Forex trend prediction

with rough sets and machine learning

Satu Elisa Schaeffer

Outline

- 1 Introduction
- 2 Related work
- 3 Background
- 4 Proposed approach
- 5 Results
- 6 Conclusions

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 1 / 38

Heiken Ashi candles (HA)

HA closing (HAC) is the *average* of OCLH for t **HA opening** t (HAO) is the *average* of HAO and HAC for t-1 **HA high** (HAH) is the *maximum* of HAO, HAC, and H for t **HA low** (HAL) is the *minimum* of HAO, HAC, and the L for t Base case t=0 just uses OCLH (avg/avg/max/min)

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 2 / 38

Rolling average: SMA

Priority smoothing: EMA

Higher priority to recent data with $\mu_t = \rho v + (1 - \rho)\mu_{t-1}$ where v is the new data (adjustable ρ)

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 4 / 38

Moving average convergence-divergence

Two MA: a fast one and a slow one

d = how many differences between the fast and the slow MA to compute

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 5 / 38

Stochastic oscillator (SO)

$$s_t = rac{\mathsf{closing}_t - \mathsf{lowest}_{[t-\ell,t]}}{\mathsf{highest}_{[t-\ell,t]} - \mathsf{lowest}_{[t-\ell,t]}}.$$
 (1)

Relative strength index (RSI)

Initial:
$$\mathsf{RSI}_\ell = 100 - 100/(1 + \frac{\mathsf{gain}_\mu}{\mathsf{loss}_\mu})$$

For
$$t > \ell$$
: $\mathsf{RSI}_t = 100 - 100/(1 + \frac{(\ell-1) \times \mathsf{gain}_{\mu} + \mathsf{gain}_{t}}{(\ell-1) \times \mathsf{loss}_{\mu} + \mathsf{loss}_{t}})$

gain/loss = change between two consecutive closing prices

Zig-zag semaphore

t at which the price reverses for over a threshold (direction = sign, magnitude = kind)

Closing price Smallest threshold Middle threshold Largest threshold

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 8 / 38

Forex prediction

Traditional approaches for forecasting have fallen short [15] whereas non-linear models have been found adequate [4].

The research on the forex dates back to the work of Meese and Rose [8] who discarded the use of known forecasting methods for this particular market.

With ML, however, it has been a whole new ballgame.

An extract of related work

Work	Technique	Aspect	Pairs	Features	Tuning
Tseng et al. [15]	FL+ARIMA	rate	1	price	yes
Kamruzzaman and Sarker [5]	ARIMA/NN	rate	6	price	no
Nair et al. [9]	DT+RS+NN+BC	trend	1	indicators	no
Qian and Rasheed [14]	ML	rate	1	price	no
Pai et al. [12]	RS+SVM	rate	1	indicators	no
Baasher and Fakhr [2]	trend	trend	4	indicators	no
Vyklyuk et al. [16]	NN	rate	1	price	no
Nayab et al. [10]	DT+RS	rate	10	indicators	no
Lee et al. [6]	HMM	trend	1	manual	yes
Ni et al. [11]	NN	rate	9	price	no
Dautel et al. [3]	dNN	change	4	change	yes
Adegboye and Kampouridis [1]	ML	reversal	20	minute	no
Yildirim et al. [17]	dNN	profit	1	indicators	no
Present work [†]	RS+ML	trend	15	indicators	no

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 10 / 38

[†] currently R1 for Springer's Computational Economics (with Fernando and Chris)

Classification and rough sets

A *classifier* is a method that assigns to each input a *label* from a set of *k* predefined class labels.

Two *alternatives* x_1 and x_2 are defined to be *indiscernible* in terms of a subset of *attributes* A if each attribute $a \in A$ assigns the same value to them

$$\forall a \in A : a(x_1) = a(x_2)$$

If only the attributes in A are considered, x_1 and x_2 are equivalent [13].

Equivalence class

 $[x]_A$ = the subset of objects that are indiscernible in terms of A

reduct R of A = a minimal subset of A that conserves equivalence

the intersection of all its reducts is the *core* of A

picking the attributes that distinguish between equivalence classes

=

approximating an equivalence class as a subset of inputs with the same label

Approximation

Let T be a subset of *targets* to characterize in terms of A

Unless T is an equivalence class under A, it can only by approximated in terms of A

Lower approximation
$$\underline{T}_A = \{x \mid [x]_A \subseteq T\}$$

Upper approximation $\overline{T}_A = \{x \mid [x]_A \cap T \neq \emptyset\}$
Precision of approximation $\alpha(T,A) = |\underline{T}_A|/|\overline{T}_A|$

$$a \in A$$
 is redundant if $\underline{T}_A = \underline{T}_{A \setminus \{a\}}$

Fuzzy rough sets

whether or not an element belongs to a rough set is **not** a binary decision

instead a (discrete or continuous) degree of belonging is employed

Python library: fuzzy-rough-learn [7]

https://pypi.org/project/fuzzy-rough-learn/

we use Fuzzy Rough Neighbourhood Consensus (FRONEC) labelling

- lower approximation (Q^1)
- Hamming similarity for labels (R¹)
- k = 10 neighbors

Feature extraction

We compute the indicators and then discretize them:

SMA P+ (1) or - (0) difference to price

EMA same as SMA

HA rising (1) or falling (0)

ZZ level (1/2/3) & kind (0/1); most recent

SO above (1) or below (0) SMA

RSI 5-level discretization of the index

MACD sign (0/1)

Several windows for SMA and EMA
Two MACD: one using SMA and another with EMA

Horizons and thresholds

Forecast horizons **H**: how many days in the future, counting from the date on which the indicators are *observed*, the forecast is placed

Change thresholds T: how many percent the price needs to differ between the day on which the indicators are observed and the day for which the forecast is made for that level change to be considered present

Given **H** and **T** we compute two binary values based on the price graph:

- 1 if the change exceeds **T**, 0 if it does not
- 1 if the change is an increase, 0 if it is a decrease

Class labels

The pairs **HT** are then mapped to integer labels as follows:

↑ = 2	for the (1,1) pairs that indicate an increase exceeding the threshold
\approx = 1	for the $(0,1)$ and $(0,0)$ pairs that indicate no change that exceeds the
	threshold in either direction
$\downarrow = 0$	for the $(1,0)$ pairs that indicate a decrease exceeding the threshold

Features and labels

Date			SM	ΙA				ΕM	IA		ЦΛ	HA ZZ-S			RSI	MACD		Forecast	
Date	3	5	7	14	21	3	5	7	14	21	ПА	Lvl	Kind	so	noi	SMA	EMA	Forecasi	
2016-12-26	1	1	1	1	0	1	1	0	0	0	1	3	1	0	2	0	0	1	
2016-12-28	1	1	1	1	1	1	1	1	0	0	0	2	1	0	1	0	0	2	
2016-12-29	0	0	0	0	0	0	0	0	0	0	0	3	0	1	1	0	0	2	
2016-12-30	1	1	1	1	1	1	1	1	1	1	1	3	1	0	2	0	0	0	
2017-01-04	0	0	0	0	0	0	0	0	0	0	0	3	0	1	1	0	0	2	
2017-01-06	1	1	1	1	1	1	1	1	1	1	1	3	1	0	3	0	0	1	
2017-01-09	0	1	1	1	1	0	1	1	1	1	0	3	0	1	2	0	0	1	
2017-01-10	1	1	1	1	1	1	1	1	1	1	1	3	1	0	3	0	0	1	
2017-01-11	0	0	1	1	1	0	1	1	1	1	0	3	0	1	3	0	0	1	
2017-01-16	1	1	1	1	1	1	1	1	1	1	1	3	1	0	3	0	0	1	
2017-01-17	0	0	0	1	1	0	1	1	1	1	1	3	0	1	2	1	0	1	
2017-01-18	1	1	1	1	1	1	1	1	1	1	1	3	1	0	3	1	0	1	
2017-01-19	0	0	0	1	1	0	0	1	1	1	0	3	0	1	3	1	0	1	
2017-01-24	1	1	1	1	1	1	1	1	1	1	1	3	1	0	3	1	1	1	
2017-01-25	0	1	1	1	1	1	1	1	1	1	1	3	0	1	3	1	1	1	

An extract of the data for a two-day horizon and a one-percent threshold, AUD-USD

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 18 / 38

Feature selection

- redundancy with another feature
- avoid over-fitting
- reduce time of the training

Fuzzy Rough Feature Selection (FRFS) from fuzzy-rough-learn [7], but we rewrote some of it to gain access to the list of features it selects so we can analyze the frequencies

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 19 / 38

Model building

- Check how many data points we have per class
- If one is a clear minority, discard it
- For each replica
 - Balance the classes that are adequately present
 - Split the data into testing and training
 - Use a sample of the training data for feature selection
 - Filter out the un-selected features
 - Train the classifier model
 - Predict and de-full the labels (check for blanks)
 - Compute the F score

Classifier performance

Confusion matrix counters for predicted vs. expected labels

Precision P ratio of *true* positives from **all** positives

Recall R ratio of true positives to the sum of TP & FN

F score $2(P \times R)/(P + R)$, but weighted by class support

Experimental setup

The rough-set methods are $deterministic \rightarrow$ we characterize just once per currency pair

Splitting of the input data into training and test sets is $\textit{probabilistic} \rightarrow \textit{we}$ need replicas per H/T combination

OS Ubuntu 20.04.1

DS & ML Python 3 and Bash

Dataviz R and Gnuplot

Data https://finance.yahoo.com/ (five pairs, five years)

Repo https://github.com/satuelisa/Forex

Steps

- 1 Obtain *price data*; calculate *indicators*; extract *features*
- Choose H and T; compute class labels
- Check if all classes are present; terminate if not
- Represent the data with rough sets
- Terminate if the allowed attempts (10) are exhausted
- 6 Split the the data (70%, 30%)
- Check if all classes are present in both parts; go to step 5 if not
- Perform feature selection (70); construct a classifier (70)
- 9 Predict the test data (30); compute the F-score
- Terminate if the desired number of replicas (5) is completed
- Go to step 5

Classifiers with F > 0.95 all features

All 15 have some with F > 0.80

Pair	н	т	Fre	eque	ncy	Score		Score		SMA-3	SMA-5	SMA-7	SMA-9	SMA-11	EMA-3	EMA-5	EMA-7	EMA-9	EMA-11	Ħ	ZZS-level	ZZS-kind	SO	RSI	MACD-S	MACD-E	#	Feature selec- tion	e	Мо	odel
			+	\approx	1	min	max																			μ	σ	μ	σ		
AUDUSD	1	0.01	326	9	323	0.60	0.97	17	4	9	7	3	1	1	0	1	1	2	3	0	3	30	7	3	658	52.79	11.78	1.05	0.06		
AUDUSD	1	0.02	318	21	319	0.75	0.97	18	9	1	2	4	3	1	0	0	0	2	3	0	6	30	5	4	658	49.23	6.82	1.03	0.03		
BTCUSD	1	0.01	474	3	469	0.66	1.00	18	7	7	5	1	0	1	0	0	1	4	0	2	9	30	7	6	946	56.48	18.77	1.94	0.10		
BTCUSD	1	0.02	473	5	468	0.59	0.99	21	8	5	2	3	2	0	0	0	0	7	0	3	10	30	7	6	946	58.78	16.65	1.95	0.08		
BTCUSD	1	0.03	469	12	465	0.42	1.00	19	14	3	3	2	0	0	0	0	1	1	0	3	7	30	2	5	946	51.16	13.42	1.93	0.10		
BTCUSD	1	0.04	463	19	464	0.62	0.99	22	7	6	3	4	1	1	1	1	0	2	0	1	8	30	4	4	946	53.70	13.60	1.94	0.11		
BTCUSD	1	0.05	460	22	464	0.52	1.00	17	11	6	6	4	2	0	0	0	1	2	0	3	8	30	3	5	946	55.31	15.76	1.93	0.10		
EURCAD	1	0.02	329	26	329	0.53	0.95	12	9	5	3	1	2	0	1	1	1	5	8	0	1	26	11	6	684	50.06	5.32	1.11	0.06		
EURGBP	1	0.01	342	19	335	0.65	0.96	21	7	3	1	0	1	1	1	2	1	0	3	0	10	28	8	3	696	50.45	9.24	1.16	0.06		
EURJPY	1	0.01	337	13	347	0.50	0.96	18	10	2	1	4	2	0	1	0	2	1	3	0	6	26	8	7	697	50.96	11.62	1.14	0.12		
EURSEK	1	0.01	346	23	343	0.68	0.97	19	7	5	4	2	3	2	1	1	0	1	7	0	3	26	8	4	712	52.61	9.42	1.22	0.08		
EURUSD	1	0.01	340	12	334	0.71	0.95	24	1	6	2	2	3	0	2	0	0	2	5	0	6	26	7	5	686	52.69	10.55	1.15	0.07		
GBPJPY	1	0.01	322	15	320	0.63	0.95	22	4	4	2	4	1	1	1	0	1	3	1	0	6	29	9	5	657	55.18	17.10	1.06	0.09		
GBPUSD	1.	0.01	317	10	305	0.61	0.95	15	2	8	4	3	1	3	1	3	0	0	2	0	6	28	14	4	632	54.37	9.76	1.02	0.12		
GBPUSD NZDUSD	1.	0.02	306	26	300	0.65	0.98	17	2	6 8	3	6	6	0	0	0	1	5	3	0	3	28	8	5	632	51.61	5.56	0.98	0.04		
	1.	0.01	332	4	333	0.67	0.96	23	2	-	ь	- !	3		U	0	0	3	2	0	3	28	/	3	669	53.18	10.32	1.09	0.10		
NZDUSD	1.	0.02	326	20	323	0.53	0.99	19 17	4	6	0	1	0	Ú	Ü	0	1	′.	1	0	5	30	9	1	669	48.19	5.83	1.07	0.05		
USDJPY USDMXN	[]	0.01	343 323	13	349 319	0.54 0.67	0.98	17	3	5 6	4	2	3	0	U	1	2	6	/	0	2	27 30	11	0	705 653	54.39 54.64	8.62 14.25	1.23	0.07		
USDMXN	l ¦	0.01	313	28	319	0.67	0.99 0.98	18	7	0	3	3	4	0	0	1	0	4	3	0	6	30	10	0	653	53.54	10.75	1.05	0.10		
USDRUB		0.02	346	8	342	0.73	0.98	17	9	6	2	3	1	2	0	1	1	6	4	0	4	30	14 8	2	696	55.07	14.56	1.18	0.04		
USDRUB	¦	0.01	341	22	333	0.63	0.97	16	5	4	5	1	1	1	0	0	6	5	6	0	4	30	5	3	696	49.03	9.01	1.19	0.08		

"no change" is too empty 25% of the total combinations

Feature frequency

Currency pair	SMA-3	SMA-5	SMA-7	SMA-14	SMA-21	EMA-3	EMA-5	EMA-7	EMA-14	EMA-21	НА	I-SZZ	ZZS-k	SO	RSI	MACD-SMA	MACD-EMA	
AUDUSD	58	18	16	14	8	5	4	2	2	4	8	12	0	15	97	29	14	
BTCUSD	65	26	16	9	10	4	1	1	1	2	11	2	6	30	100	20	15	
EURCAD	53	19	14	14	9	5	3	3	2	4	8	17	1	13	93	41	18	
EURCHF	55	16	12	11	8	4	2	1	1	3	7	49	1	12	89	17	13	
EURGBP	58	16	17	9	6	6	2	2	2	3	8	16	0	20	99	28	9	
EURJPY	61	18	13	12	11	4	2	2	1	3	9	14	0	20	97	22	11	
EURSEK	54	18	15	14	9	6	4	2	3	2	9	25	2	14	90	25	15	
EURUSD	60	17	18	11	9	5	3	2	2	2	9	15	0	17	97	23	12	
GBPJPY	62	19	18	9	9	4	2	2	1	2	9	9	0	20	99	25	14	
GBPUSD	58	18	16	12	12	6	4	2	2	3	6	9	0	16	96	36	15	
NZDUSD	64	16	17	9	4	4	2	1	1	2	11	8	0	16	98	31	11	
USDCNY	58	16	14	8	4	5	2	2	1	1	7	54	0	14	97	14	9	
USDJPY	58	18	16	13	7	6	3	2	2	3	9	13	0	17	95	24	13	
USDMXN	60	19	13	10	7	6	3	1	1	2	11	8	0	21	99	39	5	
USDRUB	70	19	16	9	6	5	1	1	1	1	9	8	0	16	99	22	11	

Feature exploration

All RSI dominates; all 15 have some with ≥ 0.80

-RSI MACD is getting popular; scores similar

↑-MACD EMA (longest) and HA enter the scene; scores similar

RSI+SMA Still all good

RSI+ EMA Chinese Yuan can no longer be predicted well

SMA All is fine again for short horizons and small thresholds

EURCAD

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 28 / 38

BTCUSD

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 29 / 38

USDCNY

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 30 / 38

Computational load

CPU 16-core i7-10700K

RAM 64 GB

Characterization ≈ two seconds per pair; completely deterministic

Feature selection \leq 70 ms, some variation (for a sample)

Training \leq 2 ms, little variation, per replica

Experiments a few hours

Decision tree using RSI and SMA-3

F = 0.77 (USDCNY H = 2, T = 0.01, no split)

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 32 / 38

Decision tree for all features

Conclusions

We extract indicators and price changes from forex data.

We use (fuzzy) rough sets to represent them.

Given the current values, we predict trend $(\downarrow, \approx, \uparrow)$

This is feasible with very simple indicators.

Feasible **short** forecast horizons and **small** thresholds

For longer horizons and larger thresholds, this is not settled yet

Future work

- additional indicators, finer discretization
- 2 more use to the <u>fuzziness</u>
- 3 different feature selectors and classifiers
- 4 visualize the rough sets
- 5 hourly or minute-level data (this was daily data)
- 6 stock-market data

References I

- A. Adegboye and M. Kampouridis. Machine learning classification and regression models for predicting directional changes trend reversal in FX markets. Expert Systems with Applications, 173:114645, 2021. doi: 10.1016/j.eswa.2021.114645.
- [2] A. A. Baasher and M. W. Fakhr. FOREX trend classification using machine learning techniques. In N. E. Mastorakis and Z. Bojkovic, editors, Recent Researches in Applied Informatics and Remote Sensing, pages 41–47. WSEAS, Dec. 2011. ISBN 978-1-61804-059-6.
- [3] A. J. Dautel, W. K. Härdle, S. Lessmann, and H.-V. Seow. Forex exchange rate forecasting using deep recurrent neural networks. *Digit Finance*, 2:69–96, Sept. 2020. doi: 10.1007/s42521-020-00019-x.
- [4] R. Gençay. Linear, non-linear and essential foreign exchange rate prediction with simple technical trading rules. *Journal of International Economics*, 47(1):91–107, Feb. 1999. doi: 10.1016/S0022-1996(98)00017-8.
- [5] J. Kamruzzaman and R. Sarker. Comparing ANN based models with ARIMA for prediction of forex rates. Asor Bulletin, 22(2):2-11, 2003.
- [6] Y. Lee, L. T. C. Ow, and D. N. C. Ling. Hidden Markov models for forex trends prediction. In *International Conference on Information Science and Applications*, volume 1. IEEE Computer Society, 2014. doi: 10.1109/ICISA.2014.6847408.
- [7] O. U. Lenz, D. Peralta, and C. Cornelis. fuzzy-rough-learn 0.1: A python library for machine learning with fuzzy rough sets. In R. Bello, D. Miao, R. Falcon, M. Nakata, A. Rosete, and D. Ciucci, editors, Rough Sets (IJCRS 2020), volume 12179 of Lecture Notes in Computer Science, pages 491–499. Springer, 2020. doi: 10.1007/978-3-030-52705-1 36.
- [8] R. A. Meese and A. K. Rose. An empirical assessment of non-linearities in models of exchange rate determination. The Review of Economic Studies, 58(3):603–619, May 1991. doi: 10.2307/2298014.
- [9] B. B. Nair, V. Mohandas, and N. Sakthivel. A decision tree rough set hybrid system for stock market trend prediction. *International Journal of Computer Applications*, 2010(9):Article 1, 2010. doi: 10.5120/1106-1449.
- [10] D. Nayab, G. M. Khan, and S. A. Mahmud. Prediction of foreign currency exchange rates using CGPANN. In L. Iliadis, H. Papadopoulos, and C. Jayne, editors, Engineering Applications of Neural Networks, volume 383 of Communications in Computer and Information Science, pages 91–101. Springer, 2013. doi: 10.1007/978-3-642-41013-0_10.

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 36 / 38

References II

- [11] L. Ni, Y. Li, X. Wang, J. Zhang, J. Yu, and C. Qi. Forecasting of forex time series data based on deep learning. *Procedia Computer Science*, 147: 647–652, 2019. doi: 10.1016/j.procs.2019.01.189.
- [12] P.-F. Pai, S.-Y. Chen, C.-W. Huang, and Y.-H. Chang. Analyzing foreign exchange rates by rough set theory and directed acyclic graph support vector machines. Expert Systems with Applications, 37:5993–5998, Aug. 2010. doi: 10.1016/j.eswa.2010.02.006.
- [13] Z. Pawlak. Rough sets. International Journal of Computer & Information Sciences, 11:341–356, 1982. doi: 10.1007/BF01001956.
- [14] B. Qian and K. Rasheed. Foreign exchange market prediction with multiple classifiers. *Journal of Forecasting*, 29(3):271–284, Apr. 2010. doi: 10.1002/for.1124.
- [15] F.-M. Tseng, G.-H. Tzeng, H.-C. Yu, and B. J. Yuan. Fuzzy ARIMA model for forecasting the foreign exchange market. Fuzzy Sets and Systems, 118(1):9–19, Feb. 2001. doi: 10.1016/S0165-0114(98)00286-3.
- [16] Y. Vyklyuk, D. Vukovic, and A. Jovanovic. Forex predicton with neural network: USD/EUR currency pair. Actual Problems of Economics, 10(148): 261–273, 2013.
- [17] D. C. Yildirim, I. H. Toroslu, and U. Fiore. Forecasting directional movement of forex data using LSTM with technical and macroeconomic indicators. Financial Innovation, 7:1, 2021. doi: 10.1186/s40854-020-00220-2.

Satu Elisa Schaeffer Forex trend prediction October 5th, 2021 37 / 38

elisa.schaeffer@gmail.com

https://elisa.dyndns-web.com