

7

1/3

CCGGGGGAGGGCTTAGGATGTTGTGCTCCGGGGCTCAGACGAAATCTTCTGTGAATGGAAG
AAATGCTTCCAAGCAAACAGCCACTACCAGAACAACTGAGAAAGAGGCCAGAGCGCGAGTTCTC
AAACCTGATTTCGAGGAGCCGGAGGGGATATTGGAGAGAAGGTATTCCAGTCACGCCAG
TAACAGACCAGCCAAGGACCAGGACTGGAGTTCTACAACCGTGGAACAGTGAAACGGTCT
CCAAAGAGATGGAGTACGACGCTACAACGACTCCGGCATCTATGATGATGAGTACTCTGATGG
CTTGCTACTTGTGGACTTGGAGGAGGCAGTCCGTGGAGGCCAAGGTGGCCCCGGTCTTC
CTGGTGGTGTACAGCTTGGTGTGCTCCTCGGTCTCCTAGGCAACGGCTGGTATTGTCA
TCGCCACCTTCAAGATGAAGAAGACCGTGAACACTGTGTGGTTGTCAACCTGGCTGTGGCGA
CTTCCTGTTCAACATCTTTGCCATGCACATCACCTACGCCATGGACTACCAACTGGGTG
TTCGGGAAGGCCATGTGCAAGATCAGCAACTTCTGCTCAGCCACAACATGTACACCAGCGTCT
TCCTGCTACTGTCATCAGCTTGACCGCTGCATCTCCGTGCTGCTCCCCGTCTGGTCCCAGAA
CCACCGCAGCATCCGCTGGCTACATGACCTGCTCGGCCGTCTGGTCTGGCTTCTTCTG
AGCTCCCCGTCCCTGTCTCCGGACACCGCCAACATTGATGGAAAGATAACCTGCTTCAACA
ACTTCAGCTTGGCCGCGCTGAGTCCTCCCCACATCCGCCACTCGCAAGTAGTTCCACAGG
GTACAGCAGACACGTGGGGTCACTGTCACCCGTTCTGGGGCTTCTGATCCCCGTCTTC
ATCATCACGGCCTGCTACCTTACCATCGTCTCAAGCTGCAGCGCAACCGCCTGGCCAAGAAC
AGAAGCCCTTCAAGATCATCACCATCATCACCTCTTCTGCTGGTGGCCCTACCA
CACCTCTACCTGCTGGAGCTCCACCACACAGCTGTGCCAAGCTCTGTCTCAGCCTGGGCTA
CCCCTGGCCACGGCGTGCCTCGCCAACAGCTGCATGAACCCATTCTGTACGTCTTCATGG
GCCACGACTTCAGAAAATCAAGGTGGCCCTTCTCCGCCCTGGCCAACGCCCTGAGTGAGGA
CACAGGCCCTCCTACCCAGTCACAGGAGCTCACCAAGATGTCGTCTTGAATGAGAAC
GCTTCGGTGAATGAGAAGGAGACCAAGTACCCCTGTAACCTCACCTGGGAATGTCCCCAAAGGT
GCCACGGCCCAGGGACGCTAGGGACTTGTCTCCGGAAAGTGGGAGACATGCCGGAGCCTTGG
GAATGCTCCAACGCCACTGAATTTCACAAGGCGGCTCATGTTAAGTGGGGTTCCAAGT
GTGGACACTCTTCAGTAAATGGCAGGCAAGCAACCCGAGCTCTACAACAGGAGCAGGGGAC
CGACTGTGACTCAGAAAAGGGAGCATTCTGAAGCCAAGACTTGAGCTGTGACCAACATA
CAGGCCAACATACACGATGTCGCCGTGCATGCCCTGAACATGCTGCGCAGTTCTGAGGAG
GAAGTTACCGCAAACCCATTGCAGACCTGTTATGGCAACATGACAGTCAAACCAACAAAGCCA
ATACACCCCAACATCCTCCAAGACCTTGACTTGGATTCAGAAGAACGGGGGTGGGGGAAC
GAGGACCTGAGGGTTAATTGAGCTTGGCGAACGCC (SEQ ID NO:1)

FIGURE 1

2/3

underlined = deleted in targeting construct

[] = sequence flanking Neo insert in targeting construct

CCGGGGGAGGCTT~~AGGATGTTGCTCCCGGGGCTCAGACGAAATCTCTGTGAATG~~
GAAGAAATGCTTCAAGCAAACAGCCACTACCAGAACAACTGAGAAAGAGGCCAGAGCGC
GAGTTCTCAAACCCTGATT~~CGCAGGAGCCAGGGATATTGGAGAGAAGGTATTCC~~
AGTCACGCGCAGTAACAGACCAGCCAAGGACCAGGACTGGAGTTCTGTTCTACAACGGTG
GAACAGTGAACGGTCTCAAAG [AGATGGAGTACGACGCTTACAACGACTCCGGCATCTA
TGATGATGAGTACTCTGATGGCTTGGCTACTTG~~GTGGACTTGGAGGAGGGAGTCCGTG~~
GGAGGCCAAGGTGGCCCCGGTCTT~~CGTGTGATCTACAGCTGGTGTGCTTCCTCGG~~
TC] TCCTAGGCAACGGCCTGGTGATTGT~~CATGCCACCTCAAGATGAAGAAGACCGTGA~~
ACACTGTGTGGTTGTCAACCTGGCTGTGGCCGACTTCCTGTTCAACATCTTTGCCGA
TGCACATCACCTACGCGGCCATGGACTACCACTGGTG [TT~~CGGAAGGCCATGTGCAAG~~
ATCAGCAACTCTTGCTCAGCCACACATGTACACCAGCGTCTT~~CTGCTGACTGT~~CATC
AGCTT~~TGACCGCTG~~CATCTCCGTGCT~~CCCCGTCTGGTCCCAGAACACCACCGCAGC~~ATC
CGCCTGGC~~T~~CATGACCTGCTCGGCCG~~T~~CTGG~~T~~CTGG~~T~~CTTGAGCT~~CCCCG~~
TCC~~CTGTCTT~~CGGACACGCCAACATT~~CATGG~~AAGATAACCTG~~CTCAACAA~~ACTTC
AGCTT~~GGCCGCGCTGAGT~~CT~~CCCCACATCCC~~G~~CCACTCGCAAGTAGTTCCACAGGG~~
TACAGCAGACACGTGGCGGT~~ACTGTCACCC~~G~~CTTGC~~GG~~CTTCTG~~AT~~CCCCG~~TC
TTCATCATCAGGCC~~TGCTACCTTACCATCGT~~CTTCAAGCTGCAGCG~~CAACCGC~~TGGC
AAGAACAAAGACCCTTCAAGATCATCATCACC~~ATCATCAC~~CC~~TTCTC~~CTG~~CTG~~GG
TG~~CCCC~~TACCAACCCCT~~TACCTG~~CTGGAGCTCCACCACAGCTGTGCCAAGCT~~GT~~
TTCAGC~~CTGGG~~CTACCC~~CTGGCC~~ACGGCC~~TGCCATGCC~~ACAGCTGC~~ATG~~CAACCCCC
ATT~~CTGTACGT~~CTT~~CATGG~~CCACGACT~~TCAAGG~~TGGCC~~CTTCTC~~CCGC
CTGGCC~~AA~~CGCC~~TGAGT~~GAGGACACAGGCC] CTCCTCCTACCC~~AGTCACAGGAG~~CTT
CACCAAGATGT~~CGT~~CTT~~GAATG~~AGAAGG~~CTCGGT~~GAATGAGAAGGAGACCAGT~~ACCC~~
CTGAAC~~CTCAC~~CTGG~~GAATG~~TC~~CCCCAAAGG~~TGCCACGGCC~~AGGGACG~~C~~CTAGGG~~ACTT
GTCTCCGG~~AA~~GTGGAGACATGCC~~GGGAGC~~CTTGG~~GAATG~~CT~~CCAACG~~CC~~ACTG~~A~~ATT~~
TTGCACAAGGCG~~GCT~~CAT~~TTAAGT~~GGG~~TTCCAAGTGT~~GG~~ACACTCTCC~~AGTAAA
ATGGCAGGCAAGCAACCC~~GAGCTT~~ACA~~ACAGGAGC~~AGGG~~GACCGACTG~~GACT~~GACTC~~
AGAAAAGGAGC~~ATTCTG~~AAGCC~~AA~~ACT~~TGAGTGT~~GACCA~~ACATACAGG~~CCAACATA
CACGATGT~~CGCC~~GT~~G~~CATGCC~~CTG~~AAC~~ATG~~CT~~GCGCAG~~TT~~TG~~GG~~GTAGGAAG~~TTAC
CGCAAACCCATT~~G~~CAGACCT~~G~~TT~~TG~~CAAC~~ATG~~AC~~G~~GT~~CAAACCAACAA~~AGGCCAATAC
ACCCCAACATCC~~TCCAAGAC~~CT~~TGACTT~~GG~~ATTTC~~AGAAGAACGGGGGTGGGGGAAC
GAGGAC~~CTGAGG~~TTA~~ATT~~CGAGCT~~TGG~~GAAGCC

FIGURE 2A

3/3

**Gene Sequence
Structure ***

422 bp

Sequence Deleted

576 bp

Size of full-length
cDNA: 1892 bp

**Targeting Vector*
(genomic sequence)**

Construct Number: 993

Arm Length:
5': 2.3 kb
3': 1.9 kb

<pre>5' >CCACAGAGGTCTCAGCCTGT GACCCTGTCTTCCCTCACAGAGAT GGAGTACGACGCTTACAACGACTC CGGCATCTATGATGATGAGTACTC TGATGGCTTGGCTACTTGTGGA CTTGGAGGAGGCGAGTCCGTGGGA GGCCAAGGTGGCCCCGGTCTTCCT GGTGGTGATCTACAGCTTGGTGTG CTTCCTCGGTC<3' (SEQ ID NO:2)</pre>	<pre>5' >TTCGGGAAGGCCATGTGCAAG ATCAGCAACTCTTGCTCAGCCAC AACATGTACACCAGCGTCTTCTG CTGACTGTATCAGCTTGACCGC TGCATCTCCGTGCTGCTCCCGTC TGGTCCCAGAACACCAGCAGCATC CGCCTGGCCTACATGACCTGCTCG GCCGTCTGGGTCTGGCTTTCTTC TTGAGCTCCCC<3' (SEQ ID NO:3)</pre>
---	--

— Targeting Vector
- - - Endogenous Locus

* Not drawn to scale

FIGURE 2B