Statistics

Two concepts and Two Theorems

Sample & Population

Theorem 1: Law of Large Numbers

Theorem 2: Central Limit Theorem

Hypothesis testing and Two types of errors

Null hypothesis (H0) & Alternative hypothesis (H1)

False Positive & False Negative Errors

Important Distributions

Normal (mu, sigma2)

Chi-square (df)

T(df)

F(df1, df2)

Statistical tests

One-sample t test

Two-sample t-test

Paired t-test

ANOVA

Repeated measure ANOVA

Regression

Sample: A fraction

Population: A whole

Theorem 1: Law of Large Numbers: the sample averages converge almost surely (converge in probability) to the expected value. In other words, as a sample size grows, its average gets closer to the average of the whole population.

Sample: A fraction

Population: A whole

Sample (1) -> mean Sample (2) -> mean

Sample (n) -> mean

Theorem 1: Law of Large Numbers: the sample averages converge almost surely (converge in probability) to the expected value. In other words, as a sample size grows, its average gets closer to the average of the whole population.

Theorem 2: Central Limit Theorem: when independent random variables are summed up, their properly normalized sum tends toward a normal distribution, even if the original variables themselves are not normally distributed. In other words, as the sample size gets larger, the distribution of sample means approximates a normal distribution, regardless of the population's distribution.

What is the Hypothesis?

An assertion (conjecture) concerning one or more **populations**

A medication has an effect Male's brain is larger than female

H0 (Null Hypothesis) H1 (Alternative Hypothesis)

H0: Medication effect=0

H1: Medication effect>0

H0: Brain size: Male=Female

H1: Brain size: Male>Female

Alpha: the probability of rejecting the null hypothesis when it is true

What is the Hypothesis?

An assertion (conjecture) concerning one or more **populations**

A medication has an effect Male's brain is larger than female

H0 (Null Hypothesis) H1 (Alternative Hypothesis)

H0: Medication effect=0

H1: Medication effect>0

H0: Brain size: Male=Female

H1: Brain size: Male>Female

H0: μ (population)=0

H1: μ (population)>0

Observation: mean(sample)

Type I and Type II Error

(false-positive)

 α (p-value)

Decision based on sample

Alpha: the probability of rejecting the null hypothesis when it is true (risk of type-I error)

Power (1-beta): the probability of rejecting the null correctly

t tests - Means: Difference from constant (one sample t-test)

Input: One Tail(s)

Effect size d =0.5 α err prob =0.05

Total sample size =30

Output:

Critical t =1.6991270

Df =29

Power $(1-\beta \text{ err prob}) = 0.8482542$

Statistics

Two concepts and Two Theorems

Sample & Population

Theorem 1: Law of Large Numbers

Theorem 2: Central Limit Theorem

Hypothesis testing and Two types of errors

Null hypothesis (H0) & Alternative hypothesis (H1)

False Positive & False Negative Errors

Important Distributions

Normal (mu, sigma2)

Chi-square (df)

T(df)

F(df1, df2)

Statistical tests

One-sample t test

Two-sample t-test

Paired t-test

ANOVA

Repeated measure ANOVA

Regression

Distributions

Mathematical table

Student t and Normal distribution C.4 Colour df=10 df=30 df=30 df=30 df=5 Nermal distribution

Z-value

z	.00
0.0	.5000
0.1	.5398
0.2	.5793
0.3	.6179
0.4	.6554
0.5	.6915
0.6	.7257
0.7	.7580
0.8	.7881
0.9	.8159
1.0	.8413
1.1	.8643
1.2	.8849
1.3	.9032
1.4	.9192
1.5	.9332
1.6	.9452
1.7	.9554
1.8	.9641
1.9	.9713
2.0	.9772
2.1	.9821
2.2	.9851
2.3	.9893
2.4	.9918
2.5	.9938
2.6	.9953
2.7	.9965
2.8	.9974
2.9	.9981
3.0	.9987
3.1	.9990
3.2	.9993
3.3	.9995
3.4	.9997

T-value

One sided	75%	8095	85%	90%	95%	97.5%	99%	99.5%	99.75%	99.9%	99.95%
Two-sided	50%	60%	70%	80%	90%	95%	98%	99%	99.5%	99.8%	99.9%
1	1.000	1.376	1,963	3.078	6.314	12.71	31.82	63.56	127.3	318.3	636.6
2	0.816	1.080	1,386	1.886	2.920	4.303	6.965	9,925	14.00	22.33	31.60
3	0.765	0.978	1.250	1.638	2.350	3.782	4.541	5.841	7.45.1	10.21	12.92
4	0.741	0.941	1,190	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.727	0.920	1.156	1.476	2.015	2,571	3.365	4.032	4.773	5.893	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	3,143	3,707	4.317	5.208	5.959
7	0.711	0.896	1.119	1.415	1.895	2.360	2.998	3,499	4.029	4.785	5.408
8	0.706	0.889	1,108	1,397	1.860	2,305	2.895	3.355	3.833	4.501	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2,821	3,250	3.690	4.297	4.781
10	0.700	0.879	1,093	1.172	1.812	2228	2./64	3.169	3,581	4.744	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.713	3,106	3.497	4.023	4.437
12	0.695	0.873	1,083	1.356	1.782	2,179	2.681	3.055	3.428	3,930	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2,624	2.977	3.326	3./8/	4.140
15	0.691	0.866	1.074	1.341	1.753	2,131	2,602	2.947	3,286	3.733	4.073
16	0.690	0.865	1.071	1.337	1.746	2,120	2.583	2.921	3.252	3.686	4.015
17	0.689	0.863	1,069	1.133	1.740	2.110	2.567	2,898	3.277	3.646	3.965
18	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.851	3,174	3.579	3.883
20	0.687	0.860	1.064	1.325	1.725	2.085	2,528	2.845	3.158	3,552	3.850
21	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.132	3.527	3.819
22	0.686	0.858	1.051	1,321	1.717	2.071	2.508	2.819	3.119	3,505	3.792
23	0.685	0.858	1.060	1.319	1.714	2.060	2.500	2.807	3.104	3.485	3.767
24	0.685	0.857	1.059	1.118	1./11	2.064	2,492	2./97	3,091	3,467	3.745
25	0.684	0.856	1.058	1,316	1.708	2.060	2.485	2.787	3.078	3,450	3.725
26	0.684	0.856	1,058	1.315	1.706	2,056	2.479	2,779	3.057	3.435	3.707
27	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.047	3,408	3.6/4
29	0.683	0.854	1.055	1.311	1.699	2,045	2.462	2,756	3.038	3.395	3.659
30	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	0.687	0.851	1.050	1.103	1.684	2.021	2,42.1	2.704	2.971	3.307	3.551
50	0.679	0.849	1.047	1.299	1.676	2.009	2.403	2.678	2.937	3.261	3.496
60	-			1.296				2.650	200	3.232	3.460
80	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	2.887	3.195	3.416
100	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	2.8/1	3.1/4	3.390
120	0.677	0.845	1.041		77.000.00	1.980	NORTH AND A	2.617	TOTAL STREET	3.160	3.373
00	0.674				25000				2.807	3.090	3.291

Student t and Normal distribution

Normal (Gaussian) distribution

$$Z \sim N(\mu, \sigma^2)$$

Chi-square (df)

If
$$Z \sim N(0,1)$$
, and $X = \sum_{i=1}^{k} (Z_i^2)$, then $X \sim \chi^2(k)$

Student T(df)

If
$$Z \sim N(0,1)$$
, $U \sim \chi^2(n)$, and $X = \frac{Z}{\sqrt{U/n}}$, then $X \sim t(n)$

F(df1, df2)

If
$$U1 \sim \chi^2(n1)$$
, $U2 \sim \chi^2(n2)$, and $X = \frac{U1/n1}{U2/n2}$, then $X \sim F(n1,n2)$

$$t(n)^2 = \left(\frac{Z}{\sqrt{U/n}}\right)^2 = \frac{Z^2}{U/n} = F(1,n)$$

Statistics

Two concepts and Two Theorems

Sample & Population

Theorem 1: Law of Large Numbers

Theorem 2: Central Limit Theorem

Hypothesis testing and Two types of errors

Null hypothesis (H0) & Alternative hypothesis (H1)

False Positive & False Negative Errors

Important Distributions

Normal (mu, sigma2)

Chi-square (df)

T(df)

F(df1, df2)

Statistical tests

One-sample t test

Two-sample t-test

Paired t-test

ANOVA

Repeated measure ANOVA

Regression

Sample: A fraction

Population: A whole

One-sample T test

Population One Sample T-test Q: Brain size: Rick > Einstein?

H0 (Null Hypothesis): Rick=Einstein

H1 (Alternative Hypothesis): Rick!=Einstein

Two-sample T test One way ANOVA Linear regression

Q: Difference: Summer > Morty?

Two Sample T-test

Two Sample t-test

data: y1 and y2 t = -5.2098, df = 58, p-value = 2.616e-06

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.6962870 -0.7545972 sample estimates: mean of x mean of y 0.2528962 1.4783383

One-way ANOVA

Anova Table (Type II tests)

Response: y

Sum Sq Df F value Pr(>F)

group 65.088 2 40.404 3.889e-13 ***

Residuals 70.076 87

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Two Sample T-test as One-way (2 levels) ANOVA

Two Sample t-test

data: y1 and y2 t = -5.2098, df = 58, p-value = 2.616e-06 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -1.6962870 -0.7545972 sample estimates: mean of x mean of y 0.2528962 1.4783383

Anova Table (Type II tests)

Response: y
Sum Sq Df F value Pr(>F)
group 22.526 1 27.142 2.616e-06 ***
Residuals 48.136 58
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Two Sample T-test as linear regression

Two Sample t-test

data: y1 and y2
t = -5.2098, df = 58, p-value = 2.616e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.6962870 -0.7545972
sample estimates:
mean of x mean of y
0.2528962 1.4783383

Anova Table (Type II tests)

Response: y
Sum Sq Df F value Pr(>F)
group 22.526 1 27.142 2.616e-06 ***
Residuals 48.136 58
--Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Call:

 $Im(formula = y \sim 1 + group, data = df)$

Residuals:

Min 1Q Median 3Q Max -1.9195 -0.5636 -0.1127 0.5591 1.9906

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.2529 0.1663 1.52 0.134 groupSummer 1.2254 0.2352 5.21 2.62e-06 *** --- Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.911 on 58 degrees of freedom Multiple R-squared: 0.3188, Adjusted R-squared: 0.307

F-statistic: 27.14 on 1 and 58 DF, p-value: 2.616e-06

Paired t Repeated Measure ANOVA Linear Regression

Paired Sample T-test

Paired T-test

Repeated Measure

Time1 Time2

Paired Sample T-test as One-sample T-test

Paired t-test

data: y1 and y2
t = -4.8467, df = 29, p-value = 3.884e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.7425597 -0.7083245
sample estimates:
mean of the differences
-1.225442

One Sample t-test

data: y1 - y2 t = -4.8467, df = 29, p-value = 3.884e-05alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: -1.7425597 -0.7083245sample estimates: mean of x -1.225442

Paired Sample T-test as repeated measure ANOVA

1 group 1 29 23.49 3.88e-05

* 0.319

One-way repeated measure ANOVA

https://lindeloev.github.io/tests-as-linear/

Common statistical tests are linear models

notebook: https://lindeloev.github.io/tests-as-linear

(Same as One-way ANOVA and see Chi-Square note.)

See worked examples and more details at the accompanying

Common name Built-in function in R Equivalent linear model in R Exact? The linear model in words lcon y is independent of x t.test(v) P: One-sample t-test One number (intercept, i.e., the mean) predicts y. $Im(v \sim 1)$ N: Wilcoxon signed-rank wilcox.test(v) $lm(signed_rank(y) = 1)$ for N >14 (Same, but it predicts the signed rank of y.) $t.test(y_1, y_2, paired=TRUE)$ One intercept predicts the pairwise y₂-y₁ differences. P: Paired-sample t-test $Im(y_2 - y_1 \sim 1)$ Simple regression: Im(y N: Wilcoxon matched pairs wilcox.test($y_1, y_2, paired=TRUE$) $lm(signed_rank(y_2 - y_1) = 1)$ for N >14 (Same, but it predicts the signed rank of y₂-y₁.) v ~ continuous x P: Pearson correlation cor.test(x, y, method='Pearson') One intercept plus x multiplied by a number (slope) predicts y. $Im(y \sim 1 + x)$ for N >10 N: Spearman correlation (Same, but with ranked x and y) cor.test(x, y, method='Spearman') $lm(rank(y) \sim 1 + rank(x))$ y ~ discrete x P: Two-sample t-test $t.test(y_1, y_2, var.equal=TRUE)$ $Im(y - 1 + G_2)^4$ An intercept for group 1 (plus a difference if group 2) predicts y. P: Welch's t-test gls(y $\sim 1 + G_2$, weights=...*)^A (Same, but with one variance per group instead of one common.) $t.test(y_1, y_2, var.equal=FALSE)$ N: Mann-Whitney U wilcox.test(y₁, y₂). $Im(signed_rank(y) \sim 1 + G_2)^4$ for N >11 (Same, but it predicts the signed rank of y.) P: One-way ANOVA $Im(y \sim 1 + G_2 + G_2 + ... + G_N)^A$ An intercept for group 1 (plus a difference if group ≠ 1) predicts y. aov(y ~ group) N: Kruskal-Wallis kruskal.test(y ~ group) $Im(rank(y) \sim 1 + G_0 + G_3 + ... + G_n)^n$ for N >11 (Same, but it predicts the rank of y.) + (Same, but plus a slope on x.) P: One-way ANCOVA $Im(y - 1 + G_2 + G_3 + ... + G_N + x)^n$ aov(y - group + x)+ Note: this is discrete AND continuous. ANCOVAs are ANOVAs with a continuous x. ì Multiple regression: Im(y P: Two-way ANOVA aov(y ~ group * sex) $Im(y \sim 1 + G_2 + G_3 + ... + G_N +$ Interaction term: changing sex changes the y ~ group parameters. S2 + S3+ ... + SK + Note: $G_{2m,W}$ is an <u>indicator (6 or 1)</u> for each non-intercept levels of the group variable. Similarly for S_{2iog} for sex. The first line (with G_i) is main effect of group, the second (with [Caming] $G_2^*S_2+G_3^*S_3+...+G_N^*S_K$ S_i) for sex and the third is the group * sex interaction. For two levels (e.g. male/female), line 2 would just be " S_2 " and line 3 would be S_2 multiplied with each G_1 Interaction term: (Same as Two-way ANOVA.) Counts ~ discrete x Equivalent log-linear model Same as Note: Run glm using the following arguments: glm (model, family=poisson()). N: Chi-square test chisq.test(groupXsex_table) $glm(y \sim 1 + G_2 + G_3 + ... + G_n +$ Two-way As linear-model, the Chi-square test is $log(y_i) = log(N) + log(g_i) + log(g_i) + log(g_i)$ where a_i $S_2 + S_3 + ... + S_K +$ ANOVA and β, are proportions. See more info in the accompanying notebook. $G_2^*S_2+G_3^*S_3+...+G_N^*S_K$, family=...)

List of common parametric (P) non-parametric (N) tests and equivalent linear models. The notation y ~ 1 + x is R shorthand for y = 1 b + a x which most of us learned in school. Models in similar colors are highly similar, but really, notice how similar they all are across coloral For non-parametric models, the linear models are reasonable approximations for non-small sample sizes (see "Exact" column and click links to see simulations). Other less accurate approximations exist, e.g., Wilcoxon for the sign test and Goodness-of-fit for the binomial test. The signed_rank = function(x) sign(x) * rank(abs(x)). The variables Grand Stare "dummy coded" indicator variables (either 0 or 1) exploiting the fact that when $\Delta x = 1$ between categories the difference equals the slope. Subscripts (e.g., G_2 or y_1) indicate different columns in data. Im requires long-format data for all non-continuous models. All of this is exposed in greater detail and worked examples at https://lindeloev.github.jo/tests-as-linear.

 $glm(y \sim 1 + G_2 + G_3 + ... + G_N, family=...)^n$

chisq.test(y)

N: Goodness of fit

1W-ANOVA

See the note to the two-way ANOVA for explanation of the notation.

⁶ Same model, but with one variance per group: $g1s(value \sim 1 + G_2)$, weights = varident(form = ~1|group), method="MI").