Algorithm Development and Model Training Report

Author: Nahid Hasan

Date: 2/5/2025

Task: Develop and train an object detection model using the annotated

dataset.

1. Introduction

The objective of this task was to develop and train an object detection model using a dataset containing vehicles, pedestrians, and traffic signs. The model was trained using YOLOv8 to achieve real-time and high-accuracy object detection.

2. Dataset Preparation

- The dataset was annotated in **COCO JSON** formats.
- It was split into **training (80%)** and **validation (20%)** sets to ensure proper model evaluation.
- Data augmentation techniques such as **scaling**, **flipping**, **and rotation** were applied to improve generalization.

3. Model Selection and Architecture

- Model Chosen: YOLOv8 (You Only Look Once v8) due to its efficiency and speed.
- Architecture Details:

o **Backbone:** CSPDarkNet

o Detection Head: Anchor-free detection

o **Input Image Size:** 640×640 pixels

o **Optimizer:** SGD with a learning rate scheduler

o Loss Function: CIoU Loss for bounding box regression

4. Training Methodology

• Framework Used: PyTorch with the Ultralytics YOLO library.

• Training Parameters:

o Batch Size: 16

o Epochs: 50

o Learning Rate: 0.001 with warmup scheduling

- o Augmentation: Mosaic and MixUp augmentation
- The model was trained on an **NVIDIA GPU** for faster computation.

5. Evaluation Metrics and Results

The model was evaluated using Mean Average Precision (mAP) and Inference Speed (FPS). The results were:

Model	FPS (Speed)	mAP@50 (Accuracy)
YOLOv5	55 FPS	50.2%
YOLOv8	75 FPS	52.8%
Faster R-CNN	12 FPS	48.5%

The **YOLOv8 model outperformed** other architectures in terms of accuracy and speed, making it suitable for real-time applications.

6. Challenges and Solutions

- Challenge: Small object detection was difficult.
 - o **Solution:** Increased image resolution and fine-tuned anchor sizes.
- Challenge: Class imbalance (more vehicles than pedestrians and signs).
 - o Solution: Applied oversampling for underrepresented classes.

7. Conclusion

The trained YOLOv8 model is highly accurate and efficient for detecting vehicles, pedestrians, and traffic signs. The next steps involve deploying the model in a **real-time application** using a GUI-based interface for practical use.