MIT OCW Cok Degiskenli Calculus - Ders 2

Onceki derste iki uygulama gorduk. Ucuncu bir uygulama bir \vec{A} vektorunun bir birim vektor \vec{u} yonundeki bilesenlerini / parcalarinin (components) hesaplanmasidir.

Ustteki sekilde \vec{A} 'nin \vec{u} yonundeki "yansimasini" goruyoruz ve bu yansima \vec{A} 'nin \vec{u} yonundeki bilesenidir, buyuklugudur.

Aradaki açı θ ise ve ucgen dik ise, o zaman bu yansıma

$$|\vec{A}|cos(\theta)$$

olarak hesaplanacaktir. Bu formulun ilk hali aslinda

$$|\vec{A}||\vec{u}|cos(\theta)$$

fakat \vec{u} birim vektor olduguna gore, uzunlugu 1, o zaman bu buyukluk carpimdan atilabilir. Ustteki formul ayni zamanda bir noktasal carpim, $\vec{A} \cdot \vec{u}$.

Eger bir vektorun mesela \hat{i} yonundeki yansimasini almak isteseydik,

$$\vec{A} \cdot \hat{i}$$

kullanirdik, bu da

$$\vec{A} \cdot < 1, 0, 0 >$$

olurdu. Bu carpim x yonunde 1 ile carpar diger tum eksenleri sifirlar, yani diger bir degisle \vec{A} 'nin x yonundeki bilesenini hesaplamis oluruz. Bu arada \hat{i} tabii ki bir birim vektor. Uzunlugu 1.

Uygulama

Fizikte, yuvarlak bir sekilde donebilen bir sarkac problemini dusunelim. Bu sistemi analiz etmek icin Newton Kanunu, mekanik, vs. kullanmaniz gerekir tabii ki, fakat vektorler geometrik olarak bu sistemi anlamak icin cok fayda-

lidir.

Bu sarkacin ileri geri sallanmasinin sebebi ustte takip edilen yuvarlak yoldur. Analiz icin x,y yonundeki bilesenlere bakmak yerine belki de resimdeki iki birim vektor yonune bakmamiz lazim, ki bu vektorlerden biri takip edilen yola teget yonu gosteren \vec{T} , digeri yuvarlak tanjantina dik olan \vec{N} . O zaman agirligi temsil eden \vec{F} 'in bu iki vektor yonundeki bilesenlerine bakabiliriz.

Resimde ipin gerginligi (tension of string) \vec{N} yonunde, bu yon ip gerginligi yonu, \vec{F} 'in \vec{N} yonundeki bileseni gerginligi yaratan faktordur. \vec{F} 'in tegetlik yani \vec{T} yonundeki bileseni ise ileri geri hareketi saglayan faktordur.

Muhakkak sarkacin y ekseni ile olusturdugu bir açı θ uzerinden bir suru cos, sin terimleri iceren denklemler ortaya cikartabilirdiniz, bu ilginc olurdu, fakat eger daha kisa bir yolu takip etmek istiyorsak, noktasal carpim kullaniriz.

Vektorler baglaminda anlamamiz gereken bir diger kavram, alan kavrami. Diyelim ki elimizde bir pentagon sekli var. Bu seklin alanini vektorler kullanarak hesaplayabilir miydik?

Evet hesaplayabiliriz. Problemi basitlestirelim. Pentagonu ucgenlere ayiralim.

sonra bu alanlari toplayalim. Ucgen alanini nasil hesaplariz? Soyle bir ucgen dusunelim

Bu ucgenin alani

$$\frac{1}{2}|\vec{A}||\vec{B}|sin(\theta)$$

Bu formul \cos iceren diger formulumuze benziyor. Bundan istifade edebiliriz belki. Once $\cos(\theta)$ 'yi buluruz, sonra $\sin^2\theta+\cos^2\theta=1$ esitligini kullanarak $\sin(\theta)$ 'yi buluruz.

Fakat bu gereginden fazla is yaratir. Daha kolay bir yontem var. Bu yontem icin determinantlar kullanmak lazim.

Devam edelim: Madem açıların cos degerlerini bulmayi biliyoruz, belki oyle bir diger açı bulmaliyiz ki o açının cos degeri bizim aradigimiz açının sin degeri olsun, cunku alan icin sin gerekiyor, ama hesaplayabildigimiz cos.

Birbirini tamamlayici açılar (complementary angles) kavramini biliyoruz herhalde.

Diyelim ki elimizde \vec{A} var, onu 90° cevirip ustteki hale getiriyoruz, yeni vektore \vec{A}' diyelim. O vektor ile \vec{B} arasındaki açıya da θ' diyelim.

$$\theta' = \frac{\pi}{2} - \theta$$

$$cos(\theta') = sin(\theta)$$

Bu demektir ki

$$|\vec{A}||\vec{B}|sin\theta = |\vec{A}'||\vec{B}|cos\theta'$$

 $|\vec{A}|$ yerine $|\vec{A'}|$ koymakla hicbir sey degistirmiyorum cunku bu vektorlerin yonleri degisik olsa da buyuklukleri ayni. Devam edelim, ustteki formulde sag tarafi basitlestirirsek

$$= \vec{A'} \cdot \vec{B}$$

Bu temiz bir formul. Tek eksik, \vec{A}' 'nin ne oldugunu hala hesaplamadik. Fakat bunu yapmak o kadar zor degil. Bunun icin \vec{A} 'yi cevirebilmemiz lazim. Alttaki resme bakalim,

acaba $\vec{A'}$ ne olur? Secenekler [bu hoca boyle ufak sinavlari seviyor, faydali aslinda, bu sinavlara gelince siz de cevabini vermeye ugrasin].

1.
$$\langle a_2, a_1 \rangle$$

$$2. < a_2, -a_1 >$$

$$3. < -a_2, a_1 >$$

$$4. < -a_1, a_2 >$$

5. Hicbiri

Dogru cevap: 3.

Bu nasil oldu? Alttaki resme bakalim

 \vec{A} 'nin etrafinda bir dikdortgen hayal edelim, ve dikdortgeni alip sola dogru ceviriyoruz. O zaman uzun kenar artik yukari dogru bakiyor, yani a_1 artik yukari dogru bakiyor, a_2 de degisiyor. Yani bu buyuklukler yer degistiriyorlar. Ayrica a_2 artik ters yone gittigi icin isareti degisiyor.