Álgebra lineal

Trabajo práctico $N^{\circ}12$ - 2020

Productos tensoriales

1. Sean \mathbb{K} un cuerpo y $\mathcal{B}: \mathbb{K}^3 \times \mathbb{K}^4 \to \mathbb{K}^{3 \times 4}$ el operador bilineal dado por

$$(\mathcal{B}(x,y))_{ij} = x_i y_j$$
 para $x \in \mathbb{K}^3$; $y \in \mathbb{K}^4$; $i = 1, \dots, 3$; $j = 1, \dots, 4$.

Probar que $(\mathbb{K}^{3\times 4}, \mathcal{B})$ es un producto tensorial.

2. Probar que todo elemento $z \in V \otimes W$ se puede escribir como

$$z = \sum_{k=1}^{r} v_k \otimes w_k \,,$$

para $v_1, \dots, v_r \in V$ y $w_1, \dots, w_r \in W$ vectores linealmente independientes de V y W, respectivamente.

3. Sean V y W dos \mathbb{K} -EV de dimensión finita y sea $z=x\otimes y\in V\otimes W$ un vector descomponible. Probar que para todo $\lambda\in\mathbb{K}$ (no nulo) $z=v\otimes w$, con

$$v = \lambda x$$
 y $w = \lambda^{-1} y$.

- 4. Dar un ejemplo de un vector no descomponible.
- 5. Sean V y W dos \mathbb{K} -EV tales que dim(V) = n y dim(W) = m. Consideremos las bases $B_V = \{v_1, \dots, v_n\}$ y $B_W = \{w_1, \dots, w_m\}$ de V y W, respectivamente. Si $A = [T]_{B_V}$ para $T \in L(V)$ y $C = [S]_{B_W}$ para $S \in L(W)$.
 - a) Probar que

$$[T \otimes S]_{B_V \otimes B_W} = \begin{pmatrix} a_{11}C & a_{12}C & \cdots & a_{1n}C \\ a_{21}C & a_{22}C & \cdots & a_{2n}C \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}C & a_{n2}C & \cdots & a_{nn}C \end{pmatrix} \in \mathbb{K}^{nm \times nm}.$$

- b) Probar que $\operatorname{tr}(T \otimes S) = \operatorname{tr}(A)\operatorname{tr}(C)$ y $\operatorname{det}(T \otimes S) = \operatorname{det}(A)^m \operatorname{det}(C)^n$.
- c) Si $\lambda_1, \dots, \lambda_n$ son los autovalores de T y μ_1, \dots, μ_m son los autovalores de S (contando multiplicidades), entonces los nm autovalores de $T \otimes S$ son de la forma

$$\eta_{ij} = \lambda_i \,\mu_j$$
 para $i = 1, \dots, n; j = 1, \dots, m$.

Deducir el ítem b a partir de esto.

Algebra lineal 2020

- 6. Probar que si V y W son dos \mathbb{K} -EV de dimensión finita, entonces $L(V \otimes W)$ es el producto tensorial de L(V) y L(W).
- 7. Dar ejemplos de tensores en \mathbb{R}^4 que sean:
 - a) 2 veces covariantes.
 - b) 4 veces covariantes.
 - c) n veces covariantes.
- 8. Dar ejemplos de tensores de tipo (0,0), (0,1), (0,2), (2,2). En cada caso aclarar el espacio vectorial considerado y su dimensión.
- 9. Probar que al contraer p veces un tensor de tipo (p, p), se obtiene como resultado un escalar.
- 10. Probar que la contracción de un operador lineal es su traza.
- 11. Probar que el producto escalar canónico es un tensor métrico cuyas componentes en la base usual están dadas por la delta de Kronecker.
- 12. Consideremos un tensor de tipo (2,1), a_k^{ij} .
 - a) ¿Qué tipo de tensor se obtiene al contraerlo con un tensor métrico g_{pj} ?
 - b) ¿Qué tipo de tensor se obtiene al contraerlo con un tensor métrico g^{qk} ?