Exercício 6 - Teoria dos Grafos

João Lucas Lima de Melo

Setembro 2022

Questão 8: Seja T uma árvore com n vértices. Prove que se $\Delta(T)=k$, então existem k folhas. Ademais, argumente apresentando uma construção tal que para qualquer $n>\Delta\geq 2$ não temos como ter menos que Δ folhas. Por outro lado, apresente uma árvore em que para existem mais que 2Δ folhas para $\Delta\geq 2$.

Uma árvore é, por definição, um grafo acíclico conexo. Um vértice v de uma árvore T é dito folha se $d_T(v) = 1$. $\Delta(T)$ é dito grau máximo de T, definido pelo maior grau de todos os vértices da árvore.

Questão 9: Explique por que a seguinte "prova" para o Teorema de Mantel está errada.

Demonstração errada. Vamos provar o Teorema por indução em n. Caso base: $n \leq 2$. Aqui o grafo completo K_n tem a quantidade máxima de arestas e não tem triângulo. Passo de indução: n > 2. Suponha que a afirmação vale para n = k, então $K_{\lfloor k/2 \rfloor \lceil k/2 \rceil}$ é o grafo livre de triângulos com k vértices com a maior quantidade de arestas possíveis. Adicionamos um novo vértice x para formar um grafo livre de triângulo com k+1 vértices. Fazendo x adjacente a todos os vértices da maior parte de $K_{\lfloor k/2 \rfloor \lceil k/2 \rceil}$. Fazendo isso criamos o grafo $K_{\lfloor k+1/2 \rfloor \lceil k+1/2 \rceil}$ e isso completa a prova.

O teorema de Mantel afirma que sendo G um grafo com n vértices sem triângulos então G tem no máximo $\lfloor n^2/4 \rfloor$ arestas. A prova concebe de forma equivocada o grafo completo $K_{\lfloor k/2 \rfloor \lceil k/2 \rceil}$. Para que a prova faça sentido, é necessário que K seja balanceado, o que não é garantido por $\lfloor k/2 \rfloor$ e $\lceil k/2 \rceil$.

Questão 10: Prove utilizando indução a seguinte versão mais simples do Teorema de Mantel: Se G é um grafo K_3 -Livre com n vértices, então $e(G) \leq \lfloor n2/4 \rfloor$.

Faremos a prova por indução na quantidade n de vértices do grafo G. Para o caso base, onde $n \le 2$, segue que há uma aresta (para n = 2, temos $2^2/4 = 4/4 = 1$) ou nenhuma aresta (para n = 1, temos $1^2/4 = 1/4 = 0$, arredondando para baixo).

Vamos supor $n \geq 3$, garantido que não haja triângulos em G por ser um grafo K_3 -livre. Removemos de G dois vértices adjacentes u e v gerando um grafo G' com n-2 vértices. Sendo adjacentes e não podendo haver triângulos em G, sabemos que eles não possuem vizinhos em comum. Dessa forma, podemos afirmar que $|N_{G'}(u) \cup N_{G'}(v)| \leq n-2$. Isso implica afirmar que existem, no máximo, n-2 arestas entre u e v e os vértices de G'. Portanto,

```
\Leftrightarrow E(G) \leq E(G') + (n-2)
\Leftrightarrow E(G) \leq E(G') + (n-2) + 1
```

Aplicando a hipótese de indução, temos:

$$\Leftrightarrow E(G') + (n-2) + 1 \le (n-2)^2/4 + n - 1$$

$$\Leftrightarrow (n-2)^2/4 + n - 1 = n^2/4.$$

Portanto, vale que se G é um grafo K_3 -livre com n vértices, então possui no máximo $n^2/4$ arestas.