Manual

For testing purposes FASTQ, FASTA and BLAST outputs for amino acid corrections have been provided.

Get miniBarcoder

>>>git clone https://github.com/asrivathsan/miniBarcoder

Move into miniBarcoder directory
>>>cd miniBarcoder

Get dataset from Dryad:

>>>sh get_manuscript_datasets.sh datasetid where dataset id can be "DatasetA" "DatasetB" or "DatasetC"

Descriptions of files in each dataset:

DatasetA:

- 1. A demultfile.csv: Demultiplexing file for DatasetA
- 2. A_N055.fasta: Complete fasta file for DatasetA
- 3. A_N055.fastq: Complete fastq file for DatasetA
- 4. DatasetA Sanger references.fas: Sanger references for DatasetA
- 5. 1_A_MAFFT_barcode_all_nt_megablast: megablast output of MAFFT barcodes used for amino acid correction
- 6. 1_A_MAFFT_barcode_all_nt_megablast.fasta: Accession fasta retrieved from 1_A_MAFFT_barcode_all_nt_megablast

DatasetB:

- 1. B_demultfile.csv: Demultiplexing file for DatasetA
- 2. B_N052.fasta: Complete fasta file for DatasetB
- 3. B N052.fastq: Complete fastq file for DatasetB
- 4. REFERENCE B f.fasta: Illumina references for DatasetB, end1
- 5. REFERENCE_B_r.fasta: Illumina references for DatasetB, end2
- 6.1 B MAFFT barcode all nt megablast: megablast output of MAFFT barcodes used for amino acid correction
- 7. 1_B_MAFFT_barcode_all_nt_megablast.fasta: Accession fasta retrieved from 1_B_MAFFT_barcode_all_nt_megablast

DatasetC:

- 1. C_demultfile.csv: Demultiplexing file for DatasetC
- 2. C N030.fasta: Complete fasta file for DatasetC
- 3. C_N030.fastq: Complete fastq file for DatasetB
- 4. DatasetC_References_illumina.fasta: Illumina references for DatasetC
- 5. 1_C_MAFFT_barcode_all_nt_megablast: megablast output of MAFFT barcodes used for amino acid correction
- $6.\ 1_C_MAFFT_barcode_all_nt_megablast. fasta: Accession\ fasta\ retrieved\ from\ 1_C_MAFFT_barcode_all_nt_megablast. fasta: Accession\ fasta\ fa$

If running MAFFT and MAFFT+AA only: Datasets files to be in current folder under "DatasetA", "DatasetB" and DatasetC (file names used are for dataset A)

1. MAFFT

a. To get uncorrected barcodes

>>>python miniBarcoder.py -f DatasetA/A_N055.fasta -d DatasetA/A_demultfile.csv -o DatasetA/1 A MAFFT barcode 100x -1 600

Note: Subsetting to 100 gave reasonable results: we have observed 486-489/490 barcodes with marginally higher error rates (substitution error upto 0.005% and indel errors $\sim 0.75-0.78\%$ in the few tests we have conducted). For exhaustive analyses as done for the publication run miniBarcoder.py with "-D 0" for all datasets: This however took > 8 hours for Dataset A

b. For ease of downstream analyses copy output of previous step (all_barcodes.fa) in output directory to main directory

>>>cp DatasetA/1 A MAFFT barcode 100x/all barcodes.fa DatasetA/1 A MAFFT barcodes.fasta

c. Filter barcodes by number of ambiguities (<=n), here 1% of >600 bp barcodes.

>>>python scripts/filter_by_Ns.py -i DatasetA/1_A_MAFFT_barcodes.fasta -n 6

Output MAFFT barcodes are in DatasetA/1_A_MAFFT_barcodes_Nfilter.fa

2. MAFFT+AA

a. run error correction on filtered barcodes

>>>python aacorrection.py -bf DatasetA/1_A_MAFFT_barcode_all_nt_megablast.fasta -bo DatasetA/1_A_MAFFT_barcode_all_nt_megablast -b DatasetA/1_A_MAFFT_barcodes_Nfilter.fa -o DatasetA/2 A MAFFT corr barcodes.fasta

Output of MAFFT+AA in DatasetA/2 A MAFFT corr barcodes.fasta

For dataset C of 313 bp: to miniBarcoder.py add "-m 1" and change to "-I 200" and "-D 0) (read subsetting not recommended as this is more error prone) to accorrection.py add "-I 300 -L 330" to filter_by_Ns.py "-n 3"

IF RUNNING RACON:

3. RACON barcode

Batch script performing fastq retrieval, graphmap and racon. (See breakdown of steps for this dataset if any issues at the end of this document)

sh racon_consensus.sh DatasetA/A_N055.fastq DatasetA/A_N055.fasta DatasetA/1_A_MAFFT_barcode_100x DatasetA/1 A MAFFT barcodes Nfilter.fa DatasetA/3 A racon barcodes all

Output is stored in DatasetA/3_A_racon_barcodes_all.fa

4. RACON+AA

run error correction on racon barcodes

>>>python aacorrection.py -bf DatasetA/1_A_MAFFT_barcode_all_nt_megablast.fasta -bo DatasetA/1_A_MAFFT_barcode_all_nt_megablast -b DatasetA/3_A_racon_barcodes_all.fa -o DatasetA/4_A_racon_barcodes_all_corr.fa

Output is stored in DatasetA/4 A racon barcodes all corr.fa

5. CONSOLIDATED BARCODES:

>>> python scripts/consolidate.py -m DatasetA/2_A_MAFFT_corr_barcodes.fasta -r DatasetA/4_A_racon_barcodes_all_corr.fa -o DatasetA/5_A_mafft_racon_con.fa

Output is stored in DatasetA/5 A mafft racon con.fa

IF INTERESTED IN ASSESSING CORRECTED BARCODES (requires MAFFT)

For MAFFT/RACON+AA barcodes:

python scripts/assess_corrbarcodes_wref.py -m DatasetA/2_A_MAFFT_corr_barcodes.fasta -r
DatasetA/DatasetA_Sanger_references.fas -t DatasetA/2_A_MAFFT_corr_barcodes_wrefs -o
DatasetA/2_A_MAFFT_corr_barcodes_wrefs_stats

Output is in DatasetA/2 A MAFFT corr barcodes wrefs stats

IF INTERESTED IN ASSESSING UNCORRECTED BARCODES (requires dnadiff, part of MuMMER) For MAFFT/RACON barcodes

python scripts/assess_uncorrbarcodes_wref.py -m DatasetA/1_A_MAFFT_barcodes_Nfilter.fa -r
DatasetA/DatasetA_Sanger_references.fas -t DatasetA/1_A_MAFFT_barcodes_Nfilt er_wrefs -o
DatasetA/1 A MAFFT barcodes Nfilter wrefs stats

Output is in DatasetA/1 A MAFFT barcodes Nfilter wrefs stats

run racon consensus.sh.

This is batch script with performs the following steps. Names here are for Dataset A.

```
This batches the following or dataset A which can be separately conducted as:
```

a. Get trimmed fastq files for demultiplexed datasets corresponding to the fasta files

>>>python scripts/get_fastqs.py -fq DatasetA/A_N055.fastq -dr DatasetA/1_A_MAFFT_barcode_100x/demreads -se DatasetA/1_A_MAFFT_barcode_100x/A_N055.fasta_reformat_out_COIpred -o DatasetA/1_A_MAFFT_barcodes fastqs

b. Create separate fasta files from MAFFT uncorrected barcodes to use as references for graphmap and racon.

>>>python scripts/split_fasta_to_each.py -i DatasetA/1_A_MAFFT_barcodes_Nfilter.fa -o DatasetA/1 A refs for graphmap

c. Run graphmap in batch

>>>for f in DatasetA/1_A_refs_for_graphmap/*; do graphmap align --max-error 0.05 -r \$f -d DatasetA/1_A_MAFFT_barcodes_fastqs/" $f^{\#*}$ ".sam; done

d. Run Racon in batch

```
>>>for f in DatasetA/1_A_refs_for_graphmap/*.fa; do
nops="${f##*/}"stq;
nops="${nops%.fa*}";
racon --sam DatasetA/1_A_MAFFT_barcodes_fastqs/"$nops".fastq
DatasetA/1_A_MAFFT_barcodes_fastqs/"${f##*/}".sam $f
DatasetA/1_A_MAFFT_barcodes_fastqs/"${f##*/}"_racon.fasta;
done
```

e. Concatenate and clean up racon output

>>> cat Dataset A/1_A_MAFFT_barcode_all_fastqs/*racon.fasta | sed 's/Consensus_//g' > Dataset A/3 A racon barcodes all.fa