Architektura aplikacji "Tańsza Recepta"

Paweł Czajka, Maciej Kraiński, Jola Mozyrska, Marcin Mazurek 07.04.20

Podział projektu

"Tańsza Recepta" jest aplikacją webową napisaną w Pythonowym module Dash. Składają się na nią trzy części: baza danych, serwer aplikacji oraz front-end, obsługiwany przez przeglądarkę.

Baza danych

Wykorzystywana w projekcie baza danych korzystająca z PostgreSQL przechowuje informacje o refundowanych w Polsce lekach, w pojedynczej tabeli w następującym formacie:

Każdy wiersz tabeli "refunds" odpowiada wystąpieniu w jednym z oświadczeń informacji o refundacji leku na pewnym poziomie odpłatności. W bazie przechowywane są jedynie informacje o lekach które należą do podzbioru leków opisanego w wymaganiach funkcjonalnych aplikacji.

Kolumny tabeli refunds zawierają zaimportowane dane z oświadczeń publikowanych przez Ministerstwo Zdrowia, ze szczególnym uwzględnieniem:

- Kolumna description zawiera połączone dane z kolumny trzeciej i czwartej oświadczenia ministerstwa. Wartość ta będzie stanowiła opis leków w front-endzie aplikacji.
- Kolumny dose oraz form zawierają dane o odpowiednio dawce i postaci leku wyekstrahowane z trzeciej kolumny oryginalnego dokumentu. Postać leku zostanie

ponadto uproszczona do jednej z przyjętych form (tabletki lub czopki). Z kolei dawka (dose) podana będzie w miligramach (mg) lub jednostkach międzynarodowych (UI).

- Kolumna unit_price zawiera wysokość dopłaty świadczeniobiorcy pochodzącą z
 ostatniej kolumny oświadczenia ministerstwa podzieloną przez liczbę jednostek leku
 z czwartej kolumny tego oświadczenia.
- Pozostałe kolumny powstają poprzez nieskomplikowane zaimportowanie wartości z odpowiednich kolumn oświadczenia Ministerstwa Zdrowia.

Back-end

Jest zaimplementowany przy pomocy pakietu Dash. Aplikacja reprezentowana jest przy pomocy obiektu app wyprodukowanego przez fabrykę dash. Dash. Aplikacja składa sie z jednego endpointu, który służy zarówno do przyjmowania od użytkownika kodu EAN leku, jak i do wyświetlania uzyskanych wykresów. Serwer aplikacji odpowiada za komunikowanie się z front-endową warstwą oraz z bazą danych.

Front-end

Działająca w przeglądarce warstwa front-endowa aplikacji będzie również zaimplementowana przy pomocy pakietu Dash. Wykorzystamy do tego atrybut app.layout, do którego przypiszemy obiekty reprezentujące html-owe elementy, które zaprezentowane zostaną użytkownikowi przez przeglądarkę.

Wszystkie elementy prezentowane użytkownikowi zamknięte są w obiekcie dash_html_components.Div. Element ten ma następujące dzieci:

- dash_core_components.Dropdown, o id "dropdown", który stanowi input przyjmujący
 ean od użytkownika. Jest on zainicjowany eanami oraz skrótowymi opisami leków
 występujących w bazie danych. Użytkownik w trakcie wpisywania eanu zobaczy
 zawężającą się listę leków, których eany mają wpisany prefix.
- dash_html_components.Div o id "content", którego dziećmi są wykresy
 odpowiadające poziomom odpłatności znalezionych alternatyw leku. Wykresy te
 wyświetlane będą jeden pod drugim. Po pierwszym uruchomieniu strony element ten
 nie posiada dzieci.

Dziećmi elementu o id "content" są obiekty klasy dash_core_components.Graph. Elementy te zainicjowane są danymi o poziomie odpłatności świadczeniobiorcy na tabletkę lub czopek. Każdy wykres odpowiada jednemu poziomowi odpłatności leku. Wykresy wyświetlają listę znalezionych alternatyw leków w postaci legendy wykresu. Zgodnie z wymaganiami funkcyjnymi kliknięcie na element tej listy powoduje pojawienie się lub zniknięcie na wykresie punktów odpowiadających danej alternatywie leku. Akcje te są obsługiwane przez przeglądarkę i nie wymagają komunikacji z serwerem. Tytuł wykresu to poziom odpłatności, któremu odpowiada wykres.

Na początku rozdziału znajduje się makieta przedstawiająca wygląd uzyskanej strony po wyszukaniu alternatyw leku. Przed wyszukaniem wyświetlony jest jedynie pole do wyszukiwania.

Połączenia

W trakcie funkcjonowania aplikacji poszczególne części, opisane w poprzednim rozdziale tego dokumentu, komunikują się ze sobą w następujący sposób.

Serwer - Baza danych

Gdy serwer posiada wprowadzony przez użytkownika EAN leku (poniżej przedstawiony jako {user_ean}), może zadać następujące zapytanie:

Z odpowiedzi powyższego zapytania serwer jest w stanie uzyskać dane potrzebne, by umieścić punkty na wszystkich prezentowanych wykresach. Po stronie serwera znajduje się obowiązek posortowania przedstawionych w legendach wykresów alternatyw zgodnie z wymaganiami funkcjonalnymi.

Serwer - Front-end

Połączenie między przeglądarką a serwerem realizowane jest przy pomocy dashowego dekoratora oraz funkcji get_graphs:

@app.callback(Output('content', 'children'), [Input('dropdown', 'value')])
def get_graphs(ean):

Moduł dash uruchomi funkcję get_graphs na serwerze za każdym razem, gdy użytkownik wybierze ean leku przy pomocy elementu "dropdown" (będzie to wiązać się z komunikacją między przeglądarką użytkownika oraz serwerem).

We wnętrzu funkcji zachodzi komunikacja z bazą danych opisana w poprzednim rozdziale. Funkcja get_graphs zwraca obiekt reprezentujący nową postać html-owego elementu o id "contents". Wykresy znajdujące się w zwróconym elemencie zostały zainicjowane znalezionymi danymi. Moduł dash zajmuje się wysłaniem do przeglądarki komunikatu nakazującego jej ponowne wyrenderowanie zmienionych elementów.