1+		2+			
ammonium	NH_4^+	dimercury*	Hg_2^{2+}		
1-		2–		3–	
acetate	CH ₃ COO ⁻	carbonate	CO ₃ ²⁻	arsenate	AsO ₄
bromate	BrO_3^-	chromate	CrO ₄ ²⁻	phosphate	PO_4^{3-}
chlorate	ClO ₃	dichromate	$Cr_2O_7^{2-}$		
chlorite	ClO ₂	hydrogen phosphate	HPO_4^{2-}		
cyanide	CN-	oxalate	$C_2O_4^{2-}$		
dihydrogen phosphate	$H_2PO_4^-$	peroxide	O_2^{2-}		
hydrogen carbonate (bicarbonate)	HCO ₃	sulfate	SO ₄ ²⁻		
hydrogen sulfate	HSO ₄	sulfite	SO ₃ ²⁻		
hydroxide	OH-				
hypochlorite	ClO-				
nitrate	NO_3^-				
nitrite	NO_2^-				
perchlorate	ClO ₄				
permanganate	MnO_4^-				

has is given the prefix *hypo*-. An anion that has one more oxygen atom than the *-ate* anion has is given the prefix *per*-. This nomenclature is

illustrated by the four oxyanions formed by chlorine.

 $CIO^ CIO_2^ CIO_3^ CIO_4^-$ hypochlorite chlorite chlorate perchlorate

Compounds containing polyatomic ions are named in the same manner as binary ionic compounds. The name of the cation is given first, followed by the name of the anion. For example, the two compounds formed with silver by the nitrate and nitrite anions are named *silver nitrate*, AgNO₃, and *silver nitrite*, AgNO₂, respectively. When multiples of a polyatomic ion are present in a compound, the formula for the polyatomic ion is enclosed in parentheses, as shown on page 220 for aluminum sulfate, Al₂(SO₄)₃. The formula indicates that an aluminum sulfate formula unit has two aluminum cations and three sulfate anions.