|                                                        | $\beta \in -\beta \in -\beta \in S$                                                               |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| (a)                                                    | objective function: (e'-e') & we(n) II [yn the (7)] te & we(n)                                    |
|                                                        | (Objective function)                                                                              |
|                                                        | JB = ( BE + EBL ) E WHINI II CYNTHEIMN ] - 2 = 0                                                  |
| AND SECOND                                             |                                                                                                   |
|                                                        | $\left(\sum_{n} w_{k}(n) \prod (y_{n} + h_{k}(x_{n})\right)$                                      |
| (1) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4 | (ete)(E) (E) -(e)(e) = D = EE                                                                     |
|                                                        |                                                                                                   |
|                                                        | (E286 +1) (E6) -1 = 0                                                                             |
|                                                        |                                                                                                   |
|                                                        | $e^{\frac{1}{2}} = \frac{1}{2\epsilon} - 1$ $\rightarrow \epsilon = \ln(\frac{1}{2\epsilon} - 1)$ |
|                                                        | 2 //                                                                                              |
|                                                        |                                                                                                   |
| 5)                                                     | If the training data is linearly separable,                                                       |
|                                                        | arymin $\mathcal{E}_{t} = 0$ at $t-1$                                                             |
| estre s'                                               | · · p -> 00                                                                                       |
|                                                        |                                                                                                   |
|                                                        | This is because we are using a strong classifier instead of a wealt one.                          |
|                                                        |                                                                                                   |
| 7/21                                                   | 3 dusters 4 data points = (0.5)2 + 02+02                                                          |
|                                                        | optimal dukering: (): X11122 M; 1.5 = 0.5                                                         |
|                                                        | (D) : 763 (N) = 5                                                                                 |
|                                                        | (3) x4 N=7                                                                                        |
|                                                        |                                                                                                   |
| 6)/(                                                   | (1) Suppose $N_1 = 1$ $N_2 = 2$ , $N_3 = 6$                                                       |
| (                                                      | D First we will minimize over in so (1): X.                                                       |
|                                                        | Then we will winninze over (2): x2                                                                |
|                                                        | NIC , the initialized Nursues are (3): 702,764                                                    |
|                                                        | alred y optimal                                                                                   |
|                                                        | : find objective: 2 even though it is suboptimal (>0.5)                                           |
|                                                        |                                                                                                   |
|                                                        |                                                                                                   |
|                                                        |                                                                                                   |
| *************************************                  |                                                                                                   |

the transfer of the

•

