IX4426 / IX4427 / IX4428 1.5 A Dual Low-Side Ultrafast MOSFET Driver

Features

- 1.5 A Peak Output Current
- Wide Operating Voltage Range: 4.5V to 35V
- -40 °C to +125 °C Operating Temperature Range
- Latch-up Protected to 1.5A
- TTL and CMOS Compatible Inputs
- Ultrafast Rise and Fall Times
- Low Power Consumption

Applications

- MOSFET Driver
- Switching Power Supplies
- Motor Controls
- DC to DC Converters
- Pulse Transformer Driver

Description

IX4426, IX4427, and IX4428 are dual high-speed, low-side gate drivers. Each of the two outputs can source and sink 1.5 A of peak current and they can switch a 1 nF gate load with rise and fall times of less than 10 ns.

The inputs of each driver are TTL and CMOS compatible, and are virtually immune to latch-up. Low propagation delay times and fast, matched rise and fall times make IX4426, IX4427, and IX4428 ideal for high-frequency and high-power applications.

IX4426 is configured as a dual inverting driver, IX4427 is configured as a dual non-inverting driver, and the IX4428 is configured with one inverting driver and one non-inverting driver.

All three devices are available in a standard 8-pin narrow SOIC package (N suffix), an 8-pin narrow SOIC with an exposed bottom side pad (NE suffix), and an 8-pin DFN package (M suffix).

Ordering Information

Logic Configuration	Logic Configuration Part Number Package Type		Packing Method	Quantity
	IX4426N	8-Pin Narrow SOIC	Tube	100
INA A OUTA	IX4426NTR	6-FIII INAITOW SOIC	Tape and Reel	2000
	IX4426NE	8-Pin Narrow SOIC	Tube	100
INB B OUTB	IX4426NETR	with exposed Bottom Side Pad	Tape and Reel	2000
	IX4426MTR	8-Pin DFN	Tape and Reel	2000
	IX4427N	8-Pin Narrow SOIC	Tube	100
INA A OUTA	IX4427NTR	6-FIII INAITOW SOIC	Tape and Reel	2000
	IX4427NE	8-Pin Narrow SOIC	Tube	100
INB B OUTB	IX4427NETR	with exposed Bottom Side Pad	Tape and Reel	2000
	IX4427MTR	8-Pin DFN	Tape and Reel	2000
	IX4428N	8-Pin Narrow SOIC	Tube	100
INA A OUTA	IX4428NTR	6-FIII INAITOW SOIC	Tape and Reel	2000
	IX4428NE	8-Pin Narrow SOIC	Tube	100
INB B OUTB	IX4428NETR	with exposed Bottom Side Pad	Tape and Reel	2000
	IX4428MTR	8-Pin DFN	Tape and Reel	2000

1	Specifications
	1.1 Pin Configurations
	1.2 Pin Description
	1.3 Absolute Maximum Ratings
	1.4 Recommended Operating Conditions
	1.5 Electrical Characteristics: T _A = 25 °C
	1.6 Electrical Characteristics: T _A = -40 °C to +125 °C
	1.7 Thermal Characteristics
2	IX4426 / IX4427 / IX4428 Performance
_	2.1 Timing Diagram
	2.2 Characteristics Test Diagrams
3	Block Diagrams and Truth Tables
	3.1 IX4426
	3.2 IX4427 6
	3.3 IX4428
4	Performance Data
Ť.	
5	Manufacturing Information
	5.1 Moisture Sensitivity
	5.2 ESD Sensitivity
	5.3 Soldering Profile
	5.4 Board Wash
	5.5 Mechanical Dimensions
	5.5.1 "N" Package (8-Pin Narrow SOIC)
	5.5.2 "NE" Package (8-Pin Narrow SOIC with Exposed Bottom-Side Pad)
	5.5.3 "N" and "NE" Package Tape and Reel
	5.5.4 "M" Package (8-Pin DFN)
	5.5.5 "M" Package Tape and Reel

1 Specifications

1.1 Pin Configurations

1.2 Pin Description

Pin Name	Description
INA	Channel A Logic Input
INB	Channel B Logic Input
OUTA or OUTA	Channel A Output - Sources or sinks current to turn-on or turn-off a discrete MOSFET or IGBT
OUTB or OUTB	Channel B Output - Sources or sinks current to turn-on or turn-off a discrete MOSFET or IGBT
V _{CC}	Supply Voltage - Provides power to the device
GND	Ground - Common ground reference
NC	No connection

1.3 Absolute Maximum Ratings

INB

Parameter	Symbol		lue	Units	
rarameter	Symbol	Minimum	Maximum	Units	
Supply Voltage	V _{CC}	-0.3	35	\/	
Input Voltage	V _{IN}	-5	V _{CC} + 0.3	V	
Output Current	I _{OUT}	_	±1.5	А	
Junction Temperature	TJ	-55	+150	°C	
Storage Temperature	T _{STG}	-65	+150		

Unless otherwise specified, absolute maximum electrical ratings are at 25 °C.

OUTB

Absolute maximum ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

1.4 Recommended Operating Conditions

Parameter	Symbol	Value		Units	
rarameter	Symbol	Minimum	Maximum	Units	
Supply Voltage	V _{CC}	4.5	30	V	
Operating Temperature Range	T _A	-40	+125	°C	

1.5 Electrical Characteristics: $T_A = 25$ °C

Test Conditions: $4.5V \le V_{CC} \le 18V$

Downwater	Conditions	Cumbal		Value		Units
Parameter	Conditions	Symbol	Minimum	Typical	Maximum	Units
Input Voltage, High	_	V _{IH}	2.4	_	_	V
Input Voltage, Low	_	V _{IL}	_	_	0.8] v
Input Current	$0V \le V_{IN} \le V_{CC}$	I _{IN}	_	_	±1	μΑ
Output Voltage, High	_	V _{OH}	V _{CC} -0.025	_	_	V
Output Voltage, Low	_	V _{OL}	_	_	0.025] V
Output Resistance, High State	$V_{CC} = 18V$, $I_{OUT} = -100 \text{mA}$	R _{OH}	_	4	8	Ω
Output Resistance, Low State	V _{CC} =18V, I _{OUT} =100 mA	R _{OL}	_	2	4	1 12
Latch-Up Protection	With Reverse Current	I	>500	_	_	mA
RiseTime		t _r	_	10	20	
Fall Time	\/ _10\/ C _1 nE	t _f	_	8	20	no
On-Time Propagation Delay	V_{CC} =18V, C_{LOAD} =1 nF	t _{on}	_	35	60	ns
Off-Time Propagation Delay		t _{off}	_	35	60	
Power Supply Current	V _{INA} =V _{INB} =3V	1	_	2.5	4	
rower Supply Current	V _{INA} = V _{INB} = 0 V		_	0.6	0.8	mA mA

1.6 Electrical Characteristics: $T_A = -40$ °C to +125 °C

Test Conditions: $4.5V \le V_{CC} \le 18V$

Parameter	Conditions	Cumbal	Va	Value	
rarameter	Conditions	Symbol	Minimum	Maximum	Units
Input Voltage, High	_	V _{IH}	2.4	_	V
Input Voltage, Low	_	V _{IL}	_	0.8] v
Input Current	0V≤V _{IN} ≤V _{CC}	I _{IN}	_	±1	μΑ
Output Voltage, High	_	V _{OH}	V _{CC} - 0.025	_	V
Output Voltage, Low	_	V _{OL}	_	0.025] V
Output Resistance, High State	$V_{CC} = 18V$, $I_{OUT} = -100 \text{mA}$	R _{OH}	_	12	0
Output Resistance, Low State	V _{CC} =18V, I _{OUT} =100 mA	R _{OL}	_	8	1 12
Latch-Up Protection	With Reverse Current	1	> 500	_	mA
RiseTime		t _r	_	30	
Fall Time) // 10// C 1 n F	t _f	_	30	
On-Time Propagation Delay	V_{CC} =18V, C_{LOAD} =1 nF	t _{on}	_	70	ns
Off-Time Propagation Delay		t _{off}	_	70	
Dower Cumby Current	V _{INA} =V _{INB} =3V	1	_	6	m A
Power Supply Current	V _{INA} =V _{INB} =0V	Icc	_	1	mA mA

1.7 Thermal Characteristics

Package	Parameter	Symbol	Rating	Units
8-Pin SOIC with Exposed Bottom Side Pad	Thermal Impedance, Junction to Ambient	θ_{JA}	58	
8-Pin SOIC with Exposed Bottom Side Pad	Thermal Impedance, Junction to Case	θ_{JC}	10	
8-Pin SOIC	Thermal Impedance, Junction to Ambient	θ_{JA}	120	K/W
8-Pin DFN	Thermal Impedance, Junction to Ambient	θ_{JA}	68	
8-Pin DFN	Thermal Impedance, Junction to Case	θ_{JC}	3.73	

2 IX4426 / IX4427 / IX4428 Performance

2.1 Timing Diagram

2.2 Characteristics Test Diagrams

3 Block Diagrams and Truth Tables

3.1 IX4426

INx	OUTx
0	1
1	0

3.3 IX4428

INA	OUTA
0	1
1	0
INB	OUTB
INB 0	OUTB

3.2 IX4427

INx	OUTx
0	0
1	1

4 Performance Data

5 Manufacturing Information

5.1 Moisture Sensitivity

All end

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. Littelfuse classifies its plastic encapsulated devices for moisture sensitivity according to the latest revision of the joint industry standard,

IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a **Moisture Sensitivity Level (MSL)** classification as shown below, and should be handled according to the requirements of the latest revision of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Classification
IX4426 / IX4427 / IX4428, all versions	MSL 1

5.2 ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

5.3 Soldering Profile

Provided in the table below is the **IPC/JEDEC J-STD-020** Classification Temperature (T_c) and the maximum dwell time ($T_c - 5$ °C). The Classification Temperature sets the Maximum Body Temperature allowed for these devices during reflow soldering processes.

Device	Classification Temperature (T _c)	Dwell Time (t _P)	Maximum Reflow Cycles
IX4426 / IX4427 / IX4428, all versions	260°C	30 seconds	3

5.4 Board Wash

Littelfuse recommends the use of no-clean flux formulations. Board washing to reduce, or remove flux residue following the solder reflow process is acceptable, provided proper precautions are taken to prevent damage to the device. These precautions include, but are not limited to: Using a low pressure wash and providing a follow-up bake cycle sufficient to remove any moisture trapped within the device, due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning, or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to halide flux or solvents.

5.5 Mechanical Dimensions

5.5.1 "N" Package (8-Pin Narrow SOIC)

Notes:

- 1. Controlling dimension: millimeters.
- 2. All dimensions are in mm (inches).
- 3. This package conforms to JEDEC Standard MS-012, variation AA, Rev. F.
- 4. Dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per end.
- 5. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 mm per side.
- 6. Lead thickness includes plating.

5.5.2 "NE" Package (8-Pin Narrow SOIC with Exposed Bottom-Side Pad)

- Notes:
- 1. Controlling dimension: millimeters.
- 2. All dimensions are in mm (inches).
- 3. This package conforms to JEDEC Standard MS-012, variation BA, Rev. F.
- 4. Dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per end.
- 5. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 mm per side.
- 6. The exposed metal pad on the back of the package should be connected to GND. It is not suitable for carrying current.
- 7. Lead thickness includes plating.

5.5.3 "N" and "NE" Package Tape and Reel

5.5.4 "M" Package (8-Pin DFN)

5.5.5 "M" Package Tape and Reel

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at https://www.littelfuse.com/disclaimer-electronics

