Ejercicio puntuable Tema 1-Geometría II 30 de abril 2020

1. Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ el endomorfismo que en la base usual de \mathbb{R}^4 tiene como matriz

$$A = \left(\begin{array}{cccc} a & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 1 & 2 & 4 & 1 \\ 4 & 12 & 0 & 1 \end{array}\right)$$

Se pide lo siguiente:

- (a) (3 PUNTOS) Estudia para qué valores de a el endomorfismo f es diagonalizable.
- (b) (3 PUNTOS) Si f es diagonalizable para a=-2 encuentra una base de \mathbb{R}^4 formada por vectores propios de f.
- (c) (1 PUNTOS) En el caso a=-2 ¿existe un endomorfismo h tal que $h^3=f$? Justifica tu respuesta.
- 2. Responde de forma razonada si las siguientes afirmaciones son verdaderas o falsas.
 - (a) (1 PUNTO) Sean $A, P, Q \in \mathcal{M}_2(\mathbb{R})$ tal que $P^{-1} \cdot A \cdot P = Q^{-1} \cdot A \cdot Q = \begin{pmatrix} 2 & 0 \\ 0 & \sqrt{3} \end{pmatrix}$. Entonces las columnas de P son proporcionales a las columnas de Q.
 - (b) (1 PUNTO) Sean A y B matrices cuadradas de orden n con el mismo polinomio característico, entonces son semejantes.
 - (c) (1 PUNTO) Sea $A \in \mathcal{M}_2(\mathbb{R})$ tal que $A^3 = \mathbf{0}_2$. Entonces $A^2 = \mathbf{0}_2$, donde $\mathbf{0}_2$ es la matriz nula de orden 2×2 (Idea: Utiliza el Teorema de Cayley-Hamilton).