CMPS 101: Graph Theory/Recurrence

BY KAMERON GILL Date 2/06/2017

- THM: Let T be a tree on n vertices, then T has n-1 edges
 - I. Base case:P(1) says: if T tree only has 1 vertice, then T has 0 edges.

There is only one tree on 1 vertice.

*

It has no edges.

II. Induction Step:

For all
$$n \ge 1$$
: $P(n)....P(n-1) \Rightarrow P(n)$.

Let, n>1 be abritary, asumme for all k in the range $1 \le k < n$ that: If T' is a tree on k vertices, then T' has k-1 edges. We must show: if T is a tree with n vertices, then T has n-1 edges.

- 1. Let T be a tree with n vertices. Pick any edge e in T and remove it

 The resulting graph results of two trees: T_1 and T_2 each with fewer than n vertices.
- 2. Let T_i have k_i vertices (i=1,2).
- $3.T_1$ has k_1 -1 edges (By Induction hyp)
- $4.T_2$ has $k_2 1$ edges (By Induction hyp.
- 5. Note $n=k_1+k_2$ since no vertices were remove. Therefore # of edges in T is

$$|E(T)| = |E(T_1)| + |E(T_2)| + 1$$

$$= (k_1 - 1) + (k_2 - 1) + 1$$

$$= (k_1 + k_2) - 1$$

$$= n-1$$

- 6. Therefore T has n-1 edges.
- Recurrance Relations

EX:
$$T(n) = {0 \brace T(\frac{n}{2})+1}_{n \geq 2}^{n=1}$$

Iteration method:

$$\begin{split} T(x) &= 1 = T\left(\frac{x}{2}\right) \\ T(n) &= 1 + T\left(\frac{n}{2}\right) = 1 + 1 + T\left(\frac{\frac{n}{2}}{2}\right) \\ &= 2 + T\left(\frac{n}{4}\right) \end{split}$$