Email training, N7 Level 2, October 25-31

Problem 7.1. Find the biggest integer n such that $n^3 + 100$ is divisible by n + 10.

Problem 7.2. Find the number of positive integers n letss than 10000, for which $2^n - n^2$ is divisible by 7.

Problem 7.3. Let a be an odd integer and m is such that $2^m|a+1$ and $2^{m+1} \not|a+1$. Prove that for any positive integer k one has

$$2^{k+m+1}|(2a+1)^{2^k}-1$$
 and $2^{k+m+2}/(2a+1)^{2^k}-1$

Problem 7.4. Find all positive integers n such that

$$3^{n-1} + 5^{n-1}|3^n + 5^n.$$

Problem 7.5. Find all pairs of positive integers a, b such that

$$\frac{a^2+b}{b^2-a} \quad \text{and} \quad \frac{b^2+a}{a^2-b}$$

are both integers

Problem 7.6. The numbers in the sequence 101, 104, 109, 116, ... are of the form $a_n = 100 + n^2$, where n = 1, 2, 3, ... For each n, let d_n be the greatest common divisor of a_n and a_{n+1} . Find the maximum value of d_n as n ranges through the positive integers.

Problem 7.7. Let one has a quadrilateral ABCD with AB = AD and $BC \neq CD$. Let CA bisects $\angle BCD$. Prove that A, B, C, D are concyclic.

Solution submission deadline October 31, 2021 Submit single PDF file in filename format L2_YOURNAME_week7.pdf submission email imo20etraining@gmail.com