Computational Numerical Methods

CS 374

Prosenjit Kundu

2000 Minor 2007

! Harab	1	99	1,	94		-	6-	-C .	t	(1)
1		1		2	1	.5	0	.5	8	.8906
2				1.5	1	1.25	C	١٠٢٢	1.	5647
3		1		トレグ	1	.12	5 0	.125	-	0.0977
4		1.125	•	1.25	1	1.18	27 0	. 661	1	0.6167
5	1	1.125		1.187	H-	1.(RZ	0-031	7	1.2337
9		1.132	g	(1.13	, 6	7/1	1348	00.0	2	0.000
(0		1.132	8	7 1.13	Ġ	8 1	1338	10.00	798	000

Conversence d'Error ex estimation of totalen Bisection method

f: [ao, bo] - R. Le continuous function. Hyportesio! the number f(a0) of H50) is of oppsies. such that sign. conclusion Then enist an r f [a., so] sit f(r) =0. I ple iterative sequence en appronimate som grand converges. to r.

For each n=0,1,2,... are how the error. $\left(\frac{1}{2} \right)^{h+1} \left(\frac{1}{2} \right)^{h+1} \left(\frac{1}{2} \right)^{h+1} = \left(\frac{1}{2} \right)^{h+1} = \left(\frac{1}{2} \right)^{h+1} \left(\frac{1}{2} \right)^{h+1} = \left(\frac{1}{2} \right)^{$

 $b_{n}-a_{n}=\frac{1}{2}\left[b_{n-1}-a_{n-1}\right]=\frac{1}{2^{2}}\left[b_{n-2}-a_{n-2}\right]$ = 1 (50-18Go) lin 5n-an = 0 and the contraction. 2) lim 5n = lim an. unt is see mid point 4 tee interval [an, 6,7] ⇒ Q_n ≤ X_n H ≤ S_n.

Using sandwisch theorem

 $\lim_{N\to\infty} a_N = \lim_{N\to\infty} b_N = \lim_{N\to\infty} \lambda_{N+1} = \lambda.$

Error ur an sn & computed. 7 to a, bo & c. 5n-an = 1 (bo-ao) 2nd (bo Lo-ao denote the burst or the original interval.

Sine the root or in either in the inverval [an, cn] or, [m, bu] we have 1r-Cn/ < Cn-an = & Sn-Cn. $=\frac{1}{2}\left(b_{n}-\alpha_{n}\right)$