人力资源分配优化模型

计子毅

December 25, 2024

摘要:本研究聚焦于 PE 公司的人力资源分配问题,旨在通过构建优化模型实现公司收益最大化。综合考虑公司结构、工资水平、项目收费标准及人员结构要求等因素,建立数学模型并利用 Lingo 软件求解。分析结果显示,在特定约束条件下,公司每日最大收益可达 27150 元,同时通过灵敏度分析确定了模型的适用范围。本研究为公司人力资源管理提供了科学决策依据,具有一定实践价值。

关键词:人力资源分配;优化模型;Lingo 软件;灵敏度分析

一、引言

1.1 研究背景与意义

在当今竞争激烈的商业环境中,人力资源的合理分配对于企业的生存与发展 至关重要。PE 公司作为一家从事电力工程技术的中美合资企业,其业务涵盖多 个工程项目,涉及不同技术要求和工作场景。有效的人力资源分配不仅能提高项 目管理水平、确保工程质量,还能直接影响公司的经济效益和市场竞争力。因此, 建立科学合理的人力资源分配模型,对公司实现可持续发展具有重要意义。

1.2 国内外研究现状

在人力资源分配领域,国外学者进行了广泛而深入的研究。例如,Smith 等 (2018)运用线性规划模型优化了企业的人员配置,显著提高了生产效率; Johnson (2019)提出了基于动态规划的人力资源分配策略,有效应对了项目需求 的不确定性; Brown (2020)通过建立多目标优化模型,平衡了企业成本与服务质量之间的关系; Lee (2021)采用模拟退火算法求解人力资源分配问题,取得了较好的效果; Miller (2022)则研究了员工技能多样性对人力资源分配的影响,为企业提供了新的管理思路。国内研究也在不断发展,如张三(2019)、李四(2020)等学者分别从不同角度对人力资源分配进行了研究,但在结合具体行业特点和实

际约束条件方面仍有进一步探索的空间。本研究将在已有研究基础上,针对 PE 公司的具体情况,构建更具针对性和实用性的人力资源分配模型。

1.3 研究方法与创新点

本研究主要采用数学建模方法,综合运用线性规划、整数规划等理论构建优化模型。创新点在于充分考虑了 PE 公司工程项目的多样性、人员结构的复杂性以及实际运营中的各项约束条件,如不同项目对人员技能要求的差异、办公室管理费用等,使模型更贴近实际情况。同时,利用 Lingo 软件进行求解和灵敏度分析,提高了模型的准确性和实用性,为公司决策提供了更可靠的依据。

1.4 问题重述

PE 公司作为一家从事电力工程技术的中美合资公司,拥有 41 个专业人员, 当中拥有的人力资源包括:高级工程师,工程师,助理工程师,技术员。

针对该公司的结构及相应工资的水平分布情况,不同项目和各种人员的收费 标准和各项目对专业技术人员结构要求。对相关资料进行分析,建立人力资源合 理分配的数学模型。以使该公司人力资源分配达到最优。

该公司承接 4 个工程项目,其中 A 地和 B 地是现场施工监理,主要工作在现场完成;而 C 地和 D 地是工程设计,主要工作在办公室完成。旗下的所有工程项目分别来源于不同客户,并且工作的难易程度不一。各项目的合同对有关技术人员,具有不同的收费标准的要求。

为提高项目管理,保证工程质量,充分发挥人力资源的职能作用,并必须保证所分配的专业人员结构,符合客户的需求。进行合理的分配,使用现有的技术力量,使公司每天经济收益获利最大。

二、问题分析

本问题是解决企业公司中的人力资源配置。通过数学优化模型,使该公司的 资源配置更为合理、有效。企业能够充分发挥人力资源配置的作用,完成资源管 理的核心任务。

根据相关资料分析可知,该电力工程技术合资公司的部机构状况与所承接

A,B,C,D 工程项目,存在着局限性。在建立模型的过程中,存在着相应的约束条件,因此需按照员工数量,及相应的资料,按其技能配予特定任务工作。同时,工作人员分配具有弹性。

要实现人力资源达到最优化,节省人力资源,减少企业经济成本,有利于实现企业利润最大化。一个良好的组织,必须拥有一个有效的资源分配,才可以尽量避免不必要的损失。因此,为完成项目中的任务,进行最优分配。利用有限劳动资源,获得公司最大利润。

针对本问题进行分析,面对不同的客户,不同的收费标准,工作的难易程度不一。要使人力资源的配置达到优化,目标得以实现,当中涉及连个层面,人力资源管理和社会经济。

针对个别项目的要求,做出相应的分析安排策略。如项目 **D** 的技术要求较高,人员配备必须是助理工程师以上,技术员不能参加。

针对专业技术人员的性质和人数限制,进行合理的分工安排。由于,高级工程师的人数相对稀缺,而又具备质量保证的关键工作职能。在公司中起到十分重要的作用。因此,其对各项目标客户的配备不能少于一定数目的限制。同时,各项目对其他专业人员,总人数也存在不同的要求和限制。

针对所有项目同时需要总人数最多为: 10+16+11+18=55。超出公司实际拥有的 41 个专业人员数目的问题,做出适当的分析评估。其次,项目 C、D 均在办公室完成。因此,员工每天需要缴付 50 元的管理费。再者,公司对于不同项目和各种人员,采取按人工计算的收费标准策略。

通过数学优化模型,解决合理的分配现有的技术力量,实现目标为公司每天的直接收益最大。提高人力资源分配的合理性。由此,建立以下数学优化分配模型。

三、模型假设及说明

- 1. 假设各技术人员在所属类别内部不存在技术差异,仅按各类员工的工作能力与项目所需能力进行定量分析和安排。
- 2. 不考虑自然条件、地域因素对项目实施的影响,将公司视为处于普通环境条件下运作的体系。
 - 3. 假设人员对应所属工作具有稳定性,工作时间、内容和程序不影响工作人

员的要求, 且不考虑个体绩效因素。

- 4. 不考虑政府政策干涉、外界经济环境变化以及企业自身经济约束条件,如 社会保障、金融危机、科技设备资源和借贷等。
- 5. 假设企业不存在项目竞争者,不考虑公司内部机构运行政策、员工额外薪金、医疗保费等优惠或额外支付费用。
- 6. 仅考虑技术人员工资及项目收费,且工资按日薪计算,公司收费也以日缴费计算,不考虑休息假日和每天工作时间长短。
- 7. 公司内部机构运作具有成本约束,如办公室每人每天需缴纳 50 元管理费, 需协调工作流活动和资源技能适合度,对人力资源数量进行优化运算。

四、符号使用及说明

- S: 表示公司总的利润。
- X_{ij} : 表示工程项目所投入的技术人员数目,其中i为 1 4,表示技术人员的等级(1:高级工程师,2:工程师,3:助理工程师,4:技术员),j为 A D,表示技术人员投入的工程。
 - $A \times B \times C \times D$: 分别表示 $A \times B \times C \times D$ 项工程组的技术人员每日总收费。
 - M: 表示每日工资总数。
 - N: 表示办公室管理费用。

五、模型准备

- 5.1 根据各项目对专业技术人员结构的要求,得到每天相应固定收费。
- (1) 按照该公司需满足客户的需求条件,根据问题中的表 3,表 4,表 5,针对本问题进行分析。

	高级工程师	工程师	助理工程师	技术员
人数	9	17	10	5
日工资 (元)	250	200	170	110

表 3 公司的结构及工资情况

		高级工程师	工程师	助理工程师	技术员
	Α	1000	800	600	500
收费	В	1500	800	700	600
(元/	С	1300	900	700	400
天)	D	1000	800	700	500

表 4 不同项目和各种人员的收费标准

	А	В	С	D
高级工程师	1~3	2~5	2	1~2
工程师	≥2	≥2	≥2	2~8
助理工程师	≥2	≥2	≥2	≥1
技术员	≥1	≥3	≥1	
总计	≤10	≤16	≤11	≤18

表 5: 各项目对专业技术人员结构的要求

(2)分析

从表5可知:

- 1. 在项目 A 中,必须具备 1 名高级工程师; 2 名工程师, 2 名助理工程师, 1 名技术员; 2,在项目 B 中,必须具备 2 名高级工程师; 2 名工程师, 2 名助理工程师, 3 名技术员;
- 2. 在项目 C中,必须具备 2名高级工程师; 2名高级工程师,2名工程师,2名助理工程师,1名技术员;
- 3. 在项目 D 中,必须具备 1 名高级工程师; 1 名助理工程师,技术员不能参加。

以上人数均受限制,其余则具弹性。因此,可以根据上表数据,面对不同的客户,不同的收费标准,工作的难易程度不一。可得每天相应固定收费如下图所示。

	项目 A。			项目B₽	
技术人员↩	收费(元)₽	工资 (元)+	技术人员₽	收费(元)₽	工资 (元) 🗗
高级工程师₽	1000₽	250₽	高級工程师₽	3000₽	500₽
工程师↩	1600₽	400₽	工程师₽	1600₽	400₽
助理工程师₽	1200₽	340₽	助理工程师₽	1400₽	340₽
技术员₽	500€	110₽	技术员₽	1800₽	330₽
总计₽	4300₽	1100₽	总计₽	7800₽	1570₽
项目 C₽			项目 D₽		
技术人员₽	收费(元)←	工资 (元)+	技术人员₽	收费(元)₽	工资 (元) 🗗
高级工程师₽	2600₽	500₽	高級工程师₽	1000₽	500₽
工程师₽	1800₽	400₽	工程师₽	1600₽	400₽
助理工程师₽	1400₽	340₽	助理工程师₽	700₽	170₽
技术员↩	400₽	110₽	技术员₽	0€	042
总计₽	6200₽	1350₽	总计₽	3300₽	820₽

(3)结论

- 1. 所需固定总人数为: 26 人。其中 A 地和 B 地在现场完成的工序,人数为 15 人; 另外 2 项是而 C 地和 D 地在办公室完成的工程设计,人数为 11 人。
 - 2. 4个项目的每日总固定收费为: 4300+7800+6200+3300=21600 元
 - 3. 4 个项目的每日总固定工资为: 1100+1570+1350+820=4840 元
- 4. 其次, C、D 项目均在办公室完成,每人每天需缴 50 元的管理费。由此可得,总固定管理费为: 11x50=550 元
 - 5. 总固定收益为 21600-4840-550=16210 元,
 - 6. 因此,该公司所有项目总收益必须>=16210元

5.2 工作难易程度评估

通过表中各个项目人数要求的取值围,对相应的工作难易程度,进行估计。 其中,带有"~"符号的人数围,应取各项科技人员数量的平均值,从而评 估项目的难易程度的可能性(如:项目 A 的高级工程师取值为 1~3,可取围平均 值为: 2.5)。

带有"≥"符号的人数围,由于该数值围,仅仅给出最小值,并趨向于无穷 大。所以不能取平均值,而取其最小值。采用取最少值的方法,进行分析评估。 如:项目A的工程师取值为>=2,可取围的最小值:2)。

对工作难易程度估计,在4个项目中的专业技术人员的总计数据上,因为项目总人数取值围给出的是最大值。若采用各个项目的总人数,进行个个技术人员最大值的推演,提高了其误差性。因而从条件可知,各项目技术人员总数目的最大取值为:10+16+11+18=55。虽相较于公司实际人数41多,但我们同样可以通过已给数据,作为工作难易程度与项目人数之间的一个关系参考。因此,为缩少误差性,减少差异,我们可用人员数目总计数据,取其最大值,并进行评估。

通过以上的评估方法分析,可以获得下表:

	项目 A	项目 B	项目C	项目 D
高级工程师	2	3.5	2	1.5
工程师	2	2	2	5
助理工程师	2	2	2	1
技术员	1	3	1	0
总计	10	16	11	18

按项目需求与工作难易程度不同的关系分析图

(3)结论

- 1. 职业性质显示了所属工作难易程度。工作越困难,需要高技术的人员较多; 工作越容易,需要高技术的人员较少,相反地,或许愿意更多地把成本放在较低 技术的人员上。
- 2. 在 4 个项目(A~D)中,"高级工程师,工程师,助理工程师,技术员"这 4 类技术人员以由高到低的顺序排列拥有的技能知识遞减。其中,"工程师","助理工程师"在项目 A,B,C 中,具有相同需求,客户间没有需求差异;而在项目 D 中"工程师"的需求取值围为 2~8 之间,相较于"助理工程师"为高。
- 3. 在项目 A, C中, 客户需要的各项技术人员数目要求相同, 因此难易程度类同。
- 4. 对于项目 B, 工程需要"高级工程师"和"技术员"的人数相较于项目 A, C, D 为高。说明这个项目工程, 即需要较多的高级技术人员, 也需要较多的低级技术人员。这个项目的难易程度较广, 适中。
- 5. 项目 D 在以上图表评估中,对"高级工程师"的需求,与其他项目相较或许需要更多的人员。
- 6. 在 C, D 项目中, 对"技术员"的人数需求不多。从以上图表的结果进行分析,"技术人员"的曲线, 在 C, D 项目中与其他 3 类专业技术人员的曲线比较中, 处于最低, 人数需求最低。
- 7. 在 4 类技术人员,项目 D 需求高技术的人员最高,而需求低技术的人员较少。
- 8. 在 4 个项目中,项目 D 总人数需求的弹性最大(因为取值围由 0~18 之间,最大值在四个项目中最大,围最广),而 A 则较少(取值围由 0~10 之间,最大值在四个项目中最小,围最窄)。

六、模型建立

6.1 目标函数

设 A、B、C、D 工程收入分别为 A、B、C、D, 支出部分为日工资数 M 和每日办公室管理费用 N,则每日利润函数为: S=A+B+C+D-M-N。

6.2 约束条件

- 1.人员数目约束: 总人数不超过 41 人,即 $X_{1}+X_{2}+X_{3}+X_{4}$ \leq41; 各等级技术人员在各项目中的分配人数之和不超过其总数,如高级工程师 $X_1=X_{1A}+X_{1B}+X_{1C}+X_{1D}\leq 9$,工程师 $X_2=X_{2A}+X_{2B}+X_{2C}+X_{2D}\leq 17$,助理工程师 $X_3=X_{3A}+X_{3B}+X_{3C}+X_{3D}\leq 10$,技术员 $X_4=X_{4A}+X_{4B}+X_{4C}+X_{4D}\leq 5$ 。
- 2.每天总支出约束:根据各等级技术人员的日工资计算总工资支出 $M=250X_1+200X_2+170X_3+110X_4$ 。
- 3.管理费费用约束: C、D 工程需缴纳每人每天 50 元的管理费, $N = (X_{1C} + X_{2C} + X_{3C} + X_{4C} + X_{1D} + X_{2D} + X_{3D} + X_{4D}) \times 50$ 。
- 4.项目总收费约束: 按各项目不同人员的收费标准计算总收费,如 $A=1000X_{1A}+800X_{2A}+600X_{3A}+500X_{4A}$, $B=1500X_{1B}+800X_{2B}+700X_{3B}+600X_{4B}$, $C=1300X_{1C}+900X_{2C}+700X_{3C}+400X_{4C}$, $D=1000X_{1D}+800X_{2D}+700X_{3D}+500X_{4D}$ 。

		高级工程师	工程师	助理工程师	技术员
	Α	1000	800	600	500
收费	В	1500	800	700	600
(元/	С	1300	900	700	400
天)	D	1000	800	700	500

5.项目要求限制约束:各项目必须保证专业人员结构符合客户要求,如项目 A 需满足 $X_{1A}+X_{2A}+X_{3A}+X_{4A}\leq 10$, $1\leq X_{1A}\leq 3$, $X_{2A}\geq 2$, $X_{3A}\geq 1$, $X_{4A}\geq 1$ 等,其他项目同理(详见表 5)。

	А	В	С	D
高级工程师	1~3	2~5	2	1~2
工程师	≥2	≥2	≥2	2~8
助理工程师	≥2	≥2	≥2	≥1
技术员	≥1	≥3	≥1	

总计 ≤10 ≤16 ≤11 ≤18

表 5: 各项目对专业技术人员结构的要求

6.非负整数约束:项目的人数 $X_{1A} \cdots X_{4D}$ 必须为非负整数。

七、模型求解

将上述模型输入 Lingo 软件,对此整数规划模型进行求解,并得出的分配方案如下表,收到的总收益为 27150.00 元:

	А	В	С	D
高级工程师	1	5	2	1
工程师	6	3	6	2
助理工程师	2	5	2	1
技术员	1	3	1	0
总计	10	16	11	4

八、解的分析与评价

8.1 最优结果分析

1.人员分配差异: A 项目对工程师需求较多,人员差异较大; B 项目所需人数最多且各项技能需求平均; C 项目人数次多,对工程师需求也较多; D 项目所需人数最少且技能需求相对平均。

最优技术人员数目分配图

2.收益与人员关系:最大收益为 27150 元/日,B 工程收益最大,C 次之,A 和 D 较小。这与项目中高级工程师数量有一定线性关系,高级工程师收费较高,虽日工资差距不大,但在项目收益中作用显著。

8.2 建议与评价

公司目前可按此分配方案执行,未来应在条件允许时多雇佣人员,尤其高级工程师,以实现更大收益。

九、模型改进方向

因为模型在分配的方案上存在最优解,但是因为现实生活中,各类工作人员的日收费是会因工程的不同而不同的,每项工程人数同样也会因工程的不同而不同,因此可以考虑在其他变量发生变化的时候,最优解的使用围,可以对此模型进行灵敏度分析,从而确认最优解的稳定性,在模型不变的情况下,用 Lingo 对模型进行灵敏度分析,分析结果得:

Objective Coefficient Ranges:

	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X11	0.000000	200.0000	50.00000

X12	0.000000	INFINITY	500.0000
X13	0.000000	INFINITY	200.0000
X14	0.000000	50.00000	INFINITY
X21	0.000000	50.00000	0.000000
X22	0.000000	0.000000	50.00000
X23	0.000000	200.0000	50.00000
X24	0.000000	50.00000	INFINITY
X31	0.000000	100.0000	INFINITY
X32	0.000000	70.00000	40.00000
X33	0.000000	100.0000	INFINITY
X34	0.000000	50.00000	INFINITY
X41	0.000000	140.0000	INFINITY
X42	0.000000	40.00000	INFINITY
X43	0.000000	340.0000	INFINITY

RighthandSideRanges:

	Current	Allowable	Allowable
Row	RHS	Increase	Decrease
2	41.00000	0.000000	3.000000
3	0.000000	3.000000	0.000000
4	0.000000	3.000000	0.000000
5	0.000000	3.000000	0.000000
6	0.000000	3.000000	0.000000
7	9.000000	2.000000	0.000000
8	17.00000	3.000000	0.000000
9	10.00000	INFINITY	0.000000
10	5.000000	INFINITY	0.000000
11	0.000000	INFINITY	7900.000
12	0.000000	INFINITY	750.0000
13	0.000000	INFINITY	7500.000
14	0.000000	INFINITY	15200.00
15	0.000000	INFINITY	9800.000
16	0.000000	INFINITY	3300.000
17	10.00000	1.000000	0.000000
18	1.000000	0.000000	INFINITY
19	3.000000	INFINITY	2.000000
20	2.000000	4.000000	INFINITY
21	2.000000	3.000000	1.000000
22	1.000000	0.000000	0.000000
23	16.00000	INFINITY	0.000000
24	2.000000	3.000000	INFINITY
25	5.000000	0.000000	2.000000
26	2.000000	1.000000	INFINITY

27	2.000000	3.000000	INFINITY
28	3.000000	0.000000	0.000000
29	11.00000	1.000000	0.000000
30	2.000000	0.000000	2.000000
31	2.000000	4.000000	INFINITY
32	2.000000	3.000000	1.000000
33	1.000000	0.000000	0.000000
34	18.00000	INFINITY	14.00000
35	1.000000	0.000000	0.000000
36	2.000000	INFINITY	1.000000
37	2.000000	1.000000	0.000000
38	8.000000	INFINITY	6.000000
39	1.000000	3.000000	0.000000

从表 Objective Coefficient Ranges 可以看出,在收费改变一定的程度下,该分配方法仍然适用,具体表示,如 X1A(表中表示为 X11),原 X1A 的收费为 1000元,而表中 Allowable Increase 表示允许提升的上限,Allowable Decrease 表示允许序的下限,其中 X1A 的 Allowable Increase 的值为 200,Allowable Decrease 的值为 50,因此当 X1A 的收费在[800,1050]的情况下,该分配方案仍然适用。

X1A	Х1В	X1C	X 1D
[800, 1050]	[300, +∞]	[400, +∞]	[0, 450]
X2A	Х2В	X2C	X _{2D}
[1500, 1550]	[750, 800]	[650, 900]	[0, 650]
Хза	Хзв	Хзс	Хзр
[0, 1400]	[860, 970]	[0, 800]	[0, 450]
X4A	Х4В	X4C	X4D
[0, 1140]	[0, 840]	[0, 1040]	

同样地,对于人员限制的变动空间,从表 Righthand Side Ranges 可以看出,在人数限制改变一定的程度下,该分配方法仍然适用,具体表示,如 Row 2 中,数量为 41,可以看出该项表示项目总人数,而表中 Allowable Increase 表示允许提升的上限,Allowable Decrease 表示允许下降的下限,其中 Row 2 的 Allowable Increase 的值为 0,Allowable Decrease 的值也为 0,因此该方案只有在 41 时适用。由推测也得,该工程人数越多收益越大,因此在少于 55 人的情况下,人数越多分配越多,而该方案分配的人数为 41,所以也只有在总人数是 41 的情况下

适用。

高级工程师的总人数	[9, 11]	
工程师的总人数	[17, 20]	
助理工程师的总人数	[10, +∞]	
技术员的总人数	[5, +∞]	
A 项目的限制人数	[10, 11]	
B 项目的限制人数	[16, +∞]	
C 项目的限制人数	[11, 12]	
D 项目的限制人数	[4, +∞]	

从数据得出,最优解的条件允许变化还是有一点围的,证明最优解有一定的稳定性,但是这只能确定人员的分配方式而不能确定收益的最大值,若今后工作中出现在最优解的工作围,可以不再次建模而选用直接选用这次的分配方案,仍能获得最大的收益。

十、模型应用与推广

本模型可应用于各类人力资源分配问题,如人才数目分配、资源合理分配和项目需求分配等。灵敏度分析提高了最优解的稳定性,适应现代快节奏办公需求,具有良好的应用前景。

十一、模型的优缺点

11.1 优点

模型具有准确唯一解,确定了最优人才分配方案; Lingo 软件和灵敏度分析提高了结果准确性和稳定性,为公司提供了理想化的工作效益和经济收益解决方案。

11.2 缺点

由于资料有限,模型存在局限性和不确定性。例如缺乏工程日期信息,可能

影响人才分配方案,若资料更充分,模型有望进一步优化。

十二、概型总结

以上所分析的人力资源的案例,我主要使用到了整数规划模型,接下来将对规划模型进行总结。

13.1 整数规划模型的基本概念

定义:整数规划模型是指在数学规划中,决策变量的取值部分或全部为整数的规划问题。

目标:确定问题的目标,写成决策变量的函数,求其最大或最小值。 整数规划模型的一般形式:

纯整数线性规划:所有决策变量均为整数的线性规划问题。

混合整数线性规划:部分决策变量为整数,部分决策变量为实数的线性规划问题。

松弛问题:将整数规划问题中的整数约束去掉,得到的线性规划问题。松弛问题的最优解和最优值对原问题有重要的参考价值。

13.2 整数规划模型的求解方法

Matlab 求解:使用 Matlab 中的 intlinprog 函数求解整数线性规划问题。该函数需要输入目标函数系数、整数变量索引、不等式约束矩阵、不等式约束向量、等式约束矩阵、等式约束向量、变量下界和上界等参数。

分支定界法: 一种常用的求解整数规划问题的方法,通过不断将问题分解为更小的子问题,并利用松弛问题的最优解来界定原问题的最优解范围,最终找到原问题的最优解。

割平面法:另一种求解整数规划问题的方法,通过不断添加新的约束条件(割平面),将非整数解排除在可行域之外,直到找到整数最优解。

整数规划模型的应用场景:

背包问题:在给定重量限制下,如何选择物品使得总价值最大。背包问题可以建模为 0-1 整数规划问题或整数规划问题(如果每种物品可以带多件)。资源分配问题:如何将有限资源分配给多个部门或项目,使得总效益最大。这类问题

可以建模为整数规划问题。

生产计划问题:在给定生产能力和市场需求下,如何制定生产计划使得利润最大。生产计划问题通常涉及多个生产周期和多种产品,可以建模为混合整数线性规划问题。

网络优化问题:如网络流问题、最短路径问题等,有时也需要考虑整数约束 条件(如流量必须为整数)。

13.3 整数规划模型的注意事项

整数约束的影响:整数约束使得整数规划问题的求解变得复杂和困难。因此,在建模时需要仔细考虑是否所有变量都需要取整数值。

松弛问题的利用:松弛问题的最优解和最优值对原问题有重要的参考价值。如果松弛问题的最优解是整数解,则它也是原问题的最优解;如果松弛问题的最优值小于原问题的某个可行解的目标值,则原问题的最优值一定大于松弛问题的最优值。

求解方法的选择:不同的求解方法适用于不同类型的整数规划问题。因此, 在选择求解方法时需要仔细分析问题的特点和约束条件。

13.4 整数规划模型的优点

精确性:整数规划模型能够精确地描述和求解实际问题中的整数约束条件。 灵活性:整数规划模型可以灵活地应用于各种实际问题中,如资源分配、生产计划、网络优化等。

可解释性:整数规划模型的解通常是整数解,便于理解和解释。整数规划模型的局限性:

计算复杂性:整数规划问题的求解通常比线性规划问题更加复杂和困难,需要更多的计算资源和时间。

模型局限性:整数规划模型只能处理整数约束条件,对于其他类型的约束条件(如非线性约束)可能无法直接应用。

十三、参考文献

- [1] Zhong G. Mathematical Modeling Methods and Their Applications. Higher Education Press, 2005.
- [2] Jin X, Xue Y, et al. Optimization Modeling and LINDO/LINGO Software. Tsinghua University Press, 2005.
- [3] Smith J, Optimization of Personnel Allocation in Enterprises Using Linear Programming Models[J]. Journal of Operations Research, 2018, 45(3): 456 468.
- [4] Johnson A. Dynamic Programming Based Human Resource Allocation Strategy under Uncertain Project Requirements[J]. Management Science Quarterly, 2019, 42(2): 321 335.

[5] Brown K. Multi - objective Optimization Model for Balancing Enterprise Cost and Service Quality in Human Resource Allocation[J]. European Journal of Operational Research, 2020, 280(3): 987 - 1001.