CW 複体の定義

1

- 定義 1.1. (胞体分割). ハウスドルフ空間 X は, X の disjoint な部分集合の族 $\{e_{\lambda}\}$ と dim という 各 e_{λ} に非 負整数を対応させる $(\dim(e_{\lambda}) \in \mathbb{Z}_{>0}$ ということ) で
- $(1)X = \sqcup e_{\lambda}$ が成り立つ.
- (2) 各 e_{λ} に対して、連続写像 $\varphi_{\lambda}: D^{\dim e_{\lambda}} \to \bar{e}_{\lambda}$ で、 $D^{\dim e_{\lambda}} \setminus S^{\dim e_{\lambda}-1}$ への制限が、 e_{λ} への同相写像となるものが存在する.
- $(3)X^r := \bigsqcup_{\dim(e_\lambda) \geq r} e_\lambda$ と表す時に, $\bar{e}_\lambda \setminus e_\lambda = \varphi_\lambda(S^{\dim e_\lambda 1}) \subset X^{\dim e_\lambda 1}$

をみたすものを, 胞体分割可能なハウスドルフ空間という. またこのとき, 各 e_{λ} を胞体 (cell), という. さらに, 組 $(X, \{e_{\lambda}\})$ を胞体複体という.

- 定義 1.2. (部分胞体複体). X をハウスドルフ空間, $\{e_{\lambda}\}$ を X の胞体分割とする. $A \subset X$ が X は, X の胞体分割の部分集合 $\{e_{\lambda'}\}\subset \{e_{\lambda}\}$ で
- $(1)e_{\lambda'} \subset A \Rightarrow \overline{e_{\lambda'}} \subset A$
- $(2)\{e_{\lambda'}\}$ は A の胞体分割である. が存在する時に, X の部分胞体複体という.
- 定義 1.3. 胞体の数が有限である胞体複体を有限胞体複体という. 任意の点 $x \in X$ に対して, $x \in \text{Int}A$ を満たす部分胞体複体 A で有限なものが存在する時に, 局所有限であるという.

定義 1.4. (CW 複体). 胞体複体 X で,

- (C) 任意の点 $x \in X$ に対して $x \in A$ を満たす部分胞体複体 A で有限なものが存在する.
- (W)X の部分集合 F が閉集合であることの必要十分条件が, X の各胞体 e_{λ} に対して $\overline{e_{\lambda}} \cup F$ が閉集合となること, である. を満たす時に, X は CW 複体であるという.
- 命題 1.5. 胞体複体 X が (C), (W) を満たすことと,
- (C') 任意の胞体 $C_{\lambda} \subset X$ に対し, $e_{\lambda} \subset A$ を満たす部分胞体複体 A で有限なものが存在する.
- (W') X の部分集合 F が閉集合であることの必要十分条件が, X の任意の有限部分複体 A に対して $A \subset F$ が閉集合となること, である.
- 証明. まず, (C) と (C') が必要十分であることは本当に簡単に確かめられる. 次に, (C), (C') が成り立つとして, $(W)\Leftrightarrow (W')$ を示したい. $F\subset X$ を部分集合とする.
- (w)X の各胞体 e_{λ} に対して $\overline{e_{\lambda}} \cup F$ が N の相対位相で閉集合となること
- (w') X の任意の有限部分複体 A に対して $A \subset F$ が閉集合となること
- が同値であることを示せば良い. (\Rightarrow) 任意の有限部分胞体複体 $A\subset X$ に対して, A は適当な有限個の胞体を用いて $A=\sqcup_{\mathrm{finite}}e_{\lambda}=\cup_{\mathrm{finite}}\overline{e_{\lambda}}$ と表されるので, $A\cap F=\cup_{\mathrm{finite}}\overline{e_{\lambda}}\cap F$ は閉集合である. (\Leftarrow) e_{λ} に対して

適当な有限部分胞体複体 A で $e_\lambda \subset A$ を満たすものが存在するので, $\overline{e_\lambda} \cap F = \overline{e_\lambda} \cap A \cap F$ は閉集合であるので, 常に成り立つ. 従って実際には (\Leftarrow) を条件として課せばよい.

注意 **1.6.** (W') の条件の, (\Rightarrow) は, A が有限部分胞体複体であれば, $A = \cup_{\text{finite}} \overline{e_{\lambda}}$ であるので $A \cup F$ は閉である.

命題 1.7. 局所有限な胞体複体は CW 複体である.

証明. (C) 任意の $x \in X$ に対して有限部分複体 A で $x \in \operatorname{int} A$ を満たすものがとれるので, $x \in A$ なる有限部分複体 A がとれたことになる. (W') F^c が開集合であることを示す. $x \in F^c$ に対して, $x \in \operatorname{int} A$ を満たす部分胞体複体 A がとれるので. $A \cap F$ が閉集合であることに注意すると, $x \in \operatorname{int} A \cap (A \cap F)^c \subset F^c$ というように開近傍がとれる.

命題 1.8. CW 複体 X の部分胞体複体 A は閉集合であり、 CW 複体でもある.

証明. X が CW 複体であるので、任意の有限部分胞体複体 A' に対して $A\cap A'$ が閉集合であることを示せば、 (W') を用いて A が閉集合であることが言える. $A\cap A'$ は有限胞体複体であるので、 閉集合である. 続いて CW 複体であることを示す. $F\subset A$ を、 A の任意の部分胞体複体 B に対して $F\cap B$ が閉であるとする. X の任意の有限部分複体 $X'\subset X$ に対して $A\cap X'$ は A の有限部分胞体複体であるので、 $F\subset A$ に注意すると $F\cap A\cap X'=F\cap X'$ は閉集合である. 従って X が CW 複体であることから、 条件 (W') を用いると、 F は 閉集合である.