Graphs Algorithms I

Breadth First Search

```
/* G = (V, E) and s \in V */
BFS(G, s)
    color[s] \leftarrow grey; d[s] \leftarrow 0; p[s] \leftarrow NIL
    For each v \in V - \{s\} do
               color[v] \leftarrow white
               d[v] \leftarrow \infty
               p[v] \leftarrow NIL
    Q \leftarrow \text{empty} ; ENQ(Q, s)
                                                              /* Q: nodes that are discovered but not yet explored */
    While Q is not empty do
                                                                                /* Explore u */
              u \leftarrow DEQ(Q)
               For each (u, v) \in E do
                                                                                /* Explore edge (u,v) */
                       If color[v] = white then do
                                                                                /* If v is first discovered */
                              color[v] \leftarrow grey
                               d[v] \leftarrow d[u] + 1
                               p[v] \leftarrow u
                               ENQ(Q, v)
                       End If
               End For
               color[u] \leftarrow black
                                                                                    Done exploring u */
    End While
End BFS
```


$$d = 0$$

$$d = 0$$

$$d = 0$$

$$d = 0$$

$$d = 1$$

$$d = 0$$

$$d = 1$$

$$d = 0$$
 $d = 1$
 $d = 1$

$$d = 0$$
 $d = 11$

$$d = \boxed{\begin{array}{c|c} \hline 1 & 1 \\ \hline 3 & 2 \end{array}}$$

$$d = 0 \\
d = 1 1 1 \\
3 2 5$$

$$1 1 \\
2 5$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$d = 0 \\
d = 1 1 1 \\
3 2 5$$

$$1 1 2 \\
2 5 1$$

$$\frac{1}{5} 1$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$1 2$$

$$5 1$$

$$2 2$$

$$1 6$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$1 2$$

$$5 1$$

$$2 2$$

$$1 6$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$2 2 2$$

$$1 6 8$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 2$$

$$2 5 1$$

$$2 2 2$$

$$1 6 8$$

$$d = 0$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$2 2 2$$

$$1 6 8$$

$$d = 0$$
 $d = 11$
 $3 2$

Contents of Q:

$$d = 0$$

$$4$$

$$d = 1 1 1$$

$$3 2 5$$

$$1 1 2$$

$$2 5 1$$

$$1 2$$

$$5 1$$

$$2 2 2$$

$$1 6 8$$

$$2 2$$

6 8

Contents of Q:

6 8

$$\begin{array}{c|ccccc}
\checkmark & 1 & \rightarrow & 2 \\
\checkmark & 2 & \rightarrow & 3 \\
\checkmark & 3 & \rightarrow & 1 & \rightarrow & 2 \\
\checkmark & 4 & \rightarrow & 3 & \rightarrow & 2 & \rightarrow & 5 \\
\checkmark & 5 & \rightarrow & 6 & \rightarrow & 8 \\
\hline
 & 6 & \rightarrow & 7 & \\
\hline
 & 7 & \rightarrow & 6 & \rightarrow & 4 \\
8 & \rightarrow & 7 & \rightarrow & 4
\end{array}$$

Contents of Q:

6 8

2 8

$$d = 0$$

$$d = 0$$

$$d = 1 \ 1 \ 1 \ 3 \ 2 \ 5$$

$$d = 0$$

$$d = 0$$

$$d = 1 \ 1 \ 1 \ 3 \ 2 \ 5$$

$$d = 0$$

$$d = 0$$

$$d = 1 1 1 3 2 5$$

$$d = 0$$

$$d = 0$$

$$d = 0$$

$$d = 0$$

$$d = 1 \ 1 \ 1 \ 3 \ 2 \ 5$$

$$d = 0$$

$$d = 1 1 1 3 2 5$$

$$d = 0$$

Worst-Case Time Complexity of BFS:

$$O(|V| + |E|)$$

BFS(G, 4)

Worst-Case Time Complexity of BFS:

$$O(|V| + |E|)$$

Breadth First Search

Proof of Correctness

v's discovery path from s : $s \rightarrow u_1 \rightarrow u_2 \rightarrow ... \rightarrow u \rightarrow v$

Length of this path : d[v]

v's discovery path from s : $s \rightarrow u_1 \rightarrow u_2 \rightarrow ... \rightarrow u \rightarrow v$

Length of this path : d[v]

v's shortest path from s : $s \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v$

Length of shortest path : $\delta(s,v)$

(Distance)

v's discovery path from s : $s \rightarrow u_1 \rightarrow u_2 \rightarrow ... \rightarrow u \rightarrow v$

Length of this path : d[v]

v's shortest path from s : $s \rightarrow v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k \rightarrow v$

Length of shortest path : $\delta(s,v)$

(Distance)

Lemma 0

After BFS(s), for every $v \in V$,

$$d[v] \ge \delta(s,v)$$

We would like to prove the following:

Main Theorem:

After BFS(s), for every
$$v \in V$$
,
$$d[v] = \delta(s,v)$$

We would like to prove the following:

Main Theorem:

After BFS(s), for every
$$v \in V$$
,
$$d[v] = \delta(s,v)$$

In other words, we would like to show that the discovery path is a shortest path to v

Lemma 1:

If u enters Q before v enters Q during the the execution of BFS(s), then:

Lemma 1:

If u enters Q before v enters Q during the the execution of BFS(s), then

$$d[u] \le d[v]$$

Lemma 1:

If u enters Q before v enters Q during the the execution of BFS(s), then

$$d[u] \le d[v]$$

Proof of Lemma 1:

Lemma 1:

If u enters Q before v enters Q during the the execution of BFS(s), then

$$d[u] \le d[v]$$

Proof of Lemma 1:

Suppose, for contradiction, that Lemma 1 is false.

Lemma 1:

If u enters Q before v enters Q during the the execution of BFS(s), then

$$d[u] \le d[v]$$

Proof of Lemma 1:

Suppose, for contradiction, that Lemma 1 is false.

Let v be the first node that enter Q such that d[u] > d[v] for some node u
that entered Q before v.

Lemma 1:

If u enters Q before v enters Q during the the execution of BFS(s), then

$$d[u] \le d[v]$$

Proof of Lemma 1:

Suppose, for contradiction, that Lemma 1 is false.

Let v be the first node that enter Q such that d[u] > d[v] for some node u
that entered Q before v.

Q				
	u		V	
d[u] > d[v]				

• v ≠ s because no vertex u enters Q before s

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \ge 0$

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$

⇒ u and v entered Q during the exploration of some nodes, say u' and v' respectively

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - ⇒ u and v entered Q during the exploration of some nodes, say u' and v' respectively

$$\Rightarrow$$
 d[u] = d[u'] + 1 and d[v] = d[v'] + 1

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$

 \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively

$$\Rightarrow$$
 d[u] = d[u'] + 1 and d[v] = d[v'] + 1

• Since $d[u] \neq d[v]$, $d[u'] \neq d[v']$

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively

$$\Rightarrow$$
 d[u] = d[u'] + 1 and d[v] = d[v'] + 1

• Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - ⇒ u' entered Q before v'

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - ⇒ u' entered Q before v'

Proof of Lemma 1 contd:

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - ⇒ u' entered Q before v'
 - \Rightarrow d[u'] \leq d[v'] By definition of v

Proof of Lemma 1 contd:

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively

$$\Rightarrow$$
 d[u] = d[u'] + 1 and d[v] = d[v'] + 1

- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - ⇒ u' entered Q before v'
 - \Rightarrow d[u'] \leq d[v'] By definition of v
 - \Rightarrow d[u] \leq d[v]

Proof of Lemma 1 contd:

- v ≠ s because no vertex u enters Q before s
- $u \neq s$ because d[s] = 0 and $d[v] \geq 0$
 - \Rightarrow u and v entered Q during the exploration of some nodes, say u' and v' respectively
 - \Rightarrow d[u] = d[u'] + 1 and d[v] = d[v'] + 1
- Since $d[u] \neq d[v]$, $d[u'] \neq d[v'] \Rightarrow u' \neq v'$ i.e. u' and v' are distinct nodes
- u was discovered before v ⇒ u' was discovered before v'
 - ⇒ u' entered Q before v'
 - \Rightarrow d[u'] \leq d[v'] By definition of v
 - \Rightarrow d[u] \leq d[v] Contradiction!

After BFS(s), for every $v \in V$, $d[v] = \delta(s,v)$

$$d[v] = \delta(s,v)$$

After BFS(s), for every $v \in V$, $d[v] = \delta(s,v)$

Proof of Main Theorem:

After BFS(s), for every $v \in V$, $d[v] = \delta(s,v)$

Proof of Main Theorem:

After BFS(s), for every $v \in V$, $d[v] = \delta(s,v)$

Proof of Main Theorem:

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

Suppose, for contradiction, that there exists $x \in V$ such that $d[x] \neq \delta(s,x)$. Clearly $x \neq s$.

• Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$

After BFS(s), for every $v \in V$, $d[v] = \delta(s,v)$

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G

After BFS(s), for every
$$v \in V$$
, $d[v] = \delta(s,v)$

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v)$

After BFS(s), for every $v \in V$,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v)$

After BFS(s), for every
$$v \in V$$
,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v)$ = $\delta(s,u) + 1$

After BFS(s), for every
$$v \in V$$
,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v)$ = $\delta(s,u) + 1$

After BFS(s), for every
$$v \in V$$
,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v)$ = d[u] + 2

After BFS(s), for every
$$v \in V$$
,

$$d[v] = \delta(s,v)$$

Proof of Main Theorem:

- Let v be the **closest** node from s such that $d[v] \neq \delta(s,v)$
- By Lemma 0, $d[v] > \delta(s,v)$
- Consider some shortest path in s to v in G
 - Let (u,v) be the last edge on that path
 - Clearly $\delta(s,v) = \delta(s,u) + 1$
- Since u is closer to s than v, $d[u] = \delta(s,u)$ (By definition of v)
- So: $d[v] > \delta(s,v)$

$$= d[u] + 1 \qquad \Rightarrow \qquad d[v] > d[u] + 1 \qquad ($$

$$d[v] > d[u] + 1$$
 (*)

$$d[v] > d[u] + 1$$
 (*)

Now consider the color of v **just before** u is explored. 3 possible cases

$$d[v] > d[u] + 1$$
 (*)

Now consider the color of v **just before** u is explored. 3 possible cases

Case 1. v is white

$$d[v] > d[u] + 1$$
 (*)

Now consider the color of v **just before** u is explored. 3 possible cases

Case 1. v is white

⇒ When u is explored, u discovers v

$$d[v] > d[u] + 1$$
 (*)

Now consider the color of v just before u is explored. 3 possible cases

Case 1. v is white

- ⇒ When u is explored, u discovers v
- \Rightarrow d[v] = d[u] + 1

$$d[v] > d[u] + 1$$
 (*)

Now consider the color of v **just before** u is explored. 3 possible cases

Case 1. v is white

⇒ When u is explored, u discovers v

$$\Rightarrow$$
 d[v] = d[u] + 1

Contradicting (*)!

$$d[v] > d[u] + 1$$
 (*)

Now consider the color of v **just before** u is explored. 3 possible cases

Case 1. v is white

⇒ When u is explored, u discovers v

$$\Rightarrow$$
 d[v] = d[u] + 1

Contradicting (*)!

Case 2. v is black

$$d[v] > d[u] + 1$$
 (*)

Now consider the color of v just before u is explored. 3 possible cases

Case 1. v is white

⇒ When u is explored, u discovers v

$$\Rightarrow$$
 d[v] = d[u] + 1

Contradicting (*)!

Case 2. v is black

⇒ v was explored before u is explored

$$d[v] > d[u] + 1$$
 (*)

Now consider the color of v **just before** u is explored. 3 possible cases

Case 1. v is white

⇒ When u is explored, u discovers v

 \Rightarrow d[v] = d[u] + 1

Contradicting (*)!

Case 2. v is black

- ⇒ v was explored before u is explored
- ⇒ v entered Q before u enters Q

$$d[v] > d[u] + 1$$
 (*)

Now consider the color of v just before u is explored. 3 possible cases

Case 1. v is white

- ⇒ When u is explored, u discovers v
- \Rightarrow d[v] = d[u] + 1

Contradicting (*)!

Case 2. v is black

- ⇒ v was explored before u is explored
- ⇒ v entered Q before u enters Q
- \Rightarrow By Lemma 1, $d[v] \le d[u]$

$$d[v] > d[u] + 1$$
 (*)

Now consider the color of v **just before** u is explored. 3 possible cases

Case 1. v is white

- ⇒ When u is explored, u discovers v
- \Rightarrow d[v] = d[u] + 1

Contradicting (*)!

Case 2. v is black

- ⇒ v was explored before u is explored
- ⇒ v entered Q before u enters Q
- \Rightarrow By Lemma 1, $d[v] \le d[u]$

Contradicting (*)!

$$d[v] > d[u] + 1$$
 (*)

$$d[v] > d[u] + 1$$
 (*)

Case 3. v is grey (discovered but not explored)

⇒ Some node w discovered v before u is explored

$$d[v] > d[u] + 1$$
 (*)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1

$$d[v] > d[u] + 1$$
 (*)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)

$$d[v] > d[u] + 1$$
 (*)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)
 - (a) \Rightarrow w enters Q before u

$$d[v] > d[u] + 1$$
 (*)

Case 3. v is grey (discovered but not explored)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)
 - (a) \Rightarrow w enters Q before u
 - $\Rightarrow d[w] \leq d[u]$

By Lemma 1

$$d[v] > d[u] + 1$$
 (*)

Case 3. v is grey (discovered but not explored)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)
 - (a) \Rightarrow w enters Q before u
 - $\Rightarrow d[w] \leq d[u]$
 - \Rightarrow d[w] + 1 \leq d[u] + 1

By Lemma 1

$$d[v] > d[u] + 1$$
 (*)

By Lemma 1

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)
 - (a) \Rightarrow w enters Q before u
 - $\Rightarrow d[w] \leq d[u]$
 - \Rightarrow d[w] + 1 \leq d[u] + 1
 - (b) \Rightarrow d[v] \leq d[u] + 1

$$d[v] > d[u] + 1$$
 (*)

Case 3. v is grey (discovered but not explored)

- ⇒ Some node w discovered v before u is explored
- \Rightarrow w is explored before u and d[v] = d[w] + 1(a)
 (b)
 - (a) \Rightarrow w enters Q before u
 - $\Rightarrow d[w] \leq d[u]$
 - \Rightarrow d[w] + 1 \leq d[u] + 1
 - (b) \Rightarrow d[v] \leq d[u] + 1

By Lemma 1

