OPTIMISATION NOTES following OPTIMISATION BY VECTOR SPACE METHODS by David G. Leunberger Nick Cao

Hilbert Spaces

Recall that an inner product $(\cdot|\cdot)$ satisfies:

- 1. (x|y) = (y|x)
- 2. (x+y|z) = (x|z) + (y|z) and $(\lambda x|y) = \lambda(x|y)$
- 3. $(x|x) \ge 0$ with equality iff x = 0

Some basic facts include:

- $|(x|y)| \le ||x|| ||y||$ with equality iff $x = \lambda y$ or y = 0 (Cauchy Schwarz Inequality)
- $\sqrt{(x|x)} = ||x||$ defines a norm
- (x|y) = 0 for all y implies x = 0, the proof is to set y = x and use property (3) in the
- $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$ (Parallelogram Law), the proof requires expansion
- A Hilbert Space is a complete inner product space

Lemma 1 (Continuity of the Inner Product).

Proof. Let $x_n \to x$ and $y_n \to y$. Then

$$\begin{aligned} \left| (x_n | y_n) - (x | y) \right| &= \left| (x_n | y_n) - (x_n | y) + (x_n | y) - (x | y) \right| \\ &\leq \left| (x_n | y_n - y) \right| + \left| (x_n - x | y) \right| \\ &\leq \|x_n\| \|y_n - y\| + \|x_n - x\| \|y\| \quad \text{(C-S)} \\ &\leq M \|y_n - y\| + \|x_n - x\| \|y\| \to 0. \end{aligned}$$

1.1 Projection

If (x|y) = 0, then $x \perp y$. Further, $||x + y||^2 = ||x||^2 + ||y||^2$.

Theorem 1. Let X be an inner product space, M a subspace of X, $x \in X$. If there is a vector $m_0 \in M$ such that $||x - m_0||^2 \le ||x - m||$ for all $m \in M$, then m_0 is unique. Further, $x - m_0 \in M^{\perp}$ necessarily; this is also sufficient.

Such a projection m_0 is guaranteed to exist if X is complete (i.e., a Hilbert space) and M is closed.

Orthogonal Complements

Define the orthogonal complement $S^{\perp} = \{x \in X : x \perp s, \forall s \in S\}$. S^{\perp} is necessarily a closed subspace (closed by the continuity of the inner product). Further:

- $\begin{array}{l} \bullet \;\; S \subset T \; \text{implies} \; T^{\perp} \subset S^{\perp} \\ \bullet \;\; S \subset \overline{[S]} = S^{\perp \perp} \end{array}$

Define the direct sum: $X = M \oplus N$ if for all $x \in X$, there exist unique $m \in M$ and $n \in N$ such that X = M + N.

Theorem 2. If M is a closed linear subspace of a Hilbert space H, then $H = M \oplus M^{\perp}$ and

 $M = M^{\perp \perp}$.

Proof. That $H = M + M^{\perp}$ follows from the projection theorem. For uniqueness, if $x = m_0 + n_0 = m_1 + n_1$, then $m_0 - m_1 + n_0 - n_1 = 0$. As $m_0 - m_1 \in M$ and $n_0 - n_1 \in M^{\perp}$, Pythagoras's Theorem states that $0 = m_0 - m_1 = n_0 - n_1$ so the representation is unique. \square

Proposition 1. An orthogonal set of nonzero vectors is a LI set.

Proof. Let $\{x_1, \ldots, x_n\}$ be a finite subset of the orthogonal set. Take scalars $\alpha_1, \ldots, \alpha_n$ such that $\sum_{i=1}^n \alpha_i x_i = 0$. Then

$$\sum_{i=1}^{n} \alpha_i(x_i|x_k) = \left(\sum_{i=1}^{n} \alpha_i x_i \middle| x_k\right) = (0|x_k) = 0.$$

Hence, as $x_k \neq 0$, $(x_k|x_k) > 0$ and $\alpha_k = 0$. Inducting (relying on AC if set is infinite), $\alpha_i = 0$ for all i.

Theorem 3 (Gram-Schmidt). Let $\{x_i\}$ be a finite or countable sequence of LI vectors in inner product space X. Then there exists orthonormal sequence $\{e_i\}$ such that

$$[e_1,\ldots,e_n]=[x_1,\ldots,x_n], \quad \forall n \in \mathbf{N}.$$

Proof. Set
$$e_1 = x_1/\|x_1\|$$
, $z_n = x_n - \sum_{i=1}^{n-1} (x_n|e_i)e_i$, and $e_n = z_n/\|z_n\|$.

1.3 Approximations

Say if we want to project $x \in H$ into $[y_1, \ldots, y_n]$, a closed subspace of H. Denote the projection as $\alpha_1 y_1 + \cdots + \alpha_n y_n$. By the projection theorem,

$$(x - \alpha_1 y_1 - \dots - \alpha_n y_n | y_i) = 0$$

for all i = 1, ..., n. Arranging, we have:

$$(y_1|y_1)\alpha_1 + \dots + (y_n|y_1)\alpha_n = (x|y_1)$$

$$\vdots$$

$$(y_1|y_n)\alpha_1 + \dots + (y_n|y_n)\alpha_n = (x|y_n)$$

and thus

$$\underbrace{\begin{bmatrix} (y_1|y_1) & \cdots & (y_n|y_1) \\ \vdots & \ddots & \vdots \\ (y_1|y_n) & \cdots & (y_n|y_n) \end{bmatrix}}_{[y_1|y_n]} \underbrace{\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}}_{[x_1|y_1]} = \underbrace{\begin{bmatrix} (x|y_1) \\ \vdots \\ (x|y_n) \end{bmatrix}}_{[x_1|y_1]}$$

Transpose of Gram matrix

The determinant of the Gram matrix **G** is denoted $g(y_1, \ldots, y_n)$.

Proposition 2. $g(y_1, \ldots, y_n) \neq 0$ iff y_1, \ldots, y_n are LI.

Proof. We shall prove the contrapositive: $g(y_1,\ldots,y_n)=0$ iff y_1,\ldots,y_n are LD. Assume y_1,\ldots,y_n are LD. There exist α_1,\ldots,α_n , not all zero, such that $\sum_{i=1}^n \alpha_i y_i=0$. We must therefore have that $\left(\sum_{i=1}^n \alpha_i y_i\big|y_j\right)=0$ for all $j=1,\ldots,n$. Then $(y_n|y_j)=\sum_{i=1}^n (-\alpha_i/\alpha_n)(y_i|y_j)$ for all j, so \mathbf{G} must be rank deficient and g=0. Conversely, if $\left(\sum_{i=1}^n \alpha_i y_i\big|y_j\right)=0$ for all j and with some α_i not zero, then $0=\sum_{j=1}^n \overline{\alpha}_j\left(\sum_{i=1}^n \alpha_i y_i\big|y_j\right)=\left(\sum_{i=1}^n \alpha_i y_i\big|\sum_{j=1}^n \alpha_j y_j\right)=\|\sum_{i=1}^n \alpha_i y_i\|^2$.

Theorem 4. Let y_1, \ldots, y_n be LI. Let δ be the minimum distasnce from x to the subspace M generated by $\{y_i\}$. Then

 $\delta^2 = \frac{g(y_1, \dots, y_n, x)}{g(y_1, \dots, y_n)}$

1.4 Abstract Fourier Series

Theorem 5. Let $\{e_i\}$ be an orthonormal sequence in a Hilbert space H. A series of the form $\sum_{i=1}^{\infty} \xi_i e_i$ converges to some $x \in H$ iff $\sum_{i=1}^{\infty} |\xi_i|^2 < \infty$. In that case, $\xi_i = (x|e_i)$.

Lemma 2 (Bessel's Inequality). Let x be an element in a Hilbert space H and suppose $\{e_i\}$ is an orthonormal sequence in H. Then $\sum_{i=1}^{\infty} |(x|e_i)|^2 \leq ||x||^2$.

Theorem 6. Let x be an element in a Hilbert space H and suppose $\{e_i\}$ is an orthonormal sequence in H. Then the series $\sum_{i=1}^{\infty} (x|e_i)e_i$ converges to an element \hat{x} in the closed subspace $M := \overline{[\{e_i\}_{i=1}^{\infty}]}$. The residual $x - \hat{x}$ is orthogonal to M.

Lemma 3. An orthonormal sequence $\{e_i\}$ in a Hilbert space H is complete (ie, $\overline{[\{e_i\}_{i=1}^{\infty}]} = H$) iff the only vector orthogonal to each e_i is the null vector.

Proof. This follows from $H = M \oplus M^{\perp}$.

A corollary of the previous lemma (but a long proof involving the Weierstrass Approximation Theorem) is that the countable space of polynomials is dense in $L_2[a, b]$.

The practical implication of this section is that we don't have to solve the linear system $\mathbf{G}^{\top} \boldsymbol{\alpha} = ((x|y_1), \dots, (x|y_n))^{\top}$ to find the projection. Instead, we can use Gram-Schmidt to turn $\{y_1, \dots, y_n\}$ into $\{e_1, \dots, e_n\}$ and then find $\hat{x} = \sum_{i=1}^n (x|e_i)e_i$.

1.5 Other Minimum Norm Problems

We move onto our first generalisation of the projection theorem.

Theorem 7. Let M be a closed subspace of a Hilbert space H. Let $x \in H$ and V := x + M. Then there exists a unique $x_0 \in V$ of minimum norm. Furthermore, $x_0 \perp M$ (not $x_0 \perp V$).

Proof. This is an x-shift of the problem of projecting -x onto M.

Theorem 8. Let H be a Hilbert space and $y_1, \ldots, y_n \in H$ be LI. Among all vectors $x \in H$ satisfying $(x|y_i) = c_i$ for $i = 1, \ldots, n$, let x_0 have the minimum norm. Then $x_0 \in \overline{[y_1, \ldots, y_n]}$ and may be written as

$$x_0 = \sum_{i=1}^n \beta_i y_i$$

where satisfying $(x_0|y_i) = c_i$ for i = 1, ..., n necessitate

$$(y_1|y_1)\beta_1 + \dots + (y_n|y_1)\beta_n = c_1$$

$$\vdots$$

$$(y_1|y_n)\beta_1 + \cdots + (y_n|y_n)\beta_n = c_n.$$

This is equivalent to $\mathbf{G}^{\top} \boldsymbol{\beta} = \mathbf{c}$.

Proof. Let $M = \overline{[y_1, \dots, y_n]}$. The n constraints define a "linear variety" (shifted linear subspace) $x + M^{\perp}$, where $x \in H$ satisfies the n constraints. By the restated projection theorem, $x_0 \in M^{\perp \perp}$. As M is a closed subspace, $M = M^{\perp \perp}$. The condition $\mathbf{G}^{\top} \boldsymbol{\beta} = \mathbf{c}$ ensure $x_0 \in M$.

Do go back and read Example 1 on page 66, it's truly great.

Duality: Let M be a closed subspace of Hilbert space H and let $x \in H$. The two problems:

- 1. project x onto M
- 2. project x onto M^{\perp}

are complete symmetric because $M^{\perp\perp}=M$. If m_0 is the projection of x onto M, then $x-m_0\in M^{\perp}$ is the projection of x onto M^{\perp} .

The second generalisation of the projection theorem is to convex sets:

Theorem 9. Let x be a vector in a Hilbert space H and let K be a closed convex subset of H. Then there is a unique vector $k_0 \in K$ such that

$$||x - k_0|| \le ||x - k||$$

for all $k \in K$. Furthermore, a necessary and sufficient condition that k_0 be the unique minimising vector is that $(x - k_0 | k - k_0) \le 0$ for all $k \in K$.

2 Dual Spaces

2.1 Linear Functionals

Let X be a vector space with the scalar field **K**. A functional is a map $f: X \to \mathbf{K}$. A linear functional satisfies $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ for any $x, y \in X$ and $\alpha, \beta \in \mathbf{K}$. Some basic facts about linear functionals on normed spaces:

- If a linear functional is continuous at a single point, it is continuous everywhere.
- A linear functional is bounded if there is some M such that $|f(x)| \leq M||x||$ for all $x \in X$.
- A linear functional is bounded iff it is continuous.

The functional norm is thus defined:

$$\|f\| = \inf_{M} \{M: |f(x)| \leq M \|x\|, \ \forall x \in X\} = \sup_{x \neq 0} \frac{|f(x)|}{\|x\|} = \sup_{\|x\| \leq 1} |f(x)| = \sup_{\|x\| = 1} |f(x)|$$

The space of all bounded linear functionals over X is denoted X^* and is called the *(topological) dual* of X. It is a linear space when additional and scalar multiplication are defined in the usual way for functions.

Theorem 10. If X is a Banach space, then X^* is a Banach space.

Proof. Let $\{x_n^*\}$ be Cauchy in X^* . Then $\|x_n^* - x_m^*\| \to 0$ as $n, m \to 0$. Then $|x_n^*(x) - x_m^*(x)| \le \|x_n^* - x_m^*\| \|x\| \to 0$. Then $x_n^*(x) \to x^*(x) \in \mathbf{K}$ by the completeness of \mathbf{K} . By the linearity of limits, x^* is a linear functional. Now for all $\epsilon > 0$, there exists $N \in \mathbf{N}$ such that $|x_n^*(x) - x_m^*(x)| \le \epsilon \|x\|$ for all $n, m \ge N$. Take $m \to \infty$, we have $|x_n^*(x) - x^*(x)| \le \epsilon \|x\|$, so $\|x_n^* - x^*\| \le \epsilon$ and thus $x_n^* \to x^*$. Finally, we show that x^* is bounded: $|x^*(x)| \le |x^*(x) - x_n^*(x)| + |x_n^*(x)| \le (\epsilon + \|x_n^*\|) \|x\|$ for any $n \ge N$.

Proposition 3. The dual of \mathbf{R}^n (with the usual norm) is \mathbf{R}^n , i.e. a bounded linear functional f can be represented by $f(x_1, \ldots, x_n) = \sum_{i=1}^n y_i x_i$ for $y_i \in \mathbf{R}$ and every $\mathbf{y} \in \mathbf{R}^n$ defines a bounded linear functional f in the same way.

Proof. It is obvious that the f defined by y is linear. Now

$$|f(\mathbf{x})| = \left|\sum_{i=1}^{n} y_i x_i\right| \le \left|\sum_{i=1}^{n} y_i^2\right|^{1/2} \left|\sum_{i=1}^{n} x_i^2\right|^{1/2} = \left|\sum_{i=1}^{n} y_i^2\right|^{1/2} ||\mathbf{x}||$$

where we make use of the Cauchy-Schwarz inequality. Equality is achieved at $\mathbf{x} = \mathbf{y}$ and thus $||f|| = \left|\sum_{i=1}^n y_i^2\right|^{1/2} = |\mathbf{y}|$. Thus, there is a one-to-one correspondence between $f \in (\mathbf{R}^n)^*$ and $\mathbf{y} \in \mathbf{R}^n$.

Let f be a bounded linear functional. Then

$$f(\mathbf{x}) = f\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i f(e_i)$$

Setting $y_i = f(e_i)$, we obtain f in the desired form. Setting $\mathbf{x} = \mathbf{y}$, we obtain $f(\mathbf{y}) = |\mathbf{y}|$ and hence $||f|| = ||\mathbf{y}||$ (again $||f|| \le ||\mathbf{y}||$ because of Cauchy-Schwarz).

Proposition 4. The dual of ℓ_p is ℓ_q $(1/p+1/q=1, p<\infty)$, i.e. a bounded linear functional f can be represented by $f(x) = \sum_{i=1}^{\infty} y_i x_i$ where $y \in \ell_q$, and every $y \in \ell_q$ defines a bounded linear functional f in the same way. Also, $||f|| = ||y||_q$.

Proof. Let f be a bounded linear functional. Then

$$f(x) = f\left(\sum_{i=1}^{\infty} x_i e_i\right) = \sum_{i=1}^{\infty} x_i f(e_i) = \sum_{i=1}^{\infty} x_i y_i$$

where we set $y_i = f(e_i)$.

Suppose $1 . Consider the sequence <math>x^{(N)} \in \ell_p$ such that $x_i^{(N)} = |y_i|^{q/p} \operatorname{sign}(y_i) \mathbf{1}_{[i \le N]}$. Now $||x^{(N)}||_p = \left(\sum_{i=1}^N |y_i|^q\right)^{1/p}$, and

$$f(x^{(N)}) = \sum_{i=1}^{N} |y_i|^{q/p+1} = \sum_{i=1}^{N} |y_i|^q = \left(\sum_{i=1}^{N} |y_i|^q\right)^{1/q} ||x^{(N)}||.$$

By the definition of the functional norm, $\left(\sum_{i=1}^{N}|y_i|^q\right)^{1/q} \leq \|f\|$. Taking $N \to \infty$, we see that $\|y\|_q \leq \|f\|$ and thus $y \in \ell_q$.

It is obvious that the f defined by y is linear. Now

$$|f(x)| = \left|\sum_{i=1}^\infty y_i x_i\right| \leq \left|\sum_{i=1}^\infty y_i^p\right|^{1/p} \left|\sum_{i=1}^\infty x_i^q\right|^{1/q} = \|y\| \|x\|$$

where we make use of the Hölder inequality. Hence $||f|| \leq ||y||_q$ and hence y defines a bounded linear functional f.

Combining the two inequalities, we see that $||f|| = ||y||_q$.

For
$$p = 1$$
, repeat the proof with $x^{(N)} = \text{sign}(y_N) e_N$.

Proposition 5. The dual of $L_p(\Omega, \mathcal{A}, \mu)$ is $L_q(\Omega, \mathcal{A}, \mu)$ $(1/p + 1/q = 1, p < \infty)$, i.e. a bounded linear functional f can be represented by $f(x) = \int_{\Omega} x \, y \, d\mu$ where $y \in L_q$, and every $y \in L_q$ defines a bounded linear functional f in the same way. Also, $||f|| = ||y||_q$.

Proof. Use lots of measure theory.

Theorem 11 (Riesz Representation Theorem). If f is a bounded linear functional on a Hilbert space H, there exists a unique vector $y \in H$ such that for all $x \in H$, f(x) = (x|y). Furthermore, we have ||f|| = ||y|| and every y determines a unique bounded linear functional in this way. A Hilbert space is its own dual.

Proof. Let $N = f^{-1}[\{0\}]$, which is a closed subspace of H. Now $H = N \oplus N^{\perp}$. If N = H, then f = 0 and y = 0. If $N \neq H$, then there exists $z \in N^{\perp}$. As N^{\perp} is a subspace, we can take z such that f(z) = 1. Then for any $x \in H$, we have $x - f(x)z \in N$ as f(x - f(x)z) = f(x) - f(x)f(z) = 0. Then $z \perp N$ implies that (x - f(x)z|z) = 0 and that (x|z) = f(x)(z|z) and hence we get the theorem by taking $y = z/||z||^2$.

Let us define a function of bounded variation: $v:[a,b]\to \mathbf{R}$ is of bounded variation if

$$\sup \left\{ \sum_{i=1}^{n} |v(x_i) - v(x_{i-1})| \middle| \{x_0, \dots, x_n\} \text{ is a partition of } [a, b] \right\} < \infty$$

and the supremum is called the total variation of v.

Theorem 12 (Riesz-Kakutani-Markov Representation Theorem). Let f be a bounded linear functional on X = C[a,b]. Then there is a function v of bounded variation on [a,b] such that

$$f(x) = \int_{a}^{b} x(t)dv(t), \quad \forall x \in X$$

and ||f|| is the total variation of v. Conversely, every function of bounded variation on [a,b] defines a bounded linear functional on X in this way.

More generally, if X is a locally compact Hausdorff space, there is a unique regular Borel measure μ on X such that

$$f(x) = \int_X x(t)d\mu(t), \quad \forall x \in X.$$

The proof in the book uses the Stieltjes integral to prove the [a, b] domain case. As usual, BV[a, b] does not provide unique duals: we need to deal with annoying measure zero cases. We do this by defining the normalised space of bounded variation functions NBV[a, b], which impose v(a) = 0 and right-continuity on (a, b).

2.2 Hahn-Banach Theorem

Let M,N be subspaces of vector space X with $M \subset N$, and $f:M \to \mathbf{K}$ be a linear functional. Then a linear functional $F:N \to \mathbf{K}$ is an extension of f from M to N if f(m)=F(m) for all $m \in M$.

A sublinear functional p on a real vector space X satisfies:

- 1. $p(x_1 + x_2) \le p(x_1) + p(x_2)$ for all $x_1, x_2 \in X$
- 2. $p(\alpha x) = \alpha p(x)$ for all $\alpha \ge 0$ and $x \in X$

Theorem 13 (Hahn-Banach, Extension form). Let X be a real linear normed space and p a continuous sublinear functional on X. Let f be a sublinear functional defined on a subspace M of X satisfying $f(m) \leq p(m)$ for all $m \in M$. Then there is an extension F of f from M to X such that $F(x) \leq p(x)$ on X.

In particular, if f is a bounded linear functional, taking $p(x) = ||f||_M ||x||$, there is an extension F of f from M to X such that $F(x) \leq ||f||_M ||x||$. Thus, $||F|| = ||f||_M$.

A corollary is that for any $x \in X$, where X is a normed space, there is a nonzero bounded linear functional F on X such that F(x) = ||F|| ||x||. The proof is to consider the one-dimensional subspace [x] (or [y] for $y \neq 0$ if x = 0) and note that $f(\alpha x) = \alpha ||x||$ is a linear function for all $\alpha \in \mathbf{K}$ (and hence any $z \in [x]$) and is bounded by α (f is like a signed norm?). By Hahn-Banach, f can be extended to F on X. Set $\alpha = 1$ to obtain the result. The converse is not true (in non-reflexive spaces)—there are bounded linear functionals f such that ||x|| < ||f|| for all $x \neq 0$.

2.3 Second Dual Space

Introduce the angle bracket notation: $\langle x, x^* \rangle := x^*(x)$. Note that by the Riesz Representation Theorem, inner products on Hilbert spaces are bounded linear functionals when one multiplier is held fixed, and hence this notation generalises inner products.

Fix $x \in X$. Then $f(x^*) = \langle x, x^* \rangle$ is a linear functional on X^* . Now $|f(x^*)| = |\langle x, x^* \rangle| = |x^*(x)| \leq ||x^*|| ||x||$ and hence $||f|| \leq ||x||$. Conversely, by the corollary to the Hahn-Banach theorem, there exists $x^* \in X^*$ such that $f(x^*) = \langle x, x^* \rangle = ||x|| ||x^*||$. Hence ||f|| = ||x||. Hence f is a bounded linear functional. We can thus define the natural mapping $\phi: X \to X^{**}$ such that $\langle x, x^* \rangle = \langle x^*, \phi(x) \rangle$. Where ϕ is surjective, there is a bijection between X and X^{**} and we write $X = X^{**}$ and call X reflexive. This holds for the ℓ_p and L_p spaces where $1 . However, <math>X \subset X^{**}$ holds strictly for non-reflexive spaces, such as ℓ_1 and L_1 .

In a reflexive space, all bounded linear functionals f have some $x \in X$ such that f(x) = ||f|| ||x||.

2.4 Alignment and Orthogonal Complements

 $x^* \in X^*$ is aligned with $x \in X$ if $\langle x, x^* \rangle = ||x^*|| ||x||$.

For example, $x \in L_p$ is aligned with $y \in L_q$ if and only if the condition for equality in the Hölder Inequality hold: $x(t) = K \operatorname{sign}(y(t))|y(t)|^{q/p}$ for some constant K. If $x \in C[a,b]$, then denoting $\Gamma^+ = x^{-1}[\|x\|]$ and $\Gamma^- = x^{-1}[-\|x\|]$, $v \in NBV[a,b]$ is aligned with x iff v is increasing in Γ^+ , decreasing in Γ^- , and does not vary elsewhere. Under these conditions, $\int_a^b x(t)dv(t) = \|x\| \left(\int_{\Gamma^+} dv(t) - \int_{\Gamma^-} dv(t)\right) = \|x\|TV(v) = \|x\|\|v\|.$

 $x^* \in X^*$ is orthogonal to $x \in X$ if $\langle x, x^* \rangle = 0$.

Let $S \subset X$. Define the orthogonal complement/annihilator $S^{\perp} = \{x^* \in X^* : \langle s, x^* \rangle = 0, \ \forall s \in S\} \subset X^*$. Similarly, if $U \subset X^*$, then $U^{\perp} \subset X^{**}$. More usefully, the orthogonal complement of U in X is ${}^{\perp}U = \{x \in X : \langle x, u \rangle = 0, \ \forall u \in U\} \subset X$. Note that ${}^{\perp}U = U^{\perp} \cap \phi[X]$ where ϕ is the natural mapping.

Theorem 14. Let M be a closed subspace of normed space X. Then $^{\perp}[M^{\perp}] = M$.

2.5 Minimum Norm Problems

Theorem 15. Let X be a real normed vector space and M be a subspace of X. Let $x \in X$ and $d = \operatorname{dist}(x, M) = \inf_{m \in M} \|x - m\|$. Then $d = \max_{x^* \in M^{\perp}: \|x^*\| \le 1} \langle x, x^* \rangle$, achieved at some $x_0^* \in M^{\perp}$. If the infimum is achieved at $m_0 \in M$, then x_0^* is aligned with $x - m_0$, that is to say, $\langle x - m_0, x_0^* \rangle = \|x - m_0\| \|x_0^*\|$. In more natural notation, if $\|x\|_M = \operatorname{dist}(x, M)$, then $\|x\|_M = \|x\|_{M^{\perp}}$ where the right-hand term is the usual functional norm applied to the naturally mapped $\phi(x)$.

Proof. The proof is trivial if $x \in M$. Hence assume $x \notin M$.

Step 1: Prove $\langle x, x^* \rangle \leq d$. Let $\epsilon > 0$ be arbitrary, let $m_{\epsilon} \in M$ satisfy $||x - m_{\epsilon}|| \leq d + \epsilon$, which exists because M is a subspace. Then for any $x^* \in M^{\perp}$ such that $||x^*|| \leq 1$, we have $\langle m_{\epsilon}, x^* \rangle = 0$ and hence

$$\langle x, x^* \rangle = \langle x - m_{\epsilon}, x^* \rangle \le \underbrace{\|x^*\|}_{<1} \|x - m_{\epsilon}\| \le d + \epsilon$$

As $\epsilon > 0$ was arbitrary, we have $\langle x, x^* \rangle \leq d$.

Step 2: Prove that the maximum is attained at some x_0^* . Let N = [x + M]. If $n \in N$, the representation $n = \alpha x + m$ is unique, where $\alpha \in \mathbf{R}$ and $m \in M$. Define the linear functional $f: N \to \mathbf{R}$ by $f(n) = \alpha d$. Note that if $m \in M$, then $\alpha = 0$ and f(m) = 0, and that f(x) = d. We have

$$||f|| = \sup_{N} \frac{|f(n)|}{||n||} = \sup_{N} \frac{|\alpha|d}{||\alpha x + m||} = \sup_{N} \frac{|\alpha|d}{|\alpha|||x + m/\alpha||} = \frac{d}{\inf_{N} ||x + m/\alpha||} = 1$$

The maximum x_0^* is attained at the Hahn-Banach extension of f from N to X. Note that $||x_0^*|| = 1$ and $x_0^* \in M^{\perp}$. Further, $\langle x, x_0^* \rangle = d$.

Step 3: Alignment. Assume there exists $m_0 \in M$ such that $||x - m_0|| = d$. Let $x_0^* \in M^{\perp}$, $||x_0^*|| = 1$ obtain the maximum. Then

$$\langle x - m_0, \underbrace{x_0^*}_{\in M^{\perp}} \rangle = \langle x, x_0^* \rangle = d = \underbrace{\|x_0^*\|}_{=1} \|x - m_0\|$$

A corollary is thus: let x be an element of real normed vector space X and M be a subspace of X. Then $m_0 \in M$ satisfies $||x - m_0|| \le ||x - m||$ for all $m \in M$ iff there is a nonzero $x^* \in M^{\perp}$ aligned with $x - m_0$. In this sense, $x - m_0$ is orthogonal to M, like the Hilbert projection theorem.

Theorem 16. Let X be a real normed vector space and M be a subspace of X. Let $x^* \in X^*$ and denote $d = \operatorname{dist}(x^*, M^{\perp})$. $d = \min_{m^* \in M^{\perp}} \|x^* - m^*\|$ is achieved at some $m_0^* \in M^{\perp}$, and $d = \sup_{x \in M: \|x\| \le 1} \langle x, x^* \rangle = \|x^*\|_M$. If the supremum is achieved at $x_0 \in M$, then $x^* - m_0^*$ is aligned with x_0 . In more natural notation, if $\|x^*\|_{M^{\perp}} = \operatorname{dist}(x^*, M^{\perp})$, then $\|x^*\|_{M^{\perp}} = \|x^*\|_M$.

Proof. Step 1: Prove $||x^* - m^*|| \ge ||x^*||_M$. For any $m^* \in M^{\perp}$, we have

$$||x^* - m^*|| = \sup_{||x|| < 1} (\langle x, x^* \rangle - \langle x, m^* \rangle) \ge \sup_{x \in M: ||x|| < 1} (\langle x, x^* \rangle - \langle x, m^* \rangle)$$

Noting that $\langle x, m^* \rangle = 0$ for all $x \in M$, we have $||x^* - m^*|| \ge ||x^*||_M$.

Step 2: Prove that the minimum is attained at some m_0^* . Let y^* be the Hahn-Banach extension of $x^*|_M$ from M to X. Then $x^*-y^*=0$ on M. Set $m_0^*=x^*-y^*$. Then $m_0^*\in M^\perp$ and $\|x^*-m_0^*\|=\|x^*-x^*+y^*\|=\|y^*\|=\|x^*\|_M$.

Step 3: Alignment. Assume there exists $x_0 \in M$ such that $\langle x_0, x^* \rangle = d$, which from Step 1 implies that $x_0 = \arg\max_{x \in M: \|x\| \le 1} \langle x, x^* \rangle$. Then $\|x_0\| = 1$ (else $\langle x_0/\|x_0\|, x^* \rangle > d$, contradicting steps 1–2). Also,

$$||x_0|| ||x^* - m_0^*|| = d = \langle x_0, x^* \rangle = \langle x_0, x^* - m_0^* \rangle$$

where the last equality follows from $m_0^* \in M^{\perp}$, implying that $\langle x_0, m_0^* \rangle = 0$.

As an application, we will prove one of Tonelli's theorems.

Proposition 6. If f is continuous on [a,b] and p_0 is a polynomial of up to degree n minimising $||f-p||_{\infty}$, then $|f(t)-p_0(t)|$ achieves its maximum on at least n+2 points on [a,b].

Proof. We formulate this as projecting f in space X = C[a, b] onto the (n + 1)-dimensional subspace M of n^{th} degree polynomials. p_0 exists by the finite-dimensionality of M. Let $d = \|f - p_0\|_{\infty} > 0$ and $\Gamma = |f - p_0|^{-1}[\{d\}]$ denote the arg-maxima of $|f - p_0|$. By the first minimum norm theorem, $f - p_0$ must be aligned with some $v^* \in M^{\perp} \subset C[a, b]^* = NBV[a, b]$. As d > 0, $v^* \neq 0$. From the alignment section, we know that v^* varies only on Γ .

Assume by way of contradiction that $|\Gamma| < n+2$. Let $t_k \in \Gamma$ such that v^* varies at t_k . Then the polynomial $q(t) = \prod_{s \in \Gamma \setminus \{t_k\}} (t-s)$ has at most an order of n+1 so $q \in M$, but $\langle q, v^* \rangle = \int_a^b q \, dv^* = \prod_{s \in \Gamma \setminus \{t_k\}} (t_k - s) \times (v^*(t_k) - \lim_{t \to t_k^-} v^*(t)) \neq 0$, so $v^* \notin M^{\perp}$. Contradiction!

As another application, we will solve minimum norm problems with linear constraints, just like the Hilbert Space section.

Proposition 7. Let $y_i \in X$ for i = 1, ..., n and suppose $D = \{x^* \in X^* : \langle y_i, x^* \rangle = c_i, i = 1, ..., n\}$ is nonempty (so the constraints are consistent). Then

$$\min_{x^* \in D} ||x^*|| = \max_{||Ya|| \le 1} c^\top a.$$

Proof. Let $M=\operatorname{span}\{y_1,\ldots,y_n\}$ and $\bar{x}^*\in D$. The n constraints define a linear variety \bar{x}^*+M^\perp . Hence, the problem is an \bar{x}^* -shift of the problem of projecting $-\bar{x}^*$ onto M^\perp . Thus, if we let $d=\min_{\langle y_i,x^*\rangle=c_i}\|x^*\|$, then $d=\min_{m^*\in M^\perp}\|\bar{x}^*-m^*\|$. By the second minimum norm theorem, $d=\sup_{x\in M:\|x\|\leq 1}\langle x,\bar{x}^*\rangle=\sup_{\|\sum_i a_iy_i\|\leq 1}\langle \sum_i a_iy_i,\bar{x}^*\rangle$ where the second equality follows from the definition of M. Now $\langle \sum_i a_iy_i,\bar{x}^*\rangle=\sum_{i=1}^n a_i\langle y_i,\bar{x}^*\rangle=\sum_{i=1}^n a_ic_i=c^\top a$ where the second equality follows from $\bar{x}^*\in D$.

2.6 Weak convergence

The following convergence notions appear in decreasing order of strength. Consider $\{x_n\}$ in normed vector space X.

- $x_n \to x$ (strongly) if $||x_n x|| \to 0$ as $n \to \infty$
- $x_n \rightharpoonup x$ (weakly) if $\langle x_n, x^* \rangle \to \langle x, x^* \rangle$ as $n \to \infty$ for all $x^* \in X^*$
- $x_n^* \rightharpoonup^* x^*$ (weak*) if $\langle x, x_n^* \rangle \rightarrow \langle x, x^* \rangle$ as $n \rightarrow \infty$ for all $x \in X$

Strong implies weak as $|\langle x_n, x^* \rangle - \langle x, x^* \rangle| \le ||x^*|| ||x_n - x||$. Weak implies weak* as X^{**} contains $\phi(X)$, where ϕ is the natural mapping.

More definitions:

- A set $K \subset X^*$ is weak* compact if every infinite sequence from K contains a weak* convergent subsequence (converging to a point in K).
- A functional $f: X \to \mathbf{K}$ is weakly continuous at x if given $\epsilon > 0$, there is a $\delta > 0$ and finite $\{x_1^*, \dots, x_m^*\} \subset X^*$ such that $|f(y) f(x)| < \epsilon$, for all $y \in X$ such that $|\langle y, x_i^* \rangle \langle x, x_i^* \rangle| < \delta$ for all $i = 1, \dots, m$.
- A functional $f: X^* \to \mathbf{K}$ is weak* continuous at x^* if given $\epsilon > 0$, there is a $\delta > 0$ and finite $\{x_1, \ldots, x_m\} \subset X$ such that $|f(y^*) f(x^*)| < \epsilon$, for all $y^* \in X^*$ such that $|\langle x_i, y^* \rangle \langle x_i, x^* \rangle| < \delta$ for all $i = 1, \ldots, m$.

Theorem 17 (Alaoglu). Let X be a real normed vector space. The closed unit sphere in X^* is weak* compact.

Proposition 8. If $x_n \to x$ and f is weakly continuous, then $f(x_n) \to f(x)$. Similarly, if $x_n^* \to^* x^*$ and f is weak* continuous, then $f(x_n^*) \to f(x^*)$.

Proof. Fix $\epsilon > 0$. As f is weakly continuous, there exists $\delta > 0$ and $x_i^* \in X^*$ such that $|f(y) - f(x)| < \epsilon$ for all $y \in X$ satisfying $|\langle y, x_i^* \rangle - \langle x, x_i^* \rangle| < \delta$ for all i = 1, ..., m. By definition of weak convergence, there exists $N \in \mathbb{N}$ such that $|\langle x_n, x_i^* \rangle - \langle x, x_i^* \rangle| < \delta$ for all $n \geq N$ and all i. Hence $|f(x_n) - f(x)| < \epsilon$ for all $n \geq N$. For weak* convergence, simply change the variables in the proof.

Proposition 9 (Extreme Value Theorem). Let $S \subset X^*$ be weak* compact and $f: S \to \mathbf{R}$ be weak* continuous. Then f is bounded on S and achieves its maximum on S.

Proof. Let $\{y_n\} \subset f(S) \subset \mathbf{R}$ be an arbitrary sequence. Then there exists $\{x_n^*\} \subset S$ such that $f(x_n^*) = y_n$ for all $n \in \mathbf{N}$. By weak* compactness, there exists subsequence $\{x_{n_k}^*\}$ such that $x_{n_k}^* \rightharpoonup^* x^* \in S$. As f is weak* continuous, by the previous proposition, $f(x_{n_k}^*) \to f(x^*)$. Let $y_{n_k} = f(x_{n_k}^*)$ for all $k \in \mathbf{N}$ and $y = f(x^*)$. Then $y_{n_k} \to y$ as $k \to \infty$, so $\{y_n\}$ has a convergent subsequence and f(S) is compact. By the Heine-Borel theorem, f must be bounded (in the traditional sense, not in the linear functional sense).

Let $y_n \to \sup f(S)$. Then there exists $\{x_n^*\} \subset S$ such that $f(x_n^*) = y_n$ for all $n \in \mathbb{N}$. By weak* compactness, there exists subsequence $\{x_{n_k}^*\}$ such that $x_{n_k}^* \rightharpoonup^* x^* \in S$. As f is weak* continuous, by the previous proposition, $f(x_{n_k}^*) \to f(x^*)$. In addition, $f(x^*)$ must be $\sup f(S)$, so f achieves its maximum on S.

Combining Alaoglu's Theorem and the Extreme Value Theorem, set S to be the unit sphere in X^* and $f(x^*) = \langle x, x^* \rangle$ for some $x \in X$, which is weak* continuous. Then the EVT tells us that $f(x^*)$ achieves its maximum on the unit sphere. By the first alignment theorem, taking $M = \{0\}$, we have alignment with the optimal x_0^* , so $\langle x, x_0^* \rangle = ||x_0^*|| ||x|| = ||x||$, which is equivalent to the Corollary to the Hahn-Banach Theorem.

2.7 Hyperplanes

A hyperplane H in vector space X is a maximal proper linear variety. It satisfies:

- $H \neq X$
- If V is a linear variety containing X, then V = H or V = X

Since \bar{H} is also a linear variety, then $\bar{H} \in \{H, X\}$ so H is either closed or dense.

Proposition 10. Hyperplanes are pre-images under linear functionals of singleton sets. Conversely, if f is a non-zero linear functional on X, $f^{-1}[\{c\}]$ is a hyperplane in X where $c \in \mathbf{K}$.

Proof. If H contains the origin, then there is a linear functional f such that $H = f^{-1}[\{0\}]$. We can construct f by taking $x_1 \notin H$ and defining $f(x) = \alpha$ where $x = \alpha x_1 + h$ for some $h \in H$ (recall by linear independence that α and h are unique).

If H does not contain the origin, then $H = x_0 + M$ for some linear subspace M and $x_0 \notin M$. Then construct $f(x) = \alpha$ where $x = \alpha x_0 + m$ for some $m \in M$ and $H = f^{-1}[\{1\}]$.

Conversely, let $M = f^{-1}[\{0\}]$, a linear subspace of X. Let $x_0 \in X \setminus M$ with $f(x_0) = 1$. Then for any $x \in X$, we have $f(x - f(x)x_0) = f(x) - f(x_0)f(x) = 0$, and thus $x - f(x)x_0 \in M$. Thus, $x = m + f(x)x_0$ for some $m \in M$, and hence $X = [x_0 + M]$. Hence M is a proper maximal subspace. Letting $x_1 \in M$ such that $f(x_1) = c$, we have $f^{-1}[\{c\}] = x_1 + M$ is a hyperplane.

In addition, if H is not a subspace (i.e. it does not contain the origin), the representation $f^{-1}[\{1\}]$ is unique. To prove this, assume $H = f^{-1}[\{1\}] = g^{-1}[\{1\}]$. Then $H \subset (f - g)^{-1}[\{0\}]$, which is a linear subspace. But by the definition of H as a maximal linear variety, $(f - g)^{-1}[\{0\}] = X$ so f = g.

Proposition 11. Let f be a nonzero linear functional on a normed vector space X. Then the hyperplane $H = f^{-1}[\{c\}]$ is closed for every $c \in \mathbf{K}$ iff f is continuous/bounded.

Let f be a nonzero linear functional on vector space X. The hyperplane $H = f^{-1}[c]$ determines four half-spaces (open and closed only make sense if f is continuous):

$$\begin{array}{ll} \text{Negative} & \text{Positive} \\ \text{Open} & f^{-1}[(-\infty,c)] = \{x:f(x) < c\} & f^{-1}[(c,\infty)] = \{x:f(x) > c\} \\ \text{Closed} & f^{-1}[(-\infty,c]] = \{x:f(x) \le c\} & f^{-1}[[c,\infty)] = \{x:f(x) \ge c\} \end{array}$$

The proof of the hyperplane separation theorem requires the introduction of a specific sublinear functional, the *Minkowski functional*:

$$p_K(x) = \inf\left\{r : \frac{x}{r} \in K, \ r > 0\right\}$$

where $0 \in \text{int } K$. Beyond sublinearity, we have p > 0, p is continuous, int $K = p^{-1}[[0,1)]$, and $\overline{K} = p^{-1}[[0,1]]$.

Theorem 18 (Hyperplane Separation Theorem). Let K be a convex set in real normed vector space X, int $K \neq 0$, V is a linear variety in X such that $V \cap \text{int } K = 0$. Then there is a closed hyperplane in X containing V but no interior points of K. Hence there is $x^* \in X^*$ and $c \in \mathbb{R}$ such that $\langle v, x^* \rangle = c$ for all $v \in V$ and $\langle k, x^* \rangle < c$ for all $k \in \text{int } K$.

There are various other definitions and restatements (X, K) are defined as in the theorem):

- A closed hyperplane H in X supports convex set K if K is contained in one closed half-space determined by H and $H \cap \overline{K} \neq \emptyset$.
- If $x \notin \text{int } K \neq \emptyset$, then there is a closed hyperplane H containing x such that K lies on one side of H.
- Let K_1 and K_2 be convex sets in X such that int $K_1 \neq \emptyset$ and $K_2 \cap \text{int } K_1 = \emptyset$. Then there is a closed hyperplane H separating K_1 and K_2 . That is to say, there is an $x^* \in X^*$ such that $\sup_{x \in K_1} \langle x, x^* \rangle \leq \inf_{x \in K_2} \langle x, x^* \rangle$.
- Let K be closed and convex and $x \notin K$. Then there is a closed half-space containing K but not x.
- ullet Let K be closed and convex. Then K is the intersection of all closed half-spaces containing it.
- The support functional of K is $h(x^*) = \sup_{x \in K} \langle x, x^* \rangle$.

Finally, there is another dual theorem:

Theorem 19. Let X be a real normed vector space and K be a convex subset with support functional h. Let $x_1 \in X$ and $d = \operatorname{dist}(x_1, K) = \inf_{x \in K} ||x - x_1||$. Then $d = \max_{\|x^*\| \le 1} (\langle x_1, x^* \rangle - h(x^*))$, achieved at some $x_0^* \in X^*$. If the infimum is achieved at $x_0 \in K$, then $-x_0^*$ is aligned with $x_0 - x_1$.

3 Hilbert Space exercises

Q3.1 Show that |(x|y)| = ||x|| ||y|| iff $\alpha x + \beta y = 0$ for some scalars α, β .

Take the usual proof of the inequality and notice that $0 = (x - \lambda y | x - \lambda y)$ if and only if $x - \lambda y = 0$ by the property of the inner product.

Q3.2 Consider the set X of real functions x defined in \mathbf{R} for which

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt < \infty.$$

Let M be the subspace where the limit is zero. Part (a) is trivial: show that the space H = X/M becomes a pre-Hilbert space when the inner product is defined as

$$([x]|[y]) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)y(t)dt.$$

Part (b): show that H is not separable.

Q3.3 Let H consist of all $m \times n$ real matrices with addition and scalar multiplication defined as the usual corresponding operations with matrices, and with the inner product of two matrices A, B defined as

$$(A|B) = \operatorname{tr}(A^{\top}QB)$$

where Q is a symmetric, positive-definite $m \times m$ matrix. Prove that H is a Hilbert space.

Symmetry and linearity are trivial to show. As Q is positive-definite, if $A \neq 0$, then letting $A = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}$ with some $a_i \neq 0$, we have that

$$A^{\top}QA = \begin{bmatrix} a_1^{\top} \\ \vdots \\ a_n^{\top} \end{bmatrix} Q \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} a_1^{\top}Qa_1 & \dots & a_1^{\top}Qa_n \\ \vdots & \ddots & \vdots \\ a_n^{\top}Qa_1 & \dots & a_n^{\top}Qa_n \end{bmatrix}$$

By the positive-definiteness of Q, $a_i^\top Q a_i \ge 0$ and strictly if $a_i \ne 0$. Then $(A|A) = \operatorname{tr}(A^\top Q A) = \sum_{i=1}^n a_i^\top Q a_i > 0$. On the other hand $(0|0) = \operatorname{tr}(0) = 0$.

Let $\{A_j\}$ be a Cauchy sequence in H. Then $||A_j - A_k||^2 \to 0$ as $j, k \to \infty$. Hence $(A_j - A_k | A_j - A_k) \to 0$ as $j, k \to \infty$. Hence

$$\sum_{i=1}^{n} (a_i^{(j)} - a_i^{(k)})^{\top} Q(a_i^{(j)} - a_i^{(k)}) \to 0 \quad \text{as } j, k \to \infty$$

Now $(a_i^{(j)} - a_i^{(k)})^\top Q(a_i^{(j)} - a_i^{(k)}) \ge 0$ for all i by the positive definiteness of Q. Hence we must have $(a_i^{(j)} - a_i^{(k)})^\top Q(a_i^{(j)} - a_i^{(k)}) \to 0$ as $j, k \to \infty$ for all $i = 1, \ldots, n$. By the positive definiteness of Q, we must have $a_i^{(j)} - a_i^{(k)} \to 0$ as $j, k \to \infty$. Therefore, we have that $\{a_{i,l}^{(j)}\}$ is a Cauchy sequence in \mathbf{R} for all $i = 1, \ldots, m$ and $l = 1, \ldots, n$. By the completeness of \mathbf{R} , we have that $\{a_{i,l}^{(j)}\} \to a_{i,l} \in \mathbf{R}$ and therefore $A^j \to [a_{i,l}]_{i=1,\ldots,m}$, $l=1,\ldots,n$ as $j \to \infty$. Hence H is complete and therefore a Hilbert space.

Q3.4 Show that if $g(y_1, ..., y_n) = 0$, the normal equations possess a solution but it is not unique.

Say if rank G = m. Then take y_1, \ldots, y_m to be a LI set of vectors (rearranging if necessary). From the proposition, we know that $\mathbf{G}(y_1, \ldots, y_m)(\alpha_1, \ldots, \alpha_m)^{\top} = ((x|y_1), \ldots, (x|y_m))^{\top}$

has a unique solution. Set k = 1, ..., n - m. Then $y_{m+k} = \sum_{j=1}^{n} \beta_j y_j$ where some β_j is nonzero. Then:

$$\begin{split} \sum_{i=1}^n (y_i|y_{m+k})\alpha_i &= \sum_{i=1}^n (y_i|\sum_j \beta_j y_j)\alpha_i \\ &= \sum_j \overline{\beta}_j \sum_{i=1}^n \alpha_i (y_i|y_j) \\ &= \sum_j \overline{\beta}_j (x|y_j) \quad \text{from solution} \\ &= (x|\sum_j \beta_j y_j) = (x|y_{m+k}) \end{split}$$

Hence $(\alpha_1, \ldots, \alpha_m, 0, \ldots, 0)^{\top}$ is a solution to the normal equations. However, as there is more than one way to choose a set of LI vectors out of y_1, \ldots, y_m , this solution cannot be unique.

Q3.5 Find the linear function x(t) = a + bt minimising $\int_{-1}^{1} [t^2 - x(t)]^2 dt$.

Let $p_k(t) = t^k$. The problem is to minimise $||x - p_2||_{L_2[-1,1]}$, where $x \in \text{span}\{1, p_1\}$. From the projection theorem, $(x - p_2) \perp \text{span}\{1, p_1\}$. Hence, $(x - p_2) \perp 1$:

$$0 = \int_{-1}^{1} [t^2 - bt - a]dt = \frac{1}{3} [t^3]_{-1}^1 - \frac{1}{2} b [t^2]_{-1}^1 - a [t]_{-1}^1 = \frac{2}{3} - 2a$$

and hence a = 1/3. In addition, $(x - p_2) \perp p_1$:

$$0 = \int_{-1}^{1} [t^2 - bt - a]t \ dt = \frac{1}{4} [t^4]_{-1}^1 - \frac{1}{3} b [t^3]_{-1}^1 - \frac{1}{2} a [t^2]_{-1}^1 = -\frac{2}{3} b [t^3]_{-1}^1 - \frac{1}{2} a [t^2]_{-1}^1 = -\frac{2}{3} b [t^3]_{-1}^1 - \frac{1}{2} a [t^3]_{-1}^1 = -\frac{2}{3} b [t^$$

and hence b = 0. The projection is x(t) = 1/3.

Q3.6 Given a function $x \in L_2[0,1]$, we seek a polynomial p of degree n or less which minimises $\int_0^1 |x(t) - p(t)|^2 dt$ while satisfying $\int_0^1 p(t) dt = 0$.

Part (a): Show that this problem has a unique solution. The space of polynomials of degree n or less satisfying $\int_0^1 p(t)dt = 0$ form a closed linear subspace. To prove that it is closed, consider a convergent sequence p_k . If $\int_0^1 p_k(t)dt = 0$ for all k and $p_k \to p$ (which is indeed a degree $\leq n$ polynomial by the finite-dimensionality and hence closedness of that space), then by the Cauchy-Schwarz inequality,

$$\int_0^1 |p_k(t) - p(t)| dt \le \left(\int_0^1 |p_k(t) - p(t)|^2 dt \right)^{1/2} \left(\int_0^1 dt \right)^{1/2} \to 0 \quad \text{as } k \to \infty.$$

By the triangle inequality for integrals:

$$\left| \int_{0}^{1} p_{k}(t)dt - \int_{0}^{1} p(t)dt \right| = \left| \int_{0}^{1} p_{k}(t) - p(t)dt \right| \leq \int_{0}^{1} |p_{k}(t) - p(t)|dt$$

and by the reverse triangle inequality,

$$\left| \int_0^1 p_k(t)dt \right| - \left| \int_0^1 p(t)dt \right| \le \left| \int_0^1 p_k(t)dt - \int_0^1 p(t)dt \right| \to 0 \quad \text{as } k \to \infty.$$

Hence

$$\int_0^1 p(t)dt = \lim_{k \to \infty} \int_0^1 p_k(t)dt = 0.$$

Then the existence of a unique solution is guaranteed by the projection theorem.

Part (b): Show that this problem can be solved by firs finding the polynomial q of degree n or less which minimises $\int_0^1 |x(t) - q(t)|^2 dt$ and then finding p of degree n or less which minimises $\int_0^1 |q(t) - p(t)|^2 dt$ while satisfying the requirement $\int_0^1 p(t) dt = 0$.

Denote the degree $\leq n$ polynomials by P and the subset of polynomials satisfying the integral requirement as $P_0 \subset P$. By the projection theorem, $(x-q) \perp P$ and $(q-p) \perp P_0$. Then Let $\tilde{p} \in P_0 \subset P$ be arbitrary. We have that $(x-p|\tilde{p}) = (x-q+q-p|\tilde{p}) = (x-q|\tilde{p}) + (q-p|\tilde{p}) = 0$ and hence $x-p \perp P_0$. Hence by the projection theorem, p is indeed the minimiser.

Q3.7 Let M and N be orthogonal closed subspaces of a Hilbert space H and let x be an arbitrary vector in H. Show that the subspace $M \oplus N$ is closed and that the orthogonal projection of x onto $M \oplus N$ is equal to $P_M(x) + P_N(x)$.

Let $y_k \in M \oplus N$ and let $y_k \to y$. Now $y_k = m_k + n_k$ admits a unique representation for $m_k \in M$ and $n_k \in N$. We have that for all $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that $||y_k - y|| < \epsilon$, for all $k \geq K$. Thus, $||m_k + n_k - P_M(y) + P_M(y) - y|| < \epsilon$, for all $k \geq K$, where $P_M(y)$ exists due to the projection theorem. Now $m_k - P_M(y) \in M$ and $y - P_M(y) \in M^{\perp}$ by the projection theorem. As $n_k \in N \subset M^{\perp}$, we deduce that $n_k + P_M(y) - y \in M^{\perp}$ (as M^{\perp} is a linear subspace of H). By Pythagoras's theorem, we may deduce that

$$||m_k - P_M(y)||^2 + ||n_k + P_M(y) - y||^2 < \epsilon^2, \quad \forall k \ge K$$

and hence $m_k \to P_M(y)$ as $k \to \infty$. Similarly, $n_k \to P_N(y)$ as $k \to \infty$. Hence y has a unique representation $P_M(y) + P_N(y) \in M \oplus N$, so we may deduce that $M \oplus N$ is closed.

Let $x \in H$, $m \in M$, and $n \in N$ be arbitrary. We have that

$$(x - P_M(x) - P_N(x)|m + n) = (x - P_M(x)|m) + (x - P_N(x)|n) = 0$$

as $(x - P_M(x)) \perp m$ and $(x - P_N(x)) \perp n$ by the projection theorem. Further, as $P_M(x) \in M$, $P_N(x) \in N$, and $M \perp N$, then $P_M(x) \perp n$ and $P_N(x) \perp m$. Hence, by the projection theorem, $P_{M \oplus N}(x) = P_M(x) + P_N(x)$.

Q3.9 Prove that if $S \subset H$, then $S^{\perp \perp} = \overline{[S]}$.

We know that $H = S^{\perp} \oplus S^{\perp \perp}$ as S^{\perp} is a closed linear subspace. We also know that $H = \overline{[S]} \oplus \overline{[S]}^{\perp}$. Now $S \subset \overline{[S]}$ implies that $\overline{[S]}^{\perp} \subset S^{\perp}$. We shall prove the reverse inclusion: let $x \in S^{\perp}$ and $y \in \overline{[S]}$. Then there exists a sequence $y_n \in [S]$ such that $y_n \to y$. Now for all $n \in \mathbb{N}$, $y_n = \sum_k \beta_{nk} s_{nk}$ is a finite sum with scalars β_{nk} and $s_{nk} \in S$ for all n, k. Hence

$$(x|y_n) = (x|\sum_k \beta_{nk} s_{nk}) = \sum_k \overline{\beta}_{nk}(x|s_{nk}) = 0.$$

Using the continuity of the inner product,

$$(x|y) = (x \Big| \lim_{n \to \infty} y_n \Big) = \lim_{n \to \infty} (x|y_n) = 0$$

and hence $S^{\perp} \subset \overline{[S]}^{\perp}$. Hence $S^{\perp} = \overline{[S]}^{\perp}$ and hence $S^{\perp \perp} = \overline{[S]}$.

- **Q3.10** A Hilbert space H of functions on a set S is said to be a reproducing kernel Hilbert space if there is a function K defined on $S \times S$ having the properties:
 - 1. $K(\cdot,t) \in H$ for each $t \in S$
 - 2. $x(t) = (x|K(\cdot,t))$ for each $x \in H$, $t \in S$.

Such a function K is called a reproducing kernel.

Prove that a reproducing kernel, if it exists, is unique.

Assume by way of contradiction that K_1 and K_2 are reproducing kernels of H, and $K_1 \neq K_2$. Then $K_1(\cdot,t) - K_2(\cdot,t) \neq 0$. From part 1 of the definition and because H is a linear space, $K_1(\cdot,t) - K_2(\cdot,t) \in H$. By the positive definiteness of the inner product,

$$\begin{split} \left(K_1(\cdot,t)-K_2(\cdot,t)|K_1(\cdot,t)-K_2(\cdot,t)\right) > 0 \\ \Longrightarrow \left(K_1(\cdot,t)-K_2(\cdot,t)|K_1(\cdot,t)\right) > \left(K_1(\cdot,t)-K_2(\cdot,t)|K_2(\cdot,t)\right) \end{split}$$

But this contradicts part 2 of the definition.

Q3.13 Show that the Gram determinant $g(x_1, ..., x_n)$ is never negative.

Note: For n=2, this is the Cauchy-Schwarz inequality. In fact, we are generalising it. Further, we will prove something stronger, that G is positive semi-definite.

Let $y \in \mathbf{R}^n$. Then

$$y^{\top}Gy = \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j(x_i|x_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} (y_i x_i|y_j x_j) = \left(\sum_{i=1}^{n} y_i x_i \middle| \sum_{j=1}^{n} y_j x_j\right)$$

where we use the linearity of the inner product. Then changing the index, we have

$$y^{\top} G y = \left(\sum_{i=1}^{n} y_i x_i \middle| \sum_{i=1}^{n} y_i x_i \right) \ge 0$$

by the positive definiteness of the inner product.

Q3.14 Let $\{y_1, \ldots, y_n\}$ be LI vectors in pre-Hilbert space X and $x \in X$. Show that the best approximation to x in the subspace generated by $\{y_i\}$ has the explicit representation

$$\hat{x} = \frac{\begin{vmatrix} (y_1|y_1) & \dots & (y_n|y_1) & (x|y_1) \\ \vdots & \ddots & \vdots & \vdots \\ (y_1|y_n) & \dots & (y_n|y_n) & (x|y_n) \\ y_1 & \dots & y_n & 0 \\ \hline -g(y_1,\dots,y_n) \end{vmatrix}}{-g(y_1,\dots,y_n)}.$$

Show that the minimum error $\hat{x} - x$ is given by

$$\hat{x} - x = \frac{\begin{vmatrix} (y_1|y_1) & \dots & (y_n|y_1) & (x|y_1) \\ \vdots & \ddots & \vdots & \vdots \\ (y_1|y_n) & \dots & (y_n|y_n) & (x|y_n) \\ y_1 & \dots & y_n & x \\ -g(y_1, \dots, y_n) \end{vmatrix}}{-g(y_1, \dots, y_n)}.$$

Denote $\hat{x} = \alpha_1 y_1 + \cdots + \alpha_n y_n$. Then using the Gram matrix and Cramer's rule, we deduce that

$$\alpha_{i} = \frac{\begin{vmatrix} (y_{1}|y_{1}) & \dots & (y_{i-1}|y_{1}) & (x|y_{1}) & (y_{i+1}|y_{1}) & \dots & (y_{n}|y_{1}) \\ \vdots & & \vdots & \vdots & & \vdots \\ (y_{1}|y_{n}) & \dots & (y_{i-1}|y_{n}) & (x|y_{n}) & (y_{i+1}|y_{n}) & \dots & (y_{n}|y_{n}) \end{vmatrix}}{g(y_{1}, \dots, y_{n})}$$

Then we can move the $((x|y_1), \ldots, (x|y_n))^{\top}$ term to the end, which involves n-i pairwise interchanges of rows. As each pairwise interchange reverses the sign of the determinant, we have:

$$\alpha_{i} = (-1)^{n-i} \frac{\begin{vmatrix} (y_{1}|y_{1}) & \dots & (y_{i-1}|y_{1}) & (y_{i+1}|y_{1}) & \dots & (y_{n}|y_{1}) & (x|y_{1}) \\ \vdots & & \vdots & & \vdots & & \vdots & \vdots \\ (y_{1}|y_{n}) & \dots & (y_{i-1}|y_{n}) & (y_{i+1}|y_{n}) & \dots & (y_{n}|y_{n}) & (x|y_{n}) \end{vmatrix}}{g(y_{1}, \dots, y_{n})}$$

Hence

$$\hat{x} = \sum_{i=1}^{n} (-1)^{n-i} \frac{\begin{vmatrix} (y_1|y_1) & \dots & (y_{i-1}|y_1) & (y_{i+1}|y_1) & \dots & (y_n|y_1) & (x|y_1) \\ \vdots & & \vdots & & \vdots & & \vdots & \vdots \\ (y_1|y_n) & \dots & (y_{i-1}|y_n) & (y_{i+1}|y_n) & \dots & (y_n|y_n) & (x|y_n) \end{vmatrix}}{g(y_1, \dots, y_n)} y_i$$

$$= \frac{\begin{vmatrix} (y_1|y_1) & \dots & (y_n|y_1) & (x|y_1) \\ \vdots & \ddots & \vdots & \vdots \\ (y_1|y_n) & \dots & (y_n|y_n) & (x|y_n) \\ \vdots & \ddots & \vdots & \vdots \\ -g(y_1, \dots, y_n) & 0 \end{vmatrix}}{-g(y_1, \dots, y_n)}.$$

Note that we must introduce the negative sign (in the denominator for notational clarity) because when n-i is odd, the checkerboard pattern of the determinant treats y_i positively and when n-i is even, the checkerboard pattern of the determinant treats y_i as negative.

For $\hat{x} - x$, note that the checkerboard pattern keeps all terms on the main diagonal positive. Therefore, we have that the right hand side is

$$\begin{vmatrix}
(y_1|y_1) & \cdots & (y_n|y_1) \\
\vdots & \ddots & \vdots \\
(y_1|y_n) & \cdots & (y_n|y_n) \\
-g(y_1, \dots, y_n) & = \hat{x} - x \frac{g(y_1, \dots, y_n)}{g(y_1, \dots, y_n)} = \hat{x} - x.$$

Q3.16

Proposition 12 (Parseval's Equality). An orthonormal sequence $\{e_i\}$ is complete in a Hilbert space H iff for all $x, y \in H$,

$$(x|y) = \sum_{i=1}^{\infty} (x|e_i)(e_i|y).$$

Prove Parseval's equality.

Assume $\{e_i\}$ is a complete orthonormal sequence. Then $x = \sum_i (x|e_i)e_i$ and $y = \sum_i (y|e_i)e_i$. Then we have

$$(x|y) = \left(\sum_{i=1}^{\infty} (x|e_i)e_i \middle| \sum_{j=1}^{\infty} (y|e_j)e_j\right)$$
$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (x|e_i)(e_j|y) \underbrace{(e_i|e_j)}_{=\delta_{ij}}$$
$$= \sum_{i=1}^{\infty} (x|e_i)(e_i|y)$$

where δ_{ij} denotes the Dirac delta function.

Assume Parseval's equality holds. Then say if $y \in H$ is orthogonal to the subspace generated by $\{e_i\}$. This implies that $(e_i|y)=0$ for all i. Then (x|y)=0 for all $x \in H$ by the equality. In particular, (y|y)=0, and therefore y=0 by the positive definiteness of the inner product. Hence the only element of $\overline{[\{e_i\}]}^{\perp}$ is 0, and thus $\{e_i\}$ is a complete orthonormal sequence.

Q3.17 Let $\{y_1, \ldots, y_n\}$ be LI and suppose $\{e_1, \ldots, e_n\}$ are obtained from the y_i s by the Gram-Schmidt procedure. Let

$$\hat{x} = \sum_{i=1}^{n} (x|e_i)e_i = \sum_{i=1}^{n} \alpha_i y_i.$$

Show that the coefficients α_i can be easily obtained from the Fourier coefficients $(x|e_i)$.

We know that $y_i = \sum_{j=1}^n (y_i|e_j)e_j$ as the y_i s lie in the space spanned by $\{e_i\}$. Hence

$$\sum_{j=1}^{n} (x|e_j)e_j = \hat{x} = \sum_{i=1}^{n} \alpha_i y_i = \sum_{i=1}^{n} \alpha_i \sum_{j=1}^{n} (y_i|e_j)e_j = \sum_{j=1}^{n} \sum_{i=1}^{n} \alpha_i (y_i|e_j)e_j$$

Hence we have $(x|e_j) = \sum_{i=1}^n \alpha_i(y_i|e_j)$ for all j = 1, ..., n. Thus the various α_i be be obtained by solving the linear system

$$\begin{bmatrix} (y_1|e_1) & (y_2|e_1) & \dots & (y_n|e_1) \\ (y_1|e_2) & (y_2|e_2) & \dots & (y_n|e_2) \\ \vdots & \vdots & \ddots & \vdots \\ (y_1|e_n) & (y_2|e_n) & \dots & (y_n|e_n) \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} (x|e_1) \\ (x|e_2) \\ \vdots \\ (x|e_n) \end{bmatrix}$$

Q3.21 Using the projection theorem, solve the finite-dimensional problem:

$$\min x^{\top} Q x$$

subject to $Ax = b$

where x is an n-vector, Q a positive-definite symmetric $n \times n$ matrix, A an $m \times n$ (m < n), and b an m-vector.

Define the inner product $(x|y) = x^{\top}Qy$. This is linear and the positive-definiteness of Q guarantees positive definiteness of the inner product. The problem can be formulated as a minimum norm problem: minimise $||x||^2$ in \mathbb{R}^n such that Ax = b. Write

$$A = \begin{bmatrix} a_1^\top \\ \vdots \\ a_m^\top \end{bmatrix}$$

where we must be careful to note that a_i is the i^{th} row of A, and not the i^{th} column. The constraint may be written as $a_i^{\top}x = b_i$ for i = 1, ..., m. We may rewrite this as $a_i^{\top}Q^{-1}Qx = b_i$, and hence $(Q^{-1}a_i|x) = b_i$ (note that Q being symmetric implies that Q^{-1} is also symmetric). By the theorem, the (unique) solution takes the form

$$x_0 = \sum_{i=1}^m \beta_i Q^{-1} a_i = Q^{-1} [a_1 \dots a_m] \beta = Q^{-1} A^{\top} \beta$$

where the β_i are chosen to satisfy $Ax_0 = b$. Expanding, we have

$$Ax_0 = AQ^{-1}A^{\top}\beta$$

Notice that if A is full rank, then by the positive definiteness of Q, we have $AQ^{-1}A^{\top}$ is full rank and therefore $\beta = (AQ^{-1}A^{\top})^{-1}b$. Therefore, $x_0 = Q^{-1}A^{\top}(AQ^{-1}A^{\top})^{-1}b$, although this seems wrong.

Q3.24 The following theorem is valid in a Hilbert space H. If K is a closed convex set in H and $x \in H$, $x \notin K$; there is a unique vector $k_0 \in K$ such that $||x - k_0|| \le ||x - k||$ for all $k \in K$.

Show that this theorem does not apply in arbitrary Banach space.

Consider the space \mathbf{R}^2 endowed with the supremum norm. The set $K = \mathbf{R}_+ \times \mathbf{R}$ is closed (by the equivalence of the *p*-norms) and convex. Consider x = (-1,0). Then $\min_{k \in \mathbf{R}_+ \times \mathbf{R}} ||x - k|| = 1$, but candidates for the argmin k_0 include the entire set $\{0\} \times [-1,1]$.

4 Dual Space Exercises

Q5.1 Define linear functional f on $L_2[0,1]$ by

$$f(x) = \int_0^1 a(t) \int_0^t b(s)x(s) \ ds \ dt$$

where $a, b \in L_2[0, 1]$. Show that f is a bounded linear functional and find $y \in L_2$ such that f(x) = (x|y).

Let $c(t) = \int_0^t b(s)x(s) ds$. Then f(x) = (a|c). By the Cauchy-Schwarz inequality, $|f(x)| \le ||a|| ||c||$. Now

$$||c|| = \int_0^1 \left| \int_0^t b(s)x(s)ds \right|^2 dt \le \int_0^1 \left(\int_0^t |b(s)x(s)| \, ds \right)^2 dt \le \int_0^1 \int_0^t |b(s)|^2 ds \int_0^t |x(s)|^2 ds \, dt$$

where the first inequality is the triangular inequality for integrals and the second inequality is the Cauchy-Schwarz inequality. Hence

$$||c|| \le \int_0^1 \int_0^1 |b(s)|^2 ds \int_0^1 |x(s)|^2 ds \ dt = ||b|| ||x|| \int_0^1 dt = ||b|| ||x||$$

Hence $|f(x)| \leq ||a|| ||b|| ||x||$ and thus f is a bounded linear functional. Note that

$$f(x) = \int_0^1 \int_0^t a(t)b(s)x(s) \ ds \ dt = \int_0^1 \int_s^1 a(t)b(s)x(s) \ dt \ ds$$

by considering the region in \mathbb{R}^2 over which integration is taken. Hence

$$f(x) = \int_0^1 b(s) \int_s^1 a(t) dt \ x(s) ds$$

so $y(s) = b(s) \int_{s}^{1} a(t) dt$.

Q5.2 Characterise the dual space of c, the space of convergent sequences.

Let $x \in c$. Then

$$|f(x)| = |f(\sum_{i=1}^{\infty} x_i e_i)| = \left| \sum_{i=1}^{\infty} x_i f(e_i) \right| \le ||x||_{\infty} \left| \sum_{i=1}^{\infty} y_i \right| = ||x||_{\infty} ||y||_1$$

where the second equality follows from the linearity of f. As $x \in c$ arbitrary, $||f|| \le ||y||_1$.

Conversely, consider $x^{(N)}$ such that $x_i^{(N)} = \text{sign}(y_i) \mathbf{1}_{[i \le N]}$. As $x_i^{(N)} \to 0$, we have $x^{(N)} \in c$, and $||x^{(N)}|| = 1$. We have

$$f(x^{(N)}) = f(\sum_{i=1}^{\infty} x_i^{(N)} e_i) = \sum_{i=1}^{N} |y_i| = \sum_{i=1}^{N} |y_i| ||x^{(N)}||_{\infty}$$

recalling that $||x^{(N)}||_{\infty} = 1$. By the definition of the operator norm, $\sum_{i=1}^{N} |y_i| \leq ||f||$. As $N \in \mathbf{N}$ arbitrary, we can take $N \to \infty$ and deduce that $||y||_1 = \sum_{i=1}^{\infty} |y_i| \leq ||f||$.

Combining the two inequalities, we have $||y||_1 = ||f||$. Hence the dual of c is ℓ_1 , where we associate each $y \in \ell_1$ with the bounded linear functional $f(x) = \sum_{i=1}^{\infty} x_i y_i$.

Q5.3 Let X^* be the dual of normed space X. Show that if X^* is separable, then X is separable.

Q5.4 Show that the normed space C[a, b] is not reflexive.

C[a,b] is separable by the Stone-Weierstrass Theorem. Consider δ_x, δ_y , the Dirac delta function for $x,y \in [a,b]$ and $x \neq y$. Then $\|\delta_x - \delta_y\| = 2$ in the total variation norm. Hence there are uncountably infinite disjoint open balls of the form $B(\delta_x,1)$ with $x \in [a,b]$, all of which are subsets of NBV[a,b]. Hence NBV[a,b] is not separable, and its dual cannot be the separable space C[a,b] by Question 5.3.

Q5.5 Prove that $x \in L_p$ is aligned with $y \in L_q$ iff $x(t) = K \operatorname{sign}(y(t))|y(t)|^{q/p}$.

If:

$$\langle y, x \rangle = \int_a^b x(t)y(t) \ dt = K \int_a^b |y(t)|^{1+q/p} \ dt = K \int_a^b |y(t)|^q \ dt$$

and we have

$$||x|| = \left(\int_a^b |x(t)|^p dt\right)^{1/p} = K\left(\int_a^b |y(t)|^q dt\right)^{1/p}$$

and

$$||y|| = \left(\int_a^b |y(t)|^q dt\right)^{1/q}.$$

Hence

$$||x|||y|| = K \left(\int_a^b |y(t)|^q dt \right)^{1/p+1/q} = K \int_a^b |y(t)|^q dt = \langle y, x \rangle$$

Only if: the proof of Hölder's Inequality proceeds by Young's Inequality, which shows that for any positive s,t that $st \leq s^p/p + t^q/q$. As this proof uses the concavity of the logarithm, we have inequality if $s^p = t^q$, and Hölder uses s = |x|/||x|| and t = |y|/||y||. Thus, $\langle |y|, |x| \rangle = ||x|||y||$ if and only if $(|x|/||x||)^p = (|y|/||y||)^q$. Thus, $|x|^p = |y|^q \times ||x||^p/||y||^q$. Setting $K^p = ||x||^p/||y||^q$, we have $|x|^p = K^p|y|^q$ and $|x| = K|y|^{q/p}$. Finally, for alignment, we need to ensure that $\langle y, x \rangle = \langle |y|, |x| \rangle$, which is guaranteed if sign x = sign y.

Q5.6