Different Math Spaces for Machine Learning

1 Introduction

2 Definition of Different Mathematics Spaces

2.1 Vector Space

Definition A vector space is a non-empty set V equipped with two operations: $Vector\ Addition\ "+"$ and $Scalar\ Multiplication\ "\cdot"$ - which satisfy the two closure axioms as well as the eight vector space axioms:

- (Closure under Vector Addition) Given $\alpha, \beta \in V$, $\alpha + \beta \in V$.
- (Closure under scalar multiplication) Given $\alpha \in V$ and a scalar $k, k\alpha \in V$.

For α, β, γ arbitrary vectors in V, and k,l arbitrary scalars in R,

- (Commutativity) $\alpha + \beta = \beta + \alpha$
- (Associativity of vector addition) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- (Additive Identity) For all α , $\mathbf{0} + \alpha = \alpha$
- (Existence of additive inverse) For any α , there exists a β such that $\alpha + \beta = 0$
- (Scalar multiplication identity) $1\alpha = \alpha$
- (Associativity of scalar multiplication) $k(l\alpha) = (kl)\alpha$
- (Distributivity of scalar sums) $(k+l)\alpha = k\alpha + l\alpha$

• (Distributivity of vector sums) $k(\alpha + \beta) = k\alpha + k\beta$

2.2 Normed Vector Space

Definition of Norm Let X be a vector space over K. A **norm** on X is a map $\|\cdot\|: X \to [0,\infty)$ that satisfies the following three properties:

- (Nonnegative) For every vector \mathbf{x} , $||x|| \ge 0$
- (Positive Definiteness) For every vetor x, ||x|| = 0 if and only if x=0
- (Positive Homogeneity) For every vector x, and every scalar α , $\|\alpha x\| = |\alpha| \|x\|$
- (Triangle Inequality) For every vectors x and y, $||x + y|| \le ||x|| + ||y||$

A Normed Vector Space is a pair $(X, \|\cdot\|)$, where X is a vector space and $\|\cdot\|$ is a norm on X. A Banach Space is a *complete* normed space $(X, \|\cdot\|)$.

2.3 Inner Product Space

Definition of Inner Product An **inner product** on V is a mapping that takes each ordered pair (u,v) of elements of V to a number $\langle u,v\rangle \in F$ $(\langle \cdot,\cdot \rangle : V \times V \to F)$ and has the following properties:

- (Positivity) $\langle v, v \rangle \geq 0$ for all $v \in V$
- (**Definiteness**) $\langle v, v \rangle = 0$ if and only if v=0
- (Homogeneity in the 1st argument) $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ For all $\lambda \in F$ and all $u, v \in V$
- (Additivity in the 1st argument) $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ For every u,v,w \in V
- (Conjugate Symmetry) $\langle u, v \rangle = \overline{\langle v, u \rangle}$ For every $u, v \in V$

An Inner Product Space is a vector space V along with an inner product on V. A Hilbert Space is an inner product space that is complete with respect to the norm defined by the inner product

2.4 Topological Space

Definition of topology A **topology** on a nonempty set X is a collection of subsets of X, called *open set*, such that:

- the empty set \emptyset and the set X are open
- the union of an arbitraty collection of open sets is open
- the intersection of a finite number of open sets is open

A subset A of X is a *closed set* if and only if its complement, $A^c = X \setminus A$, is open. More formally, a collection T of subsets of X is a topology on X if:

- $\emptyset, X \in T$
- if $G_{\alpha} \in T$ for $\alpha \in A$, then $\bigcup_{\alpha \in A} G_{\alpha} \in T$
- if $G_i \in T$ for i=1 to n, then $\bigcap_{i \in A} G_i \in T$

We call the pair (X,T) a **Topologically Space**; if T is clear from the context, then we often refer to X as a Topological Space.