UNIVERSIDAD DE GRANADA

DEPARTAMENTO DE MATEMÁTICA APLICADA - GRADO EN MATEMÁTICAS Y GRADO EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS

ECUACIONES DIFERENCIALES I

CONVOCATORIA DE FEBRERO. 1 de febrero de 2016

(SÓLO SEGUNDA PARTE)

El número entre corchetes es la puntuación máxima de cada ejercicio.

[6] Ejercicio 1.- Resuelve las siguientes cuestiones:

a) Calcula la solución del P.V.I.

$$\begin{cases} x'' - 2x' + 2x = \cos t - \sin t, \\ x(0) = x'(0) = 0. \end{cases}$$

- b) Sean $\varphi_1(t)$ y $\varphi_2(t)$ dos soluciones de la ecuación $x'' + a_1(t)x' + a_2(t)x = 0$, con $a_1, a_2 \in C(I)$ siendo I un intervalo abierto de \mathbb{R} . Definimos $w(t) := W(\varphi_1, \varphi_2)(t)$ su determinante Wronskiano. Demuestra que w(t) es una solución de la ecuación $w' + a_1(t)w = 0$ y, como consecuencia, o bien $w(t) \equiv 0$ ó $w(t) \neq 0$, para todo $t \in I$.
- c) Estudia la existencia y el número de soluciones 2π -periódicas de la ecuación $x'' + x = \cos kt$, con $k \in \mathbb{Z}$.
- d) Estudia la existencia y el número de soluciones π -periódicas de la ecuación $x'' + x = \cos kt$, con $k \in \mathbb{Z}$.

[4] Ejercicio 2.-

- a) Sean $p \in C^1[a, b]$, p(t) > 0, $t \in [a, b]$ y $q_i \in C[a, b]$, i = 1, 2, con $q_1(t) < q_2(t)$, $t \in [a, b]$. Para i = 1, 2 denotamos por φ_i una solución de la ecuación $(p(t)x')' + q_i(t)x = 0$. Demuestra que si $a \le t_1 < t_2 \le b$ son tales que $\varphi_1(t_1) = \varphi_1(t_2) = 0$, entonces existe $t_3 \in (t_1, t_2)$ con $\varphi_2(t_3) = 0$.
- b) Demuestra que toda solución de la ecuación x'' + x' + tx = 0 se anula infinitas veces en $(1, +\infty)$.
- c) ¿Qué se puede afirmar sobre el número de ceros de las soluciones de la ecuación x'' + x' tx = 0 en $(1, +\infty)$?