Week 11 Recitation

Riemann Integral and Measurable Sets, Integration in Practice

Yahoo

UM-SJTU Joint Institute

Summer 2017

- Riemann Integral and Measurable Sets
- 2 Integration in Practice

Jordan Measurable

Definition

3.3.3. Definition. Let $\Omega \subset \mathbb{R}^n$ be a bounded non-empty set. We define the outer and inner volume of Ω by

$$\begin{split} &\overline{V}(\Omega) := \inf \Bigl\{ \sum_{k=0}^r |Q_k| \colon r \in \mathbb{N}, \ Q_0, \dots, Q_r \in \mathcal{Q}_n, \ \Omega \subset \bigcup_{k=1}^r Q_k \Bigr\}, \\ &\underline{V}(\Omega) := \sup \Bigl\{ \sum_{k=0}^r |Q_k| \colon r \in \mathbb{N}, \ Q_0, \dots, Q_r \in \mathcal{Q}_n, \ \Omega \supset \bigcup_{k=1}^r Q_k, \ \bigcap_{k=1}^r Q_k = \emptyset \Bigr\}. \end{split}$$

It is easy to see that $0 \le \underline{V}(\Omega) \le \overline{V}(\Omega)$.

Jordan Measurable

Definition

- 3.3.4. Definition. Let $\Omega \subset \mathbb{R}^n$ be a bounded set. Then Ω is said to be (Jordan) measurable if either
 - (i) $\overline{V}(\Omega) = 0$ or
 - (ii) $\overline{V}(\Omega) = \underline{V}(\Omega)$.

In the first case, we say that Ω has (Jordan) measure zero, in the second case we say that

$$|\Omega| := \overline{V}(\Omega) = \underline{V}(\Omega)$$

is the Jordan measure of Ω .

Jordan Measurable

Example

- 3.3.5. Examples.
 - (i) A set $\{x\}$ consisting of a single point $x \in \mathbb{R}^n$ is a set of measure zero.
 - (ii) A subset of \mathbb{R}^n consisting of a finite number of single points is a set of measure zero.
 - (iii) A curve of finite length $\mathcal{C} \subset \mathbb{R}^n$, $n \geq 2$, is a set of measure zero.
- (iv) A bounded section of a plane in \mathbb{R}^3 is a set of measure zero.
- (v) The set of rational numbers in the interval [0, 1] has measure zero.
- (vi) The set of irrational numbers in the interval [0, 1] is not (Jordan) measurable.

- Riemann Integral and Measurable Sets
- 2 Integration in Practice

Integration in Practice

Example

3.4.1. Fubini's Theorem. Let Q_1 be and n_1 -cuboid and Q_2 an n_2 -cuboid so that $Q:=Q_1\times Q_2\subset \mathbb{R}^{n_1+n_2}$ is an (n_1+n_2) -cuboid. Assume that $f:Q\to\mathbb{R}$ is integrable on Q and that for every $x\in Q_1$ the integral

$$g(x) = \int_{Q_2} f(x, \cdot)$$

exists. Then

$$\int_Q f = \int_{Q_1 \times Q_2} f = \int_{Q_1} g = \int_{Q_1} \left(\int_{Q_2} f \right).$$

Practical Integration over \mathbb{R}^2

Question.

Calculate the integral $\iint\limits_D xydxdy$ over domain D, where D is the area bounded by

$$y^2 = x$$
 and $y = x - 2$

Practical Integration over \mathbb{R}^2

Question.

Calculate the integral $\iint\limits_D xydxdy$ over domain D, where D is the area bounded by $v^2=x$ and v=x-2

Solution.

$$\iint_{D} xydxdy = \int_{-1}^{2} dy \int_{y^{2}}^{y+2} xydx$$

$$= \frac{1}{2} \int_{-1}^{2} y[(y+2)^{2} - y^{4}]dy$$

$$= \frac{45}{9}$$

Theorem

3.4.12. Substitution Rule. Let $\Omega \subset \mathbb{R}^n$ be open and $g \colon \Omega \to \mathbb{R}^n$ injective and continuously differentiable. Suppose that $\det J_g(y) \neq 0$ for all $y \in \Omega$. Let K be a compact measurable subset of Ω . The g(K) is compact and measurable and if $f \colon g(K) \to \mathbb{R}$ is integrable, then

$$\int_{g(K)} f(x) dx = \int_{K} f(g(y)) \cdot |\det J_{g}(y)| dy.$$

Example

• Polar coordinates in \mathbb{R}^2 :

$$|\det J_{\varphi}| = r$$

• Cylindrical coordinates in \mathbb{R}^3 :

$$|\det J_{\varphi}| = r$$

• Spherical coordinates in \mathbb{R}^3 :

$$|\det J_{\varphi}| = r^2 \sin \theta$$

• *Spherical coordinates in \mathbb{R}^n :

$$|\det J_{\varphi}| = r^{n-1} \sin^{n-2} \theta_1 \sin^{n-3} \theta_2 ... \sin \theta_{n-2}$$

Question.

Calculate the volume of an ellipsoid in \mathbb{R}^3 , $\Omega = \{(x, y, z) \in \mathbb{R}^3 | \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}$

Question.

Calculate the volume of an ellipsoid in \mathbb{R}^3 , $\Omega = \{(x, y, z) \in \mathbb{R}^3 | \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}$

Solution.

Define new variable of $r \in [0, 1], \varphi \in [0, \pi], \theta \in [0, 2\pi]$

$$x = ar \sin \varphi \cos \theta$$

$$y = br \sin \varphi \sin \theta$$

$$z = cr \cos \varphi$$

Solution.

$$J_{\varphi} = \begin{pmatrix} a \sin \varphi \cos \theta & ar \cos \varphi \cos \theta & -ar \sin \varphi \sin \theta \\ b \sin \varphi \sin \theta & br \cos \varphi \sin \theta & br \sin \varphi \cos \theta \\ c \cos \varphi & -cr \sin \varphi & 0 \end{pmatrix}$$
$$|\det J_{\varphi}| = abcr^{2} \sin \varphi$$

Therefore, we have

$$\iiint_{\Omega} dxdydz = \iiint_{\Omega'} abcr^{2} \sin \varphi dr d\theta d\varphi$$

$$= abc \int_{0}^{1} r^{2} dr \int_{0}^{2\pi} d\theta \int_{0}^{\pi} \sin \varphi d\varphi$$

$$= \frac{4\pi}{3} abc$$

Question.

Calculate the volume of the n-dimensional ball $\mathcal{B}_n = \{x \in \mathbb{R}^n \big| x_1^2 + ... + x_n^2 \leq 1\}$

Solution.

Under spherical coordinates, domain $E_n = \{(r, \theta_1, ..., \theta_n) | 0 \le r \le 1, 0 \le \theta_1 \le \pi, 0 < \theta_2 < \pi, ..., 0 < \theta_{n-1} \le 2\pi\}$

$$V_{n} = \int_{\mathcal{B}_{n}} dx_{1} dx_{2} \cdots dx_{n}$$

$$= \int_{\mathcal{E}_{n}} r^{n-1} \sin^{n-2} \theta_{1} \sin^{n-3} \theta_{2} \cdots \sin \theta_{n-2} dr d\theta_{1} \cdots d\theta_{n-1}$$

$$= \int_{0}^{1} r^{n-1} dr \int_{0}^{\pi} \sin^{n-2} \theta_{1} d\theta_{1} \int_{0}^{\pi} \sin^{n-3} \theta_{2} d\theta_{2} \cdots \int_{0}^{\pi} \sin \theta_{n-2} d\theta_{n-2} \int_{0}^{2\pi} d\theta_{n-1}$$

Solution.

when $k \in \mathbb{N}$, we have $k-1 \leq 0$, $\sin \theta = \sin(\pi - \theta)$

$$\int\limits_{0}^{\pi}\sin^{k-1}\theta d\theta=2\int\limits_{0}^{\frac{\pi}{2}}\sin^{k-1}\theta d\theta$$

we now let

$$I_n = \int_{0}^{\frac{\pi}{2}} \sin^n \theta d\theta$$

Solution.

Use integral by parts, we can find

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n}\theta d\theta = \int_{0}^{\frac{\pi}{2}} - \sin^{n-1}\theta d\cos\theta$$

$$= (-\sin^{n-1}\theta\cos\theta)\Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \cos\theta d(-\sin^{n-1}\theta)$$

$$= (n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n-2}\theta\cos^{2}\theta d\theta$$

$$= (n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n-2}\theta d\theta - (n-1)\int_{0}^{\frac{\pi}{2}} \sin^{n}\theta d\theta$$

Solution.

The formula simply means

$$I_n = (n-1)I_{n-2} - (n-1)I_n$$

$$I_n = \frac{n-1}{n}I_{n-2}$$

We can find the base case

$$I_0 = \int\limits_0^{\frac{\pi}{2}} d\theta = \frac{\pi}{2}$$

$$I_1 = \int\limits_0^{\frac{\pi}{2}} \sin\theta d\theta = 1$$

Solution.

Combine the recursive formula, we can find out

$$I_n = \begin{cases} \frac{(2m-1)(2m-3)\cdots 3}{(2m)(2m-2)\cdots 2} \frac{\pi}{2}, & n = 2m \\ \frac{(2m)(2m-2)\cdots 2}{(2m+1)(2m-1)\cdots 3}, & n = 2m+1 \end{cases}$$

or more elegantly

$$I_n = \begin{cases} \frac{(2m-1)!!}{(2m)!!} \frac{\pi}{2}, & n = 2m \\ \frac{(2m)!!}{(2m+1)!!}, & n = 2m+1 \end{cases}$$

Then the volume is (product of I_n s !!)

$$V_n = \begin{cases} \frac{\pi^m}{m!}, & n = 2m \\ \frac{2^{m+1}\pi^m}{(2m+1)!!}, & n = 2m+1 \end{cases}$$

Theorem

3.4.18. Green's Theorem. Let $R \subset \mathbb{R}^2$ be a bounded, simple region and $\Omega \supset R$ an open set containing R. Let $F \colon \Omega \to \mathbb{R}^2$ be a continuously differentiable vector field. Then

$$\int_{\partial R^*} F \, d\vec{s} = \int_R \left(\frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right) \, dx \tag{3.4.1}$$

where ∂R^* denotes the boundary curve of R with positive (counter-clockwise) orientation.

Comment.

Green's Theorem in \mathbb{R}^3 , Stokes' Theorem in \mathbb{R}^3 (Important!)

$$\int\limits_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \oint\limits_{\partial S} \mathbf{F} \cdot d\mathbf{r}$$

General form:

$$\int_{S} \mathsf{rot} \mathbf{F} \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r}$$

Question.

Calculate the line integral

$$\oint_{L} 2xydx + x^{2}dy$$

Question.

Calculate the line integral

$$\oint_{L} 2xydx + x^{2}dy$$

Solution.

Let

$$P = 2xy$$

$$Q = x^{2}$$

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial x} = 2x - 2x = 0$$

Therefore, we get

$$\oint_{C} 2xydx + x^2dy = 0$$

