Semestrální zkouška ISS, 1. opravný termín, 24.1.2017, skupina B Login: Příjmení a jméno: Podpis: Podpis: (čitelně!) Nakreslete periodický signál se spojitým časem se základní kruhovou frekvencí $\omega_1 = 100\pi \text{ rad/s}$ Příklad 1 a koeficienty Fourierovy řady: $c_1 = 5e^{j\frac{\pi}{2}}, \quad c_{-1} = 5e^{-j\frac{\pi}{2}}, \quad c_{10} = 0.5, \quad c_{-10} = 0.5$ $\times (t) = 10 \cos(1000t + \frac{17}{2}) + 1 \cos(1000t + \frac{17}{2})$

Příklad 2 Signál se spojitým časem je posunutý Diracův impuls $x(t) = \delta(t-4)$. Nakreslete jeho spektrální funkci (průběh modulu i argumentu).

 $x_1(t) = \begin{cases} 1 & \text{pro } 0 \le t \le 2 \\ 0 & \text{jinde} \end{cases}$ $x_2(t) = \begin{cases} -1 & \text{pro } 0 \le t \le 1 \\ 0 & \text{jinde} \end{cases}$ Označte prosím pečlivě hodnoty na obou osách.

Příklad 4 Hodnota spektrální funkce signálu x(t) na kruhové frekvenci $\omega = 45\pi \text{ rad/s je } X(j45\pi) = 1+j$. Určete, jaká bude hodnota spektrální funkce $Y(j45\pi)$ pro signál vzniklý zpožděním: y(t) = x(t-0.5)

Viz A

 $Y(j45\pi) = \dots$

Příklad 5 Vzorkovací frekvence je $F_s = 16$ kHz. Vstupní signál je cosinusovka na frekvenci 7 kHz. Tento signál je ideálně vzorkován a ideálně rekontruován. Není použit anti-aliasingový filtr. Určete typ (např. cosinusovka, pravoúhlý, stejnosměrný, ...) a frekvenci signálu na výstupu.

V 20 d. Morem je spluen => ten samy signal

cosimusonea la 7 EHZ

Příklad 6 Zakreslete do komplexní roviny nulové body a póly systému se spojitým časem s přenosovou funkcí $H(s) = \frac{s}{s+1}$.

Viz A

Systém se spojitým časem má stejnou přenosovou funkci, jako v příkladu 6, tedy $H(s) = \frac{s}{s+1}$. Určete hodnotu jeho kmitočtové charakteristiky $H(j\omega)$ na zadané kruhové frekvenci. Nezpomeňte na to, že se bude pravděpodobně jednat o komplexní číslo. Stačí počítat na jednu platnou cifru. Pokud vyjde jedna složka komplexního čísla podstatně menší než ta druhá, zanedbejte ji.

 $\frac{H(j1000\pi) = \dots 1000\pi}{\text{Příklad 8 Do kvantizéru}} = 1$

Příklad 8 Do kvantizéru vstupují vzorky x[n]. Kvantizér se ale zasekl a pro všechny vstupní vzorky produkuje tu samou výstupní hodnotu: nulu. $x_q[n] = 0$. Určete poměr signálu k šumu (SNR) v deciBellech (dB) takového kvantizéru.

Vypočtěte a do tabulky zapište kruhovou konvoluci dvou signálů s diskrétním časem o délce Příklad 9 N = 4:

0	1	2	3
4	3	1	2
1	-1	0	0
7	-1	-2	1
	0 4 1	$ \begin{array}{c cccc} $	$\begin{array}{c ccccc} 0 & 1 & 2 \\ \hline 4 & 3 & 1 \\ \hline 1 & -1 & 0 \\ \hline 7 & -1 & -2 \\ \hline \end{array}$

Příklad 10 Dokažte, že Fourierova transformace s diskrétním časem (DTFT) je periodická s periodou 2π rad, tedy že $\tilde{X}(e^{j\omega})=\tilde{X}(e^{j(\omega+k2\pi)}),$ kde kje libovolné celé číslo.

Viz A

Příklad 11 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující: $x[n]{=}4$ 2 3 4 5 0 0 0.

Vypočtěte zadaný koeficient jeho diskrétní Fourierovy transformace (DFT) X[k].

viz A

$$X[4] = 4 - 2 + 3 - 4 + 5 = 6$$

Příklad 12 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující:

x[n]=1 -1 0 0 0 0 0 0. Známe hodnotu koeficientu jeho diskrétní Fourierovy transformace (DFT): X[2]=1+j. Určete hodnotu koeficientu DFT Y[2] signálu y[n], který je kruhově posunutou verzí signálu x[n]: y[n]=-1 0 0 0 0 0 0 1.

 $Y[2] = (1+j).e^{j\frac{2a}{8}.1.2} = (1+j)e^{j\frac{a}{2}} = (1+j)j = -1+j$

$$Y[2] = \dots$$

Příklad 13 Diskrétní signál x[n] má délku N vzorků, N je sudé. Ukládáme pouze hodnoty $X[0] \dots X[\frac{N}{2}]$. Kolik na to potřebujeme proměnných typu float, když na uložení jednoho reálného čísla je potřeba jeden float a na uložení jednoho komplexního čísla dva floaty?

viz A

Příklad 14 Přenosová funkce číslicového filtru je $H(z) = \frac{1}{1+1.6z^{-1}+0.64z^{-2}}$. Určete, zda je filtr stabilní, a vysvětlete proč.

Viz A

(2-(-0,8))(2-(-0,8))

dvojity fol v -0,8 avmitri jednoblove bruži.

=) Stabilnu!

Příklad 15 Na obrázku je průběh modulu frekvenční charakteristiky číslicového filtru pro normované kruhové frekvence $\omega \in [0, \pi]$ rad. Nakreslete přibližné rozložení nulových bodů a pólů tohoto filtru.

Příklad 16 V tabulce jsou hodnoty vzorku n=7 náhodného signálu pro $\Omega=10$ realizací:

ω	1	2	3	4	5	6	7	8	9	10
$\xi_{\omega}[7]$	67.1	-120.7	71.7	163.0	48.8	103.4	72.6	-30.3	29.3	-78.7

Proveďte souborový odhad funkce hustoty rozdělení pravděpodobnosti p(x,7) a nakreslete ji.

viz A

Příklad 17 Diskrétní signál x[n] má délku N=8 vzorků. Hodnoty jsou následující:

x[n]=1 2 3 4 5 0 0 0.

Provedte nevychýlený odhad zadaného korelačního koeficientu R[k].

VIZ A

 $R[3] = \dots$

Příklad 18 Na $\Omega=4000$ realizacích náhodného procesu byla naměřena tabulka (sdružený histogram) hodnot mezi časy n_1 a n_2 . Spočítejte korelační koeficient $R[n_1,n_2]$. Pomůcka: Jako reprezentativní hodnoty x_1 a x_2 při numerickém výpočtu integrálu $R[n_1,n_2]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}x_1x_2p(x_1,x_2,n_1,n_2)dx_1dx_2$ použijte středy intervalů v tabulce.

intervaly	\parallel intervaly x_2						
x_1	[-4, -2]	[-2, 0]	[0, 2]	[2, 4]			
[2, 4]	0	0	0	0			
[0, 2]	0	1000	0	0			
[-2, 0]	0	0	1000	0			
[-4, -2]	0	0	0	2000			

viz A

 $R[n_1, n_2] = \dots$

Příklad 19 Jaké musí být vzorky náhodného signálu, abychom ho mohli považovat za bílý šum?

Viz X

Příklad 20 Spektrální hustota výkonu náhodného signálu má na normované kruhové frekvenci $\omega=0.2\pi$ rad hodnotu $G_x(e^{j0.2\pi})=5$. Signál prochází číslicovým filtrem, který má na této frekvenci hodnotu frekvenční charakteristiky $H(e^{j0.2\pi})=\sqrt{2}e^{-j\frac{\pi}{4}}$. Určete spektrální hustotu výkonu výstupního signálu na téže frekvenci.

Viz A

$$G_y(e^{j0.2\pi}) = \dots$$