Data Wrangling Using Dplyr

TA Crystal

9/8/2020

Contents

Loading R packages	1
I. Mutate Function	2
Example I.i: Change the label for a categorical variable	2
Example I.ii: Group patients whose race, gender are NA into a seperate group	3
Example I.iii: Create age groups from a numeric age variable	4
II. Select Function	5
III. Filter Function	6
Example III.i: Identify only African American patients	6
Example III.ii: Identify patients who's surgery time is longer than 10 hours	6
IV. Summarize Function	7
Example IV.i: Identify the average surgery hour for each race group	7
Example IV.ii: Further investigate within each race, what's the average surgery hour for different asa statis	8
V. Arrange Function	8
Loading R packages	
• dplyr: dataframe manipulation	
• ggplot2: visualization	
<pre>#install packages only if you have not already done so list.of.packages <- c("dplyr", "tidyverse") new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package if(length(new.packages)) install.packages(new.packages)</pre>	ə"])]
#library packages	

```
for (pkg in c("dplyr", "tidyverse")) {
  library(pkg, character.only = TRUE)
}
```

```
# read in data
load("surgery_data.RData")
```

I. Mutate Function

Example I.i: Change the label for a categorical variable

Instead of abrreviation for the gender, "F" and "M", we want them to be "Female" and "Male".

Before any data wrangling, we will always perform the 3-step procedure for the variable we are interested in:

- 1. check the data type (character or integer or others)
- 2. check whether there are NAs, how many NAs are there in the variable
- 3. what values are there in the variable. Use table() function for categorical variables, use summary() function for numerica variables.

```
#step 1.
class(surgery_data$gender) #check the data type
## [1] "character"
#step 2.
anyNA(surgery_data$gender) #check whether there are NA values
## [1] TRUE
table(is.na(surgery_data$gender)) #gives the count of NA values: 3
##
## FALSE TRUE
## 31998
#step 3.
table(surgery_data$gender) #check how many non-NA levels are there in the gender variable
##
##
       F
             М
## 17230 14768
#overwirte gender variable
surgery_data <- surgery_data%>%
 mutate(gender = if else(gender == "F", "Female",
                  if_else(gender == "M", "Male", "Unknown")))
```

Example I.ii: Group patients whose race, gender are NA into a seperate group

There are 480 patients who have NA values for race. We don't want to exclude these sample from our data, let's treat them as a seperate group called "Unknown"

```
#step 1.
class(surgery_data$race)
## [1] "character"
#step 2.
anyNA(surgery_data$race) #check whether there are NA values
## [1] TRUE
table(is.na(surgery_data$race)) #gives the count of NA values: 3
##
## FALSE TRUE
## 31521
           480
#step 3.
table(surgery_data$race)
##
## African American
                           Caucasian
                                                 Other
                                                  1243
               3790
                                26488
##
surgery_data <- surgery_data%>%
 mutate(race = if_else(is.na(race), "Unknown", race))%>%
 mutate(gender = if_else(is.na(gender), "Unknown", gender))
table(surgery_data$race)
##
## African American
                           Caucasian
                                                 Other
                                                                 Unknown
               3790
                                26488
                                                  1243
                                                                     480
table(surgery_data$gender)
##
##
    Female
              Male Unknown
##
     17230
             14768
anyNA(surgery_data$race)
## [1] FALSE
```

```
anyNA(surgery_data$gender)
```

[1] FALSE

Example I.iii: Create age groups from a numeric age variable

Currently age is a numeric variable, we want to form five age groups for analysis: less than 20, 20-40, 40-60, 60-80, 80+.

```
#step 1
class(surgery_data$age) #check the data type
## [1] "numeric"
#step 2
anyNA(surgery_data$age) #check whether there are NA values
## [1] TRUE
table(is.na(surgery_data$age)) #gives the count of NA values: 3
##
## FALSE TRUE
## 31999
#step 3.
summary(surgery_data$age) #check the range of the variable
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                                     NA's
                                             Max.
##
      1.00
           48.20
                   58.60 57.66
                                   68.30
                                            90.00
hist(surgery_data$age,
    main = "Distribution of Age",
    xlab = "Age") #check the distribution of the variable, which helps us to seperate into groups
```

Distribution of Age

1924

335

12857

II. Select Function

3628

##

Example II.i: Only keep variables of interest in the dataframe

13255

III. Filter Function

Example III.i: Identify only African American patients

```
##
## African American Caucasian Other Unknown
## 3790 26488 1243 480

surgery_data_AfricanAmerican <- surgery_data%>%
  filter(race == "African American")
```

Example III.ii: Identify patients who's surgery time is longer than 10 hours

```
hist(surgery_data$hour,
    main = "Distribution of Surgery Duration",
    xlab = "Surgery Duration (hour)")
```

Distribution of Surgery Duration


```
surgery_data_10hr<- surgery_data%>%
  filter(hour > 10)

hist(surgery_data_10hr$hour,
    main = "Distribution of Surgery Duration(Hour > 10)",
    xlab = "Surgery Duration (hour)")
```

Distribution of Surgery Duration(Hour > 10)

IV. Summarize Function

Example IV.i: Identify the average surgery hour for each race group

```
surgery_data%>%
  group_by(race)%>%
  summarize(count = n(),
           hour_mean = mean(hour),
           hour_median= median(hour),
           hour_sd = sd(hour))%>%
  mutate(perc = count/sum(count) * 100)
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 4 x 6
##
                      count hour_mean hour_median hour_sd perc
     race
     <chr>
                      <int>
                                <dbl>
                                            <dbl>
                                                    <dbl> <dbl>
## 1 African American 3790
                                            10.1
                                 10.6
                                                     2.98 11.8
## 2 Caucasian
                      26488
                                 10.4
                                             9.6
                                                     2.91 82.8
                      1243
                                             9.28
                                                     2.94 3.88
## 3 Other
                                 10.3
## 4 Unknown
                        480
                                 10.5
                                             9.45
                                                     2.91 1.50
```

Example IV.ii: Further investigate within each race, what's the average surgery hour for different asa statis

## # A tiddle: 13 x 6								
## # Groups: race [4]								
##		race	asa_status	${\tt count}$	${\tt hour_mean}$	${\tt hour_median}$	hour_sd	
##		<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
##	1	African American	I-II	1839	10.5	9.83	3.01	
##	2	African American	III	1785	10.6	10.2	2.94	
##	3	African American	IV-VI	165	11.1	11.1	2.93	
##	4	Caucasian	I-II	14443	10.2	9.22	2.87	
##	5	Caucasian	III	11201	10.5	9.87	2.92	
##	6	Caucasian	IV-VI	837	11.1	11.0	3.04	
##	7	Caucasian	Unknown	7	11.1	13.0	3.38	
##	8	Other	I-II	718	10.3	8.87	2.98	
##	9	Other	III	492	10.3	9.30	2.86	
##	10	Other	IV-VI	33	11.5	11.0	3.18	
##	11	Unknown	I-II	261	10.4	8.92	2.96	
##	12	Unknown	III	199	10.4	9.58	2.85	
##	13	Unknown	IV-VI	20	11.4	12.0	2.82	

V. Arrange Function

Arrange the median surgery hour in race+asa status group in descending order

```
table%>%
arrange(-hour_median)
```

```
## # A tibble: 13 x 6
## # Groups: race [4]
##
         asa_status count hour_mean hour_median hour_sd
   race
   <chr>
##
             <chr> <int> <dbl> <dbl> <dbl>
           Unknown
## 1 Caucasian
                     7
                           11.1
                                  13.0
                                        3.38
11.4
                                  12.0
                                        2.82
                           11.1
                                  11.1
                                        2.93
## 4 Other IV-VI
                      33
                           11.5
                                  11.0 3.18
## 5 Caucasian IV-VI
                            11.1
                     837
                                  11.0
                                        3.04
```

##	6	African American	III	1785	10.6	10.2	2.94
##	7	Caucasian	III	11201	10.5	9.87	2.92
##	8	African American	I-II	1839	10.5	9.83	3.01
##	9	Unknown	III	199	10.4	9.58	2.85
##	10	Other	III	492	10.3	9.30	2.86
##	11	Caucasian	I-II	14443	10.2	9.22	2.87
##	12	Unknown	I-II	261	10.4	8.92	2.96
##	13	Other	I-II	718	10.3	8.87	2.98