CICLO LECTIVO 2021

UNIVERSIDAD DE MENDOZA FACULTAD DE INGENIERÍA - SR

1

TRABAJO PRÁCTICO Nº 4

PARTE C: DERIVADAS DIRECCIONAL -PLANO TANGENTE

EJERCICIO Nº 1:

Aplicando la definición, hallar la derivada direccional de las siguientes funciones en el punto (1; 1) en la dirección que se indica

:a)
$$z = x^2 + y^2$$
 en el punto (1,1), según la dirección del vector $u = \frac{1}{\sqrt{2}}.\hat{i} + \frac{1}{\sqrt{2}}.\hat{j}$

b) $f(x,y)=4-x^2-y^2$ en el punto (1,1) en la dirección del vector que forma un ángulo $\theta=\frac{\pi}{6}$ con el eje positivo x

EJERCICIO N° 2:

Hallar la derivada direccional de las funciones usando el "Teorema de la derivada direccional"

$$\mathbf{D}_{\mathbf{u}} \mathbf{f}(\mathbf{x}_{0}, \mathbf{y}_{0}) = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} (\mathbf{x}_{0}, \mathbf{y}_{0}) \cos \theta + \frac{\partial \mathbf{f}}{\partial \mathbf{y}} (\mathbf{x}_{0}, \mathbf{y}_{0}) \sin \theta$$

a)
$$f(x,y) = 4 - x^2 - y^2$$
 en el punto (1,1) para $\theta = \frac{\pi}{6}$

b) Para
$$f(x,y) = y e^{2x}$$
 en el punto $P(1,-1)$ siendo $\theta = \frac{2\pi}{3}$

EJERCICIO N° 3:

a) Halle la derivada direccional, como producto escalar de las siguientes funciones en el punto P

1- Para
$$f(x,y) = y^3 \cdot \sqrt{x} + y \cdot x^2$$
 en el punto $P(1,-1,-2)$ en la dirección del vector $v = i - 2j$

2-Para
$$f(x, y) = 3x - 4xy + 5y$$
 $P(1,2)$ $v = (\frac{1}{2}i + \frac{\sqrt{3}}{2}.j)$

b) Halle la derivada direccional, como producto escalar, en la dirección de \overrightarrow{PQ} y obtenga su valor en el punto P.

$$f(x,y) = \ln(x+y) + 4x^2y$$
 $P = (1,1)$ y $Q = (4,4)$

EJERCICIO Nº 5:

Dadas las siguientes funciones, hallar la curva de nivel que pasa por los puntos indicados y graficar el vector gradiente en dichos puntos:

a)
$$z = x^2 + y^2$$
 en $P_1(1,1)$ y $P_2(-1,2)$

b)
$$x + y + 2z = 4$$
 en los puntos: $P_1(1,2)$ $P_2 = (-2,-4)$

CÁLCULO II

UNIVERSIDAD DE MENDOZA

FACULTAD DE INGENIERÍA - SR

CICLO LECTIVO 2021

c)
$$f(x,y) = 1 + x^2 + y^2$$
 en $P = (2,2)$

EJERCICIO N° 6:

Dada la función: $f(x,y) = 2^y \cdot x + y$

- a) Halle la derivada direccional de la función en P(2,1,5) en la dirección de $\mathbf{v} = (-1,2)$
- b) Indique la dirección en la cual la función crece más rápidamente y el valor de esa variación.en dicho punto
- c) Calcule la pendiente mínima de la superficie en el punto P.

EJERCICIO Nº 7:

- a) Determine en que dirección es nula la derivada direccional de la función $f(x, y) = x^2y x$ en el punto P (-1,-1)
- **b)** Encuentre un vector unitario, en la dirección en que la función $f(x,y) = x^2 + 2y^2$ aumenta con mayor rapidez desde el punto P = (2,-1,6) y el valor máximo de la derivada direccional
- **c)** Encuentre un vector unitario, en la dirección en que la función f(x, y) = x. e y disminuye con mayor rapidez desde el punto P (2,0) y el valor mínimo de la derivada direccional
- d) Calcular el valor máximo y el valor mínimo de la derivada direccional de las siguientes funciones en los puntos que se indican

Para
$$f(x, y) = x$$
. tg (y) $P(2, \frac{\pi}{4})$ y $f(x, y) = y e^{-x^2}$ $P(0,5)$

EJERCICIO N° 8:

Suponga que sobre una cierta región del espacio, el potencial eléctrico V está dado por:

$$V(x, y, z) = x.e^{yz} + x.y.e^{z}$$

- Determine la razón de cambio del potencial en P = (-2,1,1) en la dirección del vector
 v = i 2j + 3k.
- ¿En qué dirección cambia con mayor rapidez V en P?
- ¿Cuál es la razón máxima de cambio del potencial en P?
- ¿Cuál es la superficie de nivel a la que es norma el vector gradiente en P?

EJERCICIO Nº 9:

APLICACIÓNES

1. La temperatura en grados Celcius de una placa metálica es: $T(x,y) = 20 - 4x^2 - y^2$ Donde x e y se miden en centímetros, y T representa la temperatura en el punto (x,y).

CÁLCULO II

CICLO LECTIVO 2021

UNIVERSIDAD DE MENDOZA FACULTAD DE INGENIERÍA - SR

En qué dirección, a partir del punto (2, -3) crece más rápidamente la temperatura?

2. Suponga que la temperatura en un punto (x, y ,z) en el espacio está dada por :

$$T(x, y, z) = \frac{80}{\left(1 + x^2 + 2y^2 + 3z^2\right)}$$
 donde T está medida en ° C y x, y, z en metros.

- a) ¿En qué dirección aumenta más rápido la temperatura en el punto (1, 1,-2)?
- b) ¿Cuál es la máxima tasa de incremento?

PLANO TANGENTE

EJERCICIO Nº 10:

Halle la ecuación del plano tangente en el punto indicado para las siguientes funciones:

a)
$$z^2 - 2x^2 - 2y^2 - 12 = 0$$
 en el punto P(1,-1,4)

b)
$$z = \frac{x^2 + 4y^2}{2}$$
 en el punto (2,1,4)

c)
$$z = 2 + x^2 + y^2$$
 en $p = (3,-1,12)$

d)
$$x.z + y^2 = 2 + \ln(x)$$
 en $p = (1,1,1)$

e)
$$z + 1 = x. e^{y}. \cos(z)$$
 en $p = (1,0,0)$

EJERCICIO Nº 11:

Encuentre el punto de la superficie $\,z=3-x^{\,2}-y^{\,2}+6y\,$ donde el plano tangente es horizontal