

## Semester 1 Examinations 2022/2023

Course Instance Codes 4BCT1, 4BMS2, 4BS2, 2SPS1

Exams 4th Science, PhD Science

Module Code MA416 Module Rings

External Examiner Prof. C. Roney-Dougal

Internal Examiners Prof. G. Pfeiffer

\*Dr R. Quinlan \*Dr T. Rossmann

Instructions: Answer all four questions.

Each question carries 25 marks. All workings must be shown.

**Duration** 2 hours

No. of Pages 3 pages, including this one

**Discipline** Mathematics

Requirements: No special requirements

Release to Library Yes
Release in Exam Venue Yes
MCQ No
Statistical / Log Tables No
Non-programmable Calculator Yes
Mathematical Tables No
Graph paper No

- **Q1.** (a) Let  $R = \{a + b\sqrt{3} : a, b \in \mathbf{Z}\}.$ 
  - 1. Show that R is a subring of  $\mathbf{R}$ .
  - 2. Show that  $2+\sqrt{3}$  is a unit of R.
  - 3. Is R an integral domain? Justify your answer. [12 marks]
  - (b) True or false? Justify your answers.
    - 1. The sum of two units of a ring is itself always a unit.
    - 2. The product of two units of a ring is itself always a unit.
    - 3. For nonzero polynomials  $f, g \in R[X]$  with coefficients in a commutative ring R, we always have  $\deg(fg) = \deg(f) + \deg(g)$ .
    - 4. The ring  $\mathbf{R}[\varepsilon]$  of dual numbers is isomorphic to the polynomial ring  $\mathbf{R}[X]$ .

      [8 marks]
  - (c) Let R be a ring.
    - 1. Let  $f: R \to R'$  be a ring homomorphism. Show that Ker(f) is a (two-sided) ideal of R.
    - 2. Is every (two-sided) ideal of R of the form Ker(f) for some ring R' and ring homomorphism  $f: R \to R'$ ? Justify your answer. [5 marks]
- **Q2.** (a) Let R be a ring. Let I and J be (two-sided) ideals of R.
  - 1. Suppose that I contains a unit of R. Show that I = R.
  - 2. Suppose that R is an integral domain and that  $I \cap J = \{0\}$ . Show that  $I = \{0\}$  or  $J = \{0\}$ . [7 marks]
  - (b) 1. Let  $f: D \to R$  be a ring homomorphism. Suppose that D is a division ring and that  $R \neq \{0\}$ . Show that f is injective.
    - 2. Show that there is no ring homomorphism  $\mathbf{R} \to \mathbf{Q}$ . [8 marks]
  - (c) Given an example (with justification) of a prime ideal of  $C(\mathbf{R})$ , the ring of continuous functions  $\mathbf{R} \to \mathbf{R}$  with pointwise operations. [5 marks]
  - (d) Let  $f: R \to S$  and  $h: R \to T$  be surjective ring homomorphisms. Suppose that  $\operatorname{Ker}(f) \subseteq \operatorname{Ker}(h)$ . Show that there exists a unique ring homomorphism  $g: S \to T$  such that the diagram



commutes. [5 marks]

- **Q3.** (a) Let R denote the integral domain  $\mathbf{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in \mathbf{Z}\}$ . For  $z \in R$ ,  $z = a + b\sqrt{-3}$ , define  $N(z) = a^2 + 3b^2$ . By using the function N or otherwise, show that the only units in R are 1 and -1.
  - (b) Give an example, with explanation, of a non-zero non-unit element of R that is irreducible in R. [6 marks]
  - (c) Show that every non-zero non-unit element of R is a product of irreducible elements in R. [6 marks]
  - (d) Show that R is not a unique factorization domain (for example by exhibiting two different factorizations of 4 as a product of irreducible elements in R). Give an example (with explanation) of an element of R that is irreducible but not prime. [7 marks]
- **Q4.** (a) What is meant by a *noetherian* ring? Show that every principal ideal domain is noetherian. [6 marks]
  - (b) Answer TRUE or FALSE to each of the following. [5 marks]
    - i. Every noetherian integral domain is a unique factorization domain.
    - ii. Every unique factorization domain is a principal ideal domain.
    - iii. Every unique factorization domain is a Euclidean domain.
    - iv. Every irreducible element in a noetherian integral domain is prime.
    - v. Every subring of a noetherian ring is noetherian.
  - (c) Give an example, with explanation, of an integral domain that is not noetherian. [7 marks]
  - (d) Explain how to construct the field of fractions of an integral domain. [7 marks]