DSCI 310: Historical Horse Population in Canada

Tiffany Timbers & Jordan Bourak

Contents

1	Aim	1				
2	Data	1				
3	Methods	1				
4	Results	1				
\mathbf{Re}	eferences	2				
##	Attaching packages tidyverse 1.3.2					
##	v ggplot2 3.3.6 v purrr 0.3.4					
##	v tibble 3.1.8 v dplyr 1.0.10					
##	v tidyr 1.2.1 v stringr 1.4.1					
##	v readr 2.1.2 v forcats 0.5.2					
##	Conflicts tidyverse_conflicts()					
##	<pre># x dplyr::filter() masks stats::filter()</pre>					
##	<pre>x dplyr::lag() masks stats::lag()</pre>					

1 Aim

This project explores the historical population of horses in Canada between 1906 and 1972 for each province.

2 Data

Horse population data were sourced from the Government of Canada's Open Data website (Government of Canada (2017a) and Government of Canada (2017b)).

3 Methods

The R programming language R Core Team (2019) and the following R packages were used to perform the analysis: knitr Xie (2016), tidyverse Wickham (2017), and bookdown Xie (2014). *Note: this report is adapted from Timbers (2020).*

4 Results

We can see from Figure 1 that Ontario, Saskatchewan and Alberta have had the highest horse populations in Canada. All provinces have had a decline in horse populations since 1940. This is likely due to the rebound of the Canadian automotive industry after the Great Depression and the Second World War. An interesting follow-up visualisation would be car sales per year for each Province over the time period visualised above to further support this hypothesis.

Historical number of horses per province in Canada

Figure 1: Horse populations for all provinces in Canada from 1906 - 1972

Table 1: The sample standard deviation of the number of horses from 1906 - 1972	Table 1: The	sample standard	deviation of	of the i	number of	horses from	1906 -	1972
---	--------------	-----------------	--------------	----------	-----------	-------------	--------	------

Province	Std
Saskatchewan	377265.58
Ontario	266435.32
Alberta	266063.19
Manitoba	122403.87
Quebec	111411.10
New Brunswick	22019.49
Nova Scotia	19879.25
British Columbia	14945.66
P.E.I.	11355.75

Suppose we were interested in looking in more closely at the province with the highest spread (in terms of standard deviation) of horse populations. We present the standard deviations here:

```
## Rows: 9 Columns: 2
## -- Column specification ------
## Delimiter: ","
## chr (1): Province
## dbl (1): Std
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

Note that we define standard deviation (of a sample) as

$$s = sqrt(sum_{i=1}^{n}(x_i - \bar{x})/(n-1))$$

Additionally, note that in Table 1 we consider the sample standard deviation of the number of horses during the same time span as Figure 1.

In Figure 2 we zoom in and look at the province of Saskatchewan, which had the largest spread of values in terms of standard deviation.

References

Government of Canada. 2017a. "Horses, Number on Farms at June 1 and at December 1." Open Government - Open Data. https://open.canada.ca/data/en/dataset/a3ecf553-8ec4-4551-a0fe-8df1472c6cf7.

Historical number of horses in Saskatchewan

Figure 2: Horse populations for the province with the largest standard deviation

——. 2017b. "Horses, Number on Farms at June 1, Farm Value Per Head and Total Farm Value." Open Government - Open Data. https://open.canada.ca/data/en/dataset/e175ef9c-98f0-49b3-8131-ca0e3895a0cb.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Timbers, Tiffany. 2020. Historical Horse Population in Canada. https://github.com/ttimbers/equine_numbers_value_canada_parameters.

Wickham, Hadley. 2017. Tidyverse: Easily Install and Load the 'Tidyverse'. https://CRAN.R-project.org/package=tidyverse.

Xie, Yihui. 2014. "Knitr: A Comprehensive Tool for Reproducible Research in R." In *Implementing Reproducible Computational Research*, edited by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. Chapman; Hall/CRC. http://www.crcpress.com/product/isbn/9781466561595.

——. 2016. Bookdown: Authoring Books and Technical Documents with R Markdown. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/bookdown.