3.3: Cramer's Pube

Theorem 7: (Cramer's Pube) Let A be an invertible matrix. For any $\hat{b} \in IR^n$, the unique solution \hat{x} of $A\hat{x}=\hat{b}$ has entries given by $\hat{x}:=\frac{\det A_i(\hat{b})}{\det A}$, $\hat{x}:=\frac{\det A_i(\hat{b})}{\det A}$, $\hat{x}:=\frac{1}{1}$

Ex 1: use Cramer's rule to solve $3x_1 - 2x_2 = 6$

Note: A. (b) Es the matrix obtained by replacing column; by vector b.

det A = 3(4) - (-2)(-5) = 2 $det A_1(5) = 6(4) - (-2)(8) = 40$ $det A_2(5) = 3(8) - (6)(-5) = 54$

$$A = \begin{bmatrix} 3 - 2 \\ -5 & 4 \end{bmatrix}$$

$$A_{1}(6) = \begin{bmatrix} 6 & -2 \\ 8 & 4 \end{bmatrix}$$

$$A_{2}(6) = \begin{bmatrix} 3 & 6 \\ -5 & 8 \end{bmatrix}$$

$$x_{2}=\frac{54}{3}=27 \quad \boxed{\vec{\chi}=\begin{bmatrix}20\\21\end{bmatrix}}$$

Ex 2: Use Cramer's rule to solve

$$4x_1 + x_2 = 6$$
 $3x_1 + 2x_2 = 7$
 $b = \begin{bmatrix} 4 \\ 7 \end{bmatrix}$
 $b = \begin{bmatrix} 9 \\ 7 \end{bmatrix}$
 $det A = 4(a) - 1(3) = 5$
 $det A_1(b) = 6(a) - 1(9) = 5$
 $det A_2(b) = 4(9) - 6(3) = 10$
 $x_1 = \frac{5}{5} = 1$
 $x_2 = \frac{5}{5} = 2$
 $x_3 = \frac{1}{5} = 3$
 $x_4 = \frac{1}{5} = 3$
 $x_4 = \frac{1}{5} = 3$

Ex3: Consider the following system where s is an unspecified parameter. Determine the values of an unspecified parameter has a unique solution. S for which the system has a unique solution.

S for which the system has a comp

$$3s \times_{1} - 2x_{0} = 4$$

$$-6 \times_{1} + 5 \times_{2} = 1$$

$$4 = 4 = 3s^{2} - (-1)(-6) = 3s^{2} = 12$$

$$4 = 4 = 3s^{2} - (-1)(-6) = 3s^{2} = 12$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 5$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 =$$

$$\vec{X} = \begin{bmatrix} 2(35+1) \\ 7(5-2)(5+2) \end{bmatrix}$$
 for every 5 that satisfies this or $\frac{5+8}{(5-2)(5+2)}$ this or $5 \neq \pm 2$

Proof of Cramers Rule: Denote the columns of Aby
à,,,à, and the column of In by ē,
If Ax=b, we know, via matrix mair,
A. I,(2) = A[e, x, en]
"Ly Copular
= [Aē, Aż Aèr]
=[a, an] = A(Cb)
Totalama
Since determinants are multiplicative (let A) (let I, (x)) = det A, (b)
=) (detA)(xi) = detAi(b) =) Xi = detAi(b) detA
=) (detA)(xi) = detA(lo) =) Ni = detA
det A det A
Des: The matrix of cofactors of A given below is called the Adjugate (or Adjoint) of A, Lenoted by
Cin Con Con Cin Con
Cin can Con]
* Cij = (-1) det Aij

Theorem 8: Let A be annin invertible motion. Then A' = That ads A Ex 3: Find A' for A= 1-11 C1=(-1)+ |-1 |-2 -2 C12=(-1)+0 |11 |=-(-3)=3 C13 = (-1) 1 -1 = + (5)=5 C21 = (-1) 1 3 = (-1) (-14) = 14 Car= (-1) atal 23 =+ (-7)=-7 Ca3=(-1) at3 |21/2(-)(n)=-7 C31=(4)3+1 | 13 |=+ (4)=4 C32(4) | 23 |= (-1) (-1)=1 (33 = (-1)313 | 2 1 | = + (-3) = -3 ads t = 3 1081/500 $\begin{array}{c} adj \ A = \begin{pmatrix} -2 & 19 & 9 \\ 3 & -9 & 1 \\ 5 & -9 & -3 \end{pmatrix}$ det A=2 -1 1 -1 13 +1 13 | +1 1 | 13 | = 2(2-4) -1 (-2-12) +1 (1-(-3)) = -4 +14+4=14 $A^{-1} = \frac{1}{14} \begin{bmatrix} -2 & 14 & 4 \\ -3 & -7 & 1 \\ 5 & -7 & -3 \end{bmatrix} = \begin{bmatrix} -19 & 1 & 219 \\ 3/44 & -12 & 1/44 \\ 5/44 & -12 & -3/44 \end{bmatrix}$

Ex: First the volume of the para, with one vertex at the origin and adjacent vertices at (1,0,-3), (1,2,4) and (5,1,0).

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 0 & 4 & 0 \end{bmatrix}$$
Volume = $\begin{bmatrix} 1 & 1 & 21 \\ -3 & 40 \end{bmatrix} - 0 \begin{bmatrix} 15 & 1 & -3 \\ 10 & 1 \end{bmatrix} \begin{bmatrix} 15 \\ 10 & 1 \end{bmatrix}$

$$= \begin{bmatrix} 1 & (2(0) - 4(1)) & -0 & +-3 & (1-10) \\ -1 & 1 & -0 & +27 \end{bmatrix} = \begin{bmatrix} 23 \\ -3 & -0 & +27 \end{bmatrix} = \begin{bmatrix} 23 \\ -3 & -0 & +27 \end{bmatrix} = \begin{bmatrix} 23 \\ -3 & -0 & +27 \end{bmatrix}$$

Thm 10: Let T: 122 - 122 be a lin. trans. determined by A. If S is a parallelogram in 122, then { area of T (s)} = | det Al. { area of S} If T: 123 -> 123 and S is a parallele piped, then {volume of T(s)} = | det Al. { volume of S}. Theorem 9: If A is a 2x2 matrix, the area of the parallelogram determined by the columns of A is I det Al. If A is a 3x3 matrix, then the volume of the parallelepiped determined by the columns of A is I det Al.

Corollary. Let a, and as be nonzero vectors. Then for any scalar c, the area of the parallelogram determined by a, and is equals the area of the parallelogram determined by a, and as t Ca,

Ex 4: Calculate the area of the parallelegram determined by (-2,-2), (0,3), (4,-1) and (6,4)

First, let's shift one Wertex as the origin. Let's subtract (-2,-2) from Each vertex so we have (0,0), (2,5), (6,1), and (8,6)

From our geometric dis cousinon in chepter 1, $A = \begin{bmatrix} 2 & 6 \\ 5 & 1 \end{bmatrix}$

Area = | det Al = | 2(1) - 6(5) | = 28