Homework 3

- 1. Let μ be a Lebesgue measure and let $\{A_n\}_{n=1}^{\infty}$ be a sequence of Lebesgue measurable subsets of [0,1]. Assume the set B consists of those points $x \in [0,1]$ that belong to infinitely many of the A_n .
 - (i) Prove that B is Lebesgue-measurable.

Proof Let $x \in B$. Then x is in infinitely many of the A_n ; so for every $k \ge 1$, $x \in A_n$ for some $n \ge k$. That is, $x \in \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$ and in fact, $B = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$. This is a Borel set, so it is Lebesgue-measurable.

(ii) Prove that if $\mu(A_n) > \delta > 0$ for every $n \in N$, then $\mu(B) \ge \delta$.

Proof Let $B_k = \bigcup_{n=k}^{\infty} A_n$. Since $A_k \subseteq B_k$, then $\delta < \mu(A_k) \le \mu(B_k)$, for all k. Now consider $\bigcap_{k=1}^{M} B_k$. Since

$$B_{j} \cap B_{k} = \left(\bigcup_{n \geq k} A_{n}\right) \cap \left(\bigcup_{n \geq j} A_{n}\right)$$
$$= \bigcup_{n \geq \max(j,k)} A_{n}$$
$$= B_{\max(j,k)},$$

then $\bigcap_{k=1}^{M} B_k = B_M$. Then $B_k \searrow B$ and $\mu(B_1) < 1$, so $\lim_{n \to \infty} \mu(B_n) = \mu(B) \ge \delta$.

(iii) Prove that if $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, then $\mu(B) = 0$.

Proof Let $B_k = \bigcup_{n=k}^{\infty} A_n$. Now

$$\mu(B_k) = \mu\left(\bigcup_{n=k}^{\infty} A_n\right) \le \sum_{n=k}^{\infty} \mu(A_n).$$

Since $\sum_{n=1}^{\infty} \mu(A_n) < \infty$, then $\mu(A_n) \to 0$, which means the tail of the sum also goes to 0 as $k \to \infty$. Thus $\mu(B_k) \to 0$, and $B_k \searrow B$ and $\mu(B_1) > 1$, so

$$\lim_{n\to\infty}\mu\left(B_n\right)=\mu\left(B\right)=0.$$

(iv) Give an example where $\sum_{n=1}^{\infty} \mu(A_n) = \infty$, but $\mu(B) = 0$. **Answer:** Let $A_n = [0, 1/n]$. Then $\sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} 1/n = \infty$, but $B = \{0\}$ and $\mu(B) = 0$.

2. Prove that if $A \subset \mathbb{R}$ is Lebesgue-measurable with $\mu(A) > 0$, then there is a subset of A that is not Lebesgue-measurable.

Lemma. If $A \subset \mathbb{R}$ is Lebesgue-measurable with $\mu(A) > 0$, then there exists a subset $\widetilde{A} \subset A$ with \widetilde{A} bounded and $\mu(\widetilde{A}) > 0$. **Proof:** Suppose not. Then for every $\widetilde{A} \subset A$, either \widetilde{A} unbounded or $\mu(\widetilde{A}) = 0$. If we consider the sets

$$A_n = \{[n, n+1) \cap A\}_{n \in \mathbb{Z}},$$

then each A_n is bounded, thus it has measure zero. Since each A-n is measurable and $A=\coprod_{n\in\mathbb{Z}}A_n$, then $0=\sum_{n\in\mathbb{Z}}\mu\left(A_n\right)=\mu\left(A\right)>0$, contradiction.

Proof By the lemma, without loss of generality we can assume that A is bounded, so let $[-a, a] \supset A$. Define an equivalence relation on A as follows. For all $x, y \in A$,

$$x \sim y$$
 if $\exists q \in (\mathbb{Q} \cap [-a, a])$ such that $x - y = q$

A little thought will show that \sim is reflexive, symmetric, and transitive. Thus the collection of all equivalence classes $\{[x]|x\in A\}$ is a partition of A. Define V by choosing exactly one representative of each equivalence class. Then for each $x\in A$, there exists a unique $y\in V$ such that $x\sim y$, and $V\subset A$. Now all the remains is to show that V is not Lebesgue-measurable.

Suppose for contradiction that V is measurable, and consider

$$\{V+q \mid q \in (\mathbb{Q} \cap [-a,a])\}.$$

(From now on in this proof, we assume $q \in (\mathbb{Q} \cap [-a, a])$.) Since every $a \in A$ has a $y \in V$ such that $x \sim y$, then $A \subseteq \bigcup_q (V+q)$. And since $A \subseteq [-a, a]$ and every $q \in [-a, a]$, then $\bigcup_q (V+q) \subseteq [-2a, 2a]$. Thus by monotonicity,

$$0 < \mu(A) \le \mu\left(\bigcup_{q} (V+q)\right) \le 4a < \infty.$$

Since $V+q_1$ and $V+q_2$ are disjoint and measurable for all $q_1\neq q_2$, then $\mu\left(\coprod_q(V+q)\right)=\sum_q\mu\left(V+q\right)=\sum_q\mu\left(V\right)$ since Lebesgue measure is translation-invariant. Now on one hand, if $\mu\left(V\right)>0$ then $\sum_q\mu\left(V\right)=\infty$, but $\sum_q\mu\left(V\right)<\infty$. On the other hand, if $\mu\left(V\right)=0$ then $\sum_q\mu\left(V\right)>0$. Thus $0<\mu\left(V\right)=0$, contradiction. Therefore V cannot be measurable.

3. Let μ be the Lebesgue measure on \mathbb{R} . Construct a Borel set $A \subset \mathbb{R}$ such that $\mu(A) > 0$ and $\mu(A \cap I) < \mu(I)$ for every non-degenerate interval $I \subset \mathbb{R}$.

Proof Let r_k be an enumeration of the rationals, and let

$$A = (-100, -100) \setminus \bigcup_{k=1}^{\infty} B(r_k, 1/2^k).$$

Let I be any non-degenerate interval, let $a = \inf I$, and let $b = \sup I$. Then $(a, b) \subseteq I$, where a < b. In the case that $a = -\infty$ or $b = \infty$, then $\mu(I) = \infty$, and $\mu(A \cap I) \le \mu(A) \le 200$, so we're done. So consider the case where $a, b \in \mathbb{R}$. Since $\mu(I) = b - a$ and $(a, b) \subseteq I$, we will show that $\mu((a, b) \cap A) < b - a$. Choose some $r_k \in (a, b)$. Then $B(r_k, 1/2^k) \cap (a, b)$ is open, so there exists some $\epsilon > 0$ such that $B(r_k, \epsilon) \subset B(r_k, 1/2^k) \cap (a, b)$. Now, since $B(r_k, \epsilon) \subset B(r_k, 1/2^k) \subset A^{\complement}$ but $B(r_k, \epsilon) \subset (a, b)$, then

$$I \cap A \subseteq I \setminus B(r_k, \epsilon) \subset I$$
,

so since all these sets are measurable,

$$\mu(I \cap A) \leq \mu(I) - \mu(B(r_k, \epsilon)) < \mu(I)$$
.

4. Let $A \subset \mathbb{R}$ be a Lebesgue-measurable set. Prove that the set

$$B = \bigcup_{x \in A} [x - 1, x + 1]$$

is Lebesgue-measurable.

Proof Observe that $B = \bigcup_{x \in A} B_1(x) \cup A - 1 \cup A + 1$. The union of balls is Borel, and translation invariance of Lebesgue measure tells us that the other two sets are measurable as well. Thus B is a union of 3 measurable sets, and thus measurable.