语法分析

魏恒峰

hfwei@nju.edu.cn

2020年11月24日

输入: 词法单元流 & 语言的语法规则

输出: 语法分析树 (Parse Tree)

语法分析举例

(Optr) (Expr)

(Expr)

if (

(Stmt)

(Stmt)

```
(Expr)
                                                                                                                       (Id)
                                                                                                                                     (Optr)
                                                                                                                         x
                                                                                                                                                       (Expr)
                                                                                                                                           >
                                                                                                                                                       (Num)
                                                                                                                                                             9
                                                                                                                                                                                                                                      (Stmt)
         \langle \text{Stmt} \rangle \rightarrow \langle \text{Id} \rangle = \langle \text{Expr} \rangle;
                                                                                                                                                                                                                                  (StmtList)
        \langle Stmt \rangle \rightarrow \{ \langle StmtList \rangle \}
                                                                                                                                                                                            (StmtList)
                                                                                                                                                                                                                                                          (Stmt)
        \langle Stmt \rangle \rightarrow if (\langle Expr \rangle) \langle Stmt \rangle
                                                                                                                                                                                                (Stmt)
(StmtList) → (Stmt)
                                                                                                                                                                                              = (Expr);
                                                                                                                                                                                     \langle Id \rangle
\langle StmtList \rangle \rightarrow \langle StmtList \rangle \langle Stmt \rangle
                                                                                                                                                                                                     (Expr)
        \langle \text{Expr} \rangle \rightarrow \langle \text{Id} \rangle
                                                                                                                                                                                                    (Num)
        \langle \text{Expr} \rangle \rightarrow \langle \text{Num} \rangle
                                                                                                                                                                                                                                                          (Stmt)
        \langle \text{Expr} \rangle \rightarrow \langle \text{Expr} \rangle \langle \text{Optr} \rangle \langle \text{Expr} \rangle
                                                                                                                                                                                                                             \langle Id \rangle =
                                                                                                                                                                                                                                                                (Expr)
              \langle \mathrm{Id} \rangle \to \mathbf{x}
                                                                                                                                                                                                                                                                (Expr)
              \langle \mathrm{Id} \rangle \rightarrow \mathbf{v}
                                                                                                                                                                                                                                              (Expr)
                                                                                                                                                                                                                                                                (Optr) (Expr)
        \langle \text{Num} \rangle \rightarrow 0
                                                                                                                                                                                                                                                 \langle Id \rangle
        \langle \text{Num} \rangle \rightarrow 1
                                                                                                                                                                                                                                                                (Optr) (Expr)
        \langle \text{Num} \rangle \rightarrow 9
                                                                                                                                                                                                                                                                                   (Expr)
         \langle \text{Optr} \rangle \rightarrow >
                                                                                                                                                                                                                                                                                   (Num)
         \langle \text{Optr} \rangle \rightarrow +
                                                                                                     if (
                                                                                                                         х
                                                                                                                                           >
                                                                                                                                                                                                                                                   y
```

语法分析阶段的主题之一: 上下文无关文法

```
\langle \text{Stmt} \rangle \rightarrow \langle \text{Id} \rangle = \langle \text{Expr} \rangle;
            \langle Stmt \rangle \rightarrow \{ \langle StmtList \rangle \}
           \langle Stmt \rangle \rightarrow if (\langle Expr \rangle) \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle Stmt \rangle
\langle StmtList \rangle \rightarrow \langle StmtList \rangle \langle Stmt \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Id} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Num} \rangle
           \langle \text{Expr} \rangle \rightarrow \langle \text{Expr} \rangle \langle \text{Optr} \rangle \langle \text{Expr} \rangle
                    \langle \mathrm{Id} \rangle \to \mathbf{x}
                    \langle \mathrm{Id} \rangle \to \mathbf{v}
            \langle \text{Num} \rangle \rightarrow 0
            \langle \text{Num} \rangle \rightarrow 1
            \langle \text{Num} \rangle \rightarrow 9
            \langle \text{Optr} \rangle \rightarrow >
            \langle \text{Optr} \rangle \rightarrow +
```

语法分析阶段的主题之二: 构建语法分析树

	$\langle \mathrm{Stmt} \rangle$													
if ((Expr))					(St	$\mathrm{mt}\rangle$				
if ((Expr)	(Optr)	(Expr))					(St	$mt\rangle$				
if ($\langle \mathrm{Id} \rangle$	(Optr)	(Expr)						(St	$\mathrm{mt}\rangle$				
if (x	(Optr)	(Expr)						St	$\mathrm{mt} \rangle$				
if (x	>	$\langle \text{Expr} \rangle$						St	$\mathrm{mt} \rangle$				
if (x	>	(Num))	$\langle \mathrm{Stmt} \rangle$									
if (x	>	9)	$\langle \mathrm{Stmt} \rangle$									
if (x	>	9) -	{ (StmtList)								}	
if (>	9		{	(StmtList)					tmt)		- j	
if (>	9		}	(Stmt)			\sim $\langle \text{Stmt} \rangle$					
if (>	9		\ <u>\ld</u>		(Expr)	;			tmt)			
if (x	>	9		x	_	(Expr)				$\langle tmt \rangle$			
if (x	>	9		{ x	=	(Num)				$\langle tmt \rangle$			
if (>	9			=	0				$\langle { m tmt} \rangle$			
if (x	>	9		{ x			; \(\lambda \) Id) =		(Expr)		; }	
if (>	9		{ x			; <u>y</u>	_ =		(Expr)		: }	
if (>	9			-		; y	=	(Expr)	(Optr)	(Expr)	: }	
if (x	>	9		{ x	=		, y	=	$\langle \mathrm{Id} \rangle$	(Optr)	(Expr)		
if (>	9		{ x			; y	=	У	$\langle \mathrm{Optr} \rangle$	$\langle Expr \rangle$: }	
if (>	9					, ,	-	y	+	$\langle \text{Expr} \rangle$: }	
if (>	9			_		, y	=		+	(Num)		
if (x	>	9)	{ x	=	0	; v	=	y	+	1	; }	
(-				-	, ,				3	. ,	

语法分析阶段的主题之三: 错误恢复

报错、恢复、继续分析

上下文无关文法

7/59

Definition (Context-Free Grammar (CFG); 上下文无关文法)

上下文无关文法 G 是一个四元组 G = (T, N, P, S):

- ▶ T 是<mark>终结符号</mark> (Terminal) 集合, 对应于词法分析器产生的词法单元;
- ▶ N 是<mark>非终结符号</mark> (Non-terminal) 集合;
- ▶ P 是产生式 (Production) 集合;

$$A \in N \longrightarrow \alpha \in (T \cup N)^*$$

头部/左部 (Head) A: 单个非终结符

体部/右部 (Body) α : 终结符与非终结符构成的串, 也可以是空串 ϵ

▶ S 为开始 (Start) 符号。要求 $S \in N$ 且唯一。

$$G=(\{a,b\},\{S\},P,S)$$

$$S \to aSb$$
$$S \to \epsilon$$

$$S \to \epsilon$$

$$G = (\{(,)\}, \{S\}, P, S)$$

$$S \to SS$$

$$S \to (S)$$

$$S \rightarrow ()$$

$$S \to \epsilon$$

stmt → if expr then stmt

| if expr then stmt else stmt |
| other

条件语句文法

悬空 (Dangling)-else 文法

$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

 $S \rightarrow \text{begin } S L$

$$S \rightarrow \text{print } E$$

$$L \rightarrow \text{end}$$
 $L \rightarrow : S L$

$$E \rightarrow \text{num} = \text{num}$$

约定: 如果没有明确指定, 第一个产生式的头部就是开始符号

关于终结符号的约定

- 1) 下述符号是终结符号:
- ① 在字母表里排在前面的小写字母,比如 $a \setminus b \setminus c_o$
- ② 运算符号,比如+、*等。
- ③ 标点符号,比如括号、逗号等。
- ④ 数字 0、1、…、9。
- ⑤ 黑体字符串,比如 id 或 if。每个这样的字符串表示一个终结符号。

关于**非终结符号**的约定

- 2) 下述符号是非终结符号:
- ① 在字母表中排在前面的大写字母, 比如 $A \setminus B \setminus C$ 。
- ② 字母 S。它出现时通常表示开始符号。
- ③ 小写、斜体的名字, 比如 expr 或 stmt。

语义: 上下文无关文法 G 定义了一个语言 L(G)

Syntax

Semantics

语义: 上下文无关文法 G 定义了一个语言 L(G)

语言是串的集合

串从何来?

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

推导即是将某个产生式的左边替换成它的右边

每一步推导需要选择替换哪个非终结符号, 以及使用哪个产生式

16/59

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

 $E \implies -E$: 经讨一步推导得出

 $E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E)$: 经过一步或多步推导得出

 $E \stackrel{*}{\Rightarrow} -(\mathbf{id} + E)$: 经过零步或多步推导得出

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id}+E) \implies -(\mathbf{id}+\mathbf{id})$$

 $E \implies -E$: 经讨一步推导得出

 $E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E) : 经过一步或多步推导得出$

 $E \stackrel{*}{\Rightarrow} -(\mathbf{id} + E)$: 经过零步或多步推导得出

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(E+id) \implies -(id+id)$$

Definition (Sentential Form; 句型)

如果 $S \stackrel{*}{\Rightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个句型。

$$E \to E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id} + \mathbf{E}) \implies -(\mathbf{id} + \mathbf{id})$$

Definition (Sentential Form; 句型)

如果 $S \stackrel{*}{\Rightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个句型。

$$E \to E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \implies -E \implies -(E) \implies -(E+E) \implies -(\mathbf{id} + \mathbf{E}) \implies -(\mathbf{id} + \mathbf{id})$$

Definition (Sentence; 句子)

如果 $S \stackrel{*}{\Rightarrow} w$, 且 $w \in T^*$, 则称 w 是文法 G 的一个句子。

Definition (文法 G 生成的语言 L(G))

文法 G 的语言 L(G) 是它能推导出的所有句子构成的集合。

$$w \in L(G) \iff S \stackrel{*}{\Rightarrow} w$$

关于文法 G 的两个基本问题:

- ▶ Membership 问题: 给定字符串 $x \in T^*$, $x \in L(G)$?
- ▶ L(G) 究竟是什么?

给定字符串 $x \in T^*$, $x \in L(G)$?

(即, 检查 x 是否符合文法 G)

给定字符串 $x \in T^*$, $x \in L(G)$?

(即, 检查 x 是否符合文法 G)

这就是语法分析器的任务:

为输入的词法单元流寻找推导、构建语法分析树,或者报错

根节点是文法 G 的起始符号

叶子节点是输入的词法单元流

常用的语法分析器以自顶向下或自底向上的方式构建中间部分

L(G) 是什么?

这是程序设计语言设计者需要考虑的问题

$$S \to SS$$

$$S \to (S)$$

$$S \to ()$$
 $S \to \epsilon$

$$S \to \epsilon$$

$$L(G) =$$

$$S \rightarrow SS$$
 $S \rightarrow (S)$
 $S \rightarrow ()$
 $S \rightarrow \epsilon$

$$L(G) = \{$$
良匹配括号串 $\}$

$$S o SS$$
 $S o (S)$ $S o ()$ $S o \epsilon$

$$L(G) = \{$$
良匹配括号串 $\}$

$$S \to aSb$$

$$S \to \epsilon$$

$$L(G) =$$

24/59

$$S o SS$$
 $S o (S)$ $S o ()$ $S o \epsilon$

$$L(G) = \{$$
良匹配括号串 $\}$

$$S o aSb$$
 $S o \epsilon$

$$L(G) = \{a^n b^n \mid n \ge 0\}$$

字母表 $\Sigma = \{a, b\}$ 上的所有回文串 (Palindrome) 构成的语言

字母表 $\Sigma = \{a, b\}$ 上的所有回文串 (Palindrome) 构成的语言

$$S \rightarrow aSa$$
 $S \rightarrow bSb$
 $S \rightarrow a$
 $S \rightarrow b$
 $S \rightarrow b$

字母表 $\Sigma = \{a, b\}$ 上的所有回文串 (Palindrome) 构成的语言

$$S \rightarrow aSa$$
 $S \rightarrow bSb$
 $S \rightarrow a$
 $S \rightarrow b$
 $S \rightarrow b$

$$S \rightarrow aSa \mid bSb \mid a \mid b \mid \epsilon$$

$$\{b^n a^m b^{2n} \mid n \ge 0, m \ge 0\}$$

$$\{b^n a^m b^{2n} \mid n \ge 0, m \ge 0\}$$

$$S \to bSbb \mid A$$
$$A \to aA \mid \epsilon$$

$$A \to aA \mid \epsilon$$

 $\{x \in \{a,b\}^* \mid x + a,b$ 个数相同 $\}$

 $\{x \in \{a,b\}^* \mid x + a,b$ 个数相同 $\}$

$$V \rightarrow aVbV \mid bVaV \mid \epsilon$$

 $\{x \in \{a,b\}^* \mid x + a,b$ 个数不同 $\}$

28 / 59

$$\{x \in \{a,b\}^* \mid x + a,b \land x = a,b \land$$

$$S \rightarrow T \mid U$$

$$T \rightarrow VaT \mid VaV$$

$$U \rightarrow VbU \mid VbV$$

$$V \rightarrow aVbV \mid bVaV \mid \epsilon$$

$\{x \in \{a,b\}^* \mid x + a,b \land x = a,b \land$

$$S \rightarrow T \mid U$$

$$T \rightarrow VaT \mid VaV$$

$$U \rightarrow VbU \mid VbV$$

$$V \rightarrow aVbV \mid bVaV \mid \epsilon$$

练习 (非作业): 证明之

 $S \rightarrow \text{if } E \text{ then } S \text{ else } S$ $S \rightarrow \text{begin } S L$ $S \rightarrow \text{print } E$ $L \rightarrow \text{end}$ $L \rightarrow ; S L$

 $E \rightarrow \text{num} = \text{num}$

$$S \rightarrow \text{if } E \text{ then } S \text{ else } S$$

 $S \rightarrow \text{begin } S L$
 $S \rightarrow \text{print } E$

$$\begin{array}{c} L \to \text{end} \\ L \to \; ; \; S \; L \end{array}$$

$$E \rightarrow \text{num} = \text{num}$$

顺序语句、条件语句、打印语句

L-System

(注: 这不是上下文无关文法, 但精神上高度一致, 并且更有趣)

variables : A B

constants: + -

start: A

rules : $(A \rightarrow B-A-B)$, $(B \rightarrow A+B+A)$

angle: 60°

A, B: 向右移动并画线

+: 左转

-: 右转

每一步都并行地应用所有规则

A

$$B - A - B$$

A

$$B - A - B$$

$$A + B + A - B - A - B - A + B + A$$

$$B - A - B$$

$$A + B + A - B - A - B - A + B + A$$

Sierpinski arrowhead curve (n = 2, 4, 6, 8)

variables: X Y

constants : F + -

start : FX

rules : $(X \rightarrow X+YF+)$, $(Y \rightarrow -FX-Y)$

angle: 90°

F: 向上移动并画线

+: 右转

-: 左转

X: 仅用于展开, 在作画时被忽略

每一步都并行地应用所有规则

Dragon Curve (n = 10)

最左 (leftmost) 推导与最右 (rightmost) 推导

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \Longrightarrow_{\operatorname{lm}} -E \Longrightarrow_{\operatorname{lm}} -(E) \Longrightarrow_{\operatorname{lm}} -(E+E) \Longrightarrow_{\operatorname{lm}} -(\operatorname{id} +E) \Longrightarrow_{\operatorname{lm}} -(\operatorname{id} +\operatorname{id})$$

最左 (leftmost) 推导与最右 (rightmost) 推导

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

$$E \Longrightarrow -E$$
: 经过一步最左推导得出

$$E \stackrel{+}{\underset{lm}{\Longrightarrow}} -(\mathbf{id} + E)$$
: 经过一步或多步最左推导得出

$$E \stackrel{*}{\Longrightarrow} -(\mathbf{id} + E)$$
: 经过零步或多步最左推导得出

最左 (leftmost) 推导与最右 (rightmost) 推导

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \Longrightarrow_{\lim} -E \Longrightarrow_{\lim} -(E) \Longrightarrow_{\lim} -(E+E) \Longrightarrow_{\lim} -(\mathbf{id} + E) \Longrightarrow_{\lim} -(\mathbf{id} + \mathbf{id})$$

$$E \Longrightarrow -E$$
: 经过一步最左推导得出

$$E \stackrel{+}{\Longrightarrow} -(\mathbf{id} + E)$$
: 经过一步或多步最左推导得出

$$E \stackrel{*}{\Longrightarrow} -(\mathbf{id} + E)$$
: 经过零步或多步最左推导得出

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(E+i\mathbf{d}) \Longrightarrow -(i\mathbf{d}+i\mathbf{d})$$

Definition (Left-sentential Form; 最左句型)

如果 $S \stackrel{*}{\Longrightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个最左句型。

$$E \Longrightarrow_{\operatorname{lm}} -E \Longrightarrow_{\operatorname{lm}} -(E) \Longrightarrow_{\operatorname{lm}} -(E+E) \Longrightarrow_{\operatorname{lm}} -(\operatorname{id} +E) \Longrightarrow_{\operatorname{lm}} -(\operatorname{id} +\operatorname{id})$$

Definition (Left-sentential Form; 最左句型)

如果 $S \stackrel{*}{\Longrightarrow} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个最左句型。

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(\mathbf{id}+E) \Longrightarrow -(\mathbf{id}+\mathbf{id})$$

Definition (Right-sentential Form; 最右句型)

如果 $S \xrightarrow{*} \alpha$, 且 $\alpha \in (T \cup N)^*$, 则称 α 是文法 G 的一个最右句型。

$$E \Longrightarrow -E \Longrightarrow -(E) \Longrightarrow -(E+E) \Longrightarrow -(E+i\mathbf{d}) \Longrightarrow -(i\mathbf{d}+i\mathbf{d})$$

语法分析树

语法分析树是静态的, 它不关心动态的推导顺序

一棵语法分析树对应多个推导

语法分析树

语法分析树是静态的, 它不关心动态的推导顺序

一棵语法分析树对应多个推导

但是,一棵语法分析树与最左(最右)推导一一对应

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

1 - 2 - 3 的语法树?

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

$$1 - 2 - 3$$
 的语法树?

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

$$1 - 2 - 3$$
 的语法树?

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

1 - 2 - 3 的语法树?

Definition (二义性(Ambiguous) 文法)

如果 L(G) 中的某个句子有一个以上语法树/最左推导/最右推导,则文法 G 是二义性的。

40.40.45.45. 5 000

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

1 + 2 * 3 的语法树?

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

1 + 2 * 3 的语法树?

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

$$1 + 2 * 3$$
 的语法树?

- $stmt \rightarrow if expr then <math>stmt$
 - if expr then stmt else stmt
 - other
 - "悬空-else" 文法

if E_1 then if E_2 then S_1 else S_2

41/59

if expr then stmt

if expr then stmt else stmt

other

"悬空-else" 文法

if E_1 then if E_2 then S_1 else S_2

if E_1 then (if E_2 then S_1 else S_2)

if E_1 then (if E_2 then S_1) else S_2

二义性文法

不同的语法分析树产生不同的语义

所有语法分析器都要求文法是无二义性的

43 / 59

二义性文法

Q: 如何<mark>识别</mark>二义性文法?

Q: 如何**消除**文法的二义性?

二义性文法

Q: 如何<mark>识别</mark>二义性文法?

IMPOSSIBLE"

这是不可判定的问题

Q: 如何消除文法的二义性?

二义性文法

Q: 如何<mark>识别</mark>二义性文法?

这是不可判定的问题

Q: 如何消除文法的二义性?

LEARN BY EXAMPLES

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

四则运算均是左结合的

优先级: 括号最先, 先乘除后加减

二义性表达式文法以**相同的方式**处理所有的算术运算符 要消除二义性, 需要**区别对待**不同的运算符

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid id \mid num$$

四则运算均是左结合的

优先级: 括号最先, 先乘除后加减

二义性表达式文法以**相同的方式**处理所有的算术运算符 要消除二义性, 需要**区别对待**不同的运算符

将运算的"先后"顺序信息编码到语法树的"层次"结构中

$$E \rightarrow E + E \mid \mathbf{id}$$

$$E \rightarrow E + E \mid \mathbf{id}$$

$$E \to E + T$$

 $T \rightarrow id$

左结合文法

$$E \rightarrow E + E \mid \mathbf{id}$$

$$E \rightarrow E + T$$

 $T \rightarrow id$

左结合文法

$$E \rightarrow T + E$$

 $T \rightarrow id$

右结合文法

$$E \rightarrow E + E \mid \mathbf{id}$$

$$E \rightarrow E + T$$

 $T o \mathbf{id}$

左结合文法

$$E \rightarrow T + E$$

 $T \rightarrow id$

右结合文法

使用左(右)递归实现左(右)结合

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E \rightarrow E + E \mid E * E \mid (E) \mid \mathbf{id}$$

$$E
ightarrow E + T \mid T$$
 $T
ightarrow T * F \mid F$ $F
ightarrow (E) \mid \mathbf{id}$

括号最先, 先乘后加文法

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

$$E
ightarrow E + T \mid E - T \mid T$$
 $T
ightarrow T * F \mid T/F \mid F$ $F
ightarrow (E) \mid \mathbf{id} \mid \mathbf{num}$

无二义性的表达式文法

E: 表达式(expression); T: 项(term) F: 因子(factor)

$$E \rightarrow E + E \mid E - E \mid E * E \mid E/E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

$$E
ightarrow E+T\mid E-T\mid T$$
 $T
ightarrow T*F\mid T/F\mid F$ $F
ightarrow (E)\mid {f id}\mid {f num}$

无二义性的表达式文法

E: 表达式(expression); T: 项(term) F: 因子(factor)

将运算的"先后"顺序信息编码到语法树的"层次"结构中

if E_1 then if E_2 then S_1 else S_2

"每个else与最近的尚未匹配的then匹配"

```
stmt → if expr then stmt

if expr then stmt else stmt

other
```

基本思想: then 与 else 之间的语句必须是"已匹配的"

我也看不懂啊

"我不想去上课啊妈妈"

"清醒一点!你是老师啊!"

我们要证明两件事情

KEEP CALM

AND

PROVE IT

我们要证明两件事情

$$L(G) = L(G')$$

KEEP CALM

AND

PROVE IT

我们要证明两件事情

$$L(G) = L(G')$$

G' 是无二义性的


```
stmt \rightarrow if expr then stmt
| if expr then stmt else stmt |
| other
```

```
stmt → if expr then stmt
if expr then stmt else stmt
other
```

$$L(G)\subseteq L(G')$$

$$L(G')\subseteq L(G)$$

```
stmt → if expr then stmt
if expr then stmt else stmt
other
```

$$L(G') \subseteq L(G)$$

$$L(G) \subseteq L(G')$$

对推导步数作数学归纳

每个句子对应的语法分析树是唯一的

每个句子对应的语法分析树是唯一的

只需证明:每个非终结符的"展开"方式是唯一的

每个句子对应的语法分析树是唯一的

只需证明:每个非终结符的"展开"方式是唯一的

 $L(matched_stmt) \cap L(open_stmt) = \emptyset$

每个句子对应的语法分析树是唯一的

只需证明:每个非终结符的"展开"方式是唯一的

 $L(matched_stmt) \cap L(open_stmt) = \emptyset$

 $L(matched_stmt_1) \cap L(matched_stmt_2) = \emptyset$

 \rightarrow matched_stmt stmtopen_stmt → if expr then matched_stmt else matched_stmt matched stmt other \rightarrow if expr then stmt $open_stmt$ if expr then matched_stmt else open_stmt

每个句子对应的**语法分析树**是唯一的

只需证明:每个非终结符的"展开"方式是唯一的

$$L(matched_stmt) \cap L(open_stmt) = \emptyset$$

$$L(matched_stmt_1) \cap L(matched_stmt_2) = \emptyset$$

$$L(open_stmt_1) \cap L(open_stmt_2) = \emptyset$$

为什么不使用优雅、强大的正则表达式描述程序设计语言的语法?

正则表达式的表达能力严格弱于上下文无关文法

每个正则表达式 r 对应的语言 L(r) 都可以使用上下文无关文法来描述

$$r = (a|b)^*abb$$

每个正则表达式 r 对应的语言 L(r) 都可以使用上下文无关文法来描述

$$r = (a|b)^*abb$$

每个正则表达式 r 对应的语言 L(r) 都可以使用上下文无关文法来描述

此外, 若 $\delta(A_i, \epsilon) = A_j$, 则添加 $A_i \to A_j$

$$S \to aSb$$
$$S \to \epsilon$$

$$L = \{a^nb^n \mid n \ge 0\}$$

该语言无法使用正则表达式来描述

 $L = \{a^n b^n \mid n \ge 0\}$ 无法使用正则表达式描述。

 $L = \{a^n b^n \mid n \ge 0\}$ 无法使用正则表达式描述。

反证法

 $L = \{a^n b^n \mid n \ge 0\}$ 无法使用正则表达式描述。

反证法

假设存在正则表达式 r: L(r) = L

 $L = \{a^n b^n \mid n \ge 0\}$ 无法使用正则表达式描述。

反证法

假设存在正则表达式 r: L(r) = L

则存在**有限**状态自动机 D(r): L(D(r)) = L; 设其状态数为 k

 $L = \{a^n b^n \mid n \ge 0\}$ 无法使用正则表达式描述。

反证法

假设存在正则表达式 r: L(r) = L

则存在**有限**状态自动机 D(r): L(D(r)) = L; 设其状态数为 k

考虑输入 $a^m(m>k)$

 $L = \{a^n b^n \mid n \ge 0\}$ 无法使用正则表达式描述。

反证法

假设存在正则表达式 r: L(r) = L

则存在**有限**状态自动机 D(r): L(D(r)) = L; 设其状态数为 k

考虑输入 $a^m(m>k)$

D(r) 也能接受 $a^{i+j}b^i$; 矛盾!

$$L = \{a^n b^n \mid n \ge 0\}$$

Pumping Lemma for Regular Languages

$$L = \{a^n b^n \mid n \ge 0\}$$

Pumping Lemma for Regular Languages

$$L = \{a^n b^n c^n \mid n \ge 0\}$$

Pumping Lemma for Context-free Languages

Thank You!

Office 926 hfwei@nju.edu.cn