PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵; C07D 239/02, 213/02, 265/28 C07D 247/00, 247/02, C07C 229/00 C07D 307/02, A01N 43/40 A01N 43/06, 43/08, A61K 31/03 A61K 31/34, 31/495, 31/44 A61K 31/505

(11) International Publication Number:

WO 92/00968

AI

(43) International Publication Date:

23 January 1992 (23.01.92)

(21) International Application Number:

PCT/US91/04795

(22) International Filing Date:

8 July 1991 (08.07.91)

(30) Priority data:

550,598	10 July 1990 (10.07.90)	US
550,772	10 July 1990 (10.07.90)	US
645,852	25 January 1991 (25.01.91)	US
662,544	28 February 1991 (28.02.91)	US
662,589	28 February 1991 (28,82.91)	US

(71) Applicant (for all designated States except US): SMITH-KLINE BEECHAM CORPORATION [US/US]; Corporate Patents-U.S., 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406 (US).

(72) Inventors; and

(75) Inventors/ 2016
(75) Inventors/Applicants (for US only): BENDER, Paul, Elliot [US/US]; 504 Lilac Lane, Cherry Hill, NJ 08003 (US). CHRISTENSEN, Siegfried, Benjamin, IV [US/US]; 2216 Race Street, Philadelphia, PA 19103 (US). ESSER, Klaus, Max [US/US]; 200 Hickory Drive, Downingtown, PA 19335 (US). FORSTER, Cornelia, Justa [US/US]; 2605 Windsor Drive, Bensalem, PA 19020 (US). RYAN, Michael, Dominic [CA/US]; 309 Patrick Way, Royersford, PA 19468 (US). SIMON, Philip, Leonard [US/US]; 18 Leigh Court, Randelph, NJ 07869 (US).

(74) Agents: DINNER, Dara, L. et al.; Smithkline Beecham Corporation, Corporate Patents-U.S. (UW2220), 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406 (US).

(81) Designated States: AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GA (OAPI patent), GR (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU (European patent), MC, MG, ML (OAPI patent), MN, MR (OAPI patent), MW, NL (European patent), NO, PL, RO, SD, SE (European patent), SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI patent), US.

... X \$2..9. ... X

Published

With international search report.

(54) Title: OXAMIDES

(57) Abstract

Novel examide derivatives are described which inhibit the production of TNF and are useful in the treatment of disease states mediated or exacerbated by TNF production. The compounds of the present invention are also useful as inhibitors of PDE IV and are therefor useful in the treatment of disease states mediated or exacerbated thereby.

+ DESIGNATIONS OF "SU"

It is under examination in which parts of the former Soviet Union the designation of the Soviet Union has effect.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

4 3	Austria	28	Spain	MG	Madagascar
AS:	Australia	\$1.5	Finland	ME.	kduli
88	Barbados	FR.	France	98%	Mongolia
88 88	Belgium	GA	Gabon	*4%	Mauritzois
\$6.	Burkins Faso	G8	United Kingdom	84W	Restaui
	Sulgerie	GN	Guinca	NE.	Netherlands
8 47		C8	Greece	NO.	Norway
8.3	Bunin	HU	Hungary	\$1.	Poland
* ×	Brazil	3.5	Rafy	80	Romania
CA	Canada	38	Ispan	80	Sudan
CF.	Central African Republic	%8 %8	Democratic People's Republic	SE	Sweden
CC	Congo	22.5	of Korea	SN	Senegal
CH.	Switzerland	- 1700		SU	Service Union
C)	Côte d'Isoire	**	Republic of Koraz	70	Chad
CM	Cameroon	£.3	Liechtenstein	TC	Togo
CS	Chechoslovskia	£.8K	Sri Lanks	US.	United States of America
DE.	Germany	£.83	Lucumbourg	e.a	Smith arrives on succession
98G	Denmark	**C	Reconscio		

WO 92/00968 PCT/US91/04795

5

20

25

-1-

OXAMIDES

10 Field of Invention

The present invention relates to novel oxamide derivatives, pharmaceutical compositions containing these compounds and their use in treating allergic and inflammatory diseases and for inhibiting the production of Tumor Necrosis Factor (TNF).

Background of the Invention

Bronchial asthma is a complex, multifactorial disease characterized by reversible narrowing of the airway and hyperreactivity of the respiratory tract to external stimuli.

Identification of novel therapeutic agents for asthma is made difficult by the fact that multiple mediators are responsible for the development of the disease. Thus, it seems unlikely that eliminating the effects of a single mediator will have a substantial effect on all three components of chronic asthma. An alternative to the "mediator approach" is to regulate the activity of the cells responsible for the pathophysiology of the disease.

One such way is by elevating levels of cAMP (adenosine cyclic 3',5'-monophosphate). Cyclic AMP has been shown to be a second messenger mediating the biologic responses to a wide range of hormones, neurotransmitters and drugs; Krebs Endocrinology Proceedings of the 4th International Congress Excerpta Medica, pgs 17-29, 1973). When the appropriate agonist binds to specific cell surface receptors, adenylate cyclase is activated which converts Mg⁺²-ATP to cAMP at an accelerated rate.

Cyclic AMP modulates the activity of most, if not all, of the cells that contribute to the pathophysiology of extrinsic (allergic) asthma. As such, an elevation of cAMP would produce beneficial effects including: 1) airway smooth muscle relaxation, 2) inhibition of mast cell mediator release, 3) suppression of neutrophil de-granulation, 4) inhibition of basophil degranulation, and 5) inhibition of monocyte and macrophage activation. Hence, compounds that activate adenylate cyclase or inhibit PDE should be effective in suppressing the inappropriate activation of airway smooth muscle and a wide variety of inflammatory cells. The principal cellular mechanism for the inactivation of cAMP is hydrolysis of the 3'-phosphodiester bond by one or more of a family of isozymes referred to as cyclic nucleotide phosphodiesterases (PDEs).

10

30

35

It has now been shown that a distinct cyclic nucleotide phosphodiesterase (PDE) isozyme, PDE IV, is responsible for cyclic AMP breakdown in airway smooth muscle and inflammatory cells. (Torphy, "Phosphodiesterase Isozymes:Potential Targets for Novel Anti-asthmatic Agents" in New Drugs for Asthma, Barnes, ed. IBC Technical Services Ltd. (1989)). Research indicates that inhibition of this enzyme not only produces airway smooth muscle relaxation, but also suppresses degranulation of mast cells, basophils and neutrophils along with inhibiting the activation of monocytes and neutrophils. Moreover, the beneficial effects of PDE IV inhibitors are markedly potentiated when adenylate cyclase activity of target cells is elevated by appropriate hormones or autocoids, as would be the case in vivo. Thus PDE IV inhibitors would be effective in the asthmatic lung, where levels of prostaglandin E2 and prostacyclin (activators of adenylate cyclase) are elevated. Such compounds would offer a unique approach toward the pharmacotherapy of bronchial asthma and possess significant therapeutic advantages over agents currently on the market.

The compounds of this invention also inhibit the in vivo production of

Tumor Necrosis Factor (TNF), a serum glycoprotein. Excessive or unregulated TNF
production is implicated in mediating or exacerbating a number of diseases including
rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis and other arthritic
conditions; sepsis, septic shock, endotoxic shock, gram negative sepsis, toxic shock
syndrome, adult respiratory distress syndrome, cerebral malaria, chronic pulmonary

inflammatory disease, silicosis, pulmonary sarcoisosis, bone resorption diseases,
reperfusion injury, graft vs. host reaction, allograft rejections, fever and myalgias due to
infection, such as influenza, cachexia secondary to infection or malignancy, cachexia,
secondary to acquired immune deficiency syndrome (AIDS), AIDS, ARC (AIDS related
complex), keloid formation, scar tissue formation, Crohn's disease, ulcerative colitis, or
pyresis.

AIDS results from the infection of T lymphocytes with Human Immunodeficiency Virus (HIV). At least three types or strains of HIV have been identified, i.e., HIV-1, HIV-2 and HIV-3. As a consequence of HIV infection, T-cell mediated immunity is impaired and infected individuals manifest severe opportunistic infections and/or unusual neoplasms. HIV entry into the T lymphocyte requires T lymphocyte activation. Other viruses, such as HIV-1, HIV-2 infect T lymphocytes after T Cell activation and such virus protein expression and/or replication is mediated or maintained by such T cell activation. Once an activated T lymphocyte is infected with HIV, the T lymphocyte must continue to be maintained in an activated state to permit HIV gene expression and/or HIV replication. Monokines, specifically TNF, are implicated in activated T-cell mediated HIV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with monokine activity such as by inhibition of monokine production, notably TNF, in an HIV-infected individual aids

10

35

in limiting the maintenance of T cell activation, thereby reducing the progression of HIV infectivity in previously uninfected cells which results in a slowing or elimination of the progression of immune dysfunction caused by HIV infection. Monocytes, macrophages, and related cells, such as kupffer and glial cells, have also been implicated in maintenance of the HIV infection. These cells, like T-cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells. [See Rosenberg et al., The Immunopathogenesis of HIV Infection, Advances in Immunology, Vol. 57, (1989)]. Monokines, such as TNF, have been shown to activate HIV replication in monocytes and/or macrophages [See Poli, et al., Proc. Natl. Acad. Sci., 87:782-784 (1990)], therefore, inhibition of monokine production or activity aids in limiting HIV progression as stated above for T-cells.

TNF has also been implicated in various roles with other viral infections, such as the cytomegalia virus (CMV), influenza virus, and the herpes virus for similar reasons as those noted.

The ability to control the adverse effects of TNF is furthered by the use of the compounds which inhibit TNF in mammals who are in need of such use. There remains a need for compounds which are useful in treating TNF mediated disease states which are exacerbated or caused by the excessive and/or unregulated production of TNF.

20 Summary of the Invention

This invention relates to the novel compounds of Formula (1), as shown below, and pharmaceutical compositions comprising a compound of Formula (1), or pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.

This invention also relates to a method of inhibiting TNF production in a

2.5 mammal, including humans, which process comprises administering to a mammal in need of such treatment, an effective TNF inhibiting amount of a compound of Formula (1). This method may be used for the prophylactic treatment or prevention of certain TNF mediated disease states amenable thereto.

This invention also relates to a method of treating a human afflicted with a human immunodeficiency virus (HIV), which comprises administering to such human an effective TNF inhibiting amount of a compound of Formula (1).

The compounds of Formula (1) are also useful in the treatment of additional viral infections, where such viruses are sensitive to upregulation by TNF or will elicit TNF production in vivo. The viruses contemplated for treatment herein are those which are sensitive to inhibition, such as by decreased replication, directly or indirectly, by the TNF inhibitors of Formula (1). Such viruses include, but are not limited to; HIV-1, HIV-2 and HIV-3 as noted above, Cytomegalovirus (CMV), Influenza, and Herpes Simplex.

This invention also relates to a method of inhibiting phosphodiesterase IV in an animal, including humans, which comprises administering to an animal in need thereof an effective amount of a compound of Formula (1a), as shown below.

The invention further provides a method for the treatment of allergic and inflammatory disease which comprises administering to a subject in need thereof, an effective amount of a compound of Formula (1a).

The invention also provides a method for the treatment of asthma which comprises administering to a subject in need thereof, an effective amount of a compound of Formula (1a).

1 0 DETAILED DESCRIPTION OF THE INVENTION

The compounds of this invention useful in treating a TNF mediated disease by inhibition or reduction of the *in vivo* levels of TNF are represented by the structure:

FORMULA (1)

15 wherein:

R₁ is C₄-C₆ cyclic alkyl, optionally substituted by one to three methyl groups or one ethyl group; C₁₋₇ alkyl optionally substituted by 1 or more halogens, -(CH₂)_nCOO-(CH₂)_mCH₃, (CH₂)_nO(CH₂)_mCH₃, (CH₂)_pOH, -CH₂C₅H₉,

20

n is 2 to 4:

m is 0 to 2;

p is 2 to 4;

X is YR2, halogen, nitro, amino, C₁₋₂ dialkylamine, C₁₋₂ monoalkylamine, or formyl amine;

25

Y is O or $S(O)_{m}$:

m' is 0 to 2:

R₂ is -CH₃ or -CH₂CH₃ optionally substituted by 1 or more halogens;

R₃ is H, OR₇ wherein R₇ as alkyl can be optionally substituted by 1 or more fluorines, CN, F, C₁₋₂ alkyl, C₁₋₂ alkyl substituted by 1 or more fluorines, C(O)OR₇,

3.0 CH₂NR₇R₈, CH₂OR₇, C(O)NR₇R₈, or CH₂NR₇C(O)C(O)NR₇R₈; provided that when R₃ is OH then R₁₂ is hydrogen or CH₃;

R₄ is H, F, CN, C₁₋₂ alkyl optionally substituted by 1 or more fluorines, C(O)NR₇R₈, C(O)OR₇;

R₁₂ is hydrogen, F, CN, or -CH₃ optionally substituted by 1 to 3 fluorines or R₃ and R₁₂ together can form a (=O) keto moiety;

 R_5 is H, OR7, optionally substituted -(CH2) $_{\rm m}$ Ar, or optionally substituted

C1-6 alkyl;

Ar is 2-, 3- or 4-pyridyl, pyrimidyl, pyridazyl, 2-imidazolyl, morpholino, or

phenyl;

5

15

R6 is OR8, NR7OR7, NR7-NR7R8, NR7R8, -OCH2-NR7C(O)R11,

-OCH₂C(O)NR₉R₁₀, -OCH(R₇)-OC(O)C₁₋₄ alkyl, -OCH(R₇)-C(O)OC₁₋₃ alkyl;

R7 is hydrogen, or C1-3 alkyl;

R8 is hydrogen, C1-3 alkyl or aryl;

10 R9 is hydrogen, CH3, CH2CH3, or CH2CH2OH;

R₁₀ is hydrogen, CH₃, CH₂CH₃, CH₂CH₂OH, or CH₂CONH₂;

R₁₁ is CH₃ or phenyl; and

q is 0 or 1;

provided that R_1 is not C_{2-4} alkyl when R_6 is OH or OCH₃, X is YR₂, and R₂ is CH₃ or CH₂CH₃, and Y is oxygen;

and pharmaceutically acceptable salts thereof.

This invention also relates to use of the novel compounds of Formula (1a) for inhibition of phosphodiesterase IV, which method comprises administering to an animal, including humans, in need thereof, an effective PDE IV inhibiting amount of a compound of Formula (1a).

The compounds of Formula (1a), readily recognizable as a subgenus of the compounds of Formula (1) are represented by the structure:

Formula (1a)

wherein:

25

 R_1 is C4-C6 cyclic alkyl, optionally substituted by one to three methyl groups, or one ethyl group; $C_{1.4}$ alkyl substituted by 1 or more fluorines, $C_{2.7}$ alkyl, $(CH_2)_nO(CH_2)_mCH_3$, $-(CH_2)_nCOO(CH_2)_mCH_3$, $-CH_2C_5H_9$, $CH_2-C_3H_5$, or

n is 2 to 4:

m is 0 to 2;

20

phenyl;

X is YR2;

Y is O or $S(O)_{m}$;

m' is 0 to 2;

R2 is -CH3 or -CH2CH3 optionally substituted by 1 or more fluorines;

5 R₃ is selected from H, OR7 wherein R7 as alkyl may be optionally

substituted by 1 or more fluorines, CN, F, C_{1-2} alkyl optionally substituted by 1 or more fluorines; $C(O)OR_7$, $CH_2NR_7R_8$, CH_2OR_7 , $C(O)NR_7R_8$ or $CH_2NHC(O)C(O)NR_7R_8$; provided that when R_3 is OH then R_{12} is hydrogen or methyl;

R₁₂ is hydrogen, F, CN, or -CH₃ optionally substituted by 1 to 3 fluorines;

10 or R3 and R12 together may form a (=0) keto moiety;

R₄ is H, C₁₋₂ alkyl optionally substituted by 1 or more fluorines, CN, C(O)NR₇R₈, C(O)OR₇;

 R_5 is H, OR7, optionally substituted C_{1-6} alkyl or optionally substituted -(CH2)mAr;

Ar is 2-, 3- or 4-pyridyl, pyrimidyl, pyridazyl, 2-imidazolyl, morpholino, or

R6 is OR7, NR7OR7, NR7R8, NR7-NR7R8, -OCH2-NR7C(O)R11,

-OCH₂C(O)NR₉R₁₀, -OCH(R₇)-OC(O)C₁₋₄ alkyl, -OCH(R₇)-C(O)OC₁₋₃alkyl,

-NR, CH2-CNOS OF NR, (CH2) OF

R7 and R8 are independently hydrogen, or C1-3 alkyl;

R9 is hydrogen, CH3, -CH2CH3, or -CH2CH2OH;

R₁₀ is hydrogen, CH₃ CH₂CH₃, CH₂CH₂OH, or CH₂CONH₂;

Rit is CH3 or phenyl; and

q is 0 or 1;

2.5 provided that R₁ is not C₂₋₄ alkyl when R₆ is OH or OCH₃, X is YR₂, R₂ is CH₃ or CH₂CH₃, and Y is oxygen;

and pharmaceutically acceptable salts thereof.

Also included are the pharmaceutically acceptable salt complexes of those 3 0 compounds of Formulas (1) and (1a) which can form salts.

Preferred optional subtituents for the R₅ term of both Formulas (1) and (1a) compounds for the -(CH₂)_mAr and C₁₋₆ alkyl groups are substituents selected from hydrogen, -CH₂(CH₂)_t-NR₇C(O)CH₃, wherein t is 0 to 5; F, Br, Cl, C₁₋₄ alkoxy, NO₂,

 $\begin{array}{lll} 3.5 & \text{CN}, -\text{NR}_7R_8, \text{CO}_2R_7, \text{OR}_7, \text{C(O)}\text{NR}_7R_8, \text{C(S)}\text{NR}_7R_8, -\text{NR}_7\text{C(=NCN)-S-(C}_{1-3} \text{ alkyl)}, \\ & -\text{NR}_7\text{C(=NCN)-NR}_7R_8, -\text{NR}_7\text{C(O)}\text{NR}_7R_8, -\text{NR}_7\text{C(O)}\text{C(O)-NR}_7R_8, -\text{C(=NR}_7)-\text{NR}_7R_8, \\ & -\text{S(O)}_m\text{CH}_3, -\text{C(=NR}_7)-\text{S(C}_{1-3} \text{ alkyl)}, \text{ NR}_7-\text{S(O)}_2-\text{(C}_{1-3} \text{alkyl)}, -\text{OC(O)-R}_7, \end{array}$

 $-OC(O)-NR_7R_{8_1}NR_7S(O)_2CF_{3_1}-NR_7C(O)C(O)-OR_{7_1}-NR_7C(O)R_{7_1}-NR_7C(O)OR_{7_2}$

Alternatively the R7R8 substituents in the NR7R8 moiety can cyclize to form a 5 or 6 membered ring which may optionally contain some unsaturation and/or contain an additional heteroatom selected from oxygen, nitrogen, or sulfur.

Preferred R₅ groups for both Formula (1) and (1a) compounds are H, OH, CH₃, -CH₂-(NHC(O)CH₃)-C₆H₄), or -[(NHAc)]-C₆H₄); prefereably the NHAc moiety is substituted in the para position of the phenyl ring; and R₇ as hydrogen. When R₅ is OR₇, R₇ is a lower alkyl of 1 to 10 carbon atoms.

Preferred alkyl groups when the R₆ term is -OCH(R₇)-OC(O)C₁₋₄ alkyl is t-10 butyl and when R₆ is -OCH(R₇)-C(O)OC₁₋₃ alkyl, it is CH₃, or CH₂CH₃ respectively. Preferred R₆ groups for both Formula (1) and (1a) are -NH₂, -OH, -OCH₃, -NHOH, -

Alternatively for R₆ moiety the R₇R₈ and R₉R₁₀ terms in the NR₇R₈, and NR₉R₁₀ groups repectively, may also cyclize to form a 5 or 6 membered ring which may optionally contain some unsaturation and/or contain an additional heteroatom selected from oxygen, nitrogen, or sulfur.

Preferred R₃ substitutions are fluorine, cyano, C₁₋₂ alkyl optionally substituted by 1 or more fluorines. Preferred fluorine substituted alkyl groups are -CF₃, -CHF₂, -CF₂CHF₂ or -CH₂CHF₂. When R₃ is OR₇ the R₇ term is prefereably hydrogen, and when R₃ or R₄ is C(O)OR₇, R₇ is preferably 1-2 carbons.

Preferred R₄ substitution for both Formula (1) and (1a) compounds are hydrogen, CN, or C₁₋₂ alkyl optionally substituted by 1 or more fluorine. The Ar ring for both Formula (1) and (1a) compounds is preferably substituted in the para position. Preferred Ar groups are phenyl or a 2-, 3-, or 4- pyridyl.

When R₁ for the compounds of both Formula (1) and (1a) is a C₁₋₇ alkyl substituted by 1 or more halogens, the halogens are preferably fluorine and chlorine, more preferably a C₁₋₄ alkyl substituted by 1 or more fluorine, more preferably 1 to 3 times by fluorine. The most preferred chain length is one or two carbons, and most preferred is a -CF₃, -CHF₂, -CF₂CHF₂ or -CH₂CHF₂ moiety. More preferred are those compounds in which R₁ is cyclopentyl, -CHF₂, or CH₃. Most preferred are those compounds in which R₁ is cyclopentyl.

When R_2 for the compounds of both Formula (1) and (1a) is a $C_{1\cdot 2}$ alkyl substituted by 1 or more halogens, the halogens are preferably fluorine and chlorine, more preferably substituted 1 or more times by fluorine, more preferably 1 to 3 times by fluorine.

3.5 More preferred is a -CF₃, CHF₂, CF₂CHF₂ or -CH₂CHF₂ molety. Most preferred is a CHF₂ molety.

20

25

30

Preferred X groups for both Formulas (1) and (1a) are those wherein X is YR₂, Y is oxygen, and R₂ is methyl, or fluoro-substituted alkyl, specifically a C₁₋₂ alkyl, such as a -CF₃, CHF₂, or -CH₂CHF₂ moiety. For those compounds of Formula (1) wherein the R₂ moiety is substituted by 1 or more halogens, the halogens are preferably fluorine and chlorine.

Preferred compounds of both Formula (1) and (1a) are where R₁ is cyclopentyl, methyl or CHF₂, CF₃, -CH₂CHF₂ or -CF₂CHF₂; R₂ is methyl, CH₂F, CHF₂, CF₃, -CH₂CHF₂ or -CF₂CHF₂; X is YR₂; R₄ is hydrogen or CH₃; R₃ is hydrogen, CH₃, fluoro substituted C₁₋₂ alkyl; C(O)OCH₃, C(O)OCH₂CH₃, CONH₂,

10 CH2OH, F or CN; R12 is hydrogen, methyl, F, or CN; R5 is H, OH, CH3,

-CH₂—
$$\bigcirc$$
-NHAC, or — \bigcirc -NHAC; and R₆ is -NH₂, -OH, -OCH₃, -NHOH, -NHNH₂, - N(CH₃)₂, -NH-CH₂— \bigcirc -NO₂; or -NH(CH₂)₀-(2, 3, or 4-pyridyl).

More preferred are the compounds of Formula (1) and (1a) wherein R₁ is cyclopentyl or CHF₂, R₂ is methyl or CHF₂; Y is oxygen; R₃ is H, CN or methyl; R₄ is hydrogen; R₁₂ is hydrogen or methyl; R₅ is hydrogen or methyl; and R₆ is -NH₂, OH, -OCH₃ or -NHOH.

The compounds of Formula (1) when R₁ is a C₂₋₄ alkyl and R₆ is OH or OCH₃, X is YR₂, and R₂ is CH₃ or CH₂CH₃, and Y is oxygen are also useful as TNF inhibitors and in the treatment of disease states therein. This subgenus of compounds is referred to hereinafter as Formula (1b).

Especially preferred compounds for use as both TNF inhibitors and in inhibiting PDE IV are:

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide;

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)propyl]oxamide

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)-2-methylpropyl]oxamide

N-[2-Cyano-2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide;

N-[2-Cyano-2-methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)-

ethyl]oxamide;

N-[2-(3-Cyclopentylexy-4-methoxyphenyl)ethyl]-N-methyloxamide

N-[2-(4-Diffuromethoxy-3-methoxyphenyl)ethyl]oxamide;

N-[2-(3-Diffuromethoxy-4-methoxyphenyl)ethyl]oxamide; and

N-[(2-(3,4-Bis-difluoromethoxyphenyl)ethyl]oxamide.

3 5 Another aspect of the present invention is the novel pharmaceutical compositions of Formula (1) which comprises a pharmaceutically acceptable carrier or diluent and a compound of Formula (1) or a pharmaceutically acceptable salt thereof.

15

25

30

35

The compounds of the present invention may contain one or more asymmetric carbon atoms and may exist in racemic and optically active forms. All of these compounds are contemplated to be within the scope of the present invention.

By the term C₁₋₇ "lower alkyl" or "alkyl" groups as used herein is meant to include both straight or branched chain radicals of 1 to 7 carbon atoms, unless the chain length is limited thereto, including, but not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, and the like.

By the term "aryl" as used herein, in any combination, such as "aryloxy", or "arylalkyl", is meant phenyl, or naphthyl.

By the term "halo" as used herein is meant all halogens, i.e., chloro, fluoro, bromo and iodo.

By the term "inhibiting the production of IL-1" or "inhibiting the production of TNF" is meant

- a) a decrease of excessive in vivo IL-1 or TNF levels, respectively, in a human to normal levels or below normal levels by inhibition of the in vivo release of IL-1 by all cells, including but not limited to monocytes or macrophages;
- b) a down regulation, at the translational or transcription level, of excessive in <u>vivo</u> IL-1 or TNF levels, respectively, in a human to normal levels or below normal levels; or
- 20 c) a down regulation, by inhibition of the direct synthesis of IL-1 or TNF levels as a postranslational event.

By the term "TNF mediated disease or disease states" is meant any and all disease states in which TNF plays a role, either by production of TNF itself, or by TNF causing another cytokine to be released, such as but not limited to IL-1, or IL-6. A disease state in which IL-1, for instance is a major component, and whose production or action, is exacerbated or secreted in response to TNF, would therefore be considered a disease state mediated by TNF. As TNF-β (also known as lymphotoxin) has close structural homology with TNF-α (also known as cachectin) and since each induces similar biologic responses and binds to the same cellular receptor, both TNF-α and TNF-β are inhibited by the compounds of the present invention and thus are herein referred to collectively as "TNF" unless specifically delineated otherwise. Preferably TNF-α is inhibited.

By the term "cytokine" as used herein is meant any secreted polypeptide that affects the functions of other cells, and is a molecule which modulates interactions between cells in the immune or inflammatory response. A cytokine includes, but is not limited to monokines and lymphokines regardless of which cells produce them. For instance, a monokine is generally referred to as being produced and secreted by a mononuclear cell, such as a macrophage and/or monocyte but many other cells produce monokines, such as natural killer cells, fibroblasts, basophils, neutraphils, endothelial cells, brain astrocytes,

10

15

bone marrow stromal cells, epideral keratinocytes, and β- lymphocytes. Lymphokines are generally referred to as being produced by lymphoctye cells. Examples of cytokines for the present invention include, but are not limited to, Interleukin-1 (IL-1), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Turnor Necrosis Factor-alpha (TNFα) and Turnor Necrosis Factor beta (TNFβ).

The inhibition of a cytokine, contemplated by the present invention, for use in the treatment of a HIV-infected human, must be a cytokine which is implicated in (a) the initiation and/or maintenance of T cell activation and/or activated T cell-mediated HIV gene expression and/or replication, and/or (b) any cytokine-mediated disease associated problem such as cachexia or muscle degeneration. The cytokine specifically desired to be inhibited is TNF α.

All of the compounds of Formula (1) are useful in the method of inhibiting the production of TNF, preferably by macrophages, monocytes or macrophages and monocytes in a human in need thereof. All of the compounds of Formula (1a) are useful in the method of inhibiting PDE IV and in treatment of disease states mediated thereby.

The preparation of the compounds of Formula (1) can be carried out by one of skill in the art according to the procedures outlined in the Examples, <u>infra</u>. The preparation of any remaining compounds of Formula (1)

2.0 not described therein may be prepared by the analogous processes disclosed herein, which comprises:

a) for compounds wherein R₃ is H, C₁₋₂ alkyl optionally substituted by 1 or more fluorines, R₄ is H, CH₃, CN, or CO₂R, R₅ and R₁₂ are H, reacting a compound of the Formula (2)

25

30

with nitroalkane, such as nitromethane, in a suitable solvent such as acetic acid with a catalyst at 80-1015°C or using conditions described in Shales <u>et al., J. Amer. Chem.Soc.</u>, <u>74</u>, 4486 (1952) to provide a compound of the Formula (3), wherein R₄ is CN, H, CH₃ or CO₂R.

10

Reduction with a suitable reductant such as lithium aluminum hydride or hydrogen with a catalyst in the presence of an acid, except where X is SO, SO_2 or NO_2 , Br, I and formyl amine, and suitable modification of the R_4 nitrile or ester moiety to yield the amide as taught herein, provides a compound of the Formula (4) wherein R_3 , R_4 , and R_5 are as defined for Formula (1).

Formula (4).

Compounds of Formula (4) wherein R₃, is other than CH₂NR₇R₈ or CH₂NR₇C(O)C(O)NR₇R₈, unless protected by a group such as t-Butoxycarbonyl or any other easily removed amino protecting groups well known to those skilled in the art; and R₁₂, and R₅ are as defined for Formula (1) may be further modified, such as by imine formation with an appropriate aldehyde, followed by reduction, and further modification to produce compounds of Formula (4) wherein R₅ is other than hydrogen.

Synthesis of compounds of Formula (1) wherein one of R₃ is OR₇ or F and the other is H or both are F, begins by reaction of a compound of Formula (2) wherein R₃ is H with a methyl metal reagent, for example, methyl lithium to provide a compound of Formula (2')

Oxidation of a compound of Formula 2' with an oxidizing agent, for example pyridium dichromate provides the ketone of Formula (2) as described above wherein R₃ is methyl. This compound is treated with a halogenating agent, for example Copper (II) bromide heated in a suitable solvent, to provide the α - halo ketone of Formula (2") whrein X is a halogen, for example bromide.

25

30

Displacement of the halogen of Formula (2") by a metal azide, such as sodium azide, in a suitable solvent, such as dimethylformamide provides, the α -azidoketone of Formula (2"), which is reduced to the corresponding alcohol (Formula 2"") in one or more steps with hydrogen and a catalyst or an appropriate metal hydride to the Formula (4) compound where R₃ is OH, and R₁₂, R₄ and R₅ are H. For example, treatment of the

10

15

20

25

Formula (2"') compound with Na Borohydride provides the Formula (2"'') azido alcohol which is reduced with lithium aluminium hydride to provide the Formula (4) compound. To produce compounds wherein R₃ is OR₇ the compounds of Formula (2"") can be alkylated by treatment with a strong base followed by using alkyl-L, as described above, or by using the process of W. Sheppard, Journal of Organic Chemistry, Vol. 29, page 1-15, (1964).

Treatment of compounds of Formula (1) where R₃ is OH, and R₁₂ and R₄ are H with an appropriate oxiziding agent, for example, pyridium dichromate in a suitable solvent, such as DMF provides Formula (1) compounds where R₃ and R₁₂ are together form a keto moiety. Treatment of a Formula (1) compound where R₃ is OH or a Formula (2"") compounds with diethylaminosulfur trifluoride (DAST) provides the corresponding Formula (1) or Formula (2"") compounds where R₃ or R₁₂ is F; which provides the corresponding Formula (1) compounds when treated by any of the methods indicated herein.

Treatment of Formula (1) compounds where R₃ and R₁₂ together form a keto moiety of Formula (2") or Formula (2") compounds with DAST provides the corresponding Formula (1), Formula (2") or Formula (2"") compounds where R₃ and R₁₂ are both F; which provides the corresponding Formula (1) compounds when treated by any of the methods indicated herein.

Alternatively, synthesis of some compounds of Formula (1) when X is other than Br, I, NO₂, or formylamine, begins by reaction of a compound of the Formula (2) with a lithium halide and a silyl halide in an appropriate solvent followed by reduction with an appropriate reductant, such as a siloxane, to provide a compound of Formula (5) wherein X₁ is halogen.

Halide displacement of a compound of Formula (5) by cyanide provides a compound of Formula (6)

wherein R₃ and R₁₂ are H, which is reduced with an appropriate reductant, such as

3 0 hydrogen with a suitable catalyst, such as nickel with ammonia or palladium on carbon with

20

an acid, such as perchloric acid, to provide a compound of Formula (4), described above, wherein R_5 is hydrogen.

Certain compounds of Formula (1) wherein R₃ other then CH₂NR₇R₈

5 unless suitably protected, are prepared by reacting a compound of Formula (4) with an appropriately activated oxamic acid derivative of a Formula (7) compound wherein X₂ is an activating group, well known to those skilled in the art, such as those disclosed in Bodansky <u>et al.</u>, Peptide Synthesis, Wiley & Sons, publishers (1976) pages 99-109. More preferred X₂ groups are Cl, Br, OCH₂CH₃, OC(O)CH₃, OC(O)CF₃, O-C(O)-OCH₂CH₃, 10

O-C(O)-OCH₂CH(CH₃)₂, or O-C(O)-OCH₂-C₆H₅ in the presence of a non-nucleophilic base.

Alternatively, a compound of Formula (4) is reacted with a suitable alkyl or aryl oxalyl halide, such as methyl oxalyl chloride in the presence of a base; or a mixed anhydride, for example of oxamic acid, or a suitable aryl or alkyl monoester of the formula (7a): X3-O-C(O)-C(O)-R6, wherein X3 is R-C(O)- or RO-C(O)- and R is alkyl or aryl, and R6 is as defined for Formula (1); or a compound of Formula (8) when using a mixed anhighride of the formula X3 - C(O)-C(O)-R13 and X3 is R-C(O) or RO-C(O)-, and R13 is alkyl or aryl, which is then reacted in the appropriate solvent at elevated temperatures with ammonia, an optionally substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydrazine to produce the compounds of Formula (1).

Alternatively, hydrolysis of the ester, i.e. the R₁₃ moiety of a Formula (8)

25 compound to R₁₃ as H followed by activation of the acid moiety by a halogenating agent, such as an acid halide, oxalyl chloride, or phosphorous oxylchloride, etc.; or a mixed anhydride and reacted with ammonia, an optionally substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydrazine producing the compounds of Formula (1) wherein R₆ is -NR₇R₈, -NR₇-NR₇R₈, -NR₇OH, -NHOH, -NHNH₂, -NR₇

CH₂

NR₇

NR₇

NR₇

NR₇

NHC(O)CH₃

10

15

20

25

30

35

b) or hydrolyzing a compound of Formula (8) as described above, to yield a compound of Formula (8) wherein R₁₃ is H, and reacting it ammonia, an optionally substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydrazine and a compound of the formula R₁₄N=C=NR₁₅ wherein R₁₄ and R₁₅ are independently selected from alkyl; cycloalkyl, such as cyclohexyl or dicyclohexyl; alkyl (mono-or dialkyl amino), such as EDAC; aryl or arylalkyl, to produce the compounds of Formula (1) wherein R₆ is an amine or substituted amine derivative; or

c) for compounds wherein R₃ is not H, CH₂NH₂ or CH₂NHC(O)C(O) NH₂, and X is substituted with other than Br, I, amino, formylamine, and NO₂, compounds of Formula (6) wherein R₃ and R₁₂ are H, are allowed to react with a strong hindered base, such as lithium diisopropylamide (LDA) or hexamethyldisilazylithium (LiHMDS) followed by reaction with an electrophilic reagent bearing R₃ other than CH₂NH₂ or CH₂NHC(O)C(O)NH₂; conversion of Formula (6) where R₃ is not hydrogen is then accomplished as described above for Formula (6) where R₃ is hydrogen.

A compound of Formula (6) wherein R3 and R12 are H; and X is substituted with other than Br, I, amino, formyl amine or NO2; is reacted with a strong hindered base or a metal hydride and then followed by treatment with an appropriately substituted alkyl halo formate or a dialkylcarbonate to produce the corresponding compound of Formula (6) wherein one of R3 or R12 is -CO2alkyl; or optionally 2 equivalents are used to produce the corresponding disubstituted -CO2alkyl derivatives of Formula (6); or

A compound of Formula (6) wherein one of R_3 or R_{12} is alkyl and one of R_3 or R_{12} is a -CO₂alkyl group is produced by reacting the mono-CO₂-alkyl compound produced by the process noted above, with a strong hindered base or a metal hydride followed by treatment with an appropriately substituted alkyl-L wherein L is a leaving group, such as a halide, mesylate or tosylate to produce the desired compound.

Similarly after the Formula (6) compound is treated with the strong base or metal hydride the the resulting anion is treated with hexamethylphosphoramide (HMPA) and an alkyl halide to produce the corresponding compounds wherein one of R₃ and R₁₂ are alkyl; or optionally using 2 equimolar amounts of HMPA, produce compounds where both R₃ and R₁₂ are alkyl. Similarly, an analogous method to those described above may be used to obtain Formula (6) intermediates wherein R₃ is CF₃, and CHF₂.

Another process for producing compounds of Formula (1) wherein one of R₃ or R₁₂ is CF₃, CHF₂ or CH₂F, obtained from the corresponding Formula (2) compounds using the methods described above. The formula (2) compounds where R₃ is CF₃ are obtained by the method of Shono et al., J. Org. Chem., Vol. 56, pages 2-4 (1991) electrochemically from the Formula (2) compounds where R₃ is H.

Formula (2) compounds where R₃ is CF₃ or CF₂H are obtained by treatment of the Formula 2a compound with a metalling agents at -78° C followed by the trifluoroacetic

acid or difluoro acetic acid by the method of Nad <u>et al.</u>, Izvest, (1959) page 71; Chem. Abstr. vol. 53, No. 14977; and Vol. 53, No. 17933 (1959).

Formula (2) compounds where R₃ is CH₂F are obtained by treatment of the Formula (2) compounds where R₃ is CH₃ according to the method of Rozen <u>et al.</u>, Synthesis (6) 665, (1985).

Alternatively, a compound of Formula (6) wherein R3 and R12 are H; and R1 is as defined above for Formula (1) and X is substituted with other than Br. I. amino, formyl amine or NO2; is reacted with 2 equivalents of a strong hindered base or a metal hydride and 2 equivalents of an appropriately substituted alkyl-L group, wherein L is a leaving group, such as a halide, mesylate or tosylate producing the corresponding compound of Formula (6) wherein R3 and R12 are both alkyl.

For a compound of Formula (1) wherein one or both of R₁ is -CF₃ and X as YR₂ is -OCF₃ is desired an analogous method is used to that disclosed by W. Sheppard, Journal of Organic Chemistry, Vol. 29, page 1-15, (1964).

d) certain compounds of Formula (1) wherein R₃ is CH₂NR₇R₈ or

2 0 CH₂NR₇C(O)C(O)NR₇R₈ are prepared by reaction of compounds of Formula (6) wherein
R₃ is H with a strong hindered base, such as LDA or LiHMDS followed by reaction with,
e.g. trimethylsilylisocyanate, and appropriate workup providing compounds of Formula (6)
wherein R₃ is CONR₇R₈. Reduction of the nitrile, (Formula (6)) as described above,
followed by protection of the resultant amine with e.g, a t-butylcarbonyl (BOC) group,
produces a compound of Formula (4) wherein R₃ is COR₇R₈ and the amine is protected.

Further reduction of the R₃ as CONH₂ group, or dehydration of R₃ as CONH₂ to a nitrile followed by reduction, and then reaction as described above with an appropriate compound of Formula (7) with removal of the BOC protecting group provides for compounds of Formula (1) wherein R₃ is CH₂NH₂. Further reaction of these compounds of Formula (1) with a compound of Formula (7) in the presence of a non-nucleophilic base, as also described above, yields the resultant compounds wherein R₃ is a CH₂NHC(O)C(O)NH₂ moiety.

Alternatively, compounds of Formula (4) wherein R₃ is CO₂R are reacted with ammonium hydroxide or a suitably substituted amine to produce compounds of

10

15

20

25

30

35

Formula (4) wherein R₃ is C(O)NH₂ or C(O)NR₇R₈. Additionally the compounds of Formula (4) wherein R₃ is C(O)NH₂ or C(O)NR₇R₈ can be produced from compounds of Formula (6) which are reduced and optionally deprotected.

e) certain compounds of Formula (1) wherein R₃ is CN are prepared from a compound of Formula (4), described above, wherein R₃ is CONH₂, and R₅ is BOC. Dehydration of the CONH₂ to CN with, e.g. trifluroacetic anhydride, followed by removal of the BOC protecting group and reaction of the liberated amine as described above then provides a compound of Formula (1) wherein R₃ is CN.

Compounds wherein both R3 and R12 are cyano are prepared in an analogous manner using a compound of Formula (6) and reacting wherein R3 and R12 are H with a strong hindered base or a metal hydride followed by treatment with an appropriately substituted alkyl halo formate or a dialkylcarbonate to produce the corresponding compound of Formula (6) wherein one of R3 or R12 is -CO2-alkyl; the resulting compound is further reacted by treatment again with either a strong hindered base or a metal hydride and followed by treatment with an appropriately substituted alkyl halo formate or dialkylcarbonate to produce the corresponding disubstituted -CO2alkyl derivatives of Formula (6). The resultant diester moiety is reduced, and protected and the esters are amidated for example, with ammonia either under pressure or in an alcoholic solvent; or alternatively with the trimethylaluminum adduct of ammonia or ammonium chloride in an inert solvent such as methylene chloride or toluene, between ambient temperature and 60°C under an inert atmosphere, providing a compound of Formula (4) wherein R3 and R12 are CONH2 and R5 is BOC. The resultant compound is then dehydrated, such as by using trifluoroacetic anhydride and pyridine in THF, to produce a compound of formula (4) wherein R3 and R12 are CN and R5 is BOC. Removal of the BOC protecting group with, for example, trifluoroacetic acid, followed by further reaction of the amine as described above, or with methyl oxalyl chloride, and then with ammonia under pressure provides the compound of Formula (1);

f) compounds wherein R₄ is not H, reaction of Formula (2) with an appropriately protected amine provides compounds of Formula (9)

wherein Z is a suitable protecting group. Such protecting groups are known to those skilled in the art and are readily disclosed in Greene, T., <u>Protective Groups in Organic Synthesis</u>. Wiley Publishers, NY (1981), the contents of which are hereby incorporated by reference.

35

The reduction of the double bond and amine deprotection provides a compound of Formula (4) where R3 is hydrogen, which is converted to Formula (1) compounds, as described above.

- g) compounds of Formula (1) wherein X is formyl amine are formed at the last step, by formylating a compound wherein X is NH₂, obtained by removal of a protecting group from the amine functionality. Such protective groups are well known to those skilled in the art, See Greene, T., Supra.
 - h) compounds of Formula (1) wherein X is Br or I may be prepared using the techniques of Example 15 on a similarly deprotected amine, diazotization of the amine, and diazonium displacement.
 - i) compounds of Formula (1) wherein X is NO₂ may be prepared using the techniques of Example 15 on a similarly deprotected amine by oxidation of the amine to the nitro group.
- j) compound of Formula (1) wherein R₃ and R₁₂ are other than hydrogen can readily be prepared by one skilled in the art using the techniques illustrated above for R₃ as other than hydrogen.

METHODS OF TREATMENT

The compounds of Formula (1) or a pharmaceutically acceptable salt thereof
can be used in the manufacture of a medicament for the prophylactic or therapeutic treatment
of any disease state in a human, or other mammal, which is exacerbated or caused by TNF
production by such human's cell, such as but not limited to monocytes and/or macrophages,
especially caused by excessive or unregulated TNF production. The compounds of
Formula (1) are administered in an amount sufficient to inhibit TNF production such that it
is regulated down to normal levels, or in some case to subnormal levels, so as to ameliorate
or prevent the disease state. Abnormal levels of TNF, for the present invention, constitute
levels of 1) free (not cell bound) TNF, greater than or equal to 1 picogram per ml; 2) any
cell associated TNF; or 3) the presence of TNF mRNA above basal levels in cells or ussues
in which TNF is produced.

The compounds of Formula (1a), or a pharmaceutically acceptable salt thereof can be used in the manufacture of a medicament for the prophylatic or therapeutic treatment of any disease state, in a human, or other mammal, which is exacerbated or caused by PDE IV, such as but not limited to asthma, allergic or inflammatory diseases. The compounds of Formula (1a) are administered in an amount sufficient to treat such a disease in a human or other mammal.

The compounds of Formula (1) may be used topically as well in the treatment or prophylaxis of inflammatory topical disease states mediated or exacerbated by excessive TNF production respectively, such as rheumatoid arthritis, rheumatoid spondylitis,

10

15

20

25

30

35

osteoarthritis, gouty arthritis and other arthritic conditions, inflamed joints, eczenia, psoriasis or other inflammatory skin conditions such as sunburn; inflammatory eye conditions including conjunctivitis; pyresis, pain and other conditions associated with inflammation.

It further appears that among the cytokines, while TNF production precedes and augments the function of IL-1 and other cytokines, there is no clear data on how the relationship among these molecules contributes to inflammation-related disease states. The present invention attributes many of the biological disease states attributable to interleukin-l (IL-1) activity as being attributable to that of TNF activity as well. A comprehensive listing of IL-1 activities can be found in Dinarello, <u>J. Clinical Immunology</u>, 5 (5), 287-297 (1985). It should be noted that some of these effects have been described by others as indirect effects of IL-1. The myriad of known biological activities of IL-1 include the activation of T helper cells, induction of fever, stimulation of prostaglandin or collagenase production, neutrophil chemotaxis, induction of acute phase proteins and the suppression of plasma iron levels. These disease states are also considered appropriate disease states of TNF activity and hence compounds of Formula (1) are also useful in their treatment as well, and the use of the compounds of Formula (1) should not be considered solely limited to the specifically described TNF mediated disease states herein. The compounds of Formula (1) should be efficacious in an IL-1 mediated disease state as TNF and IL-1 act in a synergistic manner. TNF as well mediates the release, in some instances, of IL-1, therefore a reduction in the levels of TNF may be useful in the treatment of a disease state wherein IL-1 is a major component. The present invention relates therefore, to an effective, TNF production inhibiting amount of a compound of Formula (1) or a pharmaceutically acceptable salt thereof is useful in treating, prophylactically or therapeutically, any disease state in a human which is exacerbated or caused by excessive or unregulated IL-1 production, i.e., where IL-I is a major component, by such human's monocytes and/or macrophages.

The method of treatment and monitoring for an HIV-infected human manifesting immune dysfunction or cytokine-mediated disease associated problems is taught in Hanna, WO 90/15534, December 27, 1990. In general, an initial treatment regimen can be copied from that known to be effective in interfering with TNF activity for other TNF mediated disease states by the compounds of Formula (1). Treated individuals will be regularly checked for T cell numbers and T4/T8 ratios and/or measures of viremia such as levels of reverse transcriptase or viral proteins, and/or for progression of monokine-mediated disease associated problems such as cachexia or muscle degeneration. If no effect is seen following the normal treatment regimen, then the amount of the monokine activity interfering agent administered is increased, e.g., by fifty percent per week.

The compounds of Formula (1) may be administered orally (when active by this route), topically, parenterally or by inhalation in conventional dosage forms prepared by

10

15

combining such agent with standard pharmaceutical carriers according to conventional procedures in an amount sufficient to produce the desired therapeutic activity for treatment of a TNF mediated disease state or in the case of a compound of Formula (1a) in their use as a PDE IV inhibitor.

The pharmaceutical composition of the present invention will comprise an effective, non-toxic amount of a compound of Formula (1) and a pharmaceutically acceptable carrier or diluent. The compounds of Formula (1) and (1a) as used herein, are administered in conventional dosage forms prepared by combining a compound of Formula (1) in an effective amount sufficient to produce the desired activity, respectively, with standard pharmaceutical carriers according to conventional procedures. These procedures may involve mixing, granulating and compressing or dissolving the ingredients as appropriate to the desired preparation.

The pharmaceutical carrier employed may be, for example, either a solid or liquid. Exemplary of solid carriers are lactose, terra alba, sucrose, tale, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid and the like. Exemplary of liquid carriers are syrup, peanut oil, olive oil, water and the like. Similarly, the carrier or diluent may include time delay material well known to the art, such as glyceryl monostearate or glyceryl distearate alone or with a wax.

Compounds of Formula (1) and (1a) and their pharmaceutically acceptable 20 salts can be employed in a wide variety of pharmaceutical forms. The preparation of a pharmaceutically acceptable salt will be determined by the nature of the compound itself, and can be prepared by conventional techniques readily available to one skilled in the art. Thus, if a solid carrier is used, the preparation can be tableted, placed in a hard gelatin capsule in powder or pellet form or in the form of a troche or lozenge. The amount of solid 25 carrier will vary widely but preferably will be from about 25 mg to about 1 gram. When a liquid carrier is used, the preparation will be in the form of a syrup, emulsion, soft gelatin capsule, sterile injectable liquid such as an ampule or nonaqueous liquid suspension. Where the composition is in the form of a capsule, any routine encapsulation is suitable, for example using the aforementioned carriers in a hard gelatin capsule shell. Where the 30 composition is in the form of a soft gelatin shell capsule any pharmaceutical carrier routinely used for preparing dispersions or suspensions may be considered, for example aqueous gums, celluloses, silicates or oils and are incorporated in a soft gelatin capsule shell. A syrup formulation will generally consist of a suspension or solution of the compound or salt in a liquid carrier for example, ethanol, glycerine or water with a flavouring or coloring 35 agent.

The amount of a compound of Formula (1) and (1a) required for the rapeutic systemic" administration will, of course, vary with the compound chosen, the nature and

10

15

35

severity of the condition, and the manumal, including humans, undergoing treatment, and is ultimately at the discretion of the physician.

The term 'parenteral' as used herein includes intravenous, intramuscular, subcutaneous intranasal, intrarectal, intravaginal or intraperitoneal administration. The subcutaneous and intramuscular forms of parenteral administration are generally preferred. Appropriate dosage forms for such administration may be prepared by conventional techniques. By the term "systemic" administration is meant oral, intravenous, intraperitoneal and intramuscular administration.

Typical parenteral compositions consist of a solution or suspension of the compound or salt in a sterile aqueous or non-aqueous carrier optionally containing a parenterally acceptable oil, for example polyethylene glycol, polyvinylpytrolidone, lecithin, arachis oil, or sesame oil.

The daily dosage regimen for via parenteral administration is suitably about 0.001 mg/Kg to 40 mg/Kg, of a compound of the Formula (1) or a pharmaceutically acceptable salt thereof calculated as the free base.

The compounds of Formula (1) and (1a) may be administered orally. Each dosage unit for oral administration contains suitably from 1 mg to 100 mg, and preferably from 10 mg to 30 mg of a compound of Formula (I) or a pharmaceutically acceptable salt thereof calculated as the free base.

The daily dosage regimen for oral administration is suitably about 0.01 mg/Kg to 100 mg/Kg, preferably from about 10mg to about 30mg/kg, of a compound of Formula 1) and (1a) or a pharmaceutically acceptable salt thereof calculated as the free base. The active ingredient may be administered from 1 to 6 times a day, sufficient to exhibit the desired activity.

The compounds of Formula (1) and (1a) may also be administered by inhalation. By "inhalation" is meant intranasal and oral inhalation administration.

Appropriate dosage forms for such administration, such as an aerosol formulation or a metered dose inhaler, may be prepared by conventional techniques. The daily dosage regimen for a compound of Formula (1) for intranasal administration and oral inhalation is suitably about 10 to about 1200 mg.

Typical compositions for inhalation are in the form of a solution, suspension or emulsion that may be administered as a dry powder or in the form of an aerosol using a conventional propellant such as dichlorodifluoromethane or trichlorofluoromethane.

Preferably the composition is in unit dosage form, for example a tablet, capsule or metered aerosol dose, so that the patient may administer to himself a single dose.

The compounds of Formula (1) and (1a) may also be administered topically. By topical administration is meant non-systemic administration and includes the application externally to the epidermis, to the buccal cavity and instillation of such a compound into the

10

15

ear, eye and nose, and where the compound does not significantly enter the blood stream.

A suitable dose of a TNF production inhibiting compound of Formula (1) is .01 mg to about 100 mg of base for topical administration, the most preferred dosage being about .01 mg to about 30 mg, for example, .003 mg to 10 mg administered two or three times daily.

While it is possible for an active ingredient to be administered alone as the raw chemical, it is preferable to present it as a pharmaceutical formulation. The active ingredient may comprise, for topical administration, from 0.001% to 10% w/w, e.g. from 1% to 2% by weight of the formulation although it may comprise as much as 10% w/w but preferably not in excess of 5% w/w and more prefembly from 0.1% to 1% w/w of the formulation.

The topical formulations of the present invention comprise an active ingredient together with one or more acceptable carrier(s) therefor and optionally any other therapeutic ingredient(s). The carrier(s) must be 'acceptable' in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.

Formulations suitable for topical administration include liquid or semi-liquid preparations suitable for penetration through the skin to the site of inflammation such as liniments, lotions, creams, ointments or pastes, and drops suitable for administration to the eye, car or nose.

It will be recognized by one of skill in the art that the optimal quantity and spacing of individual dosages of a compound of Formula (1) or a pharmaceutically 20 acceptable salt thereof will be determined by the nature and extent of the condition being treated, the form, route and site of administration, and the particular patient being treated, and that such optimums can be determined by conventional techniques. It will also be appreciated by one of skill in the art that the optimal course of treatment, i.e., the number of doses of a compound of Formula (1) or a pharmaceutically acceptable salt thereof given per day for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatment determination tests.

UTILITY EXAMPLES

30

35

25

Example A

The inhibitory effect of compounds of Formula (1) on in vitro TNF production by Human Monocytes can be determined by the protocol as described in Badger clal, EPO published Application 0 411 754 A2, February 6, 1991, and in Hanna, WO 90/15534, December 27, 1990. The compounds of Examples 4, 7, 8, 15 to 18, 22 and 24 all displayed an IC50 value of 0.01- to about >3.0 for Inhibition of LPS-Induced Human Monocyte TNF Production in the above noted assay.

35

UTILITY EXAMPLE B

Two models of endotoxin shock have been utilized to determine in vivo TNF activity for the compounds of Formula (1). The protocol used in these models is described in

Badger et al., EPO published Application 0 411 754 A2, February 6, 1991, and in Hanna, WO 90/15534, December 27, 1990. In these models protection from the lethal effects of endotoxin shock is provided by the compound N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide. This showed a reduction in serum TNF levels in the LPS/GAL mouse model of endotoxic shock and inhibition of TNF production in the P

acnes/LPS treated mice model. The compound also demonstrated an 80% survival rate of the animals with endotoxic shock in the P acnes/LPS model after treatment with N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]oxamidecompared to 100 % lethality of the animals in a control group.

It has also been determined, using one or both of the in vivo assays described

herein, that N-2-(3,4-dimethoxyphenethyl)oxamide also inhibited in vivo TNF levels as well as protected the animals from endotoxic induced shock.

The data shown herein demonstrate that the compounds of the present invention inhibit TNF production in a mammal. Therefore, the compounds of Formula (1) are useful in inhibiting the production of tumor necrosis factor (TNF) by monocytes or macrophages in a human.

UTILITY MODEL C

The phosphodiesterase inhibitory activity and selectivity of the compounds of Formula (1a) can be determined using a battery of five distinct PDE isozymes. The tissues used as sources of the different isozymes are as follows: 1) PDE Ia, canine trachealis; 2) PDE Ib, porcine aorta; 3) PDE Ic, guinea-pig heart; 4) PDE III, guinea-pig heart; and 5) PDE IV, human monocyte. PDEs Ia, Ib, Ic and III are partially purified using standard chromatographic techniques (Torphy and Cieslinski, Mol. Pharmacol. 37: 206-214, 1990). PDE IV is purified to kinetic homogeneity by the sequential use of anion-exchange followed by heparin-Sepharose chromatography (White <u>et al.</u>, FASEB J. 4: A1987 1990).

UTILITY MODEL D

Phosphodiesterase activity is assayed as described in the protocol of Torphy and Cieslinski, <u>Mol. Pharmacol.</u> 37: 206-214, 1990. IC₅₀'s for compounds of Formula (1a) range from 0.05 μM to 40 μM.

UTILITY MODELE

The ability of selected PDE IV inhibitors to increase cAMP accumulation in intact tissues is assessed using U-937 cells, a human monocyte cell line that has been shown to

contain a large amount of PDE IV. To assess the activity of PDE IV inhibition in intact cells, nondifferentiated U-937 cells (approximately 10^5 cells/reaction tube) were incubated with various concentrations (0.01-100 μ M) of PDE inhibitors for one minute and 1μ M prostaglandin E2 for an additional four minutes. Five minutes after initiating the reaction, cells were lysed by the addition of 17.5% perchloric acid, the pH was neutralized by the addition of 1M potassium carbonate and cAMP content was assessed by RIA . A general protocol for this assay is described in Brooker et al., Radioimmunassay of cyclic AMP and cyclic GMP., Adv. Cyclic Nucleotide Res., 10:1-33, 1979. EC50's for compounds of Formula (1a) range from $0.5 \, \mu$ M to >10 μ M.

10

3

SYNTHETIC EXAMPLES

The following examples are illustrative and are not limiting of the compounds of this invention.

15

EXAMPLE 1

3-Cyclopentyloxy-4-methoxy-8-nitrostyrene

- a) 3-Cyclopentyloxy-4-methoxybenzaldehyde. A mixture of 3-hydroxy-4-methoxybenzaldehyde (40 g, 0.26 mol), potassium carbonate (40 g, 0.29 mol) and bromocyclopentane (32 mL, 0.31 mol) in dimethylformamide (0.25 L) was heated under an argon atmosphere at 100°C. After 4 h, additional bromocyclopentane (8.5 mL, 0.08 mol) was added and heating was continued for 4 h. The mixture was allowed to cool and was filtered. The filtrate was concentrated under reduced pressure and the residue was partitioned between ether and aqueous sodium bicarbonate. The organic extract was washed with aqueous sodium carbonate and dried (potassium carbonate). The solvent was removed in yacuo and the residue was purified by flash chromatography, eluting with 2:1 hexanes/ether to provide the product (52 g, 89%) as a pale yellow oil. Analysis Calc. for C₁₃H₁₆O₃: C 70.89, H 7.32; found: C 70.71, H 7.33.
- b) 3-Cyclopentyloxy-4-methoxy-6-nitrostyrene. To a solution of 3-cyclopentyloxy-4-methoxybenzaldehyde (6.04 g, 27.2 mmol) in glacial acetic acid (36 mL) under an argon atmosphere was added nitromethane (7.35 mL, 136.0 mmol) and ammonium acetate (3.15 g, 40.8 mmol). The resulting mixture was heated at reflux for 3 h, then allowed to cool to room temperature. The mixture was poured into water and extracted twice with methylene chloride. The combined organic extracts were washed successively with aqueous sodium bicarbonate and water and dried (potassium carbonate). Removal of the solvent in yacuo and purification of the residue by flash chromatography, eluting with 1:1 methylene

chloride/hexanes, provided the nitrostyrene (5.90 g. 82%) as a bright yellow solid: m.p. 133-134°C.

Analysis Calc. for C14H17NO4: C 63.87, H 6.51,

N 5.32; found: C 64.08, H 6.42, N 5.33.

5

EXAMPLE 2

2-(3-Cyclopentyloxy-4-methoxyphenyl)ethylamine

To a suspension of lithium aluminum hydride (10.83 g, 28.5 mmol) in ether (250 mL) at 0°C under an argon atmosphere was added dropwise a solution of 3-10 cyclopentyloxy-4-methoxy-8-nitrostyrene (15.00 g, 57.0 mmol) in tetrahydrofuran (85 mL). The resulting mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was cooled to 0°C and quenched by the successive dropwise addition of water (11 mL), 15% sodium hydroxide (11 mL) and water (33 mL). The mixture was filtered through a pad of Celite™ and the filtrate was washed successively 15 with water, 10% hydrochloric acid and water. The aqueous washes were combined, made basic with saturated aqueous potassium carbonate and extracted three times with ether and twice with methylene chloride. The organic layers were combined and dried (potassium carbonate). Removal of the solvent in vacuo provided the amine (10.80 g, 81%). A portion of the crude amine was purified by flash chromatography, eluting with 1:10:90 20 water/methanol/chloroform. Analysis Calc. for C14H21NO2.5/8 H2O: C 68.19, H 9.09, N 5.68; found C 68.39, H 9.16, N 5.85.

25 EXAMPLE 3

Methyl-N-I2-(3-Cyclopentyloxy-4-methoxyphenyl)ethylloxamate

To a solution of 2-(3-cyclopentyloxy-4-methoxyphenyl)ethylamine (884 mg, 3.8 mmol) and triethylamine (0.53 mL, 4.1 mmol) in methylene chloride (4 mL) at 0°C under an argon atmosphere was added dropwise methyl oxalyl chloride (0.38 mL, 4.1 mmol) and the resulting mixture was stirred for 30 min. The reaction mixture was partitioned between water and methylene chloride and the organic extract was washed with saturated aqueous sodium chloride and dried (sodium sulfate). The solvent was removed in vacuo and the residue was purified by flash chromatography, cluting with 4:6 ethyl acetate/hexanes to provide the oxamate (605 mg, 50%): m.p. 73-74°C.

Analysis Calc. for C₁₇H₂₃NO₅: C 63.54, H 7.21, N 4.36; found C 63.17, H 7.14, N 4.43.

EXAMPLE 4

N-12-(3-Cyclopentyloxy-4-methoxyphenyl)ethylloxamic acid

To a solution of methyl N-[2-(3-cyclopentyloxy-4-methoxy)-

5 phenylethyl]oxamate (541 mg, 1.7 mmol) in methanol (7 mL) under an argon atmosphere was added lithium hydroxide monohydrate (212 mg, 5.0 mmol). After stirring at room temperature for 1 h, the mixture was concentrated under reduced pressure. The residue was partitioned between 10% hydrochloric acid and methylene chloride and the organic extract was dried (magnesium sulfate). The solvent was removed in vacuo to provide the acid (482).

10 mg, 93%): m.p. 123-124°C.

Analysis Calc. for C16H21NO5: C62.53, H6.89,

N 4.56; found: C 62.27, H 6.78, N 4.52.

EXAMPLE 5

I 5 N-12-13-Cyclopentyloxy-4-fluorophenyl)ethylloxamide

- a) 2-Fluoro-5-methylphenol 2-Fluoro-5-methylaniline (9.0 mililiters (mL hereinafter), 0.08 mol) was treated with hot 35% sulfuric acid (80 mL), and the resulting mixture was cooled to 15°C. Ice (80 grams (g hereinafter) was added and a solution of sodium nitrite (7.16 g, 0.10 moles (mol hereinafter) in water (70 mL) was added dropwise over 1 hour (h
- hereinafter), maintaining the temperature at 0°C. After stirring an additional 15 minutes (min hereinafter), urea (1.44 g, 0.024 mol) was added and the mixture was poured into a solution of copper (II) sulfate pentahydrate (310 g, 1.240 mol) in water (2.4 Liters (L hereinafter)), with stirring. To the resulting mixture was added copper (I) oxide (10.4 g, 0.073 mol) and the mixture was stirred vigorously for 30 min. The reaction mixture was
- 2.5 extracted with methylene chloride and dried (magnesium sulfate). The solvent was removed in vacuo and the residue was redissolved in methylene chloride, washed with water and dried (magnesium sulfate). Removal of the solvent in vacuo provided the phenol (7.98 g, 79%) which was used without further purification.
- b) 3-Cyclopentyloxy-4-fluorotoluene. A solution of 2-fluoro-5-methylphenol (7.91 g, 63 mmol) was used to prepare the title compound by the analogous method of Example 1(a) above yielding (3.01 g, 25%).
- c) <u>a-Bromo-3-cyclopentyloxy-4-fluorotoluene</u>. To a solution of 3-cyclopentyloxy-43 5 fluorotoluene (3.00 g, 15.4 mmol) in carbon tetrachloride (200 mL) under an argon
 atmosphere was added N-bromosuccinimide (3.63 g, 20.4 mmol) and benzoyl peroxide
 (catalytic amount). After stirring for 2 h under a 189W tungsten lamp, the reaction mixture
 was filtered and the solvent was removed under reduced pressure. The residue was purified

by flash chromatography, eluting with 1% ether/ hexanes to provide the bromide (3.22 g. 76%).

- d) 3-Cyclopentyloxy-4-fluorobenzaldehyde. To a solution of sodium ethoxide, prepared from sodium (215 miligrams (mg hereinafter), 9.15 mmol) in absolute ethanol (15 mL) under an argon atmosphere, was added a solution of α-bromo-3-cyclopentyloxy-4-fluorotoluene (2.52 g, 9.15 mmol) in ethanol (5 mL). 2-Nitropropane (0.86 mL, 9.52 mmol) was added, followed by additional ethanol (5 mL). The resulting mixture was stirred at room temperature for 6 h and filtered. The filtrate was concentrated under reduced pressure and the residue was trimrated with ether and filtered. The solvent was removed under reduced pressure and the residue was purified by flash chromatography, eluting with 2.5% ether/hexanes to provide the benzaldehyde (937 mg, 49%).
- e) 3-Cyclopentyloxy-4-fluoro-B-nitrostyrene. The title compound was prepared using a solution of 3-cyclopentyloxy-4-fluorobenzaldehyde (857 mg, 4.1 mmol) in an analogous method of Example 1(b) described above, yielding the nitrostyrene (552 mg, 53%): m.p. 90 91.5°C.
- f) 2-(3-Cyclopentyloxy-4-fluorophenylethyl)amine. The title compound was prepared using the analogous method of Example 2 and a solution of 3-cyclopentyloxy-4-fluoro-β-nitrostyrene (490 mg, 1.95 mmol) to provide the amine (287 mg, 66%).
- g) N-12-(3-Cyclopentyloxy-4-fluorophenyl)ethylloxamide. To a suspension of oxamic acid (100 mg, 1.1 mmol) in dimethoxyethane (3.5 mL) was added N-methylmorpholine

 2.5 (0.15 mL, 1.3 mmol) followed by ethyl chloroformate (0.13 mL, 1.3 mmol). The resulting mixture was stirred under an argon atmosphere at room temperature for 3 h, at which time a solution of 2-(3-cyclopentyloxy-4-fluorophenylethyl)amine (251 mg, 1.1 mmol) in dimethoxyethane (2.5 mL) was added. After stirring at room temperature overnight, the mixture was concentrated under reduced pressure. The residue was dissolved in 3% methanol/methylene chloride (185 mL) and washed successively with aqueous sodium bicarbonate, water, 10% hydrochloric acid and water and dried (potassium carbonate). The
- bicarbonate, water, 10% hydrochloric acid and water and dried (potassium carbonate). 1
 solvent was removed in vacuo and the solid residue was recrystallized from methylene
 chloride to provide the product (125 mg, 38%): m.p. 183 184.5°C.

 Analysis Calc. for C₁₅H₁₉FN₂O₃·1/8 H₂O: C 60.75, H 6.54, N 9.45, F 6.41; found C

 3 5 60.68, H 6.33, N 9.47, F 6.31.

EXAMPLE 6 N-12-(3-Cyclopentyloxy-4-chlorophenyl)ethylloxamide

20

- a) 4-Chloro-3-cyclopentyloxytoluene. Using a solution of 2-chloro-5-methylphenol (14.3 g. 100 mmol) in the analogous method of Example 1(a) above provided the title compound (19.45 g. 92%).
- b) <u>a-Bromo-4-chloro-3-cyclopentyloxytoluene</u>. Using a solution of 4-chloro-3-cyclopentyloxytoluene (18.00 g, 85.4 mmol) in an analogous method to Example 5(c) above provided the title compound (16.95 g, 66%).
- 10 c) 4-Chloro-3-cyclopentyloxybenzaldehyde. Using a solution α-bromo-4-chloro-3-cyclopentyl-oxytoluene (10.51 g, 36.2 mmol) in an analogous method to Example 5(d) above provided the benzaldehyde (4.36 g, 54%).
- d) <u>4-Chloro-3-cyclopentyloxy-6-nitrostyrene</u>. Using a solution of 4-chloro-3-1 5 cyclopentyloxybenzaldehyde (751 mg, 3.3 mmol) in an analogous method to Example 1(b) above provided the nitrostyrene (636 mg, 71%); m.p. 105 - 107°C.
 - e) <u>2-(4-Chloro-3-cyclopentyloxyphenylethyl)amine</u>. The title compound was produced in an analogous method to that of Example 2 above using 4-chloro-3-cyclopentyloxy-β-nitrostyrene to provided the amine (435 mg, 77%).
 - f) N-12-(4-Chloro-3-cylopentyloxyphenyl)ethylloxamide. The title compound was produced in an analogous method to that of Example 5, part g, above using 2-(4-chloro-3-cyclopentyl-oxyphenylethyl)amine to provide the oxamide (139 mg, 32%): m.p. 179 180°C.
- 2.5 180°C.
 Analysis Calc. for C₁₅H₁₉ClN₂O₃: C 57.97, H 6.16, N 9.01, Cl 11.41; found C 57.83, H 6.15, N 8.92, Cl 11.12.

3 0 EXAMPLE 7 N-(2-13-(4-Hydroxybutoxy)-4-methoxyphenyllethyl loxamide

a) Ethyl 4-(4-formyl-2-methoxyphenoxy)butanoate. The title compound was produced in an analogous method to that of Example 1(a) using a solution of 4-methoxy-3-

3.5 hydroxybenzaldehyde (25.0 g, 0.164 mol) and substituting ethyl 4-bromobutanoate (27.5 mL, 0.192 mmol) for cyclopentyl bromide to yield a white solid: m.p. 47 - 49°C.

- b) Ethyl 4-[2-methoxy-4-(2-nitroethenyl)phenoxylbutanoate. Using ethyl 4-(4-formyl-2-methoxyphenoxy)butanoate (16 g, 60 mmol) in an analogous method to that of Example 1(b) above provided the product (15 g, 80%): m.p. 112 114°C.
- 5 c) 2-[3-(4-Hydroxybutoxy)-4-methoxyphenyl]ethylamine. Using a solution of ethyl 4-[2-methoxy-4-(2-nitroethenyl)phenoxy]butanoate (7.74 g, 25 mmol) in an analogous method to that of Example 2 above provided an oil (3.82 g, 64%).
- N-[2-[3-(4-Hydroxybutoxy)-4-methoxyphenyl]ethylloxamide. Using a solution of 2-[3-10 (4-hydroxybutoxy)-4-methoxyphenyl]ethylamine (3.35 g, 14.0 mmol) in an analogous method to that of Example 5(g) above provided the oxamide (2.1 g, 48%): m.p. 162 163°C.

<u>Analysis</u> Calc. for C₁₅H₂₂N₂O₅·1/4 H₂O: C 58.05, H 7.15, N 9.03; found: C 57.06, H 6.97, N 8.77.

15

EXAMPLE 8 N-I2-(3.4-Dimethoxyphenyl)ethylloxamide

a) N-[2-(3,4-Dimethoxyphenyl)ethylloxamide. Using a solution of 2-(3,4-20 dimethoxyphenyl)ethylamine (703 mg, 4.0 mmol) in 1,2-dimethoxyethane in an analogous method to Example 5(g) above provided the oxamide (210 mg, 21%): m.p. 171 - 172.5°C. Analysis Calc. for C₁₂H₁₆N₂O₄: C 57.13, H 6.39, N 11.10; found: C 57.15, H 6.42, N 11.09.

EXAMPLE 9

N-12-(3.4-Dimethoxyphenyl)ethyll-N-hydroxyoxamide 25 a) (3.4-Dimethoxyphenyl)acetaldehyde oxime. To a solution of 2-(3,4dimethoxyphenyl)ethylamine (1.70 mL, 10.0 mmol) in methanol (10 mL) at 0°C under an argon atmosphere was added sodium tungstate dihydrate (132 mg, 0.4 mmol), followed by the dropwise addition of 30% aqueous hydrogen peroxide (1.1 mL, 10.0 mmol). After 2 h 30 at OOC, the mixture was allowed to warm to room temperature. Stirring was continued for an additional 4 h, at which time the mixture was recooled and additional sodium tungstate dihydrate (131 mg, 0.4 mmol) and 30% aqueous hydrogen peroxide (1.1 mL, 10.0 mmol) were added. The mixture was allowed to warm to room temperature and stirred overnight. The reaction was quenched by the addition of aqueous sodium bisulfite and concentrated under reduced pressure. The residue was dissolved in methylene chloride, washed 35 successively with aqueous sodium bisulfite (2x) and water and dried (potassium carbonate). The solvent was removed in vacuo to provide an orange oil (1.75 g, 90%) which was used without further purification.

30

- b) N-[2-(3.4-Dimethoxyphenyl)ethyl]-N-hydroxyamine. To a solution of (3,4-dimethoxyphenyl)acetaldehyde oxime (503 mg, 2.6 mmol) and methyl orange (catalytic amount) in methanol (3 mL) under an argon atmosphere was added sodium cyanoborohydride (108 mg, 1.7 mmol). Immediately following this addition, methanolic hydrogen chloride (10 mL) was added to maintain a reddish-brown color, and the reaction mixture was stirred at room temperature for 1 h. The solvent was removed *in vacuo* and
- water was added to the residue. The solution was made basic by the addition of 15% sodium hydroxide and extracted with methylene chloride (3x). The combined organic extracts were dried (potassium carbonate) and the solvent was removed in vacuo to provide a yellow oil (451 mg, 89%).
- C) N-[2-(3.4-Dimethoxyphenyl)ethyl]-N-hydroxyoxamide. To a suspension of oxamic acid (195 mg, 2.21 mmol) in 1,2-dimethoxyethane (7 mL) under an argon atmosphere was added dropwise N-methylmorpholine (0.27 mL, 2.42 mmol), followed by ethyl chloroformate (0.23 mL, 2.42 mmol). After stirring for 1 h at room temperature, a solution of N-[2-(3,4-dimethoxyphenyl)ethyl]-N-hydroxyamine (417 mg, 2.10 mmol) in 1,2-dimethoxyethane (5 mL) was added, and the resulting mixture was stirred for 4 h.
- Saturated aqueous ammonium chloride was added, and the mixture was extracted with methylene chloride (2x). The combined organic extracts were washed successively with 10% hydrochloric acid and water and dried (potassium carbonate). The solvent was removed in vacuo and the residue was purified by flash chromatography, eluting with 5% methanol/ methylene chloride, and recrystallized from methanol/ methylene chloride to provide the oxamide (98 mg, 17%): m.p. 143 1440C.
- 25 <u>Analysis</u> Calc. for C₁₂H₁₆N₂O₅·3/8 H₂O : C 52.41, H 6.14, N 10.19; found : C 52.24, H 5.75, N 10.12.

EXAMPLE 10

N'=(6-1-Butyloxycarbonylaminohexyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide

a) N-(6-t-Butvloxycarbonylaminohexyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide. To a mixture of N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamic acid (750 mg, 2.44 mmol) in dimethylformamide (10 mL) under an argon atmosphere at -15°C was added N-methylmorpholine (0.31 mL, 2.82 mmol) followed by isobutyl chloroformate (0.36 mL, 2.80 mmol). After stirring for 15 min, a solution of 1-(amino)-6-t-butyloxycarbonylamino)-hexane (790 mg, 3.65 mmol, prepared from the hydrochloride salt by treatment with saturated aqueous sodium carbonate

and methylene chloride extraction) in 1:1 dimethylformamide/tetrahydrofuran (4 mL) was added, and the resulting mixture was stirred at room temperature for 4 h. The reaction mixture was partitioned between methylene chloride and dilute aqueous hydrochloric acid. The organic extract was washed with saturated aqueous sodium carbonate and dried

5 (potassium carbonate). The solvent was removed in vacuo and the residue was purified by flash chromatography, eluting with ether to provide the oxamide (560 mg, 45%) as a solid. A portion of the product was recrystallized from methylene chloride/ ether: m.p. 135 - 137°C.

<u>Analysis</u> Calc. for $C_{27}H_{43}N_3O_6$: C 64.13, H 8.57, N 8.31; found: C 64.09,

10 H 8.26, N 8.22.

EXAMPLE 11

N'-(6-Aminohexyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide

N'-(6-Aminohexyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide. A solution of N'-(6-t-butyloxycarbonylaminohexyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)-ethylloxamide (480 mg, 0.95 mmol) in methylene chloride (5 mL) and trifluoroacetic acid (5 mL) was stirred at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure and the residue was partitioned between methylene chloride and saturated aqueous sodium carbonate. The organic extract was dried (potassium carbonate) and the solvent was removed under reduced pressure. The residue was dissolved in methylene chloride and concentrated. Ether and hexanes were added and the mixture was filtered. The filtrate was allowed to stand and the solid which formed was collected by

15 filtration to provide a cream-colored powder (241 mg, 63%): m.p. 105 - 110°C.

filtration to provide a cream-colored powder (241 mg, 63%): m.p. 103 - 110°C. Analysis Calc. for C₂₂H₃₅N₃O₄·1/2 H₂O: C 63.74, H 8.75, N 10.14; found: C 63.70, H 8.24, N 9.69.

EXAMPLE 12

3 0 N-12-(3-Cyclopentyloxy-4-methoxyphenyl)ethyll-N'-(4-nitrobenzyl)oxamide

a) N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]-N'-(4-nitrobenzyl)oxamide. To a solution of 2-(3-cyclopenyloxy-4-methoxyphenyl)ethyloxamic acid (231 mg, 0.75 mmol) in methylene chloride (10mL) under an argon atmosphere was added 1-(3-

3 5 dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (180 mg, 0.94 mmol), followed by 4-dimethylaminopyridine (231mg, 1.89 mmol) and p-nitrobenzylamine hydrochloride (178 mg, 0.94 mmol). The reaction mixture was stirred at room temperature overnight, then partitioned between methylene chloride and water. The organic extract was dried

(magnesium sulfate) and the solvent was removed under reduced pressure. The residue was purified by flash chromatography, cluting with 9:1 ether/methylene chloirde to provide a solid (230mg, 69%), which was recrystallized from ether/methylene chloride: m.p. 148-150°C.

5 Analysis: Calc. for C23H27N3O6: C 62.57, H 6.16, N 9.52; found: C 62.72, H 6.39, N 9.72.

EXAMPLE 13

N-(4-Acetamidobenzyl)-N-12-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide

a) N'-(4-Aminobenzyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide. To a solution of N'-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]-N-(4-nitrobenzyl)oxamide

(200 mg, 0.45 mmol) in 4:5 methanol/tetrahydrofuran (18 mL) under an argon atmosphere was added ammonium formate (395 mg, 6.27 mmol) and 10% palladium on activated

carbon (50 mg). The resulting mixture was stirred at room temperature for 3 h, then diluted with methylene chloride and filtered through a pad of Celite. The solvent was removed under reduced pressure and the residue was partitioned between methylene chloride and water. The organic extract was dried (sodium sulfate) and the solvent was removed in vacuo to provide a white solid (170 mg, 91%), which was used without further purification.

20

25

30

10

b) N-(4-Acetamidobenzyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide. To a solution of N-(4-aminobenzyl)-N-[2-(3-cyclopentyloxy-4-methoxy-phenyl)ethyl]-oxamide (170 mg, 0.41 mmol) in methylene chloride (10 mL) under an argon atmosphere was added pyridine (0.15 mL, 1.85 mmol) and acetic anhydride (0.15 mL, 1.59 mmol). The resulting mixture was stirred at room temperature overnight, then poured into chloroform and washed with dilute aqueous hydrochloric acid and dried (sodium sulfate). The solvent was removed

in vacuo and the residue was recrystallized from methanol/chloroform to provide a white solid (116 mg, 62%): m.p. 217 - 218°C.

Analysis Calc. for C₂₅H₃₁N₃O₅·1/4 H₂O; C 65.56, H 6.93, N 9.17; found: C 65.35, H 6.88, N 9.27.

EXAMPLE 14

N'-(4-acetamidophenyl)-N-I2-(3-Cyclopentyloxy-4-methoxyphenyl)ethylloxamide

Using a solution of 2-(3-cyclopentyloxy-4-methoxyphenyl)ethyloxamic acid (231 mg, 0.75 mmol) in an analogous method to that of Example 12 above except using 4-acetamidoaniline (142 mg, 0.95 mmol) and only 1 equivalent of 4-dimethylamino pyridine (DMAP) provided the title compound. m.p. 235 - 236°C.

10

15

Analysis Calc. for C₂₄H₂₉N₃O₅ .1/4 H₂₀: C 65.59, H 6.65, N 9.56; found : C 64.79, H 6.61, N 9.58.

EXAMPLE 15

N-12-(3-Cyclopentyloxy-4-methoxyphenyl)ethylloxamide

To a suspension of oxamic acid (1.76 g, 20 mmol) in 1,2-dimethoxyethane (75 mL) under an argon atmosphere was added dropwise N-methylmorpholine (2.55 mL, 23 mmol) followed by ethyl chloroformate (2.20 mL, 23 mmol). After stirring for 1 h at room temperature, a solution of 2-(3-cyclopentyloxy-4-methoxy-phenyl)ethylamine (4.65 g, 20 mmol) in 1,2-dimethoxyethane (30 mL) was added over 5 min, and the resulting mixture was stirred for 2 h. Saturated aqueous ammonium chloride was added and the solvent was removed under reduced pressure. The solid residue was dissolved in methanol/methylene chloride, washed successively with water, 10% hydrochloric acid, aqueous sodium bicarbonate and water and dried (potassium carbonate). The solvent was removed in yacuo and the residue was purified by flash chromatography, cluting with 1% i-propanol/methylene chloride to provide the oxamide (1.82 g, 30%); m.p. 175-175.5°C. Analysis Calc. for C16H22N2O4: C 62.73, H 7.24,

N 9.14; found: C 62.61, H 7.32, N 8.98.

20 EXAMPLE 16

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyll-N'-hydroxyoxamide

To a solution of N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamic acid (651 mg, 2.12 mmol) in methylene chloride (5 mL) containing 2 drops of

- dimethylformamide at 0°C under an argon atmosphere was added oxalyl chloride (0.39 mL, 4.45 mmol) and the resulting mixture was stirred for 1 h. This was added to a solution of hydroxylamine hydrochloride (591 mg, 8.50 mmol) and triethylamine (1.75 mL, 12.70 mmol) in 1:5 water/tetrahydrofuran (10 mL) at 0°C under an argon atmosphere. The reaction mixture was stirred at 0°C for 1 hour then allowed to warm to room temperature and stirred an additional 2 h. The mixture was partitioned between water and methylene chloride and the organic extract was dried (potassium carbonate). The solvent was removed in vacuo and the residue was purified by flash chromatography, eluting with 1:5:94 acetic
 - and the residue was purified by flash chromatography, eluting with 1:5:94 acetic acid/methanol/methylene chloride, to provide the hydroxy oxamide (489 mg, 72%): m.p. 136-137°C.
- 3.5 <u>Analysis</u> Calc. for C₁₆H₂₂N₂O₅: C 59.62, H 6.88, N 8.69; found: C 59.60, H 7.18, N 8.63.

EXAMPLE 17

N-12-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]-N-hydroxyoxamide

- (a) (3-Cyclopentyloxy-4-methoxy)phenylacetaldehyde oxime. Using a solution of 2-(3-cyclopentyloxy-4-methoxy-phenyl)ethylamine (1.017 g, 4.3 mmol) in an analogous method to that of Example 9(a) above provided the oxime (978 mg, 90%), which was
- used without further purification.
- (b) N-12-(3-Cyclopentyloxy-4-methoxyphenyl)ethyll-N-hydroxyamine. Using a solution of (3-cyclopentyloxy-4-methoxy)phenylacetaldehyde oxime (971 mg, 3.9 mmol) in an analogous method to that of Example 9(b) above provided the hydroxyamine (144 mg,
- 10 15%).

5

- (c) N-12-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]-N-hydroxyoxamide. Using a solution of N-[2-(3-cyclopentyloxy-4-methoxyphenyl)-ethyl]-N-hydroxyamine(144 mg, 0.6 mmol) in an analogous method to that of Example 9(c) above provided the title oxamide (36 mg, 19%): m.p. 98-99°C.
- 15 Analysis Calc. for C₁₆H₂₂N₂O₅: C 59.62, H 6.88,

N 8.69; found: C 59.64, H 6.87, N 8.55.

EXAMPLE 18

N'-Amino-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide

- Using a solution of N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamic acid (301 mg, 0.98 mmol) in an analogous method to Example 10 above except using 1,2-dimethoxyethane (3 mL) instead of DMF as a solvent, an anhydrous hydrazine (37 mL, 1.18 mmol) instead of 1-(amino) 6-t-butyloxycarbonylamino)hexane provided the amino oxamide (48 mg, 15%); m.p. 121-122°C.
- 25 Analysis Calc. for C₁₆H₂₃N₃O₄: C 59.80, H 7.21, N 13.08; found: C 59.41, H 7.31, N 12.83.

EXAMPLE 19

N-(4-Acetylaminobenzyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide

- 30
- (a) N-(4-Acetylaminobenzyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)-ethyl]amine. A mixture of 4-(acetylamino)-benzaldehyde (555 mg, 3.40 mmol) and 2-(3-cyclopentyloxy-4-methoxyphenyl)ethylamine (801 mg, 3.40 mmol) in toluene (10 mL) was refluxed for 24 h with azeotropic removal of water. The solvent was then removed under reduced pressure.
- 3 5 To the residue, which was dissolved in tetrahydrofuran (2 mL), was added ether saturated with hydrogen chloride (2 mL). After 5 min, the solvent was removed under reduced pressure. To the residue, which was dissolved in methanol (7 mL), was added dropwise a solution of sodium cyanoborohydride (213 mg, 3.38 mmol) in methanol (2 mL). After

10

15

30

stirring at room temperature for 2.5 h, aqueous sodium bicarbonate was added to the reaction mixture, which was then concentrated under reduced pressure. The residue was partitioned between methylene chloride and aqueous sodium bicarbonate and the organic extract was dried (potassium carbonate). Removal of the solvent in <u>vacuo</u> and purification of the residue by flash chromatography, eluting with 3% methanol/methylene chloride, provided a viscous yellow oil (1.144 g, 88%).

(b) N-(4-Acetylaminobenzyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide. Using a solution of N-(4-acetylaminobenzyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]amine (1.14 g, 2.98 mmol) in an analogous method of Example 5(g) above provided the title oxamide yielding (234 mg, 17%): m.p. 117-120°C. Analysis Calc. for C25H31N3O5.1/8 H2O: C 65.88, H 6.91, N 9.22; found: C 65.80, H 6.95, N 9.15.

EXAMPLE 20

N-[2-(3-cyclopentyloxy-4-methoxyphenyl)propylloxamide

- (a) α-Bromo-3-cyclopentyloxy-4-methoxytoluene. To 3-cyclopentyloxy-4-methoxybenzaldehyde (5.0 g, 22.7 mmol) was added lithium bromide (3.94 g, 45.4 mmol) and acetonitrile (25 mL). Upon dissolution, the reaction mixture was cooled to 0°C.
- 20 Trimethylsilylchloride (4.32 mL, 34.0 mmol) was slowly added and the reaction mixture was allowed to warm to room temperature and stirred for 15 min. The reaction mixture was again cooled to 0°C and 1,1,3,3-tetramethyldisiloxane (6.68 mL, 34.0 mmol) was added dropwise. The resulting mixture was allowed to warm to room temperature. After stirring for 2 h, the mixture was separated into two layers. The lower layer was removed, diluted with methylene chloride and filtered. The filtrate was concentrated under reduced pressure, dissolved in methylene chloride and filtered. The solvent was removed in yacuo to provide a light tan oil (6.6 g, 100%) which was used without further purification.
 - (b) (3-Cyclopentyloxy-4-methoxyphenyl)acetonitrile. To a solution of α-bromo-3-cyclopentyloxy-4-methoxytoluene (6.6 g, 23.0 mmol) in dimethylformamide (10 mL) under an argon atmosphere was added a suspension of powdered sodium cyanide (2.5 g, 51.0 mmol) in dimethylformamide (40 mL). The resulting mixture was stirred at room temperature for 24 h, then poured into cold water (250 mL) and extracted three times with ether/ethyl acetate. The combined organic extracts were washed three times with water and dried (sodium sulfate). The solvent was removed in yacuo and the residue was purified by
- 3 5 flash chromatography, eluting with 30% ethyl acetate/hexanes to provide a pale yellow oil (4.45 g, 84%).
 - (c) 2-(3-Cyclopentlyoxy-4-methoxyphenyl)propionitrile. To a solution of diisopropylamine (0.61 mL, 4.3 mmol) in dry tetrahydrofuran (6 mL) under an argon

atmosphere at 0°C was added dropwise n-butyl lithium in hexanes (2.5 M, 1.73 mL, 4.33 mmol). After stirring at 0°C for 30 min, this mixture was cooled to -78°C and a solution of 3-(cyclopentyloxy-4-methoxyphenyl)acetonitrile (1.0 g, 4.32 mmol) in dry tetrahydrofuran (3 mL) was added in a steady stream. After 6 min, this solution was added via canula to a solution of iodomethane (0.64 g, 4.5 mmol) in tetrahydrofuran (5 mL) under an argon atmosphere at -78°C. The mixture was allowed to warm to room temperature and stirred overnight. The solvent was removed in vacuo and the residue partitioned between ether and dilute aqueous hydrochloric acid. The ether layer was washed twice with dilute aqueous hydrochloric acid, once with water, once with dilute aqueous sodium bicarbonate and dried (sodium sulfate). After solvent evaporation, the residue was purified by flash

- (sodium sulfate). After solvent evaporation, the residue was purified by flash chromatography, eluting with 2:1 hexanes/ether to provide a colorless oil (0.5 g, 47%).
 (d) 2-(3-Cyclopentyloxy-4-methoxyphenyl)propylamine. To a solution of (3-cyclopentyloxy-4-methoxyphenyl)propionitrile (0.5 g, 2.0 mmol) in methanol (15 mL) was added 70% perchloric acid (0.32 g, 2.2 mmol) and 10% palladium on activated carbon (92
- 1.5 mg). The resulting mixture was hydrogenated at 50 psi hydrogen for 2 h and filtered through a pad of Celite. The filtrate was concentrated in yacuo. The residue was partitioned between methylene chloride and aqueous sodium carbonate and the methylene chloride layer was washed three times with water and dried (potassium carbonate). Solvent removal provided an oil (0.5 g, 100%).
- 20 (e) N-[2-G-Cyclopentyloxy-4-methoxyphenyl)propyll-oxamide. To a suspension of oxamic acid (0.27 g, 3 mmol) in 1,2-dimethoxyethane (10 mL) under an argon atmosphere was added dropwise N-methylmorpholine (0.36 mL, 3.3 mmol) followed by isobutyl chloroformate (0.43 mL, 3.3 mmol). After stirring for 1.5 h at room temperature, a solution of 2-(3-cyclopentyloxy-4-methoxyphenyl)propylamine (0.5 g, 2 mmol) in 1,2-
- 2.5 dimethoxyethane (5 mL) was added and the resulting mixture was stirred overnight. The solvent was removed under reduced pressure. The solid residue was dissolved in chloroform, washed successively with dilute hydrochloric acid and water and dried (sodium sulfate). The solvent was removed in yacuo and the residue was purified by flash chromatography, eluting with 10% ether/chloroform. A second flash chromatography
- elution with 50% ethyl acetate/chloroform provided the oxamide (0.14 g, 22%): m.p. 175-176.5°C.

Analysis Calc. for C17H24N2O4: C63.73, H7.55,

N 8.74; found: C 63.80, H 7.69, N 8.65.

35

EXAMPLE 21

- (a) 2-(3-Cyclopentivoxy-4-methoxyphenyl)-2-methylpropionitrile. To a solution of diisopropylamine (1.7 mL, 12 mmol) in dry tetrahydrofuran (16 mL) under an argon atmosphere at 0°C was added dropwise n-butyl lithium in hexanes (2.5 M, 4.9 mL, 12.3 mmol). After stirring at 0°C for 30 min, this mixture was cooled to -78°C and
- hexamethylphosphoramide (2.3 mL, 13.3 mmole) and a solution of 3-(cyclopentyloxy-4-methoxyphenyl)acetonitrile (1.0 g, 4.32 mmol) in dry tetrahydrofuran (3 mL) were added in sequence. After 30 min, the green solution was allowed to warm to -20°C and iodomethane (3.3 g, 23.2 mmol) was added dropwise. The mixture was allowed to warm to room temperature and stirred overnight. The solvent was removed in vacuo and the residue
- 1 0 partitioned between ether and dilute aqueous hydrochloric acid. The ether layer was washed twice with dilute aqueous hydrochloric acid, once with water and dried (sodium sulfate). Solvent evaporation provided a colorless oil (1.2 g) which was used without purification.
 - (b) 2-(3-cyclopentyloxy-4-methoxyphenyl)-2-methylpropylamine. To a solution of (3-cyclopentyloxy-4-methoxyphenyl)-2-methylpropionitrile (0.9 g, 3.5 mmol) in methanol (50
- and then three times with methanol prior to use) and concentrated ammonium hydroxide (1.5 mL). The resulting mixture was hydrogenated at 52 psi hydrogen for 1 h and filtered through a pad of Celite. The filtrate was concentrated in vacuo. The residue was partitioned between methylene chloride and aqueous sodium carbonate and the methylene chloride layer was dried (potassium carbonate). Solvent removal provided an oil (0.9 g. 98%).
 - (c) N-12-(3-Cyclopentyloxy-4-methoxyphenyl)-2-methylpropylloxamide. The title compound was produced in an analogous method to Example 20, part (e) above (0.27 g, 24%): m.p. 108-109.5°C.

<u>Analysis</u> Calc. for C₁₈H₂₆N₂O₄: C 64.65, H 7.84, N 8.38; found: C 64.60, H 7.91 N 2.5 8.33.

EXAMPLE 22

N-I2-(3-Cyclopentyloxy-4-methylthiophenyl)ethylloxamide

(a) 3-Cyclopentyloxy-4-methylthiobenzaldehyde. To a solution of 3-cyclopentyloxy-4-nitrobenzaldehyde (4.00 g, 17.0 mmol) in dimethylformamide (23 mL) under an argon atmosphere was added sodium thiomethoxide (1.32 g, 18.7 mmol). The resulting mixture was stirred for 30 min, then poured into water and extracted four times with ether. The combined organic extracts were washed twice with water and saturated aqueous sodium chloride and dried (sodium sulfate). The solvent was removed in vacuo. The residue was purified by flash chromatography, eluting with a solvent gradient of 15 - 50% ethyl acetate/hexanes to provide the thioether (1.72 g, 43%) as an orange oil.

- (b) 3-Cyclopentyloxy-4-methylthio-8-nitrostyrene. Using a solution of 3-cyclopentyloxy-4-methylthiobenzaldehyde (1.70 g, 7.2 mmol) in the analogous method of Example 1(b) provided the nitrostyrene yielding (1.51 g, 75%): m.p. 121-122°C.
- (c) 2-[3-Cyclopentyloxy-4-methylthiophenyllethylaming. Using a solution of 3-
- 5 cyclopentyloxy-4-methylthio-6-nitrostyrene (1.50 g, 5.4 mmol) in the analogous method of Example 2 above provided the amine (1.08g, 80%).
 - (d) N-[2-(3-Cyclopentyloxy-4-methylthiolphenyl)ethylloxamide. Using a solution of 2-[3-cyclopentyloxy-4-methylthiophenyl]ethylamine (379 mg, 1.5 mmol) in the analogous method of Example 5(g) above provided the oxamide yielding (102 mg, 21%): m.p. 174-
- 10 175°C.

Δnalysis Calc. for C₁₆H₂₂N₂O₃S: C 59.60, H 6.88, N 8.69, S 9.94; found C 59.29, H 6.75, N 8.48, S 9.79.

15

EXAMPLE 23

N-12-(3-Cyclopentyloxy-4-methylsulfoxylphenyl)ethylloxamide

To a solution of sodium periodate (97 mg, 0.5 mmol) in water at 0°C under an argon atmosphere was added a suspension of N-[2-(3-cyclopentyloxy-4-methylthio-

20 phenyl)ethyl]oxamide (132 mg, 0.4 mmol) in methanol (4 mL). After workup the title sulfone compound was produced. (145 mg, 80%): m.p. 166-167°C.
Analysis Calc. for C₁₆H₂₂N₂O₄S-0.21H₂O: C 56.16, H 6.60, N 8.19, S 9.37; found C 56.17, H 6.53, N 8.12, S 9.20.

25

EXAMPLE 24

N-[2-G-Cyclopentyloxy-4-methylsulfonylphenyl)ethylloxamide

To a suspension of N-[2-(3-cyclopentyloxy-4-(methylthiophenyl)-ethyl]oxamide (50 mg, 0.16 mmol) in methylene chloride (2 mL) at 0°C under an argon atmosphere was added m-chloroperoxybenzoic acid (79 mg, 0.46 mmol). After stirring for 45 min, the mixture was poured into methylene chloride and washed successively with aqueous sodium bisulfate, water, aqueous sodium bicarbonate and saturated aqueous sodium chloride and dried (potassium carbonate). The solvent was removed in yacuo and the residue was purified by flash chromatography, eluting with 2% methanol/methylene chloride to provide the sulfone 3.5 (53 mg, 94%): m.p. 185-186.5°C.

Analysis Calc. for C₁₆H₂₂N₂O₅S-0.15H₂O: C 53.80, H 6.29, N 7.86, S 8.98; found C 53.80, H 6.31, N 7.79, S 8.70.

EXAMPLE 25

Ethyl 2-(3-cyclopentyloxy-4-methoxyphenyl)-3-oxamidopropionate

- (a) Ethyl (3-cyclopentyloxy-4-methoxyphenyl)cyanoacetate. To a suspension of sodium hydride (1.32 g of 80% suspension in mineral oil, 44.0 mmol) in toluene (60 mL) under an argon atmosphere was added a solution of diethyl carbonate (3.47 g, 29.4 mmol) and (3-cyclopentyloxy-4-methoxyphenyl)acetonitrile (3.36 g, 14.5 mmol) in toluene (5 mL). The resulting mixture was heated at reflux for 1 hour with azeotropic removal of ethanol. The reaction mixture was allowed to cool to room temperature and stirred overnight. The mixture was partitioned between ice water and ether. The organic phase was extracted with aqueous sodium hydroxide. The aqueous phase was acidified with dilute aqueous hydrochloric acid and extracted with ether. The ether extract was dried (sodium sulfate) and the solvent was removed in vacuo. The residue was recrystallized from water/methanol to
- 15 (b) Ethyl 3-amino-2-(3-cyclopentyloxy-4-methoxyphenyl)propionate.

provide the product (2.97 g, 68%).

To a solution of ethyl (3-cyclopentyloxy-4-methoxyphenyl)cyanoacetate (0.65 g, 2.14 mmol) in absolute ethanol (100 mL) was added 70% perchloric acid (0.14 mL, 2.36 mmol) and 10% palladium on carbon (0.19 g). The resulting mixture was hydrogenated at 50 psi hydrogen for 2.5 h and filtered through a pad of Celite. The filtrate was

- 20 concentrated in vacuo. The solid residue was partitioned between methylene chloride and aqueous sodium carbonate and the organic layer was dried (potassium carbonate). Removal of the solvent in vacuo provided an oil (0.66 g, 100%).
 - (c) Ethyl 2-(3-cyclopentyloxy-4-methoxyphenyl)-3-oxamidopropionate.

Using a solution of ethyl 3-amino-2-(3-cyclopentyloxy-4-

2.5 methoxyphenyl)propionate (0.66 g, 2.14 mmol) in the analogous method of Example 5(g) above provided the title compound yielding (0.13 g, 16%): m.p. 184-184.5°C.
Analysis Calc. for C₁₉H₂₆N₂O₆: C 60.30, H 6.93, N 7.40; found: C 60.70, H 6.89, N 7.64.

30

EXAMPLE 26

Methyl 2-(3-cyclopentyloxy-4-methoxyphenyl)-3-oxamidopropionate

- (a) Methyl (3-cyclopentyloxy-4-methoxyphenyl)cyanoacetate.
 - Using a suspension of (3-cyclopentyloxy-4-methoxyphenyl)acetonitrile (8.6
- 3.5 g, 37.2 mmol) in an analogous method to that of Example 25 (a) above except using dimethyl carbonate instead of diethyl carbonate provided the title compound yielding a solid (7.45 g, 69%).
 - (b) Methyl 3-Amino-2-(3-cyclopentyloxy-4-methoxyphenyl)propionate.

Using a solution of methyl (3-cyclopentyloxy-4-methoxyphenyl)cyanoacetate (2.5 g, 8.6 mmol) in an analogous method to that of Example 25 (b) above provided the title compound as an oil (2.5 g, 100%).

(c) Methyl 2-(3-cyclopentyloxy-4-methoxyphenyl)-3-oxamidopropionate.

Using a isobutyl chloroformate (1.9 mL, 14.8 mmol) and a solution of methyl 3-amino-2-(3-cyclopentyloxy-4-methoxyphenyl)-propionate (2.5 g, 8.6 mmol) in an analogous method to that of Example 5(g) above provided the oxamide: m.p. 182.5-183°C.

Analysis Calc. for C₁₈H₂₄N₂O₆: C 59.33, H 6.64, N 7.69; found: C 59.29, H 10 6.60, N 7.61.

EXAMPLE 27 N-I2-(3.4-Didifluoromethoxyphenyl)ethyl)oxamide

15 a) Methyl N-12-(3.4-dibenzyloxyphenyl)ethyl loxamate

A solution of 3,4-dibenzyloxyphenethylamine hydrochloride (5g, 13.5 mmol) in methylene chloride (50 mL) was cooled to 0°C and treated with triethylamine (4.15 mL, 29.7 mmol) and methyl oxalyl chloride (1.37 mL, 14.9 mmol). The reaction was stirred at room temperature under an argon atmosphere for 2 h, then partitioned between acidic water and methylene chloride. The extract was was washed with dilute sodium bicarbonate, dried (magnesium sulfate) and evaporated. Purification by trituration with ether and hexane provided a tan solid (5.2 g, 92%): m. p.84 °C.

b) N-[2-(3.4-Dibenzyloxyphenyl)ethyl]oxamide

A suspension of methyl N-[2-(3,4-dibenzyloxyphenyl)ethyl]oxamate (5.0 g, 11.9 mmol) in methanol (100 mL) contained in a Fischer-Porter pressure vessel under argon was cooled to -78°C. Ammonia (ca. 60 mL) was condensed into the vessel, the vessel was sealed and allowed to come to room temperature. The suspension was allowed to stir at room temperature under a pressure of approximately 60 psi for 17h. The mixture was cooled to -78°C, the vessel was opened and the vigorously stirred suspension was allowed to come to room temperature under a stream of argon. After 1.5h, the solvent was removed in vacuo and the solid was triturated with 20% methylene chloride/ether to provide a white solid (4.5 g, 93%): m. p. 187°C.

3 5 c) N-I(2-(3.4-Dihydroxyphenyl)ethyiloxamide

To a solution of N-[2-(3,4-dibenzyloxyphenyl)ethyl]oxamide (4.0 g, 9.89 mmol) in methanol (120 mL) and dimethylformamide (40 mL) was added 10% palladium on carbon (1.0 g). The resulting mixture was hydrogenated at 55 psi for 4 h and filtered through a

25

35

pad of celite. The filtrate was concentrated in vacuo to provide a light grey solid (2.2 g, 100%), m.p. >210°C.

d) N-1(2-(3.4-Bis-difluoromethoxyphenyl)ethylloxamids

A suspension of N-[2-(3,4-dihydroxyphenyl)ethyl]oxamide (336 mg, 1.5 mmol) and 5 anhydrous potassium carbonate (829 mg, 6 mmol) in dimethylformamide (4 mL) contained in a stainless steel bomb under an argon atmosphere was cooled to -78°C. Chlorodifluoromethane (ca. 2 mL) was condensed into the vessel, the vessel was scaled, allowed to come to room temperature and then heated at 80-90°C for 7h. The mixture was cooled to -78°C, the vessel was opened and the vigorously stirred suspension was allowed 10 to come to room temperature under a stream of argon. After 1h, the mixture was partitioned between methylene chloride/isopropanol and acidic water and. The organic extract was dried (sodium sulfate) and evaporated to a white solid. Purification by flash chromatography, eluting with 10% isopropanol/chloroform, followed by trituration of the resultant solid with methylene chloride/hexane, provided a white solid (120 mg, 25%): m. p. 153-155°C. 15 Analysis Calc. for C12H12F4N204.1/10 H2O: C 44.21, H 3.77, N 8.59; found: C 44.54, H 3.57, N 8.64.

EXAMPLE 28

N-[(3,4-Diethoxyphenyl)ethylloxamide

A suspension of N-[(3,4-dihydroxyphenyl)ethyl]oxamide (280 mg, 1.25 mmol), anhydrous potassium carbonate (363 mg, 2.6 mmol) and iodoethane (.22 mL, 2.75 mmol) in dimethylformamide (3 mL) under an argon atmosphere was heated at 70°C. After 4h, additional iodoethane (0.1 mL) was added and the mixture was heated for an additional hour. The mixture was cooled to room temperature and partitioned between methylene

hour. The mixture was cooled to room temperature and partitioned between methylene chloride and acidic water. The organic extract was dried (magnesium sulfate) and evaporated. Purification by flash chromatography, eluting with 3% methanol/chloroform, followed by trituration of the resultant solid with ether, provided a tan solid (99 mg, 28%):

30 m. p. 168-169°C.

Analysis Calc. for C14H20N204: C 59.99, H 7.19, N 9.99; found: C 59.88, H 7.19, N 9.94.

EXAMPLE 29

N-[2-Cyano-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide

- a) 2-Cyano-2-(3-cyclopentyloxy-4-methoxyphenyl)acetamide A solution of methyl 2-cyano-2-(3-cyclopentyloxy-4-methoxyphenyl)acetate (2.1 g, 7.26 mmol), produced by the method of Example 26(a), in concentrated ammonium hydroxide (50 mL) was stirred at room temperature for four days. A thick white precipitate formed after the first half hour. The reaction was cooled to 0°C, acidified to pH 2-3 with 10% aqueous hydrochloric acid, extracted three times with methylene chloride/methanol and dried (magnesium sulfate). The solvent was removed in vacuo to provide an off-white solid (1.75 g, 88%): m.p. 160-162°C.
- b) 3-(t-Butoxycarbonylamino)-2-(3-cyclopentyloxy-4-methoxyphenyl)propioamide To a solution of 2-cyano-2-(3-cyclopentyloxy-4-methoxyphenyl)acetamide (504 mg, 1.85 mmol) in methanol (25 mL) was added 70% perchloric acid (179 μL, 1.9 mmol) and 10% palladium on carbon (30 mg). The resulting mixture was hydrogenated at 50 psi for 2 h and filtered through a pad of celite. The filtrate was concentrated in vacuo. The solid residue was partitioned between methylene chloride and aqueous sodium carbonate and the organic layer was dried (sodium sulfate). The solvent was removed in vacuo, and the residue was dissolved in methylene chloride (25 mL) and treated with di-t-butyldicarbonate (0.5 mL, 2.18 mmol). After 20 h, the solvent was evaporated and the residue was purified by flash chromatography, eluting with 1:1 ethyl acetate/hexanes, to provide a pale yellow solid (331 mg, 47.4%).
- c) 3-(t-Butoxycarixonylamino)-2-(3-cyclopentyloxy-4-methoxyphenyl)propionitrile A solution of 3-(t-butoxycarbonylamino)-2-(3-cyclopentyloxy-4-methoxyphenyl)propioamide (285 mg, 0.75 mmol) in dry tetrahydrofuran (5 mL) was treated with pyridine (135 μL, 1.66 mmol) and with trifluoroacetic anhydride (120 μL, 0.83 mmol) dropwise. The reaction was stirred at room temperature for 1.5 h, then quenched with ice and partitioned between methylene chloride and water. The organic extract was dried (magnesium sulfate) and concentrated. Purification by flash chromatography, eluting with 3:7 ethyl acetate/hexanes, provided an orange-yellow oil (262 mg, 97%).
- d) 3-Amino-2-(3-cyclopentyloxy-4-methoxyphenyl)propionitrile A solution of 3-(t-butoxycarbonylamino)-2-(3-cyclopentyloxy-4-methoxyphenyl)propionitrile (256 mg, 0.71 mmol) in methylene chloride (5 mL) cooled to 0°C was treated with the dropwise addition of trifluoroacetic acid (1.0 mL) and stirred under argon for 2 h at 0°C and 2 h at room temperature. The reaction was neutralized with solid sodium bicarbonate, diluted with methylene chloride and washed with aqueous sodium bicarbonate and then with

10

water. The organic extract was dried (potassium carbonate) and evaporated to provide a yellow oil (178 mg, 97%).

- e) Methyl N-12-cvano-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamate A solution of 3-amino-2-(3-cyclopentyloxy-4-methoxyphenyl)propionitrile (356 mg, 1.37 mmol) in methylene chloride (8 mL) was cooled to 0°C and treated with triethylamine (0.2 mL, 1.51 mmol) and methyl oxalyl chloride (0.14 mL, 1.51 mmol). The reaction was stirred under an argon atmosphere for 0.5 h, then partitioned between water and methylene chloride. The extract was dried (sodium sulfate) and evaporated. Purification by flash chromatography, eluting with 3:7 ethyl acetate/hexanes, provided a white foam (332 mg, 70%).
- f) N-12-cyano-2-(3-cyclopenryloxy-4-methoxyphenyl)phenylloxamate (332 mg, 0.96 mmol) in methanol (3 mL) was treated with lithium hydroxide monohydrate (126 mg, 2.88 mmol) and stirred for 5 min. The solvent was removed in vacuo, the resin acidified with 10% aqueous hydrochloric acid and partitioned between methylene chloride and water and extracted. The organic extract was dried (magnesium sulfate) and evaporated. The residue was dissolved in ethylene gylcol dimethyl ether (5 mL) and treated with N-methylmorpholine (127 mL, 1.15 mmol) and isobutylchloroformate (143 mL, 1.1 mmol).
- After 10 min, the reaction was cooled to 0°C and a solution of ammonia-saturated ethylene glycol dimethyl ether (5-10 mL) was added. The reaction was allowed to stir for 0.5 h at 0°C and for 2 h at room temperature. The mixture was partitioned between methylene chloride/methanol and water and washed with 10% aqueous hydrochloric acid and water. The organic extract was dried (magnesium sulfate) and evaporated to a white
- 25 solid. Purification by flash chromatography, eluting with 1:1 ethyl acetate/hexanes, provided a white solid which was triturated with ether, filtered and dried (106.2 mg, 33%): m. p. 176-177°C.
 Analysis Calc. for C19H21N3O4: C 60.96, H 6.44, N 12.54; found: C 61.35, H 6.81, N 11.86.

30

EXAMPLE 30

N-[1-Methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)ethyll-β-nitro styrene. A solution of 3-cyclopentyloxy-4-methoxyphenyl)ethyll-β-nitro styrene. A solution of 3-cyclopentyloxy-4-methoxyphenylbenzaldehyde (3.3 g, 15 mmol) in glacial acetic acid (25 mL) was treated with nitroethane (4.2 mL, 58.5 mmol) and ammonium acetate (1.65 g, 21.4 mmol) and heated at reflux under an argon atmosphere for 6 h. The solvent was removed in vacuo and the residue was partitioned between methylene chloride and 5% sodium bicarbonate. The organic layer was dried (potassium carbonate) and evaporated.

mg. 52%).

Purification by flash chromatography, eluting with 7:3 chloroform/hexanes, provides an oil which is crystallied from hexanes (1.05 g, 25.3%).

- b) N-12-G-Cyclopentyloxy-4-methoxyphenyl)ethyllmethylamine Using a solution of the nitrosyrene (1.0 g. 3.61 mmol) from part (a) above in an analogous method to that of Example 2 above, provided title compound yielding (692 mg, 77%).
- c) N-[1-Methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide Using a solution of N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]methylamine (690 mg, 2.77 mmol) in ethylene glycol dimethyl ether in an analogous method to that of Exmple 5(g) provided the title compound yielding (333 mg, 38%): m.p.197-198°C.

 Analysis Calc. for C17H24N2O4*1/2H2O: C 61.99, H 7.65, N 8.50; found: C, H, N

EXAMPLE 31

- 1.5 N-I2-Cyano-2-methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide
- a) 2-Cyano-2-(3-cyclopentyloxy-4-methoxyphenyl)propionamide A solution of diisopropyl amine (525 μL, 6.5 mmol) in tetrahydrofuran (15 mL) at 0°C was treated with the slow addition of n-butyllithium (2.5 M, 1.4 mL) in hexanes and stirred under an argon atmosphere for 0.5 h. The reaction mixture was cooled to -78°C, and solid 2-cyano-2-(3-cyclopentyloxy-4-methoxyphenyl)acetamide (849 mg, 3.11 mmol) was added. After stirring for 0.5h, methyl iodide (4.0 mL, 62 mmol) was added, and the reaction was stirred with warming to room temperature. After 1.5 h, the reaction mixture was partitioned between ether and water and was washed with 1.0 M hydrochloric acid, water and the organic extracts dried (sodium sulfate). The concentrated crude product was purified by flash chromatography, eluting with 3:7 ethyl acetate/hexanes, to provide a white solid (466
 - b) 3-(t-Butoxycarbonylamino)-2-(3-cyclopentyloxy-4-methoxyphenyl)-2-
- 3 0 methylpropioamide To a solution of 2-cyano-2-(3-cyclopentyloxy-4-methoxyphenyl)propioamide (464 mg, 1.61 mmol) in methanol (25 mL) was added 70% perchloric acid (175 μL, 1.9 mmol) and 10% palladium on carbon (40 mg). The resulting mixture was hydrogenated at 50 psi for 2 h and filtered through a pad of celite. The filtrate was concentrated in vacuo. The solid residue was partitioned between methylene chloride
 3 5 and aqueous sodium carbonate and the organic layer was dried (sodium sulfate). The solvent was removed in vacuo, and the residue dissolved in methylene chloride (5 mL) and

treated with di-t-butyldicarbonate (0.5 mL, 2.17 mmol). After 2 h, the solvent was

evaporated and the residue was purified by flash chromatography, eluting with 4:6 ethyl acetate/hexanes, to provide the product (487 mg, 77%).

c) 3-(t-Butoxycarbonylamino)-2-(3-cyclopentyloxy-4-methoxyphenyl)-2-

- 5 methylpropionitrile A solution of 3-(t-butoxycarbonylamino)-2-(3-cyclopentyloxy-4-methoxyphenyl)-2-methylpropioamide (487 mg, 1.24 mmol) in dry tetrahydrofuran (7 mL) at 0°C, was treated with pyridine (220 μL, 2.74 mmol) and with trifluoroacetic anhydride (195 μL, 1.36 mmol) dropwise. The reaction was stirred at room temperature for 3 h under an argon atmosphere, then quenched with ice and partitioned between methylene chloride and water. The organic extract was dried (magnesium sulfate) and concentrated to a residue which was purified by flash chromatography, eluting with 25:75 ethyl acetate/hexanes, to provide a white solid (402 mg, 87%).
- d) 2-Amino-2-(3-cyclopeniyloxy-4-methoxyphenyl)propionitrile. A solution of 3-(tbutoxycarbonylamino)-2-(3-cyclopentyloxy-4-methoxyphenyl)-2-methylpropionitrile (400 mg, 1.07 mmol) in methylene chloride (5 mL) cooled to 0°C was treated with the dropwise addition of trifluoroacetic acid (1.35 mL) and stirred under argon for 1.5 h at 0°C and 2.5 h at room temperature. The reaction was neutralized with solid sodium bicarbonate, diluted with methylene chloride and washed with water. The organic extract was dried (potassium carbonate) and evaporated to provide the product (289 mg, 100%).
- e) Methyl N-I2-cyano-2-methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamate A solution of 3-amino-2-(3-cyclopentyloxy-4-methoxyphenyl)-2-methylpropionitrile (288 mg, 1.05 mmol) in methylene chloride (5 mL) was cooled to 0°C and treated with triethylamine (0.13 mL, 1.16 mmol) and methyl oxalyl chloride (0.11 mL, 1.2 mmol). The reaction was stirred under an argon atmosphere for 0.5 h, then partitioned between water and methylene chloride. The extract was dried (sodium sulfate) and evaporated. Purification by flash chromatography, eluting with 1:1 ethyl acetate/hexanes, provided a white foam (315 mg, 83%).
- 5. N-I2-Cyano-2-methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide A solution of Methyl N-[2-cyano-2-methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamate (312 mg, 0.87 mmol) in methanol (7 mL) was treated with lithium hydroxide monohydrate (110 mg, 2.6 mmol) and stirred for 0.5 h. The pH was adjusted to pH 2 with 10% aqueous hydrochloric acid and the solvent was removed in vacuo. The resin was partitioned between methylene chloride and water, extracted and the organic extract was dried (magnesium sulfate) and evaporated. The residue was dissolved in ethylene glycol dimethyl ether (5 mL) and treated with N-methylmorpholine (115 mL, 1.04 mmol) and isobutylchloroformate (130

mL, 1.0 mmol). After 10 min, the reaction was cooled to 0°C and to the reaction an ammonia saturated ethylene glycol dimethyl ether solution (5-10 mL) was added. The reaction was allowed to stir for 0.5 h at 0°C and for 2 h at room temperature and partitioned between methylene chloride/methanol and water and washed with 10% aqueous

hydrochloric acid and water. The organic extract was dried (magnesium sulfate) and evaporated to provided a white solid which was triturated with ether, filtered and dried (84 mg, 28%): m. p. 171-172°C.

Analysis Calc. for C₁₈H₂₃N₃O₄: C 62.19, H 6.74, N 12.09; found: C 61.99, H 6.60, N 11.81.

10

5

EXAMPLE 32

N-I2-(3-Cvclopentyloxy-4-methoxyphenyl)ethyll-N'-(4-pyridinylmethyl)oxamide
Using a solution of N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamic acid
(284 mg, 0.92 mmol), EDAC (220 mg, 1.16 mmol) and dimethylaminopyridine (140,

1.25 mmol) and 4-aminomethyl pyridine in an analogous method to that of Example 12 above provided the title compound yielding (126 mg, 34%): m.p. 129-1310C. Analysis Calc. for C17H24N2O4•: C 63.73, H 7.55, N 8.74; found: C 63,36, H 7.23, N 8.65.

20

182°C.

EXAMPLE 33

N-12-(3-Cyclopentyloxy-4-methoxyphenyl)ethyll-N'-(3-pyridinylmethyl)oxamide

Using a solution of N-(2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamic acid

(306 mg, 1.0 mmol) in ethylene glycol dimethyl ether (6 mL) was treated with N-methyl-

(300 mg, 1.0 mmol) in ethylene glycol dimethyl ether (6 mL) was treated with N-methyl-morpholine (130 μL, 1.2 mmol) and isobutyl chloroformate (147 μL, 1.15 mmol) in an anardous method to that of Example 10 above with (2.2).

anaglous method to that of Example 10 above with (3-Aminomethyl)-pyridine provided the product (42 mg, 11%): m.p. 148-1490C.

<u>Analysis</u> Calc. for C22H27N3O4: C 66.48, H 6.85, N 10.57; found: C 66.11, H 6.84, N 10.40.

EXAMPLE 34

3.0 N-12-(3-Cyclopentyloxy-4-methoxyphenyl)ethyll-N-(4-pyridinyl)oxamide
The title compound was produced in an analogous manner to that of
Example 10 and 33 above except using 4-Aminopyridine yielded (45 mg, 12%): m.p.

<u>Analysis</u> Calc. for C₂₁H₂₅N₃O₄: C 65.78, H 6.57, N 10.96; found: C 65.47, H 3.5 6.53, N 10.93.

EXAMPLE 35

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyll-N-(3-pyridinyl)oxamide

35

The title compound was produced inan analogous manner to that of Example 10 and 33 above except using 3-Aminopyridine yielded (226 mg, 59%): m.p. 167°C.

Analysis Calc. for C21H25N3O4: C 65.78, H 6.57, N 10.96; found: C 65.83, H 6.46, N 10.91.

EXAMPLE 36

N-I2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyll-N'-(2-pyridinylmethyl)oxamide

The title compound was produced inan analogous manner to that of Example 10 and 33 above except using (2-Aminomethyl)pyridine yielded (241 mg, 63%): m.p. 141-143°C.

10 Analysis Calc. for C22H27N3O4: C 66.48, H 6.85, N 10.57; found: C 66.46, H 6.86, N 10.57.

EXAMPLE 37

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyll-N-methyloxamide

- a) N-I(t-Butoxycarbony))-3-(3-cyclopentyloxy-4-methoxyphenyl)ethylamine A solution of (3-cyclopentyloxy-4-methoxyphenyl)ethylamine (2.5 g, 10.62 mmol) in methylene chloride (25 mL) was treated with butyloxycarbonylanhydride (2.5 mL, 11.0 mmol) and stirred under an argon atmosphere for 2 h. The solvent was removed in vacuo and the residue was purified by flash chromatography. The product was eluted with 1:1 ether/hexanes as a colorless oil (3.04 g, 85 %).
 - b) N-[Methyl-1-(t-butoxycarbonyl)-3-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]amine A solution of N-[(t-butoxycarbonyl)-3-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]amine (1.2 g, 3.6 mmol) in dimethylformamide (10 mL) was treated with sodium hydride (120
- 25 mg, 4.0 mmol of an 80% dispersion) and stirred at room temperature under an argon atmosphere for 2 h. Methyl iodide (300 μL, 4.8 mmol) was added, and stirring continued for another 3 h. The solvent was removed in vacuo and the residue was partitioned between methylene chloride and acidic water. The organic layer was dried (potassium carbonate) and evaporated. Purification by flash chromatography, eluting with 3:1
- 30 hexanes/ether, provided the product (680 mg, 54%).
 - c) N-[1-Methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)ethyllamine Using a solution of N-[methyl-1-(t-butoxycarbonyl)-3-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]amine (650 mg, 1.86 mmol) in the analogous method of Example 11 above provided the title compound as an oil (440 mg, 95 %).
 - d) N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]-N-methyloxamide Using a solution of N-[1-methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]amine (300 mg, 1.2 mmol)

in an analogous method of Exampel 5(g) above provided the title compound yielding (230 mg, 60%).

<u>Analysis</u> Calc. for C₁₇H₂₄N₂O_{4*1}/2H₂O: C 61.99, H 7.65, N 8.50; found: C 62.16, H 7.53, N 8.45.

5

10

EXAMPLE 38

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]-N,N'N'-(trimethyl)oxamide

- a) N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyll-N'.N'-(dimethyl)oxamide Using a solution of N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamic acid (300 mg, 0.98 mmol) in ethylene glycol dimethylether in an analogous method of Example 10 provided the title compound as an oil (220 mg, 68%).
- b) N-12-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]-N.N.-(trimethyl)oxamide A solution of N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]-N',N'-(dimethyl)oxamide
 1 5 (220 mg, 0.66 mmol), in dimethylformamide (7 mL) was treated with sodium hydride (33 mg, 0.99 mmol of an 80% dispersion), 15-crown-5 ether (195 μL, 0.99 mmol) and stirred at 50°C under an argon atmosphere for 1 h. In a separate flask, methyl iodide (327 μL, 5.3 mmol) was added to tetrahydrofuran (20 mL), and the anion solution was added to it. Stirring continued for another 18 h under an argon atmosphere. The solvent was removed in vacuo and the residue was partitioned between ethyl acetate and water and washed with water 5 times. The organic layer was dried (potassium carbonate) and evaporated. Purification by flash chromatography, eluting with 97:3 chloroform/methanol, provided an oil.
- Analysis Calc. for C₁₉H₂8N₂O_{4*}: C 65.49, H 8.10, N 8.04; found: C 63.47, H 2.5 7.38, N 7.56.

EXAMPLE 39

N-I3-Hydroxy-2-(3-cyclopentyloxy-4-methoxyphenyl)propylloxamide

N-13-Hydroxy-2-(3-cyclopentyloxy-4-methoxyphenyl)propylloxamide A suspension of sodium borohydride (104 mg, 2.7 mmol) in ethylene glycol dimethyl ether (16 mL) under an argon atmosphere was treated with lithium chloride (121 mg, 2.8 mmol) and was stirred for 0.5 h. To it was added N-2-(3-cyclopentyloxy-4-mehtoxyphenyl)ethyl-2-methoxycarbonyloxamide (100 mg, 0.27 mmol) and the reaction was stirred at room temperature for 2.5 h. The solvent was removed in vacuo and water, hydrochloric acid to make acidic, and sodium carbonate were added and the mixture was extracted with chloroform. The product was concentrated and purified by flash chromatography. The product eluted with 2.5-7% methanol in chloroform and was triturated with ether to provide a white solid (9 mg, 9%): m.p. 176.

35

EXAMPLE 40

2-Carboxamido-N-I2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl loxamic acid

- 5 Methyl 2-Carboxamido-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamate Using a solution of 3-amino-2-(3-cyclopentyloxy-4-methoxyphenyl)propionarnide (100 mg, 0.47 mmol) in methylene chloride (8 mL) in the analogous method of Example 3 provided the title compound yielding (124 mg, 78%): m.p. 164-165°C.
- 10 [2-Carboxamido-N-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamic acid Using a solution of 2-carboxamido-N-2-(3-cyclopentyloxy-4-methoxyphenyl)-ethyloxamic acid methyl ester (95 mg, 0.26 mmol) in methanol (8 mL) in an analogous method to Example 4 above provided the product an off-white powder (11 mg, 73%): m.p. 188-190°C.

15 EXAMPLE 41

N-12-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl)-N-(4-acetaminophenyl)oxamide

- a) Ethyl 2-(3-cyclopentyloxy-4-methoxyphenyl)acetate A mixture of methyl methylsulfinylmethyl sulfide (2.0 mL, 19.1 mmol) and powdered sodium hydroxide (80 mg, 2.0 mmol) was stirred at 70-75°C under an argon atmosphere for 0.5 h, 3-cyclopentyloxy-4-methoxyphenylbenzaldehyde (2.0 g, 9.1 mmol) was added and the reaction was continued heating for 1.5 h. The reaction was diluted with methylene chloride and washed with 0.5 M hydrochloric acid, water and the organic extract was dried (potassium carbonate) and evaporated. Purification by flash chromatography,
- eluting with 4:6 ethyl acetate/hexanes provided a solid (2.5 g, 85 %). The solid was dissolved in ethanol (15 mL), treated with ethanol saturated with hydrochloric acid (1 mL) stirred at reflux for 2.5 h. The solvent was removed in vacuo and the residue was purified by flash chromatography. The product eluted with 95:5 ethyl acetate/hexanes as a yellow oil (1.58 g, 63%).
 - b) 2-(3-Cyclopentyloxy-4-methoxyphenyl)acetic acid Using a solution of ethyl 2-(3-cyclopentyloxy-4-methoxyphenyl)acetate (1.5 g, 5.5 mmol) in the analogous method of Example 4 except heating 1 hour at about 65-70°C provided the product as a yellow oil (1.4 g, 99%).

method to Example 12 provided the product as a yellow solid (884 mg, 44%): m.p. 129-131°C.

- d) 2-(3-Hydroxy-4-methoxyphenyl)-N-(4-nitrophenyl)ethylamine. To a solution of borane (3.0 mL, 1.0M solution in tetrahydrofuran) was added 2-(3-cyclopentyloxy-4-methoxyphenyl)-N-(4-nitrophenyl)acetamide (255 mg, 0.69 mmol) and the mixture was stirred under an argon atmosphere for 15 min. To the reaction was added 6N hydrochloric acid (5 mL) and the reaction was stirred at 120°C for 1 h in an open atmosphere. The solution was cooled to 0°C, was basified with solid potassium carbonate (6.2 g, 45 mmol) and water was added. The mixture was partitioned between methylene chloride and water, and the organic layer was dried (potassium carbonate) and evaporated to a yellow oil (202.7 mg,70%).
- g) 2-(3-Cyclopentyloxy-4-methoxyphenyl)-N-(4-nitrophenyl)ethylamine A solution of 2-(3-hydroxy-4-methoxyphenyl)-N-(4-nitrophenyl)ethylamine (201 mg, 0.7 mmol) in dimethylformamide (5 mL) was treated with cesium carbonate (456 mg, 1.4 mmol) and cyclopentyl bromide and was stirred at 55-60°C under an argon atmosphere for 4 h. The mixture was filtered and partitioned between methylene chloride and aqueous sodium bicarbonate. The organic layer was dried (potassium carbonate) and evaporated.
- Purification by flash chromatography, eluting with 2:8 ethyl acetate/hexanes, provided the product (227 mg, 91%).
- Ω 2-(3-Cyclopentyloxy-4-methoxyphenyl)-N-(4-aminophenyl)ethylamine Using a solution of 2-(3-cyclopentyoxy-4-methoxyphenyl)-N-(4-nitrophenyl)ethylamine (218 mg, 0.61 mmol) in the analogous method of Example 13 (a) provided the title compound as a purple oil (151 mg, 76%).
- g) 2-(3-Cyclopentyloxy-4-methoxyphenyl)-N-(4-acetamidophenyl)ethylamine A solution of 2-(3-cyclopentyoxy-4-methoxyphenyl)-N-(4-aminophenyl)ethylamine (119 mg, 0.37 mmol) in methylene chloride (1 mL) was treated with pyridine (1 drop) and 10% acetic anhydride in methylene chloride (400 μL, 0.43 mmol). The reaction was stirred under an argon atmosphere for 1 h. The reaction was partitioned between methylene chloride and water, and the organic layer was dried (magnesium sulfate) and evaporated to provide the product (131 mg, 96%).
 - h) N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]-N-(4-acetaminophenyl)oxamide Using a solution of 2-(3-cyclopentyoxy-4-methoxyphenyl)-N-(4-acetamidophenyl)-

ethylamine (194 mg, 0.53 mmol) in the analogous method of Example 5(g) provided the title oxamide yielding a solid (7 mg, 3%).

<u>Analysis</u> Calc. for C₂₄H₂₉N₃O₅•7/8H₂O: C 63.45, H 6.80, N 9.25; found: C 63.06, H 6.35, N 9.66.

5

EXAMPLE 42

N-12-oxo-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide

N-[2-oxo-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide A solution of pyridinium dichromate (236 mg, 0.63 mmol) in dimethylformamide (3.5 mL) under an argon atmosphere was treated with N-[2-hydroxy-2-(3-cyclopentyloxy-4-methoxy-phenyl)ethyl]oxamide (130 mg, 0.42 mmol) and was stirred for 5 h. Ether (10 mL) was added, the mixture was stirred for an additional 0.5 h and then was filtered through florisil. The filtrate was concentrated and partitioned between ethyl acetate and water.

The organic layer was washed three times with water and then dried (sodium sulfate).

Purification by flash chromatography, eluting with 9:1 chloroform/methanol, provided a white solid, which was recrystallized from ether (40 mg, 29.7%).

Analysis Calc. for C16H20N2O5*1/2H2O: C 58.35, H 6.43, N 8.51; found: C

58.89, H 6.12, N 8.07.

20

EXAMPLE 43

N-[2-hydroxy-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide

- 2-(3-Cyclopentyloxy-4-methoxyphenyl)-2-hydroxyethane A solution of 3-cyclopentyloxy-4-methoxybenzaldehyde (7 g, 32 mmol) in tetrahydrofuran (100 mL) was cooled to -78°C under argon and treated with methyl lithium (25 mL, 35.2 mmol) dropwise over five minutes. The reaction was stirred for 1.5 h while warming to room temperature. Water was added (1.15 ml, 64 mmol) and the solvent was removed in vacuo. The yellow solid was exposed to high vacuum for 10 minutes and used without
- 3 () further purification.
- 1-(3-Cyclopentyloxy-4-methoxyphenyl)-1-oxoethane A solution of 2-(3-cyclopentyloxy-4-methoxyphenyl)-2-hydroxyethane (7.08 g, 32 mmol) in methylene chloride (150 mL) was treated with pyridinium dichromate (16.8 g, 44.7 mmol) and the mixture was stirred under argon for 4.5 h. Ether (800 mL) was added and the mixture was stirred for 0.5 h. The reaction was filtered through florisil and washed well with ether. The solvent was removed in vacuo to provide an orange oil. Purification by flash chromatography, eluting with 97:3 methylene chloride/ethyl acetate, provided an off-white solid (3.0 g, 40%).

- 1-(3-Cyclopentylyoxy-4-methoxyphenyl)-1-oxo-2-bromoethane In a flask under argon was placed finely powdered copper (II) bromide (3.36 g, 16.2 mmol), which was dissolved in ethyl acetate (20 mL) and heated to reflux. A warm solution of 1-(3-cyclopentyloxy-4-methoxyphenyl)-1-oxo-2-bromoethane (2.0 g, 8.54 mmol) in
 5 chloroform (20 mL) was added with continued refluxing. After 2.5 h, evolution of hydrogen bromide had ceased and the reaction was allowed to cool to room temperature. The reaction was stirred for an additional 1.5 h and then filtered through a glass fiber filter to remove the lavender solid. The filtrate was concentrated and purification of the residue by flash chromatography, eluting with 8:2 hexanes/ether, provided a yellow solid (1.09 g. 41 %). The solid was unstable and was stored under argon at -30°C.
- 1-(3-Cyclopentyloxy-4-methoxyphenyl)-1-oxo-2-azidoethane A solution of 1-(3-cyclopentylyoxy-4-methoxyphenyl)-1-oxo-2-bromoethane (1.0 g, 3.19 mmol) in dimethyformamide (12 mL) was treated with sodium azide (208 mg, 3.19 mmol) and the reaction was heated at 72°C for 1.75 h. The reaction was cooled, poured into water and extracted with ethyl acetate. The organic layer was washed with water and dried (sodium sulfate). The solvent was removed in vacuo and the orange solid was stored under argon at -30°C (1.0 g, 100%).
- 20 1-(3-Cyclopentyloxy-4-methoxyphenyl)-2-azido-ethanol A solution of 1-(3-cyclopentyloxy-4-methoxyphenyl)-1-oxo-2-azidoethane (840 mg, 3.1 mmol) in methanol (40 mL) under an argon atmosphere was cooled to O°C and treated with neat sodium borohydride (232 mg, 6.2 mmol). After stirring for 0.25 h, water (0.5 mL), 15% sodium hydroxide (0.5 mL) and then water (1 mL) were added. The mixture was
 2.5 filtered, concentrated, partitioned between methylene oblavide and water and company.
- filtered, concentrated, partitioned between methylene chloride and water, and extracted twice. The organic layer was dried (potassium carbonate) and evaporated to provide a colorless oil (700 mg, 81.4%). This oil in ether (20 mL) was added to a suspension of lithium aluminum hydride (227 mg, 6.3 mmol) in ether (20 mL) under an argon atmosphere. The reaction was stirred at room temperature for 2 h, then was treated with water (0.2 mL), 15% sodium hydroxide (0.2 mL), and water (0.6 mL). The mixture was then filtered, the filtrate was dried (sodium sulfate) and concentrated to provide a white solid (490 mg, 92.8%).
- Methyl N-12-hydroxy-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamate A solution of (490 mg, 1.95 mmol) in tetrahydrofuran (8 mL) was cooled to -78°C and treated with triethylamine (0.3 mL, 2.15 mmol) and methyl oxalyl chloride (0.22 mL, 1.95 mmol). The reaction was stirred under an argon armosphere for 1.5 h, then partitioned between

water (pH~2) and methylene chloride. The extract was dried (potassium carbonate) and evaporated to a white solid (550 mg, 83.6%).

N-12-hydroxy-2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamide A solution of methyl N-[2-hydroxy-2-(3-cyclopentyloxy-4-methoxyphenyl)phenyl]oxamate (550 mg, 1.63 mmol) in methanol (15 mL) was cooled to -78°C and treated with liquid ammonia (15 mL). The reaction was allowed to warm to room temperature and stirred for 4 h. The ammonia was evaporated and chloroform was added (20 mL). The mixture was washed with water, dried (potassium carbonate) and evaporated. Purification by flash 10 chromatography, eluting with 9:1 chloroform/methanol, provided a white solid (500 mg, 100%): m.p. 180-181°C.

<u>Analysis</u> Calc. for C₁₆H₂₂N₂O₅•1/2H₂O: C 57.99, H 7.00, N 8.45; found: C 57.99, H 6.92, N 8.14.

1.5 Example 44

ethylloxamide (48 mg, 3.3%).

N-[2-(3-Difluoromethoxy-4-methoxyphenyl)ethylloxamids

a) N-[2-(4-Diffuoromethoxy-3-hydroxyphenyl)ethylloxamide and N-[2-(3-Diffuoromethoxy-4-hydroxyphenyl)ethylloxamide A suspension of N-[2-(3,4-dib-down-b-a-likely-lloyamide /3.0 a. 4.5 mmol) and aphydrous notassium (3.0 a. 4.5 mmol) and aphydrous (3.0 a. 4

- dihydroxyphenyl)ethyl]oxamide (1.0 g, 4.5 mmol) and anhydrous potassium carbonate (2.5 g, 18.1 mmol) in dimethylformamide (15 mL) contained in a glass pressure bomb under an argon atmosphere was cooled to -78°C. Chlorodifluoromethane (ca. 6 mL) was condensed into the vessel, the vessel was sealed and allowed to come to room temperature, and the mixture was stirred under pressure for 96h. After cooling to -78°C,
- the vessel was opened and the vigorously stirred suspension was allowed to come to room temperature under a stream of argon. After 1h, the mixture was partitioned between ethyl acetate and acidic water and the organic extract was dried (magnesium sulfate) and evaporated. Purification by two successive flash chromatographies, eluting with 10% ethyl acetate/ether, provided: N-[2-(4-difluoromethoxy-3-hydroxyphenyl)ethyl]oxamide as a glassy foam (65 mg, 5.3%), N-[2-(3-difluoromethoxy-4-hydroxyphenyl)ethyl]oxamide as a glassy foam (79 mg, 6.5%) and N-[2-(3,4-Bis-difluoromethoxyphenyl)-
- b) N-12-(3-Cyclopentyloxy-4-difluoromethoxyphenyl)ethylloxamide A mixture of N-[2-35 (4-difluoromethoxy-3-hydroxyphenyl)ethylloxamide (59 mg, 0.215 mmol), potassium carbonate (33 mg, 0.236 mmol) and bromocyclopentane (24 µL, 0.236 mmol) in dimethylformamide (3 mL) was heated under an argon atmosphere at 100°C for 3h. The mixture was allowed to cool and was partitioned between ethyl acetate and 5% aqueous sodium carbonate. The organic extract was washed with aqueous sodium carbonate and

dried (potassium carbonate). The solvent was removed in vacuo and the residue was purified by flash chromatography, eluting with 10% ethyl acetate/ether, to provide a white solid (50 mg, 67%): m.p. 166-169°C.

Analysis Calc. for C₁₆H₂₀F₂N₂O₄ ·1/4 H₂O: C 55.41, H 5.96, N 8.08; found: C 55.63, H 5.81, N 8.05.

EXAMPLE 45 N-I2-G-Cyclopentyloxy-4-diffuoromethoxyphenyl)ethylloxamide

- N-I2-G-Difluoromethoxy-4-methoxyphenyl)ethylloxamide A mixture of N-[2-(3-difluoromethoxy-4-hydroxyphenyl)ethyl]oxamide (70 mg, 0.28 mmol), produced in Example 44, step(a) above, potassium carbonate (40 mg, 0.26 mmol) and bromocyclopentane (30 μL, 0.29 mmol) in dimethylformamide (2.5 mL) was heated under an argon atmosphere at 100°C for 7h. The mixture was allowed to cool, was
- partitioned between ethyl acetate and 5% aqueous sodium carbonate and the organic extract was dried (potassium carbonate). The solvent was removed *in vacuo* and the residue was purified by flash chromatography, eluting with 10% ethyl acetate/ether, to provide a white solid (34 mg, 46%): m.p. 164-1680C.
- Analysis Calc. for C₁₂H₁₄F₂N₂O₄: C 50.00, H 4.9, N 9.72; found: C 49.87, H 4.91, 2 0 N 9.47.

EXAMPLE 46

Pivaloyloxymethyl N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyll oxamate

- 2.5 Piyaloxymethyl N-12-(3-cyclopentyloxy-4-methoxyphenyl)ethyl] oxamate A solution of N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl] oxamic acid (125 mg, 0.41 mmol) in dimethylformamide (4 mL) was treated with triethylamine (79.5 μL, 0.56 mmol) and was stirred under an argon atmosphere for 0.75 h. The reaction was treated with chloromethylpivolate (117.3 μL, 0.82 mmol) and was stirred at room temperature for 18
- 3.0 h. The reaction was then heated to 70°C for 1 h. The mixture was dissolved in enhyl acetate and washed four times with water. The organic extracts were washed twice with saturated sodium bicarbonate, dried (sodium sulfate), evaporated, and exposed to high vacuum for 18 h to provide a foam (150 mg, 85%).
- <u>Analysis:</u> Calc. for: C₂₂H₃₁NO₇: C: 62.69, H: 7.41, N: 3.32; found: C: 62.26, H: 3.5 7.52, N: 3.27.

EXAMPLE 47

(N.N-Dimethylaminocarbonylmethyl) N-I2-(3-cyclopentyloxy-4-methoxyphenyl)ethylloxamate (N.N-Dimethylaminocarbonylmethyl)-N-[2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl] oxamic acid (125 mg, 0.41 mmol) in dimethylformamide (4 mL) was treated with triethylamine (62.4 μL, 0.45 mmol) and sodium iodide (6 mg, 0.04 mmol) and was stirred under an argon atmosphere for ten minutes. The reaction was treated with 2-chloro-N,N'-dimethylacetamide (79 μL, 0.45 mmol) and was heated to 100°C for 5.5 h. The mixture was dissolved in ethyl acetate and washed four times with water. The organic extracts were dried (sodium sulfate), evaporated, and exposed to high vacuum for 18 h to provide an oil (80 mg, 50.1%).
Δnalysis: Calc. for: C20H28N2O6*1/3 H2O: C: 60.29, H: 7.25, N: 7.03; found: C:

10 <u>Analysis</u>; Calc. for: C₂₀H₂₈N₂O_{6*}1/3 H₂O; C: 60,29, H: 7,25, N: 7,03; found: C 60,29, H: 7,27, N: 6,96.

The following exemplified compounds may be prepared by analogous methods using the same techniques as those described above.

Example 48 - N-[2-(3-Cyclopentyloxy-4-diffuoromethoxyphenyl)ethyl]oxamide. Example 49 - N-[2,2-Dicyano-2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide. Example 50 - N-[2-Acetyleno-2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide.

20

The above description fully discloses the invention including preferred embodiments thereof. Modifications and improvements of the embodiments specifically disclosed herein are within the scope of the following claims. Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. Therefore the Examples herein are to be construed as merely illustrative and not a limitation of the scope of the present invention in any way. The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows.

Process Claims:

WHAT IS CLAIMED IS:

1. A process for producing a compound having the structure:

FORMULA (1)

wherein:

 R_1 is C4-C6 cyclic alkyl, optionally substituted by one to three methyl groups or one ethyl group; $C_{1.7}$ alkyl optionally substituted by 1 or more halogens, -(CH₂)_nCOO-(CH₂)_mCH₃, (CH₂)_nO(CH₂)_mCH₃, (CH₂)_pOH, -CH₂C₅H₉,

CH2-C3H5, -C5H9, or

n is 2 to 4;

m is 0 to 2;

p is 2 to 4;

X is YR₂, halogen, nitro, amino, C₁₋₂ dialkylamine, C₁₋₂ monoalkylamine, or formyl amine;

Y is O or S(O)m;

m' is 0 to 2:

R2 is -CH3 or -CH2CH3 optionally substituted by 1 or more halogens;

R₃ is H, OR₇ wherein R₇ as alkyl can be optionally substituted by 1 or more fluorines, CN, F, C₁₋₂ alkyl, C₁₋₂ alkyl substituted by 1 or more fluorines, C(O)OR₇, CH₂NR₇R₈, CH₂OR₇, C(O)NR₇R₈, or CH₂NR₇C(O)C(O)NR₇R₈; provided that when R₃ is OH then R₁₂ is hydrogen or CH₃;

R₄ is H, F, CN, C₁₋₂ alkyl optionally substituted by 1 or more fluorines, C(O)NR₇R₈, C(O)OR₇:

R₁₂ is hydrogen, F, CN, or -CH₃ optionally substituted by 1 to 3 fluorines or R₃ and R₁₂ together can form a (=O) keto moiety;

R₅ is H, OR₇, optionally substituted -(CH₂)_mAr, or optionally substituted C₁₋₆ alkyl;

Ar is 2-, 3- or 4-pyridyl, pyrimidyl, pyridazyl, 2-imidazolyl, morpholino, or phenyl;

 R_6 is OR_8 , NR_7OR_7 , $NR_7-NR_7R_8$, NR_7R_8 , $-OCH_2-NR_7C(O)R_{11}$, $-OCH_2C(O)NR_9R_{10}$, $-OCH(R_7)-OC(O)C_{1-4}$ alkyl, $-OCH(R_7)-C(O)OC_{1-3}$ alkyl;

R7 is hydrogen, or C1-3 alkyl;

Rg is hydrogen, C1.3 alkyl or aryl;

Ro is hydrogen, CH3, CH2CH3, or CH2CH2OH;

R₁₀ is hydrogen, CH₃, CH₂CH₃, CH₂CH₂OH, or CH₂CONH₂;

R₁₁ is CH₃ or phenyl; and

q is 0 or 1;

provided that R_1 is not C_{2-4} alkyl when R_6 is OH or OCH₃, X is YR₂, and R₂ is -CH₃ or -CH₂CH₃, and Y is oxygen;

and pharmaceutically acceptable salts thereof; which process comprises

a. Reacting a compound of Formula (4), wherein R₁, R₅, X, and R₁₂ are described above for Formula (1), R₃ is other than -CH₂NR₇R₈ unless protected by a suitable amino protecting group; and R₄ is other than C(O)OH unless suitably protected;

with an activated oxamic acid derivative of Formula (7)

wherein X_2 is an activating group; and R_6 as defined for Formula (1), to yield compounds of Formula (1) wherein R_3 is other than $CH_2NR_7R_8$ unless protected; and optionally deprotected; or

- b. Reacting a compound of Formula (4), as described above with
- i) an alkyl or aryl oxalyl halide of the formula $ROC(O)C(O)X_1$ wherein R is alkyl or aryl and X_1 is a halogen with a base; or
- ii) a mixed anadyride of the formula X₃ C(O)-C(O)-R₆ wherein R₆ to provide for a compound of Formula (1), as defined above; or
- iii) a mixed anhityride of the formula X₃ C(O)-C(O)-R₁₃ and X₃ is R-C(O) or RO-C(O)-, and R₁₃ is alkyl or aryl, to yield a compound of Formula (8)

wherein the terms are as defined above for Formula (1), and R₁₃ is alkyl or aryl, which is reacted with ammonia, an optionally substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydrazine to yield the final compounds of Formula (1); and optionally deprotected; or

- c. Hydrolyzing a compound of Formula (8) as described above, and when is X is an amino or monoalkylamine functionality it must be protected, to yield a compound of Formula (8) wherein R₁₃ is H, and reacting it with a halogenating agent, such as an acide halide, oxalyl chloride, or phosphorous oxylchloride, to form the activated acid which is then reacted with ammonia, an optionally substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydrazine, to provide the final compounds of Formula (1) wherein R₆ is an amine or substituted amine derivative; and optionally deprotected; or
- d. Hydrolyzing a compound of Formula (8) as described above, and when X is an amino or monoalkylamine functionality it must be protected, to yield a compound of Formula (8) wherein R₁₃ is H, and reacting it with a suitable base, and an alkylhaloformate, arylhaloformate or an arylalkylhaloformate and ammonia, an optionally substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydrazine to provide the final compounds of Formula (1) wherein R₆ is an amine or substituted amine derivative; and optionally deprotected; or
- e. Hydrolyzing a compound of Formula (8) as described above, to yield a compound of Formula (8) wherein R₁₃ is H, and reacting it ammonia, an optionally substituted substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydrazine and a compound of the Formula R₁₄N=C=NR₁₅ wherein R₁₄ and R₁₅ are independently selected from alkyl; cycloalkyl, such as cyclohexyl or dicyclohexyl; alkyl (mono-or dialkyl amino), such as EDAC; aryl or arylalkyl, to provide the final compounds of Formula (1) wherein R₆ is an amine or substituted amine derivative; or
- f. Reducing and deprotecting a compound of Formula (9), wherein R₄ is not H; R₁, X and R₃ are as described above for Formula (1), provided that if X is an amino or monoalkylamine it is protected; and Z is a suitable amino protecting group:

and reacting the resulting compound in any of process steps (a) to (e) above; or

- g. Reducing compound of Formula (9) wherein R₄ is not H, R₄ is not C(O)OH, or C(O)NH₂ or C(O)NH_{R7}; R₁, X and R₃ are as described above for Formula (1), provided that if X is an amino or monoalkylamine it is protected to provide the corresponding compound of Formula (4); or when Z is a carbonyl containing protecting group, such as N-formyl, compounds of Formula (9) may be alkylated prior to reduction with an alkyl-L group, wherein L is a leaving group, in the presence of a strong hindered base or metal hydride, followed by deprotection to provide the corresponding compounds of Formula (4) wherein R₅ is alkyl and R₄ is other than hydrogen; and reacting the resulting compound in any of process steps (a) to (e) above; or
- h. Acylating a compound of Formula (4) wherein R₄ is not H, C(O)OH, or C(O)NH₂ or C(O)NHR₇; and then alkylate the resulting Formula (4) compound with an alkyl-L group, wherein L is a leaving group, in the presence of a strong hindered base or metal hydride, followed by deprotection to provide the corresponding compounds of Formula (4) wherein R₅ is alkyl; and reacting the resulting compound in any of process steps (a) to (e) above; or
- i. Reacting a Formula (4) compound, wherein R₄ is other then C(O)OH; as defined for Formula (1), by treatment with a suitably substituted aldehyde, to yield the corresponding imine which is then reduced to yield R₅ containing moiety having a methylene group directly attached to the amino functionality; as described above for Formula (1) compounds;
- j. (i) Protecting a compound of Formula (4), wherein R₄ is other than C(O)NR₇R₈ and R₇ and R₈ are both hydrogen, and R₃ is CONH₂, such as by carbamate formation; dehydrating the resultant Formula (4) compound to form the corresponding nitrile; deprotecting the compound and further reacting the corresponding mono or dicyano Formula (4) amine by any of process steps (a) to (e) above to provide a compound of Formula (1); or
- (ii) Protecting a compound of Formula (4) wherein one or more of R₃, R₄ and R₁₂ are CONH₂, such as by carbamate formation; dehydrating the resultant

Formula (4) compound to form the corresponding nitrile; deprotecting the compound and further reacting the amine of the corresponding cyano containing compounds of Formula (4) by any of process steps (a) to (e) above to provide a compound of Formula (1); or

- Reacting a compound of Formula (1) wherein X is a deprotected amino,
 and formylating to produce a compound of Formula (1) wherein X is formyl amine; or
- I. Reacting a compound of Formula (1) wherein X is a deprotected amine by diaznonium displacement or diazotization of the amine to yield a compound of Formula (1) wherein X is Br or I; or
- m. Reacting a compound of Formula (1) wherein X is a deprotected amine by oxidating the amine to yield a compound of Formula (1) wherein X is NO2.
- 2. A process for producing a compound of Formula (1) as described above which process comprises
- a. Reacting a compound of Formula (6) wherein R₃ and R₁₂ are H; and R₁ and X are as defined above for Formula (1)

with a strong hindered base and an an appropriately substituted isocyanate reagent, to produce a compound of Formula (6) wherein R₃ is CONR₇R₈; said Formula (6) compound is reduced and the resultant amine functionality is protected; the compound is then reduced, or dehydrated and then reduced to produce a compound of Formula (6) wherein R₃ is CH₂NR₇R₈ which is then protected and further reacted by any of the process of Claim 1, steps a. to e. and i. to j. to provide the compounds of Formula (1); and optionally deproteced; or

b. Reacting a compound of Formula (6) wherein R3 and R12 are H; and R1 is as defined above for Formula (1) and X is substituted with other than Br, I, amino, formyl amine or NO2; with a strong hindered base and an electrophilic reagent, such as diethylcarbonate, methyl iodide, or bromodifluoromethane, having an R3 group other than CH2NR-R8 or CH2NR7C(O)C(O)CNR7R8; to produce a compound of Formula (1) wherein R3 is other than CH2OR7, CH2NR7R8 or CH2NR7C(O)C(O)CNR7R8; or

- c. Reacting a compound of Formula (6) wherein R3 and R12 are H; and R1 is as defined above for Formula (1) and X is substituted with other than Br, I, amino, formyl amine or NO2; with a strong hindered base or a metal hydride followed by treatment with an appropriately substituted alkyl halo formate or a dialkylcarbonate to produce the corresponding compound of Formula (6) wherein one of R3 or R12 is -CO2alkyl; or optionally the resulting compound may be further reacted by treatment with a strong hindered base or a metal hydride followed by treatment with an appropriately substituted alkyl halo formate or dialkylcarbonate to produce the corresponding disubstituted -CO2alkyl derivatives of Formula (6); or
- d. Reacting a compound of Formula (6) wherein R3 and R12 are H; and R1 is as defined above for Formula (1) and X is substituted with other than Br, I, amino, formyl amine of NO2; with a strong hindered base or a metal hydride followed by treatment with an appropriately substitued alkylhaloformate or a dialkylcarbonate to produce the corresponding compound of Formula (6) wherein one of R3 or R12 is -CO2alkyl; or optionally the resulting compound may be further reacted by treatment with a strong hindered base or a metal hydride followed by treatment with an appropriately substitued alkyl -L wherein L is a leaving group, such as a halide, mesylate or tosylate to produce the corresponding Formula (6) derivative wherein one of R3 or R12 is alkyl and one of R3 or R12 is a -CO2alkyl group; or
- e. Reacting a compound of Formula (6) wherein R3 and R12 are H; and R1 is as defined above for Formula (1) and X is substituted with other than Br, I, amino, formyl amine or NO2; with 2 equivalents of a strong hindered base or a metal hydride and 2 equivalents of an appropriately substituted alkyl-L group, wherein L is a leaving group, such as a halide, mesylate or tosylate producing the corresponding compound of Formula (6) wherein R3 and R12 are both alkyl; or
- f. Reacting a compound of Formula (6) wherein R₃ and R₁₂ are H; and R₁ is as defined above for Formula (1) and X is substituted with other than Br, I, amino, formyl amine or NO₂; with a strong hindered base or a metal hydride, hexamethylphosphoramide (HMPA) and an alkyl halide to produce the corresponding compound of Formula (6) wherein one of R₃ and R₁₂ are alkyl; or optionally use 2 equimolar amounts of (HMPA) to produce the corresponding compound of Formula (6) wherein both R₃ and R₁₂ are alkyl; or

- g. Reducing the mono-nitrile of a compound of Formula (6), produced by any of steps a. to f. above, and reacting by any of the processes of Claim 1, steps a. to j. above to produce the compounds of Formula (1); which may be optionally deprotected; or
- h. Reduction of a compound of Formula (6) wherein one or both of R₃ and R₁₂ are C(O)₂R produced by steps c. above, followed by protection of the resultant amine with a protecting group R'5; the resultant esters are amidated; the compound is deprotected, and may be reacted in any of the processes of Claim 1, steps a, to h, above to produce the compounds of Formula (1); said compound being optionally further deprotected.
- The process according to Claim 1, step a wherein the reaction is carried out in the presence of a non-nucleophlic base.
- 4. The process according to Claim 1, wherein the base in step d. is triethylamine.
- 5. The process according to Claim 2, wherein the hindered base is lithium diisopropylamide (LDA) or hexamethyldisilazylithium (LiHMDS).
- The process according to Claim 1, wherein the isocyanate is trimethylsilylisocyanate.
- The according to Claims 1 or 2 wherein the amino protecting group is tbutylearbonyl (BOC).
- 8. The compound produced by the process according to Claim 1 wherein the X2 activating group is selected from Cl, Br, OCH2CH3, OC(O)CH3, OC(O)CF3, -O-C(O)OC1-3alkyl, -O-C(O)OCH2C1-4 alkyl.
- 9. The compound according the process according to Claims 1 to 8 wherein R₁ is cyclopentyl, or C₁₋₄ alkyl optionally substituted by 1 or more fluorines; X is YR₂.
- 10. The compound produced by the process according to Claim 9 wherein R₃ and R₁₂ are hydrogen, -CH₃, fluorine or CN.

11. The compound according to Claim 10 wherein R6 is OCH3, NR7R8, OH,

NHOH, -NH-NR7R8. CH₂
$$\bigcirc$$
 NO_Z or $^{-NR_7-(CH_2)_q}$ \bigcirc R7 is hydrogen.

- 12. The compound according to Claim 11 wherein R_5 is H, OH, CH₃, or optionally substituted -(CH₂)_m Ar; and Ar is phenyl or 2-,3-, or 4- pyridyl.
 - 13. The compound according to Claim 12 wherein R4 is CH3 or Hydrogen.
- 14. The compound produced by the process according to Claims 1 to 8 wherein X is YR2; Y is oxygen; R₁ is cyclopentyl, -CF₃, -CHF₂, -CH₃, -CH₂CHF₂, or CF₂CHF₂; R₂ is-CF₃, -CHF₂, -CH₃, or -CH₂CHF₂, or CF₂CHF₂; R₃ is F, H, -CH₃, -C(O)OCH₃, -C(O)OCH₂CH₃, -CONH₂, -CH₂OH, or -CN; R₁₂ is H, F, -CN or -CH₃; R₄ is hydrogen, or CH₃;

R5 is H, OH, CH3 and CH2-(p-NHC(O)CH3-C6H4), -(p-NHAc-C6H4);

and

R6 is OCH3, OH, -NHOH, -NH-N7R8, NR7R8,

- 15. The compound according to Claim 14 wherein R₁ is cyclopentyl, -CH₃ or CF₃; R₂ is -CHF₂, or -CH₃, R₃ is cyano, hydrogen or methyl.
- The compound according to Claim 15 wherein R₆ is NH₂, N(CH₃)₂, -OH,
 OCH₃ or NHOH.
 - 17. The compound produced by the process according to Claim 1 which is: N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide; N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)propyl]oxamide N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)-2-methylpropyl]oxamide N-[2-Cyano-2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide; N-[2-Cyano-2-methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)-

ethyl]oxamide;

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]-N-methyloxamide N-[2-(4-Diffuromethoxy-3-methoxyphenyl)ethyl]oxamide; N-[2-(3-Diffuromethoxy-4-methoxyphenyl)ethyl]oxamide; or N-[(2-(3,4-Bis-diffuoromethoxyphenyl)ethyl]oxamide.

- 18. A pharmaceutical composition for inhibiting TNF production in an animal, which comprises a compound of Formula (1) or pharmaceutically acceptable salt thereof, produced by the process according to Claim 1, and a pharmaceutically acceptable carrier or diluent.
- 19. A pharmaceutical composition for inhibiting PDE IV in an animal which comprises a compound according to Claim 17 or pharmaceutically acceptable salt thereof, produced by the process according to Claim 1, and a pharmaceutically acceptable carrier or diluent.

A compound according to the structure:

FORMULA (1)

5 wherein:

 R_1 is C4-C6 cyclic alkyl, optionally substituted by one to three methyl groups or one ethyl group; $C_{1.7}$ alkyl optionally substituted by 1 or more halogens, -(CH₂)_nCOO-(CH₂)_mCH₃, (CH₂)_nO(CH₂)_mCH₃, (CH₂)_pOH, -CH₂C₅H₉,

10 CH₂-C₃H₅, -C₅H₉, or C

n is 2 to 4:

m is 0 to 2;

p is 2 to 4;

X is YR2, halogen, nitro, amino, C1-2 dialkylamine, C1-2 monoalkylamine, or

15 formyl amine;

Y is O or S(O)m;

m' is 0 to 2:

R2 is -CH3 or -CH2CH3 optionally substituted by 1 or more halogens;

R₃ is selected from H, OR₇ wherein R₇ as alkyl may be optionally substituted

by 1 or more fluorines, CN, F, C₁₋₂ alkyl optionally substituted by 1 or more fluorines; C(O)OR₇, CH₂NR₇R₈, CH₂OR₇, C(O)NR₇R₈ or CH₂NHC(O)C(O)NR₇R₈; provided that when R₃ is OH then R₁₂ is hydrogen or methyl;

 R_{12} is hydrogen, F, CN, or -CH3 optionally substituted by 1 to 3 fluorines; or R_3 and R_{12} together may form a (\approx 0) keto moiety;

2.5 R₄ is H, F, CN, C₁₋₂ alkyl optionally substituted by 1 or more fluorines. C(O)NR₇R₈, C(O)OR₇;

 R_5 is H, OR7, optionally substituted -(CH2)_mAr, or optionally substituted - C_{1-6} alkyl;

Ar is 2-, 3- or 4-pyridyl, pyrimidyl, pyridazyl, 2-imidazolyl, morpholino, or

30 phenyl;

 $R_6 \text{ is OR}_8, NR_7OR_7, NR_7-NR_7R_8, NR_7R_8, -OCH_2-NR_7C(O)R_{11}, \\ -OCH_2C(O)NR_9R_{10}, -OCH(R_7)-OC(O)C_{1-4} \text{ alkyl}, -OCH(R_7)-C(O)OC_{1-3} \text{ alkyl}; \\$

25

3.0

R7 is hydrogen, or C1.3 alkyl;

Rs is hydrogen, C1-3 alkyl or aryl;

R9 is hydrogen, CH3, CH2CH3, or CH2CH2OH;

R₁₀ is hydrogen, CH₃, CH₂CH₃, CH₂CH₂OH, or CH₂CONH₂;

R11 is CH3 or phenyl; and

q is 0 or 1;

provided that R_1 is not C_{2-4} alkyl when R_6 is OH or OCH₃, X is YR₂, and R₂ is CH₃ or CH₂CH₃, and Y is oxygen;

10 and pharmaceutically acceptable saits thereof.

The compound according to Claim 1 wherein R1 is cyclopentyl, or C_{1-4} alkyl optionally substituted by 1 or more fluorines.

1.5 The compound according to Claim 2 wherein X is YR2.

The compound according to Claim 3 wherein R_3 and R_{12} are hydrogen, -CH₃, fluorine or CN.

The compound according to Claim 4 wherein R₆ is OCH₃, NR₇R₈, OH, NHOH,

-NH-NR₇R₈,

-NH-NR₇R₈,

-NH-NR₇R₈,

The compound according to Claim 5 wherein R₅ is H, OH, CH₃, or optionally substituted -(CH₂)_m Ar; and Ar is phenyl or 2-,3-, or 4- pyridyl.

The compound according to Claim 6 wherein R4 is CH3 or Hydrogen.

The compound according to Claim 2 wherein X is halogen, nitro, amino, C_{1-2} dialkylamine, C_{1-2} mono-alkylamine or formylamine.

The compound according to Claim 1 wherein

X is YR2; Y is oxygen; R₁ is cyclopentyl, -CF₃, -CHF₂, or -CH₃
CH₂CHF₂, or CF₂CHF₂; R₂ is-CF₃, -CHF₂,-CH₃, or -CH₂CHF₂, or CF₂CHF₂; R₃ is F.

H, -CH₃, -C(O)OCH₃, -C(O)OCH₂CH₃, -CONH₂, -CH₂OH, or -CN; R₁₂ is H, F, -CN or -CH₃; R₄ is hydrogen, or CH₃;

 R_5 is H, OH, CH₃ and CH₂-(p-NHC(O)CH₃-C₆H₄), -(p-NHAc-C₆H₄); and R_6 is OCH₃, OH, -NHOH, -NH-N7R₈, NR7R₈,

The compound according to Claim 9 wherein R₁ is cyclopentyl, -CH₃ or CF₃: R₂ is -CHF₂, or -CH₃, R₃ is cyano, hydrogen or methyl.

The compound according to Claim 9 wherein R₆ is NH₂, N(CH₃)₂, -OH, OCH₃ or NHOH.

The compound according to Claim 1 which is:

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide;

N-{2-(3-Cyclopentyloxy-4-methoxyphenyl)propyl}oxamide

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)-2-methylpropyl]oxamide

N-[2-Cyano-2-(3-cyclopentyloxy-4-methoxyphenyl)ethyl]oxamide;

N-{2-Cyano-2-methyl-2-(3-cyclopentyloxy-4-methoxyphenyl)-ethyl]oxamide;

N-[2-(3-Cyclopentyloxy-4-methoxyphenyl)ethyl]-N-methyloxamide

2.0 N-[2-(4-Diffuromethoxy-3-methoxyphenyl)ethyl]oxamide;

N-[2-(3-Difluromethoxy-4-methoxyphenyl)ethyl]oxamide; or

N-[(2-(3,4-Bis-difluoromethoxyphenyl)ethyl]oxamide.

A pharmaceutical composition for inhibiting TNF production in an animal,
which comprises a compound according to Claim 1 of Formula (1) or pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or diluent.

A method of treating, prophylactically and/or therapeutically, a TNF mediated disease in an animal, which comprises administering to such animal in need of such

3.0 inhibition, an effective TNF inhibiting amount of a compound according to the structure:

FORMULA(1)

wherein:

 R_1 is C₄-C₆ cyclic alkyl, optionally substituted by one to three methyl groups or one ethyl group; C_{1-7} alkyl optionally substituted by 1 or more halogens, -(CH₂)_nCOO-(CH₂)_mCH₃, (CH₂)_nO(CH₂)_mCH₃, (CH₂)_pOH, -CH₂C₅H₉,

CH₂-C₃H₅, -C₅H₉, or C;

5

n is 2 to 4;

m is 0 to 2:

p is 2 to 4;

X is YR₂, halogen, nitro, amino, C₁₋₂ dialkylamine, C₁₋₂ monoalkylamine, or formyl amine;

10

Y is O or S(O)m';

m' is 0 to 2;

R2 is -CH3 or -CH2CH3 optionally substituted by 1 or more halogens;

R3 is selected from H, OR7 wherein R7 may be optionally substituted by 1 or

more fluorines, CN, F, C₁₋₂ alkyl optionally substituted by 1 or more fluorines; C(O)OR₇,

1.5 CH₂NR₇R₈, CH₂OR₇, C(O)NR₇R₈ or CH₂NHC(O)C(O)NR₇R₈; provided that when R₃ is OH then R₁₂ is hydrogen or methyl;

R₁₂ is hydrogen, F, CN, or -CH₃ optionally substituted by 1 to 3 fluorines; or R₃ and R₁₂ together may form a (=0) keto moiety;

R4 is H, F, CN, C1-2 alkyl optionally substituted by 1 or more fluorines,

20 C(O)NR7R8, C(O)OR7;

phenyl;

 R_5 is H, OR7, optionally substituted -(CH2) $_{m}$ Ar, or optionally substituted C1-6 alkyl;

Ar is 2-, 3- or 4-pyridyl, pyrimidyl, pyridazyl, 2-imidazolyl, morpholino, or

25

R6 is OR8, NR7OR7, NR7-NR7R8, NR7R8, -OCH2-NR7C(O)R11,

-OCH₂C(O)NR₉R₁₀, -OCH(R₇)-OC(O)C₁₋₄ alkyl, -OCH(R₇)-C(O)OC₁₋₃ alkyl;

R7 is hydrogen, or C1-3 alkyl;

R8 is hydrogen, C1-3 alkyl or aryl;

30

R9 is hydrogen, CH3, CH2CH3, or CH2CH2OH;

R₁₀ is hydrogen, CH₃, CH₂CH₃, CH₂CH₂OH, or CH₂CONH₂;

R11 is CH3 or phenyl; and

q is 0 or 1;

and pharmaceutically acceptable salts thereof.

The method according to Claim 14 wherein the animal is a human afflicted with a disease state selected from septic shock, endotoxic shock, gram negative sepsis, toxic shock syndrome, acute immune deficency syndrome (AIDS), AIDS Related Complex (ARC) or any other disease state associated with an HIV infection, cachexia, cachexia secondary to AIDS, or cachexia secondary to cancer, CMV infection, adult respiratory distress syndrome, asthma, chronic pulmonary inflammatory disease, Crohn's disease, ulcerative colitis, inflammatory bowel disease, arthritis, rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, gouty arthritis, or a bone resorption disease.

10

5

A method of inhibiting TNF production in a mammal in need thereof, which comprises administering an effective amount to inhibit TNF production of a compound according to Claim 12.

A method of inhibiting PDE IV which comprises administering to a mammal in need thereof, an effective amount to inhibit PDE IV of a compound of the structure:

Formula (1a)

wherein:

20 R₁ is C₄-C₆ cyclic alkyl, optionally substituted by one to three methyl groups, or one ethyl group; C₁₋₄ alkyl substituted by 1 or more fluorines, C₂₋₇ alkyl,

 $(CH_2)_nO(CH_2)_mCH_3, -(CH_2)_nCOO(CH_2)_mCH_3, -CH_2C_5H_9, CH_2-C_3H_5, \ \mathrm{or} \\$

n is 2 to 4:

m is 0 to 2;

2.5 X is YR₂;

Y is O or S(O)m";

m' is 0 to 2;

R₂ is -CH₃ or -CH₂CH₃ optionally substituted by 1 or more fluorines; R₃ is selected from H, OR₇ wherein R₇ as alkyl may be optionally substituted

by 1 or more fluorines, CN, F, C₁₋₂ alkyl optionally substituted by 1 or more fluorines; C(O)OR₇, CH₂NR₇R₈, CH₂OR₇, C(O)NR₇R₈ or CH₂NHC(O)C(O)NR₇R₈; provided that when R₃ is OH then R₁₂ is hydrogen or methyl;

R₁₂ is hydrogen, F, CN, or -CH₃ optionally substituted by 1 to 3 fluorines; or R₃ and R₁₂ together may form a (=O) keto moiety;

R4 is H, C1-2 alkyl optionally substituted by 1 or more fluorines, CN, C(O)NR7R8, C(O)OR7;

 R_5 is H, OR7, optionally substituted $C_{1\cdot6}$ alkyl or optionally substituted -(CH2) $_mAr_{\tau}$

Ar is 2-, 3- or 4-pyridyl, pyrimidyl, pyridazyl, 2-imidazolyl, morpholino, or phenyl;

R6 is OR7, NR7OR7, NR7R8, NR7-NR7R8, -OCH2-NR7C(O)R11,

10 -OCH₂C(O)NR₉R₁₀, -OCH(R₇)-OC(O)C₁₋₄ alkyl, -OCH(R₇)-C(O)OC₁₋₃alkyl,

R7 and R8 are independently hydrogen, or C1-3 alkyl;

R9 is hydrogen, CH3, -CH2CH3, or -CH2CH2OH;

R₁₀ is hydrogen, CH₃ CH₂CH₃, CH₂CH₂OH, or CH₂CONH₂;

 R_{11} is CH₃ or phenyl; and q is 0 or 1;

provided that R_1 is not C_{2-4} alkyl when R_6 is OH or OCH₃, X is YR₂, R₂ is CH₃ or CH₂CH₃, and Y is oxygen:

and pharmaceutically acceptable salts thereof.

20

15

The method according to Claim 16 wherein the disease state is asthma, or an allergic or inflammatory disease.

A method of inhibiting PDE IV which comprises administering to a mammal in need thereof, an effective amount to inhibit PDE IV of a compound according to Claim 12.

A process for producing a compound of Formula (I) according to Claim 1 which process comprises

a. Reacting a compound of Formula (4), wherein R₁, R₅, X, and R₁₂ are described above for Formula (1), R₃ is other than -CH₂NR₇R₈ unless protected by a suitable amino protecting group; and R₄ is other than C(O)OH unless-suitably protected;

with an activated oxamic acid derivative of Formula (7)

5 wherein X₂ is an activating group; and R₆ as defined for Formula (1), to yield compounds of Formula (1) wherein R₃ is other than CH₂NR₇R₈ unless protected; and optionally deprotected; or

b. Reacting a compound of Formula (4), as described above with

i) an alkyl or aryl oxalyl halide of the formula $ROC(O)C(O)X_1$ wherein R is

10 alkyl or aryl and X1 is a halogen with a base; or

ii) a mixed anhayride of the formula X_3 - C(O)-C(O)- R_6 wherein R_6 to provide for a compound of Formula (1), as defined above; or

iii) a mixed anholyride of the formula X₃ - C(O)-C(O)-R₁₃ and X₃ is R-C(O) or RO-C(O)-, and R₁₃ is alkyl or aryl, to yield a compound of Formula (8)

15

wherein the terms are as defined above for Formula (1), and R₁₃ is alkyl or aryl, which is reacted with ammonia, an optionally substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydraxine to yield the final compounds of Formula (1); and optionally deprotected; or

20

25

c. Hydrolyzing a compound of Formula (8) as described above, and when is X is an amino or monoalkylamine functionality it must be protected, to yield a compound of Formula (8) wherein R₁₃ is H, and reacting it with a halogenating agent, such as an acide halide, oxalyl chloride, or phosphorous oxylchloride, to form the activated acid which is then reacted with ammonia, an optionally substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydrazine, to provide the final compounds of Formula (1) wherein R₆ is an amine or substituted amine derivative; and optionally deprotected; or

- d. Hydrolyzing a compound of Formula (8) as described above, and when X is an amino or monoalkylamine functionality it must be protected, to yield a compound of Formula (8) wherein R₁₃ is H, and reacting it with a suitable base, and an alkylhaloformate, arylhaloformate or an arylalkylhaloformate and ammonia, an optionally substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydrazine to provide the final compounds of Formula (1) wherein R₆ is an amine or substituted amine derivative; and optionally deprotected; or
- e. Hydrolyzing a compound of Formula (8) as described above, to yield a compound of Formula (8) wherein R₁₃ is H, and reacting it ammonia, an optionally substituted amine, optionally substituted hydroxylamine, or an optionally substituted hydrazine and a compound of the Formula R₁₄N=C=NR₁₅ wherein R₁₄ and R₁₅ are independently selected from alkyl; cycloalkyl, such as cyclohexyl or dicyclohexyl; alkyl (mono-or dialkyl amino), such as EDAC; aryl or arylalkyl, to provide the final compounds of Formula (1) wherein R₅ is an amine or substituted amine derivative; or
 - f. Reducing and deprotecting a compound of Formula (9), wherein R₄ is not H; R₁, X and R₃ are as described above for Formula (1), provided that if X is an amino or monoalkylamine it is protected; and Z is a suitable amino protecting group;

20

and reacting the resulting compound in any of process steps (a) to (e) above; or

g. Reducing compound of Formula (9) wherein R₄ is not H, R₄ is not C(O)OH,

25 or C(O)NH₂ or C(O)NHR₇; R₁, X and R₃ are as described above for Formula (1), provided that if X is an amino or monoalkylamine it is protected to provide the corresponding compound of Formula (4); or when Z is a carbonyl containing protecting group, such as N-formyl, compounds of Formula (9) may be alkylated prior to reduction with an alkyl-L group, wherein L is a leaving group, in the presence of a strong hindered base or metal hydride, followed by deprotection to provide the corresponding compounds of Formula (4) wherein R₅ is alkyl and R₄ is other than hydrogen; and reacting the resulting compound in any of process steps (a) to (e) above; or

- h. Acylating a compound of Formula (4) wherein R₄ is not H, C(O)OH, or C(O)NH₂ or C(O)NHR₇; and then alkylate the resulting Formula (4) compound with an alkyl-L group, wherein L is a leaving group, in the presence of a strong hindered base or metal hydride, followed by deprotection to provide the corresponding compounds of Formula (4) wherein R₅ is alkyl; and reacting the resulting compound in any of process steps (a) to (e) above; or
- i. Reacting a Formula (4) compound, wherein R4 is other then C(O)OH; as defined for Formula (1), by treatment with a suitably substituted aldehyde, to yield the corresponding imine which is then reduced to yield R5 containing moiety having a methylene group directly attached to the amino functionality; as described above for Formula (1) compounds;
- j. (i) Protecting a compound of Formula (4), wherein R4 is other than
 1 5 C(O)NR7R8 and R7 and R8 are both hydrogen, and R3 is CONH2, such as by carbamate formation; dehydrating the resultant Formula (4) compound to form the corresponding nitrile; deprotecting the compound and further reacting the corresponding mono or di-cyano Formula (4) amine by any of process steps (a) to (e) above to provide a compound of Formula (1); or
- (ii) Protecting a compound of Formula (4) wherein one or more of R₃, R₄
 2.0 and R₁₂ are CONH₂, such as by carbamate formation; dehydrating the resultant Formula (4) compound to form the corresponding nitrile; deprotecting the compound and further reacting the amine of the corresponding cyano containing compounds of Formula (4) by any of process steps (a) to (e) above to provide a compound of Formula (1); or
- 2.5 k. Reacting a compound of Formula (1) wherein X is a deprotected amino, and formulating to produce a compound of Formula (1) wherein X is formyl amine; or
- Reacting a compound of Formula (1) wherein X is a deprotected amine by diaznonium displacement or diazotization of the amine to yield a compound of Formula (1)
 wherein X is Br or I; or
 - m. Reacting a compound of Formula (1) wherein X is a deprotected amine by oxidating the amine to yield a compound of Formula (1) wherein X is NO₂.
- 3 5 A process for producing a compound of Formula (1) as described above which process comprises

Reacting a compound of Formula (6) wherein R_3 and R_{12} are H; and R_1 and X are as defined above for Formula (1)

5

10

with a strong hindered base and an an appropriately substituted isocyanate reagent, to produce a compound of Formula (6) wherein R₃ is CONR₇R₈; said Formula (6) compound is reduced and the resultant amine functionality is protected; the compound is then reduced, or dehydrated and then reduced to produce a compound of Formula (6) wherein R₃ is CH₂NR₇R₈ which is then protected and further reacted by any of the process of Claim 1, steps a, to e, and i, to j, to provide the compounds of Formula (1); and optionally deproteced; or

- b. Reacting a compound of Formula (6) wherein R₃ and R₁₂ are H; and R₁ is as defined above for Formula (1) and X is substituted with other than Br, I, amino, formyl amine or NO₂; with a strong hindered base and an electrophilic reagent, such as diethylcarbonate, methyl iodide, or bromodifiuoromethane, having an R₃ group other than CH₂NR₇R₈ or CH₂NR₇C(O)C(O)CNR₇R₈; to produce a compound of Formula (1) wherein R₃ is other than CH₂OR₇, CH₂NR₇R₈ or CH₂NR₇C(O)C(O)CNR₇R₈; or
- 20 c. Reacting a compound of Formula (6) wherein R3 and R12 are H; and R1 is as defined above for Formula (1) and X is substituted with other than Br, I, amino, formyl amine or NO2; with a strong hindered base or a metal hydride followed by treatment with an appropriately substituted alkyl halo formate or a dialkylcarbonate to produce the corresponding compound of Formula (6) wherein one of R3 or R12 is -CO2alkyl; or optionally the resulting compound may be further reacted by treatment with a strong hindered base or a metal hydride followed by treatment with an appropriately substituted alkyl halo formate or dialkylcarbonate to produce the corresponding disubstituted -CO2alkyl derivatives of Formula (6); or
- d. Reacting a compound of Formula (6) wherein R₃ and R₁₂ are H; and R₁ is as defined above for Formula (1) and X is substituted with other than Br. I, amino, formyl amine or NO₂; with a strong hindered base or a metal hydride followed by treatment with an appropriately substituted alkylhaloformate or a dialkylcarbonate to produce the corresponding compound of Formula (6) wherein one of R₃ or R₁₂ is -CO₂alkyl; or optionally the resulting compound may be further reacted by treatment with a strong hindered base or a metal hydride

followed by treatment with an appropriately substitued alkyl-L wherein L is a leaving group, such as a halide, mesylate or tosylate to produce the corresponding Formula (6) derivative wherein one of R₃ or R₁₂ is alkyl and one of R₃ or R₁₂ is a -CO₂alkyl group; or

- 5 e. Reacting a compound of Formula (6) wherein R3 and R12 are H; and R1 is as defined above for Formula (1) and X is substituted with other than Br, I, amino, formyl amine or NO2; with 2 equivalents of a strong hindered base or a metal hydride and 2 equivalents of an appropriately substituted alkyl -L group, wherein L is a leaving group, such as a halide, mesylate or tosylate producing the corresponding compound of Formula (6) wherein R3 and R12 are both alkyl; or
- f. Reacting a compound of Formula (6) wherein R₃ and R₁₂ are H; and R₁ is as defined above for Formula (1) and X is substituted with other than Br, I, amino, formyl amine or NO₂; with a strong hindered base or a metal hydride, hexamethylphosphoramide (HMPA) and an alkyl halide to produce the corresponding compound of Formula (6) wherein one of R₃ and R₁₂ are alkyl; or optionally use 2 equimolar amounts of (HMPA) to produce the corresponding compound of Formula (6) wherein both R₃ and R₁₂ are alkyl; or
- g. Reducing the mono-nitrile of a compound of Formula (6), produced by any of 20 steps a, to f, above, and reacting by any of the processes of Claim 20, steps a, to j, above to produce the compounds of Formula (1); which may be optionally deprotected; or
- h. Reduction of a compound of Formula (6) wherein one or both of R₃ and R₁₂ are C(O)₂R produced by steps c. above, followed by protection of the resultant amine with a
 2.5 protecting group R'5; the resultant esters are amidated; the compound is deprotected, and may be reacted in any of the processes of Claim 20, steps a. to j. above to produce the compounds of Formula (1); said compound being optionally further deprotected.
- The process according to Claim 20, step a, wherein the reaction is carried out in the presence of a non-nucleophlic base; the base in step d, is triethylamine; and the isocyanate is trimethylsilylisocyanate.

The process according to Claim 21, wherein the hindered base is lithium diisopropylamide (LDA) or hexamethyldisilazylithium (LiHMDS).

The according to Claims 20 or 21 wherein the amino protecting group is t-butylcarbonyl (BOC).

INTERNATIONAL SEARCH REPORT

International Accilication No. PCT/US91/04795 I. CLASSIFICATION OF SUBJECT MATTER (if savers) classification symbols apply, indicate xil) * According to International Patent Classification (IPC) or to both National Classification and IPC (5): CO7D, 239/02, CO7D, 213/02; CO7D, 265/28; 247/00; 247/02; CO7C, 229/00 CO7D, 307/02, AOIN, 43/40,43/06,43/08,A61K, 31/03,31/34,31/495;31/44, 31/505 IL FIELDS SEARCHED Minimum Oncomentation Searched 7 Classification System Classification Symbols 549/475,546/283,309,335,337,560/39 514/277,438,461,544/162,332,548/337,342,375 U.S. Documentation Searched other than Minimum Occumentation to the Extent that such Documents are included in the Fields Searched a Chemical Abstract 1907-1991 Search to the compounds Aryl and Heterocyclic Substituted Oxamides III. DOCUMENTS CONSIDERED TO BE RELEVANT . Category * Custion of Document, 11 with indication, where appropriate, of the relevant passages 2 Relevant to Claim No. 13 X Chemical Abstract volume 66(7) 1966 (Columbus, Chio 1-30 USA) disclose the analoguous compounds. X Great Britane 587, 244 April 1947. See page 1 and 2 1~30 for the disclosed analogous compounds X German 512, 257 September 1971. See page 182 and 1-30 disclosure for the analogous compounds. * Special categories of cited documents; *3 "T" later document published after the international filing date or pnomy date and not in conflict with the application out cled to understand the principle or theory underlying the document defining the general state of the art which is not considered to be of particular relevance "E" seriler document but published on or efter the international filing date nyanuon "X" document of gardicular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step. "L" document which may throw doubts on priority claim(s) or which is cried to establish the publication date of enother cliation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being deviage to a person skilled in the act. "O" document referring to an oral disclosure, use, exhibition or GIRST MASES document sublished prior to the international filing data but later than the priority data claimed "&" document member of the same patent family IV. CERTIFICATION Date of the Actual Completion of the International Search Date of Mailing of this international Search Report 04 NOV 1991 03 October 1991 Signature of Authorized Offices international Searching Authority ISA/US Y. N. Gipta international division