SH2702 Nuclear Reactor Technology

Exercise Session 01

Analysis of nuclear energy systems

- Thermodynamic systems
 - Isolated system
 - Closed system (control mass)
 - Open system (control volume)
 - For example, heat exchanger, pump, turbine, and nuclear reactor

Open system equations

Mass conservation

$$\left(\frac{dm}{dt}\right)_{CV} = \sum_{j \in in} W_j - \sum_{k \in out} W_k$$

Energy conservation

Control Volume (open system)

$$\left[\frac{d\left(me_{T}\right)}{dt}\right]_{CV} = q - N_{shaft} - N_{normal} - N_{shear} + \sum_{j \in in} \left(i + e_{P} + e_{K}\right)_{j} W_{j} - \sum_{k \in out} \left(i + e_{P} + e_{K}\right)_{k} W_{k}$$

Nuclear power systems

- Nuclear power system analysis
 - Heat exchanger
 - Turbine, pump

Nuclear power systems

- Nuclear power system analysis
 - Heat exchanger
 - $N_{shaft} = 0$
 - N_{normal} , N_{shear} , e_p , e_K can be neglected sometimes
 - Typically $0 = q + W_{in}^* i_{in} W_{out}^* i_{out}$

$$\left(\frac{dm}{dt}\right)_{CV} = \sum_{j \in in} W_j - \sum_{k \in out} W_k$$

$$\left[\frac{d\left(me_{T}\right)}{dt}\right]_{CV} = q - N_{shaft} - N_{normal} - N_{shear} + \sum_{j \in in} \left(i + e_{P} + e_{K}\right)_{j} W_{j} - \sum_{k \in out} \left(i + e_{P} + e_{K}\right)_{k} W_{k}$$

Heat exchanger Steam generator Feedwater heater

Reactor

Feedwater heater

Pressurizer

Nuclear power systems

- Nuclear power system analysis
 - Turbine, pump
 - Usually q = 0
 - N_{normal} , N_{shear} , e_p , e_K can be neglected sometimes

- Typically
$$0 = -N_{shaft} + W_{in} i_{in} - W_{out} i_{out}$$

$$\left(\frac{dm}{dt}\right)_{CV} = \sum_{j \in in} W_j - \sum_{k \in out} W_k$$

$$\left[\frac{d\left(me_{T}\right)}{dt}\right]_{CV} = q - N_{shaft} - N_{normal} - N_{shear} + \sum_{j \in in} \left(i + e_{P} + e_{K}\right)_{j} W_{j} - \sum_{k \in out} \left(i + e_{P} + e_{K}\right)_{k} W_{k}$$

Condensing Power Schematic

Ideal Sub-critical Rankine Cycle

Turbine (1)

- We define the following turbine powers:
 - the theoretical (isentropic) power $N_{th} = W(i_1-i_{2s})$
 - the internal turbine power N_i = W(i₁-i₂)
- Based on these powers, the internal turbine efficiency is defined as

$$\eta_i = \frac{N_i}{N_{th}} \quad \Longrightarrow \quad \eta_i = \frac{i_1 - i_2}{i_1 - i_{2s}}$$

• The turbine effective power is based on mechanical efficiency η_{m} and is given as

$$N_{\it eff} = \eta_{\it m} N_{\it i} = \eta_{\it m} \eta_{\it i} N_{\it th}$$

Turbine (2)

In modelling a turbine, we usually know the following data:

pressure and temperature of steam at the inlet: p_1 , T_1

- pressure of steam at the exit: p_2
- internal efficiency of turbine η_i
- Our task is to find the specific enthalpy of the steam at the exit, i_2 and N_i . The solution is:
 - 1) we find $i_1(p_1, T_1)$: using XSteam, we have: $i_1 = XSteam('h_pT', p_1, T_1)$
 - 2) we find $s_1(p_1, T_1)$ as $s_1 = XSteam('s_ph', p_1, i_1)$ and next we find i_{2s} as (3) $i_{2s} = XSteam('h_ps', p_2, s_1)$ and finally (4) $i_2 = i_1 - \eta_i (i_1 - i_{2s})$

Pump (1)

- To increase pressure from 3 to 4 pumping power |N_{iP}| has to be supplied
- From the energy conservation principle for steady-state (dE_T/dt=0) we have

$$\frac{dE_T}{dt} = q - N_{iP} + W_3 (i_3 + e_{P3} + e_{K3}) - W_4 (i_4 + e_{P4} + e_{K4}) = 0$$

• here we have to supply power to the system thus $-N_{iP} = |N_{iP}|$, no heat is added thus q = 0, we also neglect kinetic and potential energy changes and from mass conservation we have $W_3 = W_4 = W_{Here \ \rho_e \ is \ an \ equivalent}$

$$\left|N_{iP}\right| = W\left(i_4 - i_3\right) = W\left(\underbrace{e_{I4} - e_{I3}}_{\text{internal energy}} + \frac{p_4 - p_3}{\rho_e}\right) = W\underbrace{\frac{p_4 - p_3}{\rho_e}}_{N_{uP} = \text{useful pumping}} + W\Delta e_I$$
internal energy increase

Here ρ_e is an equivalent fluid density for process 3-4. Typically we assume $\rho_e \approx \rho_3 \approx \rho_4$ (incompressible)

Pump (2)

• Due to internal losses, internal power is: $|N_{iP}| = \frac{1}{N_{iP}}$

• Finally, the electric motor power for pumping is found as: $|N_{elP}| = \frac{|N_{effP}|}{n_{effP}}$

N_{uP} – useful pumping power

Here η_{EM} : is the electrical motor efficiency

Pump (3)

Typical tasks: (1) calculate required electrical power to produce given pressure difference; (2) calculate specific enthalpy at pump discharge for given electrical power; (3) the same as in (2) for given pressure drop

1)
$$|N_{elP}| = W \frac{p_4 - p_3}{\eta_{iP} \eta_{mP} \eta_{EM} \rho_e}$$

2)
$$i_4 - i_3 = \frac{\eta_{mP} \eta_{EM} |N_{elP}|}{W}$$

3)
$$i_4 - i_3 = \frac{p_4 - p_3}{\rho_e \eta_{iP}}$$

- Mass and energy balance can be formulated for the entire reactor pressure vessel (RPV), with separate analysis of:
 - Downcomer
 - Lower plenum
 - Core
 - Steam separators and dryers
- As a result, a consistent flow distribution in the RPV components can be obtained.
- This can be used as an initial state for the further transient analysis.

Schematic of BWR Plant

• Internal flow cannot be calculated with a simple model.

Energy balance in BWR

- We use the Control Volume (CV) approach to formulate the mass and energy conservation for BWR parts
- In general, the equations are as follows:
- Mass conservation

$$\left(\frac{dm}{dt}\right)_{CV} = \sum_{j \in in} W_j - \sum_{k \in out} W_k$$

- where W_i , W_k mass flow rate through j^{th} inlet and k^{th} outlet.
- Energy conservation

$$\begin{split} & \left[\frac{d(me_T)}{dt}\right]_{CV} \\ &= q - N_{shaft} - N_{normal} - N_{shear} + \sum_{j \in in} (i + e_P + e_K)_j W_j - \sum_{k \in out} (i + e_P + e_K)_k W_k \end{split}$$

- where $e_T = e_i + e_P + e_K$ total specific energy of CV,
- $e_i + e_P + e_K$ specific internal, potential and kinetic energy, respectively,
- m mass in CV,
- *q* heat/time added,
- N work/time extracted from CV,
- *i* specific enthalpy.

Energy balance in BWR

- A more detailed mass and energy balances can be performed separately in:
 - downcomer (DC)
 - lower plenum (LP)
 - reactor core (RC)
 - separator-dryers(SD)
- see Compendium in Thermal-Hydraulics, Section 5.3.3

General Equations for Steady-State

$$\sum_{j \in in} W_j - \sum_{k \in out} W_k = 0$$

$$q_{th} - q_r - N_{pump} + \sum_{j \in in} i_j W_j - \sum_{k \in out} i_k W_k = 0$$

- Where q_{th} thermal reactor power,
- q_r thermal losses due to radiation,
- N_{pump} pumping power,
- W_j mass flow rates of inlet streams with specific enthalpy i_j ,
- W_k mass flow rates of outlet streams with specific enthalpy i_k ,
- We (usually) neglect kinetic and potential specific energies of inlet/outlet streams.

Energy balance in BWR

Overall energy balance for the reactor pressure vessel

$$q_{th} - N_P + W_{fw}i_{fw} - W_Si_S + W_{cr}i_{cr} - W_{cl}i_{cl} - q_r = 0$$

```
q_{th} — core thermal power,

N_{P} — recirculation pump power (negative if added to the system),

q_{r} — radiative power loss,

W_{fw} — feedwater flow rate,

W_{s} — steam flow rate,

W_{cr} — flow rate of the control rod drive system,

W_{cl} — flow rate to the cleaning system,

i_{fw} — feedwater specific enthalpy,

i_{s} — steam specific enthalpy,

i_{cl} — specific enthalpy of the cleaning water flow,

i_{cr} — specific enthalpy of the control rod drive system flow.
```


Downcomer

Mass conservation equation:

$$W_{sd} + W_{fw} - W_{cl} - W_{dc} = 0$$

$$W_{sd}i_{sd} + W_{fw}i_{fw} - W_{cl}i_{cl} - W_{dc}i_{dc} - q_r - N_p = 0$$

Lower Plenum

Mass conservation equation:

$$W_{dc} + W_{cr} - W_c = 0$$

$$W_{dc}i_{dc} + W_{cr}i_{cr} - W_ci_{cin} = 0$$

Reactor Core

Mass conservation equation:

$$W_c - W_c = 0$$

$$W_c i_{cin} + q_{th} - W_c i_{cex} = 0$$

Separators and Dryers

Mass conservation equation:

$$W_c - W_s - W_{sd} = 0$$

$$W_c i_{cex} - W_s i_s - W_{sd} i_{sd} = 0$$

 $i_s = (1 - F_{co})i_g + F_{co}i_f$
 $i_{sd} = (1 - F_{cu})i_f + F_{cu}i_g$

- Where
 - Carry-over $F_{co} \sim 0.001$
 - Carry-under $F_{cu} \sim 0.0025$

Steam Mass Flow Rate

 The over-all energy balance yields the steam mass flow rate:

$$W_{S} = \frac{q_{th} - q_{r} - N_{P} + W_{cl}(i_{cr} - i_{cl})}{(i_{S} - i_{fw})}$$

- Neglecting the effect of
 - cleaning and control rod water flow, and
 - assuming that the pumping power is approximately equal to the total heat losses,
- a simplified expression is obtained:

$$W_{S} \cong \frac{q_{th}}{\left(i_{S} - i_{fw}\right)}$$

Steam Mass Flow Rate

 An exact expression for the steam mass flow rate can be obtained from a simultaneous solution of all mass and energy equations in the reactor pressure vessel components:

$$W_{s} = \frac{W_{c}(q_{th} - q_{r}) + q_{r}W_{cl} + W_{c}(W_{cr}i_{cr} - W_{cl}i_{sd}) - N_{p}(W_{c} - W_{cl})}{W_{c}(i_{s} - i_{fw}) + W_{cl}(i_{sd} - i_{fw})}$$

```
P_{th} — core thermal power,

P_{th} — recirculation pump power (negative if added to the system),

P_{th} — radiative power loss,

P_{th} — feedwater flow rate,

P_{th} — steam flow rate,

P_{th} — flow rate of the control rod drive system,

P_{th} — flow rate to the cleaning system,

P_{th} — feedwater specific enthalpy,

P_{th} — steam specific enthalpy,

P_{th} — specific enthalpy of the cleaning water flow,

P_{th} — specific enthalpy of the control rod drive system flow.
```


Purpose of Balance Analysis

- The purpose of the energy and mass balances is to find a consistent distribution of mass flows and enthalpies in the system.
- For pressure distributions, even the momentum equations have to be solved.
- Such calculations are performed for various power and pressure levels.
- Any transient calculation is then initiated from such a consistent steady-state condition.

Example – Mean quality at core exit versus core flow

(Keeping all other parameters constant)

• Steam quality
$$X = \frac{m_{steam}}{m_{steam} + m_{liquid}} = \frac{i - i_l}{i_s - i_l}$$

Example – Core inlet subcooling versus core flow

(Keeping all other parameters constant)

- Example: Calculate:
 - (a) the mean coolant quality at the exit from the BWR core,
 - (b) the coolant subcooling at the core inlet
 - (c) the steam flow rate from the pressure vessel at steady-state

assuming the following data:

```
reference pressure p = 7 MPa core thermal power q_{th} = 3000 MWt radiative power loss q_r = 0.1% of q_c recirculation pumping power Np = -3.23 MW feedwater temperature t_{fw} = 215 °C flow rate of the control rod drive system W_{cr} = 65 kg/s temperature of water flow to control rod drive system t_{cr} = 60 °C carryover fraction F_{co} = 0.001 carryunder fraction F_{cu} = 0.0025 coolant flow through the core W_c = 11000 kg/s
```

Solution:

For pressure p = 7 MPa, the saturation enthalpies for water and steam are:

$$i_f = 1267.4 \text{ kJ/kg}$$
 and $i_g = 2772.6 \text{ kJ/kg}$.

The entalpy of steam leaving the reactor pressure vessel is thus:

$$1267.4 *0.001 + 2772.6 *0.999 = 2771.1 kJ/kg$$
.

Feedwater enthalpy is found from tables (p=7 MPa, T=215 C):

$$i_{fw} = 922.2 \text{ kJ/kg}.$$

- Enthalpy of water returning from steam separators and dryers is 1267.4*0.9975+2772.6*0.0025=1271.2 kJ/kg.
- Substituting the data to:

$$W_{s} = \frac{W_{c}(q_{th} - q_{r}) + q_{r}W_{cl} + W_{c}(W_{cr}i_{cr} - W_{cl}i_{sd}) - N_{p}(W_{c} - W_{cl})}{W_{c}(i_{s} - i_{fw}) + W_{cl}(i_{sd} - i_{fw})}$$

• we get $W_s = 1585.4 \text{ kg/s}$.

• From:
$$i_{cex} = \frac{W_{sd}i_{sd} + W_{s}i_{s}}{W_{c}}$$

• we get $i_{cex} = 1487.4$ kJ/kg, which gives exit quality 0.146.

- Solution (cont):
- Enthalpy at the core inlet is found from:

$$i_{cin} = i_{cex} - \frac{q_c}{W_c}$$

- $i_{cin} = 1214.4 \text{ kJ/kg}.$
- From water property tables, the inlet coolant temperature is found as
- T(p=7 MPa, i=1214.4 kJ/kg) = 275.8 °C
- which corresponds to 10 K subcooling.