Домашнее задание 4

Дайте обоснованные ответы на следующие вопросы.

Д4.1. Функция f из множества X в множество Y такова, что для $A\subseteq X$, $B\subseteq X$ выполняется

$$f^{-1}(f(A)) = f^{-1}(f(B))$$

(здесь f^{-1} обозначает полный прообраз множества). Следует ли из этого равенство A=B? Приведите доказательство или контрпример.

Пусть
$$A = \{-1\}, B = \{1\}, f = x^2$$
. Тогда $f^{-1}(f(A)) = f^{-1}(f(B)) \land A \neq B$

Ответ: Нет

Д4.2. Функция f определена на множестве $A \cup B$ и принимает значения в множестве Y. Если заменить в утверждении

$$f(A \triangle B)$$
 ? $f(A) \triangle f(B)$ (\triangle обозначает симметрическую разность)

знак ? на один из знаков включения \subseteq или \supseteq , получится утверждение. Какие из получившихся двух утверждений верны для любой f? Приведите доказательство или контрпример в каждом случае.

1)
$$f(A \triangle B) \subseteq f(A) \triangle f(B)$$

Приведем контрпример. $f(x) = x^2, A = \{0, 1, 2\}, B = \{0, -2, -3\}$

$$f(A\bigtriangleup B)=\{1,4,9\}, f(A)\bigtriangleup f(B)=\{1,9\}$$

 Φ КН ВШЭ, 2023/24 уч. г.

2)
$$f(A \triangle B) \supset f(A) \triangle f(B)$$

Пусть
$$x \in (f(A) \triangle f(B)) \Leftrightarrow (x \in f(A) \land x \notin f(B)) \lor (x \notin f(A) \land x \in f(B)) \to ((f^{-1}(x) \in A) \land (f^{-1}(x) \notin B)) \lor ((f^{-1}(x) \notin A) \land (f^{-1}(x) \in B)) \to f^{-1}(x) \in (A \triangle B) \to x \in f(A \triangle B)$$

Утверждение верно

Ответ: Верно утверждение: $f(A \triangle B) \supseteq f(A) \triangle f(B)$

Д4.3. Существует ли сюръективная функция f из множества слов длины 9 в алфавите $\{0,1\}$ в множество слов длины 3 в алфавите $\{0,1,2,3,4\}$, для которой полный прообраз множества

$$\{(0,0,0),(1,1,1),(2,2,2),(3,3,3),(4,4,4)\}$$

имеет мощность 400?

Всего слов длины 9 в алфавите $\{0,1\}$ $2^9 = 512$. Так как f - функция, то мощность полного прообраза всех слов длины 3 не превышает 512. Слов длины 3 в афлавите $\{0,1,2,3,4\}$ $5^3 = 125$. Если функция сюрьективна, значит для каждого слова b длины 3 есть слово а длины 2 такое, что f(a) = b. Значит полный прообраз множества всех слов длины 3 кроме $\{(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (4,4,4)\}$ имеет мощность не меньше 125 - 5 = 120. Тогда мощность полного прообраза множества $\{(0, 0, 0), (1, 1, 1), (2, 2, 2), (3, 3, 3), (4,4,4)\}$ не больше, чем 512 - 120 = 392.

Ответ: Нет, не существует

Д4.4. Сколько существует 6-значных чисел, в которых чётных и нечётных цифр поровну? (Ответом должно быть число в десятичной записи.)

Сначала выберем первую цифру. Она может быть любой, кроме 0, получаем 9 вариантов. Дальше выберем места, на которые поставим оставшиеся 2 числа такой же четности как и первая цифра. Количество выборов $C_5^2 = \frac{5!}{2!3!} = 10$. На эти места можно поставить любые 2 цифры из алфавита из 5 цифр, поэтому расположить цифры четности первой цифры можно $9 \cdot 10 \cdot 5 \cdot 5 = 2250$ вариантов. На оставшиеся места можно моставить любые из 5 цифр. Места определены однозначно, поэтому всего вариантов 5^3 . Итого вариантов: $2250 \cdot 125 = 281250$.

Ответ: 281250