General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

X-612-68-501

NASA TM X- 63520

DERIVATION OF THE INTERNATIONAL GEOMAGNETIC REFERENCE FIELD [IGRF (10/68)]

A REPORT TO IAGA COMMISSION II
WORKING GROUP 4

JOSEPH C. CAIN SHIRLEY J. CAIN

GSFC

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

N 69-23737

(ACC	ESSION NUMBER
	43
	(PAGES)
XMAT	1.3500
(14/1	Jac

	(THRU)	
_	(CODE)	
	(CATEGORY)	

DERIVATION OF THE INTERNATIONAL GEOMAGNETIC REFERENCE FIELD [IGRF (10/68)]

A Report to IAGA Commission II

Working Group 4

bу

Joseph C. Cain

and

Shirley J. Cain

December 1968

Goddard Space Flight Center Greenbelt, Maryland 20771

ABSTRACT

This report summarizes the testing of the various magnetic field models against the available World Magnetic Survey data and describes the method by which the first International Geomagnetic Reference Field [IGRF(10/68] was derived. The IGRF(10/68) was composed of contributions of the field models derived by: Goddard Space Flight Center, Air Force Cambridge Research Laboratories, Royal Greenwich Observatory, Institute of Terrestrial Magnetism and Radiowave Propagation (IZMIRAN), and the U. S. Coast and Geodetic Survey.

IGRF (10/68) is a set of 80 internal spherical harmonic coefficients and their first time derivatives epoch 1965.0 referenced to a sphere 6371.2 km radius. The root-mean-square residuals to surface and airborne magnetic survey data taken during the interval 1961 through 1965 average about 200γ. The rms deviations from selected COSMOS-49 (1964.7) and POGO (1965.8 - 1967.9) total field satellite observations range from 30 to 60γ.

Introduction

This is to summarize some of the computations that took place at the IAGA Symposium in Washington, D. C., October 22-25, 1968 that led to the resolution by the Working Group on the Analysis of the Geomagnetic Field (Reporter, A. J. Zmuda) to propose a particular International Geomagnetic Reference Field. The basic requirements established by Dr. Zmuda following the discussion at previous meetings was that the IGRF would consist of no more than 80 spherical harmonic coefficients of internal origin epoch 1965.0, with each having a first time derivative. These coefficients were to be true spherical harmonics in describing the field as opposed to those "quasi-spherical" coefficients resulting from derivations neglecting the oblateness of the earth. Further, only sets of coefficients submitted to the Working Group on or prior to March 15, 1968 were to be considered.

These sets of spherical harmonic coefficients are given in Table 1. They are each updated to 1965.0, and limited to an n* (maximum degree n and order m) of eight. Of the sets given, all except (g) and (h) meet the requirement of taking into account the oblateness of the earth in their derivation. Most of the field descriptions are to appear in the WMS volume to be published. However, a few have been published separately as follows:

	(Q)
i	TABLE

	Ħ	
AFCRL(3/68)	£5	
1965.0 AF	*	57.4 -2016 -2016 -195 -195 -117 -117 -118 -117
EPOCH = 19	ၒ	-303 -1657 -1657 -1657 -1657 -1657 -1657 -1757 -
	E Z	88888888888844444444999999999999999999
766) SET 1	H	
GSFC(12/66)	ТЭ	
55.0	I	57 59 -2 00 0 -2 11 19 -1 19 0 0 -1 19 0
EPOCH = 1965	5	-30333 -1560 -1660 -20117 -20117 -20117 -20117 -2011 -2017 -
	E	8と95年をこのとの51年をこれられまでしてられまでこれまでこのというこのこのこのこのこのこのこのこのこのことにいいます。

		Ħ		
	12M1RA4(3/68)	T.9		
	1965.0	x	57 0 0 - 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 26 10 -8
	EPOCH = 1	ပ	- 503 - 160 - 100 - 100	2 & 42 & H
		Z	シャミアもしょう ちゃくてしり られ くてしら ちょく しょく しょく しょう しょう しょう しょう しょう しょう しょう しょうしょう しょう	. 6 ~ 8
		z	× × × × × × × × × × × × × × × × × × ×	
	(MALIN)	Ħ		
	RGO(3/68)-2 (M	GT		
	965.0	I	-2000 -425 -425 -115 -127 -127 -127 -127 -127 -127 -127 -127	24 4 -15
	EPOCH = 1	င	- 50 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	II II
		Σ	シャミアロノタジャミアロシャミアログヤミアロトミアロエロアロロエロアロ	9 7 8
~				

e
\smile
-
щ
Œ
a

	Ħ	
AFCRL(11/67)	CT.	
1955.0	m	2002 2002 142 142 142 139 139 109 109 110 110 110 1110 1120 113 114 115 116 116
EPOCH = 19	ပ	100 100 100 100 100 100 100 100
	Σ	8/5/10/10/10/10/10/10/10/10/10/10/10/10/10/
	Z	412223334444455555988888888888888888888888888
(68)	Ħ	
P0G0 (3/68)	GT	2 2 2 1 1 8 6 6 6 1 6 1 6 2 2 2 2 2 2 2 2 2 2 2 2 2
965.0	I	2770 -123 -123 -123 -125 -126 -126 -126 -13 -13 -13 -13
EPOCH = 1965.0	# g	770 123 123 123 126 126 126 127 126 127 126 127 126 127 127 127 127 127 127 127 127 127 127
1 11		20112 20112 20113 1595 1502 1299 1299 1299 1299 1299 1299 1299 1299 1299 1299 1299 1299 1299 1299 1299 1299 1299 1299 1299 1290 129

G10 @s		
RCO(3/62)-1(1.F/TC", DASFD	}=+ 277	
)[-(39/5)0	늄	
1965.0 RC	mid géra	1993 -1993 -1993 -1753 -17
EPOCK = 190	Ü	# 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	pose Pose	8 くりられをできロときられるこのらられることのもれんとこのとでものていてのこ
	22	4122233344年4年5555599000007777778888888
(89)	Н	
CGS(5/66&3/68)	GT HT	
1965.0 USCGS(5/66&3/68)		

8888888881人人人人人人人人人ののののののできるとなっているとしているとして

Z

Z

Table	Field Model	Reference
la	GSFC(12/66)	<u>Cain et al.</u> , 1967
1g	USC&GS	Hurwitz et al., 1966
1h	RGO-1 (LME)	Leaton et al., 1965

Test Data

Although no explicit formula was agreed upon prior to the meeting for the derivation of an IGRF, there was an understanding that the considerations would need to be somehow based on the correspondence between the field components predicted by the proposed models and the available survey data.

Since the epoch of this IGRF was to be 1965, an arbitrary data cutoff time of 1961 was chosen so the results would not be too heavily weighted by observations prior to 1965. Testing was done on all data available since that date. These were divided into the major categories as follows:

- a) surface magnetic observatory annual means 1961-1967
- b) surface magnetic surveys. This category includes land surveys, repeat stations, shipboard and ship-towed observations.
- c) aeromagnetic survey of Japan (1965) [Nagata, 1966]
- d) aeromagnetic survey of Canada (1961-1963)
- e) aeromagnetic survey of Scandinavia (1965)
- f) project MAGNET worldwide (principally oceanic) airborne survey (1961-1966) [USNOO, 1965]

- g) OGO-2 data as available during magnetically quiet intervals October, 1965 September, 1967
- h) OGO-4 data during magnetically quiet intervals

 July December, 1967
- i) 1964-83c observations 1964-1965 [Zmuda et al., 1968]
- i) COSMOS-49 observations 1964.8
- k) Other airborne (towed proton magnetometer data)

All of the non-satellite data were obtained from the file prepared by the Geomagnetic Division of the U.S. Coast and Geodetic Survey (E.Fabiano and S.Cain, WMS Volume, 1969). This file contained the contributions from many separate organizations and survey groups and is constantly updated as new observations are submitted. This file was edited by rejecting those observations deviating from the GSFC(12/66) model (using n* = 10) by more than 1000γ. This procedure was used to eliminate the highly anomalous data beyond about five times the rms (root-mean-square) deviation. Since all models were truncated to n* = 8 for testing, it gave no particular advantage to GSFC(12/66). This model was used since it fitted the data set best, hence eliminating the smallest fraction of data. The amount rejected is seen to be small as given in Table 2:

TABLE 2 NON-SATELLITE DATA ELIMINATED FOR $\Delta C > 1000_{\gamma}$

	Data Type	Component Observations*	<u>Data Re</u>	<u>ected</u>
			No.	%
a)	Observatory	1984	34	1.7
b)	Surface	22425	204	.9
c)	Japanese Air	1461	6	.4
d)	Canadian Air	9470	27	.3
e)	Scandinavian Air	6973	1	.01
f)	Project MAGNET	104228	401	.4
k)	Other Air	1763	9	. 5

^{*} In this and ensuing discussion a value of D, I, H, Z, or F is counted as one observation even though other values may have been measured at the same time and location.

The OGO-2 and OGO-4 data (sampled every 30 seconds or at a spacing of approximately 200 km) were initially selected from periods of time for which Kp = 0. They were then fit with a special model listed in Table 3 [POGO(10/68)] employing 143 internal coefficients and their first time derivatives. The distribution of deviations of the data from this fit was as follows:

 $|\Delta F|_{\gamma}$ 0 10 20 30 40 50 60 70 100 200 600 Total Obs. 27646 4218 589 141 23 26 6 2 9 4 32664

Since the distribution indicated that the 15 observations over 70γ were likely anomalous, they were rejected and the resulting rms deviation computed to be 7γ . The remaining 32649 observations were included in the testing.

The COSMOS-49 data were similarly treated by fitting with a special function and eliminating those data that deviated significantly from the rest. The data were prepared by the U. S. Coast and Geodetic Survey from the catalog published by IZMIRAN (Dolginov et al., 1967). These were sorted into time order and each fourth observation fit with a series of 99 spherical harmonic coefficients. Data exceeding 100 γ from the fitting surface were rejected in the coefficient determination. The distribution of residuals from this model, labelled COSMOS (9/68), is as follows:

| ΔF | γ 0 10 20 30 40 50 60 70 80 90 100 Total
Obs. 1853 1243 648 271 93 41 23 18 19 15 138 4362

The use of every fourth observation in the fit is adequate for these purposes since each orbit then contains about 10 observations for the shortest wavelength used of the fitting function (n*=9 corresponds to $360/9=40^{\circ}$). Since the RMS deviation of these data from the COSMOS(9/68) field was 21 γ , the selection used for model testing were those deviating less than 60γ , a total of 16554 from the approximately 18,000 originally available.

The 1964-83c observations entered the testing unedited except for the rejection of one spurious point that gave a $|\Delta F| > 1000\gamma$.

Test Results

The various models were tested against the data sets both with the limitation of 80 coefficients and also using all coefficients if more were available. Table 3 illustrates for the GSFC(12/66) model the distribution of residuals using the first 80 coefficients as well as the full number. Since the surface data were edited with this model using a 1000 γ criteria, there can be no residuals above this figure with 120 coefficients. The effect of the truncation is seen to increase the rms residuals by 10-20 γ regardless of their magnitude. Using 80 terms has only a small percentage effect on the surface data since magnetic anomalies account for a great deal of the scatter. The consequence on the satellite data is more obvious as seen in the OGO-2 results. Here the effect is to increase the observations in the 50-100 γ range from 5 to 10% of the total data, and to push the number over 100 γ from 1 to 3%.

These distributions were also calculated for each of the other test models and the rms values compiled in Table 4. Here the relative match of each data set to each model can be readily compared.

Although for each model there is an improvement with an increase in coefficients, the differences are generally smaller for those with higher average residuals.

TABLE 3

£s)	RMS	(Y) 187 198	180	211 226	202 225	145 163	186 200	27	28	27	51 61
8 (80 coeffs) and $n^* = 10$ (120 coeffs)	TOTAL OBSER VATIONS	1950	22221	1455	9443	6972	103827	16554	1330	19493	13156
s) and n	1000	0 0	0	0 H	00	0	33	0 0	0	00	~ 0
30 coeff	(y) 500 It	59	562 660	49 51	247 328	31	2101 2397	00	00	00	00
n* = 8 (8		205 227	2081 2876	252 294	1516 1974	537 776	13003 15987	00	00	O H	0
) Using	RESIDUAL RANGE 100 250	532 653	7071 8778	491 504	3633 3593	2573 2889	37245 39609	13 534	13	24.9 592	819 1341
SFC(12/66	R 50 1	414 499	5418 4686	301 274	1935 1683	1718 1560	23357 21834	1095 4463	75	948 2022	3037 3363
from GS	۵	740 490	7089 5202	362 331	2112 1865	2113 1715	28130 23967	15446 11557	1242 1206	18296 16878	9300 8448
of Residuals from GSFC(12/66) Using n* =	COEFFICIENTS	120 80	120	120 80	120 80	. 120 80	120 80	120 80	120 80	120 80	120 80
Distribution of	TYPE COI	Observatory	Land/Sea	Japanese Air	Canadian Air	Scandinavian Air	Project MAGNET	COSMOS -49	1964-83c	060-2	7-050

TABLE 4

Root-Mean-Square Deviations of Test Data From Various Models Using n* = 8 and n* = Maximum Degree and Order of Expansions

	DATA	*	GSFC 12/66	P0G0 3/68	POGO 10/68	AFCRL 11/67 3/	RL 3/68	RGO LME P	Malin	IZMIRAN	USC&GS	IGRF 10/68
Observatory	1950	8 ma x	198 187	211 204	203 193	208 201	208 197	223	202	272 271	245 236	196
Land/Sea	22221	8 max	202 180	203 186	207 187	214 209	204 192	290	253	258 248	331 323	201
Japanese	1455	8 ma x	226 211	234 215	239 220	223 216	243 221	249	255	259 244	276 233	227
Canadian	9443	max max	225 203	227	226 205	240 212	238 221	230	223	234 237	249 236	223
Scandinavian	6972	8 max	162 145	159 138	159 140	163 150	178 164	185	162	255 253	197 190	167
Project MAGNET	103827	max max	200 186	232 221	215 202	216 217	209	234	216	330 325	244 237	201
67-SOWSOO	16554	8 max	48	49	51 21	80	67 61	149	66	47	146 139	50
1964~83c	1330	8 E 8 X	32 28	34 31	33	68	47	85	28	33 31	96 93	32
060-2	19493	8 Eax	39 28	28 11	30	52 47	57 49	86	99	76 76	110 108	65
060-4	13156	8 max	61 51	39 15	40 9	85 82	89	126	86	114 114	144 142	57
Max. value of n*	*_		10	6	11	10	10	∞	∞	6	12	œ

Weighting of IGRF

の各種の概念が必要されるカノも伝統でおりて支援される機能を対象がは、連載を表する政権に

It was decided that a weighted average of coefficients would provide the best compromise to an IGRF. With the restriction that models to be included should be based on truly spherical coefficients, the RGO(LME) and USCGS models were eliminated for inclusion in the main field averaging. Since the surface data residuals were so greatly influenced by crustal anomalies, it was decided to base the weights on the residuals to the satellite data.

Several different weighting schemes were tried. Generally, the exact weights used did not alter the overall results appreciably as long as those models fitting the satellite data best had an advantage. The POGO(3/68) and AFCRL(11/67) models were eliminated from the considerations since there was another model submitted by the same organization.

After several semi-qualitative arguments and considerations that the IGRF should be most useful near 1965.0, the following table of relatively weights were agreed upon to be applied as inverse square factors in combining the main field terms:

Mode1	σ
GSFC(12/66)	40
AFCRL (3/68)	70
RGO(3/68)-2	80
IZMIRAN(3/68)	100

The GSFC model was given the 40 γ weight even though it had a 61 γ residual to the OGO-4 data since the OGO-2 figure was 39 γ , the other satellite residuals were low, and it has the overall lowest residuals to the surface data. The AFCRL model and RGO contributions were roughly equivalent but the AFCRL was given a slightly smaller figure due to its lower residual to OGO-2, COSMOS-49 and the surface data. The IZMIRAN model was assigned a slightly higher weight because of its uncertainty in the polar regions due to its being derived from data at less than 50° latitude. This possible difficulty is evidenced by its relatively high residuals to data sets containing polar contributions (e.g., OGO-2, OGO-4, observatory, land/sea, Scandinavian airborne, and Project MAGNET).

There was less basis for rational comparisons in combining the secular change terms. Hence each model previously used was weighted equally and the USCGS and RGO-1 models included since the secular change was independently derived for each.

Although more lengthy considerations may have resulted in an improved procedure for deriving the first IGRF, this formulation provided a model composed of some contribution from each organization and at the same time, within the restrictions as to the number of coefficients, produced a model which agrees tolerably well with the test data set. This agreement is seen in the last column of Table 4. Surprisingly, the procedure appeared to produce a residual equal to or less than that of the contributing models for some of the data sets at the n* = 8 truncation level.

The Resulting Model IGRF (10/68)

Since the IGRF is a composite of several models, it can be compared with each as given in Table 5. Here is listed for each of the contributing coefficient sets the deviation from the resulting IGRF. Although the disagreements between the various terms are sometimes relatively large for those with amplitudes of the order of 1 to 10γ , those of higher magnitude are surprisingly close. Of the main field terms there seems to be the largest discrepancy between those having m = 1, particularly for the IZMIRAN model with n = 1, 2, 3, 4, and 6.

The final IGRF(10/68) coefficients are given in Table 6 and maps of the field and its secular change given in Appendix 1.

Appendix 2 gives a possible minor modification based on a suggested change of scale to a standard mean earth radius of 6371 in place of 6371.2 km.

Recommendations

We would like to make a few recommendations as to the way an international reference field might be used. As can be seen in this report and others we have published (Cain et al., 1965; Cain et al., 1967; Cain and Hendricks, 1968), ambient values of the earth's field are dependent on contributions from the core, crust, subsurface, and ionospheric electric currents, and the effects of trapped plasma, magnetospheric boundary, and tail effects. The exact secular variation is subject to shifts which make a linear fit with time increasingly uncertain beyond a few years. Further, even for the decade of validity of the IGRF, 1960-1969, we already know that there are more accurate models available.

n	m	G	GSFC(12/66)	AFCRL(3/68)	RGO-2	IZMTRAN	USCGS	RGO-1	IGRF
n 1122233334444455555566666666777777778888888888888	m 01012012301234012345012345601234567012345678		GSFC(12/66) -36360512227221301021303522001123003202101	AFCRL (3768) -125313712143670071528289413822270142245232	RG 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2	12MIR 05465120589740937139582316871496108616221342	US 017585504225111031773116407211422317062217933	RG 11807442721135930522771354224206	IGR 3259693845095226376611704934214025932093247526 31596938450995225426546 2 -1775 12-1-1 -11-1-1 3-121838432232-1- 2 1
8	8		0 -1	-3 2	0 0	4 2	3 3	-10 -6	1 2 6

TABLE 5(a)

n m	Н						
** ***	GSFC(12/66)	AFCRL(3/68)	RGO-2	IZMIRAN	USCGS	RGO-1	IGRF
112222333334444455555556666666777777777888888888888		AFCRL(3/68) 16 0 -11 10 -6 -3 -19 -6 -7 -4 0 11 35 -10 3 -2 -1 0 6 3 -2 -1 -3 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	RGO-2 1206502103102810203101221134076411271	IZMIRAN -520 -910 -230 -231 -246 -250 -289 -2231 -250 -268 -257 -268 -257 -268 -278	USCGS 01067033604575041492031023-102070255476	RGO-1 02 0 42 0 27 8 0 0 8 2 7 0 1 5 7 3 7 0 9 3 0 2 4 4 0 0 2 8 4 3 5 5 0 6 7 3 4 1 7 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	IGRF 030600032600908506537770468203037789397033574236

TABLE 5(b)

n	m	GT GSFC(12/66)	AFCRL(3/68)	RGO-2	IZMIRAN	USCGS	RGO+1	IGRF
1122233334444445555556666666667777777788888888888	01012012301234012345012345601234567012345678	57352707115384059668422726610943701313250210 	39350165046642452257176793670338796315881744 	73436287832019911603131144853753026146001335	30724697191718388072464684253753026146001335 	38341132310673799281832449666295435383120166 	24269236238839173914127506053753026146001335 	37436287872011919603131944253753026146001335 584010003021120010011000000000000000000000

TABLE 5(c)

n	m	HT GSFC(12/66)	AFCRL (3/68)	RGO-2	IZMIRAN	USCGS	RGO-1	IGRF
1	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
î	ĭ	-1.7	1.4	2.3	-0.2	-1.7	2.9	-2.3
2	Ö	0.0	0.0	0.0	0 . 0	0.0	0.0	0.0
2	í	-2,3	-4,1	-0.2	2.0	4.7	0.4	-11.8 -16.7
2	2	0,0	1.3	-1.3	0.9	-1,1	-1.5 0.0	-16.7 0.0
3	0	0.0	0.0	0.0	0.0	0.0 -3.1	0.0 -1.0	4.2
3	1	1,5	0.8	0.8	0.0	-3.7	0.9	0.7
3	2	1.8	-3.3	0.3 -1.3	2.1	1.5	-0.8	-7.7
3	3	1.1	0.0	0.0	õ.ô	0.0	0.0	0.0
1,	0	0.0 -2.1	-1.4	ĭ.ĭ	1.5	1.0	3.1	-0.1
1,	2	-1.4	-3.0	-0.6	-0.7	5.7	-2.3	1.6
lı.	ź	-1.2	-0.2	0.1	-0.4	1.7	-0.2	2.9
Ĭ.	Ĩ4	-2.6	-0.3	1.2	2.6	-0.8	1.5	-4.2
5	Ó	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	1	-0.3	-0.1	-0.3	-1.9	2.6	-0.4 0.6	1 7
5	2	-0,1	0,5	0.3	-0.3	-0.3 -1.9	0.6 0.6	-2.4
5 5 5 5	3	-0,3	0.6	0.4	1.2 -0.5	7 1	0.6	0.8
5	lş	-0.3	-2.6 0.2	0.2 0.3	0.5	-1.1	0.8	-0.3
5	5	0.1	0.2	0.0	0.0	0.0	0.0	0.0
6	0 1	0.0 1.1	0.5	-1.1	0.5	-1.0	-1.3	-0.9
6 6	2	0.4	0.5	1.4	0.6	-2.9	0.6	-0.4
6	ź	0.6	-0.1	-0.0	-1.1	0.8	-1.1	2.0
6	Ĩį	-0.3	1.3	0.1	1.1	-2.1	-1.0	-1,1
6	5	0.4	0.5	-0.1	-0.1	-0.7	-0.2	0.1
6	6	-0.1	-1.3	0.1	-0.9	2.3	-1.1	0.9 0.0
7	0	0.0	0.0	0.0	0.0	0.0	0.0	-1.1
7	1	0.1	0.5	1.1	1.1 -0.3	-2.7 1.9	-0.3	0.3
7	2	-0.2	-1.1	-0.3 -0.4	-0.4	0.2	-0 - 4	0.4
7	3	0.1	0.5 -0.6	-0.2	-0.2	0.4	-0.2	0.2
7	4	0.6 -0.8	-0.8	-0.4	-0.4	2.4	-0.4	0.4
7 7	G	0.4	1.5	-0.2	-0.2	-1.4	-0.2	0.2
7	7	0.7	1.1	-0.3	-0.3	-1.2	-0.3	0.3
8	Ó	õ. o	0.0	0.0	0.0	0.0	0.0	0.0
		-0.7	-0.4	-0.1	-0.1	1.3	-0.1	$0.1 \\ -0.2$
8	1 2 3	-0.1 0.4	-0.0	0.2	0.2	-0.2	-0,1 0.2 0.3	-0.2
8	3	0.4	-0.7	0.2 0.3 0.2	-0.1 0.2 0.3 0.2	-0.2 -0.4 0.5	0.2	-0.2
888888888	14	-0.7	-0.2	0.2	0.3	-1.0	0.3	-0.2 -0.3
S O	5	0.4	-0.1 0.2	0.4	0.4	-1.5	0.4	-0.4
ď	6 7	0.5	-1.0	0.4 0.3 0.3	0.4 0.3 0.3	-1.5 0.5 0.1	0.4	-0.3
Ø	γ γ	-0.1 -0.2	-1.0 -0.4	0.3	0.3	0.1	0.3	-0.3

		EPOCH =	1965.0	1.G.R.	F _• (10/68)
M	M	G	Н	тэ	нт
1	0	-30339	0	15,3	0.0
1 2 2 2 3 3 3 3 4	1	-2123	5758	8.7	-2.3
2	0	-1654	- 2006	-24.4	0.0
2	1 2 0	2994 1567	-2006 130	0.3 -1.6	-11.8 -16.7
3	n	1297	150	0.2	0.0
3		-2036	-403	-10.8	4.2
3	1 2 3 0	1289	242	0.7	0.7
3	3	843	-176	-3.8	-7.7
		958	0	-0.7	0.0
4	1 2 3	805	149	0.2	-0.1
4	2	492	-280	-3.0	1.6
4	5	-392 256	8	-0.1	2.9
4	4	256 - 223	-2 65 0	-2.1 1.9	-4.2
5	1	357	16	1.1	0.0 2.3
5	1 2	246	125	2.9	1.7
5555556666	3	-26	-123	0.6	-2.4
5	4	-161	-107	0.0	0.8
5		-51	77	1.3	~0.3
6	5 0	47	Q	-0.1	0.0
6	1 2 3	60	-14	-0.3	-0.9
6	2	4	106	1.1	-0.4
6) 1.	-229	68 - 7.0	1.9	2.0
6 6	ц 5	3 -4	-32 -10	-0.4 -0.4	-1.1 0.1
	6	-112	-13	-0.4	0.1
7		71	ő	-0.5	0.0
7	1	-54	- 57	-0.5 -0.3	-1.1
7	2	0	-27 -8	-0.7	0.3
7	0 1 2 3 4	12 -25 -9 13 -2	-8	-0.7 -0.5	0.9 0.0 -1.1 0.3 0.4 0.2
7		-25	9	0.5	0.2
7	5 6 7	-9 17	23	-0.0	0.4
7	ט 7	10	-19 -17	-0.2 -0.5	0.2
/ ጸ		חר	0	-0.0 n 1	0.3
8	ĭ	9	3	0.4	0.0 0.1
8	2	-3	3 -13	0.6	-0.2
8	3	-12	5	0.0	-0.3
6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8	0 1 2 3 4 5 6 7 8	9 -3 -12 -4 7	-17	-0.0 -0.2 -0.6 0.1 0.4 0.6 0.0 -0.0	-0.3 -0.2
8	5	7	4	-0.1	-0.3
8	6	-5 12 6	22	0.3	-0.3 -0.4 -0.3 -0.3
8	7	12	- 3	-0.3 -0.5	-0.3
8	· 8	ь	-16	- U , 5	-0.3

The IGRF was developed as a result of the request of those who would wish a standard field model where the permanence of a standard over a period of years outweighs the advantages of a high accuracy.

Thus the ultimate use of this model and further requests for revisions must be left to the users.

The way to test whether IGRF(10/68) is suitable to any particular need is to periodically test newer or more accurate models and to decide on the basis of the differences whether the continued use is adequate. As the core field deviates more and more from the IGRF estimate, the accuracy will continuously decrease.

We have already made this test in regard to analysis of the time variations of the COSMOS-49, OGO-2, and OGO-4 data. For such studies the IGRF is quite useless, even the GSFC(12/66) model is insufficient, and fits based on the data themselves are being used. For higher accuracy studies, we would suggest using the GSFC(12/66) model over the range 1900-1965 and the POGO(10/68) model from 1965 through 1968. Beyond 1968, POGO(10/68) could be used until it is updated by more recent data and planned improvements in the analysis.

The computations of the magnetic field from the IGRF or other magnetic field coefficients can be effected using a wide variety of computer programs currently available. One such set of programs based on a code originally developed by <u>Jensen and Whitaker</u> (1960), may be obtained from:

World Data Center A for Rockets and Satellites Goddard Space Flight Center (601) Greenbelt, Maryland 20771 These codes convert the Schmidt normalized coefficients internally in the computer to a more efficient Gauss normalized form, update them to the epoch requested, and compute the geocentric components from the scalar gradient of the potential function given the geocentric position. Conversions are also provided so that one can enter the programs with a geodetic position which is then converted to geocentric, and also for rotating the output geocentric components into geodetic directions. Ignoring the differences between geodetic and geocentric coordinates will create errors up to about 200γ .

APPENDIX 1

Main Field Component and Isoporic Charts
Computed From IGRF (10/68) for 1965.0 at the Earth's Surface

The following figures represent the surface contours of the various geodetic components of the geomagnetic field and its secular change as computed by the IGRF. These diagrams are very similar to those given by <u>Cain and Hendricks</u> (1968) for the GSFC(12/66) field and are drawn automatically using a computer program originally used for weather maps (<u>Cain and Neilon</u>, 1963).

The plots thus are drawn including the algebraic "lows" and "highs" of the component being displayed. These extrema occur at the center of the "+" or "-" symbols. The dip poles are noted for the H chart as '\text{\text{\text{\$

1965

IGRF

IGRF

1965

1965 IGRF

IGRF 1965

VERTICAL FORCE (gauss)

N

1965

IGRF

APPENDIX 2

Coefficient Normalization

All of the previous field derivations have arbitrarily set the earth's mean radius at 6371.2 for the value of a in the factors $(a/r)^{n+1}$ of the potential expansion. This value stemmed from the old standard earth constants with equatorial radius 6378.388 and flattening 1/297. However, the new constants have become 6378.15 and 1/298.25 respectively. Integrating

$$\mathbf{F} = \int_0^{\pi/2} \mathbf{r} \cos\theta \ d\theta$$
we obtain
$$\mathbf{F} = \frac{\mathbf{a}}{\mathbf{m}} \ln(\mathbf{m} + \mathbf{a}/\mathbf{b})$$
where
$$\mathbf{m} = \sqrt{\mathbf{a}^2 - \mathbf{b}^2}/\mathbf{b}$$

a = equatorial radius, and

b = a(1 - f) is the polar radius
with f the flattening factor

The values with the old and new constants are as follows:

f	a	Ъ	T
297	6378.39	6356.91	6371.21
298.25	6378.16	6356.77	6371.02

APPENDIX 2 (cont'd)

I would like to recommend that for the sake of simplicity and to assure that we are not bound to constants of only historical significance, that we adopt the value of 6371 for a. This is a very slight change and has the effect of only altering the g_1^0 term from -30339 to -30342 and the h_1^1 term from 5758 to 5759. The constants α to make the correction $g = g' + \alpha g'$ where g' is the old values of g or h, are

n	α×10 ⁵
1	9
2	13
3	16
4	19
5	22
6	25
7	28
8	31
9	35
10	38
11	41
12	44

REFERENCES

- Cain, Joseph C., and James R. Neilon, Automatic mapping of the geomagnetic field, <u>J. Geophys. Res.</u>, <u>68</u>, 4689-4696, 1963.
- Cain, Joseph C., W. E. Daniels, Shirley J. Hendricks, and

 Duane C. Jensen, An evaluation of the main geomagnetic field,

 1940-1962, <u>J. Geophys. Res.</u>, <u>70</u>, 3647-3674, 1965.
- Cain, Joseph C., Shirley J. Hendricks, Robert A. Langel, and William V. Hudson, A proposed model for the international geomagnetic reference field-1965, <u>J. Geomagnet. Geoelec.</u>, 19, 335-355, 1967.
- Cain, Joseph C., and Shirley J. Hendricks, The geomagnetic secular variation 1900-1965, NASA Technical Note D-4527, April, 1968.
- Dolginov, Sh. Sh., V. N. Nalivayko, et al., <u>Catalog of measured</u>
 and calculated values of geomagnetic field intensity modulus
 along orbit of satellite <u>COSMOS-49</u>, IZMIRAN, 1967.
- Hurwitz, L., D. G. Knapp, J. H. Nelson, and D. E. Watson,

 Mathematical model of the geomagnetic field, <u>J. Geophys. Res.</u>,

 71, 2373, 1966.
- Jensen, D. C., and W. A. Whitaker, Spheric harmonic analysis of the geomagnetic field, <u>J. Geophys. Res.</u>, <u>65</u>, 2500, 1960.

- Leaton, B. R., S. R. C. Malin, and M. J. Evans, An analytical representation of the estimated geomagnetic field and its secular change for epoch 1965.0, <u>J. Geomagnet. Geoelec.</u>, <u>17</u>, 187, 1965.
- Nagata, T., Report on aeromagnetic survey in Japan, World Data Center C-2, Kyoto, 1966.
- USNOO, Airborne Geomagnetic Data, Special Pub. 66, Supplement
 No. 1, 1962-1963, USNOO, Washington, 1965.
- Zmuda, A. J., W. E. Radford, F. T. Heuring, and P. Verzariu,

 The scalar magnetic intensity at 1100 kilometers in middle

 and low latitudes, <u>J. Geophys. Res.</u>, <u>73</u>, 2495-2503, 1968.