# Temporal Cross Correlation of Internet Observatories and Outposts

Jeremy Kepner, Michael Jones, Daniel Andersen, Aydin Buluc, Chansup Byun, K Claffy, Timothy Davis, William Arcand, Jonathan Bernays, David Bestor, William Bergeron, Vijay Gadepally, Daniel Grant, Michael Houle, Matthew Hubbell, Hayden Jananthan, Anna Klein, Chad Meiners, Lauren Milechin, Andrew Morris, Julie Mullen, Sandeep Pisharody, Andrew Prout, Albert Reuther, Antonio Rosa, Siddharth Samsi, Doug Stetson, Charles Yee, Peter Michaleas

May, 2022





#### **Network Flow Definitions**





#### **Multi-Temporal Streaming Traffic Matrices**





## **Example: Simple Network Property Formulas**

• Number of valid packets: 
$$N_{val} = \sum_{ij} A(i,j) = \mathbb{1}^T A \mathbb{1}$$

Source packets:

All ▼

Destination packets:

 $1^{\mathsf{T}}\mathbf{A}$ 

Unique sources:

size(A,1)

• Unique destinations:size(A,2)

Number of unique links: nnz(A)

Link packets:

A

Source fan-outs:

 $|\mathbf{A}|_0 \mathbf{1}$ 

Destination fan-ins:

 $\mathbb{1}^\mathsf{T} |\mathbf{A}|_0$ 

Corresponding probability distributions are normalized histograms of these arrays



## Cyberspace Security vs Defense vs Deterrence





#### **Notional Attack**

- Current -

- 1. Plan
- 2. Stage
- 3. Infiltrate
- 4. Move laterally
- 5. Detect
- 6. Cleanse
- 7. Infiltrate





#### **Notional Attack**

- Desired -

1. Plan

2. Stage

3. Detect





## **Knowledge Hierarchy Pyramid**





#### **Potential Data Sources: Observatories & Outposts**

- 1. Gov't dark(class B)/blue gateway (~5 years, ~10T packets)
- MAWI gray trunk (~5 years, ~50B packets)
- 3. CAIDA gray trunk (~5 years, ~50B packets
- CAIDA Equinox gray trunk (~100 GigE)
- 5. CAIDA dark(class A) gateway (5+ years, ~100T packets)
- 6. Greynoise gateway (~400 active honeypots)
- 7. Global Cyber Alliance gateway (IoT honeypot farm)
- 8. Shadowserver gateway (~100M sinkholed botnets)





#### **Gateway Internet Traffic Matrices**





# **CAIDA & GreyNoise Data**

| GreyNoise<br>Start Time | GreyNoise<br>Duration | GreyNoise<br>Sources | CAIDA<br>Start Time | CAIDA<br>Duration | CAIDA<br>Packets       | CAIDA<br>Sources |
|-------------------------|-----------------------|----------------------|---------------------|-------------------|------------------------|------------------|
| 2020-02-01              | 29 days               | 2,752,690            |                     |                   |                        |                  |
| 2020-03-01              | 31 days               | 13,849,634           |                     |                   |                        |                  |
| 2020-04-01              | 30 days               | 1,060,905            |                     |                   |                        |                  |
| 2020-05-01              | 31 days               | 1,825,351            |                     |                   |                        |                  |
| 2020-06-01              | 30 days               | 1,111,458            | 2020-06-17-12:00:00 | 1594 sec          | <b>2</b> <sup>30</sup> | 670,304          |
| 2020-07-01              | 31 days               | 1,438,698            | 2020-07-29-00:00:00 | 1312 sec          | <b>2</b> <sup>30</sup> | 541,300          |
| 2020-08-01              | 31 days               | 1,367,008            |                     |                   |                        |                  |
| 2020-09-01              | 30 days               | 1,245,194            | 2020-09-16-12:00:00 | 997 sec           | <b>2</b> <sup>30</sup> | 723,991          |
| 2020-10-01              | 31 days               | 1,997,782            | 2020-10-28-00:00:00 | 1068 sec          | <b>2</b> <sup>30</sup> | 796,327          |
| 2020-11-01              | 30 days               | 2,850,037            |                     |                   |                        |                  |
| 2020-12-01              | 31 days               | 7,605,790            | 2020-12-16-12:00:00 | 1204 sec          | <b>2</b> <sup>30</sup> | 701,059          |
| 2021-01-01              | 31 days               | 2,879,079            |                     |                   |                        |                  |
| 2021-02-01              | 28 days               | 2,583,316            |                     |                   |                        |                  |
| 2021-03-01              | 31 days               | 3,308,466            |                     |                   |                        |                  |
| 2021-04-01              | 30 days               | 11,507,324           |                     |                   |                        |                  |



## **Light vs Heavy Tail Statistics**





## **CAIDA GreyNoise Cross Correlations**



Cross correlations well-modeled by a logarithmic spectrum that decays with time



#### **Some Internet Science Results**

- Standard data collection sites: endpoints, taps, crawls<sup>1</sup>
  - Each sees different phenomena in the global traffic matrix<sup>5</sup>
- Ubiquitous heavy tail distributions are a challenge for simple statistics
  - Bin by event count (not time)<sup>1,2,5</sup>
- Universal streaming quantities: sources, fan-outs, links, fan-ins, destinations<sup>1,2</sup>
  - Easily computable from anonymized traffic matrices (with the right hardware and software)<sup>5,6,8</sup>
- Scaling relations as a function of bin size abound
  - Parameters stable at a given site; differ site-to-site<sup>3,7</sup>
- Power-law distributions abound; parameters stable at a given site; differ site-to-site
  - High-precision Zipf-Mandelbrot parameters be can found using simple neural networks<sup>1,2</sup>
  - Modeled with preferential attachment with leaf-nodes and isolated links<sup>4</sup>
  - Small deviations from background are indicative of anomalous behavior<sup>5</sup>
- Coeval source correlations are high (low-otherwise) and fit by modified Cauchy distribution<sup>9</sup>
  - Suggests a correlated high frequency "beam" of traffic drifting over time