

Classical Numerical Analysis, Chapter 20

Abner J. Salgado and Steven M. Wise

asalgad1@utk.edu swise1@.utk.edu University of Tennessee

Chapter 20, Part 2 of 2 Linear Multistep Methods

Zero Stability

Definition (zero stability)

Suppose that $\mathbf{f} \in \mathcal{F}^1(S)$ and $\mathbf{u} \in C^2([0,T];\mathbb{R}^d)$ is a classical solution to $(\ref{eq:condition})$. Let, for i=1,2, $\left\{\mathbf{w}_i^k\right\}_{k=0}^K$ be approximations generated by the linear q-step method $(\ref{eq:condition})$ with the starting values $\left\{\mathbf{w}_i^k\right\}_{k=0}^{q-1}$, i=1,2, respectively. The method is called **zero stable** if and only if there is a C>0 independent of $\tau>0$ and the starting values such that, for any $k=q,\ldots,K$,

$$\left\|\mathbf{w}_{1}^{k} - \mathbf{w}_{2}^{k}\right\|_{2} \le C \max_{m=0,\dots,q-1} \left\|\mathbf{w}_{1}^{m} - \mathbf{w}_{2}^{m}\right\|_{2}.$$

Definition (root condition)

The linear q-step method (??) satisfies the root condition if and only if:

1 All of the roots of the first characteristic polynomial $\psi(z) = \sum_{j=0}^q a_j z^j$ are inside the unit disk

$$\{z \in \mathbb{C} \mid |z| \le 1\} \subset \mathbb{C}.$$

a If $\psi(\xi) = 0$ and $|\xi| = 1$, then ξ is a simple root, i.e., its multiplicity is exactly one, i.e., $\psi'(\xi) \neq 0$.

Definition (homogeneous zero stability)

Suppose that $\mathbf{f} \equiv \mathbf{0}$ and $\mathbf{u}_0 = \mathbf{0}$, so that the unique solution to (??) is $\mathbf{u}(t) = \mathbf{0}$ for all $t \geq 0$. Let $\left\{\mathbf{w}^k\right\}_{k=0}^K$ be the approximation generated by the linear q-step method (??) with the starting values $\left\{\mathbf{w}^k\right\}_{k=0}^{q-1}$. The method is called **homogeneous zero stable** if and only if there is a C > 0 independent of $\tau > 0$ and the starting values such that, for any $k = q, \ldots, K$,

$$\left\|\mathbf{w}^{k}\right\|_{2} \leq C \max_{m=0,\dots,q-1} \left\|\mathbf{w}^{m}\right\|_{2}.$$

Definition (stable solutions)

Suppose that $\{a_j\}_{j=0}^{q-1} \subset \mathbb{C}$ are given. An equation of the form

$$\zeta_{k+q} + \sum_{j=0}^{q-1} a_j \zeta_{k+j} = 0, \quad k = 0, 1, 2, \dots$$
 (1)

is called a homogeneous difference equation. We say that solutions to (1) are stable if and only if, given any starting values $\{\zeta_k\}_{k=0}^{q-1} \subset \mathbb{R}$, the sequence $\{\zeta_k\}_{k=0}^{\infty} \subset \mathbb{R}$ is bounded by a constant C>0 that only depends upon the starting values.

Example

In this example, we exhibit a method that does not satisfy the root condition and is *not* homogeneously zero stable. Consider the method q=2, $a_2=1$, $a_1=-3$, $a_0=2$ and $b_2=0$, $b_1=0$, $b_0=-1$. In other words,

$$\mathbf{w}^{k+2} - 3\mathbf{w}^{k+1} + 2\mathbf{w}^k = -\tau \mathbf{f}(t_k, \mathbf{w}^k)$$

with the starting values \mathbf{w}^0 , \mathbf{w}^1 . The method is consistent. We find

$$C_0 = 0 = C_1, \quad C_2 = \frac{1}{2},$$

which implies that the method is consistent to order p = 1.

The first characteristic polynomial is

$$\psi(z) = z^2 - 3z + 2 = (z - 1)(z - 2).$$

Clearly, the method fails to satisfy the root condition.

Example (Cont.)

Since we are considering homogeneous zero stability, we take $f\equiv 0$ and $u_0=0$. The solution of the homogeneous linear constant coefficient difference equation,

$$\zeta_{k+2} - 3\zeta_{k+1} + 2\zeta_k = 0, \quad k = 0, 1, \dots,$$

is precisely

$$\zeta_k = 2\zeta_0 - \zeta_1 + 2^k(\zeta_1 - \zeta_0).$$

This can be verified by a simple induction argument. For starting values, let us take $\zeta_0=0$, $\zeta_1=\tau$. Then $\zeta_k=\tau(2^k-1)$, $k=0,1,2,\ldots$ Let us examine the approximation at time T=1. In this case, $\tau=1/K$ and we have, as $K\to\infty$,

$$w^K = \frac{2^K - 1}{K} \to \infty.$$

Thus, the method is not homogeneously zero stable.

Theorem (root condition and stability)

Suppose that $q \in \mathbb{N}$. Consider a linear q-step method (??) with coefficients $a_j, b_j \in \mathbb{R}, j = 0, ..., q$, with $a_q = 1$ and $a_0 \neq 0$. The solutions to the corresponding homogeneous difference

$$\zeta_{k+q} + \sum_{j=0}^{q-1} a_j \zeta_{k+j} = 0, \quad k = 0, 1, 2, \dots$$

are bounded, i.e., stable, if and only if the root condition is satisfied.