Exame de Qualificação, Mestrado Álgebra Linear, 28 de julho de 2017

- **1.** Seja $V = M_n(F)$ o espaço vetorial das matrizes $n \times n$ sobre os complexos, definimos $tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$ o traço de $A \in V$.
- a) (0,5 pt) Mostrar que $tr: V \to F$ é um elemento do espaço dual V^* de V. Mostrar que ainda tr(AB) = tr(BA) para quaisquer $A, B \in V$.
- b) (1 pt) Se $f \in V^*$ satisfaz f(AB) = f(BA) para quaisquer $A, B \in V$, mostrar que f e tr são linearmente dependentes em V^* .
 - c) (0.75 pt) Mostrar que g(A, B) = tr(AB) é uma forma bilinear e simétrica em V. Ela é degenerada?
- d) (0,75 pt) Seja e_1, e_2, \ldots, e_k $(k=n^2)$ uma base de V e seja u_1, u_2, \ldots, u_k a base dual em relação a g (isto é, $g(e_i, u_j) = 0$ se $i \neq j$ e $g(e_i, e_i) = 1$). Mostrar que para toda matriz $A \in V$ vale $\sum_{i=1}^k e_i A u_i = tr(A) \cdot I_n$. (Dica: Mostrar primeiro a afirmação quando a primeira base de V consiste das matrizes E_{ij} , e depois fazer a mudança da base. Como vai alterar a base dual da primeira base?)
- 2. Seja T uma transformação linear no espaço vetorial $V=\mathbb{C}^4,$ e suponha que na base canônica ela tem matriz

$$A = \begin{pmatrix} 4 & -2 & 9 & -2 \\ 1 & 1 & 4 & -1 \\ 0 & 0 & 2 & 0 \\ 1 & -1 & 5 & 1 \end{pmatrix}.$$

- a) (1 pt) Encontrar a forma canônica de Jordan J da matriz A.
- b) (1 pt) Encontrar uma base de V onde a matriz de T seja igual a J.
- **3.** Uma transformação linear $P: V \to V$ no espaço vetorial V é projeção se $P^2 = P$; uma transformação linear $S: V \to V$ em V é involução se $S^2 = Id$, a identidade.
- a) (0,5 pt) Assumindo o corpo F tal que $1 \neq -1$, mostrar que P é projeção se, e somente se S = Id 2P é uma involução.
- b) (1 pt) Mostrar que se P é uma projeção em V então existe uma base de V que consiste de autovetores de P. (A dimensão de V não precisa ser finita!)
- c) (1 pt) Seja dim $V=\infty$. Para todo número natural k, mostrar que existem $P_1,\,P_2,\,\ldots,\,P_k$, projeções em V, tais que $P_iP_j=P_jP_i$ para quaisquer i e j.
- **4.** Seja V um espaço vetorial real com produto interno e sejam $a_1, a_2, \ldots, a_k \in V$, o determinante de Gram $\Gamma(a_1, a_2, \ldots, a_k)$ é o determinante da matriz $k \times k$ que tem na entrada (i, j) o produto interno (a_i, a_j) .
- a) (1 pt) Mostrar que $\Gamma(a_1, a_2, \dots, a_k) \ge 0$, com igualdade se e somente se os vetores a_1, a_2, \dots, a_k são linearmente dependentes.
 - b) (0,5 pt) Mostrar que $\Gamma(a_1,a_2,\ldots,a_k) \leq |a_1|^2|a_2|^2\cdots|a_k|^2$. Quais são os casos onde tem-se igualdade?
- **5.** (1 pt) Seja V um espaço vetorial de dimensão finita sobre \mathbb{R} . Mostrar que existe uma única transformação linear $f: V^* \otimes V \to End(V)$ tal que $f(g \otimes v)(x) = g(x)v$ para quaisquer $g \in V^*$ e $v, x \in V$. A transformação f é um isomorfismo? (Justificar!)

EXAME DE QUALIFICAÇÃO - MESTRADO MM453 - TOPOLOGIA GERAL 26/07/2017

Nome: RA:

Incluir na prova todas as contas feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Bom Trabalho!

Escolha 5 das 7 questões abaixo.

Questão 1. Seja X um espaço de Hausdorff. Mostre que se K_1 e K_2 são compactos disjuntos em X, então existem U e V abertos disjuntos de X tais que $K_1 \subset U$ e $K_2 \in V$.

Questão 2. Sejam X e Y espaços topológicos não vazios, com Y Hausdorff. E sejam $f, g: X \to Y$ funções contínuas.

- a) Mostre que o conjunto $\{x \in X : f(x) = g(x)\}$ é fechado em X.
- **b)** Mostre que se f(x) = g(x) em um subconjunto D denso em X, então f(x) = g(x) em X.
- c) Mostre que se X é conexo, então f(X) é conexo.
- d) Mostre que a imagem de cada componente conexa de X por f está contida em uma componente conexa de Y.

Questão 3. Prove o Teorema de Tychonoff: O produto de espaços topológicos compactos é um espaço topológico compacto.

Questão 4. Sejam X um espaço topológico e $(x_{\lambda})_{{\lambda} \in \Lambda}$ uma rede em X. Para cada ${\lambda} \in {\Lambda}$ seja ${\mathcal B}_{{\lambda}} = \{x_{\mu} : {\mu} \geq {\lambda}\}$ e seja ${\mathcal B} = \{{\mathcal B}_{{\lambda}} : {\lambda} \in {\Lambda}\}.$

- a) Mostre que \mathcal{B} é uma base de filtro em X.
- **b)** Mostre que $x_{\lambda} \to x$ se, e somente se, $\mathcal{B} \to x$.

Questão 5. Seja O(n), $n \ge 2$, o conjunto das matrizes A de dimensão $n \times n$ tais que $AA^t = A^tA = I$. Considere O(n) como subespaço topológico de \mathbb{R}^{n^2} . Mostre que O(n) é compacto e desconexo.

Questão 6. Seja $f:[0,1] \to S^n$, $n \ge 2$, um laço em $x_0 \in S^n$. Assuma que f é homotópico a um laço $g:[0,1] \to S^n$ em x_0 que não é sobrejetor e prove que $\pi_1(S^n) = \{0\}$, para $n \ge 2$.

Questão 7. Mostre que $\pi_1(S^2) = 0$, $\pi_1(\mathbb{RP}^2) = \mathbb{Z}_2$ e que $\pi_1(SO(3)) = \mathbb{Z}_2$.

Exame de Qualificação ao Mestrado

Prova 1: MM720 - Análise no \mathbb{R}^n (24/07/2017)

Nome e RA: _

1. Prove o Lema de Morse: Seja $f: U \subset \mathbb{R}^n \to \mathbb{R}$ uma aplicação diferenciável de classe C^{∞} e seja $p \in U$ um ponto crítico não-degenerado de f com f(p) = 0. Mostre que existe uma carta local ϕ em torno de p tal que

$$(f \circ \phi^{-1})(x) = -x_1^2 - \dots - x_{\lambda}^2 + x_{\lambda+1}^2 + \dots + x_n^2,$$

onde λ é o índice do ponto crítico, ou seja, a dimensão máxima do subespaço onde a restrição da hessiana é negativa-definida.

- 2. Seja $GL(\mathbb{R}^n) \subset \mathcal{L}(\mathbb{R}^n)$ o conjunto das matrizes $n \times n$ invertíveis.
 - (a) Mostre que $GL(\mathbb{R}^n)$ é aberto em $\mathcal{L}(\mathbb{R}^n)$.
 - (b) Mostre que a aplicação $f:GL(\mathbb{R}^n)\to \mathcal{L}(\mathbb{R}^n)$ dada por $f(X)=X^{-1}$ é diferenciável e calcule f'(X).
 - (c) Se n = 2 e $A = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix}$, exiba a matriz 2×2 dada por F'(A)(A).
- 3. Seja $U \subset \mathcal{L}(\mathbb{R}^n)$ um conjunto aberto. Mostre que det : $U \to \mathbb{R}$ é uma submersão se, e só se, nenhuma matriz em U tem posto menor ou igual a n-2.
- 4. Considere a 2-forma em $\mathbb{R}^3 \setminus \{(0,0,0\} \text{ dada por }$

$$\omega = \frac{x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}.$$

- (a) ω é fechada?
- (b) Mostre que $\int_{S^2} \omega = -4\pi$.
- (c) ω é exata?
- 5. (a) Enuncie o Teorema da Função Inversa e o Teorema da Função Implícita.
 - (b) Mostre que o sistema

$$\begin{cases} x^2 - y^2 - u^3 + v^2 + 4 &= 0, \\ 2xy + y^2 - 2u^2 + 3v^4 + 8 &= 0, \end{cases}$$

pode ser resolvido em termos de u=u(x,y) e v=v(x,y) numa vizinhança do ponto (x,y,u,v)=(2,-1,2,1). Calcule as derivadas parciais de u e v nestes pontos.