p-ब्लॉक तत्त्व THE p-BLOCK ELEMENTS

उद्देश्य

इस एकक के अध्ययन के बाद आप-

- p-ब्लॉक के तत्त्वों के रसायन की सामान्य प्रवृत्तियों की विवेचना कर सकेंगे;
- समूह 13 तथा 14 के तत्त्वों के भौतिक एवं रासायनिक गुणों की प्रवृत्तियों की व्याख्या कर सकेंगे:
- बोरॉन तथा कार्बन के असंगत व्यवहार को समझा सकेंगे;
- कार्बन के अपररूपों की व्याख्या कर सकेंगे;
- बोरॉन, कार्बन तथा सिलिकॉन के कुछ महत्त्वपूर्ण यौगिकों के रसायन को जान सकेंगे;
- समूह 13 तथा 14 के तत्त्व एवं उनके यौगिकों के महत्त्वपूर्ण उपयोगों को सूचीबद्ध कर सकेंगे।

गुरुतर तत्त्वों के आंतरिक क्रोड में d- तथा f- इलेक्ट्रॉनों के प्रभाव के कारण p-ब्लॉक के तत्त्वों के गुणों में भिन्नता उनके रसायन को रुचिकर बनाती है।

p- ब्लॉक के तत्त्वों में अंतिम इलेक्ट्रॉन बाह्यतम p-कक्षक में प्रवेश करता है। जैसा हम जानते हैं. p-कक्षकों की संख्या तीन होती है। अत: p-कक्षकों के एक समच्चय में अधिकतम छ: इलेक्टॉन समाहित हो सकते हैं। परिणामत: आवर्त सारणी में p-ब्लॉक के 13 से 18 तक छ: समह हैं। बोरॉन, कार्बन, नाइटोजन, ऑक्सीजन, फ्लुओरीन तथा हीलियम इन समृहों के शीर्ष हैं। हीलियम के अतिरिक्त इनका संयोजी कोश **इलेक्ट्रॉनिक विन्यास ns²np¹⁻⁶ है.** हालाँकि इनके इलेक्ट्रॉनिक विन्यास का आंतरिक क्रोड भिन्न हो सकता है। यह भिन्नता इनके भौतिक गणों (जैसे-परमाण्वीय एवं आयनिक त्रिज्या, आयनन एन्थैल्पी आदि) के साथ-साथ रासायनिक गुणों को भी अत्यधिक प्रभावित करती है। परिणामत: p-ब्लॉक के तत्त्वों के गुणों में अत्यधिक भिन्नता परिलक्षित होती है। p-ब्लॉक के एक तत्त्व द्वारा दर्शाई जाने वाली **अधिकतम ऑक्सीकरण अवस्था** उसके संयोजी इलेक्ट्रॉन (अर्थात् s- तथा p-इलेक्ट्रॉन का योग) की संख्या के समान होती है। स्पष्टत: आवर्त सारणी में दाईं ओर बढने पर संभावित ऑक्सीकरण अवस्थाएँ बढती जाती हैं। इसके अतिरिक्त तथाकथित **समृह ऑक्सीकरण अवस्था** के साथ-साथ p-ब्लॉक के तत्त्व अन्य ऑक्सीकरण अवस्थाएँ भी दर्शाते हैं, जो सामान्यत: (परंतु आवश्यक नहीं) कुल संयोजी इलेक्ट्रॉन से दो इकाई कम होती हैं। p-ब्लॉक के तत्त्वों द्वारा दर्शाई जाने वाली महत्त्वपूर्ण ऑक्सीकरण अवस्थाओं को सारणी 11.1 में दर्शाया गया है। बोरॉन, कार्बन तथा नाइट्रोजन परिवार में हलके तत्त्वों के लिए समूह ऑक्सीकरण अवस्था अधिकतम स्थायी होती है। समूह ऑक्सीकरण अवस्था से दो इकाई कम ऑक्सीकरण अवस्था प्रत्येक समूह में गुरुतर तत्त्वों के लिए क्रमिक रूप से स्थायी होती जाती है। समूह ऑक्सीकरण अवस्था से दो इकाई कम ऑक्सीकरण अवस्था की प्राप्ति को **अक्रिय यग्म प्रभाव** (inert pair effect)

समूह	13	14	15	16	17	18
सामान्य इलेक्ट्रॉनिक विन्यास	ns²np¹	ns²np²	ns²np³	ns²np⁴	ns²np⁵	ns²np⁶ (Heके लिए 1s²)
समूह का प्रथम सदय	В	С	N	О	F	Не
समूह ऑक्सीकरण अवस्था	+3	+4	+5	+6	+7	+8
अन्य ऑक्सीकरण अवस्थाएँ	+1	+2,-4	+3-3	+4, +2, -2	+5, +3, +1, -1	+6, +4, +2

सारणी 11.1 p-ब्लॉक के तत्त्वों का सामान्य इलेक्ट्रॉनिक विन्यास एवं ऑक्सीकरण अवस्थाएँ

कहा जाता है। इन दो ऑक्सीकरण अवस्थाओं (समूह ऑक्सीकरण अवस्था तथा समूह ऑक्सीकरण अवस्था से दो इकाई कम) के सापेक्ष स्थायित्व समूहवार परिवर्तित होते हैं, जिसकी व्याख्या उपयुक्त स्थान पर की जाएगी।

यह देखना रुचिकर है कि अधातु एवं उपधातु आवर्त सारणी के केवल p—ब्लॉक में होते हैं। समूह में नीचे जाने पर अधात्विक गुण कम होता जाता है। वास्तव में प्रत्येक p—ब्लॉक के समूह में सबसे गुरुतर तत्त्व सर्वाधिक धात्विक प्रकृति का होता है। अधात्विक से धात्विक गुणों में इस प्रकार परिवर्तन इन तत्त्वों के रसायन में विविधता लाता है। यह परिवर्तन उस तत्त्व से संबंधित समूह पर निर्भर करता है।

सामान्यतः धातुओं की तुलना में अधातुओं की उच्च विद्युत् आयनन एन्थेल्पी तथा उच्च विद्युत् ऋणात्मकता होती है। अतः धातुओं के विपरीत जो आसानी से धनायन बनाते हैं, अधातुएँ ऋणायन बनाती हैं। अत्यधिक सिक्रय धातु से अत्यधिक सिक्रय अधातु द्वारा बना यौगिक सामान्यतः आयनिक प्रकृति का होता है, क्योंकि इनकी विद्युत् ऋणात्मकताओं में अधिक अंतर होता है, वहीं दूसरी ओर अधातुओं के स्वयं के मध्य बनाए गए यौगिक अधिकांशतः सहसंयोजी होते हैं, क्योंकि उनकी विद्युत् ऋणात्मकता में बहुत कम अंतर होता है। अधात्विक से धात्विक गुण में परिवर्तन को इनके द्वारा बनाए गए ऑक्साइड की प्रकृति के आधार पर समझाया जा सकता है। अधात्विक ऑक्साइड उदासीन अथवा अम्लीय होते हैं, जबिक धात्विक ऑक्साइड क्षारीय प्रकृति के होते हैं।

p-ब्लॉक में प्रत्येक समूह का पहला सदस्य अन्य सदस्यों से दो कारणों से भिन्न है। इनमें पहला कारण इनका छोटा आकार तथा दूसरा कारण वे सभी गुण हैं, जो आकार पर निर्भर करते हैं। अतः s-ब्लॉक के हलके तत्त्व लीथियम एवं बेरीलियम की भाँति p-ब्लॉक के भी सबसे हलके तत्व भिन्नता प्रदर्शित करते हैं। केवल p-ब्लॉक के तत्त्वों पर लागू दूसरी महत्त्वपूर्ण भिन्नता, गुरुतर तत्त्वों (तृतीय आवर्त के उपरांत के तत्त्व) के संयोजी कोश में d-कक्षकों की उपस्थिति है, जो द्वितीय आवर्त तक के तत्त्वों में नहीं होते हैं। p-ब्लॉक में द्वितीय आवर्त के तत्त्व. जो बोरॉन से प्रारंभ होते हैं, की अधिकतम संयोजकता चार (एक 2s तथा तीन 2p कक्षकों का उपयोग करते हुए) तक सीमित रहती है। इसके विपरीत p-समृह के तृतीय आवर्त के तत्त्व (जिनका इलेक्ट्रॉनिक विन्यास $3s^23p^n$ होता है) में रिक्त 3d कक्षक उपस्थित होते हैं. जो 3p तथा 4s ऊर्जा-स्तर के मध्य होते हैं। इन d-कक्षकों का उपयोग करते हुए तृतीय आवर्त के तत्त्व अपनी संयोजकता को चार से अधिक बढा सकते हैं। जैसे-जहाँ बोरॉन केवल [BF] - आयन बनाता है, वहीं ऐल्मीनियम $[{
m ALF}_{
m c}]^{3-}$ आयन देता है। इन d-कक्षकों की उपस्थिति गुरुतर तत्त्वों (Heavier Elements) के रसायन को कई अन्य प्रकार से प्रभावित करती है। आकार एवं d-कक्षकों की उपलब्धता का संयुक्त प्रभाव इन तत्त्वों की π बंध बनाने की क्षमता को प्रभावित करता है। समूह का प्रथम सदस्य अन्य गुरुतर सदस्यों से स्वयं के साथ (उदाहरणार्थ-C=C, C=C, N=N) एवं अन्य दूसरे वर्ग के तत्त्वों (उदाहरणार्थ-C=O, C=N, C = N, N=O) के साथ $p\pi$ - $p\pi$ बहुबंध बनाने की क्षमता में अंतर रखता है। गुरुतर तत्त्व

भी π बंध बनाते हैं, परंतु इनमें d—कक्षक ($d\pi$ – $p\pi$) अथवा $d\pi$ – $d\pi$) सिम्मिलत होते हैं। चूँकि d—कक्षकों की ऊर्जा p—कक्षकों की ऊर्जा से अधिक होती है, अतः द्वितीय पंक्ति के तत्त्वों के $p\pi$ — $p\pi$ बंधन की तुलना में d—कक्षकों का स्थायित्व में योगदान कम होता है, हालाँकि समान ऑक्सीकरण अवस्था वाले प्रथम सदस्य की तुलना में गुरुतर तत्त्वों की उपसहसंयोजक संख्या अधिक हो सकती है। उदाहरणार्थ— +5 ऑक्सीकरण अवस्था में P तथा N दोनों ऑक्सो ऋणायन NO_3 (π —बंध के साथ तीन उपसहसंयोजन में सिम्मिलत करते हुए नाइट्रोजन के एक p—कक्षक को) तथा PO_4^{3-} (s, p एवं d कक्षकों को π — बंध में सिम्मिलत करते हुए) बनाते हैं। इस एकक में हम आवर्त सारणी के समूह 13 तथा 14 के तत्त्वों के रसायन का अध्ययन करेंगे।

11.1 समृह 13 के तत्त्व: बोरॉन परिवार

गुणों में इस समूह के तत्त्व बृहत्त भिन्नता प्रदर्शित करते हैं। बोरॉन (B) एक प्रारूपिक अधातु है, ऐलुमीनियम (Al) धातु है, परंतु इसके अनेक रासायनिक गुणधर्म बोरॉन के समान हैं, जबिक

गैलियम (Ga), इंडियम (In) तथा थैलियम (Tl) गुणधर्मों में लगभग पूर्णत: धातु हैं।

उपस्थिति- बोरॉन एक दुर्लभ तत्त्व है। यह मुख्यत: आर्थोबोरिक अम्ल (H₂BO₂), बोरेक्स (Na₂B₄O₇·10H₂O) तथा करनाइट (Na,B,O, 4H,O) के रूप में प्राप्त होता है। हमारे देश में बोरेक्स पूगा घाटी (लद्दाख) तथा सांभर झील (राजस्थान) में मिलता है। भू-पर्पटी (Earth Crust) में बोरॉन की बाहल्यता 0.0001% (भारात्मक) से भी कम है। बोरॉन के दो समस्थानिक रूप ¹⁰B (19%) तथा ¹¹B (81%) मिलते हैं। ऐलुमीनियम की भू-पर्पटी में बाहुल्यता (8.3%) सर्वाधिक है। भारात्मक रूप से यह भू-पर्पटी पर ऑक्सीजन (45.5%) तथा सिलिकन (27.7%) के पश्चात् सर्वाधिक पाया जाने वाला तत्व है। ऐलुमीनियम के प्रमुख बॉक्साइट (Al₂O₃. 2H₂O) तथा क्रायोलाइट (Na₃AIF₆) अयस्क हैं। हमारे देश में यह मुख्यत: मध्य प्रदेश, कर्नाटक, उड़ीसा तथा जम्मू में अभ्रक (Mica) के रूप में मिलता है। गैलियम, इंडियम तथा थैलियम प्रकृति में यह बहुत कम मात्रा में मिलते हैं।

सारणी 11.2 समूह 13 के तत्त्वों के परमाण्विक एवं भौतिक गुण

		बोरॉन	ऐलुमीनियम	गैलीयम	इंडियम	थैलियम
गुण		В	A1	Ga	In	T1
परमाणु क्रमांक		5	13	31	49	81
परमाणु द्रव्यमान	/g mol ⁻¹	10.81	26.98	69.72	114.82	204.38
इलेक्ट्रॉनिक विन्य	ग्रस	$[\mathrm{He}]2s^22p^1$	[Ne] $3s^23p^1$	[Ar] $3d^{10}4s^24p^1$ [Kr] $4d^{10}5s^25p^1$		$[Xe]4f^{14}5d^{10}6s^{2}6p^{1}$
परमाणु त्रिज्या/I	om ^a	(85)	143	135	167	170
आयनी त्रिज्या M³+/pm ^b		(27)	53.5	62.0 80.0		88.5
आयनी त्रिज्या M+/pm		-	-	120	140	150
आयनन	$\Delta_i H_1$	801	577	579	558	589
एन्थैल्पी (kJ mol ⁻¹)	$\Delta_i H_2 \ \Delta_i H_3$	2427 3659	1816 2744	1979 2962	1820 2704	1971 2877
विद्युत् ऋणात्मक	ता ^c	2.0	1.5	1.6	1.7	1.8
घनत्व /g cm ⁻³ 298 K पर		2.35	2.70	5.90	7.31	11.85
गलनांक / K		2453	933	303	430	576
क्वथनांक / K 3923		3923	2740	2676	2353	1730
E [⊖] /V, M ³⁺ /M के लिए -		-	-1.66	-0.56	-0.34	+1.26
E [⊖] /V,M⁺/M के लिए		-	+0.55	-0.79 (अम्ल) -1.39 क्षारक)	-0.18	-0.34

^aधात्विक त्रिज्या ^b 6-उपसहसंयोजन, ^c पॉलिंग स्केल

समूह 13 के तत्त्वों के परमाण्वीय, भौतिक तथा रासायनिक गुण निम्नलिखित हैं—

11.1.1 इलेक्ट्रॉनिक विन्यास

समूह-13 के तत्त्वों का बाह्य इलेक्ट्रॉनिक विन्यास ns^2np^1 होता है। अतः इस समूह के तत्त्वों के इलेक्ट्रॉनिक विन्यास प्रथम दो समूहों के तत्त्वों की तुलना में (जैसे एकक-10 में विवेचित किया गया है) अधिक जटिल होते हैं। इलेक्ट्रॉनिक विन्यास में यही अंतर इस समूह के तत्त्वों के अन्य गुणों तथा इन तत्त्वों के रसायन को प्रभावित करता है।

11.1.2 परमाणु त्रिज्या

समूह में नीचे जाने पर प्रत्येक क्रमागत सदस्य में इलेक्ट्रॉनों का एक कोश जुड़ता है। अत: परमाणु त्रिज्या की वृद्धि संभावित होने के बावजूद विचलन देखा जा सकता है। Ga की परमाणु त्रिज्या Al की परमाणु त्रिज्या से कम है। आंतरिक क्रोड के इलेक्ट्रॉनिक विन्यास से यह देखा जा सकता है कि गैलियम में उपस्थित अतिरिक्त 10 d इलेक्ट्रॉन बढ़े हुए नाभिकीय आवेश की तुलना में बाह्य इलेक्ट्रॉनों पर दुर्बल परिरक्षण प्रभाव डालते हैं (एकक-3 देखें)। परिणामत: गैलियम की परमाणु त्रिज्या (135 pm) ऐलुमीनियम (143 pm) की तुलना में कम होती है।

11.1.3 आयनन एन्थैल्पी

आयनन एन्थेल्पी, जैसा सामान्य प्रवृत्ति से आशा की जाती है, समूह में ऊपर से नीचे सामान्य रूप से नहीं घटती है। B से Al में कमी, आकार-वृद्धि के साथ जुड़ी हुई है। Al एवं Ga के मध्य तथा In व Tl के मध्य आयनन एन्थेल्पी की प्रेक्षित अनिरंतरता d एवं f इलेक्ट्रॉनों के कारण है, जिनका परिरक्षण प्रभाव बढ़े हुए नाभिकीय प्रभाव की क्षतिपूर्ति करने के लिए कम होता है।

आयनन एन्थैल्पी का क्रम $\Delta_{\rm i}H_1<\Delta_{\rm i}H_2<\Delta_{\rm i}H_3$ है, जैसािक अपेक्षित है। प्रत्येक तत्त्व की प्रथम तीन एन्थैल्पियों का योग उच्च होता है। यह इनके रासायिनक गुणों के अध्ययन में परिलक्षित होगा।

11.1.4 विद्युत् ऋणात्मकता

समूह-13 के तत्त्वों की विद्युत् ऋणात्मकता वर्ग में ऊपर से नीचे जाने पर B से Al तक घटती है। तत्पश्चात् आंशिक वृद्धि होती है। ऐसा परमाण्वीय आकार में अनियमित वृद्धि के कारण होता है।

11.1.5 भौतिक गुणधर्म

बोरॉन प्रकृति में अधात्विक तत्त्व है। यह काले रंग का अत्यधिक कठोर पदार्थ है। इसके अनेक अपररूप मिलते हैं। क्रिस्टलीय जालक संरचना के कारण बोरॉन का गलनांक असाधारण रूप से उच्च होता है। इस समूह के अन्य तत्त्व निम्न गलनांक एवं उच्च वैद्युतचालकता वाले मुलायम ठोस होते है। यह ध्यान देने योग्य बात है कि गैलियम का गलनांक बहुत कम (303 K) होता है। अत: गर्मियों के दिनों में यह द्रव अवस्था में मिलता है। इसका उच्च क्वथनांक (2676 K) उच्च तापों के मापन के लिए इसे उपयोगी पदार्थ बनाता है। समूह—13 के तत्त्वों का घनत्व वर्ग में नीचे जाने पर बोरॉन से थैलियम तक बढ़ता जाता है।

11.1.6 रासायनिक गुणधर्म

ऑक्सीकरण अवस्था एवं रासायनिक अभिक्रियाशीलता की प्रवृत्ति

छोटे आकार के कारण बोरॉन की प्रथम तीन आयनन एन्थैल्पियों का योग बहुत उच्च होता है। यह इसे न सिर्फ +3 ऑक्सीकरण अवस्था में आने से रोकता है, बिल्क केवल सहसंयोजक यौगिक बनाने के लिए बाध्य भी करता है। परंतु जब हम B से Al तक जाते हैं, तब Al की प्रथम तीन आयनन एन्थैल्पियों का योग उल्लेखनीय रूप से घट जाता है। इस प्रकार यह Al³⁺ आयन बनने की सामर्थ्य रखता है। यथार्थ में Al एक उच्च धनविद्युती तत्त्व है।

फिर भी वर्ग में नीचे d एवं f कक्षकों के दुर्बल पिरस्क्षण प्रभाव के कारण, बढ़ा हुआ नाभिकीय आवेश ns इलेक्ट्रॉनों को मजबूती से बाँधे रखता है (जो अक्रिय युग्म प्रभाव के लिए उत्तरदायी है)। इस प्रकार बंधन में इनकी सहभागिता को नियंत्रित करता है। पिरणामस्वरूप बंधन में केवल p- कक्षक भाग लेते है। यथार्थ में Ga, In एवं TI में +1 तथा +3 दोनों ऑक्सीकरण अवस्थाएँ प्रेक्षित होती हैं। गुरुतर तत्त्वों के लिए +1 ऑक्सीकरण अवस्था का स्थायित्व उत्तरोत्तर बढ़ता जाता है: AI < Ga < In < TI थैलियम में +1 ऑक्सीकरण अवस्था स्थायी है, जबिक +3 ऑक्सीकरण अवस्था प्रकृति में उच्च ऑक्सीकारक है। ऊर्जा संबंधी कारणों से अपेक्षित +1 ऑक्सीकरण अवस्था वाले यौगिक +3 ऑक्सीकरण अवस्था की तुलना में अधिक आयनिक होते हैं।

इन तत्त्वों के त्रिसंयोजी अवस्था में अणुओं में केंद्रीय परमाणु के चारों ओर इलेक्ट्रॉनों की संख्या 6 होती है (उदाहरणार्थ-BF ्र में बोरॉन)। ऐसे इलेक्ट्रॉन न्यून अणु स्थायी

इलेक्ट्रॉनिक विन्यास प्राप्त करने के लिए एक इलेक्ट्रॉन युग्म ग्रहण करके लुइस अम्ल के समान व्यवहार करते हैं।

समूह में ऊपर से नीचे जाने पर आकार में वृद्धि के कारण लूइस अम्ल के समान व्यवहार करने की प्रवृत्ति कम होती जाती है। बोरॉन ट्राइक्लोराइड सरलतापूर्वक अमोनिया से एक एकाकी इलेक्ट्रॉन युग्म ग्रहण कर $BC1_3.NH_3$ उपसहसंयोजक यौगिक बनाता है।

$$\begin{array}{c|c}
Cl & & NH_3 \\
B - Cl + NH_3 \longrightarrow & B \\
Cl & & Cl
\end{array}$$

इसी प्रकार $AlCl_3$ चतुष्फलकीय द्विलक बनाकर स्थायी हो जाता है।

चूँिक त्रिसंयोजी अवस्था में अधिकांश यौगिक सहसंयोजक होते हैं, अत: वे जल-अपघटित हो जाते हैं। उदाहरणार्थ—धात्विक ट्राइक्लोराइड जल अपघटन पर चतुष्फलकीय स्पीशीज़ $[M(OH)_4]$ — बनाते हैं, जहाँ M की संकरण अवस्था sp^3 होती है। ऐलुमीनियम क्लोराइड अम्लीय जल-अपघटन करने पर अष्टफलकीय आयन $[Al\ (H_2O)_6]^{3+}$ आयन बनाता है। इस संकुल आयन में Al के 3d कक्षक भाग लेते हैं। इसमें Al की संकरण अवस्था sp^3d^2 है।

उदाहरण 11.1

 ${\rm Al}^{3+}/{\rm Al}$ एवं ${\rm Tl}^{3+}/{\rm Tl}$ के लिए मानक इलेक्ट्रोड विभव ${\rm E}^{\ominus}$ क्रमश: $-1.66~{\rm V}$ एवं + $1.26~{\rm V}$ हैं। विलयन में ${\rm M}^{3+}$ आयन बनने का अनुमान लगाइए एवं दोनों धातुओं के धनविद्युती गुण की तुलना कीजिए।

हल

दोनों अर्धसेलों के मानक इलेक्ट्रॉड विभव बताते हैं कि ऐलुमीनियम में Al^{3+} (aq) आयन बनाने की प्रवृत्ति अधिक रहती है, जबकि Tl^{3+} विलयम में न सिर्फ

अस्थायी है, बिल्क प्रबल ऑक्सीकारक भी है। अतः विलयन में Π^{3+} की तुलना में Λ^{13+} अधिक स्थायी है। +3 आयन बनाने के कारण ऐलुमीनियम थैलियम की तुलना में अधिक धनविद्युती है।

(i) वायु के प्रति अभिक्रियाशीलता

क्रिस्टलीय स्वरूप में बोरॉन अक्रियाशील है। वायु के संपर्क में आने पर ऐलुमीनियम की सतह पर ऑक्साइड की पतली परत बन जाती है, जो और अधिक क्षय होने से धातु को रोकती है। अक्रिस्टलीय बोरॉन तथा ऐलुमीनियम वायु के संपर्क में गरम किए जाने पर क्रमश: $\mathbf{B_2O_3}$ तथा $\mathbf{Al_2O_3}$ बनाते हैं। उच्च ताप पर ये डाइनाइटोजन के साथ क्रिया कराने पर नाइटाइड बनाते हैं।

$$2E(s) + 3O_2(g) \xrightarrow{\Delta} 2E_2O_3(s)$$

 $2E(s) + N_2(g) \xrightarrow{\Delta} 2EN(s) \quad (E = \overline{\alpha} \overline{\alpha})$

समूह में नीचे जाने पर इनके ऑक्साइड की प्रकृति परिवर्तित होती जाती है। बोरॉन ट्राइऑक्साइड अम्लीय प्रकृति का होता है तथा क्षारकीय (धात्विक) ऑक्साइड से क्रिया करके धात्विक बोरेट बनाता है। ऐलुमीनियम तथा गैलियम के ऑक्साइड उभयधर्मी प्रकृति के होते हैं, जबिक इंडियम तथा थैलियम के ऑक्साइड गुणधर्मों में क्षारकीय प्रकृति के होते हैं।

(ii) अम्ल एवं क्षार के प्रति अभिक्रियाशीलता

बोरॉन अम्ल एवं क्षार के साथ कोई क्रिया नहीं करता है, परंतु ऐलुमीनियम खनिज अम्लों तथा जलीय क्षारों में घुल जाता है। फलत: ऐलुमीनियम उभयधर्मी गुण प्रदर्शित करता है। ऐलुमीनियम तनु HCl में घुलकर डाइहाड्रोजन निष्कासित करता है। $2Al(s) + 6HCl (aq) \rightarrow 2Al^{3+} (aq) + 6Cl^{-}(aq) + 3H_{2}(g)$

सांद्र नाइट्रिक अम्ल Al की सतह पर ऑक्साइड की सतह बनाकर उसे निष्क्रिय कर देता है। ऐलुमीनियम जलीय क्षारों से क्रिया करके डाइहाइड्रोजन विसर्जित करता है।

2Al(s) + 2NaOH(aq) + 6H₂O(l)

(iii) हैलोजेनों के प्रति अभिक्रियाशीलता

 ${
m TI\,I_3}$ को छोड़कर समूह-13 के तत्त्व हैलोजेन से क्रिया करके ट्राइहैलाइड बनाते हैं।

$$2E(s) + 3X_2(g) \rightarrow 2EX_3(s)$$
 (X = F, Cl, Br, I)

p-ब्लॉक तत्त्व 307

उदाहरण 11.2

निर्जलीय ऐलुमीनियम क्लोराइड की बोतल के चारों ओर श्वेत धूम बन जाते हैं। इसका कारण बताइए।

हल

निर्जालीय ऐलुमीनियम क्लोराइड वायुमंडलीय नमी के साथ आंशिक रूप से जल अपघटित होकर HCl गैस विसर्जित करता है। यह नमीयुक्त HCl श्वेत धूम के रूप में दिखाई देती है।

11.2 बोरॉन की प्रवृत्ति तथा असंगत व्यवहार

समूह-13 के तत्त्वों के रासायनिक व्यवहार का अध्ययन करने पर कुछ महत्त्वपूर्ण तथ्य सामने आते हैं। इस समूह के सभी तत्त्वों के ट्राइक्लोराइड, ब्रोमाइड एवं आयोडाइड सहसंयोजक प्रकृति के होने के कारण जल-अपघटित हो जाते हैं। बोरॉन के अतिरिक्त अन्य सभी तत्त्वों की चतुष्फलकीय स्पीशीज $[M(OH)_4]$ तथा अष्टफलकीय $[M(H_2O)_6]^{3+}$ स्पीशीज जलीय विलयन में उपस्थित रहते हैं।

तत्त्वों के एकलक (Monomeri) ट्राइहैलाइड, इलेक्ट्रॉन न्यून होने के कारण प्रबल लूइस अम्ल के समान व्यवहार करते हैं। लूइस क्षार (जैसे–NH3 आदि) एक इलेक्ट्रॉन युग्म प्रदान कर ऐसे यौगिकों के केंद्रीय परमाणु का अष्टक पूर्ण करते हैं।

$$F_3B + : NH_3 \longrightarrow F_3B \leftarrow NH_3$$

बोरॉन में d-कक्षक अनुपस्थित रहते हैं। फलत: इसकी अधिकतम संयोजकता 4 हो सकती है। चूँिक Al तथा अन्य तत्त्वों में d कक्षक उपस्थित होते हैं, अत: इनकी अधिकतम संयोजकता 4 से अधिक हो सकती है। अधिकांश अन्य धातु हैलाइड (उदाहरणार्थ—AlCl $_3$) सेतुबंध हैलोजेन परमाणु द्वारा द्विफलकीय हो जाते हैं (Al $_2$ C l_6)। इन धातु यौगिकों में सेतुबंध हैलोजेन अणुओं से इलेक्ट्रॉन ग्रहण कर अपना अष्टक पूर्ण करते हैं।

उदाहरण 11.3

बोरॉन BF_6^{3-} आयन नहीं बना सकता है। इसकी व्याख्या कीजिए।

हल

बोरॉन में d-कक्षक की अनुपस्थित के कारण यह

अपने अष्टक का प्रसार करने में असमर्थ होता है। अत: इसकी अधिकतम संयोजकता 4 से अधिक नहीं हो सकती है।

11.3 बोरॉन के कुछ महत्त्वपूर्ण यौगिक

बोरॉन के कुछ उपयोगी यौगिक बोरेक्स, ऑर्थोबोरिक अम्ल तथा डाइबोरेन हैं। इनके रसायन का अध्ययन हम संक्षेप में करेंगे।

11.3.1 बोरेक्स

यह बोरॉन का महत्त्वपूर्ण यौगिक है। यह श्वेत क्रिस्टलीय ठोस है, जिसका सूत्र $\mathrm{Na_2B_4O_7.10H_2O}$ होता है। तथ्यात्मक रूप से इसमें चतुष्केंद्रीय इकाइयाँ $\left[\mathrm{B_4O_5}\left(\mathrm{OH}\right)_4\right]^{2^-}$ होती हैं। अतः इसका उपयुक्त सूत्र $\mathrm{Na_2[B_4O_5}\left(\mathrm{OH}\right)_4].8\mathrm{H_2O}$ होता है। बोरेक्स जल में घुलकर क्षारीय विलयन बनाता है।

$${
m Na_2B_4O_7}$$
 + $7{
m H_2O}
ightarrow 2{
m NaOH}$ + $4{
m H_3BO_3}$ आर्थोबोरिक अम्ल

गरम किए जाने पर बोरेक्स पहले जल के अणु का निष्कासन करता है तथा फूल जाता है। पुन: गरम किए जाने पर यह एक पारदर्शी द्रव में परिवर्तित हो जाता है, जो काँच के समान एक ठोस में परिवर्तित हो जाता है। उसे **बोरेक्स मनका** (Borax Bead) कहते हैं—

$$egin{aligned} {
m Na_2B_4O_7.10H_2O} & \stackrel{\Delta}{\longrightarrow} {
m Na_2B_4O_7} & \stackrel{\Delta}{\longrightarrow} {
m 2NaBO_2} \\ & {
m this} {
m alita} & {
m this} {
m 2NaBO_2} \\ & {
m alita} & {
m this} {
m cluster} \\ \end{array}$$

विभिन्न संक्रमण तत्त्वों के मेटाबोरेट का विशिष्ट रंग होता है, जिसके आधार पर इन तत्त्वों की पहचान में बोरेक्स मनका परीक्षण (Borax Bead Test) का उपयोग प्रयोगशालाओं में होता है। उदाहरणार्थ—जब बोरेक्स को कोबाल्ट ऑक्साइड (CoO) के साथ बुन्सन बर्नर पर गरम किया जाता है, तब नीले रंग का मनका [Co(BO₂)₂] बनता है।

11.3.2 आर्थोबोरिक अम्ल

आर्थोबोरिक अम्ल H_3BO_3 एक श्वेत क्रिस्टलीय ठोस होता है, जिसका साबुनी स्पर्श होता है। यह जल में अल्पविलेय, परंतु गरम जल में पूर्ण विलेय होता है। इसे बोरेक्स के जलीय विलयन को अम्लीकृत करके बनाया जा सकता है।

$${
m Na_2B_4O_7}$$
 + 2HCl + 5H $_2{
m O}
ightarrow 2{
m NaCl}$ + 4B(OH) $_3$
इसे बोरॉन के अधिकांश यौगिकों (जैसे–हैलाइड, हाइड्राइड

आदि) के जल-अपघटन द्वारा (जल तथा दुर्बल अम्ल से क्रिया करके) बनाया जा सकता है। इसकी परतीय संरचना होती है, जहाँ ${\rm BO}_3$ की इकाइयाँ हाइड्रोजन बंध द्वारा जुड़ी रहती हैं (चित्र 11.1)।

चित्र 11.1 बोरिक अम्ल की संरचना में बिंदुकृत रेखाएँ हाइड्रोजन आबंध को प्रदर्शित करती हैं

बोरिक अम्ल एक दुर्बल क्षारीय अम्ल है। यह प्रोटोनी अम्ल नहीं है, परंतु हाइड्रॉक्सिल आयनों से एक इलेक्ट्रॉन युग्म ग्रहण करने के कारण लूइस अम्ल की भाँति व्यवहार करता है।

$$B(OH)_3 + 2HOH \rightarrow [B(OH)_4]^- + H_3O^+$$

 $370~{\rm K}$ से अधिक ताप पर गरम किए जाने पर आर्थोबोरिक अम्ल मेटाबोरिक अम्ल (${\rm HBO_2}$) बनाता है, जो और अधिक गरम करने पर बोरिक ऑक्साइड (${\rm B_2O_3}$) में परिवर्तित हो जाता है।

$$H_3BO_3 \xrightarrow{\Delta} HBO_2 \xrightarrow{\Delta} B_2O_3$$

उदाहरण 11.4

बोरिक अम्ल को एक दुर्बल अम्ल क्यों माना गया है?

ਵਨ੍ਹ

बोरिक अम्ल को एक दुर्बल अम्ल इसलिए माना गया है, क्योंिक यह अपने प्रोटॉन का निष्कासन नहीं करता है। यह जल के अणु से हाइड्रॉक्सिल आयन (OH^-) ग्रहण करके अपना अष्टक पूर्ण करता है तथा H^+ निष्कासित करता है।

11.3.3 डाइबोरेन, B_aH_a

बोरॉन का ज्ञात सरलतम हाइड्राइड डाइबोरेन है। इसे डाइएिथल ईथर की उपस्थिति में बोरॉन ट्राइफ्लुओराइड की $LiAlH_4$ से क्रिया करके बनाया जाता है।

 $4\mathrm{BF}_3 + 3\,\mathrm{LiAlH}_4 \rightarrow 2\mathrm{B}_2\mathrm{H}_6 + 3\mathrm{LiF} + 3\mathrm{AlF}_3$

प्रयोगशाला में डाइबोरेन बनाने हेतु सोडियम बोरोहाइड्राइड का ऑक्सीकरण आयोडीन के साथ किया जाता है।

 $2NaBH_4 + I_9 \rightarrow B_9H_6 + 2NaI + H_9$

औद्योगिक रूप से डाइबोरेन बोरॉन ट्राइफ्लुओराइड तथा सोडियम हाइडाइड की क्रिया द्वारा बनाया जाता है।

$$2BF_3 + 6NaH \xrightarrow{450K} B_2H_6 + 6NaF$$

डाइबोरेन अत्यंत जहरीली रंगहीन गैस है, जिसका क्वथनांक 180 K है। यह वायु के संपर्क में आने पर स्वयं जल उठती है। यह ऑक्सीजन की उपस्थिति में अत्यधिक ऊर्जा का उत्सर्जन करते हुए जलता है।

$$B_2H_6 + 3O_2 \rightarrow B_2O_3 + 3H_2O;$$

 $\Delta_{\rm C} H^{\Theta} = -1976 \text{ kJ mol}^{-1}$

अधिकांश उच्च बोरेन भी वायु के संपर्क में आने पर स्वयं जलने लगते हैं। बोरेन जल के साथ तेजी से जल-अपघटित होकर बोरिक अम्ल देते हैं।

$$B_2H_6(g) + 6H_2O(l) \rightarrow 2B(OH)_3(aq) + 6H_2(g)$$

डाइबोरेन लूइस क्षारों (L) के साथ विदलन अभिक्रिया पर एक बोरेन योगोत्पाद (BH_a .L) देता है।

$$B_2H_6 + 2 \text{ NMe}_3 \rightarrow 2BH_3 \text{ .NMe}_3$$

$$B_{9}H_{e} + 2 CO \rightarrow 2BH_{9}$$
. CO

डाइबोरेन पर अमोनिया की अभिक्रिया से प्रारंभ में $B_2H_6.2NH_3$ बनता है, जिसे सूत्र $[BH_2(NH_3)_2^+][BH_4]^-$ द्वारा प्रदर्शित किया जाता है। यह और अधिक गरम करने पर $B_3N_3H_6$ देता है। इसे एकांतर BH एवं NH समूहों के साथ वलय–संरचना के पिरप्रेक्ष्य में अकार्बनिक बेंजीन (Inorganic Benzene) के रूप में जाना जाता है।

$$3B_2H_6+6NH_3 \rightarrow 3[BH_2(NH_3)_2]^+$$

$$[BH_4]^- \xrightarrow{Heat} 2B_3N_3H_6 + 12H_2$$

डाइबोरेन की संरचना को चित्र 11.2 (क) द्वारा दर्शाया गया है। इसमें सिरेवाले चार हाइड्रोजन परमाणु तथा दो बोरॉन परमाणु एक ही तल में होते हैं। इस तल के ऊपर तथा नीचे दो सेतुबंध (Bridging) हाइड्रोजन परमाणु होते

हैं। सिरेवाले चार B – H बंध सामान्य द्विकेंद्रीय-द्विइलेक्ट्रॉन (Two Centre-two Electron) बंध बनाते हैं, जबिक दो सेतुबंध (B – H – B) बंध भिन्न प्रकार के होते हैं, जिन्हें 'त्रिकेंद्रीय द्विइलेक्ट्रॉन बंध' कहते हैं। चित्र 11.2 (ख)।

चित्र 11.2 (क) डाइबोरेन की (B₂H₆) संरचना

चित्र 11.2 (ख) डाइबोरेन में बंधन। डाइबोरेन में प्रत्येक बोरॉन परमाणु sp³ संकरित होता है। इन चार sp³ संकरित कक्षकों में से एक इलेक्ट्रॉनरिहत होता है, जिसे बिंदुकृत रेखाओं (Dotted Lines) द्वारा दर्शाया गया है। सिरेवाले B – H सामान्य द्विकेंद्रीय-द्विइलेक्ट्रॉन (2c – 2e) बंधे हैं, जबिक दो सेतुबंध (B – H – B) त्रिकेंद्रीय-द्विइलेक्ट्रॉन (3c – 2e) है। इसे 'केलाबंध' (Banana Bond) भी कहते हैं।

बोरॉन, हाइड्राइडोबोरेट की एक शृंखला का निर्माण करता है, जिसमें चतुष्फलकीय $[BH_4]^-$ आयन प्रमुख है। विभिन्न धातुओं के टेट्राहाइड्राइडोबोरेट ज्ञात हैं। लीथियम तथा सोडियम के टेट्राहाइड्राइडोबोरेट को **बोरोहाइड्राइड** भी कहते हैं। इन्हें धातु हाइड्राइड की डाइऐथिलईथर की उपस्थिति में डाइबोरेन से अभिक्रिया करके बनाया जा सकता है।

$$2\text{MH} + \text{B}_2\text{H}_6 \rightarrow 2 \text{ M}^+ [\text{BH}_4]^-$$

(M = Li अथवा Na)

कार्बनिक संश्लेषणों में दोनों LiBH4 तथा NaBH4 का उपयोग अपचायक के रूप में होता है। अन्य धात्विक बोराहाइड्राइड बनाने में इन्हें प्रारंभिक पदार्थ (Starting Material) के रूप में उपयोग में लाया जाता है।

11.4 बोरॉन, ऐलुमीनियम तथा इनके यौगिकों के उपयोग

उच्च गलनांक, निम्न घनत्व, निम्न वैद्युतचालकता तथा अत्यधिक कठोर (Refractory) होने के कारण बोरॉन के अनेक अनुप्रयोग हैं। बोरॉन तंतुओं (Fibers) का उपयोग बुलेटप्रूफ जैकेट बनाने में तथा वायुयानों के हलके सघन पदार्थों के निर्माण में होता है। बोरॉन-10 (10B) समस्थानिक में न्यूट्रॉन-अवशोषण की अत्यधि क क्षमता होती है। अत: नाभिकीय उद्योगों में धात्विक बोराइडों का उपयोग परिरक्षण कवच (Protective Shield) तथा नियंत्रक छड़ों (Control Rods) के रूप में होता है। बोरेक्स तथा बोरिक अम्ल का मुख्य औद्योगिक उपयोग उच्च ताप सह काँच (Heat Resistant Glasses), जैसे—पाइरेक्स (Pyrex), ग्लासवुल तथा फाइबर ग्लास बनाने में होता है। बोरेक्स का उपयोग धातुओं के टाँका लगाने (Soldering) के लिए गालक (Flux) के रूप में; ऊष्मा, धब्बा (Strain) तथा खरोंच-प्रतिरोधी मिट्टी के बरतन बनाने में एवं औषधकृत साबुन में घटक के रूप में होता है। बोरिक अम्ल के जलीय विलयन का उपयोग सामान्यत: मंद पूर्तिरोधी के रूप होता है।

ऐलुमीनियम रजत श्वेत (Silvery White) रंग की एक चमकीली धातु है, जिसमें उच्च तनन सामर्थ्य (Tensile Strength) होती है। इसकी वैद्युत एवं ऊष्मीय चालकता उच्च होती है। भार से भार आधार (Weight to Weight Basis) पर ऐलुमीनियम की चालकता कॉपर से दुगुनी होती है। दैनिक जीवन तथा उद्योगों में ऐलुमीनियम का अत्यधिक उपयोग होता है। यह Cu, Mn, Mg, Si तथा Zn के साथ मिश्रधातु का निर्माण करता है। ऐलुमीनियम तथा इसकी मिश्रधातुओं को विशिष्ट आकृति (जैसे—पाइप, ट्यूब, छड़, पन्नी, तार, प्लेट आदि) दी जा सकती है। इससे इसका उपयोग बरतन बनाने के कार्य, निर्माण, पैकिंग, हवाई जहाज तथा यातायात उद्योगों में होता है। उत: घरेलू कार्यों में ऐलुमीनियम तथा इसके यौगिकों का उपयोग कम होने लगा है।

11.5 समूह-14 के तत्त्व : कार्बन परिवार

कार्बन (C), सिलिकन (Si), जर्मेनियम (Ge), टिन (Sn) तथा लेड (Pb) समूह 14 के तत्त्व हैं। कार्बन भू-पर्पटी में पाया जानेवाला सत्रहवाँ अतिबाहुल्य (Most Abundant) तत्त्व है। यह प्रकृति में स्वतंत्र एवं संयुक्त अवस्था में बहुतायत से पाया जाता है। तत्त्व अवस्था में यह कोयला, ग्रैफाइट तथा हीरा में मिलता है, जबिक संयुक्त अवस्था में यह धातु कार्बोनेट, हाइड्रोकार्बन तथा वायु में कार्बन डाइऑक्साइड गैस (0.03%)

के रूप में मिलता है। यह कहा जा सकता है कि कार्बन संसार का सबसे चंचल तत्त्व है, जो अन्य तत्त्वों (जैसे-डाइहाइड्रोजन, डाइऑक्सीजन, क्लोरीन, सल्फर आदि) से योग करके जीवित ऊतकों से दवाओं एवं प्लास्टिक तक का निर्माण करता है। कार्बनिक रसायन विज्ञान कार्बन के यौगिकों पर ही आधारित है। यह जीवित प्राणियों का आवश्यक घटक है। प्राकृतिक रूप से कार्बन के दो स्थायी समस्थानिक 12C तथा 13C मिलते हैं। इसके अतिरिक्त एक अन्य समस्थानिक ¹⁴C भी उपस्थित रहता है। यह एक रेडियोऐक्टिव समस्थानिक है, जिसकी अर्धायु 5770 वर्ष है। इसका उपयोग रेडियो कार्बन अंकन (Radio Carbon Dating) में होता है। सिलिकन भू-पर्पटी में बाहुल्यता से पाया जानेवाला (27.7% भार में) द्वितीय तत्त्व है। यह प्रकृति में सिलिका तथा सिलिकेट के रूप में उपस्थित रहता है। यह सिलिकन, सिरेमिक, काँच तथा सीमेन्ट का महत्त्वपूर्ण घटक है। जर्मेनियम अति सूक्ष्म मात्रा में उपस्थित रहता है। मुख्यत: टिन स्टोन (केसिटेराइट), SnO टिन से तथा गैलेना (PbS) अयस्क से लेड प्राप्त किया जाता है। जर्मेनियम तथा सिलिकन की शुद्धतम अवस्था का उपयोग ट्रांजिस्टर तथा अर्धचालक युक्ति (Semi Conductor Device) बनाने में होता है।

समूह-14 के तत्त्वों के महत्त्वपूर्ण परमाण्वीय एवं भौतिक गुण तथा उनके इलेक्ट्रॉनिक विन्यास सारणी 11.3 में दिए गए हैं। कुछ परमाण्वीय, भौतिक एवं रासायनिक गुणों की व्याख्या नीचे की जा रही है।

11.5.1 इलेक्ट्रॉनिक विन्यास

समूह-14 के तत्त्वों का संयोजकता कोश इलेक्ट्रॉनिक विन्यास $ns^2 np^2$ होता है। इस समूह के इलेक्ट्रॉनिक विन्यास में भी आंतरिक क्रोड भिन्न होता है।

11.5.2 सहसंयोजक त्रिज्या

कार्बन से सिलिकन की सहसंयोजक त्रिज्या में उल्लेखनीय वृद्धि तब होती है, जब Si से Pb तक सहसंयोजक त्रिज्या में आंशिक वृद्धि होती है। d- तथा f- कक्षकों के पूर्णपूरित होने के कारण ऐसा होता है।

•			~		<u></u>		30	
सारणी 11,3	समूह 14	क	तत्त्वा	क	परमाण्विक	एव	भारिक	गुण

गुण		कार्बन C	सिलिकन Si	जर्मेनियम Ge	टिन Sn	लेड Pb
परमाणु क्रमांक		6	14	32	50	82
परमाणु द्रव्यमान/	′g mol ⁻¹	12.01	28.09	72.60	118.71	207.2
इलेक्ट्रॉनिक विन्यास		$[\mathrm{He}]2s^22p^2$	$[\text{Ne}]3s^23p^2$	$[Ar]3d^{10}4s^24p^2$	$[Kr]4d^{10}5s^25p^2$	$[Xe]4f^{14}5d6s^26p^2$
सहसंयोजक त्रिज्य	ग/pm ^a	77	118	122	140	146
आयनी त्रिज्या M	⁴⁺ /pm ^b	_	40	53	69	78
आयनी त्रिज्या M	आयनी त्रिज्या M ²⁺ /pm ^b		-	73 118		119
आयनन	$\Delta_i H_1$	1086	786	761	708	715
एन्थैल्पी/	$\Delta_{i}H_{2}$	2352	1577	1537	1411	1450
kJ mol ⁻¹	$\Delta_i H_3$	4620	3228	3300	2942	3081
	$\Delta_i H_4$	6220	4354	4409	3929	4082
विद्युत् ऋणात्मकता [©]		2.5	1.8	1.8	1.8	1.9
घनत्व ^d /g cm ⁻³		$3.51^{\rm e}$	2.34	5.32	$7.26^{^{\mathrm{f}}}$	11.34
गलनांक/K		4373	1693	1218	1218 505	
क्वथनांक/K		-	3550	3123	2896	2024
विद्युत्-प्रतिरोधकता /ohm cm (293 K)		10 ¹⁴ -10 ¹⁶	50	50	10 ⁻⁵	2 10 ⁻⁵

 $^{{}^{}a}M^{IV}$ ऑक्सीकरण अवस्था के लिए; ${}^{b}6$ -उपसहसंयोजक; c पॉलिंग मापक्रम; ${}^{d}293~K;$ e हीरा के लिए; ग्रैफाइट का घनत्व $2.22~\tilde{\rm E}$; ${}^{f}B$ -रूप (कमरे के ताप पर स्थायी)।

11.5.3 आयनन एन्थेल्पी

समृह-14 के तत्त्वों की प्रथम आयनन एन्थैल्पी के मान सम्ह-13 के संगत तत्त्वों की अपेक्षा अधिक होते हैं।

यहाँ पर भी आंतरिक क्रोड इलेक्टॉनों का प्रभाव परिलक्षित होता है। सामान्यतया समृह में नीचे जाने पर आयनन एन्थैल्पी घटती है। Si से Ge. Ge से Sn तक अल्प न्यनता एवं Sn से Pb तक अल्पवृद्धि, मध्यवर्ती d तथा f इलेक्ट्रॉनों के दुर्बल परिरक्षण प्रभाव एवं परमाणु के बढे आकार का परिणाम है।

11.5.4 विद्युत् ऋणात्मकता

छोटे आकार के कारण समूह-14 के तत्त्वों की विद्युत् ऋणात्मकता का मान समूह-13 के संगत तत्त्वों की विद्युत् ऋणात्मकता के मान से थोडा सा अधिक होता है। Si से Pb तक तत्त्वों की विद्युत् ऋणात्मकता का मान लगभग समान होता है।

11.5.5 भौतिक गुणधर्म

समृह-14 के सभी तत्त्व ठोस हैं। कार्बन-सिलिकन अधात और जर्मेनियम उपधात है. जबिक टिन तथा लेड कम गलनांक वाली मुलायम धातु है। समूह-14 के तत्त्वों के गलनांक एवं क्वथनांक समूह-13 के तत्त्वों के गलनांक एवं क्वथनांक की तलना में अधिक होते हैं।

11.5.6 रासायनिक गणधर्म

ऑक्सीकरण अवस्था तथा रासायनिक अभिक्रियाशीलता की प्रवृति

समूह-14 के तत्त्वों के बाह्यतम कोश में चार इलेक्ट्रॉन होते हैं। इन तत्त्वों द्वारा सामान्यत: +4 तथा +2 ऑक्सीकरण अवस्था दर्शाई जाती है। कार्बन ऋणात्मक ऑक्सीकरण अवस्था भी प्रदर्शित करता है। चुँकि प्रथम चार आयनन एन्थेल्पी का योग अति उच्च होता है. अत: +4 ऑक्सीकरण अवस्था में अधिकतर यौगिक सहसंयोजक प्रकृति के होते हैं। इस समृह के गुरुतर तत्त्वों में Ge < Sn < Pb क्रम में +2 ऑक्सीकरण अवस्था प्रदर्शित करने की प्रवृत्ति बढ़ती जाती है। सहसंयोजक कोश में ns^2 इलेक्ट्रॉन के बंधन में भाग नहीं लेने के कारण यह होता है। इन दो ऑक्सीकरण अवस्थाओं का सापेक्षिक स्थायित्व वर्ग में परिवर्तित होता है। कार्बन तथा सिलिकन मुख्यत: +4 ऑक्सीकरण अवस्था प्रदर्शित करते हैं। जर्मेनियम की +4 ऑक्सीकरण अवस्था स्थायी होती है, जबकि कुछ यौगिकों में +2 ऑक्सीकरण अवस्था भी मिलती है। टिन ऐसी दोनों अवस्थाओं में यौगिक बनाता है (+2 ऑक्सीकरण अवस्था में

टिन अपचायक के रूप में कार्य करता है)। +2 ऑक्सीकरण अवस्था में लेड के यौगिक स्थायी होते हैं. जबकि इसकी +4 अवस्था प्रबल ऑक्सीकरक है। चतुःसंयोजी अवस्था में अणु के केंद्रीय परमाणु पर आठ इलेक्ट्रॉन होते हैं [उदाहरणार्थ- (CCL)]। इलेक्ट्रॉन परिपूर्ण अणु होने के कारण सामान्यतया इलेक्ट्रॉनग्राही या इलेक्टॉनदाता स्पीशीज़ की अपेक्षा इनसे नहीं की जाती है। यद्यपि कार्बन अपनी सहसंयोजकता +4 का अतिक्रमण नहीं कर सकता है, परंतु समूह के अन्य तत्त्व ऐसा करते हैं। यह उन तत्त्वों में d-कक्षकों की उपस्थिति के कारण होता है। यही कारण है कि ऐसे तत्त्वों के हैलाइड जल अपघटन के उपरांत दाता स्पीशीज (Donar Species) से इलेक्ट्रॉन ग्रहण करके संकुल बनाते हैं। उदाहरणार्थ-कुछ स्पीशीज़ [जैसे-(Si F 2-, GeCl₂])²⁻, (Sn(OH)₂)²⁻] ऐसी होती हैं, जिनके केंद्रीय परमाणु sp^3d^2 संकरित होते हैं।

ऑक्सीजन के प्रति अभिक्रियाशीलता

इस समृह के सभी सदस्य ऑक्सीजन की उपस्थिति में गरम किए जाने पर ऑक्साइड बनाते हैं। ये मुख्यत: दो प्रकार के होते हैं-मोनोऑक्साइड तथा डाइऑक्साइड। इनके सूत्र क्रमश: MO तथा MO, हैं। SiO का अस्तित्व केवल उच्च ताप पर होता है। उच्च ऑक्सीकरण अवस्था वाले ऑक्साइड निम्न ऑक्सीकरण अवस्था वाले ऑक्साइड की तुलना में अम्लीय प्रकृति के होते हैं। डाइऑक्साइड (जैसे-CO₃, SiO, तथा GeO,) अम्लीय हैं, जबिक SnO, तथा PbO, उभयधर्मी प्रकृति के होते हैं। मोनोऑक्साइड में CO उदासीन तथा GeO अम्लीय हैं, जबिक SnO तथा PbO उभयधर्मी हैं।

उदाहरण 11.5

समृह-14 में से उन सदस्य (या सदस्यों) को चुनिए, जो

- (i) सबसे अधिक अम्लीय डाइऑक्साइड बनाता है;
- (ii) सामान्यत: +2 ऑक्सीकरण अवस्था में मिलता है:
- (iii) अर्द्धचालक (या अर्द्धचालकों) के रूप में प्रयोग में आता है।

हल

(i) कार्बन (ii) लेड (iii) सिलिकन तथा जर्मेनियम

(ii) जल के प्रति क्रियाशीलता

कार्बन. सिलिकन तथा जर्मेनियम जल के द्वारा प्रभावित नहीं होते हैं। टिन, भाप को वियोजित कर डाइऑक्साइड बनाता है तथा डाइहाइडोजन गैस देता है-

 $Sn + 2H_2O$ $SnO_2 + 2H_2$

लेड जल से अप्रभावित रहता है। ऐसा शायद ऑक्साइड की रक्षण फिल्म (Protection film) बनने के कारण होता है।

(iii) हैलोजन के प्रति अभिक्रियाशीलता

समूह-14 के तत्त्व MX_2 तथा MX_4 (X = F, Cl, Br, I) प्रकार के हैलाइड बनाते हैं। कार्बन के अतिरिक्त अन्य सभी सदस्य उपयुक्त परिस्थितियों में हैलोजन से क्रिया करके सीधे हैलाइड बनाते हैं। अधिकांश MX, सहसंयोजक प्रकृति के होते हैं। इन हैलाइडों में केंद्रीय परमाणु sp^3 संकरित अवस्था में तथा अणु चतुष्फलकीय आकृति में होता है। SnF_{4} तथा PbF_{4} अपवाद हैं। ये आयनिक प्रकृति के होते हैं। Pbl, का अस्तित्व नहीं है, क्योंकि Pb-I बंध (जो प्रारंभ में बनता है) इतनी ऊर्जा उत्पन्न नहीं कर पाता है कि इससे $6s^2$ इलेक्ट्रॉन का वियुग्मन हो सके तथा एक इलेक्ट्रॉन के उच्च कक्षक में उत्तेजन से चार अयुग्मित इलेक्ट्रॉन प्राप्त हो सकें। इस समृह के Ge से Pb तक के उच्चतर सदस्य MX, प्रकार के हैलाइड बनाने की भी प्रवृत्ति रखते हैं। रासायनिक एवं ऊष्मीय स्थायित्व के आधार पर GeX, की तुलना में GeX_4 अधिक स्थायी है, जबिक PbX_4 की तुलना में $\mathrm{PbX}_{_2}$ अधिक स्थायी होता है। $\mathrm{CCl}_{_4}$ के अतिरिक्त अन्य सभी टेट्राहेलाइड आसानी से जल अपघटित हो जाते हैं, क्योंकि केंद्रीय परमाणु जल के ऑक्सीजन परमाणु से d- कक्षक में एकाकी इलेक्ट्रॉन युग्म ग्रहण कर सकते हैं।

 $SiCl_4$ का उदाहरण लेकर जल-अपघटन प्रक्रिया को समझा जा सकता है। यदि Si के d- कक्षक में जल से एकाकी इलेक्ट्रॉन युग्म ग्रहण कर $SiCl_4$ प्रारंभिक तौर पर जल अपघटित होता है, तो अंतत: $SiCl_4$, इस प्रकार $Si(OH)_4$ में जल अपघटित हो जाता है–

$$\begin{array}{c|c}
Cl & & & \\
Si & + & \ddot{O} \\
Cl & Cl & H & H
\end{array}$$

उदाहरण 11.6

 ${[SiF_6]}^{2-}$ ज्ञात है, जबिक ${[SiCl_6]}^{2-}$ अज्ञात है। इसके संभावित कारण दीजिए।

हल

इसके मुख्य कारण निम्नलिखित हैं-

- (i) सिलिकन परमाणु का आकार छोटा होने के कारण इसके चारों ओर क्लोरीन के छ: बड़े आकार वाले परमाणु व्यवस्थित नहीं हो पाते हैं।
- (ii) क्लोरीन परमाणु के एकाकी इलेक्ट्रॉन युग्म तथा सिलिकन परमाणु के मध्य अन्योन्य क्रिया अधिक प्रबल नहीं होती है।

11.6 कार्बन की महत्त्वपूर्ण प्रवृत्तियाँ एवं असामान्य व्यवहार

अन्य समूहों के प्रथम सदस्यों की भाँति इस समूह का प्रथम सदस्य कार्बन अपने समूह के अन्य सदस्यों से भिन्न व्यवहार प्रदर्शित करता है। इसके छोटे आकार, उच्च विद्युत् ऋणात्मकता, उच्च आयनन एन्थेल्पी तथा d-कक्षकों की अनुपलब्धता के कारण ऐसा होता है।

कार्बन में केवल s- तथा p-कक्षक ही बंधन के लिए उपलब्ध रहते हैं। अत: यह अपने चारों ओर केवल चार इलेक्ट्रॉन युग्म ही समायोजित (accommodate) कर सकता है। यही कारण है कि इसकी अधिकतम संयोजकता चार होती है, जबिक अन्य सदस्य d-कक्षकों की उपलब्धता के कारण अपनी संयोजकता में वृद्धि कर लेते हैं।

कार्बन में स्वयं से अथवा छोटे आकार एवं उच्च विद्युत् ऋणात्मकता वाले अन्य परमाणु से $p\pi-p\pi$ बहुबंध बनाने की अद्वितीय क्षमता (unique ability) होती है। C=C, C=O, C=S, C=N आदि इसके कुछ उदाहरण हैं। इस समूह के उच्चतर सदस्य $p\pi-p\pi$ बंध नहीं बनाते हैं, क्योंकि बड़े तथा विसरित (diffused) परमाण्वीय कक्षक होने के कारण इनमें प्रभावी अतिव्यापन नहीं होता है।

कार्बन में अन्य परमाणुओं के साथ सहसंयोजक बंध द्वारा जुड़कर लंबी शृंखला या वलय बनाने की प्रवृत्ति होती है। इस प्रवृति को शृंखलन (catenation) कहते हैं। C-C बंध अधिक मजबूत होने के कारण यह होता है। वर्ग में ऊपर से नीचे जाने पर बढ़ता हुआ आकार तथा घटती हुई विद्युत् ऋणात्मकता के कारण शृंखलन की प्रवृत्ति घटती जाती है। इसे बंध ए-थैल्पी मान से स्पष्टत: समझा जा सकता है। समूह-14 में शृंखलन का क्रम C>>Si>Ge□Sn होता है। लेड शृंखलन नहीं दर्शाता है।

बंध	बंध एन्थैल्पी / kJ mol-1
С—С	348
Si—Si	297
Ge—Ge	260
Sn—Sn	240

शृंखलन तथा $p\pi$ – $p\pi$ बंध–निर्माण के कारण कार्बन विभिन्न अपररूप दर्शाता है।

11.7 कार्बन के अपररूप

कार्बन के क्रिस्टलीय और अक्रिस्टलीय-दोनों ही अपररूप होते हैं। हीरा तथा ग्रैफाइट कार्बन के दो प्रमुख क्रिस्टलीय रूप हैं। एच. डब्ल्यू. क्रोटो, ई. स्मैले तथा आर. एफ. कर्ल (H.W. Kroto, E. Smalley and R.F. Curl) ने सन् 1985 में कार्बन के एक अन्य रूप **फुलरीन** की खोज की। इस खोज के कारण इन्हें सन् 1996 में नोबेल पुरस्कार प्रदान किया गया।

चित्र 11.3 हीरा की संरचना

11.7.1 हीरा

हीरा में क्रिस्टलीय जालक होता है। इसमें प्रत्येक परमाणु sp³ संकरित होता है तथा चतुष्फलकीय ज्यामिति से अन्य चार कार्बन परमाणुओं से जुड़ा रहता है। इसमें कार्बन-कार्बन बंध लंबाई 154 pm होती है। कार्बन परमाणु दिक (space) में दृढ़ त्रिविमीय जालक (rigid three dimensional network) का निर्माण करते हैं। इस संरचना (चित्र 11.3) में संपूर्ण जालक में दिशात्मक सहसंयोजक बंध उपस्थित रहते हैं। इस प्रकार विस्तृत सहसंयोजक बंधन को तोड़ना कठिन कार्य होता है। अत: हीरा पृथ्वी पर पाया जाने वाला सर्वाधिक कठोर पदार्थ है। इसका उपयोग धार तेज करने के लिए अपघर्षक (abrasive) के रूप में, रूपदा (Dies) बनाने में तथा विद्युत्-प्रकाश लैम्प में टंगस्टन तंतु (filament) बनाने में होता है।

उदाहरण 11.7

हीरा में सहसंयोजन होने के उपरांत भी गलनांक उच्च होता है। क्यों?

हल

हीरा में मजबूत C—C बंधयुक्त त्रिविमीय संरचना होती है, जिसे तोड़ना काफी कठिन होता है। अत: इसका गलनांक उच्च होता है।

11.7.2 ग्रैफाइट

ग्रैफाइट परतीय की संरचना (layered structure) होती है। ये परतें वान्डरवाल बल द्वारा जुड़ी रहती हैं। दो परतों के मध्य की दूरी 340 pm होती है। प्रत्येक परत में कार्बन परमाणु षट्कोणीय वलय (Hexagonal rings) के रूप में व्यवस्थित होते हैं, जिसमें C-C बंध लंबाई 141.5 pm होती है। षट्कोणीय वलय में प्रत्येक कार्बन परमाणु (sp²) संकरित होता है। प्रत्येक कार्बन परमाणु तीन निकटवर्ती कार्बन परमाणुओं से तीन सिग्मा बंध बनाता है। इसका चौथा इलेक्ट्रॉन p-बंध बनाता हैं। संपूर्ण परत में इलेक्ट्रॉन विस्थानीकृत होते हैं। इलेक्ट्रॉन गितशील होते हैं, अत: ग्रैफाइट विद्युत् का सुचालक होता है। ग्रैफाइट को परतों के तल में आसानी से तोड़ा जा सकता है। यही कारण है कि ग्रैफाइट मुलायम (soft) तथा चिकना (slippery) होता है। उच्च ताप पर जिन मशीनों में तेल का प्रयोग स्नेहक (lubricant) के रूप में नहीं हो सकता है, उनमें ग्रैफाइट शुष्क स्नेहक का कार्य करता है।

चित्र 11.4 ग्रैफाइट की संरचना

11.7.3 फुलरीन्स

होलियम, ऑर्गन आदि अक्रिय गैसों की उपस्थित में जब ग्रैफाइट को विद्युत् आर्क (electric arc) में गरम किया जाता है, तब फुलरीन का निर्माण होता है। वाष्पित लघु C^n अणुओं को संघित करने पर प्राप्त कज्जली पदार्थ (sooty material) में मुख्य रूप से C_{60} कुछ अंश C_{70} तथा अति सूक्ष्म मात्रा में 350 या अधिक समसंख्या में कार्बन फुलरीन में पाए गए। फुलरीन कार्बन का शुद्धतम रूप है, क्योंकि फुलरीन में किसी प्रकार का झूलता बंध (dangling bonds) नहीं होता है। फुलरीन की संरचना पिंजरानुमा होती है। (C_{60}) अणु की आकृति सॉकर बॉल के समान होती है। इसे **बकिमिन्स्टर फुलरीन** (Buckminster fulerene) कहते हैं (चित्र 11.5)।

चित्र 11.5 (C₆₀) बकमिन्स्टर फुलरीन की संरचना: अणु की आकृति सॉकर बॉल (फुटबॉल) की तरह होती है

इसमें छ: सदस्यीय बीस वलय तथा पाँच सदस्यीय बारह वलय होती हैं। एक छ: सदस्यीय वलय छ: अथवा पाँच सदस्यीय वलय के साथ संगलित (Fused) रहती है, जबिक पाँच सदस्यीय वलय के साथ संगलित (Fused) रहती है, जबिक पाँच सदस्यीय वलय केवल छ: सदस्यीय वलय के साथ संगलित अवस्था में रहती है। सभी कार्बन परमाणु समान होते हैं तथा (sp^2) संकरित होते हैं। प्रत्येक कार्बन परमाणु अन्य तीन कार्बन परमाणुओं के साथ तीन आबंध बनाता है। चौथा इलेक्ट्रॉन पूरे अणु पर विस्थानीकृत रहता है, जो अणु को ऐरोमैटिक गुण प्रदान करता है। इस गेंदनुमा अणु में 60 उदग्र (vertices) होते हैं। प्रत्येक उदग्र पर एक कार्बन परमाणु होता है। इस पर दोनों एकल तथा द्विबंध होते हैं, जिसकी C-C की लंबाई क्रमश:

143.5 pm तथा 138.3 pm होती है। गोलाकार फुलरीन को 'बकी बॉल' (Bucky ball) भी कहते हैं।

एक महत्त्वपूर्ण तथ्य यह है कि ऊष्मागितक रूप से कार्बन का सर्वाधिक स्थायी अपररूप ग्रैफाइट है। अत: ग्रैफाइट के $\Delta_{\rm r}H^{\circ}$ को शून्य माना जाता है। हीरा तथा फुलरीन के $\Delta_{\rm r}H^{\circ}$ के मान क्रमश: 1.90 तथा $38.1~{\rm kJ~mol^{-1}}$ होते हैं। कार्बन तत्त्व के अन्य रूप (जैसे—कार्बन ब्लैक, कोक, चारकोल आदि) ग्रेफाइट तथा फुलरीन के अशुद्ध रूप हैं। वायु की सीमित मात्रा में हाइड्रोकार्बन को जलाने पर कार्बन ब्लैक प्राप्त होता है। वायु की अनुपस्थित में लकड़ी अथवा कोयला को गरम करने पर चारकोल तथा कोक प्राप्त होते हैं।

11.7.4 कार्बन के उपयोग

प्लास्टिक पदार्थ में अंत:स्थापित ग्रैफाइट तंतु उच्च सामर्थ्य वाली हलकी वस्तुएँ बनाते हैं। इन वस्तुओं का उपयोग मछली पकडने की छड़ (fishing rods), टेनिस रैकेट, वायुयान तथा डोंगी (canoes) बनाने में होता है। विद्युत् का अच्छा प्रचालक होने के कारण ग्रैफाइट का उपयोग बैटरी के इलेक्ट्रोड बनाने में तथा औद्योगिक विद्युत्-अपघटन में होता है। ग्रैफाइट द्वारा निर्मित क्रसिबिल तन् अम्लों तथा क्षारों के प्रति अक्रिय होती हैं। अत्यधिक सरंध सिक्रय चारकोल का उपयोग जहरीली गैसों को अधिशोषित करने में होता है। इसका उपयोग जल-छनित्र (water-filter) में कार्बनिक अशुद्धियों को दूर करने तथा वातानुकूलन में गंध को नियंत्रित करने में होता है। कार्बन स्याह (carbon black) का उपयोग कृष्णरंजक बनाने में तथा स्वचालित वाहनों के टायर में पुरक के रूप में और कोक का उपयोग मुख्यत: धातुकर्म में अपचायक के रूप में तथा ईंधन के रूप में होता है। हीरा एक मुल्यवान पत्थर है, जिसका उपयोग आभुषणों में होता है। इसे कैरेट (एक कैरेट = 200 mg) में मापा जाता है।

11.8 कार्बन तथा सिलिकन के प्रमुख यौगिक

कार्बन के ऑक्साइड

कार्बन के दो महत्त्वपूर्ण ऑक्साइड-कार्बन मोनोऑक्साइड (CO) तथा कार्बन डाइऑक्साइड (CO,) हैं।

11.8.1 कार्बन मोनोऑक्साइड

ऑक्सीजन अथवा वायु की सीमित मात्रा में वायु के सीधे ऑक्सीकरण पर कार्बन मोनोऑक्साइड प्राप्त होती हैं—

$$2C(s) + O_2(g) \xrightarrow{\Delta} 2CO(g)$$

सांद्र सल्फ्यूरिक अम्ल 373 K पर फॉर्मिक अम्ल के द्वारा निर्जलीकरण कराने पर अल्प मात्रा में शुद्ध कार्बन मोनोऑक्साइड प्राप्त होती है—

$$HCOOH \xrightarrow{373 \text{K}} H_2O + CO$$

औद्योगिक रूप से इसे कोक पर भाप (Steam) प्रवाहित करके बनाया जाता है। इस प्रकार CO तथा H_2 का प्राप्त मिश्रण 'वाटर गैस' अथवा 'संश्लेषण गैस' (synthesis gas) कहलाता है।

$$C(s) + H_2O_{(g)} \xrightarrow{\hspace*{1cm} 473-1273 \hspace*{1cm}} CO_{(g)} + H_{2(g)}$$
 वाटर गैस

जब भाप के स्थान पर वायु का प्रयोग किया जाता है, तब ${
m CO}$ तथा ${
m N_2}$ का मिश्रण प्राप्त होता है। इसे **प्रोड्यूसर गैस** कहते हैं।

$$2C(s) + O_2(g) + 4N_2(g) \xrightarrow{1273K} 2CO(g) + 4N_2(g)$$

प्रोड्यूसर गैस

वाटर गैस तथा प्रोड्यूसर गैस एक महत्त्वपूर्ण औद्योगिक ईंधन हैं। इन दोनों में उपस्थित कार्बन मोनोऑक्साइड के अधिक दहन पर कार्बन डाइऑक्साइड गैस प्राप्त होती है तथा ऊष्मा बाहर निकलती है। कार्बन मोनोऑक्साइड जल में लगभग अविलेय रंगहीन तथा गंधहीन गैस है। यह एक प्रबल अपचायक है। यह क्षारीय धातु 'क्षारीय मृदा धातु' ऐलुमीनियम तथा कुछ संक्रमण तत्त्वों के ऑक्साइड के अतिरिक्त अन्य तत्त्वों के ऑक्साइड को अपचियत कर देती है। कार्बन मोनोऑक्साइड के इस गुण का प्रयोग विभिन्न धातुओं के ऑक्साइड अयस्क (ore) से धातु-निष्कर्षण (extraction) में होता है—

$$Fe_2O_3(s) + 3CO(g) \xrightarrow{\Delta} 2Fe(s) + 3CO_2(g)$$

$$ZnO(s) + CO(g) \xrightarrow{\Delta} Zn(s) + CO_2(g)$$

 $CO: C \equiv O:$ अणु में कार्बन तथा ऑक्सीजन के मध्य एक σ तथा दो π बंध है। कार्बन परमाणु पर एकाकी इलेक्ट्रॉन युग्म की उपस्थिति के कारण कार्बन मोनोऑक्साइड दाता (doner) के समान व्यवहार करती है तथा कई धातुओं के साथ गरम किए जाने पर **धातु कार्बोनिल** बनाती है। CO की अत्यंत विषैली प्रकृति हीमोग्लोबीन के साथ एक संकुल बनाने की इसकी योग्यता के कारण होती है, जो ऑक्सीजन–हीमोग्लोबीन संकुल से 300 गुना अधिक स्थायी होती है। यह लाल रक्त

कणिकाओं में उपस्थित हीमोग्लोबीन को शरीर में ऑक्सीजन-प्रवाह से रोकती है। अंतत: इसका परिणाम मृत्यु के रूप में होता है।

11.8.2 कार्बन डाइऑक्साइड

वायु की अधिकता में यह कार्बन या कार्बनयुक्त ईंधन के पूर्ण दहन पर प्राप्त होती है।

$$C(s) + O_2(g) \xrightarrow{\Delta} CO_2(g)$$

$$CH_4(g) + 2O_2(g) \xrightarrow{\Delta} CO_2(g) + 2H_2O(g)$$

प्रयोगशाला में इसे कैल्सियम कार्बोनेट पर तनु HCI की अभिक्रिया द्वारा बनाया जा सकता है।

CaCO₃(s)+2HCl(aq) → CaCl₂(aq)+CO₂(g)+H₂O(l) औद्योगिक रूप में चूना-पत्थर (lime stone) को गरम करके यह बनाया जाता है।

कार्बन डाइऑक्साइड एक रंगहीन तथा गंधहीन गैस है। जल में इसकी अल्पविलेयता इसके जैव रासायनिक (chemical) तथा भू-रासायनिक (geo-chemical) महत्त्व को बताती है। जल के साथ यह कार्बोनिक अम्ल बनाती है, जो एक दुर्बल द्विक्षारकीय अम्ल है। वे निम्नलिखित दो पदों से वियोजित होते हैं—

$$H_2CO_3(aq) + H_2O(l) \square$$
 $HCO_3^-(aq) + H_3O^+(aq)$
 $HCO_3^-(aq) + H_2O(l) \square$ $CO_3^{-2}(aq) + H_3O^+(aq)$

 ${
m H_2CO_3/HCO_3^-}$ का बफर विलयन रक्त की pH को 7.26 से 7.42 के मध्य अनुरक्षित रखता है। अम्लीय प्रकृति होने के कारण क्षारों के साथ क्रिया कर धातु–कार्बोनेट बनाता है।

कार्बन डाइऑक्साइड वायुमंडल में $\sim 0.03\%$ (आयतन से) उपस्थित रहता है, जिसका उपयोग **प्रकाश-संश्लेषण** (photosynthesis) प्रक्रिया में होता है। इस प्रक्रिया में हरे पौधे वायुमंडलीय CO_2 को कार्बोहाइड्रेट (जैसे-ग्लूकोस) में परिवर्तित कर देते हैं। इस प्रक्रिया में रासायनिक परिवर्तन को इस प्रकार प्रदर्शित किया जा सकता है—

$$6\text{CO}_2$$
+ $12\text{H}_2\text{O}$ $\xrightarrow{\text{h}\nu}$ $\xrightarrow{\text{achilithen}}$ $\text{C}_6\text{H}_{12}\text{O}_6$ + 6O_2 + $6\text{H}_2\text{O}$

इस प्रक्रिया द्वारा पौधे जंतुओं, मनुष्यों तथा स्वयं के लिए भोजन बनाते हैं। कार्बन मोनोऑक्साइड के विपरीत यह विषैली प्रकृति की नहीं होती है, परंतु जीवाश्म ईंधन (fossil fuels) के बढ़ते दहन तथा सीमेन्ट-निर्माण के लिए चूना-पत्थर (lime stone) के विघटन के कारण वायुमंडल में CO₂ की मात्रा

बढ़ती है, जिससे वायुमंडल के ताप में वृद्धि हो रही है। इसे **हरित गृह-प्रभाव** (Green House Effect) कहते हैं। इसके अनेक दुष्परिणाम सामने आए हैं।

द्रवित CO_2 का प्रसार शीघ्रता से होने के कारण कार्बन डाइऑक्साइड गैस को शुष्क बर्फ (dry ice) के रूप में प्राप्त किया जा सकता है। शुष्क बर्फ का उपयोग आइसक्रीम तथा हिमशीतित भोजन (frozen food) के लिए प्रशीतक के रूप में तथा गैसीय CO_2 का उपयोग कार्बोनीकृत मृदु पेय (soft drinks) में, वायु से भारी तथा दहन में सहायक नहीं होने के कारण इसका उपयोग अग्निशामक (fire exlinguisher) के रूप में होता है। CO_2 का उपयोग बृहद् मात्रा में यूरिया के निर्माण में होता है।

 ${\rm CO}_2$ अणु में कार्बन परमाणु sp संकरित होता है। कार्बन परमाणु दो sp संकरित कक्षक, ऑक्सीजन परमाणु के दो p—कक्षकों के साथ अतिव्यापन करके दो सिग्मा बंध बनाते हैं, जबिक कार्बन परमाणु के शेष दो इलेक्ट्रॉन ऑक्सीजन परमाणु के साथ $p\pi - p\pi$ बंध बनाते हैं। फलत: इसकी आकृति रेखीय होती है, जिसमें दोनों C—O बंधों की लंबाई एक समान (115 pm) रहती है। इसमें कोई द्विध्रुव आघूर्ण नहीं होता है। ${\rm CO}_2$ की अनुनादी संरचनाओं को इस प्रकार प्रदर्शित कर सकते हैं—

कार्बन डाइऑक्साइड की अनुनादी संरचना

11.8.3 सिलिकन डाइऑक्साइड (SiO₂)

भू-पर्पटी का 95% भाग सिलिका एवं सिलिकेट से बना है। सिलिकन डाइऑक्साइड, जिसे सामान्यत: 'सिलिका' नाम से जाना जाता है, अनेक क्रिस्टल संरचनात्मक (Crystallographic) रूप में मिलता है। सिलिका के कुछ रूप क्वाट्र्ज (quartz), क्रिस्टलोबेलाइट (Cristobalite) तथा ट्राइडाइमाइट (Tridymite) हैं, जो उचित ताप पर अंतरपरिवर्तनीय होती हैं। सिलिकन डाइऑक्साइड एक सहसंयोजक त्रिविमीय जालकयुक्त ठोस है, जिसमें सिलिकन परमाणु चतुष्फलकीय रूप में चार ऑक्सीजन परमाणुओं से सहसंयोजित बंधित रहता है। प्रत्येक ऑक्सीजन परमाणु विपरीतत: दूसरे सिलिकन परमाणु से जुड़ा रहता है, जैसा चित्र 11.6 में दर्शाया गया है। प्रत्येक कोना दूसरे चतुष्फलक से साझित रहता है। संपूर्ण क्रिस्टल को एक ऐसे बृहद् अणु के रूप में माना जा सकता है, जिसमें सिलिकन तथा ऑक्सीजन परमाणुओं की एकांतर क्रम में आठ सदस्यीय वलय बनती है।

चित्र 11.6 : SiO_2 की त्रिविमीय संरचना

सिलिका अपने सामान्य रूप में अति उच्च Si – O बंध एन्थैल्पी होने के कारण अक्रियाशील होता है। उच्च ताप पर सिलिका, हैलोजेन, डाइहाइड्रोजन, अधिकांश अम्लों तथा धातुओं के प्रहार को प्रतिरोपित करता है, हालाँकि HF तथा NaOH से क्रिया करता है।

$$\begin{split} &\mathrm{SiO}_2 + 2\mathrm{NaOH} \rightarrow \mathrm{Na}_2\mathrm{SiO}_3 + \mathrm{H}_2\mathrm{O} \\ &\mathrm{SiO}_2 + 4\mathrm{HF} \rightarrow \mathrm{SiF}_4 + 2\mathrm{H}_2\mathrm{O} \end{split}$$

क्वार्ट्ज़ का विस्तृत उपयोग दाब-विद्युत् (Piezoelectric) पदार्थ बनाने में होता है। इससे अतियथार्थ घड़ियाँ, आधुनिक रेडियो, दूरदर्शन-प्रसारण, गतिशील रेडियो संचार व्यवस्था आदि का निर्माण संभव हो सका। सिलिका जैल का उपयोग शुष्कन कर्मक (Drying agent), वर्णलेखी पदार्थ (Chromatographic material) के रूप में तथा उत्प्रेरक के रूप में होता है। सिलिका का एक अक्रिस्टलीय रूप (Amorphous form), कीसेलगुर (Kieselgur) का उपयोग छनित्र-संयत्र (Filtration plants) में होता है।

11.8.4 सिलिकॉन

यह कार्ब सिलिकॉन बहुलकों का एक वर्ग है, जिसमें R_2SiO_2 एक पुनरावर्ती इकाई (Repeating unit) होती है। सिलिकॉन के निर्माण में प्रारंभिक पदार्थ ऐल्किल अथवा ऐरिल प्रतिस्थापी सिलिकन क्लोराइड, $R_nSiCl_{(4-n)}$ होता है, जिसमें R ऐल्किल अथवा ऐरिल समूह होता है। जब 573K ताप पर मेथिल क्लोराइड, कॉपर उत्प्रेरक की उपस्थित में सिलिकन से क्रिया करता है, तो विभिन्न मेथिल प्रतिस्थायी क्लोरोसिलेन (जिनका सूत्र Me_3SiCl_3 , Me_2SiCl_2 , Me_3SiCl तथा सूक्ष्म मात्रा में Me_4Si बनते हैं) डाइमेथिल डाइक्लोरो सिलेन

 $(CH_3)_2SiCl_2$ के जल-अपघटन के उपरांत संघनन बहुलकीकरण द्वारा शृंखला बहुलक प्राप्त होते हैं।

$$2 \text{CH}_3 \text{Cl} + \text{Si} \xrightarrow{\text{Cu utset}} \text{(CH}_3)_2 \text{SiCl}_2 \xrightarrow{\text{+2H}_2 \text{O}} \text{(CH}_3)_2 \text{Si(OH)}_2$$

सिलिकॉन

 $(CH_3)_3SiCl$ मिलाने से बहुलक की शृंखला की लंबाई को नियंत्रित किया जा सकता है, जो निम्नानुसार सिरे को बंद कर देता है—

$$\begin{array}{c|cccc} CH_{3} & CH_{3} & | \\ & | & | \\ NHO-Si-OH & +HO-Si-CH_{3} & | \\ | & | & | \\ CH_{3} & CH_{3} & | \\ -H_{2}O & | & & & \\ & & -H_{2}O & | & & \\ & & & & \\ & & & -O+Si-CH_{3} & | \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

सिलिकॉन

अध्रुवीय ऐल्किल समूहों से घिरे रहने के कारण सिलिकॉन की जलप्रितिकर्षी (Water repelling) प्रकृति होती है। सामान्यत: इनमें उच्च ऊष्मीय स्थायित्व, उच्च परावैद्युत सामर्थ्य तथा रसायनों एवं ऑक्सीकरण के प्रति प्रतिरोधात्मकता का गुण होता है। इनके विस्तृत अनुप्रयोग हैं। इनका उपयोग सीलित ग्रीस (Sealent grease), विद्युत्रोधी (Electricinsulater) तथा जलसह-वस्त्र (Waterproof fabrics) और शल्यक्रिया प्रसाधन-संयंत्र बनाने में होता है।

उदाहरण 11.8

सिलिकॉन क्या है?

हल

सामान्यत: सिलिकॉन शृंखलायुक्त वे यौगिक होते हैं, जिनमें ऐल्किल अथवा फेनिल समूह सिलिकन परमाणु के शेष बंध स्थितियों पर होते हैं। ये जलविरोधी (Hydrophobic) प्रकृति के होते हैं।

11.8.5 सिलिकेट

प्रकृति में बड़ी मात्रा में सिलिकेट खनिज पाए जाते हैं। इनमें से कुछ महत्त्वपूर्ण खनिज हैं – फेल्डस्पार (feldspar), जीओलाइट (zeolite), श्वेत अभ्रक (mica) तथा ऐस्बेस्टस (asbestos)। सिलिकेट की मूल संरचनात्मक इकाई SiO⁴₄ (चित्र 11.7), जिनमें सिलिकॉन परमाणु चार ऑक्सीजन परमाणुओं से चतुष्फलक रूप में बंधित रहता है। सिलिकेट में या तो एक विविक्त (Discrete) इकाई उपस्थित होती है अथवा इस प्रकार की कई इकाइयाँ प्रति सिलिकेट इकाई की 1, 2, 3 अथवा 4 ऑक्सीजन परमाणुओं के साथ साझित अवस्था में रहती है। जब सिलिकेट इकाइयाँ आपस में मिलती हैं, तो शृंखलित वलय, परत तथा त्रिविमीय संरचना बनाती है। सिलिकेट संरचना ऋणावेश में धनावेशित धातु–आयनों द्वारा उदासीन होता है। यदि चारों कोने अन्य चतुष्फलकीय इकाइयों के साथ साझित होते हैं, तो त्रिविम जालक का निर्माण होता है।

मनुष्य द्वारा निर्मित दो महत्त्वपूर्ण सिलिकेट काँच तथा सीमेन्ट हैं।

11.8.6 जीओलाइट

यदि सिलिकन डाइऑक्साइड के त्रिविमिक जालक में से कुछ सिलिकन परमाणु ऐलुमीनियम परमाणुओं द्वारा प्रतिस्थपित हो

चित्र 11.7 : (क) SiO_4^{4-} ऋणायन की चतुष्फलक संरचना (ख) SiO_4^{4-} इकाई का निरूपण

जाते हैं, तो प्राप्त संपूर्ण संरचना को 'ऐलुमिनोसिलिकेट' कहते हैं, जिसपर एक ऋणावेश होता है। Na^+ , K^+ , Ca^{2+} आदि धनायन इस ऋणावेश को संतुलित करते हैं। इसके उदाहरण फेल्डस्पार तथा जीओलाइट हैं। पेट्रोरसायन उद्योगों में हाइड्रोकार्बन के भंजन तथा समावयवीकरण में जीओलाइट का विस्तृत उपयोग उत्प्रेरक के रूप में होता है। उदाहरणार्थ—ZSM-5 (एक जीओलाइट का प्रकार) का उपयोग ऐल्कोहॉल को सीधे गैसोलीन में परिवर्तित करने में होता है। जलयोजित जीओलाइट का उपयोग कठोर जल के मृदुकरण में काम आने वाले आयन विनिमय रेजिन बनाने में होता है।

सारांश

आवर्त सारणी में p-ब्लॉक सभी प्रकार के तत्त्व, uातु, uातु, uातु तथा u1 होने के कारण अद्वितीय हैं। आवर्त सारणी में u1 होने का अंकन u2 हे। u3 से 18 तक किया गया है। हीलियम के अतिरिक्त इनका संयोजकता कोश इलेक्ट्रॉनिक विन्यास u2 u3 u4 होने हैं। इनके u4 तत्त्वों के गुणों में अत्यिधक भिन्नता के कारण इनके भौतिक एवं रासायनिक गुण अत्यिधक प्रभावित होते हैं। फलतः इन तत्त्वों के गुणों में अत्यिधक भिन्नता मिलती है। u5 अॉक्सीकरण अवस्था (group oxidation state) के अतिरिक्त ये तत्त्व अन्य ऑक्सीकरण अवस्था भी प्रदर्शित करते हैं, जो संयोजकता इलेक्ट्रॉन से दो इकाई भिन्न होते हैं। वर्ग ऑक्सीकरण अवस्था हलके तत्त्वों के लिए स्थायी होती है, वहीं भारी तत्त्वों के लिए निम्न ऑक्सीकरण अवस्था स्थायी होती चली जाती है। आकार एवं u4 कक्षक की उपलब्धता का संयुक्त प्रभाव इन तत्त्वों के u7 बंध बनाने की योग्यता को प्रभावित करता है। हलके तत्त्व u5 क्षि बनाते हैं। वहीं गुरुतर तत्त्व u5 क्षक की अनुपस्थिति इनकी अधिकतम संयोजकता को चार पर सीमित करती है, वहीं गुरुतर तत्त्व इस सीमा को पार करते हैं।

समूह-13 में बोरॉन अधातु है, जबिक अन्य सदस्य धातु हैं। बंध-निर्माण में काम आनेवाले चार कक्षकों (2s, $2p_x$, $2p_y$ तथा $2p_y$) में केवल तीन संयोजी इलेक्ट्रॉन ($2s^22p^1$) की उपलब्धता के कारण बोरॉन के यौगिक इलेक्ट्रॉन न्यून होते हैं। यह न्यूनता बोरॉन यौगिक को उत्तम इलेक्ट्रॉनग्राही बना देती है। इस प्रकार बोरॉन यौगिक लूइस अम्ल की भाँति व्यवहार करते हैं। बोरॉन डाइहाइड्रोजन के साथ सहसंयोजी यौगिक बोरेन बनाते हैं। इसमें सरलतम **डाइबोरेन** B_2H_6 है। डाइबोरेन में दो बोरॉन परमाणुओं के मध्य सेतुबंध हाइड्रोजन परमाणु होते हैं। इस सेतुबंध को **त्रिकेंद्रीय-द्विइलेक्ट्रॉन बंध** माना गया है। डाइऑक्सीजन के साथ बोरॉन के महत्त्वपूर्ण यौगिक **बोरिक अम्ल** तथा **बोरेक्स** हैं। बोरिक अम्ल $B(OH)_3$ एक दुर्बल एकक्षारकीय अम्ल है। यह हाइड्रॉक्सिल आयन से इलेक्ट्रॉन ग्रहण कर लुइस अम्ल के समान व्यवहार करता है। बोरेक्स Na_2 $[B_4O_5(OH)_4$. $8H_2O$ एक श्वेत क्रिस्टलीय ठोस है। यह **मनका परीक्षण संक्रमण** धातुओं के लिए चारित्रिक रंग देता है।

ऐलुमीनियम +3 ऑक्सीकरण अवस्था प्रदर्शित करता है। समूह में नीचे जाने पर भारी तत्त्वों की +1 ऑक्सीकरण अवस्था स्थायी होती जाती है। यह **अक्रिय युग्म प्रभाव** का परिणाम होता है।

कार्बन एक प्रारूपिक अधातु है, जो अपने चारों संयोजी इलेक्ट्रॉन $(2s^22p^2)$ का उपयोग करके सहसंयोजक बंध बनाता है। यह शृंखला का गुण दर्शाता है। यह न केवल C-C एकल बंध के द्वारा, अपितु बहुबंध (C=C अथवा $C \equiv C$) के द्वारा शृंखला या वलय बनाने की भी योग्यता रखता है। शृंखलन की प्रवृत्ति इस क्रम में घटती है $C >> Si > Ge \ Sn > Pb$ । अपररूपता प्रदर्शित करने वाले तत्त्व का उत्तम उदाहरण कार्बन है। इसके तीन महत्त्वपूर्ण अपरूप हीरा, ग्रैफाइट तथा फुलरीन्स हैं। कार्बन परिवार के सदस्य +4 तथा +2 ऑक्सीकरण अवस्था प्रदर्शित करते हैं। +4 ऑक्सीकरण अवस्था प्रदर्शित करने वाले यौगिक सामान्यत: सहसंयोजक प्रकृति के होते हैं। गुरुतर तत्त्वों के द्वारा +2 ऑक्सीकरण अवस्था प्रदर्शित करने की प्रवृत्ति बढ़ती जाती है। लेड की +2 ऑक्सीकरण अवस्था +4 ऑक्सीकरण अवस्था से अधिक स्थायी होती है। कार्बन ऋणात्मक ऑक्सीकरण अवस्था भी प्रदर्शित करता है। कार्बन

दो महत्त्वपूर्ण ऑक्साइड ${
m CO}_2$ बनाता है। कार्बन मोनोऑक्साइड उदासीन है, जबिक कार्बन डाइऑक्साइड अम्लीय प्रवृत्ति की होती है। कार्बन मोनोऑक्साइड में कार्बन पर उपस्थित एकाकी इलेक्ट्रॉन युग्म के द्वारा यह धात्विक **कार्बोनिल** बनाता है। ऑक्सीहीमोग्लोबिन की तुलना में ${
m CO}$ का हीमोग्लोबिन से बना संकुल अधिक स्थायी और अत्यंत विषैली होता है। कार्बन डाइऑक्साइड मूलत: विषैली नहीं होती है, परंतु चूना–पत्थर के बढ़ते अपघटन तथा जीवाशम ईंधन के दहन के कारण वायुमंडल में ${
m CO}_2$ की बढ़ती मात्रा ने भयावह स्थिति उत्पन्न कर दी है, जिसे **हिरत गृह-प्रभाव** कहते हैं। इससे वायुमंडल का ताप बढ़ जाता है तथा इससे गंभीर जिल्लाएँ उत्पन्न हो जाती हैं। **सिलिका, सिलिकॉन** तथा **सिलिकेट** महत्त्वपूर्ण यौगिक हैं, जिनका अनुप्रयोग उद्योग एवं तकनीक में होता है।

अभ्यास

- 11.1 (क) B से T1 तक तथा (ख) C से Pb तक की ऑक्सीकरण अवस्थाओं की भिन्नता के क्रम की व्याख्या कीजिए।
- 11.2 TiCl₃ की तुलना में BCl₃ के उच्च स्थायित्व को आप कैसे समझाएंगे?
- 11.3 बोरॉन ट्राइफ्लुओराइड लूइस अम्ल के समान व्यवहार क्यों प्रदर्शित करता है?
- $\mathrm{BCl_3}$ तथा $\mathrm{CCl_4}$ यौगिकों का उदाहरण देते हुए जल के प्रति इनके व्यवहार के औचित्य को समझाइए।
- 11.5 क्या बोरिक अम्ल प्रोटोनी अम्ल है? समझाइए।
- 11.6 क्या होता है, जब बोरिक अम्ल को गरम किया जाता है?
- 11.7 BF_3 तथा BH_4^- की आकृति की व्याख्या कीजिए। इन स्पीशीज़ में बोरॉन के संकरण को निर्दिष्ट कीजिए।
- 11.8 ऐलुमीनियम के उभयधर्मी व्यवहार दर्शाने वाली अभिक्रियाएं दीजिए।
- 11.9 इलेक्ट्रॉन न्यून यौगिक क्या होते हैं? क्या BCl3 तथा SiCl4 इलेक्ट्रॉन न्यून यौगिक हैं? समझाइए।
- $11.10 \quad \text{CO}_3^{2-}$ तथा HCO_3^- की अनुनादी संरचनाएँ लिखिए।
- 11.11 (क) CO_3^{2-} , (ख) हीरा तथा (ग) ग्रैफाइट में कार्बन की संकरण-अवस्था क्या होती है?
- 11.12 संरचना के आधार पर हीरा तथा ग्रैफाइट के गुणों में निहित भिन्नता को समझाइए।
- 11.13 निम्नलिखित कथनों को युक्तिसंगत कीजिए तथा रासायनिक समीकरण दीजिए-
 - (क) लेड (II) क्लोराइड Cl₂ से क्रिया करके PbCl₄ देता है।
 - (ख) लेड (IV) क्लोराइड ऊष्मा के प्रति अत्यधिक अस्थायी है।
 - (η) लेड एक आयोडाइड $\mathrm{PbI}_{_{\! 4}}$ नहीं बनाता है।
- $11.14~~\mathrm{BF_3}$ में तथा $\mathrm{BF_4}^-$ में बंध लंबाई क्रमशः $130\mathrm{pm}$ तथा $143\mathrm{pm}$ होने के कारण बताइए।
- 11.15 B-Cl आबंध द्विध्रुव आघूर्ण रखता है, किन्तु BCl3 अणु का द्विध्रुव आघूर्ण शून्य होता है। क्यों?
- 11.16 निर्जालीय HF में ऐलुमीनियम ट्राइफ्लुओराइड अविलेय है, परंतु NaF मिलाने पर घुल जाता है। गैसीय BF3 को प्रवाहित करने पर परिणामी विलयन में से ऐलुमीनियम ट्राइफ्लुओराइड अवक्षेपित हो जाता है। इसका कारण बताइए।
- 11.17 CO के विषैली होने का एक कारण बताइए।
- 11.18 CO, की अधिक मात्रा भूमंडलीय तापवृद्धि के लिए उत्तरदायी कैसे है?
- 11.19 डाइबोरेन तथा बोरिक अम्ल की संरचना समझाइए।

- 11.20 क्या होता है. जब-
 - (क) बोरेक्स को अधिक गरम किया जाता है।
 - (ख) बोरिक अम्ल को जल में मिलाया जाता है।
 - (ग) ऐलुमिनियम की तनु NaOH से अभिक्रिया कराई जाती है।
 - (घ) BF की क्रिया अमोनिया से की जाती है।
- 11.21 निम्नलिखित अभिक्रियाओं को समझाइए-
 - (क) कॉपर की उपस्थिति में उच्च ताप पर सिलिकन को मेथिल क्लोराइड के साथ गरम किया जाता है।
 - (ख) सिलिकॉन डाइऑक्साइड की क्रिया हाइड्रोजन फ्लुओराइड के साथ की जाती है।
 - (ग) CO को ZnO के साथ गरम किया जाता है।
 - (घ) जलीय ऐलुमिना की क्रिया जलीय NaOH के साथ की जाती है।
- 11.22 कारण बताइए-
 - (क) सांद्र HNO का परिवहन ऐलुमीनियम के पात्र द्वारा किया जा सकता है।
 - (ख) तनु NaOH तथा ऐलुमीनियम के टुकड़ों के मिश्रण का प्रयोग अपवाहिका खोलने के लिए किया जाता है।
 - (ग) ग्रैफाइट शुष्क स्नेहक के रूप में प्रयुक्त होता है।
 - (घ) हीरा का प्रयोग अपघर्षक के रूप में होता है।
 - (ड∙) वायुयान बनाने में ऐलुमीनियम मिश्रधातु का उपयोग होता है।
 - (च) जल को ऐलुमीनियम पात्र में पुरी रात नहीं रखना चाहिए।
 - (छ) संचरण केबल बनाने में ऐलुमीनियम तार का प्रयोग होता है।
- 11.23 कार्बन से सिलिकॉन तक आयनीकरण एन्थैल्पी में प्रघटनीय कमी होती है। क्यों?
- 11.24 Al की तुलना में Ga की कम परमाण्वीय क्रिज्या को आप कैसे समझाएंगे?
- 11.25 अपररूप क्या होता है? कार्बन के दो महत्त्वपूर्ण अपररूप हीरा तथा ग्रैफाइट की संरचना का चित्र बनाइए। इन दोनों अपररूपों के भौतिक गुणों पर संरचना का क्या प्रभाव पड़ता है?
- 11.26 (क) निम्नलिखित ऑक्साइड को उदासीन, क्षारीय तथा उभयधर्मी ऑक्साइड के रूप में वर्गीकृत कीजिए-

- (ख) इनकी प्रकृति को दर्शाने वाली रासायनिक अभिक्रिया लिखिए।
- 11.27 कुछ अभिक्रियाओं में थैलियम, ऐलुमीनियम से समानता दर्शाता है, जबिक अन्य में यह समूह—I के धातुओं से समानता दर्शाता है। इस तथ्य को कुछ प्रमाणों के द्वारा सिद्ध करें।
- 11.28 जब धातु X की क्रिया सोडियम हाइऑक्साइड के साथ की जाती है, तो श्वेत अवक्षेप (A) प्राप्त होता है, जो NaOH के आधिक्य में विलेय होकर विलेय संकुल (B) बनाता है। यौगिक (A) तनु HCl में घुलकर यौगिक (C) बनाता है। यौगिक (A) को अधिक गरम किए जाने पर यौगिक (D) बनता है, जो एक निष्कर्षित धातु के रूप में प्रयुक्त होता है। X, A, B, C तथा D को पहचानिए तथा इनकी पहचान के समर्थन में उपयुक्त समीकरण दीजिए।
- 11.29 निम्नलिखित से आप क्या समझते हैं?
 - (क) अक्रिय युग्म प्रभाव (ख) अपररूप (ग) शृंखलन
- 11.30 एक लवण X निम्नलिखित परिणाम देता है-
 - (क) इसका जलीय विलयन लिटमस के प्रति क्षारीय होता है।

(폡)	तीव्र गरम किए जाने पर यह काँच के समान ठोस में स्वेदित हो जाता है।
(₁)	जब X के गरम विलयन में सांद्र $\mathrm{H_2SO_4}$ मिलाया जाता है, तो एक अम्ल Z का श्वेत क्रिस्टल
	बन्ता है।

उपरोक्त अभिक्रियाओं के समीकरण लिखिए और X,Y तथा Z को पहचानिए।

		2	20
11.31	स्रतीलत	समीकरण	दाज्जाा—
11.01	/1/11/1/1	/1.11.41/ -1	711 91 5

- (क) BF₃ + LiH →
- (অ) $B_2H_6 + H_2O \rightarrow$
- (η) NaH + B₂H₆ \rightarrow
- (জ) Al + NaOH →
- (\exists) B₂H₆ + NH₃ →
- 11.32 CO तथा CO, प्रत्येक के संश्लेषण के लिए एक प्रयोगशाला तथा एक औद्योगिक विधि दीजिए।
- 11.33 बोरेक्स के जलीय विलयन की प्रकृति कौन सी होती है-
 - (क) उदासीन
- (ख) उभयधर्मी
- (ग) क्षारीय
- (घ) अम्लीय
- 11.34 बोरिक अम्ल के बहुलकीय होने का कारण -
 - (क) इसकी अम्लीय प्रकृति है।
- (ख) इसमें हाइड्रोजन बंधों की उपस्थित है।
- (ग) इसकी एकक्षारीय प्रकृति है।
- (घ) इसकी ज्यामिति है।
- 11.35 डाइबोरेन में बोरॉन का संकरण कौन सा होता है-
 - (क) sp
- (ख) sp^2
- (ग) sp^3
- (घ) dsp^2
- 11.36 ऊष्मागतिकीय रूप से कार्बन का सर्वाधिक स्थायी रूप कौन सा है-
 - (क) हीर
- (ख) ग्रैफाइट
- (ग) फुलरीन्स
- (घ) कोयल
- 11.37 निम्नलिखित में से समूह-14 के तत्त्वों के लिए कौन सा कथन सत्य है?
 - (क) +4 ऑक्सीकरण प्रदर्शित करते हैं।
 - (ख) +2 तथा +4 ऑक्सीकरण अवस्था प्रदर्शित करते हैं।
 - (ब) M²⁻ तथा M⁴⁺ आयन बनाते हैं।
 - (घ) M²⁺ तथा M⁴⁻ आयन बनाते हैं।
- 11.38 यदि सिलिकॉन-निर्माण में प्रारंभिक पदार्थ $RSiCl_3$ है, तो बनने वाले उत्पाद की संरचना बताइए।