# Causal Effects Under Interference A Markov Random Field Approach

Calvin Walker

May 21, 2024

#### Spillover In Experiments

 Goal: learn the causal effect of some intervention (medical, social program, etc.)

2/13

#### Spillover In Experiments

- Goal: learn the causal effect of some intervention (medical, social program, etc.)
  - Randomly assign treatment to some subpopulation
  - Take the difference of means for some outcome of interest *y*:

$$ATE = \bar{y}^1 - \bar{y}^0$$

Various parametric/non-parametric methods to adjust for confounding

2/13

#### Spillover In Experiments

- Goal: learn the causal effect of some intervention (medical, social program, etc.)
  - Randomly assign treatment to some subpopulation
  - Take the difference of means for some outcome of interest *y*:

$$ATE = \bar{y}^1 - \bar{y}^0$$

- Various parametric/non-parametric methods to adjust for confounding
- Problem: underlying assumption that individuals don't influence one another
- When this assumption is voilated, we say there are "spillover" effects, which may have important policy implications

#### Motivating Example

- Randomized control trial for political mobilization
- Delivered messages to 61 million Facebook users during the 2020 US elections
- The messages not only influenced users who recieved them, but also the users' friends, and friends of friends
- The effect of social transmission on real world voting was greater than the direct effect of the messages

#### **Current Methods**

- Clustering: Only need SUTVA to hold between larger groups, eg. schools instead of students
- Exposure mapping: Researcher specifies some grouping ex.

$$f(\mathbf{z},\theta_i) = \begin{cases} d_{11} & \text{(Direct + Indirect Exposure)} \\ d_{10} & \text{(Direct Exposure)} \\ d_{01} & \text{(Indirect Exposure)} \\ d_{00} & \text{(No Exposure)} \end{cases}$$

then can compare groups to estimate potential spillover

Calvin Walker Causal Effects May 21, 2024 4/13

#### Setting and Assumptions

- Random experiment on social network G = (V, E)
- Treatment vector  $\mathbf{Z} \in \{0,1\}^n$  is known
- Some unknown exposure vector  $\mathbf{C} \in \{0,1\}^n$
- Treatment effects are homogeneous, but spillover/exposure may be either homogeneous or heterogeneous
- Want to learn the "exposure probability"  $\pi_i$  for each individual in G

Calvin Walker Causal Effects May 21, 2024 5/13

#### Modeling as an MRF

- Define a Pairwise Markov Random Field B = (P, H) where H has the same structure as G
- Each node in the social network becoms a Bernoulli random variable  $X_i$  in H
- Evidence: for any treated unit, we assume they are already exposed, so  $X_i = 1$  for all units  $Z_i = 1$
- Perform inference on the marginals conditional on the evidence  $P(X_i \mid e)$
- Compute exposure probabilities:

$$\pi_i = P(X_i = 1 \mid e) - P(X_i = 0 \mid e)$$



6/13

#### **Estimating Potentials**

P is a Gibbs Distribution that factorizes over H:

$$P(X_1, X_2, \dots, X_n) = \frac{1}{Z} \prod_{i \in V} \phi_i(X_i) \prod_{(i,j) \in E} \phi_{i,j}(X_i, X_j)$$

- Pairwise potentials represent the potential for influence, or "strength" of a social connection between two nodes
- Model them as a function of edge probability,  $p_{i,j}$ :

$$\phi_{i,j}(X_i, X_j) = 1 - p_{i,j} \mathbb{1}\{X_i \neq X_j\}$$

- We can place a prior on edge probabilities, e.g.  $p_{i,j} \sim \text{Beta}(\alpha,\beta)$
- Or model them some other way, e.g. latent space



7/13

#### **Estimating Potentials**

• Handcock et. al (2007), model  $p_{i,j}$  using a logistic regression where the probability of an edge depends on euclidean distance in latent space

$$log-odds(p_{i,j}) = \beta X_{i,j} - ||z_i - z_j||^2$$

 Estimate using MCMC, where we can also incorporate latent clusters with prior:

$$z_i \sim \sum_{g=1}^{G} \lambda_g \mathsf{MVN}_d(\mu_g, \sigma_g I_g)$$

Calvin Walker Causal Effects May 21, 2024 8/13

#### Estimating Node Exposure



Figure: Exposure Probabilities

#### **Estimating Causal Effects**

• With the exposure probabilities, we can estimate ATE ( $\rho$ ) as:

$$y_i = \alpha + \rho Z_i + \gamma (1 - Z_i) \pi_i + \varepsilon_i$$

- $\gamma$  doesnt have any real causal interpretation :(
- Much better suited to heterogeneous spillover effects
- Test by simulating data on two real-world social networks
  - Eighth Graders: 55 students with edges between those who wanted to sit next to each other in class
  - Aarhus Computer Science Department: 60 colleagues with edges between those who got lunch together in a given week
  - $y_i \sim \mathcal{N}(\mu, \sigma^2)$ ,  $\rho = 3$ , spillover = 1.5



10/13

#### Simulation Results

|               |              | Eighth (                           | Graders     | Aarhus CS                          |             |  |
|---------------|--------------|------------------------------------|-------------|------------------------------------|-------------|--|
| DGP           | $\phi_{i,j}$ | $\overline{\bar{y}^1 - \bar{y}^0}$ | ρ           | $\overline{\bar{y}^1 - \bar{y}^0}$ | ρ           |  |
| Neighbors     | Latent       | 2.67 (0.22)                        | 3.03 (0.30) | 2.31 (0.21)                        | 3.03 (0.43) |  |
|               | Beta         | 2.66 (0.22)                        | 3.14 (0.38) | 2.32 (0.21)                        | 3.63 (0.63) |  |
| Latent        | Latent       | 2.73 (0.22)                        | 2.93 (0.33) | 2.55 (0.21)                        | 2.93 (0.43) |  |
|               | Beta         | 2.72 (0.22)                        | 2.95 (0.35) | 2.54 (0.21)                        | 3.08 (0.61) |  |
| $p_{i,j}=0.5$ | Latent       | 2.55 (0.22)                        | 2.67 (0.38) | 2.31 (0.21)                        | 2.48 (0.46) |  |
|               | Beta         | 2.56 (0.23)                        | 2.81 (0.40) | 2.32 (0.21)                        | 2.64 (0.67) |  |
| No Spillover  | Latent       | 3.00 (0.21)                        | 3.00 (0.24) | 3.01 (0.19)                        | 3.01 (0.27) |  |
|               | Beta         | 3.00 (0.20)                        | 3.00 (0.25) | 2.99 (0.19)                        | 2.99 (0.38) |  |

Calvin Walker Causal Effects May 21, 2024 11/13

### Simulation Results: Heterogeneous Spillover

|              | Eighth Graders          |             |             |               | Aarhus CS    |             |             |  |
|--------------|-------------------------|-------------|-------------|---------------|--------------|-------------|-------------|--|
| $\phi_{i,j}$ | $\bar{y}^1 - \bar{y}^0$ | ρ           | $\gamma$    | $\bar{y}^1$ - | $-\bar{y}^0$ | ρ           | $\gamma$    |  |
| Latent       | 2.74 (0.21)             | 2.95 (0.25) | 1.40 (0.39) | 2.64          | (0.20)       | 2.99 (0.31) | 0.48 (0.25) |  |
| Beta         | 2.75 (0.21)             | 2.99 (0.28) | 0.84 (0.40) | 2.65          | (0.20)       | 3.06 (0.38) | 0.51 (0.36) |  |

Calvin Walker Causal Effects May 21, 2024 12/13

## The End