Узагальнене оптимальне керування

Гуляницький А. Л.*

17 вересня 2019 р.

Зміст

1 Дробові диференціальні рівняння			циференціальні рівняння	1
	1.1	Основ	ви дробового числення	1
		1.1.1	Означення дробових інтегралів та похідних	2
		1.1.2	Існування дробових похідних	4
			Інтегральний зв'язок між дробовими та класичними похілними	

1 Дробові диференціальні рівняння

Перш за все наведемо мінімальну мотивацію вивчення дробових диференціальних рівнянь.

Нагадування 1.0.1 — Класичне рівняння дифузії має вигляд

$$\frac{\partial u(x,t)}{\partial t} - k \sum_{i=1}^{n} \frac{\partial^2 u(x,t)}{\partial x_i^2} = f(x,t), \tag{1.0.1}$$

де функція f(x,t) відповідає джерелам речовини, що дифундує.

Втім, у реальному житті зустрічаються процеси, у яких дифузія відбувається повільніше/швидше, ніж передбачає це рівняння. Для постановки відповідних рівнянь необхідно вводити дробові похідні (похідні дробових порядків).

1.1 Основи дробового числення

Розглянемо $f(t): \mathbb{R}_{\geq 0} \to \mathbb{R}$. Позначимо

$$(I_0^1 f)(t) = \int_0^t f(s) \, \mathrm{d}s. \tag{1.1.1}$$

Також визначимо рекурсивно

$$(I_0^n f)(t) = (I_0^1 (I_0^{n-1} f))(t) = \int_0^t \int_0^{s_1} \cdots \int_0^{s_{n-1}} f(s_n) \, \mathrm{d}s_n \dots \, \mathrm{d}s_1.$$
 (1.1.2)

Подібне визначення не дуже зручне з обчислювальної точки зору, тому наступна теорема стане нам у пригоді.

^{*}Гуляницький Андрій Леонідович, andriy.hul@gmail.com

Формула 1.1.1 (Коші-Діріхле)

Для $f \in L_1([0,T]), t \in [0,T]$ виконується

$$(I_0^n f)(t) = \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} f(s) \, \mathrm{d}s. \tag{1.1.3}$$

Доведення. Доведення проведемо за методом математичної індукції по n. **База** n=1 виконується безпосередньо за визначенням I_0^1 . **Перехід**: нехай

$$(I_0^n f)(t) = \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} f(s) \, \mathrm{d}s.$$
 (1.1.4)

Тоді

$$(I_0^{n+1}f)(t) = (I_0^1(I_0^n f))(t) = \int_0^t (I_0^n f)(s) \, \mathrm{d}s =$$

$$= \int_0^t \frac{1}{(n-1)!} \left(\int_0^s (s-\xi)^{n-1} f(\xi) \, \mathrm{d}\xi \right) \, \mathrm{d}s =$$

$$= \frac{1}{(n-1)!} \int_0^t \int_{\xi}^t f(\xi)(s-\xi)^{n-1} \, \mathrm{d}s \, \mathrm{d}\xi =$$

$$= \frac{1}{(n-1)!} \int_0^t f(\xi) \frac{(s-\xi)^n}{n} \Big|_{s=\xi}^{s=t} \, \mathrm{d}\xi =$$

$$= \frac{1}{n!} \int_0^t f(\xi)(t-\xi)^n \, \mathrm{d}\xi.$$
(1.1.5)

П

З точністю до назв змінних отримали що хотіли.

Зауваження 1.1.2 — Перехід від другого рядка до третього тут відбувається за теоремою Фубіні. Наступна картинка може допомогти у розумінні:

Рис. 1: При $s: 0 \to t$ маємо $\xi: 0 \to s$.

Надалі ми будемо часто явно чи неявно користатися теоремою Фубіні, тому радимо переконатися у тому, що ви розумієте цей перехід.

1.1.1 Означення дробових інтегралів та похідних

Формула Коші-Діріхле мотивує введення інтегральних операторів нецілого порядку.

Означення 1.1.3. *Інтегралом Рімана-Ліувілля* порядку $\alpha>0$ з нижньою межею 0 функції f називається оператор

$$(I_0^{\alpha} f)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t - s)^{\alpha - 1} f(s) \, \mathrm{d}s.$$
 (1.1.6)

Також окремо зауважимо, що $I_0^0 f \equiv f$.

Приклад 1.1.4

Для $\alpha \in \mathbb{N}$ маємо $\Gamma(\alpha) = (\alpha - 1)!$, тобто власне формулу Коші-Діріхле.

Нагадування 1.1.5 — Гамма-функція визначається наступною рівністю:

$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha - 1} \, \mathrm{d}t \tag{1.1.7}$$

Взагалі кажучи, подібний вираз нагадує функцію згортки зі степеневою функцією порядку α :

$$I_0^{\alpha} f \equiv f \star y_{\alpha},\tag{1.1.8}$$

де $y_{\alpha}(t) = \frac{1}{\Gamma(\alpha)}t^{\alpha-1}$, а операція $\star : (\mathbb{R}_{\geqslant 0} \to \mathbb{R}) \times (\mathbb{R}_{\geqslant 0} \to \mathbb{R}) \to \mathbb{R}$ визначається наступним чином:

$$(f \star g)(t) = \int_0^t f(s)g(t-s) \, ds.$$
 (1.1.9)

Давайте тепер поміркуємо, як можна визначити диференціальний оператор дробового порядку, маючи відповідні інтегральні оператори. Взагалі кажучи, єдиної відповіді на це питання немає, як показує наступна картинка:

Рис. 2: Різні способи визначення диференціального оператора нецілого порядку

Введемо наступне допоміжне поняття для спрощення подальших позначень і формулювань:

Означення 1.1.6. Нехай $\alpha \in \mathbb{R}$. Тоді *стеля* $\lceil \alpha \rceil$ — найменше ціле число, що не менше за α . Також інколи кажуть *верхня ціла частина* α .

Нехай $\alpha > 0$, $n = \lceil \alpha \rceil$.

Означення 1.1.7. Похідною за Капуто функції f порядку α з нижньою межею 0 називається

оператор

$$({}^{\star}\!D_0^{\alpha}f)(t) = I_0^{n-\alpha} \left(\frac{\mathrm{d}^n f}{\mathrm{d}t^n}\right). \tag{1.1.10}$$

Означення 1.1.8. *Похідною Рімана-Ліувілля* функції f порядку α з нижньою межею 0 називається оператор

$$(D_0^{\alpha} f)(t) = \frac{\mathrm{d}^n}{\mathrm{d}t^n} (I_0^{n-\alpha} f). \tag{1.1.11}$$

Приклад 1.1.9

На рисунку вище $D_0^{0.5} = \frac{\mathrm{d}}{\mathrm{d}t} I_0^{0.5}$, а $^*D_0^{0.5} = I_0^{0.5} (\frac{\mathrm{d}}{\mathrm{d}t})$.

1.1.2 Існування дробових похідних

Взагалі кажучи виникає питання коли введені вище похідні існують. Для відповіді на це питання нам знадобиться наступне:

Означення 1.1.10. Функція f називається абсолютно неперервною (eng. AC, absolutely continuous) на проміжку I якщо $\forall \varepsilon > 0$: $\exists \delta > 0$: $\forall x_1 < y_1 \leqslant x_2 < y_2 \leqslant \ldots \leqslant x_n < y_n$:

$$\sum_{k=1}^{n} (y_k - x_k) < \delta \implies \sum_{k=1}^{n} |f(y_k) - f(x_k)| < \varepsilon.$$

$$(1.1.12)$$

Твердження 1.1.11

Для АС функцій їхні похідні інтегровні (з нецілим порядком), тобто похідні (з нецілим порядком) існують.

Доведення. Без доведення.

Зауваження 1.1.12 — Поняття абсолютної неперервності має нагадувати поняття рівномірної неперервності (eng. UC, uniformly continuous). Зрозуміло, що з абсолютної неперервності випливає (n=1) рівномірна неперервність, але зворотнє не виконується.

Вправа 1.1.13. Наведіть приклад рівномірно неперервної, але не абсолютно неперервної функції.

1.1.3 Інтегральний зв'язок між дробовими та класичними похідними

Виникає закономірне запитання: чи існує аналог формули Коші-Діріхле для диференціальних операторів? Виявляється, що так, хоча він і не зовсім такий, як можна було б очікувати.

Теорема 1.1.14

Нехай $f\in AC^n([0,T]),\,t\in[0,T],\,n=\lceil\alpha\rceil.$ Тоді

$$(D_0^{\alpha} f)(t) = \frac{1}{\Gamma(n-\alpha)} \int_0^t \frac{f^{(n)}(s)}{(t-s)^{\alpha+1-n}} \, \mathrm{d}s + \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{\Gamma(1+k-\alpha)t^{\alpha-k}}.$$
 (1.1.13)

Приклад 1.1.15

Зокрема, при $0 < \alpha < 1$ маємо $f \in AC([0,T])$ і

$$(D_0^{\alpha} f)(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t \frac{f'(s)}{(t-s)^{\alpha}} \, \mathrm{d}s + \frac{f(0)}{\Gamma(1-\alpha)t^{\alpha}}.$$
 (1.1.14)

Зауваження 1.1.16 — Як показує формула, ${}^*\!D_0^\alpha$, D_0^α — нелокальні оператори.

Доведення. Доведемо частинний випадок $0 < \alpha < 1$:

$$(D_0^{\alpha} f)(t) = \frac{\mathrm{d}}{\mathrm{d}t} I_0^{1-\alpha} f = \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-s)^{-\alpha} f(s) \, \mathrm{d}s =$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\Gamma(1-\alpha)} \int_0^t f(s) \frac{\mathrm{d}}{\mathrm{d}s} \frac{-(t-s)^{1-\alpha}}{1-\alpha} =$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\Gamma(1-\alpha)} \left(\frac{-f(s)(t-s)^{1-\alpha}}{1-\alpha} \Big|_{s=0}^{s=t} + \int_0^t f'(s) \frac{(t-s)^{1-\alpha}}{1-\alpha} \, \mathrm{d}s \right) =$$

$$= \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\Gamma(1-\alpha)} \left(\frac{f(0)t^{1-\alpha}}{1-\alpha} + \frac{1}{1-\alpha} \int_0^t f'(s)(t-s)^{1-\alpha} \, \mathrm{d}s \right) =$$

$$= \frac{1}{\Gamma(1-\alpha)} \left(\frac{f(0)}{t^{\alpha}} + \int_0^t f'(s)(t-s)^{-\alpha} \, \mathrm{d}s \right).$$
(1.1.15)

Зауваження 1.1.17 — Тут при переході від другого рядка до третього ми скористалися інтегруванням за частинами, а в останньому переході — формулою Лейбніца:

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a(x)}^{b(x)} f(x,t) \, \mathrm{d}t \right) = f(x,b(x)) \cdot b'(x) - f(x,a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x,t) \, \mathrm{d}t. \tag{1.1.16}$$

На завершення визначимо ще кілька корисних для загального розвитку об'єктів:

Означення 1.1.18. Інтегралом Рімана-Ліувілля порядку α з нижньою (лівою) межею а називається

$$(I_{a^{+}}^{\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} f(s)(t-s)^{\alpha-1} ds.$$
 (1.1.17)

Означення 1.1.19. Інтегралом Рімана-Ліувілля порядку α з правою (верхньою) межею T для t < T називається

$$(I_{T^{-}}^{\alpha}f)(t) = -\frac{1}{\Gamma(\alpha)} \int_{t}^{T} f(s)(t-s)^{\alpha-1} ds.$$
 (1.1.18)

Надалі ми (майже) не будемо їх використовувати, але знати ці визначення варто.