IDS 575 Machine Learning Statistics

AIR QUALITY INDEX PREDICTION

Amin Abbasi | Rishitha Addagada | Vipul Singh | Kate Veach

AIR QUALITY IMPORTANCE

AQI

Standardized ranking system to communicate air quality in a specific location

ENVIRONMENTAL

Acid rain, smog, greenhouse gases & climate change

HABITATS

Habitat contamination such as oceans & forests

HEALTH RISKS

Cardiovascular, respiratory, allergies, & increased mortality rates

ECONOMIC

Increased healthcare costs, decreased workplace productivity & tourism

HUMANS

Children, elderly, & sensitive groups at greatest risk

PROBLEM STATEMENT

- AQI is a time series problem where the final AQI value is calculated based on the concentration of all
 pollutants, and results are forecasted based on the final AQI value
 - o Determine final label and convert into a classification model
- Problem: the necessity to determine the saturation point of each pollutant
 - Input the given concentration along with the saturation point value to derive AQI for a pollutant
 - Area AQI values are derived using an empirical formula, taking into account individual AQI values
- Solution: Generate a model where we can easily find the AQI index of an area when given the concentration of pollutant
 - Concentration can easily be extracted using particulate monitor
- We used different machine learning methods and compared several models using confusion matrix,
 classification report, and ROC curve to evaluate Precision, Recall, F-Score and other relevant matrices.

DATA DESCRIPTION

 Historical data collected hourly from 2015-2020 of the 7 most common pollutants: PM2.5, PM10, NO, NO2, NOx, O3, CO

Dataset source: Kaggle

• Shape: 18,205 x 11

Classes: 'Good', 'Moderate', 'Poor'

Class distribution:

o <u>Good</u>: 15.6%

Moderate: 43.76%

Poor: 40.63%

	StationId	Datetime	PM2.5	PM10	NO	NO2	NOx	СО	О3	AQI	AQI_Bucket
0	DL012	26/09/17 16:00	114.33	138.57	15.40	30.73	0.0	0.90	73.94	164.0	Moderate
1	DL012	26/09/17 17:00	137.00	162.35	15.17	31.08	0.0	0.88	77.51	175.0	Moderate
2	DL012	26/09/17 18:00	109.99	135.96	15.42	30.70	0.0	0.90	73.76	180.0	Moderate
3	DL012	26/09/17 19:00	72.24	84.96	16.89	28.75	0.0	1.01	58.50	178.0	Moderate
4	DL012	26/09/17 20:00	48.96	58.08	22.77	23.74	0.0	1.45	33.71	173.0	Moderate

EXPLORATORY DATA ANALYSIS

BASELINE MODEL: GAUSSIAN NAIVE BAYES

- Selected due to each pollutant having an independent capacity to predict the output variable
- Distribution of some pollutants is not bell shaped, leading to imperfect predictions
- Code: model1=GaussianNB()
- Output:

MODEL 1: K-NEAREST NEIGHBOR (KNN)

- KNN is a non-parametric method that utilizes proximity to perform calculation
- Model fine tuning: GridSearchCV
 - Included all possible parameters of KNN
 - Utilized cross validation techniques to determine best parameters
- Outcome:
 - Increase in precision rates for all classes
 - Reduction in both false positive and false negative rates

MODEL 2: LOGISTIC REGRESSION (LR)

- LR is very effective for classifying multi-class labels
- Model fine tuning:
 - Utilized softmax function instead of the sigmoid function for multi-class classification
 - Predicted outcome (y) determined using the argmax of the probabilities obtained for all classes

```
from sklearn.linear_model import LogisticRegression
para_lr={'multi_class':['multinomial'], 'C':np.logspace(-4, 4, 20),
         'solver':['lbfgs', 'newton-cg', 'sag', 'saga'],
        'class_weight':['balanced'], 'penalty': ['l2', 'l1', 'elasticnet']}
grid search lr = GridSearchCV(LogisticRegression(), para lr,cv=15, verbose=1, scoring='accuracy')
grid_search_lr.fit(X_train, y_train)
Fitting 15 folds for each of 240 candidates, totalling 3600 fits
           GridSearchCV
 ▶ estimator: LogisticRegression
       ▶ LogisticRegression
print("Best parameters:", grid search lr.best params )
Best parameters: {'C': 11.288378916846883, 'class_weight': 'balanced', 'multi class': 'multinomial', 'penaltv': 'l
2', 'solver': 'saga'}
```


MODEL 2: LOGISTIC REGRESSION (LR)

The output is not satisfactory:

The accuracy, precision, and F-1 scores decrease compared to KNN

• This could be due to our dataset not being suitable for LR or the assumptions of LR

are not satisfied

Classification Report						
	precision	recall	f1-score	support		
1	0.68	0.58	0.62	2375		
2	0.80	0.71	0.75	2223		
3	0.50	0.83	0.62	864		
accuracy			0.67	5462		
macro avg	0.66	0.71	0.67	5462		
weighted avg	0.70	0.67	0.68	5462		

MODEL 2: LR SMOTE PROCESS

- We implemented the SMOTE process because one of our classes is a minority
 - o SMOTE generates synthetic samples for the minority class to handle imbalanced data
- With SMOTE, we observed some improvement in the prediction of the LR model:

<pre>from imblearn.over_sampling import SMOTE</pre>						
y_sm=df_t_sm[['AQI_Bucket']]						
sm=SMOTE()						
X_sm,y_sm=sm.fit_resample(X_sm,y_sm)						
y_sm.value_counts()						
AQI_Bucket 1 7968 2 7968 3 7968 Name: count, dtype: int64						

Classificatio	n Report				
	precision	recall	f1-score	support	
1	0.59	0.57	0.58	2427	
2	0.79	0.70	0.75	2332	
3	0.73	0.84	0.78	2413	
accuracy			0.70	7172	
macro avo	0.70	0.70	0.70	7172	
eighted avg	0.70	0.70	0.70	7172	
	7.5 1.5	7.5.5.5			

EXPERIMENTAL RESULTS & PREDICTIONS

Simple SVM Model:

- Utilized to provide a baseline point for comparison using a "one-vs-all" strategy
- Trained a basic SVM model with a RBF kernel
- Output: 74% accuracy

Classification Report: precision		recall	f1-score	support	
0 1 2	0.67 0.85 0.73	0.81 0.72 0.61	0.74 0.78 0.67	2375 2223 864	
accuracy macro avg weighted avg	0.75 0.75	0.71 0.74	0.74 0.73 0.74	5462 5462 5462	

EXPERIMENTAL RESULTS & PREDICTIONS

Grid Search for Hyperparameter Tuning:

- Demonstrates improvements in accuracy through hyperparameter tuning
- Used grid search cross-validation to find the best hyperparameters for the SVM model with the "one-vs-all" strategy
- Best Parameters: {'C':10, 'gamma':'scale', 'kernel':'rbf'}
- Output: 76% accuracy

Classificatio	n Report for precision		rch with Hy f1-score	/perparamete support	r Tuning:
0 1 2	0.69 0.86 0.75	0.82 0.73 0.65	0.75 0.79 0.70	2375 2223 864	
accuracy macro avg weighted avg	0.77 0.77	0.74 0.76	0.76 0.75 0.76	5462 5462 5462	

MODEL COMPARISON BASED ON ACCURACY

MODEL	ACCURACY
Gaussian Naive Bayes (Baseline)	61%
K-Nearest Neighbor (KNN)	80%
Logistic Regression	67%
Logistic Regression with SMOTE	70%
Logistic Regression with Stacking	79%
SVM	74%
SVM Grid Search Hyperparameter Tuning	76%

UNSUPERVISED LEARNING MODEL: K-MEANS CLUSTERING

- Implemented K-Means Clustering to gain insights on underlying structure of our dataset, particularly PM2.5 and PM10
- Goal: identify inherent clusters or groupings that could potentially reveal patterns related to air quality characteristics
 - Allowing us to partition the data into distinct clusters based on similarity in air quality parameters

```
kmeans = KMeans(n_clusters=3, random_state=42)
clusters = kmeans.fit_predict(df_exp_AQI_Bucket)
plt.figure(figsize=(10, 6))

plt.scatter(df_exp_AQI_Bucket['PM2.5'], df_exp_AQI_Bucket['PM10'], c=clusters, cmap='viridis', s=50, alpha=0.5, label='Data Points')

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], c='red', marker='x', s=200, label='Centroids')
```

→ Silhouette Score: 0.4371433264797495

OBSERVATIONS FROM BEST PERFORMING MODEL

- **ROC Curve of our KNN Model**
 - The 3 curves represent the performance of KNN for each class
 - AUC is listed for each class
 - Class 1 AUC=0.88
 - Class 2 AUC=0.93
 - Class 3 AUC=0.94

ANY **QUESTIONS?**