

Wydział Informatyki	Imię i nazwis 1. Kawa Mi c 2. Smyda T c	chał	Rok: II	1	
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Moduł You:	nga			Nr ćwiczenia:
Data wykonania: 10.10.2023	Data oddania: 13.10.2023	Zwrot do popr.:	Data oddania:	Data zaliczenia:	OCENA:

Moduł Younga

Ćwiczenie nr 11

Kawa Michał Smyda Tomasz

Spis treści

1	$\mathbf{W}\mathbf{step}$	2						
	1.1 Cel ćwiczenia	2						
	1.2 Opis ćwiczenia	2						
2	Układ pomiarowy	3						
3	Przebieg doświadczenia	3						
4	Wyniki pomiarów							
5	Opracowanie wyników pomiarów	6						
	5.1 Nachylenia prostych	7						
	5.2 Wyznaczenie modułu Younga	8						
		8						
		8						
	5.5 Ocena zgodności z wartoścaimi tabelarycznymi	8						
6	Wnioski	9						

1 Wstęp

1.1 Cel ćwiczenia

Celem doświadczenia jest wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego metalu obciążonego stałą siłą.

1.2 Opis ćwiczenia

W doświadczeniu oprzemy się na równaniu prawa Hook'a, mówiącemu o proporcjonalności odkształcenia sprężystego do przyłożonej siły:

$$\Delta l = \frac{F \cdot l}{E \cdot S}$$

Wartość E to stała materiałowa - mierzony przez nas moduł Younga.

Prawo Hook'a można również zapisać jako: $\sigma = E \cdot \varepsilon$, gdzie σ to naprężenie normalne ($\sigma = \frac{F}{S}$), a ε to normalne odkształcenie względne ($\varepsilon = \frac{\Delta l}{l}$).

Zgodnie z prawem Hooke'a zależność $\Delta l(F)$ powinna być prostą $\Delta l=a\cdot F+b$, zatem współcznynnik $a=\frac{l}{E\cdot S}$. Z tego otrzymujemy:

$$E = \frac{l}{a \cdot S} = \frac{4l}{\pi \cdot d^2 \cdot a}$$

Niepewność złożoną $u_c(E)$ otrzymujemy:

$$\frac{u_c(E)}{E} = \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(-2 \cdot \frac{u(d)}{d}\right)^2 + \left(-\frac{u(a)}{a}\right)^2}$$

Rysunek 1: Urządzenie pomiarowe

2 Układ pomiarowy

W skład układu pomiarowego wchodzą następujące elementy:

- 1. Druty stalowy i mosiężny, będące obiektem pomiaru.
- 2. Przyrząd do pomiaru wydłużenia drutu pod wypływem stałej siły (rys.1), zaopatrzony w czujnik mikrometryczny do pomiaru wydłużenia drutu.
- 3. Zestaw odważników.
- 4. Śruba mikrometryczna.
- 5. Przymiar milimetrowy.

3 Przebieg doświadczenia

Na samym początku dokonaliśmy pomiaru długości pręta wykonanego ze stali oraz za pomocą śruby mikrometrycznej zmierzyliśmy średnicę drutu wykonując trzy pomiary w różnych miejsach drutu. Następnie wyzerowaliśmy czujnik mikrometryczny i rozpoczęliśmy właściwe pomiary.

Badaliśmy odległość za pomocą czujnika mikrometrycznego obciążając szalkę za pomocą coraz większych odważników zaczynając od 0 kg, a kończąc na 10 kg ze skokiem 1 kg, a następnie zmniejszaliśmy obciążenie na szalce również co 1 kg aż do 0.

Taką samą procedurę pomiarów dokonaliśmy dla drutu mosiężnego. Jedyną różnicą było maksymalne obciążenie, do którego użyliśmy obciążników o łącznej wadze 6 kg - wynika to z mniejszej wytrzymałości drutu.

4 Wyniki pomiarów

Numer	Masa	Siła	\mathbf{W} skazanie	Wskazanie	Wydłużenie
pomiaru	odważników		czujnika ↑	czujnika \downarrow	średnie Δl
	[kg]	[N]	[mm]	[mm]	[mm]
1.	1	9,81	0,86	1,22	0,52
2.	2	19,62	1,64	1,9	0,89
3.	3	29,43	2,08	2,36	1,11
4.	4	39,24	2,63	2,77	1,35
5.	5	$49,\!05$	2,9	3,11	1,50
6.	6	58,86	3,19	3,42	1,65
7.	7	68,67	3,45	3,71	1,79
8.	8	78,48	3,89	4,02	1,98
9.	9	88,29	4,08	4,33	2,10
10.	10	98,1	4,41	4,39	2,2

Tabela 1: Wyniki pomiarów dla drutu stalowego

Numer	Masa	Siła	Wskazanie	Wskazanie	Wydłużenie
pomiaru	odważników		czujnika ↑	czujnika ↓	\mid średnie Δl
	[kg]	[N]	[mm]	[mm]	[mm]
1.	1	9,81	0,32	0,31	0,18
2.	2	19,62	0,61	0,62	0,30
3.	3	29,43	0,,89	0,88	0,44
4.	4	39,24	1,1	1,15	0,56
5.	5	49,05	1,28	1,34	0,66
6.	6	58,86	1,5	1,55	0,76

Tabela 2: Wyniki pomiarów dla drutu mosiężnego

5 Opracowanie wyników pomiarów

Dla obu drutów otrzymaliśmy długości $l_s=107.5\,\mathrm{cm}$ oraz $l_m=107.9\,\mathrm{cm}.$

Na podstawie trzech wykonanych pomiarów ustaliliśmy średnicę drutu stalowego oraz oszacowaliśmy niepewność typu B:

$$d_s = 0.77 \,\mathrm{mm}$$

$$u(d_s) = \frac{0.01 \,\mathrm{mm}}{\sqrt{3}} = 0.006 \,\mathrm{mm}$$

Analogicznie dla drutu mosiężnego:

$$d_m = 0.79 \text{ mm}$$

 $u(d_m) = \frac{0.01 \text{ mm}}{\sqrt{3}} = 0.006 \text{ mm}$

Wobec czego otrzymaliśmy:

$$d_s = 0.77 \pm 0.006 \,\mathrm{mm}$$

$$d_m = 0.79 \pm 0.006 \,\mathrm{mm}$$

Następnie nanieśliśmy wyniki dokonanych pomiarów na wykresy, a następnie dopasowaliśmy prostą przy pomocy regresji liniowej metodą najmniejszych kwadratów w programie MS Excel.

Rysunek 2: Wykres odkształcenia drutu stalowego w zależności od obciążenia

Wydłużenie drutu mosiężnego

Rysunek 3: Wykres odkształcenia drutu mosiężnego w zależności od obciążenia

W celu obliczenia modułu Younga posłużymy się wzorem roboczym:

$$E = \frac{4 \cdot l}{\pi \cdot d^2 \cdot a}$$

5.1 Nachylenia prostych

Dla drutu stalowego:

$$a_s = 0.018 \cdot 10^{-3} \left[\frac{\mathrm{m}}{\mathrm{Pa} \cdot \mathrm{m}^2} \right]$$

$$u(a_s) = 0.001 \cdot 10^{-3} \left[\frac{\text{m}}{\text{Pa} \cdot \text{m}^2} \right]$$

Dla drutu mosiężnego:

$$a_m = 0.012 \cdot 10^{-3} \left[\frac{\mathrm{m}}{\mathrm{Pa} \cdot \mathrm{m}^2} \right]$$

$$u(a_m) = 0.00053 \cdot 10^{-3} \left[\frac{\text{m}}{\text{Pa} \cdot \text{m}^2} \right]$$

7

5.2 Wyznaczenie modułu Younga

$$E_s = \frac{4l_s}{\pi d_s^2 a_s} = \frac{4 \cdot 1,08 \text{ m}}{\pi \cdot (0,77 \cdot 10^{-3} \text{ m})^2 \cdot 0,018 \cdot 10^{-3} \frac{\text{m}}{\text{Pa} \cdot \text{m}^2}} = 128,85 \text{ GPa}$$

$$E_m = \frac{4l_m}{\pi d_m^2 a_m} = \frac{4 \cdot 1,08 \text{ m}}{\pi \cdot (0,79 \cdot 10^{-3} \text{ m})^2 \cdot 0,012 \cdot 10^{-3} \frac{\text{m}}{\text{Pa} \cdot \text{m}^2}} = 183,61 \text{ GPa}$$

5.3 Wyznaczenie niepewności

Niepewność modułu Younga wyliczona z zasady przenoszenia niepewności wzdlędnej:

$$\frac{u_{(E)}}{E} = \sqrt{\left[\frac{\partial E}{\partial l} \cdot u(l)\right]^2 + \left[\frac{\partial E}{\partial d} \cdot u(d)\right]^2 + \left[\frac{\partial E}{\partial a} \cdot u(a)\right]^2}$$

$$u_{(E_s)} = E_s \cdot \sqrt{\left(\frac{u(l_s)}{l_s}\right)^2 + \left(-2 \cdot \frac{u(d_s)}{d_s}\right)^2 + \left(-\frac{u(a_s)}{a_s}\right)^2} \approx 8,31 \,\text{GPa}$$

$$u_{(E_m)} = E_m \cdot \sqrt{\left(\frac{u(l_m)}{l_m}\right)^2 + \left(-2 \cdot \frac{u(d_m)}{d_m}\right)^2 + \left(-\frac{u(a_m)}{a_m}\right)^2} \approx 6,54 \,\text{GPa}$$

5.4 Wyniki końcowe

Po uwzględnieniu wyliczonej niepewności otrzymane wyniki wynoszą:

$$E_s = (128.85 \pm 8.31) \text{ GPa}$$

 $E_s = (183.61 \pm 6.54) \text{ GPa}$

5.5 Ocena zgodności z wartoścaimi tabelarycznymi

Stała Younga podana w tabeli w opisie ćwiczenia wynosi 210-220 GPa dla stali oraz 100 GPa dla mosiądzu.

Wyliczamy niepewność rozszerzoną jako podwojona niepewność:

$$U(E_s) = 2 \cdot u(E_s) = 16,62 \,\text{GPa}$$

 $U(E_m) = 2 \cdot u(E_m) = 13,08 \,\text{GPa}$

Różnica pomiędzy wartościami wyznaczonymi a tabelarycznymi jest znaczna i nie mieści się w niepewności rozszerzonej.

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Informatyki

6 Wnioski

Wyznaczone wartości modułu Younga dla obu materiałów różnią się znacznie od wartości oczekiwanej, może to wynikać z faktu, że druty użyte do ćwiczeń po wielokrotnym używaniu nie odzwierciedlają parametrów dla nowego drutu. Na wykresie możemy zaobserwować podobne zachowanie, gdyż dla małych obciążeń nie wydłużają się liniowo.