

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401

FCC LTE REPORT

Certification

Applicant Name:

Franklin Technology Inc.

February 21, 2019

Date of Issue:

Location:

Address:

906 JEI Platz, 186, Gasan digital 1-ro, Gumcheon-gu

Seoul, 08502 South Korea

HCT CO., LTD.,

74, Seoicheon-ro 578beon-gil, Majang-myeon,

Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-RF-1902-FC031

FCC ID:

XHG-LT70B

APPLICANT:

Franklin Technology Inc.

Model(s): LT70B

EUT Type: Smart Locator

FCC Classification: TNB-Licensed Non-Broadcast Station Transmitter

FCC Rule Part(s): §27, §2

Mode	Ty Fraguency	Emission		ERP		
Mode	Tx Frequency	Emission	Modulation	Max. Power	Max. Power	
(MHz)	(MHz)	Designator		(W)	(dBm)	
LTE – Band13 (5)	779.5 –784.5	1M12G7D	QPSK	0.336	25.26	
		1M13W7D	16QAM	0.296	24.72	
LTC - Bond (2 (10)	702.0	1M14G7D	QPSK	0.330	25.19	
LTE – Band13 (10)	782.0	1M13W7D	16QAM	0.323	25.09	

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report prepared by : Kwon Jeong

Engineer of Telecommunication Testing Center

Report approved by : Jong Seok Lee Manager of Telecommunication Testing Center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO. DATE		DESCRIPTION
HCT-RF-1902-FC031	February 21, 2019	- First Approval Report

Report No.: HCT-RF-1902-FC031

Table of Contents

1. GENERAL INFORMATION	4
2. INTRODUCTION	5
2.1. DESCRIPTION OF EUT	5
2.2. MEASURING INSTRUMENT CALIBRATION	5
2.3. TEST FACILITY	5
3. DESCRIPTION OF TESTS	6
3.1 TEST PROCEDURE	6
3.2 EFFECTIVE RADIATED POWER	7
3.3 RADIATED POWER	8
3.4 RADIATED SPURIOUS EMISSIONS	9
3.5 OCCUPIED BANDWIDTH.	10
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	11
3.7 BAND EDGE	12
3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	13
3.9 WORST CASE(RADIATED TEST)	14
3.10 WORST CASE(CONDUCTED TEST)	15
4. LIST OF TEST EQUIPMENT	16
5. MEASUREMENT UNCERTAINTY	17
6. SUMMARY OF TEST RESULTS	18
7. EMISSION DESIGNATOR	19
8. TEST DATA	20
8.1 EFFECTIVE RADIATED POWER	20
8.2 RADIATED SPURIOUS EMISSIONS	24
8.3 OCCUPIED BANDWIDTH	26
8.4 CONDUCTED SPURIOUS EMISSIONS	26
8.5 BAND EDGE	26
8.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	27
9. TEST PLOTS	31
40 ANNEY A TEST SETUD DUOTO	EC

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	Franklin Technology Inc.
Address:	906 JEI Platz, 186, Gasan digital 1-ro, Gumcheon-gu Seoul, 08502 South Korea
FCC ID:	XHG-LT70B
Application Type:	Certification
FCC Classification:	TNB-Licensed Non-Broadcast Station Transmitter
FCC Rule Part(s):	§27, §2
EUT Type:	Smart Locator
Modulation:	QPSK, 16QAM
Volatage:	DC 3.80V (DC 3.5V ~ DC 4.35V)
Model(s):	LT70B
Tx Frequency:	779.5 MHz –784.5 MHz (LTE – Band 13 (5MHz)) 782 MHz (LTE – Band 13 (10 MHz))
Date(s) of Tests:	February 15, 2019 ~ February 20, 2019
Peak. Ant gain:	3.43 dBi

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT is a LTE Cat.M1 Device

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occupied Bandwidth	- KDB 971168 D01 v03r01 – Section 4.3
· ·	- ANSI C63.26-2015 – Section 5.4.4
Band Edge	- KDB 971168 D01 v03r01 – Section 6.0
Dana Lago	- ANSI C63.26-2015 – Section 5.7
Spurious and Harmonic Emissions at Antenna	- KDB 971168 D01 v03r01 – Section 6.0
Terminal	- ANSI C63.26-2015 – Section 5.7
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Conducted Output Power	- KDB 971168 D01 v03r01 – Section 5.2
Effective Radiated Power/	- KDB 971168 D01 v03r01 – Section 5.2 & 5.6
Effective Isotropic Radiated Power	- ANSI C63.26-2015 - Section 5.2.4.2 & 5.2.5.5
Padiated Spurious and Harmonic Emissions	- KDB 971168 D01 v03r01 – Section 6.2
Radiated Spurious and Harmonic Emissions	- ANSI/TIA-603-E-2016 – Section 2.2.12

3.2 EFFECTIVE RADIATED POWER

Test setup

Test Overview

When an average power meter is used to perform RF output power measurements, the fundamental condition that measurements be performed only over durations of active transmissions at maximum output power level applies.

Conducted Output Power was tested in accordance with KDB971168 D01 Power Meas License Digital Systems v03r01, Section 5.2.

Test Note

1. The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided is:

where:

ERP or EIRP = effective radiated power or equivalent isotropically radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm)

P_{Meas} = measured transmitter output power or PSD, in dBm or dBW

 G_T = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP)

3.3 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

Where: P_d is the dipole equivalent power and P_g is the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
 - These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

3.4 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW ≥ 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

Test Note

- Measurements value show only up to 3 maximum emissions noted, or would be lesser
 if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit)
 and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.

The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data

3.5 OCCUPIED BANDWIDTH.

Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1 5% of the 99% occupied bandwidth observed in Step 7

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

- 1. RBW = 1 MHz
- 2. VBW ≥ 3 MHz
- 3. Detector = Peak
- 4. Trace Mode = max hold
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 * Span / RBW

3.7 BAND EDGE

Test setup

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. $VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points ≥ 2 x Span/RBW
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Notes

According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

All measurements were done at 2 channels(low and high operational frequency range.)

The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015.

The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

- The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.9 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported.
- The worst case is reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data.
- Please refer to the table below.

[Worst case]

Test Description	Mad DW		Channel	Axis	RB Mode		
Test Description	Mod	BW	Channel	AXIS	Size	Offset	Index
Radiated Spurious and Harmonic Emissions	* QPSK	5	Low Mid High	Υ	1	0	0
	* QPSK	10	Mid	X	1	0	0

^{*} Worst case : Of all modulation, We have tested modulation of the high Conducted Output Power.

3.10 WORST CASE(CONDUCTED TEST)

[Worst case]

Test Description	Mod	BW	Fraguenov		RB Mode	
Test Description	IVIOU	(MHz)	Frequency	Size	Offset	Index
Occupied Bandwidth	QPSK, 16QAM	5, 10	Mid	6	0	0
			Low	1	0	0
	* QPSK	10	High	1	5	3
			Low	6	0	0
Pand Edga			High	6	0	3
Band Edge			Low	1	0	0
			High	1	5	7
			Low	6	0	0
			High	6	0	7
Spurious and Harmonic			Low,			
Emissions at Antenna	* QPSK	5, 10	Mid,	1	0	0
Terminal			High			

^{*} Worst case : Of all modulation, We have tested modulation of the high Conducted Output Power.

4. LIST OF TEST EQUIPMENT

Manufacture	Model/ Equipment	Serial Number	Calibration Date	Calibration Interval	Calibration Due
REOHDE & SCHWARZ	SCU 18 / AMPLIFIER	10094	04/17/2018	Annual	04/17/2019
Wainwright	WHK1.2/15G-10EF/H.P.F	4	04/04/2018	Annual	04/04/2019
Wainwright	WHK3.3/18G-10EF/H.P.F	2	04/04/2018	Annual	04/04/2019
Hewlett Packard	11667B / Power Splitter(DC~26.5 GHz)	5001	06/07/2018	Annual	06/07/2019
Agilent	E3632A/DC Power Supply	KR75303243	05/09/2018	Annual	05/09/2019
Schwarzbeck	UHAP/ Dipole Antenna	557	03/31/2017	Biennial	03/31/2019
Schwarzbeck	UHAP/ Dipole Antenna	558	03/31/2017	Biennial	03/31/2019
ESPEC	SU-642 / Chamber	93000718	08/07/2018	Annual	08/07/2019
Schwarzbeck	BBHA 9120D/ Horn Antenna(1~18GHz)	147	09/14/2018	Annual	09/14/2019
Schwarzbeck	BBHA 9120D/ Horn Antenna(1~18GHz)	9120D-1298	10/04/2018	Annual	10/04/2019
Schwarzbeck	BBHA 9170/ Horn Antenna(15~40GHz)	BBHA9170342	04/25/2017	Biennial	04/25/2019
Schwarzbeck	BBHA 9170/ Horn Antenna(15~40GHz)	BBHA9170124	04/25/2017	Biennial	04/25/2019
Agilent	N9020A/Signal Analyzer(10Hz~26.5GHz)	MY52090906	06/08/2018	Annual	06/08/2019
Hewlett Packard	8493C/ATTENUATOR(20dB)	17280	06/21/2018	Annual	06/21/2019
REOHDE & SCHWARZ	FSV40/Spectrum Analyzer(10Hz~40GHz)	100931	10/22/2018	Annual	10/22/2019
Anritsu	MT8821C/ Wideband Radio Communication Tester	6201588599	02/14/2019	Annual	02/14/2020
Anritsu Corp.	MT8820C/Wideband Radio Communication Tester	6201026545	01/30/2018	Annual	01/30/2020
Schwarzbeck	FMZB1513/ Loop Antenna(9kHz~30MHz)	1513-175	08/23/2018	Biennial	08/23/2020
Schwarzbeck	VULB9160/ Bilog Antenna	9160-3368	08/09/2018	Biennial	08/09/2020
Schwarzbeck	VULB9160/ Hybrid Antenna	760	04/06/2017	Biennial	04/06/2019
REOHDE & SCHWARZ	SMB100A/ SIGNAL GENERATOR (100kHz~40GHz)	177633	07/19/2018	Annual	07/19/2019
REOHDE & SCHWARZ	ESU40 / EMI TEST RECEIVER	100524	07/27/2018	Annual	07/27/2019

Note:

1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.71

6. SUMMARY OF TEST RESULTS

6.1 Test Condition : Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	ccupied Bandwidth §2.1049 N/A		PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§2.1051, §27.53(c)	< 43 + 10log10 (P[Watts]) at Band Edge and for all out-of-band emissions	PASS
Effective Radiated Power	27.50(b)(10)	< 3 Watts max. ERP	PASS
Frequency stability / variation of ambient temperature	§2.1055, § 27.54	Emission must remain in band	PASS

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Radiated Spurious and Harmonic	§2.1053,	< 43 + 10log10 (P[Watts]) for	PASS
Emissions	§27.53(g)	all out-of band emissions	PASS
Undesirable Emissions in		< -70dBW/MHz EIRP (wideband)	PASS
the 1559 – 1610 MHz band	2.1053, 27.53(f)	< -80dBW EIRP (narrowband)	PASS

Note regarding all Emission Mask test plots:

The FCC limit is $65 + 10\log_{10}(P_{[Watts]}) = -35$ dBm in a 6.25 kHz bandwidth. Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment, a bandwidth of 10 kHz was used instead to show compliance. By using a 10 kHz bandwidth, the limit was adjusted by $10\log_{10}(10 \text{ kHz}/6.25 \text{ kHz}) = 2.04$ dB. Thus, the limit shown in all emission mask plots for all available modulation types was -35 dBm + 2.04 dB = -32.96 dBm.

7. EMISSION DESIGNATOR

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

16QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

8. TEST DATA

8.1 EFFECTIVE RADIATED POWER

				Max.Average Power			E.R.P												
		. RB	DR	PR	PR	DD	DR	DR	DR.	DD	PR	RR	RB	IVIA	(dBm)	•••		[dBm]	
Modulation	Index	Size	Offset	23205	23230	23255	23205	23230	23255										
		0.20	0.1001	779.5 MHz	782 MHz	784.5 MHz	779.5 MHz	782 MHz	784.5 MHz										
	0	1	0	23.98	23.91	23.93	25.26	25.19	25.21										
	0	1	3	23.96	23.90	23.92	25.24	25.18	25.20										
	0	1	5	23.78	23.80	23.79	25.06	25.08	25.07										
QPSK	0	3	0	22.80	22.81	22.82	24.08	24.09	24.10										
	0	3	1	22.74	22.73	22.71	24.02	24.01	23.99										
	0	3	3	22.80	22.74	22.71	24.08	24.02	23.99										
	0	6	0	22.86	22.81	22.81	24.14	24.09	24.09										
	0	1	0	23.44	23.43	23.41	24.72	24.71	24.69										
	0	1	3	23.41	23.35	23.35	24.69	24.63	24.63										
	0	1	5	23.43	23.41	23.37	24.71	24.69	24.65										
16QAM	0	3	0	22.52	22.77	22.55	23.80	24.05	23.83										
	0	3	1	22.58	22.55	22.57	23.86	23.83	23.85										
	0	3	3	22.62	22.54	22.55	23.90	23.82	23.83										
	0	6	0	21.96	21.56	21.61	23.24	22.84	22.89										
	1	1	0	23.86	23.91	23.79	25.14	25.19	25.07										
	1	1	3	23.85	23.88	23.77	25.13	25.16	25.05										
	1	1	5	23.72	23.82	23.72	25.00	25.10	25.00										
QPSK	1	3	0	22.79	22.80	22.80	24.07	24.08	24.08										
	1	3	1	22.78	22.77	22.69	24.06	24.05	23.97										
	1	3	3	22.67	22.77	22.72	23.95	24.05	24.00										
	1	6	0	22.84	22.78	22.78	24.12	24.06	24.06										
	1	1	0	23.39	23.42	23.40	24.67	24.70	24.68										
	1	1	3	23.38	23.41	23.39	24.66	24.69	24.67										
	1	1	5	23.22	23.33	23.32	24.50	24.61	24.60										
16QAM	1	3	0	22.52	22.54	22.56	23.80	23.82	23.84										
	1	3	1	22.51	22.53	22.67	23.79	23.81	23.95										
	1	3	3	22.63	22.51	22.70	23.91	23.79	23.98										
	1	6	0	21.81	21.61	21.50	23.09	22.89	22.78										
	3	1	0	23.87	23.86	23.77	25.15	25.14	25.05										
	3	1	3	23.83	23.85	23.75	25.11	25.13	25.03										
	3	1	5	23.75	23.77	23.74	25.03	25.05	25.02										
QPSK	3	3	0	22.76	22.80	22.69	24.04	24.08	23.97										
	3	3	1	22.69	22.68	22.69	23.97	23.96	23.97										
	3	3	3	22.65	22.68	22.65	23.93	23.96	23.93										
	3	6	0	22.84	22.77	22.79	24.12	24.05	24.07										
	3	1	0	23.37	23.40	23.41	24.65	24.68	24.69										
	3	1	3	23.34	23.37	23.40	24.62	24.65	24.68										
	3	1	5	23.32	23.39	23.40	24.60	24.67	24.68										
16QAM	3	3	0	22.52	22.51	22.53	23.80	23.79	23.81										
	3	3	1	22.57	22.50	22.57	23.85	23.78	23.85										
	3	3	3	22.64	22.54	22.52	23.92	23.82	23.80										
	3	6	0	21.57	21.58	21.56	22.85	22.86	22.84										

LTE Conducted Average Output Powers (5 MHz Band 13 LTE)

Note:

- 1. E.R.P = Conducted Power + Peak. Ant Gain(dBd)
- 2. Peak. Ant Gain(dBi) = 3.43 dBi
- 3. Peak. Ant Gain(dBd) = 3.43 2.15 = 1.28 dBd
- 3. Limit = 3 Watts(=34.77dBm)

				May Average Dower	E.R.P
				Max.Average Power (dBm)	[dBm]
Modulation	Index	RB Size	RB Offset	·	-
				23230	23230
	_		_	782 MHz	782 MHz
	0	1	0	23.91	25.19
	0	1	3	23.81	25.09
	0	1	5	23.81	25.09
QPSK	0	3	0	23.81	25.09
	0	3	1	23.90	25.18
	0	3	3	23.82	25.10
	0	6	0	22.82	24.10
	0	1	0	23.44	24.72
	0	1	3	23.48	24.76
	0	1	5	23.43	24.71
16QAM	0	3	0	23.10	24.38
	0	3	1	23.81	25.09
	0	3	3	23.61	24.89
	0	6	0	21.88	23.16
	1	1	0	23.82	25.10
	1	1	3	23.80	25.08
	1	1	5	23.73	25.01
QPSK	1	3	0	23.82	25.10
	1	3	1	23.81	25.09
	1	3	3	23.80	25.08
	1	6	0	22.81	24.09
	1	1	0	23.38	24.66
	1	1	3	23.31	24.59
	1	1	5	23.31	24.59
16QAM	1	3	0	23.80	25.08
	1	3	1	23.77	25.05
	1	3	3	23.78	25.06
	1	6	0	21.71	22.99
	3	1	0	23.80	25.08
	3	1	3	23.79	25.07
	3	1	5	23.75	25.03
QPSK	3	3	0	23.77	25.05
	3	3	1	23.77	25.05
	3	3	3	23.71	24.99
	3	6	0	22.79	24.07
	3	1	0	23.35	24.63
	3	1	3	23.43	24.71
	3	1	5	23.46	24.74
16QAM	3	3	0	23.72	25.00
	3	3	1	23.70	24.98
	3	3	3	23.56	24.84
	3	6	0	21.82	23.10

LTE Conducted Average Output Powers (10 MHz Band 13 LTE)

Note:

- 1. E.R.P = Conducted Power + Peak. Ant Gain(dBd)
- 2. Peak. Ant Gain(dBi) = 3.43 dBi
- 3. Peak. Ant Gain(dBd) = 3.43 2.15 = 1.28 dBd
- 3. Limit = 3 Watts(=34.77dBm)

8.2 RADIATED SPURIOUS EMISSIONS

■ MODE: <u>LTE B13</u>

■ MODULATION SIGNAL: <u>5 MHz QPSK</u>

■ DISTANCE: <u>3 meters</u>

■ LIMIT: <u>-13.0 dBm</u>

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBd)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	Margin (dB)
	* 1605.01	-55.43	7.14	-64.08	1.25	Н	-60.34	76.60
	* 1,559.00	-55.85	6.73	-64.20	1.23	V	-60.85	20.85
23205 (779.5)	2,338.5	-48.46	7.87	-53.76	1.56	V	-49.60	36.60
(110.0)	3,118.0	-42.78	9.21	-47.37	1.83	V	-42.14	29.14
	3,897.5	-40.57	10.50	-44.75	2.05	Н	-38.45	25.45
	* 1559.67	-53.18	6.73	-61.53	1.23	Н	-58.18	45.18
	* 1,564.00	-57.00	6.76	-65.48	1.23	V	-62.11	22.11
23230 (782.0)	2,346.0	-48.22	7.92	-53.52	1.55	Н	-49.30	36.30
(102.0)	3,128.0	-46.80	9.21	-51.26	1.82	V	-46.02	33.02
	3,910.0	-38.79	10.50	-42.88	2.05	Н	-36.58	23.58
	* 1564.30	-54.49	6.76	-62.97	1.23	Н	-59.60	46.60
	* 1,569.00	-56.51	6.78	-65.12	1.23	V	-61.72	21.72
23255 (784.5)	2,353.5	-46.46	7.97	-51.76	1.53	Н	-47.47	34.47
(101.0)	3,138.0	-47.22	9.20	-51.79	1.84	V	-46.58	33.58
	3,922.5	-38.47	10.51	-42.57	2.11	Н	-36.32	23.32

Note:

(Limit = -70 dBW/MHz = -40.0 dBm/MHz)

^{*: 1559-1610} MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals.

■ MODE: <u>LTE B13</u>

■ MODULATION SIGNAL: 10 MHz QPSK

■ DISTANCE: <u>3 meters</u>

■ LIMIT: <u>-13.0 dBm</u>

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBd)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	Margin (dB)
	* 1,578.79	-55.29	6.90	-63.77	1.24	Н	-60.26	26.26
	* 1,564.00	-57.43	6.76	-70.21	1.23	Н	-62.54	22.54
23230 (782.0)	2,346.0	-49.49	7.92	-59.09	1.55	Н	-50.57	37.57
(102.0)	3,128.0	-43.76	9.21	-52.52	1.82	Н	-42.98	29.98
	3,910.0	-40.08	10.50	-48.47	2.05	Н	-37.87	24.87

Note:

(Limit = -70 dBW/MHz = -40.0 dBm/MHz)

^{*: 1559-1610} MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals.

8.3 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
	5 MU-7	MHz	QPSK	6	0	1.1220
12	5 MHZ		16-QAM			1.1324
13	40 MH=	782.0	QPSK			1.1397
10 N	10 MHz		16-QAM			1.1253

Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 33 \sim 35.

8.4 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)			Factor (dB) Measurement Maximum Data (dBm)		Limit (dBm)
		779.5	3.0381	27.976	-58.470	-30.494	
12	5	782.0	6.5821	28.591	-58.089	-29.498	42.00
13		784.5	3.0685	27.976	-58.494	-30.518	-13.00
	10	782.0	3.0795	27.976	-57.355	-29.379	

Note:

- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page 52 \sim 55.
- 2. Conducted Spurious Emissions was Tested QPSK Modulation, Resource Block Size 1 and Resource Block Offset 0
- 3. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)
- 4. Factor(dB) = Cable Loss + Attenuator + Power Splitter

Frequency Range (GHz)	Factor [dB]
0.03 – 1	25.270
1 – 5	27.976
5 – 10	28.591
10 – 15	29.116
15 – 20	29.489
Above 20	30.131

8.5 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 36 ~ 51.

8.6 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

■ MODE: <u>LTE 13</u>

■ OPERATING FREQUENCY: <u>779,500,000 Hz</u>
 ■ CHANNEL: <u>23205 (5 MHz)</u>

■ REFERENCE VOLTAGE: 3.80 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(℃)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	779 499 994	0.00	0.000 000	0.0000
100%		-30	779 500 012	17.55	0.000 002	0.0225
100%		-20	779 500 006	12.06	0.000 002	0.0155
100%		-10	779 500 013	18.87	0.000 002	0.0242
100%	3.800	0	779 500 005	10.65	0.000 001	0.0137
100%		+10	779 500 004	10.00	0.000 001	0.0128
100%		+30	779 500 008	13.20	0.000 002	0.0169
100%		+40	779 500 013	18.50	0.000 002	0.0237
100%		+50	779 500 006	11.98	0.000 002	0.0154
Batt. Endpoint	3.500	+20	779 500 010	15.64	0.000 002	0.0201

■ MODE: <u>LTE 13</u>

■ OPERATING FREQUENCY: <u>782,000,000 Hz</u>

■ CHANNEL: <u>23230 (5 MHz)</u>

■ REFERENCE VOLTAGE: 3.80 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(℃)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	782 000 006	0.00	0.000 000	0.0000
100%		-30	782 000 020	13.32	0.000 002	0.0170
100%		-20	782 000 025	19.02	0.000 002	0.0243
100%		-10	782 000 019	12.29	0.000 002	0.0157
100%	3.800	0	782 000 019	12.87	0.000 002	0.0165
100%		+10	782 000 018	11.57	0.000 001	0.0148
100%		+30	782 000 017	10.53	0.000 001	0.0135
100%		+40	782 000 020	13.66	0.000 002	0.0175
100%		+50	782 000 021	15.08	0.000 002	0.0193
Batt. Endpoint	3.500	+20	782 000 020	13.93	0.000 002	0.0178

■ MODE: <u>LTE 13</u>

■ OPERATING FREQUENCY: <u>784,500,000 Hz</u>

■ CHANNEL: <u>23255 (5 MHz)</u>

■ REFERENCE VOLTAGE: 3.80 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(℃)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	784 500 002	0.00	0.000 000	0.0000
100%		-30	784 500 021	19.16	0.000 002	0.0244
100%		-20	784 500 013	10.97	0.000 001	0.0140
100%		-10	784 500 021	18.54	0.000 002	0.0236
100%	3.800	0	784 500 017	14.98	0.000 002	0.0191
100%		+10	784 500 022	19.74	0.000 003	0.0252
100%		+30	784 500 016	13.53	0.000 002	0.0172
100%		+40	784 500 021	18.75	0.000 002	0.0239
100%		+50	784 500 015	13.34	0.000 002	0.0170
Batt. Endpoint	3.500	+20	784 500 022	19.87	0.000 003	0.0253

■ MODE: <u>LTE 13</u>

■ OPERATING FREQUENCY: <u>782,000,000 Hz</u>
 ■ CHANNEL: <u>23230 (10 MHz)</u>

■ REFERENCE VOLTAGE: 3.80 VDC

Voltage	Power	Temp.	Frequency	Frequency	Deviation	
(%)	(VDC)	(℃)	(Hz)	Error (Hz)	(%)	ppm
100%		+20(Ref)	782 000 005	0.00	0.000 000	0.0000
100%		-30	782 000 016	11.62	0.000 001	0.0149
100%		-20	782 000 018	13.53	0.000 002	0.0173
100%		-10	782 000 015	10.93	0.000 001	0.0140
100%	3.800	0	782 000 023	18.37	0.000 002	0.0235
100%		+10	782 000 019	14.41	0.000 002	0.0184
100%		+30	782 000 017	12.09	0.000 002	0.0155
100%		+40	782 000 019	14.72	0.000 002	0.0188
100%		+50	782 000 018	13.28	0.000 002	0.0170
Batt. Endpoint	3.500	+20	782 000 015	10.28	0.000 001	0.0131

9. TEST PLOTS

BAND 13. Occupied Bandwidth Plot (Ch.23230 QPSK) 5 MHz

BAND 13. Occupied Bandwidth Plot (Ch.23230 16-QAM) 5 MHz

BAND 13. Occupied Bandwidth Plot (Ch.23230 QPSK) 10 MHz

BAND 13. Occupied Bandwidth Plot (Ch.23230 16-QAM) 10 MHz

Band 13 Lower Band Edge Plot (5M BW Ch.23205 QPSK_1RB)

Band 13 Lower Band Edge Plot (5M BW Ch.23205 QPSK_Full RB)

Band 13 Lower Emission Mask (763 MHz ~ 775 MHz) Plot (5M BW Ch.23205 QPSK_1RB)

Band 13 Lower Emission Mask (763 MHz ~ 775 MHz) Plot (5M BW Ch.23205 QPSK_Full RB)

Band 13 Lower Band Edge Plot (10M BW Ch.23230 QPSK_1RB)

BAND 13. Lower Band Edge Plot (10M BW Ch.23230 QPSK_Full RB)

Band 13 Lower Emission Mask (763 MHz ~ 775 MHz) Plot (10M BW Ch.23230 QPSK_1RB)

Band 13 Lower Emission Mask (763 MHz ~ 775 MHz) Plot (10M BW Ch.23230 QPSK_Full RB)

Band 13 Upper Band Edge Plot (5M BW Ch.23255 QPSK_1RB)

Band 13 Upper Band Edge Plot (5M BW Ch.23255 QPSK_Full RB)

Band 13 Upper Emission Mask (793 MHz ~805 MHz) Plot (5M BW Ch.23255 QPSK_1RB)

Band 13 Upper Emission Mask (793 MHz ~805 MHz) Plot (5M BW Ch.23255 QPSK_Full RB)

Band 13 Upper Band Edge Plot (10M BW Ch.23230 QPSK_1RB)

Band 13 Upper Band Edge Plot (10M BW Ch.23230 QPSK_ QPSK_Full RB)

Band 13 Upper Emission Mask (793 MHz ~805 MHz) Plot (10M BW Ch.23230 QPSK_1RB)

Band 13 Upper Emission Mask (793 MHz ~805 MHz) Plot (10M BW Ch.23230 QPSK_Full RB)

BAND 13. Conducted Spurious Plot (23205ch_5MHz_QPSK)

BAND 13. Conducted Spurious Plot (23230ch_5MHz_QPSK)

BAND 13. Conducted Spurious Plot (23255ch_5MHz_QPSK)

BAND 13. Conducted Spurious Plot (Ch.23230 10 MHz QPSK)

10. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-1902-FC031-P