Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»
Факультет Программной Инженерии и Компьютерной Техники
Лабораторная работа №4
По Основам Профессиональной Деятельности
Вариант 9408
Выполнил
Ларионов Владислав Васильевич
Группа Р3109

Практик:

Ткешелашвили Н. М.

Содержание

Задание	3
Выполнение задания	4
2.1 Текст исходной программы	4
2.2 Описание программы	8
2.3 Получение новых чисел	10
2.4 Таблица трассировки	10
Вывод:	11

Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить предназначение и составить его описание, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программного комплекса.

21B:	+ 0200	229:	EE0B	l 659:	ACO1
21C:	EE18	22A:	AE07	65A:	F303
21D:	AE15	22B:	0740	65B:	7E08
21E:	0C00	22C:	0C00	65C:	F201
21F:	D659	22D:	D659	65D:	CE03
220:	0800	22E:	0800	65E:	4C01
221:	0700	22F:	6E05	65F:	4E05
222:	4E12	230:	EE04	660:	CE01
223:	EE11	231:	0100	661:	AE02
224:	AE0F	232:	ZZZZ	662:	EC01
225:	0C00	233:	YYYY	663:	0A00
226:	D659	234:	XXXX	664:	F4FA
227:	0800	235:	F4FB	665:	00FB
228:	6E0C			I	

Рис. 1 – Задание

Выполнение задания

2.1 Текст исходной программы

Адре с	Код команд ы	Мнемоника	Комментарий
21B	0200	CLA	Очистить аккумулятор
21C	EE18	ST IP+19(235)	Прямая относительная выгрузка AC -> R
21D	AE15	LD IP+16(233)	Прямая относительная загрузка Y -> AC
21E	0C00	PUSH	Положить значение аккумулятора в стек AC -> -(SP)
21F	D659	CALL(659)	Вызов функции F(Y) SP – 1 -> SP, IP -> (SP), 659 -> IP
220	0800	POP	Снять со стека (SP)+ -> AC
221	0700	INC	Инкрементирование аккумулятора AC + 1 -> AC
222	4E12	ADD IP+13(235)	Добавить значение ячейки R к аккумулятору AC + MEM(R) -> AC
223	EE11	ST IP+12(235)	Прямая относительная выгрузка AC -> R
224	AE0F	LD IP+10(234)	Прямая относительная загрузка X -> AC

225	0C00	PUSH	Положить значение аккумулятора в стек AC -> -(SP)
226	D659	CALL(659)	Вызов функции F(X) SP – 1 -> SP, IP -> (SP), 659 -> IP
227	0800	POP	Снять со стека (SP)+ -> AC
228	6E0C	SUB IP+D(235)	Вычесть значение ячейки R из аккумулятора AC – MEM(R) -> AC
229	EE0B	ST IP+C(235)	Прямая относительная выгрузка AC -> R
22A	AE07	LD IP+8(232)	Прямая относительная загрузка Z -> AC
22B	0740	DEC	Декрементирование аккумулятора AC – 1 -> AC
22C	0C00	PUSH	Положить значение аккумулятора в стек AC -> -(SP)
22D	D659	CALL(659)	Вызов функции F(Z – 1) SP – 1 -> SP, IP -> (SP), 659 -> IP
22E	0800	POP	Снять со стека (SP)+ -> AC
22F	6E05	SUB IP+6(235)	Вычесть значение ячейки R из аккумулятора AC – MEM(R) -> AC
230	EE04	ST IP+5(235)	Прямая относительная выгрузка AC -> R

231	0100	HLT	Остановка программы
232	ZZZZ	-	Значение Z
233	YYYY	-	Значение Ү
234	XXXX	-	Значение Х
235	F4FB	-	Результат R
659	AC01	LD SP+1	Загрузка аргумента из стека MEM(SP + 1) -> AC
65A	F303	BNC IP+4(65E)	Если (N == 0), IP + 4 -> IP
65B	7E08	CMP IP+9(664)	Установить флаги по результату AC – A
65C	F201	BNS IP+2(65E)	Если (N == 1), IP + 2 -> IP
65D	CE03	JUMP IP+4(661)	Прямой относительный прыжок IP + 4 -> IP
65E	4C01	ADD SP+1	Добавить аргумент из стека к аккумулятору AC + MEM(SP + 1) -> AC

65F	4E05	ADD IP+6(665)	Добавить значение ячейки В к аккумулятору AC + B -> AC
660	CE01	JUMP IP+2(662)	Прямой относительный прыжок IP + 2 -> IP
661	AE02	LD IP+3(664)	Прямая относительная загрузка A -> AC
662	EC01	ST SP+1	Прямая относительная выгрузка AC -> (SP + 1)
663	0A00	RET	Возврат (SP)+ -> IP
664	F4FA	-	Значение А
665	00FB	-	Значение В

Таблица 1 – Текст исходной программы

2.2 Описание программы

Предназначение программы:

Вычисление значение функции:

$$R = F(Z - 1) - (F(X) - (F(Y) + 1))$$

Тогда:

$$R = F(Z - 1) + F(Y) - F(X) + 1$$

Область представления программы:

X, Y, Z, R, A, B – 15-разрядные знаковые числа

Область допустимых значений программы:

$$A = F4FA_{16} = -2822_{10}$$

$$B = FB_{16} = 251_{10}$$

F(x):

$$2x + B$$
, если $x \in (-\infty; A) \cup [0; +\infty)$

А, если х ∈ [А; 0)

График:

Рис. 2 – График

На промежутке [-2822; 0) функция принимает значение -2822

Переполнения не возникает.

$$Max(R) = 2^{15} - 1 = 32767$$

$$Min(R) = -2^{15} = -32768$$

Тогда значение F(x) не должно превышать (32767 – 1) / 3 = 10922 по модулю

$$Max(x) = (10922 - 251) / 2 = 5335.5 -> Max(x) = 5335$$

$$Min(x) = (-10922 - 251) / 2 = -5586.5 -> Min(x) = -5586$$

При вышеуказанных значениях аргумента значение R не переполнится, но из-за того, что числа целые:

$$R \ge (-5586 * 2 + 251) * 3 = -32763$$

$$R \le (5335 * 2 + 251) * 3 = 32763$$

ОД3:

R ∈ [-32763; 32763]

 $X, Y \in [-5586; 5335]$

Z ∈ [-5585; 5336]

2.3 Получение новых чисел

 $X = -30000_{10} = 8AD0_{16}$

 $Y = 14_{10} = 000E_{16}$

 $Z = -125_{10} = FF83_{16}$

2.4 Таблица трассировки

Адр	Знчн	IP	CR	AR	DR	SP	BR	AC	NZVC	Адр	Знчн
21B	0200	21B	0000	000	0000	000	0000	0000	0100		
21B	0200	21C	0200	21B	0200	000	021B	0000	0100		
21C	EE18	21D	EE18	235	0000	000	0018	0000	0100	235	0000
21D	AE15	21E	AE15	233	000E	000	0015	000E	0000		
21E	0C00	21F	0C00	7FF	000E	7FF	021E	000E	0000	7FF	000E
21F	D659	659	D659	7FE	0220	7FE	D659	000E	0000	7FE	0220
659	AC01	65A	AC01	7FF	000E	7FE	0001	000E	0000		
65A	F303	65E	F303	65A	F303	7FE	0003	000E	0000		
65E	4C01	65F	4C01	7FF	000E	7FE	0001	001C	0000		
65F	4E05	660	4E05	665	00FB	7FE	0005	0117	0000		
660	CE01	662	CE01	660	0662	7FE	0001	0117	0000		
662	EC01	663	EC01	7FF	0117	7FE	0001	0117	0000	7FF	0117
663	0A00	220	0A00	7FE	0220	7FF	0663	0117	0000		
220	0800	221	0800	7FF	0117	000	0220	0117	0000		
221	0700	222	0700	221	0700	000	0221	0118	0000		
222	4E12	223	4E12	235	0000	000	0012	0118	0000		
223	EE11	224	EE11	235	0118	000	0011	0118	0000	235	0118
224	AE0F	225	AE0F	234	8AD0	000	000F	8AD0	1000		
225	0C00	226	0C00	7FF	8AD0	7FF	0225	8AD0	1000	7FF	8AD0
226	D659	659	D659	7FE	0227	7FE	D659	8AD0	1000	7FE	0227
659	AC01	65A	AC01	7FF	8AD0	7FE	0001	8AD0	1000		
65A	F303	65B	F303	65A	F303	7FE	065A	8AD0	1000		
65B	7E08	65C	7E08	664	F4FA	7FE	8000	8AD0	1000		
65C	F201	65E	F201	65C	F201	7FE	0001	8AD0	1000		
65E	4C01	65F	4C01	7FF	8AD0	7FE	0001	15A0	0011		
65F	4E05	660	4E05	665	00FB	7FE	0005	169B	0000		
660	CE01	662	CE01	660	0662	7FE	0001	169B	0000		
662	EC01	663	EC01	7FF	169B	7FE	0001	169B	0000	7FF	169B
663	0A00	227	0A00	7FE	0227	7FF	0663	169B	0000		
227	0800	228	0800	7FF	169B	000	0227	169B	0000		
228	6E0C	229	6E0C	235	0118	000	000C	1583	0001		
229	EE0B	22A	EE0B	235	1583	000	000B	1583	0001	235	1583
22A	AE07	22B	AE07	232	FF83	000	0007	FF83	1001		
22B	0740	22C	0740	22B	0740	000	022B	FF82	1001		
22C	0C00	22D	0C00	7FF	FF82	7FF	022C	FF82	1001	7FF	FF82
22D	D659	659	D659	7FE	022E	7FE	D659	FF82	1001	7FE	022E

659	AC01	65A	AC01	7FF	FF82	7FE	0001	FF82	1001		
65A	F303	65B	F303	65A	F303	7FE	065A	FF82	1001		
65B	7E08	65C	7E08	664	F4FA	7FE	8000	FF82	0001		
65C	F201	65D	F201	65C	F201	7FE	065C	FF82	0001		
65D	CE03	661	CE03	65D	0661	7FE	0003	FF82	0001		
661	AE02	662	AE02	664	F4FA	7FE	0002	F4FA	1001		
662	EC01	663	EC01	7FF	F4FA	7FE	0001	F4FA	1001	7FF	F4FA
663	0A00	22E	0A00	7FE	022E	7FF	0663	F4FA	1001		
22E	0800	22F	0800	7FF	F4FA	000	022E	F4FA	1001		
22F	6E05	230	6E05	235	1583	000	0005	DF77	1001		
230	EE04	231	EE04	235	DF77	000	0004	DF77	1001	235	DF77

Таблица 2 – трассировка

Вывод:

В ходе выполнения данной лабораторной работы я научился работать с подпрограммами, стеком и командами с косвенной относительной адресацией со смещением. Также повторил навыки трассировки.