Other Integrals reven $2x = \int_0^\infty dx \frac{\sin x}{x} = \frac{1}{2} \int_0^\infty \frac{\sin x}{x}$ 1. let x > z: $f(z) = \frac{\sin(z)}{z}$ analytic everywhere. 2. close the path. $I = \frac{1}{2} \int_{-\infty}^{\infty} dx \frac{1}{2i} \left(e^{ix} e^{ix} \right) \frac{1}{x} = \frac{1}{4i} \int_{-\infty}^{\infty} \frac{e^{ix}}{x} - \int_{-\infty}^{\infty} dx \frac{e^{-ix}}{x} \right]$ = 41 [c de 2 - C de 2] $I_A = \int_{C_2} dz \frac{z}{e^{iz}} = 0$ by Cauchy Integral Formula C+= (2+Cp+1) c+ d===0) = (120) d= = - [1 =0] · Iz= Su da 2

Is =
$$\int_{C_1}^{C_1} dR = \frac{e^{\frac{i\sigma}{2}}}{2}$$

Simple pole at 0

CR-

Residue theorem: $\int_{C_1}^{C_1} dR = \frac{e^{\frac{i\sigma}{2}}}{2} = -2\pi i$, $\frac{e^{\frac{i\sigma}{2}}}{1} = -2\pi i$
 $\frac{1}{4r} \cdot 2\pi i = \frac{\pi}{2}$

Alternatively, $I = \frac{1}{2}\lim_{R \to \infty} \left(\int_{-\infty}^{\infty} + \int_{E_1}^{\infty} \right) \frac{\sin x}{x} dx$

Method 2:
$$I = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx}{dx} dx$$

$$I = \frac{1}{2} \lim_{\epsilon \to 0} (\int_{-\epsilon}^{\epsilon} + \int_{\epsilon}^{\epsilon}) \frac{\sin x}{x} dx$$

$$= P \int_{-\epsilon}^{\infty} dx \frac{\sin x}{x} principal value for x = 0$$

$$I = \frac{1}{2} P \int_{-\epsilon}^{\infty} dx \frac{\sin x}{x} - 1 e^{ix}$$

$$I = \frac{1}{2} P \int_{-\epsilon}^{\infty} dx \frac{\sin x}{x} - 1 e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \int_{-\epsilon}^{\epsilon} \frac{\sin x}{x} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \int_{-\epsilon}^{\epsilon} \frac{\sin x}{x} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \int_{-\epsilon}^{\epsilon} \frac{\sin x}{x} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \int_{-\epsilon}^{\infty} \frac{\sin x}{x} e^{ix} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \frac{\sin x}{x} e^{ix} e^{ix}$$

$$\lim_{\epsilon \to 0} \frac$$

lex=1/2=y let x+2=y