Pycbc signal processing graph

- Shows processing graph from the application programmers viewpoint
- Shows how functions and kernels are called and where they live (layers)
- Shows how data flows
- Shows memory objects
 - Where they live
 - Who is the owner
 - Which kind of data do they hold
 - How long they live

Pycbc signal processing graph for single detector search pipeline using GPUs [typ. 10³] ParameterSpace Overwhiten render() TemplateBank. Overwhitening Straindata. Straindata *= Straindata. **TemplateBank** PreConditionData() render() Segmenting() Filter Overw.-Filt **SWIG WRAP SWIG WRAP SWIG WRAP** X _vector_single_t s(t) [typ. 15 segments freq data from typ 256s timedomain data -> (N=2^20)] complex_vector_single_t_stilde(f) (Python list of datavector_cpu) X FFTs of overlapping input data real_vector_single_t 1/Sn(f) alias inverse PSD alias overwhitening filter N=2^20 render render median - inverse _mul() IFFT - truncate - FFT (inplace) [] complex_vector_single_t stilde(f) real_vector_single_t 1/Sn(f) **GLUE XMLread** .xml

Pycbc signal processing graph for single detector search pipeline using GPUs

