Subjectul 1

Se dă un graf neorientat conex cu n>3 vârfuri și m>n muchii. Să se afișeze punctele critice în care sunt incidente muchii critice. Pentru fiecare astfel de punct se va afișa numărul de muchii critice care sunt incidente în el și numărul de componente biconexe care îl conțin, fără a memora componentele biconexe ale grafului și fără a memora muchiile critice.

Complexitate O(m)

Informațiile despre graf se citesc din fișierul graf.in cu structura:

- pe prima linie sunt n și m
- pe următoarele m linii sunt câte 2 numere naturale reprezentând extremitățile unei muchii

graf.in	lesire pe ecran (nu neaparat in aceasta ordine)
9 10	Puncte critice cerute:
12	1:
13	incidente 2 muchii critice
2 4	este in 2 componente biconexe
27	2:
47	incidente 1 muchii critice
45	este in 2 componente biconexe
4 6	7:
5 6	incidente 2 muchii critice
78	este in 3 componente biconexe
79	

Subjectul 2

Se citesc informații despre un graf **orientat** ponderat G din fișierul graf.in. Fișierul are următoarea structură:

- Pe prima linie sunt două numere reprezentând numărul de vârfuri n (n>4) și numărul de arce m ale grafului, **m>n**
- Pe următoarele m linii sunt câte 3 numere întregi **pozitive** reprezentând extremitatea inițială, extremitatea finală și costul unui arc din graf
- Pe penultima linie este un număr natural b
- Pe ultima linie este un număr s reprezentând un nod sursă în graf.

În punctul s se află un călător care are bugetul b.

- a) Să se determine un cel mai depărtat nod v din graf la care călătorul poate ajunge din s printr-un drum (elementar) de cost cel mult b, cât să se încadreze în buget (acel vârf pentru care se obține $\max\{d(s,u)|\ d(s,u)\leq b,\ u\ vârf\ în\ V\}$ și să se afișeze un drum de cost minim de la s la v. Dacă sunt mai multe astfel de noduri se va alege cel cu indicele cel mai mic.
- b) Observând că un circuit este format totuși dintr-un drum și un arc, călătorul va mai roagă să determinați în plus dacă poate face un traseu de cost cel mult b care pornește din s și se termina tot în s fără a trece de mai multe ori prin același vârf, altfel spus să determinați dacă există un circuit elementar în G de cost mai mic sau egal cu b care conține s și, în caz afirmativ, să afisati un astfel de circuit. **Complexitate O(mlog(n))**

graf.in	lesire pe ecran
6 10	a)
151	v=3
1 6 10	1543
212	b)
413	1541
5 2 20	
5 4 4	
427	
435	
231	
623	
11	
1	

d(1, 2) = 12		
d(1, 3) = 10		
d(1, 4) = 5		
d(1, 5) = 5		
d(1, 6) = 1		
d(1, 7) = 10		
b = 11 => cele mai mari distanțe mai		
mici sau egale cu 11 sunt d(1, 3) și		
d(1, 7)		

Subjectul 3

Fisierul graf.in conține următoarele informații despre un graf bipartit conex:

- pe prima linie sunt 2 numere naturale n și m reprezentând numărul de vârfuri și numărul de muchii
- pe următoarele m linii sunt perechi de numere x y (separate prin spațiu) reprezentând extremitătile unei muchii

Se consideră graful G dat în fișierul graf.in. Notăm cu k numărul de vârfuri de grad impar din graf.

- a) Folosind un algoritm de determinare a unui flux maxim într-o rețea de transport, determinați un cuplaj maxim în subgraful indus de mulțimea vârfurilor de grad impar din G.
- b) Folosind punctul a) determinați dacă exista k/2 muchii care se pot elimina din G astfel încât să se obțină un graf cu următoarele proprietăți:
- gradul fiecărui vârf din G' este egal cu cel din G sau cu unu mai mic.
- în G' în fiecare componentă conexă există câte un ciclu care conține toate muchiile din componentă (o singura dată) Complexitate O(nm²)

graf.in	lesire pe ecran (solutia nu este unica)
8 9	16
15	2 5
16	3 7
17	
2 5	
3 5	
3 7	
3 4	
8 7	
8 4	

