Nama : Retno Puji Astuti

NPM : 24083010080

Kelas : A

Mata Kuliah : Analisis Numerik

Tugas 01

1. Penjelasan Toko Roti Maknyus

```
1 # Nama:Retno Puji Astuti
2 # NPM :24083010080
3
4 import numpy as np
5 import matplotlib.pyplot as plt
6 from scipy.stats import skewnorm
7
8 # range harga jual
9 x = np.linspace(3000, 10000, 500)
10
11 # rescale parameters
12 a = 6
13 loc = 3.5 * 1000 # shift loc
14 scale = 1.5 * 1000 # widen scale
15
16 # probability density, right tail skew
17 y = skewnorm.pdf(x, a=a, loc=loc, scale=scale) * 1000
18
19 np.random.seed(80) # masukkan NPM
20 y = y + np.random.normal(0, 0.005, size=x.shape) # add Gaussian noise
21 y = y*1000
22
23 # harga produksi
24 produksi_y= np.linspace(0, 1000, len(x))
25 produksi_y= np.linspace(3000, 2000, len(x)) + np.random.normal(0, 0.1, size=x.shape)*100
26 # linearly decreases from 3000 -> 2000 for quantity 0 -> 1000
27
28 # Plot
29 plt.figure(figsize=(8,5))
30 plt.plot(x, y, color="navy", label='penjualan', linewidth=2)
31 plt.plot(produksi_z, produksi_y, color="red", label='produksi', linewidth=2)
32 plt.title("Tok Roti Maknyus")
33 plt.xlabel("x (harga)")
34 plt.ylabel("y (jumlah barang dibuat/laku)")
35 plt.grid(True)
36 plt.legend()
37 plt.show()
38
39 # tugas:
40 # hitung volume produksi yang menghasilkan kentungan maksimum
41 # (pendapatan dari penjualan dikurangi produksi)
42 # kirim ke muhammad_zulhaj.sada@upnjatim.ac.id
```


2. Menghitung volume produksi yang menghasilkan keuntungan

```
1 # Nama: Retno Puji Astuti
2 # NPM: 24083010080
3
4 import numpy as np
5 import matplotlib.pyplot as plt
6 from scipy.stats import skewnorm
7
8 # range harga jual
9 x = np.linspace(3000, 10000, 500)
10
11 # parameter distribusi permintaan (skew normal)
12 a = 6
13 loc = 3.5 * 1000
15
16 # biaya produksi per unit
17 cost_per_unit = 2000
18
19 # jumlah terjual (demand)
20 y = skewnorm.pdf(x, a=a, loc=loc, scale=scale) * 1000
21 y = y * 1000
22
23 # hitung profit
24 revenue = x * y
25 cost = cost_per_unit * y
26 profit = revenue - cost
27
28 # cari titik optimum
29 idx_opt = np.argmax(profit)
30 price_opt = y[idx_opt]
31 profit_opt = profit[idx_opt]
32
33 # hasil
34 print("HaSIL PERHITUNGAN Toko Roti Maknyus")
35 print(""Volume optimal : Rp {price_opt:,0f} unit roti")
37 print("Weutungan maksimal : Rp {profit_opt:,0f} unit roti")
37 print("Weutungan maksimal : Rp {profit_opt:,0f} unit roti")
38 # plot kurva keuntungan saja
40 plt.figure(figsize=(8,))
41 plt.plct(x, profit; color="navy", linewidth=2, label="Keuntungan")
42 plt.savline(price_opt, color='red', linestyle='--', label=f"Harga optimal Rp {price_opt:,0ff'')
43 plt.scatter(price_opt, color='red', linestyle='---', label=f"Harga optimal Rp {price_opt:,0ff'')
45 plt.xlabel("Keuntungan Toko Roti Maknyus")
45 plt.xlabel("Keuntungan Toko Roti Maknyus")
45 plt.xlabel("Keuntungan Toko Roti Maknyus")
45 plt.xlabel("Keuntungan (Rp)")
47 plt.legend()
48 plt.schow()
```

```
HASIL PERHITUNGAN Toko Roti Maknyus
Harga optimal : Rp 4,431
Volume optimal : 439 unit roti
Keuntungan maksimal : Rp 1,066,449
```


3. Perbedaan

Kode dan kurva 1	Kode dan kurva 2
Menampilkan kurva penjualan Toko Roti Maknyus.	Menghitung volume produksi dan keuntungan maksimum
"skewnorm.pdf" dan "y = y + np.random.normal" yang akan menghasilkan kurva permintaan.	"skewnorm.pdf" langsung sehingga lebih sederhana.
Tidak ada variabel biaya per unit.	Terdapat variabel "cost_per_unit = 2000"
Belum ada perhitungan profit.	Terdapat perhitungan revenue(pendapatan kotor), cost(pengeluaran) dan profit(keuntungan).
Terdapat kurva penjualan dan produksi.	Hanya terdapat satu kurva keuntungan dengan satu titik puncak (optimal.
Membandingkan jumlah produksi dan jumlah penjualan.	Menentukan harga jual dan volume optimal untuk keuntungan yang maksimal.
Fokus pada tren produksi dan penjualan.	Fokus pada strategi harga jual untuk keuntungan yang maksimal.