Recall:

•
$$x^{\alpha} - 1 = (x-1) \cdot (x^{\alpha-1} + x^{\alpha-2} + x^{\alpha-3} + \dots + x^{1} + 1)$$

•
$$x + 1 = (x + 1) \cdot (x^{2a} - x^{2a-1} + x^{2a-2} - ... - x^{1} + 1)$$

We proved that if $2^m + 1$ is prime, then $m = 2^n$ for some n.

Suppose 2 -1 is prime. What can we say about m?

• m must be a prime, otherwise m=ab with 1 < a,b < m and $2^m-1=(2^b)^a-1$ is divisible by 2^b-1 , cannot be prime $(1 < 2^b-1 < 2^m-1)$

 $F_n = 2 + 1$ are called Fermat numbers

 $M_p = 2^{p}-1$ (p: prime) are called Mersenne numbers.

A proof of infinitude of primes using Fermat numbers:

Lemma: If $a_1, a_2, a_3, ...$ is a sequence of integers bigger than 1 such that $(a_i, a_j) = 1$ for every $i \neq j$, then there are infinitely many primes dividing the terms of this sequence

<u>Proof:</u> Each term has different prime divisors.

Infinitely many terms \Rightarrow Infinitely many prime divisors.

Lemma: $(F_{i}, F_{j}) = 1$ for all $i \neq j$.

Proof: Without loss of generality (WLOG) suppose j > i and write j = i + k.

$$F_{i} = 2^{2^{i}} + 1 \mid 2^{2^{i+1}} - 1 \mid 2^{2^{i+k}} - 1 = F_{j} - 2$$

$$\Rightarrow$$
 $F_i \mid F_j - 2$, i.e. $F_j - 2 = m \cdot F_i$.

$$(F_{i}, F_{j}) = (F_{i}, F_{j} - m \cdot F_{i}) = (F_{i}, 2) = 1$$
.
 F_{i} is odd

This proves that nth smallest prime p_n satisfies $p_n \leq 2^{n-1} + 1$. $(p_1 = 2, p_2 = 3, p_3 = 5, ...)$.

Modular Arithmetic

Recall that we can partition integers according to their remainders when divided by 4.

$$[0]_4 = \{ \dots, -8, 0, 4, 8, \dots \}$$
 4k

$$[1]_{4} = \{ -1, -7, -3, 1, 5, \dots \}$$
 $4k+0$

$$[2]_4 = \{-..., -6, -2, 2, 6, ...\}$$
 4k+2

$$[3]_4 = \{ ..., -5, -1, 3, 7, \}$$
 $4k+3$

- The sum of an element of $[1]_4$ with an element of $[2]_4$ is always in $[3]_4$.
- The product of an element of $[3]_4$ with an element of $[2]_4$ is always in $[2]_4$.

Never depends on the element, the sets determine everything. That means we can do arithmetic with the sets: $\begin{bmatrix} 1 \end{bmatrix}_4 + \begin{bmatrix} 2 \end{bmatrix}_4 = \begin{bmatrix} 3 \end{bmatrix}_4$ or $\begin{bmatrix} 2 \end{bmatrix}_4 \cdot \begin{bmatrix} 3 \end{bmatrix}_4 = \begin{bmatrix} 2 \end{bmatrix}_4$.

There is an easy way to express the rules of summation and multiplication if we also allow using $[-8]_4$, $[12]_4$ etc. for $[0]_4$; $[7]_4$, $[11]_4$ etc for $[3]_4$ (different names for the same set)

Now,
$$\begin{bmatrix} a \end{bmatrix}_{4} + \begin{bmatrix} b \end{bmatrix}_{4} = \begin{bmatrix} a+b \end{bmatrix}_{4}$$

$$\begin{bmatrix} a \end{bmatrix}_{4} \cdot \begin{bmatrix} b \end{bmatrix}_{4} = \begin{bmatrix} ab \end{bmatrix}_{4}$$

Question: When [a]4 and [b]4 are the same set?

Answer: When they have same remainder after division by 4.

a = 4k + r and $b = 4\ell + r \implies a - b = 4(k - \ell)$ is divisible by 4.

Alternative Answer: When 4/a-b.

when $[a]_4 = [b]_4$ we say a is congruent to b modulo 4 and we write $a = b \pmod{4}$.

· Integers are partitioned into n sets (congruence classes)

 $\mathbb{Z}_n = \left\{ [0]_n, [1]_n, [2]_n, \dots, [n-1]_n \right\}$ and we can

basic arithmetic with the elements of \mathbb{Z}_n .

- [a] = [b] \Leftrightarrow n | a b (same remainder) and we'll say a is congruent to b modulo n and write a = b (mod n) in that case
- $[a]_n + [b]_n = [a+b]_n$; $[a]_n \cdot [b]_n = [ab]_n$. Are these well-defined operations? We should prove

1. $[a]_{n} = [c]_{n}$ and $[b]_{n} = [d]_{n} \Rightarrow [a+b]_{n} = [c+d]_{n}$

2. $[a]_n = [c]_n$ and $[b]_n = [d]_n \Rightarrow [ab]_n = [cd]_n$.

Proof: $[a]_n = [c]_n \Rightarrow n[c-a]$

 $[b]_n = [d]_n \Rightarrow n \mid d - b$

1. n|c-a and $n|d-b \Rightarrow n|c-a+d-b$ $\Rightarrow n | (c+d) - (a+b) \Rightarrow [a+b]_{n} = [c+d]_{n}$ 2. $n \mid c-a \Rightarrow c-a = n \cdot k \Rightarrow c = n \cdot k + a$ $n \mid d-b \Rightarrow d-b = n \cdot \ell \Rightarrow d = n \cdot \ell + b$ $cd = (nk+a) \cdot (n\ell+b) = n^2k\ell + nkb + n\ell a + ab$ $\Rightarrow cd-ab = n^2k\ell + nkb + n\ell a = n \cdot (nk\ell + kb + \ell a)$ is divisible by $n \Rightarrow [cd]_n = [ab]_n$

To summarize some important points.

Theorem: If $a \equiv c \pmod{n}$ and $b \equiv d \pmod{n}$, then

- $a+b \equiv c+d \pmod{n}$
- $ab \equiv cd \pmod{n}$ (keN)
- $a^2 \equiv c^2 \pmod{n}$, $a^3 \equiv c^3 \pmod{n}$,..., $a^k \equiv c^k \pmod{n}$

Also, we have

- x ≡ x (mod n)
- $x \equiv y \pmod{n} \implies y \equiv x \pmod{n}$
- $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n} \Rightarrow x \equiv z \pmod{n}$

Remark: a = 0 (mod n) means a is divisible by n.

Why is modular arithmetic a useful tool?

Question: What is the remainder of 113.114 after dividing by 120?

Answer: $113 = -7 \pmod{120}$ and $114 = -6 \pmod{120}$

 \Rightarrow 113. 114 = (-7). (-6) = 42 (mod 120)

Question: What is the remainder of 5 after dividing by 17?

Answer: $5^2 = 25 = 8 \pmod{17}$

 $5^{4} = (5^{2})^{2} = 8^{2} = 64 = -4 \pmod{17}$

 $5^{8} = (5^{4})^{2} = (-4)^{2} = 16 = -1 \pmod{17}$

 $5^{16} = (5^8)^2 = (-1)^2 = (1)^2 = (1)^2$

Question: Prove that n^3 is of the form 7k+1 or 7k+6.

Solution: $0^3 \equiv 0 \pmod{7}$, $1^3 \equiv 1 \pmod{7}$, $2^3 \equiv 1 \pmod{7}$

 $3^{3} = 27 = 6 \pmod{7}$, $4^{3} = (-3)^{3} = -3^{3} = -6 = 1 \pmod{7}$

 $5^{3} = -2^{3} = 6 \pmod{7}$, $6^{3} = -1^{3} = 6 \pmod{7}$

 $n^3 \equiv 0^3, 1^3, 2^3, 3^3, 4^3, 5^3$ or 6^3 (mod 7) and we are done.

Exercise: n ∈ Z. Prove that n·(n+1)·(n+2) is divisible by 6.

If a = b (mod n), then

- $3a = 3b \pmod{n}$
- $2a^2 = 2b^2 \pmod{n}$
- $a^3 \equiv b^3 \pmod{n}$

 \Rightarrow $a^3 + 2a^2 + 3a + 5 = b^3 + 2b^2 + 3b + 5$ (mod n) More generally,

Theorem: Let p(x) be a polynomial with integer coefficients, then $a \equiv b \pmod{n} \implies p(a) \equiv p(b) \pmod{n}$ (Lemma 3.5 of the textbook)