09/015002

10

15

25

30

35

TITLE

AAT DIS

AZOLO TRIAZINES AND PYRIMIDINES

This is a continual sing 28, 1994?

After 1992 FIELD OF THE INVENTION

This invention relates a treatment of psychiatric disorders and neurological diseases including major depression, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and feeding disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress, by administration of certain [1,5-a]-pyrazolo-1,3,5-triazines, [1,5-a]-1,2,3-triazolo-1,3,5-triazines, [1,5-a]-pyrazolo-pyrimidines and [1,5-a]-1,2,3-triazolo-pyrimidines.

20 BACKGROUND OF THE INVENTION

Corticotropin releasing factor (herein referred to as CRF), a 41 amino acid peptide, is the primary physiological regulator of proopiomelanocortin (POMC) derived peptide secretion from the anterior pituitary gland [J. Rivier et al., Proc. Nat. Acad. Sci. (USA) 80:4851 (1983); W. Vale et al., Science 213:1394 (1981)]. In addition to its endocrine role at the pituitary gland, immunohistochemical localization of CRF has demonstrated that the hormone has a broad extrahypothalamic distribution in the central nervous system and produces a wide spectrum of autonomic, electrophysiological and behavioral effects consistent with a neurotransmitter or neuromodulator role in brain [W. Vale et al., Rec. Prog. Horm. Res. 39:245 (1983); G.F. Koob, Persp. Behav. Med. 2:39 (1985); E.B. De Souza et al., J. Neurosci. 5:3189 (1985)].

10

15

There is also evidence that CRF plays a significant role in integrating the response of the immune system to physiological, psychological, and immunological stressors [J.E. Blalock, *Physiological Reviews* 69:1 (1989); J.E. Morley, *Life Sci.* 41:527 (1987)].

Clinical data provide evidence that CRF has a role in psychiatric disorders and neurological diseases including depression, anxiety-related disorders and feeding disorders. A role for CRF has also been postulated in the etiology and pathophysiology of Alzheimer's disease, Parkinson's disease, Huntington's disease, progressive supranuclear palsy and amyotrophic lateral sclerosis as they relate to the dysfunction of CRF neurons in the central nervous system [for review see E.B. De Souza, Hosp. Practice 23:59 (1988)].

In affective disorder, or major depression, the concentration of CRF is significantly increased in the cerebral spinal fluid (CSF) of drug-free individuals 20 [C.B. Nemeroff et al., Science 226:1342 (1984); C.M. Banki et al., Am. J. Psychiatry 144:873 (1987); R.D. France et al., Biol. Psychiatry 28:86 (1988); M. Arato et al., Biol Psychiatry 25:355 (1989)]. Furthermore, the density of CRF receptors is 25 significantly decreased in the frontal cortex of suicide victims, consistent with a hypersecretion of CRF [C.B. Nemeroff et al., Arch. Gen. Psychiatry 45:577 (1988)]. In addition, there is a blunted adrenocorticotropin (ACTH) response to CRF (i.v. 30 administered) observed in depressed patients [P.W. Gold et al., Am J. Psychiatry 141:619 (1984); F. Holsboer et al., Psychoneuroendocrinology 9:147 (1984); P.W. Gold et al., New Eng. J. Med. 314:1129 (1986)]. Preclinical studies in rats and non-human 35 primates provide additional support for the hypothesis that hypersecretion of CRF may be involved in the

symptoms seen in human depression [R.M. Sapolsky, Arch. Gen. Psychiatry 46:1047 (1989)]. There is preliminary evidence that tricyclic antidepressants can alter CRF levels and thus modulate the numbers of CRF receptors in brain [Grigoriadis et al., Neuropsychopharmacology 2:53 (1989)].

Neuropsychopharmacology 2:53 (1989)]. There has also been a role postulated for CRF in the etiology of anxiety-related disorders. produces anxiogenic effects in animals and 10 interactions between benzodiazepine / nonbenzodiazepine anxiolytics and CRF have been demonstrated in a variety of behavioral anxiety models [D.R. Britton et al., Life Sci. 31:363 (1982); C.W. Berridge and A.J. Dunn Regul. Peptides 16:83 (1986)]. Preliminary studies using the putative CRF receptor 15 antagonist a-helical ovine CRF (9-41) in a variety of behavioral paradigms demonstrate that the antagonist produces "anxiolytic-like" effects that are qualitatively similar to the benzodiazepines [C.W. 20 Berridge and A.J. Dunn Horm. Behav. 21:393 (1987), Brain Research Reviews 15:71 (1990)]. Neurochemical, endocrine and receptor binding studies have all demonstrated interactions between CRF and benzodiazepine anxiolytics providing further evidence 25 for the involvement of CRF in these disorders. Chlordiazepoxide attenuates the "anxiogenic" effects of CRF in both the conflict test [K.T. Britton et al., Psychopharmacology 86:170 (1985); K.T. Britton et

Psychopharmacology 86:170 (1985); K.T. Britton et al., Psychopharmacology 94:306 (1988)] and in the acoustic startle test [N.R. Swerdlow et al., Psychopharmacology 88:147 (1986)] in rats. The benzodiazepine receptor antagonist (Ro15-1788), which was without behavioral activity alone in the operant conflict test, reversed the effects of CRF in a dose-

dependent manner while the benzodiazepine inverse

10

20

agonist (FG7142) enhanced the actions of CRF [K.T. Britton et al., Psychopharmacology 94:306 (1988)].

The mechanisms and sites of action through which the standard anxiolytics and antidepressants produce their therapeutic effects remain to be elucidated. It has been hypothesized however, that they are involved in the suppression of the CRF hypersecretion that is observed in these disorders. Of particular interest is that preliminary studies examining the effects of a CRF receptor antagonist (α - helical CRF9-41) in a variety of behavioral paradigms have demonstrated that the CRF antagonist produces "anxiolytic-like" effects qualitatively similar to the benzodiazepines [for review see G.F. Koob and K.T. Britton, In: Corticotropin-Releasing Factor: Basic and Clinical

15 Corticotropin-Releasing Factor: Basic and Clinical Studies of a Neuropeptide, E.B. De Souza and C.B. Nemeroff eds., CRC Press p221 (1990)].

Several publications describe corticotropin releasing factor antagonist compounds and their use to treat psychiatric disorders and neurological diseases. Examples of such publications include DuPont Merck PCT application US94/11050 , Pfizer WO 95/33750, Pfizer WO 95/34563, Pfizer WO 95/33727 and Pfizer EP 0778 277 A1.

Insofar as is known, [1,5-a]-pyrazolo1,3,5-triazines, [1,5-a]-1,2,3-triazolo-1,3,5triazines, [1,5-a]-pyrazolo-pyrimidines and [1,5-a]1,2,3-triazolo-pyrimidines, have not been previously
reported as corticotropin releasing factor antagonist
compounds useful in the treatment of psychiatric
disorders and neurological diseases. However, there
have been publications which teach some of these
compounds for other uses.

For instance, EP 0 269 859 (Ostuka, 1988) discloses pyrazolotriazine compounds of the formula

$$\mathbb{R}^2$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

where R^1 is OH or alkanoyl, R^2 is H, OH, or SH, and R^3 is an unsaturated heterocyclic group, naphthyl or substituted phenyl, and states that the compounds have xanthine oxidase inhibitory activity and are useful for treatment of gout.

EP 0 594 149 (Ostuka, 1994) discloses

10 pyrazolotriazine and pyrazolopyrimidine compounds of the formula

T0061

where A is CH or N, R^0 and R^3 are H or alkyl, and R^1 and R^2 are H, alkyl, alkoxyl, alkylthio, nitro, etc., and states that the compounds inhibit androgen and are useful in treatment of benign prostatic hypertrophy and prostatic carcinoma.

20

US 3,910,907 (ICI, 1975) discloses pyrazolotriazines of the formula:

T0070

$$\mathbb{R}^1$$
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}

where R1 is CH₃, C₂H₅ or C₆H₅, X is H, C₆H₅, m-CH₃C₆H₄, CN, COOEt, Cl, I or Br, Y is H, C₆H₅, o-CH₃C₆H₄, or p-CH₃C₆H₄, and Z is OH, H, CH₃, C₂H₅, C₆H₅, n-C₃H₇, i-C₃H₇, SH, SCH₃, NHC₄H₉, or N(C₂H₅)₂, and states that the compounds are c-AMP phosphodiesterase inhibitors useful as bronchodilators.

US 3,995,039 discloses pyrazolotriazines of the formula:

T0071

$$\mathbb{R}^{1}$$
 \mathbb{N}^{1}
 \mathbb{N}^{1}
 \mathbb{N}^{1}
 \mathbb{N}^{1}
 \mathbb{N}^{1}

- where R^1 is H or alkyl, R^2 is H or alkyl, R^3 is H, alkyl, alkanoyl, carbamoyl, or lower alkylcarbamoyl, and R is pyridyl, pyrimidinyl, or pyrazinyl, and states that the compounds are useful as bronchodilators.
- 20 US 5,137,887 discloses pyrazolotriazines of the formula

TOORO

where R is lower alkoxy, and teaches that the compounds are xanthine oxidase inhibitors and are useful for treatment of gout.

US 4,892,576 discloses pyrazolotriazines of the formula

T0081

5

10

15

where X is O or S, Ar is a phenyl, naphthyl, pyridyl or thienyl group, R_6 - R_8 are H, alkyl, etc., and R_9 is H, alkyl, phenyl, etc. The patent states that the compounds are useful as herbicides and plant growth regulants.

US 5,484,760 and WO 92/10098 discloses herbicidal compositions containing, among other things, a herbicidal compound of the formula

$$R_1$$
 R_2 R

where A can be N, B can be CR_3 , R_3 can be phenyl or substituted phenyl, etc., R is $-N(R_4)\,SO_2R_5$ or $-SO_2N(R_6)\,R_7$ and R_1 and R_2 can be taken together to form

10001

where X, Y and Z are H, alkyl, acyl, etc. and D is O or $10\,$ S.

US 3,910,907 and Senga et al., J. Med. Chem., 1982, 25, 243-249, disclose triazolotriazines cAMP phosphodiesterase inhibitors of the formula

15

70002

where Z is H, OH, CH₃, C₂H₅, C₆H₅, n-C₃H₇, iso-C₃H₇, SH, SCH₃, NH(n-C₄H₉), or N(C₂H₅)₂, R is H or CH₃, and R₁ is CH₃ or C₂H₅. The reference lists eight therapeutic areas where inhibitors of cAMP phosphodiesterase could have utility: asthma, diabetes mellitus, female fertility control, male infertility, psoriasis, thrombosis, anxiety, and hypertension.

W095/35298 (Otsuka, 1995) discloses pyrazolopyrimidines and states that they are useful as analgesics. The compounds are represented by the formula

5

$$R^{6}$$
 N
 N
 N
 R^{2}
 R^{3}
 R^{4}

TOPOO

where Q is carbonyl or sulfonyl, n is 0 or 1, A is a single bond, alkylene or alkenylene, R¹ is H, alkyl, etc., R² is naphthyl, cycloalkyl, heteroaryl, substituted phenyl or phenoxy, R³ is H, alkyl or phenyl, R⁴ is H, alkyl, alkoxycarbonyl, phenylalkyl, optionally phenylthio-substituted phenyl, or halogen, R⁵ and R⁶ are H or alkyl.

15

10

EP 0 591 528 (Otsuka,1991) discloses antiinflammatory use of pyrazolopyrimidines represented by the formula

TOIOI

$$R_1$$
 R_2
 R_3
 R_4

20

where R_1 , R_2 , R_3 and R_4 are H, carboxyl, alkoxycarbonyl, optionally substituted alkyl, cycloalkyl, or phenyl, R_5

is SR_6 or NR_7R_8 , R_6 is pyridyl or optionally substituted phenyl, and R_7 and R_8 are H or optionally substituted phenyl.

5 Springer et al, J. Med. Chem., 1976, vol. 19, no. 2, 291-296 and Springer U.S. patents 4021,556 and 3,920,652 disclose pyrazolopyrimidines of the formula

70110

10

where R can be phenyl, substituted phenyl or pyridyl, and their use to treat gout, based on their ability to inhibit xanthine oxidase.

15

Joshi et al., J. Prakt. Chemie, 321, 2, 1979, 341-344, discloses compounds of the formula

MOT

$$R^2$$
 N
 C_6H_5

where R^1 is CF_3 , C_2F_5 , or C_6H_4F , and R^2 is CH_3 , C_2H_5 , CF_3 , or C_6H_4F .

Maquestiau et al., Bull. Soc. Belg., vol.101, no. 2, 1992, pages 131-136 discloses a pyrazolo[1,5-a]pyrimidine of the formula

70/20

он С₆H₅

5

Ibrahim et al., Arch. Pharm. (weinheim) 320, 487-491 (1987) discloses pyrazolo[1,5-a]pyrimidines of the formula

10

$$CH_3$$
 N
 R
 CH_3
 R

10121

where R is NH2 or OH and Ar is 4-phenyl-3-cyano-2-aminopyrid-2-yl.

15

Other references which disclose azolopyrimidines inclued EP 0 511 528 (Otsuka, 1992), US 4,997,940 (Dow, 1991), EP 0 374 448 (Nissan, 1990), US 4,621,556 (ICN,1997), EP 0 531 901 (Fujisawa, 1993), US 4,567,263 (BASF, 1986), EP 0 662 477 (Isagro, 1995), DE 4 243 279 (Bayer, 1994), US 5,397,774 (Upjohn, 1995), EP 0 521 622 (Upjohn, 1993), WO 94/109017 (Upjohn, 1994), J. Med. Chem., 24, 610-613 (1981), and J. Het. Chem., 22, 601 (1985).

25

SUMMARY OF THE INVENTION

In accordance with one aspect, the present invention provides novel compounds, pharmaceutical compositions and methods which may be used in the treatment of affective disorder, anxiety, depression, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal disease, 10 anorexia nervosa or other feeding disorder, drug or alcohol withdrawal symptoms, drug addiction, inflammatory disorder, fertility problems, disorders, the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, or a disorder 15 selected from inflammatory disorders such as rheumatoid arthritis and osteoarthritis, pain, asthma, psoriasis and allergies; generalized anxiety disorder; panic, phobias, obsessive-compulsive disorder; post-20 traumatic stress disorder; sleep disorders induced by stress; pain perception such as fibromyalgia; mood disorders such as depression, including major depression, single episode depression, recurrent depression, child abuse induced depression, and 25 postpartum depression; dysthemia; bipolar disorders; cyclothymia; fatigue syndrome; stress-induced headache; cancer, human immunodeficiency virus (HIV) infections; neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and 30 Huntington's disease; gastrointestinal diseases such as ulcers, irritable bowel syndrome, Crohn's disease, spastic colon, diarrhea, and post operative ilius and colonic hypersensitivity associated by psychopathological disturbances or stress; eating disorders such as anorexia and bulimia nervosa; 35

hemorrhagic stress; stress-induced psychotic episodes;

30

euthyroid sick syndrome; syndrome of inappropriate antidiarrhetic hormone (ADH); obesity; infertility; head traumas; spinal cord trauma; ischemic neuronal damage (e.g., cerebral ischemia such as cerebral hippocampal ischemia); excitotoxic neuronal damage; epilepsy; cardiovascular and hear related disorders including hypertension, tachycardia and congestive heart failure; stroke; immune dysfunctions including stress induced immune dysfunctions (e.g., stress 10 induced fevers, porcine stress syndrome, bovine shipping fever, equine paroxysmal fibrillation, and dysfunctions induced by confinement in chickens, sheering stress in sheep or human-animal interaction related stress in dogs); muscular spasms; urinary 15 incontinence; senile dementia of the Alzheimer's type; multiinfarct dementia; amyotrophic lateral sclerosis; chemical dependencies and addictions (e.g., dependencies on alcohol, cocaine, heroin, benzodiazepines, or other drugs); drug and alcohol 20 withdrawal symptoms; osteoporosis; psychosocial dwarfism and hypoglycemia in a mammal.

The present invention provides novel compounds which bind to corticotropin releasing factor receptors, thereby altering the anxiogenic effects of CRF secretion. The compounds of the present invention are useful for the treatment of psychiatric disorders and neurological diseases, anxiety-related disorders, post-traumatic stress disorder, supranuclear palsy and feeding disorders as well as treatment of immunological, cardiovascular or heart-related diseases and colonic hypersensitivity associated with psychopathological disturbance and stress in a mammal.

According to another aspect, the present invention provides novel compounds of Formulae (1) and

15

(2) (described below) which are useful as antagonists of the corticotropin releasing factor. The compounds of the present invention exhibit activity as corticotropin releasing factor antagonists and appear to suppress CRF hypersecretion. The present invention also includes pharmaceutical compositions containing such compounds of Formulae (1) and (2), and methods of using such compounds for the suppression of CRF hypersecretion, and/or for the treatment of anxiogenic disorders.

According to yet another aspect of the invention, the compounds provided by this invention (and especially labelled compounds of this invention) are also useful as standards and reagents in determining the ability of a potential pharmaceutical to bind to the CRF receptor.

20 DETAILED DESCRIPTION OF INVENTION

facilitated by CRF, in mammals comprising

The present invention comprises a method of treating affective disorder, anxiety, depression, headache, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune 25 suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency 30 virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia or a disorder the treatment of which can be effected or facilitated by antagonizing CRF, 35 including but not limited to disorders induced or

5

10

administering to the mammal a therapeutically effective amount of a compound of Formulae (1) or (2):

and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof, wherein:

A is N or CR;

Z is N or CR^2 ;

Ar is selected from phenyl, naphthyl, pyridyl, pyrimidinyl, triazinyl, furanyl, thienyl, benzothienyl, benzofuranyl, 2,3-dihydrobenzothienyl, indanyl, 1,2-benzopyranyl, 3,4-dihydro-1,2-benzopyranyl, tetralinyl, each Ar optionally substituted with 1 to 5 R⁴ groups and each Ar is attached to an unsaturated carbon atom;

R is independently selected at each occurrence from H, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C4-C7 cycloalkylalkyl, halo, CN, C1-C4 haloalkyl;

- R^1 is independently selected at each occurrence from H, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, halo, CN, C1-C4 haloalkyl, C1-C12 hydroxyalkyl, C_2-C_{12} alkoxyalkyl, C_2-C_{10} cyanoalkyl, C_3-C_6 cycloalkyl, C4-C10 cycloalkylalkyl, NR9R10, C1-C4 alkyl-NR 9 R 10 , NR 9 COR 10 , OR 11 , SH or S(0) nR 12 ;
- R^2 is selected from H, C_1 - C_4 alkyl, C_2 - C_4 alkenyl, C_2 -10 C4 alkynyl, C3-C6 cycloalkyl, C4-C10 cycloalkylalkyl, C1-C4 hydroxyalkyl, halo, CN, - $NR^{6}R^{7}$, $NR^{9}COR^{10}$, $-NR^{6}S(0)_{n}R^{7}$, $S(0)_{n}NR^{6}R^{7}$, C_{1} C4 haloalkyl, $-OR^7$, SH or $-S(0) nR^{12}$;
- 15 R^3 is selected from: -H, OR^7 , SH, $S(0)_nR^{13}$, COR^7 , CO_2R^7 , $OC(0)R^{13}$, NR^8COR^7 , $N(COR^7)_2$, $NR^8CONR^6R^7$, NR8CO2R13, NR6R7, NR6aR7a, N(OR7)R6, $CONR^6R^7$, aryl, heteroaryl and heterocyclyl,

5

- or -C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C8 cycloalkyl, C5-C8 cycloalkenyl, C4-C₁₂ cycloalkylalkyl or C₆-C₁₀ cycloalkenylalkyl, each optionally 25 substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR15, SH, $S(0)_{n}R^{13}$, COR^{15} , $CO_{2}R^{15}$, $OC(0)_{R}R^{13}$, NR8COR15, N(COR15)2, NR8CONR16R15, 30 NR8CO2R13, NR16R15, CONR16R15, aryl,
- R^4 is independently selected at each occurrence from: 35 C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, NO2,

heteroaryl and heterocyclyl;

halo, CN, C1-C4 haloalkyl, NR⁶R⁷, NR⁸COR⁷, NR⁸CO₂R⁷, COR⁷, OR⁷, CONR⁶R⁷, CO(NOR⁹)R⁷, CO₂R⁷, or S(0)_nR⁷, where each such C1-C₁₀ alkyl, C2-C₁₀ alkenyl, C2-C₁₀ alkynyl, C3-C₆ cycloalkyl and C4-C₁₂ cycloalkylalkyl are optionally substituted with 1 to 3 substituents independently selected at each occurrence from C₁-C₄ alkyl, NO₂, halo, CN, NR⁶R⁷, NR⁸COR⁷, NR⁸CO₂R⁷, COR⁷ OR⁷, CONR⁶R⁷, CO₂R⁷, CO(NOR⁹)R⁷, or S(0)_nR⁷;

 R^6 and R^7 , R^{6a} and R^{7a} are independently selected at each occurrence from:

-H,

-C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl, 15 C1-C10 haloalkyl with 1-10 halogens, C2-C8 alkoxyalkyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, C5-C10 cycloalkenyl, or C6-C14 cycloalkenylalkyl, each 20 optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR^{15} , SH, S(0)_nR¹³, COR^{15} , CO_2R^{15} , OC (O) R¹³, NR⁸COR¹⁵, N (COR¹⁵)₂, NR⁸CONR¹6R¹⁵, 25 NR8CO2R13, NR16R15, CONR16R15, arvl. heteroaryl or heterocyclyl, -aryl, aryl(C1-C4 alkyl), heteroaryl, heteroaryl(C1-C4 alkyl), heterocyclyl or 30 heterocyclyl(C1-C4 alkyl);

alternatively, NR^6R^7 and $NR^{6a}R^{7a}$ are independently piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine or thiomorpholine, each optionally substituted with 1-3 C₁-C₄ alkyl groups;

- R^8 is independently selected at each occurrence from H or C_1 - C_4 alkyl;
- 5 R^9 and R^{10} are independently selected at each occurrence from H, C_1 - C_4 alkyl, or C_3 - C_6 cycloalkyl;
- R^{11} is selected from H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, or C₃-C₆ cycloalkyl;
 - R^{12} is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;
- R¹³ is selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₈ alkoxyalkyl, C₃-C₆ cycloalkyl, C₄-C₁₂ cycloalkylalkyl, aryl, aryl(C₁-C₄ alkyl)-, heteroaryl or heteroaryl(C₁-C₄ alkyl)-;
- C10 alkynyl, C3-C8 cycloalkyl, C3-C10 alkenyl, C3-C10 alkynyl, C3-C8 cycloalkyl, or C4-C12 cycloalkylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR¹⁵, SH, S(O)_nR¹⁵, COR¹⁵, CO2R¹⁵, OC(O)R¹⁵, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO2R¹⁵, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, and C1-C6 alkylthio, C1-C6 alkylsulfinyl and C1-C6 alkylsulfonyl;
- 30 R^{15} and R^{16} are independently selected at each occurrence from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₄-C₁₆ cycloalkylalkyl, except that for S(0)_nR¹⁵, R¹⁵ cannot be H;

- aryl is phenyl or naphthyl, each optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(O)_nR¹⁵, COR¹⁵, CO₂R¹⁵, OC(O)R¹⁵, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹⁵, NR¹⁶R¹⁵, and CONR¹⁶R¹⁵;
- 10 heteroaryl is pyridyl, pyrimidinyl, triazinyl, furanyl, pyranyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, isoxazolyl, pyrazolyl, 2,3dihydrobenzothienyl or 2,3-dihydrobenzofuranyl, 15 each being optionally substituted with 1 to 5 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, 20 $S(0)_{n}R^{15}$, $-COR^{15}$, $CO_{2}R^{15}$, $OC(0)_{R}R^{15}$, $NR^{8}COR^{15}$, N(COR¹⁵)₂, NR⁸CONR¹6R¹⁵, NR⁸CO₂R¹⁵, NR¹6R¹⁵, and CONR¹⁶R¹⁵;
- heterocyclyl is saturated or partially saturated heteroaryl, optionally substituted with 1 to 5 substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, $S(0)_nR^{15}$, COR^{15} , CO_2R^{15} , $OC(0)_R^{15}$, NR^8COR^{15} , $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$, $NR^8CO_2R^{15}$, $NR^{15}R^{16}$, and $CONR^{16}R^{15}$:

n is independently at each occurrence 0, 1 or 2,

35 [2] Preferred methods of the present invention are methods in wherein in the compound of Formulae (1) or

- (2), Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, each optionally substituted with 1 to 4 ${\rm R}^4$ substituents.
- 5 [3] Further preferred methods of the above invention are methods wherein, in the compound of Formulae (1) or (2), A is N, Z is CR^2 , Ar is 2,4-dichlorophenyl, 2,4-dimethylphenyl or 2,4,6-trimethylphenyl, R^1 and R^2 are CH_3 , and R^3 is $NR^{6a}R^{7a}$.

[4] The present invention comprises compounds of Formulae (1) or (2):

10

and isomers thereof, stereoisomeric forms thereof, or
mixtures of stereoisomeric forms thereof, and
20 pharmaceutically acceptable salt or pro-drug forms
thereof wherein:

A is N or CR;

25 Z is N or CR^2 ;

- Ar is selected from phenyl, naphthyl, pyridyl, pyrimidinyl, triazinyl, furanyl, thienyl, benzothienyl, benzofuranyl, 2,3-dihydrobenzothienyl, indanyl, 1,2-benzopyranyl, 3,4-dihydro-1,2-benzopyranyl, tetralinyl, each Ar optionally substituted with 1 to 5 R⁴ groups and each Ar is attached to an unsaturated carbon atom;
- 10 R is independently selected at each occurrence from H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₄-C₇ cycloalkylalkyl, halo, CN, C₁-C₄ haloalkyl;
- 15 R¹ is independently selected at each occurrence from H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, halo, CN, C₁-C₄ haloalkyl, C₁-C₁₂ hydroxyalkyl, C₂-C₁₂ alkoxyalkyl, C₂-C₁₀ cyanoalkyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, NR⁹R¹⁰, C₁-C₄ alkyl-NR⁹R¹⁰, NR⁹COR¹⁰, OR¹¹, SH or S(0)_nR¹²;
- R² is selected from H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₁-C₄ hydroxyalkyl, halo, CN, NR⁶R⁷, NR⁹COR¹⁰, -NR⁶S(O)_nR⁷, S(O)_nNR⁶R⁷, C₁-C₄ haloalkyl, -OR⁷, SH or -S(O)_nR¹²;

 R^3 is selected from:

- -H, OR⁷, SH, S(0)_nR¹³, COR⁷, CO₂R⁷,

 OC(0)R¹³, NR⁸COR⁷, N(COR⁷)₂, NR⁸CONR⁶R⁷,

 NR⁸CO₂R¹³, NR⁶R⁷, NR⁶aR⁷a, N(OR⁷)R⁶,

 CONR⁶R⁷, aryl, heteroaryl and
 heterocyclyl, or
- -C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl,

 C3-C8 cycloalkyl, C5-C8 cycloalkenyl, C4
 C12 cycloalkylalkyl or C6-C10

cycloalkenylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, $S(O)_{1}R^{13}$, COR^{15} , $CO_{2}R^{15}$, $OC(O)_{1}R^{13}$, $NR^{8}COR^{15}$, $N(COR^{15})_{2}$, $NR^{8}CONR^{16}R^{15}$, $NR^{16}R^{15}$, $NR^{16}R^{15}$, $NR^{16}R^{15}$, $NR^{16}R^{15}$, $NR^{16}R^{15}$, $NR^{16}R^{15}$, aryl, heteroaryl and heterocyclyl;

10

15

20

5

R⁴ is independently selected at each occurrence from: C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_3-C_6 cycloalkyl, C_4-C_{12} cycloalkylalkyl, NO_2 , halo, CN, C_1-C_4 haloalkyl, NR^6R^7 , NR^8COR^7 , $NR^8CO_2R^7$, COR^7 , $CONR^6R^7$, $CO(NOR^9)R^7$, CO_2R^7 , or $S(O)_nR^7$, where each such C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_3-C_6 cycloalkyl and C_4-C_{12} cycloalkylalkyl are optionally substituted with 1 to 3 substituents independently selected at each occurrence from C_1-C_4 alkyl, NO_2 , halo, CN, NR^6R^7 , NR^8COR^7 , $NR^8CO_2R^7$, COR^7 or $CONR^6R^7$, CO_2R^7 , $CO(NOR^9)R^7$, or $S(O)_nR^7$;

 R^6 and R^7 , R^{6a} and R^{7a} are independently selected at each occurrence from:

-H,

-C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl,
C1-C10 haloalkyl with 1-10 halogens, C2-C8
alkoxyalkyl, C3-C6 cycloalkyl, C4C12 cycloalkylalkyl, C5-C10 cycloalkenyl,
or C6-C14 cycloalkenylalkyl, each
optionally substituted with 1 to 3
substituents independently selected at each
occurrence from C1-C6 alkyl, C3C6 cycloalkyl, halo, C1-C4 haloalkyl,

15

cyano, OR^{15} , SH, $S(O)_{nR}^{13}$, COR^{15} , CO_{2R}^{15} , $OC(O)_{R}^{13}$, $NR^{8}COR^{15}$, $N(COR^{15})_{2}$, $NR^{8}CONR^{16}R^{15}$, $NR^{8}CO_{2}R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl,

heteroaryl or heterocyclyl,
-aryl, aryl(C1-C4 alkyl), heteroaryl,
heteroaryl(C1-C4 alkyl), heterocyclyl or
heterocyclyl(C1-C4 alkyl),

alternatively, NR^6R^7 and NR^6aR^{7a} are independently piperidine, pyrrolidine, piperazine, N-

- 10 methylpiperazine, morpholine or thiomorpholine, each optionally substituted with 1-3 C_1 - C_4 alkyl groups;
 - R^8 is independently selected at each occurrence from H or C_1 - C_4 alkyl;
- R⁹ and R¹⁰ are independently selected at each occurrence from H, C₁-C₄ alkyl, or C₃-C₆ cycloalkyl;
- 20 R^{11} is selected from H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, or C₃-C₆ cycloalkyl;
 - R^{12} is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;
- 25 R¹³ is selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₈ alkoxyalkyl, C₃-C₆ cycloalkyl, C₄-C₁₂ cycloalkylalkyl, aryl, aryl(C₁-C₄ alkyl)-, heteroaryl or heteroaryl(C₁-C₄ alkyl)-;
- 30 R¹⁴ is selected from C₁-C₁₀ alkyl, C₃-C₁₀ alkenyl, C₃-C₁₀ alkynyl, C₃-C₈ cycloalkyl, or C₄-C₁₂ cycloalkylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano,

OR¹⁵, SH, S(0)_nR¹⁵, COR¹⁵, CO₂R¹⁵, OC(0)R¹⁵, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹⁵, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, and C₁-C₆ alkylthio, C₁-C₆ alkylsulfinyl and C₁-C₆ alkylsulfonyl;

5

 R^{15} and R^{16} are independently selected at each occurrence from H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₄-C₁₆ cycloalkylalkyl, except that for $S(0)_{n}R^{15}$, R^{15} cannot be H;

10

- aryl is phenyl or naphthyl, each optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(O)_nR¹⁵, COR¹⁵, CO₂R¹⁵, OC(O)R¹⁵, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹⁵, NR¹⁶R¹⁵, and CONR¹⁶R¹⁵;
- 20 heteroaryl is pyridyl, pyrimidinyl, triazinyl, furanyl, pyranyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, isoxazolyl, pyrazolyl, 2,3-25 dihydrobenzothienyl or 2,3-dihydrobenzofuranyl, each being optionally substituted with 1 to 5 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR¹⁵, SH, $S(0)_{n}R^{15}$, $-COR^{15}$, $CO_{2}R^{15}$, $OC(0)_{R^{15}}$, $NR^{8}COR^{15}$, 30 $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$, $NR^8CO_2R^{15}$, $NR^{16}R^{15}$, and CONR16R15:
- heterocyclyl is saturated or partially saturated

 heteroaryl, optionally substituted with 1 to 5

substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, $S(0)_nR^{15}$, COR^{15} , CO_2R^{15} , $OC(0)_R^{15}$, NR^8COR^{15} , $NR^8CO_2R^{15}$, $NR^8CO_2R^{15}$, $NR^{15}R^{16}$, and $CONR^{16}R^{15}$;

n is independently at each occurrence 0, 1 or 2,

10 with the provisos that:

5

15

- (1) when A is N, Z is CR^2 , R^2 is H, R^3 is $-OR^7$ or $-OCOR^{13}$, and R^7 is H, then R^1 is not H, OH or SH;
- (2) when A is N, Z is CR^2 , R^1 is CH_3 or C_2H_5 , R^2 is H, and R^3 is OH, H, CH_3 , C_2H_5 , C_6H_5 , $n-C_3H_7$, i- C_3H_7 , SH, SCH₃, NHC₄H₉, or N(C_2H_5)₂, then Ar is not phenyl or m-CH₃-phenyl,
 - (3) when A is N, Z is CR^2 , R^2 is H, and Ar is pyridyl, pyrimidinyl or pyrazinyl, and R^3 is $NR^{6a}R^{7a}$, then R^{6a} and R^{7a} are not H or alkyl;
- 25 (4) when A is N, Z is CR^2 , and R^2 is $SO_2NR^6R^7$, then R^3 is not OH or SH;
 - (5) when A is CR and Z is CR^2 , then R^2 is not- $NR^6SO_2R^7$ or $-SO_2NR^6R^7$;
 - (6) when A is N, Z is CR^2 and R^2 is $-NR^6SO_2R^7$ or $-SO_2NR^6R^7$, then R^3 is not OH or SH;
- (7) when A is N, Z is CR^2 , R^1 is methyl or ethyl, R^2 is H, and R^3 is H, OH, CH_3 , C_2H_5 , C_6H_5 , $n-C_3H_7$, iso- C_3H_7 , SH, SCH_3 , $NH(n-C_4H_9)$, or $N(C_2H_5)_2$, then Ar is not unsubstituted phenyl or m-methylphenyl;

10

15

- (8) when A is CR, Z is CR², R² is H, phenyl or alkyl, R³ is NR⁸COR⁷ and Ar is phenyl or phenyl substituted with phenylthio, then R⁷ is not aryl, aryl(C₁-C₄ alkyl), heteroaryl, heteroaryl(C₁-C₄ alkyl), heterocyclyl or heterocycly(C₁-C₄ alkyl);
 - (9) when A is CR, Z is CR^2 , R^2 is H or alkyl, Ar is phenyl, and R^3 is SR^{13} or $NR^{6a}R^{7a}$, then R^{13} is not aryl or heteroaryl and R^{6a} and R^{7a} are not H or aryl; or
 - (10) when A is CH, Z is CR², R¹ is OR¹¹, R² is H, R³ is OR⁷, and R⁷ and R¹¹ are both H, then Ar is not phenyl, p-Br-phenyl, p-Cl-phenyl, p-NHCOCH₃-phenyl, p-CH₃-phenyl, pyridyl or naphthyl;
 - (11) when A is CH, Z is CR^2 , R^2 is H, Ar is unsubstituted phenyl, and R^3 is CH₃, C₂H₅, CF₃ or C₆H₄F, then R₁ is not CF₃ or C₂F₅;
 - (12) when A is CR, R is H, Z is CR^2 , R^2 is OH, and R^1 and R^3 are H, then Ar is not phenyl;
- (13) when A is CR, R is H, Z is CR^2 , R^2 is OH or NH₂, R^1 and R^3 are CH₃, then Ar is not 4-phenyl-3-cyano-2-aminopyrid-2-yl.
- [5] Preferred compounds of the above invention are compounds of Formulae (1) and (2) and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof with the additional provisos that: (1) when A is N, R¹ is H, C1-C4 alkyl, halo, CN, C1-C12 hydroxyalkyl, C1-C4 alkoxyalkyl or SO2(C1-C4 alkyl), R³ is NR^{6a}R^{7a} and R^{6a} is unsubstituted C1-C4 alkyl, then R^{7a} is not phenyl,

naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, indolyl or C3-C6 cycloalkyl; and (2) A is N, R^1 is H, C_1 - C_4 alkyl, halo, CN, C_1 - C_{12} hydroxyalkyl, C_1 - C_4 alkoxyalkyl or S_0 2(C_1 - C_4 alkyl), R^3 is $NR^{6a}R^{7a}$ and R^{7a} is unsubstituted C_1 - C_4 alkyl, then R^{6a} is not phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, indolyl or C_3 - C_6 cycloalkyl.

10

- [6] Preferred compounds of the above invention also include compounds of Formulae (1) and (2) and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, each optionally substituted with 1 to 4 R⁴ substituents.
- [7]. Preferred compounds of the above invention also include compounds of Formulae (1) and (2) and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein A is N, Z is CR², Ar is 2,4-dichlorophenyl, 2,4-
- 25 dimethylphenyl or 2,4,6-trimethylphenyl, R^1 and R^2 are CH₃, and R^3 is $NR^{6a}R^{7a}$.
- [11] More preferred compounds of the above invention are compounds and isomers thereof, stereoisomeric forms 30 thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein A is N.
- [12] More preferred compounds of the above invention 35 also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of

stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof.

- [13] More preferred compounds of the above invention

 also include compounds and isomers thereof,
 stereoisomeric forms thereof, or mixtures of
 stereoisomeric forms thereof, and pharmaceutically
 acceptable salt or pro-drug forms thereof wherein Ar is
 phenyl, pyridyl or 2,3-dihydrobenzofuranyl and each Ar
 is optionally substituted with 1 to 4 R⁴ substituents.
- [14] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R³ is NR⁶aR⁷a or OR⁷.
- [15] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, and each Ar is optionally substituted with 1 to 4 R⁴ substituents, and R³ is NR^{6aR^{7a}} or OR⁷.
- [16] More preferred compounds of the above invention also include compounds and isomers thereof, 30 stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein Z is CR².
- 35 [17] More preferred compounds of the above invention also include compounds and isomers thereof,

stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl and each Ar is optionally substituted with 1 to 4 R⁴ substituents.

- [18] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R³ is NR^{6a}R^{7a} or OR⁷.
- [19] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^{6a} is independently selected from:

20 -H, $-C_1-C_{10}$ alkyl, C_3-C_{10} alkenyl, C_3-C_{10} alkynyl, C1-C10 haloalkyl with 1-10 halogens, C2-C8 alkoxyalkyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, C5-C10 cycloalkenyl, 25 or C6-C14 cycloalkenylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR^{15} , SH, S(O)_nR¹³, COR^{15} , CO_2R^{15} , 30 OC (O) R¹³, NR⁸COR¹⁵, N (COR¹⁵)₂, NR⁸CONR¹6R¹⁵, NR8CO2R13, NR16R15, CONR16R15, arvl. heteroaryl or heterocyclyl,

-aryl, aryl(C₁-C₄ alkyl)-, heteroaryl, heteroaryl(C₁-C₄ alkyl)-, heterocyclyl or heterocyclyl(C₁-C₄ alkyl)-; and

R^{7a} is independently selected at each occurrence from: -C5-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl, C1-C10 haloalkyl with 1-10 halogens, C2-C8 5 alkoxyalkyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, C5-C10 cycloalkenyl, or C6-C14 cycloalkenylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each 10 occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR^{15} , SH, S(O)_nR¹³, COR^{15} , CO_2R^{15} , $OC(0)R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$, NR8CO2R13, NR16R15, CONR16R15, arvl, 15 heteroaryl or heterocyclyl, -aryl, aryl(C1-C4 alkyl), heteroaryl, heteroaryl(C_1 - C_4 alkyl), heterocyclyl or heterocyclyl(C1-C4 alkyl);

- 20 alternatively, NR^6R^7 and $NR^{6a}R^{7a}$ are independently piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine or thiomorpholine, each optionally substituted with 1-3 C₁-C₄ alkyl groups.
- [20] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^{6a} and R^{7a} are identical and are selected from:

-C₁-C₄ alkyl or C₃-C₆ cycloalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR^{15} , SH, S(0)_nR¹³, -COR¹⁵,

CO2R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)2, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl, heteroaryl or heterocyclyl, and -aryl or heteroaryl.

5

10

[21] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R6a is selected from:

-Н,

-C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl,
C1-C10 haloalkyl with 1-10 halogens, C2-C8
alkoxyalkyl, C3-C6 cycloalkyl, C4C12 cycloalkylalkyl, C5-C10 cycloalkenyl,
or C6-C14 cycloalkenylalkyl, each
optionally substituted with 1 to 3
substituents independently selected at each
occurrence from C1-C6 alkyl, C3C6 cycloalkyl, halo, C1-C4 haloalkyl,
cyano, OR¹⁵, SH, S(O)nR¹³, COR¹⁵, CO2R¹⁵,
OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵,
NR⁸CO2R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl,

heteroaryl or heterocyclyl,
-aryl, aryl(C1-C4 alkyl), heteroaryl,
heteroaryl(C1-C4 alkyl), heterocyclyl or
heterocyclyl(C1-C4 alkyl);

 R^{7a} is selected from:

30 $-C_1-C_4$ alkyl and each such C_1-C_4 alkyl is substituted with 1-3 substituents independently selected at each occurrence from C_1-C_6 alkyl, C_3-C_6 cycloalkyl, halo, C_1-C_4 haloalkyl, cyano, OR^{15} , SH, S(O)nR¹³, COR^{15} , CO_2R^{15} , $OC(O)R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$,

15

NR8CONR16R15, NR8CO2R13, NR16R15, CONR16R15, aryl, heteroaryl or heterocyclyl.

[22] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein one of R^{6a} and R^{7a} is selected from:

-C₃-C₆ cycloalkyl, each such C₃-C₆ cycloalkyl optionally substituted with 1-3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(O)nR¹³, COR¹⁵, CO₂R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl, heteroaryl or heterocyclyl, -aryl,

-heteroaryl or

20 -heterocyclyl, and the other of R^{6a} and R^{7a} is unsubstituted $\mathsf{C}_1\text{-}\mathsf{C}_4$ alkyl.

[23] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^{6a} and R^{7a} are independently H or C₁-C₁₀ alkyl, each such C₁-C₁₀ alkyl optionally substituted with 1 to 3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(O)_nR¹³, COR¹⁵, CO₂R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂,

R8CONR16R15, NR8CO2R13, NR16R15, CONR16R15, arvl. heteroaryl or heterocyclyl.

[24] More preferred compounds of the above invention 5 also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, and each Ar 10 is optionally substituted with 1 to 4 R^4 substituents, and R³ is NR⁶aR⁷a or OR⁷.

[25] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of 15 stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^{6a} is independently selected from:

35

20 -C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl, C1-C10 haloalkyl with 1-10 halogens, C2-C8 alkoxyalkyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, C5-C10 cycloalkenyl, or C6-C14 cycloalkenylalkyl, each 25 optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR^{15} , SH, S(0) nR^{13} , COR^{15} , CO_2R^{15} , OC (O) R¹³, NR⁸COR¹⁵, N (COR¹⁵)₂, NR⁸CONR¹6R¹⁵, 30 NR8CO2R13, NR16R15, CONR16R15, aryl, heteroaryl or heterocyclyl,

-aryl, aryl(C1-C4 alkyl)-, heteroaryl, heteroaryl(C1-C4 alkyl), heterocyclyl or heterocyclyl(C1-C4 alkyl);

R^{7a} is independently selected at each occurrence from: -C5-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl, C1-C10 haloalkyl with 1-10 halogens, C2-C8 5 alkoxyalkyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, C5-C10 cycloalkenyl, or C6-C14 cycloalkenylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each 10 occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR^{15} , SH, S(0) nR^{13} , COR^{15} , CO_2R^{15} , $OC(0)R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$, NR8CO2R13, NR16R15, CONR16R15, aryl, 15 heteroaryl or heterocyclyl, -aryl, aryl(C1-C4 alkyl), heteroaryl, heteroaryl(C1-C4 alkyl), heterocyclyl or heterocyclyl(C1-C4 alkyl),

alternatively, NR^6R^7 and $NR^{6a}R^{7a}$ are independently piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine or thiomorpholine, each optionally substituted with 1-3 C1-C4 alkyl groups.

[26] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R6a and R7a are identical and are selected from:

-C₁-C₄ alkyl or C₃-C₆ cycloalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C_1 -C₆ alkyl, C_3 -C₆ cycloalkyl, halo, C_1 -C₄ haloalkyl, cyano, OR^{15} , SH, $S(O)_1R^{13}$, - COR^{15} ,

 CO_2R^{15} , $OC(0)R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$, $NR^8CO_2R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl, heteroaryl or heterocyclyl, and -aryl or heteroaryl.

5

10

15

[27] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^{6a} and R^{7a} are identical and are

-C₁-C₄ alkyl, each such C₁-C₄ alkyl optionally substituted with 1 to 3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, $S(0)_nR^{13}$, -COR¹⁵, CO₂R¹⁵, OC(0)R¹³, NR⁸COR¹⁵, N(COR¹⁵)2, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl, heteroaryl or heterocyclyl.

20

25

[28] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R6a is selected from:

-H,

-C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl,
C1-C10 haloalkyl with 1-10 halogens, C2-C8
alkoxyalkyl, C3-C6 cycloalkyl, C4C12 cycloalkylalkyl, C5-C10 cycloalkenyl,
or C6-C14 cycloalkenylalkyl, each
optionally substituted with 1 to 3
substituents independently selected at each
occurrence from C1-C6 alkyl, C3-

C6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, $S(O)_{n}R^{13}$, COR^{15} , $CO_{2}R^{15}$, $OC(O)R^{13}$, $NR^{8}COR^{15}$, $N(COR^{15})_{2}$, $NR^{8}CONR^{16}R^{15}$, $NR^{8}CO_{2}R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl,

heteroaryl or heterocyclyl,
-aryl, aryl(C1-C4 alkyl), heteroaryl,
heteroaryl(C1-C4 alkyl), heterocyclyl or
heterocyclyl(C1-C4 alkyl);

R7a is:

[29] More preferred compounds of the above invention
20 also include compounds and isomers thereof,
stereoisomeric forms thereof, or mixtures of
stereoisomeric forms thereof, and pharmaceutically
acceptable salt or pro-drug forms thereof wherein one of
R6a and R7a is selected from:

-aryl,

-heteroaryl or

35 -heterocyclyl,

and the other of R^{6a} and R^{7a} is unsubstituted C_1-C_4 alkyl.

[30] More preferred compounds of the above invention 5 also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^{6a} and R^{7a} are independently H or C1-C10 alkyl, 10 each such C1-C10 alkyl optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C_1-C_4 haloalkyl, cyano, OR^{15} , SH, $S(0)_nR^{13}$, COR^{15} , CO_2R^{15} , $OC(0)R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$, R8CONR16R15, NR8CO2R13, NR16R15, CONR16R15, aryl, 15 heteroaryl or heterocyclyl.

[31] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein

-Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, and each Ar is optionally substituted with 1 to 4 $\rm R^4$ substituents,

25 to 4 R^4 substituents,

-R 3 is NR 6 aR 7 a or OR 7 and -R 1 and R 2 are independently selected from H, C1-C4 alkyl, C3-C6 cycloalkyl, C4-C10 cycloalkylalkyl.

30

35

20

[32] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein

R^{6a} is independently selected from: -C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl, C1-C10 haloalkyl with 1-10 halogens, C2-C8 5 alkoxyalkyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, C5-C10 cycloalkenyl, or C6-C14 cycloalkenylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each 10 occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR^{15} , SH, S(O)_nR¹³, COR^{15} , CO_2R^{15} , OC (O) R¹³, NR⁸COR¹⁵, N (COR¹⁵)₂, NR⁸CONR¹6R¹⁵, NR8CO2R13, NR16R15, CONR16R15, arvl, 15 heteroaryl or heterocyclyl, -aryl, aryl(C1-C4 alkyl)-, heteroaryl, heteroaryl(C1-C4 alkyl), heterocyclyl or heterocyclyl (C1-C4 alkyl); R^{7a} is independently selected at each occurrence from: 20 -H, -C5-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl, C1-C10 haloalkyl with 1-10 halogens, C2-C8 alkoxyalkyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, C5-C10 cycloalkenyl, 25 or C6-C14 cycloalkenylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR^{15} , SH, S(0)_nR¹³, COR^{15} , CO_2R^{15} , 30 $OC(0)R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$, NR8CO2R13, NR16R15, CONR16R15, aryl,

heteroaryl or heterocyclyl,

-aryl, aryl(C_1 - C_4 alkyl), heteroaryl, heteroaryl(C_1 - C_4 alkyl), heterocyclyl or heterocyclyl(C_1 - C_4 alkyl),

- alternatively, NR^6R^7 and NR^6aR^{7a} are independently piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine or thiomorpholine, each optionally substituted with 1-3 C₁-C₄ alkyl groups.
- 10 [33] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R6a and R7a are identical and are selected from:

-C₁-C₄ alkyl or C₃-C₆ cycloalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR^{15} , SH, S(O)_nR¹³, -COR¹⁵, CO₂R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)2, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl, heteroaryl or heterocyclyl, and -aryl or heteroaryl.

25

30

35

20

[34] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^{6a} and R^{7a} are identical and are

- C_1 - C_4 alkyl, each such C_1 - C_4 alkyl optionally substituted with 1 to 3 substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl,

halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, $S(0)_nR^{13}$, $-COR^{15}$, CO_2R^{15} , $OC(0)_R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$, $NR^8CO_2R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl, heteroaryl or heterocyclyl.

5

10

15

20

[35] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R6a is selected from:

-Н,

-C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl, C1-C10 haloalkyl with 1-10 halogens, C2-C8 alkoxyalkyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, C5-C10 cycloalkenyl, or C6-C14 cycloalkenylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR¹⁵, SH, S(O)nR¹³, COR¹⁵, CO2R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)2, NR⁸CONR¹⁶R¹⁵, NR⁸CO2R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl,

25 heteroaryl or heterocyclyl, $-\text{aryl, aryl} \; (\text{C}_1\text{-C4 alkyl}) \; , \; \text{heteroaryl} \; , \\ \text{heteroaryl} \; (\text{C}_1\text{-C4 alkyl}) \; , \; \text{heterocyclyl} \; \text{or} \\ \text{heterocyclyl} \; (\text{C}_1\text{-C4 alkyl}) \; ; \\ \\$

R7a is:

30 -C₁-C₄ alkyl and each such C₁-C₄ alkyl is substituted with 1-3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(O)nR¹³, COR¹⁵, CO₂R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂,

NR8CONR16R15, NR8CO2R13, NR16R15, CONR16R15, aryl, heteroaryl or heterocyclyl.

[36] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein one of R6a and R7a is selected from:

-heteroaryl or

-heterocyclyl, and the other of R^{6a} and R^{7a} is unsubstituted C_1-C_4 alkyl.

[37] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^{6a} and R^{7a} are independently H or C₁-C₁₀ alkyl, each such C₁-C₁₀ alkyl optionally substituted with 1 to 3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(0)_nR¹³, COR¹⁵, CO₂R¹⁵, OC(0)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂,

 $R^8CONR^{16}R^{15}$, $NR^8CO_2R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl, heteroaryl or heterocyclyl.

[38] Specifically preferred compounds of the above invention are compounds of Formula (50)

TO480

FORMULA (50)

10

15

20

and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof, selected from the group consisting of:

- a compound of Formula (50) wherein R^3 is -NHCH(n-Pr)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -N(Et)(n-Bu), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H:
- 25 a compound of Formula (50) wherein R^3 is -(n-Pr)(CH2cPr), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, 30 R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is -NHCH(Et)(n-Bu), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NHCH(Et)(CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 10 a compound of Formula (50) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NHCH(CH2OEt)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NHCH(Et)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -N (Me) (Ph), R^{4a} 25 is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-N(n-Pr)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 30 a compound of Formula (50) wherein R^3 is -NHCH(Et)(n-Pr), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(CH2OMe)2, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is -NHCH(CH2OMe)2, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is NHCH(Et)(CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)₂, R^{4a} 10 is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -OEt, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 15 a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(CH_2CN)_2$, R^{4a} is Me, R^{4b} is H, R^{4C} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(Me)(CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 25 a compound of Formula (50) wherein R^3 is OCH(Et)(CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -N(n-30) Pr) (CH2cPr), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NHCH(Me)(CH₂N(Me)₂), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(cPr)(CH2CH2CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is -N(n-Pr) (CH2CH2CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is -N(n-Bu) (CH2CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 NHCH(Et)(CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
 - a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
- 20 a compound of Formula (50) wherein R^3 is -NHCH(CH2OMe)2, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 NHCH(Et)(CH₂OMe), R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
 - a compound of Formula (50) wherein ${\bf R}^3$ is -NHCH(CH2OEt)2, ${\bf R}^{4a}$ is Me, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is Me, ${\bf R}^{4d}$ is H and ${\bf R}^{4e}$ is Me;
- 35 a compound of Formula (50) wherein R^3 is NHCH(CH2CH2OMe)(CH2OMe)2, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is morpholino, R^{4a} 40 is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NH(c-Pr), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(CH2OMe)2, R^{4a} is CN, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH₂CH₂CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
 - a compound of Formula (50) wherein R^3 is -NCH(CH2OMe)2, R^{4a} is Me, R^{4b} is H, R^{4c} is Br, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Br, R^{4d} is H and R^{4e} is H;
- 30 a compound of Formula (50) wherein R^3 is -NHCH(CH2OMe)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;

- a compound of Formula (50) wherein a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is -NHCH(CH2OMe)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 NHCH(Et)(CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH2CH2CN), R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- 25 a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH₂CH₂CN), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is (S)
 NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NHCH(Et)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Br, R^{4d} is H and R^{4e} is H;
- 40 a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Br, R^{4d} is H and R^{4e} is H;

25

- a compound of Formula (50) wherein R^3 is NH(CH2OMe)(CH2-iPr), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is H, R^{4d} is H and R^{4e} is H;
- 10 a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is NMe2, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 NHCH(CH₂OMe)(n-Pr), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 NHCH(CH2OEt)(Et), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is NMe2, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} 30 is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein ${\bf R}^3$ is $-{\bf N}$ (CH2CH2OMe)2, ${\bf R}^{4a}$ is Me, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is Cl, ${\bf R}^{4d}$ is H and ${\bf R}^{4e}$ is H;
 - a compound of Formula (50) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 40 a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Br, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} 5 is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Me, R^{4b} is H, R^{4c} is NMe2, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is (S)-NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 15 a compound of Formula (50) wherein R^3 is NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is (S)
 NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NHCH(CH₂OMe)(CH₂CH₂OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH₂CH₂CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NH(Et)(CH₂CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 35 a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is Me, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe) (CH₂CH₂OH), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is Me, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Me, R^{4b} is Me, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(CH_2c-Pr)$ (n-10) Pr), R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH₂CH₂CN), R^{4a} is Me, R^{4b} is Me, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NHCH (Et)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 NHCH(Et)(CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is CN, R^{4d} is H and R^{4e} is H;
- 35 a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH2CH2CN), R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(CH₂OH)₂, 40 R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H; and

a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H.

5

10

- [39] More specifically preferred is 4-(bis-(2-methoxyethyl)amino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof.
- [40] More specifically preferred is 4-(bis-(215 methoxyethyl)amino)-2,7-dimethyl-8-(2,5-dimethyl-4methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine and
 isomers thereof, stereoisomeric forms thereof, or
 mixtures of stereoisomeric forms thereof, and
 pharmaceutically acceptable salt or pro-drug forms
 thereof.
 - [41] More preferred are compounds of the above invention are compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein A is CR.
- [42] More preferred compounds of the above invention also include compounds and isomers thereof, 30 stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof.
- [43] More preferred compounds of the above invention 35 also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of

stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl and each Ar is optionally substituted with 1 to 4 $\rm R^4$ substituents.

5

- [44] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^3 is NR^6aR^{7a} or OR^7 .
- [45] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, and each Ar is optionally substituted with 1 to 4 R⁴ substituents, and R³ is NR^{6aR^{7a}} or OR⁷.
- [46] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of 25 stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein Z is CR².
- [47] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl and each Ar is optionally substituted with 1 to 4 R⁴ substituents.

- [49] More preferred compounds of the above invention also include compounds and isomers thereof,

 10 stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, and each Ar is optionally substituted with 1 to 4 R⁴ substituents, and R³ is NR^{6a}R^{7a} or OR⁷.
- [50] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of

 20 stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^{6a} and R^{7a} are independently H or C₁-C₁₀ alkyl, and each such C₁-C₁₀ alkyl is optionally substituted with 1 to 3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(O)₁R¹³, COR¹⁵, CO₂R¹⁵, OC(O)₁R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂, R⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl, heteroaryl or heterocyclyl.

35

[51] More preferred compounds of the above invention also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein

-Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl,
and each Ar is optionally substituted with 1
to 4 R⁴ substituents,
-R³ is NR^{6aR^{7a}} or OR⁷ and
-R¹ and R² are independently selected from H, C₁-C₄
 alkyl, C₃-C₆ cycloalkyl, C₄-C₁₀
cycloalkylalkyl.

[52] More preferred compounds of the above invention 10 also include compounds and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof wherein R^{6a} and R^{7a} are independently H or C_1 - C_{10} alkyl, 15 and each such C₁-C₁₀ alkyl is optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3- C_6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, $S(0) nR^{13}$, COR^{15} , CO_2R^{15} , $OC(0) R^{13}$, NR^8COR^{15} , N(COR¹⁵)₂, R⁸CONR¹6R¹⁵, NR⁸CO₂R¹³, NR¹6R¹⁵, 20 CONR¹⁶R¹⁵, aryl, heteroaryl or heterocyclyl.

[53] Specifically preferred compounds of the above invention are compounds of Formula (51)

FORMULA (51)

30

40°

and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or pro-drug forms thereof selected from the group consisting of:

- a compound of Formula (51) wherein R^3 is -NHCH(n-Pr)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 15 a compound of Formula (51) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is -N(c-20) Pr) (CH₂CH₂CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is -NHCH(Et)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is -N(n-Pr) (CH₂CH₂CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;

- a compound of Formula (51) wherein R^3 is -N(n-Bu) (CH_2CH_2CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (51) wherein R^3 is -NHCH(n-Pr)(CH₂OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H:
- a compound of Formula (51) wherein R^3 is -NHCH(Et)₂, R^{4a} 10 is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is (S) NH(CH₂CH₂OMe)CH₂OMe, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 20 a compound of Formula (51) wherein R^3 is NH(CH₂CH₂OMe)CH₂OMe, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is $-N(CH_2CH_2OMe)_2$, 25 R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is -NH(Et), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is $-NHCH(n-Pr)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is (S) 40 NH(CH₂CH₂OMe)CH₂OMe, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;

25

- a compound of Formula (51) wherein R^3 is NH(CH₂CH₂OMe)CH₂OMe, R^{4a} is Me, R^{4b} is H, R^{4c} is C1, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (51) wherein R^3 is -N(n-Pr) (CH₂CH₂CN), R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is $-N(Et)_2$, R^{4a} is 10 Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is (S) NH(CH₂CH₂OMe)CH₂OMe, R^{4a} is Cl, R^{4b} is H, R^{4C} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is NH(CH₂CH₂OMe)CH₂OMe, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 20 a compound of Formula (51) wherein R^3 is $-N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is -N(c-Pr) (CH_2CH_2CN), R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is $-N(c-Pr)(CH_2CH_2CN)$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is -NHCH (n-Pr)(CH₂OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 35 a compound of Formula (51) wherein R^3 is -NHCH (n-Pr) (CH₂OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is -NHCH(Et)₂, R^{4a} 40 is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;

- a compound of Formula (51) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 15 a compound of Formula (51) wherein R^3 is $-N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is -NHCH(Et)₂, R^{4a} is Cl, R^{4b} is H, R^{4C} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 30 a compound of Formula (51) wherein R^3 is N(Pr)(CH₂CH₂CN), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is -N(Bu) (Et), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is NHCH(Et)CH₂OMe, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is -NHCH(Et)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;

- a compound of Formula (51) wherein R^3 is -NHCH(Et)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is -NHCH(Et)₂, R^{4a} 5 is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (51) wherein R^3 is -NHCH(Et)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 10 a compound of Formula (51) wherein R^3 is -NEt₂, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (51) wherein R^3 is N(Pr)(CH₂CH₂CN), R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H.
- [54] More specifically preferred is 7-(320 pentylamino)-2,5-dimethyl-3-(2-methyl-4methoxyphenyl)-[1,5-a]-pyrazolopyrimidine and isomers
 thereof, stereoisomeric forms thereof, or mixtures of
 stereoisomeric forms thereof, and pharmaceutically
 acceptable salt or pro-drug forms thereof.
 - [55] More specifically preferred is 7-(Diethylamino)-2,5-dimethyl-3-(2-methyl-4-methoxyphenyl-[1,5-a]-pyrazolopyrimidine and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt or prodrug forms thereof.
- [56] More specifically preferred is 7-(N-(3cyanopropyl)-N-propylamino)-2,5-dimethyl-3-(2,435 dimethylphenyl)-[1,5-a]-pyrazolopyrimidine and isomers
 thereof, stereoisomeric forms thereof, or mixtures of
 stereoisomeric forms thereof, and pharmaceutically
 acceptable salt or pro-drug forms thereof.

The present invention also provides pharmaceutical compositions comprising compounds of Formulae (1) and (2) and a pharmaceutically acceptable carrier.

The present invention still further comprises a method of treating affective disorder, anxiety, depression, headache, irritable bowel syndrome, posttraumatic stress disorder, supranuclear palsy, immune suppression, Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia or a disorder the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, in mammals comprising administering to the mammal a therapeutically effective amount of a compound of Formula (1):

25

5

10

15

20

(1)

and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof, wherein:

5

10

- Ar is selected from phenyl, naphthyl, pyridyl, pyrimidinyl, triazinyl, furanyl, thienyl, benzothienyl, benzofuranyl, 2,3-dihydrobenzothienyl, indanyl, 1,2-benzopyranyl, 3,4-dihydro-1,2-benzopyranyl, tetralinyl, each Ar optionally substituted with 1 to 5 R⁴ groups and each Ar is attached to an unsaturated carbon atom;
- 15 R¹ is independently selected at each occurrence from H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, halo, CN, C₁-C₄ haloalkyl, C₁-C₁₂ hydroxyalkyl, C₂-C₁₂ alkoxyalkyl, C₂-C₁₀ cyanoalkyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, NR⁹R¹⁰, C₁-C₄ alkyl-NR⁹R¹⁰, NR⁹COR¹⁰, OR¹¹, SH or S(0)_nR¹²;
- R² is selected from H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₁-C₄ hydroxyalkyl, halo, CN, NR⁶R⁷, NR⁹COR¹⁰, -NR⁶S(O)_nR⁷, S(O)_nNR⁶R⁷, C₁-C₄ haloalkyl, -OR⁷, SH or -S(O)_nR¹²;

 R^3 is selected from $NR^{6a}R^{7a}$ and OR^7 ;

30 R^4 is independently selected at each occurrence from: C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_3-C_6 cycloalkyl, C_4-C_{12} cycloalkylalkyl, NO_2 , halo, CN, C_1-C_4 haloalkyl, NR^6R^7 , NR^8COR^7 , $NR^8CO_2R^7$, COR^7 , OR^7 , $CONR^6R^7$, $CO(NOR^9)R^7$, CO_2R^7 , or $S(O)_nR^7$, where each such C_1-C_{10} alkyl, C_2-C_{10} alkenyl, C_2-C_{10} alkynyl, C_3-C_6 cycloalkyl

 R^6 , R^7 , R^{6a} and R^{7a} are independently selected at each occurrence from:

10 -H,

15

20

25

30

-C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl, C1-C10 haloalkyl with 1-10 halogens, C2-C8 alkoxyalkyl, C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, C5-C10 cycloalkenyl, or C6-C14 cycloalkenylalkyl, each optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR¹⁵, SH, S(O)nR¹³, COR¹⁵, CO2R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵,

OC(0) R^{13} , NR^8COR^{15} , $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$ $NR^8CO_2R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl, heteroaryl or heterocyclyl,

-aryl, aryl(C1-C4 alkyl), heteroaryl,
 heteroaryl(C1-C4 alkyl), heterocyclyl or
 heterocyclyl(C1-C4 alkyl);

alternatively, NR^6R^7 and $NR^{6a}R^{7a}$ are independently piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine or thiomorpholine, each optionally substituted with 1-3 C1-C4 alkyl groups;

 R^8 is independently selected at each occurrence from \dot{H} or C_1-C_4 alkyl;

- R⁹ and R¹⁰ are independently selected at each occurrence from H, C₁-C₄ alkyl, or C₃-C₆ cycloalkyl;
- 5 R^{11} is selected from H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, or C₃-C₆ cycloalkyl;
 - R^{12} is C_1-C_4 alkyl or C_1-C_4 haloalkyl;
- 10 R¹³ is selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₂-C₈ alkoxyalkyl, C₃-C₆ cycloalkyl, C₄-C₁₂ cycloalkylalkyl, aryl, aryl(C₁-C₄ alkyl)-, heteroaryl or heteroaryl(C₁-C₄ alkyl)-;
- 15 R^{15} and R^{16} are independently selected at each occurrence from H, C1-C6 alkyl, C3-C10 cycloalkyl, C4-C16 cycloalkylalkyl, except that for S(0) nR^{15} , R^{15} cannot be H;
- heteroaryl is pyridyl, pyrimidinyl, triazinyl,

 furanyl, pyranyl, quinolinyl, isoquinolinyl,
 thienyl, imidazolyl, thiazolyl, indolyl,
 pyrrolyl, oxazolyl, benzofuranyl, benzothienyl,
 benzothiazolyl, isoxazolyl, pyrazolyl, 2,3dihydrobenzothienyl or 2,3-dihydrobenzofuranyl,
 each being optionally substituted with 1 to 5

substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, $S(O)_{1}R^{15}$, $-COR^{15}$, $CO_{2}R^{15}$, $OC(O)_{1}R^{15}$,

heterocyclyl is saturated or partially saturated heteroaryl, optionally substituted with 1 to 5 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(0)_nR¹⁵, COR¹⁵, CO₂R¹⁵, OC(0)_RR¹⁵, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹⁵, NR¹⁵R¹⁶, and CONR¹⁶R¹⁵;

n is independently at each occurrence 0, 1 or 2.

- [2] Further preferred methods of the present

 20 invention are methods of claim 1 wherein, in the
 compound of Formula (1), Ar is phenyl, pyridyl or 2,3dihydrobenzofuranyl, each optionally substituted with
 1 to 4 R⁴ substituents.
- [2] Further preferred methods of the present invention are methods of claim 1 wherein, in the compound of Formula (1), Ar is 2,4-dichlorophenyl, 2,4-dimethylphenyl or 2,4,6-trimethylphenyl, R^1 and R^2 are CH_3 , and R^3 is $NR^{6a}R^{7a}$.
 - [4] The present invention further comprises compounds of Formula (1):

35

30

TOGGO R¹

(1)

and isomers thereof, stereoisomeric forms thereof, or

5 mixtures of stereoisomeric forms thereof, and
 pharmaceutically acceptable salt forms thereof
 wherein:

Ar is selected from phenyl, naphthyl, pyridyl,

pyrimidinyl, triazinyl, furanyl, thienyl,

benzothienyl, benzofuranyl, 2,3
dihydrobenzofuranyl, 2,3-dihydrobenzothienyl,

indanyl, 1,2-benzopyranyl, 3,4-dihydro-1,2
benzopyranyl, tetralinyl, each Ar optionally

substituted with 1 to 5 R⁴ groups and each Ar is

attached to an unsaturated carbon atom;

R¹ is independently selected at each occurrence from H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, halo, CN, C₁-C₄ haloalkyl, C₁-C₁₂ hydroxyalkyl, C₂-C₁₂ alkoxyalkyl, C₂-C₁₀ cyanoalkyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, NR⁹R¹⁰, C₁-C₄ alkyl-NR⁹R¹⁰, NR⁹COR¹⁰, OR¹¹, SH or S(0)_nR¹²;

25 R^2 is selected from H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₁-C₄ hydroxyalkyl, halo, CN, -

 $NR^{6}R^{7}$, $NR^{9}COR^{10}$, $-NR^{6}S(0)_{n}R^{7}$, $S(0)_{n}NR^{6}R^{7}$, C_{1} - C_{4} haloalkyl, $-OR^{7}$, SH or $-S(0)_{n}R^{12}$;

 R^3 is selected from $NR^{6a}R^{7a}$ and OR^7 ;

5

10

15

35

- R⁴ is independently selected at each occurrence from:

 C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl,

 C3-C6 cycloalkyl, C4-C12 cycloalkylalkyl, NO2,

 halo, CN, C1-C4 haloalkyl, NR⁶R⁷, NR⁸COR⁷,

 NR⁸CO₂R⁷, COR⁷, OR⁷, CONR⁶R⁷, CO(NOR⁹)R⁷, CO₂R⁷,

 or S(O)_nR⁷, where each such C1-C10 alkyl, C2
 C10 alkenyl, C2-C10 alkynyl, C3-C6 cycloalkyl

 and C4-C12 cycloalkylalkyl are optionally

 substituted with 1 to 3 substituents

 independently selected at each occurrence from

 C1-C4 alkyl, NO₂, halo, CN, NR⁶R⁷, NR⁸COR⁷,

 NR⁸CO₂R⁷, COR⁷ OR⁷, CONR⁶R⁷, CO₂R⁷, CO(NOR⁹)R⁷,

 or S(O)_nR⁷;
- 20 R^6 , R^7 , R^{6a} and R^{7a} are independently selected at each occurrence from:

-H,

-C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl,
C1-C10 haloalkyl with 1-10 halogens, C2-C8
alkoxyalkyl, C3-C6 cycloalkyl, C4C12 cycloalkylalkyl, C5-C10 cycloalkenyl,
or C6-C14 cycloalkenylalkyl, each
optionally substituted with 1 to 3
substituents independently selected at each
occurrence from C1-C6 alkyl, C3C6 cycloalkyl, halo, C1-C4 haloalkyl,
cyano, OR¹⁵, SH, S(O)nR¹³, COR¹⁵, CO2R¹⁵,
OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵,
NR⁸CO2R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl,

heteroaryl or heterocyclyl,

-66-

-aryl, aryl(C_1 - C_4 alkyl), heteroaryl, heteroaryl(C_1 - C_4 alkyl), heterocyclyl or heterocyclyl(C_1 - C_4 alkyl),

alternatively, NR^6R^7 and $NR^{6a}R^{7a}$ are independently piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine or thiomorpholine, each optionally substituted with 1-3 C1-C4 alkyl groups;

 R^8 is independently selected at each occurrence from H or C1-C4 alkyl;

 R^9 and R^{10} are independently selected at each occurrence from H, C1-C4 alkyl, or C3-C6 cycloalkyl;

15 R^{11} is selected from H, C₁-C₄ alkyl, C₁-C₄ haloalkyl, or C₃-C₆ cycloalkyl;

 R^{12} is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl;

20

 R^{13} is selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_2 - C_8 alkoxyalkyl, C_3 - C_6 cycloalkyl, C_4 - C_{12} cycloalkylalkyl, aryl, aryl(C_1 - C_4 alkyl)-, heteroaryl or heteroaryl(C_1 - C_4 alkyl)-;

25

 R^{15} and R^{16} are independently selected at each occurrence from H, C1-C6 alkyl, C3-C10 cycloalkyl, C4-C16 cycloalkylalkyl, except that for $S(0) nR^{15}$, R^{15} cannot be H;

30

35

aryl is phenyl or naphthyl, each optionally substituted with 1 to 5 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano,

OR¹⁵, SH, S(0)_nR¹⁵, COR¹⁵, CO₂R¹⁵, OC(0)R¹⁵, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹⁵, NR¹⁶R¹⁵, and CONR¹⁶R¹⁵;

- heteroaryl is pyridyl, pyrimidinyl, triazinyl, 5 furanyl, pyranyl, quinolinyl, isoquinolinyl, thienyl, imidazolyl, thiazolyl, indolyl, pyrrolyl, oxazolyl, benzofuranyl, benzothienyl, benzothiazolyl, isoxazolyl, pyrazolyl, 2,3-10 dihydrobenzothienyl or 2,3-dihydrobenzofuranyl, each being optionally substituted with 1 to 5 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR¹⁵, SH, $S(0)_{n}R^{15}$, $-COR^{15}$, $CO_{2}R^{15}$, $OC(0)_{R^{15}}$, $NR^{8}COR^{15}$, 15 $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$, $NR^8CO_2R^{15}$, $NR^{16}R^{15}$, and CONR16R15;
- heterocyclyl is saturated or partially saturated

 heteroaryl, optionally substituted with 1 to 5
 substituents independently selected at each
 occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl,
 halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH,
 S(O)_nR¹⁵, COR¹⁵, CO₂R¹⁵, OC(O)R¹⁵, NR⁸COR¹⁵,
 N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹⁵, NR¹⁵R¹⁶, and
 CONR¹⁶R¹⁵;

n is independently at each occurrence 0, 1 or 2;

- 30 with the provisos that:
 - (1) when R^2 is H and R^3 is $-OR^7$ and R^7 is H, then R^1 is not H, OH or SH;

- when R^1 is CH_3 or C_2H_5 and R^2 is H, and R^3 is OH, (2) NHC_4H_9 , or $N(C_2H_5)_2$, then Ar is not phenyl or m-CH₃-phenyl.
- 5 when R^2 is H and Ar is pyridyl, pyrimidinyl or (3) pyrazinyl, and R^3 is $NR^{6a}R^{7a}$, then R^{6a} and R^{7a} are not H or alkyl;
 - when R^2 is $SO_2NR^6R^7$, then R^3 is not OH; and (4)

10 when R^2 is $-NR^6SO_2R^7$ or $-SO_2NR^6R^7$, then R^3 is not (5) OH.

- Further preferred compounds of the present 15 invention include compounds of claim 4 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof with the additional
- provisos that: (1) when R^1 is H, C_1 - C_4 alkyl, halo, 20 CN, C1-C12 hydroxyalkyl, C1-C4 alkoxyalkyl or SO2(C1-C4 alkyl) and R^3 is $NR^{6a}R^{7a}$ and R^{6a} is unsubstituted C_1-C_4 alkyl, then R^{7a} is not phenyl, naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, pyrazinyl,
- furanyl, benzofuranyl, benzothiazolyl, indolyl or C3-25 C6 cycloalkyl; and (2) when R^1 is H, C_1 - C_4 alkyl, halo, CN, C1-C12 hydroxyalkyl, C1-C4 alkoxyalkyl or $SO_2(C_1-C_4 \text{ alkyl})$ and R^3 is $NR^{6a}R^{7a}$ and R^{7a} is unsubstituted C_1-C_4 alkyl, then R^{6a} is not phenyl,
- naphthyl, thienyl, benzothienyl, pyridyl, quinolyl, 30 pyrazinyl, furanyl, benzofuranyl, benzothiazolyl, indolyl or C3-C6 cycloalkyl.
- Further preferred compounds of the present 35 invention include compounds of claim 4 and isomers thereof, stereoisomeric forms thereof, or mixtures of

stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein: Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, each optionally substituted with 1 to 4 $\rm R^4$ substituents.

5

- [7] Further preferred compounds of the present invention include compounds of claim 6 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein: Ar is 2,4-dichlorophenyl, 2,4-dimethylphenyl or 2,4,6-trimethylphenyl, and R^1 and R^2 are CH_3 .
- [8] The present invention further provides for a

 15 pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutical-ly effective amount of a compound of claim 4.
- [9] The present invention further provides for a 20 pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 6.
- [10] The present invention further provides for a 25 pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 7.
- [11] Further preferred compounds of the present

 30 invention include compounds of claim 6 and isomers
 thereof, stereoisomeric forms thereof, or mixtures of
 stereoisomeric forms thereof, and pharmaceutically
 acceptable salt forms thereof wherein:
- 35 R^{6a} is independently selected from: -H,

	-C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl,
	C_1-C_{10} haloalkyl with 1-10 halogens, C_2-C_8
	alkoxyalkyl, C3-C6 cycloalkyl, C4-
	C ₁₂ cycloalkylalkyl, C ₅ -C ₁₀ cycloalkenyl,
5	or C6-C14 cycloalkenylalkyl, each
	optionally substituted with 1 to 3
	substituents independently selected at each
	occurrence from C1-C6 alkyl, C3-
	C6 cycloalkyl, halo, C1-C4 haloalkyl,
10	cyano, OR^{15} , SH, $S(0)_nR^{13}$, COR^{15} , CO_2R^{15} ,
	$OC(0)R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$,
	$NR^{8}CO_{2}R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl,
	heteroaryl or heterocyclyl,
	-aryl, aryl(C_1 - C_4 alkyl)-, heteroaryl,
15	heteroaryl(C_1 - C_4 alkyl)-, heterocyclyl or
	heterocyclyl(C_1-C_4 alkyl)-; and
	R^{7a} is independently selected at each occurrence from:
	-н,
	-C5-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl,
20	C1-C10 haloalkyl with 1-10 halogens, C2-C8
	alkoxyalkyl, C3-C6 cycloalkyl, C4-
	C ₁₂ cycloalkylalkyl, C ₅ -C ₁₀ cycloalkenyl,
	or C6-C ₁₄ cycloalkenylalkyl, each
	optionally substituted with 1 to 3
25	substituents independently selected at each
	occurrence from C1-C6 alkyl, C3-
	C6 cycloalkyl, halo, C1-C4 haloalkyl,
	cyano, OR^{15} , SH, $S(0)_{n}R^{13}$, COR^{15} , $CO_{2}R^{15}$,
	$OC(0)R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$, $NR^8CONR^{16}R^{15}$,
30	$NR^{8}CO_{2}R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl,
	heteroaryl or heterocyclyl,
	-aryl, aryl(C1-C4 alkyl), heteroaryl,
	heteroaryl(C1-C4 alkyl), heterocyclyl or
	heterocyclyl(C1-C4 alkyl);

alternatively, NR^6R^7 and $NR^{6a}R^{7a}$ are independently piperidine, pyrrolidine, piperazine, N-methylpiperazine, morpholine or thiomorpholine, each optionally substituted with 1-3 C1-C4 alkyl groups.

5

10

15

20

[12] Further preferred compounds of the present invention include compounds of claim 6 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein:

R6a and R7a are identical and are selected from: $-C_1-C_4 \text{ alkyl or } C_3-C_6 \text{ cycloalkyl, each optionally}$ substituted with 1 to 3 substituents independently selected at each occurrence from $C_1-C_6 \text{ alkyl, } C_3-C_6 \text{ cycloalkyl, halo, } C_1-C_4$ haloalkyl, cyano, OR^{15} , SH, $S(O)_1R^{13}$, $-COR^{15}$, $CO_2R^{15}, OC(O)_1R^{13}, NR^8COR^{15}, N(COR^{15})_2,$ $NR^8CONR^{16}R^{15}, NR^8CO_2R^{13}, NR^{16}R^{15}, CONR^{16}R^{15},$ aryl, heteroaryl or heterocyclyl, and -aryl or heteroaryl.

[13] Further preferred compounds of the present invention include compounds of claim 6 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein:

R6a is selected from:

-H,
-C1-C10 alkyl, C3-C10 alkenyl, C3-C10 alkynyl,
C1-C10 haloalkyl with 1-10 halogens, C2-C8
alkoxyalkyl, C3-C6 cycloalkyl, C4C12 cycloalkylalkyl, C5-C10 cycloalkenyl,
or C6-C14 cycloalkenylalkyl, each

optionally substituted with 1 to 3 substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, $S(O)_{1}R^{13}$, COR^{15} , $CO_{2}R^{15}$, $OC(O)_{1}R^{13}$, $NR^{8}COR^{15}$, $N(COR^{15})_{2}$, $NR^{8}CONR^{16}R^{15}$, $NR^{8}CO_{2}R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl,

heteroaryl or heterocyclyl,
-aryl, aryl(C1-C4 alkyl), heteroaryl,
heteroaryl(C1-C4 alkyl), heterocyclyl or
heterocyclyl(C1-C4 alkyl);

R^{7a} is selected from:

5

10

25

-C₁-C₄ alkyl and each such C₁-C₄ alkyl is
substituted with 1-3 substituents

independently selected at each occurrence from
C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄
haloalkyl, cyano, OR¹⁵, SH, S(O)nR¹³, COR¹⁵,
CO₂R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂,
NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵,
aryl, heteroaryl or heterocyclyl.

[14] Further preferred compounds of the present invention include compounds of claim 6 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein:

one of R^{6a} and R^{7a} is selected from:

-C₃-C₆ cycloalkyl, each such C₃-C₆ cycloalkyl

optionally substituted with 1-3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(O)nR¹³, COR¹⁵, CO₂R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂,

NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl, heteroaryl or heterocyclyl,

-aryl,

-heteroaryl or

-heterocyclyl,

and the other of R^{6a} and R^{7a} is unsubstituted C_1-C_4 alkyl.

[15] Further preferred compounds of the present invention include compounds of claim 6 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein R6a and R7a are independently H or C1-C10 alkyl, each such C1-C10 alkyl optionally substituted with 1 to 3 substituents independently selected at each occurrence from C1-C6 alkyl, C3-C6 cycloalkyl, halo, C1-C4 haloalkyl, cyano, OR15, SH, S(O)nR13, COR15, CO2R15, OC(O)R13, NR8COR15, N(COR15)2, R8CONR16R15, NR8CO2R13, NR16R15, CONR16R15, aryl, heteroaryl or heterocyclyl.

20

25

30

35

[16] Further preferred compounds of the present invention include compounds of claim 4 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein:

-Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, and each Ar is optionally substituted with 1 to $4\ R^4$ substituents;

 $-R^1$ and R^2 are independently selected from H, C_1-C_4 alkyl, C_3-C_6 cycloalkyl, C_4-C_{10} cycloalkylalkyl.

[17] Further preferred compounds of the present invention include compounds of claim 11 and isomers thereof, stereoisomeric forms thereof, or mixtures of

20

25

stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein:

- -Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, and each Ar is optionally substituted with 1 to $4\ R^4$ substituents;
- $-R^1$ and R^2 are independently selected from H, C_1-C_4 alkyl, C_3-C_6 cycloalkyl, C_4-C_{10} cycloalkylalkyl.
- 10 [18] Further preferred compounds of the present invention include compounds of claim 12 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein:
- 15 -Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, and each Ar is optionally substituted with 1 to $4\ R^4$ substituents;
 - $-R^1$ and R^2 are independently selected from H, C_1-C_4 alkyl, C_3-C_6 cycloalkyl, C_4-C_{10} cycloalkylalkyl.
 - [19] Further preferred compounds of the present invention include compounds of claim 13 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein:
 - -Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, and each Ar is optionally substituted with 1 to $4\ R^4$ substituents;
- 30 -R¹ and R² are independently selected from H, C₁-C₄ alkyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl.
- [20] Further preferred compounds of the present invention include compounds of claim 14 and isomers thereof, stereoisomeric forms thereof, or mixtures of

stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein:

-Ar is phenyl, pyridyl or 2,3-dihydrobenzofuranyl, and each Ar is optionally substituted with 1 to $4\ R^4$ substituents;

- -R¹ and R² are independently selected from H, C₁-C₄ alkyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl.
- 10 [21] Further preferred compounds of the present invention include compounds of claim 16 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein:

one of R^{6a} and R^{7a} is selected from:

-C₃-C₆ cycloalkyl, each such C₃-C₆ cycloalkyl optionally substituted with 1-3 substituents independently selected at each occurrence from C₁-C₆ alkyl, C₃-C₆ cycloalkyl, halo, C₁-C₄ haloalkyl, cyano, OR¹⁵, SH, S(O)nR¹³, COR¹⁵, CO₂R¹⁵, OC(O)R¹³, NR⁸COR¹⁵, N(COR¹⁵)₂, NR⁸CONR¹⁶R¹⁵, NR⁸CO₂R¹³, NR¹⁶R¹⁵, CONR¹⁶R¹⁵, aryl, heteroaryl or heterocyclyl,

25 -aryl,

-heteroaryl or

-heterocyclyl,

and the other of R^{6a} and R^{7a} is unsubstituted C_1-C_4 alkyl.

30

5

15

[22] Further preferred compounds of the present invention include compounds of claim 16 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically

35 acceptable salt forms thereof wherein

 R^{6a} and R^{7a} are independently H or C_1 - C_{10} alkyl, each such C_1 - C_{10} alkyl optionally substituted with 1 to 3 substituents independently selected at each occurrence from C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, halo, C_1 - C_4 haloalkyl, cyano, OR^{15} , SH, $S(O)_nR^{13}$, COR^{15} , CO_2R^{15} , $OC(O)_R^{13}$, NR^8COR^{15} , $N(COR^{15})_2$, $R^8CONR^{16}R^{15}$, $NR^8CO_2R^{13}$, $NR^{16}R^{15}$, $CONR^{16}R^{15}$, aryl, heteroaryl or heterocyclyl.

- [23] Further preferred compounds of the present invention include compounds of claim 4 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein R¹ is independently selected at each occurrence from H, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C1-C4 haloalkyl, C1-C12 hydroxyalkyl, C2-C12 alkoxyalkyl, C3-C6 cycloalkyl, C4-C10 cycloalkylalkyl.
- [24] Further preferred compounds of the present invention include compounds of claim 4 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein R² is selected from H, C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, C₄-C₁₀ cycloalkylalkyl, C₁-C₄ hydroxyalkyl, halo, CN, -NR⁶R⁷, C₁-C₄ haloalkyl, -OR⁷.
- [25] Further preferred compounds of the present

 invention include compounds of claim 4 and isomers
 thereof, stereoisomeric forms thereof, or mixtures of
 stereoisomeric forms thereof, and pharmaceutically
 acceptable salt forms thereof wherein R⁴ is
 independently selected at each occurrence from: H,

 C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C6

cycloalkyl, C4-C12 cycloalkylalkyl, halo, CN, C1-C4 haloalkyl, NR 6 R 7 , COR 7 , OR 7 , S(O) $_n$ (C1-C10 alkyl), where each such C1-C10 alkyl, C2-C10 alkenyl, C2-C3-C6 cycloalkyl and C4-C12 cycloalkylalkyl are

- optionally substituted with 1 to 3 substituents independently selected at each occurrence from C_1 - C_4 alkyl, NR^6R^7 , COR^7 OR^7 , CO_2R^7 and where R^7 in $SONR^7$ is C_1 - C_{10} alkyl.
- [26] Further preferred compounds of the present invention include compounds of claim 4 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof wherein R⁴ is independently selected at each occurrence from: H,
 - [27] Further preferred compounds of the present invention include compounds of Formula (50)

 $C_1 - C_{10}$ alkyl, C1-C4 alkoxy, halo, CN and $-NR^6R^7$.

20

70790

FORMULA (50)

25

and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and

pharmaceutically acceptable salt forms thereof, selected from the group consisting of:

- 5 a compound of Formula (50) wherein R^3 is -NHCH(n-Pr)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, 10 R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)(n-Bu), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(Et)(CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(CH₂OEt)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -N (Me) (Ph), R^{4a} is Cl. R^{4b} is H. R^{4c} is Cl. R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)(n-Pr), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;

- a compound of Formula (50) wherein R^3 is -NHCH(CH2OMe)2, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is -N (CH2CH2OMe)2, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 NHCH(Et)(CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -OEt, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-N(CH_2CN)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 25 a compound of Formula (50) wherein R^3 is NHCH(Me)(CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 OCH(Et)(CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -N(n-Pr) (CH2cPr), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(Me)(CH₂N(Me)₂), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;

-80-

- a compound of Formula (50) wherein R^3 is N(cPr)(CH2CH2CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is -N(n-Pr) (CH2CH2CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein \mathbb{R}^3 is $-\mathbb{N}(n-10)$ Bu) (CH2CN), \mathbb{R}^{4a} is Me, \mathbb{R}^{4b} is H, \mathbb{R}^{4c} is Me, \mathbb{R}^{4d} is H and \mathbb{R}^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(Et)(CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
 - a compound of Formula (50) wherein R^3 is -NHCH(Et)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
- 20 a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is -NHCH(CH2OMe)2, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 NHCH(Et)(CH₂OMe), R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
- 35 a compound of Formula (50) wherein R^3 is -NHCH(CH2OEt)2, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is 40 NHCH(CH2CH2OMe)(CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;

- a compound of Formula (50) wherein R^3 is morpholino, R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NH(c-Pr), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(CH2OMe)2, 15 R^{4a} is CN, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH2CH2CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is Me;
 - a compound of Formula (50) wherein R^3 is -NCH(CH2OMe)2, R^{4a} is Me, R^{4b} is H, R^{4c} is Br, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Br, R^{4d} is H and R^{4e} is H;
- 30 a compound of Formula (50) wherein R^3 is -NHCH(CH2OMe)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;

20

- a compound of Formula (50) wherein R^3 is NHCH(Et)(CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is
 NHCH(CH₂OMe)(CH₂CH₂OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH₂CH₂CN), R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH2CH2CN), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is (S)-NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 25 a compound of Formula (50) wherein R^3 is NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} 30 is Me, R^{4b} is H, R^{4c} is Br, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NH(CH2OMe)(CH2-iPr), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is H, R^{4d} is H and R^{4e} is H;
- 40 a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is NMe2, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is NHCH(CH2OMe)(n-Pr), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NHCH(CH2OEt)(Et), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 10 a compound of Formula (50) wherein R^3 is NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is NMe2, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NHCH(Et)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 20 a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(CH₂OMe)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is Br, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)₂, R^{4a} 35 is Cl, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Me, R^{4b} is H, R^{4c} is NMe2, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is (S)
 NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Me, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is (S)
 NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(CH2OMe)(CH2CH2OMe), R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH₂CH₂CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NH(Et)(CH2CN), R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
- 25 a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Me, R^{4b} is Me, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH2CH2OMe) (CH2CH2OH), R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is Me, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is Me, R^{4b} is Me, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 40 a compound of Formula (50) wherein R^3 is $-N(CH_2c-Pr)$ (n-Pr), R^{4a} is Me, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H;

20

- a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH_2CH_2CN) , R^{4a} is Me, R^{4b} is Me, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH (Et)₂, R^{4a} is Cl, R^{4b} is H, R^{4C} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -10 NHCH(Et)(CH2OMe), R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $-N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is CN, R^{4d} is H and R^{4e} is H; 15
 - a compound of Formula (50) wherein R^3 is -N(c-Pr) (CH₂CH₂CN), R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $-NHCH(CH_2OH)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is Cl, R^{4d} is H and R^{4e} is H; and
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} 25 is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R³ is 2-ethylpiperid-1-yl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and 30 R^{4e} is H:
 - a compound of Formula (50) wherein R^3 is cyclobutylamino, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $N(Me)CH_2CH=CH_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R³ is N(Et)CH₂CH=CH₂, 40 R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(Me)CH2cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H:
- 5 a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(Pr)CH_2cPr$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Et)propargyl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 30 a compound of Formula (50) wherein R^3 is NHCH(CH3)CH(CH3)CH3, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)-35 CH₂CH=CH₂, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)Me$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)Et, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Pr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$
 10 CH2CPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H

 and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NHCH(CH3)CH2CH3, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(cPr)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 20 a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-yl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is cyclobutyl-25 amino, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)CH₂CH=CH₂, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Et)CH2CH=CH2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)CH2cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- 40 a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;

- 5 a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Et)propargyl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(CH3)CH(CH3)CH3, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$ $CH_2CH=CH_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- 30 a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Me, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)Et$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Pr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)-CH2CPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is NHCH(CH3)CH2CH3, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} 10 is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NHCH(cPr)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is -NHCH(Et)2, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-yl, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 25 a compound of Formula (50) wherein R^3 is cyclobutylamino, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)CH₂CH=CH₂, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Et)CH₂CH=CH₂, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)CH2cPr, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H:
- 5 a compound of Formula (50) wherein R^3 is N(Pr)CH2cPr, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is 10 OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 15 a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Et)propargyl, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(CH3)CH(CH3)CH3, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 30 a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)-CH2CH=CH2, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)Me$, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)Et, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)Pr, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H:
- 5 a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$ CH_2CPr , R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is

 NHCH(CH3)CH2CH3, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NHCH(cPr)2, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)2, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(Et)₂, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- 25 a compound of Formula (50) wherein R^3 is $N(Et)_2$, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-yl, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
 - a compound of Formula (50) wherein ${\bf R}^3$ is cyclobutylamino, ${\bf R}^{4a}$ is OMe, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is OMe, ${\bf R}^{4d}$ is Me and ${\bf R}^{4e}$ is H;
 - a compound of Formula (50) wherein R^3 is N(Me)CH2CH=CH2, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- 40 a compound of Formula (50) wherein R^3 is N(Et)CH₂CH=CH₂, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(Me)CH2cPr, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H:
- 5 a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Pr)CH2cPr, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
 - a compound of Formula (50) wherein ${\bf R}^3$ is N(Me)propargyl, ${\bf R}^{4a}$ is OMe, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is OMe, ${\bf R}^{4d}$ is Me and ${\bf R}^{4e}$ is H;
 - a compound of Formula (50) wherein R^3 is N(Et)propargyl, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- 30 a compound of Formula (50) wherein R^3 is NHCH(CH3)CH(CH3)CH3, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)-35 CH2CH=CH2, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)Me, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;

20

- a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Et, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)Pr$, 5 R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e}
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$ -CH2CPr, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me 10 and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(CH₃)CH₂CH₃, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H:
 - a compound of Formula (50) wherein R^3 is NHCH(cPr)2, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is
 - a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)₂. R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e}
- a compound of Formula (50) wherein R^3 is NHCH(Et)_{2. R^{4a}} 25 is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H:
- a compound of Formula (50) wherein R^3 is N(Et)2, R^{4a} is OMe, R^{4b} is H, R^{4c} is OMe, R^{4d} is Me and R^{4e} is H; 30
- a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-y1, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me; 35
 - a compound of Formula (50) wherein R^3 is cyclobutylamino, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;

- 5 a compound of Formula (50) wherein R^3 is N(Et)CH2CH=CH2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is N(Me)CH₂CPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is N(Et)CH₂cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
 - a compound of Formula (50) wherein R^3 is N(Pr)CH2cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
 - a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
 - a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- 30 a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is N(Et)propargyl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is NHCH(CH3)CH(CH3)CH3, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;

40

- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$ $CH_2CH=CH_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- 5 a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Me, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)Et, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)Pr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
 - a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe) CH₂CPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
 - a compound of Formula (50) wherein R^3 is NHCH(CH3)CH2CH3, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- 25 a compound of Formula (50) wherein R^3 is NHCH(Et)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is NHCH(cPr)2, R^{4a} 30 is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is Me;
- a compound of Formula (50) wherein R^3 is NHCH(Et)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-yl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;

- a compound of Formula (50) wherein R^3 is cyclobutyl-amino, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- 5 a compound of Formula (50) wherein R^3 is N(Me)CH₂CH=CH₂, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(Et)CH₂CH=CH₂, 10 R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(Me)CH₂cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is N(Pr)CH2cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- 25 a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(Et)propargyl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;

- a compound of Formula (50) wherein R^3 is NHCH(CH3)CH(CH3)CH3, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- 5 a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$ $CH_2CH=CH_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)Me, 10 R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)Et$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Pr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe) CH₂CPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- 25 a compound of Formula (50) wherein R^3 is NHCH(CH3)CH2CH3, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is NHCH(cPr)₂, R^{4a} 30 is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)_2$, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein ${\bf R}^3$ is NHCH(Et)2, ${\bf R}^{4a}$ is Me, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is OMe, ${\bf R}^{4d}$ is H and ${\bf R}^{4e}$ is OMe;
 - a compound of Formula (50) wherein R^3 is N(Et)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;

- a compound of Formula (50) wherein R^3 is NHCH(Et)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-yl, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- 10 a compound of Formula (50) wherein R^3 is cyclobutyl-amino, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(Me)CH₂CH=CH₂, 15 R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(Et)CH2CH=CH2, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is N(Me)CH₂cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- 30 a compound of Formula (50) wherein R^3 is N(Pr)CH2cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is C1, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- 40 a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;

20

- a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- 5 a compound of Formula (50) wherein R^3 is N(Et)propargyl, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is NHCH(CH3)CH(CH3)CH3, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)-CH2CH=CH2, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Me, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein ${\bf R}^3$ is N(CH2CH2OMe)Et, ${\bf R}^{4a}$ is Cl, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is OMe, ${\bf R}^{4d}$ is H and ${\bf R}^{4e}$ is OMe;
- 25 a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)Pr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)-30 CH₂CPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is NHCH(CH3)CH2CH3, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein R^3 is NHCH(cPr)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
 - a compound of Formula (50) wherein ${\bf R}^3$ is N(CH2CH2OMe)2, ${\bf R}^{4a}$ is Cl, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is OMe, ${\bf R}^{4d}$ is H and ${\bf R}^{4e}$ is OMe;

15

- a compound of Formula (50) wherein R^3 is NHCH(Et)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is N(Et)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is OMe;
- a compound of Formula (50) wherein R^3 is NHCH(Et)₂, R^{4a} 10 is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-yl, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is cyclobutylamino, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 20 a compound of Formula (50) wherein R^3 is N(Me)CH₂CH=CH₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Et)CH₂CH=CH₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)CH2cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Pr)CH2cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 40 a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is C1, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Et)propargyl, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 15 a compound of Formula (50) wherein R^3 is NHCH(CH3)CH(CH3)CH3, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$
 20 $CH_2CH=CH_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)Me, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Et, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)Pr$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 35 a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$ CH_2CPr , R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is

 NHCH(CH3)CH2CH3, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is NHCH(cPr)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NHCH(Et)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is H and R^{4e} is H.
- a compound of Formula (50) wherein R^3 is NHCH(Et)₂, R^{4a} 15 is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-yl, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is cyclobutylamino, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- 25 a compound of Formula (50) wherein R^3 is N(Me)CH₂CH=CH₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Et)CH₂CH=CH₂, 30 R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)CH₂CPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(Pr)CH2cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NH(CH(CH3)CH(CH3)CH3, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$ $CH_2CH=CH_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is R^{4e} is R^{4
 - a compound of Formula (50) wherein ${\bf R}^3$ is N(CH2CH2OMe)Me, ${\bf R}^{4a}$ is Cl, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is OMe, ${\bf R}^{4d}$ is F and ${\bf R}^{4e}$ is H;
- 30 a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Et, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)Pr$, 35 R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$ CH_2CPr , R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and F^{4e} is F

- a compound of Formula (50) wherein R^3 is NH(CH(CH3)CH2CH3, R^{4a} is Cl, R^{4b} is F, R^{4c} is OMe, R^{4d} is H and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is NHCH(cPr)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(Et)₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- 15 a compound of Formula (50) wherein R^3 is $N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H.
- a compound of Formula (50) wherein R^3 is NHCH(Et)2, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-yl, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is cyclobutylamino, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 30 a compound of Formula (50) wherein R^3 is N(Me)CH2CH=CH2, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Et)CH₂CH=CH₂, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)CH2cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is N(Pr)CH2cPr, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is 10 Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 15 a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NH(CH(CH3)CH(CH3)CH3, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$ $CH_2CH=CH_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is R^{4e} is R^{4
- 30 a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Me, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)Et$, 35 R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)Pr$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)$ CH_2CPr , R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is NHCH(CH3)CH2CH3, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NHCH(cPr)₂, R^{4a} 10 is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is $N(CH_2CH_2OMe)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein ${\bf R}^3$ is NHCH(Et)2, ${\bf R}^{4a}$ is Cl, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is OMe, ${\bf R}^{4d}$ is OMe and ${\bf R}^{4e}$ is H;
 - a compound of Formula (50) wherein R^3 is $N(Et)_2$, R^{4a} is Cl, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H.
- a compound of Formula (50) wherein R^3 is NHCH(Et)2, R^{4a} 25 is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-yl, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is cyclobutylamino, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)CH2CH=CH2, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 40 a compound of Formula (50) wherein R^3 is N(Et)CH2CH=CH2, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(Me)CH2cPr, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 10 a compound of Formula (50) wherein R^3 is N(Pr)CH2cPr, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 20 a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NH(CH(CH3)CH(CH3)CH3, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(CH2CH2OMe) CH2CH=CH2, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- 35 a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Me, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Et, 40 R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)Pr, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)-CH2cPr, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is

 NH(CH(CH3)CH2CH3, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is NHCH(cPr)₂, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)2, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein ${\bf R}^3$ is NHCH(Et)2, ${\bf R}^{4a}$ is Br, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is OMe, ${\bf R}^{4d}$ is OMe and ${\bf R}^{4e}$ is H;
- 25 a compound of Formula (50) wherein R^3 is $N(Et)_{2}$, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H.
- a compound of Formula (50) wherein R^3 is NHCH(Et)₂, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is 2-ethylpiperid-1-yl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is cyclobutylamino, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 40 a compound of Formula (50) wherein R^3 is N(Me)CH2CH=CH2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(Et)CH2CH=CH2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)CH2cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- 10 a compound of Formula (50) wherein R^3 is N(Et)CH2cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Pr)CH2cPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Pr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)Et, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(Me)Bu, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is N(Me)propargyl, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NH(CH(CH3)CH(CH3)CH3, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 35 a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)-CH2CH=CH2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is F and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Me, 40 R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;

- a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Et, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- 5 a compound of Formula (50) wherein R^3 is N(CH2CH2OMe)Pr, R^{4a} is Br, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
- a compound of Formula (50) wherein R^3 is N(CH₂CH₂OMe)
 CH₂CPr, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NH(CH(CH3)CH2CH3, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein R^3 is NHCH(cPr)2, R^{4a} is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H;
 - a compound of Formula (50) wherein ${\bf R}^3$ is N(CH2CH2OMe)2, ${\bf R}^{4a}$ is Me, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is OMe, ${\bf R}^{4d}$ is OMe and ${\bf R}^{4e}$ is H;
- 25 a compound of Formula (50) wherein ${\bf R}^3$ is NHCH(Et)2, ${\bf R}^{4a}$ is Me, ${\bf R}^{4b}$ is H, ${\bf R}^{4c}$ is OMe, ${\bf R}^{4d}$ is OMe and ${\bf R}^{4e}$ is H; and
- a compound of Formula (50) wherein R^3 is $N(Et)_2$, R^{4a} 30 is Me, R^{4b} is H, R^{4c} is OMe, R^{4d} is OMe and R^{4e} is H.
 - [28] Further preferred compounds of the present invention include compounds of claim 4 of Formula (60)

$$R^3$$
 N
 N
 CH_3

FORMULA (60)

and isomers thereof, stereoisomeric forms thereof, or
mixtures of stereoisomeric forms thereof, and
pharmaceutically acceptable salt forms thereof, selected
from the group consisting of:

a compound of Formula (60) wherein R³ is NHCH(Et)₂, Ar is 6-dimethylamino-4-methylpyrid-3-yl;

10

- a compound of Formula (60) wherein R³ is 2-ethylpiperid-1-yl, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is cyclobutylamino, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is $N(Me)CH_2CH=CH_2$,

 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- 20 a compound of Formula (60) wherein R³ is N(Et)CH₂cPr, Ar
 is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Pr)CH₂cPr,

 Ar is 6-dimethylamino-4-methylpyrid-3-yl;

25

a compound of Formula (60) wherein R³ is N(Me)Pr, Ar is 6-dimethylamino-4-methylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is N(Me)Et, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- 5 a compound of Formula (60) wherein R³ is N(Me)Bu, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Me)propargyl,

 Ar is 6-dimethylamino-4-methylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is N(Et)propargyl,

 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is

 NH(CH(CH₃)CH(CH₃)CH₃, Ar is 6-dimethylamino-4methylpyrid-3-yl;
- a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)$ $CH_2CH=CH_2$, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)Me$,

 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- 25 a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Et,

 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Pr,

 Ar is 6-dimethylamino-4-methylpyrid-3-yl;

30

a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)$ - CH_2CPr , Ar is 6-dimethylamino-4-methylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is NH(CH(CH₃)CH₂CH₃, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is NHCH(cPr)₂ Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)₂,

 10 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is NHCH(Et)₂ Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(Et)₂, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is 2-ethylpiperid-1-yl, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is cyclobutylamino, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(Me)CH₂CH=CH₂,

 25 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Et)CH₂cPr, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- 30 a compound of Formula (60) wherein R³ is N(Pr)CH2cPr, Ar
 is 6-dimethylamino-4-methylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is N(Me)Pr, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(Me)Et, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Me)Bu, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(Me)propargyl,
 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is

 NH(CH(CH3)CH(CH3)CH3, Ar is 6-dimethylamino-4
 methylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)$ $CH_2CH=CH_2$, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Me,

 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Et,

 25 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Pr,

 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- 30 a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)$ CH_2CPr , Ar is 6-dimethylamino-4-methylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is NH(CH(CH₃)CH₂CH₃, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- 5 a compound of Formula (60) wherein R³ is NHCH(cPr)₂, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)₂,

 Ar is 6-dimethylamino-4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is NHCH(Et)₂, Ar is 6-dimethylamino-4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(Et)₂, Ar is 6-dimethylamino-4-methylpyrid-3-yl.
 - a compound of Formula (60) wherein R³ is 2-ethylpiperid-1-yl, Ar is 6- methoxy -4-methylpyrid-3-yl;
- 20 a compound of Formula (60) wherein R³ is cyclobutylamino, Ar is 6- methoxy -4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Me)CH₂CH=CH₂,

 Ar is 6- methoxy -4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Et)CH₂cPr, Ar is 6- methoxy -4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(Pr)CH₂cPr,

 30 Ar is 6- methoxy -4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Me)Pr, Ar is 6- methoxy -4-methylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is N(Me)Et, Ar is 6- methoxy -4-methylpyrid-3-yl;
- 5 a compound of Formula (60) wherein R³ is N(Me)Bu, Ar is 6- methoxy -4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Me)propargyl,

 Ar is 6- methoxy -4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is N(Et) propargyl,

 Ar is 6- methoxy -4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is

 NHCH(CH₃)CH(CH₃)CH₃, Ar is 6- methoxy -4
 methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe) CH₂CH=CH₂, Ar is 6- methoxy -4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Me,

 Ar is 6- methoxy -4-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Et,

 25 Ar is 6- methoxy -4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Pr,

 Ar is 6- methoxy -4-methylpyrid-3-yl;
- 30 a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)$ CH_2CPr , Ar is 6- methoxy -4-methylpyrid-3-yl;

25

- a compound of Formula (60) wherein R³ is

 NHCH(CH₃)CH₂CH₃, Ar is 6- methoxy -4-methylpyrid-3yl;
- 5 a compound of Formula (60) wherein R³ is NHCH(cPr)₂ Ar is 6- methoxy -4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)₂,

 Ar is 6- methoxy -4-methylpyrid-3-yl;

a compound of Formula (60) wherein R³ is NHCH(Et)₂ Ar is 6- methoxy -4-methylpyrid-3-yl;

- a compound of Formula (60) wherein R^3 is N(Et)2, Ar is 6- methoxy -4-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is 2-ethylpiperid-1-yl, Ar is 4-methoxy-6-methylpyrid-3-yl;
- 20 a compound of Formula (60) wherein R³ is cyclobutylamino, Ar is 4-methoxy-6-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is N(Me)CH₂CH=CH₂, Ar is 4-methoxy-6-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Et)CH₂cPr, Ar is 4-methoxy-6-methylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(Pr)CH₂cPr, Ar 30 is 4-methoxy-6-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is N(Me)Pr, Ar is 4-methoxy-6-methylpyrid-3-yl;

20

- a compound of Formula (60) wherein R³ is N(Me)Et, Ar is 4-methoxy-6-methylpyrid-3-yl;
- 5 a compound of Formula (60) wherein R³ is N(Me)Bu, Ar is 4-methoxy-6-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Me)propargyl,

 Ar is 4-methoxy-6-methylpyrid-3-yl;

a compound of Formula (60) wherein R³ is

NHCH(CH3)CH(CH3)CH3, Ar is 4-methoxy-6-methylpyrid3-yl;

- a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe) CH₂CH=CH₂, Ar is 4-methoxy-6-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Me,

 Ar is 4-methoxy-6-methylpyrid-3-yl;

a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Et,

Ar is 4-methoxy-6-methylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Pr,

 25 Ar is 4-methoxy-6-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe) CH₂CPr, Ar is 4-methoxy-6-methylpyrid-3-yl;

25

- a compound of Formula (60) wherein R^3 is NHCH(cPr)2, Ar is 4-methoxy-6-methylpyrid-3-yl;
- 5 a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)₂,

 Ar is 4-methoxy-6-methylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is NHCH(Et)₂, Ar is 6- methoxy -4-methylpyrid-3-yl;

a compound of Formula (60) wherein R³ is N(Et)₂, Ar is
4- methoxy-6-methylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is 2-ethylpiperid-15 1-yl, Ar is 4,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is cyclobutylamino, Ar is 4,6-dimethylpyrid-3-yl;
- 20 a compound of Formula (60) wherein R^3 is N(Me)CH2CH=CH2, Ar is 4,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Et)CH₂cPr, Ar is 4,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Pr)CH₂cPr,

 Ar is 4,6-dimethylpyrid-3-yl;
- a compound of Formula (60) wherein R^3 is N(Me)Pr, Ar is 4,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Me)Et Ar is 4,6-dimethylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is N(Me)Bu, Ar is 4,6-dimethylpyrid-3-yl;
- 5 a compound of Formula (60) wherein R³ is N(Me)propargyl, Ar is 4,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is N(Et) propargyl, Ar is 4,6-dimethylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is NHCH(CH3)CH(CH3)CH3, Ar is 4,6-dimethylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)
 CH₂CH=CH₂, Ar is 4,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)Me$, Ar is 4,6-dimethylpyrid-3-yl;
- 20 a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Et,

 Ar is 4,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)Pr,

 Ar is 4,6-dimethylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe) CH₂CPr, Ar is 4,6-dimethylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is

 NHCH(CH3)CH2CH3, Ar is 4,6-dimethylpyrid-3-yl;

30

- a compound of Formula (60) wherein R³ is NHCH(cPr)₂, Ar is 4,6-dimethylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)₂,

 Ar is 4,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is NHCH(Et)₂ Ar is 4,6-dimethylpyrid-3-yl;
- 10 a compound of Formula (60) wherein R^3 is N(Et)2, Ar is 4,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is 2-ethylpiperid-1-y1, Ar is 2,6-dimethylpyrid-3-y1;

a compound of Formula (60) wherein \mathbb{R}^3 is cyclobutyl-

amino, Ar is 2,6-dimethylpyrid-3-yl;

- a compound of Formula (60) wherein R^3 is $N(Me)CH_2CH=CH_2$, 20 Ar is 2,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Et)CH₂cPr, Ar is Ar is 2,6-dimethylpyrid-3-yl;
- 25 a compound of Formula (60) wherein R³ is N(Pr)CH₂cPr, Ar is Ar is 2,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Me)Pr, Ar is 2,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R³ is N(Me)Et, Ar is 2,6-dimethylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is N(Me)Bu, Ar is 2,6-dimethylpyrid-3-yl;
- 5 a compound of Formula (60) wherein R^3 is N(Me)propargyl, Ar is 2,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is NH(CH(CH3)CH(CH3)CH3, Ar is 2,6-dimethylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe) CH₂CH=CH₂, Ar is 2,6-dimethylpyrid-3-yl;
- a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)Me$,

 Ar is 2,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)Et$, Ar is 2,6-dimethylpyrid-3-yl;
- 20 a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)Pr$, Ar is 2,6-dimethylpyrid-3-yl;
 - a compound of Formula (60) wherein R^3 is $N(CH_2CH_2OMe)$ CH_2CPr , Ar is 2,6-dimethylpyrid-3-yl;

- a compound of Formula (60) wherein R³ is NH(CH(CH₃)CH₂CH₃, Ar is 2,6-dimethyl pyrid-3-yl;
- a compound of Formula (60) wherein R³ is NHCH(cPr)₂, Ar 30 is 2,6-dimethyl pyrid-3-yl;

- a compound of Formula (60) wherein R³ is N(CH₂CH₂OMe)₂,

 Ar is 2,6-dimethylpyrid-3-yl;
- a compound of Formula (60) wherein R³ is NHCH(Et)₂, Ar is 2,6-dimethyl-pyrid-3-yl; and
 - a compound of Formula (60) wherein R^3 is $N(Et)_2$, Ar is 2,6-dimethyl-pyrid-3-yl.
- 10 [29] Further preferred compounds of the present invention include compounds of claim 4 and isomers thereof, stereoisomeric forms thereof, or mixtures of stereoisomeric forms thereof, and pharmaceutically acceptable salt forms thereof, wherein said compound is selected from the group consisting of:
 - 4-((2-butyl)amino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine;
- 4-((2-butyl)amino)-2,7-dimethyl-8-(2,5-di methyl-4methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine;
 - 4-((3-pentyl)amino)-2,7-dimethyl-8-(2,5-dimethyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine;
 - 4-((3-pentyl)amino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine;
- 4-(N-cyclopropylmethyl-N-propylamino)-2,7-dimethyl-830 (2-methyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5triazine;

4-(N-cyclopropylmethyl-N-propylamino)-2,7-dimethyl-8-(2,5-dimethyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine;

- 5 4-(N-allyl-N-(2-methoxyethyl)amino)-2,7-dimethyl-8-(2methyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5triazine;
- 4-(N-allyl-N-(2-methoxyethyl)amino)-2,7-dimethyl-810 (2,5-dimethyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5triazine;

4-(diallylamino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine;

- 4-(diallylamino)-2,7-dimethyl-8-(2,5-dimethyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine;
- 4-(N-ethyl-N-(2-methoxyethyl)amino)-2,7-dimethyl-8-(2-20 methyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine; and
- 4-(N-ethyl-N-(2-methoxyethyl)amino)-2,7-dimethyl-8-(2,5-dimethyl-4-methoxyphenyl)-[1,5-a]-pyrazolo-1,3,5-triazine.
- [30] The present invention further provides for pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutical-30 ly effective amount of a compound of claims 6, 11, 16, 27, 28 and 29.
- [31] The present invention further provides for a method of treating affective disorder, anxiety, depression,35 headache, irritable bowel syndrome, post-traumatic stress disorder, supranuclear palsy, immune suppression,

Alzheimer's disease, gastrointestinal diseases, anorexia nervosa or other feeding disorder, drug addiction, drug or alcohol withdrawal symptoms, inflammatory diseases, cardiovascular or heart-related diseases, fertility problems, human immunodeficiency virus infections, hemorrhagic stress, obesity, infertility, head and spinal cord traumas, epilepsy, stroke, ulcers, amyotrophic lateral sclerosis, hypoglycemia or a disorder the treatment of which can be effected or facilitated by antagonizing CRF, including but not limited to disorders induced or facilitated by CRF, in mammals comprising administering to the mammal a therapeutically effective amount of a compound of claim claims 4, 6, 11, 16, 27, 28 and 29.

15

20

25

30

35

10

Many compounds of this invention have one or more asymmetric centers or planes. Unless otherwise indicated, all chiral (enantiomeric and diastereomeric) and racemic forms are included in the present invention. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds, and all such stable isomers are contemplated in the present invention. The compounds may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. All chiral, (enantiomeric and diastereomeric) and racemic forms and all geometric isomeric forms of a structure are intended, unless the specific stereochemistry or isomer form is specifically indicated.

The term "alkyl" includes both branched and straight-chain alkyl having the specified number of carbon atoms. Commonly used abbreviations have the following meanings: Me is methyl, Et is ethyl, Pr is propyl, Bu is butyl. As is conventional, in a chemical

15

20

25

30

35

structure drawing, a straight single bond attached to an atom at one end but with no atom designation at the other end indicates the presence of a methyl group at the unattached end of the bond. The prefix "n" means a straight chain alkyl. The prefix "c" means a cycloalkyl. The prefix "(S)" means the S enantiomer and the prefix "(R) " means the R enantiomer. includes hydrocarbon chains of either a straight or branched configuration and one or more unsaturated carbon-carbon bonds which may occur in any stable point along the chain, such as ethenyl, propenyl, and the like. "Alkynyl" includes hydrocarbon chains of either a straight or branched configuration and one or more triple carbon-carbon bonds which may occur in any stable point along the chain, such as ethynyl, propynyl and the like. "Haloalkyl" is intended to include both branched and straight-chain alkyl having the specified number of carbon atoms, substituted with 1 or more halogen; "alkoxy" represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge; "cycloalkyl" is intended to include saturated ring groups, including mono-,bi- or polycyclic ring systems, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and so forth. "Halo" or "halogen" includes fluoro, chloro, bromo, and iodo.

The term "substituted", as used herein, means that one or more hydrogen on the designated atom is replaced with a selection from the indicated group, provided that the designated atom's normal valency is not exceeded, and that the substitution results in a stable compound. When a substitution is keto (i.e., =0), then 2 hydrogens on the atom are replaced.

Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By "stable compound" or "stable structure" is meant a compound that is sufficiently

10

robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

The term "appropriate amino acid protecting group" means any group known in the art of organic synthesis for the protection of amine or carboxylic acid groups. Such amine protecting groups include those listed in Greene and Wuts, "Protective Groups in Organic Synthesis" John Wiley & Sons, New York (1991) and "The Peptides: Analysis, Synthesis, Biology, Vol. 3, Academic Press, New York (1981), the disclosure of which is hereby incorporated by reference. Any amine protecting group known in the art can be used.

Examples of amine protecting groups include, but are not limited to, the following: 1) acyl types such as formyl, trifluoroacetyl, phthalyl, and p-toluenesulfonyl; 2) aromatic carbamate types such as benzyloxycarbonyl (Cbz) and substituted benzyloxycarbonyls, 1-(p-biphenyl)-1-

- 20 methylethoxycarbonyl, and 9-fluorenylmethyloxycarbonyl
 (Fmoc); 3) aliphatic carbamate types such as tert butyloxycarbonyl (Boc), ethoxycarbonyl,
 diisopropylmethoxycarbonyl, and allyloxycarbonyl; 4)
 cyclic alkyl carbamate types such as
- 25 cyclopentyloxycarbonyl and adamantyloxycarbonyl; 5) alkyl types such as triphenylmethyl and benzyl; 6) trialkylsilane such as trimethylsilane; and 7) thiol containing types such as phenylthiocarbonyl and dithiasuccinoyl.

30 The term "pharmaceutically acceptable salts" includes acid or base salts of the compounds of Formulae (1) and (2). Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like.

Pharmaceutically acceptable salts of the compounds of the invention can be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate base or acid in water or in an organic solvent, or in a mixture of the two; generally, nonaqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are preferred. Lists of suitable salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, PA, 1985, p. 1418, the disclosure of which is hereby incorporated by reference.

"Prodrugs" are considered to be any covalently bonded carriers which release the active parent drug of formula (I) or (II) in vivo when such prodrug is administered to a mammalian subject. Prodrugs of the compounds of formula (I) and (II) are prepared by modifying functional groups present in the compounds in such a way that the modifications are cleaved, either in routine manipulation or in vivo, to the parent compounds. Prodrugs include compounds wherein hydroxy, amine, or sulfhydryl groups are bonded to any group that, when administered to a mammalian subject, cleaves to form a free hydroxyl, amino, or sulfhydryl group, respectively. Examples of prodrugs include, but are not limited to, acetate, formate and benzoate derivatives of alcohol and amine functional groups in the compounds of formulas (I) and (II); and the like.

The term "therapeutically effective amount" of a compound of this invention means an amount effective to antagonize abnormal level of CRF or treat the symptoms of affective disorder, anxiety or depression in a host.

35

30

10

15

20

25

Syntheses

10

15

Some compounds of Formula (1) may be prepared from intermediate compounds of Formula (7), using the procedures outlined in Scheme 1:

SCHEME 1

Compounds of Formula (7) (where Y is 0) may be treated with a halogenating agent or sulfonylating agent in the presence or absence of a base in the presence or absence of an inert solvent at reaction temperatures ranging from -80°C to 250°C to give products of Formula (8) (where X is halogen, alkanesulfonyloxy, arylsulfonyloxy or haloalkane-sulfonyloxy). Halogenating agents include, but are not limited to, SOCl₂, POCl₃, PCl₃, PCl₅, POBr₃, PBr₃ or PBr₅. Sulfonylating agents include, but are not limited to, alkanesulfonyl halides or anhydrides (such as methanesulfonyl chloride or methanesulfonic acid anhydride), arylsulfonyl halides or

30

35

100°C.

anhydrides (such as p-toluenesulfonyl chloride or anhydride) or haloalkylsulfonyl halides or anhydrides (preferably trifluoromethanesulfonic anhydride). Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium diisopropylamide), alkali metal bis(trialkylsilyl)amides 10 (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably N, N-di-isopropyl-N-ethyl amine or triethylamine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably 15 acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-20 methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from -20°C to

Compounds of Formula (8) may be reacted with compounds of Formula R^3H (where R^3 is defined as above except R^3 is not SH, COR^7 , CO_2R^7 , aryl or heteroaryl) in the presence or absence of a base in the presence or absence of an inert solvent at reaction temperatures ranging from -80 to 250°C to generate compounds of Formula (1). Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably

lithium di-isopropylamide), alkali metal carbonates, alkali metal bicarbonates, alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably N, N-di-isopropyl-N-ethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers 10 (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons 15 (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from 0°C to 140°C.

20 Scheme 2 delineates the procedures for converting intermediate compounds of Formula (7) (where Y is S) to some compounds of Formula (1).

SCHEME 2

SR¹³ $R^{13}X$, + / - base, - solvent HN R^1 Ar Ar (12)(7) Y = Soxidizing agent, solvent / - base, solvent \$ (0) nR¹³ \mathbb{R}^3 R^3H , + / - base, - solvent R^1 Ar Ar (13)(1) A = N

Compounds of Formula (7) (where Y is S) may be treated with an alkylating agent $R^{13}X$ (where R^{13} is defined as above, except R13 is not aryl or heteroaryl) in the 5 presence or absence of a base in the presence or absence of an inert solvent at reaction temperatures ranging from -80°C to 250°C. Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal carbonates, alkali metal hydroxides, alkali metal bis(trialkylsilyl)amides (preferably sodium

25

30

35

bis(trimethylsilyl)amide), trialkyl amines (prefereably N, N-di-isopropyl-N-ethyl amine or triethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably 10 dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably Nmethylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons 15 and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from -80°C to 100°C.

Compounds of Formula (12) (Formula (1) where R^3 is SR^{13}) may then be reacted with compounds of Formula R^3H to give compounds of Formula (1), using the same conditions and reagents as were used for the conversion of compounds of Formula (8) to compounds of Formula (1) as outlined for Scheme 1 above. Alternatively, compounds of Formula (12) (Formula (1) where R^3 is SR^{13}) may be oxidized to compounds of Formula (13) (Formula (1) where R^3 is $S(0)_n R^{13}$, n is 1,2) by treatment with an oxidizing agent in the presence of an inert solvent at temperatures ranging from -80°C to 250°C. Oxidizing agents include, but are not limited to, hydrogen peroxide, alkane or aryl peracids (preferably peracetic acid or m-chloro-perbenzoic acid), dioxirane, oxone, or sodium periodate. Inert solvents may include, but are not limited to, alkanones (3 to 10 carbons, preferably acetone), water, alkyl alcohols (1 to 6 carbons), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens

(preferably dichloromethane) or combinations thereof. The choices of oxidant and solvent are known to those skilled in the art (cf. Uemura, S., Oxidation of Sulfur, Selenium and Tellurium, in Comprehensive Organic Synthesis, Trost, B.M. ed., (Elmsford, NY: Pergamon Press, 1991), 7, 762-769). Preferred reaction temperatures range from -20°C to 100°C. Compounds of Formula (13) (Formula (1) where R³ is S(O)_nR¹³, n is 1,2) may then be reacted with compounds of Formula R³H to give compounds of Formula (1), using the same conditions and reagents as were used for the conversion of compounds of Formula (8) to compounds of Formula (1) as

Compounds of Formula (1), where R^3 may be $-NR^8COR^7$, $-N(COR^7)_2$, $-NR^8CONR^6R^7$, $-NR^8CO_2R^{13}$, $-NR^6R^7$, $-NR^8SO_2R^7$, may be prepared from compounds of Formula (7), where Y is NH, by the procedures depicted in Scheme 3.

SCHEME 3

T1360

10

15

$$R^{1}$$

$$N$$

$$N$$

$$Ar$$

$$(7) Y = NH$$

outlined for Scheme (1) above.

alkylating, sulfonylating R₃
or acylating agents
+ / - base, solvent

R₁

Ar

(1)

A = N; $R_3 = NR^6R^7, NR^8COR^7,$ $N(COR^7)_2, NR_8CONR^6R^7,$ $NR_8CO_2R_{13}$

20 Reaction of compounds of Formula (7), where Y is NH, with alkylating agents, sulfonylating agents or acylating agents or sequential reactions with combinations thereof, in the presence or absence of a

base in an inert solvent at reaction temperatures ranging from -80°C to 250°C may afford compounds of Formula (1), where R^3 may be $-NR^8COR^7$, $-N(COR^7)_2$, - $NR^8CONR^6R^7$, $-NR^8CO_2R^{13}$, $-NR^6R^7$, $-NR^8SO_2R^7$. Alkylating agents may include, but are not limited to, C1-C10 alkyl -halides, -tosylates, -mesylates or -triflates; C1-C10 haloalkyl(1 - 10 halogens)-halides, -tosylates, mesylates or -triflates; C2-C8 alkoxyalkyl-halides, tosylates, -mesylates or -triflates; C3-C6 cycloalkyl-10 halides, -tosylates, -mesylates or -triflates; C4-C₁₂ cycloalkylalkyl-halides, -tosylates, -mesylates or triflates; aryl(C1-C4 alkyl)-halides, -tosylates, mesylates or -triflates; heteroaryl(C1-C4 alkyl)halides, -tosylates, -mesylates or -triflates; or 15 heterocyclyl(C1-C4 alkyl)-halides, -tosylates, mesylates or -triflates. Acylating agents may include, but are not limited to, C_1-C_{10} alkanoyl halides or anhydrides, C1-C10 haloalkanoyl halides or anhydrides with 1 - 10 halogens, C2-C8 alkoxyalkanoyl halides or anhydrides, C3-C6 cycloalkanoyl halides or anhydrides, 20 C4-C12 cycloalkylalkanoyl halides or anhydrides, aroyl halides or anhydrides, aryl(C1-C4) alkanoyl halides or anhydrides, heteroaroyl halides or anhydrides, heteroaryl(C1-C4) alkanoyl halides or anhydrides, 25 heterocyclylcarboxylic acid halides or anhydrides or heterocyclyl(C1-C4) alkanoyl halides or anhydrides. Sulfonylating agents include, but are not limited to, C1-C10 alkylsulfonyl halides or anhydrides, C1-C10 haloalkylsulfonyl halides or anhydrides with 1 - 10 30 halogens, C2-C8 alkoxyalkylsulfonyl halides or anhydrides, C3-C6 cycloalkylsulfonyl halides or anhydrides, C4-C12 cycloalkylalkylsulfonyl halides or anhydrides, arylsulfonyl halides or anhydrides, aryl(C1-

C4 alkyl) -, heteroarylsulfonyl halides or anhydrides,

heteroaryl(C1-C4 alkyl)sulfonyl halides or anhydrides,

heterocyclylsulfonyl halides or anhydrides or

heterocyclyl(C1-C4 alkyl) sulfonyl halides or anhydrides. Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium diisopropylamide), alkali metal carbonates, alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (prefereably 10 di-isopropylethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers 15 (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N, N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides 20 (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction temperatures range from 0°C to 100°C.

Scheme 4 delineates procedures, which may be employed to prepare intermediate compounds of Formula (7), where Y is O, S and Z is CR^2 .

10

SCHEME 4

Y=C(R^d)₂, base,
solvent
$$R^{1}$$

$$N$$

$$R^{1}$$

$$N$$

$$Ar$$

$$(7) Y = 0, S; Z = CR^{2}$$

Compounds of the formula ArCH2CN are reacted with compounds of the formula R²COR^b, where R² is defined above and R^b is halogen, cyano, lower alkoxy (1 to 6 carbons) or lower alkanoyloxy (1 to 6 carbons), in the presence of a base in an inert solvent at reaction temperatures ranging from -78°C to 200°C to afford compounds of Formula (3). Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal

25

30

dialkylamides (preferably lithium di-isopropylamide), alkali metal carbonates, alkali metal hydroxides, alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably N, N-di-isopropyl-N-ethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), water, dialkyl 10 ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,Ndialkylformamides (preferably dimethylformamide), N, Ndialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or

dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction temperatures range from 0°C to 100°C.

Compounds of Formula (3) may be treated with hydrazine-hydrate in the presence of an inert solvent at temperatures ranging from 0°C to 200°C, preferably 70°C to 150°C, to produce compounds of Formula (4). Inert solvents may include, but are not limited to, water, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Compounds of Formula (4) may be reacted with compounds of Formula (5) (where

R^c is alkyl (1-6 carbons)) in the presence or absence of

temperatures ranging from 0°C to 200°C to produce compounds of Formula (6). Acids may include, but are

an acid in the presence of an inert solvent at

15

not limited to alkanoic acids of 2 to 10 carbons (preferably acetic acid), haloalkanoic acids (2 - 10 carbons, 1-10 halogens, such as trifluoroacetic acid), arylsulfonic acids (preferably p-toluenesulfonic acid or benzenesulfonic acid), alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid), hydrochloric acid, sulfuric acid or phosphoric acid. Stoichiometric or catalytic amounts of such acids may be used. solvents may include, but are not limited to, water, alkanenitriles (1 to 6 carbons, preferably acetonitrile), halocarbons of 1 to 6 carbons and 1 to 6 halogens (preferably dichloromethane or chloroform), alkyl alcohols of 1 to 10 carbons (preferably ethanol), dialkyl ethers (4 to 12 carbons, preferably diethyl ether or di-isopropylether) or cyclic ethers such as dioxan or tetrahydrofuran. Preferred temperatures range from ambient temprature to 100°C.

Compounds of Formula (6) may be converted to intermediate compounds of Formula (7) by treatment with 20 compounds $C=Y(R^d)_2$ (where Y is O or S and R^d is halogen (preferably chlorine), alkoxy (1 to 4 carbons) or alkylthio (1 to 4 carbons)) in the presence or absence of a base in an inert solvent at reaction temperatures from -50°C to 200°C. Bases may include, but are not 25 limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkali metal carbonates, alkali metal hydroxides, trialkyl amines (preferably N, N-di-30 isopropyl-N-ethyl amine or triethylamine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably 35 acetonitrile), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably

dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Preferred temperatures are 0°C to 150°C.

Intermediate compounds of Formula (7), where Z is N, may be synthesized according the methods outlined in Scheme 5.

SCHEME 5

T 430

5

(7) Y = 0, S; Z = N

Compounds of ArCH2CN are reacted with compounds of Formula RqCH2N3 (where Rq is a phenyl group optionally substituted by H, alkyl (1 to 6 carbons) or alkoxy (1 to 6 carbons) in the presence or absence of a base in an inert solvent at temperatures ranging from 0°C to 200°C to generate compounds of Formula (9). Bases may include, but are not limited to, alkali metal hydrides

30

35

(preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide, sodium ethoxide or potassium t-butoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal carbonates, alkali metal hydroxides, alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably N,N-di-isopropyl-N-ethyl amine or triethylamine) or aromatic amines (preferably pyridine).

Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably

tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons
(preferably benzene or toluene). Preferred reaction temperatures range from ambient temperature to 100°C.

Compounds of Formula (9) may be treated with a reducing agent in an inert solvent at -100°C to 100°C to afford products of Formula (10). Reducing agents include, but are not limited to, (a) hydrogen gas in combination with noble metal catalysts such as Pd-on-carbon, PtO2, Pt-on-carbon, Rh-on-alumina or Raney nickel, (b) alkali metals (preferably sodium) in combination with liquid ammonia or (c) ceric ammonium nitrate. Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), water, dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides

15

20

25

(preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). The preferred reaction temperatures are -50°C to 60°C . Compounds of Formula (9) are then converted to compounds of Formula (7) (where Z is N) via intermediates of Formula (11) using the reagents and reaction conditions outlined in Scheme 4 for the conversion of compounds of Formula (4) to compounds of Formula (7) (where Z is CR^2).

Compounds of Formula (1) may also be prepared from compounds of Formula (7) (where Y is O, S and Z is defined above) as outlined in Scheme 6:

SCHEME 6

R³H, + / - acid, + / - dehydrating agent + / - solvent Z R¹

Ar

(7) Y = O, S; Z = N, CR²

(1) A = N

Compounds of Formula (7) may be reacted with compounds of Formula R^3H in the presence of a dehydrating agent in an inert solvent at reaction temperatures ranging from 0°C to 250°C. Dehydrating agents include, but are not limited to, P_2O_5 , molecular sieves or inorganic or organic acids. Acids may include, but are not limited to alkanoic acids of 2 to 10 carbons (preferably acetic acid), arylsulfonic acids (preferably p-toluenesulfonic acid or benzenesulfonic acid), alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid), hydrochloric acid, sulfuric acid or phosphoric acid. Inert solvents may include, but are not limited to,

15

20

25

alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably glyme or diglyme), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or halocarbons of 1 to 10 carbons and 1 to 10 halogens (preferably chloroform). Preferred reaction temperatures range from ambient temperature to 150°C.

Some compounds of Formula (1) (where A is N) may also be prepared by the methods shown in Scheme 7:

SCHEME 7

Intermediate compounds of Formula (14), where Z is defined above, may be reacted with compounds of Formula R³C(OR^e)3, where R^e may be alkyl (1 to 6 carbons) in the presence or absence of an acid in an inert solvent at temperatures ranging from 0°C to 250°C. Acids may include, but are not limited to alkanoic acids of 2 to 10 carbons (preferably acetic acid), arylsulfonic acids (preferably p-toluenesulfonic acid or benzenesulfonic acid), alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid), hydrochloric acid, sulfuric acid or phosphoric acid. Stoichiometric or

15

20

25

catalytic amounts of such acids may be used. Inert solvents may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from 50°C to 150°C.

Intermediate compounds of Formula (7) may also be synthesized by the reactions displayed in Scheme 8.

SCHEME 8

(15) Y = OH, $SH NR^6R^7$; Z = N, CR^2 , (7) A = NX = Br, Cl, I, B(OR''') 2

Compounds of Formula (15), (where Y is OH, SH, NR^6R^7 ; Z is defined above, X is Br, Cl, I, O_3SCF_3 or $B(OR"")_2$ and R"" is H or alkyl (1 to 6 carbons)) may be reacted with a compound of Formula ArM (where M is halogen, alkali metal, ZnCl, ZnBr, ZnI, MgBr, MgCl, MgI, CeCl₂, CeBr₂ or copper halides) in the presence or absence of an organometallic catalyst in the presence or absence of a

organometallic catalyst in the presence or absence of a

base in an inert solvents at temperatures ranging from -100°C to 200°C. Those skilled in the art will recognize that the reagents ArM may be generated in situ.

Organometallic catalysts include, but are not limited to, palladium phosphine complexes (such as Pd(PPh3)4), palladium halides or alkanoates (such as PdCl2(PPh3)2 or Pd(OAc)₂) or nickel complexes (such as NiCl₂(PPh₃)₂). Bases may include, but are not limited to, alkali metal

carbonates or trialkyl amines (preferably N, N-di-

- 10 isopropyl-N-ethyl amine or triethylamine). solvents may include, but are not limited to, dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,Ndialkylformamides (preferably dimethylformamide), N, N-
- dialkylacetamides (preferably dimethylacetamide), cyclic 15 amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or water. Preferred reaction temperatures range from -80°C 20 to 100°C.
- The choices of M and X are known to those skilled in the art (cf. Imamoto, T., Organocerium Reagents in Comprehensive Organic Synthesis, Trost, B.M. ed., (Elmsford, NY: Pergamon Press, 1991), 1, 231-250;
- 25 Knochel, P., Organozinc, Organocadmium and Organomercury Reagents in Comprehensive Organic Synthesis, Trost, B.M. ed., (Elmsford, NY: Pergamon Press, 1991), 1, 211-230; Knight, D.W., Coupling Reactions between sp² Carbon Centers, in Comprehensive Organic Synthesis, Trost, B.M.
- 30 ed., (Elmsford, NY: Pergamon Press, 1991), 3, 481-520). Compounds of Formula (1) may also be prepared using the methods shown in Scheme 9.

Compounds of Formula (16), where A, Z, R^1 and R^3 are defined above and X is Br, Cl, I, O₃SCF₃ or B(OR"")₂ and 5 R"" is H or alkyl (1 to 6 carbons)) may be reacted with a compound of Formula ArM (where M is halogen, alkali metal, ZnCl, ZnBr, ZnI, MgBr, MgCl, MgI, CeCl2, CeBr2 or copper halides) in the presence or absence of an organometallic catalyst in the presence or absence of a 10 base in an inert solvents at temperatures ranging from -100°C to 200°C. Those skilled in the art will recognize that the reagents ArM may be generated in situ (see the above references in Comprehensive Organic Synthesis). Organometallic catalysts include, but are not limited 15 to, palladium phosphine complexes (such as Pd(PPh3)4), palladium halides or alkanoates (such as PdCl2(PPh3)2 or Pd(OAc)₂) or nickel complexes (such as NiCl₂(PPh₃)₂). Bases may include, but are not limited to, alkali metal carbonates or trialkyl amines (preferably N, N-di-20 isopropyl-N-ethyl amine or triethylamine). Inert solvents may include, but are not limited to, dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,Ndialkylformamides (preferably dimethylformamide), 25 dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or water. Preferred reaction temperatures range from -80°C to 100°C .

Intermediate compounds of Formula (7) (where Y is O, S, NH, Z is CR^2 and R^1 , R^2 and Ar are defined as above) may be prepared as illustrated in Scheme 10.

SCHEME 10

 $R^{1}C(OR^{e})_{3}$, + / - acid, solvent R^{1} R^{1} R^{1} R^{1} R^{1} R^{1} R^{2} R^{2} R

Compounds of Formula (3) may be reacted with compounds of Formula H₂NNH(C=Y)NH₂, where Y is O, S or NH, in the presence or absence of a base or acid in an inert solvent at temperatures from 0°C to 250°C to produce compounds of Formula (17). Acids may include, but are not limited to alkanoic acids of 2 to 10 carbons (preferably acetic acid), arylsulfonic acids (preferably p-toluenesulfonic acid or benzenesulfonic acid), alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid), hydrochloric acid, sulfuric acid or phosphoric acid. Stoichiometric or catalytic amounts

25

30

35

dichloromethane).

of such acids may be used. Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably N, N-di-isopropyl-N-ethyl amine or triethylamine) or 10 aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 6 carbons), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides 15 (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides

(preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to

10 carbons and 1 to 10 halogens (preferably

Preferred reaction temperatures range from 0°C to 150°C. Compounds of Formula (17) may then be reacted with compounds of Formula R³C(ORe)3, where Re may be alkyl (1 to 6 carbons) in the presence or absence of an acid in an inert solvent at temperatures ranging from 0°C to 250°C. Acids may include, but are not limited to alkanoic acids of 2 to 10 carbons (preferably acetic acid), arylsulfonic acids (preferably p-toluenesulfonic acid or benzenesulfonic acid), alkanesulfonic acids of 1 to 10 carbons (preferably methanesulfonic acid), hydrochloric acid, sulfuric acid or phosphoric acid. Stoichiometric or catalytic amounts of such acids may be used. Inert solvents may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably

10

15

acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from 50°C to 150°C.

In Scheme 11, the procedures which may be used to convert compounds of Formula (1), where R^3 is COR^7 , CO_2R^7 , NR^8COR^7 and $CONR^6R^7$, to other compounds of Formula (1), where R^3 is $CH(OH)R^7$, CH_2OH , $NR^8CH_2R^7$ and $CH_2NR^6R^7$ by treatment with a reducing agent in an inert solvent at temperatures ranging from $-80^{\circ}C$ to $250^{\circ}C$.

SCHEME 11

R³

R³

reducing agent, solvent

$$R^1$$
 R^3
 R^3

Reducing agents include, but are not limited to, alkali metal or alkaline earth metal borohydrides (preferably lithium or sodium borohydride), borane, dialkylboranes (such as di-isoamylborane), alkali metal aluminum hydrides (preferably lithium aluminum hydride), alkali metal (trialkoxy) aluminum hydrides, or dialkyl aluminum

-151-

hydrides (such as di-isobutylaluminum hydride). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 6 carbons), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction temperatures range from -80°C to 100°C.

In Scheme 12, the procedures are shown which may be used to convert compounds of Formula (1), where R^3 is COR^7 or CO_2R^7 , to other compounds of Formula (1), where R^3 is $C(OH) (R^7)_2$ by treatment with a reagent of Formula R^7M in an inert solvent at temperatures ranging from -80°C to 250°C.

SCHEME 12

M is halogen, alkali metal, ZnCl, ZnBr, ZnI, MgBr, MgCl, MgI, CeCl₂, CeBr₂ or copper halides. Inert solvents may include, but are not limited to, dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran) or aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction temperatures range from -80°C to 100°C.

Compounds of Formula (1), where R^3 may be $-NR^8COR^7$, $-N(COR^7)_2$, $-NR^8CONR^6R^7$, $-NR^8CO_2R^{13}$, $-NR^6R^7$, $-NR^8SO_2R^7$, may be synthesized as depicted in Scheme 13.

20

15

10

SCHEME 13

z = N

(10)

alkylating, sulfonylating or acylating agents + / - base, solvent

(1) A = CR $R_3 = NR^6R^7$, NR^8COR^7 , $N(COR^7)_2$, $NR_8CONR^6R^7$, $NR_8CO_2R_{13}$

Reaction of compounds of Formula (18), where R and R¹

5 are defined above, with compounds of Formula (4) or (10) in the presence or absence of base in an inert solvent may produce compounds of Formula (19) at temperatures

-153-

30

35

ranging from -50°C to 250°C. Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal carbonates, alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (prefereably 10 di-isopropylethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably 15 tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides 20 (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction

Compounds of Formula (19) may then be reacted with alkylating agents, sulfonylating agents or acylating agents or sequential reactions with combinations thereof, in the presence or absence of a base in an inert solvent at reaction temperatures ranging from - 80°C to 250°C may afford compounds of Formula (1), where R³ may be -NR8COR7, -N(COR7)2, -NR8CONR6R7, -NR8CO2R1³, -NR6R7, -NR8SO2R7. Alkylating agents may include, but are not limited to, C1-C10 alkyl -halides, -tosylates, -mesylates or -triflates; C1-C10 haloalkyl(1 - 10 halogens)-halides, -tosylates, -mesylates or -triflates; C2-C8 alkoxyalkyl-halides, -tosylates, -mesylates or -triflates; C3-C6 cycloalkyl-halides, -tosylates, -

temperatures range from 0°C to 100°C.

mesylates or -triflates; C4-C12 cycloalkylalkyl-halides, -tosylates, -mesylates or -triflates; aryl(C1-C4 alkyl)halides, -tosylates, -mesylates or -triflates; heteroaryl(C1-C4 alkyl)-halides, -tosylates, -mesylates or -triflates; or heterocyclyl(C1-C4 alkyl)-halides, -5 tosylates, -mesylates or -triflates. Acylating agents may include, but are not limited to, C1-C10 alkanoyl halides or anhydrides, C1-C10 haloalkanoyl halides or anhydrides with 1 - 10 halogens, C2-C8 alkoxyalkanoyl halides or anhydrides, C3-C6 cycloalkanoyl halides or 10 anhydrides, C4-C12 cycloalkylalkanoyl halides or anhydrides, aroyl halides or anhydrides, aryl(C1-C4) alkanovl halides or anhydrides, heteroarovl halides or anhydrides, heteroaryl(C1-C4) alkanoyl halides or anhydrides, heterocyclylcarboxylic acid halides or 15 anhydrides or heterocyclyl(C1-C4) alkanoyl halides or Sulfonylating agents include, but are not anhydrides. limited to, C_1-C_{10} alkylsulfonyl halides or anhydrides, C1-C10 haloalkylsulfonyl halides or anhydrides with 1 -20 10 halogens, C2-C8 alkoxyalkylsulfonyl halides or anhydrides, C3-C6 cycloalkylsulfonyl halides or anhydrides, C4-C12 cycloalkylalkylsulfonyl halides or anhydrides, arylsulfonyl halides or anhydrides, aryl(C1-C4 alkyl)-, heteroarylsulfonyl halides or anhydrides, 25 heteroaryl(C1-C4 alkyl)sulfonyl halides or anhydrides, heterocyclylsulfonyl halides or anhydrides or heterocyclyl(C1-C4 alkyl)sulfonyl halides or anhydrides. Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide 30 or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium diisopropylamide), alkali metal carbonates, alkali metal bis(trialkylsilyl)amides (preferably sodium

bis(trimethylsilyl)amide), trialkyl amines (prefereably

di-isopropylethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction temperatures range from 0°C to 100°C.

Compounds of Formula (1), where A is CR and R is defined above, may be synthesized by the methods depicted in Scheme 14.

5

SCHEME 14

Compounds of Formula (4) or (10) may be treated with compounds of Formula (20), where R¹ and R³ are defined above in the presence or absence of base in an inert solvent at temperatures ranging from 0°C to 250°C to give compounds of Formula (1), where A is CR and R is defined above. Bases may include, but are not limited

30

35

to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal carbonates, alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably di-isopropylethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not 10 limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides 15 (preferably dimethylformamide), N, N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction 20 temperatures range from 0°C to 100°C. Alternatively, compounds of Formula (1) where A is CR and R is defined above, may be synthesized through intermediates (22) and (23).

Compounds of Formula (4) or (10) may be treated with compounds of Formula (21), where R¹ is defined above and R^e is alkyl (1 - 6 carbons), in the presence or absence of base in an inert solvent at temperatures ranging from 0°C to 250°C to give compounds of Formula (1), where A is CR and R is defined above. Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal carbonates, alkali metal bis(trialkylsilyl)amides (preferably sodium

bis(trimethylsilyl)amide), trialkyl amines (prefereably di-isopropylethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides 10 (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide) or aromatic hydrocarbons (preferably benzene or toluene). Preferred reaction temperatures range from 0°C to 100°C. Compounds of 15 Formula (22) may be treated with a halogenating agent or sulfonylating agent in the presence or absence of a base in the presence or absence of an inert solvent at reaction temperatures ranging from -80°C to 250°C to give products of Formula (23) (where X is halogen, 20 alkanesulfonyloxy, arylsulfonyloxy or haloalkanesulfonyloxy). Halogenating agents include, but are not limited to, SOCl₂, POCl₃, PCl₃, PCl₅, POBr₃, PBr₃ or Sulfonylating agents include, but are not limited to, alkanesulfonyl halides or anhydrides (such as 25 methanesulfonyl chloride or methanesulfonic acid anhydride), arylsulfonyl halides or anhydrides (such as p-toluenesulfonyl chloride or anhydride) or haloalkylsulfonyl halides or anhydrides (preferably trifluoromethanesulfonic anhydride). Bases may include, but are not limited to, alkali metal hydrides 30 (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), 35 alkali metal bis(trialkylsilyl)amides (preferably sodium

bis(trimethylsilyl)amide), trialkyl amines (preferably

25

30

N, N-di-isopropyl-N-ethyl amine or triethylamine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably Nmethylpyrrolidin-2-one), dialkylsulfoxides (preferably 10 dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from -20°C to 15 100°C.

Compounds of Formula (23) may be reacted with compounds of Formula R³H (where R3 is defined as above except R^3 is not SH, COR^7 , CO_2R^7 , aryl or heteroaryl) in the presence or absence of a base in the presence or absence of an inert solvent at reaction temperatures ranging from -80°C to 250°C to generate compounds of Formula (1). Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal carbonates, alkali metal bicarbonates, alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably N, N-di-isopropyl-N-ethyl amine) or aromatic amines (preferably pyridine). Inert solvents may include, but are not limited to, alkyl alcohols (1 to 8 carbons, preferably methanol or ethanol), lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers

35 (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from 0°C to 140°C.

10 Some compounds of Formula (1) may also be prepared using the methods shown in Scheme 15.

SCHEME 15 CN NH2NH2, NH2NH (C=Y) NH2, (24) + / - acid, / - acid, solvent solvent HN OH H_2N OH H₂N H₂N Ar (25) (26) Y = 0,For A = N: For A = CR: 1) R1 (C=O) CHR (C=Y) ORc 1) R¹C (=NH) OR_e +/- acid, solvent +/- base or acid, 2) $Y=C(R_d)_2$ solvent +/- base, solvent R1C (ORc) 3 +/- solvent YH see text OH R1 $(1) Z = CR^2$ (27)Y = 0,S

A compound of Formula (24) (R_c is a lower alkyl group and Ar is defined as above) may be reacted with hydrazine in the presence or absence of an inert solvent to afford an intermediate of Formula (25), where Ar is defined as above. The conditions employed are similar to those used for the preparation of intermediate of Formula (4) from compound of Formula (3) in Scheme 4. Compounds of Formula (25), where A is N, may be reacted with reagents of the formula R^1C (=NH)ORe, where R1 is defined above and R_e is a lower alkyl group) in the

15

20

25

30

35

presence or absence of an acid in an inert solvent, followed by reaction with a compound of formula $YisC(R_d)2$ (where Y is O or S and R^d is halogen (preferably chlorine), alkoxy (1 to 4 carbons) or alkylthio (1 to 4 carbons)) in the presence or absence of a base in an inert solvent to give compounds of Formula (27) (where A is N and Y is O, S). The conditions for these transformations are the same as those employed for the conversions of compound of Formula (4) to compound of Formula (7) in Scheme 4.

Alternatively, compounds of Formula (25), where A is CR, may be reacted with compounds of the formula R^1 (C=0) CHR (C=Y) OR_c (where R^1 and R are defined as above and R_c is a lower alkyl group) to give a compound of Formula (27) (where A is CR) using conditions similar to those employed for the conversion of compounds of Formula (21) to compounds of Formula (22) in Scheme 14. Intermediates of Formula (27) (where Y is O) may be treated with halogenating agents or sulfonylating agents in the presence or absence of a base in an inert solvent, followed by reaction with R^3H or R^2H in the presence or absence of a base in an inert solvent to

It will be recognized by those skilled in the art that various combinations of halogenating agents, sulfonylating agents, R³H or R²H may be used in different orders of reaction sequences in Scheme 15 to afford compounds of Formula (1). For example, in some cases, it may be desirable to react compounds with stoichiometric amounts of halogenating agents or sulfonylating agents, react with R²H (or R³H), then repeat the reaction with halogenating agents or sulfonylating agents and react with R³H (or R²H) to give compounds of Formula (1). The reaction conditions and reagents used for these conversions are similar to the ones employed for the conversion of intermediate

give compounds of Formula (1) (where Z is CR^2).

compounds of Formulae (22) to (23) to (1) in Scheme 14 (for A is CR) or the conversion of intermediate compounds of Formulae (7) to (8) to (1) in Scheme 1 (where A is N).

Alternatively, compounds of Formula (27) (where Y is S) may be converted to compounds of Formula (1) in Scheme 15. Intermediate compounds of Formula (27) may be alkylated with a compound RfX (where Rf is lower alkyl and X is halogen, alkanesulfonyloxy or

10 haloalkanesulfonyloxy) in an inert solvent, (then optionally oxidized with an oxidizing agent in an inert solvent) and then reacted with R³H in the presence or absence of a base in an inert solvent to give a compound of Formula (1). The conditions and reagents employed are similar to those used in the conversion of intermediate compounds of Formulae (7) to (12) (or to

(13)) to compounds of Formula (1) in Scheme 2.

Compounds of Formula (1) may be prepared from compounds of Formula (24), using an alternate route as depicted in Scheme 15. Compounds of Formula (24) may be converted to compounds of Formula (27) via reaction with compounds of formula NH2NH(C=NH)NH2 in the presence or absence of an acid in an inert solvent, followed by reaction with compounds $\rm R^1C\,(OR_C)_{\,3}$ (where $\rm R_C$ is lower

alkyl and \mathbb{R}^1 is defined as above), using the conditions employed for the conversion of compounds of Formulae (3) to (17) to (7) in Scheme 10.

Some compounds of Formula (2) may be prepared by the methods illustrated in Scheme 16.

30

20

25

5

TILLO

5

10

SCHEME 16

(1) Z = COH

Compounds of Formula (27b) may be treated with various alkylating agents $R^{14}X$ (where R^{14} is defined above and X is halogen, alkanesulfonyloxy or haloalkanesulfonyloxy) in the presence or absence of a base in an inert solvent to afford structures of Formula (28). Compounds of Formula (28) (Y is O) may then be converted to compounds of Formula (2) by treatment with halogenating agents or sulfonylating agents in the presence or absence of a base in an inert solvent, followed by reaction with R^3H in the presence or absence of a base in an inert solvent to give compounds of Formula (2). The reaction conditions used for these conversions are similar to the

(2)

25

30

35

ones employed for the conversion of intermediate compounds (22) to (23) to (1) in Scheme 14 (for A is CR) or the conversion of intermediate compounds of Formulae (7) to (8) to (1) in Scheme 1 (where A is N).

Alternatively, compounds of Formula (28) (Y is S) may be alkylated with a compound RfX (where Rf is lower alkyl and X is halogen, alkanesulfonyloxy or haloalkanesulfonyloxy) in an inert solvent, (then optionally oxidized with an oxidizing agent in an inert solvent) and then reacted with R3H in the presence or absence of a base in an inert solvent to give a compound of Formula (1). The conditions and reagents employed are similar to those used in the conversion of intermediate compounds of Formulae (7) to (12) (or to (13)) to compounds of Formulae (1) in Scheme 2.

Compounds of Formula (1), where Z is COH, may be converted to compounds of Formula (2) as illustrated in Scheme 16. Treatment with various alkylating agents $R^{14}X$ (where R^{14} is defined above and X is halogen, alkanesulfonyloxy or haloalkanesulfonyloxy) in the presence or absence of a base in an inert solvent to afford structures (2). It will be recognized by one skilled in the art that the methods used in Scheme 16 may also be used to prepare compounds of Formula (1) where Z is COR^7 .

For Scheme 16, the terms "base" and " inert solvent" may have the meanings given below. Bases may include, but are not limited to, alkali metal hydrides (preferably sodium hydride), alkali metal alkoxides (1 to 6 carbons) (preferably sodium methoxide or sodium ethoxide), alkaline earth metal hydrides, alkali metal dialkylamides (preferably lithium di-isopropylamide), alkali metal bis(trialkylsilyl)amides (preferably sodium bis(trimethylsilyl)amide), trialkyl amines (preferably N,N-di-isopropyl-N-ethyl amine or triethylamine) or aromatic amines (preferably pyridine). Inert solvents

may include, but are not limited to, lower alkanenitriles (1 to 6 carbons, preferably acetonitrile), dialkyl ethers (preferably diethyl ether), cyclic ethers (preferably tetrahydrofuran or 1,4-dioxane), N,N-dialkylformamides (preferably dimethylformamide), N,N-dialkylacetamides (preferably dimethylacetamide), cyclic amides (preferably N-methylpyrrolidin-2-one), dialkylsulfoxides (preferably dimethylsulfoxide), aromatic hydrocarbons (preferably benzene or toluene) or haloalkanes of 1 to 10 carbons and 1 to 10 halogens (preferably dichloromethane). Preferred reaction temperatures range from -20°C to 100°C.

15

20

25

30

35

10

EXAMPLES

Analytical data were recorded for the compounds described below using the following general procedures. Proton NMR spectra were recorded on an IBM-Bruker FT-NMR (300 MHz); chemical shifts were recorded in ppm (δ) from an internal tetramethysilane standard in deuterochloroform or deuterodimethylsulfoxide as specified below. Mass spectra (MS) or high resolution mass spectra (HRMS) were recorded on a Finnegan MAT 8230 spectrometer (using chemi-ionization (CI) with NH3 as the carrier gas or gas chromatography (GC) as specified below) or a Hewlett Packard 5988A model spectrometer. Melting points were recorded on a Buchi Model 510 melting point apparatus and are uncorrected. Boiling points are uncorrected. All pH determinations during workup were made with indicator paper.

Reagents were purchased from commercial sources and, where necessary, purified prior to use according to the general procedures outlined by D. Perrin and W.L.F. Armarego, *Purification of Laboratory Chemicals*, 3rd ed., (New York: Pergamon Press, 1988). Chromatography was

performed on silica gel using the solvent systems indicated below. For mixed solvent systems, the volume ratios are given. Otherwise, parts and percentages are by weight.

5

10

The following examples are provided to describe the invention in further detail. These examples, which set forth the best mode presently contemplated for carrying out the invention, are intended to illustrate and not to limit the invention.

EXAMPLE 1

Preparation of

2,7-dimethyl-8-(2,4-dimethylphenyl)[1,5-a]
-pyrazolo-[1,3,5]-triazin-4(3H)-one
(Formula 7, where Y is O, R₁ is CH₃, Z is C-CH₃,
Ar is 2,4-dimethylphenyl)

20 A. 1-Cyano-1-(2,4-dimethylphenyl)propan-2-one Sodium pellets (9.8g, 0.43 mol) were added portionwise to a solution of 2,4dimethylphenylacetonitrile (48 g, 0.33 mol) in ethyl acetate (150 mL) at ambient temperature. The reaction 25 mixture was heated to reflux temperature and stirred for 16 hours. The resulting suspension was cooled to room temperature and filtered. The collected precipitate was washed with copious amounts of ether and then air-dried. The solid was dissolved in water and a 1N HCl solution was added until the pH = 5-6. The mixture was extracted 30 with ethyl acetate (3 X 200 mL); the combined organic layers were dried over $MgSO_4$ and filtered. Solvent was removed in vacuo to afford a white solid (45.7g, 74% yield): NMR (CDCl₃, 300 MHz):; CI-MS: 188 (M + H).

35

B. 5-Amino-4-(2,4-dimethylphenyl)-3-methylpyrazole

15

30

35

A mixture of 1-cyano-1-(2,4-dimethylphenyl)propan-2-one (43.8g, 0.23 mol), hydrazine-hydrate (22 mL, 0.46 mol), glacial acetic acid (45 mL, 0.78 mol) and toluene (500 mL) were stirred at reflux temperature for 18 hours in an apparatus fitted with a Dean-Stark trap. The reaction mixture was cooled to ambient temperature and solvent was removed in vacuo. The residue was dissolved in 6N HCl and the resulting solution was extracted with ether three times. A concentrated ammonium hydroxide solution was added to the aqueous layer until pH = 11. The resulting semi-solution was extracted three times with ethyl acetate. The combined organic layers were dried over MgSO4 and filtered. Solvent was removed in vacuo to give a pale brown viscous oil (34.6g, 75% yield): NMR (CDCl₃, 300 MHz): 7.10 (s, 1H), 7.05 (d, 2H, J=1), 2.37 (s, 3H), 2.10 (s, 3H); CI-MS: 202 (M + H).

C. 5-Acetamidino-4-(2,4-dimethylphenyl)-3-methylpyrazole, acetic acid salt

20 Ethyl acetamidate hydrochloride (60g, 0.48 mol) was added quickly to a rapidly stirred mixture of potassium carbonate (69.5g, 0.50 mol), dichloromethane (120 mL) and water (350 mL). The layers were separated and the aqueous layer was extracted with dichloromethane (2 X 120 mL). The combined organic layers were dried over MgSO₄ and filtered. Solvent was removed by simple distillation and the pot residue, a clear pale yellow liquid, (35.0 g) was used without further purification.

Glacial aetic acid (9.7 mL, 0.17 mol) was added to a stirred mixture of 5-amino-4-(2,4-dimethylphenyl)-3-methylpyrazole (34g, 0.17 mol), ethyl acetamidate (22g, 0.25 mol) and acetonitrile (500 mL). The resulting reaction mixture was stirred at room temperature for 3 days; at the end of which time, it was concentrated in vacuo to about one-third of its original volume. The resulting suspension was filtered and the collected

solid was washed with copious amounts of ether. The white solid was dried in vacuo (31.4g, 61% yield): NMR (DMSO-d₆,300 MHz): 7.00 (s, 1H), 6.90 (dd, 2H, J=7, 1), 2.28 (s, 3H), 2.08 (s, 3H), 2.00 (s, 3H), 1.90 (s, 3H), 1.81 (s, 3H); CI-MS: 243 (M + H).

D. 2,7-dimethyl-8-(2,4-dimethylphenyl)[1,5-a]-pyrazolo-[1,3,5]-triazin-4(3H)-one

Sodium pellets (23g, 1 mol) were added portionwise 10 to ethanol (500 mL) with vigorous stirring. After all the sodium reacted, 5-acetamidino-4-(2,4dimethylphenyl)-3-methylpyrazole, acetic acid salt (31.2q, 0.1 mol) and diethyl carbonate (97 mL, 0.8 mol) The resulting reaction mixture was heated were added. 15 to reflux temperature and stirred for 18 hours. The mix was cooled to room temperature and solvent was removed in vacuo. The residue was dissolved in water and a 1N HCl solution was added slowly until pH = 5-6. aqueous layer was extracted with ethyl acetate three 20 times; the combined organic layers were dried over MgSO4 and filtered. Solvent was removed in vacuo to give a pale tan solid (26g, 98% yield): NMR (CDCl₃,300 MHz): 7.15(s, 1H), 7.09(s, 2H), 2.45(s, 3H), 2.39(s, 3H),2.30 (s, 3H); CI-MS: 269 (M + H).

25

30

5

EXAMPLE 2

Preparation of

5-methyl-3-(2,4,6-trimethylphenyl)[1,5-a][1,2,3]-triazolo-[1,3,5]-triazin-7(6H)-one
(Formula 7, where Y is O, R_1 is CH_3 , Z is N,

Ar is 2,4,6-trimethylphenyl)

A. 1-Phenylmethyl-4-(2,4,6-trimethylphenyl)-5-aminotriazole

A mixture of 2,4,6-trimethylbenzyl cyanide (1.0g, 6.3 mmol), benzyl azide (0.92g, 6.9 mmol) and potassium

t-butoxide (0.78g, 6.9 mmol) in tetrahydrofuran (10mL) was stirred at ambient temperature for 2.5 days. The resulting suspension was diluted with water and extracted three times with ethyl acetate. The combined organic layers were dried over MgSO₄ and filtered. Solvent was removed in vacuo to give a brown oil. Trituration with ether and filtration afforded a yellow solid (1.12g, 61% yield): NMR (CDCl₃,300 MHz):7.60-7.30 (m, 5H), 7.30-7.20 (m, 2H), 5.50 (s, 2H), 3.18 (br s, 2H), 2.30 (s, 3H), 2.10 (s, 6H); CI-MS: 293 (M + H).

B. 4-(2,4,6-Trimethylphenyl)-5-aminotriazole Sodium (500 mg, 22 mmol) was added with stirring to a mixture of liquid ammonia (30 mL) and 1-phenylmethyl-

- 15 4-(2,4,6-trimethylphenyl)-5-aminotriazole (1.1g, 3.8 mmol). The reaction mixture was stirred until a dark green color persisted. An ammonium chloride solution (mL) was added and the mixture was stirred while warming to ambient temperature over 16 hours. The residue was
- treated with a 1M HCl solution and filtered. The aqueous layer was basified with a concentrated ammonium hydroxide solution (pH = 9) and then extracted with ethyl acetate three times. The combined organic layers were dried over MgSO $_4$ and filtered. Solvent was removed
- in vacuo to give a yellow solid (520 mg), which was homogeneous by thin layer chromatography (ethyl acetate):

NMR (CDCl₃,300 MHz): 6.97 (s, 2H), 3.68-3.50 (br.s, 2H), 2.32 (s, 3H), 2.10 (s, 6H); CI-MS: 203 (M + H).

30

C. 4-(2,4,6-Trimethylphenyl)-5-acetamidinotriazole, acetic acid salt

A mixture of 4-(2,4,6-trimethylphenyl)-5aminotriazole (400 mg, 1.98 mmol), ethyl acetamidate (35 261 mg, 3 mmol) and glacial acetic acid (0.1 mL, 1.98 mmol) in acetonitrile (6 mL) was stirred at ambient

temperature for 4 hours. The resulting suspension was filtered and the collected solid was washed with copious amounts of ether. Drying *in vacuo* afforded a white solid (490 mg, 82% yield): NMR (DMSO-d₆, 300 MHz):7.90-

- 5 7.70 (br s, 0.5H), 7.50-7.20 (br. s, 0.5H), 6.90 (s, 2H), 6.90 (s, 2H), 3.50-3.10 (br s, 3H), 2.30-2.20 (br s, 3H), 2.05 (d, 1H, J = 7), 1.96 (s, 6H), 1.87 (s, 6H); CI-MS: 244 (M + H).
- 10 D. 5-methyl-3-(2,4,6-trimethylphenyl)[1,5-a]-[1,2,3]-triazolo-[1,3,5]-triazin-7(4H)-one Sodium (368 mg, 16.2 mmol) was added with stirring to ethanol (10 mL) at room temperature. After the sodium had reacted, 4-(2,4,6-trimethylphenyl)-5acetamidino-triazole, acetic acid salt (490 mg, 1.6 15 mmol) and diethyl carbonate (1.6 mL, 13 mmol) were The reaction mixture was stirred at reflux temperature for 5 hours, then cooled to room temperature. The reaction mixture was diluted with 20 water; a 1N HCl solution was added until pH = 5-6 and three extractions with ethyl acetate were performed. The combined organic layers were dried over MgSO4 and Solvent was removed in vacuo to give a yellow filtered. Trituration with ether and filtration afforded residue. 25 a yellow solid (300 mg, 69% yield): NMR (CDCl₃,300 MHz):
 - EXAMPLE 3

6.98 (s, 2H), 2.55 (s, 3H), 2.35 (s, 3H), 2.10 (s, 6H);

Preparation of 4-(di(carbomethoxy)methyl)- 2,7-dimethyl-8-(2,4-dimethylphenyl)[1,5-a]-pyrazolo- 1,3,5-triazine (Formula 1, where R^3 is $CH(CHCO_2CH_3)_2$, R_1 is CH_3 , Z is C- CH_3 , Z is Z-dimethylphenyl)

35

CI-MS: 270 (M + H).

- A. 4-chloro-2,7-dimethyl-8-(2,4-dichlorophenyl)[1,5-
- a] pyrazolotriazine
 A mixture of 2,7-dimethyl-8-(2,4-dimethylphenyl)[1,5-a]
- 5 -pyrazolo-1,3,5-triazin-4-one (Example 1, 1.38g, 4.5 mmol), N,N-dimethylaniline (1 mL, 8 mmol) and phosphorus oxychloride (10 mL) was stirred at reflux temperature for 48 hours. The excess phosphorus oxychloride was removed *in vacuo*. The residue was poured onto ice-
- 10 water, stirred briefly and extracted quickly with ethyl acetate three times. The combined organic layers were washed with ice water, then dried over MgSO₄ and filtered. Solvent was removed *in vacuo* to give a brown oil. Flash column chromatography (ethyl
- 15 acetate:hexanes::1:4) gave one fraction (Rf = 0.5)
 Solvent was removed in vacuo to afford a yellow oil
 (1.0g, 68% yield): NMR (CDCl₃,300 MHz): 7.55 (d, 1H, J =
 1), 7.38 (dd, 1H, J = 7,1), 7.30 (d, 1H, J = 7), 2.68
 (s, 3H), 2.45 (s, 3H); CI-MS: 327 (M + H).

- B. 4-(di(carbomethoxy)methyl)-2,7-dimethyl-8-(2,4-dimethylphenyl)[1,5-a]-pyrazolo-1,3,5-triazine Sodium hydride (60% in oil, 80 mg, 2 mmol) was washed with hexanes twice, decanted after each washing and taken up in anhydrous tetrahydrofuran (THF, 1 mL). A solution of diethyl malonate (0.32g, 2 mmol) in THF (2 mL) was added dropwise over 5 min, during which time vigorous gas evolution ensued. A solution of 4-chloro-2,7-dimethyl-8-(2,4-dichlorophenyl)[1,5-a]-
- pyrazolotriazine (0.5g, 1.75 mmol) in THF (2 mL) was added and the reaction mixture was then stirred under a nitrogen atmosphere for 48 hours. The resulting suspension was poured onto water and extracted three times with ethyl acetate. The combined organic layers were washed once with brine, dried over MgSO₄ and filtered. Solvent was removed in vacuo to give a brown

oil. Column chromatography (ethyl acetate:hexanes::1:9) afforded, after removal of solvent *in vacuo*, a pale yellow solid (Rf = 0.2, 250 mg, 35% yield): mp 50-52°C; NMR (CDCl₃, 300 MHz): 12.35 (br.s, 1H, 7.15-7.00 (m, 3H), 4.40 (q, 2H, J = 7), 4.30 (q, 2H, J = 7), 2.4, 2.35, 2.3, 2.2, 2.1 (5 s, 12H), 1.4 (t, 3H, J = 7), 1.35-1.25 (m, 3H); CI-HRMS: Calcd: 411.2032, Found: 411.2023.

10

EXAMPLE 6

Preparation of 4-(1,3-dimethoxy-2-propylamino)2,7-dimethyl-8-(2,4-dichlorophenyl)[1,5-a]-pyrazolo1,3,5-triazine

- 15 (Formula 1, where R^3 is NHCH(CH₂OCH₃)₂, R_1 is CH₃, Z is C-CH₃, Ar is 2,4-dichlorophenyl)
 - A. 4-chloro-2,7-dimethyl-8-(2,4-dichlorophenyl)[1,5-a]- pyrazolotriazine
- A mixture of 2,7-dimethyl-8-(2,4 dimethylphenyl)[1,5-a]-pyrazolo-1,3,5-triazin-4-one (Example 1, 1.38g, 4.5 mmol), N,N-dimethylaniline (1 mL, 8 mmol) and phosphorus oxychloride (10 mL) was stirred at reflux temperature for 48 hours. The excess
- phosphorus oxychloride was removed in vacuo. The residue was poured onto ice-water, stirred briefly and extracted quickly with ethyl acetate three times. The combined organic layers were washed with ice water, then dried over MgSO₄ and filtered. Solvent was removed in
- vacuo to give a brown oil. Flash column chromatography
 (ethyl acetate:hexanes::1:4) gave one fraction (Rf =
 0.5) Solvent was removed in vacuo to afford a yellow
 oil (1.0g, 68% yield): NMR (CDCl₃,300 MHz): 7.55 (d, 1H,
 J = 1), 7.38 (dd, 1H, J = 7,1), 7.30 (d, 1H, J = 7),
- 35 2.68 (s, 3H), 2.45 (s, 3H); CI-MS: 327 (M + H).

B. 4-(1,3-dimethoxy-2-propylamino)-2,7-dimethyl-8-(2,4-dichlorophenyl)[1,5-a]-pyrazolo-1,3,5-triazine

A mixture of 4-chloro-2,7-dimethyl-8-(2,4-dichlorophenyl)[1,5-a]-pyrazolo-1,3,5-triazine (Part A, 570 mg, 1.74 mmol), 1,3-dimethoxypropyl-2-aminopropane (25mg, 2.08 mmol) and ethanol (10 mL) was stirred at ambient temperature for 18 hours. The reaction mixture was poured onto water (25 mL) and extracted three times with ethyl acetate. The combined organic layers were dried over MgSO₄ and filtered. Solvent was removed in vacuo. Column chromatography (CH₂Cl₂:CH₃OH::50:1) afforded one fraction. Removal of solvent in vacuo gave a solid (250 mg, 35% yield): mp 118-120°C; NMR (CDCl₃,300 MHz): 7.50 (s, 1H), 7.28 (dd, 2H, J = 8,1),

15 6.75 (d, 1H, J = 8), 4.70-4.58 (m, 1H), 3.70-3.55 (m, 4H), 3.43 (s, 6H), 2.50 (s, 3H), 2.35 (s, 3H); CI-HRMS: Calcd: 409.1072, Found: 409.1085; Analysis Calcd. for $C_{18}H_{21}Cl_{2}N_{5}O_{2}$: C, 52.69, H, 5.17, N, 17.07, Cl, 17.28; Found: C, 52.82, H, 5.06, N, 16.77, Cl, 17.50.

20

Using the above procedures and modifications known to one skilled in the art of organic synthesis, the following additional examples of Tables 1-4 may be prepared.

25

30

The examples delineated in TABLE 1 may be prepared by the methods outlined in Examples 1, 2, 3 or 6. Commonly used abbreviations are: Ph is phenyl, Pr is propyl, Me is methyl, Et is ethyl, Bu is butyl, Ex is Example.

TABLE 1

R³
N
N
Z
Ar

T1770

5	Ex.	<u>Z</u> .	R <u>3</u>	Ar	mp (°C)
	6 ^a	C-Me	NHCH (CH2OMe) 2	2,4-Cl ₂ -Ph	118-120
	7b	C-Me	NHCHPr ₂	2,4-Cl ₂ -Ph	114-116
	8c	C-Me	NEtBu	2,4-Cl ₂ -Ph	oil
	9d	C-Me	$NPr(CH_2-c-C_3H_5)$	2,4-Cl ₂ -Ph	oil
10	10 ^e	C-Me	N(CH2CH2OMe)2	2,4-Cl ₂ -Ph	oil
	11 ^f	C-Me	NH-3-heptyl	2,4-Cl ₂ -Ph	90-92
	12 ⁹	C-Me	NHCH (Et) CH2OMe	2,4-Cl ₂ -Ph	179-181
	13 ^h	C-Me	NEt ₂	2,4-Cl ₂ -Ph	133-134
	14 ⁱ	C-Me	NHCH (CH ₂ OEt) ₂	2,4-Cl ₂ -Ph	oil
15	15 ^j	C-Me	NH-3-pentyl	2,4-Cl ₂ -Ph	139-140
	16 ^k	C-Me	NMePh	2,4-Cl ₂ -Ph	60-62
	171	C-Me	NPr ₂	2,4-Cl ₂ -Ph	oil
	18 ^m	C-Me	NH-3-hexyl	2,4-Cl ₂ -Ph	130-132
	19	C-Me	morpholino	2,4-Cl ₂ -Ph	
20	20	C-Me	N(CH2Ph)CH2CH2OMe	2,4-Cl ₂ -Ph	
	21	C-Me	NHCH (CH2Ph) CH2OMe	2,4-Cl ₂ -Ph	
	22	C-Me	NH-4-tetrahydropyranyl	2,4-Cl ₂ -Ph	
	23	C-Me	NH-cyclopentyl	2,4-Cl ₂ -Ph	
	24	C-Me	1,2,3,4-tetrahydro-	2,4-Cl ₂ -Ph	
25			isoquinolinyl		
	25	C-Me	CH ₂ -(1,2,3,4-tetrahydro-	2,4-Cl ₂ -Ph	
-			isoquinolinyl)		
	26 ⁿ	C-Me	OEt	2,4-Cl ₂ -Ph	141-143
	27	C-Me	OCH(Et)CH2OMe	2,4-Cl ₂ -Ph	

	28	C-Me	OCH ₂ Ph	2,4-Cl ₂ -Ph	
	29	С-Ме	O-3-pentyl	2,4-Cl ₂ -Ph	
	30	С-Ме	SEt	2,4-Cl ₂ -Ph	
	31	С-Ме	S (O) Et	2,4-Cl ₂ -Ph	
5	32	С-Ме	SO ₂ Et	2,4-Cl ₂ -Ph	
	33	С-Ме	CH(CO ₂ Et) ₂	2,4-Cl ₂ -Ph	
	34	C-Me	C(Et)(CO ₂ Et) ₂	2,4-Cl ₂ -Ph	
	35	C-Me	CH(Et)CH ₂ OH	2,4-Cl ₂ -Ph	
	36	С-Ме	CH(Et)CH2OMe	2,4-Cl ₂ -Ph	
10	37	C-Me	CONMe ₂	2,4-Cl ₂ -Ph	
	38	С-Ме	COCH3	2,4-Cl ₂ -Ph	
	39	C-Me	СН (ОН) СН _З	2,4-Cl ₂ -Ph	
	40	С-Ме	C(OH)Ph-3-pyridyl	2,4-Cl ₂ -Ph	
	41	С-Ме	Ph	2,4-Cl ₂ -Ph	
15	42	С-Ме	2-CF ₃ -Ph	2,4-Cl ₂ -Ph	
	43	C-Me	2-Ph-Ph	2,4-Cl ₂ -Ph	
	44	C-Me	3-pentyl	2,4-Cl ₂ -Ph	
	45	С-Ме	cyclobutyl	2,4-Cl ₂ -Ph	
	46	C-Me	3-pyridyl	2,4-Cl ₂ -Ph	
20	47	C-Me	CH(Et)CH2CONMe2	2,4-Cl ₂ -Ph	
	48	С-Ме	CH(Et)CH2CH2NMe2	2,4-Cl ₂ -Ph	
	490	C-Me	NHCH (CH2OMe) 2	2,4,6-Me ₃ -Ph	125-127
	50	C-Me	NHCHPr ₂	2,4,6-Me ₃ -Ph	
	51	C-Me	NEtBu	2,4,6-Me ₃ -Ph	
25	52	C-Me	$NPr(CH_2-c-C_3H_5)$	2,4,6-Me ₃ -Ph	
	53ae	С-Ме	N(CH ₂ CH ₂ OMe) ₂	2,4,6-Me ₃ -Ph	123-124
	54	C-Me	NH-3-heptyl	2,4,6-Me ₃ -Ph	
	55ac	C-Me	NHCH (Et) CH2OMe	2,4,6-Me ₃ -Ph	145-146
	56 ^{ah}	С-Ме	NEt ₂	2,4,6-Me3-Ph	88-90
30	57 a i	C-Me	NHCH (CH2OEt) 2	2,4,6-Me ₃ -Ph	132-134
	58ad	C-Me	NH-3-pentyl	2,4,6-Me ₃ -Ph	134-135
	59	С-Ме	NMePh	2,4,6-Me ₃ -Ph	
	60	C-Me	NPr ₂	2,4,6-Me ₃ -Ph	
	61	С-Ме	NH-3-hexyl	2,4,6-Me ₃ -Ph	
35	62	C-Me	morpholino	2,4,6-Me ₃ -Ph	
	63	C-Me	$N(CH_2Ph)CH_2CH_2OMe$	2,4,6-Me ₃ -Ph	

	64	С-Ме	NHCH (CH2Ph) CH2OMe	2,4,6-Me ₃ -Ph	
	65	C-Me	NH-4-tetrahydropyranyl	2,4,6-Me3-Ph	
	66	C-Me	NH-cyclopentyl	2,4,6-Me3-Ph	
	67	C-Me	1,2,3,4-tetrahydro-	2,4,6-Me3-Ph	
5			isoquinolinyl		
	68	C-Me	CH ₂ -(1,2,3,4-tetrahydro-	2,4,6-Me ₃ -Ph	
			isoquinolinyl)		
	69	C-Me	OEt	2,4,6-Meg-Ph	
	70	C-Me	OCH(Et)CH2OMe	2,4,6-Me3-Ph	
10	71	C-Me	OCH ₂ Ph	2,4,6-Me3-Ph	
	72	C-Me	O-3-pentyl	2,4,6-Me3-Ph	
	73	C-Me	SEt	2,4,6-Me ₃ -Ph	
	74	C-Me	S(O)Et	2,4,6-Me3-Ph	
	75	C-Me	SO ₂ Et	2,4,6-Me3-Ph	
15	76	C-Me	CH(CO ₂ Et) ₂	2,4,6-Me ₃ -Ph	
	77	C-Me	$C(Et)(CO_2Et)_2$	2,4,6-Me ₃ -Ph	
	78	C-Me	CH(Et)CH ₂ OH	2,4,6-Me ₃ -Ph	
	79	C-Me	CH(Et)CH ₂ OMe	2,4,6-Me ₃ -Ph	
	80	C-Me	CONMe ₂	2,4,6-Meg-Ph	
20	81	C-Me	COCH3	2,4,6-Me ₃ -Ph	
	82	C-Me	Сн (он) Сн ₃	2,4,6-Me ₃ -Ph	
	83	C-Me	C(OH)Ph-3-pyridyl	2,4,6-Me3-Ph	
	84	C-Me	Ph	2,4,6-Me ₃ -Ph	
	85	C-Me	2-CF ₃ -Ph	2,4,6-Me ₃ -Ph	
25	86	C-Me	2-Ph-Ph	2,4,6-Me ₃ -Ph	
	87	C-Me	3-pentyl	2,4,6-Me3-Ph	
	88	C-Me	cyclobutyl	2,4,6-Me ₃ -Ph	
	89	С-Ме	3-pyridyl	2,4,6-Meg-Ph	
	90	C-Me	CH(Et)CH2CONMe2	2,4,6-Me ₃ -Ph	
30	91	C-Me	CH(Et)CH2CH2NMe2	2,4,6-Me ₃ -Ph	
	92P	C-Me	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph	44-45
	P86	C-Me	N(CH ₂ CH ₂ OMe) ₂	2,4-Me ₂ -Ph	oil
	94 ^r	C-Me	NHCH (Et) CH2OMe	2,4-Me ₂ -Ph	102-104
	95 ^S	C-Me	NH-3-pentyl	2,4-Me ₂ -Ph	102-104
35	96 ^t	C-Me	NEt ₂	2,4-Me ₂ -Ph	oil
	97 ^u	C-Me	N(CH ₂ CN) ₂	2,4-Me ₂ -Ph	148-150

	98 ^v	C-Me	NHCH (Me) CH2OMe	2,4-Me ₂ -Ph	102-104
	99 w	C-Me	OCH (Et) CH2OMe	2,4-Me ₂ -Ph	oil
	100×	C-Me	NPr-c-C3H5	2,4-Me ₂ -Ph	oil
	101Y	C-Me	NHCH (Me) CH2NMe2	_	47-48
5	1012 102 ²			2,4-Me2-Ph	
3	102- 103aa	C-Me	N(C-C3H5) CH2CH2CN	2,4-Me2-Ph	117-118
	1034ab	C-Me	N (Pr) CH2CH2CN	2,4-Me ₂ -Ph	oil
		C-Me	N (Bu) CH2CH2CN	2,4-Me ₂ -Ph	oil
	105	C-Me	NHCHPr2	2,4-Me ₂ -Ph	
10	106	C-Me	NEtBu	2,4-Me2-Ph	
10	107	C-Me	NPr(CH ₂ -c-C ₃ H ₅)	2,4-Me ₂ -Ph	
	108	C-Me	NH-3-heptyl	2,4-Me ₂ -Ph	
	109	C-Me	NEt ₂	2,4-Me ₂ -Ph	
	110	C-Me	NHCH (CH ₂ OEt) ₂	2,4-Me ₂ -Ph	
	111	C-Me	NH-3-pentyl	2,4-Me ₂ -Ph	
15	112	C-Me	NMePh	2,4-Me ₂ -Ph	
	113	C-Me	NPr ₂	2,4-Me2-Ph	
	114	C-Me	NH-3-hexyl	2,4-Me ₂ -Ph	
	115	C-Me	morpholino	2,4-Me ₂ -Ph	
	116	C-Me	N (CH2Ph) CH2CH2OMe	2,4-Me ₂ -Ph	
20	117	C-Me	NHCH (CH2Ph) CH2OMe	2,4-Me2-Ph	
	118	C-Me	NH-4-tetrahydropyranyl	2,4-Me ₂ -Ph	
	119	C-Me	NH-cyclopentyl	2,4-Me ₂ -Ph	
	120	C-Me	1,2,3,4-tetrahydro-	2,4-Me ₂ -Ph	
			isoquinolinyl		
25	121	C-Me	CH ₂ -(1,2,3,4-tetrahydro-	2,4-Me2-Ph	
			isoquinolinyl)		
	122	C-Me	OEt	2,4-Me ₂ -Ph	
	123	C-Me	OCH(Et)CH2OMe	2,4-Me ₂ -Ph	
	124	C-Me	OCH2Ph	2,4-Me ₂ -Ph	
30	125	C-Me	O-3-pentyl	2,4-Me2-Ph	
	126	С-Ме	SEt	2,4-Me ₂ -Ph	
	127	C-Me	S (O) Et	2,4-Me ₂ -Ph	
	128	C-Me	SO ₂ Et	2,4-Me ₂ -Ph	
	3	C-Me	CH(CO ₂ Et) ₂	2,4-Me2-Ph	50-52
35	129	C-Me	C(Et)(CO ₂ Et) ₂	2,4-Me ₂ -Ph	

	130	C-Me	CH(Et)CH2OH	2,4-Me ₂ -Ph	
	131	C-Me	CH(Et)CH ₂ OMe	2,4-Me ₂ -Ph	
	132	С-Ме	CH(Et)CH2OEt	2,4-Me ₂ -Ph	
	133	C-Me	CONMe ₂	2,4-Me ₂ -Ph	
5	134	С-Ме	соснз	2,4-Me ₂ -Ph	
	135	С-Ме	СН (ОН) СНЗ	2,4-Me ₂ -Ph	
	136	С-Ме	C(OH)Ph-3-pyridyl	2,4-Me ₂ -Ph	
	137	С-Ме	Ph	2,4-Me ₂ -Ph	
	138	С-Ме	2-CF3-Ph	2,4-Me ₂ -Ph	
10	139	C-Me	2-Ph-Ph	2,4-Me ₂ -Ph	
	140	С-Ме	3-pentyl	2,4-Me ₂ -Ph	
	141	C-Me	cyclobutyl	2,4-Me ₂ -Ph	
	142	С-Ме	3-pyridyl	2,4-Me ₂ -Ph	
	143	С-Ме	CH(Et)CH2CONMe2	2,4-Me ₂ -Ph	
15	144	C-Me	CH(Et)CH2CH2NMe2	2,4-Me ₂ -Ph	
	145bc	C-Me	NHCH (CH2OMe) 2	2-Me-4-MeO-Ph	45-46
	146 ^{bd}	C-Me	N(CH2CH2OMe)2	2-Me-4-MeO-Ph	oil
	147be	C-Me	NHCH(Et)CH2OMe	2-Me-4-MeO-Ph	86-88
	148 ^{bf}	C-Me	N(Pr)CH2CH2CN	2-Me-4-MeO-Ph	oil
20	149	C-Me	OCH(Et)CH2OMe	2-Me-4-MeO-Ph	
	150 ^{af}	С-Ме	NHCH (CH2OMe) 2	2-Br-4-MeO-Ph	88-90
	151 ^{al}	C-Me	N(CH2CH2OMe)2	2-Br-4-MeO-Ph	oil
	152 ^{ag}	C-Me	NHCH(Et)CH2OMe	2-Br-4-MeO-Ph	95-97
	153	C-Me	N(Pr)CH2CH2CN	2-Br-4-MeO-Ph	
25	154	C-Me	OCH(Et)CH2OMe	2-Br-4-MeO-Ph	
	155	C-Me	NHCH (CH2OMe) 2	$2-Me-4-NMe_2-Ph$	
	156	С-Ме	N(CH2CH2OMe)2	2-Me-4-NMe ₂ -Ph	oil
	157	C-Me	NHCH(Et)CH2OMe	$2-Me-4-NMe_2-Ph$	
	158	C-Me	N(Pr)CH2CH2CN	2-Me-4-NMe ₂ -Ph	
30	159	C-Me	OCH(Et)CH2OMe	2-Me-4-NMe ₂ -Ph	
	160	C-Me	NHCH (CH2OMe) 2	2-Br-4-NMe ₂ -Ph	
	161	С-Ме	N(CH2CH2OMe)2	2-Br-4-NMe ₂ -Ph	
	162	C-Me	NHCH(Et)CH2OMe	2-Br-4-NMe ₂ -Ph	
	163	C-Me	N(Pr)CH2CH2CN	2-Br-4-NMe ₂ -Ph	
35	164	C-Me	OCH(Et)CH2OMe	2-Br-4-NMe ₂ -Ph	
	165	C-Me	NHCH (CH2OMe) 2	2-Br-4-i-Pr-Ph	

	166	C-Me	$N(CH_2CH_2OMe)_2$	2-Br-4-i-Pr-Ph	
	167	C-Me	NHCH(Et)CH2OMe	2-Br-4-i-Pr-Ph	
	168	C-Me	N(Pr)CH2CH2CN	2-Br-4-i-Pr-Ph	
	169	C-Me	OCH(Et)CH2OMe	2-Br-4-i-Pr-Ph	
5	170	C-Me	NHCH (CH2OMe) 2	2-Br-4-Me-Ph	
	171	С-Ме	N(CH2CH2OMe)2	2-Br-4-Me-Ph	
	172	С-Ме	NHCH(Et)CH2OMe	2-Br-4-Me-Ph	
	173	С-Ме	N(Pr)CH2CH2CN	2-Br-4-Me-Ph	
	174	C-Me	OCH(Et)CH2OMe	2-Br-4-Me-Ph	
10	175 ^{ar}	C-Me	NHCH (CH2OMe) 2	2-Me-4-Br-Ph	108-109
	176	C-Me	N(CH2CH2OMe)2	2-Me-4-Br-Ph	
	177	С-Ме	NHCH(Et)CH2OMe	2-Me-4-Br-Ph	
	178	С-Ме	N(Pr)CH2CH2CN	2-Me-4-Br-Ph	
	179	C-Me	OCH(Et)CH2OMe	2-Me-4-Br-Ph	
15	180	С-Ме	NHCH (CH2OMe) 2	2-C1-4,6-Me ₂ -Ph	
	181	C-Me	N(CH2CH2OMe)2	2-C1-4,6-Me ₂ -Ph	
	182	C-Me	NHCH (CH2OMe) 2	4-Br-2,6-(Me)2-Ph	
	183	C-Me	N(CH2CH2OMe)2	4-Br-2,6-(Me)2-Ph	
	184	С-Ме	NHCH (CH2OMe) 2	4-i-Pr-2-SMe-Ph	
20	185	C-Me	N(CH2CH2OMe)2	4-i-Pr-2-SMe-Ph	
	186	С-Ме	NHCH (CH2OMe) 2	2-Br-4-CF3-Ph	
	187	C-Me	N(CH2CH2OMe)2	2-Br-4-CF ₃ -Ph	
	188	С-Ме	NHCH (CH2OMe) 2	$2-Br-4, 6-(MeO)_2-Ph$	
	189	С-Ме	N(CH2CH2OMe)2	2-Br-4,6-(MeO)2-Ph	
25	190	С-Ме	NHCH (CH2OMe) 2	2-Cl-4, 6- (MeO) 2-Ph	
	191	C-Me	N(CH2CH2OMe)2	2-Cl-4,6-(MeO)2-Ph	
	192	C-Me	NHCH (CH2OMe) 2	2,6-(Me)2-4-SMe-Ph	
	193	C-Me	N(CH2CH2OMe)2	2,6-(Me)2-4-SMe-Ph	
	194	С-Ме	NHCH (CH2OMe) 2	4-(COMe)-2-Br-Ph	
30	195	С-Ме	N(CH2CH2OMe)2	4-(COMe)-2-Br-Ph	
	196	С-Ме	NHCH (CH2OMe) 2	2,4,6-Me ₃ -pyrid-3-yl	
	197	С-Ме	N(CH2CH2OMe)2	2,4,6-Me3-pyrid-3-yl	
	198	C-Me	NHCH (CH2OMe) 2	2,4-(Br) ₂ -Ph	
	199	C-Me	N(CH2CH2OMe)2	2,4-(Br) ₂ -Ph	
35	200	C-Me	NHCH (CH2OMe) 2	4-i-Pr-2-SMe-Ph	
	201	C-Me	N(CH2CH2OMe)2	4-i-Pr-2-SMe-Ph	

	202	C-Me	NHCH (CH2OMe) 2	4-i-Pr-2-SO ₂ Me-Ph
	203	C-Me	N(CH2CH2OMe) $_2$	4-i-Pr-2-SO ₂ Me-Ph
	204	C-Me	NHCH (CH2OMe) 2	2,6-(Me) ₂ -4-SMe-Ph
	205	C-Me	N(CH2CH2OMe)2	2,6-(Me)2-4-SMe-Ph
5	206	C-Me	NHCH (CH2OMe) 2	2,6-(Me)2-4-SO ₂ Me-Ph
	207	C-Me	N(CH2CH2OMe) $_2$	2,6-(Me)2-4-SO ₂ Me-Ph
	208	C-Me	NHCH (CH2OMe) 2	2-I-4-i-Pr-Ph
	209	C-Me	N(CH2CH2OMe)2	2-I-4-i-Pr-Ph
	210	C-Me	NHCH (CH2OMe) 2	2-Br-4-N (Me) 2-6-MeO-Ph
10	211	C-Me	N(CH ₂ CH ₂ OMe) ₂	2-Br-4-N (Me) 2-6-MeO-Ph
	212	C-Me	NHCH (CH2OMe) 2	2,4-[SMe]2-Ph
	213	C-Me	N(CH2CH2OMe)2	2,4-[SMe]2-Ph
	214	C-Me	NHCH (CH2OMe) 2	2,4-[SO ₂ Me]2-Ph
	215	C-Me	N(CH2CH2OMe)2	2,4-[SO ₂ Me]2-Ph
15	216	C-Me	NHCH (CH2OMe) 2	4-i-Pr-2-SMe-Ph
	217	C-Me	$N(CH_2CH_2OMe)_2$	4-i-Pr-2-SMe-Ph
	218	C-Me	NHCH (CH2OMe) 2	4-i-Pr-2-SO ₂ Me-Ph
	219	C-Me	$N(CH_2CH_2OMe)_2$	4-i-Pr-2-SO ₂ Me-Ph
	220	C-Me	NHCH (CH2OMe) 2	2-N (Me) $2-4-Me-Ph$
20	221	C-Me	N(CH2CH2OMe) $_2$	2-N (Me) $2-4-Me-Ph$
	222	C-Me	NHCH (CH2OMe) 2	2-MeS-4,6-(Me)2-Ph
	223	C-Me	$N(CH_2CH_2OMe)_2$	2-MeS-4,6-(Me) ₂ -Ph
	224	C-Me	NHCH (CH2OMe) 2	2-(CH ₃ CO)-4,6-(Me) ₂ -Ph
	225	C-Me	$N(CH_2CH_2OMe)_2$	2-(CH ₃ CO)-4,6-(Me) ₂ -Ph
25	226	H	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph
	227	Н	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph
	228	CF3	$N(CH_2CH_2OMe)_2$	2,4-Me ₂ -Ph
	229	CF3	N(CH2CH2OMe)2	2,4-Me ₂ -Ph
	230	N	NHCH (CH2OMe) 2	2,4,6-Me ₃ -Ph
30	231	N	NHCHPr ₂	2,4,6-Me ₃ -Ph
	232	N	NEtBu	2,4,6-Me ₃ -Ph
	233	N	$NPr(CH_2-c-C_3H_5)$	2,4,6-Me ₃ -Ph
	234	N	$N(CH_2CH_2OMe)_2$	2,4,6-Me ₃ -Ph
	235	N	NH-3-heptyl	2,4,6-Me ₃ -Ph
35	236	N	NHCH(Et)CH2OMe	2,4,6-Me ₃ -Ph
	237	N	NEt ₂	2,4,6-Me3-Ph

238	N	NHCH (CH2OEt) 2	2,4,6-Me ₃ -Ph
239	N	NH-3-pentyl	2,4,6-Me ₃ -Ph
240	N	NMePh	2,4,6-Me ₃ -Ph
241	N	NPr ₂	2,4,6-Me ₃ -Ph
242	N	NH-3-hexyl	2,4,6-Me ₃ -Ph
243	N	morpholino	2,4,6-Me ₃ -Ph
244	N	$N(CH_2Ph)CH_2CH_2OMe$	2,4,6-Me ₃ -Ph
245	N	NHCH (CH2Ph) CH2OMe	2,4,6-Me3-Ph
246	N	NH-4-tetrahydropyranyl	2,4,6-Me ₃ -Ph
247	N	NH-cyclopentyl	2,4,6-Me ₃ -Ph
248	N	1,2,3,4-tetrahydro-	2,4,6-Me ₃ -Ph
		isoquinolinyl	
249	N	CH ₂ -(1,2,3,4-tetrahydro-	2,4,6-Me ₃ -Ph
		isoquinolinyl)	
250	N	OEt	2,4,6-Me ₃ -Ph
251	N	OCH(Et)CH2OMe	2,4,6-Me ₃ -Ph
252	N	OCH ₂ Ph	2,4,6-Me ₃ -Ph
253	N	O-3-pentyl	2,4,6-Me ₃ -Ph
254	N	SEt	2,4,6-Me ₃ -Ph
255	N	S (O) Et	2,4,6-Me ₃ -Ph
256	N	SO ₂ Et	2,4,6-Me ₃ -Ph
257	N	CH(CO ₂ Et) ₂	2,4,6-Me ₃ -Ph
258	N	C(Et)(CO ₂ Et) ₂	2,4,6-Me ₃ -Ph
259	N	CH(Et)CH ₂ OH	2,4,6-Me ₃ -Ph
260	N	CH(Et)CH ₂ OMe	2,4,6-Me ₃ -Ph
261	N	CONMe ₂	2,4,6-Me ₃ -Ph
262	N	COCH3	2,4,6-Me ₃ -Ph
263	N	CH (OH) CH3	2,4,6-Me ₃ -Ph
264	N	C(OH)Ph-3-pyridyl	2,4,6-Me ₃ -Ph
265	N	Ph	2,4,6-Me ₃ -Ph
266	N	2-CF ₃ -Ph	2,4,6-Me ₃ -Ph
267	N	2-Ph-Ph	2,4,6-Me ₃ -Ph
268	N	3-pentyl	2,4,6-Me3-Ph
269	N	cyclobutyl	2,4,6-Me ₃ -Ph
270	N	3-pyridyl	2,4,6-Me ₃ -Ph
271	N	CH(Et)CH2CONMe2	2,4,6-Me ₃ -Ph
	239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 267 268 269 270	239 N 240 N 241 N 242 N 243 N 244 N 245 N 246 N 247 N 248 N 249 N 250 N 251 N 252 N 253 N 254 N 255 N 256 N 257 N 258 N 259 N 259 N 260 N 261 N 262 N 263 N 264 N 265 N 266 N 267 N 268 N 269 N	NH-3-pentyl

	272	N	CH(Et)CH2CH2NMe2	2,4,6-Me ₃ -Ph
	273	N	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph
	274	N	NHCHPr ₂	2,4-Me ₂ -Ph
	275	N	NEtBu	2,4-Me ₂ -Ph
5	276	N	$NPr(CH_2-c-C_3H_5)$	2,4-Me ₂ -Ph
	277	N	N(CH2CH2OMe)2	2,4-Me ₂ -Ph
	278	N	NH-3-heptyl	2,4-Me ₂ -Ph
	279	N	NHCH (Et) CH2OMe	2,4-Me ₂ -Ph
	280	N	NEt ₂	2,4-Me ₂ -Ph
10	281	N	NHCH (CH2OEt) 2	2,4-Me ₂ -Ph
	282	N	NH-3-pentyl	2,4-Me ₂ -Ph
	283	N	NMePh	2,4-Me ₂ -Ph
	284	N	NPr ₂	2,4-Me ₂ -Ph
	285	N	NH-3-hexyl	2,4-Me ₂ -Ph
15	286	N	morpholino	2,4-Me ₂ -Ph
	287	N	$N(CH_2Ph)CH_2CH_2OMe$	2,4-Me ₂ -Ph
	288	N	NHCH (CH2Ph) CH2OMe	2,4-Me ₂ -Ph
	289	N	NH-4-tetrahydropyranyl	2,4-Me ₂ -Ph
	290	N	NH-cyclopentyl	2,4-Me ₂ -Ph
20	291	N	1,2,3,4-tetrahydro-	2,4-Me ₂ -Ph
			isoquinolinyl	
	292	N	CH ₂ -(1,2,3,4-tetrahydro-	2,4-Me ₂ -Ph
			isoquinolinyl)	
	293	N	OEt	2,4-Me ₂ -Ph
25	294	N	OCH(Et)CH2OMe	2,4-Me ₂ -Ph
	295	N	OCH ₂ Ph	2,4-Me ₂ -Ph
	296	N	O-3-pentyl	2,4-Me ₂ -Ph
	297	N	SEt	2,4-Me ₂ -Ph
	298	N	S(O)Et	2,4-Me ₂ -Ph
30	299	N	SO ₂ Et	2,4-Me ₂ -Ph
	300	N	CH(CO ₂ Et) ₂	2,4-Me ₂ -Ph
	301	N	C(Et)(CO ₂ Et) ₂	2,4-Me ₂ -Ph
	302	N	CH(Et)CH ₂ OH	2,4-Me ₂ -Ph
	303	N	CH(Et)CH ₂ OMe	2,4-Me ₂ -Ph
35	304	N	CONMe ₂	2,4-Me ₂ -Ph
	305	N	COCH3	2,4-Me ₂ -Ph

	306	N	CH (OH) CH3	2,4-Me ₂ -Ph	
	307	N	C(OH)Ph-3-pyridyl	2,4-Me ₂ -Ph	
	308	N	Ph	2,4-Me ₂ -Ph	
	309	N	2-CF ₃ -Ph	2,4-Me ₂ -Ph	
5	310	N	2-Ph-Ph	2,4-Me ₂ -Ph	
	311	N	3-pentyl	2,4-Me ₂ -Ph	
	312	N	cyclobutyl	2,4-Me ₂ -Ph	
	313	N	3-pyridyl	2,4-Me ₂ -Ph	
	314	N	CH(Et)CH2CONMe2	2,4-Me ₂ -Ph	
10	315	N	CH(Et)CH2CH2NMe2	2,4-Me ₂ -Ph	
	316 ^{an}	C-Me	NEt ₂	2-Br-4-MeO-Ph	oil
	317 ^{am}	C-Me	NH-3-pentyl	2-Br-4-MeO-Ph	oil
	318 ^a j	C-Me	\mathtt{NHCH} ($\mathtt{CH}_2\mathtt{CH}_2\mathtt{OMe}$) $\mathtt{CH}_2\mathtt{OMe}$	2,4,6-Me ₃ -Ph	101-103
	319 ^{a0}	C-Me	NH(c-C ₃ H ₅)	2,4-Me ₂ -Ph	oil
15	320 ^{ak}	C-Me	morpholino	2,4,6-Meg-Ph	139-141
	321ap	C-Me	NHCH (CH2OMe) 2	2-CN-4-Me-Ph	152-153
	322ªq	C-Me	$N(c-C_3H_5)CH_2CH_2CN$	2,4,6-Meg-Ph	149-151
	324as	C-Me	NHCH (CH2CH2OMe) CH2OMe	2-Me-4-Br-Ph	115-117
	325 ^{at}	C-Me	NHCH (CH2OMe) 2	2,5-Me ₂ -4-MeO-Ph	55-57
20	326 ^{au}	С-Ме	N(CH ₂ CH ₂ OMe) ₂	2,5-Me ₂ -4-MeO-Ph	72
	327 ^{av}	C-Me	NH-3-pentyl	2,5-Me ₂ -4-MeO-Ph	45-47
	328 ^{aw}	C-Me	NEt ₂	2,5-Me ₂ -4-MeO-Ph	oil
	329ax	С-Ме	NHCH (CH2OMe) 2	2-C1-4-MePh	80-81
	330ay	C-Me	NCH(Et)CH2OMe	2-C1-4-MePh	77-79
25	331 ^{az}	С-Ме	N(CH2CH2OMe)2	2-Cl-4-MePh	oil
	332ba	C-Me	(S)-NHCH(CH_2CH_2OMe) CH_2OMe	2-C1-4-MePh	139-140
	333pp	C-Me	N(c-C3H5)CH2CH2CN	2,5-Me ₂ -4-MeOPh	120-122
	334bg	C-Me	NEt ₂	2-Me-4-MeOPh	oil
	335 ^{bh}	С-Ме	OEt	2-Me-4-MeOPh	oil
30	336 ^{bi}	С-Ме	(S) -NHCH (CH_2CH_2OMe) CH_2OMe	2-Me-4-MeOPh	oil
	337 ^b j	C-Me	$N(c-C_3H_5)CH_2CH_2CN$	2-Me-4-MeOPh	129
	338 ^{bk}	С-Ме	NHCH (CH2CH2OEt) 2	2-Me-4-MeOPh	amorph.
	339	С-Ме	$N(c-C_3H_5)CH_2CH_2CN$	2,4-Cl ₂ -Ph	109-110
	340	C-Me	(S) -NHCH (CH2CH2OMe) CH2OMe	2,4-Cl ₂ -Ph	93-94
35	341	С-Ме	NH-3-pentyl	2-Me-4-BrPh	118-119
	342	C-Me	N(CH2CH2OMe)2	2-Me-4-BrPh	oil

	343	C-Me	NHCH(CH2-iPr)CH2OMe	2,4-Me ₂ -Ph	oil
	344	С-Ме	NHCH(Pr)CH2OMe	2,4-Me ₂ -Ph	94-95
	345	С-Ме	NHCH(Et)CH2OEt	2,4-Me ₂ -Ph	76-77
	346	C-Me	NHCH (CH2OMe) CH2CH2OMe	2-Me-4-Me ₂ NPh	oil
5	347	С-Ме	NEt ₂	2-Me-4-ClPh	oil
	348	С-Ме	NH-3-pentyl	2-Me-4-ClPh	122-124
	349	C-Me	N (CH ₂ CH ₂ OMe) $_2$	2-Me-4-ClPh	oil
	350	C-Me	NHCH (CH2OMe) 2	2-Me-4-ClPh	122-123
	351	С-Ме	NEt ₂	2-Me-4-ClPh	oil
10	352	С-Ме	NEt ₂	2-Cl-4-MePh	oil
	353	C-Me	NH-3-pentyl	2-Cl-4-MePh	120-121
	354	С-Ме	NHCH (CH2OMe) 2	2-C1-4-MeOPh	
	355bl	C-Me	$N(CH_2CH_2OMe)_2$	2-Cl-4-MeOPh	oil
	356 ^{bm}	C-Me	NHCH(Et)CH2OMe	2-Cl-4-MeOPh	108-110
15	357bn	C-Me	N(c-Pr)CH2CH2CN	2-C1-4-MeOPh	127-129
	358bo	C-Me	NEt ₂	2-Cl-4-MeOPh	oil
	359bp	С-Ме	NH-3-pentyl	2-C1-4-MeOPh	77-79
	360	С-Ме	NHCH(Et)CH2CH2OMe	2-C1-4-MeOPh	
	361	C-Me	NHCH (Me) CH2CH2OMe	2-C1-4-MeOPh	
20	362	C-Me	NHCH(Et)CH2CH2OMe	2-Br-4-MeOPh	
	363	С-Ме	NHCH (Me) CH2CH2OMe	2-Br-4-MeOPh	
	364	C-Me	NHCH(Et)CH2CH2OMe	2-Me-4-MeOPh	
	365	C-Me	NHCH (Me) CH2CH2OMe	2-Me-4-MeOPh	
	366	C-Me	NHCH (CH2OMe) 2	2-C1-4,5-(MeO) ₂ Ph	
25	367	C-Me	$N(CH_2CH_2OMe)_2$	2-C1-4,5-(MeO) ₂ Ph	
	368	C-Me	NHCH(Et)CH2OMe	2-C1-4, 5- (MeO) 2Ph	
	369	C-Me	N(c-Pr)CH ₂ CH ₂ CN	2-C1-4,5-(MeO) ₂ Ph	
	370	С-Ме	NEt ₂	2-C1-4,5-(MeO) ₂ Ph	
	371	C-Me	NH-3-pentyl	2-C1-4,5-(MeO) ₂ Ph	
30	372	C-Me	NHCH(Et)CH2CH2OMe	2-C1-4,5-(MeO) ₂ Ph	
	373	C-Me	NHCH (Me) CH2CH2OMe	2-C1-4,5-(MeO) ₂ Ph	
	374bq	C-Me	NHCH (CH2OMe) 2	2-Br-4,5-(MeO) ₂ Ph	137-138
	375	С-Ме	N(CH2CH2OMe)2	2-Br-4,5-(MeO) ₂ Ph	
	376 ^{br}	C-Me	NHCH (Et) CH2OMe	2-Br-4,5-(MeO) ₂ Ph	147-148
35	377	C-Me	N(c-Pr)CH2CH2CN	2-Br-4,5-(MeO) ₂ Ph	
	378bs	C-Me	NEt ₂	2-Br-4,5-(MeO) ₂ Ph	52-58

	270	2 11		0 D . 4 E . (M: 0) . Db
	379	C-Me	NH-3-pentyl	2-Br-4,5-(MeO) ₂ Ph
	380	C-Me	NHCH (Et) CH2CH2OMe	2-Br-4,5-(MeO) ₂ Ph
	381	C-Me	NHCH (Me) CH2CH2OMe	2-Br-4,5-(MeO) ₂ Ph
_	382	C-Me	NHCH (CH2OMe) 2	2-C1-4,6-(MeO) ₂ Ph
5	383	C-Me	N(CH ₂ CH ₂ OMe) ₂	2-Cl-4,6-(MeO) ₂ Ph
	384	C-Me	NHCH(Et)CH2OMe	2-C1-4,6-(MeO) ₂ Ph
	385	С-Ме	N(c-Pr)CH2CH2CN	2-C1-4,6-(MeO) ₂ Ph
	386	C-Me	NEt ₂	$2-C1-4, 6-(MeO)_2Ph$
	387	C-Me	NH-3-pentyl	2-C1-4,6-(MeO) ₂ Ph
10	388	C-Me	NHCH(Et)CH ₂ CH ₂ OMe	2-C1-4,6-(MeO) ₂ Ph
	389	С-Ме	NHCH (Me) CH2CH2OMe	2-C1-4,6-(MeO) ₂ Ph
	390	C-Me	NHCH (CH2OMe) 2	2-Me-4,6-(MeO) ₂ Ph
	391	C-Me	$N(CH_2CH_2OMe)_2$	2-Me-4,6-(MeO) ₂ Ph
	392	C-Me	NHCH(Et)CH2OMe	2-Me-4,6-(MeO)2Ph
15	393	C-Me	N(c-Pr)CH2CH2CN	$2-Me-4, 6-(MeO)_2Ph$
	395	C-Me	NEt ₂	$2-Me-4, 6-(MeO)_2Ph$
	396	C-Me	NH-3-pentyl	$2-Me-4, 6-(MeO)_2Ph$
	397	C-Me	NHCH (Et) CH2CH2OMe	$2-Me-4, 6-(MeO)_2Ph$
	398	C-Me	NHCH (Me) CH2CH2OMe	2-Me-4,6-(MeO)2Ph
20	399	C-Me	N(c-Pr)CH2CH2CN	2-Br-4,6-(MeO) ₂ Ph
	400	C-Me	NEt ₂	2-Br-4,6-(MeO) ₂ Ph
	401	C-Me	NH-3-pentyl	2-Br-4,6-(MeO)2Ph
	402	C-Me	NHCH (Et) CH2CH2OMe	2-Br-4,6-(MeO) ₂ Ph
	403	C-Me	NHCH (Me) CH2CH2OMe	2-Br-4,6-(MeO) ₂ Ph
25	404	C-Me	NHCH(Et)CH2CH2OMe	2-Me-4-MeOPh
	405	C-Me	NHCH (Me) CH2CH2OMe	2-Me-4-MeOPh
	406	C-Me	NHCH (CH2OMe) 2	2-Me0-4-MePh
	407	C-Me	N(CH2CH2OMe)2	2-Me0-4-MePh
	408	C-Me	NHCH(Et)CH2OMe	2-Me0-4-MePh
30	409	C-Me	N(c-Pr)CH2CH2CN	2-Me0-4-MePh
	410	C-Me	NEt ₂	2-Me0-4-MePh
	411	С-Ме	NH-3-pentyl	2-Me0-4-MePh
	412	C-Me	NHCH (Et) CH2CH2OMe	2-Me0-4-MePh
	413	C-Me	NHCH (Me) CH2CH2OMe	2-Me0-4-MePh
35	414	С-Ме	NHCH (CH2OMe) 2	2-Me0-4-MePh
	415	С-Ме	N(CH2CH2OMe)2	2-Me0-4-MePh

	416	С-Ме	NHCH(Et)CH2OMe	2-Me0-4-MePh	
	417	C-Me	N(c-Pr)CH2CH2CN	2-Me0-4-MePh	
	418	C-Me	NEt ₂	2-Me0-4-MePh	
	419	C-Me	NH-3-pentyl	2-Me0-4-MePh	
5	420	C-Me	NHCH(Et)CH2CH2OMe	2-Me0-4-MePh	
	421	C-Me	NHCH (Me) CH2CH2OMe	2-Me0-4-MePh	
	₄₂₃ bt	C-Me	NHCH (CH2OMe) 2	2-Me0-4-C1Ph	oil
	424	C-Me	N(CH2CH2OMe)2	2-Me0-4-C1Ph	
	425	C-Me	NHCH(Et)CH2OMe	2-Me0-4-ClPh	
10	426	C-Me	N(c-Pr)CH2CH2CN	2-Me0-4-C1Ph	
	427	C-Me	NEt ₂	2-Me0-4-ClPh	
	428	C-Me	NH-3-pentyl	2-Me0-4-C1Ph	
	429	C-Me	NHCH(Et)CH2CH2OMe	2-Me0-4-ClPh	
	430	C-Me	NHCH (Me) CH2CH2OMe	2-Me0-4-C1Ph	

NOTES FOR TABLE 1:

- a) Analysis Calcd: C, 52.69, H, 5.17, N, 17.07, Cl, 17.28; Found: C, 52.82, H, 5.06, N, 16.77, Cl, 17.50.
- 20 b) CI-HRMS: Calcd: 406.1565, Found: 405.1573 (M + H);
 Analysis Calcd: C: 59.11; H: 6.20; N: 17.23; Cl:
 17.45; Found: C: 59.93; H: 6.34; N: 16.50; Cl:
 16.95;
 NMR (CDCl₃, 300 MHz): 0.95 (t, J = 8, 4H), 1.30-
- 25 1.40 (m, 4H), 1.50-1.75 (m, 4H), 2.35 (s, 3H), 2.48 (s, 3H), 4.30-4.45 (m, 1H), 6.15 (d, J = 8, 1H), 7.30 (s, 2H), 7.50 (s, 1H)
 - CI-HRMS: Calcd: 392.1409, Found: 392.1388 (M + H); NMR (CDCl₃, 300 MHz): 1.00 (t, J = 8, 3H), 1.35 (t,
- 30 J = 8, 3H), 1.41 (q, J = 8, 2H), 1.65-1.85 (m, 2H), 2.30 (s, 3H), 2.40 (s, 3H), 3.85-4.20 (m, 4H), 7.30 (s, 2H), 7.50 (s, 1H).
 - d) CI-HRMS: Calcd: 404.1409, Found: 404.1408 (M + H); NMR(CDCl₃, 300 MHz): 0.35-0.45 (m, 2H), 0.52-0.62
- 35 (m, 2H), 0.98 (t, J = 8, 3H), 1.70-1.90 (m, 2H),

15

- 2.30 (s, 3H), 2.40 (s, 3H), 3.85-4.02 (m, 2H), 4.02-4.20 (m, 2H), 7.30 (s, 2H), 7.50 (s, 1H).
- e) CI-HRMS: Calcd: 424.1307, Found: 424.1307 (M + H):
 NMR (CDCl₃, 300 MHz): 2.28 (s, 3H), 2.40 (s, 3H),
 3.40 (s, 6H), 3.75 (t, J = 8, 4H), 4.20-4.45 (m,

4H), 7.30 (s, 2H), 7.50 (s, 1H).

- f) CI-HRMS: Calcd: 406.1565, Found: 406.1578 (M + H); NMR (CDCl₃, 300 MHz): 0.90 (t, J = 8, 3H), 1.00 (t, J = 8, 3H), 1.28-1.45 (m, 4H), 1.50-1.80 (m, 4H), 2.35 (s, 3H), 2.50 (s, 3H), 4.20-4.35 (m, 1H),
- 10 2.35 (s, 3H), 2.50 (s, 3H), 4.20-4.35 (m, 1H), 6.10-6.23 (m, 1H), 7.30 (s, 2H), 7.50 (s, 1H).
 - g) CI-HRMS: Calcd: 394.1201, Found: 394.1209 (M + H);
 NMR (CDCl₃, 300 MHz): 1.02 (t, J = 8, 3H), 1.651.90 (m, 2H), 2.35 (s, 3H), 2.48 (s, 3H), 3.40 (s,
 3H), 3.50-3.60 (m, 2H), 4.35-4.45 (brs, 1H), 6.506.60 (m, 1H), 7.30 (s, 2H), 7.50 (s, 1H).
 - h) CI-HRMS: Calcd: 364.1096, Found: 364.1093 (M + H); Analysis: Calcd: C: 56.05; H: 5.27; N: 19.23; Cl: 19.46; Found: C: 55.96; H: 5.24; N: 18.93; Cl:
- 20 19.25; NMR (CDCl₃, 300 MHz): 1.35 (t, J = 8, 6H), 2.30 (3, 3H), 2.40 (s, 3H), 3.95-4.15 (m, 4H), 7.30 (s, 2H), 7.50 (d, J = 1, 1H).
- i) CI-HRMS: Calcd: 438.1464, Found: 438.1454 (M + H);

 NMR (CDCl₃, 300 MHz): 1.22 (t, J = 8, 6H), 2.35 (s,

 3H), 2.47 (s, 3H), 3.39 (q, J = 8, 4H), 3.65 (dd, J

 = 8, 1, 2H), 3.73 (dd, J = 8, 1, 2H), 4.55-4.65 (m,

 1H), 6.75 (d, J = 8, 1H), 7.30 (d, J = 1, 2H), 7.50 (s, 1H).
- 30 j) CI-HRMS: Calcd: 378.1252, Found: 378.1249 (M + H);
 Analysis: Calcd: C: 57.15; H: 5.61; N: 18.51; Cl:
 18.74; Found: C: 57.56; H: 5.65; N: 18.35; Cl:
 18.45;
 NMR (CDCl₃, 300 MHz): 1.00 (t, J = 8, 6H), 1.55-
- 35 1.70 (m, 2H), 1.70-1.85 (m, 2H), 2.35 (s, 3H), 2.50

(s, 3H), 4.15-4.25 (m, 1H), 6.18 (d, J = 8, 1H), 7.30 (s, 2H), 7.50 (s, 1H).

- k) CI-HRMS: Calcd: 398.0939, Found: 398.0922 (M + H); Analysis: Calcd: C: 60.31; H: 4.30; N: 17.58; Cl: 17.80; Found: C: 60.29; H: 4.59; N: 17.09; Cl: 17.57; NMR (CDCl₃, 300 MHz): 2.05 (s, 3H), 2.50 (s, 3H), 3.78 (s, 3H), 7.20-7.45 (m, 7H), 7.50 (d, J = 1, 1H).
- 10 1) CI-HRMS: Calcd: 392.1409, Found: 392.1391 (M + H); NMR (CDCl₃, 300 MHz): 0.98 (t, J = 8, 6H), 1.70-1.85 (m, 4H), 2.30 (s, 3H), 2.40 (s, 3H), 3.80-4.10 (m, 4H), 7.30 (s, 2H), 7.50 (d, J = 1, 1H).
- m) CI-HRMS: Calcd: 392.1409, Found: 392.1415 (M + H);

 15 Analysis: Calcd: C: 58.17; H: 5.92; N: 17.85; Cl:

 18.07; Found: C: 58.41; H: 5.85: N: 18.10; Cl:

 17.75;

 NMR (CDCl₃, 300 MHz): 0.90-1.05 (m, 6H), 1.35-1.55

 (m, 2H), 1.55-1.85 (m, 4H), 2.35 (s, 3H), 2.48 (s,

 3H), 4.20-4.35 (m, 1H), 6.15 (d, J = 8, 1H), 7.30

(s, 2H), 7.50 (d, J = 1, 1H).

- n) CI-HRMS: Calcd: 337.0623, Found: 337.0689 (M + H); Analysis: Calcd: C: 53.43; H: 4.18; N: 16.62; Cl: 21.03, Found: C: 53.56; H: 4.33; N: 16.56; Cl:
- 25 20.75; NMR (CDCl₃, 300 MHz): 1.60 (t, J = 8, 3H), 2.40 (s, 3H), 2.55 (s, 3H), 4.80 (q, J = 8, 2H), 7.30 (d, J = 8, 1H), 7.35 (dd, J = 8, 1, 1H), 7.55 (d, J = 1, 1H)
- 30 o) CI-HRMS: Calcd: 383.2321, Found: 383.2309 (M + H);
 NMR (CDCl₃, 300 MHz): 2.00 (s, 6H), 2.20 (s, 3H),
 2.30 (s, 3H), 2.45 (s, 3H), 3.45 (s, 6H), 3.61 (dd,
 J = 8, 8, 2H), 3.70 (dd, J = 8, 8, 2H), 4.60-4.70
 (m, 1H), 6.70 (d, J = 8, 1H), 6.94 (s, 2H).
- 35 p) CI-HRMS: Calcd: 370.2243, Found: 370.2246 (M + H);

Analysis: Calcd: C: 65.02; H: 7.38; N: 18.96; Found: C: 65.22; H: 7.39; N: 18.71; NMR (CDCl₃, 300 MHz): 2.18 (s, 3H), 2.30 (s, 3H), 2.45 (s, 3H), 3.45 (s, 6H), 3.60 (dd, J = 8, 8, 2H), 3.69 (dd, J = 8, 8, 2H), 4.60-4.70 (m, 1H), 6.70 (d, J = 8, 1H), 7.05 (d, J = 8, 1H), 7.07 (d, J = 8, 1H), 7.10 (s, 1H).

- q) CI-HRMS: Calcd: 384.2400, Found: 384.2393 (M + H); NMR (CDCl₃, 300 MHz): 2.16 (s, 3H), 2.25 (s, 3H), 2.35 (s, 3H), 2.39 (s, 3H), 3.40 (s, 6H), 3.77 (t, J = 8, 4H), 4.20-4.45 (m, 4H), 7.02 (d, J = 8, 1H) 7.05 (s, 1H), 7.10 (d, J = 7, 1H).
- r) CI-HRMS: Calcd: 354.2294, Found: 354.2271 (M + H);
 Analysis: Calcd: C: 67.96; H: 7.71; N: 19.81;

 Found: C: 67.56; H: 7.37; N: 19.60;
 NMR (CDCl₃, 300 MHz): 1.03 (t, J = 8, 3H), 1.65
 1.88 (m, 2H), 2.17 (s, 3H), 2.30 (s, 3H), 2.35 (s, 3H), 2.45 (s, 3H), 3.40 (s, 3H), 3.50-3.62 (m, 2H),
 4.30-4.45 (m, 1H), 6.51 (d, J = 8, 1H), 7.04 (d, J = 8, 1H), 7.10 (d, J = 8, 1H), 7.12 (s, 1H).
- s) CI-HRMS: Calcd: 338.2345, Found: 338.2332 (M + H);
 Analysis: Calcd: C: 71.18; H: 8.06; N: 20.75;
 Found: C: 71.43; H: 7.80; N: 20.70;
 NMR (CDCl₃, 300 MHz): 1.00 (t, J = 8, 6H), 1.55
 1.70 (m, 2H), 1.70-1.85 (m, 2H), 2.19 (s, 3H), 2.30
 (s, 3H), 2.35 (s, 3H), 2.46 (s, 3H), 4.15-4.26 (m, 1H), 6.17 (d, J = 8, 1H), 7.06 (d, J = 8, 1H), 7.10
- t) CI-HRMS: Calcd: 324.2188, Found: 324.2188 (M + H);

 NMR (CDCl₃, 300 MHz): 1.25 (t, J = 8, 6H), 2.16 (s, 3H), 2.28 (s, 3H), 2.35 (s, 3H), 2.40 (s, 3H),

 3.95-4.20 (m, 4H), 7.05 (dd, J = 8, 1, 1H), 7.07 (s, 1H), 7.10 (d, J = 1, 1H)

(d, J = 1, 1H), 7.13 (s, 1H).

u) CI-HRMS: Calcd: 346.1780, Found: 346.1785 (M + H);

35 Analysis: Calcd: C: 66.07; H: 5.54; N: 28.39;

Found: C: 66.07; H: 5.60; N: 27.81;

20

y)

NMR (CDCl₃, 300 MHz): 2.15 (s, 3H), 2.32 (s, 3H) 2.17 (s, 3H), 2.52 (s, 3H), 5.25-5.35 (m, 4H), 7.08 (s, 2H), 7.15 (s, 1H).

- v) CI-HRMS: Calcd: 340.2137, Found: 340.2137 (M + H);

 5 Analysis: Calcd: C: 67.23; H: 7.42; N: 20.63;
 Found:C: 67.11; H: 7.39; N: 20.26;
 NMR (CDCl3, 300 MHz): 1.40 (d, J = 8, 3H), 2.16 (s, 3H), 2.32 (s, 3H), 2.35 (s, 3H), 2.47 (s, 3H), 3.42 (s, 3H), 3.50-3.60 (m, 2H), 4.50-4.15 (m, 1H), 6.56 (d, J = 8, 1H), 7.00-7.15 (m, 3H).
 - w) CI-HRMS: Calcd: 355.2134, Found: 355.2134 (M + H); NMR (CDCl3, 300 MHz): 1.05 (t, J = 8, 3H), 1.85-2.00 (m, 2H), 2.17 (s, 3H), 2.36 (s, 6H), 2.50 (s, 3H), 3.41 (s, 3H), 3.45 (dd, J = 8, 3, 1H), 3.82 (dd, J = 8, 1, 1H), 5.70-5.80 (m, 1H), 7.00-7.20 (m, 3H).
 - x) CI-HRMS: Calcd: 364.2501, Found: 364.2501 (M + H);
 NMR (CDCl3, 300 MHz): 0.35-0.43 (m, 2H), 0.50-0.60
 (m, 2H), 0.98 (t, J = 8, 3H), 1.20-1.30 (m, 1H),
 1.72-1.90 (m, 2H), 2.18 (s, 3H) 2.28 (s, 3H), 2.35
 (s, 3H), 2.40 (s, 3H), 3.88-4.03 (m, 2H), 4.03-4.20
 (m, 2H), 7.00-7.15 (m, 3H).

CI-HRMS: Calcd: 353.2454, Found: 353.2454 (M + H);

- Analysis: Calcd: C: 68.15; H: 8.02; N: 23.84;

 Found: C: 67.43; H: 7.81; N: 23.45;

 NMR (CDCl3, 300 MHz): 1.38 (d, J = 8, 3H), 2.18 (s, 3H), 2.30-2.40 (m, 12H), 2.47 93, 3H), 2.60-2.75 (m, 2H), 4.30-4.50 (m, 1H), 6.60-6.70 (m, 1H), 7.00-7.15 (m, 3H).
- 30 z) CI-HRMS: Calcd: 361.2140, Found: 361.2128 (M + H); NMR (CDCl3, 300 MHz): 0.75-0.83 (m, 2H), 1.00-1.10 (m, 2H), 2.17 (s, 3H), 2.30 (s, 3H), 2.36 (s, 3H), 2.47 (s, 3H), 2.85 (t, J = 8, 2H), 3.30-3.40 (m, 1H), 4.40-4.55 (m, 2H), 7.00-7.18 (m, 3H).
- 35 aa) CI-HRMS: Calcd: 363.2297, Found: 363.2311 (M + H);

10

NMR (CDCl₃, 300 MHz): 1.01 (t, 3H, J=8), 1.75-1.90 (m, 2H), 2.15 (s, 3H), 2.19 (s, 3H), 2.35 (s, 3H), 2.40 (s, 3H), 2.98 (t, 2H, J = 8), 3.97-4.15 (m, 2H), 4.15-4.30 (m, 2H), 7.03 (d, 1H, 1H), 7.08 (d, 1H, J = 8), 7.10 (s, 1H).

- ab) CI-HRMS: Calcd: 363.2297, Found: 363.2295 (M + H);
 NMR (CDCl3, 300 MHz): 1.01 (t, 3H, J = 8), 1.351.55 (m, 2H), 1.75-1.90 (m, 2H), 2.15 (s, 3H), 2.30
 (s, 3H), 2.36 (s, 3H), 2.46 (s, 3H), 4.10-4.30 (m,
 2H), 4.95-5.10 (br s, 2H), 7.05 (d, 1H, J = 8),
 7.10 (d, 1H, J = 8), 7.15 (s, 1H).
- ac) CI-HRMS: Calcd: 368.2450, Found: 368.2436;
 Analysis: Calcd: C, 68.62, H, 7.95, N, 19.06;
 Found: C, 68.73, H, 7.97, N, 19.09; NMR (CDCl3, 300

 MHz): 1.05 (t, J = 8, 3H), 1.70-1.90 (m, 2H), 2.01
 (d, J = 3, 6H), 2.20 (s, 3H), 2.30 (s, 3H), 2.46,
 2.465 (s, s, 3H), 3.42, 3.48 (s, s, 3H), 3.53-3.63
 (m, 2H), 4.35-4.45 (m, 1H), 6.73 (d, J = 8, 1H),
 6.97 (s, 2H).
- - (ae) CI- HRMS: Calcd: 398.2556, Found: 398.2551 (M + H); Analysis: Calcd: C: 66.47; H: 7.86; N: 17.62, Found: C: 66.74; H: 7.79; N: 17.70;
- 30 NMR (CDCl3, 300 MHz): 2.00 (s, 6H), 2.12 (s, 3H), 2.30 (s, 3H), 2.37 (s, 3H), 3.40 (s, 6H), 3.78 (t, J = 8, 4H), 4.25-4.40 (m, 4H), 6.93 (s, 2H).
 - (af) CI-HRMS: Calcd: 450.1141, Found: 450.1133 (M + H);

Analysis: Calcd: C: 50.67; H: 5.37; N: 15.55; Br: 17.74; Found: C: 52.36; H: 5.84; N: 14.90; Br: 17.44;

NMR (CDCl₃, 300 MHz): 2.32 (s, 3H), 2.57 (s, 3H),
3.42 (s, 6H), 3.60 (q, J = 8, 2H), 3.69 (q, J = 8,
2H), 3.82 (s, 3H), 4.60-4.70 (m, 1H), 6.73 (d, J = 8, 1H), 6.93 (dd, J = 8, 1, 1H), 7.22 (d, J = 8,
1H).

- ag) CI-HRMS: Calcd: 434.1192, Found: 434.1169 (M + H);

 10 Analysis: Calcd: C: 52.54; H: 5.58; N: 16.12; Br:

 18.40; Found: C: 52.57; H: 5.60; N: 15.98; Br:

 18.22;
- NMR (CDCl₃, 300 MHz): 1.00-1.07 (m, 3H), 1.65-1.85 (m, 2H), 2.35 (s, 3H), 2.46, 2.47 (s, s, 3H), 3.40, 3.45 (s, s, 3H), 3.83 (s, 3H), 4.35-4.45 (m, 1H), 6.55 (d, J = 8, 1H), 6.92 (dd, J = 8, 1, 1H), 7.20-7.30 (m, 2H).
- ah) CI-HRMS: Calcd: 337.2266, Found: 337.2251 (M + H);
 Analysis: Calcd: C: 70.18; H: 8.06; N: 20.75;

 Found: C: 70.69; H: 7.66; N: 20.34;

 NMR (CDCl3, 300 MHz): 1.35 (t, J = 8, 6H), 2.01 (s, 6H), 2.15 (s, 3H), 2.30 (s, 3H), 2.38 (s, 3H), 4.07 (q, J = 8, 4H), 6.93 (s, 2H).
- ai) CI-HRMS: Calcd: 412.2713, Found: 412.2687 (M + H);

 Analysis: Calcd: C: 67.13; H: 8.08; N: 17.02;

 Found: C: 67.22; H: 7.85; N: 17.13;

 NMR (CDCl3, 300 MHz):1.24 (t, J = 8, 6H), 2.00 (s, 6H), 2.20 (s, 3H), 2.30 (s, 3H), 2.43 (s, 3H), 3.60 (q, J = 8, 4H), 3.66 (dd, J = 8, 3, 2H), 3.75 (dd, J = 8, 3, 2H), 4.55-4.65 (m, 1H), 6.75 (d, J = 8, 1H), 6.95 (s, 2H).
 - aj) CI-HRMS: Calcd: 398.2556, Found: 398.2545 (M + H); Analysis: Calcd: C: 66.47; H: 7.86; N: 17.62; Found: C: 66.87; H: 7.62; N: 17.75; NMR (CDCl₃, 300 MHz): 1.95-2.10 (m, 8H), 2.20 (s,

3H), 2.32 (s, 3H), 2.44 (s, 3H), 3.38 (s, 3H), 3.42

(s, 3H), 3.50-3.70 (m, 4H), 4.58-4.70 (m, 1H), 6.87 (d, J=8, 1H), 6.95 (s, 2H).

- ak) CI-HRMS: Calcd: 338.1981, Found: 338.1971 (M + H); Analysis: Calcd: C: 67.63; H: 6.87; N: 20.06; Found: C: 67.67; H: 6.82; N: 20.31; NMR (CDCl₃, 300 MHz): 2.15 (s, 3H), 2.29 (s, 3H), 2.35 (s, 3H), 2.43 (s, 3H), 3.90 (t, J = 8, 4H), 4.35-4.45 (m, 4H), 7.00-7.15 (m, 3H).
- al) CI-HRMS: Calcd: 464.1297, Found: 464.1297 (M + H);

 NMR (CDCl₃, 300 MHz): 2.28 (s, 3H), 2.40 (s, 3H),

 3.40 (s, 6H), 3.75 (t, J = 8, 4H), 3.83 (s, 3H),

 4.20-4.50 (m, 4H), 6.93 (dd, J = 8, 1, 1H), 7.20

 (s, 1H), 7.24 (d, J = 1, 1H).
- am) CI-HRMS: Calcd: 418.1242, Found: 418.1223 (M + H); NMR (CDCl₃, 300 MHz): 1.00 (t, d, J = 8, 1, 6H), 1.55-1.75 (m, 4H), 2.34 (s, 3H), 2.49 (s, 3H), 2.84 (s, 3H), 4.15-4.27 (m, 1H), 6.19 (d, J = 8, 1H), 6.93 (dd, J = 8, 1, 1H), 7.21-7.30 (m, 2H).
- an) CI-HRMS: Calcd: 404.1086, Found: 404.1079(M + H);

 NMR (CDCl₃, 300 MHz): 1.35 (t, J = 8, 6H), 2.28 (s, 3H), 2.40 (s, 3H), 3.83 (s, 3H), 3.90-4.08 (m, 2H), 4.08-4.20 (m, 2H), 6.92 (dd, J = 8, 1, 1H), 7.20-7.25 (m, 2H).
- ao) CI-HRMS: Calcd: 308.1875, Found: 308.1872 (M + H);

 NMR (CDCl₃, 300 MHz): 0.75-0.80 (m, 2H), 0.93-1.00
 (m, 2H), 2.16 (s, 3H), 2.28 (s, 3H), 2.35 (s, 3H),

 2.53 (s, 3H), 3.00-3.10 (m, 1H), 6.50-6.55 (m, 1H),

 7.00-7.15 (m, 3H).
- ap) CI-HRMS: Calcd: 397.1988, Found: 397.1984 (M + H);

 NMR (CDCl₃, 300 MHz): 2.43 (s, 3H), 2.50 (s, 3H),

 3.43 (s, 3H), 3.61 (dd, J = 8, 8, 2H), 3.69 (dd, J = 8, 8, 2H), 3.88 (s, 3H), 4.58-4.70 (m, 1H), 6.75

 (d, J = 8, 1H), 7.20 (dd, J = 8, 1, 1H), 7.25 (d, J = 1, 1H), 7.40 (s, 1H).
- 35 aq) CI-HRMS: Calcd: 375.2297, Found: 375.2286 (M + H);

Analysis: Calcd: C: 70.56; H: 7.01; N: 22.44; Found: C: 70.49; H: 6.99; N: 22.45; NMR (CDCl₃, 300 MHz): 0.79-0.85 (m, 2H), 1.00-1.05 (m, 1H), 2.00 (s, 6H), 2.19 (s, 3H), 2.32 (s, 3H), 2.44 (s, 3H), 2.84 (t, J = 8, 2H), 3.30-3.40 (m, 1H), 4.50 (t, J = 8, 2H), 6.95 (s, 2H).

- ar) CI-HRMS: Calcd: 434.1192, Found: 434.1189 (M + H);
 Analysis: Calcd: C: 52.54; H: 5.58; N: 16.12; Br:
 18.40; Found: C: 52.75; H: 5.59; N: 16.09; Br:
- 10

 18.67;

 NMR (CDCl₃, 300 MHz): 2.19 (s, 3H), 2.30 (s, 3H),

 2.47 (s, 3H), 3.43 (s, 6H), 3.60 (dd, J = 8, 8,

 2H), 3.70 (dd, J = 8, 8, 2H), 4.58-4.70 (m, 1H),

 6.71 (d, J = 8, 1H), 7.08 (d, J = 8, 1H), 7.37 (dd,

 J = 8, 1, 1H), 7.45 (d, J = 1, 1H).
 - as) CI-HRMS: Calcd: 448.1348, Found: 448.1332 (M + H);
 Analysis: Calcd: C: 53.58; H: 5.85; N: 16.62; Br:
 17.82; Found: C: 53.68; H: 5.74; N: 15.52; Br:
 13.03;
- 20 NMR (CDCl₃, 300 MHz): 1.95-2.10 (m, 2H), 2.20 (s, 3H), 2.30 (s, 3H), 2.47 (s, 3H), 3.38 (s, 3H), 3.41 (s, 3H), 3.50-3.67 (m, 4H), 4.55-4.70 (m, 1H), 6.89 (d, J = 8, 1H), 7.05 (d, J = 8, 1H), 7.35 (dd, J = 8, 1, 1H), 7.47 (d, J = 1, 1H).
- 25 at) CI-HRMS: Calcd: 400.2349, Found: 400.2348 (M + H);
 Analysis: Calcd: C: C: 63.14; H: 7.32; N: 17.53;
 Found: C:63.40; H: 7.08; N: 17.14;
 NMR (CDCl₃, 300 MHz): 2.16 (s, 3H), 2.20 (s, 3H),
 2.30 (s, 3H), 2.46 (s, 3H), 3.42 (s, 6H), 3.60 (q,

 J = 8, 2H), 3.70 (q, J = 8, 2H), 3.85 (s, 3H),
 4.59-4.70 (m, 1H), 6.70 (d, J = 8, 1H), 6.76 (s,
 1H), 6.96 (s, 1H).
- au) CI-HRMS: Calcd: 414.2505, Found: 414.2493 (M + H); NMR (CDCl₃, 300 MHz): 2.15 (s, 3H), 2.19 (s, 3H), 2.25 (s, 3H), 2.40 (s, 3H), 3.40 (s, 6H), 3.76 (t,

10

J = 8, 4H), 3.84 (s, 3H), 4.20-4.45 (m, 4H), 6.77 (s, 1H), 6.93 (s, 1H).

- av) CI-HRMS: Calcd: 368.2450, Found: 368.2447 (M + H);
 NMR (CDCl₃, 300 MHz): 1.00 (t, J = 8, 6H), 1.55
 1.85 (m, 4H), 2.19 (s, 3H), 2.20 (s, 3H), 2.30 (s,
 3H), 2.47 (s, 3H), 3.88 (s, 3H), 4.10-4.30 (m, 1H),
 6.15 (d, J = 8, 1H), 6.78 (s, 1H), 6.98 (s, 1H).
- aw) CI-HRMS: Calcd: 353.2216, Found: 353.2197 (M + H);
 NMR (CDCl₃, 300 MHz): 1.35 (t, J = 8, 6H), 2.17 (s,
 3H), 2.19 (s, 3H), 2.28 (s, 3H), 2.40 (s, 3H), 3.85
 (s, 3H), 3.90-4.20 (m, 4H), 6.78 (s, 1H), 6.95 (s,
 1H).
- ax) CI-HRMS: Calcd: 390.1697, Found: 390.1688 (M + H);
 Analysis: Calcd: C: 58.53; H: 6.20; N: 17.96; Cl:
 9.09; Found: C: 58.95; H: 6.28; N: 17.73; Cl: 9.15;
 NMR (CDCl₃, 300 MHz): 2.35 (s, 3H), 2.37 (s, 3H),
 2.48 (s, 3H), 3.42 (s, 6H), 3.60 (dd, J = 8, 8, 2H)
 3.68 (dd, J = 8, 8, 2H), 4.59-4.72 (m, 1H), 6.72
 (d, J = 8, 1H), 7.12 (d, J = 8, 1H), 7.23 (d, J =
 8, 1H), 7.32 (s, 1H).
 - ay) CI-HRMS: Calcd: 374.1748, Found: 374.1735 (M + H);
 Analysis: Calcd: C: 61.04; H: 6.47; N: 18.73; Cl:
 9.48; Found: C: 61.47; H: 6.54; N: 18.23; Cl: 9.61;
 NMR (CDCl₃,300 MHz): 1.01 (t, J = 8, 3H), 1.62-
- 25 1.88 (m, 4H), 2.35 (s, 3H), 2.37 (s, 3H), 2.48 (d, J = 1, 3H), 3.40, 3.45 (s, s, 3H), 3.50-3.64 (m, 2H), 4.38-4.47 (m, 1H), 6.53 (d, J = 8, 1H), 7.12 (d, J = 8, 1H), 7.07 (d, J = 8, 1H), 7.12 (s, 1H).
- az) CI-HRMS: Calcd: 404.1853, Found: 404.1839 (M + H);

 NMR (CDCl₃, 300 MHz): 2.29 (s, 3H), 2.38 (s, 3H),

 2.40 (s, 3H), 3.40 (s, 6H), 3.76 (t, J = 8, 4H),

 4.20-4.45 (m, 4H), 7.11 (d, J = 8, 1H), 7.22 (d, J = 8, 1H), 7.31 (s, 1H).
- ba) CI-HRMS: Calcd: 404.1853, Found: 404.1859 (M + H);

 35 Analysis: C: 59.47; H: 6.50; N: 17.34; Cl: 8.79;

 Found: C: 59.73; H: 6.46; N: 17.10; Cl: 8.73;

10

25

NMR (CDCl₃, 300 MHz): 1.95-2.08 (m, 2H), 2.35 (s, 3H), 2.38 (s, 3H), 2.46 (s, 3H), 3.38 (s, 3H), 3.41 (s, 3H), 3.50-3.65 (m, 4H), 4.56-4.70 (m, 1H), 6.85 (d, J=8, 1H), 7.12 (d, J=8, 1H), 7.45 (d, J=8, 1H), 7.32 (s, 1H).

- bb) CI-HRMS: Calcd: 391.2246, Found: 391.2258 (M + H);
 Analysis: C: 67.67; H: 6.71; N: 21.52; Found: C:
 67.93; H: 6.70; N: 21.48;
 NMR (CDCl3, 300 MHz): 0.76-0.84 (m, 2H), 0.84-0.91
 (m, 2H), 1.00-1.08 (m, 2H), 2.15 (s, 3H), 2.20 (s, 3H), 2.29 (s, 3H), 2.45 (s, 3H), 2.85 (t, J = 8, 2H), 3.28-3.30 (m, 1H), 3.85 (s, 3H), 6.78 (s, 1H),
- bc) CI-HRMS: Calcd: 386.2192, Found: 386.2181 (M + H);

 Analysis: C: 62.32; H: 7.06; N: 18.17; Found: C: 62.48; H: 6.83; N: 18.15;

 NMR (CDCl₃, 300 MHz): 7.1 (d, 1H, J = 8), 6.9 (d, 1H, J = 1), 6.8 (dd, 1H, J = 8,1), 6.7 (br.d, 1H, J = 8), 4.7-4.6 (m, 1H), 3.85 (s, 3H), 3.70-3.55

 (m, 4H), 3.45 (s, 6H), 2.5 (s, 3H), 2.3 (s, 3H), 2.15 (s, 3H).

6.95 (s, 1H).

- bd) CI-HRMS: Calcd: 400.2349, Found: 400.2336 (M + H); NMR (CDCl₃, 300 MHz): 7.1 (d, 1H, J = 7), 6.85 (d, 1H, J = 1), 6.75 (dd, 1H, J = 7,1), 4.45-4.25 (br.s, 4H), 3.75 (t, 4H, J = 7), 3.4 (s, 6H), 2.4 (s, 3H), 2.25 (s, 3H), 2.15 (s, 3H).
- be) CI-HRMS: Calcd: 370.2243, Found: 370.2247 (M + H); Analysis: C: 65.02; H: 7.38; N: 18.96; Found: C: 65.28; H: 7.27; N: 18.71;
- 30 NMR (CDCl₃, 300 MHz): 7.1 (d, 1H, J = 8), 6.85 (d, 1H, J = 1), 6.8 (dd, 1H, J = 8,1), 6.5 (br. d, 1H, J = 1), 4.5-4.3 (m, 1H), 3.85 (s, 3H), 3.65-3.5 (m, 2H), 3.4 (s, 2H), 2.5 (s, 3H), 2.3 (s, 3H), 2.2 (s, 3H), 1.9-1.7 (m, 2H), 1.05 (t, 3H, J = 7).
- 35 bf) CI-HRMS: Calcd: 379.2246, Found: 379.2248 (M + H);

10

15

NMR (CDC1₃, 300 MHz): 7.1 (d, 1H, J = 8), 6.85 (d, 1H, J = 1), 6.8 (dd, 1H, J = 8,1), 4.3-4.0 (m, 4H), 3.85 (s, 3H), 3.0 (t, 2H, J = 7), 2.45 (s, 3H), 2.3 (s, 3H), 2.2 (s, 3H), 1.9-1.8 (m, 2H), 1.0 (t, 3H, J = 7).

- bg) CI-HRMS: Calcd: 340.2137, Found: 340.2122 (M + H); NMR (CDCl3, 300 MHz): 7.1 (d, 1H, J = 8), 6.85 (d, 1H, J = 1), 6.75 (dd, 1H, J = 8,1), 4.2-4.0 (br.m, 4H), 3.85 (s, 3H, 2.4 (s, 3H), 2.3 (s, 3H), 2.2 (s, 3H), 1.35 (t, 6H, J = 7).
- bh) CI-HRMS: Calcd: 313.1665, Found: 313.6664 (M + H).
- bi) CI-HRMS: Calcd: 400.2349, Found: 400.2346 (M + H); NMR (CDCl₃, 300 MHz): 7.1 (d, 1H, J = 7), 6.9-6.75 (m, 3H), 4.7-4.55 (m, 1H), 3.8 (s, 3H), 3,7-3.5 (m, 4H), 3.45 (s, 3H), 3.35 (s, 3H), 2.5 (s, 3H), 2.3 (s, 3H), 2.2 (s, 3H), 2.1-1.95 (m, 2H).
- bj) CI-HRMS: Calcd: 377.2090, Found: 377.2092 (M + H);
 Analysis: C: 67.00; H: 6.44; N: 22.32; Found: C:
 67.35; H: 6.44; N: 22.23;
- 20 NMR (CDCl3, 300 MHz): 7.1 (d, 1H, J = 8), 6.9 (d, 1H, J = 1), 6.8 (dd, 1H, J = 8,1), 4.55-4.4 (m, 2H), 3.85 (s, 3H), 3.4-3.3 (m, 1H), 2.85 (t, 2H, J = 7), 2.5 (s, 3H), 2.3 (s, 3H), 2.2 (s, 3H), 1.1-1.0 (m, 2H), 0.85-0.75 (m, 2H).
- - bl) CI-HRMS: Calcd: 420.1802, Found: 420.1825(M + H);
 - bm) CI-HRMS: Calcd: 390.1697, Found: 390.1707(M + H);
 - bn) CI-HRMS: Calcd: 397.1465, Found: 397.1462(M + H);
 - bo) CI-HRMS: Calcd: 360.1513, Found: 360.1514 (M + H);
- 35 bp) CI-HRMS: Calcd: 374.1748, Found: 374.1737(M + H);

bg) CI-HRMS: Calcd: 479.1155, Found: 479.1154 (M + H);

br) CI-HRMS: Calcd: 463.1219, Found: 463.1211(M + H);
Analysis Calcd: C: 51.96, H: 5.23, N, 15.15, Br:
17.28; Found: C: 52.29, H: 5.62, N: 14.79, Br:

5 17.47

bs) CI-HRMS: Calcd: 433.1113, Found: 433.1114(M, ⁷⁹Br);

bt) NH₃-CI MS: Calcd: 406, Found: 406 (M + H)+;

NMR (CDCl₃, 300 MHz): δ 7.28 (d, J=10Hz, 1H), 7.03

(d, J=8Hz, 1H), 6.96 (s, 1H), 6.7 (d, J=9, 1H),

4.63 (m, 1H), 3.79 (s, 3H), 3.6 (m, 4H), 3.42 (s, 6H), 2.47 (s, 3H), 2.32 (s, 3H).

15 EXAMPLE 431

Preparation of 2,4,7-dimethyl-8-(4-methoxy-2-methylphenyl)[1,5-a]-pyrazolo-1,3,5-triazine (Formula 1, where R^3 is CH_3 , R_1 is CH_3 , Z is $C-CH_3$, Ar is 2,4-dimethylphenyl)

20

25

30

35

10

5-Acetamidino-4-(4-methoxy-2-methylphenyl)-3methylpyrazole, acetic acid salt (602 mg, 2 mmol) was mixed with a saturated NaHCO3 solution (10 mL). aqueous mixture was extracted with EtOAc three times. The combined organic layers were dried over MgSO4, filtered and concentrated in vacuo. The residue was taken up in toluene (10 mL) and trimethyl orthoacetate (0.36 g, 3 mmol) was added to the suspension. reaction mixture was heated to reflux temperature under a nitrogen atmosphere and stirred for 16 hours. After being cooled to ambient temperature, the reaction mixture was concentrated in vacuo to give an oily solid. Column chromatography (CHCl3:MeOH::9:1) afforded, after removal of solvent in vacuo, a yellow viscous oil (Rf = 0.6, 210 mg, 37% yield): NMR (CDCl3, 300 MHz): 7.15 (d, 1H, J = 8), 6.9 (d, 1H, J = 1), 6.85 (dd, 1H, J = 8,1),

3.85 (s, 3H), 2.95 (s, 3H), 2.65 (s, 3H), 2.4 (s, 3H), 2.15 (s, 3H); CI-HRMS: Calcd: 283.1559, Found: 283.1554 (M + H).

5

EXAMPLE 432

7-hydroxy-5-methyl-3-(2-chloro-4-methylphenyl)pyrazolo[1,5-a]pyrimidine (Formula 1 where A is CH, R1 is Me, R3 is OH, Z is C-Me, Ar is 2-chloro-4-methylphenyl)

5-Amino-4-(2-chloro-4-methylphenyl)-3
15 methylpyrazole (1.86 g, 8.4 mmol) was dissolved in glacial acetic acid (30 mL) with stirring. Ethyl acetoacetate (1.18 mL, 9.2 mmol) was then added dropwise to the resulting solution. The reaction mixture was then heated to reflux temperature and stirred for 16

20 hours, then cooled to room temperature. Ether (100 mL) was added and the resulting precipitate was collected by filtration. Drying in vacuo afforded a white solid (1.0 g, 42% yield): NMR (CDCl3, 300Hz): 8.70 (br.s 1H), 7.29 (s, 1H), 7.21-7.09 (m, 2H), 5.62 (s, 1H), 2.35

25 (s, 6H), 2.29 (s, 3H); CI-MS: 288 (M+H).

EXAMPLE 433

7-chloro-5-methyl-3-(2-chloro4-methylphenyl)pyrazolo[1,5-a]pyrimidine
(Formula 1 where A is CH, R1 is Me, R3 is C1,
Z is C-Me, Ar is 2-chloro-4-methylphenyl)

A mixture of 7-hydroxy-5-methyl-3-(2-chloro-4-35 methylphenyl)-pyrazolo[1,5-a]pyrimidine (1.0 g, 3.5 mmol), phosphorus oxychloride (2.7 g, 1.64 mL, 17.4

mmol), N,N-diethylaniline (0.63 g, 0.7 mL, 4.2 mmol) and
toluene (20 mL) was stirred at reflux temperature for 3
hours, then it was cooled to ambient temperature. The
volatiles were removed in vacuo. Flash chromatography

5 (EtOAc:hexane::1:2) on the residue gave 7-chloro-5methyl-3-(2-chloro-4-methylphenyl)-pyrazolo[1,5a]pyrimidine (900 mg, 84% yield) as a yellow oil: NMR
(CDCl3, 300Hz): 7.35 (s, 1H), 7.28-7.26 (m, 1H), 71.6 (
d, 1H, J = 7), 6.80 (s, 1H), 2.55 (s, 3H), 2.45 (s, 3H),
10 2.40 (s, 3H); CI- MS: 306 (M+H).

EXAMPLE 434

7-(pentyl-3-amino)-5-methyl-3-(2-chloro-4-methylphenyl)pyrazolo[1,5-a]pyrimidine (Formula 1 where A is CH, R1 is Me, R3 is pentyl-3amino, Z is C-Me, Ar is 2-chloro-4-methylphenyl)

A solution of 3-pentylamine (394mg, 6.5 mmol) and 20 7-chloro-5-methyl-3-(2-chloro-4methylphenyl)pyrazolo[1,5-a]pyrimidine (200 mg, 0.65 mmol) in dimethylsulfoxide (DMSO, 10 mL) was stirred at 150°C for 2 hours; then it was cooled to ambient temperature. The reaction mixture was then poured onto 25 water (100 mL) and mixed. Three extractions with dichloromethane, washing the combined organic layers with brine, drying over MgSO4, filtration and removal of solvent in vacuo produced a yellow solid. chromatography (EtOAc:hexanes::1:4) afforded a white 30 solid (140 mg, 60% yield): mp 139-141°C; NMR (CDCl3, 300Hz):7.32 (s, 1H), 7.27 (d, 1H, J = 8), 7.12 (d, 1H, J = 7), 6.02 (d, 1H, J = 9), 5.78 (s, 1H), 3.50-3.39 (m, 1H), 2.45 (s, 3H), 2.36 (s, 6H), 1.82-1.60 (m, 4H), 1.01 (t, 6H, J = 8); Analysis Calcd for C₂0H₂5ClN₄: C, 67.31, 35 H, 7.06, N, 15.70, Cl: 9.93; Found: C, 67.32, H, 6.95, N, 15.50, Cl, 9.93.

The examples delineated in TABLE 2 may be prepared by the methods outlined in Examples 1A, 1B, 432, 433, 434. Commonly used abbreviations are: Ph is phenyl, Pr is propyl, Me is methyl, Et is ethyl, Bu is butyl, Ex is Example, EtOAc is ethyl acetate.

TABLE 2

T2040

R³
N
N
Z
Ar

	Ex.	<u>Z</u> .	B <u>3</u>	Ar	mp(°C)
	435 ^b	C-Me	N(CH ₂ CH ₂ OMe) ₂	2,4-Cl ₂ -Ph	71-73
	436 ^c	C-Me	N(Bu)Et	2,4-Cl ₂ -Ph	86-87
15	437 ^d	C-Me	NHCH (Et) CH2OMe	2,4-Cl ₂ -Ph	110-111
	438 ^e	C-Me	N(Pr)CH2CH2CN	2,4-Cl ₂ -Ph	83-85
	439 [£]	C-Me	NH-3-pentyl	2,4-Cl ₂ -Ph	175-176
	4409	C-Me	NHCH (CH2OMe) 2	2,4-Cl ₂ -Ph	107
	441h	C-Me	NHCH(Et) ₂	2,4-Me ₂ -Ph	oil
20	442 ⁱ	C-Me	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph	103-105
	443 ^j	C-Me	N(CH2CH2OMe)2	2,4-Me ₂ -Ph	87-89
	444 ^k	C-Me	N(c-Pr)CH2CH2CN	2,4-Me ₂ -Ph	133 (dec)
	445 ¹	C-Me	N(CH2CH2OMe)2	2-C1, 4-MePh	77-78
	446 ^m	C-Me	NHCH (CH2OMe) 2	2-C1, 4-MePh	131-133
25	447 ⁿ	C-Me	NHCH(Et) ₂	2-C1, 4-MePh	139-141
	4480	C-Me	NEt ₂	2,4-Me ₂ -Ph	92-94
	449P	C-Me	N(Pr)CH2CH2CN	2,4-Me ₂ -Ph	143-144
	4509	C-Me	N (Bu) CH2CH2CN	2,4-Me ₂ -Ph	115-117
	451 ^r	C-Me	NHCH (Et) CH2OMe	2,4-Me ₂ -Ph	oil

	452 ⁸	С-Ме	NHCH (Et) 2	2-Me, 4-MeOPh	104-106
	453 ^t	С-Ме	NHCH (CH2OMe) 2	2-Me, 4-MeOPh	115-116
	454 ^u	C-Me	N(CH2CH2OMe)2	2-Me, 4-MeOPh	oil
	455 ^v	C-Me	(S) -NHCH (CH2CH2OMe) -	2-Me, 4-MeOPh	oil
5			(CH2OMe)		
	456 ^w	C-Me	(S) -NHCH (CH2CH2OMe) -	2,4-Me2-Ph	oil
			(CH ₂ OMe)		
	457 ^x	С-Ме	N(CH2CH2OMe)2	2-Me, 4-C1Ph	oil
	458Y	C-Me	NHEt	2,4-Me2-Ph	oil
10	459 ²	C-Me	NHCH (Et) 2	2-Me, 4-ClPh	94-96
	460 ^{aa}	C-Me	NHCH (CH2OMe) 2	2-Me, 4-C1Ph	113-114
	461 ^{ab}	С-Ме	N (Ac) Et	2,4-Me ₂ -Ph	oil
	462ac	С-Ме	(S) -NHCH (CH2CH2OMe) -	2-Me, 4-C1Ph	oil
			(CH ₂ OMe)		
15	463ad	C-Me	N(Pr)CH2CH2CN	2-Me, 4-MeOPh	118-119
	464 ^{ae}	С-Ме	NEt ₂	2-Me, 4-MeOPh	97-99
	465 ^{af}	C-Me	(S) -NHCH (CH2CH2OMe) -	2-C1,4-MePh	101-103
			(CH ₂ OMe)		
	466 ^{ag}	С-Ме	NEt ₂	2-C1, 4-MePh	129-130
20	467 ^{ah}	C-Me	N(c-Pr)CH2CH2CN	2-Me, 4-MeOPh	177-178
	468 ^{ai}	C-Me	N(c-Pr)CH2CH2CN	2-C1, 4-MePh	162-163
	469 ^a j	C-Me	NHCH(Et)CH2OMe	2-Me, 4-MeOPh	oil
	470 ^{ak}	C-Me	NHCH (Et) CH2OMe	2-C1, 4-MePh	111-113
	471	С-Ме	NHCH (CH2OMe) 2	2-C1-4-MeOPh	
25	472	C-Me	N(CH2CH2OMe)2	2-C1-4-MeOPh	
	473	C-Me	NHCH(Et)CH2OMe	2-C1-4-MeOPh	
	474	С-Ме	N(c-Pr)CH2CH2CN	2-C1-4-MeOPh	
	475	C-Me	NEt ₂	2-C1-4-MeOPh	
	476	C-Me	NH-3-pentyl	2-C1-4-MeOPh	
30	477	C-Me	NHCH(Et)CH2CH2OMe	2-C1-4-MeOPh	
	478	C-Me	NHCH (Me) CH2CH2OMe	2-Cl-4-MeOPh	
	479	C-Me	NHCH(Et)CH2CH2OMe	2-Br-4-MeOPh	
	480	С-Ме	NHCH (Me) CH2CH2OMe	2-Br-4-MeOPh	
	481	C-Me	NHCH(Et)CH2CH2OMe	2-Me-4-MeOPh	
35	482	C-Me	NHCH (Me) CH2CH2OMe	2-Me-4-MeOPh	

	483	C-Me	NHCH (CH2OMe) 2	2-C1-4,5-(MeO) ₂ Ph	
	484	C-Me	N(CH2CH2OMe)2	2-C1-4,5-(MeO) ₂ Ph	
	485	C-Me	NHCH(Et)CH2OMe	2-C1-4,5-(MeO) ₂ Ph	
	486	C-Me	N(c-Pr)CH2CH2CN	2-C1-4,5-(MeO) ₂ Ph	
5	487	C-Me	NEt ₂	2-C1-4,5-(MeO) ₂ Ph	99-101
	488	C-Me	NH-3-pentyl	2-C1-4,5-(MeO) ₂ Ph	169-170
	489	C-Me	NHCH(Et)CH2CH2OMe	2-C1-4,5-(MeO) ₂ Ph	
	490	C-Me	NHCH (Me) CH2CH2OMe	2-C1-4,5-(MeO)2Ph	
	491	C-Me	NHCH (CH2OMe) 2	2-Br-4,5-(MeO) ₂ Ph	90-93
10	492	C-Me	N(CH2CH2OMe)2	2-Br-4,5-(MeO) ₂ Ph	110
	493	C-Me	NHCH(Et)CH2OMe	2-Br-4,5-(MeO) ₂ Ph	
	494	C-Me	N(c-Pr)CH2CH2CN	2-Br-4,5-(MeO)2Ph	
	495	C-Me	NEt ₂	2-Br-4,5-(MeO) ₂ Ph	
	496	C-Me	NH-3-pentyl	2-Br-4,5-(MeO) ₂ Ph	
15	497	C-Me	NHCH(Et)CH2CH2OMe	2-Br-4,5-(MeO) ₂ Ph	
	498	C-Me	NHCH (Me) CH2CH2OMe	$2-Br-4, 5-(MeO)_{2}Ph$	
	499	C-Me	NHCH (CH2OMe) 2	2-C1-4,6-(MeO) ₂ Ph	
	500	С-Ме	N(CH2CH2OMe)2	2-C1-4,6-(MeO)2Ph	
	501	C-Me	NHCH(Et)CH2OMe	2-C1-4,6-(MeO) ₂ Ph	
20	502	C-Me	N(c-Pr)CH2CH2CN	2-C1-4,6-(MeO) ₂ Ph	
	503	C-Me	NEt ₂	2-C1-4,6-(MeO)2Ph	
	504	C-Me	NH-3-pentyl	2-C1-4,6-(MeO) ₂ Ph	
	505	C-Me	NHCH(Et)CH2CH2OMe	2-C1-4,6-(MeO) ₂ Ph	
	506	C-Me	NHCH (Me) CH2CH2OMe	2-C1-4,6-(MeO) ₂ Ph	
25	507	C-Me	NHCH (CH2OMe) 2	$2-Me-4, 6-(MeO)_{2}Ph$	
	508	C-Me	$N(CH_2CH_2OMe)_2$	$2-Me-4, 6-(MeO)_{2}Ph$	
	509	C-Me	NHCH(Et)CH2OMe	2-Me-4,6-(MeO)2Ph	
	510	C-Me	N(c-Pr)CH2CH2CN	2-Me-4,6-(MeO) ₂ Ph	
	511	C-Me	NEt ₂	2-Me-4,6-(MeO) ₂ Ph	
30	512	C-Me	NH-3-pentyl	$2-Me-4, 6-(MeO)_2Ph$	
	513	C-Me	NHCH(Et)CH2CH2OMe	$2-Me-4, 6-(MeO)_{2}Ph$	
	514	C-Me	NHCH (Me) CH2CH2OMe	$2-Me-4, 6-(MeO)_{2}Ph$	
	515	C-Me	N(c-Pr)CH2CH2CN	2-Br-4,6-(MeO) ₂ Ph	
	516	C-Me	NEt ₂	2-Br-4,6-(MeO) ₂ Ph	
35	517	C-Me	NH-3-pentyl	2-Br-4,6-(MeO)2Ph	
	518	C-Me	NHCH(Et)CH2CH2OMe	$2-Br-4, 6-(MeO)_2Ph$	

	519	C-Me	NHCH (Me) CH2CH2OMe	2-Br-4, 6-(MeO) ₂ Ph
	520	C-Me	NHCH (Et) CH2CH2OMe	2-Me-4-MeOPh
	521	C-Me	NHCH (Me) CH2CH2OMe	2-Me-4-MeOPh
	522	C-Me	NHCH (CH2OMe) 2	2-Me0-4-MePh
5	523	C-Me	$N(CH_2CH_2OMe)_2$	2-Me0-4-MePh
	524	C-Me	NHCH (Et) CH2OMe	2-Me0-4-MePh
	525	C-Me	N(c-Pr)CH2CH2CN	2-Me0-4-MePh
	526	С-Ме	NEt ₂	2-Me0-4-MePh
	527	C-Me	NH-3-pentyl	2-Me0-4-MePh
10	528	С-Ме	NHCH(Et)CH2CH2OMe	2-Me0-4-MePh
	529	C-Me	NHCH (Me) CH2CH2OMe	2-Me0-4-MePh
	530	C-Me	NHCH (CH2OMe) 2	2-Me0-4-MePh
	531	C-Me	N(CH2CH2OMe)2	2-Me0-4-MePh
	532	C-Me	NHCH(Et)CH2OMe	2-Me0-4-MePh
15	533	С-Ме	N(c-Pr)CH2CH2CN	2-Me0-4-MePh
	534	С-Ме	NEt ₂	2-Me0-4-MePh
	535	C-Me	NH-3-pentyl	2-Me0-4-MePh
	536	C-Me	NHCH(Et)CH2CH2OMe	2-Me0-4-MePh
	537	C-Me	NHCH (Me) CH2CH2OMe	2-Me0-4-MePh
20	538	С-Ме	NHCH (CH2OMe) 2	2-Me0-4-C1Ph
	539	C-Me	N(CH $_2$ CH $_2$ OMe) $_2$	2-Me0-4-ClPh
	540	C-Me	NHCH (Et) CH2OMe	2-Me0-4-C1Ph
	541	C-Me	N(c-Pr)CH2CH2CN	2-Me0-4-C1Ph
	542	C-Me	NEt ₂	2-Me0-4-ClPh
25	543	C-Me	NH-3-pentyl	2-Me0-4-ClPh
	544	C-Me	NHCH(Et)CH2CH2OMe	2-Me0-4-ClPh
	545	C-Me	NHCH (Me) CH2CH2OMe	2-Me0-4-C1Ph

NOTES FOR TABLE 2:

- b) CI-HRMS: Calcd: 423.1355; Found: 423.1337 (M + H).
- c) Analysis: Calcd: C, 61.38, H, 6.18, N, 14.32:
 - Found: C, 61.54, H, 6.12, N, 14.37.
- d) Analysis: Calcd: C: 58.02, H, 5.65, N, 14.24;
- 35 Found: C, 58.11, H, 5.52, N, 14.26.

- e) Analysis: Calcd: C, 59.71, H, 5.26, N, 14.85; Found: C, 59.94, H, 5.09, N, 17.23.
- f) Analysis: Calcd: C, 60.48, H, 5.89, N, 14.85, Found: C, 60.62, H, 5.88, N, 14.82.
- 5 h) CI-HRMS: Calcd: 337.2388; Found: 337.2392 (M + H).
 - i) Analysis: Calcd: C, 68.45, H, 7.669, N, 15.21, Found: C, 68.35, H, 7.49 N, 14.91.
 - j) Analysis: Calcd: C, 69.08, H, 7.915, N, 14.65, Found: C, 68.85, H, 7.83, N, 14.54.
- 10 k) Analysis: Calcd: C, 73.51, H, 7.01, N, 19.48, Found: C, 71.57, H, 7.15, N, 19.12.
 - 1) CI-HRMS: Calcd: 403.1899; Found: 403.1901 (M + H).
 - m) Analysis: Calcd: C, 61.77, H, 6.49, N, 14.41, Cl. 9.13; Found: C, 61.90, H, 6.66, N, 13.62, Cl, 9.25.
- 15 n) Analysis: Calcd: C, 67.31, H, 7.06, N, 15.70, Cl. 9.93; Found: C, 67.32, H, 6.95, N, 15.50, Cl, 9.93.
 - o) Analysis: Calcd: C, 74.50, H, 8.14, N, 17.38, Found: C, 74.43, H, 7.59, N, 17.16.
 - p) Analysis: Calcd: C, 73.10, H, 7.54, N, 19.37,
- 20 Found: C, 73.18, H, 7.59, N, 18.81.
 - q) Analysis: Calcd: C, 73.57, H, 7.78, N, 18.65, Found: C, 73.55, H, 7.79, N, 18.64.
 - r) CI-HRMS: Calcd: 353.2333; Found: 353.2341 (M + H).
 - s) Analysis: Calcd: C, 71.56, H, 8.02, N, 15.90,
- 25 Found: C, 71.45, H, 7.99, N, 15.88.
 - t) Analysis: Calcd: C, 65.60, H, 7.34, N, 14.57, Found: C, 65.42, H, 7.24, N, 14.37.
 - u) CI-HRMS: Calcd: 399.2398; Found: 399.2396 (M + H).
 - v) CI-HRMS: Calcd: 399.2398; Found: 399.2396 (M + H).
- 30 w) CI-HRMS: Calcd: 383.2450; Found: 383.2447 (M + H).
 - x) CI-HRMS: Calcd: 403.1887; Found: 403.1901 (M + H).
 - y) CI-HRMS: Calcd: 295.1919; Found: 295.1923 (M + H).
 - z) Analysis: Calcd: C, 67.31, H, 7.06, N, 15.70, Found: C, 67.12, H, 6.86, N, 15.53.
- 35 aa) Analysis: Calcd: C, 61.77, H, 6.49, N, 14.41, Cl, 9.13; Found: C, 62.06, H, 6.37, N, 14.25, Cl, 9.12.

- ab) CI-HRMS: Calcd: 337.2017; Found: 337.2028 (M + H).
- ac) CI-HRMS: Calcd: 403.1893; Found: 403.1901 (M + H).
- ad) Analysis: Calcd: C, 70.00, H, 7.22, N, 18.55, Found: C, 70.05, H, 7.22, N, 18.36.
- 5 ae) Analysis: Calcd: C, 70.98, H, 7.74, N, 16.55, Found: C, 71.15, H,7.46, N, 16.56.
 - ag) Analysis: Calcd: C, 66.59, H, 6.76, N, 16.34, Found: C, 66.69, H, 6.82, N, 16.20.
- ah) Analysis: Calcd: C, 70.38, H, 6.71, N, 18.65, 10 Found: C, 70.35, H, 6.82, N, 18.83.
 - ai) Analysis: Calcd: C, 66.39, H, 5.85, N, 18.44, Cl, 9.33; Found: C, 66.29, H, 5.51, N, 18.36, Cl, 9.31.
 - aj) CI-HRMS: Calcd: 369.2278; Found: 369.2291 (M + H).
- 15 ak) Analysis: Calcd: C, 64.42, H, 6.77, N, 15.02, Found: C, 64.59, H, 6.51, N, 14.81.
- The examples delineated in TABLE 3 may be prepared by the methods outlined in Examples 1, 2, 3 or 6. Commonly used abbreviations are: Ph is phenyl, Pr is propyl, Me is methyl, Et is ethyl, Bu is butyl, Ex is Example.

25 TABLE 3

T2000

Ex. Z R_3 Ar $mp(^{\circ}C)$

	546 ^a	C-Me	NHCH(Et) ₂	2-Me-4-Me ₂ N-Ph	164-166
	547 ^b	C-Me	_	2,4-Me2-Ph	0il
	347	C-Me	S-NHCH (CH2CH2OMe)	2, 4-Me2-FII	011
	548 ^C	C. Ma	-CH2OMe	2-Me-4-C1-Ph	1
5	340	С-Ме	S-NHCH (CH2CH2OMe)	2-Me-4-C1-PH	oil
3	d		-CH ₂ OMe		
	549d	C-Me	N(c-Pr)CH2CH2CN	2-Me-4-Cl-Ph	115-116
	550 ^e	C-Me	NHCH (Et) CH2CN	2-Me-4-C1-Ph	131-132
	551 ^f	C-Me	N(Et) ₂	2,3-Me ₂ -4-OMe-Ph	oil
	552 9	C-Me	N (CH2CH2OMe) CH2CH2OH	2,4-Cl ₂ -Ph	oil
10	553 ^h	C-Me	N(CH2CH2OMe)2	2,3-Me ₂ -4-OMe-Ph	oil
•	554 ⁱ	C-Me	NHCH(Et) ₂	2,3-Me ₂ -4-OMePh	123-124
	555 ^j	C-Me	N(CH ₂ -c-Pr)Pr	2-Me-4-C1-Ph	oil
	556 ^k	C-Me	N(c-Pr)CH2CH2CN	2,3-Me ₂ -4-OMePh	158-160
	557	C-Me	N(c-Pr)Et	2-Cl-4-OMePh	
15	558	C-Me	N(c-Pr)Me	2-Cl-4-OMePh	
	559	C-Me	N(c-Pr)Pr	2-C1-4-OMePh	
	560	C-Me	N(c-Pr)Bu	2-Cl-4-OMePh	
	561 ¹	C-Me	N(Et) ₂	2-C1-4-CN-Ph	115-117
	562	C-Me	N(c-Pr)2	2-C1-4-OMe	127-129
20	563 ^m	C-Me	NHCH (CH2OH) 2	2,4-Cl ₂ -Ph	128-129
	564	C-Me	N(c-Pr)Et	2-Br-4,5-(MeO)2Ph	
	565	C-Me	N(c-Pr)Me	2-Br-4,5-(MeO)2Ph	
	566	C-Me	NH-c-Pr	2-Me-4-MeOPh	126-128
	567	C-Me	NHCH (Et) CH2OH	2-Me-4-MeOPh	60-62
25	568	C-Me	NMe ₂	2-Br-4,5-(MeO)2Ph	
	569	C-Me	NHCH(Et)2	2-Me-4-MeOPh	103-105
	570	C-Me	N(c-Pr)Et	2-Me-4-MeOPh	173-174
	571	C-Me	NH-2-pentyl	2,4-Cl ₂ -Ph	118-120
	572	C-Me	NHCH (Et) CH2CN	2,4-Cl ₂ -Ph	141-142
30	573	C-Me	NHCH(Pr)CH2OMe	2,4-Cl ₂ -Ph	87-88
	574	C-Me	NHCH(CH2-iPr)CH2OMe	2,4-Cl ₂ -Ph	amorphous
	575	C-Me	NH-2-butyl	2,4-Me ₂ -Ph	oil
	576	C-Me	NH-2-pentyl	2,4-Me ₂ -Ph	oil
	577	C-Me	NH-2-hexyl	2,4-Me ₂ -Ph	oil
35	578	C-Me	NHCH(i-Pr)Me	2,4-Me ₂ -Ph	oil

	579	C-Me	NHCH(Me)CH2-iPr	2,4-Me ₂ -Ph	oil
	580	C-Me	NHCH (Me) -c-C6H11	2,4-Me ₂ -Ph	oil
	581	C-Me	NH-2-indanyl	2,4-Me ₂ -Ph	oil
	582	C-Me	NH-1-indanyl	2,4-Me ₂ -Ph	oil
5	583	C-Me	NHCH (Me) Ph	2,4-Me ₂ -Ph	oil
	584	C-Me	NHCH(Me)CH2-(4-ClPh)	2,4-Me ₂ -Ph	oil
	585	C-Me	NHCH (Me) CH2COCH3	2,4-Me ₂ -Ph	oil
	586	C-Me	NHCH (Ph) CH2Ph	2,4-Me ₂ -Ph	oil
	587	C-Me	NHCH (Me) (CH ₂) 3NEt ₂	2,4-Me ₂ -Ph	oil
10	588	C-Me	$NH-(2-Ph-c-C_3H_4)$	2,4-Me ₂ -Ph	oil
	589	C-Me	NHCH (Et) CH2CN	2,4-Me ₂ -Ph	119-120
	590	C-Me	NH-3-hexyl	2,4-Me ₂ -Ph	oil
	591 ⁿ	C-Me	NEt ₂	2-MeO-4-ClPh	oil
	5920	C-Me	NHCH(Et) ₂	2-MeO-4-ClPh	oil
15	593P	C-Me	NHCH(Et)CH2OMe	2-MeO-4-ClPh	oil
	594	C-Me	NMe ₂	2-MeO-4-ClPh	oil
	5959	C-Me	NHCH(Et) ₂	2-OMe-4-MePh	oil
	596 ^r	C-Me	NEt ₂	2-OMe-4-MePh	oil
	597S	C-c-Pr	NHCH (CH2OMe) 2	2,4-Cl ₂ -Ph	oil
20	598	C-Me	N(c-Pr)Et	2,4-Me ₂ -Ph	
	599	C-Me	N(c-Pr)Et	2,4-Cl ₂ -Ph	
	600	C-Me	N(c-Pr)Et	2,4,6-Me ₃ -Ph	
	601	C-Me	N(c-Pr)Et	2-Me-4-Cl-Ph	
	602	C-Me	N(c-Pr)Et	2-C1-4-Me-Ph	
25	603	C-Me	NHCH (c-Pr) 2	2,4-Cl ₂ -Ph	
	604	C-Me	NHCH(c-Pr) ₂	2,4-Me ₂ -Ph	
	605	C-Me	NHCH(c-Pr) ₂	2-Me-4-C1-Ph	
	606	C-Me	NHCH(c-Pr) ₂	2-Cl-4-Me-Ph	
	607	C-Me	NHCH(c-Pr) ₂	2-Me-4-OMe-Ph	
30	608	C-Me	NHCH(c-Pr) ₂	2-C1-4-OMe-Ph	
	609	C-Me	NHCH (CH2OMe) 2	2-C1-5-F-OMePh	
	610	C-Me	NEt ₂	2-C1-5-F-OMePh	
	611	C-Me	N(c-Pr)CH2CH2CN	2-C1-5-F-OMePh	
	612	C-Me	NHCH (Et) ₂	2-C1-5-F-OMePh	
35	613	C-Me	N(CH2CH2OMe)2	2-C1-5-F-OMePh	
	614	C-Me	NEt ₂	2,6-Me ₂ -pyrid-3-yl	

	615	C-Me	N(c-Pr)CH2CH2CN	2,6-Me ₂ -pyrid-3-yl
	616	C-Me	NHCH (Et) 2	2,6-Me ₂ -pyrid-3-yl
	617	C-Me	N(CH2CH2OMe)2	2,6-Me ₂ -pyrid-3-yl
	618	C-OH	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph
5	619	C-OH	NEt ₂	2,4-Me ₂ -Ph
	620	C-OH	N(c-Pr)CH2CH2CN	2,4-Me ₂ -Ph
	621	С-ОН	NHCH(Et) ₂	2,4-Me ₂ -Ph
	623	C-OH	N(CH2CH2OMe)2	2,4-Me ₂ -Ph
	624	C-NEt ₂	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph
10	625	C-NEt ₂	NEt ₂	2,4-Me ₂ -Ph
	626	C-NEt ₂	N(c-Pr)CH2CH2CN	2,4-Me ₂ -Ph
	627	C-NEt ₂	NHCH(Et) ₂	2,4-Me ₂ -Ph
	628	C-NEt ₂	N(CH2CH2OMe)2	2,4-Me ₂ -Ph
	629	C-Me	NHCH(Et) ₂	2-Me-4-CN-Ph
15	630	C-Me	N(CH2CH2OMe)2	2-Me-4-CN-Ph

Notes for Table 3:

- a) CI-HRMS: Calcd:367.2610, Found: 367.2607 (M + H);
- 20 b) CI-HRMS: Calcd:384.2400, Found: 384.2393 (M + H);
 - c) CI-HRMS: Calcd:404.1853, Found: 404.1844 (M + H);
 - d) CI-HRMS: Calcd:381.1594, Found: 381.1596 (M + H); Analysis: Calcd: C: 63.07, H, 5.57, N, 22.07, Cl, 9.32;
- 25 Found: C: 63.40, H, 5.55, N, 21.96, C1: 9.15
 - e) CI-HRMS: Calcd:369.1594, Found: 369.1576 (M + H);
 - f) CI-HRMS: Calcd:354.2216, Found: 354.2211 (M + H);
 - g) CI-HRMS: Calcd:410.1072, Found: 410.1075 (M + H);
 - h) CI-HRMS: Calcd:414.2427, Found: 414.2427(M + H);
- 30 i) CI-HRMS: Calcd:368.2372, Found: 368.2372(M + H);
 - j) CI-HRMS: Calcd:384.1955, Found: 384.1947(M + H);
 - k) CI-HRMS: Calcd:391.2168, Found: 391.2160(M + H);
 - 1) CI-HRMS: Calcd:335.1984, Found: 335.1961(M + H);
 - m) CI-HRMS: Calcd:382.0759, Found: 382.0765(M + H);
- 35 n) $NH_3-CI MS: Calcd: 360, Found: 360 (M + H) +$
 - o) NH₃-CI MS: Calcd: 374, Found: 374 (M + H)+;

NMR (CDCl₃, 300 MHz) : δ 7.29 (d, J=8.4Hz, 1H), 7.04 (dd, J=1.8,8Hz, 1H), 6.96 (d, J=1.8Hz, 1H), 6.15 (d, J=10, 1H), 4.19 (m, 1H), 3.81 (s, 3H), 2.47 (s, 3H), 2.32 (s, 3H), 1.65 (m, 4H), 0.99 (t, J=7.32Hz, 6H)

- p) NH₃-CI MS: Calcd: 390, Found: 390 (M + H)+; NMR (CDCl₃, 300 MHz) : δ 7.28 (d, J=8Hz, 1H), 7.03 (d, J=8Hz, 1H), 6.96 (s, 1H), 6.52 (d, J=9Hz, 1H), 4.36 (m, 1H), 3.8 (s, 3H), 3.55 (m, 2H), 3.39 (s, 3H), 2.47 (s, 3H), 2.32 (s, 3H), 1.76 (m, 2H), 1.01 (t, J=7.32Hz, 3H).
- q) CI-HRMS: Calcd: 354.2294, Found: 354.2279 (M + H)+
- r) CI-HRMS: Calcd: 340.2137, Found: 340.2138 (M + H)+
- s) CI-HRMS: Calcd: 436.1307, Found: 436.1296 (M + H)+

15

10

5

The examples delineated in TABLE 4 may be prepared by the methods outlined in Examples 1A, 1B, 432, 433, 434. Commonly used abbreviations are: Ph is phenyl, Pr is propyl, Me is methyl, Et is ethyl, Bu is butyl, Ex is Example, EtOAc is ethyl acetate.

25

TABLE 4

T2130

) [2

	Ex.	<u>Z</u> .	<u> 83</u>	Ar	mp (°C)
	631	С-Ме	NHCH(Et) ₂	2-Br-4,5-(MeO) ₂ Ph	160-161
	632	С-Ме	NHCH (Et) 2	2-Br-4-MeOPh	110-111
5	633	С-Ме	N(CH2CH2OMe)2	2-Br-4-MeOPh	74-76
	634	С-Ме	NHCH (CH2OMe) 2	2-Br-4-MeOPh	128-130
	635	C-Me	N(Et) ₂	2-Me-4-ClPh	113-114
	636	С-Ме	N(c-Pr)Et	2,4-Cl ₂ Ph	
	637	С-Ме	N(c-Pr)Et	2,4-Me ₂ Ph	
10	638	С-Ме	N(c-Pr)Et	2,4,6-Me ₃ Ph	
	639	С-Ме	N(c-Pr)Et	2-Me-4-MeOPh	
	640	С-Ме	N(c-Pr)Et	2-C1-4-MeOPh	
	641	C-Me	N(c-Pr)Et	2-C1-4-MePh	
	642	C-Me	N(c-Pr)Et	2-Me-4-ClPh	
15	643	C-Me	NHCH(c-Pr) ₂	2,4-Cl ₂ -Ph	
	644	С-Ме	NHCH(c-Pr)2	2,4-Me ₂ -Ph	
	645	C-Me	NHCH(c-Pr)2	2-Me-4-C1-Ph	
	646	С-Ме	NHCH(c-Pr)2	2-C1-4-Me-Ph	
	647	С-Ме	NHCH(c-Pr) ₂	2-Me-4-OMe-Ph	
20	648	C-Me	NHCH(c-Pr)2	2-C1-4-OMe-Ph	
	649	С-Ме	NHCH (CH2OMe) 2	2-Cl-5-F-OMePh	
	650	C-Me	NEt ₂	2-C1-5-F-OMePh	
	651	C-Me	N(c-Pr)CH2CH2CN	2-C1-5-F-OMePh	
	652	C-Me	NHCH(Et) ₂	2-C1-5-F-OMePh	
25	653	C-Me	N(CH2CH2OMe)2	2-C1-5-F-OMePh	
	654	C-Me	NEt ₂	2,6-Me ₂ -pyrid-3-yl	
	655	C-Me	N(c-Pr)CH2CH2CN	2,6-Me ₂ -pyrid-3-yl	
	656	C-Me	NHCH(Et) ₂	2,6-Me ₂ -pyrid-3-yl	
	657	С-Ме	N(CH2CH2OMe)2	2,6-Me ₂ -pyrid-3-yl	
30	658	С-ОН	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph	
	659	С-ОН	NEt ₂	2,4-Me ₂ -Ph	
	660	С-ОН	N(c-Pr)CH2CH2CN	2,4-Me ₂ -Ph	
	661	С-ОН	NHCH(Et) ₂	2,4-Me ₂ -Ph	
	662	С-ОН	N(CH2CH2OMe)2	2,4-Me ₂ -Ph	
35	663	C-NEt ₂	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph	
	664	C-NEt ₂	NEt ₂	2,4-Me ₂ -Ph	

	665	C-NEt ₂	N(c-Pr)CH2CH2CN	2,4-Me ₂ -Ph
	666	C-NEt ₂	NHCH (Et) 2	2,4-Me ₂ -Ph
	667	C-NEt2	N(CH2CH2OMe)2	2,4-Me ₂ -Ph
	668	C-Me	NHCH (Et) 2	2-Me-4-CN-Ph
5	669	C-Me	N(CH2CH2OMe)2	2-Me-4-CN-Ph

The examples in Tables 5 or 6 may be prepared by
the methods illustrated in Examples 1A, 1B, 2, 3, 6,
431, 432, 433, 434 or by appropriate combinations
thereof. Commonly used abbreviations are: Ph is phenyl,
Pr is propyl, Me is methyl, Et is ethyl, Bu is butyl, Ex
is Example.

15

Table 5

20

	Ex.	R <u>14</u>	R3	Ar
	670	Me	NHCH (CH2OMe) 2	2,4-Cl ₂ -Ph
	671	Me	NHCHPr ₂	2,4-Cl ₂ -Ph
25	672	Me	NEtBu	2,4-Cl ₂ -Ph
	673	Me	$NPr(CH_2-c-C_3H_5)$	2,4-Cl ₂ -Ph
	674	Me	N(CH2CH2OMe)2	2,4-Cl ₂ -Ph
	675	Me	NH-3-heptyl	2,4-Cl ₂ -Ph
	676	Me	NHCH (Et) CH2OMe	2,4-Cl ₂ -Ph

	677	Me	NEt ₂	2,4-Cl ₂ -Ph
	678	Me	NHCH (CH2OEt) 2	2,4-Cl ₂ -Ph
	679	Me	NH-3-pentyl	2,4-Cl ₂ -Ph
	680	Me	NMePh	2,4-Cl ₂ -Ph
5	681	Me	NPr ₂	2,4-Cl ₂ -Ph
	682	Me	NH-3-hexyl	2,4-Cl ₂ -Ph
	683	Me	morpholino	2,4-Cl ₂ -Ph
	684	Me	N(CH2Ph)CH2CH2OMe	2,4-Cl ₂ -Ph
	685	Me	NHCH (CH2Ph) CH2OMe	2,4-Cl ₂ -Ph
10	686	Me	NH-4-tetrahydropyranyl	2,4-Cl ₂ -Ph
	687	Me	NH-cyclopentyl	2,4-Cl ₂ -Ph
	688	Me	OEt	2,4-Cl ₂ -Ph
	689	Me	OCH(Et)CH2OMe	2,4-Cl ₂ -Ph
	690	Me	OCH ₂ Ph	2,4-Cl ₂ -Ph
15	691	Me	O-3-pentyl	2,4-Cl ₂ -Ph
	692	Me	SEt	2,4-Cl ₂ -Ph
	693	Me	S (O) Et	2,4-Cl ₂ -Ph
	694	Me	SO ₂ Et	2,4-Cl ₂ -Ph
	695	Me	Ph	2,4-Cl ₂ -Ph
20	696	Me	2-CF ₃ -Ph	2,4-Cl ₂ -Ph
	697	Me	2-Ph-Ph	2,4-Cl ₂ -Ph
	698	Me	3-pentyl	2,4-Cl ₂ -Ph
	699	Me	cyclobutyl	2,4-Cl ₂ -Ph
	700	Me	3-pyridyl	2,4-Cl ₂ -Ph
25	701	Me	CH(Et)CH2CONMe2	2,4-Cl ₂ -Ph
	702	Me	CH(Et)CH2CH2NMe2	2,4-Cl ₂ -Ph
	703	Me	NHCH (CH2OMe) 2	2,4,6-Meg-Ph
	704	Me	NHCHPr ₂	2,4,6-Me ₃ -Ph
	705	Me	NEtBu	2,4,6-Me ₃ -Ph
30	706	Me	$NPr(CH_2-c-C_3H_5)$	2,4,6-Me3-Ph
	707	Me	N(CH2CH2OMe)2	2,4,6-Me3-Ph
	708	Me	NH-3-heptyl	2,4,6-Me3-Ph
	709	Me	NHCH(Et)CH2OMe	2,4,6-Me ₃ -Ph
	710	Me	NEt ₂	2,4,6-Me3-Ph
35	711	Me	NHCH (CH2OEt) 2	2,4,6-Me3-Ph
	712	Me	NH-3-pentyl	2,4,6-Me ₃ -Ph

	713	Me	NMePh	2,4,6-Me3-Ph
	714	Me	NPr ₂	2,4,6-Me3-Ph
	715	Me	NH-3-hexyl	2,4,6-Me3-Ph
	716	Me	morpholino	2,4,6-Me3-Ph
5	717	Me	N(CH2Ph)CH2CH2OMe	2,4,6-Me3-Ph
	718	Me	NHCH (CH2Ph) CH2OMe	2,4,6-Me ₃ -Ph
	719	Me	NH-4-tetrahydropyranyl	2,4,6-Me3-Ph
	720	Me	NH-cyclopentyl	2,4,6-Meg-Ph
	721	Me	OEt	2,4,6-Me ₃ -Ph
10	722	Me	OCH(Et)CH2OMe	2,4,6-Me3-Ph
	723	Me	OCH ₂ Ph	2,4,6-Me3-Ph
	724	Me	O-3-pentyl	2,4,6-Me3-Ph
	725	Me	SEt	2,4,6-Me3-Ph
	726	Me	S (O) Et	2,4,6-Me ₃ -Ph
15	727	Me	SO ₂ Et	2,4,6-Me3-Ph
	728	Me	CH(CO ₂ Et) ₂	2,4,6-Me3-Ph
	729	Me	C(Et)(CO ₂ Et) ₂	2,4,6-Me3-Ph
	730	Me	CH(Et)CH ₂ OH	2,4,6-Me3-Ph
	731	Me	CH(Et)CH2OMe	2,4,6-Meg-Ph
20	732	Me	CONMe ₂	2,4,6-Me3-Ph
	733	Me	COCH3	2,4,6-Me3-Ph
	734	Me	CH (OH) CH3	2,4,6-Me3-Ph
	735	Me	C(OH)Ph-3-pyridyl	2,4,6-Me3-Ph
	736	Me	Ph	2,4,6-Me3-Ph
25	737	Me	2-Ph-Ph	2,4,6-Me3-Ph
	738	Me	3-pentyl	2,4,6-Me3-Ph
	739	Me	cyclobutyl	2,4,6-Me3-Ph
	740	Me	3-pyridyl	2,4,6-Me3-Ph
	741	Me	CH(Et)CH2CONMe2	2,4,6-Me3-Ph
30	742	Me	CH(Et)CH2CH2NMe2	2,4,6-Me3-Ph
	743	Me	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph
	744	Me	$N(CH_2CH_2OMe)_2$	2,4-Me ₂ -Ph
	745	Ме	NHCH(Et)CH2OMe	2,4-Me ₂ -Ph
	746	Me	NH-3-pentyl	2,4-Me ₂ -Ph
35	747	Me	NEt ₂	2,4-Me ₂ -Ph
	748	Me	n (CH ₂ Cn) ₂	2,4-Me ₂ -Ph

	749	Me	NHCH (Me) CH2OMe	2,4-Me ₂ -Ph
	750	Me	OCH(Et)CH2OMe	2,4-Me ₂ -Ph
	751	Me	NPr-c-C3H5	2,4-Me ₂ -Ph
	752	Me	NHCH (Me) CH2NMe2	2,4-Me ₂ -Ph
5	753	Me	$N(c-C_3H_5)CH_2CH_2CN$	2,4-Me ₂ -Ph
	754	Me	N(Pr)CH2CH2CN	2,4-Me ₂ -Ph
	755	Me	N (Bu) CH ₂ CH ₂ CN	2,4-Me ₂ -Ph
	756	Me	NHCHPr ₂	2,4-Me ₂ -Ph
	757	Me	NEtBu	2,4-Me ₂ -Ph
10	758	Me	NPr(CH2-c-C3H5)	2,4-Me ₂ -Ph
	759	Me	NH-3-heptyl	2,4-Me ₂ -Ph
	760	Me	NEt ₂	2,4-Me ₂ -Ph
	761	Me	NHCH (CH ₂ OEt) ₂	2,4-Me ₂ -Ph
	762	Me	NH-3-pentyl	2,4-Me ₂ -Ph
15	763	Me	NMePh	2,4-Me ₂ -Ph
	764	Me	NPr ₂	2,4-Me ₂ -Ph
	765	Me	NH-3-hexyl	2,4-Me ₂ -Ph
	766	Me	morpholino	2,4-Me ₂ -Ph
	767	Me	$N(CH_2Ph)CH_2CH_2OMe$	2,4-Me ₂ -Ph
20	768	Me	NHCH (CH2Ph) CH2OMe	2,4-Me ₂ -Ph
	769	Ме	NH-4-tetrahydropyranyl	2,4-Me ₂ -Ph
	770	Me	NH-cyclopentyl	2,4-Me ₂ -Ph
	771	Me	NHCH (CH2OMe) 2	2-Me-4-MeO-Ph
	772	Me	$N(CH_2CH_2OMe)_2$	2-Me-4-MeO-Ph
25	773	Me	NHCH (Et) CH2OMe	2-Me-4-MeO-Ph
	774	Me	N(Pr)CH2CH2CN	2-Me-4-MeO-Ph
	775	Me	OCH(Et)CH2OMe	2-Me-4-MeO-Ph
	776	Me	NHCH (CH2OMe) 2	2-Br-4-MeO-Ph
	777	Me	$N(CH_2CH_2OMe)_2$	2-Br-4-MeO-Ph
30	778	Me	NHCH (Et) CH2OMe	2-Br-4-MeO-Ph
	779	Me	N(Pr)CH2CH2CN	2-Br-4-MeO-Ph
	780	Me	OCH(Et)CH2OMe	2-Br-4-MeO-Ph
	781	Me	NHCH (CH2OMe) 2	2-Me-4-NMe ₂ -Ph
	782	Me	$N(CH_2CH_2OMe)_2$	2-Me-4-NMe ₂ -Ph
35	783	Me	NHCH(Et)CH2OMe	2-Me-4-NMe ₂ -Ph
	784	Me	N(Pr)CH2CH2CN	2-Me-4-NMe ₂ -Ph

	785	Me	OCH(Et)CH2OMe	2-Me-4-NMe ₂ -Ph
	786	Me	NHCH (CH2OMe) 2	2-Br-4-NMe ₂ -Ph
	787	Me	N(CH2CH2OMe)2	2-Br-4-NMe ₂ -Ph
	788	Me	NHCH(Et)CH2OMe	2-Br-4-NMe2-Ph
5	789	Me	N(Pr)CH2CH2CN	2-Br-4-NMe ₂ -Ph
	790	Me	OCH(Et)CH2OMe	2-Br-4-NMe ₂ -Ph
	791	Me	NHCH (CH2OMe) 2	2-Br-4-i-Pr-Ph
	792	Me	N(CH2CH2OMe)2	2-Br-4-i-Pr-Ph
	793	Me	NHCH(Et)CH2OMe	2-Br-4-i-Pr-Ph
10	794	Me	N(Pr)CH2CH2CN	2-Br-4-i-Pr-Ph
	795	Me	OCH(Et)CH2OMe	2-Br-4-i-Pr-Ph
	796	Me	NHCH (CH2OMe) 2	2-Br-4-Me-Ph
	797	Me	$N(CH_2CH_2OMe)_2$	2-Br-4-Me-Ph
	798	Me	NHCH (Et) CH2OMe	2-Br-4-Me-Ph
15	799	Me	N(Pr)CH2CH2CN	2-Br-4-Me-Ph
	800	Me	OCH(Et)CH2OMe	2-Br-4-Me-Ph
	801	Me	NHCH (CH2OMe) 2	2-Me-4-Br-Ph
	802	Me	N(CH2CH2OMe)2	2-Me-4-Br-Ph
	803	Me	NHCH(Et)CH2OMe	2-Me-4-Br-Ph
20	804	Me	N(Pr)CH2CH2CN	2-Me-4-Br-Ph
	805	Me	OCH(Et)CH2OMe	2-Me-4-Br-Ph
	806	Me	NHCH (CH2OMe) 2	2-C1-4,6-Me ₂ -Ph
	807	Me	N(CH2CH2OMe)2	2-C1-4,6-Me ₂ -Ph
	808	Me	NHCH (CH2OMe) 2	$4-Br-2, 6-(Me)_2-Ph$
25	809	Me	$N(CH_2CH_2OMe)_2$	$4-Br-2, 6-(Me)_2-Ph$
	810	Me	NHCH (CH2OMe) 2	4-i-Pr-2-SMe-Ph
	811	Me	$N(CH_2CH_2OMe)_2$	4-i-Pr-2-SMe-Ph
	812	Me	NHCH (CH2OMe) 2	2-Br-4-CF3-Ph
	813	Me	$N(CH_2CH_2OMe)_2$	2-Br-4-CF ₃ -Ph
30	814	Me	NHCH (CH2OMe) 2	2-Br-4,6-(MeO) ₂ -Ph
	815	Me	$N(CH_2CH_2OMe)_2$	$2-Br-4, 6-(MeO)_2-Ph$
	816	Me	NHCH (CH2OMe) 2	2-C1-4, 6- (MeO) 2-Ph
	817	Me	$N(CH_2CH_2OMe)_2$	2-C1-4,6-(MeO)2-Ph
	818	Me	NHCH (CH2OMe) 2	$2,6-(Me)_2-4-SMe-Ph$
35	819	Me	$N(CH_2CH_2OMe)_2$	2,6-(Me)2-4-SMe-Ph
	820	Me	NHCH (CH2OMe) 2	4-(COMe)-2-Br-Ph

	821	Me	N(CH2CH2OMe)2	4-(COMe)-2-Br-Ph
	822	Me	NHCH (CH2OMe) 2	2,4,6-Me ₃ -pyrid-3-yl
	823	Me	N (CH_2CH_2OMe) 2	2,4,6-Me ₃ -pyrid-3-yl
	824	Me	NHCH (CH2OMe) 2	2,4-(Br)2-Ph
5	825	Me	N (CH_2CH_2OMe) 2	2,4-(Br) ₂ -Ph
	826	Me	NHCH (CH2OMe) 2	4-i-Pr-2-SMe-Ph
	827	Me	N(CH2CH2OMe)2	4-i-Pr-2-SMe-Ph
	828	Me	NHCH (CH2OMe) 2	4-i-Pr-2-SO ₂ Me-Ph
	829	Me	N (CH_2CH_2OMe) 2	4-i-Pr-2-SO ₂ Me-Ph
10	830	Me	NHCH (CH2OMe) 2	2,6-(Me)2-4-SMe-Ph
	831	Me	N(CH2CH2OMe)2	2,6-(Me)2-4-SMe-Ph
	832	Me	NHCH (CH2OMe) 2	2,6-(Me)2-4-SO ₂ Me-Ph
	833	Me	$N(CH_2CH_2OMe)_2$	2,6-(Me)2-4-SO ₂ Me-Ph
	834	Ме	NHCH (CH2OMe) 2	2-I-4-i-Pr-Ph
15	835	Me	N (CH_2CH_2OMe) 2	2-I-4-i-Pr-Ph
	836	Me	NHCH (CH2OMe) 2	2-Br-4-N (Me) $2-6-MeO-Ph$
	837	Me	$N(CH_2CH_2OMe)_2$	2-Br-4-N (Me) $2-6-MeO-Ph$
	838	Me	NEt ₂	2-Br-4-MeO-Ph
	839	Me	NH-3-pentyl	2-Br-4-MeO-Ph
20	840	Me	NHCH (CH2OMe) 2	2-CN-4-Me-Ph
	841	Me	N(c-C3H5)CH2CH2CN	2,4,6-Me ₃ -Ph
	842	Me	$\mathtt{NHCH}(\mathtt{CH}_2\mathtt{CH}_2\mathtt{OMe})\mathtt{CH}_2\mathtt{OMe}$	2-Me-4-Br-Ph
	843	Me	NHCH (CH2OMe) 2	2,5-Me ₂ -4-MeO-Ph
	844	Me	$N(CH_2CH_2OMe)_2$	2,5-Me ₂ -4-MeO-Ph
25	845	Me	NH-3-pentyl	2,5-Me ₂ -4-MeO-Ph
	846	Me	NEt ₂	2,5-Me ₂ -4-MeO-Ph
	847	Me	NHCH (CH2OMe) 2	2-C1-4-MePh
	848	Me	NCH(Et)CH2OMe	2-Cl-4-MePh
	849	Me	N (CH_2CH_2OMe) 2	2-C1-4-MePh
30	850	Me	(S)-NHCH(CH2CH2OMe)CH2OMe	2-C1-4-MePh
	851	Me	N(c-C3H5)CH2CH2CN	2,5-Me ₂ -4-MeOPh
	852	Me	NEt ₂	2-Me-4-MeOPh
	853	Me	OEt	2-Me-4-MeOPh
	854	Me	(S)-NHCH(CH2CH2OMe)CH2OMe	2-Me-4-MeOPh
35	855	Me	$N(c-C_3H_5)CH_2CH_2CN$	2-Me-4-MeOPh
	856	Me	NHCH (CH2CH2OEt) 2	2-Me-4-MeOPh

	857	Me	n(c-C3H5)CH2CH2CN	2,4-Cl ₂ -Ph
	858	Me	NEt ₂	2-Me-4-ClPh
	859	Me	NH-3-pentyl	2-Me-4-ClPh
	860	Me	N(CH2CH2OMe)2	2-Me-4-ClPh
5	861	Me	NHCH (CH2OMe) 2	2-Me-4-ClPh
	862	Me	NEt ₂	2-Me-4-ClPh
	863	Ме	NEt ₂	2-Cl-4-MePh
•	864	Me	NH-3-pentyl	2-Cl-4-MePh
	865	Me	NHCH (CH2OMe) 2	2-C1-4-MeOPh
10	866	Me	N(CH2CH2OMe)2	2-Cl-4-MeOPh
-	867	Me	NHCH(Et)CH2OMe	2-C1-4-MeOPh
	868	Me	N(c-Pr)CH2CH2CN	2-C1-4-MeOPh
	869	Me	NEt ₂	2-Cl-4-MeOPh
	870	Me	NH-3-pentyl	2-Cl-4-MeOPh
15	871	Me	NHCH (Et) CH2CH2OMe	2-C1-4-MeOPh
	872	Me	NHCH (Me) CH2CH2OMe	2-C1-4-MeOPh
	873	Me	NHCH(Et)CH2CH2OMe	2-Br-4-MeOPh
	874	Me	NHCH (Me) CH2CH2OMe	2-Br-4-MeOPh
	875	Me	NHCH(Et)CH2CH2OMe	2-Me-4-MeOPh
20	876	Me	NHCH (Me) CH2CH2OMe	2-Me-4-MeOPh
	877	Me	NHCH (CH2OMe) 2	2-C1-4,5-(MeO) ₂ Ph
	878	Me	N (CH2CH2OMe) 2	2-C1-4,5-(MeO) ₂ Ph
	879	Me	NHCH(Et)CH2OMe	2-C1-4,5-(MeO) ₂ Ph
	880	Me	N(c-Pr)CH2CH2CN	2-C1-4,5-(MeO) ₂ Ph
25	881	Me	NEt ₂	2-C1-4,5-(MeO) ₂ Ph
	882	Me	NH-3-pentyl	2-C1-4,5-(MeO) ₂ Ph
	883	Me	NHCH(Et)CH2CH2OMe	2-C1-4,5-(MeO) ₂ Ph
	884	Me	NHCH (Me) CH2CH2OMe	2-C1-4,5-(MeO) ₂ Ph
	885	Me	NHCH (CH2OMe) 2	2-Br-4,5-(MeO) ₂ Ph
30	886	Me	N(CH ₂ CH ₂ OMe) ₂	2-Br-4,5-(MeO) ₂ Ph
	887	Me	NHCH(Et)CH2OMe	2-Br-4,5-(MeO) ₂ Ph
	888	Me	N(c-Pr)CH2CH2CN	2-Br-4,5-(MeO) ₂ Ph
	889	Me	NEt ₂	2-Br-4,5-(MeO) ₂ Ph
	890	Me	NH-3-pentyl	2-Br-4,5-(MeO) ₂ Ph
35	891	Me	NHCH (CH2OMe) 2	2-C1-4,6-(MeO) ₂ Ph
	892	Me	N(CH2CH2OMe)2	2-C1-4, 6- (MeO) 2Ph

	893	Me	NEt ₂	2-C1-4,6-(MeO) ₂ Ph
	894	Me	NH-3-pentyl	2-C1-4,6-(MeO)2Ph
	895	Me	NHCH (CH2OMe) 2	2-Me-4,6-(MeO) ₂ Ph
	896	Me	N(CH2CH2OMe)2	2-Me-4, 6- (MeO) 2Ph
5	897	Me	NHCH(Et)CH2OMe	2-Me-4,6-(MeO)2Ph
	898	Me	NEt ₂	2-Me-4,6-(MeO)2Ph
	899	Me	NH-3-pentyl	2-Me-4,6-(MeO)2Ph
	900	Me	NHCH(Et)CH2CH2OMe	2-Me-4-MeOPh
	901	Me	NHCH (Me) CH2CH2OMe	2-Me-4-MeOPh
10	902	Me	NHCH (CH2OMe) 2	2-Me0-4-MePh
	903	Me	N(CH2CH2OMe)2	2-Me0-4-MePh
	904	Me	NHCH (Et) CH2OMe	2-Me0-4-MePh
	905	Me	N(c-Pr)CH2CH2CN	2-Me0-4-MePh
	906	Me	NEt ₂	2-Me0-4-MePh
15	907	Me	NH-3-pentyl	2-Me0-4-MePh
	908	Me	NHCH(Et)CH2CH2OMe	2-Me0-4-MePh
	909	Me	NHCH (Me) CH2CH2OMe	2-Me0-4-MePh
	910	Me	NHCH (CH2OMe) 2	2-Me0-4-MePh
	911	Me	N(CH2CH2OMe)2	2-Me0-4-MePh
20	912	Me	NHCH(Et)CH2OMe	2-Me0-4-MePh
	913	Me	N(c-Pr)CH2CH2CN	2-Me0-4-MePh
	914	Me	NEt ₂	2-Me0-4-MePh
	915	Me	NH-3-pentyl	2-Me0-4-MePh
	916	Me	NHCH (CH2OMe) 2	2-Me0-4-C1Ph
25	917	Me	N(CH2CH2OMe)2	2-Me0-4-C1Ph
•	918	Me .	NHCH (Et) CH2OMe	2-Me0-4-C1Ph
	919	Me	NEt ₂	2-Me0-4-ClPh
	920	Me ·	NH-3-pentyl	2-Me0-4-ClPh

Table 6

T2230

5				
	Ex.	R <u>14</u>	R <u>3</u>	Ar
	921	Me	NHCH (CH2OMe) 2	2,4-Cl ₂ -Ph
	922	Me	NHCHPr ₂	2,4-Cl ₂ -Ph
	923	Me	NEtBu	2,4-Cl ₂ -Ph
10	924	Me	NPr(CH2-c-C3H5)	2,4-Cl ₂ -Ph
	925	Me	N(CH2CH2OMe)2	2,4-Cl ₂ -Ph
	926	Me	NH-3-heptyl	2,4-Cl ₂ -Ph
	927	Me	NHCH(Et)CH2OMe	2,4-Cl ₂ -Ph
	928	Me	NEt ₂	2,4-Cl ₂ -Ph
15	929	Me	NHCH (CH2OEt) 2	2,4-Cl ₂ -Ph
	930	Me	NH-3-pentyl	2,4-Cl ₂ -Ph
	931	Me	NMePh	2,4-Cl ₂ -Ph
	932	Me	NPr ₂	2,4-Cl ₂ -Ph
	933	Me	NH-3-hexyl	2,4-Cl ₂ -Ph
20	934	Me	morpholino	2,4-Cl ₂ -Ph
	935	Me	N(CH2Ph)CH2CH2OMe	2,4-Cl ₂ -Ph
	936	Me	NHCH (CH2Ph) CH2OMe	2,4-Cl ₂ -Ph
	937	Me -	NH-4-tetrahydropyranyl	2,4-Cl ₂ -Ph
	938	Me	NH-cyclopentyl	2,4-Cl ₂ -Ph
25	939	Me	OEt	2,4-Cl ₂ -Ph
	940	Me	OCH(Et)CH2OMe	2,4-Cl ₂ -Ph
	941	Me .	OCH ₂ Ph	2,4-Cl ₂ -Ph
	942	Me	O-3-pentyl	2,4-Cl ₂ -Ph
	943	Me	SEt	2,4-Cl ₂ -Ph

	944	Me	S (O) Et	2,4-Cl ₂ -Ph
	945	Me	SO ₂ Et	2,4-Cl ₂ -Ph
	946	Ме	Ph	2,4-Cl ₂ -Ph
	947	Me	2-CF3-Ph	2,4-Cl ₂ -Ph
5	948	Me	2-Ph-Ph	2,4-Cl ₂ -Ph
	949	Me	3-pentyl	2,4-Cl ₂ -Ph
	950	Me	cyclobutyl	2,4-Cl ₂ -Ph
	951	Me	3-pyridyl	2,4-Cl ₂ -Ph
	952	Me	CH(Et)CH2CONMe2	2,4-Cl ₂ -Ph
10	953	Me	CH(Et)CH2CH2NMe2	2,4-Cl ₂ -Ph
	954	Me	NHCH (CH2OMe) 2	2,4,6-Me3-Ph
	955	Me	NHCHPr ₂	2,4,6-Me3-Ph
	956	Me	NEtBu	2,4,6-Meg-Ph
	957	Me	$NPr(CH_2-c-C_3H_5)$	2,4,6-Me3-Ph
15	958	Me	N(CH2CH2OMe)2	2,4,6-Meg-Ph
	959	Me	NH-3-heptyl	2,4,6-Me3-Ph
	960	Me	NHCH(Et)CH2OMe	2,4,6-Me3-Ph
	961	Me	NEt ₂	2,4,6-Me3-Ph
	962	Me	NHCH (CH2OEt) 2	2,4,6-Me3-Ph
20	963	. Me	NH-3-pentyl	2,4,6-Me3-Ph
	964	Me	NMePh	2,4,6-Me ₃ -Ph
	965	Me	NPr ₂	2,4,6-Me3-Ph
	966	Me	NH-3-hexyl	2,4,6-Me3-Ph
	967	Me	morpholino	2,4,6-Me ₃ -Ph
25	968	Me	N(CH2Ph)CH2CH2OMe	2,4,6-Me ₃ -Ph
	969	Me	NHCH (CH2Ph) CH2OMe	2,4,6-Me ₃ -Ph
	970	Me	NH-4-tetrahydropyranyl	2,4,6-Me3-Ph
	971	Me	NH-cyclopentyl	2,4,6-Me ₃ -Ph
	972	Me	OEt	2,4,6-Me3-Ph
30	973	Me	OCH(Et)CH2OMe	2,4,6-Me3-Ph
	974	Me	OCH ₂ Ph	2,4,6-Me ₃ -Ph
	975	Me	O-3-pentyl	2,4,6-Me3-Ph
	976	Me	SEt	2,4,6-Meg-Ph
	977	Me	S(O)Et	2,4,6-Me ₃ -Ph
35	978	Me	SO ₂ Et	2,4,6-Me3-Ph
	979	Me	CH(CO ₂ Et) ₂	2,4,6-Meg-Ph

	980	Me	C(Et)(CO ₂ Et) ₂	2,4,6-Me3-Ph
	981	Me	CH(Et)CH2OH	2,4,6-Me ₃ -Ph
	982	Me	CH(Et)CH2OMe	2,4,6-Me ₃ -Ph
	983	Me	CONMe ₂	2,4,6-Me3-Ph
5	984	Me	сосн3	2,4,6-Me3-Ph
	985	Me	сн (он) сн ₃	2,4,6-Meg-Ph
	986	Me	C(OH)Ph-3-pyridyl	2,4,6-Meg-Ph
	987	Me	Ph	2,4,6-Meg-Ph
	988	Me	2-Ph-Ph	2,4,6-Meg-Ph
10	989	Me	3-pentyl	2,4,6-Me3-Ph
	990	Me	cyclobutyl	2,4,6-Me3-Ph
	991	Me .	3-pyridyl	2,4,6-Meg-Ph
	992	Me	CH(Et)CH2CONMe2	2,4,6-Me3-Ph
	993	Me	CH(Et)CH2CH2NMe2	2,4,6-Me ₃ -Ph
15	994	Me	NHCH (CH2OMe) 2	2,4-Me ₂ -Ph
	995	Me	N(CH2CH2OMe)2	2,4-Me ₂ -Ph
	996	Me	NHCH (Et) CH2OMe	2,4-Me ₂ -Ph
	997	Me	NH-3-pentyl	2,4-Me ₂ -Ph
	998	Me	NEt ₂	2,4-Me ₂ -Ph
20	999	Me	n (CH ₂ CN) ₂	2,4-Me ₂ -Ph
	1000	Me	NHCH (Me) CH2OMe	2,4-Me ₂ -Ph
	1001	Me	OCH(Et)CH2OMe	2,4-Me ₂ -Ph
	1002	Me	NPr-c-C3H5	2,4-Me ₂ -Ph
	1003	Me	NHCH (Me) CH2NMe2	2,4-Me ₂ -Ph
25	1004	Me	$N(c-C_3H_5)CH_2CH_2CN$	2,4-Me ₂ -Ph
	1005	Me	N(Pr)CH2CH2CN	2,4-Me ₂ -Ph
	1006	Me	N(Bu)CH2CH2CN	2,4-Me ₂ -Ph
	1007	Me	NHCHPr ₂	2,4-Me ₂ -Ph
	1008	Me	NEtBu	2,4-Me ₂ -Ph
30	1009	Me	$NPr(CH_2-c-C_3H_5)$	2,4-Me ₂ -Ph
	1010	Me	NH-3-heptyl	2,4-Me ₂ -Ph
	1011	Me	NEt ₂	2,4-Me ₂ -Ph
	1012	Me	NHCH (CH ₂ OEt) ₂	2,4-Me ₂ -Ph
	1013	Me	NH-3-pentyl	2,4-Me ₂ -Ph
35	1014	Me	NMePh	2,4-Me ₂ -Ph
	1015	Me	NPr ₂	2,4-Me ₂ -Ph

	1016	Me	NH-3-hexyl	2,4-Me ₂ -Ph
	1017	Me	morpholino	2,4-Me ₂ -Ph
	1018	· Me	N(CH2Ph)CH2CH2OMe	2,4-Me ₂ -Ph
	1019	Me	NHCH (CH2Ph) CH2OMe	2,4-Me ₂ -Ph
5	1020	Me	NH-4-tetrahydropyranyl	2,4-Me ₂ -Ph
	1021	Me	NH-cyclopentyl	2,4-Me ₂ -Ph
	1022	Me	NHCH (CH2OMe) 2	2-Me-4-MeO-Ph
	1023	Me	N(CH2CH2OMe)2	2-Me-4-MeO-Ph
	1024	Me	NHCH (Et) CH2OMe	2-Me-4-MeO-Ph
10	1025	Me	N(Pr)CH2CH2CN	2-Me-4-MeO-Ph
	1026	Me	OCH(Et)CH2OMe	2-Me-4-MeO-Ph
	1027	Me	NHCH (CH2OMe) 2	2-Br-4-MeO-Ph
	1028	Me	N(CH2CH2OMe)2	2-Br-4-MeO-Ph
	1029	Me	NHCH (Et) CH2OMe	2-Br-4-MeO-Ph
15	1030	Me	N(Pr)CH2CH2CN	2-Br-4-MeO-Ph
	1031	Me	OCH(Et)CH2OMe	2-Br-4-MeO-Ph
	1032	Me	NHCH (CH ₂ OMe) ₂	2-Me-4-NMe2-Ph
	1033	Me	N(CH2CH2OMe)2	2-Me-4-NMe2-Ph
	1034	Me	NHCH (Et) CH2OMe	2-Me-4-NMe2-Ph
20	1035	Me	N(Pr)CH2CH2CN	2-Me-4-NMe ₂ -Ph
	1036	Me	OCH(Et)CH2OMe	2-Me-4-NMe ₂ -Ph
-	1037	Me	NHCH (CH ₂ OMe) ₂	2-Br-4-NMe2-Ph
	1038	Me	N(CH2CH2OMe)2	2-Br-4-NMe ₂ -Ph
	1039	Me	NHCH (Et) CH20Me	2-Br-4-NMe ₂ -Ph
25	1040	Me	N(Pr)CH2CH2CN	2-Br-4-NMe ₂ -Ph
	1041	Me	OCH(Et)CH2OMe	2-Br-4-NMe ₂ -Ph
	1042	Me	NHCH (CH2OMe) 2	2-Br-4-i-Pr-Ph
	1043	Me	N(CH2CH2OMe)2	2-Br-4-i-Pr-Ph
	1044	Me	NHCH(Et)CH2OMe	2-Br-4-i-Pr-Ph
30	1045	Me	N(Pr)CH2CH2CN	2-Br-4-i-Pr-Ph
	1046	Me	OCH(Et)CH2OMe	2-Br-4-i-Pr-Ph
	1047	Me	NHCH (CH ₂ OMe) ₂	2-Br-4-Me-Ph
	1048	Me	N(CH ₂ CH ₂ OMe) ₂	2-Br-4-Me-Ph
	1049	Me	NHCH(Et)CH2OMe	2-Br-4-Me-Ph
35	1050	Me	N(Pr)CH2CH2CN	2-Br-4-Me-Ph
	1051	Me	OCH(Et)CH2OMe	2-Br-4-Me-Ph

	1052	Me	NHCH (CH2OMe) 2	2-Me-4-Br-Ph
	1053	Me	N(CH2CH2OMe)2	2-Me-4-Br-Ph
	1054	Me	NHCH (Et) CH2OMe	2-Me-4-Br-Ph
	1055	Me	N(Pr)CH2CH2CN	2-Me-4-Br-Ph
5	1056	Me	OCH(Et)CH ₂ OMe	2-Me-4-Br-Ph
	1057	Me	NHCH (CH2OMe) 2	2-C1-4,6-Me ₂ -Ph
	1058	Me	N(CH2CH2OMe)2	2-C1-4,6-Me ₂ -Ph
	1059	Me	NHCH (CH ₂ OMe) ₂	4-Br-2,6-(Me)2-Ph
	1060	Me	N (CH2CH2OMe) 2	4-Br-2,6-(Me) ₂ -Ph
10	1061	Me	NHCH (CH2OMe) 2	4-i-Pr-2-SMe-Ph
	1062	Me	N(CH2CH2OMe)2	4-i-Pr-2-SMe-Ph
	1063	Me	NHCH (CH ₂ OMe) ₂	2-Br-4-CF3-Ph
	1064	Me	N(CH2CH2OMe)2	2-Br-4-CF3-Ph
	1065	Me	NHCH (CH ₂ OMe) ₂	2-Br-4,6-(MeO)2-Ph
15	1066	Me	N(CH2CH2OMe)2	2-Br-4, 6- (MeO) 2-Ph
	1067	Me	NHCH (CH2OMe) 2	2-C1-4,6-(MeO)2-Ph
	1068	Me	N (CH ₂ CH ₂ OMe) ₂	2-C1-4, 6-(MeO) ₂ -Ph
	1069	Me	NHCH (CH2OMe) 2	2,6-(Me)2-4-SMe-Ph
	1070	Me	N(CH2CH2OMe)2	2,6-(Me)2-4-SMe-Ph
20	1071	Me	NHCH (CH2OMe) 2	4-(COMe)-2-Br-Ph
	1072	Me	N(CH2CH2OMe)2	4-(COMe)-2-Br-Ph
	1073	Me	NHCH (CH2OMe) 2	2,4,6-Me ₃ -pyrid-3-yl
	1074	Me	N(CH2CH2OMe)2	2,4,6-Me3-pyrid-3-yl
	1075	Ме	NHCH (CH ₂ OMe) ₂	2,4-(Br) ₂ -Ph
25	1076	. Me	N(CH2CH2OMe)2	2,4-(Br)2-Ph
	1077	Me	NHCH (CH2OMe) 2	4-i-Pr-2-SMe-Ph
	1078	Me	N(CH2CH2OMe)2	4-i-Pr-2-SMe-Ph
	1079	Me	NHCH (CH2OMe) 2	4-i-Pr-2-SO ₂ Me-Ph
	1080	Me .	N(CH2CH2OMe)2	4-i-Pr-2-SO ₂ Me-Ph
30	1081	Me	NHCH (CH ₂ OMe) ₂	2,6-(Me)2-4-SMe-Ph
	1082	Me	N(CH2CH2OMe)2	2,6-(Me)2-4-SMe-Ph
	1083	Me	NHCH (CH2OMe) 2	2,6-(Me)2-4-SO ₂ Me-Ph
	1084	Me	N(CH2CH2OMe)2	2,6-(Me)2-4-SO ₂ Me-Ph
	1085	Me	NHCH (CH2OMe) 2	2-I-4-i-Pr-Ph
35	1086	Me	N(CH2CH2OMe)2	2-I-4-i-Pr-Ph
	1087	Me	NHCH (CH2OMe) 2	2-Br-4-N (Me) 2-6-MeO-Ph

	1088	Me	N(CH2CH2OMe)2	2-Br-4-N (Me) 2-6-MeO-Ph
	1089	Me	NEt ₂	2-Br-4-MeO-Ph
	1090	· Me	NH-3-pentyl	2-Br-4-MeO-Ph
	1090	Me	NHCH (CH2OMe) 2	2-CN-4-Me-Ph
- 5	1092	Me	N(c-C ₃ H ₅)CH ₂ CH ₂ CN	2,4,6-Me3-Ph
	1093	Me	NHCH (CH2CH2OMe) CH2OMe	2-Me-4-Br-Ph
	1094	Me	NHCH (CH ₂ OMe) ₂	2,5-Me ₂ -4-MeO-Ph
	1095	Me	N (CH ₂ CH ₂ OMe) 2	2,5-Me ₂ -4-MeO-Ph
	1096	Me	NH-3-pentyl	2,5-Me ₂ -4-MeO-Ph
10	1097	Me	NEt ₂	2,5-Me ₂ -4-MeO-Ph
	1098	Me	NHCH (CH ₂ OMe) ₂	2-Cl-4-MePh
	1099	Me	NCH (Et) CH ₂ OMe	2-C1-4-MePh
	1100	Me	N (CH ₂ CH ₂ OMe) ₂	2-Cl-4-MePh
	1101	Me	(S) -NHCH (CH2CH2OMe) CH2OMe	2-C1-4-MePh
15	1102	Me	N(c-C ₃ H ₅)CH ₂ CH ₂ CN	2,5-Me ₂ -4-MeOPh
	1103	Me	NEt ₂	2-Me-4-MeOPh
	1104	Me	OEt	2-Me-4-MeOPh
	1105	Me	(S) -NHCH (CH2CH2OMe) CH2OMe	2-Me-4-MeOPh
	1106	Me	N(c-C3H5)CH2CH2CN	2-Me-4-MeOPh
20	1107	Me	NHCH (CH2CH2OEt) 2	2-Me-4-MeOPh
	1108	Me	N(c-C3H5)CH2CH2CN	2,4-Cl ₂ -Ph
	1109	Ме	NEt ₂	2-Me-4-ClPh
	1110	Me	NH-3-pentyl	2-Me-4-ClPh
	1111	Me	$N(CH_2CH_2OMe)_2$	2-Me-4-ClPh
25	1112	Ме	NHCH (CH ₂ OMe) ₂	2-Me-4-ClPh
	1113	Me	NEt ₂	2-Me-4-ClPh
	1114	Me	NEt ₂	2-C1-4-MePh
	1115	Me	NH-3-pentyl	2-C1-4-MePh
	1116	Me	NHCH (CH ₂ OMe) ₂	2-C1-4-MeOPh
30	1117	Me	N(CH2CH2OMe)2	2-C1-4-MeOPh
	1118	Me	NHCH(Et)CH2OMe	2-C1-4-MeOPh
	1119	Me	N(c-Pr)CH2CH2CN	2-C1-4-MeOPh
	1120	Me	NEt ₂	2-C1-4-MeOPh
	1121	Me	NH-3-pentyl	2-Cl-4-MeOPh
35	1123	Me	NHCH(Et)CH2CH2OMe	2-Cl-4-MeOPh
	1124	Me	NHCH (Me) CH2CH2OMe	2-Cl-4-MeOPh

	1125	Me	NHCH (Et) CH2CH2OMe	2-Br-4-MeOPh
	1126	Me	NHCH (Me) CH2CH2OMe	2-Br-4-MeOPh
	1127	Me	NHCH(Et)CH2CH2OMe	2-Me-4-MeOPh
	1128	Me	NHCH (Me) CH_2CH_2OMe	2-Me-4-MeOPh
5	1129	Me	NHCH (CH ₂ OMe) ₂	2-C1-4,5-(MeO) ₂ Ph
	1130	Me	N(CH2CH2OMe)2	2-C1-4,5-(MeO) ₂ Ph
	1131	Me	NHCH(Et)CH2OMe	2-C1-4,5-(MeO) ₂ Ph
	1132	Me	N(c-Pr)CH2CH2CN	2-C1-4,5-(MeO) ₂ Ph
	1133	Me	NEt ₂	2-C1-4,5-(MeO) ₂ Ph
10	1134	Me	NH-3-pentyl	2-C1-4,5-(MeO) ₂ Ph
	1135	Me	NHCH(Et)CH2CH2OMe	2-C1-4,5-(MeO) ₂ Ph
	1136	Me	NHCH (Me) CH2CH2OMe	2-C1-4,5-(MeO) ₂ Ph
	1137	Me	NHCH (CH2OMe) 2	2-Br-4,5-(MeO) ₂ Ph
	1138	Me	$N(CH_2CH_2OMe)_2$	2-Br-4,5-(MeO) ₂ Ph
15	1139	Ме	NHCH(Et)CH2OMe	2-Br-4,5-(MeO) ₂ Ph
	1140	Me	N(c-Pr)CH2CH2CN	2-Br-4,5-(MeO) ₂ Ph
	1141	Me	NEt ₂	2-Br-4,5-(MeO) ₂ Ph
	1142	Me	NH-3-pentyl	2-Br-4,5-(MeO) ₂ Ph
	1143	Me	NHCH (CH2OMe) 2	2-C1-4,6-(MeO) ₂ Ph
20	1144	Me	N(CH2CH2OMe)2	2-C1-4,6-(MeO) ₂ Ph
	1145	Me	NEt ₂	2-C1-4,6-(MeO) ₂ Ph
	1146	Me	NH-3-pentyl	2-C1-4,6-(MeO)2Ph
	1147	Me	NHCH (CH2OMe) 2	2-Me-4,6-(MeO)2Ph
	1148	Me	$N(CH_2CH_2OMe)_2$	2-Me-4,6-(MeO)2Ph
25	1149	Me	NHCH(Et)CH2OMe	2-Me-4,6-(MeO)2Ph
	1150	Me	NEt ₂	2-Me-4,6-(MeO)2Ph
	1151	Me	NH-3-pentyl	2-Me-4, 6-(MeO) ₂ Ph
	1152	Me	NHCH(Et)CH2CH2OMe	2-Me-4-MeOPh
	1153	Me	NHCH (Me) CH2CH2OMe	2-Me-4-MeOPh
30	1154	Me	NHCH (CH2OMe) 2	2-Me0-4-MePh
	1155	Me	N(CH2CH2OMe)2	2-Me0-4-MePh
	1156	Me	NHCH(Et)CH2OMe	2-Me0-4-MePh
	1157	Me	N(c-Pr)CH2CH2CN	2-Me0-4-MePh
	1158	Me	NEt ₂	2-Me0-4-MePh
35	1159	Me	NH-3-pentyl	2-Me0-4-MePh
	1160	Me	NHCH(Et)CH2CH2OMe	2-Me0-4-MePh

	1161	Me	NHCH (Me) CH2CH2OMe	2-Me0-4-MePh
	1162	Me	NHCH (CH2OMe) 2	2-Me0-4-MePh
	1163	Me	N(CH2CH2OMe)2	2-Me0-4-MePh
	1164	Me	NHCH (Et) CH2OMe	2-Me0-4-MePh
5	1165	Me	N(c-Pr)CH2CH2CN	2-Me0-4-MePh
	1166	Me	NEt ₂	2-Me0-4-MePh
	1167	Me	NH-3-pentyl	2-Me0-4-MePh
•	1168	Me	NHCH (CH2OMe) 2	2-Me0-4-ClPh
	1169	Me	N(CH2CH2OMe)2	2-Me0-4-ClPh
10	1170	Me	NHCH (Et) CH2OMe	2-Me0-4-ClPh
	1171	Me	NEt ₂	2-Me0-4-ClPh
	1172	Me	NH-3-pentyl	2-Me0-4-C1Ph

The examples delineated in Table 7 may be prepared by the methods outlined in Examples 1, 2, 3 or 6. Commonly used abbreviations are: Ph is phenyl, Pr is propyl, Me is methyl, Et is ethyl, Bu is butyl, Ex is Example.

20 -

Table 7

25	Ex.	<u>Z</u>	<u>R</u> 3	Ar	mp (°C)
	1200a	C-Me	2-ethylpiperidyl	2-Me-4-OMePh	58-59.5
	1201b	C-Me	cyclobutylamino	2-Me-4-OMePh	94.5-96
	1202c	C-Me	$N (Me) CH_2CH=CH_2$	2-Me-4-OMePh	oil
	1203d	C-Me	N (CH2CH=CH2)2	2-Me-4-OMePh	oil
30.	1204	C-Me	N(Et)CH ₂ c-Pr	2-Me-4-OMePh	

	1205e	C-Me	$NHCH_2-2$ -tetrahydrofuryl	2-Me-4-OMePh	amorphous
	1206	C-Me	N(Pr)CH ₂ c-Pr	2-Me-4-OMePh	
	1207	C-Me	N(Me)Pr	2-Me-4-OMePh	
	1208f	C-Me	N (Me) Et	2-Me-4-OMePh	oil
5	1209g	C-Me	N (Me) Bu	2-Me-4-OMePh	oil
	1210h	C-Me	N(Me)propargyl	2-Me-4-OMePh	oil
	1211 ⁱ	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2-Me-4-OMePh	oil
	1212j	C-Me	N (CH2CH2OMe) CH2CH=CH2	2-Me-4-OMePh	oil
	1213k	C-Me	N(CH2CH2OMe)Me	2-Me-4-OMePh	oil
10	1214	C-Me	N(CH2CH2OMe)Et	2-Me-4-OMePh	
	1215	C-Me	N(CH ₂ CH ₂ OMe)Pr	2-Me-4-OMePh	
	1216	C-Me	N(CH2CH2OMe)CH2c-Pr	2-Me-4-OMePh	
	1217m	C-Me	NH (CH (CH ₃) CH ₂ CH ₃)	2-Me-4-OMePh	oil
	1218	C-Me	NHCH(c-Pr) ₂	2-Me-4-OMePh	
15	1219n	C-Me	NH-2-hexyl	2-Me-4-OMePh	oil
	12200	C-Me	NH-2-propyl	2-Me-4-OMePh	oil
	1221P	C-Me	$NHCH_2-2$ -tetrahydrofuryl	2-Me-4-OMePh	amorphous
-	12229	Ç-Me	NEt(cyclohexyl)	2-Me-4-OMePh	oil
	1223	C-Me	2-ethylpiperidyl	$2,5-Me_2-4-OMePh$	
20	1224	C-Me	cyclobutylamino	$2,5-Me_2-4-OMePh$	
	1225	C-Me	$N (Me) CH_2CH=CH_2$	2,5-Me ₂ -4-OMePh	
	1226	C-Me	N(Et)CH ₂ c-Pr	$2,5-Me_2-4-OMePh$	
	1227	C-Me	N(Pr)CH ₂ c-Pr	$2,5-Me_2-4-OMePh$	
	1228	C-Me	N(Me)Pr	$2,5-Me_2-4-OMePh$	
25	1229	C-Me	N(Me)Et	$2,5-Me_2-4-OMePh$	
	1230	C-Me	N (Me) Bu	2,5-Me ₂ -4-OMePh	
	1231	C-Me	N(Me)propargyl	$2,5-Me_2-4-OMePh$	
	1232	C-Me	NH (CH (CH $_3$) CH (CH $_3$) CH $_3$)	$2,5-Me_2-4-OMePh$	
	1233	C-Me	$N (CH_2CH_2OMe) CH_2CH=CH_2$	2,5-Me ₂ -4-OMePh	
30	1234	C-Me	N (CH ₂ CH ₂ OMe) Me	$2,5-Me_2-4-OMePh$	•
	1235	C-Me	N(CH2CH2OMe)Et	$2,5-Me_2-4-OMePh$	
	1236	C-Mė	N(CH ₂ CH ₂ OMe)Pr	$2,5-Me_2-4-OMePh$	
	1237	C-Me	N(CH ₂ CH ₂ OMe)CH ₂ c-Pr	$2,5-Me_2-4-OMePh$	
	1238	C-Me	$NH (CH (CH_3) CH_2 CH_3)$	$2,5-Me_2-4-OMePh$	
35	1239	C-Me	NHCH (c-Pr) 2	2,5-Me ₂ -4-OMePh	
				•	

	1240	c-Me	2-ethylpiperidyl	2,4-(OMe) ₂ Ph
	1241	C-Me	cyclobutylamino	2,4-(OMe) ₂ Ph
	1245	C-Me	N (Me) CH ₂ CH=CH ₂	2,4-(OMe) ₂ Ph
	1255°	C-Me	$N (CH_2CH=CH_2)_2$	$2,4-(OMe)_2Ph$ 64.8-65.6
5	1256	C-Me	N(Et)CH ₂ c-Pr	2,4-(OMe) ₂ Ph
	1257	C-Me	N(Pr)CH2c-Pr	2,4-(OMe) ₂ Ph
	1258	C-Me	N(Me)Pr	2,4-(OMe) ₂ Ph
	1259	C-Me	N (Me) Et	2,4-(OMe) ₂ Ph
	1260	C-Me	N (Me) Bu	2,4-(OMe) ₂ Ph
10	1261	C-Me	N(Me)propargyl	2,4-(OMe) ₂ Ph
	1262	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2,4-(OMe) ₂ Ph
	1263	C-Me	N (CH $_2$ CH $_2$ OMe) CH $_2$ CH=CH $_2$	2,4-(OMe) ₂ Ph
	1264	C-Me	$N (CH_2CH_2OMe) Me$	2,4-(OMe) ₂ Ph
	1265	C-Me	N (CH ₂ CH ₂ OMe) Et	2,4-(OMe) ₂ Ph
15	1266	C-Me	N(CH ₂ CH ₂ OMe)Pr	2,4-(OMe) ₂ Ph
	1267	C-Me	${\tt N(CH_2CH_2OMe)CH_2c-Pr}$	2,4-(OMe) ₂ Ph
	1268 ^s	C-Me	NH (CH (CH $_3$) CH $_2$ CH $_3$)	2,4-(OMe) ₂ Ph 137.8-138.3
	1269	C-Me	NHCH(c-Pr) ₂	2,4-(OMe) ₂ Ph
	1270 ^t	C-Me	N(CH ₂ CH ₂ OMe) ₂	$2,4-(OMe)_2Ph$ oil
20	1271 ^u	C-Me	NHCH(Et) ₂	2,4-(OMe) ₂ Ph 128-129.4
	1272	C-Me	N(Et) ₂	2,4-(OMe) ₂ Ph
	1273 ^v	C-Me	N(Pr) ₂	2,4-(OMe) ₂ Ph
	1274	C-Me	2-ethylpiperidyl	2,4-(OMe) ₂ -5-MePh
	1275	C-Me	cyclobutylamino	$2,4-(OMe)_2-5-MePh$
25	1276	C-Me	$N (Me) CH_2CH=CH_2$	2,4-(OMe) ₂ -5-MePh
	1277	C-Me	N(Et)CH ₂ c-Pr	$2,4-(OMe)_2-5-MePh$
	1278	C-Me	N(Pr)CH ₂ c-Pr	$2,4-(OMe)_2-5-MePh$
	1279	C-Me	N(Me)Pr	$2,4-(OMe)_2-5-MePh$
	1280	C-Me	N (Me) Et	$2,4-(OMe)_2-5-MePh$
30	1281	C-Me	N (Me) Bu	$2, 4-(OMe)_2-5-MePh$
	1282	C-Me	N(Me)propargyl	$2, 4-(OMe)_2-5-MePh$
	1283	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	$2, 4-(OMe)_2-5-MePh$
	1284	C-Me	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	$2,4-(OMe)_2-5-MePh$
	1285	C-Me	N(CH2CH2OMe)Me	$2,4-(OMe)_2-5-MePh$
35	1286	C-Me	N (CH ₂ CH ₂ OMe) Et	2,4-(OMe) ₂ -5-MePh

	1287	C-Me	N(CH ₂ CH ₂ OMe)Pr	2,4-(OMe) ₂ -5-MePh
	1288	C-Me	N(CH2CH2OMe)CH2c-Pr	2, 4- (OMe) 2-5-MePh
	1289	C-Me	NH (CH (CH $_3$) CH $_2$ CH $_3$)	2,4-(OMe) ₂ -5-MePh
	1290	C-Me	NHCH(c-Pr) ₂	2,4-(OMe) ₂ -5-MePh
5	1291	C-Me	N(CH ₂ CH ₂ OMe) ₂	2,4-(OMe) ₂ -5-MePh
	1292	C-Me	NHCH(Et) ₂	2,4-(OMe) ₂ -5-MePh
	1293	C-Me	N(Et) ₂	2,4-(OMe) ₂ -5-MePh
	1294	C-Me	2-ethylpiperidyl	2,4-(OMe)2-5-ClPh
	1295	C-Me	cyclobutylamino	2,4-(OMe) ₂ -5-ClPh
10	1296	C-Me	$N (Me) CH_2CH=CH_2$	2,4-(OMe) ₂ -5-ClPh
	1297	C-Me	N(Et)CH ₂ c-Pr	2,4-(OMe) ₂ -5-ClPh
	1298	C-Me	N(Pr)CH ₂ c-Pr	2,4-(OMe)2-5-ClPh
	1299	C-Me	N(Me)Pr	2,4-(OMe)2-5-ClPh
	1300	C-Me	N(Me)Et	2,4-(OMe) ₂ -5-ClPh
15	1301	C-Me	N (Me) Bu	$2,4-(OMe)_2-5-ClPh$
	1302	C-Me	N(Me)propargyl	$2, 4-(OMe)_2-5-ClPh$
	1303	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2,4-(OMe) ₂ -5-ClPh
	1304	C-Me	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	2,4-(OMe) ₂ -5-ClPh
	1305	C-Me	N (CH ₂ CH ₂ OMe) Me	$2,4-(OMe)_2-5-ClPh$
20	1306	C-Me	N(CH ₂ CH ₂ OMe)Et	$2,4-(OMe)_2-5-ClPh$
	1307	C-Me	N(CH ₂ CH ₂ OMe)Pr	$2,4-(OMe)_2-5-ClPh$
	1308	C-Me	N(CH2CH2OMe)CH2c-Pr	$2, 4-(OMe)_2-5-ClPh$
	1309	C-Me	NH (CH (CH ₃) CH ₂ CH ₃)	$2,4-(OMe)_2-5-ClPh$
	1310	C-Me	NHCH(c-Pr) ₂	2,4-(OMe) ₂ -5-ClPh
25	1311	C-Me	N (CH ₂ CH ₂ OMe) ₂	$2,4-(OMe)_2-5-ClPh$
	1312	C-Me	NHCH(Et) ₂	$2,4-(OMe)_2-5-ClPh$
	1313	C-Me	N(Et) ₂	$2,4-(OMe)_2-5-ClPh$
	1314	C-Me	2-ethylpiperidyl	$2-Me-4, 6-(OMe)_2Ph$
	1315	C-Me	cyclobutylamino	$2-Me-4, 6-(OMe)_2Ph$
30	1316	C-Me	$N (Me) CH_2 CH = CH_2$	$2-Me-4, 6-(OMe)_2Ph$
	1317	C-Me	N(Et)CH ₂ c-Pr	$2-Me-4, 6-(OMe)_2Ph$
	1318	C-Me	N(Pr)CH ₂ c-Pr	$2-Me-4, 6-(OMe)_2Ph$
	1319	C-Me	N(Me)Pr	2-Me-4, 6- (OMe) ₂ Ph
	1320	C-Me	N(Me)Et	$2-Me-4, 6-(OMe)_2Ph$
35	1321	C-Me	N (Me) Bu	$2-Me-4, 6-(OMe)_2Ph$

	1322	C-Me	N(Me)propargyl	2-Me-4, 6- (OMe) ₂ Ph
	1323	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2-Me-4, 6-(OMe) ₂ Ph
	1324	C-Me	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	2-Me-4, 6-(OMe) ₂ Ph
	1325	C-Me	N (CH ₂ CH ₂ OMe) Me	2-Me-4, 6-(OMe) ₂ Ph
5	1326	C-Me	N (CH ₂ CH ₂ OMe) Et	2-Me-4, 6- (OMe) ₂ Ph
	1327	C-Me	N(CH ₂ CH ₂ OMe)Pr	2-Me-4, 6- (OMe) ₂ Ph
	1328	C-Me	N(CH2CH2OMe)CH2c-Pr	2-Me-4, 6- (OMe) ₂ Ph
	1329	C-Me	NH (CH (CH $_3$) CH $_2$ CH $_3$)	2-Me-4, 6- (OMe) ₂ Ph
	1330	C-Me	NHCH(c-Pr)2	2-Me-4, 6- (OMe) ₂ Ph
. 10	1331	C-Me	N (CH $_2$ CH $_2$ OMe) $_2$	2-Me-4, 6- (OMe) 2Ph
	1332	C-Me	NHCH(Et) ₂	2-Me-4, 6- (OMe) ₂ Ph
•	1333	C-Me	N(Et) ₂	2-Me-4, 6- (OMe) 2Ph
	1334×	C-Me	NEt (Bu)	2-Me-4, 6- (OMe) ₂ Ph
	1335	C-Me	2-ethylpiperidyl	2-Cl-4, 6-(OMe) ₂ Ph
15	1336	C-Me	cyclobutylamino	2-Cl-4, 6-(OMe) ₂ Ph
	1337	C-Me	$N (Me) CH_2CH=CH_2$	2-C1-4, 6- (OMe) ₂ Ph
	1338	C-Me	N(Et)CH2c-Pr	2-C1-4, 6-(OMe) ₂ Ph
	1339	C-Me	N(Pr)CH2c-Pr	2-C1-4,6-(OMe) ₂ Ph
	1340	C-Me	N (Me) Pr	2-Cl-4, 6-(OMe) ₂ Ph
20	1341	C-Me .	N (Me) Et	2-Cl-4,6-(OMe) ₂ Ph
	1342	C-Me	N (Me) Bu	2-Cl-4,6-(OMe) ₂ Ph
	1343	C-Me	N(Me)propargyl	2-C1-4, 6-(OMe) ₂ Ph
	1344	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2-Cl-4, 6- (OMe) ₂ Ph
	1345	C-Me	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	2-C1-4, 6-(OMe) ₂ Ph
25	1346	C-Me	$N(CH_2CH_2OMe)Me$	2-Cl-4, 6-(OMe) ₂ Ph
	1347	C-Me	N(CH ₂ CH ₂ OMe)Et	2-Cl-4, 6-(OMe) ₂ Ph
	1348	C-Me	N(CH ₂ CH ₂ OMe)Pr	2-Cl-4,6-(OMe) ₂ Ph
	1349	C-Me	N.(CH ₂ CH ₂ OMe) CH ₂ c-Pr	2-Cl-4,6-(OMe) ₂ Ph
	1350	C-Me	NH (CH (CH $_3$) CH $_2$ CH $_3$)	2-Cl-4, 6-(OMe) ₂ Ph
30	1351	C-Me	NHCH(c-Pr) ₂	2-Cl-4, 6-(OMe) ₂ Ph
	1352	C-Me	NHCH(Et) ₂	2-C1-4,6-(OMe) ₂ Ph
	1353	C-Me	N(Et) ₂	2-C1-4, 6-(OMe) ₂ Ph
	1354	C-Me	2-ethylpiperidyl	2-Cl-4-OMe-Ph
	1355	С-Ме	cyclobutylamino	2-C1-4-OMe-Ph
35	1356	C-Me	N (Me) CH2CH=CH2	2-C1-4-OMe-Ph

,	1357	C-Me	N(Et)CH ₂ c-Pr	2-Cl-4-OMe-Ph
	1358°	C-Me	N(Pr)CH ₂ c-Pr	2-Cl-4-OMe-Ph
	1359	C-Me	N(Me)Pr	2-Cl-4-OMe-Ph
	1360	C-Me	N (Me) Et	2-C1-4-OMe-Ph
5	1361	C-Me	N (Me) Bu	2-C1-4-OMe-Ph
	1362	C-Me	N(Me)propargyl	2-C1-4-OMe-Ph
	1363	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2-Cl-4-OMe-Ph
	1364	C-Me	N (CH_2CH_2OMe) $CH_2CH=CH_2$	2-Cl-4-OMe-Ph
	1365	C-Me	N (CH ₂ CH ₂ OMe) Me	2-Cl-4-OMe-Ph
10	1366	C-Me	N(CH2CH2OMe)Et	2-Cl-4-OMe-Ph
	1367	C-Me	N(CH ₂ CH ₂ OMe)Pr	2-C1-4-OMe-Ph
	1368	C-Me	N(CH2CH2OMe)CH2c-Pr	2-C1-4-OMe-Ph
	1369	C-Me	NH (CH (CH $_3$) CH $_2$ CH $_3$)	2-Cl-4-OMe-Ph
	1370	C-Me	NHCH(c-Pr) ₂	2-Cl-4-OMe-Ph
15	1371	C-Me	2-ethylpiperidyl	$2-Me-4, 5-(OMe)_2Ph$
	1372	C-Me	cyclobutylamino	2-Me-4,5-(OMe) ₂ Ph
	1373	C-Me	N (Me) $CH_2CH=CH_2$	2-Me-4,5-(OMe) ₂ Ph
	1374	C-Me	N(Et)CH ₂ c-Pr	2-Me-4,5-(OMe) ₂ Ph
	1375	C-Me	N(Pr)CH2c-Pr	2-Me-4,5-(OMe) ₂ Ph
20	1376	C-Me	N(Me)Pr	2-Me-4,5-(OMe) ₂ Ph
	1377	C-Me	N (Me) Et	2-Me-4,5-(OMe) ₂ Ph
	1378	C-Me	N (Me) Bu	2-Me-4,5-(OMe) ₂ Ph
	1379	C-Me	N(Me)propargyl	$2-Me-4, 5-(OMe)_2Ph$
	1380	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	$2-Me-4, 5-(OMe)_2Ph$
25	1381	C-Me	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	$2-Me-4, 5-(OMe)_2Ph$
	1382	C-Me	N (CH ₂ CH ₂ OMe) Me	$2-Me-4, 5-(OMe)_2Ph$
	1383	C-Me	N(CH2CH2OMe)Et	2-Me-4,5-(OMe) ₂ Ph
	1384	C-Me	N(CH ₂ CH ₂ OMe)Pr	2-Me-4,5-(OMe) ₂ Ph
	1385	C-Me	N(CH2CH2OMe)CH2c-Pr	2-Me-4,5-(OMe) ₂ Ph
30	1386	C-Me	NH (CH (CH_3) CH_2CH_3)	$2-Me-4, 5-(OMe)_2Ph$
	1387	C-Me	NHCH(c-Pr) ₂	$2-Me-4, 5-(OMe)_2Ph$
	1388	C-Me	N(CH2CH2OMe)2	$2-Me-4, 5-(OMe)_2Ph$
•	1389	C-Me	NHCH(Et) ₂	$2-Me-4, 5-(OMe)_2Ph$
	1390	C-Me	N(Et) ₂	.2-Me-4,5-(OMe) ₂ Ph
35	1391	C-Me	NEt (Bu)	$2-Me-4, 5-(OMe)_2Ph$

	1392	C-Me	2-ethylpiperidyl	2-Cl-4,5-(OMe) ₂ Ph
	1393	C-Me	cyclobutylamino	2-Cl-4,5-(OMe) ₂ Ph
	1394	C-Me	$N (Me) CH_2 CH = CH_2$	2-C1-4,5-(OMe) ₂ Ph
	1395	C-Me	N(Et)CH ₂ c-Pr	2-C1-4,5-(OMe) ₂ Ph
5	1396	C-Me	N(Pr)CH ₂ c-Pr	2-C1-4,5-(OMe) ₂ Ph
	1397	C-Me	N (Me) Pr	2-C1-4,5-(OMe) ₂ Ph
	1398	C-Me	N (Me) Et	2-C1-4,5-(OMe) ₂ Ph
	1399	C-Me	N (Me) Bu	2-C1-4,5-(OMe) ₂ Ph
	1400	C-Me	N(Me)propargyl	2-C1-4,5-(OMe) ₂ Ph
10	1401	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2-Cl-4,5-(OMe) ₂ Ph
	1402	C-Me	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	2-C1-4,5-(OMe) ₂ Ph
	1403	C-Me	N(CH2CH2OMe)Me	2-Cl-4,5-(OMe) ₂ Ph
	1404	С-Ме	N(CH2CH2OMe)Et	2-Cl-4,5-(OMe) ₂ Ph
	1405	С-Ме	N(CH2CH2OMe)Pr	2-C1-4,5-(OMe) ₂ Ph
15	1406	C-Me	N(CH2CH2OMe)CH2c-Pr	2-C1-4,5-(OMe) ₂ Ph.
	1407	C-Me	NH (CH (CH_3) CH_2CH_3)	2-C1-4,5-(OMe) ₂ Ph
	1408	C-Me	NHCH(c-Pr) ₂	2-Cl-4,5-(OMe) ₂ Ph
	1409	C-Me	N(CH2CH2OMe)2	2-C1-4,5-(OMe) ₂ Ph
	1410	C-Me	NHCH(Et) ₂	2-C1-4,5-(OMe) ₂ Ph
20	1411	C-Me	N(Et) ₂	2-C1-4,5-(OMe) ₂ Ph
	1412	C-Me	NEt (Bu)	2-C1-4,5-(OMe) ₂ Ph
	1413	C-Me	2-ethylpiperidyl	2-C1-4-OMe-5-MePh
	1414	C-Me	cyclobutylamino	2-C1-4-OMe-5-MePh
	1415	C-Me	$N (Me) CH_2CH=CH_2$	2-C1-4-OMe-5-MePh
25	1416	C-Me	N(Et)CH ₂ c-Pr	2-C1-4-OMe-5-MePh
	1417	C-Me	N(Pr)CH ₂ c-Pr	2-C1-4-OMe-5-MePh
	1418	C-Me	N(Me)Pr	2-C1-4-OMe-5-MePh
	1419	C-Me	N (Me) Et	2-C1-4-OMe-5-MePh
	1420	C-Me	N (Me) Bu	2-C1-4-OMe-5-MePh
·30	1421	C-Me	N(Me)propargyl	2-C1-4-OMe-5-MePh
	1422	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2-Cl-4-OMe-5-MePh
	1423	C-Me	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	2-C1-4-OMe-5-MePh
	1424	C-Me	N(CH ₂ CH ₂ OMe)Me	2-C1-4-OMe-5-MePh
	1425	C-Me	N(CH ₂ CH ₂ OMe)Et	2-C1-4-OMe-5-MePh
35	1426	C-Me	N(CH ₂ CH ₂ OMe)Pr	2-C1-4-OMe-5-MePh

	1427	C-Me	N(CH2CH2OMe)CH2c-Pr	2-C1-4-OMe-5-MePh
	1428	C-Me	$NH(CH(CH_3)CH_2CH_3)$	2-C1-4-OMe-5-MePh
	1429	C-Me	NHCH(c-Pr) ₂	2-C1-4-OMe-5-MePh
	1430	C-Me	NHCH(Et) ₂	2-C1-4-OMe-5-MePh
5	1431	C-Me	$N(Et)_2$	2-C1-4-OMe-5-MePh
	1432	C-Me	NEt (Bu)	2-Cl-4-OMe-5-MePh
	1433	C-Me	2-ethylpiperidyl	2-C1-6-OMe-4-MePh
	1434	C-Me	cyclobutylamino	2-C1-6-OMe-4-MePh
	1435	C-Me	N (Me) CH2CH=CH2	2-C1-6-OMe-4-MePh
10	1436	C-Me	N(Et)CH ₂ C-Pr	2-C1-6-OMe-4-MePh
	1437	C-Me	N(Pr)CH2c-Pr	2-C1-6-OMe-4-MePh
	1438	C-Me	N(Me)Pr	2-C1-6-OMe-4-MePh
	1439	C-Me .	N (Me) Et	2-C1-6-OMe-4-MePh
	1440	C-Me	·N (Me) Bu	2-C1-6-OMe-4-MePh
15	1441	C-Me	N(Me)propargyl	2-Cl-6-OMe-4-MePh
	1442	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2-C1-6-OMe-4-MePh
	1443	C-Me	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	2-Cl-6-OMe-4-MePh
	1444	C-Me	N(CH2CH2OMe)Me	2-Cl-6-OMe-4-MePh
	1445	C-Me	N(CH2CH2OMe)Et	2-Cl-6-OMe-4-MePh
20	1446	C-Me	N(CH ₂ CH ₂ OMe)Pr	2-C1-6-OMe-4-MePh
	1447	C-Me	N(CH2CH2OMe)CH2c-Pr	2-C1-6-OMe-4-MePh
	1448	C-Me	NH (CH (CH $_3$) CH $_2$ CH $_3$)	2-C1-6-OMe-4-MePh
	1449	C-Me	NHCH(c-Pr) ₂	2-C1-6-OMe-4-MePh
	1450	C-Me	NHCH (Et) ₂	2-C1-6-OMe-4-MePh
25	1451	C-Me	N(Et) ₂	2-C1-6-OMe-4-MePh
	1452	C-Me	NEt (Bu)	2-C1-6-OMe-4-MePh
	1453	C-Me	2-ethylpiperidyl	2,6-Me ₂ -4-OMePh
	1454	C-Me	cyclobutylamino	2,6-Me ₂ -4-OMePh
	1455	C-Me	$N (Me) CH_2CH=CH_2$	2,6-Me ₂ -4-OMePh
30	1456	C-Me	N(Et)CH ₂ c-Pr	2,6-Me ₂ -4-OMePh
	1457	C-Me	N(Pr)CH ₂ c-Pr	2,6-Me ₂ -4-OMePh
	1458	C-Me	N(Me)Pr	2,6-Me ₂ -4-OMePh
	1459	C-Me	N(Me)Et	2,6-Me ₂ -4-OMePh
	1460	C-Me	N(Me)Bu	2,6-Me ₂ -4-OMePh
35	1461	C-Me	N(Me)propargyl	2,6-Me ₂ -4-OMePh

	1462	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2,6-Me ₂ -4-OMePh
	1463	C-Me	N(CH2CH2OMe)CH2CH=CH2	2,6-Me ₂ -4-OMePh
	1464	C-Me	N(CH2CH2OMe)Me	2,6-Me ₂ -4-OMePh
	1465	C-Me	N(CH2CH2OMe)Et	2,6-Me ₂ -4-OMePh
5	1466	C-Me	N(CH ₂ CH ₂ OMe)Pr	2,6-Me ₂ -4-OMePh
	1467	C-Me	N(CH $_2$ CH $_2$ OMe)CH $_2$ c-Pr	2,6-Me ₂ -4-OMePh
	1468	C-Me	NH (CH (CH ₃) CH ₂ CH ₃)	2,6-Me ₂ -4-OMePh
	1469	C-Me	NHCH(c-Pr) ₂	2,6-Me ₂ -4-OMePh
	1470	C-Me	NHCH(Et) ₂	2,6-Me ₂ -4-OMePh
10	1471	C-Me	N(Et) ₂	2,6-Me ₂ -4-OMePh
	1472	C-Me	NEt (Bu)	2,6-Me ₂ -4-OMePh
	1473	С-Ме	2-ethylpiperidyl	2-C1-4-OMe-5-FPh
	1474	C-Me	cyclobutylamino	2-Cl-4-OMe-5-FPh
	1475	C-Me	$N (Me) CH_2CH=CH_2$	2-Cl-4-OMe-5-FPh
15	1476	С-Ме	N(Et)CH ₂ C-Pr	2-C1-4-OMe-5-FPh
	1478	C-Me	N(Pr)CH ₂ c-Pr	2-C1-4-OMe-5-FPh
	1479	C-Me	N(Me)Pr	2-Cl-4-OMe-5-FPh
	1480	C-Me	N (Me) Et	2-C1-4-OMe-5-FPh
	1481	C-Me	N(Me)Bu	2-C1-4-OMe-5-FPh
20	1482	C-Me	N(Me)propargyl	2-Cl-4-OMe-5-FPh
	1483	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2-Cl-4-OMe-5-FPh
	1484	C-Me	N (CH $_2$ CH $_2$ OMe) CH $_2$ CH=CH $_2$	2-C1-4-OMe-5-FPh
	1485	C-Me	N (CH_2CH_2OMe) Me	2-Cl-4-OMe-5-FPh
	1486	C-Me	N(CH2CH2OMe)Et	2-Cl-4-OMe-5-FPh
25	1487	C-Me	N(CH ₂ CH ₂ OMe)Pr	2-C1-4-OMe-5-FPh
	1488	C-Me	${\tt N(CH_2CH_2OMe)CH_2c-Pr}$	2-C1-4-OMe-5-FPh
	1489	C-Me	NH (CH (CH ₃) CH ₂ CH ₃)	2-C1-4-OMe-5-FPh
	1490	C-Me	NHCH(c-Pr) ₂	2-C1-4-OMe-5-FPh
	1491	C-Me	NHCH(Et) ₂	2-C1-4-OMe-5-FPh
30	1492	C-Me	N(Et) ₂	2-C1-4-OMe-5-FPh
٠	1493	C-Me	NEt (Bu)	2-C1-4-OMe-5-FPh
	1494	C-Me	2-ethylpiperidyl	2-Cl-4-OMe-6-MePh
	1495	C-Me	cyclobutylamino	2-C1-4-OMe-6-MePh
	1496	C-Me	N (Me) CH ₂ CH=CH ₂	2-C1-4-OMe-6-MePh
35	1497	C-Me	N(Et)CH ₂ C-Pr	2-Cl-4-OMe-6-MePh

	1498	C-Me	N(Pr)CH2C-Pr	2-C1-4-OMe-6-MePh
	1499	C-Me	N(Me)Pr	2-C1-4-OMe-6-MePh
	1500	C-Me	N (Me) Et	2-C1-4-OMe-6-MePh
	1501	C-Me	N (Me) Bu	2-C1-4-OMe-6-MePh
5	1502	C-Me	N(Me)propargyl	2-C1-4-OMe-6-MePh
	1503	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	2-C1-4-OMe-6-MePh
	1504	C-Me	N (CH $_2$ CH $_2$ OMe) CH $_2$ CH=CH $_2$	2-C1-4-OMe-6-MePh
	1505	C-Me	N (CH ₂ CH ₂ OMe) Me	2-C1-4-OMe-6-MePh
	1506	C-Me	N (CH ₂ CH ₂ OMe) Et	2-C1-4-OMe-6-MePh
10	1507	C-Me	N(CH ₂ CH ₂ OMe)Pr	2-C1-4-OMe-6-MePh
	1508	C-Me	$N(CH_2CH_2OMe)CH_2c-Pr$	2-C1-4-OMe-6-MePh
	1509	C-Me	NH (CH (CH $_3$) CH $_2$ CH $_3$)	2-C1-4-OMe-6-MePh
	1510	C-Me	NHCH($c-Pr)_2$	2-C1-4-OMe-6-MePh
	1511	C-Me	NHCH(Et) ₂	2-C1-4-OMe-6-MePh
15	1512	C-Me	N(Et) ₂	2-C1-4-OMe-6-MePh
	1513	C-Me	NEt (Bu)	2-C1-4-OMe-6-MePh
	1514	C-Me	2-ethylpiperidyl	6-Me ₂ N-4-Me-
				pyrid-3-yl
	1515	C-Me	cyclobutylamino	$6-Me_2N-4-Me-$
20			•	pyrid-3-yl
	1516	C-Me	$N (Me) CH_2CH=CH_2$	$6-\text{Me}_2\text{N}-4-\text{Me}-$
		-	•	pyrid-3-yl
	1517	C-Me	N(Et)CH ₂ c-Pr	6-Me ₂ N-4-Me-
				pyrid-3-yl
25	1518	C-Me	N (Pr) CH ₂ c-Pr	$6-\text{Me}_2\text{N}-4-\text{Me}$
				pyrid-3-yl
	1519	C-Me	N(Me)Pr	$6-\text{Me}_2\text{N}-4-\text{Me}-$
				pyrid-3-yl
	1520	C-Me	N (Me) Et	6-Me ₂ N-4-Me-
30				pyrid-3-yl
	1521	C-Me	N (Me) Bu	6-Me ₂ N-4-Me-
				pyrid-3-yl
	1522	C-Me	N(Me)propargyl	6-Me ₂ N-4-Me-
			•	pyrid-3-yl
35	1523	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	6-Me ₂ N-4-Me-

	1524	С-Ме	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	pyrid-3-yl 6-Me ₂ N-4-Me-
	1525	C-Me	N (CH ₂ CH ₂ OMe) Me	pyrid-3-yl 6-Me ₂ N-4-Me-
5	1526	С-Ме	N(CH ₂ CH ₂ OMe)Et .	pyrid-3-yl 6-Me ₂ N-4-Me-
	1527	C-Me	N(CH ₂ CH ₂ OMe)Pr	pyrid-3-yl 6-Me ₂ N-4-Me-
10	1528	C-Me	N(CH ₂ CH ₂ OMe)CH ₂ c-Pr	pyrid-3-yl 6-Me ₂ N-4-Me-
	1529	C-Me	NH (CH (CH ₃) CH ₂ CH ₃)	pyrid-3-yl 6-Me ₂ N-4-Me-
•	1530	С-Ме	NHCH(c-Pr) ₂	pyrid-3-yl 6-Me ₂ N-4-Me-
15	1531	С-Ме	N(CH ₂ CH ₂ OMe) ₂	pyrid-3-yl 6-Me ₂ N-4-Me-
	1532	С-Ме	NHCH (Et) ₂	pyrid-3-yl 6-Me ₂ N-4-Me-
20	1533	C-Me	N(Et) ₂	pyrid-3-yl 6-Me ₂ N-4-Me-
	1534	C-Me	2-ethylpiperidyl	pyrid-3-yl 6-MeO-4-Me-
	1535	С-Ме	cyclobutylamino	pyrid-3-yl 6-MeO-4-Me-
25	1536	С-Ме	N (Me) CH ₂ CH=CH ₂	pyrid-3-yl 6-MeO-4-Me-
	1537	С-Ме	N(Et)CH ₂ c-Pr	pyrid-3-yl 6-MeO4-Me-
30	1538	С-Ме	N(Pr)CH ₂ c-Pr	pyrid-3-yl 6-MeO-4-Me-
-	1539	С-Ме	N(Me)Pr	pyrid-3-yl 6-MeO-4-Me-
25	1540	С-Ме	N(Me)Et	pyrid-3-yl 6-MeO-4-Me-
35	1541	C-Me	N (Me) Bu	pyrid-3-yl 6-MeO-4-Me-

	1542	С-Ме	N(Me)propargyl	pyrid-3-yl 6-MeO-4-Me-
	1543	С-Ме	NH (CH (CH ₃) CH (CH ₃) CH ₃)	pyrid-3-yl 6-MeO-4-Me-
5	1544	C-Me	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	pyrid-3-yl 6-MeO-4-Me-
	1545	С-Ме	N (CH ₂ CH ₂ OMe) Me	pyrid-3-yl 6-MeO-4-Me-
10	1546	С-Ме	N(CH ₂ CH ₂ OMe)Et	pyrid-3-yl 6-MeO-4-Me-
	1547	С-Ме	N(CH ₂ CH ₂ OMe)Pr	pyrid-3-yl 6-MeO-4-Me-
15	1548	С-Ме	N(CH ₂ CH ₂ OMe)CH ₂ c-Pr	pyrid-3-yl 6-MeO-4-Me-
	1549	С-Ме	NH (CH (CH ₃) CH ₂ CH ₃)	pyrid-3-yl 6-MeO-4-Me-
	1550	С-Ме	NHCH(c-Pr) ₂	pyrid-3-yl 6-MeO-4-Me-
20	1551	С-Ме	N (CH ₂ CH ₂ OMe) ₂	pyrid-3-yl 6-MeO-4-Me-
	1552	С-Ме	NHCH(Et) ₂	pyrid-3-yl 6-MeO-4-Me-
	1553	С-Ме	N(Et) ₂	pyrid-3-yl 6-MeO-4-Me-
25	1554	С-Ме	2-ethylpiperidyl	pyrid-3-yl 4,6-Me ₂ -
	1555	С-Ме	cyclobutylamino	pyrid-3-yl 4,6-Me ₂ -
30	1556	С-Ме	N (Me) CH ₂ CH=CH ₂	pyrid-3-yl 4,6-Me ₂ -
	1557	С-Ме	N(Et)CH ₂ c-Pr	pyrid-3-yl 4,6-Me ₂ -
	1558	С-Ме	N(Pr)CH ₂ c-Pr	pyrid-3-yl 4,6-Me ₂ -
35	1559	С-Ме	N(Me)Pr	pyrid-3-yl 4,6-Me ₂ -

	1560	С-Ме	N (Me) Et	pyrid-3-yl 4,6-Me ₂ -
	1561	С-Ме	N (Me) Bu	pyrid-3-yl 4,6-Me ₂ -
5	1562	С-Ме	N(Me)propargyl	pyrid-3-yl 4,6-Me ₂ -
	1563	Ċ-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	pyrid-3-yl 4,6-Me ₂ -
10	1564	С-Ме	N(CH ₂ CH ₂ OMe)CH ₂ CH=CH ₂	pyrid-3-yl 4,6-Me ₂ -
	1565	С-Ме	N(CH ₂ CH ₂ OMe)Me	pyrid-3-yl 4,6-Me ₂ -
	1566	С-Ме	N(CH ₂ CH ₂ OMe)Et	pyrid-3-yl 4,6-Me ₂ -
15	1567	С-Ме	N(CH ₂ CH ₂ OMe)Pr	pyrid-3-yl 4,6-Me ₂ -
	1568	С-Ме	N(CH ₂ CH ₂ OMe)CH ₂ c-Pr	pyrid-3-yl 4,6-Me ₂ -
20	1569	С-Ме	NH (CH (CH ₃) CH ₂ CH ₃)	pyrid-3-yl 4,6-Me ₂ -
	1570	С-Ме	NHCH(c-Pr) ₂	pyrid-3-yl 4,6-Me ₂ -
	1571	С-Ме	N(CH ₂ CH ₂ OMe) ₂	pyrid-3-yl 4,6-Me ₂ -
25	1572	с-ме	NHCH(Et) ₂	pyrid-3-yl 4,6-Me ₂ -
	1573	С-Ме	N(Et) ₂	pyrid-3-yl 4,6-Me ₂ -
30	1574	С-Ме	2-ethylpiperidyl	pyrid-3-yl 2,6-Me ₂ -
	1575	С-Ме	cyclobutylamino	pyrid-3-yl 2,6-Me ₂ -
	1576	С-Ме	N (Me) CH ₂ CH=CH ₂	pyrid-3-yl 2,6-Me ₂ -
35	1577	С-Ме	N(Et)CH ₂ c-Pr	pyrid-3-yl 2,6-Me ₂ -

	1578	С-Ме	N (Pr) CH ₂ c-Pr	pyrid-3-yl 2,6-Me ₂ -
	1370	C Me	N(II) Glige II	pyrid-3-yl
	1579	С-ме	N(Me)Pr	2,6-Me ₂ -
5	1580	C-Me	N (Me) Et	pyrid-3-yl 2,6-Me ₂ -
	1581	C-Me	N (Me) Bu	pyrid-3-yl 2,6-Me ₂ -
10	1582	С-Ме	N(Me)propargyl	pyrid-3-yl 2,6-Me ₂ -
	1583	С-Ме	NH (CH (CH ₃) CH (CH ₃) CH ₃)	pyrid-3-yl 2,6-Me ₂ -
	1584	С-Ме	N (CH ₂ CH ₂ OMe) CH ₂ CH=CH ₂	pyrid-3-yl 2,6-Me ₂ -
15	1585	C-Me	N (CH ₂ CH ₂ OMe) Me	pyrid-3-yl 2,6-Me ₂ -
	1586	С-Ме	N(CH ₂ CH ₂ OMe)Et	pyrid-3-yl 2,6-Me ₂ -
20	1587	С-Ме	N(CH ₂ CH ₂ OMe)Pr	pyrid-3-yl 2,6-Me ₂ -
	1588	С-Ме	N(CH ₂ CH ₂ OMe)CH ₂ c-Pr	pyrid-3-yl 2,6-Me ₂ -
	1589	С-Ме	NH (CH (CH ₃) CH ₂ CH ₃)	pyrid-3-yl 2,6-Me ₂ -
25	1590	C-Me	NHCH(c-Pr) ₂	pyrid-3-yl 2,6-Me ₂ -
	1591	С-Ме	N(CH ₂ CH ₂ OMe) ₂	pyrid-3-yl 2,6-Me ₂ -
30	1592	С-Ме	NHCH(Et) ₂	pyrid-3-yl 2,6-Me ₂ -
	1593	С-Ме	N(Et) ₂	pyrid-3-yl 2,6-Me ₂ -
	1504	0.34	0	pyrid-3-yl
35	1594	C-Me	2-ethylpiperidyl	4-MeO-6-Me- pyrid-3-yl
23	1595	С-Ме	cyclobutylamino	4-MeO-6-Me-

	1596	С-Ме	N (Me) CH ₂ CH=CH ₂	pyrid-3-yl 4-MeO-6-Me-
	1597	С-Ме	N(Et)CH ₂ c-Pr	pyrid-3-yl 4-MeO-6-Me-
5	1598	С-Ме	N(Pr)CH ₂ c-Pr	pyrid-3-yl 4-MeO-6-Me-
	1599	С-Ме	N(Me)Pr	pyrid-3-yl 4-MeO-6-Me-
10	1600	С-Ме	N (Me) Et	pyrid-3-yl 4-MeO-6-Me-
	1601	С-Ме	N (Me) Bu	pyrid-3-yl 4-MeO-6-Me- pyrid-3-yl
15	1602	С-Ме	N(Me)propargyl	4-MeO-6-Me- pyrid-3-yl
	1603	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	4-MeO-6-Me-
	1604	С-Ме	N(CH ₂ CH ₂ OMe)CH ₂ CH=CH ₂	pyrid-3-yl 4-MeO-6-Me-
20	1605	С-Ме	N (CH ₂ CH ₂ OMe) Me	pyrid-3-yl 4-MeO-6-Me-
	1606	С-Ме	N(CH ₂ CH ₂ OMe)Et	pyrid-3-yl 4-MeO-6-Me-
	1607	С-Ме	N(CH ₂ CH ₂ OMe)Pr	pyrid-3-yl 4-MeO-6-Me-
25	1608	С-Ме	N(CH ₂ CH ₂ OMe)CH ₂ c-Pr	pyrid-3-yl 4-MeO-6-Me-
	1609	С-Ме	NH (CH (CH ₃) CH ₂ CH ₃)	pyrid-3-yl 4-MeO-6-Me-
30	1610	С-Ме	NHCH(c-Pr) ₂	pyrid-3-yl 4-MeO-6-Me-
	1611	С-Ме	N(CH ₂ CH ₂ OMe) ₂	pyrid-3-yl 4-MeO-6-Me-
	1612	С-Ме	NHCH(Et) ₂	pyrid-3-yl 4-MeO-6-Me-
35	1613	С-Ме	N(Et) ₂	pyrid-3-yl 4-MeO-6-Me-

				pyrid-3-yl
	1614	C-Me	2-ethylpiperidyl	2-Br-4,5-(OMe) ₂ Ph
	1615	C-Me	cyclobutylamino	$2-Br-4, 5-(OMe)_2Ph$
	1616	C-Me	$N (Me) CH_2CH=CH_2$	2-Br-4,5-(OMe) ₂ Ph
5	1617	C-Me	N(Et)CH ₂ c-Pr	$2-Br-4, 5-(OMe)_2Ph$
	1618	C-Me	N(Pr)CH ₂ c-Pr	2-Br-4,5-(OMe) ₂ Ph
	1619	C-Me	N(Me)Pr	2-Br-4,5-(OMe) ₂ Ph
	1620	C-Me	N (Me) Et	$2-Br-4, 5-(OMe)_2Ph$
	1621	C-Me	N (Me) Bu	$2-Br-4, 5-(OMe)_2Ph$
10	1622	C-Me	N(Me)propargyl	$2-Br-4, 5-(OMe)_2Ph$
	1623	C-Me	NH (CH (CH ₃) CH (CH ₃) CH ₃)	$2-Br-4, 5-(OMe)_2Ph$
	1624	C-Me	N(CH2CH2OMe)CH2CH=CH2	2-Br-4,5-(OMe) ₂ Ph
	1625	C-Me	N(CH2CH2OMe)Me	2-Br-4,5-(OMe) ₂ Ph
•	1626	C-Me	N(CH2CH2OMe)Et	$2-Br-4, 5-(OMe)_2Ph$
15	1627	C-Me	N(CH ₂ CH ₂ OMe)Pr	$2-Br-4, 5-(OMe)_2Ph$
	1628	C-Me	N(CH $_2$ CH $_2$ OMe)CH $_2$ c-Pr	$2-Br-4, 5-(OMe)_2Ph$
	1629	C-Me	NH (CH (CH ₃) CH ₂ CH ₃)	$2-Br-4, 5-(OMe)_2Ph$
	1630	С-Ме	NHCH(c-Pr) ₂	2-Br-4,5-(OMe) ₂ Ph
	1631	C-Me	$N (CH_2CH_2OMe)_2$	$2-Br-4, 5-(OMe)_2Ph$
20	1632	C-Me	NHCH(Et) ₂	2-Br-4,5-(OMe) ₂ Ph
	1633	C-Me	N(Et) ₂	2-Br-4,5-(OMe) ₂ Ph
	1634	C-Me	NEt (Bu)	2-Br -4,5-(OMe) ₂ Ph

Notes for Table 7:

- 25 a) CI-MS: 330 $(M + H)^+$;
 - b) $CI-MS: 338 (M + H)^+;$
 - c) $CI-MS: 338 (M + H)^+;$
 - d) CI-MS: $400 (M + H)^+$;
 - f) $CI-MS: 326 (M + H)^+;$
- 30 g) CI-MS: $354 (M + H)^+$;
 - h) $CI-MS: 336 (M + H)^+;$
 - i) $CI-MS: 354 (M + H)^+;$
 - j) $CI-MS: 378 (M + H)^+;$
 - k) CI-HRMS: Calcd 356.2087 (M + H)+, Found: 356.2071:
- 35 m) $CI-MS: 340 (M + H)^+;$
 - n) CI-MS: $368 (M + H)^+$;

CI-MS: 326 $(M + H)^+$; 0) CI-MS: $368 (M + H)^{+}$; p) CI-MS: $394 (M + H)^+$; q) CI-HRMS: Calcd 380.2087 $(M + H)^+$, Found: 380.2078; r) 5 s) CI-HRMS: Calcd 356.2008 $(M + H)^+$, Found: 356.1997; CI-HRMS: Calcd 416.2220 $(M + H)^+$, Found: 416.2005; t) CI-HRMS: Calcd 370.2243 $(M + H)^+$, Found: 370.2246; u) CI-HRMS: Calcd $380.2400 (M + H)^+$, Found: 384.2382; v) CI-HRMS: Calcd 429.2376 $(M + H)^+$, Found: 429.2358; w) 10 CI-HRMS: Calcd 397.2478 $(M + H)^+$, Found: 397.2484; w)

Utility

15

25

30

35

CRF-R1 Receptor Binding Assay for the Evaluation of Biological Activity

The following is a description of the

20 isolation of cell membranes containing cloned human CRFR1 receptors for use in the standard binding assay as
well as a description of the assay itself.

Messenger RNA was isolated from human hippocampus. The mRNA was reverse transcribed using oligo (dt) 12-18 and the coding region was amplified by PCR from start to stop codons. The resulting PCR fragment was cloned into the EcoRV site of pGEMV, from whence the insert was reclaimed using XhoI + XbaI and cloned into the XhoI + XbaI sites of vector pm3ar (which contains a CMV promoter, the SV40 't' splice and early poly A signals, an Epstein-Barr viral origin of replication, and a hygromycin selectable marker). The resulting expression vector, called phchCRFR was transfected in 293EBNA cells and cells retaining the episome were selected in the presence of 400 μM hygromycin. Cells surviving 4 weeks

of selection in hygromycin were pooled, adapted to growth in suspension and used to generate membranes for the binding assay described below. Individual aliquots containing approximately 1 x 10^8 of the suspended cells were then centrifuged to form a pellet and frozen.

For the binding assay a frozen pellet described above containing 293EBNA cells transfected with hCRFR1 receptors is homogenized in 10 ml of ice cold tissue buffer (50 mM HEPES buffer pH 7.0, containing 10 mM MgCl₂, 2 mM EGTA, 1 μ g/l aprotinin, 1 μ g/ml leupeptin and 1 μ g/ml pepstatin). The homogenate is centrifuged at 40,000 x g for 12 min and the resulting pellet rehomogenized in 10 ml of tissue buffer. After another centrifugation at 40,000 x g for 12 min, the pellet is resuspended to a protein concentration of 360 μ g/ml to be used in the assay.

Binding assays are performed in 96 well plates; each well having a 300 μ l capacity. To each well is added 50 μ l of test drug dilutions (final concentration of drugs range from 10^{-10} – 10^{-5} M), 100 μ l of 125 I-ovine-CRF (125 I-o-CRF) (final concentration 150 pM) and 150 μ l of the cell homogenate described above. Plates are then allowed to incubate at room temperature for 2 hours before filtering the incubate over GF/F filters (presoaked with 0.3% polyethyleneimine) using an appropriate cell harvester. Filters are rinsed 2 times with ice cold assay buffer before removing individual filters and assessing them for radioactivity on a gamma counter.

Curves of the inhibition of ¹²⁵I-o-CRF binding to cell membranes at various dilutions of test drug are analyzed by the iterative curve fitting program LIGAND [P.J. Munson and D. Rodbard, *Anal. Biochem.* 107:220 (1980), which provides Ki values for inhibition which are then used to assess biological activity.

A compound is considered to be active if it has a K_1 value of less than about 10000 nM for the inhibition of CRF.

5 Inhibition of CRF-Stimulated Adenylate Cyclase Activity

Inhibition of CRF-stimulated adenylate cyclase activity can be performed as described by G. Battaglia et al. *Synapse* **1:**572 (**1987**). Briefly, assays are carried out at 37°C for 10 min in 200 ml of buffer containing 100 mM Tris-HCl (pH 7.4 at 37° C), 10 mM MgCl2, 0.4 mM EGTA, 0.1% BSA, 1 mM isobutylmethylxanthine (IBMX), 250 units/ml phosphocreatine kinase, 5 mM creatine phosphate, 100 mM quanosine 5'-triphosphate, 100 nM oCRF, antagonist 15 peptides (concentration range 10^{-9} to 10^{-6m}) and 0.8 mg original wet weight tissue (approximately 40-60 mg protein). Reactions are initiated by the addition of 1 mM ATP/ 32 P]ATP (approximately 2-4 mCi/tube) and terminated by the addition of 100 ml of 50 mM Tris-20 HCL, 45 mM ATP and 2% sodium dodecyl sulfate. order to monitor the recovery of cAMP, 1 μ l of $[^{3}H]cAMP$ (approximately 40,000 dpm) is added to each tube prior to separation. The separation of [32P]cAMP 25 from [32P]ATP is performed by sequential elution over Dowex and alumina columns.

In vivo Biological Assay

The *in vivo* activity of the compounds of the

present invention can be assessed using any one of the
biological assays available and accepted within the
art. Illustrative of these tests include the Acoustic
Startle Assay, the Stair Climbing Test, and the
Chronic Administration Assay. These and other models
useful for the testing of compounds of the present

invention have been outlined in C.W. Berridge and A.J. Dunn *Brain Research Reviews* 15:71 (1990). Compounds may be tested in any species of rodent or small mammal.

5

10

15

20

25

30

35

Compounds of this invention have utility in the treatment of inbalances associated with abnormal levels of corticotropin releasing factor in patients suffering from depression, affective disorders, and/or anxiety.

Compounds of this invention can be administered to treat these abnormalities by means that produce contact of the active agent with the agent's site of action in the body of a mammal. The compounds can be administered by any conventional means available for use in conjunction with pharmaceuticals either as individual therapeutic agent or in combination of therapeutic agents. They can be administered alone, but will generally be administered with a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.

The dosage administered will vary depending on the use and known factors such as pharmacodynamic character of the particular agent, and its mode and route of administration; the recipient's age, weight, and health; nature and extent of symptoms; kind of concurrent treatment; frequency of treatment; and desired effect. For use in the treatment of said diseases or conditions, the compounds of this invention can be orally administered daily at a dosage of the active ingredient of 0.002 to 200 mg/kg of body weight. Ordinarily, a dose of 0.01 to 10 mg/kg in divided doses one to four times a day, or in sustained release formulation will be effective in obtaining the desired pharmacological effect.

15

20

25

30

35

Dosage forms (compositions) suitable for administration contain from about 1 mg to about 100 mg of active ingredient per unit. In these pharmaceutical compositions, the active ingredient will ordinarily be present in an amount of about 0.5 to 95% by weight based on the total weight of the composition.

The active ingredient can be administered orally is solid dosage forms, such as capsules, tablets and powders; or in liquid forms such as elixirs, syrups, and/or suspensions. The compounds of this invention can also be administered parenterally in sterile liquid dose formulations.

Gelatin capsules can be used to contain the active ingredient and a suitable carrier such as but not limited to lactose, starch, magnesium stearate, steric acid, or cellulose derivatives. Similar diluents can be used to make compressed tablets. Both tablets and capsules can be manufactured as sustained release products to provide for continuous release of medication over a period of time. Compressed tablets can be sugar-coated or film-coated to mask any unpleasant taste, or used to protect the active ingredients from the atmosphere, or to allow selective disintegration of the tablet in the gastrointestinal tract.

Liquid dose forms for oral administration can contain coloring or flavoring agents to increase patient acceptance.

In general, water, pharmaceutically acceptable oils, saline, aqueous dextrose (glucose), and related sugar solutions and glycols, such as propylene glycol or polyethylene glycol, are suitable carriers for parenteral solutions. Solutions for parenteral administration preferably contain a water soluble salt of the active ingredient, suitable stabilizing agents, and if necessary, butter substances. Antioxidizing

10

20

25

agents, such as sodium bisulfite, sodium sulfite, or ascorbic acid, either alone or in combination, are suitable stabilizing agents. Also used are citric acid and its salts, and EDTA. In addition, parenteral solutions can contain preservatives such as benzalkonium chloride, methyl- or propyl-paraben, and chlorobutanol.

Suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences", A. Osol, a standard reference in the field.

Useful pharmaceutical dosage-forms for administration of the compounds of this invention can be illustrated as follows:

15 <u>Capsules</u>

A large number of units capsules are prepared by filling standard two-piece hard gelatin capsules each with 100 mg of powdered active ingredient, 150 mg lactose, 50 mg cellulose, and 6 mg magnesium stearate.

Soft Gelatin Capsules

A mixture of active ingredient in a digestible oil such as soybean, cottonseed oil, or olive oil is prepared and injected by means of a positive displacement was pumped into gelatin to form soft gelatin capsules containing 100 mg of the active ingredient. The capsules were washed and dried.

<u>Tablets</u>

A large number of tablets are prepared by conventional procedures so that the dosage unit was 100 mg active ingredient, 0.2 mg of colloidal silicon dioxide, 5 mg of magnesium stearate, 275 mg of microcrystalline cellulose, 11 mg of starch, and 98.8 mg lactose. Appropriate coatings may be applied to increase palatability or delayed adsorption.

Although the present invention has been described and exemplified in terms of certain preferred embodiments, other embodiments will be apparent to those skilled in the art. The invention is, therefore, not limited to the particular embodiments described and exemplified, but is capable of modification or variation without departing from the spirit of the invention, the full scope of which is delineated by the appended claims.

15

10