

Conflict Detection in Software-Defined Networks

Author 1

Author 2

author1@campus.lmu.de mnm-team.org/~author2

Aufgabensteller: Prof. Dr. Dieter Kranzlmüller

Betreuer 1: 1. Supervisor Betreuer 2: 2. Supervisor

July 21, 2022

Conflicts in Real Life

Possible consequences:

- Application's goals are not fulfilled
- Unexpected, unreliable network behaviour
- \Rightarrow Conflicts need to be detected and resolved

Conflict Definition

Research Questions

- 1. What is a suitable method to research conflicts in SDN?
- 2. How can conflicts between control applications be classified based on their rules (conflict classification)?

Research Questions

- 1. What is a suitable method to research conflicts in SDN?
- 2. How can conflicts between control applications be classified based on their rules (conflict classification)?
- 3. How many conflicts exist in a given rule set (conflict detection)?
 - 3.1 Which rules cause conflicts?
 - 3.2 To which class does each detected conflict belong?

Research Questions

- 1. What is a suitable method to research conflicts in SDN?
- 2. How can conflicts between control applications be classified based on their rules (conflict classification)?
- 3. How many conflicts exist in a given rule set (conflict detection)?
 - 3.1 Which rules cause conflicts?
 - 3.2 To which class does each detected conflict belong?

- Related work 1
- Related work 2
- . .

Approach

- 1. Analytical approach
- 2. Experimental approach

Space for Experiments

Control applications:

- Shortest Path First Routing (SPF)
- End-point Load Balancer (EpLB)
- Path Load Balancer (PLB)
- Firewall (FW)
- ...

Space for Experiments

The number of experiments is immense

⇒ restrict the space size and automate experiments

Methodology for Experiments

Explored Subspaces

# Topologies	12				
# Applications	14				
App. configuration	1 o 5				
App. start order	same and different				
App. priority	same and different				
Target switches	1 o all				
Ep. Traffic Profile	CBR and VBR				
EP. Combination	unicast, multicast				
Transport type	TCP, UDP				
# Experiments	11,772				

Dataset is available at https://github.com/mnm-team/sdn-conflicts

Comparing Multi-Property Sets using $\cdot r$

Comparing Multi-Property Sets using $\cdot r$

Comparing Multi-Property Sets using $\cdot r$

Comparing Multi-Property Sets using ·r

Conflict Detection Prototype

Conflict Detection Prototype

Detected Results in Designed Cases

Rules are deployed with known conflicts
Conflicts detected by the prototype are then controlled manually

Results for both MWN and Stanford topologies:

Test	Local conflicts						Traffic	Hidden conflicts
	Shadowing	Generalization	Redundancy	Correlation	Overlap	Loop	Drop	ESLH
1	1/1	1/1	1/1	1/1	1/1	1/1	1/1	1/1
2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2
3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3
4	4/4	4/4	4/4	4/4	4/4	4/4	4/4	4/4
5	(5/5)	5/5	5/5	5/5	5/5	5/5	5/5	5/5

detected by the prototype / designed

ESLH: Event Suppression by Local Handling

⇒ All conflicts are precisely identified

NS-

Conclusions

Conclusions

Prospects

- Future work 1
- Future work 2
- . .

Backup

Traditional Networks and SDN

Traditional networks

Traditional Networks and SDN

Software-Defined Networks (SDN) Program the network (instead of configuring) SDN Controller Common API Control plane Data plane (For Rule table Rule table **SDN Device** SDN Device Rule table **SDN Device**

Multi-Property Set

A = a set of flowers having **five petals**

B = a set of flowers with **red color**

C = a set of flowers being scentless

Question: S_{ABC} = a set of flowers having **five petals**, **red color** and being **scentless** = ?

Multi-Property Set

A = a set of flowers having five petals
B = a set of flowers with red color
C = a set of flowers being scentless

Question: $S_{ABC} = a$ set of flowers having **five petals**, **red color** and being **scentless** = ?

Answer: $S_{ABC} = A \cap B \cap C$

Match fields of SDN rules are multi-property sets, e.g.,

match={ip_src=192.168.1.1, ip_dst=192.168.1.2, ip_proto=tcp, tcp_dst=80}

<u>Problem</u>: diverse expressions of the match and action components of SDN rules complicate their automatic comparison based on multi-property set and $\cdot r$, e.g.,

rule 1's match: $\{ip_src=192.168.1.1, tcp_dst=80\}$

rule 2's match: { *ip_dst=192.168.1.2* }

Normalizing SDN Rules by Matchmap, Actmap

<u>Problem</u>: diverse expressions of the match and action components of SDN rules complicate their automatic comparison based on multi-property set and $\cdot r$, e.g., rule 1's match: { $ip_src=192.168.1.1$, $tcp_dst=80$ } rule 2's match: { $ip_dst=192.168.1.2$ }

<u>Solution</u>: normalizing the match and action components via a common template to obtain their uniform **matchmap** and **actmap**, e.g.,

ip_dst

tcp_dst

ip_src

Results in Randomly Checking Cases (MWN)

The number of conflicts is unknown in advance Random conflict samples from those identified by the detector are controlled manually

Test	Арр	#	Local conflicts					Traffic	Traffic	HC
Test	Priority	rules	Sha	Gen	Red	Cor	Ove	Loop	Drop	ESLH
1	(2,2,2,2)	790	0/0/0	0/0/0	0/0/0	27/10/10	0/0/0	0/0/0	0/0/0	60/10/10
2	(2,2,3,4)	803	0/0/0	0/0/0	0/0/0	26/10/10	0/0/0	0/0/0	0/0/0	60/10/10
3	(3,2,2,3)	816	0/0/0	0/0/0	0/0/0	27/10/10	0/0/0	0/0/0	0/0/0	60/10/10
4	(3,5,2,4)	789	0/0/0	0/0/0	0/0/0	25/10/10	0/0/0	0/0/0	0/0/0	59/10/10
5	(5,4,3,2)	791	0/0/0	0/0/0	0/0/0	24/10/10	0/0/0	0/0/0	0/0/0	60/10/10

Each cell shows the number of conflicts detected by the prototype/ the number of conflicts selected randomly to control/ the number of correct conflicts confirmed based on the manual control

Sha: Shadowing, Gen: Generalization, Red: Redundancy, Cor: Correlation, Ove: Overlap

HC ESLH: hidden conflict class Event Suppression by Local Handling.

⇒ All randomly checking conflicts are correct