Principal Component Analysis and Expectation-Maximization Algorithm

Mahfuzzaman Sizan Student ID: 1905054

November 22, 2024

Introduction

This report presents the implementation and results of two widely used unsupervised learning methods in machine learning:

- Principal Component Analysis (PCA): For dimensionality reduction.
- Expectation-Maximization (EM): To estimate the mean number of children and the proportion of families with and without family planning.

1 Running the Codes

To execute the provided Python scripts, follow these steps:

- 1. Ensure Python (version 3.10 or later) is installed on your system.
- 2. Install the required libraries using the following command:

pip install numpy matplotlib scikit-learn umap-learn

3. For the EM algorithm, ensure the file em_data.txt is in the same directory as the script.

- 4. Execute the scripts:
 - PCA, UMAP, and t-SNE:

python pca_umap_tsne.py

• EM Algorithm:

python em_algorithm.py

5. Outputs such as plots and estimated parameters will be saved to the current directory.

2 Results

2.1 PCA, UMAP, and t-SNE Plots

The dimensionality of the dataset was reduced from 500 to 2 dimensions using PCA, UMAP, and t-SNE. The following plots were generated:

Figure 1: t-SNE Projection (2D)

Figure 2: UMAP Projection (2D)

Figure 3: PCA Projection (2D)

2.2 Expectation-Maximization Results

The EM algorithm estimated the following parameters for families with and without family planning, assuming a Poisson distribution:

Parameter	With Family Planning	Without Family Planning
Mean (λ)	1.7924	4.9192
Proportion (π)	0.3589	0.6411

Table 1: Estimated Parameters from EM Algorithm

3 Conclusion

This report demonstrates the implementation of PCA, UMAP, and t-SNE for dimensionality reduction and the EM algorithm for parameter estimation. The visualizations provide insights into the structure of the dataset, while the EM algorithm effectively estimates family planning statistics.