Билет 14

1. Решение смешанной краевой задачи для уравнения теплопроводности на отрезке методом разделения переменных

$$\begin{cases} u_t = a^2 u_{xx} + f(x,t) & 0 < \mathbf{x} < 1, \, \mathbf{t} > 0 \\ u(x,0) = \phi(x) & 0 \le x \le l \\ u(0,t) = 0 & \\ u_x(l,t) = 0 & t \ge 0 \end{cases}$$

Идея метода разделения переменных: нетривиальные частные решения данного уравнения с независимыми переменными x и t ищутся в виде произведения X(x)T(t). Чтобы решить данную задачу для неднородного уравнения, решим сначала аналогичную задачу с однородным уравнением $u_t = a^2 u_{xx}$. Подставим X(x)T(t) в уравнение и разделим его на $a^2X(x)T(t)$: $\frac{T'(t)}{a^2T(t)}=\frac{X''(x)}{X(x)}$ Левая часть уравнения зависит только от t, правая - только от x. Поскольку x и t являются независимыми пременными, равенство возможно, если обе его части равны постоянной. Обозначим этоу постоянную через - λ и запишем уравнения относительно X(x) и T(t).

$$X''(x) + \lambda X(x) = 0$$

$$T'(t) + a^2 \lambda T(t) = 0$$

Подставим X(x)T(t) в краевые условия и получим X(0) = 0, X'(l) = 0. Чтобы найти X(x), необходимо решить задачу Штурма-Лиувилля:

$$\begin{cases} X'' + \lambda X(x) = 0 & 0 \le x \le l \\ X(0) = 0, X'(l) = 0 \end{cases}$$
$$\lambda_n = (\frac{2n+1}{2l}\pi)^2, X_n = \sin(\frac{2n+1}{2l}\pi x)$$
(1)

Далее при каждом λ_n , которое является собственным значением задачи для X(x), находим общее решение уравнения относительно T(t). Чтобы найти решение задачи, надо из всевозможных решений исходного уравнения u(x, t) = $\sum_{n} X_n(x) T_n(t)$, которые удовлетворяют краевым условиям, отобрать единственное верное решение, удовлетворяющее начальному условию.

$$T_n(t) = C_n \exp(-(\frac{2n+1}{2l}\pi a)^2 t)$$

$$u(x,t) = \sum_{n=1}^{\inf} C_n \sin(\frac{2n+1}{2l}\pi x) \exp(-(\frac{2n+1}{2l}\pi a)^2 t)$$

Коэффициенты C_n можно найти из начального условия $u(x,0) = \sum_{n=1}^{\inf} C_n sin(\frac{2n+1}{2l}\pi x) = \phi(x)$. Для этого разложим заданную на [0,1] $\phi(x)$ в ряд Фурье по системе функций $\{X_n(x)\}$ на указанном отрезке. Тогда C_n равны коэффициентам Фурье функции $\phi(x)$ по системе $\{X_n(x)\}$.

Возвращаемся к задаче с неоднородным уравнением. f(x,t) разложим в ряд Фурье по системе $\{X_n(x)\}$ собственных функций задачи Штурма-Лиувилля: $f(x,t) = \sum_n f_n(t) X_n(x)$

Теперь решение исходной задачи при фиксированном t можно искать в виде ряда фурье по системе $\{X_n(x)\}:u(x,t)=$ $\sum_{n} T_{n}(t) X_{n}(x)$ Чтобы найти коэффициенты $T_{n}(t)$, необходимо подставить предполагаемый вид решения в уравнение.

2. Свойства гармонических функций Определение Функция двух переменных u(x, t) называется гармонической в области D, если $u \in C^2(D)$ и $\Delta u = 0$.

Свойства:

1) Если v - функция, гармоническая в области T, ограниченной поверхностью ∑, то

$$\iint_{S} \frac{\partial v}{\partial n} d\sigma = 0,$$

где S - любая замкнутая поверхность, целиком лежащая в области T.

2) Если функция u(M) гармонична в некоторой области T, а M_0 - какая-нибудь точка, лежащая внутри области T, то имеет место формула

$$u(M_0) = \frac{1}{4\pi a^2} \iint_{\sum_{\sigma}} u d\sigma,$$

где \sum_a - сфера радиуса а с центром в точке M_0 , целиком лежащая в области T (теорема среднего значения).

3) Если функция u(M), определенная и непрерывная в замкнутой области $T + \sum$, удовлетворяет уравнению $\delta u = 0$ внутри T, то максимальные и минимальные значения функции u(M) достигаются на поверхности \(\sum_{\text{(принцип максимального значения).