Category theory summer course HW 4, meet and discuss 27.6.2019

David Forsman, david.s.forsman@helsinki.fi

24. kesäkuuta 2019

- 1. Let C, D and E be categories. Show that the horizontal composition $*: [D, E] \times [C, D] \to [C, E]$ is a bifunctor.
- 2. In this exercise we define a new meta categorical structure called the meta-category of natural transformations:

Meta objects: categories C, D, E, \dots

Meta morphisms: Natural transformations $\eta: F \Rightarrow G: C \to D$ where the domain is C and codomain is D, and $F, G: C \to D$ are functors associated to the natural transformation η .

Composition: Horizontal composition of natural transformations.

Show that this definition satisfies the categorical axioms of associativity and identity.

3. Let C, D and E be categories and $B, B': C \times D \to E$ be bifunctors. Let

$$\eta = (\eta_{c,d} : B(c,d) \to B'(c,d))_{(c,d) \in obj(C \times D)}.$$

Show that the following are equivalent:

- (a) $\eta: B \Rightarrow B': C \times D \rightarrow E$
- (b) $\eta: \tilde{B} \Rightarrow \tilde{B}': C \to [D, E]$, where \tilde{B} and \tilde{B}' are the associated functors by currying.
- (c) $\eta_{-,d}: B^d \Rightarrow B'^d: C \to E$ and $\eta_{c,-}: B_c \Rightarrow B'_c: D \to E$ for all $e \in C$ and $d \in D$.
- 4. Show that relation \simeq is an equivalence relation, where $C \simeq D$ if and only if there exists functors $C \xrightarrow{F} D \xrightarrow{G} D$ where $F \circ G \cong I_D$ and $G \circ F \cong I_C$.
- 5. (Same exercises as in the previos week): Show that a functor $F: C \to D$ is an equivalence if and only if F is dense and fully faithful.
- 6. Give the representations of the following functors:
 - (a) The identity functor $I_{Set}: Set \to Set$.
 - (b) The forgetful functor $U: Grp \to Set$.
 - (c) The (contravariant) power set functor $P^*: Set^{op} \to Set$.
 - (d) The functor $\tau: Top^{op} \to Set$, where $\tau(X)$ is the topology on X and for a continuous map $f: X \to Y, \, \tau(f) = f^*: \tau(Y) \to \tau(X)$ is the induced map.
 - (e) The functor $F: Top^{op} \to Set$, where F(X) is the set of closed subsets of X and where continuos map is taken to the induced map between the closed sets.

- (f) The functor $Obj: Cat \to Set$, which takes a small category to it's underlying set of objects.
- (g) The functor $Mor: Cat \to Set$, which associates a small category to its set of morphisms.
- 7. Show that the covariant power set functor $P_*: Set \to Set$ is not representable. (Hint: use Yoneda lemma).
- 8. Give all the natural transformations from the first functor to the second:
 - (a) $I_{Set}, I_{Set} : Set \to Set$.
 - (b) $P^*, P^* : Set^{op} \to Set$.
 - (c) $I_{Set}, P_* : Set \to Set$
 - (d) $U, U : Grp \to Set$, where U is the forgetful functor.
- 9. Let C be a category with sums, products and exponentials. We take it for granted that all of them define some kind of a functor. We may also assume that the following isomorphisms are natural in a, b and c:

$$C(a, b \times c) \cong C(a, b) \times C(a, c).$$

$$C(a+b,c) \cong C(a,c) \times C(b,c).$$

$$C(a \times b, c) \cong C(a, c^b).$$

Show by using fully faithfulness of Yoneda embedding that the following isomorphisms hold¹.

- (a) $(a+b) \times c \cong (a \times c) + (b \times c)$.
- (b) $(a \times b)^c \cong a^c \times b^c$.
- (c) $(a^b)^c \cong a^{b \times c}$.
- (d) $a^{b+c} \cong a^b \times a^c$.
- 10. Prove Yoneda lemma: Let C be a locally small category, c an object in C and $F: C \to Set$ a functor. Then

$$[C_c, F] \cong F(c)$$

naturally in F and c. In other words

$$Set^C \circ y^{op} \times I_{Set^C} \cong Ev : C \times Set^C \to Set,$$

where $y: C^{op} \to Set^C$ is the Yoneda functor (later proved to be an embedding), which is the functor associated to *Hom*-functor through currying.

(a) Let $\eta \in [C_c, F]$ and so $\eta : C_c \Rightarrow F$. Show that given an object d in C and $f : c \to d$, we have

$$\eta_d(f) = Ff(\eta_c(id_c)).$$

- (b) Define a map $\psi_{c,F}: [C_c, F] \to Fc$.
- (c) Show that $\psi_{c,F}$ is a bijection.
- (d) Lastly demonstrate the naturality of of the collection of maps $(\psi_{c,F})_{c,F}$.
- 11. Show by using Yoneda lemma that the Yoneda functor $y: C^{op} \to [C, Set]$ is an embedding, meaning fully faithful and injective on objects.

¹The isomorphims actually hold naturally as well

²Remark that if category C has coexponential objects, such as in $\mathcal{P}(X)$, then we get the dual results also and distributiveness hold: summation distributes over multiplication.