Universidade do Minho Dep. de Matemática LEInf 8/janeiro/2024 [Duração: 2 H]

Cálculo para Engenharia - Teste2

Nome completo::	Proposta	DE	RESOLU	ICAO

Número::

Parte 1

Grupo I (10 valores): Justifique convenientemente todas as suas respostas. 1. (4 valores) Calcule (a) $\int e^x \cos(e^x) dx$. (b) $\int \arccos(x) dx$. (c) $\int_0^{\frac{\pi}{4}} \sin(x) \cos(x) dx$. (d) $\int_0^1 \frac{1}{1 + e^x} dx$; faze b) $\int arecos(x) dx = \int 1. arecos(x) dx$ | Frimitivação por partes: $\int arecos(x) dx = \int 1. arecos(x) dx$ | Fazendo $\int u = arecos(x)$ | feur-se $= x. arecos(x) - \int (-x) (1-x^2)^{-k} dx = \int \sqrt{1-x^2} e^{-x} dx$ = x. $arccos(x) - \frac{1}{2} (-2x) \cdot (1-x^2)^{-1/2} dx = x. <math>arc.cos(x) - \frac{(1-x^2)^2}{2}$ = x. arecos(z) - \1-x2 + 6; 6 ER C) $\int_{x=0}^{\pi}$ pen x. cos x dn = $\int_{x=0}^{\pi}$ pen(2x) dx = $\frac{1}{2}$. $\frac{1}{2}$ $\int_{x=0}^{\pi}$ 2. Sentax $= -\frac{1}{4} \left| \cos(2\pi) \right|_{x=0}^{\sqrt{4}} = -\frac{1}{4} \left(\cos(\sqrt{2} - \cos 0) \right) = -\frac{1}{4} \cdot (-1) = \frac{1}{4}$ d) $\int_{x=0}^{1} \frac{1}{1+e^{x}} dx$. Fazendo $t=e^{x}$, $t=e^{0}=1$ e para t=0, $t=e^{1}=e^{x}$ $\int_{t=1}^{e} \frac{1}{1+t} \cdot \frac{1}{t} dt = \int_{t=1}^{e} \left(\frac{1}{t} - \frac{1}{t+1} \right) dt = \ln t - \ln(t+1) \Big|_{t=1}^{e}$

 $= \ln \frac{t}{t+1} \Big|_{t=1}^{e} = \ln \frac{e}{e+1} - \ln \frac{1}{2}$

v.s.f.f.

2. (1 valor) Sabendo que
$$G(x) = 2 + \int_0^{3x} e^{-t^2} dt$$
, determine os valores de $x \in \mathbb{R}$ tais que $G'(x) = \frac{3}{e^9}$.

$$G'(x) = \left(3 + \int_0^{3x} e^{-t^2} dt\right)' = \left(3 \times e^{-t^2} dt\right)' = \left[7 \left(3 \times e^{-t^2} dt\right)'\right]'$$

com $F(x) = \int_0^x e^{-t^2} dt = 7 \left(x\right) = e^{-t^2} dt$

Pelo teoreura da derivada da função composta: $F(3x) = 3e^{-t^2} dt$

Jonde $G'(x) = \frac{3}{e^9} \iff 3e^{-t^2} dt = \frac{3}{e^9} \implies 9x^2 = 9 \iff x = \pm 1$

3. (2.5 valores) Considere
$$\mathcal{D} = \left\{ (x,y) \in \mathbb{R}^2 : \frac{1}{2}(x-1)^2 \le y \le -|x| + 3 \right\}$$
, na figura.

Calcule a área da região sombreada.

Calcule a area da região sombreada.

A:
$$(3 = (x-1)^{2} = x + 3)$$

(oborsia registiva) $(x + 3) = (x + 3)$
 $(x + 3) = (x + 3)$

4. (2.5 valores) Segundo Grandi (Monge Italiano, 1671-1742) "a soma de um número infinito de zeros é igual a $\frac{1}{2}$ " porque, por um lado,

$$\sum_{k=1}^{+\infty} (-1)^{k+1} = (1-1) + (1-1) + (1-1) + \dots = 0 + 0 + 0 + \dots$$
 (A)

e, por outro lado.

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots, \text{ quando } x = 1, \text{ \'e equivalente a } \frac{1}{2} = \sum_{k=1}^{+\infty} (-1)^{k+1}.$$
 (B)

- (a) Identifique e corrija os erros evidenciados em ambas as afirmações, (A) e (B), deste 'paradoxo'.
- **(b)** Estude a natureza de $\sum_{k=1}^{\infty} (-1)^{k+1}$.

a) A: Wuma se'rie (soma com um número infinito de parcelas) não se verificam as propriédades das somas comun número finito de par celas; nomeadamente a associatividade. Pelo que $\frac{1}{2}(-1)^{K+1} \neq 0$

$$\sum_{k=1}^{\infty} (-1)^{k+1} \neq 0$$

B: $\frac{1}{1+x} = 1-x+x^2-x^3+x^4-...$ representa uma se'n'e geometrica aujo s'etermo e' 1 e auja razao e' (-x). Ou seja, a soma metrica aujo s'etermo e' 1 e auja razao e' (-x). Ou seja, a soma denta se'n'e' e' i'qual a $\sin x = 1$. $\frac{1-(-x)}{1-(-x)}$ que converge, isto e', h>+00, m=0, quando |x| (1 e diverge

nos outros casos incluindo quando x = 1. Donde

= 1 - 1 + 1 - 1 + 1 - 1 + ... e' uma se'rie b) \(\(\sum_{(-1)}^{\text{K+1}} \) (alternada) tal que o limite da sucessão geradora, un=(-1)" não é um infinité'simo, condição suficiente para se concluir que a some diverge.

Grupo II (4 valores): Em cada uma das questões seguintes,	, assinale se a afirmação é verdadeir
(V) ou falsa (F). Não deve apresentar qualquer	r justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,5 valores.

 \sim

2.
$$\int f(x) g'(x) dx = f(x) g(x) + \int f'(x) g(x) dx$$
.

0

4. Quando $x \in [1, +\infty[$, a área da região delimitada pelo eixo das abcissas e pela curva definida por $y = \frac{1}{1+x^2}$ é finita.

5. Se
$$\sum_{n>1} (|u_n| + |v_n|)$$
 converge, então $\sum_{n>1} |u_n|$ também converge.

Grupo III (4 valores): Em cada uma das questões seguintes, assinale a única afirmação verdadeira. Não deve apresentar qualquer justificação.

Cada resposta certa vale 1 valor e cada resposta errada desconta 0,25 valores.

- 1. Seja $f:[a,b]\longrightarrow \mathbb{R}^+$. A soma de Riemann que melhor aproxima a área da região delimitada pelo gráfico de f, o eixo das abcissas e as retas verticais definidas por $x=a,\ x=b$ é
 - O a soma à direita.

() a soma superior.

O a soma à esquerda.

- Nenhuma das anteriores.
- 2. No cálculo de $\int \frac{dx}{x^2(x^2+1)}$, a forma para a decomposição em frações parciais é

$$\bigcirc \frac{1}{x^2(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{x^2+1}$$

$$\bigcap \frac{1}{x^2(x^2+1)} = \frac{A}{x^2} + \frac{Bx+C}{x^2+1}$$

Nenhuma das anteriores.

$$3. \int_1^2 \frac{dx}{x (\ln x)^p}$$

 \bigcirc converge, quando $p \ge 1$.

diverge.

 \bigcirc converge, quando p < 1.

- Nenhuma das anteriores.
- **4.** Se $f: \mathbb{R} \longrightarrow \mathbb{R}$ é tal que $f(x) = \left\{ \begin{array}{l} x^2, & \text{se } x < 1 \\ \sqrt{x}, & \text{se } x \geq 1 \end{array} \right.$, então o comprimento do gráfico de f entre os pontos cujas abcissas são 0 e 2, é definido por

$$\bigcap_{0}^{1} x^{2} dx + \int_{1}^{2} \sqrt{x} dx$$

Nenhuma das anteriores.

- **5.** A série $3 + \frac{3}{4}(p-1) + \frac{3}{4^2}(p-1)^2 + \frac{3}{4^3}(p-1)^3 + \cdots$ converge quando
 - 0 .

 \bigcirc -4 < p < 4.

O Nenhuma das anteriores.