# SHARKFEST '12

**Wireshark Developer and User Conference** 

# **VoIP Analysis Fundamentals** with Wireshark...

Phill Shade (Forensic Engineer – Merlion's Keep Consulting)

# Phillip D. Shade (Phill) phill.shade@gmail.com

- Phillip D. Shade is the founder of Merlion's Keep Consulting, a professional services company specializing in Network and Forensics Analysis
- Internationally recognized Network Security and Forensics expert, with over 30 years of experience
- Member of FBI InfraGard, Computer Security Institute, the IEEE and Volunteer at the Cyber Warfare Forum Initiative
- Numerous certifications including CNX-Ethernet (Certified Network Expert), Cisco CCNA, CWNA (Certified Wireless Network Administrator), WildPackets PasTech and WNAX (WildPackets Certified Network Forensics Analysis Expert)
- Certified instructor for a number of advanced Network Training academies including Wireshark University, Global Knowledge, Sniffer University, and Planet-3 Wireless Academy.



### VolP / Video Protocol Stack



# VoIP Protocols Overview (Signaling)

#### MGCP - Media Gateway Control Protocol

- Defined by the IETF and ITU
- Used to control signaling and session management (also known as H.248 or Megaco)

#### SCCP - Skinny Client Control Protocol

CISCO proprietary protocol used to communicate between a H.323 Proxy (performing H.225 & H.245 signaling) and a Skinny Client (VoIP phone)

#### SIP - Session Initiation Protocol

Defined by the IETF / RFC 2543 / RFC 3261

#### H.323 – Defines a Suite of ITU designed protocols

H.225, H.245, Q.931, RAS, etc...

### **VoIP Protocols Overview (Data)**

- RTP Real Time Protocol
  - Defined by the IETF / RFC 1889
  - Provides end-to-end transport functions for applications transmitting real-time data over Multicast or Unicast network services
    - Audio, video or simulation data
- RTCP Real Time Control Protocol
  - Defined by the IETF
  - Supplements RTP's data transport to allow monitoring of the data delivery in a manner scalable to large Multicast networks
  - Provides minimal control and identification functionality
- RTSP Real Time Streaming Protocol
  - Defined by the IETF / RFC 2326
  - Enables the controlled delivery of real-time data, such as audio and video
  - Designed to work with established protocols, such as RTP and HTTP

# VoIP Codecs (Audio Conversion)

- CODEC = Compressor / Decompressor or Coder / Decoder or Reader
  - Provides conversion between Audio/Video signals and data streams at various rates and delays
- Designations conform to the relevant ITU standard
  - Audio Codecs (G.7xx)
    - G.711a / u PCM Audio 56 and 64 Kbps (Most common business use)
    - G.722 7 Khz Audio at 48, 56 and 64 Kbps
    - G.723.1 / 2- ACELP Speech at 5.3 Kbps / MPMLQ at 6.3 Kbps
    - G.726 ADPCM Speech at 16, 24, 32 and 40 Kbps
    - G.727 E-ADPCM Speech at 16, 24, 32 and 40 Kbps
    - G.728 LD-CELP Speech at 16 Kbps
    - G.729 CS-ACELP Speech at 8 and 13 Kbps (Very common for home use)
  - Video Codecs (H.2xx)
    - H.261 Video >= 64 Kbps
    - H.263 Video <= 64 Kbps</li>

### **VolP Codecs**

- CODEC = Compressor / Decompressor or Coder / Decoder or Reader
  - Provides conversion between Audio/Video signals and data streams at various rates and delays



### Sample VoIP Codec Comparison

| Codec            | Data Rate | Typical<br>Datagram<br>Size | Packeti<br>-zation<br>Delay | Combined<br>Bandwidth<br>for 2 Flows | Typical Jitter<br>Buffer Delay | Theoretical<br>Maximum<br>MOS |
|------------------|-----------|-----------------------------|-----------------------------|--------------------------------------|--------------------------------|-------------------------------|
| G.711u           | 64.0 kbps | 20 ms                       | 1.0 ms                      | 174.40 kbps                          | 2 datagrams<br>(40 ms)         | 4.40                          |
| G.711a           | 64.0 kbps | 20 ms                       | 1.0 ms                      | 174.40 kbps                          | 2 datagrams<br>(40 ms)         | 4.40                          |
| G.726-32         | 32.0 kbps | 20 ms                       | 1.0 ms                      | 110.40 kbps                          | 2 datagrams<br>(40 ms)         | 4.22                          |
| G.729            | 8.0 kbps  | 20 ms                       | 25.0 ms                     | 62.40 kbps                           | 2 datagrams<br>(40 ms)         | 4.07                          |
| G.723.1<br>MPMLQ | 6.3 kbps  | 30 ms                       | 67.5 ms                     | 43.73 kbps                           | 2 datagrams<br>(60 ms)         | 3.87                          |
| G.723.1<br>ACELP | 5.3 kbps  | 30 ms                       | 67.5 ms                     | 41.60 kbps                           | 2 datagrams<br>(60 ms)         | 3.69                          |

- MOS and R value include Packetiaztion delay + Jitter buffer delay
- Common bandwidth real bandwidth consumption:
- # Payload = 20 bytes/p (40 bytes/s)
- # Overhead includes 40 bytes of RTP header (20 IP + 8 UDP + 12 RTP)

# **Competing Signaling Standards**

- Several different standards are currently competing for dominance in the VoIP field:
  - H.323 Developed by the International Telecommunications Union (ITU) and the Internet Engineering Task Force (IETF)
  - MGCP / Megaco/ H.248 Developed by CISCO as an alternative to H.323
  - SIP Developed by 3Com as an alternative to H.323
  - SCCP Cisco Skinny Client Control Protocol used to communicate between a H.323 Proxy (performing H.225 & H.245 signaling) and a Skinny Client (VoIP phone)
  - UNISTEM Proprietary Nortel protocol, developed by as an alternative to H.323

# H.323 - Packet-based Multimedia Communications Systems

- An umbrella standard defined by the International Telecommunications Union (ITU) and the Internet Engineering Task Force (IETF)
- Defines a set of call controls, channel set up and Codec's for multimedia, packet-based communications systems using IP-based networks

| H.450.1              | Supplemental, generic protocol for use under H.323   |
|----------------------|------------------------------------------------------|
| H.225                | Call Signaling / RAS                                 |
| H.245                | Control messages for the H.323 Terminal (RTP / RTCP) |
| H.235                | Security Enhancements                                |
| Q.931                | Call setup and termination                           |
| G.711, G.723.1 G.728 | Audio Codec's                                        |
| H.261, H.263, H.264  | Video Codec's                                        |

# SIP VoIP Standard (SIP)

- Defined in RFC 2543 and RFC 3261 and by the ITU
  - Pioneered by 3Com to address weaknesses in H.323
- Application layer signaling protocol supporting real time calls and conferences (often involving multiple users) over IP networks
  - Can replace or complement MGCP
    - SIP provides Session Control and the ability to discover remote users
    - SDP provides information about the call
    - MGCP/SGCP Provides Device Control
    - ASCII text based
    - Provides a simplified set of response codes
- Integrated into many Internet-based technologies such as web, email, and directory services such as LDAP and DNS
  - Extensively used across WANs

## MGCP / Megaco VoIP Standards

- Defined by RFC 2705 / 3015 and the ITU in conjunction with the H.248 standard
  - Pioneered by CISCO to address weaknesses in H.323
- Used between elements of distributed Gateways (defined later) as opposed to the older, single all-inclusive Gateway device
  - Extensively used in the LAN environment
- Utilizes Media Gateway Control Protocol (MGCP) to control these distributed elements
  - Often considered a "Master/Slave" protocol

### Quality Of Service (QoS) - Overview

- Provides a guarantee of bandwidth and availability for requesting applications
  - Used to overcome the hostile IP network environment and provide an acceptable Quality of Service
    - Delay, Jitter, Echo, Congestion, Packet loss and Out of Sequence packets
  - Mean Opinion Score (MoS) / R-Factor is sometimes used to determine the requirements for QoS.
  - Utilized in the VoIP environment in one of several methods:
    - Resource Reservation Protocol (RSVP) defined by IETF
    - IP Differentiated Services
    - IEEE 802.1p and IEEE 802.1q

### **Assessing Voice Quality**

- Voice Quality can be measured using several criteria
  - **1. Delay:** As delay increases, callers begin talking over each other, eventually the call will sound like talking on a "walkie-talkie". (Over...)
  - **2. Jitter:** As jitter increases, the gateway becomes unable to correctly order the packets and the conversation will begin to sound choppy
    - Some devices utilize jitter buffer technology to compensate
  - 3. Packet Loss: If packet loss is greater than the jitter buffer, the caller will hear dead air space and the call will sound choppy
    - Gateways are designed to conceal minor packet loss

### **Different VolP Quality Measurement Terms**

- MoS Mean Opinion Score
  - Numerical measure of the quality of human speech at the destination end of the circuit
- PSQM (ITU P.861)/PSQM+ Perceptual Speech Quality Measure
- PESQ (ITU P.862) Perceptual Evaluation of Speech Quality
- PAMS (British Telecom) Perceptual Analysis Measurement System
- The E-Model (ITU G.107) (R-Factor)
  - Send a signal through the network, and measure the other end!

## **Measures of Voice Quality**



- MOS can only be measured by humans
- R-value can be calculated in software
- PMOS values can be determined from R-value

# MOS (Mean Opinion Score)

| MOS | Quality Rating |
|-----|----------------|
| 5   | Excellent      |
| 4   | Good           |
| 3   | Fair           |
| 2   | Poor           |
| 1   | Bad            |

- 1. Quality Goal is the same as PSTN and is widely accepted criterion for call quality
- 2. Call quality testing has always been subjective (Humans) International Telecommunications Union (ITU) P.800

#### MOS - Mean Opinion Score

- Numerical measure of the quality of human speech at the destination end of the circuit (affected extensively by Jitter)
- Uses subjective tests (opinionated scores) that are mathematically averaged to obtain a quantitative indicator of the system performance
- Rating of 5.0 is considered perfect

## E-Model (R-Factor)

- The E-Model Recommendation ITU G.107
  - The "E-Model" is a parameter based algorithm based on subjective test results
    of auditory tests done in the past compared with current "system parameters"
  - Provides a prediction of the expected quality, as perceived by the user
  - The result of the E-Model calculation is "E-Model Rating R" (0 100) which can be transformed to "Predicted MOS (PMOS)" (1 – 5; 5 is non-extended, noncompressed)
    - Typical range for R factors is 50-94 for narrowband telephony and 50-100 for wideband telephony

Cascade Pilot Computes the R-Factor and MOS scores



### "R" Factor vs. MOS in Cascade Pilot

|    |      |       | Caller Number 🔺                                    | Call-ID 🔺   |     |              |             |              |            |              |              |              |
|----|------|-------|----------------------------------------------------|-------------|-----|--------------|-------------|--------------|------------|--------------|--------------|--------------|
|    |      | Н1 е  | erarchy (Caller Number/Receiver<br>Number/Call-ID) | RTP Src IP  | F   | RTP Src Port | RTP Dst IP  | RTP Dst Port | SSRC       | PayLoad Type | Avg R-Factor | Max R-Factor |
| -  | Ca   | 11 ei | r Number: 3290                                     | [3]         | ]   | [4]          | [3]         | [4]          | [3]        | [1]          | 79.62        | 93.34        |
|    | -    | Red   | ceiver Number: 4672                                | [2]         | ]   | [2]          | [2]         | [2]          | [2]        | [1]          | 68.90        | 93.34        |
|    |      | -     | Call-ID: 003094c3-438b0085-4ef5a663                | [2]         | ]   | [2]          | [2]         | [2]          | [2]        | [1]          | 68.90        | 93.34        |
|    |      |       |                                                    | 45.210.3.90 | 19  | 716          | 45.210.9.72 | 2238         | 0x8b43c394 | PCMU         | 68.98        | 93.34        |
|    |      |       |                                                    | 45.210.9.72 | 22  | 38           | 45.210.3.90 | 19716        | 0x13c443d3 | PCMU         | 68.83        | 93.34        |
|    | -    | Red   | ceiver Number: 4697                                | [2]         | ]   | [2]          | [2]         | [2]          | [2]        | [1]          | 90.33        | 93.34        |
|    |      | -     | Call-ID: 003094c3-438b0083-6f807304                | [2]         | ]   | [2]          | [2]         | [2]          | [2]        | [1]          | 90.33        | 93.34        |
|    |      |       |                                                    | 45.210.9.97 | 500 | 004          | 45.210.3.90 | 19712        | 0x7ef3a938 | PCMU         | 90.33        | 93.34        |
|    |      |       |                                                    | 45.210.3.90 | 19  | 712          | 45.210.9.97 | 5004         | 0x8b43c394 | PCMU         | 90.33        | 93.34        |
| 5u | mmai | ry    |                                                    | [3]         | ]   | [4]          | [3]         | [4]          | [3]        | [1]          | 79.62        | 93.34        |

Cascade Pilot computes both "R" Factor and MOS in multiple formats:

- 1. Average R Factor / MOS
- 2. Maximum R Factor / MOS

| Γ  |                                                      |     | Caller Number   Receiver Number | ▲ Call-ID ▲ |      |             |             |         |      |            |     |              |         |         |
|----|------------------------------------------------------|-----|---------------------------------|-------------|------|-------------|-------------|---------|------|------------|-----|--------------|---------|---------|
|    | Hierarchy (Caller Number/Receiver<br>Number/Call-ID) |     |                                 | RTP Src IP  | RTI  | TP Src Port | RTP Dst IP  | RTP Dst | Port | SSRC       |     | PayLoad Type | Avg MOS | Max MOS |
| F  | Ca                                                   | a11 | er Number: 3290                 | [3]         | ]    | [4]         | [3]         |         | [4]  |            | [3] | [1]          | 3.83    | 4.41    |
|    | -                                                    | R   | eceiver Number: 4672            | [2          | ]    | [2]         | [2]         |         | [2]  |            | [2] | [1]          | 3.35    | 4.41    |
|    |                                                      | -   | Call-ID: 003094c3-438b0085-4ef  | [2]         | ]    | [2]         | [2]         |         | [2]  |            | [2] | [1]          | 3.35    | 4.41    |
|    |                                                      |     |                                 | 45.210.3.90 | 1971 | 16          | 45.210.9.72 | 2238    |      | 0x8b43c394 |     | PCMU         | 3.35    | 4.41    |
|    |                                                      |     |                                 | 45.210.9.72 | 2238 | В           | 45.210.3.90 | 19716   |      | 0x13c443d3 |     | PCMU         | 3.34    | 4.41    |
|    | -                                                    | R   | eceiver Number: 4697            | [2          | ]    | [2]         | [2]         |         | [2]  |            | [2] | [1]          | 4.30    | 4.41    |
|    |                                                      | -   | Call-ID: 003094c3-438b0083-6f8  | [2          | ]    | [2]         | [2]         |         | [2]  |            | [2] | [1]          | 4.30    | 4.41    |
|    |                                                      |     |                                 | 45.210.9.97 | 5004 | 4           | 45.210.3.90 | 19712   |      | 0x7ef3a938 |     | PCMU         | 4.30    | 4.41    |
|    |                                                      |     |                                 | 45.210.3.90 | 1971 | 12          | 45.210.9.97 | 5004    |      | 0x8b43c394 |     | PCMU         | 4.30    | 4.41    |
| SI | Summary [3                                           |     |                                 | ]           | [4]  | [3]         |             | [4]     |      | [3]        | [1] | 3.83         | 4.41    |         |

### **Cascade Pilot – Quality Details**

|     |      | Caller Number 🔺 Receiver Number 🔺                   | Call-ID ▲  |             |              |            |              |            |            |           |           |
|-----|------|-----------------------------------------------------|------------|-------------|--------------|------------|--------------|------------|------------|-----------|-----------|
|     | Н1   | nerarchy (Caller Number/Recenver<br>Number/Call-ID) | P Src Port | RTP Dst IP  | RTP Dst Port | SSRC       | PayLoad Type | Avg Jitter | Max Jitter | Avg Delta | Max Delta |
| - ( | :a11 | er Number: 3290                                     | [4]        | [3]         | [4]          | [3]        | [1]          | 7.151ms    | 507.953ms  | 24.340ms  | -296318us |
|     | - Re | eceiver Number: 4672                                | [2]        | [2]         | [2]          | [2]        | [1]          | 8.330ms    | 507.953ms  | 23.070ms  | -332398us |
|     | -    | Call-ID: 003094c3-438b0085-4ef5a663                 | [2]        | [2]         | [2]          | [2]        | [1]          | 8.330ms    | 507.953ms  | 23.070ms  | -332398us |
|     |      |                                                     | 16         | 45.210.9.72 | 2238         | 0x8b43c394 | PCMU         | 8.379ms    | 488.079ms  | 23.070ms  | -333296us |
|     |      |                                                     | 8          | 45.210.3.90 | 19716        | 0x13c443d3 | PCMU         | 8.280ms    | 507.953ms  | 23.071ms  | -332398us |
|     | - Re | eceiver Number: 4697                                | [2]        | [2]         | [2]          | [2]        | [1]          | 5.973ms    | 395.187ms  | 25.610ms  | -296318us |
|     | -    | Call-ID: 003094c3-438b0083-6f807304                 | [2]        | [2]         | [2]          | [2]        | [1]          | 5.973ms    | 395.187ms  | 25.610ms  | -296318us |
|     |      |                                                     | 4          | 45.210.3.90 | 19712        | 0x7ef3a938 | PCMU         | 6.200ms    | 395.187ms  | 25.605ms  | -296788us |
|     |      |                                                     | 12         | 45.210.9.97 | 5004         | 0x8b43c394 | PCMU         | 5.745ms    | 394.989ms  | 25.616ms  | -296318us |
| Sum | mary | ,                                                   | [4]        | [3]         | [4]          | [3]        | [1]          | 7.151ms    | 507.953ms  | 24.340ms  | -296318us |

Cascade Pilot computes both Jitter and Delta in multiple formats:

- 1. Average / Maximum Jitter
- 2. Average / Maximum Delta



# Making the Call - SIP...



### **Expected SIP Operation**

- To initiate a session
  - Caller sends a request to a callee's address in the form of a ASCII text command
    - "Invite"
  - Gatekeeper/Gateway attempts phnoe number -> IP mapping/resolution
    - Trying / Response code = 100
    - Ringing / response code = 180
  - Callee responds with an acceptance or rejection of the invitation
    - "Accept" / response code=200 "OK"
  - Call process is often mediated by a proxy server or a redirect server for routing purposes
- To terminate a session
  - Either side issues a quit command in ASCII text form
    - "Bye"

# SIP Call Setup



### **Session Initiation Protocol (SIP - Invite)**

 □ Session Initiation Protocol ☐ Request-Line: INVITE sip:4697@cisco.sip.ilabs.interop.net;user=phone SIP/2.0 Method: INVITE SIP "Invite" ■ Request-URI: sip:4697@cisco.sip.ilabs.interop.net;user=phone [Resent Packet: False] □ Message Header ☐ From: "Cisco 3290" <sip:3290@cisco.sip.ilabs.interop.net>;tag=003094c3438b00cd52bdf1e8-0d2f4d4b SIP Display info: "Cisco 3290" □ SIP from address: sip:3290@cisco.sip.ilabs.interop.net SIP from address User Part: 3290 SIP from address Host Part: cisco.sip.ilabs.interop.net SIP tag: 003094c3438b00cd52bdf1e8-0d2f4d4b □ To: <sip:4697@cisco.sip.ilabs.interop.net;user=phone> □ SIP to address: sip:4697@cisco.sip.ilabs.interop.net;user=phone SIP to address User Part: 4697 SIP to address Host Part: cisco.sip.ilabs.interop.net Call-ID: 003094c3-438b0083-6f807304-47943c3c@45.210.3.90 SIP is data is carried in text format Date: Thu, 13 May 2004 18:11:17 GMT ⊕ CSeq: 101 INVITE User-Agent: CSCO/6 Expires: 180 Content-Type: application/sdp Content-Length: 244 Accept: application/sdp 

# Session Initiation Protocol (SIP - Bye)

Session Initiation Protocol □ Request-Line: BYE sip:3290@45.210.3.90:5060 SIP/2.0 Method: BYE ■ Request-URI: sip:3290@45.210.3.90:5060 [Resent Packet: False] ■ Via: SIP/2.0/UDP 45.210.3.36:5060; branch=a84121e1-2d6f00ce-2bb702b0-fd00f62c-1 ■ Via: SIP/2.0/UDP 45.210.3.36:5060; received=45.210.3.36; branch=cb89efff-be63b1bc-83f907fe-69cf5fcc-1, SIP/2.0/UDP ■ To: "Cisco 3290" <sip:3290@cisco.sip.ilabs.interop.net>;tag=003094c3438b00cf087acf0f-1340dfed Call-ID: 003094c3-438b0085-4ef5a663-56f32b68@45.210.3.90 Content-Length: 0 Allow: INVITE, ACK, BYE, CANCEL, OPTIONS, INFO, MESSAGE, SUBSCRIBE, NOTIFY, PRACK, UPDATE, REFER User-Agent: PolycomSoundPointIP-UA/1.0.9 Max-Forwards: 67 k: com.nortelnetworks.firewall,100rel,p-3rdpartycontrol ☐ CSeq: 36515 BYE SIP - "Bye" Sequence Number: 36515

Method: BYE

# **Challenges of VolP**

- Minimize Delay, Jitter and data loss
  - Excessive Delay variations can lead to unacceptable data lost or distortion
- Implementing QoS
  - RSVP designed to reserve required resources for VoIP traffic
- Interoperability of equipment beyond the Intranet
  - Different vendors Gateways utilize different Codec's
- Compatibility with the PSTN
  - Seamless integration required to support services such as smart card and 800 service

### Factors Affecting Delay and VoIP Quality - 1

- Latency
  - Round trip latency is the key factor in a call having an "interactive feel"
  - <100 msec is considered idle</p>
- Jitter
  - Occurs when packets do not arrive at a constant rate that exceeds the buffering ability of the receiving device to compensate for
  - If excessive Jitter occurs, larger Jitter buffers will be required which cause longer latency

- Packet Loss
  - Loss of > 10% (non-consecutive packets) will be perceived as a bad connection

### Factors Affecting Delay and VoIP Quality - 2

- Codec Choice
  - Add delay
    - Processing
    - Encoding / Decoding
  - Greater the compression factors result in lowered quality
- Bandwidth Utilization
  - Less utilization = lower latency, jitter and loss due to collisions
- Priority
  - Voice is extremely sensitive to delay
  - QoS is used to allow network devices to handle VoIP ahead of other traffic

## **Voice Quality & Delay**



Many factors that contribute to the overall delay are fixed:

- -Codec delay
- -Hardware delay
- -Processing delay
- -Network physical delay

However, several delay factors are variable:

- -Queuing delay
- -Network propagation delay

It is the sum of all of these factors that determines overall delay as shown in the chart to the left

# **VolP Delay Example**



Total Fixed Delays (w/o buffer) 71-129ms

## The #1 Result of Excessive Delay - Jitter

- Occurs when packets do not arrive at a constant rate that exceeds the buffering ability of the receiving device to compensate for
  - Symptoms
    - Often noticed as garbles or a annoying screech during a conversation
  - Typical Causes
    - Insufficient bandwidth for the conversation
    - Excessive number of Hops in the signal path



# **Customer Symptoms**

- Customer Reported Symptoms
  - Cannot place or receive calls
  - Hear foreign voices not supposed to be on call
    - Cross-Talk
  - Volume noticeably low or high
  - Choppy Audio
  - Features do not work properly
- Equipment Alarm Indications
  - Ring Pre-trip Test Fails
  - Internal indications (card, power, etc)
  - Loss of Signal
  - High Error Rate
  - Connectivity failures



### **Analysis of Telephony Protocols**



<u>VoIP Analysis Tip:</u> Wireshark has the ability to reconstruct not only VoIP conversations, but also other media streams for later analysis.

### **Packet Capture File**

|    | IP - Src    | IP - Dest   | Time        | Protocol L | Length | Info                       |
|----|-------------|-------------|-------------|------------|--------|----------------------------|
| 4  | 45.210.3.90 | 45.210.3.36 | 4.774198532 | SIP/SDP    | 824    | Request: INVITE sip:4697@d |
| 5  | 45.210.3.36 | 45.210.3.90 | 4.774234772 | SIP        | 390    | Status: 100 Trying         |
| 6  | 45.210.3.36 | 45.210.3.90 | 4.855833054 | SIP        | 556    | Status: 180 Ringing        |
| 10 | 45.210.3.36 | 45.210.3.90 | 6.430492401 | SIP/SDP    | 1078   | Status: 200 OK , with ses  |
| 11 | 45.210.3.90 | 45.210.3.36 | 6.583414078 | SIP        | 603    | Request: ACK sip:3290.a756 |
| 12 | 45.210.9.97 | 45.210.3.90 | 6.616043091 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 13 | 45.210.9.97 | 45.210.3.90 | 6.634405136 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 14 | 45.210.3.90 | 45.210.9.97 | 6.648046493 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 15 | 45.210.9.97 | 45.210.3.90 | 6.655860901 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 16 | 45.210.3.90 | 45.210.9.97 | 6.675859451 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 17 | 45.210.9.97 | 45.210.3.90 | 6.675891876 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 18 | 45.210.3.90 | 45.210.9.97 | 6.687984466 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 19 | 45.210.9.97 | 45.210.3.90 | 6.695211410 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 20 | 45.210.3.90 | 45.210.9.97 | 6.707969665 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 21 | 45.210.9.97 | 45.210.3.90 | 6.714948654 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 22 | 45.210.3.90 | 45.210.9.97 | 6.728021622 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 23 | 45.210.9.97 | 45.210.3.90 | 6.734687805 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 24 | 45.210.3.90 | 45.210.9.97 | 6.748052597 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |
| 25 | 45.210.9.97 | 45.210.3.90 | 6.754869461 | RTP        | 214    | PT=ITU-T G.711 PCMU, SSRC= |

This example contains four (4) calls and is from a VoIP network using Cisco phones and SIP signaling with G.711 audio codec

### **VolP Call Detection, Analysis and Playback**



