INSTITUTO FEDERAL DO PIAUÍ

Curso de Tecnologia em Análise e Desenvolvimento de Sistemas

Programação Orientada a Objetos, Prof. Rogério Silva

Atividade de Laboratório (Individual) 23/dez/2015

OBJETIVO: Praticar tópicos Variáveis e Tipos, Operadores/Expressões Matemáticos, Lógicos e Relacionais, Estruturas Condicionais, Estruturas de Repetição, Funções, Raciocínio Lógico para Estruturação de Problemas e suas Soluções por meio da linguagem de programação Java.

Entrega: Via GitHub até as commit/push até 18h;

Boa Atividade!!!;)

QUESTÕES DA PLATAFORMA URI JUDGE ONLINE

1. Calcule o consumo médio de um automóvel sendo fornecidos a distância total percorrida (em Km) e o total de combustível gasto (em litros).

Entrada

O arquivo de entrada contém dois valores: um valor inteiro X representando a distância total percorrida (em Km) e um valor real Y representando o total de combustível gasto, com um dígito após o ponto decimal.

Saída

Apresente o valor que representa o consumo médio do automóvel com 3 casas após a vírgula, seguido da mensagem "km/l".

suas vendas efetuadas, informar o total a receber no final do mês, com duas casas decimais.

Entrada

O arquivo de entrada contém um texto (primeiro nome do vendedor) e 2 valores de dupla precisão (double) com duas casas decimais, representando o salário fixo do vendedor e montante total das vendas efetuadas por este vendedor, respectivamente.

Saída

Imprima o total que o funcionário deverá receber, conforme exemplo fornecido.

3 casas após a vírgula, seguido da mensagem "km/l".		Exemplos de	Evenneles de Caída
Exemplo de	Entrada Exemplos de Saída		
Entrada	Exemplo de Saída	JOAO 500.00	TOTAL = R\$ 684.54
500 35.0	14.286 km/l	1230.30 PEDRO	TOTAL = R\$ 700.00
2254 124.4	18.119 km/l	700.00 0.00	10111111 1.0 7.00.00
4554 464.6	9.802 km/l		

2. Faça um programa que leia o nome de um vendedor, o seu salário fixo e o total de vendas efetuadas por ele no mês (em dinheiro). Sabendo que este vendedor ganha 15% de comissão sobre

3. Leia 4 valores inteiros A, B, C e D. A seguir, se B for maior do que C e se D for maior do que A e a soma de C com D for maior que a soma de A e B e se C e D, ambos, forem positivos e se a variável A for par escrever a mensagem "Valores aceitos", senão escrever "Valores nao aceitos".

Entrada

Quatro números inteiros A, B, C e D.

Saída

Mostre a respectiva mensagem após a validação dos valores.

Exemplo de Entrada	Exemplo de Saída
5 6 7 8	Valores nao aceitos
2 3 2 6	Valores aceitos

4. Escreva um programa que leia um valor inteiro N. Este N é a quantidade de linhas de saída que serão apresentadas na execução do programa.

Entrada: O arquivo de entrada contém um número inteiro positivo N.

Saída

Imprima a saída conforme o exemplo fornecido.

Exemplo de Entrada	Exemplo de Saída
7	1 2 3 IFPI 5 6 7 IFPI 9 10 11 IFPI 13 14 15 IFPI 17 18 19 IFPI 21 22 23 IFPI 25 26 27 IFPI

5. Escreva um programa que repita a leitura de uma senha até que ela seja válida. Para cada leitura de senha incorreta informada, escrever a mensagem "Senha Invalida". Quando a senha for informada corretamente deve ser impressa a mensagem "Acesso Permitido" e o algoritmo encerrado. Considere que a senha correta é o valor 2002. Após 3 erros consecutivos ou intercalados exibir "Acesso Negado" e encerrar o programa.

Entrada

A entrada é composta por vários casos de testes contendo valores inteiros.

Saída

Para cada valor lido mostre a mensagem correspondente à descrição do problema.

Exemplo de Entrada	Exemplo de Saída
2200	Senha Invalida
1020	Senha Invalida
2002	Acesso Permitido

6. Maria acabou de iniciar seu curso de graduação na faculdade de medicina e precisa de sua ajuda para organizar os experimentos de um laboratório o qual ela é responsável. Ela quer saber no final do ano, quantas cobaias foram utilizadas no laboratório e o percentual de cada tipo de cobaia utilizada.

Este laboratório em especial utiliza três tipos de cobaias: sapos, ratos e coelhos. Para obter estas informações, ela sabe exatamente o número de experimentos que foram realizados, o tipo de cobaia utilizada e a quantidade de cobaias utilizadas em cada experimento.

Entrada

A primeira linha de entrada contém um valor inteiro N que indica os vários casos de teste que vem a seguir. Cada caso de teste contém um inteiro **Quantia** ($1 \le Quantia \le 15$) que representa a quantidade de cobaias utilizadas e um caractere **Tipo** ('C', 'R' ou 'S'), indicando o tipo de cobaia (R:Rato S:Sapo C:Coelho).

Saída

Apresente o total de cobaias utilizadas, o total de cada tipo de cobaia utilizada e o percentual de cada uma em relação ao total de cobaias utilizadas, sendo que o percentual deve ser apresentado com dois dígitos após o ponto.

Exemplo de Entrada	Exemplo de Saída	
10	Total: 92 cobaias	
10 C	Total de coelhos: 29	
6 R	Total de ratos: 40	
15 S	Total de sapos: 23	
5 C	Percentual de coelhos: 31.52 %	
14 R	Percentual de ratos: 43.48 %	
9 C	Percentual de sapos: 25.00 %	
6 R		
8 S		
5 C		
14 R		

7. A corrida de lesmas é um esporte que cresceu muito nos últimos anos, fazendo com que várias pessoas dediquem suas vidas tentando capturar lesmas velozes, e treina-las para faturar milhões em corridas pelo mundo. Porém a tarefa de capturar lesmas velozes não é uma tarefa muito fácil, pois praticamente todos as lesmas são muito lentas. Cada lesma é classificada em um nível dependendo de sua velocidade:

Nível 1: Se a velocidade é menor que 10 cm/h .

Nível 2: Se a velocidade é maior ou igual a 10 cm/h e menor que 20 cm/h .

Nível 3: Se a velocidade é maior ou igual a 20 cm/h .

Sua tarefa é identificar qual nível de velocidade da lesma mais veloz de um grupo de lesmas.

Entrada

A entrada consiste múltiplos casos de teste, e cada um consiste em duas linhas: A primeira linha contém um inteiro L (1 \leq L \leq 500) representando o número de lesmas do grupo, e a segunda linha contém L inteiros V, (1 \leq V, \leq 50) representando as velocidades de cada lesma do grupo.

A entrada termina com valor negativo digitado.

Saída

Para cada caso de teste, imprima uma única linha indicando o nível de velocidade da lesma mais veloz do grupo.

Exemplo de Entrada	Exemplo de Saída
10	3
10 10 10 10 15 18 20 15 11 10	1
10	2
1 5 2 9 5 5 8 4 4 3	
10	
19 9 1 4 5 8 6 11 9 7	

8. Faça um algoritmo para ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo. O último dado, que não entrará nos cálculos, contém o valor de idade negativa. Calcular e imprimir a idade média deste grupo de indivíduos.

Entrada

A entrada contém um número indeterminado de inteiros. A entrada será encerrada quando um valor negativo for lido.

Saída

A saída contém um valor correspondente à média de idade dos indivíduos.

A média deve ser impressa com dois dígitos após o ponto decimal.

Exemplo de Entrada	Exemplo de Saída
34	39.25
56	
44	
23	
-2	

9. Leia um valor de ponto flutuante com duas casas decimais. Este valor representa um valor monetário. A seguir, calcule o menor número de notas e moedas possíveis no qual o valor pode ser decomposto. As notas consideradas são de 100, 50, 20, 10, 5, 2. As moedas possíveis são de 1, 0.50, 0.25, 0.10, 0.05 e 0.01. A seguir mostre a relação de notas necessárias.

Entrada

O arquivo de entrada contém um valor de ponto flutuante N (0 \leq N \leq 1000000.00).

Saída

Imprima a quantidade mínima de notas e moedas necessárias para trocar o valor inicial, conforme exemplo fornecido.

Exemplo de Entrada	Exemplo de Saída
576.73	NOTAS:
	5 nota(s) de R\$ 100.00
	1 nota(s) de R\$ 50.00
	1 nota(s) de R\$ 20.00
	0 nota(s) de R\$ 10.00
	1 nota(s) de R\$ 5.00
	0 nota(s) de R\$ 2.00
	MOEDAS:
	1 moeda(s) de R\$ 1.00
	1 moeda(s) de R\$ 0.50
	0 moeda(s) de R\$ 0.25
	2 moeda(s) de R\$ 0.10
	0 moeda(s) de R\$ 0.05
	3 moeda(s) de R\$ 0.01
4.00	NOTAS:
	0 nota(s) de R\$ 100.00
	0 nota(s) de R\$ 50.00
	0 nota(s) de R\$ 20.00
	0 nota(s) de R\$ 10.00
	0 nota(s) de R\$ 5.00
	2 nota(s) de R\$ 2.00
	MOEDAS:
	0 moeda(s) de R\$ 1.00
	0 moeda(s) de R\$ 0.50
	0 moeda(s) de R\$ 0.25
	0 moeda(s) de R\$ 0.10
	0 moeda(s) de R\$ 0.05
	0 moeda(s) de R\$ 0.01
91.01	NOTAS:
	0 nota(s) de R\$ 100.00
	1 nota(s) de R\$ 50.00
	2 nota(s) de R\$ 20.00
	0 nota(s) de R\$ 10.00
	0 nota(s) de R\$ 5.00
	0 nota(s) de R\$ 2.00
	MOEDAS:
	1 moeda(s) de R\$ 1.00
	0 moeda(s) de R\$ 0.50
	0 moeda(s) de R\$ 0.25
	0 moeda(s) de R\$ 0.10
	0 moeda(s) de R\$ 0.05
	1 moeda(s) de R\$ 0.01

10. Faça um programa que leia 5 valores inteiros. Conte quantos destes valores digitados são pares e mostre esta informação.

Entrada

O arquivo de entrada contém 5 valores inteiros quaisquer.

Saída

Imprima a mensagem conforme o exemplo fornecido, indicando a quantidade de valores pares lidos.

Exemplo de Entrada	Exemplo de Saída
7	3 valores pares
-5	
6	
-4	
12	

11. Um Posto de combustíveis deseja determinar qual de seus produtos tem a preferência de seus clientes. Escreva um algoritmo para ler o tipo de combustível abastecido (codificado da seguinte forma: 1.Álcool 2.Gasolina 3.Diesel 4.Fim). Caso o usuário informe um código inválido (fora da faixa de 1 a 4) deve ser solicitado um novo código (até que seja válido). O programa será encerrado quando o código informado for o número 4.

Entrada

A entrada contém apenas valores inteiros e positivos.

Saída

Deve ser escrito a mensagem: "MUITO OBRIGADO" e a quantidade de clientes que abasteceram cada tipo de combustível, conforme exemplo.

Exemplo de Entrada	Exemplo de Saída
8	MUITO OBRIGADO
1	Alcool: 1
7	Gasolina: 2
2	Diesel: 0
2	
4	

12. Faça um programa que leia as notas referentes às duas avaliações de um aluno. Calcule e imprima a média semestral. Faça com que o algoritmo só aceite notas válidas (uma nota válida deve pertencer ao intervalo [0,10]). Cada nota deve ser validada separadamente.

Entrada

A entrada contém vários valores reais, positivos ou negativos. O programa deve ser encerrado quando forem lidas duas notas válidas.

Saída

Se uma nota inválida for lida, deve ser impressa a mensagem "nota invalida".

Quando duas notas válidas forem lidas, deve ser impressa a mensagem "media = " seguido do valor do cálculo. O valor deve ser apresentado com duas casas após o ponto decimal.

Exemplo de Entrada	Exemplo de	Saída
-3.5	nota	invalida
3.5	nota	invalida
11.0	media = 6.75	
10.0		

13. Escreva um programa para ler as coordenadas (X,Y) de uma quantidade indeterminada de pontos no sistema cartesiano. Para cada ponto escrever o quadrante a que ele pertence. O algoritmo será encerrado quando pelo menos uma de duas coordenadas for NULA (nesta situação sem escrever mensagem alguma).

Entrada: A entrada contém vários casos de teste. Cada caso de teste contém 2 valores inteiros.

Saída:

Para cada caso de teste mostre em qual quadrante do sistema cartesiano se encontra a coordenada lida, conforme o exemplo.

Exemplo de Entrada	Exemplo de Saída
2 2	primeiro
3 –2	quarto
-8 -1	terceiro
-7 1	segundo
0 2	

14. Faça um algoritmo para ler um número indeterminado de dados, contendo cada um, a idade de um indivíduo. O último dado, que não entrará nos cálculos, contém o valor de idade negativa. Calcular e imprimir a idade média deste grupo de indivíduos.

Entrada

A entrada contém um número indeterminado de inteiros. A entrada será encerrada quando um valor negativo for lido.

Saída

A saída contém um valor correspondente à média de idade dos indivíduos.

A média deve ser impressa com dois dígitos após o ponto decimal.

Exemplo de Entrada	Exemplo de Saída
34	39.25
56	
44	
23	
-2	

15. Leia 1 valor inteiro N (2 < N < 1000). A seguir, mostre a tabuada de N:

 $1 \times N = N$ $2 \times N = 2N$... $10 \times N = 10N$

Entrada A entrada contém um valor inteiro N (2 < N < 1000).

Saída Imprima a tabuada de N, conforme o exemplo fornecido.

Exemplo de Entrada	Exemplo de Saída

Exemplo de Entrada	Exemplo de Saída
40	1 x 140 = 140
	$2 \times 140 = 280$
	$3 \times 140 = 420$
	$4 \times 140 = 560$
	$5 \times 140 = 700$
	6 x 140 = 840
	$7 \times 140 = 980$
	8 x 140 = 1120
	$9 \times 140 = 1260$
	10 x 140 = 1400

16. Leia Neste problema você deverá ler 3 palavras que definem o tipo de animal possível segundo o esquema abaixo, da esquerda para a direita. Em seguida conclua qual dos animais seguintes foi escolhido, através das três palavras fornecidas.

Entrada

A entrada contém 3 palavras, uma em cada linha, necessárias para identificar o animal segundo a figura acima, com todas as letras minúsculas.

Saída

Imprima o nome do animal correspondente à entrada fornecida.

Exemplos de Entrada	Exemplos de Saída
vertebrado mamifero onivoro	homem
vertebrado ave carnivoro	aguia
invertebrado anelideo onivoro	minhoca