(12) UK Patent Application (19) GB (11) 2 061 581 A

- (21) Application No 8032555
- (22) Date of filing 9 Oct 1980
- (30) Priority data
- (31) 87543
- (32) 23 Oct 1979
- (33) United States of America
 (US)
- (43) Application published 13 May 1981
- (51) INT CL3 H04Q 9/00
- (52) Domestic classification G4H 13D 14A 14B 14D 14G 60 NC3
- (56) Documents cited None
- (58) Field of search G4H
- (71) Applicant
 Altran Electronics Inc
 1400 W 240th Street
 Harbor City
 State of California
 90710
 United States of
 America

- (72) Inventor
- Louis Martinez
- (74) Agents
 Messrs W P Thompson
 & Co
 Cooper Building
 Church Street

Liverpool L1 3AB

- (54) Communication system for distribution automation and remote metering
- (57) In a communication system for e.g. electric power load management, outgoing control signals to a plurality of remotely located receivers and transmitters are sent using an existing standard AM broadcast station using small angle subaudible quadrature modulation. The broadcast signal is detected by narrowband synchronous receivers phase-locked to the carrier compo-

nent of the broadcast station. The radio frequencies of the plurality of reverse link transmitters are closely spaced and synthesized from the frquency of said broadcast carrier and their time of transmission, digital bit streams, and message frames are all synchronized from the broadcast signal. The broadcast station thereby orchestrates all communication activity to and from the plurality of remote locations to optimize traffic flow and increase reliability. A fast Fourier transform processor synchronized by the broadcast station is employed in the central receiver to detect back link transmission.

A LOCIONIA

2061581

 \sim SYNCHRONOUS SUPERHETERODYNE RECEIVER \sim

∼BIDIRECTIONAL COMMUNICATION SYSTEM

Communication system for distribution automation and remote metering

This invention relates to communication systems for distribution automation and remote metering.

Utilities have expressed need for means to rapidly communicate signals en masse to or from their many customers for such purposes as selectively switching off non-vital appliances, (this is known as "load management"), for remotely setting meter rates, for remote setting of thermostats, for automatic meter reading, and for automating their power distribution system. The first three functions require a one-way communication link from the power company to the user, while the second two purposes require bi-directional communication means.

The principal techniques competing to accomplish the communication functions required in load management and distribution automation include telephone, power line carrier communication, ripple control, radio, and various combinations of these.

Telephone methods are inherently attractive because a telephone line is frequently avail30 able to the controlled point. Unfortunately, the vast majority of telephone lines, particularly in the U.S.A., are incorporated in what is referred to as the "switched network" and because of this only a very small percentage of the telephones can be used at any one time. En masse communication is not possible without an enormous and expensive modifica-

not all controlled points are accessable to
40 existing phone lines and a significant number
of new lines would be necessary for complete
coverage. Of all competing systems, this is
probably the most expensive.

tion of the telephone system. Furthermore,

An alternative system called "power line 45 carrier", known for decades, uses the distribution power lines to carry signals and suffers many inherent problems arising from the necessity to propagate through many power transformers and because of the numerous

transformers and because of the numerous
50 multiple paths and noise-like signals which
can exist between utility and consumer. The
greatest advantage of a power line carrier
method is that the entire system may be
owned and under the control of the power
55 authority or company. In general, the power

55 authority or company. In general, the power line distribution system must be compensated and carefully checked a priori to ensure reliable communication; this is both time consuming and expensive.

The third system, called ripple control, has been used successfully in many countries.

This also operates over power lines but only one-way and involves relatively expensive installations because large and powerful signal injection equipment must be installed at each

Utility substation. Furthermore, their,data rate is necessarily low because these systems operate at very low carrier frequencies and require undesirably narrow signal bandwidth, conse-

70 quently denying "instantaneous" communications. For example, well known existing systems take 20 seconds or more of communication time to affect a reliable one-way signal transmission.

75 Radio offers a fourth alternative but formidable problems exist for conventional radio systems which typically occupy a complete radio channel about 10 KHz wide during each transmission. Their companion forward link

80 receivers must cope with relatively high radio noise levels and this, coupled with FCC transmitter power limitations, leave much to be desired in the way of reliable transmission. Moreover, a private central radio transmitter

85 erected by a power authority or company to send control signals will generally be assigned a high radio frequency (e.g. VHF) and this results in relatively expensive control receivers for each consumer.

90 An even more formidable problem is faced by radio systems intended for the reverse link. High power transmitters for each consumer are impractical and probably would pose a radiation hazard under existing regulations.

95 Consequently, only low powered devices of a few watts will be acceptable. En masse reliable transmissions from such devices over relatively long ranges (20 miles or more) has never been successfully accomplished using 100 consumer grade devices.

The method herein disclosed employs a standard AM radio station to broadcast control signals to the customers through a very narrow band quadrature modulation process

105 which has the advantage of providing highly reliable communication without interfering with the normal use of the AM radio station. In reverse transmissions from customer to Utility the present system employs very nar-

110 row band radio signalling means synchronized to the AM broadcast signal.

The system disclosed here represents a significant departure from communication technologies which have heretofore been proposed

115 for these applications. In the forward link the present system employs and existing powerful AM broadcast station in a manner which has no effect whatsoever on the regular use of the broadcast station and, with a minor modifica-

120 tion of existing stations, it can provide reliable coverage over more than 50,000 square miles at very low cost. In the reverse link the present system uses a very narrow band radio communication method which, for example,

125 enables more than 500,000 separate power meter readings to be accomplished every hour, all on one single conventional radio channel (e.g. at VHF) and is consequently very conservative of the radio spectrum. It

130 also permits several utilities to efficiently share

the same reverse-link radio channel.

The disclosed control receiver to be installed at each customer's premises is relatively simple and inexpensive and is capable of controlling, via the AM station, numerous separate household appliances as commanded by a central controller. The transmitter for each residence which communicates information back to the central controller, and afore-10 said control receiver, could both be mounted inside the customer's circuit breaker box; or they can be mounted in an add-on meter extender housing which provides rapid and inexpensive installation.

15 Forward Link. It is evident that a powerful AM broadcast station signal such as is proposed to be used in the present method can be reliably detected over effective ranges of 150 miles or more. For mass communications
20 to the public AM radio is very attractive. The important question, however, is how to adapt these AM stations for the present purpose without disturbing their regular use.

Although the use of AM broadcast stations 25 to broadcast control or alerting signals is not new per se, the specific manner in which is presently achieved is different to what has been done before. It is fairly obvious that if one simply injects a control tone signal on an 30 AM broadcast station using conventional amplitude modulation (AM), as others have done in the past, then cross-talk (mutual interference) can easily develop between the control signal and the regular audio program of the 35 station. Furthermore, if this control signal tone is "sub-audible", then it will have difficulty passing through the radio station's modulation transformer and will aggravate the regular audio program because it can readily swing

40 the station's modulation transformer flux through nonlinear regions and result in increased intermodulation distortion. One solution is to make the control signal relatively "weak", but this aggravates its transmission to reliability in addition, the effective radiated

45 reliability; in addition, the effective radiated power level of the normal audio program will be diminished, hence the station's coverage is effected, possibly raising administrative (legal) difficulties because of potentially reduced ser-

50 ive area, advertising rate adjustments, etc. Though these deleterious effects are not obvious to non-engineers, careful measurements and testing reveal these inherent problems.

The present system avoids all the above difficulties by using a modulation process which is not only compatible with the station's regular AM process but also compatible with proposed stereo equipment which may be employed by the station in the future, a service the FCC is presently considering to authorize in the U.S.A.

It is well known to radio engineers that the residual RF "carrier" power which remains in the AM process contains two thirds (67%) or more of all the available radiated power, and

this is essentially unused. The usable "audible" signal power is only one third (33%) of the total radiated RF power, at most; this is what conveys the music and voice signals.

70 The disclosed quadrature modulation process effectively harnesses this 67% unused carrier power, but has no effect on the regular 33% audio power. The present system can thereby salvage about 25% of the total radiated

75 power. Consequently, the system is fully compatible with the regular AM station program. It can be shown that since it is sub-audible, it is also compatible with future stereo systems that may be added to the station under pro-

80 posed new FCC rules in the U.S. A. Most important, the sideband energy can be arranged to lie within 20 Hz of the carrier where FCC rules require the carrier to exist, hence no illegal AM carrier "suppression" results.

The above points can be illustrated by a computation. If a small angle phase modulation index (say ± 30 degrees) is selected in the present system then it can be shown that approximately 25% of the residual carrier

90 power will be translated into usuable sidebands. These could be positioned between 8 and 18 Hz from the carrier center frequency, for example. Thus for a 50 KW radio station about 12,500 watts of previously unused

95 effective radiated power would be harnessed by the present system. By contrast, one can only use a simple AM tone maximum modulation level of about 5% (.05) since higher levels could cause serious difficulties as noted

100 before. Thus, the usable sideband power under these latter circumstances would be proportional to the square of .05 or about .25% of the total power; resulting radiated power is about 125 watts for a 50 KW broadcast

105 station. Thus the present control signal is consequently 100 times stronger (12,500 watts versus 125 watts) compared to the simple sub-audible "AM tone" modulation method proposed by others.

110 Conventional AM tone systems are inherently limited to a very low data rate (1≈BPS), lest their control signal sidebands seriously interfere with the broadcast station audio program. The present system is not so restricted.

115 and can transmit data at least 5 to 10 times faster. Conversely, the broadcast station's audio program will spill into the conventional AM tone "channel", whereas it will not in the present system, increasing their error rate.

120 The effect of static and RF noise from industrial sources and other stations are also minimal in the present system because of the well known "FM quieting" effect which applies to the quadrature modulation detection
125 circuits in the control receivers employed in the present system.

Many of the above points are discussed in my U.S. patent 4,117,405 (pg. 3, line 24-31; pg. 7, line 34-57) to which refer-130 ence is hereby directed.

15

A very significant improvement is realized by the presently proposed method of synchronizing digital bit streams to the AM station RF carrier frequency. This process permits 5 very precise time keeping (clocking) to take place at each consumer location and allows simple and reliable digital circuits to be employed at low error rates. It also allows accurate ordering (queue) of consumer-to-utility 10 reports and identification signals, and this materially simplifies design of the companion transmitter for two-way communication and greatly increases overall system traffic capacity.

Since the control receiver for each customer operates at relatively low RF frequencies, all the electronic circuits can be fabricated on low cost integrated circuits. This permits fabrication using hybrid circuit techniques in herma-20 tically sealed packages that are both rugged and reliable, yielding an expected life in excess of 20 years.

Important additional optional functions which the control receiver of the present sys-25 tem accomplishes include communication of annunciator signals to a bleeper inside a customer's home to alert them that load control steps are in process or to communicate a 'brown-out" warning. It also incorporates 30 timer circuits to automatically reset power to interrupted appliances after a few minutes.

Reverse Link. The availability of clear radio channels for private used by a Utility, for example, is essentially nil. One must contend 35 with a very crowded radio spectrum and often must share channels. Even if granted a private channel, "cross-talk" from adjacent channels can seriously degrade performance. An essential ingredient for reliable error free communi-40 cation is a high signal-to-noise ratio, hence minimizing noise is a vital goal.

In the applications with which one is concerned here, the messages which are communicated from the consumer to the utility are 45 relatively short, of the order of 30 to 60 bits. It is therefore theoretically possible to employ very narrow band "sub-channels" to reduce noise substantially and thereby increase transmission reliability. Bandwidths on the order of 50 50 to 100 Hz would be adequate for our purposes. Unfortunately, the instability of practical frequency controlling devices (i.e. a RF quartz crystal) does not permit one to simply assign narrowband subchannels to 55 each consumer because the inherent RF carrier drift would result in serious intermingling

The present system solves this problem by synthesising the radio carrier frequency of 60 each of the consumer reverse link transmitters (and the centrally located utility companies receiver) from the radio carrier frequency of the AM broadcast station. This provides very precise control of each consumer transmitter 65 frequency. In addition, the same digital clock

and confusion of signals.

synchronization circuits associated with the forward link consumer control receiver are shared by the transmitter of the reverse link. This greatly simplifies the problem of digital 70 circuit design and guarantees precision timing of message frames and data bits in each of perhaps one million or more customer reverse link transmitters.

The use of these narrowband communica-75 tion processes for the reverse link not only enables one to achieve the mandatory high signal-to-noise ratio at relatively low transmitter RF power, it also permits one to transmit from a great many consumers on a single

80 radio channel simultaneously. Meter readings (or other data) can be multiplexed and transmitted from up to 128 different consumer locations simultaneously on 128 subchannels, all on a single conventional radio channel. For 85 example, a data rate of 30 bits per second per second per consumer (per meter) coupled with 128 simultaneous transmissions of 30 bits each (e.g. a 10 decimal digit report per consumer) results in an overall system ability to

90 communicate 500,000 independent consumer meter reports per hour. Furthermore, the present essentially independent radio subchannels permit "space division" of customers into geographical cells so that several

95 different Utility companies or authorities can efficiently share one radio channel in densely populated areas by using different subchannels.

As an illustrative example, the signal-to-100 noise performance for a typical 4-watt radio transmitter for each consumer is equivalent in performance to a conventional transmitter of over 400 watts. Moreover, the transmitter can cut through voice signals or other cross-talk

105 that may be on the same channel at the same time. This is because the effective bandwidth for each subchannel is under 1% that of conventional radios, thus rejecting 99% of the noise seen by them; also, the digital circuits 110 are tightly locked-on a priori. A utility might

consequently share a channel with voice users, if necessary.

Also disclosed herein is a high capacity central radio receiver design for detecting re-115 verse link signals which employs fast Fourier transform (FFT) digital techniques in a new manner; i.e. the FFT time windows, sampling rate, and reference RF frequency are all synchronized with, (thus governed by) the broad-

120 cast station RF carrier frequency and fractional divisions thereof. Moreover, a time and frequency multiplexing method orchestrated by the broadcast station signal is disclosed which capitalizes on the high signal processing ca-

125 pacity of the FFT central receiver.

The scientific rationale upon which the present system is based is well established in communication theory. However, the practical realization of the significant advantages herein 130 disclosed have not been previously possible

because the crucial problem of a priori overall system synchronization, both at radio frequencies and at digital bit stream levels, have not previously been satisfactorily solved. The employment of a powerful existing AM broadcast station which is always on the air provides the key element which solves both the reverse as well as the forward link overall synchronization problems simultaneously.

The invention is described further hereinafter, by way of example only, with reference to the accompanying drawings, in which:-

Figure 1 is a simplified overall diagram of the broadcast system for distribution automation and remote metering and shows its typical applications;

Figure 2 illustrates the principal components comprising the central controller which may be located at a power authority's premises and is connected to a local broadcast station by phone line or by other means:

Figure 3 is a block diagram of the modifications necessary to a braodcast station so that it can receive digital address and control signals from the central controller, digital phase modulate the broadcast station carrier, and broadcast the digital control signals;

Figure 4 is a block diagram of a digital control receiver that detects the broadcast control signals, demodulates and decodes them, and provides control signals to electrical appliances, distribution automation apparatus and the like;

Figure 5 illustrates various applications of the remote digital control receiver including control of multi-register watt-hour meters, thermostat relays switches for cycling air conditioners, and the like;

Figure 6 is a block diagram of alternative
40 modifications necessary to a standard broadcast station so that it may receive address and
control commands from a central controller
and encode these commands by frequency
tone code sequences which phase modulate
45 the AM radio station carrier for broadcasting;

Figure 7 is a block diagram of a multifunction synchronous tone receiver which can detect, demodulate and decode multi-tone coded address and control signals to thereby control several electrical appliances and the like:

Figure 8 is a block diagram of a simple single function tone detection receiver which detects any single tone frequency "N" and thereby controls any one electrical appliance assigned the code frequency "N":

Figure 9 is a block diagram of a synchronous superheterodyne receiver which provides synchronous detection of either digital or tone coded signal transmission from the broadcast station (Note: the words "broadcasting" and "AM radio station transmission" are used synonymously);

Figure 10 is an overall simplified block diagram of a bi-directional communication

system employing the present invention for load management, distribution automation, remote metering and the like;

Figure 11 illustrates various packaging ar-70 rangements that simplify and reduce the cost of installing the present control receiver within conventional circuit breaker panels or behind multi-register power meter cases; and

Figure 12 and 13 are simplified block dia-75 grams of a high capacity central receiver which detects radio transmissions from remotely located meter reading and status reporting devices which relay information to the power authority.

Fig. 1 graphically illustrates various applications of the present invention. A central controller 2 generates address and control signals in accordance with a preselected schedule arranged by a power authority or company for

85 use during times of high energy demand, for example. In a principal embodiment of the present invention these address and control signals are generated by digital coding techniques wherein the bit streams and message

90 frames are synchronized to transmissions from a local broadcast station in a manner to be described hereinafter. The address and control signals generated by controller 2 are communicated by telephone line, or by other conven-

95 tional means, to a broadcast station transmitter 4 where they synchronously phase modulate the carrier of the broadcast station using a small angle (for example ± 30 electrical degrees) subaudible process which does not

100 interfere with the normal transmissions of the broadcast station which are transmitted simultaneously. The phase encoded signals are connected to antenna 6 and are thereby radiated to a plurality of remotely located control
 105 receivers associated with devices 8 to 20 that

105 receivers associated with devices 8 to 20 that lie within the communication range of the broadcast station.

The remotely located control receivers detect, demodulate and decode the coded 110 broadcast signal transmissions and selectively control the operation of a multi-register time-of-use electric watt-hour meter 8 and switches 10 that interrupt the thermostat circuit of an air conditioner and electric hot water heater,

115 and like devices. They may also switch on a "smart thermostat" 14, or it may provide the latest electricity cost rate to an energy cost indicator 12.

Additional important applications of the in-120 vention include the transmission of black-out or brown-out warnings to local residents through an alert and warning receiver 18. These alert signals may also be used in conjunction with a nuclear power generating

125 plant disaster alterting plan. The alert and warning application is particularly important at this time because suitable means are not readily available for quickly warning the general population at any time. Since the control

130 receivers of the present apparatus are ex-

pected to be operating 24 hours per day and are intended to be widely deployed, receiver 18 is an attractive application.

Other applications of the present invention are to control the power authority's distribution system itself, i.e. the control of sectionalizing switches, power factor capacitors, and similar functions can be affected using the present control receivers 20.

10 The verification, tamper detection and status monitoring application device 16 requires bi-directional communications means to be described in a later part of this specification.

Fig. 2 illustrates the circuit arrangement employed at the power authority or company's central controller. A central receiver 24 detects radio signals vai antenna 22 and monitors the radio transmissions from the local broadcast station employed in the present system, deriving therefrom timing information for synchronizing its operations. It also detects an "echo" of the data (i.e., address & control signal groups) transmitted by the

tral controller. Thus central receiver 24 provides feedback information to verify proper transmission of address & control signals generated by a digital address and control generator 26. Digital address & control generator 26 employs conventional discrete digital circuits, or it may employ any one of many widely used microprocessors presently on the market.

Generator 26 develops digital addresses

corresponding to any one specific remotely located control receiver address code, or it may generate a hierarachy of group addresses, such as the so called "SCRAM" address code which power companies employ when they wish to immediately address all their remotely located control receivers simultaneously. In any event the address portion of the digital address & control signal is generated by unit 26 in accordance with a prear-

45 ranged control schedule devised by the power company, or any specific address may be generated at any time desired by using well known "interrupt" techniques. The control portion of the digital address & control signal is the message or command associated with the address portion and this defines specific functions which are to be accomplished by any one specifically addressed remotely located control receiver, or by any combination

of such receivers.
The digital bit streams representing address & control signals are time formatted into specific groups called frames. An illustrative signal format, presented in Fig. 2A, shows a
message frame comprising 16 data bits and occupying a time duration of one second. For example, 11 bits could comprise the address and 5 bits could be the control instructions.
Of course other time formats would be equally
applicable. Most important however is the fact

that specific time intervals occupied by any given frame, or by any given bit within the frame, is uniquely and very specifically defined and orchestrated by the broadcast

70 station using a synchronizing technique which will be described in following paragraphs. Suffice it to say at this point that these specific time intervals are conveyed to the digital address and control generator 26 by

75 the central receiver 24; that is, the sync signals defining a message frame, and the clock signal defining digital bit stream intervals.

Thus, the signals generated by unit 26 are 80 time formatted to convey the control requests presented by external control apparatus (such as a power company computer) which contains prestored command sequences developed by the power company and sent to

85 generator 26 via a hard wire connection, for example. The output of generator 26 is connected to a telephone modem for transmission to a local broadcast station; these are conventional communication methods. A microwave

90 link or other methods could also be used to communicate address and control messages from the central controller to the broadcast station.

Control generator 26 also periodically trans95 mits "transmit sync" request signals to the broadcast station through modem 28. These transmit sync request signals might be transmitted once per hour, for example or they may be transmitted more frequently during 100 stormy weather or lightning conditions to en-

OU stormy weather or lightning conditions to ensure that all remote receivers are properly in synchronism.

Fig. 3 illustrates the circuit arrangement of the new equipment to be installed in the local 105 broadcast station so it may retransmit signals using the present technique. Master RF oscillator 32 is a conventional device present in substantially all broadcast stations. Subsequent circuits normally driven by this master

110 oscillator 32 are shown in Fig. 3 as broadcast station transmitter 36. The new components which are introduced comprise the remaining blocks in Fig. 3. A first frequency divider 40 divides the frequency of master oscillator 32

115 to a low frequency equal to the digital bit stream clock rate, for example 16 bits per second (BPS). A second frequency divider 44, driven by divider 40, further reduces the frequency of master oscillator 32 to the de-

120 sired message frame rate of one frame per second, in the quoted example.

Thus master oscillator 32 precisely determines, in a manner soon to be evident, the basic digital bit stream clock rate and the

125 message frame rate for all components in the system. Sync frame generator 46 simply reshapes the output of divider 44 giving it a unique code shape easily distinguishable from data bits and prepares this sync signal for

130 transmission at any time requested by the

central controller. In this way the sync code is transmitted to remotely located control receivers. It will be pointed out later in this specification that synchronizing signals need not betransmitted continuously but can be transmitted at widely separated intervals, such as once per hour. This is because all of the remote control receivers also derive their basic timing information from a radio frequency oscillator 10 phase locked to the carrier of the broadcast station and consequently there is zero (or negligible) drift between the master clock time reference of the remote receivers and the master clock reference used by the broadcast 15 station and by the central controller at the

power company. Thus all components of the present system are locked to the carrier frequency of the broadcast station.

Digital encoder 42 receives the clock and 20 frame synchronizing signals as inputs as well as digital address & control signals. All these signals are in synchronization since they are timed from the carrier frequency of the station as previously noted. Encoder 42 modulates 25 the carrier of the broadcast station through phase modulator 34 at small angle subaudible rates. Transmitter 36 is also amplitude modulated simultaneously by the normal transmis-

sions of the broadcast station. Antenna 38 30 radiates these signals. Telco interface modem 48 is connected to the central controller modem 28 by a telephone line 30 as previously noted to provide address & control signals to

digital encoder 42.

35 Fig. 4 is a block diagram of a control receiver which may be located remotely at a power authority or company's customer premises to effect control of electric appliances and other devices in the desired manner. It may 40 also be located on the power company's distribution system to effect control of sectionalizing switches, capacitor bank switching, and like functions. Of course it may also be used in other types of systems, such as to control 45 traffic lights, or for remotely controlling roadside signs, and numerous other applications.

The digital control receiver in Fig. 4 comprises a receiving antenna 50 that detects signals transmitted by broadcast station 4 and 50 sends them to limiter-amplifier 52 which amplifies and eleminates the undesired amplitude modulation. The output of limiter amplifier 52 is connected to a phase detector 54, which also receives a reference signal from voltage 55 controlled crystal oscillator (VCXO) 62 at the same frequency as the broadcast station carrier frequency through frequency divider 64. The output of phase detector 54 comprises a 'control signal" whose amplitide is proporbroadcast station carrier frequency and the locally derived signal from VCXO 62. This

60 tional to the difference in phase between the error signal is amplified by amplifier 56 and

passed through two low pass filters 58 and 65 60 which smooth the error signal and apply it to control the frequency of VCXO 62. VCXO 62 also drives a frequency divider chain 64 which has multiple outputs. One of these outputs is a frequency approximately equal to

70 the carrier frequency of the broadcast station prior to signal "lock up" but precisely equal to it after lock-up of VCXO 62, or a precise multiple of the carrier broadcast frequency, because of the well known action of the

75 feedback arrangement set forth in Fig. 4. Typically, the circuit in Fig. 4 thus described

is called a phase lock loop.

The output of low pass filter 58, in the absence of any phase modulation on the 80 broadcast station carrier, is essentially a signal of constant amplitude. However, in the presence of phase modulation in the manner described, the output of filter 58 becomes a replica of the modulated signal input to phase 85 modulator 34 at the broadcast station. It is in this manner that the desired digital signals are communicated from the broadcast station to a plurality of remotely located control receivers. the signal appearing at the output of low pass 90 filter 58. The digital signal output of filter 58 is detected by digital address & control signal decoder 68. The address portion of the coded

signal is compared with a prestored address to determine if it is either a unique or a group 95 address for which it must respond, and if the signals carry its preset address, then the command portion of the signal is decoded and sent out to control any, or all, of a variety of external devices such as electric appliances,

100 watt-hour meters, and the like, depending on

the specific control code received.

The synchronizing operation of the receiver circuits shown in Fig. 4 will now be described. As previously noted, bit stream clock 105 rates and message frame rates are basically established at the broadcast station by frequency divider means driven by the broadcast station's master oscillator 32. Each remotely located receiver incorporates a VCXO 62 that

110 is precisely at the same frequency as the broadcast station carrier frequency, or a multiple of it. Consequently, it is obvious that the digital bit stream clock and message frame rate regenerated at each remote receiver using

115 the same frequency divider method used at the broadcast station these rates identical to those at the broadcast station. However the phase of these frames and digital bit stream clocks may not be initially the same as that of

120 the broadcast station. Consequently, the receiver may be out of digital "sync", though in sync at radio frequencies. Sync detector 66 of Fig. 4 receives the output of low pass filter 58 and detects the special coded synchronizing

125 signals transmitted by the broadcast station and resets frequency divider 64, thereby bringing it into synchronism with the bit stream clock and frame clock of the broadcast station.

130 There are many variations of the overall

system described above that will become obvious to engineers skilled in the art. Nevertheless the particular apparatus described provides a practical working system embodying 5 the present invention, though it is acknowledged that the invention may be practiced by other arrangements based on the technique taught herein.

Fig. 5 illustrates several applications using a 10 digital control receiver 72, which receiver comprises the circuit arrangement shown in Fig. 4, or variations of it. One unique improvement illustrated in Fig. 5 is antenna 70 which comprises the electric power wiring 15 existing in a residence. "Antenna" 70 is particularly important in electric power load management applications because other types of antennas, for example small ferrite rods have the disadvantage of tampering suscepti-20 bility. There is a possibility that a customer wishing to avoid receipt of control signals may try to cover the antenna with metal foil or metal grids. In applications where control receivers are used to switch a multi-register 25 watt-hour meter from one rate to another at different times of day, some customers may try to cover the antenna when the meter is on a low cost rate, and thus avoid paying the higher cost rates mandated by public utility 30 commissions. For example, load management systems using radio devices at VHF can suffer this problem. It is not possible to cover the antenna 70. In one embodiment of the re-

ceiver, both the AC power for the receiver and 35 the RF signals are taken from the household power line simultaneously thereby simplifying the installation. Of course a small ferrite antenna may be useable in some applications. The simultaneous application of both a ferrite 40 antenna and the house wiring antenna may however be advantageous in some installa-

The various applications illustrated in Fig. 5 are evident from the drawing. Consequently 45 only the high-lights of their operation will be summarized here. The controlled circuit breaker 74 comprises a combination of an existing circuit breaker modified to provide for power interruption upon receipt of a signal 50 from the digital control receiver 72. Control receiver 72 can be made quite small. Consequently it can be mounted within the housing of a conventional two pole circuit breaker. The combination is referred to here as a radio 55 controlled circuit breaker. It has the advantage that it can be easily plugged into existing electric circuit breaker panels.

The so-called "smart thermostat" 76 (a trade name of the Honeywell Corporation) is a 60 device which is programmed to provide a selected temperature-time profile in buildings to minimize energy consumption. In many applications it is desirable to have this programmed temperature profile initiated only 65 when heavy power consumption situations exist. By using the combined digital control receiver 72 and a smart thermostat 76 the temperature profile can be initiated by a command from the central controller 2.

Another application involves control receiver 72 driving a small relay switch 78, the combination being put inside an air conditioner 88 so that it interrupts the thermostat circuit to cycle the air conditioner on and off upon

75 receipt of commands from power company central controller 2. The advantage is that relay 78 is relatively small with a capacity of about 1 ampere and it makes use of the expensive higher powered switching device

80 already in the air conditioner which may have a capacity of 40 amps or more, thus reducing cost and simplifying the installation.

Both U.S. federal and state legislation currently in effect require power companies to 85 consider tariff schedules on the basis of timeof-use rates consistent with the cost of generating electrical energy, which costs vary at different times of day, and also seasonally. Electrical power meters with two or more

90 accumulating dials are being proposed for this purpose. However it is different to control their schedule on a day to day and season basis. Digital control receiver 72, in combination with multi-register watt-hour meter 80

95 provides a solution.

The audio visual display 82, used in combination with digital control receiver 72 provides a means to alert the general population during emergencies. This application has al-100 ready been described in a previous section of this specification.

The ability to remotely connect or disconnect various electric services to customers is a valuable function power companies desire. Di-105 gital control receiver 72 in combination with, for example, a latching power relay 84 can provide this service upon request of a customer who may be moving out of his resi-

dence, for example.

An alternative method of practicing the pre-110 sent invention will now be described which employs a synchronous tone coding method for phase modulating the broadcast station carrier. This could be done simultaneously

115 with the digital phase modulation discussed above. Fig. 6 shows the modifications necessary to an existing broadcast station to provide precise tone modulation at several subaudible frequencies "N". This method is syn-

120 chronized in a manner analogous to the method described above. This is because the various frequencies N are derived from the master oscillator 32 of the broadcast station by a frequency divider 41. This is functionally

125 equivalent to divider 40 and 44 in that the tone codes are thereby synchronized to the station carrier frequency much like the data bite previously described.

Frequency divider 41 generates a plurality 130 of subaudible synchronized tone frequencies

derived from master oscillator 32 and consequently having a stability and precision consistent with the precision of oscillator 32. In practice, master oscillator 32 has a stability of the order of one part per million of drift per year, which is very accurate and stable. Tone code selector 43 selects any one or a combination of synchronized tones as commanded by central controller 2 as defined by the 10 power company. The selected tone codes phase modulate broadcast station 36 through modulator 34 in essentially the same manner already described. These signals are radiated by antenna 36. Telco interface modem 48 15 serves the function of interfacing the central controller 2 via telephone line, or other means, to tone code selector 43. The selector 43 also controls frequency divider chain 41 to provide different ratios and output frequency 20 combinations.

Fig. 7 is a block diagram of a synchronous tone code receiver for use in conjunction with the broadcast system shown in Fig. 6. A phase loop arrangement including VCXO 62, 25 frequency divider 59, and their related parts function essentially in the same manner as the like numbered parts in Fig. 4. However in Fig. 7 the operation of frequency divider 59 provides output tones rather than bit stream and 30 message frames. Divider 59 provides a plurality of tones commensurate with the number of different address codes and control functions which one desires to exercise. The output of low pass filter 58 is a replica of the tone 35 combinations transmitted by the broadcast station. These tones are connected to the input of synchronous tone decoders 82, 84, 86,...92. Tone decoders 82, 84, 86,...92 also receive the output frequencies from di-40 vider 59, which are a precise set of frequencies preselected by the power company to correspond to some of the precise frequencies generated at the broadcast station. Decoder 90 shown in Fig. 7 is one of a plurality of 45 decoders, one per each tone frequency which comprise a particular receiver's identification code and command response structure. The important advantage of the receiver shown in Fig. 7 is that no analog circuit components 50 such as inductor-capacitor networks or resistor-capacitor networks are necessary to generate the various tone frequencies because these

frequencies are precisely regenerated by frequency divider 59. Thus problems of tone
55 frequency drift are eliminated. The circuit arrangement of Fig. 7 can be constructed using only semi-conductor elements and can therefore be fabricated using large scale integrated (LSI) methods which are well known. Consequently a receiver could be entirely fabricated on a single semiconductor IC "chip" at very low cost.

Fig. 8 discloses another tone code receiver design that is simpler and of lower cost then the receiver shown in Fig. 7 and which is

designed to receive and respond to only one single tone frequency f'_o (of course the tone at frequency f'_o could be cycled on and off in a digital pattern to thereby communicate digital 70 signals). The component parts in Fig. 8 comprising a phase-lock loop operate in essentially the same manner as in Fig. 7.

In Fig. 8, the tone out of low pass filter 58 is split into two parallel channels and sent 75 simultaneously to two double balanced mixers 75 and 77. The output of divider 63 is sent to another frequency divider 65 which divides by a factor N defined by channel selector 73, yielding an output tone frequency 2f_o. The 80 output of frequency divider 65 is split into two paths: one path includes inverter 69 which flips 2f_o tone frequency 180 degrees prior to sending it to a single stage frequency

divider 71. Single stage frequency divider 67 85 receives its signal directly from frequency divider 65 without inversion. The result is that the output of divider 67 at frequency f_o is 90 degrees out of phase with the output of divider 71, also at frequency f_o. This is neces-

90 sary to provide double balanced mixers 75 and 77 with reference signals in quadrature; this is required to permit mixers 75 and 77 to properly detect the signal from filter 58, if it is at the proper frequency f'_o = f_o, regardless of

95 any arbitrary phase which f'_o may have. Adder circuit 79 vectorily sums the output of mixers 75 and 77 thereby providing a relatively constant amplitude signal to integrator amplifier 81, regardless of the phase of f'_o signal

100 tone from filter 58, but having an amplitude proportional to the amplitude of signal f'_o only if frequency f'_o is identical to the frequency fx_o and f_o + 90° from frequency dividers 67 and 71. If the frequency f'_o and frequency f_o are

105 not identical, then the output of adder 79 and integrating amplifier 81 will be small and well below the detection level of threshold detector 83. However, if f'_o received from the broadcast station is identical to f_o generated at the

110 control receiver, then the output of integrating amplifier 81 will be high and well above the threshold of detector 83. A control signal output is then generated and sent to apparatus such as air conditioners, watt-hour me-115 ters, etc.

The circuit shown in Fig. 8 can be fabricated entirely using integrated circuit techniques on a single chip, with the possible exception of the integrating capacitor in inte-

120 grator 81. The resulting receiver can be very inexpensive and reliable. The important advantage will again be noted that this tone coding receiver is fully synchronous at tone frequencies for very precisely established be-

125 cause the tone frequencies f'_o which designate various code functions and generated at the broadcast station are precisely identical to the frequencies f_o regenerated at each independent remotely located receiver. The precision

130 is due to the fact that fo and fo are derived by

frequency divider means phase-locked to the carrier frequency of the broadcast station.

Fig. 9 shows another design improvement comprising a synchronous superheterodyne re-5 ceiver. In the receiver designs previously described, amplification at radio frequencies is accomplished at the incoming broadcast station frequency. It is frequently desirable, especially in very high gain sensitive receivers, to 10 employ an intermediate frequency amplifier to minimize the possibility of undesirable RF feedback and oscillation. The receiver shown in Fig. 9 accomplishes this in a synchronous manner. Antenna 50 detects signals from a 15 broadcast station at, for example, frequency f. equal to 12000 KHz. Signal f_c is amplified by amplifer 94 and sent to a mixer 96, which mixer also receives a local oscillator frequency f, from frequency divider 64. The beat fre-20 quency comprising intermediate frequency f,-f, is sent to intermediate frequency amplifier 98 which has its output connected to phase detector 54. Phase detector 54 also receives a reference signal from frequency 25 divider 64 and provides a signal proportional to the difference in phase between the two input signals to thereby effect a phase-lock loop operation in essentially the same manner as described previously in connection with

30 Fig. 4. The important point is that VCXO 62 is in effect phase-locked to a fixed multiple of the broadcast station carrier frequency. Since both mixer 96 and phase detector 54 receive their reference signals from frequency divider

35 64 the entire process is fully synchronous. Divider 64 provides data, a bit stream clock, and message frame rate information in essentially the same manner previously described in connection with Fig. 4. The receiver design of

40 Fig. 9 can in fact be a "front end" RF section alternative to the front end design of the receiver of Fig. 4. For example, the receiver of Fig. 9 will function identically to the receiver of Fig. 4 if one inserts the digital address

45 detector & control decoder 68, and sync detector 66 to reset divider 64. Alternatively, a bank of synchronous tone decoders 90, 91, 92...could be employed at the output of filter 58 in the receiver of Fig. 9 to enable it

50 to detect tone coded transmissions. In this case frequency divider 64 could be replaced by divider 59 which would provide the desired reference tone frequencies so that decoders 90 . . . could function in the manner pre-

55 viously described.

Fig. 11 shows two packaging arrangements for the present control receiver. In one arrangement the control receiver 72 is located behind a multi-register watt-hour meter in 60 order to control the solenoid 90 that actuates the gear mechanism driving different accumulating register dials 88. The advantage here is that the entire receiver, since it is small and receives both its power and its radio signal 65 from the power wiring of the house, can be

easily mounted behind existing multi-register meters. A second packaging arrangement, also shown in Fig. 9, mounts the present control receiver 72 within a conventional cir-

70 cuit breaker package 96. Package 96 could include a circuit breaker, or only the receiver 72. In this manner the receiver may be easily installed in existing circuit breaker panels by inserting it into a vacant slot. Upon insertion

75 into the panel, both AC power for the receiver and the radio signal are connected to control receiver 72 through terminals 94. In the event that both a control receiver and a circuit breaker function are integrated into package

80 96, then the usual function of resetting the circuit breaker can be effected through switch handle 98. If receiver 72 is selected to be a multifunction type, then the additional control signals can be sent to other devices via wire 85 100.

Bidirectional Embodiment. In my aforementioned U.S. Patent 4,117,405 details are disclosed of a narrow-band radio communication system synchronized to a broadcast station in

90 a manner related to that already described above. Consequently the present specification only contains a summary of the basic operations set forth in aforesaid patent, but sets forth in detail the new improvements which

95 have since been discovered.

Referring to Fig. 10, remote control receiver 72 comprises the receiver described in connection with Fig. 4, or variations of it. A plurality of such receivers 72 could be located

100 throughout the service area of a power company, for example. Associated with each control receiver 72 is a remote reverse link radio transmitter 100 which is intended to receive meter readings from power meter 104, or

105 other customer data, and relay this information through antenna 102 to antenna 106 to a central station receiver 108. Receiver 108 might be located at a power company's central receiving station.

The important improvement in the arrangement of Fig. 10 is the use of the same digital bit clock and message frame timing employed in the forward link. In other words, receiver 72 provides transmitter 100 with the follow-

115 ing information (see Fig. 4): a radio reference frequency f,, a digital clock signal, and a frame sync signal. This information is shown at the bottom of Fig. 4 captioned "to reverse link transmitter". It is in this manner that the

120 broadcast station can in effect orchestrate all operations at remote locations of receiver 72 and transmitter 100 so that all these independent sites can synchronously receive control information and report meter readings or

125 status reports back to a central location in a smooth time interleaved manner. This is very important to maximize traffic flow since an alternative method using only random reporting would seriously suffer because of reduced

130 traffic rates necessary to avoid conflicting si-

multaneous reports from various locations.

The operation of synthesizing the carrier frequency radiated by transmitter 100 from the broadcast station carrier frequecny is described in detail in my aforesaid U.S. Patent 4,117,405. The principal present improvement in Fig. 10 is constituted by the synchronization of the bit stream and message frames used at transmitter 100 and central 10 station receiver 108. As a consequence central station receiver 108 can fully anticipate the time at which any particular data bit, message frame, meter reading or status report from sites will arrive and furthermore, as will 15 be pointed out later in this specification, the RF signal amplitude from each remote site is also carefully catalogued at central station receiver 108. Consequently receiver 108 has all the a priori information it needs to optimize 20 its operation.

Central data processor 110 comprises a conventional computer which may be at the power company, for example. Processor 110 could set up the overall scheme for polling the remote sites to initiate remote meter reading, to "cycle" the load at the remote sites, to automatically prepare billing invoices, etc.

A significant improvement which has been discovered subsequent to filing my application 30 for U.S. Patent 4,117,405, is the use of a fast Fourier transform (FFT) processor at central station receiver 108. This improvement is illustrated in the simplified block diagram of Fig. 12. In my U.S. Patent 4,117,405 a 35 method was described for synthesizing a multiplicity of radio transmitter frequencies at precisely defined closely spaced frequency intervals (of the order of a hundred cycles) by phase-locking the carrier of each of the trans-40 mitters to a fixed multiple of the frequency of the broadcast station. I also described in my aforesaid U.S. patent a method for detecting these closely spaced transmissions by synchronous techniques wherein a central re-45 ceiver incorporates a multiplicity of local reference oscillators which are similarly locked to the carrier of the broadcast station. In this manner the differential error in radio frequency between the multiplicity of remotely 50 located transmitters and the central receivers are minimized.

In the arrangement shown in Fig. 12, a new method is employed for detecting the closely spaced independent radio reverse link transmissions. The fast Fourier transform (FFT) processor essentially comprises a unique digital computer algorithm which efficiently computes a Fourier series representation of arbitrary signals of finite duration presented at its input. The unique aspect of the FFT is that the number of computations necessary to compute the Fourier transform of the input signal is significantly reduced to a point where even small low cost computers, in fact even so-called microcomputers, can be employed to

implement the FFT algorithm very effectively. The FFT algorithm is not discussed in anymore detail in this specification since it is well known and widely discussed in available liter-70 ature.

A significant problem exists in the practical application of an FFT processor, however. First, a decision must be made as to the specific time interval over which the FFT computation will be accomplished. This is known as the selection of the "time window". Many factors enter into this decision such as the resolution desired in the resulting power spectral data, the amount of weighting which may 80 be necessary to condition the incoming data,

the acceptable level of spurious and undesired frequency folding, etc.

The following important discovery has been made in this connection. Since the informa85 tion which the reverse link transmitters send back to the central receiver is completely orchestrated by the broadcast station, time window to be employed in the FFT processor can be defined a priori. For example, in one 90 embodiment information is communicated simultaneously (and synchronously) from 128 remotely located amplitude modulated digital transmitters at the rate of 16 bits per second from each. Hence every 16th of a second (i.e.

95 about 60 milliseconds) the entire spectrum of say a 10 KHz wide radio channel must be examined to determine if there is a "0" or a "1" logic bit transmitted from the 128 independent transmitters. Consequently a "time 100 window" of 60 milliseconds is selected, which time window is synchronized by the clock output of digital control receiver 72 in Fig. 12. Thus the FFT processor is programmed to accomplish a Fourier series com-

105 putation during 60 milliseconds time window across a frequency spread of 10 KHz (i.e. 128 remote transmitters spaced 80 Hz apart equals 10 KHz approximately). At the conclusion of the 60 milliseconds the FFT processor
110 provides a power spectral density distribution having fidelity sufficient to distinguish whether a logic "1" exist or does not exist in any of the 128 subchannels. In effect, a

"time cut" is taken across the entire 10 KHz of 115 radio channel in order to determine the first bit transmitted by each 128 separate transmitters. 60 milliseconds later this process is repeated to determine the second bit from each of the 128 transmitters, and so forth.

120 Thus this shows how the FFT processor can be precisely synchronized to optimize its time window.

There is another important decision which must be made relating to the sampling rate of 125 the FFT processor. Within any given 60 millisecond time window, a decision must be taken as to how many samples must be taken and this is related to the width of the time window and the desired fidelity of the result-130 ing power spectral distribution. In the present

case there is a fortuitous opportunity to select the sampling rate at a precise submultiple of the incoming radio frequency in order to minimize the "drift" or "strobing" effect in the FFT output which results if the sampling rate, the time window, and the incoming frequencies are varying, hence not commensurate. This problem is solved by selecting the sampling rate as a fixed multiple of the radio 10 frequency of the broadcast station which is optimum.

Another FFT application problem relates to the "drift" of the FFT output power density distribution due to drift in the "local oscilla-15 tor" of central radio receiver 112 of Fig. 12. This is in essence the same as the sampling problem just discussed. Here again, the local oscillator signal of receiver 112 (Fig. 13) is synchronized by using synthesizor 122 based 20 on the radio reference frequency out of digital control receiver 72. Methods to accomplish this are described in detail in my aforesaid U.S. Patent 4,117,405. If amplifier 112 drives the FFT processor.

In summary, the present FFT processor im-25 provements lie in synchronization of the FFT time window, sampling rate, and reference radio frequency to the frequency and time synchronizing information available out of the 30 broadcast station. These improvements are significant and simplify the design of the FFT processor and its precision.

A further improvement has also been discovered. Since the remote reverse link trans-35 mitters are at varying and arbitrary distances from the central radio receiver 112 (Fig. 12) their signal level will be widely differing. Since the so called adjacent channel suppression capability (i.e. the resolution) of the FFT 40 processor, or any spectrum analyzer for that matter, is finite and on the order of 40-60 dB, it is advantageous if all incoming signals are more-or-less at the same amplitude. In the present system it is arranged for such a condi-45 tion to exist by selecting the time at which various reverse link transmitters are poled so that all signals of comparable amplitude report essentially at the same time. Consequently strong signals do not report at the same time

50 as weak signals. In this manner the ability to distinguish a "O" or "1" logic bit transmitted simultaneously by reverse link transmitters operating on adjacent subchannels is significantly improved. 55 The gain of receiver 112 is also arranged to

vary using amplifier 114 (Fig. 13) in accordance with the amplitude of transmitter group signals. This is referred to as programmed gain control (PGC). Such a "schedule" is 60 generated by the stored programmed gain control device 114 (Fig. 12), based on information presented to it from the FFT processor 116 and, indirectly the information out of digital control receiver 72 and processor 118. 65

A central processing computer 118 accom-

plishes the overall function of coordinating all activities at the receiving station of Fig. 12 including maintaining a catalogue of all the remotely located receiver identification codes, 70 appliances to be controlled, power company

load cycling scenarios, etc.

Obviously many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to 75 be understood that within the scope of the appended claims the invention may be practiced otherwise than is specifically described.

CLAIMS

1. A radio communication system for se-80 lectively addressing and controlling a plurality of remotely located devices comprising an AM radio broadcast station adapted to generate and broadcast special sync signals derived

85 from its master oscillator, a central controller adapted to generate digital address and control signals and to transmit same to the AM radio broadcast station, said signals being synchronized to said special sync signals

90 broadcasted by said AM radio station, said AM radio station being adapted to receive and broadcast digital signals received from said central controller by modulating the phase of its normally broadcasted radio frequency car-

95 rier at small angle subaudible rates that do not suppress and spread its normally unused residual carrier power outside legally prescribed frequency limits nor interfere with normal transmissions of said radio station that

100 are simultaneously broadcasted, and a plurality of remotely located addressable digital radio receivers controlling the plurality of external devices and tuned to detect and phaselock to residual carrier frequency of said

105 broadcast station to synchronously demodulate and decode said special sync signals and said address and control signals and selectively respond thereto to control said devices.

2. A communication system as claimed in 110 claim 1 wherein said central controller comprises a central receiver adapted to detect and phase-lock to residual carrier of said broadcast station to derive therefrom special sync signals and address & control signals, a digital

115 address & control generator connected to the output of said central receiver and adapted to receive commands from an external apparatus and reformat them into digital address & control signals and "transmit sync" request

120 signals synchronized to said special sync signal, said "transmit sync" request being sent at long time intervals, such as hourly, and a modem connected to the output of said digital address & control generator to transmit said 125 output to said AM radio station.

3. A communication system as claimed in

claim 2 wherein said digital address & control generator further incorporates means to compare the address & control signals received

130 from said central receiver with the address &

ĕ

control signals which it generates in order to detect errors and generate corrected output signals for subsequent rebroadcasting.

- 4. A communication system as claimed in 5 claim 1, 2 or 3 wherein said AM radio broadcast station comprises a first frequency divider connected to the output of the broadcast station master oscillator to derive therefrom a digital bit stream clock rate, a second 10 frequency divider driven by said first frequency divider to generate a message frame rate, a sync frame generator having a first input connected to the output of said second frequency divider and a second input con-15 nected to one output of a digital encoder to generate therefrom a special sync code output signal upon receipt of a sync enable signal from said encoder, said digital encoder receiving the output of said first frequency divider 20 at a first input, the output of said sync frame generator at a second input and said digital address & control signals and sync request signals at a third input, said encoder generating synchronized digitally coded output sig-25 nals at a first output and sync enable signals at a second output, a phase modulator connected between said broadcast station master oscillator and conventional broadcast station circuits normally following said oscillator and 30 adapted to receive signals from said digital encoder to phase modulate the carrier of said broadcast station in a manner which does not
- 35 5. A communication system as claimed in Claim 4 wherein said digital encoder receives digital address & control signals from said central controller by way of a telephone interface modem.

broadcast station.

interfere with the normal transmission of said

- 40 6. A communication system as claimed in any of claims 1 to 5 wherein said remotely located radio receiver comprises a receiving antenna to detect signals from said broadcast station, a tuned RF limiter-amplifier connected
- 45 to the output of said antenna, a phase detector having a first input connected to the output of said limiter-amplifier and a second input connected to an output of a frequency divider chain having multiple outputs and
- driven by a voltage controlled oscillator; an amplifier and first and second low pass filters connected in series to the output of said phase detector, said second filter controlling the frequency of said voltage controlled oscil-
- 55 lator in a phase-lock loop arrangement whereby said oscillator is maintained precisely at the carrier frequency of said broadcast station, or a multiple of it; a digital address detector and a control signal decoder con-
- 60 nected to the output of the frequency divider, and to the output of said first low pass filter to synchronously detect and compare the address portion of said signal to an individual or group address stored therein and thereby determine if it must respond, if so to synchro-

nously decode the control portion of said signal and provide control signals an external device; and a sync detector connected to the output of said first low pass filter and adapted

- 70 to detect and recognize special sync signals broadcasted by said AM radio station and to provide a reset command to said frequency divider upon receipt of said sync signal, thereby maintaining identical digital bit stream.
- 75 and message frame synchronization existing at the broadcast station.
- A communication system as claimed in any of claims 1 to 6 wherein said radio receivers are connected to existing electrical
 power wiring of buildings to receive therefrom their energizing power and the radio signals from said broadcast station, said building power wiring acting effectively as an antenna, said receivers being adapted to provide con-
- 85 trol signals on output connecting wires to external devices to control their function selectively upon command of said address and control signal.
- 8. A communication system as claimed in 90 any of claims 1 to 6 wherein said receivers are packaged in a form identical to conventional electrical circuit breakers and wherein each said receiver derives its power and receives its radio signals through the terminals 95 of said circuit breaker.
- A communication system as claimed in claim 8 wherein said circuit breaker package includes a conventional circuit breaker adapted to provide power interruption upon
 receipt of a command from said copackaged receiver.
- 10. A communication system as claimed in any of claims 1 to 9 wherein said radio receiver and external device comprise a multi-105 register watt-hour meter to measure power consumption on a plurality of sets of indicating dials as engaged by a selector mechanism, said radio receiver being mounted behind said plural dial sets to selectively engage
 110 any one of said plurality of dials as com
 - manded by said address and control signal.

 11. A communication system as claimed in claim 1 wherein said external device comprises a smart termostat.
- 115 12. A communication system as claimed in claim 1 wherein said external device comprises an audio-visual alert and display to warn of emergency conditions.
- 13. A radio communication system for se-120 lectively addressing and controlling a plurality of remotely located devices comprising an AM radio broadcast station adapted to generate tone coded signals derived from its master oscillator by frequency divider means, a cen-
- 125 tral controller adapted to generate address and control tone code selection signals and to transmit same to the AM radio broadcast station, said AM radio station being adapted to receive and broadcast the tone code selections received from said central controller by

modulating the phase of its normally broadcasted radio frequency carrier at small angle subaudible rates that do not suppress and spread its normally unused residual carrier 5 power outside legally prescribed carrier frequency limits nor interferes with normal transmissions of said radio station that are broadcasted simultaneously, and a plurality of remotely located addressable tone coded radio 10 receivers controlling the plurality of external devices and tuned to detect and phase-lock to residual carrier frequency of said broadcast station to thereby demodulate and decode said tone coded address and control signals 15 and selectively respond thereto to control said devices.

14. A communication system as claimed in claim 13 wherein said AM broadcast station comprises a phase modulator located be-20 tween a master oscillator of said broadcast station and conventional circuits normally driven by said oscillator, a frequency divider chain having multiple outputs and selectable division ratios connected to a second output 25 of said master oscillator to thereby derive a plurality of subaudible tones phase-locked to frequency of said oscillator, and tone code selector means connected to a plurality of outputs of said frequency divider and to an 30 output of an interface modem to receive tone code selection signals from said central controller, the output of said tone code selector being connected to said phase modulator to thereby modulate carrier of said broadcast 35 station at small angle subaudible rates.

15. A communication system as claimed in claim 13 wherein said AM broadcast station comprises a replacement oscillator for the existing master oscillator of the station which 40 can be phase modulated and which can drive circuits normally driven by said existing oscillator, a frequency divider chain having multiple outputs and selectable division ratios connected to a second output of said replacement 45 master oscillator to thereby derive a plurality of subaudible tones phase-locked to frequency of said oscillator, and tone code selector means connected to a plurality of outputs of said frequency divider and to an output of an 50 interface modem to receive tone code selection signals from said central controller, the output of said tone code selector being connected to said replacement oscillator to thereby phase modulate carrier of said broad-55 cast station at small angle subaudible rates.

16. A radio communication system as claimed in claim 13 wherein said receiver is a synchronous tone control receiver comprising a receiving antenna to detect signals from said 60 broadcast station, a tuned RF limiter-amplifier connected to the output of said antenna, a phase detector having a first input connected to the output of said limiter-amplifier and a second input connected to the output of a 65 frequency divider chain, said divider having

plural output taps and being driven by a voltage controlled oscillator; an amplifier and first and second filters connected in seris to the output of said phase detector, the output 70 of said second filter being adapted to control the frequency of said voltage control oscillator in a feedback arrangement wherein said oscillator is precisely phase-locked to, and maintained at, the carrier frequency of said broad-

75 cast station, or a multiple of it; a plurality of synchronous tone decoder means each having a first input connected to the output of said first low pass filter and a second input connected to preselected taps of said plurality of the synchronic statement of synchronic sy

80 frequency divider outputs to thereby synchronously detect only broadcasted tone coded signals having tone code frequencies precisely identical to the frequencies generated by the preselected frequency divider taps; and exter-85 nal devices connected to the output of the

35 nal devices connected to the output of the tone decoders and adapted to respond only to specific combinations of said output to selectively control said devices.

17. A radio communication system as 90 claimed in claim 13 wherein said receiver is a single function tone receiver comprising a receiving antenna to detect signals from said broadcast station, a tuned limiter-amplifier connected to the output of said antenna, a

95 phase detector having a first input connected to the output of said limiter-amplifier and a second input connected to the output of a first frequency divider, said first divider being driven by a voltage controlled oscillator; an

100 amplifier and first and second filters connected in series to the output of said phase detector, the output of said second filter being adapted to control the frequency of said voltage controlled oscillator in a feedback ar-

105 rangement wherein said oscillator is precisely phase-locked to, and maintained at, the frequency of said broadcast station signal, or a multiple of it; a second frequency divider driven by said first frequency divider and

110 having a selectable divide ratio N defined by a channel selector, a third and fourth frequency divider each dividing by factor of 2, said third divider being directly driven by the output of said second divider and said fourth divider

115 being driven by said second divider through a phase inverting amplifier, the output of said third and fourth frequency dividers being connected respectively to a first input of a first and second double balanced mixer, the sec-

120 ond input of said first and second double balanced mixers being connected together and to the output of said first low pass filter; an adder circuit having a first and second input connected to the outputs of said first

125 and second double balanced mixer to vectorily sum the outputs of said mixers and to connect the sum voltage to the input of an integrating amplifier, the output of said amplifier being connected to the input of a threshold detector

130 in such a manner that when the frequency

from the third and fourth frequency divider exactly equals the frequency of the signal from said first low pass filter the threshold of said threshold detector is exceeded, but not otherwise: and an external device connected to the output of said threshold detector to selectively respond thereto to provide remote control of said device by said central controller.

10 18. A communication system as claimed in claim 13 wherein said radio receiver comprises a single conversion synchronous superheterodyne design comprising a receiving antenna to detect said broadcast signal con-

tenna to detect said broadcast signal connected to RF amplifier means which drives the series combination of a mixer driving an intermediate frequency (IF) limiter-amplifier driving a phase detector driving an amplifier driving first and second low pass filters which drives a

20 voltage controlled oscillator which drives a frequency divider chain having plural outputs, one output of said divider being connected to a second input of said mixer and a second output of said divider being connected to a

25 second input of said phase detector in a phase-lock loop arrangement whereby said oscillator is forced to operate at a frequency precisely equal to the frequency of said broadcast station, or a multiple of it, wherein the

30 output from said first low pass filter comprises the desired data signal and wherein plural outputs from said frequency divider chain comprise the desired bit stream clock and message frame rate signals, and an external

35 circuit connected to receive said output signals from said synchronous superheterodyne receiver so as to process said signals and selectively respond thereto to control said external device.

40 19. A narrowband bidirectional radio communication system comprising a plurality of independent, paired radio receiver and transmitters wherein said receivers are adapted to detect broadcasted sync and address and control signals from standard AM broadcast sta-

tion in its forward link, and said transmitters are adapted to accept RF reference and sync signals from its companion receiver and to accept reply message signals from message sources connected at their respective inputs and to transmit said reply message signals

synchronously on a corresponding plurality of closely spaced radio carrier frequencies that are phase-locked to the carrier of said broadcast station in the reverse link to a central station receiver selectively in response to

coded address and control signals transmitted from the local radio broadcast station; the central station receiver being adapted to receive said radio reply signals simultaneously at said plurality of closely spaced reverse link radio carrier frequencies, and to simultaneously detect said sync signals from said-broad-

cast station and employ them to synchro-65 nously demodulate the radio signals from said plurality of remote transmitters; a central controller adapted to generate digital address and control signals for transmission to a local AM radio broadcast station, said signals being

70 synchronized to said sync signals broadcasted by said AM radio station; and a local AM radio broadcast station adapted to generate and broadcast special sync signals derived from its master oscillator and adapted to re-

75 ceive and broadcast digital address and control signals received from said central controller by modulating the phase of its normally broadcasted radio frequency carrier at small angle subaudible rates that do not suppress

80 and spread its normally unused residual carrier power outside legally prescribed frequency limits nor interfere with normal transmissions of said radio station that are simultaneously broadcasted.

85 20. A communication system as claimed in claim 19 wherein said central station receiver comprises a first antenna to detect broadcasted signals and drive a digital control receiver phase-locked to the carrier frequency

90 of said broadcast station to derive therefrom a radio reference frequency, sync signals, bit stream and message frame rates, and address 8, control signals; a conventional central radio receiver RF section including a second an-

95 tenna to detect signals from said remote transmitters and a radio frequency amplifier having a programmable gain control connected to the output of said second antenna, and a first mixer connected to output of said amplifier,

100 and a local oscillator phase-locked to a multiple of the reference radio frequency from said digital control receiver to thereby generate a stable intermediate frequency (IF) provided by said mixer in the frequency range required by

105 the FFT processor; and a fast Fourier transform (FFT) processor connected to the IF output of said central radio receiver to compute power spectral density distributions to thereby determine the presence or absence of

110 signals on each of the plurality of frequencies transmitted from the corresponding plurality of remote transmitters, said FFT processor being programmed to operate using time windows, input data sampling rates, and refer-

115 ence radio frequency synchronized from said digital control receiver output signals.

21. A communication system as claimed in claim 20 wherein said receiving system further includes a stored program gain control

120 wherein a schedule of the expected signal amplitude from each of the plurality of remotely located transmitters is stored and sequentially retrieved to control the gain of said control radio receiver in a manner designed to

125 minimize the difference in amplitude between sequentially reporting remote transmitter groups.

22. A communication system as claimed in claim 21 wherein said remotely located130 transmitters are selected to respond simultane-

5

ously in groups in such a manner that the signals arriving at the central receiving station from each of the plurality of reporting transmitters are nearly of the same amplitude.

23. A communication system constructed, arranged and adapted to operate substantially as hereinbefore described with reference to and as illustrated in the accompanying drawings.

Printed for Her Majesty's Stationery Office by Burgess & Son (Abingdon) Ltd.—1981. Published at The Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.