Fatoração

Professor: Fernando Tosini

Objetivos:

 Compreender o processo e a aplicação dos principais casos de fatoração;

O que é fatoração?

- Fatorar significa escrever uma expressão em forma de produto.

Onde é aplicada?

- É aplicada com muita frequência na simplificações de expressões, cálculo de raízes de algumas equações e no cálculo de limites.

Principais casos de Fatoração

- 1- Fator Comum em Evidência
- 2- Agrupamento
- 3- Diferença de Dois Quadrados
- 4- Trinômio Quadrado Perfeito
- 5- Trinômio do Segundo Grau
- 6- Diferença de Dois Cubos
- 7- Soma de Dois Cubos

I- Fator comum em evidência

$$a.x + a.y = a.(x + y)$$

$$a.x + a.y = a.(x + y)$$
"forma "forma fatorada"

Exemplos:

Fatore as seguintes expressões:

1)
$$4x^3 - 6x^2y = 2x^2 \cdot (2x - 3y)$$

2)
$$6a^3b^5 + 15a^2b^7c^3 = 3a^2b^5$$
. (2a + $5b^2c^3$)

3)
$$25a^5y^4 - 75a^4y^5 + 100a^3y^6 = 25a^3y^4 \cdot (a^2 - 3ay + 4y^2)$$

II- Agrupamento

Exemplos:

Fatore as seguintes expressões:

1)
$$2xy - 12x + 3by - 18b$$

= $2x(y-6) + 3b(y-6)$
= $(y-6)(2x+3b)$

2)
$$\underbrace{6x^2b + 42x^2 - y^2b - 7y^2}_{6x^2(b+7) - y^2(b+7)}$$

= $(b+7)(6x^2 - y^2)$

3)
$$a^{3}b + a^{2} + 5ab^{3} + 5b^{2}$$

= $a^{2}(ab + 1) + 5b^{2}(ab + 1)$
= $(ab + 1)(a^{2} + 5b^{2})$

4)
$$2xy - 4x + 3xy - 6x + 4xy - 8x$$

= $2x(y-2) + 3x(y-2) + 4x(y-2)$
= $(y-2)(2x + 3x + 4x)$
= $(y-2)9x$

1) Encontre todas as raízes da equação

$$x^5 - 3x^4 - 5x^3 + 15x^2 + 4x - 12 = 0$$
.

Solução: Agrupando os termos.

$$\underbrace{x^5 - 3x^4}_{} - \underbrace{-5x^3 + 15x^2}_{} + 4x - 12 = 0$$

$$x^{4}(x-3)-5x^{2}(x-3)+4(x-3)=0$$

$$(x-3)\cdot(x^4-5x^2+4)=0$$

Pela propriedade do produto nulo, temos:

$$x-3=0$$
 ou $x^4-5x^2+4=0$

$$x_1 = 3$$
 fazendo $x^2 = t$

$$\lim_{a} t^2 - \underbrace{5}_{b} t + \underbrace{4}_{c} = 0$$

Aplicando bhaskara, temos:

$$t = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1}$$

$$t = \frac{5 \pm \sqrt{9}}{2} = \frac{5 \pm 3}{2} \Rightarrow \frac{t_2 = 4}{t_3 = 1}$$

Como $x^2 = t$, então:

• Para
$$t_2 = 4 \implies x^2 = 4 \implies x_{2,3} = \pm 2$$

• Para
$$t_2 = 1 \implies x^2 = 1 \implies x_{4,5} = \pm 1$$

Logo,
$$S = \{\pm 1, \pm 2, 3\}$$

III- Diferença de dois quadrados

$$(a + b).(a - b) = a^2 - ab + ba - b^2$$

$$a^2 - b^2 = (a + b).(a - b)$$
"forma

parcelada"

fatorada"

Exemplos: Fatore as seguintes expressões:

1)
$$x^2 - 9 = (x + 3) \cdot (x - 3)$$

2)
$$4x^6 - 1 = (2x^3 + 1).(2x^3 - 1)$$

3)
$$a^{10} - b^4 = (a^5 + b^2).(a^5 - b^2)$$

4)
$$x^4 - 3 = (x^2 + \sqrt{3}) \cdot (x^2 + \sqrt{3}) = (x^2 + \sqrt{3}) \cdot (x + \sqrt[4]{3}) \cdot (x + \sqrt[4]{3})$$

IV-Trinômio quadrado perfeito

$$a^2 + 2.a.b + b^2 = (a + b)^2$$

"forma "forma parcelada" fatorada"

$$a^2 - 2.a.b + b^2 = (a - b)^2$$

"forma "forma parcelada" fatorada"

Exemplos: Fatore as seguintes expressões:

1)
$$x^2 - 6x + 9$$
 $\sqrt{x^2}$
 $\sqrt{9}$
 $\sqrt{9}$
 $\sqrt{9}$
 $\sqrt{6}x$

$$x^2 - 6x + 9 = (x - 3)^2$$
"forma "forma fatorada"

Exemplos:

Fatore as seguintes expressões:

a)
$$4a^2 + 12ab + 9b^2 = (2a+3b)^2$$

b)
$$16x^2 + 8x + 1 = (4x+1)^2$$

c)
$$x^4 - 2x^2y^2 + y^4 = (x^2 - y^2)^2$$

V-Trinômio do segundo grau

$$ax^{2} + bx + c = \begin{bmatrix} a \cdot (x - x_{1}) \cdot (x - x_{2}) \end{bmatrix}$$
"forma parcelada" "forma fatorada"

Exemplos: Fatore as seguintes expressões:

1)
$$5x^2 - 17.x + 6 = 5.(x - 3).(x - 2/5)$$

raízes: {3, 2/5}

2)
$$x^2 + 9x + 14 = 1 \cdot (x - 2) \cdot (x - 7)$$

raízes: $\{2, 7\}$
3) $x^2 - 10x + 25 = 1 \cdot (x - 5) \cdot (x - 5) = (x - 5)^2$
raízes: $\{5, 5\}$

VI- Diferença de dois cubos

$$a^3 - b^3 = (a - b).(a^2 + a.b + b^2)$$

VII- Soma de dois cubos

$$a^3 + b^3 = (a + b).(a^2 - a.b + b^2)$$

Exemplos: Fatore as seguintes expressões:

a)
$$x^3 - y^3 = (x - y) \cdot (x^2 + xy + y^2)$$

b)
$$x^6 + 64 = (x^2 + 4) \cdot (x^4 - 4x^2 + 16)$$

Resumindo:

FATOR CAMMW 16 Evidenciar o fator. comment se possivel.

DIFERENÇA DE QUADRA DES

a2-b2=(a+b).(a-b)

TRINÔMIO QUADRADO PERFEITE a2+2ab+b2 = (a+b) 12-2ab+b=(a-b)2

AGRUPAMENTO

Le Agrupon es termos e pridencian o fator

UN

Colleanse em 4 au 6termes.

Exercícios resolvidos

1) Simplifique as expressões:

a)
$$\frac{ax + ay}{ax + bx + ay + by}$$

Fatorando, temos:

•
$$ax + ay = a(x+y)$$
 • $ax + bx + ay + by$

•
$$ax + bx + ay + by$$

= $x \cdot (a+b) + y(a+b)$

$$= (a+b) \cdot (x+y)$$

$$\frac{ax + ay}{ax + bx + ay + by} = \frac{a \cdot (x + y)}{(a + b) \cdot (x + y)} = \frac{a}{a + b}$$

b)
$$\frac{x^4 - y^4}{x^3 - x^2 y + xy^2 - y^3}$$

Fatorando, temos:

$$x^{4} - y^{4} = (x^{2} + y^{2}) \cdot (x^{2} - y^{2}) \cdot \underbrace{x^{3} - x^{2}y + x y^{2} - y^{3}}_{= (x^{2} + y^{2})(x + y)(x - y)} = x^{2} \cdot (x - y) + y^{2}(x - y)$$

$$= (x - y) \cdot (x^{2} + y^{2})$$

$$\frac{x^{4}-y^{4}}{x^{3}-x^{2}y+xy^{2}-y^{3}}=\frac{(x^{2}+y^{2})\cdot(x+y)\cdot(x-y)}{(x-y)\cdot(x^{2}+y^{2})}=(x+y)$$

2) Se $p^3 + m^3 = 72$ e p + m = 6, Calcule o valor de pm?

Soluçio: (emo
$$p^3+m^3=72$$
 e $p+m=6$

Fatoranio ($p+m$)·(p^2-pm+m^2)=72 $p^2+2pm+m^2=36$

($p+m$)·(p^2+m^2-pm)=72 $p^2+m^2=36-2pm$
6 ·($36-2pm-pm$)=72

 $36-3pm=72/6$
 $36-3pm=12$ $pm=8$

Exercícios

1) Fatore:

(a)
$$2x+2$$
 (b) x^2-1 (c) ax^3+bx^2+ax+b (d) $3a+6ab$ (e) $xyz+7z$

(f)
$$xyz + abc$$
 (g) $3a + 9$ (h) $x^2 - 25$ (i) $2x^3 + 3x^2 + 4x + 6$

(j)
$$x^2 + 6x + 9$$
 (k) $x^4 - 1$ (l) $4x^2 - 4x + 1$ (m) $7x + 14x^2$

(n)
$$2x^2 - 5x^2$$
 (o) $3x^2ay + 2ax + 3xyb + 2b$ (p) $a^2 + ab - a$

(q)
$$x^2 - 16$$
 (r) $x^2 - 2x + 1$ (s) $a^3 - 3a^2 - 4a + 12$

(t)
$$12xyz + 14xyde + 6yz$$
 (u) $9x^2 + 12x + 4$ (v) $a^2 + ab$

(w)
$$x^2 - 6x + 9$$
 (x) $x^3 + 3x^2y + 3xy^2 + y^3$ (y) $a^2b^2 - 6ab^2 + 9b^2$

(z)
$$x^3 + 3x^2y + 3xy^2 + y^3$$
 α $(z) x^3 - y^3$ β $(z) x^6 + 729$

Respostas:

(a)
$$2 \cdot (x+1)$$
 (b) $(x+1) \cdot (x-1)$ (c) $(ax+b) \cdot (x^2+1)$

(d)
$$3a \cdot (1+6b)$$
 (e) $z \cdot (xy+7)$ (f) Não há como fatorar

(g)
$$3 \cdot (a+3)$$
 (h) $(x+5) \cdot (x-5)$ (i) $(2x+3) \cdot (x^2+2)$

(j)
$$(x+3)^2$$
 (k) $(x^2+1)\cdot(x^2-1)$ (l) $(2x-1)^2$ (m) $7x\cdot(1+2x)$

(n)
$$-3x^2$$
 (o) $(ax+b)\cdot(3xy+2)$ (p) Não há como fatorar

(q)
$$(x+4) \cdot (x-4)$$
 (r) $(x-1)^2$ (s) $(a^2-4) \cdot (a-3)$

(t)
$$2y \cdot (6xz + 7xde + 3z)$$
 (u) $(3x + 2)^2$ (v) $a \cdot (a + b)$

(w)
$$(x-3)^2$$
 (x) $(x+y)^2$ (y) $(ab-3b)^2$ (z) $(x+y)^3$

$$\alpha$$
) $(x-y)(x^2+xy+y^2)$ β) $(x^2+9)(x^4-9x^2+81)$

2) Simplifique as expressões:

a)
$$\frac{x^2 - 8x + 16}{x^2 - 16}$$

b)
$$\frac{a^3 + a^2 - a - 1}{a^3 - a^2 - a + 1}$$

c)
$$\frac{x^3 - 8}{x^2 + 2x + 4}$$

d)
$$\frac{x^3 + 2x^2 + x}{x^3 + x^2 - x - 1}$$

Respostas

$$\overline{x+4}$$

$$\frac{a+1}{a-1}$$

$$x-2$$

$$\frac{x}{x-1}$$

3) Fatore as equações e determine suas raízes no universo dos reais.

a)
$$x^3 + 4x^2 + 3x = 0$$

b)
$$x^5 + 9x^3 - x^2 - 9 = 0$$

c)
$$(3x^2-11)\cdot(2x-1)-(2x-1)=0$$

$$S = \{0, -1, -3\}$$

$$S = \{1\}$$

$$S = \{1/2, \pm 2\}$$

4) Fatore as equações e determine suas raízes no universo dos complexos

a)
$$x^3 + 64 = 0$$

b)
$$x^4 - 16 = 0$$

$$x^4 + 4x^3 - 8x^2 - 32 = 0$$

Respostas

$$S = \{-4, \ 2 \pm 2\sqrt{3}\}$$

$$S = \{\pm 2, \pm 2i\}$$

$$S = \{-4, 2, -1 \pm i\}$$

