IAML: Dimensionality Reduction

Victor Lavrenko and Nigel Goddard School of Informatics

Semester 1

Overview

- Curse of dimensionality
- Different ways to reduce dimensionality
- Principal Components Analysis (PCA)
- Example: Eigen Faces
- PCA for classification
- Witten & Frank section 7.3
 - only the PCA section required

True vs. observed dimensionality

- Get a population, predict some property
 - instances represented as {urefu, height} pairs
 - what is the dimensionality of this data?

- Data points over time from different geographic areas over time:
 - X₁: # of skidding accidents
 - X₂: # of burst water pipes
 - X₃: snow-plow expenditures
 - X₄: # of school closures
 - X_5 : # patients with heat stroke

Temperature?

Curse of dimensionality

- Datasets typically high dimensional
 - vision: 10⁴ pixels, text: 10⁶ words
 - the way we observe / record them
 - true dimensionality often much lower
 - a manifold (sheet) in a high-d space
- Example: handwritten digits
 - 20 x 20 bitmap: {0,1}⁴⁰⁰ possible events
 - will never see most of these events
 - actual digits: tiny fraction of events
 - true dimensionality:
 - possible variations of the pen-stroke

Curse of dimensionality (2)

- Machine learning methods are statistical by nature
 - count observations in various regions of some space
 - use counts to construct the predictor f(x)
 - e.g. decision trees: p_{+}/p_{-} in {o=rain,w=strong,T>28°}
 - text: #documents in {"hp" and "3d" and not "\$" and ...)
- As dimensionality grows: fewer observations per region

- statistics need repetition
 - flip a coin once → head
 - P(head) = 100%?

Dealing with high dimensionality

Use domain knowledge

feature engineering: SIFT, MFCC

Make assumption about dimensions

 independence: count along each dimension separately

 smoothness: propagate class counts to neighboring regions

- symmetry: e.g. invariance to order of dimensions: $x_1 \Leftrightarrow x_2$

- Reduce the dimensionality of the data
 - create a new set of dimensions (variables)

Constant # examples

Dimensionality reduction

- Goal: represent instances with fewer variables
 - try to preserve as much structure in the data as possible
 - discriminative: only structure that affects class separability
- Feature selection
 - pick a subset of the original dimensions $X_1 X_2 X_3 ... X_{d-1} X_d$
 - discriminative: pick good class "predictors" (e.g. gain)
- Feature extraction
 - construct a new set of dimensions $E_1 E_2 \dots E_m$

$$E_i = f(X_1...X_d)$$

– (linear) combinations of original $\dot{X}_1 \dot{X}_2 \dot{X}_3 ... \dot{X}_d$

Principal Components Analysis

- Defines a set of principal components
 - 1st: direction of the greatest variability in the data
 - 2nd: perpendicular to 1st, greatest variability of what's left
 - ... and so on until d (original dimensionality)
- First *m*<<*d* components become *m* new dimensions
 - change coordinates of every data point to these dimensions

Why greatest variability?

Example: reduce 2-dimensional data to 1-d

 $-\{x_1,x_2\} \rightarrow e'$ (along new axis **e**)

Pick e to maximize variability

 Reduces cases when two points are close in e-space but very far in (x,y)-space

 Minimizes distances between original points and their projections

Principal components

subtract mean from each attribute

- Compute covariance matrix Σ
 - covariance of dimensions x_1 and x_2 :
 - do x₁ and x₂ tend to increase together?
 - or does x₂ decrease as x₁ increases?

$$x_{2}^{1} = 0.8 \quad 0.8 \quad var(a) = \frac{1}{n} \sum_{i=1}^{n} x_{ia}^{2}$$

$$cov(b,a) = \frac{1}{n} \sum_{i=1}^{n} x_{ib} x_{ia}$$

- Multiply a vector by Σ : $\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} -1 \\ +1 \end{pmatrix} \rightarrow \begin{pmatrix} -1.2 \\ -0.2 \end{pmatrix}$ again $\rightarrow \begin{pmatrix} -2.5 \\ -1.0 \end{pmatrix} \rightarrow \begin{pmatrix} -6.0 \\ -2.7 \end{pmatrix} \rightarrow \begin{pmatrix} -14.1 \\ -6.4 \end{pmatrix} \rightarrow \begin{pmatrix} -33.3 \\ -15.1 \end{pmatrix}$ turns towards direction of variance
- Want vectors **e** which aren't turned: Σ **e** = λ **e**
 - e ... eigenvectors of Σ , λ ... corresponding eigenvalues
 - principal components = eigenvectors w. largest eigenvalues

Finding Principal Components

1. find eigenvalues by solving: $det(\Sigma - \lambda I) = 0$

$$\det\begin{pmatrix} 2.0 - \lambda & 0.8 \\ 0.8 & 0.6 - \lambda \end{pmatrix} = (2 - \lambda)(0.6 - \lambda) - (0.8)(0.8) = \lambda^2 - 2.6\lambda + 0.56 = 0$$
$$\left\{ \lambda_1, \lambda_2 \right\} = \frac{1}{2} \left(2.6 \pm \sqrt{2.6^2 - 4 * 0.56} \right) = \left\{ 2.36, 0.23 \right\}$$

2. find ith eigenvector by solving: $\Sigma \mathbf{e}_i = \lambda_i \mathbf{e}_i$

3. 1st PC: $\begin{bmatrix} 0.91 \\ 0.41 \end{bmatrix}$, 2nd PC: $\begin{bmatrix} -0.41 \\ 0.91 \end{bmatrix}$

 $e_1 = \begin{bmatrix} 0.91 \\ 0.41 \end{bmatrix}$

Projecting to new dimensions

- **e**₁ ... **e**_m are new dimension vectors
- Have instance $\mathbf{x} = \{x_1...x_d\}$ (original coordinates)

- 1. "center" the instance (subtract the mean): $x'-\mu$
- 2. "project" to each dimension: $(\mathbf{x}' \mathbf{\mu})^T \mathbf{e}_i$ for j=1...m

$$(\vec{x} - \vec{\mu}) = \begin{bmatrix} (x_1 - \mu_1) & (x_2 - \mu_2) & \cdots & (x_d - \mu_d) \end{bmatrix}$$

$$\begin{bmatrix} x_1' \\ x_2' \\ \vdots \\ x_{m'} \end{bmatrix} = \begin{bmatrix} (\vec{x} - \vec{\mu})^T \vec{e}_1 \\ (\vec{x} - \vec{\mu})^T \vec{e}_2 \\ \vdots \\ (\vec{x} - \vec{\mu})^T \vec{e}_m \end{bmatrix} = \begin{bmatrix} (x_1 - \mu_1)e_{1,1} + (x_2 - \mu_2)e_{1,2} + \cdots + (x_d - \mu_d)e_{1,d} \\ (x_1 - \mu_1)e_{2,1} + (x_2 - \mu_2)e_{2,2} + \cdots + (x_d - \mu_d)e_{2,d} \\ \vdots \\ (x_1 - \mu_1)e_{m,1} + (x_2 - \mu_2)e_{m,2} + \cdots + (x_d - \mu_d)e_{m,d} \end{bmatrix}$$

Direction of greatest variability

- Select dimension e which maximizes the variance
- Points x_i "projected" onto vector e:
- Variance of projections: $\frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_j \mu \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_j \right)^2$
- Maximize variance
 - want unit length: ||e||=1
 - add Lagrange multiplier

$$\begin{split} \mathbf{\Sigma} \, \boldsymbol{e} &= \, \boldsymbol{\lambda} \, \boldsymbol{e} \\ \mathbf{e} \, \text{must be an eigenvector} \end{split} \quad \begin{cases} \sum_{j=1}^{d} \operatorname{cov}(1,j) \boldsymbol{e}_{j} = \lambda \boldsymbol{e}_{1} \\ \vdots \\ \sum_{j=1}^{d} \operatorname{cov}(d,j) \boldsymbol{e}_{j} = \lambda \boldsymbol{e}_{d} \end{cases} \end{split}$$

$$V = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right)^{2} - \lambda \left(\left(\sum_{k=1}^{d} e_{j}^{2} \right) - 1 \right)$$

$$\frac{\partial V}{\partial e_a} = \frac{2}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_j \right) x_{ia} - 2\lambda e_a = 0$$

Variance along eigenvector

 $x_x' = x^T e = \sum_{i=1}^{d} x_{ij} e_j$

Variance of projected points $(\mathbf{x}^{\mathsf{T}}\mathbf{e})$:

$$\frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_{j} - \mu \right)^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right)^{2} \qquad \qquad \mu = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{d} x_{ij} e_{j} \right) \left(\sum_{a=1}^{d} x_{ia} e_{a} \right) \qquad = \sum_{j=1}^{d} \left(\frac{1}{n} \sum_{i=1}^{n} x_{ij} \right) e_{j}$$

$$= \sum_{a=1}^{d} \sum_{j=1}^{d} \left(\frac{1}{n} \sum_{i=1}^{n} x_{ia} x_{ij} \right) e_{j} e_{a} \qquad \qquad \text{cov}(a,j) = \frac{1}{n} \sum_{i=1}^{n} x_{ia} x_{ij}$$

$$= \sum_{a=1}^{d} \left(\lambda e_{a} \right) e_{a} \qquad \qquad \text{cov}(a,j) e_{j} = \lambda e_{a} \qquad \text{e is an eigenvector of the covariance matrix}$$

$$= \lambda \|e\|^{2} = \lambda$$

How many dimensions?

- Have: eigenvectors $\mathbf{e}_1 \dots \mathbf{e}_d$ want: m << d
- Proved: eigenvalue λ_i = variance along \mathbf{e}_i
- Pick e_i that "explain" the most variance
 - − sort eigenvectors s.t. $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_d$
 - pick first m eigenvectors which explain 90% or the total variance
 - typical threshold values: 0.9 or 0.95

- like K-means

PCA in a nutshell

1. correlated hi-d data

2. center the points

3. compute covariance matrix

h u
h 2.0 0.8
$$cov(h,u) = \frac{1}{n} \sum_{i=1}^{n} h_i u_i$$

$$\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{bmatrix} e_h \\ e_{\psi} \end{bmatrix} = \lambda_e \begin{bmatrix} e_h \\ e_{\psi} \end{bmatrix}$$

$$\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{bmatrix} f_h \\ f_u \end{bmatrix} = \lambda_f \begin{bmatrix} f_h \\ f_u \end{bmatrix}$$

eig(cov(data))

7. uncorrelated low-d data

6. project data points to those eigenvectors

Copyright © 2014 Victor Lavrenko

5. pick m<d eigenvectors w. highest eigenvalues

PCA example: Eigen Faces

"unfold" each bitmap to K²-dimensional vector

> arrange in a matrix each face = column

Matlab demo on course webpage

can visualize eigenvectors: m "aspects" of prototypical facial features

"fold" into a K x K bitmap

Eigen Faces: Projection

- Project new face to space of eigen-faces
- Represent vector as a linear combination of principal components
- How many do we need?

(Eigen) Face Recognition

- Face similarity
 - in the reduced space
 - insensitive to lighting expression, orientation
- Projecting new "faces"
 - everything is a face

Copyright © 2014 Victor Lavrenko

new face

projected to eigenfaces

PCA: practical issues

- Covariance extremely sensitive to large values
 - multiply some dimension by 1000
 - dominates covariance
 - becomes a principal component
 - normalize each dimension to zero mean and unit variance: x' = (x mean) / st.dev
- PCA assumes underlying subspace is linear
 - 1d: straight line2d: flat sheet
 - transform to handle non-linear spaces (manifolds)

PCA and classification

PCA is unsupervised

maximizes overall variance of the data along

a small set of directions

 does not know anything about class labels

 can pick direction that makes it hard to separate classes

- Discriminative approach
 - look for a dimension that makes it easy to separate classes

Linear Discriminant Analysis

- LDA: pick a new dimension that gives:
 - maximum separation between means of projected classes
 - minimum variance within each projected class
- Solution: eigenvectors based on between-class and within-class covariance matrices

Copyright © 2014 Victor Lavrenko

PCA vs. LDA

- LDA not guaranteed to be better for classification
 - assumes classes are unimodal Gaussians
 - fails when discriminatory information is not in the mean,
 but in the variance of the data
- Example where PCA gives a better projection:

Dimensionality reduction

Pros

- reflects our intuitions about the data
- allows estimating probabilities in high-dimensional data
 - no need to assume independence etc.
- dramatic reduction in size of data
 - faster processing (as long as reduction is fast), smaller storage

Cons

- too expensive for many applications (Twitter, web)
- disastrous for tasks with fine-grained classes
- understand assumptions behind the methods (linearity etc.)
 - there may be better ways to deal with sparseness

Summary

- True dimensionality << observed dimensionality
- High dimensionality
 sparse, unstable estimates
- Dealing with high dimensionality:
 - use domain knowledge
 - make an assumption: independence / smoothness / symmetry
 - dimensionality reduction: feature selection / feature extraction
- Principal Components Analysis (PCA)
 - picks dimensions that maximize variability
 - eigenvectors of the covariance matrix
 - examples: Eigen Faces
 - variant for classification: Linear Discriminant Analysis