MA553: Qual Preparation

Carlos Salinas

July 18, 2016

Contents

1	Ulrio	\mathbf{h}	2
	1.1	Ulrich: Winter 2002	2

1 Ulrich

1.1 Ulrich: Winter 2002

Problem 1. Let *G* be a group and *H* a subgroup of finite index. Show that there exists a normal subgroup *N* of *G* of finite index with $N \subset H$.

Solution. \blacktriangleright Let n = [G:H] and $X = \{H, g_1H, \ldots, g_{n-1}H\}$ the set of left-cosets of H in G with representatives $g_0 = e, g_1, \ldots, g_{n-1}$. Let G act on X by left multiplication, i.e., $g \mapsto gg_iH$; this is indeed an action since $e(g_iH) = eg_iH = g_iH$ for all $g_iH \in X$ and for $k_1, k_2 \in G$ $k_2(k_1g_iH) = k_2k_1g_iH = (k_2k_1)g_iH$. By Cayley's theorem, this induces a homomorphism $\varphi \colon G \to S_n$. Note that the action is not necessarily faithful. However, by the first isomorphism theorem, the kernel of φ , $N = \operatorname{Ker} \varphi$, is a normal subgroup of G with index $[G:N] \leq |S_n| = n!$ and $N \subset H$ since $g \in N$ if and only if $gg_iH = g_iH$ which, in particular, implies that gH = H. Thus, $N \subset H$ and $[G:N] < \infty$.

Problem 2. Show that every group of order 992 (= $32 \cdot 31$) is solvable.

Solution. \blacktriangleright Suppose G is a group with order $|G|=992=2^5\cdot 3$. By Sylow's theorem, there

Problem 3. Let *G* be a group of order 56 with a normal 2-Sylow subgroup *Q*, and let *P* be a 7-Sylow subgroup of *G*. Show that either $G \simeq P \times Q$ or $Q \simeq \mathbb{Z}/(2) \times \mathbb{Z}/(2) \times \mathbb{Z}/(2)$.

[*Hint*: P acts on $Q \setminus \{e\}$ via conjugation. Show that this action is either trivial or transitive.]

Solution. ▶

Problem 4. Let R be a commutative ring and Rad(R) the intersection of all maximal ideals of R.

- (a) Let $a \in R$. Show that $a \in \text{Rad}(R)$ if and only if 1 + ab is a unit for every $b \in R$.
- (b) Let R be a domain and R[X] the polynomial ring over R. Deduce that Rad(R[X]) = 0.

Solution. ▶

Problem 5. Let *R* be a unique factorization domain and *P* a prime ideal of R[X] with $P \cap R = 0$.

- (a) Let n be the smallest possible degree of a nonzero polynomial in P. Show that P contains a primitive polynomial f of degree n.
- (b) Show that P is the principal ideal generated by f.

Solution. ▶

Problem 6. Let k be a field of characteristic zero. assume that every polynomial in k[X] of odd degree and every polynomial in k[X] of degree two has a root in k. Show that k is algebraically closed.

Solution. ►

Problem 7. Let $k \subset K$ be a finite Galois extension with Galois group Gal(K/k), let L be a field with $k \subset L \subset K$, and set $H = \{ \sigma \in Gal(K/k) : \sigma(L) = L \}$.

- (a) Show that H is the normalizer of Gal(K/L) in Gal(K/k).
- (b) Describe the group H/Gal(K/L) as an automorphism group.

Solution. ▶