ENGR 2910-101: Circuit Analysis

Homework 9: 03/18/20

Instructor: Leo Silbert

Due: 03/25/20

Question 1 [10]

Homework 9

- (i) Using several source transformations find the value of the current flowing through the 15 $k\Omega$ resistor. [Hint: start on the left side of the circuit and work your way right.]
- (ii) Now that you know this current, work backwards through the original circuit and calculate the following: the voltage drop across the 90 $k\Omega$ and the current flowing through that branch; the current flowing through the 4 $k\Omega$ resistor, the voltage drop across the 60 $k\Omega$ resistor; and the current flowing in the left-hand part of the circuit.

Question 2 [10]

Find the Thévenin equivalent for the following circuit. [Hint: start off by making a source

transformation then apply the mesh-current method.]

$$V = 3 (150)$$
 $= 450V$
 150Ω
 40Ω
 10Ω
 8Ω
 40Ω
 10Ω
 $150V$

$$\overline{1}_{2} = \frac{48\overline{1}_{1} - 300}{40} = -1.74$$

$$=\frac{50}{3}$$
 1/150

$$\frac{50}{3} * 150 = 15 \Omega = R_{TH}$$

Question 3 [10]

Find the Norton equivalent for the following circuit. [Hint: apply the node-voltage and mesh-current methods.]

$$\begin{array}{c} 188 - V_1 \\ 2000 \\ 1 \\ 2000 \\ 1 \\ 2000 \\ 1 \\ 2000 \\ 1 \\ 2000 \\ 1 \\ 2000 \\ 1 \\ 2000 \\ 1 \\ 2000 \\ 1 \\ 2000 \\ 1 \\ 2000 \\ 20$$

3V, - V2 - 280 = -56 + 0.2V, Continued

Question 4 [10]

Use the test source method to find the Thévenin resistance. [Hint: use the node-voltage method.

$$i_{\Delta} = \frac{V_3 - V_1}{150}$$

$$V_2 = 250 i_{\Delta}$$

$$V_1 = \frac{250 V_3 - 250 V_1}{150}$$

$$V_1 = \frac{250 V_3 - 250 V_1}{150}$$

$$V_1 = \frac{V_3 - V_1}{150}$$

$$V_1 = \frac{V_3 - V_1}{150}$$

$$V_1 = \frac{V_3 - V_2}{150}$$

$$V_2 = \frac{V_3 - V_1}{150}$$

$$V_1 = \frac{V_3 - V_2}{150}$$

$$V_1 = \frac{V_3 - V_2}{150} = 0$$

$$V_2 = \frac{V_3 - V_2}{150}$$

$$V_3 = 0$$

$$V_1 = \frac{V_3 - V_2}{150} = 0$$

$$V_1 = \frac{V_3 - V_2}{150} = 0$$

$$V_1 = \frac{V_3}{2}$$

$$V_2 = \frac{V_3 - V_2}{150} = 0$$

$$V_3 = 0$$

$$V_1 = \frac{V_3}{2}$$

$$V_4 = 0$$

$$V_7 = 0$$

Question 5 [10]

Use the principle of superposition to find the voltage v_o . [Hint: when you analyze the current source, apply the node voltage method choosing the reference node as the node below the 40 Ω resistor.]

$$\begin{array}{c} kch b \\ V_b - V_{03} + V_b \\ \hline 5 \\ \hline \end{array}$$

$$\begin{array}{c} 3V_b - 3V_{03} + V_b - 90 \\ \hline - 3V_{03} + 4V_b = 90 \\ \hline \end{array}$$

$$\begin{array}{c} V_b = 90 + 3V_0 \\ \hline \end{array}$$

$$V_{5} = \frac{90 + 3V_{0}}{4}$$

$$R_N = \frac{V_{TH}}{i_{Sc}} = \frac{112V}{0.06A} = 1866.752$$

hch c

$$-3V_{03} + 4V_{c} = -180$$