- 15. 有三张卡片,分别写有 1 和 2, 1 和 3, 2 和 3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:"我与乙的卡片上相同的数字不是 2",乙看了丙的卡片后说:"我与丙的卡片上相同的数字不是 1",丙说:"我的卡片上的数字之和不是 5",则甲的卡片上的数字是
- 16. 若直线 y = kx + b 是曲线 $y = \ln x + 2$ 的切线,也是曲线 $y = \ln(x + 2)$ 的切线,b =_____.

三、解答题: (共5个小题,满分70分)

17. (本小题 12分)

 S_n 为等差数列 $\{a_n\}$ 的前 n 项和,且 $a_1=1, S_7=28$. 记 $b_n=[\lg a_n]$,其中 [x] 表示不超过 x 的最大整数,如 $[0.9]=0, [\lg 99]=1$.

- (I) 求 b_1 , b_{11} , b_{101} ;
- (II) 求数列 $\{b_n\}$ 的前 1000 项的和.

18. (本小题 12分)

某保险的基本保费为 a (单位:元),继续购买该险种的投保人成为续保人,续保人本年度的保费与上年度出险次数的关联如下:

上年度出险次数	0	1	2	3	4	≥ 5
保 费	0.85a	a	1.25a	1.5a	1.75a	2a

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数	0	1	2	3	4	≥ 5
概率	0.30	0.15	0.20	0.20	0.10	0.05

- (I) 求一续保人本年度高于基本保费的概率:
- (II) 若一续保人本年度的保费高于基本保费,求其保费比基本保费高出 60% 的概率;
- (III) 求续保人本年度的平均保费与基本保费的比值.

19. (本小题 12分)

如图,菱形 ABCD 的对角线 AC 与 BD 交于点 O, AB = 5, AC = 6, 点 E, F 分别在 AD, CD 上, $AE = CF = \frac{5}{4}$, EF 交 BD 于 点 H, 将 $\triangle DEF$ 沿 EF 折到 $\triangle D'EF$ 的位置, $OD' = \sqrt{10}$.

- (I)证明 $D'H \perp$ 平面 ABCD;
- (II) 求二面角 B-D'A-C 的正弦值.

20. (本小题 12 分)

已知椭圆 $E: \frac{x^2}{t} + \frac{y^2}{3} = 1$ 的焦点在 x 轴上, $A \in E$ 的左顶点,斜率为 k(k > 0) 的直线 交 $E \in A$, M 两点,点 N 在 E 上, $MA \perp NA$.

- (I) 当 t = 4, |AM| = |AN| 时,求 $\triangle AMN$ 的面积;
- (II) 当 2|AM| = |AN| 时,求k的取值范围.
- 21. (本小题 12 分)
 - (I) 讨论函数 $f(x) = \frac{x-2}{x+2} e^x$ 的单调性,并证明当 x > 0 时, $(x-2)e^x + x + 2 > 0$
 - (II) 证明: 当 $a \in [0,1)$ 时,函数 $g(x) = \frac{e^x ax a}{x^2}(x > 0)$ 有最小值,设 g(x) 的最小值为 h(a),求函数 h(a) 的值域.

请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分。

22. (本小题 10 分) 选修 4-1: 几何证明选讲

如图,在正方形 ABCD 中,E, G 分别在边 DA, DC 上(不与端点重合),且 DE = DG,过 D 点作 $DF \perp CE$,垂足为 F.

- (I)证明: B, C, G, F 四点共圆;
- (II) 若 AB = 1, E 为 DA 的中点,求四边形 BCGF 的面积.

23. (本小题 10 分) 选修 4-4: 坐标系与参数方程

在直角坐标系 xOy 中,圆 C 的方程为 $(x+6)^2 + y^2 = 25$.

- (I) 以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,求C的极坐标方程;
- (II) 直线 l 的参数方程是 $\begin{cases} x = t \cos \alpha, \\ y = t \sin \alpha, \end{cases}$ (t 为参数), l 与 C 交于 A, B 两点, $|AB| = \sqrt{10}$,求 l 的斜率.
- 24. (本小题 10 分) 选修 4-5: 不等式选讲

已知函数 $f(x) = |x - \frac{1}{2}| + |x + \frac{1}{2}|$, M 为不等式 f(x) < 2 的解集.

- (I) 求 M;
- (II) 证明: 当 $a, b \in M$ 时, |a+b| < |1+ab|.