

Schletter, Inc.		30° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, P _s =	16.49 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.73	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	120 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 22.61 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.15	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.15 (<i>Pressure</i>) 1.85	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.3 -1.1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

$S_S =$	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>9</u>		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>45</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.87	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$I_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
M _y =	0.337	k-ft
$M_z =$	0.034	k-ft
M _{y allowable} =	1.271	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>30%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type = Aluminum Type =	1.5x0.25 6061-T6
$F_{ty} =$	35 ksi
Φ =	0.90
$S_y =$	0.02 in^3
E =	10100 ksi
$I_y =$	33.25 in ⁴
A =	0.38 in^2
g =	0.45 lbs/ft
$M_y =$	0.002 k-ft
P _n =	0.118 k
M _{y allowable} =	0.046 k-ft
$P_{n \text{ allowable}} =$	11.813 k
Utilization =	<u>5%</u>

A cross brace kit is required every 37 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	49.61	<u>1659.31</u>	k
Compressive Load =	927.67	1086.20	k
Lateral Load =	<u>1.52</u>	992.63	k
Moment (Weak Axis) =	0.00	0.00	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24871.6 in-lbs Resisting Force Required = 829.05 lbs A minimum 60in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1381.76 lbs to resist overturning. Minimum Width = Weight Provided = 1903.13 lbs Sliding Force = 238.57 lbs Use a 60in long x 21in wide x 18in tall Friction = 0.4 Weight Required = 596.43 lbs ballast foundation to resist sliding. Resisting Weight = 1903.13 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 238.57 lbs Cohesion = 130 psf Use a 60in long x 21in wide x 18in tall 8.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 951.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width			
	21 in	22 in	23 in	<u>24 in</u>
$P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) =$	1903 lbs	1994 lbs	2084 lbs	2175 lbs

ASD LC		1.0D	+ 1.0S			1.0D+	+ 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S	0.6D + 1.0W					
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in		
FA	303 lbs	303 lbs	303 lbs	303 lbs	370 lbs	370 lbs	370 lbs	370 lbs	477 lbs	477 lbs	477 lbs	477 lbs	-22 lbs	-22 lbs	-22 lbs	-22 lbs		
FB	202 lbs	202 lbs	202 lbs	202 lbs	481 lbs	481 lbs	481 lbs	481 lbs	493 lbs	493 lbs	493 lbs	493 lbs	-797 lbs	-797 lbs	-797 lbs	-797 lbs		
F _V	25 lbs	25 lbs	25 lbs	25 lbs	426 lbs	426 lbs	426 lbs	426 lbs	337 lbs	337 lbs	337 lbs	337 lbs	-477 lbs	-477 lbs	-477 lbs	-477 lbs		
P _{total}	2409 lbs	2499 lbs	2590 lbs	2681 lbs	2754 lbs	2845 lbs	2936 lbs	3026 lbs	2873 lbs	2964 lbs	3054 lbs	3145 lbs	323 lbs	377 lbs	431 lbs	486 lbs		
M	236 lbs-ft	236 lbs-ft	236 lbs-ft	236 lbs-ft	464 lbs-ft	464 lbs-ft	464 lbs-ft	464 lbs-ft	505 lbs-ft	505 lbs-ft	505 lbs-ft	505 lbs-ft	665 lbs-ft	665 lbs-ft	665 lbs-ft	665 lbs-ft		
е	0.10 ft	0.09 ft	0.09 ft	0.09 ft	0.17 ft	0.16 ft	0.16 ft	0.15 ft	0.18 ft	0.17 ft	0.17 ft	0.16 ft	2.06 ft	1.77 ft	1.54 ft	1.37 ft		
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft											
f _{min}	243.0 psf	241.8 psf	240.7 psf	239.8 psf	251.2 psf	249.6 psf	248.2 psf	246.9 psf	259.1 psf	257.2 psf	255.5 psf	253.9 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf		
f _{max}	307.6 psf	303.5 psf	299.8 psf	296.4 psf	378.4 psf	371.1 psf	364.4 psf	358.3 psf	397.6 psf	389.4 psf	381.9 psf	375.1 psf	281.4 psf	186.6 psf	156.8 psf	143.3 psf		

Maximum Bearing Pressure = 398 psf Allowable Bearing Pressure = 1500 psf Use a 60in long \times 21in wide \times 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

Bearing Pressure

 $M_0 =$ 0.0 ft-lbs

Resisting Force Required = 0.00 lbs S.F. = 1.67

Weight Required = 0.00 lbs Minimum Width = 21 in in Weight Provided = 1903.13 lbs A minimum 60in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

40010		.238D + 0.875	-	4.4705	D+0.65625E	. 0.750		.362D + 0.875	-
ASD LC	1	.238D + 0.875	E	1.17851	J + 0.65625E	+ 0.755	U	.362D + 0.875	E
Width		21 in			21 in			21 in	
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer
F _Y	50 lbs	119 lbs	47 lbs	7 lbs 153 lbs 4		150 lbs	15 lbs	35 lbs	14 lbs
F _V	0 lbs	0 lbs	0 lbs	0 lbs 0 lbs 0 lbs		0 lbs	0 lbs	0 lbs	0 lbs
P _{total}	2406 lbs	2475 lbs	2403 lbs	2396 lbs 2663 lbs 239		2393 lbs	704 lbs	724 lbs	703 lbs
М	0 lbs-ft	0 lbs-ft	0 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft
L/6	0.29 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft	1.75 ft
f _{min}	274.9 sqft	282.8 sqft	274.6 sqft	273.5 sqft	304.2 sqft	273.3 sqft	80.4 sqft	82.7 sqft	80.3 sqft
f _{max}	275.1 psf	282.9 psf	274.7 psf	274.1 psf	304.5 psf	273.6 psf	80.4 psf	82.7 psf	80.3 psf

Maximum Bearing Pressure = 304 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.714 k	Maximum Axial Load =	1.042 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>13%</u>	Utilization =	<u>18%</u>
Diagonal Strut		<u>Bracing</u>	
Maximum Axial Load =	0.571 k	Maximum Axial Load =	0.118 k
Maximum Axiai Loau -	0.57 I K	Waximum Axiai Load =	U.IIO K
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 32.32 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.646 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.004 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_{b} = 45.00 \text{ in}$$

$$J = 0.255$$

$$117.177$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

 $\phi F_L = 29.9 \text{ ksi}$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y F c y$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_{b} = 45.00 \text{ in}$$

$$J = 0.255$$

$$121.682$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc - 1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

b/t = 23.9

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\begin{array}{lll} \phi F_L = 1.3 \phi y F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L S t = & 29.9 \text{ ksi} \\ k = & 250988 \text{ mm}^4 \\ & 0.603 \text{ in}^4 \\ y = & 30 \text{ mm} \\ S x = & 0.511 \text{ in}^3 \\ M_{max} S t = & 1.271 \text{ k-ft} \\ \end{array}$$

77.3

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$X = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

S2 =

3.4.9

b/t =7.4 S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi b/t =23.9 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.5 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\partial y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.47 \text{ ksi}$$

$$A = 578.06 \text{ mm}^2$$

$$0.90 \text{ in}^2$$

$$P_{\text{max}} = 25.51 \text{ kips}$$

0.0

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.32 \\ & 21.4323 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

S1 = 1.37733

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.8 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$L_{b} = 33.78 \text{ in}$$

$$ry = 1.374$$

$$Cb = 1.32$$

$$24.5845$$

$$S1 = \frac{1.2(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_{c}$$

$$S2 = 79.2$$

$$\phi F_{L} = \phi b[Bc-Dc^{*}Lb/(1.2^{*}ry^{*}\sqrt{(Cb)})]$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

 $\phi F_1 = 29.8 \text{ ksi}$

3.4.16

b/t = 4.29

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0 $\theta_{\rm tot} = \frac{1}{2}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 29.8 \text{ ksi} \\ Ix &= & 364470 \text{ mm}^4 \\ & & 0.876 \text{ in}^4 \\ y &= & 37.77 \text{ mm} \\ Sx &= & 0.589 \text{ in}^3 \\ M_{max} St &= & 1.460 \text{ k-ft} \end{aligned}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi F cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L Wk = 13.5 \text{ ksi}$$

Sy =

 $M_{max}Wk =$

0.457 in³

0.513 k-ft

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{b_b}{Dt}\right)$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 14.29 \text{ ksi}$
 $A = 576.21 \text{ mm}^2$
 0.89 in^2
 $P_{\text{max}} = 12.76 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

Weak Axis:

3.4.14

$$\begin{array}{lll} L_b = & 18.00 \text{ in} \\ J = & 0.16 \\ & 47.2194 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc} \right)^2 \\ S1 = & 0.51461 \\ & S2 = & \left(\frac{C_c}{1.6} \right)^2 \\ S2 = & 1701.56 \\ & \varphi F_L = & \varphi b [Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ & \varphi F_L = & 31.2 \end{array}$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_{1}Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_{L} = \phi y Fcy$$

$$\phi F_{L} = 33.3 \text{ ksi}$$

 $\phi F_L = 31.2 \text{ ksi}$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

7.75

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$k = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$y = 15 \text{ mm}$$

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.423 \text{ k-ft}$$

3.4.18

h/t =

$$m = 0.65$$

$$C_0 = 15$$

$$C_0 = 15$$

$$C_0 = 15$$

$$S2 = \frac{k_1 B b r}{m D b r}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 31.2 \text{ ksi}$$

$$\phi F_L W k = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max} W k = 0.423 \text{ k-ft}$$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.83792$$

 $\phi F_L = \phi cc(Bc-Dc^*\lambda)$

$\phi F_{L} = 24.5226 \text{ ksi}$

3.4.9

 $\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ b/t = & 7.75 \end{array}$

$$S1 = 12.21$$

 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$\begin{array}{ll} \phi F_L = & 24.52 \text{ ksi} \\ A = & 323.87 \text{ mm}^2 \\ & 0.50 \text{ in}^2 \\ P_{max} = & 12.31 \text{ kips} \end{array}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14
$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{\frac{\theta_{y}}{\theta_{b}}Fcy}\right)^{2}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$51 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

 $lx = 39958.2 \text{ mm}^4$

$$0.096 \text{ in}^4$$

 $y = 15 \text{ mm}$
 $Sx = 0.163 \text{ in}^3$

$$M_{max}St = 0.404 \text{ k-ft}$$

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ y = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \end{array}$$

$$M_{max}Wk = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$S2^* = \frac{33}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi F_L = (\phi ccFcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$\left(Bt - \frac{\theta_y}{\theta_h}Fcy\right)$$

$$S1 = \begin{pmatrix} Dt \\ S1 = 6.87 \end{pmatrix}$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis: 3.4.14

$$L_b = 39.29 \text{ in}$$
 $J = 0.16$
 103.073

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_L = 30.1 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16.1 <u>Not Used</u>

 $\phi F_1 = 33.3 \text{ ksi}$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

7.75

 $φF_L$ = 1.17φyFcy $φF_L$ = 38.9 ksi

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 30.1 \text{ ksi} \\ lx = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ y = & 15 \text{ mm} \\ Sx = & 0.163 \text{ in}^3 \\ M_{max} St = & 0.408 \text{ k-ft} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= 39.29 \text{ in} \\ \mathsf{J} &= 0.16 \\ 103.073 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= 1701.56 \\ \mathsf{\phiF_L} &= \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \\ \mathsf{\phiF_L} &= 30.1 \end{split}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

S1 =

m =

 $C_0 =$

Cc =

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

7.75

0.65

$$S2 = \frac{k_1 B b r}{m D b r}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

$$x = 15 \text{ mm}$$

$$Sy = 0.163 \text{ in}^3$$

$$M_{max} W k = 0.450 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7
$$\lambda = 1.68476$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.81587$$

$$\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$$

$$\varphi F_L = 10.0603 \text{ ksi}$$
3.4.9
$$b/t = 7.75$$

$$S1 = 12.21 \text{ (See 3.4.16 above for example 1.5)}$$

$$DT = 7.75$$

 $S1 = 12.21$ (See 3.4.16 above for formula)
 $S2 = 32.70$ (See 3.4.16 above for formula)
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$
 $b/t = 7.75$
 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.06 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{\text{max}} = 5.05 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-45.999	-45.999	0	0
2	M16	Υ	-45.999	-45.999	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-72.509	-72.509	0	0
2	M16	V	-116.645	-116.645	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	145.018	145.018	0	0
2	M16	V	69.356	69.356	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	222.505	2	271.273	2	.004	10	0	10	0	1	0	1
2		min	-260.982	3	-409.581	3	15	3	0	3	0	1	0	1
3	N7	max	.002	3	256.042	1	.036	10	0	10	0	1	0	1
4		min	12	2	3.388	12	497	1	0	1	0	1	0	1
5	N15	max	0	15	713.595	1	.114	9	0	9	0	1	0	1
6		min	-1.168	2	-38.16	3	69	3	001	3	0	1	0	1
7	N16	max	691.322	2	835.538	2	0	2	0	9	0	1	0	1
8		min	-763.564	3	-1276.394	3	-87.704	3	0	3	0	1	0	1
9	N23	max	.002	3	256.357	1	.579	1	0	1	0	1	0	1
10		min	12	2	3.847	12	036	10	0	10	0	1	0	1
11	N24	max	222.505	2	273.598	2	88.476	3	0	9	0	1	0	1
12		min	-261.649	3	-409.003	3	004	10	0	3	0	1	0	1
13	Totals:	max	1134.924	2	2520.141	2	0	3						
14		min	-1286.244	3	-2123.654	3	0	9						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M2	1	max	194.315	2	.656	4	.085	1	0	10	0	10	0	1
2			min	-350.604	3	.154	15	073	3	0	1	0	1	0	1
3		2	max	194.441	2	.605	4	.085	1	0	10	0	15	0	15
4			min	-350.509	3	.142	15	073	3	0	1	0	3	0	4
5		3	max	194.567	2	.554	4	.085	1	0	10	0	15	0	15
6			min	-350.415	3	.13	15	073	3	0	1	0	3	0	4
7		4	max	194.693	2	.502	4	.085	1	0	10	0	9	0	15
8			min	-350.321	3	.118	15	073	3	0	1	0	3	0	4
9		5	max	194.818	2	.451	4	.085	1	0	10	0	9	0	15
10			min	-350.226	3	.106	15	073	3	0	1	0	3	0	4
11		6	max	194.944	2	.4	4	.085	1	0	10	0	9	0	15
12			min	-350.132	3	.094	15	073	3	0	1	0	3	0	4
13		7	max	195.07	2	.349	4	.085	1	0	10	0	9	0	15
14			min	-350.037	3	.082	15	073	3	0	1	0	3	0	4
15		8	max	195.196	2	.298	4	.085	1	0	10	0	9	0	15
16			min	-349.943	3	.07	15	073	3	0	1	0	3	0	4
17		9	max	195.322	2	.247	4	.085	1	0	10	0	9	0	15
18			min	-349.849	3	.058	15	073	3	0	1	0	3	0	4
19		10	max	195.448	2	.196	4	.085	1	0	10	0	9	0	15
20			min	-349.754	3	.046	15	073	3	0	1	0	3	0	4
21		11	max	195.574	2	.144	4	.085	1	0	10	0	9	0	15
22			min	-349.66	3	.033	12	073	3	0	1	0	3	0	4
23		12	max	195.699	2	.103	2	.085	1	0	10	0	9	0	15
24			min	-349.565	3	.013	12	073	3	0	1	0	3	0	4
25		13	max	195.825	2	.063	2	.085	1	0	10	0	9	0	15
26			min	-349.471	3	013	3	073	3	0	1	0	3	0	4
27		14	max	195.951	2	.023	2	.085	1	0	10	0	9	0	15
28			min	-349.377	3	043	3	073	3	0	1	0	3	0	4
29		15	max	196.077	2	014	15	.085	1	0	10	0	9	0	15
30			min	-349.282	3	072	3	073	3	0	1	0	3	0	4
31		16	max	196.203	2	026	15	.085	1	0	10	0	1	0	15
32			min	-349.188	3	111	4	073	3	0	1	0	3	0	4
33		17	max	196.329	2	038	15	.085	1	0	10	0	1	0	15
34				-349.093	3	162	4	073	3	0	1	0	3	0	4
35		18	max		2	05	15	.085	1	0	10	0	1	0	15
36			min	-348.999	3	214	4	073	3	0	1	0	3	0	4
37		19	max		2	062	15	.085	1	0	10	0	1	0	15
													-		

Model Name

Schletter, Inc.HCV

:

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
38			min	-348.905	3	265	4	073	3	0	1	0	3	0	4
39	M3	1	max	183.61	2	1.759	4	.006	10	0	10	0	1	0	4
40			min	-173.449	3	.414	15	122	1	0	1	0	10	0	15
41		2	max	183.541	2	1.582	4	.006	10	0	10	0	1	0	2
42			min	-173.501	3	.372	15	122	1	0	1	0	10	0	12
43		3	max		2	1.405	4	.006	10	0	10	0	1	0	2
44			min		3	.33	15	122	1	0	1	0	10	0	3
45		4	max		2	1.228	4	.006	10	0	10	0	1	0	15
46		1	min	-173.605	3	.289	15	122	1	0	1	0	10	0	4
		-						 					1	-	
47		5	max		2	1.052	4	.006	10	0	10	0		0	15
48		+	min	-173.657	3	.247	15	122	1	0	1	0	10	0	4
49		6		183.263	2	.875	4	.006	10	0	10	0	_1_	0	15
50			min		3	.206	15	122	1	0	1	0	10	0	4
51		7	max	183.194	2	.698	4	.006	10	0	10	0	_1_	0	15
52			min	-173.761	3	.164	15	122	1	0	1	0	10	0	4
53		8	max	183.125	2	.521	4	.006	10	0	10	0	1	0	15
54			min	-173.813	3	.123	15	122	1	0	1	0	10	001	4
55		9	max		2	.344	4	.006	10	0	10	0	1	0	15
56			min	-173.865	3	.081	15	122	1	0	1	0	10	001	4
57		10	max		2	.167	4	.006	10	0	10	0	1	0	15
58		10	min	-173.917	3	.039	15	122	1	0	1	0	10	001	4
		11		182.917											_
59		11			2	.018	2	.006	10	0	10	0	1	0	15
60		10	min		3	037	3	122	1	0	1	0	10	001	4
61		12	max		2	044	15	.006	10	0	10	0	_1_	0	15
62			min	-174.021	3	186	4	122	1	0	1	0	10	001	4
63		13		182.778	2	085	15	.006	10	0	10	0	<u>1</u>	0	15
64			min	-174.073	3	363	4	122	1	0	1	0	10	001	4
65		14	max	182.709	2	127	15	.006	10	0	10	0	1	0	15
66			min	-174.125	3	54	4	122	1	0	1	0	10	001	4
67		15	max	182.639	2	168	15	.006	10	0	10	0	9	0	15
68			min	-174.177	3	717	4	122	1	0	1	0	10	0	4
69		16	max		2	21	15	.006	10	0	10	0	9	0	15
70		1.0		-174.229	3	894	4	122	1	0	1	0	1	0	4
71		17	max		2	251	15	.006	10	0	10	0	10	0	15
72		17							1	-	1	0	1		
		4.0	min	-174.281	3	-1.07	4	122	-	0		-	_	0	4
73		18	max		2	293	15	.006	10	0	10	0	10	0	15
74		10	min		3	-1.247	4	122	1	0	1	0	1_	0	4
75		19	max		2	335	15	.006	10	0	10	0	10	0	1
76			min	-174.385	3	-1.424	4	122	1	0	1	0	1_	0	1
77	M4	1	max		1	0	1	.037	10	0	1	0	3	0	1
78			min	2.806	12	0	1	519	1	0	1	0	2	0	1
79		2	max	254.942	1	0	1	.037	10	0	1	0	15	0	1
80			min	2.838	12	0	1	519	1	0	1	0	1	0	1
81		3	max	255.007	1	0	1	.037	10	0	1	0	10	0	1
82			min	2.87	12	0	1	519	1	0	1	0	1	0	1
83		4	max		1	0	1	.037	10	0	1	0	10	0	1
84		+ -	min	2.903	12	0	1	519	1	0	1	0	1	0	1
85		5			1	0	1	.037	10	0	1	0	10	0	1
		5	max				_								_
86		_	min	2.935	12	0	1	519	1	0	1	0	1_	0	1
87		6	max	255.201	1	0	1	.037	10	0	1	0	10	0	1
88			min	2.967	12	0	1	519	1	0	1	0	1_	0	1
89		7	max		1	0	1	.037	10	0	1	0	10	0	1
90			min	3	12	0	1	519	1	0	1	0	1	0	1
91		8	max	255.33	1	0	1	.037	10	0	1	0	10	0	1
92			min	3.032	12	0	1	519	1	0	1	0	1	0	1
93		9	max		1	0	1	.037	10	0	1	0	10	0	1
94		Ť	min	3.064	12	0	1	519	1	0	1	0	1	0	1
J-			1111111	0.004	14	U		.010		U		U		U	

Schletter, Inc.HCV

Model Name : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec	1	Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
95		10	max	255.46	<u>1</u>	0	1	.037	10	0	1	0	10	0	1
96			min	3.097	12	0	1	519	1	0	1	0	1	0	1
97		11	max	255.525	1	0	1	.037	10	0	1	0	10	0	1
98			min	3.129	12	0	1	519	1	0	1	0	1	0	1
99		12	max	255.589	1	0	1	.037	10	0	1	0	10	0	1
100			min	3.161	12	0	1	519	1	0	1	0	1	0	1
101		13	max	255.654	1	0	1	.037	10	0	1	0	10	0	1
102			min	3.194	12	0	1	519	1	0	1	0	1	0	1
103		14	max	255.719	1	0	1	.037	10	0	1	0	10	0	1
104			min	3.226	12	0	1	519	1	0	1	0	1	0	1
105		15	max	255.783	1	0	1	.037	10	0	1	0	10	0	1
106			min	3.258	12	0	1	519	1	0	1	0	1	0	1
107		16	max	255.848	1	0	1	.037	10	0	1	0	10	0	1
108			min	3.291	12	0	1	519	1	0	1	0	1	0	1
109		17	max	255.913	1	0	1	.037	10	0	1	0	10	0	1
110		17	min	3.323	12	0	1	519	1	0	1	0	1	0	1
111		18	max		1	0	1	.037	10	0	1	0	10	0	1
112		10	min	3.356	12	0	1	519	1	0	1	0	1	0	1
113		19		256.042	1	0	1	.037	10	0	1	0	10	0	1
114		19	max	3.388	12	0	1	519	1	0	1	0	1	0	1
115	M6	1	min	601.557	2	.656	4	.017	9	0	3	0	3	0	1
	IVIO		max	-1042.315			15						2		
116		1	min		3	.154		277	3	0	2	0		0	1
117		2	max		2	.604	4	.017	9	0	3	0	3	0	15
118			min		3	.142	15	277	3	0	2	0	2	0	4
119		3	max	601.809	2	.553	4	.017	9	0	3	0	3	0	15
120			min	-1042.126	3	.13	15	277	3	0	2	0	2	0	4
121		4		601.935	2	.502	4	.017	9	0	3	0	3	0	15
122		_		-1042.032	3	.118	15	277	3	0	2	0	2	0	4
123		5	max		2	.451	4	.017	9	0	3	0	3	0	15
124				-1041.937	3	.106	15	277	3	0	2	0	2	0	4
125		6	max		2	.402	2	.017	9	0	3	0	3	0	15
126			min	-1041.843	3_	.086	12	277	3	0	2	0	2	0	4
127		7	max	602.312	2	.363	2	.017	9	0	3	0	9	0	15
128			min	-1041.749	3	.067	12	277	3	0	2	0	3	0	4
129		8	max	602.438	2	.323	2	.017	9	0	3	0	9	0	15
130			min	-1041.654	3	.047	12	277	3	0	2	0	3	0	4
131		9	max	602.564	2	.283	2	.017	9	0	3	0	9	0	15
132			min	-1041.56	3	.027	12	277	3	0	2	0	3	0	4
133		10	max	602.69	2	.243	2	.017	9	0	3	0	9	0	12
134			min	-1041.465	3	.003	3	277	3	0	2	0	3	0	4
135		11	max	602.816	2	.203	2	.017	9	0	3	0	9	0	12
136				-1041.371	3	027	3	277	3	0	2	0	3	0	2
137		12		602.942	2	.163	2	.017	9	0	3	0	9	0	12
138				-1041.277	3	057	3	277	3	0	2	0	3	0	2
139		13		603.068	2	.123	2	.017	9	0	3	0	9	0	12
140			min	-1041.182	3	086	3	277	3	0	2	0	3	0	2
141		14	_	603.194	2	.084	2	.017	9	0	3	0	9	0	12
142		17		-1041.088	3	116	3	277	3	0	2	0	3	0	2
143		15	max	603.319	2	.044	2	.017	9	0	3	0	9	0	12
144		13		-1040.993	3	146	3	277	3	0	2	0	3	0	2
145		16	max		2	.004	2	.017	9	0	3	0	9	0	12
		10		-1040.899		176		277							-
146		47	min		3		3		3	0	2	0	3	0	2
147		17		603.571	2	036	2	.017	9	0	3	0	9	0	12
148		40	min	-1040.805	3	206	3	277	3	0	2	0	3	0	2
149		18		603.697	2	05	15	.017	9	0	3	0	9	0	12
150				-1040.71	3	236	3	277	3	0	2	0	3	0	2
151		19	max	603.823	2	062	15	.017	9	0	3	0	9	0	3

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
152			min	-1040.616	3	266	3	277	3	0	2	0	3	0	2
153	M7	1		571.344	2	1.761	4	.038	3	0	9	0	1	0	2
154			min	-475.711	3	.414	15	015	1	0	3	0	3	0	3
155		2	max	571.274	2	1.584	4	.038	3	0	9	0	1	0	2
156			min	-475.763	3	.372	15	015	1	0	3	0	3	0	3
157		3	max	571.205	2	1.407	4	.038	3	0	9	0	1	0	2
158			min	-475.815	3	.331	15	015	1	0	3	0	3	0	3
159		4	max	571.136	2	1.23	4	.038	3	0	9	0	1	0	2
160			min	-475.867	3	.289	15	015	1	0	3	0	3	0	3
161		5	max	571.066	2	1.054	4	.038	3	0	9	0	1	0	15
162				-475.919	3	.248	15	015	1	0	3	0	3	0	3
163		6		570.997	2	.877	4	.038	3	0	9	0	1	0	15
164				-475.971	3	.206	15	015	1	0	3	0	3	0	4
165		7	max		2	.7	4	.038	3	0	9	0	1	0	15
166				-476.023	3	.165	15	015	1	0	3	0	3	0	4
167		8		570.858	2	.523	4	.038	3	0	9	0	1	0	15
168				-476.075	3	.123	15	015	1	0	3	0	3	001	4
169		9		570.789	2	.346	4	.038	3	0	9	0	1	0	15
170		1	min	-476.127	3	.079	12	015	1	0	3	0	3	001	4
171		10	max	570.72	2	.208	2	.038	3	0	9	0	1	0	15
172		10		-476.179	3	.01	3	015	1	0	3	0	3	001	4
173		11			2	.07	2	.038	3		9	0	1	0	15
		+	max				3		1	0	3	0	3	001	
174		40		-476.231	3	094		015				-			4
175		12	max		2	043	15	.038	3	0	9	0	1	0	15
176		40		-476.283	3	197	3	015	1	0	3	0	3	001	4
177		13		570.512	2	085	15	.038	3	0	9	0	1	0	15
178		1.1		-476.335	3	361	4	015	1	0	3	0	3	001	4
179		14		570.442	2	126	15	.038	3	0	9	0	1	0	15
180				-476.387	3	538	4	015	1	0	3	0	3	001	4
181		15		570.373	2	168	15	.038	3	0	9	0	1	0	15
182				-476.439	3	715	4	015	1	0	3	0	3	0	4
183		16		570.304	2	21	15	.038	3	0	9	0	1	0	15
184				-476.491	3	892	4	015	1	0	3	0	3	0	4
185		17	max		2	251	15	.038	3	0	9	0	9	0	15
186				-476.543	3	-1.068	4	015	1	0	3	0	3	0	4
187		18	max		2	293	15	.038	3	0	9	0	9	0	15
188			min	-476.595	3	-1.245	4	015	1	0	3	0	3	0	4
189		19	max	570.096	2	334	15	.038	3	0	9	0	9	0	1
190			min	-476.647	3	-1.422	4	015	1	0	3	0	3	0	1
191	M8	1	max		1	0	1	.12	9	0	1	0	2	0	1
192			min	-39.034	3	0	1	686	3	0	1	0	3	0	1
193		2	max	712.495	1	0	1	.12	9	0	1	0	9	0	1
194			min	-38.985	3	0	1	686	3	0	1	0	3	0	1
195		3	max	712.56	1	0	1	.12	9	0	1	0	9	0	1
196			min	-38.937	3	0	1	686	3	0	1	0	3	0	1
197		4	max		1	0	1	.12	9	0	1	0	9	0	1
198			min		3	0	1	686	3	0	1	0	3	0	1
199		5	max		1	0	1	.12	9	0	1	0	9	0	1
200			min	-38.84	3	0	1	686	3	0	1	0	3	0	1
201		6	max		1	0	1	.12	9	0	1	0	9	0	1
202			min	-38.791	3	0	1	686	3	0	1	0	3	0	1
203		7		712.819	<u> </u>	0	1	.12	9	0	1	0	9	0	1
204		+-	min	-38.743	3	0	1	686	3	0	1	0	3	0	1
		0					1	000 .12	9		1				
205		8	max		1	0			_	0	1	0	9	0	1
206		_	min	-38.694	3	0	1	686	3	0		0	3	0	
207		9	max		1	0	1	.12	9	0	1_	0	9	0	1
208			min	-38.646	3	0	1	686	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
209		10	max	713.013	1	0	1	.12	9	0	1	0	9	0	1
210			min	-38.597	3	0	1	686	3	0	1	0	3	0	1
211		11	max	713.077	1	0	1	.12	9	0	1	0	9	0	1
212			min	-38.549	3	0	1	686	3	0	1	0	3	0	1
213		12	max	713.142	1	0	1	.12	9	0	1	0	9	0	1
214			min	-38.5	3	0	1	686	3	0	1	0	3	0	1
215		13	max	713.207	1	0	1	.12	9	0	1	0	9	0	1
216			min	-38.452	3	0	1	686	3	0	1	0	3	0	1
217		14	max	713.272	1	0	1	.12	9	0	1	0	9	0	1
218			min	-38.403	3	0	1	686	3	0	1	0	3	0	1
219		15	max	713.336	1	0	1	.12	9	0	1	0	9	0	1
220			min	-38.355	3	0	1	686	3	0	1	0	3	0	1
221		16	max	713.401	1	0	1	.12	9	0	1	0	9	0	1
222			min	-38.306	3	0	1	686	3	0	1	0	3	0	1
223		17	max	713.466	1	0	1	.12	9	0	1	0	9	0	1
224			min	-38.257	3	0	1	686	3	0	1	0	3	0	1
225		18	max	713.53	1	0	1	.12	9	0	1	0	9	0	1
226			min	-38.209	3	0	1	686	3	0	1	001	3	0	1
227		19	max	713.595	1	0	1	.12	9	0	1	0	9	0	1
228			min	-38.16	3	0	1	686	3	0	1	001	3	0	1
229	M10	1	max	195.535	2	.656	4	.002	10	0	1	0	1	0	1
230			min	-273.066	3	.154	15	102	1	0	3	0	3	0	1
231		2	max	195.661	2	.605	4	.002	10	0	1	0	1	0	15
232		_	min	-272.971	3	.142	15	102	1	0	3	0	3	0	4
233		3	max	195.787	2	.554	4	.002	10	0	1	0	1	0	15
234			min	-272.877	3	.13	15	102	1	0	3	Ö	3	0	4
235		4	max		2	.502	4	.002	10	0	1	0	1	0	15
236			min	-272.782	3	.118	15	102	1	0	3	0	3	0	4
237		5	max	196.039	2	.451	4	.002	10	0	1	0	1	0	15
238			min	-272.688	3	.106	15	102	1	0	3	0	3	0	4
239		6	max	196.165	2	.4	4	.002	10	0	1	0	1	0	15
240			min	-272.594	3	.094	15	102	1	0	3	0	3	0	4
241		7	max	196.291	2	.349	4	.002	10	0	1	0	9	0	15
242			min	-272.499	3	.082	15	102	1	0	3	0	3	0	4
243		8	max	196.417	2	.298	4	.002	10	0	1	0	10	0	15
244			min	-272.405	3	.07	15	102	1	0	3	0	3	0	4
245		9	max		2	.247	4	.002	10	0	1	0	10	0	15
246			min	-272.31	3	.058	15	102	1	0	3	0	3	0	4
247		10	max		2	.196	4	.002	10	0	1	0	10	0	15
248		10	min	-272.216	3	.046	15	102	1	0	3	0	3	0	4
249		11		196.794		.144	4	.002	10	0	1	0	10	0	15
250			min	-272.122	3	.034	15	102	1	0	3	0	3	0	4
251		12	max		2	.103	2	.002	10	0	1	0	10	0	15
252		12		-272.027	3	.02	12	102	1	0	3	0	3	0	4
253		13	max		2	.063	2	.002	10	0	1	0	10	0	15
254		13	min	-271.933	3	001	3	102	1	0	3	0	3	0	4
255		1/		197.172	2	.023	2	.002	10	0	1	0	10	0	15
256		14		-271.838	3	031	3	102	1	0	3	0	3	0	4
		15	min												
257		15		197.298	2	014	1 <u>5</u>	.002	10	0	3	0	10	0	15
258		16	min	-271.744	3	061		102		0	1	0	10	0	15
259		16			2	026	15	.002	10	0	<u> </u>	0		0	
260		47	min	-271.65	3	111	15	102	1	0	3	0	3	0	4
261		17		197.549	2	038	15	.002	10	0	1	0	10	0	15
262		40			3	162	4	102	1	0	3	0	3	0	4
263		18	max		2	05	15	.002	10	0	1	0	10	0	15
264		40	min	-271.461	3	214	4	102	1	0	3	0	3	0	4
265		19	max	197.801	2	062	15	.002	10	0	1	0	10	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>. LC</u>
266			min	-271.366	3	265	4	102	1	0	3	0	3	0	4
267	M11	1	max	183.198	2	1.759	4	.125	1	0	3	0	3	0	4
268			min	-174.315	3	.414	15	056	3	0	10	0	1	0	15
269		2	max	183.129	2	1.582	4	.125	1	0	3	0	3	0	2
270			min	-174.367	3	.372	15	056	3	0	10	0	1	0	12
271		3	max	183.059	2	1.405	4	.125	1	0	3	0	3	0	2
272			min	-174.419	3	.33	15	056	3	0	10	0	1	0	3
273		4	max	182.99	2	1.228	4	.125	1	0	3	0	3	0	15
274			min	-174.471	3	.289	15	056	3	0	10	0	1	0	4
275		5	max	182.921	2	1.052	4	.125	1	0	3	0	3	0	15
276			min	-174.523	3	.247	15	056	3	0	10	0	1	0	4
277		6	max	182.852	2	.875	4	.125	1	0	3	0	3	0	15
278			min	-174.575	3	.206	15	056	3	0	10	0	1	0	4
279		7	max	182.782	2	.698	4	.125	1	0	3	0	3	0	15
280			min	-174.627	3	.164	15	056	3	0	10	0	1	0	4
281		8	max	182.713	2	.521	4	.125	1	0	3	0	3	0	15
282			min	-174.679	3	.123	15	056	3	0	10	0	1	001	4
283		9	max	182.644	2	.344	4	.125	1	0	3	0	3	0	15
284			min	-174.731	3	.081	15	056	3	0	10	0	1	001	4
285		10	max	182.574	2	.167	4	.125	1	0	3	0	3	0	15
286			min	-174.783	3	.039	15	056	3	0	10	0	1	001	4
287		11	max	182.505	2	.018	2	.125	1	0	3	0	3	0	15
288			min	-174.835	3	041	3	056	3	0	10	0	1	001	4
289		12	max	182.436	2	044	15	.125	1	0	3	0	3	0	15
290			min	-174.887	3	186	4	056	3	0	10	0	1	001	4
291		13	max	182.366	2	085	15	.125	1	0	3	0	3	0	15
292			min	-174.938	3	363	4	056	3	0	10	0	1	001	4
293		14	max	182.297	2	127	15	.125	1	0	3	0	3	0	15
294			min	-174.99	3	54	4	056	3	0	10	0	1	001	4
295		15	max	182.228	2	168	15	.125	1	0	3	0	3	0	15
296			min	-175.042	3	717	4	056	3	0	10	0	1	0	4
297		16	max	182.158	2	21	15	.125	1	0	3	0	3	0	15
298			min	-175.094	3	894	4	056	3	0	10	0	10	0	4
299		17	max	182.089	2	251	15	.125	1	0	3	0	3	0	15
300			min	-175.146	3	-1.07	4	056	3	0	10	0	10	0	4
301		18	max	182.02	2	293	15	.125	1	0	3	0	3	0	15
302			min	-175.198	3	-1.247	4	056	3	0	10	0	10	0	4
303		19	max	181.95	2	335	15	.125	1	0	3	0	3	0	1
304			min	-175.25	3	-1.424	4	056	3	0	10	0	10	0	1
305	M12	1	max	255.193	1	0	1	.604	1	0	1	0	2	0	1
306			min	3.265	12	0	1	037	10	0	1	0	3	0	1
307		2	max	255.257	1	0	1	.604	1	0	1	0	1	0	1
308			min	3.297	12	0	1	037	10	0	1	0	15	0	1
309		3	max	255.322	1	0	1	.604	1	0	1	0	1	0	1
310			min	3.33	12	0	1	037	10	0	1	0	10	0	1
311		4	max	255.387	1	0	1	.604	1	0	1	0	1	0	1
312			min	3.362	12	0	1	037	10	0	1	0	10	0	1
313		5	max	255.452	1	0	1	.604	1	0	1	0	1	0	1
314			min	3.394	12	0	1	037	10	0	1	0	10	0	1
315		6	max	255.516	1	0	1	.604	1	0	1	0	1	0	1
316			min	3.427	12	0	1	037	10	0	1	0	10	0	1
317		7	max		1	0	1	.604	1	0	1	0	1	0	1
318			min	3.459	12	0	1	037	10	0	1	0	10	0	1
319		8	max		1	0	1	.604	1	0	1	0	1	0	1
320			min	3.492	12	0	1	037	10	0	1	0	10	0	1
321		9	max	255.71	1	0	1	.604	1	0	1	0	1	0	1
322			min	3.524	12	0	1	037	10	0	1	0	10	0	1
														•	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	255.775	1	0	1	.604	1	0	1	0	1	0	1
324			min	3.556	12	0	1	037	10	0	1	0	10	0	1
325		11	max	255.84	1	0	1	.604	1	0	1	0	1	0	1
326			min	3.589	12	0	1	037	10	0	1	0	10	0	1
327		12	max	255.905	1	0	1	.604	1	0	1	0	1	0	1
328			min	3.621	12	0	1	037	10	0	1	0	10	0	1
329		13	max	255.969	1	0	1	.604	1	0	1	0	1	0	1
330			min	3.653	12	0	1	037	10	0	1	0	10	0	1
331		14	max	256.034	1	0	1	.604	1	0	1	0	1	0	1
332			min	3.686	12	0	1	037	10	0	1	0	10	0	1
333		15	max	256.099	1	0	1	.604	1	0	1	0	1	0	1
334			min	3.718	12	0	1	037	10	0	1	0	10	0	1
335		16	max	256.163	1	0	1	.604	1	0	1	0	1	0	1
336		1	min	3.75	12	0	1	037	10	0	1	0	10	0	1
337		17	max	256.228	1	0	1	.604	1	0	1	0	1	0	1
338			min	3.783	12	0	1	037	10	0	1	0	10	0	1
339		18	max	256.293	1	0	1	.604	1	0	1	0	1	0	1
340		'	min	3.815	12	0	1	037	10	0	1	0	10	0	1
341		19	max	256.357	1	0	1	.604	1	0	1	0	1	0	1
342		13	min	3.847	12	0	1	037	10	0	1	0	10	0	1
343	M1	1	max	70.534	1	330.638	3	.814	10	0	2	.03	1	0	2
344	IVII		min	2.945	15	-213.689	2	-15.146	1	0	3	002	10	0	3
345		2		70.673	1	330.457	3	.814	10	0	2	.027	1	.047	2
346			max min	2.987	15	-213.93	2	-15.146	1	0	3	001	10	072	3
		3			3	4.031	9	.812	10		10	.023	1	.092	
347		3	max	87.907		-24.227	2		1	0	1		10		3
348		1	min	-17.183	10			-15.101		0		001		142	
349		4	max	88.012	3	3.83	9	.812	10	0	10	.02	1	.098	2
350		-	min	-17.066	10	-24.468	2	-15.101	1	0	1	001	10	14	3
351		5	max	88.117	3	3.628	9	.812	10	0	10	.016	1	.103	2
352			min	-16.95	10	-24.71	2	-15.101	1	0	1	0	10	137	3
353		6	max	88.222	3	3.427	9	.812	10	0	10	.013	1	.108	2
354		-	min	-16.834	10	-24.952	2	-15.101	1	0	1	0	10	134	3
355		7	max	88.326	3	3.225	9	.812	10	0	10	.01	1	.114	2
356			min	-16.717	10	-25.194	2	-15.101	1	0	1	0	10	132	3
357		8	max	88.431	3	3.024	9	.812	10	0	10	.007	1	.119	2
358			min	-16.601	10	-25.436	2	-15.101	1	0	1	0	10	129	3
359		9	max	88.536	3	2.822	9	.812	10	0	10	.003	1	.125	2
360			min	-16.485	10	-25.678	2	-15.101	1	0	1	0	10	126	3
361		10	max	88.64	3	2.621	9	.812	10	0	10	.002	3	.13	2
362			min	-16.368	10	-25.919	2	-15.101	1	0	1	0	10	123	3
363		11	max		3	2.419	9	.812	10	0	10		3	.136	2
364			min	-16.252	10	-26.161	2	-15.101	1	0	1	003	1	12	3
365		12	max	88.85	3	2.217	9	.812	10	0	10		10	.142	2
366			min		10	-26.403	2	-15.101	1	0	1	006	1	117	3
367		13	max		3	2.016	9	.812	10	0	10		10	.147	2
368			min	-16.019	10	-26.645	2	-15.101	1	0	1	01	1	114	3
369		14	max	89.059	3	1.814	9	.812	10	0	10	0	10	.153	2
370			min	-15.903	10	-26.887	2	-15.101	1	0	1	013	1	111	3
371		15	max	89.164	3	1.613	9	.812	10	0	10	0	10	.159	2
372			min	-15.786	10	-27.129	2	-15.101	1	0	1	016	1	108	3
373		16	max		2	124.768	2	.817	10	0	1	.001	10	.164	2
374			min	-5.761	3	-160.656	3	-15.209	1	0	3	02	1	104	3
375		17	max	86.327	2	124.526	2	.817	10	0	1	.001	10	.137	2
376			min	-5.656	3	-160.838	3	-15.209	1	0	3	023	1	069	3
377		18		-2.986	15	316.063	2	.854	10	0	3	.001	10	.069	2
378			min		1	-157.968		-15.74	1	0	2	026	1	035	3
379		19			15	315.821	2	.854	10	0	3	.002	10	0	2
0,0			max	U TT		0.0.021							. 0		

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]	LC		LC	z-z Mome	
380			min	-70.532	1	-158.149	3	-15.74	1	0	2	03	1	0	3
381	M5	1	max	177.447	1	1046.757	3	0	11	0	9	.012	3	0	3
382			min	-4.325	3	-666.658	2	-79.58	3	0	3	0	11	0	2
383		2	max	177.586	1	1046.575	3	0	11	0	9	0	9	.144	2
384			min	-4.22	3	-666.9	2	-79.58	3	0	3	005	3	226	3
385		3	max		3	4.737	9	8.536	3	0	3	0	9	.286	2
386			min	-48.563	2	-80.008	2	138	9	0	9	022	3	448	3
387		4	max		3	4.536	9	8.536	3	0	3	0	9	.304	2
388			min	-48.424	2	-80.25	2	138	9	0	9	02	3	438	3
389		5	max	237.334	3	4.334	9	8.536	3	0	3	0	9	.321	2
390		5		-48.284	2	-80.492	2	138	9	0	9	018	3	428	3
		_	min												
391		6	max		3	4.132	9	8.536	3	0	3	0	9	.339	2
392		<u> </u>	min	-48.144	2	-80.734	2	138	9	0	9	<u>016</u>	3	417	3
393		7	max	237.543	3	3.931	9	8.536	3	0	3	0	9	.356	2
394			min	-48.005	2	-80.976	2	138	9	0	9	014	3	407	3
395		8	max		3	3.729	9	8.536	3	0	3	0	9	.374	2
396			min	-47.865	2	-81.217	2	138	9	0	9	013	3	396	3
397		9	max	237.753	3	3.528	9	8.536	3	0	3	0	9	.391	2
398			min	-47.726	2	-81.459	2	138	9	0	9	011	3	385	3
399		10	max	237.857	3	3.326	9	8.536	3	0	3	0	1	.409	2
400			min	-47.586	2	-81.701	2	138	9	0	9	009	3	375	3
401		11	max		3	3.125	9	8.536	3	0	3	0	2	.427	2
402			min	-47.446	2	-81.943	2	138	9	0	9	007	3	364	3
403		12	max	238.067	3	2.923	9	8.536	3	0	3	0	2	.445	2
404		12	min	-47.307	2	-82.185	2	138	9	0	9	005	3	353	3
405		13	max		3	2.722	9	8.536	3	0	3	<u>.003</u>	2	.463	2
406		13	min		2	-82.427	2	138	9	0	9	003	3		3
		4.4		-47.167										343	
407		14	max		3	2.52	9	8.536	3	0	3	0	2	.48	2
408		4.5	min	-47.027	2	-82.668	2	138	9	0	9	<u>001</u>	3	332	3
409		15	max	238.381	3	2.319	9	8.536	3	0	3	0	3	.498	2
410		1.0	min	-46.888	2	-82.91	2	138	9	0	9	0	9	321	3
411		16	max		2	395.749	2	8.512	3	0	3	.002	3	.512	2
412			min	-22.603	3	-449.066	3	14	9	0	2	0	9	306	3
413		17	max	266.917	2	395.507	2	8.512	3	0	3	.004	3	.426	2
414			min	-22.498	3	-449.247	3	14	9	0	2	0	9	209	3
415		18	max	-2.249	12	990.139	2	7.828	3	0	3	.005	3	.214	2
416			min	-177.598	1	-483.416	3	025	9	0	9	0	9	104	3
417		19	max	-2.179	12	989.897	2	7.828	3	0	3	.007	3	0	3
418			min	-177.459	1	-483.597	3	025	9	0	9	0	9	0	2
419	M9	1	max	70.509	1	330.545	3	84.573	3	0	3	.002	10	0	2
420			min		15	-213.689		814	10	0	2	03	1	0	3
421		2	max		1	330.363	3	84.573	3	0	3	.001	10	.047	2
422		_	min	2.98	15	-213.93	2	814	10	0	2	026	1	072	3
423		3	max	87.301	3	4.023	9	15.032	1	0	1	.015	3	.092	2
424		T .	min	-16.841	10	-24.201	2	-2.709	3	0	10	023	1	142	3
425		4	max		3	3.822	9	15.032	1	0	1	.015	3	.098	2
426		+		-16.725		-24.443		-2.709	3		10	02	1	139	3
		_	min		10		2			0					
427		5	max	87.51	3	3.62	9	15.032	1	0	1	.014	3	.103	2
428			min	-16.608	10	-24.684	2	-2.709	3	0	10	016	1	137	3
429		6	max		3	3.419	9	15.032	1	0	1	.014	3	.108	2
430			min	-16.492	10	-24.926	2	-2.709	3	0	10	013	1	134	3
431		7	max		3	3.217	9	15.032	1_	0	1	.013	3	.114	2
432			min	-16.376	10	-25.168	2	-2.709	3	0	10	01	1	131	3
433		8	max	87.824	3	3.016	9	15.032	1	0	1	.012	3	.119	2
434			min	-16.259	10	-25.41	2	-2.709	3	0	10	007	1	129	3
435		9	max		3	2.814	9	15.032	1	0	1	.012	3	.125	2
436			min	-16.143	10	-25.652	2	-2.709	3	0	10	003	1	126	3
										_	_				

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC		LC	Torque[k-ft]	LC Y	y-y Mome		z-z Mome	
437		10	max	88.034	3	2.612	9	15.032	1	0	1	.011	3	.13	2
438			min	-16.027	10	-25.894	2	-2.709	3	0	10	0	1	123	3
439		11	max	88.139	3	2.411	9	15.032	1	0	1	.011	3	.136	2
440			min	-15.91	10	-26.135	2	-2.709	3	0	10	0	10	12	3
441		12	max	88.243	3	2.209	9	15.032	1	0	1	.01	3	.142	2
442			min	-15.794	10	-26.377	2	-2.709	3	0	10	0	10	117	3
443		13	max	88.348	3	2.008	9	15.032	1	0	1	.01	1	.147	2
444			min	-15.678	10	-26.619	2	-2.709	3	0	10	0	10	114	3
445		14	max	88.453	3	1.806	9	15.032	1	0	1	.013	1	.153	2
446			min	-15.561	10	-26.861	2	-2.709	3	0	10	0	10	111	3
447		15	max	88.557	3	1.605	9	15.032	1	0	1	.016	1	.159	2
448			min	-15.445	10	-27.103	2	-2.709	3	0	10	0	10	108	3
449		16	max	86.372	2	124.45	2	15.143	1	0	10	.02	1	.164	2
450			min	-6.84	3	-161.26	3	-2.76	3	0	3	001	10	104	3
451		17	max	86.511	2	124.208	2	15.143	1	0	10	.023	1	.137	2
452			min	-6.735	3	-161.442	3	-2.76	3	0	3	001	10	069	3
453		18	max	-2.979	15	316.063	2	15.756	1	0	2	.026	1	.069	2
454			min	-70.638	1	-157.957	3	-2.306	3	0	3	001	10	035	3
455		19	max	-2.937	15	315.821	2	15.756	1	0	2	.03	1	0	2
456			min	-70.499	1	-158.138	3	-2.306	3	0	3	002	10	0	3
457	M13	1	max	84.566	3	213.614	2	-2.938	15	0	2	.03	1	0	2
458			min	814	10	-330.6	3	-70.505	1	0	3	002	10	0	3
459		2	max	84.566	3	152.886	2	-2.226	15	0	2	.016	3	.118	3
460			min	814	10	-235.716	3	-52.811	1	0	3	004	2	076	2
461		3	max	84.566	3	92.159	2	-1.023	10	0	2	.012	3	.196	3
462			min	814	10	-140.833	3	-35.118	1	0	3	014	1	127	2
463		4	max	84.566	3	31.431	2	.945	10	0	2	.009	3	.235	3
464			min	814	10	-45.949	3	-17.424	1	0	3	025	1	153	2
465		5	max	84.566	3	48.934	3	4.152	2	0	2	.006	3	.235	3
466			min	814	10	-29.297	2	-6.903	3	0	3	029	1	154	2
467		6	max	84.566	3	143.818	3	17.964	1	0	2	.003	3	.195	3
468			min	814	10	-90.025	2	-5.867	3	0	3	025	1	129	2
469		7	max	84.566	3	238.701	3	35.658	1	0	2	0	10	.115	3
470			min	814	10	-150.753	2	-4.83	3	0	3	014	1	079	2
471		8	max	84.566	3	333.585	3	53.352	1	0	2	.007	2	0	9
472			min	814	10	-211.48	2	-3.794	3	0	3	001	3	004	3
473		9	max	84.566	3	428.468	3	71.046	1	0	2	.031	1	.098	2
474			min	814	10	-272.208	2	-2.757	3	0	3	003	3	163	3
475		10	max	84.566	3	-6.797	15	88.74	1	0	2	.064	1	.224	2
476			min	814	10	-523.352	3	1.44	12	0	3	015	3	361	3
477		11	max		1	272.208	2	3.672	3	0	3	.031	1	.098	2
478			min	814	10	-428.468		-71.021	1	0	2	014	3	163	3
479		12	max	15.172	1	211.48	2	4.709	3	0	3	.007	2	0	9
480			min	814	10	-333.585	3	-53.327	1	0	2	012	3	004	3
481		13	max	15.172	1	150.753	2	5.745	3	0	3	0	10	.115	3
482			min	814	10	-238.701	3	-35.633	1	0	2	014	1	079	2
483		14	max	15.172	1	90.025	2	6.782	3	0	3	001	15	.195	3
484			min	814	10	-143.818	3	-17.94	1	0	2	025	1	129	2
485		15	max	15.172	1	29.297	2	7.818	3	0	3	001	15	.235	3
486			min	814	10	-48.934	3	-4.152	2	0	2	029	1	154	2
487		16	max	15.172	1	45.949	3	17.448	1	0	3	0	12	.235	3
488		'	min	814	10	-31.431	2	945	10	0	2	025	1	153	2
489		17	max	15.172	1	140.833	3	35.142	1	0	3	.003	3	.196	3
490			min	814	10	-92.159	2	1.023	10	0	2	014	1	127	2
491		18	max	15.172	1	235.716	3	52.836	1	0	3	.007	3	.118	3
491		10	min	814	10	-152.886	2	2.232	15	0	2	004	2	076	2
493		10	max	15.172	1	330.6	3	70.53	1	0	3	.03	1	0	2
433		נון	шах	10.172		330.0	J	10.00		U	J	.03		U	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	_LC_
494			min	814	10	-213.614	2	2.945	15	0	2	002	10	0	3
495	M16	1	max	2.31	3	315.916	2	-2.937	15	0	3	.03	1	0	2
496			min	-15.73	1	-158.166	3	-70.503	1	0	2	002	10	0	3
497		2	max	2.31	3	225.764	2	-2.225	15	0	3	.005	9	.057	3
498			min	-15.73	1	-113.724	3	-52.809	1	0	2	004	2	113	2
499		3	max	2.31	3	135.612	2	-1.036	10	0	3	0	3	.095	3
500			min	-15.73	1	-69.282	3	-35.115	1	0	2	014	1	188	2
501		4	max	2.31	3	45.46	2	.931	10	0	3	0	15	.114	3
502			min	-15.73	1	-24.84	3	-17.421	1	0	2	025	1	226	2
503		5	max	2.31	3	19.602	3	4.131	2	0	3	001	15	.115	3
504			min	-15.73	1	-44.691	2	-4.49	3	0	2	029	1	226	2
505		6	max	2.31	3	64.045	3	17.966	1	0	3	001	15	.098	3
506			min	-15.73	1	-134.843	2	-3.454	3	0	2	025	1	189	2
507		7	max	2.31	3	108.487	3	35.66	1	0	3	0	10	.062	3
508			min	-15.73	1	-224.995	2	-2.417	3	0	2	014	1	114	2
509		8	max	2.31	3	152.929	3	53.354	1	0	3	.007	2	.008	3
510			min	-15.73	1	-315.147	2	-1.381	3	0	2	008	3	001	2
511		9	max	2.31	3	197.371	3	71.048	1	0	3	.031	1	.149	2
512			min	-15.73	1	-405.299	2	345	3	0	2	008	3	065	3
513		10	max	.854	10	-6.793	15	88.742	1	0	15	.064	1	.337	2
514			min	-15.73	1	-495.45	2	-2.127	3	0	2	008	3	157	3
515		11	max	.854	10	405.299	2	845	12	0	2	.031	1	.149	2
516			min	-15.714	1	-197.371	3	-71.015	1	0	3	002	3	065	3
517		12	max	.854	10	315.147	2	054	3	0	2	.007	2	.008	3
518			min	-15.714	1	-152.929	3	-53.321	1	0	3	002	3	001	2
519		13	max	.854	10	224.995	2	.982	3	0	2	0	10	.062	3
520			min	-15.714	1	-108.487	3	-35.627	1	0	3	014	1	114	2
521		14	max	.854	10	134.843	2	2.019	3	0	2	0	12	.098	3
522			min	-15.714	1	-64.045	3	-17.933	1	0	3	025	1	189	2
523		15	max	.854	10	44.691	2	3.055	3	0	2	0	12	.115	3
524			min	-15.714	1	-19.602	3	-4.131	2	0	3	029	1	226	2
525		16	max	.854	10	24.84	3	17.455	1	0	2	.001	3	.114	3
526			min	-15.714	1	-45.46	2	931	10	0	3	025	1	226	2
527		17	max	.854	10	69.282	3	35.149	1	0	2	.003	3	.095	3
528			min	-15.714	1	-135.612	2	1.036	10	0	3	014	1	188	2
529		18	max	.854	10	113.724	3	52.843	1	0	2	.005	3	.057	3
530			min	-15.714	1	-225.764	2	2.231	15	0	3	004	2	113	2
531		19	max	.854	10	158.166	3	70.537	1	0	2	.03	1	0	2
532		1	min	-15.714	1	-315.916	2	2.944	15	0	3	002	10	0	3
533	M15	1	max	0	1	.785	3	.145	3	0	1	0	1	0	1
534			min	-117.062	3	0	1	0	1	0	3	0	3	0	1
535		2	max	_	1	.698	3	.145	3	0	1	0	1	0	1
536				-117.133	3	0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.611	3	.145	3	0	1	0	1	0	1
538			min	-117.203	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.524	3	.145	3	0	1	0	1	0	1
540			min		3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.436	3	.145	3	0	1	0	1	0	1
542		Ť		-117.344	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.349	3	.145	3	0	1	0	1	0	1
544				-117.415	3	0	1	0	1	0	3	0	3	0	3
545		7	max	0	1	.262	3	.145	3	0	1	0	3	0	1
546				-117.485	3	0	1	0	1	0	3	0	1	0	3
547		8	max		1	.175	3	.145	3	0	1	0	3	0	1
548			min	-117.556	3	.173	1	0	1	0	3	0	1	0	3
549		9	max	0	1	.087	3	.145	3	0	1	0	3	0	1
550		-		-117.626	3	0	1	0	1	0	3	0	1	0	3
JJU			1111111	-117.020	J	U		U		U	J	U		U	J

: Schletter, Inc. : HCV

Job Number : Model Name : Standard PVMii

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
551		10	max	0	_1_	0	1	.145	3	0	1	0	3	0	1
552			min	-117.697	3	0	1	0	1	0	3	0	1_	0	3
553		11	max	0	_1_	0	1	.145	3	0	1	0	3	0	1
554			min		3	087	3	0	1	0	3	0	1_	0	3
555		12	max	0	_1_	0	1	.145	3	0	1	0	3	0	1
556		10	min	-117.838	3	175	3	0	1	0	3	0	1	0	3
557		13	max	0	_1_	0	1	.145	3	0	1	0	3	0	1
558		4.	min	_	3	262	3	0	1	0	3	0	1_	0	3
559		14	max	0	1	0	1	.145	3	0	1	0	3	0	1
560		4.5	min	-117.979	3	349	3	0	1	0	3	0	1_	0	3
561		15	max	0	1	0	1	.145	3	0	1	0	3	0	1
562		4.0	min	-118.049	3	436	3	0	1	0	3	0	1	0	3
563		16	max	0 -118.12	<u>1</u> 3	0 524	3	.145	3	0	1	0	<u>3</u>	0	3
564 565		17	min		<u>ა</u> 1		1	.145	3	0	1	0	3	0	1
566		17	max min	0 -118.19	3	611	3	0	1	0	3	0	<u> </u>	0	3
567		18	max	0		0	1	.145	3	0	1	0	3	0	1
568		10	min	_	3	698	3	0	1	0	3	0	1	0	3
569		19	max	0	1	0	1	.145	3	0	1	0	3	0	1
570		13	min	-118.331	3	785	3	0	1	0	3	0	1	0	1
571	M16A	1	max	0	2	1.344	4	.04	1	0	3	0	3	0	1
572	1011071		min	-116.646	3	0	2	06	3	0	1	0	1	0	1
573		2	max	0	2	1.195	4	.04	1	0	3	0	3	0	2
574		_	min	_	3	0	2	06	3	0	1	0	1	0	4
575		3	max	0	2	1.045	4	.04	1	0	3	0	3	0	2
576			min	-116.505	3	0	2	06	3	0	1	0	1	0	4
577		4	max	0	2	.896	4	.04	1	0	3	0	3	0	2
578			min	-116.435	3	0	2	06	3	0	1	0	1	0	4
579		5	max	0	2	.747	4	.04	1	0	3	0	3	0	2
580			min	-116.364	3	0	2	06	3	0	1	0	1	001	4
581		6	max	0	2	.597	4	.04	1	0	3	0	3	0	2
582			min	-116.294	3	0	2	06	3	0	1	0	1_	001	4
583		7	max	0	2	.448	4	.04	1	0	3	0	3_	0	2
584			min		3	0	2	06	3	0	1	0	1_	001	4
585		8	max	0	2	.299	4	.04	1	0	3	0	3	0	2
586			min	-116.153	3	0	2	06	3	0	1	0	1_	002	4
587		9	max	0	2	.149	4	.04	1	0	3	0	3	0	2
588		40	min		3	0	2	06	3	0	1	0	1_	002	4
589		10	max	0	2	0	1	.04	1	0	3	0	3	0	2
590		4.4	min	-116.012	3	0	1	06	3	0	1	0	1_	002	4
591		11			13	0	2	.04	1	0	3	0	3	0	2
592		12	min		3	149	4	06	3	0	1	0	1	002	4
593		12	max	.101 -115.871	13	200	2	.04 06	3	0	3	0	<u>3</u>	0	2
594 595		13	min	.198	3 13	299 0	2	06 .04	1	0	3	0	<u>1</u> 1	002 0	2
596		13	min	-115.8	3	448	4	06	3	0	1	0	4	001	4
597		11	max		13	0	2	.04	1	0	3	0	1	0	2
598		14	min	-115.73	3	597	4	06	3	0	1	0	3	001	4
599		15	max		<u> </u>	0	2	.04	1	0	3	0	<u> </u>	0	2
600		13	min	-115.66	3	747	4	06	3	0	1	0	3	001	4
601		16		.515	<u> </u>	0	2	.04	1	0	3	0	<u> </u>	0	2
602		10	min		3	896	4	06	3	0	1	0	3	0	4
603		17	max		4	0	2	.04	1	0	3	0	1	0	2
604				-115.519		-1.045	4	06	3	0	1	0	3	0	4
605		18	max	.757	4	0	2	.04	1	0	3	0	1	0	2
606			min		3	-1.195	4	06	3	0	1	0	3	0	4
607		19	max		4	0	2	.04	1	0	3	0	1	0	1
						_	_					-			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608	3		min	-115.378	3	-1.344	4	06	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope ivicini			on Dene											
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC				LC
1	M2	1	max	.002	2	.009	2	.002	9	1.365e-5	10	NC	3	NC	1
2			min	003	3	009	3	002	3	-2.438e-4	1	4314.383	2	NC	1
3		2	max	.002	2	.008	2	.002	9	1.3e-5	10	NC	3	NC	1
4			min	003	3	009	3	002	3	-2.325e-4	1	4712.473	2	NC	1
5		3	max	.002	2	.008	2	.002	9	1.235e-5	10	NC	1	NC	1
6			min	003	3	008	3	002	3	-2.211e-4	1	5186.689	2	NC	1
7		4	max	.002	2	.007	2	.002	1	1.171e-5	10	NC	1	NC	1
		-		003	3		3	002	3	-2.098e-4	1	5755.592		NC	1
8		_	min			008							2		
9		5_	max	.001	2	.006	2	.001	1	1.106e-5	<u>10</u>	NC	1	NC	1
10			min	003	3	008	3	001	3	-1.984e-4	_1_	6443.985	2	NC	1
11		6	max	.001	2	.005	2	.001	1	1.041e-5	10	NC	1	NC	1
12			min	002	3	007	3	001	3	-1.871e-4	1_	7285.556	2	NC	1
13		7	max	.001	2	.005	2	.001	1	9.766e-6	10	NC	_1_	NC	1
14			min	002	3	007	3	001	3	-1.758e-4	1_	8326.95	2	NC	1
15		8	max	.001	2	.004	2	.001	1	9.119e-6	10	NC	1	NC	1
16			min	002	3	006	3	0	3	-1.644e-4	1	9634.213	2	NC	1
17		9	max	.001	2	.003	2	0	1	8.472e-6	10	NC	1	NC	1
18			min	002	3	006	3	0	3	-1.531e-4	1	NC	1	NC	1
19		10	max	0	2	.003	2	0	1	7.825e-6	10	NC	1	NC	1
20			min	002	3	006	3	0	3	-1.417e-4	1	NC	1	NC	1
21		11	max	0	2	.002	2	0	1	7.178e-6	10	NC	1	NC	1
22		- ' '	min	002	3	005	3	0	3	-1.304e-4	1	NC	1	NC	1
23		12	max	0	2	.002	2	0	1	6.531e-6	10	NC	1	NC	1
24		12	min	001	3	004	3	0	3	-1.191e-4	1	NC	1	NC	1
		40						<u> </u>			•		1		
25		13	max	0	2	.002	2	0	1	5.884e-6	<u>10</u>	NC NC		NC	1
26		4.4	min	001	3	004	3	0	3	-1.077e-4	1_	NC	1	NC	1
27		14	max	0	2	.001	2	0	1	5.237e-6	<u>10</u>	NC	1	NC	1
28			min	0	3	003	3	0	3	-9.638e-5	1_	NC	1_	NC	1
29		15	max	0	2	0	2	0	1	4.59e-6	10	NC	_1_	NC	1
30			min	0	3	003	3	0	3	-8.504e-5	1_	NC	1_	NC	1
31		16	max	0	2	0	2	0	1	3.943e-6	10	NC	1	NC	1
32			min	0	3	002	3	0	3	-7.37e-5	1	NC	1	NC	1
33		17	max	0	2	0	2	0	1	3.296e-6	10	NC	1	NC	1
34			min	0	3	001	3	0	3	-6.236e-5	1	NC	1	NC	1
35		18	max	0	2	0	2	0	1	2.649e-6	10	NC	1	NC	1
36			min	0	3	0	3	0	3	-5.102e-5	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	2.002e-6	10	NC	1	NC	1
38			min	0	1	0	1	0	1	-3.968e-5	1	NC	1	NC	1
39	M3	1	max	0	1	0	1	0	1	1.88e-5	1	NC	1	NC	1
40	IVIO			0	1	0	1	_	<u> </u>	-9.506e-7		NC	1	NC	1
		2	min					0	10						
41		2	max	0	3	0	2	0		2.603e-5	1	NC NC	1	NC NC	1
42		_	min	0	2	0	3	0	9	-1.324e-6	10	NC NC	1_	NC NC	1
43		3	max	0	3	0	2	0	10	3.326e-5	1_	NC		NC	1
44			min	0	2	002	3	0	9	-1.696e-6	<u>10</u>	NC	<u>1</u>	NC	1
45		4	max	0	3	0	2	0	3	4.049e-5	_1_	NC	_1_	NC	1
46			min	0	2	003	3	0	9	-2.069e-6	10	NC	1_	NC	1
47		5	max	0	3	0	2	0	3	4.771e-5	1_	NC	1	NC	1
48			min	0	2	003	3	0	9	-2.442e-6	10	NC	1	NC	1
49		6	max	0	3	0	2	0	3	5.494e-5	1	NC	1	NC	1
50			min	0	2	004	3	0	9	-2.815e-6	10	NC	1	NC	1
51		7	max	0	3	0	2	0	3	6.217e-5	1	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r			LC		
52			min	0	2	005	3	0		10	NC	1_	NC	1
53		8	max	0	3	0	2	0	3 6.94e-5	1_	NC	_1_	NC	1
54			min	0	2	006	3	0	9 -3.561e-6	10	NC	1	NC	1
55		9	max	0	3	.001	2	0	3 7.662e-5	1	NC	1	NC	1
56			min	0	2	006	3	0	10 -3.934e-6	10	NC	1	NC	1
57		10	max	0	3	.002	2	0	1 8.385e-5	1_	NC	1	NC	1
58			min	001	2	007	3	0	10 -4.307e-6	10	NC	1	NC	1
59		11	max	.001	3	.002	2	0	1 9.108e-5	1_	NC	1	NC	1
60			min	001	2	007	3	0	10 -4.68e-6	10	NC	1	NC	1
61		12	max	.001	3	.003	2	0	1 9.831e-5	1	NC	1	NC	1
62			min	001	2	007	3	0	10 -5.053e-6	10	NC	1	NC	1
63		13	max	.001	3	.003	2	0	1 1.055e-4	1	NC	1	NC	1
64			min	001	2	008	3	0	10 -5.426e-6	10	NC	1	NC	1
65		14	max	.001	3	.004	2	.001	1 1.128e-4	1	NC	1	NC	1
66			min	002	2	008	3	0	10 -5.799e-6	10	NC	1	NC	1
67		15	max	.002	3	.005	2	.001	1 1.2e-4	1	NC	1	NC	1
68			min	002	2	008	3	0		10	9487.261	2	NC	1
69		16	max	.002	3	.006	2	.002	1 1.272e-4	1	NC	1	NC	1
70			min	002	2	008	3	0	10 -6.545e-6	10	7995.276	2	NC	1
71		17	max	.002	3	.007	2	.002	1 1.344e-4	1	NC	1	NC	1
72			min	002	2	008	3	0		10	6850.444	2	NC	1
73		18	max	.002	3	.008	2	.002	1 1.417e-4	1	NC	1	NC	1
74			min	002	2	008	3	0		10	5960.796	2	NC	1
75		19	max	.002	3	.009	2	.002	1 1.489e-4	1	NC	3	NC	1
76			min	002	2	008	3	0		10	5262.552	2	NC	1
77	M4	1	max	.001	1	.01	2	0		10	NC	1	NC	1
78			min	0	12	009	3	002		1	NC	1	NC	1
79		2	max	.001	1	.01	2	0		10	NC	1	NC	1
80			min	0	12	009	3	002	1 -1.788e-4	1	NC	1	NC	1
81		3	max	.001	1	.009	2	0		10	NC	1	NC	1
82			min	0	12	008	3	001	1 -1.788e-4	1	NC	1	NC	1
83		4	max	.001	1	.009	2	0		10	NC	1	NC	1
84			min	0	12	008	3	001	1 -1.788e-4	1	NC	1	NC	1
85		5	max	0	1	.008	2	0		10	NC	1	NC	1
86			min	0	12	007	3	001	1 -1.788e-4	1	NC	1	NC	1
87		6	max	0	1	.008	2	0		10	NC	1	NC	1
88			min	0	12	007	3	0	1 -1.788e-4	1	NC	1	NC	1
89		7	max	0	1	.007	2	0		10	NC	1	NC	1
90			min	0	12	006	3	0		1	NC	1	NC	1
91		8	max	0	1	.006	2	0		10	NC	1	NC	1
92			min		12	006	3	0	1 -1.788e-4		NC	1	NC	1
93		9	max	0	1	.006	2	0		10	NC	1	NC	1
94			min	0	12	005	3	0		1	NC	1	NC	1
95		10	max	0	1	.005	2	0		10	NC	1	NC	1
96		l . Č	min	0	12	005	3	0	1 -1.788e-4	1	NC	1	NC	1
97		11	max	0	1	.005	2	0		10	NC	1	NC	1
98			min	0	12	004	3	0	1 -1.788e-4	1	NC	1	NC	1
99		12	max	0	1	.004	2	0		10	NC	1	NC	1
100		12	min	0	12	004	3	0	1 -1.788e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	0		10	NC	1	NC	1
102		10	min	0	12	003	3	0	1 -1.788e-4	1	NC	1	NC	1
103		14	max	0	1	.003	2	0		10	NC		NC	1
104		17	min	0	12	003	3	0	1 -1.788e-4	1	NC	1	NC	1
105		15	max	0	1	.002	2	0		10	NC	1	NC	1
106		13	min	0	12	002	3	0	1 -1.788e-4	1	NC	1	NC	1
107		16	max	0	1	.002	2	0		10	NC NC	1	NC NC	1
108		10	min	0	12	002	3	0	1 -1.788e-4	1	NC	1	NC	1
100			1111111	U	14	002	J	U	1 -1.7006-4		INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

400	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio	LC		
109		17	max	0	1	.001	2	0	10	9.268e-6	10	NC NC	1_	NC NC	1
110		10	min	0	12	<u>001</u>	3	0	1	-1.788e-4	1_	NC	1_	NC	1
111		18	max	0	1	0	2	0	10	9.268e-6	<u>10</u>	NC	1_	NC	1
112		1.0	min	0	12	0	3	0	1	-1.788e-4	1_	NC	1	NC	1
113		19	max	0	1	0	1	0	1	9.268e-6	<u>10</u>	NC	1	NC	1
114			min	0	1	0	1	0	1	-1.788e-4	1_	NC	1	NC	1
115	<u>M6</u>	1_	max	.006	2	.029	2	0	9	4.806e-4	3	NC	3	NC	1
116			min	01	3	027	3	006	3	-8.672e-8	2	1378.227	2	6164.499	
117		2	max	.006	2	.027	2	0	9	4.659e-4	3	NC	3	NC	1
118		_	min	01	3	02 <u>5</u>	3	006	3	-1.142e-6	1_	1476.157	2	6538.924	3
119		3	max	.005	2	.025	2	0	9	4.512e-4	3	NC	3	NC	1
120			min	009	3	024	3	006	3	-2.243e-6	1_	1588.564	2	6984.923	3
121		4	max	.005	2	.023	2	0	9	4.365e-4	3	NC	3	NC	1
122		_	min	008	3	023	3	005	3	-3.344e-6	1_	1718.361	2	7517.671	3
123		5	max	.005	2	.021	2	0	9	4.218e-4	3	NC	3	NC	1
124			min	008	3	021	3	005	3	-4.446e-6	_1_	1869.3	2	8157.336	
125		6	max	.004	2	.019	2	0	9	4.071e-4	3	NC	3	NC	1
126			min	007	3	02	3	004	3	-5.547e-6	<u>1</u>	2046.296	2	8931.109	
127		7	max	.004	2	.017	2	0	9	3.925e-4	3_	NC	3	NC	1
128			min	007	3	018	3	004	3	-6.648e-6	1_	2255.912	2	9876.278	3
129		8	max	.004	2	.016	2	0	9	3.778e-4	3	NC	3_	NC	1
130			min	006	3	017	3	004	3	-7.749e-6	1_	2507.098	2	NC	1
131		9	max	.003	2	.014	2	0	9	3.631e-4	3	NC	3	NC	1
132			min	006	3	015	3	003	3	-8.85e-6	1	2812.393	2	NC	1
133		10	max	.003	2	.012	2	0	9	3.484e-4	3	NC	3	NC	1
134			min	005	3	014	3	003	3	-9.951e-6	1	3189.907	2	NC	1
135		11	max	.003	2	.011	2	0	9	3.337e-4	3	NC	3	NC	1
136			min	004	3	012	3	002	3	-1.105e-5	1	3666.802	2	NC	1
137		12	max	.002	2	.009	2	0	9	3.19e-4	3	NC	3	NC	1
138			min	004	3	011	3	002	3	-1.215e-5	1	4285.752	2	NC	1
139		13	max	.002	2	.008	2	0	9	3.043e-4	3	NC	3	NC	1
140			min	003	3	009	3	002	3	-1.325e-5	1	5117.861	2	NC	1
141		14	max	.002	2	.006	2	0	9	2.897e-4	3	NC	1	NC	1
142			min	003	3	008	3	001	3	-1.436e-5	1	6291.084	2	NC	1
143		15	max	.001	2	.005	2	0	9	2.75e-4	3	NC	1	NC	1
144			min	002	3	006	3	0	3	-1.546e-5	1	8061.27	2	NC	1
145		16	max	0	2	.004	2	0	9	2.603e-4	3	NC	1	NC	1
146			min	002	3	005	3	0	3	-1.656e-5	1	NC	1	NC	1
147		17	max	0	2	.002	2	0	9	2.456e-4	3	NC	1	NC	1
148			min	001	3	003	3	0	3	-1.766e-5	1	NC	1	NC	1
149		18		0	2	.001	2	0	1	2.309e-4	3	NC	1	NC	1
150		1.0	min	0	3	002	3	0	3	-1.876e-5	1	NC	1	NC	1
151		19	max	0	1	0	1	0	1	2.162e-4	3	NC	1	NC	1
152		10	min	0	1	0	1	0	1	-1.986e-5	1	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	9.377e-6	1	NC	1	NC	1
154		•	min	0	1	0	1	0	1	-1.015e-4	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	8.964e-6	1	NC		NC	1
156			min	0	2	002	3	0	1	-7.65e-5	3	NC	1	NC	1
157		3	max	0	3	.002	2	0	3	8.55e-6	<u> </u>	NC	1	NC	1
158			min	0	2	004	3	0	1	-5.154e-5	3	NC NC	1	NC	1
159		4	max	0	3	.004	2	.001	3	8.137e-6	<u> </u>	NC	1	NC	1
160		4	min	001	2	004	3	0	1	-2.657e-5	3	NC NC	1	NC NC	1
161		5		.001	3	.005	2	.002	3		<u> </u>	NC NC	1	NC NC	1
162		J	max	001	2	005	3	<u>.002</u>	1	7.723e-6	3	9601.845	2	NC NC	1
		6								-1.609e-6		9601.845 NC			1
163		6	max	.002	3	.006	2	.002	3	2.336e-5	3		1	NC NC	
164		7	min	002	2	009	3	0		0	2	7688.377	2	NC NC	1
165		7	max	.002	3	.007	2	.002	3	4.832e-5	3	NC	_1_	NC	1

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC				
166			min	002	2	011	3	0	9	0	5	6376.906	2	NC	1
167		8	max	.002	3	.009	2	.003	3	7.329e-5	3	NC	1	NC	1
168			min	003	2	012	3	0	9	-1.283e-7	13	5413.612	2	NC	1
169		9	max	.002	3	.01	2	.003	3	9.825e-5	3	NC	3	NC	1
170			min	003	2	014	3	0	9	-4.715e-7	9	4672.079	2	NC	1
171		10	max	.003	3	.011	2	.003	3	1.232e-4	3	NC	3	NC	1
172		1	min	003	2	015	3	0	9	-1.417e-6	9	4082.222	2	NC	1
173		11	max	.003	3	.013	2	.003	3	1.482e-4	3	NC	3	NC	1
174		+ ' '	min	004	2	016	3	0	9	-2.362e-6	9	3601.9	2	NC	1
175		12	max	.003	3	.014	2	.003	3	1.731e-4	3	NC	3	NC	1
176		12	min	004	2	018	3	<u>.003</u>	9	-3.308e-6	9	3204.072	2	NC	1
		40													_
177		13	max	.004	3	.016	2	.003	3	1.981e-4	3_	NC	3_	NC NC	1
178			min	004	2	<u>019</u>	3	0	9	-4.254e-6	9	2870.429	2	NC	1
179		14	max	.004	3	.018	2	.003	3	2.231e-4	3_	NC	3_	NC	1
180			min	005	2	02	3	0	9	-5.199e-6	9	2588.003	2	NC	1
181		15	max	.004	3	.02	2	.003	3	2.48e-4	3	NC	3	NC	1
182			min	005	2	021	3	0	9	-6.145e-6	9	2347.258	2	NC	1
183		16	max	.005	3	.022	2	.003	3	2.73e-4	3	NC	3	NC	1
184			min	005	2	022	3	0	9	-7.09e-6	9	2140.97	2	NC	1
185		17	max	.005	3	.023	2	.003	3	2.98e-4	3	NC	3	NC	1
186			min	006	2	022	3	0	9	-8.036e-6	9	1963.531	2	NC	1
187		18	max	.005	3	.025	2	.003	3	3.229e-4	3	NC	3	NC	1
188		1	min	006	2	023	3	0	9	-8.981e-6	9	1810.507	2	NC	1
189		19	max	.005	3	.027	2	.003	3	3.479e-4	3	NC	3	NC	1
190		13	min	006	2	024	3	0	9	-9.927e-6	9	1678.348	2	NC	1
191	M8	1	max	.003	1	.033	2	0	9	-1.122e-7	10	NC	1	NC	1
	IVIO				3		3					NC	1	8919.046	_
192			min	0		027		002	3	-2.545e-4	3				3
193		2	max	.003	1	.031	2	0	9	-1.122e-7	10	NC	1	NC 0704 004	$\frac{1}{2}$
194		_	min	0	3	025	3	002	3	-2.545e-4	3	NC	1_	9724.604	
195		3	max	.003	1	.029	2	0	9	-1.122e-7	10	NC	1	NC	1
196			min	0	3	024	3	002	3	-2.545e-4	3	NC	1_	NC	1
197		4	max	.003	1	.027	2	0	9	-1.122e-7	<u>10</u>	NC	_1_	NC	1
198			min	0	3	022	3	002	3	-2.545e-4	3	NC	1_	NC	1
199		5	max	.003	1	.025	2	0	9	-1.122e-7	10	NC	_1_	NC	1
200			min	0	3	021	3	001	3	-2.545e-4	3	NC	1_	NC	1
201		6	max	.002	1	.024	2	0	9	-1.122e-7	10	NC	1	NC	1
202			min	0	3	019	3	001	3	-2.545e-4	3	NC	1	NC	1
203		7	max	.002	1	.022	2	0	9	-1.122e-7	10	NC	1	NC	1
204			min	0	3	018	3	001	3	-2.545e-4	3	NC	1	NC	1
205		8	max	.002	1	.02	2	0	9	-1.122e-7	10	NC	1	NC	1
206		-	min	0	3	016	3	0	3		3	NC	1	NC	1
207		9	max	.002	1	.018	2	0	9	-1.122e-7		NC	1	NC	1
208			min	0	3	015	3	0	3	-2.545e-4	3	NC	1	NC	1
		10			1	.016		0				NC	1	NC	1
209		10	max	.002	_		2		9	-1.122e-7	<u>10</u>				
210		4.4	min	0	3	013	3	0	3	-2.545e-4	3	NC NC	1_	NC NC	1
211		11	max	.002	1	.014	2	0	9	-1.122e-7	<u>10</u>	NC	1	NC	1
212			min	0	3	012	3	0	3	-2.545e-4	3	NC	_1_	NC	1
213		12	max	.001	1	.013	2	0	9	-1.122e-7	<u>10</u>	NC	_1_	NC	1
214			min	0	3	01	3	0	3	-2.545e-4	3	NC	1	NC	1
215		13	max	.001	1	.011	2	0	9	-1.122e-7	10	NC	1_	NC	1_
216			min	0	3	009	3	0	3	-2.545e-4	3	NC	1	NC	1
217		14	max	0	1	.009	2	0	9	-1.122e-7	10	NC	1	NC	1
218			min	0	3	007	3	0	3	-2.545e-4	3	NC	1	NC	1
219		15	max	0	1	.007	2	0	9	-1.122e-7	10	NC	1	NC	1
220		10	min	0	3	006	3	0	3	-2.545e-4	3	NC	1	NC	1
221		16	max	0	1	.005	2	0	9	-1.122e-7	10	NC	1	NC	1
222		10	min	0	3	004	3	0	3	-2.545e-4	3	NC	1	NC	1
222			HIIII	U	J	004	J	U	J	2.3436-4	J	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

17 18 18 18 18 18 18 18		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC) LC
225	223		17	max	0	1	.004	2	0	9	-1.122e-7	10	NC	1	NC	1
226	224			min	0	3	003	3	0	3	-2.545e-4	3	NC	1	NC	1
226	225		18	max	0	1	.002	2	0	9	-1.122e-7	10	NC	1	NC	1
2278					0	3	001		0	3	-2.545e-4	3	NC	1	NC	1
228			19		0	1		1	0	1		10		1	NC	1
239						1		1		1				1		1
230		M10	1			•		_		•						
231		IVITO														
232			2													
233																
234																•
235			3													
236				min					<u>001</u>			3		2		1
238	235		4	max	.002	2	.007	2	0	3	2.058e-4	<u>1</u>		_1_	NC	1
238	236			min	002	3	008	3	001	1	-5.071e-4	3	5761.772	2	NC	1
238	237		5	max	.001	2	.006	2	0	3	1.943e-4	1	NC	1	NC	1
239	238			min	002	3	008	3	001	1	-4.877e-4	3	6451.192	2	NC	1
240			6							3		1		1		1
241																
242			7													
243																
244			0									-				•
245			8													
246																
247			9							3						
248				min	001				0			3		1_		1
249	247		10	max	0	2	.003	2	0	3	1.369e-4	1	NC	1	NC	1
250	248			min	001	3	006	3	0	1	-3.907e-4	3	NC	1	NC	1
250	249		11	max	0	2	.002	2	0	3	1.254e-4	1	NC	1	NC	1
251												3		1		
252			12											•		
253			12													
254			12								1.0250.4	-		_		•
255			13													
256												3				
257			14									1_				
258				min						-		3		_		•
259			15	max	0				0	3		<u>1</u>		<u>1</u>	NC	1
260 min 0 3 002 3 0 1 -2.743e-4 3 NC 1 NC 1 261 17 max 0 2 0 2 0 3 5.66e-5 1 NC 1 NC 1 262 min 0 3 001 3 0 1 -2.549e-4 3 NC 1 NC 1 263 18 max 0 2 0 2 0 3 4.513e-5 1 NC 1 NC 1 264 min 0 3 0 3 0 1 -2.355e-4 3 NC 1 NC 1 265 19 max 0 1 0 1 0 1 3.366e-5 1 NC 1 NC 1 266 min 0 1 0 1 0 1 1.02e-4 </td <td>258</td> <td></td> <td></td> <td>min</td> <td>0</td> <td>3</td> <td>003</td> <td>3</td> <td>0</td> <td>1</td> <td>-2.937e-4</td> <td>3</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>	258			min	0	3	003	3	0	1	-2.937e-4	3	NC	1	NC	1
260 min 0 3 002 3 0 1 -2.743e-4 3 NC 1 NC 1 261 17 max 0 2 0 2 0 3 5.66e-5 1 NC 1 NC 1 262 min 0 3 001 3 0 1 -2.549e-4 3 NC 1 NC 1 263 18 max 0 2 0 2 0 3 4.513e-5 1 NC 1 NC 1 264 min 0 3 0 3 0 1 -2.355e-4 3 NC 1 NC 1 265 19 max 0 1 0 1 0 1 3.366e-5 1 NC 1 NC 1 266 min 0 1 0 1 0 1 1.02e-4 </td <td>259</td> <td></td> <td>16</td> <td>max</td> <td>0</td> <td>2</td> <td>0</td> <td>2</td> <td>0</td> <td>3</td> <td>6.808e-5</td> <td>1</td> <td>NC</td> <td>1</td> <td>NC</td> <td>1</td>	259		16	max	0	2	0	2	0	3	6.808e-5	1	NC	1	NC	1
261 17 max 0 2 0 2 0 3 5.66e-5 1 NC 1 NC 1 262 min 0 3 001 3 0 1 -2.549e-4 3 NC 1 NC 1 263 18 max 0 2 0 2 0 3 4.513e-5 1 NC 1 NC 1 264 min 0 3 0 3 0 1 -2.355e-4 3 NC 1 NC	260			min	0	3	002	3	0	1		3	NC	1	NC	1
262 min 0 3 001 3 0 1 -2.549e-4 3 NC 1 NC 1 263 18 max 0 2 0 2 0 3 4.513e-5 1 NC 1 NC 1 264 min 0 3 0 3 0 1 -2.355e-4 3 NC 1 NC 1 265 19 max 0 1 0 1 0 1 3.366e-5 1 NC 1 NC 1 266 min 0 1 0 1 0 1 -2.161e-4 3 NC 1 NC 1 267 M11 1 max 0 1 0 1 -2.161e-4 3 NC 1 NC 1 268 min 0 1 0 1 -1.598e-5 1 NC 1			17							3				1		1
263 18 max 0 2 0 2 0 3 4.513e-5 1 NC 1 NC 1 264 min 0 3 0 3 0 1 -2.355e-4 3 NC 1 NC 1 265 19 max 0 1 0 1 0 1 3.366e-5 1 NC 1 NC 1 266 min 0 1 0 1 0 1 -2.161e-4 3 NC 1 NC 1 267 M11 1 max 0 1 0 1 1.02e-4 3 NC 1 NC 1 268 min 0 1 0 1 0 1 -1.598e-5 1 NC 1 NC 1 270 min 0 2 0 3 -2.378e-5 1 NC 1 NC 1<					-											
264 min 0 3 0 3 0 1 -2.355e-4 3 NC 1 NC 1 265 19 max 0 1 0 1 0 1 3.366e-5 1 NC 1 NC 1 266 min 0 1 0 1 0 1 -2.161e-4 3 NC 1 NC 1 267 M11 1 max 0 1 0 1 1.02e-4 3 NC 1 NC 1 268 min 0 1 0 1 0 1 -1.598e-5 1 NC 1 NC 1 269 2 max 0 3 0 2 0 1 7.774e-5 3 NC 1 NC 1 270 min 0 2 0 3 -2.378e-5 1 NC 1			1Ω													
265 19 max 0 1 0 1 0 1 3.366e-5 1 NC 1 NC 1 266 min 0 1 0 1 0 1 -2.161e-4 3 NC 1 NC 1 267 M11 1 max 0 1 0 1 1.02e-4 3 NC 1 NC 1 268 min 0 1 0 1 0 1 -1.598e-5 1 NC 1 NC 1 269 2 max 0 3 0 2 0 1 7.774e-5 3 NC 1 NC 1 270 min 0 2 0 3 -2.378e-5 1 NC 1 NC 1 271 3 max 0 3 0 2 0 1 5.348e-5 3 NC 1			10		_		_							-		
266 min 0 1 0 1 -2.161e-4 3 NC 1 NC 1 267 M11 1 max 0 1 0 1 0.0 1 1.02e-4 3 NC 1 NC 1 268 min 0 1 0 1 0 1 -1.598e-5 1 NC 1 NC 1 269 2 max 0 3 0 2 0 1 7.774e-5 3 NC 1 NC 1 270 min 0 2 0 3 -2.378e-5 1 NC 1 NC 1 271 3 max 0 3 0 2 0 1 5.348e-5 3 NC 1 NC 1 272 min 0 2 002 3 0 3.3.158e-5 1 NC 1 NC			40									<u>3</u>				
267 M11 1 max 0 1 0 1 0.0 1 1.02e-4 3 NC 1 NC 1 268 min 0 1 0 1 0 1 -1.598e-5 1 NC 1 NC 1 269 2 max 0 3 0 2 0 1 7.774e-5 3 NC 1 NC 1 270 min 0 2 0 3 -2.378e-5 1 NC 1 NC 1 271 3 max 0 3 0 2 0 1 5.348e-5 3 NC 1 NC 1 272 min 0 2 002 3 0 3.158e-5 1 NC 1 NC 1 273 4 max 0 3 0 2 0 1 2.922e-5 3			19			_						1_				
268 min 0 1 0 1 0 1 -1.598e-5 1 NC 1 NC 1 269 2 max 0 3 0 2 0 1 7.774e-5 3 NC 1 NC 1 270 min 0 2 0 3 -2.378e-5 1 NC 1 NC 1 271 3 max 0 3 0 2 0 1 5.348e-5 3 NC 1 NC 1 272 min 0 2 002 3 0 3.158e-5 3 NC 1 NC 1 273 4 max 0 3 0 2 0 1 2.922e-5 3 NC 1 NC 1 274 min 0 2 003 3 001 3 -3.939e-5 1 NC <td< td=""><td></td><td></td><td></td><td>mın</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></td<>				mın				-						•		
269 2 max 0 3 0 2 0 1 7.774e-5 3 NC 1 NC 1 270 min 0 2 0 3 0 3 -2.378e-5 1 NC 1 NC 1 271 3 max 0 3 0 2 0 1 5.348e-5 3 NC 1 NC 1 272 min 0 2 002 3 0 3.158e-5 1 NC 1 NC 1 273 4 max 0 3 0 2 0 1 2.922e-5 3 NC 1 NC 1 274 min 0 2 003 3 001 3 -3.939e-5 1 NC 1 NC 1 275 5 max 0 3 0 2 0 1 4.719e-5		<u>M11</u>	1_	max				1		1		3_				_
270 min 0 2 0 3 0 3 -2.378e-5 1 NC 1 NC 1 271 3 max 0 3 0 2 0 1 5.348e-5 3 NC 1 NC 1 272 min 0 2 002 3 0 3.158e-5 1 NC 1 NC 1 273 4 max 0 3 0 2 0 1 2.922e-5 3 NC 1 NC 1 274 min 0 2 003 3 001 3 -3.939e-5 1 NC 1 NC 1 275 5 max 0 3 0 2 0 1 4.955e-6 3 NC 1 NC 1 276 min 0 2 003 3 002 3 -4.719e-5	268			min	0		0	1	0	1	-1.598e-5	1	NC	1	NC	1
270 min 0 2 0 3 0 3 -2.378e-5 1 NC 1 NC 1 271 3 max 0 3 0 2 0 1 5.348e-5 3 NC 1 NC 1 272 min 0 2 002 3 0 3 -3.158e-5 1 NC 1 NC 1 273 4 max 0 3 0 2 0 1 2.922e-5 3 NC 1 NC 1 274 min 0 2 003 3 001 3 -3.939e-5 1 NC 1 NC 1 275 5 max 0 3 0 2 0 1 4.955e-6 3 NC 1 NC 1 276 min 0 2 003 3 002 3 <td< td=""><td>269</td><td></td><td>2</td><td>max</td><td>0</td><td>3</td><td>0</td><td>2</td><td>0</td><td>1</td><td>7.774e-5</td><td>3</td><td>NC</td><td>1</td><td>NC</td><td>1</td></td<>	269		2	max	0	3	0	2	0	1	7.774e-5	3	NC	1	NC	1
271 3 max 0 3 0 2 0 1 5.348e-5 3 NC 1 NC 1 272 min 0 2 002 3 0 3 -3.158e-5 1 NC 1 NC 1 273 4 max 0 3 0 2 0 1 2.922e-5 3 NC 1 NC 1 274 min 0 2 003 3 001 3 -3.939e-5 1 NC 1 NC 1 275 5 max 0 3 0 2 0 1 4.955e-6 3 NC 1 NC 1 276 min 0 2 003 3 002 3 -4.719e-5 1 NC 1 NC 1 277 6 max 0 3 0 2 0 <td< td=""><td></td><td></td><td></td><td></td><td>0</td><td></td><td>0</td><td></td><td>0</td><td>3</td><td></td><td>1</td><td>NC</td><td>1</td><td>NC</td><td>1</td></td<>					0		0		0	3		1	NC	1	NC	1
272 min 0 2 002 3 0 3 -3.158e-5 1 NC 1 NC 1 273 4 max 0 3 0 2 0 1 2.922e-5 3 NC 1 NC 1 274 min 0 2 003 3 001 3 -3.939e-5 1 NC 1 NC 1 275 5 max 0 3 0 2 0 1 4.955e-6 3 NC 1 NC 1 276 min 0 2 003 3 002 3 -4.719e-5 1 NC 1 NC 1 277 6 max 0 3 0 2 0 10 2.866e-6 10 NC 1 NC 1 278 min 0 2 004 3 002 3			3									3		1		1
273 4 max 0 3 0 2 0 1 2.922e-5 3 NC 1 NC 1 274 min 0 2 003 3 001 3 -3.939e-5 1 NC 1 NC 1 275 5 max 0 3 0 2 0 1 4.955e-6 3 NC 1 NC 1 276 min 0 2 003 3 002 3 -4.719e-5 1 NC 1 NC 1 277 6 max 0 3 0 2 0 10 2.866e-6 10 NC 1 NC 1 278 min 0 2 004 3 002 3 -5.499e-5 1 NC 1 NC 1					-							1				
274 min 0 2 003 3 001 3 -3.939e-5 1 NC 1 NC 1 275 5 max 0 3 0 2 0 1 4.955e-6 3 NC 1 NC 1 276 min 0 2 003 3 002 3 -4.719e-5 1 NC 1 NC 1 277 6 max 0 3 0 2 0 10 2.866e-6 10 NC 1 NC 1 278 min 0 2 004 3 002 3 -5.499e-5 1 NC 1 NC 1			1									2		_		•
275 5 max 0 3 0 2 0 1 4.955e-6 3 NC 1 NC 1 276 min 0 2 003 3 002 3 -4.719e-5 1 NC 1 NC 1 277 6 max 0 3 0 2 0 10 2.866e-6 10 NC 1 NC 1 278 min 0 2 004 3 002 3 -5.499e-5 1 NC 1 NC 1			+									-		_		
276 min 0 2 003 3 002 3 -4.719e-5 1 NC 1 NC 1 277 6 max 0 3 0 2 0 10 2.866e-6 10 NC 1 NC 1 278 min 0 2 004 3 002 3 -5.499e-5 1 NC 1 NC 1			-													
277 6 max 0 3 0 2 0 10 2.866e-6 10 NC 1 NC 1 278 min 0 2004 3002 3 -5.499e-5 1 NC 1 NC 1			5				_									
278 min 0 2004 3002 3 -5.499e-5 1 NC 1 NC 1												1_		•		
			6									10				
279 7 max 0 3 0 2 0 10 3.249e-6 10 NC 1 NC 1				min	0		004		002	3	-5.499e-5	1	NC	1	NC	1
	279		7	max	0	3	0	2	0	10	3.249e-6	10	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

110 V

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
280			min	0	2	005	3	002	3	-6.279e-5	1	NC	1	NC	1
281		8	max	0	3	0	2	0	10	3.632e-6	10	NC	_1_	NC	1
282			min	0	2	006	3	002	3	-7.06e-5	1_	NC	1_	NC	1
283		9	max	0	3	.001	2	0	10	4.015e-6	<u>10</u>	NC	_1_	NC	1
284		4.0	min	0	2	006	3	003	3	-9.209e-5	3	NC	1_	NC	1
285		10	max	0	3	.002	2	0	10	4.398e-6	10	NC	1	NC NC	1
286		44	min	001	2	007	3	003	3	-1.164e-4	3	NC	1_	NC NC	1
287		11	max	.001	3	.002	2	0	10	4.781e-6	<u>10</u>	NC	1_	NC	1
288		40	min	001	2	007	3	003	3	-1.406e-4	3	NC NC	1_	NC NC	1
289		12	max	.001	3	.003	3	003	10	5.164e-6	<u>10</u>	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min	001 .001	3	007 .003	2	003 0	10	-1.649e-4 5.547e-6	<u>3</u> 10	NC NC	1	NC NC	1
292		13	max	001	2	003	3	003	3	-1.891e-4	3	NC NC	1	NC NC	1
293		14	max	.001	3	008 .004	2	<u>003</u> 0	10	5.93e-6	<u> </u>	NC NC	1	NC NC	1
294		14	min	001	2	008	3	003	3	-2.134e-4	3	NC	1	NC	1
295		15	max	.002	3	.005	2	<u>003</u> 0	10	6.313e-6	10	NC	1	NC	1
296		10	min	002	2	008	3	003	3	-2.377e-4	3	9500.451	2	NC	1
297		16	max	.002	3	.006	2	<u>.005</u>	10	6.696e-6	10	NC	1	NC	1
298		10	min	002	2	008	3	003	3	-2.619e-4	3	8005.267	2	NC	1
299		17	max	.002	3	.007	2	<u>.000</u>	10	7.079e-6	10	NC	1	NC	1
300		<u> </u>	min	002	2	008	3	003	3	-2.862e-4	3	6858.235	2	NC	1
301		18	max	.002	3	.008	2	0	10	7.462e-6	10	NC	1	NC	1
302			min	002	2	008	3	003	3	-3.105e-4	3	5967.039	2	NC	1
303		19	max	.002	3	.009	2	0	10	7.845e-6	10	NC	3	NC	1
304			min	002	2	008	3	002	3	-3.347e-4	3	5267.687	2	NC	1
305	M12	1	max	.001	1	.01	2	.002	1	3.649e-4	3	NC	1	NC	2
306			min	0	12	009	3	0	10	-9.493e-6	10	NC	1	9974.246	1
307		2	max	.001	1	.01	2	.002	1	3.649e-4	3	NC	1	NC	1
308			min	0	12	009	3	0	10	-9.493e-6	10	NC	1	NC	1
309		3	max	.001	1	.009	2	.002	1	3.649e-4	3	NC	1_	NC	1_
310			min	0	12	008	3	0	10	-9.493e-6	10	NC	1	NC	1
311		4	max	.001	1	.009	2	.001	1	3.649e-4	3	NC	_1_	NC	1
312			min	0	12	008	3	0	10	-9.493e-6	10	NC	1_	NC	1
313		5	max	0	1	.008	2	.001	1	3.649e-4	3_	NC	_1_	NC	1
314			min	0	12	007	3	0	10	-9.493e-6	10	NC	_1_	NC	1
315		6	max	0	1	.008	2	.001	1	3.649e-4	3	NC	_1_	NC	1
316		<u> </u>	min	0	12	007	3	0	10	-9.493e-6	10	NC	1_	NC	1
317		7	max	0	1	.007	2	.001	1	3.649e-4	3_	NC	1_	NC NC	1
318			min	0	12	006	3	0	10	-9.493e-6	10	NC	_1_	NC NC	1
319		8	max	0	1	.006	2	0	1	3.649e-4	3	NC NC	1_	NC NC	1
320			min	0	12	006	3	0		-9.493e-6			1	NC NC	1
321		9	max	0	1	.006	2	0	1	3.649e-4	3	NC NC	1	NC NC	1
322		10	min	0	12	005	2	0	10 1		10	NC NC	<u>1</u> 1	NC NC	1
323		10	max	<u> </u>	12	.005	3	0 0		3.649e-4 -9.493e-6	3	NC NC	1	NC NC	1
324 325		11	min max	0	1	005 .005	2	0	10	3.649e-4	<u>10</u> 3	NC NC	1	NC NC	1
326			min	0	12	004	3	0	10	-9.493e-6	10	NC	1	NC	1
327		12	max	0	1	.004	2	0	1	3.649e-4	3	NC	1	NC	1
328		12	min	0	12	004	3	0	10	-9.493e-6	10	NC	1	NC	1
329		13	max	0	1	.003	2	0	1	3.649e-4	3	NC NC	1	NC NC	1
330		13	min	0	12	003	3	0	10	-9.493e-6	10	NC NC	1	NC NC	1
331		14	max	0	1	.003	2	0	1	3.649e-4	3	NC	1	NC	1
332			min	0	12	003	3	0	10	-9.493e-6	10	NC	1	NC	1
333		15	max	0	1	.002	2	0	1	3.649e-4	3	NC	1	NC	1
334		10	min	0	12	002	3	0	10	-9.493e-6	10	NC	1	NC	1
335		16	max	0	1	.002	2	0	1	3.649e-4	3	NC	1	NC	1
336			min	0	12	002	3	0			10	NC	1	NC	1
			117011			1002			- ' -	31 1000 0					

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	3.649e-4	3	NC	1_	NC	1
338			min	0	12	001	3	0	10	-9.493e-6	10	NC	1	NC	1
339		18	max	0	1	0	2	0	1	3.649e-4	3	NC	1	NC	1
340			min	0	12	0	3	0	10	-9.493e-6	10	NC	1	NC	1
341		19	max	0	1	0	1	0	1	3.649e-4	3	NC	1	NC	1
342			min	0	1	0	1	0	1	-9.493e-6	10	NC	1	NC	1
343	M1	1	max	.008	3	.024	3	.004	3	5.216e-3	2	NC	1	NC	1
344			min	009	2	02	2	0	9	-7.616e-3	3	NC	1	NC	1
345		2	max	.008	3	.014	3	.003	3	2.575e-3	2	NC	4	NC	1
346			min	009	2	012	2	002	9	-3.748e-3	3	4868.141	3	NC	1
347		3	max	.008	3	.005	3	.002	3	4.755e-5	3	NC	4	NC	1
348			min	009	2	004	2	002	9	-1.13e-4	1	2521.594	3	NC	1
349		4	max	.008	3	.003	2	.002	3	4.886e-5	3	NC	4	NC	1
350			min	009	2	003	3	002	1	-9.337e-5	1	1796.545	3	NC	1
351		5	max	.008	3	.009	2	.002	3	5.018e-5	3	NC	4	NC	1
352		 	min	009	2	009	3	003	1	-7.377e-5	1	1450.784	3	NC	1
353		6	max	.008	3	.015	2	.001	3	5.15e-5	3	NC	4	NC	1
354		1	min	009	2	014	3	002	1	-5.72e-5	9	1257.795	3	NC	1
355		7		.008	3	.019	2	.002	3	5.281e-5	3	NC	4	NC	1
356		1	max	008	2	018	3	002	1	-4.179e-5	9	1143.548	3	NC NC	1
357		8	max	.008	3	.022	2	<u>002</u> 0	3	5.413e-5	3	NC	4	NC NC	1
358		-0	min	008	2	021	3	002	9	-2.638e-5	9	1057.31	2	NC	1
359		9		.008	3	.024	2	<u>002</u> 0	3	5.544e-5		NC	4	NC	1
		19	max	008	2	022	3		9		<u>3</u>	1003.529	2	NC NC	1
360		10	min					001	_	-1.098e-5					
361		10	max	.008	3	.025	3	<u> </u>	9	5.676e-5	3	NC	2	NC NC	1
362		4.4	min	008		023				-9.6e-7	10	977.808			
363		11	max	.008	3	.024	2	.001	3	5.807e-5	3	NC	4	NC NC	1
364		40	min	008	2	022	3	0	9	-2.054e-6	10	977.197	2	NC NC	1
365		12	max	.008	3	.023	2	.001	3	6.341e-5	1	NC	4	NC NC	1
366		40	min	008	2	02	3	0	10	-3.147e-6		1002.711	2	NC NC	1
367		13	max	.008	3	.02	2	.002	1	8.301e-5	1	NC 4050,000	4	NC NC	1
368		144	min	008	2	017	3	0	10	-4.241e-6	10	1059.928	2	NC NC	1
369		14	max	.008	3	<u>.016</u>	2	.002	1	1.026e-4	1_	NC	4_	NC NC	1
370			min	008	2	014	3	0	10	-5.335e-6	10	1161.845	2	NC	1
371		15	max	.008	3	.01	2	.002	1	1.222e-4	1_	NC 1007.10	4_	NC	1
372		1.0	min	008	2	009	3	0	10	-6.428e-6	10	1337.12	2	NC	1
373		16	max	.008	3	.003	2	.002	1	1.365e-4	1_	NC	4_	NC NC	1
374			min	008	2	003	3	0	10	-7.238e-6	10	1656.156	2	NC	1
375		17	max	.008	3	.004	3	.002	1	7.2e-5	3	NC	4	NC	1
376			min	008	2	006	2	0	10	-4.303e-6	9	2346.669	2	NC	1
377		18	max	.008	3	.012	3	.001	3	3.74e-3	2	NC	4	NC	1
378			min	008	2	016	2	0		-2.006e-3	3	4548.509	2	NC	1
379		19	max	.008	3	.02	3	0	3	7.544e-3	2	NC		NC NC	1
380			min	008	2	027	2	0	9	-4.124e-3	3	NC	1_	NC	1
381	<u>M5</u>	1_	max	.024	3	.074	3	.004	3	9.789e-6	3_	NC	1	NC	1
382			min	027	2	062	2	0	9	0	1_	NC	1_	NC	1
383		2	max	.024	3	.044	3	.005	3	1.369e-4	3	NC	4_	NC	1
384			min	027	2	036	2	0	9	-1.182e-5	9	1576.198	3	NC	1
385		3	max	.024	3	.015	3	.006	3	2.615e-4	3	NC	5	NC	1
386			min	027	2	011	2	0	9	-2.352e-5	9	816.958	<u>3</u>	NC	1
387		4	max	.024	3	.01	2	.007	3	2.526e-4	3	NC	5	NC	1
388			min	027	2	009	3	0	9	-2.237e-5	9	582.924	3	NC	1
389		5	max	.024	3	.029	2	.008	3	2.437e-4	3	NC	_5_	NC	1
390			min	027	2	028	3	0	9	-2.122e-5	9	471.472	3	9416.324	
391		6	max	.024	3	.046	2	.008	3	2.348e-4	3_	NC	5_	NC	1
392			min	027	2	044	3	0	9	-2.007e-5	9	409.402	3	8505.213	
393		7	max	.024	3	.059	2	.009	3	2.259e-4	3	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
394			min	027	2	056	3	0	9	-1.891e-5	9	366.433	2	8090.186	
395		8	max	.024	3	.068	2	.008	3	2.169e-4	3	NC	5	NC	1
396			min	027	2	<u>064</u>	3	0	9	-1.776e-5	9	337.663	2_	8006.242	3
397		9	max	.024	3	.075	2	.008	3	2.08e-4	3	NC	5	NC	1
398		40	min	027	2	069	3	0	9	-1.661e-5	9	320.436	2	8191.875	3
399		10	max	.024	3	.077	2	.008	3	1.991e-4	3	NC	5	NC	1
400			min	027	2	07	3	0	9	-1.546e-5	9	312.189	2	8641.202	3
401		11	max	.023	3	.076	2	.007	3	1.902e-4	3	NC	5	NC	1
402		10	min	027	2	068	3	0	9	-1.431e-5	9	311.973	2	9392.391	3
403		12	max	.023	3	.071	2	.006	3	1.812e-4	3	NC 000 440	5_	NC NC	1
404		40	min	027	2	062	3	0	9	-1.316e-5	9	320.113	2	NC	1
405		13	max	.023	3	.062	2	.006	3	1.723e-4	3_	NC	5	NC NC	1
406			min	027	2	<u>053</u>	3	0	9	-1.201e-5	9	338.388	2	NC	1
407		14	max	.023	3	.049	2	.005	3	1.634e-4	3	NC	5	NC NC	1
408		4.5	min	027	2	<u>041</u>	3	0	9	-1.085e-5	9	370.952	2	NC NC	1
409		15	max	.023	3	.031	2	.004	3	1.545e-4	3	NC	5	NC NC	1
410		40	min	027	2	026	3	0	9	-9.704e-6	9	426.961	2	NC	1
411		16	max	.023	3	.009	2	.003	3	1.41e-4	3	NC 500.047	5_	NC NC	1
412		4-	min	027	2	008	3	0	9	-9.437e-6	9	528.917	2	NC NC	1
413		17	max	.023	3	.013	3	.002	3	1.929e-5	3	NC	5_	NC	1
414		40	min	027	2	019	2	0	9	-3.023e-5	9	749.641	2	NC NC	1
415		18	max	.023	3	.036	3	.001	3	7.782e-6	3_	NC 4.450.004	4_	NC NC	1
416		40	min	027	2	05	2	0	9	-1.548e-5	9	1453.361	2	NC NC	1
417		19	max	.023	3	.06	3	0	3	-3.653e-8	<u>15</u>	NC	_1_	NC NC	1
418	140		min	027	2	083	2	0	9	-1.644e-6	3	NC NC	1_	NC NC	1
419	<u>M9</u>	1_	max	.008	3	.023	3	.003	3	7.635e-3	3_	NC	1_	NC NC	1
420			min	008	2	02	2	0	9	-5.216e-3	2	NC NC	1_	NC NC	1
421		2	max	.008	3	.014	3	.002	3	3.754e-3	3_	NC 4070,400	4	NC NC	1
422			min	008	2	012	2	0	10	-2.575e-3	2	4870.486	3	NC NC	1
423		3	max	.008	3	.004	3	.002	1	8.846e-5	1	NC 2522 222	4	NC NC	1
424		4	min	009	2	004	2	0	10	-5.465e-5	3	2522.828	3	NC NC	
425		4	max	.008	3	.003	2	.002	1	7.011e-5	1	NC	4	NC NC	1
426		_	min	009	2	003	3	001	3	-5.984e-5	3	1797.396	3	NC NC	1
427		5	max	.008	3	.009	2	.002	1	5.176e-5	1	NC	4	NC 040C 04E	2
428		6	min	008	2	01	2	002 .002	3	-6.503e-5 3.341e-5	3	1451.415 NC	<u>3</u>	9186.815	3
429		6	max	.008	3	.015			1		1			NC 7000 424	
430		7	min	008	3	015	3	003	3	-7.022e-5	3	1258.282	3	7990.434	3
431			max	.008	2	.019	3	.002	3	1.507e-5	1	NC	<u>4</u> 3	NC 7300.365	1
432		0	min	008		019		004		-7.541e-5 4.06e-6	3	1143.93 NC	<u>3</u> 4		1
433 434		8	max min	.008 008	3	.022 021	3	.001 004	3		<u>11</u>	1057.592		NC 6918.769	
435		9		.008	3	.024	2	004 0	1	0		NC	4	NC	1
436		9	max	008	2	023	3	005	3	-8.579e-5	<u>10</u> 3	1003.806	2	6756.404	
437		10	min	.008	3	.025	2	<u>005</u> 0	11	1.085e-6		NC	4	NC	1
438		10	max min	008	2	023	3	005	3	-9.098e-5	<u>10</u>	978.087	2	6775.398	3
439		11	max	.008	3	023 .024	2	<u>005</u> 0	10	2.17e-6	10	NC	4	NC	1
440			min	008	2	022	3	005	3	-9.617e-5	3	977.483	2	6969.471	3
441		12		.008	3	.023	2	<u>005</u> 0				NC	4	NC	1
441		12	max min	008	2	023 021	3	005	10	3.256e-6 -1.014e-4	<u>10</u> 3	1003.012	2	7359.902	_
442		13			3	021 .02	2			4.341e-6		NC	4	NC	1
444		13	max	.008 008	2	02 018	3	0 004	10	-1.065e-4	<u>10</u> 3	1060.252	2	8003.105	_
444		1.4	min							5.426e-6		NC	4	NC	1
		14	max	.008	3	.016	3	0	10		10		2		_
446		15	min	008		014		004	3	-1.134e-4	10	1162.206		9015.785	
447		15	max	.008	3	.01	2	0	10	6.512e-6	<u>10</u>	NC	4	NC NC	1
448 449		16	min	008 800.	3	009 .003	2	003 0	10	-1.317e-4	<u>1</u> 10	1337.538 NC	<u>2</u> 4	NC NC	1
		10	max		2		3	002		7.305e-6			2		1
450			min	008		003	J	002	1	-1.453e-4	1	1656.668		NC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.008	3	.004	3	0	10	8.522e-5	3	NC	4	NC	1
452			min	008	2	006	2	002	1	-5.632e-5	9	2347.344	2	NC	1
453		18	max	.008	3	.012	3	0	10	2.086e-3	3	NC	4	NC	1
454			min	008	2	016	2	001	1	-3.74e-3	2	4549.776	2	NC	1
455		19	max	.008	3	.02	3	0	3	4.121e-3	3	NC	1	NC	1
456			min	008	2	027	2	0	9	-7.544e-3	2	NC	1	NC	1
457	M13	1	max	0	9	.023	3	.008	3	3.709e-3	3	NC	1	NC	1
458	IVIIO	<u> </u>	min	003	3	02	2	008	2	-3.17e-3	2	NC	1	NC	1
459		2	max	0	9	.06	3	.007	3	4.579e-3	3	NC	4	NC	1
460			min	003	3	045	2	008	2	-3.918e-3	2	2436.582	3	NC	1
461		3		0	9	.092	3	.007	3	5.449e-3	3	NC	4	NC	1
		3	max												
462		-	min	003	3	067	2	008	2	-4.666e-3	2	1318.981	3	NC NC	1
463		4	max	0	9	.113	3	.009	9	6.319e-3	3	NC	4_	NC	2
464			min	003	3	082	2	008	2	-5.414e-3	2	999.614	3	8362.534	
465		5	max	0	9	.124	3	.01	3	7.189e-3	3	NC	5_	NC	2
466			min	003	3	091	2	01	2	-6.161e-3	2	896.2	3	8144.091	1
467		6	max	0	9	.123	3	.012	3	8.059e-3	3	NC	5	NC	1
468			min	004	3	091	2	014	2	-6.909e-3	2	905.132	3	NC	1
469		7	max	0	9	.113	3	.015	3	8.93e-3	3	NC	4	NC	1
470			min	004	3	086	2	017	2	-7.657e-3	2	1010.822	3	NC	1
471		8	max	0	9	.097	3	.018	3	9.8e-3	3	NC	4	NC	1
472			min	004	3	076	2	022	2	-8.405e-3	2	1230.292	3	6829.559	2
473		9	max	0	9	.081	3	.021	3	1.067e-2	3	NC	4	NC	4
474		Ť	min	004	3	067	2	025	2	-9.153e-3	2	1561.228	3	5406.966	
475		10	max	0	9	.074	3	.024	3	1.154e-2	3	NC	4	NC	4
476		10	min	004	3	062	2	027	2	-9.901e-3	2	1788.391	3	4962.154	
		11													
477		11	max	0	9	.081	3	.026	3	1.067e-2	3	NC	4_	NC 5400,000	4
478		10	min	004	3	067	2	025	2	-9.153e-3	2	1561.226	3	5160.063	
479		12	max	0	9	.097	3	.026	3	9.805e-3	3	NC	4	NC	1
480		10	min	004	3	076	2	022	2	-8.405e-3	2	1230.29	3	5082.313	
481		13	max	0	9	.113	3	.025	3	8.937e-3	3	NC	4	NC	1
482			min	004	3	086	2	017	2	-7.657e-3	2	1010.821	3	5383.581	3
483		14	max	0	9	.123	3	.023	3	8.07e-3	3	NC	5_	NC	1
484			min	004	3	091	2	014	2	-6.91e-3	2	905.131	3	6125.547	3
485		15	max	0	9	.124	3	.02	3	7.203e-3	3	NC	5	NC	2
486			min	004	3	09	2	01	2	-6.162e-3	2	896.199	3	7561.815	3
487		16	max	0	9	.114	3	.017	3	6.335e-3	3	NC	4	NC	2
488			min	004	3	082	2	008	2	-5.414e-3	2	999.613	3	8365.544	1
489		17	max	0	9	.092	3	.014	3	5.468e-3	3	NC	4	NC	1
490		1 ' '	min	004	3	067	2	008	2	-4.666e-3	2	1318.98	3	NC	1
491		18	max	0	9	.061	3	.011	3	4.6e-3	3	NC	4	NC	1
492		10			3		2		2		2		3	NC	1
492		19	min	004 0	9	045 .024	3	008 .008	3	-3.918e-3 3.733e-3	3	2436.58 NC	<u>ა</u> 1	NC NC	1
		19	max	_									1		1
494	N440		min	004	3	02	2	009	2	-3.17e-3	2	NC NC	•	NC NC	
495	M16	_1_	max	0	9	.02	3	.008	3	4.047e-3	2	NC	1_	NC	1
496			min	0	3	027	2	008	2	-3.045e-3	3	NC	1_	NC	1
497		2	max	0	9	.04	3	.011	3	5.005e-3	2	NC	_4_	NC	1
498			min	0	3	063	2	008	2	-3.721e-3	3	2459.873	2	NC	1
499		3	max	0	9	.057	3	.013	3	5.963e-3	2	NC	4	NC	1
500			min	0	3	094	2	008	2	-4.398e-3	3	1327.838	2	NC	1
501		4	max	0	9	.07	3	.016	3	6.921e-3	2	NC	4	NC	2
502			min	0	3	117	2	008	2	-5.074e-3	3	1001.403	2	8413.432	1
503		5	max	0	9	.077	3	.019	3	7.879e-3	2	NC	5	NC	2
504			min	0	3	128	2	01	2	-5.751e-3	3	890.949	2	8132.326	
505		6	max	0	9	.079	3	.021	3	8.838e-3	2	NC	5	NC	1
506			min	0	3	128	2	013	2	-6.427e-3	3	889.353	2	6755.952	-
507		7		0	9	.076	3	.023	3	9.796e-3	2	NC	4	NC	1
507			max	U	⊥ ฮ	.070	J	.023	<u> </u>	3.1306-3		INC	4	INC	<u> </u>

Model Name

Schletter, Inc.HCV

....

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio	LC		
508			min	0	3	119	2	017	2	-7.104e-3	3	975.531	2	6014.191	3
509		8	max	0	9	.07	3	.024	3	1.075e-2	2	NC	4_	NC	1
510			min	0	3	105	2	022	2	-7.78e-3	3	1155.578	2	5670.974	3
511		9	max	0	9	.063	3	.024	3	1.171e-2	2	NC	4	NC	4
512			min	0	3	09	2	025	2	-8.457e-3	3	1414.915	2	5427.585	2
513		10	max	0	9	.06	3	.023	3	1.267e-2	2	NC	4	NC	4
514			min	0	3	083	2	027	2	-9.133e-3	3	1584.129	2	4980.074	2
515		11	max	0	9	.063	3	.022	3	1.171e-2	2	NC	4	NC	4
516			min	0	3	09	2	025	2	-8.454e-3	3	1414.915	2	5427.592	2
517		12	max	0	9	.07	3	.02	3	1.075e-2	2	NC	4	NC	1
518			min	0	3	105	2	022	2	-7.775e-3	3	1155.578	2	6859.653	2
519		13	max	0	9	.076	3	.019	3	9.796e-3	2	NC	4	NC	1
520			min	0	3	119	2	017	2	-7.096e-3	3	975.531	2	8404.868	3
521		14	max	0	9	.079	3	.017	3	8.838e-3	2	NC	5	NC	1
522			min	0	3	128	2	013	2	-6.417e-3	3	889.353	2	NC	1
523		15	max	0	9	.077	3	.015	3	7.88e-3	2	NC	5	NC	2
524			min	0	3	128	2	01	2	-5.738e-3	3	890.949	2	8210.927	1
525		16	max	0	9	.07	3	.013	3	6.922e-3	2	NC	4	NC	2
526			min	0	3	117	2	008	2	-5.059e-3	3	1001.403	2	8422.704	1
527		17	max	0	9	.057	3	.011	3	5.964e-3	2	NC	4	NC	1
528			min	0	3	094	2	008	2	-4.38e-3	3	1327.838	2	NC	1
529		18	max	0	9	.04	3	.009	3	5.006e-3	2	NC	4	NC	1
530			min	0	3	063	2	008	2	-3.701e-3	3	2459.873	2	NC	1
531		19	max	0	9	.02	3	.008	3	4.048e-3	2	NC	1	NC	1
532			min	0	3	027	2	008	2	-3.023e-3	3	NC	1	NC	1
533	M15	1	max	0	1	0	1	0	1	3.945e-4	3	NC	1	NC	1
534			min	0	1	0	1	0	1	-4.088e-5	2	NC	1	NC	1
535		2	max	0	3	0	15	0	1	7.716e-4	3	NC	1	NC	1
536			min	0	2	002	4	0	3	-4.106e-4	2	NC	1	NC	1
537		3	max	0	3	001	15	.003	1	1.149e-3	3	NC	1	NC	1
538		1	min	0	2	005	4	003	3	-7.803e-4	2	NC	1	9428.373	3
539		4	max	0	3	002	15	.005	2	1.526e-3	3	NC	1	NC	4
540			min	0	2	007	4	007	3	-1.15e-3	2	8957.242	4	5219.556	
541		5	max	0	3	002	15	.009	2	1.903e-3	3	NC	3	NC	4
542		1	min	0	2	009	4	011	3	-1.52e-3	2	6989.427	4	3433.721	3
543		6	max	0	3	002	15	.013	2	2.28e-3	3	NC	3	NC	4
544		T .	min	001	2	01	4	016	3	-1.889e-3	2	5882.342	4	2504.189	
545		7	max	0	3	003	15	.016	2	2.657e-3	3	NC	5	NC	4
546			min	001	2	012	4	021	3	-2.259e-3	2	5216.576	4	1959.886	
547		8	max	0	3	003	15	.02	2	3.034e-3	3	NC	5	NC	4
548		10	min		2	013	4	026	3	-2.629e-3		4817.016		1617.39	3
549		9	max	0	3	003	15	.024	2	3.411e-3	3	NC	5	NC	4
550			min	002	2	013	4	03	3	-2.999e-3	2	4601.949	4	1393.124	
551		10	max	0	3	003	15	.026	2	3.788e-3	3	NC	5	NC	4
552		10	min	002	2	013	4	033	3	-3.368e-3	2	4533.913	4	1245.068	
553		11		.002	3	013	15	033 .028	2	4.166e-3	3	NC	5	NC	4
		+ ' '	max									4601.949			
554		40	min	002	2	<u>013</u>	4	036	3	-3.738e-3	2		4_	1151.151	3
555		12	max	.001	3	003	15	.028	2	4.543e-3	3	NC	5	NC	4
556		40	min	002	2	013	4	036	3	-4.108e-3	2	4817.016	4_	1100.433	
557		13	max	.001	3	003	15	.027	2	4.92e-3	3	NC FOAC F7C	5	NC	4
558			min	003	2	012	4	035	3	-4.477e-3	2	5216.576	4	1089.773	
559		14	max	.001	3	002	15	.024	2	5.297e-3	3_	NC 5000.040	3_	NC 4400.007	4
560			min	003	2	01	4	032	3	-4.847e-3	2	5882.342	4_	1123.967	
561		15	max	.001	3	001	2	.019	1	5.674e-3	3	NC	3	NC	4
562			min	003	2	009	4	026	3	-5.217e-3	2	6989.427	4_	1220.516	
563		16	max	.002	3	0	2	.014	1	6.051e-3	3	NC	1_	NC	4
564			min	003	2	007	4	017	3	-5.586e-3	2	8957.242	4	1426.894	3

Company Designer Job Number Model Name Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.002	3	.003	2	.005	1	6.428e-3	3	NC	1	NC	4
566			min	003	2	005	4	006	3	-5.956e-3	2	NC	1	1892.005	3
567		18	max	.002	3	.005	2	.01	3	6.805e-3	3	NC	1	NC	4
568			min	004	2	003	4	012	2	-6.326e-3	2	NC	1	3369.064	3
569		19	max	.002	3	.007	2	.029	3	7.182e-3	3	NC	1	NC	1
570			min	004	2	0	9	028	2	-6.696e-3	2	NC	1	NC	1
571	M16A	1	max	.001	2	.002	2	.009	3	2.042e-3	3	NC	1	NC	1
572			min	002	3	002	3	009	2	-2.114e-3	2	NC	1	NC	1
573		2	max	0	2	0	2	.002	3	1.967e-3	3	NC	1	NC	1
574			min	002	3	003	3	004	2	-2.017e-3	2	NC	1	9360.123	3
575		3	max	0	2	001	15	.003	1	1.892e-3	3	NC	1_	NC	4
576			min	002	3	005	4	003	3	-1.921e-3	2	NC	1	5301.72	3
577		4	max	0	2	002	15	.005	1	1.816e-3	3	NC	1_	NC	4
578			min	002	3	007	4	007	3	-1.824e-3	2	8957.242	4	4037.362	3
579		5	max	0	2	002	15	.007	1	1.741e-3	3	NC	3	NC	4
580			min	001	3	009	4	01	3	-1.728e-3	2	6989.427	4	3491.832	3
581		6	max	0	2	002	15	.008	1	1.666e-3	3	NC	3	NC	4
582			min	001	3	01	4	012	3	-1.631e-3	2	5882.342	4	3256.826	3
583		7	max	0	2	003	15	.009	1	1.591e-3	3	NC	5	NC	4
584			min	001	3	012	4	013	3	-1.535e-3	2	5216.576	4	3204.903	3
585		8	max	0	2	003	15	.009	1	1.516e-3	3	NC	5	NC	4
586			min	001	3	013	4	013	3	-1.439e-3	2	4817.016	4	3293.297	3
587		9	max	0	2	003	15	.009	1	1.441e-3	3	NC	5	NC	4
588			min	001	3	013	4	012	3	-1.342e-3	2	4601.949	4	3517.857	3
589		10	max	0	2	003	15	.008	1	1.366e-3	3	NC	5	NC	4
590			min	0	3	013	4	011	3	-1.246e-3	2	4533.913	4	3902.993	3
591		11	max	0	2	003	15	.007	1	1.291e-3	3	NC	5	NC	4
592			min	0	3	013	4	009	3	-1.149e-3	2	4601.949	4	4507.815	3
593		12	max	0	2	003	15	.005	1	1.216e-3	3	NC	5	NC	4
594			min	0	3	013	4	007	3	-1.053e-3	2	4817.016	4	5450.332	3
595		13	max	0	2	003	15	.004	1	1.141e-3	3	NC	5	NC	2
596			min	0	3	012	4	006	3	-9.564e-4	2	5216.576	4	6970.15	3
597		14	max	0	2	002	15	.003	1	1.065e-3	3	NC	3	NC	1
598			min	0	3	01	4	004	3	-8.6e-4	2	5882.342	4	9600.653	3
599		15	max	0	2	002	15	.002	1	9.903e-4	3	NC	3	NC	1
600			min	0	3	009	4	002	3	-7.635e-4	2	6989.427	4	NC	1
601		16	max	0	2	002	15	.001	4	9.152e-4	3	NC	_1_	NC	1
602			min	0	3	007	4	0	3	-6.671e-4	2	8957.242	4	NC	1
603		17	max	0	2	001	15	0	4	8.401e-4	3	NC	1	NC	1
604			min	0	3	005	4	0	2	-5.707e-4	2	NC	1_	NC	1
605		18	max	0	2	0	15	0	3	7.65e-4	3	NC	1	NC	1
606			min	0	3	002	4	0	2	-4.742e-4	2	NC	1_	NC	1
607		19	max	0	1	0	1	0	1	6.899e-4	3	NC	_1_	NC	1
608			min	0	1	0	1	0	1	-3.778e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,V}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.