第2讲 MATLAB基础

- 1 数据类型
- 2 数据结构
- 3 基本运算

1数据类型

1.1 整数

MATLAB R2019a支持8位、16位、32位和64位的有符号和无符号整数数据类型,如下表所示。

表 整数数据类	型
---------	---

数据类型	描述
uint8	8 位无符号整数, 范围为 0~255(即 0~28-1)
int8	8 位有符号整数,范围为 -128~127(即-2 ⁷ ~2 ⁷ -1)
uint16	16 位无符号整数,范围为 0~65 535(即 0~216-1)
int16	16 位有符号整数,范围为 -32 768~32 767(即-215~215-1)
uint32	32 位无符号整数, 范围为 0~4 294 967 295(即 0~232-1)
int32	32 位有符号整数,范围为 -2 147 483 648~2 147 483 647(即-231~231-1)
uint64	64 位无符号整数,范围为 0~18 446 744 073 709 551 615(即 0~2 ⁶⁴ -1)
int64	64 位有符号整数,范围为 -9 223 372 036 854 775 808~9 223 372 036 854 775 807 (即-2 ⁶³ ~2 ⁶³ -1)

少 北京都電大學

整形数据存储结构

符号位 数据位

int8 S bit[6:0:-1]

int16 s bit[14:0:-1]

int32 s bit[30:0:-1]

数据位

uint8 bit[7:0:-1]

uint16 bit[15:0:-1]

uint32 bit[31:0:-1]

```
例1 在整数运算中的数据溢出问题。
```

解 语法如下:

>> x=int8(100);

>> y=int8(90);

>> z=x+y

 $\mathbf{z} =$

127

结果(190)溢出上限,因此输出结果为上限(127)。

>> x-3*y

ans =

-27

3*y结果为(270)溢出上限,结果为127,继续计算(100-127),得到最后结果-27。

>> x-y-y-y

ans =

-128

计算x-y-y时,从左到右进行计算,结果溢出下限,因此结果为-128。

1.2 浮点数与精度函数

MATLAB的默认数据类型是双精度数值类型(double)。

在不同计算机系统上运行的MATLAB中,其单精度与 双精度数据类型与取值范围会有所不同,这与硬件有关。具 体的单精度和双精度数据类型的取值范围和精度,可以通过 realmin()、realmax()、eps()函数进行查看。

(1) realmin()函数。该函数返回MATLAB语言能够表示的最小的归一化正浮点数,任何小于该数的都不是规范的IEEE标准,都会发生溢出。

(2) realmax()函数。该函数返回MATLAB语言中能够表示的最大的归一化正浮点数,任何大于该数的数都不是规范的IEEE标准,都会发生溢出。

类似的函数还有intmax()和intmin(): intmax()表示返回 指定的整数数据类型能表示的最大的正整数; intmin()表示 返回指定的整数数据类型能表示的最小的整数。

少 北京都電大学

例2 举例说明在MATLAB中单精度浮点数和双精度浮点数据类型的取值范围和精度的规定。

解 (1) 函数:

>> intmax('int32')

ans = 2147483647

>> intmin('int32')

ans = -2147483648

(2) 单精度浮点数:

>> realmin ('single')

ans = 1.1755e-038

>> realmax('single')

ans = 3.4028e + 038

(3) 双精度浮点数:

>> n = realmin

n = 2.2251e-308

>> realmax

ans = 1.7977e + 308

少 北京都電大學

eps()函数

MATLAB中还存在一个用双精度表示的浮点相对误差限eps,定义为1与大于1的最小数之间的步进距离,用eps获得。

(1) eps: 返回从1.0到下一个最大的双精度数的距离,eps = 2^{-52} 。例如:

>> eps

ans =

2.2204e-016

(2) eps('double'): 等同于eps或eps(1.0)。例如:

>> eps('double')

ans =

2.2204e-016

(3) eps('single'): 等同于eps(single(1.0))或single(2^-23)。 例如:

>> eps('single') ans = 1.1921e-007

少 北京都電大學

1.3 字符型

字符型数据通过单引号''表示,例如

- ❖ 单引号中字符串实际上为字符(char) 数组,可以通过字符位置进行索引;
- ❖ 双引号表示的字符串是string类型,不 能直接通过索引获得其中某个字符, 需要通过元胞数组访问方式进行访问。

```
>> str(1)
ans =
'I'
>> str(end)
ans =
'B'
```

```
>> Str = "I love MATLAB"
Str =

"I love MATLAB"
>> Str(1)
ans =

"I love MATLAB"
>> str2 = Str{1}
str2 =

'I love MATLAB'
>> str2(1)
ans =

'I'
```


1.4 逻辑型

逻辑型数据往往产生于关系运算,表示关系运算的结果。 逻辑性数据只有两个值: true, false。

可用logical()函数将数值型数据转化为逻辑性,则所有非零数据对应true,零对应false。

1.5 复数

我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为<u>虚数</u>单位。当虚部等于零时,这个复数可以视为实数;当z的<u>虚部</u>不等于零时,实部等于零时,常称z为<u>纯虚数</u>。

i=j=sqrt(-1), 其值在工作间中都显示为0+1.0000i。

在MATLAB中,可以通过两种方法创建复数:一种是直接输入法;另一种是使用complex()函数。

1. 直接输入法

直接输入法创建复数的示例如下:

$$>> c1=1-2i$$

$$c1 =$$

1.0000-2.0000i

$$>> c2=1+2j$$

$$c2 =$$

$$1.0000 + 2.0000i$$

$$>> c3=sqrt(-2)$$

$$c3 =$$

$$0 + 1.4142i$$

北京都電大學

注意: 只有数字才可以与i 或者 j连接,因此在使用表达式时,要乘以i或j来获得虚部。如:

$$>> c4=5+\sin(.5)*j$$

$$c4 =$$

$$5.0000 + 0.4794i$$

2. 使用complex()函数

complex()函数的调用方法如下:

(1) c = complex(a, b)。返回结果c为复数,其实部为a,虚部为b。输入参数a和b可以是标量,或者是维数、大小相同矩阵。

```
>> c1=complex(1,2)

c1 =

1.0000 + 2.0000i

>> c2=complex(1,-2)

c2 =

1.0000-2.0000i
```


3. 复数的虚部和实部

imag()、real()函数表示分别返回复数的虚部和实部,如: >> real(c2)

ans =

1
>> imag(c2)
ans =

-2
>> c2r=real(c2)
c2r =

1
>> c2i=imag(c2)
c2i =

-2

4. 复数的模、辐角和共轭复数

(1) 求复数的模使用abs()函数。Abs()其函数的

MATLAB表达式为

$$abs(X)=sqrt(real(X).^2 + imag(X).^2)$$

例如:
$$c1 = 1.0000 + 2.0000i$$

$$\gg$$
 abs(c1)

ans =

2.2361

3 北京都電大学

(2) 求复数的辐角使用angle ()函数。

例如:

>> angle(c1)

ans =

1.1071

(3) 求共轭复数使用conj ()函数。例如,复数Z = real(Z)

+ i*imag(Z), 其共轭复数为

$$conj(Z) = real(Z) - i*imag(Z)$$

例如:

$$c2 = 1.0000-2.0000i$$

观看实操录屏视频

单选题 1分

② 设置

此题未设置答案,请点击右侧设置按钮

x = int8(10); y = 20; z = x + y; 问: z是什么数 据类型

- A int8
- **B** double

复数运算

例1-4-1 求下列复数的实部和虚部、共轭复数、模和辐角。

(1)
$$\frac{1}{3+2i}$$

(2)
$$\frac{1}{i} - \frac{31}{1-i}$$

(3)
$$\frac{(3+4i)(2-5i)}{2i}$$

$$(4) \quad i^8 - 4i^{21} + i$$

解 在MATLAB命令窗口中输入:

$$>> a=[1/(3+2i),1/i-3i/(1-i),(3+4i)*(2-5i)/2i,i^8-4*i^21+i];$$

ans =
$$-0.1538$$
 -2.5000 -13.0000 -2.0000

ans =
$$0.2308 + 0.1538i$$
 $1.5000 + 2.5000i$ $-3.5000 + 13.0000i$ $0 + 2.0000i$

少 北京都電大學

例1-4-2 复数的指数和对数运算:

(1)
$$\log(-i)$$

$$(2) \log(-1+3i)$$

解 在MATLAB命令窗口中输入:

$$ans = 0 - 1.5708i$$

$$>> log(-1+3i)$$

ans =
$$1.1513 + 1.8925i$$

2.2 数据结构

1. 矩阵

MATLAB最基本的数据结构是复数矩阵,在命令窗口输入一个复数矩阵非常简单,例如下面的语句:

>> B=[1+9i,2+8i,3+7j; 4+6j 5+5i,6+4i; 7+3i,8+2j 1i]

可输入一个矩阵B,矩阵B的各行元素由分号分隔,而同行中不同列元素由逗号或空格分隔,回车后显示的结果如下:

B =

1.0000 + 9.0000i 2.0000 + 8.0000i 3.0000 + 7.0000i

4.0000 + 6.0000i 5.0000 + 5.0000i 6.0000 + 4.0000i

7.0000 + 3.0000i 8.0000 + 2.0000i 0 + 1.0000i

其中,元素 1+9i 表示复数项,实矩阵、向量或标量均可更容易地 以这样的表述方法输入。如果赋值表达式末尾有分号,则其结构将不显 示,否则将显示出全部结果。

2. 多维数组

在MATLAB中数组、向量和矩阵的概念是经常混用的,事实上数组、向量和二维矩阵在本质上没有任何区别,都是以矩阵的形式保存的。MATLAB的数据结构只有矩阵一种形式(可细分为普通矩阵和稀疏矩阵),但是数组与矩阵的某些运算方法是不同的。

3. 字符串与字符串矩阵

MATLAB的字符串是由单引号括起来的。如可以使用下面命令赋值:

>> strA='This is a string.'

4 单元数组 (cell array)

4.1 生成单元数组

"单元(cell)"(也称为"细胞"矩阵或者"细胞"数组)是无类型矩阵,它们中的元素可以是任何类型。

单元数组用类似矩阵的标记方法,将复杂的数据结构纳入一个变量之下,与矩阵中的圆括号表示下标类似,**单元数组由 大括号表示下标**。单元数组中的每一个元素称为"单元"。单元中的数据可以为任何数据类型,包括数值数组、字符、符号对象、其他单元数组和结构体。

可以通过两种方式创建一个单元数组:一是通过赋值语句 直接创建;二是利用cell()函数先为单元数组分配一个内存空间, 然后再给各个单元赋值。

1. 直接生成单元数组

直接赋值法通过给每个单元逐个赋值来创建单元数组。 单元数组用大括号表示,在赋值时需要将单元内容用大括号 括起来。例如:

>> A={'中国','美国',100+200*i,[9, 8, 5; 67, 70, 102; 57, 18, 100; -200, 89, 78]}

A =

'中国' '美国' [1.0000e+002 +2.0000e+002i] [4 × 3 double]

2. 使用cell()函数生成单元数组

使用cell()函数创建单元数组的步骤为:首先用cell()函数创建一个空的单元数组,然后再为数组元素赋值。语法如下:

(1) c = cell(n): 生成一个n × n元素的空矩阵数组,如果n不是标量,将发出错误信息。例如:

>> b=cell(2)

b =

少 北京都電大學

(2) c = cell(m, n)、c = cell([m, n]): 生成一个 $m \times n$ 元素的空矩阵数组,m、n必须是标量,否则将发出错误信息。例如:

>>B=cell(2,2)

B =

[]

[]

(3) c = cell(m, n, p,...)、c = cell([m n p ...]): 生成一个 m × n × p元素的空矩阵数组, m、n、p必须是标量, 否则 将发出错误信息。

(4) c = cell(size(A)): 生成一个与矩阵A大小相同的空矩阵数组。 例如:

A =

1 2 3

4 5 6

4 2 1

>> c = cell(size(A))

c =

4.2 单元数组的赋值

生成了空矩阵单元数组后,可以使用"按单元索引法"或 "按内容索引法"为单元数组的元素赋值,这两种方法是完全 等效的。

1. 按单元索引法

等号左边使用圆括号的是"按单元索引法"。例如:

>> b=cell(2)

b =

[]

[]

>> b(1,1)='OK'

??? Conversion to cell from char is not possible.

该语句出错,等号左边用圆括号,等号右边赋值时将值用大 括号括起来,表明大括号中的表达式是单元数组元素的内容,而 不是普通的数组或字符串,应使用以下形式:

```
A(i,j)={x}
例如:
>> b(1,1)={'OK!'}
b =
'OK!' []
[] []
>> b(2,2)={2+3i}
b =
'OK!' []
[] [2.0000+3.0000i]
```


2. 按内容索引法

"按内容索引法"是把大括号写在等式左边,等式右边是要赋值的内容。"按内容索引法"应使用以下形式:

4.3 单元数组的内容显示

1. "按单元索引"或"按内容索引"

使用圆括号的"按单元索引"和花括号的"按内容索引"对单元数组索引是不同的。在MATLAB单元数组索引中,圆括号用于标志单元、花括号用于按单元的寻址;当采用圆括号时表示的是该单元,而采用花括号时则表示的是该单元的内容。

少 北京都電大学

使用花括号的"按内容索引"可以显示完整的单元内容,而使用圆括号的"按单元索引"有时不能显示完整的单元内容。例如:

```
>> b(2,:)
ans =

[2x3 double] [2.0000 + 3.0000i]
>> b{2,:}
ans =

1 2 3
2 3 4
ans =

2.0000 + 3.0000i
```

在显示单元数组时,MATLAB有时只显示单元的大小和数据类型,而不显示每个单元的具体内容。若要显示单元数组的内容,可以用celldisp()函数。

2. celldisp()函数

celldisp()函数是一个强制显示命令,无论单元数组有多少单元,也不论每个单元有多少内容,都将全部显示出来。celldisp()函数用于显示单元数组的全部内容,有时候只需要显示单元数组的一个单元,可以用花括号对单元进行索引。

(1) celldisp(C): 递归显示单元数组的内容。例如:

$$b{1,1} =$$

OK!

$$b{2,1} =$$

1 2 3

$$b{1,2} =$$

China.

$$b{2,2} =$$

2.0000 + 3.0000i

(2) celldisp(C, name): 使用字符串name作为名称显示单元数组的内容。例如:

>> celldisp(b,'name1')

$$name1\{1,1\} =$$

OK!

$$name1{2,1} =$$

1 2 3

2 3 4

$$name1{1,2} =$$

China.

$$name1{2,2} =$$

2.0000 + 3.0000i

3. 单元数组的图形显示

除上面的单元数组查看方式外,MATLAB还支持以图 形方式查看单元数组的内容。用这种方法可

以直观地看出单元数组的结构,但需要注意的是,cellplot()函数只能用于显示二维单元数组的内容。

例如:

>> cellplot(b)

图形显示单元数组b的内容如图2-6所示。

图形显示单元数组b的内容

4.4 单元数组的内容获取

单元数组的内容的获取必须使用花括号的"按内容索引"对单元数组索引。例如将数组b的某单元内容赋值给x、y、z:

少 北京都電大學

4.5 单元数组元素的删除

删除单元数组元素的方法很简单,只需将待删除的元素 置为"空"。需要注意的是,在删除单元数组的元素时,采 用的索引方式为一维下标,其格式为

如果操作的单元数组为多维数组,则其索引方式逐维进行,删除元素后,系统将该单元数组改变为一维单元数组, 元素按照维数逐次排序。

4.6 单元数组的变维处理

改变数组的维数可以通过添加或删除数组元素完成。删除数组元素时,得到的单元数组为原数组中剩下元素排列而成为一维数组。添加数组元素时,自动添加该数组所对应的行和列,其他元素为空。

前面所述的对矩阵的变维处理同样也适用于对单元数组的变维处理。

另外,可以通过函数reshape()改变数组的形状。 reshape()函数按照顺序将原单元数组的元素进行重新放置, 得到新的单元数组元素个数与原数组相同。

少 北京都電大學

例如:

>> A={[1 2;3 4],'I love you!';'世界和平',[90, 85, 55; 67, 70, 102; 57, 18, 100; -200, 89, 78]}

A =

[2x2 double] 'I love you!' '世界和平' [4x3 double]

>> a=reshape(A,1,4)

a =

[2x2 double] '世界和平' 'I love you!' [4x3 double]

5 结构体

5.1 结构体的生成

与单元数组类似,结构体也有两种生成方式:一种是直接输入;另一种是使用结构体生成函数struct()。

1. 直接输入法生成结构型变量

通过直接输入结构体各元素值的方法可以创建一个结构体。 输入的同时定义该元素的名称,并使用"."将变量名与元素名连 接。例如:

- >> student.test=[99 75 96 87 67 69 87 86 92];
- >> student.name='Hu Jing';
- >> student.weight=78;
- >> student.height=1.78;
- >> student.num=2010214091;

2. 使用struct()函数生成结构型变量

Struct()函数的最基本的使用方式是 struct_name=struct('field1',V1,'field2',V2,...), 其中, fieldn 是

各成员变量名, Vn为对应的各成员变量的内容。例如:

>> truct_array=struct('d',{{'北京','上海

'}},'strengths',[40000 1000])

truct_array =

d: {'北京' '上海'}

strengths: [40000 1000]

跟下面这句代码有什么不同?

>> truct_array=struct('d',{'北京','上海'},'strengths',[40000 1000])

5.2 成员变量的操作

成员变量的操作包括添加、删除和调用。

1. 在结构体变量中添加成员变量

如果需要向结构体中添加新的成员,可以直接输入该变量的名称并赋值。例如:

>> student(1).gender='Male'; %在student中添加gender 和age这两项记录

```
>> student(1).age=25;
```

- >> student(2).gender='Female';
- >> student(2).age=22;

北京都電大學

2. 结构的查询

直接输入结构名称可进行结构的查询。例如:

>> student

%查询student的结构

student =

 1×2 struct array with fields:

test

name

weight

height

num

gender

age

3. 删除成员变量

在结构体变量中删除成员变量。在MATLAB中可以使用函数rmfield()从结构体中删除成员变量。语法如下:

- (1) S=rmfield(S, 'field'): 该命令将删除结构体S中的成员field,同时保留S原有的结构。
- (2) S=rmfield(S,fields): 使用该命令可以一次删除多个成员,其中 fields 为字符行变量或者单元型变量。例如:

少 北京都電大學

>> student=rmfield(student,'age');

>> student

student =

 1×2 struct array with fields:

test

name

weight

height

num

gender

4. 调用成员变量

在MATLAB中调用成员变量非常简单。结构体中的任何信息可以通过"结构体变量名.成员名"的方式调用。调出成员变量后,可以利用相关函数进行调用。例如:

>>> student(1).test %从结构体变量中取出相关信息 ans = 99 75 96 87 67 69 87 86 92 >>> student(1).test(9) ans = 92

5. getefield()和setfield()函数的使用

(1) getefield()函数:取得当前存储在某个成员变量中的值。例如:

>> GETF=getfield(student(1),'name')

GETF =

Hu Jing

(2) setfield()函数: setfield(struct, 'field', value)函数给某个成员变量field插入新的值value。例如:

>> student=setfield(student(1), 'name', 'LiuFeng')

student =

test: [99 75 96 87 67 69 87 86 92]

name: 'LiuFeng'

weight: 78

height: 1.7800

num: 2.0102e+009

gender: 'Male'

少 北京都電大學

MATLAB数据结构实操录屏

此题未设置答案,请点击右侧设置按钮

讨论: cell和struct的异同

- A 不同之处
- B 相同之处

1.3 MATLAB的基本特性

1.3.1 数学运算

MATLAB用于数学计算的数学运算符如下表所示。

表 数学运算符号

符号	功能	实 例
+	加法	3+5=8
- 1	减法	3-5=-2
*	矩阵乘法	3*5=15
.*	点乘,即数组乘法	
/	右除	3/5 = 0.6000
J	数组右除	
\	左除	3\5=1.6667
.\	数组左除	
^	乘方	3^5=243
.^	数组乘方	
•	矩阵共轭转置	
2	矩阵转置	
sqrt、sqrtm	平方根、矩阵平方根	sqrt(16)=4

1.3.2 关系运算

MATLAB的关系运算符包括了所有常用的比较运算,如表1-2所示。两个数通常可以用六种关系来进行描述:小于(<)、小于或等于(<=)、大于(>)、大于或等于(>=)、等于(==)和不等于(~=)。

运算符	说明	运算符	说明
<	小于	<=	小于或等于
>	大于	>=	大于或等于
==	等于	~=	不等于

表 1-2 关系运算符

少 北京都電大學

MATLAB的关系运算符可以用来比较两个维数相同的数组(矩阵),或用来把一个数组中的每个元素与一个标量比较,结果都返回一个与原来数组同维数的数组。比较两个元素的大小时,如果关系式为"真",则结果为1;如果关系式为"假",则结果为0。例如关系式4+3<=6(数学语言表示4与3的和小于等于6),通过上面的叙述可知,此关系式的结果为0,标明关系式为假。

关系运算符的运算法则为:

- (1) 当两个比较量是标量时,直接比较两数的大小。若关系成立,关系表达式为"真",结果为1;否则为0。
- (2) 当参与比较的两个量是维数相同的数组(矩阵)时, 比较是对两数组(矩阵)相同位置的元素按标量关系运算规则 逐个进行,并给出元素比较结果。最终的关系运算的结果是 一个维数与原数组(矩阵)相同的数组(矩阵),它的元素由0或 1组成。
- (3) 当参与比较的一个是标量,而另一个是数组(矩阵)时,则把标量与数组(矩阵)的每一个元素按标量关系运算规则逐个比较,并给出元素比较结果。最终的关系运算的结果是一个维数与原数组(矩阵)相同的数组(矩阵),它的元素由0或1组成。

少北京都電大學

1. 数组与一个标量比较

当一个数组与一个标量比较时,首先将标量扩展成与数组同维数的数组,然后进行逐元素比较,结果返回一个与原来数组同维数的数组。例如:

$$>> m=1:9$$

 $m =$
1 2 3 4 5 6 7 8 9
 $>> bj=m>5$
 $bj =$

0 0 0 0 0 1 1 1 1

从以上运行结果可以看到,在数组m中,凡是大于5的对应的结果都为"真",返回1;其他为"假",返回0。

2. 数组(矩阵)间的比较

数组(矩阵)间的比较,也是对应元素逐个进行比较,结果返回一个与原来数组同维数的数组(矩阵)。例如:

少 北京都電大學

由上述可知,由于两个数组的对应元素都不相等,结 果是返回一个全"假"的数组。

$$0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$$

满足条件的元素位置返回"真",不满足条件的元素位置返回"假"。

注意:如果数组具有不同的大小,那么运行时将会产生错误。

3. 关系表达式与数学运算表达式的混合运算

关系表达式可以与数学运算表达式进行混合运算。数组中满足条件的元素位置(即为"真")返回1,为"假"返回0,然后进行运算。例如:

>> gh=n- (m>4)
gh =
$$8 \quad 7 \quad 6 \quad 5 \quad 3 \quad 2 \quad 1 \quad 0 \quad -1$$

1.3.3 逻辑运算

在MATLAB中,有三类基本逻辑运算: "与"、"或"和"非",包含&、&&、|、||和~共五种,如表1-3所示。

表 1-3 逻辑	冱	昇	衍
----------	---	---	---

运算符	描述
&	与
&&	标量关系表达式的避绕式(Short-Circuiting)"与"操作,只适用于标量 a & & b, 当 a 的值为假时,则忽略 b 的值
Ţ	或
11	标量关系表达式的避绕式(Short-Circuiting)"或"操作,只适用于标量。 a b , 当 a 的值为真时,则忽略 b 的值
~	非
xor	异或,两元素不同时,返回1;相同时,返回0

逻辑运算的运算法则为:

- (1) 在逻辑运算中,确认非零元素为真,用1表示;零元素为假,用0表示。当运算结果为真时,返回值为1;当运算结果为假时,返回值为0。
- (2)"与"、"或"操作符号可以比较两个标量或者两个通解数组(或矩阵)。设参与逻辑运算的是a和b两个标量,那么当a、b全为非零时,a&b的运算结果为1,否则为0; a、b中只要有一个非零,a|b的运算结果都为1。
- (3) 若参与逻辑运算的一个是标量、一个是矩阵,那么运算将在标量与矩阵中的每个元素之间按标量规则逐个进行。最终运算结果是一个与矩阵同维的矩阵,其元素由1或0组成。

- (4) 若参与逻辑运算的是两个同维矩阵,那么运算将对 矩阵相同位置上的元素按标量规则逐个进行。最终运算结果 是一个与原矩阵同维的矩阵,其元素由1或0组成。
- (5)逻辑"非"是一元操作符(或叫单目运算符),也服从矩阵运算规则。但是,对于数组(矩阵),逻辑"非"运算是针对于数组(矩阵)中每个元素的。同样,当逻辑为真时,返回值为1;当逻辑为假时,返回值为0。例如,当a是零时,~a运算结果为1;当a非零时,运算结果为0。
- (6) 在算术、关系、逻辑运算中,算术运算优先级最高,逻辑运算优先级最低。

少 北京都電大學

1. 逻辑"与"

逻辑"与",在数组之间进行逐元素的"与"操作。例如:

$$>> a=1:6$$

a =

$$>> b=5-a$$

$$b =$$

$$>> m=(a>2)&(a<5)$$

m =

又如:

$$>> n=(a<2)&(a>5)$$

n =

$$0 \quad 0 \quad 0 \quad 0 \quad 0$$

少 北京都電大學

2. 逻辑"或"

逻辑"或",在数组之间进行逐元素的"或"操作。例如:

$$>> b=5-a$$

$$b =$$

$$>> n=(b>1)|(b<0)$$

n =

前三个数字满足第一个条件(b>1),输出1;最后一个数字满足第二个条件(b<0),输出1。

3. 逻辑"非"

逻辑"非",即"NOT",是个一元操作符,对运算对象取反。凡是"真"的,在该位置输出结果就为0,其他为1。例如:

>>
$$x = \sim (b>2)$$

 $x = 0$
0 0 1 1 1 1

J 北京都電大學

4. 逻辑"异或"

逻辑"异或",即"XOR",是一个逻辑运算函数,对比较两个逻辑对象的值是否相同,若相同则结果为"假",即为0,若不同则为"真",即为1。例如:

逻辑运算规律

THE STATE OF THE S	罗辑运算	与运算 L = A · B	或运算 L=A+B	非运算 L=Ā	与非运算 L=A·B	或非运算 L=A+B	异或运算 L=AB+AB
逻辑变i	\(\frac{1}{2}\)	A B	A_ ≥1	4 1 0 L	A & L	<u>A</u> ≥1 b. L	A = 1 L
0	0	0	0	1	1	1	0
0	1	0	1	1	1	0	1
1	0	0	1	0	1	0	1
1	1	1	1	0	0	www.odias	gon@com

少 北京都電大學

1.2.4 标量关系表达式的避绕式操作

标量关系表达式的避绕式操作符(&&和||)只适用于标量 关系表达式,"避绕式"(Short-Circuiting)是指MALTAB按 顺序执行由这两个操作符连接的标量关系表达式,当执行到 某一表达式时,就已经可以确定其结果,不再执行(绕过)后 面的表达式,直接给出逻辑结果。例如:

第一个表达式为"真",于是就绕过后面的表达式不再执行,直接给出逻辑结果为"真",输出1。

$$>> b==1\&\&a==0$$

ans =

0

第一个表达式为"假",于是就直接给出逻辑结果为"假", 输出0。

$$>> a==0||(1/a)<1$$

ans =

1

由于第一个表达式已经为"真",整个操作结果必将为 "真",于是直接给出逻辑结果为"真",输出1,绕过后面的 表达式不再执行,否则将出现除数为0的警告。

少 北京都電大學

1.2.5 运算符的优先级

MALTAB 中各运算符的优先级顺序如表1-4所示。 MATLAB在执行运算时,首先执行具有较高优先级的运算, 然后执行具有较低优先级的运算。如果两个运算的优先级相 同,则按从左到右的顺序执行。

在运算的过程中,关系运算是在所有数学运算之后进行的,所以下面两个表达式是等价的,均产生结果1。

表 1-4	运算符的优先	级
1× 1-4	と 弁 1 リロリルル	.=/X

运 算 符	优先级
圆括号()	最高
转置(.')、共轭转置(')、乘方(.^)、矩阵乘方 (^)	取向
标量加法(+)、减法(-)、取反(~)	
乘法(.*)、矩阵乘法(*)、右除(./)、左除(.\)、矩阵右除(/)、矩阵左除(\)	
加法(+)、减法(-)、逻辑非(~)	
冒号运算符(:)	
关系运算: 小于(<)、小于等于(<=)、大于(>)、大于等于(>=)、等于(==)、不等于(~=)	
数组逻辑与(&)	
数组逻辑或()	
避绕式逻辑与(&&)	↓
避绕式逻辑或()	最低

1.2.6 关系与逻辑函数

除了关系运算符和逻辑运算符外,MATLAB还提供了几个关系与逻辑函数。这些关系与逻辑函数及其功能如表1-5所示。 表 1-5 关系与逻辑函数及其功能

关系和逻辑函数	使 用 功 能
xor(s, t)	异或运算, s或t非零(真)返回1, s和t都是零(假)或都是非零(真)返回0
any(x)	如果在一个向量 x 中,任何元素是非零,返回 1 : 矩阵 x 中的每一列有非零元素,返回 1
all(x)	如果在一个向量 x 中,所有元素非零,返回 1 ; 矩阵 x 中的每一列所有元素 非零,返回 1

MATLAB还提供了一些函数,用于检验某个特定的值是否存在或者某一条件是否成立,并返回相应的逻辑结果。由于这些函数大多以"is"开头,因此称为"is族"函数。

例 1-2-1 生成一个数组
$$A = \begin{bmatrix} -4 & -2 & 0 & 2 & 4 \\ -3 & -1 & 1 & 3 & 5 \end{bmatrix}$$
,找出数

组中所有绝对值大于 3 的元素。

$$>> A=zeros(2, 5)$$

$$A =$$

(2) 运用"全元素"赋值法获得 A。

$$A =$$

少 北京都電大學

(3) 产生与 A 同维的"0、1"逻辑值数组。

$$L =$$

(4) 用 islogical()函数判断 L 是否为逻辑值数组。输出若为 1,则是。

1

(5) 把 L 中逻辑值 1 对应的 A 元素取出。

$$>> X=A(L)$$

$$X =$$

$$-4$$

观看实操录屏

单选题 1分

② 设置

此题未设置答案,请点击右侧设置按钮

y = -1; y = true; z = x && y; 问: z是逻辑真还 是逻辑假?

- A 逻辑真
- B 逻辑假

1.3.7 标点符号的使用

表 1-6 标点符号代表的意义

标点符号	定义	标点符号	定义
分号(;)	数组行分隔符;取消运行显示	点(.)	小数点;结构体成员访问
逗号(,)	数组列分隔符;函数参数分隔符	省略号()	续行符
冒号(:)	在数组中应用较多,如生成等差 数列	单引号('')	定义字符串
圆括号(())	指定运算优先级;函数参数调用; 数组索引	等号(=)	赋值语句
方括号([])	定义矩阵	感叹号(!)	调用操作系统运算
花括号({ })	定义单元数组	百分号(%)	注释语句的标识

续行符号的使用

3个点组成的省略号(...)作为续行符号。在编写程序时,往往会 遇到命令行很长或一行写不下的情况。为了阅读起来方便或使程序 看起来更清晰,可以将程序分成多行分别书写,使用续行符号连接。 例如:

>>
$$x = 5*6 ...$$

+8-5
 $x = 33$
>> total= ...
 $5*6+8-5$
total = 33

使用续行符号可将两行命令连接为一行,但使用续行符号的位置要注意,否则将会出错。例如:

???

Error: Incomplete or misformed expression or statement.

- >> value1=10;value2=9;
- >> total=value1+value...2
- ??? Undefined function or variable 'value'.
- >> total=value1+value...

2

??? 2

Error: Missing MATLAB operator.

1.3.8 常用的操作命令和快捷键

1. 常用的操作命令

MATLAB常用的操作命令如表1-7所示。

表 1-7 常用的操作命令

命令	功能	命令	功能
cd	显示或改变工作目录	hold	图形保持命令
clc	清除工作窗口中的内容	load	加载指定文件的变量
clear	清除内存变量	pack	整理内存碎片
clf	清除图形窗口	path	显示搜索目录
diary	日志文件命令	quit	退出 MATLAB
dir	显示当前目录下文件	save	保存内存变量到指定文件
disp	显示变量或文字内容	type	显示文件内容
echo	工作窗信息显示开关		N

2. 常用的键盘操作和快捷键

MATLAB常用的键盘操作和快捷键,如表1-8所示。

表 1-8 常用的键盘操作和快捷键

键盘按钮和快捷键	功 能	键盘按钮和快捷键	功能
↑ (Ctrl+p)	调用上一行	Home(Ctrl+a)	光标置于当前行开头
↓ (Ctrl+n)	调用下一行	End(Ctrl+e)	光标置于当前行结尾
←(Ctrl+b)	光标左移一个字符	Esc(Ctrl+u)	清除当前输入行
\rightarrow (Ctrl+f)	光标右移一个字符	Del(Ctrl+d)	删除光标处字符
Ctrl+←	光标左移一个单词	Backspace(Ctrl+h)	删除光标前字符
Ctrl+→	光标右移一个单词	Alt+BackSpace	恢复上一次删除

北京都電大學

课程小结

思维导图

工程实例1——航天器发射问题

安萨里X奖设立于1996年,这是第一个为私人航空行为设立的奖项。 获得该奖项的要求是:两周内,同一航天器将三人送到外太空两次。 2004年,该奖项由Burt Rutan创立的公司Tier 1获得,他们的思路是:一艘 装载着宇宙飞船1号的母舰起飞并登陆在常规的跑道,将航天器发射到 25000英尺的高空,再进入外太空(100千米的高空)。在一个星期内, 他们重复了一次,然后赢得了大奖(1000万美元)。

问题: 假设航天器消耗所有的能源,以垂直速度u到达25000英尺,要使航天器到达外太空,u的值是多少?

注: 1英寸 = 2.54厘米; 1英尺 = 12 英寸, 重力加速度为9.8 m/s²

求解思路:

- 1、单位一致性换算; 米=米/厘米*厘米/英寸*英寸/英尺*英尺
- 2、写出距离计算公式,求解u $v^2 u^2 = 2as$
- 3、求解过程

实例求解:一艘装载着宇宙飞船1号的母舰起飞并登陆在常规的跑道,将航天器发射到25000英尺的高空,再进入外太空(100千米的高空),假设航天器消耗所有的能源,以垂直初速度u到达25000英尺,要使航天器到达外太空,初速度的值是[填空1]?

作答

求解思路:

- 1、单位一致性换算; 米=米/厘米*厘米/英寸*英寸/英尺*英尺
- 2、写出距离计算公式,求解u $v^2 u^2 = 2as$
- 3、求解过程

%%单位换算

cmPerInch = 2.54; % 1英寸=2.54cm inchesPerFt = 12;

metersPerCm = 1/100;

metersPerFt = metersPerCm *

cmPerInch * inchesPerFt;

startFt = 25000; % 初始位置

startM = startFt * metersPerFt;

%% 使用距离加速度公式求解 g = 9.8; %重力加速度 top = 100*1000; % 手米

top = 100*1000; % 千米

s = top-startM;

intialV = (2*g*s)^0.5 %最终 姓里

少 北京都軍大學

实例分析-贷款问题

- 1、年利率6% = 月利率0.5%
- 2、贷款12万元,1年还清,12期
- 3、利息: 12万元*6% 1.72万元

还款方式: 1、等额本金; 2、等额本息

- 一、等额本金
- 1、本金: 12万元/12月=1万元/月
- 2、利息: 1月-12万元*0.5%=600元

2月-11万元*0.5%=550元

.

12月: 1万元*0.5%=50元

总结: 600+550+.....+50=3900元

二、等额本息

设贷款总额为A,银行月利率为 β ,总期数为m(个月),月还款额设为X,则各个月所欠银行贷款为:

第一个月A(1+β)-X

第二个月(A(1+ β)-X)(1+ β)-X=A(1+ β)^2-X[1+(1+ β)]

第三个月((A(1+ β)-X)(1+ β)-X)(1+ β)-X =A(1+ β)^3-X[1+(1+ β)+(1+ β)^2] ...

由此可得第n个月后所欠银行贷款为 A(1+β)^n -

 $X[1+(1+\beta)+(1+\beta)^2+\ldots+(1+\beta)^n(n-1)]=A(1+\beta)^n-X[(1+\beta)^n-1]/\beta$

由于还款总期数为m,也即第m月刚好还完银行所有贷款,

因此有 $A(1+β)^m - X[(1+β)^m - 1]/β=0$

由此求得 $X = A\beta(1+\beta)^m / [(1+\beta)^m - 1]$

贷款实例-等额本息:

1、年利率6% = 月利率0.5%

2、贷款12万元,1年还清,12期

月还款额应位: $X = A\beta(1+\beta)^m / [(1+\beta)^m - 1] = 12*0.5\%$

(1+0.5%) ^12/[(1+0.5%)^12-1]=1.0328万元

利息总额: 0.0328*12=3935.66元

利息: 1月: 12万元*0.5%=600元;

2月: (120000-10328+600) *0.5%=551.36元

3月: (120000-10328*2+600+551.36) *0.5%=502.48

元

少 北京都電大學

作业,用MATLAB编写代码求解下面的问题:

- 1、给定三角形的两条边, a =4.5, b=6,这两条边的夹角为35度, 计算第三条边的长度和三角形的面积
- 2、你想买一套300万元的房子,首付40%,当前的复利率是4.5%。
 - (1) 若选择等额本金方式还款。
 - 1) 贷30年,每月的还款额是多少?
 - 2) 贷款期间,总共付了多少利息
 - (2) 若选择等额本息方式还款
 - 1) 贷30年,每月的还款额是多少?
 - 2) 贷款期间,总共付了多少利息