

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ :		A2	(11) International Publication Number: WO 00/70044
C12N 15/12, C07K 14/705, G01N 33/68			(43) International Publication Date: 23 November 2000 (23.11.00)
(21) International Application Number: PCT/US00/12383		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 8 May 2000 (08.05.00)			
(30) Priority Data:			
60/134,063 13 May 1999 (13.05.99) US			
60/137,547 4 June 1999 (04.06.99) US			
(71) Applicant (for all designated States except US): THE JOHNS HOPKINS UNIVERSITY [US/US]; 111 Market Place, Baltimore, MD 21201 (US).			
(72) Inventors; and		Published	
(75) Inventors/Applicants (for US only): MITTMAN, Scott [US/US]; The Johns Hopkins University, 111 Market Place, Baltimore, MD 21201 (US). AGNEW, William, S. [US/US]; The Johns Hopkins University, 111 Market Place, Baltimore, MD 21201 (US).		Without international search report and to be republished upon receipt of that report.	
(74) Agents: KAGAN, Sarah, A. et al.; Banner & Witcoff, Ltd., Eleventh Floor, 1001 G Street, N.W., Washington, DC 20001-4597 (US).			
(54) Title: HUMAN BRAIN T CALCIUM CHANNEL ALPHA-SUBUNIT SPLICE VARIANTS			
(57) Abstract			
<p>The structures of <i>CACNA1G</i> and <i>CACNA1I</i>, the genes encoding the human brain T Ca^{2+} channel $\alpha_1\text{G}$ and $\alpha_1\text{I}$ subunits, respectively, were determined by comparison of polymerase chain reaction-amplified brain cDNA and genomic sequences. <i>CACNA1G</i> consists of at least 38 exons spanning at least 66,490 basepairs of chromosome 17q22. Alternative splicing of the RNA occurs at six sites: cassette exons 14, 26, 34 and 35, an internal donor in exon 25 and protein-coding intron 38B. Additionally, the RNA can be polyadenylated at either of two sites. Alternative splicing of <i>CACNA1G</i> RNA may lead to expression of as many as 64 distinct protein products, ranging from 2,171 to 2,377 amino-acids residues, with as many as 45 potential phosphorylation sites. <i>CACNA1I</i> consists of at least 37 exons spanning at least 116,390 basepairs of chromosome 22q12.3–13.2. Alternative splicing of the gene occurs at three sites: cassette exon 9, an alternative acceptor in exon 33 and mutually-exclusive 3' exons 36B and 37. Alternative splicing of <i>CACNA1I</i> RNA may lead to expression of as many as 8 distinct protein products, ranging from 1,968 to 2,223 amino-acids residues, with as many as 28 potential phosphorylation sites. Molecular diversity generated by alternative splicing and post-translation modification of these and other members of the T α_1 subunit gene family may account for the observed heterogeneity of T currents in central neurons.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Larvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

**HUMAN BRAIN T CALCIUM CHANNEL
ALPHA-SUBUNIT SPLICE VARIANTS**

This invention was made using funds from the U.S. government. Under the terms of NIH grants K08NS01939 and P50HL52307, the government may retain certain rights in the invention.

5

TECHNICAL FIELD OF THE INVENTION

This invention is related to ion channels. In particular, it is related to ion channels related to brain function.

BACKGROUND OF THE INVENTION

10

Voltage-dependent calcium channels are involved in both coupling electrical activity to calcium influx and contributing to membrane properties. Low voltage-activated (LVA) calcium channels activate at potentials near the resting membrane potential. LVA participate in spike-induced calcium entry and allow calcium influx at potentials below threshold. LVA calcium channels also are involved in subthreshold membrane fluctuations. LVA calcium channel dysfunction is implicated in epileptiform activity. Moreover, these channels are targets for antiepileptic drugs.

15

T-type (transient) properties in neurons include low voltage activation, strongly voltage-dependent kinetics, rapid inactivation, slow deactivation, and small single-channel conductance.

20

Recently, a subfamily of genes (designated Ca_vT) has been discovered encoding α_1 subunits that are ~ 30% homologous to HVA subunit genes in their putative membrane-spanning regions.

5

T currents are a diverse class of Ca^{2+} current characterized by a low voltage threshold for activation. Proposed functions include generation of low-threshold spikes that lead to bursting, promotion of voltage oscillations, boosting of Ca^{2+} entry and synaptic potentiation. T currents may be the targets of succinimides and related compounds administered in the treatment of absence epilepsy. Recently, cDNA sequences of three T α_1 subunits, rat α_{1G} and α_{1I} and human α_{1H} , have been reported.

10

Ca^{2+} channel α_1 subunits are encoded by at least 10 genes falling into three subfamilies: ABE, SCDF and GHI¹. Alternative splicing of α_1 RNAs generates further molecular diversity. There is a need in the art for identifying the different splice forms of the calcium channel subunits, so that they can be used as targets in drug discovery and development programs.

SUMMARY OF THE INVENTION

15

It is an object of the present invention to provide an isolated and purified α_{1G} subunit of human brain T calcium channel.

It is an object of the present invention to provide an isolated and purified nucleic acid encoding the α_{1G} subunit.

It is an object of the present invention to provide an isolated and purified α_{1I} subunit of human brain T calcium channel.

20

It is an object of the present invention to provide an isolated and purified nucleic acid encoding the α_{1I} subunit.

It is another object of the present invention to provide an isolated and purified nucleic acid comprising an exon of a human brain T calcium channel alpha subunit.

25

Another object of the invention is to provide an isolated and purified polypeptide which comprises a translated exon of a human brain T calcium channel.

1

The gene encoding the subunit α_{1X} , where X is A - I, or S, is denoted *CACNA1X*. Alternative names for the SCDF and GHI subfamilies are L and T, respectively.

Another object of the invention is to provide expression vectors and host cells for expressing the subunits of human brain T calcium channel.

Another object of the invention is to provide a method to identify candidate drugs for treating epilepsy.

5

These and other objects of the invention are achieved by one or more of the embodiments described below. In one embodiment an isolated and purified α_{1G} subunit of human brain T calcium channel is provided. The subunit is selected from splice variants 1-64 as shown in Table 1.

10

According to another object of the invention an isolated and purified nucleic acid encoding the α_{1G} subunit is provided.

According to still another object of the invention an isolated and purified polypeptide is provided which comprises a translated exon selected from the group consisting of 1-38D as shown in Table 2.

15

Another embodiment of the invention is an isolated and purified nucleic acid which comprises an exon selected from the group consisting of 1-38D as shown in Table 2.

Still another embodiment of the invention is an isolated and purified α_{1I} subunit of human brain T calcium channel selected from splice variants 1-8 as shown in Table 3.

20

The present invention also provides an isolated and purified polypeptide which comprises a translated exon selected from the group consisting of 1-37 as shown in Table 4.

According to another aspect of the invention an isolated and purified nucleic acid is provided which comprises an exon selected from the group consisting of 1-37 as shown in Table 4.

25

Vectors and host cells which contain and/or express any of the nucleic acids, polypeptides or proteins described above are also contemplated as part of the present invention.

30

Other embodiments of the invention are methods to identify candidate drugs for treating epilepsy. A host cell containing a nucleic acid encoding an α_{1G} or α_{1I} subunit or exon is contacted with a test substance. Uptake by the cell of calcium ions is measured. A test substance which inhibits the uptake by the cell of calcium ions is identified as a candidate drug for treating epilepsy.

These and other embodiments of the invention which will be described in more detail below, and which will be evident to those of ordinary skill in the art upon reading the disclosure, provide the art with new drug discovery targets which can form the basis of a drug screening program.

5

BRIEF DESCRIPTION OF THE DRAWINGS

10

Fig. 1. Map of *CACNA1I* and α_{II} cDNA. In the genomic map (bottom), exons are indicated by vertical bars and introns by the connecting horizontal line. The smallest exons are not to scale due to the minimum line thickness required for printing. In the cDNA map (middle), constitutively-spliced, odd-numbered exons are black and even-numbered exons, gray. Alternatively-processed exons (or portions of exons) are colored as follows: 9 – red, 33A – orange, 36B – green. The thinner portions of exons 1 and 36 represent the 5' and 3' untranslated regions, respectively. Selected exons are labeled to facilitate counting. Black bars above this cDNA map indicate relative PCR product locations. Four of the bars are interrupted by a thin line to indicate portions deleted by alternative splicing. Exon 37 (blue) is mutually exclusive with exon 36, requiring a separate representation of the 3' end of the cDNA, at the top. Only a small portion of the exon 37 3' UTR has been amplified and sequenced. Two of the PCR products containing portions of exon 37 are represented as black bars above the partial cDNA map. The starred scale bar equals 1 kb for PCR products and the cDNA maps and 15 kb for the genomic map.

15

20

Fig. 2. Schematic of the predicted α_{II} protein. Each aa residue is represented by a small circle. In the large cytoplasmic and extracellular loops, a full up-down cycle measures 100 residues. Main features of the topology are labeled in large type and described in the text. Portions of the protein derived from odd-numbered exons are labeled in small type. A similarity score was computed for each residue from alignments of the aa sequence of each α_{II} exon with the sequences of the homologous human α_{IG} and α_{IH} exons by iterative pairwise use of gap with default parameters. *Pipe*, *colon*, *period* and *space* similarity symbols were assigned numerical values of 3, 2, 1 and 0, respectively; α_{II} vs. α_{IG} and α_{II} vs. α_{IH} scores for an individual α_{II} residue were added to yield a final score of 0 to 6. Residue identity in all three proteins produced a score of 6; pairing of an α_{II} residue with unrelated amino acids in both alignments produced

25

30

a score of 0. Exons 9, 34 and 35 had no apparent α_{1G} or α_{1H} homologues; these residues are uncolored. Exon 16 had only an α_{1H} homologue and exons 33 and 37 had only α_{1G} homologues; the maximum possible similarity score for these exons is 3. Portions of the protein deleted by alternative splicing have a light blue background. Mutually exclusive 5 exons 36B (7 aa) and 37 (214 aa) are side-by-side. Extracellular cysteines, potential N-glycosylation and phosphorylation sites and the location of splice sites (mapped to the protein product) are indicated by the appropriate symbols. Symbol colors have the following meanings: black – conserved among all human α_1 subunits; purple – conserved within 3 aa residues in the multiple sequence alignment of all human α_1 subunits; blue – 10 conserved among the human ABE and GHI subfamilies; green – conserved among all human T α_1 subunits; brown – also present in human α_{1H} ; orange – also present in human α_{1G} ; pink – unique to α_{1I} . PKA: cyclic-nucleotide-dependent protein kinase phosphorylation site, PKC: protein kinase C phosphorylation site, CKII: casein kinase II phosphorylation site, Tyr: tyrosine kinase phosphorylation site. One residue in the 15 C-terminus was identified as a potential site for phosphorylation by both PKA and CKII; another was identified as a potential site for phosphorylation by both PKA and PKC.

Fig. 3. Map of *CACNA1G* and the α_{1G} cDNA. In the genomic map (bottom), 20 exons are indicated by vertical bars and introns by the connecting horizontal line. The smallest exons are not to scale due to the minimum line thickness required for printing. In the cDNA map (middle), constitutively-spliced, odd-numbered exons are gray and even-numbered exons, black. Alternatively-processed exons (or portions of 25 exons) are colored as follows: 14 – olive, 25B – red, 26 – blue, 34 – light green, 35 – orange, 38B – dark green, 38D – purple. The thinner portions of exons 1 and 38 represent the 5' and 3' untranslated regions, respectively. Selected exons are labeled to facilitate counting. Black bars at the top of the figure indicate PCR product locations relative to the cDNA map. Nine of the bars are interrupted by a thin line to indicate portions deleted by alternative splicing. Red bars (labeled with GenBank accession numbers) represent infant brain cDNA clone ESTs. For one clone, only a 30 3' EST has been reported. Thin lines indicate portions deleted by alternative splicing

and dashed lines indicate unsequenced portions. The starred scale bar equals 1 kb for PCR products and the cDNA map and 10 kb for the genomic map.

Fig. 4. Schematic of predicted α_{1G} proteins. Each aa residues is represented by a small circle. In the large cytoplasmic and extracellular loops, a full up-down cycle measures 100 residues. Main features of the topology are labeled in large type and described in the text. Portions of the protein involved in alternative splicing have a blue background. These and portions derived from odd-numbered exons are labeled in small type. A similarity score was computed for each residue from alignments of the aa sequence of each α_{1G} exon with the sequences of the homologous human α_{1H} (unpublished observations) and α_{1I} (submitted) exons by iterative pairwise use of **gap** (Genetics Computer Group, Wisconsin Package Version 9.0) with default parameters. **Pipe**, **colon**, **period** and **space** similarity symbols were assigned numerical values of 3, 2, 1 and 0, respectively; α_{1G} vs. α_{1H} and α_{1G} vs. α_{1I} scores for an individual α_{1G} residue were added to yield a final score of 0 to 6. Residue identity in all three proteins produced a score of 6; pairing of an α_{1G} residue with unrelated amino acids in both alignments produced a score of 0. Exons 14, 16, 26, 35 and 38 had no apparent α_{1H} or α_{1I} homologues; these residues are uncolored. Exon 36 and the C-terminal half of exon 8 had only α_{1H} homologues and exon 34 had only an α_{1I} homologue; the maximum possible similarity score for these regions is 3. Splice sites, extracellular cysteines and potential *N*-glycosylation and phosphorylation sites identified with PROSITE are indicated by the appropriate symbols. Symbol colors have the following meanings: black – conserved among all human α_1 subunits, purple – conserved within 3 aa residues in the multiple sequence alignment of all human α_1 subunits, blue – conserved among the human ABE and GHI subfamilies, green – conserved among all human T α_1 subunits, brown – also present in human α_{1B} , orange – also present in human α_{1H} , pink – unique to α_{1G} . PKA: cyclic-nucleotide-dependent protein kinase phosphorylation site, PKC: protein kinase C phosphorylation site, CKII: casein kinase II phosphorylation site, Tyr: tyrosine kinase phosphorylation site. One residue in ID1-2 was identified as a potential site for phosphorylation by both PKA and PKC.

Fig. 5 is a schematic diagram of the RNA processing leading to the 8 α_{1I} variants.

DETAILED DESCRIPTION OF THE INVENTION

The human brain T calcium channel α_{1G} subunit gene, *CACNA1G*, has now been discovered to consist of 38 protein-coding exons. Alternative processing of the gene transcript allows this single gene to code for sixty-four distinct α_{1G} protein products. In 5 Table 2, each exon or portion of an exon is listed. In Table 1, the component exons of individual splice variants are described. These two tables are sufficient for a complete description of the newly discovered compositions.

Table 1 lists the component exons of the 64 α_{1G} protein products. Only the missing portions of each variant are noted in the description; the symbol “ Δ ” denotes 10 deletion of the exon following the symbol. Thus, variant 1 consists of all exons save 14, 25B, 26, 34, 35 and 38B; in other words, exons 1 – 13, 15- 24, 25A, 27 – 33, 36 – 37, 38A and 38C are concatenated to form the protein. The final column lists the number of aa residues in each variant.

Table 1. α_{1G} Splice Variants

Variant	Description	Exon 14	Exon 25B	Exon 26	Exon 34	Exon 35	Exon 38B	Length (aa)
1	$\Delta 14\Delta 25B\Delta 26\Delta 34\Delta 35\Delta 38B$	—	—	—	—	—	—	2164
2	$\Delta 14\Delta 25B\Delta 26\Delta 34\Delta 35$	—	—	—	—	—	+	2243
3	$\Delta 14\Delta 25B\Delta 26\Delta 34\Delta 38B$	—	—	—	—	+	—	2209
4	$\Delta 14\Delta 25B\Delta 26\Delta 34$	—	—	—	—	+	+	2288
5	$\Delta 14\Delta 25B\Delta 26\Delta 35\Delta 38B$	—	—	—	+	—	—	2212
6	$\Delta 14\Delta 25B\Delta 26\Delta 35$	—	—	—	+	—	+	2291
7	$\Delta 14\Delta 25B\Delta 26\Delta 38B$	—	—	—	+	+	—	2257
8	$\Delta 14\Delta 25B\Delta 26$	—	—	—	+	+	+	2336

9	$\Delta 14\Delta 25B\Delta 34\Delta 35\Delta 38B$	—	—	+	—	—	—	2182
10	$\Delta 14\Delta 25B\Delta 34\Delta 35$	—	—	+	—	—	+	2261
11	$\Delta 14\Delta 25B\Delta 34\Delta 38B$	—	—	+	—	+	—	2227
12	$\Delta 14\Delta 25B\Delta 34$	—	—	+	—	+	+	2306
13	$\Delta 14\Delta 25B\Delta 35\Delta 38B$	—	—	+	+	—	—	2230
14	$\Delta 14\Delta 25B\Delta 35$	—	—	+	+	—	+	2309
15	$\Delta 14\Delta 25B\Delta 38B$	—	—	+	+	+	—	2275
16	$\Delta 14\Delta 25B$	—	—	+	+	+	+	2354
17	$\Delta 14\Delta 26\Delta 34\Delta 35\Delta 38B$	—	—	+	—	—	—	2171

18	$\Delta 14\Delta 26\Delta 34\Delta 35$	—	+	—	—	—	+	2250
19	$\Delta 14\Delta 26\Delta 34\Delta 38B$	—	+	—	—	+	—	2216
20	$\Delta 14\Delta 26\Delta 34$	—	+	—	—	+	+	2295
21	$\Delta 14\Delta 26\Delta 35\Delta 38B$	—	+	—	—	—	—	2219
22	$\Delta 14\Delta 26\Delta 35$	—	+	—	—	—	+	2298
23	$\Delta 14\Delta 26\Delta 38B$	—	+	—	+	+	—	2264
24	$\Delta 14\Delta 26$	—	+	—	+	+	+	2343
25	$\Delta 14\Delta 34\Delta 35\Delta 38B$	—	+	+	—	—	—	2189
26	$\Delta 14\Delta 34\Delta 35$	—	+	+	—	—	+	2268

27	$\Delta 14\Delta 34\Delta 38B$	—	+	—	+	—	—	2234
28	$\Delta 14\Delta 34$	—	+	—	+	+	+	2313
29	$\Delta 14\Delta 35\Delta 38B$	—	+	+	—	—	—	2237
30	$\Delta 14\Delta 35$	—	+	+	—	—	+	2316
31	$\Delta 14\Delta 38B$	—	+	+	+	—	—	2282
32	$\Delta 14$	—	+	+	+	+	+	2361
33	$\Delta 25B\Delta 26\Delta 34\Delta 35\Delta 38B$	+	—	—	—	—	—	2187
34	$\Delta 25B\Delta 26\Delta 34\Delta 35$	+	—	—	—	—	+	2266
35	$\Delta 25B\Delta 26\Delta 34\Delta 38B$	+	—	—	—	—	+	—
								2232

36	$\Delta 25B\Delta 26\Delta 34$	+	—	—	—	—	+	+	2311
37	$\Delta 25B\Delta 26\Delta 35\Delta 38B$	+	—	—	+	—	—	—	2235
38	$\Delta 25B\Delta 26\Delta 35$	+	—	—	+	—	—	+	2314
39	$\Delta 25B\Delta 26\Delta 38B$	+	—	—	+	+	—	—	2280
40	$\Delta 25B\Delta 26$	+	—	—	+	+	+	+	2359
41	$\Delta 25B\Delta 34\Delta 35\Delta 38B$	+	—	+	—	—	—	—	2205
42	$\Delta 25B\Delta 34\Delta 35$	+	—	+	—	—	—	+	2284
43	$\Delta 25B\Delta 34\Delta 38B$	+	—	+	—	+	—	—	2250
44	$\Delta 25B\Delta 34$	+	—	+	—	+	+	+	2329

45	$\Delta 25B\Delta 35\Delta 38B$	+	-	+	+	-	-	2253
46	$\Delta 25B\Delta 35$	+	-	+	-	+	+	2332
47	$\Delta 25B\Delta 38B$	+	-	+	+	-	-	2298
48	$\Delta 25B$	+	-	+	+	+	+	2377
49	$\Delta 26\Delta 34\Delta 35\Delta 38B$	+	+	-	-	-	-	2194
50	$\Delta 26\Delta 34\Delta 35$	+	+	-	-	-	+	2273
51	$\Delta 26\Delta 34\Delta 38B$	+	+	-	-	+	-	2239
52	$\Delta 26\Delta 34$	+	+	-	-	+	+	2318
53	$\Delta 26\Delta 35\Delta 38B$	+	+	-	+	-	-	2242

54	$\Delta 26\Delta 35$	+	+	—	+	—	+	2321
55	$\Delta 26\Delta 38B$	+	+	—	+	—	—	2287
56	$\Delta 26$	+	+	—	+	+	+	2366
57	$\Delta 34\Delta 35\Delta 38B$	+	+	+	—	—	—	2212
58	$\Delta 34\Delta 35$	+	+	+	—	—	+	2291
59	$\Delta 34\Delta 38B$	+	+	+	—	+	—	2257
60	$\Delta 34$	+	+	+	—	+	+	2336
61	$\Delta 35\Delta 38B$	+	+	+	+	—	—	2260
62	$\Delta 35$	+	+	+	—	—	+	2339

	$\Delta 38B$	+	+	+	+	—	2305
63	full	+	+	+	+	+	2384
64							

For each exon, the nucleotide sequence and the corresponding amino-acid (aa) sequence are listed in single-letter IUPAC code. Lower case letters in the aa sequences indicate that only two nucleotides of the codon belong to the exon (the codon is interrupted). A dash indicates a stop codon.

Table 2.

(SEQ ID NOs: 1 and 82) Exon 1 (constitutive)

```
atggacgaggaggaggatggagcgggcgccgaggagtccggacagccccggagcttcatgcggctcaa
cgacctgtcggggggccggggggccggccggggccgggtcagcagaaaaggaccggcagcgcggact
ccgaggcggaggggctccgtacccggcgtccggccggatcttacttgagccaggacagc
cgcccgccgagctggtgtccgcacggtgttaaccc
```

```
MDEEEEDGAGAEESQPRSFMRILNDLSGAGGRPGPGSAEKDPGSADSEAEGLPYPALAPVVFYLSQDS
RPRSWCLRTVCNp
```

(SEQ ID NOs: 2 and 83) Exon 2 (constitutive)

```
ctggttttagcgcatcagcatgttggtcattttcaactgcgtgaccctggcatgttccggccat
gcgaggacatcgccgtgactcccagcgtccggatcctgcag
```

```
WFERISMLVILLNCVTLGMFRPCEDIACDSQRCCRILQ
```

(SEQ ID NOs: 3 and 84) Exon 3 (constitutive)

```
gcctttatgacttcatcttgccttcttgcgtggagatgggtgaagatgggtggccttggcat
cttggaaaaagtgttacctggagacacttggAACCGGCTTgacttttcatcgcatcgagg
```

```
AFDDFIFAFFAVEMVKMVALGIFGKKCYLGDWNRLDFFIVIAg
```

(SEQ ID NOs: 4 and 85) Exon 4 (constitutive)

```
gatgctggagtactcgctggacctgcagaacgtcagtttcagctgtcaggacagtccgtgtcgtc
gaccgctcaggccattaaccgggtgcca
```

```
MLEYSLDLQNVSFSAVRTVRVLPLRAINRVP
```

(SEQ ID NOs: 5 and 86) Exon 5 (constitutive)

```
gcatgcgcattttcacgttgcgtggatacgtgcgtccatgtggcaacgtcctgtgtcgtc
tttttgtttttcatttccgtccatgtccgtccagctgtggcaggcgtgttcggaaaccgatc
tttccatcacgttgcataatcgtc
```

```
sMRILVTLLDTLPMLGNVLLCFFVFFFIFGIVGVQLWAGLLRNRCFLPENFS1
```

(SEQ ID NOs: 6 and 87) Exon 6 (constitutive)

ccccctgagcgtggacctggagcgctattaccagacagagaacgaggatgagagcccttcatctgct
cccagccacgcgagaacggcatcggtcctgcagaagcgtgcccacgcgtgcgcgggacggggcggt
ggcccacccctgcggctcgactatgaggcctacaacagctccagcaacaccacctgtcaactggaa
ccagtactacaccaactgctcagcggggagcacaacccttcaagggcgccatcaactttgacaaca
ttggctatgcctggatgcctccag

PLSVDLERYYQTENEDESPFICSQPRENGMRSCRSVPTLRGDGGGGPPCGLDYEAYNSSNTTCVNWN
QYYTNCSAGEHNPFKGAINFDNIGYAWIAIFQ

(SEQ ID NOs: 7 and 88) Exon 7 (constitutive)

gtcatcacgcgtggagggtcgacatcatgtacttgtatggatgctcattccttacaattt
catctacttcattccttcattcatc

VITLEGWVDIMYFVMDAHSFYNFYIYFILLII

(SEQ ID NOs: 8 and 89) Exon 8 (constitutive)

gtgggctccatgtatcaacctgtgcgtggattgccacgcagttctcagagaccaagca
gcgggaaagccagctgtatgcggagcagcgtgtgcgggtcctgtccaaacgcgcagcaccctggcttagct
tctctgagcccgccagctgtatgaggagctgctcaagtacctggtacatcattcgtaaggcagcc
cgcaggctggctcaggctctcgccagcagggtgtgcgggtggctcagcagccagcaccct
cgggggccaggagaccagccagcagcagctgtctcgctccaccgcctatccgtccaccacc
tggtgcaccaccaccaccatcaccaccactaccacccatggcaatgggacgctcagggccccccgg
gccagccggagatccaggacagggatgccaatgggtccgcaggctatgtccaccaccctcgac
gcctgcctctccggggccccccctggtggcgagactgtgcacagtttaccatgccactgccc
acttagagccagtcgcgtccaggccccctccaggtccatctgaggatccggcaggactgtg
ggcagcgggaagggttatccaccgtgcacaccagccctccaccggagacgctgaaggagaaggact
agtagaggtggctccagcttggcccccaaccctcaccgcctcaacatccaccggccctaca
gctccatgcacaagctgtggagacacagagactacag

VGSFFMINLCLVVIATQFSETKQRESQLMREQVRFLSNASTLASFSEPGSCYEELLKYLVYILRKAA
RRLAQVSRAAGVRVGLLSSPAPLGGQETQPSSCSRSHRRILSVHHILVHHHHHHHHYHLGNGLRAPR
ASPEIQDRDANGSRRMLPPPSTPALSGAPPGAESVHSFYHADCHLEPVRCQAPPRSPSEASGRTV
GSGKVYPTVHTSPPETLKEKALVEVAASSGPPTLTSLNIPPGPYSSMHKLLETQST

(SEQ ID NOs: 9 and 90) Exon 9 (constitutive)

gtgcctgcacaaagcttgcacagatctccagcccttgcgttggaaaggcagacactggagcctgtggtcca
gacagctgcctactgtgcggggccggggcaggggagggtggagctgcgcaccgtgaaatgcctga
ctcagacagcggcaggatgttgcacacaggatgcggcagcagcgcacccggaccccaaca

gccggcggcaacggagcctggcccaagatgcagagcccagctgtgctggccttggaggctaatt
tgtgacacccctccgaaagattgtggacagcaagtactttggccgggaatcatgatcgccatcctgg
caacacactcagcatggcatcgaataaccacgagcag

**gACQSSCKISSLKADSGACGPSCPYCARAGAGEVELADREMPDSDEAVYEFTQDAQHSDLRDPH
SRRQRSLGPDAEPSSVLAFWRLICDTFRKIVD SKYFGRGIMIAILVNTLSMGIEYHEQ**

(SEQ ID NOS: 10 and 91) Exon 10 (constitutive)

cccgaggagcttaccaacgccttagaaatcagcaacatcgcttcaccagcctttgcctggagat
gctgctgaagctgttatggcccttgctacatcaagaatccctacaacatcttcgatggtg
tcattgtggtcatcag

PEELTNALEISNIVFTSLFALEMLLKL VVYGPFGYIKNPYNIFDGIVVVIs

(SEQ ID NOS: 11 and 92) Exon 11 (constitutive)

cgtgtggagatcgccggcagcaggggggcggcctgtcggtgctgcggaccccccctgatgcgtg
tgctgaagctggtgcgcctccgcggcgtgcagcggcagctggtggtgctcatgaagaccatggac
aacgtggccacccctgcatgtctatgtcttcatcttcatcttcag

VWEIVGQQGGGLSVLRTFRLMRVLKLVRFLPALQRQLVVL MKTMDNVATFCM LMLFIFIFs

(SEQ ID NOS: 12 and 93) Exon 12 (constitutive)

catcctggcatgcatcttcggctgcaagttgcctctgagcgggatgggacaccctgccagacc
ggaagaattttgactccttgctctggccatcgtaactgtcttcag

ILGMHLFGCKFASERDGTLPDRKNFDSSLWAI TVFQ

(SEQ ID NOS: 13 and 94) Exon 13 (constitutive)

atcctgaccaggaggactggaacaaagtccctacaatggtatggcctccacgtcgccctgggg
cctttatccattggccctcatgacccctcgcaactacgtgcttcatttgcgtcgccattctgg
tggagggttccaggcggag

ILTQEDWNKVLYNGMASTSSWAALYFIALMTFGNYVLFNLLVAILVEGFQAE

(SEQ ID NOS: 14 and 95) Exon 14 (variable)

gaaatcagcaaacggaaagatgcgagtgacagttaaagctgtattcagctgcctgtcgactcccagg
g

EISKREDASGQLSCIQLPVDSQG

(SEQ ID NOS: 15 and 96) Exon 15 (constitutive)

ggagatgccaacaagtccgaatcagagcccatttcttccaccacggatggatggatggggacag
gaagaagtgcgttgcct

GDANKSESEPDPFFSPSLDGDRKKCLA

(SEQ ID NOs: 16 and 97) Exon 16 (constitutive)

tggtgtccctggagagcaccggagctgcggaaagagcctgctgcgccttcatcatccacacggcc
gccacacccatgtcgctgccaagagcaccaggcggcctggcgaggcgctggccctgcgtcg
ccgcaccaggcagcgggtcgccagagcctgggcggccacgagatgaagtccac

1VSLGEHPELRKSLLPPLIHTAATPMSPKSTSTGLGEALGPASRTSSSGSAEPGAAHEMKSP

(SEQ ID NOs: 17 and 98) Exon 17 (constitutive)

cccaagcgcgcgcagctccgcacagccccctggagcgcgtcaagcagctggaccaggcaggcgctccag
ccggaacagcctcgccgtgcacccagcctgaagcggagaagccaaagtggagagcggcggtccctgt
tgtcgggagaaggccaggagagccaggatgaagaggagagctcagaagaggagcggccagccctgc
ggcagtgaccatcgccacaggggtccctggagcgggaggccaagagttcccttgacctgccaagacac
actgcagggtgccagggtgcacgcactgcactggccagggtctgcctctgagcaccaggactgca
atggcaagtccggcttcagggcgctggccggccctgcccctgatgaccccccactggatgggat
gacgcccgtacgaggcgaaacctg

PSARSSPHSPWSAASSWTSRRSSRNSLGRAPSLKRRSPGERRSLLSGEGQESQDEEESEERASPA
GSDHRHRGSLEREAKSSFDLPDTLQVPGHLRTASGRGSASEHQDCNGKSASGRLARALRPDDPPLDGD
DADDEGNL

(SEQ ID NOs: 18 and 99) Exon 18 (constitutive)

agcaaaggaaaacgggtccgcgcgtggatccgagccccactccctgcctgcctcgagcggagactc
ctggtcagcctacatttccctcctcagtccag

SKGERVRAWIRARLPACCLERDSWSAYIFPPQSR

(SEQ ID NOs: 19 and 100) Exon 19 (constitutive)

gttccgcctcctgtgtcacggatcatcacccacaagatgttcgaccacgtggccttgcacatcatct
tccttaactgcacccatcgccatggagcggccaaaattgaccccccacagcgct

FRLLCHRIITHKMFDHVVLVIIFLNCITIAMERPKIDPHSA

(SEQ ID NOs: 20 and 101) Exon 20 (constitutive)

gaacgcacatttccctgacccttccaaattacatttcaccgcagtcttctggctgaaatgacagtgaa
g

ERIFLTLSNYIFTAVFLAEMTVK

(SEQ ID NOS: 21 and 102) Exon 21 (constitutive)

gtggtggcactggctgtgctcggggagcaggcgacacgtggacgg
gctgttgtgctcatctccgtcatcgacattctggtgcacatggatcc
tgggcatgctgagggtgctgcggctgcggaccctgcgcggctcag

VVALGWCFGEQAYLSSWNVLDGLLVLIISVIDILVSMVSDSGTKILGMLRVLRLLRPLr

(SEQ ID NOS: 22 and 103) Exon 22 (constitutive)

ggtgatcagccgggcccggcaggggctgaagctgggtggagacgcgtatgtcctcactgaaaccatcg
gcaacattgttagtcatctgtgccttcatttcggcatcttgggggtgcag

VISRAQGLKLVVETLMSSLKPIGNIVVICCAFFIIFGILGVQ

(SEQ ID NOS: 23 and 104) Exon 23 (constitutive)

ctttcaaaggaaagttttcgtgtgccaggcgaggataccaggaacatccaataatcgactg
tgccgaggccagttaccgggtgggtccggcacaagtacaacttgcacacccttggccag

LEKGKFFVCQGEDTRNITNKSDCAEASYRWVRHKYNFDNLGQ

(SEQ ID NOS: 24 and 105) Exon 24 (constitutive)

gccctgatgtccctttcggtttggctccaaggatgggtgggatcatgtacgtggctgga
tgctgtggcggtggaccagcag

ALMSLFVLASKDGWVDIMYDGLDAVGVDQQ

(SEQ ID NOS: 25 and 106) Exon 25A (constitutive)

cccatcatgaaccacaaccctggatgctgtacttcatttcgttccgtcattgtggccttctt
tgtcctgaacatgttgggtgggtggagaactccacaagtgtcggcagcaccaggaggaag
aggaggccccggcggcggaggagaagcgcctacgaagactggagaaaaagagaagga

PIMNHNPWMLLYFISFLLIVAFFVLMFVGVVVNFHKCRQHQEEEARRREEKRLRRLEKKRR

(SEQ ID NOS: 26 and 107) Exon 25B (variable)

gtaaggagaagcagatggctg

sKEKQMA

(SEQ ID NOS: 27 and 108 and 162) Exon 26 (variable)

atctaattgtggacatgttaattgttccggcagtcagccagcgtgcgtcag

nMLDDVIASGSSASAAS (when follows exon 25A)

dMLDDVIASGSSASAAS (when follows exon 25B)

(SEQ ID NOs: 28 and 109 and 163) Exon 27 (constitutive)

aagcccagtgc aaac cttactactccgactactcccgttccggcttcgtccaccacttgtgcacc
agccactac tggac ctcttcatcacagg tgc atcgg gctga acgtggt caccatggccatggagca
ctaccagcagccccag

eAQCKPYYS DYSRFRL LVHHLC TSHYLDL FITGVIGLN VVTMAMEHYQQPQ (when it follows
exon 25B or exon 26)

kAQCKPYYS DYSRFRL LVHHLC TSHYLDL FITGVIGLN VVTMAMEHYQQPQ (when it follows
exon 25A)

(SEQ ID NOs: 29 and 110) Exon 28 (constitutive)

attctggatgaggctctgaagatctgcaactacatcttcaactgtcatcttgcgttggagtcagttt
caaacttgcgttggcccttgggttccgtcggttccaggacag

ILDEALKICNYIFTVIFVLESVFKLVAFGFRRFFQDr

(SEQ ID NOs: 30 and 111) Exon 29 (constitutive)

gtggaaaccagctggacctggccattgtgctgtccatcatggcatcagctggaggaaatcgagg
tcaacgcctcgctgcccataacccaccatcatccgcatcatgagggtgctgcgcattgcccag

WNQLDLAI VLLSIMGITLEEIEVN ASLPINPTIIRIMRVLRIAR

(SEQ ID NOs: 31 and 112) Exon 30 (constitutive)

tgctgaagctgctgaagatggctgtggcatgcgggcgtgctggacacggatgcaggccctgccc
cag

vLKLLKMAVGMRALLDTVMQALPQ

(SEQ ID NOs: 32 and 113) Exon 31 (constitutive)

gtggggAACCTGGACTTCTTCATGTTGTTTTCATCTTGAGCTCTGGCGTGGAGCTCTT
tggagacctgg

VGNLGLLFMILLFFFIAALGVELFGDL

(SEQ ID NOs: 33 and 114) Exon 32 (constitutive)

agtgtgacgagacacacccctgtgaggcctggccgtcatgccaccttcggaaacttggcatggcc
ttccctaaccctttccgagtctccacaggtgacaattggaatggcattatgaag

eCDETHPC EGLGRHATFRNFGMAFLTLFRVSTGDNWNGIMK

(SEQ ID NOs: 34 and 115) Exon 33 (constitutive)

gacaccctccggactgtgaccaggagtccacctgctacaacacggcatctcgcttatctactttgt
gtccttcgtctgacggcccagttcgtcttagtcaacgtggatcgccgtctgatgaagcacctgg
aggagagaacaaggaggccaaggaggaggccagctagaggctgagctggagatgaagacc
ctcagccccagccccactcgccactggcagcccccttctggctggctggagggccccacag
ccccgacagccccaaagcctgggctctgcacccagcggccacgcgagatcagcctccactttccc
tggagcacccacg

DTLRDCDQESTCYNTVISPIYFVSFVLTAQFVLVNVVIAVLMKHLEESNKEAKEEAELEAELLEMKT
LSPQPHSPPLGSPFLWPGVEGPDPSPDKPGALHPAAHRSASHFSLEHPT

(SEQ ID NOs: 35 and 116) Exon 34 (variable)

gacaggcagctgttgcacccatccctgctgatccagggtccctggagtggagctgaagctgat
ggacgagctggcaggcccagggggccagcccttcgcctccctctgccccagcctggaggctccg
acccacag

DRQLFDTISLLIQGSLEWELKLMDELAGPGGQPSAFPSAPSLGGSDPQ

(SEQ ID NOs: 36 and 117) Exon 35 (variable)

atccctctagctgagatggaggctctgtctgacgtcagagatttgtctgaaccgtcctgctct
agctctgacggatgactcttgctgtacatgcacacactttacttagtgcctggagagcaat
IPLAEMEALSLTSEIVSEPSCSLALTDDSLPDDMHTLLSALESN

(SEQ ID NOs: 37 and 118) Exon 36 (constitutive)

atgcagccccaccccacggagctgccaggaccagacttaactgactgtgcggaaagtctgggtcagccg
aacgcactctgccaatgacagactacatgtgcggcatggagcactgccgagggccccctggac
acaggggctggggctccccaaagctcagtcag

MQPHPTELPGPDLLTVRKSGVSRTHSLPNDSYMCRHGSTAEGPLGHRGWGLPKAQ

(SEQ ID NOs: 38 and 119) Exon 37 (constitutive)

gtcccgcttgcgttcaactccagccagcagataccagctacatcctgcagttccaaagatgca
cctcatctgctccagccccacagcgcggccacactgggaccatccccaaactgccccaccaggacg
ctcccccttggctcagaggccactcaggcgccag

gSVLSVHSQPADTSYILQLPKDAPHLLQPHSAPTWTGTIPKLPPPGRSPLAQRPLRRQ

(SEQ ID NOs: 39 and 120) Exon 38A (constitutive)

gcagcaataaggactgactccttggacgttcagggtctgggcagccgggaagacacctgctggcagag

AAIRTDSDLVQGLGSREDLLAE

(SEQ ID NOs: 40 and 121) Exon 38B (variable)

gtgagtggccctccccccccctggcccccactctttctggggcagtcaagtacccaggcaca
gcagcaccccgagccacagcaagatctccaagcacatgaccggccagcccccttgcccagggccag
aaccccaactggggcaagggccctccagagaccagaagcagcttagatggacacggagctgagctgg
atttcaggagacccctgccccctggccggccag

VSGPSPLARAYSFWGQSSTQAQQHSRSHSKISKHMTPPAPCPGPEPNWGKGPETRSSLELDTELSW
ISGDLLPPGGQ

(SEQ ID NOs: 41 and 122) Exon 38C (constitutive)

gaggagccccatccccacgggacctgaagaagtgtacagcgtggaggcccagagctgccagcgccggcctacgtc
tctattttattaaattaattgaatcttagta

EEPPSPRDLKKCYSVEAQSCQRRPTSWLDEQRRHSIAVSCLDSGSQPHLGTDPNLGGQPLGGPGSRP
KKKLSPPSITIDPPESQGPRTPPSPGICLRRRAPSSDSKDPLASGPPDSMAASPSPKKDVLSLSGLSS
DPADLDP-

(SEQ ID NO: 42) Exon 38D (variable)

tatgcggatgtacgacatttgtgactgaagagacttggccctactttatgtgtctcagaat
attttgggcgaaggcgtctgtcttggctatttaaacctaaaataacagtcttagttatattccct
cttcttgc当地cacaagctgggaccgcgagcacattgcagccccaaacggtgcccatcttcagcgg
gagcgagaaccatggaaactgtaatgtacttattttcccttaacctcgatcatttctgt
agggaaaaaaaaaaaaaaaagaaaaaaaatgagatttacaagtgaaatgaaaccttttatatacat
acatacatatctatctatctatataaaaaataatggatctttctaaataaaaaaa

Non-coding

The calcium channel α_{II} subunit gene, *CACNAII*, consists of 37 protein-coding exons. Alternative processing of the gene transcript allows this single gene to code for eight distinct α_{II} protein products. In Table 4, each exon or portion of an exon is listed. In Table 3, the component exons of individual splice variants is described.

These two tables are sufficient for a complete description of composition. The presumed RNA processing mechanisms giving rise to these variants are discussed below.

5

Table 3 lists the composition of the 8 α_{II} protein products. Only the missing portions of each variant are noted in the description; the symbol “ Δ ” denotes deletion of the exon following the symbol. Thus, variant 1 consists of all exons save 9, 33A and 36B; in other words, exons 1 – 8, 10 – 32, 33B, 34 – 35, 36A and 37 are concatenated to form the protein. The final column lists the number of aa residues in each variant.

Table 3. α_{II} Splice Variants

Variant	Description	Exon 9	Exon 33A	Exon 36B or 37	Length (aa)
1	$\Delta 9\Delta 33A\Delta 36B$	Δ	Δ	37	2175
2	$\Delta 9\Delta 33A\Delta 37$	Δ	Δ	36B	1968
3	$\Delta 9\Delta 36B$	Δ	+	37	2188
4	$\Delta 9\Delta 37$	Δ	+	36B	1981
5	$\Delta 33A\Delta 36B$	+	Δ	37	2210
6	$\Delta 33A\Delta 37$	+	Δ	36B	2003
7	$\Delta 36B$	+	+	37	2223
8	$\Delta 37$	+	+	36B	2016

For each exon, the nucleotide sequence and the corresponding amino-acid (aa) sequence are listed in single-letter IUPAC code. Lower case letters in the aa sequences indicate that only two nucleotides of the codon belong to the exon (the codon is interrupted). A dash indicates a stop codon.

TABLE 4

(SEQ ID NOs: 43 and 123) Exon 1 (constitutive)

```
atggctgagagcgccctcccgccctcctcatctgcaggcagccccagccgctgaccaggagtcaccac
ggagcagcccgagcccgagccccatcctcccgccaggcctggagggcctctggatggagctg
atcctcatgtcccacacccagacctggcgctattgccttctgcctgcacagaccaccagcccc
cggaactggtgcatcaagatggtgtcaaccc
```

```
MAESASPPSSAAAPAAEPGVTEQPGPRSPSSPPGLEEPLDGADPHVPHDLPAPIAFFCLRQTTSP
RNWC1KMKVCNp
```

(SEQ ID NOs: 44 and 124) Exon 2 (constitutive)

```
gtggtttgaatgtgtcagcatgctggatcctgctgaactgcgtgacacttggcatgttaccagccgt
gcgacgacatggactgcctgtccgaccgctgcaagatcctgcag
```

```
WFECVSMLVILLNCVTLMYQPCDDMDCLSDRCKILQ
```

(SEQ ID NOs: 45 and 125) Exon 3 (constitutive)

```
gtctttatgacttcatcttatcttcttgcctggatggagatggctcaagatggggccctggggat
ttttggcaagaagtgtcacctcggggacacatggaccgcctggatttcttcatcgtcatggcagg
```

```
VFDDDFIFIFFAMEMVLKMVALGIFGKKCYLGDWTNRRLDFIVMAg
```

(SEQ ID NOs: 46 and 126) Exon 4 (constitutive)

```
gatggtcgagtaactccctggaccttcagaacatcaacactgtcagccatccgcaccgtgcgcgtcctga
ggccctcaaagccatcaaccgcgtcccc
```

```
MVEYSLDLQNINLNSAIRTVRVLRPLKAINRVP
```

(SEQ ID NOs: 47 and 127) Exon 5 (constitutive)

```
gtatgcggatcctggtaacactgtcctggacacactgcctatgtggggatgtcctgtgtctgc
ttctttgtttttcatcttggcatcatagggtgtcagctctggccggcctgtcgtaaccgtgc
cttcctggaggagaacttcacat
```

```
SMRILVNLLDTLPMILGNVLLCFFVFFFIGIIGVQLWAGLLRNRCFLEENFTi
```

(SEQ ID NOs: 48 and 128) Exon 6 (constitutive)

acaaggggatgtggccttccccatactaccagccgaggaggatgatgagatgccttcatctgct
 ccctgtcgccgacaaatggataatggctgcccattgagatcccccgctcaaggagcaggccgtgag
 tgctgcctgtccaaggacgtctacgactttggggccggccaggacctcaatgccagccct
 ctgtgtcaactggaaccgttactacaatgtgtgcccacggcagccaaaccccaaaaagggtgcca
 tcaactttgacaacatcggttatgctggattgtcatcttccag

**QGDVALPPYYQPEEDDEMPFICSLSGDNGIMGCHEIPPLKEQGRECCLSKDDVYDFGAGRQDLNASGL
 CVNWNRYYNVCRTGSANPHKGAINFDNIGYAWIVIFQ**

(SEQ ID NOs: 49 and 129) Exon 7 (constitutive)

gtgatcaacttggaggctgggtggagatcatgtactacgtgatggatgctcactccttctacaactt
 catctacttcatcctgcttatcata

VITLEGWVEIMYYVMDAHSFYNFYIYFILLII

(SEQ ID NOs: 50 and 130) Exon 8 (constitutive)

gtgggctccttcttcatgtatcaacctgtgcctcggtcatagcgacccagttctcgagaccaagca
 acgggagcacccggctgtgtctggagcagcggcagcgctacctgtccctccagcacggtgccagctacg
 cccgagcctggcactgtctacgaggagatcttccagtatgtctgccacatcctgcgcaggccaaagcgc
 cgcgcctggccttaccaggccctcagagccggccaggccctggccggaggccccggcccccccc
 cgccaaacctgggccccacgccaaggagccccggcactacc

**VGSFFMINLCLVVIATQFSETKQREHRLMLEQRQRYLSSSTVASYAEPGDCYEEIFQYVCHILRKAKR
 RALGLYQALQSRRQALGPEAPAPAKPGPHAKEPRHY**

(SEQ ID NOs: 51 and 131) Exon 9 (variable)

atgggaagactaagggtcaggagatgaaggagacatctcgaaagccggcattgccagactttgcat
 gggcctgcctccctggaaatgtatcaactcggttaagag

hGKTKGQGDEGRHLGSRHCQTLHGPASPGNDHSGR

(SEQ ID NOs: 52 and 132 and 164) Exon 10 (constitutive)

agctgtcccccaacatacgccctggatgcgacccccacaccctggatgcagccatccccccacg
 ctggcttccatccccccagctggcttgcgcagcatgaggacggccggccgtggccctggccctgg
 cagcaccgactcggccaggaggctggctccggagctccgctggatggcaggacgaggccatg
 gggacggggccggagcagcaggacggagcccttcagaactggaaaggaggaggaggagg
 caggcggatggggcggtctggctgtgcgggatgtgtggcgaggacgcgagccaagctgcgcggcat
 cgtggacagcaagtacttcaaccgggcatcatgtatggccatctggtaaacaccgtcagcatggca
 tcgagcaccacgagcag

eLCPQHSPLDATPHTLVQPIPATLASDPASCPCQHEDGRRPSGLGSTDSQEGSGSGSSAGGEDEAD
 GDGARSSEDGASSELKEEEEEEQADGAVWLCGVWRETRAKLRGIVDSKYFNRGIMMAILVNTVSMG
 IEHHEQ (when it follows exon 9)

qLCPQHSPLDATPHTLVQPIPATLASDPASCPCQHEDGRRPSGLGSTDSQEGSGSGSSAGGEDEAD
 GDGARSSEDGASSELKEEEEEEQADGAVWLCGVWRETRAKLRGIVDSKYFNRGIMMAILVNTVSMG
 IEHHEQ (when it follows exon 8)

(SEQ ID NOs: 53 and 133) Exon 11 (constitutive)

ccggaggagctgaccaacatcctggagatctgcaatgtggtcttaccagcatgtttgcctggagat
 gatcctgaagctggctgcattggctttcgactacctgcgttaaccctacaacatcttcgacagca
 tcattgtcatcatca

PEELTNILEICNVVFTSMFALEMILKLAFLDFDYLRLNPYNIFDSIIVII

(SEQ ID NOs: 54 and 134) Exon 12 (constitutive)

catctggagatcggtggggcaggccgcgggtggctgtcggtctgcggaccttccggctgcgcgc
 tgctgaaactggcgcttcatgcctgcggccagctcggtgctcatgaagaccatggac
 aacgtggcacccatctgcatgctcatgccttcatcttcatcttcag

IWEIVGQADGGLSVLRTFRLLRVLKLVRFMPALRRQLVVLMTMDNVATFCMLLMLFIFIF

(SEQ ID NOs: 55 and 135) Exon 13 (constitutive)

catccttggatgcataaaaaatggctgcaagttcagccctccgacggacactggagacacggtgcccc
 acaggaagaacttcgactccctgtgtggccatcgtaactgtgttccag

ILGMHIFGCKFSLRTDTGDTVPDRKNFDSLWAIUTVFQ

(SEQ ID NOs: 56 and 136) Exon 14 (constitutive)

atcctcacccaggaggactggAACGTCGTTCTCTACAATGGCATGGCCTCCACTTCTCCCTGGGCCTC
 CCTCTACTTGTGCGCCCTCATGACCTTCGGCAACTATGTGCTCTCACCTGCTGGTGGCCATCCTGG
 TGGAGGGCTTCAGGCGGAG

ILTQEDWNVVLYNGMASTSPWASLYFVALMTFGNYVLFNLLVAILVEGFQAE

(SEQ ID NOs: 57 and 137) Exon 15 (constitutive)

ggtagccaatcgctctactcggacgaggaccagagctcatccaacatagaagagttgataagct
 ccaggaaggcctggacagcagcagcgag

GDANRSYSDEDQSSSNIEEFDKLQEGLDSSG

(SEQ ID NOs: 58 and 138) Exon 16 (constitutive)

atcccaagctctgccaatccccatgaccccaatggcacctggaccccagtctccactgggtggg
 cacctaggctctgctgggctgcggacactgcggccactctcactgcagccggacccatgctgg
 ggcctggctccgaaagagcagtgtcatgtcttagggaggatgagctatgaccagcgctccctg

dPKLCPIPMTPNGLDPSLPLGGHLGPAGAAGPAPRLSLQPDPMILVALCSRKSSVMSLGRMSYDQRSL

(SEQ ID NOs: 59 and 139) Exon 17 (constitutive)

tccagctccggagctctactacggccatgggcccgcagcgccctggccagccgtcgctccag
 ctggAACAGCCTCAAGCACAAGCCGCGTCGGCGAGCATGAGTCCCTGCTCTGCAGCGCCGCG
 CGCGCGCCGGCTCGAGGTTGCCGCGACGAGGGCCGCCGGCGCACCCCTGCACACCCCA
 CACGCCACCACATTATCACGGGCCCATCTGGCGCACCGCCACCGCCACCGCCGACGCTGTC
 CCTCGACAACAGGGACTCGGTGGACCTGGCGAGCTGGTCCCAGGTGGCGCCACCCCGGGCG
 CCTGGAGGGCGGCAAGGCCGGCCCCGGGATGAGGACTGCAATGGCAGGATGCCAGCATGCCAAA
 GACGTCTCACCAAGATGGCGACCGCGGGATCGCGGGAGGATGAGGAGGAATCGACTAC

SSSRSSYYGPWGRSAAWASRRSSWNSLKHKKPPSAEHESLLSAERGGARVCEVAADEGPPRAAPLHTP
 HAHHIHHGPHLAHRHRHRTLSLDNRDSVDLAEVPAVGHAHPRAAGPAPGHEDCNGRMPSIAK
 DVFTKMGDRGDRGEDEEEIDY

(SEQ ID NOs: 60 and 140) Exon 18 (constitutive)

accctgtgttccgcgtccgcaagatgatcgacgtctataagcccactggtgcgaggccgcgaaga
 ctggctgtctacctttctctcccgagaacag

TLCFRVRKMIDVYKPDWCEVREDWSVYLFSPENr

(SEQ ID NOs: 61 and 141) Exon 19 (constitutive)

gttccgggtctgtcagaccattattgcccacaaactcttcactacgtcgctctggccttcatct
 ttctcaactgcatcaccatcgccctggagcggcctcagatcgaggccggcagcacc

FRVLCQTIIAHKLFDYVVLAFLNCITIALERPOIEAGST

(SEQ ID NOs: 62 and 142) Exon 20 (constitutive)

gaacgcacacccatccgtgtccaaactacatcttacggccatctcggtggcgagatgacattgaa
 g

ERIFLTYSNYIFTAIFVGEMTLK

(SEQ ID NOs: 63 and 143) Exon 21 (constitutive)

gtagtctcgctggccctgtacttcggcgagcaggcgtacctacgcacgcacgtggAACGTGCTGGATGG
 ctttcttgcgtgtccatcatcgacatcgatgtgggtccctggcctcagccggggagccaaatct
 tgggggtcccgagtcgttgcgtccctgcgcaccctacgcggccctgc

VVSLGLYFGEQAYLRSSWNVLGFLVFVSIIDIVVSLASAGGA~~KILGVLRVLLRTLRLPLr~~

(SEQ ID NOs: 64 and 144) Exon 22 (constitutive)

tgtcatcagccgggcgcgggctgaagctgggtggagacactcatctccctccctcaagcccacgc
gcaacatcgctcatctgcgtgcctttcatcatcttggcatcctggagtgcag

VISRAPGLKLVETLISSLKPIGNIVLICCAFFIIFGILGVQ

(SEQ ID NOs: 65 and 145) Exon 23 (constitutive)

ctcttcaaggcaagttctaccactgtctggcgtggacaccccaacatcaccaaccgctcgactg
catggccgccaactaccgctgggtccatcacaataacaacttcgacaacacctggccag

LFKGKFYHCLGVDTRNITNRSDCMAANYRWVHHKYNFDNLGQ

(SEQ ID NOs: 66 and 146) Exon 24 (constitutive)

gctctgatgtccctttgtcctggcatccaaggatggtggtaacatcatgtacaatggactgga
tgctgttgtgtggaccagcag

ALMSLFVLASKDGWVNIMYNGLDAVAVDQQ

(SEQ ID NOs: 67 and 147) Exon 25 (constitutive)

cctgtgaccaaccacaacccctggatgctgctgtacttcatctccctcgtcatcgtagtttt
tgtgctcaacatgttgtgggtgcgtggagaactccacaagtgcggcagcaccaggaggctg
aagaggcacggcggcgtgaggagaagcggctgcggccctggagaagaagcggcggga

PVTNHNPWMLLYFISFLLIVSFVLMFVGVVVENFHCRQHQEAEEARRREEKRLRRLEKKRR

(SEQ ID NOs: 68 and 148) Exon 26 (constitutive)

aggcccagcggctgccctactatgccacattgtcacacccggctgctcatccactccatgtgcacc
agccactacctggacatcttcatcacccatctgcctcaacgtggcaccatgtccctggagca
ctacaatcagccccacg

KAQRLPYYATYCHTRLLIHSMCTSHYLDIFITFIICLNVVTMSLEHYNQPT

(SEQ ID NOs: 69 and 149) Exon 27 (constitutive)

tccctggagacagccctcaagtagtgcacatatatgttaccactgtttgtgtggaggctgtgt
gaagctggcattggctgtggcgcttcttcaaggaccg

SLETALKYCNMFTTVFVLEAVLKLVAFGLRRFFKDr

(SEQ ID NOs: 70 and 150) Exon 28 (constitutive)

atggaaccagctggacctggccattgtactgtcagtcatggcatcaccctggaggagatcgaga
tcaatgcggccctgccccatcaatcccaccatcatccgcatcatgagggttctgcgcattgcccag

WNQLDLAIVLLSVMGITLEEIEINAALPINPTIIRIMRVLRIAR

(SEQ ID NOs: 71 and 151) Exon 29 (constitutive)

tgctgaagctgttgaagatggccacaggaatgcggccctgtggacacgggtggtcaagctttgcc
cag

vLKLLKMATGMRALLDTVVQALPQ

(SEQ ID NOs: 72 and 152) Exon 30 (constitutive)

gtggcaacctggcctcttcatgtctgtcttcatctatgtctgtctcgggtggagcttt
tggaaagctgg

VGNLGLLFMLLFFIYAAALGVELFGKL

(SEQ ID NOs: 73 and 153) Exon 31 (constitutive)

tctgcaacgacgagaaccgtgcgaggcatgagccgcattcgagaacttcggcatggcc
ttcctcacactttccaggtctccacgggtacaactgaaacggatcatgaag

vCNDENPCEGMSRHFATFENFGMAFLTLFQVSTGDNWNGIMK

(SEQ ID NOs: 74 and 154) Exon 32 (constitutive)

gacacgctgcccactgcacccacgacgagcgcagctgcctgagcagcctgcagtttgtcgccct
gtacttcgtgagcttcgtgctccgcgcagttcgtgctcatcaacgtgtggctgtgtcatga
agcacctggacgacagcaacaaggaggcgcaggaggacggcagatggatggcagctcgagctggag
atggccatggcctggccctggcccgaggctgcctcccgctcccccggcgccctggccgaggggcc
gggaggggcgggcggcggggcggacaccgaggcggcttgcggcgctgctactcgccctgcccag

DTLRDCTHDERSCSSLQFVSPLYFVSFVLTAQFVLINVVAVLMKHLDDSNKEAQEDAEMDAELELE
MAHGLGPGLPTGSPGAPGRGPGGAGGGDTEGGLCRRCYSPAQ

(SEQ ID NOs: 75 and 155) Exon 33A (variable)

gagaacctgtggctggacagcgtctttatcatcaag

ENLWLDHSVSLIIR

(SEQ ID NOs: 76 and 156) Exon 33B (constitutive)

gactccttggaggggggagctgaccatcatgcacaacctgtcggtccatttccaccactactc
gcctgcggctgcaagaatgtcaccacgacaagcaagag

DSLEGELTIIDNLGSISFHYYSSPAGCKKCHDKQE

(SEQ ID NOs: 77 and 157) Exon 34 (constitutive)

gtgcagctggctgagacggaggccttccctgaactcagacaggtcctcgccatcctgctgggtga
cgacctgagtctcgaggaccccacagcctgcccacctggccgcaaaagacagcaag

VQLAETEAFSLNSDRSSSILLGDDLSLEDPTACPPGRKDSK

(SEQ ID NOs: 78 and 158) Exon 35 (constitutive)

ggtagctggaccacatgagccatgcgtgtggagacacctggcgaatgcttccctgtcctc
tacggccgtctcgccggatccagagaacttcctgtgtgagatggaggagatccattcaaccctgtcc
ggtcctggctgaaacatgacagcagtcaag

GELDPPEPMRVGDLGECFFPLSSTAVSPDPENFLCEMEEIPFNPVRSWLKHDSQ

(SEQ ID NOs: 79 and 159) Exon 36A (constitutive)

cacccccaagtcccttctccccggatgcctccagcccttcctgcctatgcacggcagttttccac
cctgcagtgtctgcacggcagaaaaggcccagaaaagggcactggcactggaaacctccccaaagattgc
gctgcagggctctggcatctctgcggtaccaagggtcaactgtaccctccctccggcag

aPPSPFSPDASSPLLPMPAEFFHPAVSASQKGPEKGTGTLPKIALQGSWASLRSPRVNCLLRQ

(SEQ ID NOs: 80 and 160) Exon 36B (mutually exclusive with Exon 37)

gtaccgacaccccccaggccctagagcactggtgtgtggcaagggcaggatctaagccaggcct
ggaagtccaaaggactgggaggggaaggacccaaccaaaggccggggcaccaccgtgcaagggggg
tttgggaacgcgtgggtgacgctgagactgggggggggggggggggggggggggggggggggggggg
gggctgggtccctgggacagcagactgtgggggggggggggggggggggggggggggggggggggg
tccctagttgaggg
ctggcagtgg
ggaggtgg
ccaggcccacagcccttaccacgggacacagaggctgaagcactgaggctccgtgtgg
ggtgaaaaatggggccggccggctccacagtggatgggggggggggggggggggggggggggggggg
cccgtcacaccaggctgtgtctgg
tttagtgctgagactggctgggtgcaggaggatgataaccaaaaataaa
VPTPPRP-

(SEQ ID NOs: 81 and 161) Exon 37 (mutually exclusive with exon 36B)

gccaccgggagcgacacgtcgctggacgcccagcagctccgcggcagcctgcagaccacgct
cgaggacagcctgaccctgagcgacagccccggcgtgcctggggcccccgcctgtccaggac
ccccggccggcctgtccccccgcgtgcgcggccctgagcctgcgcggccggggcctttcagcctg
ccccggggctgcgggcatcagcgcagccacagcagcggggctccaccagccgggctgcacccacca

```

cgactccatggaccctcgacgaggaggccgcggtggcgcggcggcggggcgcggcagcgcagc
actcgagaccctcagcagcctctcgcteacccctttctgcccggccccggccagcccc
ggcctcacgcggccaggaagttcagcagcaccagcagcctggccggggggccggccacgcccgc
cgccctggcccacggcctggccggagccctcggtggccgcggaccgcagaaggaccccccggcc
gggcaccgcgtgcccattggcctggccggcccttggcgcggccgcgaaccgcctcccgagagctggag
ccgggagacgcgcagcaagaggaagagatgagggtcgcagggccccggccgcaccgcggcc
ccgtctcacccctttacctcaggagccaggagcagacagcaatacttcgtccacacctggatcgcg
cagggccgcagggcacaggcggcagccggctgagcggagtctgggttagccaggcctgcgtg
gccccatggtgcccttcagtcatacatatacatatacatatacatatgtatatatatatata
tatatatatgtatatacacacacatagacagacatataatatatttttttactgagag
ctttagtttc

ATGSDTSLDASPSSAGSLQTTLEDSTLSDSPRRALGPPAPAPGPRAGLSPAARRRLSLRGRGLFSL
RGLRAHQRSHSSGGSTSPGCTHHDSMDPSDEEGRGAGGGAGSEHSETLSSLSLTSILFCPPPPPPAP
GLTPARKFSSTSSLAAPGRPHAAALAHGLARSPSWAADRSKDPPGRAPLPMGLGPLAPPPQPLPGELE
PGDAASKRKR-

```

RNA processing mechanisms

Figure 5 is a schematic diagram of the RNA processing leading to the 8 variants. The portion of the Figure above the scale bar represents the *CACNA1I* gene. The three sections of the gene involved in alternative processing are drawn to scale.

5 At the left, variable exon 9 (olive) is flanked by constitutive exons 8 (black) and 10 (purple). The black lines between exons represent introns.

In the middle, constitutive exon 32 is black. Exon 33 is divided into 2 parts, 39-nucleotide (nt) variable exon 33A (orange) and 108-nt constitutive exon 33B (blue).

10 At the right, exon 36 is divided into 2 parts, 197-nt constitutive exon 36A (black) and variable exon 36B (red), encoding seven aa before a stop codon. Constitutive exon 37 (green) encodes 214 aa before a stop codon.

Exons 1 – 7, 11 – 31 and 34 – 35 are not represented.

15 The blue and red lines and red arrow above and below the exons represent alternative RNA processing reactions.

Below the scale bar are representations of the 8 α_{II} protein products. The portions of the protein derived from exons 1 – 7, 11 – 31 and 34 – 35 are uncolored. Portions derived from the other exons are color-coded as in the gene map, above. Note that exon 36B encodes only 7 aa. The thin blue and red lines above the protein

products correspond to the lines around the gene map and represent the type of RNA processing reactions that resulted in the particular variant.

5 a. Alternative splicing of exon 9

Variants 1 – 4 result from the deletion of exon 9. In the blue reaction, splicing takes place between the donor 3' to exon 8 and the acceptor 5' to exon 10. Variants 5 – 8 result from RNAs subjected to the red reactions. In this case, two splicing reactions take place. The donor 3' of exon 8 and the acceptor 5' of exon 9 are joined as are the donor 3' of exon 9 and the acceptor 5' of exon 10. The portion encoded by exon 9 is retained.

10

b. Selection of the splice acceptor preceding exon 33A or 33B

Variants 1, 2, 5 and 6 result from the deletion of exon 33A. In the blue reaction, splicing takes place between the donor 3' of exon 32 and the acceptor internal to exon 33. Variants 3, 4, 7 and 8 result from RNAs subjected to the red reaction. In this case, splicing takes place between the donor 3' of exon 32 and the acceptor 5' of exon 33. The portion encoded by exon 33A is retained.

15

c. Processing of the 3' end

Variants 1, 3, 5 and 7 result from the deletion of exon 36B. In the blue reaction, splicing takes place between the donor internal to exon 36 and the acceptor 5' of exon 37. Exon 37 encodes the final 214 aa of the protein in these variants. Variants 2, 4, 6 and 8 result from RNAs subjected to the red reaction. In this case, the RNA is cleaved and polyadenylated just 3' of exon 36. In these variants, exon 36B encodes the final 7 aa of the protein.

20

Isolated and purified polypeptides or proteins, according to the present invention comprise at least about 10% by weight of a composition of proteins. Preferably the composition contains at least 25%, 50%, 75%, 85%, or 90% by weight of the particular polypeptide or protein. Any purification method can be applied, either to naturally expressing cells, such as neurons, or to cells which have been engineered to express a recombinant form of the polypeptide or protein. Purification methods known in the art which can be used without limitation include affinity chromatography, immunoprecipitation, immunoaffinity chromatography, molecular sieves, and ion exchange chromatography.

25

30

Non-naturally occurring variants which retain substantially the same biological activities as naturally occurring protein variants, such as calcium channel function, are also included here. Preferably, naturally or non-naturally occurring variants have amino acid sequences which are at least 85%, 90%, or 95% identical to the amino acid sequences shown in the SEQUENCE LISTING found at the end of the application. More preferably, the molecules are at least 98% or 99% identical. Percent identity is determined using the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 1. The Smith-Waterman homology search algorithm is taught in Smith and Waterman, *Adv. Appl. Math.* (1981) 2:482-489.

Guidance in determining which amino acid residues can be substituted, inserted, or deleted without abolishing biological or immunological activity can be found using computer programs well known in the art, such as DNASTAR software. Preferably, amino acid changes in secreted protein variants are conservative amino acid changes, *i.e.*, substitutions of similarly charged or uncharged amino acids. A conservative amino acid change involves substitution of one of a family of amino acids which are related in their side chains. Naturally occurring amino acids are generally divided into four families: acidic (aspartate, glutamate), basic (lysine, arginine, histidine), non-polar (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), and uncharged polar (glycine, asparagine, glutamine, cystine, serine, threonine, tyrosine) amino acids. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. It is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid will not have a major effect on the biological properties of the resulting variant. Whether an amino acid change results in a functional calcium channel subunit protein or polypeptide can readily be determined by testing the altered protein or polypeptide in a functional assay.

Variants of the calcium channel subunit proteins disclosed herein include glycosylated forms, aggregative conjugates with other molecules, and covalent

conjugates with unrelated chemical moieties. Covalent variants can be prepared by linking functionalities to groups which are found in the amino acid chain or at the N- or C-terminal residue, as is known in the art. Variants also include allelic variants, species variants, and muteins. Truncations or deletions of regions, particularly exons, which do not affect functional activity of the proteins are also variants.

A subset of mutants, called muteins, is a group of polypeptides in which neutral amino acids, such as serines, are substituted for cysteine residues which do not participate in disulfide bonds. These mutants may be stable over a broader temperature range than native proteins or have other beneficial changes in physicochemical properties.

Any coding sequence can be used to generate a recombinant form of the protein which results in the proper amino acids being used. However, the natural human nucleic acid sequences are preferred. The coding sequence can be fused, for example, to expression control sequences, signal sequences, and/or to other coding sequences to form a fusion protein. All of the exons of a particular subunit can be used in such constructs. Alternatively one or more isolated exons can be used.

Nucleic acids which are isolated and purified are separated from the rest of the chromosome on which they reside in human cells. Preferably the particular nucleic acid is the predominant molecular species in a composition. More preferably the nucleic acid comprises at least 75%, 80%, 85%, 90%, or 95% of the molecular species (including only nucleic acids) in the composition.

Degenerate polynucleotide sequences which encode amino acid sequences of the proteins and variants, as well as homologous nucleotide sequences which are at least 65%, 75%, 85%, 90%, 95%, 98%, or 99% identical to the nucleotide sequences shown in the Sequence Listing are also polynucleotide molecules of the invention. Percent sequence identity is determined using computer programs which employ the Smith-Waterman algorithm, such as the MPSRCH program (Oxford Molecular), using an affine gap search with the following parameters: a gap open penalty of 12 and a gap extension penalty of 1.

Typically, homologous polynucleotide sequences can be confirmed by hybridization under stringent conditions, as is known in the art. For example, using

the following wash conditions—2 x SSC (0.3 M NaCl, 0.03 M sodium citrate, pH 7.0), 0.1% SDS, room temperature twice, 30 minutes each; then 2 x SSC, 0.1% SDS, 50 °C once, 30 minutes; then 2 x SSC, room temperature twice, 10 minutes each--homologous sequences can be identified which contain at most about 25-30% basepair mismatches. More preferably, homologous nucleic acid strands contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.

5 The nucleic acid can be cloned into a vector, particularly an expression vector. Any suitable expression vector as is known in the art may be used without limitation. Host cells are preferably used which are human, although other host cells including 10 yeast, bacteria, insect, plant and mammalian cells can be used. The cells can be selected for their desired properties. Typically these are selected for their interaction with a vector, or for a property which renders nucleic acids or proteins easily obtainable from the cells.

15 Host cells which express an α_1 subunit according to the present invention or an α_1 polypeptide can be used to test compounds or compositions for their possible beneficial effect for treating epilepsy. Thus, a test substance can be contacted with such a host cell and the calcium ion uptake by the cell can be measured. A test substance which blocks calcium ion uptake by the cell is identified as a candidate drug for treating or preventing epilepsy. Methods for measuring calcium uptake are 20 known in the art, and any such method may be used for drug identification. See for example, Lee *et al.*, *J. Neuroscience* 19:1912-21, 1999.

25 The following examples are provided to demonstrate how the invention was made. However, the subject matter of the invention is not limited to any particular method of making the claimed polypeptides, proteins, vectors, and host cells.

25 EXAMPLES

Example 1

Analysis of sequence produced by the Human Chromosome 22 Sequencing Group at the Sanger Centre revealed putative exons of a T α_1 subunit gene in three overlapping clones of a human genomic DNA library mapping to 22q12.3-13.2: 30 dJ1104E15 (AL022312), dJ206C7 (AL008716) and dJ172B20 (AL022319). *tblastn* alignment with the α_1G (AF027984) or α_1H (AF051946) amino-acid (aa) sequence

identified 26 exons; FEX analysis, another six; and inspection of upstream sequence, a candidate exon encoding the N-terminus. Potential polyadenylation signals were located with POLYAH. Putative exons were assembled into a provisional cDNA sequence and primers for polymerase chain reaction (PCR)-amplification of overlapping portions of the cDNA were designed with OLIGO (National Biosciences).

PCR screening of a multiple-tissue cDNA panel (Clontech #K14201) revealed brain as the most abundant cDNA source. Hence, human brain cDNA (Clontech #74001) served as template in subsequent PCRs. The predominant (and in some cases secondary) product of each PCR was recovered on a spin-column (Qiagen #28704) after agarose gel electrophoresis, eluted in water and submitted for sequencing. Exon boundaries were determined by comparison of the cDNA and genomic sequences; ambiguity was resolved by matching potential donors and acceptors to consensus sequences.

Fig. 1 shows 28 of the 49 overlapping PCR products (top) that contributed to the cDNA sequence. Also pictured are exon maps of the cDNA (middle) and the gene (bottom). *CACNAII* consists of at least 37 exons distributed over at least 116,390 basepairs (bp). Most PCRs yielded a single product suggesting constitutive splicing of 33 exons (colored gray or black in the cDNA and genomic maps). Certain PCRs, however, yielded multiple products (interrupted black bars), indicative of alternative splicing. PCRs spanning the 105-nucleotide (nt) exon 9 (red), for example, yielded two products, (14 and +14; thus, exon 9 is a cassette exon subject to type A alternative splicing. Sequencing of PCR products spanning exon 33 revealed that exon 33 harbors an internal acceptor that leads to type C alternative splicing and deletion of 39 nt at the 5' end of the exon defined as exon 33A (orange).

Sequence analysis suggested the possibility of alternative 3' exons. Indeed, PCR-amplification of brain cDNA followed by sequencing showed two forms with substantially different 3' termini. In the first form, both exon 36A and 36B (green) are part of the mature mRNA. Exon 37 (blue) is presumably lost as a result of polyadenylation and cleavage at a site 686 bp downstream of the stop codon in exon 36B. In the second form, splicing between an alternative donor internal to exon 36

and the acceptor 5' of exon 37 leads to substitution of exon 36B with exon 37. The polyadenylation signal of exon 37 has not been identified.

Introns 2 – 8 and 11 – 35 are common U2type GTAG introns. The donors of introns 9 and 10 begin with the dinucleotide GC. Intron 1, like its counterparts in 5 *CACNA1G*, *CACNA1H* (unpublished observations), and *CACNA1A*, is a rare U12type ATAC intron. Exon 1 includes at least 709 bp of 5' untranslated region and the putative start codon.

Fig. 2 shows a schematic of the deduced protein product. Sequence alignment with other members of the α_1 subunit family suggests a transmembrane topology with 10 four domains (D1 – D4), each consisting of six membrane-spanning segments, a pore loop and cytoplasmic and extracellular connecting loops. The domains are linked by interdomain loops (ID12, ID23, ID34), which, along with the amino- (N) and carboxyl- (C) termini, reside in the cytoplasm. Six of the 35 α_1 I splice sites (black bars) are conserved in the other α_1 subunits studied to date, α_{1A} , α_{1C} , α_{1D} , α_{1F} , α_{1S} , 15 α_{1G} and α_{1H} and another three are located within nine nucleotides in the multiple sequence alignment (purple bars). Seventeen of the splice sites (green bars) are in identical locations in the other T subunits, but are not conserved in non-T subunits. Only nine splice sites (pink bars) are unique to α_1 I; these sites join exons that contribute to the cytoplasmic ID1-2, ID2-3 and C-terminus. As indicated by residue 20 color-coding, α_{1I} is quite similar to the two other human T α_1 subunits in its membrane-spanning segments — 84% of residues are identical and 92% have similarity scores (4 (see legend). Likewise, the pore loops and ID34 are similar. Apart from islands of similarity, the large extracellular loop of D1, the N- and 25 C-termini and ID12 and ID23 differ from their counterparts in α_{1G} and α_{1H} . Five potential N-glycosylation sites in putative extracellular portions of the protein and 28 potential phosphorylation sites in putative cytoplasmic portions were identified with PROSITE. Although some of the potential phosphorylation sites are conserved among the T α_1 subunits, the majority are unique to α_{1I} . Seventeen extracellular cysteines, including six conserved in all ten reported human α_1 subunits (black and

purple hooks) and nine conserved among T α_1 subunits (green hooks), may play a role in maintaining proper conformation of the extracellular portions of the protein.

Regions derived from portions of the RNA subject to alternative processing are highlighted with a blue background. The shortest predicted product

5 ($\Delta 9\Delta 33A\Delta 37$) has 1,968 aa residues; the longest ($\Delta 36B$), 2,223 aa residues. The reported rat orthologue corresponds to the human $\Delta 9\Delta 36B$ variant with a few differences. Exon 32 of the human gene lacks an 18-aa stretch of cysteines, glycines and prolines found in rat (arrow). In addition, 40 nt of exon 34 are deleted in the rat sequence. This leads to a frameshift and early termination of the rat aa sequence. In
10 addition, the published rat sequence contains sequencing errors in exon 35.

T currents display heterogeneity of biophysical and pharmacological properties and subcellular localization. Identification of multiple T α_1 subunit genes reveals one likely source of heterogeneity. Indeed, heterologous expression experiments demonstrate biophysical differences among the isoforms. The molecular diversity generated by alternative splicing of T α_1 subunit genes has the potential to yield additional functional diversity. *CACNAII* is subject to alternative splicing in at least two exons while *CACNAIG* undergoes alternative splicing in at least six (unpublished observations). Variation in channel phosphorylation and isoform-specific interactions with other proteins may also contribute to diversity. Knowledge of the
15 α_{1I} aa sequence and its variants will allow explicit tests of these ideas.
20

EXAMPLE 2

The human chromosome 17 genomic DNA of clone hCIT.22_K_21 (AC004590, Whitehead Institute/MIT Center for Genome Research) appeared to include most or all of *CACNAIG*, a gene encoding the T Ca^{2+} channel α_{1G} subunit.
25 Thirty-four probable exons were identified by blastn alignment with the rat α_{1G} cDNA sequence (AF027984). Four potential polyadenylation signals were located by blastn alignment with sequences (R40146, R43876, R43935, R46109) derived from the 3' end of infant brain cDNA clones. A provisional cDNA sequence was assembled and primers for polymerase chain reaction (PCR)-amplification of
30 overlapping portions of human brain cDNA (Clontech #74001) were designed with OLIGO (National Biosciences).

PCR products were fractionated by agarose-gel electrophoresis. When adequately resolved, individual products were cut from the gel, recovered on a spin-column (Qiagen #28704), eluted in water and submitted for sequencing. When resolution was incomplete, DNA was recovered from the gel for cloning into pCR Δ 2.1-TOPO (Invitrogen #K4500-01). Insert DNA was PCR-amplified from overnight cultures of white colonies, purified by agarose-gel electrophoresis and submitted for sequencing. Exon boundaries were determined by comparison of the cDNA and genomic sequences; ambiguity was resolved by matching potential donors and acceptors to consensus sequences. All reported splice variants were observed in at least two independent PCRs.

Fig. 3 shows 25 of the 83 overlapping PCR products (top, black bars) that contributed to the cDNA sequence (AF134985, AF134986). Also pictured are exon maps of the cDNA (middle) and the gene (bottom). *CACNA1G* consists of at least 38 exons distributed over at least 66,490 basepairs (bp). Thirty-four exons have counterparts in the rat cDNA sequence ; exons 14, 26, 34 and 35 are newly-identified. Most PCRs yielded a single product suggesting constitutive splicing of 32 exons (colored gray or black in the cDNA and genomic maps). Certain PCRs, however, yielded multiple products (interrupted black bars), indicative of alternative splicing. PCRs spanning the 69-nucleotide (nt) exon 14 (brown), for example, yielded two products, Δ 14 and +14; thus, exon 14 is a cassette exon subject to type A alternative splicing. PCRs spanning cassette exons 34 (144 nt) and 35 (135 nt) yielded three products (Δ 34 Δ 35, +34 Δ 35 and +34+35); the Δ 34+35 product was not detected. Sequencing of PCR products spanning exons 25 and 26 revealed that exon 25 harbors an internal donor that leads to type D alternative splicing and deletion of 21 nt at the 3' end of the exon (defined as exon 25B, red); the 54-nt exon 26 (blue) is a cassette exon. Exons 25B and 26 appear to be mutually exclusive in that only Δ 25B+26 and +25B Δ 26 variants were detected. Sequence data also demonstrated that a 237-nt, protein-coding portion of exon 38 (defined as exon 38B, green) could be excised as an intron (type E alternative splicing). Additional evidence for alternative processing of the human α_{1G} RNA comes from four clones of a normalized, oligo(dT)-primed infant brain cDNA library. Sequence derived from

these clones (red bars), suggests two polyadenylation sites: an upstream site 321 nt 3' to the stop codon and a downstream site 719 nt 3' to the stop codon. Cleavage at the upstream site would delete 398 nt of the mRNA, defined as exon 38D (purple). Exon 1 includes at least 432 bp of 5' untranslated region and the putative start 5 codon. Introns 2 – 37 are common U2type GTAG introns. Intron 1, like its counterparts in *CACNA1H* (unpublished observations), *CACNA1I* (submitted), and *CACNA1A*, is a rare U12type ATAC intron.

Fig. 4 shows a schematic of the deduced protein products encoded by *CACNA1G*. Like other members of the α_1 subunit family, α_{1G} has a proposed transmembrane topology with four domains (D1 – D4), each consisting of six membrane-spanning segments, a pore loop and cytoplasmic and extracellular connecting loops. The domains are linked by interdomain loops (ID12, ID23, ID34), which, along with the amino- (N) and carboxyl- (C) termini, reside in the cytoplasm. Regions derived from portions of the RNA subject to alternative splicing are 10 highlighted with a blue background, with mutually-exclusive exons 25B and 26 placed side-by-side. The shortest predicted product ($\Delta 14+25B\Delta 26\Delta 34\Delta 35\Delta 38B$) has 2,171 amino-acid (aa) residues; the longest (+14 $\Delta 25B+26+34+35+38B$), 2,377 aa residues. The reported rat α_{1G} aa sequence corresponds to the human 15 (14+25B $\Delta 26\Delta 34\Delta 35+38B$ splice variant and is 93% identical. Additional features of the α_{1G} protein product including residue similarity to the other T α_1 subunits, comparison of splice sites and sites of potential post-translational modification are 20 shown in Fig. 2 and described in the legend.

Six *CACNA1G* exons undergo alternative splicing, leading to a possible 64 25 splice variants. Analysis of full-length PCR products is underway to determine relative splice-variant abundance. Of note, all potential variants maintain the open reading frame, leave the transmembrane topology intact and, hence, could be translated into plausible protein products. Individual α_{1G} isoforms may play distinct cellular roles by virtue of differences in biophysical behavior, protein-protein 30 interactions, second-messenger-dependent regulation or other isoform-specific properties.

Claims:

1. An isolated and purified α_{1G} subunit of human brain T calcium channel selected from splice variants 1-64 as shown in Table 1.
2. An isolated and purified nucleic acid encoding the α_{1G} subunit of claim 1.
- 5 3. The isolated and purified nucleic acid of claim 2 which comprises a human coding sequence as described in Table 1.
4. An isolated and purified polypeptide which comprises a translated exon selected from the group consisting of 1-38D as shown in Table 2.
5. An isolated and purified nucleic acid which comprises an exon selected 10 from the group consisting of 1-38D as shown in Table 2.
6. An isolated and purified α_{1I} subunit of human brain T calcium channel selected from splice variants 1-8 as shown in Table 3.
7. An isolated and purified nucleic acid encoding the α_{1I} subunit of claim 6.
8. The isolated and purified nucleic acid of claim 7 which comprises a 15 human coding sequence as described in Table 3.
9. An isolated and purified polypeptide which comprises a translated exon selected from the group consisting of 1-37 as shown in Table 4.
10. An isolated and purified nucleic acid which comprises an exon selected from the group consisting of 1-37 as shown in Table 4.
- 20 11. An expression vector comprising the nucleic acid of claim 2.
12. An expression vector comprising the nucleic acid of claim 3.
13. An expression vector comprising the nucleic acid of claim 7.
14. An expression vector comprising the nucleic acid of claim 8.
15. A host cell comprising an expression vector according to claim 11.
- 25 16. A host cell comprising an expression vector according to claim 12.
17. A host cell comprising an expression vector according to claim 13.
18. A host cell comprising an expression vector according to claim 14.
19. A method to identify candidate drugs for treating epilepsy, comprising the steps of:
30 contacting a cell according to claim 15 with a test substance;

measuring uptake by the cell of calcium ions, wherein a test substance which inhibits the uptake by the cell of calcium ions is identified as a candidate drug for treating epilepsy.

20. A method to identify candidate drugs for treating epilepsy, comprising
5 the steps of:

contacting a cell according to claim 16 with a test substance;
measuring uptake by the cell of calcium ions, wherein a test substance which inhibits the uptake by the cell of calcium ions is identified as a candidate drug for treating epilepsy.

10. 21. A method to identify candidate drugs for treating epilepsy, comprising
the steps of:

contacting a cell according to claim 17 with a test substance;
measuring uptake by the cell of calcium ions, wherein a test substance which inhibits the uptake by the cell of calcium ions is identified as a candidate drug
15 for treating epilepsy.

22. A method to identify candidate drugs for treating epilepsy, comprising
the steps of:

contacting a cell according to claim 18 with a test substance;
measuring uptake by the cell of calcium ions, wherein a test substance
20 which inhibits the uptake by the cell of calcium ions is identified as a candidate drug for treating epilepsy.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

5 / 5
FIG. 5

SEQUENCE LISTING

<110> Mittman, Scott
Agnew, William

<120> Human Brain T Calcium Channel Alpha
Subunit Splice Variants

<130> 01107.81105

<160> 164

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 242

<212> DNA

<213> Homo sapiens

<400> 1

atggacgagg aggaggatgg agcggggcgcc gaggagtcgg gacagccccg gagcttcatg	60
cggctcaacg acctgtcggg ggccgggggc cggccggggc cgggtcagc agaaaaggac	120
ccgggcagcg cggactcga ggcggagggg ctgccgtacc cggcgttgc cccgggtggtt	180
tttttctact tgagccagga cagccgcccgg cggagctggt gtctccgcac ggtctgttaac	240
cc	242

<210> 2

<211> 112

<212> DNA

<213> Homo sapiens

<400> 2

ctggtttgag cgcattcagca tgggttcat ctttcaac tgcgtgaccc tggcatgtt	60
ccggccatgc gaggacatcg cctgtgactc ccagcgctgc cggatcctgc ag	112

<210> 3

<211> 134

<212> DNA

<213> Homo sapiens

<400> 3

gcctttgatg acttcatttt tgccttcttt gccgtggaga tgggtggaa gatgggtggcc	60
ttggcatct ttggaaaaaa gtgttacctg ggagacactt ggaaccggct tgacttttc	120
atcgatcg cagg	134

<210> 4

<211> 98

<212> DNA

<213> Homo sapiens

<400> 4

gatgtggag tactcgctgg acctgcagaa cgtcagcttc tcagctgtca ggacagtccg	60
tgtgctgcga ccgcctcaggc ccattaaccc ggtgcccc	98

<210> 5
 <211> 160
 <212> DNA
 <213> Homo sapiens

<400> 5
 gcatgcgcac ccttgcacg ttgtgtctgg atacgctgcc catgtggc aacgtcctgc 60
 tgctctgctt ctgcgttttc ttcatcttcg gcacgtcg ggccatgt tggtcaggc 120
 tgcttcggaa ccgcgtttc ctacactgaga atttcagcct 160

<210> 6
 <211> 301
 <212> DNA
 <213> Homo sapiens

<400> 6
 cccccctgagc gtggacactgg agcgctatta ccagacagag aacgaggatg agagccccctt 60
 catctgctcc cagccacgcg agaacggcat ggggtcctgc agaagcgtgc ccacgctgcg 120
 cggggacggg ggcgggtggcc caccttgcgg tctggactat gaggcctaca acagctccag 180
 caacaccacc tggtaact ggaaccagta ctacaccaac tgctcagegg gggagcacaa 240
 ccccttcaag ggcgcacatca actttgacaa cattggctat gcctggatcg ccatcttcca 300
 g 301

<210> 7
 <211> 93
 <212> DNA
 <213> Homo sapiens

<400> 7
 gtcatcacgc tggaggggctg ggtcgacatc atgtactttg tggatggatgc tcattccttc 60
 tacaatttca tctacttcat cctcctatc atc 93

<210> 8
 <211> 784
 <212> DNA
 <213> Homo sapiens

<400> 8
 gtgggctcct tcttcatgtt caacctgtgc ctgggtgtga ttgccacgc gttctcagag 60
 accaaggcgc gggaaagcca gctgtgcgg gagcagcgtg tgccgttctt gtccaaacgcc 120
 agcaccctgg cttagtttctc tgagccccggc agctgtatg aggagctgct caagtacctg 180
 gtgtacatcc ttctgttggc agccgcggg ctggctcagg tctctcgggc agcaggttg 240
 cgggttgggc tgctcagcag cccagcaccc ctggggggcc aggagaccca gcccagcagc 300
 agctgttctc gctcccaccc cgcgttatcc gtccaccacc tggtgcacca ccaccaccac 360
 catcaccacc actaccaccc gggcaatggg acgctcaggg ccccccggc cagccggag 420
 atccaggaca gggatccaa tgggtcccgc aggctcatgc tgccaccacc ctcgaegct 480
 gcccctctccg gggccccccc tggggcggc gagtctgtgc acagtttcta ccatggccac 540
 tgccactttag agccagtcgg ctggcaggcg cccctccca ggtccccatc tgaggcatcc 600
 ggcaggactg tgggcaggcgg gaagggtgtat cccacccgtgc acaccagcccc tccacccggag 660
 acgctgaagg agaaggcact agtagaggtg gctgcccacgt ctggggcccc aaccctcacc 720
 agcctcaaca tcccacccgg gccctacagc tccatgcaca agctgctgga gacacagagt 780
 acag 784

<210> 9
 <211> 377

<212> DNA
 <213> Homo sapiens

<400> 9
 gtgcctgcca aagatcttgc aagatctcca gcccttgctt gaaaggcagac agtggagcct 60
 gtggccaga cagctgcccc tactgtgccc gggccggggc aggggaggtg gagctgccc 120
 accgtgaaat gcctgactca gacagcgagg cagtttatga gttcacacag gatgccc 180
 acagcgacct cccggacccc cacagccggc ggcaacggag cctggccca gatgcagagc 240
 ccagctctgt gctggccctt tggaggctaa tctgtgacac cttccgaaag attgtggaca 300
 gcaagtactt tggccgggaa atcatgatcg ccattctggt caacacactc agcatggca 360
 tcgataccca cgagcag 377

<210> 10
 <211> 152
 <212> DNA
 <213> Homo sapiens

<400> 10
 cccgaggagc ttaccaacgc cctagaaaatc agcaacatcg tcttcaccag cctctttgcc 60
 ctggagatgc tgctgaagct gtttgttat gtccttgc gtcatacatca gaatccctac 120
 aacatcttcg atgggtgtcat tgtggtcatc ag 152

<210> 11
 <211> 186
 <212> DNA
 <213> Homo sapiens

<400> 11
 cgtgtggag atcgtggcc agcagggggg cggcctgtcg gtgctgcca cttccgcct 60
 gatcgctgtg ctgaagctgg tgccgttccct gccggcgctg cagcggcage tgggtgtct 120
 catgaagacc atggacaacg tggccacccctt ctgcattgtcg cttatgtct tcattttcat 180
 cttcag 186

<210> 12
 <211> 115
 <212> DNA
 <213> Homo sapiens

<400> 12
 catcctgggc atgcattcttc tggctgcaa gtttgcctct gagcgggatg gggacaccct 60
 gccagaccgg aagaatttttgc actccttgc ctggccatc gtcactgtct ttcaag 115

<210> 13
 <211> 156
 <212> DNA
 <213> Homo sapiens

<400> 13
 atcctgaccc aggaggactg gaacaaagtc ctctacaatg gatatggcctc cacgtcgcc 60
 tggccggccc ttatattcat tgccctcatg accttcggca actacgtgtcttcaattttg 120
 ctgtcgcca ttctggtgaa gggcttccag gcgag 156

<210> 14
 <211> 69
 <212> DNA

<213> Homo sapiens

<400> 14
gaaatcagca aacgggaaga tgcgagtgga cagttaagct gtattcagct gcctgtcgac 60
tcccagggg 69

<210> 15
<211> 85
<212> DNA
<213> Homo sapiens

<400> 15
ggagatgcc acaagtccga atcagagccc gatttcttct caccacgcct ggatggtgat 60
ggggacagga agaagtgc tt ggct 85

<210> 16
<211> 194
<212> DNA
<213> Homo sapiens

<400> 16
tggtgtccct gggagagcac ccggagctgc ggaagagcct gctgcccct ctcatcatcc 60
acacggccgc cacacccatg tcgtgc cccca agacgaccag cacggccctg ggcgaggcgc 120
tggccctgc gtcgcgc accacgagca gccccctgc agagcctggg gccccccacg 180
agatgaagtc accg 194

<210> 17
<211> 432
<212> DNA
<213> Homo sapiens

<400> 17
cccaagccccc gcagctctcc gcacagcccc tggagcgctg caagcagctg gaccagcagg 60
cgctccagcc ggaacagcc ctggccgtgc cccagcctga agcggagaag cccaaatgg 120
gagcgccgggt ccctgttgc gggagaaggc caggagagcc aggatagaaga ggagagctca 180
gaagaggagc gggccagccc tgcggccagt gaccatcgc acagggggc cttggagcgg 240
gaggccaaaga gttccttgc cctggccagac acactgcagg tgccaggct geatcgcact 300
gcaagtggcc gagggctgc ttctgagcac caggactgca atggcaagtc ggcttcagg 360
cgccctggccc gggccctgcg gcctgatgac cccccactgg atggggatga cgccgatgac 420
gagggcaacc tg 432

<210> 18
<211> 101
<212> DNA
<213> Homo sapiens

<400> 18
agcaaagggg aacgggtccg cgcggtggatc cgagccgcac tccctgcctg ctgcctcgag 60
cgagactcct ggtcagccta catttccct cctcagtc 101

<210> 19
<211> 124
<212> DNA
<213> Homo sapiens

<400> 19
 gtccgcctc ctgtgtcacc ggatcatcac ccacaagatg ttgcaccacg tggccttgc 60
 catcatcttc cttaactgca tcaccatgc catggagcgc cccaaaattg acccccacag
 cgct 120
 124

<210> 20
 <211> 69
 <212> DNA
 <213> Homo sapiens

<400> 20
 gaacgcatct tcctgaccct ctccaattac atcttcaccc agtctttct ggctgaaatg 60
 acagtgaag 69

<210> 21
 <211> 185
 <212> DNA
 <213> Homo sapiens

<400> 21
 gtgtggcac tggctggtg cttcgaggag caggcgtaac tgccggacat ttggAACGTG 60
 ctggacgggc tgggtgtct catccccgtc atcgacatcc tgggtccat ggtctctgac 120
 agccgcacca agatcctggg catgctgagg gtgctgggc tgctgcggac cctgcgccc 180
 ctcag 185

<210> 22
 <211> 127
 <212> DNA
 <213> Homo sapiens

<400> 22
 ggtgatcagc cgggcgcagg ggctgaagct ggtgggtggag acgctgatgt cctcaactgaa 60
 acccatcgcc aacattgttag tcatctgctg tgccttcttc atcattttag gcatcttggg 120
 ggtgcag 127

<210> 23
 <211> 126
 <212> DNA
 <213> Homo sapiens

<400> 23
 ctctcaaag ggaagttttt cgtgtgccag ggcaggata ccaggaacat caccaataaa 60
 tcggactgtg ccgaggcoag ttaccgggtgg gtccggcaca agtacaactt tgacaacctt 120
 ggcag 126

<210> 24
 <211> 90
 <212> DNA
 <213> Homo sapiens

<400> 24
 gcctgtatgt ccctgttcgt tttggctcc aaggatggtt ggggtggacat catgtacgt 60
 gggctggatg ctgtggcgt ggaccagcag 90

<210> 25

<210> 31		
<211> 71		
<212> DNA		
<213> Homo sapiens		
<400> 31		
tgctgaagct gctgaagatg gctgtggca tgcggcgct gctggacacg gtgatgcagg	60	
ccctgccccca g	71	
<210> 32		
<211> 79		
<212> DNA		
<213> Homo sapiens		
<400> 32		
gtggggaaacc tgggacttct cttcatgttg ttgttttca tctttgcagc tctggcgta	60	
gagctcttgc gagacctgg	79	
<210> 33		
<211> 122		
<212> DNA		
<213> Homo sapiens		
<400> 33		
agtgtgacga gacacaccccc tggagggcc tggggcgta tgccacctt cggaaacttt	60	
gcatggcctt cctaaccctc ttccgagtct ccacaggta caattggaat ggcattatga	120	
ag	122	
<210> 34		
<211> 354		
<212> DNA		
<213> Homo sapiens		
<400> 34		
gacacccctcc gggactgtga ccaggagtcc acctgctaca acacggtcat ctgcctatc	60	
tactttgtgt cttcggtct gacggccctag ttctgtctag tcaacgttgt gatcgccgt	120	
ctgtatgttgc acctggagga gagcaacaag gaggccaagg aggaggccga gctagaggct	180	
gagctggagc tggagatgaa gaccctcage cccccagcccc actcgccact gggcagcccc	240	
ttccctctggc ctggggtcga gggcccccac agccccgaca gcccccaagcc tggggctctg	300	
cacccagcgg cccacgcgag atcagcctcc cactttcccc tggagcaccc cacg	354	
<210> 35		
<211> 144		
<212> DNA		
<213> Homo sapiens		
<400> 35		
gacaggcagc tggggacac catatccctg ctgatccagg gtccttggg gtgggagctg	60	
aagctgtatgg acgagctggc agggccaggg ggccagccct ctgccttcccc ttctgcccc	120	
agccctgggag gtcggaccc acag	144	
<210> 36		
<211> 135		
<212> DNA		
<213> Homo sapiens		

<p><400> 36 atccctctag ctgagatgga ggctctgtct ctgacgttag agattgtgtc tgaaccgtcc tgctctctag ctctgacgga tgactctttg cctgatgaca tgcacacact cttacttagt gccctggaga gcaat</p> <p><210> 37 <211> 169 <212> DNA <213> Homo sapiens</p> <p><400> 37 atgcagcccc accccacgga gctgccagga ccagacttac tgactgtgcg gaagtctggg gtcagccgaa cgcaactctt gcccaatgac agctacatgt gtccggcatgg gagcactgccc gagggggccc tgggacacag gggctggggg ctcggccaaag ctcagtcag</p> <p><210> 38 <211> 170 <212> DNA <213> Homo sapiens</p> <p><400> 38 gctccgtctt gtccgttac tcccagccag cagataccag ctacatcctg cagttccca aagatgcacc tcacatctgtc cagccccaca gcgcggccaaac ctggggcacc atccccaaac tgcggccacc aggacgtcc ccttggctc agaggccact caggcccgag</p> <p><210> 39 <211> 66 <212> DNA <213> Homo sapiens</p> <p><400> 39 gcagcaataa ggactgactc cttggacgtt cagggcttgg gcagccggga agacctgt gcagag</p> <p><210> 40 <211> 237 <212> DNA <213> Homo sapiens</p> <p><400> 40 gtgagtgggc cctcccccgc cctggcccg gcctacttt tctggggcca gtcaagtacc caggcacagc agcaactcccg cagccacagc aagatctcca agcacatgac cccgcccagcc ccttgcggcag gcccagaacc caactggggc aaggggccctc cagagaccag aagcagctta gagttggaca cggagctgag ctggatttca ggagacctcc tgccccctgg cggccag</p> <p><210> 41 <211> 753 <212> DNA <213> Homo sapiens</p> <p><400> 41 gaggagcccc catccccacg ggacctgaag aagtgtaca gcgtggaggc ccagagctgc cagcgcggc ctacgtctt gctggatgag cagaggagac actctatcgcc cgtcagctgc ctggacagcg gctcccaacc ccacccggc acagacccct ctaaccttgg gggccagcc cttggggggc ctgggagccg gccccaaa aaactcagcc cgcctagtat caccatagac</p>	60 120 135 60 120 169 60 120 170 60 120 170 60 66 60 66 60 120 180 237 60 120 180 240
---	--

ccccccgaga	gccaaaggccc	tcggaccccg	cccagccctg	gtatctgcct	ccggaggagg	300
gctccgtcca	gcgactccaa	ggatcccttg	gcctctggcc	cccctgacag	catggctgcc	360
tccgcctccc	caaagaaaaga	tgtgctgagt	ctctccgggt	tatcctctga	cccagcagac	420
ctggacccct	gagtccctgcc	ccacttccc	actcacctt	ctccactggg	tgccaagtcc	480
tagctccccc	tcctgggcta	tattccgtac	aaaagtccca	tatagacacc	aaggaggcgg	540
aggcgctct	ccctgcctca	gtggctctgg	gtacctgcaa	gcagaacttc	caaagagagt	600
taaaagcagc	agcccccggca	actctggctc	caggcagaag	gagaggcccg	gtgcagctga	660
ggttcccgcac	accagaagct	gttgggagaa	agcaatacgt	tttgtcagaa	tctctatgt	720
tattctat	tattaaatta	attgaatcta	gta			753

<210> 42
<211> 402
<212> DNA
<213> Homo sapiens

<400> 42						
tatgcgggat	gtacgacatt	ttgtgactga	agagacttgt	ttccttctac	tttatgtgt	60
ctcagaatat	ttttgaggcg	aaggcgctcg	tctcttggt	attttaacct	aaaataacag	120
tctagttata	ttccctcttc	ttgcaaagca	caagctggga	ccgcgagcac	attgcagccc	180
caacggtgcc	ccatcttcag	cgagagcgca	gaaccat	tttggaaactgt	atgttaactta	240
tttttcctt	taacctcg	tc atcat	tttctgtt	gttagggaaaa	aaaaaaagaaaa	300
gagatttac	aagtgaaatg	gaaccc	tttttataat	acatacatat	ctatctatct	360
atctatata	atataaaaata	aagtaat	tttccctaaataaa	aa		402

<210> 43
<211> 236
<212> DNA
<213> Homo sapiens

<400> 43						
atggctgaga	gcgcctcccc	gcctcctca	tctgcagcag	ccccagccgc	tgagccagga	60
gtcaccacgg	agcagccccc	accccccgg	ccccatect	ccccgc	cagg cctggaggag	120
cctctggatg	gagctgatcc	tcatgtccca	cacccagacc	tggegcctat	tgcccttcttc	180
tgcctgcac	agaccaccag	ccccggaaac	tggtgc	catca agatgg	tgtg caaccc	236

<210> 44
<211> 112
<212> DNA
<213> Homo sapiens

<400> 44						
gtgggttgaa	tgtgtcagca	tgctggtgat	cctgctgaac	tgcgtgacac	ttggcatgt	60
ccagccgtgc	gacgacatgg	actgcctgtc	cgaccgctgc	aagatcctgc	ag	112

<210> 45
<211> 134
<212> DNA
<213> Homo sapiens

<400> 45						
gtctttgatg	acttcatctt	tatcttctt	gccatggaga	tggtgctcaa	gatggtgcc	60
ctggggattt	ttggcaagaa	gtgctac	ctc gggacacat	ggaaccgcct	ggatttcttc	120
atcgtcatgg	cagg					134

<210> 46

<211> 98
 <212> DNA
 <213> Homo sapiens

<400> 46
 gatggtegag tactccctgg actttcagaa catcaacctg tcagccatcc gcaccgtgcg 60
 cgtcctgagg cccctcaaag ccatcaaccg cgtgccc 98

<210> 47
 <211> 160
 <212> DNA
 <213> Homo sapiens

<400> 47
 gtatgcggat cctggtaac ctgctcctgg acacactgcc catgctgggg aatgtcctgc 60
 tgctctgtt ctttgttgc ttcatcttg gcatcatagg tgtcagctc tggcgcc 120
 tgctgcgtaa ccgctgttcc ctggaggaga acttcaccat 160

<210> 48
 <211> 316
 <212> DNA
 <213> Homo sapiens

<400> 48
 acaaggggat gtggccttgc cccatacta ccagccggag gaggatgatg agatgccctt 60
 catctgctcc ctgtcgccgcg acaatggat aatgggctgc catgagatcc ccccgctcaa 120
 ggagcagggc cgtgagtgt gcctgtccaa ggacgacgtc tacgactttt gggcgcc 180
 ccaggacctc aatgccagcg gcctctgtgt caactggAAC cgttactaca atgtgtgcc 240
 cacgggcagc gccaaccccc acaagggtgc catcaactt gacaacatcg gttatgcttgc 300
 gattgtcattt ttccag 316

<210> 49
 <211> 93
 <212> DNA
 <213> Homo sapiens

<400> 49
 gtgatcactc tggaaaggctg ggtggagatc atgtactacg tggatggatgc tcactccttc 60
 tacaacttca tctacttcat cctgcttata 93

<210> 50
 <211> 313
 <212> DNA
 <213> Homo sapiens

<400> 50
 gtgggcttct tttcatgtat caacctgtgc ctcgttgtca tagcgaccca gttctcgag 60
 accaagcaac gggagcacccg gctgatgtg gagcagccgc agcgctaccc gtcctccagc 120
 acgggtggccaa gctacggccga gcctggcgac tgctacggagg agatcttcca tggatgtctgc 180
 cacatcctgc gcaaggccaa gcggccgcgc ctgggcctt accagggccct gcagagccgg 240
 cgccaggccc tggggcccgaa ggccccggcc cccgcaccaac ctggggccca cgccaaaggag 300
 ccccgccact acc 313

<210> 51
 <211> 105

<212> DNA
 <213> Homo sapiens

<400> 51
 atgggaagac taagggtcag ggagatgaag ggagacatct cggaagccgg cattgccaga 60
 ctggcatgg gcctgcctcc cctggaaatg atcaactcgaa aagag 105

<210> 52
 <211> 425
 <212> DNA
 <213> Homo sapiens

<400> 52
 agctgtgccc gcaacatagc cccctggatg cgacgccccca caccctggtg cagcccatcc 60
 ccggccacgct ggcttccgat cccggccagct geccttgcgt ccagcatgag gacggccggc 120
 ggcctcggg cctgggcagc accgactcggt gccaggaggg ctgggtctcc gggagctccg 180
 ctgggtggcga ggacgaggcg gatggggacg gggcccgag cagcggaggac ggagcctct 240
 cagaactggg gaaggaggag gaggaggagg agecagggcgaa tggggcggtc tggtgtg 300
 gggatgtgtg gcgggagacg cgagccaagc tgccggcat cgtggacacg aagtacttca 360
 accggggcat catgatggcc atcctggta acaccgtcag catggcatac gggcaccacg 420
 agcag 425

<210> 53
 <211> 152
 <212> DNA
 <213> Homo sapiens

<400> 53
 ccggaggagc tgaccaacat cctggagatc tgcaatgtgg tcttcaccag catgtttgcc 60
 ctggagatga tcctgaagct ggctgcattt gggcttctcg actacctgcg taaccctac 120
 aacatcttcg acagcatcat tgtcatcatc ag 152

<210> 54
 <211> 186
 <212> DNA
 <213> Homo sapiens

<400> 54
 catctgggag atcgtggggc aggccggacgg tgggtgtcg gtgctgcggc cttccggct 60
 gctgcgcgtg ctgaaactgg tgctgcattt gcctgcctcg cggcgcacgc tcgtgggtct 120
 catgaagacc atggacaacg tggccacctt ctgcattgtcg ctcattgtct tcatcttcat 180
 cttcag 186

<210> 55
 <211> 118
 <212> DNA
 <213> Homo sapiens

<400> 55
 catccttggg atgcataattt ttggctgcaa gttcagcctc cgcacggaca ctggagacac 60
 ggtggccggac aggaagaact tcgactccct gctgtggcc atcgtcaactg tggccag 118

<210> 56
 <211> 156
 <212> DNA

<213> Homo sapiens

<400> 56
atcctcaccc aggaggactg gaacgtcggtt ctctacaatg gcatggcctc cacttctccc 60
tgggcctccc tctactttgt cgccctcatg accttcggca actatgtgct cttcaacctg 120
ctggtgccca tcctggtggaa gggttccag gccggag 156

<210> 57
<211> 94
<212> DNA
<213> Homo sapiens

<400> 57
ggtgacgcca atcgctccta ctggacgag gaccagagct catccaacat agaagagttt 60
gataagctcc aggaaggct ggacagcagc ggag 94

<210> 58
<211> 203
<212> DNA
<213> Homo sapiens

<400> 58
atcccaagct ctgccaatc cccatgaccc ccaatggca cctggacccc agtctcccac 60
tgggtggca cctaggctct gctggggctg cgggacctgc ccccccactc tcactgcagc 120
cgaccccat gctggtgcc ctggctccc gaaagagcag tgtcatgtct ctagggagga 180
tgagctatga ccagcgctcc ctg 203

<210> 59
<211> 471
<212> DNA
<213> Homo sapiens

<400> 59
tccagctccc ggagctccta ctacgggcca tggggccgca gcgcggcctg ggccagccgt 60
cgctccagct ggaacagccct caagcacaag cgcgcgtcgg cggagcatga gtccctgctc 120
tctgggagc gggcgccgg cgcccggtc tgccgggttg ccgcggacga ggggccccgg 180
cgggccgcac ccctgcacac cccacacgccc caccacattc atcacggcc ccacatctggcg 240
caccggcacc gccaccaccc cgccgcgtg tccctcgaca acaggactc ggtggacctg 300
gcccggactgg tgcccgccgt gggcccccac ccccgcccg cctggaggc ggcaggcccg 360
gccccccggc atgaggactg caatggcagg atgcccagca tcgccaaaga cgtcttcacc 420
aagatggcgc accgcgggaa tcgcgggag gatgaggagg aaatcgacta c 471

<210> 60
<211> 101
<212> DNA
<213> Homo sapiens

<400> 60
accctgtgtct ccccggtccg caagatgtatc gacgtctata agcccgactg gtgcgaggtc 60
cgccaaagact ggtctgtcta cctttctct cccgagaaca g 101

<210> 61
<211> 124
<212> DNA
<213> Homo sapiens

<pre> <400> 61 gttccgggtc ctgtgtcaga ccattattgc ccacaaaactc ttgcactacg tcgtcctggc cttcatcttt ctcaactgca tcaccatcgc cctggagcgg cctcagatcg aggccggcag cacc </pre>	60 120 124
<pre> <210> 62 <211> 69 <212> DNA <213> Homo sapiens </pre>	
<pre> <400> 62 gaacgcacatct ttctcaccgt gtccaaactac atcttcacgg ccatcttcgt gggcgagatg acattgaag </pre>	
<pre> <210> 63 <211> 185 <212> DNA <213> Homo sapiens </pre>	
<pre> <400> 63 gtagtctcgc tgggcctgta cttcgccgag caggcgtacc tacgcagcag ctggAACGTG ctggatggct ttcttgctt cgtgtccatc atcgacatcg tggtgtccct ggccTCAGCC gggggagcca agatcttggg ggtcctccga gtcttgcggc tcctgcgcac cctacgcccc ctgcg </pre>	
<pre> <210> 64 <211> 127 <212> DNA <213> Homo sapiens </pre>	
<pre> <400> 64 tgtcatcagc cgggcgcggg gcctgaagct ggtggtggag acactcatct cctccctcaa gcccacatcgac aacatcggtc tcacatcgctg tgccttcttc atcatcttg gcatcctggg agtgcag </pre>	
<pre> <210> 65 <211> 126 <212> DNA <213> Homo sapiens </pre>	
<pre> <400> 65 ctcttcaagg gcaagttcta ccactgtctg ggctggaca cccgcaacat caccaaccgc tcggactgca tggccgccaa ctaccgctgg gtccatcaca aataacaatt cgacaacctg ggccag </pre>	
<pre> <210> 66 <211> 90 <212> DNA <213> Homo sapiens </pre>	
<pre> <400> 66 gctctgatgt ccctctttgt cctggcatcc aaggatggtt gggtaacat catgtacaat ggactggatg ctgttgcgtg ggaccagcag </pre>	
<pre> <210> 67 </pre>	

<211> 193
 <212> DNA
 <213> Homo sapiens

<400> 67
 cctgtgacca accacaaccc ctggatgctg ctgtacttca tctccttcct gtcategtc 60
 agcttcttg tgctcaacat gtttgggt gtcgtgggtt agaacttcca caagtgcgg 120
 cagcaccagg aggctgaaga ggcacggcg ggtagggaga agcggctgctg ggcctggag 180
 aagaagcgcc gga 193

<210> 68
 <211> 152
 <212> DNA
 <213> Homo sapiens

<400> 68
 agggccagcg gtcgcctac tatgccacct attgtcacac ccggctgctc atccactcca 60
 tgtcaccagg ccactacccg gacatcttca tcaccttcat catctgcctc aacgtggta 120
 ccatgtccct ggagcactac aatcagccca cg 152

<210> 69
 <211> 110
 <212> DNA
 <213> Homo sapiens

<400> 69
 tccctggaga cagccctcaa gtactgcaac tatatgttca ccactgttctt tggctggag 60
 gctgtctga agctgggttgc atttggcttg aggcttctc tcaaggaccg 110

<210> 70
 <211> 134
 <212> DNA
 <213> Homo sapiens

<400> 70
 atgaaaccag ctggaccttgg ccattgtct actgtcagtc atgggcatca ccctggagga 60
 gatcgagatc aatgcggcccc tgccatcaa tcccaccatc atccgcatca tgagggttct 120
 ggcatttgcg 134

<210> 71
 <211> 71
 <212> DNA
 <213> Homo sapiens

<400> 71
 tgctgaagct gttgaagatg gccacaggaa tgccggccct gctggacacg gtgggtcaag 60
 ctttgcggcc 71

<210> 72
 <211> 79
 <212> DNA
 <213> Homo sapiens

<400> 72
 gtggcaacc tgggccttctt cttcatgctg ctcttcttca tctatgtgc tctcggttg 60

gagcttttg ggaagctgg	79
<210> 73	
<211> 122	
<212> DNA	
<213> Homo sapiens	
<400> 73	
tctgcaacga cgagaaccgc tgcgaggcga tgagccggca tgccacccctt gagaacttcg	60
gcatggcctt cctcacactc ttccaggtct ccacgggtga caactggAAC gggatcatga	120
ag	122
<210> 74	
<211> 339	
<212> DNA	
<213> Homo sapiens	
<400> 74	
gacacgctgc gggactgcac ccacgacgag cgtagctgcc tgagcagcct gcagtttgt	60
tcgcccgtgt acttcgtgag ctgcgtgctc acggcgcaagt tcgtgtcat caacgtggtg	120
gtggctgtgc tcatgaagca cctggacgac agcaacaagg aggcgcagga ggacgcccag	180
atggatgcgg agctcgagct ggagatggcc catggcctgg gccctggccc gaggctgcct	240
accggctccc cgggcgc(ccc tggccgaggg cggggagggg cgggcggcgg gggcgacacc	300
gaggggcggtctgtgcggcgt ctgctactcg cctgccccag	339
<210> 75	
<211> 39	
<212> DNA	
<213> Homo sapiens	
<400> 75	
gagaacctgt ggctggacag cgtctttta atcatcaag	39
<210> 76	
<211> 108	
<212> DNA	
<213> Homo sapiens	
<400> 76	
gactccttgg agggggagct gaccatcatc gacaacctgt cgggctccat cttccaccac	60
tactcctcgc ctgcccggctg caagaagtgt caccacgaca agcaagag	108
<210> 77	
<211> 123	
<212> DNA	
<213> Homo sapiens	
<400> 77	
gtgcagctgg ctgagacgga ggccttctcc ctgaactcag acaggctcgt gtcctatcgt	60
ctgggtgacg acctgagctt cgaggacccc acagcgtgcc cacctggccg caaagacagc	120
aag	123
<210> 78	
<211> 166	
<212> DNA	

<213> Homo sapiens

<400> 78

ggtgagctgg acccacatga gccccatgcgt gtgggagacc tggggcaatg cttcttcccc	60
ttgtcctcta cggccgtctc gccggatcca gagaacttcc tgtgtgagat ggaggagatc	120
ccattcaacc ctgtccggtc ctggctgaaa catgacagca gtcaag	166

<210> 79

<211> 197

<212> DNA

<213> Homo sapiens

<400> 79

cacccccaag tcccttctcc ccggatgcct ccagccctct cctgccccatg ccagccgagt	60
tcttccaccc tgcagtgtct gccagccaga aaggcccaga aaaggccact ggcactggaa	120
ccctccccaa gattgcgtcg cagggtctct gggcatctct gcggtcacca agggtaact-	180
gtaccctctt cccggcag	197

<210> 80

<211> 713

<212> DNA

<213> Homo sapiens

<400> 80

gtaccgacac ctcccagggcc ctagagcact ggtctgtggg caaggggcag gatctaagcc	60
aggcctggaa gtccaaaggga ctgggggggg aaggacccaa ccaaaggccg agggcaccac	120
cgtcaagggg ggtttggaa cgctgggtcg acgctgagac tggagggggg ggtggcactg	180
ggcggtatgg agtggggcggg gctgggtctt ggggacacca gagtgtgggg aggaccccaa	240
ggcggtctg gaagaggcct gtgatcccta gtttgggggg aggggaggag aggaggagga	300
gtactggagg ttttgcaggg tgggggggtg ctggcagtgg ggaggacacc ctgggtgctc	360
tgggtgggtg tgagtggggg cttgattact aggaatggag gtgggggggc ggttctggtg	420
gatgagaagc ctggggctgc agggttttttt gtactggatt ggcaggggcc acagccctcc	480
tacccacggg cacacagagg tctgaagcac tgagggtctt gctgtggggg tggggaaatg	540
ggggccgggccc ggctccaca gtgagtgca gtttgcact gggtaactgt ctgaccggc	600
acaccaggct gtgtgtctcg gccccagga cacaactcc ctgcctgccc ggttactgt	660
tttgtgtca gagtgagctg cctgggtca ggaggatga taacaaaaat aaa	713

<210> 81

<211> 963

<212> DNA

<213> Homo sapiens

<400> 81

gccaccggga gcgacacgtc gctggacggcc agccccagca gctccgggg cagcctgcag	60
accacacgtcg aggacacgtct gaccctgagc gacagcccccc ggcgtgcctt gggggccccc	120
gcgcctgtctc caggaccccg ggcggccctg tccccccgcg ctcgcggccgg cctgagccctg	180
cgcggccggg gccttcttcag cctgcgggggg ctgcggggcgc atcagcgcag ccacagcagc	240
gggggctcca ccagccccggg ctgcacccac cacactcca tggacccctc ggacgaggag	300
ggccgcgggtg gcgccgggggg cggggggcgcg ggcagcgcgc actcggagac cctcagcagc	360
ctctcgctca cctccctctt ctgcggcccg cccccccgcg cagccccccgg cctcagccccc	420
gccaggaagt tcagcagcac cagcagccctg gccggccccc gccggccccc cggccggccc	480
ctggcccacg gcctggcccg gagccctcg tggggccggg accgcagca ggacccccc	540
ggccggggcac cgctggccat gggctgggc cccttggcgcc cccccccgc accgcctcccc	600
ggagagctgg agccggggaga cggccgcgc aagaggaaga gatgagggtc gcagggggccc	660
ccggccggccc accggccccc cctgttcacc ttctttaccc caggagccag gagcagacag	720

caatacttcg tccacacactg ggatcgcgca gggcccgcag ggcacaggcg cccgacagcc	780
ggctgagcg gagtctgggt tagccaggcc tgcgtggccc atggggcccc ttccagtgcata	840
tatacataca tatatatata tatatgcata tatatatata tatatatata tatgtgtata	900
cacacacaca tagacagaca tatatatata tatatatata ttttactgag agctttatgac	960
ttc	963

<210> 82
<211> 81
<212> PRT
<213> Homo sapiens

<400> 82
Met Asp Glu Glu Glu Asp Gly Ala Gly Ala Glu Glu Ser Gly Gln Pro
1 5 10 15
Arg Ser Phe Met Arg Leu Asn Asp Leu Ser Gly Ala Gly Gly Arg Pro
20 25 30
Gly Pro Gly Ser Ala Glu Lys Asp Pro Gly Ser Ala Asp Ser Glu Ala
35 40 45
Glu Gly Leu Pro Tyr Pro Ala Leu Ala Pro Val Val Phe Phe Tyr Leu
50 55 60
Ser Gln Asp Ser Arg Pro Arg Ser Trp Cys Leu Arg Thr Val Cys Asn
65 70 75 80
Pro

<210> 83
<211> 37
<212> PRT
<213> Homo sapiens

<400> 83
Trp Phe Glu Arg Ile Ser Met Leu Val Ile Leu Leu Asn Cys Val Thr
1 5 10 15
Leu Gly Met Phe Arg Pro Cys Glu Asp Ile Ala Cys Asp Ser Gln Arg
20 25 30
Cys Arg Ile Leu Gln
35

<210> 84
<211> 45
<212> PRT
<213> Homo sapiens

<400> 84
Ala Phe Asp Asp Phe Ile Phe Ala Phe Phe Ala Val Glu Met Val Val
1 5 10 15
Lys Met Val Ala Leu Gly Ile Phe Gly Lys Lys Cys Tyr Leu Gly Asp
20 25 30
Thr Trp Asn Arg Leu Asp Phe Phe Ile Val Ile Ala Gly
35 40 45

<210> 85
<211> 32
<212> PRT
<213> Homo sapiens

<400> 85

Met	Leu	Glu	Tyr	Ser	Leu	Asp	Leu	Gln	Asn	Val	Ser	Phe	Ser	Ala	Val
1					5				10				15		
Arg	Thr	Val	Arg	Val	Leu	Arg	Pro	Leu	Arg	Ala	Ile	Asn	Arg	Val	Pro
					20				25				30		

<210> 86

<211> 54

<212> PRT

<213> Homo sapiens

<400> 86

Ser	Met	Arg	Ile	Leu	Val	Thr	Leu	Leu	Asp	Thr	Leu	Pro	Met	Leu	
1				5					10			15			
Gly	Asn	Val	Leu	Leu	Leu	Cys	Phe	Phe	Phe	Ile	Phe	Gly	Ile		
						20		25		30					
Val	Gly	Val	Gln	Leu	Trp	Ala	Gly	Leu	Leu	Arg	Asn	Arg	Cys	Phe	Leu
					35			40		45					
Pro	Glu	Asn	Phe	Ser	Leu										
					50										

<210> 87

<211> 100

<212> PRT

<213> Homo sapiens

<400> 87

Pro	Leu	Ser	Val	Asp	Leu	Glu	Arg	Tyr	Tyr	Gln	Thr	Glu	Asn	Glu	Asp
1				5						10			15		
Glu	Ser	Pro	Phe	Ile	Cys	Ser	Gln	Pro	Arg	Glu	Asn	Gly	Met	Arg	Ser
					20			25			30				
Cys	Arg	Ser	Val	Pro	Thr	Leu	Arg	Gly	Asp	Gly	Gly	Gly	Pro	Pro	
					35			40			45				
Cys	Gly	Leu	Asp	Tyr	Glu	Ala	Tyr	Asn	Ser	Ser	Asn	Thr	Thr	Cys	
					50			55			60				
Val	Asn	Trp	Asn	Gln	Tyr	Tyr	Thr	Asn	Cys	Ser	Ala	Gly	Glu	His	Asn
					65			70		75			80		
Pro	Phe	Lys	Gly	Ala	Ile	Asn	Phe	Asp	Asn	Ile	Gly	Tyr	Ala	Trp	Ile
					85				90			95			
Ala	Ile	Phe	Gln												
					100										

<210> 88

<211> 31

<212> PRT

<213> Homo sapiens

<400> 88

Val	Ile	Thr	Leu	Glu	Gly	Trp	Val	Asp	Ile	Met	Tyr	Phe	Val	Met	Asp
1				5					10			15			
Ala	His	Ser	Phe	Tyr	Asn	Phe	Ile	Tyr	Phe	Ile	Leu	Leu	Ile	Ile	
					20			25			30				

<210> 89

<211> 261

<212> PRT
 <213> Homo sapiens

<400> 89

Val	Gly	Ser	Phe	Phe	Met	Ile	Asn	Leu	Cys	Leu	Val	Val	Ile	Ala	Thr
1					5					10					15
Gln	Phe	Ser	Glu	Thr	Lys	Gln	Arg	Glu	Ser	Gln	Leu	Met	Arg	Glu	Gln
					20				25					30	
Arg	Val	Arg	Phe	Leu	Ser	Asn	Ala	Ser	Thr	Leu	Ala	Ser	Phe	Ser	Glu
					35			40					45		
Pro	Gly	Ser	Cys	Tyr	Glu	Glu	Leu	Leu	Lys	Tyr	Leu	Val	Tyr	Ile	Leu
					50			55			60				
Arg	Lys	Ala	Ala	Arg	Arg	Leu	Ala	Gln	Val	Ser	Arg	Ala	Ala	Gly	Val
65					70				75					80	
Arg	Val	Gly	Leu	Leu	Ser	Ser	Pro	Ala	Pro	Leu	Gly	Gly	Gln	Glu	Thr
					85				90					95	
Gln	Pro	Ser	Ser	Ser	Cys	Ser	Arg	Ser	His	Arg	Arg	Leu	Ser	Val	His
					100			105				110			
His	Leu	Val	His	Tyr	His	Leu	Gly								
					115			120			125				
Asn	Gly	Thr	Leu	Arg	Ala	Pro	Arg	Ala	Ser	Pro	Glu	Ile	Gln	Asp	Arg
					130			135			140				
Asp	Ala	Asn	Gly	Ser	Arg	Arg	Leu	Met	Leu	Pro	Pro	Pro	Ser	Thr	Pro
145					150				155					160	
Ala	Leu	Ser	Gly	Ala	Pro	Pro	Gly	Gly	Ala	Glu	Ser	Val	His	Ser	Phe
					165			170			175				
Tyr	His	Ala	Asp	Cys	His	Leu	Glu	Pro	Val	Arg	Cys	Gln	Ala	Pro	Pro
					180			185			190				
Pro	Arg	Ser	Pro	Ser	Glu	Ala	Ser	Gly	Arg	Thr	Val	Gly	Ser	Gly	Lys
					195			200			205				
Val	Tyr	Pro	Thr	Val	His	Thr	Ser	Pro	Pro	Pro	Glu	Thr	Leu	Lys	Glu
					210			215			220				
Lys	Ala	Leu	Val	Glu	Val	Ala	Ala	Ser	Ser	Gly	Pro	Pro	Thr	Leu	Thr
225					230				235					240	
Ser	Leu	Asn	Ile	Pro	Pro	Gly	Pro	Tyr	Ser	Ser	Met	His	Lys	Leu	Leu
					245				250					255	
Glu	Thr	Gln	Ser	Thr											
					260										

<210> 90
 <211> 126
 <212> PRT
 <213> Homo sapiens

<400> 90

Gly	Ala	Cys	Gln	Ser	Ser	Cys	Lys	Ile	Ser	Ser	Pro	Cys	Leu	Lys	Ala
1					5				10					15	
Asp	Ser	Gly	Ala	Cys	Gly	Pro	Asp	Ser	Cys	Pro	Tyr	Cys	Ala	Arg	Ala
					20			25				30			
Gly	Ala	Gly	Glu	Val	Glu	Leu	Ala	Asp	Arg	Glu	Met	Pro	Asp	Ser	Asp
					35			40			45				
Ser	Glu	Ala	Val	Tyr	Glu	Phe	Thr	Gln	Asp	Ala	Gln	His	Ser	Asp	Leu
					50			55			60				
Arg	Asp	Pro	His	Ser	Arg	Arg	Gln	Arg	Ser	Leu	Gly	Pro	Asp	Ala	Glu
65					70				75					80	

Pro Ser Ser Val Leu Ala Phe Trp Arg Leu Ile Cys Asp Thr Phe Arg
 85 90 95
 Lys Ile Val Asp Ser Lys Tyr Phe Gly Arg Gly Ile Met Ile Ala Ile
 100 105 110
 Leu Val Asn Thr Leu Ser Met Gly Ile Glu Tyr His Glu Gln
 115 120 125

<210> 91
 <211> 51
 <212> PRT
 <213> Homo sapiens

<400> 91

Pro Glu Glu Leu Thr Asn Ala Leu Glu Ile Ser Asn Ile Val Phe Thr
 1 5 10 15
 Ser Leu Phe Ala Leu Glu Met Leu Leu Lys Leu Leu Val Tyr Gly Pro
 20 25 30
 Phe Gly Tyr Ile Lys Asn Pro Tyr Asn Ile Phe Asp Gly Val Ile Val
 35 40 45

Val Ile Ser
 50

<210> 92
 <211> 62
 <212> PRT
 <213> Homo sapiens

<400> 92

Val Trp Glu Ile Val Gly Gln Gln Gly Gly Leu Ser Val Leu Arg
 1 5 10 15
 Thr Phe Arg Leu Met Arg Val Leu Lys Leu Val Arg Phe Leu Pro Ala
 20 25 30
 Leu Gln Arg Gln Leu Val Val Leu Met Lys Thr Met Asp Asn Val Ala
 35 40 45

Thr Phe Cys Met Leu Leu Met Leu Phe Ile Phe Ile Phe Ser
 50 55 60

<210> 93
 <211> 38
 <212> PRT
 <213> Homo sapiens

<400> 93

Ile Leu Gly Met His Leu Phe Gly Cys Lys Phe Ala Ser Glu Arg Asp
 1 5 10 15
 Gly Asp Thr Leu Pro Asp Arg Lys Asn Phe Asp Ser Leu Leu Trp Ala
 20 25 30

Ile Val Thr Val Phe Gln
 35

<210> 94
 <211> 52
 <212> PRT
 <213> Homo sapiens

<400> 94
 Ile Leu Thr Gln Glu Asp Trp Asn Lys Val Leu Tyr Asn Gly Met Ala
 1 5 10 15
 Ser Thr Ser Ser Trp Ala Ala Leu Tyr Phe Ile Ala Leu Met Thr Phe
 20 25 30
 Gly Asn Tyr Val Leu Phe Asn Leu Leu Val Ala Ile Leu Val Glu Gly
 35 40 45
 Phe Gln Ala Glu
 50

<210> 95
<211> 23
<212> PRT
<213> Homo sapiens

<400> 95
 Glu Ile Ser Lys Arg Glu Asp Ala Ser Gly Gln Leu Ser Cys Ile Gln
 1 5 10 15
 Leu Pro Val Asp Ser Gln Gly
 20

<210> 96
<211> 28
<212> PRT
<213> Homo sapiens

<400> 96
 Gly Asp Ala Asn Lys Ser Glu Ser Glu Pro Asp Phe Phe Ser Pro Ser
 1 5 10 15
 Leu Asp Gly Asp Gly Asp Arg Lys Lys Cys Leu Ala
 20 25

<210> 97
<211> 65
<212> PRT
<213> Homo sapiens

<400> 97
 Leu Val Ser Leu Gly Glu His Pro Glu Leu Arg Lys Ser Leu Leu Pro
 1 5 10 15
 Pro Leu Ile Ile His Thr Ala Ala Thr Pro Met Ser Leu Pro Lys Ser
 20 25 30
 Thr Ser Thr Gly Leu Gly Glu Ala Leu Gly Pro Ala Ser Arg Arg Thr
 35 40 45
 Ser Ser Ser Gly Ser Ala Glu Pro Gly Ala Ala His Glu Met Lys Ser
 50 55 60
 Pro
 65

<210> 98
<211> 144
<212> PRT
<213> Homo sapiens

<400> 98

Pro Ser Ala Arg Ser Ser Pro His Ser Pro Trp Ser Ala Ala Ser Ser
 1 5 10 15
 Trp Thr Ser Arg Arg Ser Ser Arg Asn Ser Leu Gly Arg Ala Pro Ser
 20 25 30
 Leu Lys Arg Arg Ser Pro Ser Gly Glu Arg Arg Ser Leu Leu Ser Gly
 35 40 45
 Glu Gly Gln Glu Ser Gln Asp Glu Glu Glu Ser Ser Glu Glu Glu Arg
 50 55 60
 Ala Ser Pro Ala Gly Ser Asp His Arg His Arg Gly Ser Leu Glu Arg
 65 70 75 80
 Glu Ala Lys Ser Ser Phe Asp Leu Pro Asp Thr Leu Gln Val Pro Gly
 85 90 95
 Leu His Arg Thr Ala Ser Gly Arg Gly Ser Ala Ser Glu His Gln Asp
 100 105 110
 Cys Asn Gly Lys Ser Ala Ser Gly Arg Leu Ala Arg Ala Leu Arg Pro
 115 120 125
 Asp Asp Pro Pro Leu Asp Gly Asp Asp Ala Asp Asp Glu Gly Asn Leu
 130 135 140

<210> 99
<211> 34
<212> PRT
<213> Homo sapiens

<400> 99
Ser Lys Gly Glu Arg Val Arg Ala Trp Ile Arg Ala Arg Leu Pro Ala
 1 5 10 15
Cys Cys Leu Glu Arg Asp Ser Trp Ser Ala Tyr Ile Phe Pro Pro Gln
 20 25 30
Ser Arg

<210> 100
<211> 41
<212> PRT
<213> Homo sapiens

<400> 100
Phe Arg Leu Leu Cys His Arg Ile Ile Thr His Lys Met Phe Asp His
 1 5 10 15
Val Val Leu Val Ile Ile Phe Leu Asn Cys Ile Thr Ile Ala Met Glu
 20 25 30
Arg Pro Lys Ile Asp Pro His Ser Ala
 35 40

<210> 101
<211> 23
<212> PRT
<213> Homo sapiens

<400> 101
Glu Arg Ile Phe Leu Thr Leu Ser Asn Tyr Ile Phe Thr Ala Val Phe
 1 5 10 15
Leu Ala Glu Met Thr Val Lys
 20

<210> 102
<211> 62
<212> PRT
<213> Homo sapiens

<400> 102
Val Val Ala Leu Gly Trp Cys Phe Gly Glu Gln Ala Tyr Leu Arg Ser
1 5 10 15
Ser Trp Asn Val Leu Asp Gly Leu Leu Val Leu Ile Ser Val Ile Asp
20 25 30
Ile Leu Val Ser Met Val Ser Asp Ser Gly Thr Lys Ile Leu Gly Met
35 40 45
Leu Arg Val Leu Arg Leu Leu Arg Thr Leu Arg Pro Leu Arg
50 55 60

<210> 103
<211> 42
<212> PRT
<213> Homo sapiens

<400> 103
Val Ile Ser Arg Ala Gln Gly Leu Lys Leu Val Val Glu Thr Leu Met
1 5 10 15
Ser Ser Leu Lys Pro Ile Gly Asn Ile Val Val Ile Cys Cys Ala Phe
20 25 30
Phe Ile Ile Phe Gly Ile Leu Gly Val Gln
35 40

<210> 104
<211> 42
<212> PRT
<213> Homo sapiens

<400> 104
Leu Phe Lys Gly Lys Phe Phe Val Cys Gln Gly Glu Asp Thr Arg Asn
1 5 10 15
Ile Thr Asn Lys Ser Asp Cys Ala Glu Ala Ser Tyr Arg Trp Val Arg
20 25 30
His Lys Tyr Asn Phe Asp Asn Leu Gly Gln
35 40

<210> 105
<211> 30
<212> PRT
<213> Homo sapiens

<400> 105
Ala Leu Met Ser Leu Phe Val Leu Ala Ser Lys Asp Gly Trp Val Asp
1 5 10 15
Ile Met Tyr Asp Gly Leu Asp Ala Val Gly Val Asp Gln Gln
20 25 30

<210> 106
<211> 64
<212> PRT

<213> Homo sapiens

<400> 106

Pro Ile Met Asn His Asn Pro Trp Met Leu Leu Tyr Phe Ile Ser Phe
1 5 10 15
Leu Leu Ile Val Ala Phe Phe Val Leu Asn Met Phe Val Gly Val Val
20 25 30
Val Glu Asn Phe His Lys Cys Arg Gln His Gln Glu Glu Glu Ala
35 40 45
Arg Arg Arg Glu Glu Lys Arg Leu Arg Arg Leu Glu Lys Lys Arg Arg
50 55 60

<210> 107

<211> 7

<212> PRT

<213> Homo sapiens

<400> 107

Ser Lys Glu Lys Gln Met Ala
1 5

<210> 108

<211> 18

<212> PRT

<213> Homo sapiens

<400> 108

Asn Leu Met Leu Asp Asp Val Ile Ala Ser Gly Ser Ser Ala Ser Ala
1 5 10 15
Ala Ser

<210> 109

<211> 51

<212> PRT

<213> Homo sapiens

<400> 109

Glu Ala Gln Cys Lys Pro Tyr Tyr Ser Asp Tyr Ser Arg Phe Arg Leu
1 5 10 15
Leu Val His His Leu Cys Thr Ser His Tyr Leu Asp Leu Phe Ile Thr
20 25 30
Gly Val Ile Gly Leu Asn Val Val Thr Met Ala Met Glu His Tyr Gln
35 40 45
Gln Pro Gln
50

<210> 110

<211> 37

<212> PRT

<213> Homo sapiens

<400> 110

Ile Leu Asp Glu Ala Leu Lys Ile Cys Asn Tyr Ile Phe Thr Val Ile
1 5 10 15

Phe Val Leu Glu Ser Val Phe Lys Leu Val Ala Phe Gly Phe Arg Arg
20 25 30
Phe Phe Gln Asp Arg
35

<210> 111
<211> 44
<212> PRT
<213> Homo sapiens

<400> 111
Trp Asn Gln Leu Asp Leu Ala Ile Val Leu Leu Ser Ile Met Gly Ile
1 5 10 15
Thr Leu Glu Glu Ile Glu Val Asn Ala Ser Leu Pro Ile Asn Pro Thr
20 25 30
Ile Ile Arg Ile Met Arg Val Leu Arg Ile Ala Arg
35 40

<210> 112
<211> 24
<212> PRT
<213> Homo sapiens

<400> 112
Val Leu Lys Leu Leu Lys Met Ala Val Gly Met Arg Ala Leu Leu Asp
1 5 10 15
Thr Val Met Gln Ala Leu Pro Gln
20

<210> 113
<211> 26
<212> PRT
<213> Homo sapiens

<400> 113
Val Gly Asn Leu Gly Leu Leu Phe Met Leu Leu Phe Phe Ile Phe Ala
1 5 10 15
Ala Leu Gly Val Glu Leu Phe Gly Asp Leu
20 25

<210> 114
<211> 41
<212> PRT
<213> Homo sapiens

<400> 114
Glu Cys Asp Glu Thr His Pro Cys Glu Gly Leu Gly Arg His Ala Thr
1 5 10 15
Phe Arg Asn Phe Gly Met Ala Phe Leu Thr Leu Phe Arg Val Ser Thr
20 25 30
Gly Asp Asn Trp Asn Gly Ile Met Lys
35 40

<210> 115
<211> 118

<212> PRT
 <213> Homo sapiens

<400> 115
 Asp Thr Leu Arg Asp Cys Asp Gln Glu Ser Thr Cys Tyr Asn Thr Val
 1 5 10 15
 Ile Ser Pro Ile Tyr Phe Val Ser Phe Val Leu Thr Ala Gln Phe Val
 20 25 30
 Leu Val Asn Val Val Ile Ala Val Leu Met Lys His Leu Glu Glu Ser
 35 40 45
 Asn Lys Glu Ala Lys Glu Glu Ala Glu Leu Glu Ala Glu Leu Glu Leu
 50 55 60
 Glu Met Lys Thr Leu Ser Pro Gln Pro His Ser Pro Leu Gly Ser Pro
 65 70 75 80
 Phe Leu Trp Pro Gly Val Glu Gly Pro Asp Ser Pro Asp Ser Pro Lys
 85 90 95
 Pro Gly Ala Leu His Pro Ala Ala His Ala Arg Ser Ala Ser His Phe
 100 105 110
 Ser Leu Glu His Pro Thr
 115

<210> 116
 <211> 48
 <212> PRT
 <213> Homo sapiens

<400> 116
 Asp Arg Gln Leu Phe Asp Thr Ile Ser Leu Leu Ile Gln Gly Ser Leu
 1 5 10 15
 Glu Trp Glu Leu Lys Leu Met Asp Glu Leu Ala Gly Pro Gly Gly Gln
 20 25 30
 Pro Ser Ala Phe Pro Ser Ala Pro Ser Leu Gly Gly Ser Asp Pro Gln
 35 40 45

<210> 117
 <211> 45
 <212> PRT
 <213> Homo sapiens

<400> 117
 Ile Pro Leu Ala Glu Met Glu Ala Leu Ser Leu Thr Ser Glu Ile Val
 1 5 10 15
 Ser Glu Pro Ser Cys Ser Leu Ala Leu Thr Asp Asp Ser Leu Pro Asp
 20 25 30
 Asp Met His Thr Leu Leu Leu Ser Ala Leu Glu Ser Asn
 35 40 45

<210> 118
 <211> 56
 <212> PRT
 <213> Homo sapiens

<400> 118
 Met Gln Pro His Pro Thr Glu Leu Pro Gly Pro Asp Leu Leu Thr Val
 1 5 10 15

Arg Lys Ser Gly Val Ser Arg Thr His Ser Leu Pro Asn Asp Ser Tyr
 20 25 30
 Met Cys Arg His Gly Ser Thr Ala Glu Gly Pro Leu Gly His Arg Gly
 35 40 45
 Trp Gly Leu Pro Lys Ala Gln Ser
 50 55

<210> 119
 <211> 57
 <212> PRT
 <213> Homo sapiens

<400> 119
 Gly Ser Val Leu Ser Val His Ser Gln Pro Ala Asp Thr Ser Tyr Ile
 1 5 10 15
 Leu Gln Leu Pro Lys Asp Ala Pro His Leu Leu Gln Pro His Ser Ala
 20 25 30
 Pro Thr Trp Gly Thr Ile Pro Lys Leu Pro Pro Pro Gly Arg Ser Pro
 35 40 45
 Leu Ala Gln Arg Pro Leu Arg Arg Gln
 50 55

<210> 120
 <211> 22
 <212> PRT
 <213> Homo sapiens

<400> 120
 Ala Ala Ile Arg Thr Asp Ser Leu Asp Val Gln Gly Leu Gly Ser Arg
 1 5 10 15
 Glu Asp Leu Leu Ala Glu
 20

<210> 121
 <211> 79
 <212> PRT
 <213> Homo sapiens

<400> 121
 Val Ser Gly Pro Ser Pro Pro Leu Ala Arg Ala Tyr Ser Phe Trp Gly
 1 5 10 15
 Gln Ser Ser Thr Gln Ala Gln Gln His Ser Arg Ser His Ser Lys Ile
 20 25 30
 Ser Lys His Met Thr Pro Pro Ala Pro Cys Pro Gly Pro Glu Pro Asn
 35 40 45
 Trp Gly Lys Gly Pro Pro Glu Thr Arg Ser Ser Leu Glu Leu Asp Thr
 50 55 60
 Glu Leu Ser Trp Ile Ser Gly Asp Leu Leu Pro Pro Gly Gly Gln
 65 70 75

<210> 122
 <211> 143
 <212> PRT
 <213> Homo sapiens

<400> 122

Glu	Glu	Pro	Pro	Ser	Pro	Arg	Asp	Leu	Lys	Lys	Cys	Tyr	Ser	Val	Glu
1									10						15
Ala	Gln	Ser	Cys	Gln	Arg	Arg	Pro	Thr	Ser	Trp	Leu	Asp	Glu	Gln	Arg
									25						30
Arg	His	Ser	Ile	Ala	Val	Ser	Cys	Leu	Asp	Ser	Gly	Ser	Gln	Pro	His
									40						45
Leu	Gly	Thr	Asp	Pro	Ser	Asn	Leu	Gly	Gly	Gln	Pro	Leu	Gly	Gly	Pro
									55						60
Gly	Ser	Arg	Pro	Lys	Lys	Lys	Leu	Ser	Pro	Pro	Ser	Ile	Thr	Ile	Asp
									70			75			80
Pro	Pro	Glu	Ser	Gln	Gly	Pro	Arg	Thr	Pro	Pro	Ser	Pro	Gly	Ile	Cys
									85			90			95
Leu	Arg	Arg	Arg	Ala	Pro	Ser	Ser	Asp	Ser	Lys	Asp	Pro	Leu	Ala	Ser
									100			105			110
Gly	Pro	Pro	Asp	Ser	Met	Ala	Ala	Ser	Pro	Ser	Pro	Lys	Lys	Asp	Val
									115			120			125
Leu	Ser	Leu	Ser	Gly	Leu	Ser	Ser	Asp	Pro	Ala	Asp	Leu	Asp	Pro	
									130			135			140

<210> 123

<211> 79

<212> PRT

<213> Homo sapiens

<400> 123

Met	Ala	Glu	Ser	Ala	Ser	Pro	Pro	Ser	Ser	Ala	Ala	Ala	Pro	Ala	
1										10				15	
Ala	Glu	Pro	Gly	Val	Thr	Thr	Glu	Gln	Pro	Gly	Pro	Arg	Ser	Pro	Pro
										25				30	
Ser	Ser	Pro	Pro	Gly	Leu	Glu	Glu	Pro	Leu	Asp	Gly	Ala	Asp	Pro	His
									35			40			45
Val	Pro	His	Pro	Asp	Leu	Ala	Pro	Ile	Ala	Phe	Phe	Cys	Leu	Arg	Gln
								50			55			60	
Thr	Thr	Ser	Pro	Arg	Asn	Trp	Cys	Ile	Lys	Met	Val	Cys	Asn	Pro	
								65			70			75	

<210> 124

<211> 37

<212> PRT

<213> Homo sapiens

<400> 124

Trp	Phe	Glu	Cys	Val	Ser	Met	Leu	Val	Ile	Leu	Leu	Asn	Cys	Val	Thr
1									5						15
Leu	Gly	Met	Tyr	Gln	Pro	Cys	Asp	Asp	Met	Asp	Cys	Leu	Ser	Asp	Arg
									20			25			30
Cys	Lys	Ile	Leu	Gln											
									35						

<210> 125

<211> 45

<212> PRT

<213> Homo sapiens

<400> 125

Val Phe Asp Asp Phe Ile Phe Ile Phe Ala Met Glu Met Val Leu
 1 5 10 15
 Lys Met Val Ala Leu Gly Ile Phe Gly Lys Lys Cys Tyr Leu Gly Asp
 20 25 30
 Thr Trp Asn Arg Leu Asp Phe Phe Ile Val Met Ala Gly
 35 40 45

<210> 126

<211> 32

<212> PRT

<213> Homo sapiens

<400> 126

Met Val Glu Tyr Ser Leu Asp Leu Gln Asn Ile Asn Leu Ser Ala Ile
 1 5 10 15
 Arg Thr Val Arg Val Leu Arg Pro Leu Lys Ala Ile Asn Arg Val Pro
 20 25 30

<210> 127

<211> 54

<212> PRT

<213> Homo sapiens

<400> 127

Ser Met Arg Ile Leu Val Asn Leu Leu Asp Thr Leu Pro Met Leu
 1 5 10 15
 Gly Asn Val Leu Leu Leu Cys Phe Phe Val Phe Phe Ile Phe Gly Ile
 20 25 30
 Ile Gly Val Gln Leu Trp Ala Gly Leu Leu Arg Asn Arg Cys Phe Leu
 35 40 45
 Glu Glu Asn Phe Thr Ile
 50

<210> 128

<211> 105

<212> PRT

<213> Homo sapiens

<400> 128

Gln Gly Asp Val Ala Leu Pro Pro Tyr Tyr Gln Pro Glu Glu Asp Asp
 1 5 10 15
 Glu Met Pro Phe Ile Cys Ser Leu Ser Gly Asp Asn Gly Ile Met Gly
 20 25 30
 Cys His Glu Ile Pro Pro Leu Lys Glu Gln Gly Arg Glu Cys Cys Leu
 35 40 45
 Ser Lys Asp Asp Val Tyr Asp Phe Gly Ala Gly Arg Gln Asp Leu Asn
 50 55 60
 Ala Ser Gly Leu Cys Val Asn Trp Asn Arg Tyr Tyr Asn Val Cys Arg
 65 70 75 80
 Thr Gly Ser Ala Asn Pro His Lys Gly Ala Ile Asn Phe Asp Asn Ile
 85 90 95
 Gly Tyr Ala Trp Ile Val Ile Phe Gln
 100 105

<210> 129
<211> 31
<212> PRT
<213> Homo sapiens

<400> 129
Val Ile Thr Leu Glu Gly Trp Val Glu Ile Met Tyr Tyr Val Met Asp
1 5 10 15
Ala His Ser Phe Tyr Asn Phe Ile Tyr Phe Ile Leu Leu Ile Ile
20 25 30

<210> 130
<211> 104
<212> PRT
<213> Homo sapiens

<400> 130
Val Gly Ser Phe Phe Met Ile Asn Leu Cys Leu Val Val Ile Ala Thr
1 5 10 15
Gln Phe Ser Glu Thr Lys Gln Arg Glu His Arg Leu Met Leu Glu Gln
20 25 30
Arg Gln Arg Tyr Leu Ser Ser Thr Val Ala Ser Tyr Ala Glu Pro
35 40 45
Gly Asp Cys Tyr Glu Glu Ile Phe Gln Tyr Val Cys His Ile Leu Arg
50 55 60
Lys Ala Lys Arg Arg Ala Leu Gly Leu Tyr Gln Ala Leu Gln Ser Arg
65 70 75 80
Arg Gln Ala Leu Gly Pro Glu Ala Pro Ala Pro Ala Lys Pro Gly Pro
85 90 95
His Ala Lys Glu Pro Arg His Tyr
100

<210> 131
<211> 35
<212> PRT
<213> Homo sapiens

<400> 131
His Gly Lys Thr Lys Gly Gln Gly Asp Glu Gly Arg His Leu Gly Ser
1 5 10 15
Arg His Cys Gln Thr Leu His Gly Pro Ala Ser Pro Gly Asn Asp His
20 25 30
Ser Gly Arg
35

<210> 132
<211> 142
<212> PRT
<213> Homo sapiens

<400> 132
Glu Leu Cys Pro Gln His Ser Pro Leu Asp Ala Thr Pro His Thr Leu
1 5 10 15
Val Gln Pro Ile Pro Ala Thr Leu Ala Ser Asp Pro Ala Ser Cys Pro
20 25 30

Cys Cys Gln His Glu Asp Gly Arg Arg Pro Ser Gly Leu Gly Ser Thr
 35 40 45
 Asp Ser Gly Gln Glu Gly Ser Gly Ser Gly Ser Ala Gly Gly Glu
 50 55 60
 Asp Glu Ala Asp Gly Asp Gly Ala Arg Ser Ser Glu Asp Gly Ala Ser
 65 70 75 80
 Ser Glu Leu Gly Lys Glu Glu Glu Glu Glu Gln Ala Asp Gly Ala
 85 90 95
 Val Trp Leu Cys Gly Asp Val Trp Arg Glu Thr Arg Ala Lys Leu Arg
 100 105 110
 Gly Ile Val Asp Ser Lys Tyr Phe Asn Arg Gly Ile Met Met Ala Ile
 115 120 125
 Leu Val Asn Thr Val Ser Met Gly Ile Glu His His Glu Gln
 130 135 140

<210> 133
<211> 51
<212> PRT
<213> Homo sapiens

<400> 133
Pro Glu Glu Leu Thr Asn Ile Leu Glu Ile Cys Asn Val Val Phe Thr
 1 5 10 15
 Ser Met Phe Ala Leu Glu Met Ile Leu Lys Leu Ala Ala Phe Gly Leu
 20 25 30
 Phe Asp Tyr Leu Arg Asn Pro Tyr Asn Ile Phe Asp Ser Ile Ile Val
 35 40 45
 Ile Ile Ser
 50

<210> 134
<211> 62
<212> PRT
<213> Homo sapiens

<400> 134
Ile Trp Glu Ile Val Gly Gln Ala Asp Gly Gly Leu Ser Val Leu Arg
 1 5 10 15
 Thr Phe Arg Leu Leu Arg Val Leu Lys Leu Val Arg Phe Met Pro Ala
 20 25 30
 Leu Arg Arg Gln Leu Val Val Leu Met Lys Thr Met Asp Asn Val Ala
 35 40 45
 Thr Phe Cys Met Leu Leu Met Leu Phe Ile Phe Ile Phe Ser
 50 55 60

<210> 135
<211> 39
<212> PRT
<213> Homo sapiens

<400> 135
Ile Leu Gly Met His Ile Phe Gly Cys Lys Phe Ser Leu Arg Thr Asp
 1 5 10 15
 Thr Gly Asp Thr Val Pro Asp Arg Lys Asn Phe Asp Ser Leu Leu Trp
 20 25 30

Ala Ile Val Thr Val Phe Gln
35

<210> 136
<211> 52
<212> PRT
<213> Homo sapiens

<400> 136
Ile Leu Thr Gln Glu Asp Trp Asn Val Val Leu Tyr Asn Gly Met Ala
1 5 10 15
Ser Thr Ser Pro Trp Ala Ser Leu Tyr Phe Val Ala Leu Met Thr Phe
20 25 30
Gly Asn Tyr Val Leu Phe Asn Leu Leu Val Ala Ile Leu Val Glu Gly
35 40 45
Phe Gln Ala Glu
50

<210> 137
<211> 31
<212> PRT
<213> Homo sapiens

<400> 137
Gly Asp Ala Asn Arg Ser Tyr Ser Asp Glu Asp Gln Ser Ser Ser Asn
1 5 10 15
Ile Glu Glu Phe Asp Lys Leu Gln Glu Gly Leu Asp Ser Ser Gly
20 25 30

<210> 138
<211> 68
<212> PRT
<213> Homo sapiens

<400> 138
Asp Pro Lys Leu Cys Pro Ile Pro Met Thr Pro Asn Gly His Leu Asp
1 5 10 15
Pro Ser Leu Pro Leu Gly Gly His Leu Gly Pro Ala Gly Ala Ala Gly
20 25 30
Pro Ala Pro Arg Leu Ser Leu Gln Pro Asp Pro Met Leu Val Ala Leu
35 40 45
Gly Ser Arg Lys Ser Ser Val Met Ser Leu Gly Arg Met Ser Tyr Asp
50 55 60
Gln Arg Ser Leu
65

<210> 139
<211> 157
<212> PRT
<213> Homo sapiens

<400> 139
Ser Ser Ser Arg Ser Ser Tyr Tyr Gly Pro Trp Gly Arg Ser Ala Ala
1 5 10 15
Trp Ala Ser Arg Arg Ser Ser Trp Asn Ser Leu Lys His Lys Pro Pro

	20	25	30
Ser Ala Glu His Glu Ser Leu Leu Ser Ala Glu Arg Gly Gly Gly Ala			
35	40	45	
Arg Val Cys Glu Val Ala Ala Asp Glu Gly Pro Pro Arg Ala Ala Pro			
50	55	60	
Leu His Thr Pro His Ala His His Ile His His Gly Pro His Leu Ala			
65	70	75	80
His Arg His Arg His His Arg Arg Thr Leu Ser Leu Asp Asn Arg Asp			
85	90	95	
Ser Val Asp Leu Ala Glu Leu Val Pro Ala Val Gly Ala His Pro Arg			
100	105	110	
Ala Ala Trp Arg Ala Ala Gly Pro Ala Pro Gly His Glu Asp Cys Asn			
115	120	125	
Gly Arg Met Pro Ser Ile Ala Lys Asp Val Phe Thr Lys Met Gly Asp			
130	135	140	
Arg Gly Asp Arg Gly Glu Asp Glu Glu Ile Asp Tyr			
145	150	155	

<210> 140
<211> 34
<212> PRT
<213> Homo sapiens

	<400> 140		
Thr Leu Cys Phe Arg Val Arg Lys Met Ile Asp Val Tyr Lys Pro Asp			
1	5	10	15
Trp Cys Glu Val Arg Glu Asp Trp Ser Val Tyr Leu Phe Ser Pro Glu			
20	25	30	
Asn Arg			

<210> 141
<211> 41
<212> PRT
<213> Homo sapiens

	<400> 141		
Phe Arg Val Leu Cys Gln Thr Ile Ile Ala His Lys Leu Phe Asp Tyr			
1	5	10	15
Val Val Leu Ala Phe Ile Phe Leu Asn Cys Ile Thr Ile Ala Leu Glu			
20	25	30	
Arg Pro Gln Ile Glu Ala Gly Ser Thr			
35	40		

<210> 142
<211> 23
<212> PRT
<213> Homo sapiens

	<400> 142		
Glu Arg Ile Phe Leu Thr Val Ser Asn Tyr Ile Phe Thr Ala Ile Phe			
1	5	10	15
Val Gly Glu Met Thr Leu Lys			
20			

<210> 143
<211> 62
<212> PRT
<213> Homo sapiens

<400> 143
Val Val Ser Leu Gly Leu Tyr Phe Gly Glu Gln Ala Tyr Leu Arg Ser
1 5 10 15
Ser Trp Asn Val Leu Asp Gly Phe Leu Val Phe Val Ser Ile Ile Asp
20 25 30
Ile Val Val Ser Leu Ala Ser Ala Gly Gly Ala Lys Ile Leu Gly Val
35 40 45
Leu Arg Val Leu Arg Leu Leu Arg Thr Leu Arg Pro Leu Arg
50 55 60

<210> 144
<211> 42
<212> PRT
<213> Homo sapiens

<400> 144
Val Ile Ser Arg Ala Pro Gly Leu Lys Leu Val Val Glu Thr Leu Ile
1 5 10 15
Ser Ser Leu Lys Pro Ile Gly Asn Ile Val Leu Ile Cys Cys Ala Phe
20 25 30
Phe Ile Ile Phe Gly Ile Leu Gly Val Gln
35 40

<210> 145
<211> 42
<212> PRT
<213> Homo sapiens

<400> 145
Leu Phe Lys Gly Lys Phe Tyr His Cys Leu Gly Val Asp Thr Arg Asn
1 5 10 15
Ile Thr Asn Arg Ser Asp Cys Met Ala Ala Asn Tyr Arg Trp Val His
20 25 30
His Lys Tyr Asn Phe Asp Asn Leu Gly Gln
35 40

<210> 146
<211> 30
<212> PRT
<213> Homo sapiens

<400> 146
Ala Leu Met Ser Leu Phe Val Leu Ala Ser Lys Asp Gly Trp Val Asn
1 5 10 15
Ile Met Tyr Asn Gly Leu Asp Ala Val Ala Val Asp Gln Gln
20 25 30

<210> 147
<211> 64
<212> PRT

<213> Homo sapiens

<400> 147

Pro	Val	Thr	Asn	His	Asn	Pro	Trp	Met	Leu	Leu	Tyr	Phe	Ile	Ser	Phe
1				5					10				15		
Leu	Leu	Ile	Val	Ser	Phe	Phe	Val	Leu	Asn	Met	Phe	Val	Gly	Val	Val
				20					25				30		
Val	Glu	Asn	Phe	His	Lys	Cys	Arg	Gln	His	Gln	Glu	Ala	Glu	Glu	Ala
	35					40			45						
Arg	Arg	Arg	Glu	Glu	Lys	Arg	Leu	Arg	Arg	Leu	Glu	Lys	Lys	Arg	Arg
	50				55				60						

<210> 148

<211> 51

<212> PRT

<213> Homo sapiens

<400> 148

Lys	Ala	Gln	Arg	Leu	Pro	Tyr	Tyr	Ala	Thr	Tyr	Cys	His	Thr	Arg	Leu
1				5				10				15			
Leu	Ile	His	Ser	Met	Cys	Thr	Ser	His	Tyr	Leu	Asp	Ile	Phe	Ile	Thr
				20				25				30			
Phe	Ile	Ile	Cys	Leu	Asn	Val	Val	Thr	Met	Ser	Leu	Glu	His	Tyr	Asn
	35				40			45							
Gln	Pro	Thr													
	50														

<210> 149

<211> 37

<212> PRT

<213> Homo sapiens

<400> 149

Ser	Leu	Glu	Thr	Ala	Leu	Lys	Tyr	Cys	Asn	Tyr	Met	Phe	Thr	Thr	Val
1				5				10			15				
Phe	Val	Leu	Glu	Ala	Val	Leu	Lys	Leu	Val	Ala	Phe	Gly	Leu	Arg	Arg
				20				25			30				
Phe	Phe	Lys	Asp	Arg											
	35														

<210> 150

<211> 44

<212> PRT

<213> Homo sapiens

<400> 150

Trp	Asn	Gln	Leu	Asp	Leu	Ala	Ile	Val	Leu	Leu	Ser	Val	Met	Gly	Ile
1				5					10			15			
Thr	Leu	Glu	Glu	Ile	Glu	Ile	Asn	Ala	Ala	Leu	Pro	Ile	Asn	Pro	Thr
				20				25			30				
Ile	Ile	Arg	Ile	Met	Arg	Val	Leu	Arg	Ile	Ala	Arg				
	35				40										

<210> 151

<211> 24

<212> PRT
<213> Homo sapiens

<400> 151
Val Leu Lys Leu Leu Lys Met Ala Thr Gly Met Arg Ala Leu Leu Asp
1 5 10 15
Thr Val Val Gln Ala Leu Pro Gln
20

<210> 152
<211> 26
<212> PRT
<213> Homo sapiens

<400> 152
Val Gly Asn Leu Gly Leu Leu Phe Met Leu Leu Phe Phe Ile Tyr Ala
1 5 10 15
Ala Leu Gly Val Glu Leu Phe Gly Lys Leu
20 25

<210> 153
<211> 41
<212> PRT
<213> Homo sapiens

<400> 153
Val Cys Asn Asp Glu Asn Pro Cys Glu Gly Met Ser Arg His Ala Thr
1 5 10 15
Phe Glu Asn Phe Gly Met Ala Phe Leu Thr Leu Phe Gln Val Ser Thr
20 25 30
Gly Asp Asn Trp Asn Gly Ile Met Lys
35 40

<210> 154
<211> 113
<212> PRT
<213> Homo sapiens

<400> 154
Asp Thr Leu Arg Asp Cys Thr His Asp Glu Arg Ser Cys Leu Ser Ser
1 5 10 15
Leu Gln Phe Val Ser Pro Leu Tyr Phe Val Ser Phe Val Leu Thr Ala
20 25 30
Gln Phe Val Leu Ile Asn Val Val Ala Val Leu Met Lys His Leu
35 40 45
Asp Asp Ser Asn Lys Glu Ala Gln Glu Asp Ala Glu Met Asp Ala Glu
50 55 60
Leu Glu Leu Glu Met Ala His Gly Leu Gly Pro Gly Pro Arg Leu Pro
65 70 75 80
Thr Gly Ser Pro Gly Ala Pro Gly Arg Gly Pro Gly Gly Ala Gly Gly
85 90 95
Gly Gly Asp Thr Glu Gly Gly Leu Cys Arg Arg Cys Tyr Ser Pro Ala
100 105 110
Gln

<210> 155
<211> 13
<212> PRT
<213> *Homo sapiens*

<400> 155
Glu Asn Leu Trp Leu Asp Ser Val Ser Leu Ile Ile Lys
1 5 10

<210> 156
<211> 36
<212> PRT
<213> *Homo sapiens*

<400> 156
 Asp Ser Leu Glu Gly Glu Leu Thr Ile Ile Asp Asn Leu Ser Gly Ser
 1 5 10 15
 Ile Phe His His Tyr Ser Ser Pro Ala Gly Cys Lys Lys Cys His His
 20 25 30
 Asp Lys Gln Glu
 35

<210> 157
<211> 41
<212> PRT
<213> *Homo sapiens*

<210> 158
<211> 55
<212> PRT
<213> *Homo sapiens*

<400> 158
 Gly Glu Leu Asp Pro Pro Glu Pro Met Arg Val Gly Asp Leu Gly Glu
 1 5 10 15
 Cys Phe Phe Pro Leu Ser Ser Thr Ala Val Ser Pro Asp Pro Glu Asn
 20 25 30
 Phe Leu Cys Glu Met Glu Glu Ile Pro Phe Asn Pro Val Arg Ser Trp
 35 40 45
 Leu Lys His Asp Ser Ser Gln
 50 55

<210> 159
<211> 66
<212> PRT
<213> *Homo sapiens*

<400> 159
 Ala Pro Pro Ser Pro Phe Ser Pro Asp Ala Ser Ser Pro Leu Leu Pro
 1 5 10 15
 Met Pro Ala Glu Phe Phe His Pro Ala Val Ser Ala Ser Gln Lys Gly
 20 25 30
 Pro Glu Lys Gly Thr Gly Thr Gly Thr Leu Pro Lys Ile Ala Leu Gln
 35 40 45
 Gly Ser Trp Ala Ser Leu Arg Ser Pro Arg Val Asn Cys Thr Leu Leu
 50 55 60
 Arg Gln
 65

<210> 160
<211> 7
<212> PRT
<213> Homo sapiens

<400> 160
 Val Pro Thr Pro Pro Arg Pro
 1 5

<210> 161
<211> 214
<212> PRT
<213> Homo sapiens

<400> 161
 Ala Thr Gly Ser Asp Thr Ser Leu Asp Ala Ser Pro Ser Ser Ser Ala
 1 5 10 15
 Gly Ser Leu Gln Thr Thr Leu Glu Asp Ser Leu Thr Leu Ser Asp Ser
 20 25 30
 Pro Arg Arg Ala Leu Gly Pro Pro Ala Pro Ala Pro Gly Pro Arg Ala
 35 40 45
 Gly Leu Ser Pro Ala Ala Arg Arg Arg Leu Ser Leu Arg Gly Arg Gly
 50 55 60
 Leu Phe Ser Leu Arg Gly Leu Arg Ala His Gln Arg Ser His Ser Ser
 65 70 75 80
 Gly Gly Ser Thr Ser Pro Gly Cys Thr His His Asp Ser Met Asp Pro
 85 90 95
 Ser Asp Glu Glu Gly Arg Gly Ala Gly Gly Gly Ala Gly Ser
 100 105 110
 Glu His Ser Glu Thr Leu Ser Ser Leu Ser Leu Thr Ser Leu Phe Cys
 115 120 125
 Pro Pro Pro Pro Pro Ala Pro Gly Leu Thr Pro Ala Arg Lys Phe
 130 135 140
 Ser Ser Thr Ser Ser Leu Ala Ala Pro Gly Arg Pro His Ala Ala Ala
 145 150 155 160
 Leu Ala His Gly Leu Ala Arg Ser Pro Ser Trp Ala Ala Asp Arg Ser
 165 170 175
 Lys Asp Pro Pro Gly Arg Ala Pro Leu Pro Met Gly Leu Gly Pro Leu
 180 185 190
 Ala Pro Pro Pro Gln Pro Leu Pro Gly Glu Leu Glu Pro Gly Asp Ala
 195 200 205
 Ala Ser Lys Arg Lys Arg
 210

<210> 162
<211> 18
<212> PRT
<213> Homo sapiens

<400> 162
Asp Leu Met Leu Asp Asp Val Ile Ala Ser Gly Ser Ser Ala Ser Ala
1 5 10 15
Ala Ser

<210> 163
<211> 51
<212> PRT
<213> Homo sapiens

<400> 163
Lys Ala Gln Cys Lys Pro Tyr Tyr Ser Asp Tyr Ser Arg Phe Arg Leu
1 5 10 15
Leu Val His His Leu Cys Thr Ser His Tyr Leu Asp Leu Phe Ile Thr
20 25 30
Gly Val Ile Gly Leu Asn Val Val Thr Met Ala Met Glu His Tyr Gln
35 40 45
Gln Pro Gln
50

<210> 164
<211> 142
<212> PRT
<213> Homo sapiens

<400> 164
Gln Leu Cys Pro Gln His Ser Pro Leu Asp Ala Thr Pro His Thr Leu
1 5 10 15
Val Gln Pro Ile Pro Ala Thr Leu Ala Ser Asp Pro Ala Ser Cys Pro
20 25 30
Cys Cys Gln His Glu Asp Gly Arg Arg Pro Ser Gly Leu Gly Ser Thr
35 40 45
Asp Ser Gly Gln Glu Gly Ser Gly Ser Ser Ala Gly Gly Glu
50 55 60
Asp Glu Ala Asp Gly Asp Gly Ala Arg Ser Ser Glu Asp Gly Ala Ser
65 70 75 80
Ser Glu Leu Gly Lys Glu Glu Glu Glu Glu Gln Ala Asp Gly Ala
85 90 95
Val Trp Leu Cys Gly Asp Val Trp Arg Glu Thr Arg Ala Lys Leu Arg
100 105 110
Gly Ile Val Asp Ser Lys Tyr Phe Asn Arg Gly Ile Met Met Ala Ile
115 120 125
Leu Val Asn Thr Val Ser Met Gly Ile Glu His His Glu Gln
130 135 140