Downfolding interacting models in the constrained random phase approximation (cRPA)

Demonstrating with an Fe impurity in an AlN crystal

Kevin Kleiner Downfolding School April 29, 2022

1

Describe an active space and environment

Consider the situation in the cartoon below

Picture from: H. Ma, M. Govoni, and G. Galli, npj Comput. Mater. 6 85 (2020).

Concrete example: describing excitations of an Fe impurity in AlN*

We expect the lowestenergy excitations to **only** involve these bands near E_F

A spin-unpolarized KS-DFT calculation shows five in-gap bands with Fe 3d character

*L. Muechler, et. al., arXiv:2105.08705 (2022).

Fe-in-AlN excited states require multi-determinant descriptions

While the spin-5/2 ground state* can be described by singly-occupying five $Fe \ 3d$ -like states

the low-spin excited states require expansions of 5+ determinants to satisfy spin symmetry

We can describe these low-lying states with an interacting model in the Fe 3d subspace

Bare coulomb interactions wouldn't be accurate

We need a way to renormalize the 2-body interaction terms in the *Fe* 3*d* subspace to account for contact with the environment.

Common approach: treat fluctuations in the environment as a perturbation to the bare interaction \hat{V}

Estimate the screened interaction by summing over diagrams

Obtaining the exact sum is intractable, so we truncate the perturbation series with cRPA

Assumption: the only significant corrections come from <u>bubble diagrams</u>

Creation of a virtual particle-hole pair

Annihilation of a virtual particle-hole pair

Simplified series sums to $U(\mathbf{r}, \mathbf{r}'; \omega) = \left[1 - V(\mathbf{r}, \mathbf{r}')P_r(\mathbf{r}, \mathbf{r}'; \omega)\right]^{-1}V(\mathbf{r}, \mathbf{r}')$

Compute P_r , the charge polarization from the environment

Full polarization is the sum over all particle-hole transitions

$$P_r(\mathbf{r}, \mathbf{r}'; \omega) = P_{full}(\mathbf{r}, \mathbf{r}'; \omega) - P_{active}(\mathbf{r}, \mathbf{r}'; \omega)$$

$$P_{full}(\mathbf{r},\mathbf{r}';\omega) = \sum_{n}^{occ} \sum_{n'}^{unocc} \left(\frac{\phi_{n}(\mathbf{r})\phi_{n'}^{*}(\mathbf{r})\phi_{n}^{*}(\mathbf{r}')\phi_{n'}(\mathbf{r}')}{\omega + (\varepsilon_{n} - \varepsilon_{n'}) + i\eta} + \frac{\phi_{n}(\mathbf{r})\phi_{n'}^{*}(\mathbf{r})\phi_{n'}^{*}(\mathbf{r}')\phi_{n'}(\mathbf{r}')}{\omega + (\varepsilon_{n'} - \varepsilon_{n}) - i\eta} \right)$$

Preview for next week: cRPA downfolding with VASP

1. Obtain converged \hat{V}^{KS} and $\{\phi_n^{KS}(\mathbf{r})\}$

- 2. Determine the localized 1-body basis and 1-body Hamiltonian
- 3. Determine the screened interaction and 2-body Hamiltonian

	N	E
DAV:	1	0.217750928225E+04
DAV:	2	-0.971277829749E+03
DAV:	3	-0.110882563137E+04
DAV:	4	-0.110974343615E+04
DAV:	5	-0.110975294626E+04

Discussion question: What are the approximations made in each step?