Chapter 6 Statistical Data Analysis

Vi Bảo Ngọc

0983408885 - ngocvb@lqdtu.edu.vn

Computer Science Department, Le Quy Don Technical University

Outline

- 1. Distribution fitting
- 2. Kernel Density Estimation
- Determining confidence intervals for mean, variance, and standard deviation
- 4. Exploring extreme values
- 5. Correlating variables with correlation
- 6. Evaluating relationships between variables with ANOVA

Determining confidence intervals for mean, variance, and standard deviation

- A confidence intervals are an estimated range usually associated with a certain confidence level quoted in percentages.
- You can calculate confidence intervals for many kinds of statistical estimates, including:
 - Proportions
 - Population means
 - Differences between population means or proportions
 - Estimates of variation among groups

Determining confidence intervals for mean, variance, and standard deviation

- If you want to calculate a confidence interval on your own, you need to know:
 - The point estimate you are constructing the confidence interval for
 - The **critical values** for the test statistic
 - The **standard deviation** of the sample
 - The sample size

Confidence interval for the mean of normally-distributed data

- **Z-interval** for a mean by making the unrealistic assumption that we know the population variance.
- t-interval for a mean for the more realistic situation that we don't know the population variance

Confidence interval for the mean of normally-distributed data

Z-interval

$$ar{X} \sim N\left(\mu, rac{\sigma^2}{n}
ight)$$
 and $Z = rac{ar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

$$ar{x}\pm z_{lpha/2}\left(rac{\sigma}{\sqrt{n}}
ight)$$

Confidence interval for the mean of normally-distributed data

t-interval

$$S=\sqrt{rac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-ar{X})^2}$$

$$T=rac{ar{X}-\mu}{S/\sqrt{n}}~\sim t_{n-1}$$

$$ar{x}\pm t_{lpha/2,n-1}\left(rac{s}{\sqrt{n}}
ight)$$

Confidence interval for the mean of non-normal data

• When the sample size increases, the ratio:

$$T = rac{ar{X} - \mu}{rac{S}{\sqrt{n}}}$$

approaches an approximate normal distribution

$$ar{x}\pm t_{lpha/2,n-1}\left(rac{s}{\sqrt{n}}
ight) \qquad \qquad ar{x}\pm z_{lpha/2}\left(rac{s}{\sqrt{n}}
ight)$$

Examples

1. A random sample of 64 guinea pigs yielded the following survival times (in days):

```
36; 18; 91; 89; 87; 86; 52; 50; 149; 120; 119; 118; 115; 114; 114; 108; 102; 189; 178; 173; 167; 167; 166; 165; 160; 216; 212; 209; 292; 279; 278; 273; 341; 382; 380; 367; 355; 446; 432; 421; 474; 463; 455; 546; 545; 505; 590; 576; 569; 641; 638; 637; 634; 621; 608; 607; 603; 688; 685; 663; 650; 735; 725
```

What is the mean survival time (in days) of the population of guinea pigs?

2. Calculate the confidence interval of mean of sepal length in Iris dataset.

Confidence interval for the variance/std of normally-distributed data

$$rac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$

$$\frac{(n-1)S^2}{b} \le \sigma^2 \le \frac{(n-1)S^2}{a}$$

$$\frac{\sqrt{(n-1)S^2}}{\sqrt{b}} \le \sigma \le \frac{\sqrt{(n-1)S^2}}{\sqrt{a}}$$

- Extreme value: data point lying at one end of a probability distribution
- Extreme values are specialized types of outliers: All extreme values are outliers, but the reverse may not be true
- Example of univariate extreme values {1,3,3,3,50,97,97,97,100}
 - 1 and 100: extreme values outliers
 - 50 is the mean of the data set not an extreme value
 - 50 is the most isolated point outlier from a generative perspective

Univariate Extreme Value Analysis:

$$f_X(x) \leq \theta$$

 Univariate Extreme Value Analysis: The most commonly used model for quantifying the tail probability is the normal distribution

$$f_X(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{-(x-\mu)^2}{2 \cdot \sigma^2}}$$

Compute the Z-value for a random variable:

$$z_i = \frac{(x_i - \mu)}{\sigma}$$

- Large positive values of zi correspond to the upper tail
- Large negative values correspond to the lower tail

• Therefore:

$$f_X(z_i) = \frac{1}{\sqrt{2 \cdot \pi}} \cdot e^{\frac{-z_i^2}{2}}$$

- If zi > 3, xi is considered extreme value
- The cumulative area inside the tail can be shown to be less than 0.01% for the normal distribution

• Multivariate Extreme Values: A multivariate Gaussian model is used

$$f(\overline{X}) = \frac{1}{\sqrt{|\Sigma| \cdot (2 \cdot \pi)^{(d/2)}}} \cdot e^{-\frac{1}{2} \cdot (\overline{X} - \overline{\mu}) \Sigma^{-1} (\overline{X} - \overline{\mu})^T}$$

$$= \frac{1}{\sqrt{|\Sigma| \cdot (2 \cdot \pi)^{(d/2)}}} \cdot e^{-\frac{1}{2} \cdot Maha(\overline{X}, \overline{\mu}, \Sigma)^2}$$

- For f(X(0)) less than a particular threshold
 - Maha(.) needs to be larger than a threshold
 - Maha(.) can be used as an extreme-value score

- The Extreme Value Theorem (aka the Fisher-Tippett-Gnedenko Theorem) states that for a certain class of distributions, the maximum value for a sufficiently large sample will have a **GEV distribution**.
- If a sample comes from a beta distribution (including the uniform distribution) then the maximum value (for a sufficiently large sample) has a reverse Weibull distribution.
- If the sample comes from a Pareto, Fréchet or t-distribution, then the maximum value has a Fréchet distribution.
- Finally, if the sample comes from a Weibull, exponential, gamma, logistic, normal or log-normal distribution then the maximum value has a Gumbel distribution.
- The GEV combines three distributions into a single framework.

• Identify the extreme values of sepal witdth in Iris dataset by different methods (z-score, GEV, and IQR)

Correlation coefficient	Type of relationship	Levels of measurement	Data distribution
Pearson's r	Linear	Two quantitative (interval or ratio) variables	Normal distribution
Spearman's rho	Non-linear	Two ordinal, interval or ratio variables	Any distribution
Point-biserial	Linear	One dichotomous (binary) variable and one quantitative (interval or ratio) variable	Normal distribution
Cramér's V (Cramér's φ)	Non-linear	Two nominal variables	Any distribution
Kendall's tau	Non-linear	Two ordinal, interval or ratio variables	Any distribution

- Pearson's correlation coefficient:
 - These are the assumptions your data must meet if you want to use Pearson's r:
 - Both variables are on an interval or ratio level of measurement
 - Data from both variables follow normal distributions
 - Your data have no outliers
 - Your data is from a random or representative sample
 - You expect a linear relationship between the two variables

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

- Spearman's rank correlation coefficient:
 - While the Pearson correlation coefficient measures the linearity of relationships, the Spearman correlation coefficient measures the monotonicity of relationships.

- Spearman's rank correlation coefficient:
 - To use this formula, you'll first rank the data from each variable separately from low to high: every datapoint gets a rank from first, second, or third, etc.
 - Then, you'll find the differences (d_i) between the ranks of your variables for each data pair and take that as the main input for the formula.

$$r_s = 1 - \frac{6\sum d_i^2}{(n^3 - n)}$$

ANOVA- definition, one-way, two-way, table, examples, applications

ANOVA

One-way ANOVA

Two-way ANOVA

Sources of variation	Sum of squares (SS)	Degrees of freedom (d.f)	Mean sum of square (MS)	F-ratio
Between columns	$\sum \frac{(Tj^2)}{Nj} - \frac{(T^2)}{n}$	(c-1)	SS between columns (c-1)	MS between columnz MS residual
Between rows	$\sum \frac{(Ti^2)}{Ni} - \frac{(T^2)}{n}$	(r-1)	SS between rows (r-1)	MS between rowa MS residual
Residual error	Total SS- (SS between columns and SS between rows)	(c-1)(r-1)	SS residual (c-1)(r-1)	
Total	$\sum Xij^2 - \frac{(T^2)}{n}$	(c.r -1)		

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Factor	3	43.62	14.540	3.30	0.031
Error	36	158.47	4.402		
Total	39	202.09			

- Examples
 - https://www.javatpoint.com/anova-test-in-python

Reference

- https://online.stat.psu.edu/stat415/
- Idris, Ivan. *Python data analysis cookbook*. Packt Publishing Ltd, 2016., Chapter 3.