

Universidad Autónoma de Nuevo León

Facultad de Ingeniería Mecánica y Eléctrica

Actividad #6

Diagrama pictórico

Asignatura: Laboratorio de Controladores y

Microcontroladores Programables

Grupo:

407

Hora clase:

N1 - N2 Jueves

Docente: Héctor Hugo Flores Moreno

Matrícula	Nombre	Carrera
1952947	Heidi Pamela Martinez Martinez	ITS
1951068	Gerardo Daniel Lozano González	ITS
1953575	Emmanuel Sánchez Aranda	ITS

Diagrama Pictórico

Figura 1. Diagrama Pictórico Rastreador Estelar

Descripción de los componentes

Este proyecto simula un rastreador estelar utilizando tres componentes de hardware principales, los cuales son coordinados por un microcontrolador Arduino Uno y un conjunto de librerías de software.

1. Arduino Uno (Unidad de Control)

El Arduino Uno es la unidad central de procesamiento del sistema. Ejecuta el código principal que define toda la lógica operativa.

Función Principal: Recibe datos de geolocalización del GPS, realiza cálculos astronómicos para determinar la posición de las estrellas, y envía los comandos de dibujo a la pantalla TFT.

Conexiones Clave:

- Se comunica con el GPS usando SoftwareSerial en los pines D4 (RX) y D3 (TX).
- Controla la pantalla TFT a través de la interfaz SPI, utilizando los pines D8 (DC), D9 (RST), D10 (CS), D11 (MOSI) y D13 (SCK).

2. Módulo GPS (Simulación Personalizada NEO-6M)

Este componente simula un receptor GPS, proporcionando la ubicación geográfica (latitud, longitud) y la hora universal.

Función Principal: Al ser un chip personalizado para la simulación, este módulo no se conecta a satélites. En su lugar, genera y transmite continuamente frases de texto estándar (NMEA) a través de su pin TX.

Datos Simulados: El chip envía coordenadas que varían ligeramente con el tiempo, simulando un movimiento leve. El Arduino lee estos datos para obtener una ubicación y hora dinámicas.

3. Pantalla TFT (Modelo ILI9341)

Esta pantalla a color de cristal líquido (TFT) actúa como la interfaz de salida visual del proyecto.

Función Principal: Muestra la información procesada por el Arduino. Esto incluye las coordenadas actuales de latitud y longitud, los puntos cardinales (N, S, E, W), y la posición calculada de las estrellas con sus respectivos nombres

Referencias

Instructables. (2018, 16 octubre). Finding your way with GPS. Instructables.

https://www.instructables.com/Finding-Your-Way-With-GPS/?utm_source

ILI9341 TFT display example with Arduino. (s. f.).

https://electronoobs.com/eng_arduino_tut58.php?utm_source