Отчёта по лабораторной работе № 8

Математическое моделирование

Адебайо Ридвануллахи Айофе

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	8
4	Выполнение лабораторной работы	9
5	Выводы	17
6	Список литературы	18

Список иллюстраций

4.1	График для случай 1(ОМ)												12
4.2	График для случай 2(J)												14
4.3	График для случай 2(ОМ)												16

Список таблиц

1 Цель работы

- Рассмотреть простейшую модель эффективность рекламы.
- Построить модель и визуализировать и анализировать графики эффективности распространения рекламы для трех случаев.
- Визуализировать модель с помощью Julia и OpenModelica

2 Задание

Случай 1. Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{\mathrm{d}M_1}{\mathrm{d}\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2, \\ \frac{\mathrm{d}M_2}{\mathrm{d}\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2. \end{cases}$$

где
$$a_1=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 N q}, a_2=rac{p_{cr}}{ au_2^2 ilde{p}_2^2 N q}, b=rac{p_{cr}}{ au_1^2 ilde{p}_1^2 au_2^2 ilde{p}_2^2 N q}, c_1=rac{p_{cr}- ilde{p}_1}{ au_1 ilde{p}_1}, c_2=rac{p_{cr}- ilde{p}_2}{ au_2 ilde{p}_2}.$$
 Также введена нормировка $t=c_1 \theta.$

Случай 2. Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), спользуются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы

1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{\mathrm{d}M_1}{\mathrm{d}\theta} = M_1 - (\frac{b}{c_1} + 0,001)M_1M_2 - \frac{a_1}{c_1}M_1^2, \\ \frac{\mathrm{d}M_2}{\mathrm{d}\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2. \end{cases}$$

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$\begin{split} M_0^1 &= 2.5, M_0^2 = 1.5,\\ p_{cr} &= 15, N = 17, q = 1\\ \tau_1 &= 11, \tau_2 = 17,\\ \tilde{p}_1 &= 8, \tilde{p}_2 = 6 \end{split}$$

Замечание: Значения $p_{cr}, \tilde{p}_{1,2}, N$ указаны в тысячах единиц, а значения $M_{1,2}$ указаны в млн. единиц.

Обозначения:

N – число потребителей производимого продукта.

au – длительность производственного цикла

p – рыночная цена товара

p– себестоимость продукта, то есть переменные издержки на производство единицы продукции. q – максимальная потребность одного человека в продукте в единицу времени

$$heta=rac{t}{c_1}$$
 - безразмерное время

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2.

3 Теоретическое введение

Модель одной фирмы Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют.

Обозначим:

- N число потребителей производимого продукта.
- S доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения.
 - M оборотные средства предприятия
 - au длительность производственного цикла
 - р рыночная цена товара
- p себестоимость продукта, то есть переменные издержки на производство единицы продукции.
 - δ доля оборотных средств, идущая на покрытие переменных издержек.
- κ постоянные издержки, которые не зависят от количества выпускаемой продукции.

4 Выполнение лабораторной работы

Случай 1.

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{\mathrm{d}M_1}{\mathrm{d}\theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a_1}{c_1} M_1^2, \\ \frac{\mathrm{d}M_2}{\mathrm{d}\theta} = \frac{c_2}{c_1} M_2 - \frac{b}{c_1} M_1 M_2 - \frac{a_2}{c_1} M_2^2. \end{cases}$$

Code on Julia:

```
using DifferentialEquations
using Plots
p_cr = 15
tau1= 11
tau2=14
p1=8
p2=6
```

```
q=1
N=17
d=0.001
M1=2.5
M2=1.5
u0=[M1, M2]
a1 = p_cr/(tau1*tau1*p1*p1*N*q)
a2 = p_cr/(tau2*tau2*p2*p2*N*q)
b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q)
c1 = (p_cr-p1)/(tau1*p1)
c2 = (p_cr-p2)/(tau2*p2)
function F(dm, m, p, t)
    dm[1]=m[1]-(b/c1)*m[1]*m[2]-(a1/c1)*m[1]*m[1]
    dm[2]=(c2/c1)*m[2]-(b/c1)*m[1]*m[2]-(a2/c1)*m[2]*m[2]
end
tspan = (0.0, 30.0)
prob = ODEProblem(F, u0, tspan)
sol = solve(prob, Tsit5(), reltol=1e-8, abstol=1e-8)
plot(
    sol,
    title="Lab 8",
    xlabel="t",
    ylabel="m",
    label=["m1" "m2"]
)
savefig("../report/image/Jlab81.png")
```


Code on OpenModelica:

model lab8

```
parameter Real p_cr = 15;
parameter Real tau1= 11;
parameter Real tau2=14;
parameter Real p1=8;
parameter Real p2=6;
parameter Real q=1;
parameter Real N=17;

//initial equation
Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
Real b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
```

```
Real c1 = (p_cr-p1)/(tau1*p1);
Real c2 = (p_cr-p2)/(tau2*p2);

Real m1(start=2.5);
Real m2(start=1.5);
equation
der(m1)=m1-(b/c1)*m1*m2-(a1/c1)*m1*m1;
der(m2)=(c2/c1)*m2-(b/c1)*m1*m2-(a2/c1)*m2*m2;
end lab8;
```


Рис. 4.1: График для случай 1(ОМ)

Случай 2.

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), спользуются еще и социально-психологические факторы – формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед M_1M_2 будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\begin{cases} \frac{\mathrm{d}M_1}{\mathrm{d}\theta} = M_1 - (\frac{b}{c_1} + 0,001)M_1M_2 - \frac{a_1}{c_1}M_1^2, \\ \frac{\mathrm{d}M_2}{\mathrm{d}\theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2. \end{cases}$$

Code on Julia:

```
using DifferentialEquations
using Plots
p_{cr} = 15
tau1= 11
tau2=14
p1=8
p2 = 6
q=1
N = 17
d=0.001
M1=2.5
M2=1.5
u0=[M1, M2]
a1 = p_cr/(tau1*tau1*p1*p1*N*q)
a2 = p_cr/(tau2*tau2*p2*p2*N*q)
b = p_cr/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q)
c1 = (p_cr-p1)/(tau1*p1)
c2 = (p_cr-p2)/(tau2*p2)
function F(dm, m, p, t)
    dm[1]=m[1]-((b/c1)+0.001)*m[1]*m[2]-(a1/c1)*m[1]*m[1]
    dm[2]=(c2/c1)*m[2]-(b/c1)*m[1]*m[2]-(a2/c1)*m[2]*m[2]
end
tspan = (0.0, 30.0)
```

```
prob = ODEProblem(F, u0, tspan)
sol = solve(prob, Tsit5(), reltol=1e-8, abstol=1e-8)
plot(
    sol,
    title="Lab 8",
    xlabel="t",
    ylabel="m",
    label=["m1" "m2"]
)
savefig("../report/image/Jlab82.png")
```


Рис. 4.2: График для случай 2(J)

Code on OpenModelica:

model lab8

```
parameter Real p_cr = 15;
parameter Real tau1= 11;
parameter Real tau2=14;
parameter Real p1=8;
parameter Real p2=6;
parameter Real q=1;
parameter Real N=17;
//initial equation
Real a1 = p_cr/(tau1*tau1*p1*p1*N*q);
Real a2 = p_cr/(tau2*tau2*p2*p2*N*q);
Real b = p_{cr}/(tau1*tau1*tau2*tau2*p1*p1*p2*p2*N*q);
Real c1 = (p_cr-p1)/(tau1*p1);
Real c2 = (p_cr-p2)/(tau2*p2);
Real m1(start=2.5);
Real m2(start=1.5);
equation
der(m1)=m1-((b/c1)+0.001)*m1*m2-(a1/c1)*m1*m1;
der(m2)=(c2/c1)*m2-(b/c1)*m1*m2-(a2/c1)*m2*m2;
end lab8;
```


Рис. 4.3: График для случай 2(ОМ)

5 Выводы

В ходе выполнения лабораторной работы я рассмотрел модель конкуренции двух фирм. Построил графики изменения оборотных средств и проанализировала их. Я научился использовать язык программирования Julia и OpenModelica.

6 Список литературы

1. Кулябов Д. С. *Лабораторная работа N^{o}8* : https://esystem.rudn.ru/course/vie w.php?id=5930