Построение карты пылевых облаков

Амосов Федор, СПбГУ

Руководитель: Цветков Александр, СПбГУ

Глава 1. Введение

Постановка задачи

Дан звездный каталог с данными о

- положениях
- параллаксах
- фотометрии
- спектральных классах и классах светимости

Задача

• Построить трехмерную карту пылевых облаков

Каталог

Звездный каталог с данными о

- положениях
- параллаксах
- фотометрии
- спектральных классах и классах светимости
- \Longrightarrow каталог Hipparcos (10^5 звезд)

Покраснение

$$E_{B-V} = (B-V)_{obs} - (B-V)_{int}$$

Пример на звезде НІР 44800

- У нее в каталоге $(B-V)_{obs} = 0.535^m$
- Класс F7V, поэтому* $(B V)_{int} = 0.493^m$
- Покраснение $0.535^m 0.493^m = 0.042^m$
- Между нами и звездой пыли на 0.042^m

Глава 2. Построение панорамы пылевых облаков

Идеальная кривая покраснения

Пылевые облака

Реальное покраснение

Реальная «кривая» покраснения

«В среднем»

Отрицательный тренд

Коэффициент k

$E_{B-V} = kr$

Коэффициент k с ошибкой

Предварительная обработка

- В расчет берутся 58486 из 118219 звезд
 - Отсутствие некоторых необходимых данных*
 - ▶ Точность в расстоянии 25%
- Разбиение сферы на 12 · 18² = 3888
 равновеликих частей алгоритмом Healpix
- Тренды строятся по 90% расчетных звезд
- Расчет отсутствующих классов светимости
 - Спектральный класс, класс светимости $\Longrightarrow (B-V)_{int}$

Наличие классов светимости

Обучение классификатора

- Факторы: показатель цвета, абсолютная звездная величина
- Класс: класс светимости
- Алгоритм классификации: метод опорных векторов (Support Vector Machines, SVM)

Обучающее множество

Результат классификации

Качество классификации

Результаты кросс-валидации на 10 частях

- Точность 93.4%
- Полнота 93.0%
- F-mepa 92.7%

Замечание

• Обучение проводилось только на III и V классах

Результат

Что дальше?

$$E_{B-V} + 3\sigma_{E_{B-V}} < 0$$

Глава 3. Звезды каталога Hipparcos с отрицательным покраснением

Выбросы на небе

Выбросы и параллакс

Относительная ошибка в расстоянии Отрицательное покраснение у 13% (11470/86462)

Выбросы и показатель цвета

Ошибка B-V Отрицательное покраснение у 12% (11357/88169)

Выбросы и спектр

Спектральный класс Отрицательное покраснение у 12% (11925/93230)

Спектральный класс

Выбросы и спектр (III)

Спектральный класс Отрицательное покраснение у 7% (3624/51108)

Canada and Angeles

Спектральный класс

Выбросы и спектр (V)

Спектральный класс Отрицательное покраснение у 20% (8097/38768)

Спектральный класс

Выброы и диаграмма ГР

$$(B - V)_{int}(III) > (B - V)_{int}(V)$$

 $E_{B-V} = (B - V)_{obs} - (B - V)_{int}$

Таблица (Цветков)

Неточности в спектальной классификации звезд каталога Tycho-2 Spectral Type A.А.Сминов, А.С.Цветков, А.В.Попов 2006

Таблица (Schmidt-Kaler)

Расчет верхней оценки

- Дан порог (к примеру, 5%)
- Для каждого класса светимости и спектрального класса рассмотрим все звезды этих классов
- Отсортируем их по $E_{B-V} + 3\sigma_{E_{B-V}}$
- Рассмотрим звезду, соответствующую порогу

$$E_{B-V} + 3\sigma_{E_{B-V}} = E \quad (<0)$$

$$(B-V)_{obs} - (B-V)_{int} + 3\sigma_{(B-V)_{obs}} = E$$

$$(B-V)_{obs} - (B-V)_{int}^{max} + 3\sigma_{(B-V)_{obs}} = 0$$

 $\bullet (B-V)_{int}^{max} = (B-V)_{obs} + 3\sigma_{(B-V)_{obs}}$

Верхняя оценка

Верхняя оценка

Новая таблица (V)

Новая таблица (III)

Глава 4. Построение трехмерной карты пылевых облаков

Есть ли пыль в точке?

Алгоритм поиска пыли

- Бросаем много точек с распределением, соответствующем распределению звезд. Для каждой:
- Находим K ближайших звезд. Проверяем локальность полученной окрестности.
- Вычисляем тренд ar + b покраснения по этим звездам
- Если a > threshold, то в точке есть пыль

Алгоритм поиска пыли. Реализация

- Берем звезды с относительной ошибкой в расстоянии $\leq 35\% \longrightarrow 64176$ звезд
- Бросаем 10⁶ точек
- K = 25
- Используем KD-деревья для поиска ближайших соседей. Поиск за $O(\log n)$
- Диаметр окрестности ≤ 200 пк
- threshold = 0.008 зв.вел./пк

«Трехмерная» карта пыли

Собрираем из пыли облака

- 12560 точек пыли
- Кластеризация методом DBSCAN за $O(n \log n)$
- Центр облака центр масс точек кластера
- Радиус облака усредненное стандартное отклонение точек кластера по x, y, z

Пылевые облака

Глава 5. Результаты

Основные результаты

- Построена панорама пыли
- Разработан алгоритм поиска пыли
- Построена трехмерная карта пыли
- Найдены облака

Напарвлене $-18,03^\circ$ г.ш., 176,82° г.д., расстояние 121 пк, радиус 18 пк Напарвлене 25,00° г.ш., 7,21° г.д., расстояние 118 пк, радиус 16 пк Напарвлене 9,92° г.ш., 130,16° г.д., расстояние 175 пк, радиус 13 пк

Вспомогательные результаты

- Найдены недостающие классы светимости спомощью классификатора
- Представлена попытка найти причину отрицательного покраснения у звезд
- Получена верхняя оценка на показатель цвета в таблицах
- Разработана библиотека для работы с каталогом

Q&A

Спасибо за внимание! github.com/amosov-f/dust-detection