DEPARTMENT OF THE ARMY CORPS OF ENGINEERS

THE

BULLETIN

OF THE

BEACH EROSION BOARD

OFFICE, CHIEF OF ENGINEERS
WASHINGTON, D. C.

SPECIAL ISSUE NO. 1

TC 203 .B8 no.1

JULY 1, 1948

DEPARTMENT OF THE ARMY
CORPS OF ENGINEERS

THE BULLETIN OF THE BEACH EROSION BOARD

OSCILLATORY WAVES

Diagrams and Tables of Relationships

Commonly Used in Investigations

of Surface Waves

SPECIAL ISSUE NO. I

JULY 1, 1948

per the to superstant

THE BULLLETIN OF THE BEACH EROSION BOARD

Common and Taller of Allering water of the common death of the common of the common as the common of the common of

SPECIAL ISSUE NO. 1

FOREWORD

The study of surface wave phenomena, particularly progressive oscillatory waves in water, has engaged the attention of many investigators in recent years and has resulted in significant advances in our knowledge. With increased knowledge the importance of wave action as a factor in the solution of engineering problems of coastal and shore areas has become more and more apparent.

In furtherance of its statutory obligation to publish technical information useful to the public concerned with the study of shore lines the Beach Erosion Board has arranged with the University of California the publication and dissemination of this paper for the benefit of those engaged in protecting our shores from the ravages of the seas.

Contribution of the

DEPARTMENT OF ENGINEERING

UNIVERSITY OF CALIFORNIA

BERKELEY

This compilation of information was completed under contract NObs 2490 for the Bureau of Ships, U. S. Navy. The major portion of the work was completed by Robert L. Wiegel with occasional suggestions being made by John D. Isaacs and J. W. Johnson. Assistance in making computations and preparing the diagrams was given by M.E. Haet, H. M. Gallaher and Mrs. R. Steele.

TABLE OF CONTENTS

	Page
Introduction .	1
Diagrams of Wave Functions	2
Relationship Between Depth and the Height, Period, Length and Velocity of Waves	2
Determination of Wave Height and Depth of Water at Point of Breaking	5
Effect of Capillarity on Wave Velocity	5
Effect of Refraction on Wave Direction	5
Surface Wave Heights from Underwater Pressure Measurements	6
Forecasting of Wind Waves and Swell	6
Tables of Functions of d/L and d/L _o	7
Values of tanh $2\pi d/L$, b_s/a_s , L/L_o and C/C_o	7
Pressure Response Factor	8
Fraction of Energy Advancing with the Velocity of the Wave Crest	9
Ratio of Group Velocity to Deep-water Wave Velocity	9
Energy Coefficient	9
Effect of Shoaling	10
Hyperbolic functions	10
Accuracy of Computations	10
Tables, 1	1 to 50
Plates	1 to 21

ETWERTIGO TO ELEAT

	Effect of Refraction on Maye Agrection
	Porecepting of Wind Teves and Swill
	Praction of Energy Advancing with the Velocity of the
	Reargy Coeffleten L
	and a death of the state of the
	To grant of the state of
2 01	ILasIdsT

Diagrams and Tables of Relationships

Commonly Used in Investigations

of Surface Waves

Introduction

The purpose of this compilation of data is to assemble for easy accessibility various functions that are used most frequently in investigations involving various surface wave phenomena. For convenience this material has been arranged in two sections. The first section consists of diagrams which are most useful in instances where a graphical solution gives sufficient accuracy for the particular problem. For those problems where a relatively high degree of accuracy is required a section of tabulated wave functions is presented. Where necessary, a brief summary of the theory and explanatory notes are given for each diagram and table.

The symbols used throughout this compilation are as follows:

T = Wave period

H = Wave height

Ho! = Deep water height of wave which approaches shore without refraction

L = Wave length

C = Wave velocity

CG = Wave group velocity

D or d = Depth beneath still-water level

n = Fraction of energy advancing with wave velocity

K = Pressure response factor

-o = Subscript refers to deep water

M = Energy coefficient

as = Length of semi-major axis of orbit of water particles

bs = Length of semi-minor axis of orbit of water particles

Diagrams of Wave Functions

Relationship Between Depth and the Height, Period, Length, and Velocity of Waves: Plates 1 - 9, inclusive, present the relationship between wave period, length, velocity, and depth. These curves have been plotted from the following equations:

$$C = \sqrt{\frac{gL \tanh 2\pi d}{2\pi}}$$
 (1)

$$L = CT$$
 (2)

On Plate 1 velocity has been eliminated, giving the relationship between wave period and length for curves of constant depth. Plate 2 is a large scale plot of the region on Plate 1 where the wave length is less than 70 feet and the wave period is less than 5 seconds. In Plate 3 wave length has been eliminated to give a relationship between period and velocity for constant depths. Plate 4 is a large scale plot of the portion of Plate 3 where the period is less than 1.8 second and the wave velocity is less than 5 feet per second. Plate 5 shows velocity plotted against depth with period as a parameter.

Plate 6 is from Breakers and Surf, Hydrographic Office Publication No. 234 and gives the relationship between wave velocity, wave period, and depth. These curves differ from those in Plate 5 because a small correction for deep water steepness has been made.

Plate 7 shows depths in fathoms plotted against wave period in minutes with curves of constant velocity and curves of constant d/L. Velocity is in knots. The equations for these curves are derived from equations (1) and (2); thus, substituting CT for L in equation (1):

$$C = \frac{gT}{2\pi} \tanh \frac{2\pi d}{CT}$$
 (3)

Solving for d:

$$d = \frac{CT}{2\pi} \tanh^{-1} \frac{2\pi C}{gT}$$
 (4)

Putting in the proper constants to change d from feet to fathoms, C from feet per second to knots, and T from seconds to minutes:

$$d = 2.69 \text{ CT } \tanh^{-1} (0.00548 \text{ C/T})$$

or

d = 1.343 CT
$$\left[\log_e (1 + 0.00548 \text{ C/T}) - \log_e (1 - 0.00548 \text{ C/T})\right]$$
 (5)

For the curves of constant d/L, the substitution of L^2/T^2 was made for C^2 in equation (1); thus,

$$\frac{L^2}{T^2} = \frac{g L}{2\pi} \tanh \frac{2\pi d}{L}$$
 (6)

Multiplying both sides of equation (6) by d/L^2 :

$$\frac{d}{T^2} = \frac{g}{2\pi} d/L \tanh \frac{2\pi d}{L} \tag{7}$$

Thus, for a given value of d/L, d and T may be calculated.

Plate 8 has the same axes as Plate 7 and shows curves of constant wave length and constant d/L. The curves of constant d/L are plotted in the same marmer as those on Plate 7. The equation for plotting the vertical asymptotes of the curves for constant wave length is derived from equation (2). To change the wave length from feet per second to knots, and the period from seconds to minutes:

$$L = 33.78 \text{ CT}$$
 (8)

Then from equation (3):

$$\frac{2 \pi c}{gT} = \tanh \frac{2 \pi d}{cT}$$
 (9)

In deep water $\frac{2}{CT}$ is very large, and the hyperbolic tangent approaches

one. Then:

$$C = gT$$

or

$$C = \frac{T}{0.00548}$$
 (10)

where C is in knots and T is in minutes. Since the vertical asymptote for the curves of constant wave length is in the deep water region of the graph, the value of C in equation (10) may be substituted in equation (8).

$$T = 0.01275 \sqrt{L_0}$$
 (11)

The equation for the diagonal asymptotes is derived by:

$$L = CT = \sqrt{gd} T$$

$$dT^{2} = \frac{L^{2}}{77280}$$
(12)

The transitional portion of the curves of constant wave length are plotted by multiplying the L parameter by 0.5 d/L to get the value d; this point is then located by following the d/L curve to its intersection with the value of the ordinate d.

Plate 9 is Plate 1 from Breakers and Surf and shows generalized curves for the change in velocity, height, and length of waves in shallow water from deep water to the point of breaking. These curves refer to waves that approach a shore directly so that there are no effects due to refraction. The horizontal scale of the graph is $\rm d/L_{\odot}$, the relative depth. The vertical scale gives the values of the different functions indicated on the various curves.

- (a) H/H;

 A theoretical curve for waves of very low steepness showing the change in wave height with decreasing depth prior to breaking. It is used to give the height of the wave at any given depth, when the period and height in deep water are known.
- (b) H_b/H'_o

 An empirical curve showing the ratio between the height of the breaker and the wave height in deep water, when the period and depth of breaking are known. This curve, in conjunction with curve (e), can be used in forecasting wave conditions.
- (c) $\sin\infty$ $\sin\infty$ A theoretical curve for waves of very low steepness showing the change in velocity and length of a wave as it enters shallow water. It is used to give the length and velocity of a wave at any given depth, when the period is known. This same curve gives the change in direction of a wave as it approaches a straight shore line, and the ratio of the semi-minor and semi-major axis of the particle orbit.
- (d) c_b/c_o An empirical curve showing the ratios between the velocity and length at breaking and the velocity and length in deep water, respectively, when the depth of breaking and period are known. This curve represents a refinement that is usually unnecessary in forecasting wave conditions.
- (e) 100 $\mathrm{H^{9}_{O}/L_{O}}$ An empirical curve showing the relative depth at which a wave of a given steepness will break. The steepness is expressed in per cent in order to fit the vertical scale. Breaker This curve, in conjunction with curve (b), can be used in Index forecasting surf conditions.
- (f) $\frac{H/L}{H^{\dagger}_{O}/L_{O}}$ A theoretical curve showing the change in wave steepness as the wave enters shallow water.
- (g) 0.001N

 An empirical curve showing the correction factor for velocity due to steepness. The curve gives 1/1000 of the value of N in order to make it fit the vertical scale. It is not used in forecasting but it could be used in the determination of surf characteristics from aerial photographs.

(h) n

A theoretical curve showing the fraction of energy advancing with the wave at a given relative depth. The value of <u>n</u> is used in computing H/H¹_o.

Determination of Wave Height and Depth of Water at Point of Breaking: All the curves on Plate 10 (Plate III from Breakers and Surf) deal with waves that approach a shore line directly, so that there are no changes due to refraction. When waves approach a shore line at an angle, the refraction correction first must be applied. Plate 10 is used in forecasting and in the interpretation of aerial photographs.

Given values of H' and T define a point for which corresponding values of H_b and d_b are found by interpolation between the solid and dashed lines, respectively. To find the wave length or velocity at the breaking depth, d_b, or at any other depth, enter the inset with this value of d, follow horizontally to the proper value of T, and read off L on the top scale. The velocity is then found from the ratio C = L/T.

Measure the wave length, L, at any depth, d (not necessarily the breaker depth), and find T from the inset. Enter the main graph with T and follow a vertical line to the proper value of d_b . Read off H_b from the solid lines and $H^{\mathfrak s}_{}$ from the scale to the left or right of the diagram.

Effect of Capillarity on Wave Velocity: Plate 11 is a plot of curves showing the effect of capillarity on wave velocity. Wave velocity has been plotted as a function of wave length both with and without surface tension effects. The per cent error or per cent difference between the velocity as determined by the two velocity equations also is plotted as a function of wave length. It is to be noted that for a wave length greater than 0.4 feet, the error in neglecting surface tension effects is less than one per cent.

Effect of Refraction on Wave Direction: Plates 12 and 13 show the effect of refraction on wave direction. They give the angle $_{\infty}$ between the wave front and the bottom contours in shallow water for given values of the ratio, d/L_{o} , as a function of the angle $_{\infty}$ in deep water between the wave front and the contours. This relationship is derived from Snell's law; that is:

$$\frac{\sin \infty}{\sin \infty} = \frac{C}{C_0} \tag{13}$$

where C is the velocity in shallow water and C_0 is the velocity in deep water. For given values of d/L_0 , C/C_0 can be found from Plate 9, some can be plotted for various values of ∞ . Plate 12 covers the range of d/L_0 from 0.0 to 0.5. Plate 13 is a larger scale drawing of the region d/L_0 between zero and 0.1.

The curves on Plate 14 (Plate II, Breakers and Surf) give the effect of refraction on wave height and direction for waves approaching at an angle toward a straight shore line where the bottom contours are straight and parallel to the shore. The horizontal scale is d/L_0 , the relative

depth. The vertical scale is \sim , the angle between the wave crests in deep water and the bottom contours.

The solid curves are lines of equal ∞ , the angle between the wave crest and the depth contour at any relative depth. When the period and angle in deep water are known, these curves are used to obtain the angle of the waves at any given depth.

The dashed curves are lines of equal K, the correction factor to be applied to the wave height in deep water to get the wave height in shallow water.

Surface Wave Heights from Under-water Pressure Measurements: Plate 15 gives the factor for computing surface wave heights from data taken by under-water pressure measurements. For a pressure unit located at a distance of Z below the surface in a total depth of water D where waves of length L exist, Plate 15 gives the value of the pressure response K, which is defined as the ratio of the head of the pressure fluctuation at the submerged point, to the surface wave height.

Forecasting of Wind Waves and Swell: Plate 16 is used to determine whether fetch or duration is the limiting factor for wave characteristics at the end of the fetch. The graph is entered with the duration (in hours) and the wind velocity (in knots) and the corresponding minimum fetch length read off from the lines of constant fetch (thus a duration of 36 hours and a wind velocity of 35 knots gives a minimum fetch length of 400 nautical miles). If the actual fetch is less than this minimum fetch, then fetch is the limiting factor, and an equivalent duration is selected; if the actual fetch is greater than this minimum fetch, then duration is the limiting factor. The latter is the usual case.

Plate 17 or 18 is used to determine the wave characteristics at the end of the fetch from the duration selected from Plate 16. The graph is entered with the duration (in hours) and the wind velocity (in knots), and the corresponding wave heights and periods read off from the lines of constant height and period. (Thus a duration of 36 hours, and a velocity of 35 knots gives a corresponding wave height of 25 feet, and period of 10 seconds at the end of the fetch.)

Plate 19 can be used to determine the wave characteristics at the end of the fetch when fetch is the limiting factor or when an equivalent fetch has been selected. The plate is entered into the fetch length (in nautical miles) and the wind velocity (in knots) and the corresponding wave height and period read off from the lines of constant height and period. (Thus a 100 mile fetch and a 35 knot wind give a wave height of 19 feet and period of 6.7 seconds at the end of the fetch.)

Plate 20 is used to determine the wave characteristics at the end of the decay area. The graph is entered with the decay distance (in nautical miles) and the period at the end of the fetch (as determined from Plate 17, 18 or 19) and the corresponding height ratio, period, and travel time read off from the lines of constant value. (Thus a decay distance of 1000 miles and a 12 second period give a height ratio of 0.47, a period of 16 seconds, and a travel time of 41 hours.) The period at the end of

the decay area is thus given by the graph, the height obtained by multiplying the height at the end of the fetch by the height ratio (in the above case the decay height would be $0.37 \times 25 = 9.25$ feet), and the arrival time by adding the travel time to the time of the map used.

Plates 16 - 20, inclusive were developed at the Scripps Institution of Oceanography. These plates are revisions* of curves which originally appeared in the Navy Hydrographic Office publication, "Wind Waves and Swell, Principles of Forecasting," H.O. Miscellaneous Publication 11-275.

Tables of Functions of d/L and d/L

In many of the basic equations describing gravity waves various functions of d/L and d/L_o occur. Some of these wave equations were discussed above and summarized in graphical form in Plates 1 to 20. In evaluating these equations in certain instances it is often just as convenient and certainly more accurate to utilize tabulated values of various functions of d/L and d/L_o. Those functions that are presented below in tabular form are summarized in Plate 21. The theory involved in calculating the various terms in the tables is discussed as follows:

$$C^2 = \frac{gL}{2\pi} \tanh 2\pi d/L$$

In deep water, that is, where d \geq 1.0 $L_{\rm O}$, tanh $2\pi\,\rm d/L$ approaches unity and since L = CT and $L_{\rm O}$ = $C_{\rm O}T$ (Note that deep water ordinarily is defined as d \geq 0.5 $L_{\rm O}$. However in these tables it is noted that the values of tanh 2 $\pi\,\rm d/L$ departs appreciably from unity for the range d/L $_{\rm O}$ = 0.5 to d/L $_{\rm O}$ = 1)

$$C_0^2 = \frac{g}{2\pi} L_0, C_0 = \frac{g}{2\pi} \cdot T$$

thus

$$\frac{c^2}{c_0^2} = \frac{\frac{g}{2\pi} L \tanh 2\pi d/L}{\frac{g}{2\pi} L_0} = \frac{L}{L_0} \tanh 2\pi d/L$$

and

$$\frac{\text{C}_{\circ} \text{L}/\text{T}}{\text{C}_{\circ} \text{L}_{\circ}/\text{T}} = \frac{\text{L}}{\text{L}_{\circ}} \tanh 2\pi \text{d/L}, \text{C/C}_{\circ} = \tanh 2\pi \text{d/L}$$

^{*} Wave Report No. 73, Scripps Institution of Oceanography, March 1948

SO

$$c^2/c_0^2 = c/c_0 \text{ a tanh } 2\pi d/L = L/L_0 \text{ tanh } 2\pi d/L,$$
$$c/c_0 = L/L_0$$

therefore, we have*

$$C/C_{o} = L/L_{o} = \tanh 2 \pi d/L \qquad (14)$$

The wave length changes with depth, and so it is inconvenient to use d/L as a parameter. The most convenient term to measure is the period, since it is a constant. Thus, L_o may be computed easily because L_o = g_T^2; therefore, it is most convenient to use the parameter d/L_o 2π

$$d/L \times L/L_0 = d/L_0$$
, and $L/L_0 = \tanh 2\pi d/L$

At any value of d/L, L/L_o can be had from L/L_o = tanh 2 π d/L, and by multiplying d/L x L/L_o, d/L_o can be obtained. In order to build up a table of d/L_o vs L/L_o and C/C_o a series of expanded accurate graphs were made by plotting d/L_o vs d/L and then for the interval of d/L_o chosen, the corresponding values of d/L were read off. Then the values of L/L_o and C/C_o were recomputed.

In addition, in shallow water, the orbital motion is elliptical and the ratio of the semi-minor (b_s) and the semi-major (a_s) of the surface orbit is equal to the tanh 2 π d/L, i.e., b_s/a_ = tanh 2 π d/L. In the tables to follow values of tanh 2 π d/L (which is equal to b_s/a_s, C/C_o, and L/L_o) are given in column 4 as a function of d/L_o or d/L.

Pressure Response Factor: In order to make use of under-water pressure instruments, it is necessary to know what height of wave give a particular pressure response at some depth below the still water level. It has been found** that

$$K = H^{\circ}/H = P/P_{o} = \frac{\cosh 2 \pi d/L (1-d)}{\cosh 2 \pi d/L}$$
(15)

where P is the pressure fluctuation at a depth Z below still water, Po is the surface pressure fluctuation, d is the depth of water (from still water level to the ocean bottom), L is the wave length in any particular depth of water, H is the height of wave at the surface, and H is the corresponding variation of head at a depth Z.

- * Breakers and Surf, Principles of Forecasting, Hydrographic Office Publication No. 234.
- ** Sub-surface Pressures Due to Oscillatory Waves, by R. G. Folsom.
 Trans. American Geophysical Union, Vol. 28, No. 6, December 1947,
 pp 875-881.

The solution of this is, of course, a family of curves, with a parameter (Ξ/d) , with K plotted against d/L. However, for the purpose of this table, only one value of Ξ/d will be used because usually the instrument is placed on the bottom $(\Xi/d=1)$. In this case

$$K = \frac{1}{\cosh 2\pi d/L}$$
 (16)

Values of K are shown in column 7 of the tables.

Fraction of Energy Advancing With the Velocity of the Wave Crest: According to the irrotational wave theory only a fraction of the total wave energy travels forward with the wave form (that is, with the wave velocity C rather than the group velocity C_g)*. The equation for this fraction, n, is

$$n = \frac{1}{2} \left[1 + \frac{4 \pi \, d/L}{\sinh 4 \pi d/L} \right]$$
 (17)

Values of this term are shown in column 11 of the tables.

Ratio of Group Velocity to Deep-Water Wave Velocity:

$$C_G/C_0 = C_G/C$$
 . $C/C_0 = n \tanh 2\pi d/L$ (18)

See column 12 of the tables for this term.

Energy Coefficient: This term is defined by the expression**

$$M = \frac{\pi^2}{2 \tanh^2 \frac{2\pi d}{L}}$$
 (19)

in the equation for the energy of waves

$$E = \frac{W L H^2}{8} (1 - M \frac{H^2}{L^2})$$
 (20)

See column 14 of the tables for values of M.

- * A Summary of the Theory of Oscillatory Waves, Technical Report No. 2, Beach Erosion Board, Washington, D. C., 1942. p 32.
- ** Wave Action in Relation to Engineering Structures, by D. D. Gaillard, The Engineer School, Fort Belvoir, Virginia. Reprinted 1935.

Effect of Shoaling: An additional item included in the table is the ratio of wave height in shallow water to its deep water wave height when unaffected by refraction.* This is equal to

$$H/H_{o}^{\circ} = \sqrt{\frac{1}{2} \cdot \frac{1}{n} \cdot \frac{1}{C/C_{o}}}$$
 (21)

Hyperbolic Functions of d/L: In addition to the above functions, values of sinh 2 π d/L, cosh 2 π d/L, sinh 4 π d/L and cosh 4 π d/L have been put in the tables as well as 2 π d/L and 4 π d/L. These have been put in as functions of d/L_O, that is, for a given d/L_O the values of sinh 2 π d/L and etc. are given.

Accuracy of Computations: The values were arrived at using five place figures and then after all of the work was completed, the last place was dropped with the corresponding change of one figure up or down in the fourth place. Because the basic interpolation was done with graphs, errors of one in the fourth significant figure may exist. Because of this, and because the square of the hyperbolic tangent is used to find the energy coefficient, only three places were reported for a certain range as it was felt that the additional figure could not be justified. Actually, in practice, it has been found that usually three figures are the greatest accuracy to which measurements can be made. However, when dealing with differences, this last place is needed to give the desired results.

It must be remembered that occasionally an accumulation must be added to one of the values of d/L. Thus in 4 π d/L the accumulation is increased by the factor of 4 π and so the first differences between values of the sinh and cosh of 4 π d/L will jump. However, the corresponding values of n were plotted on an extended series of graphs and a curve drawn through them and then the correct values read off and placed in the table. Thus the true values of n vs d/L are in the tables.

It is to be noted that for the convenience of the user the summary of the various data is presented in two tables. Table I shows the various terms for even values of d/L, and Table II shows the same terms for even values of d/L over the range where interpolation in Table I is inconvenient.

* * *

^{*} Breakers and Surf, Principles of Forecasting, Hydrographic Office Publication No. 234.

TABLE I

FUNCTIONS OF d/L FOR EVEN INCREMENTS OF d/Lo

from 0.0001 to 1.000

7,855 3,928 1,965	1,572 1,311 1,124 983.5 874.3	787.0 715.6 656.1 605.8 562.6	525 1493 1463 1438 1438	394 376 359 343 329	316 304 292 282 272
H/H° 0 10.467 3.395 3.160	2.989 2.856 2.749 2.659 2.582	2.515 2.456 2.404 2.357 2.314	2.275 2.239 2.205 2.174 2.145	2.119 2.094 2.070 2.047 2.025	2.005 1.986 1.967 1.950
CG/Co 0 02506 03543 04336	.05596 .06128 .06617 .07072 .07499	.07902 .08285 .08651 .09001	.09663 .09977 .1028 .1058	1114 1411 1411 1161 1193 1219	1243 1268 1292 1315
1 .9998 .9996 .9994 .9992	.9990 .9988 .9985 .9983	.9979 .9977 .9973 .9973	.9969 .9967 .9962 .9960	.9958 .9956 .9954 .9952	.9948 .9946 .9944 .9942
COSH LT d/L 1 1.001 1.003 1.004 1.006	1.006 1.008 1.009 1.010	1.013 1.014 1.015 1.016	1.019 1.020 1.022 1.023	1.025 1.027 1.028 1.029	1.032 1.034 1.034 1.036
SINH l, T d/L 0 .05016 .07097 .08697 .1005	1124 1232 1331 1424 1511	.1594 .1672 .1748 .1820	.2022 .2086 .2086 .2147	2266 2323 2379 2433 2487	2550 2592 2642 2692 2741
1π d/L 0 .0501μ .07091 .08686 .1003	1122 1229 1327 1419 1505	.1587 .1665 .1739 .1810	.1945 .2009 .2071 .2131	.2247 .2363 .2357 .2410	.2513 .2563 .2612 .2661 .2661
K .9997 .9994 .9991 .9987	.9984 .9981 .9978 .9975	.9969 .9965 .9959 .9959	. 9953 . 9949 . 9943 . 9943	.9937 .9934 .9931 .9928	.9922 .9919 .9916 .9912
COSH 2 π d/L 1 1.0003 1.0006 1.0009 1.0013	1.0016 1.0019 1.0022 1.0028	1.0032 1.0035 1.0041 1.0041	1.0047 1.0051 1.0054 1.0057	1.0063 1.0066 1.0073 1.0076	1,0079 1,0082 1,0085 1,0089
SINH 2 TT d/L 0 .02507 .03547 .04344	.05611 .06148 .06642 .07102	.07943 .08333 .08705 .09063	.09739 .1006 .1037 .1068	.1125 .1154 .1181 .1208	.1260 .1285 .1310 .1334 .1358
TANH* 2π d/L 0 .02506 .03544 .04340	.05602 .06136 .06627 .07084	.07918 .08304 .08672 .09026	.09693 .1001 .1032 .1062	.1119 1173 1173 1225	.1250 .1275 .1299 .1323
2π d/L 0 .02507 .03546 .04343 .05015	.05608 .06144 .06637 .07096	.08323 .08694 .09050	.09723 .1004 .1035 .1066	1123 1178 1178 1205	.1257 .1282 .1306 .1330
d/L 0 .003990 .005643 .006912	.008925 .009778 .01056 .01129	.01263 .01325 .01384 .01440	.01548 .01598 .01648 .01696	.01788 .01832 .01876 .01918	.02000 .02040 .02079 .02117
d/L _o 00002000 0003000 0003000	.0005000 .0006000 .0007000 .0008000	.001000 .001100 .001200 .001300	.001500 .001600 .001700 .001900	.002000 .002100 .002200 .002300	.002500 .002600 .002700 .002800

M	263 255 247 240 233	226 220 214 208 208	198 193 184 184 180	176 172 169 165	159 156 153 150	142 140 137 135
н/н,	1.917 1.902 1.887 1.873 1.860	1.847 1.834 1.822 1.810 1.799	1.777 1.777 1.767 1.756 1.756	1.737	1.692 1.684 1.676 1.669	1.654 1.647 1.640 1.633 1.626
్రి/స్ప	1360 1382 1404 1425 1146	.1466 .11,87 .1507 .1527 .1546	.1565 .1584 .1602 .1621 .1640	.1658 .1676 .1693 .1711	.1746 .1762 .1779 .1795	1827 1843 1859 1874 1890
c	.9937 .9935 .9933 .9931	.9927 .9925 .9923 .9921	.9917 .9915 .9910 .9908	9906 9904 9902 9900	9896 9894 9892 9889	.9885 .9883 .9881 .9879
COSH μπ' d/L	1.038	1.045 1.046 1.047 1.049 1.050	1.052	1.056 1.059 1.060 1.062 1.063	1.064 1.066 1.067 1.068 1.069	1.071 1.072 1.073 1.075
SINH LT d/L	.2790 .2837 .2884 .2930 .2936	3021 3065 3109 3153 3156	.3238 .3280 .3322 .3362 .3403	3444 3483 3523 3562 3562	3640 3678 3715 3753 3790	.3827 .3864 .3900 .3937 .3972
14 m d/L	2755 2800 2845 2890 2890	.2977 .3020 .3061 .3103 .3104	3184 3224 3263 3302 3302	3380 3417 3454 3491 3527	3564 3599 3635 3670 3705	.3739 .3774 .3808 .3841 .3875
Ж	.9906 .9903 .9900 .9897	9890 9887 9884 9881 9881	.9875 .9872 .9869 .9865	.9859 .9856 .9853 .9849	.9843 .9840 .9837 .9834 .9831	.9828 .9825 .9822 .9818
COSH 2π d/L	1.0095 1.0098 1.0101 1.0104	1.0111 1.0114 1.0117 1.0124	1.0127 1.0130 1.0133 1.0137	1.0143 1.0146 1.0149 1.0153	1.0159 1.0162 1.0166 1.0169 1.0172	1.0175 1.0178 1.0182 1.0185 1.0188
STNH 2TT d/L	1382 1405 1427 1449	1494 1515 1537 1558 1578	.1599 .1619 .1639 .1659	.1698 .1717 .1736 .1754	1791 1809 1827 1845 1863	1880 1898 1915 1932
TANH 2T d/L	1369 1391 1413 1435	1477 1498 1519 1539 1559	1579 1598 1617 1636 1636	.1674 .1692 .1710 .1728 .1746	1764 1781 1798 1815	.1848 .1865 .1881 .1897
2π d/L.	1377 1400 1423 1445 1467	1488 1510 1531 1531 1572	1592 1612 1632 1651	1690 1708 1727 1745 1745	1782 1800 1818 1835	.1870 .1887 .1904 .1921
d/L	.02192 .02228 .02264 .02300 .02335	.02369 .02403 .02436 .02469	.02534 .02566 .02597 .02628 .02659	.02689 .02719 .02719 .02778 .02807	.02836 .02864 .02893 .02921 .02948	.02976 .03003 .03037 .03057
d/Lo	.003000 .003100 .003200 .003300	.003500 .003600 .003700 .003800	.004,000 .004,100 .004,300 .004,400	.004500 .00400 .004700 .004800	.005000 .005100 .005200 .005300	.005500 .005500 .005700 .005800

4						
×	133 130 126 126	123 121 119 119 116	114 112 111 109 108	106	100 98.6 97.5 96.3	94.1 93.0 91.9 90.9 89.9
H/H	1.620 1.614 1.607 1.601	1.583 1.583 1.578 1.572	1.556	1.531	1.512 1.508 1.503 1.499	1.491 1.487 1.482 1.482 1.478
°2/°5	.1905 .1920 .1935 .1950	.1980 .1994 .2009 .2023	2051 2065 2079 2093 2106	2120 2134 7412 7412 2160	2186 2199 2212 2225 2225	.2250 .2262 .2275 .2287 .2300
ď	.9875 .9873 .9871 .9869	.9865 .9863 .9860 .9858 .9858	9854 9852 9850 9848 9846	9844 9842 9840 9838	.9834 .9832 .9830 .9827 .9825	.9823 .9821 .9819 .9817
COSH LT d/L	1.077 1.080 1.081 1.083	1.084 1.085 1.087 1.088 1.089	1.092 1.093 1.095 1.096	1.097 1.099 1.100 1.101	1.104	1.112
SINH LTd/L	8007° 1004° 1004° 1114° 1114°	.4183 .4217 .4251 .4285	4352 4386 4419 4452 4452 4452	1,517 1,519 1,519 1,614 1,614	4678 4709 47141 4772 4803	1,834 1,865 1,896 1,927
1/44/I	3908 3941 3973 4006 4038	4070 4101 4133 4164 4195	1,225 1,226 1,286 1,316 1,316	1,376 1,406 1,41,06 1,41,64 1,41,64 1,41,93	.1522 .1551 .1579 .1607 .1636	1664 1691 1717 1717
×	9812 9809 9806 9803 9799	9796 9793 9790 9787 9784	9781 9778 9774 9771	9765 9762 9759 9756	9750 9747 9744 9741 9737	.9734 .9731 .9728 .9725
COSH 2π d/L	1.0192 1.0195 1.0198 1.0201	1.0208 1.0211 1.0214 1.0217	1,0224 1,0227 1,0231 1,0234 1,0237	1.0240 1.0244 1.0247 1.0250 1.0253	1.0257 1.0260 1.0263 1.0266	1.0273 1.0276 1.0280 1.0283
SINH 2 m d/L	.1967 .1983 .2000 .2016	2049 2065 2081 2097 2113	2128 2144 2160 2160 2175 2190	.2205 .2221 .2236 .2251 .2251	.2280 .2295 .2310 .232h .2338	.2353 .2367 .2381 .2396 .2410
TANH 2 T d/L	1929 1945 1961 1976 1992	2007 2022 2037 2052 2052	2082 2096 2111 2125 2125	2154 2168 2182 2182 2196 2209	.2223 .2237 .2250 .2250 .2251	.2290 .2303 .2317 .2330
27 d/L	.1954 .1970 .1987 .2003	2035 2051 2066 2082 2082	2128 2128 2128 2143 2158 2173	2188 2203 2218 2232 2232	.2261 .2275 .2290 .2304 .2318	2332 2346 2360 2373 2387
d/L	.03110 .03136 .03162 .03188	.03238 .03264 .03289 .03313	.03362 .03387 .03435 .03459	.03482 .03506 .03529 .03552	.03598 .03621 .03644 .03666	.03711 .03733 .03755 .03777
$\mathrm{d}/\mathrm{L}_{\mathrm{o}}$.006000 .006100 .006200 .006300	.006500 .006600 .006700 .006800	.007000 .007100 .007200 .007300	.007500 .007600 .007700 .007800	.008000 .008100 .008200 .008300	.008500 .008600 .008700 .008800

						1:
×	88.0 87.1 85.2	84.3 83.5 82.7 81.8	80.2 73.1 67.1 62.1 57.8	54.0 50.8 17.9 15.3 13.0	41.0 39.1 37.4 35.9 34.4	33.1 30.8 30.8 28.8 28.8
н/н	1.467 1.467 1.463 1.459	1.452	1.435	1.307 1.288 1.271 1.255	1.226 1.213 1.201 1.189 1.178	1.168 1.159 1.150 1.141 1.141
°2/ ³ స	2312 2324 2336 2348 2360	2371 2383 2394 2406 2406	2429 2539 2643 2743 2743	.2928 .3014 .3096 .3176	.3327 .3399 .3468 .3535	.3662 .3722 .3781 .3838
c c	9813 9811 9809 9807 9805	9803 9801 9799 9797	.9792 .9772 .9751 .9731	.9690 .9670 .9629 .9629	9588 9568 9548 9528 9508	9488 9468 9448 9428 9408
L, T d/L	1.118 1.119 1.120 1.122 1.123	1.124 1.126 1.127 1.128 1.130	1.131 1.145 1.159 1.173 1.187	1,201 1,215 1,230 1,244 1,259	1.274 1.289 1.304 1.319	1.350 1.366 1.381 1.397 1.413
SINH PUT Q'T	4988 5018 5049 5079	5138 5168 5198 5227 5227	5286 5574 5853 6125 6391	.6651 .6906 .7158 .7405	7891 8131 8368 8603 8837	.9069 .9310 .9530 .9760
ħπ d/L	14801 14828 14855 14882 14882	1,936 1,962 1,988 5014 5040	5066 5319 5562 5795 6020	.6238 .6450 .6655 .6856 .7051	.7242 .7429 .7612 .7791	810 8310 8478 8643 8805
X	.9718 .9815 .9712 .9709	.9703 .9700 .9697 .9694	9688 9656 9625 9594 9564	9533 9502 9471 9440 9409	.9378 .9348 .9317 .9287	.9225 .9195 .9164 .9133
COSH 2π d/L	1.0290 1.0293 1.0296 1.0299	1.0306 1.0309 1.0313 1.0316 1.0316	1.0322 1.0356 1.0389 1.0423 1.0456	1.0490 1.0524 1.0559 1.0593	1.0663 1.0733 1.0768 1.0804	1.0840 1.0876 1.0912 1.0949 1.0985
SINH 2T d/L	2424 2438 2452 2452 2465	2493 2507 2520 2534 2547	2560 2691 2817 2938 3056	3170 3281 3389 3495 3599	3701 3800 3898 3995 4090	4184 4276 4367 4367 41657 4546
TANH 2T d/L	2356 2368 2381 2394 2407	2413 2413 2443 2456 2456	2480 2598 2711 2820 2924	3022 3117 3209 3298 3386	3470 3552 3632 3710 3786	3860 3932 4002 4071 4138
2π d/L	2401 2414 2428 1442 1443	2468 2481 2494 2507 2520	.2533 .2660 .2781 .2898	3119 3225 3328 3428 3428	3621 3714 3806 3896 3986	4070 4155 4239 4322 4403
d/L	.03821 .03842 .03864 .03885	.03928 .03949 .03970 .03990	04032 04233 04426 04612 04791	.04964 .05132 .05296 .05455	.05763 .05912 .06057 .06200	.06478 .06613 .06747 .06878
d/Lo	.009000 .009100 .009200 .009300	.009500 .009600 .009700 .009800	.01000 .01100 .01200 .01300	.01500 .01600 .01700 .01800	.02000 .02100 .02200 .02300	.02500 .02600 .02700 .02800

×	27.9 27.1 26.3 25.6 24.8	24.19 23.56 22.97 22.42 21.90	21.40 20.92 20.46 20.03 19.62	19.23 18.85 18.49 18.15 17.82	17.50 17.19 16.90 16.62 16.35	16.09 15.84 15.36 15.36
о н/н	1.125 1.118 1.111 1.104 1.098	1.092 1.086 1.080 1.075	1.064	1.042 1.038 1.034 1.030	1.023 1.019 1.016 1.013 1.010	1.007 1.004 1.001 .9985
°2/ ⁵ 2	.3947 .4000 .4051 .4100	.h196 .h2h2 .h287 .h330 .h372	4144 41455 4644 4654 4654	.4607 .4643 .4679 .4713	.4779 .4811 .4842 .4873	.4932 .4960 .4988 .5015
E E	.9388 .9369 .9349 .9329	.9289 .9270 .9250 .9230 .9211	.9192 .9172 .9153 .9133	.9095 .9076 .9057 .9037	.8989 .8980 .8961 .8943	.8886 .88867 .8867 .8849
COSH LTd/L	1.430 1.446 1.462 1.479 1.496	1.513 1.530 1.547 1.564 1.582	1.600 1.617 1.636 1.654 1.672	1.691 1.709 1.728 1.747 1.766	1.786 1.805 1.825 1.865	1.885 1.906 1.926 1.947 1.968
SINH LT-d/L	1.022 1.044 1.067 1.090 1.113	1.135 1.158 1.180 1.203	1.248 1.271 1.294 1.317	1.363 1.386 1.409 1.456	1.526	1.598 1.622 1.646 1.670 1.695
L ma/l	.8966 .9124 .9280 .9434 .9588	.9737 .9886 1.0033 1.018	1.047 1.061 1.075 1.089	1.130 1.130 1.143 1.157	1.183 1.196 1.209 1.235	1.248 1.261 1.273 1.286 1.298
×	.9073 .9042 .9012 .8982 .8952	.8891 .8891 .8861 .8831	.8771 .8741 .8741 .8688 .8688	.8521 .8592 .8562 .8532 .8533	.8473 .8444 .8445 .8385 .8385	.8297 .8297 .8267 .8239
COSH 2πd/L	1,1021 1,1059 1,1096 1,1133	1,1209 1,1247 1,1285 1,1362 1,1362	1.1401 1.1440 1.1479 1.1518	1.1599 1.1639 1.1679 1.1720 1.1760	1.1802 1.1843 1.1884 1.1926 1.1968	1.201 1.2053 1.2096 1.2138 1.2138
SINH 2πd/L	4634 4721 4808 4894 4994	.5064 .5117 .5230 .5312 .5394	.5475 .5556 .5637 .5717 .5717	.5876 .5954 .6033 .6189	.6267 .6344 .6421 .6499 .6575	.6652 .6729 .6805 .6880
TANH 2 m d/L	1,205 1,269 1,333 1,395 1,457	1517 1577 1635 1691 1717	4802 4857 4911 4964 5015	.5066 .5116 .5166 .5215 .5215	.5310 .5357 .5403 .5449	.5538 .5582 .5626 .5668 .5711
2π d/L	4483 4562 4640 4717 4794	4868 4943 5017 5090 5162	5233 5304 5374 5444 5513	.5581 .5649 .5717 .5784 .5784	.5916 .5981 .5981 .6046 .1119	.6239 .6303 .6366 .6428
d/L	.07135 .07260 .07385 .07507	.07748 .07867 .07984 .08100	.08329 .08442 .08553 .08664 .08774	.08883 .08991 .09098 .09205	.09416 .09520 .09623 .09726	.09930 .1003 .1013 .1023
d/Lo	.03000 .03100 .03200 .03300	.03500 .03600 .03700 .03800	.04000 .04100 .04200 .04300	.00,500 .00,600 .00,700 .00,800	.05000 .05100 .05200 .05300	.05500 .05600 .05700 .05800

M	14.91 14.70 14.50 14.30 14.30	13.92 13.74 13.57 13.40	13.08 12.92 12.77 12.62 12.48	12.34 12.21 12.08 11.95	11.71 11.59 11.47 11.36	11.14 11.04 10.94 10.84 10.84
н/н	.9932 .9907 .9863 .9860	.9815 .9793 .9772 .9752	.9713 .9694 .9676 .9658	962h 9607 9591 9576 9576	9548 9534 9520 9506	9481 9469 9457 9457 9445
°2/°2	.5068 .5094 .5119 .5143	.5191 .5214 .5236 .5258	.5300 .5321 .5341 .5360 .5380	.5399 .5417 .5435 .5452 .5469	.5485 .5501 .5517 .5533 .5548	.5563 .5577 .5591 .5605
r.	.8811 .8792 .8773 .8755 .8755	.8719 .8700 .8682 .8664 .8664	.8627 .8609 .8591 .8572 .8554	.8537 .8519 .8501 .8483 .8465	8448 8430 843 8413 8395 8395	8360 8342 8325 8308 8290
COSH μπ d/L	1.989 2.011 2.033 2.055 2.076	2.098 2.121 2.144 2.166 2.189	2.213 2.236 2.260 2.2814 2.308	2.332 2.357 2.382 2.407 2.432	2.458 2.4584 2.511 2.511 2.537 2.563	2.590 2.617 2.644 2.672 2.700
SINH LT d/L	1.719 1.744 1.770 1.795 1.819	1.845 1.870 1.896 1.921 1.948	1.974 2.000 2.026 2.053 2.063	2.107 2.135 2.162 2.189 2.217	2.245 2.274 2.303 2.331 2.360	2,389 2,418 2,448 2,478 2,508
ηπα/L	1.311 1.3231 1.336 1.348 1.360	1.372 1.384 1.396 1.408	1.432 1.444 1.455 1.467 1.467	1.490 1.502 1.514 1.525 1.537	1.548 1.550 1.571 1.583 1.594	1.605 1.616 1.628 1.639 1.650
×	.8180 .8150 .8121 .8093	.8035 .8005 .7977 .7948	7890 7861 7833 7804	.7747 .7719 .7690 .7662 .7662	7605 7577 7529 7522 7494	7464 7437 7409 7381
cosh 2 m d/L	1,2225 1,2270 1,2315 1,2355 1,2402	1.2447 1.2492 1.2537 1.2580 1.2628	1,2672 1,2721 1,2767 1,2813 1,2861	1.2908 1.2956 1.3004 1.3051 1.3100	1.3149 1.3298 1.3246 1.3295 1.3345	1.3397 1.3446 1.3497 1.3548 1.3500
SINH 2T d/L	.7033 .7130 .7187 .7256	.7411 .7486 .7561 .7633	.7783 .7863 .7937 .8011	.8162 .8237 .8312 .8386 .8462	.8538 .8614 .8687 .8762 .8837	.8915 .8989 .9064 .9141 .9218
TANH 2 T d/L	5753 5794 5834 5834 5814	.5954 .5993 .6031 .6069	6217 6217 6252 6289	6324 6359 6392 6427 6460	.6493 .6526 .6558 .6590 .6590	.6655 .6685 .6716 .6778
2π d/L	6553 6616 6678 6739 6739	.6860 .6920 .6981 .7037	.7157 .7219 .7277 .7336	7453 7511 7569 7625 7683	.7741 .7799 .7854 .7911	.8026 .8080 .8137 .8193 .8250
d/L	1043 1053 1063 1073 1082	1092 1101 1111 1120	.1139 .1149 .1158 .1168	.1186 .1205 .1205 .1214	.1232 .1241 .1254 .1259 .1268	.1277 .1286 .1295 .1304
d/Lo	.06000 .06100 .06200 .06300	.06500 .06500 .06700 .06800	.07000 .07100 .07200 .07300	.07500 .07600 .07700 .07800	.08000 .08100 .08200 .08300	.08500 .08600 .08700 .08800

M	10.65 10.55 10.46 10.37 10.29	10.21 10.12 10.04 9.962 9.884	9.808 9.734 9.661 9.590 9.519	9.451 9.384 9.318 9.254 9.191	9.129 9.068 9.009 8.950 8.891	8.835 8.780 8.726 8.673 8.621
H/H	.9422 .9411 .9391 .9381	9371 9362 9353 9344 9344	.9327 .9319 .9311 .9304	.9290 .9282 .9276 .9269	.9257 .9251 .9245 .9239	.9228 .9223 .9218 .9214
°2/ ⁵ 5	5632 5645 5670 5670	.5693 .5704 .5716 .5727 .5737	.5747 .5757 .5766 .5766 .5785	.5794 .5803 .5812 .5820 .5828	5836 5843 5850 5857 5857	.5871 .5878 .5884 .5890 .5890
r.	.8273 .8255 .8255 .8238 .8221	.8187 .8170 .8153 .8156	8103 8086 8069 8052 8036	.8019 .8003 .7986 .7970	.7937 .7920 .7904 .7888	.7856 .7840 .7824 .7808
COSH LT d/L	2.728 2.756 2.785 2.814 2.843	2.873 2.903 2.933 2.963 2.964	3.025 3.025 3.088 3.121 3.153	3.185 3.218 3.251 3.251 3.284 3.319	3.353 3.388 3.423 3.459 3.459	3.530 3.566 3.566 3.603 3.641
SINH TA/I	2.538 2.568 2.599 2.693 2.662	2.693 2.726 2.757 2.790 2.822	2.855 2.888 2.922 2.956 2.990	3.024 3.059 3.094 3.128 3.164	3.201 3.237 3.274 3.312 3.312	3.385 3.423 3.462 3.501 3.540
μπα/Γ	1.661 1.672 1.684 1.695 1.706	1.717 1.728 1.739 1.750	1.772 1.783 1.793 1.805	1.826 1.837 1.848 1.858	1.880 1.891 1.902 1.913	1.934 1.944 1.955 1.966 1.977
×	.7324 .7296 .7268 .7241 .7211	7186 7158 7131 7104 7076	.7049 .7022 .6994 .6967 .6940	6913 6886 6859 6833 6806	.6779 .6752 .6725 .6697 .6697	.6645 .6592 .6592 .6596 .6599
COSH 27 d/L	1.3653 1.3706 1.3759 1.3810 1.3862	1.3917 1.3970 1.4023 1.4077 1.4131	1.4262 1.4262 1.4297 1.4394 1.4364	1.4465 1.4523 1.4580 1.4638 1.4692	1.4814 1.4814 1.4871 1.4932 1.4990	1.50\$1 1.5108 1.5171 1.5230 1.5293
SINH 2Td/L	.9295 .9372 .9450 .9525	.9677 .9755 .9832 .9908	1.006 1.014 1.022 1.030	1.045 1.053 1.061 1.069	1.085 1.093 1.101 1.109	1.125 1.133 1.141 1.149
TANH 21T d/L	.6808 .6838 .6868 .6897	.6953 .6982 .7011 .7039	7093 7120 7147 7173	.7226 .7252 .7277 .7303	7352 7377 7402 7426 7450	.7474 .7520 .7520 .7543 .7566
2πd/L	.8306 .8363 .8420 .8474 .8528	.8583 .8639 .8694 .8749	.8858 .8913 .8967 .9023	9130 9184 9239 9293 9343	.9400 .9456 .9508 .9563	.9670 .9720 .9775 .9827
d∕L	1322 1331 1340 1349	1366 1375 1384 1392	1410 1419 1427 1436 1436	1462 1462 1470 1479 1488	1496 1505 1513 1522 1530	.1539 .1547 .1556 .1554
$d/L_{\rm o}$.09000 .09100 .09200 .09300	.09500 .09600 .09700 .09800	1000	.1050 .1060 .1070 .1080	1100 1110 1120 1130	1150 1160 1170 1180

M	8.569 8.518 8.468 8.419 8.371	8.324 8.278 8.233 8.189 8.146	8.103 8.061 8.020 7.978	7.897 7.857 7.819 7.781	7.707 7.671 7.636 7.562	7.533 7.499 7.465 7.432
н/н,	.9204 .9200 .9196 .9192 .9189	9186 9182 9178 9175	9169 .9166 .9164 .9161 .9158	.9156 .9154 .9152 .9150 .9150	9116 9144 9142 9142 9141 9141	9139 9137 9136 9135 9135
° _{ఎ/} స్ప	5902 5907 5913 5918 5928	5926 5931 5940 5940 5944	5951 17952 17958 15958 15965	5964 5967 5969 5975	.5980 .5980 .5984 .5984	5987 5989 5992 5992
a	.7776 .7760 .7715 .7729	.7698 .7682 .7667 .7652	.7621 .7606 .7591 .7575	.7545 .7530 .7500 .7500	.7471 .7456 .7456 .7426	.7397 .7382 .7368 .7354
COSH μπα/L	3.716 3.755 3.793 3.832 3.871	3.912 3.952 3.992 4.033 4.074	4.201 4.203 4.204 4.208	10.334 10.378 10.423 10.468 10.514	4.561 4.667 4.654 4.663 4.751	4.800 1.850 1.901 1.951 5.001
SINH The day	3.579 3.620 3.659 3.699 3.740	3.782 3.824 3.865 3.907 3.950	3.992 4.036 4.080 4.125 4.169	4.217 4.262 4.309 4.355 4.402	10.450 10.498 10.546 10.595 10.644	1.695 1.746 1.798 1.847 1.901
μπα/L	1.987 1.998 2.008 2.019 2.030	2.041 2.051 2.061 2.072 2.082	2.093 2.104 2.114 2.125 2.135	2.146 2.156 2.167 2.177 2.188	2.198 2.209 2.219 2.230 2.240	2.251 2.261 2.272 2.282 2.293
×	.6512 .6486 .6460 .6433 .6407	6381 6356 6331 6305 6279	.6228 .6228 .6202 .6176	.6023 .6073 .6047 .6047	.5998 .5972 .5947 .5923 .5898	5873 5847 5822 5798 5773
соSH 2 7 d/L	1.5356 1.5418 1.5479 1.5546	1.5674 1.5734 1.5795 1.5862 1.5927	1.5990 1.6060 1.6124 1.6191 1.6260	1.633 1.640 1.647 1.654 1.660	1.667 1.675 1.681 1.688 1.696	1.703 1.710 1.728 1.725
SINH $2\pi d/L$	1.165	1,207 1,215 1,223 1,231 1,240	1.248 1.257 1.265 1.273	1.291 1.300 1.308 1.317 1.326	1.334 1.343 1.352 1.360 1.369	1.378 1.388 1.397 1.405
TANH $2\pi d/L$.7589 .7612 .7634 .7656 .7678	.7700 .7721 .7742 .7763	7804 7824 7844 7865 7865	7905 7925 7945 7964	.8002 .8021 .8039 .8057	.8094 .8112 .8131 .8149 .8166
27 d/L	.9936 .9989 1.00h 1.010	1.020 1.025 1.030 1.036	1.046 1.052 1.057 1.062	1.073 1.078 1.084 1.089 1.094	1.099	1.125 1.131 1.136 1.141 1.146
d/L	.1581 .1590 .1598 .1607	1624 1632 1640 1649 1649	.1665 .1674 .1682 .1691	1708 1716 1724 1733 1733	.1749 .1758 .1766 .1774	.1791 .1800 .1808 .1816
d/Lo	1200 1210 1220 1230 1240	1250 1260 1270 1280	1300 1310 1320 1330 1340	1350 1360 1370 1380 1390	01410 01410 01420 1430	1450 1460 1470 1480

M	7.369 7.339 7.279 7.250	7.221 7.191 7.162 7.134 7.107	7.079 7.052 7.026 7.000 6.975	6.949 6.924 6.900 6.876 6.853	6.830 6.807 6.784 6.761 6.738	6.716 6.694 6.672 6.651 6.631
о Н/Н	.9133 .9133 .9132 .9132	.9131 .9130 .9129 .9130	.9130 .9130 .9130 .9130	.9131 .9132 .9132 .9133 .9133	.9134 .9135 .9136 .9138	9139 9140 9140 1416 1416
°2/ ⁵ 2	4865 4865 4865 4865 4865 4865	5998 5998 5998 5998 5998	8692 8998 8998 8998 8998	2898 5898 5898 5898 5898	.5993 .5992 .5991 .5989 .5988	.5987 .5984 .5984 .5980
ជ	.7325 .7311 .7296 .7282	.7254 .7240 .7226 .7212	.7184 .7171 .7157 .7157 .7157	.7117 .7103 .7090 .7076	.7050 .7036 .7023 .7010	.6984 .6971 .6958 .6946
T/P #7	5.054 5.106 5.159 5.212 5.265	5.320 5.376 5.432 5.490 5.544	5.663 5.660 5.718 5.777 5.837	5.898 5.959 6.021 6.085 6.148	6.212 6.275 6.342 6.407 6.4173	6.541 6.610 6.679 6.747 6.818
SINH T q/F	4.954 5.007 5.061 5.115 5.115	5.225 5.339 5.339 5.454	5.513	5.813 5.938 6.003 6.066	6.130 6.197 6.262 6.329 6.395	6.465 6.534 6.603 6.672 6.7144
ηπ d/L	2.303 2.314 2.324 2.335 2.345	2.356 2.356 2.377 2.387 2.398	2.408 2.419 2.429 2.440 2.450	2.461 2.471 2.482 2.492 2.503	2.523 2.523 2.534 2.534 2.544 2.555	2.565 2.576 2.586 2.597 2.597
×	.57148 .5723 .5699 .5675 .5675	.5627 .5577 .5577 .5552 .5558	5504 5480 5456 5456 5432 5409	5385 5362 5339 5315 5291	.5267 .5243 .5220 .5197	.5151 .5127 .5104 .5081
COSH 277 d/L	1.740 1.747 1.755 1.762 1.770	1.777 1.785 1.793 1.801 1.809	1.817 1.825 1.833 1.841 1.841	1.857 1.865 1.873 1.882 1.890	1.899 1.907 1.915 1.924 1.933	1.941
SINH 2πd/L	1.424 1.433 1.442 1.451 1.460	1.469 1.479 1.488 1.498 1.507	1.517 1.527 1.536 1.546	1.565 1.574 1.584 1.594 1.604	1.614 1.624 1.634 1.634 1.654	1.664
TANH 2π d/L	.8183 .8200 .8217 .8234	.8267 .8284 .8301 .8317	.8349 .8365 .8381 .8396	.8427 .8442 .8457 .8457 .8472	.8501 .8515 .8529 .8529 .8544	.8572 .8586 .8600 .8614 .8627
2π d/L	1.152	1.178 1.183 1.188 1.194	1.204 1.209 1.215 1.220 1.225	1.230 1.235 1.240 1.246 1.251	1.257 1.262 1.267 1.277	1.282 1.288 1.293 1.298 1.304
d/L	.1833 .1841 .1850 .1858	.1875 .1883 .1891 .1900	1917 1925 1933 1941 1950	.1958 .1966 .1975 .1983	.2008 .2008 .2017 .2025	2042 2050 2058 2066 2066
$^{\rm d/L_o}$	1500 1510 1520 1530 1540	.1550 .1560 .1570 .1580	.1600 .1610 .1620 .1630 .1640	.1650 .1660 .1670 .1680	.1700 .1710 .1720 .1730 .1740	.1750 .1760 .1770 .1780

H/H ₀ · M	9145 6.611 9149 6.591 9149 6.550 9149 6.550	9152 6.511 9154 6.492 9155 6.474 9157 6.456	9161 6,421 9163 6,403 9165 6,385 9167 6,368 9169 6,351	.9170 6.334 .9172 6.317 .9174 6.300 .9176 6.284 .9179 6.268	.9181 6.253 .9183 6.237 .9186 6.222 .9188 6.206 .9190 6.191	.9193 6.176 .9195 6.161 .9197 6.147 .9200 6.133
°ე/ ^ე ე	.5979 .5977 .5975 .5974	.5969 .5967 .5963 .5963	.5958 .5955 .5950 .5950 .5948	5946 5944 5941 5938 5938	.5932 .5929 .5926 .5923	.5917 .5914 .5911 .5908
¤	.6920 .6907 .6895 .6882 .6870	6845 6845 6832 6820 6820	.6796 .6784 .6772 .6760 .6760	.6736 .6724 .6712 .6700	.6677 .6666 .6654 .6642 .6631	.6620 .6608 .6597 .6586 .6586
COSH Tund	6.891 6.963 7.035 7.109 7.183	7.260 7.336 7.412 7.488 7.566	7.647 7.728 7.810 7.891 7.974	8.059 8.145 8.228 8.316 8.406	8.495 8.583 8.674 8.766 8.860	8.953 9.050 9.144 9.240 9.342
SINH Tu d/L	6.818 6.890 6.963 7.038	7.191 7.267 7.345 7.421 7.500	7.581 7.663 7.746 7.827 7.911	7.996 8.083 8.167 8.256 8.346	8.436 8.524 8.616 8.708 8.803	8.897 8.994 9.090 9.187 9.288
1/φ μ η	2.618 2.629 2.639 2.650 2.660	2.671 2.681 2.692 2.702	2.723 2.734 2.744 2.755 2.755	2.776 2.787 2.797 2.808 2.819	2.829 2.840 2.850 2.861 2.872	2.882 2.893 2.903 2.914 2.925
Ж	5036 5013 14990 14945	1,922 1,899 1,876 1,854 1,832	.4809 .4787 .4765 .4743	4699 4677 4655 4633 4611	4590 4569 4547 4526 4526	4462 4462 4462 4441 4419 4398
COSH 2 π d/L	1.986 1.995 2.004 2.013	2.032 2.041 2.051 2.050 2.060	2.079 2.089 2.099 2.108 2.118	2.128 2.138 2.148 2.158 2.159	2.178 2.189 2.199 2.210 2.220	2.231 2.242 2.252 2.252 2.263 2.263
SINH 2Td/L	1.716 1.727 1.737 1.748	1.769 1.780 1.791 1.801 1.812	1.823 1.834 1.845 1.856 1.856	1.879 1.890 1.901 1.913	1.935 1.947 1.959 1.970	1.994 2.006 2.017 2.030 2.042
TANH 2# d/L	8640 8653 8666 8680 8693	.8706 .8718 .8731 .8743	.8767 .8779 .8791 .8803	8827 8839 8850 8862 8862	.8884 .8895 .8906 .8917 .8917	.8939 .8950 .8960 .8971
2T d/L	1.309	1.335 1.341 1.346 1.351 1.356	1.362 1.367 1.372 1.377	1.388	1.426	1.441
d/L	.2083 .2092 .2100 .2108	2125 2134 2142 2142 2150	.2167 .2176 .2184 .2192 .2201	.2209 .2218 .2226 .2234 .2243	.2251 .2260 .2268 .2277 .2285	.2293 .2302 .2310 .2319
$^{ m d/L_o}$	1800 1810 1820 1830 1840	1850 1860 1870 1880 1890	1900 1910 1920 1930 1940	.1950 .1960 .1970 .1980	2000 2010 2020 2030 2040	2050 2060 2070 2080 2090

M	6.105 6.091 6.064 6.064	6.037 6.024 6.011 5.999 5.987	5.975 5.983 5.939 5.939	5.915 5.891 5.889 5.880 5.869	5.848 5.848 5.838 5.838 5.827	5.806 5.796 5.776 5.776
о О Н/Н	.9205 .9207 .9210 .9213	.9218 .9221 .9223 .9226	.9231 .9234 .9236 .9239 .9242	.9245 .9248 .9251 .9251	9261 9264 9267 9270	.9276 .9279 .9282 .9285
°2/5°2	.5901 .5898 .5894 .5891	.5881 .5881 .5878 .5874	.5868 .5864 .5861 .5857 .5857	5850 5846 5842 5838 5838	.5830 .5826 .5828 .5819 .5819	.5811 .5807 .5804 .5806 .5796
ជ	.6563 .6552 .6541 .6531	6509 6498 6498 6477 7749	6456 6446 6436 6436 6425 6425	.6404 .6394 .6383 .6373	.6353 .6343 .6323 .6323	.630h .629h .629h .6275 .6275
COSH L m d/L	9.442 9.542 9.642 9.744 9.847	9.952 10.06 10.17 10.28 10.38	10.50 10.61 10.72 10.84 10.95	11.07 11.19 11.31 14.11	11.68 11.81 11.93 12.07	12.33 12.47 12.59 12.73 12.87
SINH LPd/L	9.389 9.490 9.590 9.693 9.796	9.902 10.01 10.12 10.23 10.34	10.45 10.56 10.68 10.79 10.91	11.02	11.64 11.77 11.90 12.03	12.29 12.43 12.55 12.69
μπα/L	2.936 2.946 2.957 2.957 2.967	2.989 2.999 3.010 3.021 3.031	3.042 3.052 3.063 3.074 3.085	3.095 3.106 3.117 3.128 3.138	3.149 3.160 3.171 3.182 3.192	3.203 3.214 3.225 3.225 3.236
×	4377 4357 4336 4315 4294	4274 4253 4232 4232 4211	17.14 17.14 18.14 18.14 11.14	.4071 .4051 .4031 .4031	.3971 .3952 .3932 .3912 .3893	3874 3855 3836 3816 3797
COSH 2πd/L	2.285 2.295 2.307 2.318 2.329	2.340 2.351 2.364 2.375 2.375	2.397 2.409 2.421 2.433 2.444	2.457 2.469 2.481 2.493 2.506	2.518 2.531 2.543 2.556 2.556	2.581 2.594 2.607 2.620 2.634
SINH 2T d/L	2.055 2.066 2.079 2.091 2.103	2,115 2,128 2,142 2,154 2,154	2,178 2,192 2,204 2,218 2,218	2.244 2.257 2.271 2.284 2.297	2.311 2.325 2.338 2.352 2.366	2.380 2.393 2.408 2.422 2.436
TANH 2πd/L	.8991 .9001 .9011 .9021	.9041 .9051 .9061 .9070	.9088 .9097 .9107 .9116	9134 9143 9152 9152 9161	.9178 .9186 .9194 .9203 .9211	.9219 .9227 .9235 .9243
2π d/L	1.468 1.473 1.479 1.484 1.484	1.494 1.500 1.506 1.511 1.516	1.521 1.526 1.532 1.537 1.537	1.548	1.575 1.580 1.585 1.591	1.602 1.607 1.612 1.618 1.623
d/L	2336 2344 2353 2351 2370	2378 2387 2395 2404 2412	2429 2429 2438 2438 2446	.2463 .2472 .2481 .2489 .2498	2506 2515 2523 2532 2532	2549 2558 2556 2575 2575 2584
$^{ m d}/{ m L}_{ m O}$.2100 .2110 .2120 .2130	.2150 .2160 .2170 .2180	.2200 .2210 .2220 .2230	.2250 .2260 .2270 .2280	.2300 .2310 .2320 .2330 .2340	.2350 .2360 .2370 .2380

M	756 746 727 727	. 710 . 692 . 684 . 675	667 658 650 641 641	624 616 608 600 592	555 578 553 553 553 553 553 553 553 553 553 55	5.514 5.527 5.527 5.527
он/н	.9291 .9294 .9298 .9301	.9307 .9310 .9314 .9317	9323 9327 9330 9333	9343 9343 9346 9346 9353	.9356 .9363 .9363 .9367	.9373 .9377 .9380 .9383
°2/°2	5792 5788 5784 5780 5776	5272 5768 5764 5760 5756	5752 5748 5744 5740 5736	5732 5728 5724 5720 5716	5712 5707 5703 5699 5695	5691 5687 5683 5679 5675
u	6256 6246 6237 6237 6228 6228	6209 6200 6191 6182 6173	6164 6155 6146 6137 6128	6120 6111 6102 6093 6085	6076 6068 6060 6052 6043	6035 6027 6018 6010 6002
COSH LT d/L	13.01 13.15 13.30 13.59	13.73 13.88 14.04 14.19 14.35	14.51 14.82 14.99 15.15	15.32 15.49 15.66 15.83 16.00	16.18 16.36 16.54 16.73 16.73	17.10 17.28 17.45 17.67 17.87
SINH LTd/L	12.97 13.11 13.26 13.40	13.70 13.85 14.00 14.15 14.31	14.47 14.62 14.79 14.95 15.12	15.29 15.45 15.63 15.80 15.97	16.15 16.33 16.51 16.69 16.88	17.07 17.26 17.45 17.64 17.84
hmd/L	3.257 3.268. 3.279 3.290 3.301	3.312 3.323 3.334 3.344 3.355	3.367 3.388 3.399 3.410	3.421 3.432 3.443 3.443 3.454 3.465	3.476 3.487 3.498 3.509 3.520	3.531 3.542 3.553 3.554 3.575
M	.3779 .3760 .3741 .3722 .3704	.3685 .3666 .3648 .3629 .3620	3592 3574 3556 3537 3537	3501 3483 3465 3447 3430	3412 3394 3376 3359 3342	.3325 .3308 .3291 .3274 .3256
cosh 2 m d/l	2.647 2.660 2.674 2.687 2.700	2.714 2.728 2.742 2.755 2.770	2.784 2.798 2.813 2.828 2.842	2.856 2.871 2.886 2.901 2.916	2.931 2.946 2.962 2.977 2.992	3.008 3.023 3.039 3.055 3.071
SINH 2 Td/L	2.450 2.464 2.480 2.494 2.508	22.538 2.5538 2.5538 2.5538 2.5683	2.599 2.614 2.629 2.645 2.660	2.676 2.691 2.707 2.723 2.739	2.755 2.772 2.788 2.804 2.820	2.837 2.853 2.870 2.886 2.904
TANH 2 π d/L	.9259 .9267 .9275 .9282	.9296 .9304 .9313 .9318	.9332 .9339 .9346 .9353	.9367 .9374 .9381 .9388	.9400 .9406 .9412 .9418	9431 9437 9443 9449
2# d/L	1.629 1.634 1.640 1.645 1.650	1.656 1.661 1.667 1.672 1.678	1.683 1.689 1.694 1.700 1.705	1.711 1.716 1.722 1.727 1.732	1.738 1.744 1.749 1.755 1.760	1.766 1.771 1.776 1.786 1.782
d/L	.2592 .2601 .2610 .2618	2635 2644 2653 2653 2661	.2679 .2687 .2696 .2705	.2722 .2731 .2740 .2749	.2766 .2775 .2784 .2792 .2801	.2810 .2819 .2827 .2836 .2845
$d/L_{_{ m O}}$	24,00 24,10 21,20 21,30 24,40	2450 2460 2470 2180 2480	.2500 .2510 .2520 .2530 .2530	.2550 .2560 .2570 .2580 .2590	.2600 .2610 .2630 .2630	.2650 .2660 .2670 .2680

M	5.513 5.506 5.499 5.493 5.486	5.480 5.474 5.468 5.468 5.462	5.450 5.444 5.438 5.438	5.420 5.414 5.409 5.403 5.397	5.392 5.386 5.380 5.375 5.371	5.366
н/н	. 9390 . 9393 . 9396 . 9396 . 9396	.9406 .9410 .9413 .9416	. 9423 . 9426 . 9430 . 9433	.9440 .9443 .9449 .9452	.9456 .9459 .9463 .9463	. 94.73 . 94.76 . 94.80 . 94.83
°2/°2	.5671 .5667 .5663 .5659 .5659	.5651 .5647 .5643 .5639	.5631 .5627 .5623 .5619	.5611 .5607 .5603 .5600	.5588 .5588 .5584 .5580	.5572 .5568 .5568 .5560 .5556
и	.5994 .5986 .5978 .5971	.5955 .5940 .5940 .5932	.5917 .5910 .5895 .5887	.5880 .5873 .5856 .5859	.5845 .5838 .5831 .5831 .5824	.5804 .5797 .5790 .5790
COSH L	18.07 18.27 18.49 18.67 18.67	19.10 19.30 19.51 19.74 19.96	20.18 20.41. 20.64 20.87 21.11	21.35 21.59 21.84 22.07	22.57 22.83 23.09 23.35 23.62	23.88 24.15 24.42 24.70 24.98
SINH 4 T d/L	18.04 18.24 18.46 18.65 18.86	19.07 19.28 19.49 19.71 19.93	20.16 20.39 20.62 20.85 21.09	21.33 21.57 21.82 22.05 22.30	22.54 22.81 23.07 23.33 23.60	23.86 24.12 24.40 24.68 24.96
$l_{\rm L}\pi d/{\rm L}$	3.587 3.598 3.610 3.620 3.631	3.642 3.653 3.664 3.675 3.686	3.697 3.709 3.720 3.731 3.742	3.754 3.765 3.776 3.787 3.798	3.809 3.821 3.832 3.843 3.843	3.866 3.877 3.888 3.900 3.911
Ж	.3239 .3222 .3205 .3189 .3172	.3155 .3139 .3122 .3106 .3089	3073 3057 3040 3024 3008	.2992 .2976 .2959 .2944 .2929	.2913 .2898 .2882 .2866 .2866	2835 2820 2805 2790 2775
COSH 2πd/L	3.088 3.104 3.120 3.136 3.136	3.170 3.186 3.203 3.220 3.237	3.254 3.272 3.289 3.307 3.325	3.343 3.361 3.379 3.379 3.414	3.433 3.451 3.471 3.490 3.508	3.527 3.546 3.565 3.585 3.585 3.604
SINH 2 T d/L	2.921 2.938 2.956 2.973 2.990	3.008 3.025 3.043 3.061 3.079	3.097 3.115 3.133 3.152 3.152	3.190 3.209 3.228 3.246 3.246	3.284 3.303 3.323 3.343 3.362	3.382 3.402 3.422 3.442 3.442
TANH 2πd/L	.9461 .9467 .9473 .9478	.9490 .9500 .9505 .9505	.9516 .9521 .9526 .9532	.9542 .9547 .9552 .9557	.9567 .9572 .9577 .9581	.9590 .9599 .9699 .9603
2π d/L	1.793 1.804 1.810 1.815	1.826 1.832 1.832 1.837 1.843	1.849 1.854 1.860 1.866 1.865	1.877 1.882 1.893 1.893	1.905 1.910 1.916 1.922 1.927	1.933 1.938 1.944 1.950
d/L	.2854 .2863 .2872 .2880	.2898 .2907 .2916 .2924 .2933	2942 2951 2960 2969 2978	.2987 .2996 .3005 .3014 .3022	3031 3040 3049 3058 3067	3076 3085 3094 3103 3112
d/L_{\circ}	.2700 .2710 .2720 .2730	.2750 .2760 .2770 .2780	.2800 .2810 .2820 .2830	.2850 .2860 .2870 .2880	.2900 .2910 .2920 .2930	.2950 .2960 .2970 .2980

×	5.342 5.337 5.332 5.328 5.328	5.318 5.304 5.309 5.309 5.300	5.296 5.292 5.288 5.288 5.280	5.276 5.272 5.268 5.268 5.260	5.256 5.252 5.249 5.249 5.245	5.237 5.234 5.231 5.227 5.223
н/н	.9493 .9493 .9496 .9499	9505 9509 9512 9515 9515 9159	.9522 .9528 .9528 .9531 .9535	9538 9541 9541 9547 9550	.9553 .9556 .9559 .9559 .9562	9568 9571 9577 9580
°0/°0	.5552 .5549 .5545 .5541 .5538	.5534 .5527 .5527 .5523 .5523	5515 5501 5507 5504 5500 5500	5497 5496 5490 5486 5483	5479 5476 5472 5472 5468	5462 5458 5455 5451 5451
ជ	.5777 .5771 .5764 .5758 .5758	5745 5739 5732 5726 5726	5714 5708 5701 5695 5689	.5683 .5678 .5672 .5666 .5660	5655 5649 5643 5637 5637	.5627 .5621 .5616 .5610 .5605
COSH LT d/L	25.26 25.55 25.55 25.83 26.14 26.14	26.74 27.04 27.35 27.35 27.66	28.30 28.62 28.95 29.28	29.96 30.31 30.65 31.00	31.72 32.08 32.46 32.46 33.84	33.61 33.99 34.38 34.79 35.19
SINH LT d/L	25.24 25.53 25.82 26.12	26.72 27.02 27.33 27.65 27.65	28.28 28.60 28.93 29.27 29.60	29.94 30.29 30.64 30.99 31.35	31.71 32.07 32.44 32.83 33.20	33.60 33.97 34.37 34.77 35.18
μπα/r	3.922 3.945 3.945 3.956 3.958	3.979 3.990 4.002 4.013 1.024	4.036 4.047 4.058 4.070 4.081	4.093 4.104 4.116 4.127 4.127	4.150 4.161 4.173 4.185 4.196	1,208 1,219 1,231 1,242 1,242
×	2760 2745 2730 2730 2715	2685 2670 2656 2641 2641	2613 2599 2584 2570 2570	2542 2528 2524 2514 2500 2486	2472 2459 2445 2445 2431	2404 2391 2378 2364 2351
соѕн 2 т d/L	3.624 3.643 3.663 3.683 3.703	3.724 3.745 3.765 3.765 3.866	3.827 3.848 3.870 3.891 3.912	3.934 3.956 3.978 1.000 1.022	4.045 1.068 1.090 1.114 1.136	1.160 1.183 1.206 1.230 1.251
SINH 2T d/L	3.483 3.503 3.524 3.524 3.545 3.546	3.587 3.609 3.630 3.651 3.673	3.694 3.716 3.738 3.760 3.782	3.805 3.828 3.851 3.873 3.873	3.919 3.943 3.966 3.990 4.014	4.038 4.061 4.085 4.110 4.135
TANH 2 m d/L	9611 9616 9620 9624 9629	9633 9637 9637 9645 9649	.9653 .9656 .9660 .968	.9672 .9676 .9679 .9682 .9686	.9690 .9693 .9696 .9700	.9707 .9710 .9713 .9717
2π d/L	1,961 1,967 1,972 1,978 1,984	1.989 1.995 2.001 2.007	2.018 2.023 2.029 2.035 2.041	2.046 2.052 2.058 2.063 2.063	2.075 2.081 2.086 2.092 2.098	2.104 2.110 2.115 2.121 2.127
d/L	3121 3130 3139 3148 3148	3166 3175 3184 3193 3202	.3211 .3220 .3230 .3239	.3257 .3266 .3275 .3284 .3294	.3302 .3311 .3321 .3330	.3349 .3357 .3367 .3376 .3385
d/L_o	3000 3010 3020 3030 3040	3050 3060 3070 3080	3100 3120 3120 3130	3150 3160 3170 3180 3180	.3200 .3210 .3220 .3230 .3240	.3250 .3260 .3270 .3280

M	5.220 5.217 5.214 5.210 5.207	5.20h 5.20h 5.198 5.194 5.191	5.188 5.185 5.182 5.179	5.173 5.168 5.168 5.165	5.157 5.157 5.154 5.152	5.147 5.144 5.141 5.139 5.137
он/н	.9583 .9586 .9589 .9592	.9598 .9601 .9607 .9607	.9613 .9615 .9618 .9621	.9626 .9629 .9632 .9635	.9640 .9643 .9643 .9648 .9651	.9654 .9657 .9659 .9662 .9665
°2/95	5444 5438 5438 5434 5434	5427 5424 5421 5421 5417	.5411 .5408 .5405 .5402	5396 5389 5389 5386 5386	.5377 .5374 .5374 .5371	5365 5365 5356 5356 5356
ď	.5599 .5594 .5589 .5584 .5584	.5573 .5568 .5563 .5558 .5558	.5548 .5544 .5534 .5534 .5534	.5524 .5519 .5515 .5510	5501 5496 5492 5487 5483	54.79 -54.74 -54.70 -54.66
7/p.47	35.59 36.00 36.43 36.85 37.27	37.72 38.15 38.60 39.04 39.49	39.96 40.41 40.89 41.37 41.84	12.34 12.84 13.35 13.35 14.86	14.80 15.43 15.96 16.51 17.04	47.60 48.16 48.73 49.30 49.89
$\mu \pi^{\mathrm{d/L}}$	35.58 35.99 36.42 36.84 37.25	37.70 38.14 38.59 39.02 39.48	39.95, 40.40 40.87 41.36 41.85	42.33 42.83 43.34 143.34 143.85	14.89 15.42 15.95 16.50 17.03	47.59 48.15 48.72 49.29 49.88
ηπα/ Ι	4.265 4.277 4.288 4.300 4.311	4.323 4.335 4.346 4.358 4.369	4.381 4.392 1.104 1.116 1.127	4.439 4.451 4.462 4.474 4.486	4.498 4.509 4.521 4.533 4.544	4.556 4.568 4.579 4.591 4.603
K	.2338 .2325 .2312 .2299 .2286	.2273 .2260 .2247 .2235	.2210 .2198 .2185 .2173 .2160	2116 2136 2124 2124 2121 2099	2087 2076 2064 2062 2052	.2029 .2017 .2005 .1994
COSH 2π d/L	4.277 4.301 4.326 4.350 4.375	1.399 1.121 1.150 1.150 1.171 1.500	4.525 4.550 4.576 4.602 4.630	4.656 1.682 1.709 1.736 1.763	4.791 4.818 4.845 4.873 4.901	4.929 4.957 4.987 5.015 5.044
SINH 2T d/L	1,159 1,184 1,209 1,234 1,259	4.284 4.310 4.336 4.361 4.388	1, 13 1, 13 1, 14 1, 166 1, 192 1, 521	4.547 4.575 4.602 4.629 4.657	1,685 1,713 1,770 1,770 1,798	1,827 1,856 1,885 1,914 1,944
TANH 2¶ d/L	.9723 .9726 .9729 .9732	.9738 .9741 .9744 .9747 .9750	.9753 .9756 .9758 .9761	.9767 .9769 .9772 .9775	.9780 .9782 .9785 .9787	.9792 .9795 .9797 .9799
2π d/Ľ	2.133 2.138 2.144 2.150 2.150	2.161 2.167 2.173 2.179 2.185	2.190 2.196 2.202 2.208 2.208	2.220 2.225 2.231 2.237 2.243	2.249 2.255 2.260 2.266 2.272	2.278 2.284 2.290 2.296 2.301
d/L	.3394 .3403 .3413 .3422 .3431	.3440 .3449 .3459 .3468	.3468 .3495 .3504 .3514 .3523	.3532 .3542 .3551 .3550	.3579 .3588 .3598 .3607	3625 3635 3644 3653 3663
d/L	.3300 .3320 .3320 .3330	.3350 .3360 .3370 .3380	.3410 .3410 .3420 .3430 .3440	.3450 .3460 .3470 .3480 .3480	.3500 .3510 .3520 .3530 .3540	.3550 .3560 .3570 .3580 .3590

×	5.134 5.132 5.130 5.127 5.125	5.123 5.121 5.118 5.116 5.116	5.112 5.110 5.107 5.105 5.103	5.099 5.097 5.097 5.093	5.088 5.088 5.088 5.084	5.082 5.081 5.077 5.077
н/н	.9667 .9670 .9673 .9673	.9680 .9683 .9686 .9688	.9693 .9696 .9698 .9700	.9705 .9707 .9709 .9712	.9717 .9719 .9721 .9724	.9728 .9730 .9732 .9735
°2/ ^D 2	.5350 .5347 .5344 .5342 .5339	5336 5333 5330 5327 5325	.5322 .5319 .5317 .5314 .5312	.5309 .5304 .5304 .5301 .5299	.5296 .5294 .5291 .5291 .5288	.5284 .5281 .5279 .5276 .5274
r.	54.57 54.53 54.63 54.65 54.65	5437 5433 5429 5425	5417 5403 5405 5405	5398 5394 5387 5387 5383	5380 5376 5372 5369 5365	5362 5359 5355 5352 5349
COSH γπ d/L	50.48 51.09 51.67 52.28 52.90	53.53 54.16 54.79 55.43 56.10	56.77 58.14 58.14 58.83 59.53	60.25 60.95 61.68 62.42 63.14	63.91 64.67 65.46 66.17 67.03	67.81 68.62 69.46 70.29 71.13
SINH LT d/L	50.47 51.08 51.67 52.27 52.89	53.52 54.15 54.78 55.42 56.09	56.76 57.43 58.13 58.82 59.52	60.24 60.95 61.68 62.41 63.13	63.91 64.67 65.45 66.16 67.02	67.80 68.61 69.45 70.28 71.12
'μπ d/L	1,615 1,627 1,638 1,650 1,661	1.673 1.685 1.697 1.708 1.720	4.732 4.744 4.756 4.756 4.768	4.792 4.803 4.815 4.827 4.838	4.851 4.862 4.875 4.875 4.885 4.898	4.910 4.922 4.934 4.946 4.958
×	.1972 .1960 .1949 .1936	.1915 .1904 .1894 .1883	.1861 .1850 .1839 .1828	.1807 .1797 .1786 .1786	1756 1745 1735 1735 1725	.1705 .1695 .1685 .1675
COSH 2πd/L	5.072 5.103 5.132 5.161 5.161	5.221 5.251 5.281 5.312 5.343	5.37k 5.406 5.438 5.469 5.502	5.534 5.538 5.631 5.631	5.697 5.731 5.765 5.788 5.833	5.900 5.935 5.935 6.005
$\sup_{2\pi\mathrm{d/L}}$	1.974 5.004 5.034 5.063 5.094	5.124 5.155 5.186 5.217 5.217	5.280 5.312 5.345 5.377 5.410	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	5.609 5.643 5.677 5.712 5.746	5.814 5.850 5.850 5.886 5.921
TANH 2 T d/L	.9804 .9806 .9808 .9811	.9815 .9817 .9819 .9821	.9825 .9827 .9830 .9832 .9834	.9835 .9837 .9839 .9841 .9841	.9845 .9847 .9848 .9850	9854 9857 9857 9859 9860
2TTd/L	2.307 2.313 2.313 2.325 2.325	2.337 2.342 2.348 2.354 2.354	2.366 2.372 2.378 2.384 2.390	2.396 2.402 2.408 2.408 2.413 2.419	2.425 2.431 2.437 2.443 2.449	2.455 2.461 2.467 2.473 2.473
d/L	3672 3682 3691 3700 3709	.3719 .3728 .3737 .3747 .3756	3775 3775 3785 3794 3794	3813 3822 3832 3841 3841	3869 3879 3879 3888 3898	3907 3917 3926 3936 3945
d/L _o	3600 3610 3620 3630 3640	3650 3660 3670 3680 3690	3700 3710 3720 3730 3740	.3750 .3760 .3770 .3780	3800 3810 3820 3830 3840	.3850 .3860 .3870 .3880

M	5.074 5.072 5.071 5.069 5.067	5.066 7.064 7.063 7.063 7.060	7,7,7,7,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	7.010 7.019 7.018 7.018	5.044 5.043 5.040 5.040 5.039	5.037 5.035 5.035 5.034 5.033
ů H/H	9739 9741 9743 9745 9748	.9750 .9752 .9754 .9756 .9756	.9761 .9763 .9765 .9766 .9768	.9770 .9772 .9774 .9776	.9780 .9782 .9784 .9784 .9786	.9790 .9792 .9794 .9795
°2/°2	.5271 .5269 .5267 .5265 .5265	5258 5258 5255 5255 5253	5248 5246 5246 5242 5242	5238 5236 5234 5232 5229	.5227 .5225 .5223 .5223	.5217 .5215 .5213 .5213 .5209
п	5345 5342 5339 5336 5336	5329 5326 5323 5320 5320	.5314 .5311 .5308 .5305	5299 5296 5293 5290 5280	5285 5282 5279 5277 5277	.5271 .5269 .5266 .5263 .5263
cosh μπα/L	71.98 72.86 73.72 74.59 75.49	76.40 77.32 78.24 79.19 80.13	81.12 82.08 83.06 84.07 85.12	86.14 87.17 88.20 89.28 90.39	91.44 92.55 93.67 94.83 95.96	97.13 98.30 99.52 100.7 101.9
SINH Lm d/L	71.97 72.85 73.72 74.58 75.48	76.40 77.31 78.24 79.19 80.13	81,12 82,07 83,06 84,07 85,11	86.14 87.17 88.19 89.28 90.38	91.44 92.54 93.67 94.83	97.13 98.29 99.52 100.7 101.9
LT d/L	4.970 4.982 4.993 5.005	5.029 5.041 5.053 5.065 5.067	5.089 5.101 5.113 5.125 5.125	5.149 5.161 5.173 5.185 5.187	5.209 5.221 5.233 5.245 5.245	5.269 5.281 5.294 5.305 5.317
M	1656 1646 1636 1637 1617	1608 1598 1589 1579 1570	1561 1552 1542 1533 1534	1515 1506 1506 1497 1488	17,11. 17,11. 12,11. 12,11. 13,11.	1428 1419 1419 11403 1394
COSH 2π d/L	6.040 6.076 6.112 6.148 6.185	6.221 6.258 6.295 6.332 6.369	6.407 6.445 6.483 6.521 6.561	6.601 6.640 6.679 6.718 6.718	6.799 6.839 6.879 6.921 6. 963	7.004 7.046 7.088 7.130 7.173
SINH 2 T d/L	5.957 5.993 6.029 6.066 6.103	6.140 6.217 6.215 6.252 6.290	6.329 6.367 6.106 6.1144 6.11814	6.525 6.564 6.603 6.644 6.684	6.725 6.766 6.806 6.849 6.890	6.932 6.974 7.018 7.060 7.102
TANH 2π d/L	.9862 .9864 .9865 .9867 .9869	9870 9872 9873 9874	.9877 .9889 .9882 .9883	.9885 .9886 .9887 .9889 .9890	9891 9892 9894 9895	.9898 .9899 .9900 .9901
2π d/L	2.485 2.491 2.197 2.503 2.509	2.515 2.521 2.527 2.532 2.538	2.556 2.556 2.556 2.556 2.568	2.575 2.581 2.586 2.592 2.598	2.604 2.610 2.616 2.623 2.629	2.635 2.641 2.647 2.653 2.659
J/p	.3955 .3964 .3974 .3983	.4002 .4012 .4021 .4031 .4031	.4050 .4059 .4069 .4078 .4088	.4098 .4107 .1116 .4126 .4136	2414. 2414. 4614. 4714. 1934.	.4193 .4203 .4212 .4222 .4231
$d/L_{\rm O}$.3900 .3910 .3920 .3930	.3950 .3960 .3970 .3980	.4000 .4010 .4020 .4030	.4050 .4060 .4070 .4080	.4100 0114. 0114. 01130 0114.	4150 1050 1050 1070 1080 1090

×	5.031 5.029 5.028 5.028	5.025 5.025 5.025 5.025 5.025	5.021 5.020 5.019 5.018	5.015	5.010	000000 000000 000000000000000000000000
н/н	9798 9800 9802 9804 9806	.9808 .9810 .9811 .9812 .9812	.9816 .9818 .9819 .9821	.9824 .9826 .9828 .9829 .9830	9832 9833 9835 9836 9838	9839 9841 9843 9846 9846
°2/ ⁵ 2	5208 5206 5204 5204 5202 5200	5198 5196 5195 5193 1913	5189 5187 5186 5184 5184	.5181 .5179 .5177 .5177 .5176	57.172 .57.172 .57.69 .51.69 .51.68	.5165 .5163 .5161 .5160 .5160
п	5256 5253 5251 5251 5251	5246 5244 5241 5239 5239	5234 5232 5230 5227 5225	.5223 .5221 .5218 .5216 .5216	.5212 .5210 .5206 .5206 .5206	.5202 .5200 .5198 .5196 .5194
$0.05H$ $1/\mu$ $1/\mu$	103.1 104.4 105.7 107.0 108.3	109.7 110.9 112.2 113.6 115.0	116.4 117.8 119.3 120.7	123.7 125.2 126.7 128.3 129.9	131.4 133.0 134.7 136.3 137.9	139.7 141.4 143.1 144.8 146.6
SINH TUT THE	103.1 104.4 105.7 107.0 108.3	109.7 110.9 112.2 113.6 115.0	116.4 117.8 119.2 120.7 122.2	123.7 125.2 126.7 128.3 129.9	131.4 133.0 134.7 136.3 137.9	139.6 141.4 143.1 146.6
h m'd/L	5.329 5.341 5.353 5.353 5.378	5.390 5.402 5.414 5.426 5.438	5.450 5.462 5.474 5.486 5.499	5.523 5.523 5.533 5.547 5.547	5.572 5.584 5.596 5.608 5.620	5.632 5.644 5.657 5.669 5.669
×	1386 1378 1369 1361	1345 1337 1329 1321 1321	.1305 .1298 .1290 .1282	1267 1259 1251 1244 1236	.1229 .1222 .1214 .1207	1192 1185 1176 1171
COSH 2T d/L	7.215 7.259 7.303 7.349	7.438 7.479 7.524 7.570 7.616	7.661 7.707 7.753 7.800 7.847	7.895 7.943 7.991 8.035 8.088	8.136 8.185 8.236 8.285 8.334	8.387 8.438 8.486 8.540 8.540
SINH 2T d/L	7.146 7.234 7.279 7.325	7.371 7.412 7.457 7.503 7.550	7.595 7.642 7.688 7.735	7.831 7.880 7.922 7.975 8.026	8.075 8.124 8.175 8.228 8.228	8.326 8.379 8.427 8.481 8.481
TANH 2¶ d/L	49906 9906 9906 79907	.9909 .9910 .9912 .9912	.9914 .9915 .9916 .9917	.9919 .9920 .9921 .9922	.9924 .9925 .9926 .9927	.9929 .9930 .9931 .9932
2# d/L	2.665 2.671 2.677 2.683 2.689	2.695 2.701 2.707 2.713 2.713	2.725 2.731 2.737 2.743 2.749	2.755 2.762 2.768 2.774 2.780	2.786 2.792 2.798 2.804 2.810	2.816 2.822 2.828 2.834 2.840
d/L	4241 4251 4250 4270 4270	4289 4298 4308 4318 4328	4337 4347 4356 4366 4366	4385 4395 4405 4404 4424	14434 1443 14453 14463 14463	.4482 .4492 .4501 .4511
d/L_{o}	1,200 1,210 1,220 1,230 1,230	.4250 .4260 .4270 .4280 .4280	4320 4330 4330 4340	.4350 .4360 .4370 .4380	14400 1410 14120 14430 14430	. 4450 . 4460 . 4480 . 4480

M	5.002 5.000 5.000 5.000	1.998 1.997 1.997 1.996 1.995	1.994 1.994 1.993 1.992 1.992	1,991 1,990 1,989 1,989 1,989	4.988 4.987 4.986 4.986 4.985	1.984 1.984 1.983 1.983 1.983
н/н	9847 9848 9849 9851 9852	9855 9857 9857 9858 9858	9862 9863 9864 9864 9864	.9868 .9868 .9869 .9871	.9873 .9874 .9875 .9876 .9876	9878 9880 9881 9882 9883
°2/ ⁵ 2	<u> </u>	02.12. 84.12. 84.12. 54.17. 44.17.	5143 5140 5139 5139 5138	55135 35135 35135 35135 11115	.5129 .5128 .5127 .5126	5124 5122 5122 5120 5120
ц	5192 5190 5188 5186 5184	5182 5181 5179 5177	5173 5172 5170 5168 5168	5165 5163 5163 5160 5158	72.12. 42.12. 42.12. 52.12.	5442 5442 5442 5442 5442
COSH 1,77 d/L	148.4 150.2 152.1 154.0 155.9	157.7 159.7 161.7 163.6 165.6	167.7 169.7 171.8 173.9 176.0	178.2 180.4 182.6 184.8	189.5 191.8 194.2 196.5 199.0	201.h 203.9 206.5 209.0 211.7
SINH La d/L	148.4 150.2 152.1 154.0 155.9	157.7 159.7 161.7 163.6 165.6	167.7 169.7 171.8 173.9 176.0	178.2 180.4 182.6 184.8 187.2	189.5 191.8 194.2 196.5	201.4 203.9 206.5 209.0 211.7
ηη α/L	5.693 5.717 5.717 5.717 5.742	5.754 5.766 5.779 5.779 5.803	5.815 5.827 5.840 5.852 5.864	5.876 5.888 5.900 5.912 5.925	5.937 5.949 5.962 5.974 5.986	5.999 6.011 6.023 6.036 6.048
M	1157 1150 11136 1129	1112 1115 1109 1100 1005	.1089 .1083 .1076 .1069	1050 1050 1043 1037	1025 1018 1012 1006	.09942 .09882 .09820 .09759
COSH 2 d/L	8.643 8.695 8.750 8.804 8.854	8.910 8.965 9.021 9.072 9.129	9.186 9.238 9.296 9.354 9.406	9.466 9.525 9.585 9.638 9.639	9.760 9.821 9.877 9.938 10.00	10.07 10.12 10.18 10.25 10.31
SINH 2F d/L	8.585 8.638 8.693 8.747 8.797	8.853 8.910 8.965 9.016 9.074	9,132 9,183 9,242 9,301 9,353	9.413 9.412 9.533 9.586 9.647	9.709 9.770 9.826 9.888 9.951	10.01 10.07 10.13 10.20 10.26
TANH 2T d/L	.9933 .9934 .9935 .9935	.9937 .9938 .9939 .9939	.9942 .9942 .9943 .9943	5466. 9466. 9466. 5466.	61/66. 61/66. 61/66. 61/66.	.9951 .9952 .9952 .9952
2π d/L	2.847 2.853 2.859 2.859 2.865	2.877 2.883 2.890 2.896 2.902	2.908 2.914 2.920 2.926 2.932	2.938 2.944 2.951 2.957 2.963	2.969 2.975 2.981 2.987 2.993	2.999 3.005 3.012 3.018 3.024
d/L	4531 4540 4550 4550 4560 4569	4579 4589 4599 4608 4618	4628 4647 4657 4665	4676 1686 1695 14705 14705	4725 4774 4774 4754 4764	4774 4783 4793 4803 4813
$^{\rm d}/^{\rm L}_{\rm o}$.4500 .4510 .4520 .4530	.4550 .4570 .4570 .4580 .4590	.4620 .4620 .4630 .4640	.4650 .4660 .4680 .4680	.4700 .4710 .4720 .4730 .4730	.4750 .4760 .4770 .4780

×	1,982 1,981 1,980 1,980 1,979	1.979 1.978 1.978 1.977 1.977	14.976 14.976 14.975 14.975 14.975	10.974 10.973 10.973 10.972 10.972	4.971 4.971 4.971 4.970 4.970	1,969 1,969 1,968 1,968 1,967
и/ни	9885 9886 9887 9888 9888	.9890 .9891 .9892 .9893	9896 9897 9898 9899	.9900 .9901 .9903 .9903	9906. 9906. 9908.	.9909 .9910 .9911 .9913
°/5°	5117 5116 5115 4118 5113	5112 5110 5110 5109 5107	5106 5105 5104 5103 5103	.5101 .5100 .5099 .5098	5096 5095 5094 5093 5093	.5092 .5091 .5090 .5089 .5088
r r	5142 5140 5139 5137 5136	5134 5133 5133 5130	5128 5126 5125 5124 5124	5121 5120 5120 5118 5118	\$115 4115 5115 5115	.5109 .5108 .5107 .5106
COSH LT d/L	214.2 216.8 219.5 222.2 225.0	228.3 230.6 233.5 236.4 239.6	242.3 245.2 248.3 251.3 254.5	257.6 260.8 264.0 267.3 270.6	274.0 277.5 280.8 284.3 287.9	291.4 295.0 298.7 302.4 306.2
SINH PL	214.2 216.8 219.5 222.2 225.0	228.3 230.6 233.5 236.4 239.6	242.3 245.2 248.3 251.3 254.5	257.6 260.8 264.0 267.3	274.0 277.5 280.8 284.3 287.9	291.4 295.0 298.7 302.4 306.2
К μπα/ι	09641 6.060 09583 6.072 09523 6.085 09464 6.097	09352 6.121 09294 6.134 09236 6.146 09178 6.159 09121 6.171	.09064 6.183 .09010 6.195 .08956 6.208 .08901 6.220	.08793 6.245 .08741 6.257 .08691 6.269 .08637 6.282 .08584 6.294	.08530 6.306. .08477 6.319 .08424 6.319 .08371 6.343	08270 6,368 08220 6,380 08169 6,393 08119 6,405 08068 6,417
cosh 2T/d/L	10.43 10.43 10.50 10.57	10.69 10.76 10.83 10.90	11.03 11.09 11.16 11.24	11. 37 11. 144 11. 51 11. 59 11. 65	11.72 11.80 11.87 11.95	12.09 12.16 12.24 12.32
SINH 2T d/L	10.32 10.39 10.45 10.52	10.65 10.71 10.78 10.85 10.92	10.99 11.05 11.12 11.19	11.32 11.40 11.47 11.54	11.68	12.05 12.12 12.20 12.28 12.35
TANH 2T d/L	.9953 4266. 5266. 5266.	.9956 .9957 .9958 .9958	.9959 .9959 .9960 .9960	.9961 .9962 .9963 .9963	.9964 .9966 .4966 .9965	9966. 9966. 7969. 7969.
21 d/L	3.030 3.036 3.042 3.049	3.061 3.067 3.073 3.079 3.086	3.092 3.098 3.104 3.110	3.122 3.128 3.135 3.141 3.147	3.153 3.159 3.166 3.172 3.178	3.184 3.190 3.196 3.203 3.209
d/L	.4822 .4832 .4842 .4852 .4862	.4871 .4881 .4891 .4901 .4911	.4920 .4930 .4940 .4950	.4969 .4979 .4989 .4999	.5018 .5028 .5038 .5048	5067 5077 5087 5097 5097
$^{ m o}_{ m V}$.4800 .4810 .4820 .4830 .4840	.4850 .4860 .4870 .4880	.4900 .4910 .4920 .4930	.4950 .4960 .4970 .4980	.5000 .5010 .5020 .5030	5050 5050 5050 5080 5080

M	4.967 4.967 4.966 4.966 4.965	1.965 1.965 1.965 1.964 1.964 1.964	4.963 4.963 4.963 4.962 1.962	4.962 4.961 4.961 4.961 4.960	4.960 4.960 4.959 4.959	1.959 1.958 1.958 1.958 1.958
н/н	9914 9915 9916 9916	.9918 .9919 .9919 .9920	.9922 .9923 .9924 .9924	.9926 .9927 .9928 .9928	.9930 .9931 .9931 .9932	.9933 .9934 .9935 .9935
°2/ ⁵ 2	.5087 .5086 .5086 .5085 .5081	.5082 .5082 .5082 .5081 .5080	.5079 .5078 .5077 .5077	.5075 .5074 .5074 .5073	.5070 .5070 .5070 .5069	5067 5067 5067 5066 5067
u	5104 5103 5102 5102 51012	5098 5097 5095 5095 5095	.5093 .5092 .5092 .5091	5089 5088 5087 5086 5085	5084 5083 5082 5082 5081	.5080 .5079 .5078 .5077
COSH 1, 17 d/L	310.0 313.8 317.7 321.7	329.7 333.8 337.9 342.2 346.4	350.7 355.1 359.6 364.0 368.5	373.1 377.8 382.5 387.3 392.2	397.0 402.0 406.9 412.0 417.2	1,22.4 1,27.7 1,33.1 1,38.5 1,14.0
SINH L#d/L	310.0 313.8 317.7 321.7	329.7 333.8 337.9 342.2	350.7 355.1 359.6 364.0 368.5	373.1 377.8 382.5 387.3	397.0 402.0 406.9 412.0 417.2	122.4 127.7 133.1 138.5 144.0
μπ d/L	2 6.430 2 6.442 2 6.454 3 6.467 4 6.479	5 6.491 9 6.504 2 6.516 4 6.529 7 6.541	0 6.553 4 6.566 9 6.578 4 6.590 8 6.603	2 6.615 6 6.628 1 6.640 7 6.652 4 6.665	1 6.677 7 6.690 3 6.702 9 6.714 5 6.727	2 6.739 9 6.752 7 6.764 6 6.776 5 6.789
M	07972 07972 07922 07873 07824	07776 07729 07682 07634 07587	0754c 07494 07449 0740b 07358	07312 07266 07221 07177 07134	07091 070050 070059 06959	.06872 .06829 .06787 .06746
COSH 2π d/L	12.47 12.54 12.62 12.70 12.78	12.86 12.94 13.02 13.10	13.26 13.35 13.43 13.51	13.68 13.76 13.85 13.94 14.02	14.10 14.28 14.28 14.46	14.55 14.64 14.73 14.92
SINH 27d/L	12.43 12.50 12.58 12.58 12.66	12.82 12.90 12.98 13.06	13.22 13.31 13.39 13.47	13.64 13.73 13.81 13.90 13.99	14.07 14.25 14.25 14.34 14.43	14.52 14.61 14.70 14.88
TANH 2T d/L	9968 9969 9969 9969	.9970 .9970 .9971 .9971	.9972 .9972 .9973 .9973	.9973 .9974 .9974 .9976	.9975 .9976 .9976 .9976	.9976 .9977 .9977
2π d/L	3.215 3.221 3.227 3.233 3.240	3.246 3.252 3.258 3.258 3.264	3.277 3.283 3.289 3.295 3.301	3.308 3.314 3.320 3.326 3.336	3.339 3.345 3.351 3.357 3.363	3.370 3.376 3.382 3.388 3.394
d/L	5117 5126 5136 5136 5146	5166 5176 5185 5195 5205	5215 5225 5235 5235 5244 5254	5264 5274 5284 5294 5304	5314 5333 5333 5343 5353	.5363 .5373 .5383 .5393
$^{\mathrm{d}/\mathrm{L}_{\mathrm{o}}}$	5100 5120 5120 5130 5140	\$150 \$160 \$170 \$180 \$190	.5200 .5210 .5220 .5230 .5240	.5250 .5260 .5270 .5280 .5290	.5300 .5310 .5320 .5330	.5350 .5360 .5370 .5380

M	4.957 4.957 4.957 4.956 4.956	4.956 4.956 4.955 4.955	1.955 1.954 1.954 1.954 1.954	4.953 4.953 4.953 4.953	4.952 4.952 4.952 4.952 4.952	4.951 4.951 4.951 4.950 4.950
н/н	.9936 .9937 .9938 .9938	9940 9941 9942 9942	.9942 .9943 .9944 .9944	9945 9945 9947 9947	9947 9948 9989 9989	.9950 .9951 .9952 .9952
°2/°2	5064 5064 5063 5063 5063	5061 5060 5059 5059	5058 5057 5057 5056 5056	5056 5055 5054 5053 5053	.5053 .5051 .5051 .5051	.5050 .5049 .5049 .5048
и	.5076 .5075 .5074 .5073	.5072 .5071 .5070 .5070	.5068 .5067 .5067 .5066 .5065	5065 5064 5063 5063 5063	5061 5061 5060 5059 5059	5058 5057 5057 5056 5056
COSH μπ d/L	449.5 455.1 460.7 466.4 472.2	478.1 484.3 490.3 496.4 502.5	508.7 515.0 521.6 528.1 534.8	541.4 548.1 554.9 562.0 569.1	576.1 583.3 590.7 598.0 605.0	613.2 620.8 628.5 636.4 644.3
SINH L Td/L	449.5 455.1 460.7 466.4 472.2	478.1 484.3 490.3 496.4 502.5	508.7 515.0 521.6 528.1 534.8	541.4 548.1 554.9 562.0 569.1	576.1 583.3 590.7 598.0 605.0	613.2 620.8 628.5 636.4 644.3
4 ma/L	4 6.801 3 6.814 2 6.826 2 6.838 1 6.851	1 6.863 0 6.876 0 6.888 1 6.901 2 6.913	3 6.925 h 6.937 6 6.950 8 6.962 0 6.975	3 6.987 5 7.000 7 7.012 0 7.025	77.050 7.062 47.074 87.087	77.112 27.124 177.136 27.149 377.161
×	.06664 .06623 .06582 .06542	.06461 .06420 .06380 .06380 .06302	.06263 .06224 .06186 .06186	.06073 .06035 .05997 .05960	.05887 .05850 .05814 .05778 .05743	.05707 .05622 .05637 .05602
COSH 2T d/L	15.01 15.10 15.19 15.29	15.48 15.58 15.67 15.77	15.97 16.07 16.17 16.27 16.37	16.47 16.53 16.68 16.78 16.88	16.99 17.09 17.20 17.31 17.41	17.52 17.63 17.74 17.85 17.97
SINH 2Td/L	14.97 15.07 15.16 15.25 15.35	15.45 15.54 15.54 15.74 15.84	15.94 16.04 16.14 16.24 16.34	16.44 16.54 16.65 16.75 16.85	16.96 17.06 17.17 17.28 17.38	17.49 17.71 17.71 17.82 17.94
TANH 2T d/L	.9978 .9978 .9979 .9979	9979 9979 9980 9980	.9980 .9981 .9981 .9981	.9982 .9982 .9982 .9982	.9983 .9983 .9983 .9983	5866 1866 1866 1866 1866
21 d/L	3.401 3.407 3.413 3.419 3.426	3.132 3.138 3.141 3.140 3.150	3.463 3.469 3.475 3.481 3.481	3.494 3.500 3.506 3.512 3.512	3.525 3.531 3.531 3.543 3.543	3.568
d/L	5412 5422 5432 5432 5442 5442	5461 5471 5481 5481 5501	.5521 .5531 .5531 .5531 .5541	5550 5550 5550 5550	.5610 .5620 .5630 .5640 .5640	.5659 .5669 .5679 .5689 .5689
d/L_{o}	5410 5410 5420 5430 5430	51,50 51,60 51,60 51,80 51,80	.5500 .5510 .5520 .5530 .5530	.5556 .5556 .5558 .5580	5600 5610 5620 5630 5630	.5650 .5660 .5670 .5680 .5680

M	4.950 4.950 4.950 4.950	1-949 1-949 1-949 1-949 1-949	1, 948 1, 948 1, 948 1, 948 1, 948	10.948 10.948 10.947 10.947	1.947 1.947 1.947 1.946 1.946	1, 946 1, 946 1, 946 1, 946 1, 946
о Н/Н	5566. 4566. 4566. 4566.	5996. 9966. 9977. 7599.	.9958 .9958 .9958 .9959	.9960 .9960 .9960 .9961	.9962 .9963 .9963 .9963	1966. 1966. 1966. 1966.
°2/5°2	5047 5046 5046 5046 5045	5045 5044 5043 5043	5042 5042 5042 15042	.5040 .5040 .5040 .5039	.5038 .5038 .5037 .5037	5036 5036 5036 5035 5035 5035
ц	.5055 45054 5054 5053 .5053	.5052 .5052 .5051 .5051 .5050	5049 5049 5048 5048	5047 5046 5046 5045 5045	4408. 5002. 5408. 5408.	5042 5042 15041 5040 5040
C0SH μπα/L	652.4 660.5 668.8 677.2 685.6	694.3 703.2 711.9 720.8 729.9	739.0 748.1 757.5 767.0	786.5 796.4 806.5 816.5 826.7	837.1 847.6 858.2 868.9 879.8	890.8 901.9 913.4 925.0 936.5
SINH LTd/L	652.4 660.5 668.8 677.2 685.6	694.3 703.2 711.5 720.8 729.9	739.0 748.1 757.5 767.0	786.5 796.4 806.5 816.5 826.7	837.1 847.6 858.2 868.9 879.8	890.8 901.9 913.4 925.0 936.5
hπd/L	7.174 7.186 7.199 7.211 7.224	7.236 7.249 7.261 7.274 7.286	7.298 7.311 7.323 7.336 7.348	7.361 7.373 7.386 7.398 7.411	7.423 7.436 7.448 7.460 7.473	7.485 7.498 7.510 7.523 7.535
×	.05532 .05497 .05463 .05430	.05363 .05297 .05297 .05264	.05198 .05166 .05134 .05102	.05040 .05009 .04978 .04978	.04885 .04855 .04824 .04794 .04764	04735 04706 04677 04648 04648
COSH 2Td/L	18.08 18.19 18.31 18.42	18.64 18.76 18.88 19.00	19.24 19.36 19.48 19.60 19.73	19.84 19.96 20.09 20.21 20.34	20.47 20.60 20.73 20.86 20.99	21.12 21.25 21.37 21.51 21.51
SINH 2 π d/L	18.05 18.16 18.28 18.39 18.50	18.62 18.73 18.85 18.97 19.09	19.21 19.33 19.45 19.58 19.70	19.81 19.94 20.06 20.19 20.32	20.45 20.57 20.70 20.83 20.97	21.23 21.23 21.35 21.49 21.62
TANH 2π d/L	9985 9985 9985 9985 9985	9986 9986 9986 9986 9986	.9987 .9987 .9987 .9987	.9987 .9988 .9988 .9988	9988 9988 9989 9989	9989 9989 9989 9989
2Td/L	3.587 3.593 3.600 3.606 3.612	3.618 3.624 3.639 3.637 3.643	3.649 3.656 3.662 3.668 3.674	3.680 3.686 3.693 3.699 3.705	3.712 3.718 3.724 3.730 3.737	3.743 3.749 3.755 3.761
d/L	.5709 .5719 .5729 .5738	.5758 .5768 .5778 .5788 .5788	5808 5818 5828 5838 5838	5858 5867 5877 5887 5887	.5907 .5927 .5937 .5937	.5957 .5967 .5977 .5987
$^{ m d}/{ m L}_{ m o}$.5700 .5710 .5720 .5730	.5750 .5760 .5770 .5780	.5800 .5810 .5820 .5830 .5840	5850 5860 5870 5880 5880	.5900 .5920 .5930 .5930	.5950 .5960 .5970 .5980

×	1.945 1.944 1.943 1.943 1.942	4.940 4.940 4.939 4.939	1.938 1.937 1.937 1.937 1.937	1.936 1.936 1.936 1.936 1.936	4.936 4.936 4.935 4.935 4.935	4.935 4.935 4.935 4.935
н/н,	.9965 .9969 .9972 .9975	.9980 .9982 .9983 .9985	.9988 .9989 .9990 .9991	9666. 9666. 9666.	.9996 .9996 .9997	99998 99998 99998 99998
°2/°5	.5035 .5031 .5028 .5025 .5025	.5020 .5018 .5017 .5015	.5012 .5011 .5010 .5009	.5007 .5006 .5006 .5004 .5004	.500t .5003 .5003	5002
ц	.5040 .5036 .5032 .5029	.5023 .5021 .5019 .5017	.5013 .5012 .5010 .5010 .5009	25008 5000 5000 5000 5000 5000	.500h .500d .5003 .5003	5002
T/P_T7	948.1 1,074 1,217 1,379 1,527	1,771 2,008 2,275 2,579 2,579	3,314 3,757 4,258 4,828 5,473	6,204 7,034 7,976 9,042 10,250	11,620 13,180 14,940 17,340 19,210	21,780 24,690 28,000 31,750 36,000
SINH IT d/L	948.1 1,074 1,217 1,379 1,527	1,771 2,008 2,275 2,579 2,923	3,314 3,757 4,258 1,828 5,473	6,204 7,034 7,976 9,042 10,250	11,620 13,180 14,940 17,340 19,210	21,780 24,690 28,000 31,750 36,000
LTa/L	7.548 7.673 7.798 7.923 8.048	8.173 8.298 8.423 8.548 8.548	8.799 8.925 9.050 9.175	9.426 9.552 9.677 9.803 9.929	10.05 10.18 10.31 10.43 10.56	10.68 10.81 10.93 11.06 11.18
×	.04591 .04313 .04052 .03806	.03359 .03155 .02964 .02784	.02456 .02307 .02167 .02035	.01795 .01686 .01583 .0187	.01312 .01232 .01157 .01086	.009582 .009000 .008451 .007934
COSH 2T d/L	21.78 23.19 24.68 26.27 27.97	29.77 31.69 33.74 35.92 38.24	40.72 43.35 46.15 49.14 52.32	55.71 59.31 63.16 67.25 71.60	76.24 81.19 86.44 92.05 98.01	104.4 111.1 118.3 126.0 134.2
SINH 2T'd/L	21.76 23.17 24.66 26.25 27.95	29.75 31.68 33.73 35.90	40.71 43.34 46.14 49.13 52.31	55.70 59.31 63.15 67.24 71.60	76.24 81.18 86.14 92.04 98.00	104.4 111.1 118.3 126.0 134.2
$2\pi d/L$.9990 .9992 .9993 .9993	4666. 5666. 5666. 5666.	79997 79998 99998 9998	8666° 6666° 6666°	.9999 .9999 .9999 1.000	1.000
2π d/L	3.774 3.836 3.899 3.961 4.024	4.086 4.149 4.212 4.274 4.337	4.400 14.462 14.525 14.588 14.650	4.713 4.776 4.839 4.902 4.964	5.027 5.090 5.153 5.215 5.215	55.55 55.55
d/L	6006 6106 6205 6305 6404	.6504 .6603 .6703 .6803	.7002 .7102 .7202 .7302 .7401	.7501 .7601 .7701 .7801	.8001 .8101 .8201 .8301	.8500 .8500 .8700 .8800
d/L _o	6000 6200 6300 6400	.6500 .6600 .6700 .6800	.7000 .7200 .7300	,7500 .7600 .7700 .7800	.8000 .8100 .8200 .8300	.8500 .8600 .8700 .8800

		1010101010	10
E	4.935 4.935 4.935 4.935 4.935	4.935 4.935 4.935 4.935 4.935	4.935
он/н	6666. 6666. 6666.	.9999 .9999 .9999 1.000	1,000
°2/ ⁵ 2	.5001 .5001 .5001 .5001	.5001 .5001 .5001 .5000	• 5000
c	5001 5001 5001 5001 5001	5001	.5000
COSH LTd/L	40,810 46,280 52,470 59,500 67,470	76,490 86,740 98,350 111,500 126,500	143,400
SINH THE THE	46,280 52,470 59,500 67,470	76,490 86,740 98,350 111,500 126,500	143,400
$l_1\pi d/L$	11.31	11.94 12.06 12.19 12.32 12.32	5 12.57
×	.007000 .006574 .006173 .005797 .005445	.005113 .004489 .00489 .004235	.003735
COSH 27T d/L	142.9 152.1 162.0 172.5 183.7	195.6 203.5 222.8 236.1 251.4	267.7
SINH 2T d/L	142.9 152.1 162.0 172.5 183.7	195.6 203.5 222.8 236.1 251.4	267.7
TANH 2 T d/L	1.000 1.000 1.000 1.000	1.000	1,000
271 d/L	5.655 5.718 5.814 5.906	5.969 6.032 6.095 6.158	6.283
d/L	.9000 .9100 .9200 .9300	9500 9600 9700 9800	1,000
d/L_o	.9000 .9100 .9200 .9300	.9500 .9500 .9700 .9800	1,000

TABLE II

FUNCTIONS OF d/L FOR EVEN INCREMENTS OF d/L

from 0.0001 to 0.2890

(This covers the region where interpolation of d/L in Table I is inconvenient. Values of d/L of 0.2890 to 1.0000 can be obtained from Table I by interpolation.)

×	8	12,500,000	3,125,000	1,389,000	781,300	500,000	347,200	255,100	195,300	154,300	125,000	103,300	86,810 73,970 63,780	55,560 1,8,830 1,3,260 38,580 34,630
он/н	8	28,21	19.95	16.29	14,10	12.62	11.52	10,66	416.6	9.403	8.921	8.506	8.144 7.824 7.539	7.284 7.052 6.842 6.649 6.172
°2/°2	0	.0006283	.001257	.001885	.002513	.003142	.003770	.004398	,005026	.005655	.006283	116900*	.0075700 .008168 .008796	.009424 .01005 .01068 .01131 .01194
¤	1,000	1.000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1.000	1,000	1.000	1.000
COSH LTd/L	1,000 1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
SINH γπ d/L	0	.001257	.002513	.003770	.005027	.006283	.007540	.008797	•01005	.01131	.01257	.01382	.01508 .01634 .01759	.01885 .02011 .02136 .02262
μπα/L	o	.001257	.002513	.003770	.005027	.006283	• 0075400	961800	,01005	.01131	.01257	.01382	.01508 .01634 .01759	.01885 .02011 .02136 .02262 .02388
₩.	1,000	1.000	1,000	1,000	1,000	1,000	1,000	1,000	1.000	1,000	1.000	1,000	1,000	1.000 9999 9999 9999
00SH 2π d/L	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000 1,000	1.0000	1,0000	1,0000	1.0000 1.0001 1.0001 1.0001
SINH 2Td/L	0	.0006283	.001257	.001885	.002513	.003142	.003770	.004398	.005027	,005655	.006283	.006912	.007540 .008168 .008797	.009425 .01005 .01068 .01131
TANH 2πd/L	0	,0006283	.001257	,001885	.002513	.003142	.003770	.004398	.005027	.005655	.006283	.006911	.007540 .008168 .008796	.009425 .01005 .01068 .01131
2 T d/L	0	.0006283	.001257	.001885	.00251.3	.003142	.003770	.004398	.005027	.005655	.006283	.006912	.007540 .008168 .008796	.009425 .01005 .01068 .01131
oT/p	0	6283	2514	5655	1005	.00000	2262	3079	1022 1022	5090	.00000	7603	9048	.000014114 .00001608 .00001816 .00002036
d/L	0	.0001000	.0002000	.0003000	0001000	.0005000	0009000*	.0007000	.0008000	0006000*	.001000	.001100	.001200 .001300 .001400	.001500 .001600 .001700 .001800

M	31,250 28,350 25,830 23,630 21,700	20,000 18,490 17,150 15,950	13,890 13,010 12,210 11,480 10,820	10,210 9,648 9,134 8,660 8,221	7,815 7,439 7,090 6,764 6,160	6,176 5,911 5,662 5,239 5,209
н/н	6.308	5.642	5.151	4.769	1.162	4.207
	6.156	5.533	5.067	4.702	1.107	4.161
	6.015	5.429	4.987	4.638	1.354	4.116
	5.882	5.332	4.911	4.577	1.254	4.073
	5.759	5.239	4.838	4.518	1.254	4.032
°2/°2	.01257	.01571	.01885	.02199	.02511	.02 825
	.01319	.01633	.01947	.02261	.02574	.02 888
	.01382	.01696	.02010	.02324	.02637	.02951
	.01445	.01759	.02073	.02387	.02700	.03014
E	6666° 6666° 6666°	9999 9999 9999 9999	9666. 9666. 9666.	99998 99998 99998 89999	9998 99998 99998 79998	79997 79997 79999 79997
COSH LT d/L	1.000	1.000 1.001 1.001 1.001	1.001 1.001 1.001 1.001	1.001 1.001 1.001 1.001	1.001 1.001 1.001 1.001	1.002
SINH PT Q/L	.02514 .02639 .02765 .02891 .03016	.031h2 .03268 .0339h .03519 .03645	.03771 .03897 .04022 .04148	.04399 .04525 .04652 .04777 .04903	.05029 .05154 .05280 .05406 .05406	.05658 .05784 .05909 .06035
hπd/L	.02513	.03142	.03770	.04398	.05027	.05655
	.02639	.03267	.03896	.04524	.05152	.05781
	.02765	.03393	.04021	.04650	.05278	.05906
	.02890	.03519	.04147	.04775	.05404	.06032
×	6666	9999	99998	9998	7999.	39996
	6666	9999	99998	19997	7999.	39996
	6666	8999	99998	19999	7999.	39996
	6666	8999	99998	19999	9999.	39995
00SH 2πd/L	1,0001 1,0001 1,0001 1,0001	1,0001 1,0001 1,0001 1,0002	1.0002 1.0002 1.0002 1.0002	1.0002 1.0003 1.0003 1.0003	1.0003 1.0003 1.0004 1.0004	1.0004 1.0004 1.0004 1.0005
SINH 2 T d/L	.01257 .01320 .01382 .01445	.01571 .01634 .01697 .01759	.01885 .01948 .02011 .02073	.02199 .02262 .02325 .02388	.02513 .02576 .02639 .02702	.02828 .02890 .02953 .03016
TANH 2T d/L	.01257 .01319 .01382 .01445	.01571 .01633 .01696 .01759	.01885 .01948 .02010 .02073 .02136	.02199 .02262 .02324 .02387 .02450	.0251.3 .02576 .02638 .02701	.02827 .02889 .02952 .03015
2π d/L	.01257	.01571	.01885	.02199	.02513	.02827
	.01319	.01634	.01948	.02262	.02576	.02890
	.01382	.01696	.02011	.02325	.02639	.02953
	.01445	.01759	.02073	.02388	.02702	.03016
d/Lo	.00003514	.00003928	.00005652	.000007697	.00010005	.0001272
	.00002772	.00004248	.00006039	.00008140	.0001056	.0001329
	.00003040	.00004579	.00006435	.00008599	.0001108	.0001447
	.00003324	.00004925	.00006841	.00009071	.0001161	.0001508
d/L	.002000	.002500	.003000	.003500	.004000	.004500
	.002100	.002600	.003100	.003600	.001100	.004600
	.002200	.002700	.003200	.003700	.001200	.004700
	.002300	.002800	.003300	.003800	.001300	.004800

×	5,003 4,809 4,626 4,453 4,290	4,135 3,989 3,851 3,719 3,594	3,475 3,363 3,255 3,153 3,055	2,962 2,873 2,788 2,707 2,629	2,554 2,483 2,415 2,349 2,386	2,226 2,167 2,112 2,058 2,006
н/н	3.991 3.951 3.913 3.876 3.840	3.805 3.771 3.738 3.706 3.675	3.644 3.614 3.584 3.556 3.528	3.501 3.475 3.449 3.423 3.398	3.374 3.350 3.327 3.304 3.281	3.260 3.238 3.217 3.197 3.176
°0/°0	03139 .03202 .03265 .03328	.03454 .03517 .03579 .03641	.03766 .03829 .03892 .03954	04080 04242 04264 04267	04392 04455 04518 04581	.04706 .04768 .04830 .04893
¤	7999. 7999. 9999.	9666. 9666. 9666. 9666.	29995 29995 29995 29995	1666° 1666° 1666° 1666°	.9994 .9993 .9993	.9993 .9992 .9992 .9992
ωSH hπd/L	1,002 1,002 1,002 1,002	1.002 1.002 1.003 1.003	1.003 1.003 1.003 1.003	1.003 1.004 1.004 1.004	1.004 1.004 1.004 1.004 1.004	1.00b 1.005 1.005 1.005
SINH l _t π d/L	.06287 .06413 .06539 .06539	.06916 .07042 .07169 .07294 .07420	.07547 .07672 .07798 .07925	.08177 .08303 .08428 .08555	.08807 .08933 .09060 .09185	.09438 .09565 .09681 .09817
lμπ d/L	.06283 .06409 .06535 .06535 .06660	.06911 .07037 .07163 .07288	.07540 .07665 .07791 .07917	.08168 .08294 .08419 .08545	.08796 .08922 .09048 .09173	.09425 .09550 .09676 .09802
×	9995 9995 9995 9994	.9994 .9994 .9993 .9993	.9993 .9992 .9992 .9992	.9992 .9991 .9991 .9991	.9990 .9989 .9989 .9989	.9989 .9988 .9988 .9988
COSH 2πd/L	1,0005 1,0005 1,0005 1,0005 1,0006	1.0006 1.0006 1.0007 1.0007	1.0007 1.0007 1.0008 1.0008	1.0008 1.0009 1.0009 1.0009	1.0010 1.0010 1.0010 1.0011	1.0011 1.0011 1.0012 1.0012
SINH 2 T d/L	.03143 .03205 .03268 .03331 .03394	.03457 .03520 .03582 .03645	.03771 .03834 .03897 .03959	.04085 .04148 .04211 .04274 .04336	.04399 .04462 .04525 .04589 .04652	41740. 417740. 04840. 60640.
TANH 2πd/L	.03141 .03203 .03266 .03329	.03455 .03517 .03580 .03642 .03705	.03768 .03831 .03894 .03956	.04.082 .04.207 .04.270 .04.270	.04,395 .04458 .04,521 .04,584 .04,646	.04772 .04772 .04834 .04897
2 1T d/L	.03142 .03204 .03267 .03330 .03393	.03456 .03519 .03581 .03644	.03770 .03833 .03896 .03958	.04084 .04147 .04210 .04273 .04335	.04398 .04461 .04524 .04587 .04587	.04712 .04775 .04938 .04901
d/Lo	.0001570 .0001634 .0001698 .0001764 .0001832	.0001900 .0001970 .0002041 .0002112	.0002261 .0002337 .0002492 .0002492	.0002653 .0002735 .0002819 .0002904	.0003077 .0003254 .0003346 .0003346	.0003532 .0003627 .0003722 .0003820
d/L	.005000 .005200 .005300 .005300	.005500 .005600 .005700 .005800	.006000 .006100 .006200 .006300	.006300 .006300 .006300 .006800	.007000 .007100 .007200 .007300	.007500 .007600 .007700 .007800

×	1,956 1,909 1,862 1,818 1,775	1,733 1,693 1,655 1,617 1,581	1,546 1,513 1,480 1,449	1,388	1,253 1,036 871.0 742.9 641.1	558.9 491.6 435.8 389.1
о'н/н	3.157 3.137 3.118 3.099 3.081	3.062 3.044 3.027 3.010 2.993	2.977 2.960 2.944 2.929 2.913	2.898 2.882 2.867 2.853 2.839	2.825 2.694 2.580 2.180 2.389	2.310 2.238 2.172 2.112 2.056
°0/°0	.05018 .05080 .05142 .05205	.05331 .05394 .05456 .05518	.05643 .05706 .05768 .05830 .05892	.05955 .06018 .06080 .06142	.06267 .06890 .07511 .08131	.09369 .09986 .1060 .1121
c	.9992 .9991 .9991 .9991	.9991 .9990 .9990 .9990	9989 9989 9988 9988	.9988 .9988 .9988 .9987	.9987 .9984 .9981 .9978	.9970 .9966 .9968 .9958
7/p μ η γ π α/Γ	1.005	1,006 1,006 1,006 1,006	1.006 1.006 1.007 1.007	1.007 1.007 1.007 1.008	1.0079 1.0096 1.0114 1.0134 1.0155	1.0203 1.0229 1.0229 1.0257 1.0286
SINH htd/L	.1007 .1020 .1032 .1045	.1070 .1083 .1095 .1108	1133 1146 1158 1711.	.1196 .1209 .1222 .1235	.1260 .1387 .1513 .1641	.1896 .2024 .2153 .2281 .2281
l πd/L	1005 1018 1030 1043 1043	.1068 .1081 .1093 .1106	1131 14411. 1566 1811.	1194 1206 1219 1232 1232	.1257 .1382 .1508 .1634	.1885 .2011 .2136 .2262 .2388
×	.9987 .9987 .9986 .9986	.9986 .9985 .9985 .9985	.9984 .9984 .9983 .9983	.9982 .9982 .9981 .9981	.9980 .9976 .9972 .9961	.9956 .9949 .9943 .9936
COSH 2 11 d/L	1.0013 1.0013 1.0014 1.0014	1.0014 1.0015 1.0015 1.0015	1.0016 1.0016 1.0017 1.0017	1.0018 1.0018 1.0019 1.0019	1.0020 1.0024 1.0028 1.0033	1.0044 1.0051 1.0057 1.0064
SINH 2 Td/L	.05029 .05091 .05154 .05217	.05343 .05406 .05469 .05533	,05658 ,05721 ,05784 ,05846	.05973 .06036 .06099 .06162	.06287 .06917 .07547 .08177	.09439 .1007 .1070 .1133
TANH 2πd/L	.05022 .05085 .05147 .05210	.05336 .05461 .05461 .05524 .05586	.05649 .05712 .05774 .05836 .05899	.05962 .06025 .06087 .06150	.06275 .06901 .07526 .08150	.09397 .1002 .1064 .1126
2T d/L	.05027 .05089 .05152 .05215	.05341 .05404 .05466 .05529 .05529	.05655 .05718 .05781 .05906	.05969 .06032 .06095 .06158	.06283 .06912 .07540 .08168	.09425 .1005 .1068 .1131
d/Lo	.0004018 .0004118 .0004221 .0004324	.0004536 .0004644 .0004751 .0004860	.0005084 .0005198 .0005312 .0005427	.0005781, .0005905, .0006027	.0006275 .0007591 .0009031 .001060	.001410 .001603 .001809 .002027
η/p	.008000 .008100 .008200 .008300	.008500 .008600 .008700 .008800	.009000 .009100 .009200 .009300	,009500 ,009600 ,009700 ,009800	.01000 .01100 .01200 .01300	.01500 .01600 .01700 .01800

×	315.8 286.8 261.5 239.6 220.3	203.3 186.2 174.8 162.7 151.9	142.2 133.4 125.4 118.1	105.3 99.75 94.61 89.88 85.50	81.43 77.67 74.17 70.91 67.88	65.05 62.39 59.91 57.57 55.38
9'н/н	2.005 1.958 1.915 1.873 1.834	1.799 1.765 1.733 1.703	1.648 1.622 1.598 1.575 1.553	1.532 1.512 1.493 1.475	1.440 1.424 1.408 1.393	1.365 1.352 1.339 1.326 1.314
°2/ ⁹ 2	1244 1305 1365 1425 1485	.1545 .1605 .1665 .1724 .1783	.1841 .1900 .1958 .2016	.2130 .2187 .2244 .2300 .2356	2467 2467 2552 2576 2630	.2684 .2737 .2790 .2843
E	.9947 .9942 .9937 .9931	.9919 .9912 .9905 .9898 .9891	.9884 .9876 .9868 .9860 .9851	9843 9834 9824 9815 9815	9795 9785 9776 9765 4276	.9743 .9721 .9721 .9709
T/PJ 1	1.032 1.035 1.038 1.042 1.046	1.050 1.054 1.058 1.063	1.072 1.077 1.082 1.087	1.098 1.104 1.110 1.116 1.123	1.129 1.136 1.143 1.150 1.150	1.164 1.172 1.180 1.188 1.196
SINH h T d/L	.2540 .2669 .2800 .2931 .3062	.3194 .3326 .3458 .3592 .3725	.3860 .3995 .4267 .4267	.4541 .4680 .4819 .4959 .5099	.5241 .5383 .5526 .5670 .5815	.5961 .6108 .6256 .6404 .6404
4Ta/L	2513 2639 2765 2890 3016	3142 3267 3393 3519 3644	3770 3896 4021 4147 4273	4398 4524 4650 4775 4901	.5027 .5152 .5278 .5404 .5529	.5781 .5781 .5906 .6032 .6158
×	9922 9914 9905 9896 9887	9878 9868 9858 9847 9836	.9825 .9813 .9801 .9789	.9763 .9749 .9736 .9722 .9722	9693 9677 9662 9646 9630	9613 9596 9579 9562 9564
COSH 2 T d/L	1.008 1.009 1.010 1.011	1.012 1.013 1.014 1.016	1.018 1.019 1.020 1.022 1.023	1.024 1.026 1.027 1.029 1.030	1.032 1.033 1.035 1.037	1.040 1.042 1.044 1.046
SINH 2T d/L	.1260 .1323 .1387 .1450 .1514	.1577 .1641 .1705 .1768 .1832	.1896 .1960 .2024 .2088 .2153	.2217 .2281 .2346 .2410 .2527	.2540 .2605 .2670 .2735 .2800	.2865 .2931 .2996 .3062
TANH 2T d/L	1250 1312 1374 1435	.1558 .1619 .1680 .1741	.1863 .1924 .1984 .2044	22.64 22.24 22.24 23.43 23.43	.2462 .2521 .2579 .2638	.2754 .2812 .2870 .2928
2Td/L	.1257 .1320 .1382 .1445 .1508	.1571 .1634 .1697 .1759	.1885 .1948 .2011 .2073 .2136	.2199 .2262 .2325 .2388 .2150	2513 2576 2639 2702 2765	2827 2890 2953 3016
d/Lo	.002500 .002755 .003022 .003301	.003895 .004240 .004537 .004876	.005589 .005963 .005347 .005476 .007155	.00800. .00800. .00800. .00800. .008900.	.009847 .01033 .01083 .01134 .01186	.01239 .01294 .01349 .01465
d/L	.02000 .02100 .02200 .02300	.02500 .02600 .02700 .02800	.03000 .03100 .03300 .03400	.03500 .03600 .03700 .03800	.04,000 .04,100 .01,300 .01,300	00540° 00540° 00740° 00800 00800

×	53.32 51.38 49.55 47.82 46.19	44.65 43.19 41.80 40.49 39.24	38.06 36.93 35.86 34.83 33.86	32.93 32.04 31.19 30.38 29.61	28.86 28.15 27.47 26.81	25.58 25.00 24.45 23.92
9Н/Н	1.303 1.291 1.281 1.270 1.260	1.250 1.241 1.231 1.222 1.224	1.205 1.197 1.189 1.182 1.174	1.167 1.160 1.153 1.147	1.134 1.128 1.122 1.116	1.105 1.099 1.094 1.089
°2/ ⁹ 2	2947 2998 3049 3099 3149	3199 3248 3297 3346 3394	3441 3488 3534 3581 3626	.3672 .3716 .3761 .3804 .3848	3891 3933 3975 4016	4098 4138 4177 4256
g	.9685 .9673 .9661 .9649 .9636	.9623 .9610 .9597 .9583	9556 9542 9528 9514 9549	9484 9470 9455 9455 9440	.9409 .9393 .9378 .9362	.9330 .9314 .9298 .9281
T/P LT	1.204 1.213 1.221 1.230 1.239	1.249 1.258 1.268 1.278 1.288	1.298 1.308 1.319 1.330 1.341	1.353 1.364 1.376 1.388 1.400	1.412 1.425 1.425 1.438 1.451 1.464	1.478 1.492 1.506 1.520 1.534
SINH PT q/L	.6705 .6857 .7010 .7164 .7319	.7475 .7633 .7791 .7951 .8112	.8275 .8439 .8604 .8770 .8938	.9107 .9278 .9450 .9624 .9799	.9976 1.015 1.033 1.052	1.088 1.107 1.126 1.145 1.164
ħπd/E	6283 6409 6535 6660 6786	.6912 .7037 .7163 .7289 .7444	.7540 .7666 .7791 .7917 .8043	.8294 .8294 .8419 .8545	.8796 .8922 .9048 .9173	9425 9551 9676 9802 9927
×	9526 9508 9489 9470 9470	.9431 .9411 .9391 .9371	9329 9308 9286 9265 9263	9220 9198 9175 9175	9105 9081 9057 9033	.8984 .8959 .8934 .8909 .8883
COSH 5 T q/L	1.050 1.052 1.054 1.056 1.058	1.060 1.063 1.065 1.067	1.072 1.074 1.077 1.079	1.085 1.087 1.090 1.093	1.098 1.101 1.104 1.107 1.107	1.113 1.116 1.119 1.123 1.126
SINH 2π d/L	3194 3260 3326 3392 3458	.3525 .3592 .3658 .3726	.3860 .3927 .3995 .4062	4267 4267 4335 4004 4473	1,542 1,680 1,680 1,680 1,680	4889 4958 5029 5100 5170
TANH 2πd/L	.3042 .3099 .3156 .3212	.3325 .3380 .3436 .3491 .3546	.3601 .3656 .3710 .3764 .3818	.3871 .3925 .3978 .4030	4135 4187 4239 4290 4341	.1392 .4443 .4493 .4542
2 π d/L	.3142 .3204 .3267 .3330 .3393	.3456 .3519 .3581 .3644	.3770 .3833 .3896 .3958	.0084 .0147 .0210 .0273 .0335	.1398 .1394 .1554 .1587	.4712 .4775 .4838 .4901 .4964
d/Lo	01521 01580 01641 01702 01765	.01829 .01893 .01958 .02025	.02161 .02230 .02300 .02371	.02516 .02590 .02665 .02739	.02895 .02973 .03052 .03132	.03294 .03377 .03460 .03543 .03628
d/L	.05000 .05100 .05200 .05300	.05500 .05600 .05700 .05800	.06000 .06100 .06200 .06300	.06500 .06600 .06300 .06300	.07000 .07100 .07200 .07300	.07500 .07600 .07700 .07800

M	22.90 22.42 21.96 21.52 21.09	20.68 20.28 19.90 19.53	18.82 18.49 18.16 17.85	17.26 16.97 16.69 16.42 16.16	15.91 15.67 15.43 15.20 14.98	14.76 14.35 14.35 13.95
н/н,	1.079 1.075 1.066 1.061	1.057 1.053 1.049 1.045	1.037 1.034 1.030 1.027	1.020 1.017 1.014 1.014	1.005 1.002 .9993 .9966	9917 9891 9865 9865 1986
°၁/°၁	1293 1330 1367 1400 1440	4476 1454 14545 4545 4579 4613	.4646 .4679 .4779 .4743	.4805 .4835 .4865 .4894 .4923	.4952 .4980 .5007 .5034 .5034	.5087 .5113 .5138 .5163 .7813
E	.9248 .9231 .9214 .9197	.9162 .9145 .9127 .9109	.9074 .9056 .9038 .9020	.8984 .8966 .8947 .8929 .8910	.8892 .8873 .8854 .8836 .8817	.8798 .8779 .8760 .8761
COSH γπ d/L	1.549 1.564 1.580 1.595 1.611	1.627 1.643 1.660 1.676 1.693	1.711 1.728 1.746 1.764 1.783	1.801 1.820 1.840 1.859 1.879	1.899 1.920 1.940 1.961 1.983	2.004 2.026 2.049 2.071 2.094
SINH PT q/L	1.183 1.203 1.223 1.243 1.263	1.283 1.304 1.324 1.346 1.367	1.388 1.410 1.431 1.453	1.498 1.521 1.544 1.567	1.615 1.638 1.663 1.687 1.712	1.737 1.762 1.788 1.814 1.840
$h \pi^{d/L}$	1.005 1.018 1.043 1.043	1.068 1.081 1.093 1.106	1.131 1.144 1.156 1.156 1.169	1.194 1.206 1.219 1.232 1.244	1.257 1.269 1.282 1.294 1.307	1.319 1.332 1.345 1.357 1.370
×	.8857 .8831 .8805 .8779 .8752	.8726 .8699 .8672 .8645	.8590 .8562 .8534 .8506	.8450 .8421 .8392 .8364 .8335	.8306 .8277 .8247 .8218	8159 8129 8100 8070 8040
COSH 21T d/L	1.129 1.132 1.136 1.136 1.139	1.146 1.150 1.153 1.157 1.160	1.164 1.168 1.172 1.176	1.184 1.188 1.192 1.196 1.200	1,204 1,208 1,213 1,217 1,227	1,226 1,230 1,235 1,235 1,244
SINH 2 T d/L	5241 5312 5383 5455 5526	.5598 .5670 .5743 .5815 .5888	.5961 .6034 .6108 .6182	.6330 .6404 .6479 .6554 .6559	.6705 .6781 .6857 .6933 .7010	7087 7164 7241 7319
TANH 2Td/L	.4642 .4691 .4740 .4789 .4837	.4885 .4933 .4980 .5027 .5074	5120 5167 5213 5258 5303	.5348 .5393 .5438 .5438 .5482	.5569 .5612 .5655 .5698	.5782 .5824 .5865 .5906
2 ∏ d/L	5027 5089 5152 5152 5215	5347 5404 5466 5529 5529	.5655 .5718 .5781 .5843	.5969 .6032 .6095 .6158	.6283 .6346 .6409 .6472 .6535	.6597 .6660 .6723 .6786 .6849
d/Lo	.03714 .03799 .03887 .03975	.04242 .04242 .04333 .04424 .04424	.04608 .04702 .04796 .04890	.05081 .05177 .05275 .05372	.05569 .05668 .05768 .05869	.06071 .06173 .06276 .06378 .06482
d/L	.08000 .08100 .08200 .08300	.08500 .08600 .08800 .08900	.09000 .09100 .09300 .09400	.09500 .09600 .09700 .09800	.1000 .1010 .1020 .1030	1050 1060 1070 1080

×	13.77 13.58 13.41 13.23 13.06	12.90 12.74 12.59 12.43	12.14 12.00 11.87 11.73	11.48 11.35 11.23 11.11	10.89 10.78 10.57 10.56	10.36 10.26 10.17 10.07 9.983
н/н	.9797 .9775 .9753 .9731	.9691 .9672 .9654 .9635	.9600 .9583 .9567 .9551	9520 9505 9490 9476 9463	.9450 .9437 .9424 .9412	9389 9378 9367 9357
°2/ ^D 2	.5234 .5257 .5257 .5279	5323 5344 5365 5365 5365 5406	5442 5444 5463 5463 5500	5517 5534 5551 55551 5568 5584	.5599 .5614 .5629 .5644 .5658	.5672 .5685 .5698 .5711
ជ	.8703 .8684 .8665 .8665 .8645	.8607 .8587 .8568 .8568 .8549	.8510 .84,91 .84,71 .84,52	.8413 .8393 .8374 .8354 .8355	.8316 .8296 .8277 .8257 .8258	.8218 .8199 .8179 .8160
COSH γπd/L	2.118 2.141 2.165 2.189 2.214	2,239 2,264 2,290 2,316 2,343	2.369 2.397 2.424 2.452 2.452	2.538 2.538 2.538 2.538 2.538 2.538	2.659 2.690 2.722 2.754 2.754	2.819 2.852 2.886 2.920 2.955
SINH I TA/L	1.867 1.893 1.920 1.948 1.975	2.003 2.032 2.060 2.060 2.089	2.148 2.178 2.208 2.239 2.270	2.301 2.333 2.365 2.398 2.430	2.464 2.497 2.531 2.566 2.600	2.636 2.671 2.707 2.744 2.781
$l_1 \pi d/L$	1.382 1.395 1.407 1.420 1.433	1.445 1.458 1.470 1.483 1.495	1.508 1.521 1.533 1.546 1.558	1.571 1.583 1.596 1.609	1.634 1.646 1.659 1.671 1.684	1.696 1.709 1.722 1.734 1.747
₽	.8010 .7980 .7949 .7919	.7858 .7827 .7797 .7766	.770h .7673 .7642 .7612	7549 7518 7487 7487 7456	.7393 .7362 .7331 .7299 .7268	.7237 .7205 .7174 .7142
COSH 2π d/L	1.249 1.253 1.258 1.263	1.273 1.278 1.283 1.288 1.293	1.298 1.303 1.309 1.314 1.319	1.325 1.330 1.336 1.341 1.347	1.353 1.358 1.354 1.370 1.376	1.382 1.388 1.394 1.400 1.406
SINH 2T d/L	.7475 .7554 .7633 .7712 .7791	.7871 .7951 .8032 .8112 .8112	.827.5 .8357 .8439 .8521	.8687 .8770 .8854 .8938	.9107 .9192 .9278 .9364 .9450	.9537 .9624 .9711 .9799
TANH 2πd/L	.5987 .6027 .6067 .6107 .6107	.6185 .6224 .6262 .6300 .6338	.6375 .6412 .6449 .6486	6558 6594 6629 6669 6669	.6733 .6801 .6835 .6835	.6902 .6934 .6967 .6999 .7031
2TT d/L	.6974 .7037 .7037 .7163	.7226 .7289 .7351 .7177	.7540 .7603 .7666 .7728	.7854 .7917 .7980 .8043 .8105	.8168 .8231 .8294 .8357	.8482 .8545 .8608 .8671
d/Lo	.06586 .0690 .06795 .06901	.07113 .07220 .07327 .071314	.07650 .07759 .07868 .07978	.08198 .08308 .08419 .08530 .08642	.08753 .08866 .08978 .09091	.09317 .09431 .095444 .09659
d/L	.1100 .1110 .1120 .1130	0211. 0311. 0711. 0811.	.1200 .1210 .1220 .1230	1250 1260 1270 1280 1280	.1300 .1310 .1320 .1330	.1350 .1360 .1370 .1380

₩.	9.894 9.806 9.721 9.638 9.556	9.476 9.398 9.321 9.246 9.173	9.101 9.031 8.962 8.894 8.828	8.763 8.700 8.638 8.577 8.517	8.459 8.401 8.345 8.290 8.236	8.183 8.131 8.079 8.029 7.980
н/н°	.9337 .9327 .9318 .9309	.9292 .928h .9276 .9268	9254 9247 9240 9234 9234	.9222 .9216 .9211 .9205	.9196 .9191 .9186 .9182	9175 9171 9167 9164 9164
°2/°2	.5736 .5748 .5759 .5770	.5791 .5801 .5811 .5821 .5830	5839 5848 5856 5864 5872	.5880 .5887 .5893 .5900	.5913 .5919 .5925 .5930 .5935	.5940 .5945 .5950 .5954 .5954
g .	.8121 .8102 .8083 .8064 .8064	.8025 .8006 .7987 .7968	7930 7911 7892 7873 7873	.7835 .7816 .7797 .7779	77123 7723 7704 7686 7667	7649 7631 7613 7595 7595
τ/p μη	2.990 3.026 3.026 3.089 3.136	3.173 3.211 3.250 3.289 3.329	3.369 3.410 3.451 3.453 3.535	3.578 3.621 3.665 3.710 3.755	3.801 3.847 3.894 3.992 3.990	4.039 4.088 4.138 4.189 4.241
SINH THE	2.818 2.856 2.894 2.933 2.972	3.012 3.052 3.092 3.133	3.217 3.260 3.303 3.346 3.391	3.435 3.481 3.526 3.573 3.620	3.667 3.715 3.764 3.813 3.863	3.913 3.964 4.016 4.068 4.121
hπd/L	1.759 1.772 1.784 1.797 1.810	1.822 1.835 1.847 1.860 1.872	1.885 1.898 1.910 1.923 1.935	1.948 1.960 1.973 1.985	2.013 2.023 2.036 2.048 2.048	2.073 2.086 2.099 2.111 2.124
Ж	7080 7018 7017 6985	.6923 .6891 .6860 .6829	.6766 .6734 .6703 .6672 .6672	6610 6579 6547 6547 656 685	6454 6423 6392 6391 6331	.6300 .6269 .6239 .6208
COSH 2πd/L	1.425 1.425 1.425 1.438	1.451	1.478 1.485 1.492 1.499 1.506	1.527	1.549 1.557 1.564 1.580	1.587 1.595 1.603 1.611 1.619
SINH 2Td/L	9976 1.006 1.015 1.024 1.033	1.062 1.052 1.061 1.079	1.088 1.098 1.107 1.116	1.135 1.145 1.154 1.164 1.174	1.183 1.193 1.203 1.213	1.233 1.243 1.253 1.263 1.273
TANH 2T d/L	.7063 .7094 .7125 .7126 .7156	7216 7247 7276 7306	7364 7392 7421 7449	7504 7531 7558 7588 7612	7638 7664 7690 7716	7766 7791 7815 7840 7840
2 π d/L	8797 8859 8922 8985	9111 9174 9236 9299 9362	9425 9488 9551 9613	9739 9802 9865 9928	1.005 1.012 1.018 1.024 1.030	1.037 1.043 1.049 1.056
d/Lo	.09888 .1000 .1012 .1023	.1046 .1058 .1070 .1081	1105 3111 31128 1140	1163 1175 1187 1199 1210	1222 1234 1246 1258 1258	1281 1293 1305 1317 1329
d/L	1400 1410 1430 1430	1450 1470 1470 1480	1500 1510 1520 1530 1540	1550 1560 1570 1580	.1600 .1610 .1620 .1630 .1640	1650 1660 1670 1680 1690

M	7.932 7.885 7.838 7.793	7.704 7.661 7.619 7.577 7.536	7-496 7-457 7-419 7-381 7-343	7.307 7.231 7.235 7.201	7.133 7.100 7.068 7.036 7.005	6.974 6.944 6.914 6.885 6.885
Н/Н	9158 9155 9153 9150	91146 91142 91142 91140 9138	.9137 .9136 .9135 .9134 .9133	.9132 .9131 .9131 .9131	.9130 .9130 .9130 .9130	.9131 .9132 .9132 .9133
°2/°2	5962 5965 5972 5975	5978 5980 5983 5985 7987	5989 5992 5993 5995	5996 5997 5998 5998	5,5998 8,998 8,998	5997 5996 5995 5995
п	.7558 .7540 .7523 .7505	.7469 .7451 .7434 .7434 .7399	.7382 .7364 .7347 .7330 .7313	.7296 .7279 .7262 .7245	.7212 .7195 .7179 .7162 .7162	.7129 .7113 .7097 .7081
COSH γ π α/L	1.293 1.346 1.399 1.454 1.508	1.564 1.620 1.677 1.735 1.793	14.853 14.918 14.974 5.035 5.098	5.161 5.225 5.225 5.356 5.422	55.55 55.55 55.65 55.65 56.65	5.840 5.913 5.988 6.061 6.137
SINH TA/L	1,175 1,229 1,284 1,340 1,396	4.453 4.511 4.569 4.628 4.688	4.749 4.810 4.872 4.935 4.999	5.063 5.129 5.262 5.329	55.538 55.538 55.609 56.609	5.754 5.902 5.978 6.055
μπα/L	2.136 2.149 2.161 2.174 2.187	2.199 2.212 2.224 2.237 2.249	2.262 2.275 2.287 2.300 2.312	2.325 2.337 2.350 2.350 2.352	2.388 2.400 2.413 2.425 2.438	2.450 2.463 2.476 2.488 2.501
M	.6147 .6086 .6086 .6056	5995 5995 5935 5905 5875	.5845 .5816 .5786 .5757 .5757	.5697 .5688 .5639 .5610 .5581	.5551 .5522 .5493 .5465	5408 5379 5350 5322 5224
COSH 2 π d/L	1.627 1.635 1.643 1.651 1.660	1.668 1.676 1.685 1.693	1.711 1.720 1.728 1.737 1.746	1.755 1.764 1.773 1.783 1.792	1.801 1.811 1.820 1.830 1.840	1.849 1.859 1.869 1.879
SINH 2T d/L	1.283 1.293 1.304 1.314 1.325	1.335 1.345 1.356 1.367 1.377	1.388 1.399 1.410 1.420 1.431	1.442 1.454 1.465 1.476 1.476	1.498	1.556 1.567 1.579 1.591 1.603
TANH 2-1T d∕L	.7887 .7911 .7935 .7938 .7958	.8026 .8026 .8048 .8070	.8114 .8135 .8156 .8177	.8239 .8239 .8259 .8278	.8318 .8337 .8356 .8375	. 84,12 . 84,30 . 84,48 . 84,66 . 84,84
2π d/L	1.068 1.074 1.081 1.087	1.100 1.106 1.112 1.125	1.131 1.137 1.144 1.150 1.156	1.162 1.169 1.175 1.181 1.188	1.194 1.200 1.206 1.213 1.219	1.225 1.232 1.238 1.238 1.244 1.250
d/Lo	1361 1353 1365 1365 1389	1401 5241 5412 5411 5411	1460 1472 1484 1496 1508	.1520 .1532 .1544 .1556 .1558	.1580 .1592 .1604 .1616	.1640 .1652 .1664 .1676
d/L	.1700 .1710 .1720 .1730	.1750 .1760 .1770 .1780	.1800 .1810 .1820 .1830 .1840	.1850 .1860 .1870 .1880	.1900 .1910 .1920 .1930	.1950 .1960 .1970 .1980

M	6.828 6.801 6.774 6.747 6.720	165.9 6.69 419.9 119.9 16.59	6.570 6.547 6.524 6.501 6.501	6.457 6.435 6.413 6.393 6.372	6.351 6.331 6.312 6.292 6.273	6.254 6.236 6.218 6.20 6.182
. °Н/н	.9134 .9135 .9137 .9138	9140	9147 9449 9151 9153	.9157 .9159 .9161 .9164	.9168 .9170 .9173 .9173	.9181 .9183 .9186 .9189
°2/°2	5993 5992 5990 5988 5988	5986 5984 5982 5980 5978	.5976 .5973 .5971 .5969	5963 5950 5958 5955	5946 5946 5943 5943 5939	.5933 .5929 .5925 .5921 .5918
E	.7049 .7033 .7018 .7002	.6971 .6956 .6956 .1463 .6925	6895 6880 6865 6850 6835	.6821 .6806 .6792 .6777 .6777	.6749 .6735 .6735 .6720 .6706	.6679 .6665 .6651 .6637 .6637
COSH μπ d/L	6.213 6.291 6.369 6.449 6.529	6.611 6.694 6.777 6.862 6.948	7.035 7.123 7.219 7.302 7.394	7.487 7.580 7.675 7.772 7.869	7.968 8.068 8.169 8.272 8.375	8.481 8.587 8.695 8.800 8.915
SINH T/P	6.132 6.211 6.290 6.371 6.452	6.535 6.619 6.703 6.789 6.876	6.963 7.052 7.143 7.234 7.326	7.420 7.514 7.610 7.707 7.805	7.905 8.006 8.108 8.211 8.316	8.422 8.529 8.637 8.756
ηπα/L	2.513 2.526 2.538 2.551 2.551	2.576 2.589 2.601 2.614 2.626	2.639 2.652 2.664 2.677 2.689	2.702 2.714 2.727 2.739 2.752	2.765 2.777 2.790 2.802 2.815	2.827 2.840 2.853 2.865 2.865
M	.5266 .5238 .5210 .5182 .5182	.5127 .5099 .5071 .5014 .5016	.4989 .4962 .4935 .4936	1,854 1,828 1,801 1,775	.4722 .4696 .1670 .4644 .4619	.1593 .4567 .1542 .4516 .4516
COSH 277d/L	1.899 1.909 1.920 1.940	1.951 1.961 1.972 1.983 1.994	2.004 2.015 2.026 2.037 2.049	2.060 2.071 2.083 2.094 2.106	2.118 2.129 2.141 2.153 2.165	2.177 2.189 2.202 2.214 2.227
SINH 2 T d/L	1.614 1.626 1.638 1.651 1.663	1.675 1.687 1.700 1.725	1.737 1.750 1.762 1.775	1.801 1.814 1.827 1.840 1.853	1.867 1.880 1.893 1.907	1.934 1.948 1.962 1.975
TANH 27T d/L	.8501 .8519 .8535 .8552 .8570	.8586 .8602 .8619 .8635	.8667 .8682 .8697 .8713	.8743 .8757 .8772 .8786	.8815 .8829 .8842 .8856 .8856	
2# d/L	1.257 1.263 1.269 1.276 1.282	1.288 1.294 1.301 1.307	1.320 1.326 1.332 1.338	1,351 1,357 1,364 1,370	1.382 1.389 1.395 1.401	1.420 1.420 1.426 1.433 1.439
d/Lo	.1700 .1712 .1724 .1736 .1736	.1760 .1772 .1784 .1784 .1808	.1820 .1832 .7844 .1856	.1880 .1892 .1904 .1915	1939 1951 1963 1975	.1999 .2011 .2022 .2034 .2046
d/L	.2000 .2010 .2020 .2030	.2050 .2060 .2070 .2080	.2100 .2110 .2120 .2130 .2130	.2150 .2160 .2170 .2180 .2190	.2200 .2210 .2220 .2230 .2240	.2250 .2260 .2270 .2280 .2290

×	6.165 6.148 6.131 6.131 6.097	6.081 6.066 6.050 6.034 6.019	6.004 5.990 5.976 5.961 5.947	5,575 5,919 5,893 880	5.867 5.841 5.841 5.829 5.829	55.78 7.782 7.770 7.770
9н/н	.9194 .9197 .9200 .9203	.9209 .9212 .9215 .9218	.9225 .9228 .9231 .9234 .9238	.9241 .9244 .9218 .9251	9258 9262 9265 9269 9269	.9276 .9280 .9283 .9287
°2/3	.5915 .5911 .5907 .5904	5896 5892 5888 5888 5880 5880	.5876 .5872 .5868 .5863	5855 5851 5846 5842 5838	.5833 .5829 .5824 .5820	.5811 .5807 .5802 .5797
ď	1199° 1659° 1658° 1759° 16558°	.6545 .6532 .6519 .6507 .6494	.6481 .6469 .6456 .6454 .6444	.6420 .6408 .6396 .6384 .6372	.6360 .6348 .6337 .6325	.6303 .6291 .6280 .6269
COSH μπ d/L	9.027 9.140 9.255 9.372 9.489	9.609 9.730 9.852 9.976 10.10	10.23 10.36 10.49 10.62	10.89 11.03 11.17 11.31 11.45	11.59 11.74 11.89 12.04	12.34 12.50 12.65 12.81 12.98
SINH IT UT	8.971 9.085 9.201 9.318 9.437	9.557 9.678 9.801 9.926 10.05	10.18 10.31 10.44 10.57 10.71	10.84 10.98 11.12 11.26 11.40	11.55 11.70 11.84 11.99	12.30 12.46 12.61 12.77 12.94
hm d/L	2.890 2.903 2.915 2.928 2.941	2.953 2.966 2.978 2.991 3.003	3.016 3.029 3.041 3.054 3.066	3.079 3.091 3.104 3.116	3.142 3.154 3.167 3.179 3.192	3.204 3.217 3.230 3.242 3.255
×	14466 14411 14116 14391 14366	4342 4318 4293 4269	4220 4172 4172 4149 4125	4101 4078 4055 4032 4008	.3985 .3962 .3940 .3917 .3894	.3872 .3849 .3827 .3805 .3783
COSH 2	2.239 2.252 2.254 2.264 2.277	2.303 2.316 2.329 2.343 2.356	2,370 2,383 2,397 2,410 2,424	2.438 2.452 2.466 2.466 2.480 2.495	2.524 2.524 2.538 2.553 2.553	2.583 2.598 2.613 2.628 2.643
SINH 2 T d/L	2.003 2.017 2.032 2.046 2.060	2.075 2.089 2.104 2.118 2.133	2.148 2.163 2.178 2.193 2.208	2.224 2.239 2.255 2.270 2.286	2.301 2.317 2.333 2.349 2.365	2.381 2.398 2.414 2.430 2.447
TANH 2 TT d/L	.8947 .8960 .8972 .8984 .8996	.9008 .9020 .9032 .9043	.9066 .9077 .9088 .9099	.9120 .9131 .9141 .9151	.9172 .9182 .9191 .9201	.9220 .9229 .9239 .9248
2π d/L	1.445 1.451 1.458 1.464 1.470	1.477 1.483 1.489 1.495 1.502	1.508 1.514 1.521 1.527 1.527	1.539 1.546 1.552 1.558 1.558	1.571 1.577 1.583 1.590 1.596	1,602 1,609 1,615 1,621 1,627
d/Lo	2058 2070 2082 2093 2105	2117 2129 2141 2152 2152	.2176 .2188 .2199 .2211	.2234 .2246 .2258 .2270	.2293 .2305 .2316 .2328 .2339	.2351 .2363 .2374 .2386 .2398
d/L	2300 2310 2320 2330 2340	2350 2350 2370 2380 2390	2400 2410 2420 2430 2430	2450 2460 2470 2480 2480	2500 2510 2520 2530 2530	25550 25560 2570 2580 2590

M	5.748 5.737 5.726 5.726 5.705	мими 000000	5.645 5.627 5.627 5.617 5.608	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5.501 5.501 5.493 5.486
н/н	.929h .9298 .9301 .9305	.9313 .9316 .9320 .9324	.9331 .9335 .9339 .9343	.9350 .9354 .9358 .9362	.9369 .9373 .9377 .9381	9388 9392 9396 9400
°2/5°2	.5788 .5784 .5779 .5775	.5765 .5761 .5756 .5752 .5747	,5742 ,5737 ,5733 ,5728	.5719 .5710 .5710 .5705	5696 5691 5687 5682	5673 5668 5668 5659 5659
и	.6247 .6236 .6225 .6225 .6215	.6193 .6183 .6172 .6162	.6142 .6132 .6122 .6122 .6102	.6092 .6082 .6072 .6063	.6044 .6035 .6025 .6016	.5998 .5989 .5980 .5971
COSH PLA/L	13.14 13.31 13.47 13.64 13.81	13.99	14.89 15.08 15.27 15.46 15.46	15.86 16.06 16.26 16.47 16.47	16.88 17.10 17.31 17.53 17.75	17.98 18.20 18.41 18.67 18.90
SINH p 4/F	13.27 13.44 13.64 13.61	13.95 14.13 14.31 14.49 14.67	14.86 15.05 15.24 15.43 15.63	15.83 16.03 16.23 16.43 16.43	16,85 17.07 17.28 17.50 17.72	17.95 18.18 18.40 18.64 18.64
4 πd/L	3.267 3.280 3.292 3.305	3.343 3.343 3.355 3.355 3.368	3.393 3.405 3.418 3.418 3.443	3-456 3-468 3-481 3-493 3-506	3.519	3.581 3.594 3.607 3.619
M	.3761 .3739 .3717 .3696 .3674	.3653 .3632 .3610 .3589	3547 3527 3506 3485 3465	3444	.3344 .3324 .3305 .3285 .3285	3227 3227 3208 3189
COSH 27d/L	2.659 2.674 2.690 2.706	2.737 2.754 2.770 2.786 2.803	2.819 2.835 2.852 2.869 2.869	2.920 2.920 2.938 2.955 2.973	2.990 3.008 3.026 3.044 3.062	3.080 3.099 3.117 3.136 3.154
SINH 27d/L	2.464 2.480 2.497 2.514 2.531	2.548 2.566 2.583 2.600 2.618	2.636 2.653 2.671 2.689 2.707	2.726 2.744 2.762 2.781 2.799	2.818 2.837 2.856 2.875 2.875	2.913 2.933 2.952 2.972 2.992
TANH 2T d/L	.9266 .9275 .9283 .9292	.9309 .9317 .9326 .9334 .9342	.9350 .9357 .9365 .9373	.9388 .9396 .9403 .9410	9424 9431 9438 9445	.9458 .9465 .9478 .9478
211 d/L	1.634 1.640 1.646 1.653	1.665 1.671 1.678 1.684	1.697 1.703 1.709 1.715	1.728 1.734 1.740 1.747	1.759 1.766 1.772 1.778 1.778	1,791 1,797 1,803 1,810
d/Lo	2409 2421 2432 2444 2444	2167 24,78 24,90 2501	2524 2536 2547 2559 2550	2582 2593 2605 2616 2616	2639 2650 2662 2673 2673	.2696 .2707 .2718 .2730
d/L	.2600 .2610 .2620 .2630 .2640	.2650 .2660 .2670 .2680	.2700 .2710 .2720 .2730	.2750 .2760 .2770 .2780	.2800 .2810 .2820 .2830 .2830	.2850 .2860 .2870 .2880 .2890

PLATE 5

DEPTH DETERMINATION FROM WAVE VELOCITIES, WITH CORRECTION FOR WAVE STEEPNESS

PLATE 6

WAVES IN SHALLOW WATER. CHANGE IN HEIGHT AND LENGTH FROM DEEP WATER TO POINT OF BREAKING

PLATE

BEACHES WITH STRAIGHT, PARALLEL DEPTH CONTOURS PLATE 14

WAVE HEIGHT AND WAVE PERIOD AS FUNCTIONS OF DURATION OF WIND AND WIND VELOCITY PLATE 17

WIND AND WIND VELOCITY

PLATE 18

PLATE 19

