Státnice s Pét'ou

Obsah

Ú	vod		
1	Ana	ılýza	
	1.1	•	ipnosti a řady čísel a funkcí
		1.1.1	Limity posloupností a součty řad
		1.1.2	Kritéria absolutní a neabsolutní konvergence číselných řad
		1.1.3	Stejnoměrná konvergence posloupností a řad funkcí
		1.1.4	Mocninné řady
	1.2	Difere	nciální počet funkcí jedné reálné proměnné
		1.2.1	Spojitost a derivace funkcí jedné reálné proměnné
		1.2.2	Hlubší věty o spojitých funkcích
		1.2.3	Věty o střední hodnotě a jejich důsledky
		1.2.4	Vztahy monotonie a znaménka derivace
		1.2.5	Konvexita
		1.2.6	Taylorův polynom, Taylorovy řady
	1.3	Integr	ální počet funkcí jedné reálné proměnné
		1.3.1	Primitivní funkce, určitý integrál
		1.3.2	Základní vlastnosti, vztah k primitivní funkci
		1.3.3	Metody výpočtu
		1.3.4	Základní kritéria existence
	1.4	Funkc	e více proměnných
		1.4.1	Diferenciál a parciální derivace
		1.4.2	Implicitní funkce
		1.4.3	Volné a vázané extrémy funkcí více proměnných
		1.4.4	Nutné a postačující podmínky pro volné extrémy, nutné
			podmínky pro vázané extrémy
	1.5	Obyče	ejné diferenciální rovnice
		1.5.1	Věta o existenci a jednoznačnosti řešení počáteční úlohy . 3
		1.5.2	Jednoduché rovnice prvního řádu a lineární rovnice vyššího
			řádu s konstantními koeficienty
2	\mathbf{Alg}	ebra	3
	2.1	Matic	e a determinanty, soustavy lineárních rovnic
		2.1.1	Základní pojmy a operace s maticemi a jejich vlastnosti 3
		2.1.2	Hodnost matice
		2.1.3	Soustavy lineárních rovnic, Gaussova eliminace, podmínky
			řešitelnosti
		2.1.4	Determinanty a metody jejich výpočtu
	2.2	Vekto	rové prostory
		2.2.1	Pojem vektorového prostoru, lineární nezávislost, lineární
			obal, báze a dimenze
		2.2.2	Steinitzova věta o výměně
		2.2.3	Podprostory a jejich dimenze
		$2\ 2\ 4$	Skalární součin ortogonalizační proces ortonormální báze

		2.2.5	Ortogonální projekce, metoda nejmenších čtverců a pseudoinverze	50							
		2.2.6	Diagonalizace a ortogonální diagonalizace	51							
		2.2.7	Různé typy rozkladů matic	53							
	2.3		rní a bilineární formy	55							
	∠.5	2.3.1	Lineární, bilineární a kvadratické formy, matice lineárních	55							
		2.3.1	zobrazení, vlastní čísla lineárních zobrazení a matic, cha-								
			rakteristický polynom	55							
		2.3.2	Polární báze a zákon setrvačnosti pro kvadratické formy	57							
		2.3.3	Matice jednoduchých geometrických zobrazení	58							
	2.4		dy teorie grup a komutativních okruhů	59							
	2.4	2.4.1	Základní vlastnosti grup	59							
		2.4.1 $2.4.2$	Působení grupy na množině	62							
		2.4.2	Dělitelnost v Eukleidovských oborech, rozšířený Eukleidův	02							
		2.4.5	algoritmus, existence a jednoznačnost ireducibilních rozkladů	63							
		2.4.4	Kořenová a rozkladová nadtělesa, minimální polynom a stu-	0.5							
		2.4.4	peň rozšíření těles	65							
			pen rozonem teles	00							
3	Sto	chastil	ка	69							
	3.1										
		3.1.1	Pravděpodobnostní prostor, podmíněná pravděpodobnost,								
			Bayesova věta, nezávislost systému náhodných jevů, 0-1 zá-								
			kony	69							
		3.1.2	Náhodná veličina, náhodný vektor a jejich rozdělení, cha-								
			rakteristiky (střední hodnota, rozptyl, varianční matice, ko-								
			relace atd.) 	71							
		3.1.3	Charakteristická funkce a její použití, nezávislost náhod-								
			ných veličin a vektorů	76							
		3.1.4	Základní jedno- i mnohorozměrná diskrétní a spojitá rozdělení	78							
		3.1.5	Transformace náhodné veličiny a náhodného vektoru	81							
		3.1.6	Podmíněné rozdělení a podmíněná střední hodnota	82							
		3.1.7	Typy konvergence náhodných veličin a vztahy mezi nimi,								
			Čebyševova nerovnost, slabý a silný zákon velkých čísel,								
			centrální limitní věta pro součet nezávislých stejně rozděle-								
			ných náhodných veličin	83							
		3.1.8	Cramérova-Sluckého věta	86							
	3.2	Zákla	dy matematické statistiky	86							
		3.2.1	Náhodný výběr, uspořádaný náhodný výběr	86							
		3.2.2	Bodové a intervalové odhady, nestrannost a konzistence od-								
			hadů	87							
		3.2.3	Empirická distribuční funkce	91							
		3.2.4	Principy testování hypotéz, Neymanovo-Pearsonovo lemma	92							
		3.2.5	Fisherova informace, Rao-Cramérova věta, odhady meto-								
			dou maximální věrohodnosti, asymptotické testy založené								
			na maximální věrohodnosti	94							
		3.2.6	Jednovýběrový, dvouvýběrový, párový t-test	96							

		3.2.7	Jednovýběrové a dvouvýběrové testy pro vybrané parametrické problémy, test dobré shody na multinomické rozdělení, testy nezávislosti v dvourozměrných kontingenčních tabul-																			
			kách	• • •								•	•			•		•		•		98
4	Přip	pomínk	ky a ì	ŕešen	é při	íkla	ad	\mathbf{y}														103
	4.1	Analýz	za .																			103
		4.1.1	Stát	nicové	é otáz	zky																103
	4.2	Algebr	ra .																			104
		4.2.1	Stát	nicové	é otáz	zky																105
	4.3	Stocha	astika																			105
		4.3.1	Stát	nicové	é otáz	zky																105

Úvod

Toto jsou přepsané zápisky na státnice, které jsem vytvořila v rámci učení (a částečně doplnila ještě po státnicích). Jsou sepsané podle okruhů ke státnicím pro rok 2017/18. Při jejich sběru jsem čerpala ze svých zápisků z přednášek a cvičení (když jsem zrovna dávala pozor), ze skript od doc. Mgr. Libora Barta, Ph.D. a doc. RNDr. Jiřího Tůmy, DrSc. a z poznámek od doc. Mgr. Michala Kulicha, Ph.D. a Ing. Marka Omelky, Ph.D. Doporučuji doplnit vlastníma poznámkama or whatever.

Poznámky jsou rozděleny podle okruhů nejprve z analýzy, následně algebry a stochastiky. Když vám třeba přijde, že některá věta či definice do daného okruhu úplně nesedí, tough shit. Na konci jsou některé otázky co jsme u státnic dostali my. Otázky ale vymýšlí komise, takže jsou každý rok jiné, takže ty jsou spíš orientační.

Co se týče důkazů, tak někde píšu, které je doporučené znát - ale určitě je lepší jich znát víc, to je na vás.

Kdybyste našli chybu, napište mi prosím na PStarmanova@gmail.com.

Hodně štěstí!!

1. Analýza

1.1 Posloupnosti a řady čísel a funkcí

1.1.1 Limity posloupností a součty řad

Definice Posloupností reálných čísel rozumíme jakékoliv zobrazení z množiny \mathbb{N} do množiny \mathbb{R} .

Definice Buď $M = \{a_n, n \in \mathbb{N}\}$. Pak posloupnost $\{a_n\}_{n \in \mathbb{N}}$ je (shora, zdola) *omezená*, pokud množina M je (shora, zdola) omezená v \mathbb{R} .

Definice Řekneme, že posloupnost $\{a_n\}_{n\in\mathbb{N}}$ je neklesající, jestliže $a_n \leq a_{n+1}, \forall n \in \mathbb{N}.$

Analogicky klesající, nerostoucí, rostoucí, monotónní, ryze monotónní.

Definice Řekneme, že $A \in \mathbb{R}$ je *vlastní limita* posloupnosti $\{a_n\}_{n \in \mathbb{N}}$, jestliže

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \ge n_0 : |a_n - A| < \epsilon.$$

Definice Řekneme, že posloupnost $\{a_n\}_{n\in\mathbb{N}}$ má limitu ∞ , pokud

$$\forall K \in \mathbb{R} \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \ge n_0 : a_n > K.$$

Analogicky limita $-\infty$, tyto limity jsou nevlastní.

Věta (ekvivalentní podmínka limity) Nechť K > 0. Platí $\lim_{n\to\infty} a_n = A$ právě tehdy, když

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n > n_0 : |a_n - A| < K\epsilon.$$

Definice Řekneme, že posloupnost $\{a_n\}_{n\in\mathbb{N}}$ je konvergentní, pokud $\lim_{n\to\infty}a_n=A\in\mathbb{R}$

Věta (jednoznačnost limity) Každá posloupnost má nejvýše jednu limitu. Zde je vhodné znát důkaz.

Věta Každá konvergentní posloupnost je omezená.

Definice Necht $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost, pak řekneme, že posloupnost $\{b_k\}_{k\in\mathbb{N}}$ je $vybran\acute{a}$ z $\{a_n\}_{n\in\mathbb{N}}$, pokud existuje rostoucí posloupnost celých čísel $\{n_k\}_{k\in\mathbb{N}}$ taková, že $b_k = a_{n_k}, \forall k \in \mathbb{N}$.

Věta (o limitě vybrané posloupnosti) Pokud posloupnost $\{a_n\}_{n\in\mathbb{N}}$ má limitu $A \in \mathbb{R}^*$, pak každá vybraná posloupnost z posloupnosti $\{a_n\}_{n\in\mathbb{N}}$ má také limitu A.

Věta (o aritmetice limit) Necht $\{a_n\}_{n\in\mathbb{N}}$ a $\{b_n\}_{n\in\mathbb{N}}$ jsou posloupnosti a platí $\lim_{n\to\infty}a_n=A$ a $\lim_{n\to\infty}b_n=B$. Pak

- i. $\lim_{n\to\infty} a_n \pm b_n = A \pm B$,
- ii. $\lim_{n\to\infty} a_n b_n = AB$,
- iii. Pokud $B \neq 0$, pak $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$.

Zde je vhodné znát důkaz.

Věta (o součinu omezené a nulové) Nechť $a_n \to 0$ a nechť $\{b_n\}_{n\in\mathbb{N}}$ je omezená posloupnost. Pak $a_nb_n \to 0$. Zde je vhodné znát důkaz.

Věta (vztah uspořádání a limity) Necht $\{a_n\}_{n\in\mathbb{N}}$, resp. $\{b_n\}_{n\in\mathbb{N}}$ jsou posloupnosti s limitami A, resp. B, a necht platí

$$\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \geq n_0 : a_n \leq b_n.$$

Pak $A \leq B$.

Věta (o dvou policajtech) Necht

$$\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \geq n_0 : a_n \leq c_n \leq b_n$$

a nechť $\lim_{n\to\infty}a_n=A=\lim_{n\to\infty}b_n$. Pak $\lim_{n\to\infty}c_n=A$. Plus jednostranné verze této věty. Zde je vhodné znát důkaz.

Věta (o monotónní posloupnosti) Každá monotónní posloupnost má limitu.

Definice Necht $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost, definujeme

$$\alpha_k = \inf_{n \ge k} \{a_n\}, \quad \beta_k = \sup_{n \ge k} \{a_n\}.$$

Pak α_k je neklesající posloupnost, β_k je nerostoucí posloupnost a definujeme

$$\liminf_{n \to \infty} a_n = \lim_{k \to \infty} \alpha_k, \quad \limsup_{n \to \infty} a_n = \lim_{k \to \infty} \beta_k.$$

Věta Necht $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost. Pak

$$\lim_{n \to \infty} a_n = A \Leftrightarrow \liminf_{n \to \infty} a_n = A \wedge \limsup_{n \to \infty} a_n = A.$$

Definice Řekneme, že $H \in \mathbb{R}^*$ je hromadný bod posloupnosti $\{a_n\}_{n \in \mathbb{N}}$, pokud existuje vybraná posloupnost $\{b_k\}_{k \in \mathbb{N}}$ taková, že $b_k \to H$.

Věta (Bolzano - Weierstrass) Z každé omezené posloupnosti lze vybrat konvergentní.

Věta (Bolzano - Cauchy) Posloupnost $\{a_n\}_{n\in\mathbb{N}}$ má vlastní limitu \Leftrightarrow splňuje podmínku

$$(BC) \quad \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \in \mathbb{N}, \ n, m \ge n_0 : |a_n - a_m| < \epsilon.$$

Zde je vhodné znát důkaz.

Definice Necht $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost reálných čísel. *Částečným součtem řady* $\sum_{n=0}^{\infty} a_n$ definujeme součet $s_n = \sum_{i=0}^{n} a_n$. Součtem řady $\sum_{n=0}^{\infty} a_n$ nazveme limitu posloupnosti $\{s_n\}_{n\in\mathbb{N}}$.

Definice Řekneme, že řada $\sum_{n=0}^{\infty} a_n$ konverguje (diverguje) pokud konverguje (diverguje) posloupnost $\{s_n\}_{n\in\mathbb{N}}$.

Věta (nutná podmínka konvergence) Platí

$$\sum_{n=0}^{\infty} a_n \text{ konverguje } \Rightarrow \lim_{n \to \infty} a_n = 0.$$

1.1.2 Kritéria absolutní a neabsolutní konvergence číselných řad

Řady s nezápornými členy

Věta (srovnávací kritérium) Necht $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \geq n_0 : a_n \leq b_n, \ \text{pak}$

- i. $\sum_{n=0}^{\infty} a_n$ diverguje $\Rightarrow \sum_{n=0}^{\infty} b_n$ diverguje,
- ii. $\sum_{n=0}^{\infty} b_n$ konverguje $\Rightarrow \sum_{n=0}^{\infty} a_n$ konverguje.

Zde je vhodné znát důkaz.

Věta (limitní srovnávací kritérium) Nechť $\exists \lim_{n\to\infty} \frac{a_n}{b_n} = K \in \langle 0, \infty \rangle$, pak

i.
$$K \in (0,\infty) \Rightarrow \left(\sum_{n=0}^{\infty} a_n \text{ konverguje } \Leftrightarrow \sum_{n=0}^{\infty} b_n \text{ konverguje}\right),$$

ii.
$$K = 0 \Rightarrow \left(\sum_{n=0}^{\infty} b_n \text{ konverguje } \Rightarrow \sum_{n=0}^{\infty} a_n \text{ konverguje}\right),$$

iii.
$$K = \infty \Rightarrow \left(\sum_{n=0}^{\infty} a_n \text{ konverguje } \Rightarrow \sum_{n=0}^{\infty} b_n \text{ konverguje}\right).$$

Věta (D'Alambertovo podílové kritérium)

Pokud

$$\exists q \in (0,1) \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \ge n_0 : \frac{a_{n+1}}{a_n} < q,$$

pak $\sum_{n=0}^{\infty} a_n$ konverguje. Speciálně, je-li $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$ pak $\sum_{n=0}^{\infty} a_n$ konverguje.

• Pokud

$$\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \ge n_0 : \frac{a_{n+1}}{a_n} \ge 1,$$

pak $\sum_{n=0}^{\infty} a_n$ diverguje. Speciálně, je-li $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$ pak $\sum_{n=0}^{\infty} a_n$ diverguje.

Zde je vhodné znát důkaz.

Věta (Cauchyho odmocninové kritérium)

• Pokud

$$\exists q \in (0,1) \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \geq n_0: \sqrt[n]{a_n} < q,$$
pak $\sum_{n=0}^{\infty} a_n$ konverguje. Speciálně, je-li $\lim_{n \to \infty} \sqrt[n]{a_n} < 1$ pak $\sum_{n=0}^{\infty} a_n$ konverguje.

• Pokud $\sqrt[n]{a_n} \ge 1$ pro nekonečně mnoho $n \in \mathbb{N}$, pak $\sum_{n=0}^{\infty} a_n$ diverguje. Speciálně je-li $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$, pak $\sum_{n=0}^{\infty} a_n$ diverguje.

Zde je vhodné znát důkaz.

Věta (Raabeho kritérium)

- Necht $\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right) > 1$ pak $\sum_{n=0}^{\infty} a_n$ konverguje.
- Necht $\lim_{n\to\infty} n\left(\frac{a_n}{a_{n+1}}-1\right) < 1$ pak $\sum_{n=0}^{\infty} a_n$ diverguje.

Věta (kondenzační kritérium) Nechť $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \geq n_0 : a_{n+1} \leq a_n,$ pak

$$\sum_{n=0}^{\infty} a_n \text{ konverguje } \Leftrightarrow \sum_{n=0}^{\infty} 2^n a_{2^n} \text{ konverguje.}$$

Obecné řady

Definice Řekneme, že řada $\sum_{n=0}^{\infty} a_n$ konverguje *absolutně*, jestliže konverguje řada $\sum_{n=0}^{\infty} |a_n|$. Pokud řada $\sum_{n=0}^{\infty} a_n$ konverguje, ale ne absolutně, řekneme, že konverguje *neabsolutně*.

Věta (Bolzano - Cauchy pro řady) Platí

$$\sum_{n=0}^{\infty} a_n \text{ konverguje } \Leftrightarrow \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n,k \in \mathbb{N}, \ n \geq n_0 : \left| \sum_{i=n+1}^{n+k} a_i \right| < \epsilon.$$

Zde je vhodné znát důkaz.

Věta (vztah konvergence a absolutní konvergence) Pokud řada $\sum_{n=0}^{\infty} a_n$ konverguje absolutně, pak konverguje.

Věta (Leibnizovo kritérium) Necht $\{a_n\}_{n\in\mathbb{N}}$ je nerostoucí posloupnost. Pak

$$\sum_{n=0}^{\infty} (-1)^{n+1} a_n \text{ konverguje } \Leftrightarrow \lim_{n \to \infty} a_n = 0.$$

Definice Řekneme, že řada $\sum_{n=0}^{\infty} a_n$ má omezené částečné součty, pokud platí

$$\exists K > 0 \ \forall m \in \mathbb{N} : \left| \sum_{i=0}^{m} a_i \right| < K.$$

Věta (Ábel - Dirichlet). Nechť $\{a_n\}_{n\in\mathbb{N}}$ je posloupnost a $\{b_n\}_{n\in\mathbb{N}}$ je nerostoucí nezáporná posloupnost. Jestliže platí alespoň jedna z podmínek

- (A) $\sum_{n=0}^{\infty} a_n$ konverguje,
- (D) $\sum_{n=0}^{\infty} a_n$ má omezené částečné součty a $\lim_{n\to\infty} b_n = 0$, pak $\sum_{n=0}^{\infty} a_n b_n$ konverguje.

1.1.3 Stejnoměrná konvergence posloupností a řad funkcí

Definice Necht $f, f_n, n \in \mathbb{N}$ jsou funkce definované na množině $M \subseteq \mathbb{R}$ (nebo na metrickém prostoru (M, ρ)) s hodnotami v \mathbb{R} . Řekneme, že posloupnost $\{f_n\}_{n=1}^{\infty}$ konverguje bodově k f na M, jestliže $\lim_{n\to\infty} f_n(x) = f(x)$, $\forall x \in \mathbb{R}$, tj. pokud

$$\forall x \in M \ \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, \ n \ge n_0 : \ |f_n(x) - f(x)| < \epsilon.$$

Tento vztah značíme $f_n \to f$.

Řekneme, že posloupnost $\{f_n\}_{n=1}^\infty$ konverguje kf na M stejnoměrně, pokud

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall x \in M \ \forall n \in \mathbb{N}, \ n \ge n_0 : \ |f_n(x) - f(x)| < \epsilon,$$

značíme $f_n \rightrightarrows f$.

Řekneme, že posloupnost $\{f_n\}_{n=1}^{\infty}$ konverguje k f na M lokálně stejnoměrně, pokud $\forall x \in M \exists r > 0 : f_n \Rightarrow f$ na $\mathcal{U}(x,r)$.

Věta (charakterizace stejnoměrné konvergence) Necht $f, f_n, n \in \mathbb{N}$ jsou funkce definované na množině $M \subseteq \mathbb{R}$ s hodnotami v \mathbb{R} . Platí $f_n \rightrightarrows f$ právě tehdy, když

$$\lim_{n \to \infty} \sup_{x \in M} |f_n(x) - f(x)| = 0.$$

Definice Řekneme, že posloupnost $\{f_n\}_{n=1}^{\infty}$ je $cauchyovsk\acute{a}$, pokud

$$\forall x \in M \ \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \in \mathbb{N}, \ n, m \ge n_0 : \ |f_n(x) - f_m(x)| < \epsilon.$$

Řekneme, že posloupnost $\{f_n\}_{n=1}^{\infty}$ je stejnoměrně cauchyovská, pokud

$$\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall x \in M \ \forall n, m \in \mathbb{N}, \ n, m \ge n_0 : \ |f_n(x) - f_m(x)| < \epsilon.$$

Definice Řekneme, že množina M (metrický prostor (M,ρ)) je úplná, pokud každá cauchyovská posloupnost v ní je konvergentní.

Věta (vztah konvergence a cauchyovskosti) Nechť funkce $f, f_n, n \in \mathbb{N}$ zobrazují do úplného prostoru. Pak je posloupnost $\{f_n\}_{n=1}^{\infty}$ (stejnoměrně) konvergentní právě tehdy, když je (stejnoměrně) cauchyovská.

Věta (o stejnoměrné konvergenci a spojitosti) Necht jsou funkce $f_n, n \in \mathbb{N}$ spojité a necht $f_n \rightrightarrows f$. Pak f je také spojitá.

Věta (Moore-Osgoodova) Nechť jsou funkce $f, f_n, n \in \mathbb{N}$ definované na $M, x_0 \in M$ a nechť platí

- i. $f_n \Longrightarrow f$ na M,
- ii. $\forall n \in \mathbb{N} \exists \lim_{x \to x_0} f_n(x) =: \alpha_n \in \mathbb{R}$.

Potom existuje $\lim_{n\to\infty} \alpha_n$ a platí $\lim_{n\to\infty} \alpha_n = \lim_{x\to x_0} f(x)$.

Věta (záměna limity a derivace) Necht jsou funkce $f_n, n \in \mathbb{N}$ definované na intervalu (a,b), a < b a necht platí

- i. f_n mají vlastní derivaci na $(a,b) \ \forall n \in \mathbb{N}$,
- ii. $\exists c \in (a,b) : \{f_n(c)\}_{n=1}^{\infty}$ je konvergentní,
- iii. $\{f'_n\}_{n=1}^{\infty}$ je stejnoměrně konvergentní na (a,b).

Pak existuje funkce f taková, že posloupnost $\{f_n\}_{n=1}^{\infty}$ konverguje lokálně stejnoměrně k f, f má vlastní derivaci na (a,b) a posloupnost $\{f'_n\}_{n=1}^{\infty}$ konverguje lokálně stejnoměrně k f' na (a,b).

Věta (limita a primitivní funkce) Necht funkce $f_n, n \in \mathbb{N}$ mají na intervalu (a,b), a < b primitivní funkce $F_n, n \in \mathbb{N}$ a posloupnost $\{f_n\}_{n=1}^{\infty}$ konverguje stejnoměrně k f na (a,b). Pak posloupnost $\{F_n\}_{n=1}^{\infty}$ konverguje lokálně stejnoměrně k F, kde F je primitivní funkce k f.

Věta (záměna limity a integrálu) Nechť jsou funkce $f_n, n \in \mathbb{N}$ newtonovsky integrovatelné na intervalu $\langle a,b \rangle$ a nechť $f_n \rightrightarrows f$ na $\langle a,b \rangle$. Pak funkce f je také newtonovsky integrovatelná na $\langle a,b \rangle$ a platí

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx.$$

Definice Řekneme, že množina K (metrický prostor (K, ρ)) je kompaktni, pokud z každé posloupnosti v něm lze vybrat konvergentní podposloupnost.

Věta (Diniho) Nechť je množina K (metrický prostor (K, ρ)) kompaktní a nechť funkce $f, f_n, n \in \mathbb{N}$ jsou spojité, zobrazující z K do \mathbb{R} , a $f_n \to f$. Pokud $\forall x \in K$ je $\{f_n(x)\}_{n=1}^{\infty}$ monotónní, pak $f_n \rightrightarrows f$ na K.

Definice Nechť jsou funkce $f_n, n \in \mathbb{N}$ definované na množině M. Řekneme, že řada funkcí $\sum_{n=1}^{\infty} f_n$ je (stejnoměrně, lokálně stejnoměrně) konvergentní, pokud je (stejnoměrně, lokálně stejnoměrně) konvergentní posloupnost jejích částečných součtů.

Definice Řekneme, že řada $\sum_{n=1}^{\infty} g_n$ je *majorantní* řadě $\sum_{n=1}^{\infty} f_n$ na M, pokud $|f_n(x)| \leq g_n(x), \forall x \in M, \forall n \in \mathbb{N}$.

Věta (srovnávací kritérium pro stejnoměrnou konvergenci) Necht je řada $\sum_{n=1}^{\infty} g_n$ majorantní řadě $\sum_{n=1}^{\infty} f_n$ na M a necht $\sum_{n=1}^{\infty} g_n$ je stejnoměrně konvergentní na M. Pak i řady $\sum_{n=1}^{\infty} f_n$ a $\sum_{n=1}^{\infty} |f_n|$ jsou stejnoměrně konvergentní na M.

Věta (Weierstrassovo kritérium) Necht platí $|f_n(x)| \leq a_n \ \forall n \in \mathbb{N}$, $\forall x \in M$ a necht $\sum_{n=1}^{\infty} a_n < \infty$. Pak jsou řady $\sum_{n=1}^{\infty} f_n$ a $\sum_{n=1}^{\infty} |f_n|$ stejnoměrně konvergentní na M.

Věta (záměna sumy a derivace) Nechť mají funkce $f_n, n \in \mathbb{N}$ vlastní derivace na intervalu (a,b), a < b a nechť

- i. $\exists x_0 \in (a,b) : \sum_{n=1}^{\infty} f_n(x_0)$ konverguje,
- ii. $\sum_{n=1}^{\infty}f_n'$ konverguje lokálně stejnoměrně na (a,b),

pak i řada $\sum_{n=1}^{\infty} f_n$ konverguje lokálně stejnoměrně $\forall x \in (a,b)$ platí

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

Věta (záměna sumy a integrálu) Nechť platí $\sum_{n=1}^{\infty} f_n \rightrightarrows f$ na (a,b), a < b a nechť jsou funkce $f_n, n \in \mathbb{N}$ newtonovsky integrovatelné na (a,b). Pak i funkce f je newtonovsky integrovatelná na (a,b) a platí

$$\int_{a}^{b} f(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x)dx.$$

Definice Řekneme, že posloupnost funkcí $f_n, n \in \mathbb{N}$ je stejnoměrně omezená na $M \subseteq \mathbb{R}$, pokud $\exists K > 0 \ \forall n \in \mathbb{N}, \forall x \in M : |f_n(x)| < K$.

Věta (Abel-Dirichlet) Necht funkce $f_n, g_n, n \in \mathbb{N}$ zobrazují z M do \mathbb{R} a necht platí alespoň jedna z podmínek

- (A) i. $\sum_{n=1}^{\infty} f_n \Rightarrow \text{na } M$,
 - ii. $\{g_n\}_{n=1}^{\infty}$ je stejnoměrně omezená na M,

iii. $\forall x \in M$ je $\{g_n(x)\}_{n=1}^{\infty}$ monotónní.

(D) i. $\{\sum_{i=1}^n f_i\}_{n=1}^{\infty}$ je stejnoměrně omezená,

ii. $g_n \Longrightarrow 0$,

iii. $\forall x \in M$ je $\{g_n(x)\}_{n=1}^{\infty}$ monotónní.

Pak $\sum_{n=1}^{\infty} g_n f_n$ je stejnoměrně konvergentní na M.

1.1.4 Mocninné řady

Definice Necht $\{a_n\}_{n=0}^{\infty}$ je posloupnost reálných čísel a necht $x_0 \in \mathbb{R}$. Pak řadu funkcí $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ nazýváme mocninnou řadou s koeficienty a_n a středem x_0 .

Věta (o existenci poloměru konvergence) Necht $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ je mocninná řada. Pak existuje právě jedno číslo $R \in \langle 0, \infty \rangle$ takové, že $\forall x : |x-x_0| < R$ platí, že řada $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ konverguje absolutně a pro $\forall x : |x-x_0| > R$ tato řada diverguje. Pro toto R platí vztah

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}.$$

Zde je vhodné znát myšlenku důkazu.

Definice Číslo R z předchozí věty nazýváme poloměr konvergence mocninné řady $\sum_{n=0}^{\infty} a_n (x-x_0)^n$.

Věta (derivace mocninné řady) Označme $f(x) := \sum_{n=0}^{\infty} a_n (x-x_0)^n$ s poloměrem konvergence R. Pak řada $\sum_{n=1}^{\infty} n a_n (x-x_0)^{n-1}$ má stejný poloměr konvergence R a v něm platí $f'(x) = \sum_{n=1}^{\infty} n a_n (x-x_0)^{n-1}$.

Věta (o integrování mocninné řady) Nechť má mocninná řada $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ poloměr konvergence $R \in (0, \infty)$, pak pro $|x-x_0| < R$ platí

$$\int \left(\sum_{n=0}^{\infty} a_n (x - x_0)^n\right) dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - x_0)^{n+1} + C.$$

Věta (Abelova) Nechť má mocninná řada $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ poloměr konvergence $R \in (0, \infty)$ a nechť suma $\sum_{n=0}^{\infty} a_n R^n$ konverguje. Pak řada $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ konverguje stejnoměrně pro $x \in \langle x_0, x_0 + R \rangle$ a platí

$$\lim_{r \to R_{-}} \sum_{n=0}^{\infty} a_n r^n = \sum_{n=0}^{\infty} a_n R^n.$$

Zde je vhodné znát důkaz (alespoň první části věty).

1.2 Diferenciální počet funkcí jedné reálné proměnné

1.2.1 Spojitost a derivace funkcí jedné reálné proměnné

Definice Funkce jedné reálné proměnné je funkce $f: M \to \mathbb{R}$, kde $M \subseteq \mathbb{R}$.

Definice Necht $a \in \mathbb{R}$ a necht funkce f je definována na nějakém redukovaném okolí bodu a. Řekneme, že $A \in \mathbb{R}^*$ je limita funkce f v bodě a, pokud

$$\forall \epsilon > 0 \ \exists \delta > 0 : \ x \in \mathcal{U}(a, \delta) \Rightarrow f(x) \in \mathcal{U}(A, \epsilon),$$

kde $\mathcal U$ značí okolí bodu. Tento vztah značíme $\lim_{x\to a} f(x) = A.$

Definice Necht $a \in \mathbb{R}$ a funkce f je definovaná v bodě a. Řekneme, že funkce f je spojitá v bodě a, pokud $\lim_{x\to a} f(x) = f(a)$.

Definice pro limitu a spojitost zprava a zleva analogicky.

Věta (Heineho) Necht $f: M \to \mathbb{R}$, $M \subseteq \mathbb{R}$, $a \in \mathbb{R}^*$ a necht f je definována na nějakém redukovaném okolí bodu a. Pak platí

$$\lim_{x \to a} f(x) = A \Leftrightarrow \forall \text{ posloupnost } \{x_n\}_{n=1}^{\infty}, \ x_n \to a, \ x_n \neq a: \ f(x_n) \to A.$$

Zde je vhodné znát myšlenku důkazu.

Věta (Heineho věta pro spojitost) Necht $f: M \to \mathbb{R}$, $M \subseteq \mathbb{R}$, $a \in \mathbb{R}$ a navíc f definována v nějakém okolí bodu a. Pak f je spojitá v bodě a právě tehdy, když pro každou posloupnost $\{x_n\}_{n=1}^{\infty}$, $x_n \to a$ platí $f(x_n) \to f(a)$.

Věta (jednoznačnost limity) Funkce má v každém bodě nejvýše jednu limitu.

Věta (o aritmetice limit) Necht $a \in \mathbb{R}^*$ a funkce f a g jsou definované na nějakém redukovaném okolí bodu a a necht $\lim_{x\to a} f(x) = A \in \mathbb{R}^*$, $\lim_{x\to a} g(x) = B \in \mathbb{R}^*$. Pak platí

i.
$$\lim_{x\to a} (f(x) + g(x)) = A + B$$
,

ii.
$$\lim_{x\to a} f(x)g(x) = AB$$
,

iii.
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{A}{B}$$
, pokud $B \neq 0$,

pokud jsou výrazy na pravých stranách definované.

Zde je vhodné znát myšlenku důkazu.

Důsledek Pokud funkce f a g jsou spojité v bodě a, pak i $f \pm g$, fg a f/g (pokud $g(a) \neq 0$) jsou spojité v bodě a.

Definice Řekneme, že funkce je *spojitá na intervalu I*, pokud je spojitá ve všech vnitřních bodech intervalu I a spojitá zprava/zleva v jeho krajních bodech.

Definice Necht $f:M\to\mathbb{R},\,M\subseteq\mathbb{R}$ a necht $a\in M$, řekneme že f nabývá v bodě a

- svého maxima (minima) na M, jestliže $f(x) \leq f(a) \ \forall x \in M \ (\geq),$
- svého ostrého maxima (minima) na M, jestliže $f(x) < f(a) \ \forall x \in M \ (>)$,
- svého lokálního maxima (minima), pokud $\exists \mathcal{U}(a) : f(x) \leq f(a) \ \forall x \in \mathcal{U}(a)$ (\geq),
- svého ostrého lokálního maxima (minima), pokud $\exists \ \mathcal{U}(a) : f(x) < f(a) \ \forall x \in \mathcal{U}(a) \ (>).$

Věta (spojitost a extrémy) $a,b \in \mathbb{R}$, a < b, f spojitá na $\langle a,b \rangle$. Pak funkce f nabývá na intervalu $\langle a,b \rangle$ maxima a minima.

Věta (spojitost a omezenost) Nechť $a,b \in \mathbb{R}$, a < b, a f spojitá na $\langle a,b \rangle$. Pak je tam omezená.

Definice Derivací funkce f v bodě x_0 rozumíme limitu

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0},$$

pokud tato limita existuje. Značíme $f'(x_0)$. Alternativně také $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$.

Definice Derivaci funkce f v bodě a nazveme vlastní, pokud $f'(a) \in \mathbb{R}$ a nevlastní, pokud $f'(a) = \pm \infty$.

Věta (derivace a spojitost) Má-li funkce f v bodě vlastní derivaci, pak je v něm spojitá.

Věta (aritmetika derivací) Platí

- $(f+g)'(x_0) = f'(x_0) + g'(x_0),$
- $(fq)'(x_0) = f'(x_0)q(x_0) + f(x_0)q'(x_0),$
- $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{(g(x_0))^2}$, pokud $g(x_0) \neq 0$.

Zde je vhodné znát myšlenku důkazu.

Věta (derivace složené funkce) Nechť má funkce f derivaci v bodě y_0 , nechť je funkce g spojitá v bodě x_0 a má v něm derivaci a nechť $y_0 = g(x_0)$. Pak $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$.

Věta (derivace inverzní funkce) Nechť je funkce f spojitá a ryze monotónní na $(a,b), x_0 \in (a,b)$ a $y_0 = f(x_0)$. Pokud

- 1. $f'(x_0) \in \mathbb{R}^* \setminus \{0\}$ pak $(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$
- 2. $f'(x_0) = 0$ a f je rostoucí (klesající) v (a,b), pak $(f^{-1})'(y_0) = \infty$ $(-\infty)$.

1.2.2 Hlubší věty o spojitých funkcích

Věta (o nabývání mezihodnot) Necht je funkce f spojitá na intervalu $\langle a,b\rangle$, $-\infty < a < b < \infty$. Necht f(a) < f(b) a $y \in (f(a),f(b))$. Pak $\exists x \in (a,b)$: f(x) = y. Analogicky pro f(a) > f(b).

Zde je vhodné znát myšlenku důkazu. Na to se mě přímo ptali, ale stačilo jim "sporem přes definici suprema".

Věta (spojitý obraz intervalu) Necht I je interval a f je spojitá na I. Pak f(I) je také interval.

Věta (o spojitosti inverzní funkce) Necht f je spojitá rostoucí (klesající) na intervalu I. Pak f^{-1} je spojitá rostoucí (klesající) na f(I).

1.2.3 Věty o střední hodnotě a jejich důsledky

Věta (Rolleova) Necht $a,b \in \mathbb{R}$, a < b a necht

- i. $f \in \mathcal{C}(\langle a, b \rangle)$,
- ii. $\exists f'(x) \ \forall x \in (a,b),$
- iii. f(a) = f(b) = 0.

Pak $\exists \xi \in (a,b): f'(\xi) = 0$. Zde je vhodné znát důkaz.

Věta (Langrangeova věta o střední hodnotě, Lagrangeova věta o přírůstku funkce) Necht $a,b \in \mathbb{R},\ a < b$ a

- i. $f \in \mathcal{C}(\langle a, b \rangle)$,
- ii. $\exists f'(x) \ \forall x \in (a,b)$.

Pak existuje $\xi \in (a,b)$ takové, že

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Zde je vhodné znát důkaz.

Věta (Cauchyova) Nechť $a,b \in \mathbb{R}$, a < b, $f,g \in \mathcal{C}(\langle a,b \rangle)$, f a g mají derivaci na (a,b) a v každém bodě je alespoň jedna z nich konečná (tj. $\min\{f'(x),g'(x)\}\in\mathbb{R}$, $\forall x\in(a,b)$), a nechť $g'(x)\neq 0$ $\forall x\in(a,b)$. Pak existuje $\xi\in(a,b)$ takové, že

$$\frac{f'(\xi)}{g'(\xi)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

Věta (L'Hospital) Nechť $x_0 \in \mathbb{R}^*$, nechť f a g mají vlastní derivace v nějakém redukovaném okolí bodu x_0 a platí alespoň jedna z podmínek

i.
$$\lim_{x \to x_0} f(x) = 0 = \lim_{x \to x_0} g(x)$$
,

ii. $\lim_{x\to x_0} |g(x)| = \infty$.

Pak

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)},$$

pokud limita na pravé straně existuje.

L'Hospitalova věta je důsledkem Cauchyovy věty o střední hodnoty.

Věta (o derivaci zprava) Nechť je f je spojitá zprava v bodě a a nechť $\lim_{x\to a+} f'(x) = A \in \mathbb{R}^*$. Pak $f'_+(a) = A$.

Věta o derivaci zprava je důsledkem Lagrangeovy věty o střední hodnotě.

1.2.4 Vztahy monotonie a znaménka derivace

Věta Nechť I je interval, $I \subset \mathbb{R}$, $f \in \mathcal{C}(I)$ a f má na I vlastní derivaci.

- i. Pokud $f'(x) \ge 0 \ \forall x \in \text{Int}(I)$, pak f je neklesající v I.
- ii. Pokud $f'(x) > 0 \ \forall x \in \text{Int}(I)$, pak f je rostoucí v I.
- iii. Pokud $f'(x) \le 0 \ \forall x \in \text{Int}(I)$, pak f je nerostoucí v I.
- iv. Pokud $f'(x) < 0 \ \forall x \in \text{Int}(I)$, pak f je klesající v I.

Zde je vhodné znát důkaz.

Důsledek Necht I je interval a $f'(x) = 0 \ \forall x \in I$. Pak f je konstantní na I.

1.2.5 Konvexita

Definice Necht $I \subset \mathbb{R}$ je interval, $f: I \to \mathbb{R}$ je

- konvexni v I, pokud $\forall x,y \in I$, $\forall \lambda \in (0,1)$ plati $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$,
- ryze konvexní v I, pokud $\forall x,y \in I, \ \forall \lambda \in (0,1), x \neq y$ platí $f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y),$
- (ryze) konkávní, pokud -f je (ryze) konvexní.

Věta (konvexita a jednostranné derivace) Nechť f je konvexní na intervalu $I \subset \mathbb{R}$. Pak existují konečné jednostranné derivace $f'_{-}(x_0), f'_{+}(x_0) \ \forall x_0 \in \text{Int}(I)$ a navíc $f'_{-}(x_0) \leq f'_{+}(x_0)$.

Věta (vztah konvexity a spojitosti) Nechť f je konvexní na $(a,b) \subset \mathbb{R}$. Pak $f \in \mathcal{C}((a,b))$.

Otevřenost intervalu je důležitá. Jedná se o důsledek předchozí věty.

Věta (vztah druhé derivace a konvexity) Necht f je spojitá na intervalu $I \subset \mathbb{R}$ a necht má na I spojitou první derivaci. Jestliže $f''(x) \geq 0 \ \forall x \in I$ pak f

je konvexní.

Definice Necht f má vlastní derivaci v bodě $x_0 \in \mathbb{R}$. Řekneme, že x_0 je inflexním bodem funkce f pokud existuje $\delta > 0$ takové, že platí alespoň jedna z podmínek

1.
$$\forall x \in P_{-}(x_0, \delta) : f(x) < f(x_0) + f'(x_0)(x - x_0) \land \forall x \in P_{+}(x_0, \delta) : f(x) > f(x_0) + f'(x_0)(x - x_0),$$

2.
$$\forall x \in P_{-}(x_0, \delta) : f(x) > f(x_0) + f'(x_0)(x - x_0) \land \forall x \in P_{+}(x_0, \delta) : f(x) < f(x_0) + f'(x_0)(x - x_0).$$

Věta (nutná podmínka pro inflexi) Necht $x_0 \in \mathbb{R}$ a $f''(x_0) \neq 0$. Pak x_0 není inflexním bodem f.

Zde je vhodné znát důkaz.

Věta (postačující podmínka pro inflexi) Nechť f má spojitou první derivaci v $(a,b) \subset \mathbb{R}$, nechť $x_0 \in (a,b)$ a $\exists \delta > 0$ takové, že platí alespoň jedna z podmínek

1.
$$\forall x \in P_{-}(x_0, \delta) : f''(x) > 0 \land \forall x \in P_{+}(x_0, \delta) : f''(x_0) < 0$$

2.
$$\forall x \in P_{-}(x_0, \delta) : f''(x) < 0 \land \forall x \in P_{+}(x_0, \delta) : f''(x_0) > 0.$$

Pak x_0 je inflexní bod.

Zde je vhodné znát důkaz.

1.2.6 Taylorův polynom, Taylorovy řady

Definice Necht $f,g: \mathbb{R} \to \mathbb{R}$, $x_0 \in \mathbb{R}^*$. Řekneme, že f(x) = o(g(x)) pro $x \to x_0$, jestliže

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$$

Definice Necht $f: \mathbb{R} \to \mathbb{R}$, $x_0 \in \mathbb{R}$. Necht existuje vlastní $f^{(n)}(x_0) \in \mathbb{R}$, $n \in \mathbb{N}$. Potom polynom

$$T_{n,x_0}^f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \, \forall x \in \mathbb{R}$$

je Taylorův polynom funkce f řádu n v bodě a.

Věta (Peanova) Nechť $n \in \mathbb{N}$, $f : \mathbb{R} \to \mathbb{R}$, $x_0 \in \mathbb{R}$, $f^{(n)}(x_0) \in \mathbb{R}$. Pak existuje právě jeden polynom P_n stupně nejvýše n takový, že

$$\lim_{x \to x_0} \frac{f(x) - P_n(x)}{(x - x_0)^n} = 0,$$

tj. $f(x) - P_n(x) = o((x - x_0)^n)$ a to právě polynom $P_n = T_{n,x_0}^f$.

Definice Necht jsou splněny podmínky definice Taylorova polynomu. Pak $R_{n+1,x_0}^f(x) := f(x) - T_{n,x_0}^f(x)$ nazýváme *zbytkem* po *n*-tém členu Taylorova polynomu.

Věta (Taylorova věta o zbytku) Nechť $f,\varphi:\mathbb{R}\to\mathbb{R}, x_0,x\in\mathbb{R}, x_0\neq x$ a nechť J je uzavřený interval s krajními body x a x_0 . Nechť platí

- 1. $f^{(n+1)}(t) \in \mathbb{R}, \forall t \in J$ a
- 2. $\varphi \in \mathcal{C}(J)$, $0 \neq \varphi'(t) \in \mathbb{R}, \forall t \in \text{Int}(J)$.

Pak existuje $\xi \in \text{Int}(J)$ takové, že

$$R_{n+1}(x) = \frac{(x-\xi)^n}{n!} \frac{\varphi(x) - \varphi(x_0)}{\varphi'(x_0)} f^{(n+1)}(\xi).$$

Speciálně volbou $\varphi(t) = t$ dostáváme Cauchyův tvar zbytku

$$R_{n+1}(x) = \frac{(x-\xi)^n}{n!}(x-x_0)f^{(n+1)}(\xi),$$

a volbou $\varphi(t) = (x-t)^{n+1}$ dostáváme Lagrangeův tvar zbytku

$$R_{n+1}(x) = \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi).$$

Zde je vhodné znát důkaz.

Definice Nechť $f: \mathbb{R} \to \mathbb{R}$, $x_0 \in \mathbb{R}$, nechť f má v x_0 konečné derivace všech řádů. Pak řadu

$$T_{x_0}^f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

nazýváme $Taylorovou\ \check{r}adou$ funkce f v bodě x_0 . Pokud $x_0 = 0$ pak jde o $Mac-Laurinovu\ \check{r}adu$.

Věta Platí $T_{x_0}^f = f$ právě tehdy, když $\lim_{n\to\infty} R_{n+1} = 0$.

Zde je vhodné znát příklady některých Taylorových (MacLaurinových) řad, například pro e^x , $\sin x$, $\cos x$,....

1.3 Integrální počet funkcí jedné reálné proměnné

1.3.1 Primitivní funkce, určitý integrál

Definice Necht $a,b \in \mathbb{R}$, a < b a $F,f : (a,b) \to \mathbb{R}$. Řekneme, že F je primitivní funkcí f na (a,b), jestliže $F'(x) = f(x) \ \forall x \in (a,b)$.

Věta (primitivní funkce a spojitost) Každá primitivní funkce je spojitá.

Věta (postačující podmínka pro existenci primitivní funkce) Necht $a,b \in \mathbb{R}$, a < b a $f \in \mathcal{C}((a,b))$. Pak f má na (a,b) primitivní funkci.

Věta (o jednoznačnosti primitivní funkce) Nechť F a G jsou dvě primitivní funkce k f na intervalu (a,b). Pak existuje konstanta $c \in \mathbb{R}$ taková, že F(x) = G(x) + c, $\forall x \in (a,b)$.

Zde je vhodné znát důkaz.

Věta (linearita primitivní funkce) Nechť $a,b \in \mathbb{R}$, a < b a nechť F je primitivní funkce k f na (a,b) a G je primitivní funkce k g na (a,b) a $\alpha,\beta \in \mathbb{R}$. Potom $\alpha f + \beta g$ má na (a,b) primitivní funkce $\alpha F + \beta G$.

Definice Necht $a,b \in \mathbb{R}$, a < b. Končenou posloupnost $\{x_0,\ldots,x_n\}$ nazveme dělením intervalu $\langle a,b \rangle \subset \mathbb{R}$, pokud $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$. Řekneme, že D' je zjemnění dělení D, pokud každý bod D je zároveň i bodem D'.

Definice Necht $a,b \in \mathbb{R}$, a < b, $\{x_0, \dots, x_n\}$ dělení $\langle a,b \rangle$ a funkce f definovaná na $\langle a,b \rangle$. Označme

$$m_i = \inf_{x \in \langle x_{i-1}, x_i \rangle} f(x), \ M_i = \sup_{x \in \langle x_{i-1}, x_i \rangle} f(x)$$

a

$$s(f,D) = \sum_{i=1}^{n} m_i(x_i - x_{i-1}) \le \sum_{i=1}^{n} M_i(x_i - x_{i-1}) = S(f,D).$$

s(f,D) nazýváme dolní součet a S(f,D) horní součet funkce f při dělení D. Pak definujeme dolní Riemannův integrál jako

$$\underline{\int_a^b} f := \sup\{s(D), D \text{ dělení } \langle a,b \rangle\},$$

a horní Riemannův integrál jako

$$\overline{\int_a^b} f := \inf\{S(D), D \text{ dělení } \langle a, b \rangle\}.$$

Definice Řekneme, že funkce f má Riemannův integrál $(f \in \mathcal{R}(\langle a,b \rangle))$, pokud

$$\int_{a}^{b} f = \overline{\int_{a}^{b}} f,$$

pak tento integrál definujeme jako

$$\int_{a}^{b} f = \overline{\int_{a}^{b}} f = \underline{\int_{a}^{b}} f.$$

Definice Norma dělení D je $||D|| = \max\{(x_i - x_{i-1}), i = 1, ..., n\}$. Věta (o horním a dolním součtu zjemnění) Necht D' je zjemnění dělení D. Pak

$$s(f,D) \le s(f,D') \le S(f,D') \le S(f,D).$$

Věta (aproximace horního a dolního Riemannova integrálu) Necht $a,b \in \mathbb{R}$, a < b a je funkce f omezená na intervalu $\langle a,b \rangle$. Pak $\forall \epsilon > 0 \; \exists \delta > 0 : \; \forall D, \|D\| < \delta$ platí

 $\overline{\int_a^b} f \leq S(f,D) < \overline{\int_a^b} f + \epsilon \ \land \ \int_a^b f - \epsilon < s(f,D) \leq \int_a^b f.$

Definice Necht $a,b \in \mathbb{R}$, a < b a $f,F : (a,b) \to \mathbb{R}$. Pokud platí $F \in \mathcal{C}((a,b))$ a $F'(x) = f(x) \ \forall x \in (a,b) \backslash K$, kde K je konečná množina, pak F je zobecněná primitivní funkce k f na (a,b).

Definice Nechť $a,b \in \mathbb{R}$, a < b, $f:(a,b) \to \mathbb{R}$ a F je zobecněná primitivní funkce k f na (a,b). Pak Newtonovým integrálem funkce f od a do b rozumíme

$$\int_{a}^{b} f = [F]_{a}^{b} := \lim_{x \to b^{-}} F(x) - \lim_{x \to a^{+}} F(x),$$

má-li tento rozdíl smysl. Má-li funkce f Newtonův integrál značíme $f \in \mathcal{N}((a,b))$.

Věta (vztah Newtonova a Riemannova integrálu) Necht $a,b \in \mathbb{R}$, a < b a $f : \langle a,b \rangle \to \mathbb{R}$. Pokud $f \in \mathcal{N}((a,b)) \cap \mathcal{R}(\langle a,b \rangle)$ pak

$$(\mathcal{N}) \int_{a}^{b} f = (\mathcal{R}) \int_{a}^{b} f.$$

1.3.2 Základní vlastnosti, vztah k primitivní funkci

Věta (vlastnosti Riemannova integrálu) Nechť $a,b \in \mathbb{R}$, a < b.

(i.) Linearita: Necht $f,g \in \mathcal{R}(\langle a,b \rangle), \lambda \in \mathbb{R}$. Pak $f+g \in \mathcal{R}(\langle a,b \rangle), \lambda f \in \mathcal{R}(\langle a,b \rangle)$

$$\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g, \quad \int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f.$$

(ii.) Monotonie: Necht $f,g \in \mathcal{R}(\langle a,b \rangle), f \leq g$ na $\langle a,b \rangle$. Pak

$$\int_{a}^{b} f \le \int_{a}^{b} g.$$

(iii.) Aditivita: Necht $c \in (a,b)$ a f definovaná na $\langle a,b \rangle$. Pak

$$f \in \mathcal{R}(\langle a,b \rangle) \Leftrightarrow f \in \mathcal{R}(\langle a,c \rangle) \land f \in \mathcal{R}(\langle c,b \rangle),$$

a

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

(iv.) Absolutní konvergence: Necht $f \in \mathcal{R}(\langle a,b \rangle)$, pak $|f| \in \mathcal{R}(\langle a,b \rangle)$ a platí

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f| \, .$$

Věta (vztah Riemannova integrálu a primitivní funkce) Necht $a,b \in \mathbb{R}$, a < b, $f \in \mathcal{R}(\langle a,b \rangle)$. Pak funkce $F(x) := \int_a^x f$, $\forall x \in \langle a,b \rangle$ je spojitá v $\langle a,b \rangle$ a F'(x) = f(x) pro všechny body spojitosti f.

Věta (o rovnosti integrálů) $a,b \in \mathbb{R}$, a < b a $f \in \mathcal{R}(\langle a,b \rangle)$ a $g : \langle a,b \rangle \to \mathbb{R}$ taková, že g = f na $\langle a,b \rangle \setminus K$, kde K je konečná množina. Potom

$$\int_{a}^{b} g = \int_{a}^{b} f.$$

Věta (vlastnosti Newtonova integrálu) Newtonův integrál má vlastnosti *linearity* a *monotonie* stejné jako Riemannův. Dále

(iii.) Linearita: Necht $a,b \in \mathbb{R}$, a < b, $c \in (a,b)$. Pak

$$f \in \mathcal{N}(\langle a, c \rangle), f \in \mathcal{N}(\langle c, b \rangle), \text{ f spojitá v } c \Leftrightarrow f \in \mathcal{N}(\langle a, b \rangle).$$

(iv.) Pokud $|f| \in \mathcal{N}((a,b))$, f spojitá, pak $f \in \mathcal{N}((a,b))$.

Definice Řekneme, že funkce f je stejnoměrně spojitá na intervalu I, pokud

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x, y \in I : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon.$$

1.3.3 Metody výpočtu

Věta (integrace per partes) Necht $a,b,\alpha,\beta \in \mathbb{R}$, a < b, $\alpha < \beta$, F je primitivní funkce k f na (a,b) a G je primitivní funkce g na (a,b). Pak na (a,b) platí

$$\int F(x)g(x)dx = F(x)G(x) - \int f(x)G(x)dx.$$

Věta (substituční metody) Nechť $a,b \in \mathbb{R}$, a < b a

(i.) F je primitivní funkce k f na (a,b) a $\varphi:(\alpha,\beta)\to(a,b),\ \varphi'(t)$ existuje $\forall t\in(\alpha,\beta).$ Pak

$$\int f(\varphi(t))\varphi'(t)dt = F(\varphi(t)) + c \quad \forall t \in (\alpha, \beta).$$

(ii.) $\varphi: (\alpha, \beta) \xrightarrow{na} (a, b), \ 0 \neq \varphi'(t) \ \forall t \in (\alpha, \beta), \ f: (a, b) \to \mathbb{R} \ a \ G$ je primitivní funkce k $f(\varphi(t))\varphi'(t)$ na (a, b). Pak

$$\int f(x)dx = G(\varphi^{-1}(x)).$$

Zde je vhodné znát důkaz.

Věta (per partes pro Newtonův integrál) Nechť $a,b \in \mathbb{R}$, a < b a F je primitivní funkcí k f na (a,b) a G je primitivní funkce k g na (a,b). Pak

$$\int_{a}^{b} Fg = [FG]_{a}^{b} - \int_{a}^{b} fG.$$

Věta (o střední hodnotě pro integrály I.) Nechť $a,b \in \mathbb{R}$, a < b a $f \in C(\langle a,b \rangle)$, $g \ge 0$ v $\langle a,b \rangle \setminus K$, kde K je konečná. Pak

$$\exists \xi \in \langle a, b \rangle : \int_{a}^{b} fg = f(\xi) \int_{a}^{b} g,$$

pokud integrály $\int_a^b fg$ a $\int_a^b g$ existují.

Věta (o střední hodnotě pro integrály II.) Nechť $a,b \in \mathbb{R}$, a < b a $f : \langle a,b \rangle \to \mathbb{R}$ spojitá funkce a $g : \langle a,b \rangle \to \mathbb{R}$ monotónní a spojitá. Pak

$$\exists \xi \in \langle a, b \rangle : \int_a^b fg = g(a) \int_a^{\xi} f + g(b) \int_{\xi}^b f.$$

Tyhle dvě věty nemusí asi být tolik důležité, ale věty o středních hodnotách jsou moje fave.

Postup integrace racionální funkce Necht $Q(x) = \frac{P(x)}{R(x)}$.

- 1. Pokud st $P \geq \text{st}Q$ tak částečné dělení polynomů na tvar $P_1 + \frac{P_2}{Q}$.
- 2. Rozklad Q na součin ireducibilních dvou a trojčlenů.
- 3. Rozklad na parciální zlomky.
- 4. Integrace parciálních zlomků.

Detailní přístup je popsaný na webových stránkách Mgr. Kristýny Kuncové. V archivu má cvika z Analýz 1 a 2 a v nich skvělé materiály.

Goniometrické substituce

1. Pokud $R(\sin x, \cos x) = R(-\sin x, -\cos x)$ pak se používá substituce $t = \tan x$, pak

$$dx = \frac{dt}{1+t^2}$$
, $\sin^2 x = \frac{t^2}{1+t^2}$, $\cos^2 x = \frac{1}{1+t^2}$, $\sin x \cos x = \frac{t}{1+t^2}$.

2. V jakémkoliv případě lze použít substituci $t=\tan\frac{x}{2}$. Pak

$$dx = \frac{2dt}{1+t^2}$$
, $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$.

Věta (Integrální kritérium pro konvergenci řad) Necht f je spojitá, kladná a nerostoucí na $\langle n_0, \infty \rangle$ a necht $a_n = f(n) \ \forall n \in \mathbb{N}, \ n \geq n_0$. Pak

$$\sum_{n=1}^{\infty} a_n \text{ konverguje } \Leftrightarrow \int_{n_0}^{\infty} f(x) dx < \infty.$$

Tady se ještě hodí vědět: délka křivky, objem rotačního tělesa, Fubiniova věta a Fubini o substituci. Moc zmatený a ugh.

1.3.4 Základní kritéria existence

Věta (existence Riemannova integrálu I.) Necht $a,b \in \mathbb{R}$, a < b a $f \in C(\langle a,b \rangle)$. Pak $f \in \mathcal{R}(\langle a,b \rangle)$.

Věta (existence Riemannova integrálu II.) Necht $a,b \in \mathbb{R}$, a < b a f monotónní na $\langle a,b \rangle$. Pak $f \in \mathcal{R}(\langle a,b \rangle)$.

Věta (existence Riemannova integrálu III.) Necht $a,b \in \mathbb{R}$, a < b a f omezená na $\langle a,b \rangle$. Pak platí

$$\int_a^b f \text{ existuje } \Leftrightarrow \forall \epsilon > 0 \text{ } \exists D \text{ dělení } \langle a,b \rangle : S(f,D) - s(f,D) < \epsilon.$$

Zde je vhodné znát důkaz.

Věta (existence Newtonova integrálu) Nechť $a,b \in \mathbb{R}$, a < b a f je spojitá a omezená na (a,b). Pak $f \in \mathcal{N}((a,b))$.

Věta (srovnávací kritéria pro Newtonův integrál) Necht $a,b \in \mathbb{R}$, a < b.

(i.) Pokud $0 \le f \le g$ na (a,b), f spojitá na (a,b), pak

$$g \in \mathcal{N}((a,b)) \Rightarrow f \in \mathcal{N}((a,b)).$$

(ii.) Pokud f a g jsou nezáporné spojité na (a,b) a platí

$$\lim_{x \to b^{-}} \frac{f(x)}{q(x)} = c, \ c \in (0, \infty).$$

Pak $f \in \mathcal{N}((a,b)) \Leftrightarrow g \in \mathcal{N}((a,b))$.

Věta (Abel-Dirichlet pro Newtonův integrál) Necht $a,b \in \mathbb{R}$, a < b a $f: \langle a,b \rangle \to \mathbb{R}$ je spojitá a F je primitivní funkce k f na $\langle a,b \rangle$, $g: \langle a,b \rangle \to \mathbb{R}$ monotónní a spojitá. Nechť platí alespoň jedna z následujících podmínek:

- (A) $f \in \mathcal{N}((a,b))$ a g je omezená na (a,b),
- (D) F omezená na (a,b) a $\lim_{x\to b-} g(x) = 0$.

Pak $fg \in \mathcal{N}((a,b))$.

1.4 Funkce více proměnných

1.4.1 Diferenciál a parciální derivace

Tahle kapitola je dost zmatená, ale (zatím) se mi nepodařilo to srovnat. You try.

Definice Necht $f: \mathbb{R}^n \to \mathbb{R}$, $a \in \mathbb{R}^n$. Parciální derivace f v bodě a podle i-té proměnné je

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a + te^i) - f(a)}{t}.$$

Definice Necht $f: \mathbb{R}^n \to \mathbb{R}$, $a \in \mathbb{R}^n$, $\vec{v} \in \mathbb{R}^n \setminus \{0\}$. Derivací f v bodě a ve směru \vec{v} je

$$D_{\vec{v}}f(a) = \lim_{t \to 0} \frac{f(a + t\vec{v}) - f(a)}{t}.$$

Definice Necht $f: \mathbb{R}^n \to \mathbb{R}$, $a \in \mathbb{R}^n$, $L: \mathbb{R}^n \to \mathbb{R}$ je lineární zobrazení. Řekneme, že L je totální diferenciál funkce f v bodě a, jestliže

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - L(h)}{\|h\|} = 0.$$

Věta (o tvaru totálního diferenciálu) Má-li f v bodě a totální diferenciál, pak je v a spojitá, existují v a všechny parciální derivace a platí

$$L(h) = \frac{\partial f}{\partial x_1}(a)h_1 + \ldots + \frac{\partial f}{\partial x_n}(a)h_n.$$

Věta (postačující podmínka pro existenci totálního diferenciálu) Necht $f: \mathbb{R}^n \to \mathbb{R}$ má v bodě a spojité všechny parciální derivace, pak má v a totální diferenciál.

Definice Necht $f: \mathbb{R}^n \to \mathbb{R}$, $a \in \mathbb{R}^n$ a f má v a všechny parciální derivace vlastní. *Gradient* funkce f v bodě a je

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right).$$

Gradient udává směr největšího růstu funkce.

Věta (o gradientu a derivacích ve směru) Necht $f: \mathbb{R}^n \to \mathbb{R}, a \in \mathbb{R}^n$. Pak $D_{\vec{v}}f(a) = \langle \nabla f(a), \vec{v} \rangle$.

Definice Necht F je zobrazení z \mathbb{R}^n do \mathbb{R}^k , $a \in \mathbb{R}^n$ a L je lineární zobrazení z \mathbb{R}^n do \mathbb{R}^k . Pak L je derivací F v a, pokud

$$\lim_{h \to 0} \frac{\|F(a+h) - F(a) - L(h)\|}{\|h\|} = 0.$$

Pak

$$F'(a) = \left(\frac{\partial F_j}{\partial x_i}(a)\right)_{i,j=1}^{k,n}.$$

Tato matice se nazývá $Jakobiho \ matice$. Je-li k=n pak determinant této matice nazýváme Jakobián.

Věta (aritmetika totálního diferenciálu) Nechť $f,g:\mathbb{R}^n\to\mathbb{R}$ mají totální diferenciály L_f a L_g v $a\in\mathbb{R}^n$ a nechť $\alpha\in\mathbb{R}$. Pak existují totální diferenciály $L_{f\pm g}(a),\,L_{fg}(a),\,L_{\alpha f}(a)$ a $L_{\frac{f}{a}}(a)$ pro $g(a)\neq 0$ a platí vztahy

$$L_{f\pm g}(a) = L_f(a) \pm L_g(a),$$

$$L_{\alpha f}(a) = \alpha L_f(a),$$

$$L_{fg}(a) = L_f(a)g(a) + L_g(a)f(a),$$

$$L_{\frac{f}{g}}(a) = \frac{g(a)L_f(a) - f(a)L_g(a)}{g^2}.$$

Věta (o diferenciálu složeného zobrazení, řetízkové pravidlo): Necht $f: \mathbb{R}^n \to \mathbb{R}, \ g_i: \mathbb{R}^s \to \mathbb{R}, \ i=1,\ldots,n, \ a \in \mathbb{R}^s, \ b \in \mathbb{R}^n, \ b=[g_1(a),\ldots,g_n(a)]$ a necht f má totální diferenciál v b a g_i mají totální diferenciál v a pro všechny $i=1,\ldots,n$. Buď $H(x)=f\Big([g_1(x),\ldots,g_n(x)]\Big)$. Pak H má v a totální diferenciál a platí

 $L_H(a)(h) = \sum_{i=1}^{s} \left[\sum_{j=1}^{n} \frac{\partial f}{\partial y_j}(b) \frac{\partial g_j}{\partial x_i}(a) \right] h_i,$

speciálně

$$\frac{\partial H}{\partial x_i}(a) = \sum_{j=1}^n \frac{\partial f}{\partial y_j}(b) \frac{\partial g_j}{\partial x_i}(a).$$

Věta (o střední hodnotě) Necht $f: \mathbb{R}^n \to \mathbb{R}$ má všechny parciální derivace na úsečce mezi $a,b \in \mathbb{R}^n$. Pak existuje $\xi \in (0,1)$ takové, že

$$f(b) - f(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \left(a + \xi(b - a) \right) \cdot (b_i - a_i).$$

Definice Necht $G \subset \mathbb{R}^n$ je otevřená množina a $f: G \to \mathbb{R}$ má v G všechny paricální derivace a necht $a \in G$. 2. parciální derivace f jsou

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right) (a).$$

Věta (záměnnost parciálních derivací druhého řádu) Nechť $f: \mathbb{R}^n \to \mathbb{R}$ má v $a \in \mathbb{R}^n$ spojitou parciální derivaci $\frac{\partial^2 f}{\partial x_i \partial x_j}$. Pak tam je spojitá i parciální

derivace $\frac{\partial^2 f}{\partial x_i \partial x_i}$ a tyto dvě se rovnají.

Definice Necht $f: \mathbb{R}^n \to \mathbb{R}$, $a \in \mathbb{R}^n$ a necht $\frac{\partial f}{\partial x_i}$ mají totální diferenciál v bodě a pro všechny $i=1,\ldots,n$. Druhý diferenciál funkce f v bodě a je

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a) \cdot h_{i} \cdot k_{j},$$

maticově

$$\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right)_{i,j=1}^n.$$

Tato matice se nazývá Hessova matice.

Definice Necht $G \subset \mathbb{R}^n$ je otevřená. Množina $C^k(G)$ je množina těch funkcí, které mají spojité parciální derivace k-tého řádu na G.

Věta (postačující podmínka pro existenci druhého diferenciálu) Necht $G \subset \mathbb{R}^n$ je otevřená a $f \in C^2(G)$. Pak f má na G druhý diferenciál.

1.4.2 Implicitní funkce

Definice Explicitní vyjádření funkce je y = y(x) a implicitní vyjádření funkce je F(x,y) = 0.

Věta (o implicitní funkci) Necht $k \in \mathbb{N}, \Omega \subset \mathbb{R}^{n+1}$ otevřená množina, $F: \Omega \to \mathbb{R}, F = F(x_1, \dots, x_n, y) = F(x, y)$. Necht $[a, b] = [a_1, \dots, a_n, b] \in \Omega$ a necht platí

- i. F(a,b) = 0,
- ii. $F \in C^k(\Omega)$,
- iii. $\frac{\partial F}{\partial y}(a,b) \neq 0$.

Pak $\exists \delta_1, \ \delta_2$:

(i.)
$$\forall x \in \mathcal{U}(a, \delta_1) \exists ! y \in \mathcal{U}(b, \delta_2) : F(x, y) = 0$$
, tj. $y = y(x)$,

(ii.)
$$y \in C^k(\mathcal{U}(a,\delta_1))$$
 a $\frac{\partial y}{\partial x_i}(x) = \frac{-\frac{\partial F}{\partial x_i}(x,y(x))}{\frac{\partial F}{\partial y}(x,y(x))}, \forall x \in \mathcal{U}(a,\delta_1), i = 1,\ldots,n.$

Věta (o implicitním zobrazení) Necht $k \in \mathbb{N}, \Omega \subset \mathbb{R}^{n+m}$ otevřená množina, $F: \Omega \to \mathbb{R}^m, F = F(x_1, \dots, x_n, y_1, \dots, y_m) = F(x, y),$ necht $[a, b] = [a_1, \dots, a_n, b_1, \dots, b_m] \in \Omega$ a platí

- i. F(a,b) = 0,
- ii. $F \in C^k(\Omega)$,

iii.
$$\frac{D(F_1,\dots,F_m)}{D(y_1,\dots,y_m)}(a,b) = \det\left(\frac{\partial F_i}{\partial y_j}(a,b)\right)_{i,j=1}^m \neq 0.$$

Pak $\exists \mathcal{U}(a) \subset \mathbb{R}^n$, $\exists \mathcal{U}(b) \subset \mathbb{R}^m$:

$$\forall x \in \mathcal{U}(a) \exists ! y \in \mathcal{U}(b) : F(x,y) = 0, \text{ tj. } y = (y_1(x), \dots, y_m(x)) \text{ a } y \in C^k \big(\mathcal{U}(a) \big).$$

1.4.3 Volné a vázané extrémy funkcí více proměnných

Definice Nechť $f: \mathbb{R}^n \to \mathbb{R}$, $a \in \mathbb{R}^n$. Řekneme, že funkce f má v a globální maximum, pokud $\forall x \in \mathbb{R}^n: f(a) \geq f(x)$. Řekneme, že funkce f má v bodě a lokální maximum, jestliže $\exists \mathcal{U}(a): f(a) \geq f(x) \ \forall x \in \mathcal{U}(a)$. Tyto extrémy jsou volné.

Analogicky minimum.

Definice Nechť $M \subset \mathbb{R}^n$ a $f: M \to \mathbb{R}$. Řekneme, že funkce f nabývá v bodě $a \in M$ maxima vzhledem k M, pokud $\forall x \in M: f(x) \leq f(a)$. Řekneme, že funkce f má v a lokální maximum vzhledem k M, pokud $\exists \mathcal{U}(a): f(x) \leq f(a) \ \forall x \in \mathcal{U}(a) \cap M$. Tyto extrémy jsou vázané. Analogicky minimum.

Definice Necht $G \subset \mathbb{R}^n$ je otevřená a necht $f: G \to \mathbb{R}$. Řekneme, že $x_0 \in G$ je stacionárním bodem f, jestliže má f v x_0 všechny parciální derivace prvního řádu nulové.

1.4.4 Nutné a postačující podmínky pro volné extrémy, nutné podmínky pro vázané extrémy

Věta (nutná podmínka pro volný extrém) Nechť $G \subset \mathbb{R}^n$ je otevřená, $f: G \to \mathbb{R}$. Má-li f v bodě $a \in G$ lokální extrém vzhledem k G, pak $\frac{\partial f}{\partial x_j}(a)$ buď neexistuje nebo je nulová pro každé $j = 1, \ldots, n$.

Věta (postačující podmínka pro volný extrém) Nechť $G \subset \mathbb{R}^n$ je otevřená, $a \in G, f: G \to \mathbb{R}, f \in C^2(G)$ a $\nabla f(a) = 0$.

- i. Jestliže $D^2f(a)$ je pozitivně definitní, pak a je lokální minimum,
- ii. jestliže $D^2f(a)$ je negativně definitní, pak a je lokální maximum,
- iii. jestliže $D^2f(a)$ je indefinitní, pak v anení extrém,

kde
$$D^2 f(a) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(a)\right)_{i,j=1}^n$$
.

Věta (Lagrangeova o vázaných extrémech) Nechť $G \subset \mathbb{R}^{n+m}$ a

 $f,g_1,\ldots,g_m:G\to\mathbb{R},\ f,g_1,\ldots,g_m\in C^1(G).$ Necht

 $M = \{x \in \mathbb{R}^{n+m} : g_1(x) = 0, \dots, g_m(x) = 0\}$ a nechť $\nabla g_1, \dots, \nabla g_m$ jsou lineárně nezávislé na M. Pokud f má v $a \in M$ lokální extrém vzhledem k M, pak existují $\lambda_1, \dots, \lambda_m \in \mathbb{R}$ takové, že

$$\nabla f(a) + \lambda_1 \nabla g_1(a) + \ldots + \lambda_m \nabla g_m(a) = 0.$$

1.5 Obyčejné diferenciální rovnice

1.5.1 Věta o existenci a jednoznačnosti řešení počáteční úlohy

Definice Obyčejná diferenciální rovnice je rovnice tvaru $F(x,y,y',\ldots,y^{(n)})=0, n\in\mathbb{N}$, kde F je reálná funkce.

Definice *Řešením diferenciální rovnice* $F(x,y,y',\ldots,y^{(n)})=0$ rozumíme funkci y=y(x) definovanou v neprázdném intervalu (a,b) takovou, že existuje vlastní $y^{(n)}(x)$ pro všechny $x \in (a,b)$ a platí $F(x,y(x),y'(x),\ldots,y^{(n)}(x))=0$ na (a,b).

Definice Řekneme, že diferenciální rovnice je *rozřešená* vzhledem k $y^{(n)}$, pokud je tvaru $y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$.

Definice Řekneme, že (\tilde{y}, \tilde{I}) je rozšířením řešení (y, I), pokud je řešením, platí $I \subset \tilde{I}$ a $y = \tilde{y}$ na I.

Definice Řekneme, že (y,I) je maximální řešení, pokud neexistuje jeho rozšíření kromě triviálního.

Věta (Peanova) Nechť $\Omega \subset \mathbb{R}^{n+1}$ je otevřená množina, $[x_0, y_0, \dots, y_{n-1}] \in \Omega$ a $f: \Omega \to \mathbb{R}$ je spojitá funkce. Pak existuje okolí $\mathcal{U}(x_0)$ a funkce y definované na $\mathcal{U}(x_0)$ takové, že $y^{(n)}(x) = f(x, y(x), \dots, y^{(n-1)}(x))$ a splňují $y(x_0) = y_0$, $y'(x_0) = y_1, \dots, y^{(n-1)}(x) = y_{n-1}$.

Definice Nechť $\Omega\subset\mathbb{R}^{n+1},\ f:\Omega\to\mathbb{R}$ je lokálně Lipschitzovská vzhledem k posledním n proměnným, pokud pro každou otevřenou $U\subset\Omega$ existuje K>0 takové, že

$$\forall [x_0, y], [x_0, \tilde{y}] \subset U : |f(x_0, y) - f(x_0, \tilde{y})| \le K ||y - \tilde{y}||_{\mathbb{R}^n},$$

kde y a \tilde{y} jsou n-složkové proměnné.

Věta (Picardova) Nechť $\Omega \subset \mathbb{R}^{n+1}$ je otevřená množina, $[x_0, y_0, \dots, y_{n-1}] \in \Omega$ a $f: \Omega \to \mathbb{R}$ je spojitá funkce, která je navíc lokálně Lipschitzovská vzhledem k posledním n proměnným. Pak existuje okolí $\mathcal{U}(x_0)$ a funkce y definované na $\mathcal{U}(x_0)$ takové, že $y^{(n)}(x) = f(x, y(x), \dots, y^{(n-1)}(x))$ a splňují $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x) = y_{n-1}$. Každá dvě řešení navíc splývají v průniku svých definičních oborů a maximální řešení je určeno jednoznačně.

Věta (Peanova pro n=1) Nechť $\Omega \subset \mathbb{R}^2$, $[x_0,y_0] \in \Omega$, $f:\Omega \to \mathbb{R}$ je spojitá. Pak existuje $\delta > 0$ a funkce y definované na $\mathcal{U}(x_0,\delta)$ takové, že y'(x) = f(x,y(x)) $\forall x \in \mathcal{U}(x_0,\delta)$ a $y(x_0) = y_0$.

Věta (Picardova pro n=1) Nechť $\Omega \subset \mathbb{R}^2$, $[x_0,y_0] \in \Omega$, $f:\Omega \to \mathbb{R}$ je spojitá a lokálně Lipschitzovská vzhledem k y. Pak existuje $\delta > 0$ a funkce y definované na $\mathcal{U}(x_0,\delta)$ takové, že $y'(x) = f(x,y(x)) \ \forall x \in \mathcal{U}(x_0,\delta)$ a $y(x_0) = y_0$. Každá dvě řešení navíc splývají v průniku svých definičních oborů a maximální řešení je určeno

jednoznačně.

Věta (o tvaru řešení) Nechť $I \subset \mathbb{R}$, $x_0 \in I$, $y_0 \in \mathbb{R}$, $y \in C(I)$. Pak y je na I řešením rovnice y' = f(x,y) s podmínkou $y(x_0) = y_0$ právě tehdy, když platí

$$y(x) = y_0 + \int_{x_0}^x f(t, y(t))dt, \quad \forall x \in I.$$

Věta (o lepení řešení) Nechť $a \in \mathbb{R}$, $\delta, \gamma > 0$, $f \in C^2((a - \delta, a + \gamma))$. Buď y_L řešení y' = f(x,y) na $(a - \delta,a)$ a buď y_R řešení y' = f(x,y) na $(a,a + \gamma)$. Pokud platí $\lim_{x\to a^-} y_L(x) = A = \lim_{x\to a^+} y_R(x)$, pak

$$y(x) = \begin{cases} y_L(x), & x \in (a - \delta, a), \\ A, & x = a, \\ y_R(x), & x \in (a, a + \delta), \end{cases}$$

je řešením y' = f(x,y) na $(a - \delta, a + \gamma)$.

1.5.2 Jednoduché rovnice prvního řádu a lineární rovnice vyššího řádu s konstantními koeficienty

Věta (existence a jednoznačnost pro separované proměnné) Necht $(a,b) \subset \mathbb{R}, (c,d) \subset \mathbb{R}, f \in C((a,b)), g \in C((c,d)), g \neq 0$ v (c,d). Necht $x_0 \in (a,b), y_0 \in (c,d)$. Pak existuje právě jedno y řešení rovnice y'(x) = f(x)g(y) splňující podmínku $y(x_0) = y_0$, definičním oborem je maximální otevřený interval $I \subset (a,b)$ splňující G(y(x)) = F(x) + k, kde $k \in \mathbb{R}$ je konstanta a

$$F(x) = \int_{x_0}^{x} f(t)dt$$
, $G(y) = \int_{y_0}^{y} \frac{1}{g(t)}dt$.

Řešení je pak tvaru $y(x) = (G^{-1} \circ F)(x), \, \forall x \in I.$

Definice Úloha ve tvaru z předchozí věty se nazývá diferenciální rovnice se separovanými proměnnými.

Věta (metoda integračního faktoru) Necht $(a,b) \subset \mathbb{R}$, $p,q \in C((a,b))$, P primitivní funkce k p na (a,b) splňující $P(x_0) = 0$, kde $x_0 \in (a,b)$. Necht $y_0 \in \mathbb{R}$. Pak existuje právě jedno maximální řešení rovnice y' + py = q splňující $y(x_0) = y_0$ a splňuje

$$y(x)e^{P(x)} = \int_{x_0}^x q(t)e^{P(t)}dt + y_0.$$

Definice Rovnice tvaru $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y = q(x)$, kde $a_0, \ldots, a_{n-1} \in \mathbb{R}$, $(a,b) \subset R$ a $q \in C((a,b))$ se nazývá lineární diferenciální rovnice n-tého řádu s konstantními koeficienty. Příslušná homogenní rovnice je rovnice tvaru $y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y = 0$.

Definice Bázi všech maximálních řešení homogenní rovnice nazýváme *fundamentální systém* rovnice.

Definice Polynom $P(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_0$ nazýváme *charakteristický* polynom rovnice.

Věta (o fundamentálním systému) Nechť $\lambda_1, \ldots, \lambda_s, s \in \mathbb{N}$ jsou všechny různé reálné kořeny charakteristického polynomu rovnice s násobnostmi r_1, \ldots, r_s a nechť $\alpha_1 + i\beta_1, \ldots, \alpha_l + i\beta_l, l \in \mathbb{N}$ jsou všechny různé komplexní kořeny s násobnostmi q_1, \ldots, q_l . Pak funkce

$$e^{\lambda_{1}x}, xe^{\lambda_{1}x}, \dots, x^{r_{1}-1}e^{\lambda_{1}x}, \\ e^{\lambda_{2}x}, xe^{\lambda_{2}x}, \dots, x^{r_{2}-1}e^{\lambda_{2}x}, \\ \dots \\ e^{\lambda_{s}x}, xe^{\lambda_{s}x}, \dots, x^{r_{s}-1}e^{\lambda_{s}x}, \\ e^{\alpha_{1}x}\cos\beta_{1}x, xe^{\alpha_{1}x}\cos\beta_{1}x, \dots, x^{q_{1}-1}e^{\alpha_{1}x}\cos\beta_{1}x, \\ e^{\alpha_{1}x}\sin\beta_{1}x, xe^{\alpha_{1}x}\sin\beta_{1}x, \dots, x^{q_{1}-1}e^{\alpha_{1}x}\sin\beta_{1}x, \\ e^{\alpha_{2}x}\cos\beta_{2}x, xe^{\alpha_{2}x}\cos\beta_{2}x, \dots, x^{q_{2}-1}e^{\alpha_{2}x}\cos\beta_{2}x, \\ e^{\alpha_{2}x}\sin\beta_{2}x, xe^{\alpha_{2}x}\sin\beta_{2}x, \dots, x^{q_{2}-1}e^{\alpha_{2}x}\sin\beta_{2}x, \\ \dots \\ e^{\alpha_{l}x}\cos\beta_{l}x, xe^{\alpha_{l}x}\cos\beta_{l}x, \dots, x^{q_{l}-1}e^{\alpha_{l}x}\cos\beta_{l}x, \\ e^{\alpha_{l}x}\sin\beta_{l}x, xe^{\alpha_{l}x}\sin\beta_{l}x, \dots, x^{q_{l}-1}e^{\alpha_{l}x}\sin\beta_{l}x, \\ \end{pmatrix}$$

tvoří fundamentální systém homogenní rovnice.

Věta (řešení rovnice se specifickou pravou stranou) Nechť $\alpha + i\beta$, $\alpha, \beta \in \mathbb{R}$ je k-násobný kořen charakteristického polynomu. Pak rovnice

$$y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y = Q_1(x)e^{\alpha x}\cos\beta x + Q_2(x)e^{\alpha x}\sin\beta x,$$

kde Q_1, Q_2 jsou polynomy má řešení tvaru

$$y(x) = x^k P_1(x)e^{\alpha x} \cos \beta x + x^k P_2(x)e^{\alpha x} \sin \beta x, x \in \mathbb{R},$$

kde P_1 a P_2 jsou vhodné polynomy stupně $\leq \max\{\operatorname{st}Q_1,\operatorname{st}Q_2\}$.

Věta (o řešení homogenní rovnice) Maximální řešení homogenní rovnice jsou definována na celém \mathbb{R} a tvoří podprostor dimenze n prostoru $C^n(\mathbb{R})$.

Věta (variace konstant) Nechť $(a,b) \subset \mathbb{R}$, $a_0, \ldots, a_{n-1} \in \mathbb{R}$, $q:(a,b) \to \mathbb{R}$ je funkce spojitá na (a,b). Nechť funkce y_1, \ldots, y_n tvoří fundamentální systém homogenní rovnice. Nechť jsou funkce c'_1, \ldots, c'_n řešením soustavy

$$c'_{1}(x)y_{1}(x) + \dots + c'_{n}(x)y_{n}(x) = 0$$

$$c'_{1}(x)y'_{1}(x) + \dots + c'_{n}(x)y'_{n}(x) = 0$$

$$\dots$$

$$c'_{1}(x)y_{1}^{(n-2)}(x) + \dots + c'_{n}(x)y_{n}^{(n-2)}(x) = 0$$

$$c'_{1}(x)y_{1}^{(n-1)}(x) + \dots + c'_{n}(x)y_{n}^{(n-1)}(x) = q(x),$$

a c_i je primitivní funkcí k c_i' na (a,b) pro $i=1,\ldots,n$. Pak

$$Y(x) = \sum_{i=1}^{n} c_i(x)y_i(x)$$

je řešením rovnice $y_{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y = q(x)$ na (a,b).

2. Algebra

Algebru nesnáším a učit se jí mě vůbec nebavilo. Některá témata jsem si zpracovala divně a tak je tu vynechám. Je to třeba metoda nejmenších čtverců, pseudo-inverze, nebo rozklady matic. Konkrétně rozklady matic jsou pěkná nuda. Taky důkazy jsem si vybírala náhodně a nechci to tak doporučovat. Co já vím, tak u determinantů se na ně ptali (naštěstí ne mě). Have fun.

2.1 Matice a determinanty, soustavy lineárních rovnic

2.1.1 Základní pojmy a operace s maticemi a jejich vlastnosti

Definice Vektor je uspořádaná n-tice reálných čísel.

Předpokládám, že sčítání, odčítání vektorů a opačný vektor definovat nemusím.

Definice Soustavou lineárních rovnic rozumíme soustavu tvaru

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n,$$

kde $a_{11}, \ldots, a_{nn}, b_1, \ldots, b_n$ jsou konstanty.

Definice *Ekvivalentní úprava* je taková úprava, která nemění množinu všech řešení.

Definice *Matice* je obdélníkové schéma s reálnými (komplexními) čísly.

Opět nebudu definovat součet matic, násobení skalárem, nulovou matice, diagonálu, čtvercovou matici, diagonální matici ani jednotkovou matici.

Definice Transponovaná matice k matici $\mathbb{A} = (a_{ij})_{m \times n}$ je $\mathbb{A}^T = (b_{ji})_{n \times m}$, kde $b_{ji} = a_{ij}$.

Věta (vlastnosti operací s maticemi) Nechť $\mathbb{A}, \mathbb{B}, \mathbb{C}$ jsou stejnědimenzionální matice, \mathbb{O} je nulová matice a s,t jsou reálné konstanty. Pak

- (A + B) + C = A + (B + C),
- $\mathbb{A} + \mathbb{O} = \mathbb{A}$,
- $\mathbb{A} + (-\mathbb{A}) = \mathbb{O}$,

- $\mathbb{A} + \mathbb{B} = \mathbb{B} + \mathbb{A}$,
- $s(t\mathbb{A}) = (st)\mathbb{A}$,
- $(s+t)\mathbb{A} = s\mathbb{A} + t\mathbb{A}$,
- $s(\mathbb{A} + \mathbb{B}) = s\mathbb{A} + s\mathbb{B}$.
- $(\mathbb{A}^T)^T = \mathbb{A}$,
- $(\mathbb{A} + \mathbb{B})^T = \mathbb{A}^T + \mathbb{B}^T$,
- $(s\mathbb{A})^T = s\mathbb{A}^T$.

Definice Součin matice $\mathbb{A} = (\mathbf{a_1}|\mathbf{a_2}|\dots|\mathbf{a_n})$, kde $\mathbf{a_1},\dots,\mathbf{a_n}$ jsou vektory, s vektorem $\mathbf{b} = (b_1,b_2,\dots,b_n)^T$ je

$$\mathbf{A}\mathbf{b} = b_1 \mathbf{a_1} + b_2 \mathbf{a_2} + \ldots + b_n \mathbf{a_n}.$$

Definice Součin dvou matic \mathbb{A} typu $m\times n$ a $\mathbb{B}=(\mathbf{b_1}|\dots|\mathbf{b_p})$ typu $n\times p$ je matice

$$\mathbb{AB} = (\mathbb{Ab_1}|\mathbb{Ab_2}|\dots|\mathbb{Ab_p}).$$

Součin matic je definovaný pouze pro matice vhodných typů, pro jiné definován není.

Tvrzení (o prvku na místě ij) Prvek na místě (i,j) v součinu matic \mathbb{A} a \mathbb{B} je

$$a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj} = a_{i}^{T}b_{j}.$$

Věta (vlastnosti násobení matic) Necht $\mathbb{A}, \mathbb{B}, \mathbb{C}, \mathbb{D}$ a \mathbb{E} jsou matice vhodného typu a \mathbb{I} jsou jednotkové matice. Pak platí

- násobení matic není komutativní,
- (A + B)C = AC + BC,
- $\mathbb{C}(\mathbb{D} + \mathbb{E}) = \mathbb{C}\mathbb{D} + \mathbb{C}\mathbb{E}$,
- $(\mathbb{BC})\mathbb{D} = \mathbb{B}(\mathbb{CD}),$
- $s(\mathbb{AB}) = (s\mathbb{A})\mathbb{B} = \mathbb{A}(s\mathbb{B}),$
- $(\mathbb{AB})^T = \mathbb{B}^T \mathbb{A}^T$.
- $\mathbb{I}_m \mathbb{A} = \mathbb{A} = \mathbb{A} \mathbb{I}_n$.

Dál je dobré vědět, co je permutační matice, horní a dolní trojúhelníková matice. Součin těchto stejných dvou dá vždy také takovou.

Definice Matice \mathbb{A} je *invertovatelná*, pokud je čtvercová a existuje matice \mathbb{X} taková, že $\mathbb{A}\mathbb{X} = \mathbb{X}\mathbb{A} = \mathbb{I}_n$. Pak matici \mathbb{X} značíme \mathbb{A}^{-1} a nazýváme *inverzem* k matici \mathbb{A} .

Věta (o invertovatelnosti a regularitě) Každá invertovatelná matice je regulární.

Ano, regularita ještě nebyla "zavedená", ale tohle je podle mě fajn vědět už tady.

Věta (o jednoznačnosti inverzu) Nechť \mathbb{A} je čtvercová matice a nechť \mathbb{X} a \mathbb{Y} jsou čtvercové matice takové, že platí $\mathbb{Y}\mathbb{A} = \mathbb{I}_n$ a $\mathbb{A}\mathbb{X} = \mathbb{I}_n$, pak $\mathbb{X} = \mathbb{Y}$.

Věta (vlastnosti inverzu) Nechť A, B jsou regulární, pak platí

- matice \mathbb{A}^{-1} je regulární a platí $(\mathbb{A}^{-1})^{-1} = \mathbb{A}$,
- matice \mathbb{A}^T je regulární a platí $(\mathbb{A}^T)^{-1} = (\mathbb{A}^{-1})^T$,
- matice $t\mathbb{A}$ je regulární a platí $(t\mathbb{A})^{-1} = t^{-1}\mathbb{A}^{-1}$,
- matice AB je regulární a platí $(AB)^{-1} = A^{-1}B^{-1}$.

2.1.2 Hodnost matice

Definice Hodnost matice je počet nenulových řádků v matici v odstupňovaném tvaru. Značíme $rank(\mathbb{A})$.

Odstupňovaný tvar v pozdějších kapitolách. Fakt nevím proč je to seřazený takhle.

Definice Hodnost matice je dimenze řádkového a sloupcového prostoru matice.

Věta (o hodnosti matice) Platí $\operatorname{rank}(\mathbb{A}) = \operatorname{rank}(\mathbb{A}^T) \leq m, n$. Hodnost se nemění elementárními řádkovými úpravami.

Věta (o hodnosti součinu) platí $\operatorname{rank}(\mathbb{AB}) \leq \operatorname{rank}(\mathbb{A})$, $\operatorname{rank}(\mathbb{AB}) \leq \operatorname{rank}(\mathbb{B})$. Pokud je matice \mathbb{R} regulární, pak platí $\operatorname{rank}(\mathbb{RA}) = \operatorname{rank}(\mathbb{AR}) = \operatorname{rank}(\mathbb{A})$.

Věta (o hodnosti čtvercové matice) Matice \mathbb{A} je regulární matice typu $n \times n$ právě tehdy, když rank(\mathbb{A})=n.

Věta (Frobeniova) Soustava $\mathbb{A}x = b$ má řešení právě tehdy, když rank(\mathbb{A}) = rank(\mathbb{A} |b).

2.1.3 Soustavy lineárních rovnic, Gaussova eliminace, podmínky řešitelnosti

Definice Lineární rovnice je rovnice tvaru $a_1x_1 + \ldots + a_nx_n = b$, kde a_1, \ldots, a_n, b jsou dané konstanty a x_1, \ldots, x_n jsou neznámé.

Definice Soustavou lineárních rovnic rozumíme soustavu tvaru

kde $a_{11}, \ldots, a_{nn}, b_1, \ldots, b_n$ jsou dané konstanty a x_1, \ldots, x_n jsou neznámé.

Definice Ekvivalentní úpravy jsou takové úpravy, které nemění množinu všech řešení. Symbol je pro ekvivalentní úpravy je \sim .

Definice Elementární úpravy nazýváme prohození dvou řádků, vynásobení řádku konstantou $t \neq 0$ a přičtení s-násobku jednoho řádku k jinému řádku.

Věta (o elementárních úpravách) Elementární úpravy jsou ekvivalentní.

Definice Rozšířená matice soustavy z definice je matice

$$\begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} & b_n \end{pmatrix}.$$

Je-li b = 0, pak jde o homogenní soustavu.

Definice Matice v odstupňovaném tvaru je matice typu $m \times n$ taková, která splňuje následující: existuje $r \in \{0,1,\ldots,m\}$ takové, že řádky $r+1,\ldots,m$ jsou nulové a pro indexy sloupce s prvním nenulovým číslem platí $k_1 < k_2 < \ldots < k_r$.

Gaussova eliminace je proces pro převod matice do odstupňovaného tvaru pomocí ekvivalentních úprav. Eliminace jednoho sloupce funguje následujícím způsobem:

- 1. Najdeme první nenulový sloupec s indexem k_1 . Pokud nenulový sloupec neexistuje, pak je matice nulová a tím pádem v odstupňovaném tvaru.
- 2. Pokud $a_{1k_1}=0$, pak prohodíme první řádek s libovolným řádkem i, kde $a_{ik_1}\neq 0$. Výběr specifického řádku závisí na implementaci.
- 3. Pro každé $i=2,3,\ldots,m$ přičteme $\left(-\frac{a_{ik_1}}{a_{1k_1}}\right)$ -násobek prvního řádku k i-tému řádku
- 4. Postup dále opakujeme s maticí bez prvního řádku.

Věta (o Gaussově eliminaci) Gaussova eliminace vždy převede matici do odstupňovaného tvaru.

Definice Hodnost matice je počet nenulových řádků po Gaussově eliminaci.

Definice Bázové sloupce jsou sloupce s indexy k_1, \ldots, k_r .

Věta (řešitelnost) Po použití Gaussovy eliminace na rozšířenou matici soustavy ($\mathbb{A}|b$). Pokud b bude bázový sloupec, tak nastává situace $0x_1 + \ldots + 0x_n = d_r$ a soustava nemá řešení. V opačném případě řešení mám.

Způsob pro nalezení je zpětná substituce. Nechť P jsou nebázové sloupce. Pak $x_p, p \in P$ jsou volné proměnné, neboli parametry. Platí, že každá volba hodnot volných proměnných dává právě jedno řešení. Množina řešení pak vypadá následovně

$$\{u + \sum_{p \in P} t_p v_p : t_p \in \mathbb{R} \ \forall p \in P\}.$$

Věta (řešitelnost) Soustava je řešitelná právě tehdy, když b je lineární kombinací sloupců z \mathbb{A} .

Věta (Frobeniova) Soustava je řešitelná právě tehdy, když $\operatorname{rank}(\mathbb{A}) = \operatorname{rank}(\mathbb{A}|b)$.

Věta (o všech řešeních) Necht $u=(x_1,\ldots,x_n)$ je řešení soustavy $\mathbb{A}x=b$ a $W_{\mathbb{A}}$ je množina všech řešení homogenní soustavy. Pak $u+W_{\mathbb{A}}$ je množina všech řešení soustavy.

2.1.4 Determinanty a metody jejich výpočtu

Definice Permutací množiny X je bijekce $X \to X$. Symbolem S_X je množina všech permutací na X.

Věta (vlastnosti permutace)

i.
$$\pi \in S_X \Rightarrow \pi^{-1} \in S_X$$
,

ii.
$$\pi, \rho \in S_X \Rightarrow \pi \circ \rho \in S_X$$
.

Definice Zápis permutace na množině $X = (s_1, \ldots, s_n)$ je tvaru

$$\left(\begin{array}{cccc} s_1 & s_2 & \dots & s_n \\ t_1 & t_2 & \dots & t_n \end{array}\right).$$

V případě na množině X = (1, 2, ..., n) tedy

$$\left(\begin{array}{cccc} 1 & 2 & \dots & n \\ t_1 & t_2 & \dots & t_n \end{array}\right),\,$$

tj.
$$\pi(i) = t_i$$
.

Definice Cyklus délky k je permutace splňující $\pi(x_1) = x_2, \pi(x_2) = x_3, \ldots, \pi(x_k) = x_1$ a $\pi(y) = y, \forall y \notin \{x_1, \ldots, x_k\}$. Permutaci tvořenou jedním cyklem značíme následovně $\pi = (x_1 x_2 \ldots x_k)$.

Definice Dva cykly jsou *nezávislé*, pokud množiny prvků v cyklech jsou disjunktní.

Definice Transpozice je cyklus délky dva.

Věta (rozklad permutace) Každou permutaci lze zapsat jako složení nezávislých cyklů. Tento zápis je jednoznačný až na pořadí cyklů a nazývá se cyklický.

Věta (o transpozicích) Každá permutace je složení transpozic.

Zápis složením transpozic se dá zapsat různými způsoby, ale jeho parita (sudost/lichost počtu transpozic v zápisu).

Definice Znaménko permutace se značí sgn π a je definováno jako 1, pokud je permutace $sud\acute{a}$, tedy má sudý počet transpozic, a jako -1, pokud je permutace $lich\acute{a}$, tedy má lichý počet transpozic.

Věta (výpočet znaménka permutace) Nechť pro permutaci π platí $\pi = \pi_1 \pi_2 \dots \pi_m$ rozklad na cykly s délkami k_1, k_2, \dots, k_m . Pak $\operatorname{sgn}(\pi) = \prod_{i=1}^m (-1)^{(k_i-1)}$.

Věta (výpočet znaménka permutace II.) Platí

- i. sgn(id)=1,
- ii. $\operatorname{sqn}(\pi^{-1}) = \operatorname{sgn}(\pi)$,
- iii. $\operatorname{sgn}(\pi \rho) = \operatorname{sgn}(\pi) \operatorname{sgn}(\rho)$.

Definice Determinant matice A je definován následovně

$$\det \mathbb{A} = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) a_{1r_1} a_{2r_2} \dots a_{nr_n},$$

kde

$$\pi = \begin{pmatrix} 1 & \dots & n \\ r_1 & \dots & r_n \end{pmatrix}.$$

Věta (výpočet determinantu) Platí

- i. pro horní trojúhelníkovou matici je determinant součin prvků na diagonále,
- ii. $\det(\mathbb{A}^T) = \det(\mathbb{A}),$
- iii. $\det(v_1|v_2|\dots|v_i+u|\dots|v_n) = \det(v_1|v_2|\dots|v_i|\dots|v_n) + \det(v_1|v_2|\dots|u|\dots|v_n)$,
- iv. $\det(v_1|v_2|\ldots|t\times v_i|\ldots|v_n) = t\times\det(v_1|v_2|\ldots|v_i|\ldots|v_n),$

v. Pokud matice \mathbb{B} vznikne permutací π sloupců matice \mathbb{A} , pak $\det(\mathbb{B}) = \det(\mathbb{A})\operatorname{sgn}(\pi)$.

Věta (o regularitě) Matice \mathbb{A} je regulární právě tehdy, když má nenulový determinant.

Definice Minor matice \mathbb{A} typu $m \times n$ je determinant matice vzniklé z matice \mathbb{A} výběrem k sloupců a k řádků.

Věta (o determinantu součinu) Nechť pro matice \mathbb{A} a \mathbb{B} existuje jejich součin. Pak platí $\det(\mathbb{A}\mathbb{B}) = \det(\mathbb{A})\det(\mathbb{B})$.

Věta (o determinantu inverzu) Nechť je matice \mathbb{A} invertibilní. Pak platí $\det(\mathbb{A}^{-1}) = \det(\mathbb{A})^{-1}$.

Věta (Cramérovo pravidlo) Nechť je matice \mathbb{A} regulární a $\mathbb{A}x = b$. Pak vektor x lze vypočítat jako

 $x_j = \frac{\det \mathbb{A}_j}{\det \mathbb{A}},$

kde \mathbb{A}_j je matice \mathbb{A} , která má místo j-tého sloupce vektor b.

Definice Nechť \mathbb{A} je čtvercová matice řádu n, a a_{ij} je její prvek. Algebraický doplněk matice \mathbb{A} prvku a_{ij} je prvek

$$\mathbb{A}_{ij} = (-1)^{i+j} \det(\mathbb{M}_{ij}),$$

kde M_{ij} je matice A bez *i*-tého řádku a *j*-tého sloupce.

Věta (rozvoj podle sloupce) Nechť je matice \mathbb{A} čtvercová řádu n. Pak platí

$$\det \mathbb{A} = \sum_{i=1}^{n} a_{ij} \mathbb{A}_{ij}.$$

S použitím transpozice se dá odvodit i pravidlo pro rozvoj podle řádku:

$$\det \mathbb{A} = \sum_{j=1}^{n} a_{ij} \mathbb{A}_{ij}.$$

Věta (o falešném rozvoji) Platí $\sum_{i=1}^{n} a_{ij} \mathbb{A}_{ik} = 0$, když $j \neq k$.

Definice Adjungovaná matice k matici \mathbb{A} je matice $\operatorname{adj}(\mathbb{A})$ která má na místě (i,j) prvek \mathbb{A}_{ji} .

Věta (o adjungované matici) Platí $\operatorname{adj}(\mathbb{A})\cdot\mathbb{A}=\mathbb{A}\cdot\operatorname{adj}(\mathbb{A})=\det(\mathbb{A})\mathbb{I}_n$, tj. pro regulární matici \mathbb{A} platí

$$\mathbb{A}^{-1} = \frac{\text{adj}\mathbb{A}}{\det\mathbb{A}}.$$

2.2 Vektorové prostory

2.2.1 Pojem vektorového prostoru, lineární nezávislost, lineární obal, báze a dimenze

Definice T'eleso je množina prvků T s operacemi sčítání $+:T\times T\to T$ a násobení $\cdot:T\times T\to T$ splňující:

- $a+b \in T$, $a \cdot b \in T$, $\forall a,b \in T$,
- asociativita: $(a+b)+c=a+(b+c), (a\cdot b)\cdot c=a\cdot (b\cdot c), \forall a,b,c\in T$,
- komutativita: a + b = b + a, $a \cdot b = b \cdot a$, $\forall a, b \in T$,
- existence nulového prvku: $\exists 0 \in T : a + 0 = a$,
- existence jednotkového prvku: $\exists 1 \in T : 1 \cdot a = a$,
- existence opačného prvku: $\forall a \in T \ \exists (-a) \in T : \ a + (-a) = 0$,
- existence inverzu: $\forall a \in T \ \exists a^{-1} \in T : \ a \cdot a^{-1} = 1$,
- $distributivita: (a + b) \cdot c = ac + bc, c \cdot (a + b) = ca + cb.$

Definice Vektorový prostor nad T je neprázdná množina V se sčítáním $+: V \times V \to V$ a násobením skalárem $\cdot: T \times V \to V$, splňující

- komutativita: $u + v = v + u, \forall u, v \in V$,
- asociativita: $u + (v + w) = (u + v) + w, \forall u, v, w \in V$,
- existence nulového prvku: $\exists \mathbb{O} \in V : 0 \cdot u = \mathbb{O}$,
- $r(u+v) = ru + rv, \forall r \in T, \forall u,v \in V$
- $(r+s)u = ru + su, \forall r,s \in T, \forall u \in V$.
- $r(su) = (rs)u, \forall r,s \in T, \forall u \in V,$
- $1 \cdot u = u$.

Prvky T nazýváme skaláry, prvky V nazýváme vektory.

Definice Nechť V je vektorový prostor nad tělesem T a $X \subseteq V$. Lineárním obalem množiny X rozumíme

 $\langle X \rangle = \{t_1v_1 + \ldots + t_kv_k; k \in \mathbb{N}_0, v_1, \ldots, v_k \in X, t_1, \ldots, t_k \in T\}$, tj. lineární kombinace všech prvků množiny X.

Tvrzení (o lineárním obalu) Nechť V je vektorový prostor nad tělesem T a $X \subseteq V$, pak $\langle X \rangle$ je podprostor V.

Definice Nechť V je vektorový prostor nad tělesem T a $X \subseteq V$. Pokud $\langle X \rangle = V$, pak X nazveme množinou generátorů prostoru V.

Definice Sloupcový (řádkový) prostor matice je lineární obal jejích sloupců (řádků), značíme $\operatorname{Im}(\mathbb{A})$, resp. $\operatorname{Im}(\mathbb{A}^T)$.

Věta (o sloupcových (řádkových) prostorech) Nechť \mathbb{A} je matice typu $m \times n$ a \mathbb{R} je matice typu $m \times m$ regulární. Pak $\operatorname{Im}(\mathbb{R}\mathbb{A}) = \langle \mathbb{R}a_1, \mathbb{R}a_2, \dots, \mathbb{R}a_n \rangle$. Platí, že elementární sloupcové (řádkové) úpravy nemění sloupcový (řádkový) prostor.

Definice Řekneme, že posloupnost prvků z V je lineárně závislá, pokud pro nějaké i platí, že v_i je lineární kombinací $v_1, v_2, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n$. V opačném případě řekneme, že je lineárně nezávislá.

Věta (o nezávislosti) Platí, že posloupnost $\{v_1, \ldots, v_n\}$ je lineárně nezávislá právě tehdy, když 0 lze vyjádřit pouze jako $0 \cdot v_1 + 0 \cdot v_2 + \ldots + 0 \cdot v_n$.

Tvrzení (o nezávislosti sloupců matice) Sloupce matice jsou nezávislé, pokud jádro matice je 0, tedy Ax = 0 má právě jedno řešení, tj. x = 0.

Tvrzení (nezávislost a elementární úpravy) Elementární řádkové i sloupcové úpravy nemění nezávislost řádků i sloupců matice.

Definice Báze vektorového prostoru V je posloupnost (v_1, \ldots, v_n) , která je lineárně nezávislá a pro kterou platí $\langle v_1, \ldots, v_n \rangle = V$.

Věta (o bázi) Platí

- báze je minimální posloupnost generátorů,
- z každé množiny generátorů prostoru lze vybrat bázi,
- každý konečně generovaný prostor má bázi.

Definice Dimenze konečně generovaného prostoru V je počet prvků jeho báze.

Věta (o bázi) Maximální lineárně nezávislá posloupnost ve vektorovém prostoru je báze.

Věta (o prostoru dimenze n) Každá množina generátorů prostoru dimenze n má alespoň n prvků a každá n-prvková lineárně nezávislá posloupnost je báze.

Definice Nechť $B = (v_1, \ldots, v_n)$ báze $V, w \in V$. Souřadnice w vzhledem k B jsou prvky (a_1, \ldots, a_n) takové, že $w = a_1v_1 + a_2v_2 + \ldots + a_nv_n$, značíme $[w]_B$.

Vlastnosti souřadnic Platí

- $[u+w]_B = [u]_B + [w]_B$,
- $[tu]_B = t[u]_B$.

Definice Matice přechodu mezi bázemi $B = (v_1, \dots, v_n)$ a C je

$$[id]_C^B = ([v_1]_C, [v_2]_C, \dots, [v_n]_C).$$

Věta (o přechodu mezi bázemi) Platí $[x]_C = [id]_C^B[x]_B$.

2.2.2 Steinitzova věta o výměně

Věta (Steinitzova o výměně) Nechť $N=(v_1,\ldots,v_k)$ je lineárně nezávislá posloupnost prvků lineárního prostoru V nad tělesem T a nechť $G=(w_1,\ldots,w_l)$ generuje V. Pak $k \leq l$ a při vhodném uspořádání $G'=(w'_1,\ldots,w'_l)$ posloupnosti G platí, že $(v_1,\ldots,v_k,w'_{k+1},\ldots,w'_l)$ generuje V.

Zde je vhodné znát celý důkaz. Není nijak složitý, ale nechce se mi psát. Je ve skriptech z LA.

Důsledek I. Každé dvě báze mají stejný počet prvků.

Důsledek II. Každou lineárně nezávislou posloupnost lze doplnit na bázi prvky z libovolné množiny generátorů.

Důsledek III. Maximální posloupnost lineárně nezávislých prvků v konečně generovaném prostoru je bází.

2.2.3 Podprostory a jejich dimenze

Definice Řekneme, že U je podprostor lineárního prostoru V, pokud $U \subseteq V$ a je uzavřená na operace sčítání a násobení skalárem. Značíme $U \leq V$.

Věta (o jádru matice) Pro libovolnou matici typu $m \times n$ nad tělesem T platí, že její jádro je podprostor T^n .

Věta (o lineárním obalu) Necht $X \subseteq V$, pak $\langle X \rangle$ je podprostor V.

Věta (o řádkovém a sloupcovém prostoru matice) Pro libovolnou matici typu $m \times n$ nad tělesem T platí, že její řádkový a sloupcový prostor jsou podprostory T^n , resp. T^m .

Definice Sloupec matice nazveme $b\acute{a}zov\acute{y}$, pokud není lineární kombinací předchozích sloupců.

Věta (o bázový sloupcích) Bázové sloupce matice tvoří bázi sloupcového prostoru matice.

Věta (o dimenzi řádkového a sloupcového prostoru) Platí $\dim(\operatorname{Im} A) = \dim(\operatorname{Im} A^T)$.

Definice *Hodnost matice* je dimenze jejího řádkového (nebo sloupcového) prostoru.

Věta (průnik podprostorů) Necht I je indexová množina a V_i , $i \in I$ jsou podprostory lineárního prostoru V, pak i

$$\bigcap_{i\in I} V_i$$

je podprostor V.

Definice Necht I je indexová množina a V_i , $i \in I$ jsou podprostory lineárního prostoru V. Pak jejich součet definujeme jako

$$\sum_{i \in I} V_i = \langle \bigcup_{i \in I} V_i \rangle.$$

Věta (o dimenzi součtu a průniku) Pro U,V podprostory lineárního prostoru W platí

$$\dim(U) + \dim(V) = \dim(U \cap V) + \dim(U \cup V).$$

Věta (o dimenzi podprostoru) Necht U je podprostor V, pak $\dim(U) \leq \dim(V)$.

2.2.4 Skalární součin, ortogonalizační proces, ortonormální báze

Definice Nechť $v = (v_1, \dots, v_n)$ a $u = (u_1, \dots, u_n)$ jsou vektory nad \mathbb{R} . Standardní skalární součin je $u \cdot v = u_1 v_1 + \dots + u_n v_n$.

Definice Eukleidovská norma (délka) vektoru u je $||u|| = \sqrt{u \cdot u}$.

Definice *Úhel* mezi vektory u a v je číslo α definované jako

$$u \cdot v = ||u|| \cdot ||v|| \cdot cos\alpha.$$

Dva vektory jsou kolmé, pokud $u \cdot v = 0$.

Věta (vlastnosti skalárního součinu nad \mathbb{R}) Necht u,v,w jsou vektory nad \mathbb{R} a t je skalár. Platí

- $u \cdot v = v \cdot u$,
- $u \cdot (tv) = t(u \cdot v)$,
- $u \cdot (v + w) = u \cdot v + u \cdot w$,
- $u \cdot u \ge 0$ a $u \cdot u = 0 \Leftrightarrow u = 0$.

Definice Necht $v = (v_1, \ldots, v_n)$ a $u = (u_1, \ldots, u_n)$ jsou vektory nad \mathbb{C} . Standardní skalární součin je $u \cdot v = \overline{u}_1 v_1 + \ldots + \overline{u}_n v_n$.

Definice Hermitovsky sdružená matice k matici $\mathbb{A} = (a_{ij})_{m \times n}$ je matice $\mathbb{A}^* = (b_{ji})_{n \times m}$, kde $b_{ji} = \overline{a_{ij}}$.

Věta (vlastnosti skalárního součinu nad \mathbb{C}) Necht u,v,w jsou vektory nad \mathbb{C} a t je skalár. Platí

- $u \cdot v = \overline{v \cdot u}$,
- $u \cdot (tv) = t(u \cdot v)$,
- $u \cdot (v + w) = u \cdot v + u \cdot w$,
- $u \cdot u \ge 0$, $\in \mathbb{R}$ a $u \cdot u = 0 \Leftrightarrow u = 0$.

Definice Necht V je vektorový prostor nad \mathbb{R} nebo \mathbb{C} . Obecný skalární součin definujeme jako zobrazení $\langle .,, \rangle : V \times V \to \mathbb{R}$ nebo \mathbb{C} , splňující

- i. $\langle u, v \rangle = \overline{\langle v, u \rangle}$,
- ii. $\langle u, tv \rangle = t \langle u, v \rangle$,
- iii. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$,
- iv. $\langle u, u \rangle > 0$ a $\langle u, u \rangle = 0 \iff u = 0$.

Definice Hermitovská matice je taková komplexní matice, která splňuje $\mathbb{A}^* = \mathbb{A}$.

Definice Pozitivně definitní matice je taková matice A, která splňuje $u^*Au \ge 0$ a $u^*Au = 0 \Leftrightarrow u = 0$.

Věta (o skalárním součinu daném maticí) Nechť $\mathbb{A} \in \mathbb{R}^{n \times n}$, resp. $\mathbb{C}^{n \times n}$. Pak $\langle u, v \rangle = u^* \mathbb{A} v$ je skalární součin právě tehdy, když je \mathbb{A} hermitovská, pozitivně definitní.

Definice Obecná norma je definovaná jako $||u|| = \sqrt{\langle u, u \rangle}$. Řekneme, že vektor je jednotkový, pokud platí ||u|| = 1.

Věta (vlastnosti normy) Necht u,v jsou vektory a t je skalár. Pak platí

- i. $||u|| \ge 0$ a ||u|| = 0, $\iff u = 0$,
- ii. ||tu|| = |t|||u||,
- iii. $rovnoběžníkové pravidlo ||u + v||^2 + ||u v||^2 = 2(||u||^2 + ||v||^2).$

Věta (Cauchyho-Schwartzova nerovnost) Nechť u,v jsou vektory. Platí

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||.$$

Rovnost platí právě tehdy, když jsou vektory u a v lineárně závislé.

Věta (Trojúhelníková nerovnost) Nechť u,v jsou vektory. Pak platí

$$||u + v|| \le ||u|| + ||v||.$$

Definice *Úhel* mezi vektory u a v je číslo $\alpha \in (0, \pi)$ splňující

$$cos\alpha = \frac{\langle u, v \rangle}{||u|| \cdot ||v||}.$$

Věta (cosinová) Nechť u,v jsou vektory a α úhel mezi nimi. Pak platí

$$||u - v||^2 = ||u||^2 + ||v||^2 - 2||u|| \cdot ||v|| \cos \alpha.$$

Definice Řekneme, že vektory u a v jsou $kolm\acute{e}$, pokud platí $\langle u,v\rangle=0$.

Definice Řekneme, že množina vektorů M je ortogonální, pokud každé dva její prvky jsou na sebe kolmé.

Definice Řekneme, že množina vektorů M je ortonormální, pokud je ortogonální a tvořena jednotkovými vektory.

Věta (o ortogonální posloupnosti) Každá ortogonální posloupnost je lineárně nezávislá.

Věta (o kanonické bázi) Kanonická báze je ortonormální.

Věta (Pythagorova) Pokud jsou u,v kolmé vektory, pak $||u+v||^2 = ||u||^2 + ||v||^2$.

Věta (souřadnice vzhledem k ortonormální bázi) Nechť $B = (v_1, \dots, v_n)$ je ortonormální báze lineárního prostoru V a $u \in V$. Pak platí

$$u = \langle v_1, u \rangle v_1 + \ldots + \langle v_n, u \rangle v_n.$$

Věta (skalární součin a ortonormální báze) Necht B je ortonormální báze vektorového prostoru V a $u,v \in V$. Pak platí $\langle u,v \rangle = [u]_B^*[v]_B$.

Gramova - Schmidtova ortogonalizace je proces který z libovolné lineárně nezávislé posloupnosti vektorů udělá ortonormální posloupnost generující stejný prostor. Vstupem je lineárně nezávislá posloupnost $\{v_1, \ldots, v_n\}$. Algoritmus postupuje ve třech krocích:

1.
$$u_1 = \frac{v_1}{\|v_1\|}$$
,

2.
$$u'_i = v_i - \langle u_1, v_i \rangle u_1 - \ldots - \langle u_{i-1}, v_i \rangle u_{i-1}$$

3.
$$u_i = \frac{u_i'}{||u_i'||}$$
.

 $\forall i \in \{2, ..., n\}$. Výstupem je ortonormální posloupnost $\{u_1, ..., u_n\}$ taková, že $\langle v_1, ..., v_n \rangle = \langle u_1, ..., u_n \rangle$.

Věta (o Gramově-Schmidtově ortogonalizaci) Převede tímto způsobem každou lineárně nezávislou posloupnost.

Důsledek V každém konečně dimenzionálním prostoru se skalárním součinem existuje ortonormální báze.

2.2.5 Ortogonální projekce, metoda nejmenších čtverců a pseudoinverze

Definice Necht V je vektorový prostor se skalárním součinem, $v \in V$ a W je podprostor V. Prvek $w \in W$ nazýváme *ortogonální projekce* vektoru v na podprostor W, jestliže $(v-w) \perp W$.

Věta (o aproximaci) Je-li W podprostor $V, v \in V$ a w je ortogonální projekce v na W, pak $\forall u \in W, u \neq w$ platí ||u - w|| < ||v - u||, tedy ortogonální projekce je určena jednoznačně.

Zde je jednoduchý důkaz, dobré vědět.

Věta (o projekci a bázi) Nechť V je vektorový prostor, $v \in V$ a W je konečně generovaný podprostor V s ortonormální bází $B = (u_1, \ldots, u_k)^T$. Pak prvek

$$w = \langle u_1, v \rangle u_1 + \langle u_2, v \rangle u_2 + \ldots + \langle u_k, v \rangle u_k$$

je ortogonální projekcí v na W.

Důsledek Pro ortogonální bázi to je

$$w = \frac{\langle u_1, v \rangle}{||u_1||^2} u_1 + \frac{\langle u_2, v \rangle}{||u_2||^2} u_2 + \ldots + \frac{\langle u_k, v \rangle}{||u_k||^2} u_k.$$

Definice Nechť $\mathbb{A} \in \mathbb{C}^{n \times m}$ a $b \in \mathbb{C}^n$. Problém nejmenších čtverců (LS) je úloha určení $x \in \mathbb{C}^m$ takového, které minimalizuje $||f||_E$ za podmínky $\mathbb{A}x = b + f$.

Téma metody nejmenších čtverců a pseudoinverze nemám zpracované dobře a rozhodně se tím nebudu chlubit. Takže si to udělejte sami. Love.

2.2.6 Diagonalizace a ortogonální diagonalizace

Věta (mocnění diagonální matice) $[diag(a_1, \ldots, a_k)]^n = diag(a_1^n, \ldots, a_k^n).$

Definice Matice $A \in T^{n \times n}$ je diagonalizovatelná, má-li vůči nějaké bázi diagonální matici.

Věta (o diagonalizovatelnosti matice) Matice A je diagonalizovatelná právě tehdy, když existuje báze prostoru T^n tvořena vlastními vektory matice A.

Definice Matice X a Y téhož řádu nad týmž tělesem se nazývají $podobn\acute{e}$, existuje-li regulární matice R taková, že $Y = R^{-1}XR$.

Věta (diagonalizovatelnost a podobnost) Čtvercová matice je diagonalizovatelná právě tehdy, když je podobná nějaké diagonální matici.

Věta (diagonalizovatelnost a vlastní čísla) Nechť matice A řádu n má n navzájem různých vlastních čísel. Pak je diagonalizovatelná.

Věta (o diagonalizovatelnosti a násobnosti) Buď A čtvercová matice rádu n nad T. Pak následující je ekvivalentní

- i. A diagonalizovatelná,
- ii. A má n vlastních čísel včetně algebraických násobností a geometrická násobnost každého vlastního čísla je rovna algebraické.

Definice Řekneme, že reálná (komplexní) čtvercová matice A je ortogonálně (unitárně) diagonalizovatelná, existuje-li ortonormální báze B prostoru \mathbb{R}^n (\mathbb{C}^n), že $[f_A]_B^B$ je diagonální.

Definice Matice X a Y jsou ortogonálně (unitárně) podobné, existuje-li ortogonální (unitární) matice U taková, že $Y = U^{-1}XU$ ($Y = U^*XU$).

Věta (o ortogonální diagonalizovatelnosti) Nechť A je čtvercová matice nad \mathbb{R} (\mathbb{C}). Pak následující je ekvivalentní

- i. A je ortogonálně (unitárně) diagonalizovatelná,
- ii. \mathbb{R}^n (\mathbb{C}^n) má ortonormální bázi tvořenou vlastními vektory matice A,
- iii. A je ortogonálně (unitárně) podobná diagonální matici.

Věta (o ortogonální diagonalizovatelnosti II.) A čtvercová nad \mathbb{R} (\mathbb{C}). Pak následující je ekvivalentní

- i. A ortogonálně (unitárně) diagonalizovatelná,
- ii. A má

- n vlastních čísel včetně algebraických násobností,
- geometrická násobnost každého vlastního čísla je rovna algebraické,
- pro každá dvě různá vlastní čísla λ_i a λ_j platí $M_{\lambda_i} \perp M_{\lambda_j}$.

Definice A je normální, pokud $A^*A = AA^*$.

Věta (spektrální věta pro normální matice) Nechť A je čtvercová komplexní matice. Pak následující je ekvivalentní

- (i) A je unitárně diagonalizovatelná,
- (ii) A je normální.

Věta (spektrální věta pro hermitovské matice) Necht A je čtvercová komplexní matice. Pak následující je ekvivalentní

- (i) A je unitárně diagonalizovatelná a všechna její vlastní čísla jsou reálná,
- (ii) A je hermitovská.

Věta (spektrální věta pro symetrické matice) Nechť A je čtvercová reálná matice. Pak následující je ekvivalentní

- (i) A je ortogonálně diagonalizovatelná,
- (ii) A je symetrická.

Věta (spektrální věta pro pozitivně (semi) definitní matice) Nechť A je čtvercová komplexní matice. Pak následující je ekvivalentní

- (i) A je unitárně diagonalizovatelná a všechna její vlastní čísla jsou reálná kladná (nezáporná),
- (ii) A je pozitivně (semi) definitní.

Věta (o hermitovské a pozitivně definitní matici) Necht je matice A hermitovská (symetrická). Pak je pozitivně (semi) definitní právě tehdy, když má všechna vlastní čísla kladná (nezáporná).

Věta (spektrální věta pro unitární matice) Nechť A je čtvercová komplexní matice. Pak následující je ekvivalentní

- (i) A je unitárně diagonalizovatelná a pro všechna vlastní čísla platí $|\lambda|=1$,
- (ii) A je unitární.

2.2.7 Různé typy rozkladů matic

Tahle kapitola je obecně dost nahovno a vůbec mě nebavila. Takže tyhle poznámky nejsou **vůbec** dobrý, ale za účelem kompletnosti to sem dám taky. Určitě se doporučuji tohle učit úplně odjinud a třeba si to sem k tomu dopsat. Nebo to zapálit.

Jordanův rozklad

- Jde o jisté zobecnění diagonalizovatelnosti.
- $A = RDR^{-1}$, R regulární matice, D blokově diagonální matice s Jordanovými buňkami

$$\begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ 0 & 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{bmatrix},$$

D se nazývá Jordanova matice.

- λ_i v Jordanových blocích jsou vlastní čísla matice A.
- Jednomu vlastnímu číslu může patřit více bloků = geometrická násobnost vlastního čísla.
- Součet dimenzí těchto bloků je algebraická násobnost.
- Rozklad je jednoznačný až na pořadí buněk.
- Jordanův rozklad není stabilní.
- Vektory se hledají pomocí tzv. Jordanových řetízků

$$(A - \lambda I) v_1 = 0, \ (A - \lambda I) v_2 = v_1, \dots$$

a pak se umístí do matice R.

L-U rozklad

- Pouze pro čtvercové regulární matice.
- L-U rozklad není jednoznačný.
- Pokud se při Gaussově eliminaci nemusí prohazovat řádky, pak A = LU, L
 je dolní trojúhelníková matice s jedničkami na diagonále, U horní trojúhelníková matice s nenulovými čísly na diagonále. Jedná se o zápis Gaussovy
 eliminace každý její krok je přenásobení maticí zleva a ty dohromady dají
 matici L.
- Pokud je při Gaussově eliminaci potřeba prohazovat řádky, pak PA = LU, kde P je permutační matice.

QR rozklad

- Pro obecnou komplexní matici.
- Je dražší, ale stabilnější, než L-U rozklad.
- Je jednoznačný.
- Jedná se o maticový zápis Gram-Schmidtovy ortogonalizace.
- A = QR, kde Q je ortonormální matice a R je dolní trojúhelníková matice.
- Postup je Gram-Schmidtův ortogonalizační proces na sloupce matice A dá sloupce matice $Q=(u_1,\ldots,u_k)$

$$R = \begin{bmatrix} ||u'_1|| & \langle u_1, v_2 \rangle & \dots & \langle u_1, v_k \rangle \\ 0 & ||u'_2|| & \dots & \langle u_2, v_k \rangle \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & ||u'_k|| \end{bmatrix}.$$

 Obecně se ho dá docílit pomocí Givensových rotací či Householderových reflexí.

Spektrální rozklad

- Pro A normální, hermitovskou pozitivně definitní, s vlastními čísly $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_r = 0$ a $\lambda_{r+1} = \ldots = \lambda_n = 0$.
- $A = UDU^*$, U je unitární a D je diagonální.
- U je složená z vlastních vektorů matice A.
- D má vlastní čísla matice A na diagonále.
- Užitečný rozklad pro inverz, $A^{-1} = U^*D^{-1}U$.

Singulární rozklad

- Pro obecnou komplexní matici.
- Platí A^*A i AA^* jsou Hermitovské pozitivně definitní, mají stejná vlastní čísla a když v_j je vlastní vektor A^*A , pak $Av_j/\sqrt{\lambda_j}$ je vlastní vektor matice AA^* $\forall j=1,\ldots,r$.
- u_{r+1}, \ldots, u_n pak najdeme jako libovolnou ortonormální bázi ortogonálního doplňku.
- Singulární čísla $\sigma_j=\sqrt{\lambda_j}$, pak platí $Av_j=\sigma_ju_j \ \forall j=1,\ldots,r,$ pak $AV=U\Sigma,$ tj. $A=U\Sigma V^*,$ kde U, V jsou unitární a

$$\Sigma = \begin{bmatrix} \Sigma_r & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix}.$$

• Mooreova-Penroseova pseudoinverze: $A^+ = V \Sigma^+ U^*$, kde

$$\Sigma^{+} = \begin{bmatrix} \Sigma_{r}^{-1} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix},$$

a tedy
$$A^+ = (A^*A^{-1})A^*, A^+ = (A^*)(AA^*)^{-1}.$$

Choleského rozklad

- Jedná se o speciální případ L-U rozkladu.
- Pro $A \in \mathbb{C}^{n \times n}$ je hermitovská pozitivně definitní.
- $A = LL^*$, L horní trojúhelníková.

Schurův rozklad

- Pro obecnou čtvercovou matici.
- $A = URU^*$, U unitární, R horní trojúhelníková s vlastními čísly matice A na diagonále.

2.3 Lineární a bilineární formy

2.3.1 Lineární, bilineární a kvadratické formy, matice lineárních zobrazení, vlastní čísla lineárních zobrazení a matic, charakteristický polynom

Definice Zobrazení $f: V \to W$ se nazývá *lineární*, pokud splňuje f(u) + f(v) = f(u+v) a $f(tu) = tf(u) \ \forall u,v \in V, \ \forall t \in T.$

Věta (zobrazení určené maticí) Zobrazení určené maticí $A, f_A(x) := Ax$, je lineární.

Definice Necht $f: V \to W$ je lineární zobrazení, $B = (v_1, \dots, v_n)$ je báze prostoru V a C je báze W. Pak $matice\ f\ vzhledem\ k\ B\ a\ C$ je

$$[f]_C^B = ([f(v_1)]_C | [f(v_2)]_C | \dots | [f(v_n)]_C).$$

Věta (o matici zobrazení) Platí $[f(x)]_C = [f]_C^B[x]_B$.

Věta (skládání lineárních zobrazení) Nechť U, V, W jsou vektorové prostory nad $T, f: U \to V$ a $g: V \to W$ jsou lineární, pak $gf: U \to W$ je lineární. Pokud navíc B je báze U, C je báze V a D je báze W, pak

$$[gf]_{D}^{B} = [g]_{D}^{C} [f]_{C}^{B}$$
.

Věta (inverz lineárního zobrazení) Nechť $f:U\to V$ je vzájemně jednoznačné lineární zobrazení, pak $f^{-1}:V\to U$ je také lineární zobrazení a $[f^{-1}]_B^C=\left([f]_C^B\right)^{-1}$.

Věta (o matici zobrazení a matici přechodů bází) Platí

$$[f]_B^B = \left([id]_C^B \right)^{-1} \cdot [f]_C^C \cdot [id]_C^B.$$

Definice Necht V je vektorový prostor nad tělesem T. Lineární zobrazení f nazveme lineární forma, je-li $f:V\to T$. Jádrem f jsou ty $x\in V$ že f(x)=0 a obraz je $\{f(x),x\in V\}$.

Věta (o jádru a obraze) Nechť $f:V\to W$ je lineární zobrazení, B je báze U a C je báze V. Pak

$$[\operatorname{Ker} f]_B = \operatorname{Ker} [f]_C^B, [\operatorname{Im} f]_C = \operatorname{Im} [f]_C^B.$$

Definice Necht f je lineární forma na V a B je báze V. Pak $matice\ f\ vzhledem$ $k\ bázi\ B$ je

$$[f]^B = (f(v_1), \dots, f(v_n)).$$

Definice Bilineární forma je zobrazení $f: V \times V \to T$ lineární v obou složkách. Pro bilineární formu f definujeme kvadratickou formu tvořenou f, $f_2: V \to T$, $f_2(v) = f(v,v)$.

Definice Necht $B = (v_1, \ldots, v_n)$ je báze vektorového prostoru V nad tělesem T a necht f je bilineární forma na V. $Matici\ f\ vzhledem\ k\ B$ je čtvercová matice rádu n kde na (i,j) místě je $f(v_i,v_j)$. Tuto matici značíme $[f]_B$.

Tvrzení (o matici bilineární formy) Platí $f(x,y) = [x]_B^T [f]_B [y]_B$.

Definice Řekneme, že bilineární forma f je symetrická, pokud f(x,y) = f(y,x) a antisymetrická, pokud f(x,y) = -f(y,x).

Věta (o (anti)symetrické formě) f je (anti)symetrická právě tehdy, když $[f]_B$ je (anti)symetrická matice.

Věta (o rozkladu bilineární formy) Nechť T je těleso charakteristiky různé od dvou. Pak existuje jednoznačný rozklad $f = f_s + f_a$, kde

$$f_s(x,y) = \frac{1}{2} (f(x,y) + f(y,x)), \qquad f_a(x,y) = \frac{1}{2} (f(x,y) - f(y,x)).$$

Věta (součin matic a skládání zobrazení): Nechť $f_A: T^n \to T^m$ a $f_B: T^p \to T^n$. Pak $f_A f_B: T^p \to T^m$ a platí $f_A f_B = f_{AB}$.

Definice Necht $f: V \to V$ je lineární operátor. Pak řekneme, že $\lambda \in T$ je vlastní číslo f, pokud existuje vektor $x \neq 0$ takový, že $f(x) = \lambda x$. Takové x nazýváme vlastní vektor f příslušný λ . Stejná definice platí i pro matice.

Věta (o vlastním čísle 0) Operátor f má vlastní číslo 0 právě tehdy, když f není prostý. Matice A má vlastní číslo 0 právě tehdy, když A je singulární.

Věta (o vlastních číslech a vektorech) Platí λ je vlastní číslo f právě tehdy, kdy $(f - \lambda id)$ není prostý. Je-li λ vlastní číslo, pak množina M_{λ} všech vlastních vektorů je podprostor V a M_{λ} =Ker $(f - \lambda id)$. To samé platí pro matice (místo "není prostý" je "singulární").

Věta (o vlastním číslu a determinantu) Nechť A je čtvercová řádu n nad tělesem T. Pak $\lambda \in T$ je vlastním číslem matice A právě tehdy, když $\det(A-\lambda I_n)=0$. Nechť f je lineární operátor na konečně generovaném prostoru V dimenze n nad tělesem T a B je báze V. Pak $\lambda \in T$ je vlastním číslem operátoru f právě tehdy, když λ je vlastním číslem matice $[f]_B^B$.

Definice Charakteristický polynom matice A je $p_A(\lambda) = \det(A - \lambda I_n)$

Věta (charakteristický polynom podobných matic) Dvě podobné matice mají stejný charakteristický polynom.

Definice Charakteristický polynom operátoru f je $p_f(\lambda) = \det([f]_B^B - \lambda I_n)$

Definice Algebraická násobnost vlastního čísla je jeho násobnost jakožto kořene charakteristického polynomu.

Věta (o počtu vlastních čísel) Každá matice/operátor nad tělesem dimenze n má nejvýše n vlastních čísel včetně algebraických násobností.

2.3.2 Polární báze a zákon setrvačnosti pro kvadratické formy

Tato kapitola se zabývá pouze symetrickými bilineárními formami - ty jsou vzájemně jednoznačné s kvadratickými.

Definice Nechť f je symetrická bilineární forma na vektorovém prostoru V, x, $y \in V$. Řekneme, že x a y jsou f-ortogonální, pokud f(x,y) = 0. Řekneme, že báze $B = (v_1, \ldots, v_n)$ prostor V je f-ortogonální, pokud $f(v_i, v_j) = 0$, $\forall i \neq j$, tedy matice f vzhledem k B, $[f]_B$ je diagonální.

Definice Hodnost bilineární formy f je hodnost její matice k libovolní bázi.

Definice Polární báze vzhledem k f je libovolná f-ortogonální báze.

V téhle kapitole je vhodné vědět, jak dostat f-ortogonální bázi - tj. symetrické úpravy a tak.

Věta (o existenci polární báze) Každá symetrická bilineární forma f na konečně generovaném prostoru nad tělesem charakteristiky různé od dvou, má polární bázi.

Věta (zákon setrvačnosti kvadratických forem) Nechť f je symetrická bilineární forma na reálném vektorovém prostoru V dimenze n a C, C' jsou báze V takové, že

$$[f]_C = \operatorname{diag}(\underbrace{1, \dots, 1}_{k}, \underbrace{-1, \dots, -1}_{t}, \underbrace{0, \dots, 0}_{m})$$
$$[f]_{C'} = \operatorname{diag}(\underbrace{1, \dots, 1}_{k'}, \underbrace{-1, \dots, -1}_{t'}, \underbrace{0, \dots, 0}_{m'})$$

Pak k = k', t = t' a m = m'.

Definice Čísla k, t a m z minulé věty nazveme pozitivní index setrvačnosti formy f, negativní index formy f a nulita formy f, značíme $n_+(f)$, $n_-(f)$ a $n_0(f)$. Uspořádanou trojici $(n_0(f), n_+(f), n_-(f))$ nazveme signatura formy f.

Definice Řekneme, že symetrická bilineární forma na reálném vektorovém prostoru je pozitivně definitní právě tehdy, je-li $f_2(x) > 0 \ \forall x \neq 0 \in V$.

Věta (o signatuře a pozitivní definitnosti) f pozitivně definitní právě tehdy, když $n_+(f) = n$.

Věta (o ortonormální diagonalizaci) Nechť V je reálný vektorový prostor dimenze n se skalárním součinem \langle,\rangle a f symetrická bilineární forma na V. Pak existuje báze B prostoru V, která je f-ortogonální a zároveň ortonormální vzhledem k \langle,\rangle .

2.3.3 Matice jednoduchých geometrických zobrazení

• otočení v \mathbb{R}^2 o úhel α :

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}.$$

• osová symetrie vzhledem k ose x v \mathbb{R}^2 :

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

symetrie vzhledem k přímce procházející středem, uzavírající úhel s osou x:

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{bmatrix} = \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{bmatrix}.$$

• ortogonální projekce na osu x:

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

• ortogonální projekce na přímku procházející středem, uzavírající úhel α s osou x:

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{bmatrix} = \begin{bmatrix} \cos^2 \alpha & \sin \alpha \cos \alpha \\ \sin \alpha \cos \alpha & \sin^2 \alpha \end{bmatrix}.$$

• Givensova rotace: otočení o úhel α vůči e_i, e_j

$$G_{ij}(\alpha) = \begin{bmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & \dots & \cos \alpha & \dots & -\sin \alpha & \dots & 0 \\ \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & \dots & \sin \alpha & \dots & \cos \alpha & \dots & 0 \\ \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{bmatrix}.$$

• Householderova reflexe: zrcadlení podle nadroviny dimenze n-1 pomocí jejího normálového vektoru q, ||q|| = 1. Platí

$$x = (x - x_q) + x_q, \ x_q = (qq^T)x,$$

pak zrcadlový je

$$y = (x - x_q) - x_q = (\mathbb{I} - 2qq^T)x.$$

Tedy

$$H(q) = (\mathbb{I} - 2qq^T).$$

2.4 Základy teorie grup a komutativních okruhů

2.4.1 Základní vlastnosti grup

Definice *Grupa* je algebra (množina s operacemi) G=(G,*,',e) typu (2,1,0) splňující $\forall a,b,c\in G$

- (1) a * (b * c) = (a * b) * c,
- (2) $\exists !e: a*e=e*a=a,$
- (3) $\exists !a' : a * a' = a' * a = e,$

tj. e je jednotka a a' inverzní prvek k prvku a. Grupa je $\acute{A}belovsk\acute{a}$, pokud navíc $\forall a,b\in G:\ a*b=b*a.$

Definice Nechť G je grupa, pak $H \subseteq G$ je podgrupa, když $\forall a,b \in H$ je $a' \in H$, $a*b \in H$ a $e \in H$. Pak $H = (H, '|_H, '|_H, e)$. Podgrupy se dělí na vlastn' a nevlastn'. Nevlastn' jsou podgrupy G a e, vlastn' jsou všechny ostatn'.

Definice Grupa je

- aditivní, pokud je tvaru T = (T, +, -, 0),
- multiplikativní, pokud je tvaru $T^* = (T \setminus \{0\}, *, ^{-1}, 1),$

pro libovolné těleso T.

Definice Cyklické grupy jsou $\mathbb{Z}_n = (\{0,1,\ldots,n-1\}, +_{\text{mod }n}, -_{\text{mod }n}, 0)$. Pak multiplikativní grupa \mathbb{Z}_n^* má právě prvky nesoudělné s $n \in \{1,\ldots,n-1\}$.

Definice Definujeme grupy

- Symetrická grupa je grupa $S_X = (\{\pi : \pi \text{ permutace na } X\}, \circ, ^{-1}, id)$ s podgrupami
 - alternující podgrupa A_n všech sudých permutací,
 - $dihedrální podgrupa D_{2n}$ všech symetrií pravidelného n-úhelníku.
- *Maticová grupa* je grupa $GL_n(T) = \{(A: A \in T^{n \times n} \text{ regulární}), \cdot, ^{-1}, \mathbb{I}\}$ s podgrupami
 - $SL_n(T)$ podgrupa matic s determinantem rovným 1,
 - $O_n(T)$ podgrupa ortogonálních matic.

Věta (vlastnosti operací v grupě)

i.
$$a * c = b * c \lor c * a = c * b \Rightarrow a = b$$
,

ii.
$$a * u = a \lor u * a = a \Rightarrow u = e$$
,

iii.
$$a * u = e \lor u * a = e \Rightarrow u = a'$$
,

iv.
$$(a')' = a$$
,

v.
$$(a * b)' = b' * a'$$
.

Definice Nejmenší podgrupa G obsahující množinu $X \subset G$ je $\langle X \rangle_G$.

Věta (o lineárním obalu)

 $\langle X \rangle_G = \{(k_1 \times x_1) * \cdots * (k_n \times x_n); n \in \mathbb{N}, x_1, \dots, x_n \in X, k_1, \dots, k_n \in \mathbb{Z}\}, \text{ kde } \times \text{ je mocnění v multiplikativní grupě a násobení v aditivní grupě.}$

Definice $G = (G, *, ', e), H = (H, \cdot, ^{-1}, 1)$ pak $\varphi : G \to H$ je homomorfismus, pokud

•
$$\varphi(a * b) = \varphi(a) \cdot \varphi(b)$$
,

•
$$\varphi(a') = \varphi(a)^{-1}$$
,

• $\varphi(e) = 1$.

Pokud je navíc bijekce, tak se nazývá izomorfismus.

Definice Jádro homomorfismu je $\text{Ker}\varphi = \{a \in G : \varphi(a) = 1\}$, obraz homomorfismu je $\text{Im}\varphi = \{b \in H : b = \varphi(a)\}$.

Věta (o homomorfismu) Platí

- i. φ je homomorfismus $\Leftrightarrow \varphi(a * b) = \varphi(a) \cdot \varphi(b)$,
- ii. Ker φ je podgrupa G, Im φ je podgrupa H,
- iii. φ je prostý homomorfismus $\Leftrightarrow \text{Ker}\varphi = \{e\}.$

Definice Direktní součin grup $G_i = (G_i, *_{i,i}', e_i)$ je $G_1 \times \cdots \times G_n = (G_1 \times \cdots \times G_n, *_i', e)$, kde $(a_1, \ldots, a_n) * (b_1, \ldots, b_n) = (a_1 *_1 b_1, \ldots, a_n *_n b_n)$ a podobně se všemi operacemi.

Věta (o rozkladu \mathbb{Z}_M) Nechť $M = m_1 \cdot \ldots \cdot m_n$, kde m_1, \ldots, m_n jsou po dvou nesoudělná. Pak $\mathbb{Z}_M \simeq \mathbb{Z}_{m_1} \times \cdots \times \mathbb{Z}_{m_n}$. Zde je vhodné znát důkaz.

Věta (Cayleyova a lineární reprezentace grup) Každá konečná grupa je izomorfní nějaké podgrupě některé symetrické (obecné lineární) grupy.

Definice \check{R} ád grupy je počet prvků G, značíme |G|, \check{r} ád prvku a v G je počet prvků $\langle a \rangle_G$, značíme $\operatorname{ord}(a)$.

Věta (o řádu prvku) ord(a) = nejmenší přirozené n takové, že $n \times a = e$, pokud takové neexistuje, tak inf, tj. v aditivní grupě na = 0 a v multiplikativní grupě $a^n = 1$. Platí, že ord(a) dělí |G| a pokud je $\varphi : G \to H$ izomorfismus, pak ord(a) = ord $(\varphi(a))$.

Definice Cyklická grupa je grupa, která je generovaná jedním prvkem.

Věta (izomorfismus cyklických grup) Nechť je G cyklická. Pokud je G nekonečná, pak je izomorfní grupě \mathbb{Z} . Pokud je G konečná, pak existuje n takové, že G je izomorfní grupě \mathbb{Z}_n .

Věta (o podgrupách cyklických grup) Podgrupy cyklických grup jsou také cyklické.

Věta (o \mathbb{Z}_p^*) Grupa \mathbb{Z}_p^* je cyklická pro p prvočíslo a pak je tato grupa izomorfní grupě \mathbb{Z}_{p-1} .

Věta (o symetrické grupě) Platí

i. řád permutace π v grupě S_X je nejmenší společný násobek délek cyklů,

ii. S_n je generovaná všemi transpozicemi, A_n je generovaná všemi trojcykly.

Definice $a,b \in G$ jsou $konjugovan\acute{e}$, pokud $\exists c \in G$ takové, že $a = c \cdot b \cdot c^{-1}$.

Věta (o konjugovaných permutacích) Dvě permutace jsou konjugované právě tehdy, když mají stejný počet cyklů každé délky.

Definice Necht $G = (G, \cdot, ^{-1}, 1)$ a H podgrupa G. Pak definujeme

- levý rozklad grupy G podle H je $\{aH, a \in G\}$,
- levé rozkladové třídy jsou $aH = \{ah, h \in H\},\$
- levá transverzála obsahuje z každé levé rozkladové třídy právě jeden prvek.

Pravý rozklad, pravé rozkladové třídy a pravou transverzálu definujeme analogicky.

Věta (o rozkladových třídách) $\forall a \in G$ platí |aH| = |Ha| = |H|.

Věta (o rozkladech) Levý i pravý rozklad grupy mají stejný počet prvků.

Definice Index podgrupy $H \vee G$ je $[G:H] = |\{aH: a \in G\}| = |\{Ha: a \in G\}|.$

Věta (Lagrangeova) Necht G je grupa a H je její podgrupa. Pak |G| = |H| [G:H].

Věta (o velikosti podgrupy) Necht G je konečná grupa a H její podgrupa. Pak |H| dělí |G|.

2.4.2 Působení grupy na množině

Definice Působení grupy G na množinu X je homeomorfismus $\pi: G \to S_X$. Hodnotu $\pi(g)$ na prvku x budeme značit g(x).

Věta (základní vlastnosti působení) Platí $\pi(1) = id$, tj. 1(x) = x, g^{-1} je inverzní ke g a $(g \cdot h)(x) = g(h(x))$.

Tuhle "větu" jsem si teď přečetla ze svých poznámek a vůbec jí nerozumím, ale nechtěla jsem ji vynechat. Takže here u go, enjoy.

Definice Definujeme *relaci tranzitivity* $x \sim y$ pokud existuje $g \in G$ takové, že g(x) = y. Tato relace je ekvivalence a bloky ekvivalence nazýváme *orbity*, $[x] = \{y \in X : x \sim y\}$.

Definice Řekneme, že x je pevný bod permutace π , pokud $\pi(x) = x$.

Definice Množina všech pevných bodů $\pi(g)$ je $X_g = \{x \in X : g(x) = x\}.$

Definice Stabilizátor prvku $x \in X$ je $G_x = \{g \in G : g(x) = x\}.$

Věta (o G_x) G_x je podgrupa grupy G.

Věta (o velikosti G) $\forall x \in X$ platí $|G| = |G_x| \cdot |[x]|$.

Definice $X|_{\sim}$ je množina všech bloků ekvivalence, tj. $|X|_{\sim}|$ je počet orbit působení.

Věta (Burnsideova) Necht G a X jsou konečné, pak

$$|X|_{\sim}| = \frac{1}{|G|} \cdot \sum_{g \in G} |X_g|.$$

2.4.3 Dělitelnost v Eukleidovských oborech, rozšířený Eukleidův algoritmus, existence a jednoznačnost ireducibilních rozkladů

Věta (o dělitelnosti) Nechť $a = q \cdot b + r$. Pak q je celočíselný podíl a r je zbytek po dělení. Řekneme, že b dělí a, pokud $\exists q$ takové, že $a = b \cdot q$, píšeme b|a.

Věta (o NSD a NSN) Platí

$$NSN(a,b) = \frac{a \cdot b}{NSD(a,b)}.$$

Věta (Bézoutova rovnost) $\forall a,b \ \exists u,v : \mathrm{NSD}(a,b) = u \cdot a + v \cdot b$, pak u,v se nazývají bézoutovy koeficienty.

Definice Definujeme kongruenci $a \equiv b \pmod{m}$ pokud dávají stejný zbytek po dělení m, tj. $m \mid (a - b)$.

Definice Eulerova funkce $\varphi(n)$ = počet čísel z $\{1, \ldots, n-1\}$ nesoudělných s n.

Věta (Eulerova funkce a prvočíselný rozklad) Necht $n = p_1^{k_1} \cdot \ldots \cdot p_m^{k_m}$, pak $\varphi(n) = p_1^{k_1-1}(p_1-1) \cdot \ldots \cdot p_m^{k_m-1}(p_m-1)$.

Věta (Eulerova) Nechť a, m jsou nesoudělná, pak $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Věta (Čínská věta o zbytcích) Nechť m_1, \ldots, m_n jsou nesoudělná, $M = m_1 \cdot \ldots \cdot m_n$. Pak $\forall u_1, \ldots, u_n \exists ! x \in \{0, \ldots, M-1\}$ takové, že

$$x \equiv u_1 \pmod{m_1} \dots x \equiv u_n \pmod{m_n}$$
.

Definice Komutativní okruh s jednotkou je $(R, +, -, \cdot, 0, 1)$, pokud platí:

•
$$(a+b)+c=a+(b+c)$$
,

- a + b = b + a,
- a + 0 = a,
- a + (-a) = 0,
- $a \cdot (b \cdot c) = (a \cdot b) \cdot c$,
- $a \cdot b = b \cdot a$,
- $a \cdot 1 = a$,
- $a \cdot (b+c) = a \cdot b + a \cdot c$.

Pokud navíc $a,b \neq 0 \Rightarrow a \cdot b \neq 0$, tak se jedná o *obor integrity*. Pokud navíc $\forall a \neq 0 \ \exists b : \ a \cdot b = 1$, tak se jedná o *těleso*.

Definice Řekneme, že a dělí b v R, pokud $\exists c \in R$ takové, že $b = a \cdot c$.

Definice Řekneme, že a a b jsou $asociovan\acute{e}$, pokud $a|b \wedge b|a$.

Definice Řekneme, že a je invertibilni, pokud a||1, tj. $\exists b: a \cdot b = 1$. Pak b značíme a^{-1} .

Definice Řekneme, že c je největší společný dělitel a a b (c = NSD(a,b)), pokud c|a a c|b a pokud pro každé d takové, že $d|a \wedge d|b$ platí d|c.

Definice Řekneme, že a a b jsou nesoudělná, pokud NSD(a,b) = 1.

Definice Řekneme, že *a* je *ireducibilní*, pokud je neinvertibilní a nemá vlastní dělitele.

Definice Obor integrity nazveme *Gaussovský*, pokud má každý neinvertibilní nenulový prvek jednoznačný rozklad na ireducibilní činitele.

Věta (Gaussovské obory a NSD) V Gaussovských oborech existuje pro každou dvojici prvků největší společný dělitel.

Definice Eukleidovská norma na R je zobrazení $\nu: R \to \mathbb{N} \cup \{0\}$ takové, že

- $\nu(0) = 0$,
- Pokud a|b, pak $\nu(a) < \nu(b)$,
- $\forall a, b \in R, b \neq 0, \exists q, r : a = bq + r \text{ a } \nu(r) < \nu(b).$

Řekneme, že obor integrity R je $Eukleidovsk\acute{y}$, pokud na něm existuje eukleidovská norma.

Tvrzení V Eukleidovských oborech platí Bézoutova rovnost.

Euklidův algoritmus:

Vstup: $a,b \in R$, $\nu(a) \ge \nu(b)$,

Výstup: NSD(a,b) a $u,v \in R$: $NSD(a,b) = u \cdot a + v \cdot b$.

- $a_0 = a$, $u_0 = 1$, $v_0 = 0$,
- $a_1 = b$, $u_1 = 0$, $v_1 = 1$.
- Najdeme $r,q: a_{i-1} = a_i \cdot q + r, \ \nu(r) < \nu(a_i),$
- položíme $a_{i+1} = r$, $u_{i+1} = u_{i-1} u_i \cdot q$, $v_{i+1} = v_{i-1} v_i \cdot q$.
- Pokud $a_{i+1} = 0$, pak výsledkem jsou a_i, u_i, v_i .

Věta (Euklidův algoritmus) Euklidův algoritmus funguje a vždy dospěje ke správnému výsledku.

Definice Ideál R je $I\subseteq R$ takový, že pro libovolné $a,b\in I,\ u\in R$ platí

- i. $-a \in I$,
- ii. $a+b \in I$,
- iii. $a \cdot u \in I$.

Definice Hlavní ideál R je $aR = \{ar, r \in R\} = \{u \in R : a|u\}.$

Věta (Eukleidovské obory a ideály) Každý ideál v Eukleidovském oboru je hlavní ideál.

2.4.4 Kořenová a rozkladová nadtělesa, minimální polynom a stupeň rozšíření těles

Definice Charakteristika tělesa je nejmenší číslo n takové, že $\underbrace{1+\ldots+1}_n=0$. Pokud takové n neexistuje, tak je charakteristika 0.

Definice Rozšíření tělesa T je libovolné nadtěleso $S \supseteq T$.

Definice Nejmenší podtěleso nazýváme prvotěleso.

Věta (o prvotělese) je izomorfní buď \mathbb{Q} nebo \mathbb{Z}_p .

Definice Nechť I je ideál okruhu R. Definujeme relaci ekvivalence $a \sim b \Leftrightarrow a - b \in I$ a bloky ekvivalence [a] = a + I s operacemi

•
$$[a+b] = [a] + [b],$$

- -[a] = [-a],
- $[a \cdot b] = [a] \cdot [b]$.

Pak $R\big|_I=(\{[a],a\in R\},+,-,\cdot,[0])$ je faktorokruh. Ideál I je maximální, pokud neexistuje ideál J splňující $I\subset J\subset R$.

Věta (konstrukce faktorokruhů) Nechť R je komutativní okruh s jednotkou a I jeho maximální ideál, pak faktorokruh $R|_{\tau}$ je těleso.

Definice Buď $T \subseteq S$ rozšíření těles a $a_1, \ldots, a_n \in S$, pak $T[a_1, \ldots, a_n]$ je nejmenší podokruh S obsahující T a a_1, \ldots, a_n ; a $T(a_1, \ldots, a_n)$ je nejmenší podtěleso S obsahující T a a_1, \ldots, a_n .

Definice Na rozšíření $S \supseteq T$ se dá nahlížet jako na vektorový prostor nad T s násobením $T \times S \to S$. To se značí S_T a jeho dimenze je stupeň rozšíření $[S:T] = \dim S_T$.

Definice Nechť $S \supseteq T$ je rozšíření těles a $a \in S$. Pak a je algebraický, existuje-li nenulový polynom z T[x], kde a je kořenem. Pokud prvek a není algebraický, pak je transcendentní. Je-li každý prvek rozšíření S algebraický, pak se jedná o algebraické rozšíření.

Věta (o rozšířeních konečného stupně) Rozšíření konečného stupně jsou algebraická.

Definice Nechť $S \supseteq T$ je rozšíření a $a \in S$ je algebraický prvek nad T. *Minimální polynom* prvku a nad T je polynom $m_{a,T} \in T[x]$ splňující

- i. $m_{a,T}(a) = 0$,
- ii. a je kořen $f \in T[x]$ pak $m_{a,T}|f$.

Věta (o $m_{a,T}$) Polynom $m_{a,T}$ je v T[x] ireducibilní.

Věta (o stupni rozšíření) Necht $S \supseteq T$ je rozšíření, $a \in S$ je algebraický nad T. Pak

$$[T(a):T]=\deg m_{a,T}.$$

Tvrzení Stupeň $[\mathbb{Q}(\sqrt[n]{p}) : \mathbb{Q}] = \deg(x^n - p) = n.$

Věta (o rozšíření rozšíření) Necht $U \supseteq S \supseteq T$ jsou rozšíření, pak

$$[U:T] = [U:S] \cdot [S:T].$$

Definice Řekneme, že $S \supseteq T$ je kořenové nadtěleso polynomu $f \in T[x]$, pokud má $f \vee S$ kořen a S = T(a).

Věta (o kořenových nadtělesech) Nechť T je těleso a $f \in T[x]$ polynom stupně ≥ 1 . Pak

- i. existuje kořenové nadtěleso k polynomu f,
- ii. je-li f ireducibilní v T[x], pak jsou každá dvě kořenová nadtělesa T-izomorfní.

Definice Řekneme, že $S \supseteq T$ je rozkladové nadtěleso polynomu $f \in T[x]$, pokud se f v S[x] rozkládá na lineární činitele, tj. $f||(x-a_1)\cdot\ldots\cdot(x-a_n)$ pro $a_1,\ldots,a_n\in S$ a navíc $S=T(a_1,\ldots,a_n)$.

Věta (o rozkladových tělesech) Nechť T je těleso, $f \in T[x]$ je polynom stupně ≥ 1 . Pak

- i. existuje rozkladové nadtěleso f,
- ii. každá dvě rozkladová nadtělesa f jsou T-izomorfní.

Definice Řekneme, že těleso T je algebraicky uzavřené, má-li v něm každý polynom z T[x] kořen.

Věta (o algebraicky uzavřených tělesech) Algebraicky uzavřená tělesa nemohou být konečná.

Definice Řekneme, že $S \supseteq T$ je algebraický uzávěr T, je-li S algebraicky uzavřené a je algebraickým rozšířením tělesa T.

Věta (o algebraickém uzávěru) Ke každému tělesu T existuje algebraický uzávěr a každé dva algebraické uzávěry jsou T-izomorfní.

3. Stochastika

3.1 Základy teorie pravděpodobnosti

3.1.1 Pravděpodobnostní prostor, podmíněná pravděpodobnost, Bayesova věta, nezávislost systému náhodných jevů, 0-1 zákony.

Definice Dvojice (Ω, \mathcal{A}) je *měřitelný prostor*, pokud \mathcal{A} je σ -algebra na Ω , tj. pro ni platí

- $A \in \mathcal{A} \Rightarrow A^C \in \mathcal{A}$.
- $A_n \in \mathcal{A} \ \forall n \in \mathbb{N} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Definice Trojice $(\Omega, \mathcal{A}, \mathsf{P})$ je $pravd\check{e}podobnostn\acute{i}\ prostor$, pokud (Ω, \mathcal{A}) je měřitelný prostor a P je $pravd\check{e}podobnostn\acute{i}\ m\acute{i}ra$, tj. pro ni platí

- $P(\Omega) = 1, P(\emptyset) = 0,$
- $P(A) \ge 0 \ \forall A \in \mathcal{A}$,
- $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$ pro $A_n \in \mathcal{A}$ po dvou disjunktní.

Potom $\omega \in \Omega$ nazýváme jev.

Ještě vědět co znamená: nastal jev, nemožný jev, jistý jev, podjev, nastal jev A nebo B, nastal současně jev A a B, doplňkový jev, nastal jev A a ne jev B, vylučující se jevy - to předpokládám, že nemusím vysvětlovat.

Věta (základní vlastnosti pravděpodobnosti) Pro pravděpodobnostní míru platí:

- i. je konečně aditivní,
- ii. $P(A \cup B) = P(A) + P(B) P(A \cap B)$,
- iii. je monotónní, tj. $A_1 \subseteq A_2 \Rightarrow \mathsf{P}(A_1) \leq \mathsf{P}(A_2)$,
- iv. $A_1 \subseteq A_2 \subseteq \ldots \Rightarrow \lim_{n \to \infty} \mathsf{P}(A_n) = \mathsf{P}(\bigcup_{n=1}^{\infty} A_n),$
- v. $A_1 \supseteq A_2 \supseteq \ldots \Rightarrow \lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n),$
- vi. $0 \le P(A) \le 1 \ \forall A \in \mathcal{A}$,
- vii. $P(A^C) = 1 P(A) \ \forall A \in \mathcal{A},$
- viii. $A \subseteq B \Rightarrow \mathsf{P}(B \setminus A) = \mathsf{P}(B) \mathsf{P}(A),$
- ix. $P(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} P(A_n),$

x. platí

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le 1} P(A_i \cap A_j) + \sum_{1 \le i < j < k \le 1} P(A_i \cap A_j \cap A_k) - \dots + (-1)^{n-1} P(A_1 \cap \dots \cap A_n).$$

Definice Geometrická pravděpodobnost je

$$\frac{\lambda(A)}{\lambda(\Omega)}$$
,

kde λ je Lebesgueova míra a $\lambda(\Omega) \leq \infty$.

Definice Jevy A a B jsou $nez {\'a}visl\'e$, pokud $P(A \cap B) = P(A) \cdot P(B)$.

Definice Systém náhodných jevů $\{B_{\lambda}, \lambda \in \Lambda\}$ je *nezávislý*, pokud $\forall \{\lambda_1, \ldots, \lambda_n\} \subseteq \Lambda$ platí

$$P(B_{\lambda_1} \cap B_{\lambda_2} \cap \ldots \cap B_{\lambda_n}) = P(B_{\lambda_1}) \cdot P(B_{\lambda_2}) \cdot \ldots \cdot P(B_{\lambda_n}).$$

Věta (o nezávislém systému jevů) Pokud v nezávislém systému jevů nahradíme libovolný jevC jeho doplňkem C^C , tak je systém jevů nadále nezávislý. **Poznámka:** Může se stát, že jsou v systému jevů jevy po dvou nezávislé, ale systém nezávislý není.

Definice Podmíněná pravděpodobnost jevu <math>A za podmínky jevu B pro $\mathsf{P}(B) > 0$ je

$$\mathsf{P}(A|B) = \frac{\mathsf{P}(A \cap B)}{\mathsf{P}(B)}.$$

Věta (o podmíněné pravděpodobnosti) Platí, že P(.|B) je opět pravděpodobnostní míra na Ω .

Věta (o násobení pravděpodobností) Necht $A_0, \ldots, A_n \in \mathcal{A}$ takové, že $P(A_0 \cap \ldots \cap A_n) > 0$. Pak platí

$$\mathsf{P}(A_0 \cap A_1 \cap \ldots \cap A_n) = \mathsf{P}(A_0) \cdot \mathsf{P}(A_1 | A_0) \cdot \ldots \cdot \mathsf{P}(A_n | A_0 \cap \ldots \cap A_{n-1}).$$

Zde je vhodné znát důkaz.

Věta (o celkové pravděpodobnosti) Buď $P(\bigcup_n B_n) = 1$, kde $\{B_n\}_n$ je konečná nebo spočetná posloupnost navzájem se vylučujících jevů a $P(B_n) > 0 \ \forall n$ a $A \in \mathcal{A}$. Pak

$$P(A) = \sum_{n} P(A|B_n) \cdot P(B_n).$$

Zde je vhodné znát důkaz.

Věta (Bayesova) Buď $P(\bigcup_n B_n) = 1$, kde $\{B_n\}_n$ je konečná nebo spočetná posloupnost navzájem se vylučujících jevů a $P(B_n) > 0 \ \forall n \ a \ A \in \mathcal{A} : \ P(A) > 0$. Pak $\forall m$ platí

$$P(B_m|A) = \frac{P(A|B_m) \cdot P(B_m)}{\sum_n P(A|B_n) \cdot P(B_n)}.$$

Zde je vhodné znát důkaz.

Věta (o nezávislosti a podmíněné pravděpodobnosti) Necht A a B jsou nezávislé jevy, pak jsou nezávislé i A a B^C a platí P(A|B) = P(A), je-li P(B) > 0.

Definice Definujeme

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k, \text{ a } \liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Tyto limity jsou také jevy.

Věta (o doplňku limes inferior a limes superior) Platí

$$\left(\limsup_{n\to\infty} A_n\right)^C = \liminf_{n\to\infty} A_n^C.$$

Věta (Cantelliho) Nechť $\{A_n\}_{n=1}^{\infty}$ je posloupnost jevů taková, že $\sum_{n=1}^{\infty} \mathsf{P}(A_n) < \infty$. Potom $\mathsf{P}(\limsup_{n \to \infty} A_n) = 0$. Zde je vhodné znát důkaz.

Věta (Borelova) Necht $\{A_n\}_{n=1}^{\infty}$ je posloupnost nezávislých jevů. Pak

$$\sum_{n=1}^{\infty} \mathsf{P}(A_n) < \infty \Rightarrow \mathsf{P}(\limsup_{n \to \infty} A_n) = 0,$$

$$\sum_{n=1}^{\infty} \mathsf{P}(A_n) = \infty \Rightarrow \mathsf{P}(\limsup_{n \to \infty} A_n) = 1.$$

3.1.2 Náhodná veličina, náhodný vektor a jejich rozdělení, charakteristiky (střední hodnota, rozptyl, varianční matice, korelace atd.)

Definice Měřitelná funkce $X:(\Omega,\mathcal{A})\to(\mathbb{R},\mathcal{B})$ je *náhodná veličina*. Důležité vědět, proč musí být ta funkce měřitelná - protože potom je borelovská funkce náhodné veličiny také náhodná veličina, tj. součet, rozdíl, podíl, součin, infimum, supremum, limes inferior, limes superior atd.

Definice σ -algebra indukovaná náhodnou veličinou X je

$$\sigma\{X\} = \sigma\{\{X \leq x\}, x \in \mathbb{R}\}, \text{ tedy } \sigma\{X\} = \{\{X \in B\}, B \in \mathcal{B}\}.$$

Definice Distribuční funkce náhodné veličiny X je $F_X(x) = P(X \le x)$.

Věta (vlastnosti distribuční funkce) Platí

- i. F_X je neklesající,
- ii. $\lim_{x\to\infty} F_X(x) = 1$ a $\lim_{x\to-\infty} F_X(x) = 0$,
- iii. F_X je zprava spojitá.

Věta (o existenci distribuční funkce) Má-li funkce F vlastnosti i.-iii., pak existuje pravděpodobnostní prostor a náhodná veličina X tak, že $F_X = F$.

Definice Lebesgueova-Stieltjesova míra indukovaná X je

$$\mu_F((a,b)) = F_X(b) - F_X(a).$$

Věta (Distribuční funkce a míra) Platí

$$P(X \in B) = \mu_F(B) = \int_B \mathrm{d}\mu_F$$

 $\forall B \in \mathcal{B}.$

Věta (o přenosu integrace) Platí

$$\int_{\Omega} \Phi(X(\omega)) d \mathsf{P}(\omega) = \int_{\mathbb{R}} \Phi(x) d\mu_F(x).$$

Věta (o obecné hustotě) Je-li míra μ_F absolutně spojitá vzhledem k σ -konečné míře ν definované na (\mathbb{R},\mathcal{B}) , pak existuje nezáporná měřitelná funkce f taková, že

$$\mu_F(B) = \int_B f(x) d\nu(x).$$

Definice Distribuční funkce F se nazývá diskrétní, existuje-li konečná nebo spočetná posloupnost reálných čísel $\{x_n\}_{n\in\mathbb{N}_0}$ a odpovídající posloupnost kladných čísel $\{p_n\}_{n\in\mathbb{N}_0}$, že $\sum_{n\in\mathbb{N}_0p_n}=1$ a

$$F(x) = \sum_{n \in \mathbb{N}_0, \ x_n \le x} p_n,$$

 $\forall x \in \mathbb{R}.$

Definice Distribuční funkce F se nazývá absolutně spojitá, existuje-li nezáporná borelovsky měřitelná funkce <math>f taková, že

$$F(x) = \int_{-\infty}^{x} f(t) dt,$$

 $\forall x \in \mathbb{R}$. Pak se f nazývá hustota.

Věta (hustoty a pravděpodobnost) Pro diskrétní náhodnou veličinu platí

$$P(X \in B) = \sum_{n \in \mathbb{N}_0, \ x_n \in B} p_n.$$

A pro spojitou náhodnou veličinu platí

$$P(X \in B) = \int_{B} f(t)dt,$$

 $\forall B \in \mathcal{B}.$

Věta (vztah hustot a distribuční funkce) Hustota je určena jednoznačně a platí F' = f skoro všude.

Definice Střední hodnota je definována jako

$$\mathsf{E} X = \int_{\Omega} X \mathrm{d} \mathsf{P}$$
.

Věta (vlastnosti střední hodnoty) Platí

i.
$$E[aX + b] = a E X + b$$
,

ii.
$$E[X + Y] = EX + EY$$
,

iii.
$$P(X \ge 0) = 1 \Rightarrow E X \ge 0$$
,

iv. $X \in \mathcal{L}_1 \Rightarrow |X| \in \mathcal{L}_1$ (tj. mají konečnou střední hodnotu).

Věta (střední hodnota a hustoty) Pro diskrétní náhodnou veličinu platí

$$\mathsf{E}\ \Phi(X) = \sum_{n \in \mathbb{N}_0} \Phi(x_n) p_n,$$

pro spojitou náhodnou veličinu platí

$$\mathsf{E}\ \Phi(X) = \int_{-\infty}^{\infty} \Phi(x) f(x) \mathrm{d}x.$$

Definice Definujeme

• n- $t\acute{y}$ moment jako E X^n ,

- n-tý absolutní moment jako $E |X|^n$,
- n-tý centrální moment jako $E(X EX)^n$,
- n-tý absolutní centrální moment jako $E |X E X|^n$,
- rozptyl jako var $X = \mathsf{E}(X \mathsf{E}X)^2$,
- momentovou vytvořující funkci jako $\psi(t) = \mathsf{E} \ e^{tX}$.

Věta (vlastnosti rozptylu) Platí

- i. $var(aX + b) = a^2 var X$,
- ii. $\operatorname{var} X = \operatorname{\mathsf{E}} X^2 \left(\operatorname{\mathsf{E}} X\right)^2$.

Věta (o momentové vytvořující funkci) Necht $\psi(t) = \mathsf{E} \ e^{tX} < \infty \ \mathrm{pro} \ |t| < t_0$. Pak $\mathsf{E} \ |X|^r < \infty \ \forall r > 0$ a platí

$$\frac{\partial^r \psi(t)}{\partial t^r}\Big|_{t=0} = \mathsf{E} \; X^r,$$

pro r = 1, 2, ...

Definice Měřitelné zobrazení $X:(\Omega,\mathcal{A})\to(\mathbb{R}^n,\mathcal{B}^n)$ je $(n\text{-rozměrn}\acute{y})$ náhodn \acute{y} vektor.

Věta (o transformaci náhodného vektoru) Nechť je zobrazení $\Phi: (\mathbb{R}^n, \mathcal{B}^n) \to (\mathbb{R}^m, \mathcal{B}^m)$ měřitelné. Pak $\Phi(X)$ je m-rozměrný náhodný vektor.

Definice Distribuční funkce náhodného vektoru $X=(X_1,\ldots,X_n)$ je

$$F_X(x_1,...,x_n) = P(\bigcap_{i=1}^n \{X_i \le x_i\}).$$

Definice Marginální distribuční funkce je $F_{X_{i_1},...,X_{i_k}} \ \forall \{i_i,...,i_k\} \in \{1,2,...,n\}.$

Věta (o marginální distribuční funkci) Platí

$$\lim_{x_n \to \infty} F_{X_1, \dots, X_n}(x_1, \dots, x_n) = F_{X_1, \dots, X_{n-1}}(x_1, \dots, x_{n-1}).$$

Věta (vlastnosti distribuční funkce II.) Platí

- i. $\lim_{x_i \to \infty} \forall_i F_X(x_1, \dots, x_n) = 1$,
- ii. $\lim_{x_i \to -\infty} F_X(x_1, \dots, x_n) = 0, \forall i \ \forall x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n,$
- iii. F_X je zprava spojitá v každé proměnné,

iv. platí

$$\sum_{k=0}^{n} (-1)^k \sum_{\delta \in \Delta_{n,k}} F_X(\delta) \ge 0,$$

kde $\Delta_{n,k}$ je množina $\binom{n}{k}$ n-tic, že z_i je rovno buď a_i nebo b_i , kde možnost $z_i = a_i$ nastává k-krát.

Věta (o existenci pro distribuční funkce) Má-li funkce $F: \mathbb{R}^n \to \mathbb{R}$ vlastnosti i.-iv. pak existuje pravděpodobnostní prostor $(\Omega, \mathcal{A}, \mathsf{P})$ a n-rozměrný náhodný vektor X tak, že $F_X = F$.

Diskrétní & spojitou distribuční funkci znovu definovat nebudu, je to stejné jako v tom jednorozměrném basically. Hustota stejně.

Definice Marginální hustota f_i je $\int_{\mathbb{R}^{n-1}} f(t_1, \dots, t_n) dt_1 \dots dt_{i-1} dt_{i+1} \dots dt_n$.

Věta (momenty transformovaného náhodného vektoru) Nechť E $|\Phi(X)| < \infty$. Pak E $\Phi(X) = \int_{\mathbb{R}^n} \Phi(x) dF(x)$, tj. pro spojité

$$\mathsf{E}\ \Phi(X) = \int_{\mathbb{R}^n} \Phi(x) f(x) \mathrm{d}x,$$

a pro diskrétní

$$\mathsf{E}\ \Phi(X) = \sum_{n \in \mathbb{N}_0} \Phi(x_n) p_n.$$

Definice Podmíněná hustota náhodného vektoru se spojitým rozdělením a hustotou f při $B \in \sigma(X)$, P(B) > 0 je

$$f_{X|B}(y) = \frac{1}{\mathsf{P}(B)} f_X(y) \mathbb{I}_C(y),$$

kde $C \in \mathcal{B}^p$ takové, že $B = [X \in C]$.

Definice Necht E $X^2<\infty$ a E $Y^2<\infty.$ Definujeme

- kovarianci cov(X,Y) = E(X EX)(Y EY),
- korelaci

$$\operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var}X}\sqrt{\operatorname{var}Y}}.$$

Definice Nechť $X=(X_1,\ldots,X_n)$ je náhodný vektor, E $X_i^2<\infty$ $\forall i$. Definujeme

- varianční matici jakožto matici s prvky $cov(X_i, X_j)$,
- korelační matici jakožto matici s prvky $corr(X_i, X_j)$.

Platí $cov(X_i, X_i) = var X_i$ a $corr(X_i, X_i) = 1$.

Věta (charakteristiky pro nezávislé) Nechť jsou složky náhodného vektoru nezávislé. Pak platí

- $\mathsf{E} X_i X_j = \mathsf{E} X_i \mathsf{E} X_j$,
- $\operatorname{cov}(X_i, X_j) = 0$,
- $\operatorname{var}\{\sum_{i=1}^{n} a_i X_i\} = \sum_{i=1}^{n} a_i^2 \operatorname{var} X_i$.

Definice Nekorelované veličiny jsou takové, pro které platí cov(X,Y) = 0. Nekorelované veličiny nemusí být nezávislé.

Věta (vlastnosti varianční matice) Platí

- i. je symetrická a pozitivně definitní,
- ii. $var\{a + BX\} = BvarXB^T \forall B \text{ konstantní},$
- iii. $|cov(X_i, X_j)| \leq \sqrt{var X_i \cdot var X_j}$
- iv. má-li vektor nezávislé složky, pak je varianční matice diagonální,
- v. Je-li varX singulární, pak existuje $(a_1,\ldots,a_{n+1})\neq 0$ taková, že

$$\sum_{i=1}^{n} a_i X_i = a_{n+1} \text{ s.j.}$$

3.1.3 Charakteristická funkce a její použití, nezávislost náhodných veličin a vektorů

Definice Nechť $\{X_{\lambda}, \lambda \in \Lambda\}$ je systém náhodných veličin na $(\Omega, \mathcal{A}, \mathsf{P})$. Řekneme, že tento systém je nezávislý, pokud pro každou konečnou podmnožinu $\{\lambda_1, \ldots, \lambda_n\} \subseteq \Lambda$ platí

$$F_{X_{\lambda_1},\dots,X_{\lambda_n}}(x_1,\dots,x_n) = \prod_{i=1}^n F_{\lambda_i}(x_i),$$

 $\forall (x_1, \dots, x_n)^T \in \mathbb{R}^n.$

Věta (o nezávislosti) Náhodné veličiny X_1, \ldots, X_n jsou nezávislé právě tehdy, když

$$F_{X_1,...,X_n}(x_1,...,x_n) = \prod_{i=1}^n F_j(x_j),$$

a pak i $\{X_i \in B_i\}$, $B_i \in \mathcal{B}$ jsou nezávislé.

Věta (o nezávislosti pro spojité a diskrétní) Nechť $X=(X_1,\ldots,X_n)^T$ je

• absolutně spojitý náhodný vektor s hustotou f_X a X_i má hustotu f_i . Složky tohoto vektoru jsou nezávislé právě tehdy, když

$$f_X(x_1, \dots, x_n) = \prod_{i=1}^n f_i(x_i),$$

pro skoro všechny $x \in \mathbb{R}^n$,

 diskrétní náhodný vektor. Složky tohoto vektoru jsou nezávislé právě tehdy, když

$$P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n P(X_i = x_i).$$

Věta (o transformaci nezávislých) Nechť $\{X_{\lambda}, \lambda \in \Lambda\}$ jsou nezávislé. Pak $\{Y_{\lambda}, \lambda \in \Lambda\}$, kde $Y_{\lambda} = \Phi_{\lambda}(X_{\lambda})$ jsou také nezávislé.

Věta (střední hodnota nezávislých) Nechť X_1, \ldots, X_n jsou nezávislé. Pak platí

$$\mathsf{E} \prod_{i=1}^n X_i = \prod_{i=1}^n \mathsf{E} \ X_i.$$

Definice Nechť $X=(X_1,\ldots,X_n)$ je reálný náhodný výběr. *Charakteristická funkce* tohoto vektoru je

 $\hat{P}_X(t) = \mathsf{E}\left[e^{i\langle t, X\rangle}\right],$

kde $t \in \mathbb{R}^n$.

Věta (o charakteristické funkci a rozdělení) Charakteristická funkce určuje rozdělení náhodného vektoru.

Věta (vlastnosti charakteristické funkce) Platí

- i. $|\hat{P}_X(t)| \le 1 = \hat{P}_X(0)$,
- ii. $\hat{P}_X(t) = \overline{-\hat{P}_X(t)}$,
- iii. charakteristická funkce je stejnoměrně spojitá v \mathbb{R}^k ,
- iv. charakteristická funkce je reálná právě tehdy, když platí $\hat{P}_X = \hat{P}_{-X}$,
- v. Platí $\hat{P}_{b+AX}(t) = e^{i\langle b,t\rangle} \hat{P}_X(At)$.

Věta (charakteristická funkce a nezávislost) Složky vektoru X jsou nezávislé právě tehdy, když

$$\hat{P}_X(t) = \prod_{j=1}^k \hat{P}_{X_j}(t_j).$$

Věta (charakteristická funkce a konvergence v distribuci) Necht $X^{(n)} \xrightarrow{d} X$, pak

$$\lim_{n \to \infty} \hat{P}_{X^{(n)}}(t) = \hat{P}_X(t),$$

 $\forall t \in \mathbb{R}^k$.

Věta (charakteristická funkce a konvergence v distribuci II.) Nechť $\lim_{n\to\infty} \hat{P}_{X^{(n)}}(t) = \xi(t) \ \forall t \in \mathbb{R}^k$. Je-li funkce ξ spojitá v 0, pak existuje X takové, že $X^{(n)} \xrightarrow{d} X$ a $\xi = \hat{P}_X$.

Důsledek Ekvivalence mezi těma větama.

Věta (charakteristická funkce součtu) Necht X_1, \ldots, X_n jsou iid, pak $Y = \sum_{i=1}^n X_i$ má charakteristickou funkci $\left[\hat{P}_{X_1}(t)\right]^n$.

3.1.4 Základní jedno- i mnohorozměrná diskrétní a spojitá rozdělení

Diskrétní rozdělení

Alternativní rozdělení: platí $P(X=1)=p, P(X=0)=1-p, p\in (0,1),$ E $X=p, \operatorname{var} X=p(1-p).$

Binomické rozdělení: je součet alternativních rozdělení,

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, k = 0, 1, \dots, n, p \in (0, 1),$$

$$\mathsf{E} \ X = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k} = np \sum_{k=1}^n \frac{(n-1)!}{(k-1)!(n-k)!} p^{k-1} (1-p)^{n-k} = np (p+(1-p))^{n-1} = np,$$

$${\rm var}X = \mathsf{E}\; X^2 - (\mathsf{E}\; X)^2 = \mathsf{E}\; X(X-1) + \mathsf{E}\; X - (\mathsf{E}\; X)^2 = n(n-1)p^2 + np - n^2p^2 = np(1-p),$$

$$\mathsf{E}\ X(X-1) = \sum_{k=2}^n k(k-1) \binom{n}{k} p^k (1-p)^{n-k} = n(n-1) p^2 \sum_{j=0}^{n-2} \binom{n-2}{j} p^j (1-p)^{n-2-j} = n(n-1) p^2.$$

Multinomické rozdělení: je rozdělení náhodného vektoru

$$X = (X_1, \dots, X_K)^T \sim \text{Mult}_K(n, \boldsymbol{p}), \text{ kde } \boldsymbol{p} = (p_1, \dots, p_K), \sum_{i=1}^K p_i = 1 \text{ a plat}$$
í

$$P(X_1 = x_1, \dots, X_K = x_K) = \frac{n!}{x_1! \cdots x_K!} p_1^{x_1} \cdot \dots \cdot p_K^{x_K},$$

kde $\sum_{i=1}^{K} x_i = n, x_i \in \mathbb{N}_0.$

Je to rozdělení počtu přiřazení do každé z K možných přihrádek v n nezávislých experimentech.

Platí $X = \sum_{i=1}^{n} Y_i$, kde $Y_i \sim \text{Mult}_K(1,p)$.

Platí $X_i \sim \text{Bi}(n, p_i)$, proto $\mathsf{E}\ X_i = n p_i$.

Platí
$$cov(X_i, X_j) = -np_i p_j$$
.

$$varX = \begin{bmatrix} np_1(1-p_1) & & & & \\ & \ddots & & -np_ip_j & \\ & & \ddots & & \\ & & -np_ip_j & & \ddots & \\ & & & np_K(1-p_K) \end{bmatrix}$$

Poissonovo rozdělení: Platí

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!},$$

kde $k = 0, 1, 2, \dots$ a $\lambda > 0$ je parametr.

Platí E $X = \lambda$, var $X = \lambda$.

Poissonovo rozdělení se používá k aproximaci binomického rozdělení pro $n \to \infty$.

Spojitá rozdělení

Exponenciální rozdělení: má hustotu

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{pokud } x > 0, \ \lambda > 0, \\ 0, & \text{jinak.} \end{cases}$$

Platí

$$\mathsf{E} \; X = \int_0^\infty x \lambda e^{-\lambda x} \mathrm{d}x = \lambda \frac{\Gamma(2)}{\lambda^2} = \frac{1}{\lambda},$$

$$\mathsf{E} \; X^2 = \lambda \frac{\Gamma(3)}{\lambda^3} = \frac{2}{\lambda^2}.$$

Hence var $X = \frac{1}{\lambda^2}$.

Používá se jako model pro náhodnou dobu čekání na nějakou událost. Má vlastnost ztráty paměti:

$$P(X > x + y | X > y) = \frac{P(X > x + y)}{P(X > y)} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t} = P(T > t).$$

Normální rozdělení: má hustotu

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

 $\mu \in \mathbb{R}, \ \sigma^2 > 0.$

Platí E $X = \mu$, var $X = \sigma^2$.

Má nulový koeficient šikmosti,

$$\frac{\mathsf{E}(X-\mathsf{E}X)^3}{\sigma^3}$$
,

i špičatosti,

$$\frac{\mathsf{E}(X-\mathsf{E} X)^4}{\sigma^4} - 3.$$

Charakteristická funkce normálního rozdělení je $e^{i\mu t - \frac{1}{2}\sigma^2 t^2}$

Pokud $Y \sim N(0,1)$, tak $X := \sigma Y + \mu$ má rozdělení $N(\mu, \sigma^2)$.

Hustota normálního rozdělení je symetrická a pro distribuční funkci platí $\Phi(-x) + \Phi(x) = 1.$

Vícerozměrné normální rozdělení: má hustotu

$$f(x) = \frac{1}{(2\pi)^{\frac{k}{2}} \sqrt{\det \Sigma}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)},$$

kde $\mathsf{E}\ X = \mu$, var $X = \Sigma$ a Σ musí být regulární a pozitivně semidefinitní. Pokud $\mathbb{Z} = (Z_1, \dots, Z_n)$, kde $Z_i \sim N(0,1)$. Pak $X = \mu + A\mathbb{Z}$, kde $\Sigma = AA^T$, Pokud

$$\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix},$$

pak $X_1 \sim N_k(\mu_1, \Sigma_{11})$, kde X_1 je prvních k složek vektoru X a μ_1 je prvních ksložek vektoru μ .

Pokud vektory X_1 a X_2 mají sdružené normální rozdělení, tak každý z nich má také normální rozdělení.

Označme X_2 posledních n-k složek vektoru X. Pokud Σ_{12} a Σ_{21} jsou nulové, tak X_1 a X_2 jsou nezávislé (tj. nekorelovanost implikuje nezávislost). Pokud $X \sim N_n(\mu, \Sigma)$, pak $BX \sim N_q(B\mu, B\Sigma B^T)$.

 χ^2 rozdělení: Necht $X_1,\ldots,X_n\sim \mathrm{N}(0,1)$ iid. Pak $Y:=\sum_{i=1}^n X_i^2$ má χ_n^2 . Platí E $X_i^2=1\Rightarrow$ E $Y=\sum_{i=1}^n 1=n$ a E $X_i^4=3\Rightarrow=3n-n=2n$. Hustota χ_1^2 se počítá následujícím způsobem:

 $G(y) = \frac{1}{\sqrt{2\pi}} \int_{x^2 \le y} e^{-\frac{x^2}{2}} dx = \frac{2}{\sqrt{2\pi}} \int_0^{\sqrt{y}} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_0^y z^{-\frac{1}{2}} e^{-\frac{z}{2}} dz,$

tedy hustota je $g(y) = 1/\sqrt{2\pi z} \cdot e^{-\frac{z}{2}}$.

Hustota χ^2_2 se počítá pomocí konvoluce:

$$g_2(y) = \int_{-\infty}^{\infty} g_1(y-z)g_1(z)dz = \frac{1}{2\pi} \int_0^{\infty} \frac{1}{\sqrt{z}} \frac{1}{\sqrt{y-z}} e^{-\frac{z}{2}} e^{-\frac{y-z}{z}} dz = \frac{e^{-\frac{y}{2}}}{2\pi} \int_0^{\infty} \frac{1}{\sqrt{z(y-z)}} dx.$$

Platí $\chi_n^2 \xrightarrow[n \to \infty]{d} N(n,2n)$ z centrální limitní věty.

Použití: testy rozptylů, teorie maximální věrohodnosti, testy dobré shody.

Studentovo rozdělení: Nechť $U \sim N(0,1), V \sim \chi_n^2$ pak

$$X := \frac{U}{\sqrt{V}} \sqrt{n} \sim t_n^2.$$

Platí, že t_1^2 je Cauchyho rozdělení. Platí E X=0 a var $X=\frac{k}{k-2},$ kde $k\geq 3,$ jinak var $X=\infty.$

Hustota je symetrická.

Hustotu dostaneme následujícím postupem

- volbou $\phi(x) = \sqrt{x}$ do věty o přenosu integrace dostaneme hustotu \sqrt{V} ,
- $\sqrt{n}U$ má rozdělení N(0,n),
- dál podle věty o hustotě $X_1 \cdot X_2$.

Platí $t_n \to N(0,1)$, protože platí $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p} 1 \Rightarrow \sqrt{\frac{V}{n}} \xrightarrow{p} 1$. Použití: testy o střední hodnotě.

Fisherovo-Snedecorovo rozdělení: Něchť $Y_1 \sim \chi_n^2$ a $Y_2 \sim \chi_m^2$ pak

$$F = \frac{Y_1 \cdot \frac{1}{n}}{Y_2 \cdot \frac{1}{m}} \sim F_{n,m},$$

má Fisherovo-Snedecorovo rozdělení s n a m stupni volnosti. Hustotu dostaneme pomocí formule pro transformaci hustoty X na hustotu a+bX, zde pro $a=0,\,b=\frac{1}{n}$ na zjištění hustoty $\frac{1}{n}Y_i$. Hustota a+bX je

$$\frac{1}{|b|}f\Big(\frac{y-a}{b}\Big),$$

a z toho podle věty o hustotě $X_1 \cdot X_2$. Použití: srovnáni rozptylů, analýza rozptylu.

3.1.5 Transformace náhodné veličiny a náhodného vektoru

Věta (o hustotě náhodné veličiny) Nechť $X \sim f_X(x)$ a nabývá hodnot z intervalu (a,b) skoro jistě. Je-li $\varphi \in C^1(a,b), \varphi'(x) \neq 0$ s oborem hodnot (c,d). Pak $X := \varphi(X)$ má spojité rozdělení s hustotou

$$f_Y(y) = f_X(\varphi^{-1}(y)) \cdot \left| \frac{\partial \varphi^{-1}(y)}{\partial y} \right| \cdot \mathbb{I}_{(c,d)}(y).$$

Věta (vícerozměrná o hustotě náhodné veličiny) Nechť $\mathbb X$ má hustotu $f_X(x)$ a nabývá hodnot v otevřené množině $G\subseteq \mathbb R^k$ skoro jistě. Je-li $\varphi\in C^1(G)$ prosté regulární zobrazení, $J_{\varphi}(x)\neq 0$ na G s oborem hodnot H. Pak $\mathbb Y=\varphi(\mathbb X)$ má spojité rozdělení s hustotou

$$f_Y(y) = f_X(\varphi^{-1}(y)) \cdot \left| J_{\varphi^{-1}}(y) \right| \cdot \mathbb{I}_H(y).$$

Postup výpočtu rozdělení po transformaci $\mathbb{R}^n \to \mathbb{R}$: Buď $t: \mathbb{R}^k \to \mathbb{R}$ hladká měřitelná funkce, buď $X = (X_1, \dots, X_k)$. Zvolíme vhodnou transformaci $g: \mathbb{R}^k \to \mathbb{R}^k$ tak, aby $g_1(x) = t(x)$ a g splňovala předpoklady vícerozměrné věty o transformaci. Dopočítáme hustotu Y = g(X) a najdeme marginální hustotu $Y_1 = t(X)$ integrací.

Věta (o konvoluci) Nechť X a Y jsou nezávislé náhodné veličiny, X má hustotu f_X vzhledem k μ_1 a Y má hustotu f_Y vzhledem k míře μ_2 . Pak Z = X + Y má distribuční funkci

$$F_Z(z) = \int_{-\infty}^{\infty} f_Y(y) F_X(z-y) d\mu_2(y) = \int_{-\infty}^{\infty} f_X(x) F_Y(z-x) d\mu_1(x).$$

Jsou-li spojité, pak Z má hustotu

$$f_Z(z) = \int_{-\infty}^{\infty} f_Y(y) f_X(z-y) dy = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx.$$

Jsou-li diskrétní, pak platí

$$\mathsf{P}\left[Z=z\right] = \sum_{y \in S_Y} \mathsf{P}\left[Y=y\right] \cdot \mathsf{P}\left[X=z-y\right] = \sum_{x \in S_X} \mathsf{P}\left[X=x\right] \mathsf{P}\left[Y=z-x\right].$$

Zde je vhodné znát důkaz.

3.1.6 Podmíněné rozdělení a podmíněná střední hodnota

Definice Nechť $X \in \mathcal{L}_1(\Omega, \mathcal{A}, \mathsf{P})$ a $\mathcal{F} \subset \mathcal{A}$ je σ -algebra. Pak podmíněná střední hodnota X při \mathcal{F} je náhodná veličina $Y = \mathsf{E}[X|\mathcal{F}]$ splňující

i.
$$Y \in \mathcal{L}_1(\Omega, \mathcal{F}, \mathsf{P}|_{\mathcal{F}}),$$

ii. $\forall B \in \mathcal{F}$ platí $\int_B Y dP = \int_B X dP$.

Dále definujeme $\mathsf{E}[X|Y] = \mathsf{E}[X|\sigma(Y)].$

Věta (vlastnosti podmíněné střední hodnoty) Nechť $X,Y \in \mathcal{L}_1(\Omega,\mathcal{A},\mathsf{P})$ a nechť $\mathcal{C} \subset \mathcal{F} \subset \mathcal{A}$ jsou σ -algebry. Pak platí

- i. $\forall a,b,c \in \mathbb{R}$ platí $\mathsf{E}[aX+bY+c|\mathcal{F}] = a\,\mathsf{E}[X|\mathcal{F}] + b\,\mathsf{E}[Y|\mathcal{F}] + c$ skoro jistě,
- ii. pokud $X \leq Y$ skoro jistě, pak $\mathsf{E}\left[X|\mathcal{F}\right] \leq \mathsf{E}\left[Y|\mathcal{F}\right]$ skoro jistě,
- iii. platí $\mathsf{E}\left(\mathsf{E}\left[X|\mathcal{F}\right]\right) = \mathsf{E}\left[X,\right]$
- iv. pokud $\sigma(X)\subseteq\sigma(Z)$ pak $\mathsf{E}\left[X|Z\right]=\mathsf{E}\left[X\right]$ skoro jistě,
- v. nechť X a Y jsou nezávislé (tj. $\sigma(Y)$ a $\sigma(X)$ jsou nezávislé), pak $\mathsf{E}\left[X|\mathcal{F}\right]=\mathsf{E}\left[X\right]$ skoro jistě,
- vi. platí $\mathsf{E}\left[\mathsf{E}[X|\mathcal{F}]\middle|\mathcal{C}\right] = \mathsf{E}\left[\mathsf{E}[X|\mathcal{C}]\middle|\mathcal{F}\right].$

Věta (podmínění jevem) Nechť $B \in \mathcal{A}$, P(B) > 0, pak platí

$$\mathsf{E}\left[X|B\right] = \frac{\mathsf{E}\left[X \cdot \mathbb{I}_{B}\right]}{\mathsf{P}(B)}.$$

Definice Podmíněné rozdělení náhodné veličiny $X:(\Omega,\mathcal{A})\to (S,\mathcal{S})$ při $Y:(\Omega,\mathcal{A})\to (H,\mathcal{H})$ je funkce $\mathsf{P}_{X|Y}$ splňující následující

- i. $\forall y \in H$ platí, že zobrazení $B \mapsto \mathsf{P}_{X|Y}(B|y)$ je pravděpodobnostní míra,
- ii. $\forall B \in \mathcal{S}$ platí, že zobrazení $y \mapsto \mathsf{P}_{X|Y}(B|y)$ je \mathcal{H} -měřitelné,
- iii. $\forall B \in \mathcal{S} \ \forall C \in \mathcal{H}$ platí

$$\int_C \mathsf{P}_{X|Y}(B|y) \mathrm{d}\, \mathsf{P}_Y(y) = \mathsf{P}(X \in B, Y \in C).$$

Věta (podmíněné rozdělení a podmíněná střední hodnota) Platí

$$\mathsf{E}\left[G(X,Y)|Y=y\right] = \int_S G(x,y) \mathrm{d}\,\mathsf{P}_{X|Y}(x|y).$$

Věta (o podmíněné hustotě) Necht μ a ν jsou σ -konečné míry na měřitelných prostorech (S,S) a (H,\mathcal{H}) a necht mají náhodné veličiny X a Y sdruženou hustotu $f_{X,Y}: (S\times H, \mathcal{S}\otimes \mathcal{H}) \to (\mathbb{R}_+, \mathbb{B}_+)$ vzhledem k $\mu\otimes\nu$. Potom Y má spojité rozdělení s hustotou

$$f_Y(y) = \int_S f_{X,Y}(x,y) d\mu(x).$$

Označme

$$f_{X|Y}(x|y) = \begin{cases} \frac{f_{X,Y}(x,y)}{f_Y(y)}, & \text{pro } f_Y(y) \neq 0, \\ 0, & \text{jinak.} \end{cases}$$

Pak $f_{X|Y}(x,y)$ je podmíněná hustota X při Y.

Věta (výpočet podmíněné střední hodnoty pomocí podmíněné hustoty) Nechť h je měřitelná funkce, pak platí

$$\mathsf{E}\left[h(X,Y)\middle|Y=y\right] = \int_{H} h(x,y)f(x|y)\mathrm{d}\nu(y).$$

Buď $\varphi(y)=\mathsf{E}\left[h(x,y)|Y=y\right]$. Pak $\varphi(Y)$ je podmíněná střední hodnota h(X,Y) při Y.

3.1.7 Typy konvergence náhodných veličin a vztahy mezi nimi, Čebyševova nerovnost, slabý a silný zákon velkých čísel, centrální limitní věta pro součet nezávislých stejně rozdělených náhodných veličin

Definice Řekneme, že $\{X_n\}_{n=1}^{\infty}$ konverguje skoro jistě k X, pokud

$$P(\lim_{n\to\infty} ||X_n - X|| = 0) = 1.$$

Definice Řekneme, že $\{X_n\}_{n=1}^{\infty}$ konverguje v pravděpodobnosti k X, pokud $\forall \epsilon > 0$ platí

$$\mathsf{P}(||X_n - X|| > \epsilon) = 0.$$

Věta (metrizovatelnost konvergencí) Konvergence skoro jistě metrizovatelná není. Zobrazení

$$\rho(X,Y) = \mathsf{E}\left[\frac{|X-Y|}{1+|X-Y|}\right]$$

je pseudometrika (tj. $\rho(X,Y)=0$ neimplikuje Y=X, ale Y=X skoro jistě) a platí $X_n \xrightarrow{p} X \Leftrightarrow \lim_{n\to\infty} \rho(X_n,X)=0$.

Definice Řekneme, že $\{X_n\}_{n=1}^{\infty}$ konverguje v distribuci k X, pokud

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

pro všechny body spojitosti funkce F_X .

Věta (vztahy konvergencí) Platí

- $X_n \xrightarrow{s.j.} X \Rightarrow X_n \xrightarrow{p} X$,
- $X_n \xrightarrow{p} X \Rightarrow$ existuje vybraná podposloupnost $\{X_{n_k}\}_{k \in \mathbb{N}}$ že platí $X_{n_k} \xrightarrow{s.j} X$,
- $X_n \xrightarrow{p} X \Rightarrow X_n \xrightarrow{d} X$.

Definice Řekneme, že posloupnost $\{X_n\}_n$ splňuje slabý zákon velkých čísel, pokud existuje reálná posloupnost $\{a_n\}_n$ taková, že

$$\lim_{n \to \infty} \mathsf{P}\left(\left| \overline{X}_n - a_n \right| > \epsilon\right) = 0.$$

Definice Řekneme, že posloupnost $\{X_n\}_n$ splňuje silný zákon velkých čísel, pokud existuje reálná posloupnost $\{a_n\}_n$ taková, že

$$\mathsf{P}\left(\lim_{n\to\infty}(\overline{X}_n - a_n) = 0\right) = 1.$$

Věta (Čebyševova nerovnost) Platí

• pokud $X \in \mathcal{L}_2(\Omega, \mathcal{A}, \mathsf{P})$ pak pro všechna $\epsilon > 0$ platí

$$\mathsf{P}(|X - \mathsf{E}|X| \ge \epsilon) \le \frac{\operatorname{var} X}{\epsilon^2},$$

• pokud $X \in \mathcal{L}_r(\Omega, \mathcal{A}, \mathsf{P}), r > 0$ pak pro všechna $\epsilon > 0$ platí

$$\mathsf{P}(|X| \ge \epsilon) \le \frac{\mathsf{E} |X|^r}{\epsilon^r}.$$

Věta (slabý zákon velkých čísel) Nechť je $\{X_n\}_n$ posloupnost nezávislých náhodných veličin taková, že

$$\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^n \operatorname{var} X_i = 0,$$

pak posloupnost $\{X\}_n$ splňuje slabý zákon velkých čísel s $a_n = E\overline{X}_n$. Zde je vhodné znát důkaz.

Věta (silný zákon velkých čísel pro nestejně rozdělené náhodné veličiny) Nechť $\{X_n\}_n$ je posloupnost nezávislých náhodných veličin. Buď E $X_n = \mu_n$, var $X_n = \sigma_n^2$. Nechť

$$\sum_{n=1}^{\infty} \frac{\sigma_n^2}{n^2} < \infty.$$

Pak

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} \mu_i \right) = 0$$

skoro jistě.

Věta (silný zákon velkých čísel pro stejně rozdělené náhodné veličiny) Necht $\{X_n\}_{n=1}^{\infty}$ je posloupnost stejně rozdělených nezávislých náhodných veličin. Pak

$$\frac{1}{n} \sum_{i=1}^{n} X_i \to \mu \text{ skoro jistě } \Leftrightarrow \mathsf{E} |X_1| < \infty$$

a $\mu = \mathsf{E} X_1$.

Věta (centrální limitní věta) Necht $\{X_n\}_{n=1}^{\infty}$ je posloupnost stejně rozdělených náhodných veličin. Necht $X_1 \in \mathcal{L}_3$ a var $X_1 > 0$. Pak

$$\frac{\sum_{i=1}^{n} X_i - n \cdot \mathsf{E} \ X_i}{\sqrt{n \operatorname{var} X_i}} \xrightarrow{d} \mathrm{N}(0,1),$$

tj.

$$\sqrt{n} \frac{\overline{X}_n - \mathsf{E} X_1}{\sqrt{\operatorname{var} X_1}} \xrightarrow{d} \mathrm{N}(0,1).$$

Věta (Centrální limitní věta na binomické rozdělení) Necht $Y_n \sim \text{Bi}(n,p)$ $\forall n \in \mathbb{N}$. Pak

$$\frac{Y_n - np}{\sqrt{np(1-p)}} \xrightarrow{d} N(0,1).$$

3.1.8 Cramérova-Sluckého věta

Věta (Cramérova-Sluckého) Nechť $X_n \xrightarrow{d} X$, $\mathbb{A}_n \xrightarrow{p} \mathbb{A}$ a $B_n \xrightarrow{p} b$, kde X_n a X jsou k-rozměrné náhodné vektory, \mathbb{A}_n náhodná matice $m \times k$, \mathbb{A} matice konstant $m \times k$, B_n náhodné m-rozměrné vektory a b m-rozměrný vektor konstant. Pak

$$\mathbb{A}_n X_n + B_n \xrightarrow{d} \mathbb{A} X + b.$$

3.2 Základy matematické statistiky

3.2.1 Náhodný výběr, uspořádaný náhodný výběr

Definice Posloupnost X_1, \ldots, X_n nezávislých stejně rozdělených náhodných veličin definovaných na $(\Omega, \mathbb{A}, \mathsf{P})$ s distribuční funkcí F_0 nazýváme náhodný výběr a n nazýváme rozsah náhodného výběru.

Definice Model pro pozorování X_1, \ldots, X_n je množina rozdělení \mathcal{F} , kam patří distribuční funkce F_0 .

Definice *Uspořádaný náhodný výběr* je náhodný výběr seřazený od nejmenší hodnoty po největší

$$X_{(1)} < X_{(2)} < \ldots < X_{(n-1)} < X_{(n)},$$

 $X_{(k)}$ se nazývá k-tá pořádková statistika. Pořadí je číslo R_i takové, že $X_i = X_{(R_i)}$.

Definice Položme

$$k_{\alpha} = \begin{cases} \alpha n, & \text{pokud } \alpha n \in \mathbb{N}, \\ \lfloor \alpha n \rfloor + 1, & \text{jinak.} \end{cases}$$

 $Výběrový kvantil \hat{u}_n(\alpha)$ je $X_{(k_\alpha)}$.

Věta (vlastnosti výběrových kvantilů) Nechť X_1, \ldots, X_n je náhodný výběr ze spojitého rozdělení s distribuční funkcí F_X , spojitou kvantilovou funkcí F_X^{-1} a hustotou f_X spojitou a nenulovou v okolí bodu $u_X(\alpha)$. Potom platí

- i. $\hat{u}_n(\alpha)$ je konzistentní odhad kvantilu $u_X(\alpha)$,
- ii. platí

$$\sqrt{n} \Big(\hat{u}_n(\alpha) - u_X(\alpha) \Big) \xrightarrow{d} \mathrm{N} \Big(0, \frac{\alpha(1-\alpha)}{f_X^2(u_X(\alpha))} \Big).$$

3.2.2 Bodové a intervalové odhady, nestrannost a konzistence odhadů

Definice Za model lze vzít množinu všech rozdělení s hustotou $f(x,\theta)$ $\theta \in \Theta \subset \mathbb{R}^p$, kde f je známá funkce a θ je neznámý parametr. Tyto modely nazýváme parametrické.

Definice Odhadem skutečného parametru $\theta_X = t(F_X)$ je libovolná měřitelná funkce dat $\hat{\theta}_n \equiv T_n(X) = T_n(X_1, \dots, X_n)$.

Definice Interval $B_n = B_n(X)$ se nazývá *intervalový odhad* parametru θ_X o spolehlivosti $1 - \alpha$ právě tehdy, když $\mathsf{P}[B_n \ni \theta_X] = 1 - \alpha$.

Interval B_n se nazývá asymptotický intervalový odhad θ_X o spolehlivosti $1 - \alpha$ právě tehdy, když $P[B_n \ni \theta_X] \to 1 - \alpha$ pro $n \to \infty$.

Definice Interval tvaru $(C_L(X), C_U(X))$, kde $C_L(X)$ a $C_U(X)$ jsou dvě náhodné veličiny splňující $\mathsf{P}[C_L(X) < C_U(X)] = 1, C_L(X) > -\infty, C_U(X) < \infty$, se nazývá oboustranný.

Intervaly tvaru $C_L(X),\infty$) a $(-\infty, C_U(X))$ nazýváme jednostranný (horní a dolní). Tam platí $\mathsf{P}[C_L(X) < \theta_X] = 1 - \alpha$ nebo $\mathsf{P}[C_U(X) > \theta_X] = 1 - \alpha$.

Definice Nechť $X=(X_1,\dots,X_n)$ náhodný výběr z $F_X\in\mathcal{F}$ a odhad $\hat{\theta}_n$ parametru θ_X pak

- i. řekneme, že odhad $\hat{\theta}_n$ je nestranný odhad θ_X v \mathcal{F} , pokud E $\hat{\theta}_n = \theta_n$, $\forall n \ \forall F_X \in \mathcal{F}$,
- ii. řekneme, že odhad $\hat{\theta}_n$ je konzistentní odhad θ_X v \mathcal{F} , pokud $\hat{\theta}_n \stackrel{p}{\to} \theta_X$, $n \to \infty \ \forall F_X \in \mathcal{F}$,
- iii. řekneme, že odhad $\hat{\theta}_n$ je asymptoticky nestranný odhad θ_X v \mathcal{F} , pokud $\lim_{n\to\infty} \mathsf{E} \ \hat{\theta}_n = \theta_X, \ \forall F_X \in \mathcal{F}$.

Definice Nechť odhad $\hat{\theta}_n$ má konečný rozptyl. Pak $SE(\hat{\theta}_n) = \sqrt{\text{var}(\hat{\theta}_n)}$ je směrodatná chyba.

Definice Definujeme výběrový průměr jako

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i,$$

a definujeme *výběrový rozptyl* jako

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Věta (vlastnosti výběrového průměru) Platí

i. E
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n E X_i = \frac{1}{n} \cdot n \cdot \mu = \mu$$
,

ii. $\overline{X}_n \xrightarrow{p} \mu$ ze silného zákona velkých čísel,

iii. $\sqrt{n}(\overline{X}_n-\mu) \xrightarrow{d} \mathcal{N}(0,\sigma^2)$ z centrální limitní věty,

iv. pokud jde o výběr z normálního rozdělení, pak $\overline{X}_n \sim N(\mu, \frac{\sigma^2}{n})$, protože

$$\sum_{i=1}^{n} a_i X_i \sim \mathcal{N}\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right),$$

pro $X_i \sim N(\mu_i, \sigma_i^2)$.

Věta (Vlastnosti výběrového rozptylu) Platí

i. E $S_n^2 = \sigma^2$,

ii. $S_n^2 \xrightarrow{p} \sigma^2$.

Zde se hodí znát důkaz.

Věta (vlastnosti výběrového rozptylu za normality) Nechť X_1, \dots, X_n je náhodný výběr z normovaného normálního rozdělení. Pak platí

i.

$$\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2,$$

ii. S_n^2 a \overline{X}_n jsou nezávislé.

Konkrétní odhady

Odhady střední hodnoty v normálním rozdělení: bodový odhad je \overline{X}_n , platí

$$\sqrt{n} \frac{\overline{X}_n - \mu}{S_n} \sim t_{n-1},$$

protože

$$T_n = \frac{\sqrt{n} \frac{\overline{X}_{n-\mu}}{\sigma}}{\sqrt{\frac{(n-1)S_n^2}{\sigma^2}}} \sqrt{(n-1)} \sim t_{n-1}.$$

Z toho plyne intervalový odhad

$$\left(\overline{X}_n - \frac{S_n}{\sqrt{n}}t_{n-1}(1 - \frac{\alpha}{2}), \overline{X}_n + \frac{S_n}{\sqrt{n}}t_{n-1}(1 - \frac{\alpha}{2})\right).$$

Tento interval lze použít i v situaci, kdy neznámé rozdělení má konečný druhý moment. Pak se jedná o asymptotický intervalový odhad.

Odhad rozptylu v normálním rozdělení: bodový odhad je S_n^2 , platí

$$\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2,$$

hence intervalový odhad

$$\left(\frac{(n-1)S_n^2}{\chi_{n-1}^2(1-\frac{\alpha}{2})}, \frac{(n-1)S_n^2}{\chi_{n-1}^2(\frac{\alpha}{2})}\right).$$

Odhad rozdílu středních hodnot v normálním rozdělení se shodným rozptylem: bodový odhad je $\overline{X}_n - \overline{Y}_m$, platí

$$\frac{\overline{X}_n - \overline{Y}_m - \delta}{\sqrt{S_{n,m}^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim t_{n+m-2},$$

kde

$$S_{n,m}^2 = \frac{n-1}{n+m-2}S_X^2 + \frac{m-1}{n+m-2}S_Y^2,$$

hence intervalový odhad

$$\left(\overline{X}_n - \overline{Y}_m - S_{n,m}\sqrt{\frac{1}{n} + \frac{1}{m}}t_{n+m-2}\left(1 - \frac{\alpha}{2}\right), \overline{X}_n - \overline{Y}_m + S_{n,m}\sqrt{\frac{1}{n} + \frac{1}{m}}t_{n+m-2}\left(1 - \frac{\alpha}{2}\right)\right).$$

Při porušení normality, pokud stále platí shodnost rozptylů, tak je interval spolehlivosti asymptotický, $T_{m,n} \to N(0,1)$.

Odhad podílu rozptylů v normálním rozdělení: Bodový je $S_X^2 \backslash S_Y^2$. Platí, že

$$\frac{S_X^2 \backslash \sigma_X^2}{S_Y^2 \backslash \sigma_Y^2} \sim \mathcal{F}_{n-1,m-1},$$

hence intervalový odhad

$$\bigg(\frac{S_X^2}{S_Y^2}\frac{1}{\mathcal{F}_{n-1,m-1}(1-\frac{\alpha}{2})},\frac{S_X^2}{S_Y^2}\frac{1}{F_{n-1,m-1(\frac{\alpha}{2})}}\bigg).$$

Odhad střední hodnoty u alternativního, Poissonova a exponenciálního rozdělení: Bodový je \overline{X}_n a platí

$$\sqrt{n} \frac{\overline{X}_n - \mu}{\sigma} \sim N(0,1)$$
 asymptoticky,

hence intervalový odhad

$$\left(\overline{X}_n - \frac{\sigma}{\sqrt{n}}u_{1-\frac{\alpha}{2}}, \overline{X}_n + \frac{\sigma}{\sqrt{n}}u_{1-\frac{\alpha}{2}}\right).$$

• Poissonovo rozdělení: $E X = \lambda$, pak

$$\mathbb{L}(\lambda) = \prod_{i=1}^{n} \frac{e^{-\alpha} \lambda^{X_i}}{X_i!} = \frac{e^{-n\lambda} \lambda^{\sum_{i=1}^{n} X_i}}{\prod_{i=1}^{n} (X_i!)},$$

$$\ell(\lambda) = -n\lambda + \sum_{i=1}^{n} X_i \cdot \log(\lambda),$$

a protože $\ell'(\lambda) = 0$ pak

$$\lambda = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n.$$

• Exponenciální rozdělení: E $X = \frac{1}{\lambda}$, pak

$$\mathbb{L}(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda X_i} = \lambda^n e^{-\lambda \sum_{i=1}^{n} X_i},$$

$$\ell(\lambda) = n \cdot \log(\lambda) - \lambda \sum_{i=1}^{n} X_i,$$

a protože $\ell'(\lambda) = 0$ pak

$$\lambda = \frac{1}{\overline{X}_n}.$$

• Alternativní rozdělení: $\mathsf{E} \ X = p, \, \mathsf{pak}$

$$\mathbb{L}(p) = \prod_{i=1}^{n} p^{X_i} (1-p)^{1-X_i} = p^{\sum_{i=1}^{n} X_i} (1-p)^{n-\sum_{i=1}^{n} X_i},$$

a protože $\ell'(\lambda) = 0$ pak

$$p = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n.$$

Odhad rozdílu středních hodnot v alternativním rozdělení: Bodový je $\overline{X}_n - \overline{Y}_m$, pak

$$\frac{\overline{X}_n - \overline{Y}_m - \delta}{\sqrt{\frac{\overline{X}_n(1 - \overline{X}_n)}{n}} + \frac{\overline{Y}_m(1 - \overline{Y}_m)}{m}} \xrightarrow{d} N(0,1),$$

protože to je

$$\frac{\sqrt{m}(\overline{X}_n - \overline{Y}_m - \delta)}{\sqrt{\overline{X}_n(1 - \overline{X}_n)\frac{m}{n} + \overline{Y}_m(1 - \overline{Y}_m)}}$$

a pomocí SZVČ a spojité transformace platí

$$\sqrt{\overline{X}_n(1-\overline{X}_n)\frac{m}{n}+\overline{Y}_m(1-\overline{Y}_m)} \xrightarrow{p} \sqrt{\frac{p_1(1-p_1)}{q}+p_2(1-p_2)},$$

pak stačí jen

$$\sqrt{m}(\overline{X}_n - \overline{Y}_m - \delta) \xrightarrow{d} N\left(0, \frac{p_1(1-p_1)}{q} + p_2(1-p_2)\right),$$

což plyne z

$$\sqrt{m} \begin{bmatrix} \overline{X}_n - p_1 \\ \overline{Y}_m - p_2 \end{bmatrix} \xrightarrow{d} \mathcal{N}_2 \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{p_1(1-p_1)}{q} & 0 \\ 0 & p_2(1-p_2) \end{bmatrix} \right).$$

Hence interval spolehlivosti

$$\left(\overline{X}_n - \overline{Y}_m - u_{1 - \frac{\alpha}{2}} \sqrt{\frac{\overline{X}_n (1 - \overline{X}_n)}{n} + \frac{\overline{Y}_m (1 - \overline{Y}_m)}{m}}, \overline{X}_n - \overline{Y}_m + u_{1 - \frac{\alpha}{2}} \sqrt{\frac{\overline{X}_n (1 - \overline{X}_n)}{n} + \frac{\overline{Y}_m (1 - \overline{Y}_m)}{m}}\right).$$

3.2.3 Empirická distribuční funkce

Definice Nechť X_1, \ldots, X_n je náhodný výběr. Pak

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{X_i \le x\}}$$

je empirická distribuční funkce.

Věta (vlastnosti empirické distribuční funkce) Platí

- i. je nestranný odhad distribuční funkce, E $\hat{F}_n(x) = F_X(x)$,
- ii. rozptyl empirické distribuční funkce je

$$\operatorname{var} \hat{F}_n(x) = \frac{F_X(x)[1 - F_X(x)]}{n},$$

iii. je bodově konzistentní, $\hat{F}_n(x) \xrightarrow{p} F_X(x)$,

iv.
$$\sqrt{n}(\hat{F}_n(x) - F_X(x)) \xrightarrow{d} N(0, F_X(x)[1 - F_X(x)]),$$

v.
$$n\hat{F}_n(x) \sim \text{Bi}(n, F_X(x))$$
,

vi. je silně konzistentní, $\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F_X(x) \right| \stackrel{p}{\to} 0.$

Zde je vhodné znát důkaz.

Kolmogorovův-Smirnovův test: Model: všechna spojitá rozdělení. $H_0: F_X(x) = F_0(x) \ \forall x \in \mathbb{R} \ \text{a} \ H_1: \ \exists x \in \mathbb{R}: \ F_X(x) \neq F_0(x).$ Testová statistika je

$$K_n = \sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F_0(x)| = \max(K_n^+, K_n^-),$$

kde

$$K_n^+ = \sup_{x \in \mathbb{R}} \left(\hat{F}_n(x) - F_0(x) \right) \text{ a } K_n^- = \sup_{x \in \mathbb{R}} \left(F_0(x) - \hat{F}_n(x) \right).$$

Platí $\sqrt{n} \sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F_X(x) \right| \xrightarrow{d} Z$, kde

$$Z \sim G(y) = \begin{cases} 1 - 2\sum_{i=1}^{n} (-1)^{k+1} e^{-2k^2 y^2}, & \text{pro y} > 0, \\ 0, & \text{jinak}, \end{cases}$$

P-hodnota je $p = 1 - G(\sqrt{n}k_n)$, kde k_n je realizace K_n . Počítá se

$$K_n^+ = \max_{1 \le i \le n} \left(\frac{i}{n} - F_0(X_{(i)}) \right)$$
 a $K_n^- = \max_{1 \le i \le n} \left(F_0(X_{(i)}) - \frac{i-1}{n} \right)$.

3.2.4 Principy testování hypotéz, Neymanovo-Pearsonovo lemma

Definice Parametrický prostor Θ rozdělme na $\Theta = \Theta_0 \cup \Theta_1$ disjunktní. Chceme vědět, zdali $\theta_X \in \Theta_0$, nebo $\theta_X \in \Theta_1$.

Nulová hypotéza je Θ_0 , alternativa je Θ_1 .

Definice Nechť $\mathcal{F}_0 = \{ F \in \mathcal{F} : t(F) \in \Theta_0 \}$ je množina všech rozdělení splňujících hypotézu. Je-li jednobodová, nazveme ji *jednoduchá hypotéza*. Má-li více prvků, nazveme hypotézu složená hypotéza.

Definice vhodně zvolená funkce dat S(X) je testová statistika.

Definice Množina C je kritický obor, pokud

- $S(X) \in C \Rightarrow \text{zamítáme } H_0$,
- $S(X) \notin C \Rightarrow$ nemůžeme zamítnout H_0 .

Definice Statistický test je daný testovou statistikou S(X) a kritickým oborem C. Řekneme, že dva testy (S(X),C) a $(S^*(X),C^*)$ jsou ekvivalentní, pokud $S(X) \in C \Leftrightarrow S^*(X) \in C^*$ skoro jistě.

Definice Chyba I. druhu je zamítnutí platné hypotézy. Chyba II. druhu je nezamítnutí neplatné hypotézy.

Definice Hladina testu je α , pokud

$$\sup_{F \in \mathcal{F}_0} \mathsf{P}_F \left[S(X) \in C \right] = \alpha.$$

Dále je α hladina testu *asymptoticky*, pokud

$$\sup_{F\in\mathcal{F}_0}\lim_{n\to\infty}\mathsf{P}_F\left[S(X)\in C\right]=\alpha.$$

Hladina testu je pravděpodobnost chyby I. druhu.

Definice Silofunkce je $\beta: \mathcal{F} \to \langle 0,1 \rangle$ definovaná

$$\beta(F) = \mathsf{P}_F \left[S(X) \in C \right].$$

Necht $F \in \mathcal{F}_1$ pak $\beta(F)$ je *síla testu* proti alternativě F,tj. pravděpodobnost zamítnutí neplatné hypotézy za F.

Definice Řekneme, že test je konzistentní, pokud $\forall F \in \mathcal{F}_1$ je $\lim_{n\to\infty} \beta(F) = 1$. Řekneme, že test je nestranný, pokud $\forall F \in \mathcal{F}_1$ je $\beta(F) \geq \alpha$.

Definice Necht $H_0: \theta_X = \theta_0, H_1: \theta_X \neq \theta_0$ a test (S(X),C) má kritický obor $\mathbb{R}\setminus\langle c_L,c_U\rangle$, kde $-\infty \leq c_L < c_U \leq \infty$. Necht x je realizace X a s_X je realizace S(X) a F_0 je distribuční funkce (i asymptotická) S(X) za H_0 . Pak P-hodnota test je

i.
$$p(x) = P_{\theta_0}[S(X) \ge s_X] = 1 - F_0(s_x)$$
, pokud $c_L = -\infty$,

ii.
$$p(x) = \mathsf{P}_{\theta_0} \left[S(X) \le s_X \right] = F_0(s_X)$$
, pokud $c_U = \infty$,

iii.

$$\begin{split} p(x) =& 2\min\left(\mathsf{P}_{\theta_0}[S(X) \leq s_X], \mathsf{P}_{\theta_0}[S(X) \geq s_X]\right) = \\ =& 2\min\left(1 - F_0(s_x -), F_0(s_X)\right), \end{split}$$

pokud c_L a c_U konečné a $F(c_L-)=1-F(c_U)=\frac{\alpha}{2}$.

Pro nejednobodovou hypotézu je to $\sup_{\theta \in \Theta_0} \mathsf{P}_{\theta}$.

Věta (o p-hodnotě a rozhodování) Nechť rozdělení S(X) je spojité. Pak

- H_0 zamítáme, jestliže $p(x) \le \alpha$,
- H_0 nezamítáme, jestliže $p(x) > \alpha$.

Volba testové statistiky: její rozdělení musí být citlivé na hodnotu testovaného parametru. Za H_0 má rozdělení nezávisející na neznámých parametrech - a je potřeba znát ho jen za H_0 , protože tam se počítá p-hodnota.

Volba kritického oboru: volí se tak, aby dosahoval hladiny (pomocí kvantilů). Jsou v něm hodnoty "spíš pravděpodobné"za alternativy. Invertování kritického oboru je, když zamítáme, pokud $X \in S^{-1}(C)$.

Věta (intervalové odhady a testování) Necht $H_0: \theta_X = \theta_0$ a $H_1: \theta_X \neq \theta_0$ a existuje oboustranný interval spolehlivosti pro θ_X na $1 - \alpha$ tvaru $C_L(X), C_U(X)$. Pak

- H_0 zamítáme, pokud $\theta_0 \notin (C_L(X), C_U(X)),$
- H_0 nezamítáme, pokud $\theta_0 \in (C_L(X), C_U(X))$

je test na hladině α .

Věta (Neymanovo-Pearsonovo lemma) Nechť $p_j(x), x \in \mathbb{R}^n, j = 0,1$ jsou hustoty P_{θ_k} vzhledem k μ . Nechť $\alpha \in (0,1)$, pak $\exists c > 0$ takové, že

$$W_0 = \{x : p_1(X) \ge cp_0(X)\} \text{ platí } \int_{W_0} p_0(X) d\mu(x) = \alpha.$$

Pro libovolnou $W \in \mathbb{B}^n$ splňující $\int_W p_0(x) \mathrm{d}\mu(x) = \alpha$ platí

$$\int_{W_0} p_1(x) d\mu(x) \ge \int_W p_1(x) d\mu(x).$$

Vysvětlení: θ_0 hypotéza, θ_1 alternativa. Říká, že test s kritickým oborem W_0 má nejmenší pravděpodobnost chyby II. druhu.

3.2.5 Fisherova informace, Rao-Cramérova věta, odhady metodou maximální věrohodnosti, asymptotické testy založené na maximální věrohodnosti

Definice Necht X_1, \ldots, X_n je náhodný výběr z rozdělení z parametrické třídy s hustotou $f(x,\theta), \theta \in \Theta$. Pak pro pevné x je sdružená hustota

$$\prod_{i=1}^{n} f(X_i, \theta)$$

jakožto funkce θ nazýváme *věrohodnost*, značíme $\mathbb{L}(\theta)$. Logaritmická věrohodnost je $\ell(\theta) = \log \mathbb{L}(\theta)$.

Definice Podmínky regularity jsou

- Θ je otevřená množina,
- $M = \{x: f(x,\theta) > 0\}$ nezávisí na θ ,
- $\forall \theta$ existuje

$$\frac{\partial f(x,\theta)}{\partial \theta} = f'(x,\theta) \text{ a } \int_M f'(x,\theta) d\mu(x) = 0,$$

• $\forall \theta$ existuje

$$\int_{M} \left(\frac{f'(x,\theta)}{f(x,\theta)} \right)^{2} f(x,\theta) d\mu(x) = J(\theta) < \infty,$$

se nazývá Fisherova informace, platí pro ni

$$J(\theta) = - \mathsf{E}_{\theta} \left(\frac{\partial^2 \log f(x, \theta)}{\partial \theta^2} \right),$$

• $\forall \theta$ existuje

$$\int_{M} \left[\frac{f'_{i}(x,\theta) \cdot f'_{j}(x,\theta)}{f^{2}(x,\theta)} \right] f(x,\theta) d\mu(x) = J_{ij}(\theta),$$

to je Fisherova informační matice.

Definice Model se nazývá *identifikovatelný*, pokud $f(x,\theta_1) = f(x,\theta_2)$ skoro všude právě tehdy, když $\theta_1 = \theta_2$.

Definice Skórová funkce je

$$u(x,\theta) = \frac{\partial \log f(x,\theta)}{\partial \theta} \equiv \frac{f'(x,\theta)}{f(x,\theta)}.$$

Definice $Maximálně věrohodný odhad <math>\theta$ je $\hat{\theta} = \operatorname{argmax}_{\theta \in \Theta} \mathbb{L}(\theta)$.

Věta (konzistence MVO) Nechť Θ obsahuje otevřený neprázdný interval obsahující skutečnou hodnotu θ . Nechť $M = \{x: f(x,\theta) > 0\}$ nezávisí na θ a model je identifikovatelný a existuje

$$\frac{\partial f(x,\theta)}{\partial \theta} = f'(x,\theta)$$
 skoro všude.

Pak $\forall \epsilon > 0$ platí

$$\lim_{n \to \infty} \mathsf{P}\left(\left|\hat{\theta}_n - \theta_0\right| < \epsilon\right) = 1,$$

kde $\hat{\theta}_n$ je řešení rovnice

$$\frac{\partial \log \mathbb{L}(X,\theta)}{\partial \theta}.$$

Věta (asymptotická normalita MVO a skórů) Necht platí předpoklady předchozí věty a necht navíc je systém regulární a $\forall \theta$ existuje

$$\frac{\partial^3 f(x,\theta)}{\partial \theta^3},$$

a necht

$$\int f''(x,\theta) d\mu(x) = 0,$$

a nechť existuje nezáporná měřitelná funkce H taková, že $\mathsf{E}_{\theta_0}\,H(X)<\infty$ a $\forall \theta$ platí $|\theta-\theta_0|<\epsilon$ a platí

$$\left| \frac{\partial^3 \log f(x,\theta)}{\partial \theta^3} \right| \le H(x).$$

Pak platí

(i)
$$\frac{1}{\sqrt{n}} \Big(\log \mathbb{L}(\theta_0) \Big)' \xrightarrow{d} \mathcal{N}(0, J(\theta_0)),$$

(ii)
$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} N(0, \frac{1}{J(\theta_0)}).$$

Test poměrem věrohodnosti: Testová statistika $2(\ell_n(\hat{\theta}_n) - \ell_n(\theta_0))$, kde $\ell_n(\theta) = \log \mathbb{L}(\theta)$. Platí

$$2(\ell_n(\hat{\theta}_n) - \ell_n(\theta_0)) \sim \chi_1^2$$
 asymptoticky za H_0 .

Waldův test:

$$n(\hat{\theta}_n - \theta_0)^2 \cdot \hat{J}$$
, nebo $n(\hat{\theta}_n - \theta_0)^T \hat{J}(\hat{\theta}_n - \theta_0)$.

Platí

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \to N(0, \frac{1}{J(\theta_0)}) \Rightarrow nJ(\theta_0)(\hat{\theta}_n - \theta_0)^2 \sim \chi_1^2 \text{ asymptoticky za } H_0.$$

Raův skórový test:

$$\frac{\left[U_n(\theta_0)\right]^2}{n\hat{J}}, \text{ nebo } \frac{1}{n}\left[U_n(\theta_0)\right]^T\hat{J}^{-1}U_n(\theta_0),$$

kde

$$U_n(\theta) = \frac{\partial \log \mathbb{L}(\theta)}{\partial \theta}.$$

Platí

$$\frac{U_n(\theta_0)}{\sqrt{nJ(\theta_0)}} \to N(0,1) \Rightarrow \frac{\left[U_n(\theta_0)\right]^2}{nJ(\theta_0)} \sim \chi_1^2 \text{ asymptoticky za } H_0.$$

Věta (Rao-Cramér) Nechť T je nestranný odhad $g(\theta)$, E $T^2 < \infty$. Nechť systém hustot je regulární, $g'(\theta)$ existuje v každém bodě $\theta \in \Theta$ a nechť platí

$$\frac{\partial}{\partial \theta} \int_{M} T(x) f(x, \theta) d\mu(x) = \int_{M} T(x) f'(x, \theta) d\mu(x).$$

Pak $\forall \theta \in \Theta$ je

$$\mathsf{E}\left[T - g(\theta)\right]^2 \ge \frac{[g'(\theta)]^2}{J_n(\theta)}.$$

Poznámka: Odhady maximální věrohodnosti nebývají nestranné, ale asymptotický rozptyl dosahuje dolní Rao-Cramérovy meze.

3.2.6 Jednovýběrový, dvouvýběrový, párový t-test

Jednovýběrový t-test: Model je $\mathcal{F} = \{N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 > 0\}.$

 $H_0: \ \mu_X = \mu_0, \ H_1: \ \mu_X \neq \mu_0.$

Testová statistika a její rozdělení je

$$T_n = \sqrt{n} \frac{\overline{X}_n - \mu_0}{S_n} \sim t_{n-1} \text{ za } H_0.$$

Zamítáme H_0 právě tehdy, když $|T_n| > t_{n-1}(1 - \frac{\alpha}{2})$.

P-hodnota $p = 2(1 - F_n(|t|))$, kde t je napozorovaná hodnota T_n a F_n je distribuční funkce t_{n-1} .

Interval spolehlivosti je

$$\left(\overline{X}_n - \frac{S_n}{\sqrt{n}}t_{n-1}(1 - \frac{\alpha}{2}), \overline{X}_n + \frac{S_n}{\sqrt{n}}t_{n-1}(1 - \frac{\alpha}{2})\right).$$

Bez normality bereme model $\mathcal{F} = \mathcal{L}^2$, tj. konečný druhý moment. Pak $T_n \sim \mathrm{N}(0,1)$ asymptoticky za H_0 , do kritického oboru a dál používáme furt t_{n-1} .

Párový t-test: Model je $\mathcal{F} = \{Z_i = X_i - Y_i \sim N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 > 0\}.$

 $H_0: \mu_X - \mu_Y = \delta_0, H_1: \mu_X - \mu_Y \neq \delta_0.$

Testová statistika a její rozdělení je

$$T_n = \sqrt{n} \frac{\overline{Z}_n - \delta_0}{S_n^{(Z)}} \sim t_{n-1},$$

kde

$$S_n^{(Z)} = \frac{1}{n-1} \sum_{i=1}^n \left(Z_i - \overline{Z}_n \right)^2 = S_n^{2(X)} - 2S_n^{X,Y} + S_n^{2(Y)},$$

kde $S_n^{X,Y}$ je výběrová kovariance.

Kritický obor je $|T_n| > t_{n-1}(1 - \frac{\alpha}{2})$.

P-hodnota je $p = 2(1 - F_n(|t|))$, kde t je napozorovaná hodnota T_n a F_n je distribuční funkce t_{n-1} .

Bez normality bereme model $\mathcal{F} = \{Z_i = X_i - Y_i \in \mathcal{L}^2\}$. Pak $T_n \sim N(0,1)$ asymptoticky za H_0 , do kritického oboru a dál používáme furt t_{n-1} .

Dvouvýběrový t-test: Model je

 $\mathcal{F} = \{ F_X = N(\mu_X, \sigma^2), F_Y = N(\mu_Y, \sigma^2), \, \mu_X, \mu_Y \in \mathbb{R}, \, \sigma^2 > 0 \}.$

 $H_0: \mu_X = \mu_Y + \delta_0, H_1: \mu_X \neq \mu_Y + \delta_0.$

Testová statistika a její rozdělení je

$$T_{n,m} = \frac{\overline{X}_n - \overline{Y}_m - \delta_0}{\sqrt{S_{n,m}^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim t_{n+m-2},$$

 H_0 zamítáme právě tehdy, když $|T_{n,m}| > t_{n+m-2} \left(1 - \frac{\alpha}{2}\right)$.

P-hodnota je p = 2(1 - F(|t|)), kde t je napozorovaná hodnota $T_{n,m}$ a F je distribuční funkce t_{n+m-2} .

Interval spolehlivosti je

$$\left(\overline{X}_n - \overline{Y}_m - S_{n,m}\sqrt{\frac{1}{n} + \frac{1}{m}} \cdot t_{n+m-2}(1 - \frac{\alpha}{2}), \overline{X}_n - \overline{Y}_m + S_{n,m}\sqrt{\frac{1}{n} + \frac{1}{m}} \cdot t_{n+m-2}(1 - \frac{\alpha}{2})\right).$$

Bez normality jde o asymptotický test, pokud stále platí shodnost rozptylů. Bez shodnosti rozptylů nedodržuje hladinu nikdy, není-li stejný rozsah (viz z-test).

Asymptotický dvouvýběrový z-test: Model je $\mathcal{F} = \{F_X, F_Y \in \mathcal{L}^2\}.$

 $H_0: \ \mu_X = \mu_Y + \delta_0, \ H_1: \ \mu_X \neq \mu_Y + \delta_0.$

Testová statistika je

$$Z_{n,m} = \frac{\overline{X}_n - \overline{Y}_m - \delta_0}{\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}}.$$

Platí

$$Z_{n,m} = \frac{\sqrt{n} \left(\overline{X}_n - \overline{Y}_m - (\mu_X - \mu_Y) \right)}{\sqrt{S_X^2 \frac{m}{n} + S_Y^2}}.$$

Rozptyl je konzistentní:

$$\sqrt{S_X^2 \frac{m}{n} + S_Y^2} \xrightarrow{p} \sqrt{\frac{\sigma_X^2}{q} + \sigma_Y^2},$$

a platí

$$\sqrt{m} \begin{bmatrix} \overline{X}_n - \mu_X \\ \overline{Y}_m - \mu_Y \end{bmatrix} \xrightarrow{d} N_2 \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{\sigma_X^2}{q} & 0 \\ 0 & \sigma_Y^2 \end{bmatrix} \right),$$

tedy

$$\sqrt{m}(\overline{X}_n - \overline{Y}_m - (\mu_X - \mu_Y)) \xrightarrow{d} N(0, \frac{\sigma_X^2}{q} + \sigma_Y^2).$$

a proto platí

$$Z_{n,m} \sim N(0,1)$$
 asymptoticky a za H_0 .

Zamítáme H_0 právě tehdy, když $|Z_{n,m}| > u_{1-\frac{\alpha}{2}}$.

P-hodnota je $p = 2(1 - \Phi(|z|))$, kde z je realizace $Z_{n,m}$. Interval spolehlivosti je

$$\left(\overline{X}_n - \overline{Y}_m - u_{1-\frac{\alpha}{2}}\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}, \overline{X}_n - \overline{Y}_m + u_{1-\frac{\alpha}{2}}\sqrt{\frac{S_X^2}{n} + \frac{S_Y^2}{m}}\right).$$

3.2.7 Jednovýběrové a dvouvýběrové testy pro vybrané parametrické problémy, test dobré shody na multinomické rozdělení, testy nezávislosti v dvourozměrných kontingenčních tabulkách

Jednovýběrový test na rozptyl: Model je $\mathcal{F} = \{N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 > 0\}.$ $H_0: \sigma_X^2 = \sigma_0^2, H_1: \sigma_X^2 \neq \sigma_0^2.$ Testová statistika a její rozdělení je

$$\frac{(n-1)S_n^2}{\sigma_0^2} \sim \chi_{n-1}^2 \text{ za } H_0.$$

Zamítáme H_0 právě tehdy, když

$$\frac{(n-1)S_n^2}{\sigma_0^2} < \chi_{n-1}^2 \Big(\frac{\alpha}{2}\Big) \text{ nebo } \frac{(n-1)S_n^2}{\sigma_0^2} > \chi_{n-1}^2 \Big(1-\frac{\alpha}{2}\Big).$$

P-hodnota je $p=2\min\{1-F_n(s),F_n(s)\}$, kde s je realizace testové statistiky a F_n je distribuční funkce rozdělení χ^2_{n-1} . Interval spolehlivosti je

$$\left(\frac{(n-1)S_n^2}{\chi_{n-1}^2(1-\frac{\alpha}{2})}, \frac{(n-1)S_n^2}{\chi_{n-1}^2(\frac{\alpha}{2})}\right).$$

Dvouvýběrový test o shodě rozptylů: Model je

 $\mathcal{F} = \{X_i \sim N(\mu_X, \sigma_X^2), Y_j \sim N(\mu_Y, \sigma_Y^2), \mu_X, \mu_Y \in \mathbb{R}, \sigma_X^2, \sigma_Y^2 > 0\}.$

 $H_0: \ \sigma_X^2 = \sigma_Y^2, \ H_1: \ \sigma_X^2 \neq \sigma_Y^2.$

Testová statistika a její rozdělení je

$$F_{n,m} = \frac{S_X^2}{S_Y^2} \sim F_{n-1,m-1} \text{ za } H_0.$$

Zamítáme H_0 právě tehdy, když $F_{n,m} < F_{n-1,m-1}(\frac{\alpha}{2})$, nebo

 $F_{n,m} > F_{n-1,m-1}(1-\frac{\alpha}{2}).$

P-hodnota je $p = 2 \min\{1 - F(s), F(s)\}$, kde s je realizace testové statistiky $F_{n,m}$ a F je distribuční funkce rozdělení $F_{n-1,m-1}$.

Interval spolehlivosti je

$$\bigg(\frac{S_X^2}{S_Y^2}\frac{1}{F_{n-1,m-1}(1-\frac{\alpha}{2})},\frac{S_X^2}{S_Y^2}\frac{1}{F_{n-1,m-1}(\frac{\alpha}{2})}\bigg).$$

Test o střední hodnotě alternativního rozdělení: Bodový odhad je $\hat{p}_n = \overline{X}_n$ a platí

$$\sqrt{n} \frac{\hat{p}_n - p_X}{\sqrt{\hat{p}_n(1 - \hat{p}_n)}} \xrightarrow{d} N(0,1)$$

z CLV a Slutského věty.

 $H_0: p_X = p_0, H_1: p_X \neq p_0.$

Zamítáme H_0 právě tehdy, když

$$\sqrt{n} \frac{|\hat{p}_n - p_0|}{\sqrt{\hat{p}_n(1 - \hat{p}_n)}} > u_{1 - \frac{\alpha}{2}}.$$

Tady jsem ve svých poznámkách měla ještě něco o tom, jak se to dělá bez Slutského věty, ale bylo to dost zmatený a nechce se mi to znova zkoumat, takže do it yourselves.

Testy o střední hodnotě pro ostatní: Bodový odhad je \overline{X}_n , rozptyl je nějaké $g(\overline{X}_n)$. Z CLV a Slutského věty plyne

$$\sqrt{n} \frac{\overline{X}_n - \mathsf{E} \ X_1}{\sqrt{g(\overline{X}_n)}} \xrightarrow{d} \mathsf{N}(0,1).$$

Z toho se sestaví test podobně jako u předchozího testu.

Test o shodě středních hodnot pro alternativní rozdělení: Bodový odhad rozdílu je $\hat{p}_1 - \hat{p}_2 = \hat{d}$.

Platí

$$\frac{\hat{d} - d_X}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{m}}} \xrightarrow{d} \mathcal{N}(0,1).$$

 $H_0: d_X = 0 \text{ (tj. } p_1 = p_2) \text{ a } H_1: d_X \neq 0.$

Testová statistika a její rozdělení je

$$\tilde{T}_d = \frac{\hat{d}}{\sqrt{\tilde{p}(1-\tilde{p})\left(\frac{1}{n}+\frac{1}{m}\right)}} \sim N(0,1)$$
 asymptoticky a za H_0 ,

kde

$$\tilde{p} = \frac{X_1 + X_2}{n + m}$$
, kde $X_1 = \sum_{i=1}^n Y_i^{(1)}$, $X_2 = \sum_{i=1}^m Y_j^{(2)}$.

Věta (asymptotické vlastnosti multinomického rozdělení) Necht $X \sim \operatorname{Mult}_K(n,p)$. Pak

i. platí

$$\frac{1}{\sqrt{n}}(X - np) \xrightarrow[n \to \infty]{d} N_K(0, \operatorname{diag}(p) - pp^T),$$

ii. platí

$$\sum_{k=1}^{K} \frac{(X_k - np_k)^2}{np_k} \xrightarrow[n \to \infty]{d} \chi_{K-1}^2.$$

Odhad celého vektoru p je $\hat{p}_n = \frac{X}{n}$ a z rozdělení dostaneme asymptotiku $\sqrt{n}(\hat{p}_n - p) = \frac{1}{\sqrt{n}}(X - np)$.

χ^2 test dobré shody pro multinomické rozdělení:

 $H_0: p = p^0, H_1: p \neq p^0$, tj. $H_0: p_k = p_k^0 \ \forall k = 1, \dots, K$. Testová statistika a její rozdělení je

$$\sum_{k=1}^K \frac{(X_k - np_k^2)^2}{np_k^0} \sim \chi_{K-1}^2 \text{ asymptoticky za } H_0.$$

Zamítáme H_0 právě tehdy, když

$$\sum_{k=1}^{K} \frac{(X_k - np_k^0)^2}{np_k^0} > \chi_{K-1}^2 (1 - \alpha).$$

Pro K=2 je to

$$\chi^2 = \frac{(X_1 - np_0)^2}{np_0} + \frac{\left[n - X_1 - n(1 - p_0)\right]^2}{n(1 - p_0)} = \left[\sqrt{n} \frac{\hat{p}_n - p_0}{\sqrt{p_0(1 - p_0)}}\right]^2,$$

je kvadrát Wilsonovy statistiky pro alternativní rozdělení.

Pro odhadnuté parametry: $X \sim \text{Mult}_K(n,p(\theta)), \ \theta \in \Theta \subset \mathbb{R}^d$. Odhadneme θ pomocí řešení

$$\sum_{k=1}^{K} \frac{X_k}{p_k(\hat{\theta}_n)} \frac{\partial p_k(\hat{\theta}_n)}{\partial \theta} = 0.$$

Bereme $H_0: \exists \theta_X \in \Theta: p = p(\theta_X), H_1: \forall \theta_X \in \Theta: p \neq p(\theta_X).$ Testová statistika a její rozdělení je

$$\sum_{k=1}^{K} \frac{\left[X_k - np_k(\hat{\theta}_n)\right]^2}{np_k(\hat{\theta}_n)} \sim \chi_{K-d-1}^2 \text{ asymptoticky za } H_0.$$

Kontingenční tabulka: Nechť $X\in\{1,\ldots,J\},~Z\in\{1,\ldots,K\}$ je náhodný výběr X_1,\ldots,X_N . Označme

$$n_{jk} = \sum_{i=1}^{N} \mathbb{I}_{\{X_i = j, Z_i = k\}},$$

$$p_{jk} = \mathsf{P}\left[X = j, \, Z = k\right].$$

Pak kontingenční tabulka je tabulka

Označme $n = (n_{11}, \dots, n_{JK}), p = (p_{11}, \dots, p_{JK}).$ Pak platí $n \sim \text{Mult}_{JK}(N, p).$

χ^2 test nezávislosti v kontingenční tabulce:

Hypotéza H_0 : X a Z jsou nezávislé, tj.

$$\forall j \ \forall k: \ \mathsf{P}\left[X=j, \ Z=k\right] = \mathsf{P}\left[X=j\right] \cdot \mathsf{P}\left[Z=k\right],$$

tj. $p_{jk} = p_{j+} \cdot p_{+k}$.

Za H_0 je $p=(p_{11},\ldots,p_{JK})$ je funkcí d=J+K-2 proměnných, tedy odhadujeme

$$\theta_X = (p_{1+}, \dots, p_{(J-1)+}, p_{+1}, \dots, p_{+(K-1)})^T.$$

Maximálně věrohodný odhad θ_X za H_0 se počítá řešením rovnice

$$\sum_{i=1}^{J} \sum_{k=1}^{K} \frac{n_{jk}}{p_{jk}(\hat{\theta}_n)} \frac{\partial p_{jk}(\hat{\theta}_n)}{\partial \theta} = 0,$$

což jsou rovnice

$$\frac{n_{j+}}{\hat{p}_{j+}} - \frac{n_{J+}}{\hat{p}_{J+}} = 0 \text{ a } \frac{n_{+k}}{\hat{p}_{+k}} - \frac{n_{+K}}{\hat{p}_{+K}} = 0.$$

Řešením je

$$\left(\frac{n_{1+}}{N}, \dots, \frac{n_{(J-1)+}}{N}, \frac{n_{+1}}{N}, \dots, \frac{n_{+(K-1)}}{N}\right),$$

tedy $\hat{p}_{jk}=\hat{p}_{j+}\hat{p}_{+k}=\frac{n_{j+}n_{+k}}{N^2}.$ Testová statistika a její rozdělení je

$$\chi^2 = \sum_{j=1}^{J} \sum_{k=1}^{K} \frac{\left(n_{jk} - \frac{n_{j+} n_{+k}}{N}\right)^2}{\frac{n_{j+} n_{+k}}{N}} \sim \chi^2_{(J-1)(K-1)} \text{ asymptoticky za } H_0.$$

Zamítáme H_0 právě tehdy, když $\chi^2 > \chi^2_{(J-1)(K-1)}(1-\alpha)$.

Souvislost s χ^2 testem homogenity je, že nezávislost je ekvivalentní s podmínkou P $\left[X=j|Z=k\right]=\mathsf{P}\left[X=j\right].$

4. Připomínky a řešené příklady

4.1 Analýza

Věta (o limitě složené funkce) Nechť $a \in \mathbb{R}^*$, $\lim_{x\to a} f(x) = A \in \mathbb{R}^*$ a $\lim_{y\to A} g(y) = B \in \mathbb{R}^*$. Nechť platí jedna z podmínek

- (P) $\exists P(a) \ \forall x \in P(a) : \ f(x) \neq a$,
- (S) q je spojitá v $A \in \mathbb{R}$.

Pak

$$\lim_{x \to a} f(g(x)) = B.$$

Průběh funkce:

- Definiční obor,
- sudá (f(x) = f(-x)), lichá (f(x) = -f(-x)), periodická $(\exists p: f(x) = f(x+p))$,
- spojitost,
- limity (na všech krajních bodech definičního oboru většinou $\pm \infty$),
- nalezení derivace f' + v bodech, kde nelze a je spojitá děláme $\lim_{x\to a\pm} f'(x)$,
- nalezení intervalů monotonie a lokálních extrémů podle f',
- najít f'',
- najít intervaly konvexity, konkávity a inflexní body,
- obor hodnot.

Pro kreslení grafu znát průsečíky s osami a znát asymptoty v ∞ :

Buď
$$a = \lim_{x \to \inf} \frac{f(x)}{x}$$
, a $b = \lim_{x \to \infty} (f(x) - ax)$,

pak asymptota je přímka ax + b.

4.1.1 Státnicové otázky

"Spojitost a derivace $\mathbb{R} \to \mathbb{R}$, definovat pojmy, věta o vztahu derivace a spojitosti s důkazem, derivovat funkci $\operatorname{sgn}(x)$ v 0, věta o limitě monotónní funkce."

"Spojitost a limita funkce, chování spojité funkce na uzavřeném omezeném intervalu, obor hodnot funkce $e^x + e^{-x}$."

"Definice parciální derivace, totálního diferenciálu a lokálního extrému funkce, aplikovat řetízkové pravidlo pro výpočet parciální derivace nějaké funkce, tj. nutná podmínka existence extrému a postačující podmínky druhého řádu."

"Absolutní a neabsolutní konvergence, B-C podmínka, nutná podmínka a poté všechna kritéria konvergence a vyšetřit konvergenci asi čtyř řad."

"Stejnoměrná konvergence posloupností a řad funkcí, záměna limity a dalších věcí."

"Lagrangeova věta a k ní zadaný příklad, konvexita, vztah konvexity a derivace, monotónnost."

"Primitivní funkce, určitý integrál, základní vlastnosti, metody výpočtu, Newton-Leibnizova formule."

"Definice extrému funkce více proměnných vzhledem k množině - globální i lokální, formulace věty "nutná podmínka pro vázané extrémy", najít extrémy funkce f(x,y) = xy vzhledem k jednotkové kružnici."

"Taylorův polynom, Taylorovy řady, tvar zbytku, Taylorovy řady elementárních funkcí."

4.2 Algebra

Definice Elementární matice je matice, vzniklá z I řádkovou úpravou.

Definice Matice A je regulární, pokud $f_A: T^n \to T^n$ je bijekce.

Věta (o regulárních maticích) Platí

- A regulární $\Leftrightarrow Ax = b$ má právě jedno řešení $\forall b$,
- A regulární $\Leftrightarrow A$ invertovatelná,
- $A \operatorname{regul\acute{a}rn\acute{i}} \Leftrightarrow \operatorname{Ker} A = 0$,
- A regulární $\Leftrightarrow A$ je součin elementárních matic.

Věta (o zobrazeních) Nechť A je matice typu $m \times n$. Platí

- $\exists X : AX = I_m \Leftrightarrow f_A \text{ je na } T^m$,
- $\exists X: XA = I_n \Leftrightarrow f_A$ je prosté.

Věta (podprostory \mathbb{R}^2) Prostor \mathbb{R}^2 má právě podprostory $\{0\}$, \mathbb{R}^2 a $\{tx, x \in R\}$, kde x je libovolný vektor.

Věta (o matici přechodu) Platí, že matice $[id]_C^B$ je regulární a platí

$$[id]_B^C = \left([id]_C^B\right)^{-1}.$$

Definice Frobeniova norma matice je

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}.$$

4.2.1 Státnicové otázky

"Soustavy rovnic, řešitelnost, vztah řešitelnosti s hodností matice (Frobeniova věta), příklad (2 rovnice), kdy řešení existuje, neexistuje a je právě jedno."

"Eukleidovské prostory, vztahy a vzdálenosti podprostorů, kolmost, úhel, příklad: vzdálenost bodu [2,1,1] od roviny 2x + y - z = 2 or whatever."

"Definice vlastního čísla, Jordanův kanonický tvar matice a jeho výpočet pro matici $3\times 3.$ "

"Matice, její hodnost, sloupcový prostor a jádro, inverze a regularita, všemožné charakterizace regularity, poté spočíst inverz matice 3×3 ."

"Bilineární a kvadratická forma, zákon setrvačnosti, signatura."

"Lineární, bilineární a kvadratické formy, vztah kvadratické a bilineární formy, signatura, f-ortogonální báze, jak vypočítat f-ortogonální bázi pomocí vlastních vektorů, vztah skalárního součinu a bilineární formy."

"Skalární součin, ortogonalizační proces, metoda nejmenších čtverců, početní příklad na projekci vektoru z \mathbb{R}^3 na dvoudimenzionální podprostor \mathbb{R}^3 ."

"Řešení soustav rovnic - rozebrat případy pro rovnice o dvou neznámých, najít příklady na všechny situace, co mohou nastat + vztah jádra matice, obrazu matice a jejich dimenzí."

"Ortogonální diagonalizace, normální matice, spektrální věta pro normální matice, příklad diagonalizovat operátor $\mathbb{R}^2 \to \mathbb{R}^2$."

4.3 Stochastika

4.3.1 Státnicové otázky

" χ^2 , t-rozdělení, definice, jak se dá odvodit hustota těchto rozdělení, najít interval spolehlivosti pro střední hodnotu normálního rozdělení s neznámým roz-

ptylem."

"Náhodný vektor, distribuční funkce, vlastnosti, marginální distribuční funkce, vztah hustoty k distribuční funkci a příklad, kde byla sdružená hustota tak najít marginální, zjistit, jestli jsou ty náhodné veličiny nezávislé a spočítat $\mathsf{E}\left[\frac{X}{Y}\right]$ a $\mathsf{P}[X > Y]$."

"Definice náhodné veličiny, nezávislost náhodných veličin, odvození hustoty pro součet dvou nezávislých náhodných veličin a aplikace na příkladě."

"Bodový odhad a jeho různé vlastnosti, výběrový průměr, kde veličiny měly normální rozdělení se střední hodnotou μ a rozptylem σ^2 , poté dokázat nestrannost a silnou konzistenci nějakého odhadu a použít větu o spojité transformaci."

"Bodový odhad, jeho vlastnosti, maximálně věrohodný odhad, aplikovat na Poissonovo rozdělení."

"Nezávislost náhodných veličin, charakteristická funkce náhodného vektoru, pro dvě nezávislé veličiny X a Y odvodit charakteristickou funkci (X,Y) a X+Y pomocí věty o transformaci náhodných veličin, odvodit větu o konvoluci."

"Testování hypotéz - co to je a definovat všechny pojmy, formulace Neyman-Pearsonovy věty a příklad na ni, demonstrovat pojmy na příkladu (exponenciální rozdělení, testování λ_0 proti λ_1)."

"Náhodný výběr, uspořádaný náhodný výběr, empirická distribuční funkce, Kolmogorův-Smirnovův test."