Mohammed Quazi

PhD Candidate — Statistics
Department of Mathematics & Statistics
University of New Mexico
mquazi@unm.edu
https://math.unm.edu/~mquazi/
https://github.com/mquazi

Overview

- What is regression?
 - Idea of regression
- Simple Linear Regression (SLR)
 - Basics of SLR
- 3 Analysis of Variance (ANOVA)
 - One-Way ANOVA
- One-Way ANOVA using R
 - Volumetric Median Diameter experiment

Regression

- Statistical modeling technique
- Simplest form is to predict one variable using another

Simple Linear Regression (SLR)

- Main question: What is the predicted value for a given point?
- Use only one variable to predict predictor variable
- Predicted variable is called the response variable
- Model form:

$$Y_t = \beta_0 + \beta_1 x_t + \epsilon_t$$
 (1)
 $x_t = \text{values of predictor}$
 $t = 1, ..., n \text{ observations}$
 $\epsilon_t \text{ iid Normal}(0, \sigma^2)$

One-Way ANOVA

- Main question: Does this factor affect the response?
- Factor is an explanatory variable which may be related to the response
- Factor levels are "values" of the factor
- Factor-level combinations are called treatments
- Model form:

$$Y_{it} = \mu_i + \epsilon_{it}$$
 (2)
factor/treatment (trt) $i = 1, 2$
 $t = 1, \dots, r_i$ observations for trt i
 ϵ_{it} iid Normal(0, σ^2)

Comparison

Compare	Regression	ANOVA
Response	Quant	Quant
Factors	Quant	Quant or Qual
Data	Observational	Experimental
Relation	Linear/quadratic	Not specified
Model (Simple)	$Y_t = \beta_0 + \beta_1 x_t + \epsilon_t$	$Y_{it} = \mu_i + \epsilon_{it}$
True mean	true mean wt = $\beta_0 + \beta_1 x$	$\mu_1=$ true mean life length for nonsmokers
		$\mu_2=$ true mean life length for smokers

ANOVA models

▶ ANOVA model seen so far is the Cell Means model: $Y_{it} = \mu_i + \epsilon_{it}$

$$i=1,\ldots, \nu$$
 trts $r_i=\#$ of obsns for trt i $n=$ total $\#$ of obsns $y_{it}=t^{th}$ response observed for trt i $\mu_i=$ true mean for trt i $\epsilon_{it}=$ random errors iid Normal $(0,\sigma^2)$

▶ Factor Effects model: $Y_{it} = \mu_{..} + \alpha_i + \epsilon_{it}$

$$\mu_{\cdot \cdot} = \text{ overall constant}, \quad (\mu_i = \mu_{\cdot \cdot} + \alpha_i)$$

 $\alpha_i = \text{ effect due to trt } i$

- Fitted values: $\hat{y}_{it} = \hat{\mu}_i = \hat{\mu}_{..} + \hat{\alpha}_i = \bar{y}_{i.}$
- ▶ Residuals: $e_{it} = y_{it} \hat{y}_{it}$, for each trt i, $\sum_{t=1}^{r_i} e_i = 0$

ANOVA table for one factor

Source	DF	SS	MS=SS/DF	F	p-value
Trt	u - 1	ssTr	msTr	F*	$P[F_{\nu-1,n-\nu} > \text{observed } F^*]$
Error	n – ν	ssE	msE		
Total	n-1	ssTot			

► *F*-test

$$H_0:$$
 No difference in the trts \leftrightarrow $H_0:$ $\mu_1=\mu_2=\ldots=\mu_{\nu}=\mu_{\cdot\cdot}$ \leftrightarrow $H_0:$ $\alpha_1=\alpha_2=\ldots=\alpha_{\nu}=0$ vs. $H_1:$ At least two trts differ \leftrightarrow $H_1:$ Not all μ_i are equal \leftrightarrow $H_1:$ Not all $\alpha_i=0$

- ▶ Model under H_0 is the reduced model: $Y_{it} = \mu_{..} + \epsilon_{it}$ (all have same mean)
- ▶ Model under H_1 is the full model: $Y_{it} = \mu_i + \epsilon_{it} = \mu_{..} + \alpha_i + \epsilon_{it}$
- ▶ Reject H_0 if $F^* > F_{\nu-1,n-\nu,\alpha}$ or if p-value $< \alpha$
- ▶ If we conclude H_1 , then the next step is analysis of factor level effects

Inferences for factor level effects

We may conduct inferences for

- trt means $\mu_i = \mu_{\cdot \cdot} + \alpha_i$
- ▶ differences between trts $D = \mu_i \mu_j = \mu_{..} + \alpha_i \mu_{..} \alpha_j = \alpha_i \alpha_j$ (nonsmokers vs. smokers)
- ▶ contrasts $L = \frac{\mu_2 + \mu_3}{2} \mu_1$ (smokers of any kind vs. nonsmokers)

Residual analysis (model diagnostics)

Recall the residuals: $e_{it} = y_{it} - \hat{y}_{it}$

The purpose of residual analysis is to verify the model assumptions:

- No outliers
- Normally distributed errors
- Uncorrelated errors
- Constant error variance $Var(\epsilon_{it}) = \sigma^2$
- ▶ Other factors

► Files to execute this study are here: github.com/mquazi/Intro_OW_ANOVA

- An experiment to compare the performance of different hole sizes $(5\mu m, 10\mu m, 20\mu m, 30\mu m)$ is investigated based on the volumetric median diameter (VMD) of the droplets for atomizers. 8 observations of VMD are recorded for each hole size.
- VMD is the response variable
- Hole size is the factor at 4 levels (or 4 trts)
- ▶ Main questions: (1) Does the hole size affect the VMD? (2) Which hole size levels stand out?

Conclusion (1/2)

Table: ANOVA table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
factor(Holesize)	3	3, 381.914	1, 127.305	57.132	0
Residuals	28	552.480	19.731		

- \triangleright p-value < 0.05, reject H_0 . There is a statistically significant relationship between the VMD and the hole size.
- ▶ Now we can analyze effects of hole size levels

Conclusion(2/2)

95% family-wise confidence level

Thank You!

One-Way ANOVA using R

0000