Instalación de TAU

(Tuning and Analysis Utilities)

Programación Distribuida y Paralela

Departamento del LSI

Por: Daniel Guerrero Martínez Sergio Rodríguez Lumley

Índice de contenido

Introducción	3
Requerimientos previos a la instalación.	
Instalación de TAU.	4
Uso de TAU y Herramientas de visualización.	

Introducción

TAU es un visualizador de la ejecución de un programa basado en MPI. Este programa genera la información necesaria durante la ejecución para después poder leerla e interpretarla como texto o gráficamente.

La página principal de documentación, como referencia es http://www.cs.uoregon.edu/research/tau/home.php. En la cual podréis encontrar información y los enlaces de descarga pertinentes (detallados en este documento también, así que no debería ser necesaria la ayuda de la página mencionada).

Requerimientos previos a la instalación

- Será necesario tener instalada una implementación de MPI, en concreto, para esta asignatura utilizaremos OpenMPI.
- Tener instalada una máquina virtual de Java versión 6 o superior (Entorno de ejecución "jre" y herramientas de desarrollo "jdk").

Instalación de TAU

El proceso de instalación es a través de consola, requiere un uso mínimo de consola, aunque pondremos todos los comandos para facilitar la instalación.

- 1. Descargar PDT del enlace http://tau.uoregon.edu/pdt.tgz.
- 2. Descomprimir el archivo.

tar -xvf pdt.tgz

3. Ingresamos en la carpeta que se habrá creado y compilamos el PDT

cd pdtoolkit-x.xx sudo ./configure sudo make sudo make install

4. Volvemos al directorio anterior.

cd ..

- 5. Descargar TAU del enlace http://tau.uoregon.edu/tau.tgz
- 6. Descomprimir el archivo.

tar -xvf tau.tgz

7. Ingresamos en la carpeta que se habrá creado

cd tau-x.xx.x

- 8. Una vez llegamos a este punto hay ciertos datos que debemos recopilar:
 - a) El ejecutable de MPICC (Compilador para MPI), si instalamos desde repositorios la ruta será "/usr/bin/mpicc", sino será "directorio_de_instalación/mpicc".
 - b) La carpeta de inclusión de cabeceras de MPI, si instalamos desde repositorios la ruta por defecto es "/usr/include/openmpi/", sino, será "directorio_de_instalación/include/".
 - c) La carpeta de librerías de MPI, si instalamos desde repositorios la ruta por defecto será "/usr/lib/openmpi/lib/", en otro caso "directorio_de_instalación/lib/".
- 9. Si ya hemos recopilado la información necesaria, ejecutaremos la configuración con los siguientes parámetros:
 - Si instalamos todo a través de repositorios (Es necesario especificar correctamente la carpetas de instalación)

sudo ./configure -c++=mpiCC -cc=mpicc -mpi -MPITRACE -slog2 -PROFILE -TRACE -openmp -pdt=/<directorio_instalaccion>/pdtoolkit-x.xx -mpiinc=/usr/include/openmpi -mpilib=/usr/lib/openmpi/lib/

• Si hicimos la instalación manual, siguiendo nuestro manual de instalación (con ruta de instalación "/home/\$USER/.openmpi/"), hay que especificar correctamente los datos marcados.

sudo ./configure -c++=mpiCC -cc=mpicc -mpi -MPITRACE -slog2 -PROFILE -TRACE -openmp -pdt=/**<directorio_instalaccion>**/pdtoolkit-**x.xx** -mpiinc=/home/\$USER/.openmpi/include -mpilib=/home/\$USER/.openmpi/lib/

10. Instalamos

sudo make

sudo make install

11. Exportamos las variables necesarias. No te olvides de sustituir <directorio_instalación> y <arquitectura> (E.j: x86_64) por lo que corresponda

echo 'export PATH=\$PATH:<directorio_instalación>/tau-x.xx.x/<arquitectura>/bin' >> ~/.bashrc

echo 'export TAU_MAKEFILE=<directorio_instalación>/ taux.xx.x/<arquitectura>/lib/Makefile.tau-mpi-pdt-openmp-profile-trace-mpitrace' >> ~/.bashrc

Ojo: Es importante que se escriba con comillas simples, en caso de comillas dobles no funcionara correctamente, y posteriormente abras de nuevo el terminal para que cargue el fichero .bashrc

Uso de TAU y Herramientas de visualización

1. Ejecutamos el script de compilación de TAU para compilar el programa.

tau_cxx.sh mergesort.cpp -o programa

En caso de que de el error "tau_cxx.sh: orden no encontrada" significa que no agregaron bien los directorios al PATH vuelve a revisar el paso 11.

2. Ejecutamos el programa paralelo con el comando normal como deseemos, por ejemplo el siguiente.

mpirun -np 4 programa

3. Ejecutamos la herramienta de recopilación de código de tau.

tau_treemerge.pl

4. Tras generarnos los ficheros de salida después de la ejecución normal, unificamos la salida en un único fichero.

tau2slog2 tau.trc tau.edf -o tau.slog2

5. Abrimos el fichero de salida con la herramienta de visualización por defecto.

jumpshot tau.slog2

1. Leyenda

La leyenda nos indica los distintos eventos que registra TAU sobre las funciones de MPI.

2. Procesos

Indica el numero de procesos que se han ejecutado.

3. Linea temporal

Linea de tiempo que representa el tiempo transcurrido en el proceso de ejecución.

4. Funciones MPI ejecutadas por tiempo y proceso.

Representa con los colores indicados en la leyenda las acciones realizadas por cada procesos durante toda la ejecución.