

CS2032 - Cloud Computing (Ciclo 2024-2) Virtualización con máquinas virtuales Semana 1 - Taller 1: Máquina Virtual en AWS (EC2)

ELABORADO POR: GERALDO COLCHADO

- 1. Objetivo del taller 1
- 2. AWS Academy
- 3. Ejercicio 1: Crear máquina virtual
- 4. Ejercicio 2: Acceder a máquina virtual
- 5. Ejercicio 3: Comandos básicos
- 6. Ejercicio 4: Ejecutar programas
- 7. Cierre

Objetivo del taller 1: Máquina Virtual en AWS (EC2)

- Entender qué es AWS Academy
- Creación de Máquina Virtual en EC2
- Acceder a Máquina Virtual y practicar comandos básicos
- Ejecutar programas

- Objetivo del taller 1
- 2. AWS Academy
- 3. Ejercicio 1: Crear máquina virtual
- 4. Ejercicio 2: Acceder a máquina virtual
- 5. Ejercicio 3: Comandos básicos
- 6. Ejercicio 4: Ejecutar programas
- 7. Cierre

AWS Academy: Beneficios

AWS Academy

Empoderamiento de las instituciones de educación superior con el fin de preparar a los estudiantes para certificaciones y carreras en la nube reconocidas en el sector

AWS Academy Cómo ingresar?

https://awsacademy.instructure.com/

AWS Academy Learner Lab [24339]

AWS Academy Learner Lab provides a long-running sandbox environment for ad hoc exploration of AWS services. Within this class, students will have access to a restricted set of AWS services. Not all AWS documentation walk-through or sample labs that operate in an AWS Production account will work in the Learner Lab environment. You will retain access to the AWS resources set up in this environment for the duration of this course. We limit your budget (\$100USD), so you should exercise caution to prevent charges that will deplete your budget too quickly. If you exceed your budget, you will lose access to your environment and lose all of your work.

Each session lasts for 4 hours by default, although you can extend a session to run longer by pressing the start button to reset your session timer. At the end of each session, any resources you created will persist. However, we automatically shut EC2 instances down. Other resources, such as RDS instances, keep running. Keep in mind that we do not stop some AWS features, so they can still incur charges between sessions. For example, an Elastic Load Balancer or a NAT. You may wish to delete those types of resources and recreate them as needed to test your work during a session. You will have access to this environment for the duration of the class that you are enrolled in. When the class ends, your access to the learner lab will also end.

Educator / Teacher Only

If you are an educator using a Learner Lab in your course, see the **Resources** area of the AWS Academy Portal home page for the list of supported services for each Learner Lab class. This sandbox is for *educator designed* project work, lab exercises, or practice that is created and tested within Learner Lab.

- Objetivo del taller 1
- 2. AWS Academy
- 3. Ejercicio 1: Crear máquina virtual
- 4. Ejercicio 2: Acceder a máquina virtual
- 5. Ejercicio 3: Comandos básicos
- 6. Ejercicio 4: Ejecutar programas
- 7. Cierre

Esta AMI ya tiene instalado g++, python3, node y Apache Web Server

Ejercicio 1:

Crear máquina virtual "MV Desarrollo"

- Paso 1: Ingresar al servicio EC2
- Paso 2: Ingresar al menú "Imágenes" / "AMI"
- Paso 3: Buscar "Imágenes públicas" y Cloud9ubuntu22
- Paso 4: Elegir la más reciente (Check) y botón "Lanzar instancia a partir de una AMI"
- Paso 5: Elija "Par de claves" = "vockey"
- Paso 6: En "Configuraciones de Red" marcar:
 - "Permitir el tráfico de SSH desde" "Cualquier lugar"
 - "Permitir el tráfico de HTTP desde Internet" "Cualquier lugar"
- Paso 7: Configurar 20 Gb de almacenamiento
- Paso 8: Botón "Lanzar instancia"

- 1. Objetivo del taller 1
- 2. AWS Academy
- 3. Ejercicio 1: Crear máquina virtual
- 4. Ejercicio 2: Acceder a máquina virtual
- 5. Ejercicio 3: Comandos básicos
- 6. Ejercicio 4: Ejecutar programas
- 7. Cierre

Ejercicio 2: Acceder a máquina virtual

- Alternativa 1: Desde consola de AWS Academy ejecutar: \$ ssh -i ./.ssh/labsuser.pem ubuntu@reemplazarIP
- Alternativa 2: Desde Símbolo del sistema de Windows 10/11 ejecutar:
 \$ ssh -i labsuser.pem ubuntu@reemplazarIP

Nota: Previamente descargar el archivo "labsuser.pem" desde "Download PEM" en "AWS Details" de "AWS Academy". El archivo "labsuser.pem" debe estar en el mismo directorio donde se ejecuta el comando ssh.

- Objetivo del taller 1
- 2. AWS Academy
- 3. Ejercicio 1: Crear máquina virtual
- 4. Ejercicio 2: Acceder a máquina virtual
- 5. Ejercicio 3: Comandos básicos
- 6. Ejercicio 4: Ejecutar programas
- 7. Cierre

Ejercicio 3: Comandos básicos en Linux (1 de 3)

Comando	Funcionalidad	Ejemplo
Is	list: Lista el contenido del directorio (-a muestra los archivos ocultos)	Is -la
man	manual: Muestra la ayuda de un comando	man Is
pwd	p rint w orking d irectory: Imprime el directorio actual	pwd
mkdir	make directory: Crea un directorio	mkdir lab5
cd	c hange d irectory: Cambia al directorio indicado (Directorio anterior se representa como)	cd lab5 cd
pico	Abre archivo en editor de texto pico. Si el archivo no existe lo crea.	pico holamundo.cpp

Ejercicio 3: Comandos básicos en Linux (2 de 3)

Comando	Funcionalidad	Ejemplo
ср	copy: Copia un archivo de un directorio a otro	cp holamundo.cpp /home/ubuntu/lab5
mv	move: Renombra un archivo	mv holamundo.cpp hola.cpp
cat	Muestra en pantalla el contenido de un archivo de texto	cat hola.cpp
rm	remove: Borra un archivo	rm hola.cpp
clear	Limpia la pantalla de la terminal	clear

Ejercicio 3: Comandos básicos en Linux (3 de 3)

Comando	Funcionalidad	Ejemplo
exit	Sale de la sesión de usuario de la terminal de comandos	exit
sudo	Ejecutar un comando en modo superusuario	sudo [reemplazar_comando]
shutdown	Reinicia (-r) o apaga (-h) el sistema operativo Linux	sudo shutdown -r now sudo shutdown -h now

Ejercicio 3: Comandos básicos

:~/utec \$ pwd

• Crear la siguiente estructura de directorios:

```
/home/ubuntu/utec
:~/utec $ ls -1
total 12
drwxrwxr-x 2 ubuntu ubuntu 4096 Aug 21 22:45 contenedores
drwxrwxr-x 2 ubuntu ubuntu 4096 Aug 21 22:44 pendientes
drwxrwxr-x 2 ubuntu ubuntu 4096 Aug 21 22:44 programas
:~/utec/programas $ pwd
/home/ubuntu/utec/programas
:~/utec/programas $ ls -l
total 12
drwxrwxr-x 2 ubuntu ubuntu 4096 Aug 21 22:47 c++
drwxrwxr-x 2 ubuntu ubuntu 4096 Aug 21 22:46 node.js
drwxrwxr-x 2 ubuntu ubuntu 4096 Aug 21 22:46 python3
```

- Objetivo del taller 1
- 2. AWS Academy
- 3. Ejercicio 1: Crear máquina virtual
- 4. Ejercicio 2: Acceder a máquina virtual
- 5. Ejercicio 3: Comandos básicos
- 6. Ejercicio 4: Ejecutar programas
- 7. Cierre

Ejercicio 4: Ejecutar programas

 Crear un programa hola mundo en estos 3 lenguajes de programación y ejecutarlos en:

```
:~/utec/programas/c++ $ ls -l
total 16
-rwxrwxr-x 1 ubuntu ubuntu 8928 Aug 21 23:00 hola.exe
-rw-rw-r-- 1 ubuntu ubuntu 149 Aug 21 23:00 holamundo.cpp
:~/utec/programas/c++ $ ./hola.exe
Hola mundo desde C++ de máquina virtual de Geraldo Colchado
```

```
:~/utec/programas/python3 $ ls -l
total 4
-rw-rw-r-- 1 ubuntu ubuntu 74 Aug 21 23:02 hola.py
:~/utec/programas/python3 $ python3 hola.py
Hola mundo desde python de máquina virtual de Geraldo Colchado
```

```
:~/utec/programas/node.js $ ls -l
total 4
-rw-rw-r-- 1 ubuntu ubuntu 80 Aug 21 23:04 hola.js
:~/utec/programas/node.js $ node hola.js
Hola mundo desde node.js de máquina virtual de Geraldo Colchado
```

Ejercicio 4: Compilar y ejecutar en C++

• Cree un programa holamundo.cpp con pico:

```
#include <iostream>
using namespace std;

int main()
{
    cout << "Hola mundo desde C++" << endl;
    return 0;
}</pre>
```

• Compile el programa:

```
$g++ -o hola.exe holamundo.cpp
```

• Ejecute el programa:

```
$ ./hola.exe
Hola mundo
```

Ejercicio 4: Ejecutar en Python3

• Cree un programa holamundo.py con pico:

print("Hola Mundo desde python")

• Ejecute el programa:

\$ python3 holamundo.py Hola mundo

Ejercicio 4: Ejecutar en node.js

• Cree un programa holamundo.js con pico:

console.log("Hola Mundo desde node.js")

• Ejecute el programa:

\$ node holamundo.js Hola mundo

- Objetivo del taller 1
- 2. AWS Academy
- 3. Ejercicio 1: Crear máquina virtual
- 4. Ejercicio 2: Acceder a máquina virtual
- 5. Ejercicio 3: Comandos básicos
- 6. Ejercicio 4: Ejecutar programas
- 7. Cierre

Cierre: Máquina Virtual en AWS (EC2) - Qué aprendimos?

- Entender qué es AWS Academy
- Creación de Máquina Virtual en EC2
- Acceder a Máquina Virtual y practicar comandos básicos
- Ejecutar programas

Gracias

Elaborado por docente: Geraldo Colchado