Liam Li

Carnegie Mellon University – Machine Learning Department 4902 Forbes Ave, GHC 8133 – Pittsburgh, PA 15213

☐ (610) 999-1126 • ☑ me@liamcli.com • ⓒ www.liamcli.com

Education

Carnegie Mellon University

Pittsburgh, PA

PhD, Masters in Machine Learning

May 2020 (Expected)

 $Conducting\ research\ with\ Prof.\ Talwalkar\ on\ hyperparameter\ optimization\ and\ AutoML.$

Caltech Pasadena, CA

Bachelors in Applied Math

2007-2011

Employment

Google New York, NY

Software Engineering Intern

June 2017 – *September* 2017

- o Developed new meta-algorithm for batch mode active learning.
- o Implemented active learning algorithms in production code using C++.
- o Built experimentation suite for active learning in python.

BlueMountain Capital

New York, NY

Risk Analyst

May 2014 – *July* 2015

Cornerstone Research

Los Angeles, CA

Senior Analyst

August 2011–April 2014

Publications

- o Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. *Efficient Hyperparameter Optimization and Infinitely Many Armed Bandits*. ICLR 2017.
 - Speed up hyperparameter optimization through principled early-stopping, thereby allocating more resources to promising hyperparameter configurations.
 - More than an order-of-magnitude faster than non-early-stopping methods.
- o Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. *Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization*. JMLR, 18(185):1–52, 2018
 - Extended journal version of the project above with extended proofs for complexity bounds of the Hyperband algorithm.
- o Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Hardt, M., Recht, B., and Talwalkar, A. *Massively Parallel Hyperparameter Tuning*. NIPS 2018 Systems for Machine Learning Workshop.
 - Adapt Hyperband to the parallel setting with an asynchronous algorithm that scales

linearly with the number of available parallel workers.

- Achieves state-of-the-art results for hyperparameter tuning in the parallel setting.
- o Li, L., Sparks, E., Jamieson, K., and Talwalkar, A. *Exploiting Reuse in Pipeline-Aware Hyperparameter Tuning*. NIPS 2018 Systems for Machine Learning Workshop.
 - Eliminate redundant computation in machine learning pipelines and achieve more than an order-of-magnitude speedups with reuse through caching.
- o Li, L. and Talwalkar, A. *Random Search and Reproducibility for Neural Architecture Search*. UAI 2019.
 - Develop novel random search with weight-sharing algorithm that is much simpler than existing methods while achieving comparable results.
 - Provide missing comparisons to leading standard hyperparameter optimization methods.
 - Summarize the status of reproducibility in the field and quantify the reproducibility of our novel method.

Talks and Panels

o ICML AutoML Workshop Panel Discussion	June 2019
o Random Search and Reproducibility for NAS	
- Stanford DAWN Lab	April 2019
- Berkeley RISE Lab	April 2019
- Determined AI	April 2019
- MILA	<i>May 2019</i>
- UCLA ScAi Lab	June 2019
- ICML AutoML Workshop	June 2019
o Parallelizing Hyperband for Large-Scale Tuning	
- Bloomberg	September 2017
o Learning Optimal Mixtures of Active Learning Methods	
- Google Research Intern Seminar	August 2017
• Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization	
- UCLA Electrical Engineering Annual Research Review	February 2015
- Southern California Machine Learning Symposium	November 2016
Service	
o CMU ML Blog, Founding Editor	2018 – Present
o Conference and Workshop	
- ICLR Volunteer	2017
- SysML Reviewer	2018
- ICML Reviewer	2019
- ICML AMTL Workshop Program Committee	2019
- ICML AutoML Workshop Program Committee	2019
- NIPS Reviewer	2020

Awards

o ICLR Travel Award	2017
o Southern California Machine Learning Symposium Best Talk Award	2016
o Eugene V. Cota-Robles Fellowship, UCLA	2015–2017
o Wasserman Scholar, Caltech	2009–2011
Teaching.	
10-718: Data Analysis	CMU
Teaching Assistant	Fall 2018
Designed data analysis project to develop machine learning pipeline for single cell gene	expression data
10-403: Deep Reinforcement Learning and Control	CMU
Teaching Assistant	Spring 2019
Led recitation and designed homework assignments focused on implementing standard learning algorithms.	d reinforcement
Technical Skills.	
o Programming Languages: Python, R, C++, Scala, Matlab	

o $\,$ Frameworks: Tensorflow, Keras, PyTorch, Apache Spark