Subgraph complementation and minimum rank

Calum Buchanan¹

Joint work with Christopher Purcell² and Puck Rombach¹

¹University of Vermont ²University of West Bohemia

October 20, 2022

Subgraph complementation

A subgraph complementation of a simple graph G = (V, E) w.r.t. $U \subseteq V$ is the operation of complementing the edges and non-edges of the induced subgraph G[U].

Subgraph complementation

A subgraph complementation of a simple graph G = (V, E) w.r.t. $U \subseteq V$ is the operation of complementing the edges and non-edges of the induced subgraph G[U].

Example

Subgraph complementation

A subgraph complementation of a simple graph G = (V, E) w.r.t. $U \subseteq V$ is the operation of complementing the edges and non-edges of the induced subgraph G[U].

Example

Observations

- ▶ Any graph H on V can be obtained from G via a sequence of subgraph complementations.
- ▶ The same sequence of complementations applied to the graph with no edges builds the symmetric difference $G\triangle H$.

Question

What is the minimum number of subgraph complementations required to obtain G from the graph on V with no edges?

Question

What is the minimum number of subgraph complementations required to obtain G from the graph on V with no edges?

Example $(G = K_{1,3})$

Question

What is the minimum number of subgraph complementations required to obtain G from the graph on V with no edges?

Example $(G = K_{1,3})$

Question

What is the minimum number of subgraph complementations required to obtain G from the graph on V with no edges?

Example $(G = K_{1,3})$

Question

What is the minimum number of subgraph complementations required to obtain G from the graph on V with no edges?

Definitions

Subgraph complementation system of G:

A collection $\mathscr C$ of subsets of V with the property that G is obtained from the empty graph by successive subgraph complementations w.r.t. the sets in $\mathscr C$.

Question

What is the minimum number of subgraph complementations required to obtain G from the graph on V with no edges?

Definitions

Subgraph complementation system of G:

A collection $\mathcal C$ of subsets of V with the property that G is obtained from the empty graph by successive subgraph complementations w.r.t. the sets in $\mathcal C$.

Equivalently,

- ▶ adjacent vertices in G are in an odd number of sets together
- ▶ non-adjacent vertices are in an even number of sets together

Question

What is the minimum number of subgraph complementations required to obtain G from the graph on V with no edges?

Definitions

Subgraph complementation system of G :

A collection $\mathcal C$ of subsets of V with the property that G is obtained from the empty graph by successive subgraph complementations w.r.t. the sets in $\mathcal C$.

Equivalently,

- ▶ adjacent vertices in G are in an odd number of sets together
- ▶ non-adjacent vertices are in an even number of sets together

Subgraph complementation number of G, $c_2(G)$: The minimum cardinality of a subgraph complementation system of G.

Equivalent problems

1. Minimum number of complete graphs G_1, \ldots, G_k with the property that any edge of G is in an odd number of G_i 's, and any non-edge in an even number.¹

¹V. Vatter, Terminology for expressing a graph as a sum of cliques (mod 2), URL (version: 2018-12-15): https://mathoverflow.net/q/317716

Equivalent problems

- 1. Minimum number of complete graphs G_1, \ldots, G_k with the property that any edge of G is in an odd number of G_i 's, and any non-edge in an even number.¹
- 2. Faithful orthogonal representations over \mathbb{F}_2 .

¹V. Vatter, Terminology for expressing a graph as a sum of cliques (mod 2), URL (version: 2018-12-15): https://mathoverflow.net/q/317716

²L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information Theory. 25(1):1–7 (1979)

Faithful orthogonal representations

Faithful orthogonal representation of G over \mathbb{F} of dimension d:

A map $f: V(G) \to \mathbb{F}^d$ such that

$$uv \notin E(G) \iff f(u) \perp f(v).$$

Faithful orthogonal representations

Faithful orthogonal representation of G over \mathbb{F} of dimension d :

A map $f: V(G) \to \mathbb{F}^d$ such that

$$uv \notin E(G) \iff f(u) \perp f(v).$$

Example $(\mathbb{F} = \mathbb{F}_2)$

$$G = v_1 \underbrace{v_2}_{v_2} v_3$$

$$\mathsf{f}(\mathsf{v}_1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \mathsf{f}(\mathsf{v}_2) = \mathsf{f}(\mathsf{v}_3) = \mathsf{f}(\mathsf{v}_4) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Incidence matrices and orthogonal representations $\mathrm{Let}\ \mathscr{C}=C_1,\ldots,C_d\ \mathrm{be\ a\ subgraph\ complementation\ system\ for}$

Let $\mathscr{C} = C_1, \ldots, C_d$ be a subgraph complementation system for a graph G with vertices ν_1, \ldots, ν_n .

Define $M(\mathscr{C}) = (\mathfrak{m}_{i,j})$ to be the $\mathfrak{n} \times d$ matrix over \mathbb{F}_2 with entry

$$m_{i,j} = \begin{cases} 1 & \text{if } v_i \in C_j; \\ 0 & \text{otherwise.} \end{cases}$$

Incidence matrices and orthogonal representations

Let $\mathscr{C}=C_1,\ldots,C_d$ be a subgraph complementation system for a graph G with vertices $\nu_1,\ldots,\nu_n.$

Define $M(\mathscr{C}) = (\mathfrak{m}_{i,j})$ to be the $\mathfrak{n} \times \mathfrak{d}$ matrix over \mathbb{F}_2 with entry

$$m_{i,j} = \begin{cases} 1 & \text{if } \nu_i \in C_j; \\ 0 & \text{otherwise.} \end{cases}$$

Example (a subgraph complementation system $\mathscr C$ for $\mathsf K_{1,3}$)

Incidence matrices and orthogonal representations

Let $\mathscr{C}=C_1,\ldots,C_d$ be a subgraph complementation system for G with vertices ν_1,\ldots,ν_n .

Define $M(\mathscr{C}) = (m_{i,j})$ to be the $n \times d$ matrix over \mathbb{F}_2 with entry

$$m_{i,j} = \begin{cases} 1 & \text{if } \nu_i \in C_j; \\ 0 & \text{otherwise.} \end{cases}$$

Example (of an incidence matrix for \mathscr{C})

Some upper bounds

A number of upper bounds are known for the minimum dimension of a faithful orthogonal representation, 1 which we obtain as corollaries for $c_2(G)$:

- ▶ $c_2(G) \leq n-1$ for all n-vertex G.
- ▶ $c_2(G) \le n-2$ if G is not a path on n vertices.

 $^{^{1}\}mathrm{V}.$ Alekseev and V. Lozin, On orthogonal representations of graphs, Discrete Mathematics, 2001.

Let G be a graph, ${\mathscr C}$ a subgraph complementation system of G, and $M=M({\mathscr C}).$

The matrix $A=(\mathfrak{a}_{\mathfrak{i}\mathfrak{j}})$ given by $A=MM^{\mathsf{T}}\pmod{2}$ has the property that

$$a_{ij} = 0 \iff v_i v_j \notin E \quad (i \neq j).$$

Let G be a graph, $\mathscr C$ a subgraph complementation system of G, and $M=M(\mathscr C).$

The matrix $A = (a_{ij})$ given by $A = MM^T \pmod 2$ has the property that

$$a_{ij} = 0 \iff v_i v_j \notin E \quad (i \neq j).$$

A matrix with this property is said to fit G.

The minimum rank of G over \mathbb{F} , $\operatorname{mr}(G,\mathbb{F})$, is the minimum rank over all symmetric matrices over \mathbb{F} which fit G.

Let G be a graph, $\mathscr C$ a subgraph complementation system of G, and $M=M(\mathscr C).$

The matrix $A=(\mathfrak{a}_{\mathfrak{i}\mathfrak{j}})$ given by $A=MM^{\mathsf{T}}\pmod{2}$ has the property that

$$a_{ij} = 0 \iff v_i v_j \notin E \quad (i \neq j).$$

A matrix with this property is said to fit G.

The minimum rank of G over \mathbb{F} , $\operatorname{mr}(G,\mathbb{F})$, is the minimum rank over all symmetric matrices over \mathbb{F} which fit G.

Proposition (BPR)

For any graph G, we have $mr(G, \mathbb{F}_2) \leqslant c_2(G)$.

Matrix factorization

Lemma (Friedland, Loewy, 2012)

For any matrix $A \in \mathbb{F}_2^{n \times n}$ of rank k, there exists a matrix $X \in \mathbb{F}_2^{n \times k}$ such that either

- $X \in \mathbb{F}_2$ such that either 1. $A = XX^T$, or
- 2. $A = X \left(\bigoplus_{i=1}^{l} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) X^{T}$, where k = 2l.

Matrix factorization

Lemma (Friedland, Loewy, 2012)

For any matrix $A \in \mathbb{F}_2^{n \times n}$ of rank k, there exists a matrix

 $X \in \mathbb{F}_2^{n \times k}$ such that either

- 1. $A = XX^T$, or
- 2. $A = X \left(\bigoplus_{1=1}^{l} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) X^{\mathsf{T}}$, where k = 2l.

Corollary

If $\operatorname{mr}(\mathsf{G}, \mathbb{F}_2)$ is odd, then $c_2(\mathsf{G}) = \operatorname{mr}(\mathsf{G}, \mathbb{F}_2)$.

Matrix factorization

Lemma (Friedland, Loewy, 2012)

For any matrix $A \in \mathbb{F}_2^{n \times n}$ of rank k, there exists a matrix $X \in \mathbb{F}_2^{n \times k}$ such that either

- 1. $A = XX^{T}$. or
- 2. $A = X \left(\bigoplus_{1=1}^{l} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) X^{\mathsf{T}}$, where k = 2l.

Corollary

If
$$\operatorname{mr}(\mathsf{G},\mathbb{F}_2)$$
 is odd, then $c_2(\mathsf{G}) = \operatorname{mr}(\mathsf{G},\mathbb{F}_2)$.

We are able to strengthen these statements:

With A and X as above, we have

- 1. $A = XX^T \iff a_{i,i} = 1 \text{ for some } i, \text{ or }$
- 2. $A = X \left(\bigoplus_{1=0}^{l} \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix} \right) \right) X^{\mathsf{T}} \iff \mathfrak{a}_{i,i} = 0 \text{ for all } i.$

Theorem (BPR)
For any graph G,

$$\mathrm{mr}(\mathsf{G},\mathbb{F}_2)\leqslant c_2(\mathsf{G})\leqslant \mathrm{mr}(\mathsf{G},\mathbb{F}_2)+1.$$

Theorem (BPR)
For any graph G,

$$\mathrm{mr}(\mathsf{G},\mathbb{F}_2)\leqslant c_2(\mathsf{G})\leqslant \mathrm{mr}(\mathsf{G},\mathbb{F}_2)+1.$$

Proof.

If $c_2(G) > mr(G, \mathbb{F}_2)$, then $mr(G, \mathbb{F}_2)$ is even. Notice that

$$\mathrm{mr}(\mathsf{G}+\mathsf{K}_2,\mathbb{F}_2)=\mathrm{mr}(\mathsf{G},\mathbb{F}_2)+\mathrm{mr}(\mathsf{K}_2,\mathbb{F}_2)=\mathrm{mr}(\mathsf{G},\mathbb{F}_2)+1,$$

which is odd.

By the lemma, $c_2(G + K_2) = mr(G, \mathbb{F}_2) + 1$. Since $c_2(G) \leq c_2(G + K_2)$, we have $c_2(G) = mr(G, \mathbb{F}_2) + 1$.

Another upper bound

Let $\tau(G)$ denote the minimum cardinality of a vertex cover of G, *i.e.*, a subset of vertices U such that every edge of G is adjacent to a vertex in U.

Theorem (BPR)

For any graph G,

$$c_2(\mathsf{G}) \leqslant 2\tau(\mathsf{G}).$$

Another upper bound

Let $\tau(G)$ denote the minimum cardinality of a vertex cover of G, *i.e.*, a subset of vertices U such that every edge of G is adjacent to a vertex in U.

Theorem (BPR) $\label{eq:c2} \textit{For any graph } \mathsf{G}, \\ c_2(\mathsf{G}) \leqslant 2\tau(\mathsf{G}).$

Idea of proof. Given a vertex cover U of G of size τ , we can obtain a collection of τ stars in G which partition the edges of G. Each star has $c_2(G) \leqslant 2$, from which the result follows.

Theorem (BPR)

For any n-vertex forest F,

$$c_2(\mathsf{F}) = \mathrm{mr}(\mathsf{F}, \mathbb{F}_2) = \mathfrak{n} - \mathfrak{p}(\mathsf{F}),$$

where p(F) is the minimum number of vertex-disjoint paths which cover all of the vertices of F.

Theorem (BPR)

For any n-vertex forest F,

$$c_2(\mathsf{F}) = \operatorname{mr}(\mathsf{F}, \mathbb{F}_2) = \mathfrak{n} - \mathfrak{p}(\mathsf{F}),$$

where p(F) is the minimum number of vertex-disjoint paths which cover all of the vertices of F.

The minimum rank problem is solved for forests:

Lemma (Chenette et al., 2007)

The minimum rank of a forest is independent of the field.

Theorem (BPR)

For any n-vertex forest F,

$$c_2(\mathsf{F}) = \mathrm{mr}(\mathsf{F}, \mathbb{F}_2) = \mathfrak{n} - \mathfrak{p}(\mathsf{F}),$$

where p(F) is the minimum number of vertex-disjoint paths which cover all of the vertices of F.

The minimum rank problem is solved for forests:

Lemma (Chenette et al., 2007)

The minimum rank of a forest is independent of the field.

Lemma (Johnson, Duarte, 1999)

For any $n\text{-}vertex\ tree\ T,\ \mathrm{mr}(T,\mathbb{R})=n-p(T).$

It suffices to show that $c_2(T) = n - p(T)$ for an n-vertex tree T.

Fallat and Hogben (2007) present an algorithm for finding a minimum collection of paths which covers V(T):

- ► If T is a spider, take a maximal path through the center vertex, and all remaining paths.
- ► Otherwise, select pendant spiders one at a time, applying the last step.

A minimum path cover of a tree

A minimum path cover of a tree

A minimum path cover of a tree

Forests

Theorem (BPR)

For any n-vertex forest F,

$$c_2(\mathsf{F}) = \mathrm{mr}(\mathsf{F}, \mathbb{F}_2) = \mathsf{n} - \mathsf{p}(\mathsf{F}),$$

where p(F) is the minimum number of vertex-disjoint paths which cover all of the vertices of F.

Proof.

- ightharpoonup Use the algorithm to find a minimum path cover \mathcal{P} .
- ▶ The number of edges in \mathcal{P} is n p(T).
- ▶ Each vertex of degree ≥ 3 is not an endpoint of its path in \mathcal{P} , and thus sees two edges in \mathcal{P} .

With n - p(G) subgraph complementations, we build the edges incident to high-degree vertices in 2 steps (as with stars), and all other edges one-by-one.

Example 1

A subgraph complementation system of W_5

Lemma (BPR)

If $\mathscr C$ is a subgraph complementation system for G in which every vetex is in an even number of complementations, then for all $v \in V$,

$$\mathscr{C}_{\nu} = \{ C \triangle \{ \nu \} \mid C \in \mathscr{C} \}$$

is also a subgraph complementation system of G.

Lemma (BPR)

If $\mathscr C$ is a subgraph complementation system for G in which every vetex is in an even number of complementations, then for all $\nu \in V$,

$$\mathscr{C}_{v} = \{ C \triangle \{v\} \mid C \in \mathscr{C} \}$$

is also a subgraph complementation system of G.

Lemma (BPR)

If $\mathscr C$ is a subgraph complementation system for G in which every vetex is in an even number of complementations, then for all $\nu \in V$.

$$\mathscr{C}_{v} = \{C \triangle \{v\} \mid C \in \mathscr{C}\}$$

is also a subgraph complementation system of G.

Lemma (BPR)

If $\mathscr C$ is a subgraph complementation system for G in which every vetex is in an even number of complementations, then for all $\nu \in V$,

$$\mathscr{C}_{\nu} = \{ C \triangle \{ \nu \} \mid C \in \mathscr{C} \}$$

is also a subgraph complementation system of ${\sf G}$.

Example

Corollary

If $\mathscr C$ is a complementation system of a graph G with $c_2(G)$ even, then some vertex of G is in an odd number of complementations in $\mathscr C$.

Theorem (BPR)

Let ${\sf G}$ be a nonempty graph. The following are equivalent.

- i. $c_2(G) \neq mr(G, \mathbb{F}_2)$;
- ii. $c_2(G) = mr(G, \mathbb{F}_2) + 1;$
- iii. the adjacency matrix of G is the only matrix which fits G and has minimum rank over \mathbb{F}_2 ;
- iv. there is a minimum subgraph complementation system forG in which every vertex appears an even number of times;
- v. for every component G' of G, $c_2(G') = mr(G', \mathbb{F}_2) + 1$.

Recall: if A is a rank k matrix over \mathbb{F}_2 which fits G, then there exists a matrix $X \in \mathbb{F}_2^{n \times k}$ such that either

$$ightharpoonup A = XX^T$$
, or $X = M(\mathscr{C})$

$$ightharpoonup A = A(G) = X\left(\bigoplus_{1=1}^{l} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right) X^{\mathsf{T}}, \text{ where } k = 2l.$$

Recall: if A is a rank k matrix over \mathbb{F}_2 which fits G, then there exists a matrix $X \in \mathbb{F}_2^{n \times k}$ such that either

$$ightharpoonup A = XX^T$$
, or $X = M(\mathscr{C})$

$$ightharpoonup A = A(G) = X\left(\bigoplus_{1=0}^{l} \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right)\right) X^{\mathsf{T}}, \text{ where } k = 2l.$$

Theorem (BPR)

For any graph G, we have

$$\mathrm{mr}(\mathsf{G},\mathbb{F}_2)=\min\{c_2(\mathsf{G}),2t_2(\mathsf{G})\},$$

where $t_2(\mathsf{G})$ is the minimum number of tripartite subgraph complementations required to obtain G from the empty graph.

Recall: if A is a rank k matrix over \mathbb{F}_2 which fits G, then there exists a matrix $X \in \mathbb{F}_2^{n \times k}$ such that either

$$ightharpoonup A = XX^{\mathsf{T}}$$
, or $X = M(\mathscr{C})$

$$A = A(G) = X \left(\bigoplus_{1=0}^{l} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right) X^{\mathsf{T}}, \text{ where } k = 2l.$$
 ?

Pair the columns of X, (A_1, B_1) , (A_2, B_2) , ..., (A_l, B_l) , and let T_i be the $n \times 2$ matrix (A_i, B_i) .

Recall: if A is a rank k matrix over \mathbb{F}_2 which fits G, then there exists a matrix $X \in \mathbb{F}_2^{n \times k}$ such that either

$$ightharpoonup A = XX^T$$
, or $X = M(\mathscr{C})$

$$ightharpoonup A = A(G) = X\left(\bigoplus_{1=0}^{l} {0 \choose 1} X^{\mathsf{T}}, \text{ where } k = 2l.$$

Pair the columns of X, (A_1, B_1) , (A_2, B_2) , ..., (A_l, B_l) , and let T_i be the $n \times 2$ matrix (A_i, B_i) .

To each T_i associate a complete tripartite graph with partite sets (1,0), (0,1), and (1,1).

Any vertex in G whose row in T_i is (0,0) is not in the triclique, all others are in their corresponding partite sets.

Recall: if A is a rank k matrix over \mathbb{F}_2 which fits G, then there exists a matrix $X \in \mathbb{F}_2^{n \times k}$ such that either

$$ightharpoonup A = XX^{\mathsf{T}}$$
, or $X = M(\mathscr{C})$

$$ightharpoonup A = A(G) = X\left(\bigoplus_{1=0}^{\mathfrak{l}} \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right)\right) X^{\mathsf{T}}, \text{ where } k = 2\mathfrak{l}.$$

Pair the columns of X, (A_1, B_1) , (A_2, B_2) , ..., (A_1, B_1) , and let T_i be the $n \times 2$ matrix (A_i, B_i) .

To each T_i associate a complete tripartite graph with partite sets (1,0), (0,1), and (1,1).

Any vertex in G whose row in T_i is (0,0) is not in the triclique, all others are in their corresponding partite sets.

E is the symmetric difference of the edges of these l complete tripartite graphs, called a *tripartite subgraph complementation* system of G.

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

Graphs with
$$c_2(\mathsf{G}) = \operatorname{mr}(\mathsf{G}, \mathbb{F}_2) + 1$$

Example 1

Forbidden induced subgraphs

Theorem (BPR)

The class of graphs with $c_2(G) \leq k$ is defined by a finite set of minimal forbidden induced subgraphs.

Forbidden induced subgraphs

Theorem (BPR)

The class of graphs with $c_2(\mathsf{G}) \leqslant k$ is defined by a finite set of minimal forbidden induced subgraphs.

For odd k,

$$\{G\mid c_2(G)\leqslant k\} = \{G\mid \mathrm{mr}(G,\mathbb{F}_2)\leqslant k\}.$$

In particular, the sets of minimal forbidden induced subgraphs for these classes are equal.

Minimal forbidden induced subgraphs

- Vladimir E. Alekseev and Vadim V. Lozin. On orthogonal representations of graphs. Discrete Mathematics, 226(1-3):359–363, 2001.
- Calum Buchanan, Christopher Purcell, and Puck Rombach. Subgraph complementation and minimum rank. The Electronic Journal of Combinatorics, 29(1), 2022.
 - Mikkelson, and Olga Pryporova.

 Minimum rank of a graph over an arbitrary field.

 The Electronic Journal of Linear Algebra, 16, 2007.

Nathan Chenette, Sean Droms, Leslie Hogben, Rana

- Shaun M. Fallat and Leslie Hogben.

 The minimum rank of symmetric matrices described by a graph: a survey.
 - Linear Algebra and its Applications, 426(2-3):558-582, 2007.
- Shmuel Friedland and Raphael Loewy.
 On the minimum rank of a graph over finite fields.

 Linear algebra and its applications, 436(6):1710–1720, 2012.

Charles R. Johnson and António Leal Duarte.
The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree.

Linear and Multilinear Algebra, 46(1-2):139–144, 1999.

Marcin Kamiński, Vadim V Lozin, and Martin Milanič. Recent developments on graphs of bounded clique-width. Discrete Applied Mathematics, 157(12):2747–2761, 2009.