

Message Passing Interface (MPI): MPI e OMP

Paulo Sérgio Lopes de Souza pssouza@icmc.usp.br

Universidade de São Paulo / ICMC / SSC — São Carlos Laboratório de Sistemas Distribuídos e Programação Concorrente

Thread Safe

- MPI com OMP permite
 - Executar diferentes processos MPI em máquinas (ou nós ou *hosts*) distintas
 - Cada processo MPI com suas threads compartilhando memória na máquina local
- MPI precisa ser thread safe
 - Rotinas MPI devem funcionar corretamente durante execuções simultâneas de várias threads
 - Implica em respostas corretas mesmo com compartilhamento de dados/recursos entre threads
- Há um conjunto de funções no MPI para o suporte de threads com OMP
 - Principal/primeira a saber MPI_Init_thread()

int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

- Análoga à MPI_Init()
- Requisita suporte específico às threads em required
- Recebe em *provided um retorno com o nível de suporte possível
 - Nível depende da versão do MPI e de como ele foi instalado
 - Padrão não garante que *provided será maior ou igual ao solicitado em required

Níveis de Suporte às Threads em MPI

int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

- Opções para requided
 - MPI_THREAD_SINGLE
 - Somente uma thread executará
 - Equivalente à função MPI_Init()
 - MPI_THREAD_FUNNELED
 - Permite que a thread que executou MPI_Init_thread() faça chamadas
 MPI
 - MPI_THREAD_SERIALIZED
 - Somente uma thread fará chamadas à biblioteca MPI por vez
 - MPI_THREAD_MULTIPLE
 - Múltiplas threads poderão fazer chamadas ao MPI sem restrições

Importância do PCAM & Aspectos Práticos

- O uso de diferentes modelos de paralelismo (SHM e MP) dificulta projeto
 - PCAM deve especificar tais níveis
 - Projeto detalhado é imperativo para garantir qualidade e controle da complexidade
- Algumas informações práticas...
 - A função ompi_info | grep -i thread
 - Informa se o MPI instalado tem suporte à programação multithreading
 - Para compilar
 - mpicc fonte.c -o binario -fopenmp
 - Para executar (um exemplo simples)
 - mpirun –np <nr-processos> binario
 - Inclua no seu código
 - #include <mpi.h>
 - #include <omp.h>

Exemplos

- Exemplo 01 Hello World
 - Cada processo MPI criado com mpirun gera NT threads que imprimem
- Exemplo 02 Send & Recv fora da região paralela do OMP
 - Processos MPI != 0 (criados com mpirun)
 - Geram NT threads
 - Incrementam *i* compartilhado e imprimem
 - Fora da região paralela enviam msg para o processo 0
 - Processo 0 recebe mensagens de todos os demais processos e as imprime
- Exemplo 03 Sends dentro da região paralela do OMP
 - Semelhante ao Exemplo 02, mas agora as threads mandam as mensagens
 - Há NR_PROCS * NT mensagens enviadas ao processo 0
- Exemplo 04 Sends & Recvs em threads OMP
 - Todos os processos executam NT threads, incluindo o processo 0
 - A thread T do processo 0 recebe todas as msgs enviadas pelas threads T dos demais processos
 - O rótulo msgtag organiza essas transmissões e garante pareamento de threads de processos diferentes

Referências

Barlas, G. (2014). *Multicore and GPU Programming: An integrated approach*. Elsevier. Capítulo 5, Seções 5.16 e 5.21.2.

https://www.open-mpi.org/doc/v3.0/man3/MPI_Init_thread.3.php

Rauber, T., & Rünger, G. (2013). Parallel Programming. Springer. Second edition. Capítulo 5.

Pacheco, P. (2011). An introduction to parallel programming. Elsevier. Capítulo 3.

Message Passing Interface (MPI): MPI e OMP

Paulo Sérgio Lopes de Souza pssouza@icmc.usp.br

Universidade de São Paulo / ICMC / SSC — São Carlos Laboratório de Sistemas Distribuídos e Programação Concorrente

