A Proof of Theorem 1

Proof. We illustrate the complexity of the problem with a simple example where $P = \{V\}$ in the function $f(\cdot)$. In this instance, the TSM problem simplifies to a co-exposure maximization problem, which is known to be NP-hard [3]. Consequently, the TSM problem itself is also NP-hard.

B Proof of Theorem 2

Proof. For monotonicity, in general, $f(S_t) - f(S_t') \ge 0$ holds constantly when $S_t' \subseteq S_t$. Thus, $f(\cdot)$ is monotonic. For non-submodularity, we consider it by figure ?? and let $S_r = \{v_0\}$ and $P = \{v_3\}$, while the dashed line indicates failed activation of the edge. Assume that edge (v_4, v_3) , (v_5, v_3) probabilities is 0 and other edges probabilities p(e) = 1. First, we consider $A = \emptyset$, $B = \{v_4\}$ and node v_5 . It is straightforward to compute the score $s_X(A) = 0$ and $s_X(B) = 0$. Then, we consider the score rises to 1 when adding v_5 to s_1 . Through calculation, we can obtain $s_1(B \cup \{v_5\}) = 1$ and $s_1(A \cup \{v_5\}) = 0$. Therefore, due to $s_1(B \cup \{v_5\}) = s_1(A \cup \{v_5\}) = s_1(A \cup \{v_5\}) = 0$. The original objective function does not satisfy submodularity.

C Proof of Lemma 1

Proof. $f(S'_t \cup \{v\}) - f(S'_t)$ represents the number of nodes in f(v) that are not included in the union $\bigcup_{u \in S'_t} f(u)$. When $S'_t \subseteq S_t$, the number is at least as large as the number of nodes in f(v) that are not in the larger union $\bigcup_{u \in S_t} f(u)$. Thus, it follows that $f(S'_t \cup \{v\}) - f(S'_t) \ge f(S_t \cup \{v\}) - f(S_t)$, which demonstrates the submodularity.

D Proof of Lemma 2

Proof. Because we consider only the score of nodes activated by its neighbor, it becomes a traditional influence maximization problem. Thus, the lower bound function satisfies submodularity. \Box

E Proof of Lemma 5

Proof. First, we conside the $\sigma^l(S^*)$. Let $\Lambda_2(S^*) = \frac{COV_{R_2}(S^*)}{n}|P|$ be the weighted coverage of S^* in R_2 and $\theta_2 = |R_2|$. For any $\delta \in (0,1)$, we have

$$Pr[\sigma(S^*) \ge ((\sqrt{\Lambda_2(S^*) + \frac{25a}{36}} - \sqrt{a})^2 - \frac{a}{36})\frac{n}{\theta_2}] \ge 1 - \delta$$
 (1)

where
$$a = \ln(\frac{1}{\delta})$$
 and $\theta_2 = \frac{(\epsilon - (1 - \frac{1}{e}\epsilon_1))^2 \text{OPT}}{2(1 - \frac{1}{e})\log(\frac{\binom{n}{\delta}}{\delta_2})}$.

First, we prove

$$\Pr[\sigma(S^*) < ((\sqrt{\Lambda^2(S^*)} + \frac{25a}{36} - \sqrt{a})^2 - \frac{a}{36})\frac{n}{\theta_2}]$$

$$\leq \Pr[\sigma(S^*) < ((\sqrt{\Lambda^2(S^*)} + \frac{25a}{36} - \sqrt{a})^2 - \frac{a}{36})\frac{n}{\theta_2}]$$

$$= \Pr[\sigma(S^*) \cdot \frac{\theta_2}{n} < (\sqrt{\Lambda^2(S^*)} + \frac{25a}{36} - \sqrt{a})^2 - \frac{a}{36}]$$

$$= \Pr[b + \frac{a}{36} < (\sqrt{\Lambda^2(S^*)} + \frac{25a}{36} - \sqrt{a})^2]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36} - \sqrt{a}]$$

$$+ \Pr[\sqrt{b + \frac{a}{36}} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36} - \sqrt{a}]$$

$$+ \Pr[\sqrt{b + \frac{a}{36}} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36} - \sqrt{a}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} + \sqrt{a} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} + \sqrt{a} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} + \sqrt{a} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} + \sqrt{a} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} + \sqrt{a} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} + \sqrt{a} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} + \sqrt{a} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} + \sqrt{a} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} + \sqrt{a} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}]$$

$$= \Pr[\sqrt{b + \frac{a}{36}} + \sqrt{a} < \sqrt{\Lambda^2(S^*)} + \frac{25a}{36}$$

$$= \Pr[\sqrt{b + \frac{a}{36}} - \sqrt{a}]$$

$$= \Pr[\sqrt{b + \frac{a}{$$

By setting δ_2 and θ_2 which we will discuss next, we can obtain $\sigma^l(S^*) = \left(\left(\sqrt{\Lambda_2(S^*) + \frac{25\ln\left(\frac{1}{\delta_2}\right)}{36}} - \sqrt{\ln\left(\frac{1}{\delta_2}\right)}\right)^2 - \frac{\ln\left(\frac{1}{\delta_2}\right)}{36}\right) \cdot \frac{(\epsilon - (1 - \frac{1}{\epsilon}\epsilon_1))^2 \text{OPT}}{2(1 - \frac{1}{\epsilon})\log\left(\frac{n}{\delta_2}\right)}$

Next, we conside the $\sigma^u(S^o)$. Let $\Lambda_1(S^*) = \frac{COV_{R_1}(S^*)}{n}|P|$ be the weighted coverage of S^* in R_1 and $\theta_1 = |R_1|$. We can obtain $\sigma(S^o)$ based on the weighted

coverage of S^* in R_1 employing the property of the greedy algorithm that ensures $\Lambda_1(S^*) \geq (1 - \frac{1}{e})\Lambda_1(S_0)$. For any $\delta \in (0,1)$, we have

$$Pr[\sigma(S^o) \le (\sqrt{\frac{\Lambda_1(S^*)}{\frac{1}{e}} + a} + \sqrt{a})^2 \frac{n}{\theta_2}] \ge 1 - \delta$$
 (2)

where $a = \ln(\frac{1}{\delta})$ and $\theta_1 = \frac{4|P|\log(\frac{1}{\delta_1})}{\epsilon_1^2 OPT}$,

$$\Pr[\sigma(S^o) > (\sqrt{\frac{\Lambda_1(S^*)}{1 - 1/e}} + a + \sqrt{a})^2 \frac{n}{\theta_1}]$$

$$\leq \Pr[\sigma(S^o) > (\sqrt{\Lambda_1(S^o)} + a + \sqrt{a})^2 \frac{n}{\theta_1}]$$

$$= \Pr[\sigma(S^o) \cdot \frac{\theta_1}{n} > (\sqrt{\Lambda_1(S^o)} + a + \sqrt{a})^2]$$

$$= \Pr[b > (\sqrt{\Lambda_1(S^o)} + a + \sqrt{a})^2]$$

$$= \Pr[b > (\sqrt{\Lambda_1(S^o)} + a + \sqrt{a})^2]$$

$$= \Pr[\sqrt{b} > \sqrt{\Lambda_1(S^o)} + a + \sqrt{a}]$$

$$= \Pr[\sqrt{b} - \sqrt{a} > \sqrt{\Lambda_1(S^o)} + a]$$

$$= \Pr[b + a - 2\sqrt{ab} > \Lambda_1(S^o) + a]$$

$$= \Pr[b + a - 2\sqrt{ab} > \Lambda_1(S^o) + a]$$

$$= \Pr[-\sqrt{4ab} > \Lambda_1(S^o) - b]$$

$$= \Pr[-\sqrt{4ab} > \Lambda_1(S^o) - \sigma(S^o) \cdot \frac{\theta_1}{n}]$$

$$\leq \Pr[-\sqrt{4ab} > \Lambda_1(S^o) - \sigma(S^o) \cdot \frac{\theta_1}{n}]$$

$$\leq \exp(\frac{-4a\sigma(S^o) \cdot \frac{\theta_1}{n}}{4\sigma(S^o) \cdot \frac{\theta_1}{n}})$$

$$= \exp(\frac{-a}{|P|})$$

$$\leq \exp(-a) = \delta$$

Similarly, by setting δ_1 and θ_1 which we will discuss next, we can obtain $\sigma^u(S^o) = \left(\sqrt{\frac{\Lambda_1(S^*)}{1/e} + \ln\left(\frac{1}{\delta_1}\right)} + \sqrt{\ln\left(\frac{1}{\delta_1}\right)}\right)^2 \frac{n\epsilon_1^2 \text{OPT}}{4|P|\log\left(\frac{1}{\delta_1}\right)}$

F Proof of Lemma 6

Proof. First, we consider obtaining the θ_1 . Let $\delta_1 \in (0,1), \epsilon_1 > 0$ and

$$\theta_1 = \frac{4|P|log(\frac{1}{\delta_1})}{\epsilon_1^2 OPT} \tag{3}$$

If $\theta \geq \theta_1$, then $n \cdot F_R(S^o) \geq (1 - \epsilon_1) \cdot OPT$ holds with at least $1 - \delta_1$ probability. Let $p = E[F_R(S^o)] = \sigma(S^o)/n = OPT/n$,

$$Pr[n \cdot F_{R}(S^{o}) \leq (1 - \epsilon_{1}) \cdot OPT]$$

$$=Pr[n \cdot F_{R}(S^{o}) \leq (1 - \epsilon_{1}) \cdot np]$$

$$=Pr[\theta \cdot F_{R}(S^{o}) \leq (1 - \epsilon_{1}) \cdot \theta p]$$

$$\leq Pr[\theta \cdot F_{R}(S^{o}) \leq (1 - \epsilon_{1}) \cdot \theta p]$$

$$=Pr[\sum_{i} Z_{i}(S^{o}) - \theta p \leq \epsilon_{1} \theta p]$$

$$=Pr[\sum_{i} Z_{i}(S^{o}) - \sigma(S^{o}) \frac{\theta}{n} \leq \epsilon_{1} \sigma(S^{o}) \frac{\theta}{n}]$$

$$\leq exp(\frac{(-\epsilon_{1}^{2} \sigma(S^{o})^{2}(\frac{\theta}{n})^{2}}{4\sigma(S^{o}) \frac{\theta}{n} \frac{|P|}{n}})$$

$$=exp(\frac{-\epsilon_{1}^{2} \sigma(S^{o}) \theta}{4|P|})$$

$$\leq \delta_{1}$$

$$(4)$$

Suppose that $nF_R(S^o) \ge (1-\epsilon_1) \cdot OPT$ holds, by the properties of the greedy approach,

$$n \cdot F_R(S^*) \ge (1 - 1/e)n \cdot F_R(S^o)$$

$$\ge (1 - 1/e)(1 - \epsilon_1) \cdot OPT$$
 (5)

Intuitively, this indicates that the expected mitigation of S^* is likely to be large, since $n \cdot F_R(S^*)$ is an indicator of $\sigma(S^*)$.

Next, we consider obtaining the θ_2 . Let $\delta_2 \in (0,1), \epsilon_1 < \epsilon$ and

$$\theta_2 = \frac{2(1 - 1/e) \cdot nlog(\frac{\binom{n}{k}}{\delta_2})}{(\epsilon - (1 - 1/e\epsilon'))^2 \cdot OPT} \tag{6}$$

. If Equation 5 holds and $\theta \ge \theta_2$, then with at least $1 - \delta_2$ probability, $\sigma(S^*) \ge (1 - 1/e - \epsilon) \cdot OPT$.

Let S be an arbitrary size-k seed set. We say S is bad if $\sigma(S) < (1 - 1/e - \epsilon) \cdot OPT$. To prove this, we show that each bad size-k seed set has at most $\frac{\delta_2}{\binom{n}{k}}$ probability to be returned by applying the greedy algorithm to a collection of θ_2 RS sets. This suffices to establish the lemma because (1) there exist only $\binom{n}{k}$ bad size-k seed sets, and (2) if each of them has at most $\frac{\delta_2}{\binom{n}{k}}$ probability to be returned, then by the union bound, there is at least $1 - \delta_2$ probability that none of them is output by the greedy algorithm. Consider any bad size-k seed set S.

Let $p = E[F_R(S)] = \sigma(S)/n$. We have

$$Pr[n \cdot F_R(S) - \sigma(S) \ge \epsilon_2]$$

$$= Pr[n \cdot F_R(S) \ge \sigma(S) + \epsilon_2 \cdot OPT]$$

$$\ge Pr[n \cdot F_R(S) \ge (1 - 1/e)OPT + \epsilon_2 \cdot OPT]$$

$$= Pr[n \cdot F_R(S) \ge (1 - 1/e + \epsilon) + \epsilon_2) \cdot OPT]$$
(7)

We set ϵ_2 such that the multiplicative factor of OPT in Equation 3 is equal to the one in Equation 6.

$$\epsilon_2 = (\epsilon - (1 - 1/e\epsilon_1))^2 \tag{8}$$

Then, we can apply our Chernoff bounds by re-writing $Pr[n \cdot F_R(S) - \sigma(S) \ge \epsilon_2 \cdot OPT] = Pr[\theta \cdot F_R(S) - \sigma(S) \frac{\theta}{n} \ge 2\sigma(S) \cdot \frac{\theta}{n} \cdot OPT]$ and letting $\lambda = \sigma(S) 2 \cdot \frac{\theta}{n} \cdot OPT$ to get

$$Pr[n \cdot F_{R}(S) - \sigma(S) \geq \epsilon_{2}]$$

$$=Pr[\theta \cdot F_{R}(S) - \sigma(S) \cdot \frac{\theta}{n} \geq \epsilon_{2} \cdot \frac{\theta}{n} \cdot OPT]$$

$$\leq exp(\frac{-\epsilon_{2}^{2} \cdot \frac{\theta^{2}}{n^{2}} \cdot OPT}{\frac{2}{3}\epsilon_{2} \cdot \frac{\theta}{n} \cdot OPT + 4\theta \frac{\sigma(S)}{n} \cdot \frac{|P|}{n}})$$

$$\leq exp(\frac{-\epsilon_{2}^{2} \cdot \theta^{2} \cdot OPT}{\frac{2}{3}\epsilon_{2} \cdot \theta n \cdot OPT + 4\theta \cdot (1 - 1/e - \epsilon) \cdot OPT \cdot |P|})$$

$$\leq exp(-\frac{(\epsilon - (1 - 1/e\epsilon_{1}))^{2} \cdot \theta \cdot OPT}{2(1 - 1/e) \cdot n})$$

$$\leq exp(-\frac{(\epsilon - (1 - 1/e\epsilon_{1}))^{2} \cdot \theta_{2} \cdot OPT}{2(1 - 1/e) \cdot n})$$

$$\leq exp(-\frac{(\epsilon - (1 - 1/e\epsilon_{1}))^{2} \cdot \theta_{2} \cdot OPT}{2(1 - 1/e) \cdot n})$$

$$\leq \frac{\delta_{2}}{\binom{n}{k}}$$

We can derive the third inequality through $\frac{2|P|}{n} \leq 1$ Then, due to $\sigma(S^*) \geq (1-1/e-\epsilon) \cdot OPT$ holds with at least $1-\delta_2$ probability under the condition that Equation 5 holds. And Equation 5 holds with at least $1 - \delta_1$ probability. By the union bound, $\sigma(S^*) \geq (1 - 1/e - \epsilon) \cdot OPT$ holds with at least $1 - \delta_1 - \delta_2 \ge 1 - \delta$ probability.

Then we consider how should we select ϵ_1 , δ_1 and δ_2 to minimize θ ? Assume that OPT is known. We are trying to minimize $\theta^* = argmax\{\theta_1, \theta_2\}$ subject to $\delta_1 + \delta_2 \leq \delta$. Following an approach similar to that of [1], we set $\delta_1 = \delta_2 = \frac{1}{2}$ and set $\theta_1 = \theta_2$ to derive an approximately minimal value for θ^* .

$$\theta^* \le \frac{8n(1-1/e)[\ln\frac{2}{\delta} + \ln\binom{n}{k}]}{OPT\epsilon^2} \tag{10}$$

Let R be a collection of random RS sets and S^* be a size-k seed set generated by applying the greedy algorithm on R. For fixed ϵ , and δ , and

$$|R| \ge \frac{8n(1 - 1/e)\left[\ln\frac{2}{\delta} + \ln\binom{n}{k}\right]}{OPT\epsilon^2} \tag{11}$$

Table 1. Statistics of datasets

Dataset	Type	V	E	Avg. deg
Facebook (FB)	undirected	4,039	88,234	43.6
Email-EuAll (EU)	undirected	15,229	31,376	3.1
Email-Enron (EN)	Undirected	36,692	183,831	20.0
TwitchGamers (TG)	undirected	168,114	6,797,557	80.9
Stanford (EP)	directed	281,903	2,312,497	16.4
Google (GO)	directed	875,713	5,105,039	11.1

then S^* is a $(1-1/e-\epsilon)$ -approximate solution with at least $1-\delta$ probability. Thus, we can acquire the θ_{max} in algorithm 1:

$$\theta_{max} \ge \frac{8n(1 - 1/e)[\ln\frac{2}{\delta} + \ln\binom{n}{k}]}{LB\epsilon^2} \tag{12}$$

which is an upper bound on the number of RS sets needed to guarantee a $(1-1/e-\epsilon)$ approximation with at least $1-\delta$ probability when $LB \leq OPT$ is a lower bound of the optimal mitigation, we derive the LB from [2].

References

- 1. Tang, J., Tang, X., Xiao, X., Yuan, J.: Online processing algorithms for influence maximization. In: SIGMOD. pp. 991–1005 (2018)
- 2. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: Near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of data. pp. 75–86 (2014)
- 3. Tu, S., Aslay, C., Gionis, A.: Co-exposure maximization in online social networks. Advances in Neural Information Processing Systems **33**, 3232–3243 (2020)