Section 1.2

Problems: 3ab, 8, 10ac

Problem 3

a). False. We define $A_n = \{n, n+1, n+2, ...\}$ for all $n \in \mathbb{N}$. We see that $A_1 \supseteq A_2 \supseteq A_3 ...$, however $\bigcap_{n=1}^{\infty} A_n = \emptyset$, thus is not infinite. the proof below would establish that $\bigcap_{n=1}^{\infty} A_n$ is indeed empty.

Proof. We will use a proof by contradiction. Assume $a \in \bigcap_{n=1}^{\infty} A_n$, we know that $a \in A_n$ for all $n \in \mathbb{N}$. But wee see that $A_{a+1} = \{a+1, a+2, a+3, \dots\}$, and that $a \notin A_{a+1}$. Thus we have arrived at our contradiction.

b). True.

Problem 8

- a). Example: $f: \mathbb{N} \to \mathbb{N}$, f(x) = x + 1. It is not surjective since no element of the domain maps to 1 in the co-domain.
- b). Example: $f: \mathbb{N} \to \mathbb{N}, f(x) = \lceil \log x \rceil$
- c). Example: $f: \mathbb{N} \to \mathbb{Z}$, $f(x) = (-1)^x \lceil \frac{x}{2} \rceil$

Problem 10

- a). False. If a = b, we see that $a = b < b + \epsilon$ for some $\epsilon > 0$. However, we see that $a \nleq b$, and thus the statement is false.
- c). True.

Proof. We will first establish the forward direction of the proof. We know that $b < b + \epsilon$ for all $\epsilon > 0$, and so $a \le b < b + \epsilon$. Consequently, $a < b + \epsilon$. Now we will show the converse of this statement using contradiction. That is, we assume $a < b + \epsilon$ for all $\epsilon > 0$ and a > b. Because a > b, we know that there exists some $r \in \mathbb{R}$ such that r = a - b. We see that $a > b + \frac{r}{2}$ as $\frac{r}{2} < r$. We now arrived at our contraction because we know that $a < b + \epsilon$ for all $\epsilon > 0$.

Section 1.3

Problems: 2, 6, 8

Problem 2

- a).
- b).
- c).

Problem 6

- a).
- b).
- c).
- d).

Problem 8

- a).
- b).
- c).
- d).