Úvod do organizace počítače

I/O zařízení a sběrnice

[K přípravě využita kniha: Computer Organization and Design, Patterson & Hennessy, © 2010]

Opakování: Základní části počítače

- Důležité metriky I/O systému
 - Výkon
 - Rozšiřitelnost
 - Spolehlivost
 - Cena, velikost, váha

Vstupní a výstupní zařízení

- I/O zařízení jsou velmi různorodá z hlediska
 - Chování vstup, výstup nebo paměť
 - Partner člověk nebo stroj
 - Rychlost přenosu dat špičková rychlost, se kterou jsou data
 přenášena mezi I/O zařízením a hlavní pamětí nebo procesorem

Zařízení	Chování	Partner	Rychlost přenosu dat (Mb/s)	
Klávesnice	vstup	člověk	0.0001	
Myš	vstup	člověk	0.0038	
Laserová tiskárna	výstup	člověk	3.200	
Grafický display	výstup	člověk	800.000-8000.000	
Síť/LAN	vstup nebo výstup	stroj	100.000-1000.000	
Magnetický disk	paměť	stroj	240.000-2560.000	

o 8 řádů rozdílná rychlost

Konfigurace sběrnice

- Vysílač/Přijímač: Zdroj/Příjemce dat
- Kanál: Cesta pro data nebo instrukce
- · Řadič: Master řídí akce sběrnice

Fyzické sběrnice

Paralelní sběrnice

- N paralelních vodičů:
- Výhoda: Rychlé Nevýhoda: Složitost

Sériové sběrnice

- Jedna přenosová cesta
- Obvykle kroucená dvoulinka (diferenciální vstupy)
- Může být stíněná (koaxiální kabel, příklad Ethernet)
- Simplexní komunikace: Jednosměrná
- Duplexní komunikace: Obousměrná
- Problémy: Kolize (duplex), chyby, výpadky
- Výhoda: Jednoduchost (?) Nevýhoda: Pomalé (???)

Dnes už příliš neplatí

Typický I/O systém

Přehled organizace I/O zařízení a sběrnic

- Přenos dat a instrukcí
- Paralelní nebo sériové sběrnice
- Různé I/O protokoly
- I/O zařízení se velmi liší
- Rovnice výkonu sběrnice
- Typy organizace I/O

Polled: Specifické testy zařízení

Interrupt-Driven: Přenos na žádost

DMA:
 Rychlé blokové I/O přenosy DMA kanálem

Typy organizace I/O

1. Polled

- Programová kontrola stavu I/O zařízení a následné plánování činnosti volných I/O zařízení
- Dotaz na stav (status) (busy, wait, idle, dead...)

2. Interrupt-Driven

- Obsluha I/O na požadavek, vyjádřený interruptem
- Vyžaduje frontu na uložení čekajících I/O žádostí

3. Direct Memory Access (DMA)

- Přímý přenos dat mezi I/O zařízením a pamětí
- Zajišťuje DMA kanál = zařízení aktivní na sběrnici
- Velmi rychlé, používá se pro velká množství dat, blokové přenosy, (např., disky, video, audio)

Registry I/O zařízení zaujímají vlastní adresní prostor nebo bývají mapovány do oblasti paměťového adresního prostoru.

Komunikace I/O zařízení a procesoru

- Jak procesor ovládá I/O zařízení
 - Speciální I/O instrukce
 - Specifikují jak zařízení, tak vlastní příkaz
 - I/O mapované do paměťového prostoru
 - Část adresního prostoru (obvykle horní adresy) je přiřazena I/O zařízením
 - Čtení a zápis na tato paměťová místa se interpretují jako příkazy pro I/O zařízení
 - · Čtení a zápis na tyto adresy může provádět jen OS
- Jak procesor komunikuje s I/O zařízeními
 - "Polling" procesor periodicky testuje stav I/O zařízení aby zjistil, zda nepotřebuje obsluhu
 - Procesor zajišťuje všechno řízení vykonává veškerou práci
 - Velká ztráta času procesoru vlivem rozdílných rychlostí
 - "Interrupt-driven" I/O I/O zařízení způsobí interrupt a tím oznámí procesoru nutnost obsluhy

Vstup s využitím interruptů

Vstup s využitím interruptů

Výstup s využitím interruptů

I/O s využitím interruptů

- I/O interrupt je asynchronní událost, nezávislá na prováděných instrukcích
 - Není propojena s žádnou instrukcí a neomezuje žádné instrukci v provedení
 - Můžete vlastně vybrat vlastní okamžik, kdy interrupt obsloužit
- S využitím I/O interruptů
 - Způsob, jak identifikovat zařízení, které způsobilo interrupt
 - Mohou být různé stupně důležitosti (organizace pomocí priorit)
- Výhody využití interruptů
 - Procesor nemusí kontinuálně testovat události I/O; pokračování uživatelského programu je pozastaveno jenom během přesunu I/O dat z/do uživatelské paměti
- Nevýhoda je třeba speciální hardware
 - Generace interruptu (I/O zařízení), jeho detekce a uložení nutné informace tak, aby pak výpočet zase mohl po obsluze interruptu pokračovat.

Přímý přístup do paměti (DMA)

- Pro zařízení s velkou přenosovou rychlostí (např. disky) by interruptový režim pro I/O spotřeboval příliš mnoho cyklů procesoru
- DMA I/O controller má schopnost přenášet data přímo z/do paměti bez účasti procesoru
 - 1. Procesor initicializuje DMA přenos dodáním I/O adresy zařízení, typu operace, která se má vykonat, adresou do paměti zdroje/určení a počtem bytů, které se mají přenést
 - 2. I/O DMA řadič řídí celý přenos (i tisíce bytů), přitom soupeří o sběrnici
 - 3. Když je přenos DMA ukončen, I/O řadič generuje interrupt pro procesor. Tím oznamuje ukončení požadované přenosové operace.
- V jednom systému může pracovat větší počet DMA zařízení
 - Procesor a I/O DMA řadiče soupeří o cykly sběrnice a o paměť

Problém "zastaralých" dat

- V systémech s cache pamětmi může existovat více kopií jedné položky, jedna v cache, druhá v hlavní paměti
 - Při čtení DMA (z disku do paměti) procesor použije stará (již neplatná)
 data, jestliže požadovaná data mají svoji kopii v cache
 - Při zápisu DMA (z paměti na disk) a strategii write-back v cache –l/O zařízení dostane stará data pokud došlo k modifikaci dat v cache a daný blok nebyl dosud zapsán do hlavní paměti
- Problém koherence lze řešit:
 - Směrováním všech I/O aktivit přes cache drahé a velmi redukuje celkový výkon
 - 2. Jestliže OS selektivně zneplatňuje cache pro I/O čtení a vynucuje zpětné zápisy pro I/O zápis (flushing)
 - 3. Nutnost hardware pro selektivní zneplatnění nebo vynucení zápisu do hlavní paměti (hardware snooper)

I/O a operační systém

- Operační systém vytváří interface mezi I/O hardwarem a programovými požadavky na I/O
 - Kvůli ochraně sdílených I/O zdrojů, nemůže uživatelský program komunikovat přímo s I/O zařízením
- Proto musí být OS schopen dávat příkazy I/O zařízením, obsluhovat přerušení, která I/O zařízení generují, provádět vyvážený přístup ke sdíleným I/O zdrojům a plánovat I/O požadavky tak, aby se optimalizoval výkon celého systému
 - I/O interupty způsobují přechod od zpracování uživatelských procesů k procesům OS

Připojení I/O systému

- Sběrnice je sdílená komunikační linka (jednoduchý soubor vodičů, které slouží k propojení subsystémů), propojující celou řadu rozdílných zařízení s různými latencemi a značně rozdílnými přenosovými rychlostmi.
 - Výhody
 - Univerzální nová zařízení lze snadno přidávat a lze je používat ve více systémech, které používají stejný typ (standard) sběrnice
 - Nízká cena soubor vodičů je sdílen pro vytvoření mnoha spojů
 - Nevýhody
 - Tvoří "úzké místo" komunikace šířka pásma sběrnice omezuje maximální propustnost I/O
- Maximální rychlost sběrnice je omezena
 - Délkou sběrnice (!závisí také na typu sériová x paralelní)
 - Počtem zařízení připojených na sběrnici

Charakteristika sběrnice

- Řídící linky
 - Signály žádosti (request) a zpětného hlášení (acknowledge)
 - Indikace typu informace na datových linkách
- Datové linky
 - Data, adresy a komplexní příkazy
- Transakce na sběrnici se skládá z
 - Master vysílá povel (command) a adresu žádost (request)
 - Slave přijme (nebo vyšle) data akce
 - Definováno vzhledem k paměti
 - vstup vstup dat z I/O zařízení do paměti
 - výstup výstup dat z paměti do I/O zařízení

Typy sběrnic

- Sběrnice procesor-paměť (proprietární)
 - Krátká a vysoká rychlost
 - Přizpůsobena paměťovému systému, aby se maximalizovala přenosová rychlost procesor-paměť
 - Optimalizována pro přenosy bloků do cache
- I/O sběrnice (průmyslový standard, např., SCSI, USB, Firewire)
 - Obvykle je delší a pomalejší
 - Musí přizpůsobit velmi rozdílná I/O zařízení
 - Připojena ke sběrnici procesor-paměť a nebo ke sběrnici typu "backplane bus"
- Backplane bus (průmyslové standardy, např., ATA, PCI, PCIexpress)
 - "Backplane" je propojovací struktura spojená s chassis
 - Používá se jako sběrnice, propojující I/O sběrnice a sběrnici procesorpaměť

Synchronní a asynchronní sběrnice

- Synchronní sběrnice (např. sběrnice procesor-paměť)
 - Zahrnuje hodiny mezi řídící linky a má fixní protokol pro komunikaci, který je vztažený k hodinám
 - Výhoda: Obsahuje málo logiky a dosahuje vysoké rychlosti
 - Nevýhody:
 - Každé zařízení, komunikující na sběrnici musí používat stejnou frekvenci
 - Aby se zamezilo "skew" hodin, nemůže být dlouhá, má-li pracovat rychle
- Asynchronní sběrnice (např. I/O sběrnice)
 - Není taktována, proto vyžaduje handshaking protokol a přídavné řídící linky (ReadReq, Ack, DataRdy)
 - Výhody:
 - Může zahrnout široké spektrum zařízení a přenosových rychlostí
 - Větší délka, aniž vzniknou problémy se "skew" hodin nebo se synchronizací
 - Nevýhoda: nižší rychlost

Fyzické vs. logické I/O sběrnice

Fyzické sběrnice

- Instalováno v počítačích: sběrnice ISA, PCI, AGP pro grafické karty
- Limitována velikost a spotřeba el. výkonu
- Výkon omezen šířkou sběrnice, rychlostí řadiče

Logické I/O (rekonfigurovatelné sběrnice)

- Používají fyzické sběrnice, které mohou být různě konfigurovány
- Vhodné pro maximální využití sběrnice
- CPU se chová jako kdyby měla variabilní sběrnice
- Rekonfigurace sběrnic přizpůsobení aktuálním I/O požadavkům
- Vyžaduje komplexní řadič sběrnice a plánovací software

Příklad výkonnosti I/O systému

- Zátěž disku představuje 64 KB čtení a zápisů, kde uživatelský program provede 2.10⁵ instrukcí na jednu diskovou I/O operaci a
 - procesor s výkonem 3.10⁹ instr/s a průměrně 10⁵ instrukcí OS na provedení jedné diskové I/O operace

Maximální rychlost diskových I/O operací (# I/O/sec) procesoru je rovna:

Sběrnice I/O-paměť dosahuje přenosovou rychlost 1000 MB/s
 Každá disková I/O čte nebo zapisuje 64 KB, takže maximální rychlost I/O sběrnice je:

- Diskové SCSI I/O kontroléry DMA s přenosovou rychlostí 320 MB/s, které obsluhují až 7 disků/kontrolér
- Diskové jednotky s přenosovou rychlostí (při operaci read/write) 75 MB/s a střední přístupovou dobou latence 6 ms

Jaká je maximální dosažitelná rychlost I/O a jaký je počet disků a SCSI kontrolérů potřebných pro dosažení této rychlosti?

Příklad výkonnosti I/O systému

- Zátěž disku představuje 64 KB čtení a zápisů, kde uživatelský program provede
 2.10⁵ instrukcí na jednu diskovou I/O operaci a
 - procesor s výkonem 3.10⁹ instr/s a průměrně 10⁵ instrukcí OS na provedení jedné diskové I/O operace

Maximální rychlost diskových I/O operací (# I/O/sec) procesoru je rovna:

$$\frac{\text{Instr execution rate}}{\text{Instr per I/O}} = \frac{3 \times 10^9}{(2 + 1) \times 10^5} = 10,000 \text{ I/O's/s}$$

Sběrnice I/O-paměť dosahuje přenosovou rychlost 1000 MB/s
 Každá disková I/O čte nebo zapisuje 64 KB, takže maximální rychlost I/O sběrnice je:

Bus bandwidth
Bytes per I/O =
$$\frac{1000 \times 10^6}{64 \times 10^3}$$
 = 15,625 I/O's/s

- Diskové SCSI I/O kontroléry DMA s přenosovou rychlostí 320 MB/s, které obsluhují až 7 disků/kontrolér
- Diskové jednotky s přenosovou rychlostí při read/write 75 MB/s a střední přístupovou dobou latence 6 ms

Jaká je maximální dosažitelná rychlost I/O a jaký je počet disků a SCSI kontrolérů potřebných pro dosažení této rychlosti?

Příklad diskového I/O systému

Příklad výkonnosti I/O systému (pokračování)

Procesor je nejslabším místem, nikoliv sběrnice

 disková mechanika se šířkou pásma pro operace (read/write) 75 MB/s a střední dobou latence přístupu 6 ms (seek + rotace)

```
Doba I/O operace disku (read/write) = seek + rotational time + transfer time =
6ms + 64KB/(75MB/s) = 6.9ms
Proto každý disk může provést 1000ms/6.9ms = 146 I/O's za sekundu.
Saturování procesoru vyžaduje 10,000 I/O's za sekundu nebo-li
10.000/146 = 69 disků
```

Pro výpočet počtu SCSI diskových kontrolérů potřebujeme znát střední přenosovou rychlost jednoho disku, abychom určili, zda můžeme připojit maximální počet 7 disků na SCSI kontrolér a že diskový kontrolér nebude saturovat sběrnici IO-paměť během DMA přenosu.

Přenosová rychlost disku = (velikost bloku)/(doba přenosu) = 64KB/6.9ms = 9.56 MB/s Proto 7 disků nebude saturovat ani SCSI kontrolér (s maximální přenosovou rychlostí 320 MB/s), ani sběrnici I/O-paměť (1000 MB/s). To znamená – budeme potřebovat 69/7 tedy 10 SCSI kontrolérů.

Protokol asynchronní sběrnice (handshaking)

Výstup (read) dat z paměti na I/O zařízení

Zařízení I/O oznamuje požadavek nastavením ReadReq a vydáním addr na datových linkách.

- 1. Paměť dostane ReadReq, převezme addr z datových linek a aktivuje Ack
- 2. Zařízení I/O reaguje na Ack, uvolňuje ReadReq a datové linky
- 3. Paměť zjistí sestupnou hranu ReadReg a deaktivuje Ack
- 4. Když paměť dokončí čtení, umístí data na datové linky a aktivuje DataRdy
- 5. Zařízení I/O zjistí DataRdy, sejme data z datových linek a aktivuje Ack
- 6. Paměť zjistí aktivní Ack, uvolní datové linky a deaktivuje DataRdy
- 7. Zařízení I/O reaguje na sestupnou hranu DataRdy deaktivací Ack

Arbitrace sběrnice

- Sběrnici může být schopno současně řídit větší množství zařízení => nutnost arbitrovat požadavky
- Arbitrační schémata se snaží zohledňovat:
 - Bus priority zařízení nejvyšší priority by mělo být obslouženo nejdříve
 - "Fairness" i zařízení s nejnižší prioritou nesmí být odříznuto od sběrnice
- Arbitrační mechanizmy sběrnic lze dělit do čtyř tříd:
 - "Daisy chain" arbitrace (jinak "postupná obsluha") další snímky
 - Centralizovaná, paralelní arbitrace další snímky
 - Distribuovaná arbitrace (self-selection) každé zařízení, které se uchází o sběrnici vydává identifikační kód na sběrnici
 - Distribuovaná arbitrace s detekcí kolize zařízení využije sběrnici pokud je volná a nastane-li kolize (protože i jiná zařízení se mohou rozhodnout stejně), potom zařízení pokus opakuje později (Ethernet)

"Daisy Chain" arbitrace

- Výhoda: jednoduchost
- Nevýhody:
 - Nelze zajistit "spravedlnost"
 zařízení nízké priority mohou být trvale blokována
 - Pomalé "daisy chain" signál omezuje rychlost procesu přidělování

Centralizovaná paralelní arbitrace

- Výhody: flexibilní, může zajistit "spravedlnost"
- Nevýhody: složitější hardware arbitru
- Používáno hlavně u všech sběrnic procesor-paměť a u rychlých I/O sběrnic

Šířka pásma sběrnice

Šířku pásma sběrnice ovlivňuje:

- Zda se jedná o asynchronní nebo synchronní sběrnici a dále pak charakteristika použitého protokolu
- Šířka sběrnice
- Zda sběrnice podporuje blokové přenosy nebo nikoliv

	Firewire	USB 2.0	
Тур	I/O	I/O	
Datové linky	4	2	
Časování	Asynchronní	Synchronní	
Max. # zařízení	63	127	
Max. délka	4.5 metru	5 metrů	
Špičkový přenosový výkon (šířka pásma)	50 MB/s (400 Mbps) 100 MB/s (800 Mbps)	0.2 MB/s (low) 1.5 MB/s (full) 60 MB/s (high)	

Příklad: Sběrnice Pentia 4

Sběrnice z hlediska vývoje

- Výrobci dříve přecházeli od asynchronních sběrnic k synchronním, dnes od širokých synchronních k úzkým asynchronním sběrnicím.
 - Odrazy na vedeních a skew hodin nedovolují zvyšovat hodinové frekvence u sběrnic, kde se používá 16 až 64 paralelních vodičů (nad ~400 MHz).
 Proto výrobci přecházejí na úzké jednosměrné s vysokou hodinovou frekvencí (~2 GHz)

	PCI	PClexpress	ATA	Serial ATA
Celkový # vodičů	120	36	80	7
# datových linek	32 – 64 (obousměrné)	2 x 4 (jednosměrné)	16 (obousměrné)	2 x 2 (jednosměrné)
Hodiny (MHz)	33 – 133	635	50	150
Špičkový BW (MB/s)	128 – 1064	300	100	375 (3 Gbps)

Pozn.: PCIe má v současné době celou řadu dalších rychlejších variant, viz www.pcisig.org

Měření výkonu I/O

- Šířka pásma I/O (propustnost) množství informace, která prochází vstupem (výstupem) a propojovací strukturou (např. sběrnicí) k procesoru/paměti (I/O zařízení) za jednotku času
 - 1. Kolik dat můžeme přesunout v systému za určitou dobu?
 - 2. Kolik I/O operací můžeme provést za jednotku času?
- Doba odezvy I/O (latence) celková doba nutná k provedení vstupní nebo výstupní operace
 - Zvláště důležitá metrika pro systémy pracující v reálném času
- Mnoho aplikací vyžaduje obojí vysokou propustnost a krátkou dobu odezvy

Výkon I/O systému

- Návrh I/O systému aby vyhověl požadavkům na šířku pásma a/nebo požadavkům na latence
 - 1. Nalezení "nejslabší" linky v I/O systému prvek, který způsobuje omezení
 - Procesor a paměťový systém?
 - Propojovací struktura (např., sběrnice)?
 - I/O kontroléry?
 - I/O zařízení sama o sobě ?
 - (Re)konfigurace nejslabšího prvku tak, aby byly splněny požadavky na šířku pásma a/nebo požadavky na latence
 - 3. Určení požadavků na zbylé části a jejich (re)konfigurace tak, aby byly splněny požadavky na šířku pásma a/nebo požadavky na latence

Výkonové parametry sběrnice

- Šířka pásma nebo propustnost
 - Kolik dat lze přenést sběrnicí za jednotku času (jednotka = bity za sekundu)
- Četnost poruch a cena
 - Četnost: ~ Pravděpodobnost poruchy sběrnice
 - Cena: Kolik stojí restart
 - Sběrnice se musí zotavit (cykly sběrnice, x bitů na cykl)
 - Opakování vadných paketů (bity, které se musí opakovat)
- Četnost chyb a cena
 - Podobné jako četnost poruch

Rovnice výkonu sběrnice

- Předpoklady
 - Šířka pásma (B), četnost bitových chyb (BER)
 - Četnost poruch (FR), cena poruch (FC)
- Výpočet aktuální šířky pásma (B')

Výkon sběrnice - příklad #1

Předpoklady

- Nominální šířka pásma: 32 MHz, 32 bitů paralelně
- Četnost poruch = 10⁻⁴; Cena poruchy = 0.2 Mbps
- Četnost bitových chyb = 10-6

Výpočet aktuální šířky pásma (B')

```
B' = B * (1-BER) - FC/(1-FR)

= 32bitů * (32 * 10<sup>6</sup> Hz) * (0.999999)

- (0.2 x 10<sup>6</sup> bps/ 0.9999)

= 1.023999 Gbps - 0.20002 Mbps

= 1023.799 Gbits/sec = 0.02% snížení
```

Výkon sběrnice - příklad #2

Předpoklady

- Nominální šířka pásma: 32 MHz, 32 bitů paralelně
- Četnost poruch = 10⁻¹; Cena poruchy = 0.2 Mbps
- Četnost bitových chyb = 10-6
- Výpočet aktuální šířky pásma (B')

```
B' = B * (1-BER) - FC/(1-FR)

= 32bitů * (32 * 10<sup>6</sup> Hz) * (0.999999)

- (0.2 x 10<sup>6</sup> bps/ 0.9)

= 1.023999 Gbps - 0.2222 Mbps

= 1023.7768 Gbitů/sek = 0.03% snížení
```

Výkon sběrnice - příklad #3

Předpoklady

- Nominální šířka pásma: 32 MHz, 32 bitů paralelně
- Četnost poruch = 10⁻¹; Cena poruchy = 0.2 Mbps
- Četnost bitových chyb = 10⁻³
- Výpočet aktuální šířky pásma (B')

```
B' = B * (1-BER) - FC/(1-FR)

= 32bitů * (32 * 10<sup>6</sup> Hz) (0.999)

- (0.2 x 10<sup>6</sup> bps/ 0.9)

= 1.022976 Gbps - 0.2222 Mbps

= 1023.7538 Gbps = 0.23% snížení
```

Výkon sběrnice - realita

Problémy

(BW ... BandWidth)

- Kolize na sběrnici: Pakety používají stejný HW
- Simplex: Méně kolizí, Duplex: Více kolizí
- Některé praktické výsledky testů

PCI: 32 bitů paralelně na 32 MHz (128MB/s)

Nominální BW = 1K MHz ~ 1GHz

Simplex: 70 - 80% of BW

Duplex: 20 - 40% of BW

např., duplex => 25 to 50 MB/s

Sběrnice: Aplikace => Požadavky

Aplikace

- Obrázky: M*N pixelů v rámci, K bitů na pixel
- Video: F rámců za sekundu
- Složitost = O(M*N*K*F) bitů za sekundu

Reálně: M, N = 1024, K = 24 bpp, F = 30 fps

MNKF = 1M (720) = **720** *Mbitů/sec*

Simplex: 720 Mbps / 0.7 => B = 1.03 Gbps

Duplex: 720 Mbps / 0.3 => B = 2.4 Gbps

Důsledek: Pro zpracování obrazů jsou

třeba velmi rychlé sběrnice

Technologie sběrnic

Současné:

- Měděné vodiče, cesty na PCB (2-8 GHz)
- Koaxiální, Fiber optic Internet (2 Gbps ...)
- Rozšiřuje se:
 - Optický přenos volným prostorem: 20+ Gbps
 - BW omezena šířkou pásma by vysílače/přijímače
 - Problémy s atmosférickými vlivy rozptyl & absorpce
 - "Vše opticky"
 - Nelze doslova vždy je třeba nějaké elektronika a optoelektronika
 - Rychlost omezena šířkou pásma použité elektroniky
- V dohlednu: Fiber Optic (rychlé, levné)

Závěr

- I/O ovlivňuje přenos dat:
 - Dělením toku dat do bloků nebo paketů
 - Vysíláním datových paketů sériově po sběrnici
 - Udržováním I/O sběrnice na plném výkonu (obsazena) pro dosažení maximálního výkonu I/O systému

- Rekonfigurovatelné sběrnice jsou výhodné, protože:
 - Různé aplikace mají různé nároky na I/O
 - Konfigurací může být sběrnice přizpůsobena těmto požadavkům