Crash Introduction to markovchain R package

Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS

August 3, 2015

Intro

- ▶ The markovchain package (Spedicato 2015) will be introduced.
- ▶ The package is intended to provide S4 classes to perform probabilistic and statistical analysis of Discrete Time Markov Chains (DTMC). See (Brémaud 1999) for a theoretical review of the mathematics underlying the DTMC models.
- ► The vignette will show: how to load the package and create a DTMC, how to manage a DTMC, how to perform basic probabilistic analysis, how to fit a DTMC.

- The package is on Cran since Summer 2013.
- ▶ It requires a recent version of R (>=3.0). Since version 0.2 parts of code have been moved to Rcpp (Eddelbuettel 2013).
- ► The package won a slot in Google Summer of Code 2015 for optimizing internals and expanding functionalities.

First moves into the markovchain package

Loading the package

▶ The package is loaded using

```
#load the package
library(markovchain)
```

Creating a DTMC

b 0.5 0.0 0.5

▶ DTMC can be easily create following standard S4 classes syntax. The show method displays it.

```
## MarkovChain A
## A 3 - dimensional discrete Markov Chain with following
## a b c
## The transition matrix (by rows) is defined as follow
## a b c
## a 0.0 0.5 0.5
```

Otherwise, it can also be created directly coercing a matrix.

dtmcA2<-as(tmA, "markovchain") #using coerce from matrix
states(dtmcA2) #note default names assigned to states</pre>

```
## [1] "s1" "s2" "s3"
```

▶ It is also possible to display a DTMC, using igraph package (Csardi and Nepusz 2006) capabilities

plot(dtmcA)

Probabilistic analysis

The basic

- It is possible to access transition probabilities and to perform basic operations.
- ▶ Similarly, it is possible to access the conditional distribution of states, $Pr(X_{t+1}|X_t = s)$

```
dtmcA[2,3] #using [ method
```

```
## [1] 0.5
```

```
## [1] 0.5
```

```
conditionalDistribution(dtmcA, "b")
```

```
## a b c
## 0.5 0.0 0.5
```

▶ It is possible to simulate states distribution after n-steps

```
\label{lem:condition} $$\inf_{x \in \mathbb{R}^{+}} \frac{1}{1} \int_{\mathbb{R}^{+}} \frac{1}{1}
```

```
## a b c
## [1,] 0.3125 0.375 0.3125
```

As well as steady states distribution

```
steadyStates(dtmcA) #S4 method
```

```
## a b c
## [1,] 0.3333333 0.3333333 0.3333333
```

▶ The summary method shows the proprieties of the DTCM

```
summary(mcMathematica)
```

```
## Mathematica Markov chain that is composed by:
## Closed classes:
## a b c d
## Recurrent classes:
## {a,b,c,d}
## Transient classes:
## NONE
## The Markov chain is irreducible
## The absorbing states are: NONE
```

#Estimation and simulation

- ► The package permits to fit a DTMC estimating the transition matrix from a sequence of data.
- createSequenceMatrix returns a function showing previous vs actual states from the pairs in a given sequence.

r #using Alofi rainfall dataset data(rain)
mysequence<-rain\$rain
createSequenceMatrix(mysequence)</pre>

0 1-5 6+ ## 0 362 126 60 ## 1-5 136 90 68 ## 6+ 50 79 124

markovchainFit function allows to obtain the estimated transition matric and the confidence levels (using elliptic MLE hyphotesis).

```
myFit<-markovchainFit(data=mysequence,confidencelevel = .9
myFit</pre>
```

```
## $estimate
## MLE Fit
## A 3 - dimensional discrete Markov Chain with following
## 0 1-5 6+
## The transition matrix (by rows) is defined as follow
## 0 1-5 6+
## 0 0.6605839 0.2299270 0.1094891
## 1-5 0.4625850 0.3061224 0.2312925
## 6+ 0.1976285 0.3122530 0.4901186
```

\$standardError

##

##

See the vignettes for further fitting methods as well as for functionalities targeted on non - homogeneous Markov chains.

```
alofiMc<-myFit$estimate
alofiMc</pre>
```

```
## MLE Fit

## A 3 - dimensional discrete Markov Chain with following

## 0 1-5 6+

## The transition matrix (by rows) is defined as follow

## 0 0.6605839 0.2299270 0.1094891

## 1-5 0.4625850 0.3061224 0.2312925

## 6+ 0.1976285 0.3122530 0.4901186
```

Bibliography I

Brémaud, Pierre. 1999. "Discrete-Time Markov Models." In *Markov Chains*, 53–93. Springer.

Csardi, Gabor, and Tamas Nepusz. 2006. "The Igraph Software Package for Complex Network Research." *InterJournal* Complex Systems: 1695. http://igraph.sf.net.

Eddelbuettel, Dirk. 2013. Seamless R and C++ Integration with Rcpp. New York: Springer-Verlag.

Spedicato, Giorgio Alfredo. 2015. Markovchain: An R Package to Easily Handle Discrete Markov Chains.