地址匹配单元

地址匹配单元用来检查接收到的地址字节是否与 TWI 地址寄存器中的 7 位地址相匹配。当 TWAR 寄存器中的 TWI 广播呼叫识别使能位 (TWGCE) 置位,从总线接收到的地址也会与广播地址比较。一旦地址匹配成功,控制单元将执行正确的动作。TWI 模块可以响应或不响应主机的寻址,这取决于 TWCR 寄存器的设置。即使在休眠模式下,地址匹配单元也可以比较地址,若被总线上的主机寻址,则将 MCU 从休眠模式唤醒。

控制单元

控制单元负责监听总线并根据 TWCR 的设置产生相应的响应。当 TWI 总线上发生需要应用软件参与的事件时, TWI 中断标志位 TWINT 将会被置位。在接下来的一个时钟周期, TWI 状态寄存器 TWSR 将会被更新为表明该事件的状态码。在 TWINT 被置位时, TWSR 包含确切的状态信息。在其它时间里, TWSR 为一个特殊的状态码,表示没有确切的状态信息。一旦 TWINT标志位被置位, SCL 线就一直保持低电平, 暂停总线上的 TWI 传输, 让应用软件处理事件。

下列情形下, TWINT 标志位将置位:

- TWI 传送完 START/REPEATED START 状态后
- ◆ TWI 传送完 SLA+R/W 后
- TWI 传送完一个地址字节后
- TWI 总线仲裁失败后
- TWI 被主机寻址后 (从机地址匹配或广播方式)
- 被寻址作为从机工作时, 收到 STOP 或 REPEATED START 后
- ◆ 由非法的 START 或 STOP 状态所引起的总线错误时

TWI 的使用

TWI 接口是面向字节和基于中断的。所有的总线事件,如接收到一个字节或发送了一个 START 信号等,都会产生一个 TWI 中断。由于 TWI 是基于中断的,因此在 TWI 字节传送的过程中,应用软件可以自如的进行其它操作。 TWCR 寄存器中的 TWI 中断使能位 TWIE 和全局中断使能位一起来控制在 TWINT 标志位置位时是否产生 TWI 中断。如果 TWIE 位被清零,应用软件必须采用查询 TWINT 标志位的方式来检测 TWI 总线上的动作。

当 TWINT 标志位被置位时,表示 TWI 接口完成了当前的操作,等待应用软件的响应。在这种情况下,TWI 状态寄存器 TWSR 中包含了反映当前总线状态的状态码。应用软件可以通过设置 TWCR 和 TWDR 寄存器,来决定在接下来的 TWI 总线周期 TWI 接口该如何工作。

下图给出的是应用程序与 **TWI** 接口连接的例子。该例中,主机期望发送一个字节的数据给从机。这里的描述很简单,接下来的章节会有更详细的展示。