

Introduction

- What is control?
- Why do we need control?
- How does control essentially work?
- How are control systems implemented?
- Control Objectives

Control is Everywhere

Intelligent Decision Making

Specialty chemicals

Reactive Distilllation Column

Quality Control

Milk acidification

pH control

Hotel Groningen

Energy reduction in buildings

Fermentation Process

Optimal productivity

Example 1: A primitive 'level control' system (1)

Control objective : Keep the level at the desired level

(1) Kravaris & Kookos

Example 2: Cruise control system in a car (Volvo's Adaptive Cruise Control)

Example 2: Cruise control system in a car

Control of an industrial scale batch crystallization process *)

*) Courtesy of former MSD Apeldoorn

By nature every process, also any chemical process is dynamic, i.e. ever changing operating conditions:

- Composition of processed materials
- •Temperature
- Pressure
- •residence time

Control systems enable us to keep critical process variables within permitted operating conditions

Example 1: Polymer reactor

- Reaction initiation requires heat
- Once initiated the reaction starts producing sufficient heat to initiate new reactions → runaway, unless the system is properly cooled
- Polymer properties are strongly influenced by time-temperature history of the polymer particles

Example 2: Cracker

- Cracking conversion and selectivity are strongly temperature dependent
- Large energy demand to perform cracking of heavy components

Ideal process operation involves making the process insensitive for disturbances by compensation. It requires tight control of applied operating conditions.

Compensation of disturbances (e.g. chemical reaction)

- Feed compositions
- Pressure
- Temperature
- Residence time

Drive the process to desired conditions

- Avoid dangerous operating conditions
- Follow preferred path for optimum production

Process Variables:

INPUTS:

- Variables, which independently stimulate the system and can induce change in the internal conditions of the process
- Manipulated Variables
- Disturbances

OUTPUTS (MEASURED VARIABLES):

Variables from which we can obtain information about the internal state of the process.
 The variables selected as output variables in general are directly relevant for process operation or are (related to) critical properties of products or intermediates

Process variables of a cooling system in a heat exchanger.

Input Variables: F_{seawater}

Output Variable: T_{out}

Disturbance Variable: ?

Feedforward Control of a Cooling system of a Heat Exchanger?

How are control systems implemented?

Control system evolution

•	<1945	Only manual operator control
•	1945 – 1960	Pneumatic analog PID control
•	1960 – 1970	Analog electronic PID control systems
•	1970 – 1980	Digital PID control systems
•	1980 – today	Distributed digital control systems
•	1985 – today	Supervisory multivariable optimizing control
		(Model Predictive Control)
•	1990 – today	Steady state model based plant wide
		optimization
•	Future	Dynamic/flexible model based plant wide

optimization

Process Control Hierarchy

Future is Promising

Electrification of the Process Industry

Smart Grid

Renewable energy

Production +Utilities

Transient Plant Operation

Coming lectures

- Topic 2: Introduction to frequency domain and Laplace transformation
- Topic 3: Dynamic Behavior of Linear Systems
- Topic 4: Frequency Response Analysis and Bode plots
- Topic 5: Mathematical Description of Chemical Systems
- Topic 6: Nonlinear ODE's, Linearity, Linearization Feedback, Stability, Root Locus
- Topic 7: Feedback Controller Design and Bode stability
- Topic 8: Advanced (Enhanced)Process Control

