LES SUITES NUMÉRIQUES E08C

EXERCICE N°3 Suite auxiliaire (sans calculatrice)

On donne la suite u définie par : $\begin{cases} u_{n+1} = \frac{1}{2} \sqrt{u_n^2 + 12} \end{cases}$

- 1) Calculer u_1 , u_2 et u_3 , on donnera les valeurs exactes.
- $u_1 = \frac{1}{2}\sqrt{u_0^2 + 12} = \frac{1}{2}\sqrt{12} = \frac{1}{2} \times 2\sqrt{3}$, ainsi $u_1 = \sqrt{3}$
- $u_2 = \frac{1}{2}\sqrt{u_1^2 + 12} = \frac{1}{2}\sqrt{3 + 12} = \frac{1}{2} \times \sqrt{15}$, ainsi $u_2 = \frac{\sqrt{15}}{2}$
- $u_3 = \frac{1}{2}\sqrt{u_2^2 + 12} = \frac{1}{2}\sqrt{\frac{15}{4} + 12} = \frac{1}{2} \times \sqrt{\frac{63}{4}} = \frac{1}{2} \times \frac{3\sqrt{7}}{2}$, ainsi $u_3 = \frac{3\sqrt{7}}{4}$
- 2) On définit la suite v par : $\forall n \in \mathbb{N}$, $v_n = u_n^2 4$
- Montrer que la suite v est géométrique et donner ses éléments caractéristiques.
- $v_0 = u_0^2 4 = 0 4$, ainsi $v_0 = -4$
- Soit $n \in \mathbb{N}$,

$$v_{n+1} = u_{n+1}^{2} - 4$$

$$= \left(\frac{1}{2}\sqrt{u_{n}^{2} + 12}\right)^{2} - 4$$

$$= \frac{1}{4}(u_{n}^{2} + 12) - 4$$

$$= \frac{1}{4}u_{n}^{2} - 1$$

$$= \frac{1}{4}(u_{n}^{2} - 4)$$
« Astuce » de la mise en facteur de « force »
$$= \frac{1}{4}v_{n}$$

$$= \frac{1}{4}v_{n}$$

- raison $q = \frac{1}{4}$ et de premier terme $v_0 = -4$ On reconnaît une suite géométrique de
- Exprimer v_n en fonction de n. 2.b)

$$\forall n \in \mathbb{N} , \boxed{v_n = -4 \times \left(\frac{1}{4}\right)^n}$$

- On a admet que pour tout entier n, $v_n > -4$. En déduire une expression de u_n en 2.c) fonction de n.
- Soit $n \in \mathbb{N}$,

$$v_n = u_n^2 - 4 \Leftrightarrow u_n^2 = v_n + 4 \Leftrightarrow u_n = \sqrt{v_n + 4} \quad (\text{car } v_n - 4 > 0)$$

On en déduit que, pour tout entier naturel n, $u_n = \sqrt{4-4\times\left(\frac{1}{4}\right)^n}$

Conjecturer alors la limite de la suite u.

Il semble que
$$\lim_{n \to +\infty} u_n = 2$$

La suite v tend vers 0, « il reste » $\sqrt{4} = 2$