stat333 Notes

Thaqib M

May 15, 2022

Linear Algebra

Matrix multiplication

If A is a $n \times m$ matrix and B is a $m \times k$ matrix then the matrix AB of dim $n \times k$ is defined by:

$$[AB]_{xy} = \sum_{\text{all}(z)} A_{xz} B_{zy}$$

Inner Product

The inner product (dot product) of 2 vectors \vec{a}, \vec{b} in \mathbb{R}^n is defined as

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \langle \vec{\mathbf{a}}, \vec{\mathbf{b}} \rangle = \sum_{k=1}^{n} a_k b_k$$

Eigenvalues and Eigenvectors

We can find eigenvalues by solving for the roots of the characteristic polynomial of the matrix \mathbf{A} .

$$\det(\mathbf{A} - tI_n) = 0$$

Where I_n is the $n \times n$ identity matrix. Then for each eigenvalue t = c we can solve the system of linear equations

$$(\mathbf{A} - cI_n)\vec{x} = \vec{\mathbf{0}}$$

 \vec{x} will be an eigenvector of **A**.

1 Week 1

1.1 Definition (Stochastic Process). Let $(X_t)_{t\in T}$ be a collection of random variables this is called a Stochastic Process. T is the *index set*.

1.2 Example (Simple Random Walk on \mathbb{Z}). Let $X_i \sim \text{iid}$ where $X_i \in \{-1, 1\}$ with

$$P(X_i = 1) = \frac{1}{2}$$

$$P(X_i = -1) = -\frac{1}{2}$$

now let

$$S_n = \sum_{i=0}^n X_i$$

Then $(S_i)_{k=0}^{\infty}$ is a stochastic process.

1.3 Definition (Transition Probability). Given $(X_s)_{s \le t}$ we need the probability for X_{t+1} .

$$P(X_{(t+1)} = x_{t+1}|X_1 = x_1, X_2 = x_2, \dots X_t = x_t)$$

1.4 Note. Conditional Probability Properties

$$P(A|B) = \frac{P(AB)}{P(B)} P(B) > 0$$

$$P(ABC) = P(A|BC) \cdot P(B|C) \cdot P(C)$$

 ${\bf 1.5}$ Example. Transition Probabilities for SRW on \mathbb{Z}^d

$$P(||X_{t+1} - X_t|| \mid (X_s)_{s \le t}) = \frac{1}{2d}$$

1.1 Markov Chains

1.6 Definition (Markov Property). A process has the Markov property if:

$$P(X_{t+1} = x_{t+1} \mid (X_s)_{s \le t}) = P(X_{t+1} = x_{t+1} \mid X_t = x_t)$$

(Next outcome only depends on the previous outcome)

- 1.7 Note (Markov Chain). A stochastic process that satisfies the Markov property is called a Markov chain.
- **1.8 Definition** (Time Homogeneous Markov Chain). A Markov Chain is called time homogeneous if the following is true

$$P(X_{t+1} = j \mid X_t = i) = P(X_1 = j \mid X_0 = i)$$

1.9 Definition (Stochastic Matrix). A matrix P is called stochastic if

$$\mathbf{P} = \begin{pmatrix} p_{00} & p_{01} & \dots \\ p_{10} & p_{11} & \dots \\ \vdots & \ddots & \end{pmatrix}$$

$$0 \le p_{ij} \le 1$$

$$\sum_{all(j)} p_{i_0j} = 1 \text{ for fixed } i_0$$

1.10 Definition (Transition Matrix). Let **P** be a Stochastic matrix and let p_{ij} = value in i-th row and j-th column. We define p_{ij} as

$$p_{ij} = P(X_t = j \mid X_{t-1} = i)$$

(probability of going from state i to state j in the chain).

This is called the transition matrix for $(X_t)_{t\in T}$.

1.11 Example. Transition Matrix Consider this transition matrix The transition matrix for this Markov Chain is

$$\begin{array}{cccc}
1 & 2 & 3 \\
1 & 0 & \frac{1}{2} & \frac{1}{2} \\
2 & \frac{1}{3} & 0 & \frac{2}{3} \\
3 & \frac{1}{3} & \frac{2}{3} & 0
\end{array}$$

this can be visualized as:

1.1.1 Multistep Transition Probabilities

1.12 Definition.

$$[P(n, n+m)]_{xy} = P(X_{n+m} = y \mid X_n = x)$$

1.13 Theorem. Multistep Transition Probability Matrix Let $(X_t)_{t\in T}$ be a stochastic process satisfying the Markov property and be *time homogeneous* and let **P** be the transition matrix.

$$[P(n, n+m)]_{xy} = \mathbf{P}_{xy}^m$$

1.14 Lemma.

$$[P(n, m+1+n)]_{xy} = \sum_{\text{all}(z)} [P(n, m+n)]_{xz} P_{zy}$$

Proof. To go from state $x \to y$ we must add up all probabilities of going to an intermediate state \mathbf{z} , $x \to \mathbf{z} \to y$ we add possibilities of \mathbf{z} .

$$[P(n, m+1+n)]_{xy} = P(X_{m+1+n} = y \mid X_n = x)$$

$$= \sum_{\text{all}(z)} P(X_{m+1+n} = y, X_{n+m} = z \mid X_n = x) \text{ Marginal probability function (stat240)}$$

$$= \sum_{\text{all}(z)} P(X_{m+1+n} = y \mid X_{n+m} = z, X_n = x) P(X_{n+m} = z \mid X_n = x) \text{ conditional probability}$$

Since X_t satisfies the Markov property we get

$$= \sum_{\text{all}(z)} P(X_{m+1+n} = y \mid X_{n+m} = z) P(X_{n+m} = z \mid X_n = x)$$

By definition we have $P(X_{m+1+n} = y \mid X_{n+m} = z) = P_z y$ and $P(X_{n+m} = z \mid X_n = x) = [P(n, n+m)]_{xz}$.

Using Lemma 1.14 we can prove the Theorem 1.13.

Since 1.14's result is the definition of matrix multiplication we get

$$[P(n, m+1+n)]_{xy} = [P(n, m+n)P]_{xy}$$

by induction on m with base case P(n, n + 1) = P we get

$$[P(n, m+1+n)]_{xy} = \mathbf{P}^m$$

Since RHS does not depend on n we can write P(n, n+m) = P(m) and time homogeneity applies for any m number of steps.

$$P(X_{n+m} = y \mid X_n = x) = P(X_m = y \mid X_0 = x)$$

2 Week 2

2.1 Initial Data

Let $(X_n)_{n\in I}$ be a time homogeneous Markov chain. We denote these by $0, 1, 2, \ldots |I| - 1$. We represent the state space as:

$$\{i_1, i_2, \dots, i_{|I|}\} = \mathcal{X}$$

Let **P** be the transition matrix for this Markov chain.

2.1 Definition (Distribution Row Vector).

$$\mu_j = P(X_0 = i_j)$$

Then the row vector $\vec{\mu}$ of dim = $1 \times |I|$ is defined as

$$\vec{\mu} = \left[\mu_1, \mu_2, \dots, \mu_{|I|}\right]$$

 $\vec{\mu}$ is called the distribution of X_0 denoted by $X_0 \sim \vec{mu}$.

The distribution vector for X_n is denoted by $\mu(n)$.

2.2 Theorem. Distribution of X_n The distribution row vector of X_n for a time homogeneous Markov chain is given by μP^n

Proof. Sketch.

$$P(X_n = i_k) = \sum_{j=1}^{|I|} P(X_n = i_k \mid X_0 = i_j) P(X_0 = i_j) = \sum_{j=1}^{|I|} P_{jk} = [\vec{\mu}P]_k$$

Implies $X_n \sim \vec{\mu} P^n$

2.2 Conditional Expectation

Given $f: \mathcal{X} \to \mathbb{R}$ what is the expected value of $f(X_m)$ given an initial distribution? The function f on a finite state space \mathcal{X} is equivalent to a vector $\vec{f} \in \mathbb{R}^{|\mathcal{X}|}$

$$\vec{f} = \begin{pmatrix} f(1) \\ f(2) \\ \dots \\ f(n) \end{pmatrix}$$

The conditional expectation for $f(X_m)$ given $X_0 \sim \vec{\mu}$ is denoted by

$$\mathbb{E}(f(X_m) \mid X_0 \sim \vec{\mu})$$

By definition of conditional expectation we get

$$\mathbb{E}(f(X_m) \mid X_0 \sim \vec{\mu}) = \sum_{k=1}^{|\mathcal{X}|} f(i_k) P(X_m = i_k \mid X_0 \sim \vec{\mu})$$

$$= \sum_{\text{all}(k)} f(i_k) \left[\vec{\mu} \mathbf{P}^m \right]_k$$

$$= \sum_{\text{all}(k)} \vec{f}_k \left[\vec{\mu} \mathbf{P}^m \right]_k$$

$$= \langle \vec{\mu} \mathbf{P}^m, \vec{f} \rangle$$

2.3 Stationary Distribution

Suppose $X_0 \sim \vec{\mu}$ then the distribution for $X_n \sim \vec{\mu}(n)$ then what is the limit of $\vec{\mu}(n)$ as $n \to \infty$. Suppose the limit $\lim_{n \to \infty} \vec{\mu} P^n = \vec{\pi}$ exists then we can write

$$\vec{\boldsymbol{\pi}} = \lim_{n \to \infty} \vec{\boldsymbol{\mu}} \mathbf{P}^n = \lim_{n \to \infty} \vec{\boldsymbol{\mu}} \mathbf{P}^{n-1} P = \lim_{n \to \infty} \vec{\boldsymbol{\mu}} (n-1) \mathbf{P} = \vec{\boldsymbol{\pi}} \mathbf{P}$$

So $\vec{\pi}$ is an left eigenvector of **P** with eigenvalue 1.

2.3 Definition (Stationary Distribution). A probability vector $\vec{\pi}$ is the Stationary Distribution for the stochastic matrix **P** if

$$\sum_k \vec{\boldsymbol{\pi}}_k = 1$$

$$ec{\pi} ext{P}=ec{\pi}$$

2.4 Definition (Stationary Measure). A measure $\vec{\nu}$ on \mathcal{X} $(\vec{\nu} \in \mathbb{R}^{|\mathcal{X}|})$ if

$$\vec{\nu}_i \geq 0$$

$$\sum \vec{\nu_i} > 0$$

$$\vec{\nu}\mathbf{P} = \vec{\nu}$$

2.5 Proposition (Stationary Distribution from Measure). If $|X| < \infty$ and $\vec{\nu}$ is a stationary measure on **P**

$$ec{m{\pi}} = rac{1}{\sum\limits_i ec{
u}_i} ec{
u}$$

Then $\vec{\pi}$ is a stationary distribution by definition.

2.6 Definition (Bi-stochastic Matrix). A stochastic matrix is Bi-stochastic if

$$\sum_{\text{all}(i)} P_{ij_0} = 1 \qquad \text{for fixed } j_0$$

Sum of all rows = 1 and sum of all columns = 1.

2.7 Proposition (Stationary Distribution for Bi-stochastic Matrices). If **P** is a **Bi-stochastic** transition matrix for Markov chain with finite state space \mathcal{X} with $|\mathcal{X}| = N$ then the stationary distribution is given by

$$ec{m{\pi}} = egin{pmatrix} rac{1}{N} & rac{1}{N} & \dots & rac{1}{N} \end{pmatrix}$$

Proof. Sketch.

Let $\vec{\nu} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$ be a vector

$$[\vec{\nu}\mathbf{P}]_k = \sum_j \vec{\nu}_j \mathbf{P}_{kj} = \sum_j \mathbf{P}_{kj} = 1 = \vec{\nu}_k$$

So $\vec{\nu}$ is a measure on **P**. Then scaling $\vec{\nu}$ gives us a stationary distribution with $\vec{\pi}_k = \frac{1}{N}$. \Box