Organic Chemistry Concepts LOKT.09.051

Acids and bases

CHAPTER 6

Brønsted - Lowry definition

- Acids donors of proton
- Bases acceptors of proton
- Commonly fast exchange reaction
- Slow, if dissociation of C-H bond is involved

Johannes Nicolaus Brønsted (1879-1947)

Some Remarks on the Concept of Acids and Bases.

J. N. Brønsted, Recueil des Travaux

Thomas Martin Lowry (1874-1936)

AH
$$\longrightarrow$$
 H⁺ + :A⁻
B: +H⁺ \longrightarrow BH⁺

$$\mathbf{AH} + \delta - \mathbf{B} : \stackrel{\mathbf{K}_{\mathbf{eq}}}{\rightleftharpoons} \delta - \mathbf{A} : + \mathbf{BH}$$

This is a special case of ionic reactions

Bond heterolysis

$$AH + H_2O: \xrightarrow{K_{eq}} ^-A: + ^+H_3O$$

$$K_{eq} = \frac{[\text{H}_3\text{O}^+] \ [\text{-A:}]}{[\text{H}_2\text{O}] \ [\text{AH}]}$$

$$K_{eq}[H_2O] = K_a = \frac{[H_3O^+] [-A:]}{[AH]}$$

$$-log K_a = pK_a = -log \frac{[H_3O^+] [-A:]}{[AH]}$$

B:
$$+ H_2O \longrightarrow BH^+ + :OH^-$$

$$K_{eq} = \frac{[BH +] [:OH -]}{[H_2O] [B:]}$$

$$K_{eq}[H_2O] = K_b = \frac{[BH +] [:OH -]}{[B:]}$$

$$H_2O + H_2O \longrightarrow H_3O^+(aq) + OH^-(aq)$$

$$K_{eq} = \frac{[H_3O^+] [OH^-]}{[H_2O] [H_2O]}$$

$$K_{eq} [H_2O] [H_2O] = K_W$$

$$K_w = [H_3O^+] [OH^-] = 1x 10^{-14}$$

$$-logK_w = -log[H_3O^+] - log[OH^-] = 14$$

$$pH + pOH= 14$$

Three mechanisms of proton transfer

$$AH + : B^{\Delta^{-}} \rightleftarrows AH \dots : B^{\Delta^{-}}$$

$$AH....: B^{\Delta-} \rightleftarrows \Delta^{-}A:....HB$$

$$^{\Delta-}A:...HB \rightleftharpoons ^{\Delta-}A: + HB^{\Delta-}$$

Acid strength

$$K_a = \frac{[H^+] [A:]}{[AH]}$$

$$pK_a = pH + log([AH]/[A:])$$

pKa (relatively, in water)

```
• HF 3.2 (4.0)
```

$$K_a = [H^+][A^-]/[HA]$$

$$pKa = pH + log ([HA]/[A^{-}])$$

pKa (in water)

- HI -10 (2.5)
- **HBr 9** (2.8)
- **HCl 7** (3.0
- **HF** 3.2 (4.0)
- H₂S **7.0** (2.5)
- H₂O **15.7** (3.5)

$$K_a = [H^+][A^-]/[HA]$$

Functional group acidity

- OH
- SH
- NH
- CH

OH acids

•HCOOH

3.75

•C6H5OH

10

•CH₃OH

15.2

NH acids

• H ₂ O	15.7	• NH3	38
• H ₃ O ⁺	-1.7	• NH4 ⁺	9.2
 C6H5OH 	10	• C6H5NH2	38
• C6H5OH2 ⁺	-6.4	• C6H5NH3 +	4.5
		• (C6H5)2NH	25
		• (C6H5)2NH2 ⁺	1
		• 4-NO2-C6H4NH3 +	

SH acids

• H ₂ O	15.7	• H ₂ S	7.0
• H ₃ O ⁺	-1.7	• C2H5SH	10.5
• C ₂ H ₅ OH	16	• C2H5SH2 ⁺	-7
• C2H5OH2 ⁺	-2	• C6H5SH	7.8
 C6H5OH 	10		
• C ₆ H ₅ OH ₂ ⁺	-6.4		

CH acids

Carbon anion or carbanion

OH acids

•HCOOH

3.75

•C6H5OH

10

•CH₃OH

15.2

$$pK_a = 15.2$$

$$H$$
 H
 $O-H$
 H
 $O-H$
 H
 $O-H$
 H
 $O-H$
 H
 $O-H$
 H
 $O-H$
 $O-H$

$$pK_{a} = 4.8$$

$$O = \begin{array}{c|c} CH_3 & & \\ \hline \\ OH & \\ \hline \end{array} \qquad O = \begin{array}{c|c} CH_3 & \\ \hline \\ O^- & \\ \hline \end{array} \qquad H^+$$

$$pK_a = 10$$

Carbanion stability pK_a 45

$$H \stackrel{H}{\leftarrow} H \stackrel{H}{\leftarrow} H \stackrel{H}{\leftarrow} H \stackrel{H}{\leftarrow} H \stackrel{H}{\leftarrow} H$$

Carbanion stability

$$H_2C$$
 CH_2
 H_2C
 CH_2
 CH_2

Enols or alkenols

$$\begin{array}{c} O \\ \parallel \\ R_2 CHCR' \end{array} \longrightarrow \begin{array}{c} C + CR' \\ R_2 C = CR' \end{array}$$
Keto - form

Ketones are stable!

Stable enol

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$