Electronics of Radio

Notes on David Rutledge's book

John Manferdelli

Basic concepts

- Potential difference (V, ϕ) : $\phi = \int_a^r E \cdot ds$, energy per charge, 1V = 1 J/s
- Kirkoff 1: $\sum_{loop} V_i = 0$ (Conservation of energy)
- Kirkoff node: $\sum_{node} I_i = 0$ (Conservation of charge)
- $V(t) = V_p \cos(\omega t)$, $\omega = 2\pi f$, $I(t) = I_p \cos(\omega t)$, $\omega = 2\pi f$
- Instantaneous power: $P(t) = V(t)I(t) = V_pI_p \cos^2(\omega t)$
- Average power: $P_a = \int_0^{1/f} V(t)I(t)dt = V(t)I(t) = \int_0^{2\pi/\omega} V_p I_p \cos^2(\omega t) dt = \frac{V_p I_p}{2}$
- Band names:

Name	Frequency
VLF	3-30kHz
LW	20-300kHz
MW	300kHz-3MHz
HF	3MHz-30MHz
VHF	30-300MHz

Name	Frequency
UHF	300MHz-1GHz
uW	1-30GHz
milliW	30-300GHz
submilliF	>300GHz

Signals

- Gain (G) expressed in decibels: $G = 10 \log_{10}({^{P_{out}}/_{P_{in}}})$
- Mixer:

•
$$V(t) = \cos(\omega_1 t) \cos(\omega_2 t) = \frac{1}{2} [\cos(\omega_+ t) + \cos(\omega_- t)], \omega_+ = \omega_1 + \omega_2, \omega_- = \omega_1 - \omega_2$$

Modulation

Name	Equation
AM	$V(t) = a(t)\cos(\omega_c t)$
FM	$V(t) = V_c \cos((\omega_c + a(t))t)$
FSK	$V(t) = V_c \cos(\omega_1 t)$, if 1 $V(t) = V_c \cos(\omega_0 t)$, if 0
PSK	$V(t) = +V_p \cos(\omega t), \text{ if } 1$ $V(t) = -V_p \cos(\omega t), \text{ if } 0$

Resistors, capacitors, inductors

Resistors

- Analytic model: IR = V
- Energy dissipated: $E = \int_{t_i}^{t_f} IV \, dt = \int_{t_i}^{t_f} I^2 R dt$
- Capacitors
 - Analytic model: CV = q, $C\frac{dV}{dt} = i$
 - Capacitor Energy stored: $E = \int_{t_i}^{t_f} CV \frac{dV}{dt} dt = \frac{1}{2} CV^2$
- Inductors
 - Analytic model: $V = L \frac{di}{dt}$
 - Inductor Energy stored: $E = \int_{t_i}^{t_f} IV \, dt = \int_{t_i}^{t_f} LI \frac{dI}{dt} \, dt = \frac{1}{2} LI^2$

Credit: Make Electronics

diodes, transformers

Diodes

- Devices that allow current to flow only in one direction
- Silicon diodes, for example have, essentially infinite resistance if V_{ac} <0, that is if the cathode is at a higher potential than the anode and very low resistance if V_{ac} > .7V.
- The cathode is usually labelled with a band
- Transformers
 - AC only: $\frac{N_2}{N_1} = \frac{V_2}{V_1}$

Credit: Make Electronics

Impedance and phasors

• Impedance and phasors

Phasor Power

• Impedance and phasors

Circuit analysis with Kirchhoff and impedance

- RC circuits
- Parallel and series

Filters

• X

Thevenin and Norton

 Thevenin: Any combination of linear sources and passive elements terminating in two terminals is equivalent to a pure voltage source in series with an impedance

 Norton: Any combination of linear sources and passive elements terminating in two terminals is equivalent to a pure current source in parallel with an conductance

Similar theorems for two terminal input and output devices (with transfer function)

Thevenin and Norton

Lookback

Resonance and Q

• Resonance

Exercises

- 1. Voltage dividers
- 2. RC and RL circuit analysis
- 3. Resonance
- 4. Resistors and Thevenin
- 5. Sources
- 6. Capacitors
- 7. Inductors
- 8. Diods and snubbers

Direct conversion and superhet

• Image frequencies

Transmission Lines

Power

$$\tau = \frac{V}{V_{+}} = 1 + \rho = \frac{2Z}{Z + Z_{0}}, V = 2V_{+}$$

Lookback resistance is $R_s = Z_0$

$$P_{+}=rac{{V_{+}}^{2}}{2Z_{0}}=rac{{V_{0}}^{2}}{8Z_{0}}$$
, This is the total available power

•
$$V_{n+1} - V_n = -L_l \frac{\partial I_{n+1}}{\partial t}$$
, $L = \frac{L_l}{l}$

•
$$I_{n+1} - I_n = -C_l \frac{\partial V_n}{\partial t}$$
, $C = \frac{C_l}{l}$

•
$$\frac{\partial^2 V}{\partial z^2} = LC \frac{\partial^2 V}{\partial t^2}$$
 and $\frac{\partial^2 I}{\partial z^2} = LC \frac{\partial^2 I}{\partial t^2}$

- Solution is V(z-vt), $v=\frac{1}{\sqrt{LC}}$, for forward wave
- V' = vLI', $\frac{V}{I} = \sqrt{\frac{L}{C'}}$, $Z_0 = \sqrt{\frac{L}{C}}$
- Another solution is V(z+vt), $v=\frac{1}{\sqrt{LC}}$, for r everse wave

•
$$Z_0 = \frac{V_+}{I_+}, -Z_0 = \frac{V_-}{I_-}, V = V_+ + V_-$$

•
$$P_{+}(t) = \frac{V_{+}^{2}}{Z_{0}}, P_{-}(t) = -\frac{V_{-}^{2}}{Z_{0}}$$

•
$$\rho = \frac{V_{-}}{V_{+}}, \ Z = \frac{V}{I} = \frac{V_{+} + V_{-}}{I_{+} + I_{-}} = \frac{V_{+}}{I_{+}} \frac{1 + \frac{V_{-}}{V_{+}}}{1 + \frac{I_{-}}{I_{+}}} = Z_{0} \frac{1 + \rho}{1 - \rho}$$

$$\bullet \quad \rho = \frac{Z - Z_0}{Z + Z_0}$$

•
$$\rho_i = \frac{i_-}{i_+} = -\rho$$

Transmission Lines - continued

X

Norcal Clapp oscillator

•
$$i_d = g_m v_{gs}$$

• Resonance:
$$-\frac{1}{j\omega_0 c_2} = j\omega_0 L + \frac{1}{j\omega_0 c_3} + \frac{1}{j\omega_0 c_1}$$

•
$$\omega_0 = \frac{1}{\sqrt{LC}}, C = C_1 ||C_2||C_3$$

• At resonance,
$$v_{gs} = Ri_d \frac{c_1}{c_2}$$
, $L = \frac{c_1}{Rc_2}$

• Oscillation continues if
$$g_m > \frac{C_1}{RC_2}$$

•
$$v_{gs} = 2v_s$$

out

Filters

Low pass

High pass

7 MHz bandpass

Acoustics

•
$$\frac{\partial^2 P}{\partial t^2} = \frac{\gamma P}{\rho} \frac{\partial^2 P}{\partial x^2}$$
, $v = \sqrt{\frac{\gamma P}{\rho}} = 332 \frac{m}{s}$

• $SWR = \frac{\lambda^2}{2\pi A}$, A is the area of the tube

Bipolar Transistors

- NPN, PNP
- Model
- $i_C = \alpha i_E$
- $i_C = \beta i_B$
- $\beta = \alpha/(1-\alpha)$
- $\beta \sim 100$

Bipolar source model

Bipolar equivalent circuit

Bipolar Switches

- NPN, PNP
- Model
- $i_C = \alpha i_E$
- $i_C = \beta i_B$
- $\beta = \alpha/(1-\alpha)$
- $\beta \sim 100$

BJT common emitter amplifier

- Here's how to design a common emitter amplifier. We use a 2n3904 transistor with β =150. This circuit will work! Build it.
 - 1. Pick the supply voltage V_{cc} =12V.
 - 2. Choose a gain (amplification factor), A = 5.
 - 3. Choose the "Q point" of the conducting transistor (4mA).
 - 4. $V_{cc} = (i_c \cdot R_C) + V_{ce} + i_e R_E \sim i_e \cdot (R_C + R_E) + V_{ce}$ with $i_c = 4mA$. We get $(R_C + R_E) = (V_{cc} V_{ce})/(4mA) = 1.75 \text{ k}\Omega$.
 - 5. Since A = 5 and A=R_C/R_E, R_C= 5 R_E so R_E \sim 270 Ω (this is a standard resistor value) and R_C= 1.5k Ω .

BJT common emitter amplifier continued

- 6. $i_b = 4mA/\beta = 27 \mu A$.
- 7. Since V_{be} must be greater than .7V throughout the input signal range, we want the voltage across R_2 to satisfy V_{be} + $i_c R_E = 1.8V$.
- 8. We insert a voltage divider consisting of R_1 and R_{2} , so that R_1 = (12-1.8)/270 μ A \sim 39 k Ω .
- 9. C_o and C_i are picked to offer small resistance to the frequency range we're interested in and $C_o = C_i = 5 \mu F$.
- I haven't explained why we want R_E but it provides thermal stability for the transistor over the range we care about. The fact that $A=R_C/R_E$ can be calculated using Kirchhoff's laws.

BJT common collector amplifier

Common collector amp (Emitter Follower)

Common collector amp

BJT common collector amplifier continued

6. x

Common collector amp (Emitter Follower)

BJT common base amplifier

Common base amp

BJT common base amplifier continued

6. x

Common base amp

JFETs

JFET Common Emitter Amplifier

JFET common emitter amplifier continued

6. x

JFET common source amplifier

JFET Common Source Amplifier continued

6. x

JFET common drain amplifier

JFET common drain amplifier continued

6. x

CMOS common emitter amplifier

- Pick power
- $\bullet \quad V_{DD} = i_D R_D + V_{DS} + i_D R_S$
- $V_{GS} = V_G i_S R_S$ $V_G = V_{DD} \frac{R_1}{R_1 + R_2}$
- $i_D = k(V_G V_{TH})^2$
- Bias around $\frac{V_{DD}}{3}$ Pick gain, $A = \frac{R_D}{R_S + \frac{1}{a_m}}$

Differential Amplifier

- Two port model
- $\bullet \quad \begin{pmatrix} i_1 \\ i_2 \end{pmatrix} = \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$

Differential amplifier

- Pick power ∓ 12
- Choose collecter current (2mA) by picking R_1
- Pick gain, $A = \frac{R_C}{2R_E}$

NorCal transmitter switch

When key is down, transistor conducts

Norcal receiver switch

Harmonic filter

If using function generator use a 1.8K resistor

• Receiver mixer or an oscilloscope with 50Ω

 When transistor conducts the receiver filter shor ts

Norcal Harmonic Filter

- L₇, L₈ use T37-2 core, 18 turns, 1.3uH
- Compare loss at 7MHz and 14MHz

Norcal VCO

- Start resistor (R₂₁) pulls gat to ground at start
- When gain limiting diode (D9) conducts, it pulls gate negative
- Oscillator keeps growing as long as g_m>1/R

Norcal Receiver Incremental Tuning (RIT)

- LM393 is a comparator
- For function generator connect through 1.5K

Norcal RF Filter

Norcal RF Mixer

50mVpp if

generator

using function

Norcal IF Cohn Filter

- X₁ through X₄ are 4.91 MHz
- C₁₀, C₁₁, C₁₂ are 270 pF
- Set function generator to $50mV_{pp}$ from function generator
- Calculate R and X for filter

Equivalent circuit for crystal and generator

Norcal Product Detector

• 620 Hz output through AF1 and AF2

Norcal AGC

Connect to function generator through 300K, here

Norcal Audio Amp

Amplifier classes

Norcal Power Amp

Norcal-40 Power amp is class C

Norcal matching transformers

- T₁ is driver matcher uses FT 37-43
- Measurement circuit below

T₂ is RF matcher uses FT 37-61

- T₃, 23:6
- -0000
- T₃ is IF matcher uses FT 37-61
- Measurement circuit below

Norcal Driver

• Use 50Ω scope probe

Norcal Buffer

Norcal transmit bandpass filter

•
$$C_{39} = 50pF$$
,

- L_6 is 36 turns #28 on T37-2 which has $A_l = 4 \frac{nH}{turn^2}$
- $L_6 = A_l \cdot 36^2 = 3.1 \mu H$

•
$$Z_2 = -\frac{j}{(C_{38} + C_{39})\omega_o}$$
, $Z_3 = jL_6\omega_o$, $Z_1 = \frac{j}{C_{37}\omega_o}$

$$Z_{2,3-eq} = \frac{jL_6\omega_0}{L_6(C_{38}+C_{39})\omega_0^2-1}$$

- Resonance is when $Z_{2,3-eq} \rightarrow \infty$, $\omega_o^2 = \frac{1}{(C_{38}+C_{30})L_6} \approx \frac{10^{18}}{465}$, when almost all the voltage drop is across $Z_{2,3-eq}$ $\omega_o = \frac{10^9}{\sqrt{465}} \approx 50.8 \times 10^6$, $f_0 = \frac{\omega_o}{2\pi} \approx 7.1 \ MHz$
- Q of filter is: $Q_s = \frac{X_s}{R_s}$. R_s comes from the other components and must be measured
- Note that $Z_{2,3-eq}$ is small for the other modulation product

Norcal transmit mixer and oscillator

Antennas and propagation

- From Maxwell, for a plane wave (E in x direction, H in y direction), wave is of form $\exp(j\omega t j\beta z)$
- $\nabla \times E = -j\mu_0 \omega H$
- $\nabla \times B = j\epsilon_0 \omega E$
- $\beta \hat{z} \times E = \mu_0 \omega H$, $\beta E_x \hat{y} = \mu_0 \omega H$
- Substituting and taking the restricted cross products, we get: $\beta E_x = \omega \mu_0 \frac{\omega \epsilon_0}{\beta}$, so $\beta = \omega \sqrt{\mu_0 \epsilon_0}$
- Power density: $S = Re\left(\frac{E_x \overline{H_y}}{2}\right) = \frac{(|E_x|)^2}{2\eta_0}$
- $\eta_0 = \frac{E_x}{H_y} = \sqrt{\frac{\mu_0}{\epsilon_0}} = 377\Omega$
- Impedance: $P_t = \frac{R|I|^2}{2}$, R is real part of Z, $R = R_r + R_l$, $\eta = \frac{R_r}{R}$
- Power density for isotropic antenna: $S_i = \frac{P_t}{4\pi r^2}$
- Define $G(\theta, \phi) = \frac{S(\theta, \phi)}{S_r}$. $S(\theta, \phi)$ is just the Poynting vector
- For isotropic reference, $G = \frac{4\pi r^2 S}{P_t}$

Receiving antenna Thevenin

Antennas and propagation

- Receiving antenna:
- $V_0 = hE$, h is effective antenna length ($h = \frac{l}{2}$ for short antenna)
- For dipole: $V_0 = \frac{l}{2} E \sin(\theta)$
- $A(\theta, \phi) = \frac{P_r}{S(\theta, \phi)}$. This is the definition of the effective area, A.
- By reciprocity, $A(\theta, \phi) = \frac{\lambda^2}{4\pi} G(\theta, \phi)$
- $P_r = \frac{|V_0|^2}{8R_a} = \frac{|hE|^2}{8R_a}$, so
- $P_r = \frac{h^2 S \eta_0}{4R}$ $A = \frac{h^2 \eta_0}{4R}$

Antennas and propagation

- Antenna theorem: $\oint A \ d\Omega = \lambda^2$
- For cavity on right, T is constant at thermodynamic equilibrium and the same power is transmitted and emitted, the Johnson noise is kT. The energy received is

$$E=rac{4\pi kT}{c\lambda^2}$$
. Set $B=rac{kT}{\lambda^2}$. $kT=\oint BA\ d\Omega=\oint Arac{kT}{\lambda^2}\ d\Omega$, which gives the antenna theorem

- For transmitting/receiving antenna pairs: $G_1A_2=\frac{|V|^2\pi r^2}{|I|^2R_1R_2}=G_2A_1$. So $\frac{G_1}{A_1}=\frac{G_2}{A_2}=\frac{4\pi}{\lambda^2}$
- Friis formulas

•
$$S = \frac{P_t G}{4\pi r^2}$$
, $P_r = SA = \frac{P_t GA}{4\pi r^2}$

Insulated cavity

Reciprocity and dipole

Dipole Thevenin equivalent circuit

• For dipole (Length:
$$l = \frac{\lambda}{2}$$
)

•
$$\lambda^2 = \int A \ d\Omega = \int \frac{h^2 \eta_0}{4R_r} \ d\Omega$$
, so

•
$$R_r = \frac{l^2 \eta_0}{16\lambda^2} \int \sin^2(\theta) d\Omega = \eta_0 \frac{\pi}{6} \left(\frac{l}{\lambda}\right)^2$$

•
$$R_r=\frac{l^2\eta_0}{16\lambda^2}\int sin^2(\theta)d\Omega=\eta_0\frac{\pi}{6}(\frac{l}{\lambda})^2$$

• $A=\frac{3\lambda^2}{8\pi}sin^2(\theta)$ and $G=1.5sin^2(\theta)$. Note we used $h=\frac{l}{2}\sin(\theta)$

• For Norcal, G = 1, $A = 150m^2$, for r = 2000 m, $P_r = 6pW$

Noise

•
$$V_{n(rms)} = \sqrt{\frac{1}{\tau} \int_0^{\tau} V(t)^2} dt$$

- $P_n = \frac{V_{n(rms)}^2}{R}$, R is load resistance
- $SNR = \frac{P}{P_n}$ $MDS = \frac{P_n}{G}$
- Nyquist

•
$$V_C = \frac{1}{j\omega C} \frac{V_n}{R + j\omega L + \frac{1}{j\omega C}}$$

- Expected energy at resonance is $kT = \frac{c}{2} \int_0^\infty |V_c|^2 df$
- $\bullet \int_0^\infty \frac{1}{|1-\omega^2 LC+j\omega RC|^2} df = \frac{1}{4RC}$
- So, $|V_c|^2 = 8kTR$

Morse

Symbol	Code	Symbol	Code	Symbol	Code
a	•_	m		У	
b		n	_•	Z	
С		0		0	
d		р	··	1	•
e	•	q	·_	2	
f		r		3	
g		S	•••	4	
h	••••	t	_	5	••••
i	••	u		6	
j	•	V		7	
k		W	•	8	
Ī		Х		9	

Color codes

Resistors: ohms

Capacitors: picoFards

Inductors: milliHenries

Kirchhoff

• There are two Kirkoff's laws, one describes voltages the other describes currents.

$$i_1 + i_2 + i_3 + i_4 + i_5 + i_6 = 0$$

