Fairness-Utility Trade-offs in Graph Learning (Reformatted for Imperial/DSI)

Prepared by: Fan Xuejiao - 2025-08-29 -

Abstract

This short, reproducible study examines how a demographic-parity (DP) penalty changes the behaviour of graph neural networks (GNNs) on a controlled synthetic graph and what accuracy we trade off. For *node classification*, increasing the penalty drives DP and equalised odds (EO) towards ~0 while accuracy drops from 1.00 to 0.71 (λ : 0 \rightarrow 2.0). For *link prediction*, the effect becomes visible only when the DP objective is applied to *both positive and negative edges* and its weight is increased: DP falls from \approx 0.08 (λ =0) to 0 (λ =10) while AUC remains \approx 0.71–0.72 and AP shifts modestly. The practical lesson is that the *definition and population of the fairness penalty must match the reported metric* for results to be interpretable and reproducible.

Introduction

Fairness in graph learning is often framed as a trade-off with utility; whether that trade-off appears depends on details. Two guiding questions: (1) will a simple DP penalty produce a visible trade-off on a basic synthetic network? (2) which design choices make the effect visible and reproducible?

Setup

Data. Homophilous LocalSBM (70/30 split), p_{in} =0.08, p_{out} =0.005; moderately separable node features. **Sensitive proxy.** Eigenvector centrality (median split). **Models.** Two-layer GNN (hidden=64). For link prediction, candidate edges are scored using observed positives and sampled negatives. **Training objective.** Binary cross-entropy + λ -DP penalty. For node classification, the penalty uses predicted class probabilities. For link prediction, the penalty is computed on probabilities for both positive and negative edges so it matches evaluation.

Results

Node classification. λ =0 \rightarrow Acc 1.00, DP 0.61, EO 1.00; λ =1.0 \rightarrow Acc 0.91, DP 0.42, EO 0.69; λ =2.0 \rightarrow Acc 0.71, DP 0.00, EO 0.00. This is the textbook trade-off.

λ	Accuracy	DP	EO
0.00	1.00	0.61	1.00
1.00	0.91	0.42	0.69
2.00	0.71	0.00	0.00

Figure 1. Node Classification — Utility & Fairness vs λ

Link prediction. When the DP penalty is applied to both positives and negatives and its weight is increased, DP reduces from \approx 0.08 (λ =0) to 0 (λ =10) while AUC remains \approx 0.71–0.72 and AP changes modestly.

Figure 2. Link Prediction — DP and AUC vs λ (two-point summary)

Discussion

What matters. (i) Align the fairness objective with the evaluated population (here: include both positives and negatives). (ii) Adjust task difficulty: moderate feature separation and adequate negatives make the trade-off visible at realistic λ . (iii) Report exact values for fairness and utility, not only trends, and keep logs/figures for reproducibility.

Reproducibility

Commands (sketch). Node classification: $\lambda \in \{0.0, 1.0, 2.0\}$; link prediction: $\lambda \in \{0, 5, 10\}$; 150 epochs; hidden=64; LocalSBM 70/30, p_in=0.08, p_out=0.005; sensitive=eigen; figures via make_figures.py. JSON logs are stored alongside plots to ensure reproducibility.

Imperial/DSI Alignment. This work pattern—careful measurement, fair/utility trade-offs, and auditable artefacts—translates naturally to *privacy & memorization audits* and *auditable ML pipelines* (data lineage, confidential computing, model/risk cards) under GDPR/PIPL. It aligns with Dr Yve-Alexandre de Montjoye's focus on privacy and memorization and can benefit from co-supervision with Prof Peter Pietzuch (systems/TEEs) or Dr Thomas Heinis / Dr Holger Pirk (data lineage/indexing).