MODELOS DE SISTEMAS REACTIVOS -CONFORMANCE

Modelo (MEF)

NotePad

Modelo: Set<T>

TypeState de Pipe JDK 1.4

Necesidad de revisar nociones básicas

- No pensamos más en el sistema como una transformación de entradas en salidas (función)
- Puedo tener problemas para comprobar el estado
 - Por eso no podemos utilizar la noción tradicional de corrección funcional
 - Hablamos de conformidad, que establece formalmente cuál es la relación entre la especificación y la implementación
 - Caso y dato de test tienen que ser revisada
 - Por ejemplo, secuencias de interacciones

Conformance testing

TESTING DE MÁQUINAS DE ESTADO

Testing de Mealy Machines

- Un caso particular de modelo de sistema reactivo
- Modelo limitado comparado con los anteriores IOLTS
- Usado para circuitos secuenciales y algunos protocolos de comunicación
- □ Modelo estudiado desde mediados de los 50′
- Muchos resultados algorítmicos de complejidad
- Introduce conceptos importantes para el testing de sistemas reactivos

Mealy Machine

- \square Es una tupla L = $\langle I, O, S, \delta, \lambda \rangle$
 - I, O conjuntos de símbolos de input y output
 - S es el conjunto de estados
 - \square δ : S x I \rightarrow S función de transición de estados
 - $\square \lambda : S \times I \rightarrow O$ función de transición de output

Ejemplo: Sistema directorio

Secuencias y equivalencia de estados

- Extendemos las funciones de transición y output a secuencias de input
 - Sea x un input string: $x=a_1,...a_k$, a_i en l, para i=1..k, entonces:
 - S es el conjunto de estados

 - $\lambda(s_1,x) = b_1...b_k$ dónde $b_k = \lambda(s_i, a_i)$, para i=1..k
 - \square s_i es equivalente a s_i sii para toda x en I^* $\lambda(s_i,x) = \lambda(s_i,x)$

Equivalencia de máquinas

- Una máquina A es equivalente a una máquina B sii para todo estado de A existe uno equivalente y viceversa
- Cada clase de equivalencia tiene una máquina minimizada con la cantidad mínima de estados dónde cada estado es no equivalente al resto
- □ Las minimizadas son únicas (o sea son isomorfas)

El problema de conformidad para máquinas de estado de Mealy

- Tenemos información completa de la máquina A de especificación
- Hay una implementación que se comporta como una máquina B para la cual sólo podemos observar I/O
- Objetivo: Determinar si B es equivalente a A aplicando una secuencia de test y observando el output. O sea, encontrar una "checking sequence" de A para cierta familia de máquinas.
 - Una "Checking sequence" para A para una familia de máquinas F es una secuencia x de símbolos de input que distingue a A de cualquier otra máquina no equivalente B de F
 - Se sabe que existe una de estas de tamaño $O(p^2n^4 \log(qn))$
 - \square Cota inferior Ω (pn³)

Hipótesis y supuestos usuales para el test de conformidad

- □ La especificación A es fuertemente conexa
- A está minimizada
- B está fija y tiene el mismo alfabeto de símbolos que A
- B no tiene más estados que A (esa es la familia F)
 - Modelo de fallas: output o transición equivocada
 - Esta restricción puede caer pero hay un costo exponencial sobre el delta sobrante

Estructura típica del algoritmo

- Inicialización: moverse a un estado conocido s₁
- Verificar la similitud de los estados de B a los de A
- \square Verificar cada transición $\delta(s_i,a)=s_i$
 - Aplicar una secuencia que mueva a la máquina al estado s_i
 - Aplicar a
 - Verificar que la máquina está en s_i

Algoritmos

- Muchos algoritmos con distintos supuestos de control, identificación de estados y confiabilidad de acciones (ver: "Principles and Methods of Tetsing Finite State Machines – A survey": David Lee and Mihalis Yannakakis, Proccedings of IEEE, 1996)
- □ Vamos a concentrarnos en algoritmo de T.S.Chow (Chow, T. S. 1978. Testing Software Design Modeled by Finite-State Machines. IEEE Trans. Softw. Eng. 4, 3)
- Correcto para la familia definida asumiendo la hipótesis "reliable reset"
- O (pn³) dónde p es el número de inputs y n la cantidad de estados

Ejemplo: Type State del Pipe

Separating sequences

- Una "separating family" para A es una colección de n conjuntos de strings de inputs Z_i (uno para cada estado) tal que
 - Para cada par de estados s_i, s_k
 - Existe α tq. $\neq \lambda_A(s_k, \alpha)$ y α es prefijo de un x_i en Z_i y de un x_k en Z_k
- □ Z_i se lo llama conjunto separador para el estado s_i
- Los elementos de Z_i son secuencias separadoras del estado s_i
- Propiedad clave: Dada una máquina B y un estado q_i de B no hay más de un estado s_i de A tal que sometido a todas la secuencias separadoras de s_i coincide el output con el de s_i

Cómo conseguir Familias

- □ Si A tiene una secuencia distintiva preset x, entonces los $Z_i = \{x\}$
- □ Si A tiene una secuencia de distinción adaptativa entonces podemos definir $Z_i = \{x_i\}$ donde cada xi camino de ese árbol de decisión que termina en el veredicto s_i
- No siempre existen secuencias distintivas
- A continuación un algoritmo para encontrar familias para todo caso

Algoritmos general de construcción de familias para FSMs minimizadas

- Sabemos que al estar reducida A para todo s_i, s_j existe x que los distingue
- \square Partimos los estados de acuerdo al resultado de $\lambda(s_k,x)$ y ponemos en cada Z_k a x
- Repetir para cada bloque hasta que todos los bloques sean singletons
- Al final cada par de estados tiene una secuencia que los distingue con un prefijo común
- \square Z_i contiene <n-1 secuencias de long. menor o igual a n

Ejemplo: Type State del Pipe

La hipótesis del Reset Confiable

- Una máquina tiene capacidad de reset si un input especial r lleva la máquina desde cualquier estado a uno inicial s₁
- Decimos que vale el supuesto de reset confiable cuando tenemos como hipótesis que funciona correctamente en la máquina de implementación B
- El algoritmo que vamos a ver supone reset confiable
- □ Hay algoritmos que no necesitan este supuesto

Ejemplo: Type State del Pipe

Test de Conformidad con Reset Confiable

- Sea Z_i una familia de conjuntos separadores
- Construir un árbol generador A con raíz en s₁
- □ Para cada s_i de S_A
 - □ Para cada x de Z_i
 - Resetear B al estado que debería ser similar a s₁
 - Moverse usando el camino propuesto por el árbol de s₁ al supuesto estado s_i
 - Aplicar x
- Para cada transición no cubierta por el árbol generador hacer algo similar
- O (pn³) dónde p es el número de inputs y n la cantidad de estados

Ejemplo: Type State del Pipe

Más en general (pero con la restricción de cantidad de estados de B)

- Si no valen supuestos de existencia de secuencias o transiciones especiales,
 - Hay métodos exponenciales
 - No se conocen algoritmos determinísticos polinomiales para generar una secuencia de chequeo y sabemos que hay de longitud polinomial
- Hay algoritmos randomizados polinomiales

Testing Random para una B fija

- □ Para I = 1,..., k:
 - \blacksquare Elegir una transición al azar, ej. : $\delta(s_i,a)=s_i$
 - Aplicar una secuencia de inputs que transporta en A desde el estado corriente a s_i
 - Aplicar input a
 - □ Elegir uniformemente una secuencia de Z_i y aplicarla
- Sea B una máquina fallada con a lo sumo n estados
- □ Vale que para $\varepsilon > 0$, con una secuencia de longitud máxima $2pn^2zlog(1/\varepsilon)$ que es generada después de $k=pnzlog(1/\varepsilon)$ iteraciones detecta que B está fallada con probabilidad $>= 1-\varepsilon$

Más estados

- □ El problema es mucho más duro
- Problema del Universal traversal de grafos
- \square B tiene n+ Δ estados , la cota inferior de una secuencia de chequeo es Ω (p $^{\Delta+1}$ n³)
- □ Una máuina defectusa B con a lo sumo $n+\Delta$ estados falla un test de longitud 2 p $^{\Delta+1}$ n^2 zlog(1/ ϵ) con probabilidad al menos >= 1- ϵ

No determinismo

- Útil: abstracción, asincronismo, eventos no controlables, etc.
- EXP-time complete el problema de distinción de estados
- Se usan otros modelos con teoría sólida de conformidad pero con menos resultados teóricos sobre la corrección de la relación establecida

Heurísticas y Optimizaciones

UIO junto con Rural Postman Tour

□ Random Walk

TESTING DE LTS

Re[asemos: Sistema de transición etiquetadas (LTS)

- \square Es una tupla L = $\langle S, S_0, \Sigma, \rightarrow \rangle$
 - S es el conjunto de estados
 - $\mathbf{s}_0 \in \mathbf{S}$ es el estado inicial
 - $lue{}$ Σ es el conjunto de acciones observables
 - $\blacksquare \rightarrow \in S \times \Sigma \cup \{\tau\} \times S$ es la relación de transición
 - \blacksquare s $\xrightarrow{\mu}$ s' denota (s, μ ,s') $\in \rightarrow$
 - τ denota una acción interna

Composición de transiciones

- Las transiciones se pueden componer

$$s \xrightarrow{\mu_1} s_1 \xrightarrow{\mu_2} s'$$

- Abreviamos $s \xrightarrow{\mu_1 \mu_2} s'$
- \square Para $\alpha = \mu_1 \mu_2 \dots \mu_n \in \Sigma^*$
 - $s \xrightarrow{\alpha} s'$ denota $s \xrightarrow{\mu_1} s_1 \xrightarrow{\mu_2} \dots \xrightarrow{\mu_n} s'$
 - $\alpha = \in \text{cuando n} = 0$. En este caso s'=s

Nociones básicas

Trazas

- $Tr(s) = \{ \alpha \mid \alpha \in \Sigma^* \text{ y s} \xrightarrow{\alpha} s' \}$
- \Box Tr(L) = Tr(s₀)
- Alcanzables

Trazas y Alcanzables: Ejemplo


```
Tr(Trabada) = {∈,Ib, Ib.G, Ib.G.Rb, I.Rb.G,...}
Alc(Trabada, Ib.Rb.IB) = {Esperando}
Alc(Trabada, Ib.Rb.G) = {Trabada}
```

Máquina expendedora rudimentaria

- □ Expende café o té
- Acepta sólo monedas de un peso
- □ Todo cuesta un peso

Máquina expendedora rudimentaria (I)

Máquina expendedora rudimentaria (II)

Trazas

$$Tr(s_0) = Tr(t_1) = \{ \in, M, S.St, M.Sc, M.St.t, M.Sc.C, \}$$

 $Alc(s_0, M) = \{s_1\}$
 $Alc(s_0, M) = \{t_1, t_2\}$

Nociones básicas

- L tiene comportamiento finito si existe un número natural n tal que para toda traza σ∈ Tr(L) se cumple que σ tiene longitud menor a n
- □ L es determinístico si para todo $\sigma \in \Sigma$, #Alc(s₀, σ) ≤ 1
 - Es no determinístico si no es determinístico

Ejemplos (1)

No Tiene comportamiento finito

Es determinístico

Ejemplos (2)

Tiene comportamiento finito (n = 3)

Es determinístico

Ejemplos (3)

No tiene comportamiento finito

Es no determinístico

Conformance basada en trazas (1)

- □ Preorden de trazas:
 - \square L \leq_{tr} L' sii $Tr(L) \subseteq Tr(L')$
- Equivalencia de trazas:
 - \Box L =_{tr} L' sii Tr(L) = Tr(L')
 - $Tr(L) \subseteq Tr(L')$ y $Tr(L') \subseteq Tr(L)$

Ejemplos (1)

$$Tr(Trabada) = \{ \in \text{, lb, lb.G, lb.G.lb,...} \}$$

$$Tr(Trabada') = \{ \in \text{,G, lb, lb.lb, lb.G, lb.lb.G, lb.lb.G, lb.lb.G, lb.G.lb, lb.G.G, ...} \}$$

Ejemplos (2)

Conformance basada en trazas (1)

- \square imp implementa espec \Leftrightarrow imp \leq_{tr} espec
 - Todo lo que hace la implementación es parte del comportamiento especificado
- \square imp implementa espec \Leftrightarrow imp \geq_{tr} espec
 - El comportamiento de la implementación cubre todo el comportamiento especificado
- \square imp implementa espec \iff imp $=_{tr}$ espec
 - La implementación y la especificación tienen las mismas trazas

Trazas y no determinismo

Después de colocar una moneda (s₁), siempre es posible realizar SelecciónTe o SelecciónCafé

Después de colocar una moneda (t₁ o t₂), sólo es posible realizar una acción SelecciónTe o SelecciónCafé

Un observador más potente podría distinguir estas dos máquinas

Controlabilidad vs Observabilidad

- Una acción es controlable, si puede ser usada para estimular al sistema
- Una acción es observable, si puede ser usada para comprobar la respuesta del sistema frente a un estímulo

Sistema de transición etiquetadas Input/output (IOLTS)

- \square Es una tupla $L = \langle S, s_0, \Sigma_1, \Sigma_2, \rightarrow \rangle$
 - $\square \Sigma_{\parallel}$ Es el conjunto de entradas
 - \square $\Sigma_{\mathcal{O}}$ Es el conjunto de salidas
 - $\Sigma_{l} \cap \Sigma_{O} = \emptyset$
 - $\square \langle S, s_0, \Sigma_1 \cup \Sigma_0, \rightarrow \rangle$ es un LTS

 $\Sigma_{\rm I} = \{ {\rm Moneda, Selecci\'onTe, Selecci\'onCaf\'e} \}$ $\Sigma_{\rm O} = \{ {\rm Te, Caf\'e} \}$

Nociones

 \square s es un estado quiescente, escrito $\delta(s)$, sii

$$\forall \mu \in \Sigma_{\mathcal{O}} \cup \{\tau\} : s \xrightarrow{\mu}$$

σ es una traza quiescente de s sii

$$\exists s' \in (s \text{ after } \sigma): \delta(s')$$

- \square QTr(s) = { σ | σ es una traza quiescente de s}
- \square out(s) = { $\mu \mid \mu \in \Sigma_O$ y s $\xrightarrow{\mu}$ } \cup { $\delta \mid \delta(s)$ }
- \square out(S) = \cup {out(s) | s∈ S}

$$\delta(s_0)$$
, $\delta(s_1)$, $\delta(s_3)$

$$\delta(s_0)$$
, $\delta(s_1)$, $\delta(s_3)$

$$QTr(s_0)=$$

$$\delta(s_0)$$
, $\delta(s_1)$, $\delta(s_3)$

$$QTr(s_0)=\{\in$$
,a, bc, ba, baa, babc, baba,babaa,...}

$$QTr(s_1)=$$

$$\delta(s_0)$$
, $\delta(s_1)$, $\delta(s_3)$

$$QTr(s_0)=\{\in,a,bc,ba,baa,babc,babaa,...\}$$

$$QTr(s_1) = QTr(s_3) = \{ \in \}$$

$$QTr(s_2) =$$

$$\delta(s_0)$$
, $\delta(s_1)$, $\delta(s_3)$

$$QTr(s_0)=\{\in a, bc, ba, baa, babc, baba, babaa,...\}$$

$$QTr(s_1) = QTr(s_3) = \{ \in \}$$

$$QTr(s_2) = \{c,a,aa,abc,aba,abaa,ababc,...\}$$

$$out(s_0)=$$

$$\delta(s_0), \, \delta(s_1), \, \delta(s_3)$$

$$QTr(s_0) = \{ \in \text{,a, bc, ba, baa, babc, baba,babaa,...} \}$$

$$QTr(s_1) = QTr(s_3) = \{ \in \}$$

$$QTr(s_2) = \{ \text{c,a,aa,abc,aba,abaa,ababc,...} \}$$

$$out(s_0) = out(s_1) = out(s_3) = \{ \delta \}$$

$$out(s_2) =$$

$$\delta(s_0)$$
, $\delta(s_1)$, $\delta(s_3)$

$$QTr(s_0)=\{\in a, bc, ba, baa, babc, baba, babaa,...\}$$

$$QTr(s_1) = QTr(s_3) = \{ \in \}$$

$$QTr(s_2) = \{c,a,aa,abc,aba,abaa,ababc,...\}$$

$$\operatorname{out}(s_0) = \operatorname{out}(s_1) = \operatorname{out}(s_3) = \{\delta\}$$

$$out(s_2) = \{c\}$$

$$out({s_0,s_1,s_2}) =$$

$$\delta(s_0)$$
, $\delta(s_1)$, $\delta(s_3)$

$$QTr(s_0)=\{\in a, bc, ba, baa, babc, baba, babaa,...\}$$

$$QTr(s_1) = QTr(s_3) = \{ \in \}$$

$$QTr(s_2) = \{c,a,aa,abc,aba,abaa,ababc,...\}$$

$$\operatorname{out}(s_0) = \operatorname{out}(s_1) = \operatorname{out}(s_3) = \{\delta\}$$

$$out(s_2) = \{c\}$$

out(
$$\{s_0, s_1, s_2\} = \{\delta, c\}$$

Conformance en término de trazas

- \square L \leq_{iotr} L' sii $Tr(L) \subseteq Tr(L')$ y $QTr(L) \subseteq QTr(L')$
- Alternativamente

$$L \leq_{iotr} L'$$
 sii $\forall \sigma$: out(Alc(L, σ)) \subseteq out(Alc(L', σ))

$$Tr(s_0)=\{\in, a, ab\}$$

 $QTr(s_0)=\{\in, ab\}$

$$Tr(t_0)=\{\in$$
, a, ab, abc}
 $QTr(t_0)=\{\in$, abc}

Limitaciones de ≤_{iotr}

 Una implementación podría proveer más operaciones que su especificación

Conformance en término de trazas

```
□ L ioconf L' sii
\forall \sigma \in Tr(L'): out(Alc(L,\sigma)) \subseteq out(Alc(L',\sigma))
```

Limitaciones de ioconf

$$\forall \sigma : \text{out}(Alc(s_0, \sigma)) = \text{out}(Alc(t_0, \sigma))$$

 $s_0 \text{ ioconf } t_0 \text{ y } t_0 \text{ ioconf } s_0$

Hipótesis de testing más fuerte

- La implementación puede modelarse como un IOLTS con input siempre habilitadas
- L es un IOLTS con input siempre habilitadas sii

$$\forall s: s_0 \xrightarrow{\sigma} s, \forall \mu \in \Sigma_l: Alc(s, \mu) \neq \emptyset$$

Todavía hay un problema...

Podría distinguirlos

- 1. Estimulo con a
- 2. Espero ver que no hay respuesta.
- 3. Estimulo con a
- 4. Puedo observar b o c

- 1. Estimulo con a
- 2. Espero ver que no hay respuesta.
- 3. Estimulo con a
- 4. Puedo observar sólo c

Trazas con suspensión

 $\hfill\Box$ Las trazas incluyen δ para marcar explícitamente cuando alcanzan un estado quiescente


```
Tr(s_0)=\{\in,a,b, bc, ba, baa, bab, bab...\}
STr(s_0)=\{\in,\delta,a,a\delta, b, bc, bc\delta, ba, ba\delta, b\delta a\delta, ...\}
```

ioco

```
□ L ioco L' sii \forall \sigma \in \mathsf{STr}(\mathsf{L'}): \mathsf{out}(\mathsf{Alc}(\mathsf{L},\sigma)) \subseteq \mathsf{out}(\mathsf{Alc}(\mathsf{L'},\sigma))
```

Ejemplo

out(Alc(s0,
$$a\delta a$$
)) = {b,c}

out(Alc(s0,
$$a\delta a$$
)) = {c}

GENERACIÓN DE CASOS DE TEST

La descripción de una traza

Sistemas I/O No determinísticos

Este estado representa la finalización de la ejecución del caso de test donde se observa el resultado esperado

Un caso de test es un LTS

$$t = \langle S, \Sigma_1 \cup \Sigma_0 \cup \{\delta\}, T, s_0 \rangle$$
 tal que

- t es finito
- \square {pass, fail} \subseteq S y init(pass)=init(fail)= \emptyset
- Para cada $s \in S \{pass, fail\}$ se cumple:
 - init(s) = {a} con a ∈ Σ_i ; o
 - \blacksquare init(s) = $\Sigma_{\mathcal{O}} \cup \{\delta\}$

Interpretación del caso de test

- Estimular al SUT con a
 - Invocar el método a, enviar el mensaje a
- Esperar respuesta
 - el valor de retorno, recibir un mensaje
- Si el valor de retorno no es c (o no se recibe respuesta), la ejecución del caso falla
- □ Si el valor es c, observar que no existe otra salida del SUT
 - Útil cuando hay comunicación asincrónica
- Si no hay salidas adicionales, entonces la ejecución pasa, en caso contrario falla

¿Cuándo un test pasa o falla?

- La ejecución de un caso de test contra una implementación:
 - Pasa cuando la ejecución conduce al estado "pass" del caso de test
 - □ Falla cuando la ejecución alcanza el estado "fail" del caso de test
- Un caso de test:
 - Pasa si toda ejecución pasa
 - □ Falla si alguna de sus ejecuciones falla

¿Cuántas ejecuciones de un caso son necesarias?

En general varias

- Basta una ejecución que falla para afirmar que el caso falla
- En teoría, necesitamos infinitas ejecuciones para asegurar que el caso pasa
 - En la práctica nos conformamos con una o algunas.

Propiedades de una test suite T

- □ T es consistente respecto de e cuando $\forall i$: i ioco e $\Rightarrow i$ pasa T
- □ T es exhaustiva respecto de e cuando $\forall i$: i pasa T \Rightarrow i ioco e
- □ T es completa cuando es consistente y exhaustiva
- En la práctica esperamos construir test suite consistente
 - Hacerlas exhaustiva podría requerir infinitos casos

Generación de casos

- □ Randon-walks
- Chinese postman

MODEL BASED TESTING

Proceso de testing

Objetivo

□ Automatizar el diseño del test

Objetivo

□ Automatizar el diseño del test

Ejemplo: Qui-donc

- Servicio telefónico que dado un número de teléfono responde el nombre y la dirección de la persona
- □ Caso de Uso típico

Usuario	Sistema
Discar número de servicio 0800	Responde "Hola. Marque '*' para comenzar
Marcar '*'	Responder "Ingrese el número seguido de '#'"
Ingresar "011"	Responder "Hernán Marque 1 para la dirección /2 para"
Marcar '1'	Responder "Agustin Delgado"
Cortar	

¿Por qué modelos?

- □ Reducir costo de diseño de test:
 - □ Tiempo de modelado < Tiempo de diseño manual
 - Definición automática de oráculos
- Sistematizar el testing
 - Disminuye la subjetividad
 - Controlar la cobertura del modelo y el número de test
- Detección tempranas de problemas en la especificación
- Mejor desempeño cuando los requerimientos cambian
 - Cambiar el modelo y regenerar test
- Mejora la trazabilidad Requerimientos/Casos

Model-based testing

 La derivación automatizable de casos de test concretos a partir de modelos formales abstractos

Model-based testing

- Es una variante del testing que se vale de modelos que codifican el comportamiento esperado del sistema bajo test (SUT) y/o del ambiente para derivar casos de test [Utting, Pretschner, Legeard]
- Pares de entradas y salidas del modelo de la implementación se interpretan como casos de test para la implementación
 - Las salidas del modelo son los resultados esperados (el oráculo) del SUT

Actividades

Construcción del modelo

- El modelo del SUT se construye a partir de los requerimientos y/o la especificación existente
- Debe codificar el comportamiento esperado
- □ Puede abstraer
 - Excepciones o fallas
 - Funcionalidades
 - Requerimientos no funcionales
 - Restricciones temporales
 - seguridad

Abstracción en el modelo (1)

- Funcionalidad: omitir funcionalidades del SUT
 - Omitir funcionalidades no críticas
- □ Datos:
 - Entradas: el modelo omite o simplifica algunas entradas de una operación del SUT
 - Nombre de usuario {existente, inexistente}
 - Omite un parámetro que no afecta al comportamiento del SUT
 - Salida: abstrae detalles de la salida del SUT
 - Puede afectar el poder del oráculo

Abstracción en el modelo (2)

- Comunicación: secuencias de estímulos pueden ser descriptas en el modelo cómo un único estímulo
 - Se usa generalmente para testear protocolos
 - Abstracción de un handshaking
 - El modelo puede ignorar algunas señales intercambiadas con el SUT
- □ Calidad de Servicio:
 - El modelo puede ignorar cuestiones tales como restricciones temporales, utilización de memoria, seguridad, etc.

Ejecución de la test suite

- □ Ejecutar un caso de test require:
 - Aplicar al SUT una instancia concreta del input descripto por el caso
 - Registrar la salida del SUT
- En general existe una brecha entre el modelo y el SUT (el modelo es una abstracción)
 - El adaptador es responsable de cubrir esta brecha
 - Traduce las entradas descriptas en el modelo en entradas del SUT
 - Abstrae las salidas del SUT

Validación del modelo

- El modelo debe ser validado : ¿Es el modelo una descripción cabal del sistema?
- Esta es una actividad ortogonal que requiere revisar los requerimientos por consistencia y completitud
- Esto implica que el modelo debe ser mas simple del SUT, o al menos, más simple de chequear, modificar y mantener

Config.cord

```
config Main
{
    action abstract static void Implementacion.IngresarBoleto();
    action abstract static void Implementacion.Girar();
}

machine Program() : Main
{
    construct model program from Main
}
```

Model

```
enum Estados {Trabada, Abierta}
   static class ModelProgram
       static Estados estado = Estados.Trabada;
       [Action]
       static void IngresarBoleto()
           Contracts.Requires(estado == Estados.Trabada);
           estado = Estados.Abierta;
       [Action]
       static void Girar()
           Contracts.Requires(estado == Estados.Abierta);
           estado = Estados.Trabada;
```

Bibliografía

- M. Utting and B. Legeard. Practical Model-Based
 Testing: A Tools Approach, Morgan-Kaufmann, 2007.
- M Utting, A Pretschner, B Legeard. A taxonomy of model-based testing, Tech. Rep, 2006
- M.Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, L.Nachmanson: Model-Based Testing of Object-Oriented Reactive Systems with Spec Explorer. Formal Methods and Testing 2008: 39-76
 Mas referencias en
 http://www.geocities.com/model_based_testing/.