



িছু Introduction







Conclusion and future works





- □ Digital era.□ World Wide Web.
- □ Share data across the globe.



- What is "fake news"?
  Fake news rapid propagation.
  Fake news impact on OSN users.





# State of the art

# Multimodal Content-based Fake News Detection

Multimodal approaches: textual data and visual data extracted from the news content

### Techniques:

- Correlation between the attached images and the credibility of the news text
  - Various techniques ranging from neural networks
    - Semantic analysis
- Sentiment analysis
  - Web scraping



| - | approaches.                                                               |
|---|---------------------------------------------------------------------------|
| ; | lable 1: A comparison between the multimodal take news detection approach |
| - | ake news                                                                  |
|   | <u>਼</u>                                                                  |
|   | ultimod                                                                   |
| ; | n the n                                                                   |
|   | petweel                                                                   |
|   | oarison                                                                   |
| • | A com                                                                     |
|   | Die 1                                                                     |
| ŀ | <u>a</u>                                                                  |

State of the art

| ומטוניו ה כיוווקשון | Table 1. A companison between the mainhodal take news detection approaches.           | o liews detection approaches.                                                          |
|---------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Reference           | Techniques used                                                                       | Datasets used                                                                          |
| Xue et al.          | BERT, ResNet50, cosine                                                                | MCG-FNeWS, PolitiFact,                                                                 |
|                     | similarity.                                                                           | Twitter.                                                                               |
| Zeng et al.         | VGG model, multimodal variational autoencoder.                                        | Twitter, Weibo.                                                                        |
| Zhang et al.        | BERT, VGG19.                                                                          | Twitter, Weibo.                                                                        |
| Kumari et al.       | ABS-Bilstm,<br>ABM-CNN-RNN, MFB.                                                      | Twitter, Weibo.                                                                        |
| Mangal et al.       | VGG, Word2Vec, LSTM, cosine similarity.                                               | Collected 1000 images from Google, Kaggle and onion for fake or real images with text. |
|                     | Hierarchical Attention Network (HAN), Caption and Headline                            | Fake News Detection by                                                                 |
| Meel et al.         | matching (CHM), Noise<br>Variance Inconsistency (NVI),<br>Error Level Analysis (ELA). | Jruvika, All Data, Fake News<br>Sample by Guilherme Pontes.                            |
| Giachanou et al.    | BERT, VGG-16, cosine similarity.                                                      | FakeNewsNet.                                                                           |
| Giachanou et al.    | Word2Vec, VGG19, LBP.                                                                 | MediaEval, PolitiFact,<br>GossipCop.                                                   |
| Singhal et al.      | BERT, VGG19.                                                                          | Twitter MediaEval, Weibo.                                                              |
| Zhou et al.         | Text-CNN, Text-CNN, image2sentence, cosine similarity.                                | PolitiFact, GossipCop.                                                                 |
| Qian et al.         | BERT, ResNet, attention mechanism.                                                    | Twitter, Weibo.                                                                        |
| Yuan et al.         | BERT, VGG19, Bi-LSTM,<br>Graph-attention layer.                                       | Twitter, Weibo.                                                                        |
| Vishwakarma et al.  | Optical Character Recognition (OCR), Web scraping.                                    | A dataset of thousands of images collected from Google Images, the Onion, and Kaggle.  |
| Shah et al.         | Sentiment Analysis, Cultural Algorithms (CA).                                         | Twitter, Weibo.                                                                        |

### **Explainable Fake News Detection**

To achieve transparency in many applications such as fake news detection in online social networks.

### Techniques:

- Attention neural network. SHAP.
- Tsetlin Machine (TM). MIMIC, ATTN, PERT. ..



Table 2: A comparison between the explainable fake news detection approaches.

|                               | 100                   |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference                     | Approach              | Techniques used                                                                                     | Datasets used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Shu et al.                    | DEFEND.               | Attention neural network.                                                                           | PolitiFact, GossipCop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reis et al.                   |                       | SHAP.                                                                                               | BuzzFace.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Yang et al.                   | XFake.                | MIMIC, ATTN, PERT. benchmark dataset in                                                             | An annotated benchmark dataset in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lu et al.                     | GCAN.                 | Co-Attention Network.                                                                               | Twitter datasets: Twitter15, Twitter16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Przybyła et <mark>a</mark> l. |                       | Machine learning: linear method trained on stylometric features, a recurrent neural network method. | Fake News Corpus<br>dataset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bhattarai et al.              | TM framework.         | TM framework. Tsetlin Machine (TM).                                                                 | PolitiFact, GossipCop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Denaux et al.                 | ij                    | NLP: semantic similarity and stance detection.                                                      | Clef18, FakeNewsNet,<br>coinform250.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Silva et al.                  | Propaga-<br>tion2Vec. | Network embedding learning.                                                                         | PolitiFact, GossipCop.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               |                       |                                                                                                     | The state of the s |

# **Proposed method**



Proposed method

Fig. 1:EXMULF methodology overview



## Why Vision-and-Language BERT (VilBERT)?

- Model for learning task-agnostic joint representations of image content and natural language.
- Two training objectives, masked multimodal learning and image text alignment prediction.
- High performance on a variety of visiolinguistic tasks.
- Learn semantic alignment/association between visual and language features through pretraining.



Fig. 2: ViLBERT Architecture

1

# Why Local Interpretable Model-Agnostic Explanations (LIME)?

- > Accessibility and simplicity.
- Model agnosticism: it can be used with any machine learning model.
- Gives local explanations: explanations for each observation instead of just the model itself.
- Interpretable: explanations based on the input features instead of abstract features







Table 3:Statistics of the datasets used.

|                             | Train | 1                   | $\mathbf{Test}$ |      |
|-----------------------------|-------|---------------------|-----------------|------|
| Dataset                     | Fake  | Fake Real Fake Real | Fake            | Real |
| Twitter 6841 5009 2564 1217 | 6841  | 5009                | 2564            | 1217 |
| Weibo                       | 3748  | 3748 3783 1000 996  | 1000            | 966  |



Data preprocessing

- ☐ Removal of single modality instances☐ Preprocessing of textual data:
- Removal of punctuation, symbols and emoji
- Translating non-English text into English (just for Twitter dataset)
  - Preprocessing of images:

Resizing all images to the same equal size

Extracting the text within the image (when applicable)

# How have we used Vision-and-Language BERT (VilBERT)?

VILBERT is applicable in the multimodal fake news detection task through fine-tuning on the datasets used



Learn visually grounded language understanding in the fake news context to help classify the news content.

#### Fine-tuning:

passing the element-wise product of the final image and text representations into a learned classification layer



Table 4: Results.

Experiments and results

| O.572   O.602   O.586   O.597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Datacat | Model   |               | A common | Fake News | 7.8    |       | Real News           | 78          |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------------|----------|-----------|--------|-------|---------------------|-------------|-------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dataset | Model   |               | Accuracy | Precision | Recall | FI    | Precision Recall F1 | Recall      | F1    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | Text    | $BERT_T$      | 0.572    | 0.602     | 0.586  | 0.597 | 0.543               | 0.553       | 0.544 |
| Image         ResNet-34         0.624         0.712           only         VGG-19         0.596         0.698           Multi-         Fusion         0.7695         0.820           Multi-         AMFB [8]         0.883         0.89           modal         BDANN [15]         0.897         0.971           Text         BERTr         0.680         0.731           only         BERTr+1T         0.682         0.739           Image         ResNet-34         0.694         0.701           only         VGG-19         0.633         0.640           Fusion         0.8152         0.865           SpotFake [22]         0.8923         0.902           AMFB [8]         0.832         0.82           AMFB [8]         0.832         0.82           Multi-         FND-SCTI [29]         0.834         0.863           HMCAN [15]         0.885         0.920           BDANN [30]         0.842         0.848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | only    | $BERT_{T+IT}$ | 0.577    | 0.612     | 0.574  | 0.598 | 0.551               | 0.564       | 0.556 |
| only VGG-19 0.596 0.698  Fusion 0.7695 0.820  SpotFake [22] 0.7777 0.751  Multi- HMCAN [15] 0.897 0.971  Text BERTr 0.680 0.934  Text BERTr 0.680 0.731  only BERTr+17 0.682 0.739  Image ResNet-34 0.694 0.701  only VGG-19 0.633 0.640  Fusion 0.8152 0.865  SpotFake [22] 0.8923 0.902  AMFB [8] 0.832 0.863  Multi- FND-SCTI [29] 0.834 0.863  modal HMCAN [15] 0.885 0.920  BDANN [30] 0.842 0.836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | Image   | ResNet-34     | 0.624    | 0.712     |        | 9.0   | 0.558               | 0.72        | 0.62  |
| $ \begin{array}{c} \text{Fusion} & 0.7695 & 0.820 \\ \text{SpotFake} & [22] & 0.7777 & 0.751 \\ \text{AMFB} & [8] & 0.883 & 0.89 \\ \text{modal} & \text{HMCAN} & [15] & 0.897 & \textbf{0.971} \\ \text{BDANN} & [30] & 0.830 & 0.810 \\ \textbf{VilBERT} & \textbf{0.898} & 0.934 \\ \text{Conly} & BERT_T & 0.682 & 0.731 \\ \text{only} & BERT_T + IT & 0.682 & 0.739 \\ \text{Image} & \text{ResNet-34} & 0.694 & 0.701 \\ \text{only} & \text{VGG-19} & 0.633 & 0.640 \\ \text{Fusion} & 0.8152 & 0.865 \\ \text{SpotFake} & [22] & 0.8923 & 0.902 \\ \text{Multi-} & \text{FND-SCTI} & [29] & 0.834 & 0.863 \\ \text{Modal} & \text{HMCAN} & [15] & 0.885 & 0.920 \\ \text{BDANN} & [30] & 0.842 & 0.830 \\ \textbf{VIIBERT} & \textbf{0.0904} & \textbf{0.0908} \\ \text{BDANN} & [30] & 0.842 & 0.830 \\ \textbf{VIIBERT} & \textbf{0.0904} \\ \textbf{0.004} & \textbf{0.0048} \\ \textbf{0.0048} & $ |         | only    | VGG-19        | 0.596    | 869.0     |        | 0.593 | 0.531               | 869.0       | 0.597 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         | Fusion        | 0.7695   | 0.820     |        | 0.779 | 0.719               | 0.798       | 0.748 |
| Multi-         AMFB [8]         0.883         0.89           modal         HMCAN [15]         0.897         0.971           Text         BDANN [30]         0.830         0.810           VilBERT         0.680         0.731           only         BERT <sub>T+1</sub> T         0.682         0.739           Image         ResNet-34         0.694         0.701           only         VGG-19         0.633         0.640           only         VGG-19         0.633         0.640           Fusion         0.8152         0.865           SpotFake [22]         0.8923         0.902           Multi-         FND-SCTI [29]         0.834         0.863           modal         HMCAN [15]         0.885         0.920           BDANN [30]         0.842         0.830           VilBERT         0.9204         0.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Twitter |         | SpotFake [22] | 0.7777   | 0.751     | 0.900  | 0.82  | 0.832               | 0.606 0.701 | 0.701 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | M.:14:  |               | 0.883    | 0.89      | 0.95   | 0.92  | 0.87                | 92.0        | 0.741 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | wodel   | 1000          | 0.897    | 0.971     |        | 0.878 | 0.853               | 0.979 0.912 | 0.912 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | modal   | BDANN [30]    | 0.830    | 0.810     | 1      | 0.710 | 0.830               | 0.930       | 0.880 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         | VilBERT       | 868.0    | 0.934     | 0.92   | 0.926 | 0.859               | 0.88        | 698.0 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | Text    | $BERT_T$      | 0.680    | 0.731     |        | 0.709 | 299.0               | 929.0       | 0.669 |
| Image only only only only only only only only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | only    | $BERT_{T+IT}$ | 0.682    | 0.739     | 0.72   | 0.71  | 0.672               | 0.684       | 0.673 |
| only VGG-19 0.633 0.640  Fusion 0.8152 0.865  SpotFake [22] 0.8923 0.902  Multi- FND-SCTI [29] 0.834 0.863  modal HMCAN [15] 0.885 0.920  BDANN [30] 0.842 0.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | Image   |               | 0.694    | 0.701     |        | 869.0 | 869.0               | 0.711       | 0.699 |
| Fusion   0.8152   0.865     SpotFake [22]   0.8923   0.902     AMFB [8]   0.832   0.82     modal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | only    | VGG-19        | 0.633    | 0.640     | 0.635  | 0.637 | 0.637               | 0.641       | 0.639 |
| Multi-<br>Multi-<br>Multi-<br>FND-SCTI [29] 0.832 0.82<br>Multi-<br>FND-SCTI [29] 0.834 0.863<br>HMCAN [15] 0.885 0.920<br>BDANN [30] 0.842 0.830<br>VIIRERT 0.9204 0.948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |         | Fusion        | 0.8152   | 0.865     | 0.734  | 0.88  | 0.764               | 0.889       | 0.74  |
| AMFB [8]       0.832       0.82         FND-SCTI [29]       0.834       0.863         HMCAN [15]       0.885       0.920         BDANN [30]       0.842       0.830         VIBERT       0.920       0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weibo   | 10/     | SpotFake [22] | 0.8923   | 0.902     | 0.964  | 0.932 | 0.847               | 0.656       | 0.739 |
| FND-SCTI [29] 0.834       0.863         HMCAN [15] 0.885       0.920         BDANN [30] 0.842       0.830         Vilber       0.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 1/1.14: |               | 0.832    | 0.82      | 98.0   |       | 0.85                | 0.81        | 0.83  |
| HMCAN [15]         0.885         0.920           BDANN [30]         0.842         0.830           VIBERT         0.924         0.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | -Mulli- |               | 0.834    | 0.863     | 0.780  | 0.824 | 0.815               | 0.892       | 0.835 |
| 0] 0.842 0.830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | moda    | HMCAN [15]    | 0.885    | 0.920     |        | 0.881 | 0.856               | 0.926       | 0.890 |
| 0 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         | BDANN [30]    | 0.842    | 0.830     |        | 0.850 | 0.850               | 0.820       | 0.830 |
| 0.0±0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |         | VilBERT       | 0.9204   | 0.946     | 0.948  | 0.946 | 0.879               | 0.893 0.885 | 0.885 |

A picture someone took of a shark swimming by their house when it got flooded

(\*\*) n#NewJersey #Hurricane #Sand http://t.co/ocxLWDFY



Fig. 3:Input tweet example.



superpixels that are generated using the quickshift segmentation algorithm (c) shows the area Fig. 4: LIME explanations for image data. (a) presents the original fake tweet (b) shows the of the image that produced the prediction of the class (fake, in our case)



Experiments and results

### Text with highlighted words

a picture someone took of a shark swimming by their house when it got flooded

Fig. 5: LIME explanations for textual data

## Conclusion and future works



#### =|| EXMULF

- takes as input the textual and the visual information within the content of the online news post
- detects whether this post is fake or real
- and explains the reasoning behind system decisions to OSN users



### Future work:

- include audio and video as multimodal input data
- expand the visual representations (the effectiveness of explainability provided to OSN users) 0

