HYPERSPECTRAL IMAGE SEGMENTATION AND ANALYSIS TOWARDS AUTOMATED NON-DESTRUCTIVE MEASUREMENTS OF OLIGOSACCHARIDES AND OTHER TRAITS

Segmentation

GRAYSCALE REPRESENTATION

Variable Transformation

For Representation Purpose

$$S' = (S - S_{min})/(S_{max} - S_{min}) \cdot 256$$

WHICH WAVELENGTHS?

e.g. SWIR with 256 bands

LEAVES SPECTRUM VS GRAINS SPECTRUM

RESULTS BASED ON SINGLE CHANNEL

- Some approaches
 - Global thresholding (difference between first and last channels)
 - Quadratic transformation of values to make threshold value selection easier

USING THREE CHANNELS (SWIR)

- Only region
 where spikes
 located are kept
 for processing
- Channels used: 55, 41, 12
- Still many other combinations possible maybe with better result

SWIR RECOMMENDED CHANNELS IN HEADER FILE 80TH, 200TH AND 48TH

SEGMENTATION USING OPENCY

- Changing Color-space
 - Color Conversion
 - We use the function cv2.cvtColor(input_image, flag) where flag determines the type of conversion (e. g. cv2.COLOR_BGR2HSV).
- Applying mask
 - We use the function cv2.inRange(HSV_converted_image, lower_bounds, upper_bounds)
 - For HSV, Hue range is [0,179], Saturation range is [0,255] and Value range is [0,255]. Different softwares use different scales. So need to normalize these ranges.

RESULT OF APPLYING MASK

• For HSV, Hue range is [0,179], Saturation range is [0,255] and Value range is [0,255]

lower_bounds (0, 60, 50) upper_bounds (100, 255, 255

KEEPING ONLY SINGLE CHANNEL

Still it contains noises around grains

VARIABLE TRANSFORMATION

Goal:

keep grains well separated

Approach: Quadratic transformation χ^2 pushing back to the range of 0-255

Pros: can pick a global threshold easier

REMOVING NOISES: STRUCTURING ELEMENT

Radius = 5 Minimum points = 50

Radius is based on Moore neighborhood

For any pixel, if the number of neighbors being equal or larger than minimum points (50), its kept otherwise its value is changed to zero.

PICK GRAINS FROM MIDDLE OF SPIKE

started from middle point of area where spikes are located and expanded its area until we cover 2000 pixels

Each grain consist of around 20 X 20 pixels

PICK GRAINS FROM MIDDLE OF SPIKE

VNIR IMAGES

1600 x 3200

Three channels: 159, 152, 120

Only area where spikes are located are kept for processing

RESIZE VNIR

Mean

- High computation
- More than 30 min for single image (i5, 8GB ram)

Median

- Take less amount of time
- Around 3 min

VNIR IMAGES 320 x 640

Three channels: 23, 31, 39

Only area where spikes are located are kept for processing

AFTER APPLYING MASK

lower_bounds: (0, 0, 80)

upper_bounds: (10, 250, 255)

KEEPING ONLY SINGLE CHANNEL

REMOVING NOISES: STRUCTURING ELEMENT

- Radius = 5
- Minpoints = 20
- Iterations: 2

KEEPING MIDDLE GRAINS OF SPIKE

 $A \cap B$

 $A \cap B$

 $A \cap B$

 $A \cap B$

MERGING BOTH IMAGES

Segmenting four points to merge images such that:

- Find starting coordinates for both images
- Measure level of zooming
- Measure rotation if there be any

DATASET (BASED ON MEAN, ST.DV)

Img_Name	Channel_no	Mean	std.dev	T_01	 T_N
Img001	1				
Img001					
Img001	416				
Img460	1				
Img460					
Img460	416				

SECOND DATASET

(MERGING SWIR AND VNIR BASED ON COORDINATES)

Img_Name	X	Υ	Ch_001	Ch_002	 Ch_416	T_01	 T_N
Img001							
Img001							
Img001							
Img001							
Img001							
Img001							
Img460							
Img460							
Img460							
Img460							
Img460							
Img460							

PROJECT STATUS

Tasks	Expected Date	Done	Assigned to
Literature Research	12.Dec.2019	Yes	All team members
Segmentation	01.Mar.2020	Yes	Saied
Management of Data (downloading images and resizing VNIR images)	05.Mar.2020	Yes	Ramkishore
Merging images	10.Mar.2020	Yes	Saied
Preparing Dataset	15.Mar.2020		Saied
Al model 1 (based separate data sets of each SWIR and VNIR images)	01.Apr.2020		Amit, Ramkishore,
AI model 2 (based on mean and std.dev of merged SWIR and VNIR)	01.Apr.2020		Devish, Sudheer
AI model 3	01.Apr.2020		Saied
Al model 3	01.Apr.2020		Raman
Comparing Algorithms			Saied, Amit, Raman
Documentation			Amit, Raman, Ramkishore, Sudheer, Devish

