ELE 535: Machine Learning and Pattern Recognition Homework 9

Zachary Hervieux-Moore

Friday 21^{st} December, 2018

Exercise 1: Kernels:

- a) Let \mathcal{A} be a finite set and for each subset $\mathcal{U} \subseteq \mathcal{A}$ let $|\mathcal{U}|$ denote the number of element in \mathcal{U} . For $\mathcal{U}, \mathcal{V} \subset \mathcal{A}$, let $k(\mathcal{U}, \mathcal{V}) = |\mathcal{U} \cap \mathcal{V}|$. By finding a suitable feature map, show that $k(\cdot, \cdot)$ is a kernel on the power set $\mathcal{P}(\mathcal{A})$ of all subsets of \mathcal{A} .
- b) Show that $k(x, z) = \sum_{i=1}^{n} \cos^2(x_i z_i)$ is a kernel on \mathbb{R}^n .
- c) Let $P \in \mathbb{K} \times \mathbb{K}$ be a symmetrix PSD. Show that $k(x,z) = e^{-\frac{1}{2}(x-z)^T P(x-z)}$ is a kernel on \mathbb{R}^n .
- d) $k(x,y) = h_t(Ax)^T h_t(Ay)$ where $A \in \mathbb{R}^{n \times n}$ and h_t is a thresholding function that maps $z = [z_i]$ to $h_t(z) = [\tilde{z}_i]$ with $\tilde{z}_i = z_i$ if $|z_i| > t$ and 0 otherwise.

Exercise 2: Let k_j be a kernel on \mathcal{X} with feature map $\phi_j : \mathcal{X} \to \mathbb{R}^q$, j = 1, 2. In each part below, find a simple feature map for the kernel k in terms of feature maps for the kernels k_j . By this means, give an interpretation for the new kernel k.

a)
$$k(x,z) = k_1(x,z) + k_2(x,z)$$

b)
$$k(x,z) = k_1(x,z)k_2(x,z)$$

c)
$$k(x,z) = k_1(x,z) / \sqrt{k_1(x,x)k_2(z,z)}$$

Exercise 3: A binary labelled set of data in \mathbb{R}^2 is used to learn a SVM using the homogeneous quadratic kernel. By writing the equation for the decision boundary in terms of a quadratic form, reason about the types of decision boundaries that are possible in \mathbb{R}^2 . In each case, give a neat sketch.

Exercise 4: Consider the defintie integral

$$\int_0^\infty e^{-(ax^2 + \frac{b}{x^2})} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{ab}}$$

Show that it can be rewritten as

$$\frac{\alpha}{\sqrt{\pi}} \int_0^\infty e^{-\frac{s}{t^2}} e^{-(\frac{\alpha t}{2})^2} dt = e^{-\alpha\sqrt{s}}, \quad \alpha > 0$$

Now use the above results to show that $k(x, z) = e^{-\alpha ||x-z||_2}$ is a kernel.

Exercise 5: Let a > 0 and $L_2[0, a]$ denote the set of real valued square integrable functions on the interval [0, a]. $L_2[0, a]$ is a Hilbert space under the inner product $\langle g, h \rangle = \int_0^a g(s)h(s)ds$. For $f \in L_2[0, a]$, let $g(t) = \int_0^t f^2(s)ds$ and $h(t) = \int_t^a f^2(s)ds$, where $t \in [0, a]$. Show that for each a > 0,

- a) $k(x, z) = \min(x, z)$ is a kernel on [0, a].
- b) $k(x,z) = a \max(x,z)$ is a kernel on [0,a].
- c) $k(x,z) = e^{-(\max(x,z)-\min(x,z))}$ is a kernel on [0,a]. Plot the function $\max(x,z) \min(x,z)$ and use this to simplify the result further.
- d) for each a > 0, and $\gamma \ge 0$, $k(x, z) = e^{-\gamma |x-z|}$ is a kernel on [-a, a].
- e) for each $\gamma \geq 0$, $k(x, z) = e^{-\gamma |x-z|}$ is a kernel on \mathbb{R} .