noint	1.	
point		$lackbox{III}$ X is a matrix in which each column is one training example.
		$a^{[2](12)}$ denotes activation vector of the 12^{th} layer on the 2^{nd} training
		example.
		$a_4^{[2]}$ is the activation output by the 4^{th} neuron of the 2^{nd} layer
		$a^{[2](12)}$ denotes the activation vector of the 2^{nd} layer for the 12^{th} training
		example.
		$oldsymbol{X}$ is a matrix in which each row is one training example.
		$a^{[2]}$ denotes the activation vector of the 2^{nd} layer.
		$a_{\scriptscriptstyle A}^{[2]}$ is the activation output of the 2^{nd} layer for the 4^{th} training example
		a ₄ is the activation output of the 2 hayer for the 4 training example
	2	The tanh activation usually works better than sigmoid activation function for hidden units
point	2.	because the mean of its output is closer to zero, and so it centers the data better for the next layer. True/False?
		True
		() False
1 point	3.	Which of these is a correct vectorized implementation of forward propagation for layer l , where $1 \leq l \leq L$?
ponit		
		$\bullet Z^{[l]} = W^{[l]} A^{[l]} + b^{[l]}$ $\bullet A^{[l]} = g^{[l]}(Z^{[l]})$
		• $Z^{[l]} = W^{[l]}A^{[l]} + b^{[l]}$
		$ullet \ A^{[l+1]} = g^{[l]}(Z^{[l]})$
		$ullet \ A^{[l+1]} = g^{[l+1]}(Z^{[l]})$
		• $A^{[l]} = g^{[l]}(Z^{[l]})$
1 point	4.	You are building a binary classifier for recognizing cucumbers (y=1) vs. watermelons (y=0). Which one of these activation functions would you recommend using for the output
		layer?
		ReLU
		Leaky ReLU
		sigmoid
		tanh
4	E	Consider the following code:
1 point	5.	1 A = np.random.randn(4,3)
		2 B = np.sum(A, axis = 1, keepdims = True)
		What will be B.shape? (If you're not sure, feel free to run this in python to find out).
		(1, 3)
		(, 3)
		(4,)
		(4, 1)
1	6.	Suppose you have built a neural network. You decide to initialize the weights and biases
point		to be zero. Which of the following statements is true?
		Each neuron in the first hidden layer will perform the same computation. So even after multiple iterations of gradient descent each neuron in the layer will
		be computing the same thing as other neurons.
		Each neuron in the first hidden layer will perform the same computation in the
		first iteration. But after one iteration of gradient descent they will learn to compute different things because we have "broken symmetry".
		Each neuron in the first hidden layer will compute the same thing, but neurons
		in different layers will compute different things, thus we have accomplished "symmetry breaking" as described in lecture.
		The first hidden layer's neurons will perform different computations from each other even in the first iteration; their parameters will thus keep evolving in their
		own way.
	7	Logistic regression's weights w should be initialized randomly rather than to all zeros,
point	7.	because if you initialize to all zeros, then logistic regression will fail to learn a useful
		decision boundary because it will fail to "break symmetry", True/False?
		True False
		False
	0	You have built a network using the tanh activation for all the hidden waits. You labelled
1 point	8.	You have built a network using the tanh activation for all the hidden units. You initialize the weights to relative large values, using np.random.randn(,)*1000. What will happen?
1 point	8.	the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient
1 point	8.	the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small.
1 point	8.	It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become
1 point	8.	It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow.
1 point	8.	 It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to
1 point	8.	 It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning.
1 point	8.	 the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights
1 point	8.	 It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to
1 point		 the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values.
1 point	9.	the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values.
1		 the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values.
1		 It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network:
1		 It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: \$\begin{align*} \alpha_1^{(1)} \\ \alpha_2^{(1)} \\ \alpha_2^{(1)} \\ \alpha_1^{(1)} \\ \alpha_1^{(2)} \\ \alpha_2^{(2)} \\ \alpha_2^{(2
1		 the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network:
1		 the weights to relative large values, using np.random.randn(.,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: q(1) q(1) q(1) q(1) q(1) q(1) q(1) q(1) q(1)
1		 It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: \$\begin{align*} \alpha_1^{(1)} \\ \alpha_2^{(1)} \\ \alpha_2^{(1)} \\ \alpha_1^{(1)} \\ \alpha_1^{(2)} \\ \alpha_2^{(2)} \\ \alpha_2^{(2
1		 the weights to relative large values, using np.random.randn(.,,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: q(1) q(1) q(1) q(1) q(1) q(1) q(1) q(1) q(1)
1		the weights to relative large values, using np.random.randn(,.)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: \$\begin{align*} \text{\$a_1^{(1)} \\ \text{\$a_2^{(1)} \\ \text{\$a_1^{(2)} \\ \text{\$a_2^{(1)} \\ \text{\$a_1^{(2)} \\ \text{\$a_2^{(1)} \\ \text{\$a_1^{(2)} \\ \text{\$a_2^{(1)} \\ \text{\$a_2^{(1)} \\ \text{\$a_2^{(1)} \\ \text{\$a_1^{(2)} \\ \text{\$a_2^{(2)} \\ \text{\$a_1^{(2)} \\ \text{\$a_2^{(2)} \\ \text{\$a_1^{(2)} \\ \text{\$a_2^{(2)} \\ \text{\$a_1^{(2)} \\ \text{\$a_2^{(2)} \\ \text{\$a_1^{(2)} \\ \text{\$a_1^{(2)} \\ \text{\$a_1^{(2)} \\ \text{\$a_2^{(2)} \\ \text{\$a_1^{(2)} \\ \tex
1		 the weights to relative large values, using np.random.randn(,.)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values.
1		 the weights to relative large values, using np.random.randn(.,,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: Q₁(1) Q₁
1		 the weights to relative large values, using np.random.randn(,.)*1000. What will happen? it doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: \(\begin{align*} \begin{align*}
1		 the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: \$\begin{align*} \align* \\ \align* \\\ \align* \\ \align* \\\ \align* \\ \a
1		 the weights to relative large values, using np.random.randn()*1000. What will happen? it doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: \(\begin{align*} a_1^{(1)} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1		the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow done learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network:
1		 the weights to relative large values, using np.random.randn()*1000. What will happen? it doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: \(\begin{align*} a_1^{(1)} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1		the weights to relative large values, using np.random.randn(.,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network:
1		the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network:
1		the weights to relative large values, using np.random.randn(,.)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network:
1 point	9.	the weights to relative large values, using np.random.randn(,.)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network:
1 point	9.	the weights to relative large values, using np.random.randn(,)*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network: \[\begin{align*} \text{\$a_1^{(1)}\$} \\ \text{\$a_2^{(1)}\$} \\ \text{\$a_3^{(1)}\$} \\ \text{\$a_1^{(2)}\$} \\ \text{\$a_1^{(2)}\$} \\ \text{\$a_2^{(1)}\$} \\ \text{\$a_1^{(1)}\$} \\ \$a_1^{(1)
1 point	9.	the weights to relative large values, using np.random.randn()*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network:
1 point	9.	the weights to relative large values, using np.random.randn()*1000. What will happen? It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network:
1 point	9.	the weights to relative large values, using np.random.randn()*1000. What will happen? It doesn't matter. So long as you initialize the weights are large or small. This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow. This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning. This will cause the inputs of the tanh to also be very large, causing the units to be 'highly activated' and thus speed up learning compared to if the weights had to start from small values. Consider the following 1 hidden layer neural network:

Upgrade to submit