AMENDMENT

Claims 1-157 (canceled).

- 158. (Original) A method of producing a modulated beam of light suitable for projection of video images, comprising:
 - [a] producing an initial beam of light;
- [b] separating the initial beam of light into two or more separate beams of colors whereby each separate beam of color has the same single selected predetermined orientation of a chosen component of the electric field vectors as that of the other separate beams of color and each separate beam of color having a color different from the other separate beams of colors;
- [c] altering the single selected predetermined orientation of the chosen component of the electric field vectors of a plurality of portions of each separate beam of color by passing a plurality of portions of each separate beam of color through a respective one of a plurality of altering means whereby the single selected predetermined orientation of the chosen component of the electric field vectors of the plurality of portions of each separate beam of color is altered in response to a stimulus means by applying a signal means to the stimulus means in a predetermined manner as the plurality of portions of each of the substantially separate beams of electromagnetic energy passes through the respective one of the plurality of means for altering the single selected predetermined orientation of a chosen component of the electric field vectors;
- [d] combining altered separate beams of color into a single collinear color beam without substantially changing the altered selected predetermined orientation of the chosen component of the electric field vectors of the plurality of portions of each of the separate beam of color; and
- [e] resolving from the single collinear color beam a first resolved color beam having substantially a first single selected predetermined orientation of a chosen component of the electric field vectors and second resolved color beam having substantially a second single selected predetermined orientation of a chosen component of the electric field vectors, whereby the first and second single selected predetermined orientation of the chosen component of the electric field vectors are different from one another.

- 159. (Original) A method as described in claim 158 which further comprises the step of passing one of the resolved color beams to a projection means.
- 160. (Original) A method as described in claim 158 in which step [a] includes producing an initial collimated beam of light having a substantially uniform flux intensity across substantially the entire initial collimated beam of light and substantially the same single selected predetermined orientation of a chosen component of the electric field vectors across substantially the entire initial collimated beam of light.
- 161. (Original) A method as described in claim 160 which further includes the step of removing from the initial collimated beam of light at least a portion of ultraviolet and at least a portion of infrared to produce an initial collimated beam of white light and direction the removed portions to a beam stop whereby the removed ultraviolet and infrared is absorbed.
- 162. (Original) A method as described in claim 161 in which step [b] further includes the step of adjusting by removing at least a predetermined portion of color of at least one of the separate collimated beams of color and directing the removed portion to a beam stop whereby the removed portion is absorbed.
- 163. (Original) A method as described in claim 159 in which step [a] includes producing an initial collimated rectangular beam of light having a substantially uniform flux intensity across substantially the entire initial collimated rectangular beam of light and having substantially the same single selected predetermined orientation of a chosen component of the electric field vectors across substantially the entire initial collimated rectangular beam of light.
- 164. (Original) A method as described in claim 163 which further includes the step of removing from the initial collimated rectangular beam of light at least a portion of ultraviolet and at least a portion of infrared to produce an initial collimated rectangular beam of white light and directing the removed portions to a beam stop whereby the removed ultraviolet and infrared is absorbed.

- 165. (Original) A method as described in claim 164 in which step [b] further includes the step of adjusting by removing at least a predetermined portion of color of at least one of the separate collimated rectangular beams of color and directing the removed portion to a beam stop whereby the removed portion is absorbed.
- 166. (Original) A system of producing a modulated beam of light suitable for projection of video images, comprising:
 - [a] means for producing an initial beam of light;
- [b] means for separating the initial beam of light into two or more separate beams of colors whereby each separate beam of color has the same single selected predetermined orientation of a chosen component of the electric field vectors as that of the other separate beams of color and each separate beam of color having a color different from the other separate beams of colors;
- [c] means for altering the single selected predetermined orientation of the chosen component of the electric field vectors of a plurality of portions of each separate beam of color by passing a plurality of portions of each separate beam of color through a respective one of a plurality of altering means whereby the single selected predetermined orientation of the chosen component of the electric field vectors of the plurality of portions of each separate beam of color is altered in response to a stimulus means by applying a signal means to the stimulus means in a predetermined manner as the plurality of portions of each of the substantially separate beams of electromagnetic energy passes through the respective one of the plurality of means for altering the single selected predetermined orientation of a chosen component of the electric field vectors:
- [d] means for combining altered separate beams of color into a single collinear color beam without substantially changing the altered selected predetermined orientation of the chosen component of the electric field vectors of the plurality of portions of each of the separate beam of color; and
- [e] means for resolving from the single collinear color beam a first resolved color beam having substantially a first single selected predetermined orientation of a chosen component of the electric field vectors and second resolved color beam having substantially a second single selected predetermined, orientation of a chosen component of the electric field vectors, whereby the first and second single

selected predetermined orientation of the chosen component of the electric field vectors are different from one another.

- 167. (Original) A system as described in claim 166 which further comprises means for passing one of the resolved color beams to a projection means.
- 168. (Original) A system as described in claim 166 in which the means for producing an initial beam of light includes producing an initial collimated beam of light having a substantially uniform flux intensity across substantially the entire initial collimated beam of light and substantially the same single selected predetermined orientation of a chosen component of the electric field vectors across substantially the entire initial collimated beam of light.
- 169. (Original) A system as described in claim 168 which further includes means for removing from the initial collimated beam of light at least a portion of ultraviolet and at least a portion of infrared to produce an initial collimated beam of white light and means for directing the removed portions to a beam stop whereby the removed ultraviolet and infrared is absorbed.
- 170. (Original) A system as described in claim 169 in which the means for separating the initial beam of light into two or more separate beams of light includes means for adjusting the color by removing at least a predetermined portion of color of at least one of the separate collimated beams of color and directing the removed portion to a beam stop whereby the removed portion is absorbed.
- 171. (Original) A system as described in claim 166 in which the means for producing an initial beam of light includes means for producing an initial collimated rectangular beam of light having a substantially uniform flux intensity across substantially the entire initial collimated rectangular beam of light and having substantially the same single selected predetermined orientation of a chosen component of the electric field vectors across substantially the entire initial collimated rectangular beam of light.
- 172. (Original) A system as described in claim 171 which further includes means

for removing from the initial collimated rectangular beam of light at least a portion of ultraviolet and at least a portion of infrared to produce an initial collimated rectangular beam of white light and directing the removed portions to a beam stop whereby the removed ultraviolet and infrared is absorbed.

173. (Original) A system as described in claim 172 in which the means for separating the initial beam of light into two or more separate beams of color includes means for adjusting the color by removing at least a predetermined portion of color of at least one of the separate collimated rectangular beams of color and directing the removed portion to a beam stop whereby the removed portion is absorbed.

Claims174-438 (canceled).