

Learning Hidden Physics and System Parameters with Deep Operator Networks

Dibakar Roy Sarkar¹, Vijay Kag², Birupaksha Pal² and Somdatta Goswami¹

¹John Hopkins Whiting School of Engineering, Baltimore

²Robert Bosch Research and Technology Center Bangalore

29th May, 2025

EMI 2025

Outline

- The Challenge
- Proposed frameworks:
 - > The Deep Hidden Physics Operator (DHPO) network Neural Operators
 - Neural Operator for System Parameter Identification
- Results
- Future work

The Challenge

Objective: Scientific Discovery from sparse data

- Data is spatiotemporally scattered
- Governing equations are partially unknown
- System parameters need identification

Current Method Limitations:

- SINDy (Brunton et. al.): requires well-structured, regularly sampled data.
- **DHPM (Raissi et. al.):** Cannot be used as a surrogate
- PINNs (Raissi et. al.): Require retraining for each variation
- Neural Operator: After training, infer the unknown physics and system parameters in real time.

Proposed Frameworks

Framework 1: DHPO (Deep Hidden Physics Operator)

- Discovers unknown physics terms
- Built an operator using only primary variable data and physics (semi-supervised)
- Inspired from DeepONet, PINNs, DHPM.

DeepONet (Lu et al., 2019): inspired by the universal approximation theorem of operators.

$$G_{\theta}(u)(y) = \sum_{i}^{p} b_{i}(u(x_{1}), u(x_{2}), \dots, u(x_{m})) \cdot tr_{i}(y)$$
branch net trunk net

Framework 2: Parameter Identification (Inverse Neural Operator)

- Discovers unknown system parameters.
- Built an operator using only primary variable data and physics (semi-supervised)
- Inspired from DeepONet, PINNs.

#1: The Deep Hidden Physics Operator (DHPO) network

$$\frac{\partial u}{\partial t} = \mathcal{N}(t, x, u, u_x, u_{xx}, \ldots) + f(x)$$

u: Primary variable

f: Source term

 \mathcal{N} : Unknown physics

f: Source term

 \mathcal{N} : Unknown physics operator

$Loss, \mathcal{L} = \mathcal{L}_{pde} + \mathcal{L}_{bc} + \mathcal{L}_{ic} + \mathcal{L}_{data}$

Consider Burger's equation

$$\mathcal{L}_{\text{pde}} = ||u_t^{\text{NO}} + \mathcal{N}^{\text{DHPO}} - f(x)||^2$$
$$\mathcal{L}_{\text{bc}} = ||u^{\text{NO}} - u^{\text{bc}}||^2$$

$$\mathcal{L}_{ic} = ||u^{NO} - u^{ic}||^2$$

$$\mathcal{L}_{\text{data}} = ||u^{\text{NO}} - u^{\text{data}}||^2$$

Results: Physics Discovery

Burger's problem:

$$\frac{\partial u}{\partial t}(x,t) = \nu \frac{\partial^2 u}{\partial x^2}(x,t) - u \frac{\partial u}{\partial x}(x,t) \text{ on } \Omega: (x,t) \in [0,1]^2,$$

$$\text{IC: } u(x,0) = f(x),$$

BC:
$$u(0,t) = u(1,t)$$
 and $\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(1,t)$,

Average relative L_2 error of $\mathcal{N}(u,u_{\dot{x}},u_{xx})$ $\mathcal{O}(10^{-2})$

(a) Sample 1: solution field accuracy comparison, relative L_2 error = 0.02134.

(b) Sample 1: hidden physics solution comparison, relative L_2 error = 0.118278.

Results: Physics Discovery

Reaction diffusion problem:

$$\frac{\partial u}{\partial t}(x,t) = D \frac{\partial^2 u}{\partial x^2}(x,t) + Ku^2(x,t) + f(x) \text{ on } \Omega : (x,t) \in [0,1]^2,$$

IC: u(x,0) = 0,

$$BC: u(0,t) = u(1,t) = 0,$$

Average relative L_2 error of

$$\mathcal{N}(u, u_{\dot{x}}, u_{xx}) \quad \mathcal{O}(10^{-2})$$

(a) Sample 1: solution field accuracy comparison, relative L_2 error = 0.01639.

(b) Sample 1: hidden physics solution comparison, relative L_2 error = 0.03949.

#2: Neural Operator for System Parameter Identification

Consider Burger's equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial x^2}$$

u: Primary variable

 ν : Viscosity

Step 2: Step 1 paeameter operatoroaudofine ptematoihe solution operator

Loss,
$$\mathcal{L} = \mathcal{L}_{\text{psdns}}$$
 data

$$\mathcal{L}_{\text{pde}} = ||u_t^{\text{NO}} + u^{\text{NO}}u_x^{\text{NO}} - \nu^{\text{INO}}u_{xx}^{\text{NO}}||^2$$

$$\mathcal{L}_{\text{sensor data}} = ||u^{\text{NO}} - u^{\text{data}}||^2$$

 u_{data} : Sensor data

 u_{data} : Sensor data

Results: Parameter Identification

Burger's problem:

$$\frac{\partial u}{\partial t}(x,t) = \nu \frac{\partial^2 u}{\partial x^2}(x,t) - u \frac{\partial u}{\partial x}(x,t) \text{ on } \Omega: (x,t) \in [0,1]^2,$$
IC: $u(x,0) = f(x),$

BC:
$$u(0,t) = u(1,t)$$
 and $\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(1,t)$,

Average absolute error of viscosity, $~:~~ \mathcal{O}(10^{-3})$

(b) Sample 2: Relative L_2 error of u(x,t)=0.061. For this case, $\nu_{\rm true}=0.032$ while $\nu_{\rm predicted}=0.032$.

Results: Parameter Identification

Reaction diffusion problem:

$$\frac{\partial u}{\partial t}(x,t) = D \frac{\partial^2 u}{\partial x^2}(x,t) + Ku^2(x,t) + f(x) \text{ on } \Omega: (x,t) \in [0,1]^2,$$

IC: u(x,0) = 0,

$$BC: u(0,t) = u(1,t) = 0,$$

Average absolute error of diffusion coefficient, $\mathcal{O}(10^{-3})$

(b) Sample 2: Relative L_2 error of u(x,t) = 0.029. For this case, $D_{\text{true}} = 0.036$ while $D_{\text{predicted}} = 0.034$.

Conclusions and Future Directions

- We built operator frameworks that can discover the hidden physics and the system parameters.
- These operators are trained using physics informed loss functions which allow them to learn without labelled data of input and output functions.
- Both frameworks are utilized for Burger's and Reaction-Diffusion Equation

Learning Hidden Physics and System Parameters with Deep Operator Networks

Vijay Kag^{a,1}, Dibakar Roy Sarkar^{b,1}, Birupaksha Pal^{a,*}, Somdatta Goswami^b

^aRobert Bosch Research and Technology Center Bangalore,
 123 Industrial layout, Karnataka 560095, India
 ^bJohn Hopkins Whiting School of Engineering, Baltimore
 3400 N Charles St, MD 21218, United States

