Алгоритм 1 (Алгоритм Мэл'от отсечения многоугольника относительно прямоугольной области).

Вход: $P = \{(x_i, y_i) \mid 1 \leq i \leq n\}$ — набор вершин отсекаемого многоугольника в порядке их обхода по часовой стрелке, $(x_{\min}, y_{\min}), (x_{\max}, y_{\max})$ — координаты левого нижнего и правого верхнего углов окна отсечения соответственно

Выход: n_1 — количество вершин в многоугольнике после отсечения, $P_1 = \{(x_i',y_i') \mid 1 \leqslant i \leqslant n_1\}$ — набор вершин видимой части многоугольника в порядке их обхода по часовой стрелке

- 1. k = 1 (номер текущего ребра отсекаемого многоугольника), $n_1 = 0$ (количество ребер в результате отсечения относительно текущей границы области видимости),
 - $P_2 = \{\}$ (многоугольник результат отсечения относительно текущей границы области видимости).
- 2. $(x_{start}, y_{start}) = P[n], C_{start} = ExtCode(x_{start}, y_{start}).$
- 3. Если k > n, закончить алгоритм, иначе переход к шагу 4;
- 4. $(x_{end}, y_{end}) = P[k], C_{end} = ExtCode(x_{end}, y_{end}).$
- 5. (Начало алгоритма Коэна—Сазерленда) $C_1 = C_{start}$, $C_2 = C_{end}$, $(x_1, x_2) = (x_{start}, y_{start})$, $(x_2, y_2) = (x_{end}, y_{end})$.
- 6. $clip = {\tt false}$ (отметка о том, что начальная точка была отсечена), $flip = {\tt false}$ (отметка о том, что начальная и конечная точки переставлены местами).
- 7. Если $(C_1|C_2)$ &15 = 0 отрезок полностью видим: переход к шагу 8, а иначе переход к шагу 10.
- 8. Если flip, то поменяем местами значения x_1 с x_2 , y_1 с y_2
- 9. segm = true (отметка о том, что часть отрезка попала в область видимости) и переход к шагу 14.
- 10. Если $C_1\&C_2\&15\neq 0$, то отрезок полностью невидим: $segm=\mathtt{false}$ и переход к шагу 14.
- 11. (Отрезок может быть частично видим) Если $C_1\&15=0$ поменяем местами значения x_1 с x_2 , y_1 с y_2 , C_1 с C_2 , flip=!flip.
- 12. Найдем точку пересечения отрезка с одной из прямых, ограничивающих область видимости и перенесем туда точку (x_1, y_1) :
 - (a) Если $C_1 \& 15 \neq 0$ и ! flip, то clip = true;

(b) Если $C_1 \& 1 \neq 0$, то

$$y_1 = y_2 - (x_2 - x_{\min}) \frac{y_2 - y_1}{x_2 - x_1}$$

 $x_1 = x_{\min}$

(c) Если $C_1 \& 2 \neq 0$, то

$$y_1 = y_2 - (x_2 - x_{\text{max}}) \frac{y_2 - y_1}{x_2 - x_1}$$

 $x_1 = x_{\text{max}}$

(d) Если $C_1 \& 4 \neq 0$, то

$$x_1 = x_2 - (y_2 - y_{\min}) \frac{x_2 - x_1}{y_2 - y_1}$$

 $y_1 = y_{\min}$

(e) Если $C_1 \& 8 \neq 0$, то

$$x_1 = x_2 - (y_2 - y_{\text{max}}) \frac{x_2 - x_1}{y_2 - y_1}$$

 $y_1 = y_{\text{max}}$

- (f) $C_1 = ExtCode(x_1, y_1)$
- 13. Перейти к шагу 7.
- 14. Алгоритм отсечения отрезка Коэна—Сазерленда окончен. Перейти к продолжению алгоритма отсечения многоугольника— к шагу 15.
- 15. $C_2 = C_{end}$,
- 16. Если *segm*,
 - (a) Если clip, (добавление точки пересечения) $n_1 = n_1 + 1$, $P_1[n_1] = (x_1, y_1)$.
 - (b) (добавление конечной точки ребра) $n_1 = n_1 + 1$, $P_1[n_1] = (x_2, y_2)$.
 - (с) Переход к шагу 18.
- 17. Иначе (если ребро полностью невидимо, рассматриваем особые случаи: проверяем, нужно ли добавлять угловые точки области видимости в многоугольник, и если нужно, то определяем какие)
 - (a) Если $C_{end}\&16 \neq 0$ (B этом случае может быть добавлено 2 угловых точки),
 - Если $C_{start} \& C_{end} \& 15 = 0$,

і. Если $C_{start} \& 16 = 0$,

$$C_1 = C_{end} + Tcc(C_{start});$$

иначе

A. $(x_1, x_2) = (x_{start}, y_{start}), (x_2, y_2) = (x_{end}, y_{end}), C_{11} = C_{start}, C_{12} = C_{end};$

В.

$$x_{mid} = \frac{x_1 + x_2}{2},$$

 $y_{mid} = \frac{y_1 + y_2}{2};$

- C. $C_1 = ExtCode(x_{mid}, y_{mid});$
- D. Если $C_1\&16 \neq 0$ (средняя точка попала в угловую область)
 - Если $C_1 = C_{12}$, то $(x_2, y_2) = (x_{mid}, y_{mid})$, $C_{12} = C_1$ и переход к шагу 17(a)iB;
 - Если $C_1 = C_{11}$, то $(x_1, y_1) = (x_{mid}, y_{mid})$, $C_{11} = C_1$ и переход к шагу 17(a)iB;

иначе (средняя точка попала в неугловую область)

– Если $C_1 \& C_{12} \neq 0$,

$$C_1 = C_{11} + Tcc(C_1)$$

иначе

$$C_1 = C_{12} + Tcc(C_1)$$

- іі. (Добавление 1-й угловой точки) $n_1 = n_1 + 1, P_1[n_1] = Angle(C_1);$
- Переход к шагу 18.
- (b) Иначе
 - Если $C_{start} \& C_{end} \& 15 = 0$,
 - Если $C_{start} \& 16 \neq 0$,

$$C_2 = C_{start} + Tcc(C_{end}),$$

иначе

$$C_2 = C_{start} + C_{end} + 16;$$

- 18. (Тест на добавление угловой точки) Если $C_2\&16\neq 0$, то $n_1=n_1+1$ и $P_1[n_1]=Angle(C_2);$
- 19. k = k + 1, $C_{start} = C_{end}$, $(x_{start}, y_{start}) = (x_{end}, y_{end})$ и переход к шагу 3.

Алгоритм 2 (ExtCode: Вычисление расширенного кода области для точки).

Bход: (x,y) — координаты точки, $(x_{\min},y_{\min}), (x_{\max},y_{\max})$ — координаты левого нижнего и правого верхнего углов окна отсечения соответственно

Bыход: C — код области, в которую попадает заданная точка

- 1. C = 0;
- 2. Если $x < x_{\min}$, то C увеличить на 1;
 - (a) Если $y < y_{\min}$, то C увеличить на 20;
 - (b) Если $y > y_{\text{max}}$, то C увеличить на 24;
- 3. Если $x > x_{\text{max}}$, то C увеличить на 2;
 - (a) Если $y < y_{\min}$, то C увеличить на 20;
 - (b) Если $y > y_{\text{max}}$, то C увеличить на 24;
- 4. Если $y < y_{\min}$, то C увеличить на 4;
- 5. Если $y > y_{\text{max}}$, то C увеличить на 8;

Алгоритм 3 (Angle: Координаты угла области видимости по коду угловой области).

Bход: C — код угловой области

Bыход: (x,y) — координаты соответствующей угловой точки области видимости

- 1. Если C&1, $x = x_{\min}$;
- 2. Если C&2, $x = x_{\text{max}}$;
- 3. Если C&4, $y = y_{\min}$;
- 4. Если C&8, $y = y_{\text{max}}$;
- 5. выдать (x, y);

Алгоритм 4 (Тсс: Коррекция кода области при необходимости добавления угловой точки).

Bход: C — код неугловой области

Выход: corr — коррекция кода

1. Если C&1, corr = -1;

- 2. Если C&2, corr = 1;
- 3. Если C&4, corr = -4;
- 4. Если C&8, corr = 4;
- 5. выдать corr;