Import the dataset of 4G and Full Fibre

To depict the relationship between 4G and Full Fibre connectivity with a scatter plot, 4G and Full Fibre data are imported.

```
In [1]: import pandas as pd
   import matplotlib.pyplot as plt
   import glob
   import re
   import chardet
   import numpy as np
   import pymongo
   import folium
```

In [2]: # import 4G
df4g = pd.read_csv('data/4G_2023.csv')
df4g.head()

Out[2]:	ut[2]:		laua_name	AVG_4G
	0	S12000033	Aberdeen City	93.60
	1	S12000034	Aberdeenshire	65.64
	2	E07000223	Adur	87.41
	3	E07000026	Allerdale	68.39
	4	E07000032	Amber Valley	87.89

In [3]: # Extract the fixed broadband coverage dataset in 2023
Read the CSV file into a DataFrame
df2023_fixed = pd.read_csv('2023J_TMA02_data/0fcom_fixed/202305_fixed_lau
df2023_fixed.head()

Out[3]:

		laua	laua_name	All Premises	All Matched Premises	SFBB availability (% premises)	UFBB (100Mbit/s) availability (% premises)	avail prei
	0	S12000033	ABERDEEN CITY	129315	129197	97.2	84.8	
	1	S12000034	ABERDEENSHIRE	128408	128070	85.9	25.5	
	2	E07000223	ADUR	29985	29953	99.1	92.8	
:	3	E07000026	ALLERDALE	52482	52364	93.1	6.0	
	4	E07000032	AMBER VALLEY	62512	62430	97.2	62.4	

5 rows × 40 columns

```
df_New2023_mobile = df4g[['laua','laua_name','AVG_4G']]
df2023_fixed = df2023_fixed[['laua','laua_name', 'Full Fibre availability
display(df_New2023_mobile.head())
display(df2023_fixed.head())
```

	laua	laua_name	AVG_4G
0	S12000033	Aberdeen City	93.60
1	S12000034	Aberdeenshire	65.64
2	E07000223	Adur	87.41
3	E07000026	Allerdale	68.39
4	E07000032	Amber Valley	87.89

	laua	laua_name	Full Fibre availability (% premises)
0	S12000033	ABERDEEN CITY	83.0
1	S12000034	ABERDEENSHIRE	25.4
2	E07000223	ADUR	65.4
3	E07000026	ALLERDALE	6.0
4	E07000032	AMBER VALLEY	59.0

```
In [5]: # Convert 'laua_name' column in df_New2023_mobile to lowercase
    df_New2023_mobile.loc[:, 'laua_name'] = df_New2023_mobile['laua_name'].st

# Convert 'laua_name' column in df2023_fixed to lowercase
    df2023_fixed.loc[:, 'laua_name'] = df2023_fixed['laua_name'].str.lower()

# Merge dataframes based on 'laua' and 'laua_name'
    combined_df = pd.merge(df_New2023_mobile, df2023_fixed, on=['laua', 'laua

# Display the resulting dataframe
    display(combined_df.head())
```

	laua	laua_name	AVG_4G	Full Fibre availability (% premises)
0	S12000033	aberdeen city	93.60	83.0
1	S12000034	aberdeenshire	65.64	25.4
2	E07000223	adur	87.41	65.4
3	E07000026	allerdale	68.39	6.0
4	E07000032	amber valley	87.89	59.0

In [6]: combined_df.shape

Out[6]: (374, 4)

```
In [7]: # Rename the '2023' column to '4G'
combined_df.rename(columns={'AVG_4G': '4G', 'Full Fibre availability (% p

# Display the DataFrame with the updated column name
display(combined_df.head())
```

	laua	laua_name	4G	Full_Fibre
0	S12000033	aberdeen city	93.60	83.0
1	S12000034	aberdeenshire	65.64	25.4
2	E07000223	adur	87.41	65.4
3	E07000026	allerdale	68.39	6.0
4	E07000032	amber valley	87.89	59.0

Analyse the data and create the plots

```
In [8]: # Data
laua_names = combined_df['laua_name']
four_g = combined_df['4G']
full_fibre = combined_df['Full_Fibre']

# Scatter plot
plt.figure(figsize=(10, 6))
plt.scatter(four_g, full_fibre, color='blue', alpha=0.7)
plt.title('Scatter Plot of 4G vs Full Fibre')
plt.xlabel('4G (%)')
plt.ylabel('Full Fibre (%)')
```


Use K-means technique and segment the group

To analyze the connectivity between 4G and Full Fibre, data are clustered using K-means techniques.

By using statistics (percentile 25,50,75), the values to segement groups are decided.

```
In [9]: # Calculate percentiles
         percentiles = combined_df['4G'].quantile([0.25, 0.5, 0.75])
         # Access individual percentiles
         percentile 25 = percentiles [0.25]
         median = percentiles[0.5]
         percentile_75 = percentiles[0.75]
         print("25th percentile:", percentile_25)
         print("Median (50th percentile):", median)
         print("75th percentile:", percentile_75)
        25th percentile: 77.71
        Median (50th percentile): 86.58
        75th percentile: 93.75
In [10]: # Calculate percentiles
         percentiles = combined_df['Full_Fibre'].quantile([0.25, 0.5, 0.75])
         # Access individual percentiles
         percentile_25 = percentiles[0.25]
         median = percentiles[0.5]
         percentile_75 = percentiles[0.75]
         print("25th percentile:", percentile_25)
         print("Median (50th percentile):", median)
         print("75th percentile:", percentile_75)
        25th percentile: 32.175
        Median (50th percentile): 48.45
        75th percentile: 62.05
In [11]: import pandas as pd
         import numpy as np
         from sklearn.neighbors import NearestNeighbors
         # Drop rows with missing values
         combined_df.dropna(inplace=True)
         # Define initial centroids
         initial_centroids = np.array([
             [94, 61], # Centroid for "high"
             [87, 48], # Centroid for "medium"
             [78, 32] # Centroid for "low"
         ])
         # Select features for segmentation
         features = ['4G', 'Full_Fibre']
         X = combined_df[features]
```

```
# Fit K-means model
k = 1  # Set k=1 for nearest neighbor
knn_model = NearestNeighbors(n_neighbors=k)
knn_model.fit(initial_centroids)

# Find nearest neighbors (corresponding to initial centroids)
distances, indices = knn_model.kneighbors(X)

# Assign segments based on nearest neighbors
segment_mapping = {0: 'high', 1: 'medium', 2: 'low'}
segments = [segment_mapping[idx] for idx in indices.flatten()]

# Add segment column to DataFrame
combined_df['segment'] = segments

display(combined_df)
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:458: UserWarning:
X has feature names, but NearestNeighbors was fitted without feature names
warnings.warn(

	laua	laua_name	4G	Full_Fibre	segment
0	S12000033	aberdeen city	93.60	83.0	high
1	S12000034	aberdeenshire	65.64	25.4	low
2	E07000223	adur	87.41	65.4	high
3	E07000026	allerdale	68.39	6.0	low
4	E07000032	amber valley	87.89	59.0	high
•••	•••	•••			•••
369	W06000006	wrexham	71.34	55.2	medium
370	E07000238	wychavon	83.28	48.4	medium
371	E07000128	wyre	83.07	60.8	high
372	E07000239	wyre forest	78.90	25.7	low
373	E06000014	york	92.40	65.9	high

373 rows × 5 columns

```
In [12]: segment_counts = combined_df["segment"].value_counts()
    print(segment_counts)

segment
    low     132
    high     121
    medium     120
    Name: count, dtype: int64

In [13]: # Data
    prem_4G = combined_df['4G']
    full_fibre = combined_df['Full_Fibre']
    segments = combined_df['segment']

# Scatter plot
```


Next, this segmentation is visualised on a map to see how different the connectivity between 4G and Full Fibre in 2023 was.

```
In [14]: # Use geojson data to visualise maps
import geopandas as gpd

geojson_path = '2023J_TMA02_data/Boundaries/Local_Authority_Districts_Dec
geojson_data = gpd.read_file(geojson_path)

In [15]: # Combine dfNew2023 with geojson_data

# Convert both columns to lowercase before merging
geojson_data['LAD22NM'] = geojson_data['LAD22NM'].str.lower()
combined_df['laua_name'] = combined_df['laua_name'].str.lower()

# Use .loc to avoid SettingWithCopyWarning
combined_df.loc[:, 'laua_name'] = combined_df['laua_name'].str.lower()

# Merge the DataFrames on the lowercase columns
df_combined_geo_1 = pd.merge(geojson_data, combined_df, left_on='LAD22NM')

# Drop the temporary lowercase columns
df_combined_geo_1 = df_combined_geo_1.drop(columns=['LAD22NM'])
```

```
# Display the resulting DataFrame
display(df_combined_geo_1.head())
```

	FID	LAD22CD	BNG_E	BNG_N	LONG	LAT	GlobalID	geor
0	339	S12000033	387763	808479	-2.20398	57.16697	bc868205- 08c7-47a9- 88af- 6cf72d57fbc8	MULTIPOL` (((-2.C 57.0 -2.0803;
1	340	S12000034	352284	816277	-2.79208	57.23469	e9d43203- 2a53-46ca- a3a6- 762a33027034	MULTIPOL' (((-1.8 57.4 -1.83456
2	221	E07000223	518076	106472	-0.32417	50.84572	d56eedd2- 29d2-40f8- a6b8- 5f0b952ba9a4	POL` ((-0.2 50.8 -0.2 50.82
3	65	E07000026	317520	532997	-3.28090	54.68524	e6e9b854- 1a61-4f46- 928c- 8ca3a83edbfc	POL' ((-3. 54.9 -3.1 54.90
4	71	E07000032	436166	348084	-1.46219	53.02884	2ff039cf- 0a31-4ac2- a02a- beca575e827c	POL` ((-1.3 53.1 -1.3 53.09

```
In [16]: # Mapping dictionary
segment_mapping = {
    'low': 1,
    'medium': 2,
    'high': 3
}

# Create 'segment_2' column based on the 'segment' column
df_combined_geo_1['segment_2'] = df_combined_geo_1['segment'].map(segment

# Display the updated DataFrame
display(df_combined_geo_1.head())
```

```
FID
                 LAD22CD BNG_E BNG_N
                                              LONG
                                                          LAT
                                                                    GlobalID
                                                                                  geor
                                                                  bc868205- MULTIPOL'
                                                                  08c7-47a9-
                                                                                 (((-2.0)
        0 339 $12000033 387763 808479 -2.20398
                                                      57.16697
                                                                       88af-
                                                                                  57.0
                                                                6cf72d57fbc8
                                                                               -2.0803
                                                                  e9d43203- MULTIPOL'
                                                                  2a53-46ca-
                                                                                  (((-1.8)))
        1 340 S12000034 352284 816277 -2.79208 57.23469
                                                                       a3a6-
                                                                                   57.4
                                                               762a33027034
                                                                               -1.83450
                                                                                  DOL,
                                                                  d56eedd2-
                                                                                  ((-0.2)
                                                                  29d2-40f8-
        2 221 E07000223 518076 106472 -0.32417 50.84572
                                                                                  50.8
                                                                       a6b8-
                                                                                   -0.2
                                                               5f0b952ba9a4
                                                                                  50.82
                                                                                  POL
                                                                  e6e9b854-
                                                                                  ((-3.1)^{-1})
                                                                   1a61-4f46-
                                                                                  54.9
            65 E07000026 317520 532997 -3.28090 54.68524
                                                                       928c-
                                                                                   -3.1
                                                                8ca3a83edbfc
                                                                                 54.90
                                                                                  POL,
                                                                    2ff039cf-
                                                                                  ((-1.3)
                                                                  0a31-4ac2-
            71 E07000032 436166 348084 -1.46219 53.02884
                                                                                   53.1
                                                                       a02a-
                                                                                   -1.3
                                                                beca575e827c
                                                                                 53.09
In [17]: #Check the null values
          df_combined_geo_1.isnull().sum()
Out[17]: FID
                         0
          LAD22CD
                        0
          BNG_E
                        0
          BNG N
          LONG
                        0
          LAT
                         0
          GlobalID
          geometry
                         0
                         0
          laua
          laua_name
          4G
                         0
          Full_Fibre
                         0
          segment
                         0
                         0
          segment_2
          dtype: int64
In [18]: gdf = gpd.GeoDataFrame(df_combined_geo_1, geometry='geometry')
          # Create a base map
          m = folium.Map(location=[54.5, -2], zoom_start=6) # Centered on the UK
          # Define a function to get the color for each segment
          def get_color(segment):
              if segment == 1:
                  return 'blue'
              elif segment == 2:
                  return 'green'
              elif segment == 3:
```

```
return 'red'
   else:
       return 'gray'
# Add GeoJSON to the map
folium.GeoJson(
   qdf,
   style function=lambda feature: {
       'fillColor': get_color(feature['properties']['segment_2']),
       'color': 'black',
       'weight': 1,
       'fillOpacity': 0.6,
   }
).add to(m)
# Add a legend
legend_html = '''
<div style="position: fixed;</pre>
          bottom: 50px; left: 50px; width: 150px; height: 100px;
          border:2px solid grey; z-index:9999; font-size:14px;">
     <b>Segments</b> <br>
     Medium   <i class="fa fa-square" style="color:green"></i>
     High   <i class="fa fa-square" style="color:red"></i><br>
</div>
m.get_root().html.add_child(folium.Element(legend_html))
m
```

Out [18]: Make this Notebook Trusted to load map: File -> Trust Notebook

Northern Ireland made significant contributions to the advancement of 4G and full-fibre networks, with all areas categorised as highly advanced. Similarly, regions with large cities, such as London, also exhibited high performance in both areas. In contrast, Scotland showed comparatively lower performance in these advancements.

Add the information about nation

The investigation into whether there are any patterns by nation in the association between 4G and Full Fibre is conducted by visualising a scatter plot with the legend indicating the nation.

```
In [19]: # Add the information of nations
         # Mapping dictionary for LAD22CD to nation
         lad_to_nation = {
             'E': 'England',
             'N': 'Northern Ireland',
             'S': 'Scotland',
             'W': 'Wales'
         }
         # Create a new 'nation' column based on 'LAD22CD'
         geojson_data['nation'] = geojson_data['LAD22CD'].str[0].map(lad_to_nation
         # Print the updated DataFrame
         print(geojson_data[['LAD22CD', 'nation']])
               LAD22CD nation
             E06000001 England
        0
        1 E06000002 England
2 E06000003 England
3 E06000004 England
           E06000005 England
        4
                   ...
                             . . .
        . .
        369 W06000020 Wales
        370 W06000021 Wales
        371 W06000022
                         Wales
        372 W06000023 Wales
        373 W06000024 Wales
        [374 rows x 2 columns]
In [20]: geojson_data_1 = geojson_data[['LAD22CD', 'nation']]
         display(geojson_data_1)
```

	LAD22CD	nation
0	E06000001	England
1	E06000002	England
2	E06000003	England
3	E06000004	England
4	E06000005	England
•••		•••
369	W06000020	Wales
370	W06000021	Wales
371	W06000022	Wales
372	W06000023	Wales
373	W06000024	Wales

374 rows × 2 columns

In [21]: # Merging merged_df and geojson_data_1 on 'laua' and 'LAD22CD'
merged_nation = pd.merge(df_combined_geo_1, geojson_data_1, left_on='laua
display(merged_nation.head())

	FID	LAD22CD_x	BNG_E	BNG_N	LONG	LAT	GlobalID	gec
C	339	S12000033	387763	808479	-2.20398	57.16697	bc868205- 08c7-47a9- 88af- 6cf72d57fbc8	MULTIPOI (((-2. 57.0 -2.0803
1	340	S12000034	352284	816277	-2.79208	57.23469	e9d43203- 2a53-46ca- a3a6- 762a33027034	MULTIPOI (((-1 57. -1.834
2	2 221	E07000223	518076	106472	-0.32417	50.84572	d56eedd2- 29d2-40f8- a6b8- 5f0b952ba9a4	POI ((-0. 50.8 -0 50.8
3	65	E07000026	317520	532997	-3.28090	54.68524	e6e9b854- 1a61-4f46- 928c- 8ca3a83edbfc	POI ((-3 54. -3 54.9
4	. 71	E07000032	436166	348084	-1.46219	53.02884	2ff039cf- 0a31-4ac2- a02a- beca575e827c	POI ((-1. 53. -1 53.09

```
In [22]: # Data
laua_names = merged_nation['laua_name']
```

```
four_g = merged_nation['46']
full_fibre = merged_nation['Full_Fibre']
nations = merged_nation['nation']

# Scatter plot
plt.figure(figsize=(10, 6))
for nation in nations.unique():
    plt.scatter(four_g[nations == nation], full_fibre[nations == nation],

# Set plot title and labels
plt.title('Scatter Plot of 4G vs Full Fibre by Nation')
plt.xlabel('4G (%)')
plt.ylabel('Full Fibre (%)')

# Add legend
plt.legend()
plt.show()
```


It is noticeable that all areas of Northern Ireland have high performance in full-fibre connectivity, with varying levels of 4G advancement. In contrast, some areas of Scotland show significantly lower performance in both full-fibre and 4G. In England and Wales, 4G coverage is relatively high (over 60%), but full-fibre availability varies widely, ranging from 0 to 100%.

4G and Full Fibre For 5 years

The advancement of 4G and Full Fibre by nation for 5 years is investigated.

```
In [23]: MONGO_CONNECTION_STRING = f"mongodb://localhost:27017/"
In [24]: from pymongo import MongoClient
mongo_client = MongoClient(MONGO_CONNECTION_STRING)
```

```
DB NAME = "Q1 TMA02 TM351"
         print(f"DB_NAME = {DB_NAME}")
         mongo_db = mongo_client[DB_NAME]
        DB_NAME = Q1_TMA02_TM351
In [25]: import geopandas as gpd
         geojson_path = '2023J_TMA02_data/Boundaries/Local_Authority_Districts_Ded
         geojson_data = gpd.read_file(geojson_path)
In [26]: from pymongo import MongoClient
         import pandas as pd
         # Connect to MongoDB
         MONGO_CONNECTION_STRING = "mongodb://localhost:27017/"
         mongo_client = MongoClient(MONGO_CONNECTION_STRING)
         DB_NAME = "Q1_TMA02_TM351"
         mongo_db = mongo_client[DB_NAME]
         # List collections
         collections = mongo_db.list_collection_names()
         print(f"Collections in database '{DB_NAME}': {collections}")
         # Initialize an empty DataFrame to hold combined data
         df_combined = pd.DataFrame()
         # Loop through the actual collection names
         for collection_name in collections:
             # Fetch data from MongoDB for the specified collection
             data = list(mongo_db[collection_name].find({}, {'_id': 0, 'laua': 1,
             # Check if there is data in the collection
             if data:
                 # Add the data to the DataFrame
                 df_combined = pd.concat([df_combined, pd.DataFrame(data)])
             else:
                 print(f"No data found in collection: {collection_name}")
         # Display the combined DataFrame
         display(df_combined)
        Collections in database 'Q1_TMA02_TM351': ['data_2019', 'data_2020', 'data
        _2023', 'data_2021', 'data_2022']
```

	laua	laua_name	Full Fibre availability (% premises)	year
0	S12000033	ABERDEEN CITY	13.1	2019
1	S12000034	ABERDEENSHIRE	2.7	2019
2	E07000223	ADUR	0.6	2019
3	E07000026	ALLERDALE	1.7	2019
4	E07000032	AMBER VALLEY	22.1	2019
•••				•••
369	W06000006	WREXHAM	47.6	2022
370	E07000238	WYCHAVON	29.4	2022
371	E07000128	WYRE	60.2	2022
372	E07000239	WYRE FOREST	10.3	2022
373	E06000014	YORK	52.3	2022

1883 rows × 4 columns

Add the information about nation

```
In [28]: # Mapping dictionary for LAD22CD to nation
lad_to_nation = {
    'E': 'England',
    'N': 'Northern Ireland',
    'S': 'Scotland',
    'W': 'Wales'
}

# Create a new 'nation' column based on 'LAD22CD'
geojson_data['nation'] = geojson_data['LAD22CD'].str[0].map(lad_to_nation)
# Print the updated DataFrame
print(geojson_data[['LAD22CD', 'nation']])
```

```
E06000001 England E06000002 England
        0
        1
            E06000003 England
        2
            E06000004 England
        3
            E06000005 England
        4
        . .
        369 W06000020
                         Wales
        370 W06000021
                         Wales
        371 W06000022
                         Wales
        372 W06000023
                         Wales
        373 W06000024 Wales
        [374 rows x 2 columns]
In [29]: geojson_data_1 = geojson_data[['LAD22CD', 'nation']]
         display(geojson_data_1)
```

	LAD22CD	nation
0	E06000001	England
1	E06000002	England
2	E06000003	England
3	E06000004	England
4	E06000005	England
•••		•••
369	W06000020	Wales
370	W06000021	Wales
371	W06000022	Wales
372	W06000023	Wales
373	W06000024	Wales

LAD22CD nation

374 rows × 2 columns

```
In [30]: # Merging merged_df and geojson_data_1 on 'laua' and 'LAD22CD'
full_fibre = pd.merge(df_combined, geojson_data_1, left_on='laua', right_
display(full_fibre)
```

	laua	laua_name	Full Fibre availability (% premises)	year	LAD22CD	nation
0	S12000033	ABERDEEN CITY	13.1	2019	S12000033	Scotland
1	S12000033	ABERDEEN CITY	34.9	2020	S12000033	Scotland
2	S12000033	ABERDEEN CITY	83.0	2023	S12000033	Scotland
3	S12000033	ABERDEEN CITY	58.4	2021	S12000033	Scotland
4	S12000033	ABERDEEN CITY	74.4	2022	S12000033	Scotland
•••				•••		
1860	E06000061	NORTH NORTHAMPTONSHIRE	21.6	2021	E06000061	England
1861	E06000061	NORTH NORTHAMPTONSHIRE	34.8	2022	E06000061	England
1862	E06000062	WEST NORTHAMPTONSHIRE	85.3	2023	E06000062	England
1863	E06000062	WEST NORTHAMPTONSHIRE	41.5	2021	E06000062	England
1864	E06000062	WEST NORTHAMPTONSHIRE	72.9	2022	E06000062	England

1865 rows × 6 columns

Create the data by nation

```
In [31]: # Group by 'nation' and 'year' and calculate the mean of 'Full Fibre avai
grouped_data = full_fibre.groupby(['nation', 'year'])['Full Fibre availab

# Display the grouped data
display(grouped_data)
```

	nation	year	Full Fibre availability (% premises)
0	England	2019	8.10
1	England	2020	13.71
2	England	2021	22.57
3	England	2022	37.15
4	England	2023	46.90
5	Northern Ireland	2019	26.37
6	Northern Ireland	2020	50.79
7	Northern Ireland	2021	66.85
8	Northern Ireland	2022	82.70
9	Northern Ireland	2023	87.82
10	Scotland	2019	5.93
11	Scotland	2020	13.43
12	Scotland	2021	22.29
13	Scotland	2022	34.28
14	Scotland	2023	41.01
15	Wales	2019	10.08
16	Wales	2020	15.72
17	Wales	2021	24.45
18	Wales	2022	36.54
19	Wales	2023	47.42

```
In [32]: grouped_data = grouped_data.rename(columns={'Full Fibre availability (% p
    # Display the grouped data
    display(grouped_data)
```

	nation	year	Full_Fibre
0	England	2019	8.10
1	England	2020	13.71
2	England	2021	22.57
3	England	2022	37.15
4	England	2023	46.90
5	Northern Ireland	2019	26.37
6	Northern Ireland	2020	50.79
7	Northern Ireland	2021	66.85
8	Northern Ireland	2022	82.70
9	Northern Ireland	2023	87.82
10	Scotland	2019	5.93
11	Scotland	2020	13.43
12	Scotland	2021	22.29
13	Scotland	2022	34.28
14	Scotland	2023	41.01
15	Wales	2019	10.08
16	Wales	2020	15.72
17	Wales	2021	24.45
18	Wales	2022	36.54
19	Wales	2023	47.42

```
In [33]: # Load the data
  nation_4G = pd.read_csv('data/4G_nation.csv')
  nation_4G.head()
```

 Out [33]:
 nation
 2019
 2020
 2021
 2022
 2023

 0
 England
 78.22
 82.72
 83.69
 85.29
 86.37

 1
 Northern Ireland
 69.45
 74.12
 74.48
 78.49
 79.36

 2
 Scotland
 67.47
 74.24
 75.13
 76.92
 78.04

 3
 Wales
 65.50
 72.31
 73.10
 73.93
 75.57

```
In [34]: # Reshape the DataFrame using melt
melted_data = nation_4G.melt(id_vars='nation', var_name='year', value_nam
# Display the reshaped DataFrame
display(melted_data)
```

	nation	year	4G
0	England	2019	78.22
1	Northern Ireland	2019	69.45
2	Scotland	2019	67.47
3	Wales	2019	65.50
4	England	2020	82.72
5	Northern Ireland	2020	74.12
6	Scotland	2020	74.24
7	Wales	2020	72.31
8	England	2021	83.69
9	Northern Ireland	2021	74.48
10	Scotland	2021	75.13
11	Wales	2021	73.10
12	England	2022	85.29
13	Northern Ireland	2022	78.49
14	Scotland	2022	76.92
15	Wales	2022	73.93
16	England	2023	86.37
17	Northern Ireland	2023	79.36
18	Scotland	2023	78.04
19	Wales	2023	75.57

```
In [35]: # Check the type
    melted_data.dtypes

Out[35]: nation    object
    year    object
    4G     float64
    dtype: object

In [36]: # Year has to be integer. Therefore, Convert the 'year' column to int64
    melted_data['year'] = melted_data['year'].astype('int64')

# Display the updated melted_data DataFrame
    display(melted_data)
```

	nation	year	4G
0	England	2019	78.22
1	Northern Ireland	2019	69.45
2	Scotland	2019	67.47
3	Wales	2019	65.50
4	England	2020	82.72
5	Northern Ireland	2020	74.12
6	Scotland	2020	74.24
7	Wales	2020	72.31
8	England	2021	83.69
9	Northern Ireland	2021	74.48
10	Scotland	2021	75.13
11	Wales	2021	73.10
12	England	2022	85.29
13	Northern Ireland	2022	78.49
14	Scotland	2022	76.92
15	Wales	2022	73.93
16	England	2023	86.37
17	Northern Ireland	2023	79.36
18	Scotland	2023	78.04
19	Wales	2023	75.57

```
In [37]: # Merge grouped_data and melted_data on 'nation' and 'year'
merge_df = pd.merge(grouped_data, melted_data, on=['nation', 'year'])
# Display the merged DataFrame
display(merge_df)
```

	nation	year	Full_Fibre	4G
0	England	2019	8.10	78.22
1	England	2020	13.71	82.72
2	England	2021	22.57	83.69
3	England	2022	37.15	85.29
4	England	2023	46.90	86.37
5	Northern Ireland	2019	26.37	69.45
6	Northern Ireland	2020	50.79	74.12
7	Northern Ireland	2021	66.85	74.48
8	Northern Ireland	2022	82.70	78.49
9	Northern Ireland	2023	87.82	79.36
10	Scotland	2019	5.93	67.47
11	Scotland	2020	13.43	74.24
12	Scotland	2021	22.29	75.13
13	Scotland	2022	34.28	76.92
14	Scotland	2023	41.01	78.04
15	Wales	2019	10.08	65.50
16	Wales	2020	15.72	72.31
17	Wales	2021	24.45	73.10
18	Wales	2022	36.54	73.93
19	Wales	2023	47.42	75.57

```
In [38]: # Get unique nations
         unique_nations = merge_df['nation'].unique()
         # Create subplots
         fig, axs = plt.subplots(2, 2, figsize=(15, 10))
         # Iterate over each nation and create a separate bar chart
         for i, nation in enumerate(unique_nations):
             ax = axs[i // 2, i % 2]
             nation_data = merge_df[merge_df['nation'] == nation]
             ax.plot(nation_data['year'], nation_data['Full_Fibre'], marker='o', l
             ax.plot(nation_data['year'], nation_data['4G'], marker='o', label='4G
             ax.set_title(f'Trends of Full Fibre and 4G in {nation}')
             ax.set_xlabel('Year')
             ax.set_ylabel('Percentage')
             ax.set_xticks(nation_data['year'])
             ax.legend()
             ax.grid(True)
         # Adjust layout
         plt.tight_layout()
         plt.show()
```


Except for Northern Ireland, similar trends were observed over the five-year period for all nations. 4G availability consistently contributed over 65%, showing a gradual increase each year. In contrast, Full Fibre availability in Northern Ireland experienced a dramatic rise, surpassing 4G percentages in 2022 and nearly reaching 90% by 2023. However, other nations saw slower growth in Full Fibre adoption, starting around 10% in 2019 and not reaching 50% by 2023.

```
In [39]: # save the data
#merge_df.to_csv('4g_full_fibre_nation.csv', index=False)
In []:
```