Surface integral over (ylindrical) $P = Z^2 + xy - y^2$; $x + y^2 = 36$, $0 \le z \le 4$ Let $f(x,y) \ge = x^2 + y^2 = 36 = 0$ be the surface. infratoctont Then q mad $f = 2x^2 + 2y^2$, n = q rad $f = \frac{1}{6}(x^2 + y^2)$ The projection of S on x - y plane cannot be considered. Project S on the $y \ge p$ lane. Hence $dA = \frac{dydz}{n \cdot 2} = \frac{dydz}{x/6}$ Therefore, $\int P \cdot \hat{n} dA = \int \left(\frac{1}{6}(z^2x + xy^2)dA\right) dA$ For x = 0 $= \int \frac{1}{6}(x^2 + y^2 + z^2) \frac{dydz}{x/6} = 416$ $= \int \frac{1}{6}(x^2 + z^2) \frac{dydz}{x/6} = 416$ $= \int \frac{1}{6}(x^2 + z^2) \frac{dydz}{x/6} = 416$