Групи - определение, примери, основни свойства.

Определение 1. Нека G е непразно множество. Всяко изображение $G \times G \to G$ се нарича бинарна операция в G.

Ако F е числово поле, то събирането $F \times F \to F$, $(a,b) \mapsto a+b$ и умножението $F \times F \to F$, $(a,b) \mapsto ab$ в F са бинарни операции.

Определение 2. Непразно множество G е група, ако в него е зададена бинарна операция $G \times G \to G$ със свойствата:

- (i) асоциативност (ab)c = a(bc) за всички $a,b,c \in G$;
- (ii) съществуване на неутрален елемент $e \in G$, така че ae = ea = a за всяко $a \in G$:
- (iii) всеки елемент $a \in G$ има обратен $a^{-1} \in G$, така че $aa^{-1} = a^{-1}a = e$ за някой неутрален елемент e.

Определение 3. Група G е абелева, ако ab = ba за всички елементи $a, b \in G$.

Пример за абелева група е адитивната група (\mathbb{Z} , +) на целите числа. Тук използваме асоциативността и комутативността на събирането на цели числа. Неутрален елемент на (\mathbb{Z} , +) е числото $0 \in \mathbb{Z}$. Обратният на $a \in \mathbb{Z}$ е $-a \in \mathbb{Z}$.

Ако F е числово поле, то абелевата група (F,+) се нарича адитивна група на F, а абелевата група $(F^*:=F\setminus\{0\},.)$ е известна като мултипликативна група на F. За да обясним защо (F,+) и $(F^*,.)$ са групи да отбележим, че събирането и умножението в числово поле F са асоциативни и комутативни бинарни операции. Неутрален елемент на F е $0 \in F$ и всеки елемент $a \in F$ има обратен $-a \in F$. Неутрален елемент на $(F^*,.)$ е 1, а всяко $a \in F^* = F \setminus \{0\}$ има обратен $a^{-1} \in F$.

Ако V е линейно пространство над числово поле F, то (V,+) е абелева група, която се нарича адитивна група на V. Тук използваме асоциативността и комутативността на събирането на вектори във V, наличието на нулев вектор $\overrightarrow{\mathcal{O}} \in V$, така че $a+\overrightarrow{\mathcal{O}}=a$ за всяко $a\in V$ и наличието на противоположен $-a\in V$ за произволен вектор $a\in V$, изпълняващ равенството $a+(-a)=\overrightarrow{\mathcal{O}}$.

Ако F е числово поле и $n\in\mathbb{N}$ е естествено число, то множеството

$$GL(n, F) = \{ A \in M_{n \times n}(F) \mid \det(A) \neq 0 \}$$

на неособените матрици от ред n е неабелева група относно обичайното умножение на матрици, която се нарича обща линейна група от степен n над F. Тук използваме асоциативността на умножението на матрици, наличието на единична матрица $E_n \in M_{n \times n}(F)$ с $AE_n = E_n A = A$ за всяко $A \in \mathrm{GL}(n,F)$ и съществуването на обратна матрица $A^{-1} \in \mathrm{GL}(n,F)$ за всяко $A \in \mathrm{GL}(n,F)$, изпълняваща равенствата $AA^{-1} = A^{-1}A = E_n$. Съществуването на матрици

$$A = \begin{pmatrix} 1 & 2 & \mathbb{O}_{1\times(n-2)} \\ 3 & 4 & \mathbb{O}_{1\times(n-2)} \\ \mathbb{O}_{(n-2)\times 1} & \mathbb{O}_{(n-2)\times 1} & E_{n-2} \end{pmatrix}, \quad B = \begin{pmatrix} 5 & 6 & \mathbb{O}_{1\times(n-2)} \\ 7 & 8 & \mathbb{O}_{1\times(n-2)} \\ \mathbb{O}_{(n-2)\times 1} & \mathbb{O}_{(n-2)\times 1} & E_{n-2} \end{pmatrix}$$

от GL(n, F) с произведения

$$AB = \begin{pmatrix} 19 & 22 & \mathbb{O}_{1\times(n-2)} \\ 43 & 50 & \mathbb{O}_{1\times(n-2)} \\ \mathbb{O}_{(n-2)\times 1} & \mathbb{O}_{(n-2)\times 1} & E_{n-2} \end{pmatrix} \neq \begin{pmatrix} 23 & 34 & \mathbb{O}_{1\times(n-2)} \\ 31 & 46 & \mathbb{O}_{1\times(n-2)} \\ \mathbb{O}_{(n-2)\times 1} & \mathbb{O}_{(n-2)\times 1} & E_{n-2} \end{pmatrix} = BA$$

показва, че групата $\mathrm{GL}(n,F)$ не е абелева за $n\geq 2$. Да обърнем внимание, че $\mathrm{GL}(1,F)=(F^*,.)$ съвпада с мултипликативната група на F и е абелева.

Нека M е множество, а $f: M \to M, g: M \to M$ и $h: M \to M$ са изображения на M в себе си. Тогава $gf: M \to M, (gf)(x) = g(f(x))$ за всяко $x \in M$ се нарича произведение на f и g. Непосредствено се проверява, че h(gf) = (hg)f, т.е. произведението на изображения на M е асоциативно. Множесттвото $\mathrm{Sym}(M)$ на взаимно-еднозначките изображения $f: M \to M$ е група относно умножението, чийто неутрален елемент е тъждественото изображение $\mathrm{Id}_M: M \to M, \mathrm{Id}_M(x) = x, \, \forall x \in M.$ Казваме, че $\mathrm{Sym}(M)$ е симетричната група на M.

Ако броят на елементите на M е $n \in \mathbb{N}$, то $\mathrm{Sum}(M)$ се нарича симетрична група от степен n и се бележи с S_n . Елементите $\sigma \in S_n$ се задават във вида

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n-1 & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n-1) & \sigma(n) \end{pmatrix}$$

и се определят еднозначно от редицата $\sigma(1), \sigma(2), \ldots, \sigma(n)$ на образите. Затова $\sigma \in S_n$ се наричат пермутации. Множеството S_n на пермутациите на числата $1, \ldots, n, n \geq 3$ е неабелева група относно последователното прилагане на пермутации. За да докажем това е достатъчно да забележим, че

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ 2 & 1 & 3 & 4 & \dots & n \end{pmatrix} = (1,2) \quad \text{if} \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ 3 & 2 & 1 & 4 & \dots & n \end{pmatrix} = (1,3) \in S_n$$

имат различни произведения

$$\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ 2 & 3 & 1 & 4 & \dots & n \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 & 4 & \dots & n \\ 3 & 1 & 2 & 4 & \dots & n \end{pmatrix} = \sigma \tau$$

в единия и другия ред на множителите. Симетричната група $S_2 = \{\varepsilon, \theta\}$ с

$$\theta = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right)$$

е абелева. (Проверете, че ab=ba за всички $a,b\in S_2$, използвайки $\theta^2=\varepsilon$.)

Определение 4. Група G е крайна, ако има краен брой елементи. B такъв случай, броят на елементитте |G| в G се нарича ред на G.

Ясно е, че групата (\mathbb{Z} , +) е безкрайна. Ако F е числово поле, то F е безкрайно, защото съдържа безкрайното поле \mathbb{Q} на рационалните числа и (F, +), (F*, .) са безкрайни групи. Всяко ненулево линейно пространство V над числово поле F е безкрайна група, защото произволен ненулев вектор $u \in V \setminus \{\mathcal{O}\}$ задава безкрайно подмножество $l_F(u) = \{\lambda u \mid \lambda \in F\}$ на V. Ако F е числово поле и $n \in \mathbb{N}$ е естествено число, то общата линейна група $\mathrm{GL}(n,F)$ е безкрайна, защото съдържа безкрайното подмножество

$$\left\{ \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix} \middle| \lambda_i \in F^* \right\}.$$

Симетричната група S_n е крайна и от ред $|S_n|=n!=n(n-1)(n-2)\dots 2.1$. По-точно, ако $\sigma\in S_n$, то за $\sigma(1)\in\{1,\dots,n\}$ има n възможности. След избора на $\sigma(1)$ има n-1 независими възможности за $\sigma(2)\in\{1,\dots,n\}\setminus\{\sigma(1)\}$. По-нататък, за $\sigma(3)\in\{1,\dots,n\}\setminus\{\sigma(1),\sigma(2)\}$ има n-2 независими възможности и т.н.

Твърдение 5. Нека $G \times G \to G$ е асоциативна бинарна операция в непразно множество G. В такъв случай, G е група относно тази операция тогава и само тогава, когато за произволни $a, b \in G$ уравненията ax = b и ya = b имат единствени решения $x_o = a^{-1}b \in G$, съответно $y_o = ba^{-1} \in G$.

Доказателство. Нека G е група, $a,b \in G$. Тогава $a(a^{-1}b) = (aa^{-1})b = eb = b$ показва, че $x_o = a^{-1}b \in G$ е решение на ax = b. Ако $x_1 \in G$ е решение на ax = b, то лявото почленно умножение на $b = ax_1$ с $a^{-1} \in G$ дава $x_o = a^{-1}b = a^{-1}(ax_1) = (a^{-1}a)x_1 = ex_1 = x_1$ и доказва единствеността на решението x_o на ax = b. Аналогично, от $(ba^{-1})a = b(a^{-1}a) = be = b$ следва, че $y_o = ba^{-1} \in G$ е решение на ya = b. Ако $y_1 \in G$ е решение на ya = b, то чрез дясно почленно умножение на $b = y_1a$ с a^{-1} получаваме $y_o = ba^{-1} = (y_1a)a^{-1} = y_1(aa^{-1}) = y_1e = y_1$ и установяваме единствеността на решението $y_o = ba^{-1} \in G$ на ya = b.

Да предположим, че за произволни $a,b \in G$ уравненията ax = b и ya = b имат единствени решения $x_o, y_o \in G$. Тогава от $uv_1 = uv_2$ за $u, v_1, v_2 \in G$ следва $v_1 = v_2$, защото уравнението $ux = uv_1$ има решения $v_1 \in G$ и $v_2 \in G$. Аналогично, равенството $v_1u = v_2u$ за $u, v_1, v_2 \in G$ може "да се съкрати" отдясно на u и да се получи $v_1 = v_2$, защото уравнението $yu = v_1u$ има решения $v_1 \in G$ и $v_2 \in G$.

За да докажем съществуването на неутрален елемент на G относно разглежданата асоциативна операция забелязваме, че всеки елемент $a \in G$ има десен неутрален $r_a \in G$, така че $ar_a = a$. Определяме $r_a \in G$ като единственото решение на ax = a от G. Аналогично, за всяко $c \in G$ уравнението yc = c има единствено решение $l_c \in G$, което е ляв неутрален за c съгласно $l_c c = c$. Умножаваме почленно $ar_a = a$ с $l_c c = c$ и получаваме $ar_al_c c = ac$. След ляво съкращаване на a извеждаме

$$r_a l_c c = c. (1)$$

Лявото почленно умножение на $l_c c = c$ с l_c дава $l_c^2 c = l_c c = c$. След заместване в (1) получаваме

$$r_a l_c c = l_c^2 c,$$

което може да се съкрати отдясно на $l_c c$, за да се получи

$$r_a = l_c$$
 за всички $a, c \in G$.

По този начин установихме съществуването на универсален неутрален елемент $e=r_a=l_c\in G$, така че ae=ea=a за всяко $a\in G$.

Остава да установим, че всеки елемент $a \in G$ има обратен относно зададената асоциативна операция. За целта използваме, че уравнението ax = e има единствено решение $a_r \in G$, което е десен обратен за a съгласно $aa_r = e$. Аналогично, за всяко $a \in G$ единственото решение $a_l \in G$ на ya = e е ляв обратен на a, защото $a_la = e$. Използвайки асоциативността на зададената операция, извеждаме

$$a_r = ea_r = (a_l a)a_r = a_l (aa_r) = a_l e = a_l$$

и доказваме съществуването на обратен елемент $a^{-1}=a_r=a_l\in G$ на $a\in G$ с $aa^{-1}=a^{-1}a=e$. Това доказва, чв ако G е непразно множество с асоциативна операция, в която уравненията ax=b и ya=b имат единствени решения за всички $a,b\in G$, то G е група относно тази операция.

Следствие 6. Ако G е група, то:

- (i) за произволни $u, v_1, v_2 \in G$ с $uv_1 = uv_2$ следва $v_1 = v_2$;
- (ii) за произволни $u, v_1, v_2 \in G$ с $v_1 u = v_2 u$ следва $v_1 = v_2$;
- (ііі) неутралният елемент е на G е единствен;
- (iv) всеки елемент $a \in G$ има единствен обратен $a^{-1} \in G$;
- $(v) (a^{-1})^{-1} = a$ за произволен елемент $a \in G$;
- $(vi) \ (ab)^{-1} = b^{-1}a^{-1}$ за произволни елементи $a,b \in G$.

Доказателство. (i) и (ii) следват от Твърдение NSCAssOperToDefineGroup, възоснова на това, че във всяка група G уравненията ax = b и ya = b имат единствени решения за произволни $a.b \in G$.

- (iii) За произволно фиксирано $a \in G$ уравнението ax = a има единствено решение в G. Неутралните елементи $e_1, e_2 \in G$ са негови решения, така че $e_1 = e_2$.
- (iv) Обратният елемент $a^{-1} \in G$ на $a \in G$ е единствен като решение на уравнението ax = e.
- (iv) По определение, $(a^{-1})^{-1} \in G$ е решение на уравнението $a^{-1}x = e$. Съгласно $a^{-1}a = e$, елементът $a \in G$ е негово решение и $(a^{-1})^{-1} = a$.
- (vi) Обратният $(ab)^{-1} \in G$ на $ab \in G$ е решение на уравнението (ab)x = e. От $(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = (ae)a^{-1} = aa^{-1} = e$ следва, че $b^{-1}a^{-1} \in G$ е решение на (ab)x = e, откъдето $(ab)^{-1} = b^{-1}a^{-1}$.

Определение 7. Непразно подмножество H на група G е подгрупа, ако за произволни $a,b \in G$ е в сила $ab,a^{-1} \in H$. Бележим $H \leq G$.

В частност, неутралният елемент $e=aa^{-1}\in H$ принадлежи на произволна подгрупа H на G. Ако H е подгрупа на група G, то груповата операция $G\times G\to G$ в G се ограничава до бинарна операция $H\times H\to H$ в H. Асоциативността на $G\times G\to G$ се наследява от $H\times H\to H$. Неутралният елемент $e\in G$ принадлежи на всяка подгрупа H и по определение, обратният a^{-1} на елемент $a\in H$ принадлежи на H. Това доказва, че H е група относно наследената от G операция.

Примери за подгрупи:

Ако G е група с неутрален елемент e, то G и $\{e\}$ са подгрупи на G, съгласно e.e=e и $e^{-1}=e$.

За произволно естествено число n, множеството $n\mathbb{Z}=\{nz\,|\,z\in\mathbb{Z}\}$ на кратните на n цели числа е подгрупа на $(\mathbb{Z},+)$, защото от $na,nb\in\mathbb{Z}$ следва $na+nb=n(a+b)\in n\mathbb{Z}$ и $-(na)=n(-a)\in n\mathbb{Z}$.

Адитивната група (\mathbb{Q} , +) на полето \mathbb{Q} на рационалните числа е подгрупа на адитивната група (\mathbb{R} , +) на полето на реалните числа, защото сумата на рационални числа е рационално число и противоположното на рационално число е рационално.

Мултипликативната група ($\mathbb{Q}^* = \mathbb{Q}\{0\}$,.) на полето на рационалните числа е подгрупа на мултипликативната група ($\mathbb{R}^* = \mathbb{R} \setminus \{0\}$,.) на полето на реалните числа, защото произведението на рационални числа е рационално и реципрочното на ненулево рационално число е рационално.

Ако V е линейно пространство над числово поле F, а W е подпространство на V, то адитивната група (W,+) на W е подгрупа на адитивната група (V,+) на V, защото сумата на вектори от W принадлежи на W и противоположния на вектор от W принадлежи на W.

Ако F е числово поле и $n \in \mathbb{N}$ е естествено число, то множеството

$$SL(n, F) = \{ A \in M_{n \times n}(F) \mid \det(A) = 1 \}$$

на матриците с детерминанта 1 е подгрупа на общата линейна група $\mathrm{GL}(n,F)$, защото за произволни $A,B\in \mathrm{SL}(n,F)$ в сила $AB,A^{-1}\in \mathrm{SL}(n,F),$ съгласно $\det(AB)=$ $\det(A)\det(B) = 1 \text{ id} \det(A^{-1}) = \frac{1}{\det(A)} = 1.$

Ако m < n са естествено числа, то множеството

$$S'_m = \{ \sigma \in S_n \mid \sigma(i) = i, \quad \forall m + 1 \le i \le n \}$$

на пермутациите на $1,\dots,n$, оставящи на място $m+1,\dots,n$ е подгрупа на S_n , защото от $\sigma, \tau \in S'_m$ следва $\tau \sigma, \sigma^{-1} \in S'_m$. Ясно е, че $\tau \sigma(i) = \tau(i) = i$, откъдето $\tau \sigma \in S'_m$. От друга страна, $\sigma^{-1} \sigma = \varepsilon$ дава $\sigma^{-1}(i) = \sigma^{-1}(\sigma(i)) = (\sigma^{-1}\sigma)(i) = \varepsilon(i) = i$ за всяко $m+1 \le i \le n$ и доказва, че $\sigma^{-1} \in S'_m$.

Твърдение 8. Непразно подмножество H на група G е подгрупа тогава и само тогава, когато $ab^{-1} \in H$ за произволни $a, b \in H$.

Доказателство. Ако H е подгрупа на група G и $a,b\in H$, то $b^{-1}\in H$, откъдето $ab^{-1}\in H$ H.

Ако за произволни $a,b \in H$ е в сила $ab^{-1} \in H$, то неутралният елемент e на Gпринадлежи на H, защото за произволно $a \in H$ е в сила $e = aa^{-1} \in H$. Сега за всяко $a\in H$ е изпълнено $a^{-1}=ea^{-1}\in H$. За произволни $a,b\in H$ от $b^{-1}\in H$ получаваме $ab = a(b^{-1})^{-1} \in H$ и доказваме, че H е подгрупа на G.

Определение 9. Изображение $\varphi:G_1 o G_2$ на група G_1 в група G_2 е хомоморфизъм на групи, ако $\varphi(ab)=\varphi(a)\varphi(b)$ за произволни $a,b\in G_1$. Ако $\mu_i:G_i\times G_i\to G_i$ са груповите операции в G_i , то определението за хомоморфизъм на групи е еквивалентно на равенството на изображения $\varphi \mu_1 = \mu_2(\varphi \times \varphi)$ по протежение на диаграмата

$$G_1 \times G_1 \xrightarrow{\mu_1} G_1$$

$$\downarrow^{\varphi \times \varphi} \qquad \qquad \varphi \qquad \qquad \downarrow$$

$$G_2 \times G_2 \xrightarrow{\mu_2} G_2$$

Това се дължи на равенствата $\varphi\mu_1(a,b)=\varphi(ab)$ и $\mu_2(\varphi\times\varphi)(a,b)=\varphi(a)\varphi(b)$ за всички $a, b \in G_1$.

Твърдение 10. Ако $\varphi: G_1 \to G_2$ е хомоморфизъм на групи, то:

- (i) $\varphi(e_{G_1}) = e_{G_2}$ за неутралните елементи e_{G_i} на G_i ; (ii) $\varphi(a^{-1}) = \varphi(a)^{-1}$ за произволен елемент $a \in G_1$; (iii) $\varphi(ab^{-1}) = \varphi(a)\varphi(b)^{-1}$ и $\varphi(a^{-1}b) = \varphi(a)^{-1}\varphi(b)$ за произволни елементи $a,b \in G_1$.

Доказателство. (i) За произволен елемент $a \in G_1$, да забележим, че неутралният елемент e_{G_2} на G_2 е единственото решение на уравнението $\varphi(a)x=\varphi(a)$ от G_2 . Съгласно

$$\varphi(a)\varphi(e_{G_1}) = \varphi(ae_{G_1}) = \varphi(a),$$

елементът $\varphi(e_{G_1}) \in G_2$ също е решение на това уравнение и $\varphi(e_{G_1}) = e_{G_2}$.

(ii) По определение, $\varphi(a)^{-1} \in G_2$ е единственото решение на уравнението $\varphi(a)x =$ e_{G_2} от G_2 . С помощта на (i) пресмятаме, че

$$\varphi(a)\varphi(a^{-1}) = \varphi(aa^{-1}) = \varphi(e_{G_1}) = e_{G_2},$$

така че $\varphi(a^{-1}) \in G_2$ е също решение на $\varphi(a)x = e_{G_2}$ от G_2 и $\varphi(a^{-1}) = \varphi(a)^{-1}$.

(iii) От определението за хомоморфизъм на групи и (ii) извеждаме, че

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1}) = \varphi(a)\varphi(b)^{-1}$$
 и $\varphi(a^{-1}b) = \varphi(a^{-1})\varphi(b) = \varphi(a)^{-1}\varphi(b)$

за произволни $a, b \in G_1$.

Определение 11. Ако $\varphi: G_1 \to G_2$ е хомоморфизъм на групи, то множеството

$$\ker \varphi := \{ a \in G_1 \mid \varphi(a) = e_{G_2} \}$$

се нарича ядро на φ , а множеството

$$\operatorname{im}\varphi := \{\varphi(a) \mid a \in G_1\}$$

ce нарича образ на φ .

Твърдение 12. Ако $\varphi: G_1 \to G_2$ е хомоморфизъм на групи, то:

- (i) ядрото $\ker(\varphi)$ на φ е подгрупа на G_1 ;
- (ii) образът $im(\varphi)$ на φ е подгрупа на G_2 ;
- (iii) слоят $\varphi^{-1}(\varphi(a)):=\{b\in G_1\,|\, \varphi(b)=\varphi(a)\}$ на φ през $a\in G_1$ съвпада с множествата $(\ker \varphi)a := \{xa \mid x \in \ker \varphi\} \ u \ a(\ker \varphi) = \{ax \mid x \in \ker \varphi\}.$

B частност, всички слоеве на хомоморфизъм на групи са изоморфни помежду си.

 Доказателство. (i) Ядрото $\ker \varphi$ на φ е подгрупа на G_1 , защото за произволни $a,b\in$ $\ker \varphi$ е в сила $ab^{-1} \in \ker \varphi$, съгласно $\varphi(ab^{-1}) = \varphi(a)\varphi(b)^{-1} = e_{G_2}e_{G_2}^{-1} = e_{G_2}$. (ii) Образът $\operatorname{im} \varphi$ на φ е подгрупа на G_2 , понеже за произволни $\varphi(a), \varphi(b) \in \operatorname{im} \varphi$ с

- $a,b \in G_1$ е изпълнено $\varphi(a)\varphi(b)^{-1} = \varphi(ab^{-1}) \in \operatorname{im}\varphi$.
 - (iii) Ако $b \in \varphi^{-1}(\varphi(a)) := \{b \in G_1 \mid \varphi(b) = \varphi(a)\}$, то $a^{-1}b, ba^{-1} \in \ker \varphi$, съгласно

$$\varphi(a^{-1}b) = \varphi(a)^{-1}\varphi(b) = \varphi(a)^{-1}\varphi(a) = e_{G_2}, \quad \varphi(ba^{-1}) = \varphi(b)\varphi(a)^{-1} = \varphi(a)\varphi(a)^{-1} = e_{G_2}.$$

След ляво и дясно умножение с $a \in G_1$ получаваме $b \in a(\ker \varphi)$, съответно, $b \in (\ker \varphi)a$ и доказваме, че слоят $\varphi^{-1}(\varphi(a))$ на φ над $\varphi(a)$ се съдържа в $a(\ker \varphi)$ и $(\ker \varphi)a$.

За произволен елемент $x \in \ker \varphi$ е в сила

$$\varphi(ax) = \varphi(a)\varphi(x) = \varphi(a)e_{G_2} = \varphi(a) \quad \text{if} \quad \varphi(xa) = \varphi(x)\varphi(a) = e_{G_2}\varphi(a) = \varphi(a).$$

Следователно $a(\ker \varphi) \subseteq \varphi^{-1}(\varphi(a)), (\ker \varphi)a \subseteq \varphi^{-1}(\varphi(a))$ и

$$a(\ker \varphi) = \varphi^{-1}(\varphi(a)) = (\ker \varphi)a.$$

Определение 13. Взаимно еднозначните хомоморфизми на групи $\psi: G' o G''$ се наричат изоморфизми на групи.

Лема 14. $A\kappa o \ \psi : G' \to G'' \ e \ изоморфизъм на групи, то обратното изображение$ $\psi^{-1}:G''\to G'$ е хомоморфизъм, а оттам и изоморфизъм на групи.

Доказателство. Трябва да проверим, че ако $\psi: G' \to G''$ е изоморфизъм на групи, то обратното изображение $\psi^{-1}: G'' \to G'$ изпълнява равенствата $\psi^{-1}(xy) = \psi^{-1}(x)\psi^{-1}(y)$ за произволни елементи $x,y\in G''$. Ако $\psi^{-1}(x)=a\in G',\,\psi^{-1}(y)=b\in G',\,$ то $x=\psi(a),$ $y = \psi(b)$ и

$$\psi^{-1}(x)\psi^{-1}(y) = ab = \psi^{-1}\psi(ab) = \psi^{-1}(\psi(a)\psi(b)) = \psi^{-1}(xy),$$

вземайки предвид, че ψ е хомоморфизъм на групи.