有机含氮化合物

第一节 硝基化合物

一、硝基化合物的定义和结构特点

定	义	经分子中的氢原子被硝基取代后的化合物。通式为 RNO ₂ 或 ArNO ₂
结	构	$R - N \nearrow O$
共 技	辰 式	$\left[R - N \bigvee_{O^{-}}^{+} \longleftrightarrow R - N \bigvee_{O^{-}}^{+} \right]$

二、硝基化合物的命名

命名原则		命名实例	
以烃作母	CH ₃ CH ₂ NO ₂	CH ₃	NO ₂ NO ₂
体, 硝基作取代基	GH3GH2NO2	(0113/2011012011102	NO ₂
	硝基乙烷 nitroethane	2-甲基-4-硝基戊烷 2-methyl-4-nitropentane	2,4,6-三硝基甲苯 2,4,6-trinitrotoluene

三、硝基化合物的化学性质

豆 应	2类型	反应实例	备 注
	酸性	$R - CH_2 - NO_2 + NaOH \longrightarrow [R - \overline{C}H - NO_2]Na^*$	与强 碱 作用生 成盐
氢的	互变 异构	$R-CH_2-N$ O $R-CH=N$ O 假酸式 $(pK_n=10.2)$	
反应	缩合反应	CHO + CH ₃ CH ₂ NO ₂ $\xrightarrow{OH^-}$ CH = CNO ₂ CH ₃	含α-氢的化可基数 物可有醛、 面侧、 配进 有缩合
硝基对芳环的影响	亲核 取 反应	$\begin{array}{c} Cl \\ \hline \\ NO_2 \\ \hline \\ \\ \\ NO_2 \\ \hline \\ \\ \\ \\ NO_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	硝邻卤的增基亲代越
	缩合反应	O_2N	硝基 邻、对位 甲基 拿 原子 性增大
	增强酚的酸性	OH OH OH OH OH NO ₂ NO ₃ NO ₄ NO ₅ NO)2

续表

反应	类型	反 应 实 例	备 注
硝	增强 羧酸 的酸 性	$_{\rm NO_2}$ СООН СООН СООН $_{\rm NO_2}$ $_{\rm NO_2}$ $_{\rm NO_2}$ $_{\rm NO_2}$ $_{\rm NO_2}$ $_{\rm 2.21}$	硝间 只效应,对位时既有 H
基对芳环的影响	减弱的做性	NH_2 NH_2 NH_2 NH_2 NH_2 NO_2	效有应邻还邻应基对影对的更应了且位产位故对位响间影显又效在时生效研邻的比位响著
还原反应	单硝基还原	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	还不物不还相介同也不
	多硝基还原	NO ₂ NH ₂ NO ₂	硝基音分还质

第二节 胺类化合物

一、胺的定义、结构和主要物理性质

定	义	氨分子中的氢原子被烃基取代的化合物。伯胺通式为 RNH	或 ArNH ₂		
结	构	CH ₃ NH ₂ : PhNH ₂ : 147.4pm N 105.9° H ₃ C 112.9° H 105.9°	芳胺氮原子因 与芳环形成部 分共轭体系而 使棱锥形分子 结构变得扁平 一些		
物理	性状	常温下低级和中级脂肪胺为无色气体或易挥发液体,高级脂肪胺为固体, 香胺为高沸点液体或低熔点固体。伯、仲胺因能形成分子间氢键,故沸点 分子量相近的非极性化合物高,但比分子量相近的醇和羧酸低(氮比氧电 性小,形成氢键能力差些);伯、仲、叔胺都能与水形成氢键,因此低约 易溶于水,随分子量增加,水溶解度减小			
生性质	波谱性质	IR: N-H 伸缩振动 3500 \sim 3100cm ⁻¹ (胺类化合物的最易 N-H 面内弯曲振动 1650 \sim 1590cm ⁻¹ (强); 仲胺 N-H 面内 1550cm ⁻¹ (弱)	弯曲振动 1650 ~ 向低场移动,δ值		

二、胺的命名

	命名原则	命名实例
普通命名	以烃基名称加胺 命名。烃基相同 时合并烃基; 烃 基不同时按先简 后繁顺序列出	CH ₃ CH ₃ NH ₂ CH ₃ CH ₂ CH ₂ NCH ₂ CH ₃ (CH ₃) ₂ NH 甲胺 甲乙丙胺 二甲胺 methylamine ethylmethylpropylamine dimethylamine
系统命名	选择最长碳链的 烃基加氨基作母 体称某胺, 氮原 子上的其他烃基 作取代基, 用 N 定位	CH ₃ CH ₃ CHNCH ₂ CH ₅ CH ₃ NHCH ₂ CH ₂ NHCH ₃ CH ₃ N-甲基-N-乙基-2-丙胺 N-ethyl-N-methyl-2-propanamine N,N'-dimethyl-1,2-ethylenediamine

续表

	命名原则	命名实例
系统命名	芳胺则以芳基加 氨基作母体,脂 肪烃基作取代基	CH_3 CH_3 CH_3 NH_2 NH_2 $NA-二甲基-N-乙基苯胺 N-ethyl-N,4 -dimethylbenzenamine N-aphthalenediamine$
	比较复杂的胺, 也可以烃作母 体,氨基或取代 氨基作取代基	CH ₃ CH ₂ CHCH ₂ CH ₂ CH ₂ CH ₂ CHCH ₃

三、胺的化学性质

反应类型	反应实例	备 注
	RNH ₂ + HCl → RNH ₃ · Cl (水溶性好)	可用于分离 提纯胺类化 合物
碱性	$COOCH_2CH_2N(C_2H_3)_2$ $COOCH_2CH_2N(C_2H_3)_2 \cdot C\Gamma$ H H NH_2	成盐可增加药物的水溶性
	$RNH_2 \xrightarrow{R'X} R - NH - R' \xrightarrow{R'X} R - N - R' \xrightarrow{R'X} R - N' - R'X'$ 1°胺 2°胺 3°胺 季铵盐	S ₂ 2 反应,往往得混合产物
烃基化 反应	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	彻底甲基化
	NH ₂ CH ₂ Cl NaHCO ₃ , H ₂ O → CH ₂ NH — C	芳胺亲核性 较弱,由芳 伯胺可制芳 仲胺

反应类型		
人伍人主	反应实例	备 注
氧化反应	$\begin{array}{c} O \\ \downarrow_{+} \\ CH_{2}N(CH_{3})_{2} & \xrightarrow{H_{2}O_{2} \text{ or } RCO_{3}H} \end{array} \longrightarrow \begin{array}{c} O \\ \downarrow_{+} \\ CH_{2}N(CH_{3})_{2} \end{array}$ $\overline{\qquad} \qquad $	胺 易 被 氧 化, 胺的类 型不同或氧 化剂不同, 氧化产物可能不同
酰化反应	HO \longrightarrow NH_2 $\xrightarrow{(CH_3CO)_2O}$ \longrightarrow HO \longrightarrow $NHCOCH_3$ $\xrightarrow{\text{NH}_2 \text{ in } G_6H_3COCI}$ \longrightarrow $C_6H_5CON(CH_2CH_3)_2$ \longrightarrow NH_2 $\xrightarrow{CH_3COOH}$ \longrightarrow \longrightarrow $NHCOCH_3 + H_2O$	叔胺不发生 酰化反应 酰化能力: 酰卤>酸酐 >酯、羧酸
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	酰化可保护 氨基防止氧 化
磺酰化反应	$NH_2 + $ SO_2CI SO_2NH $DEDINE $ $DEDIN$	Hinsberg 反应 叔胺不发生 磺酰化反应 该反应可鉴 别或分离伯、 仲、叔胺

反应类	型	反应实例	备 注
		NH ₂ N ₂ *CΓ	称 为 重 氮 化反应 鉴 别 芳 香 伯胺
	伯胺	$RNH_2 \xrightarrow{NaNO_2, HCl} RN_2^+C\Gamma(不稳定)$ $\longrightarrow N_2^+ + $ 醇、氯代烷、烯及重排产物等	无合成价值 可通过 N ₂ 的 生成量测定 NH ₂ 的含量
与		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	扩 环 反 应 称 为 Tiffeneau- Demjanov 反应
亚硝酸反应	仲胺	NHCH ₃ NaNO ₂ , HCl → NCH ₃ 黄色油状液体 (C ₂ H ₅) ₂ NH NaNO ₂ , HCl → (C ₂ H ₅) ₂ N — NO 黄色油状液体	N上亚硝基 化。N-亚硝基胺一般 为难溶于水 的黄色或以 体,可鉴别 芳香仲胺
	叔胺	$N(CH_3)_2$ $N_{aNO_3, HCl}$ $N(CH_3)_2$ · HCl $N(CH_3)_2$ · $N(CH_3)_2$ 每色结晶 NO CH_3 $N(CH_3)_2$ NO $N(CH_3)_2$ NO $N(CH_3)_2$	环上亚硝基 化,对位老 被占据则发生在邻位 称为亚硝伯 反应。可用 于鉴别芳香 叔胺
		R ₃ N NaNO ₂ , HCl→R ₃ NHNO ₂ (不稳定)	成盐反应

		埃衣
反应类型	反 应 实 例	备 注
	Br_{25} Br_{25} Br H_2 Br H_2 Br H_2 Br	可用于苯胺的检验和定量分析
卤	NH ₂ Cl ₂ , H ₂ O 25 °C COOH	氨基是强活化基团即使环上有致钝基团,反应也较易发生
芳 环上的取	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	先 酰 化 腐 基 活 性, 再卤代 可 得 对 位 单卤代物
代反应	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	先成 基 後 成 基 後 成 吸 电 基 項 卤 位 可 卤 代 物
硝	NH ₂ NH ₃ HSO ₄ NH ₃ HSO ₄ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NNO ₂ NO ₂	先成盐, 再硝 化、硝 处理, 得间位产物
化	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	先 酰 化 保护氨基,再硝 化、水解,主要得对位产物

续表

		续表
反应类型	反 应 实 例	备 注
硝化	NH ₂ NHCOCH ₃ NHCOCH ₃ NNH ₂ NO ₂ H ₂ O/OH NO ₂ NH ₂ NO ₂ NHCOCH ₃ NH ₂ NO ₂ NH ₂ O/OH NO ₂ NH ₂ O/OH NO ₂ NH ₂ NO ₃ NH ₂ NO ₃ NH ₂ NO ₃ NH ₂ NO ₄ NO ₅ NH ₂	先酰化, 再
磺化	NH ₂ NH ₃ HSO ₄ NHSO ₃ H NHSO ₃ H NHSO ₃ H NHSO ₃ H SO ₃ SO ₃	氨基苯磺酸以内盐 形式存在
芳环上的	NH ₂ NHCOCH ₃ NHCOCH ₃ NHCOCH ₃ NH ₂ OCOPh COPh	先 酰 化 保护 氨 基,再进行傅 - 克反应
取代反应磺胺类药物制备	NH2 1.(CH ₃ CO) ₂ O 2. CISO ₂ OH SO ₂ CI SO ₂ NH ₂ SO ₂ NHCNH ₂ SO ₂ NHCNH ₂ SO ₂ NHCNH ₃ NH2 NH SO ₂ NHCNH ₃ NH2 NH NH NH NH NH NH NH NH N	H, N

		绥表
反应类型	反应 实 例	备 注
伯胺		脂肪亚脱 不稳定, 芳 香亚胺转 稳定。可用 来保护羰 基或氨基
与醛酮反应仲胺	CHCOCI / CHCOCI /	基或酰基 也可通过 烯胺制备
	CHO $CH_3CH_2Br \rightarrow H_3O^+ \rightarrow (CH_3)_2CCH_2CH_3$	α – 烷基化 的醛

四、含氮化合物的碱性比较

含氮化 合物	胍,季铵碱>脂肪胺>氨>芳香胺>酰胺>	酰亚胺
脂肪胺	仲胺 > 伯胺、叔胺	水溶液中 (电子效应 和溶剂化效 应为主)
	叔胺 > 仲胺 > 伯胺	非水溶液或 气相中(电 子效应为主)

			沙大人
****	€ Pt:	$C_6H_5NH_2 < C_6H_5NHCH_3 < C_6H_5N(CH_3)_2$	氮原子上烷 基越多,碱 性越强
芳香胺		$C_6H_5NH_2 > (C_6H_5)_2NH > (C_6H_5)_3N$	氮原子上芳 基越多,碱 性越弱
	邻位取代	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	无论是给电 子基还是吸 电子基,大 多使碱性减 弱(存在邻 位效应)
取代芳胺	间位取代	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	给电子基使 碱性增强, 吸电子基使 碱性减弱(只 有诱导效应)
	对位取代	$\begin{array}{c c} NH_2 & NH_2 & NH_2 & NH_2 \\ \hline \\ NO_2 & Cl & CH_3 & OCH_3 \\ \end{array}$	给电子基使 碱性增强, 吸电子基使 碱性减弱 (既有诱导 效应又有共 轭效应)

五、胺的制备方法

方法	反 应 式	备 注
	RX + NH ₃ (大量过量)→ RNH ₂	氨或胺大量过 量,才能较好
氨或	RX + R'NH ₂ (大量过量) — R'NH	地控制多烷基 化产物的生成
胺的烃	RX + ArNH ₂ (过量) → ArNHR	制备芳胺比脂肪胺条件容易控制
基化	Cl NO_2 + CH_3NH_2 CH_3OH CH_3OH NO_2	邻、对位有吸 电子基的卤苯 制芳胺较容易

方法	反 应 式	各 注
硝 基 合 的 原	$\begin{array}{c} \text{ArNO}_2 \xrightarrow{[H]} \text{ArNH}_2 \\ \text{RNO}_2 \xrightarrow{[H]} \text{RNH}_2 \\ \text{[H]: Zn(or Sn,Fe)/HCl}, \text{SnCl}_2/\text{HCl}, \text{H}_2/\text{Ni}, \text{LiAlH}_4 \end{array}$	催化氢化法是 目前工业上制 备伯胺的最常 用方法
腈含化物还	$RCN \xrightarrow{H_3/\text{Ni}, \text{ LiAlH}_4/\text{Et}_2\text{O}} RCH_2\text{NH}_2$ $RCH = \text{NOH} \xrightarrow{\text{LiAlH}_4/\text{Et}_2\text{O}} RCH_2\text{NH}_2$ $RN_3 \xrightarrow{\text{LiAlH}_4/\text{Et}_2\text{O}} \xrightarrow{H_2\text{O}} RNH_2$ $RCONH_2 \xrightarrow{\text{LiAlH}_4/\text{Et}_2\text{O}} RCH_2\text{NH}_2$ $RCONHR' \xrightarrow{\text{LiAlH}_4/\text{Et}_2\text{O}} RCH_2\text{NHR'}$	腈、肟、叠氮 化合物还原可 制备伯胺 酰胺还原可制 备相应的伯、 仲、叔胺
还原	$\begin{array}{c} \text{PhCHO} \xrightarrow{\text{NH}_3} \text{PhCH} = \text{NH} \xrightarrow{\text{LiAlH}_4/\text{Et}_2\text{O}} \text{PhCH}_2\text{NH}_2 \\ \\ \text{O} \\ \text{NPh} \\ \text{II} \\ \text{CH}_3\text{CCH}_3 \xrightarrow{\text{PhNH}_2} \text{CH}_3\text{CCH}_3 \xrightarrow{\text{LiAlH}_4} \text{(CH}_3)_2\text{CHNHPh} \\ \\ \\ \end{array}$	醛、酮氨化再 还原可制备伯、 仲、叔胺 醛、酮与甲酸铵 反应制备伯胺,
霍夫 曼 降解	$ \begin{array}{c c} \hline & O \\ & \parallel \\ & \Box \\ $	称 Leuckart 反应 Hofmann 降 解 反应可制备 伯胺
加布尔合法	NH KOH N'K' RBt DMF N-R O ONA + RNH2 O NH2NH2 NH2NH2 NH RNH2	Gabriel 合成法可制备纯净的伯胺

第三节 季铵盐和季铵碱

一、季铵盐和季铵碱的定义、结构、物理性质和制备

定 义	氮上连四个烃基的铵盐和铵碱称为季铵盐和季铵碱
结 构	R_1 $+N$ $+N$ $+N$ $+N$ $+N$ $+N$ $+N$ $+N$
物理性质	季铵盐多为白色晶体,易溶于水,不溶于非极性有机溶剂,熔点较高,受 强热时会分解为原叔胺和卤代烷
	季铵碱是强碱(其碱性与氢氧化钠相当), 无色结晶, 溶于水, 易吸潮
that de-	$R_3N + RX \longrightarrow R_4N^+X^-$
制备	$2 R_4 N^+ X^- + A g_2 O + H_2 O \longrightarrow 2 R_4 N^+ O H^- + 2 A g X \downarrow$

二、季铵盐和季铵碱的命名

命名原则		命名实例
按无机铵盐	$(\mathrm{CH_3})_4 \overset{+}{\mathrm{NBr}}^-$	C ₆ H ₃ CH ₂ N(CH ₂ CH ₃) ₂ Cl
和无机铵碱的形式命名	溴化四甲铵 tetramethyl ammonium bromide	ĆH ₃ 氯化甲基二乙基苄铵 benzyl diethyl methyl ammonium chloride

命名原则		命名实例
按无机铵盐	(CH ₃ CH ₂) ₄ N*OH ⁻	HOCH ₂ CH ₂ N(CH ₃) ₃ OH ⁻
和无机铵碱	氢氧化四乙铵	氢氧化三甲基-2-羟乙铵
的形式命名	tetraethyl ammonium hydroxide	2-hydroxyethyl trimethyl ammonium hydroxide

三、季铵碱的化学性质

反应	类型	反应实例	备 注
成盐	反应	$(CH_3)_4N^+OH^- + CO_2 \longrightarrow [(CH_3)_4N^+]_2CO_3^{2-}$	季铵碱易吸 收空气中的 二氧化碳
	无 β 氢	$(CH_3)_3N^+$ \longrightarrow CH_3 $OH^ \longrightarrow$ $(CH_3)_3N$ + CH_3OH	S _N 2 反应
受热分解		Hofmann 消除规则: 主要消除含 β – 氢较多的碳上的氢或主要生烷基较少的烯烃 CH ₃ CH ₂ −CH−CH ₃ → CH ₃ CH ₂ CH=CH ₂ + N(CH ₃) ₃ +N(CH ₃) ₃ OH 95%	称 Hofmann 消除反应 E2 反应)。遵守 Hofmann 消
反应	含 氢	OH \triangle $CH_{2} + H_{2}O$ $CH_{2} + H_{2}O$ $CH_{2}CHCH_{3} + N(CH_{3})_{3}OH$ $(\pm \frac{2H}{2})$ $OH \triangle$ Ph $CH_{2} + H_{2}O$ $(\pm \frac{2H}{2})$ $OH \triangle$ Ph $CH_{2} + H_{2}O$	路見 当 β - 碳上 连有苯基等 能形成共轭 体系的基团 时,可不遵 守 Hofmann

第四节 重氮化合物和偶氮化合物

一、重氮化合物的定义、结构和命名

定	义	官能团 -N2- 只有-	端与烃基相连的化合物	称为重氮化合物	
共扬	走式		$[ArN = N \longleftrightarrow ArN$	$I=N^*$	
命	名	√N≡NCI	NHSO ₄		CH ₂ N ₂
		氯化重氮苯 (苯重氮盐酸盐)	硫酸重氮苯 (苯重氮硫酸盐)	氟硼酸重氮苯 (苯重氮氟硼酸盐)	重氮甲烷

二、芳香重氮盐的制备和化学性质

反应类型	反应实例	备 注
制备反应	$NH_{2} \xrightarrow{NaNO_{2}, HX} \longrightarrow N_{2}^{+}X^{-} (X=CI, Br)$ $NH_{2} \xrightarrow{NaNO_{2}, H_{2}SO_{4}} \longrightarrow N_{2}^{+}HSO_{4}^{-}$ $NH_{2} \xrightarrow{NaNO_{2}, H^{+}} \xrightarrow{O \sim 5^{\circ}C} \xrightarrow{HBF_{4}} \longrightarrow N_{2}^{+}BF_{4}^{-}$	
	CI $N_{2}^{+}CI^{-} \xrightarrow{HCl, CuCl} \longrightarrow CI + N_{2}^{+}$ Br $N_{2}^{+}Br^{-} \xrightarrow{HBr, CuBr} \longrightarrow Br + N_{2}^{+}$	称 Sandmeyer 反应。若用 铜粉代替亚
取代反应	Br $N_2^+Br^- \xrightarrow{HBr, CuBr} Br + N_2^+$ CN $N_2^+HSO_4^- \xrightarrow{KCN, CuCN} CN + N_2^+$	铜盐,则称 为 Gatterman 反应
	I $N_2^*HSO_4^- \xrightarrow{KI} I + N_2^{\dagger}$	
	$F \qquad \qquad \boxed{ \qquad } -N_2^+ B F_4^- \qquad \triangle \qquad \boxed{ \qquad } -F \ + \ N_2 \ \dagger$	称Schiemann 反应

		
反应类型	反应实例	备 注
	NO_2 $N_2^+BF_4^- \xrightarrow{NaNO_2} NO_2 + N_2^-$	
	SO_3H $N_2^+BF_4^- \xrightarrow{Na_2SO_3} \xrightarrow{H^+} SO_3H + N_2 \uparrow$	
取代反应	SCN $N_2^+BF_4^- \xrightarrow{KSCN} SCN + N_2 \uparrow$	
	OH $N_2^+\text{HSO}_4^- \xrightarrow{\text{H}_2\text{O}, \text{H}^*} \longrightarrow \text{OH} + N_2^+$	重氮盐水解反应
	H $N_2^+\text{HSO}_4^- \xrightarrow{\text{H}_3\text{PO}_2, \text{H}_2\text{O}} \longrightarrow + N_2^+$	去氨基还原反应
	N_2 Cl OH NaOH, H ₂ O N=N OH OH	与酚偶合 条件:弱 碱性(pH 8~9)
	OH OH OH OH OH	偶合发生 的位置
偶合反应	$N_2^*Cl^ N(CH_3)_2$ $N=N N(CH_3)_2$ $N_2^*Cl^ N=N N$	与合中酸 7 方 所
	$\stackrel{\text{H}^*}{\triangle} \longleftarrow N = N - \longleftarrow N + N + N + N + N + N + N + N + N + N$	上,然后在酸中加热再重排成偶氮化合物

反应类型	反应实例	备 注
还原反应	$N_2^+Cl^ NHNH_2$ [H]: $SnCl_2$ / HCl , Na_2SO_3 , $NaHSO_3$, $Na_2S_2O_3$	用中等强 度还原剂 还原,产 物为芳肼
	$N_2^+Cl^ Zn/HCl$ NH_2	用强还原 剂还原,产 物为芳胺

三、偶氮化合物的定义、构型、命名和反应

定	义	官能团 -N ₂ - 两端均与烃基相连的化合物称为偶氮化合物
构	型	顺反异构体: Ph Ph 和 Ph N=N Ph
命	名	N=N-
还原质	反 应	$\begin{array}{c c} & Z_{n} \\ \hline & N=N-\\ \hline & N_{aOH} \end{array} \begin{array}{c} Z_{n} \\ \hline & NH-NH-\\ \hline & NH_{2} \end{array}$

(张丽娟)