Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики Кафедра математических методов прогнозирования

Отчёт по теме

Продвинутые методы безусловной оптимизации

Выполнил студент 517 группы

Камалов Руслан Рамилевич

1 Метод сопряженных градиентов

Эксперимент:

- 1. реализован метод сопряженных градиентов
- 2. выбраны значения для числа обусловленности системы $\kappa \in \{2, 10, 30, 100\}$
- 3. для каждого κ сгенерированы 5 положительно определенных матриц $A \in R^{n \times n}, n = 30$, с числом обусловленности $\kappa(A) = \kappa$, а также вектора правых частей $b \in R^{n \times 1}$
- 4. к каждой из полученных систем Ax = b, применен метод сопряженных градиентов

Результат эксперимента:

Вывод:

Результат эксперимента согласуется с теоретическим результатом относительно скорости сходимости метода сопряженных градиентов

$$||x_k - x_*|| \le \frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1} ||x_0 - x_*||$$

Действительно, из результатов эксперимента видно, что метод имеет **линейную** скорость сходимости, а при увеличении числа обусловленности κ , скорость сходимости замедляется, оставаясь при этом линейной.

Также можно отметить сходимость метода за число шагов меньшее n. Собственные числа матрицы A выбирались из равномерного распределения $R[1,\kappa]$, и группировались в кластеры, за счет этого метод сходился за число шагов меньшее размера системы. Чем больше значение κ , тем на больше количество кластеров мог "расслоиться" случайный вектор размера n

2 Функция потерь логистической регрессии

Эксперимент:

- 1. реализованы процедуры подсчета значения, градиента, а также умножения произвольного вектора на гессиан функции потерь логистической регрессии
- 2. реализована процедура разностного подсчета значения градиента и произведения произвольного вектора на гессиан функции потерь логистической регрессии
- 3. Сгенерирована случайная выборка $X \in \mathbb{R}^{200 \times 100}$, случайный вектор ответов $y \in \{-1, +1\}^{200}$
- 4. Для четырех случайных пар точек (w,v) проверена корректность численного подсчета градиента и процедуры умножения гессиана на произвольный вектор

Результат:

	(w_1, x_1)	(w_2, x_2)	(w_3,x_3)	(w_4, x_4)
$\frac{\ \nabla f - (\nabla f)^*\ _{\infty}}{\ \nabla f - (\nabla f)^*\ _{\infty}}$	0.00015	0.00014	0.00014	0.00005
$\ \nabla f v - (\nabla f)^* v\ _{\infty}$	0.02166	0.02773	0.02930	0.01990

Вывод:

Численный подсчет градиента и гессиана функции потерь логистической регрессии реализованы корректно.

3 Сравнение реализованных методов

Эксперимент:

- 1. реализованы три метода оптимизации: L-BFGS,HFN, NCG
- 2. выбраны четыре датасета с размерами: heart: (n=240, d=13); german.numer: (n=1000, d=24); duke breast cancer: (n=44, d=7129); leukemia: (n=38, d=7129)
- 3. для каждого датасета протестированы три метода для оптимизации логистической функции потерь

Результат:

HEART

GERMAN.NUMER

DUKE

LEUKEMIA

Вывод:

 Γ лядя на графики сходимости методов можно сказать, что HFN и L-BFGS имеют квадратичную скорость сходимости, а NCG линейную.