1

10.5.4-5

EE23BTECH11033-killana jaswanth

Question:

A small terrace at a football ground comprises of 15 steps each of which is 50 m long and built of solid concrete. Each step has a rise of 1/4 m and a tread of 1/2 m. Calculate the total volume of concrete required to build the terrace. [Hint: Volume of concrete required to build the first step=

$$V = \frac{1}{4} \cdot \frac{1}{2} \cdot 50 \tag{1}$$

solution

parameter	description	value
l	length	50m
b	breadth	0.25m
h	height	0.5m
y (n)	sum of volume	$6.25m^3$

TABLE 0: input parameters

$$x(n+1) - x(n) = 6.25m^3$$

$$y(n) = \frac{n+1}{2} [2x(0) + (n)d]$$
 (3)

$$n = 0, 1, 2, 3, \dots$$

here

parameter	description	value
x(0)	first term	6.25
d	common difference	6.25
n	no of terms -1	14
x (n)	volume of $(n + 1)$ th step	x(0) + nd

TABLE 0: formula parameters

$$y(14) = \frac{14+1}{2} [12.5 + (14) 6.25]$$

$$=\frac{15}{2}\left[12.5(14)6.25\right] \tag{6}$$

$$=\frac{15}{2}\left[12.5 + 87.5\right] \tag{7}$$

$$= (7.5) \cdot 100 \qquad = 750m^3 \tag{8}$$

Fig. 0: plot x(n) vs n

plot of x(n) and n

(2)
$$x(n) = (x(0) + n \cdot d) \cdot u(n)$$
 (9)

$$x(n) \stackrel{Z}{\longleftrightarrow} X(Z) \tag{10}$$

$$x(n) = (x(0) + nd) u(n)$$
 (11)

$$x(n) = (x(0) + n\alpha)u(n) \tag{11}$$

$$X(Z) = \sum_{-\infty}^{\infty} x(n) Z^{-n}$$
 (12)

$$= \frac{x(0)}{1 - z^{-1}} + \frac{dz^{-1}}{(1 - z^{-1})}^{2}, |z| > |r|$$
(13)

$$= \frac{6.25}{1 - z^{-1}} + \frac{6.25z^{-1}}{(1 - z^{-1})^2}, |z| > |r|$$
(14)

(5) convolution for y(n)

$$(f * g) [n] = \sum_{-\infty}^{\infty} f(\tau) g[n - \tau]$$

$$(15)$$

$$f[n] = u[n] \tag{16}$$

$$g[n] = x[n] = x(0) + 6.25n$$
 (17)

$$y[n] = \sum_{n=0}^{\infty} u[\tau](x(0) + (n-\tau)(6.25)) \quad (18)$$