

NLP Y **TRANSFORMERS**

¿Qué es el Procesamiento de Lenguaje Natural (NLP)?

Definición

El **Procesamiento de Lenguaje Natural (NLP)** es un campo interdisciplinario que combina:

- Ciencias de la Computación
- Inteligencia Artificial
- Lingüística

Objetivo: Estudiar las interacciones entre computadores y el lenguaje humano

Desafíos del NLP

- Ambigüedad: Una palabra puede tener múltiples significados
- **Contexto**: El significado depende del contexto
- Variabilidad: Diferentes formas de expresar la misma idea
- Cultura y región: Expresiones idiomáticas y regionalismos

Evolución Histórica: El Camino hacia los Transformers

Años 1990-2010: Machine Learning Clásico

- Modelos de Markov
- Support Vector Machines
- Naive Bayes

Años 2010-2017: Redes Neuronales Recurrentes

- RNNs: Procesamiento secuencial
- LSTMs: Memoria a largo plazo limitada
- **Seq2Seq**: Modelos encoder-decoder

2017-Presente: Era de los Transformers

- "Attention is All You Need" (Vaswani et al., 2017)
- Procesamiento paralelo
- Mecanismos de atención avanzados

Limitaciones de las RNNs

Z Procesamiento Secuencial

```
Input: "El gato está en la mesa"

RNN: [El] \rightarrow [gato] \rightarrow [está] \rightarrow [en] \rightarrow [la] \rightarrow [mesa]

\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow

h1 \rightarrow h2 \rightarrow h3 \rightarrow h4 \rightarrow h5 \rightarrow h6
```

- **Lento**: No se puede paralelizar
- Memoria limitada: Gradientes que desaparecen
- Dependencias largas: Dificultad para recordar información lejana

Numero Limitaciones técnicas

Problemas:

- Vanishing gradients: Pérdida de información en secuencias largas
- **Bottleneck**: Toda la información debe pasar por un estado oculto
- Recursos computacionales: No aprovecha GPUs eficientemente

Arquitectura Transformer: "Attention is All You Need"

Componentes Principales

1. Embeddings + Positional Encoding

- Convierte palabras en vectores numéricos (dimensión 512)
- Añade información posicional usando funciones seno/coseno

2. Encoder Stack (6 capas)

- Multi-Head Self-Attention
- Feed-Forward Networks
- Residual Connections + Layer Normalization

3. Decoder Stack (6 capas)

- Masked Multi-Head Self-Attention
- Multi-Head Cross-Attention
- Feed-Forward Networks
- Residual Connections + Layer Normalization

Encoder y Decoder en Transformers

Encoder

- **Procesa la entrada**: Convierte el texto de entrada en representaciones numéricas
- Comprende el contexto: Analiza relaciones entre todas las palabras simultáneamente
- **Self-attention**: Cada palabra "atiende" a todas las demás para entender su significado

Decoder

- **Genera la salida**: Produce el texto de respuesta palabra por palabra
- **Usa información del encoder**: Se basa en las representaciones creadas por el encoder
- Atención cruzada: Conecta la entrada procesada con la salida que se está generando

Ejemplo práctico

Traducción: "Hello world" → "Hola mundo"

- Encoder: Entiende "Hello world"
- **Decoder**: Genera "Hola mundo" basándose en esa comprensión

Arquitectura Transformer: "Attention is All You Need"

Mecanismo de Atención: El Corazón del Qué es la Atención? Transformer

Self-Attention: Paso a Paso

Paso 1: Crear Query, Key, Value

```
# Para cada palabra, creamos 3 vectores:
Q = Query # "¿Qué estoy buscando?"
K = Key # "¿Qué información tengo?"
V = Value # "¿Cuál es la información real?"
```

Convierte scores en probabilidades

Paso 3: Aplicar Softmax

attention_weights = softmax(scores)

Paso 2: Calcular Attention Scores

Producto punto entre Query y Key scores = $Q \times K^T / V(\dim_k)$

Combina información según importancia output = attention_weights × V

Paso 4: Ponderar Values

Mecanismo de Atención: El Corazón del Transformer

📊 Ejemplo Visual: "El gato come pescado"

```
Palabra: "come"
Query de "come" → busca: sujeto y objeto

Attention weights:
- "El": 0.1 (artículo, poca importancia)
- "gato": 0.7 (sujeto, muy importante)
- "come": 0.1 (autorreferencia)
- "pescado": 0.1 (objeto, importante pero menos que sujeto)
```


Multi-Head Attention: Múltiples Perspectivas

"Multi-Head Attention" (atención multi-cabezal) es un mecanismo clave en los modelos Transformer, que permite capturar dependencias y relaciones entre palabras o tokens desde múltiples perspectivas al mismo tiempo.

Diferentes "cabezas" pueden enfocarse en diferentes tipos de relaciones:

- Head 1: Relaciones sintácticas (sujeto-verbo)
- Head 2: Relaciones semánticas (causa-efecto)
- **Head 3**: Dependencias a larga distancia

Esquema de un Transformer

Ventajas de los Transformers

- RNN: Secuencial → Lento
- **Transformer**: Paralelo → Rápido

🧠 Memoria a Largo Plazo

- Puede relacionar palabras muy distantes en el texto
- No sufre de vanishing gradients

Atención Selectiva

- Se enfoca en información relevante
- Ignora ruido irrelevante

Versatilidad

- Traducción automática
- Generación de texto
- Análisis de sentimientos
- Respuesta a preguntas
- Y mucho más...

APLICACIONES

- 1. Procesamiento de Lenguaje Natural (NLP)
- 2. Respuesta a Preguntas (Question Answering)
- 3. Sistemas de Chatbots y Asistentes Virtuales
- 4. Traducción Automática
- 5. Resumen Automático de Textos
- 6. Corrección Automática y Sugerencias
- 7. Detección de Spam y Fake News
- 8. Extracción Automática de Información
- 9. SEO y Marketing Digital
- 10. Análisis y Minería de Opiniones
- 11. Generación y Evaluación de Textos
- 12. Análisis de Correos Electrónicos

Modelos Transformer Famosos

Organización	Parámetros	Especialidad
OpenAl	175B	Generación de texto
OpenAl	~100T	Multimodal
Google	345M	Comprensión
Google	137B	Conversación
Microsoft/NVIDIA	530B	Investigación
	OpenAl OpenAl Google Google	OpenAl 175B OpenAl ~100T Google 345M Google 137B

BERT: Bidirectional Encoder (solo encoder)

GPT: Generative Pre-trained (solo decoder)

T5: Text-to-Text Transfer (encoder-decoder completo)

• **Vision Transformer**: Para procesamiento de imágenes

¿Qué es BERT?

BERT (Bidirectional Encoder Representations from Transformers)

- Modelo de lenguaje desarrollado por Google (2018)
- Comprende el contexto de las palabras en ambas direcciones
- Pre-entrenado en grandes cantidades de texto
- Revolucionó el procesamiento de lenguaje natural (NLP)
- Aplicaciones: búsquedas, chatbots, análisis de sentimientos

Modelos BERT clásicos y variaciones

Modelo	Tarea típica	Descripción breve
bert-base-uncased	General NLP	BERT original (lowercase inglés)
bert-large-uncased	General NLP	BERT más grande (24 capas)
bert-base-cased	General NLP	Mantiene mayúsculas (cased)
bert-base-multilingual-cased	General NLP multilingüe	~104 idiomas
bert-base-chinese	Chino	Tokenización de caracteres chinos

Clasificación de texto (Text Classification)

¿Qué hace?

Asigna una etiqueta (o varias) a un texto completo.

- Ejemplos:
- Análisis de sentimiento: determinar si un texto es positivo, negativo o neutro.
- Clasificación temática: etiquetar noticias en categorías (deportes, política, economía).
- Detección de spam: ¿Es spam o no?

Modelos para clasificación de texto en general

Modelo	Particularidad	
cardiffnlp/twitter-roberta-base-sentiment	Clasificación de sentimiento en tweets	
textattack/bert-base-uncased-imdb	Sentimiento binario en IMDB	

Clasificación de tokens (Token Classification)

Asigna una etiqueta a cada palabra o token. Ej: detección de entidades nombradas (NER).

- Ejemplos:
- NER: reconocer personas, organizaciones, lugares en un texto.
- Ejemplo: "Elon Musk fundó SpaceX en 2002."

 PER ORG

Modelos para NER (Reconocimiento de Entidades)

Modelo	Idioma / Dataset	Tarea
dslim/bert-base-NER	Inglés (CoNLL)	Etiquetado BIO de personas, orgs, locs, misc
Davlan/bert-base-multilingual-cased-ner-hrl	Multilingüe NER	~40 idiomas

- 2. Análisis de sentimiento (Sentiment Analysis)
- ¿Qué hace?: Determina el tono o polaridad del texto (positivo, negativo, neutro o escalas más detalladas).
- Ejemplos:
 - Opiniones de productos: «Muy bueno» → Positivo
 - Reviews en Amazon, Yelp, Twitter.

Modelos fine-tuned para análisis de sentimiento

Modelo	Idioma / Dataset	Salida típica
nlptown/bert-base-multilingual-uncased- sentiment	Multi-idioma, reseñas	1-5 estrellas
Sentiment		
${\tt distilbert-base-uncased-finetuned-sst-2-english}$	Inglés (SST-2)	POSITIVE / NEGATIVE
finiteautomata/bertweet-base-sentiment-analysis	Inglés, tweets	Sentiment Twitter

Respuesta a preguntas (Question Answering / QA)

Le das un contexto + una pregunta, y el modelo extrae la respuesta directamente del texto.

Ejemplo:

```
context = "Elon Musk fundó SpaceX en 2002."
question = "¿Cuándo fue fundada SpaceX?"
```


Modelos específicos para preguntas y respuestas (QA)

Modelo	Task
deepset/bert-base-cased-squad2	QA sobre SQuAD 2.0
distilbert-base-cased-distilled-squad	DistilBERT para QA

