S. N o.	Questions	C O	Bloo m's Taxo nomy Level	Dif ficu lty Lev el	Comp etitive Exam Quest ion Y/N	Area	Topic
1	Find the nth term of the sequence 1, -4, 9, -16, 25,	1	K2	M	N	sequence	notation
2	Solve: $\lim_{n\to\infty} \left(-\frac{1}{n}\right)$	1	К3	M	N	sequence	convergence
3	Solve: $\lim_{n \to \infty} \left(\frac{4 - 7n^6}{n^6 + 3} \right)$	1	K3	M	N	sequence	convergence
4	Solve: $\lim_{n\to\infty} \left(\frac{n-11}{n}\right)^n$	1	K3	M	N	sequence	convergence
5	Show that series $\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \cdots$ is convergent and find its sum.	1	K3	Н	N	series	Geometric series
6	What is the value of $1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \cdots$	1	К3	M	Y	series	Geometric series
7	Show that the series $\sum_{n=1}^{\infty} \frac{-n}{2n+5}$ is divergent.	1	К3	Н	N	series	nth term test
8	Show that the series $\sum_{n=0}^{\infty} \frac{2^n+5}{3^n}$ is convergent and its sum is 10.5.	1	К3	Н	N	series	Ratio test
9	Show that the series $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is not convergent.	1	К3	Н	N	series	Ratio test
10	Explain that the series $\sum_{n=1}^{\infty} \frac{n^2}{(2)^n}$ is convergent.	1	K2	Н	N	series	Root test
11	Explain that the series $\sum_{n=0}^{\infty} \left(\frac{1}{1+n}\right)^n$ is convergent.	1	K2	Н	N	series	Root test
12	Show that the power series $1 - \frac{1}{2}(x-2) + (x-2)^2 - \frac{1}{8}(x-2)^3 + \cdots$ converges to $\frac{2}{x}$ for $0 < x < 4$.	1	К3	Н	N	Power series	convergence
13	Show that the power series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$ converges for $-1 < x \le 1$.	1	К3	Н	N	Power series	convergence
14	Show that the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} \text{ converges for } -1 \le x \le 1.$	1	К3	Н	N	Power series	convergence
15	Determine the interval and radius of convergence for the power series $\sum_{n=0}^{\infty} \frac{n}{2^{n+1}} x^n$.	1	K4	Н	N	Power series	Radius of convergence
16	Find the radius of the convergence of the power series $\sum_{n=0}^{\infty} \frac{(x-3)^n}{(n!)3^n}.$	1	К3	Н	Y	series	Radius of convergence
17	Determine the interval and radius of convergence for the power series $\sum_{n=0}^{\infty} \frac{10^n}{n!} (x-1)^n$.	1	K4	Н	N	Power series	Radius of convergence
18	Find the Fourier sine and cosine series of the function $f(x) = k$ in the interval $0 < x < 5$.	1	К3	Н	N	Fourier series	Expansion
19	Find the Fourier sine and cosine series of the function $f(x) = x$ in the interval $0 < x < 2$.	1	K3	Н	N	Fourier series	Expansion
20	Find the Fourier sine and cosine series of the	1	К3	Н	N	Fourier series	Expansion
21	function $f(x) = \begin{cases} x, 0 < x < 2 \\ 2, 2 \le x < 4 \end{cases}$ Solve: $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^{2n}$	1	K3	Н	Y	Sequence	Convergence

22	Find the radius of the convergence of the power series $\sum_{n=0}^{\infty} \frac{(x-3)^n}{(n!)3^n}.$	1	К3	Н	Y	series	convergence
21	Show that the <i>p</i>-series $\sum_{n=1}^{\infty} \frac{1}{n^p} (p \text{ a real constant})$	1	К3	Н	N	series	p-series test
	converges if $p > 1$, and diverges if $p \le 1$.		17.0		3.7		D 11 1 1
22	Apply Rolle's theorem to find the value of c for the function $f(x) = x^3 - 3x^2 + 2x + 2$ in the interval [0,1].	2	K3	M	N	Application of derivatives	Rolle's theorem
23	Apply Rolle's theorem to find the value of c for the function $f(x) = (1/3)x^3 - 3x$ in the interval $[-3,3]$.	2	К3	M	N	Application of derivatives	Rolle's theorem
24	Apply Rolle's theorem to find the value of c for the function $f(x) = \sin x$ in the interval $[0, \pi/2]$.	2	К3	M	N	Application of derivatives	Rolle's theorem
25	Apply Mean value theorem to find the value of c for the function $f(x) = x^3 - x^2 - x + 1$ in the interval [0, 2].	2	К3	M	N	Application of derivatives	Mean value theorem
26	Apply Mean value theorem to find the value of c for the function $f(x) = x^2 + 1$ in the interval $[-2, 2]$.	2	К3	M	N	Application of derivatives	Mean value theorem
27	Apply Mean value theorem to find the value of c for the function $f(x) = x $ in the interval $[-1, 1]$.	2	К3	M	N	Application of derivatives	Mean value theorem
28	Compute: $\int_{1}^{\infty} \frac{\ln x}{x^2} dx$	2	К3	M	N	Improper integral	Type I
29	Compute: $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$	2	К3	Н	N	Improper integral	Type I
30	Compute: $\int_0^\infty e^{-x^2} dx$	2	К3	M	N	Improper integral	Type I
31	Compute: $\int_0^1 \frac{1}{1-x} dx$	2	К3	Н	N	Improper integral	Type II
32	Compute: $\int_0^3 \frac{1}{(x-1)^{2/3}} dx$	2	К3	Н	N	Improper integral	Type II
33	Compute: $\int_0^1 x \ln x \ dx$	2	К3	Н	N	Improper integral	Type II
34	Compute $\int_0^\infty x^4 e^{-x} dx$	2	К3	Н	N	Special functions	Gamma function
35	Compute $\int_0^\infty x^{5/2} e^{-x} dx$	2	К3	Н	N	Special functions	Gamma function
36	Compute $\int_0^\infty \sqrt{x}e^{-x^2} dx$	2	К3	Н	N	Special functions	Gamma function
37	Compute $\int_0^\infty e^{-x^3} dx$	2	K3	Н	N	Special functions	Gamma function
38	Compute $\int_0^\infty \sqrt[4]{x}e^{-\sqrt{x}} dx$	2	K3	Н	N	Special functions	Gamma function
39	Compute $\int_0^1 x^5 (1-x)^4 dx$	2	К3	Н	N	Special functions	Beta function
40	Compute $\int_0^1 x^4 (1 - \sqrt{x})^5 dx$	2	К3	Н	N	Special functions	Beta function
41	Compute $\int_0^1 (1-x^3)^{-1/2} dx$	2	К3	Н	N	Special functions	Beta function
42	Find the evolutes of the curve $x^2 = 4ay$.	2	K4	Н	N	Evolute & Involute	Evolute
43	Find the evolutes of the curve $xy = 1$.	2	K4	Н	N	Evolute & Involute	Evolute
44	Find the evolutes of the curve $x^{2/3} + y^{2/3} = a^{2/3}$.	2	K4	Н	N	Evolute & Involute	Evolute
45	Find the domain and range of the function $f(x, y) =$	3	K2	M	N	Functions of several	Function of several variable

	$\frac{2x}{y-x^2}$.					variables	
46	Find the domain and range of the function $f(x, y, z) = xylnz$.	3	K2	M	N	Functions of several variables	Function of several variable
47	Plot the level curves $f(x, y) = 51$, and $f(x, y) = 75$ in the domain of the function $f(x, y) = 100 - x^2 - y^2$ in the plane.	3	K2	M	N	Functions of several variables	Function of several variable
48	Show that the limit does not exist of the function: $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2+y^2}$	3	К3	M	N	Functions of several variables	Limit and continuity
49	Show that the limit does not exist of the function: $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$	3	К3	M	N	Functions of several variables	Limit and continuity
50	Show that the limit does not exist of the function: $\lim_{(x,y)\to(1,-1)} \frac{xy+1}{x^2-y^2}$	3	К3	M	N	Functions of several variables	Limit and continuity
51	Find the limit: $\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$	3	К3	M	N	Functions of several variables	Limit and continuity
52	At what points (x, y) in the plane is the function continuous:	3	K2	M	N	Functions of several variables	Limit and continuity
53	Show that the function is continuous at every point except the origin: $f(x,y) = \begin{cases} \frac{x^2}{x^2 + y^2}, (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$	3	К3	M	N	Functions of several variables	Limit and continuity
54	Show that the function is continuous at every point except the origin: $f(x,y) = \begin{cases} \frac{3x^2y}{x^4 + y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$	3	К3	M	N	Functions of several variables	Limit and continuity
55	Find the partial derivative of the function with respect to each variable: $f(x, y) = 2x^2 - 3y - 4$	3	К3	M	N	Differentiation of FSV	Partial derivatives
56	Find the partial derivative of the function with respect to each variable: $f(x,y)=(x+y)(xy-1)$	3	K3	M	N	Differentiation of FSV	Partial derivatives
57	Find the partial derivative of the function with respect to each variable: $f(x, y) = tan^{-1}(y/x)$	3	K3	Н	N	Differentiation of FSV	Partial derivatives
58	Find the partial derivative of the function with respect to each variable: $f(x, y) = tan^{-1}(y/x)$	3	K3	Н	N	Differentiation of FSV	Partial derivatives
	Find all the second-order partial derivatives of the function: $f(x, y) = (x+y+xy)$	3	К3	M	N	Differentiation of FSV	Partial derivatives
	Find all the second-order partial derivatives of the function $z=x^2 tan(xy)$	3	K3	Н	N	Differentiation of FSV	Partial derivatives
61	Find the total differential of the function at the point (1,1): $f(x,y)=x^3y^4$	3	K3	L	N	Differentiation of FSV	Partial derivatives
62	Find the total differential of the function at the point (1,0,0): $f(x,y,z) = \sqrt{(x^2 + y^2 + z^2)}$	3	К3	M	N	Differentiation of FSV	Partial derivatives
63	Find Taylor series upto $2nd$ degree of $(x, y) = xe_y$ at the point $(0, 0)$.	3	K4	M	N	Application of differentiat ion of FSV	Taylor series of two variables

			•				
64	Find Taylor series upto $2nd$ degree of $(x, y) = x2y + y3$ at the point $(1, 3)$.	3	K4	M	N	Application of differentiat ion of FSV	Taylor series of two variables
65	Find Taylor series upto $2nd$ degree of $(x, y) = tan^{-1}(y/x)$ at the point $(1, 1)$.	3	K4	M	N	Application of differentiat ion of FSV	Taylor series of two variables
66	Find the critical points of the function $(x, y) = xy - x2 - y2 - 2x - 2y + 4$ and use second derivative test to classify each point as one where a saddle, local minimum or local maximum occurs.	3	K4	Н	N	Application of differentiat ion of FSV	Extreme values
67	Find the critical points of the function $(x, y) = -3x^2 + 3y^2 + 6xy - 2y^3$ and use second derivative test to classify each point as one where a saddle, local minimum or local maximum occurs.	3	K4	Н	N	Application of differentiat ion of FSV	Extreme values
68	Find the critical points of the function $(x, y) = x_3 - y_3 - 2xy + 6$ and use second derivative test to classify each point as one where a saddle, local minimum or local maximum occurs.	3	K4	Н	N	Application of differentiat ion of FSV	Extreme values
69	Find the extreme values of the function $(x, y) = x_2 + 2y_2$ on the circle $x_2 + y_2 = 1$ using Lagrange Multiplier method.	3	K4	Н	N	Application of differentiat ion of FSV	Lagrange method of multipliers
70	Find the extreme values of the function $(x, y) = x + y + 2z$ on the surface $x_2+y_2+z_2=3$ using Lagrange Multiplier method.	3	K4	Н	N	Application of differentiat ion of FSV	Lagrange method of multipliers
71	A rectangular box, open at the top, is to have a volume of 32 cc. Find the dimensions of the box requiring least material for its constructions.	3	K4	Н	N	Application of differentiat ion of FSV	Lagrange method of multipliers
72	Compute: $\int_{-1}^{0} \int_{-1}^{1} (x + y + 1) dy dx$	4	K2	M	N	Double integrals in Cartesian coordinates	Rectangular region
73	Compute the double integral over the region R : $0 \le x \le 1$, $0 \le y \le 2$; $\iint_R (6y^2 - 2x) dA$	4	К3	Н	N	Double integrals in Cartesian coordinates	Rectangular region
74	Calculate $\iint_R f(x, y) dA$ for $f(x, y) = 100 - 6x^2y$ and $R: 0 \le x \le 2$, $-1 \le y \le 1$.	4	K3	Н	N	Double integrals in Cartesian coordinates	Rectangular region
75	Compute: $\int_{0}^{2} \int_{x^{2}}^{2x} (4x + 2) dy dx$	4	K2	M	N	Double integrals in Cartesian coordinates	Non-rectangular region
76	Compute: $\int_0^{\pi} \int_0^{\sin x} dy dx$	4	K2	M	N	Double integrals in Cartesian coordinates	Non-rectangular region
77	Compute: $\int_{1}^{2} \int_{y}^{y^{2}} dx dy$	4	K2	M	N	Double integrals in Cartesian coordinates	Non-rectangular region
78	Compute: $\int_0^2 \int_{y^2/4}^{(y+2)/4} (16 - x^2 - y^2) dx dy$	4	К3	Н	N	Double integrals in Cartesian coordinates	Non-rectangular region

79	Diet the marion marrows the ander of integration and then	1	К3	Н	N	Double	
/9	Plot the region, reverse the order of integration and then	4	K3	п	IN		C1
	calculate the integral: $\int_0^1 \int_y^1 \frac{\sin x}{x} dx dy$					integrals in	Change order of
	- 50 5y x					Cartesian	integration
		L .				coordinates	
80	Sketch the region of integration and write an equivalent	4	K2	Н	N	Double	
	integral with the order of integration reversed for the					integrals in	Change order of
	integral $\int_{0}^{2} \int_{x^{2}}^{2x} (4x + 2) dy dx$.					Cartesian	integration
	$\prod_{x \in S^{\text{rat}}} J_0 J_{x^2} (1x + 2) u y u x.$					coordinates	
81	Sketch the region of integration and write an equivalent	4	K2	Н	N	Double	
	integral with the order of integration reversed for the					integrals in	Change order of
	integral $\int_0^1 \int_2^{4-2x} dy dx$.					Cartesian	integration
	integral J_0 J_2 ayax.					coordinates	
82	Change the Cartesian integral into polar integral and	4	К3	Н	N	Double	Change
	then compute the polar integral:					integrals in	Cartesian
						Polar	integrals into
	$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy dx$					coordinates	polar integrals
83	Change the Cartesian integral into polar integral and	4	К3	Н	N	Double	Change
03	then compute the polar integral:	•	113	11	11	integrals in	Cartesian
						Polar	integrals into
	$\int_0^1 \int_0^{\sqrt{1-y^2}} (x^2 + y^2) dx dy$					coordinates	polar integrals
84	Change the Cartesian integral into polar integral and	4	К3	Н	N	Double	Change
04		4	KS	11	11		Cartesian
	then compute the polar integral:					integrals in	
	$\int_0^2 \int_0^{\sqrt{4-y^2}} (x^2 + y^2) dx dy$					Polar	integrals into
0.5	$J_0 J_0 = (x + y) u x u y$	4	TZ 4	T.T.	N.T.	coordinates	polar integrals
85	Evaluate $\iint_{R} e^{x^{2}+y^{2}} dy dx$ where R is the semicircular	4	K4	Н	N	Double	Change
	region bounded by the x-axis and the curve $y =$					integrals in	Cartesian
	$\sqrt{1-x^2}$.					Polar	integrals into
						coordinates	polar integrals
86	Find the volume of the region bounded above by the	4	K4	Н	N	Application of	Area and
	elliptical paraboloid $z = 10 + x^2 + 3y^2$ and below by					Double	volume by
	the rectangle $R: 0 \le x \le 1, 0 \le y \le 2$.					integral	double integral
87	Find the volume of the region bounded above by the	4	K4	Н	N	Application of	Area and
	paraboloid $z = x^2 + y^2$ and below by the					Double	volume by
	square $R: -1 \le x \le 1, -1 \le y \le 1$.					integral	double integral
88	Find the volume of the region bounded above by the	4	K4	Н	N	Application of	Area and
	plane $z = 2 - x - y$ and below by the square $R: 0 \le$					Double	volume by
	$x \le 1, 0 \le y \le 1.$					integral	double integral
89	Find a value of the constant <i>k</i> so that	4	K4	Н	N	Application of	Area and
	$\int_{1}^{2} \int_{0}^{3} kx^{2}y dx dy = 1.$					Double	volume by
	$\int_1^{\infty} \int_0^{\infty} kx \ yax \ dy = 1.$					integral	double integral
90	Find the volume of the region bounded above by the	4	K4	Н	N	Application of	Area and
	paraboloid $z = x^2 + y^2$ and below by the triangle					Double	volume by
	enclosed by the lines $y = x$, $x = 0$, and $x + y = 2$ in the					integral	double integral
	encrosed by the times $y = x, x = 0$, and $x + y = 2$ in the xy-plane.						Sound Intogran
91	Find the area of the region R bounded by $y = x$ and $y = x$	4	K4	Н	N	Application of	Area and
'1	x^2 in the first quadrant using double integral.	T	17.7	11	11	Double	volume by
	in the first quadrant using dodole integral.					integral	double integral
92	Find the area of the region R enclosed by the	4	K4	Н	N	Application of	Area and
92	parabola $y = x^2$ and the line $y = x + 2$ using double	-	17.4	111	14	Double	volume by
						integral	•
02	integral.	1	V2	TT	N.T		double integral
93	Evaluate: $\int_0^1 \int_0^1 \int_0^1 dz dy dx$	4	K3	Н	N	Triple	Triple integral
						integrals in	
						Cartesian	
						coordinates	

94	Evaluate: $\int_0^2 \int_0^2 \int_0^2 xyz dx dy dz$	4	K3	Н	N	Triple integrals in Cartesian coordinates	Triple integral
95	Evaluate: $\int_0^1 \int_x^1 \int_0^{y-x} dz dy dx$	4	К3	Н	N	Triple integrals in Cartesian coordinates	Triple integral
96	Evaluate: $\int_0^1 \int_0^{1-x} \int_{x+z}^1 dy dz dx$	4	К3	Н	N	Triple integrals in Cartesian coordinates	Triple integral
97	Evaluate the triple integral $\iiint_Q 2xe^y \sin z dV$, where Q is the rectangular box defined by $Q = \{(x, y, z) 1 \le x \le 2, 0 \le y \le 1, 0 \le z \le \pi\}$.	4	K4	Н	N	Triple integrals in Cartesian coordinates	Triple integral
98	Find the volume of the cube of side 2 unit using triple integral.	4	K4	Н	N	Application of Triple integrals	Volume by triple integral
99	Find the volume of the region enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 - x^2 - y^2$.	4	K4	Н	N	Application of Triple integrals	Volume by triple integral
10 0	Find the gradient of the scalar field $f(x, y, z) = x^2y^2 + xy^2 - z^2$.	5	K2	Н	N	Differentiatio n of Vector function	Gradient
10	Find the directional derivative of $f(x, y, z) = xy^2 + 4xyz + z^2$ at the point $(1, 2, 3)$ in the direction of $3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$.	5	K3	M	N	Differentiatio n of Vector function	Gradient
10 2	Find the divergence of the vector field $\mathbf{v} = (x^2y^2 - z^3)\mathbf{i} + 2xyz\mathbf{j} - e^{xyz}\mathbf{k}$.	5	K2	M	N	Differentiatio n of Vector function	Divergence and curl
10 3	Find the curl of the vector field $\mathbf{v} = (x^2y^2 - z^3)\mathbf{i} + 2xyz\mathbf{j} - e^{xyz}\mathbf{k}$.	5	K2	M	N	Differentiatio n of Vector function	Divergence and curl
10 4	Let $\mathbf{v} = a(x, y, z) \mathbf{i} + b(x, y, z) \mathbf{j} - c(x, y, z) \mathbf{k}$ be a differentiable vector field. Show that $\operatorname{div}(\operatorname{curl} \mathbf{v}) = 0$.	5	K3	M	N	Differentiatio n of Vector function	Divergence and curl
10 5	Let $\mathbf{v} = xy \mathbf{i} + yz \mathbf{j} + zx \mathbf{k}$ be a differentiable vector field. Show that $\operatorname{div}(\operatorname{curl} \mathbf{v}) = 0$.	5	K3	M	N	Differentiatio n of Vector function	Divergence and curl
10 6	Let $f(x, y, z) = 16xy^3z^2$ be a differentiable scalar field. Show that curl(grad f) = 0 .	5	K3	M	N	Differentiatio n of Vector function	Divergence and curl
10 7	Show that the vector field $\mathbf{F} = 2x(y^2 + z^3)\mathbf{i} + 2x^2y\mathbf{j} + 3z^2x^2\mathbf{k}$ is conservative. Find its potential function.	5	K4	Н	N	Differentiatio n of Vector function	Divergence and curl
10 8	Find whether the vector field $\mathbf{F} = xy \mathbf{i} + yz \mathbf{j} + zx \mathbf{k}$ is conservative. If it is, find the potential function.	5	K4	Н	N	Differentiatio n of Vector function	Divergence and curl
10 9	Show that the vector field $\mathbf{F} = ye^{xy} \mathbf{i} + xe^{xy} \mathbf{j} + 2e^{z} \mathbf{k}$ is irrotational.	5	К3	M	N	Differentiatio n of Vector function	Divergence and curl

11 0	Let $\mathbf{v} = a(x, y, z) \mathbf{i} + b(x, y, z) \mathbf{j} - c(x, y, z) \mathbf{k}$ be a differentiable vector field. Show that $\operatorname{div}(\operatorname{curl} \mathbf{v}) = 0$.	5	К3	M	N	Differentiatio n of Vector function	Divergence and curl
11 1	Let $\mathbf{v} = xy \mathbf{i} + yz \mathbf{j} + zx \mathbf{k}$ be a differentiable vector field. Show that $\operatorname{div}(\operatorname{curl} \mathbf{v}) = 0$.	5	К3	M	N	Differentiatio n of Vector function	Divergence and curl
11 2	Show that the vector field $\mathbf{F} = (2x + 3y)\mathbf{i} + (x - y)\mathbf{j} - (x + y + z)\mathbf{k}$ is incompressible.	5	K3	M	N	Differentiatio n of Vector function	Divergence and curl
11 3	Evaluate $\oint_C (x^2 + y^2) dx + (y + 2x) dy$, where <i>C</i> is the boundary of the region in the first quadrant that is bounded by the curves $y^2 = x, x^2 = y$ by Green's theorem.	5	K5	Н	N	Integration of Vector function	Green theorem
11 4	Find the work done by the force $\mathbf{F} = (x^2 - y^3)\mathbf{i} + (x + y)\mathbf{j}$ in moving a particle along the closed path C containing the curves $x^2 + y^2 = 16$, $x + y = 0$, $x - y = 0$ in the 1 st and 4 th quadrants by Green's theorem.	5	K5	Н	N	Integration of Vector function	Green theorem
11 5	Evaluate $\oint_C 3x^2ydx - 2xy^2dy$, where <i>C</i> is the boundary of the region $x^2 + y^2 \le 16$, $x \ge 0$, $y \ge 0$ by Green's theorem.	5	K5	Н	N	Integration of Vector function	Green theorem
11 6	Evaluate $\oint_C (x^2 + y^2) dx + (5x^2 - 3y) dy$, where C is the boundary of the region $x^2 = 4y$, $y = 4$, by Green's theorem.	5	K5	Н	N	Integration of Vector function	Green theorem
11 7	Use the Gauss theorem to evaluate $\iint_S (\mathbf{v} \cdot \mathbf{n}) dA$, where $\mathbf{v} = x^2 z \mathbf{i} + y \mathbf{j} - xz^2 \mathbf{k}$ and S is the boundary of the region bounded by the paraboloid $z = x^2 + y^2$ and the plane $z = 4y$.	5	K5	Н	N	Integration of Vector function	Gauss theorem
11 8	Use the Gauss theorem to evaluate $\iint_S (\mathbf{v} \cdot \mathbf{n}) dA$, where $\mathbf{v} = 3x^2 \mathbf{i} + 6y^2 \mathbf{j} + z \mathbf{k}$ and S is the boundary of the region bounded by the cylinder $16 = x^2 + y^2$ and the planes $z = 0$, $z = 4$.	5	K5	Н	N	Integration of Vector function	Gauss theorem
11 9	Use the Gauss theorem to evaluate $\iint_S (\mathbf{v} \cdot \mathbf{n}) dA$, where $\mathbf{v} = xy \mathbf{i} + yz \mathbf{j} + xz \mathbf{k}$ and S is the boundary of the cube cut from the first octant by the planes $x = 1, y = 1, z = 1$.	5	K5	Н	N	Integration of Vector function	Gauss theorem
12 0	Use the Gauss theorem to evaluate $\iint_S (\mathbf{v}, \mathbf{n}) dA$, where $\mathbf{v} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$ and S is the boundary of sphere $x^2 + y^2 + z^2 = 4$.	5	K5	Н	N	Integration of Vector function	Gauss theorem