TACS EN VRAC (SUP)

(TAC: Théorème à citer)

1. ALGEBRE

ullet Soit A un anneau. Soit $(a,b)\in A^2$. Si a et b commutent (ab=ba), alors :

$$\forall n \in \mathbb{N}, \ (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$
 et $a^n - b^n = (a-b) \sum_{k=0}^{n-1} a^k b^{n-k-1}$

Souvent, $a = 1 = 1_A$

Si
$$A \in M_n(\mathbb{K})$$
 avec $A^p = 0$, $(I_n - A) \sum_{k=0}^{p-1} A^k = I_n - A^p = I_n \Rightarrow (I_n - A)^{-1} = \sum_{k=0}^{p-1} A^k$

• Formule de Pascal :
$$\binom{n+1}{p+1} = \binom{n}{p} + \binom{n}{p+1} \ (0 \le p < n)$$

$$\binom{n}{0} = 1$$
, $\binom{n}{1} = n$, $\binom{n}{2} = \frac{n(n-1)}{2}$, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- $P \in K[X]$. $a \in K$ racine de P de multiplicité $n \iff P(a) = ... = P^{(n-1)}(a) = 0$ et $P^{(n)}(a) \neq 0$.
- ullet Théorème de Bezout dans $\mathbb Z$ ou dans K[X] :

$$A \wedge B = 1 \Leftrightarrow \exists (U, V) \in (K[X])^2 \text{ tq } AU + BV = 1$$

 \bullet Théorème de la division euclidienne dans $\,\mathbb{Z}\,$ ou dans $\,K\big[\,X\,\big]\,$:

$$\forall \big(A,B\big) \in \mathrm{K}[\mathrm{X}] \times \mathrm{K}[\mathrm{X}]^* \ , \ \exists ! \big(Q,R\big) \in \big(\mathrm{K}\big[\mathrm{X}\big]\big)^2 \ \mathrm{tq} \ A = BQ + R \ \mathrm{et} \ \mathrm{deg}(R) < \mathrm{deg}(B)$$

 \bullet <u>Théorème de Gauss</u> dans $\mathbb Z$ ou dans $\mathbb K \big[\mathbb X \big] : (A \wedge B = 1 \text{ et } A \, | \, BC \,) \implies A \, | \, C$

Idem avec n éléments deux à deux premiers entre eux.

- Si $\deg(P) \le n$ et si P admet (n+1) racines distinctes au moins, alors P est le polynôme nul.
- f injective $\Leftrightarrow Ker(f) = \{0\}$. f surjective $\Leftrightarrow Im(f) = E$.
- <u>Théorème de Grassmann</u>: Soient F et G 2 sous-espaces vectoriels de dimension finie de l'espace vectoriel E, sur $K = \mathbb{R}$ ou \mathbb{C} .

Alors $\dim(F) + \dim(G) = \dim(F + G) + \dim(F \cap G)$

- Théorème de la base incomplète : Soit E un espace vectoriel de dimension finie et soit $(u_1,...,u_p)$ une famille libre de E. Alors on peut trouver une base qui contient cette famille. De plus, si $(v_1,...,v_q)$ est une famille génératrice de E, on peut compléter $(u_1,...,u_p)$ en une base de E à l'aide de vecteurs de $(v_1,...,v_q)$.
- Théorème du rang : Soient E et F des espaces vectoriels sur K . Soit $u \in L(E,F)$. Soit G un supplémentaire de Ker(u) dans E ($E = Ker(u) \oplus G$). Soit $v = u|_{G}$.
- 1) v induit un isomorphisme de G sur Im(u) = u(E)
- 2) Si E est de dimension finie, $\dim(E) = rg(u) + \dim(Ker(u))$
- Soient E et F 2 espaces vectoriels de même dimension finie. Soit $u \in L(E,F)$.

Alors u injectif $\Leftrightarrow u$ surjectif $\Leftrightarrow u$ isomorphisme de E sur F.

- Si 2 endomorphismes coïncident sur une base, ils sont égaux.
- Inégalité de Cauchy-Schwarz : Soit E un espace euclidien.

Alors
$$\forall (x, y) \in E^2, |\langle x | y \rangle| \le ||x|| ||y||$$

•
$$\forall A \in GL_n(K), A^{-1} = \frac{1}{\det(A)} {}^tCom(A)$$

• $A \in M_n(\mathbbm{K})$. On lui associe canoniquement $u \in L(\mathbbm{K}^n)$ telle que $M_{\operatorname{Can}}(u) = A$.

Alors
$$(y = u(x)) \Leftrightarrow ([y]_{Can} = A[x]_{Can}) \Leftrightarrow (Y = AX)$$

$$\underline{\text{Notation : Si } B = (e_1, \dots, e_n), \text{ alors } \left(\begin{bmatrix} x \end{bmatrix}_B = X \in M_{n,1}(\mathbf{K}) \right) \Longleftrightarrow \left(x = \sum_{i=1}^n x_i e_i, X = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} \right).$$

• Formules de changement de base : B,B' bases de E , $x \in E$, $\begin{bmatrix} x \end{bmatrix}_B = X$, $\begin{bmatrix} x \end{bmatrix}_{B'} = X'$, $u \in L(E)$, $M = M_B(u)$,

$$M' = M_{B'}(u), P: B \to B'$$

Alors: X = PX' et $M' = P^{-1}MP$

2. ANALYSE

I intervalle de $\mathbb R$ non réduit à un point, S = [a,b] un segment, $f:I \to K$ avec $K = \mathbb R$ ou $\mathbb C$.

- <u>Théorème de Bolzano-Weierstrass</u>: De toute suite bornée de réels, on peut extraire une sous-suite convergente.
- Théorème des suites adjacentes : $a = (a_n)_{n \in \mathbb{N}}$, $b = (b_n)_{n \in \mathbb{N}}$. a et b sont adjacentes si l'une est croissante, l'autre décroissante et si $b_n a_n$ tend vers 0. Si a et b sont adjacentes, alors elles sont convergentes, de même limite l. Si $u_{2p} = a_p$ et $u_{2p+1} = b_p$, alors $u = (u_n)_{n \in \mathbb{N}}$ est convergente, de limite l.
- Toute suite de réels croissante et majorée est convergente, de limite $l = \sup_{n \in \mathbb{N}} (u_n)$.
- Théorème fondamental de l'analyse : $f: I \to \mathbb{K}$ continue, $a \in I$. Si $F(x) = \int_a^x f(t)dt$, alors $F \in C^1(I)$ et F' = f. F est l'unique primitive de la fonction f qui s'annule en a.
- <u>Caractérisation séquentielle de la continuité</u>: f continue au point $a \in I = (\alpha, \beta) \Leftrightarrow$ (Pour toute suite $x_n \in I$, tendant vers a, la suite $(f(x_n))_{n \in \mathbb{N}}$ est convergente de limite f(a)).
- \bullet Caractérisation des C¹-difféomorphismes de I sur J ($k \geq 1\,, I$ et J intervalles de $\mathbb R$) :

 $f: I \to J = f(I)$ est un C^1 -difféomorphisme de I sur $J \iff \forall t \in I, f'(t) \neq 0$.

On a alors
$$\forall x \in J = f(I), (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 ou $\forall t \in I, (f^{-1})'(f(t)) = \frac{1}{f'(t)}$.

Valable pour les fonctions à valeurs réelles uniquement :

- Théorème de la limite monotone : $a < b, f :]a, b[\to \mathbb{R}$. Si f est monotone sur]a, b[, f admet en tout point $x_0 \in]a, b[$ une limite à droite et une limite à gauche.
 - Si f est croissante et minorée, $\lim_{t \to a^+} f(t)$ existe et vaut $\inf\{f(t) \mid a < t < b\}$.
- Théorème des valeurs intermédiaires et conséquences :
- 1) L'image d'un intervalle (resp. un segment) par une fonction continue est un intervalle (resp. un segment).
- 2) Si $f \in C([a,b])$ et $f(a)f(b) \le 0$, f s'annule sur [a,b].
- 3) f continue sur I intervalle. Si f ne s'annule pas sur I, f garde sur I un signe constant.
- Une fonction numérique continue sur un segment est majorée, minorée et atteint ses bornes.
- Théorème de Heine-Borel : Toute fonction continue sur un segment y est uniformément continue.

- Théorème du prolongement dérivable : Si f est continue sur S = [a,b], de classe C^1 sur]a,b] et si f' a une limite finie en a, alors f est C^1 sur [a,b].
- Formule des Accroissements Finis (FAF): $a \neq b$, si $f \in C([a,b]) \cap C^1(]a,b[)$, alors $\exists c \in [a,b]$, $\exists \theta \in [0,1[$ tels que $f(b)-f(a)=(b-a)f'(c)=(b-a)f'(a+\theta(b-a))$.
- Théorème de Rolle : $f \in C([a,b]) \cap C^1(]a,b[)$ et f(a) = f(b)
- $\Rightarrow \exists c \in [a,b[,\exists \theta \in]0,1[,f'(c)=f'(a+\theta(b-a))=0$
- Formule de Taylor-Lagrange : Soit f de classe C^n sur [a,b], n+1 fois dérivable sur]a,b[.

Alors
$$\exists c \in \left] a, b \right[\text{ tel que } f(b) = \sum_{p=0}^{n} \frac{(b-a)^p}{p!} f^{(p)}(a) + \frac{(b-a)^{n+1}}{(n+1)!} f^{(n+1)}(c)$$

Attention, c dépend de a, b et n.

Valable pour les fonctions à valeurs réelles ou complexes : $(K = \mathbb{R} \text{ ou } \mathbb{C})$

- <u>Inégalité des Accroissements Finis (IAF)</u>: Soit $f \in C([a,b],K)$. Si f' est bornée sur]a,b[, alors $|f(b)-f(a)| \le |b-a| \sup_{t \in C(b)} |f'(t)|$
- Formule de Taylor-Young : Soit $f \in C^n(I, K)$ et $a \in I$.

Alors:
$$\forall x \in I, f(x) = \sum_{p=0}^{n} \frac{(x-a)^p}{p!} f^{(p)}(a) + o((x-a)^n)$$
 $(x \to a)$

• Inégalité de Taylor-Lagrange : Soit $f \in C^{n+1}([a,b],K)$, $n \ge 1$.

Alors:
$$\left| f(b) - \sum_{k=0}^{n} \frac{(b-a)^{k}}{k!} f^{(k)}(a) \right| \le \sup_{t \in [a,b]} \left| f^{(n+1)}(t) \right| \frac{(b-a)^{n+1}}{(n+1)!}$$

• Formule de Taylor avec reste intégral : Soit $f \in C^n([a,b],K)$, $n \ge 1$.

Alors:
$$\forall x \in [a,b], f(x) = \sum_{p=0}^{n-1} \frac{(x-a)^p}{p!} f^{(p)}(a) + \frac{1}{(n-1)!} \int_a^x (x-u)^{n-1} f^{(n)}(u) du$$