ELEKTROMAGNETSKA POLJA

1. laboratorijske vježbe – izlazni test – 2007./08.

- 1) Zračni pločasti kondenzator spojen je na izvor napona U. Ako kondenzatoru povećamo razmak između ploča, naboj na pločama kondenzatora će se:
 - A. povećati x
 - B. smanjiti
 - C. neće se promijeniti 🗶
 - D. Ne želim odgovoriti x

$$C = \varepsilon \frac{S}{d}$$

$$C = \frac{Q}{IJ}$$

izjednacimo:

$$\frac{Q}{U} = \varepsilon \frac{S}{d}$$

i gledamo ovisno o onome sto nam treba jer ovo drugo ostaje konstanta, znaci u ovom primjeru:

 $Q = \varepsilon \cdot S \cdot \frac{U}{d}$, odnosno, ako povecamo razmak, naboj ce se smanjiti

- 2) Ako je raspodjela naboja neovisna o vremenu za divergenciju strujnog polja vrijedi:
 - 🌣 a. Divergencija strujnog polja je veća od nule. 🗶
 - 6 b. Divergencija strujnog polja je manja od nule. 🗶

 - 6 d. Nema dovoljno podataka za odgovor na pitanje. 🗴
 - e. Ne želim odgovoriti 🗶
- 3) Prostorna gustoća naboja zadana je s: $\rho(x,y,z)=\epsilon_0(x-y+3z)$. Koliki je div **E** u točki (1,3,1)?
 - A.1
 ✓
 - © B.2 x
 - € C.3 x
 - @ D.4 X
 - € E.5 x
 - 6 F.6 x
 - G. Ne želim odgovoriti x

<u>formula</u>: $\rho = \varepsilon_0$ div **E**

4) Četiri točkasta naboja nalaze se na udaljenosti a od ishodišta prema slici. Za komponentu sile na pozitivni pokusni naboj u točki P u smjeru osi z koordinatnog sustava vrijedi:

5) U nekoj točki na površini vodiča nabijenog naboje plošne gustoće σ, postoji:

6) Četiri točkasta naboja nalaze se na udaljenosti a od ishodišta prema slici. Za električni potencijal u točki P vrijedi:

7) Ekvipotencijale nekog električnog polja prikazane su na slici. Zadano je d_1 =10 cm, d_2 =10 cm, d_3 =5 cm. Jakost električnog polja u Vm⁻¹ u točki C je:

Ovo se racuna po formuli $E = \frac{U}{d}$ [pise negdje među zadacima]

dakle, trazimo naboj tocke u odnosu na nulu, s tim da su sve na polovici puta između ekvipotencijala, pa ih je lako ocitati : A je na 75, B na 37.5, a c na 12.5 isto tako i udaljenost racunamo npr. za $d_A=d_1/2+d_2+d_3$ OPREZ! udaljenost je u cm

- 8) Dvoslojni pločasti pločasti kondenzator kojemu je granica izolacija paralelna pločama ispunjen je izolatorima koji imaju omjer (ϵ_1/ϵ_2) < 1. Za električno polje vrijedi:
 - A. Električno polje veće je u sredstvu 1 √
 - B. Električno polje veće je u sredstvu 2 👗
 - C. Električno polje je jednako u sredstvu 1 i sredstvu 2 🕺
 - D. Ništa od navedenog X
 - E. Ne želim odgovoriti 🕺

$$C = \varepsilon \frac{S}{d} \to \frac{Q}{U} = \varepsilon \frac{S}{d}, \ E = \frac{U}{d} \to \frac{Q \cdot d}{\varepsilon \cdot S} = E \cdot d \to E = \frac{Q}{\varepsilon \cdot S}$$

9) Na granici dva sredstva dielektricnosti ϵ_{r1} =2 i ϵ_{r2} =1 na kojoj se nalazi slobodni naboj plošne gustoće σ =2 ϵ_0 nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: E_{n1} =1, E_{t1} =3 (V/m). Okomita komponenta električnog polja u sredstvu 2 je:

ovo se rjesava pomocu uvjeta na granici...

kada se trazi tangencijalna komponenta, ona se jednostavno izjednaci jer da bi

vrijedilo
$$\vec{n} \times (\vec{E}_2 - \vec{E}_1 = 0)$$
 mora $|E_{2tang}| = |E_{1tang}|$

a kada se trazi normalna (okomita) komponenta, onda se racuna po:

$$\vec{n}\cdot(\vec{D}_2-\vec{D}_1)=\sigma$$
 , pa prezive samo normalne komponente od E:

$$\varepsilon_0 \cdot \left(\varepsilon_2 \vec{E}_{n2} - \varepsilon_1 \vec{E}_{n1} \right) = \sigma$$

i sad je sigma zadana preko epsilon nula pa se on pokrati i blablabla, lako se izracuna

10)Tri točkasta naboja iznosa Q₁=-Q, Q₂=-Q i Q₃=Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja **E**=E_x**a**_x+E_y**a**_y+E_z**a**_z u težištu trokuta (točka P) vrijedi:

11)Homogeno električno polje jakosti E usmjerno je prema slici. Nabijena čestica upada u područje homogenog polja početnom brzinom prema slici. Koja je moguća putanja čestice ako zanemarimo gravitaciju?

ako negativan naboj uletava u polje on se zakreće prema pozitivnom naboju (izvoru polja), tj. + i - se privlače (ako pozitivni uletava on se zakreće prema negativnom naboju odnosno prema ponoru polju)

12)Tri točkasta naboja iznosa Q₁=Q, Q₂=0.5Q i Q₃=-Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za potencijal u težištu trokuta (točka P) vrijedi:

samo se zbroje sva tri naboja i gleda se da li se dobije + - ili 0, jer su svi jednako udaljeni od tezista

13)U statičkom električnom polju vrijedi: rot **E**=

14)Dvoslojni pločasti pločasti kondenzator kojemu je granica izolacija paralelna pločama ispunjen je izolatorima koji imaju omjer $(\epsilon_1/\epsilon_2) > 1$. Za električno polje vrijedi:

0	A. Električno polje veće je u sredstvu 1 🗶
0	B. Električno polje veće je u sredstvu 2 🗸
0	C. Električno polje je jednako u sredstvu 1 i sredstvu 2 🗶
0	D. Ništa od navedenog 🗶
0	E. Ne želim odgovoriti 🗶

15)Na granici dva sredstva dielektricnosti ϵ_{r1} =3 i ϵ_{r2} =1 na kojoj se nalazi slobodni naboj plošne gustoće σ =4 ϵ_0 nailazi iz sredstva 1 električno polje koje ima okomitu i tangencijalnu komponentu: E_{n1} =2, E_{t1} =6 (V/m). Tanfencijalna komponenta električnog polja u sredstvu 2 je:

16)Tri točkasta naboja iznosa Q₁=Q, Q₂=-0.5Q i Q₃=-0.5Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja **E**=E_x**a**_x+E_y**a**_y+E_z**a**_z u težištu trokuta (točka P) vrijedi:

17)Tri točkasta naboja iznosa Q₁=Q, Q₂=-Q i Q₃=-Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja **E**=E_x**a**_x+E_y**a**_y+E_z**a**_z u težištu trokuta (točka P) vrijedi:

18)Za zatvorenu površinu S prema slici, za zadane naboje Q_1 =1nc, Q_2 =-3nc, Q_3 =2nc i Q_4 =2nC vrijedi:

naboji unutar površine se samo trebaju pozbrajati

19)Četiri točkasta naboja nalaze se na udaljenosti a od ishodišta prema slici. Za električni potencijal u točki P vrijedi:

20)Tri točkasta naboja iznosa Q_1 =-0.5Q, Q_2 =-0.5Q i Q_3 =Q nalaze se u vrhovima istostraničnog trokuta stranice a prema slici. Za komponente polja $\mathbf{E}=E_x\mathbf{a_x}+E_y\mathbf{a_y}+E_z\mathbf{a_z}$ u težištu trokuta (točka P) vrijedi:

21)Promjena potencijala u nekom prostoru mijenja se prema slici. Električno polje u točki D je:

dakle ima formula $\vec{E} = -\nabla \varphi$. ∇ nije nista drugo nego operator deriviranja, pa se zadatak zapravo svodi na to da se gleda kakva je derivacija u tockama A, B, C, D, E pritom pazeci na minus u gore navedenoj formuli; za tocku A pozitivan nagib, ali zbog minusa ide u smjeru -x osi, tocka B je maximum pa je derivacija nula, u C je nagib negativan ali zbog minusa ispred ide u +x smjeru, D je minimum pa je derivacija opet nula, E ima pozitivan nagib pa zbog minusa ide u -x smjeru....

22)U statičkom električnom polju vrijedi:

$\oint_{c} \vec{E} \cdot d\vec{l} =$		
Choose one answer.	0	A.0 🗸
		B. >0 🗶
		C. <0 💥
	(0)	D. Q 🗶
		EQ 🗶
	0	F. ovisi o c 🗶
		G. ništa od navedenog 🗶
		H. Ne želim odgovoriti 🗶