

b) Exploding Gradient
Problem: It occurs when the derivatives or slope get larger and larger as we go backward with every layer during Backpropagetion.
This problem hoppens because of Weights, not being
the Actiontion Function. Yüksek Weight deger lerinder
türevelerde yüksek olur; böylece Yeni ağırlık Eskiye göre-
come to a global minima point.
Vanishing Gradient -> Occurs due to the Sigmoid and Touch
Exploding Gradient -> Occurs due to large Weights.
Problemi nasil Tespit ederiz?
1) Resulting in large charges in loss from update to update. 2) Model Loss goes to Pap during training.
3) Model weights quickly become very large during Training 4) Model weights go to Par values during Training
5) Error gradient values are consistently above I for each node and layer during Training.
Problemi nasil Gözeriz? 1) Re-Design Petwork. a) Have fawer Layers b) Have smaller batch size

2) Use Gradient Clipping (Kirpma)
Specifically, the values of the error gradient and
checked against a threshold value and clipped or set.
to that threshold value if the error gradient exceeds
threshold. (Keras' to var)
3) Use Weight Regularization
- Using an Lippon Laspenalty on the recurrent weights
can help with Exploding Gradient. Tirios dos
8 Implement penalty to the network's loss function
for big weight values if exploding gradients are
hoppening.
Vanishing Gradient +
4) Proper Weight Initializer + Insiland officials
Özetle; Exploding gradients are a problem when large
error gradients accumulate and result in very
large updates to neural network model weight
during training

Weight Initialization:
10-1 000 4.00 3
Too large initialization leads to Exploding Gradients.
-> Too small initialization leads to Vanishing Gradients.
To large 3
Conider the case where every weight is initialized
Consider the case where every weight is initialized slightly larger than the identity matrix.
$W^{[1]} = W^{[2]} = = W^{[1]} = 0.1.5$
bu yüsden the values of a [1] increase exponentially.
with l.
When these activations are used in backpropagation, this leads to the exploding gradient problem.
this leads to the exploding gradient production
Since, gradients of the cost with respect to the parameters are too big. This leads the cost to oscillate around its minimum value.
around its minimum value.
To small ?
$[et, W^{[1]}] = W^{[2]} = = W^{[L-1]} = [0.5 \text{ o}]$
(g = WELT 0,5 L-1 X
by yunder values of activation (ates) decrease exponentially with L
That leads to conishing gradient problem. The gradients of the cost with respect to the parameters are too small, leading to convergence
of the cost before it has reached the minimum value.
Otetle;
Initializing weights with inappropriate values will lead to
divergence or a slow-down in the training of your neural
network.
Main weight Initialization Methods :
a) Uniform Distribution Kullandom aktivasyon forksi-
b) Xavier Initialization Kullandom aktivasyon forksi- yonuna bağlı hazzisinin iyi olduğun karar verilir
c) He Initialization) Rayor verille