

Amazon Products Review

Group 4

Maria De La Oliva, Amelia Mokal, Zixuan Wu and Rebecca Amare

Agenda

1 Objective

By: Rebecca Amare

2

Our Data

By: Zixuan Wu

3

Business Questions

By: Amelia Mokal

4

Analysis

By: All

5

Conclusion

By:Maria De La Oliva

Objective

Using a variety of components such as, Impala, Anaconda and Amazon SageMaker to analyze Amazon product reviews to portray any patterns among product purchases. After generating results, come to a conclusion if particular patterns assist Amazon on deciding which products they would need to invest in. In addition, define other programs that could help in the decision making process on product purchasing.

Data Variables

Electronics (1.73GB), Grocery (956MB), Furniture (367MB)

Marketplace: 2 letter country code of the marketplace where the review was written

Customer_id and review_id: Unique customer's and review id

* **Product_id**: The unique Product ID the review pertains to. In the multilingual dataset the reviews for the same product in different countries can be grouped by the same product_id.

Product_parent: Identifier that can be used to aggregate reviews for the same product.

*Product_title: Name of product

Product_category: Broad product category that can be used to group reviews

*Star_rating: Ratings from 1-5 (lowest to highest)

*Helpful_votes: If review was positivity helpful to consumer

*Total_votes: Total of both positive and negative votes

*Vine: Reviews written by reviewers in the <u>Amazon Vine Program</u>

*Verified_purchase: Amazon verified that the person writing the review purchased the product at Amazon and didn't receive the product at a deep discount.

Review_headline: Review subject line

Review_body: Consumers full review of the product

Review_date: Date published

Business Questions

Descriptive Analysis

```
/*Number of reviews per category*/
select product_category as "Product Category",
count(*) as "Number of Reviews"
from amazon_reviews group by product_category;

product category  number of reviews

Furniture  792113

Grocery  2402458

Electronics  3093872
```

```
/*Number of reviews made by customers in Amazon Vine Program*/
select count(review_id)
as "No. of Vine Program Reviews"
from amazon_reviews
where vine = "Y";

♣ no. of vine program reviews

37899
```

```
/*Number of unique products reviewed per category*/
select product_category,
count (distinct product_parent) as "Unique Products"
from amazon_reviews
group by product_category;

ф product_category  

unique products

Grocery  

268150

Electronics  

166244

Furniture  

113252
```

Word Frequency

Sentiment Analysis using AFINN

As described. 0.0 neutral It works as advertising. 0.0 neutral Works pissa 0.0 neutral Did not work at all. 0.0 neutral Works well. Bass is somewhat lacking but is pr... positive 3.0 The quality on these speakers is insanely good... positive 6.0 Wish I could give this product more than five ... positive 5.0 works great 3.0 positive Great sound and compact. Battery life seems go... positive It works well~~~ 0.0 neutral

"Excelent+0 purchase+0. I+0 Neutral recomendm+0 it+0." "Great+3 sound+0 and+0 compact⁺⁰. Battery⁺⁰ **Positive** life+0 seems+0 good+3. Happy+3 with+0 this+0 product+0." "Phones+0 were+0 dead⁻³ prior⁺⁰ to⁺⁰ replacing+0 them+0 **Negative** with+0 these+0 new+0 replacement+0 batteries+0"

Sentiment Analysis Results

GROCERY ELECTRONICS FURNITURE

Sentiment Analysis - Predictive Model

What are we The Polarity of product reviews predicting? Will have an high accuracy score **Expected results BUY** for positive reviews What model is chosen? **Random Forest**

Random Forest Model

Platform

AWS SageMaker

Data

~ 2 million rows 37 % of the dataset

Distribution

Random Sampling

Baseline

Cross validation: 78%

Frequency

Positive: 78% Neutral: 7% Negative: 15%


```
[4]: data_key_Electronics = "project/Electronics.txt"
    data_location_e = "s3://{}/{}".format(bucket,data_key_Electronics)

Electronics = pd.read_csv(data_location_e, sep="\t")

Receiving Furniture dataset

[7]: data_key_furniture = "project/Furniture.txt"
    data_location_f = "s3://{}/{}".format(bucket,data_key_furniture)
    Furniture = pd.read_csv(data_location_f, sep="\t")

Receiving Grocery dataset

[8]: data_key_Grocery = "project/Grocery.txt"
    data_location_g = "s3://{}/{}".format(bucket,data_key_Grocery)
    Grocery = pd.read_csv(data_location_g, sep="\t")
```


Random Forest Model

Confusion Matrix

	precision	recall	f1-score	support	
negative	0.65	0.53	0.58	103880	
neutral	0.52	0.26	0.35	56067	
positive	0.87	0.95	0.91	551007	
accuracy			0.83	710954	
macro avg	0.68	0.58	0.61	710954	
weighted avg	0.81	0.83	0.82	710954	

	F1-Score Comparison					
	Combined Electronics Furniture Groce					
Negative	.58	.47	.52	.44		
Neutral	.35	.07	.11	.10		
Positive	.91	.87	.88	.90		

Conditions - One star ratings vs Five star ratings

Where: 1= True (Number of stars),

0= False (Star rating does not fit condition)

Multinomial Logit Model and R-Squared

ROC Curve

AUC

"Area under the curve"

Closer to 1- Better the model

K-Means Clustering

Find Clusters (the Elbow Method)

Dataset (Product Category, first 100,000 rows each)	Best K- value
Grocery	9
Furniture	18
Electronics	18

```
error_rate = []
for i in range(1,20):
    knn = KNeighborsClassifier(n_neighbors=i)
    knn.fit(X train,y train)
    pred_i = knn.predict(X_test)
    error_rate.append(np.mean(pred_i != y_test))
plt.figure(figsize=(10,6))
plt.plot(range(1,20),error_rate,color='blue', linestyle='dashed',
         marker='o', markerfacecolor='red', markersize=10)
plt.title('Error Rate vs. K Value')
plt.xlabel('K')
plt.ylabel('Error Rate')
print("Minimum error:-",min(error_rate),"at K =",error_rate.index(min(error_rate)))
Minimum error: -0.2757 at K = 9
                                    Error Rate vs. K Value
  0.38
  0.36
Error Rate
  0.34
  0.32
  0.30
  0.28
              2.5
                        5.0
                                  7.5
                                           10.0
                                                     12.5
                                                              15.0
                                                                        17.5
```

Compare Clusters

	<pre>Grocery_S.groupby('cluster').mean()</pre>								
[29]:		star_rating	helpful_votes	total_votes	verifiedpurchase_Y	vine_Y			
	cluster								
	0	2.002956	0.376248	0.764319	0.856542	0.008605			
	1	5.000000	274.222222	291.666667	1.000000	0.000000			
	2	1.000000	1377.000000	1463.000000	1.000000	0.000000			
	3	3.294574	51.821705	58.426357	0.790698	0.000000			
	4	3.590909	137.272727	151.272727	0.636364	0.000000			
	5	3.000000	583.000000	693.000000	0.500000	0.000000			
	6	4.867070	0.205473	0.281409	0.894788	0.004128			
	7	3.679684	4.391716	5.522091	0.791716	0.005325			
	8	3.486819	17.989455	21.304042	0.783831	0.008787			

[1	81]:	Clust Clust		_S[Grocery_S.cluste	er == 2]							
11	81]:		product_id		product_title	star_rating	helpful_votes	total_votes	verifiedpurchase_Y	vine_Y	cluster	
ν												

14]:	Electronics_S.groupby('cluster').mean()						
14]:		star_rating	helpful_votes	total_votes	verifiedpurchase_Y	vine_Y	
	cluster						
	0	4.689652	1.278039	1.616542	0.857380	0.014031	
	1	4.000000	1982.000000	2045.000000	1.000000	0.000000	
	2	3.909091	262.000000	276.363636	0.727273	0.000000	
	3	5.000000	1076.000000	1142.000000	1.000000	0.000000	
	4	3.678899	41.990826	55.137615	0.706422	0.018349	
	5	5.000000	2506.000000	2720.000000	1.000000	0.000000	
	6	3.950000	182.500000	202.600000	0.700000	0.150000	
	7	3.750000	327.125000	358.000000	0.625000	0.125000	
	8	3.218892	4.447194	6.262461	0.772046	0.021262	
	9	4.000000	518.666667	563.333333	0.666667	0.000000	
	10	1.320552	0.303743	0.600525	0.916875	0.001116	
	11	3.515152	25.409091	31.363636	0.715909	0.022727	
	12	3.800000	73.711111	83.000000	0.666667	0.000000	
	13	4.000000	851.000000	876.000000	1.000000	0.000000	
	14	4.029412	116.441176	131.029412	0.676471	0.029412	
	15	3.674071	0.034688	0.116212	0.931991	0.006511	
	16	3.539642	11.860614	15.317136	0.719949	0.021739	
	17	5.000000	0.000000	0.047194	0.937839	0.001767	

Findings:

Using Electronics product category as an example

- Helpful votes & Star_rating positive impact;
- Found products which have the most positive reviews:
 - Grocery: San Francisco Bay One Cup
 - o Electronics: Panasonic ErgoFit In-Ear Earbud Headphone
 - Furniture: Zinus SC-SBBK-14NT-FR Smartbase Bed Frame Metal, Narrow Twin)
- Vine Program & Helpful_votes Undetermined!


```
Five_star.product_title.value_counts()
Panasonic ErgoFit In-Ear Earbud Headphone
Mediabridge ULTRA Series HDMI Cable (3 Foot) – High-Speed Supports Ethernet, 3D and Audio Return [Newest Standar
AmazonBasics High-Speed HDMI Cable - 6.5 Feet (2 Meters) Supports Ethernet, 3D, 4K and Audio Return
AmazonBasics High Speed HDMI Cable
CABTE High speed HDMI 1.4 HDMI cable 10ft 1080p with mesh&filters supports 3D&blue ray
8461
ABLEGRID @ Trademarked AC DC Adapter For Sony ZS H10CP ZSH10CP Radio CD MP3 Player Boombox power wire cord Brand
OYAIDE HPC-62HDX Black 1.3m Headphone cable
Inova Solutions 4-Digit PoE Network Clock - Off-White Plastic - Red LEDs
New LCD Video Cable for 15.4 Inch Acer Aspire 3020 3610 5020 TravelMate 2410 4400 series laptop. (Not fit 15 inc
JVC RX-668 Audio/Video Receiver
Name: product_title, Length: 123503, dtype: int64
```


Business Impacts & Conclusion

Thank you!

