Step-by-Step Numerical Calculation of Jacobian Matrix and Voltage Profile

for First Iteration (Newton-Raphson Load Flow)

System Overview

• Number of Buses: 9

• Slack Bus: Bus 1

• PV Buses: Bus 5, 6, 9

• PQ Buses: Bus 2, 3, 4, 7, 8

Iteration 1 Assumptions

- All voltage magnitudes $V_i=1.0\,\mathrm{pu}$

• All voltage angles $\theta_i = 0^{\circ}$

• Hence, $\cos(\theta_i - \theta_j) = 1$, $\sin(\theta_i - \theta_j) = 0$

Jacobian Submatrices

The Newton-Raphson method solves the linear system:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix}$$

1. Submatrix $J_{11} = \frac{\partial P}{\partial \theta}$

$$J_{11}(i,j) = \begin{cases} -Q_i - B_{ii}V_i^2 & \text{if } i = j\\ V_i V_j [G_{ij}\sin(\theta_i - \theta_j) - B_{ij}\cos(\theta_i - \theta_j)] & \text{if } i \neq j \end{cases}$$

Example:

$$J_{11}(2,2)$$
 (Bus 3) = $-Q_3 - B_{33} \cdot V_3^2 = -(-0.0157) - (-8.8943) = 0.0157 + 8.8943 = 8.91$

$$J_{11}(2,1)$$
 (Bus 3 w.r.t Bus 2) = $-B_{32} = -4.4472$

2. Submatrix $J_{12} = \frac{\partial P}{\partial V}$

$$J_{12}(i,j) = \begin{cases} \frac{P_i}{V_i} + G_{ii}V_i & \text{if } i = j\\ V_i \cdot [G_{ij}\cos(\theta_i - \theta_j) + B_{ij}\sin(\theta_i - \theta_j)] & \text{if } i \neq j \end{cases}$$

Example:

$$J_{12}(3,2)$$
 (Bus 4 w.r.t itself) = $\frac{-0.0339}{1} + G_{44} = -0.0339 + 2.9655 = 2.9316$

3. Submatrix $J_{21} = \frac{\partial Q}{\partial \theta}$

$$J_{21}(i,j) = \begin{cases} P_i - G_{ii}V_i^2 & \text{if } i = j\\ -V_iV_j[G_{ij}\cos(\theta_i - \theta_j) + B_{ij}\sin(\theta_i - \theta_j)] & \text{if } i \neq j \end{cases}$$

Example:

$$J_{21}(1,1)$$
 (Bus 2) = $P_2 - G_{22} = 0 - 2.9655 = -2.9655$

$$J_{21}(1,2)$$
 (Bus 2 w.r.t Bus 3) = $-[G_{23}] = -(-1.2581) = 1.2581$

4. Submatrix $J_{22} = \frac{\partial Q}{\partial V}$

$$J_{22}(i,j) = \begin{cases} \frac{Q_i}{V_i} - B_{ii}V_i & \text{if } i = j\\ V_i \cdot [G_{ij}\sin(\theta_i - \theta_j) - B_{ij}\cos(\theta_i - \theta_j)] & \text{if } i \neq j \end{cases}$$

Example:

$$J_{22}(1,1)$$
 (Bus 2) = $\frac{0}{1} - (-24.2658) = 24.2658$

$$J_{22}(1,2)$$
 (Bus 2 w.r.t Bus 3) = $-B_{23} = -4.4472$

Bus Voltage Profile (First Iteration)

Bus	Voltage Magnitude (pu)	Angle (deg)
1 (Slack)	1.0000	0.00
2	0.9950	1.25
3	0.9941	2.39
4	0.9985	3.78
5	1.0000	4.15
6	1.0000	4.39
7	0.9996	4.36
8	0.9999	4.39
9	1.0000	4.76

	24.2658	-4.4472	0	0	-4.4472	0	0	0	2.96
$J = \frac{1}{2}$	0	0	0						
	-4.4472	8.8943	-4.4472	0	0	0	0	0	-1.2
	-1.2581	0	0						
	0	-4.4472	24.2658	-15.3715	0	-4.4472	0	0	0
	2.9655	-1.2581	0						
	0	0	-15.3715	15.3715	0	0	0	0	0
	-0.4493	0	0						
	-4.4472	0	0	0	166.0521	0	-161.6049	0	-1.2
	0	0	-41.7944						
	0	0	-4.4472	0	0	166.0521	-161.6049	0	0
	-1.2581	43.0525	-41.7944						
	0	0	0	0	-161.6049	-161.6049	338.5813	-15.3715	0
	0	-41.7944	84.0381						
	0	0	0	0	0	0	-15.3715	15.3715	0
	0	0	-0.4493						
	-2.9655	1.2581	0	0	1.2581	0	0	0	24.20
	0	0	0						
	1.2581	-2.5162	1.2581	0	0	0	0	0	-4.4
	-4.4472	0	0						
	0	1.2581	-2.9655	0.4493	0	1.2581	0	0	0
	24.2658	-4.4472	0						
	0	0	1.2581	0	0	-43.0525	41.7944	0	0
	-4.4472	166.0521	-161.6049						
	0	0	0	0	41.7944	41.7944	-84.0381	0.4493	0
	0	-161.6049	338.5813						