MTM4502-Optimization Techniques

Hale Gonce Köcken and Gökhan Göksu

KKT Week - 28/04/2025

Historical Background

- The conditions known as the KKT Conditions were first published in 1951 by Princeton University professors, American mathematician Harold William Kuhn and Canadian mathematician Albert William Tucker.
- H. W. Kuhn and A. W. Tucker. Nonlinear Programming.
 Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 481–492, University of California Press, Berkeley, California, 1951.

Historical Background

- ➤ Then, over time, it was realized that the necessary conditions of the nonlinear optimization problem were stated in the 1939 master's thesis of William Karush, who was then a graduate student at the University of Chicago.
- ▶ W. Karush.

Minima of Functions of Several Variables with Inequalities as Side Constraints.

MSc Thesis, Chicago University, Dept. of Mathematics, Chicago, Illinois.

Problem Statement

The mathematical formulation of the problem of finding the minimum (maximum) of a given function under equality and inequality constraints is as follows:

KKT Conditions

- The necessary conditions for the optimal solution of the nonlinear optimization problem are examined in four main conditions:
 - Stationarity Condition:
 - To minimize $f(\mathbf{x})$: $\nabla f(\mathbf{x}^*) - \sum_{i=1}^m \mu_i \nabla g_i(\mathbf{x}^*) - \sum_{i=1}^\ell \lambda_j \nabla h_j(\mathbf{x}^*) = 0,$
 - To maximize $f(\mathbf{x})$: $-\nabla f(\mathbf{x}^*) - \sum_{i=1}^m \mu_i \nabla g_i(\mathbf{x}^*) - \sum_{i=1}^\ell \lambda_j \nabla h_j(\mathbf{x}^*) = 0,$
 - Primary Feasibility Condition:

$$g_i(\mathbf{x}^*) \le 0, i = 1, ..., m$$

 $h_i(\mathbf{x}^*) = 0, j = 1, ..., \ell$

Dual Feasibility Condition:

$$\mu_i \geq 0, i = 1, ..., m$$

Complementary Slackness Condition:

$$\mu_i g_i(\mathbf{x}^*) = 0, i = 1, ..., m.$$

KKT Conditions

- Moreover,
 - if $f(\nu \mathbf{x}_1 + (1 \nu)\mathbf{x}_2) \le \nu f(\mathbf{x}_1) + (1 \nu)f(\mathbf{x}_2)$ holds for any $\mathbf{x}_1 \ne \mathbf{x}_2$ from the domain of the function f with some $\nu \in [0, 1]$, i.e. $f(\mathbf{x})$ is a convex function,
 - if $g_i(\nu_i \mathbf{x}_1 + (1 \nu_i)\mathbf{x}_2) \le \nu_i g_i(\mathbf{x}_1) + (1 \nu_i)g_i(\mathbf{x}_2)$ holds for any $\mathbf{x}_1 \ne \mathbf{x}_2$ from the domain of each g_i function with some $\nu_i \in [0, 1]$, i.e. $g_i(\mathbf{x})$'s are convex functions,
 - ▶ if *h_i*'s are linear functions,

then, these conditions are also sufficient conditions.

Examples

Example 1

Examine whether the minimization problem given below satisfies the KKT conditions under the given constraints.

min
$$f(x_1, x_2) = 4x_1^2 + 2x_2^2$$

subject to $3x_1 + x_2 = 8$
 $2x_1 + 4x_2 \le 15$

Examples

Example 1

Examine whether the minimization problem given below satisfies the KKT conditions under the given constraints.

min
$$f(x_1, x_2) = 4x_1^2 + 2x_2^2$$

subject to $3x_1 + x_2 = 8$ $\rightarrow h(x_1, x_2) = 3x_1 + x_2 - 8 = 0$,
 $2x_1 + 4x_2 \le 15 \rightarrow g(x_1, x_2) = 2x_1 + 4x_2 - 15 \le 0$.

Stationarity Condition:

$$\nabla f - \mu \nabla g - \lambda \nabla h = \begin{bmatrix} 8x_1 - 2\mu - 3\lambda \\ 4x_2 - 4\mu - \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Stationarity Condition:

$$abla f - \mu \nabla g - \lambda \nabla h = egin{bmatrix} 8x_1 - 2\mu - 3\lambda \ 4x_2 - 4\mu - \lambda \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix}$$

Primal Feasibility Condition:

$$3x_1 + x_2 = 8 2x_1 + 4x_2 \le 15$$

Stationarity Condition:

$$\nabla f - \mu \nabla g - \lambda \nabla h = \begin{bmatrix} 8x_1 - 2\mu - 3\lambda \\ 4x_2 - 4\mu - \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Primal Feasibility Condition:

$$3x_1 + x_2 = 8 2x_1 + 4x_2 \le 15$$

Dual Feasibility Condition:

$$\mu \geq \mathbf{0}$$

Stationarity Condition:

$$\nabla f - \mu \nabla g - \lambda \nabla h = \begin{bmatrix} 8x_1 - 2\mu - 3\lambda \\ 4x_2 - 4\mu - \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Primal Feasibility Condition:

$$3x_1 + x_2 = 8$$

$$2x_1 + 4x_2 \le 15$$

- Dual Feasibility Condition:μ > 0
- Complementary Slackness Condition: $\mu(2x_1 + 4x_2 15) = 0$.

There will be two cases, based on the dual feasibility condition and the complementary slackness condition:

There will be two cases, based on the dual feasibility condition and the complementary slackness condition:

$$8x_1 - 2\mu - 3\lambda = 0$$

$$4x_2 - 3\mu - \lambda = 0$$

$$3x_1 + x_2 = 8$$

$$2x_1 + 4x_2 = 15$$

There will be two cases, based on the dual feasibility condition and the complementary slackness condition:

$$\begin{vmatrix}
8x_1 - 2\mu - 3\lambda &= 0 \\
4x_2 - 3\mu - \lambda &= 0 \\
3x_1 + x_2 &= 8 \\
2x_1 + 4x_2 &= 15
\end{vmatrix}
\rightarrow
\begin{bmatrix}
8 & 0 & -2 & -3 \\
0 & 4 & -4 & -1 \\
3 & 1 & 0 & 0 \\
2 & 4 & 0 & 0
\end{bmatrix}
=
\begin{bmatrix}
x_1 \\
x_2 \\
\mu \\
\lambda
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
8 \\
15
\end{bmatrix}$$

There will be two cases, based on the dual feasibility condition and the complementary slackness condition:

μ > 0

$$\begin{cases} 8x_1 - 2\mu - 3\lambda = 0 \\ 4x_2 - 3\mu - \lambda = 0 \\ 3x_1 + x_2 = 8 \\ 2x_1 + 4x_2 = 15 \end{cases} \rightarrow \begin{bmatrix} 8 & 0 & -2 & -3 \\ 0 & 4 & -4 & -1 \\ 3 & 1 & 0 & 0 \\ 2 & 4 & 0 & 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \mu \\ \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 8 \\ 15 \end{bmatrix}$$

► The solution will be $x_1 = \frac{17}{10}$, $x_2 = \frac{29}{10}$, $\mu = \frac{53}{25}$ and $\lambda = \frac{78}{25}$.

There will be two cases, based on the dual feasibility condition and the complementary slackness condition:

μ > 0

$$\begin{cases} 8x_1 - 2\mu - 3\lambda = 0 \\ 4x_2 - 3\mu - \lambda = 0 \\ 3x_1 + x_2 = 8 \\ 2x_1 + 4x_2 = 15 \end{cases} \rightarrow \begin{bmatrix} 8 & 0 & -2 & -3 \\ 0 & 4 & -4 & -1 \\ 3 & 1 & 0 & 0 \\ 2 & 4 & 0 & 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \mu \\ \lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 8 \\ 15 \end{bmatrix}$$

- ► The solution will be $x_1 = \frac{17}{10}$, $x_2 = \frac{29}{10}$, $\mu = \frac{53}{25}$ and $\lambda = \frac{78}{25}$.
- $f(17/10,29/10) = \frac{1419}{50}$

There will be two cases, based on the dual feasibility condition and the complementary slackness condition:

There will be two cases, based on the dual feasibility condition and the complementary slackness condition:

$$\mu = 0$$

$$\begin{cases}
8x_1 - 3\lambda = 0 \\
4x_2 - \lambda = 0 \\
3x_1 + x_2 = 8
\end{cases}$$

There will be two cases, based on the dual feasibility condition and the complementary slackness condition:

$$\mu = 0$$

$$\begin{cases}
8x_1 - 3\lambda = 0 \\
4x_2 - \lambda = 0 \\
3x_1 + x_2 = 8
\end{cases}
\rightarrow
\begin{bmatrix}
8 & 0 & -3 \\
0 & 4 & -1 \\
3 & 1 & 0
\end{bmatrix}
=
\begin{bmatrix}
x_1 \\
x_2 \\
\lambda
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
8
\end{bmatrix}$$

There will be two cases, based on the dual feasibility condition and the complementary slackness condition:

$$\mu = 0$$

$$\begin{cases}
8x_1 - 3\lambda = 0 \\
4x_2 - \lambda = 0 \\
3x_1 + x_2 = 8
\end{cases}
\rightarrow
\begin{bmatrix}
8 & 0 & -3 \\
0 & 4 & -1 \\
3 & 1 & 0
\end{bmatrix}
=
\begin{bmatrix}
x_1 \\
x_2 \\
\lambda
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
8
\end{bmatrix}$$

► The solution will be $x_1 = \frac{24}{11}$, $x_2 = \frac{16}{11}$, $\mu = 0$ and $\lambda = \frac{64}{11}$.

There will be two cases, based on the dual feasibility condition and the complementary slackness condition:

$$\mu = 0$$

$$\begin{cases}
8x_1 - 3\lambda = 0 \\
4x_2 - \lambda = 0 \\
3x_1 + x_2 = 8
\end{cases}
\rightarrow
\begin{bmatrix}
8 & 0 & -3 \\
0 & 4 & -1 \\
3 & 1 & 0
\end{bmatrix}
=
\begin{bmatrix}
x_1 \\
x_2 \\
\lambda
\end{bmatrix}
=
\begin{bmatrix}
0 \\
0 \\
8
\end{bmatrix}$$

- ► The solution will be $x_1 = \frac{24}{11}$, $x_2 = \frac{16}{11}$, $\mu = 0$ and $\lambda = \frac{64}{11}$.
- ► $f(24/11, 16/11) = \frac{256}{11} \rightarrow \text{Global Minimum } \checkmark$

Here,

Here,

• $f(x_1, x_2) = 4x_1^2 + 2x_2^2$ is a convex function,

Here,

- $f(x_1, x_2) = 4x_1^2 + 2x_2^2$ is a convex function,
- $g(x_1, x_2) = 2x_1 + 4x_2 15$ is a convex function,

Here,

- $f(x_1, x_2) = 4x_1^2 + 2x_2^2$ is a convex function,
- $g(x_1, x_2) = 2x_1 + 4x_2 15$ is a convex function,
- ► $h(x_1, x_2) = 3x_1 + x_2 8$ is a linear function.

Examples

Example 2

Examine whether the following KKT conditions are met for the revenue optimization problem of a company trying to maximize its revenues (R(Q)) under a certain minimum profit constraint $(G_{\min} \leq R(Q) - C(Q))$.

$$\min f(Q) = -R(Q)$$

subject to $G_{\min} \le R(Q) - C(Q)$
 $Q \ge 0$

Examples

Example 2

Examine whether the following KKT conditions are met for the revenue optimization problem of a company trying to maximize its revenues (R(Q)) under a certain minimum profit constraint $(G_{\min} \leq R(Q) - C(Q))$.

$$\begin{aligned} & \text{min } f(Q) = -R(Q) \\ & \text{subject to } G_{\text{min}} \leq R(Q) - C(Q) \rightarrow g_1(Q) = G_{\text{min}} - R(Q) + C(Q) \leq 0, \\ & Q \geq 0 \qquad \qquad \rightarrow g_2(Q) = -Q \leq 0. \end{aligned}$$

Stationarity Condition:

$$-\frac{dR}{dQ} - \mu_1 \left[-\frac{dR}{dQ} + \frac{dC}{dQ} \right] - \mu_2(-1) = 0$$

Stationarity Condition:

$$\begin{aligned}
&-\frac{dR}{dQ} - \mu_1 \left[-\frac{dR}{dQ} + \frac{dC}{dQ} \right] - \mu_2 (-1) = 0 \\
&\to (\mu_1 - 1) \frac{dR}{dQ} - \mu_1 \frac{dC}{dQ} + \mu_2 = 0,
\end{aligned}$$

Stationarity Condition:

$$\begin{split} &-\frac{dR}{dQ} - \mu_1 \bigg[-\frac{dR}{dQ} + \frac{dC}{dQ} \bigg] - \mu_2 (-1) = 0 \\ &\rightarrow (\mu_1 - 1) \frac{dR}{dQ} - \mu_1 \frac{dC}{dQ} + \mu_2 = 0, \end{split}$$

Primal Feasibility Condition:

$$G_{\mathsf{min}} - R(Q) + C(Q) \leq 0, \ -Q \leq 0.$$

Stationarity Condition:

$$\begin{split} &-\frac{dR}{dQ} - \mu_1 \Big[-\frac{dR}{dQ} + \frac{dC}{dQ} \Big] - \mu_2 (-1) = 0 \\ &\rightarrow (\mu_1 - 1) \frac{dR}{dQ} - \mu_1 \frac{dC}{dQ} + \mu_2 = 0, \end{split}$$

Primal Feasibility Condition:

$$G_{\min} - R(Q) + C(Q) \le 0,$$

 $-Q \le 0.$

Dual Feasibility Condition:

$$\mu_1, \mu_2 \geq 0$$
,

Stationarity Condition:

$$\begin{split} &-\frac{dR}{dQ} - \mu_1 \bigg[-\frac{dR}{dQ} + \frac{dC}{dQ} \bigg] - \mu_2 (-1) = 0 \\ &\rightarrow (\mu_1 - 1) \frac{dR}{dQ} - \mu_1 \frac{dC}{dQ} + \mu_2 = 0, \end{split}$$

Primal Feasibility Condition:

$$G_{\min} - R(Q) + C(Q) \le 0,$$

 $-Q \le 0.$

- Dual Feasibility Condition: $\mu_1, \mu_2 > 0$,
- ► Complementary Slackness Condition: $\mu_1(G_{\min} R(Q) + C(Q)) = 0$, $\mu_2 Q = 0$.

Stationarity Condition:

$$\begin{split} &-\frac{dR}{dQ} - \mu_1 \bigg[-\frac{dR}{dQ} + \frac{dC}{dQ} \bigg] - \mu_2 (-1) = 0 \\ &\rightarrow (\mu_1 - 1) \frac{dR}{dQ} - \mu_1 \frac{dC}{dQ} + \mu_2 = 0, \end{split}$$

Primal Feasibility Condition:

$$G_{\min} - R(Q) + C(Q) \le 0,$$

 $-Q \le 0.$

- ▶ Dual Feasibility Condition: $\mu_1, \mu_2 > 0$,
- Complementary Slackness Condition:

$$\mu_1(G_{\min} - R(Q) + C(Q)) = 0,$$
 $\mu_2 Q = 0. \rightarrow \mu_2 = 0.$

Since $\mu_2 = 0$ is satisfied, we have

Since $\mu_2 = 0$ is satisfied, we have

$$\blacktriangleright \ \frac{dC}{dQ} = \frac{\mu_1 - 1}{\mu_1} \frac{dR}{dQ},$$

Since $\mu_2 = 0$ is satisfied, we have

- which indicates that marginal revenue of the company is greater than its marginal costs.