DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

IBM – LITERATURE SURVEY PROJECT TITLE

SMART SOLUTIONS FOR RAILWAYS

(2022-2023)

Guide Name: Dr.S. Vijayakumar

SUBMITTED BY

AISHWARYA.K - 19105001

AJAY KUMAR.M - 19105002

ANBARASAN.G - 19105003

ANU VARSHITHA.M - 19105004

FINAL YEAR B.E. (ECE)
PAAVAI ENGINEERING COLLEGE,

Paavai Nagar, NH-7, Pachal, Namakkal-637018, Tamil Nadu

S.NO	TITLE OF THE PROJECT	ADVANTAGES	DIS ADVANTAGES	TECHNOLOGY USED
1.	5G Key Technologies for Smart Railways	Many innovative methodologies were available to enable designers to achieve these goals, and thus further push the smart rail development back until the 5G key technologies appeared. In particular, 5G key technologies offer much faster data rate and larger coverage area. Ericsson Mobility Report forecasts in its June 2019 edition that 35% of global mobile connections will be carried out on 5G networks and 5G users will reach 1.9 billion, which is up to 65% of the global population	The mobile service amount of the train and the low-mobility user. It is observed that the derivative of the service amount of the train first increases and then decreases	5G Key Technologies
2.	The Safety Measures of AloT-based Railway Infrastructures	The advancement of AloT technologies, a tremendous number of IoT sensors and actuators and IoT monitoring network will be deployed in the railway infrastructure for continuous	The system failures can be caused by the faults in application requirements, the deficiencies in the infrastructure design, the deficiencies during manufacturing, software errors	AloT Based as Crucial Technologies

	=			
		safety evaluation. The loT sensors will measure and transfer the essential parameters, such as voltage and current in the railway network, the acceleration, vibration and position of the trains, the noise levels during operation, etc.		
3.	Devices for Power Quality Compensation in Railway Traction Power Supply	Railway power quality conditioner was one of the FACTS devices specially proposed for railway traction power supply. Railway power quality conditioner is commonly known as RPC.	For instance, electric train draws inductive reactive power from the system, which causes power factor and voltage stability problem. In addition, electric train loadings are rarely balanced,	Railway HPQC and half-bridge RPC
4.	Failure management strategies for IoT-based railways systems	Security and reliability are crucial requirements for systems that monitor and control critical infrastructures like railways systems. In order to cope with external threats and minimise the possibility of malfunctioning, railways systems have been	In order to evaluate the performance of the mechanism to detect and react to temperature sensor failures	Future IoTbased railways systems.

		typically designed to work in isolation without - or with limited - interaction with other systems, internal or external.		
5.	Positive Train Control (PTC)	This generation of train control detects the train by use of track circuits and wayside signal guides the train operators on movements along the track, if the wayside signal displays an eminent danger, the trip stops. With this train control concept, virtually all of the train control logic and equipment is located on the wayside, with train borne equipment limited to trip stops.	PTC cyber security Cybercrime is a growing threat to infrastructure.	positive train technology also referred to as PTC .
6.	Smart Railway: Feasibility and Applications	The terminals are required to have a long battery life for covering some areas in which power supply is not available. The terminals deployed near catenary can use power supply,	A limited coverage for collecting condition information.	GSM-R and will feel more familiar with LTE

		but there are many cases in which the terminals should rely on its battery.		
7.	GSM-R and will feel more familiar with LTE	The highest priorities in designing railway track are safety ,low cost of maintenance and standardaization. For new methods of reducing noise to be accepted,they must be capable of being fitted to the establish infrastructure design with minimal change to railway practice	The rail damper elastomer would also have a lower stiffness and therefore a lower tunning frequency	Standard U160
8.	Power Allocation for Millimeter- Wave Railway Systems	Power allocation plays a significant role in the mmWave HSR communication system, which directly has influence on its efficiency and reliability.	Moreover, the performance of both the random power and maximal power schemes is always poorer than FP	Millimeter wave railway system
9.	Simulation Based Evaluation Of Handover Mechanisms In High speed Railway control And communication systems	In LTE communications, handover is the process that moving user equipment (UE) switches an ongoing session from one base station	Smaller window size is more likely to result in an early-trigger because of the higher probability of a non-decreasing signal quality sequence in the	Interleaved PCI

2			window	
10.	Renewable	The intelligence	The processing	.RAILWAY
	Energy Sources	of the proposed	of these data by	CONTROL BY
	Integration and	control by MAS	the agent	MAS
	Control in	allows the	indicates	
	Railway	battery to be	whether a	
	Microgrid	charged from	request for	
		the RES	energy supply is	
		generated power	required, due to	
		while trains are	an acceleration	
		stopped and	in order to	
		during	suppress the	
		deceleration	voltage drop on	
		periods, to reuse	the line, or a	
		the stored	consumption	
		energy during	demand in	
		acceleration	order to remove	
		periods.	the voltage	
			, ,	