(Do not use 1.702 in the logistic model calculation except for Q1-part (c))

1. a. Plot the following two items using the **normal ogive** model over the range [-3.0, 3.0] in increment of .1 ($\Delta\theta$ = .1). Show your computations.

$$\beta = 1.0$$
 $\alpha = 1.0$ $\beta = -.5$ $\alpha = .5957$

b. Plot the following two items using a **logistic model** over the range [-3.0, 3.0] in increment of .1 ($\Delta \theta = .1$). Show your computations.

$$\beta = 1.0$$
 $\alpha = 1.0$ $\beta = -.5$ $\alpha = .5957$

- c. Compare the two plots in (b) with the two plots in part (a). What do you find? You may use the scaling factor 1.702 to establish a relationship between the plots from normal ogive and logistic models.
- 2. Let the difficulty parameters of five items be

$$\beta = \{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5\}' = \{-2.0, -1.0, -0.5, 0.5, 1.0\}'$$

- a. Plot the ICCs of the five items in the θ interval [-3.0, 3.0]. Use an increment of 0.1 $(\Delta \theta = .1)$.
- b. Compare the probabilities of correct response for Items 1 and 4 across the θ continuum.
- c. Which of the five items is easiest? Which item is most difficult? Are these statements true for all θ ?
- d. For each θ , find the sum of the probabilities of correct response across the five items to form the test characteristic curve (TCC). Plot the TCC against θ .
- e. TCC also represents the expected number of correct responses. Find the expected number of correct responses for $\theta = -1.0$ and $\theta = 1.0$.

For Problems 3 & 4, you can use statistical software (e.g., SPSS) to conduct the analyses.

- 3. Twelve items were administered to two groups of examinees. The responses of 100 examinees to Item 6 and the total score from each group can be found in **hw1_3.xls**. We wish to analyze Item 6 using CTT indices.
 - a. Find the mean of Item 6 and its correlation with the total for each group (i.e., item difficulty & discrimination in CTT).
 - b. Do the indices remain the same across the two groups? What can you conclude regarding the invariance of the classical item indices?
 - c. Which group has higher ability?

4. Responses to three items at a fixed ability level can be found in **hw1_4.xls**. Using a χ^2 -test of independence, determine whether pairwise local independence holds for these three items. That is, for each of the three item pairs, construct a 2×2 table of correct and incorrect responses, and perform the χ^2 -test of independence. Your tables should look something like this:

		Item Y	
		Correct	Incorrect
Item X	Correct		
	Incorrect		

Summarize the results of your analyses (i.e., determine which pairs are locally independent at this fixed ability level) and draw a conclusion.

- 5. Using the logistic model, plot the following three items over the range, $-3 \le \theta \le 3$ in increments of $\Delta \theta = .1$. Show your computations (Don't use 1.702 scaling factor in the model).
 - a. $\beta = .5$ (Rasch model)
 - b. $\alpha = 1.5, \beta = .5$
 - c. $\alpha = 1.5$, $\beta = .5$, c = .15
- 6. For the three-parameter logistic model, show that the probability of a correct response $P(\theta)$

at
$$\theta = \beta$$
 is $P(\theta) = \frac{1+c}{2}$.