Section A1: Logic (continued)

Functional completeness

A question

So far, we have defined a number of logical connectives. Do we need to keep defining new connectives, or do we have all of the logical connectives we need?

That is, suppose I present you with a truth table but I do not label the right-hand column with a compound statement. Can you construct a compound statement for which the given truth table is correct?

Said another way: Is every compound statement logically equivalent to a compound statement made using only statement variables, parentheses, and the logical connectives we have already defined?

An example

Q: Find a compound statement to replace?

p	q	r	?
\overline{T}	T	T	F
\overline{T}	\overline{T}	F	T
\overline{T}	F	T	F
\overline{T}	\overline{F}	F	F
\overline{F}	\overline{T}	T	T
\overline{F}	\overline{T}	F	\overline{F}
\overline{F}	\overline{F}	T	T
\overline{F}	\overline{F}	F	F

In the truth table table, ? can be replaced by:

An example

Q: Find a compound statement to replace?

p	q	r	?
\overline{T}	T	T	F
\overline{T}	\overline{T}	F	T
\overline{T}	F	T	F
\overline{T}	\overline{F}	F	F
\overline{F}	\overline{T}	T	T
\overline{F}	\overline{T}	F	\overline{F}
\overline{F}	\overline{F}	T	T
\overline{F}	\overline{F}	F	F

In the truth table table, ? can be replaced by:

$$(p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land r)$$

Disjunctive Normal Form

Suppose that p_1, p_2, \ldots, p_n are statements. A compound statement of the form $p_1 \wedge p_2 \wedge \cdots \wedge p_n$ is said to be a **conjuction** of the statements p_1, p_2, \ldots, p_n . A compound statement of the form $p_1 \vee p_2 \vee \cdots \vee p_n$ is said to be a **disjunction** of the statements p_1, p_2, \ldots, p_n .

A compound statement is in **disjunctive normal form** (DNF) if it is a disjunction of conjunctions, and in each of the conjunctions each statement variable or its negation appears but not both.

EXAMPLE:

$$(p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land r)$$

is in disjunctive normal form.

A theorem

Theorem: Every compound statement that is not a contradiction is logically equivalent to a compound statement in disjunctive normal form.

A theorem

Theorem: Every compound statement that is not a contradiction is logically equivalent to a compound statement in disjunctive normal form.

Proof: Consider an arbitrary compound statement is not a contradiction. Using a conjunction in which each statement variable or its negation appears but not both, we can make a compound statement with a truth table in which there is exactly one T. By choosing intentionally between the statement variables and their negations, we can make that T be in any row of the truth table. To make a compound statement to match any particular truth table we note the rows in which T's appear, we use a conjunction for each such row and we combine these conjunctions into a disjunction.

A theorem

Theorem: Every compound statement that is not a contradiction is logically equivalent to a compound statement in disjunctive normal form.

Proof: Consider an arbitrary compound statement is not a contradiction. Using a conjunction in which each statement variable or its negation appears but not both, we can make a compound statement with a truth table in which there is exactly one T. By choosing intentionally between the statement variables and their negations, we can make that T be in any row of the truth table. To make a compound statement to match any particular truth table we note the rows in which T's appear, we use a conjunction for each such row and we combine these conjunctions into a disjunction. \square

Functional completeness

A set of logical connectives A is **functionally complete** if every compound statement is logically equivalent to a compound statement made using only statement variables, parentheses, and connectives from A.

Corollary: The set $\{\land, \lor, \neg\}$ is a functionally complete set of logical connectives.

Another example

CLAIM: The set $\{\land, \neg\}$ is functionally complete.

Q: How can we show this?

Logic circuits

Let's engage in some discrete mathematical modelling...

Circuits

Here is a simple circuit:

It has two possible states:

The states correspond to the values **True** and **False** of the statement "the light is ON".

Circuits: AND

The behaviour of this circuit can be represented by a truth table (which coincides with the truth table for AND):

Switch p is ON	Switch q is ON	Light is ON
T	T	Т
Т	F	F
F	Т	F
F	F	F

The AND gate

is called an AND gate.

It takes two inputs:

- the state of switch p (denoted by 1 for ON and 0 for OFF)
- \blacksquare the state of switch q

and produces an output:

the state of the light bulb.

The AND gate

The AND gate is represented by the following input-output table and symbol:

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

The OR gate

The circuit

gives an OR gate.

It is represented by the following table and symbol:

p	q	$p \vee q$
1	1	1
1	0	1
0	1	1
0	0	0

The NOT gate.

The NOT gate has the following table and symbol:

p	$\neg p$	
1	0	$p \rightarrow \neg p$
0	1	

Combining gates

Gates can be combined to create a circuit corresponding to a given compound statement.

Example:

NAND and the NAND gate

The logical connective **NAND** is a shorthand for "NOT AND". p NAND q is denoted by $p \uparrow q$ (sometimes p|q is used instead of $p \uparrow q$). So $p \uparrow q \equiv \neg (p \land q)$.

A corresponding **NAND** gate is defined as follows:

X	Y	X Y
1	1	0
1	0	1
0	1	1
0	0	1

The functional completeness of NAND

CLAIM: The set $\{\uparrow\}$ is a functionally complete set of connectives.

CLAIM: Every gate is equivalent to one that can be constructed by combining NAND gates alone.

How can we establish that this is true?

NOT from **NAND**

Example:

$$\neg X \equiv X \uparrow X \qquad \qquad \chi \longrightarrow \neg \chi \quad \equiv \quad p \longrightarrow \neg \chi$$

AND from NAND

$$X \wedge Y \equiv \neg(X \uparrow Y) \equiv (X \uparrow Y) \uparrow (X \uparrow Y).$$

is equivalent to an AND gate.

The circuit can be simplified to use one less NAND gate:

Recogniser Circuits

Consider the circuit and corresponding table below:

X	Y	Z	$X \wedge \neg Y \wedge \neg Z$
1	1	1	0
1	1	0	0
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	0
0	0	1	0
0	0	0	0

We say that the circuit recognises the input combination (X,Y,Z)=(1,0,0) because that's the only input combination that generates an output of 1.

Similarly a circuit for $\neg X \land Y \land Z$ would recognise the input combination (X,Y,Z)=(0,1,1).

Recogniser circuits

Definition: A circuit that outputs 1 for only one input combination is called a recogniser for that input combination.

Q: Design a circuit to output 1 only for

$$(X, Y, Z) = (1, 1, 1) & (1, 0, 0)$$

Example: Input-output tables to circuits

The table:

X	Y	Z	output	$X \wedge Y \wedge Z$	$X \wedge \neg Y \wedge \neg Z$	$W = (X \land Y \land Z) \lor (X \land \neg Y \land \neg Z)$
1	1	1	1	1	0	1
1	1	0	0	0	0	0
1	0	1	0	0	0	0
1	0	0	1	0	1	1
0	1	1	0	0	0	0
0	1	0	0	0	0	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0

Predicate logic

Predicates

A **predicate** is a sentence containing one or more variables, with the property that, when a value from a specified **domain** is given to each variable, the sentence becomes a statement. The specified domain is the **domain** of the predicate.

Example: Consider the predicate

$$p(x): x \text{ is a bird},$$

defined over the domain of animals. If x= cockatoo, then p(x) is true. We write $p(\operatorname{cockatoo})=T.$ Further, $p(\operatorname{shark})=F$ and p(170#) is undefined.

More examples

Perhaps the predicate

q(x): x is allowed to view this file,

defined over a list of users, sounds more relevant to computer scientists.

For

r(x,y): x shares a land border with y,

with x and y taking values from the set of countries, we have

$$r(\mathsf{Egypt}, \mathsf{Libya}) = T$$

and

r(Australia, Indonesia) = F.

Quantifiers

There are two ways to turn a predicate p(x) into a statement:

- \blacksquare specify a value for x; or
- lacksquare quantify x.

What do we mean by "quantify" x? We mean to specify some notion of how many different x's from the domain make the predicate true.

The universal quantifier

The **universal quantifier**, \forall , is read "for all" (or "for every", "for each", "for any" etc.).

The **universal statement** $\forall x \ p(x)$ is read aloud "for all x (in the domain), p(x) is true" or "p(x) is true for all x (in the domain)".

The existential quantifiers

The **existential quantifier**, \exists , is read "there exists" (or "for at least one", etc.)

The **existential statement** $\exists x \ p(x)$ is read aloud "There exists an x (in the domain) such that p(x) is true" or "p(x) is true for at least one x (in the domain)" or "p(x) is true for some x (in the domain)".

The **existential quantifier with uniqueness**, ∃!, is read "there exists a unique" (or "for exactly one", etc.)

The **existential statement** $\exists ! x p(x)$ is read aloud "There exists a unique x (in the domain) such that p(x) is true" or "p(x) is true for exactly one x (in the domain)".

Examples

Q: Let

$$p(x): x \text{ is a bird},$$

with x taking values from the domain {cockatoo, parrot, shark}. For each of the following statements, write out in words a translation of the statements and evaluate it.

- 1. $\forall x \ p(x)$
- $\exists x \ p(x)$
- 3. $\exists !x \ p(x)$
- 4. $\exists !x \neg p(x)$

Another example

Q: Let

$$q(x): x$$
 is in Australia,

with x taking values from the domain $D = \{Brisbane, Sydney, Melbourne, Adelaide, Perth\}.$

Evaluate each of the following statements

- 1. $\forall x \ q(x)$
- $\exists x \ q(x)$
- $\exists ! x \ q(x)$
- 4. $\exists !x \neg q(x)$

Examples

Recall that

```
q(x): x is in Australia,
```

with x taking values from the domain $D = \{Brisbane, Sydney, Melbourne, Adelaide, Perth\}.$

- 1. $\forall x \ q(x)$ is true because every city in D is in Australia
- 2. $\exists x \ q(x)$ is true because Adelaide is in Australia.
- 3. $\exists ! x \ q(x)$ is false because more than one city in D is in Australia
- 4. $\exists !x \neg q(x)$ is false because there are no cities in D that are not in Australia.

Example

With domain the set of users (of some online system), express the statements below symbolically, using the following notation:

- o(x): x is online.
- c(x): x has changed status.
- u(x): x has uploaded pictures.
- 1. All users are online.
- 2. No user has changed status.
- 3. All users who have changed status have uploaded pictures.
- 4. Some users have changed status.
- 5. Only one user has not uploaded pictures.

Notation: \Rightarrow and \Leftrightarrow

Let p(x) and q(x) be predicates and suppose the common domain of x is D.

■ The notation $p(x) \Rightarrow q(x)$ is short for

$$\forall x \ p(x) \rightarrow q(x)$$

■ The notation $p(x) \Leftrightarrow q(x)$ is short for

$$\forall x \ p(x) \leftrightarrow q(x)$$

WARNING: It is not uncommon for mathematicians to use \rightarrow and \Rightarrow interchangeably, as if they mean the same thing.

Order of precedence

This is perhaps best explained by example: the expression

$$\forall x \ p(x) \rightarrow q(x)$$

means

$$\forall x \ (p(x) \to q(x)).$$

What is the negation of "all users are online"?

What is the negation of "all users are online"?

Answer: Not all users are online, i.e. at least one user is offline.

Symbolically: $\neg(\forall x \ p(x)) \equiv \exists x \ \neg p(x).$

What is the negation of "all users are online"?

Answer: Not all users are online, i.e. at least one user is offline.

Symbolically: $\neg(\forall x \ p(x)) \equiv \exists x \ \neg p(x).$

What is the negation of "some users have changed status"?

What is the negation of "all users are online"?

Answer: Not all users are online, i.e. at least one user is offline.

Symbolically: $\neg(\forall x \ p(x)) \equiv \exists x \ \neg p(x).$

What is the negation of "some users have changed status"? Answer: No user has changed status, *i.e.* all users have not changed status.

Symbolically: $\neg(\exists x \ q(x)) \equiv \forall x \ \neg q(x)$.

Example

Here is a more complicated example from mathematical analysis. The variables x and y take values from the set of real numbers; the variable ϵ and δ take values from the set of positive real numbers.

$$\neg \left(\forall \varepsilon \, \exists \delta \, \forall x \, \forall y \quad |x - y| < \delta \rightarrow |x^2 - y^2| < \varepsilon \right) \\
\equiv \exists \varepsilon \, \forall \delta \, \exists x \, \exists y \neg \left(|x - y| < \delta \rightarrow |x^2 - y^2| < \varepsilon \right) \\
\equiv \exists \varepsilon \, \forall \delta \, \exists x \, \exists y \quad |x - y| < \delta \quad \land \quad \neg (|x^2 - y^2| < \varepsilon) \\
\equiv \exists \varepsilon \, \forall \delta \, \exists x \, \exists y \quad |x - y| < \delta \quad \land \quad |x^2 - y^2| \ge \varepsilon$$

The order of quantification matters

$$(\forall x \exists y \ p(x,y)) \not\equiv (\exists y \ \forall x \ p(x,y)) (\exists x \ \forall y \ p(x,y)) \not\equiv (\forall y \ \exists x \ p(x,y))$$

Example:

Domains: a set of people and a set of countries. p(x,y) = "x is a tall inhabitant of y"

 $\forall y \; \exists x \; p(x,y) \; \text{says:}$

 $\exists x \ \forall y \ p(x,y)$ says: