Lecture 7: Widening Operators and Collecting Semantics for Dataflow Analysis

17-355/17-655/17-819: Program Analysis

Rohan Padhye and Jonathan Aldrich

March 2, 2021

* Course materials developed with Claire Le Goues

Motivation: Interval Analysis

- Goal: track the range of integers each variable could have
 - Generalizes constant propagation to ranges
 - O Use case?

Motivation: Interval Analysis

- Goal: track the range of integers each variable could have
 - Generalizes constant propagation to ranges
 - Use case: array bounds checking

$$L = \mathbb{Z}_{\infty} \times \mathbb{Z}_{\infty} \quad \text{where } \mathbb{Z}_{\infty} = \mathbb{Z} \cup \{-\infty, \infty\}$$

$$[l_{1}, h_{1}] \sqsubseteq [l_{2}, h_{2}] \quad \text{iff}$$

$$[l_{1}, h_{1}] \sqcup [l_{2}, h_{2}] \quad =$$

$$\bot \quad =$$

$$\bot \quad =$$

$$\sigma_{0} \quad =$$

$$\alpha(x) \quad = [x, x]$$

$$\sigma \in \mathbf{Var} \to L$$

Note: \leq and max are extended to handle ∞

Motivation: Interval Analysis

- Goal: track the range of integers each variable could have
 - Generalizes constant propagation to ranges

Carnegie Mellon University

Use case: array bounds checking

$$L = \mathbb{Z}_{\infty} \times \mathbb{Z}_{\infty} \quad \text{where } \mathbb{Z}_{\infty} = \mathbb{Z} \cup \{-\infty, \infty\}$$

$$[l_{1}, h_{1}] \sqsubseteq [l_{2}, h_{2}] \quad \text{iff} \quad l_{2} \leqslant_{\infty} l_{1} \wedge h_{1} \leqslant_{\infty} h_{2}$$

$$[l_{1}, h_{1}] \sqcup [l_{2}, h_{2}] = [\min_{\infty} (l_{1}, l_{2}), \max_{\infty} (h_{1}, h_{2})]$$

$$\top = [-\infty, \infty]$$

$$\bot = [\infty, -\infty]$$

$$\sigma_{0} = \top$$

$$\alpha(x) = [x, x]$$

$$\sigma \in \mathbf{Var} \to L$$

Note: \leq and max are

extended to handle ∞

Interval Analysis Flow Functions

$$f_I[\![x := y + z]\!](\sigma) =$$

Interval Analysis Flow Functions

$$f_I[x := y + z](\sigma) = \sigma[x \mapsto [l, h]]$$
 where $l = \sigma(y).low +_{\infty} \sigma(z).low$ and $h = \sigma(y).high +_{\infty} \sigma(z).high$ $f_I[x := y + z](\sigma) = \sigma$ where $\sigma(y) = \bot \lor \sigma(z) = \bot$

How would we use this to check array bounds?

What is the height of the Interval Analysis lattice?

Applying Interval Analysis to a Program

1: x := 0

2: if x = y goto 5

3: x := x + 1

4: goto 2

5: y := 0

stmt	worklist	x	y
0	1,2,3,4,5	T	T
1	2,3,4,5		
2	3,4,5		
3	4,5		
4	2,5		

Applying Interval Analysis to a Program

1: x := 0

2: if x = y goto 5

3: x := x + 1

4: goto 2

5: y := 0

stmt	worklist	x	y
0	1,2,3,4,5	T	Т
1	2,3,4,5	[0,0]	T
2	3,4,5	[0,0]	Т
3	4,5	[1,1]	T
4	2,5	[1,1]	Т
2	3,5	[0,1]	Т
3	4,5	[1,2]	Т
4	2,5	[1,2]	Т
2	3,5	[0,2]	Т
3	4,5	[1,3]	Т
4	2,5	[1,3]	Т
2	3,5	[0,3]	Т
		. , 1	

The Widening Operator

- Purpose: compress infinite ascending chains to finite length
- Compares new lattice element to previous one
 - If the new one is higher, the widening operator may skip upwards in the lattice
 - We ensure there are a finite number of such "skips" possible

$$W(\perp, l_{current}) =$$

$$W([l_1, h_1], [l_2, h_2]) =$$

The Widening Operator

- Purpose: compress infinite ascending chains to finite length
- Compares new lattice element to previous one
 - If the new one is higher, the widening operator may skip upwards in the lattice
 - We ensure there are a finite number of such "skips" possible

$$\begin{split} W(\bot,l_{current}) &= l_{current} \\ W([l_1,h_1],[l_2,h_2]) &= [\min_W(l_1,l_2),\max_W(h_1,h_2)] \\ & \text{ where } \min_W(l_1,l_2) = l_1 & \text{ if } l_1 \leqslant l_2 \\ & \text{ and } \min_W(l_1,l_2) = -\infty & \text{ otherwise} \\ & \text{ where } \max_W(h_1,h_2) = h_1 & \text{ if } h_1 \geqslant h_2 \\ & \text{ and } \max_W(h_1,h_2) = \infty & \text{ otherwise} \end{split}$$

Applying Interval Analysis again, with widening

$$1: x := 0$$

$$2: \text{ if } x = y \text{ goto } 5$$

$$3: x := x + 1$$

$$5: y := 0$$

$$W(\perp, l_{current}) = l_{current}$$

$$W([l_1, h_1], [l_2, h_2]) = [min_W(l_1, l_2), max_W(h_1, h_2)]$$

stmt	worklist	x	y
0	1,2,3,4,5	Т	T
1	2,3,4,5		
2	3,4,5		
3	4,5		
4	2,5		
2	3,5		
2 3	4,5		
4	2,5		
2	5		
5	Ø		

Applying Interval Analysis again, with widening

1: x := 0

2: if x = y goto 5

3: x := x + 1

4: goto 2

5: y := 0

$$W(\perp, l_{current}) = l_{current}$$

$$W([l_1, h_1], [l_2, h_2]) = [min_W(l_1, l_2), max_W(h_1, h_2)]$$

stmt	worklist	x	y
0	1,2,3,4,5	Т	T
1	2,3,4,5	[0,0]	Т
2	3,4,5	[0,0]	Т
3	4,5	[1,1]	Т
4	2,5	[1,1]	T
2	3,5	$[\infty,0]$	T
3	4,5	$[1,\infty]$	T
4	2,5	$[1,\infty]$	T
2	5	$[\infty,0]$	T
5	Ø	$[0,\infty]$	[0,0]

Properties of Widening Operators

- Accepts two lattice elements: previous and current
- Returns a lattice value to be used in place of current
- Must return an upper bound of its operands (for monotonicity)
- When applied to an ascending chain, resulting chain must be of finite height
 - \circ New chain l_i^W defined as:

$$l_0^W = l_0$$

$$\forall i > 0 : l_i^W = W(l_{i-1}^W, l_i)$$

Applying the widening operator

- Safe to apply anywhere (the analysis just becomes more conservative)
- Useful to apply at the heads of loops

Widening operators based on program constants

- Heuristic idea: if program has the constant 10, widen to 10 before widening to ∞
 - Maybe 10 is a loop bound!
 - o Ascending chain becomes \perp , [0,0], [0,10]

$$\begin{split} W(\bot,l_{current}) &= l_{current} \\ W([l_1,h_1],[l_2,h_2]) &= [\min_K(l_1,l_2),\max_K(h_1,h_2)] \\ & \text{ where } \min_K(l_1,l_2) = l_1 & \text{ if } l_1 \leqslant l_2 \\ & \text{ and } \min_K(l_1,l_2) = \max(\{k \in K | k \leqslant l_2\}) & \text{ otherwise} \\ & \text{ where } \max_K(h_1,h_2) = h_1 & \text{ if } h_1 \geqslant h_2 \\ & \text{ and } \max_K(h_1,h_2) = \min(\{k \in K | k \geqslant h_2\}) & \text{ otherwise} \end{split}$$

Exercise: Try out the constant-based widening operator

What is the computed lattice value after line 5?

$$1: x := 0$$

$$2: y := 1$$

3: if
$$x = 10$$
 goto 7

$$4: x := x + 1$$

$$5: y := y - 1$$

6: goto 3

7: goto 7

$$W(\perp, l_{current}) = l_{current}$$

$$W([l_1, h_1], [l_2, h_2]) = [min_K(l_1, l_2), max_K(h_1, h_2)]$$

where
$$min_K(l_1, l_2) = l_1$$

and $min_K(l_1, l_2) = max(\{k \in K | k \leq l_2\})$

where
$$max_K(h_1, h_2) = h_1$$

and $max_K(h_1, h_2) = min(\{k \in K | k \ge h_2\})$

if $h_1 \geqslant h_2$

if $l_1 \leq l_2$

otherwise

otherwise

The program has constants $K = \{-1, 0, 1, 10\}$

Try out the constant-based widening operator

1: x := 0

2: y := 1

3: if x = 10 goto 7

4: x := x + 1

5: y := y - 1

6: goto 3

7: goto 7

The program has constants -1, 0, 1, and 10

stmt	worklist	x	y
0	1,2,3,4,5,6,7	Т	Т
1	2,3,4,5,6,7		
2	3,4,5,6,7		
3	4,5,6,7		
4	5,6,7		
5	6,7		
6	3,7		
3	4,7		
4	5,7		
5	6,7		
6	3,7		
3	4,7		
4	5 <i>,</i> 7		
5	6,7		
6	3,7		
3	7		
7	Ø		

Try out the constant-based widening operator

1: x := 0

2: y := 1

3: if x = 10 goto 7

4: x := x + 1

5: y := y - 1

6: goto 3

7: goto 7

The program has constants -1, 0, 1, and 10

stmt	worklist	x	y
0	1,2,3,4,5,6,7	Т	Т
1	2,3,4,5,6,7	[0,0]	Т
2	3,4,5,6,7	[0,0]	[1,1]
3	4,5,6,7	$[0,0]_F, \perp_T$	[1,1]
4	5,6,7	[1,1]	[1,1]
5	6,7	[1,1]	[0, 0]
6	3,7	[1,1]	[0, 0]
3	4,7	$[0,1]_F, \perp_T$	[0, 1]
4	5,7	[1,2]	[0, 1]
5	6,7	[1,2]	[-1, 0]
6	3,7	[1,2]	[-1, 0]
3	4,7	$[0,9]_F,[10,10]_T$	$[-\infty, 1]$
4	5,7	[1,10]	$[-\infty, 1]$
5	6,7	[1,10]	$[-\infty,0]$
6	3,7	[1,10]	$[-\infty, 0]$
3	7	$[0,9]_F,[10,10]_T$	$[-\infty, 1]$
7	Ø	[10,10]	$[-\infty, 1]$

Collecting Semantics

- Motivation: how would we prove reaching definitions correct?
- Usual approach: compare dataflow lattice elements with actual execution values
 - But "actual execution" doesn't track which definitions reach a program point!
- Solution: augment semantics with relevant information

Collecting semantics for Reaching Definitions

- Extended version of environment $E_{RD} \in Var \to \mathbb{Z} \times \mathbb{N}$
 - \circ N represents the line number where the variable was last defined

$$\frac{P(n) = x := m}{P \vdash \langle E, n \rangle \leadsto \langle E[x \mapsto m, \underline{n}], n+1 \rangle} \text{ step-const }$$

$$\frac{P(n) = x := y}{P \vdash \langle E, n \rangle \leadsto \langle E[x \mapsto E(y), \underline{n}], n+1 \rangle} \text{ step-copy}$$

$$\frac{P(n) = x := y \text{ op } z \quad E(y) \text{ op } E(z) = m}{P \vdash \langle E, n \rangle \leadsto \langle E[x \mapsto m, \underline{n}], n+1 \rangle} \text{ step-arith}$$

Abstraction Function for Reaching Definitions

 $\alpha_{RD}(E_{RD}, n) = \{x_m \mid \exists x \in domain(E_{RD}) \text{ such that } E_{RD}(x) = i, m\}$

Collecting Semantics for Live Variables

- Tricky: programs execute forwards but live variables requires backwards reasoning!
- Solution: consider the set of traces generated by a program
- Analyze the traces to determine the set of live variables
- Correctness criterion: the analysis computes a superset of the variables that are actually live in any trace