МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 3.4.1

Диа- и парамагнетики

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

1. измерение магнитной восприимчивости диа- и парамагнитного образцов

В работе используются:

- электромагнит
- аналитические весы
- милливеберметр
- регулируемый источник постоянного тока
- образцы

2 Теоретические сведения

Измерение магнитной восприимчивости материалов будем проводить с помощью расчета силы, действующей на магнетик в магнитном поле. При смещении образца на расстояние Δl внутрь магнитного поля магнитная сила, действующая на него, равна

$$F = \left(\frac{\Delta W_m}{\Delta l}\right)_I,\tag{1}$$

где ΔW_m – изменение магнитной энергии системы при постоянном токе в обмотке электромагнита и, следовательно, при постоянной величине магнитного поля в зазоре. Магнитная энергия рассчитывается по формуле:

$$W_m = \frac{1}{2} \int (\mathbf{HB}) dV = \frac{1}{2\mu_0} \int \frac{B^2}{\mu} dV$$

При смещении образца магнитная энергия меняется только в области зазора (в объёме площади S и высоты Δl), а около верхнего конца стержня остаётся неизменной, поскольку магнитного поля там практически нет. Тогда изменение магнитной энергии будет:

Следовательно, на образец действует сила

$$F = (\mu - 1)\frac{B^2}{2\mu_0}S = \chi \frac{B^2}{2\mu_0}S \tag{2}$$

Знак силы, действующей на образец, зависит от знака χ : образцы из парамагнитных материалов $(\chi > 0)$ втягиваются в зазор электромагнита, а диамагнитные образцы $(\chi < 0)$ выталкиваются из него.

Рис. 1: Перемещение магнетика

3 Эксперементальная установка

Схема установки представлена на рис. 2

Рис. 2: Схема установки

Магнитное поле создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр полюсов существенно превосходит ширину зазора, поэтому поле в средней части зазора однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником питания GPR и измеряется амперметром , встроенным в источник питания. Граду-ировка электромагнита (связь между индукцией магнитного поля B в зазоре электромагнита и силой тока I в его обмотках) производится при помощи милливеберметра либо тесламетра. Сила, действующая на образец со стороны магнитного поля измеряется в помощью весов: смотрится разность веса образца вне поля и в поле.

4 Результаты измерений и обработка данных

4.1 Диапазон изменения тока

Ток через обмотку не превышает $I_{max} = 2.4 \text{ A}.$

4.2 Калибровка электромагнита

При выполнении работы были использованы результаты калибровки предыдущих студентов из-за отсутсвия времени на выполнение.

4.3 Весы

Арретируем весы. Весы необходимо арретировать перед каждым изменением тока.

4.4 Измерение силы на образец

Подвесим к весам первый образец (алюминиевый) при выключенном электромагните. По весам измерим массу образца: $m_1=25252$ мг.

Арретируем весы и проведем измерения силы для нескольких значений тока от минимального к максимальному. Результаты измерений занесем в таблицу 1.

I, A	m , M Γ	F, мH
0,30	0	0
0,60	2	20
0,90	5	49
1,20	9	88
1,50	13	128
1,80	19	186
2,10	25	245
2,40	31	304

Таблица 1: Зависимость силы от тока для алюминиего образца

Проведем аналогичную серию измерений при уменьшении тока. Результаты запишем в таблицу 2.

I, A	m , M Γ	F, мH
2,40	33	324
2,10	27	265
1,80	20	196
1,50	14	137
1,20	9	88
0,90	5	49
0,60	2	20
0,30	0	0

Таблица 2: Зависимость силы от тока для алюминиего образца при уменьшении тока

4.5 Измерение сил для других образцов

Проведем аналогичные измерения для образцов из вольфрама и графита. Результаты измерений запишем в таблицы 3 и 4.

I, A	m , M Γ	F, мH	I, A	m , M Γ	F, мH
0,30	2	20	2,40	112	1099
0,60	8	78	2,10	93	912
0,90	18	177	1,80	71	697
1,20	30	294	1,50	52	510
1,50	47	461	1,20	34	334
1,80	66	647	0,90	20	196
2,10	88	863	0,60	9	88
2,40	112	1099	0,30	3	29

Таблица 3: Зависимость силы от тока для вольфрамового образца

4.6 Рассчет поля

Для калибровочных значений тока и потока рассчитаем индукцию магнитного поля и запишем в таблицу $5~(SN=72~{\rm cm}^2).$

I, A	m , M Γ	F, мН	I, A	m , M Γ	F, мH
0,30	10	98	2,40	38	373
0,60	22	216	2,10	44	432
0,90	34	334	1,80	49	481
1,20	43	422	1,50	49	481
1,50	47	461	1,20	46	451
1,80	48	471	0,90	39	383
2,10	45	441	0,60	26	255
2,40	38	373	0,30	14	137

Таблица 4: Зависимость силы от тока для графитового образца

I, A	Ф, мВб	В, Тл
0,0	1,0	0,14
0,4	1,8	0,25
0,6	2,2	0,31
1,0	3,0	0,42
1,3	3,6	0,50
1,6	4,4	0,61
2,0	5,2	0,72
2,3	5,8	0,81
2,4	5,9	0,82

Таблица 5: Зависимость индукции магнитного поля от тока через электромагнит

Рис. 3: Калибровочная кривая для электромагнита

Построим градуировочную кривую для электромагнита B(I). Воспользуемся для этого МНК. Параметры МНК для прямой:

$$k = (0.290 \pm 0.003) \frac{\text{T}_{\text{J}}}{\text{A}}, \quad b = (0.136 \pm 0.003) \text{ T}_{\text{J}}$$

Наличие ненулевого b можно объяснить присутствием магнитных помех, создаваемых не элетромагнитом.

4.7 Зависимость силы от поля

Построим график зависимости силы от квадрата индукции магнитного поля $F(B^2)$ для всех измерений, согласно формуле (2) зависимость должна быть линейной, значит можно воспользоваться МНК. Все графики изобразим на рисунке $\ref{eq:constraint}$?

Рис. 4: Зависимость силы от квадрата индукции для всех измерений

Как видно из графика зависимость для графита не выполняется в пределах измерений. Значения коэффициентов наклона:

$$k_{Al} = (680 \pm 10) \frac{\text{MH}}{\text{T}\pi^2}$$
 $k_W = (2370 \pm 50) \frac{\text{MH}}{\text{T}\pi^2}$

Из формулы (2) найдем магнитную восприимчивость:

$$k = \frac{\chi S}{2\mu_0} \implies \chi = \frac{2k\mu_0}{S}$$

Для образцов имеем: $d=(1{,}000\pm0{,}005)$ см, а значит $S=(0{,}79\pm0{,}01)$ см² Отсюда:

$$\chi_{Al} = (0.0215 \pm 0.0004) \qquad \chi_W = (0.075 \pm 0.002)$$

Полученные значения на порядок отличаются от табличных.