Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute: Outlook

Values (Outlook) = Sunny, Overcast, Rain

$$S = [9+,5-]$$

$$Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

$$S_{Sunny} \leftarrow [2+, 3-]$$

$$Entropy(S_{Sunny}) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.971$$

$$S_{overcast} \leftarrow [4+,0-]$$

$$Entropy(S_{0vercast}) = -\frac{4}{4}log_2\frac{4}{4} - \frac{0}{4}log_2\frac{0}{4} = 0$$

$$S_{Rain} \leftarrow [3+,2-]$$

$$Entropy(S_{Rain}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.971$$

$$Gain (S,Outlook) = Entropy(S) - \sum_{v \in \{Sunny,Overcast,Rain\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S, Outlook)

$$= Entropy(S) - \frac{5}{14}Entropy(S_{Sunny}) - \frac{4}{14}Entropy(S_{Overcast})$$
$$-\frac{5}{14}Entropy(S_{Rain})$$

$$Gain(S, Outlook) = 0.94 - \frac{5}{14}0.971 - \frac{4}{14}0 - \frac{5}{14}0.971 = 0.2464$$
VTupulse.com

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute: Temp

Values(Temp) = Hot, Mild, Cool

$$S = [9+, 5-]$$

$$Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

$$S_{Hot} \leftarrow [2+,2-]$$

$$Entropy(S_{Hot}) = -\frac{2}{4}log_2\frac{2}{4} - \frac{2}{4}log_2\frac{2}{4} = 1.0$$

$$S_{Mild} \leftarrow [4+,2-]$$

Entropy
$$(S_{Mild}) = -\frac{4}{6}\log_2\frac{4}{6} - \frac{2}{6}\log_2\frac{2}{6} = 0.9183$$

$$S_{cool} \leftarrow [3+,1-]$$

$$Entropy(S_{cool}) = -\frac{3}{4}log_2\frac{3}{4} - \frac{1}{4}log_2\frac{1}{4} = 0.8113$$

$$Gain(S, Temp) = Entropy(S) - \sum_{v \in \{Hot, Mild, Cool\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S, Temp)

$$= Entropy(S) - \frac{4}{14}Entropy(S_{Hot}) - \frac{6}{14}Entropy(S_{Mild})$$

$$-\frac{4}{14}Entropy(S_{cool})$$

$$Gain(S, Temp) = 0.94 - \frac{4}{14} \cdot 1.0 - \frac{6}{14} \cdot 0.9183 - \frac{4}{\sqrt{14}} \cdot 0.8113 = 0.0289$$

Mahesh Huddar

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute: Humidity

Values (Humidity) = High, Normal

$$S = [9+,5-]$$

$$Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

$$S_{High} \leftarrow [3+,4-]$$

$$S_{High} \leftarrow [3+,4-]$$
 $Entropy(S_{High}) = -\frac{3}{7}log_2\frac{3}{7} - \frac{4}{7}log_2\frac{4}{7} = 0.9852$

$$S_{Normal} \leftarrow [6+, 1-]$$

$$S_{Normal} \leftarrow [6+, 1-]$$
 $Entropy(S_{Normal}) = -\frac{6}{7}log_2\frac{6}{7} - \frac{1}{7}log_2\frac{1}{7} = 0.5916$

$$Gain(S, Humidity) = Entropy(S) - \sum_{v \in \{High, Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

Gain(S, Humidity)

$$= Entropy(S) - \frac{7}{14}Entropy(S_{High}) - \frac{7}{14}Entropy(S_{Normal})$$

$$Gain(S, Humidity) = 0.94 - \frac{7}{14}0.9852 - \frac{7}{14}0.5916 = 0.1516$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Attribute: Wind

Values(Wind) = Strong, Weak

$$S = [9+,5-]$$

$$Entropy(S) = -\frac{9}{14}log_2\frac{9}{14} - \frac{5}{14}log_2\frac{5}{14} = 0.94$$

$$S_{Strong} \leftarrow [3+,3-]$$

$$S_{Strong} \leftarrow [3+,3-]$$
 $Entropy(S_{Strong}) = 1.0$

$$S_{Weak} \leftarrow [6+, 2-]$$

$$S_{Weak} \leftarrow [6+,2-]$$
 $Entropy(S_{Weak}) = -\frac{6}{8}log_2\frac{6}{8} - \frac{2}{8}log_2\frac{2}{8} = 0.8113$

$$Gain(S, Wind) = Entropy(S) - \sum_{v \in \{Strong, Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S,Wind) = Entropy(S) - \frac{6}{14}Entropy\big(S_{Strong}\big) - \frac{8}{14}Entropy(S_{Weak})$$

$$Gain(S, Wind) = 0.94 - \frac{6}{14} \cdot 1.0 - \frac{8}{14} \cdot 0.8113 = 0.0478$$

Day	Outlook	Temp	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

$$Gain(S, Outlook) = 0.2464$$

$$Gain(S, Temp) = 0.0289$$

$$Gain(S, Humidity) = 0.1516$$

$$Gain(S, Wind) = 0.0478$$

Mahesh Huddar

vtupulse.com

Day	Temp	Humidity	Wind	Play Tennis
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

Attribute: Temp

Values(Temp) = Hot, Mild, Cool

$$S_{Sunny} = [2+,3-]$$
 $Entropy(S_{Sunny}) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.97$

$$S_{Hot} \leftarrow [0+,2-]$$
 $Entropy(S_{Hot}) = 0.0$

$$S_{Mild} \leftarrow [1+,1-]$$
 $Entropy(S_{Mild}) = 1.0$

$$S_{Cool} \leftarrow [1+,0-]$$
 $Entropy(S_{Cool}) = 0.0$

$$Gain\left(S_{Sunny}, Temp\right) = Entropy(S) - \sum_{v \in \{Hot, Mild, Cool\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

 $Gain(S_{Sunny}, Temp)$

$$= Entropy(S) - \frac{2}{5}Entropy(S_{Hot}) - \frac{2}{5}Entropy(S_{Mild})$$
$$-\frac{1}{5}Entropy(S_{Cool})$$

$$Gain(S_{sunny}, Temp) = 0.97 - \frac{2}{5}0.0 - \frac{2}{5}1 - \frac{1}{5}0.0 = 0.570$$

Day	Temp	Humidity	Wind	Play Tennis
DI	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
DI1	Mild	Normal	Strong	Yes

Attribute: Humidity

Values(Humidity) = High, Normal

$$S_{Sunny} = [2+,3-]$$
 $Entropy(S) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.97$

$$S_{high} \leftarrow [0+,3-]$$
 $Entropy(S_{High}) = 0.0$

$$S_{Normal} \leftarrow [2+,0-]$$
 $Entropy(S_{Normal}) = 0.0$

$$Gain\left(S_{Sunny}, Humidity\right) = Entropy(S) - \sum_{v \in \{High, Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain \left(S_{Sunny}, Humidity\right) = Entropy(S) - \frac{3}{5}Entropy \left(S_{High}\right) - \frac{2}{5}Entropy \left(S_{Normal}\right)$$

$$Gain(S_{sunny}, Humidity) = 0.97 - \frac{3}{5} \cdot 0.0 - \frac{2}{5} \cdot 0.0 \cdot 0.97$$

Day	Temp	Humidity	Wind	Play Tennis
DI	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
DI1	Mild	Normal	Strong	Yes

Attribute: Wind

Values(Wind) = Strong, Weak

$$S_{Sunny} = [2+,3-]$$
 $Entropy(S) = -\frac{2}{5}log_2\frac{2}{5} - \frac{3}{5}log_2\frac{3}{5} = 0.97$

$$S_{Strong} \leftarrow [1+, 1-]$$
 $Entropy(S_{Strong}) = 1.0$

$$S_{Weak} \leftarrow [1+, 2-]$$
 $Entropy(S_{Weak}) = -\frac{1}{3}log_2\frac{1}{3} - \frac{2}{3}log_2\frac{2}{3} = 0.9183$

$$Gain\left(S_{Sunny}, Wind\right) = Entropy(S) - \sum_{v \in \{Strong, Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Sunny}, Wind) = Entropy(S) - \frac{2}{5}Entropy(S_{Strong}) - \frac{3}{5}Entropy(S_{Weak})$$

$$Gain(S_{sunny}, W_{ind}) = 0.97 - \frac{2}{5}1.0 - \frac{3}{5}0.918 = 0.0192$$

Day	Temp	Humidity	Wind	Play Tennis
D1	Hot	High	Weak	No
D2	Hot	High	Strong	No
D8	Mild	High	Weak	No
D9	Cool	Normal	Weak	Yes
D11	Mild	Normal	Strong	Yes

$$Gain(S_{sunny}, Temp) = 0.570$$

$$Gain(S_{sunny}, Humidity) = 0.97$$

$$Gain(S_{sunny}, Wind) = 0.0192$$

Day	Temp	Humidity	Wind	Play Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
D10	Mild	Normal	Weak	Yes
D14	Mild	High	Strong	No

Attribute: Temp

Values(Temp) = Hot, Mild, Cool

$$S_{Rain} = [3+,2-]$$
 $Entropy(S_{Sunny}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.97$

$$S_{Hot} \leftarrow [0+,0-]$$
 $Entropy(S_{Hot}) = 0.0$

$$S_{Mild} \leftarrow [2+, 1-]$$
 $Entropy(S_{Mild}) = -\frac{2}{3}log_2\frac{2}{3} - \frac{1}{3}log_2\frac{1}{3} = 0.9183$

$$S_{cool} \leftarrow [1+,1-]$$
 $Entropy(S_{cool}) = 1.0$

$$Gain\left(S_{Rain}, Temp\right) = Entropy(S) - \sum_{v \in \{Hot, Mild, Cool\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

 $Gain(S_{Rain}, Temp)$

$$= Entropy(S) - \frac{0}{5}Entropy(S_{Hot}) - \frac{3}{5}Entropy(S_{Mild})$$
$$- \frac{2}{5}Entropy(S_{Cool})$$

$$Gain(S_{Rain}, T_{emp}) = 0.97 - \frac{0}{5}0.0 - \frac{3}{5}0.918 - \frac{2}{5}1.0 = 0.0192$$

Day	Temp	Humidity	Wind	Play Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
DIO	Mild	Normal	Weak	Yes
DI4	Mild	High	Strong	No

Attribute: Humidity

Values (Humidity) = High, Normal

$$S_{Rain} = [3+, 2-]$$
 $Entropy(S_{Sunny}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.97$

$$S_{High} \leftarrow [1+,1-]$$
 $Entropy(S_{High}) = 1.0$

$$S_{Normal} \leftarrow [2+, 1-]$$
 $Entropy(S_{Normal}) = -\frac{2}{3}log_2\frac{2}{3} - \frac{1}{3}log_2\frac{1}{3} = 0.9183$

$$Gain\left(S_{Rain}, Humidity\right) = Entropy(S) - \sum_{v \in \{High, Normal\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Rain}, Humidity) = Entropy(S) - \frac{2}{5}Entropy\big(S_{High}\big) - \frac{3}{5}Entropy(S_{Normal})$$

$$Gain(S_{Rain}, Humidity) = 0.97 - \frac{2}{5} \cdot 1.0 - \frac{3}{5} \cdot 0.918 = 0.0192$$

Day	Temp	Humidity	Wind	Play Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
DIO	Mild	Normal	Weak	Yes
DI4	Mild	High	Strong	No

Attribute: Wind

Values(wind) = Strong, Weak

$$S_{Rain} = [3+,2-]$$
 $Entropy(S_{Sunny}) = -\frac{3}{5}log_2\frac{3}{5} - \frac{2}{5}log_2\frac{2}{5} = 0.97$

$$S_{Strong} \leftarrow [0+,2-]$$
 $Entropy(S_{Strong}) = 0.0$

$$S_{Weak} \leftarrow [3+,0-]$$
 $Entropy(S_{weak}) = 0.0$

$$Gain(S_{Rain}, Wind) = Entropy(S) - \sum_{v \in \{Strong, Weak\}} \frac{|S_v|}{|S|} Entropy(S_v)$$

$$Gain(S_{Rain}, Wind) = Entropy(S) - \frac{2}{5} Entropy(S_{Strong}) - \frac{3}{5} Entropy(S_{Weak})$$

$$Gain(S_{Rain}, Wind) = 0.97 - \frac{2}{5} 0.0 - \frac{3}{5} 0.0 = 0.97$$

Day	Temp	Humidity	Wind	Play Tennis
D4	Mild	High	Weak	Yes
D5	Cool	Normal	Weak	Yes
D6	Cool	Normal	Strong	No
DIO	Mild	Normal	Weak	Yes
DI4	Mild	High	Strong	No

$$Gain(S_{Rain}, Temp) = 0.0192$$

$$Gain(S_{Rain}, Humidity) = 0.0192$$

$$Gain(S_{Rain}, Wind) = 0.97$$

