CS/B.TECHW(ECE-N)/SEM-3/EC-301/2011-12

2011

CIRCUIT THEORY & NETWORKS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following:

 $10 \times 1 = 1$

- i) For N no. of modes and B no. of branches of a graph the rank is
 - a) N-B+1

b) N + B + 1

c) N+1

- d) N-1.
- ii) Laplace transform analysis gives
 - a) time domain response
 - b) frequency domain response
 - c) both (a) and (b)
 - d) none of these.

iii)		hat should be the inte	rnat	resistance of the idea	al	
	a)	0	b)	∞		
	c)	both (a) and (b)	d)	none of these.		
iv)	Superposition theorem is not applicable to netwo					
	a)	transformers		•		
	b) dependent voltage sources					
	c)	non-linear elements				
	d)	dependent current sou	irces			
v)	For a series resonant R-L-C circuit the power factor of the circuit is					
	a)	1	b)	0.5		
	c)	0	d)	infinity.		
vi)	The	The passive element among the following is:				
	a)	voltage source	b)	current source		
	c)	transistor	d)	inductor.		
vii)	The current through a pure capacitor					
	a)	lags the voltage				
	b)	leads the voltage				
	c)	in phase with voltage				
	d)	phase depends on initial circuit condition. http://www.makaut.com				

viii) Condition for reciprocity of y-parameter is

a)
$$y_{11} = y_{12}$$

b)
$$y_{12} = y_{21}$$

c)
$$y_{11} = y_{22}$$

d)
$$y_{22} = y_{21}$$
.

Initial value theorem states that ix)

a)
$$\lim_{s \to 0} F(s) = f(0)$$
 b)

b)
$$\lim_{s \to 0} SF(s) = f(0)$$

c)
$$\lim_{s \to \infty} F(s) = f(0)$$

$$\lim_{s\to\infty} F(s) = f(0) \qquad d) \qquad \lim_{s\to\infty} SF(s) = f(0).$$

A dc voltage V is applied to a series R-L circuit. The X) steady state current is

a)
$$\frac{V}{R^2 + L^2}$$

b)
$$\frac{V}{L}$$

$$\mathbf{d}) \qquad \frac{V}{R}$$

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

$$3 \times 5 = 15$$

- Explain under what condition, an RC circuit behaves as 2.
 - a) integrator
- b) differentiator.
- 3. State and prove maximum power transfer theorem.
- A shifted unit step function is expressed as f(t) = u(t a). 4. Obtain its Laplace Transform.

http://www.makaut.com

www.makaut.com CS/B.TECH (ECE-N)/SEM-3/EC-301/2011-12

- 5. For a two port network, show that AD BC = 1.
- 6. Draw the oriented graph of the network in the following figure (Fig. 1) and find the complete incidence matrix.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$ Explain series and parallel resonance with necessary

- a) Explain series and parallel resonance with necessary circuits.
 - b) Show that for an RLC series circuit the resonance frequency $\omega r = \sqrt{\omega_{\perp} \omega_{2}}$, where ω_{1} and ω_{2} are the half power frequencies.
- c) A coil is at resonance at 10 kHz with a capacitor. If the resistance and inductance of the coil are 200 Ω and 5 H, find Q-factor of the coil. 5+5+5
- 8. a) Find the total inductance of the three series connected coupled circuits. (Fig. 2)

Fig. 2

Given, $L_1 = 1$ H; $L_2 = 2$ H; $L_3 = 5$ H $M_{12} = 0.5$ H; $M_{23} = 1$ H, $M_{13} = 1$ H

7.

b) In the network shown in the Fig. 3 below, find V such that the current through $(3 + j + 4) \Omega$ impedance is zero. Use node voltage analysis.

Fig. 3

c) Find the current through R_L in the circuit shown in Fig. 4 below using Norton's theorem.

9. a) Why are h-parameters called hybrid parameters? Find the h-parameters from the two port network given in Fig. 5. Is the network reciprocal or symmetric? Justify.

Fig. 5

b) For an RL series circuit shown below with $R = 2\Omega$, L = 1H and no initial current in the inductor, a voltage $V = 4e^{-t}V$ is applied at t = 0. Find expression for the resulting current in the circuit for $t \ge 0$ using Laplace transform method. (Fig. 6)

c) Find the inverse Laplace transform of the function

$$V(S) = \frac{10(S+4)}{S(S+3)(S+1)^2}$$
 5 + 5 + 5

- a) State and explain superposition theorem.
 - b) Find the net current flowing through 10 ohm resistor applying superposition theorem. (Fig. 7)

c) Find the equivalent delta connection of the given network (Fig. 8)

Fig. 8

CS/B.TECH (ECE-N)/SEM-3/EC-301/2011-12

- 11. Write short notes on any three of the following: 3×5
 - a) Driving point impedance
 - b) Compensation theorem
 - c) Concept of complex frequency
 - d) Initial value theorem and final value theorem
 - e) Phasor diagrams.