BodyWeight Linear Mixed Model Analysis Analysis

Michelle Ha

02 October 2024)

Contents

```
Data Visualization
                                                                                      1
Model Fitting
Model Comparison
                                                                                      5
Assumption Checking
                                                                                      5
str(BodyWeight)
## Classes 'nfnGroupedData', 'nfGroupedData', 'groupedData' and 'data.frame': 176 obs. of 4 variable
## $ weight: num 240 250 255 260 262 258 266 266 265 272 ...
## $ Time : num 1 8 15 22 29 36 43 44 50 57 ...
## $ Rat : Ord.factor w/ 16 levels "2"<"3"<"4"<"1"<..: 4 4 4 4 4 4 4 4 4 ...
## $ Diet : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
## - attr(*, "outer")=Class 'formula' language ~Diet
    ...- attr(*, ".Environment")=<environment: R_GlobalEnv>
## - attr(*, "formula")=Class 'formula' language weight ~ Time | Rat
   ....- attr(*, ".Environment")=<environment: R_GlobalEnv>
## - attr(*, "labels")=List of 2
    ..$ x: chr "Time"
    ..$ y: chr "Body weight"
##
## - attr(*, "units")=List of 2
    ..$ x: chr "(days)"
    ..$ y: chr "(g)"
## - attr(*, "FUN")=function (x)
## ..- attr(*, "source")= chr "function(x) max(x, na.rm = TRUE)"
## - attr(*, "order.groups")= logi TRUE
```

Data Visualization

```
BodyWeight |>
  mutate(Rat1 = factor(as.numeric(Rat))) |>
  ggplot(aes(Time, weight, group = Rat1, color = Rat1)) +
```

```
geom_point() +
facet_wrap(~Rat1) +
theme_minimal() +
labs(x = "Days", y = "Weight (g)")
```


The plot displays the body weights (in grams) of the rats over 64 days at interval of 7 days.

```
# Calculate mean weights for each Time and Diet combination
mean_weights <- BodyWeight |>
  summarize(mean_weight = mean(weight), .by = c("Time", "Diet"))
mean_weights |> ggplot(aes(x = Time, y = mean_weight, color = Diet, group = Diet)) +
  geom_line(size = 1) +
  geom_point(size = 3) +
  theme_minimal() +
  labs(
    title = "Mean Rat Weight Over Time by Diet",
    x = "Time",
    y = "Mean Weight",
    color = "Diet"
  ) +
  theme(
    legend.position = "bottom",
    plot.title = element_text(hjust = 0.5, face = "bold")
  )
```

```
## Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use 'linewidth' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
```


The figure showing the mean weight of each type of diet over time displays an increasing trend in the body weight of the rats as the days progress.

Model Fitting

```
BodyWeight <- BodyWeight |>
    group_by(Rat) |>
    arrange(weight, .by_group = TRUE) |>
    mutate(initial_weight = first(weight)) |>
    ungroup()
# fit LMM with interaction effect
model1 <- lmer(weight ~ Time * Diet + initial_weight + (1 | Rat), BodyWeight)
summary(model1)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: weight ~ Time * Diet + initial_weight + (1 | Rat)</pre>
```

```
##
      Data: BodyWeight
##
## REML criterion at convergence: 1198.1
##
## Scaled residuals:
                1Q Median
##
       Min
                                3Q
                                       Max
## -2.7956 -0.4758 -0.0059 0.4842 3.2162
##
## Random effects:
##
   Groups
             Name
                         Variance Std.Dev.
   Rat
             (Intercept) 75.84
                                  8.708
                                  6.404
   Residual
                         41.02
## Number of obs: 176, groups: Rat, 16
##
## Fixed effects:
##
                   Estimate Std. Error
                                              df t value Pr(>|t|)
                                                   0.774
## (Intercept)
                   13.07809
                              16.89727 12.11731
                                                             0.454
## Time
                    0.35964
                               0.03509 157.00001
                                                  10.248
                                                          < 2e-16 ***
## Diet2
                              14.90964 12.46144
                                                            0.846
                    2.95591
                                                   0.198
## Diet3
                    5.08494
                              18.10691
                                        12.31007
                                                   0.281
                                                             0.784
## initial_weight
                    0.96151
                               0.06673 11.99998
                                                  14.408 6.15e-09 ***
## Time:Diet2
                    0.60584
                               0.06079 157.00001
                                                   9.967 < 2e-16 ***
                               0.06079 157.00001
## Time:Diet3
                    0.29834
                                                   4.908 2.28e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
##
               (Intr) Time
                             Diet2 Diet3 intl_w Tm:Dt2
## Time
               -0.070
## Diet2
                0.857 0.079
## Diet3
                0.891 0.065 0.913
## initil_wght -0.980 0.000 -0.920 -0.947
## Time:Diet2
                0.040 -0.577 -0.137 -0.038
## Time:Diet3
                0.040 -0.577 -0.046 -0.113 0.000 0.333
```

anova (model1)

```
## Type III Analysis of Variance Table with Satterthwaite's method
##
                  Sum Sq Mean Sq NumDF
                                         DenDF F value
## Time
                 26193.0 26193.0
                                     1 157.000 638.6116 < 2.2e-16 ***
## Diet
                      4.1
                              2.0
                                      2 13.675
                                                 0.0497
                                                            0.9517
## initial_weight 8514.3 8514.3
                                      1 12.000 207.5865 6.155e-09 ***
## Time:Diet
                  4190.4 2095.2
                                      2 157.000 51.0833 < 2.2e-16 ***
## Signif. codes:
                  0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

The interaction term Time*Diet has p-value < 0.05 therefore it is reasonable to say the type of die significiantly affect the rats body weight and the effect is consistent over time. The initial weight is also a strong indicator for the body weight.

Model Comparison

```
# fit LMM with no interaction effect
model2 <- lmer(weight ~ Time + Diet + initial_weight + (1 | Rat), BodyWeight)</pre>
```

We will fit a simpler model without the interaction term to see if it could potentially performs as well as model1. The simpler model still has Rat as a random effect and initial_weight as fixed effect, except Time and Diet are now the fixed effects.

P-value of < 0.05 and lower AIC and BIC indicates that the model2 with the interaction terms provides a significantly better fit relative to the simpler model.

Assumption Checking

```
# Normality of residuals
# Extract residuals
residuals <- resid(model1)

# Q-Q plot
qqnorm(residuals)
qqline(residuals)</pre>
```

Normal Q-Q Plot


```
# Homogeneity of Variance
# Fitted values
fitted_values <- fitted(model1)

# Residuals vs Fitted plot
plot(fitted_values, residuals)
abline(h = 0, col = "red")
title("Residuals vs Fitted Values")</pre>
```

Residuals vs Fitted Values


```
# Residuals over time
plot(BodyWeight$Time, residuals)
abline(h = 0, col = "red")
title("Residuals over Time")
```

Residuals over Time

