

Computer Architecture and Logic Design (CALD) Lecture 11

Dr. Sorath Hansrajani

Assistant Professor

Department of Software Engineering

Bahria University Karachi Campus

Email: sorathhansrajani.bukc@bahria.edu.pk

Simplification of Boolean Functions

These slides were assembled by Mustafa Kemal Uyguroğlu, with grateful acknowledgement of the many others who made their course materials freely available online. Feel free to reuse or adapt these slides for your own academic purposes, provided that you include proper attribution.

3-1 Introduction

■ Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.

3-2 The Map Method

- The complexity of the digital logic gates
 - The complexity of the algebraic expression
- Logic minimization
 - Algebraic approaches: lack specific rules
 - The Karnaugh map
 - A simple straight forward procedure
 - A pictorial form of a truth table
 - Applicable if the # of variables < 7
- A diagram made up of squares
 - Each square represents one minterm

Review of Boolean Function

■ Boolean function

- Sum of minterms
- Sum of products (or product of sum) in the simplest form
- A minimum number of terms
- A minimum number of literals
- The simplified expression may not be unique

Two-Variable Map

■ A two-variable map

- Four minterms
- x' = row 0; x = row 1
- y' = column 0; y = column
- A truth table in square diagram
- Fig. 3.2(a): $xy = m_3$
- Fig. 3.2(b): x+y = x'y+xy'+ $xy = m_1+m_2+m_3$

Figure 3.1 Two-variable Map

Figure 3.2 Representation of functions in the map January 1, 2023

A Three-variable Map

■ A three-variable map

- Eight minterms
- The Gray code sequence
- Any two adjacent squares in the map differ by only one variable
 - Primed in one square and unprimed in the other
 - e.g., m_5 and m_7 can be simplified
 - $m_5 + m_7 = xy'z + xyz = xz (y'+y) = xz$

m_0	m_1	m_3	m_2	
m_4	m_5	m_7	m_6	
(a)				

Figure 3.3 Three-variable Map

A Three-variable Map

- \blacksquare m_0 and m_2 (m_4 and m_6) are adjacent
- $m_0 + m_2 = x'y'z' + x'yz' = x'z' (y'+y) = x'z'$
- $m_4 + m_6 = xy'z' + xyz' = xz'(y'+y) = xz'$

				\ Y7			y	
				x	00	01	11	10
m_0	m_1	m_3	m_2	0	x'y'z'	x'y'z	x'yz	x'yz'
m_4	m_5	m_7	m_6	$x \begin{cases} 1 \end{cases}$	xy'z'	xy'z	xyz	xyz'
	(:	a)					b)	

Fig. 3-3 Three-variable Map

- Example 3.1: simplify the Boolean function $F(x, y, z) = \Sigma(2, 3, 4, 5)$
 - $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

Figure 3.4 Map for Example 3.1, $F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$

- Example 3.2: simplify $F(x, y, z) = \Sigma(3, 4, 6, 7)$
 - $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Figure 3.5 Map for Example 3-2; $F(x, y, z) = \Sigma(3, 4, 6, 7) = yz + xz'$

Four adjacent Squares

■ Consider four adjacent squares

- 2, 4, and 8 squares
- $m_0 + m_2 + m_4 + m_6 = x'y'z' + x'yz' + xy'z' + xyz' = x'z'(y'+y) + xz'(y'+y) = x'z' + xz' = z'$
- $m_1 + m_3 + m_5 + m_7 = x'y'z + x'yz + xy'z + xyz = x'z(y'+y) + xz(y'+y) = x'z + xz = z$

Figure 3.3 Three-variable Map

- Example 3.3: simplify $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$
- $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

Figure 3.6 Map for Example 3-3, $F(x, y, z) = \Sigma(0, 2, 4, 5, 6) = z' + xy'$

- Example 3.4: let F = A'C + A'B + AB'C + BC
 - a) Express it in sum of minterms.
 - b) Find the minimal sum of products expression.

Ans:

$$F(A, B, C) = \Sigma(1, 2, 3, 5, 7) = C + A'B$$

Figure 3.7 Map for Example 3.4, A'C + A'B + AB'C + BC = C + A'B

3.3 Four-Variable Map

■ The map

- 16 minterms
- Combinations of 2, 4, 8, and 16 adjacent squares

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	<i>m</i> ₁₅	m_{14}
m_8	<i>m</i> ₉	m_{11}	m_{10}
(a)			

Figure 3.8 Four-variable Map

■ Example 3.5: simplify $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Figure 3.9 Map for Example 3-5; $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) = y' + w'z' + xz'$

■ Example 3-6: simplify F = A B'C' + B'CD' + A B'C'D' + AB'C'

Figure 3.9 Map for Example 3-6; $A \mathcal{B}'C' + B\mathcal{C}D' + A\mathcal{B}'C\mathcal{D}' + AB\mathcal{C}' = B\mathcal{D}' + B\mathcal{C}' + A\mathcal{C}D'$

Prime Implicants

■ Prime Implicants

- All the minterms are covered.
- Minimize the number of terms.
- A prime implicant: a product term obtained by combining the maximum possible number of adjacent squares (combining all possible maximum numbers of squares).
- Essential P.I.: a minterm is covered by only one prime implicant.
- The essential P.I. must be included.

Prime Implicants

- Consider $F(A, B, C, D) = \Sigma(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$
 - The simplified expression may not be unique

$$F = BD+B'D'+CD+AD = BD+B'D'+CD+AB'$$
$$= BD+B'D'+B'C+AD = BD+B'D'+B'C+AB'$$

Note: A'B'C'D' + A'B'CD' = A'B'D' AB'C'D' + AB'CD' = AB'D'A'B'D' + AB'D' = B'D'

(a) Essential prime implicants *BD* and *B'D'*

(b) Prime implicants CD, B'C, AD, and AB'

Figure 3.11 Simplification Using Prime Implicants

3-5 Product of Sums Simplification

■ Approach #1

- Simplified F' in the form of sum of products
- Apply DeMorgan's theorem F = (F')'
- F': sum of products \rightarrow F: product of sums

■ Approach #2: duality

- Combinations of maxterms (it was minterms)
- $M_0M_1 = (A+B+C+D)(A+B+C+D') = (A+B+C)+(DD') = A+B+C$

	CD			
AB \	00	01	11	10
00	$M_{\scriptscriptstyle O}$	M_{I}	M_3	M_2
01	M_4	M_5	M_7	M_6
11	M_{12}	M_{13}	M_{15}	M_{14}
10	M_8	M_9	M_{II}	M_{10}

■ Example 3.8: simplify $F = \Sigma(0, 1, 2, 5, 8, 9, 10)$ into (a) sum-of-products form, and (b) product-of-sums form:

a) $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

b) F' = AB + CD + BD'

- » Apply DeMorgan's theorem; F=(A'+B')(C'+D')(B'+D)
- » Or think in terms of maxterms

Note: BC'D' + BCD' = BD'

Figure 3.14 Map for Example 3.8, $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10) = B'D' + B'C' + A'C'D$

Example 3.8 (cont.)

■ Gate implementation of the function of Example 3.8

Figure 3.15 Gate Implementation of the Function of Example 3.8

Sum-of-Minterm Procedure

- Consider the function defined in Table 3.2.
 - In sum-of-minterm:

$$F(x, y, z) = \sum (1, 3, 4, 6)$$

■ In sum-of-maxterm:

$$F'(x, y, z) = \Pi(0, 2, 5, 7)$$

Taking the complement of F'

$$F(x, y, z) = (x' + z')(x + z)$$

Table 3.2 *Truth Table of Function F*

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Sum-of-Minterm Procedure

- Consider the function defined in Table 3.2.
 - Combine the 1's:

$$F(x, y, z) = x'z + xz'$$

■ Combine the 0's:

$$F'(x, y, z) = xz + x'z'$$

Figure 3.16 Map for the function of Table 3.2

3-6 Don't-Care Conditions

- The value of a function is not specified for certain combinations of variables
 - BCD; 1010-1111: don't care
- The don't-care conditions can be utilized in logic minimization
 - Can be implemented as 0 or 1
- Example 3.9: simplify $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ which has the don't-care conditions $d(w, x, y, z) = \Sigma(0, 2, 5)$.

Example 3.9 (cont.)

- F = yz + w'x'; F = yz + w'z
- $F = \Sigma(0, 1, 2, 3, 7, 11, 15); F = \Sigma(1, 3, 5, 7, 11, 15)$
- Either expression is acceptable

Figure 3.17 Example with don't-care Conditions