PSY9511: Seminar 4

Model selection, validation and testing

Esten H. Leonardsen 23.09.24

Fits *n* models for *n* datapoints, each time leaving a single datapoint out for testing.

- + Uses all data to train models
- + Not dependent on arbitrary data splits
- + Unbiased (with regards to the full dataset)
- Computationally expensive
- Effectively gives a point estimate of the error
- All models are going to be trained on > 99% overlapping data
 - → highly correlated

Fits k (usually $k \in \{5, 10\}$) models for n > k datapoints, each leaving n/k datapoints for out-of-sample testing.

- + Uses all data to train models
- + Yields multiple estimates of out-of-sample error
- Different choices of k (and exact splits) yields different results
- No longer a single model from which information (e.g. parameter estimates and p-values) can be derived

Fits b models with m datapoints (typically m < n), sampled from the original dataset with replacement.

- + Uses all data to train models
- + Provides a dense distribution of model performances
- Versatile: Can be used for other things, e.g. getting a confidence interval for model parameters
- Different choices of b (and exact splits) yields different results

