Mathematical Logic (MATH6/70132; P65) Notes on Solutions, Problem Sheet 1

- 1. Let p denote 'I will pass this course,' q denote 'I do my homework regularly' and r denote 'I am lucky.'
- (a) I will pass this course only if I do my homework regularly: $(p \to q)$.
- (b) Doing homework regularly is a necessary condition for me to pass this course: $(p \rightarrow q)$
- (c) If I do my homework regularly and I do not pass this course then I am unlucky:

$$\left(\left(q\wedge (\neg p)\right) \to (\neg r)\right).$$

- (d) If I do not do my homework regularly and I pass this course then I am lucky: $((\neg q) \land p) \to r)$.
- **2.** Let v be a valuation. Recall that $v(\phi \leftrightarrow \psi)$ is T precisely when $v(\phi) = v(\psi)$. Thus if ϕ and ψ are logically equivalent $v(\phi \leftrightarrow \psi) = T$. Conversely, if $v(\phi \leftrightarrow \psi) = T$ then $v(\phi) = v(\psi)$ so if this holds for all v, ϕ and ψ are logically equivalent. (You could also express this argument using 'truth tables' instead of the slightly more formal notion of a valuation).
- **3.** This is like 1.1.5 in the notes. We can give a formal argument by induction, or we can argue informally as follows. Any assignment of truth values to the propositional variables in η_1,\ldots,η_n assigns a truth value $v(\eta_i)$ to η_i . But the truth value this assigns to θ (respectively χ) is the same as the value assigned to ϕ (respectively ψ) by giving p_i the truth value $v(\eta_i)$. As ϕ and ψ are logically equivalent, it follows that this is the same truth value for ψ and ϕ , hence also for θ and χ .

Another way to do this is to use question 2 and 1.1.5.

4. (a) The formula
$$\phi:((p\to q)\to ((\neg p)\land q))$$
 has truth table
$$\begin{array}{c|c} p&q&\phi\\\hline T&T&F\\\hline T&F&T\\\hline F&T&T\\\hline F&F&F\\\hline \end{array}$$

So the disjunctive normal form is $((p \land (\neg q)) \lor ((\neg p) \land q))$.

(b) $(\neg((p \to q) \to r))$. This has truth value T when $((p \to q) \to r)$ has value F. This happens when r has value F and $(p \to q)$ has value T. So the d.n.f. is (omitting brackets)

$$(p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge \neg r).$$

- **5.** (a) Observe that $(\neg \phi)$ is logically equivalent to $(\phi \mid \phi)$ and $(\phi \land \psi)$ is logically equivalent to $((\phi \mid \psi) \mid (\phi \mid \psi))$.
- (b) Suppose we have a binary connective *. There are 16 possibilities for the truth table for *. Half of these give p*q truth value T when p, q have truth value T, and such a connective cannot express $(\neg p)$ (any formula involving only such a * would always take truth value T when the propositional variables in it all took value T). Of the remaining 8, half give p*q truth value F when p and q have truth value F, and these also cannot express $(\neg p)$. Two of the remaining cases are | and \downarrow , and we know that these are adequate. It remains to eliminate the other two possibilities. But in these cases (p*q) is logically equivalent either to $(\neg p)$ or to $(\neg q)$, and clearly this cannot be adequate. (To see this more formally, suppose in one of these cases that ϕ is a formula obtained using this connective and propositional variables from p_1, \ldots, p_n . Then ϕ is logically equivalent

to p_i or $(\neg p_i)$, for some $i \leq n$. Thus there are at most 2n possibilities for the truth function of ϕ .)

- **6.** There are 2^{2^n} truth functions of n variables (1.1.7 in the notes). Half of these take value T at (T,T,\ldots,T) , so the number of such truth functions of n variables is 2^{2^n-1} . (Alternaltively, argue as in the proof of 1.1.7, noting that to specify the function we need to say what value it has at the remaining 2^n-1 inputs apart from (T,\ldots,T) .)
- If f(F, ..., F) = T then f cannot be expressed as the truth function of a formula constructed using connectives \land, \lor as such a formula always takes value F when the variables have value F.
- **7.** (i) Either construct a truth table or argue as follows. If a valuation v gives the formula truth value F, then we have $v(((p_3 \to p_2) \to p_1)) = F$ and $v((p_1 \to ((\neg p_2) \to p_3)) = T$. From the first of these, $v(p_1) = F$, $v(p_3 \to p_2) = T$, and any such valuation also satisfies $v((p_1 \to ((\neg p_2) \to p_3)) = T$. Thus the possible values for (p_1, p_2, p_3) which make the original formula F are

 $\neg \theta$ has truth value T iff θ has truth value F, so a formula in dnf which is logically equivalent to $\neg \theta$ can be obtained from a disjunction of formulas which are true precisely at the above values, ie

$$((\neg p_1) \land p_2 \land p_3) \lor ((\neg p_1) \land p_2 \land (\neg p_3)) \lor ((\neg p_1) \land (\neg p_2) \land (\neg p_3)).$$

(ii) We take χ to be the conjunction $p_1 \wedge (\neg p_2) \wedge p_3$. This has truth value T iff each of the conjuncts has value T: ie iff p_1, p_2, p_3 have the indicated values.

8.

- 1. $((\neg \psi) \rightarrow ((\neg \phi) \rightarrow (\neg \psi)))$ (Axiom A1)
- 2. $(((\neg \phi) \rightarrow (\neg \psi)) \rightarrow (\psi \rightarrow \phi))$ (Axiom A3)

Denote this formula by χ

- 3. $(\chi \to ((\neg \psi) \to \chi))$ (Axiom A1)
- 4. $((\neg \psi) \rightarrow \chi)$ (2, 3 and Modus Ponens)

Denote this formula by θ

- 5. $(\theta \to (((\neg \psi) \to ((\neg \phi) \to (\neg \psi))) \to ((\neg \psi) \to (\psi \to \phi))))$ (Axiom A2)
- 6. $((\neg \psi) \to ((\neg \phi) \to (\neg \psi))) \to ((\neg \psi) \to (\psi \to \phi))$ (4, 5 and Modus Ponens)
- 7. $((\neg \psi) \rightarrow (\psi \rightarrow \phi))$ (1, 6 and Modus Ponens).