

Contents

- Testing Hypotheses About Population Parameters
- · Statistical Test of Hypothesis
- A Large-Sample Test About A Population Mean
- · A Large-Sample Test of Hypothesis for the Difference Between Two Population Means
- A Large-Sample Test of Hypothesis for a Binomial Proportion
- A Large-Sample Test of Hypothesis for the Difference Between Two Binomial Proportions

Introduction

- Suppose that a pharmaceutical company is concerned that the mean potency μ of an antibiotic meet the minimum government potency standards. They need to decide between two possibilities:
 - The mean potency μ does not exceed the mean allowable potency.
 - The mean potency μ exceeds the mean allowable potency.
- This is an example of a test of hypothesis.

Introduction

- Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities:
 - The person is innocent.
 - The person is guilty.
- To begin with, the person is assumed innocent.
- The prosecutor presents evidence, trying to convince the jury to reject the original assumption of innocence, and conclude that the person is guilty.

Parts of a Statistical Test

A statistical test of hypothesis consist of 5 parts

- The null hypothesis, Ho 1.
- 2. The alternative hypothesis, H_a
- The test statistic and its *p-value* 3.
- 4. The rejection region
- Conclusion

Parts of a Statistical Test

- The null hypothesis, H_0 : Assumed to be true until we can prove otherwise.
- The alternative hypothesis, H_a : Will be accepted as true if we can disprove $\,\mathrm{H}_{0}\,$

Court trial: Pharmaceuticals:

H_o: innocent

H_o: μ does not exceeds allowed amount

H_a: guilty

H_a: μ exceeds allowed amount

Parts of a Statistical Test

- 3. The test statistic and its p-value:
 - $-\,$ A single statistic calculated from the sample which will allow us to reject or not reject H_0 and
 - A probability, calculated from the test statistic that measures whether the test statistic is likely or unlikely, assuming H₀ is true.

4. The rejection region:

A rule that tells us for which values of the test statistic, or for which p-values, the null hypothesis should be rejected.

9 - 7

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Parts of a Statistical Test

- Conclusion:
 - Either "Reject H₀" or "Do not reject H₀", along with a statement about the reliability of your conclusion.

How do you decide when to reject H₀?

- Depends on the significance level, α, the maximum tolerable risk you want to have of making a mistake, if you decide to reject H₀.
- Usually, the significance level is $\alpha = .01$ or $\alpha = .05$.

9 - 8

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Example

The mayor of a small city claims that the average income in his city is \$35,000 with a standard deviation of \$5000. We take a sample of 64 families, and find that their average income is \$30,000. Is his claim correct?

1-2. We want to test the hypothesis:

 H_0 : $\mu = 35,000$ (mayor is correct) versus

 H_a : $\mu \neq 35,000$ (mayor is wrong)

Start by assuming that H_0 is true and $\mu = 35,000$.

9 - 9

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universit

Example

- 3. The best estimate of the population mean μ is the sample mean, \$30,000:
 - From the Central Limit Theorem the sample mean has an approximate normal distribution with mean $\mu=35{,}000$ and standard error SE = 5000/8=625.
 - The sample mean, \$30,000 lies z = (30,000 35,000)/625 = -8 standard deviations below the mean.
 - The probability of observing a sample mean this far from $\mu=35{,}000$ (assuming H $_0$ is true) is *nearly zero*.

9 - 10 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universi

Example

- From the Empirical Rule, values more than three standard deviations away from the mean are considered **extremely unlikely**. Such a value would be extremely unlikely to occur if indeed H₀ is true, and would give reason to reject H₀.
- 5. Since the observed sample mean, \$30,000 is so unlikely, we choose to <code>reject H</code>_0: μ = 35,000 and conclude that the mayor's claim is incorrect.
- 6. The probability that μ = 35,000 and that we have observed such a small sample mean just by chance is *nearly zero*.

0 44

Large Sample Test of a Population Mean, μ

- Take a random sample of size $n \ge 30$ from a population with mean μ and standard deviation σ .
- We assume that either
 - 1. σ is known or
 - 2. $\sigma \approx s$ since *n* is large
- The hypothesis to be tested is
 - H_0 : $\mu = \mu_0$ versus H_a : $\mu \neq \mu_0$

9 - 12

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Test Statistic

 Assume to begin with that H₀ is true. The sample mean x̄ is our best estimate of μ, and we use it in a standardized form as the test statistic:

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \approx \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

since \overline{x} has an approximate normal distribution with mean μ_0 and standard deviation σ/\sqrt{n} .

9 - 13

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Test Statistic

If H_0 is true the value of \overline{x} should be close to μ_0 , and z will be close to 0. If H_0 is false, \overline{x} will be much larger or smaller than μ_0 , and z will be much larger or smaller than 0, indicating that we should reject H_0 .

9 - 14 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Likely or Unlikely?

Once you've calculated the observed value of the test statistic, calculate its **p-value**:

p-value: The probability of observing, just by chance, a test statistic as extreme as or even more extreme than what we've actually observed. If H₀ is rejected this is the actual probability that we have made an incorrect decision.

 If this probability is very small, less than some preassigned significance level, α, H₀ can be rejected.

9 - 15

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universi

Example

The daily yield for a chemical plant has averaged 880 tons for several years. The quality control manager wants to know if this average has changed. She randomly selects 50 days and records an average yield of 871 tons with a standard deviation of 21 tons.

$$H_0: \mu = 880$$

 $H_a: \mu \neq 880$

Test statistic:

$$z \approx \frac{\overline{x} - \mu_0}{s / \sqrt{n}} = \frac{871 - 880}{21 / \sqrt{50}} = -3.03$$

9 - 16 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universit

Example

What is the probability that this test statistic or something even more extreme (far from what is expected if H_0 is true) could have happened *just by chance*?

p - value: P(z > 3.03) + P(z < -3.03)= 2P(z < -3.03) = 2(.0012) = .0024

This is an unlikely occurrence, which happens about 2 times in 1000, assuming $\mu = 880!$

9 - 17 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universit

Example

To make our decision clear, we choose a significance level, say α = .01.

If the *p*-value is less than α , H₀ is rejected as false. You report that the results are <u>statistically significant</u> at level α .

If the p-value is greater than $\alpha,\,H_0$ is not rejected. You report that the results are not significant at level $\alpha.$

Since our p-value =.0024 is less than α , we reject H_0 and conclude that the average yield has changed.

9 - 18

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Statistical Significance

- The critical value approach and the p-value approach produce identical results.
- The p-value approach is often preferred because
 - Computer printouts usually calculate p-values
 - You can evaluate the test results at any significance level you choose.
- What should you do if you are the experimenter and no one gives you a significance level to use?

9 - 25

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Statistical Significance

- If the p-value is less than .01, reject H₀. The results are highly significant.
- If the p-value is between .01 and .05, reject H₀. The results are statistically significant.
- If the p-value is between .05 and .10, do not reject H₀. But, the results are tending towards significance.
- If the p-value is greater than .10, do not reject H₀. The results are not statistically significant.

9 - 26

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universit

Two Types of Errors

There are two types of errors which can occur in a statistical test.

Actual Fact Jury's Decision	Guilty	Innocent
Guilty	Correct	Error
Innocent	Error	Correct

l	Actual Fact		H ₀ false
ı	Your Decision	(Accept H ₀)	(Reject H ₀)
1	H ₀ true	Correct	Type II Error
ł	(Accept H ₀)		71.
J	H ₀ false	Type I Error	Correct
	(Reject H ₀)		

Define:

 $\alpha = P(Type \ I \ error) = P(reject \ H_0 \ when \ H_0 \ is \ true)$

 $\beta = P(Type \ II \ error) = P(accept \ H_0 \ when \ H_0 \ is false)$

9 - 27

lujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Two Types of Errors

We want to keep the probabilities of error as small as possible.

- The value of α is the significance level, and is controlled by the experimenter.
- The value of β is difficult, if not impossible to calculate.

Rather than "accepting H_0 " as true without being able to provide a measure of goodness, we choose to "not reject" H_0 .

We write: There is insufficient evidence to reject H₀.

Mujdat Soyturk, Probability and Statistics, Spri

Other Large Sample Tests

- There were three other statistics in Chapter 8 that we used to estimate population parameters.
- These statistics had approximately normal distributions when the sample size(s) was large.
- These same statistics can be used to test hypotheses about those parameters, using the general test statistic:

 $z = \frac{\text{statistic - hypothesized value}}{\text{standard error of statistic}}$

9 - 29

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Testing the Difference between Two Means

A random sample of size n_1 drawn from population 1 with mean μ_1 and variance σ_1^2 .

A random sample of size n_2 drawn from population 2 with mean μ_2 and variance σ_2^2 .

The hypothesis of interest involves the difference, $\mu_1\!\!-\!\!\mu_2$, in the form:

• H_0 : $\mu_1 - \mu_2 = D_0$ versus H_a : one of three where D_0 is some hypothesized difference, usually 0.

) - 30 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

The Sampling Distribution of

1. The mean of $\bar{x}_1 - \bar{x}_2$ is $\mu_1 - \mu_2$, the difference in the population means.

2. The standard deviation of $\bar{x}_1 - \bar{x}_2$ is $SE = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$.

3. If the sample sizes are large, the sampling distribution of $\bar{x}_1 - \bar{x}_2$ is approximately normal, and SE can be estimated

as SE =
$$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

9 - 31 Muidat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Testing the Difference between Two Means

 $\mathbf{H}_0: \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2 = \boldsymbol{D}_0 \text{ versus}$

H_a: one of three alternatives

Test statistic:
$$z \approx \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

with rejection regions and/or p - values based on the standard normal z distribution.

9 - 32 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Example

Is there a difference in the average daily intakes of dairy products for men versus women? Use $\alpha=.05.\,$

Avg Daily Intakes	Men	Women
Sample size	50	50
Sample mean	756	762
Sample Std Dev	35	30

 $H_0: \mu_1 - \mu_2 = 0$ (same) $H_a: \mu_1 - \mu_2 \neq 0$ (different)

$$z \approx \frac{\overline{x}_1 - \overline{x}_2 - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{756 - 762 - 0}{\sqrt{\frac{35^2}{50} + \frac{30^2}{50}}} = -.92$$

9 - 33 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

p-Value Approach

The probability of observing values of z that as far away from z = 0 as we have, just by chance, if indeed $\mu_1 - \mu_2 = 0$.

p - value: P(z > .92) + P(z < -.92)= 2(.1788) = .3576

Since the *p*-value is greater than $\alpha = .05$, H₀ is not rejected. There is insufficient evidence to indicate that men and women have different average daily intakes

9 - 34 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Testing a Binomial Proportion p

A random sample of size n from a binomial population to test

 $\mathbf{H}_0: \mathbf{p} = \mathbf{p}_0$ versus

H : one of three alternatives

Test statistic: $z \approx \frac{p - p_0}{\sqrt{p_0 q_0}}$

with rejection regions and/or p – values based on the standard normal z distribution.

9 - 35 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Unive

Example

Regardless of age, about 20% of American adults participate in fitness activities at least twice a week. A random sample of 100 adults over 40 years old found 15 who exercised at least twice a week. Is this evidence of a decline in participation after age 40? Use α = .05.

$$H_0: p = .2$$

 $H_a: p < .2$

Test statistic: $z \approx \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{100}}} = \frac{.15 - .2}{\sqrt{.2(.8)}} = -1.25$

9 - 36 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Key Concepts

I. Parts of a Statistical Test

- 1. Null hypothesis: a contradiction of the alternative hypothesis
- 2. Alternative hypothesis: the hypothesis the researcher wants to support.
- Test statistic and its p-value: sample evidence calculated from sample data.
- 4. Rejection region—critical values and significance levels: values that separate rejection and nonrejection of the null hypothesis
- 5. Conclusion: Reject or do not reject the null hypothesis, stating the practical significance of your conclusion.

0 - 43

Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara University

Key Concepts

II. Errors and Statistical Significance

- 1. The significance level α is the probability if rejecting ${\it H}_0$ when it is in fact true.
- 2. The *p*-value is the probability of observing a test statistic as extreme as or more than the one observed; also, the smallest value of α for which H_0 can be rejected.
- 3. When the p-value is less than the significance level α , the null hypothesis is rejected. This happens when the test statistic exceeds the critical value.
- 4. In a Type II error, β is the probability of accepting H_0 when it is in fact false. The power of the test is $(1-\beta)$, the probability of rejecting H_0 when it is false.

9 - 44 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Universit

Key Concepts

III. Large-Sample Test Statistics
Using the z Distribution
To test one of the four
population parameters when the
sample sizes are large, use the
following test statistics:

Parameter	Test Statistic
μ	$z = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$
p	$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$
$\mu_1 - \mu_2$	$z = \frac{(\bar{x}_1 - \bar{x}_2) - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
$p_1 - p_2$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$

9 - 45 Mujdat Soyturk, Probability and Statistics, Spring 2021, Marmara Univer