DSCC/CSC 435 & ECE 412 Optimization for Machine Learning

Lecture 8

Frank-Wolfe Method

Lecturer: Jiaming Liang

October 3, 2024

1 Frank-Wolfe method

Consider the problem $\min\{f(x): x \in Q\}$ where f is convex and $Q \subseteq \text{dom } f$ is convex and compact. We also assume f is differentiable over dom f. One method can be employed is the projected gradient method

$$x_{k+1} = \operatorname{proj}_{Q}(x_k - t_k \nabla f(x_k)),$$

which is equivalent to

$$x_{k+1} = \operatorname{argmin} \left\{ \ell_f(x; x_k) + \frac{1}{2t_k} ||x - x_k||^2 : x \in Q \right\}.$$

In this lecture, we will present an alternative approach that does not require the projection operator proj_{Q} . The idea is to minimize the linearization of f (without the quadratic term) over Q

$$y_k = \operatorname{argmin} \{ \ell_f(x; x_k) : x \in Q \} = \operatorname{argmin} \{ \langle \nabla f(x_k), x \rangle : x \in Q \},$$

and then take a convex combination

$$x_{k+1} = x_k + t_k(y_k - x_k), \quad t_k \in [0, 1].$$

This algorithm is called Frank-Wolfe method, a.k.a., conditional gradient method.

Algorithm 1 Frank-Wolfe method

Input: Initial point $x_0 \in Q$

for $k \ge 0$ do

Step 1. Compute $y_k = \operatorname{argmin}_{y \in Q} \langle y, \nabla f(x_k) \rangle$.

Step 2. Choose $t_k \in [0,1]$ and set $x_{k+1} = x_k + t_k(y_k - x_k)$.

end for

This is a projection-free method since we minimize a linear function over Q. In many case, linear optimization over Q is simpler than projection onto Q.

Frank-Wolfe method satisfies an even more important property: it produces sparse iterates. More precisely, consider the situation where $Q \subset \mathbb{R}^n$ is a polytope, that is the convex hull of a finite set of points (vertices). Then Carathéodory's theorem states that any point $x \in Q \subset \mathbb{R}^n$ can

be written as a convex combination of at most n+1 vertices of Q. On the other hand, by step 2 of Frank-Wolfe, one knows that the k-th iterate x_k can be written as a convex combination of k+1 vertices (assuming that x_0 is a vertex). Thanks to the dimension-free rate of convergence, we are interested in the regime where $k \ll n$, and thus we see that the iterates of Frank-Wolfe are very sparse in their vertex representation.

Let us consider the general composite opimization problem.

$$\min\{\phi(x) := f(x) + h(x)\}. \tag{1}$$

- h is closed and convex and dom h is compact;
- f is closed and convex, dom $h \subseteq \text{dom } f$, and f is L-smooth over some set dom h, i.e.,

$$\|\nabla f(x) - \nabla f(y)\|_* \le L\|x - y\|, \quad \forall x, y \in \text{dom } h;$$

• the optimal set X_* is nonempty.

It is not difficult to deduce that the last condition is implied by the first two conditions.

The three properties of Frank-Wolfe method are projection-free (prox-free), norm-free, and sparse iterates.

In the rest of the lecture, we will consider the following generalized Frank-Wolfe method.

Algorithm 2 Generalized Frank-Wolfe method

Input: Initial point $x_0 \in \text{dom } h$

for $k \geq 0$ do

Step 1. Compute $y_k = \operatorname{argmin}_{y \in \mathbb{R}^n} \{ \langle y, \nabla f(x_k) \rangle + h(y) \}.$

Step 2. Choose $t_k \in [0, 1]$ and set $x_{k+1} = (1 - t_k)x_k + t_k y_k$.

end for

2 Convergence analysis

Definition 1. The Wolfe gap is the function S(x): dom $f \to \mathbb{R}$ given by

$$S(x) = \max_{y \in \mathbb{R}^n} \{ \langle \nabla f(x), x - y \rangle + h(x) - h(y) \}.$$

Lemma 1. The following statements hold:

- (a) $S(x) \ge 0$ for any $x \in \text{dom } f$;
- (b) $S(x_*) = 0$ if and only if $-\nabla f(x_*) \in \partial h(x_*)$, that is, if and only if x_* is a stationary point of (1).

Frank-Wolfe Method-2

The above lemma gives the importance of the Wolfe gap S(x), which can be (and is indeed) used to analyze the convergence of Frank-Wolfe for nonconvex optimization.

Lemma 2. Let $x \in \text{dom } h$ and $t \in [0,1]$. Then, we have

$$\phi((1-t)x + ty) \le \phi(x) - tS(x) + \frac{t^2L}{2} ||y - x||^2, \tag{2}$$

where $y = \operatorname{argmin}_{u \in \mathbb{R}^n} \{ \langle u, \nabla f(x) \rangle + h(u) \}.$

Proof. Let $x^+ = (1-t)x + ty$. Then, using the smoothness of f and the convexity of h, we easily show

$$\phi(x^{+}) = f(x^{+}) + h(x^{+})$$

$$\leq f(x) - t\langle \nabla f(x), x - y \rangle + \frac{t^{2}L}{2} ||y - x||^{2} + h(x^{+})$$

$$\leq f(x) - t\langle \nabla f(x), x - y \rangle + \frac{t^{2}L}{2} ||y - x||^{2} + (1 - t)h(x) + th(y)$$

$$= \phi(x) - t \left[\langle \nabla f(x), x - y \rangle + h(x) - h(y) \right] + \frac{t^{2}L}{2} ||y - x||^{2}$$

$$= \phi(x) - tS(x) + \frac{t^{2}L}{2} ||y - x||^{2}.$$

Note that so far, we do not use the convexity of f yet.

Three stepsize rules

1) predefined diminishing stepsize:

$$\alpha_k = \frac{2}{k+2};$$

2) adaptive stepsize:

$$\beta_k = \min \left\{ 1, \frac{S(x_k)}{L \|y_k - x_k\|^2} \right\};$$

3) exact minimization/line search:

$$\eta_k \in \operatorname{argmin}_{t \in [0,1]} \phi \left((1-t)x_k + ty_k \right).$$

The intuition of the adaptive stepsize is β_k minimizes the right-hand side of (2) w.r.t. $t \in [0, 1]$ when $x = x_k$. It is clear the exact minimization rule chooses $t_k = \eta_k$ to minimize the left-hand side of (2). The intuition of the first rule α_k is more involved and is given in Section 3.

The following lemma uses the convexity of f for the first time.

Lemma 3. For any $x \in \text{dom } f$, we have

$$S(x) \ge \phi(x) - \phi_*.$$

Proof. Let $y = \operatorname{argmin}_{u \in \mathbb{R}^n} \{ \langle u, \nabla f(x) \rangle + h(u) \}$. Then, we easily show

$$S(x) = \langle \nabla f(x), x - y \rangle + h(x) - h(y)$$

$$= \langle \nabla f(x), x \rangle + h(x) - [\langle \nabla f(x), y \rangle + h(y)]$$

$$\geq \langle \nabla f(x), x \rangle + h(x) - [\langle \nabla f(x), x_* \rangle + h(x_*)]$$

$$= \langle \nabla f(x), x - x_* \rangle + h(x) - h(x_*)$$

$$\geq f(x) - f(x_*) + h(x) - h(x_*)$$

$$= \phi(x) - \phi_*.$$

Theorem 1. The generalized Frank-Wolfe method with any of the three stepsize rules satisfies

$$\phi(x_k) - \phi_* \le \frac{2LD^2}{k} \tag{3}$$

where D is the diameter of dom h.

Proof. Using Lemma 2 with $t = t_k$ and $x = x_k$, we have

$$\phi((1-t_k)x_k + t_k y_k) \le \phi(x_k) - t_k S(x_k) + \frac{t_k^2 L}{2} \|y_k - x_k\|^2.$$

1) If the predefined stepsize is used, i.e., $t_k = \alpha_k$, then

$$\phi((1 - \alpha_k)x_k + \alpha_k y_k) \le \phi(x_k) - \alpha_k S(x_k) + \frac{\alpha_k^2 L}{2} ||y_k - x_k||^2.$$

2) If the adaptive stepsize is used, i.e., $t_k = \beta_k$, then

$$\beta_k = \operatorname{argmin}_{t \in [0,1]} \left\{ -tS(x_k) + \frac{t^2L}{2} \|y_k - x_k\|^2 \right\},$$

and hence

$$\phi((1 - \beta_k)x_k + \beta_k y_k) \le \phi(x_k) - \beta_k S(x_k) + \frac{\beta_k^2 L}{2} \|y_k - x_k\|^2$$

$$\le \phi(x_k) - \alpha_k S(x_k) + \frac{\alpha_k^2 L}{2} \|y_k - x_k\|^2.$$

3) If the exact minimization/line search is used, i.e., $t_k = \eta_k$, then

$$\phi((1 - \eta_k)x_k + \eta_k y_k) \le \phi((1 - \alpha_k)x_k + \alpha_k y_k)$$

$$\le \phi(x_k) - \alpha_k S(x_k) + \frac{\alpha_k^2 L}{2} ||y_k - x_k||^2.$$

In any case, we have

$$\phi(x_{k+1}) \le \phi(x_k) - \alpha_k S(x_k) + \frac{\alpha_k^2 L}{2} ||y_k - x_k||^2.$$

Using Lemma 3, we have

$$\phi(x_{k+1}) \le \phi(x_k) - \alpha_k [\phi(x_k) - \phi_*] + \frac{\alpha_k^2 L}{2} ||y_k - x_k||^2.$$

$$\phi(x_{k+1}) - \phi_* \le (1 - \alpha_k)[\phi(x_k) - \phi_*] + \frac{\alpha_k^2 L D^2}{2}.$$

We prove (3) by induction. It follows from the definition of α_k and the above inequality with k=0 that $\alpha_0=1$ and

$$\phi(x_1) - \phi_* \le \frac{LD^2}{2}.$$

Thus, (3) holds with k = 0. Suppose (3) holds for some $k \ge 0$.

$$\phi(x_{k+1}) - \phi_* \le (1 - \alpha_k)[\phi(x_k) - \phi_*] + \frac{\alpha_k^2 L D^2}{2}$$

$$= \frac{k}{k+2} [\phi(x_k) - \phi_*] + \frac{2L D^2}{(k+2)^2}$$

$$\le \frac{k}{k+2} \frac{2L D^2}{k} + \frac{2L D^2}{(k+2)^2}$$

$$= \frac{2(k+3)L D^2}{(k+2)^2} \le \frac{2L D^2}{k+1}.$$

3 Frank-Wolfe as an ACG method without acceleration

In this section, we explore an alternative presentation of the Frank-Wolfe method from the perspective of the accelerated composite gradient (ACG) framework with the AT rule (see Lecture 7). We show that Frank-Wolfe is very close ACG except that we minimize a linear approximation instead of a quadratic approximation as in ACG. Hence, we only get $\mathcal{O}(1/k)$ convergence rate but not $\mathcal{O}(1/k^2)$ as in ACG.

Algorithm 3 Alternative presentation of Frank-Wolfe

Input: Initial point $x_0 \in \text{dom } h$, set $A_0 = 0$

for $k \geq 0$ do

Step 1. Compute

$$a_k = \frac{1 + \sqrt{1 + 4LA_k}}{2L}, \quad A_{k+1} = A_k + a_k$$
 (4)

Step 2. Compute

$$y_k = \underset{u \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \ell_f(u; x_k) + h(u) \right\}$$
 (5)

and

$$x_{k+1} = \frac{A_k x_k + a_k y_k}{A_{k+1}}. (6)$$

end for

Note that the sequences $\{a_k\}$ and $\{A_k\}$ are the same as those in Lecture 7 with $L_k = L$. Hence, Lemma 2 of Lecture 7 holds here. That is

$$A_{k+1} = La_k^2, \quad A_k \ge \frac{k^2}{4L}.$$
 (7)

Theorem 2. For every $k \geq 1$, we have

$$\phi(x_k) - \phi_* \le \frac{2LD^2}{k}.$$

Proof. Let $\gamma_k(\cdot) = \ell_f(\cdot; x_k) + h(\cdot)$. Using (5), (6), and (7), we have

$$A_{k}\gamma_{k}(x_{k}) + a_{k}\gamma_{k}(u) + \frac{1}{2}\|y_{k} - x_{k}\|^{2} \ge A_{k}\gamma_{k}(x_{k}) + a_{k}\gamma_{k}(y_{k}) + \frac{1}{2}\|y_{k} - x_{k}\|^{2}$$

$$\ge A_{k+1}\gamma_{k}(x_{k+1}) + \frac{A_{k+1}L}{2}\|x_{k+1} - x_{k}\|^{2} = A_{k+1}\left[\gamma_{k}(x_{k+1}) + \frac{L}{2}\|x_{k+1} - x_{k}\|^{2}\right]$$

$$\ge A_{k+1}\phi(x_{k+1})$$

where the last inequality is due to the smoothness of f. Taking $u = x_*$ and using the fact that $\gamma_k \leq \phi$, we have

$$A_{k+1}\phi(x_{k+1}) \le A_k\gamma_k(x_k) + a_k\gamma_k(x_*) + \frac{1}{2}||y_k - x_k||^2$$

$$\le A_k\phi(x_k) + a_k\phi_* + \frac{1}{2}||y_k - x_k||^2.$$

Rearranging the terms and using the boundedness of dom h, we have

$$A_{k+1}[\phi(x_{k+1}) - \phi_*] \le A_k[\phi(x_k) - \phi_*] + \frac{D^2}{2}.$$

Frank-Wolfe Method-6

Finally, we have

$$A_k[\phi(x_k) - \phi_*] \le A_0[\phi(x_0) - \phi_*] + \frac{kD^2}{2} = \frac{kD^2}{2},$$

which together with the bound on A_k implies that

$$\phi(x_k) - \phi_* \le \frac{kD^2}{2A_k} \le \frac{2LD^2}{k}.$$

To conclude this section, we finally shed some light on the intuition of the predefined stepsize α_k from the perspective of ACG.

Lemma 4. For every $k \geq 0$, let

$$t_k = \frac{A_{k+1}}{a_k}.$$

Then, we have for every $k \geq 0$,

(a)

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2};$$

(b) $t_0 = 1$ and

$$t_k \ge \frac{k+2}{2}$$
.

Proof. (a) Recall that we have

$$A_{k+1} = A_k + a_k = La_k^2.$$

Hence, it follows

$$La_{k+1}^2 - a_{k+1} - A_{k+1} = 0$$

and

$$L\left(\frac{A_{k+2}}{La_{k+1}}\right)^2 - \frac{A_{k+2}}{La_{k+1}} - \left(\frac{A_{k+1}}{a_k}\right)^2 = 0.$$

In terms of t_k , it reads

$$t_{k+1}^2 - t_{k+1} - t_k^2 = 0.$$

Therefore, the solution t_{k+1} satisfies statement (a).

(b) First, it follows from the definition that

$$t_0 = \frac{A_1}{a_0} = \frac{a_0}{a_0} = 1.$$

It easily follows from (a) that

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2} \ge \frac{1 + 2t_k}{2},$$

and hence that

$$2t_k \ge 1 + 2t_k.$$

So we have

$$2t_k \ge k + 2t_0 = k + 2$$
.

A final remark is that following from the above bound on t_k , we can derive slightly tighter bounds on A_k . Since

$$La_k = \frac{A_{k+1}}{a_k} = t_k \ge \frac{k+2}{2},$$

we have

$$A_{k+1} = La_k^2 = \frac{(La_k)^2}{L} \ge \frac{(k+2)^2}{4L}, \quad A_k \ge \frac{(k+1)^2}{4L} \ge \frac{k^2}{4L},$$

or

$$A_k = a_0 + \ldots + a_{k-1} \ge \frac{1}{2L} [2 + \ldots + (k+1)] = \frac{(k+3)k}{4L} \ge \frac{k^2}{4L}.$$