DIGITAL CIRCUITS

Week-9, Lecture-1 Combinational Circuits

Sneh Saurabh 3rd October, 2018

Digital Circuits: Announcements/Revision

Digital Circuits

Three-state gates

Three-states in a digital circuit

■ Two states: conventional logic "0" and "1"

- Third state: high-impedance state
 - > the logic behaves like an **open circuit**, which means that the output appears to be disconnected
 - ➤ the circuit connected to the output of the three-state gate is not affected by the inputs to the gate
 - ➤ represented as "Z"

Three-state (Tri-state) buffer

- Realizing logic gates is possible by connecting together the *outputs* of tristate gates (this is known as wired connection)
- This is not possible with ordinary logic gates, because their outputs are always active; hence a short circuit would occur.

Priority Encoder: Implementation

Problem:

Implement a 2-to-1 MUX using two tri-state buffers and an inverter.

Priority Encoder: Implementation

Problem:

Implement a 4-to-1 MUX using four tri-state buffers and one 2-to-4 decoder.

Digital Circuits

Arithmetic Operations

Adders: Half Adders and Full Adders (Recap...)

х	у	Carry c	Sum s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

A circuit which implements the addition of only two bits is known as *Half Adder (HA)*

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$s_i = x_i \oplus y_i \oplus c_i$$

Full Adder Circuit

Adders: Ripple Carry Adder (Recap...)

Adders: Adder Subtractor Unit (Recap...)

We will look at two problems of this implementation

- 1. Arithmetic Overflow
- 2. Speed

Adder/Subtractor

Arithmetic Overflow

Arithmetic Overflow: Definition

- The result of addition/subtraction is supposed to fit within the significant bits used to represent the numbers
 - ➤ For example, if the numbers are represented in 4-bits, then sum/difference of two numbers should also fit in 4-bits
- If N bits are used to represent signed numbers, then the result must be in the range -2^{N-1} and $2^{N-1}-1$
 - \triangleright For example, if N=4, then the result of addition/subtraction should be within -8 to +7.
- If the result does not fit in this range, then we say that arithmetic overflow has occurred.
- To ensure the correct operation of an arithmetic circuit, it is important to be able to detect the occurrence of an arithmetic overflow

Arithmetic Overflow: Detection

- When sign of numbers are of opposite types, then no overflow can occur
- Take examples of two 4-bit numbers, and check under what condition overflow can occur
 - \succ Consider the carry-out from MSB position (c_3) and carry out from sign-bit position (c_4)

$$\begin{array}{ccc}
(+7) & & 0 & 1 & 1 & 1 \\
+ & (+2) & & + & 0 & 0 & 1 & 0 \\
\hline
(+9) & & & & & & & & \\
c_4 & = & 0 & & & \\
c_3 & = & 1 & & & \\
\end{array}$$

$$\begin{array}{r}
(-7) \\
+ (+2) \\
\hline
(-5) \\
\end{array}$$

$$\begin{array}{r}
1001 \\
+ 0010 \\
\hline
1011 \\
c_4 = 0 \\
c_3 = 0
\end{array}$$

$$\begin{array}{ccc}
(+7) & & & 0 & 1 & 1 & 1 \\
+ & (-2) & & & + & 1 & 1 & 1 & 0 \\
\hline
(+5) & & & & 1 & 0 & 1 & 0 & 1 \\
& & & & c_4 & = & 1 \\
& & & & c_3 & = & 1
\end{array}$$

$$\begin{array}{rrr}
(-7) & 1001 \\
+ (-2) & + 1110 \\
\hline
(-9) & 10111 \\
c_4 = 1 \\
c_3 = 0
\end{array}$$

$$\triangleright Overflow = c_{N-1} \oplus c_N$$

 $\triangleright Overflow = c_3 \oplus c_4$

Arithmetic Overflow: Circuit

Adder/Subtractor

Improving Speed

Adder Subtractor Unit: Performance Issues

- Speed is decided by the largest delay from the time the operands X and Y are presented as inputs, until the time all bits of the sum S and the final carry-out c_n are valid
- Most of delay is caused by the n-bit ripple-carry adder circuit

Adder Subtractor Unit: Performance Issues

- For a full-adder the delay for the carry-out signal is equal to two gate delays
- The longest delay is along the carry computation path
 - \blacktriangleright Computation of c_n requires that c_{n-1} is computed, c_{n-1} waits for c_{n-2} and so on

- For n-stage ripple carry adder, there is (2n + 1) gate delays
- When n = 32 or n = 64, the delay becomes unacceptably high
- Fast adder circuit is required: computation of carry must be speeded