Homework 9

Tuesday, April 20, 2021 6:56 PM

1. Topic #2 EP2

a.
$$(1,3) \circ (1,2)(3,4) \circ (1,3)^{-1} = (1,3) \circ (1,4,3,2)$$

= $(1,4)(2,3) \notin H$

b.
$$\alpha H = \{(2,4,3), (2,4,3), (1,2)(3,4)\} = \{(2,4,3), (1,4,2)\}$$

 $\beta H = \{(2,4,3), (1,4,2), (1,2)(3,4)\} = \{(1,4,2), (2,4,3)\}$

c.
$$\alpha^{\circ} \gamma = (2,4,3) \cdot (1,3,2) = (1,2)(3,4)$$

$$(\beta \circ \gamma) H = \{(1,3)(2,4), (1,3)(2,4), (1,2)(3,4)\} = \{(1,3)(2,4), (1,4)(2,3)\}$$

d. Part b & c show that

Since
$$\alpha H = \beta H$$
, then $\alpha H \circ \gamma H = \beta H \circ \gamma H$. So if we apply the operation $(\alpha H) \circ (\gamma H) = (\alpha \circ \gamma) H$, we get $(\alpha \circ \gamma) H = (\beta \circ \gamma) H$.

3. Suppose
$$h = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in H$$
 and $g = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ $g^{-1} = \begin{bmatrix} -1/3 & 2/3 \\ 2/3 & -1/3 \end{bmatrix}$

$$ghg^{-1} = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1/3 & 2/3 \\ 2/3 & -1/3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & -1/3 \end{bmatrix} = \begin{bmatrix} 5/3 & -1/3 \\ 1/3 & 1/3 \end{bmatrix} \neq H$$

car I row reduce his to make the bottom left zero?

4. Suppose $e: G \rightarrow H$ is a homomorphism of groups. Let e_{G} be the identity of G- and e_{H} be the identity of H.

Then $Y(e_{G}) = e_{H}$. By definition $gg^{-1} = e_{G}$, so we can say $Y(gg^{-1}) = e_{H}$. $\forall g \in G$.

Since ℓ is a homomorphism, $\ell(gg^{-1}) = \ell(g) \ell(g^{-1})$, and $\ell(g) \ell(g^{-1}) = \ell_{H}.$

Notice that

$$C(g)^{-1}C(g)C(g^{-1}) = C(g)^{-1}e_{H}$$
 $e_{H}C(g^{-1}) = C(g)^{-1}e_{H}$
 $C(g^{-1}) = C(g)^{-1}$