규현 : 05 수열(2)

2016년 12월 23일

차 례

차	1	1
1	수학1[쎈] 258	2
2	등비수열	4
3	등비수열의 합	8
4	등비수열의 활용	1

1 수학1[쎈] 258

예시 1)

- (1) 자연수 n에 대하여 $n^2 + 7$ 이 어떤 자연수 m의 제곱이 될 때, mn의 값을 구하여라.
- (2) 자연수 n에 대하여 $n^2 2n + 9$ 이 어떤 자연수 m의 제곱이 될 때, mn의 값을 구하여라.
- $(1) \ n^2 + 7 = m^2, \ m^2 n^2 = 7, \ (m+n)(m-n) = 7$ $m+n, \ m-n \ \text{이 모두 자연수이므로}$

$$\begin{cases} m+n=1 \\ m-n=7 \end{cases} \quad \begin{cases} m+n=7 \\ m-n=1 \end{cases}$$

m-n < m+n 이므로

$$\begin{cases} m+n=7\\ m-n=1 \end{cases}$$

따라서 m=4, n=3, mn=12

(2)
$$n^2 - 2n + 9 = m^2$$
, $(n-1)^2 + 8 = m^2$, $m^2 - (n-1)^2 = 8$

$$(m+n+1)(m-n+1) = 8$$

m+n+1이 자연수이므로 m-n+1도 자연수이다. 따라서

$$\begin{cases} m+n+1=1 \\ m-n+1=8 \end{cases} \begin{cases} m+n+1=2 \\ m-n+1=4 \end{cases} \begin{cases} m+n+1=4 \\ m-n+1=2 \end{cases} \begin{cases} m+n+1=1 \\ m-n+1=1 \end{cases}$$

$$m-n+1 < m+n+1$$
 이므로

$$\begin{cases} m+n+1 = 4 \\ m-n+1 = 2 \end{cases} \begin{cases} m+n+1 = 8 \\ m-n+1 = 1 \end{cases}$$

따라서 $m=3,\, n=1$ 이거나 $m=\frac{7}{2},\, n=\frac{1}{2}.$ $m,\, n$ 은 자연수이므로 $m=3,\, n=1.$

그러므로 mn=3

문제 2)

(1) 자연수 n에 대하여 n² + 12가 어떤 자연수 m의 제곱이 될 때, mn의 값을 구하여라.
 (2) 자연수 n에 대하여 n² - 4n - 5가 어떤 자연수 m의 제곱이 될 때, mn의 값을 구하여라.

2 등비수열

다음과 같은 수열 $\{a_n\}$ 을 생각하자.

1 3 9 27 81 243 729
$$\cdots \{a_n\}$$

이 수열은 항 사이의 비가 3으로 일정하다;

$$\frac{a_2}{a_1} = 3$$
, $\frac{a_3}{a_2} = 3$, $\frac{a_4}{a_3} = 3$, $\frac{a_5}{a_4} = 3$, $\frac{a_6}{a_5} = 3$, ...

이처럼, 인접한 항 사이의 비가 일정한 수열을 **등비수열**이라고 부른다. 이때, 등비수열에서 인접한 항 사이의 비를 **공비**라고 부른다. 공비는 보통 r로 쓴다.

정의 3) 등비수열

수열 $\{a_n\}$ 이 다음 조건을 만족시키면 이 수열은 등비수열이다.

$$rac{a_{n+1}}{a_n}=r.$$
 $(n$ 은 자연수)

문제 4)

다음 수열들 중 등비수열인 것을 고르고, 등비수열인 경우 공차 r를 구하여라.

- (1) 1 3 5 7 9 11 13 등비수열이다/아니다 : r =
- (2) 2 4 8 16 32 64 128 등비수열이다/아니다 : r =
- (3) 3 6 12 24 48 96 192 등비수열이다/아니다 : r =
- (4) 5 5 5 5 5 5 5 5 5 5 등비수열이다/아니다 : r =
- (5) 1 -1 1 -1 1 -1 1 등비수열이다/아니다: r =
- (6) 8 4 2 1 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{8}$ 등비수열이다/아니다 : r =
- (7) 10 100 1000 10000 100000 등비수열이다/아니다 : r =
- (8) 9 99 999 9999 99999 등비수열이다/아니다 : r =
- (9) 8 4√2 4 2√2 2 √2 1 등비수열이다/아니다 : r =

문제 5)

다음 등비수열의 여섯 번째 항을 구하여라.

- $(1) \{a_n\}: 2 \quad 4 \quad 8 \quad \cdots$
- $(2) \{b_n\}: 2 \quad 6 \quad 18 \quad \cdots$
- $(3) \{c_n\}: 1 -1 1 \cdots$
- $(4) \{d_n\}: 6 \quad 3 \quad \frac{3}{2} \quad \cdots$
- $(5) \{e_n\}: 4 -2 1 \cdots$

문제 6)

문제 5에 제시된 등비수열의 일반항을 구하여라.

- (1) $a_n =$
- (2) $b_n =$
- (3) $c_n =$
- (4) $d_n =$
- (5) $e_n =$

정리 7)

첫번째 항 $(=a_1)$ 이 a이고 공비가 r인 등비수열의 일반항은

$$a_n = ar^{n-1}$$

이다.

증명)

첫번째 항이 a이고 공비가 r인 등비수열의 항을 나열해보면

$$a_1 = a$$
 $a_2 = a_1 \times r = ar$
 $a_3 = a_2 \times r = ar^2$
 $a_4 = a_3 \times r = ar^3$
 $a_5 = a_4 \times r = ar^4$

이다. 따라서

$$a_n = ar^{n-1}$$

이다.

문제 8)

다음 등비수열들의 일반항 a_n 을 구하시오.

- $(1) 1, 3, 9, 27, \cdots$
- $(2) -2, 4, -8, 16, \cdots$

문제 9)

다음 등비수열

$$128, 32, 8, 2, \cdots$$

의 일반항 a_n 이 다음을 만족할 때, 빈칸을 채우시오.

$$a_n = 2$$

정리 10) 등비중항

세 숫자 a,b,c가 등비수열을 이룰 때, b를 a와 c의 **등비중항**이라고 한다. 이때 등비중항 b는 다음 조건을 만족한다.

$$b^2 = ac$$

증명)

 $a,\,b,\,c$ 가 등비수열을 이루므로, 인접한 항 사이의 비가 같다. 즉

$$\frac{b}{a} = \frac{c}{b}$$

이다. 양 변에 ab를 곱하면

$$b^2 = ac$$

이다.

예시 11)

(1) 세 숫자

이 등비수열을 이룬다면, $x^2 = 18$ 이다. 따라서 $x = \pm \sqrt{18} = \pm 3\sqrt{2}$ 이다.

(2) 네 숫자

$$3, \quad 2, \quad x, \quad y$$

가 등비수열을 이룬다면,

$$3, \quad 2, \quad x$$

가 등비수열을 이루므로 4=3x이고, $x=\frac{4}{3}$ 이다. 또,

$$2, \quad x\left(=\frac{4}{3}\right), \quad y$$

가 등비수열을 이루므로 $\frac{16}{9}=2y$ 이고, $y=\frac{8}{9}$ 이다.

3 등비수열의 합

문제 12)

다음을 계산하시오.

$$1 + 2 + 4 + 8 + \dots + 1024 =$$

예시 13)

문제 12은 다음과 같이 계산할 수도 있다. 먼저 구하려는 값을 $S=1+2+4+8+\cdots+1024$ 라고 놓자. 이제 이 식과 이 식의 양 변에 2를 곱한 식을 나란히 놓고,

$$2S = 2 + 4 + 8 + \dots + 512 + 1024 + 2048$$

 $S = 1 + 2 + 4 + 8 + \dots + 512 + 1024$

두 식을 빼자.

$$2S - S = -1 + 2048$$

따라서 S=2047이다.

정리 14) 등비수열의 합

등비수열 $\{a_n\}$ 의 첫번째 항을 a, 공비를 r라고 할 때, 첫째항부터 제n항까지의 합 $S(=a_1+a_2+\cdots+a_n)$ 은

$$S = \frac{a(r^n - 1)}{r - 1}$$

이다. 혹은

$$S = \frac{a(1 - r^n)}{1 - r}$$

이라고 쓸 수도 있다. (단, r = 1이면 이 식들을 쓸 수 없다.)

증명)

S를 나열한 식과, 그 식의 양 변에 r을 곱한 식을 나란히 놓으면

$$rS = ra_1 + ra_2 + ra_3 + \dots + ra_{n-2} + ra_{n-1} + ra_n$$

 $S = a_1 + a_2 + a_3 + a_4 + \dots + a_{n-1} + a_n$

이다. 좀 더 자세하게 쓰면

$$rS = ar + ar^{2} + ar^{3} + \dots + ar^{n-2} + ar^{n-1} + ar^{n}$$

 $S = a + ar + ar^{2} + ar^{3} + \dots + ar^{n-2} + ar^{n-1}$

이다. 두 식을 빼면

$$rS - S = ar^n - a$$

$$(r-1)S = a(r^n - 1)$$

따라서

$$S = \frac{a(r^n - 1)}{r - 1}$$

이다.

또한, 이 식을 변형해

$$S = \frac{a(1 - r^n)}{1 - r}$$

로 쓸 수도 있다.

예시 15)

문제 12에서 $a=1,\,r=2$ 이다. $a_n=1\cdot 2^{n-1}=2^{n-1}$ 에서 $a_n=2^{n-1}=1024$ 이면 n=11이므로

$$S = \frac{1(2^{11} - 1)}{2 - 1} = 2047$$

문제 16)

등비수열의 합 공식을 이용하여 다음 계산을 하여라.

$$(1) 2+6+18+54+162 =$$

(2)
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots + \frac{1}{1024} =$$

$$(3) -1 + 2 - 4 + 8 - \cdots - 256 + 512 =$$

예시 17)

아래 그림과 같이 한 변의 길이가 2 인 정사각형 ABCD에서 AB의 중점을 A_1 , BC의 중점을 B_1 , CD의 중점을 C_1 , DA의 중점을 D_1 이라고 하고, 정사각형 $A_1B_1C_1D_1$ 의 넓이를 S_1 이라고 하자. 또 A_1B_1 의 중점을 A_2 , B_1C_1 의 중점을 B_2 , C_1D_1 의 중점을 C_2 , D_1A_1 의 중점을 D_2 라고 하고, 정사각형 $A_2B_2C_2D_2$ 의 넓이를 S_2 라고 하자. 이와 같은 과정을 반복하여 수열 S_1 을 만들 때, S_2 이 처음으로 S_1 0 보다 작아지는 S_2 1의 값을 구하시오.

풀이: $\overline{BA_1}=1$, $\overline{BB_1}=1$ 에서 $\overline{A_1B_1}=\sqrt{2}$ 이다. 따라서 $S_1=(\sqrt{2})^2=2$ 이다. 또, $\overline{B_1A_2}=\frac{1}{\sqrt{2}}$, $\overline{B_1B_2}=\frac{1}{\sqrt{2}}$ 에서 $\overline{A_1B_1}=1$ 이다. 따라서 $S_2=1^2=1$ 이다. 마찬가지로 계산하면 $S_3=\frac{1}{2}$, $S_4=\frac{1}{4}$ 등이다. 그러므로 수열 $\{S_n\}$ 은 첫항이 2이고 공비가 $\frac{1}{2}$ 인 등비수열이다. 일반항을 계산하면

$$S_n = 2 \times \left(\frac{1}{2}\right)^{n-1} = 2 \times 2^{1-n} = 2^{2-n}$$

이 된다. 따라서

$$S_n < 0.01$$
$$2^{2-n} < \frac{1}{100}$$
$$2^{n-2} > 100$$

에서, n의 최솟값은 9이다.

4 등비수열의 활용

문제 18)

아래 그림과 같이 한 변의 길이가 4 인 정삼각형 ABC에서 AB의 중점을 A_1 , BC의 중점을 B_1 , CA의 중점을 C_1 이라고 하고, 정삼각형 $A_1B_1C_1$ 의 넓이를 S_1 이라고 하자. 또 A_1B_1 의 중점을 A_2 , B_1C_1 의 중점을 B_2 , C_1A_1 의 중점을 C_2 라고 하고, 정삼각형 $A_2B_2C_2$ 의 넓이를 S_2 라고 하자. 이와 같은 과정을 반복하여 수열 S_1 을 만들 때, S_2 의 값을 구하시오. (단, 한 변의 길이가 S_1 인 정삼각형의 넓이는 S_2 4 이다.)

풀이:	
	답:()

예시 19) 예금

연이율이 10%인 은행에 100만 원을 예금한다고 하자. 1년 후에 받을 수 있는 돈은 원래 맡겨놓았던 100만 원과 이자인

$$100$$
만원 $\times \frac{10}{100} = 10$ 만원

을 합친 금액인 110만 원이 된다.

정의 20) 원금, 이자, 원리합계, 이율

은행에 돈을 맡길 때, 원래 맡겨놓은 금액을 원금, 늘어난 금액을 이자라고 한다. 원금과 이자를 합친 금액은 원리합계라고 부르며, 이자가 붙는 비율인 10%는 이율이라고 부른다. 이율은 보통 r로 쓰며, 이율에는 연이율, 월이율 등이 있다. 위의 예에서

원금 =
$$100$$
만원
이자 = 10 만원
원리합계 = 110 만원
이율 = $r = \frac{10}{100} = 0.1$

예시 21)

예시 19에서 2년 후에 받을 수 있는 돈은 얼마일까? 다음 두 가지의 방법을 생각해볼 수 있다.

- (1) 원금은 100만 원이었으니, 추가로 받을 수 있는 이자는 여전히 10만 원이다. 따라서 원리합계는 100+10+10=120만 원이다.
- (2) 1년 후에는 통장에 110만 원이 있으니, 추가로 받을 수 있는 이자는 $110 \times 0.1 = 11$ 만 원이 된다. 따라서 원리합계는 100 + 10 + 11 = 121만 원이다.

정의 22) 예금, 단리, 복리

원금을 일정한 기간동안 은행에 맡기는 것을 **예금**이라고 한다. 이때 원리합 계를 구하는 방법은 두 가지로, 예시 21의 (1)과 같은 방법을 **단리**, (2)와 같은 방법을 **복리**라고 한다.

문제 23)

원금 10만 원을 연이율 6%로 예금할 때, 10년 후의 원리합계를 단리법, 복리법으로 각각 구하여라. (단, $1.06^{10}=1.79$ 로 계산한다.)

