Section 9.1:

Problem 1. Find the period of the linear congruential generator defined by (a) a = 2, b = 0, m = 5 (b) a = 4, b = 1, m = 9.

Solution:

$$x_i = 2x_{i-1} \mod(5)$$

$$u_i = \frac{x_i}{5}$$

$$\begin{array}{c|c} X_0 & U_0 \\ \hline 1 & 1/5 \\ 2 & 2/5 \\ 4 & 4/5 \\ 3 & 3/5 \\ 1 & 1/5 \end{array}$$

The Period is 4 because it's repeated.

Solution:

 $x_i = 4x_{i-1} + 1 \mod(9)$ $u_i = \frac{x_i}{9}$

U_0
1/9
5/9
3/9
4/9
8/9
6/9
7/9
2/9
0/9

The Period is 9 because it's repeated.

Problem 2. Find the period of the LCG defined by a=4,b=0,m=9. Does the period depend on the seed?

Solution:

$$x_{i} = 4x_{i-1} \mod(5)$$

$$u_{i} = \frac{x_{i}}{5}$$

$$\begin{array}{c|c} X_{0} & U_{0} \\ \hline 1 & 1/5 \\ 4 & 4/5 \\ \hline 1 & 1/5 \\ 4 & 4/5 \\ \hline \end{array}$$

The Period is 2 because it's repeated.

$\overline{X_0}$	U_0
2	2/5
3	3/5
2	2/5
3	3/5

The Period is 2 because it's repeated; Therefore, It does not matter what the seed is, it will continue to repeat after 2 iterations. \Box

Problem 3. Approximate the area under the curve $y = x^2$ for $0 \le x \le 1$, using the LCG with (a) a = 2, b = 0, m = 5 (b) a = 4, b = 1, m = 9.

Solution:

You can gather an approximate answer through

$$\frac{1}{n}\sum_{k=1}^{n}F(u_k)$$

$$x_{i} = 2x_{i-1} \mod(5)$$

$$u_{i} = \frac{x_{i}}{5}$$

$$\begin{array}{c|c} X_{0} & U_{0} \\ \hline 1 & 1/5 \\ 2 & 2/5 \\ 4 & 4/5 \\ 3 & 3/5 \\ 1 & 1/5 \end{array}$$

$$\frac{1}{4} * \left[\left(\frac{1}{5} \right)^2 + \left(\frac{2}{5} \right)^2 + \left(\frac{4}{5} \right)^2 + \left(\frac{3}{5} \right)^2 + \left(\frac{1}{5} \right)^2 \right] = \frac{3}{10}$$
Solution:

$$x_i = 4x_{i-1} + 1 \mod(9)$$
$$u_i = \frac{x_i}{9}$$

X_0	U_0
1	1/9
5	5/9
3	3/9
4	4/9
8	8/9
6	6/9
7	7/9
2	2/9
0	0/9

$$\frac{1}{9} * \left[\left(\frac{1}{9} \right)^2 + \left(\frac{5}{9} \right)^2 + \left(\frac{3}{9} \right)^2 + \left(\frac{4}{9} \right)^2 + \left(\frac{8}{9} \right)^2 + \left(\frac{6}{9} \right)^2 + \left(\frac{7}{9} \right)^2 + \left(\frac{2}{9} \right)^2 + \left(\frac{0}{9} \right)^2 \right] = \frac{68}{243} \approx .28$$

Computer

Problem 3. (a) Using calculus, find the area bounded by the two parabolas P1(x) = x2 - x + 1/2 and P2(x) = -x2 + x + 1/2. (b) Estimate the area as a Type 1 Monte Carlo simulation, by finding the average value of P2(x) - P1(x) on [0,1]. Find estimates for $n = 10^i$ for $2 \le i \le 6$. (c) Same as (b), but estimate as a Type 2 Monte Carlo problem: Find the proportion of points in the square $[0, 1] \times [0, 1]$ that lie between the parabolas. Compare the efficiency of the two Monte Carlo approaches.

Solution:

$$\int_0^1 P_2(x) - P_1(x) dx = \int_0^1 -x^2 + x + 0.5 - x^2 + x - 0.5 = -\frac{2}{3}x^3 + 2x = 1/3$$

Number	Monte Carto(type I):	Monte Carto(type II):
2	0.31989997416025223	0.292929292929293
3	0.33471903062092195	0.33733733733733734
4	0.33469846188664665	0.347334733473
5	0.3343791518519886	0.33707337073370736
6	0.33332828373508067	0.33334633334633335

Problem 6. Use $n=10^4$ pseudo-random points to estimate the interior volume of the ellipsoid defined by $2+4x^2+4z^2+y^2 \le 4x+4z+y$, contained in the unit cube $0 \le x, y, z \le 1$. Compare your estimate with the correct volume $\pi/24$, and report the error. Repeat with $n=10^6$ points.

Solution:

Volume of unit sphere: Expected:0.1308996938995747

Blue(N) = 10,000

 $\begin{aligned} & \text{MC(type II): } 0.1327265453090618 \\ & \text{Error: } 0.0018268514094871013 \end{aligned}$

Red(N) = 1,000,000

 $MC(type\ II):\ 0.13238026476052953$ Error: 0.0014805708609548218

Section 9.3:

Computer

Problem 1 & 2. Design a Monte Carlo simulation to estimate the probability of a random walk reaching the top a of the given interval [-b,a]. Carry out n = 10000 random walks. Calculate the error by comparing with the correct answer.

Calculate the mean escape time for the random walks in Computer Problem 1.

(a) [-2,5] (b) [-5,3] (c) [-8,3]

Solution:

For 10,000 trials

(a) Exit time (one trial): 10

 $Sample\ Mean(Exit\ Time): 10.04$

Variance :90.20642064206284 Standard Error :9.497706072629477

 $Expected \ probability: 0.2857142857142857$ $Actual \ probability: 0.2894$

(b) Exit time (one trial): 9

 $Sample\ Mean(Exit\ Time):15.028$

Variance: 163.11472747274937 Standard Error: 12.771637619066295

Expected probability: 0.625
Actual probability: 0.6307

(c) Exit time (one trial): 5

 $Sample\ Mean(Exit\ Time): 24.1239$

Variance:563.6523140213797 Standard Err:23.741362935210347

Expected probability: 0.72727272727273
Actual. probability: 0.7273