Complexity of Conversions and Tests

MIEIC, 2nd Year

João M. P. Cardoso

Email: jmpc@acm.org

Outline

- ► Regular Languages (RLs)
- ► Context-Free Languages (CFLs)

Regular Languages (RLs)

- ► In the context of Regular Languages
 - \triangleright i.e., conversions between DFAs, NFAs, ϵ -NFAs, and regular expressions

- ► NFA (ε -NFA) \rightarrow DFA
 - A function of the number of states n of the NFA
 - Calculate closure- ε : O(n³) [*n* states and a maximum of n^2 transitions per state]
 - ► Construction of subsets: O(2ⁿ) [2ⁿ is the maximum number of DFA states]
 - ▶ Compute the transitions δ for each state: O(n³)
 - ▶ We consider the alphabet fixed and thus it only influences the constant hiden in the O() ("big-oh") notation
 - ► Complete conversion: O(n³2ⁿ)
 - As the number os states s (often close to n) of the DFA is frequently much lower than exponencial (2^n): $O(n^3s)$

- ► DFA → NFA
 - ► O(n) [just a copy with some modifications]
- ►NFA/DFA → RE
 - Using the path construction:
 - ▶ n³ to compute the table [n² rows and n columns (steps)]
 - ▶ In each step we have n² expressions and each expression is built using 4 expressions of the previous step
 - 4ⁿ as size of regular expression grows by 4 every time
 - ► O(n³4ⁿ)
 - ► In practice it is close to O(n³)
 - By simplifying the regular expression at every step and
 - Using judicious algorithm avoiding recomputation of R_{kk}^(k)
 - Using State Elimination:
 - State elimination technique: n steps
 - And what about the full conversion?
- \triangleright NFA \rightarrow RE
 - ▶ If we start by converting first the NFA to a DFA, we obtain a doubly exponencial algorithm!

- ► RE \rightarrow ϵ -NFA
 - ▶ Being *n* the length of the expression
 - Construct the expression tree in O(n)
 - Number of states and arcs are O(n)
 - Complete conversion: **O(n)** [proportional to n]
- $ightharpoonup RE \rightarrow NFA$
 - ▶ Being *n* the length of the expression, RE \rightarrow ϵ -NFA: **O(n)**
 - \triangleright Complete conversion: $O(n^3)$ [being n the number of the states of the ε -NFA]
- \triangleright RE \rightarrow DFA
 - ► Being *n* the length of the expression: can take exponential [because of NFA (ε -NFA) → DFA]

Minimization of DFAs

- ► Table-filling algorithm to find if two states are equivalent or not:
 - There are n(n-1)/2 pairs of states
 - \triangleright A round takes $O(n^2)$ and there will be no more than n^2 rounds
 - ► Thus: **O(n⁴)** if not selecting a carefully algorithm
 - Can be O(n²) if:
 - an initialization step stores the list of pairs dependent on each pair, and
 - ► for each distinguishable pair found, all the dependent pairs not already distinguishable are marked as distinguishable

Testing Emptiness of Regular Languages (RLs)

- ► Given an FA for the language, find if there is a path from the start to a final state: $O(n^2)$ [n is the number of states of the FA]
- ► We can also test emptiness directly from a regular expression (RE):
 - \triangleright Check for the existence of \varnothing in RE and
 - if there is, check recursively for the conditions for emptiness for concatenation, union, kleen and parêntesis
 - ▶ If there is not, L(RE) is not empty

Testing Membership in a Regular Language (RL)

- ► Using a DFA:
 - ► String with length *n*
 - ► O(n)
- ▶ Using an NFA (ε -NFA):
 - String with length *n* and NFA with *s* states
 - **►** O(ns²)
- ► Using an RE of size s:
 - \triangleright Convert to ϵ -NFA of at most 2s states: O(s)
 - ► O(ns²) [as previously]

Context-Free Languages (CFLs)

Complexity of the conversions

- Linear conversions in the length of the representation, O(n)
 - ► CFG → PDA
 - ▶ PDA with final state → PDA with empty stack
 - ▶ PDA with empty stack → PDA with final state
- Conversion O(n³) [see Hopcroft, Motwani, and Ullman book]
 - ▶ PDA \rightarrow CFG (size of the CFG is also $O(n^3)$)
 - n represents the number of transition rules
 - Each transition rule generates n² productions
- ► Conversion O(n²) [see Hopcroft, Motwani, and Ullman book]
 - ► CFG \rightarrow CNF (size of the CNF is also $O(n^2)$)
 - Constructing unit pairs and eliminating unit productions takes $O(n^2)$ while the other transformations can be done in O(n) [considering that the elimination of the ε -productions is done after the breaking of production bodies of length 3 or more to 2]

Testing Emptiness of CFL's

- ► Find if start symbol is generating, if it generates then the CFL is not empty
 - ▶ Being *n* the size of the CFG, there are at most *n* variables in the CFG
 - Complexity: O(n²)
- ► With an efficient data-structure it can take: **O(n)** [see Fig. 7.11 of Hopcroft, Motwani, and Ullman book, *Introduction to Automata Theory, Languages, and Computation*]

Testing Membership in a CFL: CYK Algorithm*

- ► Test if a string is in the language: O(n³)
 - n is the length of the string
 - ► Table with n(n+1)/2 cells
 - ▶ For each cell, a maximum of *n-1* pairs of cells to consider
 - Note that the grammar is fixed: each cell pair has a maximum fixed $|V|^2$ pairs of variables, with |V| the number of variables of the grammar (CNF)

^{*} Based on the idea of "dynamic programming", and also known as a "table-filling algorithm" or "tabulation"