Skript zur Vorlesung Analysis IV bei Prof. Dr. Dirk Hundertmark

Karlsruher Institut für Technologie ${\bf Sommersemester}~2025$

Dieses Skript ist inoffiziell. Es besteht kein Anspruch auf Vollständigkeit oder Korrektheit.

Inhaltsverzeichnis

1		3
2	[*] Analytische Polynome	Ę
3	[*] Stenographische Projektion	7
4	[*] Komplexe Differenzierbarkeit 4.1 Die Cauchy-Riemannsche Differentialgleichung	

Alle mit $[^*]$ markierten Kapitel sind noch nicht Korrektur gelesen und bedürfen eventuell noch Änderungen.

1 [*] Erinnerungen/Rückblick

1.1 Komplexe Zahlen $\mathbb C$

[22. Apr] **Bemerkung 1.1.1** (\mathbb{C} ist ein Körper). Wir kennen bereits die komplexen Zahlen. Wir betrachten eine komplexe Zahl als Tupel $(a, b) \in \mathbb{R} \times \mathbb{R}$ mit Addition

$$(a,b) + (c,d) := (a+c,b+d)$$

sowie Multiplikation

$$(a,b)\cdot(c,d)\coloneqq(ac-bd,ad+bc)$$

Durch Nachrechnen zeigt sich, dass \mathbb{C} so die Körperaxiome erfüllt, wobei (0,0) bzw. (1,0) die neutralen Elemente bezüglich Addition bzw. Multiplikation sind. Für die herkömmliche Darstellung der komplexen Zahlen definieren wir außerdem i := (0,1). Visualisieren lässt sich das dann in der $Gau\beta$ schen Zahlenebene.

Bemerkung 1.1.2. Sei $z=(a,b)\in\mathbb{R}\times\mathbb{R}$. Dann gilt z=(a,0)+(0,b)=a+bi. Wir können also alle komplexen Zahlen in der Form a+bi schreiben.

Definition 1.1.3 (Komplexe Konjugation). Wir definieren außerdem die komplexe Konjugation: Sei wieder z=a+bi. Dann ist die komplexe Konjugation von z definiert durch $\overline{z}:=a-bi$. Damit ergibt sich die multiplikative Inverse $z^{-1}=\frac{\overline{z}}{|z|^2}$, die sich leicht durch Nachrechnen bestätigen lässt. Die additive Inverse (-a,-b) ergibt sich direkt aus der Definition der Addition.

Definition 1.1.4 (Real- und Komplexteil). Sei z = a + bi, $a, b \in \mathbb{R}$. Dann schreiben wir Re(z) = a sowie Im(z) = b. Außerdem gilt dann

$$Re(z) = \frac{1}{2} (z + \overline{z})$$
$$Im(z) = \frac{1}{2} (z - \overline{z})$$

Satz 1.1.5 (Cauchy-Schwarz für \mathbb{C}). Seien $z, w \in \mathbb{C}$. Dann gilt $\text{Re}(\overline{z}w) \leq |z| |w|$.

Beweis. (fehlt)

1.2 Konvergenz

Definition 1.2.1 (Konvergenz). Sei $(z_n)_n \subseteq \mathbb{C}$ eine Folge. Dann konvergiert diese gegen z, falls

$$\lim_{n \to \infty} |z - z_n| = 0$$

Wir schreiben dann $\lim_{n\to\infty}z_n=z$ oder $z_n\to z$ für $n\to\infty$. Äquivalent dazu ist die Bedingung

$$\forall \varepsilon > 0 \; \exists N_{\varepsilon} \in \mathbb{N} \colon |z - z_n| < \varepsilon \quad \forall n \ge N_{\varepsilon}$$

Definition 1.2.2 (Cauchy-Folgen). Wir nennen $(z_n)_n$ eine Cauchy-Folge, falls

$$\forall \varepsilon > 0 \ \exists N_{\varepsilon} \in \mathbb{N} \colon |z_n - z_m| < \varepsilon \quad \forall n, m > N_{\varepsilon}$$

Satz 1.2.3 (Vollständigkeit von \mathbb{C}). Die Folge $(z_n)_n$ konvergiert genau dann, wenn $(z_n)_n$ eine Cauchy-Folge ist.

Beweis. (Nicht hier, siehe Ana 3).

Bemerkung 1.2.4 (Konvergenz von Reihen). Eine Reihe $\sum_{n=1}^{\infty} z_n$ konvergiert per Definition, wenn die Folge der Partialsummen $(s_n)_n$, $s_n := \sum_{j=1}^n z_j$ konvergiert. Notwendig für die Konvergenz von $\sum_{j=1}^{\infty} z_j$ ist dabei, dass $z_n \to 0$. Hinreichend ist z.B., dass $\sum_{n=1}^{\infty} |z_n|$ konvergiert. In diesem Fall sprechen wir von absoluter Konvergenz.

3

1.3 Ein paar Definitionen

Definition 1.3.1 (Topologische Grundlagen: Offene und abgeschlossene Mengen, Rand und Abschluss). Wir definieren die (offene) ε -Scheibe um z

$$D_{\varepsilon}(z) := \{ w \in \mathbb{C} : |z - w| < \varepsilon \}$$

sowie den ε -Kreis um z

$$C_{\varepsilon}(z) \coloneqq \{w : |z - w| = \varepsilon\}$$

Eine Menge $S \subseteq \mathbb{C}$ heißt damit offen, falls

$$\forall z \in S \ \exists r > 0 \colon D_r(z) \subseteq S$$

Es sei $S^{\mathbb{C}} \coloneqq \mathbb{C} \setminus S$. Dann nennen wir S abgeschlossen, falls $S^{\mathbb{C}}$ offen ist. Wir definieren außerdem noch den Rand von S

$$\partial S := \left\{ z \in \mathbb{C} : \forall \varepsilon > 0 \colon S \cap D_{\varepsilon}(z) \neq \varnothing \wedge S^{\mathcal{C}} \cap D_{\varepsilon}(z) \neq \varnothing \right\}$$

Damit definieren wir außerdem den Abschluss von S

$$\overline{S} \coloneqq S \cup \partial S$$

Wir sagen S ist beschränkt, falls $S \subseteq D_R(0)$ für ein R > 0. Außerdem ist S kompakt, falls S sowohl abgeschlossen als auch beschränkt ist.

S ist nicht-zusammenhängend, falls es offene disjunkte Mengen A,B gibt mit $S\subseteq A\cup B$ mit $S\cap A\neq\varnothing$, $S\cap B\neq\varnothing$. S ist zusammenhängend, falls es nicht nicht-zusammenhängend ist.

Definition 1.3.2. Sei $z, w \in \mathbb{C}$. Dann definieren wir $[z, w] := \{(1 - \Theta) z + \Theta w : 0 \le \Theta \le 1\}$ als die Strecke zwischen z und w. Wir sagen eine Menge $S \subseteq \mathbb{C}$ ist polygonal zusammenhängend, falls es einen polygonalen Weg zwischen jeder Kombination von zwei Punkten $a, b \in S$ gibt. Das heißt es gibt $z_{1,...,n}$ sodass

$$[a, z_1] \cup [z_1, z_2] \cup \cdots \cup [z_{n-1}, z_n] \cup [z_n, b] \subseteq S$$

Definition 1.3.3. Eine offene, zusammenhängende Menge heißt Gebiet.

Satz 1.3.4. Sei U offen. Dann ist U genau dann zusammenhängend, wenn es polygonal zusammenhängend ist.

2 [*] Analytische Polynome

Motivation. Sei $P(x,y) = \sum_{r=0}^{N_1} \sum_{s=0}^{N_2} \alpha_{r,s} x^r y^s$ mit $x,y \in \mathbb{R}, \ a_n \in \mathbb{C}$. Wir sagen P ist analytisch, wenn es ein Polynom in x+yi ist. Das heißt $P(x,y) = \sum_{n=0}^{L} \alpha_n (x+iy)^n =: f(x+yi)$ für passende a_n . Frage: Wann ist ein Polynom analytisch?

[28. Apr] **Beispiel 2.1.1.**

- (i) Das Polynom $P(x,y) = x^2 y^2 + 2ixy$ ist analytisch, da $P(x,y) = (x+iy)^2$.
- (ii) $P(x,y) = x^2 y^2 2ixy$ ist nicht analytisch.

Beweis für (ii). Angenommen

$$x^{2} - y^{2} - 2ixy = \sum_{k=0}^{N} a_{k} (x + iy)^{k}$$

Dann gilt für y = 0

$$x^2 = \sum_{k=0}^{N} a_k x^k$$

Damit gilt nach Koeffizientenvergleich

$$\Rightarrow \alpha_0 = \alpha_1 = 0 = \alpha_3 = \dots = \alpha_N$$

$$\alpha_2 = 1$$

Definition 2.1.2 (Partielle Ableitung). Es sei $f: \mathbb{R}^2 \to \mathbb{C}$ mit

$$f(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix} = u(x,y) + v(x,y)i$$

Dann definieren wir die partiellen Ableitungen von f wie folgt

$$f_x := \partial_x f = \partial_x u + i \partial_x v = u_x + i v_x$$

$$f_y := \partial_y f = \partial_y u + i \partial_y v = u_y + i v_y$$

Satz 2.1.3. Ein Polynom P(x,y) ist genau dann analytisch, wenn

$$\partial_y P = i\partial_x P \tag{2.1.1}$$

Beweis. \Rightarrow "

$$P(x,y) = \sum_{n=0}^{N} a_n (x+iy)^n$$

$$\partial_x P = \sum_{n=0}^{N} \alpha_n \partial_x (x+iy)^n = \sum_{n=0}^{N} \alpha_n n (x+iy)^{n-1}$$

$$\partial_y P = \sum_{n=0}^{N} \alpha_n \partial_y (x+iy)^n = \sum_{n=0}^{N} \alpha_n n i (x+iy)^{n-1}$$

"
—" Sei $\partial_x P = i \partial_y P$. Dann ist

$$P(x,y) = \sum_{r=0}^{N_1} \sum_{s=0}^{N_2} \alpha_{r,s} x^r y^s$$

$$= \sum_{n=0}^{N_1+N_2} \sum_{\substack{0 \le r \le N_1 \\ 0 \le s \le N_2 \\ s+r=n}} \alpha_{r,s} x^r y^s$$

$$= \sum_{n=0}^{N_1+N_2} \sum_{\substack{t=0 \\ i:G_n(x,y)}} \alpha_{n,t} x^{n-t} y^t$$

$$\Rightarrow G_n(\lambda x, \lambda y) = \lambda^n G_n(x,y)$$

Nach unserer Voraussetzung gilt (2.1.1) auch für die G_n . Das heißt für festes n

$$\partial_y G_n(x,y) = \sum_{t=1}^n t \alpha_t x^{n-t} y^{t-1}$$

 $i\partial_x G_n(x,y) = i \left(\sum_{t=0}^{n-1} (n-t) \alpha_t x^{n-t-1} y^t \right)$

Da die linken Seiten der Gleichungen übereinstimmen, gilt auch

$$c_1 x^{n-1} + 2c_2 x^{n-2} y + \ldots + nc_n y^{n-1} = i \left(nc_0 x^{n-1} + (n-1) c_1 x^{n-2} y + \ldots + c_{n-1} y^{n-1} \right)$$

Nach Koeffizientenvergleich gilt damit

$$c_1 = inc_0 = i \binom{n}{1} c_0$$

$$c_2 = i^2 \frac{n(n-1)}{2} c_0 = i^2 \binom{n}{2} c_0$$

Induktiv setzt sich das fort zu

$$c_k = i^k \binom{n}{k} c_0$$

Damit gilt

$$G_n(x,y) = \sum_{k=0}^{n} c_k x^{n-k} y^k = \sum_{k=0}^{n} i^k \binom{n}{k} c_0 x^{n-k} y^k$$
$$= c_0 \sum_{k=0}^{n} \binom{n}{k} x^{n-k} (iy)^k = c_k (x+iy)^n$$
$$\Rightarrow P(x,y) = \sum_{n=0}^{N} G_n(x,y) = \sum_{n=0}^{N} \alpha_{n,0} (x+iy)^n$$

Das heißt P ist analytisch.

Bemerkung 2.1.4. Beispiel 2.1.1 lässt sich jetzt mit Satz 2.1.3 auch direkter ohne Koeffizientenvergleich nachrechnen.

6

[*] Stenographische Projektion 3

Motivation. Es sei $\Sigma \coloneqq \left\{ (\xi, \eta, \zeta) \in \mathbb{R}^3 : \xi^2 + \eta^2 + \left(\zeta - \frac{1}{2}\right)^2 = \frac{1}{4} \right\}$ die Sphäre im \mathbb{R}^3 mit Radius $\frac{1}{2}$ um den Punkt $(0,0,\frac{1}{2})$. Dann lässt sich eine Abbildung $(\xi,\eta,\zeta)\in\sum\setminus\{(0,0,1)\}\mapsto z\in\mathbb{C}=\mathbb{R}^2$ definieren. Wobei z der Schnittpunkt der Geraden durch Nordpol und (ξ, η, ζ) ist. Sei

$$\lambda \left((\xi, \eta, \zeta) - (0, 0, 1) \right) = (x, y, 0) - (0, 0, 1) = (x, y, -1)$$

Dann gilt

$$\begin{split} \lambda \xi &= x, \ \lambda \eta = y, \lambda \left(\zeta - 1 \right) = -1 \\ &\Rightarrow \lambda = \frac{1}{1 - \zeta} \\ &\Rightarrow \frac{x}{\xi} = \lambda = \frac{y}{\eta} \\ &\Rightarrow x = \frac{\xi}{1 - \zeta}, \ y = \frac{\eta}{1 - \zeta} \end{split}$$

Sind x, y gegeben. Dann gilt

$$\xi = \frac{x}{x^2 + y^2 + 1} \tag{1}$$

$$\eta = \frac{y}{x^2 + y^2 + 1} \tag{2}$$

$$\zeta = \frac{x^2 + y^2}{x^2 + y^2 + 1} \tag{3}$$

(Selber machen).

Definition 3.1.1. Sei $(z_n)_n \subseteq \mathbb{C}$. Wir schreiben $z_n \to \infty$, falls $|z_n| \to \infty$ für $n \to \infty$ sowie $f(z_n) \to \infty$, falls $|f(z_n)| \to \infty$ für $n \to \infty$.

Bemerkung 3.1.2 (Zusammenhang von Kreisen in Σ und \mathbb{C}). Ein Kreis in Σ ist ein Schnitt von \sum mit einer Ebene im \mathbb{R}^3 der Form $A\xi + B\eta + C\overline{\xi} = D$. Dann folgt nach $\overline{(1)}$ -(3)

$$D = A \frac{x}{x^2 + y^2 + 1} + B \frac{y}{x^2 + y^2 + 1} + C \frac{x^2 + y^2}{x^2 + y^2 + 1}$$

$$\Leftrightarrow D = (C - D) (x^2 + y^2) + Ax + By$$

FALL 1: C = D. Dann ist Ax + By = D eine Linie in \mathbb{C} .

Fall 2: $C \neq D \Rightarrow \text{ Kreis in } \mathbb{R}^2 = \mathbb{C}$.

Damit wäre der folgende Satz bewiesen:

Satz 3.1.3. (Sinngemä β : Kreise in \sum werden stenographisch auf Geraden projeziert.)

4 [*] Komplexe Differenzierbarkeit

4.1 Die Cauchy-Riemannsche Differentialgleichung

Definition 4.1.1. Wir sagen $f: \mathbb{C} \to \mathbb{C}$ ist (komplex) differenzierbar in z_0 , falls

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} =: f'(z_0)$$

existiert. (Dabei ist zu beachten, dass h in \mathbb{C} gegen 0 konvergiert)

Folgerung 4.1.2 (Cauchy-Riemannsche Differentialgleichung).

1. Setze $h = t \in \mathbb{R} \setminus \{0\}$ (das heißt wir wählen eine Folge von h, die in den reellen Zahlen gegen 0 konvergiert) und $z_0 = x_0 + iy_0$

$$\frac{f(z_0+h)-f(z_0)}{h} = \frac{f(z_0+t)-f(z_0)}{t} = \frac{f(x_0+t+iy_0)-f(x_0+iy_0)}{t}$$
$$= \frac{f(x_0+t,y_0)-f(x_0,y_0)}{t} \to \partial_x f(x_0,y_0) = f_x(x_0,y_0) = f_x(z_0)$$

2. Setze $h = it, t \in \mathbb{R} \setminus \{0\}$

$$\frac{f(z_0 + h) - f(z_0)}{h} = \frac{f(x_0 + iy + it) - f(x_0 + y_0)}{it}$$
$$= \frac{1}{i} \frac{f(x_0, y_+ t) - f(x_0, y_0)}{t} \to \frac{1}{i} \partial_y f(z_0)$$

Ist die Funktion f (komplex) diffbar, dann müssen die Grenzwerte übereinstimmen und es muss gelten

$$\partial_y f(z_0) = i\partial_x f(z_0)$$

Wenn f = u + iv für Funktionen u und v, dann lässt sich äquivalent auch fordern

$$\partial_y u = -\partial_x v$$
 und $\partial_y v = \partial_x u$

Wir formulieren das nochmal formal als Satz:

[29. Apr] Satz 4.1.3. Sei $U \subseteq \mathbb{C}$ offen. Ist f in $z \in U$ (komplex) differenzierbar, so existiert die partielle Ableitung $f_x(z)$ und $f_y(z)$ und es gilt

$$f_u(z) = i f_x(z)$$

Bemerkung 4.1.4. Die Umkehrung von Satz 4.1.3 gilt nicht. Als Beispiel betrachten wir

$$f(x,y) = \begin{cases} \frac{xy(x+iy)}{x^2+y^2} & z = x+iy \neq 0\\ 0 & z = 0 \end{cases}$$

Dann gilt

$$f(x+i0) = 0 = f(0+iy)$$
$$\partial_x f(0) = 0 = \partial_y f(0)$$

8

Allerdings gilt

$$\frac{f(x+\alpha ix)-f(0)}{x+\alpha ix}=\ldots=\frac{\alpha}{1+\alpha^2}$$

Satz 4.1.5 (Ableitung von Kompositionen komplexe Funktionen). Sei $U \subseteq \mathbb{C}$ offen, $z \in U$ und f, g in z differenzierbar. Dann sind auch f + g, $f \cdot g$, $\frac{f}{g}$ (falls $g(z) \neq 0$) in z differenzierbar und es gilt

$$(f+g)'(z) = f'(z) + g'(z) (fg)'(z) = f'(z)g(z) + f(z)g'(z) \left(\frac{f}{g}\right)'(z) = \frac{g(z)f'(z) - f(z)g'(z)}{g(z)^2}$$

Beweis. (Lässt sich mit Differenzenquotient nachrechnen, siehe Analysis 1).

Satz 4.1.6 (Ableitung von komplexen Polynomen). Sei $P(z) = \sum_{j=0}^{n} a_j z^j$ ein Polynom in \mathbb{C} . Dann gilt $P'(z) = \sum_{j=1}^{n} j a_j z^{j-1}$.

Beweis. Wir betrachten nur die Monome. Es gilt

$$(z+h)^{n} = \sum_{k=0}^{n} \binom{n}{k} z^{n-k} h^{k}$$

$$\Rightarrow (z+h)^{n} - z^{n} = \sum_{k=1}^{n} \binom{n}{k} z^{n-k} h^{k} = nz^{n-1} h + \sum_{k=2}^{n} \binom{n}{k} z^{n-k} h^{k}$$

$$\Rightarrow \lim_{h \to 0} \frac{(z+h)^{n} - z^{n}}{h} = \lim_{h \to 0} \left(nz^{n-1} + \sum_{k=2}^{n} \binom{n}{k} z^{n-k} h^{k-1} \right) = nz^{n-1}$$

Bemerkung 4.1.7 (Ableitung von komplexen Potenzreihen). Satz 4.1.6 überträgt sich auch auf komplexe Potenzreihen. Das heißt sei $f(z) = \sum_{n=0}^{\infty} a_n z^n$ eine Potenzreihe mit Konvergenzradius R. Dann ist f differenzierbar innerhalb der Kreisscheibe mit $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$.

Bemerkung 4.1.8 (Alternative Herleitung von Cauchy-Riemann). Es sei $f: U \to \mathbb{C}$ eine komplexe Funktion mit $U \subseteq \mathbb{C}$ offen. Dann können wir diese auch intepretieren als Funktion $f: U \to \mathbb{R}^2$ mit $U \subseteq \mathbb{R}^2$ offen. Wir erinnern uns, dass f dann im Punkt (x,y) differenzierbar ist, sofern es eine Abbildung $A: \mathbb{R}^2 \to \mathbb{R}^2$ gibt mit

$$f(x+h_1,g+h_2) = f(x,y) + Ah + \underbrace{\varepsilon(h)}_{\to 0} \cdot h \qquad (h := \begin{pmatrix} h_1 \\ h_2 \end{pmatrix})$$

Wir spalten f zwei Funktionen auf. Das heißt es sei

$$f = \begin{pmatrix} u \\ v \end{pmatrix}$$

Dann gilt (sofern f differenzierbar ist)

$$A = (\partial_x f, \partial_y f) = \begin{pmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{pmatrix} = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Frage: Wann entspricht A der Multiplikation mit einer komplexen Zahl?

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = Ah = f'(z) \cdot h = (a+ib) (h_1 + ih_2) = ah_1 - bh_2 + i (bh_1 + ah_2)$$

Das entspricht gerade

$$\begin{pmatrix} ah_1 - bh_2 \\ bh_1 + ah_2 \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

Insgesamt muss für (komplexe) Differenzierbarkeit also gelten

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$
$$\Rightarrow u_x = v_y \quad \text{und} \quad u_y = -v_x$$

Satz 4.1.9. Angenommen die partiellen Ableitungen f_x, f_y in einer Umgebung von z existieren und sind stetig (und erfüllen damit die Cauchy-Riemann'sche-Differentialgleichung). Dann ist f komplex differenzierbar in z und es gilt

$$f'(z) = f_x(z)$$

Beweis. Sei f = u + iv und $h = \xi + i\eta$. Wir müssen zeigen, dass

$$\frac{f(z+h) - f(z)}{h} \to f_x(z) \text{ für } h \to 0$$

$$u(z) = u(x,y) \qquad v(z) = v(x,y)$$

$$f(z+h) - f(z) = u(x+\xi,y+\eta) - u(x,y) + i (v(x+\xi,y+\eta) - v(x,y))$$

$$\frac{u(z+h) - u(z)}{h} = \frac{u(x+\xi,y+\eta) - u(x,y)}{\xi+i\eta}$$

$$= \frac{u(x+\xi,y+\eta) - u(x+\xi,y) + u(x+\xi,y) - u(x,y)}{\xi+i\eta}$$

$$= \frac{u(x+\xi,y+\eta) - u(x+\xi,y)}{\xi+i\eta} + \frac{u(x+\xi,y) - u(x,y)}{\xi+i\eta}$$

$$= \frac{\eta}{\xi+i\eta} u_y \underbrace{(x+\xi,y+\Theta_1\eta)}_{\xi} + \underbrace{\xi}_{\xi+i\eta} u_x \underbrace{(x+\Theta_2\xi,y)}_{\xi}$$

$$(0 < \Theta_i < 1)$$

Analog

$$\begin{split} \frac{v(x+\xi,y+\eta)-v(x,y)}{\xi+i\eta} &= \frac{\eta}{\xi+i\eta} v_y \underbrace{\left(x+\xi,y+\Theta_3\eta\right)}_{=:z_2} + \underbrace{\frac{\xi}{\xi+i\eta}} v_x \underbrace{\left(x+\Theta_4\eta\xi,y\right)}_{=:z_4} \\ \Rightarrow \frac{f(z+h)-f(z)}{h} &= \frac{u(x+\xi,y+\eta)-u(x,y)}{\xi+i\eta} + i \frac{v(x+\xi,y+\eta)-v(x,y)}{\xi+i\eta} \\ &= \frac{\eta}{\xi+i\eta} \left(u_y(z_1)+iv_y(z_2)\right) + \frac{\xi}{\xi+i\eta} \left(u_x(z_3)+iv_x(z_4)\right) \end{split}$$

Außerdem

$$f_x(z) = \frac{h}{h} f_x(z) = \frac{\xi + i\eta}{\xi + i\eta} f_x(z) = \frac{\xi}{\xi + i\eta} f_x(z) + \frac{\eta}{\xi + i\eta} i f_x(z)$$

Nach der Cauchy-Riemann'schen-DG gilt jetzt

$$= \frac{\xi}{\xi + i\eta} f_x(z) + \frac{\eta}{\xi + i\eta} f_y(z)$$

$$\Rightarrow \frac{f(z+h) - f(z)}{h} - f_x(z) = \frac{\eta}{\xi + i\eta} \underbrace{\left(u_x(z_1) + iv_y(z_2) - f_y(z)\right)}_{\to 0} + \underbrace{\frac{\xi}{\xi - i\eta} \underbrace{\left(u_x(z_3) + iv_x(z_4) - f_x(z)\right)}_{\to 0}}_{\to 0}$$

Wobei die beiden Konvergenzen gegen 0 die Stetigkeit der partiellen Ableitungen benötigt. Zusätzlich gilt

$$\left| \frac{\xi}{\xi + i\eta} \right| \le \left| \frac{\xi}{\xi} \right| = 1 \quad \text{und} \quad \left| \frac{\eta}{\xi + i\eta} \right| \le \left| \frac{\eta}{i\eta} \right| = 1$$

Das heißt die Vorfaktoren sind begrenzt und damit folgt

$$\frac{f(z+h)-f(z)}{h}-f_x(z)\to 0$$

Womit wir die Behauptung gezeigt haben.

Beispiel 4.1.10. Es sei $f(z) = x^2 + y^2 = z\overline{z}$. Dann gilt $f_x = 2x$ sowie $f_y = 2y$. Das heißt $f_y = if_x$ gilt nur für z = 0. Ist f dann differenzierbar?

Definition 4.1.11. Wir sagen f ist analytisch in z, falls f (komplex) differenzierbar ist in einer Umgebung von z. f ist außerdem analytisch auf $S \subseteq \mathbb{C}$, falls f (komplex) differenzierbar ist in einer offenen Umgebung von S.

Satz 4.1.12. Sei f = u + iv analytisch in einer offenen zusammenhängenden Menge D (D Umgebung). Ist u konstant auf D, so ist f konstant.

Beweis. u ist konstant auf D. Das heißt $u_x = u_y = 0$ auf D. Nach Satz 4.1.3 ist auch $v_x = v_y = 0$ auf D. Da D zusammenhängend ist, ist also auch v konstant und damit ist f = u + iv konstant. \square

Satz 4.1.13. Sei f = u + iv analytisch auf einer Umgebung D. Ist |f| konstant auf D, so ist f konstant.

Beweis. Sei o.B.d.A. |f|>0. Dann gilt $|f|^2=u^2+v^2=C>0$

$$0 = \partial_x \left(u^2 + v^2 \right) = 2uv_x + 2vu_x$$
$$0 = \partial_y \left(u^2 + v^2 \right) = 2uu_x + 2vv_y$$

Nach Cauchy-Riemann folgt

$$\Rightarrow \begin{cases} 0 = uu_x - vu_y \\ 0 = uu_y + vu_x \end{cases}$$

$$\Rightarrow \begin{cases} 0 = u^2u_x - uvu_y \\ 0 = uvu_y + v^2u_x \end{cases}$$

$$\Rightarrow 0 = (u^2 + v^2)u_x = C \cdot u_x$$

$$\Rightarrow u_x = 0$$

$$\Rightarrow v_y = u_x = 0$$

Analog zeigt man $u_y = -v_x = 0$. Damit sind u, v und somit f konstant.

4.2 Die Funktionen e^z , $\cos z$, $\sin z$

Wir hatten bereits

$$\begin{split} e^z &= \sum_{n=0}^\infty \frac{z^n}{n!} \\ \frac{\mathrm{d}}{\mathrm{d}z} e^z &= e^z \\ e^{i\varphi} &= \sum_{n \text{ gerade}} \frac{(-1)^n \varphi^n}{n!} + \sum_{n \text{ ungerade}} \frac{(-1)^n \varphi^n}{n!} \\ &= \cos \varphi + \sin \varphi \\ \overline{e^z} &= e^{\overline{z}} \\ \cos \varphi &= \frac{1}{2} \left(e^{i\varphi} + e^{-i\varphi} \right) \\ \sin \varphi &= \frac{1}{2i} \left(e^{i\varphi} + e^{-i\varphi} \right) \end{split}$$

Definiere

$$\cos \varphi := \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} = \frac{1}{2} \left(e^{iz} + e^{-iz} \right)$$
$$\sin \varphi := \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$$