Algebra HW4

段奎元

SID: 201821130049 dkuei@outlook.com

October 16, 2018

1. Page 120,3A ring R such that $a^2 = a$ for all $a \in R$ is called a **Boolean ring**. Prove that every Boolean ring R is commutative and a + a = 0 for all $a \in R$.

SOLUTION:

2. Page 120,8Let R be the set of all 2×2 matrices over complex field $\mathbb C$ of the form

$$\begin{pmatrix} z & w \\ -\bar{w} & \bar{z} \end{pmatrix}$$
.

Then R is a division ring that is isomorphic to the division ring K of real quaternions. *Hint:* The fundamental quaternion units 1, i, j, k of K map to the matrices respectively,

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

SOLUTION:

3. Page 120,11(The Freshman's Dream). Let R be a commutative ring with identity of prime characteristic p. If $a, b \in R$, then $(a \pm b)^{p^n} = a^{p^n} \pm b^{p^n}$ for all integers $n \ge 0$. [Note that b = -b if p = 2.]

SOLUTION:

- 4. Page 120,13In a ring R the following conditions are equivalent.
 - (a) R has no nonzero nilpotent elements.
 - (b) If $a \in R$ and $a^2 = 0$, then a = 0.

SOLUTION:

Probability Theory HW5

段奎元

SID: 201821130049 dkuei@outlook.com

October 15, 2018

- 1. Page 46,13 Property 2.36
 - (a) If $f_n \xrightarrow{\text{a.e.}} f$, then every subsequence $\{f_{n_k}\}$ satisfies $f_{n_k} \xrightarrow{\text{a.e.}} f$.
 - (b) If $f_n \xrightarrow{\text{a.e.}} f, f_n \xrightarrow{\text{a.e.}} f'$, then f = f' a.e.
 - (c) If $f_n \xrightarrow{\text{a.e.}} f, g_n = f_n$ a.e., f = g a.e., then $g_n \xrightarrow{\text{a.e.}} g$.
 - (d) If $f_n^{(k)} \xrightarrow{\text{a.e.}} f^{(k)}, k = 1, \dots, m, g \in C(\bar{\mathbb{R}}^m)$, then

$$g(f_n^{(1)}, \cdots, f_n^{(m)}) \xrightarrow{\text{a.e.}} g(f^{(1)}, \cdots, f^{(m)}).$$

SOLUTION:

2. Page 47,14 Theorem 2.38(2) Suppose $f, f_n, n \ge 1$ are finite measurable functions. Then $f_n - f_m \xrightarrow{\text{a.e.}} 0$ if and only if

$$\forall \varepsilon > 0, \mu(\bigcap_{n=1}^{\infty} \bigcup_{v=1}^{\infty} \{ |f_{n+v} - f_n| \ge \varepsilon \}) = 0.$$

Specially when μ is finite, $f_n - f_m \xrightarrow{\text{a.e.}} 0$ if and only if

$$\forall \varepsilon > 0, \mu(\bigcup_{v=1}^{\infty} \{ |f_{n+v} - f_n| \ge \varepsilon \}) = 0 (n \to \infty).$$

SOLUTION:

- 3. Page 47,16 Let $\xi_n = 1_{A_n}$, then $\xi_n \xrightarrow{\mathbb{P}}$ if and only if $\mathbb{P}(A_n) \to 0$. Solution:
- 4. Page 47,22 For any random variable sequence ξ_n , there is a positive integer sequence a_n s.t. $a_n\xi_n \stackrel{\mathbb{P}}{\longrightarrow} 0$.

SOLUTION:

5. Page 47,24 Prove two theorems 2.49 and 2.50.

Theorem 2.49 If $\xi_n - \xi'_n \xrightarrow{\mathbb{P}} 0$ and $\xi'_n \xrightarrow{d} \xi$, then $\xi_n \xrightarrow{d} \xi$.

Theorem 2.50 If $\xi_n \xrightarrow{d} \xi, \eta_n \xrightarrow{d} a(\text{const})$, then $\xi_n + \eta_n \xrightarrow{d} \xi + a$.

SOLUTION: