التعلم العميق لبيانات الصور Deep Learning for Image Data

- ما هي الصورةأنواع الصورعمليات الصور
- رؤية الحاسب Computer Vision
 - التعلم العميق لرؤية الحاسب
- الشبكات العصبية الترشيحية (CNN)
 - إعداد البيانات ل CNN
- Transfer Learning التعلم المنقول

المحتوي

بنية التعلم العميق

- الصورة تشبه الأحجية (puzzle)مع عدد
 كبير من القطع المجهزة معًا ، كل قطعة
 لها نفس الحجم ولكن يمكن أن يكون
 لها ألوان أو درجات مختلفة.
 - كل من هذه القطع الصغيرة هي ما نسميه بالبكسل أو عنصر الصورة.
 - إذن الصورة عبارة عن مصفوفة من وحدات البكسل.

- إذن الصورة عبارة عن مصفوفة من وحدات البكسل.
- البيكسلات هي ببساطة أرقام تعكس درجة اللون في موقع معين.
- کلما زادت قیمة البکسل ، زادت درجة لون معین یمثله.

- إذن الصورة عبارة عن مصفوفة من وحدات البكسل.
- البيكسلات هي ببساطة أرقام تعكس درجة اللون في موقع معين.
- کلما زادت قیمة البکسل ، زادت درجة لون معین یمثله.
- ولكن كيف نخصص قيمة للبكسل؟

أنواع الصور

صور باللون الأبيض والأسود

- نبدأ بالنوع الأساسي للصور وهو أبيض وأسود.
- قيمة البكسل في هذه الصور هي إما (0أسود)أو (1 أبيض)

1	1	1	1	1	1
1	0	1	1	0	1
1	1	1	1	1	1
1	0	1	1	0	1
1	1	0	0	1	1
0	1	1	1	1	1

1	1	1	1	1	1
1	0	1	1	0	1
1	1	1	1	1	1
1	0	1	1	0	1
1	1	0	0	1	1
0	1	1	1	1	1

صور ذات التدرّج الرمادي

- اللونان المتطرفان هما الأسود (0)والأبيض .(255)
- تظهر الأرقام الموجودة بينهما مستويات مختلف من اللون الرمادي.
 - قم بتخزين كثافة البكسل في مصفوفة، وها هي لديك!

Source: https://ai.stanford.edu/~syyeung/cvweb/Pictures1/imagematrix.png

صور ملوّنة (RGBأحمر-أخضر-أزرق)

يتم تحديد لون كل بكسل من خلال دمج درجات الألوان الأحمر والأخضر والأزرق المخزنة داخل كل مستوى لوني في موقع البكسل.

https://api.intechopen.com/media/chapter/51312/media/fig3.png

صور ملوّنة (RGBأحمر-أخضر-أزرق)

قيم البكسل

		165	187	209	58	7	
	14	125	233	201	98	159	
253	144	120	251	41	147	204	
67	100	32	241	23	165	30	
209	118	124	27	59	201	79	
210	236	105	169	19	218	156	
35	178	199	197	4	14	218	
115	104	34	111	19	196		
32	69	231	203	74			

لون البكسل في موقع :(0,1)

ثلاثية ال RGBالمخزنة في (0,1,0:2)

$$(0,1,0) = 144$$

$$(0,1,1) = 125$$
 •

$$(0.1,2) = 187$$
 •

لون البكسل في موقع :(0,1)

144, 125, 187

نظرًا لأن الصور هي ببساطة مصفوفات أرقام ، يمكننا إجراء العديد من العمليات عليها ، تمامًا مثل ما نفعله بالمصفوفات العادية.

$$\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix} + \begin{bmatrix}
9 & 8 & 7 \\
6 & 5 & 4 \\
3 & 2 & 1
\end{bmatrix}$$

يمكن تطبيق الكثير من العمليات على الصور فقط لأنها عبارة عن مجموعة من الأرقام.

تقسيم ودمج قنوات الصور

مزج الصور

تدوير الصور

- للقيام بهذه التحولات ، وأكثر من ذلك ، يمكنك استخدام مكتبة .OpenCV
 - أصبحت مكتبة OpenCVمعيارًا للتعامل مع المهام المتعلقة بالصور.

رؤية الحاسب

رؤية الحاسب

- يعتبر مجال رؤية الحاسب مجالاً يتعامل مع استخراج المعلومات من الصور.
- مهام رؤية الحاسب الشائعة :تصنيف الصور، اكتشاف الأشياء والتجزئة الدلالية.

رؤية الحاسب ليست بمعالجة للصور

معالجة الصور

- صورة →صورة(عملية إنشاء صورة جديدة من صورة موجودة)
 - أمثلة :إزالة التشويش واكتشاف الحواف وما إلى ذلك.

• رؤية الحاسب

- الصورة ←المحتوى (الملاحظات)
- أمثلة :اكتشاف الوجه وتتبع الأشياء وما إلى ذلك.
- قد يتطلب نظام رؤية الحاسب تطبيق معالجة الصور على المدخلات الأولية ، على سبيل المثال معالجة الصور قبل ادخالها على الخوارزمية.

إطار رؤية الحاسب

- تحصيل الصور
- معالجة الصور

تحليل والفهم التحصيل

تحديات رؤية الحاسب

بعد عقود من البحث، تظل رؤية الحاسب دون حل، على الأقل من حيث تلبية قدرات رؤية البشر.

لماذا؟

- ليس لدينا فهم قوي لكيفية رؤية البشر.
- التعقيد المتأصل في العالم المرئي (اتجاه مختلف في العديد من ظروف الإضاءة مع أي نوع من الحجب من أشياء أخرى وما إلى ذلك)

التحديات :الإضاءة

التحديات :الحجب

تطبيقات رؤية الحاسب

تصنيف الصور

التحقق من الأشياء

اكتشاف معالم الأشياء

ما هي النقاط الرئيسية للأشياء في الصور؟

تقسيم الصور

البكسلات المنتمية لأشياء بالصورة.

اكتشاف الأشياء

ما هي الأشياء في الصورة؟

نظرًا لأن رؤية الحاسب تدور حول استخراج المعلومات من الصور ، يمكن أن يساعد التعلم العميق في أداء بعض مهام رؤية الحاسب:

- اكتشاف الأشياء
 - تصنیف الصور
- التقسيم الدلالي
 - ... •

- سيتم صياغة المسألة في هذه الحالة على أنها مسألة تعلم عميق عادية، والفرق الوحيد هو أنه من المفترض أن يكون المدخل صورة بدلاً من بيانات مجدولة.
 - مثال لتصنيف الصور.

- نريد تشريح نموذج التعلم العميق ومعرفة ما يحتويه وكيف يتعامل مع الصورة.
- في نهاية الأمر، يجب أن يكون لدينا مصنف عادي يتنبأ إذا ماكان بالصورة قطة أو كلب.

- يتنبأ المصنف بشكل مثالي وفقًا لعدة خصائص بالصورة مثل شكل الأنف وشكل الأذنين وما إلى ذلك.
 - يجب استخراج هذه الخصائص من الصورة المدخلة.

 لاستخراج الخصائص بطريقة تلقائية، نستخدم ما نسميه بالشبكات العصبية الترشيحية (CNN)، والمصنف ببساطة عبارة عن شبكة عصبية ذات تغذية أمامية .(FFNN)

الشبكات العصبية الترشيحية Convolutional Neural Networks (CNNs)

الشبكات العصبية الترشيحية

- الشبكات العصبية الترشيحية (CNN)هي شبكات عصبية تعمل على الصور وتستخرج الخصائص منها.
 - لفهم شبكات CNN، علينا أن نفهم بنيتها الأساسية وهي عملية الترشيح.

عملية الترشيح

الترشيح هو عبارة عن تطبيق مرشح على صورة مدخلة ليستخرج منها معلومات محددة

عملية الترشيح

• **المرشحات** هي ببساطة مصفوفات تساعدنا على تحويل صورة أصلية إلى معلومات محددة منها اعتمادًا على قيم هذه المرشحات.

الصورة الأصلية	تمویه جاوسي	زيادة الحدة	اكتشاف الحواف
$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

https://miro.medium.com/max/1206/1*ZPXWZDIHFbTxs-6KVPS5gg.png

عملية الترشيح

● إن عملية الترشيح "رياضيًا "هي ببساطة عبارة عن تمرير مرشح على صورة وإجراء جمع لضرب العناصر بين المرشح ومنطقة الصورة التي يغطيها

مثال لعملية الترشيح

0 _{x0}	0 _{x1}	1 _{x0}	1 _{x0}	0 _{x1}	O _{x0}
0 _{x0}	O _{x0}	1 _{x1}	1 _{x0}	0 _{x1}	0 _{x0}
0 _{x0}	0 _{x0}	1 _{x1}	1 _{x0}	0 _{x1}	0 _{x0}
0 _{x0}	0 _{x0}	1 _{x1}	1 _{x0}	0	0
0	0	1	1	0	0
0	0	1	1	0	0

= 0x0 + 1x0 + 0x1
+ 0x0 + 1x0 + 0x1
+ 0x0 + 1x0 + 0x1

0	1	0
0	1	0
0	1	0

أو	نواة	IJ
ىح	مرش	IJ

0	3	3	0
0	3	3	0
0	3	3	0
0	3	3	0

الناتج

معاملات الترشيح

حجم المرشح

÷ 11			ال حا .
المرسح.	حجم	ىعىير	بالإمكان
(-			<u>.</u>

1	4	7	4	1
4	16	26	16	4
7	26	41	26	7
4	16	26	16	4
1	4	7	4	1

1	2	1	
2	4	2	
1	2	1	

3x3

7x7

5x5

مشكلة تأثير الحدود The Border Effect

● صورة بحجم 5x5يتم تصغيرها إلى 3x3بعد تطبيق مرشح 3x3عليها، وبالتالي تضيع المعلومات من على حدود الصورة الأصلية.

علاج مشكلة تأثير الحدود بالتبطين Padding

مثال على التبطين

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

نواة المرشح

0	-1	0
-1	5	-1
0	-1	0

114		

تقليل عينات الإدخال بتكبير خطوة المرشح Downsample Input with Stride

الخطوة 1 =

خريطة الخصائص الناتجة

تقليل عينات الإدخال بتكبير خطوة المرشح

خريطة الخصائص الناتجة

الخطوة 2 =

الطبقات الترشيحية

الطبقات الترشيحية Convolutional Layers

اعتمادًا على قيم النواة، يختلف الإخراج، لهذا لكل إدخال، يمكن تطبيق العديد من المرشحات للحصول على معلومات متعددة من صورة الإدخال –وهذا ما نشير إليه **بالطبقة الترشيحية**.

طبقات التجميع Pooling Layers

- بعد استخراج خريطة الخصائص، نحتاج إلى ضغط أو تكديس هذا الناتج حتى يتمكن المصنف النهائي من استخدامه للتنبؤ بطريقة أسهل.
 - للقيام بذلك نستخدم ما نسميه طبقات التجميع.

طبقات التجميع

- هناك شكلان رئيسيان من التجميع :تجميع القيمة القصوى (Max Pooling)وتجميع القيمة المتوسطة (Average Pooling).
 - يأخذ Max Poolingالقيمة القصوى لمنطقة الصورة.
 - يأخذ Average Pooling القيمة المتوسطة لمنطقة الصورة.

الشبكة العصبية الترشيحية

- عندما نقوم بتكديس كل هذه الطبقات نحصل على الشبكة العصبية الترشيحية .
- الهدف من هذه الشبكة هو معرفة المجموعة المثلى لقيم المرشح جنبًا إلى جنب مع الأوزان في الجزء المتصل بالكامل.

إعداد البيانات للشبكات العصبية الترشيحية

إعداد البيانات

 تمامًا مثل أي مشكلة أخرى في التعلم العميق، بمجرد تحديد هيكل النموذج، يتعين علينا إعداد البيانات بطريقة تمكننا من تدريب النموذج عليها.

إعداد البيانات

تسوية قيم البكسلات:

على هذا النحو ، فمن الممارسات الجيدة تسوية قيم البكسل بحيث يكون لكل بكسل قيمة بين 0و.1
 نظرًا لأن قيم البكسل تتراوح بين 0و 255، يمكن أن نقوم بالتسوية عبر قسمة القيم على .255

1	3	2	4	2	0.03	0.07	0.03	0.07	0.04
2	4	3	5	4-	 0.05	0.07	0.03	0.07	0.02
2	3	2	1	3	 0.05	0.04	0.02	0.01	0.06
1	3	5	3	2	0.03	0.04	0.05	0.03	0.04
2	3	4	5	2	 0.09	0.05	0.04	0.06	0.05

إعداد البيانات

● **تمركز قيم البكسل:** يتطلب التمركز أن يتم حساب متوسط قيمة البكسل قبل طرحها من قيم البكسل.

مولّد بيانات الصور (Image Data Generator)

توفر فئة Kerasمجموعة من التقنيات لقياس قيم البكسل في مجموعة بيانات الصور الخاصة بك قبل النمذجة:

- يقوم بتغليف مجموعة بيانات الصورة الخاصة بك
- ثم (عند الطلب)يقوم بإرجاع الصور على دفعات إلى الخوارزمية أثناء التدريب أو التحقق من الصحة أو التقييم.
 - يقوم بتطبيق عملية تغيير القياس في الوقت المناسب.

مولد بيانات الصور (Image Data Generator)

استخدام مولد بيانات الصور (ImageDataGenerator) كالتالي:

- قم بتحميل مجموعات بيانات الصور.
- قم بتكوين فئة ImageDataGenerator
- حساب إحصائيات الصورة عند الاقتضاء، عن طريق استدعاء الدالة .(fit
- قم بإنشاء مكررات بيانات لكل تقسيم بيانات(**تدريب، اختبار، تحقق من الصحة**) ووجههم إلى مجموعات البيانات.
 - إستخدم مكررات البيانات لملاءمة النموذج (قم بتمرير المثيل إلى دالة .(model.fit
 - إستخدم مكررات البيانات لتقييم النموذج (قم بتمرير المثيل إلى دالة .(model.evaluate)

مولد بيانات الصور (ImageDataGenerator)

```
قم بيناء مثيل المولد بالمعامل المناسبة #
datagen = ImageDataGenerator(...)
قع بحساب إحصائبات بيانات الصور من تقسيم البيانات المختص بالتدريب #
datagen.fit(trainX)
قم بيناء مثيل لمكرر بيانات التدريب #
train it = datagen.flow(trainX, trainY, batch size=64)
قم بيناء مثيل لمكرر بيانات الاختيار #
test it = datagen.flow(testX, testY, batch size=64)
قم بتدريب النموذج #
model.fit(train it, validation data=test it, ...)
```


تحميل مجموعة بيانات الصور من ال Directory

هيكل مجلدات وملفات مجموعة البيانات:

data/
data/train/
data/test/
data/validation/

data/
data/train/
data/train/red/
data/train/blue/
data/test/
data/test/red/
data/test/blue/
data/validation/red/
data/validation/blue/

data/train/red/car01.jpg data/train/red/car02.jpg data/train/red/car03.jpg

data/train/blue/car01.jpg data/train/blue/car02.jpg data/train/blue/car03.jpg

ملفات مختلفة

تحميل الصور بشكل تدريجي

```
# بالمولد بالحجج المولد بالمولد بالمولد بالمولد بالمولد بالمولد بالمولد بالمولد المولد بالمولد المولد المولد المولد (...)

# بالمولد بالمكرد بيانات التدريب قم ببناء مثيل لمكرد بيانات الاختبار الإختبار الاختبار الاختبار الاختبار الاختبار الاختبار العدينا و المولد المكرد بيانات الاختبار الاختبار المكرد بيانات الاختبار المعلود المولد المو
```


زيادة البيانات

- ترحيل أو تحريك الصور
 - قلب الصور
 - تدوير الصور
 - سطوع الصورتكبير الصور

ترحيل أو تحريك الصور

Height_shift_range =[min, max]

Width_shift_range = x

قلب الصور

vertical_flip=True

تدوير الصور

rotation_range=angle

سطوع الصورة

brightness_range=[min,max]

تدريب عملي: إتقان بنى الشبكات العصبية الترشيحية Mastering CNN Architectures

الشبكات العصبية الترشيحية المتقدمة

بنى الشبكات العصبية الترشيحية المتقدمة

لطالما كانت الشبكات العصبية الترشيحية موضوعًا مشوّقاً، ولهذا السبب، تم اقتراح العديد من البني المتقدمة التي توفر أحدث أداء.

مجموعة بيانات ImageNet

- تتطلب البنى المتقدمة مجموعة بيانات كبيرة للتدريب.
- ImageNetعبارة عن مجموعة كبيرة من الصور المسماة يدويّاً والمستخدمة لتطوير خوارزميات رؤية الحاسب.
- يعد تحدي mageNet اللتعرف البصري واسع النطاق (ILSVRC) عبارة عن مسابقة سنوية تستخدم مجموعات فرعية من mageNet التعزيز تطوير وقياس الخوارزميات المتقدمة.

تحدي التعرف البصري على نطاق واسع من ImageNet

نتائج ILSVRC

- 2012: AlexNet (SuperVision)
- 2013: ZFNet (Clarifai)
- 2014 (اكتشاف الأشياء): Inception (GoogLeNet)
- 2014 (تصنیف الصور): VGG
- 2015: ResNet

AlexNet

VGG 19

لماذا البني المتقدمة؟

يتم تدريب هذه النماذج على مجموعة بيانات ضخمة ، مما يعني أنها اكتسبت معرفة كبيرة .
 يمكننا استخدام هذه المعرفة والدرتكاز عليها لبناء نماذج بدلاً من تدريب الأشياء من الصفر.

• هذا ما نسميه **بالتعلم المنقول**.

التعلم المنقول للبيانات المحدودة

التعلم المنقول هو أسلوب قوي للاستخدام عند التعامل مع كمية محدودة من البيانات.

التعلم المنقول للبيانات المحدودة

شكراً لكم

Thank you

