Ve320 Introduction of Semiconductor Device Homework 2

Due Date: June. 22

- 6.6 Consider a one-dimensional hole flux as shown in Figure 6.4. If the generation rate of holes in this differential volume is $g_p = 10^{20}$ cm⁻³-s⁻¹ and the recombination rate is 2×10^{19} cm⁻³-s⁻¹, what must be the gradient in the particle current density to maintain a steady-state hole concentration?

 Repeat Problem 6.6 if the generation rate becomes zero.
- 6.9 A silicon sample at T = 300 K has a uniform acceptor concentration of $7 \times 10^{15} \text{ cm}^{-3}$. The excess carrier lifetime is $\tau_{n0} = 10^{-7} \text{ s.}$ (a) Determine the ambipolar mobility. (b) Find the ambipolar diffusion coefficient. (c) What are the electron and hole lifetimes?
- Consider a silicon sample at T=300 K that is uniformly doped with acceptor impurity atoms at a concentration of $N_a=10^{16}$ cm⁻³. At t=0, a light source is turned on generating excess carriers uniformly throughout the sample at a rate of $g'=8\times 10^{20}$ cm⁻³ s⁻¹. Assume the minority carrier lifetime is $\tau_{n0}=5\times 10^{-7}$ s, and assume mobility values of $\mu_n=900$ cm² /V-s and $\mu_p=380$ cm² /V-s. (a) Determine the conductivity of the silicon as a function of time for $t\geq 0$. (b) What is the value of conductivity at (i) t=0 and (ii) $t=\infty$?
- 6.14 A bar of silicon at T=300 K has a length of L=0.05 cm and a cross-sectional area of $A=10^{-5}$ cm². The semiconductor is uniformly doped with $N_d=8\times 10^{15}$ cm⁻³ and $N_a=2\times 10^{15}$ cm⁻³. A voltage of 10 V is applied across the length of the material. For t<0, the semiconductor has been uniformly illuminated with light, producing an excess carrier generation rate of $g'=8\times 10^{20}$ cm⁻³ s⁻¹. The minority carrier lifetime is $\tau_{p0}=5\times 10^{-7}$ s. At t=0, the light source is turned off. Determine the current in the semiconductor as a function of time for $t\geq 0$.
- 6.15 Silicon at T=300 K is uniformly doped with impurity atoms at concentrations of $N_a=2\times 10^{16}$ cm⁻³ and $N_d=6\times 10^{15}$ cm⁻³ and is in thermal equilibrium for t<0. A light source turns on at t=0 producing excess carriers with a uniform generation rate of $g'=2\times 10^{21}$ cm⁻³ s⁻¹. The electric field is zero. (a) If the maximum, steady-state excess carrier concentrations are $\delta n=\delta p=5\times 10^{14}$ cm⁻³, determine the excess minority carrier lifetime. (b) Derive the expressions for the excess carrier concentration and excess carrier recombination rate as a function of time. (c) Determine the times at which the excess carrier concentration is equal to (i) one-fourth, (ii) one-half, (iii) three-fourths, and (iv) 95% of the steady-state value.

- 6.18 A semiconductor is uniformly doped with 10^{17} cm⁻³ acceptor atoms and has the following properties: $D_n = 27$ cm²/s, $D_p = 12$ cm²/s, $\tau_{n0} = 5 \times 10^{-7}$ s, and $\tau_{p0} = 10^{-7}$ s. An external source has been turned on for t < 0 producing a uniform concentration of excess carriers at a generation rate of $g' = 10^{21}$ cm⁻³ s⁻¹. The source turns off at time t = 0 and back on at time $t = 2 \times 10^{-6}$ s. (a) Derive the expressions for the excess carrier concentration as a function of time for $0 \le t \le \infty$. (b) Determine the value of excess carrier concentration at (i) t = 0, (ii) $t = 2 \times 10^{-6}$ s, and (iii) $t = \infty$. (c) Plot the excess carrier concentration as a function of time.
- 6.20 The x=0 end of an $N_a=1\times 10^{14}\,\mathrm{cm^{-3}}$ doped semi-infinite ($x\geq 0$) bar of silicon maintained at $T=300\,\mathrm{K}$ is attached to a "minority carrier digester" which makes $n_p=0$ at x=0 (n_p is the minority carrier electron concentration in a p-type semiconductor). The electric field is zero. (a) Determine the thermal-equilibrium values of n_{p0} and p_{p0} . (b) What is the excess minority carrier concentration at x=0? (c) Derive the expression for the steady-state excess minority carrier concentration as a function of x.
- 6.25 Assume that a p-type semiconductor is in thermal equilibrium for t < 0 and has an infinite minority carrier lifetime. Also assume that the semiconductor is uniformly illuminated, resulting in a uniform generation rate, g'(t), which is given by

$$g'(t) = G'_0 \qquad \text{for } 0 < t < T$$

$$g'(t) = 0 \qquad \text{for } t < 0 \text{ and } t > T$$

where G_0 is a constant. Find the excess minority carrier concentration as a function of time.

*6.41 Consider an n-type semiconductor as shown in Figure P6.41, doped at $N_d = 10^{16}$ cm⁻³ and with a uniform excess carrier generation rate equal to $g' = 10^{21}$ cm⁻³-s⁻¹. Assume that $D_p = 10$ cm⁻²/s and $\tau_{p0} = 10^{-7}$ s. The electric field is zero. (a) Determine the steady-state excess minority carrier concentration versus x if the surface recombination velocity at x = 0 is (i) s = 0, (ii) s = 2000 cm/s, and (iii) $s = \infty$. (b) Calculate the excess minority carrier concentration at x = 0 for (i) s = 0, (ii) s = 2000 cm/s, and (iii) $s = \infty$.

Figure P6.41 | Figure for Problem 6.41.

*6.42 (a) Consider the p-type semiconductor shown in Figure P6.42 with the following parameters: $N_a = 5 \times 10^{16}$ cm⁻³, $D_n = 25$ cm²/s, and $\tau_{n0} = 5 \times 10^{-7}$ s. The surface recombination velocities at the two surfaces are shown. The electric field is zero. The semiconductor is illuminated at x = 0 with an excess carrier generation rate equal to $g' = 2 \times 10^{21}$ cm⁻³-s ⁻¹. Determine the excess minority carrier electron concentration versus x in steady state. (b) Repeat part (a) for $\tau_{n0} = \infty$.

Figure P6.42 | Figure for Problem 6.42.