Bayesian Approach to Machine Learning (3)

Rohit Budhiraja

Machine Learning for Wireless Communications (EE798L)

Jan. 31, 2024

Recap of last lecture and today's agenda

- Recap of last class
 - Discussed Bayesian approach calculated posterior for coin toss example
 - Discussed idea of conjugate likelihood and prior, and calculated posterior
 - Discussed posterior evolution
- Today's agenda
 - Continue discussing Bayesian approach

Bayesian treatment for coin tossing game (recap)

• Considered a coin tossing game and modelled data using binomial distribution with likelihood

$$P(Y = y | r, N) = {N \choose y} r^{y} (1 - r)^{N-y}$$

- Treated r as a parameter and calculated its maximum likelihood (ML) point estimate: $\hat{r} = y/N$
- ullet Calculated expected winning probability with ML estimate \hat{r}
 - ML estimate $\hat{r} = 0.9$ computed based on ten tosses H, T, H, H, H, H, H, H, H
- \bullet Considering r as a random variable will help in measuring and understanding this uncertainty
- By defining random variable Y_N as number of heads obtained in N tosses, we calculated $p(r|y_N)$

$$p(r|y_N) = \frac{P(y_N|r)p(r)}{P(y_N)}$$

• With posterior, we will recompute winning probability

Posterior calculation for first prior after ten tosses (recap)

- Complete toss sequence is H, T, H, H, H, H, T, T, T, H
- Posterior distribution after N=10 tosses, with six heads and four tails i.e., $(y_N=6)$

- Posterior distribution $p\left(r|y_N\right)=\mathcal{B}\left(\delta,\gamma\right)$ with parameters $\delta=1+6=7$ and $\gamma=1+10-6=5$
 - Considered prior $p(r) = \mathcal{B}(\alpha, \beta)$ with $\alpha = \beta = 1$
- Posterior distribution $p(r|y_N) = \mathcal{B}(\delta, \gamma)$ contains all the information about r
- Posterior can be used to calculate different point estimates of r

Different point estimates of r

• Posterior distribution of $p(r|y_N)$

$$p(r|y_N) = \frac{P(y_N|r)p(r)}{P(y_N)}$$

- Our posterior distribution $p\left(r|y_N\right)=\mathcal{B}\left(\delta,\gamma\right)$ with parameters $\delta=1+6=7$ and $\gamma=1+10-6=5$
- ullet Maximum a posterior (MAP) estimate: maximum value of posterior distribution $\mathcal{B}\left(\delta,\gamma\right)$, which is
 - Its mode i.e., $\hat{r} = \frac{\delta 1}{\delta + \gamma 2} = 6/10$
- ullet Mean estimate : mean of posterionr distribution $\mathcal{B}\left(\delta,\gamma\right)$, which is
 - Mean: $\hat{r} = \frac{\delta}{\delta + \gamma} = \frac{7}{12}$, denoted as $\hat{r} = \mathbb{E}_{p(r|y_N)}\{R\}$
- Both MAP and mean estimator are a posterior estimate which one to pick?
- Maximum likelihood (ML) estimate \hat{r}
 - MAP estimate with prior p(r) set to uniform distribution \rightarrow above MAP estimate is also ML estimate
 - Matches with our earlier ML estimate: $\hat{r} = y/N = 6/10$

Winning probability using point estimate

- Posterior distribution $p(r|y_N)$ contains all the information we have about r
 - We will use it to compute expected winning probability
- Before we do so, we will first use mean estimate $\hat{r} = \frac{\delta}{\delta + \gamma} = \frac{7}{12}$ to compute winning probability
- Compute winning probability $P(Y_{new} \leq 6|\hat{r})$
 - \bullet Differentiate observed and future tosses by using Y_{new} as a r.v. to describe future ten tosses
- Probability of winning the game is

$$P(Y_{new} \le 6|\hat{r}) = 1 - \sum_{y_{new}=7}^{y_{new}=10} P(Y_{new} = y_{new}|\hat{r}) = 1 - \sum_{y_{new}=7}^{y_{new}=10} {N \choose y_{new}} (\hat{r})^{y_{new}} (1 - \hat{r})^{N - y_{new}}$$

$$= 1 - 0.3414 = 0.6586$$

• Suggesting that we will win more often than lose

Expected winning probability using complete posterior (1)

• Compute expected winning probability using all of posterior information. This requires computing

$$\int_{r=0}^{r=1} P(Y_{new} \le 6|r) p(r|y_N) dr = \mathbb{E}_{p(r|y_N)} \{ P(Y_{new} \le 6|r) \}$$

$$\mathbb{E}_{p(r|y_N)} \{ P(Y_{new} \le 6|r) \} = \sum_{y_{new}=1}^{y_{new}=6} \mathbb{E}_{p(r|y_N)} \{ P(Y_{new} = y_{new}|r) \}$$

• We need to compute $\mathbb{E}_{p(r|y_N)}\{P(Y_{new}=y_{new}|r)\}$ which is

$$\mathbb{E}_{p(r|y_{N})} \{ P(Y_{new} = y_{new}|r) \} = \int_{r=0}^{r=1} P(Y_{new} = y_{new}|r) p(r|y_{N}) dr$$

$$= \int_{r=0}^{r=1} \left[\binom{N_{new}}{y_{new}} r^{y_{new}} (1-r)^{N_{new}-y_{new}} \right] \left[\frac{\Gamma(\delta+\gamma)}{\Gamma(\delta)\Gamma(\gamma)} r^{\delta-1} (1-r)^{\gamma-1} \right] dr$$

$$= \binom{N_{new}}{y_{new}} \frac{\Gamma(\delta+\gamma)}{\Gamma(\delta)\Gamma(\gamma)} \int_{r=0}^{r=1} r^{y_{new}+\delta-1} (1-r)^{N_{new}-y_{new}+\gamma-1} dr$$

• Argument inside the integral is an unnormalised beta density with parameters $y_{new} + \delta = \delta'$ and $N_{new} - y_{new} + \gamma = \gamma'$

Expected winning probability using complete posterior (2)

• For a beta density with parameters δ' and γ' , following must be true:

$$\int_{r=0}^{r=1} rac{\Gamma\left(\delta'+\gamma'
ight)}{\Gamma\left(\delta'
ight)\Gamma\left(\gamma'
ight)} r^{\delta'-1} (1-r)^{\gamma'-1} dr = 1, \ \int_{r=0}^{r=1} r^{\delta'-1} (1-r)^{\gamma'-1} dr = rac{\Gamma\left(\delta'
ight)\Gamma\left(\gamma'
ight)}{\Gamma\left(\delta'+\gamma'
ight)}$$

Our desired expectation becomes

$$\mathbb{E}_{p(r|y_N)}\{P\left(Y_{new} = y_{new}|r\right)\} = \begin{pmatrix} N_{new} \\ y_{new} \end{pmatrix} \frac{\Gamma\left(\delta + \gamma\right)}{\Gamma\left(\delta\right)\Gamma\left(\gamma\right)} \frac{\Gamma\left(\delta + y_{new}\right)\Gamma\left(\gamma + N_{new} - y_{new}\right)}{\Gamma\left(\delta + \gamma + N_{new}\right)}$$

• After ten tosses, we have $\delta = 7, \gamma = 5$. Expected winning probability:

$$\mathbb{E}_{p(r|y_N)}\{P(Y_{new} \le 6|r)\} = \sum_{Y_{new}=1}^{y_{new}=6} \mathbb{E}_{p(r|y_N)}P(Y_{new} = y_{new}|r) = 0.6055$$

- Expected winning probability and the one with point estimate predict we will win more often
- Agrees with evidence one person we have fully observed got six heads and four tails and won Rs 2
- Point estimate gives a higher probability ignoring posterior uncertainty makes it more likely that we will win

Three scenarios – summary

- For three different scenarios the expected probability of winning
 - No prior knowledge: $\mathbb{E}_{p(r|y_N)}\{P(Y_{new} \leq 6|r)\} = 0.6055$
 - Fair coin: $\mathbb{E}_{p(r|y_N)}\{P(Y_{new} \leq 6|r)\} = 0.7579$ (Similarly compute)
 - Biased coin: $\mathbb{E}_{p(r|y_N)}\{P(Y_{new} \leq 6|r)\} = 0.2915$ (Similarly compute)
- Which one should we choose? We could choose based on our prior beliefs
- Given that stall owner doesn't look like he will go out of business, scenario 3 might be sensible
- We might decide that we do not know anything about owner and coin and look to scenario 1
- We might believe that owner would never stoop to cheating and go for scenario 2
- It is possible to justify any of them but one thing is clear
 - Bayesian technique allows us to combine observed data with prior knowledge in a principled way
 - Posterior density models uncertainty that remains in r at each stage

Marginal Likelihoods

- Subjective beliefs are not the only option for determining which of our three scenarios is best
- Marginal likelihood $p(y_N)$ provide another method. It is related to r as follows

$$P(y_N) = \int_{r=0}^{r=1} p(r, y_N) dr = \int_{r=0}^{r=1} P(y_N|r) p(r) dr$$

- When considering different choices of prior p(r), it should be written as $p(r|\alpha,\beta)$
 - ullet Density is a function of particular lpha and eta values
- Extending this conditioning to earlier equation

$$P(y_N|\alpha,\beta) = \int_{r=0}^{r=1} P(y_N|r) \, p(r|\alpha,\beta) \, dr.$$

- Marginal likelihood $P(y_N|\alpha,\beta)$ is a very useful and important quantity
 - ullet Tells us how likely the data (y_N) is, given our choice of prior parameters lpha and eta
 - Higher $P(y_N|\alpha,\beta)$, better our data agrees with the prior specification
- We could use $P(y_N | \alpha, \beta)$ to help choose the best scenario:
 - Select the scenario for which $P(y_N|\alpha,\beta)$ is highest

Marginal Likelihoods

• To compute this quantity, we need to evaluate the following integral:

$$P(y_{N}|\alpha,\beta) = \int_{r=0}^{r=1} P(y_{N}|r) p(r|\alpha,\beta) dr$$

$$= \int_{r=0}^{r=1} {N \choose y_{N}} r^{y_{N}} (1-r)^{N-y_{N}} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} r^{\alpha-1} (1-r)^{\beta-1} dr$$

$$= {N \choose y_{N}} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_{r=0}^{r=1} r^{\alpha+y_{N}-1} (1-r)^{\beta+N-y_{N}-1} dr.$$

- Argument inside the integral is an unnormalised beta density
 - Integrating it we will give inverse of normal beta normalising constant

$$P(y_N|\alpha,\beta) = {N \choose y_N} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_N)\Gamma(\beta+N-y_N)}{\Gamma(\alpha+\beta+N)}$$

- We considered two sets of coin tosses: i) 9 heads and 1 tail; and ii) 6 heads and 5 tails
 - Total of 15 heads in 2 sets of 10 tosses N=20 and $y_N=14$
- \bullet We have three different possible pairs of α and β values. Plugging these values above
 - No prior knowledge, $\alpha = \beta = 1, p(y_N | \alpha, \beta) = 0.0476$
 - Fair coin, $\alpha = \beta = 50, p(y_N | \alpha, \beta) = 0.0441$
 - Biased coin: $\alpha = 5, \beta = 1, p(y_N | \alpha, \beta) = 0.0576$

Marginal Likelihoods

- Prior corresponding to biased coin has highest marginal likelihood and the fair coin prior has lowest
- Expected winning probability calculated earlier for this scenario was

$$\mathbb{E}_{P(r|y_N,\alpha,\beta)}\{P\left(Y_{new} \leq 6|r\right)\} = 0.2915$$

- A word of caution is required here
- Choosing priors in this way is essentially choosing the prior that best agrees with the data
- Prior no longer corresponds to our belief may be unacceptable in some applications
- Marginal likelihood gives a single value that tells us how much data backs up prior beliefs
- In earlier example, data suggests that biased coin prior is best supported by the evidence
- ullet Extend the prior comparison to using the marginal likelihood to calculate optimal value of lpha and eta