Задание 1.

- **I.** Сгенерируйте выборки для заданных функций с моделированием случайной ошибки измерения.
 - 1). Сформируйте выборку $\{(x^{(i)},y^{(i)})\}_{i=1}^N$, $y^{(i)}=f(x^{(i)})+\varepsilon^{(i)}$, где $\varepsilon^{(i)}$ ошибка, генерируемая случайно, значение которой принадлежит заданному интервалу $[-\varepsilon_0,+\varepsilon_0]$, $\varepsilon_0>0$. Аргументы $x^{(i)}$ генерируются случайно в соответствии с равномерным распределением на интервале [-1,1].

Варианты распределения ошибки на интервале $[-\varepsilon_0, +\varepsilon_0]$:

- а) ошибка ε распределена равномерно ,
- б) ошибка ε распределена нормально.

Варианты функции f:

- а) $f = ax^3 + bx^2 + cx + d$, коэффициенты a, b, c, d сгенерировать случайно из интервала [-3, 3];
- $6) f = x \sin(2\pi x).$
- 2). Отобразите на координатной плоскости график функции f и выборку, полученную по ней. Выберите разные варианты значения ε_0 и разные параметры нормального распределения.
- **II.** Восстановление функциональной зависимости с помощью полиномиальной регрессии.

Реализуйте с помощью полиномиальной регрессии для полученной выборки восстановление функциональной зависимости, по которой получена выборка. Приведите примеры выборок и степеней полиномов, при которых

- а) происходит недообучение,
- б) происходит переобучение,
- в) полученная функциональная зависимость пригодна для прогнозирования значения восстанавливаемой функциональной зависимости в x, не содержащемся в выборке.

Полиномиальная регрессия — стр. 47—52 учебного пособия, прилагаемого κ заданию (файл mmro.pdf). Формулы для составления системы линейных алгебраических уравнений — задача 2 на стр. 64.

Используйте библиотеки Python numpy, math, scipy, модуль matplotlib.pyplot.