

Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization

Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou1, Zeqi Tan, Peng Li, Yueting Zhuang, Weiming Lu

Zhejiang University, Chinese Academy of Sciences

ACL 2024

Background and Opportunities Design **Experimental evaluation** 3 **Summary**

Background and Opportunities Design **Experimental evaluation** 3 **Summary**

LLM Agent

Powerful text generation capabilities of LLM

Perfect Information

Perfect Information

- Chess
- Gobang

Characteristics

All information

Chess

Gobang

Imperfect Information

Multi-player Interactive Games with incomplete information

Imperfect Information

- BlackJack
- Texas hold 'em

Characteristics

- Dynamic Interaction
- Multi-player
- Influence on each other

BlackJack

Texas hold 'em

Focus on specific tasks

[ICLR 2024] Metagpt: Meta programming for multi-agent collaborative framework.

7

Focus on specific tasks

Specific tasks:

- Question-answeringCode generation

Hand-writing Prompt

[ICLR 2023] React: Synergizing reasoning and acting in language models. [ICLR 2024] Metagpt: Meta programming for multi-agent collaborative framework.

Specify the form of output

Focus on specific tasks

Specific tasks:

- Question-answering
- Code generation

BlackJack

Hand-writing Prompt

Limitation 1:
Difficult to deal with complex and changing scenarios

Specify the form of output

Texas hold 'em

Humans typically learn and adjust behavior through interaction

[ArXiv 2023] Reflexion: an autonomous agent with dynamic memory and self-reflection.

[NeurlPS 2023] Voyager: An open-ended embodied agent with large language models.

Test self-tuning strategies in a card game scenario

BlackJack

Texas hold 'em

Unreasonable behavior

Limitation 2: Effective policies cannot be derived from long action sequences

Opportunities

Limitation 1:

Difficult to deal with complex and changing scenarios

Opportunity 1:

Applications in incomplete information and dynamic interactions

Opportunities

Limitation 2:

Effective policies cannot be derived from long action sequences

Opportunity 2:

Use past experience to solve the current task

Background and Opportunities Design **Experimental evaluation** 3 **Summary**

Agent-pro

- LLM
- Prompts
 - Task Description
 - Behavior Policy
 - Output Format

Agent-pro

- LLM
- Prompts

Updating Belief

- Self-Belief
- World-Belief

Agent-pro

- LLM
- Prompts

Updating Belief

- Self-Belief
- World-Belief

Policy-level Reflection

Agent-pro

- LLM
- Prompts

Updating Belief

- Self-Belief
- World-Belief

Policy-level Reflection

Policy Evolution

Belief-aware Decision-Making

Self-Belief: Currently, my hand is weak (State). I need to wait for the next community card reveal. Besides, I must observe my opponent's actions closely (Plan). If they appear strong, keeping calling may lead to more losses (Risk).

World-Belief: In my impression, player-1 is relatively conservative. However, he has been consistently raising, which may indicate a strong hand (Opponent). The final community card will be revealed shortly, and it might still be a weak one (Environment). If Player-1 raises again, according to the rules, I can only raise, call, or fold (Rule).

Policy-Level Reflection

Belief Calibration

- Correctness
- Consistency
- Rationality
- Reasons

DFS-based Policy Evolution

Policy Search

DFS

Policy Evaluation

- Swap Position
- Swap Card

Background and Opportunities Design **Experimental evaluation** 3 **Summary**

Environment Settings

Simulators:

RLCard for BlackJack and Texas hold 'em

Opponents:

- DQN(Nature 2015)
- DMC(ICML2021)

Quantitative Evaluation

Blackjack

Win Rate ↑(%)		Based Models							
Strategy	Qwen-72B	Llama2-70B	GPT3.5	GPT4					
Vanilla LLM	0.5	0.3	27.9	34					
Radical LLM	0.6	0.4	1.8	11.5					
ReAct	30.9	11.8	36.6	40.9					
Reflexion	32.3	12.1	36.7	40.8					
Agent-Pro	36.2 ↑3.9	23.1 ↑11.0	38.2 ↑1.5	40.4 ↓0.5					
-w/o Learning	34.1	8.0	37.4	40.6					

Quantitative Evaluation

Decision-making performance of agent-pro in blackjack

Quantitative Evaluation

Agent-pro's performance in Texas Hold 'em Poker

Agent Strategy	Based Model = $GPT3.5$			Based Model = $GPT4$			Based Model = Llama2-70B					
	DQN	DMC	GPT3.5	Agent	DQN	DMC	GPT3.5	Agent	DQN	DMC	GPT3.5	Agent
Human	-4.0	0.7	-2.4	5.7	-4.0	0.7	-2.4	5.7	-4.0	0.7	-2.4	5.7
Vanilla LLM	-0.3	2.2	-0.8	-1.1	-2.2	1.7	-0.9	1.4	-0.8	3.4	-0.4	-2.2
Aggressive LLM	-0.4	3.0	-0.5	-2.1	-2.0	2.8	-1.0	0.2	-1.6	7.6	-1.2	-4.8
Conservative LLM	-0.7	2.9	-0.9	-1.3	-1.6	2.7	-1.6	0.5	-0.5	3.4	-0.8	-2.1
Self-Consistency	-0.5	1.9	-0.8	-0.6	-2.8	2	-0.7	1.5	-1.0	3.8	-0.9	-1.9
ReAct	-0.7	1.7	-0.7	-0.3	-2.4	1.3	-1.1	2.2	-1.1	3.9	-0.8	-2.0
Reflexion	-0.1	2.5	-0.9	-1.5	-2.6	2.1	-0.7	1.2	-1.2	4.7	-0.9	-2.6
Multi-Agent	-1.1	2.3	-0.3	-0.9	-1.8	1.9	-1.2	1.1	-0.7	3.5	-1.0	-1.8
Agent-Pro	-1.5\1.2	1.4 ↓0.8	-1.1 \u0.3	1.2 ↑2.3	-3.9\1.7	1.1 _0.6	-1.5 ↓0.6	4.3 ↑2.9	-1.2 ↓0.4	3.1 _0.3	-0.5 ↓0.1	-1.4 ↑0.8
-w/o Learning	-0.7	1.8	-1.0	-0.1↑1	-3	1.5	-1.2	2./\1.3	-0.3	3.3	-1.2	-1.8†0.4

Background and Opportunities Design **Experimental evaluation** 3 **Summary**

Critical analysis, inspiration

Critical analysis

- Advantage
 - Constructed the dynamic belief of decision-making, and guide the \

Agent to make decisions.

- Disadvantage
 - The performance of Agent-pro still depends on the capabilities of LLM

model

Inspiration

> enhance the decision-making ability of Agent-pro based on a small LLM.

HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu1, Yueting Zhuang

Zhejiang University, Microsoft Research Asia

NeurIPS 2024

Background and Opportunities Design **Experimental evaluation** 3 **Summary**

Background and Opportunities Design **Experimental evaluation** 3 **Summary**

Limitation 1

LLM lacks the ability to process complex information such as vision and speech

Limitation 2

Some complex tasks usually consist of multiple subtasks and thus require the cooperation of multiple models

Opportunities

Opportunity 1:

There are many models in the machine learning community that can solve different modalities of tasks

Opportunities

Opportunity 2:

Large language models can give a plan based on the task

Hugging GPT

- Language as a generic interface for LLMs to collaborate with AI models
- Model descriptions match tasks

Task Planning

Specification-based Instruction

- Task ID
- Task Type [language, visial, video, audio]
- Task dependencies
- Task arguments

{"task": "object-detection", "id": 0, "dep": [-1], "args": {"image":

"e1.jpg" }

Task	Args
Text-cls	text
Token-cls	text
Text2text-generation	text
Summarization	text
Translation	text
Question-answering	text
Conversational	text
Text-generation	text
Tabular-cls	text

Table 1: NLP tasks.

Task	Args
Image-to-text	image
Text-to-image	image
VQA	text + image
Segmentation	image
DQA	text + image
Image-cls	image
Image-to-image	image
Object-detection	image
Controlnet-sd	image

Table 2: CV tasks.

Task	Args
Text-to-speech	text
Audio-cls	audio
ASR	audio
Audio-to-audio	audio

Table 3: Audio tasks.

Task	Args
Text-to-video	text
Video-cls	video

Table 4: Video tasks.

Task Planning

Demonstration-based Parsing

In-context learning is used to understand user intent

		Prompt		
		e AI assistant performs task parsing on user input, generating a list		
		ormat: [{"task": task, "id", task_id, "dep": dependency_task_ids,		
		age": URL, "audio": URL, "video": URL}}]. The "dep" field		
		is task which generates a new resource upon which the current task		
	relies. The tag " <resource>-task_id" represents the generated text, image, audio, or video from</resource>			
	the dependency task with the corresponding task_id. The task must be selected from the following			
	options: {{ Available Task List }}. Please note that there exists a logical connections and order between the tasks. In case the user input cannot be parsed, an empty JSON response should be			
	1	ases for your reference: {{ Demonstrations }}. To assist with task		
		vailable as {{ Chat Logs }}, where you can trace the user-mentioned		
ing		em into the task planning stage.		
ann	Demonstrations			
Task Planning	Can you tell me how many	[{"task": "object-detection", "id": 0, "dep": [-1], "args": {"im		
	objects in e1.jpg?	age": "e1.jpg" }}]		
	In e2.jpg, what's the animal and what's it doing?	[{"task": "image-to-text", "id": 0, "dep":[-1], "args": {"image": "e2.jpg" }}, {"task":"image-cls", "id": 1, "dep": [-1], "args": {"image": "e2.jpg" }}, {"task":"object-detection", "id": 2, "dep": [-1], "args": {"image": "e2.jpg" }}, {"task": "visual-quesrion-answering", "id": 3, "dep":[-1], "args": {"text": "what's the animal doing?", "image": "e2.jpg" }}]		
	First generate a HED image of e3.jpg, then based on the HED image and a text "a girl reading a book", create a new image as a response.	[{"task": "pose-detection", "id": 0, "dep": [-1], "args": {"image": "e3.jpg" }}, {"task": "pose-text-to-image", "id": 1, "dep": [0], "args": {"text": "a girl reading a book", "image": " <resource>-0" }}]</resource>		

Model Selection

Model Descriptions

- Model description provided by the model publisher In-Context Task-Model Assignment
- Select the most appropriate model based on the prompt
- The top k as candidates

Model Selection	Prompt
	#2 Model Selection Stage - Given the user request and the call command, the AI assistant helps the user to select a suitable model from a list of models to process the user request. The AI assistant merely outputs the model id of the most appropriate model. The output must be in a strict JSON format: {"id": "id": "reason": "your detail reason for the choice"}. We have a list of models for you to choose from {{ Candidate Models }}. Please select one model from the list.
	Candidate Models
	{"model_id": model id #1, "metadata": meta-info #1, "description": description of model #1}
	{"model_id": model id #2, "metadata": meta-info #2, "description": description of model #2}
	{"model_id": model id $\#K$, "metadata": meta-info $\#K$, "description": description of model $\#K$ }

Task Execution

Hybrid Endpoint

Deploy some common models locally

Resource Dependency

 The output of the previous task serves as the input to the next task

First generate a HED image of e3.jpg, then based on the HED image and a text "a girl reading a book", create a new image as a response.

```
[{"task": "pose-detection", "id": 0, "dep": [-1], "args": {"image": "e3.jpg" }}, {"task": "pose-text-to-image", "id": 1, "dep": [0], "args": {"text": "a girl reading a book", "image": "<resource>-0" }}]
```

Response Generation

Response

- Task
- Model
- Results

Response Generation

Prompt

#4 Response Generation Stage - With the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}}, Task Planning: {{ Tasks }}}, Model Selection: {{ Model Assignment }}}, Task Execution: {{ Predictions }}}. You must first answer the user's request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path. If there is nothing in the results, please tell me you can't make it.

Pipeline

Pipeline

[Image-1] = example.jpg [Image-2] = <resource-1> [Image-3] = <resource-2>

a girl sitting on a bed reading a book

[Text-1] = <resource-5>

[Image-4]

[Audio-1]

The image you gave me is of "boy". The first thing I did was use **OpenCV's openpose model to analyze the pose of the boy in the image. I fed that image, specifically located at [Image-1], into the model to get an output image of the pose, located at [Image-2]. Then I take that pose and generate a new image, located at [Image-3], using **Ellyasviel/sd-controlnet-openpose* and the instruction "a girl is reading". Next, I ran object detection on the image generated in the previous step, to get predictions of the objects present in the image, including the box location. These predictions were run through the **Elfacebook/detr-resnet-101* model. The box was drawn on the image, which is located at [Image-4]. Then, I used the predictions of a image classification model **Elgoogle/vit-base-patch16-224* and a image caption model a **Inlpconnect/vit-gpt2-image-captionin* model to generate the caption for newly generated image. It generated text: "a girl sitting on a bed reading a book". Lastly, I ran the **Elfacebook/fastspeech2-en-lispeech* model to convert the generated text into audio, located at [Audio-1].

Outline

Background and Opportunities Design **Experimental evaluation** 3 **Summary**

Environment Settings

LLM:

- gpt-3.5-turbo, text-davinci-003 and gpt-4
- decoding temperature = 0
- logit_bias = 0.2

System Requirements

Default (Recommended)

For configs/config.default.yaml:

- Ubuntu 16.04 LTS
- VRAM >= 24GB
- RAM > 12GB (minimal), 16GB (standard), 80GB (full)
- Disk > 284GB
 - o 42GB for damo-vilab/text-to-video-ms-1.7b
 - o 126GB for ControlNet
 - o 66GB for stable-diffusion-v1-5
 - o 50GB for others

Minimum (Lite)

For configs/config.lite.yaml:

- Ubuntu 16.04 LTS
- Nothing else

Case Study

Query: Can you tell me how many objects in the picture example1.jpg?

Response: There are 8 objects in the picture. I used the model facebook/detr-resnet-101 for this task which is trained on a popular object detection dataset called COCO, and it has the highest number of downloads. It generated an image with predicted boxes that is available under the path: // images/79f2.jpg. As for image captioning, I selected the model nlpconnect/vit-gpt2 image-captioning which is more frequently used and works better in this case. The generated text from the image is 'a large jetliner sitting on top of an airport tarmac.'

1: {"task": "object-detection", "id": 0. dep [-1]. "args": {"image": "examp:e1.jpg"}},

2: {"task": "image-to-text", "id": 1, dep: [-1], "args": {"image": "example1.jpg"}}

Execution Results:

[{"generated image with predicted box": "/images/79f2.jpg", "predicted": [{"box": {"xmax": 463, "xmin": 373, "ymax": 267, "ymin": 199}, "label": "bus", "score": 0.9981155395507812}, {"box": {"xmax": 292, "xmin": 124, "ymax": 224, "ymin": 175}, "label": "airplane", "score": 0.9983609318733215}, {"box": {"xmax": 554, "xmin": 487, "ymax": 277, "ymin": 226}, "label": "person", "score": 0.9910836219787598}, {"box": {"xmax": 230, "xmin": 219, "ymax": 264, "ymin": 227}, "label": "person", "score": 0.998579740524292}, {"box": {"xmax": 361, "xmin": 330, "ymax": 231, "ymin": 220}, "label": "truck", "score": 0.9066138863563538}, {"box": {"xmax": 639, "xmin": 460, "ymax": 420, "ymin": 142}, "label": "bus", "score": 0.9987366795539856}, {"box": {"xmax": 363, "xmin": 279, "ymax": 222, "ymin": 192}, "label": "airplane", "score": 0.9976897259685059}, {"box": {"xmax": 517, "xmin": 287, "ymax": 250, "ymin": 219}, "label": "truck", "score": 0.9339178800582886}]},
 {"generated text": "a large jetliner sitting on top of an airport tarmac"}

Query: In example2.jpg, what's the animal and what's it doing?

Response: Sure, the animal in the image is a tiger and it a laying down I performed 3 tasks including image-to-text, image-classification, and visual-question-answering on the image you provided. To accomplish this, I selected models in Inconnect/vit-gpt2-image-captioning, in google/vit-Lase-patch16-224 and in dandelin/vilt-b32-finetuned-vqa because they are the perfect models for this use case respectively. According to the results, I have 88% confidence that the animal is a tiger and also have a 77.8% confidence that it's laying down .The generated image with predicted box is stored at the path: images/d59a.jpg.

Task Planning:

1: {"task": "image-classification", "id": 0, dep: [-1], "args": {"image": "example2.jpg" }},

2: {"task": "/isual-question-answering", "id": 1, dep: [-1], "args": {"text": "What is the animal doing?", "image": "example2.jpg" }}

3: {"task":"image-to-text", "id": 2, dep: [-1], "args": {"image": "example2.jpg" }}

Execution Results:

1. [{'score': 0.8858247399330139, 'label': 'tiger, Panthera tigris'}, {'score': 0.10940514504909515, 'label': 'tiger cat'}, {'score': 0.0006216467591002584, 'label': 'jaguar, panther, Panthera onca, Felis onca'}, {'score': 0.0004262701258994639, 'label': 'dhole, Cuon alpinus'}, {'score': 0.00030842673731967807, 'label': 'lion, king of beasts, Panthera leo'}]

2. [{'answer': 'sitting', 'score': 0.8294351696968079}, {'answer': 'laying down', 'score': 0.7387925386428833}, {'answer': 'resting', 'score': 0.625247061252594}, {'answer': 'laying', 'score': 0.6114301681518555}, {'answer': 'relaxing', 'score': 0.44740357995033264}]

3. {'generated_text': 'a brown and white striped zebra laying on a rock'}

https://huggingface.co/spaces/microsoft/HuggingGPT

Critical analysis, inspiration

Critical analysis

- Advantage
- > Using LLM to plan complex tasks and call different ai models to solve specific tasks
- Disadvantage
 - High response delay
 - the maximum token length is always limited
 - The model called may not complete the task

Inspiration

➤ When the called model is unable to complete the task, let IIm make a fine-tuning plan

Q&A

Speaker: 张兴才

2024.11.01