BAT

Solar Butterfly

Andre Gut

Betreuender Dozent: Dejan Romancuk

HSLU

Departement: Maschinentechnik

18.12.6969

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel verwendet habe. Sämtliche verwendeten Textausschnitte, Zitate oder Inhalte anderer Verfasser wurden ausdrücklich als solche gekennzeichnet.

Andre Cut Luzern 17. Februar 2021 Unterschrift

Ort, Datum

Abstract

Bla Bla

Inhaltsverzeichnis Seite iv

Inhaltsverzeichnis

Ι	Dokumentation	1
1	Einleitung 1.1 Aufgabenstellung	1 1 2 2 3
2	Anforderungen und Auslegungskriterien 2.1 Anforderungen an den Solar Butterfly 2.2 Auslegungskriterien	4 4 4 5 7 8
3	Lastenheft 3.1 Modus A: Fahren	9 10 14 15 18
4	Analyse der Struktur 4.1 Allgemeines	23 23 23 24
5	FEM	24
6	Auslegung und Design	24
II	Anhang	24
A	Quellenverzeichnis	24
В	Abbildungsverzeichnis	25
\mathbf{C}	Tabellenverzeichnis	25
D	Rissfortschritt D.1 Zeichnungen	26 26 26 26
ΙI	I Elektronischer Anhang	26

Seite v Inhaltsverzeichnis

\mathbf{A}	Elek	ktronis	cher Anhang	26
	A.1	Zeichn	ungen	26
		A.1.1	Zeichnung des Probenrohlings - Erste Serie	26
		A 1 2	Zeichnung des Probenrohlings - Zweite Serie	26

Seite 1 1 Einleitung

Teil I

Dokumentation

1 Einleitung

Der Klimawandel äussert sich in der Schweiz überdurchschnittlich. So ist die mittlere Jahrestemperatur in der Schweiz seit Messbeginn im Jahre 1864 um 2 °C gestiegen, was rund doppelt so stark wie ist das globalen Mittel. In der Schweiz wird rund ein Drittel aller Treibhausgasemissionen durch den Verkehr (ohne internationler Flug- und Schiffsverkehr) verursacht [1]. Um das Netto-Null-Ziel der Langfristigen Klimastrategie der Schweiz zu erfüllen, müssen daher unteranderem im Verkehrssektor Veränderungen vorgenommen und Entwicklungen getätigt werden. Louis Palmer, ein Schweizer Umweltaktivist und "Macher'', umrundete im Jahr 2004 als erster mit dem Solarfahrzeug Solartaxi die Erde und gilt somit als ein Pionier im Bereich der Elektromobilität.

Sein neustes Projekt ist der Solar Butterfty - ein autarker Wohnwagen, mit welchem er "eine Reise zu den Klimalösungen dieser Welt [...] im ersten solar betriebenen «Mobile Home» der Welt" antreten will. Die erneute Weltumrundung soll dieses mal mit "etwas mehr Komfort'' geschehen. Seine Vision ist es, ein Wohnwagen, mit zwei Ausziehbaren Wohn-Modulen und rund $100\ m^2$ integrierte Photovoltaik-Fläche, zu realisieren. Im Rahmen dieser Bachelorarbeit soll, in Zusammenarbeit mit drei weiteren Studenten der HSLU, seine Vision in die Realität umgesetzt werden.

Das Projekt wurde neben dieser Arbeit in die weiteren Teilgebiete Auslegung Klappmechanismen, Auslegung Antriebstechnik und Auslegung Solar Butterfly (Globales CAD) eingeteilt.

Das Auslegen der Klappmechanismen beinhaltet das Entwerfen und Dimensionieren aller beweglichen Teilen wie die klappbaren Panelen und den Ausfahrmechanismus der Seitenmodulen. Das Arbeit Auslegen der Antriebstechnik befasst sich mit der Technik, mit welcher die beweglichen Bauteile in Bewegung gesetzt werden. Im Teilgebiet Auslegung Solar Butterfly (Globales CAD) werden die jeweiligen Teilgebiete zusammengeführt. Ebenfalls beinhaltet diese Teilgebiet das Erstellen eines globalen CAD-Modells, das Zusammentragen der allgemeinen Anforderungen sowie eine Risikobewertung.

Diese Arbeit, welche zum Teilgebiet Auslegung Grundstruktur Solar Butterfly gehört, befasst sich mit der Festlegung der Auslegungskriterien, der Ausarbeitung eines detailierten Lastenheftes sowie die Betrachtung der Grundstruktur

1.1 Aufgabenstellung

Der Fokus dieses Teils der Arbeit liegt im Ausarbeiten der Auslegungskriterien (Lastenheft) und der Dimensionierung der Grundstruktur inklusive Lasteinleitungen. Dabei soll auch ein globales FEM zur Anwendung kommen (z.B. zur Bestimmung von Schnittgrössen für Handrechnungen). Zulässige Festigkeitswerte sollen abhängig von der gewählten Bauweise abgeschätzt werden ("Design-Allowables") und mittels Test bestätigt werden.

- Schnittgrössen für Handrechnungen
- ("Design-Allowables") und mittels Test bestätigt

1 Einleitung Seite 2

1.2 Vorgehen und Methodik

In diesem Kapitel wird beschrieben, wie beim Lösen der Aufgabenstellung vorgegangen wird. Die Struktur des vorliegenden Dokumentes entspricht dabei dem Vorgehen

In einem ersten Schritt wird definiert, welchen Anforderungen der Solar Butterfly, von einem Festigkeits-Standpunkt aus betrachtet, gerecht werden muss. Weiter werden die Auslegungskriterien bestimmt. Sie beschreiben im Detail, nach welchen Kriterien die einzelnen Komponenten des Solar Butterflys ausgelegt werden. So wird zum Beispiel beschrieben, welche Kriterien die Sandwichplatten erfüllen müssen, dass diese bei Belastungen auf Druck nicht Knicken.

Anschliessend wurde ein Lastenheft erstellt, welche eine Zusammenstellung von verschiedenen Lastfällen darstellt, welchen der Solar Butterfly ausgesetzt werden könnte. Für diese Lastfälle - und Kombinationen davon - muss der Solar Butterfly ausgelegt werden.

Als nächster Schritt wird die festigkeitstechnischen Funktionen der einzelnen Komponenten analysiert. Es wird zum Beispiel analysiert welche Funktionen das Dach des Solar Butterfly übernehmen muss und wie dieses Idealisiert betrachtet werden kann. Das Ergebniss dieser Analyse ist das erlangte Verständniss für Belastungsarten und idealisierte Kraftverläufe durch die Komponenten und Struktur des Solar Butterflys für verschiedene Lastfälle. Mit der Hilfe dieser Analyse können die verschiedenen Komponenten grob ausgelegt und Verbindungen zwischen den Komponenten optimal konstruiert werden.

In einem letzten Schritt wird der Solar Butterfly in FEM-Analysen verschiedenen Lastkombinationen ausgesetzt um so Lastpfade und Schnittkräfte zu bestimmen, anhand welche die Komponenten definitiv ausgelegt werden können. Weiter können in den FEM-Analysen für die Funktionstauglichkeit kritische Verformungen festgestellt werden, welche in der Konstruktion berücksichtigt werden müssen.

Iterativers Vorgehen. Vorallem in der Konstruktion. Erkenntnisse der Festigkeit müssen wieder ins Design einfliessen usw.

1.3 Theorie

Leichtbau:

Als Einschränkung ist dabei zu berücksichtigen, dass hierdurch weder die Funktion noch die Sicherheit und Langlebigkeit /s. DIN EN 1993/ beeinträchtigt werden dürfen. Maßnahmen, mit denen man dies heute zu erreichen versucht, sind: - Umsetzung des Integrationsprinzips, - Wahl leichter und hochfester Werkstoffe, - neue Herstelltechnologien - analytische Beherrschung der Beanspruchungs- bzw. Instabilitätsfälle durch hochwertige Analysemethoden (FEM, BEM).

Im Zuge der Umsetzung dieser Prinzipien kommen bestimmte Entwurfsstrategien /BLE 74/zum Tragen, deren Merkmale sich verkürzt klassifizieren lassen in einen Form- oder Funktionsleichtbau, bei dem integrative Konstruktionslösungen, dünnwandige Querschnittsgeometrien und eindeutige Kraftleitungspfade umgesetzt werden; einen Stoffleichtbau, bei dem spezifisch schwere Werkstoffe durch leichtere Werkstoffe mit möglichst hohen Gütekennzahlen substituiert werden; einen Fertigungsleichtbau, in dem alle technologischen Möglichkeiten ausgeschöpft werden, um das Ziel der Funktionsintegration (Einstückigkeit) bei geringstem Materialeinsatz und minimalem Fügeaufwand zu realisieren und einen Sparleichtbau, mit dem Ziel hohe Kosten zu vermeiden durch eine gerade noch ausreichende Werkstoffqualität, minimalem Werkstoffeinsatz und vereinfachte Herstellung. (S16)

Da ein typisches Einsatzgebiet von Leichtbaukonstruktionen die Verkehrstechnik (Automobil-

Seite 3 1 Einleitung

bau, Schienen- und Luftfahrzeuge) ist, dürfen Leichtbaukonstruktionen nicht "unsicherer" als vergleichbare Massivkonstruktionen sein. Dies bedingt eine sorgfältige Auslegung auf Steifigkeit (Instabilitäten), Bruchfestigkeit sowie Zuverlässigkeit und Nutzungsdauer. (S20)

Die Philosophie des "safe-life-quality", die absolute Schadensfreiheit für das ganze Leben verlangt, und die Philosophie des "fail-safe-quality", die Schadenstoleranz und hinreichende Resttragfähigkeit voraussetzt. Dem Ziel nach sollten alle erforderlichen Leichtbaumaßnahmen begründbar sein.(S21) Auslegungsphilosophie: Safe-Life-Quality: Absolute Schadensfreiheit für die angestrebte Lebensdauer Statistische Ausfallwahrscheinlichkeit Fail-Safe-Quality: Schadenstolerant Hinreichende Resttragfähigkeit

aufeinander aufbauende Arbeitsschritte mit etwa folgenden Inhalten: - Klären der Aufgabenstellung: Informationsbeschaffung über die Anforderungen einer Aufgabe und Erstellung einer Anforderungsliste; Eingrenzung bestehender Bedingungen und ihre Bewertung für die Lösungserfüllung; Festlegung einer Lösungsrichtung; technisch-wirtschaftliche Konsequenzen. - Konzipieren (Findung einer prinzipiellen Lösung): Hinterfragung der Aufgabe und Sichten des Kernproblems; Zerlegung des Kernproblems in untergeordnete Teilprobleme; Suche nach Lösungswegen zur Erfüllung der Teilprobleme; Kombination der Teilproblemlösungen zu Lösungsansätzen für das Kernproblem; Bewertung der Lösungen; Erstellung von Konzeptskizzen. Voraussetzungen einer sinnvollen Konzepterstellung sind Kenntnisse über die Größe und Richtung der wirkenden Kräfte, die Möglichkeiten des gewählten Werkstoffs, die Bauweiseneigenschaften und eine angepasste Vordimensionierung. Ein gutes Konzept ist letztlich auch der Garant für eine innovative Problemlösung. Der Konzeptentwicklung sollte daher große Bedeutung beibemessen werden. - Entwerfen (gestalterische Konkretisierung einer Lösung): maßstäbliche Ausarbeitung der Konzeptskizzen zu Bauvarianten; Bewertung, Vereinfachung und Auswahl einer Variante; Überarbeitung zu einem Gesamtentwurf und - Ausarbeiten (fertigungs- und montagegerechte Festlegung einer Lösung): endgültige Bestimmung der Geometrie, Dimensionen, Werkstoffe und Herstellung, um die notwendigen Fertigungsunterlagen erstellen zu können.

Hieran schließen sich eine oder mehrere Schleifen an, die der Optimierung der Lösung dienen. Dem zuzuordnende Phasen sind: - Prototypen-Herstellung (Kontrolle der Funktionen, Montage etc.), - Testprozeduren (Überprüfung der Tragfähigkeit, Zuverlässigkeit, Lebensdauer).

FEM Die FEM ist eine rechnerorientierte Methode, die softwaretechnisch über einen Vorrat an mechanischen Grundelementen (Balken, Scheibe, Platte, Schale, Volumina), einen Zusammenbauund einen Lösungsalgorithmus verfügt.

S206 Abb.

1.4 Der Solar Butterfly

Ziel: Überblick vermitteln. Funktionalität veranschaulichen, Begriffe Definieren.

Chassis, Hauptkörper, Seitenteil, Küche, Bad, Stützen, Panelen Gross, Panelen Klein

2 Anforderungen und Auslegungskriterien

In diesem Kapitel wird beschrieben, welchen Anforderungen der Solar Butterfly und dessen Komponenten gerecht werden müssen. In einem ersten Schritt werden auf die allgemeinen Anforderungen des Solar Butterflys und anschliessen auf die daraus resultierenden Auslegungskriterien der einzelnen Komponenten eingegangen. Es wird beschrieben, was die Anforderungen konkret für die einzelnen Komponenten bedeuten und wie gewährleistet wird, dass diese erfüllt werden. Im rahmen dieser Arbeit wird lediglich auf diejenigen Anforderungen eingegangen, welche für die strukturelle Auslegung und Festigketisberechnungen relevant sind. Die komplette Liste der Anforderungen an den Solar Butterfly ist in der Arbeit von [HUBER] zu finden.

2.1 Anforderungen an den Solar Butterfly

- Der Solar Butterfly muss den Angreifenden Kräften und herrschenden Lastfällen standhalten. (Vgl. Lastenheft [KAPITEL]) Konkret bedeutet dies, dass die Struktur sich bei den verschiedenen Lastfällen, und Kombinationen davon, nicht plastisch verformen darf und somit eine genügend grosse Sicherheit gegen Fliessen aufweisen muss.
- Weiter darf der Solar Butterfly sich nicht so stark verformen, dass seine Funktionstauglichkeit eingeschränkt wird. Die exakten Anforderungen an die Steifigkeit werden bei der Abhandlnung der einzelnen Komponenten genauer betrachtet und beschrieben.
- Die Struktur des Solar Butterflys soll so ausgelegt werden, dass dieser ca. 300'000 km Fahrt auf zum teil recht holperiger Strasse auf sich nehmen kann. Dies beinhaltet die Auslegung der Komponenten auf Dauerfestigkeit.

2.2 Auslegungskriterien

Nachdem die allgemeinen Kriterien für den Solar Butterfly abgehandeln wurden, wird in diesem Unterkapitel behandelt, was die Anforderungen konkret für die einzelnen Komponenten und Strukturelementen bedeutet. Es wird beschrieben mit welchen Methoden die Auslegung angegangen wird und welche Vereinfachungen getroffen werden.

Design-Allowables Design-Allowables: Materialkennwerte mit welchen die Auslegung gemacht wird.

In diesem Materialkennwerte sind die Sicherheitsfaktoren drinnen und die Absicherung gegen ermüdung.

Die Dauerfestigkeit wird vorallem durch gutes Design erreicht. Lokal müssen beim Nachweis evenutell anpassungen gemacht werden und exaktere Werte zur Hilfe genommen werden.

2.2.1 Aluminiumstrukturen

Zu den Auslegungskriterien der Aluminiumstrukturen gehört das Festigkeitsproblem der plastschen Verformung (Fliessen) und das Stabilitätsproblem der Knickung. Die Aluminiumstrukturen werden so ausgelegt, dass diese eine Sicherheit gegen Fliessen von 1.5 und gegen Knicken eine von 2 aufweisen. Sicherheit gegen Fliessen Um die Sicherheit eines Strukturelementes gegen Fliessen zu gewährleisten, wird überprüft, ob die *Von Mises*-Vergleichsspannung kleiner als die zulässige Spannung ist, wobei sich die zulässige Spannung aus der Dehngrenze des gewählten Materials und dem Sicherheitsfaktor zusammensetzt. Die *Von Mises*-Vergleichsspannung kann gemäss der Formel 1 berechet werden [2].

$$\sigma_{zul} \ge \sigma_v = \sqrt{\sigma_x^2 - \sigma_x \cdot \sigma_y + \sigma_y^2 + 3\tau^2}$$
 (1)

Wobei die Annahmen getroffen werden, dass es sich um einen ebenen Spannungszustand handelt und die angeifenden Lasten dem selben Lastfall angehören.

Knicken Wird durch design verhindert (?)

2.2.2 Sandwichstrukturen

Versagenskriterien der Sandwichstrukturen können in die beiden Kategorien Festigkeitsprobleme und Stabilitätsprobleme eingeteilt werden [3]. Zu den Festigkeitsproblemen gehören;

- Fliessen der Deckschicht,
- Schubbruch der Kernschicht,
- Delamination und
- Ermüdung.

Zu den Stabilitätsproblemen gehören unteranderem;

- Knickung,
- Schubbeulung der Kernschicht (Shear Crimping) und
- Kurzwelliges Beulen der Deckschicht (Wrinkling).

Die auszulegenden Sandwichstrukturen werden gegenüber diesen Festigkeits und Stabilitätsproblemen abesichert. Um den Rechenaufwand und die Komplexität zu verringern werden Annahmen und Vereinfachungen getroffen. Für die Auslegung von Sandwichstrukturen können folgende Annahmen getroffen werden [3][4];

- linear elastische und isentrope Materialverhalten,
- Eigenbiegesteifigkeiten der Deckschichten sind vernachlässigbar,
- Dehnsteifigkeit der Kernschicht ist vernachlässigbar und
- die Kernschicht lässt sich nicht zusammendrücken.

Aus den getroffenen Annahmen reulstiert ein vereinfachter Spannungszustand welcher besagt, dass die Deckschichten jeweils die Normalkräfte und die Kernschichten die Schubkräfte aufnehmen. (Sandwichmembrantheorie)

Festigkeitsprobleme Aus den getroffenen Annahmen und Vereinfachungen lassen sich die Formeln 2 und 3 herleiten. Mit der Formel 2 lassen sich die Spannungen in den Deckschichten berechnen. Die Dicke der Deckschicht wird so gewählt, dass die zulässige Spannung höher liegt als jene, welche in der Deckschicht herrscht.

$$\sigma_{zul} \ge \sigma_d = \frac{1}{t_d} \cdot \left(\frac{n}{2} \pm \frac{m}{h}\right)$$
 (2)

Mit der Formel 3 lassen sich die Schubspannungen in der Kernschicht berechnen und somit Aussagen über ihre Resistenz gegenüber dem Schubbruch machen. Die Dicke der Kernschicht wird so ausgelegt, dass die in der Kernschicht herrscheden Spannungen tiefer liegen als die zulässigen.

$$\tau_{k,zul} \ge \tau_k = \frac{q}{t_k} \tag{3}$$

Die Delamination der Deckschichten wird abgesichert, indem die Auswahl des Klebers, oder im Falle einer Laminierung die Matrix, so getroffen wird, dass dieser eine höhere Schubfestigkeit aufweist als das Material der jeweiligen Kernschicht.

Stabilitätsprobleme Die Stabilitätsprobleme der Sandwichstrukturen lassen sich in globale und lokale Instabilitäten einteilen. Zur globalen Instabilität gehört das Knicken, welches sich aus der Eueler-Knickung des schubsteifen Balkens und dem Schubknicken zusammensetzt. Die kritische Belastung, bei welcher es zur Euler-Knickung kommt, lässt sich gemäss Klein [4] mit der Formel 4 berechnen.

$$F_{kB} = \frac{\pi^2 \cdot E_d \cdot I_y}{l_k^2} \tag{4}$$

Wobei sich die Biegesteifigkeit I_y vereinfacht gemäss der Formel 5 berechnen lässt. Hier wurde die Annahme getroffen, dass die Eigenbiegesteifigkeiten der Deckschichten vernachlässigbar sind. Diese Annahme kann gemäss Klein [4] ab einem Verhältnis von t_d zu t_k von 0.25, getroffen werden.

$$I_y = 2 \cdot b \cdot t_d \cdot \left(\frac{t_k}{2} + t_d\right)^2 \tag{5}$$

Die kritische Schubknicklast lässt sich gemäss Klein [4] mit der Formel 6 berechnen.

$$F_{kS} = b \cdot t_k \cdot G_k \tag{6}$$

Die totale kritische Knicklast F_k ergibt sich dann aus der Formel 7:

$$F_{k,vorh.} \le F_k = \frac{1}{\frac{1}{F_{kB}} + \frac{1}{F_{kS}}}$$
 (7)

Zu den lokalen Instabilitäten zählen das Schubbeulen und das Knittern der Deckschicht. Die kritischen Spannunge, bei welcher Schubbeulung auftritt, lässt sich aus den Formel 8 berechnen. [3]

$$\sigma_k = G_k \cdot \frac{h}{2 \cdot t_d} \tag{8}$$

Die kritischen Spannunge, bei welcher das Knittern der Deckschicht auftritt, lässt sich mit der Formel 9 berechnen. [3]

$$\sigma_k = k_s \sqrt[3]{E_d \cdot E_k \cdot G_k} \tag{9}$$

Wobei für Auslegungen $k_s = 0.5$ gilt.

Bezeichnung		Einheit		Sicherh. Fakt.	Zul. Festigkeit
Deckschicht					
	Dichte	$\frac{kg}{m^3}$	2710		
Aluminium	E-Modul	MPa	70'000		
Alullillillilli	Zugfestigkeit	MPa	150	1.5	$\sigma_{zul} = 100$
	Dauerfestigkeit	MPa	100	1.5	$\sigma_{D,zul} = 75$
	Dichte	$\frac{kg}{m^3}$	2000		
GFK	E-Modul	MPa	16'000		
GrK	Zugfestigkeit	MPa	250	1.5	$\sigma_{zul} = 66$
	Dauerfestigkeit	MPa	50	1.5	$\sigma_{D,zul} = 33$
Kern					
	Dichte	$\frac{kg}{m^3}$	65		
Airex T92.60	E-Modul (Druck)	MPa	55		
Allex 192.00	Schubmodul	MPa	15		
	Schubfestigkeit	MPa	0.55	1.5	$\tau_{zul} = 0.5$
	Dichte	$\frac{kg}{m^3}$	85		
Airex T92.80	E-Modul (Druck)	MPa	75		
Allex 192.80	Schubmodul	MPa	22		
	Schubfestigkeit	MPa	0.72	1.5	$\tau_{zul} = 0.6$

Tabelle 1: Design-Allowables Sandwichplatten

Design-Allowables und Materialkennwerte

2.2.3 Nieten

Laut Klein [4] gehört zum Tragfähigkeitsnachweis für gewöhnlich ein Abscher- und Lochleibungsnachweis. Insofern sei für Nietverbindungen ein Nachweis auf Scherbruch (Formel 10) und Lochleibung (Formel 11) zu erbringen:

$$F \le F_{SB} = \frac{d_N^2 \cdot \pi}{4} \cdot \tau_B \tag{10}$$

$$F \le F_{LF} = d_N \cdot t \cdot \sigma_{FL} \tag{11}$$

Wobei d_N der Nietlochdurchmesser, τ_B die Scherfestigkeit, t die Blechdicke und σ_{FL} die Lochleibungs-Dehngrenze ist. Für dynamische Wechselfestigkeitswerte sei die Scherfestigkeit τ_B noch um den Faktor 2 bis 2.2 zu verringern.

Überlagerte Scher- und Zugbeanspruchung In der Praxis werden Nietverbindungen aus einer Kombination von Scher- und Zugbeanspruchung beansprucht. Der Nachweis der Tragfähigkeit der überlagerten Belastung wird durch die Ausweisung des Reservefaktors R_f bewerkstelligt. Dazu werden gemäss den Formeln 12 und 13 der Schubreservefaktor R_s und der Zugreservefaktor R_z berechnet

$$F \le F_{SB} = \frac{d_N^2 \cdot \pi}{4} \cdot \tau_B \tag{12}$$

$$R_z = \frac{F_z}{k \cdot F_{ZB}}$$

2.2.4 Klebeverbindungen

$$\tau_K = \frac{F}{b \cdot l_{\ddot{u}}} \le \frac{\tau_{KB}}{S} \tag{14}$$

wechselnd:
$$\tau_{KW} \approx (0.2...0.4) \cdot \tau_{KB}$$

schwellend: $\tau_{KSch} \approx 0.8 \cdot \tau_{KB}$ (15)

Design-Allowables und Materialkennwerte

 $Tabelle\ 2:\ Design\text{-}Allowables\ Kleber$

Bezeichnung		Einheit		Sicherh. Fakt.	Zul. Festigkeit
	E-Modul	MPa	1700		
Delo-Duopox [®] AD840	Zugscherfestigkeit	MPa	5	3	$\sigma_{zul} = 1.6$
	Druckscherfestigkeit	MPa	26	3	$\sigma_{zul} = 8.6$
Sikaflex®-552 AT	Zugscherfestigkeit	MPa	2	3	$\sigma_{zul} = 0.6$

Seite 9 3 Lastenheft

3 Lastenheft

In diesem Kapitel wird auf das Lastenheft eingegangen. Es wird beschrieben wie die Lastfälle bestimmt und definiert wurden.

Damit die Erklärung des Lastenheftes und der gesammte folgende Auslegungsprozess an sich verständlicher wird, werden zuerst die verwendeten Begriffe definiert.

Als *Modus* wird ein "Zustand" oder eine "Position" des Solar Butterflys verstanden. Modus *A* beschreibt zum Beispiel den Solar Butterfly im "Fahr-Modus". In diesem Fall würde dies bedeuten, dass alle Panelen, Stützen und Seitenmodule eingefahren sind. Es wird für jeden der vier definierten Modi ein FEM-Modell erstellt.

Als Lastfall wird eine Situation (z.B. Fahrt auf einer um 10° geneigten Strasse) oder eine Last (z.B. Personenlast) verstanden, welche in einem spezifischen Modus auftreten kann. Der Lastfall 1.1 im Modus A beschreibt zum Beispiel die vertikale Beschleunigung von 1.25 g welche durch das Überfahren einer Bresmmschwelle auftreten kann. Der Lastfall 1.1 im Modus C beschreibt eine Personenlast. Ein Lastfall ist vollständig definiert, wenn klar ist, wie dieser im jeweiligen FEM-Modell des betreffenden Modus, einzugliedern ist.

Der Lastfall 1.1 im Modus A ist nicht notwendigerweise der Selbe, wie der Lastfall 1.1 im Modus B oder C! Die klare Zuweisung der Lastfälle zu einem spezifischen Modus wurde vorgenommen, um die Anzahl der Lastfälle in den verschiedenen Modi gering zu halten und die daraus resultierenden Lastkombinationen pro Modus übersichtlicher zu gestalten. Dies führt mit sich, dass gewisse Lastfälle in mehreren Modi vorkommen und dass dadurch einige Lastfälle doppelt aufgeführt werden. So wird zum Beispiel der Lastfall Neigung Stehend im Modus B und C aufgeführt, da die Situation des geneigten Bodens im parkierten Zustand in beiden Modi auftreten kann. Alle Lastfälle welche in diesen Modi nicht auftreten, können jedoch weggelassen werden, wodurch - wie bereits erwähnt - das Lastenheft übersichtlicher gestaltet werden kann.

Zur Beschreibung eines Lastfalles gehört eine Bewertung des dazugehörenden Risikos. Ein Risiko setzt sich zusammen aus der Ungenauigkeit der Voraussage der Belastung und einer Abschätzung der "ernsthaftigkeit" der potentiellen Auswirkungen. Eine Ungenauigkeit von 0.5 bedeutet, dass von einer potentiellen Abweichung der Belastung von $\pm 50\%$ ausgegangen wird. Für die Werte der Auswirkungen wird kein klarer Massstab definiert. Sie nehmen einen Wert zwischen 0 und 100 an und beurteilen die Auswirkungen beim "Eintreten" der Ungenauigkeit. Das Produkt aus der Ungenauigkeit und der Auswirkung ergibt den Wert des Risikos. Ein hoher Risiko-Wert bedeutet nicht, dass die betrefende Last ein grosses Risiko für den Solar Butterfly darstellt, sondern, dass die Abschätzung der Last unsicher ist. Das soeben erkläuterte Risiko ist also ein Mass für die Gefahr, sowie auch für das Potentail, welches in der Abschätzung der Last steckt. Ein Risiko-Wert von 0 bedeutet ausgeschrieben, dass die Last mit grosser Sicherheit so auftreten wird, wie diese im Lastenheft beschrieben ist. Ein hoher Risiko-Wert bedeutet wiederum, dass man sich nicht sicher ist, ob die Last wie beschrieben auftreten wird. Die Last kann zu tief (daher die Gefahr), oder aber auch zu hoch (daher das Potential) gewählt worden sein. Lasten mit hohen Risiko-Werten sollen bei einer Überarbeitung des Lastenheftes erhöhte Beachtung geschenkt werden. Als Lastkombination wird eine Kombination von verschiedenen Lastfällen verstanden. Eine Lastkombination bezieht sich jeweils auf einen Modus. Die Lastkombination A.3.1.2 setzt sich zusammen aus dem Modus A und den Lastfällen 1.3 Longitudinale Beschleunigung - Negativ, 2.1 Wind von links und 3.2 Neigung längs negativ aus dem Modus A.

Ein Blick in das Lastenheft im Anhang [ANHANG] wird das soeben beschriebene verständlicher machen.

3 Lastenheft Seite 10

Folgend werden die drei Modi mit den dazugehörigen Lastfällen vorgestellt. Es wird jeweils beschrieben, wie die Lasten zustande kommen und wie diese in den FEM-Modellen eingegliedert werden.

3.1 Modus A: Fahren

Der Modus A beschreibt den Solar Butterfly im "Fahr-Modus" und ist in der Abbildung 1 dargestellt. Konkret bedeutet dieser Modus, dass alle Panelen und Seitenmodule eingefahren und über die Verschlüsse fest mit dem Rest des Aufbaus verbunden sind. Ebenfalls sind die alle Stützen eingefahren. Im Fahr-Modus befinden sich keine Personen im Solar Butterfly und das Mobiliar ist an den dafür vorgesehenen Stellen verstaut. Weiter herrscht in allen Lastkombinationen die Erdbeschleunigung von 1 g. Der Lastfall von 1 g wird nicht spezifisch aufgeführt.

Abbildung 1: Modus A

Beschleunigungen durch Fahren

1.1 Vertikale Beschleunigung

Zusätzlich zur vertikalen Beschleunigung durch die Erdanziehung, entstehen durch das Überfahren von Schlaglöcher und Bremsschwellen vertikale Beschleunigungen.

In einem ersten Ansatz die Beschleunigung beim Überfahren einer Bresmmschwelle zu bestimmen, wurde der Solar Butterfly als ein *Ein-Massen-Schwinger*-System modelliert und die Beschleunigung beim Überfahren einer Sinusförmigen Bremsschwelle numerisch ermittelt.

Die Position des Rades während dem Überfahren der Bremsschwelle ist gegeben durch folgenden Zusammenhang:

$$x_r^n = h \cdot \sin\left(\pi \cdot \frac{n\Delta t \cdot v}{l}\right) \tag{16}$$

l steht dabei für die Länge, und h für die Höhe der Bremsschwelle.

Um die Beschleunigung des Solar Butterflys zu berechnen, wird in einem ersten Schritt dessen Position zum Zeitpunk n x_{SB}^n aus der vorangehenden Situation berechnet.

$$x_{SB}^{n} = x_{SB}^{(n-1)} + v^{(n-1)} \cdot \Delta t \tag{17}$$

Als nächstes wird der Federweg s^n , sowie die Änderungsrate des Federwegs v^n_s zum Zeitpunkt n aus den Positionen des Rades r^n_x und des Solar Butterflys x^n_{SB} berechnet.

$$s^n = x_r^n - x_{SB}^n \tag{18}$$

Seite 11 3 Lastenheft

$$v_s^n = \frac{s^n - s^{(n-1)}}{\Delta t} \tag{19}$$

Die Beschleunigung des Solar Butterfly ergibt sich dann zu:

$$a_{SB}^n = \frac{k \cdot s^n + d \cdot v_s^n}{m} \tag{20}$$

Wobei k für die Federkonstante und d für die Dämpfungskonstante stehen. Die aus der Beschleunigung des Solar Butterfly resultierende neue Geschwindigkeit, kann wie folgt berechnet werden.

$$v^n = v^{(n-1)} + a_{SB}^n \cdot \Delta t \tag{21}$$

Das Ein-Massen-Schwinger-Modell wurde mit einer Masse von 2200 kg, einer mittleren Federkonstante, gegeben aus den Datenblättern des Herstellers [ANHANG], von 353'000 N/m und einer Dämpfungskonstante von 3500 Ns/m modelliert. Beim Überfahren einer Bremsschwelle von 0.9 m Länge und 0.1 m Höhe mit einer Geschwindigkeit von 40 km/h resultiert eine maximale Beschleunigung von rund 1.6 g. Die Berechnung ist im elektronischen Anhang [Elektronischen Anhang] einsehbar.

Zu der Berechnung muss gesagt werden, dass davon ausgegangen werden kann, dass die erhaltene Beschleunigung zu hoch liegt. So wurde zum Beispiel die Federung durch die Reifen nicht berücksichtigt. Weiter befindet sich der Massenschwerpunkt nicht in der Federachse, was eine weitere Abminderung der Beschleunigung zur folge hat.

Um die zu wählende Beschleunigung breiter abstützen zu können, wurden andere Arbeiten zum Thema herbeigezogen. *Janczur* [5] zeigt, dass beim Überfahrein einer Bremsschwelle von 0.36 m Länge und einer Höhe von 0.05 m, mit einer Geschwindigkeit von 40 km/h, in der Fahrzeugmitte eines Personenwagens, Beschleunigungen von 0.71 g herrschen. Direkt über der Fahrzeugachse treten Beschleunigungen von bis zu 1.5 g auf.

García-Pozuelo et al. [6] massen in der Fahrzeugmitte eines Personenwagens Beschleunigungen von 0.73 g beim Überfahrein einer Bremsschwelle von 0.9 m Länge und 0.1 m Höhe. Dies bei einer Geschwindigkeit von 50 km/h.

Haniszewski et al. [7] massen Beschleunigungen, welche eine Person auf der Rückfahrbank eines Personenwagens während dem Überfahren einer Bremsschwelle erfährt. Sie massen Beschleunigungen von bis zu 1 g. Direkt über der Fahrzeugachse wurden Beschleunigungen von 1.3 g gemessen. Dies bei einer Geschwindigkeit von 30 km/h und einer Bremsschwelle von 0.5 m Länge und 0.05 m Höhe.

Pidl [8] zeigt, dass Transportware in einem Sattelschlepper Beschleunigungen von \pm 1 g erfahren. Ob diese maximal gemessene Beschleunigung beim Überfahren einer Bremsschwelle erreicht wurde, ist nicht ersichtlich.

Da der Achsenabstand des Solar Butterflys, im vergleich zu den Personenwagen aus der Literatur, relativ klein ist, werden die in der Fahrzeugmitte gemessenen Beschleunigungen der Personenwagen nicht als räpresentative Näherungswerte für die Beschleunigung des Solar Butterflys verwendet. Es wird davon ausgegangen, dass die Beschleunigungen, welcher ein Personenwagen dirket über der Achse beim Überfahren einer Bremsschwelle erfäht, vergleichbar mit jenen sind, welche der Solar Butterfly erfahren wird. Diese Annahme wird getroffen, da die Achsen des Solar Butterflys nahe beisammen liegen und eher den letzteren Fall beschreiben.

3 Lastenheft Seite 12

Aufgrund den getroffenen Annahemn wird die Beschleunigung von 1.5 g als erste Abschätzung festgelegt. Hinsichtlich den grossen Unsicherheit der Annahmen wird die *Ungenauigkeit* auf 0.4 geschätzt. Die *Auswirkung* werden dabei mit einem Wert von 50 festgelegt was einen hohen Risikowert von 20 ergibt.

1.2 Longitudinale Beschleunigung - Positiv (Erhöhen der Geschwindigkeit)

Longitudinale positive Beschleunigungen in Fahrtrichtung entstehen durch eine Erhöhung der Fahrgeschwindigkeit durch das Zugfahrzeug. Das *Institut für Unfallanalysen Hamburg* [9] benützt die Beschleunigung von Personenwagen von maximal 0.3 g und von Lastkraftwagen von 0.1 g, als Anhaltswerte.

Für das Lastenheft wird die Beschleunigung von 0.2 g gewählt. Sie wird höher als der Anhaltswert des Institut für Unfallanalysen Hamburg für Lastkraftwagen von 0.1 g gewählt, da das geplante Zugfahrzeug ein elektrisches ist, und dadurch höhere mögliche Beschleunigungen erwartet werden können. Die *Ungenauigkeit* wird mit 0.2 als gering eingestuft. Ebenfalls wird die *Auswirkung* von 20 als niedrig bewertet.

1.3 Longitudinale Beschleunigung - Negativ (Bremsen)

Longitudinale Verögerungen entstehen durch abminderung der Fahrgeschwindigkeit. Die extremste graduelle Verzögerung entsteht dabei durch eine Notbremsung.

Kudarauskas [10] zeigt bei seiner Analyse der Notbremsungen von Personenwagen, dass die maximalen Verzögerungn bei rund 0.9 g liegen. Das Institut für Unfallanalysen Hamburg [11] zeiht bei Gutachten die Vollverzögerung von 0.8 g für Personenwagen und 0.7 g für Lastkraftwagen als Standardwerte herbei.

Für die longitudinale Beschleunigung durch Bremsungen wird sich am Institut für Unfallanalysen Hamburg orientiert und ein Wert von 0.7 g gewählt. Dies, da davon ausgegangen
wird, dass die maximalen Verzögerungen von *Kudarauskas* von 0.9 g mit dem Solar Butterfly nicht erreicht werden können. Weiter wird angenommen, dass das Verhalten eines
Lastkraftwagens während einer Vollverzögerung die Situation des Solar Butterflys ähnlicher beschreibt als jenes des Personenwagens. Die longitudinale Beschleunigung wird mit
einer *Ungenauigkeit* von 0.2 und einer *Auswirkung* von 30 bewertet.

1.4 Laterale Beschleunigung

Laterale Beschleunigungen entstehen vorallem beim Kurvenfahren und sind abhängig von der Geschwindigkeit mit welcher die Kurve durchfahren wird und des Kurvenradius. Hugemann et al. [12] massen in einem Personenwagen auf einer Landstrasse laterale Beschleunigungen von 0.6 g. Xu et al. [13] zeigten, dass die Mehrheit der gemessenen Beschleunigung in einem Personenwagen durch Kurvenfahrten in bergigem Gebiet über 0.5 g und maximale über 0.8 g liegen.

Da davon ausgegangen wird, dass mit dem Solar Butterfly die Kurven vorsichtiger, und somit tendenziell langsamer durchfahren werden als mit einem Personenwagen, wird die laterale Beschleunigung von 0.8 g als ein passenden Anhaltswert erachtet. Es wird erwatet, dass die nach Xu et al. höher als 0.8 g liegende Beschleunigungen nicht erreicht werden. Die Ungenauigkeit wird mit 0.1 als gering bewertet. Die Auswirkung wird auf 70 geschätzt.

1.5 Rotatorische Beschleunigung

Rotatorische Beschleunigungen können durch eine in querrichtung unebene Strassen verursacht werden. Beim Überfahren einer solchen Strasse neigt sich der Solar Butterfly abwechslungsweise nach links und rechts, wodurch rotatorische Beschleunigungen auftreten. Seite 13 3 Lastenheft

Um diese Beschleunigungen abschätzen zu können wird die folgende Berechnung durchgeführt:

Die folgende Gleichung beschreibt den Neigungswinkel φ des Solar Butterflys in abhängigkeit der Zeit t:

$$\varphi(t) = \Delta \varphi \cdot \sin(\omega t) \tag{22}$$

wobei $\Delta \varphi$ für die maximale Neigung steht und ω sich wie folgt berechnen lässt:

$$\omega = \frac{2 \cdot \pi}{T} \tag{23}$$

Wobei T für die Dauer einer Schwingung (Neigung von rechts nach links und wieder zurück) steht.

Die Winkelbeschleunigung α ergibt sich aus der zweiten Ableitung von $\varphi(t)$ und lässt sich wie folgt berechnen:

$$\alpha(t) = \ddot{\varphi}(t) = -\Delta\varphi \,\omega^2 \cdot \sin(\omega t) \tag{24}$$

Eine maximalen Neigung $\Delta \varphi$ von 10° und einer Schwingdauer von einer Sekunde ergibt eine maximale Winkelbeschleunigung von 6.9 $\frac{rad}{s^2}$, was auf dem Dach des Solar Butterflys (2.3 m entfernung zur Drehachse) eine Beschleunigung von ca. 1.6 g entspricht.

Da die realen Bedingungen einer solchen Situation nur schwer abgeschätzt werden können wird die *Ungenauigkeit* mit 0.3 hoch angesetzt. Ebenfalls können die Auswirkungen einer solchen Beschleunigung nur schwer beurteilt werden, weshalb die *Auswirkung* auf 60 gesetzt wird.

Windlasten

Sesar et. al [14] zeigen, dass laterale Windgeschwindigkeiten von 108 $\frac{km}{h}$ für Fahrzeuge auf trockener Strasse kritische seien.

Die Blog-Seite rvblogger.com [15] empfiehlt bei Windgeschwindigkeiten von mehr als 80 $\frac{km}{h}$ mit einem Wohnwagen nicht mehr zu Fahren. Windgeschwindigkeiten von 95 $\frac{km}{h}$ seien laut rvblogger.com genug, um Wohnmobile umzustossen.

Bei Windgeschwindigkeiten von mehr als 155 km/h können laut Beasley [16] Lastwagen mit hohem Profil, Anhänger und Busse umkippen. Die berichteten minimale Überschlagswindgeschwindigkeiten sind 105 $\frac{km}{h}$ für ein 9 Meter langen Wohnwagen und 160 $\frac{km}{h}$ für ein 5 Meter langes Wohnmobil (Klasse B).

Für eine erste Abschätzung der zugelassenen Windgeschwindigkeit bei der Fahrt des Solar Butterfly wird sich an der Blog-Seite rvblogger.com orientiert und die Geschwindigkeit von 80 $\frac{km}{h}$ als Limitte festgelegt. Für die Berechnung der durch den Wind entstehenden Belastung, wird der Solar Butterfly vereinfacht als noraml angeströmtes Rechteck betrachtet. Für die Berechnung des Winddruckes wird die erhöhte Geschwindigkeit von 102.2 $\frac{km}{h}$ (Beaufort 10) verwendet um Böhen und eventuelle Ungenauigkeiten in der Messung oder Abschätzung der Windgeschwindigkeiten abzudecken. Der Winddruck wird gemäss Formel 25 berechnet.

$$P_W = c_p \, \frac{\rho}{2} \, v^2 \tag{25}$$

Wobei für die Dichte von Luft ρ ein Wert von $1.2 \frac{kg}{m^3}$ und für den Strömungswiderstandskoeffizient eines Rechteckes $c_{p,Rechteck}$ ein Wert von 1.1 gewählt wird. Bei einer Windgeschwindigkeit von $102.2 \frac{km}{h}$ ergibt sich gemässt der Gleichung 25 ein Winddruck von $532 \frac{N}{m^2}$.

3 Lastenheft Seite 14

Da es sich hierbei um eine grobe Idealsierung handelt und zum Beispiel lokale Geschwindigkeitserhöhungen oder Turbulenzen vernachlässigt werden, wird die *Ungenauigkeit* auf 0.4 gesetzt. Die *Auswirkung* wird jedoch eher tief, mit dem Wert 10 bewertet.

2.1 Wind von links

Der Winddruck von $532\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen, linke Seite des Solar Butterfly.

2.2 Wind von rechts

Der Winddruck von $532\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen, rechte Seite des Solar Butterfly.

Neigung

Mittels einer Absprache mit *Palmer* wurde eine zulässige Strassenneigung für den Solar Butterfly von 10° (17.5%) definiert. Die Strasse auf den Furkapass hat zum Vergleich eine maximale Neigung von 6.3° (11%). Die verschiedenen Lastfälle der Neigung treten nicht gleichzeigtig ein. Implementiert werden die Fälle im FEM indem die Richtung, in welcher die Erdbeschleunigung wirkt, verändert wird. Die *Ungenauigkeit* und die *Auswirkung* werden tief mit den Werten 0.1 und 10 bewertet.

- 3.1 Neigung längs positiv +10° Neigung des Untergrundes in Fahrtrichtung.
- 3.2 Neigung längs negativ -10° Neigung des Untergrundes in Fahrtrichtung.
- **3.3 Neigung quer positiv** $+10^{\circ}$ Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig befindet sich in Fahrtrichtung rechts.
- **3.4 Neigung quer negativ** -10° Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig befindet sich in Fahrtrichtung links.

3.2 Modus B: Ausfahren

Die Modi B1, B2 und B3 beschreiben den Solar Butterfly während dem Ausfahrvorgang der Seitenmodule. Im Modus B1 sind die Stützen am Chassis unten, alle Seitenmodule und Panelen sind Eingefahren. Dieser Modus stellt den Solar Butterfly im "Parkierten" Zustand dar. Bei extremen Umwelteinflüssen wie Schneefall oder starkem Wind, stellt der Modus B1 den geschütztesten Zustand dar und muss somit diesen extremen Umwelteinflüssen stand halten können. Im Modus B2 ist, zusätzlich zu den Stützen am Chassis, das grosse Seitenmodul (In der Abbildung 2b orange dargestellt) ausgefahren. Standardmässig werden beide Seitenmodule zur selben Zeit ausgefahren. Sollte dies aufgrund von technischen Problemen nicht möglich sein und die Seitenmodule müssen "von Hand" einzeln ein- oder ausgefahren werden, wird der Modus B2 eingenommen. Im Modus B3 sind beide Seitenmodule ausgefahren. Auch in diesen drei Modi herrscht die Erdbeschleunigung von 1 g, welche wiederum nicht als Lastfall aufgeführt wird. Während dem Ausfahrvorgang befinden sich keine Personen im Fahrzeug und das Mobiliar befindet sich an der dafür vorgesehenen stellen, wie dies im Modus A zuvor bereits der fall war.

Windlasten

Windlast von Panelen übernommen

1.1 Wind extrem links

Seite 15 3 Lastenheft

Abbildung 2: Modi beim Ausfahren

1.2 Wind extrem rechts

Winddruck bei 120 km/h (Orkan, Beaufort 12)? Eher unsicher, kann viel höher liegen. daher nur erste annahme Ungenauigkeit 0.4, Auswirkungen 40

1.3 Wind von links

Der Winddruck von $486\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen, linke Seite des Solar Butterfly.

1.4 Wind von rechts

Der Winddruck von $486\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen, rechte Seite des Solar Butterfly. Winddruck bei 120 km/h (Orkan, Beaufort 10)? Eher unsicher, kann viel höher liegen. daher nur erste annahme Ungenauigkeit 0.4, Auswirkungen 20

Neigung

Mit Palmer wurde abgesprochen, dass der Boden, auf welchem der Solar Butterfly parkiert wird, die Neigung von 5° (8.8%) nicht überschreiten darf. Die Implementierung dieser Fälle wird analog zu den Neigungsfällen 3.1 bis 3.4 im Modus A durchgeführt. Das Risiko wird ebenfalls analog zu den Neigungsfällen im Modus A bewertet.

- 2.1 Neigung längs positiv +5° Neigung des Untergrundes in Fahrtrichtung.
- 2.2 Neigung längs negativ -5° Neigung des Untergrundes in Fahrtrichtung.
- **2.3 Neigung quer positiv** $+5^{\circ}$ Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig befindet sich in Fahrtrichtung rechts.
- **2.4 Neigung quer negativ** -5° Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig befindet sich in Fahrtrichtung links.

3.3 Modus C: Ausgefahren

Der Modus C beschreibt den Solar Buttefly im ausgefahren Zustand. Alle Panelen, Stützen und Seitenmodule sind ausgefahren. Personen und das Mobiliar können frei im Solar Butterfly verteilt sein.

3 Lastenheft Seite 16

Abbildung 3: Modus C

Personenlast

Als *Personenlast* werden Lasten verstanden, welche durch Personen, welche sich im inneren des Solar Butteflys befinden, verursacht werden. Aus der Anforderungsliste ist zu entnehmen, dass sich bis zu sechs Personen im Solar Butterfly befinden können sollen. Im Kopf, sowie im Heck des Solar Butterfly, hat es jedoch platzbedingt nur Raum für maximal drei Personen. Das durchschnittliche Gewicht einer Person wird auf 80 kg geschätzt. Die Lastfälle 1.1 bis 1.6 werden als Vektorlasten, die Fälle 1.7 und 1.8 als Flächenlasten im FEM-Modell eingeleitet.

Abbildung 4: Visualisierung der Personenlasten

1.1 Personenlast vorne links

6 Personen à 80 kg befinden sich in der vorderen linken Ecke des linken Seitenteils.

1.2 Personenlast vorne rechts

6 Personen à 80 kg befinden sich in der vorderen rechten Ecke des rechten Seitenteils.

1.3 Personenlast mitte links

6 Personen à 80 kg befinden sich in der Mitte der äusseren Kante des linken Seitenteils.

1.4 Personenlast mitte rechts

6 Personen à 80 kg befinden sich in der Mitte der äusseren Kante des rechten Seitenteils.

1.5 Personenlast hinten links

6 Personen à 80 kg befinden sich in der hinteren linken Ecke des linken Seitenteils.

Seite 17 3 Lastenheft

1.6 Personenlast hinten rechts

6 Personen à 80 kg befinden sich in der hinteren rechten Ecke des rechten Seitenteils.

1.7 Personenlast Kopf

Die aus dem Gewicht von 3 Personen à 80 kg resultierende Kraft wird als Flächenlast auf den Boden im Kopf eingeleitet.

1.8 Personenlast Heck

Die aus dem Gewicht von 3 Personen à 80 kg resultierende Kraft wird als Flächenlast auf den Boden im Heck eingeleitet.

Der Fall, dass Personen in der Mitte eines Seitenteils stehen wird im Lastenheft nicht aufgeführt, da davon ausgegangen wird, dass dieser Fall für die globalen Kraftverläufe kein Extrem darstellt. Dieser Fall wird jedoch spezifisch in der Auslegung der Bodenplatten im Kapitel [KAPITEL] berücksichtigt.

Neigung

Die Lastfälle der Neigung sind analog zum den Lastfällen der Neigung im Modus B.

2.1 Neigung längs positiv

 $+5^{\circ}$ Neigung des Untergrundes in Fahrtrichtung.

2.2 Neigung längs negativ

-5° Neigung des Untergrundes in Fahrtrichtung.

2.3 Neigung quer positiv

 $+5^{\circ}$ Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig befindet sich in Fahrtrichtung rechts.

2.4 Neigung quer negativ

-5° Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig befindet sich in Fahrtrichtung links.

Mobiliar

Die Belastungen durch das Mobiliar werden jeweils als Flächenlast im FEM-Modell eingeleitet. Die *Ungenauigkeit* sowie die *Auswirkungen* der folgenden Lastfälle wird mit den Werten 0.1 und 10 als gering eingeschätzt.

3.1 Mobiliar Hauptmodul

Die Flächenlast, welche sich aus den 50 kg Mobiliar ergibt, wird im Boden des Hauptmoduls eingeleitet.

3.2 Mobiliar Seitenteil links

Die Flächenlast, welche sich aus den 50 kg Mobiliar ergibt, wird im Boden des linken Seitenmoduls eingeleitet.

3.2 Mobiliar Seitenteil rechts

Die Flächenlast, welche sich aus den 50 kg Mobiliar ergibt, wird im Boden des rechten Seitenmoduls eingeleitet.

Windlasten

Panelen werden auf Beaufort 8 ausgelegt:

Ungenauigkeit: 0.2, Auswirkungen: 20: Risiko: 20

Lastenheft Seite 18

4.1 Wind von links

Der Winddruck von $282\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen, linke Seite des Solar Butterfly.

4.2 Wind von rechts

Der Winddruck von $282\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen, rechte Seite des Solar Butterfly.

Panelen Klein

- **5.1**
- 5.2

Panelen Gross

- 6.1
- 6.2

Failuremodes 3.4

Temperatur

Punktlast auf Boden

Tabelle 3: Lastfälle Modus A

IVIC	Modus A. Falliell					
$N_{\rm r.}$	Nr. Bezeichnung	Belastung	Einleitung / Richtung	Uns.	Ausw.	Risiko
Bes	Beschleunigungen					
1.1	1 Vertikale Beschleunigung	$\pm 1.5 \mathrm{~g}$	Beschleunigung in vertikaler Richtung	0.4	20	20
1.2	Longitudinale Beschl Positiv	$0.2~\mathrm{g}$	Beschleunigung in Fahrtrichtung	0.2	20	4
1.3	Longitudinale Beschl Negativ	$0.7 \mathrm{~g}$	Verzögerung in Fahrtrichtung	0.2	30	9
1.4	Laterale Beschleunigung	$\pm 0.8 \mathrm{~g}$	Beschleunigung horizontal und normal zur Fahrtrichtung	0.1	20	7
1.5	Rotatorische Beschleunigung	6.9 $\frac{rad}{s^2}$	Rotatorische Beschleunigung um den Vektor der Fahrtrich-	0.3	09	18
			tung			
Wir	Windlasten					
2.1	2.1 Wind von links	$532 \frac{N}{m^2}$	Der Winddruck von 532 $\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen, linke Seite des Solar Butterfly.	0.4	10	4
2.2	2.2 Wind von rechts	$532 \ \frac{N}{m^2}$	Der Winddruck von 532 $\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen, rechte Seite des Solar Butterfly.	0.4	10	4
Bela	Belastung durch geneigte Strassen	u				
3.1	3.1 Neigung längs positiv	+10°	10° Neigung des Untergrundes in Fahrtrichtung. Anstieg befindet sich vor dem Fahrzeug.	0.1	10	
3.2	Neigung längs negativ	-10°	-10° Neigung des Untergrundes in Fahrtrichtung. Anstieg befindet sich hinter dem Fahrzeug.	0.1	10	\vdash
3.3	Neigung quer positiv	$+10^{\circ}$	10° Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig befindet sich in Fahrtrichtung rechts.	0.1	10	\vdash
3.4	Neigung quer negativ	-10°	-10° Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig befindet sich in Fahrtrichtung links.	0.1	10	П

Tabelle 4: Lastfälle Modus B

			Tabelle 4: Lastfälle Modus B			
Mc	Modus B: Ausfahren	n				
Nr.	Nr. Bezeichnung	Belastung	Einleitung / Richtung	Uns.	Ausw.	Risiko
Wir	Windlasten					
1:1	1.1 Wind extrem links	$898 \frac{N}{m^2}$	Der Winddruck von 898 $\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen,	0.4	20	∞
			linke Seite des Solar Butterfly.			
1.2	Wind extrem rechts	$898 \frac{N}{m^2}$	Der Winddruck von 898 $\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen,	0.4	20	∞
			rechte Seite des Solar Butterfly.			
1.3	Wind von links	$532rac{N}{m^2}$	Der Winddruck von 532 $\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen,	0.4	10	4
		2	linke Seite des Solar Butterfly.			
1.4	1.4 Wind von rechts	$532rac{N}{m^2}$	Der Winddruck von 532 $\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen,	0.4	10	4
			rechte Seite des Solar Butterfly.			
Bela	Belastung durch geneigten Boden	n Boden				
2.1	2.1 Neigung längs positiv	÷2÷	5° Neigung des Untergrundes in Fahrtrichtung. Anstieg befindet sich	0.1	10	1
			vor dem Fahrzeug.			
2.2	Neigung längs negativ	-5°	-5° Neigung des Untergrundes in Fahrtrichtung. Anstieg befindet sich	0.1	10	П
			hinter dem Fahrzeug.			
2.3	Neigung quer positiv	+2°	5° Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig be-	0.1	10	1
			findet sich in Fahrtrichtung rechts.			
2.4	Neigung quer negativ	-2°	-5° Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig be-	0.1	10	
			findet sich in Fahrtrichtung links.			

Tabelle 5: Lastfälle Modus C

Me	Modus C: Stehend		•			
Nr.	Nr. Bezeichnung	Belastung	Einleitung / Richtung	Uns.	Ausw.	Risiko
Bel	Belastung durch Personen					
1.1	Personenlast vorne Li	6*80 kg	Vordere linke Ecke des linken Seitenteils	0.2	20	4
1.2	Personenlast vorne Re	6*80 kg	Vordere rechte Ecke des rechten Seitenteils	0.2	20	4
1.3	Personenlast mitte Li	6*80 kg	In der Mitte der Äussere Kante des linken Seitenteils	0.2	20	4
1.4	Personenlast mitte Re	6*80 kg	In der Mitte der Äussere Kante des rechten Seitenteils	0.2	20	4
1.5	Personenlast hinten Li	6*80 kg	Hintere linke Ecke des linken Seitenteils	0.2	20	4
1.6	Personenlast hinten Re	6*80 kg	Hintere rechte Ecke des rechten Seitenteils	0.2	20	4
1.7	Personenlast Küche	3*80 kg	Steckenlast auf vorderste Kante	0.1	20	2
1.8	Personenlast Bad	3*80 kg	Streckenlast auf hinterste Kante	0.1	20	2
Bel	Belastung durch unebener Boden	oden				
2.1	Neigung längs positiv	°2+	5° Neigung des Untergrundes in Fahrtrichtung. Anstieg befindet sich vor dem Fahrzeug.	0.1	10	1
2.2	Neigung längs negativ	$^{\circ}_{-}$	-5° Neigung des Untergrundes in Fahrtrichtung. Anstieg befindet sich hinter dem Fahrzeug.	0.1	10	П
2.3	Neigung quer positiv	+	5° Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig befindet sich in Fahrtrichtung rechts.	0.1	10	П
2.4	Neigung quer negativ	$^{\circ}2$	-5° Neigung des Untergrundes noraml zur Fahrtrichtung. Ansteig befindet sich in Fahrtrichtung links.	0.1	10	П
Bel	Belastung durch Mobiliar					
3.1	Mobiliar Hauptmodul	50 kg	Einleitung als Flächenlast im Hauptmodul	0.1	10	
3.2	Mobiliar Seitenteil links	50 kg	Einleitung als Flächenlast im linken Seitenteil	0.1	10	
3.3	Mobiliar Seitenteil rechts	50 kg	Einleitung als Flächenlast im rechten Seitenteil	0.1	10	1
T A	windiasten					
4.1	Wind von links	$532rac{N}{m^2}$	Der Winddruck von 532 $\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen, linke Seite des Solar Butterfly	0.4	10	4
4.2	4.2 Wind von rechts	$532rac{N}{m^2}$	Der Winddruck von 532 $\frac{N}{m^2}$ wirkt auf die, in Fahrtrichtung gesehen, rechte Seite des Solar Butterfly	0.4	10	4

3 Lastenheft Seite 22

Panelen klein		
5.1 Panelen Last 1 (Beispiel) $F_{oben} = 1000 N$ $F_{unten} = 200 N$	$F_{oben} = 1000 N$ $F_{unten} = 200 N$	Externe Kraft
5.2		Externe Kraft
5.3		Externe Kraft
Panelen gross		
6.1 Panelen Last 1 (Beispiel) $F_{oben} = 1000 N$ $F_{unten} = 200 N$	$F_{oben} = 1000 N$ $F_{unten} = 200 N$	Externe Kraft
6.2		Externe Kraft
0.0		Externe Maru

4 Analyse der Struktur

In diesem Kapitel werden verschiedene dimensionierende Lastfälle vereinfacht berechnet.

4.1 Allgemeines

Allgemeine Idealisierung SB = Vollidealisiertes Profil -> Rechteck

Chassis wird als zwei Längsträger idealisiert, für das Dach werden Profile angenommen. Masse des Profiles angeben inkl. Querschnittsfläche.

Biegesteifigkeit SB ist ein Biegebalken Widerstandsmoment nicht möglich da unterschiedlicher E-Module \rightarrow Biegesteifigkeit EI: Gewichtung der Biegesteifigkeiten mit E-Modul

$$\overline{EI}_y = \sum A_i \cdot y_i^2 \cdot E_i
\overline{EI}_z = \sum A_i \cdot z_i^2 \cdot E_i$$
(26)

Spannungen:

$$\sigma = \frac{M_{b,y}}{\overline{EI}_y} \cdot E_i \cdot y_i$$

$$\sigma = \frac{M_{b,z}}{\overline{EI}_z} \cdot E_i \cdot z_i$$
(27)

Schubfluss??? Verhält der? Idealisierung?

Gewichtsverteilung Max. Gewicht gemäss Pflichtenheft: 3000kg Angenommene Gewichtsverteilung mit Gewichts-Excel. Vereinfacht angenommen, dass die Deichsel keine Masse hat.

4.2 1.1 Vertikale Beschleunigung

Idealisierung Biegebalken

Lagerung:

Querkraft- und Biegemomentenverlauf Querkraftverlauf

Biegemomentenverlauf durch Integration

Spannungen und Kräfte Spannugen mit der Formel 27

 M_b ,max: Kräfte: 69kN und 420kN

Schubfluss: Falls SB offen: Schubfluss muss an den Wänden der Küche und Bad abgetragen werden.

4.3 1.2 Longitudinale Beschleunigung

Idealisierung Starres Chassis: Art und weise der Verzögerung ist egal (Deichsel oder Räder) Trägheitskräfte des Aufbaus wird über die Wände (Feld A und B) aufs Chassis übertragen. Annahme: Masse ist über die Höhe des SB gleichmässig verteilt. Konservative Annahme das CoG eher tiefer liegt. Aufteilung der Masse des mittleren Teiles auf die Felder A und B

5 FEM

Wie ist das FEM aufgesetzt und welchen Zweck erfüllt es?

6 Auslegung und Design

Hier werden Komponenten und Baugruppen ausgelegt

Teil II

Anhang

A Quellenverzeichnis

- [1] BAFU, "Klima: Das wichtigste in kürze," 2020.
- [2] R. Bärtsch, Mechanik & Festigkeit Festigkeitslehre. 2 2019.
- [3] B. Harry, "Eth-skript,"
- [4] B. Klein, "Leichtbau-konstruktion dimensionierung, strukturen, werkstoffe und gestaltung,"
- [5] R. Janczur, "Vertical accelerations of the body of a motor vehicle when crossing a speed bump," *The Archives of Automotive Engineering Archivum Motoryzacji*, vol. 67, no. 1, pp. 47–60, 2015.
- [6] D. García-Pozuelo, A. Gauchia, E. Olmeda, and V. Diaz, "Bump modeling and vehicle vertical dynamics prediction," Advances in Mechanical Engineering, vol. 6, pp. 736576– 736576, 08 2015.
- [7] T. Haniszewski and A. MICHTA, "Preliminary studies of vertical acceleration of a passenger car passing through the speed bump for various driving speeds," *Transport Problems*, vol. 14, pp. 23–34, 03 2019.
- [8] R. Pidl, "Analytical approach to determine vertical dynamics of a semi-trailer truck from the point of view of goods protection," AIP Conference Proceedings, vol. 1922, no. 1, p. 120003, 2018.
- [9] Institut für Unfallanalysen Hamburg, "Beschleunigungstabelle." publisher: Institut für Unfallanalysen Hamburg.
- [10] N. Kudarauskas, "Analysis of emergency braking of a vehicle," *Transport*, vol. 22, no. 3, pp. 154–159, 2007.

- [11] Institut für Unfallanalysen Hamburg, "Bremstabelle A." publisher: Institut für Unfallanalysen Hamburg.
- [12] W. Hugemann and M. Nickel, "Longitudinal and lateral accelerations in normal day driving," in 6th International Conference of The Institute of Traffic Accident Investigators, pp. 1–8, 2003.
- [13] J. Xu, K. Yang, Y. Shao, and G. Lu, "An experimental study on lateral acceleration of cars in different environments in sichuan, southwest china," *Discrete Dynamics in Nature and Society*, vol. 2015, p. 494130, Mar 2015.
- [14] P. Sesar and A. Krecak, "Impact of wind bora on croatian highways and bridges," *IABSE Symposium Report*, vol. 90, pp. 23–29, 01 2005.
- [15] M. Scarpignato, "When is it too windy to drive an rv?," Nov 2020.
- [16] K. Beasley, "Can high winds flip over your rv?," Apr 2017.

B Abbildungsverzeichnis

1	Modus A
2	Modi beim Ausfahren
3	Modus C
4	Visualisierung der Personenlasten
C 1	Tabellenverzeichnis Design-Allowables Sandwichplatten
2	Design-Allowables Kleber
3	Lastfälle Modus A
4	Lastfälle Modus B
E	Lootfille Madus C

D Rissfortschritt

- D.1 Zeichnungen
- D.1.1 Zeichnung des Probenrohlings Erste Serie
- D.1.2 Zeichnung des Probenrohlings Zweite Serie

Teil III

Elektronischer Anhang

A Elektronischer Anhang

- A.1 Zeichnungen
- A.1.1 Zeichnung des Probenrohlings Erste Serie
- A.1.2 Zeichnung des Probenrohlings Zweite Serie