

=====

Sequence Listing could not be accepted due to errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2009; month=3; day=20; hr=17; min=21; sec=17; ms=821;]

=====

Reviewer Comments:

<400> 696

Lys	Tyr	Gly	Pro	Pro	Cys	Pro	Ser	Cys	Pro	Ala	Pro	Glu	Phe	Leu	Gly
1					5				10					15	
Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met
					20				25					30	
Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	Gln
					35			40				45			
Glu	Asp	Pro	Glu	Val	Gln	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val
					50			55			60				
His	Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Phe	Asn	Ser	Thr	Tyr
					65			70			75			80	
Tyr	Arg	Val	Val	Ser	Val	Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Xaa
					85			90			95				
Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Xaa	Lys	Gly	Leu	Pro	Ser	Ser
					100			105			110				
Ile	Glu	Lys	Thr	Ile	Ser	Xaa	Ala	Xaa	Gly	Gln	Pro	Arg	Glu	Pro	Gln
					115			120			125				

Per the above sequence id# 696, please explain "Xaa" at locations 96, 106, 119 and 121. Please check the remaining sequences for similar errors.

Application No: 10566409 Version No: 1.0

Input Set:

Output Set:

Started: 2009-02-26 18:37:15.342
Finished: 2009-02-26 18:37:59.763
Elapsed: 0 hr(s) 0 min(s) 44 sec(s) 421 ms
Total Warnings: 631
Total Errors: 13
No. of SeqIDs Defined: 699
Actual SeqID Count: 699

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (27)
W 213	Artificial or Unknown found in <213> in SEQ ID (28)
W 213	Artificial or Unknown found in <213> in SEQ ID (29)
W 213	Artificial or Unknown found in <213> in SEQ ID (30)
W 213	Artificial or Unknown found in <213> in SEQ ID (31)
W 213	Artificial or Unknown found in <213> in SEQ ID (32)
W 213	Artificial or Unknown found in <213> in SEQ ID (33)
W 213	Artificial or Unknown found in <213> in SEQ ID (34)
W 213	Artificial or Unknown found in <213> in SEQ ID (35)
W 213	Artificial or Unknown found in <213> in SEQ ID (36)
W 213	Artificial or Unknown found in <213> in SEQ ID (37)
W 213	Artificial or Unknown found in <213> in SEQ ID (38)
W 213	Artificial or Unknown found in <213> in SEQ ID (39)
W 213	Artificial or Unknown found in <213> in SEQ ID (40)
W 213	Artificial or Unknown found in <213> in SEQ ID (41)
W 213	Artificial or Unknown found in <213> in SEQ ID (42)
W 213	Artificial or Unknown found in <213> in SEQ ID (43)
W 213	Artificial or Unknown found in <213> in SEQ ID (44)

Input Set:

Output Set:

Started: 2009-02-26 18:37:15.342
Finished: 2009-02-26 18:37:59.763
Elapsed: 0 hr(s) 0 min(s) 44 sec(s) 421 ms
Total Warnings: 631
Total Errors: 13
No. of SeqIDs Defined: 699
Actual SeqID Count: 699

Error code	Error Description
	This error has occurred more than 20 times, will not be displayed
W 402	Undefined organism found in <213> in SEQ ID (201)
W 402	Undefined organism found in <213> in SEQ ID (202)
W 402	Undefined organism found in <213> in SEQ ID (203)
W 402	Undefined organism found in <213> in SEQ ID (204)
W 402	Undefined organism found in <213> in SEQ ID (205)
W 402	Undefined organism found in <213> in SEQ ID (206)
E 257	Invalid sequence data feature in <221> in SEQ ID (212)
E 257	Invalid sequence data feature in <221> in SEQ ID (216)
W 402	Undefined organism found in <213> in SEQ ID (451)
W 402	Undefined organism found in <213> in SEQ ID (452)
W 402	Undefined organism found in <213> in SEQ ID (457)
W 402	Undefined organism found in <213> in SEQ ID (458)
W 251	Found intentionally skipped sequence in SEQID (520)
W 251	Found intentionally skipped sequence in SEQID (521)
W 251	Found intentionally skipped sequence in SEQID (522)
W 251	Found intentionally skipped sequence in SEQID (523)
W 251	Found intentionally skipped sequence in SEQID (524)
W 251	Found intentionally skipped sequence in SEQID (525)
W 251	Found intentionally skipped sequence in SEQID (526)
W 251	Found intentionally skipped sequence in SEQID (527)
W 251	Found intentionally skipped sequence in SEQID (639)

Input Set:

Output Set:

Started: 2009-02-26 18:37:15.342
Finished: 2009-02-26 18:37:59.763
Elapsed: 0 hr(s) 0 min(s) 44 sec(s) 421 ms
Total Warnings: 631
Total Errors: 13
No. of SeqIDs Defined: 699
Actual SeqID Count: 699

Error code	Error Description
W 251	Found intentionally skipped sequence in SEQID (640)
W 251	Found intentionally skipped sequence in SEQID (643)
W 251	Found intentionally skipped sequence in SEQID (646)
W 251	Found intentionally skipped sequence in SEQID (680)
W 251	Found intentionally skipped sequence in SEQID (681)
E 257	Invalid sequence data feature in <221> in SEQ ID (685)
E 257	Invalid sequence data feature in <221> in SEQ ID (685)
E 257	Invalid sequence data feature in <221> in SEQ ID (685)
W 251	Found intentionally skipped sequence in SEQID (688)
W 251	Found intentionally skipped sequence in SEQID (689)
E 257	Invalid sequence data feature in <221> in SEQ ID (696)
E 257	Invalid sequence data feature in <221> in SEQ ID (696)
E 257	Invalid sequence data feature in <221> in SEQ ID (696)
E 257	Invalid sequence data feature in <221> in SEQ ID (696)
E 341	'Xaa' position not defined SEQID (696) POS (96)
E 341	'Xaa' position not defined SEQID (696) POS (106)
E 341	'Xaa' position not defined SEQID (696) POS (119)
E 341	'Xaa' position not defined SEQID (696) POS (121)
W 251	Found intentionally skipped sequence in SEQID (699)

<110> Ledbetter, Jeffrey A.
Hayden-Ledbetter, Martha S.
Thompson, Peter A.

<120> BINDING CONSTRUCTS AND METHODS FOR USE THEREOF

<130> 910180.40102USPC

<140> 10566409
<141> 2009-02-26

<150> PCT/US2003/041600
<151> 2003-12-24

<150> US 10/627,556
<151> 2003-07-26

<150> US 10/053,530
<151> 2002-01-17

<150> US 60/367,358
<151> 2001-01-17

<160> 699

<170> PatentIn version 3.2

<210> 1
<211> 714
<212> DNA
<213> Homo sapiens
<400> 1

tctgatcagg agcccaaatac ttgtgacaaa actcacacat gcccaccgtg cccagcacct	60
gaactcctgg ggggaccgtc agtcttcctc ttccccccaa aacccaagga caccctcatg	120
atctcccgga cccctgaggt cacatgcgtg gtggtgacg tgagccacga agacccttag	180
gtcaagttaa actggtaacgt ggacggcgtg gaggtgcata atgccaagac aaagccgcgg	240
gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct gcaccaggac	300
tggctgaatg gcaaggagta caagtgcag gtctccaaca aagccctccc agccccatc	360
gagaaaaacaa tctccaaagc caaaggcag ccccgagaac cacaggtgta caccctgccc	420
ccatcccggt atgagctgac caagaaccag gtcagcctga cctgcctggt caaaggcttc	480
tatcccagcg acatgcgcgt ggagtggag agcaatggc agccggagaa caactacaag	540
accacgcctc ccgtgctgga ctccgacggc tccttcttcc tctacagcaa gtcaccgtg	600
gacaagagca ggtggcagca ggggaacgtc ttctcatgtc ccgtgatgca tgaggcttg	660
cacaaccact acacgcagaa gagcctctcc ctgtctccgg gtaaatgatc taga	714

<210> 2
<211> 235
<212> PRT
<213> Homo sapiens
<400> 2

Ser Asp Gln Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro	
1 5 10 15	
Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro	
20 25 30	
Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr	
35 40 45	

Cys	Val	Val	Val	Asp	Val	Ser	His	Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn
50				55				60							
Trp	Tyr	Val	Asp	Gly	Val	Glu	Val	His	Asn	Ala	Lys	Thr	Lys	Pro	Arg
65				70				75			80				
Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu	Thr	Val
				85				90			95				
Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser
				100				105			110				
Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys
				115				120			125				
Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Asp
				130				135			140				
Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe
145				150				155			160				
Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu
				165				170			175				
Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe
				180				185			190				
Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly
				195				200			205				
Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr
				210				215			220				
Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	Gly	Lys					
				225				230			235				

```

<210> 3
<211> 718
<212> DNA
<213> Lama glama
<220>
<221> modified_base
<222> (34)..(34)
<223> n is a, c, g, or t
<220>
<221> modified_base
<222> (43)..(43)
<223> n is a, c, g, or t
<220>
<221> modified_base
<222> (52)..(52)
<223> n is a, c, g, or t
<220>
<221> modified_base
<222> (55)..(55)
<223> n is a, c, g, or t
<220>
<221> modified_base
<222> (58)..(58)
<223> n is a, c, g, or t
<220>
<221> modified_base
<222> (64)..(64)
<223> n is a, c, g, or t
<400> 3
    tgatcaagaa ccacatggag gatgcacgtg cccncagtgc ccncaatgcc cngcnccnga      60
    actnccagga ggcccttctg tctttgtctt cccccccgaaa cccaaggacg tcctctccat      120
    ttttgagggc cgagtcacgt gcgttgtagt ggacgtcgga aagaaagacc ccgaggtcaa      180

```

tttcaactgg tatattgatg	gcgttgaggt	gcgaacggcc	aatacgaagc	caaaagagga	240
acagttaaac	agcacgtacc	gcgtggctcg	cgtcctgccc	atccagcacc	300
gacggggaaag	gaattcaagt	gcaaggtaaa	caacaaagct	ctcccgcccc	360
gaccatctcc	aaggccaaag	ggcagacccg	ggagccgcag	gtgtacaccc	420
ccggaaagaa	ctggccaagg	acaccgtgag	cgtAACATGC	ctggtaaaag	480
agctgacatc	aacgttgagt	ggcagaggaa	cggtcagccg	gagttagagg	540
caacacgccc	ccacagctgg	acaacgacgg	gacctacttc	ctctacagca	600
ggaaaagaac	acgtggcagc	ggggagaaac	cttaacctgt	gtggtgatgc	660
gcacaaccac	tacacccaga	aatccatcac	ccagtcttcg	ggtaaatagt	718

<210> 4

<211> 231

<212> PRT

<213> Lama glama

<400> 4

Glu Pro His Gly Gly Cys Thr Cys Pro Gln Cys Pro Ala Pro Glu Leu				
1	5	10	15	
Pro Gly Gly Pro Ser Val Phe Val Phe Pro Pro Lys Pro Lys Asp Val				
20	25	30		
Leu Ser Ile Ser Gly Arg Pro Glu Val Thr Cys Val Val Val Asp Val				
35	40	45		
Gly Lys Glu Asp Pro Glu Val Asn Phe Asn Trp Tyr Ile Asp Gly Val				
50	55	60		
Glu Val Arg Thr Ala Asn Thr Lys Pro Lys Glu Glu Gln Phe Asn Ser				
65	70	75	80	
Thr Tyr Arg Val Val Ser Val Leu Pro Ile Gln His Gln Asp Trp Leu				
85	90	95		
Thr Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Ala Leu Pro Ala				
100	105	110		
Pro Ile Glu Arg Thr Ile Ser Lys Ala Lys Gly Gln Thr Arg Glu Pro				
115	120	125		
Gln Val Tyr Thr Leu Ala Pro His Arg Glu Glu Leu Ala Lys Asp Thr				
130	135	140		
Val Ser Val Thr Cys Leu Val Lys Gly Phe Tyr Pro Ala Asp Ile Asn				
145	150	155	160	
Val Glu Trp Gln Arg Asn Gly Gln Pro Glu Ser Glu Gly Thr Tyr Ala				
165	170	175		
Asn Thr Pro Pro Gln Leu Asp Asn Asp Gly Thr Tyr Phe Leu Tyr Ser				
180	185	190		
Arg Leu Ser Val Gly Lys Asn Thr Trp Gln Arg Gly Glu Thr Leu Thr				
195	200	205		
Gly Val Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser				
210	215	220		
Ile Thr Gln Ser Ser Gly Lys				
225	230			

<210> 5

<211> 757

<212> DNA

<213> Lama glama

<400> 5

tgatcaagaa cccaagacac	caaaaccaca	accacaacca	caaccacaac	ccaatcctac	60
aacagaatcc	aagtgtccca	aatgtccagc	ccctgagctc	ctggggggc	120
catctcccc	ccgaaaccca	aggacgtcct	ctccatctt	ggggggcccc	180
cgttgtggta	gacgtgggcc	aggaagaccc	cgaggtcagt	ttcaactgggt	240
cgcgtgggtg	cgaacggcca	acacgaggcc	aaaagaggaa	cagttcaaca	300
cgtggtcagc	gtccctgcccc	tccagcacca	ggactggctg	acgggaaagg	360

caaggtaaac	aacaaagctc	tcccgcccc	catcgagaag	accatctcca	aggccaaagg	420
gcagacccgg	gagccgcagg	tgtacaccct	ggccccacac	cggaaagagc	tggccaagga	480
caccgtgagc	gtaacatgcc	tggtaaaagg	cttctaccca	cctgatatca	acgttgagtg	540
gcagaggaat	gggcagccgg	agttaggggg	cacytacgcc	accacgcccac	cccagctgga	600
caacgacggg	acctacttcc	tctacagcaa	gctctcggtg	gaaagaaca	cgtggcagca	660
gggagaaaacc	ttcacctgtg	tggtgatca	cgaggccctg	cacaaccact	acacccgaaa	720
atccatacc	cagtttcgg	gtaaatagta	atctaga			757

<210> 6
<211> 248
<212> PRT
<213> Lama glama
<400> 6

Asp	Gln	Glu	Pro	Lys	Thr	Pro	Lys	Pro	Gln	Pro	Gln	Pro	Gln		
1							5		10		15				
Pro	Asn	Pro	Thr	Thr	Glu	Ser	Lys	Cys	Pro	Lys	Cys	Pro	Ala	Pro	Glu
							20		25		30				
Leu	Leu	Gly	Gly	Pro	Ser	Val	Phe	Ile	Phe	Pro	Pro	Lys	Pro	Lys	Asp
							35		40		45				
Val	Leu	Ser	Ile	Ser	Gly	Arg	Pro	Glu	Val	Thr	Cys	Val	Val	Val	Asp
							50		55		60				
Val	Gly	Gln	Glu	Asp	Pro	Glu	Val	Ser	Phe	Asn	Trp	Tyr	Ile	Asp	Gly
							65		70		75		80		
Ala	Glu	Val	Arg	Thr	Ala	Asn	Thr	Arg	Pro	Lys	Glu	Gln	Phe	Asn	
							85		90		95				
Ser	Thr	Tyr	Arg	Val	Val	Ser	Val	Leu	Pro	Ile	Gln	His	Gln	Asp	Trp
							100		105		110				
Leu	Thr	Gly	Lys	Glu	Phe	Lys	Cys	Lys	Val	Asn	Asn	Lys	Ala	Leu	Pro
							115		120		125				
Ala	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	Thr	Arg	Glu
							130		135		140				
Pro	Gln	Val	Tyr	Thr	Leu	Ala	Pro	His	Arg	Glu	Glu	Leu	Ala	Lys	Asp
							145		150		155		160		
Thr	Val	Ser	Val	Thr	Cys	Leu	Val	Lys	Gly	Phe	Tyr	Pro	Pro	Asp	Ile
							165		170		175				
Asn	Val	Glu	Trp	Gln	Arg	Asn	Gly	Gln	Pro	Glu	Ser	Glu	Gly	Thr	Tyr
							180		185		190				
Ala	Thr	Thr	Pro	Pro	Gln	Leu	Asp	Asn	Asp	Gly	Thr	Tyr	Leu	Tyr	
							195		200		205				
Ser	Lys	Leu	Ser	Val	Gly	Lys	Asn	Thr	Trp	Gln	Gln	Gly	Glu	Thr	Phe
							210		215		220				
Thr	Cys	Val	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr	Thr	Gln	Lys
							225		230		235		240		
Ser	Ile	Thr	Gln	Ser	Ser	Gly	Lys								
							245								

<210> 7
<211> 727
<212> DNA
<213> Lama glama
<400> 7

tgatcaagcg	caccacagcg	aagaccccg	ctccaagtgt	cccaaatgcc	caggccctga	60
actccttgg	gggccccacgg	tcttcattt	ccccccgaaa	gccaggacgc	tcctctccat	120
cacccgaaaa	cctgagggtca	cgtgcttgtg	gtggacgtgg	gtaaagaaga	ccctgagatc	180
gagttcaagc	tggtccgtgg	atgacacaga	ggtacacacg	gctgagacaa	agccaaaggaa	240
ggaacagttc	aacagcacgt	accgcgtgg	cagcgtccctg	cccatccagc	accaggactg	300
gctgacgggg	aaggaattca	agtgcaggt	caacaacaaa	gctctccag	ccccccatcga	360

gaggaccatc	tccaaggcca	aagggcagac	ccgggagccg	caggtgtaca	ccctggccc	420
acaccggaa	gagctggcca	aggacaccgt	gagcgtaacc	tgcctggtca	aaggcttctt	480
cccagctgac	atcaacgttg	agtggcagag	gaatggcag	ccggagtcag	agggcaccta	540
cccaaacacg	ccgccacagc	tggacaacga	ccggacctac	ttcctctaca	gaaaactctc	600
cgtggaaag	aacacgtggc	agcagggaga	agtcttcacc	tgtgtggtga	tgcacgagc	660
tctacacaat	cactccaccc	agaaatccat	cacccagatct	tcgggtaaat	agtaatctag	720
aggccc						727

<210>	8					
<211>	236					
<212>	PRT					
<213>	Lama glama					
<400>	8					
Asp Gln Ala His His Ser Glu Asp Pro Ser Ser Lys Cys Pro Lys Cys						
1	5	10		15		
Pro Gly Pro Glu Leu Leu Gly Gly Pro Thr Val Phe Ile Phe Pro Pro						
20	25		30			
Lys Ala Lys Asp Val Leu Ser Ile Thr Arg Lys Pro Glu Val Thr Cys						
35	40		45			
Leu Trp Trp Thr Trp Val Lys Thr Leu Arg Ser Ser Ser Trp						
50	55		60			
Ser Val Asp Asp Thr Glu Val His Thr Ala Glu Thr Lys Pro Lys Glu						
65	70		75		80	
Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Pro Ile Gln						
85	90		95			
His Gln Asp Trp Leu Thr Gly Lys Glu Phe Lys Cys Lys Val Asn Asn						
100	105		110			
Lys Ala Leu Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Ala Lys Gly						
115	120		125			
Gln Thr Arg Glu Pro Gln Val Tyr Thr Leu Ala Pro His Arg Glu Glu						
130	135		140			
Leu Ala Lys Asp Thr Val Ser Val Thr Cys Leu Val Lys Gly Phe Phe						
145	150		155		160	
Pro Ala Asp Ile Asn Val Glu Trp Gln Arg Asn Gly Gln Pro Glu Ser						
165	170		175			
Glu Gly Thr Tyr Ala Asn Thr Pro Pro Gln Leu Asp Asn Asp Gly Thr						
180	185		190			
Tyr Phe Leu Tyr Ser Lys Leu Ser Val Gly Lys Asn Thr Trp Gln Gln						
195	200		205			
Gly Glu Val Phe Thr Cys Val Val Met His Glu Ala Leu His Asn His						
210	215		220			
Ser Thr Gln Lys Ser Ile Thr Gln Ser Ser Gly Lys						
225	230		235			

<210>	9					
<211>	54					
<212>	DNA					
<213>	Homo sapiens					
<400>	9					
gatcaggagc ccaaattctg tgacaaaact cacacatgcc caccgtgccc agca					54	

<210>	10					
<211>	18					
<212>	PRT					
<213>	Homo sapiens					
<400>	10					
Asp Gln Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys						

1	5	10	15	
Pro Ala				
<210> 11				
<211> 54				
<212> DNA				
<213> Homo sapiens				
<400> 11				
gatctggagc ccaaatttg tgacaaaaact cacacatgcc caccgtgcc agca				54
<210> 12				
<211> 18				
<212> PRT				
<213> Homo sapiens				
<400> 12				
Asp Leu Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys				
1	5	10	15	
Pro Ala				
<210> 13				
<211> 327				
<212> DNA				
<213> Homo sapiens				
<400> 13				
cctgaactcc tggggggacc gtcagtcttc ctttcccc caaaacccaa ggacacccctc				60
atgatctccc ggacccctga ggtcacatgc gtgggtggtgg acgtgagcca cgaagacccct				120
gaggtcaagt tcaactggta cgtggacggc gtggagggtgc ataatgccaa gacaaagccg				180
cgggaggagc agtacaacag cacgtaccgt gtggtcagcg tcctcaccgt cctgcaccag				240
gactggctga atggcaagga gtacaagtgc aaggcttcca acaaagccct cccagccccc				300
atcgagaaaa ccatctccaa agccaaa				327
<210> 14				
<211> 109				
<212> PRT				
<213> Homo sapiens				
<400> 14				
Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro				
1	5	10	15	
Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val				
20	25	30		
Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val				
35	40	45		
Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln				
50	55	60		
Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln				
65	70	75	80	
Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala				
85	90	95		
Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys				
100	105			
<210> 15				
<211> 324				
<212> DNA				
<213> Homo sapiens				
<400> 15				
ggcagcccc gagaaccaca ggtgtacacc ctgccccat cccgggagga gatgaccaag				60

aaccagggtca gcctgacctg cctggtaaaa ggcttctatc ccagcgacat cgccgtggag
 tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc
 gacggctcct tcttcctcta tagcaagctc accgtggaca agagcaggtg gcagcagggg
 aacgtcttct catgctccgt gatgcatgag gctctgcaca accactacac gcagaagagc
 ctctccctgt cccccggtaa atga

<210> 16
 <211> 107
 <212> PRT
 <213> Homo sapiens
 <400> 16

Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val	Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Glu
1				5					10				15		
Glu	Met	Thr	Lys	Asn	Gln	Val	Ser	Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe
			20						25				30		
Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu
	35						40				45				
Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe
	50					55				60					
Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly
	65					70			75			80			
Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His	Glu	Ala	Leu	His	Asn	His	Tyr
		85						90				95			
Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Pro	Gly	Lys					
		100						105							

<210> 17
 <211> 54
 <212> DNA
 <213> Homo sapiens
 <400> 17

gatcaggagc	ccaaatcttc	tgacaaaact	cacacatccc	caccgtcccc	agca
------------	------------	------------	------------	------------	------

54

<210> 18
 <211> 18
 <212> PRT
 <213> Homo sapiens
 <400> 18

Asp	Gln	Glu	Pro	Lys	Ser	Ser	Asp	Lys	Thr	His	Thr	Ser	Pro	Pro	Ser
1				5					10				15		
Pro	Ala														

<210> 19
 <211> 712
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Synthetic
 nucleotide sequence
 <400> 19

tgtacacccc	aatcttctg	acaaaaactca	cacatctcca	ccgttcttcag	cacctgaact
cctgggttgg	ccgtcagtct	tcctttccc	cccaaaaaccc	aaggacaccc	tcatgatctc
ccggacccct	gaggtcacat	gcgtgggtgt	ggacgtgagc	cacgaagacc	ctgaggtaa
tttcaactqq	tacqtqgacq	qcgtqgqgqgt	qcataatqcc	aaqacaaaqc	cqcqqqqaqqa

60
 120
 180
 240
 300
 324