

Dear ODTÜClass Users,

You can access/login ODTUClass 2021-2022 Spring semester at https://odtuclass2021s.metu.edu.tr/ If you want to access the page directly by typing **odtuclass.metu.edu.tr**, please clear the cache in your browser(s). Best regards,

ODTÜClass Support Team

Dashboard / My courses / 571 - Computer Engineering / [CENG 351 All Sections] / Week 6 (November 22-26)

/ In Class Assignment 2 (Lab)

Started on	Wednesday, November 24, 2021, 7:23 PM
State	Finished
Completed on	Wednesday, November 24, 2021, 8:23 PM
Time taken	59 mins 53 secs
Grade	73.33 out of 100.00

Correct

15.00 points out of 15.00

Bank Accounts

This question may have multiple answers, please select all choices that apply.

	Account		
aid	name	age	balance
1	John	43	100000
2	Sarah	23	284
3	Rose	19	389
4	Michael	85	41203

Transaction		
aid	date	change
1	11-11-2021	500
1	10-04-2021	1000
2	09-07-2021	-200
2	04-07-2021	-190
3	05-04-2020	1000
3	02-03-2021	800
3	12-12-2020	200
4	03-09-2021	-40000

The relations Account and Transaction are given above. Which of the following relational algebra operations give the following output?

aid	date	balance	change
1	11-11-2021	100000	500
1	10-04-2021	100000	1000
3	02-03-2021	389	800

$$\square$$
 B. $\pi_{\mathrm{aid,date,balance,change}} \Big((\sigma_{age > 20 \land age < 50} Account) \bowtie (\sigma_{date > 01 - 01 - 2021} Transaction) \Big)$

$$\Box$$
 C. $\pi_{\text{aid,date,balance,change}} \left(\sigma_{balance>=500} \left(Account \bowtie Transaction \right) \right)$

$$\square \text{ D. } \pi_{\text{aid,date,balance,change}}\Big((\sigma_{change>0 \land date>01-01-2021} Transaction) \bowtie Account \Big)$$

$$\blacksquare \text{ E. } \\ \pi_{\text{aid,date,balance,change}} \Big((\sigma_{age < 60 \land balance > 300} Account) \bowtie (\sigma_{date > 01 - 01 - 2021} Transaction) \Big)$$

The correct answers are:

$$\pi_{\text{aid,date,balance,change}} \Big((\sigma_{\text{aid!}=2 \land \text{aid!}=4} Account) \bowtie (\sigma_{date>01-01-2021} Transaction) \Big)$$

$$\pi_{\text{aid,date,balance,change}}\Big((\sigma_{change>0 \land date>01-01-2021} Transaction) \bowtie Account\Big)$$

$$\pi_{\mathrm{aid,date,balance,change}}\Big((\sigma_{age<60 \land balance>300}Account) \bowtie (\sigma_{date>01-01-2021}Transaction)\Big)$$

Question 2
Partially correct
12.50 points out of 15.00

Fill the blanks, in the following lines. Each blank is worth 2.5 points.

The relation S contains 8 rows and the relation R contains 32 rows. The maximum number of rows in S-R can be 8

The relation S contains 12 rows and the relation R contains 20 rows. The maximum number of rows in their natural join can be

12 🗶 .

The relation S contains more than 0 rows and the relation R contains 32 rows. In their natural join, the minimum number of rows can be

0 **v** and the maximum number of rows can be We cannot know **v** .

Now, decide whether the following statements are True or False. Each answer is worth 2.5 points.

Given the relation S (a,b,c) and relation R (c,d,e). Their union is always applicable.

The relation S contains 12 rows and the relation R contains 24 rows. The intersection of R and S contains at most 12 rows.

True

The correct answer is:

Fill the blanks, in the following lines. Each blank is worth 2.5 points.

The relation S contains 8 rows and the relation R contains 32 rows. The maximum number of rows in S-R can be [8].

The relation S contains 12 rows and the relation R contains 20 rows. The maximum number of rows in their natural join can be [240].

The relation S contains more than 0 rows and the relation R contains 32 rows. In their natural join, the minimum number of rows can be [0] and the maximum number of rows can be [We cannot know].

Now, decide whether the following statements are True or False. Each answer is worth 2.5 points.

Given the relation S (a,b,c) and relation R (c,d,e). Their union is always applicable. [False]

The relation S contains 12 rows and the relation R contains 24 rows. The intersection of R and S contains at most 12 rows. [True]

```
Question \bf 3
```

✓ E.

Correct

15.00 points out of 15.00

Best Trader

This question may have multiple answers, please select all choices that apply.

Consider the following schemata:

- Trader(trader_id, t_name, age)
- Company(company_id, c_name, location, budget)
- Product(product_id, company_id, price)
- Trade(trader_id, product_id, date)

Also the following key constraints are given:

- trader_id in Trade references Trader.
- product_id in Trade references Product.
- company_id in Product references Company.

Choose the correct relational algebra expressions that find **names** of *all* the traders who have bought *all* the products of the company, which has company name (c_name) "ODTUDEN", in the year 2021.

Assume that "ODTUDEN" is a unique company name for our relations.

```
\square A. -\rho(Temp1, (\sigma_{c\_name='ODTUDEN'}Company) \bowtie Product)
       - \rho(Temp2, (\sigma_{date}) = 01 - 01 - 2021 Trade))
        -\rho(Temp3, (Temp1 \bowtie Temp2))
        -\rho(Temp4, Trader - Temp3)
       -\rho(Result, \pi_{t name}(Temp4 \bowtie Trader))
\square B. -\rho(Temp1, \sigma_{date>=01-01-2021}Trade)
       -\rho(Temp2, \sigma_{c\ name='ODTUDEN'}Company)
       -\rho(Temp3, \pi_{trader\ id}Trader - \pi_{trader\ id}Temp1)
       -\rho(Temp4, Product \bowtie Temp2)
       -\rho(Result, \pi_{t-name}((Temp3/\pi_{product-id}Temp4) \bowtie Trader))
C.
       -\rho(Temp1, (\sigma_{c name='ODTUDEN'}Company) \times (\pi_{trader id,t name}Trader))
        -\rho(Temp2, \pi_{trader\ id,product\ id}(\sigma_{date>=01-01-2021}Trade))
       -\rho(Result, \pi_{t name}((Temp2 - Temp1) \bowtie Trader))
       -\rho(Temp1, (\sigma_{c \ name='ODTUDEN'}Company \bowtie Product) \times (\pi_{trader \ id,t \ name}Trader))
D.
       -\rho(Temp2, \pi_{trader\ id,product\ id}(\sigma_{date}) = 01 - 01 - 2021Trade))
       -\rho(Result, \pi_{t-name}((Temp2 - Temp1) \bowtie Trader))
```

- $-\rho(Temp1, \sigma_{date>=01-01-2021}Trade)$
- $-\rho(Temp2, \pi_{trader\ id,product\ id}Temp1)$
- $-\ \rho(Temp3, (\sigma_{c_name='ODTUDEN'}Company) \bowtie Product)$
- $-\rho(Temp4, \pi_{product\ id}Temp3)$
- $-\ \rho(Result, \pi_{t_name}((Temp2/Temp4)\bowtie Trader))$

The correct answer is:

- $-\rho(Temp1, \sigma_{date>=01-01-2021}Trade)$
- $-\rho(Temp2, \pi_{trader\ id,product\ id}Temp1)$
- $-\ \rho(Temp3, (\sigma_{c\ name='ODTUDEN'}Company) \bowtie Product)$
- $-\rho(Temp4, \pi_{product\ id}Temp3)$
- $-\ \rho(Result, \pi_{t_name}((Temp2/Temp4)\bowtie Trader))$

Question **4**Correct

12.50 points out of 12.50

Coffee Shops

	Coffee			
coffeeid	coffeename	milk		
1	Latte	true		
2	Espresso	false		
3	Americano	false		
4	Cappucino	true		
5	Flat White	true		

CoffeeShop			
shopid	shopname	location	
100	Coffee101	100Yil	
200	Arabica	100Yil	
300	TetraN	100Yil	
400	Grano	ODTU	
500	Kocatepe	ODTU	
600	A4 Coffee	100Yil	

	Sells	
shopid	coffeeid	price
100	1	12
100	2	10
200	1	16
200	2	12
200	3	14
200	4	16
200	5	16
300	1	14
300	2	12
300	3	13
400	1	10
400	3	10
500	1	13
500	2	12
500	4	12
500	3	12
500	5	12
37		

You are given the above database instance for coffee shops. Also the following key constraints are given:

- coffeeid in Sells references Coffee.
- · shopid in Sells references CoffeeShop.
- $\bullet\,$ shopid and coffee id are Primary key of the Sells relation.
- $\bullet\,$ coffee id is the Primary key of the Coffee relation.
- $\bullet\,$ shopid is the Primary key of the Coffee Shop relation.

Now assume the following relational algebra operation:

```
\begin{array}{l} \rho(Temp1,(\pi_{shopid,coffeeid}Sells)/(\pi_{coffeeid}(\sigma_{milk=true}Coffee)))\\ \rho(Temp2,\pi_{shopid}(\sigma_{location="100Yil"}CoffeeShop))\\ \rho(Temp3,Temp1\bowtie Temp2)\\ \rho(Temp4,\pi_{shopid}(\sigma_{price<=10}Sells))\\ \rho(Result,\pi_{shopname}((Temp3\cup Temp4)\bowtie CoffeeShop)) \end{array}
```

Which of the followings is the result of the sequence of relational algebra expressions given above?

A.

shopname
Coffee101
Arabica
Grano
Kocatepe

B.

shopname
Coffee101
Arabica
Grano

O.

shopid
100
200
400
500

O.

shopname Arabica [∪] E.

shopname
Coffee101
Arabica
TetraN
Grano

The correct answer is:

shopname Coffee101 Arabica Grano

Partially correct

8.33 points out of 12.50

Valid Operations

This question may have multiple answers, please select all choices that apply.

Which of the expressions below are **not** valid given the following database instance:

R1		
id	name	age
1	Ali	19
2	John	32
3	Michelle	55
4	Rose	43

R2			
id	name	age	rating
4	Riza	26	5
5	Ismet	27	5
6	Osman	32	3
3	Mert	23	2

R3		
id	location	
1	Ankara	
2	Istanbul	
3	Izmir	
4	Bursa	

$$- \rho(Temp1, R1 \bowtie R3)$$

$$-\rho(Result, R2 \cap Temp1)$$

$$-\rho(Temp1, R1 \bowtie R3)$$

$$-\rho(Result, R2 \bowtie Temp1)$$

$$\Box$$
 c. $-\rho(Temp1, R2 \bowtie R3)$

$$-\rho(Result, Temp \times R2)$$

$$\square$$
 D. $-\rho(Temp1, R2 \bowtie R3)$

$$-\rho(Temp2, R1 \bowtie Temp1)$$

$$-\rho(Result, R2 - Temp2)$$

$$\rho(Temp1, R1 \bowtie R3)$$

$$-\rho(Result, R2 \cup Temp1)$$

The correct answers are:

$$-\rho(Temp1, R1 \bowtie R3)$$

$$- \rho(Result, R2 \cup Temp1)$$

$$-\rho(Temp1, R1 \bowtie R3)$$

$$-\rho(Result,R2 \cap Temp1)$$

- $-\rho(Temp1, R2\bowtie R3)$
- $-\ \rho(Temp2,R1\bowtie Temp1)$
- $-\rho(Result,R2-Temp2)$

Incorrect

0.00 points out of 15.00

Campus Database

This question may have multiple answers, please select all choices that apply.

Student			
sid	sname	age	gpa
1	Jack	19	2.4
2	Sarah	22	3.7
3	Rose	29	2.9
4	Ali	21	1.5
5	John	52	2.6

Course		
cid	cname	tid
111	Ceng111	103
140	Ceng140	101
334	Ceng334	104
242	Ceng242	102

	Instructor		
tid	tname		
101	Ismail Sengor Altingovde		
102	Ahmet Oguz Akyuz		
103	Gokturk Ucoluk		
104	Erol Sahin		

Takes			
cid	sid	semester	grade
111	1	20201	4.0
111	3	20201	3.5
140	1	20202	3.0
140	4	20201	1.5
334	2	20211	4.0
242	5	20202	2.0
242	3	20202	3.5
242	4	20202	2.5

For the database instance given above, which of the following relational algebra operations give the same output as the relational algebra operation given below:

 $\pi_{sname,cname,tname,grade}\Big(\big((\pi_{cid}((\sigma_{gpa>=2.5}Student)\bowtie Takes))\bowtie \sigma_{grade>=3.0}Takes\big)\bowtie \sigma_{grade>=3.0}Takes\Big)$

 $Instructor \bowtie Course \bowtie Student$

- $^{\square}$ A. $-\rho(Temp1, Course \bowtie (\sigma_{tid!=101}Instructor))$
 - $-\rho(Temp2, Temp1 \bowtie (\sigma_{grade>=3.0}Takes))$
 - $\rho(Result, \pi_{sname, cname, tname, grade}(Temp2 \bowtie Student))$
- \Box B. $-\rho(Temp1, \sigma_{grade <=3.0} Takes)$
 - $\rho(Temp2, Takes Temp1)$
 - $-\ \rho(Temp3, Temp2 \bowtie Instructor \bowtie Course \bowtie Student)$
 - $-\rho(Result, \pi_{sname, cname, tname, grade}Temp3)$
- \square C. $-\rho(Temp1, (\sigma_{sid <=3}Student) \bowtie (\sigma_{grade >=3.0}Takes))$
 - $-\rho(Temp2, Temp1 \bowtie Course \bowtie Instructor)$
 - $-\rho(Result, \pi_{sname, cname, tname, grade}Temp2)$
- $\Box D. \rho(Temp1, \sigma_{tid < 104} Instructor)$
 - $-\rho(Temp2, \sigma_{arade>=3.0}Takes \bowtie Temp1)$
 - $-\ \rho(Temp3, Temp2 \bowtie Course \bowtie Student)$
 - $-\rho(Result, \pi_{sname, cname, tname, grade}Temp3)$
- \Box E. $-\rho(Temp1, \sigma_{grade})=3.5 Takes)$
 - $-\rho(Temp2, Temp1 \bowtie Instructor \bowtie Course \bowtie Student)$
 - $-\rho(Result, \pi_{sname, cname, tname, grade}Temp2)$

The correct answers are:

- $\rho(Temp1, Course \bowtie (\sigma_{tid!=101}Instructor))$
- $-\rho(Temp2, Temp1 \bowtie (\sigma_{grade>=3.0}Takes))$
- $-\ \rho(Result, \pi_{sname, cname, tname, grade}(Temp2 \bowtie Student))$
- $-\rho(Temp1, \sigma_{grade>=3.5}Takes)$
- $-\rho(Temp2, Temp1 \bowtie Instructor \bowtie Course \bowtie Student)$
- $-\rho(Result, \pi_{sname,cname,tname,grade}Temp2)$
- $-\rho(Temp1, \sigma_{grade <=3.0} Takes)$
- $-\rho(Temp2, Takes Temp1)$
- $-\rho(Temp3, Temp2 \bowtie Instructor \bowtie Course \bowtie Student)$
- $-\rho(Result, \pi_{sname,cname,tname,grade}Temp3)$

Partially correct

10.00 points out of 15.00

Company Schema

This question may have multiple answers, please select all choices that apply.

You are given the following schemata:

 $Employee(\underline{ssn}, name, age, salary)$

Department(did, dname, location)

Works_in(ssn, did, since)

Project(pid, did, projectname, deadline)

Also the following key constraints are given:

- ssn in Works_in references Employee's ssn.
- did in Works_in references Department's did.
- did in Project references Department's did.

Now, assume that each relation contains at least one record. Which of the following expressions **NEVER** gives the same output as the relational algebra operation below:

 $\rho(Temp1, (\sigma_{age>=50}Employee) \bowtie Works_in)$

 $\rho(Temp2, (\sigma_{deadline>=01-01-2022}Project) \bowtie Department)$

 $\rho(Result, \pi_{ssn,name,did}(Temp1 \bowtie Temp2))$

$$- \rho(Result, \pi_{ssn,did}Works_in)$$

B.
$$-\rho(Temp1, (\sigma_{since})=2018Works_in) \bowtie Department)$$

$$-\rho(Temp2, Temp1 \bowtie (\sigma_{deadline >= 01-01-2022} Project))$$

$$- \rho(Temp3, Temp2 \bowtie (\sigma_{age>=50} Employee))$$

$$-\rho(Result, \pi_{ssn,name,did}Temp3)$$

$$\Box$$
 c. $-\rho(Result, \pi_{ssn,name,did}(Works_in \bowtie Employee))$

$$\square$$
 D. $-\rho(Result, \pi_{ssn,name}Employee)$

$$\Box$$
 E. $-\rho(Result, \pi_{ssn,name,did}(Employee \bowtie Works_in \bowtie Department \bowtie Project))$

The correct answers are:

$$-\ \rho(Result, \pi_{ssn,name} Employee)$$

$$-\rho(Result, \pi_{ssn.did}Works_in)$$

◄ ICA2

Jump to...

Q & A Session at BMB4 >