Задачи по топологическому анализу данных

Листок 4

Задача 1. Докажите, что при $n = \dim K$, числа Бетти и f-числа комплекса K связаны соотношением

$$f_0 - f_1 + f_2 - f_3 + \dots + (-1)^n f_n = \beta_0 - \beta_1 + \beta_2 + \dots + (-1)^n \beta_n.$$

Замечание: Число

$$\chi(K) = f_0 - f_1 + \dots + (-1)^n f_n = \beta_0 - \beta_1 + \beta_2 + \dots + (-1)^n \beta_n$$

называется эйлеровой характеристикой симплициального комплекса K.

Задача 2. Докажите, что эйлерова характеристика удовлетворяет формуле включения-исключения

$$\chi(K \cup L) = \chi(K) + \chi(L) - \chi(K \cap L).$$

Задача 3. Докажите, что для симплициального комплекса K, гомеоморфного сфере S^{n-1} выполнена формула Эйлера:

$$f_0 - f_1 + \dots + (-1)^{n-1} f_{n-1} = 1 + (-1)^{n-1}.$$

Задача 4. Докажите, что задание модуля устойчивости V_0 \overrightarrow{x} V_1 \overrightarrow{x} V_2 \overrightarrow{x} \cdots \overrightarrow{x} V_m \overrightarrow{x} \cdots эквивалентно заданию структуры градуированного $\mathbb{k}[x]$ -модуля на векторном пространстве $\bigoplus_{i=0}^{\infty} V_i$ (если вы не знаете, что такое модуль над кольцом, то это хороший повод пообщаться с семинаристом).

Задача 5. Пусть $0 \le j < s < k$. Докажите, что модуль устойчивости $I_{[j,s)} \oplus I_{[s,k)}$ не изоморфен модулю $I_{[j,k)}$, хотя в любой отдельный момент времени эти модули изоморфны.

Задача 6. Докажите, что множество симплексов фильтрации можно линейно упорядочить (отсортировать) по временам рождения таким образом, что каждый симплекс появляется в списке не раньше чем его грани (т.е. подмножества).

Задача 7.* Пусть $L \subset K$ и $K \setminus L$ состоит из одного j-мерного симплекса. Тогда при переходе от L к K верно одно из двух:

- (j-1)-ое число Бетти уменьшается на 1.
- *j*-ое число Бетти увеличивается на 1.

Другие числа Бетти не меняются.

Задача 8. (на интуитивное геометрическое понимание) Нарисуйте баркод и вычислите времена жизни циклов для фильтрации, заданной следующим образом. В момент времени 0 родились 3 вершины {1}, {2}, {3}. В

момент времени 4 родились ребра $\{1,2\}$, $\{2,3\}$ и вершина $\{4\}$. В момент времени 5 родились ребра $\{1,4\}$, $\{3,4\}$. В момент времени 7 родилось ребро $\{1,3\}$. В момент времени 10 родилось ребро $\{2,4\}$. В момент времени 16 родились треугольники $\{1,2,3\}$, $\{1,2,4\}$, $\{1,3,4\}$. В момент времени 20 родился треугольник $\{2,3,4\}$. В момент времени 23 родился тетраэдр $\{1,2,3,4\}$. Каковы гомологии комплекса в момент времени 9?