## 代数学方法 (第一卷) 勘误表

## 李文威

## 2021-04-15

以下页码等信息参照高等教育出版社 2019 年 1 月出版之《代数学方法》第一卷, ISBN: 978-7-04-050725-6. 这些错误将在新版一并改正.

- ◇ **第 12 页, 倒数第 8 行** 原文 也可以由稍后的无穷公理保证. 更正 也可以划入稍后的无穷公理. 感谢王东瀚指正.
- 。第 16 页, 定义 1.2.8 原文 若传递集  $\alpha$  对于  $\in$  构成良序集 更正 若传递集  $\alpha$  对于  $x < y \stackrel{\longleftrightarrow}{\rightleftharpoons} x \in y$  成为良序集 感谢王东瀚指正.
- 。第 16 页, 倒数第 5 行 原文 于是有  $\gamma \in \gamma$ , 这同偏序的反称性矛盾. 更正 于是 有  $\gamma \in \gamma$ , 亦即在偏序集  $(\alpha, \leq)$  中  $\gamma < \gamma$ , 这同 < 的涵义 ( $\leq \ell \ell \neq$ ) 矛盾. 感谢王东 激指正.
- **◇第23页,第3-4行 原文** 真前段(出现两次) **更正** 前段
- $\diamond$  第 35 页, 倒数第 4 行原文 $X \in Ob(\mathscr{C})$ 更正 $X \in Ob(\mathscr{C}')$ 感谢尹梓僮指正.
- **⋄ 第 35 页, 第 12 行 (命题 2.2.10 证明)** 将两个箭头的方向调换. 感谢尹梓僮指正.
- ◇ 第 38 页, 第 14 行 原文 由此导出对象和自然变换的同构概念, 其逆若存在则唯一. 更正 其逆若存在则唯一, 依此定义何谓对象间或函子间的同构. 感谢王 猷指正.
- ◆ 第 42 页, 倒数第 2 行
   原文
   … 同构、Z(…) ≃…
   更正
   … 同构 Z(…) ≃…
   感谢
- ◇第47页,第4行 原文  $A \in \mathcal{C}^{\wedge}$  更正  $A \in Ob(\mathcal{C}^{\wedge})$

- ◇第54页最后 更正 图表微调成



兴许更易懂.

感谢熊锐提供意见.

- $\diamond$  **第 61 页, 第 3** 行 在命题 2.7.8 陈述的最后加上一行: "尽管写法相同, 应当注意到对于  $\mathscr{C}^{\vee}$  版本, 右侧的  $\varliminf$  和  $\varliminf$  是在  $\mathsf{Set}^\mathsf{op}$  中考量的." 感谢巩峻成指正
- ◇第66页,第1行 余完备当且仅当它有所有"余"等化子和小余积. 感谢巩峻成指正
- **◇ 第 91 页, 倒数第 6** 行 "对于 2-范畴"后加上逗号. 感谢巩峻成指正.
- ◇ 第 116 页, 第 5 行
   原文
    $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$  更正
    $\bar{H} \subseteq N_{\bar{G}}(\bar{H})$
- $\diamond$  第 126 页, 第 6 行
   原文
    $(\cdots)_{i=0}^n$  更正
    $(\cdots)_{i=0}^{n-1}$
- $\diamond$  第 137 页, 倒数第 12 行原文 $sgn(\sigma) = \pm 1$ 更正 $sgn(\sigma) \in \{\pm 1\}$ 感谢巩峻成指

- ◇ 第 149 页, 第 3 行 CRing 表交换环范畴. 另外此行应缩进.
- $\diamond$  第 156 页, 第 2, 3 行原文 $a \in R$ 更正 $a \in I$ 感谢阳恩林指正
- ◇ 第 165 页, 5.3.11 之上两行
   原文
   ∃ $s \in R$  更正
   ∃ $s \in S$
- ◆ 第 188 页, 倒数第 5 行
   原文
   ∈ R[X]
   更正
   ∈ K[X]
   感谢巩峻成指正

- $\diamond$  第 205 页, 第 7 行
   原文
   M 作为 R/ann(M)-模自动是无挠的.
   更正
   M 作为 R/ann(M)-模的零化子自动是  $\{0\}$ .
   感谢戴懿韡指正.
- 今第218页,第13行原文B(rx,ys) = rB(x,y)s,  $r \in R$ ,  $s \in S$ .更正B(qx,ys) = qB(x,y)s,  $q \in Q$ ,  $s \in S$ .
- **◇第220页** 本页出现的 Bil(◆ × •; •) 都应该改成 Bil(•, •; •), 以和 216 页的符号保持一致.

- ◇ 第 228 页, 倒数第 12 行
   原文
   粘合为  $y' \to B$  更正
   粘合为  $y' \to M$  感谢巩

   峻成指正

- ◇ 第 230 页, 第 6 行; 第 231 页, 第 9—10 行 原文 0; 更正 0; 感谢郑维喆指正
- **第 235 页底部** 图表中的垂直箭头 $f_i, f_{i-1}$  应改为  $\phi_i, \phi_{i-1}$ .
- ◆ 第 237 页, 命题 6.8.5 证明第二行 原文 由于 f 满 更正 由于 f 单 感谢巩峻成指正
- **◇第238页,第8行** 原文  $Y' \to Y \to Y$  正合 更正  $Y' \to Y \to Y''$  正合
- ◇ **第 244 页, 倒数第 10 行 原文** 下面的引理 6.10.4 **更正** 引理 5.7.4 感谢郑维喆 指正
- ◆ 第 246 页, 第 2 行和定理 6.10.6, 6.10.7 "交换 Noether 模"应改为 "交换 Noether 环".
   两个定理的陈述中应该要求 *R* 是交换 Noether 环.
   感谢郑维喆指正

感谢陆睿远指正.

**⋄第247頁,第6—7行 原文** 其长度记为 n + 1. **更正** 其长度定为 n.

- ◇ 第 251 页, 第 6 行原文 $\operatorname{im}(u^{\infty}) = \ker(u^n)$ 更正 $\operatorname{im}(u^{\infty}) = \operatorname{im}(u^n)$ 感谢巩峻成指正
- ◆第 251 页起,第 6.12 节 术语 "不可分模" 似作 "不可分解模" 更佳,以免歧义. (第 4页倒数第 3 行也应同步修改)
  感谢郑维喆指正
- ◆ 第 252 頁, 第 2 行
   原文
   1 ≤ 1 ≤ n.
   更正
   1 ≤ i ≤ n.
   感谢傅煌指正.
- ⋄ 第 255 页, 第 1 题 原文

$$N = \left\langle \alpha(f)(x_i) - x_j : i \xrightarrow{f} j, \ x_i \in M_i, x_j \in M_j \right\rangle$$

更正

$$N = \left( \alpha(f)(x_i) - x_i : i \xrightarrow{f} j, \ x_i \in M_i \right)$$

感谢郑维喆指正

- ◆ **第 264** 頁**,第 14** 行 **原文** 如果 ann(M) = {0} 更正 如果 ann(N) = {0}
- $\diamond$  第 270 页, (7.6) 式 中间项补全为  $A\otimes M_n(R)\otimes M_m(R)\otimes B$ . 感谢巩峻成指正
- **⋄ 第 274 页, 倒数第 2 行** 将两处  $A^k(M)$  改成  $A^k(X)$ .
- **\$\phi\$ 284 頁**, **定理 7.6.6** 将定理陈述中的函子 U 由忘却函子改成映 A 为  $A_1$  的函子, 其余不变. 相应地, 证明第二段的  $\varphi: M \to A$  应改成  $\varphi: M \to A_1$ . 感谢郑维喆指正
- ◇ 第 285 頁, 倒数第 5 行 $T^n_\chi(M) := \{x \in T^n(M) : \forall \sigma \in \mathfrak{S}_n, \ \sigma x = \chi(\sigma)x\}$ 感谢郑维喆指正
- $\diamond$  **第 286 頁, 定理 7.6.10** 原 "因而有 R-模的同构" 改为 "因而恒等诱导 R-模的同构". 以下两行公式开头的  $e_1:$  和  $e_{\rm sgn}:$  皆删去. 感谢郑维喆指正
- **⋄第311页,命题8.3.2证明第4行** 更正 分别取...... 和 F'|E'.
- ◆ 第 313 頁, 命题 8.3.9 (iii) "交"改为"非空交". 相应地, 证明第四行的"一族正规子扩张"后面加上"且 *I* 非空".感谢郑维喆指正
- $\diamond$  第 315 頁, 定理 8.4.3 (iv) 原文  $\sum_{k\geq 0}^n$  更正  $\sum_{k=0}^n$  感谢郑维喆指正
- ◇ 第 315 页, 倒数第 2 行原文deg  $f(X^p) = pf(X)$ 更正deg  $f(X^p) = p \deg f(X)$ 感谢杨历指正.

- ◇ 第 317 页, 倒数第 13 行 (出现两次) 原文  $\prod_{i=1}^{n}$  … 更正  $\prod_{m=1}^{n}$  …
- ◆第348页,命题9.3.6 原文 lim Z/nZ 更正 lim Z/mZ 感谢郑维喆指正
- ◆第350页,第8行
  原文
  ⇔ d | n | 更正
  ⇔ n | d
  感谢巩峻成指正
- ◆ 第 352 页, 第 7 行
   原文
   p | n
   更正
   p ∤ n
   感谢郑维喆指正
- $\diamond$  第 359 页, 倒数第 2 行原文 $\in A_F$ 更正 $\in A_E$ 感谢杨历指正.
- ◆ 第 363 页, 倒数第 4 行
   原文
   申正
   申記
   <li
- **第 372 页, 第 20 题** 问题 (b) 部分的  $P \in F[X]$  改成  $Q \in F[X]$ , 以免冲突. 相应地, 提示第一段的 P 都改成 Q.
   感谢郑维喆指正
- **◇第 395–396 页, 引理 10.5.3 的证明** 从第 395 页倒数第 3 行起 (即证明第二段), 修改如下:

置  $f_k = \sum_{h \geq 0} c_{k,h} t^h$ . 注意到  $\lim_{k \to \infty} \|f_k\| = 0$ , 这确保  $c_h := \sum_{k \geq 0} c_{k,h}$  存在. 我们断言  $f := \sum_{h \geq 0} c_h t^h \in K \langle t \rangle$  并给出  $\sum_{k=0}^{\infty} f_k$ .

对任意  $\epsilon > 0$ , 取 M 充分大使得  $k \ge M \implies \|f_k\| < \epsilon$ , 再取 N 使得当  $0 \le k < M$  而  $h \ge N$  时  $|c_{k,h}| < \epsilon$ . 于是

$$h \geq N \implies \left( \forall k \geq 0, \; |c_{k,h}| \leq \epsilon \right) \implies |c_h| \leq \epsilon,$$

故 $f := \sum_{h>0} c_h t^h \in K\langle t \rangle$ . 其次, 在  $K\langle t \rangle$  中有等式

$$f - \sum_{k=0}^{M} f_k = \sum_{h \ge 0} \left( c_h - \sum_{k=0}^{M} c_{k,h} \right) t^h = \sum_{h \ge 0} \underbrace{\left( \sum_{k > M} c_{k,h} \right)}_{|\cdot| < \epsilon} t^h,$$

从而 $f = \sum_{k=0}^{\infty} f_k$ .

感谢高煦指正.

- ◇第397页,条目 V 下第6行
  原文
  W<sub>x,-</sub>
  更正
  W<sub>x,-</sub>
- ◇ 第 398 页, 倒数第 12 行 原文 , 而  $v: K^{\times} \to \Gamma$  是商同态. 更正 . 取  $v: K^{\times} \to \Gamma$  为商同态.
- **◇第416页, 定理10.9.7** 删除定理陈述的最后一句话, 将陈述的第一段修改为: "在所有 W(R) 上存在唯一的一族交换环结构, 使得 W(·) 给出从交换环范畴 CRing 到自身的函子,  $w:W(R)\to\prod_{n\geq 0}R$  为环同态, (0,0,...) 为零元, (1,0,...) 为幺元, 而且: "(换行, 开始表列)

对于表列第二项 ("存在唯一确定的多项式族..."), 最后补上一句 "它们与 R 无关."

**⋄第417页,最后一行** 它被刻画为对...