The Floyd-Hoare Method

If you were taught how to prove partial correctness of programs, you probably learned the Floyd-Hoare method. A Floyd-Hoare proof is equivalent to an inductive-invariance proof such as the one for algorithm *Euclid*. It's easy to convert either kind of proof to the other.

The Floyd-Hoare method proves that if a program begins in a state satisfying a precondition P and it terminates, then it does so in a state satisfying a postcondition Q. This is proved in TLA^+ by proving the invariance of $(pc = \text{``Done''}) \Rightarrow Q$ for an algorithm whose initial predicate is $Init \land P$, where Init is the initial predicate of the algorithm's TLA^+ translation.

To write a Floyd-Hoare proof of a PlusCal program, we would annotate each labeled statement with a state predicate P_c , where c is the statement's label. We would also put a predicate P_{Done} at the end of the algorithm. The Floyd-Hoare proof for this annotation would be equivalent to an inductive-invariance proof, where the inductive invariant is the conjunction of the formulas

$$(pc = \text{``c"}) \Rightarrow P_c$$

for all annotations P_c .