ЛАБОРАТОРНА РОБОТА 4

лінійні циклічні коди

Mema роботи: дослідити побудову та можливості корегування лінійних систематичних циклічних кодів.

Вхідні дані

Матушевич Ярослав Євгенович 1 листопада 1997 року 10 номер в групі

 $j_1 = 25$ - сума кількості букв, $k = 25 \ mod \ 10 = 5$ - кількість інформаційних символів $j_2 = 10$

Завдання 1

Необхідно побудувати утворюючу матрицю циклічного коду, що виявляє всі одиничні помилки (s=1) при передачі 5-розрядного інформаційного слова.

Кількість перевірних розрядів

$$k = 5$$
, $d = 2s + 1 = 3$
 $m = [\log_2\{(k+1) + [\log_2(k+1)]\}] = [\log_2\{6 + [\log_2 6]\}] = 4$
 $n = k + m = 5 + 4 = 9$

Отримуємо код (9;5)

Це – усічений код, в якому число синдромів перевищує необхідне.

При 4 перевірних розрядах число синдромів $2^4 = 16$, тоді як необхідно 10.

Всі можливі 4-розрядні комбінації з d-1=2 і більше одиниць

0011; 0101; 0110; 0111; 1001; 1010; 1011; 1100; 1101; 1110; 1111

Утворююча підматриця 5 × 4

$$R(9;5) = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

Утворююча матриця

$$G(9;5) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Із матриці G(9;5) можна скласти всі дозволені кодові комбінації.

Для коду (9; 5) їх буде $2^5 = 32$. П'ять із них є рядками утворюючої матриці, а інші 27 знаходяться сумуванням за модулем 2 цих рядків.

Наприклад, для інформаційного коду A = 11011 отримуємо наступний код для передачі

$$U = AG = (1\ 1\ 0\ 1\ 1) \begin{pmatrix} 1\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1 \\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 1 \\ 0\ 0\ 1\ 0\ 0\ 1\ 1\ 1 \\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 1 \end{pmatrix} = (1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 0)$$

Отже, перевірний код (1000).

Завдання 2

Необхідно закодувати інформаційне слово циклічним кодом, що виправляє однократні помилки. Показати процес виправлення помилки.

Для інформаційного коду A = 11011 будуємо інформаційний поліном

$$G(x) = x^4 + x^3 + x + 1$$

Здійснюємо зсув вліво на m=n-k=4 розряди

$$G(x) \cdot x^m = (x^4 + x^3 + x + 1)x^4 = x^8 + x^7 + x^5 + x^4 = 11011\ 0000$$

Утворюючий поліном: степінь $\geq m = 4$, ненульові члени $\geq d = 3$

$$P(x) = x^4 + x^3 + 1 = 11001$$

Залишок від ділення

$$R(x) = \frac{G(x) \cdot x^m}{P(x)} = x^3 + x + 1 = 1011$$

Кодовий поліном

$$F(x) = G(x) \cdot x^m + R(x) = x^8 + x^7 + x^5 + x^4 + x^3 + x + 1 = 1101111011$$

Нехай повідомлення отримано з помилкою у 4-му розряді

$$F'(x) = F(x) + E(x) = 110011111$$

Ділимо F'(x) на утворюючий поліном P(x)

Залишок 1011 має W=3 одиниць, W>S=1 - кількість помилок

Здійснюємо циклічний зсув та повторюємо ділення, поки не виконана умова $W \leq S$

	J 1
100110111 <u>11001</u> <u>11001</u> 1110 10100 <u>11001</u> 11011 <u>11001</u> 1011	W = 3 > S
001101111 <u>11001</u> <u>11001</u> 10 1011	W = 3 > S
011011110 <u>11001</u> <u>11001</u> 101 10110 <u>11001</u> 1111	W = 4 > S
110111101 <u>11001</u> <u>11001</u> 10011 10100 <u>11001</u> 11011 <u>11001</u> 10	W = 1 = S

В 4-му розряді помилка, додаємо 10 та здійснюємо зсув Отримуємо $F(x) = 11011\ 1011$ - правильне повідомлення.

Висновки

Було досліджено засоби побудови циклічних кодів, що виправляють помилки, які виникають при передачі. Розглянуто процеси кодування і декодування, показано, як виправляється помилка.