Az elsőrendű logika nyelvének szintaxisa. Változók kötött és szabad előfordulása. A nyelv interpretációja, változókiértékelés. Termek és formulák értéke interpretációban, változókiértékelés mellett. Törvény, ellentmondás, ekvivalencia, következmény. Normálformák, prenex formulák. Logikai kalkulus

Az elsőrendű logika nyelvének szintaxisa

Egy elsőrendű logikai nyelv ábécéje logikai és logikán kívüli szimbólumokat, továbbá elválasztójeleket tartalmaz.

A logikán kívüli szimbólumhalmaz megadható <Srt , Pr , Fn, Cnst> alakban, ahol

- 1. Srt nemüres halmaz, elemei fajtákat szimbolizálnak,
- 2. Pr nemüres halmaz, elemei predikátumszimbólumok,
- 3. az Fn halmaz elemei függvényszimbólumok,
- 4. Cnst pedig a konstansszimbólumok halmaza.

Az <Srt , Pr , Fn, Cnst> ábécé szignatúrája egy (v1, v2, v3) hármas, ahol

- 1. minden $P \in Pr$ predikátumszimbólumhoz v1 a predikátumszimbólum alakját, azaz a $(\pi 1, \pi 2, \dots, \pi k)$ fajtasorozatot,
- 2. minden $f \in Fn$ függvényszimbólumhoz v2 a függvényszimbólum alakját, azaz a ($\pi 1$, $\pi 2, \ldots, \pi k, \pi$) fajtasorozatot és
- 3. minden $c \in C$ nst konstansszimbólumhoz v3 a konstansszimbólum fajtáját, azaz (π) -t

rendel (k > 0 és π 1, π 2, . . . , π k, π \in Srt).

<u>Logikai jelek</u>

- a logikai összekötőjelek: ¬, ∧, ∨, ⊃
- a kvantorok: ∀, ∃
- a különböző fajtájú individuumváltozók.

Egy elsőrendű nyelv ábécéjében minden $\pi \in Srt$ fajtához szimbólumoknak megszámlálhatóan végtelen

$${V_1}^\pi$$
 , ${V_2}^\pi$, ...

rendszere tartozik, ezek a szimbólumok a π fajtájú változók. Elválasztójelek a zárójelek: () és a vessző: ,

<u>Változók kötött és szabad előfordulása</u>

- 1. A termek és az atomi formulák minden változójának minden előfordulása szabad.
- A ¬A formulában egy változó-előfordulás pontosan akkor kötött, ha ez a változóelőfordulás már A-ban is kötött.

- 3. Az $(A \land B)$, $(A \lor B)$, illetve az $(A \supset B)$ formulában egy változó- előfordulás kötött, ha ez az előfordulás már kötött abban a közvetlen részformulában is, amelyben ez az előfordulás szerepel.
- 4. A ∀xA, illetve a ∃xA formulában x minden előfordulása kötött. Az A formula előtt szereplő kvantor teszi kötötté (köti) x vala- mely előfordulását, ha ez az előfordulás A-ban még szabad volt. Egy az x-től különböző változó valamely előfordulása kötött, ha A-ban kötött.

A nyelv interpretációja, változókiértékelés

Egy I-vel jelölt

<Srt; Pr; Fn; Cnst>

függvénynégyes, ahol

- 1. az I_{Srt} : $\pi \to U\pi$ függvény megad minden egyes $\pi \in Srt$ fajtához egy $U\pi$ nemüres halmazt, a π fajtájú individuumok halmazát (a különböző fajtájú individuumok halmazainak uniója az interpretáció individuumtartománya vagy univerzuma),
- 2. az $I_{Pr}: P \to P^I$ függvény megad minden $(\pi 1, \pi 2, \dots, \pi k)$ alakú $P \in Pr$ predikátumszimbólumhoz egy $P^{-I}: U\pi 1 \times U\pi 2 \times \dots \times U\pi k \to \{i, h\}$ logikai függvényt (relációt),
- 3. az $orange_n$: $f \to {}^t$ függvény hozzárendel minden $(\pi 1, \pi 2, \dots, \pi k, \pi)$ alakú t Fn függvényszimbólumhoz egy f^{-1} : $U\pi 1 \times U\pi 2 \times \dots \times U\pi k \to U\pi$ matematikai függvényt (műveletet),
- 4. az I_{Cnst} : $c \to d$ függvény pedig minden π fajtájú $c \in Cnst$ konstansszimbólumhoz az $U\pi$ individuumtartománynak egy individuumát rendeli, azaz $c \in U\pi$.

Legyen az L elsőrendű logikai nyelvnek I egy interpretációja, az interpretáció univerzuma legyen U. Jelölje V a nyelv változóinak a halmazát. Egy olyan $\kappa: V \to U$ leképezést, ahol ha x π fajtájú változó, akkor $\kappa(x)$ U π -beli individuum, az I interpretáció egy változókiértékelésének nevezzük.

Az elsőrendű nyelv termjei:

- 1. Minden $\pi \in Srt$ fajtájú változó és konstans π fajtájú term.
- 2. Ha az $f \in F$ n függvényszimbólum $(\pi 1, \pi 2, \ldots, \pi k, \pi)$ alakú és t1, t2, . . . , tk rendre $\pi 1, \pi 2, \ldots, \pi k$ fajtájú term, akkor az $f(t1, t2, \ldots, tk)$ szó egy π fajtájú term.
- 3. Minden term az első és második szabály véges sokszori alkalmazásával áll elő

Az elsőrendű nyelv formulái:

- 1. Ha a $P \in P$ r predikátumszimbólum ($\pi 1, \pi 2, \ldots, \pi k, \pi$) alakú és t1, t2, . . . , tk rendre $\pi 1, \pi 2, \ldots, \pi k$ fajtájú term, akkor a $P(t1, t2, \ldots, tk)$ szó egy elsőrendű formula. Az így nyert formulákat atomi formuláknak nevezzük.
- 2. Ha A elsőrendű formula, akkor ¬A is az.
- 3. Ha A és B elsőrendű formulák és $\circ \in \{ \lor, \land, \supset \}$, akkor (A \circ B) is elsőrendű formula.
- 4. Ha A elsőrendű formula, Q kvantor és x tetszőleges változó, akkor a QxA is elsőrendű formula. Az így nyert formulákat kvantált formuláknak nevezzük.
- 5. Minden elsőrendű formula az előbbi szabályok véges sokszori alkalmazásával áll elő

változókiértékelés mellett

3.10. TERMEK ÉRTÉKE

Legyen az $\mathcal L$ nyelvnek $\mathcal I$ egy interpretációja és κ egy $\mathcal I$ -beli változókiértékelés. Az $\mathcal L$ nyelv egy π fajtájú t termjének értéke $\mathcal I$ -ben a κ változókiértékelés mellett az alábbi – $|t|^{\mathcal I,\kappa}$ -val jelölt – $\mathcal U_\pi$ -beli individuum:

- 1. ha $c \in Cnst \pi$ fajtájú konstansszimbólum, akkor $|c|^{\mathcal{I},\kappa}$ az \mathcal{U}_{π} -beli $c^{\mathcal{I}}$ individuum,
- 2. ha $x \pi$ fajtájú változó, akkor $|x|^{\mathcal{I},\kappa}$ az \mathcal{U}_{π} -beli $\kappa(x)$ individuum,
- 3. ha t_1,t_2,\ldots,t_k rendre π_1,π_2,\ldots,π_k fajtájú termek és ezek értékei a κ változókiértékelés mellett \mathcal{I} -ben rendre az $\mathcal{U}_{\pi 1}$ -beli $|t_1|^{\mathcal{I},\kappa}$, az $\mathcal{U}_{\pi 2}$ -beli $|t_2|^{\mathcal{I},\kappa},\ldots$ és az $\mathcal{U}_{\pi k}$ -beli $|t_k|^{\mathcal{I},\kappa}$ individuumok, akkor egy $(\pi_1,\pi_2,\ldots,\pi_k,\pi)$ alakú $f\in Fn$ függvényszimbólum esetén $|f(t_1,t_2,\ldots,t_k)|^{\mathcal{I},\kappa}$ az \mathcal{U}_{π} -beli $f^{\mathcal{I}}(|t_1|^{\mathcal{I},\kappa},|t_2|^{\mathcal{I},\kappa},\ldots,|t_k|^{\mathcal{I},\kappa})$ individuum.

3.11. FORMULÁK ÉRTÉKE

Legyen az $\mathcal L$ nyelvnek $\mathcal I$ egy interpretációja és κ egy $\mathcal I$ -beli változókiértékelés. Egy C formulához $\mathcal I$ -ben a κ változókiértékelés mellett az alábbi – $|C|^{\mathcal I,\kappa}$ -val jelölt – igazságértéket rendeljük:

$$\text{1. } |P(t_1,t_2,\ldots,t_k)|^{\mathcal{I},\kappa} \rightleftharpoons \begin{cases} i \text{ ha } P(|t_1|^{\mathcal{I},\kappa},|t_2|^{\mathcal{I},\kappa},\ldots,|t_k|^{\mathcal{I},\kappa}) = i, \\ h \text{ egy\'ebk\'ent.} \end{cases}$$

2.
$$|\neg A|^{\mathcal{I},\kappa} \rightleftharpoons \dot{\neg} |A|^{\mathcal{I},\kappa}$$

3.
$$|A \wedge B|^{\mathcal{I},\kappa} \rightleftharpoons |A|^{\mathcal{I},\kappa} \dot{\wedge} |B|^{\mathcal{I},\kappa}$$

4.
$$|A \vee B|^{\mathcal{I},\kappa} \rightleftharpoons |A|^{\mathcal{I},\kappa} \dot{\vee} |B|^{\mathcal{I},\kappa}$$

5.
$$|A \supset B|^{\mathcal{I},\kappa} \rightleftharpoons |A|^{\mathcal{I},\kappa} \supset |B|^{\mathcal{I},\kappa}$$

6.
$$|\forall xA|^{\mathcal{I},\kappa} \rightleftharpoons \begin{cases} i \text{ ha } |A|^{\mathcal{I},\kappa^*} = i \text{ } \kappa \text{ minden } \kappa^* \text{ } x\text{-variánsára,} \\ h \text{ egyébként.} \end{cases}$$

7.
$$|\exists xA|^{\mathcal{I},\kappa} \rightleftharpoons \begin{cases} i \text{ ha } |A|^{\mathcal{I},\kappa^\star} = i \; \kappa \text{ valamely } \kappa^* \; x\text{-variánsára,} \\ h \; \text{egyébként.} \end{cases}$$

Törvény, ellentmondás, ekvivalencia, következmény

3.5. LOGIKAI TÖRVÉNY

Az elsőrendű logikai nyelv egy A formulája **logikai törvény**, ha a nyelv minden $\mathcal I$ interpretációjában és $\mathcal I$ minden κ változókiértékelése mellett $|A|^{\mathcal I,\kappa}=i$. Jelölése: $\models A$.

A logikai ellentmondás (vagy logikai hamisság) ezzel szemben olyan séma, amely a paraméterek minden behelyettesítésére hamis állítást eredményez.

3.9. LOGIKAI EKVIVALENCIA

Legyenek A és B az $\mathcal L$ nyelv tetszőleges formulái. Azt mondjuk, hogy az A és a B elsőrendű formulák logikailag ekvivalensek, ha minden $\mathcal I$ interpretációban és κ változókiértékelés mellett $|A|^{\mathcal I,\kappa}=|B|^{\mathcal I,\kappa}$.

Jelölése: $A \sim B$.

A G formula logikai következménye az F1, . . . , Fn formuláknak, ha a változóknak az összes lehetséges módon értéket adva, minden olyan esetben, amikor F1, . . . , Fn mindegyike igaz, akkor G is igaz. Jelölés: F1, . . . , Fn |= G. F1, . . . , Fn a premisszák, G a konklúzió.

Normálformák, prenex formulák.

Konjunktív normálforma

- 1. egy elemi diszjunkció,
- 2. vagy egy konjunktív normálforma és egy elemi diszjunkció konjunkciója.

Diszjunktív normálforma

- 1. egy elemi konjunkció,
- 2. vagy egy diszjunktív normálforma és egy elemi konjunkció diszjunkciója.

Minden ítéletlogikai formulához konstruálható vele logikailag ekvivalens konjunktív és diszjunktív normálforma.

Egy $Q_1x_1Q_2x_2...Q_nx_nA$ $(n \ge 0)$ alakú formulát, ahol a A kvantormentes formula, **prenex alakú formulá**nak nevezünk.

Példa.

A $\forall x \forall y (P(x,y) \supset \neg Q(x))$, a $\exists x \forall y (P(x,y) \lor R(x,z))$, a $\neg P(x,x)$ formulák prenexformulák, viszont a $\forall x \forall y P(x,y) \supset \neg Q(x)$ formula nem prenexformula.

Lemma.

Egy elsőrendű logikai nyelv tetszőleges formulájához konstruálható vele logikailag ekvivalens prenex alakú formula.

A konstrukció lépései:

- 1. változó-tiszta alakra hozzuk a formulát;
- alkalmazzuk De Morgan kvantoros és az egyoldali kvantorkiemelésre vonatkozó logikai törvényeket

Logikai kalkulus

Logikai kalkuluson olyan adott nyelv formuláihoz tartozó formális rendszert, szabályrendszert értünk, amely pusztán szintaktikailag, szemantika nélkül ad meg egy következményrelációt. A logikai kalkulus tehát egy axiómarendszer, amely magában a logikai tautológiákat állítja elő, adott formulákat (premissza) ideiglenesen hozzávéve pedig más formulákra (konklúzió) lehet jutni (következtetni) vele.

Tehát például a klasszikus logika esetében, ha rendelkezünk egy alkalmas logikai kalkulussal, akkor anélkül tudunk számot adni a szokásos következmény, logikai igazság, ellentmondás és ekvivalencia, és általában a logikai konstansok fogalmáról, hogy az "igaz" és "hamis" szavak, azaz a szemantika segítségére szorulnánk.