

Faculdade de Tecnologia de Presidente Prudente Análise e Desenvolvimento de Sistemas - AMS Inteligência Artificial e Aprendizado de Máquina

Lista de Exercícios Básicos - Python

- 1) Implemente um algoritmo, que dado um valor em Dólar (US\$) e a cotação do Dólar atual. Converta o valor dado em Dólar para Real (R\$) e mostre o resultado em Real (R\$) para o usuário. Obs: Real = Dolar * CotaçãoDolar
- 2) Implemente um algoritmo, que considerando um triângulo retângulo, leia os catetos (cat1 e cat2) do triângulo, calcule e mostre para o usuário o valor da hipotenusa (hip), sabendo que: $hip^2 = cat1^2 + cat2^2$
- 3) Implemente um algoritmo, que dado o valor de um produto vendido por um estabelecimento comercial, aplique um desconto de 27% sobre o valor do produto. Por fim, informe como resultado o valor do produto com esse desconto.
- 4) Implemente um algoritmo, que dado um valor em Reais (R\$) correspondente a um prêmio de um concurso. Calcule a divisão do valor do prêmio entre os três primeiros ganhadores do concurso e mostre para o usuário o valor correspondente que cada ganhador irá receber. Sendo que:
 - Primeiro lugar receberá 47% do valor do prêmio.
 - Segundo lugar receberá 34% do valor do prêmio.
 - Terceiro lugar receberá 19% do valor do prêmio.
- 5) Implemente um algoritmo, que dado <u>quatro valores reais</u> (x1, x2, x3 e x4) informados pelo usuário, calcule e exiba a Média da Raiz Quadrada (MRQ).

$$MRQ = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$$

6) Implemente um algoritmo, que dado um código de um produto mostre sua respectiva classificação. Utilize a tabela abaixo como referência:

Código	Classificação
1	Alimento não-perecível
2 ou 3	Alimento perecível
4, 5 ou 6	Vestuário
8, 7 ou 9	Limpeza
10	Utensílios domésticos
11 ou 12	Eletrônicos
Qualquer outro código	Código inválido

7) Implemente um algoritmo, que dado a distância total (em km) percorrida por um automóvel e a quantidade de combustível (em litros) consumida para percorrê-la, calcule o **consumo** médio de combustível. Mostre o consumo médio obtido e uma mensagem de acordo com a tabela abaixo:

Consumo Médio	Mensagem
Consumo < 8	Venda o carro agora!
8>= Consumo =< 12	Pense em vender o carro!
Consumo > 12	Relativamente econômico!

Obs: Consumo médio =
$$\frac{Distância\ Percorrida}{Litros\ Consumidos}$$

8) Implemente um algoritmo, que dado a média final e o número de falta de um aluno, apresente para o usuário o conceito final obtido pelo aluno. Quando o aluno possui mais de 14 faltas o conceito é reduzido, considere a tabela de conceitos a seguir:

Média Final	Conceito (Até 14 faltas)	Conceito (Mais de 14 faltas)
Média >= 9.0	A	В
7.5 >= Média < 9.0	В	С
6.0 >= Média < 7.5	С	D
4.0 >= Média < 6.0	D	Е
0.0 >= Média < 4.0	Е	Е

- 9) Implemente um algoritmo, que dado o preço de um produto, se o preço for menor que R\$ 250.00 aplique um imposto de 15% sobre o preço do produto, se o preço for maior ou igual a R\$ 250.00 aplique um imposto de 25%. Mostre o novo preço do produto com a aplicação do imposto.
- 10) Implemente um algoritmo, que dado o <u>peso</u> e a <u>altura</u> de uma pessoa adulta, calcule o Índice de Massa Corporal (IMC) e com base no resultado do IMC informe a classificação correspondente. Utilize a tabela referência abaixo para informar a classificação obtida.

$$IMC = \frac{peso}{altura^2}$$

IMC	Classificação
IMC >= 18,5	Abaixo do peso
18,5 < IMC < 25	Peso esperado
25 <= IMC < 30	Acima do peso
IMC >= 30	Muito acima do
	peso

11) Implemente um algoritmo, que dado dois números inteiros positivos **a** e **b** calcule **a**^b (**a** elevado a **b**).

$$pot = a^b = \underbrace{a.a.a.a.a.a.a.a.a...a}_{b \text{ vezes}}$$

- **12**) Implemente um algoritmo, que dado um número inteiro positivo **n**, calcule e exiba o fatorial desse número.
- **13**) Implemente um algoritmo, que dado um número inteiro positivo **p**, verificar se esse número é um número primo.
- **14**) Implemente um algoritmo, que dado um número inteiro positivo **a** e um número inteiro positivo **b**, mostre todos os números primos existentes entre **a** e **b**.
- 15) Um matemático italiano da idade média conseguiu modelar o ritmo de crescimento da população de coelhos através de uma sequência de números naturais que passou a ser conhecida como Sequência de Fibonacci. Seja F_n o n-ésimo termo da sequência. O primeiro número da sequência F_1 = 1, o segundo F_2 = 1. Enquanto o n-ésimo termo da sequência Fn é dado pela soma dos dois anteriores, ou seja, F_n = $F_{n-1} + F_{n-2}$, $\forall n > 2$. A fórmula de recorrência abaixo define tal sequência é:

$$F_n = \begin{cases} 1 & \text{se n=1,} \\ 1 & \text{se n=2,} \\ F_{n-2} + F_{n-1} & \text{se n} \ge 3. \end{cases}$$

Faça um algoritmo que encontre e mostre o n-ésimo termo da Sequência de Fibonacci.

- **16**) Faça um algoritmo, que dado um número inteiro positivo n, encontre o número reverso de n. Exemplo: se n = 12345, então o número procurado é 54321.
- 17) Dizemos que um número com pelo menos dois algarismos é palíndromo se:
 - ✓ O 1° algarismo de n é igual ao seu último algarismo,
 - ✓ O 2° algarismo de n é igual ao penúltimo algarismo,
 - ✓ E assim sucessivamente...

Ou seja, um número palíndromo é o mesmo número lido da esquerda para direita e da direita para a esquerda, o número é igual ao seu reverso. Exemplos: 567765 e 32423 **são palíndromos**, enquanto 567675 **não é palíndromo**.

Implemente um algoritmo que, dado um número inteiro positivo n, em que n seja >= 10, verificar se n é um número palíndromo.