106	41
	St Dev	2	1
F-16	Run #1	104	60
	Run #2	111	60
	Run #3	110	61
	Average	109	60
	St Dev	4	1
F-15	Run #1	106	102
&	Run #2	108	99
F-16	Run #3	109	102
	Average St Dev	108	101

THREE RUN AVERAGE

RUN 1									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	113.23	42.56	115	364	AC	103	43	130	385
AC/DB	190.23	128.09	360	776	AC/DB	177	110	382	786
DB	34.93	18.17	15	364	DВ	37	22	12	385
F-15QT	1424	607.24	125	158	F-15QT	1233	625	122	158
F-15SQT	985.2	646.64	2	2	F-15SQT	748	363	2	2
F-15ST	4500.69	2170.13	253	368	F-15ST	4385	2235	247	368
F-16QT	1428.45	653.03	200	238	F-16QT	1238	657	192	238
F-16SQT	1184.34	745.8	2	2	F-16SQT	676	249	1	2
F-16ST	4859.01	2328.63	380	552	F-16ST	4613	2377	386	552
GG	116.82	98.77	411	779	GG	103	76	405	789

RUN 2									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	98.04	42.97	136	393	AC	9	0	13	18
AC/DB	148.1	92.69	394	795	AC/DB	25	18	19	10
DB	33.74	21.37	11	393	DB	4	4	2	18
F-15QT	1134.8	683.23	115	158	F-15QT	166	52	6	0
F-15SQT	332.86	51.48	2	2	F-15SQT	361	299	0	0
F-15ST	4217.93	2178.01	237	368	F-15ST	148	106	9	0
F-16QT	1119.56	677.46	188	238	F-16QT	167	18	7	0
F-16SQT	440.78	0	1	2	F-16SQT	441	431	1	0
F-16ST	4347.7	2328.33	385	552	F-16ST	256	85	6	0
GG	84.68	59.9	411	798	GG	17	21	10	10

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	97.08	42.98	139	397
AC/DB	191.49	109.16	393	788
DB	41.42	25.91	11	397
F-15QT	1139.6	583.1	125	158
F-15SQT	926.8	390.29	2	2
F-15ST	4435.88	2358.21	251	368
F-16QT	1165.51	641.36	188	238
F-16SQT	403.17	0	1	2
F-16ST	4633.69	2475.12	392	552
GG	108.38	67.96	394	790

		Average Flowdays	Monthly Prod
F-15	Run #1	145	32
	Run #2	133	30
	Run #3	139	32
	Average	139	31
	St Dev	6	1
F-16	Run #1	153	49
	Run #2	137	48
	Aun #3	146	48
	Average	145	48
	St Dev	8	0
F-15	Run #1	150	80
&	Run #2	135	77
F-16	Run #3	143	80
	Average St Dev	143	79 2

THREE RUN AVERAGE

RUN 1										
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN _	FLOW TIME	ST DEV	NUMOUT	NUMIN	
AC	84.49	34.98	124	439	AC	84	35	134	450	
AC/DB	106.13	61.49	441	900	AC/DB	106	62	450	894	
DB	23.88	11.26	14	439	DB	23	13	16	450	
F-15QT	315.12	182.17	141	158	F-15QT	317	227	143	158	
F-15SQT	86.46	96.94	2	2	F-15SQT	122	124	2	2	
F-15ST	3764.88	2591.88	353	368	F-15ST	3626	2440	327	368	
F-16QT	316.84	182.25	213	238	F-16QT	315	230	219	238	
F-16SQT	288.44	260.89	2	2	F-16SQT	212	204	2	2	
F-16ST	3861.23	2466.59	488	552	F-16ST	3785	2426	494	552	
GG	56.16	34.5	453	902	GG	59	41	460	894	

RUN 2									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN_
AC	83.82	35.53	149	448	AC	0	0	13	12
AC/DB	111.31	66.09	446	895	AC/DB	5	4	12	6
DB	21.52	11.25	15	448	DB	1	3	3	12
F-15QT	353.59	273.5	145	158	F-15QT	36	46	2	0
F-15SQT	200.91	199.54	3	2	F-15SQT	69	66	1	0
F-15ST	3722.13	2303.45	320	368	F-15ST	205	145	23	0
F-16QT	316.86	256.12	222	238	F-16QT	3	41	5	0
F-16SQT	296.75	350.61	2	2	F-16SQT	140	182	1	0
F-16ST	3689.38	2400.67	494	552	F-16ST	88	35	6	0
GG	61.23	48.07	470	894	GG	3	7	· 9	8

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	83.73	34.6	130	463
AC/DB	100.38	57.42	463	888
DB	23.2	15.9	20	463
F-15QT	282.28	226.1	144	158
F-15SQT	78.47	75.45	2	2
F-15ST	3390.78	2424.24	309	368
F-16QT	310.79	251.69	222	238
F-16SQT	50.67	0	1	2
F-16ST	3804.62	2411.72	499	552
GG	58.17	40.89	457	886

		Average Flowdays	Monthly Prod
F-15	Run #1	115	41
	Run #2	111	39
	Run #3	100	38
	Average	109	39
	St Dev	8	2
F-16	Run #1	116	59
	Run #2	110	60
	Run #3	114	60
	Average	113	60
	St Dev	3	1
F-15	Run #1	116	100
&	Run #2	110	99
F-16	Run #3	108	98
	Average St Dev	111	99

THREE RUN AVERAGE

RUN 1									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	86.1	39.48	129	429	AC	85	37	146	452
AC/DB	102.71	61.49	433	842	AC/DB	105	66	453	890
DB	26.22	11.45	16	429	DB	28	13	12	452
F-15QT	132.65	65.13	152	158	F-15QT	157	73	155	158
F-15SQT	69.26	18.96	2	2	F-15SQT	80	31	2	2
F-15ST	3531.98	2482.88	333	368	F-15ST	3520	2488	344	368
F-16QT	129.54	56.21	235	238	F-16QT	161	78	239	238
F-16SQT	60.62	5.97	2	2	F-16SQT	63	12	2	2
F-16ST	3366.48	2364.92	508	552	F-16ST	3476	2408	519	552
GG	54.39	37.48	401	841	GG	55	36	431	891

RUN 2									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	82.14	36.16	167	462	AC	2	2	19	20
AC/DB	105.43	65.09	458	913	AC/DB	3	5	18	42
DB	26.66	14.6	10	462	DB	3	2	4	20
F-15QT	173.12	80.68	154	158	F-15QT	22	8	4	0
F-15SQT	97.28	32.55	2	2	F-15SQT	15	12	0	0
F-15ST	3460.37	2396.26	354	368	F-15ST	55	94	11	0
F-16QT	183.48	88.79	243	238	F-16QT	28	19	4	0
F-16SQT	53.05	30.6	2	2	F-16SQT	11	16	1	0
F-16ST	3631.76	2447.56	522	552	F-16ST	139	41	9	0
GG	54.73	33.25	421	918	GG	1	3	37	43

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	86.3	36.85	141	466
AC/DB	107.79	71.78	467	915
DB	31.23	13.55	9	466
F-15QT	166.46	73.93	159	158
F-15SQT	73.38	42.53	2	2
F-15ST	3567.39	2584.39	346	368
F-16QT	170.37	88.77	239	238
F-16SQT	73.9	0	1	2
F-16ST	3429.67	2412.01	526	552
GG	56.44	38.58	472	914

		Average Flowdays	Monthly Prod
F-15	Run #1	102	41
	Run #2	102	43
	Run #3	104	42
	Average	103	42
	St Dev	1	1
F-16	Run #1	97	62
	Run #2	105	64
	Run #3	100	64
	Average	101	63
	St Dev	4	1
F-15	Run #1	99	103
&	Run #2	104	106
F-16	Run #3	102	106
	Average St Dev	102	105

THREE RUN AVERAGE

RUN 1 PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	102.16	39.93	118	417	AC	103	45	120	417
AC/DB	148.14	84.03	422	825	AC/DB	147	83	419	841
DB	30.18	37.49	15	417	DB	39	39	12	417
F-15QT	459.49	312.94	150	158	F-15QT	491	381	143	158
F-15SQT	323.32	192.73	2	2	F-15SQT	338	212	2	2
F-15ST	3810.26	2383.06	320	368	F-15ST	3909	2450	312	368
F-16QT	451.37	290.06	225	238	F-16QT	485	372	214	238
F-16SQT	260.85	198.03	2	2	F-16SQT	115	66	1	2
F-16ST	3737.58	2325.34	464	552	F-16ST	3791	2330	458	552
GG	87.07	60.96	409	831	GG	86	57	411	845

RUN 2 PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	107.47	53.52	116	421	AC	4	7	5	5
AC/DB	146.84	83.13	424	839	AC/DB	1	1	8	18
DB	33.25	28.97	16	421	DB	13	11	6	5
F-15QT	504.01	376.31	143	158	F-15QT	27	70	8	0
F-15SQT	334.88	143.33	3	2	F-15SQT	17	80	1	0
F-15ST	3818.99	2433.34	313	368	F-15ST	164	76	9	0
F-16QT	490.8	352.2	216	238	F-16QT	31	93	13	0
F-16SQT	27.31	0	1	2	F-16SQT	127	114	1	0
F-16ST	3853.08	2308.73	459	552	F-16ST	58	23	7	0
GG	81.35	51.05	421	841	GG	5	5	9	16

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	98.75	42.11	126	412
AC/DB	146.27	82.41	410	860
DB	54.45	50.53	6	412
F-15QT	508.18	453.07	135	158
F-15SQT	356.09	299.89	2	2
F-15ST	4097.79	2533.08	302	368
F-16QT	512.7	472.92	200	238
F-16SQT	55.56	0	1	2
F-16ST	3782.93	2355.03	450	552
GG	90.79	57.94	403	862

		Average Flowdays	Monthly Prod
F-15	Run #1	114	39
	Run #2	115	38
	Run #3	124	37
	Average	118	38
	St Dev	6	1
F-16	Run #1	111	58
	Run #2	116	56
	Run #3	116	54
	Average	114	56
	St Dev	3	2
F-15	Run #1	112	97
&	Run #2	115	95
F-16	Run #3	119	91
	Average St Dev	115 3	94 3

THREE RUN AVERAGE

RUN 1 PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	85.64	36.58	138	467	AC	84	35	135	448
AC/DB	113.13	73.72	464	902	AC/DB	109	69	449	904
DB	25.83	13.63	13	467	DB	23	14	14	448
F-15QT	142.34	65.66	150	158	F-15QT	143	66	154	158
F-15SQT	33.67	0.54	2	2	F-15SQT	51	19	2	2
F-15ST	3660.44	2648.33	341	368	F-15ST	3531	2403	350	368
F-16QT	142.51	59.75	231	238	F-16QT	142	64	237	238
F-16SQT	93.13	15	2	2	F-16SQT	71	41	2	2
F-16SC1	3581.8	2481.92	539	552	F-16ST	3494	2448	525	552
GG	61.12	41.37	443	902	GG	59	41	454	<i>∌</i> 05

RUN 2 PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	82.03	35.39	145	447	AC	2	2	11	18
AC/DB	111.26	74.01	450	912	AC/DB	6	8	16	8
DB	22.69	12.8	10	447	DB	2	2	5	18
F-15QT	131.17	58.2	155	158	F-15QT	12	7	3	0
F-15SQT	49.69	19.89	2	2	F-15SQT	18	19	0	0
F-15ST	3562.48	2339.36	363	368	F-15ST	148	220	11	0
F-16QT	139.12	65.51	242	238	F-16QT	3	4	6	0
F-16SQT	101.4	107.13	2	2	F-16SQT	45	58	1	0
F-16ST	3456.18	2433.84	522	552	F-16ST	76	30	13	0
GG	65.34	46.04	472	915	GG	7	6	16	9

RUN 3 PN AC AC/DB DB F-15QT F-15SQT	FLOW TIME 84.2 101.66 21.26 154.59 70.09	ST DEV 32.37 60.3 16.46 72.92 37.75	NUMOUT 123 432 19 156 2	NUMIN 431 897 431 158 2
F-15ST	3370.18	2221.75	347	368
F-16QT	145.51	67.24	239	238
F-16SQT	19.14	0	1	2
F-16ST	3443.38	2427.09	513	552
GG	51.63	34.59	448	897

		Average Flowdays	Monthly Prod
F-15	Run #1	107	41
	Run #2	105	43
	Run #3	98	42
	Average	104	42
	St Dev	5	1
F-16	Run #1	106	64
	Run #2	100	64
	Run #3	100	63
	Average	102	64
	St Dev	4	1
F-15	Run #1	106	105
&	Run #2	102	107
F-16	Run #3	99	105
	Average St Dev	103	106

THREE RUN AVERAGE

RUN 1 PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	103.25	44.82	137	436	AC	100	44	133	443
AC/DB	214.01	139	432	867	AC/DB	209	124	439	868
DB	33.35	28.38	11	436	DB	33	22	11	443
F-15QT	287.11	158.84	144	158	F-15QT	317	203	143	158
F-15SQT	76.34	72.93	2	2	F-15SQT	- 180	102	2	2
F-15ST	3697.45	2531.73	343	368	F-15ST	3676	2469	329	368
F-16QT	298.25	170	215	238	F-16QT	332	218	218	238
F-16SQT	145.91	58.09	2	2	F-16SQT	200	173	2	2
F-16ST	3641.96	2307.05	475	552	F-16ST	3743	2379	477	552
GG	153.68	118.98	425	866	GG	149	104	414	870

RUN 2 PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	95.07	45.32	121	438	AC	5	2	10	11
AC/DB	207.87	122.33	432	872	AC/DB	5	14	12	3
DB	37.45	24.71	15	438	DB	5	7	4	11
F-15QT	346.27	220	141	158	F-15QT	30	38	2	0
F-15SQT	249.45	136.09	2	2	F-15SQT	91	32	0	0
F-15ST	3731.59	2496.69	314	368	F-15ST	69	81	15	0
F-16QT	337.82	220.42	221	238	F-16QT	32	47	3	0
F-16SQT	414.2	459.57	2	2	F-16SQT	193	250	1	0
F-16ST	3688.54	2332.38	476	552	F-16ST	136	104	3	0
GG	141.99	91.89	410	872	GG	6	14	10	4

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	102.69	42.24	140	456
AC/DB	203.64	112.14	452	866
DB	26.91	14	7	456
F-15QT	318.18	228.93	144	158
F-15SQT	214.28	97.97	2	2
F-15ST	3598.2	2377.81	330	368
F-16QT	361.19	263.49	218	238
F-16SQT	39.96	0	1	2
F-16ST	3897.61	2498.94	480	552
GG	152.32	100.76	406	873

		Average Flowdays	Monthly Prod
F-15	Run #1	112	41
•	Run #2	111	38
	Run #3	108	40
	Average	110	40
	St Dev	2	1
F-16	Run #1	108	58
	Run #2	109	58
	Run #3	116	58
	Average	111	58
	St Dev	4	0
F-15	Run #1	110	98
&	Run #2	110	96
F-16	Run #3	113	98
	Average St Dev	111	98

THREE RUN AVERAGE

RUN 1 PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	103.43	45.85	137	461	AC	104	47	137	449
AC/DB	178.52	120.05	447	911	AC/DB	170	116	440	889
DB	29.93	22.22	14	461	DB	30	23	14	449
F-15QT	183.57	93.38	154	158	F-15QT	206	111	154	158
F-15SQT	62.93	29.29	2	2	F-15SQT	78	39	2	2
F-15ST	3722.58	2438.98	353	368	F-15ST	3724	2462	344	368
F-16QT	190.19	102.28	236	238	F-16QT	214	113	236	238
F-16SQT	141.6	54	2	2	F-16SQT	79	28	2	2
F-16ST	3792.13	2503.73	525	552	F-16ST	3641	2421	514	552
GG	127.88	87.75	475	923	GG	110	82	460	898

RUN 2				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	107.77	47.52	136	429
AC/DB	169.6	125.13	419	873
DB	34.34	26.91	13	429
F-15QT	180.72	79.9	155	158
F-15SQT	94.65	46.28	3	2
F-15ST	3761.01	2408.08	341	368
F-16QT	184.71	82.04	243	238
F-16SQT	45.6	31.07	2	2
F-16ST	3492.69	2408.27	507	552
GG	105.51	96.69	439	881

PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	3	1	2	17
AC/DB	8	11	18	20
DB	5	3	1	17
F-15QT	41	42	2	0
F-15SQT	16	9	1	0
F-15ST	37	68	8	0
F-16QT	46	38	7	0
F-16SQT	54	27	1	0
F-16ST	150	77	9	0
GG	16	19	19	22

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	101.6	46.67	139	457
AC/DB	162.11	103.98	453	884
DB	24,44	21.27	14	457
F-15QT	253.34	159.12	152	158
F-15SQT	77.36	40.91	2	2
F-15ST	3687.12	2539	337	368
F-16QT	266.43	156.05	230	238
F-16SQT	51.23	0	1	2
F-16ST	3639.25	2351.62	511	552
GG	98.05	60.71	467	891

		Average Flowdays	Monthly Prod
F-15	Run #1	110	42
	Run #2	109	42
	Run #3	109	41
	Average	109	42
	St Dev	1	1
F-16	Run #1	111	64
	Run #2	101	63
	Run #3	108	62
	Average	107	63
	St Dev	5	1
F-15	Run #1	111	106
&	Run #2	104	104
F-16	Run #3	108	103
	Average St Dev	108 3	104

THREE RUN AVERAGE

RUN 1									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	83.35	34.9	156	449	AC	89	38	152	456
AC/DB	107.67	61.44	452	894	AC/DB	108	64	453	902
DB	24.35	16.42	7	449	DB	26	16	13	456
F-15QT	118.15	49.71	154	158	F-15QT	126	56	158	158
F-15SQT	81.81	77.36	2	2	F-15SQT	63	26	2	2
F-15ST	3524.32	2527.18	356	368	F-15ST	3377	2394	345	368
F-16QT	129.5	54.68	234	238	F-16QT	133	58	240	238
F-16SQT	61.59	4.75	2	2	F 16SQT	61	14	2	2
F-16ST	3531.45	2491.97	525	552	F-16ST	3493	2431	535	552
GG	55.7	38.47	445	896	GG	54	36	437	905

RUN 2									
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN	PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	93.58	38.65	157	471	AC	5	2	7	13
AC/DB	107.7	64.87	469	906	AC/DB	0	2	15	7
DB	28.5	15.5	13	471	DB	2	1	6	13
F-15QT	121.19	54.46	157	158	F-15QT	11	7	4	0
F-15SQT	57.77	1.44	2	2	F-15SQT	17	44	0	0
F-15ST	3352.7	2354.39	340	368	F-15ST	137	119	10	0
F-16QT	131.03	54.05	242	238	F-16QT	4	7	5	0
F-16SQT	82.47	20.97	2	2	F-16SQT	22	8	0	0
F-16ST	3406.3	2325.25	533	552	F-16ST	76	92	11	0
GG	54.63	34.88	436	907	GG	2	2	8	8

RUN 3				
PN	FLOW TIME	ST DEV	NUMOUT	NUMIN
AC	90.13	39.22	144	448
AC/DB	108.35	65.43	439	907
DB	25.57	14.64	18	448
F-15QT	138.59	62.85	162	158
F-15SQT	48.08	0.4	2	2
F-15ST	3252.67	2299.88	339	368
F-16QT	137.69	66.1	244	238
F-16SQT	38.39	16.95	2	2
F-16ST	3542.44	2476.92	546	552
GG	52.68	34.98	430	912

		Average Flowdays	Monthly Prod
F-15	Run #1	104	43
	Run #2	97	42
	Run #3	93	42
	Average	98	42
	St Dev	5	1
F-16	Run #1	103	63
	Run #2	99	65
	Run #3	104	66
	Average	102	65
	St Dev	2	1
F-15	Run #1	103	106
&	Run #2	98	106
F-16	Run #3	100	108
	Average St Dev	100	107

9.0
POTENTIAL IMPROVEMENT RECOMMENDATIONS

The civilian industry has a low spare rate of major units. The goal for the major maintenance bases is to keep the units in the field - working. This is accomplished in two ways:

- 1) Make sure the units are ACTUALLY REPAIRED SO THAT THE RETURN RATE IS LOW AND THAT THE TIME COMPLIANCE REQUIREMENTS UNTIL THE NEXT TEARDOWN ARE HIGH;
 - 2) Move the units through the shop AS FAST AS POSSIBLE.

A problem that the civilian industry deals with regularly is <u>LACK_OF</u> <u>MONEY</u> to spend on maintenance...the goal being TO DO THE BEST POSSIBLE JOB AND STILL SAVE MONEY. THE WAY TO REACH THIS GOAL IS TO WORK EFFICIENTLY AND COST-EFFECTIVELY.

THE MILITARY IS NOW BEING FACED WITH BUDGET CRUNCHES, WHICH WILL ONLY GET WORSE AS THE YEARS GO ON.

The age-old system, which includes deep pockets and loose accountability standards, will not work anymore. THERE IS A NEED TO CHANGE THE PROCESS and, in some cases, THE BASIC WAY OF THINKING. The budget of the future will create a necessity to be more efficient and to keep spares in the field...rather than having to buy new UFCs "as an emergency."

Specifically, it is necessary to have an accurate plan for each repair shop to follow. Technical data must reflect daily operations according to military rules and regulations. There is no way the UFC shop should be operating with tech data that has little, if anything, to do with the way they are actually doing business. There is, indeed, a major difference between on-condition maintenance and complete overhaul or even "return to specifications."

The civilian industry must report to the FAA, so (by law) airlines and third-party maintenance organizations have clear-cut regulations to follow. These maintenance documents are blessed by the FAA, and are also the documents to which their actual practices are compared during inspections.

In order to make sure that shops are adhering to the established technical data (this is assuming that correct tech data WILL be written), there must also be random inspections done at various points in the process BY SOMEONE OUTSIDE THE SHOP'S CHAIN OF COMMAND.

Individual parts *must* be tracked all the way through the process. This should include notating what was done to the part. **BAR CODING**, as part of a computerized tracking system, IS AN EASY WAY TO IMPLEMENT SUCH A PROCESS.

Having this kind of indepth history available will also make it easier to do the research necessary to solve the quality problem. According to records, the amount of time in the field between depot-level maintenance visits is about 1/3 of Bendix's predictions: 600 hours instead of 1600! Some of this deviation may be due to optimistic expectations on the part of Bendix; however, those kind of statistics would not be tolerated in the civillan industry.

A study needs to be done together with the vendor. New procedures should be written to detail how the process actually works, and then realistic statistics for the units should be calculated. Given the current data, it would seem that time-compliance tasks should be adjusted to accommodate the high failure rate in the field.

The absence of applicable tech data more than likely has a direct relation to the high number of UFCs coming back with failures so soon after repair. This problem goes deeper than "HIGH INFANT MORTALITY RATES." This also suggests that there is not enough separation between Q.C. personnel and the Production Department.

CLEARLY, IT IS IMPOSSIBLE TO PINPOINT PROBLEMS IN THE PROCESS OF A SHOP (OR THE QUALITY OF WORK PUT OUT) IF THERE IS NOT A PARTS ACCOUNTIBILITY PROGRAM, NOR A SERIOUS QUALITY CONTROL PLAN.

On-Condition Maintenance (OCM) programs have been established by many of the airlines - and then abolished. One of the reasons for this is that units were not able to remain in the field as long before being brought in for another problem or a time-compliance inspection. OCM works much better in the airframe department than in the engine department.

Actually, an OCM program might work efficiently for the Air Force because of the huge inventory of spares...if it is possible to get the majority of the inventory out in the field, working. I do not have exact numbers, but I do know that the USAF's inventory (spare level) is substantially higher than the civilian industry's. On the other hand, the percentage of that inventory that is ACTUALLY FUNCTIONING IN THE FIELD IS WAY TOO LOW.

HILFORE FIELEM FIG.

FOR THE PRICE OF ALL THESE REPAIRABLE ASSETS, THE AIR FORCE COULD BUY ______! (Pick something that everyone can relate to longingly) X # of BMWs?

The current OCM team is moving in the right direction towards creating a functional data base for the UFCs. It is still impossible to have an accurate history of each UFC if there is only information regarding the *type* of previous write-up, but with no data about what was done to repair said item.

Plans & Scheduling should start the process on each UFC to be inducted by checking its history before it is released by DS. But, how can Production be prepared to handle recurring problems if there are no systems in place to actually "track incoming repairable assets by serial number?" (Nadeau, Jul 90)

In the civilian industry, the Planning Department takes an active role in accountability, parts tracking and workflow. Call it what you will, there is no tolerance for working "easier" jobs first or putting off particular jobs because of "parts availability." Workflow is established in planning; deviations must be explained by floor managers.

In the Plans & Scheduling Departments of civilian companies, there is limited technical training, but these personnel CAN, AND DO, differentiate between various components and parts. This is learned by studying pictures of units shown torn down, as well as from spending time out on the floor tracking part numbers during required "random checks."

Procurement of necessary parts to keep units flowing through in a timely manner should be a priority. Inventory should not be "frozen" unless it is an absolute emergency; most companies had never heard of that happening - ever! When parts availability becomes a problem, yet the parts are actually in the hands of the company (in this case, the Air Force's distribution center, "DS",) the system needs to be changed.

I also suspect there may be some problem in the way that "pending parts waiting" items are handled by MIC. Because a desk drawer is used as a pending file, it is possible that suspense items are not checked on for a "re-request" often enough. (One has a tendency not to flip through lots of little pieces of paper on a daily basis when other work takes the attention.) Since the Air Force has computer capability, it would be a good idea to transfer the suspense or pending files to a computer program - perhaps the Tracker II program could accommodate this.

Once new procedures documentation is written, there is another area which will become easier to manage: Training of new personnel.

For the airlines and 3rd-party companies, the FAA requires complete training records be kept on each mechanic. This has prompted these civilian organizations to develop detailed training programs over the years. A single mentor (or the last person to fill that slot) does not have to be attached to the new employee because the supervisor can assign different people to train and sign-off each task.

There are many ways to increase productivity and quality. But in order for these new ideas to take hold, upper management must make the changes. Decisions will have to be made to try the experimentation necessary to pinpoint the big problems in the system. Parts accountability and the creation of an accurate manual for current maintenance practices are the two places to begin solving the problems.

Being accountable, by having procedures and tracking methods, will undoubtedly make some people within the system very nervous. Such a system will show quite quickly where flaws in the process are hidden.

Unfortunately, if the low spare rate in the field is ever to be brought up to an acceptable amount, and the quality of those spares is to be increased, an accountability method will have to be established.

Question: How can one be sure that increased production rates and lowered flowtime and WIP levels are not due to a large # of units that had been WIP for months which finally came through during this period of time?

9.1 SPARES INVENTORY

ADDITIONAL NOTES REGARDING HUMAN FACTORS EVALUATION OF SAN ANTONIO UFC TEST AND REPAIR FACILITY, KELLY AFB

A. Majoros, S. Heinze, P. Neander, Douglas Airgraft Co. September 18, 1990

Observations

Physical condition

Test Stand Operation. Addessibility of tools is good since operators have tool boxes close at hand. Some tool boxes were observed containing tool pockets cut into foam to insure that tools could be quickly accessed and not lost. Attachment of lines to plumbing hook-up points is time-consuming due to the nature of fuel controls (attachment can take up to three hours); this operation could be assigned to a lower skill trainee to better use skilled operators, time. Improved labeling of test stand hook-up lines may also help to reduce the time for this task. Test stands appear well designed, although frequent checking of computer screen (on the larger stands) while making adjustments on controls may be fatiguing.

Space between stands, cushioned mats on floor, and bench-top space appear adequate. Shop is clean and not unusually noisy.

Operators' aprona and goggles are adequate, and do not appear to inhibit movement. Sliding apray screens near controls can be positioned to protect operators from high-pressure spray. Emergency stop switches are well placed and labeled. In general, responsible safety concerns are evident.

Regarding lighting, work on controls seems to require higher levels, but the screens on test stands seem to require lower levels. No measurements were taken, but we recommend them. If lighting in the shop is increased, add shrouds over the computer screens.

Puel Control Repair. Tools are readily accessible since tool boxes are located next to work benches.

DDB PAGE NO.

DDB PAGE NO.

The repair area is spacious, although an observer might have the impression that individual oraftsmen do not have adequate benchtop

091001

JCIN	NEER	INIC		LEG.
47311	4CCN	1147	110	

EMPLOYEE	DATE	PAGE NO	4
RCC	SUBJECT	,	

272

These factors were not studied. However, it appears to us that changes to improve efficiency and throughput would be easier to accomplish in areas other than shifts, breaks, and work schedules.

Processes

Many observations about processes with the UFC facility are contained in our Engineering Notes of July 20 and August 15, 1990. We believe that processes offer a great potential for improvement especially if these are in association with personnel (e.g., training, allocation of skills) and equipment (e.g., improved scheduled maintenance on test stands) solutions. The Engineering Notes contain a number of suggestions.

The process-related matter that seems to stand out most clearly is the variability in method among operators. (Variability of method probably occurs among craftsmen as well, but our focus was the test environment). Examples of this variability include, but are probably not limited to, time to "plumb" a control for testing, number of repetitions of tests, amount of time on some tests, interpretation of test data, interpretation of test stand and fuel control interactions, and selection of procedural information to follow. Variability should be avoided where possible because it makes the process difficult to understand and therefore difficult to improve, it affects quality, it makes production levels difficult to predict, and it creates unexpected performance differences among people.

Recommendation for Further Study or Intervention

Brief Description

The variability matter discussed in <u>Processes</u> above is an excellent target for further study because low-cost changes in information presentation have a good chance of reducing variability. An intervention approach applying to test stand operators that could address the variability matter described above would standarize the information by allable to oberatorops PAGE NO.

Briefly, this idea calls for a computerized data base containing diagnostic and adjustment (corrective information) information 091062

a	1	Λ	
2	7	o	

2

ENGINEERING NOTES

EMPLOYEE	DATE	PAGE NO
RCC	SUBJECT	

space for their tasks. There was no close observation regarding this need. Repair people have mats on which to stand, stools for sitting, bench-top surfaces, parts trays, and a clean and orderly work environment. We did not study these features closely; Graftsmen may have a number of "likes" and "dislikes" about these items and production may or may not be affected by them.

Area lighting seems to be adequate, but task lighting does not (again though, no measurement).

Test Stand Repair (On-Site Maintenance). Personnel come into the test and repair facility to maintain test stands. The larger stands are well designed for repair and maintenance access, although particular problems may be present of which we are unaware. We did not observe access provisions on small stands.

Work inside stands may be difficult and uncomfortable, especially for tall persons. The floor surface is steel grate, task lighting must be brought in, and pumps (for those times when pumps must be running while on-site maintenance is inside the stand) probably oreste high noise levels.

Access around and between stands is cramped and it seems that moving tools, components and support items (lights, hoists, etc.) would be difficult. Long repair times on test stands Greates a anowballing problem: controls might be moved to another test stand, long "negotiations" regarding test stand versus control diagnosis may occur, and predictability of production is reduced.

The layout of stands is understandably oriented to use of the stands rather than repair of the stands, but because test stands require considerable scheduled and unscheduled maintenance, efforts to reduce the frequency of test stand repair should be aggressively investigated.

Morale. Supervision, and Management

We made no formal study of these factors, but discussion with several facility personnel and with MDC on-site personnel gave us some sections. Test and remained morals. No suggestion of spathy was encountered. There is a shared perception that the work of the facility requires extensive training,

SEP 19 '90 12:35

DATE ___

PAGE NO.

RCC_

SUBJECT

skill, perseverance, and intelligence. Personnel are aware of the importance of their production to Air force readiness and have been recognized with several awards. The facility is the subject of attention and personnel generally believe their problems can be solved.

Some personnel at various ranks and levels may have come to believe that all aspects of test and repair require high skill levels and that their field (i.e., unified fuel controls) is so complex that standardized procedures are not useful. We believe that supervisors and managers should be aware of this thinking and try to modify it thoughout the facility to this end: not all aspects of test and repair require high skill levels (so it is good to allocate skill where it does the most good for production) and standardization is especially useful with complex equipment.

Supervison has a challanging, dual task; (1) encouraging independent thinking among test and repair personnel and, at the same time, (2) teaching their people to seek expert help and accept management goals for the facility. Our impression is that the supervisors in the facility are required to devote too much attention to threading through these matters and do not have enough time and attention for increasing and improving the quality of technical information available to operators and oraftsmen.

Management has helped to raise morale even while keeping up a steady pressure for increased production. However, misperceptions about levels of production and quality circulate through the facility, suggesting that management could gain more cohesiveness and cooperation in the shop and could represent itself more accurately to base (executive level) management if they published data with consistent, commonly understood meanings.

Training

We were not able to study training ourrioula, methods, or material. Research from other fields of maintenance indicates that DDB SHOWLOND COAR have a significance production and quality.

EMPLOYEE	DATE	PAGE NO
RCC	SUBJECT	

envision a low-cost, PC-based, evolutionary build-up of troubleshooting logic trees that supply the requesting operator an aid in fault isolation. Operators would be rewarded for making useful additions to the data base.

Rationale

The following facts suggest an intervention simed at reducing variability in methods by improving and standardizing technical information for operators.

- 1. A key source of information for operators during fuel control testing is test stand output (computer screen). On-site maintenance, particularly David Bippert, has developed very comprehensive and powerful diagnostic programs out of software originally designed for quality control of newly produced UFCs. But for various reasons, such as departure from the software's original purpose, it does not meet every procedural or diagnostic need and operators typically do not rely exclusively on test stand diagnostics.
- 2. Technical Order (TO) information (upon which test stand diagnostics and output is based) is a second source of information for operators. However, many paragraphs are out of date and/or inaccurate. The TO is oriented to overhaul rather than test and repair, and some necessary test procedures are not contained in the TO. Surprisingly, while textual/diagramatic fault isolation trees are virtually an industry standard format for mechanical procedural information, we could not find any of these trees in the TO.
- a third source of information. The OCM team consults on problems and distributes tips, solutions, and advisories on paper to operators. Frank Mann, before becoming OCM Team Leader, started a trial system whereby operators in his unit would write their diagnostic and adjustment procedures on sheets of paper and turn them in to him. Mann's intent was to sort through the written sequences and determine the most officient troubleshooting sequences for specific problems. Mann told us that his system was popular in his unit because it increased the amount of shared information about specific problems.

2	7	4
4	•	7

EMPLOYEE	DATE	PAGE NO
RCC	SUBJECT	

He was promoted before collecting enough of the forms to derive optimal sequences.

- A fourth source of information used in fault isolation is knowledge shared among operators themselves. This sharing is effective when it is available, but no formal means exist to build on it. Mann's experience indicates that operators would probably share tips, discoveries, and useful experiences more often if a medium existed to do so, particularly if some incentive (reward) were associated with the sharing.
- Training information is a fifth source of information, although we were not able to study this material.
- 6. The variety of sources adds to the variability in method among operators, but the fact that information domes from multiple sources should be respected. Attempts to combine, supercede, or abolish some forms of information would be very time-consuming and counterproductly ..

More on the rationale for this approach is contained in the Engineering Notes of August 15, pp 5-8.

Detailed Description of Intervention or Study Plan

alternative)

This intervention calls for setting up in the shop area a single 386- or 486-level ruggedized personal computer with high-capacity hard drive. The computer would run a data base program with simple graphics to produce fault isolation trees and a simple menu for operator interface.

To use the computer, operators would walk from their stands to a central location, use a menu to select a test paragraph, and request a printed copy of a logic tree containing the test and fault isolation sequences for the paragraph. (Please see attachments for sample soreens.) They would return to their stands with the printed copy.

Logic tree sequences would contain usually three alternative procedures in a suggested sequence; DDB PAGE NO. DDB SECTION CODE DDB FAGE NO. Test stand procedure is shown in standard fault-tree format (first 091066

O TO procedure is also shown in standard fault-tree format (second

EMPLOYEE	DATE	PAGE NO
RCC	SUBJECT	

- o would present the current variety of information sources in a unified format in one location.
- o would present procedural information in a visual, easy-to-follow format, using standard icons of diamonds for decisions and rectangles for procedures.
- o would lead operators to follow standardized procedures but ...
- o would give the test stand operator the same freedom as they have now to exercise independent thinking and gather information for their individual benefit.
- o would relieve the OCM team from repeated calls for the same specialized information.

A precedent for computerized information like the type being recommended here exists in a system for parts inspection at Douglas Aircraft in Long beach, California. Implementation began with a single computer in the inspection area and training for a few respected inspectors. Their use of the system and casual discussion of the system with other inspectors belied generate interest thoughout the inspection area in using the system. In time the computerized procedures became the preferred method and more computers were installed.

Rewards for suggestions from operators (their notes on test and fault isolation experience) might be monetary (Form 1000), the name of the contributing operator displayed on a chart or on the printout so it can be seen by others, preferred parking location for a month, thanks from management and supervision in meetings, and so on.

Prototype menu screens and screens with logic trees are attached (6 pages). All of these pages present models of actual screen (and NCR paper) output, although only the first two pages are shown with borders. The prototypes deal with Mating and Indexing Paragraph 12.000, Idle Governor. Subparagraphs 12.090, 12.110, 12.130, 12.140 and 12.180 are shown in prototype. Note that alternative sequences are called out, giving a choice to the operator, but leading to conscinuous conscinuous operators by the POS MACONG ing order of display. The alternatives (test stand instructions, TO, OCM recommended approach, etc.) should be arranged represent the facility's usual priority ()

EMPLOYEE	ENGINEERING NOTES DATE	
RCC	SUBJECT	
M & I Fault Solution C		
		Menu Screen ≠
Enter Test Sequence Number		
	Press Enter to Continue]
	Press Enter to Continue	
12.000 Idle Go	ovsiuor .	Menu Screen *
12.000 Idle Go Select a specific F Number:	ovsiuor .	(Optional: Will r
12.000 Idle Go Select a specific F Number: 12.090 12.110	ovsiuor .	(Optional: Will rappear if entire
Select a specific F Number: 12.090	ovsiuor .	(Optional: Will rappear if entire test sequence number is enter
12.000 idle 60 Select a specific F Number: — 12.090 — 12.110 — 12.130 — 12.140 — 12.160	ovsiuor .	(Optional: Will rappear if entire
12.000 Idle Go Select a specific F Number: ———————————————————————————————————	overnor ·	(Optional: Will rappear if entire test sequence number is enter
12.000 idle 60 Select a specific F Number: — 12.090 — 12.110 — 12.130 — 12.140 — 12.160	overnor ·	(Optional: Will rappear if entire test sequence number is enter

DDB SECTION CODE

12

EMPLOYEE	DATE	PAGE NO.
RCC	SUBJECT	

7

ranking for particular tests.

Implementation Plan

We auggest the following sequence for implementing this method.

- 1. Present idea to customers. Obtain approvals.
- 2. Determine requirements for computer in UFC shop.
- 3. Locate computer and printer and purchase.
- 4. Design database and graphics interface with user-friendly input and output screens as suggested by this Human Factors analysis.
- 5. Onther information regarding H & I test sequences (if H & I is selected as the system trial). This information will be located in test stand output, TOs, OCM team information, training information, operators' personal and shared knowledge.
 - 6. Hire/transfer a programmer into the project.
- 7. Program database with information for some non-trivial number of paragraphs and input/output formats.
- 8. Select a few operators on each shift to be part of a pilot group to use the new system and attempt to increase other operators: awareness and acceptance of the new system.
- 9. Selected operators use system, employing computer as they encounter controls that defy quick diagnosis.
- 10. Programmer adds to database as trial period proceeds and uses notes and suggestions from operators! NCR copies.
 - 11. Reward operators' additions to system.
 - 12. System is expanded according to shop needs.

EMPLOYEE	DATE	PAGE NO	15_
RCC	SUBJECT		

alternative)

O Shop experience/OCM recommendation is also shown in standard fault-tree format (third alternative)

The personal computer printout would be on "no-carbon-required" (NCR) paper so that operators could write notes about the test paragraph and their actual experience with the specific test, keep their original in a notebook and, if they chose to, pass the copy (containing their hand-written notes about the paragraph) on to the OCM team.

If the OCM team considered suggestions in the notes to be important additions to the fault tree for particular test sequences, additions to the data base would be made and the operator submitting the notes would be rewarded in some way. This method would bring about the steady growth of shared information among operators.

The data base would contain all the various sources of information described above in <u>Rationale</u> for selected paragraphs. Existing fault isolation procedures from all current sources would be easily accessed with a powerful personal computer and presented in logic tree format.

Our analysis of the shop processes indicates that while the lack of a standardized system of information has made UFC fault diagnosis complicated, the current methods are still effective, although not efficient. All the data gathered by an operator is necessary to complete the task. The proposed method ...

- o would not change the information in any way.
- o would not alter procedures.
- would not replace existing directives or supplant training material.
- o would not provide diagnoses. It is not an expert system.
- o would not require adding all paragraphs before implementation of the system. A few critical paragraphs can be selected to start the system, and additions and updating could continue after the system is introduced.

The data	base would	contain information	that is	available	now,
DDB SECTION CODE		DDB PAGE NO	····		00404
					091015

EMPLOYEE CARDNER	DATE 18 Sept 90 PAGE NO. /
BCC MATORA	SUBJECT Maint, man hour times

Roy Evans (MAZ) provided the following estimates for use in memse QF cost estimates:

: Time to fill fluid levels (hydraulic on culibration) on a 5000x Test Stand

15 mins

: Time to change burst disk in a 5000x Test Stand

30 mins

EMPLOYEE <u>GARONFR</u>	DATE 12 Sept 90 PAGE NO.	
RCC MATPEA	SUBJECT UFC no-ld-wide	dictribution

Spoke to Messus Robert Richard and Armondo Valdez (mm) regarding a current status of UFCs in contract repair. They provided the following data which they told me was current as of 20 Aug 90:

	IHI	BENDIX	Pan Overseas
# UFCS IN House	15	78	30
Scheduled Flow time	120 duys *	150 Juys	60 days*
Monthly production RATE	4 uFCs	12-22 ufy	10 uFLs

* The extreme difference between these vendors is caused by the fact that IHI uses Gou't Furnished Matil (GFM) for replacement ports while Pow uses its own inventory system.

DDB SECTION CODE 6.0 DDB PAGE NO.

EMPLOYEE PANDY LERIS DATE 130/90 - 8/3/90 PAGE NO.

RCC MATOFR SUBJECT SPARE PARTS INVENTORY MODEL.

FEGGICALISM NIMES.

WITH REGARD TO THE CONTINUING OF ESCRET OF LE Three HAR INBUTERY MOEL, MET OF THE DATA FROME GOLDE ESSERTIAL FOR EXECUTION OF THE MODEL HE ASSIV COMPILED WITH THE EXCEPTION OF THE SHOREME DENAIT THE BASIC ISSUE WITH THE DETERMINATION OF THE COST IS THIS IF A UFC IS COUSED TO GO INTO AWP STATUS FIRM CERTAINS PERIOD OF TIME (SAY, 60 DAYS) BECAUSE A MARTICULAG SPARE PART SHOWING STOCKBUT OCCUPACED, WAT IS THE MULLE WIT IN STORAGE (NON-PRODUCTIVE TIME) ! I MILE CONSINTED SEVEROLL SOMETO IN MA TO KIEME TO FINE OF IF THE PARKE IT RICK, -XC. E. MINCENTLY THE FIGURE HAS NEVER DEEN GOLD WORTD. WE CAN SPECULATE TIRT THERE IT SOME CONSTRUCTS COST I ADDICIOTED WITH THE AWP, A TIPE OF "CANTAL" COST, WELL HORES FOR LEGAL RAPERCES, AND FIELD HORE ASSESSED WITH MECHANICS CARD FOR UPC SWITCHING, THERE ME MORELES JEWERRE THERE INDIECT COST WILL WARD BE EXCHANGED DITTE DETERMINE HOWEVER, WAEN THE DIGIKE FAND DECISION I VESTET COSTAND GERNASS DIECOBLES TO THE COST WAS PRESIDE CONTROL 2 1 12 12 1 100 18 Wall at 14.0 86 . ALL OF THE VIRIBLE RELECTIONS OF AND EDING SE REEN FORMULATED. THE MODEL WILL SETEMPINE AND A SETEMPS

PRODUCTION GUERATION THEF

POTT AND Q (RECPORT QUARTY) AND WILL IT COMPLETED IN THE

COPPETTY UNIVER UTILIZED BY MM.

FIRE OPERATION TIMES USED IN THE MOSE _ THE SHOP SMEET SOME WAS INFRANCED AS TO WHAT ASTRONOMIC WARD OF A MAN TO STAND THE SHOP SMEET SOME STAND AS A STAND OF THE SHOP SMEET SOME STAND AS A STAND OF THE SHOP SMEET SOME SMEET SOME SMEET SOME SMEET SOME SMEET SOME SMEET SMEET

PNION		10.10	NOTES
-NC-II	$N \vdash \vdash \vdash \vdash$	IIVII •	NO III ->

EMPLOYEE	DATE	PAGE NO.
RCC	SUBJECT	

EDR INVENTORY MODEL EXTENDED FOR

USEISBLES: (REFERENCE PP. 72-74 OF GIND MANUAL)

K: K30 FOR OUR PURPOSES. NO SET-UP TIME EXITY
FOR THE SPARE MASS COMPONENTS.

HE THE HOLDING COTT IS GIVEN AS . 5% OF THE PURCHASE OST / UNIT OF THE SPORE PART. GLEN BISN, MOGRAM MOHORE OF THE FIB, INDICATED THAT THE ACTUAL STORAGE CUT CALCULATION FOR THE OS HARBHOUSE IS IN A MANIAL AND IS APPROXIMATELY -0414 (HIS ESTIMATE AS TO LACE IT WAS). LOWEVER, THE IS TO SUPPLIE,

ATT THE SHOETBER PENALTY COST, PI, IS THE COST ASSOCIATED LITH A SPARE PART DEING STOCKED OUT AND CAUSING A UFC TO GO AND. THE COST IF THE STOCKED WE DETERMINED BY LAY THE LOVES ASSOCIATED WITH PERFORMING A ROBBING MAD PREDICTED THE VICE FIRE STOCKED. FITTINGS THE SHOP.

3 HRS × 11,27/HR = \$33.81

(2) COST OF CAPITAL FOR THE PART, PI THIS COST PROBABLY WONT APPLY, OUT SINCE NO ONE ON THE BASE HAS ANY IDEA OF LANT IT CUTTS THE AIR FORCE TO HAVE N OFC SIT IN STORAGE FOR (5.7) GO 0.145 THE COST OF CAPITAL WILL BE USED AS A STARTING PILLT. STACE THE UFC IS A TAMBUSCH NSSET, IT'S CAPREYING COST CAN BE THOUGHT IF AS

DDB SECTION CODE ______ DDB PAGE NO. _____

CNICI	NEERING	NOTES
	INCEDIMI	140 11 12:3

EMPLOYEE	DATE	PAGE NO.
RCC.	SUBJECT	

21, 150 - AND PAYMENT FOR REPAIR OF A UPC TO MOTOFA.

8.23, 836 - FIS COSTAINED FROM WENDY LAUGHY
18,463 - FIG COSTAINED FROM WENDY LAUGHY.

MEAN DEMAND ISTE PERIOD" THE REQUIREMENT, FOR THE SPACE

(M) COMPARTERLY) PART BASED NOW TOTAL VFC REQUIREMENTS

AND THE PERCENTAGE REPLACEMENT FACTOR

131 PT 178 K, 06 = 10.68 BUY 113782116

MEAN DEMAND DIRING LEAD,

TIME (ML)

3 AND MULTIPLY THAT MONTHLY INDICATED BY

DOLL MINTED IF THE GIVEN LAND THE (MITTELE)

FROM THE ITEML MANDER, X56224) TO USTIME THE MEAN

LEND TIME UBMAND.

Ex > 9131 PT 175 × 28 = 160.53 = 161

DDB SECTION CODE 9.0 DDB PAGE NO. 0910.0

ENG	NEERING	NOTES
	NEEDHAG	110163

EMPLOYEE	DATE	PAGE NO
RCC ·	SUBJECT	

LEW TIME DEMAND 5: TOUR THE 5 STRS OF LEW TIME VEHICO)
(516) OUTD, DOTAIN & AND 5.

PURCHASE COST/UNIT: 16TOINBO FROM ITEM MANIGER FOR EACH SUICE

PORCE. THE QUOTED COST PERCESSINES THE MOST

PECEME COST PAID FOR THE SPACE PARE VARIABLE

COMO BE 84 BULK QUANTITY.

LEND TIME T: OBTAINED FROM THE ITEM MANNETE. REPLEITS BOTH NOMINISTRATIVE LEND TIME MIN MODIFICATION CONTINUE AND PROD)

EX: 1831 PT: ADM PROD = 28 MONTALS LEAD TIME

THREE ITEMS (THE 1831 PT POOT METBELNE, THE GRAPT THE ASSY, AND THE 3948 PT VALUE MIST) WERE UTILIZED IN THE INVENTION OF MOBIL BECAUSE THEY APPEARED ON THE SCUBOUL OK CRITICAL SUDETIGE REPORT. DATA WERE ACCUMULATED FOR FIVE AVAREERS.

THE VARIABLES NERR INPUTED IN THE MOBIL FORMULATION (SEE PRINTOVT). THE COST MINIMIZATION OBJECTIVE FUNCTION WAS FORMULATED AS SUCH (SBB MANUAL, PG, JK);

MIN = (1*M) + HI *(R-ML+ 42) + (H*ML/(20)+M*PI/0)

\$ 516 * BSL(W)

REPERT THE ABOVE FORMULA FOR EACH SPARE PART IMPITTED TO THE MODEL,

EMPLOYEE	DATE	PAGE NO.
RCC	SUBJECT	

COMPARISON BOR'S WERE OBTAINED FROM MMM (GILBELT VADILLO, Y \$8579) FROM THE EOR REPORTS GENERATED FROM DEADLIANTERS FORMULA.

RESULTS FROM THE TENTING OF 3 PARTS (9731 DT WOOL MESTING)

		MODEL	ACTURES
7831PT	121 Q1	220	88 12
6759PT	122	169	255
	Q2	201	201
3948 PT	R3	713	359
	Q3	55	142

NETWOODER THE COSTS SLOW DISPOSITY. IT CANNOT BE EMPLOSED THE THE THE THOOPER SHOW DISPOSITY. IT CANNOT BE EMPLOSED BEING CONSIDER, IT IS RECOMMENDED STROKELY THAT PULCEDLES FOR NETBERNINING THEORY COSTS BE OBVELORED AS THE FIREL MY FORCE MYES

MONSC RECOMMENDS THE EXAMINATION OF THIS EQUINITION FOR MINER MICHAEL PROPERTY OF THE TITS EQUINITATION PLANT OF THE STATE MOTELS.

THE STOCK-OUT OCCUMENCES HAVE BEEN EMPIRED STRUCTORY HAVE THE POST SIX MONTHS BUT OF A SHIMFLANT COST. SOME STOCK-OUD HIM STICK MICHAEL STICK MONTHS. MITHOUGH PARTS SHIRTINGS MER PERLAPS INTO 10 TO OF THE TOTAL UFC PRODUCTION PRINCEDS, IN SIGNIFICANT ILEUNCTION OF THE SHOPTICE PRODUCTION TO INCRESSE THROUGHOUT BY PRIMINED IN UFCES UFC.

DDB SECTION CODE	9.0	DDB PAGE NO.	09102	2
------------------	-----	--------------	-------	---

	62016 1 2013 1 2016	MONTHS	Morally	A NON 31) 908 PAG	Som the	5122	SILWIN	Setrosa	9.0
	47	K	7	£ 2011 31	549 900	6	E	S S S S S S S S S S S S S S S S S S S	DD∯SECT	,
	COST/WAIT	7255.40	2004,00	£3.38	3859.40	331.12	2412,91	1165.26	292.CK	
	SKIP-TIME IS ANNE	158569		14.MES		49.3937			39.3985	
	ML ML	1001		139.2		543,2			187.5 3	
	Pr. 11. 100	12.2		228		126	·	٠.	. 14.2	
	120271.64 Ann 7 1057	\$ 398.91		\$ 311,25	·	\$ 515.68			88.164 \$)
7	ingino cost	1943	J 10, 02	# .12.	\$19.30	99718	\$ 12.36	\$5.83	\$ 4.4°	
	5E TUI) COST	0	0	0	0	0	0	0	6	
		But METERING 1831 PT	ACIV VALUE 6004	TUBE #554		NOUVE 1154 ST	PETENDE PISTON	ሃወሴነ	MITROFELL MONY	
		PAGE NO.			ETAQ LBU2				BCC EMPLOYE	

EMPLOYEE			_ DATE	PAGE N	PAGE NO		
RC	cc		SUBJECT				
	29:501 042 7942 PT OST BOOY	291501)42 7831 PT JOST MESCING	2915 01 259 2915 01 259 2013 OT ACTUPACE PISTON	291501021 39481T VILVB ASSY	6759PT THE ASSY		
HR 3 89	11 -	17	81	76	30		
WR 4 89	11 .	14	40	65	24		
RTR 1 90	1,5	19	+	82	32		
2TR 290	17	18	66	82	31		
ME 390	18	18	64	83	32		
atr 490		,	1	45/190 27/25	105/17) 13/10		
	= 14.8	122		126	29.8		
206 # 000 0045	= 3.1241	1.7205		6.7705 99	2.99 33 57		
	T-BILL A	ene: 8,4	Te				
	LEAD-TIAB DEMAND						
	139 140 215 228 X=187.4 F=39.3975	159 131 197 168 168 45: 161.6 5=15.6569		532 455 574 574 581 = 5-3.2	140 112 149 145 150 × 137.2		
DD	B SECTION CODE	0 -13.200	DDB PAGE NO	7 = 49,3137	c = 14.045 091024		

EMPLOYEE	 DATE	PAGE NO
RCC	SUBJECT	

\$ 43.44/4/2 DIAL RATE

SLORAGE PENPLTY COST CALCULATION;

ALK 3 HR ROBOLIK

ENGINEE	RING NOTES	
EMPLOYEE	DATE	PAGE NO.
RCC	SUBJECT	
(H-* ML(RB) + MX		
11N = C, M, + H, (R) (H, * nL, /(2Q,) + N)	1-ML1+Q1/2) 1,*PI,/Q1)*5	+
+ (2M2 + H2(R2-MC2 (H2*MC2/(2R2) + M2*	+ Q2/2) + eI2/82)*5162*	PSL(Uz)

MODEL MODEL DESERMINATION OF REGROVE MINT (R) PAND INTURAL INTERPORT DEFINITITY (Q) FOR 3 SAME PRICES IT THE OFF GLIEN IN MM BULLET SUBSECUTION, SO K=O. THERE IS NO SETUP COST, SO K=O. THE 3 HOLOIMS COSTS: 1) H ₁ = 9.43 2) H ₂ = 0.72 3) H ₃ = 1.66 1 SAME 3 SUBJECT (ST 3 SUBJECT OF THE OSTS: 5) PII = 398.91 6) PIZ = 311.25 7) PIJ = 398.91 7) PIJ = 19.2 10) MA = 298 11) MA = 19.6 12) MA = 298 11) MA = 18.6 15) ML = 16.6 16) ML = 18.2 17) SIG = 16.025 18) SIG = 14.025 19) SIG = 14.025 10) SIG = 15.0569 18) SIG = 14.025 19) SIG = 49.3937 THE PRECURDE QUEST FOR EACH OF THE THREE PRICES: 21) C1 = 167.38 22) C2 = 147.38 23) C3 = 33.172 1 THE MODEL WILL DESERMINE: 1 Q ₁ , Q ₂ , Q ₃ , Q ₄ = Three 3 JEOSC 20/MARSEE.	EMPLOYEE	DATE	PAGE NO/
OBSERMINATION OF RESIDENCE MINT (R) PIND INCIDENT INVENTION (Q) FOR 3 SOURCE PROOFS IF THE OFT GIVEN MM OUNTER CONTRAINT. THERE IS NO SETUP COST, SO K=0. THE 3 HOLOING COSTS!) H1 = 4.3 2) H2 = 0.72 THE 3 SLUCTURES PRINCIPY COSTS: OF I = 398.91 OF I = 398.91 OF I = 398.91 OF I = 398.91 OF I = 311.25 OF I = 398.91 OF I = 17.2 OF I = 17.2 OF I = 17.2 OF I = 18.25 OF I = 18.	RCC	SUBJECT	
DESERMINATION OF RESIDENCE MINT (R) PART TO THE LANGUAGE QUARTITY (Q) FOR 3 SOME PROOF IF THE UFC GIVEN AMM DUDGET CONTRAINT. THERE IS NO SETUR COST, SO K=0. THE 3 HOLOING COSTS!) H1 = 4.3 2) H2 = 0.72 THE 3 SLUETAGE PENDLTY COSTS: S) PII = 398,91 O) PIZ = 311.25 PII = 398,91 O) M2 = 298 O) M2 = 298 O) M3 = 17.2 O) M2 = 298 O) M3 = 17.6 THE 3 MEAN DEMANDS FOR THE PROOFS OVERN LIEND TIME: 13) M1 = 10.6 M4 = 16.5 M4 = 16.5 M5 M5 DESTATORS M6 M6 M6 M6 M6 THE 3 STANDED DESTATORS M8 SIGE = 14.0485 20) STATORS THE PRECLASE COST FOR EACH OF THE TIME POORS THE PRECLASE COST FOR EACH OF THE TIME POORS THE MODEL WILL DESIGNING:	MODEL,		
AUDIET CONTRAINT. THERE IS IN SETUR COST, SO K=0. THE 3 HOLDING COST H = 9.43 H = 9.72 H = 9.72 H = 0.72 P I = 38.91 H = 0.72 P I = 3.11.2 P I = 0.72 H = 17.2 M = 29.8 I M = 29.8 M = 29.8 M = 29.8 M = 12.6 M = 29.8 M = 12.6 M = 160 M = 29.8 M = 12.6 M = 15.6 M = 15.65	, OBTERMIN	man of esperie rount (R	-) MAN ONTLAND INVENTORY
THERE IS NO SETUP COST, SO K=0. THE 3 HOLDING COSTS: 1) H_= 9, 43; 2) H_2 = 0.72; 3) H_3 = 1.66; THE 3 SLOCEAGE PENELTY COSTS: 5) PII = 398,91; 6) PIZ = 311.25; 7) PI3 = 515.68; THE MEAN DEMANDS FOR THE 3 PAINTS: 9) MI = 17.2; 10) M2 = 29.8; 11) M3 = 97.6; 11) M3 = 97.6; 12) M4 = 160.6; 14) M1 = 160.6; 15) M1 = 15.6569; 17 HE 2 STANDARD DESTATIONS: 17) \$161 = 15.6569; 18) \$162 = 14.0485; 20) \$164 = 15.6569; THE PURCHASE COST FOR EACH OF THE THREE PAINTS: 21) C1 = 30.4) 22) C2 = 163.38; 24) C4 = 23.38; 23) C3 = 331.12; 1 THE MODBEL WILL DEFERMING:	! RUNKTITY (a) for 3 space paixs if	THE UPC GIVEN IN MM
THE 3 HOLDING COSTS H	•		
1) $H_1 = 9.43$ 2) $H_2 = 0.92$ 3) $H_3 = 1.66$ [THE 3 SUPERACE PENALTY COSTS: 5) PII = 398,91; 6) PIZ = 311.25; 7) PI3 = 515.68; 712 MEAN DEMONDS FOR THE 3 PARETS: 9) $M1 = 19.2$ 10) $M2 = 29.8$; 11) $M3 = 99.6$; 12) $M4 = 19.6$; 13) $M1 = 19.6$; 14) $M1 = 19.6$; 15) $M1 = 19.6$; 17 $11 = 160.6$; 17 $11 = 160.6$; 18) $11 = 11.2$; 19) $11 = 11.2$; 110 $11 = 11.2$; 111 $11 = 11.2$; 112 $11 = 11.2$; 113 $11 = 11.2$; 114 $11 = 11.2$; 115 $11 = 11.2$; 117 $11 = 11.2$; 118 $11 = 11.2$; 119 $11 = 11.2$; 110 $11 = 11.2$; 111 $11 = 11.2$; 112 $11 = 11.2$; 113 $11 = 11.2$; 114 $11 = 11.2$; 115 $11 = 11.2$; 116 $11 = 11.2$; 117 $11 = 11.2$; 118 $11 = 11.2$; 119 $11 = 11.2$; 110 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 112 $11 = 11.2$; 113 $11 = 11.2$; 114 $11 = 11.2$; 115 $11 = 11.2$; 116 $11 = 11.2$; 117 $11 = 11.2$; 118 $11 = 11.2$; 119 $11 = 11.2$; 110 $11 = 11.2$; 110 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 112 $11 = 11.2$; 113 $11 = 11.2$; 114 $11 = 11.2$; 115 $11 = 11.2$; 116 $11 = 11.2$; 117 $11 = 11.2$; 118 $11 = 11.2$; 119 $11 = 11.2$; 110 $11 = 11.2$; 110 $11 = 11.2$; 110 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 112 $11 = 11.2$; 113 $11 = 11.2$; 114 $11 = 11.2$; 115 $11 = 11.2$; 117 $11 = 11.2$; 118 $11 = 11.2$; 119 $11 = 11.2$; 119 $11 = 11.2$; 110 $11 = 11.2$; 110 $11 = 11.2$; 110 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 112 $11 = 11.2$; 113 $11 = 11.2$; 114 $11 = 11.2$; 115 $11 = 11.2$; 117 $11 = 11.2$; 118 $11 = 11.2$; 119 $11 = 11.2$; 110 $11 = 11.2$; 110 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111 $11 = 11.2$; 111			
2) H_= 0.72 3) H_3 = 1.66 1. THE 3 SLIDETAGE PENALTY CUSTS: 5) PII = 398.91 6) PIZ = 311.25; 7) PIJ = 515.68; 1. THE MEAN DEMANDS FOR THE 3 PARTS: 9) MI = 17.2 10) MA = 29.8 11) MJ = 17.6; 11) MJ = 17.6; 12) MA = 18.6; 14) MLZ = [31.2; 15) MLZ = [31.2; 16) MLZ = 15.6569; 18) S162 = 14.0425; 20) S164 = 15.6569; 18) S162 = 14.0425; 21) CI = 313.12; 110			
THE 3 SLOPETAGE PENDLTY USTS: 5) PII = 398,91; 6) PIZ = 311.25; 8) PIH = 7] PI3 = 515.68; THE MEAN PEMONDS FOR THE 3 PARTS: 9) MI = 17.2; 10) M2 = 29.8; 11) M3 = 17.6; 11) M3 = 17.6; 13) 17 L1 = 160.6; 14) M L2 = 131.2; 15) M L3 = 543.2; 17 HE 2 STANDARD DESTATIONS: 17) S161 = 15.6569; 18) S162 = 14.0485; 20) S164 = 19.3937; TWE PURCHASE COST FOR EACH OF THE THEE POINTS: 21) C1 = 30.4; 22) C2 = 143.38; 24) C4 = 23) C3 = 331.12; ! THE MOBEL WILL DEBERMINE:	2) $H_2 = 0.76$	2 $+ \frac{1}{4}$	
5) PII = 398.91; 6) PIZ = 311.25; 7) PI3 = 515.68; The MEAN DEMONDS FOR THE 3 POINTS: 9) MI = 17.2 10) M2 = 29.8; 11) M3 = 77.6; 11) M3 = 77.6; 11) M3 = 10.6; 12) M4 = 160.6; 14) M1 L = 160.6; 15) M L 2 = 131.2; 16) M L 3 = 543.2; 17 ME 2 ST. WILLED DESTRUCTIONS: 17) S161 = 15.6569; 18) S162 = 14.0485; 20) S164 = 47.3937; 110 E PURCHASE COST FOR EACH OF THE THIEF POINTS: 21) C 1 = 35.69; 22) C 2 = 163.58; 23) C 3 = 331.12; 1111 MODBL WILL DEFERMINE:			
6) PIZ = 3/1.25; 8) PI4= 7) PI3 = 5/5.68; THE MEAN DEMONDS FOR THE 3 POLITS: 9) M1 = 17.2 10) M2 = 29.8; 12) M4 = 11) 11) M3 = 97.6; 12) M4 = 11) 13) M6 = 160.6; 14) M6 = 160.6; 14) M6 = 18.12; 16) M64 = 15.00 TIME: 15) M63 = 543.2; 16) M64 = 15.0569; 17) S161 = 15.0569; 18) S162 = 14.0485; 20) S164 = 19) S163 = 47.3937; 17VE PURCHASE COST FOR EACH OF THE THIEF POLITS: 21) C1 = 36.69; 22) C2 = 163.38; 24) C4 = 23) C3 = 331.12; 17HE MODBL WILL DEFIRME:			
9) M1 = 19.2 10) M2 = 29.8 11) M3 = 99.6 11) M3 = 99.6 12) M4 = 13) M61 = 160.6 14) M62 = 131.2 15) M63 = 543.2 17) S161 = 15.6569 18) S162 = 14.0485; 20) S164 = 19) S163 = 49.3937; THE PURCHASE COST FOR EACH OF THE TIME POWAS. 21) C1 = 363.60 22) C2 = 163.58 23) C3 = 33).12 THE MODEL WILL DEFERMINE:	5) VLI = 5	78,71	
9) M1 = 19.2 10) M2 = 29.8 11) M3 = 99.6 11) M3 = 99.6 12) M4 = 13) M61 = 160.6 14) M62 = 131.2 15) M63 = 543.2 17) S161 = 15.6569 18) S162 = 14.0485; 20) S164 = 19) S163 = 49.3937; THE PURCHASE COST FOR EACH OF THE TIME POWAS. 21) C1 = 363.60 22) C2 = 163.58 23) C3 = 33).12 THE MODEL WILL DEFERMINE:	6) PIC - 5	11.25 ; 87714=	
9) M1 = 19.2 10) M2 = 29.8 11) M3 = 99.6 13) M61 = 160.6 14) M62 = 131.2 15) M63 = 543.2 17) S161 = 15.6569 18) S162 = 14.0485 19) S163 = 49.3939 100 THE PURCHASE COST FOR EACH OF THE TWEE POINTS: 21) C1 = 26.64) 22) C2 = 143.38 13) C3 = 331.12 14 MOBEL WILL DEBRING:	THE MEAN	REMANDS FOR THE ? DIGHTS:	
11) M3 = 99.6; 11) M3 = 99.6; 12) M6 = 29.8; 13) M6 = 160.6; 14) M6 = 181.2; 15) M6 = 181.2; 16) M6 = 15.8569; 18) 5162 = 14.0485; 19) 5163 = 49.3937; 108 PURCHASE COST FOR EACH OF THE TIMES POINTS: 21) C1 = 305.4) 22) C2 = 143.38; 13) C3 = 331.12; 14 MODREL WILL DEBRING:			
THE 3 MEAN DEMANDS FOR THE POORS OVENLE CEND TIME: 13) MC1 = 160 6; 14) MC2 = 131.2; 15) MC3 = 543.2; 171 S161 = 15.6569; 18) 5162 = 14.0485; 20) 5164 = 19) 5163 = 47.3937; THE PURCHASE COST FOR EACH OF THE TIME POORS: 21) C1 = 305.40; 22) C2 = 163.58; 23) C3 = 331.12; THE MODBL NICE DEBRING:	10/ M2 = 29.	8; 12/14-	•
13) ML1 = 160 6; 14) ML2 = 131.2; 15) ML3 = 543.2; 17) S161 = 15.6569; 18) S162 = 14.0485; 20) S164 = 19) S163 = 49.3937; THE PURCHASE COST FOR EACH OF THE TIME POINTS: 21) C1 = 300.40; 22) C2 = 143.38; 23) C3 = 331.12; THE MODEL WILL DEBRING:	· · · -	,	
14) MLZ = 131.2; 16) MC1 = 15) ML3 = 543.2; 17HE ? STANDARD DEVIATIONS: 17) 5/61 = 15.8569; 18) 5/62 = 14.0485; 20) 5/64 = 19) 5/63 = 49.3937; THE PURCHASE COST FOR EACH OF THE TIMEE POINTS: 21) C1 = 36.40; 22) C2 = 143.38; 24) C4 = 23) C3 = 331.12; THE MODEL WILL DEBRING:			L LEAD TIME
15) ML3 = 543.2 ; 17 THE ? ST.WINDER OBTINTIONS: 17) S161 = 15.6569 ; 18) 5162 = 14.0485 ; 20) 5164 = 19) 5163 = 47.3937 ; TWE PURCHASE COST FOR EACH OF THE TWEE POWES: 21) C1 = 365.4) 22) C2 = 143.58 ; 24) C4 = 23) C3 = 331.12 ; ! THE MODEL WILL DEBRING:			
THE 3 ST. WISEN DEPLATIONS: 17) SIG1 = 15.6569; 18) SIG2 = 14.0485; 20) SIG4 = 19) SIG3 = 47.3937; THE PURCHASE COST FOR EACH OF THE TIME POINTS: 21) C1 = 365.40; 22) C2 = 143.58; 24) C4 = 23) C3 = 331.12; THE MODEL WILL DEBRING:			
17) 5/61 = 15.6569; 18) 5/62 = 14.0485; 20) 5/64= 19) 5/63 = 49.3939; THE PURCHASE COST FOR EACH OF THE TIME POINTS: 21) C1 = 35.40; 22) C2 = 143.38; 24) C4 = 23) C3 = 33).12; THE MODEL WILL DEBRING:	7		
19) 5163 = 47.393); THE PURCHASE COST FOR EACH OF THE TIME POINTS: 21) C1 = 365.40; 22) C2 = 143.58; THE MODEL WILL DEBRING:	`		
THE PURCHASE COST FOR EACH OF THE TIME POINTS. 21) (1 = 36.4) 22) (2 = 143.38; 24) (4 = 23) (3 = 33).12; THE MODEL WILL DEBRING:			
21) (1 = 305.4) 22) (2 = 143.38 ; 24) (4 = 1) 23) (3 = 33)./2 ; ! THE MODEL WILL DEBRING:	7, - 3	'	
22) CZ = 163.38 ; 24) C4 = 23) C3 = 33).12 ; ! THE MODEL WILL DEBRING:	TUB PURCHAS	E COST FOR EACH OF THE TUNE	E POINTS.
THE MODEL WILL DEBRAINS:			
! THE MODEL WILL DEBRAINE:			
		•	
	•	· -	TOES ,
! RI, RZ, R3, R4 = THE 3 LIDERED PINTS.			

DDB SECTION CODE 900 DDB PAGE NO.

EMPLOYEE	DATE	PAGE NO.
000	CURIECT	

SDARROW KAT X5857

1

%	100	167	160	37		<u>1</u> 6	7 ,	0	_	_		_			_	_	
-	2 1	4	1			AWP	2/ų	J	0	0	0	0	٠	J	0	0	
AWP	0	0	0			"G" COND	1	7	9	0	0	0	0	0	75	7/2	PAGE 1
owo	0/107	2 107	2	1		- ,	31/7	23/1	Ť	_		_			19/5	7	PA
•	左	7	7	2		<u>sos</u>	FPZ	FPZ	FPZ	FPZ	FPZ	FPZ	FPZ	FPZ	FPZ	FPZ	
PRO	~/	m	72	\bigvee		1											
PROD	3 63	2 46	8	SOT		REGIMI	10/8	4/3	18/14	36/37	48/35	9/55	2/6	11/7	39/66	43/33	8
RQMT	8/170	8 130	15/3	3		F0-<				2	2	æ.			2	Н	30 Jul
<u>~</u>	Σ	Σ		Σ		NONTHLY OTY REG	3/3	2/1	6/5	12/1	16/1	3/18	3/2	4/2	13/22	14/11	DATE:
	E	w \	<u>ن</u>	4		REP%	9/9	3/4	730	121	/25	2/40	2/2	6/5	23/48	24/24	DA
BER	46PT	6783PT	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3			9	M	12	20	27	Ŋ	ΓŲ	Ø	ß	74	
STOCK NUMBER	2915 01 064 5946PT	20I 67	EAMILY TOTALS			UPA	171	1/1	17	1/1	1/1	171	171	1/1	1/1	1/1	
OCK	5 01 0	8	> =	-			237	364	88	943	253	230	331	88	393	88	
ST	291	2915	F A A	-		N/N	2660537	Body 2659364	2650680	2652943	2660553	2675	2675331	2660588	2654093	184768	
							ING	•				ISTON			RA F	SPEC	7
2	UFC (F15)	UFC (F16)	16				METER	VALVE	Assy	NER	Assy	TOR P		Вору	G SPI	Assy	15437
NOON	J T	J T U	EI /ACCPT	170	130	NOON	Boby	₹	TUBE	RETAI	VALVE	ACTUA	Вору	Dist	SPRIN	CABLE	NCHEZ
			 				331PT)31PT	759PT	303PT	148PT	183P T	77/PT	H2PT	35PT	J65PT	<i>S</i> 5
<u> </u>	F100	F100	EI / NEG	197	103		042 78	300	382 67	357 25	021 35	259 70	312 07	042 75	508 93	583 60	ENRIG
APPL						z!	5 01 (5 01 (00 0	5 00 .	2 01	5 01	5 01	5 01 (000	000	ВУ
z	09676A	12572A	FY 90-4			Z Z	*1) 2915 01 042 7831PT Body METERIO	*2) 2915 01 006 3031PT RCVV VALVE	3) 4710 00 382 6759PT TUBE ASSY	4) 2915 00 357 2503PT RETAINER	5) 2915 01 021 3948PT VALVE ASSY	6) 2915 O1 259 7083PT ACTUATOR PISTON 2675530	7) 2915 01 312 0777PT Body	8) 2915 Ol 042 7942PT Dist Body	9) 5360 00 508 9335PT SPRING SPIRAL	10) 9150 00 583 6065PT CABLE ASSYSPEC	PREPARED BY ENRIQUE SANCHEZ/54377
N U	8	12	<u>₹</u>				#	*2	~	7	ιΩ	9	7	00	б	10	PREF

408 mil 2011

	0,	007	760			
300			AWP	72	7	0
110			COND	0	0	0
0 37			<u>508</u>	FPZ	FPZ	FPZ
-			EQIAT EQIAT	7	10	110
35	•		@ ≅ 1		Ħ	-
4 J30			FIONTIALY OTY REQ	9	367	37
E			% d 3 \	15	00]	100
2467PT			UPA	Н	10 1	H
2915 01 133			P/N	767500-3	69259-2	M25988/2-031
BACKUP CONTROL	EI /ACCPT	110	NOON	Housing	SEAL	PACKING
F16	EI / NEG	110	71	2 4015PT	74 SYZYPT	9 7306
12453A	FY90-4		NSN	2915 01 06	5330 01 07	5330 01 079 7306
	2915 01 133 2467PT E M 110 3 35 1 35 0 37 01	BACKUP 2915 01 133 2467PT E 4 3 1 0 0 300 E E 4 110 35 35 37 11 100 100 EG EI/ACCPT E E E E E E E E E	BACKUP 2915 01 133 2467PT E 4 3 1 0 0 300 EG EI/ACCPT EG EI/ACCPT M 110 35 35 37 11 100	BACKUP 2915 01 133 2467PT E 4 3 1 0 0 0 1 EG EI/ACCPT 0 110 35 35 35 37 01 1 .0 110 NOUN P/N UPA REP% RONTHLY REQ REGRIT 505."G" COND	BACKUP 2915 01 133 2467PT E 4 3 1 5 5 5 5 1 10 300	EG EI/ACCPT E 4 3 1 0 0 300 FG EI/ACCPT AMOUNT FINAL UPA REP% FROWTHLY REQ REGNH SOS."G" COND AWP SPT HOUSING 767500-3 1 15 6 7 FPZ 0 5 SPT SEAL 69259-2 10 100 367 1110 FPZ 0 7

DATE: 30 JUL 90

PREPARED BY: J. PITTMAN/EXT 57744

PAGE 2

6,9

			TO	0160		
%	103			AWP	25	6
AWP	0 32			a"cond	8	
омо	0 48			SOS "G"COND	FPZ	FPZ
PRO RATA	3 39			OTRLY REOMI	13	9
PROD PRO	2 8			1		
RQMT	10 120			FIONTHLY OTY REQ	4	2
	m Z			REP%	11	2
MBER	7 6551PT			UPA	٦	
STOCK NUMBER	2915 01 137 6551PT			N/d	2653474	2651948
	LOLLER				7	·
NOON	AUGMENTOR PUMP CONTROLLER	EI /ACCPT	120	NOON	Housing	Lever Assy
APPL	F100		120	7!	2915 00 279 5776PT	2915 00 345 4020PT
C/N	11759A F100	FY 90-4 EI / NEG		NSN	2915 00 2	2915 00 3

DATE: 30 JUL 90

PREPARED BY: J. PITTMAN/EXT 54377

PAGE 3

ECONOMIC ORDER QUANTITY DISPLAY

NOUN: TUBE ASSE

LIBET VID CURRENT DETENTINE: 98/02/F0:19:24 NAST CHANGE DETENTINE: 36/EN F0:12:40

(& S STOCK NUMBER; 4710 90 382 6759 PT ACTUAL STOCK NUMBER;

									~~	J^+	<u> </u>	
GR EQUIP ESG SPED AK AG		ORDER OF 16T 2ND			CODE ×	EASURE	STANDARD	9RICES 8CTVAL \$ 143,38	2272	DECAF DATE B	381FT 38TE 79181	50 E9 REVIE 8532
		UAT 001 A	NOTES THE		######################################	 -	3050	287 0 7 08	SATE WHEE		an weeks	~ .¬
UDGET CODE	COOK CM/Y							15: 5:55 (IF NEW)				
328Y	N P	w. co . E	.20 See N		a mic bee : 3H			(1.5 %-W).				
0201	., .	-	.	, <u>.</u>	J.,		9 2	2	.D.Q. / 1	INCOUTE	Q_0	, 4
PEACE F	ROG LTI	AYS LEA	EDTIME CON	DEM IMPLD	VEAR	OUT	MAN	UFACTURER'S		45	NUAL FILE	E MAID
M RATIO (DDE ALT	PLT SUF	PRESS FACT	TOR SHRT FO	TR FACTOR	R/CD	29	RT NUMBER	5		OVERRIDE	ಯಾ
1,140				99 3,i						5848		
		,										
ERVICEPELE				EEETS								
		TOTAL		CONT		OTAL		MIC			ANS 🤊	: CD :
9	g	215	į	ð 2	15	Ð	õ	9	;ì		à	
					FUTURE RECK	HAFMENT:						
	157							8 78				,
JANT ROMTS	9				26	26	26	Ø	Ð	9	S	
LM ROMTS	5	2	2	2	2	2	2	2	2	2	2	
Ì												
	~	407		REQUISITION	FREQUENCY			77.1		FREG	UENCY OF	
BA ROMTS			2ND 4 9	∃RD ø		218		779			VARTER T	
n adula	99	11	47	W	ઇ		ย	Z 9	Ø		<i>9</i> 8	
	·				NTET JEVET	a ant as	ON CERTAIN					
				wiftit 1		2A'					ETENTY	
		DUE OUT	SAF LVL	ROL	5 6		VEL LEVE			FP0	_TVEL	
P#:18	5:	. 35	:2	9	188		12i :		*	228	- 53	
EMERGE THE	[47	· j	è	ý	147	::	- 52	14		1.1	- :	
LM ROMTE	é		_	ø	g	$\dot{\mathbf{g}}$	Ø	Ø	ij	ŝ	±.	
OTAL	298	35	12	ŷ	255	123	Z∌8 4-	95 485	д	477	1220	
			~	NAMES OF THE PARTY.	a ava casti	-n-c						
=q(ATAR CETUPNO SEIM GOS	5 AND FACIL 30 ROOT				ROER TUT		NEW!	
		KD KITIES TO MONTHLY	-					12		ದಾಗ್ರಾಕ ನಾಗ		

FAGE 1 OF 2

	770514 14 14700				ONOMIC OF	DER QUANT	ITY DISP	_37			1.525.01.0 1.525.01.0
	STOCK NUMBER: 4 _ STOCK NUMBER: 4					MOUN; TO	BE ASSE				MT CATE (172) 08/08/70 00:24 GE DATE/TIME: 88/00/90 12:90
DEMANI	0S	CURRENT	1ST	2ND	SRD	4TH	STH	674	7 78	3TH	
	TRANSFER	9	ឡ	Ø	Ø	ø	3	Ø	ą	€	DEMAND OTH TOLLY: 16
	NONRECUR	û	û	Û	ŵ	ŷ	ô	ŷ	3	ä	DURRENT ITS TALLY: 0.2000
	TOTAL SALES	Ø	11	89	3	Ü	9	3	g	<u> </u>	DATE LAST DEMAND: 70270
	AFLO DEFOT	g	11	78	3	ŵ	ક	કે	3	\vec{z}	
	CONTRACTOR	ij	9	2	g	ý	3	3	g	Ø	
	FMS	Ò	ŷ	Ø	ŵ	ŵ	9	ŝ	9	3	
	ARMY	Ø	g	g	ø	ø	g	ŝ	g	9	
	NAVY	ŵ	ø	ø	ô	ŝ	9	ŷ	2	ន្ធ	
	MARINES	ø	Ð	Ø	ø	Ü	Ø	ÿ	g	Ī	
	OTHER	3	Ø	Ø	ŷ	9	- ŵ	ŝ	j	g	
RETURN		-	•	-	-		~	-	,	•	
	TRANSFER	ø	8	Ø	8	ŷ	Э	9	3	3	
	TOTAL SALES	9	ย	9	Ð	ย์	j	ý	9	ŝ	
	AFLO DEPOT	õ	ð	ð	à	à	ů	ĝ	9	Ī	
	CONTRACTOR	3	9	g	g	9	g	3	á	Š	
	ARMY	9	9	อ	ŝ	ò	â	9	3	3	·
	MAVY	9 8	9	g	S	1 9	ž	બ	9	ยื	
	MERINES	9 9	i i	ŷ	ν ð	ù	ů Û	ŷ	e J	y g	
	OTHER	e E	ย ยี	g v	Ø Ø	e E		g g	<i>9</i> 6	g J	
	UINEK	20	ש	ש	ש	ש	ij	ש	19	ند	
I DEMANI	OS USED IN COMP										
(:	EOQ/SL DMDS	5 Ø	11	86	6	B	6	3	Ø	Ĵ	
(NET DEMANDS		11	80	ø	Ð	ย	3	Ģ	3	
DEMANI	ng	9TH	1974	11TH	1278	1374	14TH	15TH	16TH		
25: 444	TRANSFER	# #	110.11 g	22 (H	بنن∡۔ اق	1317 ģ	± 7 10		-017 -0		
	MONREGUR	ŷ	e Ú	ò	e è	ç ÿ	ÿ	ì	j		
	TOTAL SALES	g g	ý	9	5	ي لا	y g	:3			
	AFLC DEPOT	3	ŷ	9	5	6	ŷ	3			
	CONTRACTOR	g	9 9	9	ر ق	3	3	19			
	242 2011/1401/04	ô	ŷ)	9	3	9	- 20 - 9			
	ARMY	ø	g g	g	9 9	g Ø	Ø	g G	g G		
		ע װ	છ	9 9	e G	a S	v Š	v V	iĝ.		
	NAVY	-	-	-		=	=				
	MARINES	Ð	ø	Ø	Ø	Ø	Ø	ğ	9		
OCT. ICA	OTHER	3	ŷ	Ð	ŵ	ŷ	ð	Đ	ð		
RETURN			۸								
	TRANSFER	9	9	ĝ	3	0	9	3	7		
	TOTAL SALES	ø	ø	3	3	ê	8	ij	3		
	AFLO DEFOT	ŷ 	Û	.ĝ	<i>9</i> 	<u> j</u>	j 	ŝ	9		
	CONTRACTOR	Ø	Ø	ģ	€ E	á)	ઇ	Ð	9		
	ARMY	à	ô	Đ	<u>છે</u>	Ð	ğ	9	j		
	MAVY	Ø	الا	g.	Ø	ğ	ęj	9	يّ		
	YARINES	Ø	D	Ø	Û	ŵ	Û	ŷ	มี		
	OTHER	ø	Ü	Ø	ξį	έğ	9	\$	ú		
DEMAN	DS UBED IN DOME										
	ECQ/EL OMD.		Û	à	5	ŷ	ŷ	:4	:		
	MET DEMANDS	5 Ø	ĝ	6	5	-j	<u>ij</u> l	14	_		

7.0

ECOMOMIC ORDER QUANTITY DISPLAY NOWN; VALVE RES

LOSZAROW CARRENT CATENTONE; WELVERSO OV;CO LAST CHANGO CATENTONE; WE COURT OZ;M

0 8 STOCK NUMBER; 2815 91 021 0848 RT ACTUAL STOCK NUMBER;

MSR EQUIF SUBX P ORDER OF USE	CELL BROEA CTOOGS CERCHA SUBSYS FOLE MAINT COOS COOS
### AG	CELL BROEA CTOOGS CERCHA SUBSERVA FOLE MAINT COOS COOS
#31 FM GSEC TYPE	TERMYE EUROVY FILE MEINT TIDE ICCE
# TATAL # N. DEN PIN BLOWN LAW LAW DEED OME BIR PAYER BESTAN ARE NOT COUNTED TO THE COME BODGE CODE BODGE CODE BODGE COME RAP AND PROBLEM AND COUNTED BODGE CONTROL BODGE CONTROL MACKNOWN MECHANISM MECHANISM MECHANISM FROM LT DAYS LEADTIME CONDEM IMPLD WEAROUT MACKNOWN FROM CONTROL FROM CONT	TERMYE EUROVY FILE MEINT TIDE ICCE
1 328Y N P A B 15 3AE 3A S B 6 90181/2 70082/3 8 PEACE FROG LT DAYS LEADTIME CONDEM IMPLD WEAROUT MANUFACTURER'S MODEL OF 1001 1001 1101 1101 1101 1101 1101 1	FILE MAINT NICE ICCE
READE PROGULT DAYS LEADTIME CONDEM IMPLD WEAROUT MAKAPROTURER'S METURAL PGM RATIO CODE ALT PLT SUPPRESS FACTOR SART FOTR FACTOR/OD PROT MISST FROM CVCT 1,140 C45F 295A 1,000 C,100 ,00014 /C 255/75C	FILE MAINT NICE ICCE
BEFYICEABLE FEEETS	
BERVICERBLE RESETS OUE IN RESETS	
BERVICERBLE RESETS OUE IN RESETS	
REFVICEABLE RESETS	
TH ACCT OF ACCT TOTAL FR CONTR TOTAL VET MIC DEPOSOR DISTRACE	
7 200 201 20	
ψ , ψ , $\Delta t \Xi$, $\Delta t \Xi$, $\Delta t \Xi$, $t = 0$, $t $	
·	
1 37 2ND JRD 4 7H 57H 57H 57H 57H 57H 12F 12F	
QUANT ROMTS 8 6 6 8 8 8 8 8 8 8 8 8 9 0 10 10 10 10 10 10 10 10 10 10 10 10 1	¥
	OF DIMPAS
DURRENT 19T 2ND CRD 4TH 5TH 6TH CTH 9TH QUICT	17 - T.21, L. F
MBS POMTS 4 10 10 21 10 14 12 9 4	. 0
WRY DECEMBER OF TERM ADDITION AND TERMS OF THE TERMS OF T	
DUE OUT SAFILVE ROL LEVEL LEVEL LEVEL LEVEL PROC PROC LEVE	•
DENANCE 262 84 10 W 265 142 465 576 576 1 166 7	
TOTAL	
DLM ROMTE 9 8 8 6 6 9 4 6 9 9	
TOTAL 252 84 13 0 357 142 407 575 575 0 312 52	; -
PROGRAM DEYAKO RATES SIQ MIED SQ ROOT PSCRIS RECROSE LIVEL	
ECCYSEVILENZE MONTHLY ANNUAL YEARS PRIOROTY BY REGN DEVIRTION USED IN COMPOUNCE ANNUAL PEROT SUPPLY	17451 131 5 5
.2,46 12.46 147,50 ,75 7 1,70 15,44 235 547	- · .

9845 1 0F 2

	QOX NUMBER: 29						(TY DIGEL um age				:n ping/nomg, levas/9. ca:2° :g pang/nomg; as/ga/50 c2:32
ACTUAL S	STOCK NUMBER: 29	715 01 021	. 3948 PT			MOUN; VAL	VE 855			೨೯೨ ೨೧೯+೮	:⊈್ಟ್ ∆್ ೨೮೩ ಪ್ರಾಟಕ್ ಚಿ ರ್ ಕಿಟ್ ೨೮೯೨೮ - 44,000
DEMANDS	0	CURRENT	1ST	ZND	מאב	477	STH	\$TH	777	878	
	TRANSFER	ű	Ø	4	<u>Ø</u>	€	:0	#	3	9	DEMAND OTH THILLY:
	NONRECUR	j	ĝ	ŷ	\hat{x}	Ð	ò	ŷ	ું	ė	OURRO: TOOTS TRILLY: 0,69 DATE LAST REMAND: 9,6273
	TOTAL BALES	3	64	13	13	28	41	77	28	13	DATE CAST DETAND: FULL
	AFLO DEPOT	ð	54	13	13	23	4:	37	25	32	
	CONTRACTOR	9	Ð	6	9	ø	3	넰	Ŗ	ű	
	cxi3	ŷ	ŵ	ð	Ŷ	3	3	è	3	÷	
	ARMY	ø	ij	6	9	ij	2	g	3	.4 &	
	NAVY	î	ŵ	à	Û	ŵ	û	زز	ã	õ	
	MARINES	(j	ű	9	ยี	Ø	g	g)	Ø	ž.	
		ø Ø	ŷ	a a	ŵ	ŷ	à	3	2	a B	
567110110	OTHER	v	Ð	ש	v	IJ			-		
RETURNS					^	^		G	3	g	
	TRANSFER	9	ซิ	3	3	9	9	-			
	TOTAL SALES	ø	9	g	Ą	ð	ð	3	3	9 5	
	AFLO DEFOT	Ì	Û	Э	Û	ۯ	Û	ê	ž	3	
	CONTRACTOR	Ø	ø	Ø	Ü	ø	3	Ð	3	ž.	
	ARMY	ĝ	ò	3	S	ã	3	9		3	
	NAVY	9	j	g	ä	3	ڧ	ž.	5	<u>;</u>	
	MARINES	ì	à	ij	ÿ	Ŷ	à	ĝ	. 		
	OTHER	ej Ej	el le	ي اف	وَ	ŷ.	ž	e e	છે	5 2	
	DIREN	ש	D.	ש	D	D		•	•	·	
DEMANDS	USED IN COMP										
	EOQ/SL DMDS	Ø	64	:3	13	28	51	37	25	30	
	NET DEMANDS	Ø	64	13	13	28	51	37	28	1 2	
DEMANDS		9TH	19TH	11TH	1279	1374	14TH	1574	:574		
4 4. · · · · · · · · · · · · · · · · · · ·	TRAM6FE5	<i>y</i>	9	4	1	ý.	3		:		
	#1:#E004	ð	è	3	ĝ	ĝ	è	J			
		2:	3 <u>9</u>	27	•	á	25	ý	÷ú		
	TOTAL SALES			27 27		9 9	23	ĝ	45		
	AFLO DEPOT	21	39		3	_			₹ J		
	COMPRACTOR	ý.	ś	uļ.	j	ij	ij	ý			
	FM3	2		9	ۋ		ž	2	•		
	ARMY	ย์	ø	6	€	3	0	Ø	Ž.		
	NAVY	ŷ	ĝ	Ð	ĝ	ð	ê	ŷ	ě		
	MARINES	្វ	Ø	Ø	성	Ø	Ø	넰	3		
	07 46 8	ŷ	ŝ	à	$\hat{\boldsymbol{v}}$	â	Ŷ	ŵ	9		
RETURNS		•	~	~	-	•	-				
727.777.60	TRANSFER	9	ô	ŷ	ŷ	è	ŝ	9	3		
		-		-	9		ý	ÿ	š		
	TOTAL SALES	<u>ģ</u>	ÿ	9		9 3			•		
	AFLI DEFUT	Û	ð	J A	j	$\hat{\theta}$	j o	√l ye	ý 3		
	CONTRACTOR	Ø	์ ป	Ø	£3	Ø	2	9	2		
	ARMY.	ê	છે	à	Ù	3	ŵ	ŷ	9		
	MAVY	Ø	6	ชี	Ø	G	Ø	97	2		
	MARINES	ò	û	9	Ø	û	à	û	₹.		
	OTHER	6	g.	gi	2.	q_i^{ij}	ý	ų"	5		
	BOUGED IN LUMP	••	•	-	**						
TIEM SAIT S					_		2-		d d		
DEMANDS		2 01		ن.	7						
DEMANUS	EDQUEL OMIN VET DEMANDS		59 38	27 27	3	9 - 3	2T 23	j S	수 4년		

9.0

ECONOMIC ORDER QUANTITY DISPLAY NOUN; SCOY, METE

11325019

CURRENT DATE/TIME: 08/88/98/98 10:24 LAST CHANGE DATE/TIME: 06/00/99 12:00

3 S STOCK NUMBER; 2915 01 042 7831 PT ACTUAL STOCK NUMBER;

GR EDUIP	SUBX P 0	KDER OF	USE A		PSO UN	NT OF	UNIT F	RICES	- 57.75)	DECA	F 3:0FT	IG 35
	GRP P 1				CODE YEA					DATE	SATS	32/12
AH JZ			٠ 6	9 19	C 5	A \$	711.76	¥ 82€.1⊌	76:28		79181	995B:
		MGT PMI SS	EC TYPE		STATUS CODE	3	GREC	23T 0403	מפאנוני/ברהם	.5 06 °	100 107102	[]
UDGET CODE	ERRO SMGC	INT CD IE	C COMP RF		s amo del si						TERMA	
328Y	N M		B 15	7 2 Z	3H		8 14	72	9/9	27	d di	Ü
PEACE P	ROG LT DA	iys Leai	TIME CONDE	M IMPLD	₩EAROL)Τ	MANUF	ACTURER'S		;	ANVAL FILE	MAIN
SM RATIO C	ODE ALT	PLT SUPF	RESS FACTO	R SHRT FO	TR FACTOR	rea	PART	NUMBER	£	GCM	OVERRIDE	CCC
1,140					900000, 0					5848		
ಚಳಿಸಿ ಅಧಿಕರ್ಷ	ASSETS		- DUF IN ASS	FTS	;	INSERVICEAE	LE			YEY(-
			PR		R 701						TRANS 04	- 35 B
					87						è	
	+ CT	OND	מפד	174	FUTURE REQUI	(REMENTS		274	g r y .			
JANT ROMTS			9								3	
LM ROMTS	g 6	ũ	ũ	ũ	g 8	ŷ	ŷ	Ø 9	3	i		
i												
					FREQUENCY -							
	CURRENT				4TH						QUARTES TO	-L"
R ROMTS	S	5	Ø	Ŋ	Ø	ý	Ø	9		1	71	
		·		0 <u>0</u> 46	EJED LEVELS		EXENTE					
				₩RM (HOU TERM			RETENTY	
			SAF LVL	ROL 💮		LEVEL		LEVEL		FSC		
ENANDE	28	ŵċ	3	9			195		ž.		<u>T.</u> ;-≟	
JAY 7 RIM78) -	ÿ	9 9	<u>.</u>	ŷ) Ø 6) (
LM ROMTS	g 30								∯ Ĵ	છે •⊃4	2 204	
OTAL	28	δiú	û	Đ	88 :	12 72	. 12ల	1,700	IJ	+	<u>∃z/</u> +	
			cor	MEUTED RATE	S AND FACTOR	γs						
				# A. P. 1011-								

28GE 1 GF 2

	7337 MMRED	1045 ×1 046	n 2071 OT	EC	ONOMIC OR	DER QUANT	ITY DISPL	_fiY		ବ ଜୁଣ୍ଡର	_::325010
•	TOOK NUMBER: 2 STOOK NUMBER: 2					NOUN; BOI	DY, METE				S DATE/TIME: 94/30/98 (2:09
DEMANDS		CURRENT	157	2ND	ZRD	47/2	5TH	6TH	715	3 7H	
	TRANSFER	Ð	g	9	9	ø	g	9	Ţ	₫.	DEMAND OTS TALLY: 91
	VONRECUR	ŵ	ĝ	ŵ	ŷ	ŷ	û	à	ز	2	CURRENT (TR THELY: 0.200
	TOTAL SALES	<u> </u>	5	ğ	ŝ	Ø	ã		3	6	DATE LAST DEMAND: F027I
	AFLO DEPOT	Ĝ	5	ŷ	ŵ	ŵ	ž	ŷ	÷	j	
	CONTRACTOR	9	ĝ	<u>ā</u> l	g	Ø	ŝ	g.	\$	6	
		⊋' Ŷô	3	ũ	ŷ	ŷ	ŷ	ŷ	g	;	
	FMS	_		-		_	g g	9 9	3	6	
	ARMY	Ø	Ø	Ø	Ø	Û		-			
	NAVY	Ď	Û	Û	Û	ŷ	ù	ŷ	à	д	
	MARINES	Ø	Ø	g	ø	Ð	ø	S	8	e	
	OTHER	ŷ	ŷ	ŷ	Ø	û	ŷ	â	j.	Û	
RETURNS	!										
112101440	TRANSFER	ê	3	3	3	3	ð	3	3	9	
		-	ø	_	g g	2 9	9	9	9	5	
	TOTAL SALES	9	_	9	-				्या स	3	
	AFLO DEPUT	ĝ	û	'n	3	ĝ	ÿ 	ŷ			
	CONTRACTOR	Ş	Ð	9	Ø	ø	S	ø	9	ÿ	
	ARMY	'n	Ŷ	ŵ	3	ŷ	Û	9	ĝ	Ĵ.	
	NAVY	3	ø	Ü	ő	널	9	3	2	2	
	MARINES	ĝ	2	ŷ	j	Û	ŷ	ŷ	ĝ	i i	
	STHER	3	Ø,	أؤر	ಪ್ರ	ű	ŝ	2	ž	12	
	511 2 1	_	_	_	-	_	_				
TEMANTO	USED IN COMP										
DEL PRODU	EOQ/SL DMD	s ê	5	2	2	Û	à	9	ĝ	ĝ	
- (5			9	g	g	9	9	
`•	NET DEMAND	5 €	5	Ø	ÿ	29	w	19	w	Ţ.	
DEMANDS	}	PTH	19TH	117H	12TH	137H	14TH	15TH	1674		
	TRANSFER	ij	5	ø	3	y'	ý	pi			
	YOMSECUR	ĝ	9	õ	ŷ	j	ŷ	ò	3		
	TOTAL SALES	j j	g	ø	3	த	ø	1 11:	3		
	AFLO DEFOT		8	ĝ	G	ŵ	9	ŷ	3		
	30%.TF30*07		9	ej ej	3	3	j	ال ا			
				39 - j				e P	•		
	EME	<u>}</u>	j.	,		9	9 •				
	ARNY	Ð	Ð	ø	3	Ø	ij	9	Đ		
	NAVY	Û	Û	ŷ	ŷ	Ø	Û	ŷ	Đ		
	MARINES	g	Ű	Ø	Ø	Ø	ŝ	9	£		
	OTHER	ũ	ô	ŵ	ŵ	Û	ũ	ŷ	ŷ		
RETURNS	3										
	TRANSFER	3	9	÷,	3	9	9	ŷ	9		
	TOTAL SALES		ġ.	ģ	ij	3	9	ŝ	uj.		
		-	ŷ		à	à	÷ j		-		
	AFLO DEFOR		-	9		-		-			
	CONTRACTOR		3	Ø	Ø	9	£	ß	9		
	ARMY	છે	Û	ŷ	ĝ	ź	ŷ	ô	×2		
	NñVY	\mathfrak{F}	Ø	Ø	ยี	ž.	S	3	ij.		
	MARINES	ŝ	ŵ	ij	\hat{g}	ĝ	Û	ŷ.	2		
	STHER	9	J.	Ç	g	ø	115	g.	$\vec{\phi}$		
ったべるとう	S USED IN TOMP	•	~	•	.•	-					
JS. MNJ	EDQVEL OMI	s a	ò	ĝ	â	ê	ô	9	ŷ.		
	NET DEMANS		e e	g g	ij	i ij	ž.	Ŷ.			
	#E UE:794.1	:S €	10	70	99	123	7.	- W			

9.0

091057

page : if 2

AS OF: 30 JUL 90	REMARKS	EDD: DUE IN SA9W - 45 EA, 34 EA DUE SEP 90, 25 EA DUE OCT 90, 28 EA DUE NOV 90 - PR90-60284: 53 EA. WITHIN 12 MO QTY OF 100 EA, JUL 91.	CASTING HAS BEEN RESOLVED. SA7J - 10 EA DUE AUG 90, 10 EA DUE SEP 90 15 EA DUE OCT 90, 15 EA DUE NOV 90 15 EA DUE DEC 90, 10 DEC 90 SA3H: 22 EA DUE IN - JUL 90 5 EA DUE DEC 90, 17 EA DUE JAN 90	53 EA DUE AUG 90 ON 90M2995 ON PR 90-61259 INITIATED 18 APR 90 HAND-WALKED PR 92597 FOR QTY 162 EA EDD: DELIVERY 60 DAYS AFT AWARDED
	B/0	99	10	S S
SIN	A/AX	0/0 26 FEB 90 28 JUN 90	0/0 06	EA, 15 JUN 90
NSTRAI	H/0	BEC'D	4 JUL JUL	APR 90
UFC PARTS CONSTRAINTS	QTR Reqt	10/8 2 EA 11 EA	4/3 REC'D, REC'D, 30 REC'D, 31	6/5 18/14 0 REC'D 1 EA, 25 APR 90 REC'D 30 EA, 03 MAY 9 REC'D 20 EA, 15 JUN 9
UFC	MO REQT	3/3	2/1 03 EA 4 EEA 5 EEA	6/5 1 REC'D 1 E REC'D 30
	REPLX	9/9	3/4	10/10
	UPA	1/1	171	1/1
	QTY-AWP 15/16	2/4	0/0	0/0
9.6	NSN 7	1. 2915 01 042 7831PT BODY METERING ASSY	2 2915 01 006 3031PT RCVV VALVE BODY	3. 4710 00 382 6759PT TUBE ASSY

9				UFC PARTS CONSTRAINTS	S CONSTR	AINTS			
NSN O	QTY-AWP 15/18	UPA	REPLX	MO Reqt	QTR Reqt	H/0	A/AX	B/0	REMARKS
4 2915 00 357 2503PT	0/0	1	20/27	12/12	36/37	o	0/0	=	150 EA DUE AUG 90, 150 EA DUE
RETAINER ASSY				12 EA RI 22 EA RI 1 EA RI	12 EA REC'D 10 JUL 90 22 EA REC'D 12 JUL 90 1 EA REC'D 18 JUL 90	JUL 90 JUL 90 JUL 90			AUG 90, 187 EA DUE OCT 90.
5. 2915 01 021 3948PT VALVE ASSY	0/0	121	27/25	16/12	16/12 48/35	32	12/0	0	SAC9: DUE IN: 62 EACH, 30 EA DUE AUG 90, 30 EA DUE SEP 90
				6) EA	REC'D A	IPR 90	c		PREMIUM TRANSPORATION AVAILABLE PR 90-60113, 26 JUL 89 ADVANCE RELEASED. 203 EA, 30 EA DUE APR 91 TILL SHIPMENT COMPLETE (30 APR 90 COMPLPR FOR 161 FA)
				EAE	REC'D	15 JUN 90 02 JUL 90	0000		(08 JUN 90, 10 EA)
					a can				
6. 2915 01 259 7083PT ACTUATOR PISTON	0/0	121	5/40	3/18	9/55	36	0/0	17	SA9K: 114 TOTAL DUE IN
(P/N 2675530)				11 EA RI 22 EA RI	1 EA REC'D, JUN 90 2 EA REC'D 02 JUL 90	JUL 90			41 EA DUE AUG 90 41 EA DUE SEP 90

THESE COMPLETE ASSYS ARE FULL-UP KITS, INSTEAD, BODY W/O KITS, P/N 2675531 WILL BE PROCURED (2915-01-312-0777PT) E0Q ITEM SHOP WILL BUILD COMPLETE ASSYS BY USING P/N 2675531

12 EA REC'D, 06 JUL 90

6 EA REC'D 05 JUL 90

MODIFIED TO MEET TCT0543 SPECIFICATIONS OF 2915-01-259-7083PT, P/N 2675530 VIA MACHINE SHOP MODIFICATION AND WITH MOD. KIT 2915-01-262-2612PT IAW BRADLEY/PLANNER. NOTE: (OLD) BODY & PISTION ASSY: 2915-01-354-8673PT, P/N 2653636 AND 2915-01-081-9645PT, P/N 2662855 ARE BEING

06
Ľ
30
OF:
AS

	REMARKS	NO STATUS AS OF 12 JUL 90	363 ON CONTRACT, 20 PER MO TO START, JAN 91. 10 EA DUE EOM. TOTAL OF 28 EA AS OF MAR 90		429 EA ON CONTRACT 90 M9061 EDD: EOM OCT 90	PR 89-60842 301 EA CONTRACT F41608-90-M0025 FOR 301 EA DUE JAN 90
	B/0	16	0		96	41
	A/AX	0/0	2/0		0/0	0/0
AINTS	H/0	0	. 60		0	•
CONSTR	QTR Reqt	9/7	11/7	PR 90 AY 90 JUL 90 JUL 90 JUL 90	39/66	43/33
UFC PART CONSTRAINTS	Mo Reqt	3/2	4/2	REC'D APR 90 REC'D MAY 90 REC'D 05 JUL REC'D 09 JUL REC'D 20 JUL	13/22	14/11
	REPLX	5/5	9/2	2	23/48	24/24
	UPA	1/1	1/1		1/1	1/1
	QTY-AWP 15/16	0/0	0/0		0/0	6.D. GNOO 0/0
9.	NSN O	7. 2915-01-312-0777PT Body	8. 2915 01 042 7942PT DIST BODY		9 5360 00 508 9355PT SPRING, SPIRAL	10 6150 00 583 6065PT CABLE ASSY, SPEC

IX B/O REMARKS	57/37 0 DELINQUENT DELIVERY EDD: 133 EA ON CONTRACT, ACCEL OF OF 50 EA MAY 90 THRU JUL 90, 33 EA DUE AUG 90, 35 EA PER MO NOV 90 TILL SHIPMENT IS COMPLET	76/132 O SA7V 449 EA DUE IN: ACCELERATED 75 EA ' JUL 90 THRU OCT 90 59 EA ' NOV 90 PR90-60901, 11 JAN 90 FOR 188 EA,	0/0 32 ADVANCE RELEASE TOTAL CONTRACT MAX LOCATION CHECKED - 0 BAL CONT # 9060873 FOR 81 EA MAX OF 323 EA.	16/2 0 EDD: 37 EA DUE 30 NOV 90 30 EA ON PR 90 -60721, 14 NOV 89 PR WILL CANCEL IF NO B/0 ARE ESTABLISHED (IAW MAM FY 90 BUY- POLICY) PR CANCELLED 15 FEB 90	0/0 20 PR 91-45030 236 EA
UFC PARTS CONSTRAINTS MO QTR REQT REQT 0/H A/AX	4/18 11/55 8 4 EA REC'D 06 APR 90 2 EA REC'D 02 MAY 90 9 EA REC'D 21 MAY 90 2 EA REC'D 21 JUN 90 30 EA REC'D 26 JUL 90	15/11 45/34 7 7 7 9 9 EA REC'D 23 APR 90 5 EA REC'D 26 JUL 90	7/10 20/30 0 0	2/3 5/10 0 5 EA INT, 31 JUL 90	3/11 10/32 2
QTY-AWP 15/16 UPA REPLX	0 1/1 10/40	0 1/1 25/22	0 1/1 11/22	0 1/1 3/7	0 2/1 3/18
OT' O USN 15.	11.2915 00 279 5759PT 0/0 BELLOWS ASSY	12 2915 00 357 2567PT 0/0 LEVER & SHAFT	13 2915 00 394 5818PT 0/0 COVER, COMPUTER RECE	14 3040 01 021 3998PT 0/0	15 5360 00 415 5204PT 0/0 SEEING, HELICAL TORS 60 1.1

NSN O	QTY-AWP 15/16	UPA	REPLX	MO REQT	qtr Reqt	н/0	A/AX	B/0	REMARKS
16. 2915 00 395 8852PT SERVO VALVE	0/0	121	50/100	0/46	89/138	64	0/87	-	EDD: 30 EA SHIPPED 20 FEB 90 ON AIR BILL #204612 30471,
				31 EA RE 27 EA RE 44 EA RE 30 EA RE	REC'D MAY REC'D JUN REC'D 11 J REC'D 27 J	Y 90 N 90 JUL 90 JUL 90			DUE IN 2,289 EA SAVI: 150 EA DUE MAR 91 TILL SHIP COMPLETE. TCTO AVAILABLE JUN 90.
17 5365 00 595 7414PT SHIM	0/0	1/1	171	171	2/1	•	0	15	EMERGENCY PR 736 EA ON SHELF AT BENDIX
18 6150 00 583 6094PT CABLE ASSY	0/0	1/1	22/15 1 11 EA REC'D 10 EA REC'D 20 EA REC'D	5 13/7 REC'D APR 90 REC'D MAY 90 REC'D JUN 90	39/21	10	31/111	0	166 DUE IN 50 EA DUE JUN 90 20 EA DUE JUL 90 87 EA DUE AUG 90 ADVANCE RELEASE PR FOR 111 EA (90-60435) FORECAST AWARD AUG 90
19 2915 00 349 3382PT SWITCH	0/0	1/1	1/2	171	2/	0	0	-	65 EA AVAILABLE AT BENDIX NO PR LOCATION IN N34b213G043 WAS CHECKED OUT - 0 BAL

UFC PARTS CONSTRAINTS

	REMARKS	55 EA DUE MAY 90, SHIPPED 27 APR 90, 86 EA ON PR AWARDED 31 JAN90 NO DELIVERY SCHEDULE, NEEDS ANOTHER PR DUE IN = 14 MOS SUPPORT* CANCELLED A PR 29 JAN 90 DUE TO NO BACKORDERS	187 EA ON PR CONTRACT MAX 249 EA PR * 9061020	SAF5, SHIPPED COMPLETE 62 EA 71 EA ON PR 90-60114, 251 EA TOTAL CONTRACT 990, 30 EA ON AUG 90, 71 ON PR 90-60114, 251 EA TOTAL CONTRACT MAX QTY ADVANCE RELEASED PR
	B/0	0	o	•
	A/AX	20/22	98/09	17/35
INTS	0/н	11	14	σ.
UFC PARTS CONSTRAINTS	qtr Reqt	16/12 MAY 90 11 JUL 90	12/10 37/29 EA REC'D 05 JUN 90 EA REC'D 11 JUL 90	21/7 APR 90 MAY 90 JUN 90 10 JUL 90
FC PART	MO REQT	5/4 EA REC'D, N	12/10 REC'D 0 EC'D 11	7/2 REC'D, REC'D, REC'D,
Ð	REPLX	9/9 13 EA R 9 EA R	7/7 12 EA 2 EA R	12/05 1 EA 4 EA 5 EA 4 EA
	UPA	1/1	3/3	5
	QTY-AWP 15/16	0/0	0/0	0/0
ĺ.	NSN C	20 3020 00 373 1577PT GEAR RACK	21 5365 00 397 6749PT PLUG	22 2915 01 033 4436PT Cam Assy
1	7.0	20 30 GE	21 536 PLU	22 291 Car

AS OF: 30 JUL 90

AS OF: 30 JUL 90	REMARKS	CONTRACT FOR 320 TO BEGIN 50 EA PER MO TIL COMPLETE, STARTING IN OCT 90 UNTIL SHIPMENT COMPLETE. BENDIX WILL ATTEMPT TO RECOUP START IN JUN 90	EDD: BAL 236 EA, 50 EA PER MO TILL COMP, CONTRACT FOR 272 EA TO BEGIN 60 EA JUL 90 THRU OCT 90, 32 EA NOV 90, 153 EA ON PR INITIATED 06 NOV 89, MAX QTY ON CONTRACT - 1,139 EA	EDD: SHIPPED COMPLETE SA9G 271 EA ON CONTRACT TO START 75 EA JUL 90 - SEP 90, 46 EA - OCT 90 SA9G: SHIPMENT COMPLETE	EDD: OF 143 D/I: SAF2, 60 EA DUE MAY 90 & JUN 90, 43 EA DUE JUL 90 SAJ5 FOR 497 EA TO START 17 EA,JUL90 & 60 EA AUG 90 TILL COMPLETE.
	в/0	0	0	0	0
	A/AX	31.26	238/208	35/180	29/258
INTS	н/о	12	13	အ	13
UFC PARTS CONSTRAINTS	QTR REQT	4/9 11/28 REC'D, MAY 90 REC'D 14 JUN 90 REC'D 27 JUN 90 REC'D 27 JUL 90	125/97 JUN 90 18 JUL 90	27/11 10 MAY 90 22 JUN 90	25/19 08 MAY 90 21 JUN 90
UFC PART	MO REQT	4/9 EA REC'D, EA REC'D EA REC'D	42/32 EA REC'D,	9/4 REC'D,	8/6 2 EA REC'D 08 EA REC'D 21
	REPLX	6/20 15 E 3 E 5 E	35/35 15 E	15/8 1 EA 2 EA	14/14 1 E
	UPA	171	2/2	171	171
	QTY-AWP 15/16	0/0	0/0	0/0	0/0
9.	NSN	23 2915 00 348 0672PT LEVER	24 2915 00 346 6488PT BELLOWS ASSY	25 2915 00 352 3812PT LEVER FUEL	26 3040 01 019 2895PT CAM CONTROL

9.			_	UFC PARTS CONSTRAINTS	S CONSTR	AINTS			
NSN O	QTY-AWP 15/16	UPA	REPLX	MO Reqt	otr Reot	0/H	A/AX	B/0	REMARKS
27 2915 01 200 5287PT BRACKET	0/0	171	5/9	3/4	9/12	4	6/32	0	40 EA SA7C: 4 EA DUE APR 90, 2 EA DUE MAY 90, 3 EA DUE JUN 90, 10 EA
			မ် ဟ	EA REC'D OS JUL 90	05 JUL 9	0			DUE JUL THRU SEP 90, 1 EA DUE OCT90 41 EA SAB5: 7 EA DUE OCT 90, 10 EA DUE NOV 90 - JAN 91, 4 EA DUE FEB 91, 4 EA SHIPPED 30 JAN 90
28 2915 00 583 6279PT RESOLVER	0/0	171	15/24	9/11	27/33	21	40/541	0	94 EA DUE MAY 90 TILL COMPLETE BAL ON CONTRACT DUE IN 567 EA ON
				11 EA 17 EA 10 EA	EA REC'D EA REC'D	REC'D MAY 90 REC D, JUN 90 REC'D 23 JUL	06		W GG
29 2915 00 345 4299PT LEVER TRIM	0/0	15	9/6	5/3	16/8	8	24/168	0	EDD: 24 EA DUE MAY 90, 60 EA PER MO JUL - AUG 90, 15 EA DUE SEP 90, 57 EA ON PR WITH TOTAL CONTRACT MAX QTY OPT OF 302
30 2915 00 349 3308PT SHAFT CAM	0/0	1/1	56/67 5 EA RE	33/31 REC'D APR 90	100/92	4	201/195 0	0 5	EDD: SAK- 807 BAL DUE IN 155 EA DUE MAY 90, 175 EA DUE JUN 90 THRU AUG 90, 107 EA DUE SEP 90

AS OF: 30 JUL 90

5 EA REC'D APR 90 10 EA REC'D JUN 90 5 EA REC'D 11 JUL 90

		SCHED, 31 APR 90	3. ·	
F: 30 JUL 90	REMARKS	172 EA ACCELERATED DEL SCHED, 31 APR 90	THRU APR 91 ON 90 230	
AS OF:	В/0	32/98 0		
	A/AX	'n		
RAINTS	н/0	~		
UFC PARTS CONSTRAINTS	QTR REQT	18/15	JUL 90	
UFC PAR	MO	9/9	INT, 31 JUL 90	
	REPLX	10/11	S EA	
	UPA	1/1		
	QTY-AWP 15/16	0/0		
7.0	NSN	31 2915 00 346 6071PT	arook	
'	ı	60		

			ш	JUC PARTS	BUC PARTS CONSTRAINTS	INTS			AS OF: 30 JUL 90
NSN	QTY-AWP	UPA	REPLX	MO Reqt	QTR REQT	Н/0	A/AX	B/0	REMARKS
2915 01 082 4015PT HOUSING	ស		15	ø	17	0	0/0	9	EDD: NO NEW STATUS; CONTRACT 27 EA ON CONTRACT DUE DEC 90, ALSO PR FOR 44 EA, HAMILTON STANDARD
			REC'D	1 EA	19 APR 90				NEED PR# 90-60887, 05 FEB 90,
			REC'D	1 EA	12 JUL 90				44 EA
5330 01 074 5434PT SEAL	8	10	100	367	1100	0	0/0	385	9,520 TO BE SHIPPED 15 AUG 90 FROM HAMILTON STANDARD
5330 01 079 7306 PACKING	0	-	100	37	110	43	0/0	14	1,025 EA DUE EOM
			4	REC'D 32	EA, 05 JI	05 JUL 90			
			V I	UGMENTOR	AUGMENTOR PUMP CONTROLLER CONSTRAINTS	NTROLLER	CONSTRA	INTS	AS OF: 30 JUL 90
NSN	QTY-AWP	UPA	REPLX	Mo Reqt	qtr Reqt	H/0	A/AX	B/0	REMARKS
2915 00 279 5776PT HOUSING	25 AWP 30G	-	11	चर	13	•	0/0	56	20 EA DUE SEP 90, 14 EA DUE OCT90, 20 EA DUE JAN 92, 13 EA DUE FEB 92. IM HAS 82 EA B/0, PRIORITY 1 - 8.
2915 00 345 4020PT LEVER ASSY	6	-	ស	8	9	0	0/0	14	50 EA ON REPAIR CONTRACT WITH BENDIX

# INTERCHANGEABLE OR SUBSTITUTE STOCK NUMBERS: MASTER STOCK NUMBER I & S CODE LINK CODE SUBSTITUTE STOCK NUMBER 2915004159916PT I ZZA 2915010819644PT 2915004159916PT L ZZB 2915004159916FT * MANUFACTURE PART NUMBER RECORDS: STOCK NUMBER MFG PART NUMBER NOUN/DESCRIPTION FSMC SOURCE 2915010819644PT 2662762 SEAT AND SCREEN ASS 06848 M * MATERIAL STANDARD RECORDS:					**	*****	. S T	0 C K		M B E R BER: 2	
STOCK NUMBER MIC SRC UI UNIT-COST EREC FRZ RIN-LOCATION 128											
STOCK NUMBER MIC SRC UI UNIT-COST EREC FRZ RIN-LOCATION 128											
# MANUFACTURE PART NUMBER RECORDS: # STOCK NUMBER MFG PART NUMBER NOUN/DESCRIPTION FSMC SOURCE # STOCK NUMBER MFG PART NUMBER NOUN/DESCRIPTION FSMC SOURCE # STOCK NUMBER MFG PART NUMBER NOUN/DESCRIPTION FSMC SOURCE # MATERIAL STANDARD RECORDS: # MATERIAL STANDARD RECORDS:	* MIC CONTROL RE	CORDS	:								
REC-STK DN-ORDR CNT-STDS 30D-REQ Q1-REQ Q2-REQ G3-REQ 6 0 3 20 18 28 * SUPPLY MASTER BALANCE: STOCK NUMBER ERRC FUND CRD UNIT-COST A-ACCT-BAL AX-ACCT-BAL 2915010819644PT N 6H D 175.11 0 1309 * INTERCHANGEABLE OR SUBSTITUTE STOCK NUMBERS: MASTER STOCK NUMBER I & S CODE LINK CODE SUBSTITUTE STOCK NUMBER 2915004159916PT I ZZA 2915010819644PT 2915004159916PT L ZZB 2915004159916PT * MANUFACTURE PART NUMBER RECORDS: STOCK NUMBER MFG PART NUMBER NOUN/DESCRIPTION FSMC SOURCE 2915010819644PT 2662762 SEAT AND SCREEN ASS 0684S M * MATERIAL STANDARD RECORDS: STOCK NUMBER MIC PROD-NR END-ITEM OPER RCC OCC UPACE 2915010819644PT MFL 1257ZB 2915010819644PT MFL 097674 2915010645946FT DEAOI MTPFAB 1.00 12915010819644PT MFL 1257ZB 2915010645946FT DEAOI MTPFAB 1.00 129150100819644PT MFL 1257ZB 29150100619644PT MFL 12500A 2915012016783FT DEAOI MTPFAB 1.00 129150100819644PT MFL 12500A 2915012016783FT DEAOI MTPFAB 1.00 129150100819644PT MFL 12500A 2915012016783FT DEAOI MTPFAB 1.00 129150100819644PT MFL 12500A 2915012016783FT DEAOI MTPFAB 1.00 12915012016783FT DEAOI	STOCK NUMBER	MIC	SRC	<u>UI</u>	UNI	T-COST	ERRC	FRZ	BIN-LO	CATION	I&S
* SUPPLY MASTER BALANCE: ** SUPPLY MASTER BALANCE: ** SUPPLY MASTER BALANCE: ** STOCK NUMBER	2915010819644PT	MFL	D	EA		176.11	N		0348FL0	1G017B	I
* SUPPLY MASTER BALANCE: STOCK NUMBER ERRC FUND GRD UNIT-COST A-ACCT-BAL AX-ACCT-BAL 2915010819644PT N 6H D 176.11 0 1309 * INTERCHANGEABLE OR SUBSTITUTE STOCK NUMBERS: MASTER STOCK NUMBER I & 9 CODE LINK CODE SUBSTITUTE STOCK NUMBER 2915004159916PT I ZZA 2915010819644PT 2915004159916PT L ZZB 2915004159916PT * MANUFACTURE PART NUMBER RECORDS: STOCK NUMBER MFG PART NUMBER NOUN/DESCRIPTION FSMC SOURCE 2915010819644PT MFL 2662762 SEAT AND SCREEN ASS 06848 M * MATERIAL STANDARD RECORDS: STOCK NUMBER MIC PROD-NR END-ITEM OPER RCC DCC UPPLY 2915010819644PT MFL 09767A 2915010845946PT DEAOI MTPFAA 1.00 12915010819644PT MFL 12572A 2915012018783PT DEAOI MTPFAA 1.00 12915010819644PT MFL 12500A 2915012037222PT DEAOI MTPFAA 1.00 12915010819644PT MFL 12500A 291501203722PT DEAOI MTPFAA 1.00 12915010819644PT MFL 12500A 291501103722PT DEAOI MTPFAA 1.00 129150110819644PT MFL 12500A 291501103722PT DEAOI MTPFAA 1.00 129150110819644PT MFL 12500A 29150110372PT DEAOI MTPFAA 1.00 129150110819644PT MFL 12500A 29150110372PT DEAOI MTPFAA 1.00 129150110819644PT MFL 1250		REC-9	37K	ON-0)RDR	CNT-STD)S 30	D-REQ	Q1-RED	02-R E 0	Q3-RE
STOCK NUMBER ERRC FUND CRD UNIT-COST A-ACCT-BAL AX-ACCT-BAL			6		0	3		20	18	28	
# INTERCHANGEABLE OR SUBSTITUTE STOCK NUMBERS; MASTER STOCK NUMBER	* SUPPLY MASTER	BALAN	DE:								-
# INTERCHANGEABLE OR SUBSTITUTE STOCK NUMBERS: MASTER STOCK NUMBER	STOCK NUMBER	ERRC	FL	JND	CRD	UNIT-	·COST	AAC	CT-BAL		CT-BAL
* INTERCHANGEABLE OR SUBSTITUTE STOCK NUMBERS: MASTER STOCK NUMBER	2915010 81 9644PT	N		-—- эН	D	-					
# MANUFACTURE PART NUMBER RECORDS: STOCK NUMBER MFG PART NUMBER NOUN/DESCRIPTION FSMC SOURCE 2915010819644PT 2662762 SEAT AND SCREEN ASS 06848 M * MATERIAL STANDARD RECORDS: STOCK NUMBER MIC PROD-NR END-ITEM OPER RCC OCC UPA 2915010819644PT MFL 09767A 2915010645946PT DEA01 MTPFAA 1.00 1 2915010819644PT MFL 12572A 2915012016783FT DEA01 MTPFAA 1.00 1 2915010819644PT MFL 12572A 2915012016783FT DEA01 MTPFAA 1.00 1	* INTERCHANGEABL	E OR S	SUBS		re st	OCK NUMB	ERS:				
STOCK NUMBER MFG PART NUMBER NOUN/DESCRIPTION FSMC SOURCE 2915010819644PT 2662762 SEAT AND SCREEN ASS 06848 M * MATERIAL STANDARD RECORDS: STOCK NUMBER MIC PROD-NR END-ITEM OPER RCC OCC UPA 2915010819644PT MFL 09767A 2915010645946PT DEA01 MTPFAA 1.00 1 2915010819644PT MFL 12572A 2915012016783FT DEA01 MTPFAA 1.00 1 2915010819644PT MFL 12572A 2915012037229PT DEA01 MTPFAA 1.00 1	MASTER STOCK NUM	1BER		s cc		LINK CO					IBER
2915010819644PT 2662762 SEAT AND SCREEN ASS 06848 M * MATERIAL STANDARD RECORDS: STOCK NUMBER MIC PROD-NR END-ITEM OPER RCC OCC UPA 2915010819644PT MFL 09767A 2915010645946PT DEA01 MTPFAA 1.00 1 2915010819644PT MFL 12572A 2915012016783FT DEA01 MTPFAA 1.00 1 2915010819644PT MFL 12500A 2915012037229FT DEA01 MTPFAA 1.00 1	MASTER STOCK NUM 2915004159916F	1BER 		s cc		LINK CO		<u></u> 25	71501081	9644PT	IBER
* MATERIAL STANDARD RECORDS: STOCK NUMBER MIC PROD-NR END-ITEM OPER RCC OCC UPA 2915010819644PT MFL 09767A 2915010645946PT OEA01 MTPFAA 1.00 1 2915010819644PT MFL 12572A 2915012016783FT OEA01 MTPFAA 1.00 1 2915010819644PT MFL 12500A 2915012037229PT DEA01 MTPFAA 1.00 1	MASTER STOCK NUM 2915004159916F 2915004159916F	1BER 	I &	S CC	DDE	LINK CO ZZA ZZB		<u></u> 25	71501081	9644PT	BER
* MATERIAL STANDARD RECORDS: STOCK NUMBER MIC PROD-NR END-ITEM OPER RCC OCC UPA 2915010819644PT MFL 09767A 2915010645946PT DEA01 MTPFAA 1.00 1 2915010819644PT MFL 12572A 2915012016783FT DEA01 MTPFAA 1.00 1 2915010819644PT MFL 12500A 2915012037229PT DEA01 MTPFAA 1.00 1	MASTER STOCK NUM 2915004159916F 2915004159916F * MANUFACTURE PA	1BER PT PT ART NUI	I &	S CC I L	DRDS:	LINK CO ZZA ZZB	DDE	25 25	71501081 91500415	9644PT 9916FT	
2915010819644FT MFL 09767A 2915010645946FT DEA01 MTPFAA 1.00 : 2915010819644FT MFL 12572A 2915012016783FT DEA01 MTPFAA 1.00 : 2915010819644FT MFL 12600A 2915012037229FT DEA01 MTPFAA00 :	MASTER STOCK NUM 2915004159916F 2915004159916F * MANUFACTURE PA	MFG	I &	S CC I L	DRDS:	LINK CO ZZA ZZB	DE DESCR	25 29	P1501081 P1500415	9644PT 9916FT	OURCE
2915010819644FT MFL 12572A 2915012016783FT DEA01 MTPFAA00 1 2915010819644FT MFL 12600A 2915012037229FT DEA01 MTPFAA00]	MASTER STOCK NUM 2915004159916F 2915004159916F * MANUFACTURE PA STOCK NUMBER 2915010819644FT	MFG	I & MBER	S CC I L RECC	DRDS:	LINK CO ZZA ZZB	DE DESCR	25 29	P1501081 P1500415	9644PT 9916FT	OURCE
2915010819644FT MFL 12600A 2915012037229FT DEA01 MTFFAA	MASTER STOCK NUM 2915004159916F 2915004159916F * MANUFACTURE PA STOCK NUMBER 2915010819644FT * MATERIAL STAND	MFG 2662	I & MBER PARI	S CC I L RECC	DRDS:	LINK CO ZZA ZZB NOUN/	DE DESCR	25 29 29 REEN A	P1501081 P1500415 V FS	9644FT 9916FT	OURCE M
	# MATERIAL STAND * MATERIAL STAND STOCK NUMBER 2915010819644FT	MFG 2662 DARD RE	PART 2762 ECORE	S CC I L RECC T NUM	DRDS:	LINK CO ZZA ZZB NOUN/ SEAT A	DESCR	OPER DEA01	P1501081 P1500415 V FS ASS 06	9644PT 9916FT MC S 848	M

	D E 9150108	19644PT	•	****					Page 1
<u>2</u> 0	13:14								
									
—									
									
ION	1&5	CRD D-	I DSM	ON-HA	ND SUP-	INT MI	C-INT S	PC-LVL	BCK-ORD
17B		D D	EC		1	0			5
							•		
-REQ	Q3-REQ	ISS-	-MTD IS	S-M1	ISS-M2	ISS-M3	ISS-M4	ISS-M5	ISS-M6
28	1		3	2	0	2	6	2	2
			~~~						 -
								·	
								···	
.χ-ΔC	CT-BAL						· ————	•	
			,	· · · · · · · · · · · · · · · · · · ·					
. 1:	<u> 309</u>								
									
MUN	BER		· · · · · · · · · · · · · · · · · · ·						
4PT									
									
6FT	OURCE	DATE-L	_AST-ACT						
6=T									
6=T	OURCE M		_AST-AC1						
Si -	м								
6FT Si	M	90			_3				
.6FT Si	м	90	035	-		075.1			
S:	м	90		-	30D-REQ	QTR1-		(2-REQ	OTRO-RED
Si	M UPA	90	035	-		QTR1-	REG OTF	20 16	QTRS-RES

STOCK NUMBER MIC UI QTV DOCUMENT NR DS PLDG FDN	* BACK ORDER F	RECORDS:							
**SUPPLY DUE INS: SUP DUE-IN DUE-I	STOCK NUMBER	R MIC	UI (JTY :	OOCUME	NT NE	DS	PLDG	FDN
SUP_DUE-IN DUE-IN					_				
STOCK NUMBER DOC NR QTY EDD STATUS DATE-LA DTE- 2915010819644PT 01520364 & 1018 BB197 0193 0 2915010819644PT 01930347 4 1013 BB197 0193 0 2915010819644PT 01930348 4 1018 BB197 0193 0 ***NOTE** - SUFPLY ISSUES MAY NOT NECESSARILY BE ACCOUNTED TO THE M	* SUPPLY DUE 1	INS:			-				
2915010819644PT 01520364 6 1018 BB197 0193 0 2915010819644PT 01930347 4 1018 BB197 0193 0 2915010819644FT 01930348 4 1018 BB197 0193 0 ***NOTE** - SUFPLY ISSUES MAY NOT NECESSARILY BE ACCOUNTED TO THE M	STOCK NUMBER								
2915010819644PT 01930347 4 1018 BB197 0193 0 2915010819644PT 01930348 4 1018 BB197 0193 0 ***NOTE** - SUFPLY ISSUES MAY NOT NECESSARILY BE ACCOUNTED TO THE M									
2915010819644FT 01930348 4 1018 BB197 0193 0 **NOTE** - SUFPLY ISSUES MAY NOT NECESSARILY BE ACCOUNTED TO THE M									
	NOTE - SHE	PIV TOO	HES MA	Y NOT	Altor de	<u> Δpt: V</u>	SE OFFI	NIMTED TO	TLE W
							166		. 1 :
			·			· · · · · · -			
	·								
									
					·			·	
									
		 		·····					
					 				
		 							
						····			
						 			
				7					_
								-	
		·							
									
						<u></u>			

ì

___ ..

											
DN	JON	PRI	ADV	OPC	CND	OPER	CST	SFX	PROJ	DAYS-ON-BO	
		A3 A3	BB	A A	A A	1617B 1617B				43 14	_
DTE-	EST F	PR 	MAINT DOC MTPMFL	NF.				-			
<u> </u>	20 <u>6 1</u> 206 1	.2 t .2 t	MTRMEL MTRMEL	01931 01623	363 126						
HE M	AINTEN	IANCE	DGCUM	ENT N	UMBER	AS SHO)WN 				
								7			
				· · · · · · · · · · · · · · · · · · ·							
			<u> </u>		-	ā			, , , , , , , , , , , , , , , , , , ,		
											_
				-							
											

D.50

		Ţ	90	560			
. %	100			AWP	7	2	0
AWP	0			COND	0	0	0
owo	0 37			SOS "6" COND	FPZ	FPZ	FPZ
PRO RATA	1 27			RLY.		100	110
PROD	1 35			<u>981</u>		Ħ	∺
RQMT P	110			FIONTHLY QTY REQ	9	367	37
	Σ			%			
-	T E		•	REP%	15	100	100
UMBER	3 2467F			UPA	н	10	П
STOCK NUMBER	2915 01 133 2467PT		*	N/A	767500-3	69259-2	M25988/2-031
NOON	BACKUP CONTROL	EI/ACCPT	110	NOON	Housing	SEAL	PACKING
	CO	E1 /			_	t	
APPL	F16	EI / NEG	110	71	2915 01 082 4015PT	5330 01 074 5434PT -	9052 620
C/N	12453A) F16	FY90-4		NSN	2915 01 (5330 01 (5330 01 079 7306

0250

PREPARED BY: J. PITTMAN/EXT 57744

PAGE 2

DATE: 23 JUL 90

		?5	101	60			
. %	8			AWP	25	б	
AWP	0 25			0.000 ·	52		
owo	0 48			2008	FPZ	FPZ	
PRO RATA	2 29			OTRLY REOMIT	13	9	Lace of
PROD	8						5.05
RQMT PE	10 01			HONTHLY OTY REQ	77	2	Longe Sour
	m Z			REP%	Ħ	2	
UMBER	37 6551PT			UPA	Н	Н	
STOCK NUMBER	2915 01 137 655 1PT		*	N/A	2653474	2651948	
	LER				2	2	
NOON	AUGMENTOR PUMP CONTROLLER	EI /ACCPT	120	NOON	Housing	Lever Assy	
APPL	F100	EI / NEG	120	71	79 5776PT	15 4020PT	
C/N	11759A	FY 90-4		NSN	2915 00 279 5776PT	2915 00 345 4020PT	

23 Jul 90 DATE:

PAGE 3

PREPARED BY: J. PITTMAN/EXT 57744

```
GINO Software
                           calculations for EOQ
  MODEL:
     1) H1 = 4.43;
     2) H2 = \emptyset.72;
     3) PI1 = 398.91;
     4) PI2 = 311.25:
     5) M1 = 17 :
     6) M2 = 30;
     7) ML1 = 161
     8) ML2 = 139:
     9) SIG1 = 15.8569;
    10) SIG2 = 14.0485;
    11) C1 = 885.4\emptyset;
    12) C2 = 143.38;
    13) MIN= C1 * M1 + H1 * ( R1 - ML1 + Q1 / 2 ) + ( H1 * ML1 / ( 2 * Q1 )
        M1 * PI1 / Q1 ) * SIG1 * PSL( U1 ) + C2 * M2 + H2 * ( R2 - ML2 + Q2
        2 ) + ( H2 * ML2 / ( 2 * Q2 ) + M2 * PI2 / Q2 ) * SIG2 * PSL( U2 )
        C3 * M3 + H3 * ( R3 - ML3 + Q3 / 2 ) + ( H3 * ML3 / ( 2 * Q3 ) + M3
        PI3 / Q3 ) * SIG3 * PSL( U3 ) ;
    14) U1 = (R1 - ML1) / SIG1:
    15) U2 = (R2 - ML2) / SIG2;
     16) C = 141367.68;
     17) C1 * Q1 + C2 * Q2 + C3 * Q3 < \emptyset.35 * C ;
     18) H3 = 1.66:
     19) PI3 = 515.68;
--More--
         2 ) + ( '!2 * ML2 / ( 2 * Q2 ) + M2 * PI2 / Q2 ) * SIG2 * PSL( U2 )
        C3 * M3 + H3 * (R3 - ML3 + Q3 / 2) + (H3 * ML3 / (2 * Q3) + M3
        PI3 / 3 ) * SIG3 * PSL( U3 ) ;
    14) U1 = (R1 - ML1) / SIG1;
    15) U2 = (R2 - ML2) / SIG2;
     16) C = 141367.68;
     17) C1 * Q1 + C2 * Q2 + C3 * Q3 < Ø.35 * C;
     18) H3 = 1.66 ;
    19) PI3 = 515.68 ;
--More--
    20) M3 = 78 :
     21) ML3 = 543;
     22) SIG3 = 47.3937 ;
     23) C3 = 331.12 :
    24) U3 = (R3 - ML3) / SIG3;
    25) R1 > Ø;
     26) R2 > Ø ;
    27) R3 > \emptyset;
     28) Q1 > Ø;
    29) Q2 > \emptyset;
     3Ø) Q3 > Ø ;
  END
```

;

SOLUTION STATUS: OPTIMAL TO TOLERANCES. DUAL CONDITIONS: UNSATISFIED.

OBJECTIVE FUNCTION VALUE

13)	45875.756357		
VARIABLE	VALUE	REDUCED COST	
H1	4.430000	. ØØØØØØ	
H2	.720000	. ØØØØØØ	
PII	398.910004	. 000000	
PI2	311.250000	. ØØØØØØ	
	17.ØØØØØØ	. ଉଷ୍ପଷ୍ଥର	
M1			
M2	30.00000 30.00000	. ØØØØØØ	
ML1	161.000000	. ØØØØØØ	
ML2	139.000000	. ØØØØØØ	
SIG1	15.856900	. ØØØØØØ	
SIG2	14.048500	. ୭୭୭୭୭୭	
C1	885.400024	. ØØØØØØ	
C2	143.380005	. ØØØØØØ	
R1	219.719236	.003920	
Q1	2.679855	1.812297	
U1	3.703072	. ØØØØØØ	
R2	168.687245	. 1Ø1127	
Q2	201.438334	.339731	
More			
U2	2.113197	. ଉପ୍ରପ୍ରପ୍ର	
C3	331.119995	. 000000	
M3	78.000000	. 000000	
H3	1.660000	. ØØØØØØ	
R3	713.492353	101050	
ML3	713.472333 543.0000000	. 0000000	
		. 8Ø4896	
Q3	55.036581	. 004070 . 0000000	
PIZ	515.679993	. ଅଷ୍ଟ୍ରଷ୍ଟ୍ର	
SIG3	47.393700		
กร	3.597363	. 000000	
С	141367.687500	. ØØØØØØ	
ROW	SLACK OR SURPLUS	PRICE	
1)	. ଉଷ୍ଡ୍ୟର୍	-60.071334	
2)		-130.436640	
3)	. ØØØØØØ	002570	
4)	. ØØØØØØ	013048	
5)	. ଉଷ୍ଡ୍ଡ୍ଡ୍	-885.460335	
6)	. ØØØØØØ	-143.515380	
7)	. ØØØØØØ	3,972492	
8)	. ØØØØØØ	076618	
9)	. 000000	-1.761002	
1Ø)		-1.973715	
11)	. ଉଉଉଉଉଉ	-17.0000000	
More			
5.	purpor estat es	- 25T / / 4 M	
8)	. ଉଷ୍ଡଉଷ୍ଡ	Ø76618	
9)	. ଡ଼ଡ଼ଡ଼ଡ଼	-1.761002	
1Ø)	. ØØØØØØ	-1.973715	
11)		-17.000000	
More	204204204204204204	TAN 000000000	
12)	. ଅଷ୍ଟିଷ୍ଟି	-30.000000 7.249346	
14)	. ଉଷ୍ଡିଷ୍ଟିଷ୍		091054
15)	. ଉଷ୍ଡଉଷ୍ଥ	11.189082	001004
16)	. ØØØØØØ	. ଉଷ୍ଟାଷ୍ଟ୍ର	
17)	. 004490	0000000. -100 01004	
18)	. 000000	-198.019866	

19)	. ØØØØØØ	002650
2Ø)	. ଉଷ୍ଡ୍ର୍ଡ୍	-331.137512
21)	. ØØØØØØ	1.660867
22)	. ଉଉଉଉଉଉ	025931
23)	. ଉଷ୍ଟର୍ଶ୍	-78.000000
24)	. ଉଉଉଉଉଉ	042434
25)	219.719236	. ØØØØØØ
26)	168.687245	. ØØØØØØØ
27)	713.492353	. ଉଉଉଉଉଉ
28)	2.679855	. ୭୭୭୭୭୭
29)	201.438334	. ØØØØØØ
3Ø)	55.Ø36581	. ଉଉଉଉଉଉ

```
MODEL:
      1) H1 = 4.43;
      2) H2 = \emptyset.72;
      3) PI1 = 398.91 :
      4) PI2 = 311.25;
      5) M1 = 17;
      6) M2 = 3\emptyset;
     7) ML1 = 161;
     8) ML2 = 139;
     9) SIG1 = 15.8569;
     10) SIG2 = 14.0485;
    11) C1 = 885.40;
     12) C2 = 143.38;
     13) MIN= C1 * M1 + H1 * ( R1 ~ ML1 + Q1 / 2 ) + ( H1 * ML1 / ( 2 * Q1 )
         M1 * PI1 / Q1 ) * SIG1 * PSL( U1 ) + C2 * M2 + H2 * ( R2 - ML2 + Q2
         2 ) + ( H2 * ML2 / ( 2 * Q2 ) + M2 * FI2 / Q2 ) * SIG2 * PSL( U2 )
         C3 * M3 + H3 * (R3 - ML3 + Q3 / 2) + (H3 * ML3 / (2 * Q3) + M3
         PI3 / Q3 ) * SIG3 * PSL( U3 ) ;
     14) U1 = ( R1 - ML1 ) / SIG1 ;
     15) U2 = (R2 - ML2) / SIG2;
     16) C = 141367.68;
     17) C1 * Q1 + C2 * Q2 + C3 * Q3 < Ø.35 * C :
     18) H3 = 1.66;
     19) PI3 = 515.68;
--More--
         2 ) + ( H2 * ML2 / ( 2 * Q2 ) + M2 * PI2 / Q2 ) * SIG2 * PSL( U2 )
         C3 * M3 + H3 * (R3 - ML3 + Q3 / 2) + (H3 * ML3 / (2 * Q3) + M3
         PI3 / Q3 ) * SIG3 * PSL( U3 ) ;
     14) U1 = (R1 - ML1) / SIG1;
     15) U2 = (R2 - ML2) / SIG2;
     16) C = 141367.68;
     17) C1 * Q1 + C2 * Q2 + C3 * Q3 < Ø.35 * C;
     18) H3 = 1.66;
     19) PI3 = 515.68 ;
--More--
     20) M3 = 78;
     21) ML3 = 543;
     22) SIG3 = 47.3937;
     23) C3 = 331.12;
     24) U3 = (R3 - ML3) / SIG3;
     25) R1 > Ø:
     26) R2 > Ø ;
     27) R3 > Ø ;
     28) Q1 > Ø ;
     29) Q2 > Ø;
     3Ø) Q3 > Ø :
   END
```

:

SOLUTION STATUS: OPTIMAL TO TOLERANCES. DUAL CONDITIONS: UNSATISFIED.

OBJECTIVE FUNCTION VALUE

13)	45875.756357			
VARIABLE	VALUE	REDUCED COST		
H1	4.430000	. ଉଉଉଉଉଉ		
H2	.720000	. ଉଉଉଉଉଉ		
PI1	398.910004	. ଉଉଉଉଉଉ		
PI2	311.250000	. ଉଉଉଉଉଉ		
M1	17.000000	. ØØØØØØ		
M2	30.00000	. ØØØØØØ		
ML1	161.000000	. ØØØØØØ		
ML2	139.000000	. ଉଉଉଉଉଉ		
SIG1	15.856900	. ØØØØØØ		
SIG2	14.Ø485ØØ	. ଉଉଉଉଉଉ		
C1	885.400024	. ଉଉଉଉଉଉ		
C2	143.380005	. ØØØØØØ		
R1	219.719236	.003920		
Q1	2.679855	1.812297		
U1	3.703072	. ØØØØØØ		
R2	168.687245	.101127		
Q2	201.438334	.339731		
More				
U2	2.113197	. ØØØØØØ		
C3	331.119995			
M3	78.000000	. ØØØØØØ		
H3	1.660000	. ଉଉଉଉଉଉ		
R3	713.492353	101050		
ML3	543.000000	. ଉପଉପ୍ୟ		
03	55.036581	.804896		
PI3	515.679993	. ଡଡଡଡଡ		
SIG3	47.393700	. ØØØØØØ		
นร	3 .59 7363	. ØØØØØØ		
С	141367.687500	. 000000		
ROW	SLACK OR SURPLUS	PRICE		
1)	. ଉଷ୍ତ୍ରହ୍ନ	-60.071334		
2)	. ଉଉଉଉଉଉ	-130.436640		
3)	. ଉଉଉଉଉଉ	002570		
4)	. ଉଉଉଉଉଉ	013048		
5)	. ଉଉଉଉଉଉ	-885.460335		
6)	. ଡଡ଼ଭ୍ରତ	-143.515380		
7)	. ଉଷ୍ୟଷ୍ଥଣ	3.972492		
8)	. ଉଷ୍ଡ୍ର୍ଡ୍	076618		
9)	. ଉପ୍ରତ୍ତ୍ର	-1.761002		
1Ø)		-1.973715		
11)	. ଷ୍ଟ୍ରଷ୍ଟ୍ର	-17.000000		
More				
8)	. ØØØØØØ	076618		
9)	. 000000	-1.761002		
10)		-1.973715		
11)		-17.000000		
More	m en en fa' fa' fa' fa'			
12)	. ଉପ୍ତତ୍ତ୍	-30.000000		
14)	. ØØØØØØ	7.249346	09103	57
15)	. ଉଷ୍ଡ୍ର୍ଡ୍	11.189082	00190	- '
16)	. ଉପ୍ରତ୍ରତ୍	. ØØØØØØ		
17)	.004490	. @@@@@		

18)	. ଷ୍ଟ୍ରଷ୍ଟ୍ର	-198.Ø19866
19)	. ØØØØØØ	002650
20)	. ଉଉଉଉଉଡ	-331.137512
21)	. ØØØØØØ	1.660867
22)	. ଉଉଉଉଉଉ	025931
23)	. ØØØØØØ	-78.000000
24)	. ଉଉଉଉଉଉ	042434
25)	219.719236	. ØØØØØØ
26)	168.687245	. ଉଉଉଉଉଉ
27)	713.492353	. ଉଉଉଉଉଉ
28)	2.679855	. ଉଉଉଉଉଉ
29)	201.438334	. ØØØØØØ
3Ø)	55.036581	. ଉପ୍ରତ୍ରତ୍ତ

QRT TO DATE: 29 JUN 90

	ITEM	QTR		OWO	MI					
		REQ		BAL		ROM	PROD	VAR	l	
						a				
UFC-15		170		102	6	167	160	-7		
99767A				102	Ū	10,	100	•		
UFC-16		142		120	71	140	144	-0	ı	
12572A		142		120	11	130	170	- 0	,	
12572A										
	NOUN	CWVCh Milwich		D / W	F 1 1	.	P16		PRTS	DEO.
	NOUN	STOCK NUMBER		P/N	F1!	9	F16		ra13	REQ
RCVV VALVE	PODV	2915-01-006-3031	ውጥ	2659364	19	+	,	=	20	•
					9		l a		9	
	ACK & PISTON	2915-01-259-7083		2675531	-	+	0	=	_	
METERING V		2915-01-042-7831		2660537	22	+	14	=	36	
TUBE PFIAW		4710-00-382-6759		2650680	1	+	8	=	9	
DISTRIBUTI		2915-01-042-7942		2660588	0	+	Ø	=	Ø	
RETAINER A		2915-00-357-2503			6	+	3	=	9	
LEVER & SH	AFT MV	2915-00-357-2567	_	2654396	Ø	+	0	=	Ø	
SPOOL		2915-00-346-6071			Ø	+	0	=	0	
VALVE, SLI	DE	2915-01-021-3948	PT	2660553	Ø	+	Ø	=	Ø	
	=======================================					====		====		===
		TOTAL PARTS NEE			48		26		74	
=========	*************	=======================================					====	====	====	*==
			F15	5	Fl	6				
,								TOT	AL UF	C'S AWP
•										
	75, 76 IN HOUS	E	9	+	9		18	F15	5	F16
MOH			10	+	2	=	12			
								27	+	17 = 44
								====	====	======
TCTO 538 A	/W KIT		Ø	+	3	=	3			
TCTO 538 A	/W MEAS		Ø	+	1	=	1			
========		=======================================	====	=======	====	====	====			
TOTALS			19	+	15	=	34			
TOTAL UFC'	S		222	F15	=	102	F16	=	120	
UNWORKABLE			34	F15	=	19	F16	=	15	
========			====	=======	====	====	====	====	====	
WORKABLE			188							_
									SAT	Q
									_	
									SAT/	ADJ
									M& I	
									DAD	8
									n.a.n	71
										-0 16

9.2 TRACKER II

The TRACKER system is an excellent start on a parts tracking system for F-100 UFCs but doesn't yet meet all the needs of production, scheduling, and planning for a tracking system. As a prototype, TRACKER has proven that a system such as this will work in the UFC area and that the data can be used to help various levels of management make good decisions.

The attached sheets describe a proposed version of an upgraded tracking system called TRACKER II. TRACKER II is designed to be; easy to use, cheap/easy to implement, and require no special equipment. It will use the same PC and database software used in TRACKER. The inputs to TRACKER II will be made by completing the input forms in this package. The forms will be turned in to the TRACKER II system clerk who will key punch the entries into the system. The data entry work will be performed on day shift. At about 14:30 each day, each supervisor should receive an updated copy of the SUPERVISOR'S DAILY WORKSHEET showing the latest data. On this schedule, the TRACKER II system will be updated every 24 hours. The only output described here is the daily report to production supervisors. Other reports to RCC management, scheduling, planning, engineering, etc. can be easily produced as required.

Chart #1 gives a simplified picture of the part/data flow through the RCC and how TRACKER II will track it. TRACKER II differs from TRACKER in certain aspects:

- TRACKER II does not collect data by employee number or in any fashion attempt to track the output of an individual.
- TRACKER II follows each serial number through the entire repair process, including the waiting times between operations. This gives supervisors a real picture of what parts are waiting and what they are waiting for. A part cannot be "lost" in the system.
- TRACKER II is designed to be schedule-driven. It is the first step towards
 producing a Just In Time (JIT) "pull" system that lets scheduling and
 production work together to get UFCs through the process as rapidly as
 possible.

Implementing TRACKER II can be done one of two ways:

1) After the operation menu has been developed, the OCM team can begin producing Route sheets and loading S/Ns into the system as they are inducted. Scheduling can make their inputs off the Phase I Scheduling Worksheet, and production can fill out the Operation Input Sheets as they do the work. At first, the workload shown on the Supervisor's Daily Work Sheet will not be accurate. As older parts are repaired and leave the RCC, and Incoming parts are entered into the TRACKER II system, the database will become more complete and the output sheets will become more complete and the output sheets will become accurate. Meanwhile, operation flowtimes will be captured and the database will be prepared for a scheduling transition to Phase II. This method will take several months to become fully operational but will not require any special effort to implement.

2) If method #1 takes too long, a special effort could be made to speed up implementing TRACKER II. An inventory audit could be performed where each UFC in the RCC (including those in AWP) would be identified, have a Route Sheet and Scheduling Worksheet developed for it, and be entered into the TRACKER II system. This would require extra labor hours but speed implementation.

Chart #2 shows the basic structure of TRACKER II and how it would serve various customers. The most important aspect of TRACKER II is that it will give all levels of management and support functions detailed visibility of the flow of parts through the system.

OPERATION INPUT SHEET

This is an input sheet. It is designed to let a craftsman or supervisor who performs an operation on a part tell the TRACKER system:

- What was done to the part.
- · When it was done.
- How long it took.
- Where the part went after that.
- Any comments that might interest someone.

This sheet is the only input that production needs to make to TRACKER. When a part is sent to a given "Next Operation" it will appear on the next days SUPERVISOR'S DAILY WORKSHEET. The time written in the "COMPLETION TIME/DATE" block of the OPERATION INPUT SHEET will be the same time/date that appears in the "Date/Time Entered Queue" block on the DAILY WORKSHEET. If the craftsman/supervisor does not write in a next operation, the part will just go back into the queue for the current operation. The only way to get rid of a part is to give it to someone else! Parts can't be lost or pidgeonholed. If someone forgets to fill out an OPERATION INPUT SHEET, the part will just set in his queue until he remembers. His copy of the SUPERVISOR'S DAILY WORKSHEET will remind him each day of what is waiting in his queue. His boss will get weekly/monthly reports on the status of the various gueues so everyone will have a picture of the situation.

This form is designed to track parts through the process. It does not track performance/time by operator.

-
Ш
皿
₹
5
Ţ
₾.
_
~
=
Z
_
Z O
_
Z O
Z O
MATION
MATION
MATION

DATE: _

SHFT:

Comments Completion Time/Date Circle if Next Op is Deviation from OCM Route Sheet Next Operation Start Time/Date Operation ONLY REQUIRED FOR MATE/DEMATE OPS ¥ SUB ASSY S/Ns 8 ပ္ပ UFC S/N

SUPERVISOR'S DAILY WORK SHEET

This is an output sheet. It is designed to provide each supervisor with a daily "snapshot" of his/her current workload. This is a management tool for 1st line supervisors.

The daily worksheet tells the supervisor:

- How many (which) items are waiting for his operation(s).
- How long each has been waiting.
- Who sent him each part (in case he has questions).
- When scheduling wants the UFC to sell.
- What is the status of any sub assemblies.

This information allows the supervisor to determine at a glance:

- What workload he has to accomplish?
- Is he getting back logged?
- What is the priority on each part?
- Is the part on the critical path? (Is it worth working a part now if a sub assy won't be ready for months?)

The report will be sorted in order of "scheduled sell dates" which is priority order. If it were my job, I would draw a line through any parts which have sub assemblies delayed somewhere and then work the remaining parts in priority order. I would check off any that I complete and give the sheet to the next shift as a pass on log.

This report is not intended to tell each supervisor what parts to work. It is only designed to give the supervisors the data they need to plan their own work.

The "AVG TIME IN QUEUE" number is for a supervisor's information. This same number will be reported weekly/monthly to management so the supervisor should see it first. This way no one is ever surprised.

SUPERVISOR'S DAILY WORKSHEET

Operation: _

Estimated Avg CNTL Scheduled Sub Assembly Availability Estimated Distrib Body Scheduled Estimated Scheduled Schedule Sell Date NOTE: *Indicates Unplanned Routing From Operation Date/Time Entered Queue Avg Time In Queue: S/N

SCHEDULING WORKSHEET Phase I

This is an input sheet. It is intended to let scheduling set priorities by establishing sell dates. The sheet is designed to be very simple and require almost no analysis. The TRACKER system cannot currently provide adequate information to the schedulers to let them provide detailed scheduling to the production floor. As a result, the Phase I form will be used until scheduling feels comfortable using Phase II. The decision of when to begin Phase II should be made by the scheduling supervisor, not by production.

The "Scheduled Sell Date" should be figured using the average flowtime currently being experienced in the UFC process. This date will provide production with a rough "need date" and will drive basic prioritization in production. Scheduling can increase the priority of an item by moving up its Scheduled Sell Date. The "Scheduled Sell Date" is <u>not</u> a commitment to a customer, it is just the first step in setting up a "pull" system based on deliveries rather than the "push" system currently driven by inductions.

The MATE and DEMATE dates are to provide dates for the "Scheduled" block of the "Sub Assy Availability" section of the SUPERVISOR'S DAILY WORKSHEET. The "Estimated" block of the form will not be used while scheduling is in Phase I.

While using the Phase I sheet, scheduling does not need to try and update schedules for individual UFC's. That comes with Phase II.

SCHEDULING WORKSHEET

UFC S/N:	F-15 🗌	F-16 🔲
Induction Date:		
Scheduled Sell Date:	(Induction date	+days)
Scheduled Mate Date:	(Sell date	days)
Scheduled Demate Date:	(Induct date + _	days)

SCHEDULING WORKSHEET Phase II

This is an input sheet. It is designed to replace the Phase I version of the same name. It will allow scheduling to actually control the flow of parts through the production process. This form will only be used when TRACKER has acquired enough data to begin filling in "Estimated Avg Operation Flowtime".

The "Operation Number" Sequence comes from the OCM ROUTE SHEET, and is then updated when the part deviates from the Routing. The "Earliest Start Date" is frontward scheduled from induction using the Avg flowtime data. This entry for the "MATE" operation is the "Estimated Availability" entry on the "Sub Assy Availability" section of the SUPERVISOR'S DAILY WORKSHEET. Each Sub Assy will have its own scheduling worksheet.

The "Latest Start Date" is backward scheduled from the "Sell Date". The MATE entry in this column will provide the "Scheduled Sub Assy Availability" date on the SUPERVISOR'S DAILY WORKSHEET. The difference between "Earliest" and "Latest" entries is scheduling slack. Scheduling can raise the priority on a part and "take up the slack" by moving the sell date up in time.

The data from the OPERATION INPUT SHEET will tell scheduling:

- When the route has changed and new schedules are needed.
- How parts are doing against schedules.
- What is the avg flowtime across an operation.
- What is the avg process time (touch) across an operation.

With this data, scheduling can actually control delivery dates and "pull" parts through the production system.

SCHEDULING WORKSHEET

			F-15 🗌 F-10	5
	:		GG 🔲 DE	3
			e:	
	Operation Number	Earliest Start Time	Latest Start Date	Estimated AYG Operation Flow Time
1.				
2.				
3 .				
4. 5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14. 15.				
15. 16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25 .				
26. 27.				
28.				
29.				
30.				
31.				
32 .				1

.

OCM ROUTE SHEET

This is an input sheet. It is filled out after RAR (or on induction if RAR is not run) by the OCM team.

The list of possible operations and standard sequences are being developed by MDMSC and will be loaded to the TRACKER computer. The OCM team can either fill out a sheet by hand or go straight to the TRACKER computer and pick operations off a menu. If they use the TRACKER computer, it will automatically load the Route Sheet data to the TRACKER planning module.

One copy of the route sheet will stay with the OCM team and a second copy will travel with the UFC. If a demate is selected, enough copies of the route sheet will be printed to leave one for each sub assembly (normally 4 copies).

This route sheet is intended to provide <u>initial</u> routing for the part. It is not a directive. During the repair process, if a craftsman determines that a different operation is required, he/she will simply reflect the new "Next Operation" on the OPERATION INPUT SHEET and circle the entry to flag the system that the part has deviated from the initial routing.

When parts do deviate from their initial routing, a deviation report will be generated which will inform both the OCM team and scheduling that a change has occurred. The OCM team can use this information to improve their process. Scheduling can use the information to determine if the schedule should be changed.

OCM ROUTE SHEET

JFC S/N:	F-15 🔲	F-16 🗌	

Opertion Number	GG S/N	DB S/N	AC S/N	Comments Indicate Mate/Demate
1.				
2.				
3.				
4.				
5.				}
6.				
7. 8.				Į
9.				
10.				
11.				
12.]			
13.		}		
14.				
15.				
16.				
17.				
18.				
19.				
20. 21.				
22.	ļ	<u> </u>		
23.				
24.				
25 .				
26.	1			
27.	į			
28.				
29.		ļ		
30.				
31.		}		
32 .				
33 .			1	
34.				
35 .				

NOTE: This Operaion Sequence Is Recommended by The OCM Team, but May Be Deviated From.

Work Area: Date:_

	08									_				_
rea:	AC													
Sent To Area:	ASI AC													
Sent	Unf GG													
0,														
	Complete	z	z	z	z	z	z	z	z	z	z	z	z	Z
	S	>	>	>	>	>	>	>	>	>	>	>	>	>
	Stop							_						
	Task Start Stop							_						
	Task													
	Serial Num.													
orked:	08													
¥ork	AC													_
Item Being We	Unf 66 ASI AC													
E B	99													
lt e	Unf													

Work Areas

A. Unpack/Insp

B. OCM Team
C. RAR - 50002
D. OCM Line
E. GG Shop
F. AC Shop
G. DB Shop
H. Accessories
I. AWS
J. ASI - 50002
K. M&I/SAT - 50002
L. 50004
M. 50005
N. Safety Wire
O. AWP
P. AWM

Qty Routed/Condemned | Item Code Qty Routed/Condemned

Item Code

Accessories

œ œ œ

2. Other (explain)

092015

œ

œ

22 22

œ 04 œ

8 œ 2 2

ᅆ

œ

2 2 2

œ

UFL PROCESS SHEET

UFC SN	AT STATION:
START TIME DATE	OPERATION — REPAIRABLE OPERATION — PILESGORIES REPLACED:
START TIME / DATE	operation
START TIME / DATE	operation
4 START TIME / DATE	operation
START TIME/DATE	OPERATION
6 START TIME / DATE	OPERATION
F START TIME DATE	OPERATION
UFC SENT TO STATION: GG SENT TO STATION: AC SENT TO STATION: DB SENT TO STATION:	

IF A PART IS SENT TO STATION # 17 - OTHER, PLEASE INCLUDE A BRIEF DESCRIPTION OF THE ACTUAL DESTINATION

ACCESSORY LOG SHEET

	HCCESSOR	/	#	
O	START TIMES		PART COMP YES/NO	LETE?
2	START TIME STOP TIME			
3	START TIME STOP TIME		_	
9	START TIME STOP TIME			
	K	11		
			111	

STATIONS

```
1.) UNCRATE / RECEIVE

2) OCM TEAM

3) RAR

4) INCOMING INSPECTION

5) GG REPAIR

6) DB REPAIR

7) AC REPAIR

8) OCM LINE

9) 50004 TESTING

10) 50005 TESTING

11) ASI

12) MAI / SAT

13) SURFY WIRE / SHIPPING PREP

14) AWP

15) AWA

16) AWS (AWAITING MATE W/ SUB ASSY)

17) OTHER (With Sescription)
```

TRACKER II

Սոք	66	ASI	norked: AC +++++	DB :	Serial : Number : +++++++	Task i	Start ++++++++		Complete	: Unf	Sent (GG +++++
:	! !		; ; ; ;	:			 	! 6 8	; ; ; Y N	i	i !
i }		. i	· i ! !	i 	i !	i i i i i i i i i i i i i i i i i i i	i ! ! !	,	YN	i i	• • •
: :		• • •	 ! :	: :	! !	, , , , , , , , , , , , , , , , , , ,	, -	! !	YN		• •
; ; ;	'		. ' ! ! !)	; ;	! !			' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	. Y N		! !
:	I I	; ;	!!!	; •	!			 -	!		1 1 1
1		: :				 	 	!	Y N	:	; i
; ;		1	: :	i i	i i	!	! ;	<u> </u>	! ! Y N	† † †	: :
•		: :	: :	! !	1	: !	!	!	! !	:	: :
! !		:	: :	<u> </u>	; ,	.	:	:	! Y N }	;	: :
	1	:			1	: !	! !	: : :	! ! Y N	1	; ·
i 1	•	:					! ! !	: :	 	:	:
;	i i	i !	:	i .	i	i !	; !	i !	! Y N	i !	; ;

Work Area Cated

Α	Unpack/Insp	J
В	OCM Team	† :
С	RAR - 50002	L
Ð	OCM Line	N
Ε	GG Shop	1
F	AC Shop	ί
G	DB Shop	F
Н	Accessories	
I	AWS	2

Promotion of M. Henderson

CKER II

****				+++++		++++			L
itart	Stop	:Compl	ete	l Unf		to Area	AC	DB	• !
+++++	++++++++		++++	_		+++++			ļ
	.	:		!				;	1
		; : Y	N						
;					i :			:	
	; ;	Y	N	i !	i !			i i	
		! ! Y	N	† †				; ;	1
								; ;	
	; ; ;	; Y ;	N		i i	i i	; ;	: :	
•		; : Y	N					: ;	1
	i !	: :					; ;	: ;	
!	! !	Y 	N	; ;	;	; ;	: :	: : :	1
	! !	} } Y	N	•	} }	! !			
	 	: :			 - -	! !			· ·
	† 1 1	; Y ;	N	: :	! ! !	 		; ;	1
.+++++	+++++++++	+++++	-+++-	+++++	+++++	+++++	+++++	+++++	F

Work Area Categories:

Α	Unpack/Insp	J	ASI - 50002
В	OCM Team	K	M&I/SAT - 50002
С	RAR - 50002	L	50004
D	OCM Line	M	50005
Ε	GG Shop	N	Safety Wire
F	AC Shop	G	AWP.≖
G	DB Shop	۶	AWM
Н	Accessories		
I	AWS	Z	Other (Explain)

UFC TRACKER Operator ID #: DATE:								
ask / Delay	Station	Serial #	24 - Hour Ford Start	Format Completion Stop Status Where Next ?				
		1						
		 			-			
	<u> </u>							
		1						
		7						
			:					
· .					<u> </u>			
					-			
								
		-			 			
					 			

SO - Shift Over

MD - Management Decision

UF - UFC Failed Test

9.3 BURST DISCS

MEMO

ICW0-275

13 August 1990

Subject: UNIFIED CONTROL TEST STANDS

To:

Greg Gardner

CC:

Jim Grounds (Kelly Air Force Base), Kent Schien (MDMSC)

Encl:

(1) Cost Per Disk By Quanity in \$

(2) Material Compatibility of Hydrocarbon Fuels

From:

Sean D. Crosby

- 1. I Recently completed a quick inspection of the Unified Control Test Stands located at Kelly Air Force Base in San Antonio, TX. I found the units to be quite good and considering that 49 units have been in operation for 10 years, I am sure that the Air Force is well aware of this fact. I do have a few observations that may be of help and interest.
- 2. The burst disk seems to add more than its share of down time to the program. Rupture of the disk may be occurring due to true over-pressurization. There is some indication this may happen if controls are not reset after a test is interupted before completion. When the test is resumed, the surge may cause a rupture.

Another reason may be the type of burst disk being used. The disk in service now, made by Fike Metal Products, is an aluminum pre-bulged, rated at 250 psig. The tolerance on the burst pressure is + 10%, -5% and the recommended working pressure is 70% of burst. This puts the working pressure of the disk at 166.25 psig. The stands are commonly operated at 185 psig. This and the fact that pressure is cycled between 50 psig and 185 psig, more than 50 times during a test is causing the aluminum disk undue stress. A disk of monel is better suited for cycling. A nickle disk would also work but would be incompatible with JP-4 (see paragraph 4).

One other item on the disk is that its part number indicates that it is rated at 72°F. If it sees a higher temperature the burst pressure will be lower. During my short stay in San Antonio I was unable to determine what temperatures were involved.

None of the pre-bulged disks are rated at 80% of burst. To achieve this you can go to a scored disk which is the only other disk made by Fike which can fit into the present type BU burst disk holder.

The scored disks are more expensive. You will have to determine the amount of down time caused and the time involved in replacing a disk that has ruptured to determine cost savings. Enclosure (1) is a chart of costs per quantity and type of disk.

ICW0-275 13 August 1990

-2-

- 3. One change that would save time during set-up would be to use quick-disconnects (QDS) at the 20 separate 1/4 inch hose connections of the Unified Fuel Control (UFC). The time involved to connect a swivel nut fitting and torque it properly is approximately one minute (k.f. MDAC Standard Data C1.21.4.2 and C1.21.24.35). Utilizing quick disconnects should save about 19 minutes per test. Attaching the QDS to the UFC will take no longer than the 370 flare fittings now used.
- 4. Last I would like to offer a word of caution. I was told that JP-4 would soon be replacing soldered solvent as the test fluid. JP-4 is not compatible with brass, nickle, zinc or bronze (see Enclosure (2)). The following item numbers from the test stand drawings contain theses materials: 33, 40, 102, 103, 524, 539, 547, 580, 635, 636, 651, and 658. There are more but this is a representative list. It also needs to be verified which of these actually come into contact with fuel.
- 5. If you have any questions or if you have another task that I can be of help with, please let me know.

Sean D. Crosby Principle Specialist Engineer MDMSC-STL, 314-233-0077

SDC:dal

ENCL. (2)

SE MATERIAL COMPATIBILITY

guipment and the aircraft and engine fuel system. Noncompatible metals and the fuel, while the fuel may attack nonmetals and gaskets to metals and as well as degrading the fuel itself.

The following lists categorize metals that are satisfactory for use with hydrocarbon aircraft and missile fuels, and those that are not recommended:

Satistactory	Unsatisfactor		
Aluminum and all its alloys	Bronse		
Carbon Moly Steel	Nickel		
4 to 3% Ni Steel	Copper		
4 to 6% Chr. Moly Steel	Zinc		
300 Series Stainless Steel	Cadmium		
400 Series Stainless Steel	Brass		
Monel			

3.3.2 Packing and Gasket

The following materials are recommended for use for packing and gasket applications with aircraft and missile hydrocarbon fuels:

Nylon	Fluorothene A
Kel-F	Vinylite
Trithene	Teflon
Polyethylene	Fluorei
Buna N (linear compound MJ-70)	Viton
for JP-4, JP-8 only	****

The choice of material depends upon the temperature level of the application.

3.3.3 Lubricante

Lubricants used in conjunction with fuel system components such as pumps and controls may come in contact with the fuel being transferred. The following lubricants are recommended for use in fuel systems handling aircraft and hydrocarbon missile fuels:

Molykote
Fluorolubes

MIL-G-6032 Grease
Electrofilm Graphite Coating

ALS 0 - MIL-G-27617 &

(NOT on ALUMINUM)

IN BENNING

MIL-G-632 15 GOOD FOR FUEL BYS TOMS

23 21 13 12 21 22 9 18 9 7 32	24 15 16 14 8 5 8 21 16 3 2
134814635834557	\(\text{Y} = 12.8 \\ \sigma = 7.0 \rightarrow 9
91091134350112	

(4511)	· ·

59/11/59	(111)	132	4 (
19/12/89	(Gene Beaus)	172	35
23 101 190		207	9
01/02/90	(m)	216	4
05/02/90		220	16
21/02/90		236	9
02/03/90		245	2
c5/03/40		247	17
21/03/90	4/12/90 iside	2 6 4	2/
140 34 110	(05:46) }	2 35	၁
11/04/10	(09:31) 5	235	76
26/06/90		36/	2
24/66/40	(51.35) (13.13)	363	(E)
29/06/90		364	C_
29/06/90	(15:08)	364	
30 106 140	(06:15)	365	_

		2	3
	13	1	63
	76	1	1
	77	ŧ	0.6
	116	1	39 101
	217	/	7
	224	/	4
(w1.53)	228	1	0
(15:32)	228	2	
	26/	1	33
		13 76 77 1/6 2/7 224 (U.53) 228 (US: 32)	13 76 77 16 16 16 177 16 177 177 177 1724 177

		/	/
(44+1)	0	2	(3)
14/9/89 (both)	76	1	128
20 101/40 31/21/20 (ELET)	204 215	1	11
13 102 /40 18 153 190	228 233	t t	5
10/6/90 2 Pisks	レラン	ı	

1//// d		ν	
14468	\bigcirc	2	(3)
26/ 7/89 (BIO RUPTURED)	26	1	54
18/9/89	30	1	14
02/10/89	94	1	•
12/10/89	104	1	10
18/10/89	1/0	1	6
31/10/89 (N HVD) (04:54)	123	1	/3 `
01/11/39 (08:17)	124	1	1 33
04/12/89 (10)	157	1	60
calualgo (in)	217	1	14
16 102/90	231	1	17
55/63/40	248	1	2
07/03/90 (11)	250	1	38
12/17/10 (PEIS ALD)	233	1	73
15 /6/90 (Queps But)	361	1	/)

		$\overline{}$
14	5	10

9/3/89 outer			
12/8/89 (inside T/s)		4.3	10
22/8/89 (needs 8/0)		53	57
18/10/89 2		110	2.
20110189	(09:08)	1/2	0
20/10/89 (Inside))	(14:14)	112	C
21/10/89	(01:41)	, / 113	\mathcal{O}
26/10/89 (2) })	(11:26)	Associated 113	ی
27/10/89	(07:03)	Feg 8. 119	O
14/11/89 72	(11:38)	137	0
14/1/89 3!	(11:46)	137	C
16 111189		13%	ت
20/11/89	(12:22)	143	ć
21 /11 /87	(27.27)	144	A)
3 2 /11 /24	(01:20)	145	E
C 6 /12/89 (MILDS Blo)	(03:34)	154	1
07/12/89 " "	(05:08)	160	8
15/12/89	(00:04)	162	0
15/12/89	(00.54)	168	1/
2-112/31 (mids Blo)		179	34
3/1-1/96		213	7/
10104190		234	,
16/05/90			

1, 11	7
1446	/ 1
1	
	_

		2	(3)
13/7/89 19/7/89	18 19	1 2	1
10/3/39	41	1	22
15/10/89 21/10/89	107	1	6 76
5/1/90 (Invite) 9/1/90 +1	139 193	1	4
1/2/90 (2 disks) (11:38) 1/2/90 (21:37)	216 216	2 2	23
10/3/90 24/3/90 3/4 90	253 272	1	19 13
3/4/90 11/4/90 17/4/90 24/4/90 (Pryalate publism) 25/4/90	285 291 296 298 299	1 1 1 2	6 5 2 1
10/5/90 25/5/90	314 329	1	15 15

	\mathcal{O}	9	3
19/7/39	19	1	
18/8/89 28/3/39	5-9	1	40
1 / 2	8 <i>3</i>	,	24
2/9/89 3?	84	2	1 42
3/11/81	126	1	4
7/11/89 (01:20)	130	1	Ö
7/11/89 (08:01)	130	2	25
2/12/39	155	1	
11/12/39 (5.51)	169		9
12/12/39 (Ensides (13:18)	165	(25
6/1/90	190	1	66
10/3/90 13/3/90 (Inside) (6:41)) 7 14/3/90 (2:07) 3	256	1	1
(2:07) 3	257	2	19
12/4/90	276	1	ć
3/4/90	232	1	.12
20/4/90	294	1	22
12/5/90	3/6	1	8
22/5/90	324	1	14
3/6/90 16/6/90 21/6/90	338	l	
16/6/90	35/	1	13 5
,	356	I	
CAHAMA			

144601		
30/7/89		(2)
31/7/89	3/	
20/8/89 (Inside)	5 I	
22/10/89	3 114	1
13/11/89	136	1
09 10, 190	193	1
22/2/20 - Enside	210	1
CP103190	313	1

23/06/96 (NEEDS Blos) 27/06/90 (OUT)

4477			
	0	(2)	(3)
28/8/89 (inside)	59	1	2
05/9/89 outside	67	1	177
- E 1 1 E 3 1 S 9 - 1 T	2 44	1	96
£ 576U 196 (17:41)	340	1	0
25/06/10 (20150)	340	2	C
15/62/40 (23:05)	<i>40</i>	3	14
19/06/40 (0127)	354	1	17

(4469)	(1)(2)(3)
03/8/89	34 1 15
18/8/89 (I+0)	49 1 45 94 1 49
27/1/59 (220) 17/02/90 outside	143 1 23 126 1 15
36 /02/90 07/03/90 (in)	241 1 9
21/03/10	272 1 14
12/04/90	236 1 6 292 1 33
21/25/20 (IV) 25/25/20 (20:52)	325 2 327 1
24/25/10 (1.23 513) (11/25)	328 2 11
11/06/40 (OUT) (0912) 11/06/40 (IN) (16:47)	337 1 7 346 1 0

14466		
17/7/89 22/7/89	(<u>1</u>) 22	2 3
21/8/89	52 60	30 1 8 1 12
10/9/89 14/9/89 (Inside + out)	7L 76	1 4
29/9/89	91	1
2/10/89 6/10/89 11/10/89 (3:08) 27	94 48 103	3 1 1 5 0
11/10/89 (3:08) 2 7 11/10/89 (15:10) 3 16/10/89 (500, de) +1 31/10/89	103	2 5 1 15 1
23/11/89	152	29 1
24/1/90 (Inside) 24/1/90	208	56 1 5 1 25
$\frac{23}{2}/90$ (354) $\frac{24}{2}/90$ (11:28)	233 239	1 1
7/3/90 31/3/90	25° 274	1 24 32
2/5/90 4/5/90	308	1 2 29
2/6/90 14/6/90 25/6/90 (Inside)	337 349 3 60	1 12

_	(1) (2) (2)	3
13/7/89	13 1	_
19/2/89	19 1	
14/8/039 Inorde	13 32 1	
' 1 m'	73 105 1 1	,
30 10	106 1	
30 10 18 / 30 / 87	122 1	
2/11/89	125 1	
14/11/39	137 1	
15/11/29	132	-
30/11/89	153 1	
14/12/89	167 1	
	258 1	
15/3/90 (04:12)	258 2 29	
13/04/90	237 1 29	
12/5-197	3/6 1	
30/5-/70	334 1	
31/5/90	335 l 0900±7	7

[4476]		V	/
	()	2	3
19/7/89 (2 disks)	19	1	
22/7 /89 24/7 /89	12 24	1	3
11 / 3 / 39 16 / 3 / 39 23 / 3/89	42 47	1	/8 5
23/8/89	5 4 5 6	1	3 2
5/11/39 22/11/89 +1	128	1	72 17
1/12/89	154	1	4 43
18/1/90)? 19/1/90 3? 23/9/90 (in)	202 203 207	1 2 1	1 4
21/6/90	223 356) 1	/b /33

1/2/22	•	
16/7/89 18/7/89 (Enside) 3/7/89 (outside)	16 18 31	Z 13
27/3/39	<i>5</i> 8	27
18/9/89 26/9/89	88 3°	22
24/10/87	116	2-8 9
2/11/89 (16:57)) ? 2/11/89 (22:18) 3: 6/11/89 + 2 5/1/90 (Inside)	125	ø
5/1/89 -2 5/1/90 (Inside)	139	£4 27
1/2/90	216	46
14/3/90	262	74
1/6/90 (Inside)	336 347	1/

[4470]			
,	\mathcal{O}	23	
20/7/2039 (9:04) $3?$ $21/7/2039$ (17.11) $3?$	20 2/	1 (
27/7/1089 (Inside)	27	1 15	
11/8/9087 $27/8/9089$ (3:02) 2.7 $27/8/89$ (9:03) 3 $29/8/89$ (19:00)	42 60 60	1 18 1 0 2 6 3 14	
12/9/89 18/9/89 = 27/9/89 outside (10:54) 28/9/39	74 30 90	1 6 ,0	
22/10/89 (Inside) (11:06) 22/10/89 (13:43) · 5? 22/10/89 (15:02)	114 114 114	1 0 2 0 3 86	
16/1/90	200	1 24	
$9/2/90$ $13/2/90$ (2:12) $\frac{7}{3}$? $13/2/90$ (5:10) $\frac{3}{3}$?	224 228 228	1 4 0 10	
23/2/90 27/2/90	238 24 2	1 4 23	
22/3/10 (Inside + cut)	265	1 39	
30/4/90	304	33	
2/6/40 7/6/40	337 342	5	

•	(4479	

04/8/89 (Both)		
	35	10
14/8/89	45	3
17/8/89	43	2
19 18/89 (inside)	50	3 /
19/9/89	8 1	+4
03/11/39 (needs 810)	:25	70
11/0/190 (" ")	195	49
01 /03/40 (neds 8/0)	244	32
02 /04/90 (BID needs 2)	276	26
37/06/90	362	

4509	
	45

11 18 189	42	25
07/9/89 (needs BlD)	69	6
13/9/89	75	6
19/9/89 (00:04) 37 19/9/89 (12:27) 37 13/16/89 (nuds 8/0)	31	Ø
19/9/89 (12:27)	-3/	79
	160	51
27/01/90	211	11
07/02/90	222	,,

	447		~	
,			2	(3)
14/7/39		14	1	0.5
11/8/89	ontside pists)	42	2	28
11/8/39 3/10/89 13/11/39	0415.84	136	1	44
15/11/89		138	1	2
16/11/89	(4 Pisks)	139	4	1
13/12/89		166	1	27
21/1/10			1	39
23/1/90	(multiple of is		2	2
23/1/90	15:16	207	3	0
23/1/90	15:51	(Insula) 207	4	O
27/1/20		211	ı	4
26/2/90		24/	1	30
5/3/90		243	1	7
27/3/90		270		22
30/4/90		3°4	I	34

(4489)

14/9/89		76	2
2219189 (01	UT) + In	7 G 2 Y	57
18/11/59		141	12
36/11/89		153	5-6
25/01/40		209	9
03/02/90		2,8	5
25/02/90		223	33
	1145 310)	256	36
	10 / PFLO PRIBLEM (OC. 11)	252	0
18/04/90 (1	5,55)	292	19
57/55/96		311	49
20106/10		360	

20/7/ 89 24/7/89	
(18/89 outside 16:08 1/8/89 (outside) (103) 2	7,
1/3/89 (17:05)	
25/8/87	
15/9/89 3/11/89 (Inside) (4:51) 4/11/89 (needs 810)	
30/4/90	
12/6/90	

(1) 20 24	2	(3) 4 8
32 32 34 41 56	12111	0 2 7 15 70
126 127	ŧ)	1
139	(4
143 304	1	161
35/	l	47

43579			
	\bigcirc	(2)	(3)
15/7/89 (Inside) 20/7/89	15 20	1	5
17/8/ 37 22/3/39	48 5 3	1	2 8 5
2//9/ 39	83		30 21
12/10/37	104	1	82
2/1/90 3/1/90 (Inside)	186 187	1	ı
	237		50
$\frac{22}{2/90}$ (03:44) $\frac{22}{2/90}$ (00:48)	237	2	
25/2/10	240	1	3
5/3/10	248	1	Q
9/3/90	.752	J	4
11/3/90 (Inside)	254	1	2
20/3/90 (Inside)	263	1	9
30/3/90	273	1	10
6/4/10	280	1	7
12/5/90	3/6	1	36
14/5/10 23/5/90 (Inside)	323		7 5
		5271	17
9 /6 /90 15/6 /90 20/6 /90	344 350	1	6 5
20/6/90	355	1	
		09.	2026

14358	V (D (2) (3)
13/7/89 (outside) (11:08) 18/7/39 (15:20)	/13 1
28/3/89 29/3/37 (Ins.Je)	59 1 1 60 1 13
11/9/89 (Inside) 16/9/89 25/9/89	73 5 78 9 87 9
11/10/89 13/10/89 24/10/89	103 1 2 105 1 7 112 1 4
19/12/89 (Inside)	172 1 24
12/1/90 30/1/90 1/2/90 5/2/90 (Inside) 15/03/90 24/4/90 (Inside) 25/4/90 (Inside)	196 18 214 2 216 4 220 38 258 40 298
7/5/90	311 1
22/6/90	357 1 46

4360	
	/

		(D) (2)	
		77 1	
		97 1	
(in)		118 1	
(n)		124 1	
(14:07)		144) (
(16:10)		144 > 2	
(21.21)		144/3	
(00:03)		209 1	
(01.22)		210 1	
(17:01)		2137 1	
(20.53)		21332	
		215	
		217 1	
	(10) (14:07) (16:10) (21:21) (00:03) (01:22) (17:01)	(11) (14:07) (16:10) (21:21) (00:03) (01:22) (17:01)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

20 21 20

ن ن

65

436/

7/13/89
3/1/89
10/16/89
10/23/89
11/04/89
11/20/89
1/14/90
2/22/90
4/11/90
5/14/90
5/18/90

 $\frac{12}{X} = 28.1$ 0 = 23.4

[4362]

22/7/89	,	
78/8/29		
7/11/87		
18/1/90		
13/2/90		
10/4/90	(Inside +	0-17)
12/5/90		

	(2)	(3)
22	1	
59	1	37
130	l	7/
·		72
202 210	(8
2	ť	18
228	1	
234	,	56
20,	'	32
316	1	

	[4459]	$ \begin{array}{c} \sqrt{2} \\ \sqrt{2} \end{array} $	/) (3)
17/7/89 30/7/89		17 1 30 1	13 26
25/8/89 19/9/89 5/10/89 12/10/89 14/10/89 10/2/90 10/2/90 10/2/90	(15:46) } ? (15:46) } ?	56 1 81 1 97 1 98 1 106 1 150 1 218 1 225 1 225 2	25 16 16 24 68 70 23
5/3/90 6/3/90 7/3/90	(Inside)	248 249 250	1 1 40
16/4/90 6/5/90 22/5/90 30/5/90 5/6/90 14/6/90	(outside)	290 1 310 1 326 1 334 1	20 16 3 6
5/6/90 9/6/90 14/6/90		340 9 1 344 9 1 349 1	4 5

(4464)		2 3
08/8/89 (Inside) (15:54)	39	1
08/8/89 (21:52)	31 39	2 ,
09 18189 (19:31)	40	/
14 18/89 (Inside)	45	
30/8/89 (in - out)	61	1 16
15/9/89 (out) (11:08)	ラ テ	16
16/9/89 (02:54)	78	2 18
04/10/89 (10:08)	96	1
04/10/89 (11:53)	96	^
06/10/89 (08:26)	93	1
06/10/89 (09:33)	93	. c 2 ,
14/10/89 (needs 810)	106	1 6
20/10/89 (in)	1/6	1 23
16/11/39	139	1 6
22 /11 /89 (PFCB busting BID)	145	1 10
C2/12/89	155	1 16
18/12/59	171	1 8
26/12/89 (neds 8/0)	179	1 17
3/2:/20	196	1 20
61/02/46 (03.17)	216	1 0
01/02/90 (04.00)	216	2 ;
the free transfer of the state	217	3 33
57/03/90	250	1 7
14/63/96	257	1 7
1 5 103/40 (16:43)	254	1
16 163 190 (32:01)	254	2 0
37 /23/10 (DAL INSIDE BID	27/	2 72
26 /04/40	300	1 11
07/05/40	311	1 18
11/25/90	329	1 10
ty leading	3 39	1 12
a. 10211	351	1
	•	•

		(4467)		
				(2)	(3)
30/8/89			6/	1	17
16 19189			78	1	1/
27/9/89			89	ı	141
15/02/40			230	1	5
20/02/10			235	1	4
24/02/90	(10)		239	1	60
25/04/10	(in)		299	1	43
07/06/40	(in)		342	1	, –

31126/10

4649-

27/7/8	9 (inside)
14/8/89	
04/21/20	(needs 610)
24/01/90	
55/02/10	
27/03/10	(21:41)
25/03/90	(m) (20:22)
16/06/40	

	2	(3)
27	1	18
45	1	148
193	1	15
208	1,	15
223	1	27
250	. 1	1
251	1	100
351	I	

				_
		(1)	(2)	(2)
02/8/89 (15:02)		33	9	
03/8/89 (09:53))	3 <i>4</i>	, 7	1
18 18 189		49	1	15
29/8/89		60	,	11
31/8/89		6 Z	,	2
14/9/89 (in)		76	ŧ 1	14
22/9/89		24	,	8
24/9/89 (in)		26	1	2
27 19 /89 (21:08)		2 g	,	3
27/9/89 (21:21)		37	2	6
06/10/89		98		9
37/12/89 (nexts 8/0)		,	1	82
3 x /c/ /70		130	,	26
52/02/10		206	,	1/
14/02/40		217	,	12
01/03/90		229		15
20/03/90		244	1	19
36/63/40	•	263	,	6
1.125/40		269	1	53
11/25/10		322	1	4
12/06/90		326	1	21
1		347	!	14
		361	1	2
33102110 (IN)		363	ı	

(11.11.711)		V
(4444)	(i)	(2)(3)
05/8/89 (Inside)	36	1 100
13/11/59	136 187	1 49
22/02/90	237	1

07/01/90		j91	18
25/01/90		209	12
06/02/90	(22:10) 3	221	William Control
07/02/40	(10:21) }	222	, 4
26/02/90		241	73
15/05/10	(Blo Reset Comparen)	314	2
12/05/90		316	2
14/05/90	(IN)	318	, 0
24/05/40		323	,

J4480

N

25/7/39	25	
3//7/89	≨ 3 /	6
	_	29
29/8/89 (I+0)	(3) 60 2	28
26/9/89	28	26
22/10/89	114	15
06/11/89	129	9
15/11/89	138	6
21/11/89	144	64
24/01/90 (needs 810)	203	125
27/05/40	333	123

7//		
7/13/89		13
7/14/89		14
7/26/39		26
9/9/89		7/
12/1/89		15-4
12/13/89		166
1/24/90		208
3/20/90	? (03:24)	263
3/20/90	(2.01)	263
6/20/90	(14:58)	355
6/20/90	(20:13) outside	35-5-

11 Bu-st Disks
$$\bar{X} = 34.2 \text{ days}$$
 $G = 32.8$

 $\sqrt{}$

03/10/89	95
09/02/90 (cur)	224
15/65/96	319
1 - 1	

4484		\checkmark	
	131	,	3 <i>7</i>
	162	1	60

08/11/89		131	,
15/12/89		168	1
21/02/00 (03	(116) 3	236	1
22/02/40 (21		237	2

08/12/89
02/02/40
13/03/10

161	5-
217	39
256	71

(4/4/8/2

13/11/89 (14.49)	136	c
13/11/39 (17.15) / 2	136	Ĺ
13/11/84 (33:14)	136	o O
14/11/59 (00:14.5)	137	O
08/61/90	192	3
11/0/190 (in)	195	25
05/02/90	220	26
03/03/90 (m)	246	23
26/03/40	269	15
10/04/90	284	28
09/05/40 (23/17) 2 7	312	1
09/05/40 (01:32)	313	10
19/25/90	323	4
83/65/40 (in)	3 47	16
08/06/40	343	, •

_	
	4487)

17/8/89	17		6 1
16/9/89 (in)	78		47
02/11/89	125		78
19 101140 (BID + OTHER TIS PROBLE 45)	203		19
57 102 140 (needs 810)	222		2
09 102 190	224		5
14/02/90	229		8
22/02/40 (BID . COMPUTER LOCKIUS)	23 F		4/
64/64/46 (ocm)	273	2	9
13/64/10	ユョチ		

(4488)

07/12/89 00/20/39 08/09/89 10/28/89	
11/05/89	(watside)
02/15/90 2/17/10 2/26/90	
4/5/10 4/10/90 5/3/10	
5/11/90 5/22/90 6/28/90	
6/29/70	

$$\overline{X} = 22.75$$
 $\overline{O} = 27.9$
 $5 = 23.8$

44	90)

 \mathcal{N}

16/10/89	/o <i>8</i>	/ 7
02/11/89	125	20
22/11/89	145	13
25/12/89	153	7
12/12/89 (64.57)	•	<i>c</i>
12/12/89 (In) (13:04)	165	
	165	C
12/12/89 (14.52)	165	C
12/12/89 (18:58)	165	Ú
13/12/89 (15:35)	166	27
08/01/90 (13:21)	193	Û
29/01/90 (BIS BLOW IN) (13:55) }	194	c
24 /01 /90 (1821b)	194	2
12/01/90	196	19
31/01/10	215	62
23/24/10	277	2
05/04/90 (needs Blo)	279	14
19/04/40	293	//
30/04/40 (08.07) 77	304	\mathcal{L}
01/05/40 (01:34) 3	3 <i>05</i>	6
. = 105/90	31/	15
=-,==/10	324	4
£2/06/40 (10:22)	337	4
イン・イン・ベークション おりょうしょう シャ	341	

24/12/89 25/12/89 25/12/89 25/12/90 27/10/90 20/1 20/1 20/1 20/1 20/1 20/2 20/2 20/	28/1/189 (cut)	13 / 15 /	20
2. 1.1/90 17 101 140 17 101 140 20.1 20.1 20.1 20.1 20.1 20.1 20.2 20.2	54/12/59	157	2
19 10, 190 (PESUL PECE REL) 203 24 10, 190 (01:26) 208 209 44 24 10, 190 (co.21) 209 44 24 10, 190 201 201 4 201 201 6	· · · ·	·	_
24/01/90 (01:26) 77 208 25/01/90 (00:21) 5 209 4 24/01/90 213 8 26/02/90 221 6		_ ,,	-
24/c1/9c 213 8 25/02/90 22/ 6	24/01/90 (01:24) 77	• •	·
26/02/90		•	4
	26/02/90	221	6
36 32/63/40 (needs in 310) 227 36 263 9	12/02/40 (needs in 310) - 22/03/40	227 263	3 6 9
29/03/90 25/04/90 299		_ *	27

15/7/2900	15	/ C
25/7/89 2 2 7 /7/89	25 27	2 2
4/8/89 15/8/89 16/8/89 3?	35 46 47	9 (1) 15
31/8/87	62	2°
20/9/89 (Inside) 25/9/89	32 37	5
9/11/89	132	45
9/11/89 11/12/89 (11)	151 164	19
12/1/90 (outside)	196	32 46
27/2/90	242	46 3 V
6/4/90	280	
4/6/90	339	59

[450.7]

13/7/89	13	
23/7/89	23	/ 0
15/9/89	77	54
14/11/89	137	60
13/1/90	197	60
20/1/90	204	7
17/3/90	260	56
20/4/90	294	34

18/7/39	18	10/
1/11/89 (Inside)	124	106 64
4/1/90	132	22
26/1/90	210	
20/4/90	294	34

23 10 189 53 104 190 (in) 12/06/16

12/63/90

(4-481)

53/63/40 (m) 12/63/40

15/11/89

& 990060	
# # # # # # # # # # # # # # # # # # #	
文 左至 三 3	
2, 1 1 2	7-
33 - 42 141 441 441 141	20
五年 五年 五元	20
25 - 30 14 141 141 141 111 141 111 141	34
五年 五	29
で芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸芸	65
五年至年至至 五年至年 五年 五年 五年 五年 五年 五年 五年 五年 五十二 五十二 五十二 五十二 五十二 五十二 五十二 五十二 五十二 五十二	3
2	11/4
了 三里 三里 三里 三里 三里 三里 三里 三里 三里 三里 三里 三里 三里	2

101 - 200 11 TH	7
26 - 100 HT HT HT W	7 2 2
55 - 25 HH HH HH HH	5

9387 total mount actions
523 Burst Disks

6% of all failures = BD

523 Burst Pisks
114 2-6 days apart (asing)

22% of all BD Failures
probably caused by failures

9.4 PM SCHEDULES

- a. The Program Management Branch (MADF) with assistance from the supporting Engineering and Planning Branch (MA E) will determine which equipment should be included in the PM Program and performed by Plant Management function. The following criteria will apply to determine whether an item of equipment should or should not be included in the Plant Management function PM Program.
- (1) Equipment that would create an unsafe or hazardous environment if failure occurs due to lack of PM will be included. The tarth is the
- A 10 10 10 10 10 10 (2) : All peculiar equipment having specific PM requirements delineated by an applicable technical order will be included.
- 1. 1 H (3) Equipment that is critical to production, and where failure would result in costly downtime, should be included.
- (4) Equipment that is subject to the control of the breakdown repairs that are expensive compared to PM should be included.
- 子にかたい(5) / Equipment of small dollar value, where the cost of PM is likely to exceed the cost of replacement upon failure, should be excluded from the program. Some evidence will be maintained by PM Monitor to show that the equipment was considered for inclusion in the program and that a determination was made that no PM was necessary.
- (6) PM frequencies will be established so as to space the inspection as far apart as possible to reduce cost, and at the same time, stay within safe limits of time during which the defects ordinarily do not develop to the point of needing attention. The second of the second
 - b. Operator PM Instructions: The PM Annual Colf
- (1) General Operator Maintenance. (450)4 General instructions regarding lubrication, the state of cleanliness to be maintained, etc., are covered in para 5b of this MAOI, rather than by a separate set of instructions for each item of equipment. Safety precautionary steps must be taken prior to use as specified in the 127 series publication. No daily certification of this by the performance of the operator maintenance is the performance in the performance is the performance in the performance is the performance in the performanc Seat of the was a second of the first
- (2) Specific Operator Maintenance: Operator maintenance instructions of a specific " nature will be prepared on AFLC Form 170 and attached to the item of equipment by MADP personnel for ready use by the operator. These instructions should include operator maintenance of a critical nature that, if neglected could result in costly equipment damage or create a condition which is unsafe for shop personnel. The performance of this maintenance must be certified on AFLC Form 355 by the operator. NOTE: The preparation of specific operator instructions on AFLC Form 170 will be unnecessary for many items of equipment.
 - c. Plant Management PM Instructions:

- (1) Plant Management PM Instructions. also on AFLC Form 170, will be prepared by MADF. The frequency code shown on the AFLC Form 170 will be identified to the code contained on the applicable AFLC Form 946. Upon completion, the instructions will be forwarded to the Preventive Maintenance Branch (MADP).
- (2) The Program Management Branch (MADF) will use these instructions, along with information from AFLC Form 388, for input of PM actions to the inventory of G0041 system.
- (3) AFLC Form 170 instructions will be placed on the equipment by the PM mechanic no later than the next scheduled preventive maintenance.
- (4) The PM mechanic will accomplish the PM action and record on the AFLC Form 946. Any deficiencies as to location, tag number, PM instructions, etc., found on the AFLC Forms 170 and 946, and the metal tag will be annotated on the AFLC Form 946. When performing a scheduled PM action, any corrective maintenance (repair) required will be reported to MADSA for a service order; and the serv 05191219
 - 🛂 d. Historical Record: 🖰

1951matt (1)

- established by MADF for all items of equipment 30% that require PM and will be filed in machine 13 16 identification number sequence (tag number sequence). 137.375 7
- (3) MADF will maintain AFLC Forms 388, 17 Part III, by posting the costs associated with equipment overhaul, breakdown maintenance, and any corrective maintenance of significant dollar value. No PM costs are to be posted on this Forman and the costs are to be posted on this section of the costs are to be posted on this costs are to be posted on the costs are to be posted on
- 11 (4) The purpose of recording historical 11 maintenance costs on individual items of equipment is to provide a sound basis for making decisions. on whether to keep or replace an item of equipment when its continued use becomes questionable due to maintenance costs.
- (5) The historical record will be pulled from file and attached to the item of equipment when it is turned in.
- 5. RESPONSIBILITIES AND PROCEDURES:
 - a. Charles de la company de la
- (1) Assign a monitor and an alternate to be the central point of contact for distribution and questions pertaining to the Preventive Maintenance Program (G0041).

Suffer his of

30504 (1993)

John mind

- (2) Monitor both general and specific operator maintenance to assure accomplishment. [The shop supervisor will ensure on a daily basis that all operator PM is performed as required on schedule.
- (3) Provide the necessary coordination.

 with Rlant Management PM Mechanics to ensure that PM actions on equipment can be completed as a required.
- (4) Ensure each piece of industrial shop equipment is operated by qualified operator.
- (5) Review monthly PM inventory listings of equipment in the GOO4I system and report to MADF any discrepancies for correction.
- (6) Assure AFLC Forms 355 and 170 are attached to each piece of industrial shop equipment determined to require specific operator maintenance daily certification. NOTE: MADF will provide the initial AFLC Form 355, thereafter, it is the owners responsibility to replenish.
- (7) Assure that all inoperative equipment is reported to the Trouble Call Desk (MADSA) identified by the five digits of SA-ALC tag. If no tag is attached, identify by noun, stock number, serial number, manufacturer and location.
- (8) Assure all proposed changes, relocation, disconnect, etc., on equipment in the PM Program are made in writing to applicable supporting Engineering/Planning Branch (MA_E).
 - (1)
- (2) Personal of the equipment and a specified on a
- (a) For adjust Tubricators.

 Lubrications of the equipment manufacturer.
- (b) the received of the second of the second
- (c) City and and pressure gages to ensure proper lubrication at correct pressures.
- (d) Addicate, and replace coolants as except when special watures, skills of color are required.
- (e) Add detergents; skim and clean
 - (f) general housekeeping on

- cabinets elem-seemulation of
- (g) Brush away chips, shavings, etc., with a soft brush (air will not be used).
- (h) After flushing with coolant, wipe all ways, sides, tables, and open surfaces with a clean cloth assuring all coolant is removed and apply a light coat of oil. In the event there is evidence of rust, heavier weight oil may be required.
- (3) Assure hydraulic oil is not allowed to become contaminated. Normal established practices and precautions will be used to prevent foreign matter from entering the hydraulic system. For instance, only lint-free shop rags or paper towels will be used to wipe areas adjacent to the filler tube.
- (4) Check level of hydraulic fluid and not allow it to fall below the recommended levels. This will be checked daily with special attention to equipment that requires activation of the hydraulic unit prior to the reading of the hydraulic oil level gage.
- (5) Do not leave machine(s) unattended while in operation.
- (6) Do not operate equipment if there is any unusual heating, noise, vibration, etc. These deficiencies will be reported to the production supervisor immediately.
 - (7) Do not lubricate electric motors.
- c. Supporting Engineering/Planning Branch (MA _E) will:
- (1) Upon receipt of a new item of equipment, initiate and complete Parts I and II of AFLC Form 388, forward with a copy of the vendors service manual(s) and/or Tech Order to MADF for assignment of SA-ALC 1D (Tag) number and determination for inclusion in the GOO4I/PM System. The vendors service manual(s) will be kept in the MAD technical data file for future reference.
- (2) Provide MADF the total cost for services (labor and/or materials/parts) to repair and/or maintain IPE. These costs should be provided whenever they are not annotated on a Service Order Form (AFLC Form 600P) or when Service Order Form is not used. Also, provide the equipment's SA-ALC ID (Tag) number to ensure proper posting in its historical record (AFLC Form 388).
- (3) [Notify MADE in writing of alth relocation or removal of equipment identified by taginumber stock number serial number and another. NOTE: On equipment turn in, AFLC Form 388 needs to be attached to the equipment. Notification is required after disconnection and prior to pick up.
 - d. The Program Management Branch (MADF) will:

- Be responsible for management review, and direction of the updating and file maintenance of the PM scheduling and control portion of the G0041.
- (2) Receive all outputs from the $\ensuremath{\mathsf{G004I}}$ system.
- (3) Distribute monthly PM inventory listings and other reports to applicable organizations.
- (4) Distribute one copy of the weekly GOO41 output products to each performing preventive maintenance function: Valid File Maintenance/Update Listing, Work Schedule, Work Status Report, AFLC Forms 946 and 955. NOTE: Distribution for torque wrenches and lifting devices/aids, see paragraph 7 and 8.
- (5) File a copy of the PM work schedule and one copy of each AFLC Forms 946 and 955 in suspense pending completion of the scheduled PM action.
- (7) Assure Tupon Treceipt of AFLC Form 1956. That tatus code is circled to show why PN action has not been; completed along with the pullan date and signature and extension of the individual who determined the status as not changed from that previously reported, the AFLC Form 955 need not be completed. NOTE: AFLC Form 955 will not be used to update a PM action.
- (8) Transmit completed AFLC Forms 946 and 955 to update the GOO4I system.
- (9) Remove the duplicate AFLC Forms 946 and 955 from suspense file and destroy.
- (10) File the completed AFLC Form 946 until completion of the next cycle.
- (11) Review and adjust the PM projection to assure a balanced workload schedule.
- (12) Input additions, changes and deletions into the GOO4I system by means of AF form 1530 in addition to remote inputs.
- (13) Verify computer outputs of updated transactions for validity and return corrections to Data Automation as required.
- (14) Maintain historical record on AFLC Form 388, Part III, provided by applicable support Engineering/Planning Branch on each piece of equipment determined to require periodic PM.
- (15) Acquire monthly man-hour and labor costs expenditure (MADP) from cost accounting for man-hour labor rate.
 - (16) Compute labor and material costs of

equipment repaired from AFLC Form 600P for entry on applicable AFLC Form 388.

- (17) Analyze historical records (AFLC Forms 388) on repair cost data to evaluate effectiveness of PM actions being performed and determine the need for a change in frequency or for replacement of equipment.
- (18) Upon notification of equipment turn in, PM Monitor will pull historical record (AFLC Form 388) from the central file on equipment to be turned in and attach it to the equipment.
- (19) Prepare operator and plant PM instructions.
- (20) Estimate labor standards on PM actions in conjunction with PM mechanics, for inclusion in the GOO4I system.
- (21) Maintain and control assignment of SA-ALC identification (Tag) number (OXXXX) used to identify each individual piece of industrial shop equipment/system. The SA-ALC ID number, noun, Serial Number (S/N) and National Stock Number (NSN) will be stamped on metal tag and permanently attached to the machine accordingly to the following sample:

PROPERTY OF USAF

٥

SA-ALC ID: 01843 NOUN: Milling Machine

S/N: 72090

NSN: 3417 00 196 7338

All correspondence including AFLC Forms 388, 600P, etc., concerning an individual piece of industrial production equipment will always reflect the SA-ALC ID (Tag) number. The MADF central record file will be in tag number sequence.

- e. Trouble Call Desk (MADSA) will:
- (1) Upon receipt of a trouble call on equipment in need of repair from an authorized initiator, prepare AFLC Form 600P in accordance with MADOI 66-1.
- f. Applicable performing PM BCC (MADP. 8) will:
- Perform, upon receipt of weekly work schedule together with prepunched PM action cards (AFLC Forms 946), PM work and complete AFLC Form. 946 as follows:
- Enter the date PM action was completed in Block 10. This entry will consist of the last two positions of the year, plus the three position Julian date.

Enter "X" in the upate box in

Block 15.

Enter PM mechanic's signature and extension in Block 13.

- kison "P" stamp in Block 12 NOTE The "P" stamp in Block 12 NOTE The "P" stamp will be in addition to the mechanic's signatures.
- (e) Return completed PM action cards (AFLC Forms 946) to MADF. When PM action cannot be completed by due date, retain AFLC Form 946 and upon receipt of the prepunched AFLC Form 955, circle status code as to reason PM action has not been completed. Enter Julian date, and enter signature and extension of the individual who determined the status and return to MADF. NOTE: AFLC Form 955 will not be used to update a PM action.
- (2) Attach AFLC Form 170 (Plant and/or Operator Maintenance Instructions) and AFLC Form 355, on equipment as received from MADF. On equipment that requires specific operator maintenance instructions, AFLC Form 355 must always be used in conjunction with AFLC Form 170.
- (3) Permanently attach the identification metal tag (SA-ALC ID Machine Number) to the required equipment. MADF will identify the exact location where the metal tag will be attached to the equipment/system requiring PM.
- (4) Upon receipt of AFLC Form 600P, MADP will proceed in accordance with MADOI 66-1.
- 6. UPDATE GOO41 RESULTING FROM A MAD PROJECT ON EQUIPMENT:
- a. When working a project dealing with new equipment installation, relocation or turn in of equipment, a PM checklist will accompany the Plant Management Work Order, AFLC Form 149. Note: The PM checklist contains all the pertinent information needed to update (add, delete, change) the Preventive Maintenance Program GOO4I/PM system. The PM checklist will be processed in accordance with MADOI 66-4.
- 7. PREVENTIVE MAINTENANCE PROCEDURES/ RESPONSIBILITIES FOR TORQUE WRENCHES ONLY:
- a. Torque Wrench Monitors for owning organization will:
- (1) Locate item upon receipt of two prepunched AFLC Forms 946 from MADF for each item due calibration and deliver with the two AFLC Forms 946 to one of the following Tool Cribs: Tool Crib #3, Bldg 360, Tool Crib #16, Bldg 375, or the Master Tool Crib, Bldg 312.
- (2) Upon presenting the torque wrench and the two AFLC Forms 946 to the nearest Tool Crib, a hand receipt will be issued. This hand receipt will be filed in suspense pending completion of the scheduled PM action.
- (3) Present hand receipt to pick up calibrated torque wrench and a completed AFLC Form 946 at a predetermined date.

- (4) Remove the previously completed AFLC Form 946 from the file and destroy. Replace it with the new completed AFLC Form 946 until the next cycle.
- (5) Upon the receipt from MADF of AFLC Form 955 for a delinquent item, complete as shown in para 5f(1)(e). NOTE: If the status has not changed from that previously reported, the AFLC Form 955 need not be completed.
- (6) Notify MADF of changes, deletions, and additions, to update the GOO41/PM system via AFLC Form 946 accordingly to Attachment 2.
 - b. Performing RCC (MADSD) will:
- (1) Upon receipt of a torque wrench and two prepunched copies of AFLC Form 946, proceed as follows:
- (a) Issue a hand receipt that shows the torque wrench was turned in for calibration.
- (b) Fill out both AFLC Forms 946 according to para 5f(1), upon successful calibration of the torque wrench.
- (c) Place one of the completed AFLC Forms 946 with the calibrated torque wrench for pick up.
- (d) Send the second copy of the completed AFLC Form to MADF for further processing.
- (e) Take the torque wrench and the two AFLC Forms 946 to MADPD for repair and calibration if the torque wrench does not check out. MADPD will issue a hand receipt for the item. Then upon completion, MADSD will pick up item and the two completed AFLC Forms 946 and proceed as above in paragraphs (c) and (d).
- (f) Upon receiving a torque wrench that requires a tag number, contact MADF (PM Monitor) extension 56747. MADF will assign the tag number (T0000). Write the assigned tag number in Block 2 of the AFLC Form 946 and fill out as required.

c. MADF will:

- (1) Send two prepunched AFLC Forms 946 and weekly schedule to the division monitors.
- (2) Review for correctness and update via the remote reporting system, upon receipt of completed AFLC Forms 946 and 955. File separately until another PM action negates them.
- (3) Send both prepunched AFLC Forms 955 (Equipment Status) to the torque wrench monitor for status on delinquent items. Subsequent weekly AFLC Forms 955 will not be completed if status code has not changed.
- (4) Review all changes, additions, and deletions on torque wrenches.

- (5) Establish and maintain a log on "L" numbers assigned to new items.
- (6) Establish and maintain a log on tag numbers assigned to new items.
- 8. PREVENTIVE MAINTENANCE PROCEDURES/ RESPONSIBILITIES FOR LIFTING DEVICES/AIDS:
- a. Production Branches (MA_P) will assign a monitor and alternate to be the central point of contact on all lifting devices, aids, and personnel safety items.
 - b. Owning organization will:
- (1) Assure all lifting devices/aids, as defined in MAOI 127-5, and MAOI 127-7, are properly identified to MADPD for proof load testing and inclusion in the GOO4I system for periodic inspection via AF Form 946.
- (2) Notify MADF of changes, deletions and additions of lifting devices/aids to update the GOO4I system via AF Form 946, according to Attachment 2.
- (3) Receive two prepunched AFLC Forms 946 for each item due PM action from MADF. On the AFLC Form 946, Block 3 (Building/Skill) identifies the building where the item is located and the PM action required and Block 7 (RCC) identifies who will perform the PM action or is responsible for getting it accomplished.
- (a) Skill Code 6 requires a visual and NDI inspection to be performed by the responsible Product Division.
- (b) Skill Code 8 requires a visual inspection, PM maintenance and weight test to be performed by MADPD.
- (c) The owning organization (Block 6) on the AFLC Form 946 is responsible for taking the item requiring PM action to the appropriate servicing activity (Product Division or MADPD)

HOWARD B. ERVIN
Executive Officer
Directorate of Maintenance

along with the two prepunched AFLC forms 946.

- (d) Upon completion of the PM action, remove the previously completed AFLC Form 946 from the file and destroy. File the new completed AFLC Form 946 until the next cycle.
- (e) Upon the receipt of an AFLC Form 955 for a delinquent item, complete as shown in paragraph 5f(1)(e) and return to MADF. NOTE: If the status has not changed from that previously reported, the AFLC Form 955 need not be completed.
- (f) Items requiring on-site PM, MADPD1 is the performing RCC.
- (g) Fabric constructed slings and personnel restraining devices require inspection by the Textile Laboratory, MAQCA, Bldg 300.
 - c. The Servicing Activity will:
- (1) Perform the PM action upon the receipt of the two AFLC Forms 946 with the item due PM from the owning organization.
- (2) Complete the AFLC Form 946 as follows:
- (a) MADPD will sign off the AFLC Form 946 returning one card back to the owner to file and sending the other to MADF to update the GOO4I/PM system.
- (b) The servicing activity performing the NDI will "N" stamp the AFLC Forms 946 in Block 12 and write in Block 10 the date completed. The owning organization will sign Block 13, date it in Block 14, and check the update block. The owner will file one of the cards, the other will be returned to MADF to update the GOO4I/PM system.

d. MADF will

Follow the same procedures as in para

WOODY R. BAKER, JR., Colonel, USAF Director of Maintenance

2 Atch
1. Instructions for Completing AFLC Form 388
Machine Tool/Equipment Historical Record
2. Instructions for Completing AFLC Form 946
COP/PM Inventory Record

INSTRUCTIONS FOR COMPLETING AFLC FORM 388 (MACHINE TOOL AND EQUIPMENT HISTORICAL RECORD)

BLOCK	<u>Entry</u>
Equipment Number	The equipment number will be entered by Program Management Branch (MADF).
	PART I
1	Enter manufacturer's equipment number, and if available, the equipment type for more complete identification.
2	Enter manufacturer's name and code.
3	Enter manufacturer's model number.
4	Enter serial number of equipment (as shown on the serial plate).
5	Enter size/capacity of the equipment.
6	Enter initial cost or price as listed in the national stock catalog.
.7	Enter month and year purchased.
8	Enter appropriate classification of national stock number.
Blank	Enter Air Force tag number on diamond-shaped tag.
Blank	Enter applicable technical order number or appropriate manufacturer's handbook or specification number.
	PART II
Production Section	Enter alpha designation of the appropriate production section or resource control center and facility code.
Bldg Number	Enter the building designation.
Zone Code	Enter the code of the zone in which the equipment is located, if applicable (building grid coordinates).
Column	Enter designation of column nearest the equipment.
Ref to Column	Enter the coordinates or direction and distances of the equipment from the nearest column (such as, NW 20 indicates Northwest 20 feet).
Date Installed	Enter date of installation, when available.

INSTRUCTIONS FOR COMPLETING AFLC FORM 946 (COP/PM INVENTORY RECORD)

- 1. To update the information in the GOO4I/PM system, a prepunched or handscribed AFLC form 946 can be used. All entries will be started in the first portion of the left hand side of each block. Print the name and the telephone extension of the owner in the space above Block 14 on all cards to be processed.
- 2. Prepunch AFLC Form 946 (Information Typed Across Top of Card).
 - a. The following entries are required on all prepunched cards submitted for a change or deletion:
 - (1) In Block 13, enter signature of initiator and telephone extension.
 - (2) In Block 14, enter current date.

b. Changes:

- (1) Circle the Block(s) requiring change and print the new entry. Do not complete any block which does not require change.
 - (2) In Block 15, enter "X" in the box labeled "Change".
 - (3) Complete card(s) as stated in paragraph 2a.

c. Deletes:

- (1) In Block 15, enter "X" in the box labeled "Delete".
- (2) Complete card(s) as stated in paragraph 2a.
- 3. Handscribe AFLC Form 946 (Blank Card).
 - a. The following entries are required on all handscribed cards submitted for a change or deletion:
 - (1) In Block 1, enter applicable ID ("L") number (LXXXXX).
 - (2) In Block 2, enter applicable Tag No. and Nomenclature.
 - (3) In Block 13, enter signature of initiator and telephone extension.
 - (4) In Block 14, enter current date.

b. Changes:

- (1) Circle the block(s) requiring change and print the new entry. Do not complete any block which does not require change.
 - (2) In Block 15, enter "X" in the box labeled "Change".
 - (3) Complete card(s) as stated in paragraph 3a.

c. Deletes:

- (1) In Block 15, enter "X" in the box labeled "Delete".
- (2) Complete card(s) as stated in paragraph 3a.
- 4. Additions (New Items Added to the System).
 - a. New items are added to the system on a handscribed AFLC Form 946.
 - b. The initiator will provide the following information:
 - (1) In Block 2, starting on the seventh position, the name of the item.
 - (2) In Block 3, building number.
 - (3) In Block 4, owning organization.

HO SAN ANTONIO LOGISTICS CENTER (AFLC)
Directorate of Maintenance
Kelly Air Force Base, TX 78241

Posted 185

OWADY

MA OPERATING INSTRUCTION 66-19

21 February 1985

Equipment Maintenance

PREVENTIVE MAINTENANCE OF EQUIPMENT

This MAOI establishes responsibilities and procedures for preventive maintenance of Industrial Production Equipment (IPE) and implements AFLCR 66-34, Chapter 3. Contents apply to all organizations within the Directorate of Maintenance (MA).

1. OBJECTIVE: To protect the capability and investment of industrial shop equipment by detecting and correcting minor malfunctions before they become major repair items and disrupt production, or become safety hazards. Preventive Maintenance (PM) is divided into two levels of responsibility, operator and plant management. Input of equipment into the mechanical Periodic Scheduling and Control of Equipment and Personnel System (GOO4I) will normally be limited to equipment with a cost in excess of \$5,000 or any equipment regardless of cost which is considered critical.

2. TERMS EXPLAINED:

- a. Preventive Maintenance (PM): Consists of equipment maintenance actions performed by the operator and/or PM mechanic on a periodic basis.
- b. Operator PM: Is performed by the operator on each shift, or each time the equipment is used if not used daily.
- c. Plant PM: Preventive Maintenance is performed by Plant Management personnel on a scheduled periodic basis.
- d. Industrial Production Equipment (IPE). Machinery, test stands, and related production equipment.
- e. PM Action: Is a task contained in the Preventive Maintenance Instructions (AFLC Form 170) detailing the PM to be accomplished along with skill and frequency required. Each PM action is identified by an "L" number (LXXXXX) on the AFLC Form 170 and the GOO4I/PM System.
- f. PM Monitor: The individual(s) in the Program Management Branch (MADF) responsible for management and control of the MA Preventive Maintenance Program.
- g. Division PM Monitor: The individual(s) assigned by each of the Product Divisions to serve as the liaison between the PM Monitor and their respective divisions.

- h. PM Mechanic: The individual assigned to Preventive Maintenance Branch (MADP) who performs the PM action as required by applicable AFLC Form 170, Preventive Maintenance Instructions.
- Owning Organization: The Resource Control Center (RCC) having custody of the equipment.
- 3. FORMS IMPLEMENTED BY THIS MAOI:
- a. AFLC Form 355, Operator Maintenance Certification. Will be used to certify performance of operator maintenance of a specific nature.
- b. Af [CHTorm 1887 Medinerrod renument militaries and report to Militaries and the supplication of the sup
- c. AFLC Form 946, COP/PM Inventory Record. Prepunched PM action input card to GOO4I system.
- d. AFLC Form 170, Preventive Maintenance Instructions. A set of instructions placed with the shop equipment which advises the operator and/or PM mechanic of the PM tasks to be performed.
- e. AFLC Form 955, Equipment and Personnel Status. Will be used to report status on past due PM action.
- f. AF Form 1530, Punch Card Transcript. Used by MADF for submitting additions, changes and deletions into the GOO4I system.
- g. AFLC Form 600P, Service Order. Used by Trouble Call Desk (MADSA) personnel for equipment repairs.
- 4. PROGRAM DETERMINATION:

Supersedes MAOI 66-19, 19 September 1983 No of Printed Pages: 9 OPR: MAOF (M. Valdez) Approved by: Col Woody R. Baker, Jr. Writer-Editor: Irene R. Smith Distribution: F

SYSTEM PM LIST

YSTEM: _	DATE:
	SHUT DOWN PROCEDURES: INITIAL OFF Reset Computer Turn off disc Drive, then computer Turn off 480 volts for each T/S on System Turn off 115 volts at wall Panel for each T/S on System Check for no incoming 480 and 115 volts coming in with meter
	INITIAL OFF PM AS COMPLETED FOR EACH T/S ON SYSTEM
	COMPUTER BAYS Tighten all connections on electrical strips Drive cards: Tighten connection screws (8 ea per card) Check fans for operation: Repair or replace Filters: Clean or replace
	MOTOR CONTROL CENTERS Tighten all connections Ballast cabinets: Tighten all connections on electrical strips
	T/S PURGE BOXES (TIGHTEN ALL CONNECTIONS ON STRIPS) CRT Purge Box Annunciator Purge Box Stepper Motor Purge Box
	T/S: MISCELLANEOUS Check Printer Cover: Repair or Replace Sink Hinges: Tighten as needed Scavenge Pump Strainer: Clean Light Bulbs: Replace inside and out as needed Grease Motors
	Check Accumulators for 600PS:

When to		PWA50002		
check	What to check	Item No.	How to check	Cleaning/Maintenance
Mon _y	Differential Pressure Valve Differential Pressure	767	Verify augmentor pump output pressure of 1080±10 psig.	needle valves 791 or 792 for smooth òperation. Recalibrate transmitter as
	Transmitter	768(-lonly)		required.
Quarterly	Filter	588 590 600	Inspect filter for contamination	Clean filter housing using a suitable solvent. Replace filter element.
Quarterly	Accumulator	702 705	Verify accumulator is charged at 600 psig. Inspect for leaks.	Verify charge on gauge 706 or 776. Charge as required sing nitrogen.
Quarterly	Ballast Cabinet	E1138 E1238 E1338	onents are clean and functional.	Insure power is "OFF". Repair/replace failed parts, clean cabinet air screens. Replace filters as required.
			WARNING 480 volts present.	
•				•
				: :
,				091959

hen		What to check	ltem No.	llow to check	Cleaning/Maintenance
check	· ——	what to check			İ
Semi /	Annual	Temperature Controllers	2,818	Observe operation	Clean as required. Use inhibisol to clean bearings. Do not lubricate. Replace controller sub assy as required. Calibrate per Table 8-2.
Semi .	Annua l	Pressure Gauges	800-805 813-815 819,823 825,826 829,830 832,838 644,706 776 782(-lonly)	Verify that gauges read zero with no pressure applied.	Calibrate per Table 8-1. Replace as required.
Semi	Annua	Differential Pressure Transducers	E705C-E710C	Verify operation of transducers. Open bleed valves 8,9, 12-15,21-23,28,29. Transducer shall indicate zero.	Calibrate per Table 8-16. Replace as required.
P emi	Annua	Pressure Transducers	E711C-E727C	Verify operation of transducers. Verify transducers indicate zero with no pressur applied.	Calibrate per Table 8-16. Replace as required.
Semi	Annua	Differential Digigauge	E112C E113C	Verify gauges indic- ate all zeros with bleed valves 16,17, 25,26 open. Adjust zero pot on gauge as required. Close bleed valves.	Calibrate per Table 8-1. Repair/replace as required.
Semi	Annua	lDigigauges	E109C E110C E111C	Verify gauges indicate atmospheric pressure with no pressure applied. Adjust zero pot on gauge as required.	Replace as required.
emi	Annual	Flowmeters	E736C-E742C	Verify flowmeters indicate zero with no flow applied.	Calibrate per Table 8-1. Repair/replace as required.
emi	Annual	Thermistors	E728C-E735C	Verify temperature reading on CRT.	Calibrate per Table 8-1. Replace defective thermistors.
					0949±0

he	n to		FWAJUUU2		
che	ck	What to check	Item No.	llow to check	Cleaning/Maintenance
emi	minual	Temperature Switches	E539-E542 E594	Verify operation.	Calibrate per para. 3-23C. Repair/replace as required.
emi	Annua1	Flow Switches	E533-E538	Verify operation. Verify switch closes at 50cc per min. flow.	Replace as required.
emi	Annual	Pressure Switches	E508,E509 E521-E531 E597,E598 E649(-lonly E659(-lonly E660(-2,-3 only) E593 759 760(-lonly)		Calibrate per para. 3-23A. Repair/replace as required.
emi	Annual	Power Supplies	E515-E516 E587-E588	Verify output volt- age per Table 9-1.	Adjust output voltage. Replace as required.
emi	Annual	D.C. Regulator Assy	E575	Verify output volt- age of 3±.015vdc.	Adjust output voltage. Replace as required.
emi	nual	Cathode Ray Tube	E61 .	Verify operation.	Clean,repair/replace as required
emi	Annual	Displays	E81-E92	Verify operation.	Clean, repair/replace as required
emi	Annual	Annunciator	E802	Observe operation.	Check and repair circuits as required.
emi	Annual	Solenoids	E510,E592 E543-E550 E609,E610 E635,E661 E667	Verify functional operation.	Repair/replace as required.
emi	Annual	Back Pressure Simulators	541-545 798	Verify B/P Simulator is functional and operating properly.	Repair/replace/calibrate as required. Replace NUPRO filter.
emi	Annual	N2 Simulator	684	Inspect general condition for tightness, evidence of binding, alignment and wear. Check operation of stepper motor E756. Check coupling, stop block, stop bar and shaft. Verify N2 Simulator can operate between 43 and 233 psid.	Clean, adjust and align. Repair replace worn parts. Calibrate.
					094011

When to		PWA50002		
check	What to check	Item No.	How to check	Cleaning/Maintenance
emi annual	Gauge Saver	634	Inspectfor contamination and function. Set at 160-190 psia.	Clean,adjust. Replace as required.
emi Annual	Hydraulic Orifices	572-575 595,685 735,751 781,785 786,840	Inspect all orifices for contamination and proper size.	Clean orifices.usingeaesuirable solventReplace worn orifices
emi Annual	Pneumatic Orifices	514,515 565,676 677,733 679-682 793,841	Inspect all orifices for contamination and proper size.	Clean orifices.usingaeesuitable solventa.Replace worn orifices.
emi Annual	Strainers	507,567 586,636 726-731 738	Inspect for contamination.	-Clean using a suitable solvent and reassemble.
emi Annual	Reservoir	500	Inspect for contamination.	-Remove cover. Clean as required
emi 'nnual	Filters	522,533 534,670 722,734	Inspect for contamination.	-Clean filter housing using a suitable solvent. Replace filter element.
emi Annual	Air Regulators	546 602 603	Observe operation of regulators and stepper motor E744. Verify G.G. Burner pressure is control led between 10-580 psia.	Repair/replace regulators and stepper motor as required. Inspect drive shaft for binding and wear. Grease drive shaft per Table 6-2.
emi Annual	Differential Pressure Regulator	568	regulator and stepp- er motor E753. Verif	Repair/replace regulator and stepper motor as required. Inspect coupling for tightness and drive shaft for binding and wear. Grease drive shaft per Table 6-2.
Semi Annual	Air Regulator	559	regulator and stepp-	Repair/replace regulator, stepper motor as required. Inspect drive shaft for binding and wear. Grease drive shaft per Table 6-2.
				094012

When to		PWA50002		
check	What to check	Item No.	How to check	Cleaning/Maintenance
Semi Annual	Air Regulator	560		Repair/replace regulator, stepper motor as required. Inspect drive shaft for binding and wear. Grease per Table 6-2.
Semi Annual	Air Regulator	594	Verify blow gun regulator is set at 20 psig. Read pressure on attached gauge.	Adjust, repair/replace regulator or gauge as required.
Semi Annual	Air Regulator	596		Repair/replace regulator, stepper motor as required. Inspect drive shaft for binding and wear. Grease per Table 6-2.
Semi Annual	Air Regulator	597	Observe operation of regulator and stepper er motor E749. Verify PF2-PF3 is controlled between 50-7- psid.	Same as above
Semi Annual	Air Regulator		Observe operation of regulator and stepp= er motor E747. Verify Augmentor Burner pressure is controlled between 16-150 psia.	Same as above
Semi Annual	Pressure Regulator	663	regulator and stepp- er motor E743. Verify Body Pressure	Repair/replace regulator, stepper motor as required. Inspect coupling for tightness Inspect drive shaft for abinding and wear. Grease per Table 6-2.
Semi Annual	Pressure Regulator	664	regulator and stepper motor E748.	Repair/replace regulator, stepper motor as required. Inspect drive shaft for binding and wear. Grease per Table 6-2.
				094013

When to		PWA50002	
check	What to check	Item No.	How to check Cleaning/Maintenance
Semi Annual	Air Regulator	779(-lonly)	Verify proper output pressure to operate Main Relief Valve 780 at cracking pressure of 1/25:0 psig. Adjust regulator. Repair/replac as required.
semí Annual	Air Regulator	816	Verify Shop Air regulator is set between 80-90 psig. Read pressure on gauge 825.
Semi Annual	Air Regulator	817	Verify Resolver and Same as above Ignition Purge regulator is set at 3 psig. Read pressure on gauge 813.
Semi Annual	Air Regulator	824	Verify High Pressure Same as above Air regulator is set at 700 psig. Read pressure on gauge 823.
Semnnual	Air Regulator	827 .	Verify High Pressure Same as above Air regulator is set at 450 psig. Read pressure on gauge 826.
Semi Annua	Air Regulator	828	Verify Vacuum regul Same as above ator is set between 19-21 inches Hg. Read pressure on gauge 814.
Semi Annua	l Air Regulator	831	Verify 25# Air Same as above regulator is set at 25 psig. Read pressure on gauge 832.
Gemí Annual	Relief Valve	511	Verify Boost Pump relief valve cracking pressure as required. Repair/ replace as required. 11 psig (-1 only) 15 psig (-2,-3 only)
Nemi Annual	Relief Valve	520	Verify Shop Air Same as above relief valve set pressure is 125 psig.
			094014
. •			

hen to	PWA50002
neu co	

When to			PWA50002		
check	What	to check	Item No.	How to check	Cleaning/Maintenance
emi .nual	l Rëlief	Valve .	524	Air Supply relief	Adjust relief valve cracking pressure as required. Repair/eve replace as required.
∙emi Annual	Relief	Valve	5 39	Verify High Pressure Air relief valve set pressure is 750 psig.	Same as above
emi Annual	Relief	Valve	558	Verify G.G. Burner Pressure relief valveset pressure is 650 psig.	Same as above
emi Annual	Relief	Valve	658	Verify Augmentor Burner Pressure relief valve set pressure is 160 psig	Same as above
Gemi Annual	Relief	Valve	665	Verify Servo Supply relief valve set pressure is 700 psig	Same as above
emi Annual	Heat E	xchangers	531,576	Observe operation. Verify sufficient cooling of calibrat- ion fluid.	Clean or replace as required.
Semi Annual	Chille	d Water Valve	635	Observe operation. Verify valve is completely open when test stand is "ON".	Repair/replace as required.
Semi Annual	Chilled	l Water Valves	783,784 580,581 (-lonly)	Observe operation. Verify operation is controlled by temperature controllers 2,818.	•
Semi Annual		haust Fan 47 only	569	Observe operation. Verify sink fan is "ON" when test stand is "ON".	Clean, repair/replace as required.
Gemi Annual		haust 48 only	Facility	Observe.	Verify sink is being exhausted.
Semi Annual	Vacuum	Pump	604	Inspect condition of pump and motor per para. 6-5.1 and .2 Verify lamp El3 is illuminated when pump is "ON".	Clean, repair/replace as required. Grease per Table 6-2.
					094015

When to		PWA50002		
check	What to check	Item No.	How to check	Cleaning/Maintenance
Semi annual	Pump Module Exhaust Fan Bldg. 347 only	607	Observe operation. Verify exhaust fan is "ON" when a 200hp motor is "ON".	Clean, repair/replace as required. Grease per Table 6-2.
Semi Annual	Pump Module Exhaust Bdlg. 348 only	Facility	Observe.	Verify pump module is being exhausted.
Semi Annual	Scavenge Pump	587	Verify operation. Inspect pump and	Repair/replace as required. Grease per Table 6-2.
Semi Annual	Boost Pump	510 758	motor per para. 6-7. Inspect condition of pump and motor per para. 6-6.	Repair/replace as required. Grease per Table 6-2.
		(-lonly)	Verify lamp E8 is; illuminated when pump is "ON".	
Semi Annual	Augmentor Pump/Gearbox	759 760 (-lonly)	Inspect condition of pump/gearbox per para. 6-4. Verify oil coolers and pre Lube pump are funct-	Change automatic transmission fluid and filter per para. 6-4.
			ional.	
Sem nnual	Flex Coupling between Pump/Gearbox and motor	759-E625 760-E624 (-lonly)	Inspect.	Grease per Table 6-2.
Semi Annual	Motor	E625 E624 (-lonly)	Inspect condition of motor per para.6-4.3 Verify lamp Ell(-lon or ElO is illuminate when motor is "ON".	Grease per Table 6-2. Tighka all connections ly) per Table G-3
Semi Annual	Differential Pressure Valve	756	Verify PF2-PF3 operates between 50-70 psid. inspect for leaks.	Repair/replace as required.
Semi Annual	Differential Pressure Valve	757	Verify PF1A-PF3A operates between 250-350 psid. Inspect for leaks.	Repair/replace as required.
				094016

PREVENTIVE MAINTENANCE

PWA50002

hen to		1 111130002	
heck	What to check	Item No.	How to check Cleaning/Maintenance
em7 iun	al Purge Boxes	E66 E564 E565 E613	Inspect all electrical Insure power is "OFF". connections. Tighten all connections per Table 6-3. Vacuum clean using plastic wand. Replace present. mufflers and plastic bags.
iemi Annu	al Motor Control Center	E501	Inspect all electrical Insure power is "OFF". connections and devices. Tighten all connections per Table 6-3. Vacuum clean using plastic wand. Replace defective devices. present.
Semi Annu	a. Ballast Cabinets	E1138 E1238 E1338	Inspect all electrical Insure power is "OFF". connections. Verify power supply output voltage 30±2vdc. WARNING 480 volts present.
emi Annua	Power Supplies	E1013 E1014	Verify output voltage Adjust output voltage. of 5±.1 vdc. Replace as required.
emi Annua	Power Supply	E1015	Verify output voltage Adjust output voltage. of 28±.1 vdc. Replace as required.
emi Annua	I Internal Power Supply	E1001	Verify output voltage Adjust output voltage. of 5±.1 vdc. Replace as required.
∶emi Annua	Internal Power Supply	E1004	Verify output voltage Adjust output voltage. +15±.l vdc and Replace as required15±.l vdc.
emi Annua	Internal Power Supply	E1009	Verify output voltage Adjust output voltage. of +15±.1 vdc, Replace as required15±.1 vdc and +5±.1 vdc.
jemi Annua	I Internal Power Supplies	E1100 E1200 E1300	Verify output voltage Adjust output voltage. of 5±.1 vdc. Replace as required.
iemi Annua	l Oscillator	E1016	Verify output frequency Adjust output. Replace of 1000 Hz. at 9 vac. as required.
emi Annua	Computer Cabinet Ventilation Fans	E1000	Verify operation of four fans located in base of cabinet.
Semi Annua	l Muffin Fans	E1055 E1056	Verify operation of six muffin fans located in cabinet "D".
			094017


```
c-fit c-fit w/o end pts.
   Davs
         Calls/dy
                                Ø.517
            Ø.429
                      Ø.52Ø
    10
                                Ø.523
            Ø.544
                      Ø.523
11 - 20
                                Ø.528
            Ø.484
                      Ø.527
21 - 3Ø
                      Ø.53Ø
                                Ø.534
            Ø.411
     40
ete.
            Ø.522
                      Ø.534
                                Ø.54Ø
     5Ø
                      Ø.537
                                Ø.546
            Ø.56Ø
     60
                     Ø.541
                                Ø.552
     7Ø
            Ø. 656
                      Ø.544
                                Ø.558
            Ø.54Ø
     80
                      Ø.548
                                Ø.564
     90
            Ø. 664
                      Ø.552
                                Ø.57Ø
            Ø.571
    100
                                Ø.576
                      Ø.555
            Ø.636
    110
                      Ø.559
                                Ø.582
    120
            Ø.627
                                Ø.588
                      Ø.562
            Ø.556
    130
                                Ø.594
                      Ø.566
            Ø.589
    140
                      Ø.569
                                Ø.600
            Ø.489
    15Ø
                      Ø.573
                                0.606
            Ø.667
    160
                                Ø.612
                      Ø.576
            Ø.558
    170
                                Ø.618
                      Ø.58Ø
            Ø.393
    180
        Regression Output:
                             Ø.51Ø611
```

Constant Ø.510611
Std Err of Y Est Ø.068001
R Squared Ø.156533 Ø.395643
No. of Observations 16

Degrees of Freedom

X Coefficient(s) Ø.000594

X Coefficient(s) Ø.000594 Std Err of Coef. Ø.000368

Regression Output:

Constant Ø.516049
Std Err of Y Est Ø.084607
R Squared Ø.050551 Ø.224836
No. of Observations 18

No. of Observations 18
Degrees of Freedom 16

X Coefficient(s) Ø.000354 Std Err of Coef. Ø.000384

note: this is an evage data for 45 tests tands and is derived from Go-11 data. Type 500002/4/5 test stands are included. Stand #\$ 4458, 4484, 4485, and 4486 are not included due to bad data.

14

į

9.5 OVERHAUL/BENDIX

EMPLOYEE C-ARDNER	DATE 30 Fully 90 PAGE NO.
RCC NIATPFA	SUBJECT UFC FLOWTIMES

Standard flowtimes for UFCs are: 57 days for F-15 and 59 days for F-16. Current strerage historical flowtimes are 116 days for F-16 + 109 days for F-15. The single growtest contributor to long flow times appears to be time spent American facts (AWP). These figures are himsely skened by a small number of UFCs with fisations of 1-2 years. It primary cause for these extreme flow times appears to be supply difficulties. It general difficulty in obtaining obtaining various fiece parts causes on high rate of HWP ed UFCs. In an afteropt to like production rates up, the shap uses "Legal Kulo-Backs" are themselves incomplete). This practices has the effect of swaxing ing the use of available spaces resources and minimizing the impact of supply difficulties on Field readiness rates. It is common throughout military & civilian fleet plaintenance situations.

however. It causes average flowtime figures to become however. It causes average flowtime figures to become hereasingly skewed and prosents a very nugative picture of the MATPEA production process, the when we tailly the process is functioning quite efficiently. If this procedure were discentinued the "Numbers" would ext better (average flowtime would drop) but fener Content aircraft would fly. This is an excellent example of the effects of serious AFLC-wide publicus: The use of mislending "average" figures to manage highly variable processes.

The UFC Ocal process is characterized by extrange carrability.
The is the nature of the boast. To understand the UFG
process requires of levels of ALC imaging ement to stay
multiple sets of Statistics (including those generated by

DDB SECTION CODE 900 DDB PAGE NO.

ENGINEERING NOTES	
EMPLOYEE C-ITRONER DATE 30 July 90 PAGE NO. 2	
RCC_IMITIFIT SUBJECT_VFC_FLOW_FINES	
their (ustomeress) - Not one average figure. High variability processes are burder to manage than low.	_
- A good enample of this is: How much does a UFC region cost?	
MM 'pays' MATPFA about \$20,000 to repair a UFC. This is supposed to be an average cost which gives a true picture of the cost of repairing many ufcs over time. It is apparently based on a DPSH (another average) of 367 labor hours x \$443.09 hour (average MATPFA leher rate) plus some other burden costs. No UFC ever really 605ts \$20K to fix. Some cost as little as \$1000-	
\$ 2000 while others probably cost over \$100,000. The	'う
very easy for mm, ma, or the vest of the fire force, but makes life very difficult for pucchaction (the heart of the AFLC mission). Using animarrange to describe a variable process can cause very uneconomical decisions, It you only know what everything costs (an average), you never know what unything costs.	
How much cars a repair cost? If the UFC has been full for 2 years and the victim of multiple rob backs: Holding cost:	
According to MM, a UFL Lests \$160K. Ht 740 (Thill rate) x \$160K x 2 years = \$622400	

PARTS: Parts for a UFC are very expensive Assuming that most of the usable high-demand parts have been removed (in 2 yours) replacement parts could ensely cost \$25L. (A D3 along is ever \$10K and is a critical high-demand item).

DDB SECTION CODE 9, 0 DDB PAGE NO. 090062

EMPLOYEE GARDNER	DATE 30 July	90	PAGE NO	3_
RCC MATPEN	SUBJECT LIFE	FLO	WFIMES	

LABOR:

agreen 2 years of rob backs of multiple 'fulse starts" where

the UFC is restarted in production only to up Auf amum,

the real labor cost could easily be 3 to 4 times

higher than the average (which includes as upes that

go through in 3 days).

4 x 367 hours x \$43/hour = \$\frac{1}{4}63 \frac{1}{24}\$

The actual cost of repairing this UKC is already over \$110 K + does not even include the costs of extra scheduling / plaining / storage / handling / management resource; as theely an item around under these conditions. (Firen the PELL policy of replacing ports when their repair (ast reachs 75% of replacement (\$120 K for \$160 K WEC), some UFCs are probably not even worth repairing. From the increased reliability & reduced coppet workload that would result from a new procurement could easily offset the source of the

This is a case, where using an average cost provides an appropriate creasion. This simulation is common throughout AFLC (well-commented in paragraph 3.0 of the TOEI (SK) It is especially contract in areas, such as INATPFA, where the process is unusually variable.

The solution this problem is two-feld;

First, the development of a menu pricing scheculing and planning system will drive management away from the use of misleading accordes. It will also serve to agree production credit for the work performed and min a father system to track and manage costs.

DDB SECTION CODE 9.0 DDB PAGE NO.

EMPLOYEE CARDNER	DATE 30 July 90 PAGE NO. 4	_
RCCinfTVFI}	SUBJECT LAFE FLOWTIMES	

- Siconci, Restructure the current repair contract with Bendix to cull for overhaul, eather than OCM. This will allow the MATPER to concentrate, and what it is designed to co- CCM & send those cifes that require extensive work to Burinx for overhaul. This will result in less variability for both MATPER & Bendix and increased availability of UFCs in the field.

while the unit repair cost for a Binkin region will increase, the total number are reasoned there can be reduced and the volume of wiff incintained at Bendix (3 times higher proportionally) than that at intTPFA) can be reduced. Bendix + LIBAF can easily negetiate fixed overhood rates + fixed exchange for overhooding those uses that reach the end of their exerctions the (3500 hours I think). Currently, neither Bendix nor MATPFA is ready to deal with there.

go into service), the number sent to Bendix (the mest personnel to mill keep commend in MITTYFA steady & minimize impact to personnel & management of Elucuating field demand.

For every con that is sent to Bracia (& 4 times are labor rule) 3- 12 helps can be repaired in MINTER. The end result will be increased preduction by from MINTER & reduced casts from Bensix. This whole operation should be under the circulion of a Matt Levery Board (MRB) which includes a representative from production & Tingine com

DDB SECTION CODE	9.0	DDB PAGE NO.
------------------	-----	--------------

EMPLOYEE GARONER	DATE	PAGE NO	
RCC MATPEA	SUBJECT Tech	orders	

The Tech orders (TOS) used in the UFC repair process are designed to support overhand not OCM. Given the cumbersome + expensive nuture of TO updates and the basic formating problems with the current Tos > I don't think they should be used as the quidance document for cruftsmen working ocm. They will never be any good no maken how often they are updated. They are not designed to support the own process.

I propose the Air Force develop a Process spec" which sextracts basic specifications from the To and combines them with the current in-use process (Stored largely in the brains of craftsman and supervisors). This process duta should be presented in a user-friendly checklist" format that presents the courts man with the info needed to make ocm decisions and perform ocm tasks. Dr Majeros (Human Factors) and his team will site one or two steps in the own process and produce a sumple document. If the results are successful and can be used by production, we will recommend a focus study offert to produce a spec for the entire process. This effort will be coordinated a matter.

Some advantages usuld be:

$\vec{\rho}$	beHor	Support	for	the	ocm	process
Ĺ.	. /		/	`		, ,

DDB SECTION CODE 9.0 DDB I	PAGE NO
----------------------------	---------

²⁾ local (us AFLL/USAF) management of updates/ changes 3) accelerated training time for 1 0cm craftsman.

9.6 MRB/HIRE MECHANICAL ENGINEER

PROPOSAL FOR CONSOLIDATED MATERIAL REVIEW AKEA AT SA-ALC 5/16/90

MATERIAL (RECOVERABLE OR E.D.Q.) REJECTED BY THE PRODUCTION LINE FOR THE THLOWING REASONS. WILL BE ROUTED TO THE REVIEW AREA.

- 1. DISTRESS MODE IS NOT SPECIFICALLY ADDRESSED IN RESPECTIVE TECHNICAL ORDER.
- 2. DISTRESS MODE HAS A REPAIR IN THE TECHNICAL ORDER. BUT REPAIR HAS NOT REEN PROTOTYPED.
- 3. PART HAS INSUFFICIENT CYCLES OR HOURS TO MAKE THE NEXT SCHEDULED DEPOT VISIT. (THIS DUES NOT EXCLUDE USING THE PART ON A MINOR REPAIR.)
- 4. PART EXCEEDS CURRENT REPAIR LIMITS AND RESPECTIVE TECHNICAL ORDER DOES NOT SPECIFICALLY STATE PART SHOULD BE CONDEMNED.

MATERIAL (RECOVERABLE AND E.O.Q.) REJECTED BY THE PRODUCTION LINE FOR THE FOLLOWING REASONS. DUES NOT REQUIRE REVIEW.

- 1. 100 PERCENT REPLACEMENT ITEMS OR EXPENDABLE STEMS.
- 2. RESPECTIVE TECHNICAL ORDER SPECIFICALLY STATES ITEM WILL BE CONDEMNED.
- 3. RESPECTIVE TIME COMPLIANCE TECHNICAL ORDER (TCTO) STATES ITEM WILL BE CONDEMNED OR OTHER DISPOSITON ACTION IS PROVIDED.
- ". ITEMS WHICH ARE SUBJECT TO WRITTEN DISPOSAL INSTRUCTIONS. AS PROVIDED BY THE DIRECTORATE OF MATERIAL MANAGEMENT.
- 5. ITEMS SUBJECT TO CONTRACTOR REPAIR. THESE ITEMS MUST EXCEED THE CURRENT REPAIR CAPABILITY OF THE DIRECTORATE OF MAINTENAMACE. BUT BE WITHIN THE MAXIMUM REPARABLE LIMITS OF THE RESPECTIVE TECHNICAL ORDER.

FLOW OF MATERIAL:

- 1. F-100, T-56, AND TF-39 PARTS SUBJECT TO REVIEW (AS DEFINED ABOVE). WILL HAVE AN SA-ALC FORM H-240(ATTACH ≠1) ATTACHED TO THE PART AND HE ROUTED TO THE REVIEW AREA:— THE INITIATOR OF THE SA-ALC FORM H-240 WILL ENSURE THAT BLOCKS 1 THROUGH 10 ARE ACCURATE AND COMPLETE.
 - NOTE: LARGE ITEMS WILL BE REVIEWED ON LOCATION. IT WILL BE THE RE-SPONSIBILITY OF THE PRODUCTION LINE TO NOTIFY THE REVIEW AREA WHEN ON LOCATION REVIEW IS REQUIRED.
- 2. UPON RECEIPT IN THE REVIEW AREA, THE PARTS WILL BE LOGGED INTO THE INVENTORY TRACKING SYSTEM (ITS) AND ASSIGNED A NONCOMPORMING MATERIAL REVIEW CONTROL NUMBER (NOMR). THOSE ITEMS WITH A KNOWN DISPOSTION (1.5.; X ACCT.. CONDEMNED. OR WITHIN CURRENT REPAIR CAPABILITY) WILL HAVE THE SA-ALC FORM H-240 SIGNED OFF BY THE M.M. REPRESENTATIVE AND THE PART WILL BE PROCESSED BY THE M.A. REPRESENTATIVE.
- 3. THOSE PARTS REQUIRING REVIEW BY THE RESPECTIVE ENGINEER WILL BE HELD. ON SEPARATE ENGINE LINES (WITHIN THE HEVIEW AREA) AND MATERIAL WILL

WILL BE REVIEWED BY THE ENGINEER DAILY. UPON COMPLETION OF ENGINEER-ING REVIEW. PART WILL BE PROCESSED BY THE M.A. REPRESENTATIVE.

UPON COMPLETION OF BLOCKS 11 THROUGH 18 BY THE M.M. REPRESENTATIVE OR ENGINEER. 1 CUPY WILL REMAIN WITH THE PART AND 1 CHEY WILL BE RETAINED IN THE REVIEW AREA.

INFORMATION FROM THE SA-ALC H-240 WILL BE INPUT DAILY. BY THE DAIA COLLECTION SPECIALIST. GUARTERLY REPORTS BY ENGINE WILL BE DRIVIDED TO THE RESPECTIVE E.S.. FOR DO 41 ACTION (ATTACH. #2). THE E.S. WILL BE REQUIRED TO MANUALLY PLUG IN UNE TIME USE AND X CONDITION ITEMS. AS CONDEMNATIONS.

(SA-ALC SHOULD ATTEMPT TO MAKE THIS AN AUTOMATED PROCESS)

- 4. UPON COMPLETION OF REVIEW ACTION, PART WILL BE LOGGED OUT OF THE REVIEW AREA USING THE INVENTORY TRACKING SYSTEM. ITEMS PROCESSED OUT OF THE REVIEW AREA WILL BE IN ONE OF THE FOLLOWING CATEGORIES;
 - A: REPAIR IS IN TECHNOIAL ORDER AND REPAIR PROTOTYPED OR PART IS RETURNED TO SERVICE THROUGH EXTENDED LIMITS-RETURN TO PRODUCTION LINE.
 - B: CONDEMNED-PROCESS TO DISPOSAL(DO NOT SEND SA-ALC H-240 WITH MART. ANNOTATE NOME CONTROL NUMBER IN REMARKS COLUMN.)
 - C: HOLD FOR FUTURE REPAIR-ROUTE TO X ACCOUNT.

. M. PERSONNEL REQUIREMENTS:

- A. EQUIPMENT SPECIALIST (1 EA. -FULLTIME FOR MAE/: EA. AS NEEDED FOR MAT)
 RESPONSIBILITIES INCLUDE:
 - SIGN OFF ON SA-ALC FORM H-240. WHEN PART IS BEING CONDEMNED. ROUTED TO X ACCOUNT, OR CLARIFYING EXISTING TECHNICAL ORDER CRITERIA.
 - 2. GENERATE MONTHLY PARTS HANDLING REPORT. (ATTACH. #3)
 - 3. CBORDINATE REVIEWS FOR X AND R ACCOUNT MAYERIAL. AS MEEDED.
 - 4. PROVIDE ASSISTANCE FOR AFLO 252. FOR PROBLEMS ENCOUNTERED DURING REVIEWS.
 - 5. MAINTAIN LOG FOR ASSIGNING NOME CONTROL NUMBERS.
 - 6. NOTIFY RESPECTIVE E.S. WHEN AN AFLO 206 IS REQUIRED FOR PROTOYPING OF REPAIRS AND PROVIDE ASSISTANCE AS NEEDED.
- B. DATA COLLECTION SPECIALIST (184.-FULLTIME FOR MAE/18A.-AS MEEDED RESPONSIBILITIES INCLUDE: FOR MAT)
 - 1. INPUT OF ALL INFORMATION FROM SA-ALD FORM H-240.
 - 2. REQUEST AND DISTRIBUTE OWARTERLY REPORTS TO RESPECTIVE DEFICES.

M.A. PRESONNEL REQUIREMENTS:

- A. PLANNER (1 EA. -FULLTIME FOR MAE/1 EA. -AS NEEDED FOR MAT)
 RESPONSIBLITIES INCLUDE:
 - I. GENERATE SUPPLEMENTAL W.C.D.'S AS REQUIRED FOR REPAIR.

 (IT IS UP TO THE DISCRETION OF THE PLANNER WHETHER THE

 INSTRUCTION BLOCK ON THE SA-ALC FORM H-840 OR SUPPLEMENTAL

 WORK CONTROL DOCUMENT (W.C.D.) IS REGUIRED.)
 - 2. PROVIDE ASSISTANCE IN CORRECTING EXISTING W.C.D. PROBLEMS
 AND PROCESSING OF MATERIAL THROUGH MAINTENANCE.

 RECOMMENDATION: ALLOW THE PLANNER ASSIGNED TO THE REVIEW AREA
 TO ASSIGN ALL AFLO 103 CONTROL NUMBERS. PRIOR TO PROCESSING THE
 FORM TO M.M.. THIS WILL PROVIDE A COMMON FOCAL POINT FOR THE
 CONTROL OF AFLO 103'S. UPON RECIEPT OF A COMPLETED AFLO 103.
 THE INFORMATION CAN BE ENTERED INTO THE SAME DATABASE USED TO
 COLLECT THE NOME ACTION. THIS WILL PROVIDE UNE COMMON SYSTEM
 FOR ALL NONCOMFORMING MATERIAL REVIEW ACTION. IDEALLY THE AFLO
 103 WILL ONLY BE USED FOR WORK STOPPAGE SITUATIONS OR PARTS
 SUBSTITUTION.
 - 3. MAINTAIN LOG FOR ASSIGNING AFLC 103 CONTROL NUMBERS.
 - 4. PROVIDE ASSISTANCE FOR PROTOTYPING OF REPAIRS.
- B. PRODUCTION INSPECTOR (2EA. -FULLTIME FOR MAE/2EA. -AS NEEDED FOR MAT)

RESPONSIBILITIES INCLUDE:

- 1. INSPECTION OF MATERIAL
- 2. PROCESSING OF MATERIAL, INCLUDES PACKAGING AND LABELING OF MATERIAL.

BEWEFITS OF SYSTEM:

- STANDARDIZED SYSTEM FOR PARTS TRACKING AND DISPOSITION.
- 2. IDENTIFY TECHNICAL ORDER CHANGE REQUIREMENTS.
- 3. IDENTIFY NEW FAILURE TRENDS AND INITITATE REPAIRS IN A TIMELY MANNER.
- A. IDENTIFY ORGANCIALLY CAUSED PARTS DAMAGE AND INITIATE CORRECTIVE ACTIONS AS REQUIRED.
- 5. ASSIST IN ESTABLISHING PROJECTED PARTS REQUIREMENTS.
- 6. IDENTIFY COST SAVINGS ASSOCIATED WITH NEW REPAIRS.

CHANGES REDUIRED TO IMPLEMENT SYSTEM:

1. GAIN ACCESS TO OCHALO DATAMASS AND INTERPACE WITH THASK.

(STORES ALL NOME ACTION AND LINKS NATIONAL STUCK NUMBER TO RESPECTIVE E.S. AND 1.M.)

- 2. REVISE EXISTING REGULATIONS.
 - 3. CONSOLIDATE, RELOCATE, AND EXPAND EXISTING REVIEW AREA. (BY LOCATING REVIEW AREA ADJACENT TO EXISTING TURN-IN AREA, MATERIAL WILL BE PROCESSED FASTER, WITH LESS CHANCE OF MATERIAL BEING MISROUTED.)

**************************************	, , , , , , , , , , , , , , , , , , , 	MAINTENANCE		NCMR CONTROL NU	MBER
5	2. FROM (Name / Rout		3. DATE		· · · · · · ·
IGINE TIAS	S. NOUN			6. TECHNICAL ORDE	
ART NUMBER		8. SERIAL NUMBER		9. NATIONAL STOCK NUMI	BER
			-		
DEFICIENCY AND	RECOMMENDATIONS (nclude tolerance and actual d	imensions)		
	٠.			••	
			•		
			ø. *		
	•	• ∞			
	•	-			
Б		TERIEL MANAGEMENT		M P	Q
O (Work Station)		12. DATE		
SITION					
A. USE AS	S IS 🔲 B. ONE TIM	E USE - COUNT AS CONDEMN		F. TURN-IN	
H. CONDI	EMN M. REPAIR	□ N. NOT NCMR	🔲 R. RETURN TO	NCMR X. X-CONDI	TION CODE
STRUCTIONS					
				/	
	-		÷ •		
		•			
		•			
				0	90007
		•		•	- • • •
DUIREMENTS	,	·			
E AFTO FORM	A 252	AFFORM 2500	SAFETY	= NUCLEAL	R HARDNESS LMAGED
AFTO FORM	M 95 / DD FORM 1594		EM PERFORMANCE STATE	MENT SHOP DA	MAGED
•	·····	. COORDINATION	APPSOVAL		
MPRE / AEROSPA	CE ENGINEER			1.1 DAI+	
MPRE / AEROSPA MPR : NOMR	CE ENGINEER		•	TAC DATE	

F-100 PARTS HANDLING REPORT FEBRUARY 1990

=	7	ON:	MAEPH	
_		W14 .	1.15-15-1-1	

TEN	P/N	DISTRESS	COST	CONDEMNED/USE	WITH 1037% ACCT
COMP. DISK	4030605	BENT RIM LUG (2 EA.)	\$12, ଉତ୍ତର, ଉତ୍ତ	X	
COMP. DISK	4041337	BENT RIM LUG	\$10,500.00	X	·
COMP. DISK	4022609	BENT RIM LUG	\$17,000.00	×	
2 COMP. DISK	4022612	BENT RIM LUG	5 5, 000.00	X	
3 COMP. DISK	4041013	BENT RÎM LUG (2 EA.)	\$27, 600.00	Х	
EVEL GEAR	4001867	TOOLING DAMAGE TO I.D. (5 EA.)	\$7, ଉପର. ପଦ	×	-
OTAL COST			\$82,	100.00	

COST FOR MAEPH: #82,100.00

IFFERENCE FROM PREVIOUS MONTH: +#12, 100.00

ECTION: MAEPE

TEM	P/N	DISTRESS	COST	CONDEMNED/USE	WITH	103/X	ACCT
ST FAN CASE	4064671	WARPED DUE TO GRINDING	_ ±5ଉ. ଖଡ଼ଉ. ପଟ	*	· .·		X
FAN DISK	4 0 59002	NICKED BLADE .	ss, 700. 00	X			
FAN DISK	4055171	NICKED BLADE SLOT (2 EA.)	∌25, ବବର. ବର	×			
STAN PAST			 塩ぷA.フ	വ. ഒര		50.000	3.00

STAL COST FOR MAEPF: \$84,700.00

IFFERENCE FROM PREVIOUS MONTH: +15,820.00

DOWN COST FOR MAEPH AND MAEPF: \$186,800.00

IFFERENCE FROM PREVIOUS MONTH: +#28,720.00

T. MEDEL/MMFCAB/58577

TYPICAL SAVINGS ASSOCIATED WITH REVIEW AREAS

ITEM	PN.	N/S/N	QTY.	TOTAL VALUE
INLET CASE	4001727	2840002803961PT	88	\$2,112,000.00
FAN DUCT	4046405	2840010135155PT	26	\$1,014,000.00
SUPPORT	4055012	2840010806549PT	70	\$337,680.00
RING HOLDER	4023735 .	2840003315525PT -	£76	\$181,608.00
SUPPORT	4042645	2840003357119PT	31	\$106,051.00
INLET CONE	4022280	2840003214566PT	137	\$237, 969.00
_				

\$3, 989, 308.00

THERE WAS AN ADDITIONAL SAVINGS OF \$5,012,912.00 DURING THE TIME PERIOD FROM 9-25-85 TO 8-18-88. THIS SAVINGS WAS INCURRED THROUGH THE USE OF AFLC FORM 103 (NONCONFORMING TECHNICAL ASSISTANCE).

1

FOR ADDITIONAL INFORMATION, PLEASE CONTACT: T. MEDEL III MMFRT/57021

9.7 PROCESS SPECIFICATION DATA

ADDITIONAL NOTES REGARDING HUMAN FACTORS EVALUATION OF SAN ANTONIO UFC TEST AND REPAIR FACILITY, KELLY AFB

A. Majoros, S. Heinze, P. Neander, Douglas Airgraft Co. September 18, 1990

Observations

Physical condition

Test Stand Operation. Accessibility of tools is good since operators have tool boxes close at hand. Some tool boxes were observed containing tool pockets out into foam to insure that tools could be quickly accessed and not lost. Attachment of lines to plumbing hook-up points is time-consuming due to the nature of fuel controls (attachment can take up to three hours); this operation could be assigned to a lower skill trainee to better use skilled operators, time. Improved labeling of test stand hook-up lines may also help to reduce the time for this task. Test stands appear well designed, although frequent checking of computer screen (on the larger stands) while making adjustments on controls may be fatiguing.

Space between stands, cushioned mats on floor, and bench-top space appear adequate. Shop is clean and not unusually noisy.

Operators' aprons and goggles are adequate, and do not appear to inhibit movement. Sliding apray screens near controls can be positioned to protect operators from high-pressure apray. Emergency stop switches are well placed and labeled. In general, responsible safety concerns are evident.

Regarding lighting, work on controls seems to require higher levels, but the screens on test stands seem to require lower levels. No measurements were taken, but we recommend them. If lighting in the shop is increased, add shrouds over the computer screens.

<u>Fuel Control Repair</u>. Tools are readily accessible since tool boxes are located next to work benches.

The repair area is spacious, although an observer might have the impression that individual craftsmen do not have adequate benchtop

space for their tasks. There was no close observation regarding this need. Repair people have mats on which to stand, stools for sitting, bench-top surfaces, parts trays, and a clean and orderly work environment. We did not study these features closely; oraftsmen may have a number of "likes" and "dislikes" about these items and production may or may not be affected by them.

Area lighting seems to be adequate, but task lighting does not (again though, no measurement).

Test Stand Repair (On-Site Maintenance). Personnel come into the test and repair facility to maintain test stands. The larger stands are well designed for repair and maintenance access, although particular problems may be present of which we are unaware. We did not observe access provisions on small stands.

Work inside stands may be difficult and uncomfortable, especially for tall persons. The floor surface is steel grate, task lighting must be brought in, and pumps (for those times when pumps must be running while on-site maintenance is inside the stand) probably create high noise levels.

Access around and between stands is oramped and it seems that moving tools, components and aupport items (lights, hoists, etc.) would be difficult. Long repair times on test stands greates a snowballing problem: controls might be moved to another test stand, long snegotiations regarding test stand versus control diagnosis may occur, and predictability of production is reduced.

The layout of stands is understandably oriented to use of the stands rather than repair of the stands, but because test stands require considerable scheduled and unscheduled maintenance, efforts to reduce the frequency of test stand repair should be aggressively investigated.

Morale. Supervision. and Management

We made no formal study of these factors, but discussion with several facility personnel and with MDC on-site personnel gave us some impressions. Test and repair facility personnel enjoy good morals. No suggestion of spathy was encountered. There is a shared perception that the work of the facility requires extensive training,

skill, perseverance, and intelligence. Personnel are aware of the importance of their production to Air force readiness and have been recognised with several awards. The facility is the subject of attention and personnel generally believe their problems can be solved.

Some personnel at various ranks and levels may have some to believe that all aspects of test and repair require high skill levels and that their field (i.e., unified fuel controls) is so complex that standardized procedures are not useful. We believe that supervisors and managers should be aware of this thinking and try to modify it thoughout the facility to this end: not all aspects of test and repair require high skill levels (so it is good to allocate skill where it does the most good for production) and standardization is especially useful with complex equipment.

Supervison has a challanging, dual task: (1) encouraging independent thinking among test and repair personnel and, at the same time, (2) teaching their people to seek expert help and accept management goals for the facility. Our impression is that the supervisors in the facility are required to devote too much attention to threading through these matters and do not have enough time and attention for increasing and improving the quality of technical information available to operators and draftsmen.

Management has helped to raise morale even while keeping up a steady pressure for increased production. However, misperceptions about levels of production and quality circulate through the facility, suggesting that management could gain more cohesiveness and cooperation in the shop and could represent itself more accurately to base (executive level) management if they published data with consistent, commonly understood meanings.

Training

We were not able to study training curricula, methods, or material. Research from other fields of maintenance indicates that training can have a significant impact on production and quality.

Shifts. Breaks. Work Schedules

SURGE

Mr Humber may

Besy

These factors were not studied. However, it appears to us that changes to improve efficiency and throughput would be easier to accomplish in areas other than shifts, breaks, and work schedules.

Processes

Many observations about processes with the UFC facility are contained in our Engineering Notes of July 20 and August 15, 1990. We believe that processes offer a great potential for improvement especially if these are in association with personnel (e.g., training, allocation of skills) and equipment (e.g., improved scheduled maintenance on test stands) solutions. The Engineering Notes contain a number of suggestions.

The process-related matter that seems to stand out most clearly is the variability in method among operators. (Variability of method probably occurs among craftsmen as well, but our focus was the test environment). Examples of this variability include, but are probably not limited to, time to "plumb" a control for testing, number of repetitions of tests, amount of time on some tests, interpretation of test data, interpretation of test stand and fuel control interactions, and selection of procedural information to follow. Variability should be avoided where possible because it makes the process difficult to understand and therefore difficult to improve, it affects quality, it makes production levels difficult to predict, and it creates unexpected performance differences among people.

Recommendation for Further Study or Intervention

Brief Description

The variability matter discussed in <u>Processes</u> above is an excellent target for further study because low-cost changes in information presentation have a good change of reducing variability. An intervention approach applying to test stand operators that could address the variability matter described above would standarise the information available to operators.

Briefly, this idea calls for a computerized data base containing diagnostic and adjustment (corrective information) information. We

envision a low-cost, PC-based, evolutionary build-up of troubleshooting logic trees that supply the requesting operator an aid in fault isolation. Operators would be rewarded for making useful additions to the data base.

Rationale

The following facts suggest an intervention aimed at reducing variability in methods by improving and standardizing technical information for operators.

- 1. A key source of information for operators during fuel control testing is test stand output (computer screen). On-site maintenance, particularly David Bippert, has developed very comprehensive and powerful diagnostic programs out of software originally designed for quality control of newly produced UFCs. But for various reasons, such as departure from the software's original purpose, it does not meet every procedural or diagnostic need and operators typically do not rely exclusively on test stand diagnostics.
- 2. Technical Order (TO) information (upon which test stand diagnostics and output is based) is a second source of information for operators. However, many paragraphs are out of date and/or inaccurate. The TO is oriented to overhaul rather than test and repair, and some necessary test procedures are not contained in the TO. Surprisingly, while textual/diagramatic fault isolation trees are virtually an industry standard format for mechanical procedural information, we could not find any of these trees in the TO.
- 3. Expert advice from an on-condition maintenance (OCM) team is a third source of information. The OCM team consults on problems and distributes tips, solutions, and advisories on paper to operators. Frank Mann, before becoming OCM Team Leader, started a trial system whereby operators in his unit would write their diagnostic and adjustment procedures on sheets of paper and turn them in to him. Mann's intent was to sort through the written sequences and determine the most effective troubleshooting sequences for specific problems. Mann told us that his system was popular in his unit because it increased the amount of shared information about specific problems.

He was promoted before collecting enough of the forms to derive optimal sequences.

- A. A fourth source of information used in fault isolation is knowledge shared among operators themselves. This sharing is effective when it is available, but no formal means exist to build on it. Mann's experience indicates that operators would probably share tips, discoveries, and useful experiences more often if a medium existed to do so, particularly if some incentive (reward) were associated with the sharing.
- 5. Training information is a fifth source of information, although we were not able to study this material.
- 6. The variety of sources adds to the variability in method among operators, but the fact that information comes from multiple sources should be respected. Attempts to combine, supercede, or abolish some forms of information would be very time-consuming and counterproductive.

More on the rationale for this approach is contained in the Engineering Notes of August 15, pp 5-8.

Detailed Description of Intervention or Study Plan

This intervention calls for setting up in the shop area a single 386- or 486-level ruggedized personal computer with high-capacity hard drive. The computer would run a data base program with simple graphics to produce fault isolation trees and a simple menu for operator interface.

To use the computer, operators would walk from their stands to a central location, use a menu to select a test paragraph, and request a printed copy of a logic tree containing the test and fault isolation sequences for the paragraph. (Please see attachments for sample screens.) They would return to their stands with the printed copy.

Logic tree sequences would contain usually three alternative procedures in a suggested sequence:

- o Test stand procedure is shown in standard fault-tree format (first alternative)
- o TO procedure is also shown in standard fault-tree format (second

- o would present the current variety of information sources in a unified format in one location.
- o would present procedural information in a visual, easy-to-follow format, using standard icons of diamonds for decisions and rectangles for procedures.
- o would lead operators to follow standardized procedures but ...
- o would give the test stand operator the same freedom as they have now to exercise independent thinking and gather information for their individual benefit.
- o would relieve the OCM team from repeated calls for the same specialized information.

A precedent for computerized information like the type being recommended here exists in a system for parts inspection at Douglas Aircraft in Long beach, California. Implementation began with a single computer in the inspection area and training for a few respected inspectors. Their use of the system and casual discussion of the system with other inspectors helped generate interest thoughout the inspection area in using the system. In time the computerized procedures became the preferred method and more computers were installed.

Rewards for suggestions from operators (their notes on test and fault isolation experience) might be monetary (Form 1000), the name of the contributing operator displayed on a chart or on the printout so it can be seen by others, preferred parking location for a month, thanks from management and supervision in meetings, and so on.

Prototype menu screens and screens with logic trees are attached (6 pages). All of these pages present models of actual screen (and NCR paper) output, although only the first two pages are shown with borders. The prototypes deal with Mating and Indexing Paragraph 12.000, Idle Governor. Subparagraphs 12.090, 12.110, 12.130, 12.140 and 12.180 are shown in prototype. Note that alternative sequences are called out, giving a choice to the operator, but leading to consistency among operators by their cascading order of display. The alternatives (test stand instructions, TO, OCM recommended approach, etc.) should be arranged represent the facility's usual priority

M & I Fault Solution Computer

Enter Test Sequence Paragraph Number_____

Press Enter to Continue

Menu Screen #1

12.000 Idle Governor

Select a specific Paragraph Number:

ımper:

___12.090

___12.110

___ 12.130

___12.140

___12.160

___ 12.180

Place an "X" on Line and Press Enter to Continue

Menu Screen *2

(Optional: Will not appear if entire test sequence number is entered in Menu #1)

40.4

REH JA JAN JS:22

2EP 19 '90 12:34

2EP 19 '90 12:34

ranking for particular tests.

Implementation Plan

- We suggest the following sequence for implementing this method.
- 1. Present idea to customers. Obtain approvals.
- 2. Determine requirements for computer in UFC shop.
- 3. Locate computer and printer and purchase.
- 4. Design database and graphics interface with user-friendly input and output screens as suggested by this Human Factors analysis.
- 5. Gather information regarding M & I test sequences (if M & I is selected as the system trial). This information will be located in test stand output, TOs, OCM team information, training information, operators' personal and shared knowledge.
 - 6. Hire/transfer a programmer into the project.
- 7. Program database with information for some non-trivial number of paragraphs and input/output formats.
- 8. Select a few operators on each shift to be part of a pilot group to use the new system and attempt to increase other operators' awareness and acceptance of the new system.
- 9. Selected operators use system, employing computer as they encounter controls that defy quick diagnosis.
- 10. Programmer adds to database as trial period proceeds and uses notes and suggestions from operators! NCR copies.
 - 11. Reward operators' additions to system.
 - 12. System is expanded according to shop needs.

alternative)

o Shop experience/OCM recommendation is also shown in standard fault-tree format (third alternative)

The personal computer printout would be on "no-carbon-required" (NCR) paper so that operators could write notes about the test paragraph and their actual experience with the specific test, keep their original in a notebook and, if they chose to, pass the copy (containing their hand-written notes about the paragraph) on to the OCM team.

If the OCM team considered suggestions in the notes to be important additions to the fault tree for particular test sequences, additions to the data base would be made and the operator submitting the notes would be rewarded in some way. This method would bring about the steady growth of shared information among operators.

The data base would contain all the various sources of information described above in <u>Rationale</u> for selected paragraphs. Bxisting fault isolation procedures from all current sources would be easily accessed with a powerful personal computer and presented in logic tree format.

Our analysis of the shop processes indicates that while the lack of a standardized system of information has made UFC fault diagnosis complicated, the current methods are still effective, although not efficient. All the data gathered by an operator is necessary to complete the task. The proposed method ...

- o would not change the information in any way.
- o would not alter procedures.
- o would not replace existing directives or supplant training material.
- o would not provide diagnoses. It is not an expert system.
- o would not require adding all paragraphs before implementation of the system. A few oritical paragraphs can be selected to start the system, and additions and updating could continue after the system is introduced.

The data base would contain information that is available now, and ...

M & I Fault Solution Computer

Enter Test Sequence Paragraph Number_____

Press Enter to Continue

Menu Screen #1

12.000 Idle Governor

Select a specific Paragraph Number:

___ 12.090

12.110

___ 12.130

___12.140

___ 12.160

___12.180

Place an "X" on Line and Press Enter to Continue

Menu Screen #2

(Optional: Will not appear if entire test sequence number is entered in Menu #1)

From preceding

10.0 MEETINGS & GENERAL INFORMATION

IPI MEETING ATTENDEES 10 JULY 1990

NAME	OFFICE	PHONE
Greg Gardner	MDMSC	5-7630
Pete Garza	MAWFT	5-7491
Merrilynne Henderson	MATEC	5-8678
Susan Schattle	MAWFT	5-7491
Glenn Bush	MMFBA	5-6224
Ralph Alvarez	MAEEN	5-7716
John Smith	MAEEN	5-7716
Scott Vroman	MDMSC	5-7630
Phil Parker	MDMSC	5-7630
Ken Premo	MDMSC	5-7630
Antonio F. Perez	MATPFA	5-4491
Frank A. Mann	MATPF	5-4491
Sadie McFarland	MDMSC	5-7630
Jerry Klar	MATE	5-6235
Frank Schutter	MATES	5-4702
Joe Montano	MCAIR	5-7630

ENGINEERING NOTES

EMPLOYEE	DATE	PAGE NO
RCC	SUBJECT	
27 July Pre-Vo	libetion mra	
NIME	126	$\overline{f} \cdot \partial_L \cdot \dots$
Part KALED	MONSC	2 ★ 2) 12 - (4
Robert WOSTEIC	MATEC	58678
Susan Se marrie	HAWFT	57491
Ches VASQUEZ	more	7696
JIM GROUNDS	MATAP	5114
Grey Gardner	MDMSC	7630
Profession Nadea	m Dras C DSSDLT	7630
Adam SISA	MATRE	4691
, 150 BALLOSIONE	MONISC	· · · · · · · · · · · · · · · · · · ·

PAGE NO.

BCC MAT OF A

SUBJECT TPZ mepting

7/3/90 - Tuesday

Ken Premo and I obtained a magnetic tape containing GO-19-C data, which should be useful in tracking the MTTR and MTBF. We took this tape to Susan Randolph, who will load it into her VAX. Susan has agreed to format this data, which is in a raw state. Her format will include the machine identifier, date and time of failure, the cause of failure, the labor cost associated with the repair, and the down time. Ms. Randolph was also kind enough to volunteer to set up the files to calculate and report the MTTR and MTBF in any printouts we should need. I made arrangements to contact Susan Thursday morning.

This afternoon we had our first IPI weekly meeting, which will always be scheduled to begin at 1:00 PM Tuesday afternoons. The list of attendance was as follows:

Name	Organization	ext.
Susan Schattle	MAWFT	57491
Merrilynne Henderson	MATEC	58678
Frank Schutter	MATES	54702
Greg Gardner	MDMSC	57630
Robert Wojtec	MATEC	58678
Cpt. Paul Nadea	DSSDLT	56580
Randy Harris	MDMSC	57630
Ken Premo	MDMSC	57630
Sadie McFarland	MDMSC	57630
Tim Morrison	MATES	58521
*John Smith	MAEEN	57716
Adan Sosa	MATPFA	54491
Antonio F. Perez	MATPFA	54491
John R. Laymon	MATPG	58831
Chris Vasquez	MATP	57696

DDB SECTION CODE 10.0	DDB PAGE NO.
-------------------------	--------------

EMPLOYEE Planker	DATE 7/3/90 PAGE NO.	2
ACC MATPEA	SUBJECT IPI meeting	

Dan Gonzales	MATEA	54667
Cpt. Glenn Bush	MMFBA	56224
Phil Parker	MDMSC	57630
Ron Lee	MDMSC	57630

The meeting began with introductions of all MDMSC personnel involved with the various task orders. The goals and objectives of the program were discussed. The initial briefing included the following:

- mention of the fact that we are significantly ahead of schedule in the UFC area. (Initial Model run results are expected by Monday morning).
- necessity of specific models to identify the unique problems of the various RCCs.
- discussion of the "Tracker II" ideas jointly being worked by Ms. Henderson and Mr. Gardner. Mention that these type of in-house systems will be very useful in feeding DMMIS.
- discussion of both the initial observations and the goals involving UFC test stands.
- initial observations of the cleaning line were discussed. Mention of the possible use of Taguchi loss functions in this area, as well as possible changes in fixturing and tank agitation procedures. Slurry technology and cryoblast were discussed.
- mention of the specialists (engines, human factors, test stands, etc.) to be brought in as task order consultants.

DDB SECTION CODE	10.0	DDB PAGE NO.
------------------	------	--------------

ENGIN	EERING NOTES	~
EMPLOYEE Plarker.	DATE 7/3/90	_ PAGE NO
RCC MATOFA	SUBJECT IPI	meeting

- the "over-the-shoulder" training agreement was discussed, with some explanation of what this would entail.

DDB SECTION CODE 10, C DDB PAGE NO.

ENGINEERING NOTES

EMPLOYEE CARDWER	DATE 5 54/4 90	PAGE NO/
RCC	SUBJECT DIMMIS	upos Interface

Net with Mr Morris Wexler to discuss the DMMIS Program and how it will relate to IPI/4005 20.
Mr Wexler described the structure of DMMIS and offered to provide excepts from the data element specifications as they are currently defined.

pmmis is an MRPII system coupled to a set of integrating protocols designed to link it to several existing systems. It will replace about 30 existing data boses. Final implementation at SA-ALC is about 2 years away. Total DMMIS budget is \$250 million.

DMMIS is not a simulation tool. M- wexler did not feel that the ZPZ process was duplicating any DMMIS products. He did feel that many of the data elements input/output by upos 20 were common to DMMIS and that some overlap of effort existed. We both agreed that it would be highly desirable to explore interfacing upos and DMMIS in the future (when DMMIS was better defined)

Mony of the data elements required by DMMIS - upos are not correctly available in any data base. The MPMSC IPI is collecting these elements by building data bases from paper (Test legs, Tracker outputs, etc) and uncollected electronic files. Mr wexler cagreed that this work (expensive) labor intensive) would have to be performed by Govit personnel prior to DMMIS implementation. He felt that, where it were cost effective, it would be an excellent iden for UFC personnel to maintain supplete these databases often the IPI MPMSC team has finished To 16. This effort would include data collected by TRACKER and the Test lon data.

DDB SECTION CODE	.O DDB PAG	SE NO
------------------	------------	-------

ENGIN	NI/2	NIC 3 I	

RCC UFC TO-16

DATE 5 July 10 PAGE NO. 2

SUBJECT Dram 15/Upos Interface

I feel that by collecting the MPMSC cost for developing these databases and translating into estimated coit costs (momsc Lubor hours X Cout hourly rate: est. Govit cost) a cast benefit analysis can be made comparing the cost of maintaining the databases vs. recreating them in 1-1.5 years. If this CBA indicates a positive cash flow, it should be documented as a quick fix.

DDB SECTION CODE ______ DDB PAGE NO. _____

EMPLOYEE Parker DATE 75/90 PAGE NO. 9

RCC MATPEA SUBJECT SEACE INFO

7/5/90 - Thursday

I am somewhat concerned about the perceptions of several of the ALC personnel regarding the IPI data characterization methodology which we are presently using. In recent conversations with these personnel, I have heard concern expressed about the time required to construct the data files, as well as the appropriateness of the basic methods of data collection being used. Several conversations with Ms. Henderson have led me to believe that she is somewhat frustrated with the manner in which we approach the construction of the model files. Part of this has come about through miscommunication. Constructing the resource and operation files for a simulation model in the absence of the needed historical documentation is difficult and time consuming, and this has by necessity constrained some of our desired customer communication and training time. I do not mention this in way of an excuse, but rather as a documentation of situations to avoid in all future tasks associated with this project. In my experience with this program, effective communication is absolutely essential if all goals and objectives are to be met in a timely manner.

Another source of concern for Ms. Henderson, as well as certain other ALC personnel, is the fact that it appears that we are often times reproducing work which they have already performed. Ms. Henderson is an extremely efficient and productive engineer, and it is no surprise that this would be offensive to her, if it were indeed the case. Naturally, we also desire to make the most efficient use of our time. However, we are constrained to construct our data files in a format which can be utilized by the UDOS model, as well as to sift through the data we are provided or personally collect in order to determine its degree of accuracy. This may seem obvious, but again, we have not always effectively communicated

DDB SECTION CODE 10.0	DDB PAGE NO.
-----------------------	--------------

	ENGINEERING NOTES
--	-------------------

EMPLOYEE Planke	DATE	7/5/90	PAGE NO. /O	
ACC MATPFA	SUBJECT	General	info	

our specific needs or constraints to our ALC counterparts. For example, Ms. Henderson mentioned to me earlier this week that she wasn't previously aware that we already had a simulation model per se to be applied to the UFC repair process. While this may seem somewhat amusing, it really isn't. Again, it basically shows that we need to spend more time in communicating with our customer. This is especially important this year, as we have committed to the goal of informal training on our processes, as well as the obvious objective of transferring this technology to its end user. I know from conversations with Mr. Gardner that this is one of his most vital concerns, and that he is in the process of developing a working "team concept" plan for involved ALC and MDMSC personnel.

Another area of concern to me is the level of detail to be modeled in our initial simulation run. I am of the firm opinion that it is much more reasonable for the model to be constructed in phases, with an initial "broad base" format, and subsequent detailed data added where needed to represent actual floor processes. I cannot overstress the importance of this approach. It is much more cost effective to build a functioning model at a higher level of order than to build a model with superfluous data or unneeded detail. Such detail can be a source of error, and can degrade the robustness of the model design. When detailed operation or resource descriptions are necessary, they can be added in to the basic model format, which can serve as something of a "superstructure" on which to build. In reference to these points, please see the following attachments, which represent a part of Mr. Scott Vroman's engineering notes for the week of 7/2/90. These follow under the designator "E".

	16 -	
DDB SECTION CODE_	16.0	DDB PAGE NO.

EMPLOYEE <u>GARD NER</u>	DATE _ 30	July 90	PAGE NO.	
RCC <u>mATPFA</u>	SUBJECT_	Production	Input	To Prices

Puring our flowtime meeting, Mr Perez + Mr Swe expressed dissappointment with the coverage of production in our engineering notes (I had given them copies to review/comment on). They felt that production was inadequately covered and poorly served by the notes. I explained that the negative image was caused by our focus on problem areas (as sources of potential improvement) and not because we wanted to present a negative image of production. We have already gotten a great deal of information from production and included it in our notes. Most of this information was operations data for the model and is not always obvious as production input.

To insure adequate production input into our process, I have taken two steps:

- DI have asked production to provide fereback on our notes. I will include this feed back as part of our engineering notes when satur. Had as a deliverable (Both on the monthly states kpt t in the PDB). This is the same aurangument I had previously made with MATEC (Mexilynne Henderson) and MAWFT (Susan Schaffe).
- 2) I have asked Mr Perez to review the production duta included in our current model version, and make changes as required. This data is from a variety of sources (TRACKER, production interviews, Equip. Logs, etc) and should be reviewed by production management. The changes made by the Perez are

DDB SECTION CODE 10. DDB PAGE NO.

ENGINEERING NOTES

EMPLOYEE CARDNER	DATE 30 Tu/y 90	PAGE NO	2
RCC MATPEA	SUBJECT Production	Ingut to	Prices

shown on the attached sheet. The overall effect of these changes has been to lower the average flow times and reduce utilization of wG-11 craftsmen.

Merrityne Henderson has given us the Awf duty which she had originally obtained from Scheduling This data appears to be a reasonable sample of Awf occurance and duration and should be adequate for modeling.

DDB SECTION CODE _____ DDB PAGE NO. _____

EMPLOYEE

DDB PAGE NO.

abbrariable Run has

ENGINEERING NOTES

SUBJECT

PAGE NO.

ENGINEERING NOTES

EMPLOYEE	DATE _ SUBJECT		
	IPI MEE ATTENDA	•	E 07
Pame	Cra	<u>Ext</u>	
JUSAN SCHATTLE	MANGET	57:47	
Menityme Henders	• • •	58678	
FRANK SCHUTTER	MATES	54702	
Grey Gardner	Momsc	5-7630	
Robert WOSTER	MATEC	5 8678	
Paul Nadea	DSSOLT	56580	
RAMOT HARRY	nonsc		
KEN PREMO	MOVUSC	57630	
SADIE MICFARLAND	monisc	57ú 30	copies of
John Sait	F = 3 15		5 mbes
Tim MOKRISON	MATES	5-8521	
ADAN SISA	MATAK	54491	
Andonio Freiez	matpfa	5-449/	
JOHN R, LAYMON	MATPG	5.8831	
Cher VASGUEZ	MATP	7696	
DAN GUNZALES	MATEA	5-4667	
GRAND BUSH	MAFBA	563.1	

DDB SECTION CODE _____ DDB PAGE NO. _____

Technology Insertion -->
Industrial Process Improvement

McDonnell Douglas

Industrial Engineers (3)

Mechanical Engineer

Computer Scientist

Part Time Help

SA-ALC Site Manager (IE)

Three studies over six months.

What is the IPI Agenda?

Ask Questions

Learn how we fix UFCs

Production

Planning

Scheduling

Engineering

See how all the players work together to get the job done.

Build A Process Model

Computer Program (UDOS)

Collect Data

Describe the flow

Determine Occurrence Factors

Duration Distributions
For Each Operation
(High, Low, & Avg)

Validate The Model

Validated when all users agree it works and the output reflects what is really happening.

Waiting lines

Sales/Production

Utilization

Equipment

People

Experimentation

theoretical questions, draw conclusions, and make recommendations.

More people??

of UFCs produced amount of waiting time

Which type of people??

50002 T/S Operators?

Gas Generator Mechanics?

How many of each type?

Run the Model

Change baseline conditions

Computer "simulates" five quarters

Output Summarization Printed

Evaluate Worth of Idea/Experiment

Find Optimal Arrangement

Engineering Assessment

Separate from the model

Process Improvement
Find a better way

Test Stand interruptions

Large amount of Work In Process

Critical Path - Key Operations

Tailored WCDs & Menu Pricing
UFC Tracker II

Tech Order Aids - Work Specs

What is the point?

The IPI Team is:

* working with our people.

experienced in the field.

*

opportunities further forlooking *

improve u S he l p t 0 here . ຕ ໝ Team IPI The