2章 終結式

定義 2.1

$$f(X) = a_0 X^m + a_1 X^{m-1} + \dots + a_m \ a_0 \neq 0$$
 $g(X) = b_0 X^n + b_1 X^{n-1} + \dots + b_n \ (b_0 \neq 0) \in K[X]$ に対して

$$\begin{pmatrix} a_0 & \cdots & 0 & b_0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_0 & 0 & 0 & b_0 \\ a_m & 0 & 0 & b_n & 0 & 0 \\ 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_m & 0 & 0 & b_n \end{pmatrix}$$

を $f \times g$ のシルベスター行列と呼び、その行列式を f と g の終結式 (resultant) とよび、 R(f,g) で表す

証明
$$f(X) \geq g(X)$$
 が共通因子を持つ ⇔ $^{\exists}h(X), t(X) \in K[X]$ deg $h <$ deg g deg $t <$ deg f $f(X)h(X) = g(X)t(X)$ ⇔ $^{\exists}h(X) = C_0X^{n-1} + \cdots + C_{n-1} \neq 0$ $t(X) = d_0X^{m-1} + \cdots + d_{m-1} \neq 0$ $f(X)h(X) = g(X)t(X)$ ⇔ $^{\exists}(C_0, \dots, C_{n-1}, d_0, \dots, d_{m-1}) \neq \vec{0}$ 共通因子を $s(X)$ とすると
$$a_0C_0 = b_0d_0 \qquad \qquad X^{m+n-1} \text{ Of }$$
 係数 $a_1C_0 + a_0C_1 = b_1d_0 \qquad \qquad X^{m+n-2} \text{ Of }$ 係数 $a_2C_0 + a_1C_1 + a_0C_2 = b_2d_0 + b_1d_1 + b_0d_2 \qquad X^{m+n-3} \text{ Of }$ 条数 $a_mC_{n-1} + a_{m-1}C_{n-1} = b_nd_{m-2} + b_{n-1}d_{m1} \qquad X \text{ Of }$ 係数 $a_mC_{n-1} = b_nd_{m-1}$

定理 2.2

 $R(f,g)\in \langle f(X),g(X)\rangle$ 実は $R(f,g)=h(X)f(X)+t(X)g(X)\ h(X),t(X)$ の係数は $a_0,\ldots,a_m,b_0,\ldots,b_n$ の整式 (整数係数多項式)

証明 R(f,g)=0 なら h(X)=t(X)=0 とおけばよい $R(f,g)\neq 0$ とする。

$$\begin{pmatrix} a_0 & \cdots & 0 & b_0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_0 & 0 & 0 & b_0 \\ a_m & 0 & 0 & b_n & 0 & 0 \\ 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_m & 0 & 0 & b_n \end{pmatrix} \begin{pmatrix} C_0 \\ \vdots \\ C_{n-1} \\ d_0 \\ \vdots \\ d_{n-1} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$

の解 $(C_0,\ldots,C_{n-1},d_0,\ldots,d_{m-1})$ に対し、 $h'(X)=C_0X^{n-1}+\cdots+C_{n-1},t'(X)=d_0X^{m-1}+\cdots+d_{m-1}$ とおくと h'(X)f(X)+t'(X)g(X)=1 がなりたつことにほかならない $R(f,g)\neq 0$ なので、解はただひとつ存在して、それは Clamer の公式によって $C_i=\frac{1}{R(f,g)}$

よって、各 C_j , d_j にR(f,g)をかけたものは、 $a_0,\ldots,a_m,b_0\ldots,b_n$ の整式になる

よって
$$h(X) = h'(X)R(f,g)$$
 とおけばよい $t(X) = t'(X)R(f,g)$

定理 2.3 (拡張定理)

- K:代数的閉体
- $I \subset K[X_1, \ldots, X_n]$: $T \in \mathcal{T}$

$$\mathbf{V}_k(I \cap K[X_1, \dots, X_{n-1}]) \ni (C_1, \dots, C_{n-1})t_0(C_1, \dots, C_{n-1}) \neq 0 \Rightarrow {}^{\exists}C_n \in K(C_1, \dots, C_N) \in \mathbf{V}_k(I)$$

例

$$K = \mathbf{C} \ X = X_1, Y = X_2, Z = X_3$$

$$I = \langle ZX - 1, X - Y \rangle \subset \mathbf{C}[X, Y, Z]$$

$$I \cap \mathbf{C}[Y, Z] = \langle X - Y \rangle$$

$$(C_1, C_2) \in \mathbf{V}_{\mathbf{C}}(I \cup \mathbf{C}[Y, Z]) = \mathbf{V}_{\mathbf{C}}(\langle X - Y \rangle) = \{(c, c) \mid \in \mathbf{C}\}$$

証明 $I(C_1,\ldots,C_{n-1})=\{f(C_1,\ldots,C_{n-1},X_n)\in K[X_n]\mid f\in I\}$ とおく明らかにこれは $K[X_n]$ のイデアル (I がイデアル \Leftrightarrow

- 1. $I \neq \emptyset$
- 2. $I \ni p, q \Rightarrow p + q \in I$
- 3. $I \ni p \Rightarrow {}^{\forall} h \in K[X_1, \dots, X_n] h p \in I$

)

ケース1

$$I(C_1,\ldots,C_{n-1})=\langle 0\rangle \ C_n$$
 は任意にとれる

$$I(C_1,\ldots,C_{n-1})=\langle f(C_1,\ldots,C_{n-1},X_n)\rangle \ \mathrm{deg} \ f(C_1,\ldots,C_{n-1},X_n)\geq 1$$
 K は代数的閉体なので $\exists C_n\in K \ f(C_1,\ldots,C_{n-1},C_n)=0$

$$I(C_1,\ldots,C_{n-1})=\langle f(C_1,\ldots,C_{n-1},X_n)\rangle=\langle 1\rangle$$
 $f(C_1,\ldots,C_{n-1},X_n)=a$ は 0 でない定数

$$f = S_0(X_1, \dots, X_{n-1})X_n^M + S_1(X_1, \dots, X_{n-1})X_n^{M-1} + \dots + S_M(X_1, \dots, X_{n-1})$$

とすると

$$S_0(C_1,\ldots,C_{n-1})=0,\ldots,S_{M-1}(C_1,\ldots,C_{n-1})=0,S_M(C_1,\ldots,C_{n-1})=a\neq 0$$

$$g = t_0(X_1, \dots, X_{n-1})X_n^N + t_1(X_1, \dots, X_{n-1})X_n^{N-1} + \dots + t_N(X_1, \dots, X_{n-1})$$

とする

$$R(g, f, X_n) \in I \cap K[X_1, ..., X_{n-1}]$$
 (: 定理 2.2) $f, g \in I$

$$\det \begin{pmatrix} t_0 & & s_0 & & \\ \vdots & \ddots & & \vdots & \ddots & \\ \vdots & & t_0 & \vdots & & s_0 \\ t_N & & S_M & & \\ & & \vdots & & & \vdots \\ & & t_N & & S_m \end{pmatrix} = h(X_1, \dots, X_n)$$

矛盾、よってケース3はおこらない

3章 Hilbert の零点定理

定理3.1 (HIlbertの零点定理弱系)

K: 代数的兵隊

 $I \subset K[X_1, \ldots, X_n]$: $\forall \vec{r} \gamma \nu$

 $\mathbf{V}_K(I) = \emptyset \Rightarrow I \ni 1$ (どんな K に対しても常になりたつ)

Claim 1

$$f'(Y_1,\dots Y_{n+1})=h(a_1,\dots,a_n)Y_{n+1}^N+t$$
 $h(Y_1,\dots,Y_n)$ は 0 でない n 変数多項式 t は Y_{n+1} に関して次数 N 未満の式と表される

Claim 2

 $h(1,...,a_n) \neq 0$ なる $a_1,...,a_n \in K$ が存在する

Claim 3

 $I' = \{f(Y_1 + a_1Y_{n+1}, \dots, Y_n + a_nY_{n+1}, Y_{n+1}) \mid f \in I\} \subset K[Y_1, \dots, Y_{n+1}]$ とおくと I' はイデアルである