- 1. The endpoints of \overline{CD} are C(-2,-4) and D(6,2). What are the coordinates of the midpoint of \overline{CD} ?
 - (1)(2,3)
- (2) (2,-1)
- (3) (4, -2)
- (4) (4, 3)
- 2. In the accompanying diagram, \underline{ABC} and \underline{DEF} are triangles with $\angle A \cong \angle D$, and $\overline{AC} \cong \overline{DF}$. Which statement is sufficient to prove $\Delta ABC \cong \Delta DEF$?

- (1) $\angle C \cong \angle F$ (2) $\angle C \cong \angle E$ (3) $\overline{CB} \cong \overline{EF}$ (4) $\overline{AC} \parallel \overline{DE}$
- 3. In the diagram below, $\Delta AEC \cong \Delta BED$

Which statement is *not* always true?

 $(1) \ \overline{AC} \cong \overline{BD}$

- (2) $\overline{CE} \cong \overline{DE}$
- (3) $\angle EAC \cong \angle EBD$
- (4) $\angle ACE \cong \angle DBE$

5. Base your answer to the following question on As shown in the diagram below, \overline{AC} bisects $\angle BAD$ and $\angle B \cong \angle D$.

Which method could be used to prove $\triangle ABC \cong \triangle ADC$?

- (1) SSS
- (2) AAA
- (3) SAS
- (4) AAS
- 6. Base your answer to the following question on In the accompanying diagram, \overline{ACE} , \overline{BCD} , \overline{AB} , and \overline{DE} , $\angle A \cong \angle E$, and C is the midpoint of \overline{AE} .

Which theorem justifies $\triangle ABC \cong \triangle EDC$?

(1) SSS \cong SSS

(2) SAS \cong SAS

(3) ASA \cong ASA

- (4) SSA \cong SSA
- 7. Line segment AB has endpoints A(2,-3) and B(-4,6). What are the coordinates of the midpoint of \overline{AB} ?
 - (1) (-2,3)
- (2) $(-1,1\frac{1}{2})$ (3) (-1,3) (4) $(3,4\frac{1}{2})$

- 8. Which point is closest to the origin?
 - (1) (5,12)
- (2) (6,8)
- (3) (10,4)
- (4) (0,11)

- 9. Two triangles are congruent if
 - (1) corresponding angles are congruent
 - (2) corresponding sides and corresponding angles are congruent
 - (3) the angles in each triangle have a sum of
 - (4) corresponding sides are proportional
- 10. Base your answer to the following question on In the diagram below, $\triangle ABC$ is shown with \overline{AC} extended through point D.

If $\angle BCD = 6x + 2$, $\angle BAC = 3x + 15$, and $\angle ABC = 2x - 1$, what is the value of x?

- (1) 12
- (2) $14\frac{10}{11}$ (3) 16 (4) $18\frac{1}{9}$
- 11. Base your answer to the following question on In the accompanying diagram of rectangle ABCD, m \angle BAC = 3x + 4 and m \angle ACD = x + 28.

What is $m\angle CAD$?

- (1) 12
- (2) 37
- (3) 40
- (4) 50

- 12. What is the converse of "If an angle measures 90 degrees, then it is a right angle"?
 - (1) If an angle is a right angle, then it measures 90 degrees.
 - (2) An angle is a right angle if it measures 90 degrees.
 - (3) If an angle is not a right angle, then it does not measure 90 degrees.
 - (4) If an angle does not measure 90 degrees, then it is not a right angle.
- 13. In the accompanying diagram of $\triangle ABC$, side \overline{BC} is extended to D, $m \angle B = 2y$, $m \angle BCA = 6y$, and $m \angle ACD = 3y$.

What is $m\angle A$?

- (1) 15
- (2) 17
- (3) 20
- (4) 24
- 14. The statement "x is a multiple of 3, and x is an even integer" is true when x is equal to
 - (1) 9
- (2) 8
- (3) 3
- (4) 6
- 15. In the accompanying diagram, line a intersects line b.

What is the value of x?

- (1) -10
- (2) 5
- (3) 10
- (4) 90
- 16. A line segment has endpoints (4,7) and (1,11). What is the length of the segment?
 - (1) 5
- (2) 7
- (3) 16
- (4) 25

- 17. When writing a geometric proof, which angle relationship could be used alone to justify that two angles are congruent?
 - (1) supplementary angles
- (2) linear pair of angles
- (3) adjacent angles
- (4) vertical angle
- 18. In the diagram below, transversal \overrightarrow{TU} intersects \overrightarrow{PQ} and \overrightarrow{RS} at V and W, respectively.

If $m\angle TVQ=5x-22$ and $m\angle VWS=3x+10$. for which value of x is $\overrightarrow{PQ}\parallel\overrightarrow{RS}$?

- (1) 6
- (2) 16
- (3) 24
- (4) 28
- 19. Base your answer to the following question on Line n intersects lines l and m, forming the angles shown in the diagram below.

Which value of x would prove $l \parallel m$?

- (1) 2.5
- (2) 4.5
- (3) 6.25
- (4) 8.75

20. Based on the diagram below, which statement is true?

- (1) $a \parallel b$
- (2) $a \parallel c$
- (3) $b \parallel c$
- (4) $d \parallel e$

22. In the diagram below of quadrilateral *ABCD*, diagonals \overline{AEC} and \overline{BED} are perpendicular at E.

Which statement is always true based on the given information?

(1) $\overline{DE} \cong \overline{EB}$

- (2) $\overline{AD}\cong \overline{AB}$
- $(3) \angle DAC \cong \angle BAC$
- $(4) \angle AED \cong \angle CED$

- 24. A line segment has endpoints A(7,-1) and B(-3,3). What are the coordinates of the midpoint of \overline{AB} ?
 - (1) (1,2)
- (2)(2,1)
- (3) (-5,2)
- (4) (5,-2)
- 25. Which compound statement is true?
 - (1) A triangle has three sides and a quadrilateral has five sides.
 - (2) A triangle has three sides if and only if a quadrilateral has five sides.
 - (3) If a triangle has three sides, then a quadrilateral has five sides.
 - (4) A triangle has three sides or a quadrilateral has five sides.
- 26. Base your answer to the following question on In the accompanying diagram of quadrilateral *QRST*, $\overline{RS} \perp \overline{ST}$, $\overline{SR} \cong \overline{OR}$, and $\overline{ST} \perp \overline{QT}$.

Which method of proof may be used to prove $\Delta QRS \cong \Delta QTS$?

- (1) HL
- (2) SAS
- (3) AAS
- (4) ASA
- 27. What is the equation of a line passing through the point (6,1) and parallel to the line whose equation is 3x = 2y + 4?

(1)
$$y = -\frac{2}{3}x + 5$$

(2)
$$y = -\frac{2}{3}x - 3$$

(4) $y = \frac{3}{2}x - 5$

(3)
$$y = \frac{3}{2}x - 8$$

(4)
$$y = \frac{3}{2}x - 5$$

28. Which equation represents a line that is parallel to the line whose equation is 3x-2y = 7?

(1)
$$y = -\frac{3}{2}x + 5$$

5 (2)
$$y = -\frac{2}{3}x + 4$$

(4) $y = \frac{2}{3}x - 4$

(3)
$$y = \frac{3}{2}x - 5$$

(4)
$$y = \frac{2}{3}x - 4$$

29. In the diagram below of ΔDAE and ΔBCE , \overline{AB} and \overline{CD} intersect at E, such that $\overline{AE}\cong \overline{CE}$ and $\angle BCE\cong \angle DAE$.

Triangle DAE can be proved congruent to triangle BCE by

- (1) ASA
- (2) SAS
- (3) SSS
- (4) HL