Tanmay Garg

CS20BTECH11063

Deep Learning Assignment 1

```
import torch
import numpy as np
import matplotlib.pyplot as plt
import math
import torch.functional as F
import torch.nn as nn
```

Q1

```
In []: # Create a Linearly separable 2D dataset
def create_dataset(n=100, gamma=0.1):
    x = torch.randn(n, 2)
    y = torch.zeros(n)

# for i in range(n):
    # y[i] = 1 if x[i, 0] + gamma * x[i, 1] > 0 else -1
# return x, y

# Random initialize the weights and bias
    w = torch.randn(2)
    b = torch.randn(1)

# Create the Dataset
    y = torch.sign(torch.matmul(x, w) + b)
    y(np.random.rand(n) < gamma] *= -1
    return x, y

# Plot the scatter plot with legend</pre>
```

```
x, y = create_dataset(1000, 1)
scatter = plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
xmin, xmax, ymin, ymax = plt.axis()
plt.title("Generated Dataset")
plt.xlabel("x1")
plt.ylabel("x2")
plt.legend(handles=scatter.legend_elements()[0], labels=["-1", "1"])
plt.show()

# print frequency percentage of Labels
print("Percentage of -1 labels: ", (y == -1).sum().item() / len(y))
print("Percentage of 1 labels: ", (y == 1).sum().item() / len(y))
```

Generated Dataset

Percentage of -1 labels: 0.731 Percentage of 1 labels: 0.269

```
In [ ]: # split dataset into train and test
        def split_dataset(x, y, train_ratio=0.8):
            n = len(x)
            train size = int(train ratio * n)
            x train = x[:train size]
            y train = y[:train size]
            x test = x[train size:]
            y test = y[train size:]
            return x train, y train, x test, y test
        x train, y train, x test, y test = split dataset(x, y, 0.8)
In [ ]: # Append 1 to x for bias
        x train = torch.cat((x train, torch.ones(x train.shape[0], 1)), dim=1)
        print("Shape of Training x: ", x_train.shape)
        print("Shape of Training y: ", y train.shape)
        # print(x)
        Shape of Training x: torch.Size([800, 3])
        Shape of Training y: torch.Size([800])
In [ ]: # Perceptron Training Algorithm
        def perceptron_train(x, y, max_epochs=100):
            w = torch.zeros(3)
            k = 0
            for epoch in range(max epochs):
                nb changes = 0
                for i in range(x.size(0)):
                    if x[i].dot(w) * y[i] <= 0:</pre>
                        W = W + y[i] * x[i]
                        nb changes = nb changes + 1
                if nb changes == 0:
                    # print('Stopping at Epoch: ', epoch)
                    break
                 k = k + 1
            # print('Number of changes: ', nb changes)
            # return the weights and number of epochs
            return w, k
In [ ]: w, max_epochs_run = perceptron_train(x_train, y_train, 100)
        print("W = ", w, " Max Epochs Run = ", max_epochs_run)
```

```
In []: # plot the decision boundary using test data
    x1 = np.linspace(-5, 5, 100)
    x2 = -(w[0] * x1 + w[2]) / w[1]
    plt.plot(x1, x2)
    scatter = plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test, cmap=plt.cm.Paired, edgecolors='k')
    plt.ylim(ymin, ymax)
    plt.xlim(xmin, xmax)
    plt.legend(handles=scatter.legend_elements()[0], labels=["-1", "1"])
    plt.show()

# print accuracy on test data
    x_test = torch.cat((x_test, torch.ones(x_test.shape[0], 1)), dim=1)
    y_pred = torch.sign(x_test @ w)
    print("Accuracy = ", (torch.sum(y_pred == y_test) / y_test.shape[0]).item() * 100, "%")
```


Accuracy = 99.50000047683716 %

```
In [ ]: # Running the perceptron training algorithm for different values of gamma for multiple trials
       num trials = 5
       gamma_val = []
        k val = []
       for gamma in np.linspace(0.1, 2, 20):
           acc = 0
           k avg = 0
           for i in range(num trials):
               x, y = create dataset(1000, gamma)
               # split dataset into train and test
               x train, y train, x test, y test = split dataset(x, y, 0.8)
               # x = x train
               # v = v train
               x train = torch.cat((x train, torch.ones(x train.shape[0], 1)), dim=1)
               w, k = perceptron train(x train, y train, 100)
               k avg = k avg + k
               x test = torch.cat((x test, torch.ones(x test.shape[0], 1)), dim=1)
               y pred = torch.sign(x test @ w)
               acc = acc + torch.sum(y_pred == y_test) / y_test.shape[0]
               # print('----')
           k avg = k avg / num trials
           gamma val.append(gamma)
           k val.append(k avg)
           print('Gamma: %f, Accuracy: %f, Avg. Epochs: %f' % (gamma, acc / num trials, k avg))
           # print('----')
        plt.plot(gamma val, k val)
        plt.xlabel('Gamma')
        plt.ylabel('Avg. Epochs')
        plt.show()
```

```
Gamma: 0.100000, Accuracy: 0.821000, Avg. Epochs: 100.000000
Gamma: 0.200000, Accuracy: 0.613000, Avg. Epochs: 100.000000
Gamma: 0.300000, Accuracy: 0.525000, Avg. Epochs: 100.000000
Gamma: 0.400000, Accuracy: 0.502000, Avg. Epochs: 100.000000
Gamma: 0.500000, Accuracy: 0.505000, Avg. Epochs: 100.000000
Gamma: 0.600000, Accuracy: 0.510000, Avg. Epochs: 100.000000
Gamma: 0.700000, Accuracy: 0.595000, Avg. Epochs: 100.000000
Gamma: 0.800000, Accuracy: 0.701000, Avg. Epochs: 100.000000
Gamma: 0.900000, Accuracy: 0.779000, Avg. Epochs: 100.000000
Gamma: 1.000000, Accuracy: 0.995000, Avg. Epochs: 32.800000
Gamma: 1.100000, Accuracy: 0.999000, Avg. Epochs: 22.400000
Gamma: 1.200000, Accuracy: 1.000000, Avg. Epochs: 44.600000
Gamma: 1.300000, Accuracy: 0.996000, Avg. Epochs: 4.200000
Gamma: 1.400000, Accuracy: 0.999000, Avg. Epochs: 36.400000
Gamma: 1.500000, Accuracy: 0.999000, Avg. Epochs: 16.200000
Gamma: 1.600000, Accuracy: 0.998000, Avg. Epochs: 30.600000
Gamma: 1.700000, Accuracy: 0.998000, Avg. Epochs: 30.600000
Gamma: 1.800000, Accuracy: 0.996000, Avg. Epochs: 30.600000
Gamma: 1.900000, Accuracy: 0.995000, Avg. Epochs: 14.200000
Gamma: 2.000000, Accuracy: 0.995000, Avg. Epochs: 50.600000
```


We can see that as the value of γ increases, the average number of epochs required to converge decreases. This is because as γ increases, the data becomes more and more linearly separable and hence the number of epochs required to converge decreases.

Q2

We will be using Hinge loss function with scratch implementation of gradient descent algorithm

```
In []: # Create a Linearly separable 2D dataset
    x, y = create_dataset(1000, 1)
    scatter = plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
    xmin, xmax, ymin, ymax = plt.axis()
    plt.legend(handles=scatter.legend_elements()[0], labels=["-1", "1"])
    plt.show()
```

```
print("Percentage of -1 labels: ", (y == -1).sum().item() / len(y))
print("Percentage of 1 labels: ", (y == 1).sum().item() / len(y))
```


Percentage of -1 labels: 0.718 Percentage of 1 labels: 0.282

```
In []: x_train, y_train, x_test, y_test = split_dataset(x, y, 0.8)

# Append 1 to x for bias

x_train = torch.cat((x_train, torch.ones(x_train.shape[0], 1)), dim=1)
print("Shape of Training x: ", x_train.shape)
print("Shape of Training y: ", y_train.shape)

Shape of Training x: torch.Size([800, 3])
Shape of Training y: torch.Size([800])

In []: # Gradient Descent Algorithm for Hinge Loss
def hinge_gradient_descent(x, y, 1r=0.1, max_epochs=100):
    w = torch.zeros(3)
```

```
k = 0
            for epoch in range(max epochs):
                nb changes = 0
                for i in range(x.size(0)):
                    if x[i].dot(w) * y[i] < 1:</pre>
                        w = w + lr * (y[i]*x[i])
                        nb_changes = nb_changes + 1
                if nb changes == 0:
                    # print('Stopping at Epoch: ', epoch)
                    break
                k = k + 1
            # print('Number of changes: ', nb changes)
            # return the weights and number of epochs
            return w, k
In [ ]: w, max epochs = hinge gradient descent(x train, y train, 0.1, 100)
        print("W = ", w, " Max Epochs Run = ", max epochs)
        W = tensor([-17.2833, 6.0684, -10.1000]) Max Epochs Run = 100
In [ ]: # plot the decision boundary
        x1 = np.linspace(-4, 4, 100)
        x2 = -(w[0] * x1 + w[2]) / w[1]
        plt.plot(x1, x2)
        scatter = plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
        plt.xlim(xmin, xmax)
        plt.ylim(ymin, ymax)
        plt.legend(handles=scatter.legend elements()[0], labels=["-1", "1"])
        plt.show()
        # print accuracy
        x test = torch.cat((x test, torch.ones(x test.shape[0], 1)), dim=1)
        y pred = torch.sign(x test @ w)
        print("Accuracy = ", (torch.sum(y_pred == y_test) / y_test.shape[0]).item() * 100, "%")
```


Accuracy = 99.00000095367432 %

Q3

```
In []: # create dataset with concentric circles
# import sklearn.datasets as skdata
from sklearn.datasets import make_circles

def create_concentric_dataset(n_samples, factor=0.9, noise=0.05):
    radius = np.random.rand(n_samples) * factor
    angle = np.random.rand(n_samples) * 2 * np.pi

    dataset = np.column_stack((radius * np.cos(angle), radius * np.sin(angle))) + np.random.normal(0, noise, (n_samples, 2))

labels = np.zeros(n_samples)
labels[radius > factor / 2] = 1
```

```
return dataset, labels

x, y = create_concentric_dataset(n_samples=1250, factor=0.9, noise=0.05)
scatter = plt.scatter(x[:, 0], x[:, 1], c=y, cmap=plt.cm.Paired, edgecolors='k')
plt.legend(handles=scatter.legend_elements()[0], labels=["0", "1"])
plt.show()

print("Percentage of 0 labels: ", (y == 0).sum().item() / len(y))
print("Percentage of 1 labels: ", (y == 1).sum().item() / len(y))
```


Percentage of 0 labels: 0.4872 Percentage of 1 labels: 0.5128

```
In []: print(x.shape)
    print(y.shape)
    x = torch.from_numpy(x).float()
    y = torch.from_numpy(y).float()

x_train, y_train, x_test, y_test = split_dataset(x, y, 0.8)
```

```
print("Shape of Training x: ", x train.shape)
        print("Shape of Training y: ", y train.shape)
        (1250, 2)
        (1250,)
        Shape of Training x: torch.Size([1000, 2])
        Shape of Training y: torch.Size([1000])
In [ ]: # Create MLP with 1 hidden Layer from scratch
        class MLP:
            def init (self, x, y, hidden size=4, lr=0.1) -> None:
                self.x = x
                self.v = v
                self.input size = x.shape[1]
                self.hidden size = hidden size
                self.output size = 1
                self.lr = lr
                # Weights and Biases
                self.w1 = torch.randn(self.input size, self.hidden size)
                # print("w1: ",self.w1.shape)
                self.b1 = torch.randn(1) * torch.randn(self.hidden size)
                # print("b1: ",self.b1.shape)
                self.w2 = torch.randn(self.hidden size, self.output size)
                # print("w2: ",self.w2.shape)
                self.b2 = torch.randn(1)
            # Signmoid Activation Function
            def sigmoid(self, x):
                return 1 / (1 + torch.exp(-x))
            # Signmoid Derivative
            def sigmoid derivative(self, x):
                return x * (1 - x)
            # Hinge Loss Function
            def hinge_loss(self, y_pred, y):
                # print(y pred.shape)
                # print(y.shape)
                # print((y pred * y).shape)
                return torch.max(torch.zeros_like(y_pred), 1 - y_pred * y)
            # Square Loss Function
```

```
def square loss(self, y pred, y):
    return (y pred - y) ** 2
# Hinge Loss Derivative
def hinge loss derivative(self, y pred, y):
    # print(y pred.shape)
    # print(y.shape)
    return -y * (y * y pred < 1)</pre>
# Square Loss Derivative
def square loss derivative(self, y pred, y):
    return 2 * (y pred - y)
# Binary Cross Entropy Loss Function
def binary cross entropy(self, y pred, y):
    return - y * torch.log(y pred) - (1 - y) * torch.log(1 - y pred)
# Binary Cross Entropy Loss Derivative
def binary cross entropy derivative(self, y pred, y):
    return -(y / y \text{ pred}) + ((1 - y) / (1 - y \text{ pred}))
# Forward Propagation
def forward(self, x):
    self.z1 = x @ self.w1 + torch.Tensor.repeat(self.b1, x.shape[0], 1)
    # print("z1: ",self.z1.shape)
    self.a1 = self.sigmoid(self.z1)
    # print("a1: ",self.a1.shape)
    self.z2 = self.a1 @ self.w2 + self.b2
    # print("z2: ",self.z2)
    self.a2 = self.sigmoid(self.z2)
    # print("a2: ",self.a2)
    # print("w2: ",self.w2)
    # print("w1: ",self.w1)
    return self.a2
# Backward Propagation
def backward(self, x, y):
    y = y.reshape(-1, 1)
    # print("x shape: ", x.shape)
```

```
self.loss a2 = self.binary cross entropy(self.a2, y)
# print("Loss a2 shape: ", self.loss a2.shape)
# Calculate Gradients
self.dL d a2 = self.binary_cross_entropy_derivative(self.a2, y)
# print("dL d a2 shape: ", self.dL d a2.shape)
self.da2 dz2 = self.sigmoid derivative(self.a2)
# print("da2 dz2 shape: ", self.da2 dz2.shape)
self.dz2 d w2 = self.a1.T
# print("dz2 d w2 shape: ", self.dz2 d w2.shape)
self.dz2 d b2 = torch.ones like(self.z2)
# print("dz2 d b2 shape: ", self.dz2 d b2.shape)
self.dL d w2 = self.dz2 d w2 @ (self.dL d a2 * self.da2 dz2)
# print("dL d w2 shape: ", self.dL d w2.shape)
# self.dL d b2 = (self.dz2 d b2 * (self.dL d a2.T @ self.da2 dz2)).reshape(-1)
self.dL d b2 = ((self.dL d a2 * self.da2 dz2).T @ self.dz2 d b2).reshape(-1)
# print("dL d b2 shape: ", self.dL d b2.shape)
self.da1 dz1 = self.sigmoid derivative(self.a1)
# print("da1 dz1 shape: ", self.da1_dz1.shape)
self.dz1 dw1 = x
# print("dz1 dw1 shape: ", self.dz1 dw1.shape)
self.dz1 x = self.w1
self.dz2 d a1 = self.w2
# print("dz2 d a1 shape: ", self.dz2 d a1.shape)
# print("dz1 x shape: ", self.dz1 x.shape)
# self.dz1 d b1 = torch.ones like(self.a1)
# print("dz1 d b1 shape: ", self.dz1 d b1.shape)
# print("ter: ", ((self.dL d a2 * self.da2 dz2) @ self.w2.T).shape)
self.dL_dw1 = self.dz1_dw1.T @ (((self.dL_d_a2 * self.da2_dz2) @ self.w2.T) * self.da1_dz1)
# print("dL dw1 shape: ", self.dL dw1.shape)
# print("ter ",(((self.dL_d_a2 * self.da2_dz2) @ self.w2.T) @ self.da1_dz1.T).shape)
# print((((self.dL_d_a2 * self.da2_dz2).T @ (self.da1_dz1 * self.dz1_d_b1))).T.shape)
```

```
self.dL db1 = (((self.dL d a2 * self.da2 dz2) @ self.w2.T) * self.da1 dz1).sum(axis=0)
    # print("dL db1 shape: ", self.dL db1.shape)
    # Updating Weights and Biases
    self.w2 -= self.lr * self.dL d w2
    self.b2 -= self.lr * self.dL d b2
    self.w1 -= self.lr * self.dL dw1
    self.b1 -= self.lr * self.dL db1
# Training the Model
def train(self, epochs=100):
    loss = []
    for epoch in range(epochs):
        self.forward(self.x)
       # print("W1 in forward: ", self.w1)
        # print("W2 in forward: ", self.w2)
        # print("B2 in forward: ", self.b2)
       # print("A2 in forward: ", self.a2)
        self.backward(self.x, self.y)
       # print("W1 in backward: ", self.w1)
       # print("W2 in backward: ", self.w2)
        # print("B2 in backward: ", self.b2)
        loss.append(self.loss a2.mean())
        if epoch % 10 == 0:
            print("Epoch: ", epoch, " Loss: ", self.loss a2.mean())
    # print("Final Predicted: ", self.forward(self.x))
    # print("Ground Truth: ", self.y)
    # print("z2: ", self.z2)
    # Plotting the Loss Curve
    plt.figure(figsize=(20, 5))
    plt.xticks(np.arange(0, epochs + 10, 10))
    plt.plot(loss)
    plt.xlim(-1, epochs)
    plt.ylim(min(loss), max(loss) + 0.1)
    plt.yticks(np.arange(0, max(loss) + 0.1, 0.1))
    plt.show()
    return
def predict(self, x, threshold=0.5):
```

```
predicted = self.forward(x)
                # print(torch.round(predicted))
                # apply threshold of 0.6 for label
                # print(predicted)
                return predicted > threshold
            def accuracy(self, x, y):
                # print(self.predict(x).shape)
               y = y.reshape(-1, 1)
                return torch.sum(self.predict(x) == y) / y.shape[0]
In [ ]: # create MLP
        mlp = MLP(x train, y train, hidden size=4, lr=0.01)
        mlp.train(epochs=200)
        print("Accuracy on Test set: ", mlp.accuracy(x test, y test).item() * 100, "%")
        # plot the predicted labels on the test set
        scatetr = plt.scatter(x test[:, 0], x test[:, 1], c=mlp.predict(x test).detach().numpy(), cmap=plt.cm.Paired, edgecolors='k')
        plt.legend(handles=scatetr.legend elements()[0], labels=['0', '1'])
        plt.show()
        Epoch: 0 Loss: tensor(1.4430)
        Epoch: 10 Loss: tensor(1.0920)
        Epoch: 20 Loss: tensor(1.0762)
        Epoch: 30 Loss: tensor(1.0729)
        Epoch: 40 Loss: tensor(1.0751)
        Epoch: 50 Loss: tensor(1.0746)
        Epoch: 60 Loss: tensor(1.0250)
        Epoch: 70 Loss: tensor(0.8837)
        Epoch: 80 Loss: tensor(0.7067)
        Epoch: 90 Loss: tensor(0.6489)
        Epoch: 100 Loss: tensor(0.5653)
        Epoch: 110 Loss: tensor(0.3599)
        Epoch: 120 Loss: tensor(0.2105)
        Epoch: 130 Loss: tensor(0.1802)
        Epoch: 140 Loss: tensor(0.1703)
        Epoch: 150 Loss: tensor(0.1643)
        Epoch: 160 Loss: tensor(0.1599)
        Epoch: 170 Loss: tensor(0.1563)
        Epoch: 180 Loss: tensor(0.1533)
        Epoch: 190 Loss: tensor(0.1506)
```


Accuracy on Test set: 96.39999866485596 %

