

Loi de composition interne et groupe

Exercice 1.

Soit E un ensemble de forme géométriques du plan contenant les éléments a, b et c où :

$$a = \square$$
 ; $b = \square$ et $c = \triangleleft$

Soit « * » une loi de composition interne sur E définie par:

 $\forall (x, y) \in E^2$; x * y est la forme géométrique obtenue en faisant faire un demi-tour à la figure obtenue en plaçant x à gauche de y.

Exemples:

$$a*b =$$

$$b*a =$$

- 1) Calculer: a*c et b*c
- 2) Calculer: a*(b*c), (a*b)*c et (a*b)*a
- 3) La loi « * » est-elle commutative ?
- 4) La loi « * » est-elle associative ?

Exercice 2. On considère R muni de la loi de « * » définie par :

Si
$$(x, y) \in \mathbf{R} \times \mathbf{R}$$
, $x * y = |x - y|$

Et on considère \mathbf{R}^+ muni de la loi de « \perp » définie par :

Si
$$(x, y) \in \mathbf{R}^+ \times \mathbf{R}^+, x \perp y = |x - y|$$

- a) La loi « * » est-elle une loi de composition interne dans R ?
- b) R muni de la loi « * » admet-il un élément neutre?
- c) La loi « \perp » est-elle une loi de composition interne dans \mathbf{R}^+ ?
- d) R⁺ muni de la loi « ⊥ » admet-il un élément neutre ?

Exercice 3.

On considère \mathbf{R}^* muni de la loi de composition interne « * » définie par :

Si
$$(x, y) \in \mathbf{R}^* \times \mathbf{R}^*$$
, $x * y = \frac{x}{y}$

- a) La loi « * » est-elle commutative ?
- b) La loi « * » est-elle associative ?
- c) R* muni de la loi « * » admet-il un élément neutre ?

Exercice 4. On note $E = \{a + b\sqrt{2} / a \in \mathbb{Z}, b \in \mathbb{Z}\}$

- a) Montrer que E est stable par l'addition et la multiplication
- b) (E,+) est-il un groupe?
- c) (E,x) est-il un groupe ? (E^*,x) est-il un groupe ? où $E^* = \{x \in E \mid x \neq 0\}$

1

Exercice 5.

On note $E = \left\{ f_1, f_2, f_3, f_4 \right\}$ l'ensemble des applications suivantes :

$$f_1:\mathbf{R}^* \to \mathbf{R}^*$$
 ; $f_2:\mathbf{R}^* \to \mathbf{R}^*$; $f_3:\mathbf{R}^* \to \mathbf{R}^*$ et $f_4:\mathbf{R}^* \to \mathbf{R}^*$ définies par :

Pour tout
$$x \in \mathbb{R}^*$$
, $f_1(x) = x$; $f_2(x) = -x$; $f_3(x) = \frac{1}{x}$ et $f_4(x) = \frac{-1}{x}$.

- a) On admet que la loi « \circ » composition usuelle de fonctions est une loi de composition interne sur E
- b) Si $f \in E$ a-t-on $f \circ f = f_1$? (E, \circ) est-il un groupe?

Exercice 6.

Les éléments du groupe (S_3, \circ) sont :

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}; \quad \sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}; \quad \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}; \quad \sigma_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix};$$

$$\sigma_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \text{ et } \sigma_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

Les propositions ci-dessous sont-elles vraies ou fausses ? Justifiez vos réponses

- a) $(\{id\}, \circ)$ est un groupe abélien
- b) $(\{id, \sigma_1\}, \circ)$ est un groupe
- c) (S_3, \circ) est un groupe abélien
- d) Calculer $\sigma_4 \circ \sigma_5$ et $\sigma_5 \circ \sigma_4$. Que peut-on en déduire ?
- e) Si $\sigma \in S_3$ et $\tau \in S_3$ vérifie $\sigma^2 = \tau^2$ alors $\sigma = \tau$
- f) Si $\sigma \in S_3$ et $\tau \in S_3$ alors on a : $(\sigma \circ \tau)^2 = \sigma^2 \circ \tau^2$
- g) Si $\sigma \in S_3$ et $\tau \in S_3$ alors on a : $(\sigma \circ \tau)^{-1} = \sigma^{-1} \circ \tau^{-1}$

Exercice 7. Soient (G,.) et (E,+) deux groupes non commutatifs.

- 1) Montrer que si $(a, x) \in G^2$ alors $(a^{-1}x a)^2 = a^{-1}x^2 a$
- 2) Pour $(x, y) \in E^2$ calculez 2(-x+y+x)

Exercice 8. On considère l'ensemble $E = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} \; ; \; a \in \mathbf{R}^* \; \right\}$ muni de la multiplication

usuelle des matrices « x »

- 1) Montrer que la loi « \times » est une opération interne dans E
- 2) Montrer que (E,\times) admet un élément neutre
- 3) (E,\times) est-il un groupe ?

Exercice 9. Soit (S_3, \circ) le groupe des permutations de $\{1, 2, 3\}$ dont les éléments sont :

2

$$Id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}; \ \sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}; \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$\tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}; \ \tau_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \text{et } \tau_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

Parmi les ensembles suivants, quels sont les sous-groupes de (S_3, \circ) ?

$$\left\{ \mathit{Id} \right. \left. \right\} ; \left\{ \mathit{Id} \right. ; \tau_{_{1}} \right\} ; \left\{ \mathit{Id} \right. ; \tau_{_{2}} \right\} ; \left\{ \mathit{Id} \right. ; \tau_{_{2}} ; \tau_{_{1}} ; \sigma_{_{1}} \right\} \; \mathsf{et} \; \left\{ \mathit{Id} \right. ; \tau_{_{2}} ; \tau_{_{1}} ; \sigma_{_{1}} ; \sigma_{_{2}} \right\}$$