Criptografia por Chave Pública Diffie e Helmann

Diffie

1976

Hellman

Divisão de Inteiros

Aritmética Modular

Dois inteiros \mathbf{a} e \mathbf{b} são congruentes módulo \mathbf{n} se $(\mathbf{a} \mod \mathbf{n}) = (\mathbf{b} \mod \mathbf{n})$ ou $\mathbf{a} \equiv \mathbf{b} \mod \mathbf{n}$

Exemplo:

 $73 \equiv 4 \mod 23$;

 $21 \equiv -9 \mod 10$

Raiz Primitiva e Logaritmo Discreto

 \mathbf{q} - Número Primo $\mathbf{\alpha} < \mathbf{q}$ - raiz primitiva de \mathbf{q}

Raiz Primitiva a:

{a mod p, a² mod p, ..., a^{p-1} mod p} são distintos e consistem dos inteiros de 1 a p-1

Logaritmo Discreto i:

 $b = a^i \mod p$, onde $0 \le i \le (p-1)$ $ind_{a,p}(b)$

Exercício

Calcular as raízes primitivas de 7

a	a^2	a^3	a^4	a^5	a^6
1					
2					
3					
4					
5					
6					

Troca de Chaves por Diffie-Hellman

q - Número Primo, α < q - raiz primitiva de q

Exemplo

K = 75