Basic Calculus for Greeks

November 4, 2022

Outline

- Definition and Notations
- 2 Derivatives of common functions
- Some Basic Rules

Taylor Approximation

Definition and Notations

The first-order derivative can be defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Second-order derivative f''(x) is the derivative of f'(x)
- The partial derivative of $f(x_1, x_2)$ w.r.t x_1 can be defined by

$$f_1(x_1, x_2) = \lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h}$$

- ▶ Second-order derivatives: $f_{11}(x_1, x_2)$, $f_{22}(x_1, x_2)$ and $f_{12}(x_1, x_2) = f_{21}(x_1, x_2)$
- ► E.g. $f_{12}(x_1, x_2)$ can be obtained by taking partial derivative of $f_1(x_1, x_2)$ w.r.t x_2

Derivatives of common functions

- Power function: $(x^a)' = ax^{a-1}$ • E.g. $(x^5)' = 5x^4$; (x)' = 1
- Exponential function: $(e^{cx})' = ce^{cx}$
 - E.g. $(e^{2x})' = 2e^{2x}$
- Logarithm function: $(\ln x)' = \frac{1}{x}$
- The derivative of CDF is its PDF

$$F(x) = \int_{-\infty}^{x} f(t)dt$$
 then $F'(x) = f(x)$

▶ E.g. Standard Normal: $\Phi'(x) = \phi(x)$

Some Basic Rules

- Linearity: if $h(x) = c_1 f(x) + c_2 g(x)$, then $\frac{dh^n(x)}{dx^n} = c_1 \frac{df^n(x)}{dx^n} + c_2 \frac{dg^n(x)}{dx^n}$ for any order of derivatives n if exists
 - ► E.g. $W(S) = \sum_i n_i C_i(S) + \sum_j n_j P_j(S)$ then $W'(S) = \sum_i n_i C_i'(S) + \sum_j n_j P_j'(S)$
- Multiplication Rule: if h(x) = f(x)g(x), then h'(x) = f'(x)g(x) + f(x)g'(x)
 - ► E.g. $h(x) = x^3 \Phi(x)$, then $h'(x) = 3x^2 \Phi(x) + x^3 \phi(x)$
- Quotient Rule: if $h(x) = \frac{f(x)}{g(x)}$, then $h'(x) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$
 - E.g. $h(x) = \frac{1}{x}$, then $h'(x) = -\frac{1}{x^2}$
- Chain Rule: if h(x) = f(g(x)), then h'(x) = f'(g(x))g'(x)
 - E.g. $h(x) = \Phi(\ln(x))$, then $h'(x) = \phi(\ln(x))\frac{1}{x}$

Taylor Approximation

Second-order Talyor expansion for univariate function:

$$f(x) \approx f(x^*) + \frac{df(x^*)}{dx}(x - x^*) + \frac{1}{2} \frac{d^2 f(x^*)}{dx^2}(x - x^*)^2$$
$$\Delta f(x^*) \approx \frac{df(x^*)}{dx} \Delta x^* + \frac{1}{2} \frac{d^2 f(x^*)}{dx^2} \Delta x^{*2}$$

Second-order Taylor expansion for multivariate function:

$$\begin{split} \Delta f\left(x_{1}^{*},x_{2}^{*}\right) &\approx f_{1}\left(x_{1}^{*},x_{2}^{*}\right) \Delta x_{1}^{*} + f_{2}\left(x_{1}^{*},x_{2}^{*}\right) \Delta x_{2}^{*} \\ &+ \frac{1}{2}\left[f_{11}\left(x_{1}^{*},x_{2}^{*}\right) \Delta x_{1}^{*2} + 2f_{12}\left(x_{1}^{*},x_{2}^{*}\right) \Delta x_{1}^{*} \Delta x_{2}^{*} + f_{22}\left(x_{1}^{*},x_{2}^{*}\right) \Delta x_{2}^{*2}\right] \end{split}$$

For the first-order approximation, drop all second-order terms