TP1

KEVIN BELISLE (20018469)

SIMON BERNIER ST-PIERRE

(Ton Matricule)

Baccalauréat en informatique Faculté des arts et des sciences

Travail présenté à Marc Feeley
Dans le cadre du cours IFT2035
Concepts des langages de programmation

Octobre 2015

TP1 1

1 CECI EST UNE SECTION

$$Sum: S = A \bigoplus B$$

$$Carry: C_{out} = AB$$

A	В	S	C_{out}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

2 Arithmétique modulo

2.1 Modulo 4

Définition des ensembles:

$$\{..., 0, 4, 8, 12, ...\}$$

 $\{..., 1, 5, 9, 13, ...\}$
 $\{..., 2, 6, 10, 14, ...\}$
 $\{..., 3, 7, 11, 15, ...\}$

À partir de cette représentation, on peut noter les quatre ensembles représentatifs, soient $\bar{0}, \bar{1}, \bar{2}, \bar{3}$.

\bar{x}	\bar{y}	$\bar{x} + \bar{y}$	$\bar{x} - \bar{y}$
$\bar{2}$	$\bar{0}$	$\bar{2}$	$\bar{2}$
$egin{array}{c} ar{2} \ ar{2} \end{array}$	$\bar{1}$	$\bar{3}$	$\bar{1}$
$\bar{2}$	$\frac{1}{2}$	$\bar{0}$	$\bar{0}$
$\bar{2}$	$\bar{3}$	$\bar{1}$	$\bar{3}$

2.2 Modulo 2

Définition des ensembles:

$$\{..., 0, 2, 4, 6, ...\}$$

 $\{..., 1, 3, 5, 7, ...\}$

À partir de cette représentation, on peut noter les deux ensembles représentatifs, soient $\bar{0}, \bar{1}$.

\bar{x}	_	$\bar{x} + \bar{y}$	A	B	$A \oplus B$
$\bar{0}$	$\bar{0}$	$\overline{0}$	0	0	0
$\bar{0}$	$\bar{1}$	$\bar{1}$	0	1	1
$\bar{1}$	$\bar{0}$	$\bar{1}$	1	0	1
$\bar{1}$	$\bar{1}$	$ar{0}$	1	1	0

La tableau est très similaire à la table de vérité du ou exclusif.

TP1 2

3 Preuve par induction

Étape de Base:

$$1^{2} = \frac{(-1)^{1+1}1(1+1)}{2} = \frac{1 \cdot 1(2)}{2} = 1$$

Étape Inductive:

Supposons que le formule est vrai pour n.

Prouvons que c'est aussi vrai pour n + 1.

$$1^{2} - 2^{2} + 3^{2} - \dots + (-1)^{n+1}n^{2} + (-1)^{n+2}(n+1)^{2} = \frac{(-1)^{n+1}n(n+1)}{2} + (-1)^{n+1+1}(n+1)^{2}$$

$$= \frac{(-1)^{n+1}n(n+1)}{2} + \frac{2(-1)^{n+1+1}(n+1)^{2}}{2}$$

$$= \frac{(-1)^{n+1}n(n+1)}{2} + \frac{2 \cdot -1(-1)^{n+1}(n+1)^{2}}{2}$$

$$= \frac{(-1)^{n+1}n(n+1) - 2(-1)^{n+1}(n+1)^{2}}{2}$$

$$= \frac{(-1)^{n+1}(n+1)(n-2(n+1))}{2}$$

$$= \frac{(-1)^{n+1}(n+1)(-n-2)}{2}$$

$$= \frac{(-1)^{n+1}(n+1) - 1(n+2)}{2}$$

$$= \frac{(-1)^{n+1}(n+1) - 1(n+2)}{2}$$

Alors, la formule est vrai n+1 et donc, $1^2-2^2+3^2-...+(-1)^{n+1}n^2=\frac{(-1)^{n+1}n(n+1)}{2}$

4 Théorème 1

Soit

$$A = \{a, b, c\}$$

$$X = P(A)$$

$$xRy \leftrightarrow x \subseteq y$$

$$x < y \leftrightarrow x \subset y$$

Prouver que $x < y \leftrightarrow x \ngeq y$

$$x < y \Longrightarrow x \subset y$$

$$\Longrightarrow \exists a \in y, a \notin x$$

$$\Longrightarrow y \not\subseteq x$$

$$\Longrightarrow y \not\leq x$$