§9.4 ABSOLUTE AND CONDITIONAL CON-VERGENCE

In the previous section, we study the convergence of (ultimately) positive series. In this section, we investigate the convergence of the other series(ex: negative or alternating). For this case, we first get a positive series from a given series by replacing each term with its absolute value.

Definition. (Absolute convergence) A series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent if the corresponding series of absolute values converges, that is; $\sum_{n=1}^{\infty} |a_n|$ converges.

Example 1. Consider $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2^n}$. The corresponding series of absolute values $\sum_{n=1}^{\infty} |(-1)^n \frac{1}{2^n}| = \sum_{n=1}^{\infty} \frac{1}{2^n}$ is a geometric series with the common ratio $\frac{1}{2}$. Then we know that the geometric series converges since r < 1. By the definition, $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2^n}$ converges absolutely.

Example 2. We investigate the series $\sum_{n=1}^{\infty} \frac{sinn}{n^3}$. Have a look at $\sum_{n=1}^{\infty} \left| \frac{sinn}{n^3} \right| = \sum_{n=1}^{\infty} \frac{|sinn|}{n^3}$. Then $\frac{|sinn|}{n^3} \le \frac{1}{n^3}$ for each n. By comparison test, $\sum_{n=1}^{\infty} \frac{|sinn|}{n^3}$ converges. Thus, $\sum_{n=1}^{\infty} \frac{sinn}{n^3}$ converges absolutely.

Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent, $s = \sum_{n=1}^{\infty} a_n$ and $S = \sum_{n=1}^{\infty} |a_n|$. Since for each $n, -|a_n| \le a_n \le |a_n|$, then we get $-\sum_{n=1}^{\infty} |a_n| \le a_n \le |a_n|$

 $\sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} |a_n|$, that is; $-S \leq s \leq S$. By comparison test, we can say that $\sum_{n=1}^{\infty} a_n$ converges since $\sum_{n=1}^{\infty} |a_n|$ converges (as it is absolutely convergent). According to this explanation, we give the following theorem.

Theorem 1. If a series is absolutely convergent, then it is convergent.

The converse of the previous theorem may not be true, that is; although an absolutely convergent series is convergent, a convergent series may not be an absolutely convergent. For instance, consider $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$. We will see in the next topic of alternating series test that it is a convergent series. But it does not converges absolutely since $\sum_{n=1}^{\infty} |(-1)^{n-1} \frac{1}{n}| = \sum_{n=1}^{\infty} \frac{1}{n}$ is harmonic series and so diverges.

Definition. (Conditional Convergence) A series $\sum_{n=1}^{\infty} a_n$ is called conditional convergent (or converges conditionally) if it is convergent but is not absolutely convergent.

Remark. To show that a series converges absolutely can be applied convergence test (integral test, comparison test,...) for positive series. Let's apply ratio test to the series $\sum_{n=1}^{\infty} |a_n|$. Then we get that if $\rho = \lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely, that is, it converges by the previous theorem. If $\rho > 1$,

then $\lim_{n\to\infty} |a_n| = \infty$ and $\sum_{n=1}^{\infty} |a_n|$ diverges by ratio test. Also by n.th test for divergence, $\sum_{n=1}^{\infty} a_n$ diverges since $\lim_{n\to\infty} |a_n| = \infty$ and $\lim_{n\to\infty} a_n \neq 0$. If $\rho = 1$, then we don't have any information about the series $\sum_{n=1}^{\infty} |a_n|$. $\sum_{n=1}^{\infty} |a_n|$ may be divergent or convergent.

Example 3. Investigate the absolutely convergence of the following series.

i.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{3n+1}$$
 ii. $\sum_{n=1}^{\infty} \frac{n \cos n \pi}{3^n}$.

i. $\sum_{n=1}^{\infty} |(-1)^{n+1} \frac{1}{3n+1}| = \sum_{n=1}^{\infty} \frac{1}{3n+1}$ if we consider the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ which is divergent, by limit comparison test $\lim_{n\to\infty} \frac{1}{3n+1}/\frac{1}{n} = \frac{1}{3} < \infty \sum_{n=1}^{\infty} \frac{1}{3n+1}$ also diverges. Thus, $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{3n+1}$ does not converge absolutely.

ii. Since
$$\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \left| \frac{\frac{(n+1)\cos(n+1)\pi}{3^{n+1}}}{\frac{n\cos n\pi}{3^n}} \right| = \lim_{n \to \infty} \frac{n+1}{3^n} = \frac{1}{3} < 1$$
, then the series converges absolutely.

Alternating Series Test

Let $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ be an alternating series. If the followings hold:

1.
$$a_n \ge 0$$
 for $n = 1, 2, 3, ...$

2.
$$a_{n+1} \le a_n$$
 for $n = 1, 2, 3, ...$

3.
$$\lim_{n\to\infty} a_n = 0$$
,

then $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converges, otherwise it diverges.

Example 4. Consider $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$. Since $a_n = \frac{1}{n}$ holds the conditions of alternating series test, then it is convergent.

Example 5. Note that $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3n+1}{3n}$. The series does not satisfy the alternating series test (3) since $\lim_{n\to\infty} \frac{3n+1}{3n} = 1$. This it is not convergent.

Example 6. Investigate the following series for absolute and conditional convergence.

i.
$$\sum_{n=2}^{\infty} \frac{\cos n\pi}{\ln n}$$
 ii.
$$\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{n^2}$$
.

i. The series $\sum_{n=2}^{\infty} \frac{\cos n\pi}{\ln n}$ holds the test of alternating series. So it converges. Now, we show that it is absolutely convergent. We get that the absolute series $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ diverges by comparison test when it compares to the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$. Thus $\sum_{n=2}^{\infty} \frac{\cos n\pi}{\ln n}$ does not converge absolutely and also it is conditionally convergent.

ii. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ is absolutely convergent since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges (pseries, p=2>1). Thus $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ converges. We could show its convergence using alternating series test.

Example 7. For what values of x does the series $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n^2 2^n}$ converges absolutely, converges conditionally or diverges.

Let's apply ratio test to the series.

$$\rho = \lim_{n \to \infty} \left| \frac{\frac{(x-1)^{n+1}}{(n+1)^2 2^{n+1}}}{\frac{(x-1)^n}{n^2 2^n}} \right| = \lim_{n \to \infty} \frac{n^2}{2(n+1)^2} |x-1| = \frac{|x-1|}{2}. \text{ Since } \rho =$$

 $\frac{|x-1|}{2}$ < 1, then it converges absolutely and so converges on -1 < x < 3.

The series diverges for $\rho = \frac{|x-1|}{2} > 1 \Rightarrow x < -1$ or x > 3.

Let x = -1. The series $\sum_{n=1}^{\infty} \frac{(-1-1)^n}{n^2 2^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ converges by Example 6 (ii).

Let x=3. Then $\sum_{n=1}^{\infty} \frac{(3-1)^n}{n^2 2^n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by p-series.

Consequently, the convergence interval of its is [-1, 3].

Example 8. For what values of x does the series $\sum_{n=1}^{\infty} \frac{(x)^n}{\sqrt{n}}$ converge absolutely, converge conditionally or diverge. Let's apply ratio test to the series.

$$\rho = \lim_{n \to \infty} \left| \frac{\frac{(x)^{n+1}}{\sqrt{n+1}}}{\frac{(x)^n}{\sqrt{n}}} \right| = \lim_{n \to \infty} \frac{\sqrt{n+1}}{\sqrt{n}} |x| = |x|.$$
 Since $\rho = |x| < 1$, then it converges absolutely and so converges on $-1 < x < 1$.

The series diverges for $\rho = |x| > 1 \Rightarrow x < -1$ or x > 1.

Let x = -1. The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges by alternating series test.

Let x = 1. Then $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}}$ diverges by p-series $p = \frac{1}{2} < 1$. Consequently, the convergence interval of its is [-1,1).