Abstract Algebra

: Lecture 22

Leo

2024.12.19

Let $\operatorname{Char} F = 0$

Theorem 1. (Galois) $f(x) \in F[x]$ is soluble by radicals if and only if Gal(f) is a solvable group.

Soluble means the roots of such polynomials are expressible, formally, the roots are algebraic combinations of elements of F and roots of elements of F.

Example 2. $f(x) = x^n - 2 \in \mathbb{Q}[x]$. Then f is irreducible over \mathbb{Q} . Is this polynomial soluble by radicals? The roots of f(x) are $2^{1/n}$, $2^{1/n}\omega$, \cdots , $2^{1/n}\omega^{n-1}$, where $\omega = e^{\frac{2\pi i}{n}}$ is a primitive n-th root of unity.

Definition 3. Let $F = F_0 \subset F_1 \subset \cdots \subset F_n = E$ where $F_i = F_{i-1}(\alpha_i)$ such that $\alpha^{p_i} \in F_{i-1}$ with p_i prime. Then the chain is called a radical tower, and E is a radical extension.

Definition 4. Let $f(x) \in F[x]$. Then f(x) is called soluble by radicals if the splitting field of f is contained in a radical extension.

Example 5. Let $F_0 \subset F_1 \subset F_2$ where $F_0 = \mathbb{Q}$, $F_1 = \mathbb{Q}(\sqrt{2})$, $F_2 = F_1(\sqrt[4]{2})$. Then $F_0 \triangleleft F_1$ and $F_1 \triangleleft F_2$, but $F_0 \triangleleft F_2$.

 $\sigma \in \operatorname{Gal}(F_2/F_1)$ s.t. $\sqrt{2}^{\sigma} = -\sqrt{2}$, so $(x^2 - \sqrt{2})^{\sigma} = x^2 + \sqrt{2}$, and $\pm i2^{1/4}$ are root of this image under σ but not in F_2 . So we need to extend F_2 .

Let $L = F_2(i) = \mathbb{Q}(i, 2^{1/4})$. Then L is a normal extension of $F_0 = \mathbb{Q}$.

Lemma 6. Let F contain all the p_i – th primitive roots of unity. Then each radical extension of F can be extended to a normal extension of F.

Example 7. $F = \mathbb{Q}$. $f(x) \in F[x]$ is a irreducible polynomial of degree n. Let $E = \mathbb{Q}(\omega_1, \ldots, \omega_t)$ where ω_i is a p_i -th root of unity, with $p_i \leq n$, prime. Then $f(x) \in E[x]$ and f is soluble by radicals over \mathbb{Q} is and only if f is soluble by radicals over E. Or the roots of f are expressible over \mathbb{Q} if and only if the roots of f are expressible over E.

Theorem 8. If $f(x) \in F[x]$ is soluble by radicals, suppose F contains p_i -th roots of unity. Then Gal(f) is a soluble group.

延明. Let E be the splitting field of f(x) over F. By definition $E \subseteq L$ for some radical extension L of F. By the lemma we may assume that L is a normal extension of F. So we have the following chain:

$$F = F_o \subset F_1 \subset \cdots \subset F_m = L$$

where $F_i = F_{i-1}(\alpha_i)$ s.t. $\alpha_i^{p_i} \in F_{i-1}$. Since F contains all the p_i -th roots of unity. $F_{i-1} \triangleleft F_i$. Let $G = \operatorname{Gal}(L/F_i)$ then $G_i = \operatorname{Gal}(L/F_i) \triangleleft G_{i-1}$. So we have the following chain of groups:

$$1 = G_m \triangleleft G_{m-1} \triangleleft \cdots \triangleleft G_0 = \operatorname{Gal}(L/F)$$

Further, $G_{i-1}/G_i = \operatorname{Gal}(L/F_{i-1})/\operatorname{Gal}(L/F_i)$ is a cyclic group of order p_i . So G is soluble. So is $\operatorname{Gal}(f) = E/F$ since this is a subgroup of G which is soluble.

Theorem 9. If Gal(f) is a soluble group, then f(x) is soluble by radicals. $(f(x) \in F[x])$ and F contains the p_i -th roots of unity.)

证明. Let G = Gal(f) and G soluble, we have the following chain:

$$G = G_0 \triangleright G_i \triangleright \cdots \triangleright G_m = 1$$

where $G_{i-1}/G_i \simeq Z_{p_i}$ with p_i prime. Let E be the splitting field of f over F and let $F_i = \{a \in E \mid a^{G_i} = a\}$.

Then $F \subset F_1 \subset F_2 \subset \cdots \subset F_m = E$, and F_i is a normal extension of F_{i-1} . Since F contains the p_i -th roots of $x^{p_i} - 1$ we have $F_i = F_{i-1}(\alpha_i)$ s.t. $\alpha_i^{p_i} \in F_{i-1}$. So E is a radical extension of F, and f is soluble by radicals.

Definition 10. E is called a cyclic extension of F if $E = F(\alpha)$ and Gal(E/F) is cyclic.

Then E is a cyclic extension of F if and only if E is a splitting field of $x^n - a$ s.t. either a = 1 or F contains the n-th roots of unity.

Theorem 11. If Char F = 0 then $f \in F[x]$ is soluble by radicals if and only if Gal(f) is a soluble group.