AI?

The ability of machines to perform complex tasks which generally required human intelligence.

What is ML?

The ability of machines to learn from the data without being explicitly programmed. It is the most successful approach to AI.

How machines are learning from the data?

Algorithms → based on statistical and probability techniques.

Supervised learning:

It is the branch of machine learning used to perform predictive analytics. It has labelled data.

Unsupervised learning:

It is used for clustering the data and dimensionality reduction. It has unlabelled data.

Using supervised learning, we can solve two types of problems:

- Regression

If the target variable is continuous, we use regression algorithms.

- Classification

If the target variable is categorical, we use classification algorithms.

Data →

Features (X): columns using which we make predictions. They are also called independent variables.

Target Variable (y): The variable we want to predict is called target variable. It should be dependent on the features. It is also called as label or dependent variable.

Regression:

- Linear Regression

Simple linear regression : predicting target variable on the basis of one feature Eg : No.of bedrooms vs house price

Multiple linear regression : predicting target variable on the basis of multiple features Eg : No.of bedrooms, area of house vs house price

- Non Linear Regression

If features do not form a linear relationship with the target variable.

Scikit-Learn: To practically implement machine learning in python, we can use the sklearn library.

To install the library, we use the name scikit-learn:

pip install scikit-learn

To import the library, we use the name sklearn

Import sklearn

Steps involved in building ML Models:

- Import the dataset, determine your target variable
- Determine the problem based on your target variable
- Divide data into X and y (X is features and y is target)
- Split data into train and test (to evaluate the model)
- Import the algorithm
- Train the model by passing train data into algorithm
- predict using X_test
- Compare predictions with y_test

Linear Regression:

Aim: To create a straight line on the plane which should touch the maximum data points.

Formula: y = mx + c

Evaluation Metrics for Regression:

R squared Score: It gives accuracy of the regression model

RMSE: It gives the error in the model