Übungen zu: "Echtzeitsysteme": C-Modul

Aufgabe 1: Modul complex

Es ist ein **Programm-Modul** "COMPLEX" (Quellcode- und Header-Datei) in C zu schreiben, das die Rechnung mit komplexen Zahlen $z \in \mathcal{C}$ ermöglicht. Die komplexen Zahlen sollen in einer **Struktur** mit Realteil x und Imaginärteil y gespeichert werden.

Das Modul soll dem Benutzer

- einen neuen **Datentyp "cplx"** zur Speicherung von Real- und Imaginärteil einer komplexen Zahl zur Verfügung stellen
- die in der Tabelle angegebenen Funktionen zur Verfügung stellen

Schreiben Sie das Modul (Quellcode- und Header-Datei) sowie ein Testprogramm, mit dem Sie Ihr Modul testen.

exportierte Modulfunktionen	
Eingabe()	liefert eine komplexe Zahl, liest von der Tastatur ein
Ausgabe(z)	gibt z am Bildschirm in geegneter Weise aus
real(z)	liefert den Realteil von z
imag(z)	liefert den Imaginärteil
betrag(z)	liefert den Betrag von z
cadd(z1,z2)	liefert $z1 + z2$
csub(z1,z2)	liefert $z1-z2$
$\operatorname{cmult}(z1,z2)$	liefert $z1 \cdot z2$
cdiv(z1,z2)	liefert $z1/z2$
cexp(z)	liefert e^z

Hinweise:

Die Funktionen $\sin(x)$, $\cos(x)$, e^x für reelles x werden durch die C-Funktionen $\sin(x)$, $\cos(x)$ und $\exp(x)$ realisiert. Die jeweilige Prototypen stehen in "math.h".

Zur Erinnerung:

$$j \cdot j = -1$$

$$z = x + jy \text{ mit } x, y \in \mathcal{R}, z \in \mathcal{C}$$

$$z = r \cdot e^{j\phi} = r(\cos \phi + j \sin \phi)$$

$$r = \sqrt{x^2 + y^2}, \text{ } \tan \phi = y/x.$$

$$z_1 \pm z_2 = (x_1 \pm x_2) + j(y_1 \pm y_2)$$

$$z_1 \cdot z_2 = (x_1x_2 - y_1y_2) + j(x_1y_2 + x_2y_1)$$

$$\frac{z_1}{z_2} = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + j\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}$$

$$e^z = e^{x+jy} = e^x e^{jy} = e^x(\cos y + j \sin y)$$