Esercizi

Algebra e Geometria Corso di Laurea in Informatica 31 Marzo 2016

Esercizio 1. Sia $k \in \mathbb{R}$. Si considerino in $\mathbb{R}_2[x]$ i polinomi:

 $p_1(x) = 1 + x + kx^2$, $p_2(x) = k + 1 + 2x + 2x^2$, $p_3(x) = 2 - k^2 + x + kx^2$. Sia inoltre $W_k = \langle p_1, p_2, p_3 \rangle$.

- a) Stabilire al variare di k la dimensione del sottospazio W_k e scrivere una base \mathcal{B}_k di W_k .
- b) Stabilire per quali valori di k i polinomi p_1, p_2, p_3 generano $\mathbb{R}_2[x]$.
- c) Stabilire per quali valori di k, se esistono, i polinomi p_1, p_2, p_3 generano il sottospazio $S = \{a + bx + cx^2 \in \mathbb{R}_2[x] \mid 2a = b c\}.$
- d) Stabilire per quali valori di k il polinomio $q_k(x) = k + x + kx^2$ appartiene a W_k . In tali casi scrivere le coordinate di q_k rispetto alla base \mathcal{B}_k .
- e) Stabilire per quali valori di k esiste un polinomio p tale che $p \notin W_k$ e p_1, p_2, p_3, p non generino $\mathbb{R}_2[x]$.

Esercizio 2. Si consideri lo spazio vettoriale \mathbb{R}^3 .

- a) Determinare una base \mathcal{A} di \mathbb{R}^3 tale che $(1,2,3)_{\mathcal{A}}=(-1,-1,-1).$
- b) Determinare una base $\mathcal{B} = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ di \mathbb{R}^3 tale che
 - $\mathbf{v_1}, \mathbf{v_2} \in \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 2z = y\};$
 - $\mathbf{v_2}, \mathbf{v_3} \in \{(x, y, z) \in \mathbb{R}^3 \mid x + z = 2y\};$
 - $(1,-2,1)_{\mathcal{B}} = (1,0,-1).$
- c) Sia ora $\mathcal{D} = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}\}$ una base di \mathbb{R}^3 . Stabilire se anche $\mathcal{D}' = \{\mathbf{u_1} + \mathbf{u_2} + \mathbf{u_3}, \mathbf{u_1} + 2\mathbf{u_2} + \mathbf{u_3}, \mathbf{u_1} + 2\mathbf{u_2} + 3\mathbf{u_3}\}$ è una base di \mathbb{R}^3 .

Esercizio 3. Sia $k \in \mathbb{R}$. Si considerino in $M_2(\mathbb{R})$ le seguenti matrici:

$$A = \begin{pmatrix} 1 & 1 \\ k & k+1 \end{pmatrix}, \quad B = \begin{pmatrix} k & 1 \\ 0 & 2-k \end{pmatrix}, \quad C = \begin{pmatrix} k+1 & 2 \\ 0 & k+1 \end{pmatrix}.$$

- a) Per quali valori di k le matrici A, B, C generano $M_2(\mathbb{R})$?
- b) Stabilire al variare di k la dimensione del sottospazio $\langle A,B,C\rangle$ e determinarne una base.
- c) Stabilire per quali valori di k la matrice $D = \begin{pmatrix} k & k \\ k & 6 \end{pmatrix}$ appartiene al sottospazio $\langle A, B, C \rangle$.
- d) Per quali valori di k le matrici A, B, C, D generano $M_2(\mathbb{R})$?

Esercizio 4. Si consideri il seguente sottoinsieme di $M_2(\mathbb{R})$:

$$M = \left\{ A \in M_2(\mathbb{R}) \mid \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix} \cdot A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$$

- a) Mostrare che M è un sottospazio vettoriale di $M_2(\mathbb{R})$.
- b) Esibire un insieme di generatori di M che non sia una base di M e in cui i vettori non sono l'uno multiplo dell'altro.
- c) Determinare una base \mathcal{B} di M.
- d) Completare la base \mathcal{B} in una base \mathcal{D} di $M_2(\mathbb{R})$.
- e) La matrice B tale che $(B)_{\mathcal{D}} = (2, 1, 0, 0)$ appartiene a M?