

CSE251 Basics of Computer Graphics Module: Graphics Pipeline

Avinash Sharma

Spring 2017

3D Graphics Pipeline

- Objects are specified in their own coordinate system and placed in the world coordinate frame.
- Camera is also placed in the world coordinate frame.
- Camera-to-world geometry is first projected to normalized coordinates and then to screen.

Modelling Different Objects

Modelling & Viewing: Summary

- Place objects in the world coordinate frame
- Place camera in the world coordinate frame
- Can compute object points in camera coordinate frame
- $ightharpoonup P_{VRC} = V \cdot M \cdot P_{ORC}$

3D Graphics: Block Diagram

Projections

- Projection involves projectors starting from 3D points and hitting the 2D projection plane, forming the image of the point.
- Two types of projections.
- Parallel projection: Projectors are parallel to each other, all have the same direction of projection (DOP).

Projections (cont.)

Projections

- Projection involves projectors starting from 3D points and hitting the 2D projection plane, forming the image of the point.
- Two types of projections.
- Parallel projection: Projectors are parallel to each other, all have the same direction of projection (DOP).
- Perspective projection: All projects pass through a point in space called the centre of projection (COP).

Projections (cont.)

Parallel Projections

- Orthographic: Projection plane is perpendicular to the direction of projection.
 - If direction of projection parallel to the axes: plan, elevation, side elevation.
 - ▶ If DoP $(\pm 1, \pm 1, \pm 1)$: isometric projection.
- Oblique: Otherwise.
 - Cavalier when projectors make 45 degrees with the projection plane.
 - Cabinet when they make arctan (2) degrees with the projection plane.

Oblique Projections

- ▶ Projector angle ϕ and angle with horizontal α .
- Cavalier: Length along the depth axis preserved.
- Cabinet: Length along depth axis halved. More realistic.
- α is between 30 and 45 degrees.
- Orthographic when $\phi = 90$.

Orthographic Projections

- Lengths parallel to the projection plane are preserved.
- Only direction of projection matters; distance from the point to the projection plane doesn't.
- Good approximation for a camera with a long focal length. (Orthographic with uniform scaling).
- Plan, elevation, side views etc.

Orthographic Projections (cont.)

Orthographic Projection Equation

Can be expressed as a matrix equation:

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

If uniform scaling is involved, the top two 1's should be the scale factor.

Perspective Projections

- Can be characterized by the number of vanishing points. (projections of points at infinity).
- Depends on the number of axes the projection plane intersects.
- 1-point, 2-point, and 3-point perspective projections.

Geometry of Perspective Projection

- ▶ What is x_p, y_p, z_p ?
- ▶ We know x, z, and d.
- Remember similar triangles?

Geometry of Perspective Projection

$$\blacktriangleright \frac{x_p}{d} = \frac{x}{z}, \quad \frac{y_p}{d} = \frac{y}{z}, \quad z = d.$$

In matrix form,

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \qquad \mathbf{x}_{\mathbf{p}}$$

 Coordinates scaled down proportional to the depth or z values.

Another View

Shift origin to lie on the projection plane, CoP at (0,0,−d), we get the matrix:

Another View

Shift origin to lie on the projection plane, CoP at (0,0,-d), we get the matrix:

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Orthographic Projection matrix is a special case when $d \to \infty$.

$$x_p = \frac{xd}{z+d} = \frac{x}{1+\frac{z}{d}}, \quad z_p = 0$$

Projections: Summary

Perspective

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$d < \infty$$

Orthographic

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$d = \infty$$

Volume of Visibility

- Cameras have finite fields of view in horizontal and vertical directions.
- What is the shape of its visible space?
- A cylinder for orthographic projections and a cone starting from the CoP for perspective may seem natural.
- Mathematics is difficult for cones; rectangular structures are easier!
- ▶ View Volume: The volume of potentially visible space.

View Volume

- View volume is a cube for orthographic cameras and a (truncated) pyramid for perspective projections.
- 4 planes (left, right, top, bottom) define the view volume.
- Graphics cameras use 2 additional planes to limit visibility: near & far!
- Planes are specified in VRC; they move with the camera

Orthographic View Volume

Perspective View Volume

Orthographic

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{d} & 1 \end{bmatrix}$$

What About the Focal Length?

- An ideal pin-hole camera has the whole world in focus.
- ► Finite focal-length lenses introduce the effect of focus in real cameras.
- Even for them, the depth of field (region in focus) increases as the f-stop increases or the aperture gets smaller.
- ► Computer Graphics simulates ideal pin-hole cameras.
- Depth of field can be simulated by intentional blurring.

View Volume Specification

View volume is specified by 6 planes: left, right, top, bottom, near, far. All values in VRC

- ▶ left, right, top, bottom: signed distances. positive distances to planes. near, far:
- Needn't be symmetric!

Alternate Specification

- Symmetric view volumes: horizontal and vertical fields of view θ_h , θ_v
- For symmetric perspective view volumes:

$$\tan\frac{\theta_h}{2} = \dots?$$

$$\tan\frac{\theta_v}{2} = \dots?$$

Aspect ratio: top / right.

```
Using glm::perspective()
```


Canonical View Volume

- Projection is not performed right away; instead, map the view volume to a cube of fixed dimensions, called the canonical view volume or a standard view volume
- ▶ A **normalizing matrix** performs this transformation.
- Why?
 - Easier to eliminate objects outside the view volume.
 - Orthographic & perspective aren't different.
 - ► The z-coordinates not thrown away. (Used later!)

Canonical View Volume: Dimensions

▶ OpenGL:

$$-1 < x < 1$$

$$-1 \le y \le 1$$

$$-1 < z < 1$$

Canonical view volume is the Orthographic View Volume, with appropriate scaling.

Orthographic

To target view volume:

Orthographic Normalizing Matrix

- What are the side lengths on start?
- What are the side lengths at end?
- Whats the scale factor?
- Where is the origin at strat? At end?
- How do we achieve that?

Orthographic Normalizing Matrix

- ► Lengths (right left), (top bottom) and (far near) scaled to 2.
- Shift origin so as to range from -1 to +1.
- Matrix??

Orthographic Normalizing Matrix (cont.)

Matrix:

$$\begin{bmatrix} \frac{2}{right-left} & 0 & 0 & -\frac{right+left}{right-left} \\ 0 & \frac{2}{top-bottom} & 0 & -\frac{top+bottom}{top-bottom} \\ 0 & 0 & \frac{2}{far-near} & \frac{far+near}{far-near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- (0,0,-n) maps to +1 and (0,0,-f) maps to -1.
- ▶ Drop z and use the (x, y) coordinates as the (normalized) window coordinates.

Symmetric Perspective Proj Matrix

- More complicated than orthographic case, as a frustum has to be mapped to a cube. Do it in steps.
- First, scale the horizontal and vertical extents so that the vertical and horizontal fields of view are 90 degres.
- ▶ A scaling transformation with $s_x = ??, s_y = ??, s_z = 1$
- View volume is almost right except for a uniform scale.
- Next, scale uniformly so that the far plane is at -1. We will also have $-1 \le x, y \le 1$ at the far plane after this.

Symmetric Perspective Proj Matrix (cont.)

Symmetric Perspective Proj Matrix (cont.)

- M_1 with $s_x = \cot \frac{\theta_h}{2}$, $s_y = \cot \frac{\theta_v}{2}$, $s_z = 1$
- M_2 with $s_x = s_y = s_z = \frac{1}{\text{far}}$

$$M_2 M_1 = \begin{bmatrix} \frac{\cot \theta_h/2}{\mathbf{far}} & 0 & 0 & 0 \\ 0 & \frac{\cot \theta_v/2}{\mathbf{far}} & 0 & 0 \\ 0 & 0 & \frac{1}{\mathbf{far}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

▶ The near plane is now at $k = \frac{\text{near}}{\text{far}}$.

Symmetric Perspective Proj Matrix (cont.)

- View volume fits into the canonical view volume, but is still a frustum!
- Scale by to -z to convert to a cube using a matrix with last row $\begin{bmatrix} 0 & 0 & -1 & 0 \end{bmatrix}$.
- ▶ Simultaneously send third component to range [-1, 1]. z = -k maps to 1 and z = -1 maps to -1.
- ► Scale z by $\frac{1+k}{1-k}$ and translate by $\frac{2k}{1-k}$.
- Perspective division: convert from homogeneous to cartesian by dividing by the last component.
- Keep third component for later use. Relative ordering needs to be preserved. The values are not important.

Perspective Normalizing Txform ► Matrix M₃ for this step:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1+k}{1-k} & \frac{2k}{1-k} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

- ► (x, y, -k) & (x, y, -1) go to?
- Final matrix: $M = M_3 M_2 M_1$
- Frustum becomes a cube

Final 2D Coordinates

$$(u, v, d) \equiv \begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = M_3 M_2 M_1 \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}_{VRC}$$

- ▶ **Perspective division:** Divide x', y' coordinates by the w to get the normalized coordinates (u, v). (z' maintains ordering and can be used without division.)
- ► The normalized *d* component has non-linear precision. Higher around the *near* plane and lower around the *far* plane due to the division by *z*.

OpenGL Normalizing/Perspective Matrix

▶ The projection matrix in OpenGL is given by

$$P = \begin{bmatrix} \frac{2n}{r-l} & 0 & A & 0\\ 0 & \frac{2n}{t-b} & B & 0\\ 0 & 0 & C & D\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

where,

$$A = \frac{r+l}{r-l}, B = \frac{t+b}{t-b}, C = \frac{f+n}{f-n}, D = \frac{2nf}{f-n}$$

Actual Projection

- We have already performed the perspective division.
- Projection involves simply dropping the z coordinate and scaling x-y to the viewport.
- Why go through with the z-coordinates?
- ► The ordering is preserved along the depth dimension.
 z values can be used for visibility determination.

Where is the Film?

- Turns out: It does not matter.
- ▶ A final scaling is in the viewport transformations.
- As long as the film is in front of the camera, we will see an upright image.
- Can consider the near plane as the film plane.

Viewport Txformation: To Window

- Image of size -1 to +1 in X and Y is ready. The viewport transformation maps it to the actual window on screen.
- From [1, 1], map x and y to [0, W] and [0, H].
- ► First step: set sizes by scaling: $S(\frac{W}{2}, \frac{H}{2})$. Next: Translate origin to South-West corner: $T(\frac{W}{2}, \frac{H}{2})$

► Overall:
$$\mathbf{M} = \mathbf{T}(\frac{\mathbf{W}}{2}, \frac{\mathbf{H}}{2}) \mathbf{S}(\frac{\mathbf{W}}{2}, \frac{\mathbf{H}}{2}) = \begin{bmatrix} \frac{\mathbf{W}}{2} & 0 & \frac{\mathbf{W}}{2} \\ 0 & \frac{\mathbf{H}}{2} & \frac{\mathbf{H}}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

General Viewport Txform

- ▶ General command: glViewport(l, b, r, t).
- ▶ Translate so the range of x, y is $0 \cdots 2$.
- Scale so x varies from 0 to (r l) and y varies from 0 to (t b).
- ► Translate so x range is l to r and y range is b to t.
- ► Matrix for this? $\mathbf{T}(l,b) \mathbf{S}(\frac{r-l}{2},\frac{t-b}{2}) \mathbf{T}(1,1)$

$$= \begin{bmatrix} \frac{r-l}{2} & 0 & \frac{r+l}{2} \\ 0 & \frac{t-b}{2} & \frac{t+b}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

General Viewport Txform (cont.)

- ▶ $[-1 \ -1 \ 1]^{\mathsf{T}}$ maps to $[l \ b \ 1]^{\mathsf{T}}$.
- ▶ $[1 \ 1 \ 1]^{\mathsf{T}}$ maps to $[r \ t \ 1]^{\mathsf{T}}$.

(Point) Pipeline in Action

- Points are transformed from Object to World to Canonical to Window coordinates.
- ▶ Each 3D point maps to a pixel (i, j) in the window space.
- Lines are made out of two points. Triangles and polygons are made out of 3 or more points.

Recapitulation

- 3D Graphics additionally involves projecting the 3D world to the 2D image plane of the camera.
- Compute the 3D world with respect to the camera. Or compute the relative geometry first.
- ► This involves a series of rigid transformations. For complex objects/environments, each object or its part is described in its own coordinate system.
- Modelling places these different objects in the world coordinate system. This could involve a hierarchy of transforms for objects made up of complex parts.

Recapitulation (cont.)

- View Orientation computes the world in the VRC.
- Camera can be perspective or parallel (orthographic, oblique). 6 planes give the view volume and defines the camera.
- View Mapping involves mapping the world to a canonical view volume, which is an orthographic view volume. This Normalizing Transformation has different forms for parallel and perspective cameras.
- Projection and Clipping are easy to perform in the canonical view volume. An image with dimensions from -1 to +1 results.

Recapitulation (cont.)

- Viewport tranformation is the final step, involving a 2D scaling and translation to map to window coordinates that can be used to address the frame buffer.
- Given a description of the 3D world primitives, project each point to 2D to get 2D primitives. These can be scan-converted using standard algorithms.