STEROWANIE RUCHEM W SIECIACH TELEKOMUNIKACYJNYCH

Inżynieria ruchu telekomunikacyjnego

Inżynieria ruchu

Terminem inżynieria ruchu określa się metody, techniki i procedury sterowania ruchem w sieci zapewniające wymaganą jakość świadczonych usług i przeciwdziałające powstawaniu takich sytuacji, w których następuje nierównomierne obciążenie (wykorzystanie) zasobów sieci telekomunikacyjnej.

Zadania inżynierii ruchu w sieciach telekomunikacyjnych dotyczą:

- optymalizacji wykorzystania zasobów sieci przy zachowaniu maksymalnego poziomu jakości usług
- maksymalizacji jakości usług dla zadanych zasobów sieci
- wymiarowania sieci (przydziału zasobów)
- ograniczenia zakresu oddziaływania przeciążeń na jakość usług
- monitorowania stanów sieci

Mechanizmy sterowania w sieci telekomunikacyjnej

Mechanizmy inżynierii ruchowej

Alokacja zasobów Wymiarowanie sieci Wyznaczanie przebiegu dróg w sieci

Zachęta do racjonalnego korzystania z sieci

Zarządzanie siecią

Nadzór operatora nad działaniem sieci

Sygnalizacja

Sterowanie

Przekaz danych Ustanawia połączenie i powinna pozwolić terminalowi przesłać do sieci deskryptor ruchu i wymagania QoS

Sterowanie przyjmowaniem nowych wywołań

Dopuszcza nowe zgłoszenie jeśli sieć będzie w stanie przesłać ruch z założonym poziomem QoS, nie degradując ruchu już obsługiwanego

Pomiary i monitorowanie sieci

Wsparcie niektórych mechanizmów sieciowych (np. sterowania przyjmowaniem wywołań i inżynierii ruchowej) poprzez dostarczenie aktualnej wiedzy o stanie sieci

Mechanizm monitorowania zgodności

Monitoruje ruch w ramach danego połączenia i sprawdza jego zgodność z profilem opisanym w kontrakcie ruchowym

Mechanizmy szeregowania pakietów

Regulują dostęp różnych strumieni ruchu do wspólnych zasobów transmisyjnych łączy

Mechanizmy sterowania w sieci telekomunikacyjnej

Ref: Architectural Framework for for QoS Support (ITU-T Y.1291)

Płaszczyzna sterowania

Sterowanie dostępem

Podejmowanie decyzji o przyjęciu lub odrzuceniu nowego wywołania

Ruting QoS

Wybór drogi spełniającej kryteria QoS

Rezerwacja zasobów

Zarezerwowanie na żądanie zasobów sieciowych niezbędnych dla obsługi strumienia z gwarantowaną jakością obsługi

Płaszczyzna danych

Zarządzanie kolejkami/buforami

Podejmowanie decyzji o przechowywaniu lub odrzucaniu pakietów oczekujących na transmisję

Zapobieganie przeciążeniom

Ograniczanie wielkości ruchu obciążającego sieć

Obsługa kolejek i szeregowanie

Wybór pakietów do transmisji

Znakowanie pakietów

Wskazywanie klasy usługi i/lub uwarunkowań obsługi pakietu w sieci

Klasyfikacja ruchu

Wskazywanie przynależności strumienia lub pakietu do określonej klasy stosownie do specyfikacji kontraktu na usługę (SLA)

Kontrolowanie ruchu

Określenie zgodności ruchu z uzgodnioną polityką lub kontraktem

Kształtowanie ruchu

Sterowanie szybkością i wielkością ruchu wejściowego

Płaszczyzna zarządzania

Kontrakt na usługę

Porozumienie między klientem a dostawcą usługi

Pomiary ruchu

Monitoring chwilowych parametrów strumieni ruchu i ich zgodności z uzgodnionym profilem

Renowacja ruchu

Odzyskanie zdolności obsługowych po wystąpieniu uszkodzeń w sieci (łagodzenie skutków uszkodzeń)

Polityka QoS

Reguły gwarantowania jakości usług

Klasa usługi (Class of Service)

Klasa usługi (IETF) "określa znaczenie oraz parametry danej klasy jakości"

- ➤ IntServ CoS: Guaranteed
 - Controlled Load
 - Best Effort
- DiffServ CoS: Assured Forwarding PHB
 - Expedited Forwarding PHB
 - Best Effort
- > ATM CoS: Constant Bit Rate
 - Variable Bit Rate
 - Unspecified Bit Rate
 - Available Bit Rate
- Aquila CoS: Premium CBR
 - Premium VBR
 - Premium Multimedia
 - Premium Mission Critical

Wyznaczanie optymalnych dróg w sieci

Wyznaczanie optymalnych dróg w sieci

Cel zadania wyznaczania dróg w sieci

Optymalna alokacja zasobów sieci dla znanego ruchu generowanego przez źródło zapewniająca transfer jednostek danych do odbiorcy (ujścia) zgodnie z warunkami kontraktu

Wymagania na algorytm wyznaczania drogi

- prostota
- zbieżność
- > stabilność
- elastyczność

Kryteria wyboru drogi

- długość
- niezawodność
- opóźnienie
- zmienność opóźnienia
- przepustowość
- > straty
- obciążenie
- > koszt
- **>**

Algorytmy wybory drogi

- > Algorytmy oparte na cechowaniu wierzchołków i gałęzi
 - √ algorytm Dijkstry
 - ✓ algorytm Forda-Bellmana
 - ✓ algorytm Prima-Dijkstry
 - ✓ algorytm Kruskala
 - ✓ ...
- > Algorytmy oparte na rachunku macierzowym
 - ✓ algorytm quasiminorów
 - √ algorytm Floyda
 - **√** ...

Algorytmy wybory drogi

Miarą jakości obsługi ruchu generowanego w źródłach i przenoszonego przez sieć jest wartość średnia opóźnienia jednostek danych d_{ij}

$$d_{ij} = \frac{f_{ij}}{C_{ij} - f_{ij}} f_{ij}.$$

gdzie:

d_{ij}= wartość średnia opóźnienia jednostek danych f_{ij}= wartość przepływu w łączu o danej pojemności Cij= całkowita pojemność łącza

Algorytmy wybory drogi

Przykładowa sieć z czterema trasami łączącymi dwa źródła z jednym ujściem

Wartość generowanych przepływów jest jednakowa i równa: $r_{16} = 5$ oraz $r_{26} = 5$.

Jeżeli przepływy $r_{16} = 5$ oraz $r_{26} = 5$ są przekazywane, odpowiednio:

trasami π_{146} oraz π_{256} tak, że:

$$f_{14}=f_{46}=r_{16}=5$$
, $f_{25}=f_{56}=r_{26}=5$ i $f_{13}=f_{23}=f_{36}=0$, to opóźnienie d = 0,4 , tzn. żadna z tras nie jest przeciążona;

Model sieci telekomunikacyjnej

Elementy teorii grafów

Definicja grafu

$$G = \langle W, T, P \rangle$$

gdzie: $W = \{w_i; i = 1, 2, ..., N\}$ – przeliczalny zbiór wierzchołków grafu N = |W| - liczba wierzchołków grafu $T = \{t_m; m = 1, 2, ..., M\}$ – przeliczalny zbiór gałęzi grafu

M = |T| - liczba gałęzi grafu

- P trójczłonowa relacja przyległości (incydencji), spełniająca warunki:
 - a) dla każdej gałęzi t istnieje taka para wierzchołków $(x,y) \in W$, że < x, t, $y > \in P$
 - b) jeżeli dla gałęzi t istnieją < x, t, $y > \in P$ oraz < v, t, $z > \in P$ to albo x = v oraz y = z lub x = z oraz y = v

Rodzaje gałęzi

krawędź: jeżeli $x \neq y$ oraz $\langle x, t, y \rangle \in P$, to również $\langle y, t, x \rangle \in P$

łuk: $jeżeli x \neq y \ oraz < x, t, y > \in P, to < y, t, x > \notin P$

pętla: jeżeli $\langle x, t, x \rangle \in P$

Macierz przyległości

Macierz przyległości grafu

$$A(G) = [a_{ij}]_{n\times m}$$

gdzie: n – liczność zbioru wierzchołków

m – liczność zbioru gałęzi

 a_{ij} – element macierzy przyjmujący wartości:1 (gdy wierzchołek x_i jest incydentny z gałęzią t_i) lub 0 (w przeciwnym przypadku)

Macierz przyległości wierzchołków grafu

$$R(G) = [r_{ij}]_{n \times n}$$

gdzie: n – liczność zbioru wierzchołków

 r_{ij} – element macierzy przyjmujący wartości:1 (gdy wierzchołek x_i jest incydentny z wierzchołkiem x_i) lub 0 (w przeciwnym przypadku)

Marszruta

Marszrutą w grafie $G = \langle W, T, P \rangle$

nazywa się dowolny ciąg przemienny wierzchołków i gałęzi

$$\{x_{i0}, t_{i1}, x_{i1}, t_{i2}, x_{i2}, t_{i3}, \dots, x_{il-1}, t_{il}, x_{il}\}$$

spełniający warunek:

$$\bigwedge_{1 \le s \le l} \left[\left\langle x_{is-1}, t_{is}, x_{is} \right\rangle \in P \right] \vee \left[\left\langle x_{is}, t_{is}, x_{is-1} \right\rangle \in P \right]$$

Długością marszruty nazywa się liczbę gałęzi występujących w ciągu określającym marszrutę.

Lańcuch

Łańcuchem $L(x_{i0},x_{il})$ łączącym wierzchołek x_{i0} z wierzchołkiem x_{il} jest każda marszruta

$$\{x_{i0}, t_{i1}, x_{i1}, t_{i2}, x_{i2}, t_{i3}, \dots, x_{il-1}, t_{il}, x_{il}\}$$

spełniająca warunek, że wszystkie gałęzie występujące w tej marszrucie są różne.

Długością łańcucha w grafie jest liczba gałęzi tego łańcucha

Droga

Drogą nazywa się łańcuch skierowany (marszrutę skierowaną) o różnych gałęziach

$$\mu_i(x^p, x^k) = \{x^p, t_{i1}, x_{i1}, t_{i2}, x_{i2}, t_{i3}, ..., x_{il-1}, t_{il}, x^k\}$$

Drogą prostą jest droga, której wszystkie wierzchołki są różne

Spójność grafu

Grafem spójnym nazywa się graf, w którym dowolne dwa wierzchołki można połączyć marszrutą

Dwa wierzchołki, które można połączyć marszrutą nazywa się spójnymi

Relacją spójności jest dwuczłonowa relacja S⊂W×W o następujących właściwościach:

Graf jest silnie spójnym, jeżeli dla każdej pary wierzchołków (x_i,x_j) istnieje droga $\mu(x_i,x_j)$ prowadząca od wierzchołka x_i do wierzchołka x_i

Drzewo

Drzewem nazywa się graf, w którym między dowolną parą wierzchołków istnieje tylko jeden łańcuch Zatem:

- usunięcie dowolnej gałęzi drzewa powoduje naruszenie spójności grafu
- liczba wierzchołków (n) i gałęzi (m) drzewa spełnia warunek:
 m = n-1
- każdy łańcuch drzewa jest łańcuchem prostym

Dendrytem nazywa się spójny digraf, unigraf bez pętli mający tę właściwość, że dokładnie jeden jego wierzchołek x₀ zwany korzeniem (początkiem) dendrytu nie ma poprzedników, natomiast każdy pozostały wierzchołek ma dokładnie jeden poprzednik

Drzewem rozpinającym nazywa się drzewo, które zawiera wszystkie wierzchołki grafu

Model sieci telekomunikacyjnej

Modelem sieci telekomunikacyjnej nazywa się trójkę uporządkowaną

$$S = \langle G, \{F_z\}, \{f_k\} \rangle$$

gdzie:

G = < W, T, P > - graf reprezentujący elementy sieci (węzły i linie)

 $\{F_z: z = 1, 2, ..., Z\}$ – zbiór funkcji opisanych na gałęziach grafu takich, że: $F_z: T \rightarrow R^+$

 $\{f_k: k = 1, 2, ..., K\}$ – zbiór funkcji opisanych na wierzchołkach grafu takich, że: $f_k: W \rightarrow R^+$

Funkcje opisane na gałęziach grafu

Funkcja odległości $F_1 = L: (W \otimes W) \rightarrow R^+$

$$F_{1}(w_{i}, w_{j}) = \begin{cases} l_{ij} > 0 \ dla \left(w_{i}.w_{j}\right) \in T \ i \neq j \\ 0 \ dla \ i = j \\ \infty \ dla \ \left(w_{i}, w_{j}\right) \notin T \end{cases}$$

Funkcja gotowości $F_2 = K_g$: $(W \otimes W) \rightarrow R^+$

$$F_2(w_i, w_j) = \begin{cases} k_{g_{ij}} \in [0,1] & dla & (w_i, w_j) \in T \\ 0 & dla & (w_i, w_j) \notin T \end{cases}$$

Funkcja przepustowości $F_3 = C$: $(W \otimes W) \rightarrow R^+$

$$F_3(w_i, w_j) = \begin{cases} c_{ij} > 0 & dla & (w_i, w_j) \in T \\ 0 & dla & (w_i, w_j) \notin T \end{cases}$$

Funkcje opisane na wierzchołkach grafu

Funkcja przepustowości $f_1 = C: W \rightarrow R^+$

$$f_1(w_i) = \begin{cases} c_i > 0 & dla & w_i \in W \\ 0 & dla & w_i \notin W \end{cases}$$

Funkcja opóźnienia $f_2 = t: W \rightarrow R^+$

$$f_2(w_i) = \begin{cases} t_i \ge 0 & dla & w_i \in W \\ \infty & dla & w_i \notin W \end{cases}$$

Funkcja gotowości $F_3 = k_a$: $(W \otimes W) \rightarrow R^+$

$$f_3(w_i) = \begin{cases} k_{gi} = [0,1] & dla & w_i \in W \\ 0 & dla & w_i \notin W \end{cases}$$

Algorytmy wyboru drogi w sieci telekomunikacyjnej

Algorytm Dijkstry

- 1. Opisać jednoznacznie wszystkie węzły sieci
- Q2. Węzłowi początkowemu (s) nadać cechę stałą 0, a wszystkim pozostałym węzłom cechę tymczasową ∞
 - 3. Każdemu węzłowi będącemu bezpośrednim następnikiem węzła s skorygować wartość cechy tymczasowej, wpisując w miejsce ∞ wartość równą długości gałęzi łączącej te węzły
 - 4. Spośród węzłów opisanych cechą tymczasową znaleźć węzeł (x) najbliższy węzłowi początkowemu (o minimalnej wartości cechy tymczasowej) zmieniając jego cechę na stałą (węzeł x zostaje opisany cechą stałą oraz numerem węzła, z którego został on osiągnięty przy zmianie cechy na stałą)
 - 5. We wszystkich bezpośrednich następnikach węzła x przyjąć wartość ich cechy tymczasowej jako sumę długości gałęzi (s,x) oraz (x,x_n)

Algorytm Dijkstry

- 6. Spośród węzłów będących następnikami węzła x znaleźć węzeł x_k, który posiada minimalną wartość skorygowanej cechy tymczasowej zmieniając ją na stałą (dodatkowo węzeł zostaje opisany numerem węzła z którego został on osiągnięty przy zmianie cechy z tymczasowej na stałą)
- 7. Procedura jest kontynuowana do chwili ocechowania cechą stałą węzła końcowego lub gdy wszystkie węzły zostaną ocechowane cechą stałą

Algorytm Prima-Dijkstry

- 1. Wybór wierzchołka początkowego (np. s)
- 2. Przyłączenie do wierzchołka początkowego najbliżej położonego wierzchołka (np. x₁) poprzez krawędź (s,x₁) pierwsza krawędź minimalnego drzewa rozpinającego
- 3. Obliczenie odległości wybranych wierzchołków $\{s, x_i\}$ do ich następników (dotychczas nie wybranych) i wybór najbliższego następnika (np. x_2).
- 4. Przyłączenie do wierzchołka x_1 wierzchołka x_2 poprzez krawędź (x_1, x_2) druga krawędź minimalnego drzewa rozpinającego
- 5. W kolejnych krokach powtarzanie czynności 3 i 4 dla wybranych wierzchołków {s, x₁, x₂, ...} aż do drzewa zostaną dołączone wszystkie wierzchołki

Algorytm Floyda

Sformułowanie problemu

Należy znaleźć łańcuch między wierzchołkiem źródłowym i oraz wierzchołkiem końcowym j składający się z k gałęzi (k-tej rangi), który spełnia warunek:

$$\xi(L_{ij}) = \sum_{t_{lm} \in L_{ij}} \xi(t_{lm})$$

gdzie: $\xi(L_{ij})$ – waga łańcucha L_{ij}

 $\xi(t_{lm})$ – waga gałęzi łączącej wierzchołek I z wierzchołkiem m

przy czym:

$$t_{ij} = \begin{cases} \xi(t_{ij}) & gdy \quad t_{ij} \in T \\ \infty & gdy \quad t_{ij} \notin T \\ 0 & gdy \quad i = j \end{cases}$$

Algorytm Floyda

Operator \(\Delta \) mnożenia macierzy

Niech:

$$A = \left[lpha_{ij}
ight]_{nxn} \qquad \qquad B = \left[eta_{ij}
ight]_{nxn}$$

$$B = \left[\beta_{ij}\right]_{n \times n}$$

$$C = \left[\gamma_{ij} \right]_{n \times n}$$

gdzie:

$$C = A \Delta B$$

przy czym:

$$\gamma_{ij} = \min \sum_{l=1}^{n} \alpha_{il} \Delta \beta_{lj} = \min \left(\alpha_{i1} + \beta_{1j}; \alpha_{i2} + \beta_{2j}; ..., \alpha_{in} + \beta_{nj} \right)$$

Algorytm Floyda

W celu wyznaczenia łańcucha rangi k o minimalnej wadze należy macierz wag (np. odległości) podnosić do kolejnych potęg wykorzystując operator Δ, kończąc na potędze k

		w_1	W_2	W_3	W_4	W_5
	w_1	0	50	∞		8
L =	w_2	50	0	25	20	∞
<i>L</i> , =	$=$ W_3	∞	25	0	6	∞
	W_4	∞	∞	6	0	10
	W_5	8	∞	∞	10	0

Algorytm Floyda - przykład

$$L = \begin{bmatrix} w_1 & w_2 & w_3 & w_4 & w_5 \\ w_1 & 0 & 50 & \infty & \infty & 8 \\ w_2 & 50 & 0 & 25 & 20 & \infty \\ w_3 & \infty & 25 & 0 & 6 & \infty \\ w_4 & \infty & \infty & 6 & 0 & 10 \\ w_5 & 8 & \infty & \infty & 10 & 0 \end{bmatrix}$$

$$\gamma_{14}^{2\Delta} = \min \left[(\alpha_{11} + \beta_{14}) \vee (\alpha_{12} + \beta_{24}) \vee (\alpha_{13} + \beta_{34}) \vee (\alpha_{14} + \beta_{42}) \vee (\alpha_{15} + \beta_{54}) \right]
\gamma_{14}^{2\Delta} = \min \left[\infty \vee 70 \vee \infty \vee \infty \vee 18 \right]$$

$$L_{14}^2 = \{w_1, t_{15}, w_5, t_{54}, w_4\}$$

Algorytm Floyda - przykład

Algorytm Floyda - przykład

$$W_{1} \quad W_{2} \quad W_{3} \quad W_{4} \quad W_{5}$$

$$W_{1} \quad 0 \quad 50 \quad 24 \quad 18 \quad 8$$

$$L^{3\Delta} = L^{2\Delta}\Delta L = \begin{cases} w_{2} & 38 & 0 & 25 & 20 & 38 \\ w_{3} & 24 & 25 & 0 & 6 & 16 \\ w_{4} & 18 & 31 & 6 & 0 & 10 \\ w_{5} & 8 & 41 & 16 & 10 & 0 \end{cases}$$

$$W_{1} \quad W_{2} \quad W_{3} \quad W_{4} \quad W_{5}$$

$$W_{1} \quad 0 \quad 49 \quad 24 \quad 18 \quad 8$$

$$L^{4\Delta} = L^{3\Delta} \Delta L = \begin{cases} w_{2} & 38 & 0 & 25 & 20 & 38 \\ w_{3} & 24 & 25 & 0 & 6 & 16 \end{cases}$$

$$W_{4} \quad 18 \quad 31 \quad 6 \quad 0 \quad 10$$

$$W_{5} \quad 8 \quad 41 \quad 16 \quad 10 \quad 0$$

$$W_{1} \quad W_{2} \quad W_{3} \quad W_{4} \quad W_{5}$$

$$W_{1} \quad 0 \quad 49 \quad 24 \quad 18 \quad 8$$

$$L^{5\Delta} = L^{4\Delta} \Delta L = \begin{cases} w_{2} & 38 & 0 & 25 & 20 & 38 \\ w_{3} & 24 & 25 & 0 & 6 & 16 \\ w_{4} & 18 & 31 & 6 & 0 & 10 \\ w_{5} & 8 & 41 & 16 & 10 & 0 \end{cases}$$

Wybór trasy z uwarunkowaniami

- > zadanie wielokryterialnego wyznaczania tras
 - ✓ najszerszych i najkrótszych (widest-shortest)
 - ✓ najkrótszych i najszerszych (shortest-widest)
 - ✓ najszybszych spośród dopuszczalnych (fastest-feasible)
 - **√** ...
- zadanie wyznaczenia trasy optymalnej ze względu na wybrany wskaźnik jakości spełniającej określony zbiór ograniczeń (constraint-based)
 - ✓ minimalny współczynnik wykorzystania zasobów przy ograniczeniu na wartość opóźnienia (e-t-e)
 - ✓ minimalna wartość opóźnienia przy ograniczeniu na wartość współczynnika wykorzystania przepustowości łączy
 - **√** ...

Dziękuję za uwagę!