Лагранжиан. Седловая задача. Метод экстраградиента Прямо-двойственный метод. Методы оптимизации

Александр Безносиков

Московский физико-технический институт

19 октября 2023

Лагранжиан

Рассматриваем задачу условной оптимизации вида:

$$\min_{\substack{x \in \mathbb{R}^d \\ \text{s.t.}}} \frac{f_0(x)}{f_i(x)} \leq 0, \ i = 1, \dots, m$$

Лагранжиан

Рассматриваем задачу условной оптимизации вида:

$$\min_{x \in \mathbb{R}^d X} f_0(x)$$

s.t. $f_i(x) \leq 0, i = 1, ..., m$

Здесь еще можно было немного обобщить постановку и добавить, что $x \in \mathcal{X} \cap \mathsf{dom} f_i$. Но мы предполагаем, что $\mathcal{X} \cap \mathsf{dom} f_i = \mathbb{R}^d$.

Лагранжиан

Лагранжиан

Функция Лагранжа/Лагранжиан для этой задачи строится следующим образом:

$$L(x,\lambda,) = f_0(x) + \sum_{i=1}^m \widehat{\lambda} f_i(x),$$

где $\lambda_i \geq 0$, $\lambda_i \in \mathbb{R}$ для $i=1,\ldots,m$. λ_i можно записать в виде векторов λ соответствующей размерности.

• Рассматривали:

$$g(\lambda) = \inf_{x \in \mathbb{R}^d} L(x, \lambda).$$

Вопрос: как называется этот объект?

• Рассматривали:

$$g(\lambda) = \inf_{x \in \mathbb{R}^d} L(x, \lambda).$$

Вопрос: как называется этот объект? двойственная функция

• Рассматривали:

$$g(\lambda) = \inf_{x \in \mathbb{R}^d} L(x, \lambda).$$

Вопрос: как называется этот объект? двойственная функция

ullet Осознали, что для любой $\lambda \geq 0$

$$\underbrace{g(\lambda)} \leq \underbrace{f(x^*)}_{p}$$

• Узнали

Условие Слейтера

Будем говорить, что для задачи с ограничениями выполняется условие Слейтера, если существует $x \in \mathbb{R}^d$, такой что

$$f_i(x) < 0, \quad j = 1, \ldots, m.$$

• Узнали

Условие Слейтера

Будем говорить, что для задачи с ограничениями выполняется условие Слейтера, если существует $x \in \mathbb{R}^d$, такой что

$$f_i(x) < 0, i = 1, \ldots, m.$$

• Вопрос: и что оно дает?

• Узнали

Условие Слейтера

Будем говорить, что для задачи с ограничениями выполняется условие Слейтера, если существует $x \in \mathbb{R}^d$, такой что

$$f_i(x) < 0, i = 1, \ldots, m.$$

• Вопрос: и что оно дает?

Теорема Слейтера

Если в задаче с ограничениями все функции являются выпуклыми и выполняется условие Слейтера, то тогда при построении двойственной задачи выполняется свойство сильной двойственности, а именно

$$(\sup_{\lambda\geq 0}g(\lambda))=f(x^*).$$

Седловая точка

Точка $(x^*, \lambda^*) \in \mathbb{R}^d \times \mathbb{R}_+^m$ называется седловой для функции $L(x, \lambda, \cancel{k})$, если для любых $(x^{(k)}, \lambda^{(k)}, \cancel{k}) \in \mathbb{R}^d \times \mathbb{R}_+^m$ выполнено

$$L(x, \lambda^*) \ge L(x^*, \lambda^*) \ge L(x^*, \lambda).$$

Теорема о седловой точке Куна-Таккера

Теорема о седловой точке Куна-Таккера

Для задачи выпуклой оптимизации с выпуклыми ограничениями с выполненными условием Слейтера следующие утверждения эквиваленты:

- для x^* существует $\lambda^* \geq 0$ такое, что (x^*, λ^*) седловая точка функции Лагранжа,
- для x^* глобальное решение задачи оптимизации с ограничениями.

 \Rightarrow Пусть для x^* существует $\lambda^* \geq 0$ такая, что (x^*, λ^*) – седловая точка функции Лагранжа, тогда x^* – глобальное решение задачи с

функции Лагранжа, тогда
$$x^*$$
 – глобальное решение задачи с ограничениями.

 $x^* - good oran :$
 $x^* - good$

- \Rightarrow Пусть для x^* существует $\lambda^* \geq 0$ такая, что x^*, λ^* седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $h_j(x^*)>0$ для некоторого j. Вопрос: что можно сказать про $\sup_{\lambda>0} L(x^*,\lambda)$? $\sup_{\lambda>0} L(x^*,\lambda)=+\infty$.

- \Rightarrow Пусть для x^* существует $\lambda^* \geq 0$ такая, что x^*, λ^* седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $h_j(x^*) > 0$ для некоторого j. Вопрос: что можно сказать про $\sup_{\lambda \geq 0} L(x^*, \lambda)$? $\sup_{\lambda \geq 0} L(x^*, \lambda) = +\infty$. Вопрос: может ли такое быть? Нет, второе неравенство в определении седловой точки рушится для $\lambda = 2\lambda^*$.

 \Rightarrow Пусть для x^* существует $\lambda^* \geq 0$ такая, что x^*, λ^* — седловая точка функции Лагранжа, тогда x^* — глобальное решение задачи с ограничениями.

• Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $h_j(x^*) > 0$ для некоторого j. Вопрос: что можно сказать про $\sup_{\lambda \geq 0} L(x^*, \lambda)$? $\sup_{\lambda \geq 0} L(x^*, \lambda) = +\infty$. Вопрос: может ли такое быть? Нет, второе неравенство в определении седловой точки рушится для $\lambda = 2\lambda^*$.

• Заметим, что $\underline{f}(x^*) = \sup_{\lambda \geq 0} L(x^*, \lambda)$.

- \Rightarrow Пусть для x^* существует $\lambda^* \geq 0$ такая, что x^*, λ^* седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $h_j(x^*) > 0$ для некоторого j. Вопрос: что можно сказать про $\sup_{\lambda \geq 0} L(x^*, \lambda)$? $\sup_{\lambda \geq 0} L(x^*, \lambda) = +\infty$. Вопрос: может ли такое быть? Нет, второе неравенство в определении седловой точки рушится для $\lambda = 2\lambda^*$.
 - Заметим, что $f_o(x^*) = \sup_{\lambda \geq 0} L(x^*, \lambda)$. Второе неравенство в определении седловой задачи дает $L(x^*, \lambda^*) = f_o(x^*)$.

$$\begin{cases} x^{2} & \text{cap} = \angle(x^{*}, \lambda^{*}) \geq \angle(x^{*}, \lambda) \\ \chi^{*} & \text{gen cymenyn} \end{cases}$$

- \Rightarrow Пусть для x^* существует $\lambda^* \geq 0$ такая, что x^*, λ^* седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $h_j(x^*) > 0$ для некоторого j. Вопрос: что можно сказать про $\sup_{\lambda \geq 0} L(x^*, \lambda)$? $\sup_{\lambda \geq 0} L(x^*, \lambda) = +\infty$. Вопрос: может ли такое быть? Нет, второе неравенство в определении седловой точки рушится для $\lambda = 2\lambda^*$.
 - Заметим, что $f(x^*) = \sup_{\lambda \geq 0} L(x^*, \lambda)$. Второе неравенство в определении седловой задачи дает $L(x^*, \lambda^*) = f(x^*)$. Первое неравенство из определения седловой задачи дает:

- \Rightarrow Пусть для x^* существует $\lambda^* \geq 0$ такая, что x^*, λ^* седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $h_j(x^*) > 0$ для некоторого j. Вопрос: что можно сказать про $\sup_{\lambda \geq 0} L(x^*, \lambda)$? $\sup_{\lambda \geq 0} L(x^*, \lambda) = +\infty$. Вопрос: может ли такое быть? Нет, второе неравенство в определении седловой точки рушится для $\lambda = 2\lambda^*$.
 - Заметим, что $f(x^*) = \sup_{\lambda \geq 0} L(x^*, \lambda)$. Второе неравенство в определении седловой задачи дает $L(x^*, \lambda^*) = f(x^*)$. Первое неравенство из определения седловой задачи дает:

$$f_0(x) + \sum_{j=1}^m \lambda_j^* f_j(x) \ge L(x^*, y^*) = f_0(x^*).$$

А это и есть то, что мы хотели. Вопрос: почему?

- \Rightarrow Пусть для x^* существует $\lambda^* \geq 0$ такая, что x^*, λ^* седловая точка функции Лагранжа, тогда x^* глобальное решение задачи с ограничениями.
 - Для начала удостоверимся, что x^* удовлетворяет ограничениям. Если нет, то $h_j(x^*) > 0$ для некоторого j. Вопрос: что можно сказать про $\sup_{\lambda \geq 0} L(x^*, \lambda)$? $\sup_{\lambda \geq 0} L(x^*, \lambda) = +\infty$. Вопрос: может ли такое быть? Нет, второе неравенство в определении седловой точки рушится для $\lambda = 2\lambda^*$.
 - Заметим, что $f(x^*) = \sup_{\lambda \geq 0} L(x^*, \lambda)$. Второе неравенство в определении седловой задачи дает $L(x^*, \lambda^*) = f(x^*)$. Первое неравенство из определения седловой задачи дает:

$$f_0(x) + \sum_{j=1}^m \lambda_j^* f_j(x) \ge L(x^*, y^*) = f_0(x^*).$$

А это и есть то, что мы хотели. **Вопрос:** почему? для допустимых x (удовлетворяет ограничениям), имеем, что левая часть $\leq f_0(x)$, так как λ_i^* неотрицательные.

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \geq 0$ такое, что (x^*, λ^*) – седловая точка функции Лагранжа.

$$f(x^*) = \sup_{\lambda \ge 0} g(\lambda)$$

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \geq 0$ такое, что (x^*, λ^*) – седловая точка функции Лагранжа.

• **Bonpoc:** что нам дает условие Слейтера, для выпуклой оптимизации?

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \geq 0$ такое, что (x^*, λ^*) – седловая точка функции Лагранжа.

• Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной $\lambda^* \geq 0$, $f(x^*) = g(\lambda^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*)$.

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \geq 0$ такое, что (x^*, λ^*) – седловая точка функции Лагранжа.

• **Boпрос**: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной $\lambda^* \geq 0$,

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \geq 0$ такое, что (x^*, λ^*) – седловая точка функции Лагранжа.

• Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной $\lambda^* \geq 0$, $f(x^*) = g(\lambda^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*)$. Откуда $f(x^*) \leq L(x^*, \lambda^*) = f(x^*) + \sum_{j=1}^m \lambda_j^* f_j(x^*)$. Вопрос: что можем сказать про $\lambda_i^* f_j(x^*)$? все равны 0.

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \geq 0$ такое, что (x^*, λ^*) – седловая точка функции Лагранжа.

• Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной $\lambda^* \geq 0$, $f(x^*) = g(\lambda^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*)$. Откуда $f(x^*) \leq L(x^*, \lambda^*) = f(x^*) + \sum_{j=1}^m \lambda_j^* f_j(x^*)$. Вопрос: что можем сказать про $\lambda_j^* f_j(x^*)$? все равны 0. Поэтому $L(x^*, \lambda^*) = f(x^*)$.

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \geq 0$ такое, что (x^*, λ^*) – седловая точка функции Лагранжа.

• Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной $\lambda^* \geq 0$, $f(x^*) = g(\lambda^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*)$. Откуда $f(x^*) \leq L(x^*, \lambda^*) = f(x^*) + \sum_{j=1}^m \lambda_j^* f_j(x^*)$. Вопрос: что можем сказать про $\lambda_j^* f_j(x^*)$? все равны 0. Поэтому $L(x^*, \lambda^*) = f(x^*)$. Откуда первую часть определения седловой задачи.

$$L(x^*, \lambda^*) = f(x^*) = \inf_{\mathbf{x} \in \mathbb{R}^d} L(\mathbf{x}, \lambda^*). \qquad \angle (\mathbf{x}, \lambda^*)$$

 \Leftarrow Пусть x^* – глобальное решение задачи с ограничениями, а также пусть все f_0 и $\{f_i\}$ выпуклые и выполнено условие Слейтера, то существует $\lambda^* \geq 0$ такое, что (x^*, λ^*) – седловая точка функции Лагранжа.

• Вопрос: что нам дает условие Слейтера, для выпуклой оптимизации? для решения двойственной $\lambda^* \geq 0$, $f(x^*) = g(\lambda^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*)$. Откуда $f(x^*) \leq L(x^*, \lambda^*) = f(x^*) + \sum_{j=1}^m \lambda_j^* f_j(x^*)$. Вопрос: что можем сказать про $\lambda_j^* f_j(x^*)$? все равны 0. Поэтому $L(x^*, \lambda^*) = f(x^*)$. Откуда первую часть определения седловой задачи.

$$L(x^*, \lambda^*) = f(x^*) = \inf_{x \in \mathbb{R}^d} L(x, \lambda^*).$$

Вторая часть получается из того $f_j(x^*) \le 0$, а значит $f(x^*) \ge f(x^*) + \sum_{j=1}^m \lambda_j^* f_j(x^*) = f(x^*, \lambda)$ для $\lambda_j \ge 0$.

Седловые задачи – это больше, чем просто функция Лагранжа.

Седловые задачи – это больше, чем просто функция Лагранжа. Пусть есть некоторая функция:

$$L(x,\lambda): \mathcal{X} \times \Lambda \to \mathbb{R}.$$

Седловые задачи – это больше, чем просто функция Лагранжа. Пусть есть некоторая функция:

$$L(x,\lambda): \mathcal{X} \times \Lambda \to \mathbb{R}.$$

Рассмотрим следующую игровую интерпретацию

• Пусть есть два игрока, первый игрок может выбирать $x \in \mathcal{X}$ и $\int_{\mathbb{T}^n} \lambda \in \Lambda$ (это может быть распределение ресурсов, выбор действие и т.д.).

Седловые задачи – это больше, чем просто функция Лагранжа. Пусть есть некоторая функция:

$$L(x,\lambda): \mathcal{X} \times \Lambda \to \mathbb{R}.$$

Рассмотрим следующую игровую интерпретацию

- Пусть есть два игрока, первый игрок может выбирать $x \in \mathcal{X}$ и $\lambda \in \Lambda$ (это может быть распределение ресурсов, выбор действие и т.д.).
- Функция $L(x,\lambda)$ некоторое значение прибыли в зависимости от выбранных $x \in \mathcal{X}$ и $\lambda \in \Lambda$. Первый игрок платит второму игроку сумму $L(x,\lambda)$.

Седловые задачи – это больше, чем просто функция Лагранжа. Пусть есть некоторая функция:

$$L(x,\lambda): \mathcal{X} \times \Lambda \to \mathbb{R}.$$

Рассмотрим следующую игровую интерпретацию

- Пусть есть два игрока, первый игрок может выбирать $x \in \mathcal{X}$ и $\lambda \in \Lambda$ (это может быть распределение ресурсов, выбор действие и т.д.).
- Функция $L(x, \lambda)$ некоторое значение прибыли в зависимости от выбранных $x \in \mathcal{X}$ и $\lambda \in \Lambda$. Первый игрок платит второму игроку сумму $L(x, \lambda)$.
- Вопрос: чего хочет первый, а чего хочет второй?

Седловые задачи – это больше, чем просто функция Лагранжа. Пусть есть некоторая функция:

$$L(x,\lambda): \mathcal{X} \times \Lambda \to \mathbb{R}.$$

Рассмотрим следующую игровую интерпретацию

- Пусть есть два игрока, первый игрок может выбирать $x \in \mathcal{X}$ и $\lambda \in \Lambda$ (это может быть распределение ресурсов, выбор действие и т.д.).
- Функция $L(x, \lambda)$ некоторое значение прибыли в зависимости от выбранных $x \in \mathcal{X}$ и $\lambda \in \Lambda$. Первый игрок платит второму игроку сумму $L(x, \lambda)$.
- **Bonpoc:** чего хочет первый, а чего хочет второй? Первый хочет платить меньше, а второй хочет получить больше.

• Нужно найти равновесие между игроками, потому что экстремальная стратегия не значит лучшая. Например, если игрок два знает, что при некотором \tilde{x} игрока один можно получить огромный выигрыш при правильном выборе $\lambda(\tilde{x})$. В то же время может так оказаться, что при других $x \neq \tilde{x}$ выбор $\lambda(\tilde{x})$ дает нулевой выигрыш второму игроку, тогда игрок один может просто никогда не выбирать \tilde{x} . При этом может быть $\tilde{\lambda}$, которая при любом x будет давать небольшой фиксированный выигрыш.

- Нужно найти равновесие между игроками, потому что экстремальная стратегия не значит лучшая. Например, если игрок два знает, что при некотором \tilde{x} игрока один можно получить огромный выигрыш при правильном выборе $\lambda(\tilde{x})$. В то же время может так оказаться, что при других $x \neq \tilde{x}$ выбор $\lambda(\tilde{x})$ дает нулевой выигрыш второму игроку, тогда игрок один может просто никогда не выбирать \tilde{x} . При этом может быть $\tilde{\lambda}$, которая при любом x будет давать небольшой фиксированный выигрыш.
- С точки зрения седловой задачи:

$$L(x, \lambda^*) \ge L(x^*, \lambda^*) \ge L(x^*, \lambda),$$

получается следующее:

- Нужно найти равновесие между игроками, потому что экстремальная стратегия не значит лучшая. Например, если игрок два знает, что при некотором \tilde{x} игрока один можно получить огромный выигрыш при правильном выборе $\lambda(\tilde{x})$. В то же время может так оказаться, что при других $x \neq \tilde{x}$ выбор $\lambda(\tilde{x})$ дает нулевой выигрыш второму игроку, тогда игрок один может просто никогда не выбирать \tilde{x} . При этом может быть $\tilde{\lambda}$, которая при любом x будет давать небольшой фиксированный выигрыш.
- С точки зрения седловой задачи:

$$L(x, \lambda^*) \ge L(x^*, \lambda^*) \ge L(x^*, \lambda),$$

получается следующее: пусть $(\tilde{x}, \tilde{\lambda})$ – седло, тогда любые изменения x игрока один будут приводить к тому, что он будет платить больше (обратно для игрока два).

- Нужно найти равновесие между игроками, потому что экстремальная стратегия не значит лучшая. Например, если игрок два знает, что при некотором \tilde{x} игрока один можно получить огромный выигрыш при правильном выборе $\lambda(\tilde{x})$. В то же время может так оказаться, что при других $x \neq \tilde{x}$ выбор $\lambda(\tilde{x})$ дает нулевой выигрыш второму игроку, тогда игрок один может просто никогда не выбирать \tilde{x} . При этом может быть $\tilde{\lambda}$, которая при любом x будет давать небольшой фиксированный выигрыш.
- С точки зрения седловой задачи:

$$L(x, \lambda^*) \ge L(x^*, \lambda^*) \ge L(x^*, \lambda),$$

получается следующее: пусть $(\tilde{x}, \tilde{\lambda})$ — седло, тогда любые изменения x игрока один будут приводить к тому, что он будет платить больше (обратно для игрока два). В обратную сторону, если, например, \tilde{x} не часть решения седловой задачи, то игрок один сможет изменить x при фиксированной $\tilde{\lambda}$ и платить меньше.

- Вопрос: одинаковый ли будет результат игры, если
 - 1) сначала будет выбирать первый игрок, а потом второй
 - 2) сначала будет выбирать второй игрок, а потом первый?

- Вопрос: одинаковый ли будет результат игры, если
 - 1) сначала будет выбирать первый игрок, а потом второй
 - 2) сначала будет выбирать второй игрок, а потом первый?
- Нет, как рассуждает первый игрок в первом случае: «если я выберу некоторый x, то второй игрок тут же будет максимизировать свой выигрыш: $\sup_{\lambda} L(x,\lambda)$, значит мне надо выбрать x так, чтобы $\inf_{x} \sup_{\lambda} L(x,\lambda)$ ». Противоположная ситуация во втором случае $\sup_{\lambda} \inf_{x} L(x,\lambda)$

- Вопрос: одинаковый ли будет результат игры, если
 - 1) сначала будет выбирать первый игрок, а потом второй
 - 2) сначала будет выбирать второй игрок, а потом первый?
- Нет, как рассуждает первый игрок в первом случае: «если я выберу некоторый x, то второй игрок тут же будет максимизировать свой выигрыш: $\sup_{\lambda} L(x,\lambda)$, значит мне надо выбрать x так, чтобы $\inf_{x} \sup_{\lambda} L(x,\lambda)$ ». Противоположная ситуация во втором случае $\sup_{\lambda} \inf_{x} L(x,\lambda)$
- Используя эту интуицию можно понять, что в общем случае, что

$$\sup_{\lambda} \inf_{x} L(x,\lambda) \leq \inf_{x} \sup_{\lambda} L(x,\lambda)$$

- Вопрос: одинаковый ли будет результат игры, если
 - 1) сначала будет выбирать первый игрок, а потом второй
 - 2) сначала будет выбирать второй игрок, а потом первый?
- Нет, как рассуждает первый игрок в первом случае: «если я выберу некоторый x, то второй игрок тут же будет максимизировать свой выигрыш: $\sup_{\lambda} L(x,\lambda)$, значит мне надо выбрать x так, чтобы $\inf_{x} \sup_{\lambda} L(x,\lambda)$ ». Противоположная ситуация во втором случае $\sup_{\lambda} \inf_{x} L(x,\lambda)$
- Используя эту интуицию можно понять, что в общем случае, что

$$\sup_{\lambda} \inf_{x} L(x,\lambda) \leq \inf_{x} \sup_{\lambda} L(x,\lambda)$$

• Формально:

$$\inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \lambda) \leq L(x, \lambda) \ \forall x \in \mathcal{X} \ \Rightarrow \ \sup_{\lambda \in \Lambda} \inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \lambda) \leq \sup_{\lambda \in \Lambda} L(x, \lambda) \ \forall x \in \mathcal{X}$$

- Вопрос: одинаковый ли будет результат игры, если
 - 1) сначала будет выбирать первый игрок, а потом второй
 - 2) сначала будет выбирать второй игрок, а потом первый?
- Нет, как рассуждает первый игрок в первом случае: «если я выберу некоторый x, то второй игрок тут же будет максимизировать свой выигрыш: $\sup_{\lambda} L(x,\lambda)$, значит мне надо выбрать x так, чтобы $\inf_{x} \sup_{\lambda} L(x,\lambda)$ ». Противоположная ситуация во втором случае $\sup_{\lambda} \inf_{x} L(x,\lambda)$
- Используя эту интуицию можно понять, что в общем случае, что

$$\sup_{\lambda} \inf_{x} L(x,\lambda) \leq \inf_{x} \sup_{\lambda} L(x,\lambda)$$

• Формально:

$$\inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \lambda) \leq L(x, \lambda) \ \forall x \in \mathcal{X} \ \Rightarrow \ \sup_{\lambda \in \Lambda} \inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \lambda) \leq \sup_{\lambda \in \Lambda} L(x, \lambda) \ \forall x \in \mathcal{X}$$

Откуда
$$\sup_{\lambda \in \Lambda} \inf_{\tilde{x} \in \mathcal{X}} L(\tilde{x}, \lambda) \leq \inf_{x \in \mathcal{X}} \sup_{\lambda \in \Lambda} L(x, \lambda)$$

Как две игры: $\sup_{\lambda}\inf_{x}L(x,\lambda)\inf_{x}\sup_{\lambda}L(x,\lambda)$ связаны с седловой точкой?

Как две игры: $\sup_{\lambda}\inf_{x}L(x,\lambda)\inf_{x}\sup_{\lambda}L(x,\lambda)$ связаны с седловой точкой?

Теорема о седловой точке

Множество седловых точек функции $L: \mathcal{X} \times \Lambda \to \mathbb{R}$ непустое тогда и только тогда, когда обе задачи $\sup_{\lambda} \inf_{x} L(x,\lambda)$ и $\inf_{x} \sup_{\lambda} L(x,\lambda)$ имеют решение и эти решения совпадают.

min max

max min g(X) = inS + (x, x) g(X) = inS + (x, y) $g(X) = Sup_{inS} + (x, y)$ $g(X) = Sup_{inS} + (x, y)$

Теорема Сиона-Какутани

Пусть \mathcal{X} , Λ выпуклые компактные множества, пусть также $L: \mathcal{X} \times \Lambda \to \mathbb{R}$ непрерывна, выпукла по x (для любого фиксированного λ) и вогнута по λ (для любого фиксированного) y. Тогда L имеет седловые точки на $\mathcal{X} \times \Lambda$.

Теорема Сиона-Какутани

Пусть \mathcal{X} , Λ выпуклые компактные множества, пусть также $L: \mathcal{X} \times \Lambda \to \mathbb{R}$ непрерывна, выпукла по x (для любого фиксированного λ) и вогнута по λ (для любого фиксированного) y. Тогда L имеет седловые точки на $\mathcal{X} \times \Lambda$.

Теорема Сиона-Какутани

Пусть \mathcal{X} , Λ выпуклые множества, и \mathcal{X} или Λ дополнительно компактно, пусть также $L: \mathcal{X} \times \Lambda \to \mathbb{R}$ непрерывна, выпукла по x (для любого фиксированного λ) и вогнута по λ (для любого фиксированного) y. Тогда (гарантий существования тут нет)

$$\sup_{\lambda \in \Lambda} \inf_{x \in \mathcal{X}} L(x, \lambda) = \inf_{x \in \mathcal{X}} \sup_{\lambda \in \Lambda} L(x, \lambda)$$

• Оптимизация функции Лагранжа — седловая задача.

- Оптимизация функции Лагранжа седловая задача.
- Седловые задачи возникают как отдельный большой класс задач.

- Оптимизация функции Лагранжа седловая задача.
- Седловые задачи возникают как отдельный большой класс задач.
- Сравним:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 $\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^d} f(x, \lambda).$

Вопрос: как решали первое? Может быть поможет решать

второе.

$$x^{lef1} = x^k - x x^f(x^k, \lambda^k)$$

$$\lambda^{lef1} = \lambda^k + x x^f(x^k, \lambda^k)$$

$$\lambda^{lef1} = \lambda^k + x x^f(x^k, \lambda^k)$$

- Оптимизация функции Лагранжа седловая задача.
- Седловые задачи возникают как отдельный большой класс задач.
- Сравним:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \qquad \min_{\mathbf{x} \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^d} f(\mathbf{x}, \lambda).$$

Вопрос: как решали первое? Может быть поможет решать второе.

• Градиентный спуск-подъем:

$$\begin{pmatrix} x^{k+1} \\ \lambda^{k+1} \end{pmatrix} = \begin{pmatrix} x^k \\ \lambda^k \end{pmatrix} - \gamma \begin{pmatrix} \nabla_x f(x^k, \lambda^k) \\ -\nabla_\lambda f(x^k, \lambda^k) \end{pmatrix}$$

• Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.

• Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.

ullet Рассмотрим задачу $\min_{x \in R} \max_{\lambda \in \mathbb{R}} \widehat{x\lambda}$. Стартовая точка (1,1).

- Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.
- Рассмотрим задачу $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x \lambda$. Стартовая точка (1,1). Вопрос: где решение? Точка (0,0).

- Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.
- Рассмотрим задачу $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x \lambda$. Стартовая точка (1,1). Вопрос: где решение? Точка (0,0).
- Вектор $\binom{\nabla_x f(x^k, \lambda^k)}{-\nabla_\lambda f(x^k, \lambda^k)}$ всегда ортогонален направлению на решение $\binom{x^k x^*}{\lambda^k \lambda^*}$. Вопрос: что это значит?

- Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.
- Рассмотрим задачу $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x \lambda$. Стартовая точка (1,1). Вопрос: где решение? Точка (0,0).
- Вектор $\binom{\nabla_x f(x^k, \lambda^k)}{-\nabla_\lambda f(x^k, \lambda^k)}$ всегда ортогонален направлению на решение $\binom{x^k-x^*}{\lambda^k-\lambda^*}$. Вопрос: что это значит? Метод не стремится к решению.

- Идея спуска-подъема неплохая и часто рабочая, но интуиция подсказывает, что у него есть не самые приятные аспекты.
- Рассмотрим задачу $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x \lambda$. Стартовая точка (1,1). Вопрос: где решение? Точка (0,0).
- Вектор $\binom{\nabla_x f(x^k, \lambda^k)}{-\nabla_\lambda f(x^k, \lambda^k)}$ всегда ортогонален направлению на решение $\binom{x^k-x^*}{\lambda^k-\lambda^*}$. Вопрос: что это значит? Метод не стремится к решению.
- Интуиция не является сторогой, но может подсказать, что нужно попробовать что-то чуть-чуть другое.

Метод экстраградиента

ExtraGradient

Алгоритм 1 **Прямо двойственный** алгоритм

Вход: стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

```
1: for k = 0, 1, ..., K - 1 do
```

2:
$$x^{k+1/2} = x^k - \eta \nabla_x f(x^k, y^k) \leftarrow$$

3:
$$\lambda^{(k+1/2)} = \lambda^k + \eta \nabla_{\lambda} f(x^k, \lambda^k) \subseteq$$

4:
$$x^{k+1} = (x^k) - \eta \nabla_x f(x^{k+1/2}) \lambda^{k+1/2}$$

3:
$$\lambda^{k+1/2} = \lambda^{k} + \eta \nabla_{\lambda} f(x^{k}, \lambda^{k})$$
4: $x^{k+1} = x^{k} - \eta \nabla_{x} f(x^{k+1/2}, \lambda^{k+1/2})$
5: $\lambda^{k+1} = \lambda^{k} + \eta \nabla_{\lambda} f(x^{k+1/2}, \lambda^{k+1/2})$

6: end for

Выход: x^K

Метод экстраградиента

Алгоритм 2 Прямо-двойственный алгоритм

Вход: стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

1: **for**
$$k = 0, 1, ..., K - 1$$
 do

2:
$$x^{k+1/2} = x^k - \eta \nabla_x f(x^k, y^k)$$

3:
$$\lambda^{k+1/2} = \lambda^k + \eta \nabla_{\lambda} f(x^k, \lambda^k)$$

4:
$$x^{k+1} = x^k - \eta \nabla_x f(x^{k+1/2}, \lambda^{k+1/2})$$

5:
$$\lambda^{k+1} = \lambda^k + \eta \nabla_{\lambda} f(x^{k+1/2}, \lambda^{k+1/2})$$

6: end for

Выход: x^K

Легко проверить, что для этого метода на задаче $\min_{x \in R} \max_{\lambda \in \mathbb{R}} x \lambda$, направления итогового градиентного шага в скалярном приведении с направлением на решение дает число больше 0, а значит острый угол.

$$Z = \begin{pmatrix} x \\ y \end{pmatrix} \qquad F(z) = \begin{pmatrix} \nabla_{x}f(xy) \\ -\nabla_{y}f(xy) \end{pmatrix}$$

$$Z^{k+1} = Z^{k} - \eta F(z^{k+1/k})$$

$$Z^{k+1} - Z^{k}|_{2}^{2} = \|z^{k} - \eta F(z^{k+1/k}) - z\|^{2} = \|z^{k} - \eta F(z^{k+1/k}) - z\|^{2} = \|z^{k} - z^{k}\|_{2}^{2} - 2\eta \langle F(z^{k+1/k}) \rangle, z^{k} - z^{k} + \|\eta F(z^{k+1/k})\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k+1/k}) \rangle, z^{k+1} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2}$$

$$= \|Z^{k} - Z\|_{2}^{2} - 2\eta \langle F(z^{k}) \rangle, z^{k+1/2} - z^{k}\|_{2}^{2} - z^{k}$$

 $\| z^{(r+1)} - z \|_{2}^{2} = \| z^{(r-2)} - z \|_{2}^{2} - 2\eta \langle F(z^{(r+1)}z); z^{(r+1)} - z \rangle$ $\| z^{(r+1)} - z \|_{2}^{2} = \| z^{(r-2)} - z \|_{2}^{2} - 2\eta \langle F(z^{(r+1)}z); z^{(r+1)} - z \rangle$ 112 10th 2 10th 3 + || 2 | - 2 | < F(2 k), 2 | (4/2 k+1) = || Z | || Z || || Z $-(\langle F(z^{|r+1/2}); z^{|r+1/2} - 2 \rangle + \langle F(z^{|r+1/2}); z^{|r+1/2} \rangle$ $+ \langle F(z^k); z^{k+1/2} - u \rangle$ $= -\left(F(z^{|H/2}); z^{|H/3} - 2) + \langle F(z^{|H/2}) - F(z^{|H/2}); z^{|H/3} - 2 \rangle + \langle F(z^{|H/2}) - F(z^{|H/2}); z^{|H/2} - 2 \rangle + \langle F(z^{|H/2}) - F(z^{|H/2}); z^{|H/2} - 2 \rangle + \langle F(z^{|H/2}) - F(z^{|H/2}); z^{|H/2} - 2 \rangle + \langle F(z^{|H/2}) - F(z^{|H/2}); z^{|H/2} - 2 \rangle + \langle F(z^{|H/2}) - 2 \rangle + \langle F(z^{|H/2}$ CBS = [141 - 2 (141)/2 >) ||Z(41-5||3+ || = (41) = (41) = ||3|-5||3-||3|-1|3||3| - 27< F(2/11/2); 2/14/2-2> + N2/1F(ZK1/2)-F(ZK)//2 + 112/12 7g f(41b) - L-lm Vx f(x12) - L-liagn. ||f(z1)-F(z2)||2 < 2 = 2 = ||Z1-Z2||2

- f(x,)) f(x, x)max f (12 x 11/2) -f (x, 12 2y 11/2) < (x, 12 2y $\|Z_{(t+1)} - S\|_{2}^{2} \leq \|S_{(t-1)} - \|S_{(t+1)} - S\|_{2}^{2}$ -27<F(2/11/2); 2/14//2-2> + NS TS 115 11475 - 5 12 113 n < 1 2F(Z(+1/2), Z(+1/2-2) < ||Z|-2||2-||Z|-||Z||2 Pf grd on. 5(x12) - f(x12) < 112 - 2112 - 112 | - 2112 f(xin) - f(xin) = 112°-2112 - 112°-2112

Рассмотрим специализированную задачу:

$$\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^n} L(x, \lambda) = f(x) - \lambda^T Ax - g(\lambda),$$

где функция $f - L_f$ -гладкая и выпуклая, а функция $g - L_g$ -гладкая и выпуклая.

Рассмотрим специализированную задачу:

$$\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^n} L(x, \lambda) = f(x) - \lambda^T Ax - g(\lambda),$$

где функция $f-L_f$ -гладкая и выпуклая, а функция $g-L_g$ -гладкая и выпуклая.

Примеры

• Минимизация с ограничениями вида равенств:

$$\min_{x \in \mathbb{R}^d} f(x)$$
s.t. $Ax = b$

Рассмотрим специализированную задачу:

$$\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^n} L(x, \lambda) = f(x) - \lambda^T Ax - g(\lambda),$$

где функция $f-L_f$ -гладкая и выпуклая, а функция $g-L_g$ -гладкая и выпуклая.

Примеры

• Минимизация с ограничениями вида равенств:

$$\min_{x \in \mathbb{R}^d} f(x)$$
s.t. $Ax = b$

Лагранж:

$$\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^n} L(x, \lambda) = f(x) - \lambda^T A x.$$

Примеры

• Линейная модель с регуляризатором:

$$\min_{x \in \mathbb{R}^d} f(x) + \ell(Ax)$$

Примеры

• Линейная модель с регуляризатором:

$$\min_{x \in \mathbb{R}^d} f(x) + \ell(Ax)$$

• Заметим, что для самосопряженной функции $\ell(Ax) = \ell^* * (Ax) = \max_{\lambda} \{ (Ax)^T \lambda - \ell^*(\lambda) \}$, тогда

$$\min_{x \in \mathbb{R}^d} \max_{\lambda \in \mathbb{R}^n} f(x) - \lambda^T \ell(Ax) - \ell^*(\lambda).$$

Алгоритм 3 Прямо-двойственный алгоритм

Вход: стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

1: **for** k = 0, 1, ..., K - 1 **do**

2:
$$x^{k+1} = x^k - \eta \left(\nabla f(x^k) - A^T \lambda^k \right)$$

3:
$$\lambda^{k+1} = \lambda^k - \eta \left(\nabla g(\lambda^k) + A(2x^{k+1} - x^k) \right)$$

4: end for

Выход: x^K

Алгоритм 4 Прямо-двойственный алгоритм

Вход: стартовая точка $x^0 \in \mathbb{R}^d$, количество итераций K

1: **for** k = 0, 1, ..., K - 1 **do**

2:
$$x^{k+1} = x^k - \eta \left(\nabla f(x^k) - A^T \lambda^k \right)$$

3:
$$\lambda^{k+1} = \lambda^k - \eta \left(\nabla g(\lambda^k) + A(2x^{k+1} - x^k) \right)$$

4: end for

Выход: x^K

Если вместо $(2x^{k+1}-x^k)$ подставить просто x^k получится просто спуск-подъем.

• Выпуклость и гладкость f:

$$L(x^{k+1}, \lambda^{k+1}) - L(x, \lambda^{k+1})$$

$$= f(x^{k+1}) - f(x) - (\lambda^{k+1})^T A(x^{k+1} - x)$$

$$= f(x^{k+1}) - f(x^k) + f(x^k) - f(x) - (\lambda^{k+1})^T A(x^{k+1} - x)$$

$$\leq \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L_f}{2} \| x^{k+1} - x^k \|_2^2$$

$$+ \langle \nabla f(x^k), x^k - x \rangle - (\lambda^{k+1})^T A(x^{k+1} - x)$$

$$= \langle \nabla f(x^k) - A^T \lambda^k, x^{k+1} - x \rangle + \frac{L_f}{2} \| x^{k+1} - x^k \|_2^2$$

$$- (\lambda^{k+1} - \lambda^k)^T A(x^{k+1} - x)$$

$$= \eta^{-1} \langle x^k - x^{k+1}, x^{k+1} - x \rangle + \frac{L_f}{2} \| x^{k+1} - x^k \|_2^2$$

$$- (\lambda^{k+1} - \lambda^k)^T A(x^{k+1} - x)$$

Выпуклость и гладкость g:

$$L(x^{k+1}, \lambda) - L(x^{k+1}, \lambda^{k+1})$$

$$= g(\lambda^{k+1}) - g(\lambda) - (x^{k+1})^T A^T (\lambda - \lambda^{k+1})$$

$$= g(\lambda^{k+1}) - g(\lambda^k) + g(\lambda^k) - g(\lambda) - (x^{k+1})^T A^T (\lambda - \lambda^{k+1})$$

$$\leq \langle \nabla g(\lambda^k), \lambda^{k+1} - \lambda^k \rangle + \frac{L_g}{2} \|\lambda^{k+1} - \lambda^k\|_2^2$$

$$+ \langle \nabla g(\lambda^k), \lambda^k - x \rangle - (x^{k+1})^T A^T (\lambda - \lambda^{k+1})$$

$$= \langle \nabla g(\lambda^k) + A(2x^{k+1} - x^k), \lambda^{k+1} - \lambda \rangle + \frac{L_g}{2} \|\lambda^{k+1} - \lambda^k\|_2^2$$

$$+ (x^k - x^{k+1})^T A^T (\lambda^{k+1} - \lambda)$$

$$= \eta^{-1} \langle \lambda^k - \lambda^{k+1}, \lambda^{k+1} - \lambda \rangle + \frac{L_g}{2} \|\lambda^{k+1} - \lambda^k\|_2^2$$

$$+ (x^k - x^{k+1})^T A^T (\lambda^{k+1} - \lambda)$$

• С предыдущих слайдов:

$$L(x^{k+1}, \lambda^{k+1}) - L(x, \lambda^{k+1}) \le \eta^{-1} \langle x^k - x^{k+1}, x^{k+1} - x \rangle + \frac{L_f}{2} ||x^{k+1} - x^k||_2^2$$
$$- (\lambda^{k+1} - \lambda^k)^T A(x^{k+1} - x)$$

$$L(x^{k+1}, \lambda) - L(x^{k+1}, \lambda^{k+1}) \le \eta^{-1} \langle \lambda^k - \lambda^{k+1}, \lambda^{k+1} - \lambda \rangle + \frac{L_g}{2} ||\lambda^{k+1} - \lambda^k||_2^2 + (x^k - x^{k+1})^T A^T (\lambda^{k+1} - \lambda)$$

• Суммируем:

$$L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \le \begin{pmatrix} (x^k - x^{k+1})^T \\ (\lambda^k - \lambda^{k+1})^T \end{pmatrix}^T \begin{pmatrix} \frac{1}{\eta} & A \\ A & \frac{1}{\eta} \end{pmatrix} \begin{pmatrix} x^{k+1} - x \\ \lambda^{k+1} - \lambda \end{pmatrix} + \frac{L_g}{2} \|\lambda^{k+1} - \lambda^k\|_2^2 + \frac{L_f}{2} \|x^{k+1} - x^k\|_2^2$$

• Индуцированное скалярное произведение: $\langle x, Py \rangle = \langle x, y \rangle_P$ и норма $\|x\|_P^2 = \langle x, x \rangle_P$. У нас сейчас скалярное произведение вида (z – вектор из x и $\lambda)$

$$\langle z^k - z^{k+1}, z^{k+1} - z \rangle_P$$
.

• Ровно, как для обычного скалярного произведения:

$$\begin{split} L(x^{k+1},\lambda) - L(x,\lambda^{k+1}) &\leq \langle z^k - z^{k+1}, z^{k+1} - z \rangle_P \\ &+ \frac{\max(L_g,L_f)}{2} \|z^{k+1} - z^k\|_2^2 \\ &= \frac{1}{2} \|z^k - z\|_P^2 - \frac{1}{2} \|z^{k+1} - z\|_P^2 - \frac{1}{2} \|z^{k+1} - z^k\|_P^2 \\ &+ \frac{\max(L_g,L_f)}{2} \|z^{k+1} - z^k\|_2^2. \end{split}$$

• Суммируем:

$$\sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right)$$

$$\leq \frac{1}{2} \|z^{0} - z\|_{P}^{2} - \frac{1}{2} \|z^{K} - z\|_{P}^{2}$$

$$+ \sum_{k=0}^{K-1} \left(\frac{\max(L_{g}, L_{f})}{2} \|z^{k+1} - z^{k}\|_{2}^{2} - \frac{1}{2} \|z^{k+1} - z^{k}\|_{P}^{2} \right).$$

• Суммируем:

$$\begin{split} \sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \\ \leq & \frac{1}{2} \| z^0 - z \|_P^2 - \frac{1}{2} \| z^K - z \|_P^2 \\ & + \sum_{k=0}^{K-1} \left(\frac{\max(L_g, L_f)}{2} \| z^{k+1} - z^k \|_2^2 - \frac{1}{2} \| z^{k+1} - z^k \|_P^2 \right). \end{split}$$

Вопрос: что потребуем?

• Суммируем:

$$\begin{split} &\sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \\ &\leq \frac{1}{2} \|z^0 - z\|_P^2 - \frac{1}{2} \|z^K - z\|_P^2 \\ &+ \sum_{k=0}^{K-1} \left(\frac{\max(L_g, L_f)}{2} \|z^{k+1} - z^k\|_2^2 - \frac{1}{2} \|z^{k+1} - z^k\|_P^2 \right). \end{split}$$

• Вопрос: что потребуем? P>0 и $P-\max(L_g,L_f)I>0$, чтобы "убить" последнюю строку и оставить $\|z^0-z\|^2$.

• Суммируем:

$$\begin{split} \sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \\ \leq & \frac{1}{2} \|z^{0} - z\|_{P}^{2} - \frac{1}{2} \|z^{K} - z\|_{P}^{2} \\ & + \sum_{k=0}^{K-1} \left(\frac{\max(L_{g}, L_{f})}{2} \|z^{k+1} - z^{k}\|_{2}^{2} - \frac{1}{2} \|z^{k+1} - z^{k}\|_{P}^{2} \right). \end{split}$$

• Вопрос: что потребуем? P>0 и $P-\max(L_g,L_f)I>0$, чтобы "убить" последнюю строку и оставить $\|z^0-z\|^2$. Легко проверить, что это достигается с помощью $\eta \leq \frac{1}{\max(L_g,L_f)+\|A\|_2}$.

• Делим на K и получаем

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \le \frac{1}{2K} \|z^0 - z\|_P^2.$$

Делим на К и получаем

$$\frac{1}{K} \sum_{k=0}^{K-1} \left(L(x^{k+1}, \lambda) - L(x, \lambda^{k+1}) \right) \le \frac{1}{2K} \|z^0 - z\|_P^2.$$

• Неравенство Йенсена для выпуклой и вогнутой функции дает

$$L\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k+1},\lambda\right) - L\left(x,\frac{1}{K}\sum_{k=0}^{K-1}\lambda^{k+1}\right) \leq \frac{1}{2K}\|z^0 - z\|_P^2.$$

Сходимость прямо-двойственного метода

Сходимость прямо-двойственного метода

Если в билинейной седловой задаче функция f является выпуклой и L_f -гладкой, а функция g является вогнутой и L_g -гладкой, то прямо-двойственный метод имеет следующую оценку сходимости для любого $x \in \mathbb{R}^d$

$$L\left(\frac{1}{K}\sum_{k=0}^{K-1}x^{k+1},\lambda\right) - L\left(x,\frac{1}{K}\sum_{k=0}^{K-1}\lambda^{k+1}\right) \leq \frac{1}{2K}\|z^0 - z\|_P^2.$$