Lépésszám becslések:

- (i) $f(n) \in O(g(n))$ ha $\exists c > 0$ és $\exists n_0 \in \mathbb{N}^+$: $f(n) \leq c \cdot g(n)$ ha $n \geq n_0$.
- (ii) $f(n) \in \Omega(g(n))$ ha $\exists d > 0$ és $\exists n_0 \in \mathbb{N}^+$: $f(n) \geq d \cdot g(n)$ ha $n \geq n_0$.
- (iii) $f(n) \in \Theta(g(n))$ ha $f(n) \in O(g(n))$ és $f(n) \in \Omega(g(n))$.

$$1 \ll \log n \ll \ldots \ll \log^{100} n \ll n \ll n \log n \ll \ldots \ll n \log^{100} n \ll n^2 \ll 2^n \ll n! \ll n^n$$

Det hiányos VA nyelve: $L(M) = \{w \in \Sigma^* \mid w$ -t el tudja olvasni és a végén F-beliben van $\}$.

Nemdet VA nyelve: $L(M) = \{w \in \Sigma^* \mid \text{van } w\text{-hez olyan számítás, amin elolvas végig és elfogad}\}.$

Tetel: Ha L-re van hiányos DVA, akkor van rá teljes DVA is.

Tetel: Ha L-re van nemdet VA, akkor van teljes DVA is.

Reguláris nyelv: L reguláris, ha van rá véges automata.

Tetel: $a^n b^n$ alakú szavak nyelve nem reguláris, azaz nincs rá det, teljes VA.

CF nyelvtan által generált nyelv: $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow ... \Rightarrow w \text{ (azaz van levezetés } w\text{-ig)} \}.$

Amikor azt állítjuk, hogy egy CF nyelvtan egy adott nyelvet generál, akkor meg kell mutatni, hogy **azt és csak azt** a nyelvet generálja. pl:

 $\left\{ \begin{array}{l} L(G) \subseteq \{1. \text{ betű} = \text{utolsó}\} \text{ - (azaz csak ilyen szavakat tud generálni)} \\ L(G) \supseteq \{1. \text{ betű} = \text{utolsó}\} \text{ - (azaz minden ilyen szót generál)} \end{array} \right\}$

CF nyelvtan által generált nyelv: $L(G) = \{w \in \Sigma^* \mid S \Rightarrow ... \Rightarrow w \text{ (azaz van levezetés } w\text{-ig)}\}.$

Nemdet PDA nyelve: $L(M) = \{w \in \Sigma^* \mid \text{van olyan futás, amire } w\text{-t elolvassa és elfogadó állapotba ér} \}$

Tetel: $\{a^nb^nc^n \mid n \geq 1\}$ alakú szavak nyelvére nincs PDA.

Tetel: L-re van G CF nyelvtan: $L(G) = L \iff L$ -re van M nemdet PDA: L(M) = L

CF nyelv: L nyelv CF nyelv ha van rá G CF nyelvtan: L(G) = L (= van rá M nemdet PDA: L(M) = L).

 ${f Determinisztikus}$ CF ${f nyelv}$: L ${f nyelv}$ det CF ${f nyelv}$ ha van rá det PDA.

Tetel: L-re van det PDA \Rightarrow L-re van egyértelmű CF nyelvtan.

Turing-gipek - algo

Diagonális nyelv: $L_d = \{w \in \{0,1\}^* \mid \exists M_w \ (w \text{ egy TG-et k\'odol}) \text{ \'es } w \notin L(M_w) \ (w\text{-t nem fogadja el a TG})\}$

Allítás: Nincs olyan M TG amire $L(M) = L_d$

Megállási nyelv: $L_h = \{w \# s \mid w \in \{0,1\}^*, s \in \{0,1\}^* \text{ és } \exists M_w \text{ és } M_w \text{ leáll } s\text{-en}\} \text{ } (w \# s \text{ egy szópárt jelöl})$

Állítás: L_h -ra van TG de nincs mindig leálló TG.

Church-Turing tézis:

- (i) L nyelvre van algoritmikus eljárás, ami éppen L szavait fogadja el \iff L-re van M TG: L(M) = L.
- (ii) L nyelvre van mindig leálló algoritmus, ami L szavait fogadja el \iff L-re van mindig leálló M TG: L(M) = L.

Tétel: L-re van M nemdet TG: $L(M): L \iff L$ -re van M' det TG: L(M'): L.

P: Azon L nylevek, amelyekre van M polinom időkorlátos det TG: L(M) = L

NP: Azon L nylevek, amelyekre van M polinom időkorlátos nemdet TG: L(M) = L

 \mathbf{coNP} : Azon L nylevek, amelyeknek a komplementere NP-beli.

Tanú tétel: $L \in NP$ akkor és csak akkor, ha $\exists c_1, c_2 > 0$ és L_1 szópárokból áll:

- (i) $L_1 \in \mathcal{P}$, azaz (x,y) párról gyorsan eldönthető, hogy jó pár-e.
- (ii) $x \in L \iff \exists y : |y| \le c_1 \cdot |x|^{c_2} \text{ és } (x,y) \in L_1.$

Tétel: $P \subseteq coNP$

Karp redukálhatóság: L_1 és L_2 két $\{0,1\}^*$ -beli nyelv. $L_1 \prec L_2$: L_1 Karp-redukálható L_2 -re, ha $\exists f : \{0,1\}^* \rightarrow \{0,1\}^*$ és

- (i) f minden $\{0,1\}^*$ -beli szón értelmezett
- (ii) f(x) gyorsan számolható: $\mathcal{O}(|x|^{c_1})$ időben
- (iii) $x \in L_1 \iff f(x) \in L_2$.

 \mathbf{NP} teljes: Y probléma \mathbf{NP} -teljes, ha:

- (i) $Y \in NP$
- (ii) $\forall X \in \text{NP} : X \prec Y$