Complexity and stability of empirical food webs

Food webs

Describe energy and material flows among species

Food webs

Complex systems

Will the ecosystem buffer or amplify a perturbation?

Ecosystem complexity

Variance of interaction strength σ^2

The complexity stability debate

Until the 70's:

Diversity stabilizes ecosystems (Odum 1953, Elton 1958, MacArthur 1955)

Guyane, tropical forest.

Alaska, boreal forest.

The complexity stability debate

Complexity decreases ecosystem stability (May 1972)

Complexity:

- Species richness S
- Connectance $C = L/S^2$
- Variance of interaction strengths σ^2

Professor Lord Robert May

Stability criterion: $\sigma\sqrt{SC} < 1$

Local stability analysis

Asymptotic stability: rate to which species populations go back to their initial densities after a pulse disturbance

Local stability analysis

Population dynamic:
$$\frac{dX_i(t)}{dt} = f_i(\mathbf{X}(t))$$
 $(i = 1, ..., S)$

Equilibrium point X*:
$$\left. \frac{dX_i(t)}{dt} \right|_{\mathbf{X}^*} = f_i(\mathbf{X}^*) = 0$$

Coefficients of the community matrix
$$M_{ij} = J_{ij}|_{\mathbf{X}^*} = \frac{\partial f_i(\mathbf{X}(t))}{\partial X_i}|_{\mathbf{X}^*}$$

Eigenvalues of **M**: real $(\lambda = a)$ or complex $(\lambda = a \pm ib)$

The circular law (Girko 1985, Tao 2010)

On a complex plan: all the eigenvalues are contained in a circle of center (-d, 0) and radius *R*.

The system is stable if $Re(\lambda_{max}) < 0$.

Stability criterion?

imaginary

The circular law (Girko 1985, Tao 2010)

On a complex plan: all the eigenvalues are contained in a circle of center (-d, 0) and radius *R*.

The system is stable if $Re(\lambda_{max}) < 0$.

Stability criterion: R < d

imaginary

The circular law (Girko 1985, Tao 2010)

$$C = \begin{pmatrix} -d_1 & +c_{2,1} & +c_{3,1} & 0 \\ -c_{1,2} & -d_2 & 0 & +c_{4,2} \\ -c_{1,3} & 0 & -d_3 & +c_{4,3} \\ 0 & -c_{2,4} & -c_{3,4} & -d_4 \end{pmatrix}$$

 \overline{d} corresponds to the mean of the diagonal terms of C

In random communities: $R = \sigma \sqrt{SC}$

 σ^2 : variance of c_{ij}

S: size of the matrix

C: proportion of non-zero terms

Application to ecological networks

May's stability criterion: $\sigma\sqrt{SC} < 1$

- Species richness S
- Connectance $C = L/S^2$
- Variance of interaction strengths σ^2
- \bar{d} : Magnitude of intraspecific competition (diagonal terms of the matrix) \rightarrow set to 1

Professor Lord Robert May

Application to ecological networks

May's stability criterion: $\sigma\sqrt{SC} < 1$

- Species richness S
- Connectance $C = L/S^2$
- Variance of interaction strengths σ^2
- \bar{d} : Magnitude of intraspecific competition (diagonal terms of the matrix) \rightarrow set to 1

Professor Lord Robert May

Theoretical communities:

- species interact at random
- interaction strengths are picked from a normal distribution

« In short, there is no confortable theorem assuring that increasing diversity and complexity beget community stability; rather, as a mathematical generality the opposite is true.

The task, therefore, is to elucidate the devious strategies which make for stability in enduring natural systems. » (May 2001).

1. What is the actual complexity-stability relationship in empirical communities?

1. What is the actual complexity-stability relationship in empirical communities?

2. What are the « devious strategies » of real communities that allow them to persist despite their complexity?

Food-web dataset

116 quantitative food webs from Ecopath models (Christensen 1992)

For each species *i*:

- biomass B_i (tons/km²)
- production (P/B); (year¹)
- consumption $(Q/B)_i$ (year¹)
- diet composition DC_{ii}

Derivation of interaction strengths from data

 α_{ij} : per capita effect of species j on species i (mass⁻¹year⁻¹) e_{ij} : efficieency of j to convert i into its own biomass $\alpha_{ji} = e_{ij} \times \alpha_{ij}$

Data for each species:

- biomass B_i (tons/km²)
- production $(P/B)_i$ (year¹)
- consumption $(Q/B)_i$ (year¹)
- diet composition DC_{ji}

Derivation of interaction strengths from data

 α_{ij} : per capita effect of species j on species i (mass⁻¹year⁻¹) e_{ij} : efficieency of j to convert i into its own biomass $\alpha_{ji} = e_{ij} \times \alpha_{ij}$

Data for each species:

- biomass B_i (tons/km²)
- production $(P/B)_i$ (year¹)
- consumption $(Q/B)_i$ (year¹)
- diet composition DC_{ji}

Practice

- 1. computing food-web complexity and stability in R
- 2. analysing the relationship between complexity and stability in empirical food webs
- 3. comparing the complexity-stability relationship of empirical and « randomized » food webs