Ortskurven

Für jede Kreisfrequenz ω_0 liefert der Frequenzgang $G(j\omega)$ einen komplexen Zahlenwert. Die Menge aller dieser Zahlenwerte für $0 \le \omega < \infty$ beschreibt in der komplexen Zahlenebene eine Kurve, die Ortskurve. Die Ortskurve ist also die Darstellung des Frequenzgangs in der komplexen Zahlenebene in Abhängigkeit vom Parameter ω . Sie beginnt bei $\omega = 0$ und endet bei $\omega \to \infty$.

Beispiel:
$$G(s) = 1 + s$$
, $G(j\omega) = 1 + j\omega$ \Longrightarrow $\operatorname{Re} G(j\omega) = 1 = \operatorname{const.}$ $\operatorname{Im} G(j\omega) = \omega$

Beispiel:

$$G(s) = \frac{1}{1+s} \qquad G(j\omega) = \frac{1}{1+j\omega} = \frac{1-j\omega}{1+\omega^2} \implies \operatorname{Re} G(j\omega) = \frac{1}{1+\omega^2}$$
$$\operatorname{Im} G(j\omega) = \frac{-\omega}{1+\omega^2}$$

$\operatorname{Re} G(j\omega)$	$\operatorname{Im} G(j\omega)$
1,000	0,000
0,962	-0,192
0,862	-0,344
0,735	-0,442
0,500	-0,500
0,308	-0,462
0,200	-0,400
0,100	-0,300
0,038	-0,192
0	0
	1,000 0,962 0,862 0,735 0,500 0,308 0,200 0,100 0,038

Ohne Beweis gilt ganz allgemein:

Ist die Ortskurve von $G(j\omega)$ in der komplexen Zahlenebene eine Gerade (Halbgerade), so ist die Ortskurve von $1/G(j\omega)$ ein Kreis (Halbkreis) und umgekehrt. Die Inversion einer Geraden in der komplexen Zahlenebene ergibt einen Kreis.

Hausübung:

Für die folgende Übertragungsfunktion G(s) ist das Pol-Nulstellendiagramm sowie die Ortskurve gesucht!

$$G(s) = \frac{s}{1+s}$$