Introduction to R: practical 2

Dr Colin S. Gillespie

Often when we commence an analysis we want to partition the data in different ways. For example, selecting data points greater than a particular value. In this practical we will investigate how this is done using R's logical operators.

Question difficulty

Some of the questions below are straight forward, others are bit more tricky.

• The last sub-questions of Q1 and Q2 are hard.

Before starting the practical, run the following commands:

```
R> library(nclRcourses)
```

```
Question 1
```

Run the following R code

```
R> x1 = GetNumericVector()
```

1. What is length of x1?

```
R> length(x1)
```

[1] 52655

2. What is the 55^{th} element of x1?

```
R> x1[55]
```

[1] 38.3

3. What is the final element of x1?

```
R> x1[length(x1)]
```

[1] -3.3

R> tail(x1, 1)

[1] -3.3

4. What is the mean value of x1?

```
R > mean(x1)
```

[1] -1.334

5. What is the smallest value of x1?

```
R > min(x1)
```

```
[1] -87.3
```

6. How many values are greater than the first quartile but less than the median?

```
R> q1 = quantile(x1)[2]
R> med = median(x1)
R> length(x1[x1 > q1 & x1 < med])
[1] 13048
R> ##0r
R> sum(x1 > q1 & x1 < med)
[1] 13048</pre>
```

7. How many values are greater than $\bar{x}_1 + 2sd(x_1)$, where sd is the sample standard deviation?

 \bar{x}_1 is the mean value and $sd(x_1)$ is the standard deviation of x_1 .

```
R> m = mean(x1)

R> s = sd(x1)

R> sum(x1 > (m + 2*s))

[1] 1254
```

8. Tricky: What is the $50^{\rm th}$ smallest value in x1?

```
R> sort(x1)[50]
[1] -63.7
```

Question 2

Run the following R code

```
R> x2 = GetCharacterVector()
```

In the following questions, the function table is quite useful, especially when combined with sum, sort, etc.

1. How many times does "A" appear in x2?

```
R> length(x2[x2=="A"])
[1] 2095
R> ##Or
R> sum(x2=="A")
[1] 2095
```

2. Which letter appears the most? If more than one letter appears, just give the first letter (if the letters were sorted in alphabetical order).

```
R> sort(table(x2), FALSE)[1]
```

R

2002

3. Very tricky: How many pairs of letters are there in x2.1

 $^{1}\,\mathrm{For}$ example, in AABCCC we would have 3 pairs: AA, CC and CC.

```
R> 1 = length(x2)
R> x2_a = x2[1:(1-1)]; x2_b = x2[2:1];
R> sum(x2_a == x2_b)
[1] 2074
```

Question 3

Run the following R code

$$R > y = GetDataFrame()$$

The data frame y is a subset of the yeast data we use in the lectures.

1. How many rows does y have?

```
R> dim(y)[1]
```

- [1] 14937
- 2. How many columns does y have?

[1] 5

3. What are the different cell types in this data set?

```
R> unique(y$type)
```

[1] mutant wild

Levels: mutant wild

4. How many measurements have been made on mutant cells?

```
R> sum(y$type == "mutant")
```

- [1] 7468
- 5. How many of probes have expression levels less than 5?

- [1] 456
- 6. How many measurements have been made at time point 0?

$$R > sum(y tps == 0)$$

- [1] 2985
- 7. How many mutant probes were measured at time point 0?

$$R> sum(y$tps == 0 & y$type == "mutant")$$

[1] 1493