6 (a) Two overlapping waves of the same type travel in the same direction. The variation with distance *x* of the displacement *y* of each wave is shown in Fig. 6.1.

Fig. 6.1

The speed of the waves is $240\,\mathrm{m\,s^{-1}}$. The waves are coherent and produce an interference pattern.

(i)	Explain the meaning of <i>coherence</i> and <i>interference</i> .
	coherence:
	interference:
	<u>[</u>

(ii) Fig. 6.1 to determine the frequency of the waves.

	(iii)	State the phase difference between the waves.
		phase difference =° [1]
	(iv)	the principle of superposition to sketch, on Fig. 6.1, the resultant wave. [2]
(b)	An i	interference pattern is produced with the arrangement shown in Fig. 6.2.
		Fig. 6.2 (not to scale)
		er light of wavelength λ of 546 nm is incident on the slits S ₁ and S ₂ . The slits are a distance 3 mm apart. The distance between the slits and the screen is 85 cm.
	zero	points on the screen are labelled A and B. The path difference between S_1A and S_2A is c. The path difference between S_1B and S_2B is 2.5 λ . Maxima and minima of intensity of tare produced on the screen.
	(i)	Calculate the distance AB.
		distance = m [3]
	(ii)	The laser is replaced by a laser emitting blue light. State and explain the change in the distance between the maxima observed on the screen.

.....

.....

.....[1]