FINAL EXAM CALCULUS 2

(90 minutes)

1. Find the area of the parallelogram with vertices A(0,0,0), B(1,0,1), C(2,1,3), and D(0,-1,1).

2. Find the curvature of $\vec{r}(t) = (e^t cost, e^t sint, t^2)$ at the point (1, 0, 0).

3. Evaluate $\iint_D (x+2y)dxdy$, where D is the domain bounded by $y=\sqrt{x}$ and $y=x^2$.

4. Evaluate $\iint_D x dx dy$, where D is the domain outside the circle $x^2 + y^2 = 1$ and inside the circle $x^2 + y^2 = 2x$.

5. Find the volume of the solid E enclosed by the planes z=0 and z=x+2y+3 and by the cylinders $x^2+y^2=4$ and $x^2+y^2=9$.

6. Evaluate $\int_C xy^2 ds$, where C is the curve given by $x=2\sin t,\ y=t,\ z=-2\cos t,\ 0\leq t\leq \pi.$

7. Using Green's Theorem to evaluate $\int_C (e^x + x^2y)dx + (e^y - xy^2)dy$, where C is the boundary of the region between the circles $x^2 + y^2 = 2y$.

8. Determine whether or not \vec{F} is a conservative vector field? If it is, find a function f such that $\vec{F} = \nabla f$, where

$$\vec{F}(x, y, z) = e^y \vec{i} + x e^y \vec{j} + (z+1)e^z \vec{k}.$$

9. Evaluate $\iint_S z dS$, where S is the surface with parametric equations $x = u^2$, $y = u \sin v$, $z = u \cos v$, $0 \le u \le 1$, $0 \le v \le \pi/2$.

10. Using Divergence Theorem to calculate the surface integral $\iint_S \vec{F} \cdot d\vec{S}$, where

$$\vec{F}(x, y, z) = (z + xy^2)\vec{i} + (y + xe^{-z})\vec{j} + (\cos y + x^2z)\vec{k},$$

and S is the surface of the solid bounded by paraboloid $z = x^2 + y^2$ and plane z = 9.