5.1 MATHEMATICAL INDUCTION

THE PRINCIPLE OF MATHEMATICAL NDUCTION

Say we have a mathematical statement that depends on a natural number n. Suppose. The III

(1) The statement is true for $n = N_0$.

(2) Whenever the statement is true for n = k, it is true for n = k+1.

Then the Statement is true for all

n≥no.

EXAMPLE

PROPOSITION: For $n \ge 0$ $\left(\left| + \frac{1}{2} \right|^n > \left| + \frac{n}{2} \right|$

Using the assumption, we prove the proposition for n=k+1: $(|+\frac{1}{2}|^{k+1} = (|+\frac{1}{2}|(|+\frac{1}{2}|^{k})) > (|+\frac{1}{2}|(|+\frac{1}{2}|^{k}))$ $= |+\frac{1}{2}|(|+\frac{1}{2}|^{k})$ $= |+\frac{1}{2}|(|+\frac{1}{2}|^{k})$ $= |+\frac{1}{2}|(|+\frac{1}{2}|^{k})$ $= |+\frac{1}{2}|(|+\frac{1}{2}|^{k})$

W

By the principle of mathematical induction. The proposition is proven.

THE STRONG FORM OF THE PRINCIPAL OF MATHEMATICAL INDUCTION

Say we have a mathematical statement that depends on

a natural number n. Suppose that

① The statement is true for n=n.
② Whenever the statement is true for all natural numbers in the interval [n., k], then it is also true for n=k+1.

Then the statement is true for all n2no.

Note: It may be that more than one base case is needed! The number of base cases needed is dictated by the inductive argument.

EXAMPLE

PROPOSITION: Every natural number n 72 is a product of prime numbers.

PROOF: The base case n=2 is obviously true. Now, assume that every natural number n in [2,k-1] is a product of prime numbers. We must show that k is a product of prime numbers.

First, if k is prime, there is nothing to do. On the other hand, if k is not prime, it is equal to a product K=mn, where $2 \le m,n < k$. By our inductive hypothesis, both m and n are products of prime numbers. Therefore, K is itself a product of prime numbers.

EXAMPLE

PROOF: First we check the base cases n = 1 and n = 2:

Honly 1 way, and $F_2 = 1$.

How ways, and $F_3 = \lambda$.

We assume the proposition is true for 1,..., k-1, where $k \ge 3$. We must now prove the proposition for n = k:

There are two ways to break off the end: one vertical piece, or two 2×1 horizontal pieces. In the 1st case we get a 2×(k-1) bar ~> FK ways.

2nd case ~> 2×(k-2) bar ~> FK+1 ways
In total, FK-1+FK = FK+1 ways to break the 2×k bar.

By strong induction, the proposition is proven.

MORE EXAMPLES

Consider the Sequence $a_1=1$, $a_2=2$, $a_3=3$ $a_k=a_{k-1}+a_{k-2}+a_{k-3}$ for k>4.

Proposition: an <2" for all n > 0.

PROPOSITION: In a regular n-gon, one can draw at most n-3 diagonals that do not cross.

PROPOSITION: The vertices of a triangulated n-gon can always be colored by 3 colors so that no two adjacent vertices have the same color.

SECTION 5.2 RECURRENCE RELATIONS

RECURRENCE RELATIONS

A recurrence relation for a sequence $(a_n)_{n=0}^{\infty}$ is an equation expressing each term an in terms of its predecessors $a_1,...,a_{n-1}$.

If some ai are given specific values, those are called initial conditions.

Afirst example:

Like a differential eqn:

Solution:
$$f(x)=3x$$

EXAMPLES OF RECURRENCE RELATIONS

	Closed form	Recursive form
Exponentials	On=2 ⁿ	an= 2an-1, ao=1
Factorials	an=n!	an = nan-1, ao = 1
Arithmetic seq.	an=dn+b	an=an-1+d, ao=b an=ran-1, ao=c
Geometric seg.	an= crn	an=ran-1, ao=c
Leg. Money market account: Put in \$500, collect 7% annually $a_n = 500(1.07)^n$		

MORE EXAMPLES

Annuity: Deposit \$200/yr, get 7% interest/year an=1.07.an-1+200 closed form?

Fibonacci numbers: $a_0 = 0$, $a_1 = 1$ $a_n = a_{n-1} + a_{n-2}$ closed form?

Wilhelm Ackermann

Ackermann function: (i)
$$A(n,0) = A(n-1,1)$$
 $n = 1,2,...$
(ii) $A(n,k) = A(n-1, A(n,k-1))$ $n,k=1,2,...$
(iii) $A(0,k) = k+1$ $k=0,1,...$

Very hard to compute: A(0,0)=1, A(1,1)=3, A(2,2)=7, A(3,3)=61

MORE EXAMPLES

Annuity: Deposit \$200/yr, get 7% interest/year an=1.07.an-1 + 200 closed form?

Fibonacci numbers: ao = 0, a, = 1 an= an-1 + an-2 closed form?

Ackermann function: (i)
$$A(n,0) = A(n-1,1)$$
 $n = 1,2,...$
(ii) $A(n,k) = A(n-1, A(n,k-1))$ $n,k=1,2,...$
(iii) $A(0,k) = k+1$ $k=0,1,...$

Very hard to compute: A(0,0)=1, A(1,1)=3, A(2,2)=7, $A(3,3)=61_{2^{2}}$ universe has 10^{80} elementary over 10^{19199} digits $\longrightarrow A(4,4)=2^{2^{2}}-3$ particles

SOLVING RECURRENCE RELATIONS

A solution to a recurrence relation is an explicit formula for the sequence.

Example: Consider the arithmetic sequence $a_0 = -2$, $a_n = a_{n-1} + 5$.

Solution: $a_n = 5n - 2$

More generally: $a_0 = b$, $a_n = a_{n-1} + m$ Solution:

an=mn+b

Can prove by induction.

SOLVING RECURRENCE RELATIONS

Example: Consider

Solution:
$$a_n = 7(-3)^n$$

More generally: Consider

Solution:

A MORE INTERESTING EXAMPLE

Example: Solve the recurrence relation $Q_0=0$, $Q_0=0$,

Let's find the first few terms:

$$0 = 0$$
 $0 = 1$
 $0 = 1$
 $0 = 3$
 $0 = 7$
 $0 = 7$
 $0 = 15$
 $0 = 31$

Guess: On=2n-1

VERIFYING OUR GUESS

PROPOSITION: The solution to

$$a_0=0$$
, $a_n=2a_{n-1}+1$
1s $a_n=2^n-1$.

PROOF: We proceed by induction on n.

Base case n=0: Qo = 0 = 2°-1

Assume the proposition is true for n=k: $a_k = 2^k - 1$

$$Q_{K}=2^{K}-1$$

Using the assumption, we show the proposition is true for n= k+1:

$$Q_{K+1} = 2Q_{K}+1$$

$$= 2(2^{K}-1)+1$$

$$= 2^{K+1}-2+1$$

$$= 2^{K+1}-1$$

MORE COMPLICATED RECURSION RELATIONS

What about $a_0=1$, $a_n=2a_{n-1}+3$?

or a=1, a=2, a=2an-1+3an-2?