Computação Quântica e Informação Quântica - Nielsen

Tradução livre e notas de estudos

Lauro de Jesus Mascarenhas

February 2025

Sumário

1	Algoritmos Quânticos de Busca	7
	1.1 O Algoritmo Quânticos de Busca	7
	1.2 Busca Quântica Como Uma Simulação Quântica	7

4 SUMÁRIO

A ide	eia ($_{ m deste}$	projet	o é	realizar	uma	tradı	ução	do l	ivro	do	Niels	en e	Chuang.	Α	tradução	está	sendo	realizada
de fo	rma	livre	eeas	equa	ações e e	exercío	cios e	stão	send	lo re	esolv	idos.	Foi	utilizado	fer	ramentas	de IA	A para	melhora
algur	nas	parte	es do t	exto	Э.														

6 SUMÁRIO

Capítulo 1

Algoritmos Quânticos de Busca

1.1 O Algoritmo Quânticos de Busca

1.2 Busca Quântica Como Uma Simulação Quântica

A exatidão dos algoritmos quânticos de busca são facilmente verificáveis, mas não é de forma alguma óbvio como alguém sonharia com tal algoritmo a partir do estado de ignorância. Nesta seção nós iremos derivar um meio heurístico pelo qual podemos derivar um algoritmo quântic de busca, na esperança de emprestar alguma intuição quanto à complicada tarefa de design de algoritmos quânticos. Como efeito colateral útil, nós obtemos uma caminhada quântica determinista. Como nosso objetivo é obter insights em vez de generalidade, assumiremos, por questão de simplicidade, que o problema de busca tem exatamente uma solução x.

Nosso método envolve duas etapas. Primeiro, nós escolheremos um Hamiltoniano que resolve o problema. Mais precisamente nós escreveremos um Hamiltoniano \mathcal{H} que depende da solução x e um estado inicial $|\psi\rangle$, tal que, um sistema quântico que evolui com \mathcal{H} muda de $|\psi\rangle$ para $|x\rangle$ após um tempo descrito. uma vez que tenhamos encontrado tal Hamiltoniano e estado inicial, podemos passar para a segunda etapa, que é tentar simular o ação do Hamiltoniano usando um circuito quântico. Supreendentemente, seguir este processedimento leva muito rapidamente ao algoritmo de busca quântica.

Supondo que o algoritmo inicie com o computador quântico no estado $|\psi\rangle$. É conveniente deixar $|\psi\rangle$ indeterminado até entendermos a dinâmica do algoritmo. O objetivo de uma busca quântica é o de $|\psi\rangle$ para $|x\rangle$ ou alguma aproximação do mesmo. Que Hamiltoniano poderíamos advinhar que fazem um bom trabalho ao causar tal evolução? Uma sugestão simples é advinhar um Hamiltoniano contruído inteiramente a partir dos termos $|\psi\rangle$ e $|x\rangle^1$. Assim, o Hamiltoniano deve ser uma soma de termos como $|\psi\rangle\langle\psi|$, $|x\rangle\langle x|$, $|\psi\rangle\langle x|$ e $|x\rangle\langle\psi|$. Talvez a escolha mais simples ao longo dessas linhas sejam os Hamiltoniano

$$\mathcal{H} = |x\rangle\langle x| + |\psi\rangle\langle\psi| \tag{1.1}$$

$$\mathcal{H} = |x\rangle\langle\psi| + |\psi\rangle\langle x| \tag{1.2}$$

Estes dois algoritmos levam ao algoritmo de busca quântica. Por hora, nos restrigiremos a análise do Hamiltoniano da equação 1.1. Relembrando da seção 2.2.2 (Ainda será traduzida) que após um tempo t, o estado de um sistema quântico evoluindo de acordo com \mathcal{H} e estado inicial $|\psi\rangle$ é dado por

$$e^{-i\mathcal{H}t}|\psi\rangle$$
 (1.3)

Intuitivamente, parece muito bom: para um t pequeno o efeito da evolução é levar $|\psi\rangle$ para $(1-it\mathcal{H})|\psi\rangle = (1-it)|\psi\rangle - it\langle x|\psi\rangle|x\rangle$.

Demonstração. Expandindo a exponencial em séries de Taylor obtemos

$$e^{-i\mathcal{H}t}|\psi\rangle = [1 - it\mathcal{H} + \cdots]|\psi\rangle$$

para t suficientemente pequeno, os termo t^2 , t^3 , \cdots ficam cada vez menores, por tanto, não apresentam influência significativa ao problema e podem ser desconsideradas. Assim:

$$\begin{split} e^{-i\mathcal{H}t}|\psi\rangle &= (1-it\mathcal{H})\,|\psi\rangle \\ &= |\psi\rangle - it\mathcal{H}|\psi\rangle \\ &= |\psi\rangle - it\left(|x\rangle\langle x| + |\psi\rangle\langle \psi|\right)|\psi\rangle \\ &= |\psi\rangle - it|\psi\rangle - it\langle x|\psi\rangle|x\rangle \end{split}$$

¹Em outras palavras, $\mathcal{H} \doteq \{|\psi\rangle, |x\rangle\}$

e por tanto

$$e^{-i\mathcal{H}t}|\psi\rangle = (1-it)|\psi\rangle - it\langle x|\psi\rangle|x\rangle$$

Ou seja, o estado $|\psi\rangle$ é girado ligeiramente em direção à $|x\rangle$. Na verdade, vamos fazer uma analise completa, com o objetivo de determinar se há um t tal que $e^{-i\mathcal{H}t}|\psi\rangle=|x\rangle$.