THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics

MATH4010 Functional Analysis 2021-22 Term 1

Homework 7

Deadline: 2021-12-06 Monday

Notice:

- All the assignments must be submitted before the deadline.
- Each assignment should include your name and student ID number.
- 1. Let S be a bounded sesquilinear form on $X \times Y$. Define

$$||S|| := \sup \{ |S(x,y)| : ||x|| = 1, ||y|| = 1 \}.$$

Show that

$$||S|| = \sup \left\{ \frac{|S(x,y)|}{||x|| ||y||} : x \in X \setminus \{0\}, \ y \in Y \setminus \{0\} \right\}$$

and

$$|S(x,y)| \le ||S|| ||x|| ||y||,$$

for all $x \in X$ and $y \in Y$.

2. Let $T: \ell^2 \to \ell^2$ be defined by

$$T: (x_1, \ldots, x_n, \ldots) \mapsto (x_1, \ldots, \frac{1}{n}x_n, \ldots).$$

Show that the range $\mathcal{R}(T)$ is not closed in ℓ^2 .

- 3. Let T be a bounded operator on a complex Hilbert space H.
 - (a) Show that the operators

$$T_1 = \frac{1}{2}(T + T^*)$$
 and $T_2 = \frac{1}{2i}(T - T^*)$

are self-adjoint.

(b) Show that T is normal if and only if the operators T_1 and T_2 commute.

— THE END —