

COMP 4462 Data Visualization Tutorial

PAN Ziqi CHEN Chang

Friday 1 November, 2024

D3.js Introduction

Visualization with D3.js

- SVG (Scalable Vector Graphics)
 - An extension of HTML for representing scalar graphics in XML syntax
 - Available in all the web browsers

D3.js

- The most widely used visualization library
- The library behind Vega, Vega-Lite and Altair
- Binding data with SVG DOM, marking data points visually onto screen
- Imperative syntax, compared to the declarative syntax of Vega-Lite and Altair

Why D3.js

- Exploring a dataset, use Altair with Python or Tableau instead
- XEmbed visualization in web applications, use Vega-Lite instead
- Make customized plots, customized interactions or transitions

Cost

- Much more coding, much easier to make mistakes
- Check <u>Vega-Lite Gallery</u> and <u>Vega Gallery</u> before committing to D3.js

Sign in Observable

Go to the <u>notebook of this tutorial</u>

4. Authorize observablehq

Fork Observable notebook

1. Go to the notebook of this tutorial

Visualization with D3.js

- See the <u>Observable notebook of this tutorial</u>
- SVG
- Scales
 - Linear scale (numeric, color)
 - Time scale
 - Point scale (categorical)
- Coordinate System
 - Axes
 - Cartesian coordinate (X and Y)
 - Polar coordinate (angular and distance)
- Marks and channel
 - Point: scatter plot
 - Line: (multi-)line chart, parallel coordinate, radar chart
- Selection

Interaction with D3.js

Visualization and Interaction with D3.js

- Interaction with visualization
 - Visualization has well established before the invention of computer
 - But interaction with visualization only available through the use of computers
 - Huge space of possibilities
 - But all successful interaction designs follow "Overview first, details on demand"
 - Visualization interactions mostly through mouse
 - Seldomly with keyboard
 - Interaction through touch devices is a grand challenge in data visualization

Animation

- Makes interaction smoother, more responsive
- Keep conceptual consistency, objects enter the scene instead of appear suddenly
- Motion is a very attention attractive channel
 - It is built-in in our mind to track moving objects (because of primal instincts?)
 - But too much moving objects will overwhelm viewers

Sign in Observable

Go to the <u>notebook of this tutorial</u>

4. Authorize observablehq

Fork Observable notebook

1. Go to the notebook of this tutorial

Visualization and Interaction with D3.js

- See the <u>Observable notebook of this tutorial</u>
- Choropleth (maps with color encoding)
- Interaction
 - Overview first, details on demand!
 - Tooltip with <title> element, d3-tip
 - Mouse events: mouseover, mouseout, click
 - Observable inputs: dropdown menu, slider
 - Linked views

Animation

- Eyes beat memory!
- Animation with redraw, D3.js transition
- Motion encoding, pop-out effect
- Data analysis techniques
 - Daily average over month total
 - How to handle missing data?

More on interactions and D3.js

- More on interactions
 - D3.js: <u>d3-draq</u>, <u>d3-zoom</u>, <u>d3-brush</u>
 - Demos: <u>d3-drag</u>, <u>d3-zoom</u>, <u>d3-brush</u>
 - O Vega-Lite:
 - Interactive Plots with Selection in Vega-Lite
 - Altair:
 - Making Charts Interactive in Altair
- Visualizations not covered in tutorials
 - Wordle (a.k.a. Word Cloud)
 - Javascript implementation of wordle by Jason Davies
 - Vega Word Cloud Example
 - Graph visualization
 - D3 in Depth: Layouts and D3 in Depth: Force layout
 - Vega Force Directed Layout Example
 - Besides D3, Gephi is a professional graph visualization tool

Lab Exercise

- Tasks
 - Sign in <u>Observable</u>
 - Open the two observable notebooks and fork them:
 - Part 1: Notebook 1
 - Part 2: Notebook 2
 - Read through the notebook and fill in the "TODO" cells, For Notebook 1, there are five todos,
 For Notebook 2, there are four todos.
 - Copy the URL of your Observable notebook and submit to Canvas