LinearRegression

In [1]:

```
import numpy as np
import pandas as pd
```

data collection

In [2]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as pp
import seaborn as sb
```

In [3]:

```
df = pd.read_csv(r"C:\Users\user\Desktop\16_Sleep_health_and_lifestyle_dataset.csv")
df
```

Out[3]:

		Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Pr
-	0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	
	1	2	Male	28	Doctor	6.2	6	60	8	Normal	
	2	3	Male	28	Doctor	6.2	6	60	8	Normal	
	3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	
	4 5 Male 28 _{Rel}		Sales Representative	5.9	4	30	8	Obese			
	369	370	Female	59	Nurse	8.1	9	75	3	Overweight	
	370	371	Female	59	Nurse	8.0	9	75	3	Overweight	
	371	372	Female	59	Nurse	8.1	9	75	3	Overweight	
	372	373	Female	59	Nurse	8.1	9	75	3	Overweight	
	373	374	Female	59	Nurse	8.1	9	75	3	Overweight	

374 rows × 13 columns

first 10 rows

In [4]:

df.head(10)

Out[4]:

	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	B Pres
0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	12
1	2	Male	28	Doctor	6.2	6	60	8	Normal	12
2	3	Male	28	Doctor	6.2	6	60	8	Normal	12
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	14
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	14
5	6	Male	28	Software Engineer	5.9	4	30	8	Obese	14
6	7	Male	29	Teacher	6.3	6	40	7	Obese	14
7	8	Male	29	Doctor	7.8	7	75	6	Normal	12
8	9	Male	29	Doctor	7.8	7	75	6	Normal	12
9	10	Male	29	Doctor	7.8	7	75	6	Normal	12
4										>

data cleaning

In [5]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 374 entries, 0 to 373
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype
0	Person ID	374 non-null	int64
1	Gender	374 non-null	object
2	Age	374 non-null	int64
3	Occupation	374 non-null	object
4	Sleep Duration	374 non-null	float64
5	Quality of Sleep	374 non-null	int64
6	Physical Activity Level	374 non-null	int64
7	Stress Level	374 non-null	int64
8	BMI Category	374 non-null	object
9	Blood Pressure	374 non-null	object
10	Heart Rate	374 non-null	int64
11	Daily Steps	374 non-null	int64
12	Sleep Disorder	374 non-null	object
dtvn	es: float64(1), int64(7).	object(5)	

dtypes: float64(1), int64(7), object(5)

memory usage: 38.1+ KB

In [6]:

df.describe()

Out[6]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000
4							>

In [7]:

```
df.columns
```

Out[7]:

In [8]:

sb.pairplot(df)

Out[8]:

<seaborn.axisgrid.PairGrid at 0x240fb8eaa30>

In [9]:

sb.distplot(df["Age"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]:

<AxesSubplot:xlabel='Age', ylabel='Density'>

In [10]:

sb.distplot(df["Age"])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure -level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[10]:

<AxesSubplot:xlabel='Age', ylabel='Density'>

In [11]:

Out[11]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Steps
0	1	27	6.1	6	42	6	77	4200
1	2	28	6.2	6	60	8	75	10000
2	3	28	6.2	6	60	8	75	10000
3	4	28	5.9	4	30	8	85	3000
4	5	28	5.9	4	30	8	85	3000
369	370	59	8.1	9	75	3	68	7000
370	371	59	8.0	9	75	3	68	7000
371	372	59	8.1	9	75	3	68	7000
372	373	59	8.1	9	75	3	68	7000
373	374	59	8.1	9	75	3	68	7000

374 rows × 8 columns

In [12]:

```
sb.heatmap(df1.corr())
```

Out[12]:

<AxesSubplot:>

In [13]:

model building

```
x = df1[['Person ID', 'Age', 'Sleep Duration',
       'Quality of Sleep', 'Physical Activity Level', 'Stress Level', 'Heart Rate', 'Dail
y = df1['Age']
In [14]:
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
linear regression
In [15]:
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
Out[15]:
LinearRegression()
In [16]:
print(lr.intercept_)
3.836930773104541e-12
In [17]:
coef = pd.DataFrame(lr.coef_,x.columns,columns=['Co_efficient'])
coef
```

Out[17]:

```
        Co_efficient

        Person ID
        1.144347e-15

        Age
        1.0000000e+00

        Sleep Duration
        -6.177779e-14

        Quality of Sleep
        -1.139433e-14

        Physical Activity Level
        7.401957e-15

        Stress Level
        -8.832246e-15

        Heart Rate
        -9.180148e-15

        Daily Steps
        -4.010221e-16
```

```
In [18]:
```

```
print(lr.score(x_test,y_test))
```

1.0

In [19]:

```
prediction = lr.predict(x_test)
pp.scatter(y_test,prediction)
```

Out[19]:

<matplotlib.collections.PathCollection at 0x24082b0e6d0>

lasso and ridge regression

```
In [20]:
```

```
lr.score(x_test,y_test)
```

Out[20]:

1.0

In [21]:

```
lr.score(x_train,y_train)
```

Out[21]:

1.0

In [22]:

from sklearn.linear_model import Ridge,Lasso

```
In [23]:
r = Ridge(alpha=10)
r.fit(x_train,y_train)
r.score(x_test,y_test)
r.score(x_train,y_train)
Out[23]:
0.9999827365842395
In [24]:
l = Lasso(alpha=10)
1.fit(x_train,y_train)
1.score(x_test,y_test)
1.score(x_train,y_train)
Out[24]:
0.9829846901505059
elasticnet
In [25]:
from sklearn.linear_model import ElasticNet
e = ElasticNet()
e.fit(x_train,y_train)
Out[25]:
ElasticNet()
In [26]:
print(e.coef_)
8.96576706e-03 -0.00000000e+00 -0.00000000e+00 -5.63666553e-05]
In [27]:
```

14.820650282393508

print(e.intercept_)

```
In [28]:
predictions = e.predict(x test)
predictions
Out[28]:
array([44.7502445 , 55.86297343, 35.67362713, 38.68951921, 53.69517419,
       43.14653128, 29.57722893, 31.93410018, 55.8197525 , 36.4158352 ,
       35.63040621, 46.49967965, 46.54290058, 45.00957007, 32.99200047,
       40.42038117, 44.96634915, 33.71079154, 42.43893728, 37.03407393,
       27.77201138, 41.2189559 , 28.69221234, 39.39605436, 49.93579039,
       48.48088003, 38.16527035, 36.73152743, 45.58458787, 42.06075155,
       51.70071437, 51.83037716, 35.37108064, 39.05832498, 42.87114657,
       52.68049482, 50.86724073, 35.71684806, 30.93767572, 33.12166326,
       38.0788285 , 49.53393862 , 50.23833689 , 48.96433195 , 34.29922017 ,
       39.30961251, 29.87977542, 51.78715623, 41.93108877, 32.86233769,
       45.18245379, 45.61466307, 30.85123386, 36.60186465, 48.39443817,
       52.63727389, 38.381375 , 45.3553375 , 28.4159558 , 28.56254956,
       30.57310642, 45.31211657, 57.89233216, 57.41690195, 43.42119835,
       36.5186386 , 35.54396435 , 43.72374484 , 41.26217683 , 53.65195326 ,
       56.70476908, 49.55001486, 40.80178272, 44.66380265, 52.59405296,
       46.58612151, 43.68052392, 49.00755288, 37.60339829, 46.28357501,
       57.67622752, 57.50334381, 52.50761111, 40.9164094 , 42.56860007,
       41.08929311, 34.4296974 , 28.46163654, 39.13672879, 33.20810512,
       37.73306107, 56.83443187, 41.59714163, 42.611821 , 30.31432781,
       37.12051579, 42.74148378, 40.88177497, 38.3512998, 36.90441114,
       28.90642362, 35.45752249, 57.97877402, 51.88192009, 35.41430156,
       28.37519468, 45.26889565, 34.77168108, 34.90134386, 56.74799001,
       44.02629134, 43.37797742, 32.06376296])
In [29]:
print(e.score(x_test,y_test))
0.9932917187781416
In [30]:
```

mean absolute error

from sklearn import metrics

```
In [31]:
print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,predictions))
Mean Absolute Error: 0.5150409254524503
```

mean squared error

```
In [32]:
print("Mean Squared Error:", metrics.mean_squared_error(y_test,predictions))
Mean Squared Error: 0.4609669858393404
```

root mean squared error

```
In [33]:
print("Root Mean Squared Error",np.sqrt(metrics.mean_squared_error(y_test,predictions)))
Root Mean Squared Error 0.6789454954849766
In [ ]:
```