Thématique 2 : Gestion de la production

Groupe 12.64

7 octobre 2015

Première partie

Bilan de matière

Dans cette partie nous calculerons pour toutes les étapes du procédé les bilans de matière. À base de ceux-ci nous déterminerons les débits de production d'ammoniac, d'alimentation d'air, ainsi que tous les débits intermédiares entres les unités opérationnelles. Nous étudierons aussi un cas de production d'ammoniac avec des paramètres donnés.

Nos paramètres ainsi que leurs valeurs pour le cas précis sont les suivants :

Paramètre	Valeur	Unité	Description
\dot{m}_{CH_4}	800	t/j	Débit massique d'alimentation de CH_4
O_2/CH_4	0.6	-	Rapport ${\rm ^{O_2\!/CH_4}}$ à l'entrée de l'ATR
$^{\mathrm{H_2O}}\!/\mathrm{CH_4}$	1.5	-	Rapport ${\rm ^{H_2O}\!/CH_4}$ à l'entrée de l'ATR
$T_{ m ATR}$	1200	K	Température de la zone reforming de l'ATR
$p_{ m ATR}$	50	bar	Pression d'opération de l'ATR

Table 1 – Paramètres influant le fonctionnement du procédé

Pour faciliter nos calculs nous considérons le symbole \dot{n} comme étant le nombre de Mmol (1 × 10⁶ mol) produit par jour.

1 Zone de combustion

Nous commencons par la zone de combustion où se produit la réaction chimique suivante :

$$\mathrm{CH_4} + 2\mathrm{O_2} \longrightarrow \mathrm{CO_2} + 2\mathrm{H_2O} \tag{1}$$

On considère la réaction comme étant complète avec un excès de CH₄.

	CH_4	$+ 2\mathrm{O}_2$	$\longrightarrow \mathrm{CO}_2$	$+ 2 \mathrm{H_2O}$
$\dot{n}_i [ext{Mmol/j}]$	$\dot{n}_{ ext{CH}_4}$	\dot{n}_{CO_2}	0	0
$\dot{n}_f [ext{Mmol/j}]$	$\dot{n}_{\mathrm{CH_4}} - \dot{n}_{\mathrm{CO_2}}$	0	\dot{n}_{CO_2}	$2\dot{n}_{\mathrm{CO}_{2}}$

2 Zone de reformage

Deux équations à deux inconnues ξ et γ :

$$K_1 = \frac{(\xi - \gamma)(3\xi + \gamma)^3}{(\dot{n}_{\text{CH}_4} + \dot{n}_{\text{H}_2\text{O}} + 2\xi - \gamma)^2} \cdot \frac{p_t^2}{p_0^2} \cdot \frac{1}{(\dot{n}_{\text{H}_2\text{O}} - \xi - \gamma)(\dot{n}_{\text{CH}_4} - \gamma)}$$
$$K_2 = \frac{(\dot{n}_{\text{CO}_2} + \gamma)(3\xi + \gamma)}{(\xi - \gamma)(\dot{n}_{\text{H}_2\text{O}} - \xi - \gamma)}$$