

Deep Learning

Deep Learning is a subfield of Machine Learning

Deep Learning

Neural Network

http://www.astroml.org/book_figures/appendix/fig_neural_network.html

https://cdn.edureka.co/blog/wp-content/uploads/2017/05/Deep-Neural-Network-What-is-Deep-Learning-Edureka.png

'Deep' refers to the many layers in model

- Allows for learning at different levels of abstraction
- Leads to automatic feature learning & excellent performance

Applications of Deep Learning

- Image classification
- Speech recognition
- Handwriting recognition
- Self-driving cars
- Drug design
- Precision medicine
- Disease detection
- Targeted ads
- Stock market analysis

Deep Learning Agenda

- 8:30 9:00 Intro to NN & CNN
- 9:00 9:30 MNIST Hands-On
- 9:30 10:00 CNN Transfer Learning
- 10:00 10:15 Break
- 10:15 10:45 CNN Transfer Learning Hands-On
- 10:45 11:15 FasterCNN
- 11:15 11:45 U-Net & LSTM
- 11:45 12:00 Wrap-Up

Transfer Learning with CNN

Mai H. Nguyen, Ph.D.

What is Transfer Learning?

- To overcome challenges of training model from scratch:
 - Insufficient data
 - Very long training time
- Use pre-trained model
 - Trained on another dataset
 - This serves as starting point for model
 - Then train model on current dataset for current task

Transfer Learning Approaches

Feature extraction

- Remove last fully connected layer from pre-trained model
- Treat rest of network as feature extractor
- Use features to train new classifier ("top model")

Fine tuning

- Tune weights in some layers of original model (along with weights of top model)
- Train model for current task using new dataset

CNNs for Transfer Learning

Popular architectures

- AlexNet
- GoogLeNet
- VGGNet
- ResNet

All winners of ILSVRC

- ImageNet Large Scale Visual Recognition Challenge
- Annual competition on vision tasks on ImageNet data

ImageNet

Database

- Developed for computer vision research
- > 14,000,000 images hand-annotated
- > 22,000 categories

ILSVRC History

- Started in 2010
- Image classification task: 1,000 object categories
- Image classification error rate
 - 2011: ~25% (conventional image processing techniques)
 - 2012: 15.3% (AlexNet)
 - 2015: 3.57% (ResNet; better than human performance)
 - 2016: 2.99% (16.7% error reduction)
 - 2017: 2.25% (23.3% error reduction)

Why Does Transfer Learning Work?

Lee et al. 'Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations' ICML 2009

VGG as Pre-Trained Network

Source: https://www.cs.toronto.edu/~frossard/post/vgg16/

Transfer Learning – Feature Extraction

Source: https://www.cs.toronto.edu/~frossard/post/vgg16/

Transfer Learning – Fine Tuning

Source: https://www.cs.toronto.edu/~frossard/post/vgg16/

When & How to Fine Tune

- New dataset is small & similar to original dataset
 - Extract features from higher layer and feed to separate classifier
- New dataset is large & similar to original dataset
 - Fine tune top or all layers
- New dataset is small & different from original dataset
 - Extract features from lower layer and feed to separate classifier
- New dataset is large & different from original dataset
 - Fine tune top or all layers

Other Practical Tips

Learning rate

 Use very small learning rate for fine tuning. Don't want to destroy what was already learned.

Start with properly trained weights

- Train top-level classifier first, then fine tune lower layers.
- Top model with random weights may have negative effects on when fine tuning weights in pre-trained model

Data augmentation

- Simple ways to slightly alter images
 - Horizontal/vertical flips, random crops, translations, rotations, etc.
- Use to artificially expand your dataset

References

- F. Chollet. The Keras Blog.
 - https://blog.keras.io/building-powerful-image-classificationmodels-using-very-little-data.html
- ImageNet
 - http://www.image-net.org/
- Transfer Learning.
 - http://cs231n.github.io/transfer-learning/

Additional CNN Resources

- Caffe Model Zoo. http://caffe.berkeleyvision.org/model_zoo.html
- CS231n Convolutional Neural Networks for Visual Recognition. http://cs231n.github.io/
- Keras Documentation. https://keras.io/
- TensorFlow Getting Started. https://www.tensorflow.org/get_started/
- TensorFlow Neural Network Playground. http://playground.tensorflow.org/

Questions?

