Yeheng GE

My notes series

Paper Reading

Do not be distracted

Contents

1	Cube Root	Asymptotics	5
	0.1	The Mode Estimation Problem	5
	0.2	Convergence in distribution and the argmax functional	6
2 Distribution-Invariant Differential Privacy		n-Invariant Differential Privacy	7
	0.1	The Mode Estimation Problem	7

4 CONTENTS

Chapter 1

Cube Root Asymptotics

Overview

This paper gives a functional central limit theory for empirical process.

- many convergence rate $n^{-1/3}$
- Key point is: continuous mapping theorem for the location of maximum point.

•

0.1 The Mode Estimation Problem

The paper first intuitively gives an example of "mode estimation" and gives its convergence rate $n^{-1/3}$

Suppose $\hat{\theta}_n$ is chosen to maximize

$$\Gamma_n(\theta) = P_n[\theta - 1, \theta + 1] \tag{1.1}$$

is the proportion of observations in an interval of length 2.

If P has a smooth density $p(\dot{})$, the function Γ is approximately parabolic of its optimal value θ_0 , which means that

$$\Gamma(\theta) - \Gamma(\theta_0) = \int_{1+\theta_0}^{1+\theta} p(x)dx - \int_{-1+\theta_0}^{-1+\theta} p(x)dx \approx -C(\theta - \theta_0)^2$$

Take care that $\Gamma(\theta)$ is the expectation of $\Gamma_n(\theta)$. The term above is the "bias" caused by the departure of θ from θ_0 .

Then we consider the stochastic term,

$$D_{n}(\theta) = \left[\Gamma_{n}(\theta) - \Gamma_{n}(\theta_{0})\right] - \left[\Gamma(\theta) - \Gamma(\theta_{0})\right].$$

The paper is a very nice material for understanding the core idea and techniques of empirical process.

Main reference of this paper is in the lecture notes of Pollard "Empirical process: Theory and applications" 1990 version.

6

For fixed θ , the $D_n(\theta)$ is approximately $N(0, \sigma_{\theta}^2/n)$ where

$$\sigma_{\theta}^{2} \approx \int_{1+\theta_{0}}^{1+\theta} p(x)dx + \int_{-1+\theta_{0}}^{-1+\theta} p(x)dx \approx C |\theta - \theta_{0}|$$

Intuitively, when the bias term $C|\theta-\theta_0|^2$ is large comparing with the stochastic term $C|\theta-\theta_0|$, the θ is far away from the true value θ_0 . Thus not maximize the $\Gamma_n(\theta)$. So the θ could be the solution of $\Gamma_n(\theta)$ if the bias term is the same order or smaller than the stochastic term. It means

$$C|\theta - \theta_0|^2 < Cn^{-1/2}|\theta - \theta_0|^{1/2}$$

 $C|\theta - \theta_0|^{3/2} < Cn^{-1/2}$
 $C|\theta - \theta_0| < Cn^{1/3}$

The "add" and "minus" produces different order here. The order produced by "add" is due to the finite density of p(). Thus the density integral is proportional to the length of a

However, it is just an intuitive explaination. theoretically, we need build error bound uniformly in θ and the normal approximation must hold uniformly over θ .

0.2 Convergence in distribution and the argmax functional

Chapter 2

Distribution-Invariant Differential Privacy

This paper has very wierd organization.

0.1 The Mode Estimation Problem