Solutions to hw1 homework on Convex Optimization

https://web.stanford.edu/class/ee364b/homework.html

Andrei Keino

December 8, 2020

1.1 (3 points)

For each of the following convex functions, determine the subdifferential set at the specified point.

(a)
$$f(x_1, x_2, x_3) = max(|x_1|, |x_2|, |x_3|)$$
 at $(x_1, x_2, x_3) = (0, 0, 0)$.

(b)
$$f(x) = e^{|x|}$$
 (x is scalar)

(c)
$$f(x_1, x_2) = max(x_1 + x_2 - 1, x_1 - x_2 + 1)$$
 at $(x_1, x_2) = (1, 1)$.

- (a) There will be a gap in differential at the points $\{x_1 = \pm x_2, x_2 = \pm x_3, x_1 = \pm x_3\}$. Subdifferential set $g(0,0,0) = \{[-1,1],[-1,1],[-1,1]\}$.
- (b) There will be a gap in differential at the point x = 0. Subdifferential set $g(0) = [-e^0, e^0] = [-1, 1]$.
- (c) There will be a gap in differential at the points $\{x_1+x_2-1=x_1-x_2+1\}$. Subdifferential set $g(1,1)=\{1,[-1,1]\}$.

1.3 (2 points)

Convex functions that are not subdifferentiable. Verify that the following functions, defined on the interval [0;1), are convex, but not subdifferentiable at x=0. (Hint: You can prove by contradiction.)

(a)
$$f(0) = 1$$
 and $f(x) = 0$ for $x > 0$.

(b)
$$f(x) = -x^p$$
 for some $p \in (0, 1)$

Solution.

- (a) Proof by contradiction. Suppose what function f(0) = 1 and f(x) = 0 for x > 0, has a supporting hyperplane at point x = 0, and g is the subgradient of f(x) in this point. Then at $x \ge 0$ the equation $f(x) \ge f(0) + gx$ must hold. For x > 0 this equation become $0 \ge 1 + gx$ or $gx \le -1$ for $x \ge 0$. This is impossible, because at x = 0 we must have $0 \le -1$ then.
- (b) Proof by contradiction. Suppose what function $f(x) = -x^p$ for some $p \in (0,1)$ has a supporting hyperplane at point x=0, and g is the subgradient of f(x) in this point. Then $\forall x \geq 0$ the equation $f(x) \geq f(0) + gx$ must hold. But this is impossible, as f(0) is ∞ (i.e. unlimited) and f(x) has a limited value, i.e g should be unlimited in this case.

1.2 (7 points)

For each of the following convex functions, explain how to calculate a subgradient at a given x.

(a)
$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i).$$

(b)
$$f(x) = \max_{i=1,...,m} (|a_i^T x + b_i|)$$

(c) $f(x) = \max_{i=1,\dots,m} (-\log(a_i^T x + b_i)$. You may assume x is in the domain of f.

(d)
$$f(x) = \max_{0 \le t \le 1} (p(t))$$
 where $p(t) = x_1 + x_2t + \dots + x_nt^{n-1}$.

(e)
$$f(x) = x_{[1]} + \cdots + x_{[k]}$$
 where $x_{[i]}$ denotes the i - th largest element of x .

- (f) $f(x) = \min_{Ay \leq b}(||x^2 y^2||)$, , i.e., the square of the distance of x to the polyhedron defined by $Ay \leq b$. You may assume that the inequalities $Ay \leq b$ are strictly feasible. (Hint: You may use duality, and then use subgradient the rule for pointwise maximumum.
- (g) $f(x) = \max_{Ay \leq b}(y^t x)$, x, i.e., the optimal value of an LP as a function of the cost vector. (You can assume that the polyhedron defined $Ay \leq b$ is bounded.) (Hint: You may use the subgradient rule for pointwise maximum.

Solution.

(a) Find $k \in 1, ..., m$ such that $f(x) = a_k^T x + b_k$. Then subgradient at this point is a_k .

- (b) Find $k \in 1, ..., m$ such that $f(x) = |a_k^T x + b_k|$. If $a_k^T x + b_k > 0$ then subgradient is a_k , if $a_k^T x + b_k < 0$ then subgradient is $-a_k$, if $a_k^T x + b_k = 0$ then subgradient is $[-|a_k|, |a_k|]$.
- (c) Find $k \in 1, ..., m$ such that $f(x) = -log(a_k^T x + b_k)$. Then subgradient is $-1/(a_k^T x + b_k)$.
- (d) Find t such that $f(x) = x_1 + x_2t + \cdots + x_nt^{n-1}$. Then subgradient is $(1, t, \dots, t^{n-1})$.
- (e) Find $\{i_1, \ldots, i_k\}$ such that $f(x) = x_{i_1} + \cdots + x_{i_k}$. Then subgradient is (a_1, \ldots, a_n) where $a_j = 1$ if $j \in \{i_1, \ldots, i_k\}$, $a_j = 0$ otherwise.
 - (f) f(x) defined as optimal value of the problem

minimize
$$||x - y||^2$$
 subject to $Ay \leq b$

With variable y. We have dual problem because Slater's condition holds.

minimize
$$-1/4z^T A A^T z + 1/2z^T A x - b^T z$$
 subject to
$$z \succeq 0$$

From the global perturbation inequalities

$$f(x,b) \ge f(x^*,b) - z^{*T}(x-x^*)$$

By Slater's condition, we have strong duality and the dual optimum is attained. Let z* be the optimal dual solution for for the value of x at which we want a subgradient, i.e., $z \succeq 0$ and

$$f(x) = -1/4z^{*T}AA^{T}z + 1/2z^{*T}Ax - b^{T}z^{*}$$

By weak duality we have for any \hat{x} ,

$$f(\hat{x}) \ge -1/4z^{*T}AA^Tz + 1/2z^{*T}A\hat{x} - b^Tz^* = f(x) + A^Tz^*(\hat{x} - x)$$

The KKT conditions for y* to be the optimal point of the primal problem gives:

$$A^T z * = 2(x - y *)$$

Therefore $(x - y^*)$ is a subgradient at x.

(g) The set $\{y \mid Ay \leq b\}$ is closed and bounded, i.e. compact. This means that the supremum in the definition of f(x) is attained. Let $\hat{y} \in \{y \mid Ay \succeq b\}$ be the value of y for which $f(x) = \hat{y}^t x$. Then \hat{y} is a subgradient of f at x.