Tema #4

INSTRUCŢIUNI

- 1. Deadline: 13 decembrie 2023, ora 23:59.
- 2. Rezolvările problemelor ce presupun scrierea unui cod (**EX#3–4**) vor fi salvate ca fișier *.txt, cu denumirea GRUPA_NUME_PRENUME.txt
- 3. Rezolvările problemelor ce presupun rezolvarea pe hârtie (**EX#1-2**) vor fi salvate ca fişier *.pdf, cu denumirea GRUPA_NUME_PRENUME.pdf
- 4. Cele două fișiere vor fi trimise la adresa de email mihai.bucataru@drd.unibuc.ro.
- $\mathbf{EX\#1}$ Fie X și Y două variabile aleatoare discrete cu $\mathbb{E}[X^2]$, $\mathbb{E}[Y^2] < +\infty$. Arătați că
 - (a) VAR[X + Y] = VAR[X] + VAR[Y] + 2Cov[X, Y].
 - (b) Coeficientul de corelație a celor două variabile este un număr în intervalul [-1,1].
- $\mathbf{EX\#2}$ Calculați varianța unei variabile aleatoare distribuite hypergeometric $X \sim Hypergeom(N,K,n)$.
- EX#3 Simulați în Python folosing funcția np.random.random() de generare a unui număr aleator din intervalul [0,1) o variabilă aleatoare discretă $X \sim Poisson(\lambda), \lambda > 0$.
 - i) Construiți histograma datelor obținute și verificați că aproximează funcția de masă a variabilei aleatoare Poisson.
 - ii) Pentru n=20 și $\lambda=1$, verificați că distribuțiile $Bin(n,\lambda/n)$ și $Poisson(\lambda)$ sunt asemănatoare.
- EX#4 Simulați în Python folosing funcția np.random.random() de generare a unui număr aleator din intervalul [0,1) o variabilă aleatoare discretă $X \sim Hypergeom(N,K,n)$. Construiți histograma datelor obținute și verificați că aproximează funcția de masă a variabilei aleatoare distribuite hypergeometric.