RILHAB LOKERY 9357-3447 Fundamentals of Machine learning 0 0 Bublem-1 0 0 i.i.d =  $X = \sum_{i=1}^{n} x_i y_{i=1}$ 0 6 P(X/u) = Data likelihoool 0 0 = Possione distribution ( ( ) = 12 = 1) 0 6 0 0 0 Marirum - Linchhard Estimator & (MLE) 0 0 en-By MLE method we ried to Mom. The data Clikelihood. @ I on-9 · ary man P(X/1) he know - P(X/1) can be written as P(X/1)=P(11/1)P(12/1) -5 = (I P(MM/H) 6



Scanned with CamScanner

Marinen A-posterior: 5 (MAP) ang Man P(X/1) P(1)

1.c. maunimi
Prelessorie Perion = P(M) = Bx /x-1 datalikelihood = P(X/1) = 1 e-1 J(A) = (a-1) P(N/i) = # 1 e = data likelihood = (Ne Ne Ne Ne Ne Ne Ne Ne Ne Constant X. (N=1 [1/n=-1]) X e-1B)

 $-\log(n_n!) = 1\beta + \log(n)(1-d) - \leq n_n$ 1 (1-d - & Mm) HATE ( N+X-1)
N+B

999

Problem-3 . I - The samples of X are i.i.d. ie. 9 0 0 M 0 9 As the Value from XN-10 to XN are ruising uc can use assure the value are ansored to 0 0 D 0 **6** Ja-observed data likelihood: P(4:10) 0 6 6 L' = ! TIP (Nilo) x Tasp(rilo) 6 6 0 6 As values are missing we cannot first substitute of o es as we will show the rusults. each of the data point. whose magnitudes we alo not know.

I

enume une know the values of the willing date points zj---N.

if we have the .Z's we can find the Mon of L' . and find O. values.

Buoblem2

# **HOMEWORK-2**

# **RISHAB LOKRAY (9357-3447)**

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
```

### In [2]:

```
data = pd.read_csv('crab.txt', sep="\t")
data
```

# Out[2]:

|     | Species | FrontalLip | RearWidth | Length | Width | Depth | Male | Female |
|-----|---------|------------|-----------|--------|-------|-------|------|--------|
| 0   | 0       | 20.6       | 14.4      | 42.8   | 46.5  | 19.6  | 1    | 0      |
| 1   | 1       | 13.3       | 11.1      | 27.8   | 32.3  | 11.3  | 1    | 0      |
| 2   | 0       | 16.7       | 14.3      | 32.3   | 37.0  | 14.7  | 0    | 1      |
| 3   | 1       | 9.8        | 8.9       | 20.4   | 23.9  | 8.8   | 0    | 1      |
| 4   | 0       | 15.6       | 14.1      | 31.0   | 34.5  | 13.8  | 0    | 1      |
|     |         |            |           |        |       |       |      |        |
| 195 | 1       | 12.3       | 11.0      | 26.8   | 31.5  | 11.4  | 1    | 0      |
| 196 | 1       | 12.0       | 11.1      | 25.4   | 29.2  | 11.0  | 0    | 1      |
| 197 | 1       | 8.8        | 7.7       | 18.1   | 20.8  | 7.4   | 1    | 0      |
| 198 | 1       | 16.2       | 15.2      | 34.5   | 40.1  | 13.9  | 0    | 1      |
| 199 | 0       | 15.6       | 14.0      | 31.6   | 35.3  | 13.8  | 0    | 1      |

200 rows × 8 columns

# In [104]:

```
#SPLITTING TRAINING AND TESTING DATA
training_data = data.loc[0:139]
testing_data = data.loc[140:200]

training_data_t = training_data['Species']
training_data_X = training_data.drop(['Species'],axis=1)

testing_data_t = testing_data['Species']
testing_data_X = testing_data.drop(['Species'],axis=1)
```

#### In [19]:

```
#TRAINING SET
#Calculating Mean and Covar of class_1 class_0

N_class_0, N_class_1 = training_data['Species'].value_counts()
```

### In [21]:

```
#CALCULATING MEAN
sum_0,sum_1 = 0,0
for i in range(0,140):
    if training_data['Species'].loc[i] == 0:
        sum_0 = sum_0 + training_data.loc[i]
    else:
        sum_1 = sum_1 + training_data.loc[i]
sum_0 = sum_0.drop(['Species'])
sum_1 = sum_1.drop(['Species'])
Mean_class_0 = sum_0/N_class_0
Mean_class_1 = sum_1/N_class_1
```

### In [24]:

```
#CALCUALTING COVARIANCE
temp0 = training_data
temp1 = training_data

for i in range(0,140):
    if temp0['Species'].loc[i] == 1:
        temp0 = temp0.drop(i,axis = 0)

temp0 = temp0.drop(['Species'],axis =1)
CoVar_class_0 = np.cov(temp0.T)

for i in range(0,140):
    if temp1['Species'].loc[i] == 0:
        temp1 = temp1.drop(i,axis = 0)

temp1 = temp1.drop(['Species'],axis = 1)
CoVar_class_1 = np.cov(temp1.T)
```

### In [25]:

```
#Prior_Probability

P_C0 = N_class_0/140
P_C1 = N_class_1/140
```

```
In [26]:
```

```
from scipy.stats import multivariate_normal
y0 = multivariate_normal.pdf(training_data_X, mean=Mean_class_0, cov=CoVar_class
_0) #P(x/C0)
y1 = multivariate_normal.pdf(training_data_X, mean=Mean_class_1, cov=CoVar_class
_1) #P(x/C1)
```

\_\_\_\_\_

```
LinAlgError
                                          Traceback (most recent cal
1 last)
<ipython-input-26-468a5b029d4e> in <module>
      1 from scipy.stats import multivariate normal
---> 3 y0 = multivariate_normal.pdf(training_data_X, mean=Mean_clas
s 0, cov=CoVar class 0) \#P(x|C0)
      4 y1 = multivariate normal.pdf(training data X, mean=Mean clas
s 1, cov=CoVar class 1) \#P(x|C1)
~/opt/anaconda3/lib/python3.7/site-packages/scipy/stats/ multivariat
e.py in pdf(self, x, mean, cov, allow singular)
                dim, mean, cov = self. process parameters(None, mean
    519
, cov)
    520
                x = self._process_quantiles(x, dim)
--> 521
                psd = PSD(cov, allow singular=allow singular)
    522
                out = np.exp(self. logpdf(x, mean, psd.U, psd.log pd
et, psd.rank))
    523
               return squeeze output(out)
~/opt/anaconda3/lib/python3.7/site-packages/scipy/stats/ multivariat
e.py in init (self, M, cond, rcond, lower, check finite, allow si
ngular)
                d = s[s > eps]
    161
                if len(d) < len(s) and not allow_singular:</pre>
    162
--> 163
                    raise np.linalg.LinAlgError('singular matrix')
    164
                s pinv = pinv 1d(s, eps)
    165
                U = np.multiply(u, np.sqrt(s_pinv))
```

LinAlgError: singular matrix

"AFTER CAREFUL ANALYSIS OF THE INPUT MATRICES I NOTICED THAT FEMALE AND MALE FEATURES CONVEY THE SAME DATA HENCE THE PDF FUNCTION GIVES US A SINGULARITY ERROR"

"TO FIX THIS I DECIDED TO DROP THE FEMALE FEATURE SET"

\_\_\_\_\_\_

```
In [29]:
```

```
training_data = data.loc[0:139]
testing_data = data.loc[140:200]

training_data_t = training_data['Species']
training_data_X = training_data.drop(['Species','Female'],axis=1)

testing_data_t = testing_data['Species']
testing_data_X = testing_data.drop(['Species','Female'],axis=1)

#Dropped Female as Female and Male are simply the negation of each other.
```

### In [30]:

```
#TRAINING SET
#Calculating Mean and Covar of class_1 class_0

N_class_0, N_class_1 = training_data['Species'].value_counts()
```

### In [31]:

```
sum_0,sum_1 = 0,0
for i in range(0,140):
    if training_data['Species'].loc[i] == 0:
        sum_0 = sum_0 + training_data.loc[i]
    else:
        sum_1 = sum_1 + training_data.loc[i]
sum_0 = sum_0.drop(['Species','Female'])
sum_1 = sum_1.drop(['Species','Female'])
```

### In [32]:

```
Mean_class_0 = sum_0/N_class_0
Mean_class_1 = sum_1/N_class_1
```

### In [33]:

```
temp0 = training_data
temp1 = training_data

for i in range(0,140):
    if temp0['Species'].loc[i] == 1:
        temp0 = temp0.drop(i,axis = 0)

temp0 = temp0.drop(['Species','Female'],axis =1)
CoVar_class_0 = np.cov(temp0.T)

for i in range(0,140):
    if temp1['Species'].loc[i] == 0:
        temp1 = temp1.drop(i,axis = 0)

temp1 = temp1.drop(['Species','Female'],axis = 1)
CoVar_class_1 = np.cov(temp1.T)
```

```
In [34]:
```

```
#Prior_Probability

P_C0 = N_class_0/140
P_C1 = N_class_1/140
```

### In [35]:

```
from scipy.stats import multivariate_normal

y0 = multivariate_normal.pdf(training_data_X, mean=Mean_class_0, cov=CoVar_class
_0) #P(x/C0)

y1 = multivariate_normal.pdf(training_data_X, mean=Mean_class_1, cov=CoVar_class
_1) #P(x/C1)
```

# In [49]:

```
#Posterior probability
posterior_0 = (y0*P_C0)/(y1*P_C1 + y0*P_C0)
posterior_1 = (y1*P_C1)/(y1*P_C1 + y0*P_C0)
o_p = posterior_0<posterior_1
o_p == training_data_t</pre>
```

### Out[49]:

```
True
1
       True
2
       True
3
       True
       True
135
       True
136
       True
137
       True
138
       True
139
       True
Name: Species, Length: 140, dtype: bool
```

# In [37]:

# In [54]:

```
posterior_0_test = (y0_newPoint*P_C0)/(y1_newPoint*P_C1 + y0_newPoint*P_C0)
posterior_1_test = (y1_newPoint*P_C1)/(y1_newPoint*P_C1 + y0_newPoint*P_C0)
o_p_test = posterior_0_test<posterior_1_test
o_p_test == testing_data_t</pre>
```

# Out[54]:

| Out[5      | 4]:          |
|------------|--------------|
| 140        | True         |
| 141        | True         |
| 142        | True         |
| 143        | True         |
| 144        | True         |
| 145        | True         |
| 146        | True         |
| 147        | True         |
| 148        | True         |
| 149<br>150 | True<br>True |
| 151        | True         |
| 152        | True         |
| 153        | True         |
| 154        | True         |
| 155        | True         |
| 156        | True         |
| 157        | True         |
| 158        | True         |
| 159        | True         |
| 160        | True         |
| 161        | True         |
| 162<br>163 | True<br>True |
| 164        | True         |
| 165        | True         |
| 166        | True         |
| 167        | True         |
| 168        | True         |
| 169        | True         |
| 170        | True         |
| 171        | True         |
| 172        | True         |
| 173        | True         |
| 174<br>175 | True         |
| 176        | True<br>True |
| 177        | True         |
| 178        | True         |
| 179        | True         |
| 180        | True         |
| 181        | True         |
| 182        | True         |
| 183        | True         |
| 184        | True         |
| 185        | True         |
| 186<br>187 | True         |
| 188        | True<br>True |
| 189        | True         |
| 190        | True         |
| 191        | True         |
| 192        | True         |
| 193        | True         |
| 194        | True         |
| 195        | True         |
| 196        | True         |
| 197        | True         |

198

True

```
199 True
Name: Species, dtype: bool
```

In [102]:

#### **CONFUSION MATRIX FOR TRAINING SET**

```
m = [[0] * 2 for i in range(2)]
for pred, exp in zip(o_p, training_data_t):
    m[pred][exp] += 1
np.array(m)

/Users/rishablokray/opt/anaconda3/lib/python3.7/site-packages/ipyker
nel_launcher.py:3: DeprecationWarning: In future, it will be an erro
r for 'np.bool_' scalars to be interpreted as an index
    This is separate from the ipykernel package so we can avoid doing
imports until

Out[102]:
```

# **CONFUSION MATRIX FOR TESTING SET**

```
In [101]:

m = [[0] * 2 for i in range(2)]
for pred, exp in zip(o_p_test, testing_data_t):
    m[pred][exp] += 1
np.array(m)
```

/Users/rishablokray/opt/anaconda3/lib/python3.7/site-packages/ipyker nel\_launcher.py:3: DeprecationWarning: In future, it will be an erro r for 'np.bool\_' scalars to be interpreted as an index

This is separate from the ipykernel package so we can avoid doing imports until

array([[72, 0],

[ 0, 68]])

# K-N-N

#### In [266]:

```
#Importing libraries and creating training and testing data sets.
from math import sqrt
from sklearn import preprocessing

temp = training_data['Species']
training_data_X = training_data.drop(['Species','Female'],1)
training_data_X['Species'] = temp

temp2 = testing_data['Species']
testing_data_X = testing_data.drop(['Species','Female'],1)
testing_data_X['Species'] = temp2
```

# In [261]:

```
#Using Library to Normalize data.
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(training_data_X)

X_train = scaler.transform(training_data_X)
X_test = scaler.transform(testing_data_X)
```

```
# Calculate the Euclidean distance between two input vectors(Row1 is from the te
sting set and Row2 is from trainig set)
def euclidean distance(row1, row2):
        distance = 0.0
        for i in range(len(row1)-1):
                distance += (row1[i] - row2[i])**2
        return sqrt(distance)
# Locating the similar neighbors
def get neighbors(train, test row, num neighbors):
        distances = list()
        for train row in train:
                dist = euclidean distance(test row, train row)
                distances.append((train row, dist))
        distances.sort(key=lambda tup: tup[1])
        neighbors = list()
        for i in range(num neighbors):
                neighbors.append(distances[i][0])
        return neighbors
# Make a prediction with neighbors
def predict classification(train, test row, num neighbors):
        neighbors = get neighbors(train, test row, num neighbors)
        output values = [row[-1] for row in neighbors]
        prediction = max(set(output values), key=output values.count)
        return prediction
def crossvalidation(nn,predictions):
    # predict the label
    for row in X test:
        predictions.append(predict classification(X train, row, nn))
    return predictions
def calc confMatrix(nn,predictions):
    m = [[0] * 2 for i in range(2)]
    for pred, exp in zip(predictions, testing data t):
        m[int(pred)][exp] += 1
    print("Confusion matrix for n =",nn)
    con mat = np.array(m)
    print(con mat)
    print("Accuracy of Classifier for n =",nn)
    total accuracy = (con mat[0, 0] + con mat[1, 1]) / float(np.sum(con mat))
    graph.append(total accuracy)
    print(total accuracy)
graph = list()
for nn in range(1,15):
    predictions = list()
    predictions = crossvalidation(nn,predictions)
    predictions = np.array(predictions)
    predictions[predictions<0] =0 #Denormalizing the predictions to 0 and 1
    predictions[predictions>0] =1 #Denormalizing the predictions to 0 and 1
    predictions = list(predictions)
    calc confMatrix(nn,predictions)
```

```
Confusion matrix for n = 1
[[25 4]
 [ 3 28]]
Accuracy of Classifier for n = 1
0.8833333333333333
Confusion matrix for n = 2
[[25 7]
 [ 3 25]]
Accuracy of Classifier for n = 2
0.83333333333333334
Confusion matrix for n = 3
[[21 4]
 [ 7 28]]
Accuracy of Classifier for n = 3
0.8166666666666667
Confusion matrix for n = 4
[[25 9]
 [ 3 23]]
Accuracy of Classifier for n = 4
0.8
Confusion matrix for n = 5
[[23 6]
 [ 5 26]]
Accuracy of Classifier for n = 5
0.8166666666666667
Confusion matrix for n = 6
[[25 7]
 [ 3 25]]
Accuracy of Classifier for n = 6
0.83333333333333334
Confusion matrix for n = 7
[[19 4]
 [ 9 28]]
Accuracy of Classifier for n = 7
0.7833333333333333
Confusion matrix for n = 8
[[22 8]
 [ 6 24]]
Accuracy of Classifier for n = 8
0.7666666666666667
Confusion matrix for n = 9
[[14 7]
 [14 25]]
Accuracy of Classifier for n = 9
0.65
Confusion matrix for n = 10
[[20 9]
 [ 8 23]]
Accuracy of Classifier for n = 10
0.7166666666666667
Confusion matrix for n = 11
[[16 8]
 [12 24]]
Accuracy of Classifier for n = 11
0.666666666666666
Confusion matrix for n = 12
[[18 10]
 [10 22]]
Accuracy of Classifier for n = 12
0.666666666666666
Confusion matrix for n = 13
```

```
[[15 10]
  [13 22]]
Accuracy of Classifier for n = 13
0.616666666666667
Confusion matrix for n = 14
[[18 11]
  [10 21]]
Accuracy of Classifier for n = 14
0.65
```

### Graph plot as we increase the values of knn neighbours

# In [326]:

```
plt.plot(range(1,15),graph)
```

# Out[326]:

[<matplotlib.lines.Line2D at 0x1a29661f50>]



### Confusion matrix for the testing set N=6

# In [329]:

# Out[329]:

AS THE ACCURACY IS HIGH FOR N = 6 WE CHOOSE KNN with N = 6

I would prefer the KNN classifier over the probability generative model

as in the probablility model we have to assume a gaussian pdf distribution

and the pdfs of the two classes is very less even though the posteriori is predicted perfectly

this can lead to false positives. While a sytem is expected to let the user know that it is not sure of the output

rather than give a false prediction.