Feuille d'exercice n° 22 : EV de dimension finie - correction

Exercice 1

1) On a une famille de $5 > \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 , donc $(v_1, v_2, v_3, v_4, v_5)$ est liée.

 v_1 et v_2 sont deux vecteurs non colinéaires, donc (v_1, v_2) est libre.

Soit $a, b \in \mathbb{R}$, en considérant le système $av_1 + bv_2 = v_3$, en considérant la première ligne on obtient a = 1, et avec la deuxième ligne b = -1. Les autres lignes sont incompatibles. Ainsi, la famille (v_1, v_2, v_3) est libre.

De même, avec $a, b, c \in \mathbb{R}$, on voit que le système $av_1 + bv_2 + cv_3 = v_4$ n'a pas de solution. Ainsi, la famille (v_1, v_2, v_3, v_4) est libre.

C'est une famille libre de $4 = \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 , (v_1, v_2, v_3, v_4) est donc une base de \mathbb{R}^4 .

Notamment, comme sur-famille d'une famille génératrice, $(v_1, v_2, v_3, v_4, v_5)$ engendre \mathbb{R}^5 .

2) On a une famille de $3 < \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 , donc (v_1, v_2, v_3) n'est pas génératrice. v_1 et v_2 sont deux vecteurs non colinéaires, donc (v_1, v_2) est libre.

Soit $a, b \in \mathbb{R}$, en considérant le système $av_1 + bv_2 = v_3$, en considérant la première ligne on obtient a = 3, et avec la deuxième ligne b = -2. Les autres lignes sont incompatibles. Ainsi, la famille (v_1, v_2, v_3) est libre.

On observe (après résolution de système) que $e_1 = (1,0,0,0)$ n'est pas combinaison linéaire de (v_1,v_2,v_3) , donc (v_1,v_2,v_3,e_1) est une famille libre $4 = \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 , c'est donc une base de \mathbb{R}^4

3) On a une famille de $4 = \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 .

 v_1 et v_2 sont deux vecteurs non colinéaires, donc (v_1, v_2) est libre.

Comme dans l'exercice précédent, on observe que $v_4 = 3v_1 - 2v_1$. De même, $v_3 = 2v_1 - 3v_2$. Ainsi, (v_1, v_2, v_3, v_4) est liée. D'après la première remarque, ce n'est pas une famille génératrice de \mathbb{R}^4 .

Avec $e_1 = (1, 0, 0, 0)$ et $e_2 = (0, 1, 0, 0)$, on observe que e_1 n'est pas combinaison linéaire de (v_1, v_2) et que e_2 n'est pas combinaison linéaire de (v_1, v_2, e_1) . Ainsi, (v_1, v_2, e_1, e_2) est une famille libre, elle comporte $4 = \dim(\mathbb{R}^4)$ vecteurs de \mathbb{R}^4 , donc c'est une base de \mathbb{R}^4 .

Exercice 2

- 1) Comme $P \mapsto P(0)$ et $P \mapsto P'$ sont linéaires, φ est linéaire. De plus, on sait que pour tout $P \in \mathbb{K}[X]$ et tout $a \in \mathbb{K}$, il existe un unique $Q \in \mathbb{K}[X]$ tel que Q(0) = a et Q' = P (pour le redémontrer, écrivez P puis Q sous forme développée-réduite). Ainsi, φ est bijective, donc est bien un isomorphisme de $\mathbb{K}[X]$.
- 2) Supposons que $\mathbb{K}[X]$ soit de dimension finie, notée d. Alors $\mathbb{K}[X]$ serait isomorphe à $\mathbb{K} \times \mathbb{K}[X]$, qui est de dimension d+1. On aurait d=d+1, ce qui est impossible.

Exercice 3

1) Soit $x, y, z, a, b \in \mathbb{R}$. On écrit

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = a \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + b \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \Leftrightarrow \begin{cases} x = 3a + 2b \\ y = a + b \\ z = 2a + 3b \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 3y = -b \\ y = a + b \quad L_1 \leftarrow L_1 - 3L_2, \ L_3 \leftarrow L_3 - 2L_2 \\ -2y + z = b \end{cases}$$

$$\Leftrightarrow \begin{cases} x - 3y = -b \\ y = a + b \quad L_3 \leftarrow L_3 + L_1 \\ x - 5y + z = 0 \end{cases}$$

Ce système (en a, b) admet une solution si et seulement si la dernière ligne est vérifiée. Une équation cartésienne de F est donc x - 5y + z = 0.

2) Soit $x, y, z \in \mathbb{R}$. On observe que $(x, y, z) \in G$ si et seulement si (x, y, z) est colinéaire à (1, 2, 3), donc si et seulement si y = 2x et z = 3x.

Une représentation cartésienne de G est donc le système 2x - y = 0, 3x - z = 0.

3) Soit $x, y, z, t, a, b, c \in \mathbb{R}$. On écrit comme dans la première question le système (en a, b, c):

$$\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = a \begin{pmatrix} 1 \\ 2 \\ 3 \\ 0 \end{pmatrix} + b \begin{pmatrix} 4 \\ -1 \\ 2 \\ 0 \end{pmatrix} + c \begin{pmatrix} 2 \\ 1 \\ -3 \\ 0 \end{pmatrix}$$

Ce système (en a, b, c) admet une solution si et seulement si la dernière ligne est vérifiée. Une équation cartésienne de H est donc t = 0.

Exercice 4

- 1) On a une famille de $n+1=\dim(\mathbb{R}_n[X])$ vecteurs dans $\mathbb{R}_n[X]$. Il suffit donc de montrer que cette famille est libre. s Soit $\lambda_0,\ldots,\lambda_n\in\mathbb{R}$ tels que $\sum_{k=0}^n\lambda_kP_k=0$. Supposons que les λ_k ne sont pas tous nuls, on peut donc considérer le plus grand entier m tel que $\lambda_m\neq 0$. On aurait alors $P_m=-\frac{1}{\lambda_m}\sum_{k=0}^{m-1}\lambda_kP_k\in\mathbb{R}_{m-1}[X]$. Ceci contredit le fait que $\deg(P_m)=m$. Ainsi, (P_0,\ldots,P_n) est une base de $\mathbb{K}_n[X]$.
- 2) On montre que cette famille est libre et engendre $\mathbb{R}[X]$. Soit $(\lambda_i)_{i\in\mathbb{N}}$ une suite de scalaires à support fini telle que $\sum_{i\in\mathbb{N}} \lambda_i P_i = 0$. Comme cette suite est à support fini, elle est nulle à partir d'un rang $n\in\mathbb{N}$. On peut donc écrire $\sum_{i=0}^n \lambda_i P_i = 0$. Par la question précédente, si $0 \le i \le n$, $\lambda_i = 0$. Ainsi, $\forall i \in \mathbb{N}$, $\lambda_i = 0$, donc $(P_i)_{i\in\mathbb{N}}$ est libre. Soit $P \in \mathbb{R}[X]$, notons $n = \max(0, \deg(P))$. On a alors par la question précédente $P \in \mathbb{R}[X] = \operatorname{Vect}(P_0, \dots, P_n) \subset \operatorname{Vect}(P_i, i \in \mathbb{N})$. Ainsi, $(P_i)_{i\in\mathbb{N}}$ engendre $\mathbb{R}[X]$. Ainsi, $(P_i)_{i\in\mathbb{N}}$ est une base de $\mathbb{R}[X]$.

Exercice 5

Par la formule de Taylor, cette famille est génératrice, avec coordonnée sur $(X-a)^i$ égale à $\frac{P^{(i)}(a)}{i!}$ et cette famille est libre car les polynômes sont de degrés distincts 2 à 2.

Exercice 6 On peut prendre $(1, Q, X^2, P)$.

Ces polynômes sont de degrés distincts deux à deux, donc forment une famille libre. C'est une famille libre de $4 = \dim(\mathbb{R}_3[X])$ vecteurs de $\mathbb{R}_3[X]$, donc c'est une base de $\mathbb{R}_3[X]$.

Exercice 7

- 1) v_1 et v_2 sont deux vecteurs non colinéaires, donc forment une famille libre. En résolvant le système $v_3 = av_1 + bv_2$, qui n'a pas de solution, on obtient que la famille (v_1, v_2, v_3) est libre. On observe ensuite que $v_4 = 3v_1 + 2v_2$ et $v_5 = -3v_1 + v_2$. Ainsi, (v_1, v_2, v_3) est une base de F.
- 2) Comme F est de dimension 3 et \mathbb{R}^4 de dimension 4, il suffit de compléter (v_1, v_2, v_3) avec un vecteur pour former une base de \mathbb{R}^4 . On voit par exemple que $e_1 = (1, 0, 0, 0)$ convient $(e_1 \notin F)$. Ainsi, $\text{Vect}(e_1)$ est un supplémentaire de F.