(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 July 2002 (04.07.2002)

(10) International Publication Number WO 02/051821 A1

(51) International Patent Classification7: C07D 263/57. (74) Agent: ASTRAZENECA AB: Global Intellectual Prop-A61K 31/423 erty, S-151 85 Södertälje (SE).

(21) International Application Number: PCT/SE01/02855 (81) Designated States (national): AE, AG, AL, AM, AT, AU,

(22) International Filing Date:

19 December 2001 (19.12.2001)

(25) Filing Language:

English English

(26) Publication Language:

(30) Priority Data: 0004825-6

22 December 2000 (22.12.2000) SE 0004826-4 22 December 2000 (22.12.2000) SE

(71) Applicant (for all designated States except US): AS-TRAZENECA AB [SE/SE]; S-151 85 Södertälie (SE).

(71) Applicant and

(72) Inventor (for US only): BARLAAM, Bernard [FR/FR]; AstraZeneca Research Centre Reims, Box 1050, Chemin de Vrilly, F-51689 Reims Cedex 2 (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BERNSTEIN, Peter [US/US]; AstraZeneca Wilmington, P.O. Box 15437, Wilmington, DE 19850-5437 (US). DANTZMAN, Cathy [US/US]; AstraZeneca Wilmington, P.O Box 15437, Wilmington, DE 19850-5437 (US). WARWICK, Paul [US/US]; AstraZeneca Wilmington, P.O. Box 15437, Wilmington, DE 19580-5437 (US).

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM. HR. HU. ID. IL. IN. IS. JP. KE. KG. KP. KR. KZ. LC. LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO. NZ, OM. PH, PL, PT, RO, RU, SD, SE, SG, SL SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH. GM. KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

with international search report

before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: THERAPEUTIC COMPOUNDS

(57) Abstract: Compounds of the formula (I) for use as an estrogen receptor -β-selective ligand are described wherein: X is O or S: and R1, R3 R6 are as described in the specification. The use of these compounds in treating Alzheimer's disease, anxiety disorders, depressive disorders, osteoporosis, cardiovascular disease, rheumatoid arthritis and prostate cancer is described; as are processes for making them.

WO 02/051821 PCT/SE01/02855

-1-

THERAPEUTIC COMPOUNDS

Technical Field

The present invention is directed to a series of ligands, and more particularly to estrogen receptor-β ligands which have better selectivity than estrogen for the estrogen 5 receptor-β over the estrogen receptor-α, as well as to methods for their production and use in the treatment of diseases related to the estrogen receptor-B, specifically, Alzheimer's disease, anxiety disorders, depressive disorders, osteoporosis, cardiovascular disease, rheumatoid arthritis, or prostate cancer.

Background

10

15

Estrogen-replacement therapy ("ERT") reduces the incidence of Alzheimer's disease and improves cognitive function in Alzheimer's disease patients (Nikolov et al. Drugs of Today, 34(11), 927-933 (1998)). ERT also exhibits beneficial effects in osteoporosis and cardiovascular disease, and may have anxiolytic and anti-depressant therapeutic properties. However, ERT shows detrimental uterine and breast side effects that limit its use

The beneficial effects of ERT in post-menopausal women is echoed by beneficial effects of estrogen in models relevant to cognitive function, anxiety, depression, bone loss, and cardiovascular damage in ovariectomized rats. Estrogen also produces uterine and breast hypertrophy in animal models reminiscent of its mitogenic effects on these tissues in humans. Specifically, experimental studies have demonstrated that estrogen effects the central nervous 20 system ("CNS") by increasing cholinergic function, increasing neurotrophin / neurotrophin receptor expression, altering amyloid precursor protein processing, providing neuroprotection against a variety of insults, and increasing glutamatergic synaptic transmission, among other effects. The overall CNS profile of estrogen effects in pre-clinical studies is consistent with its clinical utility in improving cognitive function and delaying Alzheimer's disease progression. Estrogen also produces mitogenic effects in uterine and breast tissue indicative of its detrimental side effects on these tissues in humans.

The estrogen receptor ("ER") in humans, rats, and mice exists as two subtypes, ER-α and ER-6. which share about a 50% identity in the ligand-binding domain (Kuiper et al. Endocrinology 139(10) 4252-4263 (1998)). The difference in the identity of the subtypes 30 accounts for the fact that some small compounds have been shown to bind preferentially to one subtype over the other (Kuiper et al.).

In rats, ER-β is strongly expressed in brain, bone and vascular epithelium, but weakly expressed in uterus and breast, relative to ER-α. Furthermore, ER-α knockout (ERKO-α) mice are sterile and exhibit little or no evidence of hormone responsiveness of reproductive tissues. In contrast, ER-β knockout (ERKO-β) mice are fertile, and exhibit normal development and function of breast and uterine tissue. These observations suggest that selectively targeting ER-β over ER-α could confer beneficial effects in several important human diseases, such as Alzheimer's disease, anxiety disorders, depressive disorders, osteoporosis, and cardiovascular disease without the liability of reproductive system side

10 could be achieved by agents that selectively interact with ER-β over ER-α.

It is a purpose of this invention to identify ER- β -selective ligands that are useful in treating diseases in which ERT has the appendix benefits.

It is another purpose of this invention to identify ER-β-selective ligands that mimic the beneficial effects of ERT on brain, bone and cardiovascular function.

effects. Selective effects on ER-B-expressing tissues (CNS, bone, etc.) over uterus and breast

15 It is another purpose of this invention to identify ER-β-selective ligands that increase cognitive function and delay Alzheimer's disease progression.

Summary of the Invention

This present invention is directed to compounds having the generic structure:

20 These compounds are ER-β-selective ligands, which mimic ERT, but lack undesirable side effects of ERT and are useful in the treatment or prophylaxis of Alzheimer's disease, anxiety disorders, depressive disorders, osteoporosis, cardiovascular disease, rheumatoid arthritis or prostate cancer.

Detailed Description of the Invention

25 The present invention provides compounds of the formula (I)

_

for use as ER-β-selective ligands:

wherein:

5

X is O or S:

 $R^1 \ is \ C_{18} alkyl, phenyl, benzyl \ or \ a \ 5-or \ 6-membered \ ring \ heterocycle \ containing \ 1, 2$ or 3 heteroatoms each independently selected from O_s N and S and additionally having 0 or 1 oxo groups and 0 or 1 fused benzo rings, wherein the $C_{1.8} alkyl$, phenyl, benzyl or heterocycle is substituted by 0, 1, 2 or 3 substituents selected from $-R^a_s$ $-OR^a_s$, $-SR^a_s$, $-NR^a_s$, $-C_0R^a_s$, $-OC_0P^a_s$, $-OC_0P^a_s$, $-NR^a_s$, $-OC_0P^a_s$, $-NR^a_s$, $-OC_0P^a_s$, -O

10 -S(=O)R^a, -S(=O)₂R^a, halogen, cyano, nitro and C₁₋₃haloalkyl;

R³ is -R^a, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a,
-NR^aS(=O)R^a, -NR^aS(=O)₂R^a, -C(=O)R^a, -S(=O)R^a, -S(=O)₂R^a, halogen, cyano, nitro and
C₁₋₂haloalkyl; or R³ is C₁₋₃alkyl containing 1 or 2 substituents selected from -OR^a, -SR^a,
-NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a, -NR^aS(=O)₂R^a,
-NR^aS(=O)₂R^a, -S(=O)₂R^a, halogen, cyano and nitro;

R⁴ is -R⁴, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a, -NR^aS(=O)R^a, -NR^aS(=O)₂R^a, -C(=O)R^a, -S(=O)R^a, -S(=O)₂R^a, halogen, cyano, nitro or C₁, shaloalkvi:

R⁵ is -R^a, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a, 20 -NR^aS(=O)R^a, -NR^aS(=O)₂R^a, -C(=O)R^a, -S(=O)R^a, -S(=O)₂R^a, halogen, cyano, nitro or C₁₋₃haloalkyl;

R⁶ is -R^a, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=0)R^a, -C(=0)NR^aR^a, -NR^aC(=0)R^a,
-NR^aS(=0)R^a, -NR^aS(=0)₂R^a, -C(=0)R^a, -S(=0)R^a, -S(=0)₂R^a, halogen, cyano, nitro and
C₁₋₃haloalkyl; or R⁶ is C₁₋₃alkyl containing 1 or 2 substituents selected from -OR^a, -SR^a,

5 -NR^aR^a, -CO₂R^a, -OC(=0)R^a, -C(=0)NR^aR^a, -NR^aC(=0)R^a, -NR^aS(=0)R^a, -NR^aS(=0)₂R^a,
-C(=0)R^a, -S(=0)R^a, -S(=0)₂R^a, halogen, cyano and nitro; and

R^a is H, C₁₋₆alkyl, C₁₋₃haloalkyl, phenyl or benzyl; and pharmaceutically acceptable salts thereof. WO 02/051821

In the above definitions, where Ra appears twice in a group, each may be separately selected from the possible values.

These compounds are useful in treating disease conditions related to the β-estrogen receptor, more particularly in treating Alzheimer's disease, anxiety disorders, depressive 5 disorders, osteoporosis, cardiovascular disease, rheumatoid arthritis and prostate cancer.

In another aspect the present invention provides the use of a compound of the formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment (including prophylaxis) of disease conditions related to the β-estrogen receptor. more particularly in treating Alzheimer's disease, anxiety disorders, depressive disorders, 10 osteoporosis, cardiovascular disease, rheumatoid arthritis and prostate cancer.

In a further aspect the present invention provides a method of treating disease conditions related to the B-estrogen receptor, more particularly in treating Alzheimer's disease, anxiety disorders, depressive disorders, osteoporosis, cardiovascular disease. rheumatoid arthritis and prostate cancer.

15

In one embodiment R1 is C1.salkyl, phenyl, benzyl or a 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms each independently selected from O, N and S and additionally having 0 or 1 oxo groups and 0 or 1 fused benzo rings, wherein the C₁₋₈alkyl, phenyl, benzyl or heterocycle is substituted by 0, 1, 2 or 3 substituents selected from -Ra, $-OR^a$, $-SR^a$, $-NR^aR^a$, $-CO_2R^a$, $-OC(=O)R^a$, $-C(=O)NR^aR^a$, $-NR^aC(=O)R^a$, $-NR^aS(=O)R^a$. 20 -NR^aS(=O)₂R^a, -C(=O)R^a, -S(=O)R^a, -S(=O)₂R^a, halogen, cyano, nitro and C_{1.3}haloalkyl.

In another embodiment R3 is C1-6alkyl, -ORa, -SRa, -NRaRa, -CO2Ra, -OC(=O)Ra, $-C(=O)NR^aR^a$, $-NR^aC(=O)R^a$, $-NR^aS(=O)R^a$, $-NR^aS(=O)_PR^a$, $-C(=O)R^a$, $-S(=O)R^a$, $-S(=O)_PR^a$, halogen, cyano, nitro and C1-2haloalkyl; or R3 is C1-2alkyl containing 1 or 2 substituents selected from -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a. 25 -NRaS(=0)Ra, -NRaS(=0)2Ra, -C(=0)Ra, -S(=0)Ra, -S(=0)2Ra, halogen, cvano and nitro.

In another embodiment R⁴ is -R^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a. -NR*C(=O)R*, -NR*S(=O)R*, -NR*S(=O)₂R*, -C(=O)R*, -S(=O)R*, -S(=O)₂R*, halogen. cvano, nitro or C1.3haloalkyl.

In another embodiment R⁵ is -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a. -NR3C(=O)R2, -NR3S(=O)R2, -NR3S(=O)-R2, -C(=O)R2, -S(=O)R3, -S(=O)-R3, halogen evano, nitro or C1.3haloalkyl.

In another embodiment R⁶ is C₁₋₆alkyl, -OR⁵, -SR⁵, -NR⁵R, -CO₂R⁵, -OC(=O)R⁸,

-C(=O)NR⁵R⁵, -NR⁵C(=O)R⁵, -NR⁵S(=O)R⁵, -NR⁵S(=O)₂R⁵, -C(=O)R⁵, -S(=O)₂R⁵,

halogen, cyano, nitro and C₁₋₅haloalkyl; or R⁶ is C₁₋₅alkyl containing 1 or 2 substituents

selected from -OR⁵, -SR⁵, -NR⁵R⁵, -CO₂R⁵, -OC(=O)R⁵, -C(=O)NR⁵R⁵, -NR⁵C(=O)R⁵,

-NR⁵S(=O)R⁵, -NR⁵S(=O)R⁵, -C(=O)R⁵, -S(=O)R⁵, -S(=O)R⁵, halogen, cyano and nitro.

In another embodiment R¹ is phenyl or benzyl, wherein the phenyl or benzyl is substituted by 0, 1, 2 or 3 substituents selected from -R^a, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)R^a, -RR^aC(=O)R^a, -NR^aS(=O)₂R^a, -C(=O)R^a, -S(=O)₂R^a, -S(=O)₂R^a, halogen, cyano, nitro and C₁₋₃haloalkyl. In a more specific embodiment, R¹ is 4-hydroxyphenyl substituted by 0, 1 or 2 substituents selected from -R^a, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a, -NR^aS(=O)R^a, -NR^aS(=O)R^a, -S(=O)R^a, -S(=O)

R¹ may be a 5- or 6-membered ring heterocycle, unsubstituted or substituted as defined

15 hereinabove; for example the 5- or 6- membered ring may be thiophene, furan, pyrrolidinone,
pyridine, indazole or thiazolidinone. In a preferred aspect R¹ is phenyl unsubstituted or
substituted as defined hereinabove. Examples of R¹ being substituted phenyl include
hydroxyphenyl (for example 4-hydroxyphenyl) or 3-hydroxyphenyl), C₁₋₄alkoxyphenyl (for
example 4-methoxyphenyl or 3-methoxyphenyl), halophenyl (for example bromophenyl such
as 2-bromophenyl or chlorophenyl such as 2-chlorophenyl), C₁₋₄alkylphenyl (for example
methylphenyl such as 2-methylphenyl or 3-methylphenyl or sthylphenyl such as 2-ethylphenyl
or propylphenyl such as 2-isopropylphenyl), cyanophenyl (for example 2-cyanophenyl) or
trifluoromethylphenyl (for example 4-trifluoromethylphenyl).

In particular R1 is hydroxyphenyl.

25

30

In a particular aspect R^3 is halo, cyano, carbamoyl or C_{1-6} alkyl; more particularly halo for example chloro or bromo, cyano, or C_{1-6} alkyl for example methyl or ethyl. In another particular aspect R^3 is hydrogen.

In a particular aspect R^4 is halo for example chloro or bromo, hydroxy or $C_{1:6}$ alkoxy for example methoxy or ethoxy; more particularly R^4 is hydroxy or methoxy, for example hydroxy. In another particular aspect R^3 is hydroxen.

-6-

In a particular aspect \mathbb{R}^5 is halo for example chloro or bromo, hydroxy or $C_{1.6}$ alloxy for example methoxy or ethoxy; more particularly \mathbb{R}^5 is hydroxy or methoxy, for example hydroxy. In another particular aspect \mathbb{R}^5 is hydrogen.

In a particular aspect R^6 is halo for example chloro or bromo, C_{1-4} alkyl for example methyl or ethyl, trifluoromethyl, hydroxy, C_{1-4} alkoxy for example methoxy or ethoxy, carboxy, C_{1-4} alkoxycarbonyl for example methoxycarbonyl, cyano, halomethyl for example bromomethyl, cyano C_{1-4} alkyl for example cyanomethyl, carbamoyl, methylcarbamoyl or dimethylcarbamoyl. In another particular aspect R^6 is hydrogen. In one embodiment R^6 is halo, cyano or C_{1-4} alkyl.

10 Preferred benzoxazoles are there wherein R¹ is 4-hydroxyphenyl or 3-chloro-4hydroxy phenyl; R³ is chloro or bromo; R⁵ is hydroxy; and R⁴ and R⁶ are both hydrogen.

Preferred benzthiazoles are those wherein R^1 is 4-hydroxyphenyl; R^6 is cyano or carboxy; R^4 is hydroxy; and R^3 and R^5 are both hydrogen.

Compounds within the formula (I) have been disclosed in the literature: J. Med.

Chem, 37 (1997) pages 1689-1695; British Journal of Cancer, 77 (1998) pages 745-752;

Chem. Pharm. Bull, 40 (1995) pages 2387-2390; EP483502, USP 5216110 and JP 2306916.

In another aspect the present invention provides compounds of the formula (I) and pharmaceutically acceptable saits thereof with the provisos that when X is S and :

- a) R1 is 4-methoxyphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 4-methyl, 4,6-dimethoxy, 5-methoxy, 5,6-dimethoxy, 6-methoxy, 6-chloro or 7methoxy.
 - b) R1 is 3-methoxyphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 6-methoxy;
- c) R1 is 3,4-dimethoxyphenyl, the benzene ring of the benzthiazole is not substituted by 6-25 methoxy, 4,6-dimethoxy or 5,6-dimethoxy;
 - d) R1 is phenyl, the benzene ring of the benzthiazole is not substituted by 4-methoxy, 5,6-dimethoxy, 6-hydroxy or 6-methoxy;
 - e) R1 is 4-hydroxyphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 4,6-dihydroxy, 5-hydroxy, 5,6-dihydroxy or 6-hydroxy.
- 30 f) R1 is 3,4-dihydroxyphenyl, the benzene ring of the benzthiazole is not substituted by 6-hydroxy, 4,6-dihydroxy or 5,6-dihydroxy;

WO 02/051821

-7g) R1 is 2-hydroxyphenyl or 3-hydroxyphenyl, the benzene ring of the benzthiazole is not substituted by 6-hydroxy;

h) R1 is 4-methylphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 4-, 5- or 6- fluoro, 4-, 6- or 7-methoxy, 5-chloro, 4-, 5-, 6- or 7- hydroxy, 4-, 5-,
 6- or 7- acetoxy or 6-nitro:

i) R1 is 3,5-di-tert-butyl-4-hydroxyphenyl, the benzene ring of the benztriazole is not substituted by 4- or 5-hydroxy;

and when X is S, R1 is not 4-aminophenyl, 4-amino-3-methylphenyl or 4-amino-3halophenyl and when X is S or O, R1 is not 4-chloro- or 4-fluorophenyl when the benzene
ring of the benzthiazole is substituted by 5-hydroxy or 5-mercapto.

Particular embodiments, particular aspects and preferred features of the compounds of this invention are as described above for the compounds for use in treating disease conditions related to the β -estrogen receptor.

Particularly useful compounds have any of the above embodiments and also satisfy the 15 equation:

 $(K_{i\alpha A}/K_{i\beta A})/(K_{i\alpha E}/K_{i\beta E}) > 100$, wherein

KiαA is the Ki value for the agonist in ER-α;

K_{iBA} is the K_i value for the agonist in ER-β;

King is the Ki value for estrogen in ER-ox and

K_{iβE} is the K_i value for estrogen in ER-β.

20

Another aspect of the invention is the use of any of the above compound embodiments for the manufacture of a medicament for the treatment or prophylaxis of Alzheimer's disease, anxiety disorders, depressive disorders, osteoporosis, cardiovascular disease, rheumatoid arthritis or prostate cancer.

Another aspect of the invention is the use of any of the above compound embodiments in the treatment or prophylaxis of Alzheimer's disease, anxiety disorders, depressive disorders (including post-partum and post-menopausal depression), osteoporosis, cardiovascular disease, rheumatoid arthritis or prostate cancer.

C_{Y-Za}lkyl, unless otherwise specified, means an alkyl chain containing a minimum Y total carbon atoms and a maximum Z total carbon atoms. These alkyl chains may be branched or unbranched, cyclic, acyclic or a combination of cyclic and acyclic. It also includes

WO 02/051821 PCT/SE01/02855

-8-

saturated and unsaturated alkyl such as ethynyl and propenyl. For example, the following substituents would be included in the general description " $C_{4.7}$ alkyl":

The term "oxo" means a double bonded oxygen (=O).

5

The compounds of the invention may contain heterocyclic substituents that are 5- or 6membered ring heterocycles containing 1, 2 or 3 heteroatoms each independently selected

from O, N and S and additionally having 0 or 1 oxo groups and 0 or 1 fused benzo rings. A
nonexclusive list containing specific examples of such heterocycles are as follows:

WO 02/051821 PCT/SE01/02855

wherein the crossed bond represents that the heterocycle may be attached at any available position on either the heterocycle or the benzo ring.

Some of the compounds of the present invention are capable of forming salts with

various inorganic and organic acids and bases and such salts are also within the scope of this
invention. Examples of such acid addition salts include acetate, adipate, ascorbate, benzoate,
benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, citrate, cyclohexyl
sulfamate, ethanesulfonate, fumarate, glutamate, glycolate, hemisulfate, 2-hydroxyethylsulfonate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, hydroxymaleate,
lactate, malate, maleate, methanesulfonate, 2-naphthalenesulfonate, nitrate, oxalate, pamoate,
persulfate, phenylacetate, phosphate, picrate, pivalate, propionate, quinate, salicylate, stearate,
succinate, sulfamate, sulfanilate, sulfate, tartrate, tosylate (p-toluenesulfonate), and
undecanoate. Base salts include ammonium salts, alkali metal salts such as sodium, lithium
and potassium salts, alkaline earth metal salts such as aluminum, calcium and magnesium

salts, salts with organic bases such as dicyclohexylamine salts, N-methyl-D-glucamine, and

salts with amino acids such as arginine, lysine, ornithine, and so forth. Also, basic nitrogencontaining groups may be quaternized with such agents as: lower alkyl halides, such as methyl, ethyl, propyl, and butyl halides; dialkyl sulfates like dimethyl, diethyl, dibutyl; diamyl sulfates; long chain halides such as decyl, lauryl, myristyl and stearyl halides; aralkyl halides 5 like benzyl bromide and others. Non-toxic physiologically-acceptable salts are preferred. although other salts are also useful, such as in isolating or purifying the product.

The salts may be formed by conventional means, such as by reacting the free base form of the product with one or more equivalents of the appropriate acid in a solvent or medium in which the salt is insoluble, or in a solvent such as water, which is removed in 10 vacuo or by freeze drying or by exchanging the anions of an existing salt for another anion on a suitable ion-exchange resin.

Estrogen Receptor Binding Measurements

15

Abbreviated Procedure for Fluorescence Polarization Estrogen Receptor (ERFP) Binding Assay

A homogeneous mix-and-measure estrogen receptor (ER) binding assay which utilizes fluorescence polarization (FP) technology is used to identify compounds with affinity for the estrogen receptor. Purchased from PanVera (Madison, WI), assay reagents include purified human recombinant ERo, human recombinant ERB, ES2 screening buffer (100mM potassium phosphate, pH 7.4, 100 ug/mL bovine gamma globulin), and FluormoneTM ES2.

20 FluormoneTM ES2, whose formulation is proprietary to Pan Vera, is a fluorescein-tagged. estrogen-like molecule which exhibits approximately equal affinity for ER \alpha and ER \beta.

For competition binding experiments, dilutions of test compounds are prepared at 2x the final assay concentration in 0.2% DMSO in ES2 Screening buffer on TECAN Genosys. and 25 μL compound / well is dispensed into black Costar ½ volume 96-well plates.

- 25 Dependent upon a lot specific K_d determination, 10-40 nM ERα or 10-40 nM ERβ and 1nM Fluormone ES2 are then added to these plates in a final assay volume of 50 uL/well. Plates are gently shaken for at least 5 minutes to mix and incubated for at least 1 hr 45 minutes to achieve equilibrium. (Reaction mixtures are stable for up to 5 hours). After centrifugation to remove air bubbles, plates are read on an LJL Analyst or Acquest equipped with Criterion
- 30 software at the following settings: Fluorescence Polarization Mode: Static Polarizer on Excitation Side; Dynamic Polarizer on Emission Side; Excitation λ = 485 +/-10 nm; Emission $\lambda = 520 + /-12.5 \text{ nm}.$

WO 02/051821

-11-

Polarized fluorescence intensity values are collected and subsequently converted electronically to millipolarization (mp) values. Following data reduction and normalization with Excel and/or Prism software, % Ctrl values at the various test concentrations are used to obtain IC50 values via non-linear regression analysis of a four-parameter logistic equation.

5 Because ligand depletion is a consideration in this assay (~40-60% input ES2 is bound in the assay), IC50 values are converted to K; values through application of the Kenakin formula, as outlined in the reference below, rather than via the more routinely-used Cheng-Prusoff formula.

Reference: Bolger et al., Rapid Screening of Environmental Chemicals for Estrogen Receptor 10 Binding Capacity, Environmental Health Pespectives: 106 (1998), 1-7.

Cell-based assay for ER transcriptional activity:

ERs are ligand-dependent transcription factors that bind the promoter regions of genes at a consensus DNA sequence called the estrogen responsive element (ERE). The ER agonist or antagonist activity of a drug was determined by measuring the amount of reporter enzyme 15 activity expressed from a plasmid under the control of an estrogen-responsive element when cells transiently transfected with ER and the reporter plasmid were exposed to drug. These experiments were conducted according to the following methods.

Plasmids:

Estrogen Receptors alpha (αER, Gen Bank accession #M12674), and beta (βER, Gen 20 Bank # X99101 were cloned into the expression vector pSG5 (Stratagene) and pcDNA3.1. A trimer of the vitellogenin-gene estrogen response element (vitERE) was synthesized as an oligonucleotide and attached to a beta-globin basal promoter in a construct named pERE3gal. This response element and promoter were removed from pERE3gal by digestion with the endonucleases SpeI (filled with Klenow fragment) and HindIII. This blunt/ Hind III fragment 25 was cloned into the β-galactosidase (β-gal) enhancer reporter plasmid (pBGALenh, Stratagene). αER and βER plasmids were purified using a the Endo Free Maxi Kit (Qiagen), and the DNA concentration and purity (A260/280 ratio) were determined spectrophotometrically (Pharmacia). Only DNA with A260/280 ratio of 1.8 and a concentration of >lug/uL was used for transfections. 30

Vitellogenin Response Element Sequence: CTAGTCTCGAGAGGTCACTGTGACCTAGATCTAGGTCACTGTGACCTAGATCTA **GGTCACTGTGACCTAC**

WO 02/051821 PCT/SE01/02855

-12-

=Spel overhang

=Xhol site

=AfIII overhang

= ERE consensus

=spacer Bgl II

Cells:

5

25

All Transfections are performed in 293 cells (Human Embryonic Kidney cells ATCC #

CRL-1573). Cells are grown in DMEM supplemented with 10%FBS, glutamine, sodium

pyruvate and penicilin/streptomycin. Cells are grown to 80% confluency and split 1:10 or

10 1:20.

Transfection:

- 293T cells are split the night before onto collagen I 150mm plates (Biocoat Becton Dickinson #354551) at 5 million cells per plate in phenol red-free DMEM (Mediatech 17-205-CV) 10% FBS charcoal stripped (biocell #6201-31) with supplements.
- 15 2. The next day the media is changed, 1 hour prior to transfection, to fresh phenol redfree DMEM 10% FBS (charcoal stripped) and supplements.
 - Transfections are performed using the Profection Kit from Promega #E1200, this kit is based on calcium phosphate mediated transfection. Reagents are added in sterile polystyrene tubes in the following order:

20 Solution A.

20ug ER alpha or beta (in pcDNA3.1)

50ug Reporter (pERE3 betaGal)

1.5ML Sterile Water

186uL CaCl2

* Mix gently

Solution B

1.5ml 2XHBSS

- Using a vortex set on low add solution A to solution B dropwise. The resulting
 solution should become milky in color. It is important to get thorough mixing at this point. Let
 solution stand 30 min. Vortex before adding to cells.
 - Add the mixture to 150mm plates dropwise. Mix well by rocking plates back and forth
 and side to side gently. View cells under 20x magnification, a very fine precipitate should be

seen floating on and above cells after an hour. If you do not observe this the transfection will not work well. Incubate 18-20 hours.

Receptor Stimulation:

15

20

- 6. The day after transfection cells are washed 2x with PBS Ca Mg free containing 1mM 5 EGTA pH=7.6. Cells are trypsinized for 5 min with 4 ml of trypsin (0.25%) EDTA. Trypsin is neutralized with 6 ml DMEM (no phenol red) + 10% charcoal stripped FBS. Cells are pelleted at 1000xg for 5min. Cell pellet is resuspended in 10ml DMEM (no phenol red) + 2% charcoal stripped FBS supplemented with glutamine and Penn/Strep and the cells are counted. Additional medium is added to dilute the cell density to 500,000 cells/ml.
 - Cells are plated into 96 well dish (Biocoat BD #354407) at 50 ul of cells per well
 (=25,000 cells/well), using a multichannel pipettor. Plates are incubated for approx. 2-4
 hours to allow cells to attach.
 - 8. Compounds are prepared at concentration of 4 mM in 100% DMSO, then diluted into medium with supplements but no serum. The first 2 dilutions are done in medium with no DMSO, then the remaining dilutions are in medium plus 0.5% DMSO to keep the vehicle constant. Max controls are 10 nM beta-estradiol and background controls are 0.5% DMSO. Compounds are normally tested in the range of 10 uM to 1 nM and are prepared at twice the concentration to be tested. The compounds are added to the cell plates, 50 ul per well. All compounds are tested with an n=4 wells for single poke and n=2 for 9-pt curves.
 - Cells are incubated overnight at 37°C with the compounds.

WO 02/051821 PCT/SE01/02855

-14-

Reporter Assay:

5

- After 18-24hr of stimulation, 100ul of 7% CPRG cocktail is added to each well, the
 plate is incubated at 37C for approximately 30 minutes to 2 hours or until the OD reaches
 between 1.0 and 2.0. The CPRG (Roche 0884308) will turn bright red as Beta Gal cleaves
- The plates are read on a spectrophotometric plate reader (Spectramax, Molecular Devices) at 570 nm and raw absorbances are obtained.

Data is compiled and interpreted with Excel using XLFit or GraphPad Prism to fit
concentration-response curves. The EC50 is defined as the concentration at which 50% of the
fitted maximum for a compound has been reached.

10X Z Buffer

	Sodium Phosphate (dibasic) 1.7 g	600mM
	Sodium Phosphate (monobasic) 0.96 g	400mM
	Potassium Chloride 149 mg	100mM
15	Magnesium Sulfate 0.2 mL of 1 molar stock	100mM
	BME 0.78 mL	500mM
	Bring Final Volume to 20 mL with De-Jonized Water	

7% CPRG COCKTAIL

For 50 mLs:

20 add 3.5 mL of 50ml of CPRG add 3.5 mL of 10x Z Buffer add 1 mL of 10% SDS bring to 50 mL with DI water

Typical Results:

25 Absorbance values illustrating typical concentration-response curves obtained for the ER agonist 17-β-estradiol (E) and the ER antagonist ICI182,780 (A) are plotted below for cells transfected with either αER or βER.

Beta 293 3:1 DNA Ratio

Alpha 293 3:1 DNA Ratio

WO 02/051821 PCT/SE01/02855

-16-

Alpha Beta EC50 2.521e-009 1.159e-009

Administration and Use

Compounds of the present invention are shown to have high selectivity for ER-β over ER-α, and may possess agonist activity on ER-β without undesired uterine effects. Thus, these compounds, and compositions containing them, may be used as therapeutic agents in the treatment of various CNS diseases related to ER-β, such as, for example, Alzheimer's disease,

The present invention also provides compositions comprising an effective amount of compounds of the present invention, including the nontoxic addition salts, amides and esters thereof, which may, serve to provide the above-recited therapeutic benefits. Such compositions may also be provided together with physiologically-tolerable liquid, get or solid diluents, adjuvants and excipients. The compounds of the present invention may also be combined with other compounds known to be used as therapeutic agents for the above or other indications.

These compounds and compositions may be administered by qualified health care

professionals to humans in a manner similar to other therapeutic agents and, additionally, to
other mammals for veterinary use, such as with domestic animals. Typically, such

WO 02/051821 PCT/SE01/02855 -17-

compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. The preparation may also be emulsified. The active ingredient is often mixed with diluents or excipients which are physiologically tolerable and compatible with the active ingredient. 5 Suitable diluents and excipients are, for example, water, saline, dextrose, glycerol, or the like, and combinations thereof. In addition, if desired the compositions may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, stabilizing or pH-buffering agents, and the like.

The compositions are conventionally administered parenterally, by injection, for 10 example, either subcutaneously or intravenously. Additional formulations which are suitable for other modes of administration include suppositories, intranasal aerosols, and, in some cases, oral formulations. For suppositories, traditional binders and excipients may include, for example, polyalkylene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient. Oral formulations include such normally employed 15 excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained-release formulations, or powders.

In addition to the compounds of the present invention that display ER-\beta activity, 20 compounds of the present invention can also be employed as intermediates in the synthesis of such useful compounds.

Synthesis

Compounds within the scope of the present invention may be synthesized chemically by means well known in the art. The following Examples are meant to show general synthetic 25 schemes, which may be used to produce many different variations by employing various commercially available starting materials. These Examples are meant only as guides on how to make some compounds within the scope of the invention, and should not be interpreted as limiting the scope of the invention.

In another aspect, the present invention provides a process for preparing the compounds of the 30 formula (I) and pharmaceutically acceptable salts thereof, which comprises:

a) cyclising a compound of the formula:

10

$$R^{5}$$
 NH
 CO
 R^{1}
 R^{3}

wherein X, R¹, R³-R⁶ are as defined hereinabove and L is hydrogen or a leaving group; or

5 b) for preparing compounds wherein X is O, cyclising a compound of the formula:

wherein R1, R3-R6 are as defined hereinabove or:

c) cyclising a compound of the formula;

- 15 wherein X, R^1 , R^3 - R^6 are as defined hereinabove and L is hydrogen or a leaving group; or
 - d) for preparing compounds wherein X is S, cyclising a compound of the formula:

- 20 wherein R¹, R³-R⁶ are as defined hereinabove; and thereafter, if necessary:
 - forming a pharmaceutically acceptable salt;

WO 02/051821 PCT/SE01/0285

-19-

 ii) converting a compound of the formula (I) into another compound of the formula (I).

Examples

Example	Structure	Synthetic	HPLC	MS
		Method	(min)	(MH ⁺)
1	HO OH	A, B, C	1.99	262
2	O CI N OH	A, B		276
	HO NO OH	В, С		242
4	, O O O O O O O O O O O O O O O O O O O	В		256
5	он Лон			244
6	но он	В		. 228
7	но N ОН	B, C		226 (M-H ⁻)
8	OH OH	В .		242
9	HO CI CI OH	D, E, F, G, H, I	2.32	296

-21-

· ·				
Example	Structure	Synthetic	HPLC	MS
		Method	(min)	(MH ⁺)
10	Br I	F, G, H,	2.29	308
- 20	T)—OH	I, J		
	HO N			
11	Br/-	F, G, H,	2.18	321
	П Т Э-он	I, J		
	но			
12	Br ,CI	F, G, H,	2.30	341
	ПТУ-Т-он	I, J		
]	HO N			
13		F, G, H,	2.26	354
	(T)-(T)-0H	I, J, K		
	HO N			
14	CI	D, E, G,	2.07	262
	HO CONTRACTOR	H, I		
	но - о			
15		G, H, I	2.03	242
	HO CY CH			
	но т			
16		Ref. 1, F,	2.25	256
	N-C-N-OH	G, H, I		
	но о			
17	ÇI \	Ref. 1, F,	2.36	276
	OHI	G, H, I		
	HO 0		•	
18] 0\	Ref. 1, D,	2.02	276
	ОН	E, F, G,		
	но 🗸	H, I		

Example	Structure	Synthetic	HPLC	MS
		Method	(min)	(MH ⁺)
19	ŶН СI	D, E, F,	2.17	278
	N N	G, H, I	2.17	270
	но	0,11,1		
20	ОН	F, G, H, I	1.82	258
20	N >	r, G, n, 1	1.82	238
	HO HO HO HO			-
21		J, F, G,	2.89	290
	HO NO OH	H, K, L, I		
22	ÇN —	J, F, G,	253	2.06
	HO NON	H, M, I		
	HU • 11			
23	H ₂ N YO	J, F, G,	2.04	271
	TO SOUTH	H, I, N		
	HO N			
24	Br CI	D, E, J,	2.30	341
	T H	F, G, H,		
	HO N	I,		
25	Br.	J, F, G,	2.32	322
	T) -oH	H, I		
	HO N		.	
26	l cı	D, E, J,	2.24	388
	TO-OH	F, G, H,		
	HO N	K, I		
27	1 \	J, F, G,	2.22	368
		н, к, і		
	HO N N			

Example	Structure	Synthetic	HPLC	MS
		Method	(min)	(MH ⁺)
28	CN CI	D, E, J,	2.05	287
	T S-OH	F, G, H,	-	
	HO Ni	I, M		
29	CN \	J, F, G,	2.02	267
	Г Г У → С > - он	н, к, і,		
	HO N	M		
30	CN CN	D, E, J,	1.92	278
	Г Т → ОН	F, G, H,		
	HO N	I, O		
31	Br Q O	P, F, G,	2.18	308
	HO NO	H, I		
32	N HO	Q, R, I	1.20	237
	HO LONG			
33	Br	С	2.44	290.3,
				292.3
	HO N			
34	J 0 5 5	J, F, Q,	2.69	359
	HO N F	R, I		
35	⇒ N _^N	. В	1.80	252.4
	N N N N N N N N N N N N N N N N N N N			
	но~~о .			

Example	Structure	Synthetic	HPLC	MS
		Method	(min)	(MH ⁺)
36	Br	-	1.84	352.2, 354 (90%) (MH ⁺ + CH ₃ CN); 311.2, 313 (20%) (MH ⁺)

Biological data for representative compounds of this invention:

Example	FP B-ER K _i (nM)	FP α-ER K _i (nM)	FP Selectivity
. 1	1.7	18	10
3	4.8	121	25
5	290	1000	3
7	5.8	82	14
8	148	477	3
10	0.38	5.6	15
12	1.8	54	30
22	1.2	14	12
23	646	2200	3

Example	ERE ß-ER	ERE ß-ER	ERE α-ER	ERE α-ER	ERE
	EC ₅₀ (nM)	Max	EC ₅₀ (nM)	Max	Selectivity
1	1.2	98	61	103	52
3	23	89	497	102	22
5	1000	98	1000	102	1.8
7	1.4	95	25	116	18
8					

Example	ERE ß-ER	ERE ß-ER	ERE α-ER	ERE α-ER	ERE
	EC ₅₀ (nM)	Max	EC ₅₀ (nM)	Max	Selectivity
10	0.017	103	6.0	. 109	363
12	0.5	81	76	37	153
22	0.616	98	6.4	83	10
23	298	86	1000	78	14

Chemical Syntheses

10

15

The HPLC conditions used are the following unless stated otherwise: HPLC 2.1 x 50 mm C₈

5μm Zorbax Stablebond column; flow rate 1.4 mL/min, linear gradient from 15% B to 90% B

over 4.0 min; A= water, 0.05% TFA; B= 90% acetonitrile, 10% water, 0.05% TFA, UV

detection at 254 nm or DAD and positive ionization mass spectrometry detection.

TFA: trifluoroacetic acid

DMSO: dimethylsulfoxide

DEAD: diethyl axodicarboxylate

PPh3: triphenylphosphine

EDTA: ethylenediaminetetraacetic acid

BBr3: boron tribromide

Example 1: 4-Chloro-6-hydroxy-2-(4-hydroxyphenyl)benzoxazole

1) Synthetic method A: Synthesis of 2-amino-3-chloro-5-methoxyphenol

A solution of 3-chloro-5-methoxy-2-nitrophenol [1] (450 mg) and tin(III) chloride dihydrate (2 g, 4 eq.) in ethyl acetate (30 mL) was heated under reflux for 4 h. The mixture was cooled, diluted with ethyl acetate and aqueous potassium fluoride. The mixture was filtered through celite. The organic layer was washed with brine and dried over MgSO₄. Evaporation of the solvent afforded the title compound (280 mg) as a pale solid. NMR

20 (DMSO-46): 9.74 (m, 1H), 6.33 (d, 1H, J= 2.4 Hz), 6.30 (d, 1H, J= 2.4 Hz), 4.19 (m, 2H), 3.60 (s, 3H).

Reference 1: Hodgson, Wignall, *J. Chem. Soc.*, **1928**, 330. Prepared from 1-chloro-3,5-dimethoxybenzene by nitration with concentrated nitric acid in acetic anhydride below 10 °C to give 1-chloro-3,5-dimethoxy-2-nitrobenzene, and subsequent reaction with boron 25 tribromide (1 eq.) in dichloromethane from -78 °C to 0 °C.

- Synthetic method B: Synthesis of 4-chloro-2-(4-hydroxyphenyl)-6-methoxybenzoxazole (Example 2)
- A solution of 2-amino-3-chloro-5-methoxyphenol (270 mg) and ethyl 4-hydroxybenzimidate hydrochloride (376 mg, 1.2 eq.) in absolute ethanol (5 mL) was heated 5 under reflux for 4 h. The mixture was cooled, partitioned between ethyl acetate and water. The organic layer was dried over MgSO₄. After evaporation of the solvent, the residue was triturated with methanol to give the title compound (130 mg) as a light orange solid. NMR (DMSO-d₅): 10.35 (s, 1H), 8.00 (d, 2H, J= 8.7 Hz), 7.39 (d, 1H, J= 2.1 Hz), 7.10 (d, 1H, J= 2.1 Hz), 6.96 (d, 2H, J= 8.7 Hz), 3.85 (s, 3H); MS: 276 (MH⁺).
- 3) Synthetic method C: Synthesis of 4-chloro-6-hydroxy-2-(4-hydroxyphenyl)benzoxazole
 To a suspension of 4-chloro-2-(4-hydroxyphenyl)-6-methoxybenzoxazole
 (240 mg) in dichloromethane (5 mL) cooled at ~78 °C was added boron tribromide (5 mL, 1M solution in dichloromethane, 5.7 eq.). The mixture was stirred at ~78 °C for 10 min, warmed to room temperature and stirred for 3 h. The mixture was poured onto ice/water and extracted with ethyl acetate. The organic layer was washed with brine and dried over MgSO₄.
 Chromatography on a silica gel column (cluant: acetone -dichloromethane, gradient from 0:100 to 5:95) and trituration of the resulting solid in dichloromethane afforded the title compound (53 mg) as a solid. NMR (DMSO-d₆): 10.31 (s, 1H), 10.17 (s, 1H), 7.98 (d, 2H, J= 8.4 Hz), 7.06 (s, 1H), 6.95 (d, 2H, J= 8.4 Hz), 6.87 (s, 1H); MS: 262 (MH⁺); HPLC I_R: 1.99
 - Example 3: 6-Hydroxy-2-(4-hydroxyphenyl)-4-methylbenzoxazole

 1) Synthesis of 2-(4-hydroxyphenyl)-6-methoxy-4-methylbenzoxazole (Example 4)

 According to synthetic method B, from 2-amino-5-methoxy-3-methylphenol [2] (440 mg) was

20 min

25 Reference 2: Musso H; Beecken H, Chem. Ber. 1961, 94, 585; made from 3,5-dimethoxytoluene by nitration and monodeprotection of the 3-methoxy with BBr₃ similarly to Ref. 1 followed by reduction of the nitro group to the amino by hydrogenation with palladium on charcoal.

obtained the title compound (340 mg) as a light orange solid. MS: 256 (MH+).

2) According to synthetic method C, the above compound (220 mg) was converted to 6-30 hydroxy-2-(4-hydroxyphenyl)-4-methylbenzoxazole (112 mg) as a light pinkish powder. NMR (DMSO-d₆): 10.14 (s, 1H), 9.58 (s, 1H), 7.94 (d, 2H, J= 8.7 Hz), 6.92 (d, 2H, J= 8.7 Hz), 6.84 (s, 1H), 6.63 (s, 1H), 2.46 (s, 3H); MS: 242 (MH⁺).

Example 5: 4,6-Dihydroxy-2-(4-hydroxyphenyl)benzoxazole

A mixture of 1-nitro-2,4,6-trihydroxybenzene (1 g) and 10% palladium on charcoal (200 mg) in absolute ethanol (10 mL) was stirred for 18 h at room temperature under a 50-PSI atmosphere of hydrogen. The solids were filtered rapidly. To the resulting filtrate was added 5 ethyl 4-hydroxybenzimidate hydrochloride (1.17 g). The mixture was heated at reflux for 5 h under nitrogen, cooled and partitioned between ethyl acetate and water. The organic layer was washed with water and brine, and dried over MgSO4. Chromatography on silica gel (cluant: acetone - dichloromethane, gradient 10:90 to 20:80) and trituration of the resulting solid with ether afforded the title compound (28 mg) as a light pinkish solid. NMR (DMSO-dc): 10.15 10 (m, 2H,) 9.53 (s, 1H), 7.91 (d, 2H, J= 8.7 Hz), 6.92 (d, 2H, J= 8.7 Hz), 6.48 (d, 1H, J= 1.5 Hz); MS: 244 (MH).

Example 6: 6-Hydroxy-2-(4-hydroxyphenyl)benzoxazole

According to synthetic method B except that pyridine (300 μL) was added, from 4aminoresorcinol hydrochloride (435 mg) and ethyl 4-hydroxybenzimidate hydrochloride was

15 obtained the title compound (432 mg) as an off-white solid. The work-up of the reaction was
modified as follows: After completion of the reaction, the mixture was diluted with ether and
water, and filtered. The solids were washed with water and ether, and dried under high
vacuum. NMR (DMSO-46): 10.23 (s br, 1H), 9.76 (s br, 1H), 7.95 (d, 2H, J= 8.4 Hz), 7.50 (d,
1H, J= 8.4 Hz), 7.05 (d, 1H, J= 1.8 Hz), 6.94 (d, 2H, J= 8.4 Hz), 6.81 (dd, 1H, J= 8.4 Hz, J'=

20 1.8 Hz): MS: 228 (MH⁺).

Example 7: 5-Hydroxy-2-(4-hydroxyphenyl)benzoxazole

According to synthetic method B, from 2-amino-4-methoxyphenol [3] (500 mg) and ethyl 4-hydroxybenzimidate hydrochloride was obtained 2-(4-hydroxyphenyl)-5-methoxybenzoxazole (676 mg; Example 8). NMR (DMSO-d₆): 10.28 (s, 1H), 8.01 (d, 2H, J= 25 8.7 Hz), 7.61 (d, 1H, J= 9 Hz), 7.28 (d, 1H, J= 2.4 Hz), 6.94 (m, 3H), 3.82 (s, 3H); MS: 242 (MH²). This compound (452 mg) was converted to the title compound (121 mg) according to synthetic method C. NMR (DMSO-d₆): 10.24 (s, 1H), 9.42 (s br, 1H), 7.99 (d, 2H, J= 8.7 Hz), 7.49 (d, 1H, J= 9 Hz), 7.02 (d, 1H, J= 2.1 Hz), 6.94 (d, 2H, J= 8.7 Hz), 6.78 (dd, 1H, J= 9 Hz, J² = 2.1 Hz); MS: 226 (M-H).

30 Reference 3: Lok R, Leone RE, Williams AJ, J. Org. Chem. 1996, 61, 3289.

-28-

Example 9: 4-Chloro-2-(2-chloro-4-hydroxy-phenyl)-benzooxazol-6-ol

Synthetic method D: Synthesis of 2-chloro-4-methoxy-benzoic acid methyl ester

5 K₂CO₃ (2.4 g) and methyl iodide (0.75 mL). After 2 h, water was added to the reaction mixture and extracted with ethyl acetate. The organic layer was washed with brine (3X) and dried over MgSO₄. Flash chromatography on silica gel eluting with 10% ethyl acetate – hexane afforded 1.13 g (95%) of the title compound as an oil. MS: 201 (MH⁺), HPLC t_R: 2.52 min.

To 2-chloro-4-hydroxy-benzoic acid hydrate (1.1 g) in DMF (20 mL) was added

10 Synthetic method E: Synthesis of 2-chloro-4-methoxy-benzoic acid

To 2-chloro-4-methoxy-benzoic acid methyl ester (1.1 g) in THF/MeOH/water (12 mL/3 mL) at room temperature was added LiOH (461 mg) dissolved in water. After 2 h, the reaction mixture was adjusted to pH 4 with 1N HCl and partitioned between ethyl acetate and water. The organic layer was washed with brine and dried over MgSO₄.

15 Trituration of the resulting solid in ether afforded 1.0 g (98%) of the title compound. MS: 187 (MH¹), HPLC t_R: 2.04 min.

Synthetic method F: Synthesis of 2-amino-3-chloro-5-methoxyphenol

To 3-chloro-5-methoxy-2-nitrophenol, synthetic method A [1], (200 mg) in 95% EtOH (10 mL) was added 5% Ru/C (20 mg) and hydrazine (0.36 mL). The mixture was placed in an

oil bath and heated to 85 °C for 2 h. After reaction cooled, the mixture was diluted with ethyl acetate and filtered through a pad of celite and concentrated. Flash chromatography on silica gel eluting with 30% ethyl acetate — hexane afforded 138 mg (76%) of the title compound as a solid. MS: 174 (MH⁺), HPLC t_R: 0.84 min.

5 Synthetic method G: Synthesis of 2-chloro-N-(2-chloro-6-hydroxy-4-methoxy-phenyl)-4-methoxy-benzamide.

To 2-chloro-4-methoxy-benzoic acid (100 mg) in CH₂Cl₂ (5 mL) was added oxalyl chloride (0.05 mL) and 2 drops of DMF. The reaction mixture was allowed to stir for 2 h and then concentrated to dryness. The resulting acid chloride was taken up in CH₂Cl₂ and added drop wise to a cool mixture of 2-amino-3-chloro-5-methoxyphenol (94 mg), 10% Na₂CO₃ (2.5 mL), and CH₂Cl₂ (5mL) placed in an ice water bath. After 2 h, water was added to the reaction and extracted with additional CH₂Cl₂ and the organic layer was dried over Na₂SO₄. Flash chromatography on silica gel eluting with 0% to 30% ethyl acetate — hexane afforded 100 mg (54%) of the title compound as an solid. MS: 342 (MH), HPLC t_R: 2.54 min.

Synthetic method H: Synthesis of 4-chloro-2-(2-chloro-4-methoxy-phenyl)-6-methoxy-

benzooxazole

Reference 4. Wang, F.; Hauske, J. R.; Tetrahedron Lett. 1997, 38 (37) 6529-6532

2-Chloro-N-(2-chloro-6-hydroxy-4-methoxy-phenyl)-4-methoxy-benzamide (40 mg) was completely dissolved in THF (5 mL) and PPH₃ (46 mg) was added and the mixture was stirred until all PPH₃ dissolved. To this mixture was added drop wise DEAD (0.03 mL) diluted in THF (0.5 mL). The mixture was stirred at room temperature for 2 h and the reaction mixture was diluted with ethyl acetate and washed with water, brine, dried over MgSO₄ and concentrated. Flash chromatography on silica gel eluting with 10% to 30% ethyl acetate – hexane afforded 32 mg (85%) of the title compound as a solid. MS: 324 (MH⁺),

25 HPLC t_R: 3.18 min.

Synthetic method I: Synthesis of 4-chloro-2-(2-chloro-4-hydroxy-phenyl)-benzooxazol-6-ol

To 4-chloro-2-(2-chloro-4-methoxy-phenyl)-6-methoxy-benzooxazolc (52 mg) in

CH₂Cl₂ (2 mL) placed in and ice water bath was added drop wise 1.0 M BBr₃ in CH₂Cl₂ (0.96

mL, 6 eq). After the reaction stirred over night, the mixture was placed in an ice water bath

and excess MeOH was added drop wise to quench excess BBr₃ and the mixture was stirred for
an additional 20 min and concentrated. Flash chromatography on silica gel eluting with 0%

to 40% ethyl acetate – hexane afforded 35 mg (74%) of the title compound as a solid. MS: 296 (MH⁺), HPLC to: 2.32 min.

Example 10: 7-Bromo-2-(4-hydroxy-phenyl)-benzooxazol-5-ol

Synthetic method J: Synthesis of 2-bromo-4-methoxy-6-nitro-phenol

4-Methoxy-2-nitro-phenol (10 g) was dissolved in glacial acetic acid (60 mL) and CH₃CO₂Na (8.2 g) was added. Next, bromine (3 mL) dissolved in glacial acetic acid (12 mL) was added drop wise to the stirring solution at room temperature. After complete addition of bromine, the mixture was stirred for 30 min at room temperature and then placed in an oil bath at 75 °C for 2 h. After reaction mixture cooled to room temperature, concentrated HCl (500 mL) was slowly added to the mixture followed by addition of ethyl acetate (500 mL). The layers were separated and the organic layer was washed with water, brine, dried (Na₂SO₄). Flash chromatography on silica gel eluting with 5% ethyl acetate – hexane afforded 8.8 g (60%) of the title compound as a solid. MS: 218 (MH⁺-30), HPLC t_R: 2.40 min.

15 According to synthetic methods F, G, H (except the reaction mixture was heated in an oil bath at 85 °C for 2h), and I was obtained 7-bromo-2-(4-hydroxy-phenyl)-benzooxazol-5-ol. MS: 308 (MH⁺), HPLC t_R: 2.29 min. NMR (DMSO-d₆): 10.34 (s, 1H), 9.82 (s, 1H), 7.99 (d, 2H, J = 8.4 Hz), 6.95-7.04 (m, 4H).

Example 12: 7-Bromo-2-(3-chloro-4-hydroxy-phenyl)-benzooxazol-5-ol

According to synthetic methods J (using 4-methoxy-2-nitro-phenol), F, G (using 3-chloro-4-methoxy-benzoic acid), H (except the reaction mixture was heated in an oil bath at 85 °C for 2h), and I the title compound was obtained. MS: 341 (MH*), HPLC tg: 2.30 min. NMR (DMSO-46): 11.17 (s, 1H), 9.85 (s, 1H), 8.04 (s, 1H), 7.95 (d, 1H, J= 8.2 Hz), 7.18 (d, 1H, J= 8.3 Hz), 7.05 (s, 1H), 7.02 (s, 1H).

25 Example 13: 2-(4-Hydroxy-phenyl)-7-iodo-benzooxazol-5-ol

20

Synthetic method K: Synthesis of 7-iodo-5-methoxy-2-(4-methoxy-phenyl)-benzooxazole

To 7-bromo-5-methoxy-2-(4-methoxy-phenyl)-benzooxazole (100 mg, from example
10, synthetic methods F, G, H, J), was added CuI (285 mg), KI (497 mg) and DMSO (5 mL).

The mixture was placed in an oil bath and heated to 180 °C for 4 h. The mixture was cooled
to room temperature and diluted with ethyl acetate and washed with brine (3X), dried
(MgSO₄), and concentrated. The crude solid was taken up in ethyl acetate and filtered through
a pad of celite and the filtrate was concentrated to dryness. Flash chromatography on silica gel

eluting with 20% ethyl acetate – hexane afforded 80 mg (70%) of the title compound as a solid. MS: 382 (MH'), HPLC tg: 3.00 min.

According to synthetic method I was obtained 2-(4-Hydroxy-phenyl)-7-iodo-benzooxazol-5-ol. MS: $354 \, (MH^+)$, HPLC t_8 : $2.26 \, min$.

5 Example 21: 7-Chloro-2-(4-hydroxy-phenyl)-benzooxazol-5-ol

Synthetic method L: Synthesis of 7-chloro-5-methoxy-2-(4-methoxy-phenyl)-benzooxazole

To 7-iodo-5-methoxy-2-(4-methoxy-phenyl)-benzooxazole (150 mg) in DMF (6 mL) was added CuCl (195 mg). The mixture was placed in an oil bath and heated to 150 °C for 3 h. The mixture was cooled to room temperature and diluted with ethyl acetate and washed with 1N HCl, brine (3X), dried (MgSO₄), and concentrated. Flash chromatography on silica gel eluting with 20% ethyl acetate – hexane afforded 100 mg (88%) of the title compound as a solid. MS: 290 (MH⁺), HPLC t_R: 2.89 min.

According to synthetic method I was obtained 7-chloro-2-(4-hydroxy-phenyl)-benzooxazol-5-ol. MS: 262 (MH^{\star}), HPLC tg : 2.09 min.

15 <u>Example 22</u>: 5-Hydroxy-2-(4-hydroxy-phenyl)-benzooxazole-7-carbonitrile Synthetic method M: Synthesis of 5-hydroxy-2-(4-hydroxy-phenyl)-benzooxazole-7-carbonitrile

To 7-bromo-2-(4-hydroxy-phenyl)-benzooxazol-5-ol (96 mg) in DMF (3 mL) was added CuCN (84 mg). The mixture was placed in an oil bath and heated to 150 °C for 3 h.

The mixture was cooled to room temperature and diluted with ethyl acetate and washed with 1N HCl, saturated aqueous EDTA, brine (3X), dried (Na₂SO₄), and concentrated. Flash chromatography on silica gel eluting with 20% ethyl acetate – hexane afforded 20 mg (25%) of the title compound as a solid. MS: 253 (MH⁴), HPLC to: 2.06 min.

Example 23: 5-Hydroxy-2-(4-hydroxy-phenyl)-benzooxazole-7-carboxylic acid amide 25 Synthetic method N: Synthesis of 5-methoxy-2-(4-methoxy-phenyl)-benzooxazole-7carbonitrile

To 7-bromo-5-methoxy-2-(4-methoxy-phenyl)-benzooxazole (200 mg) in DMF (5 mL) was added CuCN (80 mg). The mixture was placed in an oil bath and heated to 150 °C for 3 h. The mixture was cooled to room temperature and diluted with ethyl acetate and

30 washed with 1N HCl, brine (3X), dried (Na₂SO₄), and concentrated. Flash chromatography on silica gel eluting with 20% ethyl acetate – hexane afforded 85 mg (50%) of the title compound as a solid. MS: 281 (MH²), HPLC ts: 2.71 min.

According to synthetic method I was obtained 5-hydroxy-2-(4-hydroxy-phenyl)-benzooxazole-7-carboxylic acid amide by residual acid hydrolysis of the nitrile substituent upon concentration of the crude reaction mixture. MS: 271 (MH^{*}), HPLC t_k: 2.04 min. <u>Example 30:</u> 2-(2-Cyano-4-hydroxy-phenyl)-5-hydroxy-benzooxazole-7-carbonitrile

5 Synthetic method O: Synthesis of 2-(2-cyano-4-hydroxy-phenyl)-5-hydroxy-benzooxazole-7carbonitrile

To 2-(2-chloro-4-hydroxy-phenyl)-7-iodo-benzooxazol-5-ol (279 mg) in DMF (5 mL) was added CuCN (97 mg). The mixture was placed in an oil bath and heated to 150 °C for 3 h. The mixture was cooled to room temperature and diluted with ethyl acetate and washed with 1N HCl, saturated aqueous EDTA, brine (3X), dried (Na₂SO₄), and concentrated. Material was purified by preparative LC/MS. MS: 278 (MH⁻), HPLC t_R: 1.92 min. The HPLC conditions used are the following: HPLC Waters Corp. Novapak HRTM C 18 RCM 40 X 100 mm 6µm particle; flow rate 40 mL/min, linear gradient from 35% B to 65% B over 15 min; A= water, 0.1% TFA; B= MeOH, UV detection at 254 mm and positive ionization mass 15 spectrometry detection

Example 31: 6-Bromo-2-(4-hydroxy-phenyl)-benzooxazol-5-ol

Synthetic method P: Synthesis of 1-bromo-2.5-dimethoxy-4-nitro-benzene

The title compound was synthesized according to the methods describe by Reference
5: Jean-Luc Grenier, Jean-Pierre Catteau and Phillippe Cotelle, Synthetic Communications,
20 29(7), 1201-1208 (1999).

According to synthetic methods F, G, H and I, was obtained 6-bromo-2-(4-hydroxy-phenyl)benzooxazol-5-ol. MS: 308 (MH⁺), HPLC to: 2.18 min.

Example 32: 4-(6-Hydroxy-benzooxazol-2-yl)-thiazolidin-2-one

Reference 6. Steven W. Goldstien and Paul J. Dambek, J. Heterocyclic Chem. 1990, 27, 225.

25 Synthetic method Q: Synthesis of 2-oxo-thiazolidine-4-carboxylic acid (2-hydroxy-4-methoxy-phenyl)-amide

To 2-oxo-thiazolidine-4-carboxylic acid (492 mg) in CH₂Cl₂ (10 mL) was added oxalyl chloride (0.35 mL) and 2 drops of DMF. The reaction mixture was allowed to stir for 2 h and then concentrated to dryness. The resulting acid chloride was taken up in CH₂Cl₂ and added drop wise to a cool mixture of 2-amino-5-methoxy-phenol (490 mg), Et₃N (1.56 mL), and CH₂Cl₂ (10 mL) placed in an ice water bath. After 2 h, water and CH₂Cl₂ was added to the reaction mixture and lavers separated. The organic layer was washed with 1N HCl. To

WO 02/051821

-33-

the HCl aqueous layer was added brine and CH2Cl2 to salt-out the title compound, the organic layers were combined, dried (Na2SO4) and concentrated to afford 448 mg (60%) of the title compound. The crude amide was used directly in the next step. MS: 269 (MH⁺), HPLC to: 1 37 min

5 Synthetic method R: Synthesis of 4-(6-methoxy-benzooxazol-2-yl)-thiazolidin-2-one

To 2-oxo-thiazolidine-4-carboxylic acid (2-hydroxy-4-methoxy-phenyl)-amide (50 mg) in p-xylene (3 mL) was added pyridinium p-toluenesolfonate (42 mg). The reaction mixture was refluxed for 2 h and then allowed to cool to room temperature. The mixture was diluted with ethyl acetate and water was added. The layers were separated and the organic 10 layer was washed with brine, dried (Na₂SO₄), and concentrated. Flash chromatography on silica gel eluting with 3% methanol - methylene chloride afforded 42 mg (90%) of the title compound as a solid. MS: 251 (MH+), HPLC to: 1.60 min. According to synthetic method I was obtained 4-(6-hydroxy-benzooxazo1-2-yl)-thiazolidin-2one 30 mg (63%). MS: 237 (MH+), HPLC tR: 1.20 min.

15 Example 33: 7-Bromo-2-phenyl-benzooxazol-5-ol

tert-Butyl-chloro-silane (0.25 mL) was added to a mixture of 2-bromo-4-methoxy-6nitro-phenol (0.124 g), chromium (II) chloride (0.012 g) and manganese (0) powder (0.137 g) in dimethylformamide (3 mL). The mixture was subjected to microwaves for 4 min at 150 °C. Benzaldehyde (0.06 mL) was added and the reaction was subjected to microwaves for 6 min 20 at 150 °C. Water (0.5 mL) was added, then after 30 min the mixture was filtered through a pad of celite. The above procedure was repeated three more times. The combined filtrate was partitioned between dilute ag. HCl (100 mL) and ethyl acetate (100 mL). The organic layer was dried over sodium sulfate, filtered through celite and concentrated. Chromatography on silica gel (eluant: gradient 0 to 30% ethyl acetate:hexane) afforded 7-bromo-5-methoxy-2-25 phenyl-benzooxazole (0.13g). MS: 304 (95%), 306.4 (100%) (MH⁺); HPLC tg: 2.79 min. Reference 7: J. Org. Chem. 2001, 66, 991-996. 7-Bromo-5-methoxy-2-phenyl-benzooxazole was deprotected using synthetic method C to give the title compound (0.060 g) after purification on silica gel (eluant: 5 to 30% ethyl acetate:hexane). MS: 290.3, 292.3 (MH+); HPLC t_R: 2.44 min.

30 Example 35: 2-(1H-Indazol-5-yl)-benzooxazol-6-ol

1H-Indazole-5-carbonitrile hydrochloride (1.5 g) was suspended in ethanol (15 mL) at 0 °C. The mixture was saturated with hydrogen chloride while the temperature was raised to

room temperature. The reaction was then left overnight. Diethylether was added and the resulting precipitate, 1*H*-indazole-5-carboximidic acid ethyl ester • 2HCl (1.39 g), was collected and dried in under high vacuum. According to synthetic method B except that pyridine (540 ?L.) was added, from 4-amino-benzene-1,3-diol hydrochloride (0.36 mg) and 1*H*-indazole-5-carboximidic acid ethyl ester hydrochloride (0.71 g) was obtained the title compound (0.34 mg) as an off-white solid. The work-up of the reaction was modified as follows: After completion of the reaction, the mixture was diluted with ether and water, and filtered. The solids were washed with water and ether, and dried under high vacuum. MS: 252.4 (MH⁺): HPLC br: 1.80 min.

10 Example 36: 5-(7-Bromo-5-methoxy-benzooxazol-2-yl)-pyrrolidin-2-one

2-Amino-6-bromo-4-methoxy-phenol (0.40 g), 1,3-dimethylaminopropyl)-3ethylcarbodiimide (1.06 g), 1-hydroxybenzotriazole (0.50 g), dimethylaminopyridine (0.22 g)
and DL-5-oxo-pyrrolidine-2-carboxylic acid (0.25 g) were reacted together in methylene
chloride (7.3 mL). After 3 h, the reaction was diluted with methylene chloride (10 mL) and
washed successively with 1N HCl (10 mL), sat. aq. NaHCO₃ (10 mL), sat. aq. NaCl (10 mL).
The organic layer was dried over sodium sulfate, filtered through celite and concentrated.
Chromatography on silica gel (cluant: 0 to 20% methanol:methylene chloride) afforded 5-oxo-pyrrolidine-2-carboxylic acid (3-bromo-2-hydroxy-5-methoxy-phenyl)-amide (0.18 g). MS:
370.2 (100%), 372.2 (90%) (MH*); HPLC tg: 1.51 min. 5-Oxo-pyrrolidine-2-carboxylic acid
to obtain the title compound (0.09 g) after purification on silica gel (cluant: 0 to 30%
methanol:methylene chloride). MS: 352.2 (100%), 354.2 (95%) (MH*+CH₃CN), 311.2 (20%),
313.2 (20%) (MH*); HPLC tg: 1.84 min.

Reference Example 37. 5-Methoxy-2-aminobenzenethiol hydrochloride

25 Prepared following literature procedure: Can. J. Chem. 43,1965, 2610.

Example 38. 6-Hydroxy-2-R-benzothiazol

5-Methoxy-2-aminobenzenethiol hydrochloride was dissolved in 1-methyl-2-pyrrolidinone. After triethylamine (1eq) was added, the mixture was stirred at room temperature for 10 min. Acid chloride (1eq) was then added and the mixture was heated at 100 °C for 1h. The mixture was then cooled to room temperature and 1N NaOH was added to PH 9. The solid was collected by filtration and washed with water. The solid was further dried on vacuum to give 6-methoxy-2-R-benzothiazol (yield step 1) which was treated with boron tribromide under standard procedure to give 6-hydroxy-2-R-benzothiazol (yield step 2).

R group	\s\s\	T°)	~~~°	CI
yield on step 1	68	29	70	85 ·
yield on step 2	66	68	39	85
Mass Spec MH ⁺	234	218	253	297

10 Example 39. 4-Methyl-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole

To a solution of 4-bromo-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (1.0g, 2.86mmol) in dry toluene (25 mL) was added potassium carbonate (4.2g, 30.4 mmol), methylboronic acid (0.92g, 15.3 mmol) and tetrakis(triphenylphosphine)palladium (0.44g, 0.38 mmol). The mixture was heated to 100 °C for 24h, then cooled to room temperature. The mixture was diluted with ethylacetate and washed with water, saturated sodium carbonate and brine. After chromatographic purification gave 4-methyl-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole as a white solid (0.63g, 77% yield). Mass spec: MH^{**}= 286.

Example 40. 4-Methyl-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole

4-Methyl-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (174 mg, 0.61mmol) was treated with boron tribromide under standard condition to give 4-methyl-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole (105mg, 67% yield) as a yellow solid. Mass spec: MH⁺= 258.

Example 41. 4-Bromomethyl-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole

5

4-Methyl-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (0.53g, 1.87mmol), N-bromosuccinimide (0.33g, 1.87mmol) and benzoyl peroxide (9mg) were suspended in carbon tetrachloride (6 mL) and refluxed for 3.5h, then cooled to room temperature. Solvent was evaporated and the mixture was purified by chromatography to give 4-bromomethyl-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (0.47g, 70% yield) as a white solid. Mass spec: MH⁺=364.

Example 42. 4-Cyanomethyl-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole

To a solution of 4-bromomethyl-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (0.47g, 1.29mmol) in ethanol (6mL) was added a solution of potassium cyanide (0.1g, 1.54mmol) in water (0.5mL). The mixture was refluxed for 1.5h, then cooled to room temperature. Ethanol was evaporated and the mixture was extracted with ethylacetate. After chromatographic purification gave 4-cyanomethyl-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole as a yellow solid (0.29g, 73% yield). Mass spec: MH⁺= 311.

20 Example 43. 4-Cyanomethyl-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole

4-Methylcyano-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (0.29g, 0.94mmol) was treated with boron tribromide under standard condition to give 4cyanomethyl-6-hydroxy2-(4-hydroxy-phenyl)-benzothiazole (116mg, 44% yield) as a yellow solid. Mass spec: MH'= 283.

Example 44. 4-Trimethylsilylacetylene-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole

4-Bromo-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (0.3g, 0.857mmol),

(trimethylsilyl)acetylene (0.48mL, 3.43mmol), triethylamine (0.48mL, 3.43mmol) and

tetrakis(triphenylphosphine)palladium (0.2g, 0.171mmol) were suspended in THF (6mL) in a

sealed tube and heated to 70°C for 24h, then cooled to room temperature. Ethylacetate and

water were added, the ethylacetate layer was washed with brine. After chromatigraphic

purification gave 4-trimethylsilylacetylene-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole

(0.132g, 42% yield) as a yellow solid. Mass spec: MH*=368.

Example 45. 4-Acetylene-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole

5

To a solution of 4-trimethylsilylacetylene-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole
(0.216g, 0.588mmol) in THF (5mL) was added 1N sodium hydroxide (1.18mL, 1.18mmol)
and the solution was stirred at room temperature for 3h. THF was then evaporated. Water and
ethylacetate were added. Combined ethylacetate were concentrated. After chromatigraphic
purification gave 4-acetylene-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (0.113g, 65%
vield) as a vellow solid. Mass spec: MH⁺= 296

Example 46. 4-Acetylene-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole

-38-

4-Acetylene-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (93mg, 0.315mmol) was treated with boron tribromide under standard condition to give 4-acetylene-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole (47mg, 46% yield) as a yellow solid. Mass spec: MH[†] = 268

5 Example 47. 4-Methylcarboxy-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole

4-Bromo-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (1.0g, 2.86mmol), triethylamine (0.96mL, 7.15mmol) palladium acetate (31mg, 0.143mmol) and 1,3-bis(diphenylphosphino)propane (57mg, 0.143mmol) were suspended in methanol (7mL) and DMSO (7mL). The mixture was heated to 75°C and bubbled with CO for 20min. The mixture was then heated under CO for 48h. After cooling to room temperature, brine was added. The mixture was extracted with ethylacetate. Combined ethylacetate were concentrated. After chromatographic purification gave 4-methylcarboxy-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (0.37g, 39% yield) as a white solid. Mass spec: MH[†]= 330.

15 Example 48. 4-Carboxy-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole

To a solution of 4-methylcarboxy-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (0.37g, 1.12mmol) in THF (6mL) and water (3mL) was added 1N sodium hydroxide (2.24mL, 2.24mmol) and the solution was stirred at room temperature for 24h. THF was then evaporated. 1 N HCl was added to PH 1. The solid was collected by filtration and washed with water to give 4-carboxy-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (0.29g, 82% yield) as a white solid. Mass spec: MH¹=316.

Example 49. 4-Carboxy-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole

4-Carboxy-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (50mg, 0.159mmol) was treated with boron tribromide under standard condition to give 4-carboxy-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole (34mg, 74% yield) as a yellow solid. Mass spec: MH[†]=288. 1H NMR
 (DMSO-d6): 10.24 (s, 1H), 10.16 (s, 1H), 7.91 (d,2H), 7.67 (s, 1H), 7.48 (s, 1H), 6.95 (d, 2H).

Example 50. 4-Carboxyamide-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole

4-Carboxy-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (1eq), 1-hydroxybenzotriazole (2.4eq), dimethylamine or methylamine (3.7eq) and 1-ethyl-3-(3-

10 dimethylaminopropyl)carbodiimide hydrochloride (2.3eq) were suspended in DMF and stirred at room temperature for 5 min. Triethylamine (4.1eq) was added and the mixture was stirred at room temperature for 24h. [when R₁=R₂=H, only 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (2.05eq) and 1-hydroxybenzotriazole ammonia (2.46eq) were added]. Saturated sodium bicarbonate was added and the mixture was extrated with ethylacetate. Combined ethylacetate were washed with brine, concentrated. After chromatographic purification gave the product (yield step 1) which was further treated with boron tribromide under standard condition to give 4-carboxyamide-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole (yield step 2).

R ₁ /R ₂	R ₁ =R ₂ =Me	R ₁ =H, R ₂ =Me	R ₁ =R ₂ =H
yield on step 1	86	67	91
yield on step 2	100	70	44
Mass Spec MH	315	301	287

Example 51. 6-Methoxy-2-(2-bromo-3-methoxy-phenyl)-benzothiazole

5-Methoxy-2-aminobenzenethiol hydrochloride (83g, 4.33mmol) was dissolved in 1-methyl2-pyrrolidinone (10mL). After triethylamine (0.60mL, 4.33mmol) was added, the mixture was

5 stirred at room temperature for 10 min. 2-Bromo-3-methoxybenzoyl chloride (1.08g,
4.33mmol) in 1-methyl-2-pyrrolidinone (10mL) was then added and the mixture was heated at

100 °C for 40min. The mixture was cooled to room temperature and 1N NaOH was added to

PH 9. The mixture was extracted with ethylacetate and combined ethylacetate were washed

with brine, concentrated. After chromatographic purification gave 6-methoxy-2-(2-bromo-3
methoxy-phenyl)-benzothiazole (0.98g, 65% yield) as a vellow solid. Mass spec: MH*=350.

Example 52. 6-Hydroxy-2-(2-bromo-3-hydroxy-phenyl)-benzothiazole

6-Methoxy-2-(2-bromo-3-methoxy-phenyl)-benzothiazole (0.144g, 0.411mmol) was treated with boron tribromide under standard condition to give 6-hydroxy-2-(2-bromo-3-hydroxy-phenyl)-benzothiazole (35mg, 26% yield) as a yellow solid. Mass spec: MH⁺=322.

Example 53. 6-Methoxy-2-(2-methyl-3-methoxy-phenyl)-benzothiazole

To a solution of 6-methoxy-2-(2-bromo-3-methoxy-phenyl)-benzothiazole (0.128, 0.366mmol) in dry toluene (4 mL) was added potassium carbonate (0.404g, 2.92 mmol), methylboronic acid (88mg, 1.47mmol) and tetrakis(triphenylphosphine)palladium (42mg, 0.036mmol). The mixture was heated to 100 °C for 3h, then cooled to room temperature. The mixture was diluted with ethylacetate and washed with water, saturated sodium carbonate and brine. After chromatographic purification gave 6-methoxy-2-(2-methyl-3-methoxy-phenyl)-benzothiazole (66mg, 63% yield) as a white solid. Mass spec: MH⁺= 286.

Example 54. 6-Hydroxy-2-(2-methyl-3-hydroxy-phenyl)-benzothiazole

6-Methoxy-2-(2-methyl-3-methoxy-phenyl)-benzothiazole (64mg, 0.224mmol) was treated with boron tribromide under standard condition to give 6-hydroxy-2-(2-methyl-3-hydroxy-phenyl)-benzothiazole (52mg, 90% yield) as a yellow solid. Mass spec: MH*=258.

Example 55. 6-Methoxy-2-(3-methoxy-phenyl)-benzothiazole

To a solution of 6-methoxy-2-(2-bromo-3-methoxy-phenyl)-benzothiazole (0.182, 0.52mmol) in dry DMF (3 mL) was added cesium carbonate (0.51g, 1.57 mmol), triethylborane (0.58mL, 10 1M in THF, 0.58mmol) and 1,1'-bis(diphenylphosphino)ferrocene palladium dichloride dichloromethane (18mg, 0.022mmol). The mixture was heated to 50 °C for 24h, then cooled to room temperature. Saturated sodium bicarbonate was added and the mixture was extracted with ethylacetate. Combined ethylacetate were washed with brine, concentrated. After chromatographic purification gave 6-methoxy-2-(3-methoxy-phenyl)-benzothiazole (54mg, 15 38% yield) as a white solid. Mass spec: MH⁺=272.

Example 56. 6-Hydroxy-2-(3-hydroxy-phenyl)-benzothiazole

6-Methoxy-2-(3-methoxy-phenyl)-benzothiazole (54mg, 0.199mmol) was treated with boron tribromide under standard condition to give 6-hydroxy-2-(3-hydroxy-phenyl)-benzothiazole
 (15mg, 31% yield) as a yellow solid. Mass spec: MH⁺= 244.

Example 57. 6-Hydroxy-2-(2-R-3-hydroxy-phenyl)-benzothiazole

5-Methoxy-2-aminobenzenethiol hydrochloride (1eq) was dissolved in 1-methyl-2pyrrolidinone. After triethylamine (1eq) was added, the mixture was stirred at room
temperature for 10 min. 2-R-3-methoxybenzoyl chloride (1eq) in 1-methyl-2-pyrrolidinone
was then added and the mixture was heated at 100 °C (reaction time in the table). The mixture
was extracted with ethylacetate and combined ethylacetate were washed with brine, concentrated. After
chromatographic purification gave 6-methoxy-2-(2-R-3-methoxy-phenyl)-benzothiazole (yield
step 1) which was treated with boron tribromide under standard condition to give the title
compound (yield step 2).

R group	—CH₂CH₃	—CH(CH ₃) ₂	CH ₂
Reaction time on step 1	45min	300min	30min
Yield on step 1	49	25	15
Yield on step 2	77	100	43
Mass spec MH ⁺	272	286	284

10

Example 58. 4-Cyano-6-methoxy-2-(2-ethyl-3-methoxy-phenyl)-benzothiazole

The procedure was the same with 4-cyano-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole except using 2-ethyl-3-methoxy-benzoyl chloride instead of p-anisoyl chloride. Mass spec:

15 MH+=325.

Example 59. 4-Cyano-6-hydroxy-2-(2-ethyl-3-hydroxy-phenyl)-benzothiazole

4-Cyano-6-methoxy-2-(2-ethyl-3-methoxy-phenyl)-benzothiazole (0.1g, 0.31mmol) was treated with boron tribromide under standard condition to give the title compound (30mg, 33% yield) as a yellow solid. Mass spec:MH[†]=297.

Example 60. 4-Bromo-6-methoxy-2-(2-isopropyl-3-methoxy-phenyl)-benzothiazole

The procedure was the same with 4-bromo-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole except using 2-isopropyl-3-methoxy-benzoyl chloride instead of p-anisoyl chloride. Mass spec: MH*=392.

Example 61. 4-Bromo-6-hydroxy-2-(2-isopropyl-3-hydroxy-phenyl)-benzothiazol

10

follows:

5

4-Bromo-6-methoxy-2-(2-isopropyl-3-methoxy-phenyl)-benzothiazole (60mg, 0.153mmol) was treated with boron tribromide under standard condition to give the title compound (30mg, 54% yield) as a yellow solid. Mass spec:MH[†]=364.

- 15 Example 62. 4-Cyano-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole
 - 4-Cyano-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole (0.18g, 0.61 mmol) was suspended in boron tribromide (1M in methylene chloride, 5.0mL) and stirred at room temp under nitrogen for 18.0 hr. Reaction was poured into aqueous hydrochloric acid (1M). Solid was collected by filtration and washed with water. Washed solid was further purified by flash
- 20 chromatography on silica affording the title compound (150 mg, 92%) as a yellow solid. MH⁺ =269; ¹H NMR (300 MHZ, DMSO-d⁶,) d 10.42(s, 1 H), 10.27(s, 1 H), 7.91(d, J=8.7 bz, 2 H), 7.77(d, J=2.4 bz, 1H), 7.36(d, J=2.4 bz, 1 H), 6.94 (d, J=8.4 bz, 2 H).
 The starting 4-Cyano-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole was prepared as

..

a. N-(2-Bromo-4-Methoxy-phenyl)-4-methoxy-benzamide

To a solution containing 2-brome-4-methoxy-aniline¹ (3.2g, 15.8 mmol) in pyridine (25 mL) was added p-anisoyl chloride (2.82g, 16.5 mmol) dropwise under nitrogen. The reaction was 5 stirred at room temp for 1.0 hr. Reaction was poured cautiously into aqueous 1M hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. This tan solid was suspended in a solution containing: methanol (10 mL), methylene chloride (30 mL), and ethyl acetate (5 mL), mixed for 5 min, then allowed to sit for 15 min, yielding a white solid. This solid was 10 collected by filtration and dried under vacuum yielding the title compound (1.97g, 37%) as a white solid. Mass spec: MH⁺=336.

¹Prepared following literature procedure: Tet. (56) 2000, 1469

b. N-(2-Bromo-4-Methoxy-phenyl)-4-methoxy-thiobenzamide

15 N-(2-Bromo-4-Methoxy-phenyl)-4-methoxy-benzamide (1.87 g, 5.6 mmol) and Lawesson's reagent (1.35g, 3.3 mmol) were suspended in chlorobenzene (15 mL) and heated to reflux under nitrogen for 3.0 hr. Reaction was cooled, solvent removed under vacuum yielding a yellow-orange solid. Solid was dissolved in ethyl acetate and washed with: 1) 1N HCl, 2) saturated brine. Remove solvent under vacuum. Solid was washed with hexane and dried under vacuum yielding the title compound (1.93g, 98%) as an orange solid. Mass spec: MH⁺ = 332

c. 4-Bromo-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole

WO 02/051821 PCT/SE01/02855 -45-

N-(2-Bromo-4-Methoxy-phenyl)-4-methoxy-thiobenzamide (1.5g, 4.25 mmol) was wetted with ethanol (5.0 mL). 30% Aqueous sodium hydroxide (10M, 3.4 mL) was added and stirred for 5 min. Water (6.8 mL) was added to provide a final suspension of 10% aqueous sodium hydroxide. Aliquots (1 mL) of this mixture were added at 1 min intervals to a heated (85 °C.) 5 stirred solution containing potassium ferricyanide (5.6g, 17 mmol) in water (50 mL). Reaction was kept at 85 °C for 30 min, and then cooled to room temp. Cold water (120 mL) was added. Mixture was allowed to sit undisturbed for 30 min. Precipitate was collected by filtration. washed with water, and dried under vacuum. Solid was washed with ether then dried under vacuum at 35 °C vielding the title compound (1.2g, 80%) as a pale tan solid. Mass spec: MH+ 10 =350.

d. 4-Iodo-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole 4-Bromo-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole (0.86g, 2.46 mmol), copper (1) iodide (2.34g, 12.3 mmol), and potassium iodide (4.08g, 24.6 mmol) were suspended in 15 DMSO (12 mL) and heated to 175 °C under nitrogen for 4 hr, then cooled to room temp. Reaction was poured cautiously into aqueous hydrochloric acid (1.0M), and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated sodium thiosulfate, 3) saturated brine and concentrated in vacuo. Solid was washed with methylene chloride/hexane (1:1), dried under vacuum yielding the title compound (0.87 g, 89%) as a pale orange solid MH+ = 398.

e. 4-Cyano-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole 4-Iodo-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole (258 mg, 0.65 mmol) and coppper (1) cyanide (87 mg, 0.975 mmol) were suspended in DMF (6.0 mL) under nitrogen and heated to 25 150°C for 2.0 hr then cooled to room temp. Reaction was poured cautiously into aqueous1M hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. Solid was washed

5

-46-

with ether/hexane (1:2), then dried under vacuum yielding the title compound (0.185 g, 96%) as a pale tan solid. MH⁺=297

Example 63. 4-Bromo-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole

4-Bromo-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole (200mg, 0.57 mmol) was suspended in boron tribromide (1M in methylene chloride, 7.5mL) and stirred at room temp under nitrogen for 3.0 hr. Reaction was poured into aqueous hydrochloric acid (1M)and
10 extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. Washed solid was further purified by flash chromatography on silica affording the title compound (184 mg, 100%) as a yellow solid. MH² = 322.

15 Example 64. 4-Iodo-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole

4-Iodo-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole (175mg, 0.44 mmol) [Compound of Example 1d] was suspended in boron tribromide (1M in methylene chloride, 3.5mL) and stirred at room temp under nitrogen for 72.0 hr. Reaction was poured into aqueous hydrochloric acid (1M)and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. Washed solid was further purified by flash chromatography on silica affording the title compound (158 mg, 97%) as a yellow solid. MH⁺=370

Example 65. 4-Chloro-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole

4-Chloro-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole (0.27g, 0.88mmol) was suspended in boron tribromide (1M in methylene chloride, 7.0mL) and stirred at room temp under nitrogen for 18.0 hr. Reaction was poured cautiously into aqueous 1M hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid 5 (1.0M), 2) saturated brine and concentrated in vacuo. Solid was washed with methylene chloride/methanol (97:3, 10 mL), and dried under vacuum vielding the title compound (0.240g, 98%) as a tan solid. Mass spec: MH+ =278 The starting 4-Chloro-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole was prepared as

follows:

10

a. N-(2-Chloro-4-hydroxy-phenyl)-4-methoxy-benzamide To a solution containing 2-chloro-4-hydoxy-aniline hydrochloride(1.44g, 8 mmol) in pyridine (10 mL) was added p-anisoyl chloride (1.38g, 8.1mmol) dropwise under nitrogen. The reaction was stirred at room temp for 1.0 hr. Reaction was poured cautiously into aqueous 1M 15 hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. This solid was washed with ether and dried under vacuum yielding the title compound (1.68g, 76%) as a tan solid. Mass spec: MH+ =278.

20 b. N-(2-Chloro-4-methoxy-phenyl)-4-methoxy-benzamide N-(2-Chloro-4-hydroxy-phenyl)-4-methoxy-benzamide (1.83g, 6.59 mmol) and potassium carbonate (1.82g, 13.2 mmol) were suspended in DMF (15 mL). Methyl iodide (0.62 mL, 9.89 mmol) was added and stirred at room temp under nitrogen for 15 min, then heated to 95°C for 18 hr. Reaction was cooled to room temp then poured cautiously into aqueous 1M

hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated NaHCO₃, 3) saturated brine and concentrated in vacuo.

Washed solid was further purified by flash chromatography on silica affording the title compound (1.31g, 68%) as a white solid, MH⁺ =292

c. N-(2-Chloro-4-methoxy-phenyl)-4-methoxy-thiobenzamide

5 N-(2-Chloro-4-methoxy-phenyl)-4-methoxy-benzamide (0.62 g, 2.13mmol) and Lawesson's reagent (0.52g, 1.28mmol) were suspended in chlorobenzene (10 mL) and heated to reflux under nitrogen for 3.0 hr. Reaction was cooled, solvent removed under vacuum yielding a yellow-orange solid which was further purified by flash chromatography on silica affording the title compound (0.60g, 92%) as a yellow solid. Mass spec: MH*=308

10

d. 4-Chloro-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole
 N-(2-Chloro-4-Methoxy-phenyl)-4-methoxy-thiobenzamide (0.307g, 1 mmol) was wetted with ethanol (4.0 mL). 30% Aqueous sodium hydroxide (10M, 0.8mL) was added and stirred for 5 min. Water (2.4 mL) was added to provide a final suspension of 10% aqueous sodium hydroxide. Aliquots (1 mL) of this mixture were added at 1 min intervals to a heated (85°C.) stirred solution containing potassium ferricyanide (1.32g, 4 mmol) in water (20 mL). Reaction was kept at 85°C for 30 min, and then cooled to room temp. Reaction was poured cautiously into aqueous 1M hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated NaHCO₃, 3) saturated brine and
 concentrated in vacuo. Solid was washed with ether, dried under vacuum yielding the title

Example 66. 2-(4-Hydroxy-phenyl)- 4-Trifluormethyl-6-hydroxy-benzothiazole

compound (0.285g, 93%) as a white solid, Mass spec; MH+=306

6-Methoxy-2-(4-Methoxy-phenyl) 4-Trifluoromethyl-benzothiazole (0.08g, 0.23 mmol) was suspended in boron tribromide (1<u>M</u> in methylene chloride, 5.0mL) and stirred at room temp under nitrogen for 18.0 hr. Reaction was poured into aqueous hydrochloric acid (1<u>M</u>). Solid was collected by filtration and washed with water. Washed solid was further purified by flash 5 chromatography on silica affording the title compound (21 mg, 29%) as a white solid. MH⁺ = 11

The starting 6-Methoxy-2-(4-Methoxy-phenyl) 4-Trifluoromethyl--benzothiazole was prepared as follows:

10 a. 6-Methoxy-2-(4-Methoxy-phenyl) 4-Trifluoromethyl-benzothiazole 4-Iodo-6-methoxy-2-(4-Methoxy-phenyl)-benzothiazole (397 mg, 1.0 mmol) [Compound of Example 1d] and coppper (0) powder (150 mg, 2.36mmol) were suspended in pyridine (15.0 mL) under nitrogen in a Parr bomb equipped with gas inlet.Trifluoromethyl Iodide (6.0g, 30.6 mmol)was added via the gas inlet. Reaction was heated to 165°C for 48.0 hr then cooled to 15 room temp. Remove pyridine under vacuum Reaction was suspended in ethyl acetate/1MHCl (200 mL, 1:1), and filtered. The ethyl acetate extract was washed with: 1) hydrochloric acid (1.0M), 2) saturated NaHCO₃ 3) saturated sodium thiosulfate, 4) saturated brine and concentrated in vacuo. Residue was further purified by flash chromatography on silica affording the title compound (0.16g, 47%) as a tan solid. Mass spec: MH*=339

Example 67. 2-(4-Hydroxy-phenyl)-6-hydroxy-benzothiazole

20

6-Methoxy-2-(4-methoxy-phenyl)-benzothiazole (134 mg, 0.49 mmol) and pyridine hydrochloride (1.34g, 11.6 mmol) were heated to 200°C under nitrogen for 40 min, and then cooled to room temp. Reaction was poured cautiously into aqueous hydrochloric acid (1M) and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. Residue was washed with ether/hexane

(1:4), dried under vacuum yielding the title compound (119 mg, 100%) as a yellow solid. MH^{\dagger} =244

The starting 6-Methoxy-2-(4-methoxy-phenyl)-benzothiazole was prepared as follows:

5 a. 2-Bromo-6-methoxy-benzothiazole

To a solution containing dry Copper (11) bromide (2.68g, 12 mmol), tri(ethylene glycol) dimethyl ether (5g) in acetonitrile (150 mL) was added isoamyl nitrite (2 mL, 15 mmol).

Reaction was stirred at room temp under nitrogen for 30 min. To this suspension was added, dropwise, a solution (obtained by sonification) containing 2-amino-6-methoxy-benzothiazole

- (1.8g, 10 mmol) and tri(ethylene glycol) dimethyl ether (5g) in acetonitrile (50 mL). Reaction was stirred at room temp for 10 min, and then heated to 50°C for 3 hr. Reaction was cooled to room temp, poured cautiously into aqueous 6M hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. Residue was crystallized from ether/hexane (1:10) yielding the title compound (1.48g, 61%) MH⁺=244
- Supernatant solution was concentrated, dried under vacuum yielding 2,7-dibromo-6-methoxybenzothiazole (0.45g. 14%) as a vellow solid. MH* = 322

b. 6-Methoxy-2-(4-methoxy-phenyl)-benzothiazole

20 2-Bromo-6-methoxy-benzothiazole (244 mg, 1 mmol), 4-methoxy-phenyl-boronic acid (198 mg, 1.3 mmol), tetrakis(triphenylphosphine) palladium (0) (58 mg, 0.05 mmol), and cesium fluoride (380 mg, 2.5 mmol) were suspended in acetonitrile (10 mL) and heated to reflux for 90 min under nitrogen. Reaction was cooled to room temp, poured cautiously into aqueous lM hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated NaHCO₃, 3) saturated brine and concentrated in vacuo. Washed solid was further purified by flash chromatography on silica affording the title compound (271 mg, 100%) as a pale vellow solid. MH*=272

-51-

Example 68. 7-Chloro-6-hydroxy-2-(4-hydroxy-phenyl)-benzothiazole

7-Bromo-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole (65 mg, 0.186 mmol)) and pyridine hydrochloride (1.6g, 13.8 mmol) were heated to 200°C under nitrogen for 45min, and then cooled to room temp. Reaction was poured cautiously into aqueousl M hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. Residue was further purified by flash chromatography on silica affording the title compound (51 mg, 99%) as a white solid. MH* =278

10 The starting 7-Bromo-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole was prepared as follows:

- a. 7-Bromo-6-methoxy-2-(4-methoxy-phenyl)-benzothiazole
- 2,7-Dibromo-6-methoxy-benzothiazole (94 mg, 0.29 mmol), 4-methoxy-phenyl-boronic acid (47 mg, 0.31 mmol), tetrakis(triphenylphosphine) palladium (0) (19 mg, 0.015 mmol), and cesium fluoride (110 mg, 0.725 mmol) were suspended in acetonitrile (10 mL) and heated to reflux for 90 min under nitrogen. Reaction was cooled to room temp, poured cautiously into aqueous lM hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated NaHCO₃, 3) saturated brine and concentrated in vacuo. Washed solid was further purified by flash chromatography on silica

Example 69. 7-Cyano-5-hydroxy-2- (4-hydroxy-phenyl)- benzothiazole

affording the title compound (71 mg, 70%) as a white solid. MH+ =350

5-Methoxy-2- (4-methoxy-phenyl)- benzothiazole-7-carbonitrile (0.04g, 0.135 mmol) was suspended in boron tribromide ($1\underline{M}$ in methylene chloride, 5.0mL) and stirred at room temp under nitrogen for 48 hr. Reaction was poured into aqueous hydrochloric acid ($1\underline{M}$) and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid

- 5 (1.0M), 2) saturated NaHCO₃, 3) saturated brine and concentrated in vacuo. This material was further purified by chromatography on silica yielding the title compound (14 mg, 39%) as a tan solid. Mass spec: MH⁺ =296
 - 5-Methoxy-2- (4-hydroxy-phenyl)- benzothiazole-7-carbonitrile (7 mg, 18%) was also obtained as a white solid from this chromatography.
- 10 The starting 7-Cyano-5-Methoxy-2- (4-methoxy-phenyl)- benzothiazole was prepared as follows:

a. 3-Amino-5-methoxy-phenol

3,5 Dimethoxy-aniline (1.53g, 10 mmol) and pyridine hydrochloride (6.9g, 60 mmol) were heated to 190°C under nitrogen for 60min, and then cooled to room temp. Reaction was poured cautiously into saturated NaHCO₃ and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) saturated NaHCO₃, 2) saturated brine and concentrated in vacuo. Residue was further purified by flash chromatography on silica affording the title compound (600 mg, 44%) as a tan oil, MH⁺ =139

20

b. N-(3-Hydroxy-5-Methoxy-phenyl)-4-methoxy-benzamide

To a solution containing 3-Amino-5-methoxy-phenol (0.59g, 4.28 mmol) in pyridine (5 mL) was added p-anisoyl chloride (0.77g, 4.49 mmol) dropwise under nitrogen. The reaction was stirred at room temp for 18hr. Reaction was cautiously poured into aqueous 1M hydrochloric acid and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. This tan solid was further purified

PCT/SE01/02855

by chromatography on silica yielding the title compound (0.97g, 83%) as a tan solid. Mass spec: $MH^{+}=274$.

c. Trifluoro-methanesulfonic-acid 3- methoxy-5-(4-methoxy-benzoyl amino)-phenyl ester

5 To a chilled (0°C) solution containing N-(3-Hydroxy-5-Methoxy-phenyl)-4-methoxy-benzamide (0.546g, 2 mmol), diisopropylethyl amine (646 mg, 5 mmol) in methylene chloride (15 mL) was added, dropwise, a solution containing triflic anhydride (0.846g, 3 mmol) in methylene chloride (6 mL) under nitrogen. The reaction was stirred at 0°C for 10 min and then allowed to warm to room temp for 18hr. Reaction was poured cautiously into saturated

10 NaHCO₃ and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) saturated NaHCO₃, 2) saturated brine and concentrated in vacuo. This material was further purified by chromatography on silica yielding the title compound (0.44g, 54%) as a tan oil. Mass spec: MH* =406.

15 d. N-(3-Cyano-5-methoxy-phenyl)-4-methoxy-benzamide

Trifluoro-methanesulfonic-acid 3- methoxy-5-(4-methoxy-benzoyl amino)-phenyl ester

(0.41g, 1 mmol) and potassium cyanide (0.163g, 2.5 mmol) were suspended in DMF (5 ml)
and heated to 120°C under nitrogen for 18 hr. Reaction was cooled to room temp, poured
cautiously into saturated NaHCO₃ and extracted with ethyl acetate. Ethyl acetate extracts were
washed with: 1) saturated NaHCO₃, 2) hydrochloric acid (1M), 3) saturated brine and
concentrated in vacuo. This material was further purified by chromatography on silica yielding
the title compound (0.17g, 60%) as a tan solid. Mass spec: MH* =283.

-54-

e. N-(3-Cyano-5-methoxy-phenyl)-4-methoxy-thiobenzamide

N-(3-Cyano-5-methoxy-phenyl)-4-methoxy-benzamide (80 mg, 0.28 mmol) and Lawesson's reagent (69 mg, 0.17mmol) were suspended in chlorobenzene (5 mL) and heated to reflux under nitrogen for 3.0 hr. Reaction was cooled, solvent removed under vacuum. Solid was dissolved in ethyl acetate and washed with: 1) hydrochloric acid (1.0M), 2) saturated NaHCO₃, 3) saturated brine and concentrated in vacuo yielding the title compound (83 mg, 100%) as a yellow-orange solid. Mass spec: MH* =298

10 f. 7-Cyano-5-Methoxy-2- (4-methoxy-phenyl)- benzothiazole

N-(3-Cyano-5-methoxy-phenyl)-4-methoxy-thiobenzamide (90 mg, 0.30 mmol) was wetted with ethanol (3.0 mL). 30% Aqueous sodium hydroxide (10M, 2.4 mL) was added and stirred for 5 min. Water (4.8 mL) was added to provide a final suspension of 10% aqueous sodium hydroxide. Aliquots (1 mL) of this mixture were added at 1 min intervals to a heated (85 °C.) stirred solution containing potassium ferricyanide (398 mg, 1.21 mmol) in water (6 mL). Reaction was kept at 85 °C for 30 min, and then cooled to room temp. Cold water (120 mL) was added. Extract with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated NaHCO₃, 3) saturated brine and concentrated in vacuo. This material was further purified by chromatography on silica yielding the title compound 20 (44 mg, 49%) as a white solid. Mass spec: MH⁺=296.

Example 70. 2-(4-Amino-phenyl)-6-hydroxy-benzothiazole

4-(6-Methoxy-benzothiazol-2-yl)-phenylamine (27 mg, 0.105 mmol) was suspended in boron tribromide (1M/m) in methylene chloride, 3.0 mL) and stirred at room temp under nitrogen for 18.0 h. Reaction was poured into saturated NaHCO₃ and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) saturated NaHCO₃, 2) saturated brine and concentrated in vacuo. This material was further purified by chromatography on silica yielding the title compound (25 mg, 100%) as a tan solid. Mass spec: MH⁺ =243

The starting 4-(6-Methoxy-benzothiazol-2-yl)-phenylamine was prepared as follows:

2-Bromo-6-methoxy-benzothiazole (244 mg, 1 mmol) [Example 67], 4-(4,4,5,5-tetramethyl-10 1,3,2-dioxboralan-2-yl)-aniline (285 mg, 1.3 mmol), tetrakis(triphenylphosphine) palladium (0) (58 mg, 0.05 mmol), and cesium fluoride (380 mg, 2.5 mmol) were suspended in acetonitrile (10 mL) and heated to reflux for 90 min under nitrogen. Reaction was cooled to room temp, poured cautiously into saturated NaHCO₃ and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) saturated NaHCO₃, 2) saturated brine and concentrated in vacuo. Washed solid was further purified by flash chromatography on silica affording the title compound (190 mg, 74%) as a pale yellow solid. MH⁺=272

Example 71. 6-Bromo-2-(4-hydroxy-phenyl)-benzothiazole

6-Bromo-2-(4-methoxy-phenyl)-benzothiazole (120 mg, 0.375 mmol) was suspended in boron tribromide (1M in methylene chloride, 7.0 mL) and stirred at room temp under nitrogen for 18.0 h. Reaction was poured into saturated brine and extracted with ethyl acetate. Ethyl acetate extracts were washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. Residue was washed with hexane, and dried under vacuum yielding the title compound (115 mg, 100%) as a tan solid. Mass spec: MH⁺=306

25 The starting 6-Bromo-2-(4-methoxy-phenyl)-benzothiazole was prepared as follows:

a. N-(4-Bromo-phenyl)-4-methoxy-benzamide

To a solution containing 4-bromo-aniline (1.0g, 7 mmol) in pyridine (7 mL) was added panisoyl chloride (0.77 mL, 7.1mmol) dropwise under nitrogen. The reaction was stirred at
room temp for 30 min. Reaction was poured cautiously into saturated NaHCO₃ and extracted
with ethyl acetate. Ethyl acetate extracts were washed with: 1) saturated NaHCO₃, 2) saturated
brine and concentrated in vacuo. This solid was washed with a solution containing: ether/
hexane (1:5, 10 mL), dried under vacuum, yielding the title compound (1.97g, 92%) as a
white solid. Mass spec: MH⁺ =306.

10 b. N-(4-Bromo-phenyl)-4-methoxy-thiobenzamide

N-(4-Bromo-phenyl)-4-methoxy-benzamide (1.95g, 6.37 mmol) and Lawesson's reagent (1.55g, 3.82 mmol) were suspended in chlorobenzene (25 mL) and heated to reflux under nitrogen for 3.0 h. Reaction was cooled, solvent removed under vacuum. Solid was dissolved in ethyl acetate and washed with: 1) hydrochloric acid (1.0M), 2) saturated brine and concentrated in vacuo. Residue was further purified by chromatography on silica yielding the title compound (1.85g, 90%) as a yellow-orange solid. Mass spec: MH* =322

c. 6-Bromo-2-(4-methoxy-phenyl)-benzothiazole

N-(4-Bromo-phenyl)-4-methoxy-thiobenzamide (483 mg, 1.5 mmol) was wetted with ethanol
(4.0 mL). 30% Aqueous sodium hydroxide (10M, 1.2 mL) was added and stirred for 5 min.
Water (2.4 mL) was added to provide a final suspension of 10% aqueous sodium hydroxide.
Aliquots (1 mL) of this mixture were added at 1 min intervals to a heated (85 °C.) stirred solution containing potassium ferricyanide (1.98g, 6 mmol) in water (25 mL). Reaction was kept at 85 °C for 30 min, and then cooled to room temp. Cold water (200 mL) was added.

Mixture was allowed to sit undisturbed for 30 min. Precipitate was collected by filtration,

washed with water, and dried under vacuum. Solid was dried under vacuum at 37 °C yielding

-57-

the title compound (0.45, 93%) as a pale yellow solid. Mass spec: MH+=320.

CLAIMS:

A compound of the formula (I)

$$R^5$$
 R^4
 R^3

for use as a ER-β-selective ligand:

5 wherein:

X is O or S:

R¹ is C₁₋₈alkyl, phenyl, benzyl or a 5- or 6-membered ring heterocycle containing 1, 2
or 3 heteroatoms each independently selected from O, N and S and additionally having 0 or 1
oxo groups and 0 or 1 fused benzo rings, wherein the C₁₋₈alkyl, phenyl, benzyl or heterocycle
is substituted by 0, 1, 2 or 3 substituents selected from -R³, -OR³, -SR³, -NR³R³, -CO₂R³,
-OC(=O)R³, -C(=O)NR³R³, -NR³C(=O)R³, -NR³S(=O)R³, -NR³S(=O)R³, -C(=O)R³,
-S(=O)R³, -S(=O)R³, halogen, cyano, nitto and C₁₋₈haloalkyl;

R³ is -R^a, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a,
-NR^aS(=O)R^a, -NR^aS(=O)₂R^a, -C(=O)R^a, -S(=O)R^a, -S(=O)₂R^a, halogen, cyano, nitro and
15 C₁₋₃haloalkyl; or R³ is C₁₋₃alkyl containing 1 or 2 substituents selected from -OR^a, -SR^a,
-NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a, -NR^aS(=O)₂R^a,
-C(=O)R^a, -S(=O)₂R^a, halogen, cyano and nitro:

 $R^4 \text{ is -R}^3, -OR^3, -SR^3, -NR^3R^3, -CO_2R^3, -OC(=O)R^3, -C(=O)NR^3R^3, -NR^3C(=O)R^3, -NR^3S(=O)_2R^3, -NR^3S(=O)_2R^3, -NC^3S(=O)_2R^3, -S(=O)_2R^3, -S$

 $R^5 \text{ is } -R^a, -OR^a, -SR^a, -NR^aR^a, -CO_2R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a, -NR^aS(=O)R^a, -NR^aS(=O)R^a, -C(=O)R^a, -S(=O)R^a, -S(=O)$

R⁶ is -R^a, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a,

5 -NR^aS(=O)R^a, -NR^aS(=O)₂R^a, -C(=O)R^a, -S(=O)R^a, -S(=O)₂R^a, halogen, cyano, nitro and

C_{1:3}haloalkyl; or R⁶ is C_{1:3}alkyl containing 1 or 2 substituents selected from -OR^a, -SR^a,

-NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a, -NR^aS(=O)₂R^a,

-C(=O)R^a, -S(=O)₂R^a, halogen, cyano and nitro; and

R^a is H, C₁₋₆alkyl, C₁₋₃haloalkyl, phenyl or benzyl; or a pharmaceutically acceptable salt thereof.

- A compound of the formula (I) or a pharmaceutically acceptable salt thereof, as defined in claim 1, for use in treating Alzheimer's disease, anxiety disorders, depressive disorders, osteoporosis, cardiovascular disease, rheumatoid arthritis or prostate cancer.
 - 3. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to either claim 1 or claim 2 wherein X is S.
 - 4. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to either claim 1 or claim 2 wherein X is 0.
- 10 5. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 4 wherein R¹ is unsubstituted or substituted phenyl.
 - 6. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 4 wherein R¹ is an unsubstituted or substituted 5- or 6-membered ring heterocycle.
- 7. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 5 wherein R^I is hydroxyphenyl, C₁₋₄alkoxyphenyl, halophenyl, C₁₋₄alkyphenyl, cyanophenyl or trifluoromethylphenyl.
 - A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 7 wherein R³ is halo, cyano, carbamoyl or C₁₋₅alkyl.
- 9. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 7 wherein R³ is hydrogen.
 - 10. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 9 wherein R⁴ is halo, hydroxy or C₁₋₅ alkoxy.
 - 11. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 9 wherein R³ is hydrogen.
 - 12. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 11 wherein \mathbb{R}^5 is halo, hydroxy or C_{1-6} alkoxy.
 - 13. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 11 wherein \mathbb{R}^5 is hydrogen.
- 30 14. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 13 wherein R⁶ is halo, C₁₋₄alkyl, trifluoromethyl, hydroxy,

C1.4alkoxy, carboxy, C1.4alkoxycarbonyl, cyano, halomethyl, cyanoC1.4alkyl, carbamoyl, methylcarbamoyl or dimethylcarbamoyl.

- 15. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to any one of claims 1 to 13 wherein R6 is hydrogen.
- 5 16. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to claim 4 wherein R1 is 4-hydroxyphenyl or 3-chloro-4-hydroxy phenyl; R3 is chloro or bromo; R5 is hydroxy; and R4 and R6 are both hydrogen.
- 17. A compound of the formula (I) or a pharmaceutically acceptable salt thereof for use according to claim 3 wherein R1 is 4-hydroxyphenyl; R6 is cyano or carboxy; R4 is hydroxy; 10 and R3 and R5 are both hydrogen.
 - 18. A compound of the formula (I)

wherein:

15

X is O or S:

R1 is C1-Ralkyl, phenyl, benzyl or a 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms each independently selected from O, N and S and additionally having 0 or 1 oxo groups and 0 or 1 fused benzo rings, wherein the C1.8alkyl, phenyl, benzyl or heterocycle is substituted by 0, 1, 2 or 3 substituents selected from -Ra, -ORa, -SRa, -NRaRa, -CO2Ra, $-OC(=O)R^{a}$, $-C(=O)NR^{a}R^{a}$, $-NR^{a}C(=O)R^{a}$, $-NR^{a}S(=O)R^{a}$, $-NR^{a}S(=O)_{2}R^{a}$, $-C(=O)R^{a}$. 20 -S(=O)Ra, -S(=O)2Ra, halogen, cyano, nitro and C1.3haloalkyl:

 R^3 is $-R^a$, $-OR^a$, $-SR^a$, $-NR^aR^a$, $-CO_2R^a$, $-OC(=O)R^a$, $-C(=O)NR^aR^a$, $-NR^aC(=O)R^a$, -NRaS(=0)Ra, -NRaS(=0)Ra, -C(=0)Ra, -S(=0)Ra, -S(=0)Ra, halogen, evano, nitro and C₁₋₃haloalkyl; or R³ is C₁₋₃alkyl containing 1 or 2 substituents selected from -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a, -NR^aS(=O)R^a, -NR^aS(=O)₂R^a, 25 -C(=O)R^a, -S(=O)R^a, -S(=O)₂R^a, halogen, evano and nitro:

 R^4 is $-R^a$. $-OR^a$. $-SR^a$. $-NR^aR^a$. $-CO_2R^a$. $-OC(=O)R^a$. $-C(=O)NR^aR^a$. $-NR^aC(=O)R^a$. -NRaS(=O)Ra, -NRaS(=O)2Ra, -C(=O)Ra, -S(=O)Ra, -S(=O)2Ra, halogen, cyano, nitro or C1-3haloalkyl:

 R^{5} is $-R^{a}$, $-OR^{a}$, $-SR^{a}$, $-NR^{a}R^{a}$, $-CO_{2}R^{a}$, $-OC(=O)R^{a}$, $-C(=O)NR^{a}R^{a}$, $-NR^{a}C(=O)R^{a}$. -NRaS(=O)Ra, -NRaS(=O)2Ra, -C(=O)Ra, -S(=O)Ra, -S(=O)2Ra, halogen, evano, nitro or C1.3haloalkvl:

R⁶ is -R^a, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a. 5 -NRaS(=0)Ra, -NRaS(=0)Ra, -C(=0)Ra, -S(=0)Ra, -S(=0)2Ra, halogen, cyano, nitro and C1.3haloalkyl; or R6 is C1.3alkyl containing 1 or 2 substituents selected from -OR2, -SR2, $-NR^aR^a$, $-CO_2R^a$, $-OC(=O)R^a$, $-C(=O)NR^aR^a$, $-NR^aC(=O)R^a$, $-NR^aS(=O)R^a$ -C(=O)Ra, -S(=O)Ra, -S(=O)2Ra, halogen, cyano and nitro; and

Ra is H, C1-6alkyl, C1-3haloalkyl, phenyl or benzyl;

- 10 or a pharmaceutically acceptable salt thereof: with the provisos that when the compound is in free base form; X is S and:
 - a) R1 is 4-methoxyphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 4-methyl, 4,6-dimethoxy, 5-methoxy, 5,6-dimethoxy, 6-methoxy, 6-chloro or 7methoxy;
- 15 b) R1 is 3-methoxyphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 6-methoxy;
 - c) R1 is 3,4-dimethoxyphenyl, the benzene ring of the benzthiazole is not substituted by 6methoxy, 4.6-dimethoxy or 5.6-dimethoxy:
- d) R1 is phenyl, the benzene ring of the benzthiazole is not substituted by 4-methoxy, 5,6-20 dimethoxy, 6-hydroxy or 6-methoxy:
 - e) R1 is 4-hydroxyphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 4,6-dihydroxy, 5-hydroxy, 5,6-dihydroxy or 6-hydroxy;
 - f) R1 is 3.4-dihydroxyphenyl, the benzene ring of the benzthiazole is not substituted by 6hydroxy, 4,6-dihydroxy or 5,6-dihydroxy;
- 25 g) R1 is 2-hydroxyphenyl or 3-hydroxyphenyl, the benzene ring of the benzthiazole is not substituted by 6-hydroxy;
 - h) R1 is 4-methylphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 4-, 5- or 6- fluoro, 4-, 6- or 7-methoxy, 5-chloro, 4-, 5-, 6- or 7-hydroxy, 4-, 5-, 6- or 7- acetoxy or 6-nitro;
- 30 i) R1 is 3,5-di-tert-butyl-4-hydroxyphenyl, the benzene ring of the benztriazole is not substituted by 4- or 5-hydroxy:

-62-

and when X is S, R1 is not 4-aminophenyl, 4-amino-3-methylphenyl or 4-amino-3halophenyl and when X is S or O, R1 is not 4-chloro- or 4-fluorophenyl when the benzene ring of the benzthiazole is substituted by 5-hydroxy or 5-mercapto.

- A compound of the formula (I) or a pharmaceutically acceptable salt thereof
 according to claim 18 wherein X is S.
 - 20. A compound of the formula (I) or a pharmaceutically acceptable salt thereof according to claim 18 wherein X is 0.
 - 21. A compound of the formula (I) or a pharmaceutically acceptable salt thereof according to either claim 19 or 20 wherein R^I is unsubstituted or substituted phenyl.
- 10 22. A compound of the formula (I) or a pharmaceutically acceptable salt thereof according to any one of claims 18 to 21 wherein R¹ is an unsubstituted or substituted 5- or 6-membered ring heterocycle.
- A compound of the formula (I) or a pharmaceutically acceptable salt thereof
 according to any one of claims 18 to 22 wherein R¹ is hydroxyphenyl, C₁₋₄alkoxyphenyl,
 halophenyl, C₁₋₄alkylphenyl, cyanophenyl or trifluoromethylphenyl.
 - 24. A compound of the formula (I) or a pharmaceutically acceptable salt thereof according to any one of claims 18 to 23 wherein R³ is halo, cyano, carbamoyl or C_{1.5}alkyl.
 - 25. A compound of the formula (I) or a pharmaceutically acceptable salt thereof according to any one of claims 18 to 23 wherein R³ is hydrogen.
- 26. A compound of the formula (I) or a pharmaceutically acceptable salt thereof
 according to any one of claims 18 to 25 wherein R⁴ is halo, hydroxy or C_{1.6} alkoxy.
 - 27. A compound of the formula (I) or a pharmaceutically acceptable salt thereof according to any one of claims 18 to 25 wherein R³ is hydrogen.
- A compound of the formula (I) or a pharmaceutically acceptable salt thereof
 according to any one of claims 18 to 27 wherein R⁵ is halo, hydroxy or C_{1.6} alkoxy.
 - 29. A compound of the formula (I) or a pharmaceutically acceptable salt thereof according to any one of claims 18 to 27 wherein R⁵ is hydrogen.
- 30. A compound of the formula (I) or a pharmaceutically acceptable salt thereof according to any one of claims 18 to 29 wherein R⁶ is halo, C₁₋₄alkyl, trifluoromethyl, 30 hydroxy, C₁₋₄alkoxy, carboxy, C₁₋₄alkoxy, carboxyl, cyano, halomethyl, cyanoC₁₋₄alkyl, carbarnoyl, methylcarbarnoyl or dimethylcarbarnoyl.

WO 02/051821 PCT/SE01/02855 -63-

31. A compound of the formula (I) or a pharmaceutically acceptable salt thereof

according to any one of claims 18 to 29 wherein R6 is hydrogen.

32. A compound of the formula (I) or a pharmaceutically acceptable salt thereof according to claim 20 wherein R1 is 4-hydroxyphenyl or 3-chloro-4-hydroxy phenyl; R3 is 5 chloro or bromo; R⁵ is hydroxy; and R⁴ and R⁶ are both hydrogen.

- 33. A compound of the formula (I) or a pharmaceutically acceptable salt thereof according to claim 19 wherein R1 is 4-hydroxyphenyl; R6 is cyano or carboxy; R4 is hydroxy; and R3 and R5 are both hydrogen.
- 34. A pharmaceutical composition comprising a compound of the formula (I) or a 10 pharmaceutically acceptable salt as defined in any one of claims 18 to 33 and a pharmaceutically acceptable carrier.
- 35. The use of a compound of the formula (I) or a pharmaceutically acceptable salt thereof as defined in claim 1 for the manufacture of a medicament for the treatment or prophylaxis of Alzheimer's disease, anxiety disorders, depressive disorders, osteoporosis, 15 cardiovascular disease, rheumatoid arthritis or prostate cancer.
 - 36. A method of treating a disease condition related to the β-estrogen receptor which comprises administering an effective amount of a compound of the formula (I) or a pharmaceutically acceptable salt thereof to a patient in need thereof.
- 37. A method according to claim 36 for treating Alzheimer's disease, anxiety disorders, 20 depressive disorders, osteoporosis, cardiovascular disease, rheumatoid arthritis or prostate cancer.
 - 38. A compound of the formula (I)

$$R^5$$
 R^4
 R^3

for use in a method of therapeutic treatment wherein:

X is O or S:

2.5

R1 is C1-salkyl, phenyl, benzyl or a 5- or 6-membered ring heterocycle containing 1, 2 or 3 heteroatoms each independently selected from O, N and S and additionally having 0 or 1 oxo groups and 0 or 1 fused benzo rings, wherein the C1-8alkyl, phenyl, benzyl or heterocycle

is substituted by 0, 1, 2 or 3 substituents selected from -R*, -OR*, -SR*, -NR*R*, -CO_R*, -OC(=O)R*, -C(=O)NR*R*, -NR*C(=O)R*, -NR*S(=O)R*, -NR*S(=O)R*, -NR*S(=O)R*, -C(=O)R*, -C(=O)R*

-S(=O)Ra, -S(=O)2Ra, halogen, evano, nitro and C12haloalkyl:

R³ is -R³, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a,

NR^aS(=O)R^a, -NR^aS(=O)₂R^a, -C(=O)R^a, -S(=O)₃R^a, salogen, cyano, nitro and

C₁₋₃haloalkyl; or R³ is C₁₋₃alkyl containing 1 or 2 substituents selected from -OR^a, -SR^a,

NR^aR^a, -CO₂R^a, -CO(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a, -NR^aS(=O)R^a, -NR^aS(=O)R^a

R⁴ is -R^a, -OR^a, -SR^a, -NR^aR^a, -CO₂R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a,

10 -NR^aS(=O)R^a, -NR^aS(=O)₂R^a, -C(=O)R^a, -S(=O)R^a, -S(=O)₂R^a, halogen, cyano, nitro or

C₁₋₃haloalkyl;

 $R^5 \text{ is } -R^a, -OR^a, -SR^a, -NR^aR^a, -CO_2R^a, -OC(=O)R^a, -C(=O)NR^aR^a, -NR^aC(=O)R^a, -NR^aS(=O)R^a, -NR^aS(=O)_2R^a, -C(=O)R^a, -S(=O)R^a, -S(=O)_2R^a, -S(=O)_2R^a$

 $\label{eq:continuous} R^6 \text{ is } -R^a, -OR^a, -SR^a, -NR^aR^a, -CO_2R^a, -OC(=0)R^a, -C(=0)NR^aR^a, -NR^aC(=0)R^a, -NR^aS(=0)_2R^a, -NR^aS(=0)_2R^a, -C(=0)R^a, -S(=0)_2R^a, -S(=0)_2R^a, halogen, cyano, nitro and $$C_{1-3}$haloalkyl; or R^6 is $$C_{1-3}$alkyl containing 1 or 2 substituents selected from -OR^a, -SR^a, -NR^aR^a, -CO_2R^a, -OC(=0)R^a, -C(=0)NR^aR^a, -NR^aC(=0)R^a, -NR^aS(=0)_2R^a, -NR^aS(=0)_2R^a, -C(=0)R^a, -S(=0)_2R^a, halogen, cyano and nitro; and $$C^a = C^a =$

20 R^a is H, C_{1-calkyl}, C₁₋₃haloalkyl, phenyl or benzyl:

15

or a pharmaceutically acceptable salt thereof: with the provisos that when the compound is in free base form: X is S and:

- a) R1 is 4-methoxyphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 4-methyl, 4,6-dimethoxy, 5-methoxy, 5,6-dimethoxy, 6-methoxy, 6-chloro or 7-25 methoxy.
 - b) R1 is 3-methoxyphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 6-methoxy;
 - c) R1 is 3,4-dimethoxyphenyl, the benzene ring of the benzthiazole is not substituted by 6-methoxy, 4,6-dimethoxy or 5,6-dimethoxy;
- 30 d) R1 is phenyl, the benzene ring of the benzthiazole is not substituted by 4-methoxy, 5,6-dimethoxy, 6-hydroxy or 6-methoxy;

-65-

 e) R1 is 4-hydroxyphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 4,6-dihydroxy, 5-hydroxy, 5,6-dihydroxy or 6-hydroxy;

- f) R1 is 3,4-dihydroxyphenyl, the benzene ring of the benzthiazole is not substituted by 6-hydroxy, 4,6-dihydroxy or 5,6-dihydroxy;
- 5 g) R1 is 3-hydroxyphenyl, the benzene ring of the benzthiazole is not substituted by 6-hydroxy;
 - h) RI is 4-methylphenyl, the benzene ring of the benzthiazole is not unsubstituted and is not substituted by 4-, 5- or 6- fluoro, 4-, 6- or 7-methoxy, 5-chloro, 4-, 5-, 6- or 7- hydroxy, 4-, 5-, 6- or 7- acetoxy or 6-nitro;
- 10 i) R1 is 3,5-di-tert-butyl-4-hydroxyphenyl, the benzene ring of the benztriazole is not substituted by 4- or 5-hydroxy;

and when X is S, R1 is not 4-aminophenyl, 4-amino-3-methylphenyl or 4-amino-3-halophenyl.

- 39. A process for preparing a compound of the formula (I) or a pharmaceutically acceptable salt thereof, as defined in claim 1 which comprises:
- a) cyclising a compound of the formula:

- 20 wherein X, R¹, R³.R⁶ are as defined in claim 1 and L is hydrogen or a leaving group; or
 b) for preparing compounds wherein X is O, cyclising a compound of the formula:
- 25

15

$$R^5$$
 O-CO- R^1 R^4 R^3

wherein R1, R3-R6 are as defined in claim 1 or:

c) cyclising a compound of the formula:

5

wherein \mathbb{R}^1 , \mathbb{R}^3 - \mathbb{R}^6 are as defined in claim 1 and L is hydrogen or a leaving group; or d) cyclising a compound of the formula:

$$R^{5}$$
 R^{4}
 R^{3}
 R^{3}

- wherein R¹, R³-R⁶ are as defined in claim 1; or and thereafter, if necessary:
 - i) forming a pharmaceutically acceptable salt;
 - ii) converting a compound of the formula (I) into another compound of the formula (I)

International application No. PCT/SE 01/02855

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: C07D 263/57, A61K 31/423
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: CO7D, A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE.DK.FI.NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

X Further documents are listed in the continuation of Box C.

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	J.Med Chem., Volume 37, 1994, Malcolm F.G. Stevens et al: "Structural Studies on Bioactive Compounds. 23. Synthesis of Polyhydroxylated 2-Phenylbenzothiazoles and a Comparison on Their Cytotoxicities and Pharmacological Properties with Genistein and Quercetin" page 1689 - page 1695	1-35,38-39
A	British Journal of Cancer, Volume 77, No. 5, 1998, TD Bredshaw et al: "2-(4-Aminophenyl)benzothiazoles: a novel agents with selective profiles of in vitro anti-tumour activity" page 745 - page 752	1-35,38-39

Special categories of cited documents: "I" later document published after the international filing date or priority "A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the principle or theory underlying the invention to be of particular relevance "E" carrier application or patent but published on or after the international "X" document of particular relevance: the claimed invention cannot be filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report **2 9 -**04- 2002 17 April 2002 Name and mailing address of the ISA/ Authorized officer Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Göran Karlsson/BS Facsimile No. +46 8 666 02 86 Telephone No. + 46 8 782 25 00

X See patent family annex.

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.
PCT/SE 01/02855

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
A	Chem.Pharm. Bull., Volume 40, No. 9, 1995, Noriyuki Hori et al: Novel Disease-Modifying Antirheumatic Drugs.I. Synthesis and Antiarthritic Activity of 2-(4-Methylphenyl)benzothiazoles" page 2387 - pge 2390	1-35,38-39
A	STN International, file CAPLUS, CAPLUS accession no: 1991:207259, document no: 114:207259, Nishi, Takao et al: "Preparation of benzothiazoles and benzimidazoles as blood platelet aggregation inhibitors", & JP,A2,02306916,19901220	1-35,38-39
A	 EP 0483502 A1 (BASF AKTIENGESELLSCHAFT), 6 May 1992 (06.05.92)	1-35,38-39
A	US 5216110 A (INBASEKARAN ET AL), 1 June 1993 (01.06.93)	1-35,38-39

International application No. PCT/SE01/02855

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
I. 🔀	Claims Nos.: 36-37 because they relate to subject matter not required to be searched by this Authority, namely: A method for treatment of the human or animal body therapy,
	see rule 39.1
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
	-
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fices were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest

Information on patent family members

International application No.
28/01/02 PCT/SE 01/02855

Patent document cited in search report	Publication date	F	atent family member(s)	Publication date
EP 0483502 A	1 06/05/92	DE DE ES JP US	4030511 A 59106939 D 2079011 T 4234429 A 5227454 A	02/04/92 00/00/00 01/01/96 24/08/92 13/07/93
US 5216110 A	01/06/93	CA EP US US WO	2127360 A 0623115 A 5104960 A 5194562 A 9314071 A	22/07/93 09/11/94 14/04/92 16/03/93 22/07/93

Form PCT/ISA/210 (patent family annex) (July 1998)