ESPACIO DE PRODUCTO Y COMPLEJIDAD ECONÓMICA II

una metodología para evaluar trayectorias de desarrollo económico

• • •

Dr. Igal Kejsefman (UNQ-CONICET)

Punto de partida: Product Space

Formalización del DPS

¿Cómo dinamizar la matriz de proximidad?

Matriz de proximidad dinámica, Φ^t:

$$\Phi_{i,j}^{t} = \min\{P_{i,j}^{t}, P_{j,i}^{t}\}, \text{ with } P_{i,j}^{t} = \frac{\sum\limits_{c} M_{c,i}^{t} M_{c,j}^{t}}{\sum\limits_{c} M_{c,i}^{t}}$$

La dinamización (en tiempo discreto) resulta de $\Phi^t = f(\Phi^{t-1})$ en donde los países toman decisiones que motivan una difusión (mayor diversidad en los productos que exportan).

Modelado del proceso de difusión

Se elabora la matriz de proximidad $\Pi_{cin} = >$ potencial exportador del producto p por el país c dada mi capacidad de exportar p'

$$\Pi_{c,p}^t = \max_{p'} \{\Phi_{p,p'} \cdot M_{c,p'}^t\}$$

p: producto p': producto exportado

t: tiempo de simulación

Proceso de difusión: dado un nivel de proximidad Ω , cada país podrá alcanzar las VCR_{c:n} =1 en aquellos productos donde la proximidad supere el threshold

$$M_{c,p}^t = egin{cases} 1 & ext{if } \Pi_{c,p}^{t-1} > \mathbf{\Omega} & loopline & \mathbf{\Omega} ext{ es un punto de corte compartido por todos los países} \\ 0 & ext{otherwise} & loopline & \mathbf{\Omega} \end{aligned}$$

Supuestos sobre los que descansa el DPS

- Todos los agentes-países logran lo que se proponen. Sólo dependen de $\prod_{c,p}^{t-1} > \Omega$
- Todos los países cuentan con los requerimientos necesarios para producir todos los bienes
- Cuando un país alcanza un VCR>=1 nadie pierde ese status. No es un juego de suma cero.
- Hay demanda para los productos nuevos que exportan todos los países

EB-DEVS agent-based model

Coupled EB-DEVS: World

- EB-DEVS es un framework hace explícito la separación entre var macroscópicas y microscópicas que se retroalimentan
- Cada país es un agente que toma decisiones a nivel microscópico,
- El PS se ve influenciado por las decisiones de los agentes.
- Los agentes se ven influenciados por el resultado de la nueva red para decidir si producirán o no.

Resultados: DPS vs SPS

Proceso de difusión exportador

- Los resultados de la difusión exportadora se puede observar en un grafo.
- Cada color indica qué producto pudo ser exportado con VCR = 1 para cada ciclo.
- Esta visualización nos otorga una visión cuantitativa sobre las capacidades productivas (exportadoras) de un país.

Procesos de difusión dinámicos y estáticos: DPS vs. SPS

SPS

Alemania $t_0 = 354$ productos exportados. en t_{4} = 417 productos (+17.8%). Diffusion cycles $\Omega = 0.55$ **Argentina** t_0 = 163 productos exportados. en t_4 = 320 productos (+96.3%)

Network diffusion comparison: DPS vs. SPS

Alemania t_0 = 354 productos exportados. en t_4 = 485 productos (+37%).

Argentina t_0 = 163 productos exportados. en t_4 = 434 productos (+171.2%)

Productos exportados por ciclo y threshold

La mayor parte de las simulaciones convergen luego del cuarto ciclo (tanto en SPS como DPS)

S

Productos exportados al final de la simulación

Gráfico superior: Diferencias por tipo de difusión y país junto al promedio mundial

Gráfico inferior: Distribución de las diferencias DPS vs SPS

Diferencias no triviales:

Las interacciones y el dinamismo (DPS) muestran diferencias significativas respecto del modelo estático

¡MUCHAS GRACIAS!