

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 3º Trabalho de Laboratório: Compensador Proporcional Integral - 2º Semestre - Ano Letivo 2023/2024

1 - Introdução

Os compensadores do tipo proporcional integral, vulgarmente designados por CPI, são bastante utilizados para controlo em cadeia fechada de variadas grandezas elétricas, por exemplo, em conversores estáticos de potência.

2 - OBJETIVOS

Com este trabalho pretende-se que o aluno concretize os seguintes objetivos:

- > Determinar a função de transferência para um compensador do tipo proporcional integral;
- Efetuar o dimensionamento para ganhos proporcionais e integrais específicos;
- Montar o compensador do tipo proporcional integral e fazer o ensaio experimental para uma resposta com entrada em escalão;
- > Obter teoricamente a caraterística de amplitude da resposta em frequência;
- Obter experimentalmente a caraterística de amplitude da resposta em frequência.

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 3º Trabalho de Laboratório: Compensador Proporcional Integral - 2º Semestre - Ano Letivo 2023/2024

3 - ESQUEMA DE MONTAGEM

Para a resposta às questões colocadas no dimensionamento, considere a montagem da Figura 1, em que R_1 =10 $k\Omega$, R_2 =1 $k\Omega$, R_3 =6,8 $k\Omega$, R_4 =3,9 $k\Omega$, R_5 =10 $k\Omega$, R_6 =51 $k\Omega$, R_7 =560 $k\Omega$; C_1 =1 μ F, C_2 = 10nF e 2 AMP 741.

Figura 1

4 - DIMENSIONAMENTO

- 4.1 Considere os amplificadores ideais. **Deduza** as funções de transferência $V_2=f(V_1)$ e $V_3=f(V_2)$. Caso existam, identifique os zeros e os polos das funções de transferência.
- 4.2 Considerando C_1 e R_7 com valores muito elevados (≈∞), tais que a sua influência possa ser desprezada, deduza as funções de transferência V_2 =f (V_1) e V_3 =f (V_2). Caso existam, identifique os zeros e os polos das funções de transferência.

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 3º Trabalho de Laboratório: Compensador Proporcional Integral - 2º Semestre - Ano Letivo 2023/2024

- 4.3 **Utilizando exclusivamente o software MATLAB/SIMULINK** e tendo em conta o circuito da Figura 1 simule o circuito para as seguintes situações:
 - a) V₁ e V₂ considerando que f=100Hz e V₁ uma onda quadrada de 100mV pico a pico.
 - b) V_1 e V_3 considerando que f=100Hz e V_1 uma onda quadrada de 100mV pico a pico.
 - c) V₂ e V₃ considerando que f=100Hz e V₁ uma onda quadrada de 100mV pico a pico.
 - d) V₁ e V₂ considerando que f=10kHz e V₁ uma onda quadrada de 100mV pico a pico.
 - e) V₁ e V₃ considerando que f=10kHz e V₁ uma onda quadrada de 100mV pico a pico.
 - f) V₂ e V₃ considerando que f=10kHz e V₁ uma onda quadrada de 100mV pico a pico.
 - g) Represente o diagrama de bode do compensador proporcional integral (V₃=f (V₂)) para uma frequência de 50Hz<f<1,5MHz. (Considere C₁ e R₇ com valores muito elevados (≈∞), tais que a sua influência possa ser desprezada).
 - h) Represente o diagrama de bode do compensador proporcional integral (V₃=f (V₂)) para uma frequência de 50Hz<f<1,5MHz. (Não despreze C₁ nem R₇).

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 3º Trabalho de Laboratório: Compensador Proporcional Integral - 2º Semestre - Ano Letivo 2023/2024

5 - CONDUÇÃO DO TRABALHO

Monte o circuito indicado na Figura 2 considerando os seguintes valores para os respetivos componentes: R_1 = $10k\Omega$, R_2 = $1k\Omega$, R_3 = $6.8k\Omega$, R_4 = $3.9k\Omega$, R_5 = $10k\Omega$, R_6 = $51k\Omega$, R_7 = $560k\Omega$, R_8 = $10k\Omega$, R_9 = $10k\Omega$

Figura 2

- 5.1 De modo a observar a resposta ao escalão do circuito, ajuste a saída do gerador de sinais para uma onda quadrada (V₁) de amplitude 100mV pico a pico e com o auxílio do osciloscópio observe e registe, sincronizadamente no tempo, os seguintes pares de evoluções temporais: V₁ e V₂; V₁ e V₃; V₂ e V₃ para as frequências de 100Hz e 10kHz.
- 5.2 Ajuste a saída do gerador de sinais (V_1) para uma onda sinusoidal de 100 mV pico a pico e obtenha a resposta em frequência do ganho do PI com variação da frequência. Utilize o osciloscópio para visualizar V_1 e V_3 .

f (Hz)	50	100	300	500	700	10 ³	5×10 ³	104	5×10 ⁴	10 ⁵	2×10 ⁵	4×10 ⁵	6×10 ⁵	106
V ₃ (V)														
Gv (dB)														

Nota: $G_{V[dB]} = 20 \times log \left| \frac{V_3}{V_1} \right|$

Grupo Disciplinar de Eletrónica Industrial/Secção de Automação e Eletrónica

ISEL / DEEEA

Eletrónica Geral - 3º Trabalho de Laboratório: Compensador Proporcional Integral - 2º Semestre - Ano Letivo 2023/2024

6 - Análise dos Resultados e Conclusões

6.1 - Com os valores obtidos na alínea 5.2 (ensaio experimental) represente o diagrama de bode do CPI. Compare o diagrama de bode obtido experimentalmente com o diagrama de bode obtido através do simulador (alíneas 4.3.g e 4.3.h - Dimensionamento).

6.2 - Justifique a utilização do condensador C₁ e da resistência R₇.

7 - ELABORE UM RELATÓRIO DE ACORDO COM O MODELO FORNECIDO