Lecture 2 Example

Question 1: Doterwine the value of r for tablish the Euler Equation $t^2y'' + 4ty' + 2y = 0$ 11) has a solution of the form $y=t^r$ for t > 0.

Solution:

Since we know $y=t^r$, then we can know $y'=rt^{r-1}$ $y''=r(r-1)t^{r-2}$, plug them in the equaction (1).

 $t^2y'' + 4ty' + 2y = t^2 \cdot r(r-1)t^{r-2} + 4t \cdot rt^{r-1} + 2t^r$ $= r^2 - rt^r + 4rt + 2t^r$ $= t^r \left(r^2 - r + 4r + 2 \right)$ $= t^2 \left(r^2 + 3r + 2 \right) \qquad |2\rangle$ Since we know too, and equation (2) equal to 0, thus $r^2 + 3r + 2 = 0$ Then we can know the solution of r.

Thus, we can know the form of y. $y_1 = \frac{1}{4}$ $y_2 = \frac{1}{4^2}$

Question 2: Verify that the function y=3t+t2 is a solution of the first-order linear OPE.

$$ty'-y=t^2$$

Solution: Sine we know $y=3ttt^2$, then y'=3t2t, plug it in to equation 1).

$$ty'-y = t(3+2t)-(3++t^2)$$

= $3t+2t^2-3t-t^2$
= 4^2

Thus we can know $y=3t+t^2$ is a solution of equation 11>.