Лабораторная работа №8

Модель конкуренции двух фирм

Дидусь К.В.

Содержание

Цель работы	5
Выполнение лабораторной работы	6
Теоретическое введение	6
Модель одной фирмы	6
Конкуренция двух фирм	9
Стационарная точка	10
Задание	11
Случай 1	11
Случай 2	11
Начальные условия и параметры	11
Код программы	13
Результат выполнения программы	15
Выводы	18

Список таблиц

Список иллюстраций

0.1	Первый случай	16
0.2	Второй случай	17

Цель работы

- 1. Рассмотреть модель конкуренции двух фирм в двух случаях.
- 2. Построить и проанализировать графики.

Выполнение лабораторной работы

Теоретическое введение

Модель одной фирмы

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
 - М оборотные средства предприятия
 - au длительность производственного цикла
 - р рыночная цена товара
- $ilde{p}$ себестоимость продукта, то есть переменные издержки на производство единицы продукции.
 - δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.

Q(S/p) – функция спроса, зависящая от отношения дохода S к цене р. Она равна количеству продукта, потребляемого одним потребителем в единицу времени.

Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k \frac{P}{S} = q(1 - \frac{p}{p_{cr}}),$$

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при p = pcr (критическая стоимость продукта) потребители отказываются от приобретения товара. Величина pcr = Sq/k. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса в форме (1) является пороговой (то есть, Q(S/p) = 0 при $p \ge p_{cr}$) и обладает свойствами насыщения.

Уравнения динамики оборотных средств можно записать в виде

$$\frac{\partial M}{\partial t} = -\frac{M\delta}{\tau} + NQp - \kappa = -\frac{M\delta}{\tau} + NQ(1 - \frac{p}{p_{cr}})p - \kappa$$

Уравнение для рыночной цены р представим в виде

$$\frac{\partial p}{\partial t} = \gamma \left(-\frac{M\delta}{\tau \tilde{p}} + NQ\left(1 - \frac{p}{p_{cr}}\right)\right)$$

Первый член соответствует количеству поставляемого на рынок товара (то есть, предложению), а второй член – спросу.

Параметр γ зависит от скорости оборота товаров на рынке. Как правило, время торгового оборота существенно меньше времени производственного цикла τ . При заданном M уравнение (3) описывает быстрое стремление цены к равновесному значению цены, которое устойчиво.

В этом случае уравнение (3) можно заменить алгебраическим соотношением

$$-\frac{M\delta}{\tau\tilde{p}} + NQ(1 - \frac{p}{p_{cr}}) = 0$$

Из (4) следует, что равновесное значение цены р равно

$$p = p_{cr}(1 - \frac{M\delta}{\tau \tilde{p}Nq})$$

Уравнение (2) с учетом (5) приобретает вид

$$\frac{\partial M}{\partial t} = M \frac{\delta}{\tau} (\frac{p_{cr}}{\tilde{p}} - 1) - M^2 (\frac{\delta}{\tau \delta p})^2 \frac{p_{cr}}{Nq} - \kappa$$

Уравнение (6) имеет два стационарных решения, соответствующих условию $\partial M/\partial t$ = 0:

$$\tilde{M}_{1,2} = \frac{1}{2}a \pm \sqrt{\frac{a^2}{4} - b}$$

где

$$a = Nq(1 - \frac{\tilde{p}}{p_{cr}})\tilde{p}\frac{\tau}{\delta}, b = \kappa Nq\frac{(\tau\tilde{p})^2}{p_{cr}\delta^2}$$

Из (7) следует, что при больших постоянных издержках (в случае $a^2 < 4b$) стационарных состояний нет. Это означает, что в этих условиях фирма не может функционировать стабильно, то есть, терпит банкротство. Однако, как правило, постоянные затраты малы по сравнению с переменными (то есть, $b \ll a^2$) и играют роль, только в случае, когда оборотные средства малы. При $b \ll a$ стационарные значения М равны

$$\tilde{M}_{+} = Nq \frac{\tau}{\delta} (1 - \frac{\tilde{p}}{p_{cr}}) \tilde{p}, \tilde{M}_{-} = \kappa \tilde{p} \frac{\tau}{\delta(p_{cr} - \tilde{p})}$$

Первое состояние \tilde{M}_+ устойчиво и соответствует стабильному функционированию предприятия. Второе состояние \tilde{M}_- неустойчиво, так что при $M<\tilde{M}_-$ оборотные средства падают $(\partial M/\partial t<0)$, то есть, фирма идет к банкротству. По смыслу \tilde{M}_- соответствует начальному капиталу, необходимому для входа в рынок.

В обсуждаемой модели параметр δ всюду входит в сочетании с τ . Это значит, что уменьшение доли оборотных средств, вкладываемых в производство, эквивалентно

удлинению производственного цикла. Поэтому мы в дальнейшем положим: $\delta=1,$ а параметр τ будем считать временем цикла, с учётом сказанного.

Конкуренция двух фирм

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Последнее означает, что у потребителей в этой нише нет априорных предпочтений, и они приобретут тот или иной товар, не обращая внимания на знак фирмы.

В этом случае, на рынке устанавливается единая цена, которая определяется балансом суммарного предложения и спроса. Иными словами, в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.)

Уравнения динамики оборотных средств запишем по аналогии с (2) в виде

$$\begin{cases} \frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} + N_1 q (1 - \frac{p}{p_{cr}}) p - \kappa_1 \\ \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} + N_2 q (1 - \frac{p}{p_{cr}}) p - \kappa_2 \end{cases}$$

где использованы те же обозначения, а индексы 1 и 2 относятся к первой и второй фирме, соответственно. Величины N_1 и N_2 – числа потребителей, приобретших товар первой и второй фирмы.

Учтем, что товарный баланс устанавливается быстро, то есть, произведенный каждой фирмой товар не накапливается, а реализуется по цене p. Тогда

$$\begin{cases} \frac{M_1}{\tau_1 \tilde{p}_1} = -N_1 q (1 - \frac{p}{p_{cr}}) \\ \frac{M_2}{\tau_2 \tilde{p}_2} = -N_2 q (1 - \frac{p}{p_{cr}}) \end{cases}$$

где \tilde{p}_1 и \tilde{p}_2 – себестоимости товаров в первой и второй фирме.

С учетом (10) представим (11) в виде

$$\begin{cases} \frac{\partial M_1}{\partial t} = -\frac{M_1}{\tau_1} \left(1 - \frac{p}{\tilde{p}_1} \right) - \kappa_1 \\ \frac{\partial M_2}{\partial t} = -\frac{M_2}{\tau_2} \left(1 - \frac{p}{\tilde{p}_2} \right) - \kappa_2 \end{cases}$$

Уравнение для цены, по аналогии с (3),

$$\frac{\partial p}{\partial t} = -\gamma \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2} - Nq(1 - \frac{p}{p_{cr}})\right)$$

Считая, как и выше, что ценовое равновесие устанавливается быстро, получим:

$$p = p_{cr} \left(1 - \frac{1}{Nq} \left(\frac{M_1}{\tau_1 \tilde{p}_1} + \frac{M_2}{\tau_2 \tilde{p}_2}\right)\right)$$

Подставив (14) в (12) имеем:

$$\begin{cases} \frac{\partial M_1}{\partial t} = c_1 M_1 - b M_1 M_2 - a_1 M_1^2 - \kappa_1 \\ \frac{\partial M_2}{\partial t} = c_2 M_2 - b M_1 M_2 - a_2 M_2^2 - \kappa_2 \end{cases}$$

где

$$a_1 = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q}, a_2 = \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q}, b = \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q}, c_1 = \frac{p_{cr} - \tilde{p}_1}{\tau_1^2 \tilde{p}_1^2}, c_2 = \frac{p_{cr} - \tilde{p}_2}{\tau_2^2 \tilde{p}_2^2}$$

Исследуем систему (15) в случае, когда постоянные издержки (k_1, k_2) пренебрежимо малы. И введем нормировку $t = c_1 \theta$. Получим следующую систему:

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

Стационарная точка

Для нахождения стационарной точки нужно приравнять первое уравнение из системы выше к нулю и найти корни:

$$\begin{cases} x_1 = 0 \\ x_2 = \frac{c_1 - by}{a_1} \end{cases}$$

Отбрасываем 0, потому что он не может быть стационарным состоянием, и находим вторую точку:

$$\begin{cases} x = \frac{c_1 - by}{a_1} \\ y = \frac{a_1 c_2 - bc_1}{a_1 a_2 - b^2} \end{cases}$$

Подставляем значение у и получаем:

$$\begin{cases} x = \frac{c_1 a_2 - b c_2}{a_1 a_2 - b^2} \\ y = \frac{a_1 c_2 - b c_1}{a_1 a_2 - b^2} \end{cases}$$

Задание

Случай 1

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

Случай 2

$$\begin{cases} \frac{\partial M_1}{\partial \theta} = M_1 - (\frac{b}{c_1} + 0.00046) M_1 M_2 - \frac{a_1}{c_1} M_1^2 \\ \frac{\partial M_2}{\partial \theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2 \end{cases}$$

Начальные условия и параметры

 $M_0^1 = 7.5$ — оборотные средства фирмы 1

 $M_0^2 = 9.5$ — оборотные средства фирмы 2

 $p_{cr} = 45$ — критическая стоимость продукта

N=55 — число потребителей производимого продукта

q=1 — максимальная потребность одного человека в продукте в единицу времени

 $au_1 = 30$ — длительность производственного цикла фирмы 1

 $au_2 = 25$ — длительность производственного цикла фирмы 2

 $\tilde{p}_1 = 9$ — себестоимость продукта у фирмы 1

 $\tilde{p}_2 = 11$ — себестоимость продукта у фирмы 2

Код программы

Разработка программы проводилась на языке Python в среде Spyder Приведу полный код программы:

import numpy as np from scipy.integrate import odeint import matplotlib.pyplot as plt

 $p_cr=45~\#$ критическая стоимость продукта

tau1 = 30~# длительность производственного цикла фирмы 1

р
1 = 9 # себестоимость продукта у фирмы 1

 $tau2 = 25 \ \#$ длительность производственного цикла фирмы 2

p2 = 11 # себестоимость продукта у фирмы 2

N=55~# число потребителей производимого продукта

 ${
m q}=1$ #потребность человека в единицу времени

Начальное значение объема оборотных средств х1 и х2 $\mathbf{x0} = [7.5,\, 9.5]$

```
# Время симуляции
t = np.arange(0, 15, 0.001)
# Вычисление коэффициентов
a1 = p_{cr}/(tau1*tau1*p1*p1*N*q)
a2 = p_{cr}/(tau2*tau2*p2*p2*N*q)
b = p cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q)
c1 = (p_cr-p1)/(tau1*p1)
c2 = (p cr-p2)/(tau2*p2)
# Стационарные состояния для первого случая
s1 = (a2*c1-b*c2)/(a1*a2-b*b)
s2 = (a1*c2-b*c1)/(a1*a2-b*b)
# Первый случай
```

def syst(x, t):

$$\begin{split} &dx1=x[0]\text{ - }(b/c1)^*x[0]^*x[1]\text{ - }(a1/c1)^*x[0]^*x[0]\\ &dx2=(c2/c1)^*x[1]\text{ - }(b/c1)^*x[0]^*x[1]\text{ - }(a2/c1)^*x[1]^*x[1]\\ &return\ dx1,\ dx2 \end{split}$$

Второй случай

def syst2(x, t):

```
dx1 = x[0] - (b/c1 + 0.00046)*x[0]*x[1] - (a1/c1)*x[0]*x[0]
  dx2 = (c2/c1)*x[1] - (b/c1)*x[0]*x[1] - (a2/c1)*x[1]*x[1]
   return dx1, dx2
y = odeint(syst, x0, t)
y2 = odeint(syst2, x0, t)
# Построение динамики изменения оборотных средств фирмы 1 и фирмы 2
# в первом случае
plt.plot(t, y[:,0], label='Фирма 1')
plt.plot(t, y[:,1], label='Фирма 2')
plt.hlines(s1, 0, 20, colors="darkgrey", linestyles='dashed', label='s1')
plt.hlines(s2, 0, 20, colors="dimgrey", linestyles='dashed', label='s2')
plt.legend(loc=4)
plt.grid()
# Построение динамики изменения оборотных средств фирмы 1 и фирмы 2
# во втором случае
plt.plot(t, y2[:,0], label='Фирма 1')
plt.plot(t, y2[:,1], label='Фирма 2')
plt.legend()
plt.grid()
Результат выполнения программы
```

Первый случай. (рис. @fig:001)

Рис. 0.1: Первый случай

По графику видно, что рост оборотных средств предприятий идет независимо друг от друга. В математической модели этот факт отражается в коэффициенте, стоящим перед членом M_1M_2 : в рассматриваемой задаче он одинаковый в обоих уравнениях ($\frac{b}{c_1}$. Это было обозначено в условиях задачи.

Каждая фирма достигает свое максимальное значение объема продаж и остается на рынке с этим значением, то есть каждая фирма захватывает свою часть рынка потребителей, которая не изменяется.

Второй случай. (рис. @fig:002)

Рис. 0.2: Второй случай

По графику видно, что первая фирма, несмотря на начальный рост, достигнув своего максимального объема продаж, начитает нести убытки и, в итоге, терпит банкротство. Динамика роста объемов оборотных средств второй фирмы остается без изменения: достигнув максимального значения, остается на этом уровне.

Выводы

- 1. Рассмотрел модель конкуренции двух фирм в разных случаях.
- 2. Построил и проанализировать графики.