近世代数 (H) 第五周作业

涂嘉乐 PB23151786

2025年3月19日

Exercise 1 设 k 是域, K = k(t), t 是字母, $n \neq m$ 且 $n, m \geq 2$, 考虑域扩张

$$\theta_1: K \longrightarrow K$$

$$\frac{f(t)}{g(t)} \longmapsto \frac{f(t^n)}{g(t^n)}$$

$$\theta_2: K \longrightarrow K$$

$$\frac{f(t)}{g(t)} \longmapsto \frac{f(t^m)}{g(t^m)}$$

证明 θ_1, θ_2 不同构

Proof 不妨设 n>m, 否则考虑 $\phi\circ\theta_2=\theta_1$ 。假设存在域同构 $\phi:K\to K$,使得 $\phi\circ\theta_1=\theta_2$,则

$$\phi \circ \theta_1(t) = \theta_2(t) \Longrightarrow \phi(t^n) = t^m$$

假设 $\phi(t) = \frac{f(t)}{g(t)}$, 则 $\phi(t^n) = \frac{f^n(t)}{g^n(t)} = t^m$, 设 $\deg f = d_1, \deg g = d_2$, 则比较 $f^n(t) = t^m g^n(t)$ 的次数得

$$d_1 n = d_2 n + m \Longrightarrow (d_1 - d_2) n = m \Longrightarrow n \mid m$$

但这与 $n > m \ge 2$ 矛盾! 因此 θ_1, θ_2 不同构

Exercise 2 考虑域扩张 $k \hookrightarrow k(t)$, 证明: $\forall \frac{f(t)}{g(t)} \in k(t) \setminus k$ 均为 k 上的超越元

Proof 对 $\forall \frac{f(t)}{g(t)} \in k(t)$, 我们可不妨设它为即约表达,即 $\gcd(f,g) \sim 1$,假设 $\frac{f(t)}{g(t)}$ 为代数元,则 $\exists h(t) = a_n t^n + \dots + a_1 t + a_0 \in k[x], \text{s.t. } h\left(\frac{f(t)}{g(t)}\right) = 0$,因此

$$a_n \frac{f^n(t)}{g^n(t)} + \dots + a_1 \frac{f(t)}{g(t)} + a_0 = 0$$

两边同乘 $g^n(t)$, 则

$$a_n f^n(t) + a_{n-1} f^{n-1}(t) g(t) + \dots + a_1 f(t) g^{n-1}(t) + a_0 g^n(t) = 0$$

即

$$g(t)(a_{n-1}f^{n-1}(t) + \dots + a_1f(t)g^{n-2}(t) + a_0g^n(t)) = -a_nf^n(t)$$

由 k[t] 是 UFD 知,可取 g(t) 到的素因子 p(t) (可能是 g(t) 自身,但没关系),则 $p(t) \mid g(t) \mid f^n(t) \Longrightarrow p(t) \mid f(t)$, 所以 $p(t) \mid \gcd(f,g)$, 这与它们互素的假设矛盾! 因此 $\frac{f(t)}{g(t)}$ 是超越元

Exercise 3 计算 $\sqrt{2} + \sqrt{3}$ 和 $\sqrt{2} + \omega$ 在 Q 上的最小多项式

Solution $\sqrt{2}+\sqrt{3}$: 首先寻找 $\sqrt{2}+\sqrt{3}$ 的零化多项式,设 $\alpha=\sqrt{2}+\sqrt{3}$,则 $\alpha-\sqrt{2}=\sqrt{3}$,两边平方得

$$\alpha^2 - 2\sqrt{2}\alpha - 1 = 0$$

因此 $2\sqrt{2}\alpha = \alpha^2 - 1$, 两边再平方得

$$\alpha^4 - 10\alpha^2 + 1 = 0$$

因此 $f(x)=x^4-10x^2+1$ 是 $\sqrt{2}+\sqrt{3}$ 的一个零化多项式,下面证明它不可约,注意到 f(x) 在 $\mathbb C$ 上的四个根分别为

$$x_1 = \sqrt{2} + \sqrt{3}$$
, $x_2 = \sqrt{2} - \sqrt{3}$, $x_3 = \sqrt{3} - \sqrt{2}$, $x_4 = -\sqrt{2} - \sqrt{3}$

但是 $(x-x_i), i=1,2,3,4$ 均不在 $\mathbb{Q}[x]$ 中,且 $(x-x_i)(x-x_j), \forall 1 \leq i < j \leq 4$ 均不在 $\mathbb{Q}[x]$ 中,所以 f(x) 没有一次、二次因子,故 f 不可约(否则一定有一次、二次因子)

$$\sqrt{2} + \omega$$
: 设 $\beta = \sqrt{2} + \omega = \frac{-1 + \sqrt{3}i}{2} + \sqrt{2}$, 则 $2\beta - 2\sqrt{2} + 1 = \sqrt{3}i$, 两边平方得

$$4\beta^2 + 9 - 8\sqrt{2}\beta - 4\sqrt{2} + 4\beta = -3 \Longrightarrow \beta^2 + \beta + 3 = \sqrt{2}(2\beta + 1)$$

两边再平方得

$$\beta^4 + 2\beta^3 - \beta^2 - 2\beta + 7 = 0$$

因此 $f(x) = x^4 + 2x^3 - x^2 - 2x + 7 = 0$ 是它的一个零化多项式,它是本原多项式,所以只需证明它在 $\mathbb{Z}[x]$ 中不可约即可,首先 f(x) 若有有理根 $\frac{p}{q}$,则 $p \mid 7, q \mid 1$,但是经过验证 $f(\pm 1), f(\pm 7) \neq 0$,因此 f(x) 在 $\mathbb{Q}[x]$ 中无一次因子,故在 $\mathbb{Z}[x]$ 中无一次因子,假设在 $\mathbb{Z}[x]$ 中有分解

$$f(x) = (x^2 + ax + b)(x^2 + cx + d)$$

则对比系数得

$$\begin{cases} a+c=2\\ b+d+ac=-1\\ bc+ad=-2\\ bd=7 \end{cases}$$

由 bd = 7 知, 若 b = 1, d = 7, 则我们有

$$\begin{cases} a+c=2\\ 8+ac=-1\\ c+7a=-2 \end{cases}$$

三式不能同时满足; 若 b=-1,d=-7, 则我们有

$$\begin{cases} a+c = 2 \\ -8 + ac = -1 \\ -c - 7a = -2 \end{cases}$$

三式不能同时满足!

综上, f(x) 在 $\mathbb{Z}[x]$ 中不可约,进而 f(x) 在 $\mathbb{Q}[x]$ 中不可约,则 f(x) 确实是 $\sqrt{2}+\omega$ 的最小多项式