6			_
		ct 1 – Banker's Algorithm, due Saturday, 16 Mar 2019	
Your name a	nd company na	ame: Michael Honsworth (PSC351-05	
Repository h	nttps://gith	ub.com/ mhonsworth / Bankers Project.git	
Verify each of	f the following ite	ems with a corresponding checkmark. Incorrect items will incur a 5% penalty on the grade.	
Complete	Incomplete	Banker's Algorithm	
対		Created the Banker's Algorithm in C, C++, or Java, so that customers make requests of the banker for a limited set of resources.	
M		Reads from and uses the current allocation state and maximum resources needed for each process (customer) from an input text file.	
ÌΣÍ		Has an Interactive state, that allows the user to type in a command of the form: * OR <rq ri="" =""> <pre> <pre> <pre> <pre></pre></pre></pre></pre></rq>	
Ø		Has a Simulation state, that has processes make random requests for resources, and attempts to find a safe path for all processes to run to completion and release their resources. The simulation ends when all processes have shut down. (see examples)	
∑		Uses threads to simulate customers making requests and releasing resources when their maximum needs are satisfied	
120		Uses Allocated, Maximum, Needs, and Available matrices to track the resources allocated, the maximum resources needed, resources needed and the resources available.]
×		Does not grant requests that would exceed the maximum resources needed by a process.	27
8 (Does not grant requests that would exceed the total resources available to the system.	
M		Does not allow requests to be granted that would result in the system being in an unsafe state, by granting a proposed request and trying to find a path that satisfies all processes.	
2	, ,	Tested the simulation with different input files that are known to have the system in a safe state to see if the simulation can find the solution (use Silberschatz and Stallings).	
×		Tested the simulation with different numbers of resources (3-6), and different numbers of processes (3-10), and are able to describe the effect of doing this. Increasing resource types <u>more denials to random resource vequests</u> Increasing processes <u>system resources</u> yet solit, more processes waiting for	16200 a C G Z
×	· 🗖	Tested the simulation to find the most likely combination of processes and resources to cause deadlock fewer or split resources. & higher # of processes	
M	ο,	Understand the code structure to the degree that the student could rewrite any section of the code from scratch.	
M		Project directory pushed to new GitHub repository listed above using GitHub client.	1

Your comments