Numerical Analysis HW #2

Ozaner Hansha

March 7, 2019

Problem 1

Part a

Problem: Solution:

Iter	ation	$ x_n $	y_n
	0	0.5000000000000000	0.5000000000000000
	1	1.0000000000000000	0.5000000000000000
	2	0.8125000000000000	0.4375000000000000
	3	0.773719879518072	0.420557228915663
	4	0.771848952636680	0.419645658001209
	5	0.771844506371371	0.419643377620421
	6	0.771844506346038	0.419643377607081
	7	0.771844506346038	0.419643377607081

Problem 5

Problem: Solve the same system as in problem 4 but use Matlab's fsolve routine to do it. In particular, use the following code:

```
options = optimset('Display', 'iter');
x0 = [0.5,0.5]
[x,fval] = fsolve(@fcnns,x0,options)|
```

Solution: Running this code, with the system defined in fccns.m, returns the following approximation and error:

```
\begin{array}{lll} x = 0.771844506371479 & 0.419643377620486 \\ & \text{fval} = 1.0\,\text{e}{-10} \ * \\ & -0.250830467507512 \\ & -0.146170298087611 \end{array}
```

Note that fsolve defaults to 10 decimal places of accuracy (tol = 10^{-10}) and so it only agrees with problem 4's answer to the 10th decimal place.