Neural networks and Backpropagation

Yesterday

- Overview
- Computation graph view of neural networks
- Linear operation followed by non-linear activation ...But what is the linear operation, really?

Today

- A closer look at what's going on in a "neuron"
- Backpropagation: how do we train a neural network?

Neural Network for classification

Vector function with tunable parameters θ

$$\mathbf{f}(\cdot; heta):\mathbb{R}^N o (0,1)^K$$

Sample s in dataset S:

- ullet input: $\mathbf{x}^s \in \mathbb{R}^N$
- ullet expected output: $y^s \in [0,K-1]$

Output is a conditional probability distribution:

$$\mathbf{f}(\mathbf{x}^s; \theta)_c = P(Y = c | X = \mathbf{x}^s)$$

Artificial Neuron

$$z(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

$$f(\mathbf{x}) = g(\mathbf{w}^T\mathbf{x} + b)$$

- $\mathbf{x}, f(\mathbf{x})$ input and output
- $z(\mathbf{x})$ pre-activation
- \mathbf{w}, b weights and bias
- *g* activation function

Concrete Example

- Say we have two input dimensions x_1 and x_2 and one output dimension f(x) (sometimes, \hat{y} the predicted value of y is used instead of f(x))
- ullet Our weights and biases could be W=[3,-2] and b=1
- Our non-linearity could be ReLU: g(z) = max(0,z)
- ullet Now $z(x)=3x1-2x_2+1$ and $f(x)=max(0,3x_1-2x_2+1)$
- Every neuron in a neural network is a function like this!

Layer of Neurons (Vectorization)

$$f(x) = g(z(x)) = g(Wx + b)$$

 $oldsymbol{\cdot}$ $oldsymbol{W}, oldsymbol{b}$ now matrix and vector

$$ullet \mathbf{z}^h(\mathbf{x}) = \mathbf{W}^h\mathbf{x} + \mathbf{b}^h$$

•
$$\mathbf{h}(\mathbf{x}) = g(\mathbf{z}^h(\mathbf{x})) = g(\mathbf{W}^h\mathbf{x})$$

•
$$\mathbf{z}^o(\mathbf{x}) = \mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o$$

•
$$\mathbf{f}(\mathbf{x}) = softmax(\mathbf{z}^o) = softmax(\mathbf{W}^o\mathbf{h}(\mathbf{x}) + \mathbf{b}^o)$$

Alternate representation

Keras implementation

```
model = Sequential()
model.add(Dense(H, input_dim=N))  # weight matrix dim [N * H]
model.add(Activation("tanh"))
model.add(Dense(K))  # weight matrix dim [H x K]
model.add(Activation("softmax"))
```

Element-wise activation functions

- blue: activation function
- green: derivative

Softmax function

$$softmax(\mathbf{x}) = rac{1}{\sum_{i=1}^n e^{x_i}} \cdot egin{bmatrix} e^{x_2} \ dots \ \ dots \ \ dots \ dots \ dots \ dots \ \ dots \ dots \ \ \ \ \ \ \ \ \ \ \$$

- vector of values in (0, 1) that add up to 1
- ullet for example, ${f x}=[1,2,3]$ becomes $rac{1}{e^1+e^2+e^3}\cdot [e^1,e^2,e^3]^T=[0.09,0.24,0.67]$
- $p(Y = c|X = \mathbf{x}) = \operatorname{softmax}(\mathbf{z}(\mathbf{x}))_c$
- the pre-activation vector $\mathbf{z}(\mathbf{x})$ is often called "the logits"

Training the network

Find parameters that minimize the **negative log likelihood** (or cross entropy)

The loss function for a given sample $s \in S$:

$$l(\mathbf{f}(\mathbf{x}^s; heta), y^s) = nll(\mathbf{x}^s, y^s; heta) = -\log \mathbf{f}(\mathbf{x}^s; heta)_{y^s}$$

example
$$y^s$$

example
$$y^s=3$$

$$l(\mathbf{f}(\mathbf{x}^s;\theta),y^s)=l\begin{pmatrix} f_0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}=-\log f_3$$

$$h(\mathbf{f}(\mathbf{x}^s;\theta),y^s)=l\begin{pmatrix} f_0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Training the network

Find parameters $\theta = (\mathbf{W}^h; \mathbf{b}^h; \mathbf{W}^o; \mathbf{b}^o)$ that minimize the **negative log likelihood** (or cross entropy)

The loss function for a given sample $s \in S$:

$$l(\mathbf{f}(\mathbf{x}^s; heta), y^s) = nll(\mathbf{x}^s, y^s; heta) = -\log \mathbf{f}(\mathbf{x}^s; heta)_{y^s}$$

The cost function is the negative likelihood of the model computed on the full training set (for i.i.d. samples):

$$L_S(heta) = -rac{1}{|S|} \sum_{s \in S} \log \mathbf{f}(\mathbf{x}^s; heta)_{y^s}$$

Training the network

- Now we have a mathematical function representing the network
- And we have a way of measuring how good it is
- How do we find the parameters that minimize the loss?

Gradient Descent

- Let's imagine we only have one parameter heta
- We can compute the derivative of the loss with respect to heta
- The derivative, $\frac{dL}{d\theta}$, tells us the slope of the loss function at a given point
- ullet If $rac{dL}{d heta}>0$, increasing heta will increase the loss, and vice versa
- To minimize loss, we adjust heta in the opposite direction of $rac{dL}{d heta}$
- This is done using the update rule: $heta= heta_{old}-\eta rac{dL}{d heta}$

Gradient Descent

- We can use gradient descent to play "guess what number I'm thinking of"
- If your guess is too high, you decrease it
- If your guess is too low, you increase it
- The error function is a parabola
- By finding the lowest point on the parabola, you find the best guess

Implementing Gradient Descent

- Start with an initial guess for θ
- Calculate $\frac{dL}{d\theta}$ using the current value of θ
- Update θ using the update rule
- Repeat the process until the change in loss is below a threshold or a set number of iterations is reached
- The choice of learning rate η is crucial: too high, and we may overshoot the minimum; too low, and convergence will be slow

Stochastic Gradient Descent

- Traditional Gradient Descent uses the entire dataset to compute the gradient, which can be computationally expensive
- Stochastic Gradient Descent (SGD) updates the parameters using only a single data point (or a small batch)
- In SGD, for each iteration, a data point (or batch) is randomly selected to compute the gradient
- Since only a subset of data is used, the gradient estimation can be noisy, leading to a less smooth path towards the minimum
- However, SGD is much faster than traditional gradient descent

Stochastic Gradient Descent

Initialize θ randomly

For E epochs perform:

- ullet Randomly select a small batch of samples $(B\subset S)$
 - \circ Compute gradients: $\Delta =
 abla_{ heta} L_B(heta)$
 - \circ Update parameters: $heta \leftarrow heta \eta \Delta$
- Repeat until the epoch is completed (all of S is covered) Stop when reaching criterion:
- nll stops decreasing when computed on validation set

Computing Gradients

Output Weights:
$$\frac{\partial l(\mathbf{f}(\mathbf{x}),y)}{\partial W_{i,j}^o}$$

Output Weights:
$$\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial W_{i,j}^o}$$
 Hidden Weights: $\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial W_{i,j}^h}$

Output bias:
$$rac{\partial l(\mathbf{f}(\mathbf{x}),y)}{\partial b^o}$$

Output bias:
$$\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial b_i^o}$$
 Hidden bias: $\frac{\partial l(\mathbf{f}(\mathbf{x}), y)}{\partial b_i^h}$

- The network is a composition of differentiable modules
- We can apply the "chain rule"

Chain rule

- Mathematical theorem that lets us compute derivatives when functions are inside other functions
- ullet Remember, our neural network is a composition of functions: f(x)=g(h(x))
- The chain rule tells us how to compute $\frac{df}{dx}$
- $\bullet \ \frac{df}{dx} = \frac{df}{dg} \frac{dg}{dh} \frac{dh}{dx}$
- In English: The derivative of the overall network with respect to its input is the product of derivatives of each function in the network

Backpropagation

- Compute partial derivatives of the loss
- For any given function in the network, we can compute how changing its parameters will affect the loss
- In other words, we can find how much each parameter's value contributes to the loss

Initialization and Learning Tricks

Initialization and normalization

- Input data should be normalized to have approx. same range:
 - standardization or quantile normalization
- Initializing weights:
 - Zero is a saddle point: no gradient, no learning
 - Constant init: all neurons compute the same function
 - \circ Solution: random init, ex: $w \sim \mathcal{N}(0, 0.1)$
 - Better inits: Xavier Glorot and Kaming He & orthogonal
- Biases can (should) be initialized to zero

SGD learning rate

- Very sensitive:
 - \circ Too high \rightarrow early plateau or even divergence
 - Too low → slow convergence
 - $\circ~$ Try a large value first: $\eta=0.1$ or even $\eta=1$
 - Divide by 10 and retry in case of divergence
- Large constant LR prevents final convergence
 - \circ multiply η_t by eta < 1 after each update
 - \circ or monitor validation loss and divide η_t by 2 or 10 when no progress
 - See ReduceLROnPlateau in Keras

Momentum

Accumulate gradients across successive updates:

$$m_t = \gamma m_{t-1} + \eta
abla_{ heta} L_{B_t}(heta_{t-1})$$

$$\theta_t = \theta_{t-1} - m_t$$

 γ is typically set to 0.9

Larger updates in directions where the gradient sign is constant to accelerate in low curvature areas

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

Why Momentum Really Works

creates its own oscillations. What is going on?

Why Momentum Really Works

Why Momentum Really Works

Why Momentum Really Works

Alternative optimizers

- SGD (with Nesterov momentum)
 - Simple to implement
 - \circ Very sensitive to initial value of η
 - Need learning rate scheduling
- Adam: adaptive learning rate scale for each param
 - \circ Global η set to 3e-4 often works well enough
 - Good default choice of optimizer (often)
- Many other promising methods:
 - RMSProp, Adagrad, Adadelta, Nadam, ...
 - Often takes some experimentation to find the best one

The Karpathy Constant for Adam

3e-4 is the best learning rate for Adam, hands down.

4:01 AM - 24 Nov 2016

Optimizers around a saddle point

Credits: Alec Radford

Next: Lab 2!