Summary

- ▼ Probability Theory
 - ▼ Measuring spaces

Important terminology:

- Sample space Ω
- $\bullet \ \ {\rm Event} \ A \subset \Omega$
- Elementary event / outcome $\omega \in \Omega$

Measuring space in the countable case:

- 1. $P(\Omega) = 1$
- 2. Sigma additivity for $A_1,...\subset\Omega$ and $A_i\cup A_j=\emptyset orall i
 eq j$

$$P\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}P(A_i)$$

Lemma 1.2

If a sample space Ω is counable, you can specify a probability measure just by (while I is an index-set):

$$P(\{\omega_i\}) = p_i \quad orall i \in I$$

For every set A it holds:

$$P(A) = \sum_{\omega \in A} P(\{\omega\})$$

σ -algebra:

- 1. $\emptyset \in \mathcal{A}$
- 2. if $A \in \mathcal{A}$ then $A^c \in \mathcal{A}$
- 3. if $A_1,A_2,...\in\mathcal{A}\Rightarrow \cup_{i=1}^\infty A_i\in\mathcal{A}$

Definition of smallest σ -Algebra:

• If the smallest sigma algebra containing set A is called A. Then for every sigma Alegbra \mathcal{B} on Ω it holds that:

$$A\subset \mathcal{B}\Rightarrow \mathcal{A}\subset \mathcal{B}$$

Theres also the smallest- σ -Algebra, that is denoted with the notation $\sigma(A)$

Lemma 1.5 \rightarrow For set $A\subset \mathcal{P}(\Omega)$ $\sigma(A)$ has a solution.

▼ Measure

Defintion Measure:

1.
$$\mu:\mathcal{A} \to [0,\infty]$$

2.
$$\mu(\emptyset) = 0$$

3. $A_1, A_2, ... \in \mathcal{A}$ pairwise disjoint σ -additivity:

$$\mu\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}P(A_i)$$

Definition Probability measure:

1.
$$\mu:\mathcal{A} \to [0,\infty]$$

2. $A_1,A_2,...\in\mathcal{A}$ pairwise disjoint σ -additivity:

$$\mu\left(igcup_{i=1}^{\infty}A_i
ight)=\sum_{i=1}^{\infty}P(A_i)$$

3.
$$P(\Omega) = 1$$

▼ Borel sets

Let $A:=\{(a,b)|a,b\in\mathbb{R}\}$ then the **Borel sigma field** is defined by:

$$\sigma(A)=\mathcal{B}$$

Each set $C\subset\mathbb{R}$ is called a **borel set** iff $C\in\mathcal{B}$

We will further define a **field** as a family of subsets $\mathcal{A}^*\subset \mathcal{P}(\Omega)$ if:

1. $\emptyset \in \mathcal{A}^*$

2.
$$A \in \mathcal{A}^* \implies A^\complement \in \mathcal{A}^*$$

3.
$$A_1, A_2, ... \in \mathcal{A}^* \implies A_1 \cup A_2 \in \mathcal{A}^*$$

▼ Pre- Measures

Definition: let \mathcal{A}^* be a **field.** Then a function $P^*: \mathcal{A}^* \to [0, \infty)$ is called a **pre-measure** iff for every sequence $A_1, A_2, ... \in \mathcal{A}^*$ with $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}^*$ it holds that:

$$P^*\left(igcup_{i=1}^\infty A_i
ight) = \sum_{i=1}^\infty P^*(A_i)$$

Theorem of Carathéodory: let \mathcal{A}^* be a field and $P^*:\mathcal{A}^*\to [0,\infty)$ be a premeasure. Then there is one and only one measure $P:\sigma(\mathcal{A}^*)\to [0,\infty)$ such that:

$$P(A) = P^*(A)$$

▼ cdf and Lebesgue Stieltjes measure

Definition of cdf: Let $P:\mathcal{B}\to [0,\infty)$ be a probability measure on (\mathbb{R},\mathcal{B}) . Then the **cummulative distribution function** $F:\mathbb{R}\to [0,1]$ is defined by:

$$F(a) = P((-\infty, b]) \quad \forall b \in \mathbb{R}$$

Properties of a destribution function:

1.
$$P((a,b]) = F(b) - F(a)$$

2.
$$F(a) \leq F(b) \Leftrightarrow a \leq b$$

3. For all sequences $(b_n\in\mathbb{R})_{n\in\mathbb{N}}$ monotnously decreasing with $b_n o b$ it holds that: $F(b_n) o F(b)$

4.
$$\lim_{x o \infty} F(x) = 1$$
 and $\lim_{x o -\infty} F(x) = 0$

We now have derived a **distribution function** from a probability measure. **Theorem 1.16** now states, that for every real function $F:\mathbb{R}\to[0,1]$, that satisfies properties 2 -4 from above, there exists one and only one **probability measure** $P:\mathcal{B}\to[0,\infty)$ with: $F(b)=P((-\infty,b])$

Every probability measure, that is characterized by such a function is now called **Lebesgue-stieltjes-measure**

The **lebesque measure** $\lambda: \mathcal{B} \to [0, \infty)$ is defined by:

$$\lambda((a,b]) = b - a$$

▼ probability mass function and pdf

Definition of pmf: Let $f:\mathbb{R} o \mathbb{R}_+$. Then f is called a pmf iff:

$$\sum_{x \in \mathcal{S}_f} f(x) = 1 \quad ext{with} \quad \mathcal{S}_f = \{x \in \mathbb{R} : f(x) > 0\}$$

 \mathcal{S}_f is called the **support** and must be **countable** in this definition. And we can define a corresponding **probability-measure** P **as:**

$$P(A) = \sum_{x \in (A \cap \mathcal{S}_f)} f(x)$$

▼ Discrete probability measures and pdfs

A probability measure on the measure space (\mathbb{R},\mathcal{B}) is called **discrete iff:**

$$\exists A \subset \mathbb{R} | A \ \operatorname{countable} : P(A) = 1$$

Definition pdf: let $f:\mathbb{R} \to \mathbb{R}_+$ be a real and positive mapping. Then f is a pdf iff:

$$\int_{-\infty}^{\infty} f(x) = 1$$