CNN

Arquiteturas e Backpropagation

Prof. Frederico Coelho.

CNN - recaptulando

Tipos de camadas

- Convolucional : Definem os filtros (Aprendizado / BackPropagation)
- Ativação: Neurônios (Relu / Sigmoid / TangH)
- Pooling: Reduzem as escalas (Max, Median, etc..)
- Fully-Connected (FC): Camada que determina as classes (Classificador)

CNN - recaptulando

- Compostas de duas grandes etapas:
- →Extração de Características pelas Camadas Convolucionais
- →Classificação

A maneira como estas camadas são conectadas definem as arquiteturas.

LeNet-5 (1998)

Pioneira – aplicada a bancos de dados de escrita manual para classificação de dígitos.

AlexNet (2012)

A rede tinha uma arquitetura muito semelhante à LeNet. Mas era mais profunda, com mais filtros por camada e com camadas convolucionais Empilhadas.

ZFNet (2013)

Foi uma melhoria obtida ajustando os hiperparâmetros do AlexNet, mantendo a mesma estrutura com elementos adicionais de Deep Learning.

GoogleNet/Inception (2014)

Sua arquitetura consistia em uma CNN com 22 camadas de profundidade, mas reduziu o número de parâmetros de 60 milhões (AlexNet) para 4 milhões.

VGGNet (2014)

ResNet (2015)

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

Artigo

Derivation of Backpropagation in Convolutional Neural Network (CNN)

Zhifei Zhang

University of Tennessee, Knoxvill, TN

Inicialização de parâmetros:

- C1 layer, $k_{1,p}^1$ (size 5×5) and b_p^1 (size 1×1), $p = 1, 2, \dots 6$
- C2 layer, $k_{p,q}^2$ (size 5×5) and b_q^2 (size 1×1), $q = 1, 2, \dots 12$
- FC layer, W (size 10×192) and b (size 10×1)

Inicialização de parâmetros:

bias, b_p^1 , b_q^2 , and b, are initialize to zero

Aleatório com distribuição uniforme

$$k_{1,p}^{1} \sim U\left(\pm\sqrt{\frac{6}{(1+6)\times 5^{2}}}\right)$$

$$k_{p,q}^{2} \sim U\left(\pm\sqrt{\frac{6}{(6+12)\times 5^{2}}}\right)$$

$$W \sim U\left(\pm\sqrt{\frac{6}{192+10}}\right)$$

$$S_p^1(i,j) = \frac{1}{4} \sum_{u=0}^{1} \sum_{v=0}^{1} C_p^1(2i-u,2j-v), \ i,j=1,2,\cdots,12$$

$$S_q^2(i,j) = \frac{1}{4} \sum_{u=0}^{1} \sum_{v=0}^{1} C_q^2(2i-u,2j-v), \ i,j=1,2,\cdots,4$$

Função de custo
$$L = \frac{1}{2} \sum_{i=1}^{10} (\hat{y}(i) - y(i))^2$$

Queremos ajustar estes parâmetros para minimizar a função de custo

$$\Delta W(i,j) = \frac{\partial L}{\partial W(i,j)} \qquad \Delta W(i,j) = \Delta \hat{y}(i) \cdot f(j)$$
$$\implies \Delta W = \Delta \hat{y} \times f^{T}$$

$$\Delta b(i) = \frac{\partial L}{\partial b(i)} \qquad \Delta b = \Delta \hat{y}$$

$$\Delta k_{p,q}^2$$
 (size 5×5)

Calculamos
$$\Delta f(j) = \frac{\partial L}{\partial f} \implies \Delta f = W^T \times \Delta \hat{y}$$

Reformatamos o vetor $\{\Delta S_q^2\}_{q=1,2,\cdots,12} = F^{-1}(\Delta f)$

Então calculamos $\Delta C_q^2(i,j) = \frac{1}{4} \Delta S_q^2\left(\lceil i/2 \rceil, \lceil j/2 \rceil\right), \ i,j=1,2,\cdots,8$ (upsampling)

 $[\cdot]$ denotes the ceiling function

$$\Delta b_q^2 = \frac{\partial L}{\partial b_q^2} = \sum_{i=1}^8 \sum_{j=1}^8 \Delta C_{q,\sigma}^2(i,j)$$

$$\Delta K_{1,p}^1 \text{ (size } 5 \times 5 \text{)} \qquad \qquad \Delta S_p^1(i,j) = \frac{\partial L}{\partial S_p^1(i,j)} \ = \sum_{q=1}^{12} \sum_{u=-2}^2 \sum_{v=-2}^2 \Delta C_{q,\sigma}^2(i+u,j+v) \cdot k_{p,q}^2(u,v)$$

Rotating $k_{p,q}^2$ 180 degrees, we get $k_{p,q,rot180}^2(-u,-v)=k_{p,q}^2(u,v)$

$$\Delta k_{1,p}^1$$
 (size 5×5)

Upsampling

$$\Delta C_p^1(i,j) = \frac{1}{4} \Delta S_p^1\left(\lceil i/2 \rceil, \lceil j/2 \rceil\right), \ i,j = 1, 2, \cdots, 24$$

$$\Delta k_{1,p}^1$$
 (size 5×5) Rotacionando I de 180°

$$\Delta k_{1,p}^{1}(u,v) = \sum_{i=1}^{24} \sum_{j=1}^{24} I_{rot180}(u-i,v-j) \cdot \Delta C_{p,\sigma}^{1}(i,j)$$

$$\Longrightarrow \Delta k_{1,p}^{1} = I_{rot180} * \Delta C_{p,\sigma}^{1}$$

$$\Delta b_p^1 = \frac{\partial L}{\partial b_p^1} = \sum_{i=1}^{24} \sum_{j=1}^{24} \Delta C_{p,\sigma}^1(i,j)$$

$$k_{1,p}^{1} \leftarrow k_{1,p}^{1} - \alpha \cdot \Delta k_{1,p}^{1}$$

$$b_{p}^{1} \leftarrow b_{p}^{1} - \alpha \cdot \Delta b_{p}^{1}$$

$$k_{p,q}^{2} \leftarrow k_{p,q}^{2} - \alpha \cdot \Delta k_{p,q}^{2}$$

$$b_{q}^{2} \leftarrow b_{q}^{2} - \alpha \cdot \Delta b_{q}^{2}$$

$$W \leftarrow W - \alpha \cdot \Delta W$$

$$b \leftarrow b - \alpha \cdot \Delta b$$

Referências

- https://medium.com/analytics-vidhya/cnns-architectures
- -lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5