TRIGONOMETRY Chapter 17

SIGNOS DE LAS RAZONES
TRIGONOMÉTRICAS DE ÁNGULOS
EN POSICIÓN NORMAL

@ SACO OLIVEROS

MOTIVATING STRATEGY

EVOLUCIÓN DE LOS SIGNOS MATEMÁTICOS

Estamos en el siglo XV y poco a poco se van imponiendo abreviaturas para indicar algunas operaciones matemáticas.

Por ejemplo, los italianos utilizaban una p y una m para indicar la suma y la resta (plus y minus, en latín).

Sin embargo acabó imponiéndose la abreviatura alemana + y - .

Estos signos se utilizaban originariamente para indicar exceso y defecto en la medida de las mercancías en los almacenes.

E LAS RAZONES TRIGONOMÉTRICAS

El radio vector (r) es siempre positivo y los signos de las razones trigonométricas en cada cuadrante dependen de los signos de la abscisa (x) y de la ordenada (y).

$$\tan \alpha = \frac{y}{x} = \frac{(-)}{(-)} = (+)$$

$$\csc\alpha = \frac{\mathbf{r}}{\mathbf{y}} = \frac{(+)}{(-)} = (-)$$

SIGNOS DE LAS RAZONES TRIGONOMÉTRICAS

Así tenemos:

Esquema Práctico:

Ejemplos:

$$sen \underline{48}^{\circ} = (+)$$

$$\tan 120^{\circ} = (-)$$

$$\cos 250^{\circ} = (-)$$
III C

Del gráfico, determine el signo de tanβ y senθ.

RESOLUCIÓN

Del gráfico:

$$\beta \in IIIC \Rightarrow tan\beta = (+)$$

$$\theta \in IVC \Rightarrow sen\theta = (-)$$

Del gráfico, determine el signo de

$$E = \frac{sen\theta . tan\alpha}{cos\beta}$$

RESOLUCIÓN

Del gráfico:

$$\theta \in IVC$$

$$E = \frac{sen\theta \cdot tan\alpha}{cos\beta}$$

Signo de E:

$$\mathbf{E} = \frac{(-)^{2}(+)}{(-)^{2}} \qquad \mathbf{E} = \frac{\mathbf{E}}{\mathbf{E}}$$

Del gráfico, determine el signo de $A = sen\theta$. $tan\beta$ y $B = \frac{sec\alpha}{tan\theta}$

RESOLUCIÓN

Del gráfico:

$$\alpha \in IIIC$$
 $\beta \in IVC$ $\theta \in IIC$

Luego:

$$\mathbf{A} = (+) (-) \Rightarrow \mathbf{A} = (-)$$

$$\mathbf{B} = \frac{(-)}{(-)} \qquad \Rightarrow \qquad \mathbf{B} = (+)$$

Si $\alpha \in IIIC$ y $\theta \in IVC$; determine el signo de : $A = \frac{sen\alpha}{tan\theta}$ y $B = cos^2\alpha \cdot sec^3\theta$

RESOLUCIÓN

$$A = \frac{\operatorname{sen}\alpha}{\tan\theta}$$

$$\mathbf{A} = \frac{(-)}{(-)}$$

$$B = \cos^2 \alpha \cdot \sec^3 \theta$$

$$B = (-)^2 \cdot (+)^3$$

$$B = (+) . (+)$$

Determine el signo en cada

caso:
$$A = tan48^{\circ}$$
. $sen125^{\circ}$; $sec140^{\circ}$. $cot20^{\circ}$

Recordar:

sen200°

RESOLUCIÓN

$$A = \tan 48^{\circ} \cdot \sin 125^{\circ} = (+)(+)$$
IC IIC

$$B = \frac{\frac{\text{IIC}}{\text{sec}140^{\circ}. \cot 20^{\circ}}}{\frac{\text{sen}200^{\circ}}{\text{IIIC}}} = \frac{(-)(+)}{(-)(+)}$$

Al copiar de la pizarra la expresión tan⁴150°. sec³290°, un estudiante cometió un error y escribió cot⁵200°. sen³310°.- Indique los signos que se obtienen al multiplicar y dividir lo que estaba escrito en la pizarra y lo que copió el alumno.

RESOLUCIÓN

$$M = \tan^{4}150^{\circ} \cdot \sec^{3}290^{\circ} \cdot \cot^{5}200^{\circ} \cdot \sec^{3}310^{\circ}$$

$$M = (-)^{4} \cdot (+)^{3} \cdot (+)^{5} \cdot (-)^{3} = (+)(+)(+)(-)$$

$$D = \frac{\tan^{4}150^{\circ} \cdot \sec^{3}290^{\circ}}{\cot^{5}200^{\circ} \cdot \sec^{3}310^{\circ}} = \frac{(-)^{4}(+)^{3}}{(+)^{5}(-)^{3}} = \frac{(+)(+)}{(+)^{5}(-)}$$

$$IIIC \qquad IVC$$

Si 120°< α < 160°, escriba verdadero (V) o falso (F), según corresponda :

a) El signo de $tan^2\alpha$. $sec^6\alpha$ es negativo.

FALSO

b) El signo de $\cot\left(\frac{\alpha}{4}\right)$ es positivo.

- **VERDADERO**
- c) El signo de $sen \alpha cos \alpha$ es negativo.

FALSO

RESOLUCIÓN

a) $\tan^2 \alpha \cdot \sec^6 \alpha$ IIC $(-)^2 \cdot (-)^6$

b) Dato :
$$\frac{120^{\circ} < \alpha < 160^{\circ}}{4}$$

$$30^{\circ} < \frac{\alpha}{4} < 40^{\circ}$$

Por lo tanto :
$$\cot\left(\frac{\alpha}{4}\right) = (+)$$

(+)

c)
$$sen \alpha - cos \alpha$$

IIC

$$(+)$$
 - $(-)$

$$(+) + (+)$$

(+)

